ME 543: Computational Fluid Dynamics

COMPUTER ASSIGNMENT - 2

Study of Couette Flow using Finite Difference Method using Implicit and Explicit methods

Explicit Methods:

Forward Time Central Space (FTCS)

Implicit Methods:

Backward Time Central Space (BTCS) – Gauss-Seidel Backward Time Central Space (BTCS) – Tridiagonal Matrix Algorithm Crank Nicolson (CN) – Tridiagonal Matrix Algorithm

NIRMAL S.

[234103107]

Date: 29-09-2023

Couette Flow:

Fig A: Initial state of flow (at time t=0)

Differential Equation:
$$\frac{\partial u}{\partial t} = \frac{1}{Re_H} \frac{\partial^2 u}{\partial y^2}$$
; where $Re_H = \frac{UH}{v}$

Inputs to the code:

$$M = 101$$

$$N = 101$$

$$Re_H = 100$$

$$\Delta t = 5 \times 10^{-3}$$
 (for Explicit Methods)

$$\Delta t = 1 \times 10^{-2}$$
 (for Implicit Methods)

1. Explicit Method:

1.1. Forward Time Central Space (FTCS)

Discretized Equation:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{1}{Re_H} \frac{u_{j-1}^n - 2u_j^n + u_{j+1}^n}{(\Delta x)^2}$$

$$\frac{u_j^{n+1}}{u_j^n} = u_j^n + \Gamma(u_{j-1}^n - 2u_j^n + u_{j+1}^n)$$

where,
$$\Gamma = \frac{\Delta t}{(\Delta x)^2 Re_H}$$

Taking $\Delta x = 0.01$, $\Delta t = 5 \times 10^{-3}$ and $Re_H = 100$: $\therefore \Gamma = 0.5$

Velocity Profiles at different times:

Fig 1: Velocity Profiles at different times for FTCS iterative Method

2. Implicit Method:

2.1.BTCS: Gauss Seidel Iterative Method

Discretized Equation:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{1}{Re_H} \frac{u_{j-1}^{n+1} - 2u_j^{n+1} + u_{j+1}^{n+1}}{(\Delta x)^2}$$

$$\Gamma u_{j-1}^{n+1} - (1+2\Gamma)u_j^{n+1} + \Gamma u_{j+1}^{n+1} = -u_j^n$$

where,
$$\Gamma = \frac{\Delta t}{(\Delta x)^2 Re_H}$$

Taking $\Delta x = 0.01$, $\Delta t = 10^{-2}$ and $Re_H = 100$: $\therefore \Gamma = 1$

2.2.BTCS: Tridiagonal Matrix Algorithm

Discretized Equation:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{1}{Re_H} \frac{u_{j-1}^{n+1} - 2u_j^{n+1} + u_{j+1}^{n+1}}{(\Delta x)^2}$$

$$\Gamma u_{j-1}^{n+1} - (1+2\Gamma)u_j^{n+1} + \Gamma u_{j+1}^{n+1} = -u_j^n$$

where,
$$\Gamma = \frac{\Delta t}{(\Delta x)^2 Re_H}$$

Taking $\Delta x = 0.01$, $\Delta t = 10^{-2}$ and $Re_H = 100$: $\therefore \Gamma = 1$

2.3. Crank Nicolson: Tridiagonal Matrix Algorithm

Discretized Equation:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{1}{2 Re_H} \left[\frac{u_{j-1}^{n+1} - 2u_j^{n+1} + u_{j+1}^{n+1}}{(\Delta x)^2} + \frac{u_{j-1}^n - 2u_j^n + u_{j+1}^n}{(\Delta x)^2} \right]$$

$$\frac{\Gamma}{2}u_{j-1}^{n+1} - (1+\Gamma)u_{j}^{n+1} + \frac{\Gamma}{2}u_{j+1}^{n+1} = -\frac{\Gamma}{2}u_{j-1}^{n} - (1-\Gamma)u_{j}^{n} - \frac{\Gamma}{2}u_{j+1}^{n}$$

$$where, \Gamma = \frac{\Delta t}{(\Delta x)^{2}Re_{H}}$$

Taking $\Delta x = 0.01$, $\Delta t = 10^{-2}$ and $Re_H = 100$: $\therefore \Gamma = 1$

Fig 2: Velocity Profiles at different times for FTCS iterative Method

Convergence History ($\epsilon vs T$) for all Schemes:

Fig 3: Convergence History of Error vs Time for all Schemes

Comparison Study of number of time iterations and physical time taken to converge up to $\epsilon=10^{-6}$.

Table 1: Number of Time Iterations and Physical time taken for each iteration to converge up to $\epsilon=10^{-6}$

Iterative Method	No. of Time Iterations	Physical Time taken (msec)
FTCS	58.205	6016.210
BTCS Gauss Seidel	98.02	9267.148
BTCS TDMA	61.76	4610.940
Crank Nicolson TDMA	61.73	6015.469