A study on smart shoes styler

스마트 슈즈 스타일러 개발 연구

김예슬 진우열 임재혁 장민혁

|요구사항 정의서

구분	1	기능	설명
		제품 내 적정 온도 조절	쿨링팬 동작으로 인해 조절할 온도를 변경할 수 있다.
		제품 내 적정 습도 조절	쿨링팬 동작으로 인해 조절할 습도를 변경할 수 있다
		내부 온도 조절	쿨링팬을 통해 제품 내의 온도를 높이고, 낮출 수 있다
		내부 습도 조절	쿨링팬을 통해 제품 내의 습도를 높이고, 낮출 수 있다
		작동 상태 확인	PIR센서를 통해 사용자를 감지한다.
		UV등 살균기능 제 어	UV LED를 이용하여, 제품 내부의 살균 정도를 조절 할 수 있다.
S/W	V		
		LCD를 통한 온습도 표기	온습도 센서를 통해 측정된 내부의 온도, 습도가 LCD에 표 기되어 현상태를 알 수 있다

구분	기능	설명
	제품 ON/OFF	토글 스위치를 이용하여 제품을 끄고 켤 수 있다.
	제품 내 온도 측	온도 센서를 통해 제품 내의 온도를 측정할 수 있다.
	제품 내 온도 내 려주기	제품에 달린 쿨링 팬을 사용하여 내부 온도를 낮춰 준다.
	제품 내 습도 측 정	습도 센서를 통해 제품 내의 습도를 측정할 수 있다.
H/W	제품 내 습도 내려주기	제품에 달린 쿨링 팬을 사용하여 내부 습도를 낮춰 준다.
	작동상태 LED 표시	PIR센서를 통해 사용자를 감지하여 LED로 기기의 작동 상태를 표시한다.
	신발 향 관리하 기	가습기에 탈취제를 추가하여 탈취효과와 좋은 향이 남도록 해준다
	신발 살균하기	UV등을 이용하여 제품 내부의 신발을 살균한다

|서비스 구성도 - 서비스 시나리오

|서비스 구성도 - 서비스 시나리오

- [1] 사용자가 신발을 스타일러에 넣은 후에 스위치 조절
- [2] 온습도 센서가 스타일러 내의 습도를 측정
- [3] 환풍팬이 설정된 습도까지, 작동하여 습도 조절
- [4] 환풍팬의 작동이 끝나면, 가습기 모듈이 설정 된 시간만큼 작동
- [5] 가습기 모듈의 작동이 끝나면, UV 램프가 작동하여 살균

|하드웨어/센서 구성도

보드-라즈베리파이4

센서 종류	연결 핀	설	!명
	GND	라즈베리 파이의 GND에 연결	
V2.0	VCC	라즈베리 파이의 5V에 연결	
V2.0	SIG	라즈베리 파이의 GPIO11에 연결	
	GND	라즈베리 파이의 GND에 연결	
Ultrasonic	VCC	라즈베리 파이의 5V에 연결	
Humidfier Module		트랜지스터	
	JP1	트랜지스터	GPIO9에 연결
	VCC	라즈베리 파이의 5V에 연결	
DHT11	GND	라즈베리 파이의 GND에 연결	
	DAT	라즈베리 파이의 GPIO22에 연결	
-l T m	GND	라즈베리 파이의 (GND에 연결
환풍 팬	VCC	트랜지스터 – GPIO4에 연결	

|하드웨어/센서 구성도

보드-아두이노 우노

센서 종류	연결핀	설명
	GND	아두이노 GND
초음파 센서	VCC	아두이노 5V
조금피 센지	TRIGGER	2번 PIN
	ЕСНО	3번 PIN
	GND	아두이노 GND
RGB LED	VCC	아두이노 5V
NGD LED	SIG	6번 PIN
	COUNT	15번 PIN

| 기능 처리도(기능 흐름도)

| 알고리즘 명세서

- 1. 스위치 OFF 상태에서, 스타일러는 센서 감지로 인한 간접등 기능만을 동작한다
- 2. 신발을 넣고 스타일러의 스위치를 ON으로 변경하면, 신발 내의 센서가 습도를 측정한다
- 3. 측정한 습도가 설정 습도 이상일 시, 환풍팬이 동작하여, 제품 내의 습도를 낮춰준다
- 4. 측정한 습도가 설정 습도보다 이하일 시, 환풍팬 동작을 멈추고, 가습기 모듈을 작동한다
- **5. 일정 시간 가습기 모듈 동작 후에, UV LED가** 동작하여 신발을 살균하여 준다.
- 6. 일정시간 UV LED 동작 후에, UV LED가 OFF 되며, 다음 스위치 동작을 대기한다

| 알고리즘 상세 설명서

[스타일러 내 습도 조절 알고리즘]

스타일러 내의 온습도 센서는, 내부의 습도를 계속 측정하여, 환풍팬의 동작을 제어한다.

습도 >85도면 15도 떨어 질때까지

습도>80이면 12도 떨어 질때까지

습도 >75이면 8도 떨어 질때까지

습도 > 70**이면** 5도 떨어 질때까지

그 이외에는 2도 떨어 질때 까지로 설정 후 다음 모듈로 넘어가도록 설계하였다.

|하드웨어 설계도

boardmix

|프로그램 - 목록

기능분류	지정명	기능	
	FAN	환풍팬의 동작여부를 결정	
7171	GAS	초음파 가습기의 동작여부를 결정	
기기	UV	UV등의 동작여부를 결정	
	LED	문 개방시 조명불빛으로 보여줌	
	온습도 센서	온습도 센서(DHT-11)의 값을 읽음	
센서	초음파 센서	초음파 센서로 문이 열리면 led조명이 작동됨	
	read_sensor	센서의 값을 불러오고 각 기기들의 동작여부를 판단	
-1.1	turn_fan_on	환풍팬을 동작시킴	
함수	turn_fan_off	환풍팬을 중지시킴	
	control_fan	초음파 가습기의 동작 여부를 status(ON, OFF)로 받아 판단함	

|핵심소스코드-라즈베리파이4

환풍팬 모듈OFF

```
(i2c expander, i2c_address, cols=lcd_columns, rows=lc 67
                               LCD 모듈 정의
ing("TEST HUMIDITY")
perature = Adafruit DHT.read retry(sensor, pin)
s not None and temperature is not None:
4P=\{0:0.1f\}^{\circ}C HUM=\{1:0.1f\}^{\circ}'.format(temperature, hum 74)
r pos = (\theta, \theta)
string("TEST HUMIDITY")
r pos = (1, 0)
string('HUM={0:0.1f}%'.format(humidity))
ain')
ty
emperature 1 = Adafruit DHT.read retry(sensor, pin)
ty 1
                                환풍팬 모듈 ON
AN PIN. GPIO.HIGH)
AN PIN1, GPIO.HIGH)
```

```
def turn fan off():
65
        GPIO.output(FAN PIN, GPIO.LOW)
                                                      96
66
        GPIO.output(FAN PIN1, GPIO.LOW)
                                                      97
      # print("OFF")
68
                                                      99
69
   def control fan(status):
70
        if status == 'on':
71
           GPIO.output(GAS pin, GPIO.HIGH)
            print("환풍기가 켜졌습니다.")
        elif status == 'off':
                                                     104
           GPIO.output(GAS pin, GPIO.LOW)
           print("환풍기가 꺼졌습니다.")
                                                     106
76
        else:
           print("올바른 상태를 입력하세요.")
78
                                                     109
79
                                                     110
80 try:
                                                     111
81
        GPIO.output(GAS pin, GPIO.LOW)
82
        GPIO.output(UV pin, GPIO.LOW)
83
        GPIO.output(UV pin1, GPIO.LOW)
                                                     114
84
        lcd.clear()
85
        lcd.write string("START")
                                                     116
86
       time.sleep(1)
87
                                                     118
88
        while True:
                                                     119
89
            if GPIO.input(BUTTON PIN) == False:
90
               GPIO.output(LED PIN, GPIO.HIGH)
91
                read sensor 1()
92
                humidity 1 = read sensor 1()
93
                read sensor()
                                                     124
94
               humidity = read sensor()
```

온습도센서 수치 값으 로 제어

```
time.sleep(1)
if humidity 1 >= 85:
    MODE = 15
elif humidity 1 >= 80:
    MODE = 12
elif humidity 1 >= 75:
    MODE = 8
elif humidity 1 >= 70:
    MODE = 5
else:
    MODE = 2
while humidity 1 - humidity < MODE:
    turn fan on()
    print("FAN ON")
    read sensor()
    humidity = read sensor()
    time.sleep(1)
#print("OFF")
if humidity 1 - humidity >= MODE:
    turn fan off()
    print("FAN OFF")
    lcd.clear()
    lcd.cursor pos = (\theta, \theta)
    lcd.write string("HUMIDITER ON")
    control fan('on')
    TIME = 20
    for sec in range(TIME + 1):
        lcd.cursor pos = (\theta, \theta)
        lcd.write string("HUMIDITER")
```

습도에 따라 환풍팬 제어

|핵심소스코드-라즈베리파이4

```
126
                          lcd.cursor pos = (1, 0)
                          lcd.write_string(f"Remained Time:{TIME}s")
128
                          #lcd.write string('HUM={0:0.2f}s'.format(TIME))
                          TIME -= 1
                          time.sleep(1)
                          lcd.clear()
                      #time.sleep(10)
                      control fan('off')
134
                      lcd.write_string("HUMIDITER OFF")
                      time.sleep(1)
                                                                      신발의 냄새 제거 및 UV살균
                      lcd.clear()
                                                                                  동작
                      lcd.write_string("UV LIGHT ON")
                      GPIO.output(UV pin, GPIO.HIGH)
139
                      GPIO.output(UV pin1, GPIO.HIGH)
                      print('UV TURN ON')
141
                      TIME_UV = 5
142
                      for sec in range(TIME_UV + 1):
143
                          lcd.cursor pos = (0, 0)
144
                          lcd.write string("UV LIGHT")
145
                          lcd.cursor pos = (1, \theta)
                          lcd.write_string(f"Remained_Time:{TIME_UV}s")
147
                          #lcd.write string('HUM={0:0.2f}s'.format(TIME))
                          TIME UV -= 1
149
                          time.sleep(1)
                          lcd.clear()
                      lcd.write string("UV LIGHT OFF")
                      GPIO.output(UV pin, GPIO.LOW)
                      GPIO.output(UV_pin1, GPIO.LOW)
154
                      print('UV TURN OFF')
                      time.sleep(5)
                  lcd.clear()
                  GPIO.output(BUZ pin, GPIO.HIGH)
                  time.sleep(1)
                  GPIO.output(BUZ pin, GPIO.LOW)
                  lcd.write string("Ready for next!")
                  time.sleep(5)
164
           else:
              GPIO.output(LED PIN, GPIO.LOW)
              time.sleep(1)
168
    except KeyboardInterrupt:
       GPIO.cleanup()
170
       print("END")
```

|핵심소스코드-아두이노

```
#include <Adafruit_NeoPixel.h>
#define LED_PIN 6
#define LED_COUNT 15 // 10개의 LED를 사용
Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);
int triggerPin = 2; // 초음파 센서의 트리거 핀
int echoPin = 3; // 초음파 센서의 에코 핀
 /oid setup() {
 strip.begin();
 strip.show();
 pinMode(triggerPin, OUTPUT);
 pinMode(echoPin, INPUT);
  Serial.begin(9600); // 시리얼 통신 초기화
 roid loop() {
 // 초음파 센서로부터 거리 측정
 long duration;
  int distance;
  digitalWrite(triggerPin, LOW);
  delayMicroseconds(2);
  digitalWrite(triggerPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(triggerPin, LOW);
  duration = pulseIn(echoPin, HIGH);
  distance = duration * 0.034 / 2;
```

```
if (distance <= 10) {
   for (int i = 0; i < LED_COUNT; i++) {
     strip.setPixelColor(i, strip.Color(0, 0, 0)); // 모든 LED 끄기
 } else {
    for (int i = 0; i < LED_COUNT; i++) {
     strip.setPixelColor(i, rainbowColor(i, millis()));
uint32_t rainbowColor(int led, unsigned long currentTime) {
 int numLeds = strip.numPixels();
  int step = 256 / numLeds;
  int hue = (led * step + (currentTime / 1000)) % 256;
  return strip.Color(
   Wheel((hue + 0) & 255),
    Wheel((hue + 85) & 255),
   Wheel((hue + 170) & 255)
uint32_t Wheel(byte WheelPos) {
 if (WheelPos < 85) {
   return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
 } else if (WheelPos < 170) {
   WheelPos -= 85;
   return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
 } else {
    WheelPos -= 170;
    return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
```

초음파 센서

초음파센서가 감지하면 LED 작동

|참조-개발 환경 및 설명

구분		항목	적용내역	
	라즈베리파이	Putty	라즈베리파이 내부에 접속하여 소스코드를 작성하고 작성된 코드를 따라 센서를 통해 정보 를 전달받고 기기의 동작을 제어하도록 프로그래밍함	
S/W	개발	VNC viewer		
개발환경	아두이노 개발	Arduino IDE	아두이노 소스코드를 작성하고 코드를 따라 정보 전달, 기기의 동작 제어 프로그래밍	
	제어	라즈베리파이	센서의 정보를 전달받고 기기들의 동작을 제어함	
	센서	온습도 센서(DHT-11)	스타일러 내부의 온도와 습도를 측정하여 정보를 제공함	
		초음파 센서	초음파 센서를 문쪽에 부착하여 스타일러 문을 개방하면 조명이 켜지도록 설정	
H/W 구성장비	기기	UV등	스타일러 내부의 살균을 위한 살균등	
		초음파 가습기	스타일러 내부의 습도 유지 및 산뜻한 향을 추가함	
		환풍팬	스타일러 내부의 온도 유지 및 환기기능	
		LCD	스타일러 내부의 온습도를 표기해줌	

S/W 기능 실사 사진

라즈베리파이

```
Serial.print("습도: "):
Serial.print(humidity):
Serial.print("M, 온도: "):
Serial.print(temperature):
Serial.print(h("C"):

if (temperature > temperatureThreshold) {
    // 온도가 임계값을 조과하면 물링 편을 작동
    digitalWrite(fanPin, HIGH):
    Serial.println("물링 편 작동 중"):
} else {
    // 온도가 임계값 이하이면 물링 편을 중지
    digitalWrite(fanPin, LOW):
    Serial.println("물링 편 중지"):
```

온/습도 측정하여 일정 수치에 도달하면 환풍팬 동작

```
import RPi.GPIO as GPIO
import time

FAN_PIN = 14

GPIO.setmode(GPIO.BCM)

GPIO.setupt(FAN_PIN, GPIO.OUT)

try:
    while True:
        GPIO.output(FAN_PIN, GPIO.HIGH)
        print("ON")
        time.sleep(5)

GPIO.output(FAN_PIN, GPIO.LOW)
        print("OFF")
        time.sleep(5)

except KeyboardInterrupt:
        GPIO.cleanuo()
        print("MAIN OFF")
```

특정 조건에서 가습기 모듈 작동

측정된 온/습도를 표기해주는 LCD 모듈

| H/W 기능 실사사진

구분		항목	적용내역	
H/W 구성장비	센서	온습도 센서(DHT-11) & 환풍팬		
		UV등 (좌)		
	기기	초음파 가습기 (우)		
		LCD	HUMIDITER Remained_Time:6s	

| 프로젝트 관리

스타일러 부품 배치

스타일러 내부에 신발을 넣고 스위치가 켜진다.

작동확인

신발의 상태를 온/습도 센서로 확인하고 설정 값과 비교한다.

모듈병합 확인

설정된 온습도를 유지하기 위해 조건에 따라 기기들을 동작시킨다.

|프로젝트 완성 및 시뮬레이션

스타일러 외부

스타일러 내부

|시뮬레이션 영상

링크 : https://www.youtube.com/watch?v=LEXf7wRyFPo

Thank you