Projeto - Fantasma

Consultores Responsáveis:

Bruno Boaventura Xavier

Requerente:

House of Excellence

Brasília, 4 de novembro de 2024.

Sumário

																							P	agi	na
1	Anális	ses																							3
	1.1	V	/ar	iaç	ão	Pe	esc	o p	oo	r A	۱t	ur	а												3

1 Análises

1.1 Variação Peso por Altura

O intuito neste momento é entender a relação entre o peso e altura dos medalhistas olímpicos e para isso a variável que armazena os pesos dos atletas em libras e a que representa as alturas em centímetros, ambas as variáveis são classificadas como quantitativas contínuas. Diante desses dados, visando atingir o interesse dessa análise, foram cotruídos o gráfico e aos quadros a seguir.

Figura 1: Gráfico de dispersão da altura pelo peso dos atletas

Tabela 1: Medidas resumo da Altura (m) e do Peso (kg) dos atletas

Estatística	Altura	Peso
Média	1,78	74,00
Desvio Padrão	0,12	16,26
Variância	0,01	264,26
Mínimo	1,37	28,00
1º Quartil	1,70	62,00
Mediana	1,78	72,00
3º Quartil	1,86	84,00
Máximo	2,19	175,00
Coeficiente de Variação	7%	22%

Figura 2: Boxplot da Altura dos atletas

Figura 3: Boxplot do Peso dos atletas

Ao observar a **Figura 1**, é perceptível que a maioria dos atletas, os quais são representados pelos pontos no gráfico estão agrupados abaixo das cem kilogramas, tal análise também pode ser feita percebendo que a maioria possui altura inferior aos a dois metros. Agora, analisando a dispersão dos pontos na imagem é fácil compreender que a maior concentração deles sugere que quanto maior a altura dos atletas

maior será seu peso, uma vez que o conjunto de pontos mais próximos uns dos outros supôem uma correlão positiva forte dos dados, isso acontece quando os pontos se assemelham a uma reta crescente. Ainda, nota-se que essa relação se torna mais forte a partir dos atletas com mais de um metro e cinquenta de altura.

Para mais, estudando a **Tabela 1** destaca-se que a média de altura dos atletas é de 1,78 metros, assim como sua mediana - termo esse que divide em 50% porcento todas as observações em ordem cresecente, logo conclui-se que para este caso a média não tem seus valores afetados por valores extremos -ainda, verificam-se valores de mínimo em 1,37 e máximo em 2,19. Contudo, mesmo com uma disparidade alta entre máximo e mínimo, nota-se que os dados estão bastante concentrados, o que pode ser percebido pelo desvio padrão de 0,12 metro. Além disso, ao analisar a medida do coeficiente de variação - índice que determina quando o desvio padrão representa em relação à média - observa-se apenas um valor de 7%, corroborando ao entendimento de uma alta homogeneidade dos dados e uma baixa dispersão da altura.

Outrossim, por meio da **Tabela 1** analisa-se um valor médio de 74 kilogramas e com sua mediana em 72 kg, evidenciando que a média é influencidada por valores extremos. Ainda, destacam-se a mínima ser de 28 kg e a máxima de 175 kg. Diferentemente da altura, aqui percebe-se haver uma maior dispersão dos valores de peso, isso porquê o desvio padrão aqui passa a ser de 16,26 kg e analisando seu coeficiente de variação em 22%, pela teoria, valores menores que 25% são considerados homogêneos, dessa forma, a dispersão neste caso está relativamente próxima do limite para ser homogênea.

Através da **Figura 2** pode-se perceber que pelo valor de mediana e de média estarem bastante próximos uns dos outros - como foi observado na **Tabela 1** e visualizado agora por meio da **Figura 2** - concluisse que existe simetria dos valores, que significa dizer que entre o primeiro e o terceiro quartil os valores estão distribuídos relativamente de forma simétrica em torno da média e da mediana. Ainda, nota-se que os valores de máximo e mínimo apresentam distancia semelhante em relação à caixa, além de possui valores extremos que também se distribuem de maneira semelhante tanto para cima, quanto para baixo.

Diante da **Figura 3** nota-se, diferentemente da altura, haver maior assimetria dos dados. Em primeira análise, destaca-se do gráfico que sua mediana está distante da sua média, o que representa, neste caso, que há assimetria positiva, isso ocorre quando existe maior ocorrência de valores que númericamente são próximas no intervalo entre o primeiro quartil e a mediana. Para mais, observando os valores extremos, percebese que existe maior quantidade deles a acima do máximo estipulado na contrução do gráfico, tal fato corrobora à análise da **Tabela 1** sobre a média ser influenciada por esses valores extremos e se distanciar da mediana.