## M1 info : Bases du Traitement du Signal et des images TD1 : Représentation fréquentielle des signaux

On souhaite transmettre un signal sonore m(t) par modulation d'une porteuse sinusoïdale  $p(t)=2cos(2\pi\nu_0t)$ . Normalement  $\nu_0$  est très supérieur à la fréquence maximale du signal (ici 8 kHz), mais pour des raisons pratiques ici  $\nu_0=24$  kHz. La modulation est une modulation d'amplitude dite "à suppression de porteuse", *i.e.* le signal émis s'écrit : s(t)=m(t)p(t).

1) La figure 1 représente  $m_1(t)$ , une portion du signal m correspondant au phonème [u] de "toutes", dont le spectre d'amplitude  $|M_1(\nu)|$  et le spectre de phase  $\arg M_1(\nu)$  sont illustrés par la figure 2. La figure 3 représente  $m_2(t)$ , une portion du signal m correspondant au phonème [s] de "ses", dont le spectre d'amplitude  $|M_2(\nu)|$  et le spectre de phase  $\arg M_2(\nu)$  sont illustrés par la figure 4. Pourquoi dans un cas le spectre est-il constitué de pics régulièrement espacés et pas dans l'autre? Pourquoi n'a-t-on pas un vrai spectre de raies?



FIGURE 1 -





FIGURE 2 -



FIGURE 3 -





FIGURE 4 -

2) On multiplie  $m_1$  par la porteuse p pour obtenir le signal  $s_1$ . Démontrez théoriquement le résultat de la figure 5 (voir diapo "propriétés de la Transformée de Fourier").



FIGURE 5 –

3) On suppose que le signal émis  $s_1$  parvient sans altération au récepteur. On va alors le démoduler. La première étape de la démodulation consiste à multiplier le signal par un signal sinusoïdal p' de même fréquence que la porteuse, mais éventuellement déphasé de  $\phi$ :

$$p'(t) = 2\cos(2\pi\nu_0 t + \phi)$$

On note  $x_1$  le signal résultant. Supposez dans un premier temps que  $\phi = 0$  et démontrez théoriquement le résultat de la figure 6. Comment peut-on, à partir de  $x_1$ , récupérer  $m_1$ ?



FIGURE 6 -

- 4) Refaites le calcul précédent avec  $\phi$  quelconque. Que se passe-t-il si  $\phi = \pi/2$ ?
- 5) Supposons que l'on veuille transmettre un autre signal de parole sur le même canal. Comment faire pour ne pas avoir d'interférence entre les deux ?