Hidden Markov Models (HMM)

ECE/CS 498 DS U/G

Lecture 18: Hidden Markov Models continued

Ravi K. Iyer

Dept. of Electrical and Computer Engineering
University of Illinois at Urbana Champaign

Announcements

- Course Timeline
 - Mon 3/30: HMMs Continued, ICA 4
 - Wed 4/1: Intro to Factor Graphs
 - Mid-semester Feedback (to be completed via Google Form)
 - MP 3 released
- MP 2 Final Checkpoint due tonight (March 30) @ 11:59 PM on Compass2G
- Final Project
 - Progress report 2 due Friday April 17 @ 11:59 PM on Compass2G
 - There should be substantial progress with projects by this point (i.e. meaningful results, ML/AI models)

Markov Model

 Consider a system which can occupy one of N discrete states or categories

$$x_t \in \{1, 2, \dots, N\} \longrightarrow$$
 state at time t

- We are interested in stochastic systems, in which state evolution is random
- Any joint distribution can be factored into a series of conditional distributions:

$$p(x_0, x_1, \dots, x_T) = p(x_0) \prod_{t=1}^{T} p(x_t \mid x_0, \dots, x_{t-1})$$

• For a *Markov* process, the next state depends only on the current state:

$$p(x_{t+1} \mid x_0, \dots, x_t) = p(x_{t+1} \mid x_t)$$

State Transition Matrices

• A *stationary* Markov chain with *N* states is described by an *NxN transition matrix:*

$$Q = \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix}$$
$$q_{ij} \triangleq p(x_{t+1} = i \mid x_t = j)$$

Constraints on valid transition matrices:

$$q_{ij} \ge 0$$

$$\sum_{i=1}^{N} q_{ij} = 1 \quad \text{for all } j$$

State Transition Diagrams (Packet Stalls in a Network)

- Think of a particle randomly following an arrow at each discrete time step
- Most useful when N (# of States) small, and Q (TransProb Matrix) sparse

Markov Chains: Graphical Models

$$p(x_0, x_1, \dots, x_T) = p(x_0) \prod_{t=1}^T p(x_t \mid x_{t-1})$$

$$p(x_0) \underbrace{x_0}_{p(x_1 \mid x_0)} \underbrace{x_1}_{p(x_2 \mid x_1)} \underbrace{x_2}_{p(x_3 \mid x_2)} \underbrace{x_3}_{p(x_3 \mid x_2)} \underbrace{x_3}_{Q}$$

$$Q = \begin{bmatrix} 0.80 & 0.7 & 0.0 \\ 0.19 & 0.0 & 0.6 \\ 0.01 & 0.3 & 0.4 \end{bmatrix}$$
Constraints on valid transition matrices:

$$q_{ij} \geq 0$$
 , $\sum\limits_{i=1}^{N} q_{ij} = 1$ for all j

$$q_{ij} \triangleq p(x_{t+1} = i \mid x_t = j)$$

Hidden Markov Models (Packet Stall Example Cont'd)

- Stall exists due to congestion
- Not directly measurable at runtime (hidden)
- Motivates hidden Markov models (HMM):

Given x_t , previous observations impact future observations

$$p(y_t, y_{t+1}, \dots \mid x_t, y_{t-1}, y_{t-2}, \dots) = p(y_t, y_{t+1}, \dots \mid x_t)$$

From a trace of events to a Hidden Markov Model

Hidden States

Observed Events

 $P(S_1,...,S_n,E_1,...,E_n) = p(S_1)P(E_1|S_1)\prod p(S_i|S_{i-1})P(E_i|S_i)$ A Hidden Markov Model

Two properties:

- A current state depends on the immediate past state
- Time spent in each state is an exponential distribution

Hidden Markov Models

Model assumptions

An observation depends on its hidden state A state variable only depends on the immediate previous state (Markov assumption)

The future observations and the past observations are conditionally independent given the current hidden state

Advantages:

HMM can model sequential nature of input data (future depends on the past)

HMM has a linear-chain structure that clearly separates system state and observed events.

Hidden States

$$P(S_1, ..., S_n, E_1, ..., E_n) = p(S_1)P(E_1|S_1)\prod p(S_i|S_{i-1})P(E_i|S_i)$$

A Hidden Markov model on observed events and system states

HMM Motivating Example: Paleontological Temperature Model

- Want to determine the average temperature at a particular place on earth over a sequence of years in the distant past
- Only annual average temperatures -- hot (H) and cold (C)
 - Probability of a hot year followed by another hot year is 0.7, and the probability of a cold year followed by another cold year is 0.6, independent of the temperature in prior years
- Correlation between the size of tree growth rings and temperature
 - Three different ring sizes, small (T), medium (D), and large (L)
- Assume that probability values from current period held in paleontological period too
- Determine the most likely temperature state in past years
 - Can't directly observe the temperature in the past
 - We can observe the size of tree rings can this information be used?

Tree ring size

Paleontological Temperature Model

- State space of hidden states: $S = \{H, C\}$
- State space of observations: $E = \{T, D, L\}$
- Transition probability matrix: A
- Observation Matrix: B
- Initial distribution for the hidden states: π

Given by an oracle

Paleontological Temperature Model

Example sequence with 5 observations

Determine the sequence of hidden states

Hidden Markov Models

Model

- Set of hidden states $S = \{\sigma_1, ..., \sigma_N\}$
- Set of observable events $E = \{\epsilon_1, ..., \epsilon_M\}$
- Transition probability matrix A
- Observation matrix B
- Initial distribution of hidden states π

Model assumptions

- An observation depends on its hidden state
- A state variable only depends on the immediate previous state (Markov assumption)
- The future observations and the past observations are conditionally independent given the current hidden state

Advantages:

- HMM can model sequential nature of input data (future depends on the past)
- HMM has a linear-chain structure that clearly separates system state and observed events.

A Hidden Markov model on observed events and system states

$$P(S_1, ..., S_n, E_1, ..., E_n)$$

$$= P(S_1)P(E_1|S_1) \prod_{i=2}^{n} P(S_i|S_{i-1})P(E_i|S_i)$$

Inference question – Paleontological Temperature

Given the sequence of 5 observations T, L, D, T, D and the model (A, B, π) , how do we choose a corresponding state sequence $S_1, S_2, ..., S_n$ which is optimal in some meaningful sense (i.e., best explains the observations) where $S_t \in \{H, C\}$?

A simpler question: Given the sequence of 5 observations T, L, D, T, D and the model (A, B, π) , which of the two is more probable eg., $S_3 = H$ or $S_3 = C$?

HMM Security Example

- Suppose you are a security expert monitoring the NCSA system
- By monitoring the system events, you want to say whether the system is safe or not
 - System's safety is a hidden state
 - Events are observed
 - Events are related to the safety of the system
- Is the system safe?
 - **HMM** to the rescue!

Security Example: Transition Matrix

Transition matrix (A)

The system has three distinct security states –

- (a) No Attack (NA),
- (b) Attack in Progress (AP), and
- (c) Attack Complete (AC).
- Every hour, the system is being attacked by attackers coordinating together around the world and trying to compromise the system.
- The system states always transition from NA to AP and AP to AC.
- An attacker is successful in changing the state of the system with probability of 0.75 and fails with a probability of 0.25.
- If the attack fails, the system stays in its current state.
- If the system state reaches AC the attack is complete, and the system stays in that state.

Transition Probability Matrix

Security Example: Emission matrix and initial distribution

Observation matrix (B)

- Your monitoring system reports two types of events
 - Port Scan (PS)
 - Software Installation (SI)
- Monitors are always accurate and works.
 Attackers cannot compromise the monitors. Every hour, we get information from the monitors if the attackers are trying to do PS or SI.

Initial distribution (π)

 We have no idea about the initial state of the system.

$$\mathbf{B} = \begin{array}{ccc} \mathbf{PS} & \mathbf{PI} \\ \mathbf{NA} & P_{PS|NA} & P_{PI|NA} \\ \mathbf{AC} & P_{PS|AP} & P_{PI|AP} \\ P_{PS|AC} & P_{PI|AC} \end{array} \right)$$

Observation Matrix

$$\pi_0 = \mathop{\mathrm{AP}}\limits_{\mathbf{AC}} \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}$$

Initial state distribution/prior

General Inference question

Given the sequence of n observations $E_1, E_2, ..., E_n$, and the model (A, B, π) , how do we choose a corresponding state sequence $S_1, S_2, ..., S_n$ which is optimal in some meaningful sense (i.e., best explains the observations)?

A simpler question: Given the sequence of n observations $E_1, E_2, ..., E_n$, and the model (A, B, π) , what is the most probable state S_t at $t \in \{1, ..., n\}$?

$$\underset{j \in \{1,...,N\}}{\operatorname{argmax}} P(S_t = \sigma_j | E_1, E_2, ..., E_n)$$

$$S = \{\sigma_1, ..., \sigma_N\}$$

Breaking down the inference question

$$\begin{split} P(S_t|E_1,E_2,...,E_n) &= \frac{P(S_t,E_1,...,E_n)}{P(E_1,...,E_n)} = \frac{P(S_t,E_1,...,E_t,E_{t+1},...,E_n)}{P(E_1,...,E_n)} \\ &= \frac{P(E_{t+1},...,E_n \mid S_t,E_1,...,E_t) P(S_t,E_1,...,E_t)}{P(E_1,...,E_n)} \\ &= P(E_{t+1},...,E_n \mid S_t,E_1,...,E_t) P(S_t|E_1,...,E_t) \frac{P(E_1,...,E_t)}{P(E_1,...,E_n)} \end{split}$$
 Bayes rule
$$= P(E_{t+1},...,E_n \mid S_t,E_1,...,E_t) P(S_t|E_1,...,E_t) \frac{P(E_1,...,E_t)}{P(E_{t+1},...,E_n \mid S_t) P(S_t|E_1,...,E_t)}$$

Breaking down the inference question

$$P(S_t|E_1, E_2, ..., E_n) = \frac{P(E_{t+1}, ..., E_n | S_t) P(S_t|E_1, ..., E_t)}{P(E_{t+1}, ..., E_n | E_1, ..., E_t)}$$

$$P(S_t|E_1,...,E_t)$$
:

Probability of hidden state at time t given observation up to time t (Forwards algorithm)

$$P(E_{t+1},...,E_n | S_t)$$
:

Probability of the future observed sequence given the hidden state at time t (Backwards algorithm)

$$P(E_{t+1}, ..., E_n | E_1, ..., E_t)$$
:

Does not depend on the hidden state (will not affect the maximization because it is just a scaling factor)

Forwards algorithm: Paleontological Temperature

Want to calculate $P(S_t|E_1, ..., E_t)$

• Find
$$P(S_2 = H | E_1 = T, E_2 = L)$$
?

$$P(S_2 = H | E_1 = T, E_2 = L) = \frac{P(S_2 = H, E_1 = T, E_2 = L)}{P(E_1 = T, E_2 = L)}$$

$$= \frac{\sum_{s \in \{H,C\}} P(S_2 = H, E_1 = T, E_2 = L, S_1 = s)}{P(E_1 = T, E_2 = L)}$$
Adding hidden state S_1

Forwards algorithm: Paleontological Temperature

$$\frac{\sum_{S \in \{H,C\}} P(S_2 = H, E_1 = T, E_2 = L, S_1 = s)}{P(E_1 = T, E_2 = L)}$$

$$= \frac{\sum_{S \in \{H,C\}} P(E_2 = L | S_2 = H, E_1 = T, S_1 = s) P(S_2 = H, E_1 = T, S_1 = s)}{P(E_1 = T, E_2 = L)}$$
Bayes rule
$$= \frac{\sum_{S \in \{H,C\}} P(E_2 = L | S_2 = H) P(S_2 = H | E_1 = T, S_1 = s) P(S_1 = s | E_1 = T) P(E_1 = T)}{P(E_1 = T, E_2 = L)}$$
Bayes rule
$$= \frac{\sum_{S \in \{H,C\}} P(E_2 = L | S_2 = H) P(S_2 = H | E_1 = T, S_1 = s) P(S_1 = s | E_1 = T)}{P(E_2 = L | E_1 = T)}$$
Bayes rule
$$= \frac{\sum_{S \in \{H,C\}} P(E_2 = L | S_2 = H) P(S_2 = H | S_1 = s) P(S_1 = s | E_1 = T)}{P(E_2 = L | E_1 = T)}$$

Forwards algorithm: Paleontological Temperature

Hidden state given all observations up to observations up to that point $P(S_2 = H | E_1 = T, E_2 = L) = \frac{P(E_2 = L | S_2 = H) \sum_{s \in \{H,C\}} P(S_2 = H | S_1 = s) P(S_1 = s | E_1 = T)}{P(E_2 = L | E_1 = T)}$

Define:
$$\alpha_t(i) = P(S_t = \sigma_i | E_1, E_2, ..., E_t)$$
 and $Z_t = P(E_t | E_1, ..., E_{t-1})$

Above equation can be written as,

$$\alpha_2(H) = \frac{1}{Z_2} P(E_2 = L | S_2 = H) \sum_{s \in \{H,C\}} P(S_2 = H | S_1 = s) \alpha_1(s)$$

Where,
$$Z_2 = P(E_2|E_1)$$

Recursion

Forwards algorithm: General Expression

Define: $\alpha_t(j) = P(S_t = \sigma_j | E_1, E_2, ..., E_t)$ and $Z_t = P(E_t | E_1, ..., E_{t-1})$

In general,

$$\alpha_t(j) = \frac{1}{Z_t} P(E_t | S_t = \sigma_j) \sum_{i=1}^N P(S_t = \sigma_j | S_{t-1} = \sigma_i) \alpha_{t-1}(i) \qquad Z_t = \sum_{j=1}^N b_t \odot (A^T \alpha_{t-1})$$
Transition probability a_{ij}

Above equation can be written as a matrix for all j,

Forwards Algorithm: Paleontological Temperature

For observations T, L, D, T, L

$$P(S_2|E_1 = T, E_2 = L)$$
 is,

$$\begin{bmatrix} \alpha_2(H) \\ \alpha_2(C) \end{bmatrix} \propto \begin{bmatrix} 0.5 \\ 0.1 \end{bmatrix} \bullet \begin{bmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{bmatrix} \begin{bmatrix} \alpha_1(H) \\ \alpha_1(C) \end{bmatrix}$$

Similarly,
$$P(S_3|E_1 = T, E_2 = L, E_3 = D)$$
 is,

$$\begin{bmatrix} \alpha_3(H) \\ \alpha_3(C) \end{bmatrix} \propto \begin{bmatrix} 0.4 \\ 0.2 \end{bmatrix} \odot \begin{pmatrix} \begin{bmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{bmatrix} \begin{bmatrix} \alpha_2(H) \\ \alpha_2(C) \end{bmatrix} \end{pmatrix}$$

$$\begin{array}{cccc}
 & H & C \\
 & H & [0.7 & 0.3] \\
 & C & [0.4 & 0.6]
\end{array}$$

Transition probability matrix

Observation matrix

Forwards Algorithm

- 1. Input: (A, B, π) and observed sequence E_1, \dots, E_n
- 2. $[\alpha_1, Z_1] = \text{normalize}(b_1 \circ \pi)$
- 3. for t = 2: n do $[\alpha_t, Z_t]$ = normalize $(b_t \circ (A^T \alpha_{t-1}))$
- 4. return $\alpha_1, \dots, \alpha_n$ and $\log(P(E_1, \dots, E_n)) = \sum_t \log(Z_t)$

Note:

Subroutine: [v, Z] = normalize(u): $Z = \sum_j u_j$; $v_j = u_j/Z$;

Breaking down the inference question

$$P(S_t|E_1, E_2, ..., E_n) = \frac{P(E_{t+1}, ..., E_n | S_t) P(S_t|E_1, ..., E_t)}{P(E_{t+1}, ..., E_n | E_1, ..., E_t)}$$

$$P(S_t|E_1,...,E_t)$$
:

Probability of hidden state at time t given observation up to time t (Forwards algorithm)

$$P(E_{t+1}, ..., E_n | S_t)$$
:

Probability of the future observed sequence given the hidden state at time t (Backwards algorithm)

$$P(E_{t+1}, ..., E_n | E_1, ..., E_t)$$
:

Does not depend on the hidden state (will not affect the maximization because it is just a scaling factor)

Backwards Algorithm (similar to Forwards Algo.)

Calculate $P(E_{t+1}, ..., E_n | S_t)$

Define: $\beta_t(j) = P(E_{t+1}, ..., E_n | S_t = \sigma_i)$

Include S_t to use information from the onestep future

Define:
$$\beta_t(j) = P(E_{t+1}, \dots, E_n | S_t = \sigma_j)$$

$$\beta_{t-1}(j) = P(E_t, \dots, E_n | S_{t-1} = \sigma_j) = \sum_{i=1}^N P(S_t = \sigma_i, E_t, \dots, E_n | S_{t-1} = \sigma_j)$$

$$= \sum_{i=1}^N P(E_{t+1}, \dots, E_n | S_{t-1} = \sigma_j, S_t = \sigma_i, E_t) P(E_t | S_{t-1} = \sigma_j, S_t = \sigma_i) P(S_t = \sigma_i | S_{t-1} = \sigma_j)$$

$$= \sum_{i=1}^N P(E_{t+1}, \dots, E_n | S_t = \sigma_i) P(E_t | S_t = \sigma_i) P(S_t = \sigma_i | S_{t-1} = \sigma_j)$$

$$= \sum_{i=1}^N P(E_{t+1}, \dots, E_n | S_t = \sigma_i) P(S_t = \sigma_i) P(S_t = \sigma_i | S_{t-1} = \sigma_j)$$
Emission probability

Transition probability

Transition probability

In matrix form, we get,

$$\beta_{t-1} = A(b_t \odot \beta_t)$$

$$\beta_t = \begin{bmatrix} \beta_t(1) \\ \vdots \\ \beta_t(N) \end{bmatrix}$$

Backwards Algorithm

- 1. Input: (A, B, π) and observed sequence E_1, \dots, E_n
- 2. $\beta_n=1$; // initialize $\beta_n(j)$ to 1 for all states σ_j
- 3. for t = n 1: 1 do $\beta_{t-1} = A(b_t \odot \beta_t)$
- 4. return β_1, \dots, β_n

Breaking down the inference question

$$P(S_t|E_1, E_2, ..., E_n) = \frac{P(E_{t+1}, ..., E_n | S_t) P(S_t|E_1, ..., E_t)}{P(E_{t+1}, ..., E_n | E_1, ..., E_t)}$$

$$P(S_t|E_1,...,E_t)$$
:

Probability of hidden state at time t given observation up to time t (Forwards algorithm)

$$P(E_{t+1}, ..., E_n | S_t)$$
:

Probability of the future observed sequence given the hidden state at time t (Backwards algorithm)

$$P(E_{t+1}, ..., E_n | E_1, ..., E_t)$$
:

Does not depend on the hidden state (will not affect the maximization because it is just a scaling factor)

Inference – using Forwards-Backwards expressions

$$P(S_t|E_1, E_2, ..., E_n) = \frac{P(E_{t+1}, ..., E_n | S_t) P(S_t|E_1, ..., E_t)}{P(E_{t+1}, ..., E_n | E_1, ..., E_t)}$$

For $S_t = \sigma_j$ and $\gamma_t(j) = P(S_t = \sigma_j | E_1, E_2, ..., E_n)$, the above equation is:

$$P(S_t = \sigma_j | E_1, E_2, \dots, E_n) = \frac{P(E_{t+1}, \dots, E_n | S_t = \sigma_j) P(S_t = \sigma_j | E_1, \dots, E_t)}{P(E_{t+1}, \dots, E_n | E_1, \dots, E_t)}$$

$$\gamma_t(j) = \frac{\beta_t(j) \alpha_t(j)}{P(E_{t+1}, \dots, E_n | E_1, \dots, E_t)} = \frac{\beta_t(j) \alpha_t(j)}{\sum_{i=1}^N \beta_t(j) \alpha_t(j)}$$
Theorem of total probability

Inference: Most likely state

- Forwards-backwards algorithm gives $P(S_t = \sigma_j | E_1, ..., E_n)$ for all j
- Find the individually most likely state at time t given all observations

$$S_t^* = \underset{j \in \{1,...,N\}}{\operatorname{argmax}} \gamma_t(j)$$

Optimality of inference

- In the inference problem we attempt to uncover the hidden part of HMM, i.e., find the "correct" state sequence
- It is impossible to find the "correct" state sequence (solution)
- Use optimality criterion to find the "best" possible solution
- Several reasonable criteria exist and is a strong function of the intended application
 - Most likely state given observations
 - Application in finding average statistics, expected number of correct states
 - Solved using Forwards-Backwards algorithm
 - Single best sequence that maximises probability of observed events
 - Application in continuous speech recognition
 - Solved using Viterbi algorithm

Resources

Rabiner's (excellent) paper:

https://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf