PROBLEM SHEET 2 FOR ADVANCED MACHINE LEARNING (COMP6208)

1

(a) To find the minimum of a 1-d function, we can do an iterative update

$$x^{(t+1)} = x^{(t)} - rf'(x^{(t)})$$

where r is a learning rate and f'(t) is the derivative of the function, f(x) we are minimising. Supposing that

$$f(x) = \frac{c}{2}(x - x^*)^2$$

where c > 0. Write down a recursion formula for $x^{(t+1)}$ and $x^{(t)}$. [2 marks]

$$x^{(t+1)} = x^{(t)} - cr(x^{(t)} - x^*)$$
$$= (1 - cr)x^{(t)} + crx^*.$$

(b) Show by induction that $x^{(t)} = F(t) = x^* + (x^{(0)} - x^*)(1 - cr)^t$ is a solution to the recursion relation. Hence find a condition on the value of r to ensure convergence. [5 marks]

In the base case, if we take t = 0 then

$$F(0) = x^* + (x^{(0)} - x^*)(1 - cr)^0$$

= $x^* + (x^{(0)} - x^*) = x^{(0)}$.

Thus the formula is true for t=0. Assuming the formula is true for $x^{(t)}$ then substituting this into the recursion relation

$$x^{(t+1)} = (1 - cr)F(t) + crx^*$$

$$= (1 - cr)\left(x^* + (x^{(0)} - x^*)(1 - cr)^t\right) + crx^*$$

$$= x^* + (x^{(0)} - x^*)(1 - cr)^{(t+1)} = F(t+1).$$

Thus, we shown that assuming $x^{(t)} = F(t)$ then $x^{(t+1)} = F(t+1)$, but as it is true for t=0 the formula will be true for all non-negative integers.

The condition for convergence is that 0 < cr < 2. Assuming c > 0 then 0 < r < 2/c.

(c) Now consider the case when $x \in \mathbb{R}^n$. We assume that

$$g(\boldsymbol{x}) = \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}^*)^\mathsf{T} \mathbf{Q}(\boldsymbol{x} - \boldsymbol{x}^*)$$

where ${\bf Q}$ is a symmetric, positive-definite matrix. The Hessian, ${\bf H}$, of $g({\bf x})$ is a matrix with components

$$H_{ij} = \frac{\partial^2 g(\boldsymbol{x})}{\partial x_i \partial x_j}.$$

By writing out g(x) as a double sum over the components compute the Hessian [2 marks]

$$H_{ij} = \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{2} \sum_{k\ell} (x_k - x_k^*) Q_{k\ell} (x_\ell - x_\ell^*) = Q_{ij}$$

(d) Gradient descent in \mathbb{R}^n is given by

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} - r \boldsymbol{\nabla} g(\boldsymbol{x}).$$

Using the definition of g(x) write down a recursion relation between $x^{(t+1)}$ and $x^{(t)}$. [2 marks]

$$oldsymbol{x}^{(t+1)} = oldsymbol{x}^{(t)} - r oldsymbol{Q} (oldsymbol{x}^t - oldsymbol{x}^*)$$

(e) Defining $\Delta^{(t)} = (x^{(t)} - x^*)$ obtain a recursion relation between $\Delta^{(t+1)}$ and $\Delta^{(t)}$. (This is easy if you subtract x^* from both sides of the recursion equation for $x^{(t+1)}$.)

$$\boldsymbol{\Delta}^{(t+1)} = (\mathbf{I} - r\mathbf{Q})\boldsymbol{\Delta}^{(t)}.$$

(f) Using the eigenvalue decomposition $\mathbf{Q} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^\mathsf{T}$ and defining $\boldsymbol{z}^{(t)} = \mathbf{V}^\mathsf{T} \boldsymbol{\Delta}^t$ write out a recursion relation between $\boldsymbol{z}^{(t+1)}$ and $\boldsymbol{z}^{(t)}$. (This is helped by multiplying the recursion relation on the left by \mathbf{V}^T and using the fact that \mathbf{V} is an orthogonal matrix.)

$$\boldsymbol{z}^{(t+1)} = (\mathbf{I} - r\boldsymbol{\Lambda})\boldsymbol{z}^t$$

(g) Solve the recursion relation to obtain a formula for $x^{(t)}$ in terms of the initial state $x^{(0)}$. Express this formula for the i^{th} component of $x^{(t)}$ and hence find a condition on the learning rate r to ensure convergence. [4 marks]

The solution to the recursion equation is trivially.

$$\boldsymbol{z}^{(t)} = (\mathbf{I} - r\boldsymbol{\Lambda})^t \boldsymbol{z}^{(0)}.$$

As A is diagonal

$$z_i^{(t)} = (1 - r\lambda_i)^t z_i^{(0)}.$$

Thus the condition for $z_i^{(t)}$ to converge is that $0 < r\lambda_i < 2$. For all $z^{(t)}$ to converge we require $0 < r < 2/\lambda_{max}$.

End of question 1

2

(a) Consider the non-quadratic minimum at x^* given by

$$f(x) = \frac{c}{2}(x - x^*)^2 + \frac{d}{6}(x - x^*)^3$$

where we use Newton's method

$$x^{(t+1)} = x^{(t)} - \frac{f'(x^{(t)})}{f''(x^{(t)})}.$$

by computing the derivatives and expanding for small $x^{(t)}-x^*$ show that $x^{(t+1)}-x^*=O\left(\left(x^{(t)}-x^*\right)^2\right)$.

(To do this we need to expand a term with the structure

$$\frac{r+s\epsilon}{u+v\epsilon}.$$

Note that we can use the geometric series expansion to write

$$\frac{1}{u+v\epsilon} = \frac{1}{u} \frac{1}{1+\frac{v}{u}\epsilon} = \frac{1}{u} \left(1 - \frac{v}{u}\epsilon + \left(\frac{v}{u}\epsilon\right)^2 - \cdots\right)$$

which is convergent provided $|\frac{v}{u}\epsilon| < 1$.)

[5 marks]

Using

$$f'(x) = c(x - x^*) + \frac{d}{2}(x - x^*)^2$$
 $f''(x) = c + d(x - x^*)$

so that

$$x^{(t+1)} = x^{(t)} - \frac{c(x^{(t)} - x^*) + \frac{d}{2}(x^{(t)} - x^*)^2}{c + d(x^{(t)} - x^*)}$$

Subtracting x^* from both sides of this equation and writing $\epsilon^{(n)}=x^{(t)}-x^*$.

We find

$$\begin{split} \epsilon^{(t+1)} &= \epsilon^{(t)} - \frac{c\epsilon^{(t)} + \frac{d}{2}\left(\epsilon^{(t)}\right)^2}{c + d\epsilon^{(t)}} \\ &= \epsilon^{(t)} - \left(c\epsilon^{(t)} + \frac{d}{2}\left(\epsilon^{(t)}\right)^2\right) \frac{1}{c} \left(1 - \frac{d}{c}\epsilon^{(t)} + \frac{d^2}{c^2}\left(\epsilon^{(t)}\right)^2 + \cdots\right) \\ &= \frac{d}{2c} \left(\epsilon^{(t)}\right)^2 + O\left(\left(\epsilon^{(t)}\right)^3\right) = O\left(\left(\epsilon^{(t)}\right)^2\right) \end{split}$$

that is $x^{(t+1)} - x^* = O((x^{(t)} - x^*)^2)$.

(b) Consider the function

$$h(x) = -x\log(x)$$

defined for $0 < x \le 1$. By computing h'(x) and setting h'(x) = 0 compute the value of x^* that maximises h(x). [2 marks]

$$h'(x) = -\log(x) - 1$$

Thus h'(x) = 0 has a solution at $x^* = e^{-1}$.

(c) Compute h''(x) and thus compute the Newton update function

$$n(x) = x - \frac{h'(x)}{h''(x)}$$

(the answer is rather surprising and in no way general).

[3 marks]

$$h''(x) = \frac{-1}{t}$$
 so that

$$n(x) = x - x(x\log(x) + 1) = -x\log(x).$$

It is a coincident that n(x) = h(x).

(d) On the axes given below plot $x^{(t)}$ for $t=0,1,2,\ldots,10$, starting from $x^{(0)}=0.5$ where we use the gradient ascent updates

$$x^{(t+1)} = x^{(t)} + rh'(x^t)$$

for $r = \{0.3, 0.4, 0.5\}$ (that is you should plot three curves).

Also plot $x^{(t)}$ where $x^{(t+1)} = n(x^{(t)})$ (that is using Newton's update formula) for t = 0,1,2,3 and 4—note that to machine precision $x^{(5)} = x^*$. [10 marks]

End of question 2

3

(a) Show that for $p_i > 0$ the function

$$h(oldsymbol{p}) = -\sum_i p_i \log(p_i)$$

is strongly convex-down. Hint: show that the Hessian matrix is negative-definite.
[3 marks]

We note that the Hessian H has entries

$$H_{ij} = \frac{\partial^2 h(\mathbf{p})}{\partial p_i \partial p_j} = 0$$
 $H_{ii} = \frac{\partial^2 h(\mathbf{p})}{\partial p_i^2} = -\frac{1}{p_i}$

Thus the Hessian is a diagonal matrix with $H_{ii}=-1/p_i<0$ (since $p_i>0$). The eigenvalues of a diagonal matrix are equal to the diagonal elements so that $\lambda_i<0$ for all i. This is a necessary and sufficient condition for H to be negative-definite and hence h(p) is strongly convex-down.

(b) Write down the Lagrangian, \mathcal{L} , for the problem of maximising h(p) subject to the constraints

$$\sum_{i} p_i = 1 \qquad \sum_{i} p_i E_i = U.$$

Then explain why there is a unique solution to this constrained optimisation problem.

[2 marks]
TURN OVER
Page **5** of **6**

The Lagrangian is given by

$$\mathcal{L} = h(\mathbf{p}) - \alpha \left(\sum_{i} p_{i} - 1 \right) - \beta \left(\sum_{i} p_{i} E_{i} - U \right)$$

The problem has a unique solution because the Lagrangian is strongly convex-down. This follows because $h(\boldsymbol{p})$ is strongly convex-down and the constraints are linear (both convex-up and convex-down). The sum of a strongly convex function and another convex functions is strongly convex.

(c) By setting $\partial \mathcal{L}/\partial p_i=0$ find the value of p_i that maximises \mathcal{L} in terms of E_i and the Lagrange multipliers. Use the constraint $\sum_i p_i=1$ to eliminate the Lagrange multiplier that enforces this constraint. [5 marks]

We note that

$$\frac{\partial h(\mathbf{p})}{\partial p_i} = -\log(p_i) - 1 - \alpha - \beta E_i$$

so that

$$p_i = e^{-\alpha - 1 - \beta E_i}$$

Using the constraint $\sum_i p_i = 1$ then

$$\sum_{i} e^{-\alpha - 1 - \beta E_i} = 1$$

Dividing through by this we find

$$p_i = \frac{\mathrm{e}^{-\beta E_i}}{\sum_j \mathrm{e}^{-\beta E_j}}.$$

This is the famous Boltzmann distribution.

End of question 3