QUANTITATIVE RISK MANAGEMENT IN PYTHON

Jamsheed Shorish
Computational Economist

Extreme values

Portfolio losses: extreme values

- Extreme values: from tail of distribution
 - Tail losses: losses exceeding some value
 - Model tail losses => better risk management

- Extreme value theory: statistical distribution of extreme values
- Block maxima

- Extreme value theory: statistical distribution of extreme values
- Block maxima:
 - Break period into sub-periods

- Extreme value theory: statistical distribution of extreme values
- Block maxima:
 - Break period into sub-periods
 - Form block from each sub-period

- Extreme value theory: statistical distribution of extreme values
- Block maxima:
 - Break period into sub-periods
 - Form blocks from each sub-period
 - Set of block maxima = dataset
- Peak over threshold (POT):
 - Find all losses over given level
 - Set of such losses = dataset

Generalized Extreme Value Distribution

- Example: Block maxima for 2007 2009
 - Resample losses with desired period (e.g. weekly)

```
maxima = losses.resample("W").max()
```

- Generalized Extreme Value Distribution (GEV)
 - Distribution of maxima of data
 - Example: parametric estimation using scipy.stats.genextreme

```
from scipy.stats import genextreme
params = genextreme.fit(maxima)
```

VaR and CVaR from GEV distribution

- 99% VaR from GEV distribution
 - Use .ppf() percent point function to find 99% VaR
 - Requires params from fitted GEV distribution
 - Finds maximum loss over one week period at 99% confidence
- 99% CVaR from GEV distribution
 - CVaR is conditional expectation of loss given VaR as minimum loss
 - Use .expect() method to find expected value

```
VaR_99 = genextreme.ppf(0.99, *params)
```

```
CVar_99 = (1 / (1 - 0.99)) * genextreme.expect(lambda x: x, *params, lb = VaR_99)
```

Covering losses

- Risk management: covering losses
 - Regulatory requirement (banks, insurance)
 - Reserves must be available to cover losses
 - For a specified period (e.g. one week)
 - At a specified confidence level (e.g. 99%)
- VaR from GEV distribution:
 - estimates maximum loss
 - given period
 - given confidence level

Covering losses

- **Example**: Initial portfolio value = \$1,000,000
- One week reserve requirement at 99% confidence
 - $\circ
 m VaR_{99}$ from GEV distribution: maximum loss over one week at 99% confidence
- Reserve requirement: Portfolio value x VaR_{99}
 - \circ Suppose VaR_{99} = 0.10, i.e. 10% maximum loss
 - Reserve requirement = \$100,000
- Portfolio value changes => reserve requirement changes
- Regulation sets frequency of reserve requirement updating

Let's practice!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Kernel density estimation

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Jamsheed Shorish
Computational Economist

The histogram revisited

- Risk factor distributions
 - Assumed (e.g. Normal, T, etc.)
 - Fitted (parametric estimation, Monte Carlo simulation)
 - Ignored (historical simulation)
- Actual data: histogram
- How to represent histogram by probability distribution?
 - Smooth data using filtering
 - Non-parametric estimation

• Filter: smoothen out 'bumps' of histogram

- Filter: smoothen out 'bumps' of histogram
- Observations accumulate in over time

- Filter: smoothen out 'bumps' of histogram
- Observations accumulate in over time

- Filter: smoothen out 'bumps' of histogram
- Observations accumulate in over time

- Filter: smoothen out 'bumps' of histogram
- Observations accumulate in over time
- Pick particular portfolio loss

- Filter: smoothen out 'bumps' of histogram
- Observations accumulate in over time
- Pick particular portfolio loss
 - Examine nearby losses

- Filter: smoothen out 'bumps' of histogram
- Observations accumulate in over time
- Pick particular portfolio loss
 - Examine nearby losses
 - Form "weighted average" of losses
- Kernel: filter choice; determines "window"

- Filter: smoothen out 'bumps' of histogram
- Observations accumulate in over time
- Pick particular portfolio loss
 - Examine nearby losses
 - Form "weighted average" of losses
- Kernel: filter choice; determines "window"
 - Move window to another loss

- Filter: smoothen out 'bumps' of histogram
- Observations accumulate in over time
- Pick particular portfolio loss
 - Examine nearby losses
 - Form "weighted average" of losses
- Kernel: filter choice; determines "window"
 - Move window to another loss
- Kernel density estimate: probability density

The Gaussian kernel

- Continuous kernel
- Weights all observations by distance from center
- Generally: many different kernels are available
 - Used in time series analysis
 - Used in signal processing

KDE in Python

 Visualization: probability density function from KDE fit

Finding VaR using KDE

- VaR: use gaussian_kde .resample() method
- Find quantile of resulting sample
- CVaR: expected value as previously encountered, but
 - gaussian_kde has no .expect() method => compute integral manually
 - o special .expect() method written for exercise

```
sample = kde.resample(size = 1000)
VaR_99 = np.quantile(sample, 0.99)
print("VaR_99 from KDE: ", VaR_99)
```

```
VaR_99 from KDE: 0.08796423698448601
```


Let's practice!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Neural network risk management

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Jamsheed Shorish
Computational Economist

Real-time portfolio updating

- Risk management
 - Defined risk measures (VaR, CVaR)
 - Estimated risk measures (parameteric, historical, Monte Carlo)
 - Optimized portfolio (e.g. Modern Portfolio Theory)
- New market information => update portfolio weights
 - **Problem**: portfolio optimization costly
 - \circ Solution: weights = f(prices)
 - \circ Evaluate f in real-time
 - \circ *Update* f only occasionally

Neural networks

- Neural Network: output = f(input)
 - Neuron: interconnected processing node in function
- Initially developed 1940s-1950s
- Early 2000s: application of neural networks to "big data"
 - Image recognition, processing
 - Financial data
 - Search engine data
- Deep Learning: neural networks as part of Machine Learning
 - o 2015: Google releases open-source Tensorflow deep learning library for Python

- Layers: connected processing neurons
 - Input layer

Layers

Input

•

- Neural network structure
 - Input layer
 - Hidden layer

- Neural network structure
 - Input layer
 - Hidden layer
 - Output layer
- Training: learn relationship between input and output

- Neural network structure
 - Input layer
 - Hidden layer
 - Output layer
- Training: learn relationship between input and output
 - Asset prices => Input layer

- Neural network structure
 - Input layer
 - Hidden layer
 - Output layer
- Training: learn relationship between input and output
 - Asset prices => Input layer
 - Input + hidden layer processing

- Neural network structure
 - Input layer
 - Hidden layer
 - Output layer
- Training: learn relationship between input and output
 - Asset prices => Input layer
 - Input + hidden layer processing
 - Hidden + output layer processing

- Neural network structure
 - Input layer
 - Hidden layer
 - Output layer
- Training: learn relationship between input and output
 - Asset prices => Input layer
 - Input + hidden layer processing
 - Hidden + output layer processing
 - Output => portfolio weights

Using neural networks for portfolio optimization

Training

- Compare output and pre-existing "best" portfolio weights
- Goal: minimize "error" between output and weights
- Small error => network is trained

Usage

- Input: new, unseen asset prices
- Output: predicted "best" portfolio weights for new asset prices
- Best weights = risk management

Creating neural networks in Python

- Keras: high-level Python library for neural networks/deep learning
- Further info: Introduction to Deep Learning with Keras

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
model = Sequential()
model.add(Dense(10, input_dim=4, activation='sigmoid'))
model.add(Dense(4))
```

Training the network in Python

- Historical asset prices: training_input matrix
- Historical portfolio weights: training_output vector
- Compile model with:
 - given error minimization ('loss')
 - given optimization algorithm ('optimizer')
- Fit model to training data
 - o epochs: number of training loops to update internal parameters

```
model.compile(loss='mean_squared_error', optimizer='rmsprop')
model.fit(training_input, training_output, epochs=100)
```

Risk management in Python

- Usage: provide new (e.g. real-time) asset pricing data
 - New vector new_asset_prices given to input layer
- Evaluate network using model.predict() on new prices
 - Result: predicted portfolio weights
- Accumulate enough data over time => re-train network
 - Test network on previous data => backtesting

```
# new asset prices are in the vector new_asset_prices
predicted = model.predict(new_asset_prices)
```


Let's practice!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Wrap-up and Future Steps

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Jamsheed Shorish
Computational Economist

Chapter I

Risk and Return Recap

Return Distribution

Risk Factors

Volatility & Covariance

Modern Portfolio Theory

Efficient Portfolio & Efficient Frontier

Chapter I

Risk and Return Recap

Chapter 2

Goal-oriented Risk
Management

Return Distribution

_

Loss Distribution

Risk Factors

Value at Risk (VaR)

Volatility & Covariance

Conditional VaR

Modern Portfolio Theory

Risk Exposure

Efficient Portfolio & Efficient Frontier

Portfolio Hedging

Chapter I

Risk and Return Recap

Chapter 2

Goal-oriented Risk Management

Chapter 3

Estimating & Identifying Risk

Return Distribution

Risk Factors

Volatility & Covariance

Modern Portfolio Theory

Efficient Portfolio & Efficient Frontier

Loss Distribution

Value at Risk (VaR)

Conditional VaR

Risk Exposure

Portfolio Hedging

Parametric Estimation

Historical Simulation

Monte Carlo Simulation

Structural Breaks

Extreme Events

Chapter I

Risk and Return Recap

Chapter 2

Goal-oriented Risk Management

Chapter 3

Estimating & Identifying Risk

Chapter 4

Advanced Risk Management

Return Distribution

Risk Factors

Volatility & Covariance

Modern Portfolio Theory

Efficient Portfolio & Efficient Frontier

Loss Distribution

Value at Risk (VaR)

Conditional VaR

Risk Exposure

Portfolio Hedging

Parametric Estimation

Historical Simulation

Monte Carlo Simulation

Structural Breaks

Extreme Events

Extreme Value Theory

Kernel Density Estimation

Neural Networks

Real-time risk management

Tools in your toolkit

Scipy	Statsmodels	PyPortfolioOpt	Keras
scipy.stats	statsmodels.api	pypfopt	keras
norm()	OLS()	risk_models	models
skewnorm()	add_constant()	cla	layers
t()	.fit()	expected_returns	Sequential()
genextreme()		efficient_frontier	Dense()
<pre>gaussian_kde()</pre>		objective_functions	.add()
anderson()		EfficientFrontier()	.fit()
skewtest()		<pre>mean_historical_return()</pre>	.predict()
.pdf()		CovarianceShrinkage()	
.ppf()		<pre>.negative_cvar()</pre>	
.fit()		.CLA()	
.rvs()		<pre>.ledoit_wolf()</pre>	

Future steps and reference

- Upcoming DataCamp courses
 - Credit Risk Modeling in Python
 - Financial Forecasting in Python
 - Machine Learning for Finance in Python
 - GARCH Models for Finance in Python
- Quantitative Risk Management: Concepts, Techniques and Tools, McNeil, Frey & Embrechts, Princeton UP, 2015.

Best of luck on your data science journey!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

