Chapitre 16 : Courbes et surfaces de l'espace

Plan du chapitre

1	Courbes et surfaces paramétrées 1.A Courbes paramétrées	1 1 2
2	Surface définie par une équation cartésienne	4
3	Intersections de surfaces, projections des courbes 3.A Intersections de surfaces	6
4	Surfaces particulières 4.A Surfaces réglées	

Courbes et surfaces paramétrées

Courbes paramétrées

On munit \mathbb{R}^3 d'un repère orthonormé direct (O, i, j, k).

Définition 1

Soit $I \subset \mathbb{R}$ un intervalle de \mathbb{R} et $f: t \to M(t)$ une fonction définie sur I et à valeurs dans \mathbb{R}^3 .

L'ensemble $\Gamma = \{M(t) : t \in I\}$ est appelé courbe de l'espace paramétrée par la fonction f.

Si l'on note
$$f(t)=\begin{pmatrix} x(t)\\y(t)\\z(t)\end{pmatrix}$$
 les coordonnées du point $M(t)\in\mathbb{R}^3$, on dit que Γ admet pour représentation paramétrique
$$\begin{cases} x=x(t)\\y=y(t)\\z=z(t) \end{cases}$$

paramétrique
$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

On dit que la courbe Γ est plane si elle est contenue dans un plan et gauche sinon.

Exemple

La droite passant par le point $M_0(x_0,y_0,z_0)$ et dirigée par le vecteur $\overrightarrow{u}=(a,b,c)$ admet pour représentation paramétrique:

$$\begin{cases} x = x_0 + ta \\ y = y_0 + tb ; t \in \mathbb{R}. \\ z = z_0 + tc \end{cases}$$

Définition 2: Point régulier

Soit
$$f \in \mathcal{C}^1(I, \mathbb{R}^3)$$
, $f: t \longmapsto M(t)$.

On dit que le point
$$M(t_0)$$
 est régulier si $f'(t_0) = \begin{pmatrix} x'(t_0) \\ y'(t_0) \\ z'(t_0) \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Il est dit stationnaire dans le cas contraire.

Proposition 3: Tangente en un point régulier

Si
$$M(t_0)$$
 est régulier alors la tangente à Γ en $M(t_0)$ est dirigée par $f'(t_0)=\dfrac{d\overrightarrow{OM}}{dt}(t_0)$.

Remarques

$$\text{Au point } M(t_0) \left(\begin{array}{c} x(t_0) \\ y(t_0) \\ z(t_0) \end{array} \right) \text{ la tangente a pour représentation paramétrique : } \left\{ \begin{array}{ccc} x & = & x(t_0) + \lambda x'(t_0) \\ y & = & y(t_0) + \lambda y'(t_0) \\ z & = & z(t_0) + \lambda z'(t_0) \end{array} \right., \lambda \in \mathbb{R}$$

Exercice 4

Soit
$$\mathscr{H}$$
 la courbe de l'espace paramétrée par $f:t\longmapsto\begin{pmatrix}x(t)\\y(t)\\z(t)\end{pmatrix}=\begin{pmatrix}\cos(t)\\\sin(t)\\t\end{pmatrix}$.

- 1. Donner l'allure du support de la courbe \mathcal{H} . La courbe \mathcal{H} est-elle plane?
- 2. La courbe \mathcal{H} possède-t-elle des points singuliers?
- 3. Déterminer les projections orthogonales sur les plans (xOy) et (xOz).
- 4. Déterminer une équation cartésienne et la nature d'une surface contenant la courbe \mathcal{H} .

1.B Surfaces paramétrées de l'espace

Définition 5: surface paramétrée

Soit $f:(u,v)\longmapsto M(u,v)=\begin{pmatrix} x(u,v)\\y(u,v)\\z(u,v) \end{pmatrix}$ fonction de classe \mathscr{C}^k $(k\geqslant 1)$ définie sur un ouvert \mathscr{U} de \mathbb{R}^2 . On appelle surface paramétrée par f l'ensemble des points de l'espace

$$\mathscr{S} = \left\{ \left(\begin{array}{c} x(u,v) \\ y(u,v) \\ z(u,v) \end{array} \right) : (u,v) \in \mathscr{U} \right\}.$$

Remarques

- Si l'on fixe $v = v_0$ alors l'application $u \mapsto M(u, v_0)$ est une courbe paramétrée dont tous les points sont situés sur la surface \mathscr{S} . (De même si l'on fixe $u = u_0$).
- Plus généralement si $t \longmapsto (u(t),v(t))$ est à valeurs dans $\mathscr U$ alors $t \longmapsto f(u(t),v(t))$ est une courbe paramétrée tracée sur $\mathscr S$.

Exercice 6

Donner une paramétrisation du plan
$$\Pi = M \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \operatorname{Vect} \left(\begin{pmatrix} a \\ b \\ c \end{pmatrix}, \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} \right).$$

Remarques

Si
$$v=v_0$$
 est fixé alors $t\longmapsto\begin{pmatrix} (x_0+v_0a')+ua\\ (x_0+v_0b')+ub\\ (x_0+v_0c')+uc \end{pmatrix}$ est une paramétrisation de la droite contenue dans Π , passant par le point $\begin{pmatrix} x_0+v_0a'\\ x_0+v_0b'\\ x_0+v_0c' \end{pmatrix}\in\Pi$ et dirigée par (a,b,c) .

Définition 7: Point régulier singulier

Un point $M_0(u_0, v_0) \in \mathscr{S}$ est dit régulier si la famille $\left(\frac{\partial f}{\partial u}(u_0, v_0), \frac{\partial f}{\partial v}(u_0, v_0)\right)$ est libre. Sinon le point est dit singulier (ou stationnaire).

Définition 8: Plan tangent

Le plan tangent en un point régulier d'une surface $\mathscr S$ est la réunion des tangentes aux courbes régulières tracées sur $\mathscr S$ passant par ce point.

Théorème 9: Plan tangent en un point régulier

Si $M_0(u_0, v_0) \in \mathscr{S}$ est un point régulier alors \mathscr{S} admet en $M_0(u_0, v_0)$ un plan tangent dirigé par les vecteurs

$$\frac{\partial \overrightarrow{OM}}{\partial u}(u_0,v_0) = \frac{\partial f}{\partial u}(u_0,v_0) \quad \text{ et } \quad \frac{\partial \overrightarrow{OM}}{\partial v}(u_0,v_0) = \frac{\partial f}{\partial v}(u_0,v_0).$$

— Un vecteur normal au plan tangent Π est

$$\overrightarrow{n} = \frac{\partial f}{\partial u}(u_0, v_0) \wedge \frac{\partial f}{\partial v}(u_0, v_0) = (a, b, c).$$

Équation cartésienne de Π : ax + by + cz + d = 0 (on détermine d avec les coordonnées de $M_0(u_0, v_0)$).

— Un point M appartient au plan Π si et seulement si :

$$\begin{split} \overrightarrow{M_0M} \in \Pi &\iff \left(\overrightarrow{M_0M}, \frac{\partial f}{\partial u}(u_0, v_0), \frac{\partial f}{\partial v}(u_0, v_0)\right) \text{ famille li\'ee} \\ &\iff \det \left(\overrightarrow{M_0M}, \frac{\partial f}{\partial u}(u_0, v_0), \frac{\partial f}{\partial v}(u_0, v_0)\right) = 0 \\ &\iff \begin{vmatrix} x - x(u_0, v_0) & \frac{\partial x}{\partial u}(u_0, v_0) & \frac{\partial x}{\partial v}(u_0, v_0) \\ y - y(u_0, v_0) & \frac{\partial y}{\partial u}(u_0, v_0) & \frac{\partial y}{\partial v}(u_0, v_0) \\ z - z(u_0, v_0) & \frac{\partial z}{\partial u}(u_0, v_0) & \frac{\partial z}{\partial v}(u_0, v_0) \end{vmatrix} = 0. \end{split}$$

Exercice 10

On considère la surface $\mathscr S$ paramétrée par $f: \left\{ \begin{array}{ccc} \mathbb R_+^* \times \mathbb R & \longmapsto & \mathbb R^3 \\ (u,v) & \longmapsto & (\sqrt{u}\cos(v),\sqrt{u}\sin(v),u) \end{array} \right.$

- 1. Montrer que le point $M_0(u_0, v_0)$ de paramètre $(u_0, v_0) = (1, \frac{\pi}{4})$ est régulier.
- 2. (a) Déterminer un paramétrage du plan tangent Π en $(u_0, v_0) = (1, \frac{\pi}{4})$ à la surface paramétrée par le fonction f.
 - (b) Donner une équation cartésienne de Π de deux méthodes différentes.

Corollaire 11

Soit $g: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 sur un ouvert $\mathscr{U} \subset \mathbb{R}^2$. On note $\mathscr{S} = \{(x, y, g(x, y)) : (x, y) \in \mathscr{U}\}.$

$$\left(\begin{array}{c} 1 \\ 0 \\ \frac{\partial g}{\partial x}(x_0, y_0) \end{array} \right) \quad \text{et} \quad \left(\begin{array}{c} 0 \\ 1 \\ \frac{\partial g}{\partial y}(x_0, y_0) \end{array} \right).$$

Une équation cartésienne du plan tangent est alors :

$$z = g(x_0, y_0) + \frac{\partial g}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial g}{\partial y}(x_0, y_0)(y - y_0).$$

- On suppose maintenant $g \in \mathscr{C}^2(\mathscr{U})$. Soit $(x_0, y_0, z_0) = (x_0, y_0, g(x_0, y_0)) \in \mathscr{S}$. Si $(x_0, y_0) \in \mathcal{U}$ est un point critique de g alors la position relative du plan tangent et de la surface est donnée le déterminant de la matrice Hessienne A de g au point (x_0, y_0) :
 - * Si det A > 0 la surface reste, au voisinage de $(x_0, y_0, g(x_0, y_0))$, du même coté du plan tangent.
 - * Si $\det A < 0$ le plan tangent traverse la surface.

Extremum, plan tangent et différence d'altitude

Point col, plan tangent traversant

Surface définie par une équation cartésienne

Définition 12

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ une fonction de classe \mathscr{C}^k $(k \ge 1)$. On appelle surface d'équation cartésienne f(x,y,z) = 0l'ensemble des points de \mathbb{R}^3 dont les coordonnées vérifient f(x,y,z)=0.

Exemple

- $f(x, y, z) = ax + by + cz + d \text{ avec } (a, b, c) \neq (0, 0, 0).$
- $\mathcal{S} = \{(x, y, z) = ax + by + cz + a \text{ avec } (a, b, c) \neq (0, 0, 0)$ $\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 0\} \text{ est un plan.}$ $f(x, y, z) = (x a)^2 + (y b)^2 + (z c)^2 R^2.$ $\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 0\} \text{ est une sphère.}$

Définition 13

On dit que (x_0, y_0, z_0) est un point critique de f si $\nabla f(x_0, y_0, z_0) = \overrightarrow{0}$. Le point (x_0, y_0, z_0) est un point régulier de \mathscr{S} sinon : $\nabla f(x_0, y_0, z_0) \neq \overrightarrow{0}$.

Théorème 14: Plan tangent en un point régulier

Si $M_0(x_0, y_0, z_0)$ est un point régulier de $\mathscr S$ alors $\mathscr S$ admet un plan tangent au point M_0 dont un vecteur normal est $\nabla f(x_0, y_0, z_0)$. Son équation est alors :

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial f}{\partial z}(x_0, y_0, z_0)(z - z_0) = 0.$$

Intersections de surfaces, projections des courbes

Intersections de surfaces

L'intersection de deux surfaces peut :

- être vide : c'est le cas par exemple de l'intersection de deux plans parallèles.
- être réduite à un point : c'est le cas par exemple de $\mathscr{S}_1 \cap \mathscr{S}_2$ avec

$$\mathscr{S}_1 = \{(x, y, x^2 + y^2) : (x, y) \in \mathbb{R}^2\} \text{ et } \mathscr{S}_2 = \{(x, y, -x^2 - y^2) : (x, y) \in \mathbb{R}^2\}.$$

- être une surface : c'est le cas de l'intersection d'un plan avec lui même (!)
- être une courbe. C'est le cas que l'on traitera principalement dans ce paragraphe.

Exemple

- L'intersection de deux plans distincts non parallèles est une droite.
- L'intersection du plan z=0 et de la sphère d'équation $x^2+y^2+z^2=1$ est le cercle unité.

Théorème 15: Tangente à l'intersection de deux surfaces

Soit \mathscr{S}_1 et \mathscr{S}_2 deux surfaces telles que l'intersection $\mathscr{S}_1 \cap \mathscr{S}_2 = \Gamma$ est une courbe. Soit M_0 un point de Γ tel que :

- $\begin{array}{l} -- M_0 \text{ est un point régulier de } \mathscr{S}_1 \text{ et } \mathscr{S}_2. \\ -- \text{ les plans tangents aux surfaces } \mathscr{S}_1, \mathscr{S}_2 \text{ en } M_0 \text{ sont distincts.} \end{array}$

Alors:

- * M_0 est un point régulier de Γ .
- * La tangente à Γ en M_0 est l'intersection des plans tangents en M_0 à \mathcal{S}_1 et \mathcal{S}_2 .
- * Si $\mathcal{S}_1, \mathcal{S}_2$ sont définies par les équations cartésiennes :

$$\mathcal{S}_1: f(x, y, z) = 0$$
 ; $\mathcal{S}_2: g(x, y, z) = 0$

alors la tangente en $M_0(x_0, y_0, z_0)$ est dirigée par

$$\nabla f(x_0, y_0, z_0) \wedge \nabla g(x_0, y_0, z_0).$$

Exemple

Soient P, Q deux plans non parallèles d'équations : $\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$

(P,Q) non parallèles) est équivalent à la non colinéarité des vecteurs normaux (a,b,c),(a',b',c'). L'intersection $P \cap Q$ est une droite dirigée par le vecteurs $(a, b, c) \wedge (a', b', c')$.

Projection orthogonale d'une courbe sur un plan de coordonnées

Exemple

Si la courbe admet une représentation paramétrique $\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$ alors la projection orthogonale sur le plan $xOy \text{ d'équation } z = 0 \text{ admet une représentation paramétrique} : \begin{cases} x = x(t) \\ y = y(t) \\ z = 0 \end{cases}$

Exemple

Soit Γ l'intersection de deux surfaces d'équations $\left\{\begin{array}{ll} f(x,y,z) & = & 0 \\ g(x,y,z) & = & 0 \end{array}\right.$ dont on cherche la projection orthogonale sur xOy. Soit M(x, y, 0) un point sur le plan d'équation z = 0. Alors :

 $M(x,y,0) \in \Gamma \iff M(x,y,0)$ est le projeté orthogonale sur xOy d'un point de Γ

$$\iff \exists z_0 \in \mathbb{R}, \left\{ \begin{array}{lcl} f(x,y,z_0) & = & 0 \, (1) \\ g(x,y,z_0) & = & 0 \, (2) \end{array} \right.$$

Soit H(x, y, 0) le projeté orthogonal de $(x, y, z) \in \Gamma$ sur xOy.

Une équation cartésienne h(x,y)=0 de Γ est donc la condition d'élimination de z_0 dans les équations (1),(2).

Les coordonnées de H vérifient alors : $\begin{cases} h(x,y) = 0 \\ z = 0 \end{cases}$.

Exercice 16

Soit
$$\Gamma$$
:
$$\begin{cases} x^2 + y^2 + z^2 &= 1 \\ x - y + z &= 1 \end{cases}$$

- 1. Préciser la nature de la courbe Γ et ses éléments géométriques.
- 2. Déterminer une équation cartésienne de la projection orthogonale \mathscr{E} de Γ sur le plan xOy.
- 3. Etudier la courbe \mathscr{E} .

Passage équation cartésienne/paramétrisation d'une surface

On traite deux exemples. Le cas général est hors-programme (et difficile).

Exemple

 $\mathrm{Soit}\, \varphi: (u,v) \longmapsto M(u,v) = \left(\begin{array}{c} u-v \\ 2u^2-3uv \\ v \end{array} \right) \text{ une paramétrisation d'une surface } \mathscr{S}.$

Soit $(x, y, z) \in \mathcal{S}$. Il existe alors $(u, v) \in \mathbb{R}^2$ tel que $(x, y, z) = (u - v, 2u^2 - 3uv, v)$.

On a z = v et $x = u - v \iff u = x + v = x + z$. Il vient : $y = 2u^2 - 3uv = 2(x+z)^2 - 3(x+z)z = 3x^2 - z^2 + xz$.

Tout point (x, y, z) de $\mathscr S$ vérifie donc $y = 3x^2 - z^2 + xz$.

— Réciproquement si $(x,y,z)\in\mathbb{R}^3$ vérifie cette équation, on pose $v=z,\,u=x+z.$ On obtient $2u^2-3uv=3x^2-z^2+xz=y.$ Ainsi, $(x,y,z)\in\mathscr{S}.$

Exemple

 $\begin{aligned} &\text{Soit } \varphi: (u,v) \longmapsto (u\cos v, u, 1+\sin v). \\ & - \text{Soit } (x,y,z) \in \mathscr{S}: \text{il existe } (u,v) \in \mathbb{R}^2 \text{ tel que } (x,y,z) = (u\cos v, u, 1+\sin v). \\ &\text{On a } y=u. \\ &* \text{Si } y \neq 0 \text{ alors } \frac{x}{y} = \cos v \text{ et } z-1 = \sin v. \\ &\text{Tout point } (x,y,z) \in \mathscr{S} \text{ avec } y \neq 0 \text{ vérifie l'équation } \left(\frac{x}{y}\right)^2 + (z-1)^2 = 1 \text{ ou encore } x^2 + y^2(z-1)^2 = 1 \end{aligned}$

 y^2 (*). * Tout point $(x,0,z) \in \mathcal{S}$ (y=0) vérifie également l'équation (*). En effet, dans ce cas $(x,0,z) = (u\cos v, u, 1+\sin v) \Longrightarrow (x,0,z) = (0,0,1+\sin v)$. En particulier x=y=0 et (*) est bien vérifiée.

(notons que tout point (0,0,z) situé sur l'axe (Oz) vérifie également l'équation (*).

- Réciproquement si $(x, y, z) \in \mathbb{R}^3$ vérifie l'équation (*):
 - * si $y \neq 0$ on pose u = y et dans ce cas (*) donne $\left(\frac{x}{y}\right)^2 + (z 1)^2 = 1$. Il existe donc $v \in \mathbb{R}$ tel que $\frac{x}{y} = \cos v$ et $z 1 = \sin v$. On obtient $(x, y, z) = (u \cos v, u, 1 + \sin v) \in \mathscr{S}$.
 - Si y = 0 alors l'équation (*) donne x = 0 et on obtient $(x, y, z) = (0, 0, z) \in (Oz)$. L'ensemble des points vérifiant l'équation (*) est donc la réunion $\mathcal{S} \cup (Oz)$.

4 Surfaces particulières

4.A Surfaces réglées

Définition 17: Surfaces réglées

Soit I un intervalle réel et une famille de droites $(\mathcal{D}_t)_{t\in I}$ indexée par I.

- On appelle surface réglée engendrée par la famille $(\mathcal{D}_t)_{t\in I}$ la réunion des droites \mathcal{D}_t .
- Les droites \mathcal{D}_t sont appelées génératrices de la surface.

Si \mathscr{D}_t est dirigée par le vecteur $u(t) = \begin{pmatrix} a(t) \\ b(t) \\ c(t) \end{pmatrix}$ et passe par le point $A(t) = \begin{pmatrix} \alpha(t) \\ \beta(t) \\ \gamma(t) \end{pmatrix}$ alors la surface réglée \mathscr{S} admet une représentation paramétrique du type :

$$A(t) + \lambda u(t) = \begin{cases} x = \alpha(t) + \lambda a(t) \\ y = \beta(t) + \lambda b(t) \\ z = \gamma(t) + \lambda c(t) \end{cases} ((t, \lambda) \in I \times \mathbb{R}).$$

Exemple

Soit $(\mathcal{D}_t)_{t\in\mathbb{R}}$ la famille de droites passant par le point $A_t(t,0,t^2)$ et dirigée par $u_t(1,1,2t)$. Notons \mathscr{S} la surface réglée engendrée par cette famille de droites :

$$M \in \mathscr{S} \iff \exists t \in \mathbb{R}, M \in \mathscr{D}_t \iff \exists (\lambda, t) \in \mathbb{R}^2 : \begin{cases} x = t + \lambda \\ y = \lambda \\ z = t^2 + 2\lambda t \end{cases}$$

Un point $(x,y,z)\in\mathbb{R}^3$ appartient à $\mathscr S$ si et seulement s'il existe $(t,\lambda)\in I\times\mathbb{R}$ tel que :

$$(x, y, z) = (t + \lambda, \lambda, t^2 + 2\lambda t).$$

Il vient $y=\lambda,\, t=x-\lambda=x-y$ puis $z=(x-y)^2+2y(x-y)=x^2-y^2.$ Tout point (x,y,z) de $\mathscr S$ vérifie donc l'équation $z=x^2-y^2.$ Réciproquement soit $(x,y,z)\in\mathbb R^3$ vérifiant $z=x^2-y^2.$

En posant $y = \lambda$ et t = x - y il vient en remontant les calculs précédents :

$$t^2 + 2\lambda t = (x - y)^2 + 2y(x - y) = x^2 - y^2 = z \text{ i.e.}(x, y, z) \in \mathscr{S}.$$

Ci-dessous la "selle de cheval" et quelques génératrices (vues de 3/4 et du dessus).

Théorème 18

Le plan tangent en un point régulier $M(t_0, \lambda_0)$ d'une surface réglée contient la génératrice passant par ce point.

Exercice 19

Soit Γ une courbe de l'espace et \overrightarrow{u} un vecteur non nul.

On appelle cylindre de direction \overrightarrow{u} et de directrice Γ , la surface engendrée par toutes les droites dirigées par \overrightarrow{u} et passant par un point de Γ . Soit $\mathscr C$ un tel cylindre.

- 1. Montrer que toutes les génératrices de $\mathscr C$ sont parallèles.
- 2. On suppose Γ définie par un paramétrage \mathscr{C}^1 sur \mathbb{R} , $t\longmapsto (x(t),y(t),z(t))$, régulier. Donner un paramétrage de \mathscr{C} .
- 3. Caractériser les points réguliers du cylindre. Donner un paramétrage du plan tangent à $\mathscr C$ en chacun de ses points.
- 4. On suppose ici que Γ est définie par les équations $\begin{cases} f(x,y) &= 0 \\ z &= 0 \end{cases}$ et que $\overrightarrow{u} = (0,0,1).$

Déterminer une équation cartésienne du cylindre de directrice Γ .

4.B Surface de révolution

Définition 20: Surface de révolution

On appelle surface de révolution une surface $\mathcal S$ obtenue par rotation d'une courbe Γ autour d'une droite Δ .

- La droite Δ est appelée axe de \mathscr{S} .
- On appelle parallèle de ${\mathscr S}$ un cercle obtenu par intersection de ${\mathscr S}$ et d'un plan orthogonal à l'axe Δ .
- On appelle plan méridien un plan contenant l'axe Δ .
- On appelle méridienne l'intersection de \mathscr{S} et d'un plan méridien.

Exemple

La rotation d'une droite $\mathscr D$ autour d'un axe Δ produit une surface :

- Π : un plan si $\mathscr{D} \perp \Delta$.
- \mathscr{C} : un cylindre de révolution si $\mathscr{D}//\Delta$.
- \mathscr{C}' : un cône de révolution sinon.

Détermination d'un paramétrage ou d'une équation cartésienne.

Soit Δ une droite dont on donne un vecteur directeur $\overrightarrow{u} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

Soit Γ la courbe paramétrée par $\left\{ \begin{array}{ll} x & = & x(t) \\ y & = & y(t) \\ z & = & z(t) \end{array} \right.$ ($t \in I$) ou définie par les équations $\left\{ \begin{array}{ll} f(x,y,z) & = & 0 \\ g(x,y,z) & = & 0 \end{array} \right.$ Soit $\mathscr C$ la surface de f(x,y,z)

Soit $\mathscr S$ la surface de révolution engendrée par la rotation de la demi-méridienne Γ autour de Δ

① Soit $M(x,y,z) \in \mathbb{R}^3$. Soit $A \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ un point par lequel passe l'axe Δ . Alors :

$$\begin{split} M \in \mathscr{S} &\iff \exists M_0 \in \Gamma : \left\{ \begin{array}{l} M \text{ appartient au plan orthogonal à } \Delta \text{ passant par } M_0 \\ \left|\left|\overrightarrow{AM_0}\right|\right| = \left|\left|\overrightarrow{AM}\right|\right| \\ &\iff \exists t_0 \in I : \left\{ \begin{array}{l} ax + by + cz = ax(t_0) + by(t_0) + cz(t_0) \\ (x - \alpha)^2 + (y - \beta)^2 + (z - \gamma)^2 = (x(t_0) - \alpha)^2 + (y(t_0) - \beta)^2 + (z(t_0) - \gamma)^2 \end{array} \right. \end{split}$$

On élimine ensuite le paramètre t_0 afin de déterminer une équation cartésienne de \mathscr{S} .

2 Soit $M(x, y, z) \in \mathbb{R}^3$. Alors :

$$\begin{split} M \in \mathscr{S} &\iff \exists B \in \Delta, \exists M_0 \in \Gamma : \left\{ \begin{array}{l} B, M, M_0 \text{ appartienment au même plan orthogonal à } \Delta \\ \left| \left| \overrightarrow{BM_0} \right| \right| = \left| \left| \overrightarrow{BM} \right| \right| \\ \iff \exists B \in \Delta, \exists t_0 \in I : \left\{ \begin{array}{l} (\overrightarrow{BM_0}|\overrightarrow{u}) = 0 \\ (\overrightarrow{BM}|\overrightarrow{u}) = 0 \\ (x - \alpha)^2 + (y - \beta)^2 + (z - \gamma)^2 \\ = (x(t_0) - \alpha)^2 + (y(t_0) - \beta)^2 + (z(t_0) - \gamma)^2 \end{array} \right. \end{split}$$

3 Cas particulier $\Delta = (Oz)$.

Si $\mathscr S$ est une surface de révolution d'axe $\Delta=(Oz)$ obtenue par rotation d'une courbe Γ admettant pour représentation paramétrique :

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases} (t \in I)$$

alors $\mathcal S$ admet pour représentation paramétrique :

$$\begin{cases} x = \cos \theta x(t) - \sin \theta y(t) \\ y = \sin \theta x(t) + \sin \theta y(t) \\ z = z(t) \end{cases}$$
 $(t, \theta) \in I \times [0; 2\pi].$

Exercice 21

Soit $\mathscr S$ la surface de révolution engendrée par la rotation de la droite $\Gamma: \left\{ \begin{array}{ccc} x & = & 1 \\ y & = & z \end{array} \right.$ autour de la droite $\Delta =$

Déterminer une équation cartésienne de $\mathscr S$ puis la méridienne obtenue en intersectant $\mathscr S$ et le plan d'équation x = 0.

Exercice 22

- 1. Déterminer l'équation cartésienne d'un cylindre de révolution de rayon R et d'axe Δ passant par le point A et dirigé par \overrightarrow{u} .
- 2. Déterminer l'équation cartésienne d'un cône de révolution de sommet S contenu dans l'axe Δ dirigé par \overrightarrow{u} et de demi-angle au sommet $\theta \in]0; \frac{\pi}{2}[$.

Solution. 1. On note
$$\overrightarrow{u} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 et $A \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$. Soit $M \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ un point du cylindre.

La distance de M à Δ est constante égale à R.

En traduisant cette égalité avec les coordonnées des points en jeu dans le repère orthonormé direct usuel de \mathbb{R}^3 on trouve :

$$R^{2} = \frac{1}{a^{2} + b^{2} + c^{2}} \left\| \begin{pmatrix} a \\ b \\ c \end{pmatrix} \wedge \begin{pmatrix} x - \alpha \\ y - \beta \\ z - \gamma \end{pmatrix} \right\|^{2} \iff (a^{2} + b^{2} + c^{2})R^{2} = \left\| \begin{pmatrix} b(z - \gamma) - c(y - \beta) \\ c(x - \alpha) - a(z - \gamma) \\ a(y - \beta) - b(x - \alpha) \end{pmatrix} \right\|^{2}$$

$$\iff (a^{2} + b^{2} + c^{2})R^{2} = (z - \gamma)^{2}(a^{2} + b^{2}) + (y - \beta)^{2}(a^{2} + c^{2}) + (x - \alpha)^{2}(b^{2} + c^{2})$$

$$- 2bc(z - \gamma)(y - \beta) - 2ac(x - \alpha)(z - \gamma) - 2ab(x - \alpha)(y - \beta)$$

$$\iff (a^{2} + b^{2} + c^{2})R^{2} = (a^{2} + b^{2} + c^{2})\left[(z - \gamma)^{2} + (y - \beta)^{2} + (x - \alpha)^{2}\right] - \left[a(x - \alpha) + b(y - \beta) + c(z - \gamma)\right]^{2}$$

$$\iff R^{2} = \left[(x - \alpha)^{2} + (y - \beta)^{2} + (z - \gamma)^{2}\right] - \frac{\left[a(x - \alpha) + b(y - \beta) + c(z - \gamma)\right]^{2}}{a^{2} + b^{2} + c^{2}}.$$

2. Soit $\overrightarrow{u} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, $S \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ le sommet et $M \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ un point du cône.

L'aire du parallélogramme engendré par \overrightarrow{u} et \overline{SM} est égale à

$$\mathscr{A} = ||\overrightarrow{u} \wedge \overrightarrow{SM}||.$$

Cette aire vaut également

$$\mathscr{A} = ||\overrightarrow{u}||HM.$$

Il vient
$$HM^2 = \frac{||\overrightarrow{u} \wedge \overrightarrow{SM}||^2}{||\overrightarrow{u}||^2}$$
.

D'autre part,
$$\sin^2 \theta = \frac{HM^2}{SM^2}$$

On égalise et il vient :

$$HM^{2} = SM^{2} \sin^{2} \theta = \frac{||\overrightarrow{u} \wedge \overrightarrow{SM}||^{2}}{||\overrightarrow{u}||^{2}}$$

En exprimant avec les coordonnées cette égalité en utilisant les coordonnées des points en jeu dans le repère orthonormé direct usuel de \mathbb{R}^3 on trouve (avec un calcul analogue à la Q.1.):

$$((x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2) \sin^2 \theta$$

$$= \frac{1}{a^2 + b^2 + c^2} \left((a^2 + b^2 + c^2) \left[(x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2 \right] - \left[a(x-\alpha) + b(y-\beta) + c(z-\gamma) \right]^2 \right).$$

Il vient:

$$\frac{\left[a(x-\alpha) + b(y-\beta) + c(z-\gamma)\right]^2}{a^2 + b^2 + c^2} = \left[(x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2\right] \left(1 - \sin^2 \theta\right)$$

$$\iff \frac{\left[a(x-\alpha) + b(y-\beta) + c(z-\gamma)\right]^2}{a^2 + b^2 + c^2} = \left[(x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2\right] \cos^2 \theta$$

Autre version

On peut utiliser le produit scalaire au lieu du produit vectoriel.

On a
$$\left| \left(\overrightarrow{u} | \overrightarrow{SM} \right) \right|^2 = ||\overrightarrow{u}||^2 ||\overrightarrow{SM}||^2 |\cos \theta|^2 \operatorname{car} (\overrightarrow{u}, \overrightarrow{SM}) = \theta \operatorname{ou} \pi - \theta.$$

On retrouve directement la relation établie ci-dessus.