STAT 311: Introduction to Probability (cont)

Y. Samuel Wang

Summer 2016

Logistics

- Midterm on Friday
- Will include material up to today
- Bring practice midterm to lab on Thursday

Dependant vs Independent

Intuitively, we think about independent events as having no effect on each other. We define independence vs dependence formally through conditional probabilities.

Two events A and B are independent if

$$P(A|B) = P(A)$$
 and $P(B|A) = P(B)$

Two events A and B are dependent if

$$P(A|B) \neq P(A)$$
 and $P(B|A) \neq P(B)$

Probability Rules

We can calculate the probability of events using the following basic probability rules

- Complement (not): $P(A^c) = 1 P(A)$
- Union (or): $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Intersection (and): $P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$
- Total Probability (marginal from joint): $P(A) = \sum_i P(A \cap B_i)$
- Bayes Rule: $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Example: Probability Terminology

Suppose you are playing Pokemon Go, and each time you go to the park, one (or more) of the following events could happen

- Catch nothing
- Catch a Pikachu
- Catch a Clefairy
- Catch a Weedle
- Catch a Nidoran

Example: Probability Terminology

Suppose you are playing Pokemon Go, and each time you go to the park, one (or more) of the following events could happen

- Catch nothing
- Catch a Pikachu
- Catch a Clefairy
- Catch a Weedle
- Catch a Nidoran

Questions:

- What is the sample space for a single trial?
- What is a compound event?
- Are any of the outcomes mutually exclusive?
- What is complement of catching nothing?

Suppose the following events have the probabilities-

- P(Catch nothing) = .3
- P(Catch a Pikachu) = .4
- P(Catch a Clefairy) = .2
- P(Catch a Weedle) = .6
- P(Catch a Nidoran) = .2

Questions:

• What is the probability of catching at least something?

Suppose the following events have the probabilities-

- P(Catch nothing) = .3
- P(Catch a Pikachu) = .4
- P(Catch a Clefairy) = .2
- P(Catch a Weedle) = .6
- P(Catch a Nidoran) = .2

Questions:

• What is the probability of $P(Pikachu \cup Nothing)$? What assumption did we make?

Suppose the following events have the probabilities-

- P(Catch nothing) = .3
- P(Catch a Pikachu) = .4
- P(Catch a Clefairy) = .2
- P(Catch a Weedle) = .6
- P(Catch a Nidoran) = .2

Questions:

• If $P(Pikachu \cap Clefairy) = .1$, what is the probability of $P(Pikachu \cup Clefairy)$?

Suppose the following events have the probabilities-

- P(Catch nothing) = .3
- P(Catch a Pikachu) = .4
- P(Catch a Clefairy) = .2
- P(Catch a Weedle) = .6
- P(Catch a Nidoran) = .2

Questions:

 Given the previous answer, what is the conditional probability of catching a Pikachu, given that you have caught a Clefairy?
Does that mean that catching a Clefairy and a Pikachu are independent events?

Suppose the following events have the probabilities-

- P(Catch nothing) = .3
- P(Catch a Pikachu) = .4
- P(Catch a Clefairy) = .2
- P(Catch a Weedle) = .6
- P(Catch a Nidoran) = .2

Questions:

 Assuming you can only catch a maximum of two Pokemon, and the probability of P(Pikachu ∩ Clefairy) = .1, P(Pikachu ∩ Weedle) = .05, P(Pikachu ∩ Nidoran) = .1 and P(Pikachu ∩ Pikachu) = .05 what is the probability of catching only a Pikachu?

Suppose the following events have the probabilities-

- P(Catch nothing) = .3
- P(Catch a Pikachu) = .4
- P(Catch a Clefairy) = .2
- P(Catch a Weedle) = .6
- P(Catch a Nidoran) = .2

Questions:

Assuming you can only catch a maximum of two Pokemon, and the probability of P(Nidoran|Weedle) = .1,
P(Clefairy|Weedle) = .4, P(Pikachu|Weedle) = .1,
P(Nothing|Weedle) = .4, draw a probability tree to and calculate the joint probability of each outcome.