ARITHMETIC

ASESORÍA-TOMO6

1. Si: 885m47n es divisible por 72, Calcule: m.n.

$$\frac{885\text{m}47\text{n}}{885\text{m}47\text{n}} = \frac{9}{72}$$

Criterio por 8

$$\frac{x^4 \times 2 \times 1}{47n} = 8$$
 $16 + 14 + n = 8$ $14 + n = 8$ $16 + 14 + n = 14$

Criterio por 9

$$8+8+5+m+4+7+2=9$$
 $m+7=9$
 $m=2$
 $m \cdot m \cdot n=4$

2. Sabiendo que:

Halle el valor de:

$$E = a^3 + b^3 + c^3$$

$$\frac{1}{5abb58c} = \frac{0}{792}$$

$$\frac{x^4 \times 2 \times 1}{58c} = 8 \quad 20 + 16 + c = 8$$

$$c = 4$$
Criterio por 99
$$\frac{5abb58c - 99}{5abb58c - 99}$$

$$\frac{15}{ab} + \frac{5}{84}$$

$$\frac{15}{84}$$

$$198$$

01

3. Determine la cantidad de divisores de N=441³×112⁴.

recordar

$$C.D_{totales} = (\alpha + 1)(\beta + 1)(\theta + 1)...$$

RESOLUCIÓN

Descomponiendo en forma canónica $N = 441^3 \cdot 112^4$

$$N = 441^{3} \cdot 112^{4}$$

$$N = (3^{2} \cdot 7^{2})^{3} (2^{4} \cdot 7^{1})^{4}$$

$$N = 3^{6} x 7^{6} x 2^{16} x 7^{4}$$

$$N = 2^{16} x 3^{6} x 7^{10}$$

Reemplazamos

$$C.D_N = (16+1) (6+1) (10+1)$$
 $C.D_N = 17 \times 7 \times 11$

$$\therefore C.D_N = 1309$$

1309

4 Si: 189^a tiene 133 divisores. ¿Cuántos divisores tiene el número aa?

RESOLUCIÓN

Descomponiendo en forma canónica

$$189^{a} = (3^{3}.7)^{a} = 3^{3a} \times 7^{a}$$

$$C.D_{(N)} = (3a+1) (a+1)$$

$$133 = (3a+1) (a+1) = 19.7$$

$$a = 6$$

$$C.D_{(\overline{\alpha}\overline{\alpha})} = C.D_{(66)}$$

$$66 = 2^{1} \times 3^{1} \times 11^{1}$$

$$C.D_{(66)} = (1+1) (1+1) (1+1)$$

$$\therefore C.D_{(66)} = 8$$

5. Si: N = 14^a × 21^{a + 1} tiene 156 divisores compuestos. Halle el valor de a.

Recordemos

$$C.D_{totales} = C.D_{simples} + C.D_{compuestos}$$

RESOLUCIÓN

Descomponiendo en forma canónica

$$N = 14^{a} \cdot 21^{a+1}$$

$$N = (2^{1} \cdot 7^{1})^{a} \quad (3^{1} \cdot 7^{1})^{a+1}$$

$$N = 2^{a} \quad x^{7^{a}} \quad x^{3^{a+1}} \quad x^{7^{a+1}}$$

$$N = 2^{a} \quad x^{3^{a+1}} \quad x^{7^{2a+1}}$$

$$C \cdot D_{simples} = 3 \text{ primos} + 1 = 4$$

$$C \cdot D_{totales} \quad (a+1)(a+2)(2a+2)$$

$$C \cdot D_{totales} = (a+1)(a+2)2 \cdot (a+1)$$

$$2 \cdot (a+1)^{2}(a+2) = 4 + 156 = 160$$

$$(a+1)^{2}(a+2) = 80 = 4^{2} \cdot 5$$

$$\therefore a = 3$$

Del número 36000, halle:
 A: cantidad de divisores
 múltiplos de 50
 B: cantidad de divisores
 múltiplos de 30
 Dé como respuesta el
 valor de A + B.

RESOLUCIÓN

Se realiza la descomposición canónica

$$36000 = 2^5 x 3^2 x 5^3$$

Para A

$$2^{1} x 5^{2} x (2^{4} . 3^{2} . 5^{1})$$

$$A = C.D_{36000_{50}^{\circ}} = (4 + 1)(2 + 1) (1 + 1)$$

$$A = 30$$

Para B

$$2^{1} \times 3^{1} \times 5^{1} \quad (2^{4}. \ 3^{1}. \ 5^{2})$$

$$B = C.D_{36000_{30}^{\circ}} = (4+1)(1+1)(2+1)$$

$$B = 30$$

$$A + B = 60$$

Procession de la suma de dichos números.

El MCD de dos números es 39 y su producto es 95823. Si los números son menores que 400. Calcule la suma de dichos números.

RESOLUCIÓN

Del dato: MC

$$MCD(A; B) = 39$$

$$A \cdot B = 95823$$

$$A = 39.α$$

 $B = 39.β$ α; β son PESI

reemplazamos

A.B =
$$39.\alpha \times 39.\beta = 95823$$
dato
AyB < 400
$$(\alpha . \beta) = 63$$

suma de números

$$A = 39.\alpha = 39.(9)$$

$$B = 39.\beta = 39.(7)$$

$$A + B = 39(16)$$

$$A + B = 624$$

624

8. Halle dos números sabiendo que su MCD es 36 y su MCM es 5184. Hallar la menor suma de dichos números

Del dato: MCD(A; B) = 36

$$A = 36.α$$

 $B = 36.β$ α; β son PESI

además

$$MCM(A; B) = d. p. q$$

Si:
$$p = 9$$
 $q = 16$

$$A = 36.p = 324$$

$$B = 36.q = 576$$

$$A + B = 900$$

menor suma

∴ 900

por

suma de

números es 5754. Si al

hallar el MCD de ellos

sucesivas se obtuvo

como cocientes a 2; 3;

1; 4 y 2, Determine el

número mayor.

dos

divisiones

RESOLUCIÓN

algoritmo de Euclides

cocientes sucesivos

95.d + 42.d = 5754

137.d = 5754 d = 42

número mayor

∴ 3990

10. Se dispone de ladrillos de dimensiones 15 cm; 20 cm y 16 cm. ¿Cuántos ladrillos necesitamos para formar el menor cubo compacto posible?

número de ladrillos

L = MCM (15cm;16cm;20cm)

L = 240 cm

número de ladrillos

$$\frac{240 \times 240 \times 240}{15 \times 16 \times 20} = 12 \times 240$$

$$\therefore 2880 \text{ ladrillos}$$