PREDICTIVE ANALYTICS

ALY6020, SPRING 2020

MODULE 1 PROJECT ASSIGNMENT

WEEK 1: CLASSIFICATION USING NEAREST NEIGHBORS

SUBMITTED BY: SHIVANI ADSAR

NUID: 001399374

SUBMITTED TO: PROF. NA YU

DATE: 04/11/2020

Introduction

The assignment focusses on providing practical knowledge through the use of K Nearest Neighbor machine learning algorithm. The classification algorithm is efficient and robust, widely used in medical industry, theft and fraud detection etc. In this assignment, The K Nearest Neighbor is performed on the Breast Cancer and Abalone datasets for predictions. [1]

Analysis

Breast Cancer Dataset

- The Breast Cancer dataset has been taken from the UCI Machine Learning Repository. This dataset has 32 attributes and 569 instances. The data consists of the dimensions of cancer cells in women and these attributes have helped in predicting the type of cancer in patients.
- In order to perform the classification of the cancer types as Benign and Malignant, we have used the K Nearest Neighbors classification algorithm. [2]

Importing the Dataset

- The Breast Cancer dataset has been imported initially into a dataframe. Using the "str" function, the structure of the dataset has been analysed.
- We have selected the feature, "diagnosis" for understanding the number of benign and malignant types and further factorized by labelling them.

We can observe that there are 357 records having Benign cancer while 212 records have Malignant cancer.

Fig.1: Factorization for the Diagnosis

Analysis on Dataset

• The percentages of the labelled values, Benign and Malignant were analysed using the

```
"prop.table" function.
> round(prop.table(table(wbcd$diagnosis)) * 100, digits = 1)

Benign Malignant
   62.7 37.3
```

Fig.2: Percentages of Labelled Values

As seen, the percentage of records having Benign cancer is 62.7 % and for Malignant, is 37.3 %.

• We have selected the three variables to understand and analyze certain numeric parameters such as the radius, area and smoothness. [2]

```
> summary(wbcd[c("radius_mean"
   radius_mean area_mean
                                          area_mean", "smoothness_mean")])
                                            smoothness_mean
                                                    :0.05263
Min. : 6.981
1st Qu.:11.700
                      Min. : 143.5
1st Qu.: 420.3
                                            Min.
                                            1st Qu.:0.08637
 Median :13.370
                      Median : 551.1
                                            Median :0.09587
Mean :14.127
3rd Qu.:15.780
                      Mean : 654.9
3rd Qu.: 782.7
                                           Mean :0.09636
                                            3rd Qu.:0.10530
        :28.110
                               :2501.0
                                          Max.
```

Fig.3: Summary of numeric parameters selected

• As we can observe that the values of smoothness_mean are varying from 0.05 to 0.16 while, radius_mean varies from 6.98 to 28.11 and area_mean from 143.5 to 2501.0. We can see that the values are not uniform which may give biased results and inaccurate predictions.

Normalisation

• Hence, we will normalize the data in order to have standardized and uniform values. Using the normalization function which will use the difference of the variable from the minimum value and divide by the range, the values will be standardized.

```
# create normalization function
normalize <- function(x) {
  return ((x - min(x)) / (max(x) - min(x)))
}
normalize</pre>
```

Fig.4: Normalization

• We have checked the working of normalization function.

```
> # test normalization function - result should be identical
> normalize(c(1, 2, 3, 4, 5))
[1] 0.00 0.25 0.50 0.75 1.00
> normalize(c(10, 20, 30, 40, 50))
[1] 0.00 0.25 0.50 0.75 1.00
```

Fig.5: Verification Normalization Function

• In order to perform the normalization function for all the values, we have used the "lapply" function which will return the same length for all the values.

```
wbcd_n <- as.data.frame(lapply(wbcd[2:31], normalize))</pre>
```

Fig.6: Normalisation for all values

• The data has been divided into Training and Testing Data for better prediction.

```
wbcd_train_labels <- wbcd[1:469, 1]
wbcd_test_labels <- wbcd[470:569, 1]</pre>
```

Fig.7: Training and Testing Datasets

We know that KNN works primarily on the numeric measurement of datapoints. We notice, the values of smoothness mean vary drastically when compared to area_mean and radius _mean.

Using the normalization function which will use the difference of the variable from the minimum value and divide by the range, the values will be standardized.

We can see that the values have been normalized for different set of input parameters.

As seen, the first 469 columns have been sed for training the dataset and this is tested on the remaining columns.

K-Nearest Neighbor

• After the initial data analysis is completed, the training for KNN classifier is performed. The "class" package is used which classifies the datapoints for KNN algorithm. The algorithm selects the nearest neighbors based on the Euclidean distance of each datapoint and as per the number of clusters specified.[1]

Fig.8: KNN Classifier

- Since the training data is built upon 469 columns, we have used the number of clusters as 21 which is almost equivalent to the square root of that number.
- We have checked the performance of the model by comparing with the predicted values and test values in the testing dataset. Hence, the Cross Table function included in the "gmodels" library will help in comparisons of two vectors.
 CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)

Fig.9: Cross Table

Total Observations in Table: 100

	wbcd_test_p	ored	
wbcd_test_labels	Benign	Malignant	Row Total
Benign	61	0	61
	1.000	0.000	0.610
	0.968	0.000	
	0.610	0.000	
Malignant	2	37	39
	0.051	0.949	0.390
	0.032	1.000	
	0.020	0.370	
Column Total	63	37	100
	0.630	0.370	

Fig. 10: Confusion Matrix

True Negative: The top right value of 61 has been accurately been identified as Benign out of 100 values.

We can built the KNN classifier on

the training and testing data

considering 21 clusters.

True Positive: The values of 37 of 100 was correctly identified as Malignant.

False Negative: The value of 2 shows that the predicted value was Benign while the cancer was malignant.

False Positive: The model precited 0 values for tumors that were malignant but actually benign

- We can see that the model predicted 2 out of 100 values incorrectly and the accuracy was seen to be 98%.
- The improvement of prediction can be very well performed by Normalisation. However, normalization, does not compress the middle values for uniformity always. Hence, outliers are not taking into account as the extreme values of compressed. Therefore, Z-score standardization can be useful in such cases.

Z-Score Standardization

• Z-score standardization uses the scale() function to re-scale the values for better optimization.

```
wbcd_z <- as.data.frame(scale(wbcd[-1]))</pre>
```

Fig.11: Re-scaling using Z-score

The Z-score value should be 0 as, we can see the mean value is 0 in summary.

```
> summary(wbcd_zarea_mean)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.4532 -0.6666 -0.2949 0.0000 0.3632 5.2459
```

Fig.12: Summary of Z-Score function

• As performed earlier, we will be dividing the data into testing and training data labels, then perform the KNN classifier and built the cross table.

Total Observations in Table: 100

	wbcd_test_p	ored	
wbcd_test_labels	Benign	Malignant	Row Total
Doni an	61		 61
Benign	1.000	0.000	0.610
	0.924	0.000	
	0.610	0.000	
	5		
Malignant	0.128	34 0.872	39 0.390
	0.076	1.000	į į
	0.050	0.340	
Column Total	66	34	100
	0.660	0.340	i i

We can see that, the False Negative values were incorrectly classified as 5, Hence the accuracy has reduced to 95%.

Fig.13: Confusion Matrix using Z-Score

• Testing for several values of K has been done as follows on the same function:

wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=1)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)</pre>

Total Observations in Table: 100

Total Observations in Table: 100

	wbcd_test_p	ored						
wbcd_test_labels	Benign	Malignant	Row Total		wbcd_test_r	ored		
				wbcd_test_labels	Benign	Malignant	Row Total	
Benign	58	3	61					
	0.951	0.049	0.610	Benign	61	0	61	
	0.983	0.073		_	1.000	0.000	0.610	
	0.580	0.030			0.968	0.000		
					0.610	0.000		
Malignant	1	38	39					
3	0.026	0.974	0.390	Malignant	2	37	39	
	0.017	0.927			0.051	0.949	0.390	
	0.010	0.380			0.032	1.000		
	0.010	0.500			0.020	0.370		
Column Total	59	41	100					L
Cordiiii Tocar	0.590	0.410	100	Column Total	63	37	100	L
	0.390	0.410			0.630	0.370		L
								1

K=1 K=5

Total Observations in Table: 100

Total Observations in Table: 100

	wbcd_test_p	ored						
wbcd_test_labels	Benign	Malignant	Row Total		wbcd_test_p	ored		
				wbcd_test_labels	Benign	Malignant	Row Total	
Benign	61	0	61					
	1.000	0.000	0.610	Benign	61	0	61	
	0.953	0.000			1.000	0.000	0.610	
	0.610	0.000			0.953	0.000		
					0.610	0.000		
Malignant	3	36	39					
3	0.077	0.923	0.390	Malignant	3	36	39	Ļ
	0.047	1.000			0.077	0.923	0.390	Ļ
	0.030	0.360			0.047	1.000		Ļ
	0.050				0.030	0.360		Ļ
Column Total	64	36	100					Ļ
COTAMIT TOTAL	0.640	0.360	100	Column Total	64	36	100	Ŀ
	0.040	0.300			0.640	0.360		Ļ

K=11 K=15

100

Total Observations	in Table:	100					
				 wbcd_test_labels	wbcd_test_ Benian		Row Total
	wbcd_test_			mbed_cese_rabers	benngn	i marriginane	
wbcd_test_labels	Benign	Malignant 	Row Total	Benign	61	0	61
Benign	61	0	61		1.000	0.000	0.610
	1.000	0.000	0.610	j	0.938	0.000	
	0.968	0.000			0.610	0.000	
i	0.610	0.000	İ	ii			
				Malignant	4	35	39
Malignant	2	37	39		0.103	0.897	0.390
_	0.051	0.949	0.390	l i	0.062	1 000	

100

Total Observations in Table: 100

0.062

0.040

1.000

0.350

35

K = 27K = 21

0.370

0.370

0.032

0.020

0.630

As we can see, the algorithm gives more accurate results for K=5 and K=21 with accuracy of 98% as compared to other values.

Column Total

Abalone Dataset

The Abalone dataset is used to predict the gender and age of the shell on the basis of certain characteristics as sex, length, height, number of rings and weight. The dataset has 4177 instances and 8 attributes. [1]

Importing the Dataset

Column Total

- The Abalone dataset has been imported initially into a dataframe. Using the "str" function, the structure of the dataset has been analysed.
- We have selected the feature, "Sex" for understanding the gender of shells and further factorized by labelling them.

```
> table(al$5ex)
1307 1342 1528
> # recode diagnosis as a factor
/ " recode dragnosis as a lacetor
| al$sex <- factor(al$sex, levels = c("F", "M","I"),
| total dragnosis as a lacetor
| al$sex <- factor(al$sex, levels = c("F", "M","I"),
| abels = c("Female", "Male","Infant"))</pre>
```

We can observe that there are 1307 female, 1342 Infants and 1528 Males.

Fig.1: Factorization for the Gender

Analysis on Dataset

The percentages of the labelled values, Males, Females and Infants were analysed using the "prop.table" function.[2]

```
> round(prop.table(table(al$Sex)) * 100, digits = 1)
        Male Infant
Female
  31.3
         36.6 32.1
```

Fig.2: Percentages of Labelled Values

As seen, the percentage of records having Female are 31.3%, Male are 36.6% and Infants are 32.1 %.

 We have selected the three variables to understand and analyze certain numeric parameters such as the Length, Diameter and Height.

```
> summary(al[c("Length", "Diameter", "Height")])
                    Diameter
                                      Height
    Length
        :0.075
                        :0.0550
                                         :0.0000
 1st Qu.:0.450
                 1st Qu.:0.3500
                                  1st Qu.: 0.1150
Median :0.545
                 Median :0.4250
                                  Median :0.1400
Mean
       :0.524
                 Mean :0.4079
                                  Mean
                                          :0.1395
 3rd Qu.:0.615
                 3rd Qu.:0.4800
                                  3rd Qu.: 0.1650
Max.
        :0.815
                 Max.
                        :0.6500
                                  Max.
                                          :1.1300
```

primarily on the numeric measurement of datapoints. We notice, the values of smoothness mean vary drastically when compared to Length, Diameter and Height.

We know that KNN works

Fig.3: Summary of numeric parameters selected

• As we can observe that the values of Height values are varying from 0.00 to 1.13 while, Diameter varies from 0.05 to 0.65 and Length from 0.075 to 0.815. We can see that the values are not uniform which may give biased results and inaccurate predictions.

Normalisation

• Hence, we will normalize the data in order to have standardized and uniform values. Using the normalization function which will use the difference of the variable from the minimum value and divide by the range, the values will be standardized.

```
# create normalization function
normalize <- function(x) {
  return ((x - min(x)) / (max(x) - min(x)))
}
normalize</pre>
```

Fig.4: Normalization

• We have checked the working of normalization function.

```
> # test normalization function - result should be identical
> normalize(c(1, 2, 3, 4, 5))
[1] 0.00 0.25 0.50 0.75 1.00
> normalize(c(10, 20, 30, 40, 50))
[1] 0.00 0.25 0.50 0.75 1.00
```

Fig.5: Verification Normalization Function

In order to perform the normalization function for all the values, we have used the "lapply" function which will return the same length for all the values.

```
al_n <- as.data.frame(lapply(al[2:9], normalize))</pre>
```

Fig.6: Normalisation for all values

 The data has been divided into Training and Testing Data for better prediction.

```
al_train_labels <- al[1:3000, 1]
al_test_labels <- al[3001:4177, 1]</pre>
```

Fig.7: Training and Testing Datasets

will use the difference of the variable from the minimum value and divide by the range, the values will be standardized.

Using the normalization function which

We can see that the values have been normalized for different set of input parameters.

As seen, the first 3000 columns have been used for training the dataset and this is tested on the remaining columns.

K-Nearest Neighbor

After the initial data analysis is completed, the training for KNN classifier is performed.
 The "class" package is used which classifies the datapoints for KNN algorithm. The algorithm selects the nearest neighbors based on the Euclidean distance of each datapoint

We can built the KNN classifier on the training and testing data considering 54 clusters.

Fig.8: KNN Classifier

- Since the training data is built upon 3000 columns, we have used the number of clusters as 54 which is almost equivalent to the square root of that number.
- We have checked the performance of the model by comparing with the predicted values and test values in the testing dataset. Hence, the Cross Table function included in the "gmodels" library will help in comparisons of two vectors.
 CrossTable(x = al_test_labels, y = al_test_pred, prop. chisq=FALSE)

Fig.9: Cross Table

	al_test_pre	ed .			
al_test_labels	Female	Male	Infant	Row Total	
Female	127	194	45	366	
	0.347	0.530	0.123	0.311	
	0.416	0.436	0.105		
	0.108	0.165	0.038		
Male	138	211	77	426	
	0.324	0.495	0.181	0.362	
	0.452	0.474	0.180		
	0.117	0.179	0.065		
Infant	40	40	305	385	
	0.104	0.104	0.792	0.327	
	0.131	0.090	0.714	İ	
	0.034	0.034	0.259		
Column Total	305	445	427	1177	
	0.259	0.378	0.363	i	
				i	

Fig. 10: Confusion Matrix

True Negative: The top left value of 127 has been accurately been identified as Female out of 1177 values.

True Positive: The values of 305 of 1177 was correctly identified as Infant and 77 as Male

False Negative: The value of 40 for Infants shows that the predicted value was male while gender was infant.

False Positive: The model precited 45 values for Females when they were actually infants

- We can see that the model predicted 40 out of 1177 values incorrectly and the accuracy was seen to be 97%.
- The improvement of prediction can be very well performed by Normalisation. However, normalization, does not compress the middle values for uniformity always. Therefore, Z-score standardization can be useful in such cases.

Z-Score Standardization

• Z-score standardization uses the scale() function to re-scale the values for better optimization.

```
al_z <- as.data.frame(scale(al[-1]))</pre>
```

Fig.11: Re-scaling using Z-score

The Z-score value should be 0 as, we can see the mean value is 0 in summary.

```
> summary(al_z$Length)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.7387 -0.6161 0.1749 0.0000 0.7578 2.4232
```

Fig.12: Summary of Z-Score function

• As performed earlier, we will be dividing the data into testing and training data labels, then perform the KNN classifier and built the cross table.[2]

	al_test_pre	ed		
al_test_labels	Female	Male	Infant	Row Total
Female	119 0.325 0.420 0.101	200 0.546 0.427 0.170	47 0.128 0.110 0.040	366 0.311
Male	123 0.289 0.435 0.105	228 0.535 0.487 0.194	75 0.176 0.176 0.064	426 0.362
Infant	41 0.106 0.145 0.035	40 0.104 0.085 0.034	304 0.790 0.714 0.258	385 0.327
Column Total	283 0.240	468 0.398	426 0.362	1177

We can see that, the False Negative values were incorrectly classified as 41 out of 1177, Hence the accuracy has reduced to 95%.

Fig.13: Confusion Matrix using Z-Score

Testing for several values of K has been done as follows on the same function:
 al_test_pred <- knn(train = al_train, test = al_test, cl = al_train_labels, k=1)
 CrossTable(x = al_test_labels, y = al_test_pred, prop.chisq=FALSE)

	al_test_pre	d			
al_test_labels	Female	Male	Infant	Row Total	
Female	149	171	46	366	
	0.407	0.467	0.126	0.311	
	0.403	0.378	0.130		
	0.127	0.145	0.039		
Male	173	187	66	426	
	0.406	0.439	0.155	0.362	
	0.468	0.414	0.186		
	0.147	0.159	0.056		
Infant	48	94	243	385	
	0.125	0.244	0.631	0.327	
	0.130	0.208	0.685	i	
	0.041	0.080	0.206		
Column Total	370	452	355	1177	
COTAMIT TOTAL	0.314	0.384	0.302	11//	

	al_test_pre	2 u			
al_test_labels	Female	Male	Infant	Row Total	
Female	149	169	48	366	
Fellare					
	0.407	0.462	0.131	0.311	
	0.409	0.400	0.123		
	0.127	0.144	0.041		
Male	161	205	60	426	
	0.378	0.481	0.141	0.362	
	0.442	0.486	0.153		
	0.137	0.174	0.051		
Infant	54	48	283	385	
	0.140	0.125	0.735	0.327	
	0.148	0.114	0.724		
	0.046	0.041	0.240		
Column Total	364	422	391	1177	
	0.309	0.359	0.332	l	

K=1 K=5

	al_test_pre	d			
al_test_labels	Female	Male	Infant	Row Total	
Female	148	176	42	366	
	0.404	0.481	0.115	0.311	
	0.409	0.419	0.106		
	0.126	0.150	0.036		
Male	160	195	71	426	
	0.376	0.458	0.167	0.362	
	0.442	0.464	0.180		
	0.136	0.166	0.060		
Infant	54	49	282	385	
	0.140	0.127	0.732	0.327	
	0.149	0.117	0.714		
	0.046	0.042	0.240		
Column Total	362	420	395	1177	
	0.308	0.357	0.336	İ	

	al_test_pre				
al_test_labels	Female	Male	Infant	Row Total	
Female	158	165	43	366	
	0.432	0.451	0.117	0.311	
	0.448	0.390	0.107		
	0.134	0.140	0.037		
Male	149	208	69	426	
	0.350	0.488	0.162	0.362	
	0.422	0.492	0.172		
	0.127	0.177	0.059		
Infant	46	50	289	385	
	0.119	0.130	0.751	0.327	
	0.130	0.118	0.721		
	0.039	0.042	0.246		
Column Total	353	423	401	1177	
	0.300	0.359	0.341		

K=11 K=15

	al_test_pre	ed				al_test_pre	ed		
al_test_labels	Female	Male	Infant	Row Total	al_test_labels	Female	Male	Infant	Row Total
Female	142	180	44	366	Female	136	186	44	366
remare	0.388	0.492	0.120	0.311		0.372	0.508	0.120	0.311
	0.416	0.419	0.108			0.420	0.418	0.108	
	0.121	0.153	0.037			0.116	0.158	0.037	
Male	151	202	73	426	Male	142	212	72	426
	0.354	0.474	0.171	0.362		0.333	0.498	0.169	0.362
	0.443	0.470	0.180			0.438	0.476	0.176	
	0.128	0.172	0.062			0.121	0.180	0.061	
Infant	48	48	289	385	Infant	46	47	292	385
	0.125	0.125	0.751	0.327		0.119	0.122	0.758	0.327
	0.141	0.112	0.712			0.142	0.106	0.716	
	0.041	0.041	0.246			0.039	0.040	0.248	
Column Total	341	430	406	1177	Column Total	324	445	408	1177
Corumni Total	0.290	0.365	0.345	11//	20.4 10041	0.275	0.378	0.347	11//
									ii

K=21 K=27

• As we can see, the algorithm gives more accurate results for K=15 and K=27 with accuracy of 97% as compared to other values.

Conclusion

- As per the analysis in Breast Cancer dataset, The cancer was seen to be more benign more women as compared to malignant. The number of records with benign cancer were 61 and hence more than patients having malignant cancer.
- Using the Abalone Dataset, The KNN algorithm helped in predicting that with the increase in rings, the shell age increased. Also, the females seemed to be more older than males.
- The normalization technique is efficient in some cases, however, may not consider outliers for compression as it considers extreme parameters. Hence, z-score is used for rescaling. Clearly, Normalisation seemed more effective on both the datasets as compared to z-score with higher accuracy.

References

- 1. (n.d.). Retrieved from http://archive.ics.uci.edu/ml/datasets/Abalone
- 2. Sign In. (n.d.). Retrieved from https://rpubs.com/jkklim/ABALONE_KNN