Matrix Representations and Periodicity of 8

The Clifford algebra $\mathcal{C}\ell(Q)$ of a quadratic form Q on a linear space V over a field $\mathbb F$ contains an isometric copy of the vector space V. In this chapter we will temporarily forget this special feature of the Clifford algebra $\mathcal{C}\ell(Q)$. Then the Clifford algebra of a non-degenerate quadratic form is nothing but a matrix algebra or a direct sum of two matrix algebras. We have already identified the following Clifford algebras:

$$\begin{split} &\mathcal{C}\ell_2 \simeq \operatorname{Mat}(2,\mathbb{R}), \quad \mathcal{C}\ell_{0,2} \simeq \mathbb{H}, \\ &\mathcal{C}\ell_3 \simeq \operatorname{Mat}(3,\mathbb{C}), \quad \mathcal{C}\ell_{0,3} \simeq \mathbb{H} \oplus \mathbb{H}, \\ &\mathcal{C}\ell_4 \simeq \operatorname{Mat}(2,\mathbb{H}), \quad \mathcal{C}\ell_{3,1} \simeq \operatorname{Mat}(4,\mathbb{R}), \quad \mathcal{C}\ell_{1,3} \simeq \operatorname{Mat}(2,\mathbb{H}). \end{split}$$

We will find a general pattern for matrix images of Clifford algebras $\mathcal{C}\ell_{p,q}$ of non-degenerate quadratic spaces $\mathbb{R}^{p,q}$. We will see that $\mathcal{C}\ell_{p,q}$ are isomorphic to real matrix algebras with entries in \mathbb{R} , \mathbb{C} , \mathbb{H} or in ${}^{2}\mathbb{R} = \mathbb{R} \oplus \mathbb{R}$, ${}^{2}\mathbb{H} = \mathbb{H} \oplus \mathbb{H}$, that is, their matrix images are

$$\operatorname{Mat}(d,\mathbb{R}), \operatorname{Mat}(d,\mathbb{C}), \operatorname{Mat}(d,\mathbb{H}) \text{ or } ^{2}\operatorname{Mat}(d,\mathbb{R}) = \operatorname{Mat}(d,^{2}\mathbb{R}), ^{2}\operatorname{Mat}(d,\mathbb{H}) = \operatorname{Mat}(d,^{2}\mathbb{H}).$$

Review of Matrix Images of $\mathcal{C}\ell_{p,q},\ p+q<5$

The quadratic space $\mathbb{R}^{p,q}$ is an *n*-dimensional real vector space \mathbb{R}^n , n = p + q, with a non-degenerate symmetric scalar product

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \ldots + x_p y_p - x_{p+1} y_{p+1} - \ldots - x_{p+q} y_{p+q}$$

The scalar product induces the quadratic form

$$\mathbf{x} \cdot \mathbf{x} = x_1^2 + \ldots + x_p^2 - x_{p+1}^2 - \ldots - x_{p+q}^2$$

A real associative algebra with unity 1 is the Clifford algebra $\mathcal{C}\ell_{p,q}$ on $\mathbb{R}^{p,q}$

if it contains $\mathbb{R}^{p,q}$ and $\mathbb{R} = \mathbb{R} \cdot 1 \not\subset \mathbb{R}^{p,q}$ as subspaces so that $\mathbb{R}^{p,q}$ generates $\mathcal{C}\ell_{p,q}$ as a real algebra and

$$\mathbf{x}^2 = \mathbf{x} \cdot \mathbf{x}$$

for all $\mathbf{x} \in \mathbb{R}^{p,q}$. Furthermore, we require that $\mathcal{C}\ell_{p,q}$ is not generated by any proper subspace of $\mathbb{R}^{p,q}$.

The identity $\mathbf{x}^2 = \mathbf{x} \cdot \mathbf{x}$ has a polarized form $\mathbf{x}\mathbf{y} + \mathbf{y}\mathbf{x} = 2\mathbf{x} \cdot \mathbf{y}$. In an orthonormal basis $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ of $\mathbb{R}^{p,q}$ this means

$$\mathbf{e}_i \mathbf{e}_j + \mathbf{e}_j \mathbf{e}_i = 2g_{ij}$$

where $g_{ij} = \mathbf{e}_i \cdot \mathbf{e}_j$ or $g_{ii} = 1$, $i \leq p$, $g_{ii} = -1$, i > p, and $g_{ij} = 0$, $i \neq j$. The above identity is a condensed form of the relations

$$e_i^2 = 1, 1 \le i \le p, e_i^2 = -1, p < i \le n, e_i e_j = -e_j e_i, i < j.$$

The requirement that no proper subspace of $\mathbb{R}^{p,q}$ generates $\mathcal{C}\ell_{p,q}$ results in the constraint $\mathbf{e}_1\mathbf{e}_2\ldots\mathbf{e}_n\neq\pm 1$, needed only in the case p-q=1 mod 4.

The Clifford algebra $\mathcal{C}\ell_{p,q}$, p+q=n, is of dimension 2^n . If the constraint $e_1e_2\ldots e_n\neq \pm 1$ is omitted, then the resulting algebra could be of dimension 2^n or 2^{n-1} , the lower value being possible only if p-q=1 mod 4. In the lower-dimensional case we have $e_1e_2\ldots e_n=\pm 1$, the algebra itself being isomorphic to the two-sided ideal $\frac{1}{2}(1\pm e_{12...n})\mathcal{C}\ell_{p,q}$. For instance, the negative definite quadratic space $\mathbb{R}^{0,3}$ has an 8-dimensional Clifford algebra $\mathcal{C}\ell_{0,3}\simeq \mathbb{H}\oplus \mathbb{H}$, which is a direct sum of two ideals $\frac{1}{2}(1\pm e_{123})\mathcal{C}\ell_{0,3}$, both isomorphic to the 4-dimensional quaternion algebra \mathbb{H} .

16.1 The Euclidean spaces \mathbb{R}^n

In the positive definite case, p=n, q=0, of the Euclidean space we abbreviate $\mathbb{R}^{n,0}$ to \mathbb{R}^n and its Clifford algebra $\mathcal{C}\ell_{n,0}$ to $\mathcal{C}\ell_n$. In the Euclidean case we can speak of the length $|\mathbf{x}|$ of a vector $\mathbf{x} \in \mathbb{R}^n$ given by $|\mathbf{x}|^2 = \mathbf{x} \cdot \mathbf{x}$.

The Euclidean plane \mathbb{R}^2 . Consider the Euclidean plane \mathbb{R}^2 . The Clifford algebra $\mathcal{C}\ell_2$ of \mathbb{R}^2 is generated by an orthonormal basis $\mathbf{e}_1, \mathbf{e}_2$ of \mathbb{R}^2 . We have the multiplication rules

$$\mathbf{e}_1^2 = 1, \ \mathbf{e}_2^2 = 1$$
 $\mathbf{e}_1 \mathbf{e}_2 = -\mathbf{e}_2 \mathbf{e}_1$ corresponding to $\mathbf{e}_1 \mid \mathbf{e}_1 \mid = 1, \ \mid \mathbf{e}_2 \mid = 1$ $\mathbf{e}_1 \perp \mathbf{e}_2$.

Using $e_1e_2 = -e_2e_1$ and associativity we find $(e_1e_2)^2 = -e_1^2e_2^2$ which implies $(e_1e_2)^2 = -1$. This indicates that e_1e_2 is neither a scalar nor a vector, but a

¹ In the negative definite case we can also speak of the length $|\mathbf{x}|$ of $\mathbf{x} \in \mathbb{R}^{0,n}$ given by $|\mathbf{x}|^2 = -\mathbf{x} \cdot \mathbf{x}$.

207

new kind of unit, called a bivector. The Clifford algebra $\mathcal{C}\ell_2$ is 4-dimensional with a basis consisting of

Write for short $e_{12} = e_1e_2$. The Clifford algebra $\mathcal{C}\ell_2$ has the following multiplication table:

The Clifford algebra $\mathcal{C}\ell_2$ of the Euclidean plane \mathbb{R}^2 is isomorphic, as an associative algebra, to the matrix algebra of real 2×2 -matrices $\mathrm{Mat}(2,\mathbb{R})$. This is seen by the correspondences

$$egin{array}{|c|c|c|c|} \hline & \mathcal{C}\ell_2 & \operatorname{Mat}(2,\mathbb{R}) \\ \hline & 1 & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ & \mathbf{e}_1,\,\mathbf{e}_2 & \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},\, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ & \mathbf{e}_{12} & \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{array}$$

It should be emphasized that the Clifford algebra $\mathcal{C}\ell_2$ has more structure than the matrix algebra $\mathrm{Mat}(2,\mathbb{R})$. The Clifford algebra $\mathcal{C}\ell_2$ is the matrix algebra $\mathrm{Mat}(2,\mathbb{R})$ with a specific subspace singled out (and a quadratic form on that subspace making it isometric to the Euclidean plane \mathbb{R}^2).

The 3-dimensional Euclidean space \mathbb{R}^3 . Consider the 3-dimensional Euclidean space \mathbb{R}^3 . The Clifford algebra $\mathcal{C}\ell_3$ is generated by an orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ of \mathbb{R}^3 . This time there are three linearly independent bivectors $\mathbf{e}_{12}, \mathbf{e}_{13}, \mathbf{e}_{23}$, each being a square root of -1. In addition, there is the volume element $\mathbf{e}_{123} = \mathbf{e}_1\mathbf{e}_2\mathbf{e}_3$ which squares to -1 and commutes with all the vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ and thereby also with all the elements of the algebra $\mathcal{C}\ell_3$.

The Clifford algebra $\mathcal{C}\ell_3$ is 8-dimensional over $\mathbb R$ and has a basis consisting of

$$\begin{array}{ll} 1 & \text{a scalar} \\ e_1,\,e_2,\,e_3 & \text{vectors} \\ e_{12},\,e_{13},\,e_{23} & \text{bivectors} \\ e_{123} & \text{a volume element.} \end{array}$$

The Clifford algebra $\mathcal{C}\ell_3$ is isomorphic, as a real associative algebra, to the matrix algebra $\operatorname{Mat}(2,\mathbb{C})$ of 2×2 -matrices with entries in \mathbb{C} . The isomorphism $\mathcal{C}\ell_3 \simeq \operatorname{Mat}(2,\mathbb{C})$ of real associative algebras is fixed by the correspondences

$$\mathbf{e}_1 \simeq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{e}_2 \simeq \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \mathbf{e}_3 \simeq \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

The matrices above are known as *Pauli spin matrices*. The multiplication of the unit vectors, $e_1e_2e_3 = e_{123}$, results in the correspondence

$$e_{123} \simeq \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$$
.

As noted above, the volume element e_{123} , such that $e_{123}^2 = -1$, commutes with all the elements of the algebra $\mathcal{C}\ell_3$; that is, it belongs to the center of $\mathcal{C}\ell_3$. This enables us to view $\mathcal{C}\ell_3$ as a complex algebra isomorphic, as an associative algebra, to the matrix algebra of complex 2×2 -matrices $Mat(2, \mathbb{C})$.

The 4-dimensional Euclidean space \mathbb{R}^4 . The Clifford algebra $\mathcal{C}\ell_4$ of the Euclidean space \mathbb{R}^4 is isomorphic, as an associative algebra, to the real algebra $\operatorname{Mat}(2,\mathbb{H})$ of 2×2 -matrices with entries in the division ring of quaternions \mathbb{H} . Using an orthonormal basis $\{e_1,e_2,e_3,e_4\}$ of \mathbb{R}^4 we can find the correspondences

$$\mathbf{e}_{1} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \mathbf{e}_{2} = \begin{pmatrix} 0 & -j \\ j & 0 \end{pmatrix}, \quad \mathbf{e}_{3} = \begin{pmatrix} 0 & -k \\ k & 0 \end{pmatrix}$$

$$\mathbf{e}_{4} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

The Clifford algebra $\mathcal{C}\ell_4$ is of dimension 16 and has a basis consisting of

$$\begin{array}{lll} 1 & & a \; scalar \\ e_1, \; e_2, \; e_3, \; e_4 & & vectors \\ e_{12}, \; e_{13}, \; e_{14}, \; e_{23}, \; e_{24}, \; e_{34} & bivectors \\ e_{123}, \; e_{124}, \; e_{134}, \; e_{234} & 3-vectors \\ e_{1234} & a \; 4-volume \; element. \end{array}$$

An arbitrary element $u = \langle u \rangle_0 + \langle u \rangle_1 + \langle u \rangle_2 + \langle u \rangle_3 + \langle u \rangle_4$ in $\mathcal{C}\ell_4$ is a sum of a scalar $\langle u \rangle_0$, a vector $\langle u \rangle_1$, a bivector $\langle u \rangle_2$, a 3-vector $\langle u \rangle_3$ and a volume

element $\langle u \rangle_4$.

Split complex numbers $\mathbb{R} \oplus \mathbb{R}$. The Clifford algebra $\mathcal{C}\ell_1$ of the Euclidean line $\mathbb{R}^1 = \mathbb{R}$ is spanned by 1, e_1 where $e_1^2 = 1$. Its multiplication table is

$$\begin{array}{c|cccc} & 1 & e_1 \\ \hline 1 & 1 & e_1 \\ e_1 & e_1 & 1 \\ \end{array}$$

The Clifford algebra $\mathcal{C}\ell_1$ is isomorphic, as an associative algebra, to the double-field $\mathbb{R} \oplus \mathbb{R}$ of *split complex numbers*. The product of two elements (α_1, α_2) and (β_1, β_2) in $\mathbb{R} \oplus \mathbb{R}$ is defined component-wise:

$$(\alpha_1, \alpha_2)(\beta_1, \beta_2) = (\alpha_1 \beta_1, \alpha_2 \beta_2).$$

The isomorphism $\mathcal{C}\ell_1 \simeq \mathbb{R} \oplus \mathbb{R}$ can be seen by the correspondences

$$\begin{array}{c|c}
\mathcal{C}\ell_1 & \mathbb{R} \oplus \mathbb{R} \\
\hline
1 & (1,1) \\
\mathbf{e}_1 & (1,-1)
\end{array}$$

The Clifford algebra $\mathcal{C}\ell_1 \simeq \mathbb{R} \oplus \mathbb{R}$ is a direct sum of two ideals spanned by the idempotents $\frac{1}{2}(1+\mathbf{e}_1) \simeq (1,0)$ and $\frac{1}{2}(1-\mathbf{e}_1) \simeq (0,1)$.

The 5-dimensional Euclidean space \mathbb{R}^5 . The Clifford algebra $\mathcal{C}\ell_5$ of \mathbb{R}^5 is isomorphic to ${}^2\text{Mat}(2,\mathbb{H}) = \text{Mat}(2,{}^2\mathbb{H})$, as can be seen by the correspondences

$$\begin{aligned} \mathbf{e}_{1} &= \begin{pmatrix} (0,0) & (-i,i) \\ (i,-i) & (0,0) \end{pmatrix}, \ \mathbf{e}_{2} &= \begin{pmatrix} (0,0) & (-j,j) \\ (j,-j) & (0,0) \end{pmatrix}, \ \mathbf{e}_{3} &= \begin{pmatrix} (0,0) & (-k,k) \\ (k,-k) & (0,0) \end{pmatrix} \\ \mathbf{e}_{4} &= \begin{pmatrix} (1,-1) & (0,0) \\ (0,0) & (-1,1) \end{pmatrix}, \ \mathbf{e}_{5} &= \begin{pmatrix} (0,0) & (1,-1) \\ (1,-1) & (0,0) \end{pmatrix}. \end{aligned}$$

The Clifford algebra $\mathcal{C}\ell_5$ has two central idempotents

$$\frac{1}{2}(1 + e_{12345}) = \begin{pmatrix} (1,0) & (0,0) \\ (0,0) & (1,0) \end{pmatrix}, \ \frac{1}{2}(1 - e_{12345}) = \begin{pmatrix} (0,1) & (0,0) \\ (0,0) & (0,1) \end{pmatrix}$$

which both project out of $\mathcal{C}\ell_5$ an isomorphic copy of $\mathrm{Mat}(2,\mathbb{H})$, that is, $\frac{1}{2}(1\pm e_{12345})\mathcal{C}\ell_5 \simeq \mathrm{Mat}(2,\mathbb{H})$. An isomorphic copy of $\frac{1}{2}(1\pm e_{12345})\mathcal{C}\ell_5$ is constructed within another subspace of $\mathcal{C}\ell_5$ in the following counter-example.

Counter-example. Consider the subspace of scalars, vectors and bivectors $\mathbb{R} \oplus \mathbb{R}^5 \oplus \bigwedge^2 \mathbb{R}^5$ of dimension $1+5+\frac{1}{2}5(5-1)=\frac{1}{2}2^5$. Introduce in this subspace a new product $u \circ v$ defined by (one of the following)

$$u \circ v = \langle uv(1 \pm \mathbf{e}_{12345}) \rangle_{0,1,2}$$

where $\langle w \rangle_{0,1,2} = \langle w \rangle_0 + \langle w \rangle_1 + \langle w \rangle_2$. This new product is associative and satisfies

$$\mathbf{x} \circ \mathbf{x} = |\mathbf{x}|^2 \text{ for } \mathbf{x} \in \mathbb{R}^5.$$

However, $e_1 \circ e_2 \circ e_3 \circ e_4 \circ e_5 = \pm 1$. As a sample, this new product satisfies

$$\mathbf{e}_1 \circ \mathbf{e}_2 = \mathbf{e}_{12}, \ \mathbf{e}_1 \circ \mathbf{e}_{12} = \mathbf{e}_2, \ \mathbf{e}_{12} \circ \mathbf{e}_{12} = -1, \ \mathbf{e}_{12} \circ \mathbf{e}_{23} = \mathbf{e}_{13}$$

 $\mathbf{e}_1 \circ \mathbf{e}_{23} = \mathbf{\mp} \mathbf{e}_{45}, \ \mathbf{e}_{12} \circ \mathbf{e}_{34} = \pm \mathbf{e}_5.$

The multiplication table of this new product is given by the following matrices

$$\begin{split} \mathbf{e}_1 &= \pm \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \mathbf{e}_2 = \pm \begin{pmatrix} 0 & -j \\ j & 0 \end{pmatrix}, \quad \mathbf{e}_3 = \pm \begin{pmatrix} 0 & -k \\ k & 0 \end{pmatrix}, \\ \mathbf{e}_4 &= \pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \mathbf{e}_5 = \pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \end{split}$$

This serves as a counter-example to a belief that the Clifford algebra would be uniquely generated by its subspaces \mathbb{R} and \mathbb{R}^n .

The 3-dimensional anti-Euclidean space $\mathbb{R}^{0,3}$

The anti-Euclidean space $\mathbb{R}^{0,3}$ has a negative definite quadratic form sending a vector $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3$ to the scalar

$$\mathbf{x} \cdot \mathbf{x} = -(x_1^2 + x_2^2 + x_3^2).$$

An orthonormal basis $\{e_1, e_2, e_3\}$ of $\mathbb{R}^{0,3}$ obeys the multiplication rules

$$\begin{split} e_1^2 &= e_2^2 = e_3^2 = -1 \quad \text{and} \\ e_1e_2 &= -e_2e_1, \ e_1e_3 = -e_3e_1, \ e_2e_3 = -e_3e_2. \end{split}$$

These relations are satisfied by the unit quaternions

$$i = \mathbf{e}_1, \quad j = \mathbf{e}_2, \quad k = \mathbf{e}_3$$

in \mathbb{H} . The rule ijk = -1, or $\mathbf{e}_1\mathbf{e}_2\mathbf{e}_3 = -1$, means that the real algebra $\mathbb{H} = \mathbb{R} \oplus \mathbb{R}^{0,3}$ is generated by a proper subspace $\mathbb{R}^{0,2}$ of $\mathbb{R}^{0,3}$. In other words, each quaternion can be expressed in the form $x = x_0 + x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + x_3\mathbf{e}_1\mathbf{e}_2$ where $\mathbf{e}_3 = \mathbf{e}_1\mathbf{e}_2$. This matter is expressed by saying that \mathbb{H} is an algebra of the quadratic form

$$x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + x_3\mathbf{e}_3 \to -(x_1^2 + x_2^2 + x_3^2)$$

although it is not the Clifford algebra $\mathcal{C}\ell_{0,3}$. The 8-dimensional Clifford algebra $\mathcal{C}\ell_{0,3}$ is isomorphic, as an associative algebra, to the direct sum $\mathbb{H} \oplus \mathbb{H}$. This

can be seen by the correspondences

$$\begin{array}{c|c} \mathcal{C}\ell_{0,3} & \mathbb{H} \oplus \mathbb{H} \\ \hline & 1 & (1,1) \\ e_1,\,e_2,\,e_3 & (i,-i),\,(j,-j),\,(k,-k) \\ e_{23},\,e_{31},\,e_{12} & (i,i),\,(j,j),\,(k,k) \\ e_{123} & (-1,1) \end{array}$$

The Clifford algebra $\mathcal{C}\ell_{0,3}$ of $\mathbb{R}^{0,3}$ is the universal object in the category of algebras of the quadratic form

$$x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + x_3\mathbf{e}_3 \rightarrow -(x_1^2 + x_2^2 + x_3^2)$$

or for short in the category of quadratic algebras. ² If there are other objects in this category, they are quotients of the universal object with respect to a two-sided ideal. This gives us two other algebras of dimension 4; in one of them we have the relation $e_1e_2e_3=1$ and in the other $e_1e_2e_3=-1$. These two algebras of dimension 4 are linearly isomorphic to $\mathbb{R}\oplus\mathbb{R}^{0,3}$. In the category of quadratic algebras these two algebras of dimension 4 are not isomorphic with each other, which means that the relations $e_1e_2e_3=1$ and $e_1e_2e_3=-1$ prevent the identity mapping on $\mathbb{R}^{0,3}$ being extended to an isomorphism in this category. However, in the category of all associative algebras these two algebras of dimension 4 are isomorphic with each other (and with the quaternion algebra $\mathbb{H}=\mathbb{R}\oplus\mathbb{R}^{0,3}$). The isomorphism can be seen by the mappings

$$\mathbf{e}_1 \to \mathbf{e}_1, \ \mathbf{e}_2 \to \mathbf{e}_2 \quad \text{and} \quad \mathbf{e}_3 \to -\mathbf{e}_3.$$

16.2 Indefinite metrics $\mathbb{R}^{p,q}$

The hyperbolic plane $\mathbb{R}^{1,1}$. The hyperbolic plane is the linear space \mathbb{R}^2 endowed with a quadratic form

$$(u,v) \to uv$$

which by change of variables $u = x_1 + x_2$, $v = x_1 - x_2$ is seen to be

$$(x_1, x_2) \rightarrow x_1^2 - x_2^2$$
.

Thus the hyperbolic plane is indefinite, neutral and has the Lorentz signature $\mathbb{R}^{1,1}$. The Clifford algebra $\mathcal{C}\ell_{1,1}$ of $\mathbb{R}^{1,1}$ is isomorphic, as an associative algebra,

² The term quadratic algebra is customarily used for something else: in a quadratic algebra x^2 is linearly dependent on x and 1.

to the matrix algebra $Mat(2,\mathbb{R})$ by the correspondences

$$egin{array}{|c|c|c|c|c|} \hline & \mathcal{C}\ell_{1,1} & \operatorname{Mat}(2,\mathbb{R}) \\ \hline & 1 & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ & \mathbf{e}_1, \, \mathbf{e}_2 & \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ & \mathbf{e}_{12} & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{array}$$

Note that the Clifford algebras $\mathcal{C}\ell_{1,1}$ and $\mathcal{C}\ell_2 \simeq \operatorname{Mat}(2,\mathbb{R})$ are isomorphic as associative algebras but non-isomorphic as quadratic algebras.

The Minkowski space-time $\mathbb{R}^{3,1}$. The elements of an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ of $\mathbb{R}^{3,1}$ anticommute, $e_{\mu}e_{\nu} = -e_{\nu}e_{\mu}$, and have unit squares, $e_1^2 = e_2^2 = e_3^2 = 1$, $e_4^2 = -1$. The basis vectors are often given the following representation by complex 4×4 -matrices:

$$\mathbf{e}_k = \mathbf{e}^k = \begin{pmatrix} 0 & \sigma_k \\ \sigma_k & 0 \end{pmatrix}$$
 for $k = 1, 2, 3$ and $\mathbf{e}_4 = -\mathbf{e}^4 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$

where we recognize the 2×2 Pauli spin matrices $\sigma_1, \sigma_2, \sigma_3$. It is possible to represent $\mathcal{C}\ell_{3,1}$ by real matrices as follows:

$$\begin{split} \mathbf{e}_1 &= \begin{pmatrix} \sigma_3 & 0 \\ 0 & -\sigma_3 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_1 \end{pmatrix}, \quad \mathbf{e}_3 = \begin{pmatrix} 0 & \sigma_3 \\ \sigma_3 & 0 \end{pmatrix}, \\ \mathbf{e}_4 &= \begin{pmatrix} -i\sigma_2 & 0 \\ 0 & -i\sigma_2 \end{pmatrix}. \end{split}$$

This implies $\mathcal{C}\ell_{3,1} \simeq \operatorname{Mat}(4,\mathbb{R})$.

The Minkowski time-space $\mathbb{R}^{1,3}$. In the signature $\mathbb{R}^{1,3}$ one usually gives the following representation by complex 4×4 -matrices:

$$\gamma_0 = \gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, and
$$\gamma_k = -\gamma^k = \begin{pmatrix} 0 & -\sigma_k \\ \sigma_k & 0 \end{pmatrix}$$
, for $k = 1, 2, 3$.

213

In addition to the above matrix representation one can represent the Clifford algebra $\mathcal{C}\ell_{1,3}$ by the following 2×2 -matrices with quaternion entries:

$$\gamma_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
\gamma_1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad \gamma_2 = \begin{pmatrix} 0 & j \\ j & 0 \end{pmatrix}, \quad \gamma_3 = \begin{pmatrix} 0 & k \\ k & 0 \end{pmatrix}.$$

Since the Clifford algebra $\mathcal{C}\ell_{1,3}$ and the matrix algebra $\mathrm{Mat}(2,\mathbb{H})$ of 2×2 -matrices with entries in \mathbb{H} are both real algebras of dimension 16, the above correspondences establish an isomorphism of associative algebras, that is, $\mathcal{C}\ell_{1,3} \simeq \mathrm{Mat}(2,\mathbb{H})$.

A short look at physics: A vector $u = u_0 \gamma^0 + u_1 \gamma^1 + u_2 \gamma^2 + u_3 \gamma^3$ with square $u^2 = u_0^2 - u_1^2 - u_2^2 - u_3^2$ can be time-like $u^2 > 0$, null $u^2 = 0$, or space-like $u^2 < 0$. A time-like vector or non-zero null vector can be future oriented $u_0 > 0$ or past oriented $u_0 < 0$. A time-like future oriented unit vector u, $u^2 = 1$, gives the velocity v < c of a real particle by

$$u_0 = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \, .$$

Physicists might want to observe that the Clifford algebras $\mathcal{C}\ell_{3,1} \simeq \operatorname{Mat}(4,\mathbb{R})$ and $\mathcal{C}\ell_{1,3} \simeq \operatorname{Mat}(2,\mathbb{H})$ are not isomorphic as associative algebras, even though both of them have the same complexification $\operatorname{Mat}(4,\mathbb{C})$ with the same complex structure but with different real structures (= different real subalgebras). The complexified Clifford algebras $\mathbb{C} \otimes \mathcal{C}\ell_{1,3} \simeq \mathbb{C} \otimes \mathcal{C}\ell_{3,1}$ have a 4-dimensional irreducible left ideal (8-dimensional real subspace). As a graded left ideal this ideal is also irreducible. The real algebra $\mathcal{C}\ell_{1,3}$ has an 8-dimensional irreducible left ideal, which is also graded. However, the real algebra $\mathcal{C}\ell_{3,1}$ has a 4-dimensional irreducible ideal, which is not graded (that is $\mathcal{C}\ell_{3,1}$ does not have primitive idempotents sitting in $\mathcal{C}\ell_{3,1}^+$), and an 8-dimensional irreducible graded ideal.

THE TABLE OF CLIFFORD ALGEBRAS

The Clifford algebra $\mathcal{C}\ell_{p,q}$, where $p-q \neq 1 \mod 4$, is a simple algebra of dimension 2^n , where n=p+q, and therefore isomorphic with a full matrix algebra with entries in \mathbb{R} , \mathbb{C} , or \mathbb{H} . The Clifford algebra $\mathcal{C}\ell_{p,q}$, where $p-q=1 \mod 4$, is a semi-simple algebra of dimension 2^n so that the two central idempotents $\frac{1}{2}(1 \pm e_1e_2 \dots e_n)$ project out two copies of a full matrix algebra with entries in \mathbb{R} or \mathbb{H} . To put it slightly differently, the Clifford algebra $\mathcal{C}\ell_{p,q}$

has a faithful representation as a matrix algebra with entries in \mathbb{R} , \mathbb{C} , \mathbb{H} or $\mathbb{R} \oplus \mathbb{R}$, $\mathbb{H} \oplus \mathbb{H}$. In the rings ${}^{2}\mathbb{R} = \mathbb{R} \oplus \mathbb{R}$ and ${}^{2}\mathbb{H} = \mathbb{H} \oplus \mathbb{H}$ the multiplication is defined component-wise:

$$(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

16.3 Matrix representation $\mathcal{C}\ell_{p+1,q+1} \simeq \operatorname{Mat}(2,\mathcal{C}\ell_{p,q})$

Let $\{e_1, e_2, \ldots, e_n\}$ be an orthonormal basis of $\mathbb{R}^{p,q}$, n = p + q, generating the Clifford algebra $\mathcal{C}\ell_{p,q}$. The 2×2 -matrices

$$\begin{pmatrix} \mathbf{e}_{i} & 0 \\ 0 & -\mathbf{e}_{i} \end{pmatrix} \quad \text{for } i = 1, 2, \dots, n, \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

anticommute and generate the Clifford algebra $\mathcal{C}\ell_{p+1,q+1}$. In other words, the Clifford algebra $\mathcal{C}\ell_{p+1,q+1}$ is isomorphic, as an associative algebra, to the algebra of 2×2 -matrices with entries in the Clifford algebra $\mathcal{C}\ell_{p,q}$. This can be condensed by writing $\mathcal{C}\ell_{p+1,q+1} \simeq \operatorname{Mat}(2,\mathcal{C}\ell_{p,q})$.

Examples. Recall that $\mathcal{C}\ell_1 \simeq {}^2\mathbb{R} = \mathbb{R} \oplus \mathbb{R}$ by setting $\mathbf{e}_1 \simeq (1,-1)$. This implies the isomorphism $\mathcal{C}\ell_{2,1} \simeq {}^2\mathrm{Mat}(2,\mathbb{R})$. Recall that $\mathcal{C}\ell_{0,3} \simeq {}^2\mathbb{H} = \mathbb{H} \oplus \mathbb{H}$, which implies $\mathcal{C}\ell_{1,4} \simeq {}^2\mathrm{Mat}(2,\mathbb{H})$. Recall that $\mathcal{C}\ell_{1,3} \simeq \mathrm{Mat}(2,\mathbb{H})$ which implies $\mathcal{C}\ell_{2,4} \simeq \mathrm{Mat}(4,\mathbb{H})$.

Supplement an orthonormal basis $\{e_1, e_2, \ldots, e_n\}$ of $\mathbb{R}^{p,q}$ with two more anticommuting basis vectors \mathbf{e}_+ and \mathbf{e}_- such that $\mathbf{e}_+^2 = 1$ and $\mathbf{e}_-^2 = -1$ to form an orthonormal basis of $\mathbb{R}^{p+1,q+1}$. The generators $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n, \mathbf{e}_+, \mathbf{e}_-$ of $\mathcal{C}\ell_{p+1,q+1}$ correspond to the generators

$$\mathbf{e}_{i} \simeq \begin{pmatrix} \mathbf{e}_{i} & 0 \\ 0 & -\mathbf{e}_{i} \end{pmatrix}$$
 for $i = 1, 2, \dots, n$,
 $\mathbf{e}_{+} \simeq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\mathbf{e}_{-} \simeq \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

of $\operatorname{Mat}(2, \mathcal{C}\ell_{p,q})$, so that the element $a \in \mathcal{C}\ell_{p,q}$ is represented by a matrix

$$a \simeq \begin{pmatrix} a & 0 \\ 0 & \hat{a} \end{pmatrix}$$

where the hat means the grade involution $\hat{a} = a_0 - a_1$ with $a_0 = \text{even}(a)$ and $a_1 = \text{odd}(a)$. There is another possibility to embed $\mathcal{C}\ell_{p,q}$ into $\text{Mat}(2, \mathcal{C}\ell_{p,q})$, so that $a \in \mathcal{C}\ell_{p,q}$ is represented by

$$a' = a_0 + a_1 \mathbf{e}_+ \mathbf{e}_- \simeq \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$

215

which is just a multiple of the identity matrix. Since $a' = a_0 + a_1 e_+ e_-$ commutes with

$$\frac{1}{2}(1 + \mathbf{e}_{+}\mathbf{e}_{-}) \simeq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \frac{1}{2}(\mathbf{e}_{+} - \mathbf{e}_{-}) \simeq \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\frac{1}{2}(\mathbf{e}_{+} + \mathbf{e}_{-}) \simeq \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \frac{1}{2}(1 - \mathbf{e}_{+}\mathbf{e}_{-}) \simeq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

we have the correspondence $\operatorname{Mat}(2, \mathcal{C}\ell_{p,q}) \simeq \mathcal{C}\ell_{p+1,q+1}$, given by

To put all this in another way: The Clifford algebra $\mathcal{C}\ell_{p+1,q+1}$ contains an isomorphic copy of $\mathcal{C}\ell_{p,q}$ generated by the elements $\mathbf{e}_i' = \mathbf{e}_i\mathbf{e}_+\mathbf{e}_-$, where $i = 1, 2, \ldots, n = p + q$, in such a way that each element of $\mathcal{C}\ell_{p,q}$ commutes with every element of a copy of $\mathcal{C}\ell_{1,1}$ generated by \mathbf{e}_+ and \mathbf{e}_- , and further that $\mathcal{C}\ell_{p,q}$ and $\mathcal{C}\ell_{1,1}$ together generate all of $\mathcal{C}\ell_{p+1,q+1}$. These considerations can be condensed by writing

$$C\ell_{p,q}\otimes C\ell_{1,1}\simeq C\ell_{p+1,q+1}$$

where $\mathcal{C}\ell_{1,1} \simeq \operatorname{Mat}(2,\mathbb{R})$.

Symmetry $\mathcal{C}\ell_{p,q} \simeq \mathcal{C}\ell_{q+1,p-1}$. Take an orthonormal basis $\{e_1, e_2, \dots, e_n\}$ of $\mathbb{R}^{p,q}$ where p > 1 and set

$$\mathbf{e}'_1 = \mathbf{e}_1$$
 and $\mathbf{e}'_i = \mathbf{e}_i \mathbf{e}_1$ for $i > 1$.

The elements \mathbf{e}'_i where $i=1,2,\ldots,n$ anticommute with each other so that $\mathbf{e}'_1{}^2=\mathbf{e}_1{}^2$ and $\mathbf{e}'_i{}^2=-\mathbf{e}_i{}^2$ for i>1. Therefore, the subset $\{\mathbf{e}'_1,\mathbf{e}'_2,\ldots,\mathbf{e}'_n\}$ of $\mathcal{C}\ell_{p,q}$ is a generating set for $\mathcal{C}\ell_{q+1,p-1}$. This proves the isomorphism

$$\boxed{\mathcal{C}\ell_{p,q}\simeq\mathcal{C}\ell_{q+1,p-1}}$$

when $p \ge 1$.

Examples. Recall that $\mathcal{C}\ell_3 \simeq \operatorname{Mat}(2,\mathbb{C})$, which by symmetry implies $\mathcal{C}\ell_{1,2} \simeq \operatorname{Mat}(2,\mathbb{C})$. Recall that $\mathcal{C}\ell_{3,1} \simeq \operatorname{Mat}(4,\mathbb{R})$, which implies $\mathcal{C}\ell_{2,2} \simeq \operatorname{Mat}(4,\mathbb{R})$. From $\mathcal{C}\ell_{0,4} \simeq \operatorname{Mat}(2,\mathbb{H})$ we can first deduce $\mathcal{C}\ell_{1,5} \simeq \operatorname{Mat}(4,\mathbb{H})$ (by adding a hyperbolic plane) which implies $\mathcal{C}\ell_6 \simeq \operatorname{Mat}(4,\mathbb{H})$.

16.4 Periodicity of 8

Table 1, of Clifford algebras, contains or continues with two kinds of periodicities of 8, namely for algebras of the same dimension $\mathcal{C}\ell_{p,q} \simeq \mathcal{C}\ell_{p-4,q+4}$ where $p \geq 4$, and for algebras of different dimension $\mathcal{C}\ell_{p+8,q} \simeq \mathrm{Mat}(16,\mathcal{C}\ell_{p,q})$. Let us first prove $\mathcal{C}\ell_{p,q} \simeq \mathcal{C}\ell_{p-4,q+4}$ where $p \geq 4$. Take an orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ of $\mathbb{R}^{p,q}$ and set

$$\mathbf{e}'_{i} = \mathbf{e}_{i}\mathbf{h}$$
 for $i = 1, 2, 3, 4$,
 $\mathbf{e}'_{i} = \mathbf{e}_{i}$ for $i > 4$,

where $\mathbf{h} = \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \mathbf{e}_4$. Then the subset $\{\mathbf{e}'_1, \mathbf{e}'_2, \dots, \mathbf{e}'_n\}$ of $\mathcal{C}\ell_{p,q}$ is a generating set for $\mathcal{C}\ell_{p-4,q+4}$, which implies the isomorphism

$$\mathcal{C}\ell_{p,q} \simeq \mathcal{C}\ell_{p-4,q+4}$$

where $p \ge 4$. These isomorphisms are due to Cartan 1908 p. 464.

Examples. Recall that $\mathcal{C}\ell_6 \simeq \operatorname{Mat}(4,\mathbb{H})$, which implies $\mathcal{C}\ell_{2,4} \simeq \operatorname{Mat}(4,\mathbb{H})$. From $\mathcal{C}\ell_3 \simeq \operatorname{Mat}(2,\mathbb{C})$ deduce first $\mathcal{C}\ell_{4,1} \simeq \operatorname{Mat}(4,\mathbb{C})$, which implies $\mathcal{C}\ell_{0,5} \simeq \operatorname{Mat}(4,\mathbb{C})$. From $\mathcal{C}\ell_{2,2} \simeq \operatorname{Mat}(4,\mathbb{R})$ we first deduce $\mathcal{C}\ell_{3,3} \simeq \operatorname{Mat}(8,\mathbb{R})$; then by $\mathcal{C}\ell_{3,3} \simeq \mathcal{C}\ell_{4,2}$ and $\mathcal{C}\ell_{4,2} \simeq \mathcal{C}\ell_{0,6}$ we find $\mathcal{C}\ell_{0,6} \simeq \operatorname{Mat}(8,\mathbb{R})$. From $\mathcal{C}\ell_{3,3} \simeq \operatorname{Mat}(8,\mathbb{R})$ we find $\mathcal{C}\ell_{4,4} \simeq \operatorname{Mat}(16,\mathbb{R})$ and also $\mathcal{C}\ell_8 \simeq \operatorname{Mat}(16,\mathbb{R})$ and $\mathcal{C}\ell_{0,8} \simeq \operatorname{Mat}(16,\mathbb{R})$.

Next, prove $\mathcal{C}\ell_{p+8,q} \simeq \operatorname{Mat}(16,\mathcal{C}\ell_{p,q})$ by showing that $\mathcal{C}\ell_{p,q+8} \simeq \operatorname{Mat}(16,\mathcal{C}\ell_{p,q})$. Take an orthonormal basis $\{\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n,\mathbf{e}_{n+1},\ldots,\mathbf{e}_{n+8}\}$ of $\mathbb{R}^{p,q+8}$ where n=p+q and set

$$e'_{i} = e_{i}e_{n+1}...e_{n+8}$$
 for $i = 1, 2, ..., n = p + q$.

Then the subset $\{e'_1, e'_2, \ldots, e'_n\}$ of $\mathcal{C}\ell_{p,q+8}$ generates a subalgebra isomorphic to $\mathcal{C}\ell_{p,q}$. The subalgebra generated by e_{n+1}, \ldots, e_{n+8} is isomorphic to $\mathcal{C}\ell_{0,8} \simeq \operatorname{Mat}(16,\mathbb{R})$. These two subalgebras commute with each other element-wise and generate all of $\mathcal{C}\ell_{p,q+8}$, which shows that

$$\boxed{\mathcal{C}\ell_{p,q+8} \simeq \mathcal{C}\ell_{p,q} \otimes \operatorname{Mat}(16,\mathbb{R}) \simeq \operatorname{Mat}(16,\mathcal{C}\ell_{p,q})}$$

Similarly, $\mathcal{C}\ell_{p+8,q} \simeq \mathcal{C}\ell_{p,q} \otimes \operatorname{Mat}(16,\mathbb{R}) \simeq \operatorname{Mat}(16,\mathcal{C}\ell_{p,q})$. These isomorphisms are due to Cartan 1908.

Example. Note that $\mathcal{C}\ell_{0,1} \simeq \mathbb{C}$ which implies $\mathcal{C}\ell_{8,1} \simeq \operatorname{Mat}(16,\mathbb{C})$. Recall that $\mathcal{C}\ell_{1,1} \simeq \operatorname{Mat}(2,\mathbb{R})$ and so $\mathcal{C}\ell_{1,9} \simeq \operatorname{Mat}(32,\mathbb{R})$.

Table 1. Clifford Algebras $\mathcal{C}\ell_{p,q}$, p+q<8.

p+q	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
0	${\mathbb R}$
1	\mathbb{C} $^2\mathbb{R}$
2	$\mathbb{H} \mathbb{R}(2) \mathbb{R}(2)$
3	$^2\mathbb{H}$ $\mathbb{C}(2)$ $^2\mathbb{R}(2)$ $\mathbb{C}(2)$
4	$\mathbb{H}(2)$ $\mathbb{H}(2)$ $\mathbb{R}(4)$ $\mathbb{H}(4)$ $\mathbb{H}(2)$
5	$\mathbb{C}(4)$ $^{2}\mathbb{H}(2)$ $\mathbb{C}(4)$ $^{2}\mathbb{R}(4)$ $\mathbb{C}(4)$ $^{2}\mathbb{H}(2)$
6	$\mathbb{R}(8)$ $\mathbb{H}(4)$ $\mathbb{H}(4)$ $\mathbb{R}(8)$ $\mathbb{R}(8)$ $\mathbb{H}(4)$ $\mathbb{H}(4)$
7	$^{2}\mathbb{R}(8)$ $\mathbb{C}(8)$ $^{2}\mathbb{H}(4)$ $\mathbb{C}(8)$ $^{2}\mathbb{R}(8)$ $\mathbb{C}(8)$ $^{2}\mathbb{H}(4)$ $\mathbb{C}(8)$

 $\mathbb{A}(d)$ means the real algebra of $d \times d$ -matrices $\mathrm{Mat}(d,\mathbb{A})$ with entries in the ring $\mathbb{A} = \mathbb{R}$, \mathbb{C} , \mathbb{H} , $^{2}\mathbb{R}$, $^{2}\mathbb{H}$.

16.5 Complex Clifford algebras and their periodicity of 2

Complex quadratic spaces \mathbb{C}^n have quadratic forms

$$z_1^2 + z_2^2 + \ldots + z_n^2$$
.

The type of their Clifford algebras $\mathcal{C}\ell(\mathbb{C}^n)$ depends only on the parity of n. Denote $\ell = \lfloor n \rfloor$. In even dimensions $\mathcal{C}\ell(\mathbb{C}^n) \simeq \operatorname{Mat}(2^{\ell}, \mathbb{C})$ and in odd dimensions $\mathcal{C}\ell(\mathbb{C}^n) \simeq {}^2\operatorname{Mat}(2^{\ell}, \mathbb{C})$.

Table 2. Complex Clifford Algebras $\mathcal{C}\ell(\mathbb{C}^n)$, n < 8.

\overline{n}	
0	$\mathbb C$
1	$^2\mathbb{C}$
2	$\mathbb{C}(2)$
3	$^2\mathbb{C}(2)$
4	$\mathbb{C}(4)$
5	$^2\mathbb{C}(4)$
6	$\mathbb{C}(8)$
7	$^2\mathbb{C}(8)$

Exercises

- 1. Show that $\mathcal{C}\ell_{p,q}^+ \simeq \mathcal{C}\ell_{p,q-1}$ and $\mathcal{C}\ell_n^+ = \mathcal{C}\ell_{n,0}^+ \simeq \mathcal{C}\ell_{0,n-1}$.
- 2. Show that all the algebra isomorphisms presented in this chapter are special cases of the following:

$$\mathcal{C}\ell(V_1 \oplus V_2, Q_1 \perp Q_2) \simeq \mathcal{C}\ell(V_1, \lambda Q_1) \otimes \mathcal{C}\ell(V_2, Q_2),$$

 $(\mathbf{x}, \mathbf{y}) \to \mathbf{x} \otimes \omega + 1 \otimes \mathbf{y},$

where Q_2 is non-degenerate and V_2 is even-dimensional, dim $V_2 = 2k$, $\omega \in \bigwedge^{2k} V_2$, $\omega^2 = \lambda \in \mathbb{R} \setminus \{0\}$.

Bibliography

- M.F. Atiyah, R. Bott, A. Shapiro: Clifford modules. Topology 3, suppl. 1 (1964),
 3-38. Reprinted in R. Bott: Lectures on K(X). Benjamin, New York, 1969, pp. 143-178. Reprinted in Michael Atiyah: Collected Works, Vol. 2. Clarendon Press, Oxford, 1988, pp. 301-336.
- E. Cartan (exposé d'après l'article allemand de E. Study): Nombres complexes; pp. 329-468 in J. Molk (red.): Encyclopédie des sciences mathématiques, Tome I, vol. 1, Fasc. 4, art. I5 (1908). Reprinted in E. Cartan: Œuvres complètes, Partie II. Gauthier-Villars, Paris, 1953, pp. 107-246.
- W.K. Clifford: On the classification of geometric algebras, pp. 397-401 in R. Tucker (ed.): Mathematical Papers by William Kingdon Clifford, Macmillan, London, 1882.
 Reprinted by Chelsea, New York, 1968. Title of talk announced already in Proc. London Math. Soc. 7 (1876), p. 135.
- F.R. Harvey: Spinors and Calibrations. Academic Press, San Diego, 1990.
- T.Y. Lam: The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, 1980.
- I.R. Porteous: Topological Geometry. Van Nostrand Reinhold, London, 1969. Cambridge University Press, Cambridge, 1981.
- I.R. Porteous: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge, 1995.