Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

Занятие 12. Производная и дифференциал

- І. приближенные вычисления при помощи дифференциала
- II. уравнение касательной и нормали, угол между кривыми
- III. применение французских теорем
- IV. правило Лопиталя

Составили: Правдин К.В. Редакторы: Правдин К.В.

В аудитории

І. Приближенные вычисления при помощи дифференциала

Задача 1. Пользуясь понятием дифференциала, найти приближённое значение функции f(x) в точке x_0 , сравнить с истинным значением, посчитанным на калькуляторе.

$$f(x) = \sqrt[5]{\frac{2-x}{2+x}}, \qquad x_0 = 0.15.$$

Задача 2. Найти приближённое значение:

a) cos 31°; б) lg 10,21.

II. Уравнение касательной и нормали, угол между кривыми

Задача 3. Найти уравнения касательных и нормалей к кривой $y = x \cdot \sqrt[3]{1-x}$ в точках с абсциссами:

a)
$$x = 0$$
; 6) $x = 9$; B) $x = 1$.

Задача 4.

В точках пересечения эллипсов, заданных следующими уравнениями, найти угол между ними:

$$\frac{x^2}{16} + \frac{y^2}{9} = 1, \qquad \frac{x^2}{9} + \frac{y^2}{16} = 1.$$

III. Применение французских теорем

Задача 5. Удовлетворяет ли функция $f(x) = 3x^2 - 1$ условуиям теоремы Ферма на отрезке [1,2]?

Задача 6. Удовлетворяет ли функция $f(x) = 1 - \sqrt[3]{x^2}$ условиям теоремы Ролля на отрезке [-1,1]?

Задача 7. Пользуясь теоремой Ролля, показать, что уравнение $3x^5 + 15x - 8 = 0$ имеет только один действительный корень.

Задача 8. Удовлетворяет ли функция $f(x) = 3x^2 - 5$ условиям теоремы Лагранжа на отрезке [-2,0]? Если да, то найти фигурирующую в формуле Лагранжа $f(b) - f(a) = f'(\xi)(b-a)$ точку ξ .

Задача 9. Удовлетворяют ли функции $f(x) = x^2 - 2x + 3$ и $g(x) = x^3 - 7x^2 + 20x - 5$ условиям теоремы Коши на отрезке [1,4]? Если да, то найти фигурирующую в формуле Коши $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$ точку ξ .

Задача 10. Пользуясь признаком постоянства функции, доказать формулу $\arcsin x + \arccos x = \frac{\pi}{2}$.

Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

Консультация

І. Приближенные вычисления при помощи дифференциала

Задача 11. Медный кубик, ребро которого равно 5 см, подвергся равномерной шлифовке со всех сторон. Зная, что его масса уменьшилась на 0,96 г и считая плотность меди равной 8 г/см³, определить, на сколько уменьшились размеры куба, т.е. на сколько укоротилось его ребро.

Задача 12. Получить выражения для определения абсолютных погрешностей функции через абсолютные погрешности их аргументов:

a)
$$y = \sin x \ \left(0 < x < \frac{\pi}{2}\right);$$
 6) $y = \ln x$.

II. Уравнение касательной и нормали, угол между кривыми

Задача 13. Доказать, что касательная к лемнискате, заданной в полярных координатах уравнением $\rho = a\sqrt{\cos 2\varphi} \ (a>0)$, в точке, соответствующей значению $\varphi_0 = \pi/6$, параллельная оси 0x.

IV. Правило Лопиталя

Задача 14. Применяя правило Лопиталя, найти пределы функций:

a)
$$\lim_{x\to 0} \frac{e^{ax} - e^{-2ax}}{\ln(1+x)}$$
 $(a \in \mathbb{R});$ 6) $\lim_{x\to -1} \frac{\sqrt[3]{1+2x}+1}{\sqrt{2+x}+x};$ B) $\lim_{x\to 0} \frac{\sin 3x^2}{\ln \cos(2x^2-x)}.$

Задача 15. Существуют ли следующие пределы? Применимо ли к их вычислению правило Лопиталя? Приводит ли к ответу его офрмальное применение?

a)
$$\lim_{x \to 0} \frac{x^2 \sin(1/x)}{\sin x}$$
; 6) $\lim_{x \to +\infty} \frac{2 + 2x + \sin 2x}{(2x + \sin 2x)e^{\sin x}}$.

Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

Самостоятельно

І. Приближенные вычисления при помощи дифференциала

Задача 16. Найти приближённое значение:

a)
$$\sqrt[5]{33}$$
; 6) ctg 45°10′.

Задача 17. Получить выражения для определения абсолютных погрешностей функции через абсолютные погрешности их аргументов:

a)
$$y = \ln(\sin x) \left(0 < x < \frac{\pi}{2}\right);$$
 6) $y = \ln(\lg x) \left(0 < x < \frac{\pi}{2}\right).$

II. Уравнение касательной и нормали, угол между кривыми

Задача 18. На кривой $y = x^3 - 3x + 5$ найти точки, в которых касательная:

- а) параллельная прямой y = -2x;
- б) перпендикулярна к прямой $y = -\frac{x}{9}$.

III. Применение французских теорем

Задача 19. Удовлетворяет ли функция условиям теоремы Ролля:

- a) функция $f(x) = \ln \sin x$ на отрезке $\left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$?
- б) функция f(x) = 1 |x| на отрезке [-1, 1]?

Задача 20. Удовлетворяют ли функции $f(x) = e^x$ и $g(x) = \frac{x^2}{1+x^2}$ условиям теоремы Коши на отрезке [-3,3]?

Задача 21. Пользуясь признаком постоянства функции, вывести формулу, известную из элементарной математики:

a)
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
; 6) $\arccos \frac{1 - x^2}{1 + x^2} = 2 \arctan x$ ($0 \le x < +\infty$).

IV. Правило Лопиталя

Задача 22. Применяя правило Лопиталя, найти пределы функций:

a)
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$
; 6) $\lim_{x\to 0} \frac{\ln(1+x^2)}{\cos 3x - e^{-x}}$; B) $\lim_{x\to \pm \infty} \frac{e^{1/x^2} - 1}{2 \arctan x^2 - \pi}$.