Cálculo em Várias Variáveis Máximos e mínimos.

ICT-Unifesp

2 Exercícios

Mais detalhes na Seção 14.7 do livro do Stewart. Recurso disponível online pela Biblioteca do ICT.

Relembrando...

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}$). Suponha que f'' seja contínua em um intervalo I que contenha x_0 .

Relembrando...

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}$). Suponha que f'' seja contínua em um intervalo I que contenha x_0 .

Se $f'(x_0) = 0$, então x_0 é um ponto crítico de f .

Relembrando...

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}$). Suponha que f'' seja contínua em um intervalo I que contenha x_0 .

Se $f'(x_0) = 0$, então x_0 é um ponto crítico de f .

Se $f'(x_0) = 0$ e $f''(x_0) > 0$, então x_0 é ponto de mínimo local de f.

Relembrando...

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}$). Suponha que f'' seja contínua em um intervalo I que contenha x_0 .

Se $f'(x_0) = 0$, então x_0 é um ponto crítico de f .

Se $f'(x_0) = 0$ e $f''(x_0) > 0$, então x_0 é ponto de mínimo local de f.

Se $f'(x_0) = 0$ e $f''(x_0) < 0$, então x_0 é ponto de máximo local de f.

Relembrando...

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}$). Suponha que f'' seja contínua em um intervalo I que contenha x_0 .

Se $f'(x_0) = 0$, então x_0 é um ponto crítico de f .

Se $f'(x_0) = 0$ e $f''(x_0) > 0$, então x_0 é ponto de mínimo local de f.

Se $f'(x_0) = 0$ e $f''(x_0) < 0$, então x_0 é ponto de máximo local de f.

Se $f'(x_0) = 0$ e $f''(x_0) = 0$ e se f''(x) mudar de sinal em x_0 , então x_0 é ponto de inflexão de f.

Definição

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}^2$) e considere um ponto $(x_0, y_0) \in D$.

Se $f(x_0, y_0) \le f(x, y)$ para todo $f(x, y) \in D$ numa vizinhança de $f(x_0, y_0)$, dizemos que $f(x_0, y_0)$ é ponto de mínimo local de $f(x_0, y_0)$ é um valor mínimo local de $f(x_0, y_0)$ é um valor mínimo local de $f(x_0, y_0)$ é um valor mínimo local de $f(x_0, y_0)$ e un va

Definição

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}^2$) e considere um ponto $(x_0, y_0) \in D$.

Se $f(x_0, y_0) \le f(x, y)$ para todo $f(x, y) \in D$ numa vizinhança de $f(x_0, y_0)$, dizemos que $f(x_0, y_0)$ é ponto de mínimo local de $f(x_0, y_0)$ é um valor mínimo local de $f(x_0, y_0)$ é um valor mínimo local de $f(x_0, y_0)$ e um va

Se $f(x_0, y_0) \ge f(x, y)$ para todo $f(x, y) \in D$ numa vizinhança de $f(x_0, y_0)$, dizemos que $f(x_0, y_0)$ é ponto de máximo local de $f(x_0, y_0)$ é um valor máximo local de $f(x_0, y_0)$ é um valor máximo local de $f(x_0, y_0)$ e um va

Definição

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}^2$) e considere um ponto $(x_0, y_0) \in D$.

Se $f(x_0, y_0) \le f(x, y)$ para todo $f(x, y) \in D$, dizemos que $f(x_0, y_0)$ é ponto de mínimo global de $f(x_0, y_0)$ é um valor mínimo global de $f(x_0, y_0)$

Definição

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}^2$) e considere um ponto $(x_0, y_0) \in D$.

Se $f(x_0, y_0) \le f(x, y)$ para todo $f(x, y) \in D$, dizemos que $f(x_0, y_0)$ é ponto de mínimo global de $f(x_0, y_0)$ é um valor mínimo global de $f(x_0, y_0)$

Se $f(x_0, y_0) \ge f(x, y)$ para todo $f(x, y) \in D$, dizemos que $f(x_0, y_0)$ é ponto de máximo global de $f(x_0, y_0)$ é um valor máximo global de $f(x_0, y_0)$ é um valor máximo global de $f(x_0, y_0)$ e um valor máximo global de $f(x_0,$

Exemplo

A função $f(x,y) = x^2 + y^2$ tem um mínimo global em (0,0), mas não tem máximo local.

Definição

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}^2$) e considere um ponto $(x_0, y_0) \in D$. Dizemos que (x_0, y_0) é um ponto crítico de f se

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 e $\frac{\partial f}{\partial y}(x_0, y_0) = 0$

ou se pelo menos uma das derivadas parciais de primeira ordem de f não existe em (x_0, y_0) .

Os pontos de máximo e mínimo de uma função f são chamados pontos extremos de f.

Os pontos de máximo e mínimo de uma função f são chamados pontos extremos de f.

Teorema

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}^2$ aberto) uma função e $(x_0, y_0) \in D$. Se (x_0, y_0) é um ponto extremo de f e as derivadas parciais de primeira ordem existem nesse ponto, então

$$\nabla f(x_0, y_0) = (0, 0).$$

Assim, os candidatos à pontos extremos (pontos de máximo ou mínimo) de uma função diferenciável de duas variáveis f, serão seus pontos críticos:

$$(x_0,y_0)$$
 é um ponto extremo $\stackrel{Teo.}{\Longrightarrow} \nabla f(x_0,y_0) = (0,0),$ $\nabla f(x_0,y_0) = (0,0) \stackrel{Def.}{\Longrightarrow} (x_0,y_0)$ é ponto crítico (não necessariamente um ponto extremo).

11/30

Definição

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}^2$) uma função diferenciável. Dizemos que um ponto crítico $(x_0, y_0) \in D$ de f é um ponto de sela de f se, para qualquer vizinhança de (x_0, y_0) , existirem pontos (x_1, y_1) e (x_2, y_2) tais que

$$f(x_1, y_1) < f(x_0, y_0) < f(x_2, y_2).$$

Exemplo

A função $f(x, y) = x^2 - y^2$ tem ponto de sela em (0, 0).

Definição

Seja $f:D\to\mathbb{R}$ (com $D\subset\mathbb{R}^2$) uma função com derivadas parciais de segunda ordem contínuas. A matriz

$$H_f(x,y) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial y \partial x}(x,y) \\ \frac{\partial^2 f}{\partial x \partial y}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{bmatrix}$$

é chamada matriz Hessiana de f no ponto (x, y).

Teorema

Seja $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}^2$) de classe C^2 numa vizinhança de $(x_0, y_0) \in D$ e $\nabla f(x_0, y_0) = (0, 0)$.

Se $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0$ e $\det(H_f(x_0, y_0)) > 0$, então (x_0, y_0) é ponto de mínimo local de f.

Se $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0$ e $\det(H_f(x_0, y_0)) > 0$, então (x_0, y_0) é ponto de máximo local de f.

Se $\det(H_f(x_0, y_0)) < 0$, então (x_0, y_0) é ponto de sela de f.

Se $det(H_f(x_0, y_0)) = 0$, nada podemos concluir sobre (x_0, y_0) .

Exemplo

Determinar os valores máximos e mínimos locais e os pontos de sela da função $f(x,y) = x^4 + y^4 - 4xy + 1$.

Exemplo

Determinar os valores máximos e mínimos locais e os pontos de sela da função $f(x,y) = x^4 + y^4 - 4xy + 1$.

O ponto (0,0) é ponto de máximo global?

Exemplo

Determinar os valores máximos e mínimos locais e os pontos de sela da função $f(x,y) = x^4 + y^4 - 4xy + 1$.

O ponto (0,0) é ponto de máximo global?

Não! Basta observar que

$$f(1,0) = 2 > 1 = f(0,0).$$

Os pontos (-1, -1) e (1, 1) são pontos de mínimo global?

Os pontos (-1,-1) e (1,1) são pontos de mínimo global?

Sim! Para provar isto devemos mostrar que

$$f(x,y) \ge f(-1,-1) = f(1,1) = -1, \ \forall (x,y) \in \mathbb{R}^2.$$

Observe que

$$x^4 + y^4 - 4xy + 2 = (x^2 - y^2)^2 + 2(xy - 1)^2 \ge 0,$$

logo

$$x^4 + y^4 - 4xy + 1 \ge -1$$
,

como queríamos.

Exercício

Encontre e classifique os pontos críticos da função $f(x,y) = 3xy^2 + x^3 - 3x$.

Relembrando...

Se $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}$) é contínua no intervalo fechado [a, b], então f assume um valor mínimo global e um valor máximo global em [a, b] (Teorema de Weierstrass).

Relembrando...

Se $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}$) é contínua no intervalo fechado [a, b], então f assume um valor mínimo global e um valor máximo global em [a, b] (Teorema de Weierstrass).

Quando podemos garantir que uma função de duas variáveis assumirá um valor máximo global e um valor mínimo global?

Dado $A \subset \mathbb{R}^2$, dizemos que (a, b) pertence à fronteira de A se toda bola aberta de centro em (a, b),

$$B_r(a,b) = \{(x,y) \in \mathbb{R}^2 | ||(x,y) - (a,b)|| < r\},\$$

contém pontos de A e pontos não pertencentes a A.

Dado $A \subset \mathbb{R}^2$, dizemos que (a, b) pertence à fronteira de A se toda bola aberta de centro em (a, b),

$$B_r(a,b) = \{(x,y) \in \mathbb{R}^2 | ||(x,y) - (a,b)|| < r\},\$$

contém pontos de A e pontos não pertencentes a A.

Dizemos que um conjunto $A \subset \mathbb{R}^2$ é fechado se ele contém todos os pontos de sua fronteira.

Dado $A \subset \mathbb{R}^2$, dizemos que (a, b) pertence à fronteira de A se toda bola aberta de centro em (a, b),

$$B_r(a,b) = \{(x,y) \in \mathbb{R}^2 | ||(x,y) - (a,b)|| < r\},\$$

contém pontos de A e pontos não pertencentes a A.

Dizemos que um conjunto $A \subset \mathbb{R}^2$ é fechado se ele contém todos os pontos de sua fronteira.

Dizemos que um conjunto $A \subset \mathbb{R}^2$ é limitado se ele está contido em algum retângulo.

Definição

Um conjunto que é fechado e limitado é chamado de compacto.

Definição

Um conjunto que é fechado e limitado é chamado de compacto.

Exemplo

O conjunto $A = \{(x, y) | 1 \le x \le 2, -1 \le y \le 1\}$ é compacto.

Exemplo

O conjunto $A = \{(x,y)|1 \leqslant x < 2, -1 \leqslant y \leqslant 1\}$ não é compacto, pois não é fechado (e nem aberto).

Teorema (Weierstrass)

Se $f: D \to \mathbb{R}$ (com $D \subset \mathbb{R}^2$) é contínua em um conjunto compacto $A \subset D$, então f assume um valor máximo global e um valor mínimo global em A.

Procedimento para encontrar os valores máximo e mínimo globais de f num conjunto fechado e limitado $A \subset \mathbb{R}^2$:

- 1. Encontre os pontos críticos de f que pertençam ao conjunto A, e calcule o valor de f nesses pontos.
- 2. Encontre os valores extremos de f na fronteira de A.
- 3. O maior valor de f encontrado nos passos 1 e 2 é o valor máximo global de f em A e o menor deles é o valor mínimo global de f em A.

Exemplo

Encontre os valores máximo e mínimo globais de

$$f(x,y) = 2 + 2x + 2y - x^2 - y^2$$

no conjunto

$$A = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0 \ e \ x + y \le 3\}.$$

Procurando pontos críticos de f:

$$\begin{cases} f_x = 2 - 2x = 0 \\ f_y = 2 - 2y = 0 \end{cases} \implies (x, y) = (1, 1).$$

Note que $(1,1) \in A$.

Vamos classificar este ponto crítico:

$$H_f(x,y)=\left[egin{array}{ccc} -2 & 0 \ & & \ & 0 & -2 \end{array}
ight].$$

Logo,

$$\det(H_f(x,y))=4.$$

Portanto, (1,1) é ponto de máximo local e f(1,1) = 4.

Na fronteira de A temos as seguintes possibilidades:

• $x = 0 \Longrightarrow f(0, y) = 2 + 2y - y^2$, com $0 \le y \le 3$, que é uma parábola voltada para baixo. Seu máximo ocorre em y = 1 e seu mínimo em y = 3. Temos que f(0, 1) = 3 e f(0, 3) = -1.

Na fronteira de A temos as seguintes possibilidades:

- $x = 0 \Longrightarrow f(0, y) = 2 + 2y y^2$, com $0 \le y \le 3$, que é uma parábola voltada para baixo. Seu máximo ocorre em y = 1 e seu mínimo em y = 3. Temos que f(0, 1) = 3 e f(0, 3) = -1.
- $y = 0 \Longrightarrow f(x,0) = 2 + 2x x^2$, com $0 \le x \le 3$, que é uma parábola voltada para baixo. Seu máximo ocorre em x = 1 e seu mínimo em x = 3. Temos que f(1,0) = 3 e f(3,0) = -1.

Na fronteira de A temos as seguintes possibilidades:

- $x = 0 \Longrightarrow f(0, y) = 2 + 2y y^2$, com $0 \le y \le 3$, que é uma parábola voltada para baixo. Seu máximo ocorre em y = 1 e seu mínimo em y = 3. Temos que f(0, 1) = 3 e f(0, 3) = -1.
- $y = 0 \Longrightarrow f(x,0) = 2 + 2x x^2$, com $0 \le x \le 3$, que é uma parábola voltada para baixo. Seu máximo ocorre em x = 1 e seu mínimo em x = 3. Temos que f(1,0) = 3 e f(3,0) = -1.
- $y = 3 x \Longrightarrow f(x, 3 x) = -1 + 6x 2x^2$, com $0 \le x \le 3$, que é uma parábola voltada para baixo. Seu máximo ocorre em x = 3/2 e seus mínimos em x = 0 e x = 3. Temos que f(3/2, 3/2) = 7/2 e f(3,0) = f(0,3) = -1.

Portanto, f restrita ao conjunto A tem valor máximo f(1,1)=4 e valor mínimo -1=f(0,3)=f(3,0).

Exercícios

Seção 14.7 do Stewart: 1-22, 33-40, 43-59.