Time	Group	Submission in Moodle; Mails with subject: [SMD2023]
Th. 12:00-13:00	A	lukas.beiske@udo.edu and tristan.gradetzke@udo.edu
Fr. 08:45–09:45	В	jonas.hackfeld@ruhr-uni-bochum.de and ludwig.neste@udo.edu
Fr. 10:00-11:00	\mathbf{C}	stefan.froese@udo.edu and vincent.latko@udo.edu

Exercise 12 Fisher-Discriminant: By Hand

3 p.

Perform a Linear Fisher Discriminant analysis by hand.

Population 0: (1; 1) (2; 1) (1.5; 2) (2; 2) (2; 3) (3; 3)

Population 1: (1.5; 1) (2.5; 1) (3.5; 1) (2.5; 2) (3.5; 2) (4.5; 2)

- (a) Calculate the mean $\vec{\mu}$ and scatter matrices S_i , as well as the combined scatter matrix S_{ij} .
- **(b)** What is $\vec{\lambda}$?
- (c) Draw the points of the two populations on a graph along with the projection line $\vec{\lambda} = \lambda \cdot \vec{e}_{\vec{\lambda}}$. Make sure the aspect ratio of your plot is equal (aspect('equal')).
- (d) Project the individual points onto the projection line.
- (e) Choose a suitable parameter λ_{cut} and calculate the corresponding precision and recall with respect to population 1. Why did you choose this parameter?

Exercise 13 Fisher-Discriminant: Implementation

7 p.

In the file two_populations.h5 the two populations P_0_10000 and P_1 are given. (You can find this file in Moodle.) Read the file using the command:

Listing 1: Example to read the populations:

```
import pandas as pd

p0 = pd.read_hdf('two_populations.h5', key='P_0_10000')

p1 = pd.read_hdf('two_populations.h5', key='P_1')

p0_1000 = pd.read_hdf('two_populations.h5', key='P_0_1000')
```

Note: It is allowed to use packages for linear algebra, however, no functions that perform discriminance analysis may be used.

- (a) Calculate the mean μ_{P0} and μ_{P1} of both populations.
- (b) Calculate the covariance matrices V_{P0} and V_{P1} of both populations and combine these to obtain the matrix $V_{P0,P1}$.
- (c) Construct a Linear Fisher Discriminant $\lambda = \lambda \cdot \vec{e}_{\vec{\lambda}}$. State this linear equation.
- (d) Plot the populations as a projection onto the line from (c) in a one-dimensional histogram.
- (e) Consider P0 as the signal and P1 as the background. Calculate the precision and the recall of the signal as functions of a cut λ_{cut} in λ and plot the results.
- (f) At what value of λ_{cut} does the signal to background ratio S/B have its maximum after separation? Create a plot for this as well.
- (g) At what value of λ_{cut} is the significance $S/\sqrt{S+B}$ maximal? Create a plot for this as well.

6. Exercise Sheet Statistical Methods for Data Analyses A Submission: 30.05.2022 23:59 Summer Term 2023 Prof. W. Rhode Dr. M. Linhoff

(h) Repeat the steps (a) to (g) for the case that P0 denotes the population P_0_1000. What do you notice? Interpret the results.