Ministry of Education Secondary Sector Mathematics Grade 8

Christmas Term Schedule of Topics

Week	Topic	Sub-topics	Objectives	Content	Activities	Resources	Evaluation Strategies
1	Number Theory 2	Mathematical Laws	1). Stating and using the Mathematical Laws-Commutative, Associative and Distributive	The commutative law. Examples: 8 + 12 = 12 + 8	Discussion on the commutative law with examples.	A Compl. Mths. Crse for Sec	Quiz
	Theory 2	Closura proporty	Laws- to solve problems		Stating the commutative law.	Schools Bk 2	Oral
		Closure property		$8 - 12 \neq 12 - 8$	Stating the commutative law.	SCHOOLS DK 2	Orai
			2). Identifying the Closure property	The order in which we add or multiply numbers does not matter. The result is always the same. The operations of addition and multiplication satisfy the commutative law. The associative law. Examples $(8+12)+2=8+(12+2)$ $(8-12)-2\neq 8-(12-2)$ The order in which we add or multiply numbers in groups of two does not affect their sum or product. The operations of addition and multiplication satisfy the associative law. The distributive law. Examples: $(4-5)+(4-3)=4$ x $(-5+-3)=4(-5+-3)$ $(4 \times 5)-(4 \times 3)=4$ x $(5-3)=4(5-3)$ Multiplication distributes over addition and subtraction Closure property: A set of numbers is closed under an operation, if when the operation is applied to any two numbers of a set the result is another member of the set, e.g. if we add	Discussion on the associative law with examples. Stating the associative law. Discussion on the distributive law with examples. Stating the distributive law. Discussing and identifying social situations in which mathematical laws can be observed. Discussion: 1. The closure property with examples. 2. The reason why closure is necessary in a mathematical system.	Mathematics for Sec School in Guyana Bk 2	Written
				two whole numbers, the result is a whole number.			
2		Addition and subtraction of Rational numbers	3) Identify and define types of rational numbers	The set of rational numbers include: (i) common fractions	Discussion and solving problems on work cards with problems	A Compl. Mths. Crse for Sec	Quiz
		of Kational numbers	4) Add and subtract given fractions	(ii) improper fractions (iii) exact and recurring decimals	under content.	Schools Bk 2 Mathematics for	Oral
				(iv) the integers Adding and subtracting rational numbers	Arranging rational numbers in ascending or descending order	Sec School in Guyana Bk 2	Written
3		Multiplication of	4). Multiplying and dividing directed numbers	Positive Numbers		A Compl. Mths.	Quiz
		directed numbers		Multiplication of two or more positive numbers gives a	Discussion	Crse for Sec	_
				positive product		Schools Bk 2	Oral
		Division of directed		$4 \times 6 = 24$	Applying the rule of directed		
		numbers		$2 \times 10 \times 8 = 160$	numbers to solve problems	Mathematics for	Written
				Positive and Negative Numbers	•	Sec School in	
				(-3) x 5 means (-3) taken 5 times		Guyana Bk 2	
				(-3) + (-3) + (-3) + (-3) + (-3) = -15			
				Multiplication of two negative Integers			
				will result in a positive product			

4	Algebra 1 & 2	Algebraic expressions	Using symbols to represent numbers, operations, variables and relations	$(-8) \times (-3)$ = 24 Division $(+12) \div (+4) = \frac{+12}{+4} = +3$ $(-45) \div (-5) = +9$ $4 \times y^2 + 3 \times -5$	Applying the rule of directed numbers to solve problems Discuss and solve problems bases on the use of symbols and	A Compl. Mths. Crse for Sec	Quiz
			2). Substituting numerals for algebraic symbols in simple algebraic expressions	These are polynomials: • $3x$ • $x-2$ • $-6y^2 - (7/9)x$ • $3xyz + 3xy^2z - 0.1xz - 200y + 0.5$ • $512v^5 + 99w^5$ • 1 A coefficient is the number in front of a letter in an algebraic term, e.g. in the algebraic term $4a$, 4 is the coefficient of a. Substitute numerical values for the variables in the polynomials above. E. g. When $x = 5$, $3x = 3 \times 5 = 15$ Monomial, Binomial, TrinomialThere are special names for polynomials with 1, 2 or 3 terms: $3xy^2 \qquad 5x - 1 \qquad 3x + 5y^2 - 3 \qquad 3x$	writing down the factors of algebraic terms. Writing down the factors of algebraic terms. Stating the degree of polynomials. Discussion on the Types of Polynomial Identifying the base and exponent Working problems Writing down the coefficient of algebraic terms. Writing down the factors of algebraic terms. Stating the degree of polynomials. Discussion on the Types of Polynomial Identifying the base and exponent Working problems	Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Oral Written
5		Binary Operations	3). Identifying binary operators and applying binary operators to solve problems	A binary operation refers to a clearly defined computational process that can be carried out on two elements at a time, e.g. a $*b = 2a - b$ In the operation $a *b = 2a - b$, $*$ is the symbol of the operation and 'b' is the term that comes after the symbol of the operation. Then $2a - b$ means $(2 \times a) - b$.	Displaying examples of binary operations. Extracting the rule that governs an operation Discussion: commutative and associative properties of binary operations.	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Quiz Oral Written

			Application of the rule that governs a binary operation. Commutative and Associative properties of binary operations.	Working examples of binary operations on the chalk board. Students working similar examples. Students may also be asked to describe a binary operation of their own and use it on different pairs of values.		
6	Laws of indices	4). Using the Laws of indices to manipulate expressions with integral indices	The index of a number or variable is the power, to which it is raised, e.g. in 4 , x , the power or index is 2. The '4' and ' x ' are referred to as the base. When multiplying, add the powers/indices, e.g. $a \times a = a$. When dividing, the powers/indices are subtracted, e.g. $a \div a = a$. $a \div a = a$. When raising a power to another power, the powers/indices are multiplied e.g. $(a^4)^2 = a^8$. $(a^4)^2 = a^8$ Laws of indices 1. $a^m * a^n = a^{(m+n)}$; 2. $a^{(-m)} = a^{(m*n)}$. 5. $a(a * b)^m = a^m * b^m$; $a \ne 0$; 4. $a^m = a^m * b^m$, $a \ne 0$. 7. $a^0 = 1$.	Stating the base and index of an algebraic term. Working exercises involving the laws of indices.	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Quiz Oral Written
7	Removal of brackets Expanding algebraic expressions	5). Applying the distributive law to insert or remove brackets in algebraic expressions 6). Performing the four basic operations with algebraic expressions	Distribution of multiplication over addition and subtraction when brackets are removed in an algebraic expression, .e.g. $a(x+y) = ax + ay$ $a(x-y) = ax - ay$ Each term inside the brackets must be multiplied by the term immediately outside the brackets. The term outside the brackets is called the multiplier. In the case where the multiplier is negative, e.g. The signs in the brackets are changed when the brackets are removed. $-a(x+y) = -ax - ay$ $-a(x-y) = ax + ay$ Multiplication of a binomial by a binomial, .e.g. $(x+2)(x+3) = x(x+3) + 2(x+3)$ Each term of the first bracket serves as a multiplier for the terms in the second bracket.	Multiplying terms in brackets by a multiplier. Discussing and working exercises involving the application of the rule governing the removal of brackets. Discussion and working of examples on chalkboard. Students work similar examples	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Quiz Oral Written

				By the distributive law the product is:	for reinforcement.		
				$x^{2} + 3x + 2x + 6 = x^{2} + 5x + 6$			
8		Simplifying algebraic fractions, common factors	7). Performing operations involving algebraic fractions	Algebraic fraction, $\frac{x}{2} + 3$ The LCM of 3 and 6 is 6 $\frac{x}{3} + \frac{5x}{6}$ $= \frac{2(x) + 1(5x)}{6}$ = 2x + 5x	Discussion on identifying of LCD Discussion and working of examples on chalkboard.	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Quiz Oral Written
				$= \frac{6}{\frac{7x}{6}}$	Students work similar examples forreinforcement		
9		Factorization by grouping	8). Solving algebraic expressions by grouping 9) Solving linear equations with one unknown	Common factors are the factors that are common to the terms in an algebraic expression. E.g. in 4a + 5ab, a is the common factor of the expression. The factorization of an algebraic expression involves the identification of the common factor(s) and the use of the distributive law. Example:	Discussing and working examples on work cards	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in	Quiz Oral Written
				4a + 5ab = a(4 + 5b) The factors of 4a + 5ab are 'a' and $(4 + 5b)$. That isa(4+5b) Factorization of expressions by grouping. E.g. 6a - 4a + 6a - 4 =		Guyana Bk 2	
10				6a(a + 1) - 4(a + 1) = (6a - 4)(a + 1) Solve simple linear equations: 1. $3p + 19 = 47$ 2. $9m - 6 = 30$ 3. $5n - 8 = 2n + 13$			
10	Geometry 1	Perpendicular Lines Parallel Lines	 Identifying, drawing and constructing perpendicular lines Identifying, drawing and constructing 	Two lines are perpendicular when they are at right angles to each other.	Displaying diagrams of perpendicular lines.	A Compl. Mths. Crse for Sec Schools Bk 2	Quiz Oral
			parallel lines		Drawing and constructing perpendicular lines.	Mathematics for Sec School in Guyana Bk 2	Written
				Two lines are parallel when the perpendicular distance between them is always the same. E.g.	Displaying diagrams of parallel lines.		
					Drawing and constructing parallel lines.		

11	Alternate angles	3). Identifying and calculating Alternate, Co-	When a transversal cuts two parallel lines, alternate angles,		A Compl. Mths.	
	Co-interior angles	interior and Corresponding angles	called Z angles are formed. E.g.	Displaying examples of supplementary angles.	Crse for Sec Schools Bk 2	Quiz
	Corresponding angles		3	Discussing situations in which	Mathematics for	Oral
				supplementary angles occur.	Sec School in	Written
				Displaying examples of co-	Guyana Bk 2	
				interior angles		
			In the figure above,	Discussing situations in which co-interior angles occur.		
			a and b are alternate angles.Alternate angles between pairs of parallel lines are equal	co-interior angles occur.		
			If the sum of two angles is 180° then the angles are			
			supplementary.			
			a b			
			The two angles in the figure above add up to 180° , $\angle a + \angle b = 180^{\circ}$			
			\angle a + \angle b = 180 When a transversal cuts a pair of lines, the angles that are			
			formed between the lines are called co-interior or U angles. E.g			
			/b			
			In the figure above, a and b are co-			
			interior angles.			
			Co-interior angles are supplementary only if they are formed between parallel lines.			
			When a transversal cuts a pair of parallel lines, the angles that are in similar or corresponding positions above or below the	Finding the size of co-interior,		
			parallel lines are called corresponding angles. E.g.	alternate, corresponding and		
			/a	supplementary angles.		
			/			
						
			, "			
			In the figure above, a and b are corresponding angles.			
			Corresponding angles are always equal.			

12		Construction of Triangles and Parallelograms	Constructing triangles Constructing parallelograms	Construction of triangles given the length of: three sides two sides and the size of the included angle; one side and the size of two angles. The construction of parallelograms given the length of three sides, the length of two sides and the size of the included angle	Constructing triangles Constructing parallelograms	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Quiz Oral Written
13	Computation	Rounding numbers (Approximation) Standard Form	4). Rounding (Approximating) a value to a given of significant figures and express any decimal to a given number of decimal places 5). Expressing very large or small numbers in standard form	The rounding off of whole numbers to the nearest 10, 100, 1000, The rounding off of decimals to 1, 2, 3,, places Standard Form: $\mathbf{a} \times 10^{n}$, where \mathbf{a} represents a number between 1 and 10 and \mathbf{n} an integer (i) $170\ 000 = 1.7 \times 10^{n}$ (ii) $0.000\ 072 = 7.2 \times 10^{-5}$	Demonstrate the rounding off of whole numbers, .e.g. when we round off 425 to the nearest hundred, it becomes 400 because 425 is nearer 400 than to 500. Similarly, 1.87 to one decimal place becomes 1.9 because the second place after the decimal point is more than 5. Writing numbers in standard form and expanding from standard form	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Oral Written Make a chart to show rational numbers
14		Ratio and Proportion	6). Expressing ratios and Proportions as fractions in its simplest form 7) Solve problems involving ratio and proportion	Express a ratio as a fraction, e.g. 80:100 becomes $\frac{80}{100} = \frac{4}{5}$ Express ratios and proportions as fractions in their lowest form Apply concepts to work questions	Expressing, reducing and comparing ratios and proportions as fractions in their simplest form	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Oral Written Quiz
15			REVIEW AND DO REMEDIAL WOR	RK ON TOPICS/CONCEPTS BASED ON WEAKNESSES AN	D NEEDS OF STUDENTS		

Note for all Teachers:

- 1. Use this termly schedule of topics, together with the Ministry of Education's Curriculum Guides.
- 2. The recommended texts: Mathematics for Secondary Schools in Guyana Book 2 and Mathematics for Secondary School Book 2 are not the only text you can use to give students practice exercises.
- 3. Use any Mathematics textbook that is available to you and the students.
- 4. Seek out the topics with the appropriate content for the students to gain practice.
- 5. If teachers feel that their students are competent in the objectives specified for the given week, then they can move on or give students additional work on the objectives to test their skills.

Ministry of Education Secondary Sector Mathematics Grade 8

Easter Term Schedule of Topics

Week	Topic	Sub-topic	Objectives	Content	Activities	Resources	Evaluation Strategies
1	Computation	Fractions	Converting fractions to decimals and vice versa Performing any of the four basic operations with fractions. ii). decimals	Convert fractions to decimals and vice versa Perform the four basic operations with fractions – addition, subtraction, multiplication and division.	Make a table to show the conversion of fractions to decimals and vice versa. Solve problems using the four basic operations.	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Assignment Questions from Exercise
2		Decimals	Converting fractions to decimals and vice versa Performing any of the four basic operations with decimals.	Perform the four basic operations with decimals – addition, subtraction, multiplication and division.	Solve problems using the four basic operations.		Quiz Worksheet
3		Currency Conversion	Converting local currencies to those most commonly used	Basic operations with simple proportion to calculated currency conversion involving Guyana, Canadian, Eastern Caribbean, Jamaican, Trinidad&Tobago, United Kingdom, United States and other currencies. E.g. If US\$1.00 = G\$200 Then US\$10.00 = G\$200 x 10 = \$2000	Changing currency from one form to another. Set up a bank/cambio corner to exchange money. Worksheet	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Oral Written Worksheet
4	Consumer Arithmetic	Profit and Loss Percent Profit Percent Loss	Calculating profit or loss as a percentage Calculating marked price when cost price and percentage profit are given	Calculate profit or loss as a percentage Profit = Selling Price - Cost Price Loss = Cost Price - Selling Price Profit % = $\frac{\text{Pr ofit}}{\text{Cost Pr ice}} \times \frac{100}{1}$ Loss % = $\frac{\text{Loss}}{\text{Cost Pr ice}} \times \frac{100}{1}$ Calculate marked price when cost price and percentage profit are given	Simulate buying and selling situations. Visit the market, vendors, shops, etc, to observe how profit is calculated and added to buying price to give selling price. Calculate profit and profit percent. Discuss how loss can be incurred and loss percent. Report outcomes of simple transactions. Solve problems involving profit and loss. Set up a shop corner	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Written Poster Paper clippings

5		Simple Interest Calculating Amount	3). Using the simple interest formula to calculate simple interest.4). Calculating amount	$SI = \frac{P \times R \times T}{100}$, where SI represents Simple Interest. P the principal, R the Interest Rate and T the Time. Rearrangement of the formula to find P, R and T: $P = \frac{100 SI}{R \times T}; R = \frac{100 SI}{P \times T}$ $T = \frac{100 SI}{P \times R}$ Calculate	Discuss the words: savings, loans, interest and amount. Calculating simple interest and amount. Solve problems involving the calculation of amount	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Banking Worksheet
				Amount: Amount = Principal + Interest i. e. $A = P + I, \text{ where } A \text{ represents the amount, } P \text{ the Principal and } I \text{ the Interest.}$ Rearrangement of the formula to find Principal and Interest: $P = A - I \; ; \; I = A - P$ Solve problems involving the calculation of amount.			
6	Relations & Functions	Many-to-one and one-to-one Relations	 Defining a function as a many-to-one or one-to-one relation Distinguish between graph of a relation and a function Draw the graph of functions. Write down the set of ordered pairs from a graph. 	Define a function as a many-to-one or one-to-one relation A function is a special kind of a relation in which one and only one arrow leaves each member of the domain. E.g. Domain Range In a set of ordered pairs {(0, 1), (1, 3), (1, 4)}, the first element "1" is paired with two different elements of the range, namely 3 and 4. The relation is not a function.	Observe several arrow diagrams and determine which ones are functions and which are not. Discuss whether a given set of ordered pairs is a function.	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Chart Written Graph
				In a set of ordered pairs {(1, 2), (2, 3), (3, 4)}, each first element namely 1, 2 and 3 has one image. 1 2 2 3 3 4 Hence the set is a function. A set of ordered pairs is a function if no first element is	Draw the graph of functions. Write down the set of ordered pairs from graphs.		

7		Many-to-one and one-to-one Relations	 5). Writing equations of lines parallel to the x-axis. 6). Writing equations of lines parallel to the y-axis. 7). Shading the region on a co-ordinate plane that is represented by inequalities. 8). Recognizing the gradient of a line as the ratio of the vertical rise to the horizontal shift 	repeated. Identify graphs showing relations and functions Draw graphs of functions Write the set of coordinates as ordered pairs from the graphs y = k represent the equation of lines parallel to the x-axis, where k is a constant. x = k represents the equation of lines parallel to the y-axis, where k is a constant Write equations of lines parallel to the x-axis Write equations of lines parallel to the y-axis. Shade the region on a co-ordinate plane that is represented by inequalities. Recognize the gradient of a line as the ratio of the vertical rise to the horizontal shift	Write the equation of lines parallel to the x -axis. Write the equation of lines parallel to the y-axis. Shade the region on a co-ordinate plane that is represented by inequalities. Write the gradient of a line as a ratio of the vertical rise to the horizontal shift	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Graphs Worksheets Oral
8	Number Theory 1	Set of Rational numbers	1). Identifying the set of rational numbers 2). Listing subsets of the set of rational numbers 3). Arranging rational numbers in order of size	The set of rational numbers include: _ common fractions _ improper fractions _ exact and recurring decimals _ the integers The use of equivalent fractions to determine which fraction is bigger. Examination of the parts of rational numbers in a given set of rational numbers as a quick way to determine which one is bigger or smaller or equal List subsets of rational numbers Arrange rational numbers in order of size	Show on a chart examples of the set of rational numbers. List subsets of the set of rational numbers. Arrange rational numbers in order of size.	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Chart Oral Written Quiz
9		Base-Ten Base-Two System	 4). Listing the base ten symbols. 5). Identifying place value of digits in a numeral 6). Writing numbers in expanded form and vice versa 7). Converting numbers from base-two to base-ten and vice versa 8). Adding numbers in base-two. 	List base ten numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. List base-two numerals: 0, 1. Identify place value of digits in a numeral in base-ten and base-two Write nos in expanded form for both bases and vice versa Convert nos from base-two to base-ten and vice versa Add numbers in base-two	List base two and ten symbols. Show students examples of the place value of digits in numerals Write numbers in expanded form. Convert numbers form one base to the next. Add numbers in base-two.	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Place Value Chart Oral Written
10		Base Three Base Four	9) Identify place value of digits and expand numbers in the two bases 10) Convert from the bases to base 10 and vice versa 11) Add and subtract numbers in the given bases	Numerals in base three: 0,1,2 and base four:0,1,2,3 Place value of digits in the bases Conversion of numbers in bases using place value table and long division Addition and subtraction of numbers in bases using place value table and conversion method	List base three and four symbols. Show students examples of the place value of digits in numerals Write numbers in expanded form. Convert numbers form one base to the next. Add and subtract numbers in bases		Place Value Chart Oral Written
11		Base-Five Base-Eight system	9). Converting numbers from base-five to baseten and vice versa 10). Add numbers in base-five 11). Subtract numbers in base five 12). Convert numbers from base-eight to baseten and vice versa 13). Add numbers in base-eight	List base five numbers: 0, 1, 2, 3,4. List base-eight numerals: 0, 1,3, 4, 5, 6, 7. Identify place value of digits in a numeral in base-five and base-eight Write numbers in expanded form for both bases and vice versa Convert numbers from base-five and eight to base-ten and	List base five and eight symbols. Show students examples of the place value of digits in numerals Write numbers in expanded form. Convert numbers form one base to the next. Add and subtract numbers in	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Place Value Chart Oral Written

	14). Subtract numbers in base-eight vice versa base-five and eight Add and subtract numbers in base-five and eight	
12		
	EASTER TERM EXAMINATIONS	
13	EASTER TERM EXAMINATIONS AND	
	REMEDIAL WORK ON WEAK AREAS IDENTIFIED FROM MATHEMATICS EXAMINATION	

Note for all Teachers:

- 1. Use this termly schedule of topics, together with the Ministry of Education's Curriculum Guides.
- 2. The recommended texts: Mathematics for Secondary Schools in Guyana Book 2 and Mathematics for Secondary School Book 2 are not the only text you can use to give students practice exercises.
- 3. Use any Mathematics textbook that is available to you and the students.
- 4. Seek out the topics with the appropriate content for the students to gain practice.
- 5. If teachers feel that their students are competent in the objectives specified for the given week, then they can move on or give students additional work on the objectives to test their skills.

Ministry of Education Secondary Sector Mathematics Grade 8

August Term Schedule of Topics

Week	Topic	Sub-topic	Objectives	Content	Activities	Resources	Evaluation Strategies
1	Measurement	Circumference of a Circle Area of a Parallelogram Area of Composite Shapes	 Identifying the symbol f and using the value of f to solve problems Identifying the formula for finding the circumference of a circle Solving problems involving the calculation of the circumference of a circle Calculating the perimeter of a polygon and circumference of a circle and their combinations 	Identification of f . Values used for f are 3.14, 3.1416 or $3\frac{1}{7}$. Circumference is the outside edge of a circle. Its length can be found by measurement or can be calculated by formula. Circumference = f × diameter $C = f$ d or $C = 2f$ r, where r is the radius of the circle. $c = \frac{C}{2f}$	Display the symbol f . Project to discover an approximate value for f , e.g. have students collect five or more circular objects, e.g. milk tin, fruit juice tin, etc. use measuring tape or string and ruler/metre stick to measure the circumference of the tops of the objects, then the diameter. Listing the following on a table: object circumference diameter answers for the circumference divided by the diameter. Discuss: How does the measurement of the circumference compare to the measurement of the diameter? Is it twice as large? Is it three times as large or more than three times as large? What is the value of f (pi)?	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Oral Written Practical Chart
2		Area of a Parallelogram Area of Composite Shapes	5). Identifying the formula for finding the area of a parallelogram6). Calculating the area of parallelograms7). Recognizing composite shapes and calculating area of composite shapes	Area of parallelogram = base × perpendicular height. Calculating the area of a parallelogram using each side as a base and respective height. Solving problems involving the calculation of the area of parallelograms?	Display chart showing formula for finding the area of a parallelogram. Discuss: A parallelogram is formed from two congruent triangles. What are the properties of the parallelogram?	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Display Oral Written Worksheet

			A composite shape is a shape that is made up of many different	How can the area of the		
				parallelogram be found using		
			parts. E.g.			
				the two congruent triangles?		
				Use graph paper or popsicle		
				sticks to adjust the shape of a		
			Composite shape	parallelogram into that of a		
				rectangle and vice versa.		
			Calculating the areas of composite shapes.	Find the area of the rectangle		
			\wedge	and the parallelogram and		
				compare the results.		
				Calculate the area of a		
				parallelogram using each side		
				as a base and respective		
				height.		
				Solve problems involving the		
				calculation of the area of		
			1	parallelograms?		
				Make composite shapes.		
				Identify each part used to		
				make up a composite shape.		
				Find the area of each part and		
				add to find the total area of the		
				composite shape.		
				Use graph paper to make		
				shapes, form composite shapes		
				Calculate the area of shapes		
				with different parts		
3	Scales and Distances	8). Recognizing enlarged and reduced scales	Enlarged scale – E.g. 1 cm on drawing represents 1 km in	Demonstrating examples of	A Compl. Mths.	Oral
	Seares and Distances	9). Expressing a scale as a ratio and then as a	reality.	enlarged and reduced scales.	Crse for Sec	Olui
		representative fraction	Reduced scale – E.g. 1 m on drawing represents	cinarged and reduced scales.	Schools Bk 2	Written
		10). Using scales to represent lengths or	1 cm in reality.	Expressing a scale as a ratio	Mathematics	** 1111011
		distances	A scale of 1 cm to 250 000 cm can be written as 1:250 000.	and then as a Representative	for Sec School	Models
		distances				Models
			This means that 1 cm on a drawing represents	Fraction.	in Guyana Bk 2	
			250 000 cm in reality. Such a scale has a Representative			
			Fraction of	Draw simple plans using given		
			1	scales.		
			250000			
				Make models using		
			Representative Fraction (RF) =	appropriate scales, .e.g. a		
			Size on drawing	model of a desk, table, etc.		
			Actual size			
			Both numerator and denominator of the fraction must be			
			expressed in the same units.			
			The use of scales to represent lengths or distances.			
	-1	-1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	I	J.

4	Statistics	Bar Graphs	 Recognizing and constructing Bar graphs Using Bar graphs in problem solving 	Construction of bar graphs.	Display examples of bar graphs. Construct bar graphs vertically and horizontally. Collect examples of bar graphs and use same for interpretation and discussion.	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Display Oral Written
5		Pie Charts	Recognizing and constructing Pie graphs Using Pie graphs in problem solving	Construction of pie charts. When constructing a pie chart, the smallest angle should be drawn first, then the next smallest angle and so on, in order to compensate for small errors that may occur while drawing the angles In order to read a pie chart, it is necessary to know the angle of each sector.	Display examples of Pie Chart Find the total to be represented. Draw a circle to represent the total. Calculate the fractional parts of the circle that are allocated to various purposes. Find the size of the angle in degrees of each sector of the circle by multiplying each fractional part by 360°. Use ruler and protractor to draw the angle for each sector. Label each sector. Draw the pie chart using calculated sector angles. Interpret and discuss information on pie charts.	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	
6		Frequency Tables Line Graphs	5). Recognizing the format of frequency tables 6). Constructing a frequency table from a given set of data 7). Recognizing situations in which line graphs can be applied 8). Drawing line graphs and using line graphs to solve problems	Frequency table: a table in which the frequency is shown Score Tally Frequency 4	Display examples of frequency tables. Plan and collect information. Record data. Report on frequencies of values. Construct frequency table. Discuss ways to arrive at frequencies of values, e.g. count occurrences and write down values and how often they occur. Display examples of line graphs. Collect examples of line graphs from magazines, newspapers, etc. Collect data, e.g. population of school over a period of time. Construct line graphs. Display work done to class.	A Compl. Mths. Crse for Sec Schools Bk 2 Mathematics for Sec School in Guyana Bk 2	Display Oral Written
7		Averages: Mean, Mode, Median	9). Finding the mean given a set of scores 10). Finding the mean from a frequency table	The arithmetic mean is another name for the average of a set of scores. The mean can be found by dividing the sum by the	Manipulate sets of concrete objects to find the mean, e.g.	A Compl. Mths. Crse for Sec	

11). Finding the median from a given set of data 12). Finding the mode from a given set of data 13). Recognizing when the mode is used as a measure of central tendency. Calcu
14). Distinguish among the averages: mean, median and mode same that is
15). Selecting the median and mode from a given set of data 16). Determining the range for a set of data
To
Mear
Media the nu order.
- The 3, 6, 8 - The
3, 8, 4 The mappea A set

	24	
umber of scores. E.g. the mean of 2, 4, 8 and 10 is		= 4
_	6	

Mean = Sum of scores ÷ Number of scores Calculation of the mean from a frequency table follows the same principles as calculating the mean from a set of scores, that is, the sum of all scores divided by the number of scores.

Balls	f	f×n
3	2	6
4	3	12
6	4	24
9	1	9
Total	10	51

$$Mean = \sum \frac{fx}{x}$$
$$= \frac{51}{10}$$
$$= 5.1$$

Median: The median of a set of numbers is the middle one, after the numbers have been arranged in an ascending or descending order. Examples:

The median of 7, 9, 10,

3, 6, 8, 4 is 7

- The median of 7, 9, 10,

3, 8, 4 is 7.5

The mode of a set of data values is the number in the set that appears the most often. E.g. the mode of 2, 2, 3, 3, 3, 4, 5 is 3. A set of numbers can have more than one mode as long as the number appears more than once. In the data set 2, 2, 3, 3, 4, 5, the mode is 2 and 3. The data set is binomial.

If no number appears more than once, then the data set has no mode.

three sets of corks with each set having 10, 11, and 9 corks. Establish one set of the three sets and then re-distribute to form three equivalent sets. Find the mean from a given set of scores, say 10, 11 and 9 by adding all the scores and dividing by 3. Collect information and finding the mean. Compare means to determine the greatest levels of performance and lowest levels of performance. Collect data and Construct frequency tables. Calculate the mean from data frequency tables.

Arrange a set of numbers in ascending or descending order of size (magnitude) Identify the middle number when there is an odd number of numbers. The middle number the median. Identifying the middle number when there is a even number of numbers. The mean of the two middle numbers identified is the mean. Find the mode from a given set of data. Make decisions concerning the mode. For example, what size of shoes would you order most for sale if the mode is size 8? Discuss situations in which the mode of a set of data is more useful than the mean

Schools Bk 2 Mathematics for Sec School in Guyana Bk 2

8	Geometry	Common Solids	1). Identifying and naming common solids	Axes of symmetry: Whenever you fold a shape over so that one	Fold shapes	A Compl. Mths.	Oral
	2	Properties of Common	2). Identifying the properties of common solids	half fits exactly on top of the other half, it is said to have an axis	Identify the axis of symmetry	Crse for Sec	
		solids	3). Drawing common shapes possessing	of symmetry.	on objects such as books,	Schools Bk 2	Written
		Drawing Common	translational, bilateral and rotational symmetry		capital letters, oranges, etc. Trace the axis of symmetry on	Mathematics for Sec School	Practical
		shapes			given diagrams.	in Guyana Bk 2	Fractical
					Sketch pictures or objects that	in Guyuna Bk 2	
					are balanced about an axis of		
					Symmetry.		
9		Common Solids	4). Identifying the axes of symmetry of	A mathematical reflection is a drawing of an original shape on	Disales sistems also se	A Compl. Mths. Crse for Sec	Diamlari
		Properties of Common solids	common objects 5). Sketching pictures about axes of symmetry	the opposite side of the line of reflection or mirror line. When reflection is carried out the:	Display pictures, shapes, etc., which show the line of	Schools Bk 2	Display
		sonds	6). Identifying the line of reflection	- distance between the object and the line of reflection and the	reflection.	Mathematics	Oral
			, ,	image and the line of reflection are the same.		for Sec School	
				- line joining the object and the image is perpendicular to the		in Guyana Bk 2	Written
				line of reflection object and its image are on opposite sides of the mirror line.			
10			7). Drawing lines of reflection	Drawing lines of reflection.	Draw the line of reflection on	A Compl. Mths.	Oral
			8). Drawing the image of shapes after	Drawing objects and images after a reflection	symmetrical shapes.	Crse for Sec	
			reflection in a line	Finding the co-ordinates of the vertices of the image of a shape		Schools Bk 2	Written
			9). Finding the co-ordinates of the vertices of	after reflection in the x -axis and y-axis	Draw the image of shapes	Mathematics	D (1
			the image of a shape after reflection in the x -axis and y-axis	Reflection of a point (\mathbf{x}, \mathbf{y}) in the x-axis is $(\mathbf{x}, -\mathbf{y})$ Reflection of a point (\mathbf{x}, \mathbf{y}) in the y-axis is $(-\mathbf{x}, \mathbf{y})$	after reflection in a line.	for Sec School in Guyana Bk 2	Practical
			axis and y-axis	Reflection of a point (x, y) in the y-axis is (-x, y)	Plot the co- ordinates of the	III Guyana BK 2	
					vertices of a shape on a co- ordinate plane.		
					Find the images of the co-		
					ordinates of the vertices of a		
					shape after reflection in the		
10					x-axis and y-axis		
10			ANNUAL EXAMINATIONS				
11		ANNUAL EXAMINATIONS AND					
			REMEDIAL WORK ON WEAK AREAS IDENTIFIED FROM MATHEMATICS EXAMINATION				

Note for all Teachers:

- 1. Use this termly schedule of topics, together with the Ministry of Education's Curriculum Guides.
- 2. The recommended texts: Mathematics for Secondary Schools in Guyana Book 2 and Mathematics for Secondary School Book 2 are not the only text you can use to give students practice exercises.
- 3. Use any Mathematics textbook that is available to you and the students.
- 4. Seek out the topics with the appropriate content for the students to gain practice.
- 5. If teachers feel that their students are competent in the objectives specified for the given week, then they can move on or give students additional work on the objectives to test their skills.