

Self-Attention

Attention $(Q, K, V) = Softmax \left(\frac{QK^T}{\sqrt{d_K}}\right)V$

Unlocking Your Potential, Unleashing Your Success

Order

English French

The ──── La

Size Mismatch

English French

The La

European Europeene Economic Economique Area Zone

Machine Translation (2015) Encoder

.

Area

Vectors which represent meaning of word or words in the context of sentences

Machine Translation (2015) Decoder

Decoder weights or attends to the inputs based on the previous and current words being generated .

The pizza came out of the oven and it tasted good

Transformers have attentions to correctly associate the word it to pizza

The pizza came out of the oven and it tasted good

Self attention calculates the similarity between **The** and all the words in the sentence.

The pizza came out of the oven and it tasted good

If you have a lot of examples where the word pizza is related to it and taste

Then the similarity score between pizza, it and taste will be more

Attention $(Q, K, V) = Softmax \left(\frac{QK^T}{\sqrt{d_K}}\right)V$

Value

 0.1
 2.13

 0.11
 2.13

 0.21
 3.13

 0.8
 0.9

Query Weights T

 0.78
 2.0

 0.9
 1.7

Query

		_
••		Pizza
		is
0.8	0.8	awesome <eos></eos>

Because we stareted with 2 encoded values we multiplies with 2-D weight matrix. If we start with 512-encoded value we will have a 512X512 weight

Value

 0.1
 2.13

 0.11
 2.13

 0.21
 3.13

 0.8
 0.9

Key Weights T

0.78	2.0		
0.9	1.7		

Key

	:	Pizza
		is
0.18	0.81	<eos></eos>

Because we stareted with 2 encoded values we multiplies with 2-D weight matrix. If we start with 512-encoded value we will have a 512X512 weight

Value

 0.1
 2.13

 0.11
 2.13

 0.21
 3.13

 0.8
 0.9

Value Weights T

Value

ne
>
r

Because we stareted with 2 encoded values we multiplies with 2-D weight matrix. If we start with 512-encoded value we will have a 512X512 weight

unscaled dot product and scale each dot product similarity by sqrt(2) -- encoded word dimnesion size

Pizza is awesome			
Pizza	0.38	0.4	0.9
is			
awesome			

Pizza is 0.38% similar to Pizza, 0.4% similar to is etc...

In other words the percentages that comes out of the softmax tells us how much influence each word should have on the final encoding for a given word

Pizza is awesome

Value Matrix

0.38	0.4	0.24		0.6	= 1.0
			X	-0.35	
				3.86	

we calculate 36% of the first value for Pizza
we calculate 40% of the first value for is
we calculate 24% of the first value for
awesome

Self- Attention

Pizza	1.0	1.9
is awesome	0.2	0.4
G VV C C C I I C	3.86	2.2