Mackey and Glass Work-Precision Diagrams

David Widmann, Chris Rackauckas

July 4, 2020

1 Mackey and Glass

We study algorithms for solving constant delay differential equations with a test problem from W.H. Enright and H. Hayashi, "The evaluation of numerical software for delay differential equations", 1997. It is a model of blood production that was published by M. C. Mackey and L. Glass in "Oscillation and chaos in physiological control systems", 1977, and is given by

$$y'(t) = \frac{0.2y(t-14)}{1+y(t-14)^{10}} - 0.1y(t)$$
(1)

```
using DelayDiffEq, DiffEqDevTools, DiffEqProblemLibrary, Plots
using DiffEqProblemLibrary.DDEProblemLibrary: importddeproblems; importddeproblems()
import DiffEqProblemLibrary.DDEProblemLibrary: prob_dde_mackey
gr()
sol = solve(prob_dde_mackey, MethodOfSteps(Vern9(), max_fixedpoint_iters=1000);
reltol=1e-14, abstol=1e-14)
Error: MethodError: no method matching DelayDiffEq.MethodOfSteps(::Ordinary
DiffEq.Vern9; max_fixedpoint_iters=1000)
Closest candidates are:
  DelayDiffEq.MethodOfSteps(::Any; constrained, fpsolve) at /builds/JuliaGP
U/DiffEqBenchmarks.jl/.julia/packages/DelayDiffEq/BCL4Q/src/algorithms.jl:2
0 got unsupported keyword argument "max_fixedpoint_iters"
test_sol = TestSolution(sol)
Error: UndefVarError: sol not defined
plot(sol)
Error: UndefVarError: sol not defined
```

1.1 Low order RK methods

1.1.1 High tolerances

First we test final error estimates of continuous RK methods of low order at high tolerances. OwrenZen4, OwrenZen5, and RK4 yield the best error estimates.

```
abstols = 1.0 . / 10.0 .^{(4:7)}
reltols = 1.0 . / 10.0 .^{(1:4)}
setups = [Dict(:alg=>MethodOfSteps(BS3())),
          Dict(:alg=>MethodOfSteps(Tsit5())),
          Dict(:alg=>MethodOfSteps(RK4())),
          Dict(:alg=>MethodOfSteps(DP5())),
          Dict(:alg=>MethodOfSteps(OwrenZen3())),
          Dict(:alg=>MethodOfSteps(OwrenZen4())),
          Dict(:alg=>MethodOfSteps(OwrenZen5()))]
names = ["BS3", "Tsit5", "RK4", "DP5", "OwrenZen3", "OwrenZen4", "OwrenZen5"]
wp = WorkPrecisionSet(prob_dde_mackey,abstols,reltols,setups;names=names,
                      appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final)
Error: UndefVarError: test_sol not defined
plot(wp)
Error: UndefVarError: wp not defined
Next we test average interpolation errors:
abstols = 1.0 ./ 10.0 .^{(4:7)}
reltols = 1.0 ./ 10.0 .^ (1:4)
setups = [Dict(:alg=>MethodOfSteps(BS3())),
          Dict(:alg=>MethodOfSteps(Tsit5())),
          Dict(:alg=>MethodOfSteps(RK4())),
          Dict(:alg=>MethodOfSteps(DP5())),
          Dict(:alg=>MethodOfSteps(OwrenZen3())),
          Dict(:alg=>MethodOfSteps(OwrenZen4())),
          Dict(:alg=>MethodOfSteps(OwrenZen5()))]
names = ["BS3", "Tsit5", "RK4", "DP5", "OwrenZen3", "OwrenZen4", "OwrenZen5"]
wp = WorkPrecisionSet(prob_dde_mackey,abstols,reltols,setups;names=names,
                      appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2)
Error: UndefVarError: test_sol not defined
plot(wp)
Error: UndefVarError: wp not defined
```

As before, OwrenZen4 and OwrenZen5 perform well over the whole range of investigated tolerances.

1.1.2 Low tolerances

We repeat our tests with low tolerances.

```
names = ["BS3", "Tsit5", "RK4", "DP5", "OwrenZen3", "OwrenZen4", "OwrenZen5"]
wp = WorkPrecisionSet(prob dde mackey,abstols,reltols,setups;names=names,
                      appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final)
Error: UndefVarError: test_sol not defined
plot(wp)
Error: UndefVarError: wp not defined
And once again we also test the interpolation errors:
abstols = 1.0 ./ 10.0 .^ (8:11)
reltols = 1.0 ./ 10.0 .^ (5:8)
setups = [Dict(:alg=>MethodOfSteps(BS3())),
          Dict(:alg=>MethodOfSteps(Tsit5())),
          Dict(:alg=>MethodOfSteps(RK4())),
          Dict(:alg=>MethodOfSteps(DP5())),
          Dict(:alg=>MethodOfSteps(OwrenZen3())),
          Dict(:alg=>MethodOfSteps(OwrenZen4())),
          Dict(:alg=>MethodOfSteps(OwrenZen5()))]
names = ["BS3", "Tsit5", "RK4", "DP5", "OwrenZen3", "OwrenZen4", "OwrenZen5"]
wp = WorkPrecisionSet(prob_dde_mackey,abstols,reltols,setups;names=names,
                      appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2)
Error: UndefVarError: test_sol not defined
plot(wp)
Error: UndefVarError: wp not defined
```

Apparently Tsit5 and DP5 perform quite well at low tolerances, but only OwrenZen5, OwrenZen4 and RK4 achieve interpolation errors of around 1e-9.

1.2 Lazy interpolants

1.2.1 High tolerances

We repeat our tests with the Verner methods which, in contrast to the methods above, use lazy interpolants. As reference we include OwrenZen4.

```
Error: UndefVarError: wp not defined
And we obtain the following interpolation errors:
abstols = 1.0 . / 10.0 .^{(4:7)}
reltols = 1.0 . / 10.0 .^{(1:4)}
setups = [Dict(:alg=>MethodOfSteps(Vern6())),
          Dict(:alg=>MethodOfSteps(Vern7())),
          Dict(:alg=>MethodOfSteps(Vern8())),
          Dict(:alg=>MethodOfSteps(Vern9())),
          Dict(:alg=>MethodOfSteps(OwrenZen4()))]
names = ["Vern6", "Vern7", "Vern8", "Vern9", "OwrenZen4"]
wp = WorkPrecisionSet(prob_dde_mackey,abstols,reltols,setups;names=names,
                      appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2)
Error: UndefVarError: test_sol not defined
plot(wp)
Error: UndefVarError: wp not defined
Vern6, Vern7, and Vern9 are outperformed by OwrenZen4.
1.2.2 Low tolerances
Again, we repeat our tests at low tolerances.
abstols = 1.0 ./ 10.0 .^ (8:11)
reltols = 1.0 . / 10.0 .^{(5:8)}
setups = [Dict(:alg=>MethodOfSteps(Vern6())),
          Dict(:alg=>MethodOfSteps(Vern7())),
          Dict(:alg=>MethodOfSteps(Vern8())),
          Dict(:alg=>MethodOfSteps(Vern9())),
          Dict(:alg=>MethodOfSteps(OwrenZen4()))]
names = ["Vern6", "Vern7", "Vern8", "Vern9", "OwrenZen4"]
wp = WorkPrecisionSet(prob_dde_mackey,abstols,reltols,setups;names=names,
                      appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final)
Error: UndefVarError: test_sol not defined
plot(wp)
Error: UndefVarError: wp not defined
abstols = 1.0 . / 10.0 .^{(8:11)}
reltols = 1.0 ./ 10.0 .^ (5:8)
setups = [Dict(:alg=>MethodOfSteps(Vern6())),
          Dict(:alg=>MethodOfSteps(Vern7())),
          Dict(:alg=>MethodOfSteps(Vern8())),
          Dict(:alg=>MethodOfSteps(Vern9())),
          Dict(:alg=>MethodOfSteps(OwrenZen4()))]
names = ["Vern6", "Vern7", "Vern8", "Vern9", "OwrenZen4"]
wp = WorkPrecisionSet(prob_dde_mackey,abstols,reltols,setups;names=names,
                      appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2)
```

Error: UndefVarError: test_sol not defined

```
plot(wp)
Error: UndefVarError: wp not defined

Vern6, Vern7, and Vern9 show similar results at low tolerances, and perform even better than OwrenZen4.

using DiffEqBenchmarks
DiffEqBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file])
```

1.3 Appendix

These benchmarks are a part of the DiffEqBenchmarks.jl repository, found at: https://github.com/JuliaDenchmarks.jl repository,

```
using DiffEqBenchmarks
DiffEqBenchmarks.weave_file("NonStiffDDE","Mackey_Glass_wpd.jmd")
Computer Information:
Julia Version 1.4.2
Commit 44fa15b150* (2020-05-23 18:35 UTC)
Platform Info:
 OS: Linux (x86_64-pc-linux-gnu)
 CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
 WORD_SIZE: 64
 LIBM: libopenlibm
 LLVM: libLLVM-8.0.1 (ORCJIT, skylake)
Environment:
  JULIA_DEPOT_PATH = /builds/JuliaGPU/DiffEqBenchmarks.jl/.julia
 JULIA_CUDA_MEMORY_LIMIT = 2147483648
  JULIA PROJECT = 0.
 JULIA_NUM_THREADS = 8
```

Package Information:

```
Status: `/builds/JuliaGPU/DiffEqBenchmarks.jl/benchmarks/NonStiffDDE/Project.toml` [bcd4f6db-9728-5f36-b5f7-82caef46ccdb] DelayDiffEq 5.24.1 [f3b72e0c-5b89-59e1-b016-84e28bfd966d] DiffEqDevTools 2.22.0 [a077e3f3-b75c-5d7f-a0c6-6bc4c8ec64a9] DiffEqProblemLibrary 4.8.0 [91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 1.5.3
```