

КЛИНИЧЕСКАЯ ФАРМАКОЛОГИЯ И ТЕРАПИЯ

2004, том 13, номер 2. Индекс 71305

Динамика когнитивных функций у больных с эмоционально-лабильными расстройствами сосудистого генеза при лечении Вазобралом

А.С.Аведисова, А.А.Файзуллоев, Т.П.Бугаева ГНЦ ССП им. В.П.Сербского

Вазобрал — комбинированный препарат, обладающий вазоактивной, ноотропной и антиастенической активностью.

Цель. Изучение вазоактивного и ноотропного действия Вазобрала у больных с церебральной сосудистой патологией.

Материал и методы. В исследование были включены 30 больных в возрасте 45-85 лет с органическим эмоционально-лабильным (астеническим) расстройством, вызванным церебральной сосудистой патологией (F.06.6). До и после 6-недельной монотерапии Вазобралом оценивали интегративные психофизиологические параметры и показатели реоэнцефалографии.

Результаты. После лечения Вазобралом отмечена достоверная позитивная динамика психофизиологических характеристик сенсомоторной активности, функциональной подвижности зрительного анализатора и внимания, а также улучшение параметров реоэнцефалографии. Все больные отметили уменьшение или исчезновение сомато-вегетативных расстройств, таких как головные боли, головокружение, сердцебиения, онемение конечностей и т.п. Кроме того, уже в первые недели терапии препарат оказывал активирующее действие в виде уменьшения утомляемости, вялости, слабости, появлении физического и умственного "оживления", бодрости.

Заключение. Сочетание у Вазобрала нейрометаболического, ноотропного, вегетостабилизирующего и антиастенического действия является оптимальным для больных с эмоционально-лабильными расстройствами, возникающими на фоне сосудистых заболеваний головного мозга.

Клин. фармакол. тер., 2004, 13 (2).

ОЛЕЗНИ, связанные с недостаточностью мозгового кровообращения, занимают ведущее место в структуре заболеваемости в разных странах. Большинство авторов отмечают, что с увеличением продолжительности жизни человека значение проблем, связанных с возрастными сосудистыми изменениями и обусловленными ими эмоционально-лабильными (астеническими) и когнитивными расстройствами, возрастет в несколько раз. В настоящее время уделяется большое внимание взаимосвязи качества когнитивных процессов и уровня глобального функционирования таких больных [1-4]. Так, установлена связь между характеристиками памяти и внимания больного с сосудистой патологией и решением им различных социальных проблем, а также приобретением нового опыта [5,6]. Эти исследования позволили заключить, что дефицит когнитивных функций, наблюдающийся у пациентов с сосудистой недостаточностью, нарушает их социальную и профессиональную адаптацию. Например, пациенты, у которых наблюдаются трудности с вниманием и бдительностью, не способны выработать адекватные социальные навыки и часто оказываются в трудных социальных ситуациях. Проблемы с исполнительными функциями ассоциируются с плохими трудовыми навыками. Возможно, как считают некоторые авторы [7], осознание собственной болезни и приверженность к лечению также связаны с аспектами когнитивного функционирования. Специфические дефициты когнитивных функций лимитируют прежде всего область реального функционирования больных, а знание этих ограничений помогает создать дифференцированные и эффективные реабилитационные и фармакологические подходы. Вопрос о взаимосвязи нейрокогнитивного дефицита с уровнем социальной адаптации больных с астеническими расстройствами при сосудистой недостаточности представляется чрезвычайно значимым, так как точкой приложения усилий многих психиатров и неврологов становится не только замедление темпа прогрессирования сосудистой патологии с помощью вазоактивных препаратов, но и улучшение показателей когнитивного функционирования таких больных путем применения ноотропных препаратов, а также уменьшение проявлений астенических нарушений (антиастенические средства).

Вазобрал — это комбинированный препарат, который состоит из производного спорыныи (блокирует α,и α₂-адренорецепторы гладкомышечных клеток сосудов) и кофеина (оказывает стимулирующее действие на ЦНС) и дает вазоактивный, ноотропный и антиастенический эффекты, Поливалентность действия препарата обеспечивает реализацию перечисленных выше терапевтических стратегий у больных с астеническими расстройствами на фоне церебрально-сосудистой недостаточности. Особо следует отметить, что Вазобрал повышает уровень серотониновой и дофаминовой нейротрансмиссии. В последние годы дофаминергическая система мозга, являющаяся основной в медиации моторной деятельности человека, его мотивации и др., рассматривается как наиболее уязвимая к возрастным изменениям [7]. Уменьшение плотности допаминергических рецепторов (D₂), расположенных во фронтальной области, по данным последних исследований с использованием нейровизуальных методов (позитронно-эмиссионной томографии), напрямую связано со снижением когнитивной деятельности пожилых пациентов. Повышение серотонинергической активности в ЦНС, наблюдающееся при назначении Вазобрала, возможно, способствует улучшению настроения и уменьшению эмоциональной лабильности больных с сосудистой патологией.

Целью исследования, выполненного в Отделе пограничной психиатрии ГНЦ ССП им. В.П.Сербского, было изучение вазоактивного и ноотропного действия Вазобрала у больных с органическим эмоционально-лабильным (астеническим) расстройством, вызванным церебральной сосудистой патологией.

Материал и методы

В исследование было включено 30 больных в возрасте 45-85 лет с органическим эмоционально-лабильным (астеническим) расстройством, вызванным церебральной сосудистой патологией (F.06.6), у которых отсутствовали декомпенсированные соматические заболевания или другие прогрессирующие соматические или неврологические (в том числе деменция) нарушения. Больные предъявляли жалобы на утомляемость и истощаемость (физическую и умственную),

головную боль, головокружения, скованность и боли в шее, нарушения сна, пошатывание при ходьбе, снижение памяти, внимания, работоспособности, шум в голове и ушах, потливость и др. В их неврологическом статусе определялись легкие интеллектуально-мнестические расстройства, рассеянная микросимптоматика, лабильность сухожильных и периостальных рефлексов, симптомы орального автоматизма, неустойчивость (падение) в позе Ромберга, болезненность паравертебральных точек и остистых отростков при пальпации (перкуссии), вегетативные дисфункции.

Монотерапию Вазобралом в дозе 2-4 мг (1-2 пипетки) два раза в сутки (утром и днем во время еды, запивая небольшим количеством воды) продолжали в течение 6 недель. Пациентов обследовали до и после лечения. Оценивали интегративные психофизиологические параметры, такие как краткосрочная и оперативная память, внимание, время сенсомоторной реакции, функциональная лабильность анализатора и интегративные характеристики вегетативной нервной системы (вегетативная реактивность) с помощью тестов "память на числа" (ПНЧ), "арифметические вычисления" (А+В), "корректурная проба", "критическая частота", "ПСМР", исследовали мозговое кровообращение с помощью автоматизированных систем компьютерной диагностики психофизиологического состояния человека - КПФК-99 и ВНС-спектр. Психофизиологическое обследование с целью оценки когнитивных функций больных проводили на базе автоматизированных психофизиологических систем диагностики функционального состояния ЦНС человека - компьютерный комплекс КПФК-99 "Психомат". Исследовали следующие параметры:

- 1. Краткосрочная и оперативная память при помощи тестов на числа и арифметических вычислений, что позволяло определить объем и продуктивность памяти.
- 2. Внимание в порядке возрастания сложности заданий (расстановка чисел, корректурная проба (КП) с кольцами Ландольта) с оценкой его объема и концентрации.
- Сенсомоторная активность (по скоростным параметрам простой сенсомоторной реакций), характеризующая уровень активации и готовности центральных механизмов к выполнению сенсомоторной (поведенческой) деятельности.
- 4. Лабильность зрительного анализатора при анализе критической частоты порога различия световых мельканий, определяющая уровень инертности/возбудимости центральных нервных процессов.

Наряду с психофизиологическим исследованием проводили реоэнцефалографическое исследование на аппарате $4P\Gamma$ -2M с оценкой трех гемодинамических показателей: пульсовое кровенаполнение (ПК), венозный отток (ВО) и тонус сосудов (ТС).

Результаты

У обследованных больных выявили негативные изменения всех показателей, характеризующих когнитивную деятельность, по сравнению с контрольной группой здоровых лиц (табл. 1, рис. 1). Снижение параметров сенсомоторной активности проявлялось в удлинении латентных периодов времени зрительно-моторной реакции (ЛП ПЗМР) и функциональной лабильности зри-

Рис. 1. Влияние Вазобрала на показатели когнитивного функционирования и гемодинамики мозга в сравнении с нормой (сплошная линия).

тельного анализатора при отчетливом снижении порога различия световых мельканий (КЧРСМ). Снижение краткосрочной и оперативной памяти характеризовалось сокращением общего количества и правильно воспроизведенных чисел, в уменьшении количества правильно решенных задач и в увеличении доли ошибочных ответов при выполнении тестов "арифметические вычисления" (А+В) и "память на числа" (ПНЧ). Наряду с этим наблюдалось снижение параметров объема и продуктивности внимания в форме уменьшения количества правильно узнанных колец и увеличения количества ошибочно названных ответов при выполнении корректурных проб. На данном этапе исследования отмечалась отрицательная направленность реоэнцефалографических характеристик мозгового кровообращения в виде снижения пульсового кровенаполнения (fmd/s=0,44), нарушения тонуса церебральных и вертебробазилярных сосудов (гипертонус и его неустойчивость) и нарушения (затруднения) венозного оттока (более чем у 75% больных). Полученные данные коррелируют с астеническими (латентный период времени зрительно-моторной реакции и "память на числа"; r= 0,73), вегетативными (порог различия световых мельканий; r=0,79) и когнитивными радикалами ("арифметические вычисления" и корректурная проба; r=0,82).

После лечения Вазобралом отмечена выраженная достоверная позитивная динамика психофизиологических характеристик сенсомоторной активности, функциональной подвижности зрительного анализатора и внимания. Это отражалось в положительной трансформации параметров простой зрительно-моторной реакции, при которой отмечалось сокращение времени латентных периодов, в нарастании порога различия световых мельканий и, наконец, в увеличении объема (рост числа правильно узнанных колец) и продуктивности внимания (снижение количества ошибочных ответов) при выполнении теста "корректурная проба". Следует отметить, что динамика психофизиологических характеристик памяти (кратковременная и оперативная) была недостоверной.

Лечение Вазобралом привело к улучшению параметров РЭГ: нарастанию показателей пульсового кровена-полнения (fm d/s=0,66), тенденции к нормализации сосудистого тонуса и венозного оттока (у 80% больных). При этом выявлена прямая корреляция между динамикой параметров времени реакции, порога различия световых мельканий, улучшением показателей внимания и уменьшением астено-вегетативных составляющих церебастенического радикала (r=0,69-0,84). Кроме того, имелась зависимость между динамикой реоэнцефало-

ТАБЛИЦА 1. Влияние монотерапии Вазобралом на психофизиологические и реоэнцефалографические показатели

Параметры	Контроль	До лечения	После лечения	p
Латентный период простой зрительно-моторной реакции (мс)	212,21±16,21	328,04±22,34	245,80±19,97	0,044
Критическая частота различия световых мельканий (Гц)	$39,4\pm2,15$	$23,6\pm3,22$	$38,56\pm1,93$	0,001
Краткосрочная память (память на числа – объем)	$6,89\pm1,12$	$4,61\pm1,51$	$4,90\pm0,54$	-
Краткосрочная память (память на числа – продуктивность)	$6,24\pm1,23$	$3,42\pm1,30$	$3,61\pm,0,89$	-
Оперативная память (арифметически вычисления - объем)	$117,12\pm2,56$	$95,11\pm2,54$	$94,07\pm4,06$	-
Оперативная память (арифметические вычисления - продуктивность)	$1,95\pm12,01$	$3,98\pm0,94$	$4,20\pm2,77$	-
Внимание (корректурная проба – объем)	$99,87\pm3,21$	$39,40 \pm 6,62$	$52,23\pm2,86$	0,001
Внимание (корректурная проба - продуктивность)	$2,09\pm11,27$	$6,45\pm1,81$	$3,21\pm0,89$	0,001
Пульсовое кровенаполнение (у.е.)	0,7	$0,44\pm0,08$	$0,66\pm0,11$	0,003
Тонус сосудов (у.е.)	1	$4,20\pm0,83$	$1,21\pm0,44$	0,001
Венозный отток (у.е.)	1	$4,60\pm0,54$	$1,62\pm0,54$	0,001

графических параметров, изменений церебральных сосудов и вегетативных нарушений.

Обсуждение

Исходно при психофизиологическом обследовании когнитивных функций у больных с эмоционально-лабильным (астеническим) расстройством выявили нарушения возбудимости, силы и баланса нервных процессов в коре головного мозга, внешне проявляющиеся как регресс быстроты и точности реагирования на внешний сигнал (удлинение времени реакции). Нарушение порога различия зрительного анализатора указывало на снижение и истощение пластических и усиление инертных процессов в корковом отделе зрительного анализатора, которые приводят к стагнации скорости восприятия и переработки зрительной информации. Ухудшение таких показателей, как объем и продуктивность памяти и внимания, свидетельствовали о дисгармонии процессов переработки, преобразования и хранения информации. Выявленные реоэнцефалографические изменения отражали дефицит трофических и энергетических процессов и их вегетативной регуляции. Подобные изменения характерны для больных с нейроциркуляторной энцефалопатией и указывают на снижение энергетических и регуляторных процессов в ЦНС, объективно проявляющееся в негативной динамике психофизиологического состояния больных и в форме церебастенического состояния.

Позитивная динамика психофизиологических параметров после лечения Вазобралом указывала на восстановление энергетических и регуляторных функций. Выраженное позитивное влияние препарата на время реакции, внимание и функциональную подвижность зрительного анализатора подтверждало отчетливую нейрометаболическую активность с опосредованным ноотропным эффектом. О наличии последнего свидетельствовало улучшение параметров внимания и времени реакции. Вегетостабилизирующий эффект препарата проявлялся в усилении пульсового кровенаполнения, тенденции к нормализации тонуса сосудов и венозного оттока, что связано с центральными механизмами вазоконстрикции и обусловлено положительным действием препарата на симпатическую нервную систему при снижении активности парасимпатической системы. Следует отметить, что препарат не оказывает влияния на психофизиологические характеристики памяти, что обусловлено, по-видимому, отсутствием у него собственно мнемотропного эффекта.

Описанное выше позитивное действие Вазобрала на функции внимания имеет самостоятельное значение.

Способность селективно реагировать на значимые обстоятельства окружающей среды, отфильтровывать их и не реагировать на отвлекающие или не относящиеся к текушему делу факторы является ведущей способностью целевого поведения человека, тесно связанной с процессами его приспособления. Таким образом, восстановление функций внимания при применении изучаемого препарата у больных с астеническими расстройствами в рамках сосудистого поражения головного мозга можно рассматривать как улучшение одного из фундаментальных когнитивной процессов, реализующеих адаптивную деятельность таких пациентов.

Следует отметить, что в результате терапии Вазобралом все больные отметили уменьшение или исчезновение сомато-вегетативных расстройств, таких как головные боли, головокружение, сердцебиения, онемение конечностей и т.п. Кроме того, уже в первые недели терапии препарат оказывал активирующее действие в виде уменьшения утомляемости, вялости, слабости, появления физического и умственного "оживления", бодрости. При этом пациенты активно интересовались рекомендациями по дальнейшему приему Вазобрала.

Таким образом, Вазобрал является эффективным центральным вазоактивным средством. Сочетание в спектре психофармакологической активности препарата нейрометаболического, ноотропного, вегетостабилизирующего и антиастенического действия является оптимальным для больных с эмоционально-лабильными (астеническими) расстройствами, возникающими на фоне сосудистых заболеваний головного мозга. Применение комбинированного препарата отвечает одному из приоритетных направлений развития фармакологии созданию новых средств, обладающих комплексным механизмом действия и позволяющих заменить функции других препаратов, т.е. добиться положительных терапевтических результатов при снижении количества используемых средств, что важно, в том числе, и с экономической точки зрения.

- Аведисова А.С., Ахапкин Р.В., Ахапкина В.И., Вериго Н.Н. Анализ зарубежных исследований ноотропных препаратов (на примере пирацетама). Росс. психиатр. журнал, 2001, 1, 46-54.
- Александровский Ю.А., Барденштейн Л.М., Аведисова А.С. Терапия пограничных психических расстройств. М. Геотар-медицина. 2000. 204 стр.
- Соложенкин В.В., Тен В.И. и др. Некоторые аспекты терапии сосудистых нарушений головного мозга, протекающих в сочетании с тревогой. Современная психитрия, 1998, 4, 1-2.
- Файзуллоев А.З. Психофизиологическая характеристика действия нейрометаболических стимуляторов у больных с невроподобными расстройствами. / Автореферат дисс. ... канд. мед. наук, 199713.
- Яхно Н.Н., Захаров В.В. Когнитивные и эмоционально-аффективные нарушения при дисциркуляторной энцефалопатии. РМЖ, 2002, 12-13, 3-5.
- Cohen J., Servan-Schreiber D. Context, cortex and dopamine: a connectionist approach to behaviour and biology. Psychol. Rev., 1992, 99, 45-77.