Chapter: 11. CIRCLES

Exercise: 11A

Question: 1

Let AB be a chord of a circle with center O. $OC \perp AB$, then

AB = 16 cm, and OA = 10 cm.

OC⊥AB

Therefore,

OC bisects AB at C

AC = (1/2) AB

$$\Rightarrow$$
 AC = (1/2) 16

$$\Rightarrow$$
 AC = 8 cm

In triangle OAC,

$$OA^2 = OC^2 + AC^2$$

$$\Rightarrow 10^2 = OC^2 + 8^2$$

$$\Rightarrow 100 = OC^2 + 64$$

$$\Rightarrow$$
 OC²= 36

$$\Rightarrow$$
 OC= 6

Question: 2

Let distance OC = 3 cm

Radius = OA = 5 cm

 $Draw\ OC \bot AB$

In triangle OCA,

$$OA^2 = OC^2 + AC^2$$

$$\Rightarrow 5^2 = 3^2 + AC^2$$

$$\Rightarrow$$
 AC²= 16

$$\Rightarrow$$
 AC = 4 cm _____(i)

Now,

$$AB = 2 AC$$

$$\Rightarrow$$
 AB = 8 cm [From equation (i)]

Hence, length of a chord = 8 cm.

Question: 3

Let distance OC = 8 cm

Chord AB = 30 cm

 $Draw\ OC \bot AB$

Therefore,

OC bisects AB at C

$$AC = (1/2) AB$$

$$\Rightarrow$$
 AC = (1/2) 30

$$\Rightarrow$$
 AC = 15 cm

In triangle OCA,

$$OA^2 = OC^2 + AC^2$$

$$\Rightarrow OA^2 = 8^2 + 15^2$$

$$\Rightarrow$$
 OA²= 64 + 225

$$\Rightarrow$$
 OA²= 289

$$\Rightarrow$$
 OA = 17 cm

Hence, radius of the circle = 17 cm.

Question: 4

Let radius OB = OD = 5 cm

Chord AB = 8 cm

Chord CD = 6 cm

$$\mathrm{BP} = (1/2)\;\mathrm{AB}$$

$$\Rightarrow$$
 BP = (1/2) 8 = 4 cm

$$DQ = (1/2) CD$$

$$\Rightarrow$$
 DQ = (1/2) 6 = 3 cm

In triangle OPB,

$$OP^2 = OB^2 - BP^2$$

$$\Rightarrow OP^2 = 5^2 - 4^2$$

$$\Rightarrow$$
 OP²= 25 - 16

$$\Rightarrow$$
 OP²= 9

$$\Rightarrow$$
 OP = 3 cm

In triangle OQD,

$$OQ^2 = OD^2 - DQ^2$$

$$\Rightarrow OQ^2 = 5^2 - 3^2$$

$$\Rightarrow$$
 OQ²= 25 - 9

$$\Rightarrow$$
 OQ²= 16

$$\Rightarrow$$
 OQ = 4 cm

Now,

$$PQ = OQ - OP = 4 - 3 = 1$$

Hence, distance between chords = 1 cm.

Let radius OA = OC = 5 cm

Chord AB = 8 cm

Chord CD = 6 cm

AP = (1/2) AB

 \Rightarrow AP = (1/2) 8 = 4 cm

CQ = (1/2) CD

 \Rightarrow CQ = (1/2) 6 = 3 cm

In triangle OAP,

 $OP^2 = OA^2 - AP^2$

 $\Rightarrow OP^2 = 5^2 - 4^2$

 \Rightarrow OP²= 25 - 16

 \Rightarrow OP²= 9

 \Rightarrow OP = 3 cm

In triangle OQD,

 $OQ^2 = OC^2 - CQ^2$

 $\Rightarrow OQ^2 = 5^2 - 3^2$

 \Rightarrow OQ²= 25 - 9

 \Rightarrow OQ²= 16

 \Rightarrow OQ = 4 cm

Now,

$$PQ = OP + OQ = 3 + 4 = 7$$

Hence, distance between chords = 7 cm.

Question: 5

Let radius OA = OC = 17 cm

Chord AB = 30 cm and CD = 16 cm

Draw OL and OM

Therefore,

AP = (1/2) AB

 \Rightarrow AP = (1/2) 30 = 15 cm

$$CQ = (1/2) CD$$

$$\Rightarrow$$
 CQ = (1/2) 16 = 8 cm

In triangle OAP,

$$OP^2 = OA^2 - AP^2$$

$$\Rightarrow OP^2 = 17^2 - 15^2$$

$$\Rightarrow$$
 OP²= 289 - 225

$$\Rightarrow$$
 OP²= 64

$$\Rightarrow$$
 OP = 8 cm

In triangle OQD,

$$OQ^2 = OC^2 - CQ^2$$

$$\Rightarrow$$
 OQ² = 17² - 8²

$$\Rightarrow$$
 OQ²= 289 - 64

$$\Rightarrow$$
 OQ²= 225

$$\Rightarrow$$
 OQ = 15 cm

Now,

$$PQ = OP + OQ = 8 + 15 = 23$$

Hence, distance between chords = 23 cm.

Question: 6

Let radius OA = OC = OD = r

Chord AB = 12 cm

$$OE = OC - CE$$

$$\Rightarrow$$
 OE = $r - 3$

$$AE = (1/2) AB$$

$$\Rightarrow$$
 AE = (1/2) 12 = 6 cm

In triangle AOE,

$$OA^2 = AE^2 + OE^2$$

$$\Rightarrow$$
 r² = 6² + (r - 3)²

$$\Rightarrow$$
 r² = 36 + r² + 9 - 6r

$$\Rightarrow 6r = 45$$

$$\Rightarrow$$
 r = 7.5 cm

Hence, radius of circle = 7.5 cm.

Question: 7

Let radius
$$OA = OB = OD = r$$

$$DE = 8 cm$$

$$OE = OB - BE$$

$$\Rightarrow$$
 OE = r - 4

In triangle ODE,

$$OD^2 = DE^2 + OE^2$$

$$\Rightarrow$$
 r² = 8² + (r - 4)²

$$\Rightarrow$$
 r² = 64 + r² + 16 - 8r

$$\Rightarrow 8r = 80$$

$$\Rightarrow$$
 r = 10 cm

Hence, radius of circle = 10 cm.

Question: 8

Given OD⊥AB

In triangle ABC,

D is the mid-point of AB

$$\therefore$$
 AD = DB

O is the mid-point of BC

$$\therefore$$
 OC = OB

We say, AC||OD

(1/2) AC = OD [Mid-point theorem in triangle ABC]

$$\Rightarrow$$
 AC = 2 × OD Proved.

Question: 9

Proof

In \triangle OEP and \triangle OFP,

 $\angle OEP = \angle OFP$ [equal to 90°]

OP = OP [common]

 $\angle OPE = \angle OPF [OP bisects \angle BPD]$

Therefore,

 $\Delta OEP = \Delta OFP$ [By angle-side-angle]

 \therefore OE = OF

AB = CD [Chords are equidistant from the center]

Hence, AB = CD Proved.

Question: 10

90°]

∴PF
$$\bot$$
CD and OF \bot CD

We know that the perpendicular from the center of a circle to chord, bisect the chord.

Therefore,

CF = FD Proved.

Question: 11

Let two different circles intersect at three distinct points A, B and C.

Then, these points are already non-collinear.

A unique circle can be drawn to pass through these points. This is a contradiction.

Hence, two different circles cannot intersect each other at more than two points.

Question: 12

Let,

Radius OA = 10 cm and O'A = 8 cm

Chord AB = 12 cm

Now,

$$AD = (1/2) AB$$

$$\Rightarrow$$
 AD = (1/2) 12 = 6 cm

In triangle OAD,

$$OD^2 = OA^2 - AD^2$$

$$\Rightarrow OD^2 = 10^2 - 6^2$$

$$\Rightarrow$$
 OD²= 100 - 36

$$\Rightarrow$$
 OD²= 64

$$\Rightarrow$$
 OD = 8 cm

In triangle O'AD,

$$O'D^2 = O'A^2 - AD^2$$

$$\Rightarrow$$
 O'D² = 8² - 6²

$$\Rightarrow$$
 O'D²= 64 - 36

$$\Rightarrow$$
 O'D²= 28

$$\Rightarrow$$
 O'D = 2 $\sqrt{7}$ cm

Now,

$$OO' = OD + O'D = (8+2\sqrt{7}) cm$$

Hence, distance between their centers = $(8+2\sqrt{7})$ cm

Question: 13

Join PQ,

PQ is the common chord of both the circles.

Thus,

arc PCQ = arc PDQ

$$\therefore \angle QAP = \angle QBP$$

$$\therefore$$
 QA = QB Proved.

Question: 14

Let AB and CD are two chords of a circle with center O.

Diameter POQ bisect s them at L and M.

Then,

 $OL\bot AB$ and $OM\bot CD$

- $\therefore \angle ALM = \angle LMD$
- ∴ AB||CD [Alternate angles]

Question: 15

Join AP.

Let PQ intersect AB at L,

Then, AB = 5 - 3 = 2 cm

PQ is the perpendicular bisector of AB,

Then,

AL = (1/2) AB

$$\Rightarrow$$
 AL = (1/2) 2 = 1 cm

In triangle APL,

$$PL^2 = PA^2 - AL^2$$

$$\Rightarrow PL^2 = 5^2 - 1^2$$

$$\Rightarrow$$
 PL²= 25 - 1

$$\Rightarrow$$
 PL²= 24

$$\Rightarrow$$
 PL = 2 $\sqrt{6}$ cm

Now,

PQ = 2 PL

$$\Rightarrow$$
 PQ = 2 × 2 $\sqrt{6}$

$$\Rightarrow$$
 PQ = $4\sqrt{6}$ cm

Question: 16

Given, OB = OC

Then,
$$\angle BOC = \angle BCO = y^{\circ}$$

External
$$\angle OBA = \angle BOC + \angle BCO = (2y)^{\circ}$$

Now,

$$OA = OB$$

Then,
$$\angle OAB = \angle OBA = (2y)^{\circ}$$

External
$$\angle AOD = \angle OAC + \angle ACO$$

$$= \angle OAB + \angle BCO = (3y)^{\circ}$$

$$\therefore x^{\circ} = (3y)^{\circ}[Given \angle AOD = x^{\circ},]$$

Question: 17

Given AB = AC

$$\therefore$$
 (1/2)AB = (1/2)AC

 $OP \perp AB$ and $OQ \perp AC$

$$\therefore$$
 MB = NC

$$\Rightarrow \angle PMB = \angle QNC [90^{\circ}]$$

Equal chords are equidistant from the center.

$$\Rightarrow$$
 OM = ON

$$OP = OQ$$

$$\Rightarrow$$
 OP - OM = OQ - ON

$$\Rightarrow$$
 PM = QN

 \therefore $\triangle ABC \cong \triangle ABC$ [By side-angle-side criterion of congruence]

$$\therefore$$
 PB = QC Proved.

Question: 18

Draw, $OP \perp AB$ and $OQ \perp CD$

In triangle OBP and triangle OQC,

$$\angle OPB = \angle OQC [Angle = 90^{\circ}]$$

$$\angle OBP = \angle OCD$$
 [Alternate angle]

$$OB = OC [Radius]$$

By side-angle-side criterion of congruence

$$\Delta OBP \cong \Delta OQC$$

$$\therefore$$
 OP = OQ

The chords equidistant from the center are equal.

$$\therefore$$
 AB = CD Proved.

Question: 19

Let ABC be an equilateral triangle of side 9 cm.

And AD be one of its medians.

Then,

$$AD \bot BC$$

$$BD = (1/2) BC$$

$$\Rightarrow$$
 BD = (1/2) 9 = 4.5 cm

In triangle ADB,

$$AD^2 = AB^2 - BD^2$$

$$\Rightarrow AD^2 = 9^2 - (9/2)^2$$

$$\Rightarrow AD^2 = 81 - (81/4)$$

$$\Rightarrow$$
 AD = $(9\sqrt{3})/2$

In an equilateral triangle the centroid and circumcenter coincide and AO: OD = 2:1

$$\therefore$$
 radius AO = (2/3) AD

$$= (2/3) (9\sqrt{3})/2$$

$$= 3\sqrt{3}$$
 cm

Hence, radius of circle = $3\sqrt{3}$ cm.

In triangle OAB and triangle OAC,

$$AB = AC [Given]$$

$$OB = CO [Radius]$$

$$OA = OA [Common]$$

By side-side criterion of congruence

$$\Delta OAB \cong \Delta OAC$$

$$\therefore \angle OAB = \angle OAC$$
 Proved.

Question: 21

In triangle OPX and triangle ORY,

$$OX = OY [Radius]$$

$$\angle OPX = \angle ORY [Common]$$

By side-angle-side criterion of congruence,

$$\Delta OPX \,\cong\, \Delta ORY$$

$$\therefore$$
 PX = RY

$$\Rightarrow$$
 PQ - PX = QR - RY [PQ = QR]

$$\Rightarrow$$
 QX = QY Proved.

Exercise: 11B

Question: 1

(i) Join OB.

$$\angle OAB = \angle OBA = 40^{\circ}[Because OB = OA]$$

$$\angle OCB = \angle OBC = 30^{\circ}[Because OB = OC]$$

$$\angle ABC = \angle OBA + \angle OBC$$

$$\Rightarrow \angle ABC = 40^{\circ} + 30^{\circ}$$

$$\Rightarrow \angle ABC = 70^{\circ}$$

$$\angle AOC = 2 \times \angle ABC$$

$$\Rightarrow \angle AOC = 2 \times \angle ABC$$

$$\Rightarrow \angle AOC = 2 \times 70^{\circ}$$

$$\Rightarrow \angle AOC = 140^{\circ}$$

$$\angle BOC = 360^{\circ} - (\angle AOB + \angle AOC)$$
 [Sum of all angles at a point = 360°]

$$\Rightarrow \angle BOC = 360^{\circ} - (90^{\circ} + 110^{\circ})$$

$$\Rightarrow \angle BOC = 360^{\circ} - 200^{\circ}$$

$$\Rightarrow \angle BOC = 160^{\circ}$$

We know that $\angle BOC = 2 \times \angle BAC$

$$\Rightarrow \angle BAC = (1/2) \times \angle BOC$$

$$\Rightarrow \angle BAC = (1/2) \times 160^{\circ}$$

$$\Rightarrow \angle BAC = 80^{\circ}$$

```
Question: 2
AOC + \angle AOB = 180^{\circ}[Because BC is a straight line]
\Rightarrow \angle AOC + 70^{\circ} = 180^{\circ}
\Rightarrow \angle AOC + 70^{\circ} = 180^{\circ}
\Rightarrow \angle AOC = 110^{\circ}
OA = OC [Radius]
\therefore \angle OAC = \angle OCA (i)
In triangle AOC,
\angle OAC + \angle OCA + \angle AOC = 180^{\circ}[Sum of angles of triangle]
\Rightarrow 2 \angleOCA + 110° = 180°[From equation (i)]
\Rightarrow 2 \angleOCA = 70°
\Rightarrow 2 \angleOCA = 70°
\Rightarrow \angle OCA = 35^{\circ}
(ii) ∠OAC = 35°
\angle AOC + \angle AOB = 180^{\circ}[Because BC is a straight line]
\Rightarrow \angle AOC + 70^{\circ} = 180^{\circ}
\Rightarrow \angle AOC + 70^{\circ} = 180^{\circ}
\Rightarrow \angle AOC = 110^{\circ}
OA = OC [Radius]
\therefore \angle OAC = \angle OCA (i)
In triangle AOC,
\angle OAC + \angle OCA + \angle AOC = 180^{\circ}[Sum of angles of triangle]
\Rightarrow 2 \angleOAC + 110° = 180°[From equation (i)]
\Rightarrow 2 \angleOAC = 70°
\Rightarrow 2 \angle OAC = 70^{\circ}
\Rightarrow \angle OAC = 35^{\circ}
Question: 3
BPC + \angleAPB = 180°[Because APC is a straight line]
\Rightarrow \angle BPC + 110^{\circ} = 180^{\circ}
\Rightarrow \angle BPC = 70^{\circ}
In triangle BPC,
\angle BPC + \angle PBC + \angle PCB = 180^{\circ}[Sum of angles of triangle]
\Rightarrow 70°+ 25° + \anglePCB = 180°
\Rightarrow \angle PCB = 85^{\circ}
\therefore \angleADB = \anglePCB = 85°[Angles in the same segment of a circle]
Question: 4
In triangle ABD,
\angle ABD + \angle BAD + \angle ADB = 180^{\circ}[Sum of angles of triangle]
```

 \Rightarrow 35°+ 90° + \angle ADB = 180°

```
\Rightarrow \angle ADB = 55^{\circ}
```

 \therefore $\angle ACB = \angle ADB = 55^{\circ}[Angles in the same segment of a circle]$

Question: 5

$$AOB = 2 \times \angle ACB$$

$$\Rightarrow \angle AOB = 2 \times 50^{\circ}$$

$$\Rightarrow \angle AOB = 100^{\circ}$$

OA = OB [Radius of the circle]

$$\therefore \angle OAB = \angle OBA$$
 _____(i)

In triangle AOB,

$$\angle OAB + \angle OBA + \angle AOB = 180^{\circ}[Sum of angles of triangle]$$

$$\Rightarrow$$
 2 \angle OAB + 100° = 180°[From equation (i)]

$$\Rightarrow 2 \angle OAB = 80^{\circ}$$

$$\Rightarrow \angle OAB = 40^{\circ}$$

Question: 6

(i)
$$\angle ACD = 54^{\circ}$$

∠ABD and ∠ACD are in the segment AD.

$$\therefore$$
 \angle ACD = \angle ABD [Angles in the same segment of a circle]

$$\angle ACD = 54^{\circ}$$

(ii)
$$\angle BAD = 43^{\circ}$$

 \angle BAD and \angle BCD are in the segment BD.

$$\therefore$$
 $\angle BAD = \angle BCD$ [Angles in the same segment of a circle]

$$\angle BAD = 43^{\circ}$$

(iii)
$$\angle BDA = 83^{\circ}$$

In triangle ABD,

$$\angle ABD + \angle BAD + \angle BAD = 180^{\circ}[Sum of angles of triangle]$$

$$\Rightarrow 54^{\circ} + 43^{\circ} + \angle BAD = 180^{\circ}$$

$$\Rightarrow 97^{\circ} + \angle BAD = 180^{\circ}$$

$$\Rightarrow \angle BAD = 83^{\circ}$$

Question: 7

CAD and ∠CBD are in the segment BD.

$$\therefore$$
 \angle CAD = \angle CBD [Angles in the same segment of a circle]

$$\angle CAD = 60^{\circ}$$

In triangle ACD,

$$\angle CAD + \angle ADC + \angle ACD = 180^{\circ}[Sum of angles of triangle]$$

$$\Rightarrow$$
 60° + 90° + \angle ACD = 180°

$$\Rightarrow 150^{\circ} + \angle ACD = 180^{\circ}$$

$$\Rightarrow \angle ACD = 30^{\circ}$$

$$\therefore \angle CDE = \angle ACD = 30^{\circ}[Alternate angles]$$

Question: 8

```
Join OC and OD.
```

```
\angle ABC = \angle BCD = 25^{\circ}[Alternate angles]
```

The angle subtended by an arc of a circle at the center is double the angle subtended by the arc at any point on the circumference.

$$\therefore \angle BOD = 2 \times \angle BCD$$

$$\Rightarrow \angle BOD = 2 \times 25^{\circ}$$

$$\Rightarrow \angle BOD = 50^{\circ}$$

Similarly,

$$\angle AOC = 2 \times \angle ABC$$

$$\Rightarrow \angle AOC = 2 \times 25^{\circ}$$

$$\Rightarrow \angle AOC = 50^{\circ}$$

Now,

$$\angle AOB = 180^{\circ}$$
 [AOB is a straight line]

$$\Rightarrow \angle AOC + \angle COD + \angle BOD = 180^{\circ}$$

$$\Rightarrow 50^{\circ} + \angle COD + 50^{\circ} = 180^{\circ}$$

$$\Rightarrow 100^{\circ} + \angle COD = 180^{\circ}$$

$$\Rightarrow \angle COD = 80^{\circ}$$

$$\therefore \angle CED = (1/2) \angle COD$$

$$\Rightarrow \angle CED = (1/2) 80^{\circ}$$

$$\Rightarrow \angle CED = 40^{\circ}$$

Question: 9

In triangle CDE,

$$\angle$$
CDE + \angle CED + \angle DCE = 180°[Sum of angles of triangle]

$$\Rightarrow 40^{\circ} + 90^{\circ} + \angle DCE = 180^{\circ}$$

$$\Rightarrow 130^{\circ} + \angle DCE = 180^{\circ}$$

$$\Rightarrow \angle DCE = 50^{\circ}$$

(ii)
$$\angle ABC = 30^{\circ}$$

$$\angle AOC + \angle BOC = 180^{\circ}[Because AOB is a straight line]$$

$$\Rightarrow 80^{\circ} + \angle BOC = 180^{\circ}$$

$$\Rightarrow \angle BOC = 100^{\circ}$$

In triangle BOC,

$$\angle$$
OCB + \angle BOC + \angle OBC = 180°[Sum of angles of triangle]

$$\Rightarrow$$
 50° + 100° + \angle OBC = 180°[\angle DCE = 50°]

$$\Rightarrow 150^{\circ} + \angle OBC = 180^{\circ}$$

$$\Rightarrow \angle OBC = 30^{\circ}$$

$$\therefore \angle ABC = \angle OBC = 30^{\circ}$$

Question: 10

$$DCB = (1/2) \angle AOB [\angle DCB = \angle ACB]$$

$$\Rightarrow \angle DCB = (1/2) 40^{\circ}$$

$$\Rightarrow \angle DCB = 20^{\circ}$$

In triangle BCD,

$$\angle BDC + \angle DCB + \angle DBC = 180^{\circ}[Sum of angles of triangle]$$

$$\Rightarrow 100^{\circ} + 20^{\circ} + \angle OBC = 180^{\circ}$$

$$\Rightarrow 120^{\circ} + \angle DBC = 180^{\circ}$$

$$\Rightarrow \angle DBC = 60^{\circ}$$

$$\therefore \angle OBC = \angle DBC = 60^{\circ}$$

Question: 11

Join OB,

$$\therefore$$
 OA = OB [Radius]

$$\therefore \angle OAB = \angle OBA = 25^{\circ}$$

In triangle AOB,

$$\angle AOB + \angle OAB + \angle OBA = 180^{\circ}[Sum of angles of triangle]$$

$$\Rightarrow \angle AOB + 25^{\circ} + 25^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle AOB + 50^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle AOB = 130^{\circ}$$

Now,

$$\angle ACB = (1/2) \angle AOB$$

$$\Rightarrow \angle ACB = (1/2) 130^{\circ}$$

$$\Rightarrow \angle ACB = 65^{\circ}$$

In triangle BEC,

$$\angle$$
EBC + \angle ECB + \angle BEC = 180°[Sum of angles of triangle]

$$\Rightarrow \angle EBC + 65^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle EBC + 155^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle EBC = 25^{\circ}$$

Question: 12

(i)
$$\angle BOC = 70^{\circ}$$

$$OB = OC [Radius]$$

$$\therefore \angle OBC = \angle OCB = 55^{\circ}$$

In triangle OCB,

$$\angle OBC + \angle OCB + \angle BOC = 180^{\circ}[Sum of angles of triangle]$$

$$\Rightarrow 55^{\circ} + 55^{\circ} + \angle BOC = 180^{\circ}$$

$$\Rightarrow 110^{\circ} + \angle BOC = 180^{\circ}$$

(ii)
$$\angle AOC = 70^{\circ}$$

$$OA = OB [Radius]$$

$$\therefore \angle OBA = \angle OAB = 20^{\circ}$$

In triangle AOB,

Exercise: 11C

 $\angle PRS = \angle QPR = 25^{\circ}[Alternate angles]$

```
(i) \angle BCD = 80^{\circ}
\angle BAC = \angle BDC = 40^{\circ}[Angles in the same segment]
In triangle BCD,
\angle BCD + \angle DBC + \angle BDC = 180^{\circ}[Sum of angles of triangle]
\Rightarrow \angle BCD + 60^{\circ} + 40^{\circ} = 180^{\circ}
\Rightarrow \angle BCD + 100^{\circ} = 180^{\circ}
\Rightarrow \angle BCD = 80^{\circ}
(ii) \angle BCD = 80^{\circ}
\angle CAD = \angle CBD [Angles in the same segment]
\Rightarrow \angle CAD = 40^{\circ}
Question: 2
In cyclic quadrilateral PQRS,
\angle PSR + \angle PQR = 180^{\circ}[Opposite angles]
\Rightarrow 150^{\circ} + \angle PQR = 180^{\circ}
\Rightarrow \angle PQR = 30^{\circ}
In triangle PQR,
\angleRPQ + \anglePQR + \anglePRQ = 180°[Sum of angles of triangle]
\Rightarrow \angle RPQ + 30^{\circ} + 90^{\circ} = 180^{\circ}
\Rightarrow \angle RPQ + 120^{\circ} = 180^{\circ}
\Rightarrow \angle RPQ = 60^{\circ}
Question: 3
(i) \angle BCD = 80^{\circ}
∠BAD + ∠BCD = 180°[Opposite angles of a cyclic quadrilateral arc supplementary]
\Rightarrow 100^{\circ} + \angle BCD = 180^{\circ}
\Rightarrow \angle BCD = 80^{\circ}
(ii) \angle ADC = 80^{\circ}
\angle BAD + \angle ADC = 180^{\circ}[Interior angles of same side]
\Rightarrow 100^{\circ} + \angle ADC = 180^{\circ}
\Rightarrow \angle ADC = 80^{\circ}
(iii) \angle ABC = 100^{\circ}
\angle BCD + \angle ABC = 180^{\circ}[Interior angles of same side]
\Rightarrow 80^{\circ} + \angle ABC = 180^{\circ}
\Rightarrow \angle ABC = 100^{\circ}
Question: 4
Reflex \angle AOC = 360^{\circ} - \angle AOC
= 360° - 130°
= 230^{\circ}
\therefore \angle ABC = (1/2) \angle AOC
\Rightarrow \angle ABC = (1/2) 230^{\circ}
```

$$\angle BDC + \angle BCD + \angle CBD = 180^{\circ}[Sum of angles of triangle]$$

Now,

$$\angle BDC + \angle BAC = 180^{\circ}[ABCD \text{ is a cyclic quadrilateral}]$$

$$\Rightarrow 120^{\circ} + \angle BAC = 180^{\circ}$$

$$\Rightarrow \angle BAC = 60^{\circ}$$

Question: 7

$$ADC = (1/2) \angle AOC$$

$$\Rightarrow \angle ADC = (1/2) \ 100^{\circ}$$

$$\Rightarrow \angle ADC = 50^{\circ}$$

$$\angle ADC + \angle ABC = 180^{\circ}[ABCD \text{ is a cyclic quadrilateral}]$$

$$\Rightarrow 50^{\circ} + \angle ABC = 180^{\circ}$$

$$\Rightarrow \angle ABC = 130^{\circ}$$

Question: 8

(i)
$$\angle BDC = 60^{\circ}$$

ABC is equilateral triangle.

```
\therefore \angle ABC = \angle ACB = \angle BAC = 60^{\circ}
\angle BDC = \angle BAC = 60^{\circ} [Angles in the same segment of a circle are equal]
(ii) \angle BEC = 120^{\circ}
ABCD is a cyclic quadrilateral
\therefore \angle BAC + \angle BEC = 180^{\circ}
\Rightarrow 60° + \angleBEC = 180°
\Rightarrow \angle BEC = 120^{\circ}
Question: 9
ABCD is a cyclic quadrilateral
∴ ∠BCD + ∠BAD = 180°[Opposite angle of a cyclic quadrilateral are supplementary]
\Rightarrow 100^{\circ} + \angle BAD = 180^{\circ}
\Rightarrow \angle BAD = 80^{\circ}
In triangle ABD,
\angle ADB + \angle ABD + \angle BAD = 180^{\circ}[Sum of angles of triangle]
\Rightarrow \angle ADB + 50^{\circ} + 80^{\circ} = 180^{\circ}
\Rightarrow \angle ADB + 130^{\circ} = 180^{\circ}
\Rightarrow \angle ADB = 50^{\circ}
Question: 10
Reflex \angle BOD = (360^{\circ} - \angle BOD)
\Rightarrow Reflex \angleBOD = (360° - 150°)
\Rightarrow Reflex \angleBOD = 210°
Now,
X = (1/2) (Reflex \angle BOD)
\Rightarrow X = (1/2) 210^{\circ}
\Rightarrow X = 105^{\circ}
X + Y = 180^{\circ}
\Rightarrow 105^{\circ} + Y = 180^{\circ}
\Rightarrow Y = 75^{\circ}
Question: 11
OA = OB [Radius]
\therefore \angle OAB = \angle OBC = 50^{\circ}
In triangle AOB,
\angle AOB + \angle OAB + \angle OBC = 180^{\circ}[Sum of angles of triangle]
\Rightarrow \angle AOB + 50^{\circ} + 50^{\circ} = 180^{\circ}
\Rightarrow \angle AOB + 100^{\circ} = 180^{\circ}
\Rightarrow \angle AOB = 80^{\circ}
\therefore x = 180°- \angleAOB [AOD is a straight line]
\Rightarrow x = 180^{\circ} - 80^{\circ}
\Rightarrow x = 100^{\circ}
```

$$\therefore$$
 X + Y = 180°[Opposite angle of a cyclic quadrilateral are supplementary]

 $\Rightarrow 100^{\circ} + Y = 180^{\circ}$

ABC +
$$\angle$$
CBF = 180°[Because ABF is a straight line]

$$\Rightarrow \angle ABC + 130^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ABC = 50^{\circ}$$

$$\therefore$$
 x = \angle ABC = 50°[Exterior angle = interior opposite angle]

Question: 13

(i)
$$\angle BAD = 60^{\circ}$$

ABCD is a cyclic quadrilateral.

$$\therefore \angle BAD + \angle BCD = 180^{\circ}$$

$$\Rightarrow \angle BAD + 120^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BAD = 60^{\circ}$$

(ii)
$$\angle ABD = 30^{\circ}$$

$$\angle BDA = 90^{\circ}[Angle in a semi-circle]$$

In triangle ABD,

$$\angle ABD + \angle BDA + \angle BAD = 180^{\circ}[Sum of angles of triangle]$$

$$\Rightarrow \angle ABD + 90^{\circ} + 60^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ABD + 150^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ABD = 30^{\circ}$$

(iii)
$$\angle CBD = 30^{\circ}$$

$$OD = OA [Radius]$$

$$\therefore$$
 $\angle OAD = \angle ODA = \angle BAD = 180^{\circ}$

$$\therefore \angle ODB = 90^{\circ} - \angle ODA$$

$$\Rightarrow \angle ODB = 90^{\circ} - 60^{\circ}$$

$$\Rightarrow \angle ODB = 30^{\circ}$$

(iv)
$$\angle ADC = 120^{\circ}$$

$$\angle ADC = \angle ADB + \angle CDB$$

$$\Rightarrow \angle ADC = 90^{\circ} + 30^{\circ}$$

$$\Rightarrow \angle ADC = 120^{\circ}$$

In triangle AOD,

$$\angle AOD + \angle OAD + \angle ODA = 180^{\circ}[Sum of angles of triangle]$$

$$\Rightarrow \angle AOD + 60^{\circ} + 60^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle AOD + 120^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle AOD = 60^{\circ}$$

 \therefore Triangle AOD is an equilateral triangle.

Question: 14

Two chords AB and CD of a circle intersect each other at P outside the circle.

```
∴ AP × BP = CP × PD

⇒ (AB + BP) × BP = (CD + PD) × PD

⇒ (6 + 2) \times 2 = (CD + 2.5) \times 2.5

⇒ 16 = 2.5 \text{ CD} + 6.25

⇒ 2.5 \text{ CD} = 9.75

⇒ CD = 3.9 \text{ cm}
```

(i)
$$\angle EDB = 50^{\circ}$$

 $\angle BOD + \angle AOD = 180^{\circ} [AOB \text{ is a straight line}]$
 $\Rightarrow \angle BOD + 140^{\circ} = 180^{\circ}$
 $\Rightarrow \angle BOD = 40^{\circ}$
OB = OD
 $\therefore \angle OBD = \angle ODB$
In triangle AOD,

$$\angle BOD + \angle OBD + \angle ODB = 180^{\circ}[Sum of angles of triangle]$$

$$\Rightarrow 40^{\circ} + 2 \angle OBD = 180^{\circ}$$
$$\Rightarrow 2 \angle OBD = 140^{\circ}$$

$$\Rightarrow \angle OBD = 70^{\circ}$$

$$\therefore \angle OBD = \angle ODB = 70^{\circ}$$

ABDC is a cyclic quadrilateral.

$$\therefore$$
 $\angle CAB + \angle BDC = 180^{\circ}$

$$\Rightarrow \angle CAB + \angle ODB + \angle ODC = 180^{\circ}$$

$$\Rightarrow 50^{\circ} + 70^{\circ} + \angle ODC = 180^{\circ}$$

$$\Rightarrow \angle ODC = 60^{\circ}$$

Now,

$$\angle EDB = 180^{\circ} - \angle BDC$$
 [Because CDE is a straight line]

$$\Rightarrow \angle EDB = 180^{\circ} - (\angle ODB + \angle ODC)$$

$$\Rightarrow \angle EDB = 180^{\circ} - (70^{\circ} + 60^{\circ})$$

$$\Rightarrow \angle EDB = 180^{\circ} - 130^{\circ}$$

$$\Rightarrow \angle EDB = 50^{\circ}$$

(ii)
$$\angle EBD = 110^{\circ}$$

$$\angle BOD + \angle AOD = 180^{\circ} [AOB \text{ is a straight line}]$$

$$\Rightarrow \angle BOD + 140^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BOD = 40^{\circ}$$

$$OB = OD$$

In triangle AOD,

$$\angle BOD + \angle OBD + \angle ODB = 180^{\circ}[Sum of angles of triangle]$$

$$\Rightarrow 40^{\circ} + 2 \angle OBD = 180^{\circ}$$

$\Rightarrow \angle EBD = 110^{\circ}$

Question: 16

In \triangle EBC and \triangle EDA,

$$\angle EBC = \angle CDA$$

$$\Rightarrow \angle EBC = \angle CDA$$
 _____(i)

$$\angle ECB = \angle BAD$$

$$\Rightarrow \angle ECB = \angle EAD$$
 (ii)

$$\angle BEC = \angle DEA$$
 (iii)

From equation (i), (ii) and (iii),

 $\Delta EBC \cong \Delta EDA$ Proved.

Question: 17

Given AB = AC

Ext.
$$\angle ADE = \angle ACB = \angle ABC$$

$$\therefore \angle ADE = \angle ABC$$

∴ DE || BC Proved.

Question: 18

Given, ABC is an isosceles triangle in which AB = AC. D and E are midpoints of AB and AC respectively.

$$\Rightarrow \angle ADE = \angle ABC$$
 _____(i)

$$AB = AC$$

$$\Rightarrow \angle ABC = \angle ACB$$
 (ii)

Now,

$$\angle$$
ADE + \angle EDB = 180°[Because ADB is a straight line]

$$\Rightarrow \angle ACB + \angle EDB = 180^{\circ}$$

The opposite angles are supplementary.

∴ D, B, C, E are concyclic.

Question: 19

Let, ABCD be a cyclic quadrilateral and O be the center of

the circle passing through A, B, C, and D.

Then,

Each of AB, BC, CD and DA being a chord of the

circle, its right bisector must pass through O.

Therefore,

The right bisectors of AB, BC, CD and DA pass through and are concurrent.

Question: 20

Let diagonals BD and AC of the rhombus ABCD intersect at O.

We know that the diagonals of a rhombus bisect each other at right angles.

∴ ∠BOC = 90°

∴∠BOC lies in a circle.

The circle drawn with BC as diameter will pass through O.

Question: 21

Let O be the point of intersection of the diagonals BD and AC of rectangle ABCD.

Since, the diagonals of a rectangle are equal and bisect each other.

$$\therefore$$
 OA = OB = OC = OD

Hence, O is the center of the circle through A, B, C, D.

Question: 22

Let A, B, C, D be the given points.

With B as center and radius equal to AC draw an arc.

With C as center and AB as radius draw another arc.

Which cuts the previous arc at D,

Then, D is the required point BD and CD.

In \triangle ABC and \triangle DCB,

AB = DC

AC = DB

BC = CB

 $\therefore \Delta EBC \cong \Delta EDA$

 $\Rightarrow \angle BAC = \angle CDB$

Thus, BC subtends equal angles, ∠BAC and ∠CDB on the same side of it.

Therefore, points A, B, C, D are concyclic.

Question: 23

Given,
$$\angle B - \angle D = 60^{\circ}$$
 (i)

ABCD is a cyclic quadrilateral,

$$\therefore \angle B + \angle D = 180^{\circ}$$
 (ii)

From equation (i) and (ii),

$$2 \angle B = 240^{\circ}$$

$$\Rightarrow \angle B = 120^{\circ}$$
 (iii)

From equation (ii),

$$\angle B + \angle D = 180^{\circ}$$

$$\Rightarrow$$
 120° + \angle D = 180°[From equation (iii)]

$$\Rightarrow \angle D = 60^{\circ}$$

Hence, the smaller of the two angle $\angle D = 60^{\circ}$.

Question: 24

In $\triangle ADE$ and $\triangle BCF$,

$$AD = BC$$

$$\angle AED = \angle BFC$$

$$\angle ADE = \angle BCF [\angle ADC - 90^{\circ} = \angle BCD - 90^{\circ}]$$

$$\therefore \Delta ADE \cong \Delta BCF$$

The Cross ponding parts of the congruent triangles are equal.

$$\therefore \angle A = \angle B$$

Now,

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\Rightarrow$$
 2 \angle B + 2 \angle D = 360°

$$\Rightarrow \angle B + \angle D = 180^{\circ}$$

∴ ABCD is a cyclic quadrilateral.

Question: 25

$$DCF = \angle DAB$$

$$\Rightarrow$$
 x = 75° [Exterior angle is equal to the interior opposite angle.]

Now,

$$\angle DCF + \angle DEF = 180^{\circ}$$
 [Opposite angles of a cyclic quadrilateral]

$$\Rightarrow$$
 x + y = 180°

$$\Rightarrow 75^{\circ} + y = 180^{\circ}$$

$$\Rightarrow$$
 y = 105°

Given: Let ABCD be a cyclic quadrilateral, diagonals AC and BD intersect at O at right angles.

 $\angle OCN = \angle OBM$ [Angles in the same segment] (i)

 $\angle OBM + \angle BOM = 90^{\circ} [Because \angle OLB = 90^{\circ}]$ (ii)

 $\angle BOM + \angle CON = 90^{\circ}[LOM \text{ is a straight line and } \angle BOC = 90^{\circ}]$ (iii)

From equation (ii) and (iii),

 $\angle OBM + \angle BOM = \angle BOM + \angle CON$

 $\Rightarrow \angle OBM = \angle CON$

Thus, $\angle OCN = \angle OBM$ and $\angle OBM = \angle CON$

 $\Rightarrow \angle OCN = \angle CON$

 $\therefore ON = CN$ (iv)

Similarly, ON = ND _____ (v)

From equation (iv) and (v),

CN = ND Proved.

Question: 27

If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.

Chord AB of a circle is produced to E.

$$\therefore$$
 ext. $\angle BDE = \angle BAC = \angle EAC$ (i)

Chord CD of a circle is produced to E.

$$\therefore$$
 ext. $\angle DBE = \angle ACD = \angle ACE$ (ii)

In \triangle EDB and \triangle EAC,

 $\angle BDE = \angle CAE$ [From equation (i)]

 $\angle DBE = \angle ACE$ [From equation (ii)]

 $\angle E = \angle E$ [Common angle]

 \therefore \triangle EDB ~ \triangle EAC Proved.

Question: 28

Given: AB and CD are two parallel chords of a circle.

If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.

$$\therefore$$
 ext. \angle DCE = \angle B and ext. \angle EDC = \angle A

 $A \parallel B$

$$\therefore \angle EDC = \angle B \text{ and } \angle DCE = \angle A$$

$$\therefore \angle A = \angle B$$

Hence, $\triangle AEB$ is isosceles.

(i)
$$\angle DBC = 115^{\circ}$$

$$\angle BDA = 90^{\circ} = \angle EDB$$
 [Semi circle angle]

In triangle EBD,

$$\angle DBE + \angle EDB + \angle BED = 180^{\circ}$$

$$\Rightarrow \angle DBE + 90^{\circ} + 25^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle DBE + 115^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle DBE = 65^{\circ}$$

Now,

$$\angle DBC + \angle DBE = 180^{\circ}[CBE \text{ is a straight line}]$$

$$\Rightarrow \angle DBC + 65^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle DBC = 115^{\circ}$$

(ii)
$$\angle DCB = 35^{\circ}$$

$$\angle DCB = \angle BAD$$
 [Angle in the same segment]

$$\therefore \angle DCB = 35^{\circ}$$

(iii)
$$\angle BDC = 30^{\circ}$$

In triangle BCD,

$$\angle BDC + \angle DCB + \angle DBC = 180^{\circ}$$

$$\Rightarrow \angle BDC + 35^{\circ} + 115^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BDC + 150^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BDC = 30^{\circ}$$

Exercise: CCE QUESTIONS

Question: 1

The radius of a c

Solution:

Given radius(AO) = 13cm

Length of the chord (AB) = 10cm

Draw a perpendicular bisector from center to the chord and name it OC.

$$AC = BC = 5cm$$

Now in Δ AOC,

Using Pythagoras theorem

$$AO^2 = AC^2 + OC^2$$

$$13^2 = 5^2 + OC^2$$

$$OC^2 = 13^2 - 5^2$$

$$OC^2 = 169 - 25$$

$$OC^2 = 144$$

$$OC = 12cm$$

... The distance of the chord from the centre is 12cm.

Question: 2

A chord is at a d

Solution:

Given radius(AO) = 17cm

Length of the chord (AB) = x

distance of the chord from the centre is 8cm.

Draw a perpendicular bisector from center to the chord and name it OC.

$$AC = BC$$

Now in Δ AOC

Using Pythagoras theorem

$$AO^2 = AC^2 + OC^2$$

$$17^2 = AC^2 + 8^2$$

$$AC^2 = 17^2 - 8^2$$

$$AC^2 = 289 - 64$$

$$AC^2 = 225$$

$$AC = 15cm$$

The length of the chord is AC + BC = 15 + 15 = 30 cm.

Question: 3

In the given figu

Solution:

Given: BOC is the diameter of the circle

$$AB = AC$$

Here, BAC forms a semicircle.

We know that angle in a semicircle is always 90°

Here $\angle ABC = \angle ACB$ (since angles opposite equal sides are equal in a triangle)

We know that sum of all the angles in the triangle is 180°

That is

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$

$$\Rightarrow 2 \times \angle ABC + \angle BAC = 180^{\circ}$$

$$\Rightarrow 2 \times \angle ABC + 90 = 180^{\circ}$$

$$\Rightarrow 2 \times \angle ABC = 180^{\circ} - 90^{\circ}$$

In the given figu

Solution:

Given:
$$\angle ACB = 30^{\circ}$$
.

We know that

 $2 \times \angle ACB = \angle AOB$ (The angle subtended by an arc at the center is twice the angle subtended by the same arc on any point on the remaining part of the circle).

$$\angle AOB = 60^{\circ}$$
.

Question: 5

In the given figu

Solution:

In \triangle AOB OA = OB(radius)

∠OAB = ∠OBA (Angles opposite to equal sides are equal)

By angle sum property

$$\angle$$
OAB + \angle OBA + \angle AOB = 180°

$$\angle AOB = 180^{\circ} - \angle OAB - \angle OBA$$

$$\angle AOB = 180^{\circ} - 40^{\circ} - 40^{\circ} = 100^{\circ}$$

We know that

 $2 \times \angle ACB = \angle AOB$ (The angle subtended by an arc at the center is twice the angle subtended by the same arc on any point on the remaining part of the circle).

$$\therefore 2 \times \angle ACB = 100^{\circ}$$

$$\angle ACB = \frac{100}{2}$$

Question: 6

In the given figu

Solution:

Given: AB 34 cm and CD = 30 cm

Here OL is the perpendicular bisector to CD

$$\therefore$$
 CL = LD = 15 cm

Construction: Join OD(radius)

$$OD = 17cm$$

Now in Δ ODL

By Pythagoras theorem

$$OD^2 = OL^2 + LD^2$$

$$17^2 = OL^2 + 15^2$$

$$OL^2 = 17^2 + 15^2$$

$$OL^2 = 289 - 225$$

$$OL^2 = 64$$

$$OL = 8$$

 \therefore The distance of CD from AB is = OL = 8cm

Question: 7

AB and CD are two

Solution:

Given:
$$\angle AOB = 80^{\circ}$$
.

$$AB = CD$$

We know that angles subtended from equal chords at center are equal.

Question: 8

In the given figu

Solution:

Given: AB = 12cm, CE = 3cm

$$AB = AE + EB$$

AE = EB (OC is perpendicular bisector to AB)

$$\therefore$$
 AE = 6 cm

Let CD = 2x (diameter)

$$AO = OC = x \text{ (radius)}$$

Ιη Δ ΑΟΕ

$$AO^2 = AE^2 + OE^2$$

$$x^2 = 6^2 + (OC - EC)^2$$

$$x^2 = 6^2 + (x - 3)^2$$

$$x^2 = 6^2 + x^2 + 3^2 - 2(x)(3)$$

$$x^2 = 36 + x^2 + 9 - 6x$$

$$6x = 36 + 9 + x^2 - x^2$$

$$6x = 45$$

$$x = \frac{45}{6} = 7.5$$

$$\therefore$$
 Radius = x = 7.5 cm

Question: 9

In the given figu

Solution:

Given: CE = ED = 8 cm and EB = 4 cm

Construction: Join OC (OC is radius)

Let AB = 2x (diameter)

OB = OC = x (radius)

In Δ COE

$$CO^2 = CE^2 + OE^2$$

$$x^2 = 8^2 + (OB - EB)^2$$

$$x^2 = 8^2 + (x - 4)^2$$

$$x^2 = 8^2 + x^2 + 4^2 - 2(x)(4)$$

$$x^2 = 64 + x^2 + 16 - 8x$$

$$8x = 64 + 16 + x^2 - x^2$$

$$8x = 80$$

$$x = \frac{80}{9} = 10$$

 \therefore Radius = x = 10 cm

Question: 10

In the given figu

Solution:

Given: AB||CD and AB = 10cm

Construction: Drop perpendiculars OE and OF on to AB and CD respectively.

Now,

Consider ΔBOE and ΔCOF

Here,

OB = OC (radius)

 $\angle OEB = \angle OFC$ (right angle)

 $\angle COF = \angle BOE$ (vertically opposite angles)

 \therefore By AAS congruency \triangle BOE \cong \triangle COF

 \therefore OE = OF (by congruent parts of congruent triangles)

Chords equidistant from center are equal in length

That is CD = AB = 10cm

 \therefore CD = 10cm

Question: 11

In the given figu

Solution:

Given: BC = OB and \angle ACD = 25°

Here in Δ OBC

 $\angle BOC = \angle BCO$ (angles opposite to equal sides are equal)

By angle sum property

$$\angle BOC + \angle BCO + \angle OBC = 180^{\circ}$$

$$25^{\circ} + 25^{\circ} + \angle OBC = 180^{\circ}$$

$$50^{\circ} + \angle OBC = 180^{\circ}$$

$$\angle OBC = 180^{\circ} - 50^{\circ}$$

Here

$$\angle ABC = \angle ABO + \angle OBC = 180^{\circ}$$

$$\angle ABO + 130^{\circ} = 180^{\circ}$$

$$\angle ABO = 180^{\circ} - 130^{\circ}$$

$$\therefore \angle ABO = 50^{\circ}$$

Now, in $\triangle AOB$

$$OB = OA (radius)$$

$$\angle ABO = \angle BAO = 50^{\circ}$$
 (angles opposite to equal sides are equal)

By angle sum property

$$\angle ABO + \angle BAO + \angle AOB = 180^{\circ}$$

$$50^{\circ} + 50^{\circ} + \angle AOB = 180^{\circ}$$

$$\angle AOB = 180^{\circ} - (50^{\circ} + 50^{\circ}) = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

$$\therefore \angle AOB = 80^{\circ}$$

Here

$$\angle DOC = \angle AOD + \angle AOB + \angle BOC = 180^{\circ}$$

$$\angle AOD + 80^{\circ} + 25^{\circ} = 180^{\circ}$$

$$\angle AOD + 105^{\circ} = 180^{\circ}$$

$$\angle AOD = 75^{\circ}$$

Question: 12

In the given figu

Solution:

Given: OD \perp AB and OD = 6cm

Here OB is radius

Let
$$OB = x cm$$

In ΔBOD , By Pythagoras theorem

$$OB^2 = BD^2 + OD^2$$

$$x^2 = BD^2 + 6^2$$

$$x^2 = BD^2 + 36$$

$$BD^2 = x^2 - 36$$

Now consider Δ ABC

Here BC = 2x

By Pythagoras theorem

$$BC^2 = AB^2 + AC^2$$

$$(2x)^2 = 4(x^2 - 36) + AC^2$$

$$4x^2 = 4x^2 - 144 + AC^2$$

$$AC^2 = 144$$

$$AC = 12 \text{ cm}$$

$$\therefore$$
 AC = 12 cm

Question: 13

An equilateral tr

Solution:

Given: Equilateral triangle of side 9 cm is inscribed in a circle.

Construction: Join OA, OB, OC and drop a perpendicular bisector from center O to BC.

Here,

Area (\triangle ABC) = $3 \times$ area (\triangle OBC)

Area (
$$\triangle$$
ABC) = $\frac{\sqrt{3}}{4}$ a² = $\frac{\sqrt{3}}{4}$ × 9² = $\frac{81\sqrt{3}}{4}$

Now,

Area (
$$\triangle$$
OBC) = $\frac{1}{2} \times$ AC \times OD = $\frac{1}{2} \times$ 9 \times OD

We know that,

Area (\triangle ABC) = $3 \times$ area (\triangle OBC)

$$\frac{81\sqrt{3}}{4} = \frac{1}{2} \times 9 \times OD$$

$$OD = \frac{3\sqrt{3}}{2}$$

Now, in ΔODC

By Pythagoras theorem

$$OC^2 = OD^2 + DC^2$$

$$OC^2 = \left(\frac{3\sqrt{3}}{2}\right)^2 + \left(\frac{9}{2}\right)^2$$

$$OC^2 = \frac{27}{4} + \frac{81}{4} = \frac{108}{4} = 27$$

$$OC = 3\sqrt{3}$$

$$\therefore$$
 Radius = OC = $3\sqrt{3}$

Question: 14

The angle in a se

Solution:

Angle in a semicircle measures 90°

Question: 15

Angles in the sam

Solution:

Angles in the same segment of a circle are always equal.

we know angle subtended by an arc is double the angle subtended at any other point.So, $\angle POQ = 2\angle PAQ \dots (1)\angle POQ = 2\angle PBQ \dots (2)$ From (1) and (2), $\angle PAQ = \angle PBQH$ ence proved

Question: 16

In the given figu

Solution:

Given: Two triangles $\triangle ABC$ and $\triangle BCD$, $\angle BAC = 60^{\circ}$ and $\angle DBC = 50^{\circ}$

We know that $\angle BAC = \angle BDC = 60^{\circ}$ (: angles in the same segment drawn from same chord are equal).

Now consider ΔBCD

By angle sum property

$$\angle DBC + \angle BDC + \angle BCD = 180^{\circ}$$

$$50^{\circ} + 60^{\circ} + \angle BCD = 180^{\circ}$$

$$\angle BCD = 180^{\circ} - 50^{\circ} - 60^{\circ}$$

$$\angle BCD = 70^{\circ}$$

$$\therefore \angle BCD = 70^{\circ}$$

Question: 17

In the given figu

Solution:

Given:
$$\angle BCA = 30^{\circ}$$
,

Here,

 $\angle BAC = 90^{\circ}$ (angle in the semicircle)

Now, in ΔABC

By angle sum property

$$\angle BCA + \angle BAC + \angle ABC = 180^{\circ}$$

$$30^{\circ} + 90^{\circ} + \angle ABC = 180^{\circ}$$

$$\angle ABC = 180^{\circ} - 30^{\circ} - 90^{\circ}$$

$$\angle ABC = 60^{\circ}$$

```
Here,
\angle ABC = \angle ADC (angles in the same segment)
\therefore \angle CDA = 60^{\circ}
Question: 18
In the given figu
Solution:
Given: \angle OAC = 50^{\circ}
Consider \Delta AOC
\angle OAC = \angle OCA = 50^{\circ} (* OA = OC = radius, angles opposite to equal sides are equal)
Now, by angle sum property
\angle OAC + \angle OCA + \angle AOC = 180^{\circ}
50^{\circ} + 50^{\circ} + \angle AOC = 180^{\circ}
\angle AOC = 180^{\circ} - 50^{\circ} - 50^{\circ}
\angle AOC = 80^{\circ}
Now angle \angle BOD = \angle AOC = 80^{\circ} (vertically opposite angles)
Now, consider \Delta BOD
Here,
OB = OD (radius)
\angle OBD = \angle ODB (angles opposite to equal angles are equal)
Let \angle ODB = x
By angle sum property
\angle ODB + \angle OBD + \angle BOD = 180^{\circ}
x + x + 80^{\circ} = 180^{\circ}
2x = 180^{\circ} - 80^{\circ}
2x = 100^{\circ}
x = 50^{\circ}
\therefore \angle ODB = 50^{\circ}
Question: 19
In the given figu
Solution:
Given: \angle OBA = 20^{\circ} \text{ and } \angle OCA = 30^{\circ}.
Consider \Delta OAB
Here,
OA = OB (radius)
\angle OBA = \angle OAB = 20^{\circ} (angles opposite to equal sides are equal)
By angle sum property
\angle AOB + \angle OBA + \angle OAB = 180^{\circ}
```

 $\angle AOB + 20^{\circ} + 20^{\circ} = 180^{\circ}$

 $\angle AOB = 180^{\circ} - 20^{\circ} - 20^{\circ}$

```
\angle AOB = 140^{\circ}
Similarly, in AAOC
OA = OC (radius)
\angle OCA = \angle OAC = 30^{\circ} (angles opposite to equal sides are equal)
By angle sum property
\angle AOC + \angle OCA + \angle OAC = 180^{\circ}
\angle AOC + 30^{\circ} + 30^{\circ} = 180^{\circ}
\angle AOC = 180^{\circ} - 30^{\circ} - 30^{\circ}
\angle AOC = 120^{\circ}
Here,
\angle CAB = \angle OAB + \angle OAC = 50^{\circ}
Here,
2∠CAB = ∠BOC (. The angle subtended by an arc at the center is twice the angle subtended by
the same arc on any point on the remaining part of the circle).
∴2∠CAB = ∠BOC
∴2 × 50° = ∠BOC
\angle BOC = 100^{\circ}.
∴ ∠BOC = 100°
Question: 20
In the given figu
Solution:
Given: \angle AOB = 100^{\circ} and \angle AOC = 90^{\circ},
Consider \Delta OAB
Here,
OA = OB (radius)
Let \angle OBA = \angle OAB = x (angles opposite to equal sides are equal)
By angle sum property
\angle AOB + \angle OBA + \angle OAB = 180^{\circ}
100^{\circ} + x + x = 180^{\circ}
2x = 180^{\circ} - 100^{\circ}
2x = 80^{\circ}
x = 40^{\circ}
Similarly, in AAOC
OA = OC (radius)
Let \angle OCA = \angle OAC = y (angles opposite to equal sides are equal)
By angle sum property
\angle AOC + \angle OCA + \angle OAC = 180^{\circ}
90^{\circ} + y + y = 180^{\circ}
2y = 180^{\circ} - 90^{\circ}
```

$$2y = 90^{\circ}$$

 $y = 45^{\circ}$
Here,
∠BAC = ∠OAB + ∠OAC = $x + y = 40^{\circ} + 45^{\circ} = 85^{\circ}$
∴ ∠BAC = 85°
Question: 21
In the given figu
Solution:
Given: ∠AOB = 100° and ∠AOC = 90° ,
In ∆OAB
Here,
OA = OB (radius)
Let ∠OBA = ∠OAB = x (angles opposite to equal sides are equal)
By angle sum property
∠AOB + ∠OBA + ∠OAB = 180°
 $50^{\circ} + x + x = 180^{\circ}$
 $2x = 180^{\circ} - 50^{\circ}$
 $2x = 130^{\circ}$
 $x = 60^{\circ}$
∴ ∠OAB = 60°

In the given figu

Solution:

Given: ∠AOC = 120°

Construction: Join OD

We know that,

$$\angle AOC = 2 \times \angle ADC$$

$$120^{\circ} = 2 \angle ADC$$

$$\angle ADC = 60^{\circ}$$

Here,

 $\angle ADB = 90^{\circ}$ (angle in a semicircle)

$$\angle ADB = \angle ADC + \angle CDB = 90^{\circ}$$

$$\angle ADC + \angle CDB = 90^{\circ}$$

$$60^{\circ} + \angle CDB = 90^{\circ}$$

$$\angle$$
CDB = 90° - 60°

$$\angle$$
CDB = 30°

$$\therefore \angle BDC = 30^{\circ}$$

Question: 23

In the given figu

```
Solution:
Given: \angle OAB = 50^{\circ}
Construction: Join AC
Here,
In ΔAOB
OA = OB (radius)
\angle OAB = \angle OBA (angles opposite to equal sides are equal)
\therefore \angle OBA = 50^{\circ}
\angle OBA = \angle CDA (angles in the same segment)
\therefore \angle CDA = 50^{\circ}
Question: 24
In the give figur
Solution:
Given: \angle CAB = 40^{\circ} and \angle BCD = 80^{\circ}
Here,
\angle CAB = \angle CDB = 40^{\circ} (: angles in the same segment drawn from same chord are equal).
Now, in \triangle BCD
By angle sum property
\angle BCD + \angle CDB + \angle CBD = 180^{\circ}
80^{\circ} + 40^{\circ} + \angle CBD = 180^{\circ}
\angleCBD = 180° - 40° - 80°
∠CBD = 60°
\therefore \angle CBD = 60^{\circ}
Question: 25
In the given figu
Solution:
Given: \angle AEB = 110^{\circ} and \angle CBE = 30^{\circ}
\angle AEC = \angle AEB + \angle BEC = 180^{\circ}
\angle AEB + \angle BEC = 180^{\circ}
110^{\circ} + \angle BEC = 180^{\circ}
\angle BEC = 180^{\circ} - 110^{\circ}
\angle BEC = 70^{\circ}
In \Delta BEC
By angle sum property
\angle CBE + \angle BEC + \angle ECB = 180^{\circ}
30^{\circ} + 70^{\circ} + \angle ECB = 180^{\circ}
\angle ECB = 180^{\circ} - 30^{\circ} - 70^{\circ}
\angle ECB = 80^{\circ}
```

Here,

```
\angle ECB = \angle ADB (angles in the same segment)
\therefore \angle ECB = \angle ADB = 80^{\circ}
∴ ∠ADB = 80°
Question: 26
In the given figu
Solution:
Given: \angle OAB = 20^{\circ} and \angle OCB = 50^{\circ}
Here,
In ΔAOB
OA = OB (radius)
\angle OAB = \angle OBA (angles opposite to equal sides are equal)
\therefore ∠ OBA = 20°
Now, by angle sum property
\angle AOB + \angle OBA + \angle OAB = 180^{\circ}
\angle AOB + 20^{\circ} + 20^{\circ} = 180^{\circ}
\angle AOB = 180^{\circ} - 20^{\circ} - 20^{\circ}
∠AOB = 140°
Now, Consider \Delta BOC
OC = OB (radius)
\angleOCB = \angleOBC (angles opposite to equal sides are equal)
\therefore ∠ OBA = 50°
Now, by angle sum property
\angle COB + \angle OBC + \angle OCB = 180^{\circ}
\angle COB + 50^{\circ} + 50^{\circ} = 180^{\circ}
\angle COB = 180^{\circ} - 50^{\circ} - 50^{\circ}
∠COB = 80°
Here,
\angle AOB = \angle AOC + \angle COB
140^{\circ} = \angle AOC + 80^{\circ}
\angle AOC = 140^{\circ} - 80^{\circ}
\angle AOC = 60^{\circ}
\therefore \angle AOC = 60^{\circ}
Question: 27
In the given figu
Solution:
Given: ABCD is cyclic quadrilateral and ∠ADC = 120°
Here,
∠ADC + ∠ABC = 180° (opposite angles in cyclic quadrilateral are supplementary)
120^{\circ} + \angle ABC = 180^{\circ}
```

In the given figu

Solution:

Given: CD||AB and \angle BAD = 30°

Consider ΔABD

 $\angle ADB = 90^{\circ}$ (angle in semicircle)

Now, by angle sum property

$$\angle ABD + \angle BAD + \angle ADB = 180^{\circ}$$

$$\angle ABD + 30^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\angle ABD = 180^{\circ} - 30^{\circ} - 90^{\circ}$$

$$\angle ABD = 60^{\circ}$$

Here,

∠ABD + ∠ACD = 180° (opposite angles in cyclic quadrilateral are supplementary)

$$60^{\circ} + \angle ACD = 180^{\circ}$$

$$\angle BCD = 180^{\circ} - 60^{\circ}$$

Here, CD||AB and AC is the transversal

∠CAB + ∠ACD = 180° (interior angles along the transversal are supplementary)

$$\angle CAB + 120^{\circ} = 180^{\circ}$$

$$\angle ABC = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

$$\angle ABC = 60^{\circ}$$

$$\angle ABC = \angle CAD + \angle DAB$$

$$60^{\circ} = \angle CAD + 30^{\circ}$$

$$\angle CAD = 60^{\circ} - 30^{\circ} = 30^{\circ}$$

$$\therefore$$
 ∠CAD = 30°

Question: 31

In the given figu

Solution:

Given: ∠AOC = 100°

Here,

$$(Exterior \angle AOC) = 360^{\circ} - (interior \angle AOC)$$

$$(Exterior \angle AOC) = 360^{\circ} - 100^{\circ}$$

We know that,

$$(Exterior \angle AOC) = 2 \times \angle ADC$$

$$260^{\circ} = 2 \times \angle ABC$$

$$\angle ABC = \frac{260}{2} = 130^{\circ}$$

Here,

$$\angle ABD = \angle ABC + \angle CBD$$

$$180^{\circ} = 130^{\circ} + \angle CBD$$

 $\therefore \angle BAD = 70^{\circ}$

In the given figu

Solution:

Given: ΔABS is equilateral

In $\triangle ABC$

 $\angle BAC = 60^{\circ}$ (All angles in equilateral triangle are equal to 60°)

We know that,

In a cyclic quadrilateral opposite angles are supplementary

$$\therefore \angle BAC + \angle BDC = 180^{\circ}$$

$$60^{\circ} + \angle BDC = 180^{\circ}$$

$$\angle BDC = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

Question: 35

In the given figu

Solution:

Given: ∠CBE = 100°

Here,

$$\angle ABE = \angle ABC + \angle CBE$$

$$180^{\circ} = \angle ABC + 100^{\circ}$$

$$\angle ABC = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

We know that,

In a cyclic quadrilateral opposite angles are supplementary

$$\therefore \angle ABC + \angle ADC = 180^{\circ}$$

$$80^{\circ} + \angle ADC = 180^{\circ}$$

$$\angle ADC = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

Here,

$$\angle ADF = \angle ADC + \angle CDF$$

$$180^{\circ} = 100^{\circ} + \angle CDF$$

$$\angle CDF = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

$$\therefore \angle CDF = 80^{\circ}$$

Question: 36

In the given figu

Solution:

Here,

(Exterior
$$\angle AOB$$
) = 360° - (interior $\angle AOB$)

$$(Exterior \angle AOB) = 360^{\circ} - 140^{\circ}$$

$$(Exterior \angle AOB) = 220^{\circ}$$

We know that,

$$(Exterior \angle AOB) = 2 \times \angle ACB$$

$$220^{\circ} = 2 \times \angle ACB$$

$$\angle ACB = \frac{220}{2} = 110^{\circ}$$

In the given figu

Solution:

Given: ∠AOB = 130°

Here,

 $(Exterior \angle AOB) = 360^{\circ} - (interior \angle AOB)$

 $(Exterior \angle AOB) = 360^{\circ} - 130^{\circ}$

 $(Exterior \angle AOB) = 230^{\circ}$

We know that,

 $(Exterior \angle AOB) = 2 \times \angle ACB$

 $230^{\circ} = 2 \times \angle ACB$

$$\angle ACB = \frac{230}{2} = 115^{\circ}$$

Question: 38

In the given figu

Solution:

Given: ABCD, ABEF are two cyclic quadrilaterals and ∠BCD = 110°

In Quadrilateral ABCD

We know that,

In a cyclic quadrilateral opposite angles are supplementary

$$\therefore \angle BCD + \angle BAD = 180^{\circ}$$

$$110^{\circ} + \angle BAD = 180^{\circ}$$

$$\angle BAD = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

Similarly in Quadrilateral ABEF

$$\therefore \angle BAD + \angle BEF = 180^{\circ}$$

$$70^{\circ} + \angle BEF = 180^{\circ}$$

$$\angle BEF = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

$$\therefore \angle BEF = 110^{\circ}$$

Question: 39

In the given figu

Solution:

Given: ABCD is a cyclic quadrilateral, CF||AB, $\angle ADC = 95^{\circ}$ and $\angle ECF = 20^{\circ}$.

Here, CF|| AB

Hence BC is transversal

 \therefore $\angle ABC = \angle BCF = 85^{\circ}$ (Alternate interior angles)

Here,

$$\angle DCB + \angle BCF + \angle ECF = \angle DCE$$

$$\angle DCB + 85^{\circ} + 20^{\circ} = 180^{\circ}$$

$$\angle DCB = 180^{\circ} - 85^{\circ} - 20^{\circ} = 75^{\circ}$$

We know that,

In a cyclic quadrilateral opposite angles are supplementary

$$\therefore \angle DCB + \angle BAD = 180^{\circ}$$

$$75^{\circ} + \angle BAD = 180^{\circ}$$

$$\angle BAD = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

Question: 40

Two chords AB

Solution:

Given: AB = 11cm, BE = 3cm and DE = 3.5cm

Construction: Join AC

Here,

AE: CE = DE: BE

$$AE \times BE = DE \times CE$$

$$(AB + BE) \times BE = DE \times (CD + DE)$$

$$(11 + 3) \times 3 = 3.5 \times (CD + 3.5)$$

$$14 \times 3 = 3.5 \times (CD + 3.5)$$

$$3.5 \times (CD + 3.5) = 42$$

$$(CD + 3.5) = \frac{42}{3.5} = 12$$

$$CD = 12 - 3.5 = 8.5$$

$$\therefore$$
 CD = 8.5

Question: 41

In the given figu

Solution:

Given: AB = 4 cm, two circles having radii 6 cm and 3 cm

Construction: join AP

Consider **AABP**

Here,

$$AP^2 = AB^2 + BP^2$$

$$5^2 = 4^2 + 3^2$$

$$25 = 16 + 9$$

$$25 = 25$$

∴ ∆ABP is right angled triangle

$$PQ = 2 \times BP$$

$$PQ = 2 \times 3 = 6cm$$

∴
$$PQ = 6cm$$

In the given figu

Solution:

Given:
$$\angle AOB = 90^{\circ} \text{ and } \angle ABC = 30^{\circ}$$
.

Construction: join CD

We know that,

$$\angle AOB = 2 \times \angle ACB$$

$$90^{\circ} = 2 \times \angle ACB$$

$$\angle ACB = \frac{90}{2} = 45^{\circ}$$

Similarly,

$$\angle COA = 2 \times \angle CBA$$

$$\angle COA = 2 \times 30$$

$$\angle COA = 60^{\circ}$$

Here,

$$\angle$$
COD + \angle COA = \angle AOD

$$\angle$$
COD + 60° = 180°

$$\angle COD = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

Again

$$\angle$$
COD = 2 × \angle CAO

$$\angle CAO = \frac{120}{2} = 60^{\circ}$$

$$\therefore \angle CAO = 60^{\circ}$$

Question: 43

Three statements

Solution:

Here, Clearly I and III are correct.

Let us check for II statement

Construction: Let B and C be the centers of two circles having radii 10cm and 17 cm respectively and let AD be the common chord cutting BC at E.

Here,

$$AE = ED = 8cm$$

Now, in $\triangle ABE$

$$BE^2 = AB^2 - AE^2$$

$$BE^2 = (10)^2 - (8)^2$$

$$BE^2 = 100 - 64 = 36$$

BE = 6cm

Now, in ΔAEC

$$EC^2 = AC^2 - AE^2$$

$$EC^2 = (17)^2 - (8)^2$$

$$EC^2 = 289 - 64 = 225$$

EC = 25cm

Here,

$$BC = BE + EC = 6 + 15 = 21cm$$

But, it is given BC = 23cm

∴ Statement II is false

Question: 44

Two statements I

Solution:

Here,

ABCD is said to be cyclic quadrilateral

If either of any point is satisfied

i)Points A, B, Cand Dlie on a circle.

ii)
$$\angle$$
 B + \angle C = 180°

Question: 45

Two statements I

Solution:

Here,

ΔABC right - angled at B

If both the conditions satisfy

i) ABCD is a cyclic quadrilateral

ii)
$$\angle D = 90^{\circ}$$
.

Question: 46

The question cons

Solution:

Assertion (A):

Construction: Draw a Δ ABC in which AB = AC, Let O be the midpoint of AB and with O as centre and OA as radius draw a circle, meeting BC at D

Now, In Δ ABD

 \angle ADB = 90° (angle in semicircle)

Also, \angle ADB + \angle ADC = 180°

 $90^{\circ} + \angle ADC = 180^{\circ}$

 \angle ADC = $180^{\circ} - 90^{\circ}$

 \angle ADC = 90°

Consider Δ ADB and Δ ADC

Here,

AB = AC (given)

AD = AD (common)

 \angle ADB = \angle ADC (90°)

 \therefore By SAS congruency, \triangle ADB \cong \triangle ADC

So, BD = DC(C.P.C.T)

Thus, the given circle bisects the base. So, Assertion (A) is true

Reason (R):

Let ∠ BAC be an angle in a semicircle with centre O and diameter BOC

Now, the angle subtended by arc BOC at the centre is \angle BOC = $2 \times 90^{\circ}$

$$\angle$$
 BOC = $2 \times \angle$ BAC = $2 \times 90^{\circ}$

So, \angle BAC = 90° (right angle)

So, reason (R) is true

Clearly, reason (R) gives assertion (A)

Hence, correct choice is A

Question: 47

The question cons

Solution:

Assertion (A):

Let O be the centre of the circle and AB be the chord

Construction: Draw, L is the midpoint of AB

Here,

OA = 10cm

$$AL = \frac{1}{2}AB = 8cm$$

In ΔOAL,

$$OL^2 = OA^2 - AL^2$$

$$OL^2 = (10)^2 - (8)^2$$

$$OL^2 = 100 - 64$$

$$OL = \sqrt{36} = 6cm$$

Thus, Assertion (A) is true.

Clearly, reason (R) given Assertion (A).

Hence, the correct choice is A.

Question: 48

The question cons

Solution:

Clearly, reason (R) is true.

Assertion (A):

$$OA = 13cm$$

$$OL = 12cm$$

In ΔOAL,

$$AL^2 = OA^2 - OL^2$$

$$AL^2 = (13)^2 - (12)^2$$

$$AL^2 = 169 - 144$$

$$OL = \sqrt{25} = 5cm$$

Now,
$$AB = 2 \times AL = 2 \times 5 = 10$$
cm

Thus, Assertion (A) is true

 \therefore Reason (R) and Assertion (A) are both true but reason (R) does not gives Assertion (A).

Hence, correct choice is B

Question: 49

The question cons

Solution:

Assertion (A):

Here, in $\triangle ABC$

By angle sum property

$$\angle ABC + \angle BCA + \angle CAB = 180^{\circ}$$

$$70^{\circ} + 30^{\circ} + \angle CAB = 180^{\circ}$$

$$\angle CAB = 180^{\circ} - 70^{\circ} - 30^{\circ} = 80^{\circ}$$

$$\angle CAB = \angle BDC = 80^{\circ}$$
 (angles in same segment)

But given that $\angle BDC = 70^{\circ}$

∴ Assertion(A) is wrong.

Reason (R):

$$\angle ADC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 130^{\circ} = 65^{\circ}$$

$$\angle$$
 ABC + \angle ADC = 180°

$$\angle$$
 ABC + 65° = 180°

$$\angle ABC = 180^{\circ} - 65^{\circ} = 115^{\circ}$$

Reason (R) is true

Assertion (A):

$$\angle ABC + \angle BCA + \angle BAC = 180^{\circ}$$

$$70^{\circ} + 30^{\circ} + \angle BAC = 180^{\circ}$$

$$\angle BAC = 180^{\circ} - 70^{\circ} - 30^{\circ}$$

$$\angle$$
 BAC = 80°

$$\therefore \angle BDC = \angle BAC = 80^{\circ}$$
 (angles in the same segment)

This is false.

Thus, Assertion (A) is false and Reason (R) is true.

Hence, correct choice is D

Question: 50

The question cons

Solution:

Clearly, Assertion (A) is false and Reason (R) is true.

Hence, correct choice is D

Question: 51

The question cons

Solution:

Clearly, Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).

Question: 52

Write T for true

Solution:

- (i) T
- (ii) T
- (iii) T (The region inside the circle, region outside the circle and region on the circle).
- (iv) T (because point P lies inside the circle)
- (v) F (A circle can have infinite number of chords)

Question: 53

Match the followi

Solution:

- (a) Angle in a semicircle measures 90° (r)
- (b) In the given figure, O is the centre of a circle. If ∠AOB = 120°, then ∠ACB = ?

$$\frac{1}{2}$$
 \angle AOB = \angle ACB

$$\angle ACB = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

$$\angle ACB = 60^{\circ} (s)$$

(c) In the given figure, O is the centre of a circle. If $\angle POR = 90^{\circ}$ and $\angle POQ = 110^{\circ}$, then $\angle QPR = ?$

Here, OP = OR = OQ (radius)

In ΔPOR

 $\angle OPR = \angle ORP$ (angles opposite to equal sides are equal)

By angle sum property

$$\angle POR + \angle OPR + \angle ORP = 180^{\circ}$$

$$90^{\circ} + 2 \times \angle OPR = 180^{\circ}$$

$$2 \times \angle OPR = 180^{\circ} - 90^{\circ}$$

$$2 \times \angle OPR = 90^{\circ}$$

$$\angle OPR = 45^{\circ}$$

Similarly in Δ POQ

 $\angle OPQ = \angle OQP$ (angles opposite to equal sides are equal)

By angle sum property

$$\angle POQ + \angle OPQ + \angle OQP = 180^{\circ}$$

$$110^{\circ} + 2 \times \angle OQP = 180^{\circ}$$

$$2 \times \angle OQP = 180^{\circ} - 110^{\circ}$$

$$2 \times \angle OQP = 70^{\circ}$$

$$\angle OQP = 35^{\circ}$$

$$\angle QPR = \angle QPO + \angle OPR = 45^{\circ} + 35^{\circ} = 80^{\circ}$$

$$\therefore \angle QPR = 80^{\circ} (q)$$

(d) In cyclic quadrilateral ABCD, it is given that $\angle ADC = 130^{\circ}$ and AOB is a diameter of the circle

through A, B, C and D. Then, $\angle BAC = ?$

Here,

 $\angle ADC + \angle ABC = 180^\circ$ (opposite angles in cyclic quadrilateral are supplymentary) $130^\circ + \angle ABC = 180^\circ$ $\angle ABC = 180^\circ - 130^\circ = 50^\circ$ In $\triangle ABC$ By angle sum property $\angle BAC + \angle ABC + \angle ACB = 180^\circ$ $\angle BAC + 50^\circ + 90^\circ = 180^\circ$

∠BAC = 180° - 50° - 90° = 40° ∴∠BAC = 40° (p)

...2 BAC = 40 (p)

 \therefore Answers are: (a) - (r), (b) - (s), (c) - (q), (d) - (p)

Question: 54

Fill in the blank

Solution:

- (i) Two circles having the same centre and different radii are called *concentric* cricles.
- (ii) Diameter is the *longest* chord of a circle.
- (iii) A continuous piece of a circle is called the arc of the circle.
- (iv) An arc of a circle is called a *semicircle* if the ends of the arc are the ends of a diameter.
- (v) A segment of a circle is the region between an arc and a *chord* of the circle.
- (vi) A line segment joining the centre to any point on the circle is called its *radius*.

Exercise: FORMATIVE ASSESSMENT (UNIT TEST)

Question: 1

In the given figu

Solution:

Given: $\angle ECB = 40^{\circ} \text{ and } \angle CEB = 105^{\circ}$.

Here,

 $\angle ACB = \angle ADB = 40^{\circ}$ (angles in same segment)

 $\angle BEC = \angle AED = 105^{\circ}$ (vertically opposite angles)

In ΔAED

By angle sum property

$$\angle ADE + \angle AED + \angle EAD = 180^{\circ}$$

$$40^{\circ} + 105^{\circ} + \angle EAD = 180^{\circ}$$

$$\angle EAD = 180^{\circ} - 40^{\circ} - 105^{\circ} = 35^{\circ}$$

$$\therefore \angle EAD = 35^{\circ}$$

Question: 2

In the given figu

Solution:

Given: $\angle AOB = 90^{\circ} \text{ and } \angle ABC = 30^{\circ}$.

We know that,

$$\frac{1}{2}$$
 ∠AOB = ∠ACB

 $\frac{1}{2}$ ∠AOB = ∠ACB

 $\frac{1}{2}$ ×90° = ∠ACB

∠ACB = 45°

Now, consider ΔABC

By angle sum property

∠ACB + ∠ABC + ∠CAB = 180°

45° + 30° + ∠CAB = 180°

∠CAB = 180° - 45° - 30° = 105°

Consider ΔAOB

Here,

OA = OB (radius)

Let OA = OB = x

By angle sum property

∠AOB + ∠OAB + ∠OBA = 180°

90° + x + x = 180°

2x = 180° - 90° = 90°

x = 45°

Now,

∠CAB = ∠BAO + ∠CAO = 105°

∠CAO = 105° - 45° = 60°

∴ ∠CAO = 60°

Question: 3

In the given figu

Solution:

Given: ∠OAB = 40°

Consider ΔAOB

Here,

OA = OB (radius)

∠OBA = ∠OAB = 40° (angles opposite to equal sides are equal)

By angle sum property

∠OBA + ∠OAB + ∠AOB = 180°

40° + 40° + ∠AOB = 180°

∠AOB = 180° - 40° - 40° = 100°

We know that,

∠AOB = 2× ∠ACB

 $\frac{1}{2}$ ∠AOB = ∠ACB

 $\frac{1}{2}$ ×100° = ∠ACB

$$\angle ACB = 50^{\circ}$$

$$\therefore \angle ACB = 50^{\circ}$$

In the given figu

Solution:

Given: $\angle DAB = 60^{\circ}$ and $\angle ABD = 50^{\circ}$

In ΔABD

By angle sum property

$$\angle DAB + \angle ABD + \angle ADB = 180^{\circ}$$

$$60^{\circ} + 50^{\circ} + \angle ADB = 180^{\circ}$$

$$110^{\circ} + \angle ADB = 180^{\circ}$$

$$\angle ADB = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

Here,

$$\angle ADB = \angle ACB = 70^{\circ}$$
 (angles in same segment)

$$\therefore \angle ACB = 70^{\circ}$$

Question: 5

In the given figu

Solution:

Given:
$$\angle BAO = 60^{\circ}$$
.

Consider $\triangle AOB$

Here,

$$OA = OB (radius)$$

$$\angle OBA = \angle OAB = 60^{\circ}$$
 (angles opposite to equal sides are equal)

By angle sum property

$$\angle OBA + \angle OAB + \angle AOB = 180^{\circ}$$

$$60^{\circ} + 60^{\circ} + \angle AOB = 180^{\circ}$$

$$\angle AOB = 180^{\circ} - 60^{\circ} - 60^{\circ} = 60^{\circ}$$

Here,

$$\angle BOC = \angle BOA + \angle AOC = 180^{\circ}$$

$$60^{\circ} + \angle AOC = 180^{\circ}$$

$$\angle AOC = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

We know that,

$$\angle AOC = 2 \times \angle ADC$$

$$\frac{1}{2}$$
 \angle AOC = \angle ADC

$$\frac{1}{2} \times 120^{\circ} = \angle ADC$$

$$\angle ADC = 60^{\circ}$$

$$\therefore \angle ADC = 60^{\circ}$$

Question: 6

Find the length o

Solution:

Given radius(AO) = 15cm

Length of the chord (AB) = x

distance of the chord from the centre is 9cm.

Draw a perpendicular bisector from center to the chord and name it OC.

$$AC = BC$$

Now in Δ AOC

Using Pythagoras theorem

$$AO^2 = AC^2 + OC^2$$

$$15^2 = AC^2 + 9^2$$

$$AC^2 = 15^2 - 9^2$$

$$AC^2 = 225 - 81$$

$$AC^2 = 144$$

$$AC = 12cm$$

$$BC = 12cm$$

The length of the chord is AC + BC = 12 + 12 = 24 cm.

Question: 7

Prove that equal

Solution:

Given: AB = CD

Construction: Drop perpendiculars OX and OY on to AB and CD respectively and join OA and OD.

Here, OX \(_{\text{AB}}\) (perpendicular from center to chord divides it into two equal halves)

$$AX = BX = \frac{AB}{2} - - (1)$$

OY \bot CD (perpendicular from center to chords divides it into equal halves

$$CY = DY = \frac{CD}{2} - - (2)$$

Now, given that

$$AB = CD$$

$$\therefore \frac{AB}{2} = \frac{CD}{2}$$

AX = DY (from -1 and -2) - - (3)

In $\triangle AOX$ and $\triangle DOY$

 $\angle OXA = \angle OYD$ (right angle)

OA = OD (radius)

AX = DY (from -3)

: BY RHS congruency

ΔΑΟΧ≅ΔDΟΥ

OX = OY (by C.P.C.T)

Hence proved.

Question: 8

Prove that an ang

Solution:

We know that,

$$\angle POQ = 2\angle PAQ$$

$$\frac{\angle POQ}{2} = \angle PAQ$$

$$\frac{180^{\circ}}{2} = \angle PAQ$$

$$90^{\circ} = \angle PAQ$$

$$\angle PAQ = 90^{\circ}$$

Hence proved

Question: 9

Prove that a diam

Solution:

We know that,

A chord nearer to the center is longer than the chord which is far from the center

 \therefore Diameter is the longest chord in the circle (because it passes through the center and other chords are far from the center)

Question: 10

A circle with cen

Solution:

Given: $\angle OBA = 30^{\circ}$ and $\angle OCA = 40^{\circ}$.

Consider ΔOAB

Here,

OA = OB (radius)

 $\angle OBA = \angle OAB = 30^{\circ}$ (angles opposite to equal sides are equal)

Similarly, in ΔAOC

OA = OC (radius)

 $\angle OCA = \angle OAC = 40^{\circ}$ (angles opposite to equal sides are equal)

Here,

$$\angle CAB = \angle OAB + \angle OAC = 30^{\circ} + 40^{\circ} = 70^{\circ}$$

Here,

 $2 \times \angle CAB = \angle BOC$ (The angle subtended by an arc at the center is twice the angle subtended by the same arc on any point on the remaining part of the circle).

Question: 11

In the given figu

Solution:

Given:
$$AXB = \frac{1}{2}arc BYC$$
.

Here,

$$2 \times AXB = BYC$$

$$\therefore 2 \times \angle AOB = \angle BOC$$

$$\angle AOB = \frac{1}{2} \angle BOC - 1$$

Here,

$$\angle AOC = \angle AOB + \angle BOC = 180^{\circ}$$

$$\frac{1}{2} \angle BOC + \angle BOC = 180^{\circ} \text{ (from -1)}$$

$$\frac{3}{2} \angle BOC = 180^{\circ}$$

$$\angle BOC = \frac{2}{3} \times 180^{\circ} = 120^{\circ}$$

Question: 12

In the given figu

Solution:

Given:
$$\angle ABC = 45^{\circ}$$

We know that,

$$\angle$$
 AOC = $2 \times \angle$ ABC

$$\angle$$
 AOC = $2 \times 45 = 90^{\circ}$

Therefore $OA \perp OC$.

Hence proved.

In the given figu

Solution:

Given: $\angle ADC = 130^{\circ}$, BC = BE

We know that,

(exterior $\angle AFC$) = (2× $\angle ADC$)

(exterior $\angle AFC$) = (2×130)

(exterior $\angle AFC$) = 260

 $\angle AFC = 360^{\circ} - (exterior \angle AFC) = 360^{\circ} - 260^{\circ} = 100^{\circ}$

 $\angle AFB = \angle AFC + \angle CFB = 180^{\circ}$

 $\angle AFC + \angle CFB = 180^{\circ}$

 $100^{\circ} + \angle CFB = 180^{\circ}$

 $\angle CFB = 180^{\circ} - 100^{\circ} = 80^{\circ}$

In quadrilateral ABCD

 \angle ADC + \angle ABC = 180° (opposite angles in cyclic quadrilateral are supplementary)

 $130^{\circ} + \angle ABC = 180^{\circ}$

 $\angle ABC = 180^{\circ} - 130^{\circ} = 50^{\circ}$

In ΔBCF

By angle sum property

 $\angle CBF + \angle CFB + \angle BCF = 180^{\circ}$

 $50^{\circ} + 80^{\circ} + \angle BCF = 180^{\circ}$

 $\angle BCF = 180^{\circ} - 50^{\circ} - 80^{\circ} = 50^{\circ}$

Now,

 $\angle CFE = \angle CFB + \angle BFE = 180^{\circ}$

 $\angle CFB + \angle BFE = 180^{\circ}$

 $80^{\circ} + \angle BFE = 180^{\circ}$

 $\angle BFE = 180^{\circ} - 80^{\circ} = 100^{\circ}$

Here,

In ΔBCE

BC = BE (given)

 $\angle BCE = \angle BEC = 50^{\circ}$ (angles opposite to equal sides are equal)

By angle sum property

$$\angle BCE + \angle BEC + \angle CBE = 180^{\circ}$$

$$50^{\circ} + 50^{\circ} + \angle CBE = 180^{\circ}$$

$$\angle CBE = 180^{\circ} - 50^{\circ} - 50^{\circ} = 100^{\circ}$$

$$\angle CBE = 100^{\circ}$$

Question: 14

In the given figu

Solution:

Given: $\angle ACB = 40^{\circ}$ We know that, \angle AOB = $2 \times \angle$ ACB \angle AOB = $2 \times 40 = 80^{\circ}$ $\therefore \angle AOB = 80^{\circ}$ Ιη ΔΑΟΒ OA = OB (radius) $\angle OAB = \angle OBA$ (angles opposite to equal sides are equal) Let $\angle OAB = \angle OBA = x$ By angle sum property $\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$ $80 + x + x = 180^{\circ}$ $80 + 2x = 180^{\circ}$ $2x = 180^{\circ} - 80^{\circ} = 100^{\circ}$ $x = \frac{100}{2} = 50^{\circ}$ $\angle OAB = 50^{\circ}$ **Question: 15** In the given figu **Solution:** Given: $\angle OAB = 30^{\circ} \text{ and } \angle OCB = 55^{\circ}$. Here, Ιη ΔΑΟΒ OA = OB (radius) $\angle OAB = \angle OBA$ (angles opposite to equal sides are equal) \therefore ∠ OBA = 30° Now, by angle sum property $\angle AOB + \angle OBA + \angle OAB = 180^{\circ}$ $\angle AOB + 30^{\circ} + 30^{\circ} = 180^{\circ}$ $\angle AOB = 180^{\circ} - 30^{\circ} - 30^{\circ}$ ∠AOB = 120° Now, Consider Δ BOC OC = OB (radius) \angle OCB = \angle OBC (angles opposite to equal sides are equal) ∴ ∠ OBA = 55° Now, by angle sum property

 $\angle BOC + \angle OBC + \angle OCB = 180^{\circ}$

 $\angle BOC = 180^{\circ} - 55^{\circ} - 55^{\circ} = 70^{\circ}$

 $\angle BOC + 55^{\circ} + 55^{\circ} = 180^{\circ}$

Here,

$$\angle AOB = \angle AOC + \angle BOC$$

$$120^{\circ} = \angle AOC + 70^{\circ}$$

$$\angle AOC = 120^{\circ} - 70^{\circ}$$

$$\angle AOC = 50^{\circ}$$

$$\therefore \angle AOC = 50^{\circ}$$

$$\angle BOC = 70^{\circ}, \angle AOC = 50^{\circ}$$

Question: 16

In the given figu

Solution:

Given: BD = OD and $CD \perp AB$.

In ΔOBD

$$OB = OD = DB$$

$$\therefore$$
 Δ OBD is equilateral

$$\therefore \angle ODB = \angle DBO = \angle BOD = 60^{\circ}$$

Consider ∆DEB and ∠BEC

Here,

$$BE = BE (common)$$

$$\angle CEB = \angle DEB$$
 (right angle)

CE = DE (OE is perpendicular bisector)

∴ By SAS congruency

$$\angle CAB = 30^{\circ}$$

$$\Delta DEB \cong \angle BEC$$

$$\therefore \angle DEB = \angle EBC (C.P.C.T)$$

$$\therefore \angle EBC = 60^{\circ}$$

Now, in ΔABC

$$\angle EBC = 60^{\circ}$$

$$\angle ACB = 90^{\circ}$$
 (angle in semicircle)

By angle sum property

$$\angle$$
EBC + \angle ACB + \angle CAB = 180°

$$60^{\circ} + 90^{\circ} + \angle CAB = 180^{\circ}$$

$$\angle CAB = 180^{\circ} - 60^{\circ} - 90^{\circ} = 30^{\circ}$$

$$\therefore \angle CAB = 30^{\circ}$$

Question: 17

In the given figu

Solution:

Here,

In cyclic Quadrilateral ABFE

∠ABF + ∠AEF = 180° (opposite angles in cyclic quadrilateral are supplementary) -1

In cyclic Quadrilateral ABCD

∠ABC + ∠ADC = 180° (opposite angles in cyclic quadrilateral are supplementary) -2

From -1 and -2

 $\angle ABF + \angle AEF = \angle ABC + \angle ADC$

 $\angle AEF = \angle ADC (\angle ABF = \angle ABC)$

Since these are corresponding angles

We can say that EF || DC

∴ EF||DC

Hence proved.

Question: 18

In the given figu

Solution:

Construction: Join AE

Consider cyclic quadrilateral ACDEA

Here,

 \angle ACD + \angle DEA = 180° (opposite angles in cyclic quadrilateral are supplementary)

Also,

 $\angle AEB = 90^{\circ}$ (angle in semicircle)

$$\therefore \angle ACD + \angle DEA + \angle AEB = 180^{\circ} + 90^{\circ}$$

$$\angle ACD + \angle BED = 270^{\circ} (\angle DEA + \angle AEB = \angle BED)$$

$$\therefore \angle ACD + \angle BED = 270^{\circ}$$

Hence proved.

Question: 19

In the given figu

Solution:

Given: $\angle BCO = 30^{\circ}$.

In ΔEOC

By angle sum property

$$\angle EOC + \angle OEC + \angle OCE = 180^{\circ}$$

$$\angle EOC + 90^{\circ} + 30^{\circ} = 180^{\circ}$$

$$\angle EOC = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$$

 $\angle EOC = 60^{\circ}$

Here,

$$\angle EOD = \angle EOC + \angle COD = 90^{\circ}$$

$$\angle EOC + \angle COD = 90^{\circ}$$

$$60^{\circ} + \angle COD = 90^{\circ}$$

$$\angle COD = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

Now,

$$\angle AOC = \angle AOD + \angle COD = 90^{\circ} + 30^{\circ} = 120^{\circ}$$

We know that,

$$\angle$$
 COD = $2 \times \angle$ CBD

$$\frac{1}{2}$$
 \angle COD = \angle CBD

$$\angle CBD = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

Consider $\triangle ABE$

By angle sum property

$$\angle AEB + \angle ABE + \angle BAE = 180^{\circ}$$

$$90^{\circ} + 60^{\circ} + \angle BAE = 180^{\circ}$$

$$\angle BAE = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}$$

$$\therefore x = 30^{\circ}$$

We know that,

$$\angle$$
 AOC = $2 \times \angle$ ABC

$$\frac{1}{2}$$
 \angle AOC = \angle ABC

$$\angle ABC = \frac{1}{2} \times 30^{\circ} = 15^{\circ}$$

$$x = 30, y = 15$$

Question: 20

PQ and RQ are the

Solution:

Given: chords PQ and RQ are equidistant from center.

Here consider ΔPQS and ΔRQS

Here,

$$QS = QS (common)$$

$$\angle QPS = \angle QRS$$
 (right angle)

PQ = QS (chords equidistant from center are equal in length)

 \therefore By RHS congruency $\triangle PQS \cong \triangle RQS$

$$\therefore$$
 \angle RQS = \angle SQP and \angle RSQ = \angle QSP (by C.P.C.T)

Therefore we can say that diameter passing through Q bisects $\angle PQR$ and $\angle PSR$.

Question: 21

Prove that there

Solution:

Given: Three non collinear points P, Q and R

Construction: Join PQ and QR.

Draw perpendicular bisectors AB of PQ and CD of QR. Let the perpendicular bisectors intersect at the point O.

Now join OP, OQ and OR.

A circle is obtained passing through the points P, Q and R.

Proof:

We know that,

Every point on the perpendicular bisector of a line segment is equidistant from its ends points.

Thus, OP = OQ (Since, O lies on the perpendicular bisector of PQ)

and OQ = OR. (Since, O lies on the perpendicular bisector of QR)

So, OP = OO = OR.

Let OP = OQ = OR = r.

Now, draw a circle C(O, r) with O as centre and r as radius.

Then, circle C(O, r) passes through the points P, Q and R.

Next, we prove this circle is the only circle passing through the points P, Q and R.

If possible, suppose there is a another circle C(O', t) which passes through the points P, Q, R.

Then, O' will lie on the perpendicular bisectors AB and CD.

But O was the intersection point of the perpendicular bisectors AB and CD.

So, O $\acute{}$ must coincide with the point O. (Since, two lines cannot intersect at more than one point)

As, O'P = t and OP = r; and O' coincides with O, we get t = r.

Therefore, C(O, r) and C(O, t) are congruent.

Thus, there is one and only one circle passing through three the given non - collinear points.

Question: 22

In the give figur

Solution:

Construction: Join OX and OY

In \triangle OPX and \triangle ORY,

OX = OY (radii of the same circle)

OP = OR (sides of the square)

∴ Δ OPX \cong Δ ORY (RHS rule)

 \therefore PX = RY (CPCT)—1

OPQR is a square

 \therefore PQ = RQ

 \therefore PX + QX = RY + QY

QX = QY (from -1)

Hence proved

Question: 23

In the given figu

Solution:

Given: AB = AC

Construction: join OA, OB and OC

Proof:

Consider $\triangle AOB$ and $\triangle AOC$

Here,

OC = OB (radius)

OA = OA (common)

AB = AC (given)

 \therefore By SSS congruency

 $\triangle AOB \cong \triangle AOC$

 \therefore \angle OAC = \angle OAB (by C.P.C.T)

Hence, we can say that OA is the bisector of $\angle BAC$, that is O lies on the bisector of $\angle BAC$.