Homework 3, Section 1.4: 6, 8, 9, 12, 13, 14

Alex Gordon

September 6, 2013

Homework

6.

1) false	9) false
2) true	10) false
3) false	11) true
4) false	12) false
5) true	13) true
6) true	14) false
7) false	15) true
8) true	16) true

8. a

D= all biology majors. B(n) = geometry $\exists_n \in D, B(n)$

8. b

D = all computer science majors. B(n) = Math Minors $\exists_n \in D, \neg B(n)$

8. c

D = Math Majors B(n) = n is required to take a business course $\forall_n \in D, \neg B(n)$

8. d

 $\begin{aligned} \mathbf{D} &= \text{puzzles} \\ \mathbf{B}(\mathbf{n}) &= \text{all puzzle solutions} \\ \forall_n \in D, \neg B(n) \end{aligned}$

9. a

D = All all real numbers B(n): 2n = 9 $\forall_n \in \mathbb{R}, \neg B(n)$

9. b

D = all triangles B(n) = equilateral and perimeter of 10 $\exists_n \in D, B(n)$

9. c

D = Every Circle B(n) = Has an integer diameter or an integer area $\forall_n \in D, B(n)$

9. d

 $\begin{aligned} \mathbf{D} &= \text{Real Numbers} \\ \mathbf{B}(\mathbf{n}, \, \mathbf{m}) &= \text{an integer between} \\ \forall_n \in \mathbb{R}, \forall_m \in \mathbb{R}, B(n, m) \end{aligned}$

12. a)

D= even numbers B(n) = prime numbers $\forall_n \in D, \neg B(n)$

12. b)

D = All Triangles B(n) = has 4 sides $\forall_n \in D, \neg B(n)$

12. c)

 $\begin{aligned} \mathbf{D} &= \text{all integers} \\ B(a,b) &= \frac{a^2}{b^2} = 2 \\ \forall_a \in D, \ \forall_b \in D, \neg B(a,b) \end{aligned}$

12. d)

 $\begin{aligned} \mathbf{D} &= \text{all square numbers} \\ \mathbf{B}(\mathbf{n}) &= \text{prime number plus one} \\ \forall_n \in D, \neg B(n) \end{aligned}$

13. a) I)

-12

13. a) II)

-2, -4

13. a) III)

The pattern is even numbers!

13. b) I)

i = -3, 23, 3, -31

13. b) II)

use the value y in the equation and solve it.

14. a)

 $\exists_a \in \mathbb{R}, \ \exists_b \ \mathbb{Z}, a^2 + b \notin \mathbb{Z}$

14. b)

 $\exists_y \in \mathbb{R}, \ \exists_x \ \mathbb{R}, x + y \neq x$

14. c)

 $\exists_x \in \mathbb{Z}, \ \forall_y \ \mathbb{R}, x \neq 2y$

14. d)

 $\exists_x \in \mathbb{Z}, \ \forall_y \ \mathbb{R}, \frac{x}{y} \neq 2$