COMPUTER MODELING OF PHOTODEGRADATION

UNIVERSITY OF TORONTO

J. Guillet

Construction and Operation of Solar Cells, Modules, and Arrays

ARRAY - MARY MODULES SESCRICALLY

PRECEDING PAGE BLANK NOT FILMED

Chemical Weathering Factors

- · SOLAR (UV) CYCLE
- · TEMPERATURE CYCLES
- · OXYGEN
- MOISTURE
- POLYMER COMPOSITION
 - STRUCTURE
 - FORMULATION
 - IMPURITIES
 - ADDITIVES

Chemical Weathering Effects

MOLECULAR WEIGHT CHANGES

Scission: Embrittlement

Permeability

Crosslinks: Shrinking

Wrinkles

PHOTOTHERMAL OXIDATION

Unscturation: Discoloration

Transparency

Polar groups: Electrical properties

Wettability

Computer Simulation

INPUT
Mechanism (rates)
Conditions
Integration parameter

INTERFACE
Block of ordinary differential equations

SOLUTION

Numerical integration

Stiff · GEAR

OUTPUT
Concentration vs. time
10-20 years

Starting Conditions

SUBSTRATE RH (cf. amorphous linear PE)

INITIATORS Ketone 10⁻³ M

Hydroperoxide

Fortuitous

OXYGEN Constant 10⁻³ M

TEMPERATURE Ambient

RATES Literature (cf. fluid)

SOURCE Daylight

The Mechanism: A Model of 51 Elementary Reactions

 $RO_2^{\cdot} - RO_2^{\cdot} \longrightarrow Ketone \xrightarrow{hb} Scission$

Table 1. Data Set: Photooxidation Reaction Scheme and Activation Parameters

	Reac	tion matr	ix	A	E kcal/mol
1.	Ketone	>	KET*	0.70 x 10 ⁻⁹	0
2.	KET*	→	SMIRO + SMIRCO	0.59 x 10 ⁹	4.8
3.	SACRCO	>	SMRO ₂ + CO	0.80 x 10 ¹⁷	15
4.	KET*	>	Alkene + SMKetone	0.56 x 10 ⁸	2.0
5.	SMKetone	>	SMKET*	0.70 x 10 ⁻⁹	0
6.	SMKET*	>	SMRO ₂ - CH ₃ CO	0.32 x 10 ¹³	٤.5
7.	STRET*	→ >	Alkene + Acetone	G.56 x 10 ⁹	2.0
8.	ROOH	>	RO + OE	0.13 x 10 ⁹	Ú
9.	RO2 + RH	→	ROOH - RO	0.10 x 10 ¹⁰	17.0
10.	SMORO ₂ + RH	\longrightarrow	SMROOH + RO2	0.10 x 10 ¹⁰	17.0
11.	SMROOH	>	SMERO + OH	0.13 x 10 ⁻⁹	0
12	SMRC + RH	>	SMROH - RO ₂	0.16 x 10 ¹⁰	6.2
13.	RO + RH	>	RCH + RO2	0.16 x 10 ¹⁰	6.2
14.	RO	→ >	SMRO ₂ + Aldebyde	0.32 x 10 ¹⁶	17.4
15.	KET" - ROOH	>	Kemme - RO - OH	0.25 x 10 ¹⁰	11.6
15.	SMKET* + ROOH	 >	SMER tone + RO + OH	0.25 x 10 ¹⁰	11.6
17.	SDERCO + O2	>	SNER COOO	0.80 x 10 ¹⁴	9.6
18.	SMRCO + RH	>	RO ₂ + Aldebyde	0.10 x 10 ¹⁰	7.3
19.	SMIRCOOO + RH	>	SMRCOOOH + RO2	0.10 x 10 ¹⁰	17.0
20.	SMIR COOOH	→	SMERCOO + OH	0.13 x 10 ⁻⁹	0
21.	SMR COO	 >	SMERO ₂ + CO ₂	0.10 x 10 ¹⁵	6.8

Table 1. (Cont'd)

22.	SMIRCOO + RH	>	Acid + RO ₂	0.10 x 16 ¹⁰	17.0
23.	OH + PH	>	RO2 - Water	0.10 x 10 ¹⁰	0.5
24.	сн ₃ со + вн	>	RO2 + CH3CHO	0.10 x 10 ¹⁰	7.3
25.	CH3CO + O2	>	CH3COU?	0.89×10^{14}	9.6
26.	CE3COOO + RH	>	СН ₃ СОООН + RO ₂	0.10 x 10 ¹⁰	17.0
27.	сн ³ сооон	>	сн ₃ соо + он	0.13 × 10 -9	0
28.	сн ³ соо + ин	>	CH3COOH + RO2	0.10 x 10 ¹⁵	6.6
29.	KET*	>	Ketone	0.10 x 10 ⁹	0
30.	SMKET*	>	SMIKe to os	0.10 x 10 ⁹	0
31.	KET" + 02	>	Ketone + SO ₂	0.89 x 10 ¹⁴	9.6
32.	SWIKET" + 0	>	SMKetone + SO ₂	0.89 x 10 ¹⁴	9.6
33.	RO2 + RO2	>	ROH + Kerone + SO ₂	0.25 x 10 ¹⁰	11.6
34.	RO ₂ - ROH	>	ROOH + Kewae + HOO	0.10 x 10 ¹⁰	15.3
35.	ROO + RH	>	HOOH + RO2	0.32 x 10 ⁹	15.0
36.	HOO + RO ₂	>	ROOH + SO ₂	0.32 x 10 ⁹	2.1
37.	RO ₂ +-Kemme	>	ROOH + Peroxy CO	0.13 x 10 ⁵	8.9
jė.	Peroxy CO + RH	>	PER OOH + RO2	0.10 x 10 ¹⁰	17.0
39.	PER OOE	>	PERO - OH	0.13 x 10 ⁻⁹	0
40.	F_RO + RO2	>	Diketone + ROOH	0.25 x 10 ¹⁰	11.6
41.	RO2 + ROOH	>	ROOH + Kewne + OH	0.75 ₹ 108	11.6
42.	RO2 - SMROH	>	ROOH + Aldebyde + HOO	0.10 x 10 ¹⁰	15.3
43.	RO ₂ + Aldehyde	>	ROOH + SMRCO	0.25 x 10 ¹⁰	11.6
44.	RO, + RO,	>	ROOR + SO ₂	0.33 x 10 ¹²	16.0

Table 1. (Cont'd)

45.	so ₂ >	o ₂	0.63 x 10 ⁵	Ú
46.	SO ₂ + Alkene>	ROOH	0.20×10^{14}	10.0
47.	RO ₂ + Alkene>	Branch	0.16 x 10 ⁹	11.6
48.	SMRO ₂ + Alkene>	ROOE	0.16 x 10 ⁹	11.6
49.	RO ₂ + QH →	ROCH + Q	0.16 x 10 ⁸	5.2
50 .	KET* + Q1>	Ketone + Heat	0.80 x 10 ¹³	9.5
51.	ROOH + QD>	PRODS	0.80 x 10 ¹³	9.5
52.	коон →	RO. + OH.	0 .83 x 10 ¹⁵	35
53.	smrooh>	SMRO + OH	0.63 x 10 ¹⁵	35
54.	SMRCOOOF>	SMRCOO + OH	0.63 x 10 ¹⁵	35
55.	сн ₃ сосон —>	сн ³ соо + он	0.63 x 10 ¹⁵	35
56.	PEROOH>	PERO + OH	0.53 x 10 ¹⁵	35

Stabilization Mechanisms

Photooxidation of Unstabilized Polyethylene

Time to Failure as a Function of Temperature

Arrhenius Plot of Rate of Oxidation (k Versus 1/T)

Flow Diagram for Computer Modelling

Concentration of RO2. Versus Time

Concentration of RH Species Versus Time

ORIGINAL PAGE IS OF POOR QUALITY

Concentration of Ketone Species Versus Time

Concentration of ROOH Species Versus Time

Concentration of Diketone Species Versus Time

11/4

Concentration of ROO - Species Versus Time

Concentration of ROO • Species Versus Time

