

Michal Bastl A2/713a

Obsah přednášky:

- Organizace předmětu
- EduKit
- Software
- číselné soustavy
- Datové typy
- ASCII
- Struktura C programu
- Příklad kódu

Přednáška: nepovinná, ale předchází cvičení (Pojmy vysvětlené na přednášce budeme

považovat za probrané)

Cvičení: 3-4 x základy jazyka C; 8 x MCU PIC18

Hodnocení předmětu 2019

•	3 domácí úlohy v průběhu semestru	15b
•	Závěrečný písemný test	50b
•	Semestrální projekt	35b

```
Blok 1 – první program, vstup/výstup na terminál, proměnné, řidicí struktury

Blok 2 – funkce

Blok 3 – ukazatele, pole, řetězce

Blok 4 – struktury

Blok 5 – PIC18, I/O

Blok 6 – PIC18, čítače, přerušení

Blok 7 – PIC18, UART + STDIO

Blok 8 – PIC18, ADC, DAC

Blok 9 – PIC18, PWM
```

Součásti EduKitu:

- Krabice
- Programátor PICKIT3
- 2x USB kabel
- Edukit

Ukázka potřebných nástrojů

Software:

- Microchip MPLAB
- Termit

vývojové prostředí sériový terminál

Hlavní rozdíly mezi MATLAB a C:

C

- Kompilovaný jazyk
- Datové typy musí určit uživatel
- Přímý přístup do paměti
- málo klíčových slov
- Poměrně blízko hardwaru
- Oproti ASM, nebo .HEX je vzniklý kód
 čitelný (pokud byl programátor slušný : -)
- Je možné natropit chyby, které kompilátor nemůže ověřit a špatně se potom hledají
- Indexuje od 0

MATLAB

- Interpretovaný jazyk
- Datové typy určí interpreter
- Uživatel nemá přímý přístup do paměti
- Mnoho funkcí a klíčových slov
- Propast mezi hardwarem a programátorem je větší
- Je dobře čitelný, vývoj je rychlejší
- Interpreter pracuje s pamětí sám.
 Nelze udělat zásadní chyby a jejich hledání je jednoduché
- Indexuje od 1

Číselné soustavy

Dekadická: 1052 $10^3 10^2 10^1 10^0$

Binární: 1010 zápis v C 0b1010 $2^3 2^2 2^1 2^0$

Hexadecimální: A7 zápis v C 0xA7 16^116^0

Uvnitř MCU se používá pouze binární. Hexadecimální soustava se používá ke zkrácení zápisu. Jeden znak Hexadecimální soustavy odpovídá 4 bitům.

Překladači je samozřejmě jedno jaký zápis použijete, ale například nastavit 32 bitový registr binárním zápisem je poněkud nepřehledné.

Například hodnota 200 v DEC je v BIN 0b11001000 v HEX 0xC8

Datové typy v jazyce C

TABLE 5-1: INTEGER DATA TYPES

Туре	Size (bits)	Arithmetic Type
bit	1	Unsigned integer
signed char	8	Signed integer
unsigned char	8	Unsigned integer
signed short	16	Signed integer
unsigned short	16	Unsigned integer
signed int	16	Signed integer
unsigned int	16	Unsigned integer
signed short long	24	Signed integer
unsigned short long	24	Unsigned integer
signed long	32	Signed integer
unsigned long	32	Unsigned integer
signed long long	32	Signed integer
unsigned long long	32	Unsigned integer

TABLE 5-5: FLOATING-POINT DATA TYPES

Туре	Size (bits)	Arithmetic Type
float	24 or 32	Real
double	24 or 32	Real
long double	same as double	Real

Bitové operátory

Využití:

Rychlé násobení a dělení >> bitový posuv:

 $A \ll n \text{ (násobení } 2^n)$; $A \gg n \text{ (dělení } 2^n)$

Masky:

AND, OR a případně XOR

&		^
10011110	10011110	10011110
00001111	0000001	00001111
00001110	10011111	10010001

Symbol	Operator
&	bitwise AND
	bitwise inclusive OR
^	bitwise XOR (eXclusive OR)
<<	left shift
>>	right shift
~	bitwise NOT (one's complement) (unary)

ASCII tabulka

- Zápis v jazyce C pomocí jednoduchých uvozovek '0'
- Používáme datový typ char 0..255
- V původním rozsahu má 128 znaků (rozšířená pak 255)
- Pro více znaků se používá pole char[x]
- Pro uložení řetězce znaků "ahoj"
- char pozdrav[5] = "ahoj";
- char pozdrav[5] = {'a', 'h', 'o', 'j', '\0'}; v c je třeba o bit více pro znak \0 - null character

Příklad:

 Chci vypisovat číslice 0..9 char c = 2; printf("cislice je %c", c + '0');

```
Dec Hx Oct Html Chr Dec Hx Oct Html Chr
                                      Dec Hx Oct Html Chr
Dec Hx Oct Char
                                                            64 40 100 4#64; 0
                                      32 20 040   Space
                                                                                96 60 140 @#96;
   0 000 NUL (null)
                                                            65 41 101 a#65; A
                                      33 21 041 6#33; !
    1 001 SOH (start of heading)
                                                                                97 61 141 6#97; @
    2 002 STX (start of text)
                                       34 22 042 6#34; "
                                                             66 42 102 B B
                                                                               98 62 142 6#98;
                                      35 23 043 4#35; #
                                                             67 43 103 C C
                                                                               99 63 143 @#99; 0
    3 003 ETX (end of text)
                                                                              100 64 144 6#100: 0
                                      36 24 044 @#36; $
                                                             68 44 104 a#68; D
    4 004 EOT (end of transmission)
                                                                              101 65 145 6#101; 6
   5 005 ENQ (enquiry)
                                      37 25 045 @#37; %
                                                             69 45 105 a#69; E
                                                                              102 66 146 6#102; 1
    6 006 ACK (acknowledge)
                                      38 26 046 & &
                                       39 27 047 @#39; 1
                                                                              103 67 147 @#103; 9
              (bell)
              (backspace)
                                       40 28 050 4#40; (
                                                                              104 68 150 @#104; h
                                                                              105 69 151 @#105; i
              (horizontal tab)
                                       41 29 051 6#41; )
                                                             74 4A 112 6#74;
                                       42 2A 052 @#42; *
                                                                              106 6A 152 @#106; j
              (NL line feed, new line)
                                       43 2B 053 + +
                                                             75 4B 113 6#75; K
                                                                              107 6B 153 6#107; k
              (vertical tab)
                                      44 20 054 ,
                                                            76 4C 114 L L
                                                                              108 6C 154 6#108; 1
              (NP form feed, new page)
              (carriage return)
                                       45 2D 055 -
                                                            77 4D 115 6#77; M 109 6D 155 6#109; M
                                       46 2E 056 @#46;
                                                            78 4E 116 6#78; N 110 6E 156 6#110; n
14 E 016 SO
              (shift out)
15 F 017 SI
              (shift in)
                                       47 2F 057 / /
                                                                              111 6F 157 @#111; 0
                                       48 30 060 4#48; 0
                                                            80 50 120 6#80; P 112 70 160 6#112; P
16 10 020 DLE (data link escape)
                                      49 31 061 4#49; 1
                                                            81 51 121 6#81; Q 113 71 161 6#113; q
17 11 021 DC1 (device control 1)
18 12 022 DC2 (device control 2)
                                       50 32 062 4#50; 2
                                                            82 52 122 6#82; R
                                                                              114 72 162 @#114; r
                                       51 33 063 4#51; 3
                                                             83 53 123 6#83; S 115 73 163 6#115; S
19 13 023 DC3 (device control 3)
                                      52 34 064 4 4
                                                                              116 74 164 @#116; t
20 14 024 DC4 (device control 4)
                                                             84 54 124 6#84; T
                                                             85 55 125 @#85; U 117 75 165 @#117; u
21 15 025 NAK (negative acknowledge)
                                       53 35 065 4#53; 5
                                                                              118 76 166 @#118; V
              (synchronous idle)
                                       54 36 066 4#54; 6
23 17 027 ETB (end of trans. block)
                                       55 37 067 4#55; 7
                                                             87 57 127 6#87; ₩
                                                                              119 77 167 6#119; ₩
                                       56 38 070 4#56; 8
24 18 030 CAN (cancel)
                                                                              120 78 170 x X
                                       57 39 071 4#57; 9
                                                             89 59 131 6#89; Y
                                                                              121 79 171 6#121; Y
25 19 031 EM (end of medium)
                                                             90 5A 132 6#90; Z
                                                                              122 7A 172 @#122; 2
26 1A 032 SUB
              (substitute)
                                       58 3A 072 @#58; :
                                                             91 5B 133 @#91; [
27 1B 033 ESC
              (escape)
                                       59 3B 073 4#59; ;
                                                                              123 7B 173 {
              (file separator)
                                       60 3C 074 < <
                                                             92 5C 134 \
                                                                              124 7C 174 @#124;
28 1C 034 FS
                                                                              125 7D 175 } )
29 1D 035 GS
              (group separator)
                                      61 3D 075 = =
                                                            93 5D 135 6#93; 1
30 1E 036 RS
                                      62 3E 076 > >
                                                            94 5E 136 @#94;
                                                                              126 7E 176 ~
              (record separator)
                                                            95 5F 137 a#95; _ 127 7F 177 a#127; DEL
                                      63 3F 077 ? ?
31 1F 037 US
              (unit separator)
```

Příklady

```
Načtení standardních knihoven
```

Načtení knihovny překladače XC8 Načtení vlastních knihoven REV

Direktivy nastavující pojistky tzv. configuration bits

Funkce main, která má zásadní postavení. Může být jen jedna a program zde "začíná" Proměnné, které v programu použijeme

REV_init() inicializuje potřebná nastavení procesoru Nekonečný cyklus ekvivalent zápisu while(1) Inkrementování count = count +1 Funkce ovládající LED diody kitu

Odeslání zprávy na sériový port

Počkej 100ms

```
#include <stdio.h>
     #include <stdlib.h>
     #include <stdint.h>
     #include <xc.h>
     #include "rev-basic.h"
     #include "simdelay.h"
     #pragma config WDTEN = OFF
     #pragma config FOSC = INTIO7
10
11
     #pragma config MCLRE = EXTMCLR
     #pragma config FCMEN = ON
13
14
     void main(void) {
15
         char count = 0;
16
         int i;
17
         char a = 'x';
18
19
         REV init();
20
21
         for(;;) {
22
              count++;
23
24
              REV led(1, count & 1);
              REV led(2, count & 2);
26
              REV led(3, count & 4);
28
              printf("count: %d (0x%x) (%c)\n", count, count, a);
29
30
              DelayMs (100);
31
32
```