Práctica 6: Caché

Estructura de Computadores

Gustavo Romero López

Updated: 7 de diciembre de 2021

Arquitectura y Tecnología de Computadores

Índice

- 1. Índice
- 2. Objetivos
- 3. Tamaño de linea
- 4. Tamaño de caché
- 5. Enlaces

Objetivos

- Comprender la importancia de la memoria caché mediante el estudio de la misma.
- Nos centraremos en dos de sus parámetros más importantes:
 - o Tamaño de línea o bloque.
 - o Tamaño de la caché.
- Intentaremos calcularlos para nuestro procesador.
- © En Linux podemos consultar todos los parámetros de la caché mediante la orden lscpu o examinando el directorio /sys/devices/system/cpu/cpu0/cache.
- "make info" muestra por pantalla información relevante sobre la caché.

Tamaño de linea

Tamaño de linea

- Una linea o bloque de caché es la cantidad de información que viaja entre los niveles de caché y la memoria principal.
- Es tan importante que a veces prevalece el tiempo de acceso a los datos frente al del tratamiento de los mismos.
- ¿Cuánto debería tardar el bucle para cada incremento?

```
char bytes[1 << 24]; // 16MB
char c = 0;

for (unsigned i = 0; i < sizeof(bytes); i += 1)
    c ^= bytes[i];

for (unsigned i = 0; i < sizeof(bytes); i += 2)
    c ^= bytes[i];

for (unsigned i = 0; i < sizeof(bytes); i += 4)
    c ^= bytes[i];</pre>
```

Indicaciones para calcular el tamaño de linea

- Mida el tamaño de linea generalizando el proceso anterior para cada posible tamaño de linea.
- © Cuánto más ligero sea el bucle interno mejor se evidenciará la diferencia de tiempo entre la operación realizada y el tiempo de acceso a memoria.
- Mida tiempos y compare... ¿Obtiene los resultados esperados?
- © El resultado en mi ordenador puede verse en la figura 1.
- ⊚ En vez de partir de cero, complete el esqueleto: line.cc.
- makefile genera un gráfico de forma automática.
- O Puede ayudarse con las ordenes "lscpu" y "make info".

Figura: Tamaño de linea

Tamaño de caché

- Mejor cuanto más grande si no fuese por precio, calor, superficie, consumo,...
- O Para medir el tamaño de caché debemos:
 - o Para cada tamaño de caché
 - o Crear un vector de dicho tamaño
 - Repetir 1000000 veces.
 Leer un elemento de cada linea.
- Cuánto más ligero sea el bucle mejor se evidenciará la diferencia de tiempo entre cálculo y acceso a memoria.
- Medir tiempos y comparar.
- ⊚ El resultado en mi ordenador puede verse en la figura 2.
- En vez de partir de cero, complete el esqueleto: size.cc.
- o makefile genera un gráfico de forma automática.
- ¿Cuántos niveles tiene tu caché y de qué tamaño son?

Figura: Tamaño de cache.

lscpu

```
[gustavo@casa 6s]$ lscpu
Arquitectura:
                                      x86_64
modo(s) de operación de las CPUs:
                                      32-bit, 64-bit
                                      Little Endian
Orden de los bytes:
Tamaños de las direcciones:
                                 48 bits physical, 48 bits virtual
CPU(s):
Lista de la(s) CPU(s) en línea:
                                      0-3
Hilo(s) de procesamiento por núcleo: 2
Núcleo(s) por «socket»:
«Socket(s)»
Modo(s) NUMA:
ID de fabricante:
                                      AuthenticAMD
Familia de CPU:
                                      21
Modelo:
                                      19
Nombre del modelo:
                               AMD A10-6800K APU with Radeon(tm) HD Graph
Revisión:
CPU MHz:
                                      1995.692
CPU MHz máx.:
                                      4100,0000
CPII MHz min ·
                                      2000,0000
BogoMIPS:
                                      8184 86
Virtualización:
                                      AMD-V
Caché I 1d:
                                      32 KiB
Caché Ili:
                                      128 KiB
Caché I 2 ·
                                      4 MiR
CPU(s) del nodo NUMA 0:
                                      0-3
```

make info

[gustavo@casa		6s]\$	make	info		
level		type	1	ine	size	
1		Data		64	16K	
1	Instruc	tion		64	64K	
2	Uni	fied		64	2048K	

		C	PU-G		V	<u>^</u>	×				
Processor Mo	otherboard	RAM	System	About							
General											
Vendor	Intel					_					
Model	Intel(R) Core(TM) i3 CPU			M 330	@ 2	nte					
Core Speed	933.000 MHz										
CPU											
Family	6	Mode	l 37	Ste	pping	2					
Flags fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca c											
Bogomips 4	Width 64			64-bit	1-bit						
Cache											
L1 Data	32K										
L1 Instructio	n 32K										
Level 2	256K										
Level 3	3072K										
Core selection											
Number of cores 4					ср	u #0	A				
CPU-G						C	errar				

Figura: La CPU de mi portatil vista con CPUG

Enlaces de interés

- o https://en.wikipedia.org/wiki/CPU_cache
- http://igoro.com/archive/
 gallery-of-processor-cache-effects/
- o http://cpug.sourceforge.net/