UNIVERSITY OF CALIFORNIA, SAN DIEGO

Electrical and Computer Engineering Department ECE 65 – Spring 2022

Components and Circuits lab

Final Exam

- Closed books, four double-sided cheat sheets, and calculators are allowed
- Electronic devices are not allowed.
- Please put all answers in the provided sheets.
- You can use the back of every page as a scratch paper.
- Please submit your handwritten solutions to Gradescope by 2:40 pm.

Please do not begin until you are told to do so.

Show your work and good luck!

Name

PID

Problem 1.

Design an op-amp circuit **using only one op-amp** and assuming ideal op-amps to implement the function of

$$v_o = 2v_1 - 2v_2 - 4v_3$$

in which v_1 , v_2 , and v_3 are three input voltages and v_o is the output voltage.

Problem 2.

Design the following circuit (find R_2 and R_3) such that the voltage gain can be varied between -1 V/V and -100 V/V. Assume that the op-amp is ideal, and you have a $100 k\Omega$ potentiometer.

Name

PID

Problem 3.

- a) Design a diode circuit to add +2 V DC shift to a sinusoidal input voltage with peak amplitude of 10 V and frequency of 2 kHz. You should use regular PN junction diode(s) and Zener diode(s) in your design. Assume $V_{D0} = 0.7 V$ and $V_Z = 3.3 V$.
 - Drawing the circuit is enough for this part.
- b) Find the output at

i.
$$t = 100 \, \mu s$$

ii.
$$t = 450 \,\mu s$$

- You need to show your work on how you found the output voltage at these two time points.
- c) Draw the output waveform for $0 \le t \le 1 \, ms$.

Problem 4

Find the current through the diode and the voltage across it in the below circuit.

Assume $V_{D0} = 0.7 V$ and $V_Z = 2 V$.

Problem 5

The MOSFET in the below circuit has $V_t = 1 V$ and $\mu C_{ox} \frac{W}{L} = 1.5 \ mA/V^2$, and $\lambda = 0$.

- a) Sketch (approximately) the graph of I_D vs V_G with V_G varying in the range of 0 V to 5 V. Label your graph.
- b) Write I_D equation(s) for the various portions of the resulting graph.

Problem 6.

The MOSFET in the following amplifier circuit has $|V_t| = 0.6 V$. Neglect the early effect in the bias and signal circuits, and assume the capacitors are short for the signal circuit.

- a) Find R_S and R_D to bias the transistor at $I_D = 0.3 \, mA$ and $V_{OV} = 0.4 \, V$ and achieve the voltage amplifier gain of $A_V = -12 \, V/V$. (Capacitors are short for the signal circuit)
- b) Find the largest \hat{v}_{sig} (\hat{v}_{sig} shows the peak amplitude of the sinusoid v_{sig}) that the amplifier can handle while remaining in the saturation region. Find the peak amplitude of the corresponding signal at the output?
- c) If \hat{v}_{sig} is limited to 10 mV, what value can R_D be increased to while maintaining saturation region operation (R_S does not change)? What is the new value of A_V ?

