				Name				
I.	Choose (circle) one correct answer for each question: (3 point each)							
1)		computer, a si	ating-point number most likely has					
	a) 3	b) 14	c) 7	d) 10	e) 32			
2)	On a 32-bit computer, a double precision floating-point number most likely has significant digits (choose the closest one).							
2)	a) 3	b) 14	c) 7	d) 10	e) 32	1 6	1:66	
	A character is iracters?	s represented t	by 1 Byte (8-611).	What is the max	amum nui	noer for	amerent	
	a) 8	b) 32	c) 128	d) 256	e) 1024			
4) A good random number sequence should have a) a period b) big numbers c) Gaussian distribution d) no correlations								
5)	A Fast Fourier Transform scales in order of number of uniform grid in the period. a) O(N) b) O(Nlog ₂ N)			f	operations, where <i>N</i> is t			
	a) O(<i>N</i>)	b) O(.	$Nlog_2N$)	c) $O(N^2)$	1	d) $O(N^3)$		
6) For an one-dimensional integration, which method (rule) requires an odd number of points a) Trapezoid b) Simpson's c) Monte Carlo d) Gaussian quadratu								
7 \			,		<i></i>	•		
/)	For a one-dimensional integration, which method (rule) has a non-uniform interval and weight?							
		d	b) Simpson's	c) Monte Ca	rlo	d) Gauss	sian quadratu	re
8)	A classical Molecular Dynamics method is to integrate/solve equation(s). a) Poisson's b) Schrodinger c) Newton's d) Bernoulli's							
9)	The forward difference method for differentiation, $f'_{fd}(x) \approx \frac{f(x+h) - f(x)}{h}$, has error at							
	the order of			c) O(<i>h</i>)				
10)		•	it, your programe language by a	n code (Fortran, C	or other	Languag	ge) will be	
a) librarian	b) cor	npiler	c) instructor	d) editor		e) printer	
II.	(a) Show th	ne for (N+1) u	niform points, the	e trapezoid rule is	3	(10 poin	ts)	
	$\int_{a}^{b} f(x)dx \approx h(\frac{1}{2}f_{1} + f_{2} + \dots + f_{N-1} + f_{N} + \frac{1}{2}f_{N+1})$							

where h=(b-a)/N.

(b) Derive the truncation error (in order of *h*).

(5 points)

- III. Consider an ordinary differential equation for a damped oscillation, $\frac{d^2x}{dt^2} + \omega^2x + \alpha\frac{dx}{dt} = 0$.
 - (a) Express it into the standard form (i.e., a set of first-order differential eqs.) for numerical solution (8 points)

(b) Use Euler method to obtain the (i+1)-th values from i-th step's values (say, x_i , v_i) for a given ω , α and step-size h. (7 points)

- IV. Give a formula and procedure (e.g. a flow chart) to use the Monte Carlo method to calculate the following integrals: a) $\iint_{shaded} dx dy \qquad \text{(for } x^2 + y^2 \le 1, x \ge 0, y \ge 0\text{)} \qquad (10 \text{ points})$

$$(\text{for } \mathbf{v}^2 + \mathbf{v}^2)$$

$$x^2 + v^2 < 1$$
 $x > 0$ $y > 0$

0

V. In calculation of a derivative by using a finite difference method, which one of the following two is more accurate? The forward difference method $(f'_{fd}(x) \approx \frac{f(x+h)-f(x)}{h})$ or the central difference method $(f'_{cd}(x) \approx \frac{f(x+h)-f(x-h)}{2h})$, where h is the step size. Please give your reason briefly. (10 points)

VI. The definition of a derivative is defined as $\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ according to calculus.

But when a finite difference approach to a derivative is used on any computer, does it mean that the smaller h (say, $h=10^{-32}$), the better accuracy? Please explain **why** in a few sentences. (10 points)