A 2 Step Filtration

Goal:

We want to explicitly consider all of the objects, maps, and differentials in a particular spectral sequence arising from a space that admits a filtration that terminates in two steps. There are several concrete examples that should fit into this framework:

- $\bullet \ \ 0 \hookrightarrow S^k \hookrightarrow S^n \ \text{for any} \ k < n$
- $0 \hookrightarrow S^n \hookrightarrow \mathbb{CP}^n$
- $0 \hookrightarrow \mathbb{RP}^n \hookrightarrow S^n$
 - $\circ \;$ Using S^n as a double cover of \mathbb{RP}^n

Setup: Space and Filtration

Let X be a space and let $A\subset X$ be a subspace, inducing the inclusion $A\stackrel{i}{\to} X$, so we have the following inclusions of spaces:

$$0 \hookrightarrow A \hookrightarrow B$$

Then consider applying the "chain functor" $C_*(\cdot): \mathbf{Top} \to \mathbf{Ab}$ that sends a space X to a singular chain complex

$$C_*(X) \vcentcolon= \cdots \stackrel{\partial_{i-1}}{\longrightarrow} C_i(X) \stackrel{\partial_i}{\longrightarrow} C_{i+1}(X) \stackrel{\partial_{i+1}}{\longrightarrow} \cdots$$

Applying this functor to the above inclusion induces an inclusion of chain complexes:

$$0 \hookrightarrow C_*(A) \hookrightarrow C_*(X)$$

We regard this as a two step filtration on $C^{st}(X)$ by making the following identifications:

- $F_0C_*(X) := C_*(X)$
- $F_1C_*(X) := C_*(A)$
- $F_2C_*(X) := 0$

And we obtain the primary object of interest for this spectral sequence:

$$0 = F_2C_*(X) \hookrightarrow F_1C_*(X) \hookrightarrow F_0C_*(X) = C_*(X)$$

This process is roughly summarized in the following diagram:

Setup: Spectral Sequence

A few definitions to recall:

$$G_iC_*(X) centcoloneq rac{F_iC_*(X)}{F_{i+1}C_*(X)}$$

$$E_0^{p,q} = G_p C_{p+q}(X)$$

$$E_1^{p,q} = H(E_0^{p,q}, d_0)$$

Computation of Pages

$$E_{-1}$$

Not standard usage, here I consider the " E_{-1} page" to be simply a presentation of the double complex itself. The formula works out to be something like

$$E_{-1}^{p,q} = F_p C_q(X)$$

q=n	0	$F_0C_n(X)$	$F_1C_n(X)$	$F_2C_n(X)$
	:	•	•	
q = 3	0	$F_0C_3(X)$	$F_1C_3(X)$	$F_2C_3(X)$
q=2	0	$F_0C_2(X)$	$F_1C_2(X)$	$F_2C_2(X)$
q=1	0	$F_0C_1(X)$	$F_1C_1(X)$	$F_2C_1(X)$
q = 0	0	$F_0C_0(X)$	$F_1C_0(X)$	$F_2C_0(X)$
q = -1	0	0	0	0
q-2	0	0	0	0
p=-2	p = -1	p = 0	p = 1	p=2

For clarity, we unpack definitions here to show how the actual original chain complexes sit inside of this page:

q=n	0	$C_n(X)$	$C_n(A)$	0
•	 	•	•	
q = 3	0	$C_3(X)$	$C_3(A)$	0
q=2	0	$C_2(X)$	$C_2(A)$	0
q = 1	0	$C_1(X)$	$C_1(A)$	0
q = 0	0	$C_0(X)$	$C_0(A)$	0
q = -1	0	0	0	0
q-2	0	0	0	0
p = -2	p = -1	p=0	p=1	p=2

Focusing on the area p,q>=-1, we use the fact that the chain complexes come with natural boundary maps to define the differentials $d_{-1} \vcentcolon= \partial_n : C_n(X) \to C_{n-1}(X)$.

E_0

Here we use the following formulas/facts:

•
$$G_iC_*(X) \coloneqq rac{F_iC_*(X)}{F_{i+1}C_*(X)}$$

$$ullet E_0^{p,q} \coloneqq G_p C_{p+q}(X)$$

$$ullet C_n(X,A) \coloneqq rac{C_n(X)}{C_n(A)}$$

This can be done because there is a SES

$$0 o C_*(A) o C_*(X) o rac{C_*(X)}{C_*(A)} o 0$$

Then since $\partial_n:C_n(X)\to C_{n-1}(X)$ has the property that $\partial_n(C_*(A))=C_*(A)$, it factors through the quotient $\frac{C_*(X)}{C_*(A)}$ to yield a map $\hat{\partial}_n:\frac{C_n(X)}{C_n(A)}\to\frac{C_{n-1}(X)}{C_{n-1}(A)}$. Shorten notation by calling $\frac{C_*(X)}{C_*(A)}:=C_*(X,A)$ the relative chain complex; this yields relative homology with respect to $\hat{\partial}$,

i.e.
$$H_n(X,A) \mathrel{\mathop:}= rac{\ker \partial_n}{\mathop{\mathrm{im}} \partial_{n+1}} \subset C_n(X,A).$$

which explicitly yields

$$G_0C_*(X) = rac{F_0C_*(X)}{F_1C_*(X)} = rac{C_*(X)}{C_*(A)} := C_*(X, A)$$
 $G_1C_*(X) = rac{F_1C_*(X)}{F_2C_*(X)} = rac{C_*(A)}{0} = C_*(A)$
 $G_2C_*(X) = rac{0}{0} = 0$

$$E_0^{p,q} := G_p C_q(X)$$
 $C_n(X,A) := \frac{C_n(X)}{C_n(A)}$

Which unpacks as

q=n	0	$\frac{F_0 C_n(X)}{F_1 C_n(X)}$	$\frac{F_1C_{n+1}(X)}{F_2C_{n+1}(X)}$	0
	•	•	•	
q = 3	0	$\frac{F_0C_3(X)}{F_1C_3(X)}$	$\frac{F_1C_4(X)}{F_2C_4(X)}$	0
q=2	0	$\frac{F_0C_2(X)}{F_1C_2(X)}$	$\frac{F_1C_3(X)}{F_2C_3(X)}$	0
q = 1	0	$\frac{F_0C_1(X)}{F_1C_1(X)}$	$\frac{F_1C_2(X)}{F_2C_2(X)}$	0
q = 0	0	$\frac{F_0C_0(X)}{F_1C_0(X)}$	$\frac{F_1C_1(X)}{F_2C_1(X)}$	0
q=-1	0	0	$\frac{F_1C_0(X)}{F_2C_0(X)}$	0
q-2	0	0	0	0
p=-2	p = -1	p = 0	p = 1	p=2

Which further unpacks as

		C(X)	$C_{-1}(A)$	
q = n	0	$\frac{C_n(A)}{C_n(A)}$	$\frac{C_{n+1}(A)}{0}$	0
• !	•	•	•	
q=3	0	$\frac{C_3(X)}{C_3(A)}$	$\frac{C_4(A)}{0}$	0
q=2	0	$\frac{C_2(X)}{C_2(A)}$	$\frac{C_3(A)}{0}$	0
q=1	0	$\frac{C_1(X)}{C_1(A)}$	$\frac{C_2(A)}{0}$	0
q = 0	0	$\frac{C_0(X)}{C_0(A)}$	$\frac{C_1(A)}{0}$	0
i !				
q=-1	0	0	$\frac{C_0(A)}{0}$	0
q-2	0	0	0	0
p=-2	p = -1	p=0	p = 1	p=2

Which by definition is

q = n	0	$C_n(X,A)$	$C_{n+1}(A)$	0
•	•	•	•	
q = 3	0	$C_3(X,A)$	$C_4(A)$	0
q=2	0	$C_2(X,A)$	$C_3(A)$	0
q=1	0	$C_1(X,A)$	$C_2(A)$	0
q = 0	0	$C_0(X,A)$	$C_1(A)$	0
				_
q = -1	0	0	$C_0(A)$	0
q-2	0	0	0	0
p = -2	p = -1	p = 0	p = 1	p=2

For any pair $({\cal X},{\cal A})$, there is a long exact sequence

$$\cdots H_n(A) o H_n(X) o H_n(X,A) \stackrel{\delta_n}{\longrightarrow} H_{n-1}(A) \cdots$$

 E_1

 E_2