0

ARITHMETIC CORE INSTRUCTION SET

CORE INS Add Unsign Branch On Add \nd

6			Θ		
7	Rei	fer	P D Reference Data		.(3)
ISTRUCTION SET	ON SE	_			OPC
		FOR-			/FU
S, MNEMONIC		MAT	OPERATION (in Verilog)		\exists
	add	×	R R[rd] = R[rs] + R[rt]	(1) 0/2	0/2
ediate	addi	-	R[rt] = R[rs] + SignExtImm	(1,2) 8 _F	×
. Unsigned addiu	addiu	-	R[rt] = R[rs] + SignExtImm	(2)	6
gned	addu	~	R[rd] = R[rs] + R[rt]	_	0/2
	and	×	R[rd] = R[rs] & R[rt]		0/2
ediate	andi	н	R[rt] = R[rs] & ZeroExtImm	3	5
n Equal	ped ped	-	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4

1 to MAX − 1 anything ± Fl. Pt. Num

MAX 0 0

MAX ≠0 NaN

S.P. MAX = 255, D.P. MAX = 2047

where Single Precision Bias = 127, Double Precision Bias = 1023. (-1)^S × (1 + Fraction) × 2(Exponent

⊕, IEEE 754 S

IEEE 754 FLOATING-POINT STANDARD

Higher Memory Addresses

STACK FRAME Fraction

Exponent

MEMORY ALLOCATION 7fff fffchex 1 Ssp

			Θ	
MITOREFERENCE Data	Ref	ere	ence Data	
CORE INSTRUCTION SET	N SE			OPCODE
NAME MNEMONIC		FOR-	OPER ATTON (in Verilog)	/ FUNCT
Add		2	Rindl = Rinsl + Rintl	(11CA)
	1	: -	February February	0 (C D
	addı	-	k[rt] = k[rs] + Signextimm	
Add Imm. Unsigned	addin	_	R[rt] = R[rs] + SignExtImm	(2) 9hex
Add Unsigned	addu	~	R[rd] = R[rs] + R[rt]	0 / 21 _{bex}
And	and	~	R[rd] = R[rs] & R[rt]	0 / 24 _{hex}
And Immediate	andi	-	R[rt] = R[rs] & ZeroExtImm	(3) c _{hex}
Branch On Equal	bed	-	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4) 4hex
Branch On Not Equal bne	one	-	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4) 5hex
Jump	*0	_	PC=JumpAddr	(5) 2 _{bex}
Jump And Link	jal	-	R[31]=PC+8;PC=JumpAddr	(5) 3 _{bex}
Jump Register	i L	~	PC=R[rs]	0 / 08 _{bex}
Load Byte Unsigned 1bu	ngı	-	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2) 24hex
Load Halfword Unsigned	Thu	-	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2) 25hex
Load Linked	11	-	R[rt] = M[R[rs] + SignExtImm]	(2,7) 30 _{hex}
Load Upper Imm.	lui	Н	$R[rt] = \{imm, 16'b0\}$	fbex
Load Word	N.	-	$R[\pi] = M[R[rs] + SignExtImm]$	(2) 23 _{hex}
Nor	nor	~	$R[rd] = \sim (R[rs] R[rt])$	0 / 27 _{hex}
Or	30	~	R[rd] = R[rs] R[rt]	0 / 25 _{hex}
Or Immediate	ori	_	R[rt] = R[rs] ZeroExtlmm	(3) d _{hex}
Set Less Than	SIt	~	R[rd] = (R[rs] < R[rt]) ? 1:0	0 / 2ahex
Set Less Than Imm.	slti	-		: 0 (2) a _{hex}
1 100			" " " " " " " " " " " " " " " " " " "	

And	and	\simeq	R R[rd] = R[rs] & R[rt]	_	0/2
And Immediate	andi	-	R[rt] = R[rs] & ZeroExtImm	(3) ch	o,
Branch On Equal	Ded.	-	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4
Branch On Not Equal one	lbne	-	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	4)	Ş
Jump	*D	\neg	PC=JumpAddr	(5)	۲ ₀
Jump And Link	jal	Г	R[31]=PC+8;PC=JumpAddr	(5) 3 _h	w,
Jump Register	j.	\simeq	R PC=R[rs]	Ĭ	0/0
Load Byte Unsigned 1bu	lbu	-	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24
Load Halfword	Ibu	-	R[rt]=(16'b0,M[R[rs]		25

_	J R[31]=PC+8;PC=JumpAddr	(5)	
×	R PC=R[rs]		0
-	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	61
-	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	~1
н	R[rt] = M[R[rs] + SignExtImm]	(2,7)	m
Н	$R[rt] = \{imm, 16'b0\}$		
-	R[rt] = M[R[rs] + SignExtImm]	(2)	CI
			Š

,			+SignExtImmJ(7:0)}	7	
Load Halfword Unsigned	Thu	-	R[rt]=(16'b0,M[R[rs] +SignExtlmm](15:0)}	(2)	25
Load Linked	11	-	R[rt] = M[R[rs]+SignExtImm]	(2,7)	30
oad Upper Imm.	lui	Н	R[rt] = {imm, 16'b0}		4
oad Word	1w	-	R[rt] = M[R[rs] + SignExtImm]	(2)	(2) 23
Vor	nor	~	$R[rd] = \sim (R[rs] R[rt])$		0/2
)r	30	\simeq	R[rd] = R[rs] R[rt]		0/2
Or Immediate	ori	-	R[rt] = R[rs] ZeroExtlmm	(3) d _i	ਚੌ
set Less Than	s1t	\simeq	R[rd] = (R[rs] < R[rt]) ? 1:0		0
Set Less Than Imm.	8141	-	R[rt] = (R[rs] < SignExtImm)? 1:0(2) a ₁	0(2)	æ
Set Less Than Imm. Unsigned	sltiu	-	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6) b ₁	ģ
Set Less Than Unsig. sltu	sltu	\simeq	R = R[rd] = (R[rs] < R[rt]) ? 1:0	(6) 0/2	0/2

FLOATING-POINT INSTRUCTION FORMATS

4	rw obcone unit is in initiation	TITTE	-	er er	2	Tallet
	31 26	26 25 21 20		10 15	01 11	6.5
FI	obcode	fint	H		immediate	9
	31 26.25	25 21 20	20 1615	51		
PSEUD	PSEUDOINSTRUCTION SET	ION SET				
	NAME		MNEMONIC	r)	OPERATION	NC
Bran	Branch Less Than		blt	if(R[rs]<	if(R[rs] <r[rt]) pc="Label</th"><th>abel</th></r[rt])>	abel
Bran	Branch Greater Than	an	bgt	if(R[rs]>	if(R[rs]>R[rt]) PC = Label	apel
Bran	Branch Less Than or Equal	or Equal	ble	if(R[rs]<	$if(R[rs] \le R[\pi]) PC = Label$	Label
Bran	Branch Greater Than or Emial	an or Equal	hose	if/R[rs]>	if(Rfrs1>=Rfrt1) PC = Label	Lahel

(6) 0 / 2b_{hex} 0 / 00_{hex} 0 / 02_{hex}

Shift Right Logical Shift Left Logical

Store Conditional

Store Halfword

Store Word

	OPERATION	if(R[rs] <r[rt]) pc="Label</th"><th>if(R[rs]>R[rt]) PC = Label</th><th>$if(R[rs] \le R[\pi]) PC = Label$</th><th>if(R[rs] >= R[rt]) PC = Label</th><th>R[rd] = immediate</th><th>R[rd] = R[rs]</th></r[rt])>	if(R[rs]>R[rt]) PC = Label	$if(R[rs] \le R[\pi]) PC = Label$	if(R[rs] >= R[rt]) PC = Label	R[rd] = immediate	R[rd] = R[rs]
	MNEMONIC	blt	bgt	ble	pae	1.1	move
EUDOINSTRUCTION SET	NAME	Branch Less Than	Branch Greater Than	Branch Less Than or Equal	Branch Greater Than or Equal	Load Immediate	Move

(2,7) ³⁸hex 62

| R[rd] = R[rd] << shamt | R[rd] = R[rd] >> shamt | M[R[rs] + SignExtimm(7.0) = | R[rd] = R[rd] (7.0) | M[R[rs] + SignExtimm] = R[rd] (1.0) | R[rd] = (aromic/? 1:0 | C. M[R[rs] + SignExtimm] (1.50) = | M[R[rs] + SignExtimm] (1.50) = R[rd] (1.50)

REGISTER NAME, NUMBER, USE, CALL CONVENTION ----PRESERVEDACROSS

(2) 29_{bex} (2) 2b_{bex} (1) 0/22_{bex} 0/23_{bex}

M[R[rs]+SignExtImm] = R[rt]
. R[rd] = R[rs] - R[rt]
. R[rd] = R[rs] - R[rt]

_				Γ			Г	Г	Γ			Г
A CALL?	N.A.	No	No	No No	oN	Yes	oN	οN	Yes	Yes	Yes	oN.
360	The Constant Value 0	Assembler Temporary	Values for Function Results and Expression Evaluation	Arguments	Temporaries	Saved Temporaries	Temporaries	Reserved for OS Kernel	Global Pointer	Stack Pointer	Frame Pointer	Return Address
NOMBEN	0	_	2-3	4-7	8-15	16-23	24-25	26-27	28	59	30	31
NO.	\$zero	Sat	\$v0-\$v1	\$a0-\$a3	St0-St7	\$s0-\$s7	\$18-\$19	\$k0-\$k1	Sgp	Ssp	фş	Sra

BrunchAddr = { 14{immediate[15]}, immediate, 2'b0 } JuhnpAddr = { PC+43{1.28}, address, 2'b9 } JuhnpAddr = PC+43{1.28}, address, 2'b9 } Operands considered unsigned numbers (vs. 2's comp.) Atomic test&set pair, R[rt] = 1 if pair atomic, 0 if not atomic

{ 16{immediate[15]}, im { 16{1b'0}, immediate }

shamt

BASIC INSTRUCTION FORMATS

Oppyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

IEEE Single Precision and Double Precision Formats: Deci-mal 65 66 67 67 70 70 71 NAME OF THE PROPERTY OF THE PR OPCODES, BASE CONVERSION, ASCII SYMBOLS MIPS (1) MIPS (2) MIPS | Hexa- ASCII Binary Decic.unf c.eqf c.olff c.olff c.olff c.olef c.olef c.olff c.ngle c.ngle cvt.s.f cvt.d.f sra sra sllv srav jr jalr movz movn syscal break mult multu div div aync mfhi mthi mflo mtlo tge tilt tilt teq teq addu sub subu and or xoz nor altu

€.ngt.f	111111	63	3£	6.	127	J.L	7f DEL
ocode(31:26) == 0							
$xcode(31:26) = 17_{ten}(11_{j})$	bex); if fmt	; if fmt(25:21)=	-16te	, (10 _b	s = f(x)	(sing	(e)
fmr(25:21)=17 (11.	f = d (double)	(Aldri					

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, C

mgner Memory Addresses	Stack		Je/	Addresses					_					ple		uc.	l uo		_	wo		ption		Symbol	Ki	Mi	Gi	Ti	Pi	Ei	Zi	Yi
ПП			Lower	Ade	1			Halfword	3 2	(iiigii		2	- H	=Interrupt Enable		Cause of Exception	Reserved Instruction	Exception	Coprocessor Unimplemented	Arithmetic Overflow Exception	Trap	oint Exce	_	Syr	_	V)			_		_
Argument 6 Argument 5	saved Registers	Local Variables					Word	Half	3160	ATUS	Exception		Σ	4 1, IE =Inte		Cause o	Reserve	Exc	Cop	Arithmel		Floating Point Exception	for Memory)	Prefix	Kibi-	Mebi-	Gibi-	Tebi-	Pebi-	Exbi-	Zebi-	Yobi-
111	Sav		1				W	vord	Jan Contract	AND ST		9		= Exception Level, IE		Number Name	d d	2	CpU	ò	Tr	FPE I	n; 2 ^x for	IEC Size	210	220	230	240	250	260	270	08
Sfp.	•		Ssp			Double Word		Halfword	3,000	CAUSE	bt.	0 5	o to	Excep		Numbe	. 5	2	=	12	13	12	nicatio	IEC	2	2	2	2	2	2	2	2
Stack	♣ Dynamic Data	Static Data	Text	Reserved		Double		word	3,000	exception control Begisters: CAUSE AND STATUS	Interrupt	15 Ponding	Interrupt	= User Mode, EL		xception	Address Error Exception	(load or instruction fetch)	Address Error Exception (store)	ror on on Fetch	ror on	xception	k, Communication; 2x	Symbol	K	M	G	T	Ь	Е	Z	Y
							Word	4	3 th 2 15 th	TROL RE		ı		UM = Use		Cause of Exception	ddress Error Exception	oad or instra	ddress Error (store)	Bus Error on Instruction Fetch	Bus Error on Load or Store	Syscall Exception	(10* for Disk,	Prefix	Kilo-	Mega-	Giga-	Tera-	Peta-	Exa-	Zetta-	Yotta-
7fff fffc _{hex}	Son-11000 8000.	1000 0000 _{hex}	→0040 0000 _{hex}	O _{hex}	DATA ALIGNMENT			Halfword	7.50	NOO NO				BD = Branch Delay, UM	EXCEPTION CODES	z	A AET A		Ades A	IBE	DBE	Sys	ES	\dashv		-	_	2	2	8	Н	
↑ dsg	on A	01	00 4 od		ATA ALIC				0	CEPTIC	<u>в</u> О	æ 		D = Bran	CEPTIC	Number	> =	+	S	9	4	×	SIZE PRE	SI Size	10^{3}	106	109	10^{12}	1015			10^{24}
S	4	1	d		DA					Ä				B	Ä								SIS								nd in	_