Gasp: an OCaml library for manipulating LF objects

Matthias Puech¹

Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126 CNRS, PiR2, INRIA Paris-Rocquencourt, F-75205 Paris, France Università di Bologna, Dipartimento di Informatica – Scienza e Ingegneria

Workshop on Formal Meta-Theory LIX, March 6, 2013

¹joint work with Yann Régis-Gianas

Outline

Motivations

Programming with proof certificates

Using Gasp
Presentation

The environment-free style

Implementing Gasp

Term representation Typed evaluation

Incremental type checking

Perspectives

Outline

Motivations

Programming with proof certificates

Incremental type checking

Perspectives

Proof certificates

Witnesses of correctness of a computation, independently verifiable by a small trusted program

- a specification of f, e.g. $\forall i$. $\exists o. f(i) = o$ and P(i, o)
- an untrusted oracle computing $f(i) = \langle o, \pi \rangle$
- a trusted *kernel* deciding if π is a proof of P(i, o)

→ reduces the *trusted base* of a computation

Trusted decision procedures

a.k.a tactics in interactive theorem provers (e.g. Coq)

- an untrusted procedure (e.g. tauto, omega)
- returns a proof term (e.g. in the CIC)
- verified at Qed. time by the kernel (De Bruijn criterion)

Certifying compilation

a.k.a proof-carrying code [Necula, 1997]

- source code that "doesn't go wrong"
- an untrusted compiler
- returns a proof that target code "doesn't go wrong" either
- verified by the client before executing

Safe type inference

a.k.a type reconstruction (e.g. $Haskell \rightarrow F_C$)

• a (complex) type inference procedure

val infer: expr → bool

Safe type inference

a.k.a type reconstruction (e.g. $Haskell \rightarrow F_C$)

a (complex) type inference procedure
 val infer: expr → church

• a (simpler) type checking procedure

val check : church → bool

Safe type inference

- a.k.a type reconstruction (e.g. Haskell \rightarrow F_C)
 - a (simple) declarative type system

$$\frac{\mathsf{SUB}}{\vdash M : A'} \qquad \vdash A' \leq A}{\vdash M : A}$$

• a (complex) *syntax-directed*, equivalent version

$$\begin{array}{c|cccc} AppSub & & & & & & & & \\ \vdash M:A \to B & & \vdash N:A' & & \vdash A' \leq A \\ \hline & \vdash MN:B & & & & \end{array}$$

Certifying software

certified program together with proof that it respects the specification on all input (Coq, Beluga...)certifying black box, emits a proof certificate verifiable a posteriori, but not guaranteed to be correct

Certifying software

certified program together with proof that it respects the specification on all input (Coq, Beluga...)certifying black box, emits a proof certificate verifiable a posteriori, but not guaranteed to be correct

Advantages of the certifying scheme

- same safety (but different quality of implementation)
- program source need not be revealed
- more lightweight (partial formalization)
 e.g. no verification of graph coloring, term indexing...

Representing syntax in LF [Harper et al., 1993]

LF is a universal *representation language*, for formal systems featuring hypothetical/parametrical reasoning like HTML for structured documents

- systems (resp. derivations) encoded into signatures (resp. objects)
- dependently-typed λ -calculus ($\lambda\Pi$)
- higher-order abstract syntax

Representing syntax in LF [Harper et al., 1993]

Example (Encoding natural deductions)

Computing LF objects?

Question

How to write programs which values are LF objects?

Computing LF objects?

Question

How to write programs which values are LF objects?

In this talk...

An OCaml *library* to ease programming with proof certificates:

- general purpose functional PL
- large corpus of libraries
- only simply-typed (ADT)

Not a system, a facility to implement systems

Yet another "last implementation of substitution & LF type-checking"

Outline

Motivations

Programming with proof certificates
Using Gasp
Implementing Gasp

Incremental type checking

Perspectives

Outline

Motivations

Programming with proof certificates
Using Gasp
Implementing Gasp

Incremental type checking

Perspectives

Gasp: an OCaml library to manipulate LF objects

An implementation of LF...

- a type of LF objects obj
- a type of signatures sign
- a concrete syntax with quotations and anti-quotations

Gasp: an OCaml library to manipulate LF objects

An implementation of LF...

- a type of LF objects obj
- a type of signatures sign
- a concrete syntax with quotations and anti-quotations

\dots where signatures can declare functions symbols f

- their code is untyped OCaml code (type obj)
 can use e.g. pattern-matching, exceptions, partiality...
- their LF types act as a specifications dynamically checked at run time

supported by CamIP4:

- a parser for OCaml expressions parsee: string → Ocaml.expr
- a parser for LF objects and signatures
 parseq: string → OCaml.expr (* of type obj *)
- parsee replaces strings s between « ... » by parseq s (quotations)
- parseq replaces strings s between "..." by parsee s (antiquotations)

then use parsee to parse main program (ocamlc -pp)

Examples

• (sign prop : *. imp : prop \rightarrow prop \rightarrow prop. » : sign)

```
• («<sup>sign</sup> prop: *. imp: prop → prop → prop. » : sign)

→> [("prop", KType);

("imp", Arr (Atom ("prop", [])) (Arr ...))]
```

```
    («<sup>sign</sup> prop: *. imp: prop → prop → prop. »: sign)
    → [("prop", KType);
    ("imp", Arr (Atom ("prop", [])) (Arr ...))]
    let f: obj → obj = fun x → « imp "x" "x" »
```

```
    («sign prop: *. imp: prop → prop → prop. »: sign)
    → [("prop", KType);
        ("imp", Arr (Atom ("prop", [])) (Arr ...))]
    let f: obj → obj = fun x → «imp "x" "x" »
    → let f: obj → obj = fun x → Atom ("imp", [x, x])
```

```
    («sign prop: *. imp: prop → prop → prop. »: sign)
    → [("prop", KType);
        ("imp", Arr (Atom ("prop", [])) (Arr ...))]
    let f: obj → obj = fun x → «imp "x" "x" »
    → let f: obj → obj = fun x → Atom ("imp", [x, x])
    «conj ("f « disj p q »") ("f « p »") »
```

```
• (^{sign} prop : *. imp : prop \rightarrow prop \rightarrow prop. » : sign)
  → [("prop", KType);
         ("imp", Arr (Atom ("prop", [])) (Arr ...))]
• let f : obj \rightarrow obj = fun x \rightarrow « imp "x" "x" »
  \rightarrow let f: obj \rightarrow obj = fun x \rightarrow Atom ("imp", [x, x])
«conj ("f « disj p q »") ("f « p »") »

→ Atom ("conj", [
          f (Atom ("disj", [Atom ("p", []), Atom ("q", [])]),
          f (Atom "p", [])
        1)
```

Declared functions

$$\Sigma ::= \cdot \mid \Sigma, c : A \mid \Sigma, a : K \mid \Sigma, f : A = T$$

... where T is an OCaml expression of type |A|:

$$|P| = \text{obj}$$

 $|\Pi x : A.B| = \text{obj} \rightarrow |B|$

... and objects can refer to them:

$$H ::= x \mid c \mid f$$

Specification A is checked at run time just before/after executing code T.

Gasp's interface

```
module Gasp = struct
type obj
type sign
...
val empty : sign
val (++) : sign → sign → sign
val eval : ?env:env → sign → obj → obj
end
```

```
# let s = e^{sign}

tm : *. app : tm \rightarrow tm \rightarrow tm. lam : (tm \rightarrow tm) \rightarrow tm.

eta : tm \rightarrow tm = "fun m \rightarrow ext{ lam } (\lambda x. app "m" x) ext{ sign}.

"";
```

```
# let s = e^{sign}

tm: *. app: tm \rightarrow tm \rightarrow tm. lam: (tm \rightarrow tm) \rightarrow tm.

eta: tm \rightarrow tm = "fun m \rightarrow e lam (\lambda x. app "m" x) ".

";;

# eval s \in lam (\lambda x. eta x) :;

s \in lam (\lambda x. eta x) :;
```

```
\# let s = «sign
 tm:*. app:tm \rightarrow tm \rightarrow tm. lam:(tm \rightarrow tm) \rightarrow tm.
 eta: tm \rightarrow tm = "fun m \rightarrow « lam (\lambda x. app "m" x) »".
» ;;
# eval s « lam (\lambda x. eta x) »;
-: obj = « lam (\lambda x. \text{lam } (\lambda x'. \text{app } x x')) »
# let s = s ++ \sqrt{sign}
 weak: tm \rightarrow tm = "function"
    | « | lam | m| » \rightarrow « | lam | m| »
    | « app "m" "n" » \rightarrow
        let « lam "p" » = « weak "m" » in
        « weak ("p" "n") »".
»;;
```

```
\# let s = «sign
 tm:*. app:tm \rightarrow tm \rightarrow tm. lam:(tm \rightarrow tm) \rightarrow tm.
 eta: tm \rightarrow tm = "fun m \rightarrow « lam (\lambda x. app "m" x) »".
» ;;
# eval s « lam (\lambda x. eta x) »;
-: obj = « lam (\lambda x. \text{lam } (\lambda x'. \text{app } x x')) »
# let s = s ++ \sqrt{sign}
 weak: tm \rightarrow tm = "function"
    | « | lam | m| » \rightarrow « | lam | m| »
    | « app "m" "n" » \rightarrow
        let « lam "p" » = « weak "m" » in
        « weak ("p" "n") »".
» ;;
# eval s « weak (app (lam (\lambda x.x)) (lam (\lambda x.x))) » ;;
-: obj = « lam (\lambda x.x) »
```

```
# let s = s ++ e^{sign}
 tp: *.
 nat: tp.
  arr: tp \rightarrow tp \rightarrow tp.
  is: tm \rightarrow tp \rightarrow *.
  App: \Pi MN: tm. \Pi AB: tp.
      is M (arr A B) \rightarrow is N A \rightarrow is (app M N) B.
  Lam: \Pi M: tm \rightarrow tm. \Pi AB: tp. \Pi B: tp.
      (\Pi x : \mathsf{tm. is} \ x \ A \to \mathsf{is} \ (M \ x) \ B) \to \mathsf{is} \ (\mathsf{lam} \ A \ \lambda u . M \ u) \ (\mathsf{arr} \ A \ B).
  inf: tm \rightarrow *.
  ex : \Pi M : tm. \Pi A : tp. is MA \rightarrow \inf M.
 infer: \Pi M: tm. inf M = "...".
» ;;
```

```
# eval s « infer (lam nat \lambda x.x) » ;;

-: obj = « ex (lam \lambda x.x) (arr nat nat)

(Lam (\lambda x.x) nat nat (\lambda x.\lambda h.h)) »
```

```
# eval s « infer (lam nat \lambda x.x) » ;;

-: obj = « ex (lam \lambda x.x) (arr nat nat)

(Lam (\lambda x.x) nat nat (\lambda x.\lambda h.h)) »

# eval s « infer (lam nat \lambda x.app xx) » ;;

Exception: Failure "non-functional application"

(* my term is ill-typed *)
```

Consider the *size* function $|\cdot|$ defined recursively on λ -terms:

$$|x| = 0$$
$$|\lambda x. M| = |M| + 1$$
$$|M N| = |M| + |N| + 1$$

Consider the *size* function $|\cdot|$ defined recursively on λ -terms:

$$|x| = 0$$
$$|\lambda x. M| = |M| + 1$$
$$|M N| = |M| + |N| + 1$$

Can we code it as follows?

```
size: tm → nat = "fun m → match m with

| « x » → « o »

| « app "m" "n" » → « s (plus (size "m") (size "n")) »

| « lam \lambda x."m" » → « s (size "m") » ".
```

Consider the *size* function $|\cdot|$ defined recursively on λ -terms:

$$|x| = 0$$
$$|\lambda x. M| = |M| + 1$$
$$|M N| = |M| + |N| + 1$$

Can we code it as follows?

```
size: tm \rightarrow nat = "fun m \rightarrow match m with

| « x » \rightarrow « o »

| « app "m" "n" » \rightarrow « s (plus (size "m") (size "n")) »

| « lam \lambda x. "m" » \rightarrow « s (size "m") » ".
```

- m has a free variable
- I have access to the name of variables

Example

Contextual types to the rescue. In Beluga:

```
rec size : {g:ctx} [g. tm] \rightarrow [. nat] = mlam g \Rightarrow fn t \Rightarrow case t of | [g. #p ..] \Rightarrow [. o] | [g. lam \lambda x. T .. x] \Rightarrow let [. N] = size [g, x:tm] [g, x. T .. x] in [. s N] | [g. app (T ..) (U ..)] \Rightarrow let [. N] = plus (size [g] [g. T ..]) (size [g] [g. U ..]) in [. s N];
```

Environment of terms is tracked and checked throughout the term. No encoding directly in OCaml

Inspiration

Traditional type-checking algorithm

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x : A \cdot M : A \to B} \qquad \frac{APP}{\Gamma \vdash M : A \to B} \qquad \frac{\Gamma \vdash N : A}{\Gamma \vdash M N : B}$$

$$\frac{VAR}{x : A \in \Gamma}$$

$$\frac{x : A \in \Gamma}{\Gamma \vdash x : A}$$

 $infer : env \rightarrow tm \rightarrow tp$

Inspiration

Environment-free algorithm [Geuvers et al., 2010, Boespflug, 2011]

$$\frac{\mathsf{EFLam}}{\vdash M[x/\mathsf{infer}^0A] : B} \qquad \frac{\mathsf{EFApp}}{\vdash M : A \to B} \qquad \frac{\vdash M : A \to B}{\vdash M N : B}$$

$$\frac{\mathsf{EFAnnot}}{\vdash \mathsf{infer}^0A : A}$$

$$\mathsf{infer} : \mathsf{tm} \to \mathsf{tp}$$

$$\mathsf{infer}^0 : \mathsf{tp} \to \mathsf{tm}$$

"substitute variables by their computed type"

Proposition

Consider size only called on closed objects (no variable case), introduce function inverse $size^0$: nat \rightarrow tm feeding output back to input

```
size: tm \rightarrow nat = "fun m \rightarrow match m with 
| " app "m" "n" " \rightarrow " s (plus (size "m") (size "n")) " | " lam "f" " \rightarrow " s (size ("f" (size<sup>0</sup> o))) "."
```

Add contraction to the reduction

$$size (size^0 M) = M$$

Generalization

The *environment-free* style: during computation, objects are closed by the expected result on their variables

- ✓ to each function $f: A \to B$, a function inverse $f^0: B \to A$
- ✓ the adequate reduction: $f \circ f^0 = id$
- ✓ all patterns are of the form P ::= "x" | c P...P

```
Example
Simple types inference, à la Church
# let s = s ++ *^{sign}
 tp:*. nat: tp. arr: tp \rightarrow tp \rightarrow tp.
 infer: tm \rightarrow tp = "function"
   | « app "m" "n" » \rightarrow
    match eval « infer "m" » with
       | « arr "a" "b" » when a = eval « infer "n" » \rightarrow b
       → failwith "non-functional application"
   | « lam "a" "f" » \rightarrow « infer ("f" (infer<sup>0</sup> "a")) »
»;;
```

Example

```
Naïve full evaluation

# let s = s ++ e^{sign}

full: tm \rightarrow tm = "function

| "app "m" "n" "" \rightarrow match eval "full "m" " with

| "am "f" "" \rightarrow "full ("f" "n") "

| "app "m" "n'" "" \rightarrow "app (app "m" "n") "n'" "

| "lam "f" "" \rightarrow "app (app "m" "n") "n'" ""

| "lam "f" "" \rightarrow "app (app "m" "n") "n'" ""

| "lam "f" "" \rightarrow "app (app "m" "n") "n'" ""

| "lam "f" "" \rightarrow "app (app "m" "n") "n'" ""

| "lam "f" "" \rightarrow "app (app "m" "n") "n'" ""
```

n-ary inverses

Generalization to *n*-ary functions $f: A_0 \to \ldots \to A_n \to A$

- n inverses $f^0: A \to A_0, \ldots, f^n: A \to A_n$
- reduction rule: $f(f^0 M) \dots (f^n M) = M$

Example

Problem

What is the inverse of *infer* : Πx : tm. inf x ?

Problem

What is the inverse of *infer*: Πx : tm. inf x?

Proposition

 $infer^0$: $inf x \rightarrow tm$

Problem

What is the inverse of *infer* : Πx : tm. inf x ?

Proposition

Generalization: abstract by dependent arguments

 $infer^0: \Pi x: tm. inf x \to tm$

Example

```
infer: \Pi M: tm. inf M = " fun m \rightarrow match m with
  | « app "m" "n" » \rightarrow
    let « ex " " (arr "a" "b") "d1" » = eval « infer "m" » in
    let « ex " " "a' " "d2" » = eval « infer "n" » in
    « ex (app "m" "n") "b"
          (App "m" "n" "a" "b" "d1" "d2") »
  l \ll lam "a" "m" \gg \rightarrow
    let « ex " "b" "d" » = eval \simenv:«^{env} x: tm; h: is x "a" »
       « infer ("m" (infer^0 x (ex x "a" h))) » in
    « ex (lam "a" "m") (arr "a" "b")
          (Lam "m" "a" "b" (\lambda x, \lambda h, \text{"d"})) »
```

Outline

Motivations

Programming with proof certificates
Using Gasp
Implementing Gasp

Incremental type checking

Perspectives

With bare OCaml functions

```
# let eta m = « lam \lambda x. (app "m" x) » ;;
eta : obj \rightarrow obj = <fun>
```

With bare OCaml functions

```
# let eta m = « lam \lambda x. (app "m" x) » ;;
eta : obj \rightarrow obj = <fun>
# « lam (\lambda x. "eta « x »") » ;;
```

With bare OCaml functions

```
# let eta m = « lam \lambda x. (app "m" x) » ;;
eta : obj \rightarrow obj = <fun>
# « lam (\lambda x. "eta « x »") » ;;
- : obj = « lam (\lambda x. lam (\lambda x. app x x)) » (* x captured *)
```

With bare OCaml functions

```
# let eta m = « lam \lambda x. (app "m" x) » ;;
eta : obj \rightarrow obj = <fun>
# « lam (\lambda x. "eta « x »") » ;;
- : obj = « lam (\lambda x. lam (\lambda x. app x x)) » (* x captured *)
```

With Gasp functions

```
# let s = s ++ e^{sign}

eta: tm \rightarrow tm = "fun m \rightarrow e lam (\lambda x. app "m" x) »".

» ;;

s: sign = ...
```

With bare OCaml functions

```
# let eta m = « lam \lambda x. (app "m" x) » ;;
eta : obj \rightarrow obj = \langlefun\rangle
# « lam (\lambda x. "eta « x »") » ;;
- : obj = « lam (\lambda x. lam (\lambda x. app x x)) » (* x captured *)
```

With Gasp functions

```
# let s = s ++ e^{sign}

eta: tm \rightarrow tm = "fun m \rightarrow e lam (\lambda x. app "m" x) »".

»;;

s: sign = ...

# eval s e lam (\lambda x. eta x) »;;
```

With bare OCaml functions

```
# let eta m = « lam \lambda x. (app "m" x) » ;;
eta : obj \rightarrow obj = <fun>
# « lam (\lambda x. "eta « x »") » ;;
- : obj = « lam (\lambda x. lam (\lambda x. app x x)) » (* x captured *)
```

With Gasp functions

```
# let s = s + + e^{sign}

eta: tm \rightarrow tm = "fun m \rightarrow e lam (\lambda x.app "m" x) »".

»;;

s: sign = ...

# eval s = lam (\lambda x.eta x) = lam (\lambda x.eta x);

-: obj = e lam (\lambda x.lam (\lambda x.app x x')) » (* x protected *)
```

Two-level, locally named term representation

Abstract level

Abstract objects aobj are represented by standard *canonical*, *spine-form* λ -terms

$$M ::= \lambda x. M \mid H(S)$$

$$H ::= c \mid f \mid f^n \mid \#n$$

$$S ::= \cdot \mid M, S$$

- variables are *numbered* (De Bruijn indices)
- no free variables
- abstract objects are type-checked

Two-level, locally named term representation

Concrete level

Concrete objects obj are represented by usual (non-canonical) λ -terms with two kinds of variables:

$$T ::= id \mid \#n \mid \lambda x.T \mid TT$$

- free variables *n* are *numbered* (protected against capture)
- bound variables/constants *id* are *named* (written by the user)
- concrete objects are parsed and computed by functions

Two-level, *locally named* term representation (Un)Stratification

- strat: sign → env → obj → aobj
 - distinguishes constants/functions/variables
 - normalizes object (hereditary substitutions, e.g. eval ("p" "n"))
- unstrat : env → aobj → obj
 - distinguishes free/bound variables
 - freshens names

Two-level, locally named term representation

Example

Evaluation

How to evaluate an object containing function symbols?

- full evaluation, e.g. «lam (λx . eta x)»
- call-by-value (contraction), e.g. « size (id (size⁰ o)) »
- weak evaluation first, e.g. « f (lam $\lambda x.f$ x)»

Evaluation

How to evaluate an object containing function symbols?

- full evaluation, e.g. «lam (λx . eta x)»
- call-by-value (contraction), e.g. « size (id (size⁰ o)) »
- weak evaluation first, e.g. « f (lam $\lambda x.f x$)»
- "full evaluation by iterated symbolic weak evaluation", a.k.a normalization-by-evaluation (adapted from Grégoire and Leroy [2002])

Typing

When to type-check the LF objects?

- checking the objects a posteriori is not precise enough
 e.g. | « app "m" "n" » → « z (plus (size "m") (size "n")) »
- errors must be detected early (during prototyping)
 # eval « size (lam λx. app x (app x x))» ~ « z (z (z o)) »

We want to identify failures as soon as possible

Typing

When to type-check the LF objects?

- checking the objects a posteriori is not precise enough
 e.g. | « app "m" "n" » → « z (plus (size "m") (size "n")) »
- errors must be detected early (during prototyping)
 # eval « size (lam λx. app x (app x x))» → « z (z (z o)) »

We want to identify failures as soon as possible

- → typed evaluation: typing and evaluation are the same process eval ("on-the-fly", dynamic typing?)
 - √ inputs and outputs of functions are type-checked before and
 after execution
 - √ issued certificates are guaranteed to be correct
 - √ errors are signaled where the certificate is ill-typed

Overview

Judgments:

- $\Gamma \vdash M : A \downarrow M'$: weak typed evaluation
- $\Gamma \vdash M : A \Downarrow M'$: full typed evaluation
- $\Gamma \vdash M : A \uparrow M'$: readback

FEVALINV
$$f: A = \text{"}T\text{"} \in \Sigma \qquad \Gamma; A \vdash S \downarrow f^{0}(S), \dots, f^{n}(S) : P$$

$$\Gamma \vdash f(S) \downarrow \pi_{n}(A) \star S : P$$
FEVAL
$$f: A = \text{"}T\text{"} \in \Sigma \qquad S' \neq f^{0}(S_{0}), \dots, f^{n}(S_{n})$$

$$\Gamma: A \vdash S \downarrow S' : P \qquad \Gamma \vdash T \star S' \downarrow F : P$$

 $\Gamma \vdash f(S) \downarrow F : P$

Outline

Motivations

Programming with proof certificates

Incremental type checking

Perspectives

Interaction in typed program elaboration

Observations

• typed program elaboration an interaction

programmer ← type checker

- the richer the type system is, the more expensive type checking gets (e.g. Haskell, Agda)
- typing is a batch process (part of compilation)
- yet, it is fed repeatedly with similar input (versions)

Interaction in typed program elaboration

Example

```
emacs@soupirail.inria.fr
      _ -> invalid_arg "subscript_of_char"
  let subscript_of_int n =
    let s = string_of_int n in
    let rec loop i =
      trv
        let x = subscript of char (String.get s i) in
        x ^ loop (succ i)
      with Invalid_argument _ -> ""
    in loop 0
let split c s =
  let len = String.length s in
  let rec split n =
    try
      let pos = String.index_from s n c in
      let dir = String.sub s n (pos-n) in
      dir :: split (succ pos)
U:--- util.ml 30% L83 Git:master (Tuareg +3 Abbrev)
+.-.0 for further adjustment
```

Interaction in typed program elaboration

Example

```
emacs@soupirail.inria.fr
      _ -> invalid_arg "subscript_of_char"
  let subscript_of_int m n =
    let s = string_of_int n in
    let rec loop i =
      trv
        let x = subscript_of_char (String.get s i) in
        x ^ loop (succ i)
      with Invalid argument -> ""
    in loop m
let split c s =
  let len = String.length s in
  let rec split n =
    try
      let pos = String.index_from s n c in
      let dir = String.sub s n (pos-n) in
      dir :: split (succ pos)
    with
               30% L83 Git:master (Tuareg +3 Abbrev)
Ouit
```

Interaction in typed program elaboration Example

```
emacs@soupirail.inria.fr
       _ -> invalid_arg "subscript of char"
  let subscript_of_int m n =
     let s = string_of_int n in
     let rec loop i =
         let x = subscript of char (String.get s i) in
-*- mode: compilation: default-directory: "~/Code/gasp/" -*-
Compilation started at Tue Feb 19 16:40:24
/home/puech/.opam/4.00.1/bin/ocamlfind ocamldep -package camlp4 -modules util.ml > ■
util.ml.depends
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -package camlp4 -o util
cmo util.ml
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -o esubst.cmi esubst.ml >
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -o LF.cmi LF.mli
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -o struct.cmi struct.ml >
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -o SLF.cmi SLF.mli
/home/puech/.opam/4.00.1/bin/ocamlfind ocamlc -c -g -annot -o version.cmi version.
•mli
```

Incremental type checking

Question

How can we make type checking incremental?

Definition

Given a list of well-typed programs $M_0, M_1, \ldots M$ and the representation of a change δ , decide whether apply (M, δ) is well-typed in less than $O(|\text{apply}(M, \delta)|)$.

Incremental type checking

Question

How can we make type checking incremental?

Definition

Given a list of well-typed programs $M_0, M_1, \ldots M$ and the representation of a change δ , decide whether apply (M, δ) is well-typed in less than $O(|\text{apply}(M, \delta)|)$.

Hint

- save intermediate type information between runs (context)
- use this information in changes

Incrementality by derivation reuse

Proposition

The witness of type checking is a derivation: use it as context

- it contains all intermediate type information
- it is compositional

Incrementality by derivation reuse

Proposition

A certifying type checker in Gasp computes pieces of derivations

Incrementality by derivation reuse

Proposition

A certifying type checker in Gasp computes pieces of derivations

We need a way to

- address any subderivation
- reuse them in *programs M* using inverses

Naming and sharing LF objects

Contribution

- a conservative extension of LF based on *Contextual Modal Type Theory* [Nanevski et al., 2008] where objects are *sliced* in a *context* Δ of *metavariables X*
- every well-typed applicative subterm gets a metavariable *name* and can be reused by *instantiation*

Naming and sharing LF objects

Contribution

- a conservative extension of LF based on *Contextual Modal Type Theory* [Nanevski et al., 2008] where objects are *sliced* in a *context* Δ of *metavariables X*
- every well-typed applicative subterm gets a metavariable name and can be reused by instantiation

```
The object lam(\lambda x. lam(\lambda y. app(x, app(x, y)))) is sliced into X in the context
```

```
\Delta = \begin{pmatrix} X : \mathsf{tm} = \mathsf{lam}(\lambda x. Y[x/x]) \\ Y[x : \mathsf{tm}] : \mathsf{tm} = \mathsf{lam}(\lambda y. Z[x/x, y/\mathsf{app}(x, y)]) \\ Z[x : \mathsf{tm}, y : \mathsf{tm}] : \mathsf{tm} = \mathsf{app}(x, y) \end{pmatrix}
```

infer $((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \leadsto \langle nat, U \rangle$

```
# infer ((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \leadsto \langle nat, U \rangle

X

\vdash \lambda f. \lambda x. f x : nat \rightarrow nat \rightarrow nat

\vdash \lambda y. s y : nat \rightarrow nat

\vdash x o : nat

\vdash x y : nat
```

```
# infer ((\lambda f. \lambda x. f \ x) \ (\lambda y. s \ y) \ (s \ o)) \leadsto \langle \mathsf{nat}, \ U \rangle

X

\vdash \lambda f. \lambda x. f \ x : \mathsf{nat} \to \mathsf{nat}

\vdash \lambda y. s \ y : \mathsf{nat} \to \mathsf{nat}

Z

\vdash \mathsf{so} : \mathsf{nat}

# infer ((\lambda f. \lambda x. f \ x) \ (\lambda y. s \ y) \ (\mathsf{s} \ (\mathsf{so})))
```

```
# infer ((\lambda f. \lambda x. f \ x) \ (\lambda y. s \ y) \ (s \ o)) \leadsto \langle \mathsf{nat}, \ U \rangle

X

\vdash \lambda f. \lambda x. f \ x : \mathsf{nat} \to \mathsf{nat}

\vdash \lambda y. s \ y : \mathsf{nat} \to \mathsf{nat}

Z

\vdash \mathsf{so} : \mathsf{nat}

# infer (X \ Y \ (s \ Z))
```

```
# infer ((\lambda f. \lambda x. f \ x) \ (\lambda y. s \ y) \ (s \ o)) \leadsto \langle \mathsf{nat}, U \rangle

X

\vdash \lambda f. \lambda x. f \ x : \mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}
\vdash \lambda y. s \ y : \mathsf{nat} \to \mathsf{nat}
\vdash \mathsf{so} : \mathsf{nat}
\vdash \mathsf{so} : \mathsf{nat}
# infer ((\mathsf{infer}^0 \ X) \ (\mathsf{infer}^0 \ Y) \ (\mathsf{s} \ (\mathsf{infer}^0 \ Z)))
```

```
# infer ((\lambda f. \lambda x. f \ x) \ (\lambda y. s \ y) \ (s \ o)) \leadsto \langle nat, U \rangle

X

\vdash \lambda f. \lambda x. f \ x : nat \rightarrow nat \rightarrow nat
\vdash \lambda y. s \ y : nat \rightarrow nat
\begin{bmatrix} [\vdash y : nat] \\ & T \\ & \vdash s \ y : nat \end{bmatrix}
# infer ((infer^0 \ X) \ (infer^0 \ Y) \ (s \ (infer^0 \ Z)))
# infer ((\lambda f. \lambda x. f \ x) \ (\lambda y. s \ (s \ y)) \ (s \ o))
```

```
# infer ((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \leadsto \langle \text{nat}, U \rangle

X

\vdash \lambda f. \lambda x. f x : \text{nat} \rightarrow \text{nat} \qquad \vdash \lambda y. s y : \text{nat} \rightarrow \text{nat}

Z \qquad \qquad [\vdash y : \text{nat}]

\vdash s o : \text{nat} \qquad \qquad T

\vdash s y : \text{nat}

# infer ((\text{infer}^0 X) (\text{infer}^0 Y) (s (\text{infer}^0 Z)))

# infer ((\text{infer}^0 X) (\lambda y. s (\text{infer}^0 T)) (\text{infer}^0 Z))
```

```
# infer ((\lambda f. \lambda x. f \ x) \ (\lambda y. s \ y) \ (s \ o)) \leadsto \langle nat, U \rangle

X

\vdash \lambda f. \lambda x. f \ x : nat \rightarrow nat \rightarrow nat
\vdash \lambda y. s \ y : nat \rightarrow nat
\begin{bmatrix} \vdash y : nat \end{bmatrix}
\vdash s \ o : nat
 T
\vdash s \ y : nat
# infer ((infer^0 \ X) \ (infer^0 \ Y) \ (s \ (infer^0 \ Z)))
# infer ((infer^0 \ X) \ (\lambda y. s \ (infer^0 \ T[h/infer \ y])) \ (infer^0 \ Z))
```

```
# infer ((\lambda f. \lambda x. f x) (\lambda y. s y) (s o)) \rightsquigarrow \langle \text{nat}, U \rangle

X

Y

\vdash \lambda f. \lambda x. f x : \text{nat} \rightarrow \text{nat} \rightarrow \text{nat}

\vdash \lambda y. s y : \text{nat} \rightarrow \text{nat}

\begin{bmatrix} \vdash y : \text{nat} \end{bmatrix}

\vdash s o : \text{nat}

# infer ((\text{infer}^0 X) (\text{infer}^0 Y) (s (\text{infer}^0 Z)))

# infer ((\text{infer}^0 X) (\lambda y. s (\text{infer}^0 T[h/\text{infer} y])) (\text{infer}^0 Z))
```

Summary

- √ Gasp: certifying type checker
 → incremental type checking
- ✓ sharing computation results by *function inverses*
- ✓ a safe approach: (shared) type derivation always available

Outline

Motivations

Programming with proof certificates

Incremental type checking

Perspectives

Perspectives

- implement LF type reconstruction
- isolate higher-order term manipulation library put the *locally named* pattern into practice
- investigate typing of inverse functions and their relation with *NbE*
- front-end editor generating *deltas* ("*structured editor*") safe refactoring tools, typed version control
- LCF-style interactive theorem prover based on LF tactics as OCaml functions

- M. Boespflug. *Conception d'un noyau de vérification de preuves pour le lambda-Pi-calcul modulo*. PhD thesis, École Polytechnique, Palaiseau, January 2011.
- H. Geuvers, R. Krebbers, J. McKinna, and F. Wiedijk. Pure type systems without explicit contexts. *arXiv preprint arXiv:1009.2792*, 2010.
- B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In *Proceedings of the seventh ACM SIGPLAN international conference on Functional programming*, pages 235–246. ACM, 2002.
- R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. *Journal of the Association for Computing Machinery*, 40 (1):143–184, 1993.
- A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. *ACM Transactions on Computational Logic (TOCL)*, 9(3): 23, 2008.
- G.C. Necula. Proof-carrying code. In *Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, pages 106–119. ACM, 1997.