

HOME SOS SYSTEM

FOR ELDERLY PEOPLE

3rd December 2020

Asst. Prof. Dr. Sakon Sansongsiri Aj. Theerawat Bunjong

Mister Krisakorn Boonpan

Chiang Mai University Demonstration School

Problem

When stepping into the old age.

ALZHEIMER'S OSTEOPOROSIS

Objective

- 1. Making a low-cost real time Fall detection for the elder.
- 2. Study the fall characteristics of the elderly for use in detecting fall.
- 3. The device to be able to collect data and analyze the results for the development of the device's accuracy.
- 4. The device can automatically ask for help to the caretaker. When falling.

Method

Part 1: (Hardware)

- Find equipment information
- Test equipment
- Assemble the equipment

Part 2: (Software)

- Data transmission
- Create a program with Python
- Notification sending to LINE
- Using WiFi to determine the location

Part 3: (Test)

- Collecting data as numbers
- Collecting data in video and real time graph

Part 1: (Hardware)

Study equipment information

Assemble the equipment

Buy equipment

Test equipment

Model 1

Small size, less weight

Problem: Can't be used for a long time

Model 2

More battery, heavy weight

Problem: It is dangerous to the user

Model 3

Small size, enough battery and not harmful to users

Part 2: (Software)

Step 1

Learn how to write a program

Connect the transmission device to the wireless

Write a program to identify the device location with Wi-Fi

Step 2

Sending images and message alerts to line


```
Serial.print(client.state());
    Serial.println(" try again in 5 seconds");
    delay(5000);
    return;
if (accel.available()) {
                             // Wait for new data from accelerometer
  // Acceleration of x, y, and z directions in g units
 /* client.print(accel.getCalculatedX(), 3); // แสดงต่าแกน x
  client.print("\t");
  client.print(accel.getCalculatedY(), 3); // แสดงตำแกน y
  client.print("\t");
  client.print(accel.getCalculatedZ(), 3); // เสดงต่าแกน z*/
 float a = (accel.getCalculatedX());
 float b = (accel.getCalculatedY());
 float c = (accel.getCalculatedZ());
 // b = (accel.getCalculatedY(), 3);
 // c = (accel.getCalculatedZ(), 3);
 float tol = 0.0;
 tol = float(sqrt(pow(a, 2)+pow(b, 2)+pow(c, 2)));
  //Serial.println(tol);
  delay (10);
  if (tol >= 3.2){
     client.publish("SOS/data/detect", "CAMALL");
     delay(100);
```

Connect the device to communicate through the cloud

in it can work automatically

HOME SOS SYSTEM FOR ELDERLY PEOPLE

Part 3: (Test)

Test 1

0.918 0.262 -0.164
0.988 -0.215 -0.09
0.977 0.117 -0.066
0.969 0.094 -0.07
0.980 0.078 -0.102
0.980 0.09 -0.09
0.992 0.102 -0.086
0.973 0.113 -0.062
0.977 0.086 -0.082
0.977 0.086 -0.082
0.977 0.102 -0.054
0.978 0.113 -0.651
0.978 0.102 -0.066
0.977 0.098 -0.066
0.977 0.098 -0.066
0.977 0.098 -0.066
0.977 0.094 -0.074
0.980 0.098 -0.066
0.980 0.098 -0.062
0.980 0.098 -0.062

0.977 0.191 -0.012 1.000 0.355 0.062

0.898 0.465 0.047

0.875 0.492 0.027 0.848 0.512 -0.012 0.789 0.547 0.121

Objective:

Collected falling data from experiments in the use of equipment for everyday activities to compare with the falling data.

Test 2

Objective:

Collect data on different types of falling for identify the similarities and differences in each type of fall.

Test 3

Objective:

Collect daily equipment usage data for find device errors when in real use.

Result

Battery 24+ hr.

Notification

Device

Process, sensor

Design

Science · Technology · Engineering · Math

Analyze results

HOME SOS SYSTEM FOR ELDERLY PEOPLE

Conclusion

Total accuracy

Time spent in warning

96.67 %

100 %

6 Second

Tell the device location

The device is safe

Benefits

Data from the fall test

Cheap price

Take care 24 hr.

? Question R Answers

Method used to detect falls

Step 1

 $A_x = X$ -axis acceleration $A_y = Y$ -axis acceleration $A_z = Z$ -axis acceleration

If the total acceleration is greater than 3.2, then it is one of the factors for detect falling.

Step 2

Put the total acceleration into the formula for the moving average.

Weighted moving average

$$\frac{10(A_{before}) + A_{After}}{11}$$

then it is two of the factors for detect falling.

Total accuracy

$$Relative\ error = \left| \frac{X_{all} - X_t}{X_t} \right|$$

 X_{all} is the total experimental value

 X_t is the alert value when actual falling occurs

$$\frac{124 - 120}{120} \times 100 = 3.33\%$$

Find location work

Graph

Time

Accelerometers work

