Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Eexam

Place student sticker here

Note:

- · During the attendance check a sticker containing a unique code will be put on this exam.
- · This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Grundlagen Rechnernetze und Verteilte Systeme

Exam: IN0010 / Hausaufgabe 7 **Date:** Monday 15th June, 2020

Examiner: Prof. Dr.-lng. Georg Carle **Time:** 14:00 – 23:59

Working instructions

- This exam consists of **6 pages** with a total of **2 problems**. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 21.5 credits.
- · Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one non-programmable pocket calculator
 - one analog dictionary English ↔ native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to	/	Early submission at

Problem 1 Packet Pair Probing (Klausuraufgabe Endterm 2012) (12 credits)

Packet Pair Probing ist ein Verfahren, mit dem sich durch geschickte Ausnutzung von Serialisierungs- und Verzögerungszeiten die Bandbreite eines Linkabschnitts bestimmen lässt. Wir wollen dies anhand des in Abbildung 1.1 dargestellten Beispielnetzwerks nachvollziehen.

Die Knoten 1 und 4 sind mit ihren Routern jeweils über Ethernet mit einer Datenrate von 1 Gbit/s angebunden. Die Verbindung zwischen den Routern 2 und 3 ist jedoch deutlich langsamer. Diese Übertragungsrate r_{23} soll von 1 und 4 bestimmt werden, indem möglichst wenig Last auf der ohnehin langsamen Verbindung erzeugt wird.

Figure 1.1: Netztopologie

Wir leiten in dieser Aufgabe zunächst allgemein ein Verfahren her, mittels dem Knoten 1 und 4 die gefragte Übertragungsrate bestimmen können. Im Anschluss werten wir das Verfahren für konkrete Zahlenwerte aus und diskutieren mögliche Probleme, die in der Praxis auftreten werden.

aneigrobe	p und der Übertragungsrate	э r _{ij} an. 			
b)* Geben S Distanz <i>d_{ij}</i> a	ie die Ausbreitungsverzögel n.	rung $t_p(i,j)$ zwischer	ı zwei benachbarten	Knoten <i>i</i> und <i>j</i> in Ab	hängigl
c)* Erläuter	n Sie kurz, wie 1 bei Verwer	ndung von IPv4 die	maximale MTU auf d	lem Pfad nach 4 be	stimme

kein weiterer Datenverkehr die Übertragung beeinflusst. Die Länge p sei so gewählt, dass keine Fragmentierung notwendig ist. Eventuelle Verarbeitungszeiten an den Knoten können Sie vernachlässigen. d) Zeichnen Sie ein Weg-Zeit-Diagramm, welches die Übertragung der beiden Pakete qualitativ richtig darstellt. Berücksichtigen Sie dabei insbesondere $r_{23} < r_{12} = r_{34}$ wie eingangs erwähnt. Durch die geringe Übertragungsrate zwischen 2 und 3 entsteht an Knoten 3 eine Sendepause Δt zwischen den beiden weitergeleiteten Paketen. Diese kann von 4 gemessen und zur Bestimmung der Übertragungsrate zwischen 2 und 3 verwendet werden. e) Markieren Sie Δt in Ihrer Lösung von Teilaufgabe d). Von welchen Größen hängt Δt ab?

1 sende nun unmittelbar nacheinander zwei Pakete der Länge p an 4. Sie können davon ausgehen, dass sonst

						TILC L	Jalei	ırale	<i>r</i> ₂₃ ar	າ. Vere	ıntac	nen	Sie c	len A	Nusdr	TUCK S	soweit v
Wiederholte Messung	gen a	an 4	erge	eben	eine	n Du	rchso	chnit	tswert	von Δ	$\overline{t} = 1$,2 ms	bei	einer	r Pak	etgrö	iße von
h) Bestimmen Sie r ₂₃	3 als	Zah	nlenv	vert i	in Mb	oit/s.											
Problem 2 Dr	ahth	ai <i>(</i>	950	credi	ite)												
Problem 2 Dr						منالما	Llev	ممر رام	ua ira N	latiau	la Dua	. O		-!	- -		at Dalam
Problem 2 Dr Gegeben sei der in A Checksum, welcher	Abbilo	ldun	ng 2.	1 da	rges					letwor	k-By	te-O	rder	eine	s Eth	nerne	et-Rahn
Gegeben sei der in A Checksum, welcher	Abbild im Fo	ldun olge	ng 2. ende	1 da n an	rges alysi	ert w	erde	n so	İI.								
Gegeben sei der in A Checksum, welcher 0x000	Abbildim Fo	ldun olge 00	ng 2. ende 16	1 da n ana 3e	rges alysi	ert w	erde ff	n so 00	ÍI. 16	3e	6d	cd	0d	08	00	45	00
Gegeben sei der in A Checksum, welcher 0x000 0x001	Abbildim Fo	ldun olge 00	ng 2. ende 16 58	1 da n ana 3e 9f	rges alysi ff 47	ert w ff 40	ff 00	n so 00 40	16 06	3e 47	6d 33	cd ac	0d 10	08 fe	00 02	45 ac	00 10
Gegeben sei der in A Checksum, welcher 0x000	Abbildim Fo	ldun olge 00	ng 2. ende 16	1 da n ana 3e	rges alysi	ert w ff 40	erde ff	n so 00	ÍI. 16	3e	6d 33	cd	0d	08	00	45	00
Gegeben sei der in A Checksum, welcher 0x000 0x001 0x002	Abbildim Fo	ldun olge 00 00 fe	ng 2. ende 16 58 01	1 da n an 3e 9f 00	rges alysi ff 47 16	ert w ff 40 da	ff 00 e2	n so 00 40 02	11. 16 06 5d 01	3e 47 78	6d 33 9a 0a	cd ac f2 b3	0d 10 3d	08 fe 99 65	00 02 17 ca	45 ac 80	00 10 18 82
Gegeben sei der in A Checksum, welcher 0x000 0x001 0x002 0x003	Abbildim Fo	ldun olge 00 00 fe 00	16 58 01 e3	1 da n and 3e 9f 00 54 53	rges alysid ff 47 16 70 53	ff 40 da 00 48	ff 00 e2 00 2d	n so 00 40 02 01	11. 16 06 5d 01 2e	3e 47 78 08 30	6d 33 9a 0a 2d	cd ac f2 b3 74	0d 10 3d 13 69	08 fe 99 65	00 02 17 ca 79	45 ac 80 11 73	00 10 18 82 73
Gegeben sei der in A Checksum, welcher 0x000 0x001 0x002 0x003 0x004	Abbildim Fo	ldun olge 00 00 fe 00 53	16 58 01 e3	1 da n and 3e 9f 00 54 53 6e	rges alysid ff 47 16 70 53	ert w ff 40 da 00 48 76	ff 00 e2 00 2d 65	00 40 02 01 32	11. 16 06 5d 01 2e	3e 47 78 08 30	6d 33 9a 0a 2d	cd ac f2 b3 74	0d 10 3d 13 69	08 fe 99 65 6e	00 02 17 ca 79	45 ac 80 11 73	00 10 18 82 73
Gegeben sei der in A Checksum, welcher 0x000 0x001 0x002 0x003 0x004	Abbildim Fo	ldun olge 00 00 fe 00 53 68	ng 2. 16 58 01 e3 20 5f 31	1 da n and 3e 9f 00 54 53 6e 5a	rges: alysid ff 47 16 70 53 6f 52	ert w ff 40 da 00 48 76 0d	ff 00 e2 00 2d 65 0a	00 40 02 01 32 72	11. 16 06 5d 01 2e 73	3e 47 78 08 30 69	6d 33 9a 0a 2d 6f	cd ac f2 b3 74 6e	0d 10 3d 13 69 20	08 fe 99 65 6e 5a	00 02 17 ca 79 34	45 ac 80 11 73 43	00 10 18 82 73 53
Gegeben sei der in A Checksum, welcher 0x000 0x001 0x002 0x003 0x004 0x005 0x006 Figure 2	Abbildim Fo	ldun olge 00 00 fe 00 53 68 69	ng 2. 16 58 01 e3 20 5f 31	1 da n ana 3e 9f 00 54 53 6e 5a	rges: alysid ff 47 16 70 53 6f 52 es E	ff 40 da 00 48 76 0d therr	ff 00 e2 00 2d 65 0a net-R	00 40 02 01 32 72	11. 16 06 5d 01 2e 73	3e 47 78 08 30 69	6d 33 9a 0a 2d 6f	cd ac f2 b3 74 6e	0d 10 3d 13 69 20	08 fe 99 65 6e 5a	00 02 17 ca 79 34	45 ac 80 11 73 43	00 10 18 82 73 53
Gegeben sei der in A Checksum, welcher 0x000 0x001 0x002 0x003 0x004 0x005 0x006	Abbildim Fo	ldun olge 00 00 fe 00 53 68 69 Hexc	ng 2. 16 58 01 e3 20 5f 31 dump	1 da n and 3e 9f 00 54 53 6e 5a o eine	rges: alysid ff 47 16 70 53 6f 52 es Eind In	ff 40 da 00 48 76 0d therr	ff 00 e2 00 2d 65 0a net-R	n so 00 40 02 01 32 72 ahm en a	11. 16 06 5d 01 2e 73 ens, c	3e 47 78 08 30 69 ohne C	6d 33 9a 0a 2d 6f check	cd ac f2 b3 74 6e	0d 10 3d 13 69 20	08 fe 99 65 6e 5a	00 02 17 ca 79 34	45 ac 80 11 73 43	00 10 18 82 73 53

c)* Beschreiben Sie, wie die Länge des Headers auf Schicht 3 bestimmt wird. Markieren und benennen Sie dafür relevante Abschnitte in Abbildung 2.1.	
d)* Markieren Sie alle Schicht 3 Addressen und benennen Sie diese.	Ħ°
e) Markieren Sie alle in Schicht 3 enthaltenen Extension Header.	1
	0
f) Benennen und beschreiben Sie die drei kleinsten Headerfelder von Schicht 3. Geben Sie zudem die Größe der beschriebenen Headerfelder an.	0
g) Falls es eine L3-SDU gibt, geben Sie ihren Typ an und begründen Sie die Angabe. Andernfalls, legen Sie Ihren Gedankengang dar und erörtern wie es zu dieser Situation kommen konnte.	
	Ш,
b) Die Date e corre and Este and e sind De trade an Onlink of Online Oil die ACOU De stall and de corre a Enda	_
h) Die Bytes 0x0042 und Folgende sind Payload von Schicht 4. Geben Sie die ASCII Darstellung der ersten 7B der Payload an.	
i) Um welches Protokoll der Anwendungsschicht handelt es sich also vermutlich und wozu wird dieses Protokoll verwendet?	
	LJ '

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

