5 - SPAZI VETTORIALI

- 1. Sia $V = \{M \in \mathbf{R}^{2,2} | a_{11} + a_{12} + a_{21} = 0\}$; provare che V costituisce un sottospazio di $\mathbf{R}^{2,2}$; trovarne una base e la dimensione.
- 2. Sia $V = \mathbb{R}^{2,2}$. Siano V_1 e V_2 rispettivamente i sottoinsiemi di V costituiti dalle matrici triangolari superiori e dalle matrici simmetriche.
 - (a) dimostrare che V_1 e V_2 sono sottospazi di V e trovarne una base;
 - (b) trovare una base di $V_1 \cap V_2$.
- 3. Sia V il sottoinsieme di $\mathbf{R}_2[X]$, costituito dai polinomi di grado ≤ 2 che si annullano per X=3. Dimostrare che si tratta di un sottospazio vettoriale; determinarne poi dimensione e una base.
- 4. Verificare che in $\mathbf{R}[X]$ i polinomi $2X + X^3, X + 1, X^2 + X, X^3 3X^2 + 1$ sono linearmente dipendenti e trovare una base per il sottospazio da essi generato.
- 5. Trovare una base di ${\bf R}^4$ che contenga sia una base di U che una base di V , dove

$$U = \{(x, y, z, t) | x - 2z + y = 0\}, V = \mathcal{L}((0, 2, 1, -1), (1, -2, 1, 1), (1, 2, 3, -1), (1, 2, 7, 1))\}$$

- 6. Sono dati i seguenti sottospazi vettoriali di \mathbf{R}^4 : $U = \{((0, a, b, c) | a, b, c \in \mathbf{R}\}, W = \{((p, q, p, r) | p, q, r \in \mathbf{R}\};$
 - (a) trovare una base di $U, W, U \cap W, U + W$;
 - (b) dire se U + W è una somma diretta;
 - (c) determinare (se possibile) un sottospazio T di \mathbf{R}^4 tale che $\mathbf{R}^4 = T \oplus U$.
- 7. Sia $V = \{(x, y, z) \in \mathbf{R}^3 | x + y = 0, z = 0, x + y + 2z = 0\}$. Quale delle seguenti affermazioni è vera?
 - (a)V è un sottospazio vettoriale di dimensione 2
 - (b) V è un sottospazio vettoriale di dimensione 1
 - (c) V contiene una base di \mathbb{R}^3 .
 - (d) V è unione di tre piani.
- 8. Sia V un sottospazio di \mathbb{R}^3 . Quale delle seguenti affermazioni è vera?
 - (a) Esiste un sottospazio $W \subseteq \mathbf{R}^3$ tale che dim(V+W) = dim(W).
- (b) Se dim(V)=2, esiste un sottospazio $W\subseteq \mathbf{R}^3$ tale che dim(W)=2 e $V\cap W$ contiene un solo vettore.
 - (c) Esiste un sottospazio $W \subseteq \mathbf{R}^3$ tale che $V \cap W$ sia vuoto.
 - (d) Per ogni sottospazio $W \subseteq \mathbf{R}^3$ l'insieme $V \cap W$ contiene infiniti vettori.

5 - SOLUZIONI

- 1. $V = \{ \begin{pmatrix} a_{11} & a_{12} \\ -a_{11} a_{12} & a_{22} \end{pmatrix} \}$ soddisfa le tre proprietà che caratterizzano un sottospazio vettoriale. Una base di V è per esempio $(\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix})$, quindi dim(V) = 3.
- 2. $V_1 = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}$, $V_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$. Si verifica facimente che V_1 e V_2 soddisfano le tre proprietà che caratterizzano un sottospazio vettoriale. Come basi si trovano per esempio:

caratterizzano un sóttospazio vettoriale. Come basi si trovano per esempio:
$$\mathcal{B}_{V_1} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}), \mathcal{B}_{V_2} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}); V_1 \cap V_2 = \{\begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix}\}$$
e una base è $\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix})$.

- 3. Il generico polinomio di grado ≤ 2 che si annulla per X=3 è del tipo $-3(a_1+3a_2)+a_1X+a_2X^2$, ossia è il vettore di componenti $(-3(a_1+3a_2),a_1,a_2)$ rispetto alla base $(1,X,X^2)$. È facile verificare che V soddisfa le tre proprietà che caratterizzano un sottospazio vettoriale. Una base è per esempio ((-3,1,0),(-9,0,1)); di conseguenza la dimensione è 2.
- 4. I polinomi dati, rispetto alla base $(1, X, X^2, X^3)$, hanno componenti corrispondenti alle righe della matrice

$$\begin{pmatrix}
0 & 2 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & -3 & 1
\end{pmatrix}$$

utilizzando qualunque procedimento di riduzione per righe si ottiene che ha rango 3; di conseguenza i polinomi dati sono linearmente dipendenti e le righe non nulle della matrice ridotta forniscono le componenti degli elementi di una base del sottospazio da essi generato.

5. Risolvendo l'equazione x-2z+y=0 di U rispetto a una delle incognite, per esempio la x, si ricava il generico vettore (-y+2z,y,z,t) di U, al variare di $y,z,t\in\mathbf{R}$, quindi dim(U)=3. Riducendo a scala la matrice che ha per righe i generatori di V si ha:

$$\begin{pmatrix} 1 & -2 & 1 & 1 \\ 0 & 2 & 1 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 2 & 7 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 4 & 2 & -2 \\ 0 & 4 & 6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

da cui dim(V) = 3 e il generico vettore di V può essere scritto come (a, -2a+2b, a+b+2c, a-b+c), al variare di $a, b, c \in \mathbf{R}$. Per ricavare il sottospazio $U \cap V$ imponiamo a tale vettore di appartenere a U: sostituendo le sue componenti nell'equazione di U si ha la condizione 3a = -4c e di conseguenza il generico vettore di $U \cap V$ è (-4c, 8c + 6b, 2c + 3b, -c - 3b); una base di $U \cap V$ è perciò $\mathcal{B}_{U \cap V} = ((0, 2, 1, -1), (-4, 8, 2, -1))$. Completando opportunamente $\mathcal{B}_{U \cap V}$, si ottiene per esempio $\mathcal{B}_U = ((0, 2, 1, -1), (-4, 8, 2, -1), (0, 0, 0, 1))$ e $\mathcal{B}_V = ((0, 2, 1, -1), (-4, 8, 2, -1), (0, 0, 2, 1))$. Per ottenere infine una base di \mathbf{R}^4 , tenendo anche presente la formula di Grassmann, basta considerare i vettori

$$((0,2,1,-1),(-4,8,2,-1),(0,0,2,1),(0,0,0,1))$$

- 7. (b)
- 8. (a)