Object-Oriented Programming I

The 'static' keyword

Slides by Magdin Stoica Updates by Georg Feil

Learning Outcomes

- 1. Explore the use and definition of static methods
- 2. Compare and contrast instance methods with static methods from both a syntax and semantic point of view
- 3. Explore the use and definition of static fields
- 4. Compare and contrast instance fields with static fields from both a syntax and semantic point of view

Reading Assignments

- Head First Java (required)
 - Chapter 10: Numbers and Statics
 - Up to and including "static final variables are constants"

The Static Keyword

(Finally!)

Static Methods

Methods that are shared by all objects of the same class type, and independent from any particular object (instance)

Defining a static method

- Static methods do not belong to a specific object, they are shared by all objects created from the same class
 - Static methods belong to the class, not the object
 - Static methods do NOT have access to normal field variables since field variables belong to specific objects, instances
 - Can't call a method that's not static directly
 - Static method DO have access to static field variables and static methods
- Static methods are declared using the keyword "static", which must follow the visibility modifier
 - public static void main(...) {...}
 - public static int getMaxGuess { return s_maxGuess; }
- Static methods are called using the class name not the object name since they do not belong to a specific object
 - GuessingGame.getMaxGuess(); // GuessingGame is the class name

Static methods

Method	Can Access	
	normal	static
normal	yes	yes
static	no	yes

Examples from the Java library

Math methods

- Math.abs(-30);
- Math.max(12, 35);
- Math.sqrt(2.0);
- Math.round(23.4);
- See http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

Parsing methods

- int value = Integer.parseInt("123");
- double salary = Double.parseDouble("123.45");
- boolean playAgain = Boolean.parseBoolean("true");

Static vs. Instance Methods

Static Methods

- Declared with the keyword "static"
- Shared by all objects
- Invoked using <class name>.<method name>()
- Cannot access field variables
- Can access static field variables
- Does not need an object to be created first

Instance Methods

- No special keyword is required to declared the method
- Specific to each object
- Invoked using
 <obj name>.<method name>()
- Can access field variables
- Can access static field variables
- Needs the object to be created first before the method can be called

Static Fields

Field variables that are shared by all objects of the same class type, and independent from any particular object (instance)

Defining a static field

- Static fields do not belong to a specific object, they are shared by all objects created from the same class
 - Static fields belong to the class, not the object
- Again use the keyword "static", must follow the visibility modifier
 - public static final int MAX_GUESS = 11;
- Static fields are accessed using the class name not the object name since they do not belong to a specific object
 - GuessingGame.MAX_GUESS; // GuessingGame is the class name
- You should avoid using static fields that are not 'final' unless there's a very good reason
 - Changing a field variable that's accessible by more than one object can lead to bad design and cause serious bugs that are hard to find

Example: static fields

```
Makes the field shared
                                                                between all
                                                           GuessingGame objects
               public class GuessingGame
Class declaration
                   private static int numCalls = 0;
                   public void doSomething() {
                                                                This variable is not
                                                                 'final' so it can be
Class definition
                       numCalls++;
                                                               changed by any class
                                                                     instance
```

Only field variables can be static!

Local variables cannot be static!

Instance vs. Static Fields

Static Fields

- All instances of the same class share the same value
- Declared with keyword static
- <class name>.<field name>
- Names are prefixed with "s_"by convention (sometimes)
- Initialized by default to "zero"
- Visibility modifiers allowed
- Used very rarely (except with 'final')

Instance Fields

- Each class instance can have a different value (has own copy)
- No additional keyword
- <object name>.<field name>
- Names are prefixed with "_"(underscore) by convention
- Initialized by default to "zero"
- Visibility modifiers allowed
- Used often as they provide the object's identity

Exercise

- Find your latest version of the Barking Dogs program
- Add a bark counter to the program which counts how many times any dog object "barked"
 - Print out the counter value just before the program ends