## Computer Science 181, Homework 5

Michael Wu UID: 404751542

May 4th, 2018

## Problem 1

Assume for contradiction that  $\bar{L}$  is a finite state language. Then by the closure properties of finite state languages, its complement L is a finite state language. Then by the pumping lemma there exists some p such that whenever a string  $s \in L$  is longer than p, it can be split into three strings s = xyz such that  $|y| \geq 1$ ,  $|xy| \leq p$ , and  $xy^nz \in L$  for any integer  $n \geq 0$ . Consider the string  $s \in L$ , where s = ww and |w| > p. Let w be a string beginning with a followed entirely by b's. Because  $|xy| \leq p$ , the leftmost w must contain x and y. If y consists of only b's then  $xy^nz \notin L$  for n = 2, since this would mean that  $xy^2z$  has the form  $ab^{k_1}ab^{k_2}$ , where  $k_1 > k_2$ . Strings of this format are not in L. If y contains an a, then it can only contain a single a. So  $xy^2z$  will have three a's, since there are two in xyz and one in y. Then  $xy^2z \notin L$ , since L must contain an even number of both a's and b's. This is a contradiction, since the pumping lemma says that  $xy^nz \in L$  for all  $n \geq 0$ . Thus our assumption that  $\bar{L}$  is a finite state language cannot be correct, and  $\bar{L}$  is a non finite state language.

## Problem 2

Yes it is ambiguous. The string

atom+atom+atom

can be parsed as either



or it can be parsed as



## Problem 3

$$L_{ists} = (V, \Sigma, R, S)$$

$$V = \{A, B\}$$

$$R = \{A \to \text{atom} \mid (B),$$

$$B \to A \mid BB \mid \epsilon\}$$

$$S = A$$