Catalizate en Octave Guía de Ejercicios 2

Daniel Millán, Nicolás Muzi, Gabriel Rosa, Petronel Schoeman, Juan Cruz Luffi

CONICET

E3

Facultad de Ciencias Aplicadas a la Industria, UNCuyo San Rafael 5600, Argentina Octubre de 2019

Realice preguntas y no tenga miedo de experimentar (como simple usuario no debería poder realizar demasiados *estragos*).

Ejercicio 1. Calcula:

- a) 2 * (3/(4*sqrt(2))
- b) (2 * 3)/(4*sqrt(2))
- c) ¿Son iguales los resultados de los apartados anteriores?
- d) ¿Es correcta la siguiente orden?2*3/4/sqrt(2)Justifica la respuesta.

Ejercicio 2. Calcula:

- a) $(2^3)^4$
- b) $2^{(3^4)}$
- c) ¿Son iguales los resultados de los apartados anteriores?
- d) ¿Es correcta la siguiente orden?
 2^3^4
 Justifica la respuesta.

Ejercicio 3. Dada una esfera unitaria, pueden inscribirse y circunscribirse cubos. Realice un script que calcule la relación entre el volumen de ambos cubos, es decir

$$\frac{V_{ext}}{V_{int}}$$
,

donde V_{ext} es el cubo exterior (circunscripto) y V_{int} el volumen del cubo interior (inscripto).

Ejercicio 4.

- 1. Descargue en su PC el script "tp2_curvaplana.m" que se encuentra en la web del curso Ingeniate en Octave (Prácticas), ejecute el script e interprete el funcionamiento de las órdenes.
- 2. Modifique el script "tp2_curvaplana.m" hasta que la gráfica obtenida sea la que se muestra en la Figura 1. *Hint*: Consulte a su tutor más próximo!

Figura 1: Los estudiantes deben intentar obtener una imagen similar a la que representa.

Ejercicio 5. Descargue en su PC el script "tp2_ezalgo.m" que se encuentra en la web del curso Ingeniate en Octave (Prácticas), ejecute el script e interprete el funcionamiento de las órdenes.

Durante la práctica tutelada se darán instrucciones sobre diferentes comandos ezALGO.

Ejercicio 6. La distancia en \mathbb{R}^3 entre un punto $P_0 = (x_0, y_0, z_0)$ y un plano dado por ax + by + cz + d = 0, es $d_P = |ax_0 + by_0 + cz_0 + d|/\sqrt{a^2 + b^2 + c^2}$, suponiendo que a, b y c no son todos cero.

Determine la distancia entre P_0 y un plano para:

- 1. $P_0 = (0.5, 0.5, 0.5)$ y el plano $x + y + z = \sqrt{3}$.
- 2. $P_0 = (1.5, 0.5, 2.0)$ y el plano x y + z = -3.

Hint: Descargue en su PC el script "tp2_distanciaplano.m".

Ejercicio 7. Un cañón dispara un proyectil con velocidad inicial v_0 y ángulo de inclinación θ . La posición del proyectil en cada instante viene dada por las expresiones:

$$x = v_0 \cos(\theta)t$$
 $y = v_0 \sin(\theta)t - \frac{g}{2}t^2$,

donde g = 9.81 m/s^2 es la aceleración de la gravedad. Supongamos que la velocidad inicial es de 100 m/s.

- 1. Dibuje –en un mismo gráfico– las trayectorias del proyectil en los primeros tres segundos cuando el ángulo de inclinación es de $\pi/3$, $\pi/4$ y $\pi/6$.
- 2. Calcule a qué distancia del cañón cae el proyectil en cada uno de los casos anteriores.

Hint: Descargue en su PC el script "tp2_tirocanon.m".

Ejercicio 8. En ingeniería se trabaja frecuentemente con datos tabulados. Se va considerar la siguiente tabla de vapor sobrecalentado a una presión de 0.1 MPa.

Temperatura (°C)	Energía Interna (kJ/kg)
100	2506.7
160	2597.8
200	2658.1
240	2718.5
300	2810.4
400	2967.9
500	3131.6

Utilice la función de interpolación lineal para determinar la energía interna a 225 °C. De igual modo, determinar la temperatura si la energía interna es 2735 kJ/kg.

Hint: Descargue en su PC el script "tp2_inter_lineal.m" que se encuentra en la web del curso Ingeniate en Octave (Prácticas), ejecute el script e interprete el funcionamiento de las órdenes, así como los resultados obtenidos.

Ejercicio 9. En termodinámica, la cantidad de energía necesaria para calentar un gas 1 grado Celsius (llamada capacidad calorífica del gas) depende no sólo del gas, sino también de su temperatura. Esta relación se modela normalmente con polinomios. De este modo, la capacidad calorífica del propano (C_3H_8) se puede expresar como un polinomio de la temperatura:

$$Cp(T) = a_0 + a_1T + a_2T^2 + a_3T^3 + \dots + a_nT^n$$
(1)

Utilizando la función polyfit de octave ajuste los datos de la tabla siguiente a polinomios de diferentes grados y compárelos entre sí.

Temperatura (k)	Cp (kJ $kmol^{-1} K^{-1}$)	Temperatura (K)	$Cp (kJ kmol^{-1} K^{-1})$
50	34.06	800	154.77
100	41.3	900	163.35
150	48.79	1000	174.6
200	56.07	1100	182.67
300	73.93	1200	189.74
400	94.01	1300	195.85
500	112.59	1400	201.21
600	128.7	1500	205.89
700	142.67		

Hint: Descargue en su PC el script "tp2_regres_poli.m" que se encuentra en la web del curso Ingeniate en Octave (Prácticas), ejecute el script e interprete el funcionamiento de las órdenes, así como los resultados obtenidos.