Landskeppni í eðlisfræði 2015

Úrslitakeppni

21. mars kl. 09:00-12:00

Leyfileg hjálpargögn: Reiknivél sem geymir ekki texta.

Keppnin samanstendur af 5 dæmum sem eru öll í nokkrum liðum. Athugaðu hvort þú hafir fengið öll dæmin.

Öll dæmin 5 vega jafnt og ekki verður dregið frá fyrir röng svör.

Skrifaðu lausnir þínar snyrtilega á lausnablöð sem þú færð afhent og merktu þau vel.

Tekið verður tillit til útreikninga við yfirferð á dæmum.

Góður frágangur hefur jákvæð áhrif!

Tafla yfir þekkta fasta

Nafn	Tákn	Gildi
Hraði ljóss í tómarúmi	c	$3,00 \cdot 10^8 \text{m/s}$
Þyngdarhröðun við yfirborð jarðarinnar	g	9.82m/s^2
Massi rafeindar	m_e	$9{,}11 \cdot 10^{-31} \mathrm{kg}$
Rafsvörunarstuðull tómarúms	ϵ_0	$8.85 \cdot 10^{-12} \mathrm{C}^2 \mathrm{s}^2 / (\mathrm{m}^3 \mathrm{kg})$
Frumhleðslan	e	$1,602 \cdot 10^{-19} \mathrm{C}$
Pyngdarfastinn	G	$6.67 \cdot 10^{-11} \mathrm{m}^3/(\mathrm{kg}\mathrm{s}^2)$
Radíus sólarinnar	R_{\odot}	$6.98 \cdot 10^8 \mathrm{m}$
Massi sólarinnar	M_{\odot}	$1,99 \cdot 10^{30} \mathrm{kg}$
Radíus jarðarinnar	R_{\oplus}	$6.38 \cdot 10^6 \mathrm{m}$
Massi jarðarinnar	M_{\oplus}	$5,97 \cdot 10^{24} \mathrm{kg}$
Stjarnfræðieining	1 AU	$1,50 \cdot 10^{11} \mathrm{m}$
Fasti Plancks	h	$6.63 \cdot 10^{-34} \mathrm{Js}$

1 Örbylgjuofnar

Örbylgu
ofninn er mikið tæknilegt afrek. Í þessu dæmi ætlum við að skoða aðe
ins eðlisfræðina á bakvið hann. Í örbylgju
ofnum er svokölluð magnetróna og í henni eru rafeindir í einsleitu segulsviði sem ferðast í hringi vegna segulkrafta og gefa frá sér rafsegulbylgjur (örbylgjur) með tíðni $f=2450\,\mathrm{MHz}$ en þessi tíðni er einmitt hermitíðni vatnssameinda. Örbylgjurnar sveifla síðan vatnssameindum í matnum þannig að núningur myndast milli sameindanna og maturinn hitnar.

- 1) (3 stig) Tilraun var gerð í 700 W örbylgjuofni þar sem nýtni var könnuð. 250 ml af vatni voru hitaðir um 22 °C á einni mínútu í ofninum. Hver var nýtni hituninnar? Notið að varmarýmd vatns á rúmmál er 4216 J/LK.
 - 2) (5 stig) Hversu margar ljóseindir gefur 700 W örbylgjuofn frá sér á einni mínútu?
- 3) (5 stig) Örbylgjuofninn er hannaður þannig að bylgjurnar endurkastast af vegg ofnsins og mynda standandi bylgju. Ein afleiðing þess er að á hnútpunktum bylgjunnar verða kaldir blettir þar sem maturinn hitnar ekki. Hversu langt er á milli þessara köldu bletta? (Góðir örbylgjuofnar snúa matnum til þess að koma í veg fyrir kalda bletti en við gerum ekki ráð fyrir því í þessu dæmi.)
- 4) (7 stig) Hvert þarf segulsviðið að vera innan í magnetrónunni til þess að framkalla tíðnina $f = 2450 \,\mathrm{MHz}$? Gerið ráð fyrir að hringtíðni rafeindanna sé jöfn örbylgjutíðninni.

2 Sameindaský

Sameindaský eru geimský sem er nógu þétt til þess að sameindir myndist úr jónuðu gasi. Stjörnur myndast innan sameindaskýja þegar gasið fellur saman undan eigin þyngdarafli. Í þessu dæmi skoðum við mjög einfalt líkan af þessu ferli.

(a) Létt ögn með massa m fellur að punktmassa M vegna þyngdarkrafts.

(b) Kúlusamhverft ský með meðalmassaþéttleika ρ fellur saman undir áhrifum þyngdarkrafts.

1) (5 stig) Hugsum okkur punktmassa M í miðju hnitakerfis og aðra miklu léttari ögn með massa $m \ll M$ í fjarlægð R (sjá mynd 1a). Til að byrja með er ögnin kyrrstæð en fellur svo í átt að punktmassanum vegna þyngdarkrafts og rekst á hann eftir tíma τ . Samkvæmt lögmálum Keplers þá hreyfast hlutir sem bundnir eru í þyngdarsviði eftir sporbaugum, og umferðartíminn T er háður hálfum langás sporbaugsins a samkvæmt

$$\frac{T^2}{a^3} = \frac{4\pi^2}{GM}.\tag{1}$$

Lögmálið gildir einnig um hreyfingu eftir beinni línu ef við lítum á línustrikið sem sporbaug í markgildinu þegar lengd skammássins stefnir á 0. Við getum því notað jöfnu 1 til þess að finna τ með því að velja rétt gildi fyrir a og T. Finndu τ og notaðu stærðirnar M, R og G í lokasvarinu.

- 2) (5 stig) Lítum næst á geimský sem er kúlusamhverft um miðpunkt hnitakerfisins (sjá mynd 1b). Upphaflega er skýið kyrrstætt með radíus r_0 og massaþéttleika ρ , sem er óháður staðsetning og það fellur síðan saman vegna þyngdarkrafts. Gerum ráð fyrir að þrýstingurinn í gasinu sé hverfandi, svo að enginn annar kraftur verki á milli agnanna. Finndu $\tau_{r\to 0}$, tímann sem það tekur gasið að falla saman í kúlu með mun minni radíus. Notaðu stærðirnar ρ , r_0 og/eða G í lokasvarinu.
- 3) (3 stig) Aflfræði geimskýja er mun flóknari en síðasti liður gerði ráð fyrir, og ekki er hægt að hunsa þrýstinginn í skýinu. Hugsum okkur að umhverfi skýsins (sem er mun þynnra gas) hafi fast hitastig T_0 . Við gerum ráð fyrir að skýið sé svo gagnsætt að allur varmi sem myndast við þyngdarhrunið berist jafnóðum út úr skýinu í formi geislunar. Skýið er því í varmajafnvægi við umhverfið í þessari nálgun. Ef skýið hegðar sér eins og kjörgas, hvert er þá hlutfallið $\frac{P_1}{P_0}$ milli þrýstingsins P_1 þegar radíus skýsins hefur helmingast $(r_1 = 0.5r_0)$ og upphaflegs þrýstings P_0 ?
- 4) (7 stig) Ef meðalmólmassi skýsins er μ , hversu mikill varmi hefur losnað úr skýinu þegar radíus þess er r ($r < r_0$)? Notið stærðirnar r_0 , r, T_0 , μ , heildarmassa skýsins M og gasfastann R í lokasvarinu.

 $\acute{A}bending$: Vinnan dW sem þyngdaraflið vinnur á skýinu þegar rúmmál þess minnkar um dV er d $W=-p\,\mathrm{d}V$ þar sem p er þrýstingurinn í skýinu.

3 Rafeindabyssa

Rafeindabyssa staðsett í punkti T hraðar rafeindum yfir spennumun $U=1000\,\mathrm{V}$ og sendir þær í stefnu eftir línunni a. Skotmarkið M er staðsett í fjarlægð $d=5\,\mathrm{cm}$ frá rafeindabyssunni þannig að hornið milli striksins sem tengir saman punkta T og M og línunnar a hefur stærð $\alpha=60^\circ$.

- 1) (8) Finnið einsleitt segulsvið B, hornrétt á flötinn sem skilgreindur er út frá línunni a og punkti M, þannig að rafeindirnar hitti skotmarkið M.
- $\mathbf{2}$) (12) Finnið einsleitt segulsvið B, samsíða strikinu milliT og M, þannig að rafeindirnar hitti skotmarkið M.

4 Hraðasamlagning

Athugið að í þessu dæmi reynir ekki á fyrri þekkingu á takmörkuðu afstæðiskenningunni.

Í þessu dæmi leiðum við út hraðasamlagningarformúluna í takmörkuðu afstæðiskenningunni með einfaldri hugartilraun. Hugsum okkur lest sem fer framhjá brautarpalli. Frá sjónarhóli brautarpallsins hefur hún hraða v og lengd L. Við tímann t=0 leggur hlutur af stað frá afturenda lestarinnar með hraða w>v séð frá brautarpallinum í hreyfingarstefnu lestarinnar og á sama tíma leggur ljósblossi með hraða c af stað í sömu stefnu. Ljósblossinn endurkastast frá spegli fremst í lestinni og mætir hlutnum í fjarlægð fL frá framendanum, $0 \le f \le 1$. Notið afstæðislögmálið og lögmálið um fastan útbreiðsluhraða ljóss til að sýna að

$$f = \frac{(c+v)(c-w)}{(c-v)(c+w)} \tag{2}$$

Sýnið enn fremur að

$$f = \frac{c - u}{c + u} \tag{3}$$

þar sem u er hraði hlutarins í viðmiðunarkerfinu þar sem lestin er kyrrstæð. Notið nú (2) og (3) til að fá

$$w = \frac{u+v}{1+uv/c^2} \tag{4}$$

5 Jarðskjálftabylgjur

Í þessu dæmi verður skoðað mjög gróft líkan af útbreiðslu jarðskjálftabylgna. Dæmið krefst engrar þekkingar á jarðeðlisfræði en hins vegar er gott að hafa í huga að jöfnur um endurkast og bylgjubrot eru eins hér og í ljósfræði. Við gerum ráð fyrir að jörðin samanstandi af einsleitum kúlulaga fljótandi kjarna með radíus R_c og einsleitum möttli úr föstu efni umhverfis kjarnann. Jörðin hefur fastan radíus R. Við skoðum tvenns konar rúmbylgjur, P-bylgjur og S-bylgjur. P-bylgjur eru langsbylgjur með útbreiðsluhraða v_P í möttli og hraða $v_{PC} < v_P$ í kjarnanum. S-bylgjur eru þverbylgjur með útbreiðsluhraða v_S í möttli en þær geta ekki ferðast um kjarnann. Við gerum ráð fyrir að jarðskjálftar verði því sem næst við yfirborð jarðar.

Mundu eftir sínus-reglunnni

og kósínus-reglunni

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

$$c^2 = a^2 + b^2 - 2ab\cos \gamma.$$

Mynd 1

Mynd 2

Fastar: $R = 6371 \, \mathrm{km}, R_c = 3490 \, \mathrm{km}, v_P = 11 \, \mathrm{km/s}, v_S = 6,0 \, \mathrm{km/s}, v_{PC} = 9,0 \, \mathrm{km/s}$

- 1) (4 stig) Á mynd 1 verður jarðskjálfti í punkti A. Bylgjur frá skjálftanum berast eftir beinni línu í gegnum möttulinn í punkt B. Þar er tæki sem nemur bylgjurnar. Hornið AOB, þar sem O er miðja jarðar, köllum við θ . Ef S-bylgjurnar berast 6 mínútum og 14 sekúndum seinna en P-bylgjurnar í punktinn B, hvert er þá hornið θ ?
- 2) (4 stig) Stuttu seinna mælast P- og S-bylgjur í B sem hafa speglast af kjarna jarðar. Hversu langur tími líður frá því að spegluðu P-bylgjurnar berast þangað til að spegluðu S-bylgjurnar berast? (Ef þú reiknaðir ekki θ í lið (1), máttu gera ráð fyrir að $\theta=60^{\circ}$.)
- **3)** (2 stig) Hvert er stærsta horn θ þannig að S-bylgjur geti borist frá A til B? (S-bylgjur geta ekki ferðast í kjarnanum.)
- 4) (10 stig) Jafnvel þótt θ , þ.e. hornið milli A og B, sé stærra en hornið sem var reiknað í (3) geta P-bylgjur borist frá upptökum jarðskjálfta að nema. Það gerist þegar bylgjurnar brotna tvisvar á skilunum milli möttuls og kjarna líkt og á mynd 2. Leiðið út jöfnu fyrir θ sem fall af φ , innfallshorninu við skil möttuls og kjarna.