3

Homework #3

Завдання 1.

Побудуємо математичну модель. Нехай a — кількість сировини A, а b — кількість сировини B. В такому разі цільова функція:

$$\mathcal{C}(a,b) = 30a + 40b
ightarrow ext{max}$$

Тепер запишемо обмеження на кожен з видів сировини:

$$\mathcal{B}_1: 12a+4b \leq 300 o 3a+b \leq 75 \ \mathcal{B}_2: 4a+4b \leq 120 o a+b \leq 30 \ \mathcal{B}_3: 3a+12b \leq 252 o a+4b \leq 84$$

Побудуємо багатокутник $\{(a,b) \mid (a,b) \in igcap_{i=1}^3 \mathcal{B}_i\}$:

Три граничні умови, де за x взято a, а за y — b: синім показано B1, червоним B2, помаранчевим B3. Умова на натуральність a, b поки не вказана.

Тепер об'єднаємо це в один багатокутник, врахувавши умову $\mathcal{B}_4:a,b\in\mathbb{N}^+$:

Homework #3 1

Обмежувальний багатокутник В, що включає в себе об'єднання В1, В2, В3, В4.

Тепер на цьому багатокутнику потрібно знайти такі точки (a,b), що будуть максимізувати цільову функцію $\mathcal{C}(a,b)$. Для цього проведемо сімейство прямих.

$$3a+4b=\lambda, \lambda\in\mathbb{N}^+$$

Ремарка: ми беремо $\lambda\in\mathbb{N}^+$, оскільки при $a,b\in\mathbb{N}^+$ цільова функція $\mathcal{C}(a,b)\in\mathbb{N}^+$. Також замість 30a+40b ми взяли 3a+4b, оскільки якщо ми максимізуємо 3a+4b, то ми автоматично і максимізуємо 30a+40b, оскільки 30a+40b=10(3a+4b).

I будемо рухати λ вгору, допоки пряма не перестане перетинати ${\mathcal B}$. Отримаємо наступний результат:

Homework #3 2

Тобто ми отримали точку (12,18), що відповідає $\mathcal{C}(12,18)=1080.$

Завдання 2.

Побудуємо багатокутник можливих значень (x_1,x_2) , поклавши через абцису значення x_1 , а через ординату — x_2 . Тоді маємо:

Homework #3

Як можна побачити, багатокутник ніяк не обмежений "зверху", і тому рухаючі пряму вгору, можемо отримувати все більше і більше значення цільової функції $\mathcal{C}(x_1,x_2)$.

Окрім цього, не складно побачити, що умова $x_1 \leq 1 + x_2$ є зайвою, оскільки $1 + x_2 \leq 1 + 2x_2 \; \forall x_2 \geq 0.$

Завдання 3.

Робимо те саме:

Бачимо, що найбільше значення досягається при точці (0,1). Можемо перевірити це аналітично. Видно, що умова $x_1-x_2\leq 1$ є зайвою. Тому маємо:

$$egin{cases} \mathcal{C}(x_1,x_2) = x_1 + 2x_2
ightarrow \max \ x_1 + x_2 \leq 1 \ x_1,x_2 \geq 0 \end{cases}$$

3 другої умови маємо $x_1 \leq 1 - x_2$, тому

$$\mathcal{C}(x_1,x_2) \leq 1 - x_2 + 2x_2 = 1 + x_2$$

Тому потрібно взяти як можна більше x_2 , але так, щоб $x_1\geq 0$, тобто при умові $x_2\leq 1$. Отже, якщо візьмемо $x_2=1$, будемо мати максимальне значення цільової функції $\mathcal{C}(0,1)=2$ і іншу точку $x_1=0$.

Homework #3 5