Lasso & Bayesian Lasso Readings Chapter 15 Christensen

STA721 Linear Models Duke University

Merlise Clyde

October 23, 2019

Tibshirani (JRSS B 1996) proposed estimating coefficients through L₁ constrained least squares "Least Absolute Shrinkage and Selection Operator"

Control how large coefficients may grow

Tibshirani (JRSS B 1996) proposed estimating coefficients through L₁ constrained least squares "Least Absolute Shrinkage and Selection Operator"

Control how large coefficients may grow

$$\min_{\boldsymbol{\beta}^s} (\mathbf{Y}^c - \mathbf{X}^s \boldsymbol{\beta}^s)^T (\mathbf{Y}^c - \mathbf{X}^s \boldsymbol{\beta}^s)$$

subject to

$$\sum |\beta_j^s| \le t$$

Tibshirani (JRSS B 1996) proposed estimating coefficients through L₁ constrained least squares "Least Absolute Shrinkage and Selection Operator"

Control how large coefficients may grow

$$\min_{\boldsymbol{\beta}^s} (\mathbf{Y}^c - \mathbf{X}^s \boldsymbol{\beta}^s)^T (\mathbf{Y}^c - \mathbf{X}^s \boldsymbol{\beta}^s)$$

subject to

$$\sum |\beta_j^s| \le t$$

Equivalent Quadratic Programming Problem for "penalized" Likelihood

$$\min_{\boldsymbol{\beta}} \|\mathbf{Y}^c - \mathbf{X}^s \boldsymbol{\beta}^s\|^2 + \lambda \|\boldsymbol{\beta}^s\|_1$$

Tibshirani (JRSS B 1996) proposed estimating coefficients through L_1 constrained least squares "Least Absolute Shrinkage and Selection Operator"

Control how large coefficients may grow

$$\min_{\boldsymbol{\beta}^s} (\mathbf{Y}^c - \mathbf{X}^s \boldsymbol{\beta}^s)^T (\mathbf{Y}^c - \mathbf{X}^s \boldsymbol{\beta}^s)$$

subject to

$$\sum |\beta_j^s| \le t$$

 Equivalent Quadratic Programming Problem for "penalized" Likelihood

$$\min_{\boldsymbol{\beta}} \|\mathbf{Y}^c - \mathbf{X}^s \boldsymbol{\beta}^s\|^2 + \lambda \|\boldsymbol{\beta}^s\|_1$$

Posterior mode

$$\max_{\boldsymbol{\beta}^s} - \frac{\phi}{2} \{ \| \mathbf{Y}^c - \mathbf{X}^s \boldsymbol{\beta}^s \|^2 + \lambda^* \| \boldsymbol{\beta}^s \|_1 \}$$

Picture

R Code

The entire path of solutions can be easily found using the "Least Angle Regression" Algorithm of Efron et al (Annals of Statistics 2004)

- > library(lars)
- > plot(longley.lars)

Solutions

```
> round(coef(longley.lars),5)
    GNP.deflator
                      GNP Unemployed Armed.Forces Population
                                                                  Year
 [1,]
         0.00000
                  0.00000
                              0.00000
                                           0.00000
                                                       0.00000 0.00000
 [2,]
         0.00000
                  0.03273
                              0.00000
                                           0.00000
                                                       0.00000 0.00000
 [3,]
         0.00000
                  0.03623
                                           0.00000
                                                       0.00000 0.00000
                             -0.00372
 [4,]
         0.00000
                                                       0.00000 0.00000
                  0.03717
                             -0.00459
                                          -0.00099
 [5,]
         0.00000
                  0.00000
                             -0.01242
                                          -0.00539
                                                       0.00000 0.90681
 [6,]
         0.00000
                  0.00000
                             -0.01412
                                          -0.00713
                                                       0.00000 0.94375
 [7,]
         0.00000
                  0.00000
                             -0.01471
                                          -0.00861
                                                      -0.15337 1.18430
 [8,]
        -0.00770
                  0.00000
                             -0.01481
                                          -0.00873
                                                      -0.17076 1.22888
 [9,]
         0.00000 - 0.01212
                             -0.01663
                                          -0.00927
                                                      -0.13029 1.43192
[10,]
         0.00000 - 0.02534
                             -0.01869
                                          -0.00989
                                                      -0.09514 1.68655
[11,]
         0.01506 -0.03582
                             -0.02020
                                          -0.01033
                                                      -0.05110 1.82915
```

Cp Solution

Min $C_p = SSE_p/\hat{\sigma}_F^2 - n + 2p$

Cp Solution

$$Min C_p = SSE_p/\hat{\sigma}_F^2 - n + 2p$$

> summary(longley.lars)

LARS/LASSO

Call: lars(x = as.matrix(longley[, -7]), y = longley[, 7], type

Df Rss Cp

0 1 185.009 1976.7120

1 2 6.642 59.4712

2 3 3.883 31.7832 3 4 3.468 29.3165 4 5 1.563 10.8183 5 4 1.339 6.4068 6 5 1.024 5.0186

6 0.998 6.7388

8 7 0.907 7.7615

9 6 0.847 5.1128

10 7 0.836 7.0000

Cp Solution

Min
$$C_p = SSE_p/\hat{\sigma}_F^2 - n + 2p$$

> summary(longley.lars)

LARS/LASSO

GNP.deflator GNP Unemployed Armed.Forces Population Year [7,] 0.00000 0.00000 -0.01471 -0.00861 -0.15337 1.18430

Features

Combines shrinkage (like Ridge Regression) with Selection (like stepwise selection)

Features

Combines shrinkage (like Ridge Regression) with Selection (like stepwise selection)

Uncertainty in penalty?

Features

Combines shrinkage (like Ridge Regression) with Selection (like stepwise selection)

Uncertainty in penalty?

Interval estimates?

$$\mathbf{Y} \mid \alpha, \boldsymbol{\beta}^{s}, \phi \sim \mathsf{N}(\mathbf{1}_{n}\alpha + \mathbf{X}^{s}\boldsymbol{\beta}^{s}, \mathbf{I}_{n}/\phi)$$

$$\mathbf{Y} \mid \alpha, \boldsymbol{\beta}^{s}, \phi \sim \mathsf{N}(\mathbf{1}_{n}\alpha + \mathbf{X}^{s}\boldsymbol{\beta}^{s}, \mathbf{I}_{n}/\phi)$$

 $\boldsymbol{\beta}^{s} \mid \alpha, \phi, \tau \sim \mathsf{N}(\mathbf{0}, \mathsf{diag}(\boldsymbol{\tau}^{2})/\phi)$

$$\mathbf{Y} \mid \alpha, \boldsymbol{\beta}^{s}, \phi \sim \mathsf{N}(\mathbf{1}_{n}\alpha + \mathbf{X}^{s}\boldsymbol{\beta}^{s}, \mathbf{I}_{n}/\phi)$$

 $\boldsymbol{\beta}^{s} \mid \alpha, \phi, \boldsymbol{\tau} \sim \mathsf{N}(\mathbf{0}, \mathsf{diag}(\boldsymbol{\tau}^{2})/\phi)$
 $\tau_{1}^{2} \dots, \tau_{p}^{2} \mid \alpha, \phi \overset{\text{iid}}{\sim} \mathsf{Exp}(\lambda^{2}/2)$

$$\mathbf{Y} \mid \alpha, \boldsymbol{\beta}^{s}, \phi \sim \mathsf{N}(\mathbf{1}_{n}\alpha + \mathbf{X}^{s}\boldsymbol{\beta}^{s}, \mathbf{I}_{n}/\phi)$$
 $\boldsymbol{\beta}^{s} \mid \alpha, \phi, \boldsymbol{\tau} \sim \mathsf{N}(\mathbf{0}, \mathsf{diag}(\boldsymbol{\tau}^{2})/\phi)$
 $\tau_{1}^{2} \dots, \tau_{p}^{2} \mid \alpha, \phi \overset{\text{iid}}{\sim} \mathsf{Exp}(\lambda^{2}/2)$
 $p(\alpha, \phi) \propto 1/\phi$

Park & Casella (JASA 2008) and Hans (Biometrika 2010) propose Bayesian versions of the Lasso

$$\begin{array}{cccc} \mathbf{Y} \mid \alpha, \boldsymbol{\beta}^{s}, \phi & \sim & \mathsf{N}(\mathbf{1}_{n}\alpha + \mathbf{X}^{s}\boldsymbol{\beta}^{s}, \mathbf{I}_{n}/\phi) \\ \boldsymbol{\beta}^{s} \mid \alpha, \phi, \boldsymbol{\tau} & \sim & \mathsf{N}(\mathbf{0}, \mathsf{diag}(\boldsymbol{\tau}^{2})/\phi) \\ \tau_{1}^{2} \dots, \tau_{p}^{2} \mid \alpha, \phi & \stackrel{\mathrm{iid}}{\sim} & \mathsf{Exp}(\lambda^{2}/2) \\ & p(\alpha, \phi) & \propto & 1/\phi \end{array}$$

Can show that $\beta_j \mid \phi, \lambda \stackrel{\text{iid}}{\sim} DE(\lambda \sqrt{\phi})$

$$\int_{0}^{\infty} \frac{1}{\sqrt{2\pi s}} e^{-\frac{1}{2}\phi \frac{\beta^{2}}{s}} \frac{\lambda^{2}}{2} e^{-\frac{\lambda^{2}s}{2}} ds = \frac{\lambda \phi^{1/2}}{2} e^{-\lambda \phi^{1/2}|\beta|}$$

Park & Casella (JASA 2008) and Hans (Biometrika 2010) propose Bayesian versions of the Lasso

$$\begin{array}{cccc} \mathbf{Y} \mid \alpha, \boldsymbol{\beta}^{s}, \phi & \sim & \mathsf{N}(\mathbf{1}_{n}\alpha + \mathbf{X}^{s}\boldsymbol{\beta}^{s}, \mathbf{I}_{n}/\phi) \\ \boldsymbol{\beta}^{s} \mid \alpha, \phi, \boldsymbol{\tau} & \sim & \mathsf{N}(\mathbf{0}, \mathsf{diag}(\boldsymbol{\tau}^{2})/\phi) \\ \tau_{1}^{2} \dots, \tau_{p}^{2} \mid \alpha, \phi & \stackrel{\mathrm{iid}}{\sim} & \mathsf{Exp}(\lambda^{2}/2) \\ & p(\alpha, \phi) & \propto & 1/\phi \end{array}$$

Can show that $\beta_j \mid \phi, \lambda \stackrel{\text{iid}}{\sim} DE(\lambda \sqrt{\phi})$

$$\int_{0}^{\infty} \frac{1}{\sqrt{2\pi s}} e^{-\frac{1}{2}\phi \frac{\beta^{2}}{s}} \frac{\lambda^{2}}{2} e^{-\frac{\lambda^{2}s}{2}} ds = \frac{\lambda \phi^{1/2}}{2} e^{-\lambda \phi^{1/2}|\beta|}$$

Scale Mixture of Normals (Andrews and Mallows 1974)

▶ Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{y}, 1/(n\phi))$

- ▶ Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{y}, 1/(n\phi))$
- $\triangleright \beta^s \mid \boldsymbol{\tau}, \phi, \lambda, \mathbf{Y} \sim \mathsf{N}(,)$

- ▶ Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{y}, 1/(n\phi))$
- $\triangleright \beta^s \mid \tau, \phi, \lambda, \mathbf{Y} \sim \mathsf{N}(,)$
- \bullet $\phi \mid \boldsymbol{\tau}, \boldsymbol{\beta}^{s}, \lambda, \mathbf{Y} \sim \mathbf{G}(,)$

- ▶ Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{y}, 1/(n\phi))$
- $\triangleright \beta^s \mid \tau, \phi, \lambda, \mathbf{Y} \sim \mathsf{N}(,)$
- \bullet $\phi \mid \boldsymbol{\tau}, \boldsymbol{\beta}^{s}, \lambda, \mathbf{Y} \sim \mathbf{G}(,)$
- ▶ $1/\tau_i^2 \mid \beta^s, \phi, \lambda, \mathbf{Y} \sim \text{InvGaussian}(,)$

- lntegrate out α : $\alpha \mid \mathbf{Y}, \phi \sim N(\bar{y}, 1/(n\phi))$
- $\triangleright \beta^s \mid \tau, \phi, \lambda, \mathbf{Y} \sim \mathsf{N}(.)$
- $\blacktriangleright \phi \mid \tau, \beta^s, \lambda, \mathbf{Y} \sim \mathbf{G}(.)$
- ▶ $1/\tau_i^2 \mid \boldsymbol{\beta}^s, \phi, \lambda, \mathbf{Y} \sim \text{InvGaussian}(,)$

 $X \sim \text{InvGaussian}(\mu, \lambda)$

$$f(x) = \sqrt{\frac{\lambda^2}{2\pi}} x^{-3/2} e^{-\frac{1}{2} \frac{\lambda^2 (x-\mu)^2}{\mu^2 x}} \qquad x > 0$$

- ▶ Integrate out α : $\alpha \mid \mathbf{Y}, \phi \sim \mathsf{N}(\bar{\mathbf{y}}, 1/(n\phi))$
- $\triangleright \beta^s \mid \tau, \phi, \lambda, \mathbf{Y} \sim \mathsf{N}(.)$
- $\blacktriangleright \phi \mid \tau, \beta^s, \lambda, \mathbf{Y} \sim \mathbf{G}(.)$
- \blacktriangleright 1/ $\tau_i^2 \mid \beta^s, \phi, \lambda, \mathbf{Y} \sim \text{InvGaussian}(,)$

 $X \sim \text{InvGaussian}(\mu, \lambda)$

$$f(x) = \sqrt{\frac{\lambda^2}{2\pi}} x^{-3/2} e^{-\frac{1}{2} \frac{\lambda^2 (x-\mu)^2}{\mu^2 x}} \qquad x > 0$$

Homework: Derive the full conditionals for β^s , ϕ , $1/\tau^2$ see http://www.stat.ufl.edu/~casella/Papers/Lasso.pdf

Range of other scale mixtures used

► Horseshoe (Carvalho, Polson & Scott)

- ► Horseshoe (Carvalho, Polson & Scott)
- ► Generalized Double Pareto (Armagan, Dunson & Lee)

- ► Horseshoe (Carvalho, Polson & Scott)
- ► Generalized Double Pareto (Armagan, Dunson & Lee)
- ► Normal-Exponenetial-Gamma (Griffen & Brown)

- Horseshoe (Carvalho, Polson & Scott)
- ► Generalized Double Pareto (Armagan, Dunson & Lee)
- ► Normal-Exponenetial-Gamma (Griffen & Brown)
- Bridge Power Exponential Priors

Range of other scale mixtures used

- Horseshoe (Carvalho, Polson & Scott)
- Generalized Double Pareto (Armagan, Dunson & Lee)
- ► Normal-Exponenetial-Gamma (Griffen & Brown)
- Bridge Power Exponential Priors

Properties of Prior?

Range of other scale mixtures used

- Horseshoe (Carvalho, Polson & Scott)
- Generalized Double Pareto (Armagan, Dunson & Lee)
- ► Normal-Exponenetial-Gamma (Griffen & Brown)
- Bridge Power Exponential Priors

Properties of Prior?

Horseshoe

Carvalho, Polson & Scott propose

Prior Distribution on

$$oldsymbol{eta} \mid \phi \sim \mathsf{N}(oldsymbol{0}_{oldsymbol{
ho}}, rac{\mathsf{diag}(au^2)}{\phi})$$

Horseshoe

Carvalho, Polson & Scott propose

Prior Distribution on

$$oldsymbol{eta} \mid \phi \sim \mathsf{N}(oldsymbol{0}_{oldsymbol{
ho}}, rac{\mathsf{diag}(au^2)}{\phi})$$

Carvalho, Polson & Scott propose

Prior Distribution on

$$oldsymbol{eta} \mid \phi \sim \mathsf{N}(oldsymbol{0}_{oldsymbol{
ho}}, rac{\mathsf{diag}(au^2)}{\phi})$$

- $\lambda \sim C^+(0, 1/\phi)$

Carvalho, Polson & Scott propose

Prior Distribution on

$$oldsymbol{eta} \mid \phi \sim \mathsf{N}(oldsymbol{0}_{oldsymbol{
ho}}, rac{\mathsf{diag}(au^2)}{\phi})$$

- $\blacktriangleright \ \tau_i^2 \mid \lambda \stackrel{\mathrm{iid}}{\sim} C^+(0,\lambda)$
- ▶ $\lambda \sim C^{+}(0, 1/\phi)$
- $ightharpoonup p(\alpha,\phi) \propto 1/\phi$

Carvalho, Polson & Scott propose

Prior Distribution on

$$oldsymbol{eta} \mid \phi \sim \mathsf{N}(oldsymbol{0}_{oldsymbol{
ho}}, rac{\mathsf{diag}(au^2)}{\phi})$$

- $ightharpoonup au_i^2 \mid \lambda \stackrel{\text{iid}}{\sim} C^+(0,\lambda)$
- ▶ $\lambda \sim C^{+}(0, 1/\phi)$
- \triangleright $p(\alpha, \phi) \propto 1/\phi$

In the case $\lambda = \phi = 1$ and with $\mathbf{X}^t \mathbf{X} = \mathbf{I}$, $\mathbf{Y}^* = \mathbf{X}^T \mathbf{Y}$

Carvalho, Polson & Scott propose

Prior Distribution on

$$oldsymbol{eta} \mid \phi \sim \mathsf{N}(oldsymbol{0}_{oldsymbol{
ho}}, rac{\mathsf{diag}(au^2)}{\phi})$$

- $\lambda \sim C^+(0,1/\phi)$
- $ightharpoonup p(\alpha,\phi) \propto 1/\phi)$

In the case $\lambda = \phi = 1$ and with $\mathbf{X}^t \mathbf{X} = \mathbf{I}$, $\mathbf{Y}^* = \mathbf{X}^T \mathbf{Y}$

$$E[\beta_i \mid \mathbf{Y}] = \int_0^1 (1 - \kappa_i) y_i^* p(\kappa_i \mid \mathbf{Y}) \ d\kappa_i = (1 - E[\kappa \mid y_i^*]) y_i^*$$

where $\kappa_i = 1/(1+\tau_i^2)$ shrinkage factor

Carvalho, Polson & Scott propose

► Prior Distribution on

$$oldsymbol{eta} \mid \phi \sim \mathsf{N}(oldsymbol{0}_{oldsymbol{
ho}}, rac{\mathsf{diag}(au^2)}{\phi})$$

- $\lambda \sim \mathsf{C}^+(0,1/\phi)$
- $ightharpoonup p(\alpha,\phi) \propto 1/\phi)$

In the case $\lambda = \phi = 1$ and with $\mathbf{X}^t \mathbf{X} = \mathbf{I}$, $\mathbf{Y}^* = \mathbf{X}^T \mathbf{Y}$

$$E[\beta_i \mid \mathbf{Y}] = \int_0^1 (1 - \kappa_i) y_i^* p(\kappa_i \mid \mathbf{Y}) \ d\kappa_i = (1 - E[\kappa \mid y_i^*]) y_i^*$$

where $\kappa_i = 1/(1+\tau_i^2)$ shrinkage factor

Half-Cauchy prior induces a Beta(1/2, 1/2) distribution on κ_i a

Simulation Study with Diabetes Data

Range of other scale mixtures used

Range of other scale mixtures used

► Generalized Double Pareto (Armagan, Dunson & Lee)

Range of other scale mixtures used

► Generalized Double Pareto (Armagan, Dunson & Lee) $\lambda \sim \mathsf{Gamma}(\alpha, \eta)$ then $\beta_i \sim \mathsf{GDP}(\xi = \eta/\alpha, \alpha)$

Range of other scale mixtures used

 Generalized Double Pareto (Armagan, Dunson & Lee) $\lambda \sim \mathsf{Gamma}(\alpha, \eta)$ then $\beta_i \sim \mathsf{GDP}(\xi = \eta/\alpha, \alpha)$

$$f(\beta_j) = \frac{1}{2\xi} (1 + \frac{|\beta_j|}{\xi \alpha})^{-(1+\alpha)}$$

see http://arxiv.org/pdf/1104.0861.pdf

Range of other scale mixtures used

 Generalized Double Pareto (Armagan, Dunson & Lee) $\lambda \sim \mathsf{Gamma}(\alpha, \eta)$ then $\beta_i \sim \mathsf{GDP}(\xi = \eta/\alpha, \alpha)$

$$f(\beta_j) = \frac{1}{2\xi} (1 + \frac{|\beta_j|}{\xi \alpha})^{-(1+\alpha)}$$

see http://arxiv.org/pdf/1104.0861.pdf

Normal-Exponenetial-Gamma (Griffen & Brown 2005) $\lambda^2 \sim \mathsf{Gamma}(\alpha, \eta)$

Range of other scale mixtures used

▶ Generalized Double Pareto (Armagan, Dunson & Lee) $\lambda \sim \mathsf{Gamma}(\alpha, \eta)$ then $\beta_j \sim \mathsf{GDP}(\xi = \eta/\alpha, \alpha)$

$$f(\beta_j) = \frac{1}{2\xi} (1 + \frac{|\beta_j|}{\xi\alpha})^{-(1+\alpha)}$$

see http://arxiv.org/pdf/1104.0861.pdf

- Normal-Exponential-Gamma (Griffen & Brown 2005) $\lambda^2 \sim \mathsf{Gamma}(\alpha, \eta)$
- Bridge Power Exponential Priors (Stable mixing density)

Range of other scale mixtures used

▶ Generalized Double Pareto (Armagan, Dunson & Lee) $\lambda \sim \mathsf{Gamma}(\alpha, \eta)$ then $\beta_j \sim \mathsf{GDP}(\xi = \eta/\alpha, \alpha)$

$$f(\beta_j) = \frac{1}{2\xi} (1 + \frac{|\beta_j|}{\xi\alpha})^{-(1+\alpha)}$$

see http://arxiv.org/pdf/1104.0861.pdf

- Normal-Exponential-Gamma (Griffen & Brown 2005) $\lambda^2 \sim \mathsf{Gamma}(\alpha, \eta)$
- Bridge Power Exponential Priors (Stable mixing density)

See the monomvn package on CRAN

Range of other scale mixtures used

▶ Generalized Double Pareto (Armagan, Dunson & Lee) $\lambda \sim \mathsf{Gamma}(\alpha, \eta)$ then $\beta_j \sim \mathsf{GDP}(\xi = \eta/\alpha, \alpha)$

$$f(\beta_j) = \frac{1}{2\xi} (1 + \frac{|\beta_j|}{\xi\alpha})^{-(1+\alpha)}$$

see http://arxiv.org/pdf/1104.0861.pdf

- Normal-Exponential-Gamma (Griffen & Brown 2005) $\lambda^2 \sim \mathsf{Gamma}(\alpha, \eta)$
- Bridge Power Exponential Priors (Stable mixing density)

See the monomvn package on CRAN

Choice of prior? Properties? Fan & Li (JASA 2001) discuss Variable selection via nonconcave penalties and oracle properties

▶ Posterior Mode (may set some coefficients to zero)

- ▶ Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

- ▶ Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

Bayesian Posterior does not assign any probability to $\beta_i = 0$

- Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

Bayesian Posterior does not assign any probability to $\beta_i = 0$

selection based on posterior mode ad hoc rule - Select if $\kappa_i < .5$)

- Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

Bayesian Posterior does not assign any probability to $\beta_i = 0$

selection based on posterior mode ad hoc rule - Select if $\kappa_i < .5$

See article by Datta & Ghosh http:

//ba.stat.cmu.edu/journal/forthcoming/datta.pdf

- Posterior Mode (may set some coefficients to zero)
- Posterior Mean (no selection)

Bayesian Posterior does not assign any probability to $\beta_i = 0$

- selection based on posterior mode ad hoc rule Select if $\kappa_i < .5$
 - See article by Datta & Ghosh http:
 - //ba.stat.cmu.edu/journal/forthcoming/datta.pdf
- Selection solved as a post-analysis decision problem

- ► Posterior Mode (may set some coefficients to zero)
- ► Posterior Mean (no selection)

Bayesian Posterior does not assign any probability to $eta_j=0$

- selection based on posterior mode ad hoc rule Select if $\kappa_i < .5$)
 See article by Datta & Choch http:
 - See article by Datta & Ghosh http:
 - //ba.stat.cmu.edu/journal/forthcoming/datta.pdf
- Selection solved as a post-analysis decision problem
- ▶ Selection part of model uncertainty ⇒ add prior

- ► Posterior Mode (may set some coefficients to zero)
- ► Posterior Mean (no selection)

Bayesian Posterior does not assign any probability to $\beta_j=0$

- ▶ selection based on posterior mode ad hoc rule Select if $\kappa_i < .5$)
 See article by Datta & Ghosh http:
 - //ha stat cmu edu/journal/forthcoming/datt
 - //ba.stat.cmu.edu/journal/forthcoming/datta.pdf
- Selection solved as a post-analysis decision problem
- Selection part of model uncertainty \Rightarrow add prior probability that $\beta_j = 0$ and combine with decision problem