About the exercises

background information

```
on request
on topics not, or insufficiently covered during main lectures
questions about the lectures, or exercises
```

exercises

```
home work (aufgaben)
background information
worked out in next exercise session
```

mini-seminars

you!!

5 - 10 mins. about general topics in biophysics presentation skills literature research

proteins are nanomachines

convert light into chemical energy

```
photosynthesis
```

convert forms of chemical energy

```
growth
signalling
motion
replication
```

aim of biophysics

```
structure (x-ray, NMR, cryo-EM)
dynamics (NMR, FRET, AFM, MD)
function
```

proteins are nanomachines

biophysics

structure

dynamics

function

proteins are nanomachines

biophysics

structure

dynamics

function

nanotechnology

protein structure

chemical bonds

electrons (-) and nuclie (+) many body Schrodinger equation:

$$H^{\text{tot}}(\mathbf{r}_e, \mathbf{R}_N) \Phi^{\text{tot}}(\mathbf{r}_e, \mathbf{R}_N) = E^{\text{tot}} \Phi^{\text{tot}}(\mathbf{r}_e, \mathbf{R}_N)$$

electron density

protein structure

chemical bonds

electrons (-) and nuclie (+) many body Schrodinger equation:

$$H^{\text{tot}}(\mathbf{r}_e, \mathbf{R}_N) \Phi^{\text{tot}}(\mathbf{r}_e, \mathbf{R}_N) = E^{\text{tot}} \Phi^{\text{tot}}(\mathbf{r}_e, \mathbf{R}_N)$$

electron density

protein structure

potential energy surface

electrons "averaged out"

