Übungen zur Vorlesung "Mathematik II für Studierende der Informatik"

Blatt 1

Abgabetermin: Freitag, 26.04.2024, bis 14:00 Uhr als PDF-Datei über ILIAS (Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (4 Punkte)

Gegeben sei die erweiterte Koeffizientenmatrix

$$(\mathbf{A}|\mathbf{b}) = \begin{pmatrix} 1 & 3 & 0 & 1 \\ 2 & 1 & \alpha & 1 \\ 1 & 5 & 4 & \beta \end{pmatrix}$$

mit $\alpha, \beta \in \mathbb{R}$. Bestimmen Sie die Lösungsmenge $L_{\alpha,\beta}(G)$ des zugehörigen linearen Gleichungssystems G in Abhängigkeit von α und β .

Aufgabe 2 (4 Punkte)

Sei $n \in \mathbb{N}$ mit $n \ge 1$. Zeigen Sie, dass durch

$$a \sim b$$
 : \iff $n \text{ teilt } a - b$

eine Äquivalenz
relation auf $\mathbb Z$ definiert wird. Geben Sie die Äquivalenzklassen und ein Repräsentantensystem an.

Aufgabe 3 (4 Punkte)

Seien $a, b, c \in \mathbb{R}$ beliebig, aber fest gewählt. Betrachten Sie die folgende Menge in \mathbb{Z}^2 :

$$\{(x,y) \in \mathbb{Z}^2 \mid ax + by + c = 0\}$$

Unter welchen Voraussetzungen an a, b, c ist diese Menge der Graph einer Äquivalenzrelation auf \mathbb{Z} ? Wie viele verschiedene Äquivalenzrelationen erhalten Sie auf diese Art?

Aufgabe 4 (4 Punkte)

Betrachten Sie die folgenden Strukturen und bestimmen Sie jeweils, ob die Verknüpfung assoziativ ist, ob sie kommutativ ist, ob es ein neutrales Element gibt und welche Elemente Inverse haben:

- a) $(\mathbb{Q}, *)$ mit x * y = xy + x + y.
- b) $(\mathbb{Q} \setminus \{-1\}, \diamond)$ mit $n \diamond m = (n+1)(m+1)$.

(bitte wenden)

Zusatzaufgaben zum Nachdenken und zur Vertiefung für Interessierte

Aufgabe 5

a) Man überlege sich, dass das lineare Gleichungssystem

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

mit $a_{ij}, b_i \in \mathbb{R}$, $1 \le i, j \le 2$ genau dann eindeutig lösbar ist, wenn $a_{11}a_{22} - a_{12}a_{21} \ne 0$ ist.

b) Kann es ein lineares Gleichungssystem in zwei Variablen x_1, x_2 geben, das aus $m \ge 1$ Gleichungen besteht und dessen Lösungsmenge $L(G) = \{(a,b) \in \mathbb{R}^2 \mid ab = 0\}$ erfüllt?

Aufgabe 6

In Definition 1.23 der Vorlesung wurde das neutrale Element e einer Verknüfung so definiert, dass es links- und rechtsneutral ist, d.h. dass sowohl

$$e \circ m = m$$
 gilt als auch $m \circ e = m$ für alle $m \in M$.

Ebenso wurden inverse Elemente m' as links- und rechtsinvers definiert, es sollte sowohl

$$m' \circ m = e$$
 gelten als auch $m \circ m' = e$.

Man zeige die folgende Aussage:

Wenn die Verknüpfung assoziativ ist, es ein linksneutrales Element e gibt und jedes $m \in M$ ein linksinverses Element m' besitzt, dann ist e auch rechtsneutral und jedes linksinverse Element auch rechtsinvers.