FING Exam AUTHOR TOUR a) x is nipotent if x"=0 for some n & N. b) Let H < G be a subscorp. Then IHI divides (6). c) Z(6) = {zg=gz | Z66 Fer all S66} d) $\phi:G \to H$ is an isomorphism it it is a homomorphism (meaning $\Phi(goh) = b(g) * \phi(h)$) that is both surjective and injective, meaning onto and one-to-one. e) Let NIG be normal. Then ging EN for all nEN, geG 8) (2361)(26)(21) (1542)(317)(784)= (7821)(5463) g) LCM = 4, order of (7821)(5462) is 4 n) Let 0: G 7 H be a function. Then ker(0) & G and G/Ker(a) = 1m (a) There brish an ixonorphism from ker of that function. i) Let T be a susring and I be an ideal. Then (T+I)/I \(T/(T/I), the humber of subrings contribing I is one to one to the i) degree (5(x)) = n, where n EN is the exponent of the maximal term in the polynomial f(x). () VER is icceduable if there exists no elements x, y ER such that xy = V.

77 (ne	Sloup	action	is	give	V	by	GXA	\rightarrow	A	such 4
(g,.	(92.4)	= (5,	92)	٠ ٩	for	9	1,92€	ረ	ad	a e A
			9 for								

m) Sylow p-subgroup is a subgroup of Gr with order pa, (a subgroup that is a A-sroup).

^) —	
0)	

n) An unique factorization atomain is a ring where all elevents $r \in R$ are irreducible.

Final Exam

Anthony J.

2. Let R be a ring and I and I be left ideals of sz.

Than rIGI and rJGJ for all rER.

This also means that for any re R and any if I and jeJ, vii & I and v.j & J.

Consider In J.

An element $x \in (I \cap J)$ is both $x \in J$ and $x \in J$. Therefore for any element $y = v \cdot x$, $v \in R$:

XEJ > YEI and XEJ > YEJ.

Therefore $y = v \cdot x$ is both in I and J and hence $y \in (I \cap J)$.

50 v(INJ) C(INJ) is a left ideal.

final Exam

3. Let (6,*) and (H,0) be slowers.

(onsider (7xH with a operation siven by

(31-hi) (31+32, high2)

(g,,h,).(g2, h2) = (g,*g2,h,oh2).

Observe that GXH is closed under multiplication:
(G1, h1), (G2, h2) + GXH and

(9, \$52 g h, 0h2) = (93, h3) & GXH fer 9, \$52 = 53 & 6 and h, 0h2 = h3 & H.

It is associative: Let (g,h), (x,y), $(a,b) \in G \times H$. $(g,h) \cdot [(x,y) \cdot (a,b)] = (g,h) \cdot (x*a,yob)$

= (9* * * a, hoyob)

= (5*x, hoy). (9,6)

= [(g,5).(x,y)].(a,5)

14 has identity: (g,h). (IG, IH) = (g*IG, hoIH) = (g,h) + (G*)

And inverses: For (g,h) & GxH, consider g-1 & Grand hard hence

(g,h)·(g-1,h-1) = (g*5-1,hoh-1) = (IG, IH) = 1.

50 GXH is a group under its operation.

4. Let R be commutative with identity and MGR be an ideal. Therefore 1 & R, xy=yx for Yxy&R, and IMCM and MICM for every r & R, too.

Let M be maxime). Then for any MCICR, I = R as M is the largest ideal that contains itself but is not R.

Consider R/M:= { v+M|vER}. R/M is commutative because R is commutative.

Consider a nonzero element $u \in R/M$. Then let u = x + M for some $x \in R$.

Let V = y + M for some $y \in R$ und that $X y \in M$. Then UV = (x + M)(y + M) = xy + (x + y)M + M, which is contained in M is M is maximal and thus $(x + y)M \subseteq M$ since no other ideal $I \neq R$ is greater. Hence

Hence My and u is a unit of R/M, and R/M is a communative divisor runs.

Let RIM be a field. Then every wonzero element of RIM is a writ. Thus for $u \in R/M$, there exists some $u \in R/M$ such that uv = M.

Assume M wasn't maximal. Then some MÇIÇR ideal would contain M, and hence some cosets a,b,c... ERIM would give as a product I. However every element product is

Final Exam

6. Let R be a ring with a lest identity:

12 such that 12. v = v, vER and

a cisht identity:

1R such that v. 1R = v, r & R.

Now consider e = 1 R. 1 L.

If $e=1_R$ or $e=1_L$, then either 1_L or 1_R are two-sided unque as $v(1_R,1_L)=v$ and $(1_R,1_L)v=r$.

If $1R \cdot 1_L \neq 1_r$ and $1R \cdot 1_L \neq 1_R$ then consider $v \cdot e = (r \cdot 1_r) \cdot 1_L = v \cdot 1_L$ and $e \cdot r = 1_r \cdot (1_L \cdot r) = 1_r \cdot v$ and $v \cdot e \cdot s = (v \cdot 1_r) \cdot (1_L \cdot s) = r \cdot s$.

Then as v.e.s = v.s, e=1 and two-sided.

Thus R contains a wine two-sided identity with IRER and ILER.

7. Let A be a Anite abelian group. Then $|A| \neq \infty$ and for every $x,y \in A$, xy = yx.

Let A be cyclic. Then $A = \langle a \rangle$ for some $a \in A$, and $|\langle a \rangle| = |A| \neq \infty$.

Consider any Sylow p-subgroups of A. If $|A| = n_g$ then the p-subgroups of A are each $H \le A$ such that $|A| = p^m$, where $p^m | n$ and $m \notin N$, p is prime.

But observe fear any b & H, b = a' as A is cyclic.

Final Exam

B. Let us consider factors of 400:

 $400 = 2.2.2.2.5 = 24.5^2$

Thus G with order 161 = 400 can be

Z_{2S} & Z₃ & Z₂,

Zzs & Zzy & Zz & Zz

IZS & ZZ & ZZ & ZZ ,

Z25 # Z16 3

Z5 # Z5 # Z2,

ZsoZsoZyoZy

Is & Is & Iz & Iz & Iz & Iz, and

Z5 & Z5 & Z16.

Hence there are & abelian scoups of order 400 up to isomorphism.

9. Suppose that R is a commutative ring with 1 and 5 C R is a multiplicatively closed set. Then for $x,y \notin S$, $xy \notin S$.

Let $s \in S$ be nilpotent. Than s'' = 0 for some $n \in N$. Consider the mg $S^{-1}R = Rs$.

We have that the set 5 is multiplicatively closed and each element is nilpotent. We want to know how many element are in

5-1 R:= { 5-1 r | r & R, 5-1 is the invove of 5 & 5}

This is the ring of elements that are products of inverses of S and R. There are IRI many elements of R, and each nilpotent element in S has n many inverses (as S is closed under multiplication and therefore $S^1 \cdot S^1 \in S \dots S^{n-1} \in S \dots S^n = 0 \in S$).

Therefore there are, for each in where SES has sm=0, m. IRI many elevents. in Rs.