# SpectralVL

# Estimating Solar Spectra with Machine Learning

Bo Jung, Tyler Shakibai, Brian McGreal, Rancy Zhang, Joslyn Chen

## 1) Accurate Prediction of Solar Spectra (given atmospheric parameters)

- Atmospheric data is recorded with higher spatial frequency than solar radiation
- Physics-based models predict solar spectra based on atmospheric observations, but are computationally intensive
- Easy and accurate spectral predictions would be applicable in many different fields, including:
- - Public Health
- Meteorology
- Photovoltaics
- Agronomy
- Built Environments
- Optics



The sun emits energy or "light" across a spectra of visible and invisible frequencies.

The spectra which reach the surface of the Earth are largely determined by atmospheric conditions.

#### 2) Data Sources and Methodological Approaches

- Algorithmic models are trained and tested using data from the NREL Solar Radiation Research Laboratory in Golden, Colorado.
- Algorithmic modeling in three stages:
  - Ordinary least squares regression predicts scalar
  - Neural network (multilayer perceptron) predicts vector
  - Convolutional neural network predicts vector

| Model                                    | Appeal                                                                             | Drawbacks                                                                        |
|------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Ordinary Least Squares                   | <ul> <li>Least computationally intensive</li> </ul>                                | <ul> <li>Only able to return scalar estimates (CCT)</li> </ul>                   |
| Neural Network (MLP)                     | <ul> <li>Returns vector (spectra)         output</li> </ul>                        | <ul> <li>Large jump in<br/>computational demand<br/>(compared to OLS)</li> </ul> |
| Convolutional Neural<br>Network<br>(CNN) | <ul><li>Generally expect better estimators</li><li>Returns vector output</li></ul> | <ul> <li>Most computationally intensive</li> </ul>                               |

 Choice model estimators are captured and used to predict solar spectra values from other weather data





#### 3) Modeling Solar Spectra

#### Ordinary Least Squares Regression

- OLS regression returns high measure of fit  $\circ$  R<sup>2</sup> = 0.778
- Potential for multicollinearity in explanatory variables must be investigated.



#### **Neural Network**

 Hyperparameters: Two 64-node hidden layers with ReLU activation function and learning rate = 0.01.

 PyTorch implementation of neural network yields an  $R^2 = 0.803$ .

• Considerable time to train model as **both** input and output space are matrices.





reduction in R<sup>2</sup> (0.72)

(f(X))

Output

### 4) Limitations and Next Steps

| Limitation                                                                           | Next Step                                                                                            |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Convolutional Neural Network modeling could not be completed due to time constraint. | Complete CNN analysis and incorporate parameter estimates in to implementation module.               |  |  |
| Models trained on data collected at only one site (Golden, CO).                      | Future evaluation of modeling parameters using data from multiple sites to contribute to robustness. |  |  |
| Implementation module requires some background in python coding to run.              | Development of user friendly interface for uploading input data and specifying output parameters.    |  |  |