Modéliser le comportement statique des systèmes mécaniques

- Concours Centrale Supelec PSI 2018

Sciences
Industrielles de
l'Ingénieur

1 Contexte et étude préliminaire

Objectif Valider la pertinence de l'utilisation d'une machine spéciale appelée tour en fosse pour le reprofilage des roues ferroviaires.

Ouestion 1

- Pour la méthode a, $t_{i1} = t_3 + t_4 = 14 \text{ h} = 840 \text{ min}$.
- Pour la méthode *b*, $t_{i2} = (6 \times 3 \times 2) t_5 + t_6 = 545 \text{ min.}$

Le gain de temps $\Delta t_i = t_{i1} - t_{i2} = 295 \, \text{min}$ soit 4 h et 55 min. C'est autant de temps gagner sur l'exploitation de la rame.

2 Analyse de l'entraînement en rotation d'une roue

- 2.1 Description fonctionnelle et structurelle du tour en fosse
- 2.2 Modélisation du dispositif de mise en rotation d'une roue

Objectif Vérifier que la modélisation et les hypothèses retenues permettent de déterminer toutes les actions mécaniques nécessaires pour dimensionner les actionneurs des chaines d'énergie.

Question 2 À partir des informations données, on peut réaliser le graphe de structure suivant.

1

Méthode cinématique

• Nombre cyclomatique $\gamma = L - S + 1$ avec L = 5 liaisons et S = 4 solides, on a donc $\gamma = 5 - 4 + 1 = 2$ et

 $E_c = 12$ équations cinématiques.

- Nombre d'inconnues cinématiques :
 - 3 liaisons pivot : $1 \times 3 = 3$ inconnues;

- 2 liaisons sphère-plan: $5 \times 2 = 10$ inconnues;
- au total : $I_c = 13$ inconnues cinématiques.
- Mobilités:
 - mobilités utiles : $m_u = 2$: entraînement des deux moteurs;
 - mobilités internes : en considérant le glissement entre la roue et les rouleaux, la roue 3, ainsi que re₁ et re₂ les rouleaux peuvent tourner librement. On a donc : m_i = 3.
 - au final, selon les hypothèses, $m = m_i + m_u = 5$
- On a donc $h = m I_c + E_c = 5 13 + 12 = 4$.

Méthode statique

- 3 solides peuvent être isolés, $E_s = 3 \times 6 = 18$ équations statiques.
- Nombre d'inconnues statiques :
 - 3 liaisons pivot: $5 \times 3 = 15$ inconnues;
 - 2 liaisons sphère-plan : $1 \times 2 = 2$ inconnues;
 - au total : $I_s = 17$ inconnues statiques.
- Mobilités : $m = m_i + m_u = 5$.
- On a donc $h = m E_S + I_s = 5 18 + 17 = 4$.

Question 3 Condition de roulement sans glissement en $I_1: \overrightarrow{V(I_1 \in 3/re_1)} = \overrightarrow{0} \iff \overrightarrow{V(I_1 \in 3/0)} - \overrightarrow{V(I_1 \in re_1/0)} = \overrightarrow{0}$. Par suite,

•
$$\overrightarrow{V(I_1 \in 3/0)} = \overrightarrow{V(O_3 \in 3/0)} + \overrightarrow{I_1O_3} \wedge \overrightarrow{\Omega(3/0)} = R\overrightarrow{z_1} \wedge \omega_3 \overrightarrow{y_0} = -R\omega_3 \overrightarrow{x_1};$$

•
$$\overrightarrow{V(I_1 \in re_1/0)} = \overrightarrow{V(O_1 \in 3/0)} + \overrightarrow{I_1O_1} \wedge \overrightarrow{\Omega(3/0)} = -R_{re} \overrightarrow{z_1} \wedge \omega_{re_1} \overrightarrow{y_0} = R_{re} \omega_{re_1} \overrightarrow{x_1}.$$

On a donc
$$-R\omega_3 - R_{re}\omega_{re_1} = 0 \Leftrightarrow \frac{\omega_3}{\omega_{re_1}} = -\frac{R_{re}}{R}$$
.

De même en exploitant le roulement sans glissement en I_2 , $\frac{\omega_3}{\omega_{rea}} = -\frac{R_{re}}{R}$.

La condition de roulement sans glissement supprime les 3 mobilités internes; donc m' = 2 et h' = 1.

Question 4 Dans les conditions précédentes, les couples \mathscr{C}_{mi} ne peuvent pas être déterminés. Il faudrait imposer un taux de rotation rigoureusement identique pour ω_{re_1} et ω_{re_2} .

2.3 Motorisation du dispositif de mise en rotation d'une roue

Objectif Analyser la chaîne d'entraînement en rotation d'une roue et vérifier le choix de la machine électrique.

Question 5 On conserve l'hypothèse que sre est supposé fixe par rapport au bâti. On a $E_1 = M_1 + R_1 + re_1$. Ces 3 solides sont en liaison pivot par rapport au bâti. En conséquence, $T(E_1/0) = T(M_1/0) + T(R_1/0) + T(re_1/0) = \frac{1}{2}J_m\omega_m^2 + \frac{1}{2}J_{re}\omega_{re}^2 + \frac{1}{2}J_{re}\omega_{re}^2 = \frac{1}{2}\left(J_m + J_{red}k^2 + J_{re}k^2\left(\frac{R_{re}}{R}\right)^2\right)\omega_m^2$.

On a donc $J_{eq} = J_m + J_{red}k^2 + J_{re}k^2\left(\frac{R_{re}}{R}\right)^2$.

Question 6 On prend le graphe de structure suivant :

On isole E_1 . Bilan des puissances internes : les liaisons internes au système considrée sont considérées sans frottement. On a donc : $\mathcal{P}_{int}(E_1) = 0$.

Bilan des puissances externes:

• la puissance développée par le moteur peut s'exprimer par $\mathscr{P}(\text{sre} \to M_1/0) = C_m \omega_m$;

• puissance développée par l'action de 3 sur re₁ : $\mathscr{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1) \} = \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_r \otimes \mathbb{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1) \} = \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_r \otimes \mathbb{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1) \} = \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_r \otimes \mathbb{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1) \} = \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_r \otimes \mathbb{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to$

$$\left\{\begin{array}{c} -F_{z1}\overrightarrow{z_1} - F_{x1}\overrightarrow{x_1} \\ \overrightarrow{0} \end{array}\right\}_{I_1} = -kR_{re}F_{x1}\omega_m.$$

On applique le théorème de l'énergie cinétique et $\frac{dT(E_1/0)}{dt} = C_m \omega_m - kR_{re}F_{x1}\omega_m \Rightarrow \dot{\omega}_m J_{eq} = C_m - kR_{re}F_{x1}$.

Question 7 En isolant l'ensemble $E_2 = \{M_2 + R_2 + re_2\}$ et en appliquant le théorème de l'énergie cinétique : $\dot{\omega}_m J_{eq} = C_m - k R_{re} F_{x2}$. Comme les caractéristiques des deux chaînes d'entraînement sont les mêmes, on a donc nécessairement $F_{x1}=F_{x2}.$

Question 8 On a vu que $\frac{\omega_3}{\omega_{ro.}} = -\frac{R_{re}}{R}$ de plus $\omega_{re_1} = k\omega_m$; donc $\omega_3 = -k\frac{R_{re}}{R}\omega_m$. En dérivant, on a $\dot{\omega}_3 = -k\frac{R_{re}}{R}\dot{\omega}_m$.

Question 9 Stratégie : on cherche à exprimer le couple moteur en fonction des grandeurs du géométriques, inertielles, ... pour cela, la roue étant en pivot d'axe $(O, \overrightarrow{y_0})$ on va réaliser un théorème du moment dynamique en O_3 en projection sur $\overrightarrow{v_0}$.

On isole la roue 3.

On réalise le bilan des actions mécaniques extérieures :

- action de la pivot en O_3 (pas de moment en O_3 en projection sur $\overrightarrow{y_0}$);
- action des liaisons sphères plans :

$$-\overrightarrow{\mathcal{M}(O_3, re_1 \to 3)} \cdot \overrightarrow{y_0} = \left(\overrightarrow{O_3 I_1} \wedge \left(F_{x_1} \overrightarrow{x_1} + F_{z_1} \overrightarrow{z_1}\right)\right) \cdot \overrightarrow{y_0} = \left(-R \overrightarrow{z_1} \wedge \left(F_{x_1} \overrightarrow{x_1} + F_{z_1} \overrightarrow{z_1}\right)\right) \cdot \overrightarrow{y_0} = -RF_{x_1}.$$

$$-\overrightarrow{\mathcal{M}(O_3, re_2 \to 3)} \cdot \overrightarrow{y_0} = \left(\overrightarrow{O_3 I_2} \wedge \left(F_{x_2} \overrightarrow{x_2} + F_{z_2} \overrightarrow{z_2}\right)\right) \cdot \overrightarrow{y_0} = \left(-R \overrightarrow{z_2} \wedge \left(F_{x_2} \overrightarrow{x_2} + F_{z_2} \overrightarrow{z_2}\right)\right) \cdot \overrightarrow{y_0} = -RF_{x_2}.$$

• action de l'outil : $\overrightarrow{\mathcal{M}}(O_3, \text{outil} \to 3) \cdot \overrightarrow{y_0} = \left(\overrightarrow{O_3C} \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left(\left(-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}\right) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right) \cdot \overrightarrow{y_0} = \left((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{y_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)\right)$ $\left(-\lambda(t)\overrightarrow{y_0}\wedge \overline{R(\text{outil}\to 3)} - R_C(t)\overrightarrow{z_0}\wedge \overline{R(\text{outil}\to 3)}\right)\cdot \overrightarrow{y_0} = \left(-R_C(t)\overrightarrow{z_0}\wedge \overline{R(\text{outil}\to 3)}\right)\cdot \overrightarrow{y_0} = -R_C(t)\left(\overrightarrow{y_0}\wedge \overrightarrow{z_0}\right)\cdot \overrightarrow{y_0}$ $\overrightarrow{R(\text{outil} \to 3)} = -R_C(t)\overrightarrow{x_0} \cdot \overrightarrow{R(\text{outil} \to 3)} = R_C(t)f_{ex}.$

Enfin, la roue étant supposée équilibrée, on a $\overrightarrow{\delta(O_3, 3/0)} \cdot \overrightarrow{y_0} = J_3 \ddot{\omega}_3$.

Le TMD appliqué en 3 en projection sur $\overrightarrow{y_0}$ est donné par $J_3\ddot{\omega}_3 = -2RF_{x1} + R_C(t)f_{ex}$. De plus, $\omega_3 = -k\frac{R_{re}}{R}\omega_m$ et

$$\dot{\omega}_m J_{eq} = C_m - k R_{re} F_{x1} \Longleftrightarrow F_{x1} = \frac{C_m - \dot{\omega}_m J_{eq}}{k R_{re}}.$$

Au final:

$$-J_3k\frac{R_{re}}{R}\dot{\omega}_m = -2R\frac{C_m - \dot{\omega}_mJ_{eq}}{kR_{re}} + R_C(t)f_{ex} \iff C_m = \dot{\omega}_mJ_{eq} + J_3k^2\frac{R_{re}^2}{2R^2}\dot{\omega}_m + \frac{R_C(t)kR_{re}f_{ex}}{2R}.$$

Question 10 En utilisant l'expression précédente, le couple est maximum lorsque $R_C(t) = R_M$.

Question 11 En utilisant la décomposition du vecteur vitesse, $\overline{V(C \in \text{outil/3})} = \overline{V(C \in \text{outil/0})} - \overline{V(C \in \text{3/0})}$. D'après le document réponse, $\overrightarrow{V(C \in \text{outil}/0)} = V_f(t)\overrightarrow{u} = -b\omega_3\overrightarrow{u}$. Par ailleurs, $\overrightarrow{V(C \in 3/0)} = R_C(t)\omega_3\overrightarrow{x_0}$.

Au final, $\overrightarrow{V(C \in \text{outil}/3)} = V_f(t) \overrightarrow{u} - R_C(t) \omega_3 \overrightarrow{x_0}$.

 $\overrightarrow{V(C \in \text{outil}/3)} \cdot \overrightarrow{x_0} = -V_C = V_f(t) \overrightarrow{t} u \cdot \overrightarrow{x_0} - R_C(t) \omega_3 = -R_C(t) \omega_3$. On a donc $V_C = R_C(t) \omega_3$. Ainsi:

- $V_C = R_C(t)\omega_3(t) = R_M\omega_{C_0} \Rightarrow \omega_{C_0} = \frac{V_C}{R_M}$. $V_C = R_C(t)\omega_3(t) = R_m\omega_{C_1} \Rightarrow \omega_{C_1} = \frac{V_C}{R_m}$.

Question 12

Dans ces conditions, on a $\omega_3(t) = \frac{\omega_{C_1} - \omega_{C_0}}{t_1}t + \omega_{C_0}$.

Question 13

Question 14

Ouestion 15

Question 16

Question 17

3 Analyse de la commande du dispositif de mise en translation de l'outil

Objectif Analyser la chaîne d'asservissement en position et en vitesse du porte-outil afin de proposer puis de régler un correcteur permettant d'assurer le niveau de précision attendu pour le profil de la roue.

3.1 Effet de la déformation de l'outil sur la forme de la roue reprofilée

3.2 Analyse d'une solution avec un porte-outil fixé au bâti

Objectif Déterminer les variations de position du point de contact C entre la roue et l'outil pour une variation sinusoïdale de l'effort perturbateur $f_c(t)$.

Question 18

3.3 Analyse des asservissements du porte-outil

3.3.1 Modélisation du mouvement pour la commande

Objectif Modéliser le comportement dynamique de l'outil et du porte-outil, puis étudier une commande en position $z_1(t)$ comprenant un correcteur proportionnel.

Question 19 D'après le schéma-blocs $Z_1(p) = H_2(p) \left(F_m(p) + H_1(p) Z_2(p) \right)$. D'après la première équation différentielle, on a : $m_1 p^2 Z_1(p) + \lambda p Z_1(p) + K Z_1(p) = \lambda p Z_2(p) + K Z_2(p) + K Z_2(p) + F_m(p) \Leftrightarrow Z_1(p) \left(m_1 p^2 + \lambda p + K \right) = Z_2(p) \left(\lambda p + K \right) + F_m(p) \Leftrightarrow Z_1(p) = \frac{Z_2(p) \left(\lambda p + K \right) + F_m(p)}{m_1 p^2 + \lambda p + K}$. On a donc par identification $H_2(p) = \frac{1}{m_1 p^2 + \lambda p + K}$ et $H_1(p) = \lambda p + K$. D'après le schéma-blocs $Z_2(p) = H_4(p) \left(F_c(p) + H_3(p) Z_1(p) \right)$. D'après la seconde équation différentielle, $m_2 p^2 Z_2(p) + \lambda p Z_2(p) + K Z_2(p) = \lambda p Z_1(p) + K Z_1(p) + F_C(p) \Leftrightarrow Z_2(p) \left(m_2 p^2 + \lambda p + K \right) = Z_1(p) \left(\lambda p + K \right) + F_C(p) \Leftrightarrow Z_2(p) = \frac{Z_1(p) \left(\lambda p + K \right) + F_C(p)}{m_2 p^2 + \lambda p + K}$. On a donc par identification $H_4(p) = \frac{1}{m_2 p^2 + \lambda p + K}$ et $H_3(p) = \lambda p + K$.

Question 20 En utilisant le premier modèle, on avait : $\begin{cases} Z_1(p) = H_2(p) \left(F_m(p) + H_1(p) Z_2(p) \right) \\ Z_2(p) = H_4(p) \left(F_c(p) + H_3(p) Z_1(p) \right) \end{cases}$ Ainsi, $Z_1(p) = H_2(p) \left(F_m(p) + H_1(p) \left(H_4(p) \left(F_c(p) + H_3(p) Z_1(p) \right) \right) \right)$ $= H_2(p) F_m(p) + H_1(p) H_2(p) H_4(p) F_c(p) + H_1(p) H_2(p) H_3(p) H_4(p) Z_1(p) \end{cases}$

$$\Leftrightarrow Z_1(p)\left(1-H_1(p)H_2(p)H_3(p)H_4(p)\right)=H_2(p)\left(F_m(p)+H_1(p)H_4(p)F_c(p)\right).$$
 En utilisant le schéma-blocs, $Z_1(p)=\left(F_c(p)N_1(p)+F_m(p)\right)N_2(p).$ Par identification, on obtient $N_1(p)=H_1(p)H_4(p)$ et $N_2(p)=\frac{H_2(p)}{1-H_1(p)H_2(p)H_3(p)H_4(p)}.$

$$\begin{aligned} \textbf{Question 21} \quad N_2(p) &= \frac{H_2(p)}{1 - H_1(p)H_2(p)H_3(p)H_4(p)} = \frac{\frac{1}{m_1p^2 + \lambda p + K}}{1 - (\lambda p + K)\frac{1}{m_1p^2 + \lambda p + K}} \frac{1}{(\lambda p + K)\frac{1}{m_2p^2 + \lambda p + K}} \\ &= \frac{1}{(m_1p^2 + \lambda p + K) - (\lambda p + K)^2 \frac{m_1p^2 + \lambda p + K}{m_2p^2 + \lambda p + K}} \\ &= \frac{m_2p^2 + \lambda p + K}{(m_1p^2 + \lambda p + K)(m_2p^2 + \lambda p + K) - (\lambda p + K)^2 (m_1p^2 + \lambda p + K)} \\ &= \frac{m_1p^2 + \lambda p + K}{(m_1p^2 + \lambda p + K)(m_2p^2 + \lambda p + K) - (\lambda p + K)^2 (m_1p^2 + \lambda p + K)} \\ &= m_1p^2 (m_2p^2 + \lambda p + K) + \lambda p (m_2p^2 + \lambda p + K) + K (m_2p^2 + \lambda p + K) - \lambda^2 p^2 (m_1p^2 + \lambda p + K) - K^2 (m_1p^2 + \lambda p + K) - 2\lambda p K (m_1p^2 + \lambda p + K) \\ &= (m_1m_2p^4 + m_1p^3\lambda + Km_1p^2) + (\lambda m_2p^3 + \lambda^2p^2 + K\lambda p) + (Km_2p^2 + K\lambda p + K^2) - (\lambda^2 m_1p^4 + \lambda^2p^3\lambda + \lambda^2p^2K) - (K^2m_1p^2 + K^2\lambda p + K^3) - (2\lambda K m_1p^3 + 2\lambda K\lambda p^2 + 2\lambda p K^2) \end{aligned}$$

$$= m_1 m_2 p^4 + m_1 p^3 \lambda + K m_1 p^2 + \lambda m_2 p^3 + \lambda^2 p^2 + 2K \lambda p + K m_2 p^2 + K^2 - \lambda^2 m_1 p^4 - \lambda^3 p^3 - \lambda^2 p^2 K - K^2 m_1 p^2 - K^2 \lambda p - K^3 - 2\lambda K m_1 p^3 - 2K \lambda^2 p^2 - 2\lambda p K^2$$

Question 22

Question 23

Question 24

Question 25

- req 1.1 : $M\varphi = 60^{\circ}$.
- req 1.2 : $\omega_{0 dB} = 200 \,\mathrm{rad}\,\mathrm{s}^{-1}$.
- req 1.4 : erreur en régime permanent : $\Delta c < 40 \,\mu\text{m}$ pour un échelon d'amplitude $f_{c0} = 1 \,\text{kN}$.
- req 1.5 : défaut de la roue $\Delta u < 30 \,\mu \text{m}$ lorsque la perturbation est sinusoïdale.

3.3.2 Calcul des paramètres des correcteurs de la loi de commande

Objectif Déterminer les paramètres d'une loi de commande afin de valider les performances statiques et dynamiques du cahier des charges.

Question 26 On a
$$\arg(H_{BO}(j\omega)) = \arg(AK_v) + \arg\left(p + \frac{1}{T_i}\right) + \arg\left(p + K_p\right) - 3\arg(p) = \arctan T_i\omega + \arctan \omega/K_P - 270$$
.

On souhaite que la marge de phase soit de 60° soit arg $(H_{BO}(j\omega_{0dB})) = -120^\circ$. On a donc $-120 = \arctan T_i\omega_{0dB} + \arctan \omega_{0dB}/K_P - 270 \Leftrightarrow \arctan T_i\omega_{0dB} + \arctan \omega_{0dB}/K_P = 150$.

$$\begin{aligned} & \cot \omega_{0\mathrm{dB}}/K_P - 270 \Leftrightarrow \arctan T_i \omega_{0\mathrm{dB}} + \arctan \omega_{0\mathrm{dB}}/K_P = 150. \\ & \mathrm{Or} \ \tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}. \\ & \mathrm{On} \ \mathrm{a} \ \mathrm{donc} \ \tan 150 = \frac{T_i \omega_{0\mathrm{dB}} + \omega_{0\mathrm{dB}}/K_P}{1 - T_i \omega_{0\mathrm{dB}}^2/K_P} \Leftrightarrow \tan 150 - \tan 150 T_i \omega_{0\mathrm{dB}}^2/K_P = T_i \omega_{0\mathrm{dB}} + \omega_{0\mathrm{dB}}/K_P \\ & \Leftrightarrow T_i = \frac{K_P \tan 150 - \omega_{0\mathrm{dB}}}{K_P \omega_{0\mathrm{dB}} + \tan 150 \omega_{0\mathrm{dB}}^2} \end{aligned}$$

Question 27
$$H_{BO}(j\omega) = AK_v \frac{-\omega^2 + K_P j\omega + \frac{j\omega}{T_i} + \frac{K_P}{T_i}}{-\omega^3} = -\frac{AK_v}{\omega^3} \left(\left(\frac{K_p}{T_i} - \omega^2 \right) + \left(\frac{1}{T_i} + K_P \right) j\omega \right)$$
On a donc $\log \left| H_{BO}(j\omega) \right| = \frac{AK_v}{\omega^3} \sqrt{\left(\frac{K_p}{T_i} - \omega^2 \right)^2 + \left(\frac{1}{T_i} + K_P \right)^2 \omega^2}.$
Pour $\omega = \omega_{0dB}$, $\log \left| H_{BO}(j\omega) \right| = 1$. En conséquence, $\frac{AK_v}{\omega^3} \sqrt{\left(\frac{K_p}{T_i} - \omega^2 \right)^2 + \left(\frac{1}{T_i} + K_P \right)^2 \omega^2} = 1$

$$\iff K_{v} = \frac{\omega_{0 \, dB}^{3}}{A\sqrt{\left(\frac{K_{p}}{T_{i}} - \omega_{0 \, dB}^{2}\right)^{2} + \left(\frac{1}{T_{i}} + K_{P}\right)^{2} \omega_{0 \, dB}^{2}}}$$

3.4 Analyse de l'influence du paramètre b

 ${\bf Objectif} \quad {\bf Déterminer\ la\ valeur\ maximale\ de\ } b\ permettant\ de\ conserver\ la\ stabilit\'e\ de\ l'asservissement.$

Question 28 D'après le schéma-blocs, $Q(p) = Q_c(p) - Z_2(p)H_r(p)$.