

VISUALIZE TO SEE THE NON-OBVIOUS (1/3)

TABLE 1 F-measure evaluation results (d=5) on the four test datasets based on Modified U-Net with different loss functions and normalization layers. The best (maximum) value for each type of normalization is highlighted in bold whereas * highlights the best value in the particular column despite of types of normalization layer.

Model		CrackTree260			CRKWH100			CrackLS315			Stone331		
Norm	Loss	OIS	ODS	AP	OIS	ODS	AP	OIS	ODS	AP	OIS	ODS	AP
-	\mathcal{L}_{bce}	0.3886	0.2268	0.1312	0.2112	0.1018	0.0545	0.1252	0.0724	0.0666	0.2736	0.1471	0.093
	$\mathcal{L}_{\text{dice}}$	0.2818	0.2111	0.1186	0.1493	0.1157	0.0601	0.1051	0.0724	0.0634	0.1999	0.1028	0.052
	$\mathcal{L}_{\text{dice_bce}}$	0.3958	0.2225	0.1341	0.2235	0.1019	0.0536	0.1292	0.0731	0.0674	0.2739	0.1586	0.09
	\mathcal{L}_{iou}	0.2421	0.1913	0.1155	0.1356	0.1131	0.0592	0.0991	0.0724	0.0626	0.1734	0.0994	0.050
	$\mathcal{L}_{\text{log_iou}}$	0.1523	0.1516	0.0497	0.1269	0.1099	0.0648	0.1139	0.0833	0.0427	0.0724	0.0612	0.014
	$\mathcal{L}_{\mathrm{bfl}}$	0.6054	0.2827	0.2081	0.4201	0.1413	0.0833	0.1992	0.0763	0.0432	0.2938	0.1591	0.10
	\mathcal{L}_{bl2}	0.5933	0.2639	0.1843	0.3873	0.1146	0.0669	0.1822	0.0754	0.0398	0.2865	0.1423	0.08
	$\mathcal{L}_{\mathrm{bf4}}$	0.5867	0.2585	0.1840	0.3880	0.1175	0.0696	0.1808	0.0749	0.0401	0.2847	0.1419	0.08
BN	\mathcal{L}_{boe}	0.6498	0.6571	0.2791	0.5674	0.6026	0.2062	0.4379	0.4797	0.1748	0.6602	0.7111	0.60
	$\mathcal{L}_{\mathrm{dice}}$	0.7831	0.7967	0.7593	0.7685	0.8020	0.6180	0.4462	0.6055	0.2956	0.6679	0.7303	0.68
	$\mathcal{L}_{\text{dice_bce}}$	0.7762	0.7907	0.8010	0.7053	0.7634	0.7647	0.5614	0.6161	0.6119	0.6364	0.6852	0.73
	\mathcal{L}_{iou}	0.7788	0.7906	0.7468	0.7665	0.7982	0.6797	0.4385	0.5822	0.2770	*0.6729*	*0.7415*	*0.73
	$\mathcal{L}_{\text{log_iou}}$	0.7827	0.7928	0.8001	0.8160	0.8244	0.8094	0.4586	0.6135	0.4630	0.6362	0.7317	0.70
	$\mathcal{L}_{\mathrm{bf1}}$	0.8426	0.8350	0.8688	0.8176	*0.8397*	*0.8314*	*0.7580*	*0.7511*	*0.6856*	0.5579	0.5841	0.28
	\mathcal{L}_{bl2}	0.7666	0.7525	0.6683	0.8066	0.7631	0.6975	0.6378	0.6218	0.4003	0.6067	0.6561	0.57
	$\mathcal{L}_{\mathrm{bf4}}$	0.7547	0.7309	0.6287	0.7810	0.7519	0.7221	0.6085	0.6201	0.4520	0.6253	0.6852	0.62
IN	\mathcal{L}_{bce}	0.8463	0.8568	0.6874	0.7169	0.7516	0.5965	0.5796	0.6148	0.4924	0.3142	0.3080	0.09
	$\mathcal{L}_{\mathrm{dice}}$	0.8625	0.8686	0.8580	0.7353	0.8028	0.7647	0.4617	0.5903	0.4569	0.3475	0.4540	0.41
	$\mathcal{L}_{\text{dice_bce}}$	*0.9089*	*0.9120*	*0.9494*	0.7479	0.7303	0.7724	0.6614	0.6007	0.4847	0.3471	0.3512	0.11
	\mathcal{L}_{iou}	0.8591	0.8656	0.8535	0.7608	0.8148	0.7828	0.4796	0.6150	0.5019	0.3728	0.4508	0.40
	$\mathcal{L}_{\text{log_iou}}$	0.8741	0.8948	0.8721	0.5970	0.7341	0.6594	0.5435	0.6319	0.5160	0.2075	0.2113	0.10
	$\mathcal{L}_{\mathrm{bf1}}$	0.7671	0.7433	0.6562	0.8116	0.7818	0.7251	0.6142	0.5968	0.3967	0.3709	0.3566	0.16
	\mathcal{L}_{bf2}	0.8151	0.8059	0.7721	*0.8352*	0.8171	0.7662	0.6597	0.6578	0.5255	0.2818	0.2607	0.07
	$\mathcal{L}_{\mathrm{bf4}}$	0.7706	0.7445	0.6681	0.8144	0.7566	0.6456	0.6251	0.5997	0.4431	0.3464	0.3200	0.20

5

VISUALIZE TO SEE THE NON-OBVIOUS (2/3)

 $\textbf{TABLE 1. F-measure evaluation results } (d=5) \ \text{on the four test datasets based on Modified U-Net with different loss functions } \\$

NO NO	RM	\mathcal{L}_{bce}	\mathcal{L}_{dice}	Ldice bee	Lion	Liog_iou	\mathcal{L}_{bf1}	\mathcal{L}_{bf2}	\mathcal{L}_{bf4}
CrackTree	OIS	0.3886	0.2818	0.3958	0.2421	0.1523	0.6054	0.5933	0.5867
	ODS	0.2268	0.2111	0.2225	0.1913	0.1516	0.2827	0.2639	0.2585
	AP	0.1312	0.1186	0.1341	0.1155	0.0497	0.2081	0.1843	0.1840
CRKWH	OIS	0.2112	0.1493	0.2235	0.1356	0.1269	0.4201	0.3873	0.3880
	ODS	0.1018	0.1157	0.1019	0.1131	0.1099	0.1413	0.1146	0.1175
	AP	0.0545	0.0601	0.0536	0.0592	0.0648	0.0833	0.0669	0.0696
CrackLS	OIS	0.1252	0.1051	0.1292	0.0991	0.1139	0.1992	0.1822	0.1808
	ODS	0.0724	0.0724	0.0731	0.0724	0.0833	0.0763	0.0754	0.0749
	AP	0.0666	0.0634	0.0674	0.0626	0.0427	0.0432	0.0398	0.0401
Stone	OIS	0.2736	0.1999	0.2739	0.1734	0.0724	0.2938	0.2865	0.2847
	ODS	0.1471	0.1028	0.1586	0.0994	0.0612	0.1591	0.1423	0.1419
	AP	0.0932	0.0523	0.0972	0.0508	0.0143	0.1006	0.0881	0.0870
BN		\mathcal{L}_{bce}	Ldice	$L_{dice,bce}$	Lion	£tog_iou	\mathcal{L}_{bf1}	\mathcal{L}_{bf2}	\mathcal{L}_{bf4}
CrackTree	OIS	0.6498	0.7831	0.7762	0.7788	0.7827	0.8426	0.7666	0.7547
	ODS	0.6571	0.7967	0.7907	0.7906	0.7928	0.8350	0.7525	0.7309
	AP	0.2791	0.7593	0.8010	0.7468	0.8001	0.8688	0.6683	0.6287
CRKWH	OIS	0.5674	0.7685	0.7053	0.7665	0.8160	0.8176	0.8066	0.7810
	ODS	0.6026	0.8020	0.7634	0.7982	0.8244	0.8397	0.7631	0.7519
	AP	0.2062	0.6180	0.7647	0.6797	0.8094	0.8314	0.6975	0.7221
CrackLS	OIS	0.4379	0.4462	0.5614	0.4385	0.4586	0.7580	0.6378	0.6085
	ODS	0.4797	0.6055	0.6161	0.5822	0.6135	0.7511	0.6218	0.6201
	AP	0.1748	0.2956	0.6119	0.2770	0.4630	0.6856	0.4003	0.4520
Stone	OIS	0.6602	0.6679	0.6364	0.6729	0.6362	0.5579	0.6067	0.6253
	ODS	0.7111	0.7303	0.6852	0.7415	0.7317	0.5841	0.6561	0.6852
	AP	0.6060	0.6850	0.7320	0.7338	0.7080	0.2893	0.5795	0.6227
IN		\mathcal{L}_{bce}	\mathcal{L}_{dice}	$\mathcal{L}_{dice,bce}$	\mathcal{L}_{tou}	\mathcal{L}_{log_iou}	\mathcal{L}_{bf1}	\mathcal{L}_{bf2}	\mathcal{L}_{bf4}
CrackTree	OIS	0.8463	0.8625	0.9089	0.8591	0.8741	0.7671	0.8151	0.7706
	ODS	0.8568	0.8686	0.9120	0.8656	0.8948	0.7433	0.8059	0.7445
	AP	0.6874	0.8580	0.9494	0.8535	0.8721	0.6562	0.7721	0.6681
CRKWH	OIS	0.7169	0.7353	0.7479	0.7608	0.5970	0.8116	0.8352	0.8144
	ODS	0.7516	0.8028	0.7303	0.8148	0.7341	0.7818	0.8171	0.7566
	AP	0.5965	0.7647	0.7724	0.7828	0.6594	0.7251	0.7662	0.6456
CrackLS	OIS	0.5796	0.4617	0.6614	0.4796	0.5435	0.6142	0.6597	0.6251
	ODS	0.6148	0.5903	0.6007	0.6150	0.6319	0.5968	0.6578	0.5997
	AP	0.4924	0.4569	0.4847	0.5019	0.5160	0.3967	0.5255	0.4431
Stone	OIS	0.3142	0.3475	0.3471	0.3728	0.2075	0.3709	0.2818	0.3464
	ODS	0.3080	0.4540	0.3512	0.4508	0.2113	0.3566	0.2607	0.3200
	AP	0.0973	0.4189	0.1130	0.4007	0.1021	0.1648	0.0786	0.2042

_

MATPLOTLIB (2003) (1/2)

- The first Python data visualization library
- The most popular and widely-used Python package used by data scientists for creating advanced data visualizations
- MATLAB-style 2D plotting library for publication-quality graphics
- * A multiplatform (cross-platform) data visualization library <u>built</u> on NumPy arrays.
- Support many OSs, graphics backends, and output types

Without a backend explicitly set, Matplotlib automatically detects a usable backend based on what is available on your system and on whether a GUI event loop is already running. The first usable backend in the following list is selected: MacOSX, QtAgg, GTK4Agg, Gtk3Agg, TkAgg, WxAgg, Agg. The last, Agg, is a non-interactive backend that can only write to files. It is used on Linux, if Matplotlib cannot connect to either an X display or a Wayland display.

11

MATPLOTLIB (2003) (2/2)

For 3D graphs, matplotlib does include an alternative toolkit (e.g., mplot3d) that can be used to create 3D graphs.

MATPLOTLIB'S BACKEND (1/4)

- The "frontend" is the user facing code (i.e., the plotting code) whereas the "backend" does all the hard work behind-thescenes to make the figure.
- * Three types of backends:
 - + Non-interactive/Static backends (hardcopy backends): the matplotlib renderers, capable of writing to a file.
 - × Renderer: AGG, PS, PDF, SVG, PGF, Cairo
 - + Interactive backends (user interface backends): the user interfaces and renderer combinations supported, capable of displaying to the screen and of using appropriate renderers to write to a file:
 - * Backend (case-insensitive): QtAgg, ipympl, GTK3Agg, GTK4Agg, macosx, TkAgg, nbAgg, WebAgg, GTK3Cairo, GTK4Cairo, wxAgg

https://matplotlib.org/stable/users/explain/figure/backends.html

13

13

Static backends Here is a summary of the Matplotlib renderers (there is an eponymous backend for each; these are non-interactive backends, capable of writing to a file): Renderer Filetypes Description AGG raster graphics -- high quality images using the Anti-Grain Geometry png PDF pdf vector graphics -- Portable Document Format output. PS ps, eps <u>vector</u> graphics -- <u>PostScript</u> output. SVG svg vector graphics -- Scalable Vector Graphics output. **PGF** pgf, pdf vector graphics -- using the pgf package. Cairo png, ps, pdf, raster or vector graphics -- using the Cairo library (requires pycairo or cairocffi). To save plots using the non-interactive backends, use the <code>matplotlib.pyplot.savefig('filename')</code> method. 14 https://matplotlib.org/stable/users/explain/figure/backends.html

MATP	LOTLIB'S BACK	(END (4/4)
Backend	Jupyter notebook	How to display
_	%matplotlib inline	Embed a static figure in a Jupyter classic notebook (this is a default mode in Jupyter)
QtAgg	%matplotlib qt	Render in a Qt canvas
ipympl	%matplotlib ipympl %matplotlib widget	Render embedded in a Jupyter widget (work with Jupyter Lab and notebook>=7)(require additional installation of pip install ipympl or condainstall ipympl -c conda-forge)
GTK3Agg GTK4Agg	%matplotlib gtk3 %matplotlib gtk4	Render to a GTK 3.x/4.x canvas (require PyGObject and pycairo)
macosx	%matplotlib osx	Render into a Cocoa canvas in OSX
TkAgg	%matplotlib tk	Render to a Tk canvas (require TkInter)
nbAgg	%matplotlib notebook %matplotlib nbagg	Embed an interactive figure in a Jupyter classic notebook (work with Jupyter notebook<7 and nbclassic)
WebAgg	-	On show (), start a tornado server (open a web browser) with an interactive figure
GTK3Cairo	-	Render to a GTK 3.x canvas
wxAqq	%matplotlib wx	Render to a wxWidgets canvas (require wxPython 4)

Figure is a single container **MATPLOTLIB'S FIGURE** that contains all the objects (e.g., axes, graphics, text, labels) Axes is a bounding box with Ana (in) of a figure ticks and labels that will Title ax.set_title contain the plot elements. Minor tick raxis.set_minor Blue signal Orange (ign)ıl Figure (3-) Axes title A Aris label Axes fig.subplots 1.251.501.75 2 2.252.502.75 x A is label Minor tick label ax.xaxis.set_minor_formatter https://matplotlib.org/stable/gallery/showcase 20

MATPLOTLIB'S INTERFACES

- The confusion of matplotlib's dual interfaces:
 - + MATLAB-style state-based interface:
 - A stateful interface, meaning that it keeps track of the current figure and axes, which are where all matplotlib commands are applied
 - + Object-oriented (OO) interface:
 - A more powerful interface for more complicated situations and for when we want more control over our figure
 - x Rather than depending on an active figure or axes, the plotting functions in the OO interface are methods of explicit Figure and Axes objects.

21

DRAWBACKS OF MATPLOTLIB

- Matplotlib is extremely powerful but with that power comes complexity.
- * Matplotlib's API is relatively low level. Doing sophisticated statistical visualization is possible, but often requires a lot of boilerplate code.
- Matplotlib predated pandas by more than a decade. Thus, it is not directly designed to use with pandas. DataFrame.
- * To visualize data from pandas. DataFrame, we must extract each pandas. Series and often concatenate them together into the right format.

MATPLOTLIB (2003) VS. PANDAS (2008)

- Pandas visualization makes it really easy to create plots out of pandas.DataFrame and pandas.Series.
- Pandas visualization has a higher-level API than matplotlib. Therefore, we need fewer codes for the same results.
- The plot method on pandas. Series and pandas. DataFrame is just a simple wrapper around plt.plot(), providing a subset of plots as available in matplotlib.

23

MATPLOTLIB (2003) VS. SEABORN

- ★ Seaborn = matplotlib + cleaner codes + prettier style + modern APIs
 - + Seaborn harnesses the power of matplotlib to create beautiful charts in a few lines of code.
 - + The key difference is **Seaborn**'s default styles and color palettes, which are designed to be more aesthetically pleasing and modern.
- Since Seaborn is built on top of matplotlib, you'll need to know matplotlib to tweak Seaborn's defaults.
- Seaborn provides an API on top of matplotlib that
 - + Defines simple high-level functions for common statistical plot types
 - + Offers sane choices for plot style, color defaults, and beautiful themes
 - + Integrates with the functionality provided by pandas
- Both matplotlib and seaborn act as the backbone of data visualization through Python.
 - + These two libraries can be used concurrently.
 - + However, matplotlib allows more flexible customization.

END OF THIS CLASS

- * News and announcement:
 - + Microsoft Teams > General channel
- Class schedule:
 - + Microsoft Teams > General channel > Files tab > เอกสาร ประกอบของคลาส folder > CLASS_SCHEDULE.docx

25