

Bitcoin, Blockchain and CryptoassetsBitcoin Pricing Models

Prof. Dr. Fabian Schär University of Basel

Release Ver.: (Local Release)

Version Hash: (None) Version Date: (None)

License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Recap: Monetary Value

Intrinsic value

+ Promise of payment

+ Liquidity premium

= Market value of monetary unit

ightarrow Bitcoin's value is solely determined by its liquidity premium.

Discounted Cash Flow (DCF)

$$DCF = \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \dots + \frac{CF_n}{(1+r)^n}$$
 (1)

Cash flows?

Stock-to-Flow

$$SF_{t+1} = \frac{M_t}{M_{t+1} - M_t}$$
 (2) $g_{t+1} = \frac{M_{t+1} - M_t}{M_t}$ (3)

Bitcoin Supply

Data source: blockchain.info

Growth Rate of the Monetary Supply

Data sources: blockchain.info and FRED

Growth Rate of the Monetary Supply

Price data sources: blockchain.info and coinmarketcap.com

Price Expectations

Is Bitcoin deflationary?

- Ever-increasing demand?
- Limited (even decreasing?) total supply

Will the value increase forever?

Sell for $E[p_{t+1}]$ at time t+1:

Two equilibria:

- p = 0
- p > 0

Bitcoin as a Store of Value

"As a thought experiment, imagine there was a base metal as scarce as gold but with the following properties:

- boring grey in colour
- not a good conductor of electricity
- not particularly strong, but not ductile or easily malleable either
- not useful for any practical or ornamental purpose

and one special, magical property:

- can be transported over a communications channel"

Source: ☐ satoshi on bitcointalk.org