Sume kvadrata

Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja?

Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov $produkt \ m \cdot n \ tako \bar{d}er \ suma \ dva \ kvadrata.$

$$Dokaz$$
: Iz $m = a^2 + b^2$ i $n = x^2 + y^2$ slijedi

$$mn = (ax + by)^2 + (ay - bx)^2.$$

Propozicija 2. Prost broj p oblika 4k + 3 nije suma dva kvadrata. Štoviše, ako $p|x^2+y^2$, onda p|x i p|y.

Dokaz: Pretpostavimo da $p|x^2+y^2.$ Tada je $x^2\equiv -y^2\pmod p.$ Dignimo ovu kongruenciju na potenciju $\frac{p-1}{2},$ pa dobijemo $x^{p-1}\equiv (-1)^{(p-1)/2}y^{p-1}$ \pmod{p} . Sada iz Malog Fermatovog teorema slijedi da je $1 \equiv -1 \pmod{p}$. Kontradikcija. (Uočimo da x i y moraju biti relativno prosti sa p ako je $p = x^2 + y^2$.)

Propozicija 3. Ako prost broj p dijeli sumu dva kvadrata x^2+y^2 , (x,y)=1, onda je p i sam suma dva kvadrata.

Dokaz: Dokaz provodimo tzv. metodom spusta.

Pretpostavimo da je $p \cdot k$ najmanji višekratnik od p koji se može prikazati u obliku

$$pk = x^2 + y^2$$
, $(x, y) = 1$.

Neka je $x \equiv a \pmod p, \ y \equiv b \pmod p, \ |a|, |b| \le \frac p2.$ Tada je $a^2 + b^2 \equiv$

 $x^2 + y^2 \equiv 0 \pmod{p} \text{ i } a^2 + b^2 \leq \frac{p^2}{4} + \frac{p^2}{4} = p \cdot \frac{p}{2}. \text{ Zato je } 1 \leq k \leq \frac{p}{2}.$ Pretpostavimo da je k > 1. Neka je sada $x \equiv u \pmod{k}, y \equiv v \pmod{k},$ $|u|, |v| \leq \frac{k}{2}. \text{ Tada je } u^2 + v^2 \equiv x^2 + y^2 \equiv 0 \pmod{k}, \text{ recimo } u^2 + v^2 = kl.$ Vrijedi $u^2 + v^2 \leq \frac{k^2}{2}$, pa je $1 \leq l \leq \frac{k}{2} < k$. Promotrimo jednakost

$$pk^{2}l = (x^{2} + y^{2})(u^{2} + v^{2}) = (xu + yv)^{2} + (xv - yu)^{2}.$$

Imamo:

$$xu + yv \equiv x^2 + y^2 \equiv 0 \pmod{k}$$
, recimo $xu + yv = x_0k$;
 $xv - yu \equiv xy - xy \equiv 0 \pmod{k}$, recimo $xv - yu = y_0k$.

Odavde je $pl = x_0^2 + y_0^2$. Ako je $(x_0, y_0) = d$, recimo $x_0 = dx_1$, $y_0 = dy_1$, onda je $p \cdot \frac{l}{d^2} = x_1^2 + y_1^2$. No, $\frac{l}{d^2} \leq l < k$, pa smo dobili kontradikciju s minimalnošću od k. Stoga je k = 1 (ako je k = 1, onda je l = 0) i $p = x^2 + y^2$.

Propozicija 4. Neka je p prost broj oblika 4k + 1. Tada postoji prirodan broj x takav da $p|x^2 + 1$.

Dokaz: Koristimo Wilsonov teorem: Za prost broj p vrijedi $(p-1)! \equiv -1 \pmod{p}$. Ako je p = 4k + 1, onda je

$$(p-1)! = 1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \cdot \left(p - \frac{p-1}{2}\right) \cdots (p-3)(p-2)(p-1)$$
$$\equiv \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)^2 \pmod{p}.$$

Dakle, za x možemo uzeti $x = \left(\frac{p-1}{2}\right)!$.

Propozicija 5. Prost broj p je suma kvadrata ako i samo ako je p = 2 ili $p \equiv 1 \pmod{4}$.

Dokaz: Direktno iz Propozicija 2, 4 i 3. □

Propozicija 6. Prikaz prostog broja u obliku sume dva kvadrata je jedinstven (ako postoji).

Dokaz: Pretpostavimo da je $p = a^2 + b^2 = c^2 + d^2$. Možemo pretpostaviti da su a i c, te b i d, iste parnosti. Imamo:

$$\frac{a-c}{2} \cdot \frac{a+c}{2} = \frac{d-b}{2} \cdot \frac{d+b}{2}, \quad a \neq c, \ b \neq d.$$

Neka je $(\frac{a-c}{2}, \frac{d-b}{2}) = s$, te neka je $\frac{a-c}{2} = st$, $\frac{d-b}{2} = su$. Imamo: $t \cdot \frac{a+c}{2} = u \cdot \frac{d+b}{2}$. Kako su u i t relativno prosti, to je $\frac{a+c}{2} = uv$, $\frac{d+b}{2} = tv$. Odavde je a = st + uv, b = tv - su, pa je $p = a^2 + b^2 = (s^2 + v^2)(t^2 + u^2)$, kontradikcija.

Teorem 1. Prirodan broj n može se prikazati u obliku sume dva kvadrata ako i samo ako mu se u rastavu na proste faktore svi prosti brojevi oblika 4k + 3 pojavljuju s parnom potencijom.

Dokaz: Nužnost slijedi iz Propozicije 2. Naime, ako je p=4k+3 i $p|x^2+y^2$, onda p|x i p|y. Stoga $p^2|n$, pa isto razmatranje možemo primijeniti na $\frac{n}{p^2}$, te dobivamo da se u rastavu od n prost broj p javlja s parnom potencijom.

Dovoljnost slijedi iz Propozicija 5 i 1. Zaista, n se može zapisati u obliku $n = m^2 \cdot n'$, gdje je n' produkt prostih brojeva oblika 4k + 1 (i možda broja 2). Iz Propozicija 5 i 1, matematičkom indukcijom slijedi da je n' suma dva kvadrata, recimo $n' = x^2 + y^2$. No, tada je $n = (mx)^2 + (my)^2$.

Teorem 2. Prirodan broj n može se prikazati kao suma kvadrata tri cijela brojeva ako i samo ako n nije oblika $4^m(8k+7)$, $k, m \ge 0$.

Nužnost se lako pokazuje, dok je dovoljnost znatno teža - u dokazu se koriste rezultati iz teorije ternarnih kvadratnih formi, te Dirichletov teorem o prostim brojevima u aritmetičkom nizu.

Teorem 3. Svaki prirodan broj može se prikazati u obliku sume kvadrata četiri cijela broja.

Dokaz: (skica) Koristi se Eulerov identitet:

$$(x^{2} + y^{2} + z^{2} + w^{2})(a^{2} + b^{2} + c^{2} + d^{2})$$

$$= (ax + by + cz + du)^{2} + (ay - bx + dz - cw)^{2}$$

$$+ (az - cx + bw - dy)^{2} + (aw - dx + cy - bz)^{2},$$

te slijedeće činjenice:

- 1) Ako p dijeli sumu 4 kvadrata, onda je on i sam suma 4 kvadrata.
- 2) Za svaki prosti broj p postoje cijeli brojevi x, y takvi da $p|x^2+y^2+1$. \square

Primjer 1. Označimo s $r_2(n)$ broj prikaza broja n u obliku sume kvadrata dva cijela broja. Dokazati da je $r_2(2n) = r_2(n)$ za svaki $n \in \mathbb{N}$.

Rješenje: Ako je $x^2+y^2=n$, onda je $(x+y)^2+(x-y)^2=2n$. Obratno, ako je $s^2+t^2=2n$, onda su s i t iste parnosti, pa je $\left(\frac{s+t}{2}\right)^2+\left(\frac{s-t}{2}\right)^2=n$. Prema tome, pridruživanje $(x,y)\mapsto (x+y,x-y)$ je bijekcija među prikazima od n i 2n.

Primjer 2. Odrediti sve cijele brojeve koji se mogu prikazati kao razlika kvadrata dva cijela broja.

 $Rje\check{s}enje$: To su svi oni cijeli brojevi koji nisu oblika 4k+2.

Zaista, ako je $n \equiv 2 \pmod{4}$ i $n = x^2 - y^2 = (x - y)(x + y)$, onda je jedan od faktora x - y, x + y paran. No, onda je i drugi paran, pa 4|n.

Obrnuto, ako $n \not\equiv 2 \pmod{4}$, onda je ili n = 2k + 1 ili n = 4k:

$$2k + 1 = (k+1)^2 - k^2,$$

$$4k = (k+1)^2 - (k-1)^2.$$

Primjer 3. Odrediti sve prirodne brojeve koji se mogu prikazati kao zbroj kvadrata dva prirodna broja.

 $Rje\check{s}enje$: To su oni prirodni brojevi kod kojih u rastavu na proste faktore prosti brojevi oblika 4k+3 imaju parne eksponente, te prost broj 2 ima neparan eksponent ili imaju barem jedan prosti faktor oblika 4k+1.

Nužnost: Pretpostavimo da je $n=2^{2\alpha}m^2=a^2+b^2$, gdje su svi faktori od m oblika 4k+3, te neka je n najmanji prirodan broj s tim svojstvom. Ako je $\alpha>0$, onda su a i b parni, pa bi i $2^{2(\alpha-1)}m^2< n$ imao isto svojstvo. Dakle, $\alpha=0$ i $m^2=a^2+b^2$. No, m ima prosti faktor p oblika 4k+3, pa po Propoziciji 2, p|a i p|b, te je $\left(\frac{m}{p}\right)^2=\left(\frac{a}{p}\right)^2+\left(\frac{b}{p}\right)^2$, što je opet u suprotnosti s minimalnošću od n.

Dovoljnost: Imamo da je $n=2m^2$ ili $n=2^\alpha m^2 l$, gdje je $\alpha\in\{0,1\}$, a l je produkt prostih faktora oblika 4k+1. Ako je $n=2m^2$, onda je $n=m^2+m^2$. Broj l je suma kvadrata dva prirodna broja. Zaista, svi njegovi prosti faktori su takvi, a produkt dva neparna broja koji su sume kvadrata dva prirodna broja je i sam takav. Naime, ako je $p_1=a^2+b^2$, $p_2=c^2+d^2$, te a i c, odnosno b i d, iste parnosti, onda je $p_1p_2=(ad+bc)^2+(ac-bd)^2$ i oba izraza u zagradama su različita od 0. Sada tvrdnja slijedi indukcijom po broju prostih faktora.

Dakle, $l=s^2+t^2$, $s,t\in\mathbb{N}$, pa je $m^2l=(ms)^2+(mt)^2$, dok je $2m^2l=(ms+mt)^2+(ms-mt)^2$. Budući da je l neparan, imamo da je $s\neq t$. \diamondsuit

Primjer 4. Neka je $n=4^m(8k+7)$, $km\geq 0$. Dokazati da se n ne može prikazati u obliku $x^2+y^2+z^2$, $x,y,z\in \mathbb{Z}$.

 $Rje\check{s}enje$: Pretpostavimo da tvrdnja nije točna, te da je n najmanji prirodan broj za kojeg tvrdnja ne vrijedi. Tada je

$$n = 4^{m}(8k + 7) = x^{2} + y^{2} + z^{2}.$$

Kvadrat neparnog broja $(2a+1)^2=8\cdot\frac{a(a+1)}{2}+1$ daje ostatak 1 pri dijeljenju s 8. Ako među brojevima x,y,z ima 1, 2 ili 3 neparna broja, onda je $x^2+y^2+z^2$ oblika $4l+1,\ 4l+2$ ili 8l+3. No, n nema niti jedan od ovih oblika. Stogu su x,y,z svi parni: $x=2x_1,\ y=2y_1,\ z=2z_1$. Sada je

$$\frac{n}{4} = x_1^2 + y_1^2 + z_1^2 = 4^{m-1}(8k+7),$$

što je u suprotnosti s minimalnošću od n.

Primjer 5. Neka je p neparan prost broj. Dokažati da postoje cijeli brojevi x, y takvi da $p|x^2 + y^2 + 1$.

Rješenje: Promotrimo brojeve

$$0^2, 1^2, 2^2, \dots, (\frac{p-1}{2})^2.$$

Nikoja dva među njima nisu kongruentna modulo p. Isto vrijedi za brojeve

$$-1-0^2$$
, $-1-1^2$, $-1-2^2$, ..., $-1-(\frac{p-1}{2})^2$.

Sve skupa imamo $\frac{p+1}{2}+\frac{p+1}{2}=p+1$ brojeva, pa po Dirichletovom principu dva među njima daju isti ostatakk pri dijeljenju sp. To znači da postoje $x,y\in\{0,1,\ldots,\frac{p-1}{2}\}$ takvi da je $x^2\equiv -1-y^2\pmod p$, tj. $p|x^2+y^2+1.$ \diamondsuit

Primjer 6. Označimo s $r_4(n)$ broj prikaza broja n u obliku sume kvadrata četiri cijela broja. Dokažati da je $r_4(8n) = r_4(2n)$ za svali $n \in \mathbb{N}$.

Rješenje: Ako je $8n=x_1^2+x_2^2+x_3^2+x_4^2$, onda su svi x_i parni. Zaista, ako su svi neparni, onda je $x_1^2+x_2^2+x_3^2+x_4^2\equiv 4\pmod 8$, a ako su dva parna i dva neparna, onda je $x_1^2+x_2^2+x_3^2+x_4^2\equiv 2\pmod 4$. Stoga je $2n=(\frac{x_1}{2})^2+(\frac{x_2}{2})^2+(\frac{x_3}{2})^2+(\frac{x_4}{2})^2$. Obratno, ako je $2n=y_1^2+y_2^2+y_3^2+y_4^2$, onda je $8n=(2y_1)^2+(2y_2)^2+(2y_3)^2+(2y_4)^2$. \diamondsuit

Primjer 7. Dokazati da se broj 2^{2k+1} , $k \in \mathbb{N}$, ne može prikazati kao suma kvadrata četiri prirodna broja.

Rješenje: Jedini prikaz broja 2 kao sume četiri kvadrata je $2=1^2+1^2+0^2+0^2$. Kao je $r_4(2^{2k+1})=r_4(2^{2k-1})=\cdots r_4(2^1)$, to je jedini prikaz broja 2^{2k+1} kao sume četiri kvadrata

$$2^{2k+1} = (2^k)^2 + (2^k)^2 + 0^2 + 0^2.$$

 \Diamond

Primjer 8. Dokazati da se svaki prirodan broj n > 169 može prikazati kao suma kvadrata pet prirodnih brojeva.

 $Rje\check{s}enje$: Zapišimo prirodan broj n-169 kao sumu kvadrata četiri cijela broja:

$$n - 169 = x_1^2 + x_2^2 + x_3^2 + x_4^2, \quad x_1 \ge x_2 \ge x_3 \ge x_4 \ge 0.$$

Ako su svi $x_i > 0$, onda zapišimo 169 = 13^2 . Ako je $x_4 = 0$ i $x_3 > 0$, onda zapišimo 169 = $12^2 + 5^2$, pa je $n = x_1^2 + x_2^2 + x_3^2 + 12^2 + 5^2$. Ako je $x_3 = x_4 = 0$ i $x_2 > 0$, onda zapišimo 169 = $12^2 + 4^2 + 3^2$. Konačno, ako je $x_2 = x_3 = x_4 = 0$, onda zapišimo 169 = $10^2 + 8^2 + 2^2 + 1^2$. \diamondsuit

Primjer 9. Dokazati da se svaki cijeli broj n može na beskonačno mnogo načina prikazati u obliku $n = x^2 + y^2 - z^2$.

Rješenje:

$$(2k-1) = (2l^2 - k)^2 + (2l)^2 - (2l^2 - k + 1)^2,$$

$$2k = (2l^2 + 2l - k)^2 + (2l + 1)^2 - (2l^2 + 2l - k + 1)^2.$$

Primjer 10. Dokazati da se svaki prirodan broj n može prikazati u obliku $x^2 + 2y^2 + 3z^2 + 6t^2$, gdje su $x, y, z, t \in \mathbb{Z}$.

Rješenje: Znamo da se n može prikazati u obliku $n=a^2+b^2+c^2+d^2$. Možemo pretpostaviti da je pritom $a+b+c\equiv 3\pmod 3$ i $a\equiv b\pmod 2$. Stavimo: $a+b+c+=3z,\ a+b=2k,\ a-b=2y,\ pa$ imamo

$$3(a^2 + b^2 + c^2) = (a + b + c)^2 + 2(k - c)^2 + 6y^2.$$

Odavde slijedi da 3|k-c, tj. k-c=3t, pa dobivamo

$$a^2 + b^2 + c^2 = 3z^2 + 6t^2 + 2y^2$$
.

Primjer 11. Ako prirodan broj n nije suma kvadrata dva cijela broja, onda n nije niti suma kvadrata dva racionalna broja.

 \Diamond

 $Rje\check{s}enje$: Ako n nije suma dva kvadrata, onda n ima prosti faktor oblika 4k+3 koji ga dijeli s neparnom potencijom. Pretpostavimo da je $n=(\frac{a}{b})^2+(\frac{c}{d})^2$. Tada je $n(bd)^2=(ad)^2+(bc)^2$. No, p se pojavljuje s neparnom potencijom na lijevoj strani jednakosti, pa smo dobili kontradikciju. \diamondsuit