2 Folgen und Reihen

D 2.1.1 Eine Folge a_n ist eine Abbildung

$$a: \mathbf{N}^* \longrightarrow \mathbf{R}$$

2.1 Konvergenz von Folgen

D 2.1.4 Eine Folge a_n heisst **konvergent**, falls es $a \in \mathbb{R}$ gibt, so dass $\forall \epsilon > 0$ die Menge $\{n \in \mathbb{N}^* : a_n \notin] a - \epsilon, a + \epsilon[\}$ endlich ist. **L 2.1.3** Dieses a ist **eindeutig**.

L 2.1.5 Jede konvergente Folge ist **beschränkt**. **Achtung:** a_n beschränkt $\implies a_n$ konvergent!

L 2.1.6 Eine Folge a_n konvergiert gegen $a = \lim_{n \to \infty} a_n$, falls $\forall \epsilon > 0 \ \exists N \ge 1$ so dass $\forall n \ge N$

$$|a_n - a| < \epsilon$$
.

T 2.1.8 Seien a_n und b_n konvergente Folgen mit $a = \lim_{n \to \infty} a_n$ und $b = \lim_{n \to \infty} b_n$

- 1) Dann ist $\lim_{n\to\infty} (a_n + b_n) = a + b$
- 2) Dann ist $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- 3) Dann ist $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b} \ (b_n \neq 0 \ \forall n \geq 1)$
- 4) $\exists K \ge 1 \ \forall n \ge K \ a_n \le b_n \implies a \le b$

T Sandwich Satz Sei $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \alpha$

$$a_n \le c_n \le b_n \ \forall n \ge K \implies \lim_{n \to \infty} c_n = \alpha$$

Die Folge a_n ist divergent, falls sie nicht konvergiert.

2.2 Weierstrass und Anwendungen

D 2.2.1 Die Folge a_n ist

- 1) monoton wachsend falls $a_n \leq a_{n+1} \ \forall n \geq 1$
- 2) monoton fallend falls $a_n \ge a_{n+1} \ \forall n \ge 1$

T 2.2.2 (Weierstrass) Falls die Folge a_n

1) monoton wachsend und nach oben beschränkt ist, dann konvergiert a_n mit Grenzwert

$$\lim_{n \to \infty} a_n = \sup\{a_n \ n \ge 1\}$$

2) monoton fallend und nach unten beschränkt ist, dann **konvergiert** a_n mit Grenzwert

$$\lim_{n \to \infty} a_n = \inf\{a_n \ n \ge 1\}$$

B 2.2.3 $\lim_{n \to \infty} n^a q^n = 0, \ 0 \le q \le 1, \ a \in \mathbb{Z}$

$$\mathbf{B} \ \mathbf{2.2.5} \lim_{n \to \infty} \sqrt[n]{n} = 1$$

L 2.2.7 (Bernoulli Ungleichung)

$$(1+x)^{n+1} \ge 1 + n \cdot x \quad \forall n \in \mathbb{N}, x > -1$$

2.3 Limes superior und inferior

D 2.3.0

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} b_n, \quad (b_n = \inf\{a_k : k \ge n\})$$

$$\lim \sup_{n \to \infty} a_n = \lim_{n \to \infty} c_n, \quad (c_n = \sup\{a_k : k \ge n\})$$

L 2.4.1 Die Folge a_n konvergiert genau dann, falls

- 1. a_n beschränkt ist
- $2. \lim \inf_{n \to \infty} a_n = \lim \inf_{n \to \infty} a_n$

2.4 Cauchy Kriterium

T 2.4.2 (Cauchy Kriterium) Die Folge a_n ist genau dann konvergent

$$\forall \epsilon > 0 \; \exists N \geq 1 \; \text{so dass} \; |a_n - a_m| \; \; \forall n, m \geq N$$

2.5 Bolzano-Weierstrass

D 2.5.1 Ein abgeschlossenes Intervall $I \subset \mathbb{R}$

- 1) $[a,b], a \leq b, a,b \in \mathbb{R}$
- 2) $[a, +\infty[, a \in \mathbb{R}]$
- 3) $]-\infty, a], a \in \mathbb{R}$
- 4) $]-\infty, +\infty] = \mathbb{R}$

2.6 Konvergenz von Reihen

D Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert absolut (\Rightarrow konvergent), falls $\sum_{k=1}^{\infty} |a_k|$ kovergiert.

T Cauchy Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, falls. $\forall \varepsilon > 0 \quad \exists N \geqslant 1$ mit $\begin{vmatrix} \sum_{k=n}^{m} a_k \\ k \end{vmatrix} < \varepsilon \quad \forall m \geqslant n \geqslant N$

T Ratio Sei $(a_n)_{n\geq 1}$ mit $a_n\neq 0$ $\forall n\geqslant 1$. Falls

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1$$

dann konvergiert die Reihe absolut. Falls $\liminf_{n\to\infty}\Box>1$ divergiert die Reihe.

T Root Falls

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

dann konvergiert $\sum_{n=1}^{\infty}a_n$ absolut. Falls $\square>1,$ dann divergiert die Reihe.

T Alternating Sei $(a_n)_{n\geqslant 1}$ monoton fallend mit $a_n\geqslant 0 \quad \forall n\geqslant 1$ und $\lim_{n\to\infty}a_n=0$. Dann konver-

giert

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

und es gilt $a_1 - a_2 \leq S \leq a_1$.

2.7 Andere Aussagen

L (Bernouilli) $(1+x)^n \ge 1+n \cdot x \quad \forall n \in \mathbb{N}, x > -1.$

T Teilfolge Jede beschränkte Folge besitzt eine konvergente Teilfolge.

T Vektorfolge $\lim_{n\to\infty} a_n = b$ genau dann wenn $\lim_{n\to\infty} a_{n,j} = b_j \quad \forall 1 \leqslant j \leqslant d.$

Teil I Stetige Funktionen

D Die Funktion $f: D \longrightarrow \mathbb{R}$ ist stetig falls sie in jedem Punkt von D stetig ist.

3 Stetigkeit an einem Punkt

D Epsilon Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ gilt:

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$$

T Sequence Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist genau dann in x_0 stetig, falls für jede Folge $(a_n)_{n \ge 1}$ in D

$$\lim_{n \to \infty} a_n = x_0 \Longrightarrow \lim_{n \to \infty} f(a_n) = f(x_0)$$

gilt.

T Sidewise Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls

$$f(x_0) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$$

gilt.