Cryptography Hackers ahead of time

Gaspare Ferraro ferraro@gaspa.re

November 16, 2018

Visit us!

@GaspareG

Part I

Introduzione

Warning!

In questo incontro si fa uso della matematica!

Warning!

In questo incontro si fa uso della matematica!

Warning!

In questo incontro si fa uso della matematica!

Non è sempre stato così però...

La crittografia ieri

La crittografia ieri

(c) Cifrario di Cesare

La crittografia ieri

(e) Cifrario di Cesare

(f) Scitala

La crittografia oggi

Le necessità, così come le risorse a disposizione, si sono evolute ed oggi possiamo suddividere la crittografia in:

La crittografia oggi

Le necessità, così come le risorse a disposizione, si sono evolute ed oggi possiamo suddividere la crittografia in:

ASYMMETRIC (RSA, ECC, ...) (EN|DE)CRYPTION SYMMETRIC (DES. AES. ...) KEY EXCHANGE RSA, DH, ECDH, ... **AUTHENTICATION** RSA, DSA, ECDSA, ... **HASHING**

Part II

Crittografia simmetrica

Crittografia simmetrica

I cifrari simmetrici sono quelli dove i messaggi m vengono cifrati e decifrati usando una stessa chiave k, che deve essere nota esclusivamente alle due parti.

$$C(m, k) = c$$
 (funzione di cifratura)

$$\mathcal{D}(c, k) = m$$
 (funzione di decifratura)

Ovviamente deve valere che:

$$\mathcal{D}(\mathcal{C}(m,k),k)=m$$
 (il messaggio originale non viene alterato durante lo scambio).

Per esempio nel cifrario di Cesare:

C(m, k) = ruota in avanti di k ogni singolo carattere.

 $\mathcal{D}(c, k)$ = ruota indietro di k ogni singolo carattere.

XOR cipher

Crittoanalisi statistica

Spesso le vulnerabilità non è nell'algoritmo ma nella sua applicazione...

One-time Pad

Il Cifrario di Vernam . Chiamato anche one-time pad poichè

aspare Ferraro ferraro@gaspa.re Cryptography 10 / 22

Part III

Crittografia asimmetrica

La crittografia asimmetrica si basa sulle funzioni *one-way trapdoor* e sulla presenza di una coppia di chiavi (chiamate chiave pubblica e chiave privata).

La crittografia asimmetrica si basa sulle funzioni *one-way trapdoor* e sulla presenza di una coppia di chiavi (chiamate chiave pubblica e chiave privata).

Una funzione f si dice trapdoor se:

- ▶ Calcolare y = f(x) è computazionalmente facile.
- ► Calcolare $x = f^{-1}(y)$ è computazionalmente difficile (senza nessuna informazione aggiuntiva).

aspare Ferraro ferraro@gaspa.re Cryptography 12 / 22

La crittografia asimmetrica si basa sulle funzioni *one-way trapdoor* e sulla presenza di una coppia di chiavi (chiamate chiave pubblica e chiave privata).

Una funzione f si dice trapdoor se:

- ▶ Calcolare y = f(x) è computazionalmente facile.
- ► Calcolare $x = f^{-1}(y)$ è computazionalmente difficile (senza nessuna informazione aggiuntiva).

Un esempio è il problema della fattorizzazione:

- $ightharpoonup m = f(\{p,q\}) = (p \times q)$ (calcolo del prodotto tra i primi $p \in q$).
- ▶ $\{p,q\} = f^{-1}(n) =$?? (scomposizione in fattori primi di n).

La crittografia asimmetrica si basa sulle funzioni *one-way trapdoor* e sulla presenza di una coppia di chiavi (chiamate chiave pubblica e chiave privata).

Una funzione f si dice trapdoor se:

- ▶ Calcolare y = f(x) è computazionalmente facile.
- ► Calcolare $x = f^{-1}(y)$ è computazionalmente difficile (senza nessuna informazione aggiuntiva).

Un esempio è il problema della fattorizzazione:

- $ightharpoonup m = f(\{p,q\}) = (p \times q)$ (calcolo del prodotto tra i primi $p \in q$).
- ▶ $\{p,q\} = f^{-1}(n) =$?? (scomposizione in fattori primi di n).

 $f(\{49171,61843\}) = 3040882153$ (facile quanto aprire una calcolatrice). $f^{-1}(1841488427) = ??$ (devo provare tutti i divisori da 2 a \sqrt{n}).

La crittografia asimmetrica si basa sulle funzioni *one-way trapdoor* e sulla presenza di una coppia di chiavi (chiamate chiave pubblica e chiave privata).

Una funzione f si dice trapdoor se:

- ▶ Calcolare y = f(x) è computazionalmente facile.
- ► Calcolare $x = f^{-1}(y)$ è computazionalmente difficile (senza nessuna informazione aggiuntiva).

Un esempio è il problema della fattorizzazione:

- $ightharpoonup m = f(\{p,q\}) = (p \times q)$ (calcolo del prodotto tra i primi $p \in q$).
- ▶ $\{p,q\} = f^{-1}(n) =$?? (scomposizione in fattori primi di n).

 $f({49171,61843}) = 3040882153$ (facile quanto aprire una calcolatrice).

 $f^{-1}(1841488427) = ??$ (devo provare tutti i divisori da 2 a \sqrt{n}).

Il problema diventa banale se conosco uno dei due divisori:

1841488427/58049 = 31723

Diciamo che due interi $a \in b$ sono congrui modulo n, scritto $a \equiv b \pmod{n}$, se (a % n) = (b % n) dove % è il resto della divisione intero (modulo).

Diciamo che due interi $a \in b$ sono congrui modulo n, scritto $a \equiv b \pmod{n}$, se (a % n) = (b % n) dove % è il resto della divisione intero (modulo).

Alcune proprietà matematiche:

Diciamo che due interi $a \in b$ sono congrui modulo n, scritto $a \equiv b \pmod{n}$, se (a % n) = (b % n) dove % è il resto della divisione intero (modulo).

Alcune proprietà matematiche:

- $ightharpoonup a + k \equiv b + k \pmod{n}$, invariante per addizione.
- $ightharpoonup k*a \equiv k*b \pmod{n}$, invariante per moltiplicazione.
- $ightharpoonup a^k \equiv b^k \pmod{n}$, invariante per potenza.

Diciamo che due interi $a \in b$ sono congrui modulo n, scritto $a \equiv b \pmod{n}$, se (a % n) = (b % n) dove % è il resto della divisione intero (modulo).

Alcune proprietà matematiche:

- $ightharpoonup a + k \equiv b + k \pmod{n}$, invariante per addizione.
- $ightharpoonup k*a \equiv k*b \pmod{n}$, invariante per moltiplicazione.
- $ightharpoonup a^k \equiv b^k \pmod{n}$, invariante per potenza.
- $ightharpoonup \sqrt{a} \equiv b \pmod{n}$, radice quadrata.
- ▶ $a^{-1} \equiv b \pmod{n}$ se $ab \equiv 1 \pmod{n}$, inverso moltiplicativo.
- **▶** ...

L'algoritmo di cifratura asimmetrica più famoso è l'RSA (da Rivest Shamir Adleman) che si basa sul problema della fattorizzazione e sull'algebra modulare.

L'algoritmo di cifratura asimmetrica più famoso è l'RSA (da Rivest Shamir Adleman) che si basa sul problema della fattorizzazione e sull'algebra modulare.

L'algoritmo di cifratura asimmetrica più famoso è l'RSA (da Rivest Shamir Adleman) che si basa sul problema della fattorizzazione e sull'algebra modulare.

Il funzionamento di base è:

ightharpoonup Si scelgono due numeri primi a caso $p \in q$ (in modo sicuro).

ıspare Ferraro ferraro@gaspa.re Cryptography 14 / 22

L'algoritmo di cifratura asimmetrica più famoso è l'RSA (da Rivest Shamir Adleman) che si basa sul problema della fattorizzazione e sull'algebra modulare.

- ightharpoonup Si scelgono due numeri primi a caso p e q (in modo sicuro).
- ▶ Si calcola il prodotto n = p * q (che sarà il nostro modulo).

L'algoritmo di cifratura asimmetrica più famoso è l'RSA (da Rivest Shamir Adleman) che si basa sul problema della fattorizzazione e sull'algebra modulare.

- ightharpoonup Si scelgono due numeri primi a caso $p \in q$ (in modo sicuro).
- ▶ Si calcola il prodotto n = p * q (che sarà il nostro modulo).
- ▶ Si calcola il toziente $\phi(n) = (p-1)*(q-1)$ (il numero dei coprimi con n)

L'algoritmo di cifratura asimmetrica più famoso è l'RSA (da Rivest Shamir Adleman) che si basa sul problema della fattorizzazione e sull'algebra modulare.

- ightharpoonup Si scelgono due numeri primi a caso $p \in q$ (in modo sicuro).
- ▶ Si calcola il prodotto n = p * q (che sarà il nostro modulo).
- ▶ Si calcola il toziente $\phi(n) = (p-1)*(q-1)$ (il numero dei coprimi con n).
- ightharpoonup Si sceglie a caso un numero e, coprimo e minore di $\phi(n)$.

L'algoritmo di cifratura asimmetrica più famoso è l'RSA (da Rivest Shamir Adleman) che si basa sul problema della fattorizzazione e sull'algebra modulare.

- ightharpoonup Si scelgono due numeri primi a caso $p \in q$ (in modo sicuro).
- ▶ Si calcola il prodotto n = p * q (che sarà il nostro modulo).
- ▶ Si calcola il toziente $\phi(n) = (p-1)*(q-1)$ (il numero dei coprimi con n).
- ▶ Si sceglie a caso un numero e, coprimo e minore di $\phi(n)$.
- ▶ Si calcola il numero d come inverso moltiplicativo di e, ovvero $ed \equiv 1 \pmod{\phi(n)}$.

L'algoritmo di cifratura asimmetrica più famoso è l'RSA (da Rivest Shamir Adleman) che si basa sul problema della fattorizzazione e sull'algebra modulare.

Il funzionamento di base è:

- ightharpoonup Si scelgono due numeri primi a caso p e q (in modo sicuro).
- ▶ Si calcola il prodotto n = p * q (che sarà il nostro modulo).
- ▶ Si calcola il toziente $\phi(n) = (p-1)*(q-1)$ (il numero dei coprimi con n).
- ▶ Si sceglie a caso un numero e, coprimo e minore di $\phi(n)$.
- ▶ Si calcola il numero d come inverso moltiplicativo di e, ovvero $ed \equiv 1 \pmod{\phi(n)}$.

Chiamiamo quindi:

L'algoritmo di cifratura asimmetrica più famoso è l'RSA (da Rivest Shamir Adleman) che si basa sul problema della fattorizzazione e sull'algebra modulare.

Il funzionamento di base è:

- ightharpoonup Si scelgono due numeri primi a caso p e q (in modo sicuro).
- ▶ Si calcola il prodotto n = p * q (che sarà il nostro modulo).
- ▶ Si calcola il toziente $\phi(n) = (p-1)*(q-1)$ (il numero dei coprimi con n).
- ightharpoonup Si sceglie a caso un numero e, coprimo e minore di $\phi(n)$.
- ▶ Si calcola il numero d come inverso moltiplicativo di e, ovvero $ed \equiv 1 \pmod{\phi(n)}$.

Chiamiamo quindi:

 $k_{pub} = (n, e)$ la chiave pubblica che distribuiamo.

L'algoritmo di cifratura asimmetrica più famoso è l'RSA (da Rivest Shamir Adleman) che si basa sul problema della fattorizzazione e sull'algebra modulare.

Il funzionamento di base è:

- ightharpoonup Si scelgono due numeri primi a caso $p \in q$ (in modo sicuro).
- ▶ Si calcola il prodotto n = p * q (che sarà il nostro modulo).
- ▶ Si calcola il toziente $\phi(n) = (p-1)*(q-1)$ (il numero dei coprimi con n).
- ightharpoonup Si sceglie a caso un numero e, coprimo e minore di $\phi(n)$.
- ▶ Si calcola il numero d come inverso moltiplicativo di e, ovvero $ed \equiv 1 \pmod{\phi(n)}$.

Chiamiamo quindi:

 $k_{pub} = (n, e)$ la chiave pubblica che distribuiamo.

 $k_{priv} = (n, d)$ la chiave privata che teniamo segreta.

Una volta calcolata la chiave pubblica e quella privata possiamo cifrare e decifrare i messaggi in questo modo:

Una volta calcolata la chiave pubblica e quella privata possiamo cifrare e decifrare i messaggi in questo modo:

$$C(m, k_{pub}) = m^e \pmod{n}$$

Una volta calcolata la chiave pubblica e quella privata possiamo cifrare e decifrare i messaggi in questo modo:

$$C(m, k_{pub}) = m^e \pmod{n}$$

 $D(c, k_{priv}) = c^d \pmod{n}$

Una volta calcolata la chiave pubblica e quella privata possiamo cifrare e decifrare i messaggi in questo modo:

$$C(m, k_{pub}) = m^e \pmod{n}$$

 $D(c, k_{priv}) = c^d \pmod{n}$

Si ma perchè funziona?

aspare Ferraro ferraro@gaspa.re Cryptography 15 / 22

Una volta calcolata la chiave pubblica e quella privata possiamo cifrare e decifrare i messaggi in questo modo:

$$C(m, k_{pub}) = m^e \pmod{n}$$

$$D(c, k_{priv}) = c^d \pmod{n}$$

Si ma perchè funziona?

Dal teorema di Eulero sappiamo che $m^{\phi(n)} \equiv 1 \pmod{n}$. I valori $e \in d$ sono calcolati in modo che $ed \equiv 1 \pmod{\phi(n)}$.

$$\mathcal{D}(\mathcal{C}(m,k),k) = m^{ed} = m^{\phi(n)*t+1} = m^{\phi(n)^t} * m = 1 * m = m$$

Scegliamo i sequenti parametri:

- ▶ p = 13 e q = 23
- ▶ n = p * q = 299
- $\phi(n) = (13-1)*(23-1) = 264$
- ightharpoonup e = 7, gcd(264, $\overline{7}$) = 1
- $ightharpoonup d = 151, 7 * 151 \equiv 1 \pmod{264}$

Scegliamo i sequenti parametri:

- ▶ p = 13 e q = 23
- ▶ n = p * q = 299
- $ightharpoonup \phi(n) = (13-1)*(23-1) = 264$
- ightharpoonup e = 7, gcd(264, 7) = 1
- $ightharpoonup d = 151, 7 * 151 \equiv 1 \pmod{264}$

Quindi $k_{pub} = (299, 7)$ e $k_{priv} = (299, 151)$. Vogliamo cifrare m = 42.

Scegliamo i sequenti parametri:

- ▶ p = 13 e q = 23
- ▶ n = p * q = 299
- $ightharpoonup \phi(n) = (13-1)*(23-1) = 264$
- ightharpoonup e = 7, gcd(264, 7) = 1
- $ightharpoonup d = 151, 7 * 151 \equiv 1 \pmod{264}$

Quindi $k_{pub} = (299, 7)$ e $k_{priv} = (299, 151)$. Vogliamo cifrare m = 42.

 $C(m, k_{pub}) = m^e = 42^7 = 230539333248 = 107 \pmod{299}$

Scegliamo i sequenti parametri:

- ▶ p = 13 e q = 23
- ► n = p * q = 299
- $ightharpoonup \phi(n) = (13-1)*(23-1) = 264$
- ightharpoonup e = 7, gcd(264, 7) = 1
- $ightharpoonup d = 151, 7 * 151 \equiv 1 \pmod{264}$

Quindi $k_{pub} = (299, 7)$ e $k_{priv} = (299, 151)$. Vogliamo cifrare m = 42.

$$C(m, k_{pub}) = m^e = 42^7 = 230539333248 = 107 \pmod{299}$$

 $D(c, k_{priv}) = c^d = 107^{151} = 2743956545...948643 = 42 \pmod{299}$

aspare Ferraro ferraro@gaspa.re Cryptography 17 / 22

"Si scelgono due numeri primi a caso p e q (in modo sicuro)"

- ► Scegliere *p* e *q* di almeno 1024 bit.
- ightharpoonup Scegliere p e q non troppo vicini tra loro.
- ► Non riusare uno dei primi per altri moduli.

Gaspare Ferraro ferraro@gaspa.re Cryptography 17 /

"Si scelgono due numeri primi a caso p e q (in modo sicuro)"

- ► Scegliere *p* e *q* di almeno 1024 bit.
- ightharpoonup Scegliere p e q non troppo vicini tra loro.
- ► Non riusare uno dei primi per altri moduli.

Con la potenza di calcolo attuale è possibile fattorizzare semiprimi fino a (circa) 768 bit, i moduli più grandi sono (per ora) resistenti agli attacchi bruteforce.

spare Ferraro ferraro@gaspa.re Cryptography 17 / 22

"Si scelgono due numeri primi a caso p e q (in modo sicuro)"

- ightharpoonup Scegliere p e q di almeno 1024 bit.
- ► Scegliere *p* e *q* non troppo vicini tra loro.
- ► Non riusare uno dei primi per altri moduli.

Con la potenza di calcolo attuale è possibile fattorizzare semiprimi fino a (circa) 768 bit, i moduli più grandi sono (per ora) resistenti agli attacchi bruteforce.

Se p e q sono vicini allora abbiamo che $n \simeq p^2 \simeq q^2$ e quindi anche \sqrt{n} sarà vicino ai primi. Basterà quindi un attacco bruteforce che cerca i fattori vicino alla radice quadrata.

"Si scelgono due numeri primi a caso p e q (in modo sicuro)"

- ► Scegliere *p* e *q* di almeno 1024 bit.
- ightharpoonup Scegliere p e q non troppo vicini tra loro.
- ► Non riusare uno dei primi per altri moduli.

Con la potenza di calcolo attuale è possibile fattorizzare semiprimi fino a (circa) 768 bit, i moduli più grandi sono (per ora) resistenti agli attacchi bruteforce.

Se p e q sono vicini allora abbiamo che $n \simeq p^2 \simeq q^2$ e quindi anche \sqrt{n} sarà vicino ai primi. Basterà quindi un attacco bruteforce che cerca i fattori vicino alla radice quadrata.

Se
$$n_1 = p * q'$$
 e $n_2 = p * q''$ allora $p = \gcd(n_1, n_2)$.

Part IV

Hashing

Creare confusione

Chiamiamo hash una funzione non invertibile che associa

▶ Resis

Creare confusione

Chiamiamo hash una funzione non invertibile che associa

▶ Resis

Funzioni di hash famose sono l'MD5, SHA-1, SHA-256, SHA-384, ...

Gaspare Ferraro ferraro@gaspa.re Cryptography 19 / 22

Creare confusione

Chiamiamo hash una funzione non invertibile che associa

► Resis

Funzioni di hash famose sono l'MD5, SHA-1, SHA-256, SHA-384, ... Utilizzi pratici:

- Salvataggio delle password (preferibilmente con un salt).
- ► Creazione di hashtable (struttura dati con accesso diretto).
- ► Controllo di integrità (*md5sum*, *sha1sum*).
- Firma digitale (sull'hash invece che sul documento).

Alla ricerca dell'inversa

Un (pessimo) esempio...

aspare Ferraro ferraro@gaspa.re Cryptography 21 / 22

Un (pessimo) esempio...

Un (pessimo) esempio...

Fine