

Guía de Ejercicios: Funciones

Área Matemática

Resultados de aprendizaje

Determinar dominio y recorrido de una función. Analizar funciones: inyectivas, sobreyectivas y biyectivas. Determinar la función inversa. Componer funciones.

Contenidos

- 1. Dominio y Recorrido de una función.
- 2. Inyectividad, sobreyectividad y biyectividad.
- 3. Función inversa.
- 4. Composición de funciones.

Debo saber

Antes de empezar a realizar estos ejercicios es importante que recordemos algunos conceptos:

Función: Una función $f: A \to B$ es una relación en donde a cada elemento x perteneciente al conjunto A le corresponde un único elemento y del conjunto B.

Dominio: El dominio de una función f en \mathbb{R} está formado por aquellos valores reales de x para los que se puede calcular la imagen f(x). Se denota como $Dom\ f$.

Recorrido (o Rango): El recorrido de una función f en \mathbb{R} es el conjunto de los valores reales que toma la variable y ó f(x). Se denota como Rec f.

Función inyectiva (o uno a uno): La función $f: A \rightarrow B$ es inyectiva si y sólo si:

$$f(a) = f(b) \Rightarrow a = b$$
, $\forall a, b \in A$

Función sobreyectiva (o epiyectiva): La función $f: A \to B$ es sobreyectiva si y sólo si:

$$\forall y \in B, \exists x \in A \ tal \ que \ f(x) = y$$

- La función $f: A \to B$ es sobreyectiva si y sólo si "todos los elementos del conjunto B son imagen de algún elemento de A".
- La función $f: A \to B$ es sobreyectiva si y sólo si Rec(f) = B

Función biyectiva: Una función f es biyectiva si es al mismo tiempo es inyectiva y sobreyectiva.

Función inversa: Se llama función inversa de f a otra función f^{-1} que cumple que si f(a) = b, entonces $f^{-1}(b) = a$

Solo es posible determinar la función inversa $f^{-1}: B \to A$, si y solo si $f: A \to B$ es biyectiva.

Composición de funciones: Dadas las funciones $f: A \to B \ y \ g: B \to C$, donde la imagen de f está contenida en el dominio de g, se define la función composición $(g \circ f): A \to C$ como $(g \circ f)(x) = g(f(x))$, para todos los elementos x de A.

Logaritmo: El logaritmo de un número a en base b se define como el número a al que hay que elevar a para obtener el número a.

$$log_b a = x \Leftrightarrow b^x = a$$

Ejercicio 1

Dada la función $f: \mathbb{R} - \left\{-\frac{3}{7}\right\} \to \mathbb{R} - \left\{\frac{2}{7}\right\}$, donde $f(x) = \frac{2x-7}{7x+3}$ determine:

- a) Si la función es biyectiva.
- b) La inversa de ser posible.

Solución

a) Si f es biyectiva

Recordamos que una función es biyectiva si es al mismo tiempo es inyectiva y sobreyectiva.

<u>La función f es inyectiva</u> si y sólo si $f(a) = f(b) \Rightarrow a = b$, $\forall a, b \in \mathbb{R} - \left\{-\frac{3}{7}\right\}$

$$f(a) = f(b) \Rightarrow \frac{2a-7}{7a+3} = \frac{2b-7}{7b+3}$$

Por definición

$$\Rightarrow (2a-7)(7b+3) = (2b-7)(7a+3)$$

Multiplicando por inversos

$$\Rightarrow$$
 14ab + 6a - 49b - 21 = 14ab + 6b - 49a - 21 Por distributividad y reduciendo términos

semejantes.

 $\Rightarrow 6a + 49a = 6b + 49b$

Ordenando la ecuación

 $\Rightarrow 55a = 55b$

Reduciendo términos semejantes

 $\Rightarrow a = b$

Multiplicando por (1/55)

 $\therefore f$ es inyectiva

<u>La función f es sobreyectiva</u> si y sólo si $\forall y \in \mathbb{R} - \left\{\frac{2}{7}\right\}$, $\exists x \in \mathbb{R} - \left\{-\frac{3}{7}\right\}$ $tal\ que\ f(x) = y$

$$f(x) = y$$
 $\Rightarrow \frac{2x-7}{7x+3} = y$ Por definición
 $\Rightarrow 2x - 7 = y(7x + 3)$ Multiplicando por $(7x + 3)$
 $\Rightarrow 2x - 7 = 7xy + 3y$ Multiplicando distributivamente
 $\Rightarrow 2x - 7xy = 3y + 7$ Ordenando la ecuación: $(-7xy)$; $(+7)$
 $\Rightarrow x(2 - 7y) = 3y + 7$ Factorzando por término común "x"
 $\Rightarrow x = \frac{3y+7}{2-7y}$ (i) Despejando "x"

En donde,
$$2 - 7y \neq 0 \rightarrow y \neq \frac{2}{7}$$
.

Luego:
$$Rec f = \mathbb{R} - \left\{\frac{2}{7}\right\}$$

$$\therefore f$$
 es sobreyectiva

Como f es inyectiva y sobreyectiva, entonces f es biyectiva.

c) La inversa de ser posible.

Como f es biyectiva, entonces es posible determinar f^{-1}

$$x=rac{3y+7}{2-7y}$$
 Considerando (i)
$$\Rightarrow y=rac{3x+7}{2-7x}$$
 Intercambiando variables, "x" por "y", e "y" por "x"
$$\Rightarrow f^{-1}(x)=rac{3x+7}{2-7x}$$
 Reemplazando y por $f^{-1}(x)$

$$f^{-1}(x) = \frac{3x+7}{2-7x}$$

Ejercicio 2

Sea
$$f: A \to \mathbb{R}$$
 $x \mapsto f(x) = 2 - log_2(4 - 2x)$

- a) Determinar el dominio de la función
- b) Determinar si f es inyectiva y si f es sobreyectiva
- c) Encontrar la inversa de la función
- d) Verificar que $(f \circ f^{-1})(x) = x$
- e) Calcular f(-6)
- f) Determinar el valor de x cuando f(x) = -3

Solución

a) Dominio de la función

Como el argumento del logaritmo debe ser positivo, entonces 4-2x>0

$$4-2x>0$$
 Organizando la inecuación: $(+2x)$
 $\Rightarrow 4>2x$ Multiplicando por $(1/2)$
 $\Rightarrow x<2$

$$\therefore Dom f =]-\infty, 2[$$

b) Si f es inyectiva

Sean $a, b \in]-\infty, 2[$, entonces:

$$f(a) = f(b) \Rightarrow 2 - log_2(4 - 2a) = 2 - log_2(4 - 2b)$$
 Por definición
$$\Rightarrow 2 - log_2(4 - 2a) = 2 - log_2(4 - 2b)$$
 Ordenando la ecuación: (-2)
$$\Rightarrow -log_2(4 - 2a) = -log_2(4 - 2b)$$
 Multiplicando por (-1)
$$\Rightarrow log_2(4 - 2a) = log_2(4 - 2b)$$
 Igualando los argumentos
$$\Rightarrow 2 - 2a = 2b$$
 Ordenando la ecuación: (-4)
$$\Rightarrow 2a = 2b$$
 Multiplicando por (1/2)
$$\Rightarrow a = b$$

 $\therefore f$ es inyectiva

Si f es sobreyectiva

$$f(x) = y$$
 $\Rightarrow 2 - log_2(4 - 2x) = y$ Por definición $\Rightarrow log_2(4 - 2x) = 2 - y$ Ordenando la ecuación: (-2) $\Rightarrow 2^{2-y} = 4 - 2x$ Por definición de logaritmo $\Rightarrow x = \frac{4-2^{2-y}}{2}$ (ii) Despejando " x "

En donde, $y \in \mathbb{R}$

: f es sobreyectiva

c) Inversa de la función

$$x=rac{4-2^{2-y}}{2}$$
 Considerando (ii)

$$\Rightarrow y=rac{4-2^{2-x}}{2}$$
 Intercambiando variables, " x " por " y ", e " y " por " x ". (esto es un acomodo de la notación formal)

$$\Rightarrow f^{-1}(x)=rac{4-2^{2-x}}{2}$$
 Reemplazando y por $f^{-1}(x)$

$$\therefore f^{-1}(x)=rac{4-2^{2-x}}{2}$$

d) Verificar que $(f \circ f^{-1})(x) = x$

$$\begin{split} (f\circ f^{-1})(x) &= f\left(f^{-1}(x)\right) \\ &= f\left(\frac{4-2^{2-x}}{2}\right) & \text{Por definición} \\ &= 2 - \log_2\left(4-2\cdot\frac{4-2^{2-x}}{2}\right) & \text{Evaluando}\left(\frac{4-2^{2-x}}{2}\right) \text{ en la función } f \end{split}$$

$$=2-log_2\left(4-\cancel{2}\cdot\frac{4-2^{2-x}}{\cancel{2}}\right) \qquad \text{Simplificando}$$

$$=2-log_2\left(4-(4-2^{2-x})\right) \qquad \text{Eliminando paréntesis en el argumento}$$

$$=2-log_2\left(\cancel{4}-\cancel{4}+2^{2-x}\right) \qquad \text{Reduciendo términos en el argumento}$$

$$=2-log_2(2^{2-x}) \qquad \text{Por definición y propiedad de logaritmo}$$

$$=2-(2-x) \qquad \text{Eliminando paréntesis}$$

$$=\cancel{2}-\cancel{2}+x \qquad \text{Reduciendo términos semejantes}$$

$$=x$$

$$\therefore f \circ f^{-1} = x$$

e) Calcular f(-6)

$$f(-6) = 2 - log_2(4 - 2 \cdot (-6))$$
 Reemplazando x por -6
$$= 2 - log_2(4 + 12)$$
 Ordenando en el argumento
$$= 2 - log_2(16)$$
 Calculando $log_2(16)$ resulta 4 porque $2^4 = 16$
$$= 2 - 4$$

$$= -2$$

$$f(-6) = -2$$

f) El valor de x cuando f(x) = -3

$$f(x) = 2 - log_2(4 - 2x) \qquad \text{Reemplazando } f(x) \text{ por } -3 \\ -3 = 2 - log_2(4 - 2x) \qquad \text{Ordenando la ecuación de tal forma que el logaritmo quede en un lado de la igualdad y positivo: } (+log_2(4 - 2x)) \\ log_2(4 - 2x) = 2 + 3 \\ log_2(4 - 2x) = 5 \qquad \text{Por definición de logaritmo} \\ 2^5 = 4 - 2x \qquad \text{Resolviendo la potencia } 2^5 = 32 \\ 32 = 4 - 2x \\ 2x = 4 - 32 \qquad \text{Despejando la incógnita "} x"$$

Ejercicio 3

Sea $f: A \to \mathbb{R}$; $f \circ g: B \to \mathbb{R}$, donde $f(x) = \sqrt{x+1}$ y $(f \circ g)(x) = \sqrt{x(x-3)}$. Determine g(x) y su dominio.

Solución

$$(f \circ g)(x) = f(g(x))$$

$$= \sqrt{g(x) + 1} \quad (iii)$$

Como
$$(f \circ g)(x) = \sqrt{x(x-3)}$$
 (iv)

Luego, igualando (iii) y (iv) se tiene:

$$\sqrt{g(x)+1} = \sqrt{x(x-3)}$$
 Elevando al cuadrado en ambos lados de la igualdad.
$$g(x)+1=x(x-3)$$
 Multiplicando distributivamente para eliminar paréntesis.
$$g(x)+1=x^2-3x$$
 Despejando $g(x)$
$$g(x)=x^2-3x-1$$

Como la función g(x) no tiene restricciones para x, entonces el $Dom g = \mathbb{R}$

Ejercicio 4

Considere la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \frac{3x-1}{x+3}$. Determine su dominio, si es biyectiva y su inversa si es que existe.

Solución

a) Dominio de la función

Para que la función racional $f(x) = \frac{3x-1}{x+3}$ no se indetermine debe cumplir que:

$$x + 3 \neq 0 \Rightarrow x \neq -3$$
$$\therefore Dom f = \mathbb{R} - \{-3\} \quad (v)$$

b) Si f es biyectiva

Sean $a, b \in \mathbb{R} - \{-3\}$, entonces:

$$f(a) = f(b) \Rightarrow \frac{3a-1}{a+3} = \frac{3b-1}{b+3}$$

$$\Rightarrow (3a-1)(b+3) = (3b-1)(a+3) \qquad \text{Multiplicando por inversos}$$

$$\Rightarrow 3ab+9a-b-3=3ab+9b-a-3 \qquad \text{Ordenando: } (-3ab); (+3)$$

$$\Rightarrow 9a+a=9b+b \qquad \text{Reduciendo términos semejantes}$$

$$\Rightarrow 10a=10b \qquad \text{Multiplicando por } \frac{1}{10}$$

$$\Rightarrow a=b$$

 $\therefore f$ es inyectiva

Por otro lado,

$$f(x) = y \Rightarrow y = \frac{3x-1}{x+3}$$
 Por definición, y multiplicando por $(x+3)$ $\Rightarrow y(x+3) = 3x-1$ Multiplicando distributivamente $\Rightarrow yx + 3y = 3x-1$ Ordenando la ecuación: $(-3y)$; $(-3x)$ $\Rightarrow yx - 3x = -3y-1$ Factorizando por el término común " x " $\Rightarrow x(y-3) = -3y-1$ Despejando " x ": multiplicando por $\frac{1}{y-3}$

$$\Rightarrow x = \frac{-3y-1}{y-3}$$

$$\Rightarrow x = \frac{3y+1}{3-y} (vi), \text{ donde } 3 - y \neq 0, \text{ entonces } y \neq 3$$

Por lo tanto, $y \in \mathbb{R} - \{3\}$. (vii) Y como la función está definida por $f: \mathbb{R} \to \mathbb{R}$

 $\therefore f$ no es epiyectiva.

Luego, f no es biyectiva.

c) Función inversa, si es que existe

Como f no es biyectiva, luego en estricto rigor f^{-1} no existe.

Si de igual forma queremos construir f^{-1} , debemos hacer algunas aclaraciones:

• Considerando (v) y (vii) podemos redefinir la función para que ahora sea biyectiva.

Luego:
$$f: \mathbb{R} - \{-3\} \rightarrow \mathbb{R} - \{3\}$$

• Como ahora f es biyectiva, entonces existe la función inversa f^{-1} .

$$x = \frac{3y+1}{3-y}$$

$$\Rightarrow y = \frac{3x+1}{3-x}$$

Considerando (vi)

Intercambiando variables, "x" por "y", e "y" por "x"

(esto es un acomodo de la notación formal)

$$\Rightarrow f^{-1}(x) = \frac{3x+1}{3-x}$$

Reemplazando y por $f^{-1}(x)$

$$\therefore f^{-1}(x) = \frac{3x+1}{3-x}$$

Ejercicio 5

Dada la función $f(x)=rac{1}{\sqrt{9-4x^2}}$. Determine su dominio y recorrido.

Solución

a) Dominio de la función

El racional $\frac{1}{\sqrt{9-4x^2}}$ se indetermina cuando el denominador es cero, por lo tanto: $\sqrt{9-4x^2} \neq 0$

Pero, como es raíz cuadrada, $9 - 4x^2 \ge 0$

Entonces, considerando ambas restricciones, se tiene que:

$$9-4x^2>0$$

 $\Rightarrow (3-2x)(3+2x)>0$ Factorizando por diferencia de cuadrados (suma por diferencia)

Identificando puntos críticos, al despejar x en ambas ecuaciones:

$$3-2x = 0$$
 $3 + 2x = 0$
 $3 = 2x$ $3 = -2x$
 $x = \frac{3}{2}$ $x = -\frac{3}{2}$

Por lo tanto:

-0	$-\frac{3}{2}$	$\frac{3}{2}$ $\frac{3}{2}$	+∞	
(3 - 2x)	+	+	_	
(3 + 2x)	_	+	+	
(3-2x)(3+2x)	_	+	_	

$$\therefore Dom f = \left[-\frac{3}{2}, \frac{3}{2} \right]$$

b) Recorrido de la función

$$f(x) = y \qquad \Rightarrow \ y = \frac{1}{\sqrt{9-4x^2}} \qquad \qquad \text{Multiplicando por } \sqrt{9-4x^2}$$

$$\Rightarrow \ y\sqrt{9-4x^2} = 1 \qquad \qquad \text{Elevando al cuadrado}$$

$$\Rightarrow \left(y\sqrt{9-4x^2}\right)^2 = 1^2$$

$$\Rightarrow \ y^2(9-4x^2) = 1 \qquad \qquad \text{Multiplicando distributivamente}$$

$$\Rightarrow \ 9y^2 - 4x^2y^2 = 1 \qquad \qquad \text{Ordenando: } (+4x^2y^2)$$

$$\Rightarrow \ 9y^2 - 1 = 4x^2y^2 \qquad \qquad \text{Multiplicando por } \frac{1}{4y^2}$$

$$\Rightarrow \frac{9y^2-1}{4y^2} = x^2$$

$$\Rightarrow \ x = \pm \sqrt{\frac{9y^2-1}{4y^2}} \qquad \qquad \text{Despejando } "x"$$

$$\Rightarrow \ x = \pm \frac{\sqrt{9y^2-1}}{\sqrt{4y^2}} \qquad \qquad \text{Calculando la raíz cuadrada del denominador}$$

$$\Rightarrow \ x = \pm \frac{\sqrt{9y^2-1}}{2y} \quad (viii) \qquad \text{En donde } y \neq 0$$

Como
$$9y^2 - 1 \ge 0 \implies (3y - 1)(3y + 1) \ge 0$$

Identificando puntos críticos, al despejar y en ambas ecuaciones:

$$3y - 1 = 0$$
 $3y + 1 = 0$
 $3y = 1$ $3y = -1$
 $y = \frac{1}{3}$ $y = -\frac{1}{3}$

Por lo tanto:

-0	0 -	$\frac{1}{3}$ $\frac{1}{3}$	+∞
(3y - 1)	ı	_	+
(3y + 1)	ı	+	+
(3y-1)(3y+1)	+	_	+

Según lo anterior, podríamos suponer que el $Rec\ f = \left] -\infty, -\frac{1}{3} \right]\ \cup\ \left[\frac{1}{3}, +\infty\right[$, pero:

Si reemplazamos en (viii) valores pertenecientes al $Dom\ f=\left[-\frac{3}{2},\frac{3}{2}\right[$, como por ejemplo x=-1 y x = 1, resulta:

• Para
$$x = -1 \Rightarrow y = \frac{1}{\sqrt{9-4(-1)^2}} \Rightarrow y = \frac{1}{\sqrt{9-4\cdot 1}} \Rightarrow y = \frac{1}{\sqrt{5}} \Rightarrow y \approx 0.447$$

Por lo que los valores de y obtenidos solo pertenecen al intervalo $\left[\frac{1}{3}, +\infty\right]$

$$\therefore Rec f = \left[\frac{1}{3}, +\infty\right[$$