Joint Research Centre

the European Commission's in-house science service

Serving society Stimulating innovation Supporting legislation

The CO₂MPAS tool

G. Fontaras,

V. Arcidiacono, V. Valverde, K. Anagnostopoulos, S. Tsiakmakis, , B. Ciuffo,

Ispra, 17/11/2016

Approach – WLTP Phasing-in

 During the WLTP phasing-in, WLTP measurements will be correlated into NEDC values using CO₂MPAS (CO₂ Model for PAssenger and commercial vehicles Simulation), developed by JRC.

WLTP-based vehicle Type-Approval

CO₂MPAS meta-model

NEDCequivalent CO₂ emissions NEDC-based OEM performance

What is CO₂MPAS

- CO₂MPAS is a vehicle simulator developed in order to facilitate the introduction of WLTP in the European TA approval scheme.
- CO₂MPAS is founded on established engineering approaches used in vehicle simulation. Eg. longitudinal vehicle dynamics, modular structure, extended-willans model for fuel consumption calculation etc
- CO₂MPAS is unique in the sense that it is a "self calibratable" model, calibration takes place based on WLTP data
- CO₂MPAS Type approval operates with the minimum input data.
 Specific assumptions and boundaries associated with the official tests are embeded

CO₂MPAS data flow overview

Key features

Comprises of 2 main calculation modules

Power - RPM module

- Simple longitudinal dynamics (WLTP-GTR)
- Engine power and RPM calc'd @ 1hz
- Inclusion of Mech or Elec. loads where needed
- Generic start-stop logic
- A/T and CVT RPM prediction model
- Alternator logic calibrated over WLTP

FC module

- Calculation of FC
 Indicative instantaneous approach
- Based on an extended Willans model
- Semi-physical empirical cold start model
- Calibration Optimization based on WLTP results
- Specific engine technologies included

+Parallel work for HEV control module and optimization

Accurate calculation of average / instantaneous power demand

Very good accuracy when compared with results obtained from the Cruise simulations by LAT and **Real test data**from 40 vehicles

CO₂MPAS sub-models

- CO₂MPAS includes the following sub-models:
 - Automatic Transmission model (gear shifting)
 - Clutch / Torque converter model score
 - Engine cold start speed model
 - Engine speed model
 - Start stop model
 - Alternator model
 - Engine coolant temperature model
 - Engine fuel consumption (CO₂) model

Automatic Transmission model (gear-shifting 1/2)

- There are 2 **official** options enabled in the A/T model:
 - Corrected Mean Velocity (CMV) creates a "map" of gear upshifts and down-speeds as a function of vehicle speed.
 - GearShift Power-Velocity (GSPV) creates a map of gear upshifts as a function of vehicle speed & the power at the gearbox
- CO₂MPAS automatically selects the option that better reproduces gear shifting over WLTP
- In engineering mode the DT option can be also enabled

Automatic Transmission model (gear-shifting 2/2)

- Two sets of gear-shift maps are calculated, **hot** and **cold** conditions
- Final step: Matrix Velocity Limits (MVL) correction model corrects
 gear-shifting over quasi-steady state conditions (enables lower gears)
- For CVTs a gradient boost regressor is used to predict Engine RPM as a function of vehicle speed, acceleration and power at the gearbox

Clutch / Torque converter model

- CO₂MPAS by default calibrates a clutch model (generic or DTC) unless a TC is declared as present on the vehicle:
 - In both cases an "RPM-slip" model as a function of acceleration is fitted based on experimental data
- Efficiency model (predefined non calibrated):
 - Clutch: linear TC efficiency as a function of RPM ratio
 - TC: a non-linear efficiency as a function of RPM ratio
- For TCs a lock up velocity (48km/h) is used

Engine cold start speed model

- The ECSSM increases idling RPMs during the cold start phase
- An optimizer is used to calculate the unit less ΔRPM_{idle} [%] function during cold start
- ΔRPM is a linear function o f engine temperature capped at a certain value which is also estimated by the optimizer

Engine speed model

- The ESM calculates the exact RPM/Velocity ratios over the specific test
- Gear ratios (or default RPM/V ratios) and information on tyre dimensions provided by the user are used as starting values
- An optimizer calculates the optimal dynamic radius of the tire based on the dyno velocity and engine RPM data measured over the WLTP

Start stop model

- The SS model defines where the engine should be switched off for SS equipped vehicles
- CO₂ MPAS uses a classifier in order to associate engine switch off events to vehicle deceleration and velocity.
- SS functionality is initiated based on the user provided input on engine SS initiation time

Alternator model

- Comprises of 2 parts:
 - Logic part (when the alternator operates and how)
 - Electric part (what current is supplied by the alternator)
- Logic part identifies different phases (idling, regenerative braking, battery charging, battery depletion) and under what conditions those occur → result: alternator status
- **Electric part** identifies the current per each phase based on other parameters (eg RPM, Battery SOC, deceleration)
- A gradient boost regressor is used for predicting the currents based on alt. status, acceleration, power at g/box, SOC at t-1, and initialization time

Alternator logic and current prediction

Status [-]

Alternator logic and current prediction - windows

Engine coolant temperature model

- CO₂MPAS uses a regressor to predict engine temperature
 (T) evolution
- T_i is function of T_{i-1} , RPM, acceleration and the power at the gearbox
- The regressor is calibrated based on WLTP recorded time series using Gradient Boost algorithm (ransac algorithm used for inlier and outlier detection)

Engine fuel consumption (CO₂) model

- Extended Willans Model approach:
- Fitting of a specific non-linear Willans model

BMEP=
$$(a+b\times cm+c\times c_m^2)\times FuMEP+(a2\times FuMEP^2)+I_0+I_2\times cm^2$$

- Where:
 - BMEP: brake mean effective pressure
 - cm: mean piston speed
 - FuMEP: fuel mean effective pressure
 - a, b, c, a2, I0, I2 are the parameters that are being fitted

Engine fuel consumption (CO₂) model

Fuel Consumption (Fc) Calculation Function

$$\int FMEP(t) \, dt = \int \frac{-(a+b*C_m(t)+c*C_m(t)^2) + \sqrt{(a+b*C_m(t)+c*C_m(t)^2)^2 - 4*a_2*\left(\left(\frac{T(t)}{T_{target}}\right)^{-k}} * (l+l_2*C_m(t)^2) - BMEP(t)\right)}{2*a_2} dt$$
, where:

- $C_m(t)[m/s] = 2 * \frac{Engine\ Speed\ [rpm]}{60} * Engine\ Stroke\ [m]$
- $BMEP(t)[Pa] = {2*Engine\ Power\ [W]}/{(Engine\ Capacity\ [m^3]*^{Engine\ Speed\ [rpm]}/_{60})}$
- Fuel Consumption(t)[g/s] = ${}^{FMEP(t)[Pa]*Engine\ Capacity}[m^3]*{}^{Engine\ Speed\ [rpm]/}_{60}/_{2*Fuel\ Lower\ Heating\ Value\ [J/g]}$

The following are considered as knowns from the measurement / other COMPAS modules (in order to understand issues and improve the stability of the FC module):

- Engine Speed, Temperature, Engine Power
- The constant parameters are calculated by optimization of the above equation against WLTP CO₂ measured data

Engine fuel consumption (CO₂) model

- Extended Willans Model is calibrated using WLTP CO₂ results
 - An initial estimate is made based on generic values (categorized per engine and aspiration type)
 - The model perturbates until the initial and final estimate of the CO₂ time series converge
 - A final optimization is done in order to reduce the error in the WLTP bag value prediction.
- Specific technologies are currently considered using the Extended Willans approach
 - For Petrol engines: Variable valve actuation, Lean combustion, Aspiration type, Cylinder deactivation (limited validation), External EGR (limited validation)
 - For Diesel engines: External EGR, Cylinder deactivation (limited validation), Selective catalytic reduction (limited validation)

Optimization path

Summary

Correlation and CO₂MPAS Process flow chart Input CO₂MPAS GUI Generic Initial Engine -Values CO₂ model Selection setup data. update Sub models Engine - CO₂ WLTP calibration model calibration (prediction) & / Instantaneous (Eng. Temp., RPM, **NEDC Test** Engine G/box, Clutch-TC, samples simulation Power) Yes WLTP WLTP & CO_2 NEDC Final Engine **Improv** sim. data -Vehicle ing? model setup Engine - CO₂ model Reports trimming / (Summary, WLTP bag Dice) values

Stay in touch

JRC Science Hub: www.ec.europa.eu/jrc

Twitter: @EU_ScienceHub

in LinkedIn: european-commission-joint-research-centre

YouTube: JRC Audiovisuals

Vimeo: Science@EC

Email: <u>biagio.ciuffo@jrc.ec.europa.eu</u>

