

A.A. 2009-2010 - Docente: Prof. F. Pappalardi Tutori: Annamaria Iezzi e Dario Spirito

Tutorato 11 27 maggio 2010

- 1. Sia K il campo di spezzamento di un polinomio biquadratico. Dimostrare che l'ampliamento $\mathbb{Q}\subseteq K$ è radicale.
- 2. Descrivere le corrispondenza di Galois per il campo di spezzamento dei seguenti polinomi di $\mathbb{Q}[X]$:

a)
$$X^4 - 7$$

b)
$$X^4 - 4X - 5$$

c)
$$X^{21} - 1$$

3. Descrivere (come gruppo astratto) il gruppo di Galois dei seguenti polinomi di $\mathbb{Q}[X]$:

a)
$$X^4 + 3X^3 + 3$$

b)
$$X^4 + 25X^2 + 5$$

c)
$$X^4 + 8X + 12$$

d)
$$X^3 - 7X + 2$$

e)
$$X^3 + 81X + 5$$

f)
$$X^4 + 4X^3 + 10X^2 + 12X + 6$$

g)
$$X^{1050} - 1$$

h)
$$(X^3 - 2)\Phi_5(X)$$

- 4. Sia $f(X) \in \mathbb{Q}[X]$ un polinomio irriducibile di terzo grado con discriminante negativo, e sia ρ una sua radice. Dimostrare che l'unico automorfismo di $\mathbb{Q}(\rho)$ è l'identità. Dimostrare che lo stesso vale se f è irriducibile di grado n e $\operatorname{Gal}_{\mathbb{Q}} f = S_n$.
- 5. Sia $f(X) = X^n 2 \in \mathbb{Q}[X]$. Dimostrare che se $\mathrm{MCD}(n, \phi(n)) = 1$ allora il campo di spezzamento di f ha grado $n\phi(n)$ su \mathbb{Q} . Trovare un esempio in cui $n \in \phi(n)$ non sono coprimi e il grado del campo di spezzamento è minore di $n\phi(n)$.
- 6. Dimostrare che sin $\left(\frac{2\pi}{n}\right)$ è irrazionale per tutti gli $n \geq 5$, ad eccezione di n = 12.
- 7. Determinare due valori distinti di n tali che $\mathbb{Q}(\xi_n)$ contiene un sottocampo il cui gruppo di Galois su \mathbb{Q} è isomorfo a $\mathbb{Z}_6 \times \mathbb{Z}_{12}$.
- 8. Determinare un'estensione normale di campi tale che il suo gruppo di Galois è $S_3 \times \mathbb{Z}_2$, una in cui è $D_4 \times \mathbb{Z}_2$ e una in cui è $S_3 \times D_4 \times \mathbb{Z}_{10}$.
- 9. Siano p e q numeri primi. Determinare un polinomio su $\mathbb{F}_p[X]$ i cui fattori siano tutti e soli i polinomi irriducibili di grado q su \mathbb{F}_p .
- 10. Determinare il numero di polinomi quadratici irriducibili su \mathbb{F}_7 ; sceglierne poi due distinti ed esplitare un isomorfismo tra i loro campi di spezzamento.
- 11. Esplicitare la corrispondenza di Galois per il polinomio $X^4 + 2X^2 + 2X + 2 \in \mathbb{F}_n[X]$ per tutti gli $n \in \{2, 3, 5, 7, 9, 11\}$.
- 12. Sia f un polinomio di quarto grado su \mathbb{F}_p . Dimostrare che f è irriducibile se e solo se $\mathrm{MCD}(f,X^{p^2}-X)=1$.