

THÉORIES DES LANGAGES

Mr,HEMIOUD hemourad@yahoo,fr Université de Jijel Département d'informatique

LES AUTOMATES FINIS

LES AUTOMATES À ÉTATS FINI

- Un automate est une machine abstraite qui permet de lire un mot et de répondre à la question : "un mot w appartient-il à un langage L?" par oui ou non.
- o Un automate est composé de :

Formellement

- Un alphabet pour les mots en en entrée noté A ;
- Un ensemble non vide d'états noté Q;
- Un état initial noté $q_0 \in Q$;
- Un ensemble non vide d'états fin $\mathbf{Q_f} \in \mathbf{Q}$;
- Une fonction de transition (permettant de changer d'état) notée δ (est une fonction totale de Q x A dans Q,

$$\delta(p,a)=q/p,q\in Q$$

Configuration d'un automate

- Le fonctionnement d'un automate sur un mot se fait à travers un *ensemble de configurations*.
- On appelle configuration d'un automate en fonctionnement les valeurs de ses différents composants, à savoir la <u>position</u> de la tête L/E,
 <u>l'état</u> de l'automate et éventuellement le <u>contenu</u> de la mémoire auxiliaire (lorsqu'elle existe).

Il existe deux configurations spéciales :

- La configuration *initiale* est celle qui correspond à l'état initial q_0 et où la **tête** de L/E est *positionnée* sur le <u>premier</u> symbole du mot à lire.
- o Une configuration finale est celle qui correspond à un des états finaux $\mathbf{q_f}$ et où le mot a été $enti\`erement$ lu.

Représentation graphique d'un automate

Un automate fini correspond à un graphe orienté

 ${\color{red} \circ}$ L'état q_i

o la transition $\delta(q_i, a) = q_j$

• Etat initiale (q_0) :

• Etats finaux (q_f)

Exemple : Représentation graphique de l'automate

X=(A={a,b}, Q={A,B,C}, $\mathbf{q_0}$ =A, $\mathbf{q_F}$ ={C} , $\boldsymbol{\delta}$) tel que :

 $\delta (A, a) = B$

 $\delta(A, b)=A$

 δ (B, a)=C

 δ (B, b)=B

 $\delta (C, b) = C$

Mot reconnu par un automate

Un mot w est reconnu par l'automate A s'il existe une configuration successive

Configuration-initiale $(w) \models^* \text{configuration-final}(w)$ $(q_0, w) \models^* (q_t, \varepsilon)$

• La relation | permet de formaliser la notion d'étape élémentaire de calcul d'un automate. Ainsi on écrira, pour a dans A et v dans A*:

$$(q, \underline{\boldsymbol{a}}v) \models (\delta(q, a); v)$$

Langage reconnu par un automate

On dit qu'un langage est reconnu par un automate X lorsque tous les mots de ce langage sont reconnus par l'automate on note L(X)

 $\label{eq:L(X)=} $L(X)=\{w\in A^* \mid \text{Configuration-initiale }(w) \mid ^*$$$ configuration-final(w)\}$

$$L(X) = \{ w \in A^* / (q_0, w) \mid f^*(q, \varepsilon), \text{ avec } q \in Q_F \}$$

• Exemple : L'automate qui reconnaît les mots de la forme $a^nb^m (n \ge 0, m > 0)$ est le suivant :

({a, b}, { $q_0,\,q_1\!\},\,q_0,\,\{\,q_1\!\},\,\delta)$ tel que δ est donnée par :

- 1) $\delta(q_0,a)=q_0$
- 2) $\delta(q_0,b)=q_1$
- 3) $\delta(q_1,b)=q_1$

ou par la table :

Etat	а	b
q 0	q 0	q_1
q_1	•	q_1

Exemple 2:

La fonction de transition correspondant à ce graphe s'exprime matriciellement par

δ	a	b
0	1	0
1	2	1
2	0	2

o Donnez 3 mots qui sont reconnu par cet automate

- Langage reconnaissable : Un langage est reconnaissable s'il existe un automate fini qui le reconnaît.
- Automates équivalents : Deux automates finis X_1 et X_2 sont équivalents si et seulement s'ils reconnaissent le même langage $(L(X_1)=L(X_2))$

Les deux automates reconnaissent le langage de tous les mots qui contiennent un nombre de a congru à 2 modulo 3.

• Exemples

1. Le langage des mots contenant au moins une fois la lettre a:

1. Le langage des mots contenant au plus une fois la lettre a:

2. Le langage des mots contenant un nombre pair de fois la lettre a:

Exercice

Pour chacun des langages suivants, construire un automate d'états finis qui l'accepte :

- 1. le langage dénoté par aba + bab.
- 2. Le langage des mots admettant aba pour facteur
- 3. le langage dénoté par (aba)*+ (bab)*.
- 4. $L = \{ w \in \{a, b\}^* / w = a^n b^m a \text{ ou } w = ba^n ; n, m \ge 1 \};$
- 5. $L = \{w \in \{0, 1\}^* / w = 1(101)^n 00 \text{ ou } w = 0(010)^n 11, n \ge 0 \}$

15

Le langage des mots contenant au moins une fois la lettre a :

Le langage des mots contenant au plus une fois la lettre a :

Le langage des mots contenant un nombre pair de fois la lettre a :

Le langage des mots admettant aba pour facteur :

Passage de l'expression régulière vers l'automate

Il existe trois méthodes permettant de réaliser cette tâche.

- 1. Algorithme de Glushkov
- 2. Algorithme de Thompson
- 3. La méthode des dérivées

Passage de l'expression régulière vers l'automate (algorithme de Glushkov)

• Exemple: (ab + c)*ab est linéarisée en (12 + 3)*45.

	\mathbf{a}	b	c
0	$\{1, 4\}$	Ø	$\{3\}$
1	Ø	{2}	Ø
2	$\{1, 4\}$	Ø	$\{3\}$
3	$\{1, 4\}$	Ø	$\{3\}$
4	Ø	{5}	Ø
5	Ø	Ø	Ø

Passage de l'automate vers l'expression régulière

Soit $X = (A,Q,\ q_0,\ Q_F,\ \delta)$ un automate à états fini quelconque.

On note par L_i le langage reconnu par l'automate si son état initial était q_i .

Par conséquent, trouver le langage reconnu par l'automate revient à trouver L_0 étant donné que la reconnaissance commence à partir de l'état initial $\mathbf{q_0}$. L'automate permet d'établir un système d'équations aux langages de la manière suivante :

- $-\operatorname{si} \delta(q_{i}, a) = q_{j} \operatorname{alors} \operatorname{on} \operatorname{\acute{e}crit}: L_{i} = a L_{j};$
- $-\operatorname{si} q_i \in Q_F$, alors on écrit : $L_i = \varepsilon$
- $-\operatorname{si}\,L_{i}$ = α et L_{i} = β alors on écrit : L_{i} = $\alpha\,|\,\beta$;

• Il suffit ensuite de résoudre le système précédant à des substitutions et en utilisant la règle suivante :

la solution de l'équation $L = \alpha L \mid \beta$ ($\epsilon \notin \alpha$) est le langage $L = \alpha * \beta$ (*Le lemme d'Arden*)

Le lemme d'Arden

Ce résultat dit que l'équation récursive suivante

$$X = LX + M$$

où X est le langage cherché et L et M sont deux langages connus, a une unique solution qui est :

$$X = L*M$$
:

Attention: ici, on suppose que L ne contient pas le mot vide ($\varepsilon \notin L$).

Automate fini déterministe AFD

Un AEF (A,Q, q_0 , Q_F , δ) est dit **déterministe** si les deux conditions sont vérifiées :

- $\forall q_i \in Q, \forall a \in X$, il existe au plus un état q_j tel que $\delta(q_i, a) = q_j;$
- L'automate ne comporte pas de ϵ -transitions.

Deux transitions sortantes de 1 sont étiquetées par a : $\delta(1,\,a) = \{1,\,2\}$

Théorème (Déterminisation).

Pour tout AFN \boldsymbol{X} , on peut construire un AFD \boldsymbol{X} ' équivalent à \boldsymbol{X} .

De plus, si \boldsymbol{X} a n états, alors $\boldsymbol{X'}$ a au plus 2^n états.

Algorithme : Déterminiser un AEF sans les ϵ -transitions

Principe: considérer des ensembles d'états plutôt que des états (dans l'algorithme suivant, chaque ensemble d'états représente un état du futur automate).

- 1- Partir de l'état initial $E^{(0)} = \{q_0\}$ (c'est l'état initial du nouvel automate);
- 2- Construire $E^{(1)}$ l'ensemble des états obtenus à partir de $E^{(0)}$ par la transition a :

$$E^{(1)} = U_{q' \in E(0)} \delta(q', a)$$

3- Recommencer l'étape 2 pour toutes les transitions possibles et pour chaque nouvel ensemble $\mathbf{E}^{(i)}$;

$$E^{(i)} = \bigcup_{q' \in E(i-1)} \delta(q', a)$$

- $\mbox{4-}$ Tous les ensembles contenant au moins un état final du premier automate deviennent finaux ;
- 5- Renuméroter les états en tant qu'états simples.

~

Déterminisation d'un AEF sans ϵ -transition

Exemple 1:

	a			État	a	b
0	0,1	0		0	1	0
0,1	0,1	0,2	\Longrightarrow	1	1	2
0,2	0,1,2	0,2		2	1 3 3	2
0,1,2	0,1 0,1 0,1,2 0,1,2	0.2		3	3	2

L'automate déterministe est

ullet Exemple 2

Le résultat de la déterminisation

Exemple

Determiner le langage reconnu par l'automate suivant.

9.0

Exemple 3:

Le résultat de la déterminisation

Déterminisation avec les ε-transitions

• On appelle ϵ -fermeture de E l'ensemble des états incluant, en plus de ceux de E, tous les états accessibles depuis les états de E par un chemin étiqueté par le mot ϵ .

- ε -fermeture ({0}) = {0, 1, 2, 3}
- ε -fermeture ({1, 2}) = {1, 2}
- ε -fermeture ({3}) = {0, 1, 2, 3}

Exemple : Appliquons l'algorithme de détermination à l'automate précèdent

État	α	b	État	a	b
0,1,2,3	0,1,2,3,4	0,1,2,3	0	1	0
0,1,2,3,4	0,1,2,3,4	0,1,2,3,5,6,7,8	1	1	2
0,1,2,3,5,6,7,8	0,1,2,3,4,5,6,7,8	0,1,2,3,5,6,7,8	2	3	2
0,1,2,3,4,5,6,7,8	0,1,2,3,4,5,6,7,8	0,1,2,3,5,6,7,8	2	3	2

31

Exemple 2

• Un automate avec ϵ -transitions correspondant à $a*b*c* (a^nb^mc^l \ avec \ n,m,l \ge 0)$

o L'automate déterministe équivalent

Minimisation d'un AEF déterministe

La minimisation s'effectue en éliminant les états dits *inaccessibles* et en *confondant* (ou fusionnant) les états reconnaissant le même langage.

- **Définition 1**: Un état est dit **inaccessible** s'il n'existe aucun chemin permettant de l'atteindre à partir de l'état initial.
 - → Donc les états inaccessibles sont improductifs, c'est-àdire qu'ils ne participeront jamais à la reconnaissance d'un mot.
- **Définition 2**: Deux états q_i et q_j sont dits β-équivalents s'ils permettent d'atteindre les états finaux en utilisant les mêmes mots. On écrit alors : qi β qj.
 - La relation β-équivalence est donc dite une relation de congruence

Minimiser un AEF

La méthode de réduction d'un AEF est la suivante :

- Nettoyer l'automate en éliminant les états inaccessibles :
- Regrouper les états *congruents* (appartenant à la même classe d'équivalence).

« Un état est dit *inaccessible* s'il n'existe aucun chemin permettant de l'atteindre à partir de l'état initial. »

• Exemple 13 : Soit à minimiser l'automate suivant (les états finaux sont les états 1 et 2 tandis que l'état 1 est initial) :

État	a	b
1	2	5
2	2	4
3	3	2
4	5	3
5	4	6
6	6	1
7	5	7

1. La première étape consiste à éliminer les états inaccessibles, il s'agit juste de l'état 7.

Les étapes de détermination des classes de congruences sont les suivantes : $A = \{1, 2\}, B = \{3, 4, 5, 6\}$;

- 2. $\delta(3, b) = 2 \in A, \delta(4, b) = 3 \in B$ ainsi il faut séparer 4 du reste de la classe B. Alors, on crée une classe C contenant l'état 4:
- 8. $\delta(3, b) = 2 \in A$, $\delta(5, b) = 6 \in A$ ainsi il faut séparer 5 du reste de la classe B. Mais inutile de créer une autre classe puisque

$$\delta(4, a) = 5 \in B,$$

 $\delta(5, a) = 4 \in B$
et $\delta(4, b) = 3 \in B$
et $\delta(5, b) = 6 \in B,$
il faut donc mettre 5 dans la classe C. C = {4, 5}
et B = {3, 6};

4. Aucun autre changement n'est possible, alors on arrête l'algorithme.

• Le nouvel automate est donc le suivant (l'état initial est A) :

Etat	a	b
A	A	C
В	В	Α
C	C	Α

o L'automate obtenu est minimal et est unique,

- o Opérations sur les automates
- o Le complément
- Soit A= (A,Q, q_0 , Q_F , δ) un automate déterministe reconnaissant le langage \boldsymbol{L} .
- L'automate reconnaissant le **langage inverse** (c'est-à-dire L ou $A^* L$) est défini par le quintuplet $(A,Q, q_0,Q-Q_F, \delta)$ (en d'autres termes, les états finaux deviennent non finaux et viceversa).
- o cette propriété ne fonctionne que si l'automate est *complet* .

Exemple

:

• Soit le langage des mots définis sur l'alphabet {a, b, c} contenant le facteur ab.

• appliquer la propriété précédente pour trouver l'automate des mots qui <u>ne contiennent</u> pas le facteur **ab**

• Exemple

↓ l'inverse? (pas vraiment)

o L'automate obtenu reconnaît les mots contenant au plus 1 a

• On commence par L1 ayant un nombre de a multiple de 3. L1' est le complementaire de L1 (le nombre de a n'est pas multiple de 3).

• L1

• L1'

Exemple

• Soit L2, le langage ou le nombre de b est pair et L2' son complémentaire. Nous avons les deux automates pour L2 et L2'

0

Produit d'automates

- Soit $X = (A, Q, q_0, Q_F, \delta)$ et $X' = (A', Q', q_0', Q'_F, \delta')$ deux automates à états finis.
- o On appelle produit des deux automates X et X' l'automate X"(A",Q", q_0 ", Q_F ", δ ") défini comme suit :
 - $A'' = A \cup A'$;
 - $Q'' = Q \times Q'$;
 - $q_0'' = (q_0, q_0')$;
 - $Q_F'' = Q_F \times Q_F'$;
 - $\delta((q, q'), a) = (\delta(q, a), \delta(q', a))$
- \circ L(X*X')=L(X) \cap L(X')

• Exemple

Le langage miroir

- Soit $X = (A, Q, q_0, Q_F, \delta)$ un automate reconnaissant le langage L(X).
- L'automate qui reconnaît le langage $(L(X))^R$ est reconnu par l'automate $X^R = (A,Q,\,Q_F,\,\{q_0\},\,\delta^R)$ tel que : $\delta^R(q',\,a) = q$ si $\delta(q,\,a) = q'$.
- En d'autres termes, il suffit juste d'inverser les sens des arcs de l'automate et le statut initial/final des états initiaux et finaux

Langages réguliers

Les langages réguliers sont les langages générés par des grammaires de type 3 (ou encore grammaires régulières). Ils sont reconnus grâce aux automates à états finis.

Le terme régulier vient du fait que les mots de tels langages possèdent une forme particulière pouvant être décrite par des expressions dites régulières.

Passage de la grammaire vers l'automate

soit G = (V, N, S, R) une grammaire régulière à droite, si toutes les règles de production sont de la forme : $A \rightarrow aB$ ou $A \rightarrow B$ ($A, B \in N, a \in V \cup \{\epsilon\}$) alors il suffit d'appliquer l'algorithme suivant :

- 1. Associer un état à chaque non terminal de N;
- 2. L'état initial est associé à l'axiome ;
- 3. Pour chaque règle de production de la forme $A\to\epsilon,$ l'état q_A est final ;
- 4. Pour chaque règle de production de la forme $A \to a$ (a \in V), alors créer un nouvel état final q_f et une transition partant de l'état q_A vers l'état q_f avec l'entrée a ;
- 5. Pour chaque règle $A \to aB$ alors créer une transition partant de q_A vers l'état q_B en utilisant l'entrée a ;
- 6. Pour chaque règle $A\to B$ alors créer une $\epsilon\text{-transition}$ partant de q_A vers l'état q_B ;