

🗣 : Ιακώβου Πολυλά 24 - Πεζόδρομος | 📞 : 26610 20144 | 📮 : 6932327283 - 6955058444

# ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΘΕΩΡΙΑ, ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ${\bf 10 \ Iov\lambda iov \ 2019}$

ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΣΠΥΡΟΣ ΦΡΟΝΙΜΟΣ

## Γ΄ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

# Όρια - Συνέχεια

## ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

#### ΟΡΙΣΜΟΙ

#### ΟΡΙΣΜΟΣ 1: ΣΥΝΕΧΕΙΑ

Μια συνάρτηση f ονομάζεται συνεχής σε ένα σημείο  $x_0$  του πεδίου ορισμού της όταν το όριο της στο  $x_0$  είναι ίσο με την τιμή της στο σημείο αυτό. Δηλαδή

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Μια συνάρτηση f θα λέμε ότι είναι συνεχής εάν είναι συνεχής σε κάθε σημείο του πεδίου ορισμού της.

### **ΘΕΩΡΗΜΑΤΑ**

## ΘΕΩΡΗΜΑ 1: ΣΥΝΕΧΕΙΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Τα βασικά είδη συναρτήσεων είναι συνεχείς συναρτήσεις στο πεδίο ορισμού τους. Αναλυτικότερα για κάθε είδος ισχύουν τα παρακάτω:

### 1. Πολυωνυμικές

Κάθε πολυωνυμική συνάρτηση P(x) είναι συνεχής στο πεδίο ορισμού της διότι για κάθε  $x \in \mathbb{R}$  ισχύει

$$\lim_{x \to x_0} P(x) = P(x_0)$$

### 2. Ρητές

Κάθε ρητή συνάρτηση  $f(x) = \frac{P(x)}{Q(x)}$  είναι συνεχής στο πεδίο ορισμού της A διότι για κάθε  $x \in A$  ισχύει

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)} = f(x_0)$$

## 3. Άρρητες

Κάθε άρρητη συνάρτηση  $f(x) = \sqrt{A(x)}$  είναι συνεχής στο πεδίο ορισμού της A. Για κάθε  $x \in A$  ισχύει:

$$\lim_{x \to x_0} \sqrt{A(x)} = \sqrt{A(x_0)}$$

#### 4. Τριγωνομετρικές

Οι βασικές τριγωνομετρικές συναρτήσεις είναι όλες συνεχείς στο πεδίο ορισμού τους. Για κάθε  $x_0$  ισχύει:

i. 
$$\lim_{x \to x_0} \eta \mu x = \eta \mu x_0$$

iii. 
$$\lim_{x \to x_0} \varepsilon \varphi x = \varepsilon \varphi x_0$$

ii. 
$$\lim_{x \to x_0} \sigma vvx = \sigma vvx_0$$

iv. 
$$\lim_{x \to x_0} \sigma \varphi x = \sigma \varphi x_0$$

#### 5. Εκθετικές

Κάθε εκθετική συνάρτηση  $f(x) = a^x$  είναι συνεχής στο πεδίου ορισμού της αφού ισχύει:

$$\lim_{x \to x_0} a^x = a^{x_0}$$

## 6. Λογαριθμικές

Κάθε λογαριθμική συνάρτηση  $f(x) = \log_a x$  είναι συνεχής στο πεδίου ορισμού της αφού ισχύει:

$$\lim_{x \to x_0} \log_a x = \log_a x_0$$

#### ΘΕΩΡΗΜΑ 2: ΣΥΝΕΧΕΙΑ ΠΡΑΞΕΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Εάν οι συναρτήσεις f, g είναι συνεχείς σε ένα κοινό σημείο  $x_0$  των πεδίων ορισμού τους τότε και οι συναρτήσεις

$$f+g$$
 ,  $f-g$  ,  $c\cdot f$  ,  $f\cdot g$  ,  $\frac{f}{g}$  ,  $|f|$  ,  $f^{\nu}$  και  $\sqrt[\mu]{f}$ 

με  $v \in \mathbb{Z}$ ,  $\mu \in \mathbb{N}$ , είναι συνεχείς στο σημείο  $x_0$  εφόσον ορίζονται στο σημείο αυτό.

#### ΘΕΩΡΗΜΑ 3: ΣΥΝΕΧΕΙΑ ΣΥΝΘΕΣΗΣ ΣΥΝΑΡΤΗΣΕΩΝ

Εάν η συνάρτηση f είναι συνεχής σε ένα σημείο  $x_0$  και η συνάρτηση g είναι συνεχής στο σημείο  $f(x_0)$  η σύνθεση τους  $g\circ f$  είναι συνεχής στο σημείο  $x_0$ .