My Report

Bo Flachs & Wessel Kroon

Thursday 27th January, 2022

Abstract

Contents

1	Intr	roduction	3
2	Inq	uisitive Semantics	3
3	InqB in Haskell		
	3.1	Models	3
	3.2	Syntax	4
	3.3	Semantics	5
	3.4	Helper functions	6
	3.5	Model Checker	6
4	4 Example models		7
5	Simple Tests		

6	Conclusion	9
Bi	bliography	9

1 Introduction

2 Inquisitive Semantics

3 InqB in Haskell

3.1 Models

In this subsection we discuss the implementation of models.

```
module IngBModels where
-- import Test.QuickCheck
-- Type declarations of the models
type World = Int
type Universe = [World]
type Individual = String
                    = [Individual]
type Domain
type Domain = [Individual]
type UnRelation = [(World, [Individual])]
type BiRelation = [(World, [(Individual, Individual)])]
type TertRelation = [(World, [(Individual, Individual, Individual)])]
data Model = Mo { universe :: Universe
                   , dom :: Domain
                   , unRel :: [UnRelation]
                   , biRel :: [BiRelation]
                   , tertRel :: [TertRelation] }
         deriving (Eq, Ord, Show)
-- Type declarations for Propositions
type Prop
              = [[World]]
type InfState = [World]
myWorlds :: [World]
myWorlds = [1..4]
myIndiviuals :: [Individual]
myIndiviuals = ["a","b","c","d"]
instance Arbitrary Model where
  arbitrary = randomModel where
    randomModel :: Gen Model
    randomModel = Mo <$> u <*> d <*> ur <*> br <*> tr
       where u = elements $ powerset myWorlds
              -- might have a quickcheck functino for this non-empty stuff
             d = elements $ (filter (not . null) . powerset) myIndiviuals
             ur = pure [myR]-- zip <$> d <*> d
br = pure []
              tr = pure []
_}
```

3.2 Syntax

In this subsection we discuss the implementation of the syntax of InqB in Haskell.

```
module InqBSyntax where
import InqBModels
-- import Test.QuickCheck
-- Type declarations for variables
type Var
            = String
type Vars
                  = [Var]
-- Call this terms
data Term
             = Indv Individual | Var Var
       deriving (Eq, Ord, Show)
-- Type declarations for formulas
data Form = UnR UnRelation Term
          | BinR BiRelation Term Term
          | TertR TertRelation Term Term Term
          | Neg Form | Con Form Form | Dis Form Form
          | Impl Form Form
          | Forall Var Form | Exists Var Form
          deriving (Eq, Ord, Show)
nonInq :: Form -> Form
nonInq = Neg . Neg
nonInf :: Form -> Form
nonInf f = Dis f $ Neg f
{--- Define data ModelWithForm = MWF (Model, Form)
-- Create arbitrary instance for that
myR' :: UnRelation
myR' = [(1,["a","b"]), (2,["a"]), (3,["b"]), (4,[])]
myModel' :: Model
myModel' = Mo
    -- Universe
    [1, 2,
    3, 4]
    -- Domain
    ["a", "b"]
    -- Unary relations
   [myR']
      BiRelation
    []
    -- TertRelation
instance Arbitrary Form where
  arbitrary = sized randomForm where
   randomForm :: Int -> Gen Form
    randomForm 0 = UnR <$> elements (unRel myModel')
                      <*> elements (map Var (dom myModel'))
    randomForm n = oneof
     [ UnR <$> elements (unRel myModel')
              <*> elements (map Var (dom myModel',))
      , BinR <$> elements (biRel myModel')
             <*> elements (map Var (dom myModel'))
             <*> elements (map Var (dom myModel'))
      , TertR <$> elements (tertRel myModel')
             <*> elements (map Var (dom myModel'))
              <*> elements (map Var (dom myModel'))
```

3.3 Semantics

In this subsection we discuss the implementation of the semantics in Haskell.

```
module InqBSemantics where
import Data.List
import InqBModels
import InqBSyntax
import HelperFunctions
absPseudComp :: Model -> Prop -> Prop
absPseudComp m p = powerset $ universe m \\ (nub . concat) p
relPseudComp :: Model -> Prop -> Prop -> Prop
relPseudComp m p q = filter (all (\t -> t 'notElem' p || t 'elem' q) .
    powerset )
                                   $ powerset $ universe m
substitute :: Individual -> Var -> Form -> Form
substitute d x (UnR r i)
                      | Var x == i = UnR r (Indv d)
| otherwise = UnR r i
r i1 i2) = BinR r (head terms) (terms !! 1)
substitute d x (BinR r i1 i2)
                      where terms = map (\in -> if Var x == i then Indv d else
                          i) [i1, i2]
substitute d x (TertR r i1 i2 i3) = TertR r (head terms) (terms !! 1) (terms
                       where terms = map (\in -> if \in x == i then \in x == i
                         i) [i1, i2, i3]
substitute d x (Neg f)
                                     = Neg $ substitute d x f
substitute d x (Con f1 f2)
                                     = Con (substitute d x f1) (substitute d x
   f2)
substitute d x (Dis f1 f2)
                                     = Dis (substitute d x f1) (substitute d x
substitute d x (Impl f1 f2)
                                     = Impl (substitute d x f1) (substitute d x
    f2)
substitute d x (Forall y f)
                    | x == y
                                     = Forall y f
                    | otherwise
                                     = Forall y $ substitute d x f
substitute d x (Exists y f)
                                     = Exists y f
                    | x == y
                                    = Exists y $ substitute d x f
                     | otherwise
toProp :: Model -> Form -> Prop
toProp _ (UnR r i )
                      = closeDownward [[x |(x, y) <- r, getString i '</pre>
elem' y]]
toProp _ (BinR r i1 i2) = closeDownward [[x |(x, y) <- r, (getString i1,
   getString i2) 'elem' y]]
```

```
toProp _ (TertR r i1 i2 i3) = closeDownward [[x |(x, y) <- r, (getString i1,
   getString i2, getString i3) 'elem' y]]
                             = absPseudComp m (toProp m f)
= toProp m f1 'intersect' toProp m f2
toProp m (Neg f)
toProp m (Con f1 f2)
toProp m (Impl f1 f2) = relPseudComp m (toProp m f1) (toProp m f2)
toProp m (Forall x f) = fold11 intersect [ n | 3 / 7 ]
                               = toProp m f1 'union' toProp m f2
    toProp m $ substitute d x f ]
                               = (nub . concat) [ p | d <- dom m, let p = toProp</pre>
toProp m (Exists x f)
    m $ substitute d x f ]
alt :: Model -> Form -> [InfState]
alt m f = sort [x \mid x \leftarrow p, not (any (strictSubset x) p)]
      where p = toProp m f
info :: Model -> Form -> InfState
info m f = sort . nub . concat $ toProp m f
```

3.4 Helper functions

In this subsection we discuss some helper functions that we implemented

3.5 Model Checker

In this subsection we discuss the implementation of the syntax of model checker in Haskell.

```
module ModelChecker where

import InqBModels
import InqBSyntax
import InqBSemantics
import Examples

testExample :: Bool
```

```
testExample = supportsForm myModel [1,2] (UnR myR (Indv "a"))
-- Model checker
supportsProp :: InfState -> Prop -> Bool
supportsProp s p = s 'elem' p

supportsForm :: Model -> InfState -> Form -> Bool
supportsForm m s f = supportsProp s $ toProp m f

makesTrue :: Model -> World -> Form -> Bool
makesTrue m w f = [w] 'elem' toProp m f
```

4 Example models

In this section we create example models

```
module Examples where
import InqBModels
import InqBSyntax
myR :: UnRelation
myR = [(1,["a","b"]), (2,["a"]), (3,["b"]), (4,[])]
myVars :: Vars
myVars = ["x", "y", "z"]
myModel :: Model
myModel = Mo
    -- Universe
    [1, 2,
    3, 4]
    -- Domain
    ["a", "b"]
    -- Unary relations
    [myR]
    -- BiRelation
    []
    -- TertRelation
    []
myR2 :: UnRelation
myR2 = [(1,["a","b"]), (2,["a,b"]), (3,[]), (4,[])]
myBiR :: BiRelation
myTertR :: TertRelation
myTertR = [(1,[("a","a","b"),("b","b","c")]),
        (2,[("a","a","d"),("b","b","c")]),
(3,[("c","a","c"),("d","b","b")]),
(4,[("b","a","a"),("a","d","d")])]
-- myVars2 :: Vars
-- myVars2 = ["x", "y", "z"]
myModel2 :: Model
myModel2 = Mo
    -- Universe
    [1, 2,
```

```
3, 4]
    -- Domain
    ["a", "b"]
    -- Unary relations
   [myR, myR2]
    -- BiRelation
   [myBiR]
    -- TertRelation
    [myTertR]
form1 :: Form
form1 = UnR myR (Indv "a")
form2 :: Form
form2 = UnR myR (Indv "b")
form3 :: Form
form3 = Dis (UnR myR (Indv "a")) (UnR myR (Indv "b"))
form4 :: Form
form4 = Neg (UnR myR (Indv "a"))
form5 :: Form
form5 = Neg (Dis (UnR myR (Indv "a")) (UnR myR (Indv "b")))
form6 = nonInq (Dis (UnR myR (Indv "a")) (UnR myR (Indv "b")))
form7 :: Form
form7 = nonInf (UnR myR (Indv "a"))
form8 :: Form
form8 = nonInf (UnR myR (Indv "b"))
form9 :: Form
form9 = nonInf (Dis (UnR myR (Indv "a")) (UnR myR (Indv "b")))
form10 :: Form
form10 = nonInf (nonInq (Dis (UnR myR (Indv "a")) (UnR myR (Indv "b"))))
form11 :: Form
form11 = Con (UnR myR (Indv "a")) (UnR myR (Indv "b"))
form12 :: Form
form12 = Con (nonInf (UnR myR (Indv "a"))) (nonInf (UnR myR (Indv "b")))
form13 :: Form
form13 = Impl (UnR myR (Indv "a")) (UnR myR (Indv "b"))
form14 :: Form
form14 = Impl (UnR myR (Indv "a")) (nonInf (UnR myR (Indv "b")))
form15 :: Form
form15 = Forall "x" (nonInf (UnR myR (Var "x")))
form16 :: Form
form16 = Exists "x" (nonInf (UnR myR (Var "x")))
```

5 Simple Tests

In this section we use QuickCheck to test some theorems from los bookos.

```
module Main where
import InqBModels
import InqBSyntax
import InqBSemantics
import HelperFunctions
import Data.List
-- import Test.QuickCheck
-- import Examples
main :: IO()
main = do putStrLn "Hello"
isInquisitive :: Model -> Form -> Bool
isInquisitive m f = sort (toProp m f) /= (sort . powerset) (info m f)
isInformative :: Model -> Form -> Bool
isInformative m f = (sort . universe) m /= sort (info m f)
isTautology :: Model -> Form -> Bool
is Tautology m f = (sort. powerset . universe) m == sort (to Prop m f)
entails :: Model -> Form -> Form -> Bool
entails m f1 f2 = all ('elem' p2) p1 where
             p1 = toProp m f1
             p2 = toProp m f2
isEquivalent :: Model -> Form -> Form -> Bool
isEquivalent m f g = sort (toProp m f) == sort (toProp m g)
trivialTest :: Form -> Bool
trivialTest _ = True
trivialModelTest :: Model -> Bool
trivialModelTest _ = True
```

6 Conclusion

[Knu11]

References

[Knu11] Donald E. Knuth. The Art of Computer Programming. Combinatorial Algorithms, Part 1, volume 4A. Addison-Wesley Professional, 2011.