OPTIQUE GEOMETRIQUE III. Lentilles minces

Introduction: définition

- 1. Relation du conjugaison des lentilles minces
- 2. Caractéristiques des lentilles
- 3. Formation des images
 - A) Construction géométrique des rayons
 - B) Positions des images
 - C) Grandissement
 - D) Limites

INTRODUCTION: définition

Lentille : milieu transparent (souvent du verre) délimité par deux dioptres sphériques

On parle de **lentilles minces** lorsque l'épaisseur << rayons de courbure

Relation de conjugaison des dioptres sphériques

$$\frac{n}{\overline{SA}} - \frac{n'}{\overline{SA'}} = \frac{n - n'}{\overline{SC}}$$

Relation de conjugaison des dioptres sphériques dans l'approximation des conditions de Gauss

Soit un objet A. Que se passe t il pour les rayons lumineux issus de A passant dans la lentille ?

Première déviation sur le premier dioptre

Deuxième déviation sur le deuxième dioptre.

$$\frac{n}{\overline{SA}} - \frac{n'}{\overline{SA'}} = \frac{n - n'}{\overline{SC}}$$

$$\Longrightarrow$$

$$\frac{1}{\overline{S_1 A}} - \frac{n}{\overline{S_1 A_{int}}} = \frac{1 - n}{\overline{S_1 C_1}}$$

A_{int} est l'**objet virtuel** du 2eme dioptre

$$\frac{n}{\overline{SA}} - \frac{n'}{\overline{SA'}} = \frac{n - n'}{\overline{SC}} \qquad \longrightarrow \qquad \frac{n}{\overline{S_2 A_{int}}} - \frac{1}{\overline{S_2 A'}} = \frac{n - 2}{\overline{S_2 C_2}}$$

3. Combinaison des 2 équations

$$\begin{cases} \frac{1}{\overline{S_1 A}} - \frac{n}{\overline{S_1 A_{int}}} = \frac{1 - n}{\overline{S_1 C_1}} \\ \frac{n}{\overline{S_2 A_{int}}} - \frac{1}{\overline{S_2 A'}} = \frac{n - 1}{\overline{S_2 C_2}} \end{cases}$$

Rappelons que **la lentille est mince**, les distances $(S_1A_1, S_1C_1, ect..)$ sont toutes très grandes devant l'épaisseur S_1S_2 de la lentille.

On peut donc confondre S1 et S2 en un point O, appelé centre optique.

$$\begin{cases}
\frac{1}{\overline{OA}} - \frac{n}{\overline{OA_{int}}} = \frac{1 - n}{\overline{OC_1}} \\
\frac{n}{\overline{OA_{int}}} - \frac{1}{\overline{OA'}} = \frac{n - 1}{\overline{OC_2}}
\end{cases}$$

En sommant on obtient :

$$\frac{1}{\overline{OA}} - \frac{1}{\overline{OA'}} = (n-1) \left(\frac{1}{\overline{OC_2}} - \frac{1}{\overline{OC_1}} \right)$$

Ne dépend que de la lentille

On définit la distance $\overline{OF'} = f'$ telle que :

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = (n-1) \left(\frac{1}{\overline{OC_1}} - \frac{1}{\overline{OC_2}} \right) = \frac{1}{\overline{OF'}}$$

f'est appelé *distance focale* de la lentille

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

$$avec \frac{1}{f'} = (n-1) \left(\frac{1}{\overline{OC_1}} - \frac{1}{\overline{OC_2}} \right)$$

Relation de conjugaison des lentilles minces dans l'approximation des lentilles minces et Gauss. 2. Caractéristiques des lentilles

A) LENTILLE CONVERGENTE ET DIVERGENTE

$$\frac{1}{f'} = (n-1) \left(\frac{1}{\overline{OC_1}} - \frac{1}{\overline{OC_2}} \right)$$
 Selon le signe de $\overline{OC_1}$ et $\overline{OC_2}$,
$$\overline{OF'} = f' > 0$$
 (lentille convergente)
$$< 0$$
 (lentille divergente)

Lentille convergente f' > 0

Lentille divergente f' < 0

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}$$

On définit deux points particuliers pour les lentilles :

Si
$$\overline{OA} \to -\infty$$
, $A' = F'$

F' est le *foyer image*

Si
$$A = F$$
, $\overline{OA'} \to +\infty$

F est le *foyer objet*

Remarque : pour les miroirs sphériques : F = F'

C) PLAN FOCAUX

Plan focal image: plan perpendiculaire à l'axe optique passant par F'

Plan focal objet: plan perpendiculaire à l'axe optique passant par F

D) OBJET/IMAGE REEL/VIRTUEL

Formation de l'image par un objet ponctuel réel par un système optique stigmatique

Formation de l'image par un objet ponctuel virtuel par un système optique stigmatique

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}$$

un objet se trouve à 2 cm devant une lentille de focale f'= 4 cm, où se trouve l'image ?

3. Formation des images

- A) Construction géométrique des rayons
- B) Position des images
- C) Grandissement
- D) Limites

3. Formation des images

A) Construction géométrique des rayons

- 1. Le rayon incident // à l'axe optique ressort en passant par F'
- 2. Le rayon incident passant par F ressort // à l'axe optique
- 3. Le rayon passant par O n'est pas dévié

A) Construction géométrique des rayons

- 1. Le rayon incident // à l'axe optique ressort en passant par F'
- 2. Le rayon incident passant par F ressort // à l'axe optique
- 3. Le rayon passant par O n'est pas dévié

3. Formation des images

- A) Construction géométrique des rayons
- **B)** Position des images
- C) Grandissement
- D) Limites

Dans certains cas on utilise une lentille pour obtenir une image plus petite que l'objet (appareil photo), dans d'autre une plus grande (vidéoprojecteur)

Dans quel cas a-t-on une grande/petite image? Dans quel cas l'image est inversée?

1. On déduit l'expression de $\overline{OA'}$ à partir de la relation de conjugaison

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'} \qquad \overline{OA'} = \frac{f' \cdot \overline{OA}}{f' + \overline{OA}}$$

2. On trace la courbe $\overline{OA'}$ en fonction de \overline{OA}

Si on pose
$$x \equiv \frac{\overline{OA}}{f'}$$
 la relation $\overline{OA'} = \frac{f'.\overline{OA}}{f'+\overline{OA}}$ devient $\frac{\overline{OA'}}{f'} = \frac{x}{1+x}$

B) Position de l'image (OA')

(Asymptotes en pointillés)

2. On trace la courbe \overline{OA} en fonction de \overline{OA}

$$\overline{OA'} = \frac{f' \cdot OA}{f' + \overline{OA}}$$

toutes les informations contenues dans la relation de conjugaison

3. Etude de la courbe

S'entrainer à la lecture de courbe

Faire un schéma optique (lentille, objet, image) pour chaque région 1,2,3

Zone 1 : L'image se situe à gauche du foyer F

Zone 2 : l'objet est entre F et O

OA' est négatif : l'image est à gauche de la lentille

Zone 3 : OA est positif (objet virtuel)

3. Formation des images

- A) Construction géométrique des rayons
- B) Position des images
- **C)** Grandissement
- D) Limites

C) Grandissement

Définition : on appelle grandissement

$$\gamma \equiv \frac{\overline{A'B'}}{\overline{AB}}$$

Si
$$|\gamma| > 1$$
, l'image est plus grande $|\gamma| < 1$, l'image est plus petite

Si
$$\gamma > 0$$
, l'image est droite $\gamma < 0$, l'image est renversée

C) Grandissement

Expression de γ en fonction de OA et OA'

Dans le cas 3 précédent, on voit, d'après Thales que :

$$\gamma \equiv \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

$$\gamma = \frac{\overline{OA'}}{\overline{OA}}$$

Expression du grandissement valable pour toutes les lentilles minces

C) Grandissement

En combinant
$$\gamma = \frac{\overline{OA'}}{\overline{OA}}$$
 avec $\overline{OA'} = \frac{f'.\overline{OA}}{f'+\overline{OA}}$ on obtient $\gamma = \frac{f'}{f'+\overline{OA}}$
$$= \frac{1}{1+\frac{\overline{OA}}{f'}} = \frac{1}{1+x}$$

$$3$$

$$2$$

$$-1$$
(position objet)
$$-2$$

C) Grandissement Cas 1

Zone 1 : grandissement négatif = image inversée

C) Grandissement Cas 2

Zone 2 : grandissement > 1 donc image agrandie = Loupe

C) Grandissement Cas 3

Zone 3 : grandissement < 1 donc image réduite

3. Formation des images

- A) Construction géométrique des rayons
- B) Position des images
- C) Grandissement
- **D)** Limites

D) Limites pour la formation des images

Limite des approximations de Gauss : *Aberrations géométriques*

Limite dues à la dispersion : *Aberrations chromatiques*

