

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

Bachelor of Science in Applied Sciences Third Year - Semester I Examination – July/August 2023

MAT 3213- Graph Theory

	Answer All questions.	Time allowed: One (2) hours
1. i	Underline the most suitable answer. The degree of any vertex of graph is	
	A. the number of edges incident with vertex.	
	B. number of vertex in a graph.	
	C. number of vertices adjacent to that vertex.	
	D. number of edges in a graph.	(10 marks)
ii	. A minimal spanning tree of a graph G is	
	A. a spanning sub graph	
	B. a tree	
	C. a connected graph	£.
	D. All of the above	(10 marks)
iii.	Which of the following statements is/are TRUE for undirected graph: Number of odd degree vertices is even. Q: Sum of degrees of all vertices is even.	aphs?
	A. P B. Q C. Both P and Q D. Neither P or Q	(10 marks)

iv.

Let G be a graph with $V(G) = \{1.2.3..., n\}$, where $n \ge 5$, such that two numbers i and j in V(G) are adjacent if and only if |i - j| = 5. How many components does G have?

A. 4 B. 5 C. 6 D. 7

(10 marks)

v. A simple graph's degree sequence is the graph's nodes in decreasing order. Which of the following sequences can not be the degree sequence of any graph?

- (I) 7, 6, 5, 4, 4, 3, 2, 1
- (II) 6, 6, 6, 6, 3, 3, 2, 2
- (III) 7, 6, 6, 4, 4, 3, 2, 2
- (IV) 8, 7, 7, 6, 4, 2, 1, 1
 - A. IV only
 - B. III and IV
 - C. I and II
 - D. II and IV

(10 marks)

vi. Let D be a simple graph on 10 vertices such that there is a vertex of degree 1, a vertex of degree 2, a vertex of degree 3, a vertex of degree 4, a vertex of degree 5, a vertex of degree 6, a vertex of degree 7, a vertex of degree 8 and a vertex of degree 9. What can be the degree of the last vertex?

A.4

B.0

C.2

D. 5

(10 marks)

vii. Let, $D = \langle A, R \rangle$ be a directed graph or digraph, then $D' = \langle A', R' \rangle$ is a subgraph if

- A. $A' \subset A$ and $R' = R \cap (A' \times A')$
- B. $A' \subset A$ and $R \subset R' \cap (A' \times A')$
- C. $R' = R \cap (A' \times A')$

D. $A' \subseteq A$ and $R \subseteq R' \cap (A' \times A')$

(10 marks)

viii. The degree sequence for

$$G = \begin{pmatrix} 0 & 1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix} \quad \text{is}$$

A. (2,2,3,3,4) B. (0,1,1,2,0) C. (0,0,1,1,2) D. None of the above

(10 marks)

ix. The minimum number of colours required to colour the following graph ,such that no adjacent vertices are assigned the same colour is

A. 2

B. 3

C. 3

D. 4

E. 5

(10 marks)

x. Is the following graph

- A. a Hamiltonian.
- B. an Eulerian.
- C. Neither an Eulerian nor a Hamiltonian.
- D. Satisfies both an Eulerian and a Hamiltonian.

(10 marks)

2. Are the two graphs below equal? Are they isomorphic? If they are isomorphic, give the isomorphism. If not, justify your answer.

Graph 1: $V=\{a,b,c,d,e\},E=\{\{a,b\},\{a,c\},\{a,e\},\{b,d\},\{b,e\},\{c,d\}\}.$

Graph 2:

(50 marks)

3. Which of the graphs below are bipartite? Justify your answers.

A.

В.

C.

D.

(50 marks)

4. Weights are given for edges between 7 vertices, labelled A – G.

11 В C17 9 12 14 D 15 10 E 8 F 20 10 21 19 8 12 G

Find a minimal weight spanning tree. What is the total weight of this spanning tree?

(100 marks)

- 5. Suppose that in a group of 5 people: A, B, C, D, and E, the following pairs of people are acquainted with each other.
 - A and C
 - A and D
 - B and C
 - C and D
 - C and E
 - a. Draw a graph G to represent this situation.

(30 marks)

- b. List the vertex set, and the edge set, using set notation. In other words, show sets V and E for the vertices and edges, respectively, in $G = \{V, E\}$. (30 marks)
- **c.** Draw an adjacency matrix for G.

(40 marks)

6. (a) Label the degree of each vertex in **Graph G**.

(40 marks)

(b) Determine if **Graph G** has an Euler path or an Euler cycle. If it does, then find one. If not, then explain why not. (60 marks)