Complexity Analysis

Time Complexity

 $O(N \times I)$

- N = number of bats (candidate solutions)
- I = number of iterations

Each bat per iteration performs:

- Frequency and velocity update \rightarrow O(1)
- Position update and boundary check \rightarrow O(1)
- Fitness evaluation (Euclidean distance) \rightarrow O(1)
- Acceptance check and possible local random walk \rightarrow O(1)

So, the algorithm's total work scales linearly with both the number of bats and the number of iterations.

Space Complexity

O(N)

Each bat stores:

- Position (x, y)
- Velocity vector
- Frequency value
- Fitness (implicitly or explicitly)

Overall space required is linear in the number of bats.

Notes

- Efficient for real-time or embedded optimization in discrete environments like grid-based drone routing.
- Frequency tuning and loudness/pulse control provide a balance between exploration and exploitation.
- Can be extended with:
 - **o** Dynamic targets or obstacles

- o Time-window constraints
- Energy-aware flight modeling
- More stable convergence than pure random methods due to controlled exploration.