Homework Assignment 1

Joshua Cragun * Prof. Domingo Toledo, MATH 3220 January 2019

^{*}u1025691

Question 1

a.) Let $f_n(x) = x^n \in \mathcal{C}([0,1])$. Prove that $\{f_n\}$ has no convergent subsequence in the norm of $\mathcal{C}([0,1])$

Proof. First we must note that $\{f_n\}$ and any of its subsequences converge pointwise to the following function f(x):

$$f(x) = \begin{cases} 0 & 0 \le x < 1 \\ 1 & x = 1 \end{cases}$$

Proof. First note that $\forall n \in \mathbb{N}, f_n(0) = 0^n = 0$, and $f_n(1) = 1^n = 1$, hence $\{f_n\}$ and all of its subsequences converge to f at 0 and 1.

Next, consider all 0 < x < 1. Then for any infinite and monotone increasing subsequence $s(n) : \mathbb{N} \to \mathbb{N}$ (including the identity function of the natural numbers, or in other words, $\{f_n\}$ itself.)

$$\lim_{n \to \infty} f_{s(n)}(x) \le \sum_{n=1}^{\infty} f(x) = \sum_{n=1}^{\infty} x^n$$

But since 0 < x < 1, $\sum_{n=1}^{\infty} x^n$ must be convergent; therefore implying that $\lim_{n\to\infty} f_{s(n)}(x) = 0$, thus showing that f(x) is the pointwise limit of $\{f_n\}$.

It is immediately clear however that f is not continuous, since if $0 < \epsilon < 1$, then one cannot find a δ such that $|1 - x| < \delta \rightarrow |f(1) - f(x)| < \epsilon$ since |f(1) - f(x)| = 1 for all $0 \le x < 1$. As a result then, $f(x) \notin \mathcal{C}([0,1])$, and hence, $\{f_n\}$ nor any of its subsequences converge in $\mathcal{C}([0,1])$.

b.) Use this to prove that the unit ball $B = \{f \in \mathcal{C}([0,1]) : ||f|| \le 1\}$ is not compact.

Proof. Using the norm $||f(x)|| = \sup_{x \in [0,1]} (|f(x)|)$, one can see that for all $f_i \in \{f_n\}, ||f_i|| = 1$ since each f_i is monotone increasing with a maximum on [0,1] of $f_i(1) = 1$. Hence $\{f_n\} \in B$.

However, according to theorem 3.6 in Walter Rudin's Priciples of Mathematical Analysis, if $\{f_n\}$ is a sequence in a compact metric space, then some sub-sequence of $\{f_n\}$ converges to a point in $\mathcal{C}([0,1])$. However it has been shown that no subsequence of $\{f_n\}$ converges in $\mathcal{C}([0,1])$ (and by extention any of its subsets), and that all f_i lie in B. Hence one must conclude that B is not compact.

Question 2

a.) Let (X, d) be a metric space and let $K \subset X$ be a compact subset. Prove that for all $\epsilon > 0$ there are finitely many points $x_1, \ldots, x_n \in K$ so that, for every $x \in K$ there exists an $i, i = 1, \ldots, n$, such that $d(x, x_i) < \epsilon$

Proof. The set of all open balls centered at all points of K with radius ϵ creates an open cover of K. Call this set B. Because K is compact, then B has a finite sub-covering of open balls of radius ϵ , B_1, B_2, \dots, B_N . Therefore since $K \subset \bigcup_{i=1}^N B_i$, it must be the case that for every $x \in K$, the distance between x and at least one of the ball's centers $\{x_1, x_2, \dots x_n\}$ has a distance less than ϵ . Therefore, there exists an $i \in \mathbb{N}$: $1 \le i \le n$ such that $\forall x \in K, d(x, x_i) < \epsilon$.

b.) Use this to prove that, if $K \subset \mathcal{C}([0,1])$ is compact, then K is equicontinuous.

Proof. Since K is compact, given any $\epsilon > 0$ select f_1, f_2, \cdots, f_n such that $\forall f \in K, \exists i \in \mathbb{N}([1,n])$ such that $|f(x) - f_i(x)| < \frac{\epsilon}{3}$. Further, since K is compact it is also known that each $f \in K$ are uniformly continuous. Therefore, for each $f_i, \exists \delta_i > 0$ such that if $|x-y| < \delta$, then $|f_i(x) - f_i(y)| < \frac{\epsilon}{3}$. Let $\delta = \inf(\delta_i)$. Then we have, if $|x-y| < \delta$

$$|f(x) - f(y)| = |(f(x) - f_i(x)) + (f_i(x) - f_i(y)) + (f_i(y) - f(y))|$$

$$\leq |f(x) - f_i(x)| + |f_i(x) - f_i(y)| + |f_i(y) - f(y)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

Thus proving K to be equicontinuous.

Question 3

Recall the norms $||f||_1 = \int_0^1 |f(x)| dx$ and $||f||_{\infty} = \sup_{x \in X} \{|f(x)|\}$ on $\mathcal{C}([0,1])$.

a.) Prove that $||f||_1 \leq ||f||_{\infty}$ for all $f \in \mathcal{C}([0,1])$

Proof. Note that

$$\int_{a}^{b} f(x) dx \le (b-a) \cdot \sup_{x \in [a,b]} (|f(x)|)$$

Then in this case,

$$||f||_1 = \int_0^1 |f(x)| \ dx \le (1-0) \cdot \sup_{x \in [0,1]} (|f(x)|) = ||f||_{\infty}$$

Hence $\forall f \in \mathcal{C}([0,1]), ||f||_1 \leq ||f||_{\infty}.$

b.) Prove that there is no constant C > 0 such that $||f||_{\infty} < C||f||_{1}$ holds for all $f \in \mathcal{C}([0,1])$ by producing a sequence $f_n \in \mathcal{C}([0,1])$ with $||f_n||_{\infty} \to \infty$ and $||f_n||_{1} = 1$

Proof. Consider the following sequence of functions, $\{f_n\}$:

$$f_n(x) = \begin{cases} 2n - 2n^2 x & 0 \le x \le \frac{1}{n} \\ 0 & \frac{1}{n} < x \end{cases}$$

Observe that for any fixed n,

$$||f_n||_1 = \int_0^1 |f(x)| dx$$

$$= \int_0^{\frac{1}{n}} |2n - 2n^2x| dx + \int_{\frac{1}{n}}^1 |0| dx$$

$$= 2n\left(\frac{1}{n}\right) - n^2\left(\frac{1}{n}\right)^2$$

$$= 1$$

Also notice that since $||f_n||_{\infty} = 2n$, $\lim_{n\to\infty} ||f_n|| = \infty$. Fix any $n \in \mathbb{N}$, $C \in \mathbb{R}$ such that $||f_n||_{\infty} < C||f_n||_1$. Then for any $m \ge \left\lceil \frac{C}{2} \right\rceil$, we will have

$$||f_m||_{\infty} \geq C = C||f_m||_1$$

Hence there does not exist any such C > 0 such that $||f_i||_{\infty} < C||f_i||_1$ over all $f_i \in \{f_n\}$ since one can find an m > n such that the inequality is no longer true. By extention it is the case that $\not\equiv C > 0$ such that $||f||_{\infty} < C||f||_1$ holds for all $f \in \mathcal{C}([0,1])$.

c.) Prove that C([0,1]) with norm $||f||_1$ is not a complete metric space. Observe that this gives another proof of (b).

Proof. To do this, one should consider a different sequence of functions in $\mathcal{C}([0,1])$, $\{g_n\}$ defined like so:

$$g_n(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} \\ n\left(x - \frac{1}{2}\right) & \frac{1}{2} < x \le \frac{1}{2} + \frac{1}{n} \\ 1 & \frac{1}{2} + \frac{1}{n} < x \le 1 \end{cases}$$

It is easy to see that each g_n is continuous. For any $\epsilon > 0$ choose $0 < \delta < \frac{\epsilon}{n}$. Then there are three cases to consider:

Case 1: $x \le \frac{1}{2}$ and $y \le \frac{1}{2}$ or $x > \frac{1}{2} + \frac{1}{n}$ and $y > \frac{1}{2} + \frac{1}{n}$. Given any $\epsilon > 0$, and if $|x - y| < \delta$, then $|g_n(x) - g_n(y)| = 0 < \epsilon$

Case 2: $\frac{1}{2} < x \le \frac{1}{2} + \frac{1}{n}$ and $\frac{1}{2} < y \le \frac{1}{2} + \frac{1}{n}$ Given any $\epsilon > 0$, and if $|x - y| < \delta$, then

$$|g_n(x) - g_n(y)| = \left| \left(nx - \frac{n}{2} \right) - \left(ny - \frac{n}{2} \right) \right|$$
$$= |nx - ny| = |n(x - y)|$$
$$= |n| \cdot |x - y| < n \cdot \frac{\epsilon}{n} = \epsilon$$

Case 3: Either $\min(x,y) \leq \frac{1}{2}$ and $\frac{1}{2} < \max(x,y) \leq \frac{1}{2} + \frac{1}{n}$ (which will be referred to as the "lower case") or $\frac{1}{2} < \min(x,y) \leq \frac{1}{2} + \frac{1}{n}$ and $\frac{1}{2} + \frac{1}{n} < \max(x,y)$ (which will be referred to as the "upper case").

In this case, notice that, given any $\epsilon > 0$, and x, y such that $|x - y| < \delta$ we have

$$|g_n(x) - g_n(y)| \le \left| \left(nx - \frac{n}{2} \right) - \left(ny - \frac{n}{2} \right) \right|$$

For the lower case suppose that, without loss of generality, $\min(x, y) = x$. This implies that $x \leq \frac{1}{2} < y$ and thus

$$nx - \frac{n}{2} \le \frac{n}{2} - \frac{n}{2} = 0$$

and

$$ny - \frac{n}{2} > \frac{n}{2} - \frac{n}{2} = 0$$

Then since $g_n(y) = ny - \frac{n}{2} > 0$ and f(x) = 0 but $nx - \frac{n}{2} \le 0$, it follows that the absolute difference between $g_n(y)$ and $nx - \frac{n}{2}$ must be greater than or equal to the absolute difference between $g_n(x)$ and $g_n(y)$, as asserted above.

For the upper case suppose that, without loss of generality, $\max(x, y) = y$. This means that $\frac{1}{2} < x \le \frac{1}{2} + \frac{1}{n}$ and $\frac{1}{2} + \frac{1}{n} < y$. It then follows that

$$ny - \frac{n}{2} > n\left(\frac{1}{2} + \frac{1}{n}\right) - \frac{n}{2} = \frac{n}{2} + 1 - \frac{n}{2} = 1$$

Hence $ny - \frac{n}{2} > 1$ and $g_n(y) = 1$. Since expressions in the previous case show that $nx - \frac{n}{2} = g_n(x) > 0$, it follows that $\left| g_n(x) - \left(ny - \frac{n}{2} \right) \right| \ge \left| g_n(x) - g_n(y) \right|$ since $ny - \frac{n}{2} \ge g_n(y)$.

Then it is very straightforward since in either the lower or upper case we have:

$$|g_n(x) - g_n(y)| \le \left| \left(nx - \frac{n}{2} \right) - \left(ny - \frac{n}{2} \right) \right|$$

$$= |nx - ny| = |n(x - y)|$$

$$= |n| \cdot |x - y| < n \cdot \frac{\epsilon}{n} = \epsilon$$

Hence $\{g_n\}$ is a sequence of continuous functions in $\mathcal{C}([0,1])$. Next, it is plain to see that $\{g_n\}$ converges pointwise to the following function g:

$$g(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} < x \le 1 \end{cases}$$

Since for any n, if $0 \le x \le \frac{1}{2}$, $g_n(x) = 0$. For any $\frac{1}{2} < x < 1$, choose any $N \in \mathbb{N}$ such that $N > \left(x - \frac{1}{2}\right)^{-1}$. It follows that $x > \frac{1}{N} + \frac{1}{2}$ and thus $g_N(x) = 1$, proving g(x) to be the pointwise limit of $\{g_n\}$.

It is also clear that g(x) is not continuous since $\forall \delta > 0$, $\exists x \in [\frac{1}{2} - \delta, \frac{1}{2} + \delta]$ such that $|g(\frac{1}{2}) - g(x)| = 1$ since $\frac{1}{2} + \delta > \frac{1}{2}$. It follows then that for all

 $\epsilon > 0$, $|x - y| < \delta$ does not imply that $|g(x) - g(y)| < \epsilon$. Hence g(x) is not continuous and $g \notin \mathcal{C}([0,1])$. This also implies that $\{g_n\}$ does not converge in $\mathcal{C}([0,1])$.

It then suffices to prove that $\mathcal{C}([0,1])$ is not a complete metric space by showing that that $\{g_n\}$ is Cauchy, since it has already been shown to not converge in $\mathcal{C}([0,1])$.

Proof. Given some $\epsilon > 0$, select any $m, n, N \in \mathbb{N}$ such that $n \neq m; m, n \geq N$ and $N > \frac{1}{\epsilon}$. Without loss of generality, suppose that n > m. Then

$$||g_n(x) - g_m(x)||_1 = \int_0^1 |g_n(x) - g_m(x)| dx$$

Since $g_n(x) - g_m(x) = 0$ for all $0 \le x \le \frac{1}{2}$ and $\frac{1}{2} + \frac{1}{m} < x \le 1$, one need only consider two intervals of x:

$$\int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} |(n - m) \left(x - \frac{1}{2}\right)| \ dx + \int_{\frac{1}{2} + \frac{1}{n}}^{\frac{1}{2} + \frac{1}{n}} |1 - m \left(x - \frac{1}{2}\right)| \ dx$$

Examining the left hand expression, note that since n > m, n - m > 0 and since $x \ge \frac{1}{2}$, we have $x - \frac{1}{2} \ge 0$. As a result $(n - m)(x - \frac{1}{2}) \ge 0$ and $|(n - m)(x - \frac{1}{2})| = (n - m)(x - \frac{1}{2})$. So then we have

$$\int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} (n - m) \left(x - \frac{1}{2} \right) = \frac{n - m}{2} \left(x(x - 1) \Big|_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} \right)$$

Which by plugging in the integral's bounds gives us

$$\frac{n-m}{2} \left(\left(\frac{1}{n} + \frac{1}{2} \right) \left(\frac{1}{n} - \frac{1}{2} \right) - \left(\frac{1}{2} \right) \left(-\frac{1}{2} \right) \right) = \frac{1}{2n} - \frac{m}{2n^2}$$

Next consider the right hand expression. Because $x \leq \frac{1}{2} + \frac{1}{m}$, $m(x - \frac{1}{2}) \leq m((\frac{1}{m} + \frac{1}{2} - \frac{1}{2})) = 1$. So since $m(x - \frac{1}{2}) \leq 1$, it follows that $1 - m(x - \frac{1}{2}) \geq 0$ and hence $|1 - m(x - \frac{1}{2})| = 1 - m(x - \frac{1}{2})$. Then we have

$$\int_{\frac{1}{2} + \frac{1}{n}}^{\frac{1}{2} + \frac{1}{n}} 1 - m\left(x - \frac{1}{2}\right) dx = \frac{1}{m} - \frac{1}{n} - \frac{m}{2} \left(x(x - 1) \Big|_{\frac{1}{2} + \frac{1}{n}}^{\frac{1}{2} + \frac{1}{n}}\right)$$

Evaluating the rightmost term yields

$$\left(\frac{1}{m} - \frac{1}{n}\right) - \left(\frac{1}{2m} - \frac{m}{2n^2}\right) = \frac{m}{2n^2} + \frac{1}{2m} - \frac{1}{n}$$

Combining the two integrals then gives us

$$\left(\frac{1}{2n} - \frac{m}{2n^2}\right) + \left(\frac{m}{2n^2} + \frac{1}{2m} - \frac{1}{n}\right) = \frac{1}{2m} - \frac{1}{2n}$$

However since n > m it follows that $\frac{1}{2m} > \frac{1}{2n}$ and hence $\frac{1}{2m} - \frac{1}{2n} > 0$. It is also then the case that

$$\frac{1}{2m} - \frac{1}{2n} < \frac{1}{2m} < \frac{1}{m} \le \frac{1}{N} < \epsilon$$

Thereby proving that $\{g_n\}$ is a Cauchy sequence.

Thus $\mathcal{C}([0,1])$ is not complete since $\{g_n\} \subset \mathcal{C}([0,1])$ is Cauchy and $\{g_n\}$ does not converge in $\mathcal{C}([0,1])$.

Question 4

Given the following function f(x),

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}$$

a.) For which $x \in \mathbb{R}$ does the series converge (absolutely)?

It is clear to see that the series does not converge when x=0 since the series devolves into $1+1+1+\cdots=\infty$. It also does not converge when $x=\frac{-1}{k^2}$, where $k=1,2,3,\ldots$ since the k-th element of the sequence will be undefined. Then consider any other $xin\mathbb{R}$. If x<-1 or x>0, then

$$\left| \frac{1}{1 + n^2 x} \right| \le \left| \frac{1}{n^2 x} \right|$$

And is therefore absolutely convergent by direct comparison to the p=2 series. For -1>x>0, the problem is a bit more complex. Given any $1>\delta>0$, where $x\in(-1,-\delta]$ is not of an illegal form $(\frac{-1}{k^2})$, then when $n\geq\sqrt{(\frac{2}{\delta})}$ we have

$$\left| \frac{1}{1+n^2x} \right| \le \frac{1}{n^2} \cdot \frac{1}{\delta - \frac{1}{n^2}} \le \frac{2}{n^2\delta}$$

Which implies that f(x) converges absolutely between (-1,0) as well. This answers both part a.) and part b.) of this question.

c.) Is f bounded?

It appears to be that f is not bounded since for x < 0 we have

$$f(x) = \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{\frac{1}{x} + n^2}$$

Where $0 < \frac{1}{\frac{1}{x} + n^2} < \frac{1}{n^2}$, and is therefore convergent. But then

$$\lim_{x \to 0^+} \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{\frac{1}{x} + n^2} = \infty$$

Question 5