74. ROČNÍK MATEMATICKÉ OLYMPIÁDY (2024/2025)

Jan Romanovský Gymnázium Brno, tř. Kpt. Jaroše 4.A A-I-5

Saba se snaží z přízemí nekonečně vysokého mrakodrapu dostat do n-tého patra pomocí zvláštního výtahu. Ve výtahu jsou tlačítka $0, 1, 2, \ldots$ Po prvním stisknutí tlačítka pojede výtah nahoru a po každém dalším jede vždy opačným směrem, než posledně, přičemž po stisknutí tlačítka k popojede vždy o 2^k pater. Navíc každé další stisknuté tlačítko musí mít menší číslo než to předešlé. Dokažte, že Saba se do každého patra $n \geq 1$ může dostat právě dvěma různými postupy.

Zřejmě platí $\pm 2^n = \pm 2^{n+1} \mp 2^n$ – tzn. že zmáčknutí (n)tého tlačítka lze zaměnit za zmáčknutí (n+1)tého tlačítka a potom stisknutí (n)tého tlačítka (střídají se znaménka), pokud už (n+1)té tlačítko bylo zmáčknuto tak použijeme ekvivalenci na druhou stranu \implies pokud existuje nějaká možnost dostat se na dané číslo, jsou nutně dvě.

Každá jízda výtahem půjde zapsat jako rozdíl dvou binárních čísel (jednotlivé zmáčknutí tlačítek jsou posuny přímo o mocniny dvojky), kladně jsou všechna patra vyjetá nahoru, záporně všechna sjetá dolů. První zmáčknutí je vždy kladné a každé další vede k menšímu posunu, tento rozdíl tak bude vždycky kladný. Z N3 víme, že každý kladný rozdíl mocnin dvojky se dá zapsat jako součet nějakých mocnin dvojky a zřejmě víme, že každé přirozené číslo lze zapsat v binární soustavě (dk. MI: $1 = [1]_2$; 2. chceme dk., že lze pro $n \Longrightarrow |$ ze pro n+1, předp. že lze pro $n: n+1 = [n]_2 + [1]_2$; např. $2 = [1]_2 + [1]_2 = [10]_2$), ke každému číslu tedy existuje možnost zápisu, z prvního odstavce tak vyplývá, že existují vždy dvě. \square