J Bolton Week 3

Languages and Machines

Chap 2 (pp58-60): 1,5,6,10,12,13,14,23

```
1.
l(empty) = 0
l(wa) = 1 + l(w)
5.
(a)
L_0 = \{b\}
L_1 = L_0 U \{bb, bab, bba\}
L_2 = L_0 U L_1 U \{bbb, babab, bbaba, bbbaa\}
No – you can never have the same number of a's as b's
No - for the same reason above
6.
Basis
b is an element of L
Rec.
if u is an element of L
then aau, ua, ub are elements of L
10.
Basis
0 >= 0
Inductive Hypothesis
na(u) >= nb(u)
Induction
case 1: uab
In this case, we have added one a and one b. thus:
na(u) + 1 >= nb(u) + 1
case 2: ua
In this case, wehave added one a and zero b's. Thus:
na(u) + 1 \ge nb(u)
In both cases, the equality holds.
```

12.

All elements from the set defined by the first definition are elements in the set defined by the second definition, and vice versa.

First proof: all elements of first def are elements of second def

Basis

lambda = $lambda^R$ and $a=a^R$ by the def. of reversal.

IH:

J Bolton Week 3

```
w = w^R
Induction:
(awa)^R =
(a(wa))^R =
((wa)^R a^R) =
a^R w^R a^R =
aw^R a =
[theorem 2.1.6]
awa
```

Second proof: all elements of second def are elements of first def

Basis

lambda =lambda^R is the first element of the second definition lambda is also in the base case of the first definition

ΙH

```
w = w^R = aua
                       where length(w) = n
Induction
length(wa) = n+1
n = head(w)
                       [2<sup>nd</sup> definition]
(nwa)^R = nwa
w = nun
               [IH]
un = w'
(nw'a)^R =
(n(wa))^R =
(wa)^R n^R =
a^R w^R n^R =
awn
thus, nwa = awn
```

13.

a = n

L₂: Four characters, each either an a or b

L₃: multiples of four characters, with the characters any order

 L_1 U L_3 : any number of sequences of three a's interspersed with any number of sequences of length four with any pattern of characters

14.

a*b*c*

23.

abbcc