

Matemática Teste II 19 · 04 · 2023

Duração: 90 minutos

Nome:

N.º de identificação civil:

Turma:

Formulário

Gráficos de funções exponenciais e logarítmicas

Regras de derivação

$$(a)' = 0 \qquad (a \in \mathbb{R})$$

$$(x)' = 1$$

$$(ax+b)'=a$$
 $(a,b\in\mathbb{R})$

$$(ax^p)' = apx^{p-1} \ (a \in \mathbb{R}, p \in \mathbb{Z} \setminus \{0\})$$

$$(f+q)' = f' + q'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$(f^n)' = n f^{n-1} f' \qquad (n \in \mathbb{R})$$

$$\left(\sqrt[n]{f}\right)' = \frac{f'}{n\sqrt[n]{f^{n-1}}} \qquad (n \in \mathbb{N})$$

$$y = \log_{\frac{1}{e}} x$$

$$y = \log_{2} x$$

$$y = \ln x$$

$$(\operatorname{sen} f)' = f' \cos f$$

$$(\cos f)' = -f' \operatorname{sen} f$$

$$(\operatorname{tg} f)' = \frac{f'}{\cos^2 f}$$

$$(e^f)' = f'e^f$$

$$(a^f)' = f'a^f \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln f)' = \frac{f'}{f}$$

$$(\log_a f)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Justifique convenientemente todas as suas respostas.

Cotações:

- **1.** a) 12 b) 14 **2.** a) 12 b) 12 **3.** 12 **4.** a) 12 b) 12 c) 14 **5.** 14 **6.** 12 **7.** 14
- **8.** a) 12 b) 12 c) 12 **9.** a) 12 b) 12

Exercício 1 Considere a sucessão $(u_n)_n$, definida por $u_n=\frac{2n+5}{n+1}$.

a) Estude $(u_n)_n$ quanto à monotonia.

b) A sucessão $(u_n)_n$ é uma sucessão limitada? Justifique a sua resposta.

Exercício 2 Determine, caso existam, os seguintes limites:

a)
$$\lim_{n} (\sqrt{n^2 + 1} - n);$$

b) $\lim_{n} \left(1 + \frac{2}{n}\right)^{2n}$.

Exercício 3 Considere a função quadrática f, de domínio \mathbb{R} , definida por $f(x) = x^2 + 2x$. Determine o contradomínio de f. Justifique.

Exercício 4 Considere a função polinomial definida em \mathbb{R} por $p(x) = 2x^3 - 3x^2 - 2x + 3$.

a) Mostre, usando a regra de Ruffini, que $p(x)=(x-1)(2x^2-x-3)$, para qualquer $x\in\mathbb{R}$.

b) Determine $\lim_{x\to 1} \left(\frac{2x^3 - 3x^2 - 2x + 3}{2x - 2}\right)$.

c) Determine, sob a forma de intervalo ou união de intervalos, o conjunto de números reais que verificam a condição $\frac{p(x)}{-x+1} \geq 0$.

Exercício 6 Calcule
$$y'$$
, sendo: $y = (x^5 - 2x)^4$.

Exercício 7 Considere a função f definida por $f(x) = -x^2 - x + 1$. Determine, na forma reduzida, a equação da reta tangente ao gráfico de f no ponto de abcissa f.

Exercício 8 Considere a função real, de variável real, definida por $g(x) = \log_3(x+1) - 2$.

a) Determine o domínio e o contradomínio da função g.

b) Caracterize a função inversa da função g.

c) Resolva em $\mathbb R$ a seguinte equação: g(x)=0.

Exercício 9 Resolva, em \mathbb{R} , as seguintes condições:

a) ln(2x-4) = ln(x-3);

b) $5^{x^2-5} = \frac{1}{5}$.