Universidade do Minho 2°Semestre 2016/17 (MIEI, 3°Ano)

Modelos Estocásticos de Investigação Operacional

Trabalho Prático Nº 1

(Programação Dinâmica Estocástica)

Identificação do Grupo

<u>Número:</u>	Nome completo:	<u>Rubrica:</u>
A75353	Júlio Dinis Sá Peixoto	Dinis Perxoto
A74185	Ricardo António Gonçalves Pereira	Riando Pereira
A75210	Marcelo Alexandre Matos Fonseca Lima	Marcelo lima
A75315	Ricardo Jorge Barroso Certo	Ricardo Certo

<u>Data de entrega:</u> 2017-<u>04</u> - <u>03</u>

Conte'udo

1	Intr	odução)																	2
2	For	mulação	o d	ор	rob	len	na													3
	2.1	Estágio	os .							 										 3
	2.2	Estados	s .							 										3
	2.3	Decisõe	es .							 										3
	2.4	Objetiv	vo .							 										 4
	2.5	Conside	lera	ções						 								•		4
3	Des	crição d	da	res	olu	ção														5
	3.1	Repor S	Sto	ck.						 										5
		3.1.1	Ma	ıtriz	tra	nsi	ção	P_n^k		 										 5
		3.1.2	Ma	ıtriz	cor	atril	bui	ção	R_n^k											 5
					$_{ m ma}$															
	3.2	Não rep	por	Sto	ock					 										7
		3.2.1	Ma	ıtriz	tra	nsi	ção	P_n^k		 										 7
		3.2.2	Ma	ıtriz	cor	atril	bui	ção	R_n^k											 8
					$_{ m ma}$															
	3.3	Cálculo	os f	inais	3					 										9
4	Sínt	ese dos	s re	esul	tad	os	obt	tido	os											11
5	Cor	ıclusão																		12
6	Ane	exos																		13
	6.1	Anexo -	- A	1.						 										13
	6.2	Anexo -	- A	2.						 			 							 14

1. Introdução

No âmbito da Unidade Curricular de Modelos Estocásticos de Investigação Operacional, foi-nos proposta a realização de um trabalho prático cujo principal objetivo passaria por formular, para o problema enunciado no mesmo, um modelo de Programação Dinâmica Estocástica, implementando computacionalmente um algoritmo de iteração de valor capaz de o resolver, determinando a política ótima de reposições inicialmente pretendida.

Desta forma, o presente relatório abordará uma solução para apresentar à empresa mencionada, esclarecendo a necessidade de adotar uma política sistemática de reposição do stock máximo de peças do seu técnico-reparador, em função da cidade que este visitará e do número de peças por si transportadas da cidade anterior, de forma a minimizar os seus custos.

2. Formulação do problema

O problema apresentado faz referência a uma empresa multinacional de produção de produtos farmacêuticos, sendo esta composta por cinco fábricas distribuídas pela Península Ibérica (Lisboa, Porto, Vigo, Madrid e ainda, Valência). Todas estas fábricas estão continuamente sujeitas à visita de um técnico-reparador, cujo objetivo passa por assistir, durante um dia da semana, ao funcionamento de uma determinada fábrica.

Durante esta visita o técnico-reparador faz manutenção de rotina, mas pode também, excecionalmente, ter de efetuar a substituição de uma ou duas unidades de uma determinada peça, sendo isto crucial para o bom funcionamento de um equipamento eletrónico e, desta maneira, para a respectiva fábrica.

A cada viagem que faz o técnico pode transportar consigo um número limitado de peças, que podem, ou não, satisfazer a necessidade de reparação de uma determinada fábrica. Em caso negativo, este não será capaz de resolver o problema sozinho, obrigando a empresa a contratar um técnico-reparador local para completar o serviço, o que implica um custo fixo adicional.

No final de cada dia o técnico-reparador da empresa deve decidir se manda ou não repor o seu stock-em-mão, esta reposição é efetuada no dia seguinte na cidade que vai visitar, tem um número máximo de peças e ainda tem um custo associado.

O objetivo da empresa passa, então, por averiguar se deverá ou não adotar uma política de reposição do stock máximo de peças do seu técnico-reparador, em função da cidade que este vai visitar a seguir e do número de peças por si transportadas da cidade anterior de forma a minimizar o total de custos semanais.

2.1 Estágios

No problema em questão, os estágios correspondem ao **início do dia**, havendo 5 dias por semana. Desta forma, o início de um dia e o início do próximo dia representam uma transição de estágios e igualmente a passagem do técnico-reparador de uma cidade para a outra.

2.2 Estados

Os estados correspondem ao **número de peças** que o técnico-reparador possui em cada estágio, limitado pelo stock máximo M.

2.3 Decisões

A decisão que o técnico-reparador tem que tomar no final do dia é entre:

- 1 Repor Stock
- 0 Não repor Stock

2.4 Objetivo

O objetivo é minimizar a esperança do total dos custos semanais.

2.5 Considerações

Nesta secção serão apresentadas algumas breves considerações que o grupo teve antes de partir para a resolução concreta do problema.

- A inexistência de horizonte temporal indefinido. Trata-se de um problema com um número indeterminado de estágios.
- Existência de um ciclo de estágios semanal. De facto, existe realmente um ciclo semanal de 5 dias, em que cada um destes corresponde a uma cidade diferente, este repete-se a cada 5 transições.
- Necessidade de contratar um técnico-reparador local. Quando o técnico-reparador não conseguir, por falta de equipamento, realizar uma determinada reparação numa dada cidade, será necessária a contratação de um técnico-reparador extra, tendo um custo acrescido e fazendo com que o técnico-reparador principal não utilize nenhuma das peças que possui em stock na cidade em causa.

3. Descrição da resolução

Da formulação e análise realizada no capítulo anterior, podemos passar para a resolução do problema. Para tal, vamos recorrer a um algoritmo de iteração de valor realizado em *Excel*. Como se trata de um problema com um número de estágios indeterminado, mas apresenta ciclicidade (ciclo semanal), vamos realizar e analisar as iterações dia a dia, e semana a semana.

Inicialmente, começamos por separar as alternativas existentes no momento de decisão do técnico-reparador.

3.1 Repor Stock

Nesta secção consideramos que o técnico-reparador toma sempre a decisão de repor o stock no final do dia. Desta forma, temos que determinar em que cirunstâncias e probabilidade é possível tal ocorrer. Para tal, passamos a definir as matrizes P_n^k , para as probabilidades, e R_n^k , para os custos.

3.1.1 Matriz transição P_n^k

A matriz transição representa a matriz com as probabilidades de transição do estágio j para o estágio j+1, para todos os estados possiveis, isto é, o conjunto $\{0,1,2,3,4,5\}$.

Desta forma, temos que a matriz de transição para a decisão de repor, onde em qualquer estágio j, todos os seus respectivos estados, transitam para o **estado 5**. Isto acontece porque em cada estágio (ínicio do dia) é o momento de reposição de stock, logo o técnico-reparador quando transita de um estado para o outro, obrigatóriamente em cada estágio terá o seu stock reposto. Desta forma, a probabilidade de transitar de um estado i pertencente ao conjunto $\{0,1,2,3,4,5\}$ (do estágio j para o estágio j+1), para o estado 5, é 1, porque é a única opção de transição. Logo a matriz é dada por:

Estados			P(r	ı,k)		
	0	1	2	3	4	5
0	0	0	0	0	0	1
1	0	0	0	0	0	1
2	0	0	0	0	0	1
3	0	0	0	0	0	1
4	0	0	0	0	0	1
5	0	0	0	0	0	1

Figura 3.1: Matriz transição para P_1^1

3.1.2 Matriz contribuição R_n^k

A matriz contribuição representa a matriz com os custos de transição do estágio j para o estágio j+1, para todos os estados possiveis, isto é, ao conjunto $\{0,1,2,3,4,5\}$.

Neste caso, temos que ter em atenção alguns custos que diferem do normal:

• Estado 0 para o estado 5: Quando o técnico-reparador possui 0 peças em stock, podem ocorrer dois casos com custos: necessitar de 1 peça ou 2 peças. Por causa disto, existe probabilidade do técnico-reparador ter que contactar um técnico-reparador local. Para além disso, ainda possui o custo comum de repor as peças. Desta foram o custo desta transição é dado por, para um estágio j:

```
(custo\_contactar\_tec_i * (prob\_1peca_i + prob\_2peca_i)) + custo\_repor_i
```

• Estado 1 para o estado 5: Esta transição distingue-se da anterior, no aspecto de apenas incorrer do custo pela necessidade de 2 peças, ao contrário da anterior, que podia precisar de 1 ou 2 peças. Para além disso, o custo de reposição mantém-se logo, para um estágio j, é dado por:

```
(custo\_contactar\_tec_j * prob\_2peca_j) + custo\_repor_j
```

• Estado 5 para o estado 5: Dado que os estágios correspondem ao ínicio do dia, existe sempre a possibilidade de durante o dia ser necessário utilizar peças numa cidade qualquer. Logo o técnico-reparador apenas repõem o stock caso isso aconteça, o que quer dizer que o custo, para um dado estágio j, é dado por:

$$custo_repor_i * (prob_1peca_i + prob_2peca_i)$$

Os restantes casos, apenas incorrem do custo de reposição normal: custo_repor_j

Estados		R(n,k)												
	0	1	2	3	4	5								
0	0	0	0	0	0	265								
1	0	0	0	0	0	140								
2	0	0	0	0	0	90								
3	0	0	0	0	0	90								
4	0	0	0	0	0	90								
5	0	0	0	0	0	63								

Figura 3.2: Matriz contribuição para R_1^1

3.1.3 Diagrama

Figura 3.3: Diagrama com os diferentes custos e probabilidades, entre estágios, para a decisão de repor.

3.2 Não repor Stock

Da mesma forma que o caso de repor stock, a passagem entre os diferentes estágios mantem sempre a mesma decisão, que neste caso é não repor o stock. Para além disso, também é necessário definir as matrizes P_n^k , para as probabilidades, e R_n^k , para os custos.

3.2.1 Matriz transição P_n^k

A matriz transição, como já referido anteriormente, representa a matriz com as probabilidades de transição do estágio j para o estágio j+1, para todos os estados possiveis, isto é, o conjunto $\{0,1,2,3,4,5\}$.

A matriz de transição para a decisão de não repor o stock, possui uma grande variação de probabilidades. Os casos baseiam-se em:

- Estado 0 para o estado 0: Quando o técnico-reparador possui 0 peças apenas possui uma alternativa de transição, isto é, transitar para o estado 0 novamente, pois nesta decisão o técnico-reparador não repõem o stock. Desta forma, a probabilidade é 1.
- Estado 1 para o estado 1 e 2: Quando o técnico-reparador possui 1 peça, existem duas alternativas de transição. Caso o técnico-reparador usar a única peça que tem, transita para o estado 0, com a mesma probabilidade de precisar de usar 1 peça na cidade onde se encontra. A outra alternativa é quando o técnico-reparador precisar de usar 2 peças (que não possui) ou de nenhum peça. Em ambos, transita para o estado 1, pois não utiliza nenhuma peça em stock, logo a probabilidade é igual a soma das probabilidades de precisar de usar 0 ou 2 peças.
- Restantes casos: Nos restantes casos, as probabilidades são distribuídas por 3 alternativas. Para um dado estado i, onde 2 <= i <= 5, a probabilidade de transição é igual a probabilidade de necessitar de X peças. Logo a transição baseiase em passar do estado i para o estado (i-X), com as respectiva probabilidade de necessitar de X peças.

Logo a matriz é dada por:

Estados			P(r	,k)		
	0	1	2	3	4	5
0	1	0	0	0	0	0
1	0,5	0,5	0	0	0	0
2	0,2	0,5	0,3	0	0	0
3	0	0,2	0,5	0,3	0	0
4	0	0	0,2	0,5	0,3	0
5	0	0	0	0,2	0,5	0,3

Figura 3.4: Matriz transição para P_1^0

3.2.2 Matriz contribuição R_n^k

A matriz contribuição, como também já referido em cima, representa a matriz com os custos de transição do estágio j para o estágio j+1, para todos os estados possiveis, isto é, ao conjunto $\{0,1,2,3,4,5\}$.

Neste caso, apenas temos de ter em atenção aos dois únicos custos:

• Estado 0 para o estado 0: Quando o técnico-reparador possui 0 peças em stock, podem ocorrer dois casos com custos: necessitar de 1 peça ou 2 peças, o que prova a necessidade do técnico-reparador de ter que contactar um técnico-reparador local. Desta foram o custo desta transição é dado por, para um estágio j:

 $(custo_contactar_tec_j * (prob_1peca_j + prob_2peca_j))$

• Estado 1 para o estado 1: Esta transição destingue-se da anterior, no aspecto de apenas incorre do custo pela necessitar de 2 peças, ao contrário da anterior, que podia precisar de 1 ou 2 peças. Logo para um estágio j, é dado por:

 $(custo_contactar_tec_i * prob_2peca_i)$

Os restantes casos não incorrem de qualquer custo.

Estados			R(n,k)		
	0	1	2	3	4	5
0	175	0	0	0	0	0
1	0	50	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Figura 3.5: Matriz transição para R_1^0

3.2.3 Diagrama

Figura 3.6: Diagrama com os diferentes custos e probabilidades, entre estágios, para a decisão de não repor.

3.3 Cálculos finais

Após a obtenção das matrizes P_n^k e R_n^k , para ambas as decisões, passamos a calcular os vetores das esperanças das contribuições Q_n^k para cada decisão. Os vetores obtêm-se com a seguinte fórmula:

$$q_{i,(n)} = \sum_{j=1}^{N} p_{ij,(n)} + r_{ij,(n)}$$

O valor de $q_{i,(n)}$, representa o valor da posição i do vetor Q_n^k .

Após obter esse valor, passamos a calcular o produto entre P_n^k e F_{n-1} . Com isto podemos obter o vetor V_n^k , isto é:

$$V_n^k = Q_n^k + P_n^k * F_{n-1}$$

Por fim, com os dois vetores V_n^k (um para cada decisão), escolhemos o valor **mínimo** (minimizar custos) na posição i, para todas as posições do vetor, formando assim o vetor F_n .

Este racíocinio aplica-se aos vários estágios/cidades, e repete-se entre semanas. Como o número de estágios é infinito, temos que encontrar um número de estágios que nos dê uma solução otima. Para tal, é necessário considerar a diferença dos valores dos vetores F_n , entre semanas, até que se torne constante. A diferença é dada por:

$$S_n = F_n - F_{n-5}$$

Quando o vetor S_n começar a tomar valores constantes, é porque o número de estágios está perto da solução ótima.

4. Síntese dos resultados obtidos

Como podemos ver o resultado em anexo (Anexo A2), a diferença semanal, estabilizou ao fim da 4ºsemana, com um valor de **76,5825**, isto é, o custo semanal ótimo é de **76,5825** euros. O plano de decisões a seguir durante a semana para obter valor ótimo é o seguinte:

Estado	Lisboa	Porto	Vigo	Madrid	Valência
0	Repor	Repor	Repor	Repor	Repor
1	Repor	Repor	Repor	Repor	Repor
2	Não Repor	Repor	Repor	Repor	Repor
3	Não Repor	Repor	Não Repor	Repor	Repor
4	Não Repor	Não Repor	Não Repor	Repor	Não Repor
5	Não Repor	Não Repor	Não Repor	Repor	Não Repor

Figura 4.1: Política das decisões a tomar para o solução ótima.

5. Conclusão

Tal como dito anteriormente, o objetivo deste trabalho prático passava por elaborar um algoritmo capaz de nos fornecer todas os dados necessários para desenvolver uma solução face ao problema apresentado pela empresa em questão.

Desta forma, apesar das diversas adversidades que fomos enfrentando à medida que avançávamos com o a implementação do algoritmo, conseguimos chegar aquela que achamos ser a solução que melhor se ajusta às necessidades da empresa, as quais passam por minimizar a todo o custo as suas despesas face à reparação dos seus equipamentos. Apesar de estarmos confiantes relativamente à solução encontrada, estamos cientes que esta por vezes pode não ser aquela realmente mais eficaz, uma vez que estamos a trabalhar no campo das probabilidades, o qual, como é óbvio, é bastante inconsistente e impossível de prever. Deste modo, cabe à própria empresa decidir se realmente vale a pena por em prática a solução encontrada, de modo a minimizar totalmente as suas perdas.

Relativamente à elaboração deste trabalho prático, o processo revelou-se bastante produtivo para todo o grupo no que toca ao desenvolvimento das capacidades associadas à formulação de modelos de Programação Dinâmica Estocástica, uma vez que nos permitiu adquirir e aperfeiçoar todos os conhecimentos que nos foram transmitidos durante as aulas da unidade curricular.

Assim, podemos concluir que fomos capazes de desenvolver um trabalho ao nível daquilo que inicialmente era esperado e esperemos que assim continue para os próximos que se avizinham.

6. Anexos

6.1 Anexo - A1

ANEXO: Tabe	elas de dado	<u>s</u>			
Aluno №	<u>74185</u>				
Distribuição (de probabili	dades (nº de	e peças a sı	ubstituir po	r cidade:
			Cidade (j)		
Nºpeças (k)	1	2	3	4	5
0	0,3	0,5	0,5	0,25	0,45
1	0,5	0,2	0,2	0,25	0,275
2	0,2	0,3	0,3	0,5	0,275
Custo das re	posições:				
a(j) =	90	70	90	40	30
Custo extra p	ela contrata	ção de repa	arador exte	no:	
K(j) =	250	250	250	250	250
Stock máxim	o do reparac	dor			
M =	5				

6.2 Anexo - A2

Progran	na:																		
N	K	Estágios			P(n			_			R(ı	n,k)			Q(n,k)	P(n,k)*F(n-1)	V(n,k)	F(n)	D(n)=F(n)-F(n-1)
0	х	х	0	1	>	3	4	5	0	1	2	х Х	4	5	x	х	х	0 0 0 0 0	х
	Repor Stock	0 1 2 3 4 5	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 1 1 1 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	265 140 90 90 90 90 63	265 140 90 90 90 63	0 0 0 0	265 140 90 90 90 90 63	175 25 0	175 25 0
1	Não repor Stock	0 1 2 3 4 5	1 0,5 0,2 0 0	0 0,5 0,5 0,2 0	0 0 0,3 0,5 0,2	0 0 0 0,3 0,5 0,2	0 0 0 0 0 0,3 0,5	0 0 0 0 0 0	175 0 0 0 0	0 50 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	175 25 0 0 0	0 0 0 0 0	175 25 0 0 0	0 0	0 0 0
	Repor Stock	0 1 2 3 4 5	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 1 1 1 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	195 145 70 70 70 70 35	195 145 70 70 70 35	0 0 0 0	195 145 70 70 70 70 35	195 115 57,5	20 90 57,5
2	Não repor Stock	0 1 2 3 4 5	1 0,2 0,3 0 0	0 0,8 0,2 0,3 0	0 0 0,5 0,2 0,3 0	0 0 0 0,5 0,2 0,3	0 0 0 0 0,5 0,2	0 0 0 0 0 0	125 0 0 0 0 0	0 75 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	125 60 0 0 0	175 55 57,5 7,5 0	300 115 57,5 7,5 0	7,5 0 0	7,5 0 0
	Repor Stock	0 1 2 3 4	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	1 1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	215 165 90 90 90	215 165 90 90 90	0 0 0 0	215 165 90 90 90	215 165	20 50
3	Não repor Stock	5 0 1 2 3 4	0 1 0,2 0,3 0 0	0 0,8 0,2 0,3 0	0 0 0,5 0,2 0,3	0 0 0 0 0,5 0,2	0 0 0 0 0 0	0 0 0 0 0	0 125 0 0 0	0 0 75 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	45 0 0 0 0 0	45 125 60 0 0	0 195 131 110,25 49,75 18,75	45 320 191 110,25 49,75 18,75	90 49,75 18,75 2,25	32,5 42,25 18,75 2,25
	Repor Stock	5 0 1 2 3 4	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0,3 0 0 0 0 0	0,2 0 0 0 0 0	0,5 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 227,5 165 40 40 40	0 227,5 165 40 40 40	2,25 2,25 2,25 2,25 2,25 2,25 2,25	2,25 229,75 167,25 42,25 42,25 42,25	229,75 167,25	14,75 2,25
4	Não repor Stock	5 0 1 2 3 4	0 1 0,25 0,5 0	0 0,75 0,25 0,5 0	0 0 0,25 0,25 0,5	0 0 0 0 0,25 0,25	0 0 0 0 0 0,25	1 0 0 0 0 0	0 187,5 0 0 0	0 0 125 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	30 0 0 0 0 0	30 187,5 93,75 0 0	2,25 215 177,5 171,25 117,4375 62,125	32,25 402,5 271,25 171,25 117,438 62,125	42,25 42,25 42,25 30,125	-47,75 -7,5 23,5 27,875
	Repor Stock	5 0 1 2 3 4 5	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0,5 0 0 0 0 0	0,25 0 0 0 0 0 0	0,25 1 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 167,5 98,75 30 30 30 16,5	0 167,5 98,75 30 30 30 16,5	30,125 30,125 30,125 30,125 30,125 30,125 30,125		197,625 128,875	-32,125 -38,375 17,875
5	Não repor Stock	0 1 2 3 4 5	1 0,275 0,275 0 0	0 0,725 0,275 0,275 0 0	0 0 0,45 0,275 0,275	0 0 0 0,45 0,275 0,275	0 0 0 0 0,45 0,275	0 0 0 0 0 0 0	137,5 0 0 0 0 0	0 68,75 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	137,5 49,84375 0 0 0	229,75 184,4375 128,1875 76,625 42,25 36,79375	367,25 234,281 128,188 76,625 42,25 36,7938	60,125 42,25 36,7938	17,875 0 6,66875

N	K	Estágios			P(ı	n,k)					R((n,k)			Q(n,k)	P(n,k)*F(n-1)	V(n,k)	F(n)	D(n)=F(n)-F(n-1)	S(n)=F(n)-F(n-5)	
			0	1	2	3	4	5	0	1	2	3	4	5							
																		351,695			
																		282,945			
15	x	х				x						х			x	x	х	214,195	x	х	_
																		214,195			_
																		194,195 189,695			-
		0	0	0	0	0	0	1	0	0	0	0	0	265	265	189.6947188	454.695	169,093			
		1	0	0	0	0	0	1	0	0	0	0	0	140	140	189,6947188	329,695				
		2	0	0	0	0	0	1	0	0	0	0	0	90	90	189,6947188	279,695				
	Repor Stock	3	0	0	0	0	0	1	0	0	0	0	0	90	90	189,6947188	279,695	454,695	103	76,5825	Repor
		4	0	0	0	0	0	1	0	0	0	0	0	90	90	189,6947188	279,695	329,695	46,75	76,5825	Repor
16		5	0	0	0	0	0	1	0	0	0	0	0	63	63	189,6947188	252,695	276,07	61,875	76,5825	Não Repor
10		0	1	0	0	0	0	0	175	0	0	0	0	0	175	351,6947188	526,695	227,945	13,75	76,5825	Não Repor
		1	0,5	0,5	0	0	0	0	0	50	0	0	0	0	25	317,3197188	342,32	208,195	14	76,5825	Não Repor
	Não repor Stock	2	0,2	0,5	0,3	0	0	0	0	0	0	0	0	0	0	276,0697188	276,07	196,845	7,15	76,5825	Não Repor
		3	0	0,2 0	0,5 0,2	0,3 0,5	0,3	0	0	0	0	0	0	0 0	0	227,9447188 208,1947188	227,945				
		5		0	0,2	0,3	0,5	0,3	0	0	0	0	0	0	0	196,8447188	196,845				
		0	0	0	0	0	0	1	0	0	0	0	0	195	195	196,8447188	391,845				
		1	0	0	0	0	0	1	0	0	0	0	0	145	145	196,8447188	341,845				
	Popor Stock	2	0	0	0	0	0	1	0	0	0	0	0	70	70	196,8447188	266,845				
	Repor Stock	3	0	0	0	0	0	1	0	0	0	0	0	70	70	196,8447188	266,845	391,845	-62,85	76,5825	Repor
		4	0	0	0	0	0	1	0	0	0	0	0	70	70	196,8447188	266,845	341,845	12,15	76,5825	Repor
17		5	0	0	0	0	0	1	0	0	0	0	0	35	35	196,8447188	231,845	266,845	-9,225	76,5825	Repor
		0	1	0	0	0	0	0	125 0	0	0	0	0	0 0	125 60	454,6947188 354,6947188	579,695 414,695	266,845 232,507	38,9 24,3125	76,5825 76,5825	Repor
		2	0,2 0,3	0,8 0,2	0,5	0	0	0	0	75 0	0	0	0	0	0	340,3822188	340,382	208,445	11,6	76,5825 76,5825	Não Repor Não Repor
	Não repor Stock	3	0,5	0,3	0,2	0,5	0	0	0	0	0	0	0	0	0	268,0947188	268,095	200,443	11,0	70,3023	Nao Nepoi
		4	0	0	0,3	0,2	0,5	0	0	0	0	0	0	0	0	232,5072188	232,507				
		5	0	0	Ó	0,3	0,2	0,5	0	0	0	0	0	0	0	208,4447188	208,445				
		0	0	0	0	0	0	1	0	0	0	0	0	215	215	208,4447188	423,445				
		1	0	0	0	0	0	1	0	0	0	0	0	165	165	208,4447188	373,445				
	Repor Stock	2	0	0	0	0	0	1	0	0	0	0	0	90	90	208,4447188	298,445				
	Repor Stock	3	0	0	0	0	0	1	0	0	0	0	0	90	90	208,4447188	298,445	423,445	31,6	76,5825	Repor
		4	0	0	0	0	0	1	0	0	0	0	0	90	90	208,4447188	298,445	373,445	31,6	76,5825	Repor
18		5	0	0	0	0	0	1	0	0	0	0	0	45 0	45	208,4447188	253,445	298,445	31,6	76,5825	Repor
		0	0,2	0 0,8	0	0	0	0	125 0	75	0	0	0	0	125 60	391,8447188 351,8447188	516,845 411,845	289,345 249,676	22,5 17,16875	76,5825 76,5825	Não Repor Não Repor
		2	0,2	0,8	0,5	0	0	0	0	0	0	0	0	0	0	319,3447188	319,345	230,777	22,3325	76,5825	Não Repor
	Não repor Stock	3	0,5	0,3	0,2	0,5	0	0	o	0	0	0	0	0	0	289,3447188	289,345	230,777	22,5525	70,3023	Trao nepor
		4	0	Ó	0,3	0,2	0,5	0	0	0	0	0	0	0	0	249,6759688	249,676				
		5	0	0	0	0,3	0,2	0,5	0	0	0	0	0	0	0	230,7772188	230,777				
		0	0	0	0	0	0	1	0	0	0	0	0	227,5	227,5	230,7772188	458,277				
		1	0	0	0	0	0	1	0	0	0	0	0	165	165	230,7772188	395,777				
	Repor Stock	2	0	0	0	0	0	1	0	0	0	0	0	40	40	230,7772188	270,777				4
		3 4	0	0	0	0	0	1 1	0	0	0	0	0	40 40	40 40	230,7772188 230,7772188	270,777 270,777	458,277 395,777	34,8325 22,3325	76,5825 76,5825	Repor
		5	0	0	0	0	0	1	0	0	0	0	0	40 30	30	230,7772188	260,777	270,777	-27,6675	76,5825 76,5825	Repor
19		0	1	0	0	0	0	0	187,5	0	0	0	0	0	187,5	423,4447188	610,945	270,777	-18,5675	76,5825	Repor
		1	0,25	0,75	0	0	0	0	0	125	0	0	0	0	93,75	385,9447188	479,695	270,777	21,10125	76,5825	Repor
	Não repor Stock	2	0,5	0,25	0,25	0	0	0	0	0	0	0	0	0	Ö	379,6947188	379,695	260,777	30	76,5825	Repor
	14a0 Tepor Stock	3	0	0,5	0,25	0,25	0	0	0	0	0	0	0	0	0	333,6697188	333,67				
		4	0	0	0,5	0,25	0,25	0	0	0	0	0	0	0	0	283,9775313	283,978				
		5	0	0	0	0,5	0,25	0,25	0	0	0	0	0	0	0	264,7856563	264,786				4
		0	0	0	0	0	0	1	0	0	0	0	0	167,5	167,5	260,7772188	428,277				
		2	0	0	0	0	0	1	0	0	0	0	0	98,75 30	98,75 30	260,7772188 260,7772188	359,527 290,777				
	Repor Stock	3	0	0	0	0	0	1	0	0	0	0	0	30	30	260,7772188	290,777	428,277	-30	76,5825	Repor
		4	0	0	0	0	0	1	0	0	0	0	0	30	30	260,7772188	290,777	359,527	-36,25	76,5825	Repor
20		5	0	0	0	0	0	1	0	0	0	0	0	16,5	16,5	260,7772188	277,277	290,777	20	76,5825	Repor
20		0	1	0	0	0	0	0	137,5	0	0	0	0	0	137,5	458,2772188	595,777	290,777	20	76,5825	Repor
		1	0,275	0,725	0	0	0	0	0	68,75	0	0	0	0	49,8438	412,9647188	462,808	270,777	0	76,5825	Não Repor
	Não repor Stock	2	0,275	0,275	0,45	0	0	0	0	0	0	0	0	0	0	356,7147188	356,715	266,277	5,5	76,5825	Não Repor
		3	0	0,275	0,275	0,45	0	0	0	0	0	0	0	0	0	305,1522188	305,152				
		4 5	0	0	0,275 0	0,275	0,45	0	0	0	0	0	0	0	0	270,7772188	270,777				
		5	U	U	U	0,275	0,275	0,45	U	U	U	U	U	U	0	266,2772188	266,277				4