

Training on Feasible Actuator Range Modifier (FARM)

IES Tools Virtual Workshop: Capability Overview and Training March 18, 2022 Haoyu Wang, Roberto Ponciroli, Richard Vilim Argonne National Laboratory

haoyuwang@anl.gov

Table of Content

- FARM capability overview
- Software installation
- Input creation and running the code
- Output analysis
- Future Directions

1. FARM capability overview

- FARM: Feasible Actuator Range Modifier
 - FARM is a RAVEN plugin to meet the supervisory control needs.
 - FARM helps validate the issued actuator value, to meet both
 - Explicit constraints, and
 - Implicit constraints.

Q1: What are these constraints?

Let's use a Gas Turbine to explain:

Explicit constraints:

- Power output to grid;
- Power ramp rate, etc.

Implicit constraints:

Firing Temperature, etc.

1. FARM capability overview

- FARM: Feasible Actuator Range Modifier
 - Q2: Where is FARM in the feedback loop control?

Integrated Energy Systems

With FARM

1. FARM capability overview

- FARM: Feasible Actuator Range Modifier
 - Q3: What's the effects of FARM?

Without FARM:

- System run on original power setpoint
- Implicit constraints were violated (Firing temperature)

With FARM:

- Power setpoint was adjusted
- Implicit constraints were met (Firing temperature)

Integrated Energy Systems

2. Software installation

- FARM is an open-source software
 - https://github.com/Argonne-National-Laboratory/FARM
 - In order to run FARM, RAVEN is a pre-requisite.
- FARM installation consists of 2 steps:
 - Step 1: Download FARM source code using git
 haoyuwang@p075722 MINGW64 /d/GitProjects/training
 \$ git clone https://github.com/Argonne-National-Laboratory/FARM.git
 - Step 2: Register FARM plugin in RAVEN
 haoyuwang@p075722 MINGW64 /d/GitProjects/training/raven (devel)
 \$./scripts/install_plugins.py -s /d/GitProjects/training/FARM/

- FARM uses XML file as input
 - One example is in FARM / training031822 / FARM_para_SES.xml
 - We will focus on some key entries.
 3.1. An XML file containing the state-space representation matrices;
 - 3.2. FARM external model name;
 - 3.3. Input and output variables for FARM;
 - 3.4. Prediction time horizon, and operational constraints;
 - 3.5. Random number generator for input variables creation

- 3.1. An XML file containing the state-space representation matrices
 - A state-space matrix set [A,B,C,D] is required to describe the system.
 - Can be generated through RAVEN DMDc*.
 - One example is available at

FARM / training031822 / Para_DMDC_SES_1e_p1.xml

Output $y \in \mathbb{R}^p$

^{*}For more details, please refer to RAVEN user manual Section 15.3.11, DMDc

- 3.2. FARM external model name;
 - To use FARM, "FARM.RefGov_parameterized_SIMO" need to be specified as the external model.
 - Source code* is available at FARM / src / RefGov_parameterized_SIMO.py
- 3.3. Input and output variables for FARM;
 - Input: "PwrSet", the power setpoint before any adjustment;
 - "PwrSet" should share the same unit as the actuator signal in DMDc training data;
 - Output: "V", adjusted power setpoint; "V_min" and "V_max", the min & max allowed V value.
- 3.4. "MOASsteps" for the prediction time horizon;
 - MOASsteps = $\frac{\text{Time Horizon}}{\text{Matrices interval}}$
 - Example:
 - To predict the response for 1 hour;
 - Matrices are in 10s interval
 - MOASsteps = 3600s / 10s = 360.

- 3.4. "Min/Max_Target*" for the operational constraints;
 - "Min_Target_i" and "Max_Target_i" defines the bounds for the ith system output y_i.
 - Example:
 - In training data, y₁ is Electric Power (W), y₂ is Firing Temperature (°C)
 - Then in the FARM input file,
 - Min_Target₁=20.0E6, Max_Target₁=50.0E6 → 20.0MW < Electric Power < 50.0MW
 - Min_Target₂=1270.0, Max_Target₂=1410.0 → 1270°C < Firing Temperature < 1410°C
 - Mind the units.
- The structure of entire FARM Plugin:

The FARM input file can be executed like other RAVEN input files:

```
haoyuwang@p075722 MINGW64 /d/GitProjects/training/FARM (master)
```

```
$ ../raven/raven_framework training031822/FARM_para_SES.xml
```


4. Output analysis

- The FARM output can be found in:
 - FARM / training031822 / DMDc_FARM_Folder / RefGovOutput.csv
 - 20 entries, with 4 column in each entry
 - Issued power setpoint "PwrSet";
 - Adjusted power setpoint "V";
 - Minimum allowed value "V_min";
 - Maximum allowed value "V_max";
 - The "PwrSet" are regulated to "V", to meet both explicit and implicit constraints.

5. Future Directions

- FARM is being implemented into HERON to help with power dispatch problem. [1]
- Online system identification and matrices update (ETA: April 2022)
 - User do not need to generate matrices off-line;
 - Online data-driven derivation and update of A,B,C,D matrices;
 - Better supports the physics-based high-fidelity model.

References

[1] Wang, Haoyu, Roberto Ponciroli, and Richard B. Vilim. Automation of FARM from Alpha Phase to Beta Phase. No. ANL/NSE-22/6. Argonne National Lab.(ANL), Argonne, IL (United States), 2022.

Thank you!

Haoyu Wang Argonne National Laboratory haoyuwang@anl.gov