Shusen Wang

Tasks

Methods

Algorithms

Example 1: face recognition.

#classes = #people

Example 2: hand-written digit recognition.

• #classes = 10

Can we use linear regression?

Looks like "3"
$$\rightarrow f = \mathbf{w}^T \mathbf{x}$$
 is close to 3

X

Looks like "8" $\rightarrow f = \mathbf{w}^T \mathbf{x}$ is close to 8

Can we use linear regression?

Looks like "3" \rightarrow $f = \mathbf{w}^T \mathbf{x}$ is close to 3 $f = \mathbf{w}^T \mathbf{x} \text{ is } 4.835$ Looks like "8" \rightarrow $f = \mathbf{w}^T \mathbf{x}$ is close to 8

Can we use linear regression?

Linear regression believes x is "5"

X

Looks like "8" $\rightarrow f = \mathbf{w}^T \mathbf{x}$ is close to 8

The Right Approach

Preliminaries

One-Hot Encoding

- #Class = 10 (e.g., in digit recognition).
- One-hot encode of y = 3:

$$\mathbf{y} = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]^T \in \{1, 0\}^{10}$$

Softmax Function

- $\phi \in \mathbb{R}^K$
- $\mathbf{p} = \operatorname{SoftMax}(\mathbf{\phi}) \in \mathbb{R}^K$; its entries are

$$p_k = \frac{\exp(\phi_k)}{\sum_{j=1}^K \exp(\phi_j)}$$
, for $k = 1, \dots, K$.

Cross-Entropy

• The vectors \mathbf{y} and \mathbf{p} are K-dim vectors with nonnegative entries.

$$y_1 + \dots + y_K = 1$$
 and $p_1 + \dots + p_K = 1$.

Cross-entropy between y and p:

$$H(\mathbf{y}, \mathbf{p}) = -\sum_{l=1}^{K} y_l \log p_l$$
.

Cross-Entropy

• The vectors \mathbf{y} and \mathbf{p} are K-dim vectors with nonnegative entries.

$$y_1 + \dots + y_K = 1$$
 and $p_1 + \dots + p_K = 1$.

Cross-entropy between y and p:

$$H(\mathbf{y}, \mathbf{p}) = -\sum_{l=1}^{K} y_l \log p_l$$
.

- Cross-entropy measures the dissimilarity between y and p.
- When used as loss function, H(y, p) can be replaced by

$$\left| \left| \mathbf{y} - \mathbf{p} \right| \right|_{2}^{2}$$
 or $\left| \left| \mathbf{y} - \mathbf{p} \right| \right|_{1}$.

Softmax Classifier: Model Formulation

Tasks

Methods

Algorithms

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples d: #features K: #classes

Remark: If the given labels are scalars $y_1, \dots, y_n \in \{0, 1, \dots, K-1\}$, turn them to K-dim vectors $\mathbf{y}_1, \dots, \mathbf{y}_n \in \{0, 1\}^K$ using one-hot encoding.

Example: One-hot encode of $y_i = 3$ (where K=10):

 $\mathbf{y}_i = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]^T \in \{1, 0\}^{10}$

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples

d: #features K: #classes

• $\Phi = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$ Here, \mathbf{x} is one of $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples

d: #features

K: #classes

- $\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$
- ϕ_k (the k-th entry of ϕ) indicates how likely x is in the k-th class.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples

d: #features

K: #classes

- $\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$
- ϕ_k (the k-th entry of ϕ) indicates how likely x is in the k-th class.
- Softmax function: $p_k = \frac{\exp(\phi_k)}{\sum_{j=1}^K \exp(\phi_j)}$.
 - $p_1 + \cdots + p_K = 1$.
 - Thus $\mathbf{p} = [p_1, \cdots, p_K] \in \mathbb{R}^K$ is a distribution.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples

d: #features

K: #classes

- $\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$
- ϕ_k (the k-th entry of ϕ) indicates how likely x is in the k-th class.
- Softmax function: $p_k = \frac{\exp(\phi_k)}{\sum_{j=1}^K \exp(\phi_j)}$.
- Cross-entropy loss: $H(\mathbf{y}, \mathbf{p}) = -\sum_{k=1}^{K} y_k \log p_k$.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

• Softmax classifier: $\min_{\mathbf{W}} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$

$$\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K$$
, $\mathbf{p}_i = \text{SoftMax}(\mathbf{\phi}_i)$, and $H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log(p_{i,k})$.

Cross-entropy loss

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

- Softmax classifier: $\min_{\mathbf{W}} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$
 - $\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K$, $\mathbf{p}_i = \text{SoftMax}(\mathbf{\phi}_i)$, and $H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log(p_{i,k})$.

- The role of minimizing $H(\mathbf{y}_i, \mathbf{p}_i)$ is making \mathbf{p}_i similar to \mathbf{y}_i .
- $H(\mathbf{y}_i, \mathbf{p}_i)$ can be replaced by $||\mathbf{y}_i \mathbf{p}_i||_2^2$. In practice, cross-entropy works better.

Softmax Classifier: Algorithm

Tasks Methods

Algorithms

$$\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K, \qquad p_q = \frac{e^{\mathbf{\Phi}q}}{\sum_{j=1}^K e^{\mathbf{\Phi}j}}, \qquad \text{and} \qquad H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^K y_q \log(p_q).$$

$$\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K, \qquad p_q = \frac{e^{\mathbf{\Phi}q}}{\sum_{j=1}^K e^{\mathbf{\Phi}j}}, \qquad \text{and} \qquad H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^K y_q \log(p_q).$$

•
$$H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^{K} y_q \phi_q + \log(\sum_{j=1}^{K} e^{\phi_j}) \cdot \sum_{q=1}^{K} y_q$$
.

$$\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K, \qquad p_q = \frac{e^{\mathbf{\Phi}q}}{\sum_{j=1}^K e^{\mathbf{\Phi}j}}, \qquad \text{and} \qquad H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^K y_q \log(p_q).$$

•
$$H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^{K} y_q \phi_q + \log(\sum_{j=1}^{K} e^{\phi_j}) \cdot \sum_{q=1}^{K} y_q$$
.

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

•
$$H(\mathbf{y}, \mathbf{p}) = -\sum_{q=1}^{K} y_q \phi_q + \log(\sum_{j=1}^{K} e^{\phi_j}) \cdot \sum_{q=1}^{K} y_q$$
.

= 1

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

Chain rule:
$$\frac{\partial H}{\partial \mathbf{w}_{r:}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w}_{r:}} \cdot \frac{\partial H}{\partial \phi_q}$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K$$
 and $H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \mathbf{\phi}_j + \log(\sum_{j=1}^K e^{\mathbf{\phi}_j}).$

$$\bullet \ \phi_q = \mathbf{x}^T \mathbf{w}_{q:} .$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \ \phi_q = \mathbf{x}^T \mathbf{w}_{q:} .$$

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q}$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

•
$$\phi_q = \mathbf{x}^T \mathbf{w}_{q:}$$
.

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q} = \frac{\partial \phi_1}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_1} + \sum_{q \neq 1} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q}.$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \ \phi_q = \mathbf{x}^T \mathbf{w}_{q:} \ .$$

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q} = \begin{bmatrix} \frac{\partial \phi_1}{\partial \mathbf{w_{1:}}} & \frac{\partial H}{\partial \phi_1} + \sum_{q \neq 1} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q}.$$

$$= \frac{\partial \mathbf{x}^T \mathbf{w}_{1:}}{\partial \mathbf{w}_{1:}} = \mathbf{x}$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \ \phi_q = \mathbf{x}^T \mathbf{w}_{q:} \ .$$

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q} = \begin{bmatrix} \frac{\partial \phi_1}{\partial \mathbf{w_{1:}}} & \frac{\partial H}{\partial \phi_1} + \sum_{q \neq 1} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} & \frac{\partial H}{\partial \phi_q}.$$

$$= \frac{\partial \mathbf{x}^T \mathbf{w}_{1:}}{\partial \mathbf{w}_{1:}} = \mathbf{x}$$

$$= \frac{\partial \mathbf{x}^T \mathbf{w}_{q:}}{\partial \mathbf{w}_{1:}} = \mathbf{0}$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \ \phi_q = \mathbf{x}^T \mathbf{w}_{q:} \ .$$

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \sum_{q=1}^{K} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} \cdot \frac{\partial H}{\partial \phi_q} = \begin{bmatrix} \frac{\partial \phi_1}{\partial \mathbf{w_{1:}}} & \frac{\partial H}{\partial \phi_1} + \sum_{q \neq 1} \frac{\partial \phi_q}{\partial \mathbf{w_{1:}}} & \frac{\partial H}{\partial \phi_q}.$$

$$= \frac{\partial \mathbf{x}^T \mathbf{w}_{1:}}{\partial \mathbf{w}_{1:}} = \mathbf{x}$$

$$= \frac{\partial \mathbf{x}^T \mathbf{w}_{q:}}{\partial \mathbf{w}_{1:}} = \mathbf{0}$$

$$\bullet \frac{\partial H}{\partial \mathbf{w_{1:}}} = \mathbf{x} \cdot \frac{\partial H}{\partial \phi_{1}}.$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \frac{\partial H}{\partial \mathbf{w}_{q:}} = \mathbf{x} \cdot \frac{\partial H}{\partial \phi_{q}}.$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \frac{\partial H}{\partial \mathbf{w}_{q:}} = \mathbf{x} \cdot \frac{\partial H}{\partial \boldsymbol{\phi}_{q}}.$$

$$\bullet \frac{\partial H}{\partial \phi_q} = -y_q + \frac{e^{\phi_q}}{\sum_{j=1}^K e^{\phi_j}} = -y_q + p_q.$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \frac{\partial H}{\partial \mathbf{w}_{q:}} = \mathbf{x} \cdot \frac{\partial H}{\partial \boldsymbol{\phi}_{q}}.$$

$$\bullet \frac{\partial H}{\partial \phi_q} = -y_q + \frac{e^{\phi_q}}{\sum_{j=1}^K e^{\phi_j}} = -y_q + p_q.$$

$$\bullet \rightarrow \frac{\partial H}{\partial \mathbf{w}_{q:}} = \mathbf{x} \cdot \left(-y_q + p_q \right)$$

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \quad \text{and} \quad H(\mathbf{y}, \mathbf{p}) = -\sum_{j=1}^K y_j \phi_j + \log(\sum_{j=1}^K e^{\phi_j}).$$

$$\bullet \frac{\partial H}{\partial \mathbf{w}_{q}} = (p_q - y_q) \cdot \mathbf{x}.$$

$$\bullet \frac{\partial H}{\partial \mathbf{W}} = \begin{bmatrix} \frac{\partial H}{\partial \mathbf{w}_{1:}^T} \\ \frac{\partial H}{\partial \mathbf{w}_{2:}^T} \\ \vdots \\ \frac{\partial H}{\partial \mathbf{w}_{K:}^T} \end{bmatrix} = \begin{bmatrix} (p_1 - y_1) \cdot \mathbf{x}^T \\ (p_2 - y_2) \cdot \mathbf{x}^T \\ \vdots \\ (p_K - y_K) \cdot \mathbf{x}^T \end{bmatrix} = (\mathbf{p} - \mathbf{y}) \cdot \mathbf{x}^T.$$

Stochastic Gradient Descent

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

- Model: $\min_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$ $\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K$, $\mathbf{p}_i = \text{SoftMax}(\mathbf{\phi}_i)$, and $H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^{K} y_{i,k} \log(p_{i,k})$.
- A (stochastic) gradient: $\mathbf{G}_i = \frac{\partial H(\mathbf{y}_i, \mathbf{p}_i)}{\partial \mathbf{W}} = (\mathbf{p}_i \mathbf{y}_i) \cdot \mathbf{x}_i^T \in \mathbb{R}^{K \times d}$.

Stochastic Gradient Descent

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

- Model: $\min_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$
 - $\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K$, $\mathbf{p}_i = \text{SoftMax}(\mathbf{\phi}_i)$, and $H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log(p_{i,k})$.
- A (stochastic) gradient: $\mathbf{G}_i = \frac{\partial H(\mathbf{y}_i, \mathbf{p}_i)}{\partial \mathbf{W}} = (\mathbf{p}_i \mathbf{y}_i) \cdot \mathbf{x}_i^T \in \mathbb{R}^{K \times d}$.

SGD Algorithm:.

- 1. Randomly sample i from $\{1, 2, \dots, n\}$.
- 2. Compute G_i using (\mathbf{x}_i, y_i) .
- 3. $\mathbf{W} \leftarrow \mathbf{W} \alpha \mathbf{G}_i$.

Softmax Classifier: Train and Test

- Train (given feature vectors $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \cdots, \mathbf{y}_n \in \mathbb{R}^K$)
 - Compute $\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{i=1}^n H(\mathbf{y}_i, \mathbf{p}_i)$ by SGD or other algorithms.
- Test (for a sample $\mathbf{x}' \in \mathbb{R}^d$)
 - $\phi' = \mathbf{W}^* \mathbf{x}' \in \mathbb{R}^K$.
 - Return the index of the largest entry of ϕ' .

Softmax Classifier: Train and Test

- Train (given feature vectors $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \cdots, \mathbf{y}_n \in \mathbb{R}^K$)
 - Compute $\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{i=1}^n H(\mathbf{y}_i, \mathbf{p}_i)$ by SGD or other algorithms.
- Test (for a sample $\mathbf{x}' \in \mathbb{R}^d$)
 - $\phi' = \mathbf{W}^* \mathbf{x}' \in \mathbb{R}^K$.
 - Return the index of the largest entry of ϕ' .

What is the predicted class?

$$\boldsymbol{\phi}' = \begin{bmatrix} 0.9 \\ -5 \\ 10 \\ -20 \\ 0 \end{bmatrix}$$

Softmax Classifier: Train and Test

- Train (given feature vectors $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \cdots, \mathbf{y}_n \in \mathbb{R}^K$)
 - Compute $\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{i=1}^n H(\mathbf{y}_i, \mathbf{p}_i)$ by SGD or other algorithms.
- Test (for a sample $\mathbf{x}' \in \mathbb{R}^d$)
 - $\phi' = \mathbf{W}^* \mathbf{x}' \in \mathbb{R}^K$.
 - Return the index of the largest entry of ϕ' .

Limitations of Softmax Classifier

#Parameter v.s. #Classes

#Parameter v.s. #Classes

- Suppose #features = 1K.
- Suppose # classes = 10 (e.g., digit recognition).
 - $1K \times 10 = 10K$ parameters.
- Suppose # classes = 1K (e.g., ImageNet image recognition).
 - $1K \times 1K = 1M$ parameters.
- Suppose # classes = 1M (e.g., face recognition).
 - $1K \times 1M = 1G$ parameters \rightarrow Heavy computation and memory costs.

#Parameter v.s. #Classes

- Suppose #features = 1K.
- Suppose # classes = 10 (e.g., digit recognition).
 - $1K \times 10 = 10K$ parameters.
- Suppose # classes = 1K (e.g., ImageNet image recognition).
 - $1K \times 1K = 1M$ parameters.
- Suppose # classes = 1M (e.g., face recognition).
 - $1K \times 1M = 1G$ parameters \rightarrow Heavy computation and memory costs.
- What if # classes = 1G? (E.g., face recognition for all the Chinese citizens.)