Datenbanksysteme

Kap 2: Das Relationale Datenmodell

Elemente des relationalen Datenmodells

Strukturen

- Anwender sieht Daten als Tabellen
- Kompletter Informationsgehalt dargestellt in einer Form:
 als Feldwerte in Tabellenzeilen
- Operationen
 - INSERT, UPDATE, DELETE
 - SELECT
- Constraints
 - Integritätsbedingungen, die unzulässige Tabelleninhalte verhindern

Terminologie des RDM

Terminologie (2)

Formal	Umgangssprachlich
Relation	Tabelle
Relationenschema	Tabellenkopf
Tupel	Record, Zeile
Kardinalität	Zeilenanzahl
Attribut	Attribut, Feld, Spalte
Grad	Spaltenzahl
Primärschlüssel	Eindeutiger Bezeichner, ID
Wertebereich, Domäne	Grundmenge (legale Werte), Typ
Datenbankschema	Menge von Tabellenköpfen
Datenbank	Menge von Tabellen

Wertebereiche

- Ein Wertebereich D ist eine endliche, nichtleere Menge von skalaren Werten (z.B. Namen, Telefonnummern, Status)
 - Keine strukturierten, mengen- oder listenwertige Wertebereiche
- Werte können verschiedene Formate bzw. physische Darstellungen haben
 - Telefonnummer als String der Form: (ddd)dddd-dddddd
 - Alter als
 - Integer zwischen 16 und 65 (bei Angestellten)
 - Zeichenkette der Form dd
- Wertebereiche haben häufig eingebaute Operatoren
 - +, -, *, / : Integer
 - + : Konkatenation bei Strings
- Wertbereich wird definiert durch
 - Name, Wertemenge und Format

Relationenschema

- Relationenschema
 - Relationenname und Attributliste mit Wertebereichsangabe
 - $R(A_1:D_1, A_2:D_2, ..., A_n:D_n)$
- Funktion dom
 - ordnet Attribut A_i einen Wertebereich D_i zu: D_i = dom(A_i)
- Grad: Anzahl n der Attribute
- Relationenschema beschreibt Struktur einer Relation:
 - Student(MatrNr:Integer, Name: String, Status: Status)
 - Oder einfacher (ohne Wertebereiche):
 Student(MatrNr, Name, Status)

Relation, Tupel

- Relation r(R) eines Relationenschemas R(A₁, A₂, ..., A_n)
 - Menge von n-Tupeln $r = \{t_1, ..., t_m\}$
 - $r(R) \subseteq dom(A_1) \times dom(A_2) \times ... \times dom(A_n)$
- n-Tupel
 - $-t = (v_1, ..., v_n)$: geordnete Liste von Werten
- Forderung
 - $-v_i \in D_i = dom(A_i)$ oder spezieller Null-Wert
- Schreibweisen
 - t[A_i] oder t.A_i: i-ter Wert im Tupel t
 - t[X]: Wertekombination bzgl. Attributmenge X im Tupel t
- Kardinalität
 - Anzahl m der Tupel

Beispiele

Relationenschema

- $\begin{array}{lll} & Student(\ MatrNr:Integer, \ Name: String, \ Status: Status) \\ & A_1 = MatrNr & D_1 = dom(A_1) = Integer = \{1,2,3, \ldots\} \\ & A_2 = Name & D_2 = dom(A_2) = String \\ & A_3 = Status & D_3 = dom(A_3) = Status = \{eingeschrieben, \ exmatr, \ beurlaubt\} \end{array}$
- ,

– Grad(Student) = 3

Relation

- $r(Student) = \{t_1, t_2, t_3, t_4\}$
- $-t_i \in dom(A_1) \times dom(A_2) \times dom(A_3) = Integer \times String \times Status$
- $-t_1 = (1234, 'Michael', eingeschrieben)$
- v₁∈ Integer, v₂∈ String, v₃∈ Status
- $-t_4 = (0815, Franz', exmatrikuliert)$
- $t_4[MatrNr] = 0815$
- t₄.Name = 'Franz'

Schlüsseleinschränkung

- Relation $r(R) = r(A_1, ..., A_n)$ sei gegeben
- Superschlüssel S ⊆ {A₁, ..., A_n}
 - Superschlüssel ist eine Teilmenge S von Attributen, die ein Tupel eindeutig identifizieren
 - Keine zwei Tupel haben die gleichen Werte in den S-Attributen
 - $\ \forall \ t_1, t_2 \in \Gamma: t_1 \neq t_2 \Rightarrow t_1[S] \neq t_2[S]$
- Schlüsselkandidat: minimaler Superschlüssel
 - Kein Attribut kann entfernt werden, ohne Eindeutigkeit zu verletzen
 - Mehrere Schlüsselkandidaten pro Relation möglich
- Primärschlüssel(Schlüssel)
 - Ein vom Schemadesigner ausgewählter Schlüsselkandidat
 - Attributwerte eines Schlüssels müssen stabil und not null sein
 - Unterstreichen der Schlüsselattribute im Schema
 - Student(<u>MatrNr</u>, Name, Status)

Beispiel

- Gegebenes Relationenschema
 - Professor(PersNr, Name, Vorname, Fachbereich, Fach)
- Ein Superschlüssel
 - { PersNr, Name, Vorname, Fach }
- Ein Schlüsselkandidat
 - { PersNr } (Annahme: pro Professor nur ein Fach)
- Ein anderer Schlüsselkandidat
 - { Fach } (Annahme: pro Fach nur ein Professor)
- Gewählter Primärschlüssel
 - { PersNr } Warum nicht { Fach }?
- Relationenschema:
 - Professor(PersNr, Name, Vorname, Fachbereich, Fach)

Beispiel

	Professor			
PersNr	Name	Vorname	Fachbereich	Fach

Relationale DB-Schema vs. Datenbank

- Relationales Datenbankschema S ist Menge von Relationenschemata und Integritätsbedingungen
 - $-S = (\{R_1, ..., R_n\}, IB)$
 - (Integritätsbedingungen später)
- Relationale Datenbank (Zustand) DB von S ist eine Menge von Relationen DB = {r₁, r₂, ..., r_m} wobei

r_i(R_i) und alle Integritätsbedingungen aus IB erfüllt sind

 Schema ist gewöhnlich fest und Datenbank zeitlich variabel

Beispiel für ein Datenbankschema

- Student(<u>MatrNr</u>, Name, Semester)
- Professor(<u>PersNr</u>, Name, Rang, Raum)
- Vorlesung(<u>VorlNr</u>, Titel, SWS, gelesenVon)
- Assistent(<u>PersNr</u>, Name, Fachgebiet, Boss)
- Voraussetzen(<u>Vorgänger, Nachfolger</u>)
- Hören(<u>MatrNr, VorlNr</u>, Uhrzeit)
- Prüfen(<u>MatrNr, VorlNr, PersNr</u>, Note)

Beispiel für eine Datenbank

Professoren				
PersNr Name		Rang	Raum	
2125	Sokrates	C4	226	
2126	Russel	C4	232	
2127	Kopernikus	C3	310	
2133	Popper	C3	52	
2134	Augustinus	C3	309	
2136	Curie	C4	36	
2137	Kant	C4	7	

Studenten			
<u>MatrNr</u>	Name	Semester	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
28106	Carnap	3	
29120	Theophrastos	2	
29555	Feuerbach	2	

Vorlesungen				
<u>VorlNr</u> Titel		sws	gelesenVon	
5001	Grundzüge	4	2137	
5041	Ethik	4	2125	
5043	Erkenntnistheorie	3	2126	
5049	Mäeutik	2	2125	
4052	Logik	4	2125	
5052	Wissenschaftstheorie	3	2126	
5216	Bioethik	2	2126	
5259	Der Wiener Kreis	2	2133	
5022	Glaube und Wissen	2	2134	
4630	Die 3 Kritiken	4	2137	

Assistenten			
<u>PersINr</u>	PersINr Name Fachgebiet		Boss
3002	Platon	Ideenlehre	2125
3003	Aristoteles	Syllogistik	2125
3004	Wittgenstein	Sprachtheorie	2126
3005	Rhetikus	Planetenbewegung 2127	
3006	Newton	Keplersche Gesetze 212	
3007	Spinoza	Gott und Natur	2126

	Prüfen			
	<u>MatrNr</u>	<u>VorINr</u>	<u>PersNr</u>	Note
	28106	5001	2126	1
	25403	5041	2125	2
ĺ	27550	4630	2137	2

Voraussetzen			
<u>Vorgänger</u> <u>Nachfolger</u>			
5001	5041		
5001	5043		
5001	5049		
5041	5216		
5043	5052		
5041	5052		
5052	5259		

Hören		
<u>MatrNr</u>	<u>VorINr</u>	
26120	5001	
27550	5001	
27550	4052	
28106	5041	
28106	5052	
28106	5216	
28106	5259	
29120	5001	
29120	5041	
29120	5049	
29555	5022	
25403	5022	

Datenbanksysteme (I

Kap 2 - RDM (m)

Fremdschlüssel und referentielle Integrität

- Fremdschlüssel (FK)
 - Attributmenge aus Relationenschema R1, die sich auf Attributmenge aus Relationenschema R2 bezieht
 - FK-Attribute haben den gleichen Wertebereich wie die Primärschlüsselattribute PK von R2
 - Referentielle Integrität:
 - Jedes Tupel verweist in den Fremdschlüssel-Attributen auf ein existierendes Tupel der referenzierten Relation oder die Fremdschlüsselattribute sind auf Null gesetzt
 - $\forall t_1 \in r_1(R_1): t_1[FK] = \text{Null} \lor \exists t_2 \in r_2(R_2): t1[FK] = t2[PK]$
- Beispiel
 - Vorlesung.gelesenVon ist FK auf Professor.PersNr

Vorlesung(VorlNr, Titel, SWS, gelesenVon)

Professor(PersNr, Name, Rang, Raum)

Referentielle Integrität

	Vorlesungen				
<u>VorINr</u>	/orlNr Titel		gelesenVon		
5001	Grundzüge	4	2137		
5041	Ethik	4	2125		
5043	Erkenntnistheorie	3	2126		
5049	Mäeutik	2	2125		
4052	Logik	4	2125		
5052	Wissenschaftstheorie	3	2126		
5216	Bioethik	2	2126		
5259	Der Wiener Kreis	2	2133		
5022	Glaube und Wissen	2	2134		
4630	Die 3 Kritiken	4	2137		

Professoren			
PersNr Name		Rang	Raum
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36
2137	Kant	C4	7

- FK: Vorlesungen.gelesenVon → Professoren.PersNr
 - Vorlesungen ist Referenztabelle, Professoren ist Mastertabelle
 - Jede Vorlesung muss auf ein Professoren-Tupel verweisen
 - Verweise sind wertbasiert (nicht Pointer wie in Programmiersprachen)
 - NULL-Wert in Vorlesung.gelesenVon ist ok
 - Verweis auf nicht existierendes Professoren-Tupel nicht erlaubt