Abundance and α -diversity

October 30, 2020

Count Data

	OTU 1	OTU 2	 Meta 1	Meta 2	
Sample 1					
Sample 2					
Sample N					

Exploratory Analysis and Quality Control

Collector's Curves (aka rarefaction)

Absolute Abundance

Sample

Caveat

Absolute Abundance

Sample

Relative Abundance

Sample

Bad Figures: Pie Charts

Plasma

Red Blood Cells

Buffy Coat

Diversity

Diversity

Diversity

Diversity

Alpha Diversity

- Diversity within a sample
 - Richness: number of different species
 - Evenness: distribution of species (i.e. relative abundance of species)

Richness

Richness: 5 Richness: 10

Evenness

Richness: 5

Evenness: 1

Richness: 5

Evenness: 0.48

Alpha Diversity Metrics

Observed Richness

Counting

Shannon (entropy)

Gambling

- Simpson
- Chao1
- ACE (abundance-based coverage estimators)

Richness Estimators (Weirdos)

Gambling Metrics

- Jar with 8 balls
 - Shannon: How much would you bet that a randomly selected ball is red?

$$H' = -\sum_{i=1}^{R} p_i \ln p_i$$

 Simpson: How much would you bet that two randomly selected balls are the same color?

$$\lambda = \sum_{i=1}^{R} p_i^2$$

where p_i is the proportion of individuals belonging to the ith species

	Jar 1	Jar 2	Jar 3	Jar 4
Red	8	5	2	1
Yellow	0	1	2	2
Green	0	1	2	2
Blue	0	1	2	3
Total	8	8	8	8

shannon	0.00	1.07	1.39	1.32
simpson	0.00	0.56	0.75	0.72

Richness Estimators (Weirdo Metrics)

 Chao1: How many species are present, and how many are observed only once or twice?

 ACE: How many species are present, and how many are observed less than 10 times?

Richness Estimators (Weirdo Metrics)

 Chao1: How many species are present, and how many are observed only once or twice?

$$S_p = S_o + \frac{a_1(a_1 - 1)}{2(a_2 + 1)}$$

where So is the observed richness, a_1 is the number of species observed once, and a_2 is the number of species observed once

 ACE: How many species are present, and how many are observed less than 10 times?

$$S_p = S_{\text{abund}} + \frac{S_{\text{rare}}}{C_{\text{ACE}}} + \frac{a_1}{C_{\text{ACE}}} \gamma^2, \text{ where}$$

$$C_{\text{ACE}} = 1 - \frac{a_1}{N_{\text{rare}}}$$

$$\gamma^2 = \frac{S_{\text{rare}}}{C_{\text{ACE}}} \sum_{i=1}^{10} i(i-1)a_1 \frac{N_{\text{rare}} - 1}{N_{\text{rare}}}.$$

 S_{abund} and S_{rare} are the numbers of species of abundant and rare species, with an arbitrary upper limit of 10 individuals for a rare species, and N_{rare} is the total number of individuals in rare species

Calculating Diversity

Richness	5	10	5
Shannon	1.60	2.30	0.78
Simpson	0.8	0.9	0.35
Evenness	1	1	0.48
Chao1	5	10	11
ACE	5	10	NaN

Alpha Diversity Metrics

