Package 'SIHR'

August 9, 2022

	8 ,				
Type Package					
Title Statistical Inference in High Dimensional Regression					
Version 1.0.1					
Author Prabrisha Rakshit,	Zhenyu Wang, Zijian Guo, Tony Cai				
Maintainer Zijian Guo <z< th=""><th>ijguo@stat.rutgers.edu></th><th></th></z<>	ijguo@stat.rutgers.edu>				
(1) linear functionals sion ('Cai et al.' (2019 (2) individual treatme	redures in the high-dimensional setting for in generalized linear regres-) <arxiv:1904.12891>, 'Guo et al.' (2020) <arxiv:2012.07133>, 'Cai et al.' ent effects in generalized linear regression, hals in linear regression ('Guo et al.' (2019) <arxiv:1909.01503>).</arxiv:1909.01503></arxiv:2012.07133></arxiv:1904.12891>	(2021)),			
License GPL-3					
Encoding UTF-8					
LazyData true					
RoxygenNote 7.2.0					
URL https://github.co	m/prabrishar1/SIHR				
Imports CVXR, glmnet, stats					
R topics documen	ted:				
LF		1 3 5			
Index		8			
ITE	Inference for difference of linear combinations of the regression vectors in high dimensional generalized linear regressions				

Description

Computes the bias-corrected estimator of the difference of linearcombinations of the regression vectors for the high dimensional generalized linear regressions and the corresponding standard error.

2 ITE

Usage

```
ITE(
  Х1,
  y1,
  Х2,
  y2,
  loading.mat,
  model = "linear",
  intercept = TRUE,
  intercept.loading = FALSE,
  beta.init1 = NULL,
  beta.init2 = NULL,
  lambda = NULL,
  mu = NULL,
  init.step = NULL,
  resol = 1.5,
  maxiter = 6,
  alpha = 0.05,
  verbose = TRUE
)
```

Arguments X1

X1	Design matrix for the first sample, of dimension $n_1 \times p$
y1	Outcome vector for the first sample, of length n_1
X2	Design matrix for the second sample, of dimension $n_2 \times p$
y2	Outcome vector for the second sample, of length n_1
loading.mat	Loading matrix, nrow=p, each column corresponds to a loading of interest
model	The high dimensional regression model, either linear or logistic or logistic alternative or probit
intercept	Should intercept(s) be fitted for the initial estimators (default = TRUE)
intercept.load	ing
	Should intercept be included for the loading (default = FALSE)
beta.init1	The initial estimator of the regression vector for the 1st data (default = NULL)
beta.init2	The initial estimator of the regression vector for the 2nd data (default = NULL)
lambda	lambda The tuning parameter in fitting model (default = NULL)
mu	The dual tuning parameter used in the construction of the projection direction (default = NULL)
init.step	The initial step size used to compute mu; if set to NULL it is computed to be the number of steps (maxiter) to obtain the smallest mu
resol	The factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5)
maxiter	Maximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default $= 6$)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed (default = TRUE)

LF 3

Value

est.plugin.vec The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat est.debias.vec The vector of bias-corrected estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); se.vec corresponding to different column in loading.mat ci.mat The matrix of two.sided confidence interval for the linear combination, of dimension ncol(loading.mat) x 2; the row corresponding to different column in loading.mat prob.debias.vec The vector of bias-corrected estimators after probability transformation, length of ncol(loading.mat); corresponding to different column in loading.mat. The value would be NULL for non-logistic model. The vector of standard errors of the bias-corrected estimators after probability prob.se.vec transformation, length of ncol(loading.mat); corresponding to different column in loading.mat. The value would be NULL for non-logistic model.

Examples

```
X1 = matrix(rnorm(100*10), nrow=100, ncol=10)
y1 = -0.5 + X1[,1] * 0.5 + X1[,2] * 1 + rnorm(100)
X2 = matrix(rnorm(90*10), nrow=90, ncol=10)
y2 = -0.4 + X2[,1] * 0.48 + X2[,2] * 1.1 + rnorm(90)
loading1 = c(1, 1, rep(0,8))
loading2 = c(-0.5, -1, rep(0,8))
loading.mat = cbind(loading1, loading2)
Est = ITE(X1, y1, X2, y2, loading.mat, model="linear")
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

LF

Inference for linear combination of the regression vector in high dimensional generalized linear regression

Description

Inference for linear combination of the regression vector in high dimensional generalized linear regression

4 LF

Usage

```
LF(
  Χ,
  у,
  loading.mat,
  model = c("linear", "logistic", "logistic_alternative", "probit"),
  intercept = TRUE,
  intercept.loading = FALSE,
  beta.init = NULL,
  lambda = NULL,
  mu = NULL,
  init.step = NULL,
  resol = 1.5,
  maxiter = 6,
  alpha = 0.05,
  verbose = TRUE
)
```

Arguments X

у	Outcome vector, of length n
loading.mat	Loading matrix, nrow=p, each column corresponds to a loading of interest
model	The high dimensional regression model, either linear or logistic or logistic_alternative

or probit

intercept Should intercept be fitted for the initial estimator (default = TRUE)

intercept.loading

Should intercept be included for the loading (default = FALSE)

 $\label{eq:local_problem} \mbox{beta.init} \qquad \mbox{ The initial estimator of the regression vector} \ (\mbox{default} = \mbox{NULL})$

lambda The tuning parameter in fitting model (default = NULL)

Design matrix, of dimension $n \times p$

mu The dual tuning parameter used in the construction of the projection direction

(default = NULL)

init.step The initial step size used to compute mu; if set to NULL it is computed to be the

number of steps (maxiter) to obtain the smallest mu

resol The factor by which mu is increased/decreased to obtain the smallest mu such

that the dual optimization problem for constructing the projection direction con-

verges (default = 1.5)

maxiter Maximum number of steps along which mu is increased/decreased to obtain the

smallest mu such that the dual optimization problem for constructing the projec-

tion direction converges (default = 6)

alpha Level of significance to construct two-sided confidence interval (default = 0.05)

verbose Should intermediate message(s) be printed (default = TRUE)

Value

est.plugin.vec The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); each corresponding to a loading of interest

QF 5

est.debias.vec	The vector of bias-corrected estimators for the linear combination of regression coefficients, length of ncol(loading.mat); each corresponding to a loading of interest
se.vec	The vector of standard errors of the bias-corrected estimators, length of $ncol(loading.mat)$; each corresponding to a loading of interest
ci.mat	The matrix of two.sided confidence interval for the linear combination, of dimension ncol(loading.mat) x 2; each row corresponding to a loading of interest
proj.mat	The matrix of projection directions; each column corresponding to a loading of interest

Examples

```
X = matrix(rnorm(100*10), nrow=100, ncol=10)
y = -0.5 + X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
loading1 = c(1, 1, rep(0, 8))
loading2 = c(-0.5, -1, rep(0, 8))
loading.mat = cbind(loading1, loading2)
Est = LF(X, y, loading.mat, model="linear")
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

QF

Inference for quadratic forms of the regression vector in high dimensional linear and logistic regressions

Description

Inference for quadratic forms of the regression vector in high dimensional linear and logistic regressions

Usage

```
QF(
    X,
    y,
    G,
    A = NULL,
    model = c("linear", "logistic", "logistic_alternative", "probit"),
    intercept = TRUE,
    tau.vec = c(0, 0.5, 1),
    beta.init = NULL,
    lambda = NULL,
    mu = NULL,
    init.step = NULL,
    resol = 1.5,
    maxiter = 6,
```

6 QF

```
alpha = 0.05,
  verbose = TRUE
)
```

Arguments

Χ	Design matrix, of dimension $n \times p$
У	Outcome vector, of length n
G	The set of indices, G in the quadratic form
A	The matrix A in the quadratic form, of dimension $ G \times G $. If NULL A would be set as the $ G \times G $ submatrix of the population covariance matrix corresponding to the index set G (default = NULL)
mode1	The high dimensional regression model, either linear or logistic or logistic_alternative or probit
intercept	Should intercept be fitted for the initial estimator (default = TRUE)
tau.vec	The vector of enlargement factors for asymptotic variance of the bias-corrected estimator to handle super-efficiency (default = $c(0,0.5,1)$)
beta.init	The initial estimator of the regression vector (default = NULL)
lambda	The tuning parameter in fitting model (default = NULL)
mu	The dual tuning parameter used in the construction of the projection direction (default = NULL)
init.step	The initial step size used to compute mu; if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = NULL)
init.step	number of steps (< maxiter) to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default =
	number of steps (< maxiter) to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = NULL) Resolution or the factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection
resol	number of steps (< maxiter) to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = NULL) Resolution or the factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5) aximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection
resol	number of steps (< maxiter) to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = NULL) Resolution or the factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5) aximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 6)

Value

est.plugin	The plugin(biased) estimator for the quadratic form of the regression vector restricted to G
est.debias	The bias-corrected estimator of the quadratic form of the regression vector
se.vec	The vector of standard errors of the bias-corrected estimator, length of tau.vec; corrsponding to different values of tau.vec
ci.mat	The matrix of two.sided confidence interval for the quadratic form of the regression vector; row corresponds to different values of tau.vec
proj	The projection direction

QF 7

Examples

```
X = matrix(rnorm(100*10), nrow=100, ncol=10)
y = X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
G = c(1,2)
A = matrix(c(1.5, 0.8, 0.8, 1.5), nrow=2, ncol=2)
Est = QF(X, y, G, A, model="linear")
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

Index

- ITE, 1
- LF, 3
- QF, 5