Lab2 Performance Lab And Bonus Lab

DDL: 10/4/2021

Part I

Strassen-Winograd 算法

实现一个串行的 Strassen-Winograd 算法 (Strassen 矩阵乘的一个变形)。要求,从命令行通过 argc/argv 读入矩阵规模 n,计算结果与一个普通矩阵乘进行结果比较和检验。

算法描述如下:

0.1

将输入矩阵 A、B 和输出矩阵 C 分割成 4 块:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

0.2

用 A、B 子矩阵计算 T_i 和 S_i , T_i 是 A 的 4 个子矩阵的线性组合, S_i 是 B 的 4 个子矩阵的线性组合,将 T_i 和 S_i 逐个相乘,得到 Q_i ,C 的 4 个

子矩阵就是 Q_i 的线性组合:

0.3

Strassen-Winograd 算法是一个递归算法,对7个小矩阵的乘积,递归调用以上步骤。

算法框架: 附件: cppstrawino.cpp

要求 在给出的算法框架中,修改//to do... 部分,其余部分不变。

评分 1. 保证正确实现 2. 在正确实现的基础上,使用尽可能多的优化。 以最后性能的高低排名并给分.

Part II

bonus lab (选做) DDL:3/5/2021

实现一个能够自动测试以下表格中所有 L/K 组合的程序。可以考虑用 C++ template meta-programming 实现。

Unrolling & Accumulating: Double *

Case

- Intel <u>Haswell</u>
- Double FP Multiplication
- Latency bound: 5.00. Throughput bound: 0.50

	FP *	Unrolling Factor L							
Accumulators	K	1	2	3	4	6	8	10	12
	1	5.01	5.01	5.01	5.01	5.01	5.01	5.01	
	2		2.51		2.51		2.51		
	3			1.67					
	4				1.25		1.26		
	6					0.84			0.88
	8						0.63		
	10							0.51	
	12								0.52