Acoustic Model & Hidden Markov Model (HMM)

Basic ASR Formulation

Basic ASR Formulation

The basic equation of Bayes rule-based speech recognition is $\hat{W} = \arg\max_{\mathbf{W}} P(\mathbf{W} \mid \mathbf{X})$

$$= \arg\max_{W} \frac{P(\mathbf{W})P(\mathbf{X} \mid \mathbf{W})}{P(\mathbf{X})}$$

$$= \underset{W}{\operatorname{arg\,max}} P(\mathbf{W}) P(\mathbf{X} \mid \mathbf{W})$$

where $X=X_1,X_2,...,X_N$ is the acoustic observation (feature vector) sequence.

$$\hat{\mathbf{W}} = w_1 w_2 ... w_M$$

is the corresponding word sequence, P(X|W) is the acoustic model and P(W) is the language model

Non-Deterministic Patterns

- Suppose we want to model a weather forecast system.
- We cannot expect these three weather states to follow each other deterministically, but we might still hope to model the system that generates a weather pattern.
- We want to collect the following probabilities;

$$P(w_n | w_{n-1}, w_{n-2}, ..., w_1)$$

Non-Deterministic Patterns

- One way to do this is to assume that the state of the model depends only upon the previous states of the model.
- This is called the Markov assumption and simplifies problems greatly.
- When considering the weather, the Markov assumption presumes that today's weather can always be predicted solely given knowledge of the weather of the past few days

- □ A Markov process is a process which moves from state to state depending (only) on the previous n states.
- ☐ The process is called an <u>order n</u> model where *n* is the number of states affecting the choice of next state.
- The simplest Markov process is a first order process, where the choice of state is made purely on the basis of the previous state.

The simplest Markov process is a first order process, which can be expressed as;

 $P(W_n \mid W_{n-1}, W_{n-2}, ..., W_1) \approx P(W_n \mid W_{n-1})$

□ The figure below shows all possible first order transitions between the states of the weather example.

■ Notice that for a first order process with M states, there are M² transitions between states since it is possible for any one state to follow another.

- Associated with each transition is a probability called the state transition probability - this is the probability of moving from one state to another.
- ☐ These M² probabilities may be collected together in an obvious way into a state transition matrix. Notice that these probabilities do not vary in time. This is an important (if often unrealistic) assumption.

The joint probability using the Markov Assumption:

$$P(W1, \dots, Wn) = \prod_{i=1}^{n} P(Wi \mid Wi-1)$$

Transition Matrix

$$S_{1} \quad S_{2} \quad S_{3}$$

$$S_{1} \quad S_{2} \quad S_{3}$$

$$A = \{a_{ij}\} = S_{2} \quad 1/2 \quad 1/2 \quad 0$$

$$S_{3} \quad 1/3 \quad 2/3 \quad 0$$

Question: What is the probability of states sequence of $\{S_3, S_2, S_1\}$

$$P(S_3, S_2, S_1) = P(S_3)P(S_2 | S_3)P(S_1 | S_2) = \frac{1}{3} \times \frac{2}{3} \times \frac{1}{2} = \frac{1}{9}$$

Question

Given that the weather on day 1 is sunny (state 3),
What is the Probability that
The weather for eight

	rain	cloud	sun
rain	0.4	0.3	0.3
cloud	0.2	0.6	0.2
sun	0.1	0.1	0.8

consecutive days is "sun-sun-sun-rain-rain-sun-cloudy-sun"?

Solution: **O** = sun sun sun rain rain sun cloudy sun

3 3 1 1 3 2 3

$$P(\overline{O}|Model) = P[3]P[3|3]P[3|3]P[1|3]P[1|1]P[3|1]P[2|3]P[3|2]$$

$$= \pi_3 a_{33} a_{33} a_{31} a_{11} a_{13} a_{32} a_{23} = 1 \cdot (0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2)$$

$$= 1.536 \times 10^{-4}$$

- □ We have now defined a first order Markov process consisting of :
- 1. states: Three states sunny, cloudy, rainy.
- **2.** π **vector**: Defining the probability of the system being in each of the states at time 0.
- **3. state transition matrix**: The probability of the weather given the previous day's weather.
- Any system that can be described in this manner is a Markov process.

From Markov To Hidden Markov

- □ The previous model assumes that each state can be uniquely associated with an observable event
 - Once an observation is made, the state of the system is then trivially retrieved
 - This model, however, is too restrictive to be of practical use for most realistic problems
- □ To make the model more flexible, we will assume that the outcomes or observations of the model are a probabilistic function of each state
 - Each state can produce a number of outputs according to a probability distribution, and each distinct output can potentially be generated at any state
 - These are known a Hidden Markov Models (HMM), because the state sequence is not directly observable, it can only be approximated from the sequence of observations produced by the system

From Markov To Hidden Markov

Patterns generated by a hidden process

- □ A more realistic problem is that of recognizing speech; the sound that we hear is the product of the vocal chords, size of throat, position of tongue and several other things.
- □ Each of these factors interact to produce the sound of a word, and the sounds that a speech recognition system detects are the changing sound generated from the internal physical changes in the person speaking.

Patterns generated by a hidden process

☐ In addition to the probabilities defining the Markov process, we therefore have another matrix, termed the <u>confusion matrix</u>, which contains the probabilities of the observable states given a particular hidden state.