$\leftarrow \quad \underset{\text{Quiz, 10 questions}}{\text{Optimization algorithms}}$

8/10 points (80.00%)

	~	Congratulations! You passed!	Next Item				
~	1 / 1 point						
1. Which	notation w	ould you use to denote the 3rd layer's activations when the input is the 7th exa	mple from the 8th minibatch?				
	$a^{[3]\{7\}(8)}$						
	$a^{[8]\{7\}(3)}$						
	$a^{[8]\{3\}(7)}$						
0	$a^{[3]\{8\}(7)}$						
Corr	ect						
 2. Which of these statements about mini-batch gradient descent do you agree with? Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent. One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent. You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization). This should not be selected							
X	0 / 1 point						
	3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?						
	If the min	i-batch size is 1, you end up having to process the entire training set before ma	king any progress.				
Un-selected is correct							

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient Optimization algorithms Quiz, 10 questions

8/10 points (80.00%)

Un-selected is correct

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

This should be selected

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.

Correct

point

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

\bigcirc	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

Optimization algorithms

Quiz, 10 questions

8/10 points (80.00%)

1/1 point

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $heta_1=10^oC$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

Correct

$$v_2=10$$
, $v_2^{corrected}=10$

$$v_2=7.5$$
 , $v_2^{corrected}=7.5$

1/1 point

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

Correct

$$\alpha = 0.95^t \alpha_0$$

$$\alpha = \frac{1}{1+2*t} \alpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

1/1 point

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $e^{i\omega_t} = \beta \Omega ptimization in a least ballow was computed using <math>\beta = 0.9$. What would happen to your red curve as you vary $\beta = 0.9$. What would happen to your red curve as you vary $\beta = 0.9$. What would happen to your red curve as you vary $\beta = 0.9$. What would happen to your red curve as you vary $\beta = 0.9$. What would happen to your red curve as you vary $\beta = 0.9$.

Decreasing eta will shift the red line slightly to the right.						
Un-selected is correct						
Increasing eta will shift the red line slightly to the right.						
Correct						
True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.						
Decreasing eta will create more oscillation within the red line.						
Correct True, remember that the red line corresponds to $eta=0.9$. In lecture we had a yellow line $\$$ \beta = 0.98 that had a lot of						
oscillations.						
Increasing eta will create more oscillations within the red line.						
Un-selected is correct						

8/10 points (80.00%)

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

	(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
	(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
	(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
0	(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
Corr	rect

•

1/1 point

9

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\sqrt{3}W^{[1]}, b^{[1]}, \dots, W^{[L]}, b^{[L]}$). Which of the following techniques could help find parameter values that attain a small value for $\sqrt{3}$ (Check all that apply)

	Try better random initialization for the weights			
Corr	ect			
	Try initializing all the weights to zero			
Un-selected is correct				
	Try mini-batch gradient descent			

Correct

-	Optimization algorithms ्राष्ट्र भरुंपुद्धक्रीलाः	8/10 points (80.00%)						
Corr	Correct							
Corr	Try tuning the learning rate $lpha$							
~	1/1 point							
10. Which	of the following statements about Adam is False?							
0	Adam should be used with batch gradient computations, not with mini-batches.							
Corr	ect							
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $\ \ $ in Adam ($eta_1=0.9,eta_2=0.9$	$999, = 10^{-8}$						
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.							
	Adam combines the advantages of RMSProp and momentum							

$\leftarrow \quad \underset{\text{Quiz, 10 questions}}{\text{Optimization algorithms}}$

8/10 points (80.00%)