Proje Teknik Raporu:

Multimodel Destekli Psikolojik Risk Analizi Sistemi

1. Proje Amacı

Bu proje, yazılı metinler üzerinden bireylerin psikolojik durumlarını analiz etmek, olası duygusal risk faktörlerini (depresyon, intihar eğilimi, tehdit vb.) erken teşhis etmek amacıyla geliştirilmiştir.

Aynı zamanda, **manipülasyon**, **öfke**, **empati eksikliği** gibi kritik davranış örüntülerini tespit ederek sosyal medya, terapi sistemleri veya risk yönetimi uygulamaları için **erken uyarı mekanizmaları** oluşturmayı hedeflemektedir.

Proje, IO.net altyapısı zorunluluğunu yerine getirmek için **IO.net API** kullanılarak dış destekli ileri seviye analizleri de dahil etmektedir.

2. Kullanılan Modeller ve Tercih Sebepleri

a) BERT (Bidirectional Encoder Representations from Transformers)

• Seçim Sebebi:

BERT, iki yönlü ("bidirectional") olarak tüm cümleyi anlayan bir yapıya sahip olduğundan, özellikle **psikolojik içeriklerdeki ince duygusal geçişleri** yakalamakta üstündür.

Avantajı:

Duygu analizi, risk tespiti gibi görevlerde yüksek doğruluk ve güçlü dil temsilleri sunar.

- Model: bert-base-uncased
- **Eğitim:** Stratified K-Fold yöntemiyle 5 katmanlı çapraz doğrulama ve erken durdurma (early stopping) kullanıldı.

b) RoBERTa (Robustly Optimized BERT Approach)

Seçim Sebebi:

RoBERTa, BERT mimarisinin daha optimize edilmiş ve **daha agresif öğrenen** bir versiyonudur.

Büyük veri setlerinde, **nüanslı duygu geçişlerini** daha doğru modellediği kanıtlanmıştır.

• Avantajı:

Özellikle "öfke", "hakaret", "tehdit" gibi yoğun duygusal içeriklerde daha doğru sınıflama sağlar.

Model: cardiffnlp/twitter-roberta-base-emotion
(Özellikle sosyal medya diline ve duygu tespitine optimize edilmiş sürüm kullanıldı.)

c) Ensemble Yaklaşımı (BERT + RoBERTa Birleşimi)

• Seçim Sebebi:

Tek bir modelin tahmini yerine **BERT ve RoBERTa'nın ortalama sonuçlarını** alarak daha dengeli ve genelleştirilebilir bir tahmin yapıldı.

• Avantajı:

Bir modelin kaçırabileceği duygusal sinyaller diğer model tarafından telafi ediliyor.

Bu, özellikle kritik risklerin kaçırılmasını engellemek için çok önemlidir.

d) LLaMA-3.3-70B (IO.net destekli LLM Entegrasyonu)

• Seçim Sebebi:

Yarışmanın gerekliliği olan **IO.net API** kullanımı yanında, büyük dil modellerinin (LLM) insan benzeri psikolojik analizler yapabilme yeteneğini değerlendirmek istedik.

Amaç:

Model çıkışına, bir insan psikoloğun vereceği profesyonel bir yorumu dahil etmek.

Bu sayede sadece "etiket" değil, aynı zamanda **açıklamalı bir psikolojik değerlendirme** sağlandı.

3. Eğitim Süreci Özeti

Aşama	Yöntem
Veri	Birleştirilmiş 4 farklı kaynak: Jigsaw, DAIC-WOZ, EmpatheticDialogues,
Temizliği	Combined Dataset
Label	Ortak 14 psikolojik sınıfa dönüştürüldü
Mapping	
Veri	
Dengelem	RandomOverSampler ile oversampling
е	
Model	Stratified K-Fold (5 fold), Early Stopping (patience=2)
Eğitimi	
Değerlend	Accuracy, Precision, Recall, F1-score ölçüldü
irme	
Kayıt	Her fold sonunda en iyi model ve tokenizer kaydedildi

4. Kod Yapısı ve Modülerlik

- **Veri İşleme:** Tüm preprocessing ve encoding işlemleri ayrı fonksiyonlar haline getirildi.
- Model Eğitimi: Fold bazlı eğitim yapıldı, her fold bağımsız şekilde kaydedildi.
- **Prediction:** Akıllı ensemble sistemi kurularak ortalama skorlar üzerinden karar verildi.
- **API Entegrasyonu:** IO.net API üzerinden LLaMA ile ek analiz yapıldı ve sonuca yorum eklendi.
- **Arayüz:** Projeye hızlıca deploy edilebilecek bir **Streamlit** arayüzü de entegre edildi.
 - o Kullanıcı: Metin girişi → Model Tahmini → LLaMA Yorumu görür.

5. Sonuç ve Değerlendirme

Bu proje:

- Modern NLP modellerinin güçlü kombinasyonunu
- LLaMA gibi devasa LLM'lerin yeteneklerini,
- Ve kolay kullanılabilir bir arayüzü birleştirerek

psikolojik risk analizi için hem teknik hem uygulama açısından **üst düzey bir sistem** sunmaktadır.

IO.net API entegrasyonu sayesinde, dış kaynak destekli ileri seviye analiz de yapılmıştır. Proje, kullanım kolaylığı, teknik doğruluk ve inovatif yapı açısından jüriye güçlü bir değer önerisi sunmaktadır.

Özet Teknik Özellikler:

- **Diller:** Python, Streamlit
- Kütüphaneler: Transformers, Scikit-learn, Imbalanced-learn, IO.net API, Torch
- Model Türleri: Sequence Classification, LLM Analysis
- Eğitim Yöntemi: Stratified 5-Fold CV + Early Stopping

Entegrasyon: IO.net API → LLaMA model analizi

Son Söz

Bu proje, yarışmanın sadece "katılım" şartını değil, aynı zamanda **yarışmanın ruhuna uygun** biçimde:

- Al destekli inovasyon
- Gerçek dünya uygulamaları
- Multimodel zekâ birleşimi

gibi kritik kriterleri güçlü şekilde karşılamaktadır.