Frequent Direction Algorithms for Approximate Matrix Multiplication with Applications in CCA

Qiaomin Ye Luo Luo Zhihua Zhang

Department of Computer Science and Engineering Shanghai Jiao Tong University

IJCAI, 2016

- Introduction
- Related Work
 - Random Selection
 - Random Projection
- Methodology
 - Frequent Directions
 - FD-AMM
- 4 Experiments

Introduction

Approximate matrix multiplication

we are given A, B each with a large number of rows n, and the goal is to compute some matrix X, s.t.

$$||A^TB - X||_X$$

is small, for some matrix norm $\|\cdot\|_X$.

Introduction

Approximate matrix multiplication

we are given A, B each with a large number of rows n, and the goal is to compute some matrix X, s.t.

$$||A^TB - X||_X$$

is small, for some matrix norm $\|\cdot\|_X$.

- Image processing
- Information retrieval
- Approximate leverage scores
- Large-scale k-means clustering

4□ > 4□ > 4 = > 4 = > = 90

Introduction

- Image processing
- Information retrieval
- Approximate leverage scores
- Large-scale k-means clustering

Streaming Matrices

- Matrix too large to be stored.
- Streaming setting:
 - Use a small amount of memory.
 - Make a single pass over the data.

Streaming Matrices

- Matrix too large to be stored.
- Streaming setting:
 - Use a small amount of memory.
 - Make a single pass over the data.

$$A^TB = \sum_{i}^{n} a_i^T b_i$$

Naive solution

Compute A^TB in time $\mathcal{O}(nm_1m_2)$.

- Introduction
- Related Work
 - Random Selection
 - Random Projection
- Methodology
 - Frequent Directions
 - FD-AMM
- 4 Experiments

Random Selection

• Random Selection. It randomly picks ℓ rows of A and B with probability

$$p_i = \|a_i\| \|b_i\| / \sum_{i=1}^n \|a_i\| \|b_i\|,$$

and with high probability,

$$||A^TB - C^TD||_2 \le \frac{\mathcal{O}(1)}{\sqrt{\ell}} ||A||_F ||B||_F.$$

Random Selection

Get C and D in time $\mathcal{O}(n(m_1 + m_2))$.

- Introduction
- 2 Related Work
 - Random Selection
 - Random Projection
- Methodology
 - Frequent Directions
 - FD-AMM
- 4 Experiments

Random Projection

• Random Projection. Let $\Pi \in \mathbb{R}^{\ell \times n}$ be some subspace embedding, then

$$||A^T B - (\Pi A)^T (\Pi B)||_2 \le \sqrt{\frac{\mathcal{O}(r)}{\ell}} ||A||_2 ||B||_2$$

holds with high probability, where r = rank(A) + rank(B). For fast or sparse subspace embedding, ΠA and ΠB can be computed quickly.

Random Projection

For dense Π , get C and D in time $\mathcal{O}(n\ell(m_1+m_2))$.

For sparse Π , get C and D in time $\mathcal{O}(nnz(A) + nnz(B))$.

- Introduction
- Related Work
 - Random Selection
 - Random Projection
- Methodology
 - Frequent Directions
 - FD-AMM
- 4 Experiments

Frequent Directions

FD (Edo Liberty 2013)

Give $A \in \mathbb{R}^{d \times n}$, FD efficiently maintains a matrix B with only ℓ columns s.t.

$$\|AA^T - BB^T\|_2 \le 2\|A\|_F^2/\ell,$$

The FD algorithm runs in time $\mathcal{O}(nd\ell)$.

We keep a sketch of ℓ columns.

Input vectors are simply stored in empty columns.

When the sketch is 'full' we need to zero out some columns.

$$B = USV^T$$

$$B_{new} = US \qquad V^T$$

Using the SVD we compute $B = USV^T$ and set $B_{new} = US$.

Let $\sigma = \|B_{\ell/2}\|^2$.

- Introduction
- Related Work
 - Random Selection
 - Random Projection
- Methodology
 - Frequent Directions
 - FD-AMM
- 4 Experiments

FD-AMM

Algorithm 2 FD-AMM

Input:
$$\ell$$
, $A \in R^{n \times m_1}$, $B \in \mathbb{R}^{n \times m_2}$
 $G = [A \ B]$
 $H = FD(\ell, G)$
 $C = H_{[\ell],1:m_1}$
 $D = H_{[\ell],m_1+1:m_1+m_2}$
return C , D

FD-AMM

Algorithm 2 FD-AMM

Input: ℓ , $A \in \mathbb{R}^{n \times m_1}$, $B \in \mathbb{R}^{n \times m_2}$ $G = [A \ B]$

 $H = FD(\ell, G)$

 $C=H_{[\ell],1:m_1}$

 $D = H_{[\ell], m_1 + 1: m_1 + m_2}$

return C, D

Theorem

If X is the result of applying the FD-AMM algorithm to matrices A, B, and sketch size ℓ , then

$$||A^TB - C^TD||_2 \le (||A||_F^2 + ||B||_F^2)/\ell.$$

Experiments

 $\|A^TB - C^TD\|_2$ as a function of the sketch size ℓ .

Running time in second as a function of ℓ .

Thank You