23W-EC ENGR-10-LEC-1 HW4

SANJIT SARDA

TOTAL POINTS

93 / 95

QUESTION 1

20 pts

1.1 a 2 / 2

✓ - 0 pts Correct

1.2 **b** 12 / 12

✓ - 0 pts Correct

- 5 pts wrong expression

- 2 pts k1 = 2

- 2 pts k2 = -4

- 2 pts k3 = 0

1.3 **C 6 / 6**

√ - 0 pts Correct

- 3 pts wrong expression

- 2 pts k1 = 1

- 2 pts k2 = 2

- 2 pts k3 = 1

QUESTION 2

20 pts

2.1 **a 2 / 2**

✓ - 0 pts Correct

2.2 **b** 12 / 12

√ - 0 pts Correct

- 5 pts wrong expression

- 2 pts k1 = 0

- 2 pts k2 = \$\$-2* 10^{-3}\$\$

- 2 pts k3 = 0

- 12 pts no answer

2.3 **C 6 / 6**

✓ - 0 pts Correct

- 3 pts wrong expression

- 6 pts no answer

QUESTION 3

15 pts

3.1 **a 3 / 3**

✓ - 0 pts Correct

- 3 pts missing/wrong

3.2 **b 2 / 2**

✓ - 0 pts Correct

- 0.5 pts answer should be 1/8 or 0.125

- 2 pts did not answer

3.3 **C 7 / 7**

✓ - 0 pts Correct

- **1.5** pts A = 1

- 1.5 pts B = -0.378

- 7 pts wrong or missing

- **1.5 pts** C = 0

3.4 d 3 / 3

- √ 0 pts Correct
 - 3 pts wrong or missing

QUESTION 4

15 pts

- 4.1 a 3 / 3
 - √ 0 pts Correct
 - 3 pts wrong or missing

4.2 **b** 4 / 4

- ✓ 0 pts Correct
 - 2 pts wrong
 - 4 pts missing

4.3 C 3 / 3

- ✓ 0 pts Correct
 - 3 pts wrong or missing

4.4 d 5 / 5

- √ 0 pts Correct
 - 3 pts wrong expression
 - 1 pts A = 2
 - 1 pts B =1
 - 1 pts k =0
 - 5 pts missing

QUESTION 5

5 **8/10**

- 0 pts Correct
- $\sqrt{-2}$ pts B = 0.4322
 - 2 pts \$\$\phi = -tan^{-1}(46/5) or =-1.463\$\$
 - 5 pts wrong
 - 10 pts missing

QUESTION 6

15 pts

6.1 3/3

- ✓ 0 pts Correct
 - 3 pts missing or incorrect

6.2 3/3

- √ 0 pts Correct
 - 3 pts missing or incorrect

6.3 3/3

- √ 0 pts Correct
 - 3 pts wrong or missing

6.4 3/3

- ✓ 0 pts Correct
 - 3 pts missing or incorrect

6.5 3/3

- √ 0 pts Correct
 - 3 pts missing or incorrect

ECE 10 HWY

$$0 = \frac{1}{L} + \frac{R}{L} + \frac{R}{L} + \frac{R}{L} + \frac{R}{L} = \frac{1}{L} + \frac{1}{L} + \frac{1}{L} + \frac{1}{L} = \frac{1}{L} + \frac{1}{L} + \frac{1}{L} = \frac{1}{L} = \frac{1}{L} + \frac{1}{L} = \frac{1}{L} =$$

$$\frac{1}{2} \cdot \frac{V_1' + V_2'}{RC} + \frac{V_2}{LC} = 0$$

$$1.60^{2} = 1,28\omega_{0} = 2.1.3 = 1$$

$$0 \ V_c = (c_1 t + c_2) e^{-t} \ v_c(0) = 2v, \ v'_c(0) = -6v/s$$

$$\frac{1}{100} \cdot V_{c}(0) = C_{2} = 2$$

$$\frac{1}{100} \cdot V_{c}(0) = C_{1} - C_{2} = -6 \cdot 1. C_{1} = -4$$

$$', V_{c} = (2-4t)e^{-t}$$

1.1 a 2 / 2

√ - 0 pts Correct

ECE 10 HWY

$$0 = \frac{1}{L} + \frac{R}{L} + \frac{R}{L} + \frac{R}{L} + \frac{R}{L} = \frac{1}{L} + \frac{1}{L} + \frac{1}{L} + \frac{1}{L} = \frac{1}{L} + \frac{1}{L} + \frac{1}{L} = \frac{1}{L} = \frac{1}{L} + \frac{1}{L} = \frac{1}{L} =$$

$$\frac{1}{2} \cdot \frac{V_1' + V_2'}{RC} + \frac{V_2}{LC} = 0$$

$$1.60^{2} = 1,28\omega_{0} = 2.1.3 = 1$$

$$0 \ V_c = (c_1 t + c_2) e^{-t} \ v_c(0) = 2v, \ v'_c(0) = -6v/s$$

$$\frac{1}{100} \cdot V_{c}(0) = C_{2} = 2$$

$$\frac{1}{100} \cdot V_{c}(0) = C_{1} - C_{2} = -6 \cdot 1. C_{1} = -4$$

$$', V_{c} = (2-4t)e^{-t}$$

1.2 **b** 12 / 12

√ - 0 pts Correct

- **5 pts** wrong expression
- **2 pts** k1 = 2
- **2 pts** k2 = -4
- **2 pts** k3 = 0

ECE 10 HWY

$$0 = \frac{1}{L} + \frac{R}{L} + \frac{R}{L} + \frac{R}{L} + \frac{R}{L} = \frac{1}{L} + \frac{1}{L} + \frac{1}{L} + \frac{1}{L} = \frac{1}{L} + \frac{1}{L} + \frac{1}{L} = \frac{1}{L} = \frac{1}{L} + \frac{1}{L} = \frac{1}{L} =$$

$$\frac{1}{2} \cdot \frac{V_1' + V_2'}{RC} + \frac{V_2}{LC} = 0$$

$$1.60^{2} = 1,28\omega_{0} = 2.1.3 = 1$$

$$0 \ V_c = (c_1 t + c_2) e^{-t} \ v_c(0) = 2v, \ v'_c(0) = -6v/s$$

$$\frac{1}{100} \cdot V_{c}(0) = C_{2} = 2$$

$$\frac{1}{100} \cdot V_{c}(0) = C_{1} - C_{2} = -6 \cdot 1. C_{1} = -4$$

$$', V_{c} = (2-4t)e^{-t}$$

1.3 **C 6 / 6**

√ - 0 pts Correct

- 3 pts wrong expression
- **2 pts** k1 = 1
- **2 pts** k2 = 2
- **2 pts** k3 = 1

√ - 0 pts Correct

2.2 **b** 12 / 12

✓ - 0 pts Correct

- **5 pts** wrong expression
- **2 pts** k1 = 0
- **2 pts** k2 = \$\$-2* 10^{-3}\$\$
- **2 pts** k3 = 0
- 12 pts no answer

2.3 **C 6 / 6**

- **√ 0 pts** Correct
 - 3 pts wrong expression
 - 6 pts no answer

3.1 **a 3 / 3**

- **√ 0 pts** Correct
 - 3 pts missing/wrong

3.2 **b 2 / 2**

- √ 0 pts Correct
 - **0.5 pts** answer should be 1/8 or 0.125
 - 2 pts did not answer

3.3 **C 7 / 7**

- **√ 0 pts** Correct
 - **1.5 pts** A = 1
 - **1.5 pts** B = -0.378
 - 7 pts wrong or missing
 - **1.5 pts** C = 0

3.4 **d 3 / 3**

- **√ 0 pts** Correct
 - 3 pts wrong or missing

$$L_{1}' = V_{C}$$
 $\int_{1}^{1} = -CV_{C}$
 $\int_{1}^{1} = -CV_{C}$
 $\int_{1}^{1} + V_{1} = 0$

$$|_{L} = C_{1}\cos(2t) + C_{2}\sin(2t)$$

$$|_{L}(0) = C_{1} = 2$$

$$|_{L}(0) = 2C_{2} = 2 \cdot C_{2} = 1$$

$$|_{L}(1) = 2\cos 2t + \sin 2t$$

V=Li= 1=20052t-45112t

©
$$\frac{1}{2}(t) + 41_{L}(t) = 0$$

: $\frac{1}{2}(0t) = -41_{L}(0t) = -8 \text{ As}^{-2}$

4.1 a 3 / 3

- **√ 0 pts** Correct
 - 3 pts wrong or missing

$$L_{1}' = V_{C}$$
 $\int_{1}^{1} = -CV_{C}$
 $\int_{1}^{1} = -CV_{C}$
 $\int_{1}^{1} + V_{1} = 0$

$$|_{L} = C_{1}\cos(2t) + C_{2}\sin(2t)$$

$$|_{L}(0) = C_{1} = 2$$

$$|_{L}(0) = 2C_{2} = 2 \cdot C_{2} = 1$$

$$|_{L}(1) = 2\cos 2t + \sin 2t$$

V=Li= 1=20052t-45112t

©
$$\frac{1}{2}(t) + 41_{L}(t) = 0$$

: $\frac{1}{2}(0t) = -41_{L}(0t) = -8 \text{ As}^{-2}$

4.2 **b** 4 / 4

- **√ 0 pts** Correct
 - 2 pts wrong
 - 4 pts missing

$$L_{1}' = V_{C}$$
 $\int_{1}^{1} = -CV_{C}$
 $\int_{1}^{1} = -CV_{C}$
 $\int_{1}^{1} + V_{1} = 0$

$$|_{L} = C_{1}\cos(2t) + C_{2}\sin(2t)$$

$$|_{L}(0) = C_{1} = 2$$

$$|_{L}(0) = 2C_{2} = 2 \cdot C_{2} = 1$$

$$|_{L}(1) = 2\cos 2t + \sin 2t$$

V=Li= 1=20052t-45112t

©
$$\frac{1}{2}(t) + 41_{L}(t) = 0$$

: $\frac{1}{2}(0t) = -41_{L}(0t) = -8 \text{ As}^{-2}$

4.3 **C 3 / 3**

- **√ 0 pts** Correct
 - 3 pts wrong or missing

$$L_{1}' = V_{C}$$
 $\int_{1}^{1} = -CV_{C}$
 $\int_{1}^{1} = -CV_{C}$
 $\int_{1}^{1} + V_{1} = 0$

$$|_{L} = C_{1}\cos(2t) + C_{2}\sin(2t)$$

$$|_{L}(0) = C_{1} = 2$$

$$|_{L}(0) = 2C_{2} = 2 \cdot C_{2} = 1$$

$$|_{L}(1) = 2\cos 2t + \sin 2t$$

V=Li= 1=20052t-45112t

©
$$\frac{1}{2}(t) + 41_{L}(t) = 0$$

: $\frac{1}{2}(0t) = -41_{L}(0t) = -8 \text{ As}^{-2}$

4.4 d 5 / 5

√ - 0 pts Correct

- 3 pts wrong expression
- **1 pts** A = 2
- **1 pts** B **=**1
- **1 pts** k =0
- **5 pts** missing

$$Q \qquad V_1 = V_1 + V_2 \qquad V_2 = V_1 - V_2$$

$$\frac{1}{L}\int V_{L} = CV_{a}' + \frac{V_{a}}{R}$$

$$\frac{1}{L}\int V_{L} = CV_{a}' + \frac{V_{a}}{R}$$

$$\frac{1}{L}\int V_{L} = CV_{a}' + \frac{V_{a}}{R}$$

$$1.2V_1 = V_0'' + \frac{1}{2}V_0' + 2V_0$$

$$(5t+0) + 2B\sin(5t+0) + 2B\cos(5t+0) + 2B\sin(5t+0)$$

$$20\cos(5t) = -50\beta\sin(5t+0) + 5\beta\cos(5t+0) + 4\beta\sin(5t+0)$$

 $\omega=5$

$$5B\left(\cos(5t+\phi) - 5 + \frac{46}{25}\sin(5t+\phi)\right) = 20\cos(5t+\phi)$$

$$d = tan^{-1}(46) = 1.46$$
 $SB = \sqrt{1+46^2}$ $B = 1.91$

5 **8 / 10**

- 0 pts Correct
- $\sqrt{-2 \text{ pts } B} = 0.4322$
 - **2 pts** \$\$\phi = -tan^{-1}(46/5) or =-1.463\$\$
 - 5 pts wrong
 - 10 pts missing

$$(6)$$

$$i(t) = Ae^{-t/\tau} \sin(\omega t + \phi)$$

$$i(t) = Ae^{-t/\tau} \sin(\cot t + \phi)$$

$$W = \sqrt{1 - g^2} \omega_0 \quad T = 1$$

$$S = 2\pi$$

$$\omega$$

$$T = 9.472 - 3.157 = 6.315 = 2\pi : \omega \le 1$$
 $0.8626 = Ae^{-1.479/E} : A \times 1$
 $0.4587 = Ae^{-7.794/T} : E \times 10$

Solving
$$\omega_0 = \frac{1}{103}$$
 : $1 = \sqrt{1-5^2}$

$$\frac{1}{101} = 1$$

$$\frac{1}{101} = 1$$

$$\frac{1}{101} = 101$$

(a)
$$LC = \frac{1}{\omega_0^2}$$
 : $C = \frac{1}{\omega_0^2} - \frac{10^2}{101} - \frac{100}{101} + = C$

$$e^{S} = \sqrt{101} = \frac{1}{2} \frac{R}{\sqrt{101/00}}$$
 . $R = 2\sqrt{101/101/100}$

6.1 3/3

- **√ 0 pts** Correct
 - 3 pts missing or incorrect

$$(6)$$

$$i(t) = Ae^{-t/\tau} \sin(\omega t + \phi)$$

$$i(t) = Ae^{-t/\tau} \sin(\cot t + \phi)$$

$$W = \sqrt{1 - g^2} \omega_0 \quad T = 1$$

$$S = 2\pi$$

$$\omega$$

$$T = 9.472 - 3.157 = 6.315 = 2\pi : \omega \le 1$$
 $0.8626 = Ae^{-1.479/E} : A \times 1$
 $0.4587 = Ae^{-7.794/T} : E \times 10$

Solving
$$\omega_0 = \frac{1}{103}$$
 : $1 = \sqrt{1-5^2}$

$$\frac{1}{101} = 1$$

$$\frac{1}{101} = 1$$

$$\frac{1}{101} = 101$$

(a)
$$LC = \frac{1}{\omega_0^2}$$
 : $C = \frac{1}{\omega_0^2} - \frac{10^2}{101} - \frac{100}{101} + = C$

$$e^{S} = \sqrt{101} = \frac{1}{2} \frac{R}{\sqrt{101/00}}$$
 . $R = 2\sqrt{101/101/100}$

6.2 **3/3**

- **√ 0 pts** Correct
 - 3 pts missing or incorrect

$$(6)$$

$$i(t) = Ae^{-t/\tau} \sin(\omega t + \phi)$$

$$i(t) = Ae^{-t/\tau} \sin(\cot t + \phi)$$

$$W = \sqrt{1 - g^2} \omega_0 \quad T = 1$$

$$S = 2\pi$$

$$\omega$$

$$T = 9.472 - 3.157 = 6.315 = 2\pi : \omega \le 1$$
 $0.8626 = Ae^{-1.479/E} : A \times 1$
 $0.4587 = Ae^{-7.794/T} : E \times 10$

Solving
$$\omega_0 = \frac{1}{103}$$
 : $1 = \sqrt{1-5^2}$

$$\frac{1}{101} = 1$$

$$\frac{1}{101} = 1$$

$$\frac{1}{101} = 101$$

(a)
$$LC = \frac{1}{\omega_0^2}$$
 : $C = \frac{1}{\omega_0^2} - \frac{10^2}{101} - \frac{100}{101} + = C$

$$e^{S} = \sqrt{101} = \frac{1}{2} \frac{R}{\sqrt{101/00}}$$
 . $R = 2\sqrt{101/101/100}$

6.3 **3/3**

- **√ 0 pts** Correct
 - 3 pts wrong or missing

$$(6)$$

$$i(t) = Ae^{-t/\tau} \sin(\omega t + \phi)$$

$$i(t) = Ae^{-t/\tau} \sin(\cot t + \phi)$$

$$W = \sqrt{1 - g^2} \omega_0 \quad T = 1$$

$$S = 2\pi$$

$$\omega$$

$$T = 9.472 - 3.157 = 6.315 = 2\pi : \omega \le 1$$
 $0.8626 = Ae^{-1.479/E} : A \times 1$
 $0.4587 = Ae^{-7.794/T} : E \times 10$

Solving
$$\omega_0 = \frac{1}{103}$$
 : $1 = \sqrt{1-5^2}$

$$\frac{1}{101} = 1$$

$$\frac{1}{101} = 1$$

$$\frac{1}{101} = 101$$

(a)
$$LC = \frac{1}{\omega_0^2}$$
 $C = \frac{1}{\omega_0^2} - \frac{10^2}{101} - \frac{100}{101} + = C$

$$e^{S} = \sqrt{101} = \frac{1}{2} \frac{R}{\sqrt{101/00}}$$
 . $R = 2\sqrt{101/101/100}$

6.4 3/3

- **√ 0 pts** Correct
 - 3 pts missing or incorrect

$$(6)$$

$$i(t) = Ae^{-t/\tau} \sin(\omega t + \phi)$$

$$i(t) = Ae^{-t/\tau} \sin(\cot t + \phi)$$

$$W = \sqrt{1 - g^2} \omega_0 \quad T = 1$$

$$S = 2\pi$$

$$\omega$$

$$T = 9.472 - 3.157 = 6.315 = 2\pi : \omega \le 1$$
 $0.8626 = Ae^{-1.479/E} : A \times 1$
 $0.4587 = Ae^{-7.794/T} : E \times 10$

Solving
$$\omega_0 = \frac{1}{103}$$
 : $1 = \sqrt{1-5^2}$

$$\frac{1}{101} = 1$$

$$\frac{1}{101} = 1$$

$$\frac{1}{101} = 101$$

(a)
$$LC = \frac{1}{\omega_0^2}$$
 $C = \frac{1}{\omega_0^2} - \frac{10^2}{101} - \frac{100}{101} + = C$

$$e^{S} = \sqrt{101} = \frac{1}{2} \frac{R}{\sqrt{101/00}}$$
 . $R = 2\sqrt{101/101/100}$

6.5 **3/3**

- **√ 0 pts** Correct
 - 3 pts missing or incorrect