$\begin{array}{c} \text{CLASS-12} \\ \text{CHAPTER-11} \\ \text{THREE DIMENSIONAL GEOMETRY} \end{array}$

Excercise 11.2

Q1. Show that the three lines with direction cosines $\frac{12}{13}$, $\frac{-3}{13}$, $\frac{-4}{13}$; $\frac{4}{13}$, $\frac{12}{13}$, $\frac{3}{13}$; $\frac{3}{13}$, $\frac{-4}{13}$, $\frac{12}{13}$ are mutually perpendicular.

Solution:

$$\mathbf{A} = \begin{pmatrix} \frac{12}{13} \\ \frac{-3}{13} \\ \frac{-4}{13} \end{pmatrix}, \mathbf{B} = \begin{pmatrix} \frac{4}{13} \\ \frac{12}{13} \\ \frac{3}{13} \end{pmatrix}, \mathbf{C} = \begin{pmatrix} \frac{3}{13} \\ \frac{-4}{13} \\ \frac{12}{13} \end{pmatrix}$$
 (1)

Stack all three vectors into a single matrix **P**:

$$\mathbf{P} = \begin{pmatrix} \frac{12}{13} & \frac{4}{13} & \frac{3}{13} \\ \frac{-3}{13} & \frac{12}{13} & \frac{-4}{13} \\ \frac{-4}{13} & \frac{3}{13} & \frac{12}{13} \end{pmatrix}, \mathbf{P}^{\top} = \begin{pmatrix} \frac{12}{13} & \frac{-3}{13} & \frac{-4}{13} \\ \frac{4}{13} & \frac{12}{13} & \frac{3}{13} \\ \frac{3}{13} & \frac{-4}{13} & \frac{12}{13} \end{pmatrix}$$
 (2)

$$\mathbf{P}\mathbf{P}^{\top} = \mathbf{I} \tag{3}$$

$$\begin{pmatrix} \frac{12}{13} & \frac{4}{13} & \frac{3}{13} \\ \frac{-3}{13} & \frac{12}{13} & \frac{-4}{13} \\ \frac{-4}{13} & \frac{3}{13} & \frac{12}{13} \end{pmatrix} \begin{pmatrix} \frac{12}{13} & \frac{-3}{13} & \frac{-4}{13} \\ \frac{4}{13} & \frac{12}{13} & \frac{3}{13} \\ \frac{3}{13} & \frac{-4}{13} & \frac{12}{13} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}$$
(4)

Hence, all three vectors are mutually orthogonal (perpendicular) to each other.