

Experiment Name / No.: Camlin Page No. Date 19 102 2021 Danping be assumed to be viscous? e. motion is proportional to. resistance is of tem without damping element ustems and undampled vibra

Camlin | Page No. Experiment Name / No.: _ Date 19100221 Teacher's Signature:

OBSERVATION TABLE								
S.No	X _o (mm)	Mass M (kg)	Spring Constant	Cc	(NS/m)	Time	Wd	Win
1	8	8	200	80	10	7	4.96078	5
2	8	8	100	56.568	10	7	3.479	3 53 55
3	8	6	150	60	10	10 4	1930	5
Average (== 10+10+10=10Ns/m.								
Average Wn= 5+3.5355+5=4.51189nad/sec								
Average Wd= 4.960/8+3.4798+4.9301=4.45/8/00/800								
28/2								

>

Calculeteons. Case 1.> T=t_2-t_1= 2.5-1.3 = 1.2 seconds d=loge (20) = loge (3.58) = 0.79293665 $\xi = 0 = 0.79293665 = 0.12520668$ $\int 4\pi^2 + \partial^2 \int 4x(3.1415926)^2 + (0.79293665)^2$ Wn= 1472+02 = 14(3.1415926342)2+(0.79293655)2 5.277518 Wd=WnJ1-52=5.2277518234x0.99213068 C= 24/KM $C = 2 \times 0.12520668 \times 18 \times 200 (K = 200)$ C = 10.0165344 Ns/m

Case 2 $1 = \frac{1}{2} - \frac{1}{1} = \frac{3.6 - 1.8}{1.8} = \frac{1.8}{1.8}$ seconds 0=Loge(A0)=Loge[2.59]=1.126011263 ξ=0=0.176399985 C= 261 KM C= 2x0.176399985 100 x8 = 9.9786900 58Ngm Wn= J4112+02 = J4x(3.1415926)2+(1.126011263)=3.546269078 Wcl=Wn]1-E2=3.546269078X0.984318569 Wd=3.490658504 sad/s

Soldin

Case 3% T= \$2-\$1=2.5-1.3=1.2 seconds d=Loge(A1)=loge(2.74)=1.080528613 $\frac{7}{14\pi^2+3^2} = \frac{1.080528613}{14x(3.1415926542.11.08052.8613)^2}$ Wn= J4712+72= 4x131415926549+(1.080528613)= 5.31284866 $Wd = Wn \int 1 - 42 = 5.312848661 \times \int 1 - (0.169483561)^2$ Wd= 5.235987756 nad/s C= 2 4/1 KM where K=150, M=6 C=2x0.169483561x150x6 C=10.16901367 Ns/m

,								
	Experimental duerages							
ı	Cmean=10.0165344+9.978690058+10.16901367							
		3	= 10.05474604 Ns/m					
	(Wn) mean = 5.27=	1518234 +3.546269078 +	15.312848661					
	(1)1) -522	3	= 4.71221191 wrad/s					
	(Wd)mean=5235987757+3.490658504+5.235987756							
	Percentage eur	OE->	=4.65421139 nad/s					
-	Observed Values	Experimental	% Ecrob					
	10 Ns/m	10.05474604 NS/m	0.5474604%					
of	4.5118 rads	2/bagfu 1911551F-4	4.441950219%					
	1 4.4569rady	4.65421139лад/s	4.427099329%					
1	% evroz = Observed value Experimental xin							
	10 bseured value son!							
			YX					

w

C% envor= [10.05474604-10] x100% C%ernon=0.5474604% (Dn % erron=[471221191-4.5118] x100% Wy% evron= 4.441950219 % Col/ evolog= (465421139-4.4569) ×100% Col/ord = 4.427099329%

San /

Camlin Page No. Experiment Name / No.: _ 19/02 2021 Heige weroros Observed value-Observed Value 74604-10 ×100% > 0.5474604% 4.5118 Teacher's Signature

Lesult 8-> Damping Coefficient(C) = 10.05474604Nm/s % ouror in C = 0.5474604% Natural Jequency (Wn) = 4.711)21191 rad/s % erwor in Wn = 4.44195021996 Damped frequency (Wd)=4.65421139 rad/s
% envoy is Wd= 4.42709932990 Aus

