CMPSC 465 Spring 2024

Data Structures & Algorithms Mehrdad Mahdavi and David Koslicki

Worksheet 11

Wednesday, April 3, 2024

- 1. Vertex Cover. Given an undirected graph G = (V, E), a Vertex Cover is a set of vertices $V' \subseteq V$ such that every edge $e \in E$ is incident on (touches) some vertex in V'. Give a greedy algorithm for choosing vertices such that, if the optimal solution uses k vertices, the greedy algorithm will never use more than:
 - (a) $k \ln(|E|)$ vertices.
 - (b) 2k vertices.
- 2. Worst-case Greedy Set Cover Instances.

Recall the set cover problem:

Input: A set of *n* elements *B* and sets $S_1, \ldots, S_m \subseteq B$.

Output: A selection of the S_i whose union is B (i.e. that contain every element of B).

Cost: Number of sets picked.

It was proven in class that the greedy algorithm for the Set Cover problem returns a solution that is at most $O(\log n)$ above the optimal solution. In this problem, we will prove that it also applies for $\Omega(\log n)$, which gives $\Theta(\log n)$

Show that for any integer n that is a power of 2, there is an instance of the set cover problem (i.e. a collection of sets S_1, \ldots, S_m) with the following properties:

- i. There are n elements in the base set B.
- ii. The optimal cover uses just two sets.
- iii. The greedy algorithm picks at least $\Omega(\log n)$ sets.
- **3. Maximum Non-Adjacent Sum.** You are given an array $A = (a_1, a_2, ..., a_n)$ with n (possibly negative) integers. Design an algorithm to find a subsequence A_1 of A such that A_1 does not contain adjacent elements of A (i.e. if $a_k \in A_1$ then $a_{k-1} \notin A_1$ and $a_{k+1} \notin A_1$) and that the sum of all integers in A_1 is maximized. Your algorithm should run in O(n) time.
- **4. Longest Common Subsequence.** Given two strings $x = x_1x_2...x_n$ and $y = y_1y_2...y_m$, we wish to find the length of their *longest common subsequence*, that is, the largest k for which there are indices $i_1 < i_2 < \cdots < i_k$ and $j_1 < j_2 < \cdots < j_k$ with $x_{i_1}x_{i_2}...x_{i_k} = y_{j_1}y_{j_2}...y_{j_k}$, show how to do this in time O(mn). Note that in general, a "subsequence" may not be contiguous, but a "substring" must be contiguous.

5. File Reconstruction. You are given a string of n characters s[1,...,n], which you believe to be a corrupted text document in which all punctuation has vanished (so that it looks something like "itwasthebestoftimes..."). You wish to reconstruct the document using a dictionary, which is available in the form of a Boolean function $\operatorname{dict}(\cdot)$: for any string w,

$$dict(w) = \begin{cases} true & \text{if } w \text{ is a valid word} \\ false & \text{Otherwise} \end{cases}$$
 (1)

- (a) Give a dynamic programming algorithm that determines whether the string s[.] can be reconstituted as a sequence of valid words. The running time should be at most $O(n^2)$, assuming calls to dict take unit time.
- (b) In the event that the string is valid, make your algorithm output the corresponding sequence of words