

EMOTION

AND ITS ROLE AS A UNIVERSAL LANGUAGE

facial expressions of emotion are universal, not learned differently in each culture

- Charles Darwin, The Expression of Emotions in Man and Animals

THEORETICAL RATIONALE

WHY EMOTION?

Emotions are universal

Many scientists believe that there are seven universal emotions that humans are biologically-hardwired to express

Facial expressions account for nearly 70% of all non-verbal communication

WHY AI?

AI is everywhere

Artificially-intelligent systems can be trained to identify faces and recognize emotions using the same basic visual scanning techniques done by humans

These systems have many different applications in consumer technology

HOW EMOTION IS EXTRACTED

PRE-PROCESSING

Images from a dataset are normalized, so inconsistencies do not affect learning

ANALYSIS

Viola-Jones algorithms from OpenCV and TFLearn detect features

CLASSIFICATION

Input is then mapped to the softmax output layer nodes

Cropped and resized to a 48x48 input image

Subsets are scanned for facial markers

The unit with the highest activation gets selected

THE FER2013

A large, publicly-available dataset used to train and validate the CNN's emotion-detecting capabilities

28,709 faces

Used to train and validate the model

48x48 pixel

Tokenized grayscale images

100 epochs

To converge to 67% accuracy (approx. ~40 hrs)

CONVENTIONAL FACIAL RECOGNITION USING IMAGE CLASSIFIERS AND FEATURE DETECTORS

A. Gudi. Recognizing semantic features in faces using deep learning. *arXiv preprint arXiv:1512.00743, 2015*

NETWORK BASICS: IMAGE CLASSIFIERS AND FEATURE DETECTORS

♦ Tensorflow

o machine learning
framework

\Diamond TFLearn

o high-level API for deep learning

OpenCV

o open-source computer vision APIs

Docker

o python/tensorflow runtime environment

EMOTION RECOGNITION NETWORK STRUCTURE

FER2013 grayscale images [48x48]

Detect input "features" [5x5] x 64 Apply local Append + kernels [3 x 3]

update weights [5x5] x 64 Мар emotions to faces [14524x1]

Мар faces to emotion [1x7]

SUMMARY OF NETWORK OPERATIONS

FER2013 images come pre-cropped to 48x48 px, and have been cleaned up, rescaled and converted into a numpy-readable array

EDIT

OpenCV Viola-Jones algorithm normalizes factors like face location, low image quality, in-plane tilt and rotation to filter out poor data

ITERATE

Kernels ("filters") operate on subsets of the input matrix to quickly discard unnecessary artifacts and retain the facial expression features

COMPARE

The AlexNet CNN model uses TFLearn and OpenCV libraries to calculate Haar-features and reduce negative windows (cascade filters)

UPDATE

Error backpropagation functions from TFLearn library are used to update the activation weights in the convolutional layers

CLASSIFY

The fully-trained deep net selects the softmax output neuron that has the highest activation given by the ReLU Rectifier: max(x, 0)

PERFORMANCE MATRIX USING INITIAL DATASET

	Anger	Disgust	Fear	Нарру	Neutral	Sad	Surprise
Anger	0.5						
Disgust		0.62					
Fear			0.37				
Нарру				0.90			
Neutral					0.80		
Sad						0.28	
Surprise							0.77

^{*} Data provided by TU Delft and @isseu on Github, ran using the same neural net and training set

FUTURE WORK + CONSIDERATIONS

Train the network using various datasets

- ♦ Reduced FER2013
- JapaneseFemale FacialExpressions(JAFFE)
- ♦ CK+ dataset

Analyze for other facial feature characteristics

- ♦ Gender
- ♦ Age
- ♦ Race

Implement emotion-detection in consumer tech

- Automatic playlist generation
- Mood prediction in behavioral health apps

REAL-T CLASSIFI

Trained classifier operates on individual frames from a live video stream

ANDROID PROJECT

Show and explain your web, app or software projects using these gadget templates.

0

iPHONE PROJECT

Show and explain your web, app or software projects using these gadget templates.

TABLET PROJECT

Show and explain your web, app or software projects using these gadget templates.

CREDITS

A. Gudi. Recognizing semantic features in faces using deep learning. arXiv preprint arXIV:1512.00743, 2015.

C.R. Darwin. *The expression of the emotions in man and animals.* John Murray, London, 1872

OpenSourceComputerVision Face detection using haar cascades. URL https://docs.opencv.org/master/d7/d8b/tutorial_py_face_detection.html

TFLearn. TFLearn: Deep learning library featuring a higher-level API for Tensorflow. URL http://tflearn.org

Kaggle. Challenges in representation learning: Facial expression recognition challenge, 2013.

THANKS

ANY QUESTIONS?

Github: @jonathanloganmoran jmoran23@ucmerced.edu

PRESENTATION DESIGN

This presentations uses the following typographies and colors:

- ♦ Titles: Oswald
- ♦ Body copy: Open Sans

You can download the fonts on this page:

https://www.google.com/fonts#UsePlace:use/Collection:Open+Sans:400,700|Oswald

Click on the "arrow button" that appears on the top right

- Blue #39a6de
- Purple #774e92
- Magenta #db2f6b
- Aquamarina #9bded2

You don't need to keep this slide in your presentation. It's only here to serve you as a design guide if you need to create new slides or download the fonts to edit the presentation in PowerPoint®

SlidesCarnival icons are editable shapes.

This means that you can:

- Resize them without losing quality.
- Change fill color and opacity
- Change line color, width and style

sn't that nice? :)

Examples:

Now you can use any emoji as an icon!

And of course it resizes without losing quality and you can change the color.

How? Follow Google instructions https://twitter.com/googledocs/status/730087240156643328

