一. 填空

- 1. 在 R^3 中, $\alpha_1 = (2, -3, 1)^T$, $\alpha_2 = (1, 4, 2)^T$, $\alpha_3 = (5, -2, 4)^T$,则 $\dim(L(\alpha_1, \alpha_2, \alpha_3)) = _____$. $L(\alpha_1, \alpha_2, \alpha_3)$ 的 基 是 ______.
- 3. 设 $\mathbf{U} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in R \right\}$, \mathbf{U} 是(否)_yes____ $R^{2 \times 2}$ 的子空间, 若是, $\mathbf{dim} \mathbf{U} = \mathbf{2}$.
 - **4.**设 $\mathbf{U} = \{ f(x_1, x_2, ..., x_n) | f = X^T A X 是 R 上 n 个 变元的二次型 \},$
 - U是(否)_yes_____ R上的线性空间, 若是, dimU = $-\frac{n(n+1)}{2}$ ____
 - 5.在R³中的两组向量分别是

$$\alpha_1 = (1, 0, 1)^T, \alpha_2 = (1, 1, 0)^T, \alpha_3 = (0, 1, 1)^T$$
 (1)

$$\beta_1 = (1,0,3)^T, \beta_2 = (2,2,2)^T, \beta_3 = (-1,1,4)^T$$
 (2)

γ在基(1)下的坐标为 $(1,2,3)^T$.则基(1)到基(2)的过度矩阵为

6.设 $\alpha_1, \alpha_2, ..., \alpha_n$ 是线性空间V的一组基, $\beta_1 = \alpha_1, \beta_2 = \alpha_1 + \alpha_2, ..., \beta_n = \alpha_1 + \alpha_2 + ... + \alpha_n$. $\beta_1, \beta_2, ..., \beta_n$ 是否是V的一个基 _yes____,若 γ 在 基 $\alpha_1, \alpha_2, ..., \alpha_n$ 下 的 坐 标 为 $(n, n-1, ..., 2, 1)^T$,则 γ 在基 $\beta_1, \beta_2, ..., \beta_n$ 下的坐标为_____.

过度矩阵为
$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ & 1 & \cdots & 1 \\ & & \ddots & \vdots \\ & & & 1 \end{pmatrix}$$
, 坐标为 $\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$

7.若 3×3 矩阵 A 的特征值为**1**,**2**, -**1**, $B = A^3 - 5A^2$.则 B 有特征值_-4,-12,-6____.

8. 令 A 是一 $n \times n$ 矩 阵且 $|A| \neq 0$, λ 是 A 的一特征值.则

$$(2A^*)^3 + A^{-1}$$
必有特征值 $\frac{8|A|^3}{\lambda^3} + \frac{1}{\lambda}$ ——

9.若 4×4 矩阵A有特征值1, -2, 3, 和 -3. 则A的行列式等于18: tr(A) = -1_.

$$10.\lambda -$$
 矩阵 $\begin{pmatrix} \lambda - 1 & -2 & 1 \\ 0 & \lambda - 1 & -1 \\ 0 & 0 & \lambda + 2 \end{pmatrix}$ 的法式为

$$-\begin{pmatrix}1\\&1\\&&(\lambda+2)(\lambda-1)^2\end{pmatrix}$$

11.在复数域上n阶方阵A的特征值全为 1,且只有一个线性 无 关 的 特 征 向 量 ,则 A 的 Jordan 标 准 形 为

$$-\begin{pmatrix} 1 & & & & \\ 1 & 1 & & & \\ & \ddots & \ddots & & \\ & & 1 & 1 \end{pmatrix} - - - \cdot$$

12. 矩 阵
$$A = \begin{pmatrix} 0 & -1 & 2 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & -2 & 1 \end{pmatrix}$$
 的 法 式 为

$$\begin{pmatrix} 1 & 0 & & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ 0 & 0 & \lambda - 1 & & 0 \\ 0 & 0 & 0 & (\lambda - 1)(\lambda^2 + 1) \end{pmatrix}$$

二.选择题

13.设
$$B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
,在 $R^{2\times 2}$ 中定义一个变换 $\sigma: A \to BA$,则(C)

- (A) σ 是 $R^{2\times2}$ 的线性变换, 但不是满射;
- (B) $\sigma \in \mathbb{R}^{2 \times 2}$ 的线性变换, 但不是单射;
- (C) σ 是 $R^{2\times2}$ 的可逆线性变换;
- (D) σ不是线性变换.
- 14.三维几何空间 R^3 的全体线性变换所成线性空间维数为(C)
 - (A)3; (B)6; (C)9; (D)27
 - 15.设 $\sigma \in L(V)$, W_1 , W_2 是的任意两个子空间,则 $\sigma(W_1 \cap W_2)$ 与 $\sigma(W_1) \cap \sigma(W_2)$ 的关系是(B)
 - $(\mathsf{A})\sigma(W_1)\cap\sigma(W_2)=\sigma(W_1\cap W_2);$
 - (B) $\sigma(W_1 \cap W_2) \subseteq \sigma(W_1) \cap \sigma(W_2)$;
 - (C) $\sigma(W_1 \cap W_2) \supseteq \sigma(W_1) \cap \sigma(W_2)$;
 - (D)无法确定.
- 16. 设 $\sigma \in L(V), W_1, ..., W_n$ 都是 σ 的一维不变子空间,且 $V = W_1 \oplus W_2 \oplus ... \oplus W_n$,则在中存在一组基使 σ 在该基下的表示矩阵为(A)
 - (A)对角矩阵; (B)反对称矩阵;

- (A)非对角上三角矩阵; (D)可逆矩阵.
- 17. 设 $\sigma \in L(V)$, W_1 , ..., $W_s(s < n)$ 都是 σ 的不变子空间,且 $V = W_1 \oplus W_2 \oplus ... \oplus W_s$, 则在中存在一组基使 σ 在该基下的表示矩阵为(B)
 - (A)对角矩阵; (B)准对角矩阵;
 - (C)反对称矩阵; (D)可逆矩阵.
- **18.** 设 α_1 , α_3 , α_3 是线性空间V的一组基, $\sigma \in L(V)$,

$$\sigma(\alpha_1)=\alpha_1+\alpha_3$$
, $\sigma(\alpha_2)=\alpha_2+\alpha_3$, $\sigma(\alpha_3)=\alpha_1+\alpha_2+2\alpha_3$. 则dim $(\sigma)^{-1}(0)$ 为(C)

- (A)3; (B)2; (C)1; (D)0
- 19. 设矩阵 $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. 已知矩阵 A 相似于 B, 则

r(A-2E)与r(A-E)之和为(C)

19.令 λ_1 , λ_2 是矩阵A的两个不同特征值,它们对应的两个特征向量分别是 α_1 , α_2 .则 α_1 , $A(\alpha_1+\alpha_2)$ 线性无关的条件是(B)

(A)
$$\lambda_1 \neq 0$$
, (B) $\lambda_2 \neq 0$, (C) $\lambda_1 = 0$, (D) $\lambda_2 = 0$.

20..令 $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$,则在实数域上与A合同的矩阵为(D)

$$\text{(A)} {\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}}, \text{ (B) } {\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}} \text{ (C)} {\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}} \text{ (D) } {\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}}$$

- 21. 设V是复数域上的线性空间, $\sigma, \tau \in L(V)$ 且 $\sigma\tau = \tau\sigma, 则(C)$.
- (A) σ , τ 的特征向量完全相同; $(B)\sigma$, τ 有有限多个公共特征向量;
- $(C)\sigma$, τ 有无限多个公共特征向量; $(D)\sigma$, τ 未必有公共特征向量.

- **22.**设V是实数域上的线性空间, $\sigma, \tau \in L(V)$ 且 $\sigma\tau = \tau\sigma, 则(D)$.
- $(A) \sigma$, τ 的特征向量完全相同; $(B)\sigma$, τ 有有限多个公共特征向量;
- $(C)\sigma$, τ 有无限多个公共特征向量; $(D)\sigma$, τ 未必有公共特征向量.

三.计算与证明题

23. 在 $F^{2\times 2}$ 中,求从基

$$\alpha_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix},$$
$$\alpha_3 = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

到基

$$\boldsymbol{\beta}_1 = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, \boldsymbol{\beta}_2 = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \boldsymbol{\beta}_3 = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}, \boldsymbol{\beta}_4 = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$$

的过渡矩阵,并分别求 $\gamma = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ 在上面两个基下的矩阵.

解. 令:
$$\varepsilon_1 = E_{11}$$
, $\varepsilon_2 = E_{12}$, $\varepsilon_3 = E_{21}$, $\varepsilon_4 = E_{22}$, 有:

$$(\beta_1,\beta_2,\beta_3,\beta_4)=(\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4)\begin{pmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & -1 & 1 \\ 3 & 0 & 0 & 1 \\ 1 & 1 & -1 & -2 \end{pmatrix},$$

代入到上一式得基 α_1 , α_2 , α_3 , α_4 到基 β_1 , β_2 , β_3 , β_4 的过渡矩阵为:

读
$$\gamma = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = (\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4) \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix},$$

则γ在基(α_1 , α_2 , α_3 , α_4)下的坐标为:

类似求得 γ 在基(β_1 , β_2 , β_3 , β_4)下的坐标为

$$\begin{pmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & -1 & 1 \\ 3 & 0 & 0 & 1 \\ 1 & 1 & -1 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}.$$

24. 在 F^4 中, 令 $\alpha_1 = (1, 2, -1, -2)^T$, $\alpha_2 = (3, 1, 1, 1)^T$,

$$\alpha_3 = (-1, 0, 1, -1)^T$$

$$\beta_1 = (2, 5, -6, -5)^T, \beta_2 = (1, 2, -7, 3)^T,$$

求 $L(\alpha_1, \alpha_2, \alpha_3) + L(\beta_1, \beta_2)$ 与 $L(\alpha_1, \alpha_2, \alpha_3) \cap L(\beta_1, \beta_2)$ 的一个基.

解. 因 $L(\alpha_1, \alpha_2, \alpha_3) + L(\beta_1, \beta_2) = L(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2)$,求下

列矩阵列向量的一个极大无关组:

$$\begin{pmatrix} 1 & 3 & -1 & 2 & -1 \\ 2 & 1 & 0 & 5 & 2 \\ -1 & 1 & 1 & -6 & -7 \\ -2 & 1 & -1 & -5 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -1 & 2 & -1 \\ 0 & -5 & 2 & 1 & 4 \\ 0 & 4 & 0 & -4 & -8 \\ 0 & 7 & -1 & -5 & 3 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 3 & -1 & 2 & -1 \\ 0 & 1 & -2 & 3 & 4 \\ 0 & 0 & 1 & -2 & -3 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

故 α_1 , α_2 , α_3 , β_2 是L(α_1 , α_2 , α_3) + L(β_1 , β_2)的一个基,维数为4; 而dim(L(α_1 , α_2 , α_3) \cap L(β_1 , β_2)) = 1, 求其基底,即求: $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = y_1\beta_1 + y_2\beta_2$ 的解,解齐次线性方程组

$$\begin{pmatrix} 1 & 3 & -1 & -2 & 1 \\ 2 & 1 & 0 & -5 & -2 \\ -1 & 1 & 1 & 6 & 7 \\ -2 & 1 & -1 & 5 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ y_1 \\ y_2 \end{pmatrix} = 0$$

得解 $(3,-1,-2,1,0)^T$, 故 $3\alpha_1 - \alpha_2 - 2\alpha_3 = \beta_1 =$ $(2,5,-6,-5)^T$ 为 $L(\alpha_1,\alpha_2,\alpha_3) \cap L(\beta_1,\beta_2)$ 的基.

25. 在 F^2 中, $\sigma(x,y) = (x,y) \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$ 是 F^2 的一个线性变换.

(1)求证: 当F = R时, R^2 中没有 σ 的真不变子空间;

(2)当F = C时, 求出 σ 的所有不变子空间.

证明.设W为 R^2 中非平凡 σ -子空间, dimW = 1. 令(a,b)为

的生成元,则
$$k(a,b) = \sigma(a,b) = (a,b) \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$$
,从而 $\{(k-1)a-2b=0 \\ a+(k-2)b=0 \}$

有非平凡解,

$$\begin{vmatrix} k-1 & -2 \\ 1 & k-2 \end{vmatrix} = 0, \ k^2 - 3k + 4 = 0.$$

在实数域里,该方程无根,故不存在k,使 $k(a,b) = \sigma(a,b)$, R^2 中没有 σ 的真不变子空间;

在复数域里, 该方程有两个根:

$$k_1 = \frac{3+i\sqrt{7}}{2}, k_2 = \frac{3-i\sqrt{7}}{2},$$

代入(*)式, 求得: $(a,b) = (4,1+i\sqrt{7})$, 或 $(4,1-i\sqrt{7})$, 故 \mathbb{C}^2 中有两个 σ 的真不变子空间:

$$W_1 = L(4, 1 + i\sqrt{7}), W_2 = L(4, 1 - i\sqrt{7}).$$

26.设V是4维线性空间, φ 在基 ε_1 ,…, ε_4 下的矩阵为

$$\begin{pmatrix}
1 & 0 & 2 & -1 \\
0 & 1 & 4 & -2 \\
2 & -1 & 0 & 1 \\
2 & -1 & -1 & 2
\end{pmatrix}$$

验证: $U = L(\varepsilon_1 + 2\varepsilon_2, \varepsilon_2 + \varepsilon_3 + 2\varepsilon_4)$ 是否为 ϕ -子空间.

$$\varphi(\varepsilon_2 + \varepsilon_3 + 2\varepsilon_4) = \varepsilon_2 + \varepsilon_3 + 2\varepsilon_4$$

故 $U = L(\varepsilon_1 + 2\varepsilon_2, \varepsilon_2 + \varepsilon_3 + 2\varepsilon_4)$ 是 ϕ -子空间.

27.
$$\Leftrightarrow A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}, P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, B = P^{-1}A^*P \cdot \mathbf{R}B + 2I$$

的特征值与所属的特征向量.

解. 先求**A**的特征值: $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 7$. 因 |A| = 7. A*的特征值为 $\frac{|A|}{\lambda_i}$ i = 1, 2, 3,即: $\lambda_1 = \lambda_2 = 7$, $\lambda_3 = 1$.

A的属于
$$\lambda_1 = \lambda_2 = 1$$
 的特征向量为: $\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, 属于 $\lambda_3 = 7$

的特征向量为: $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.则 $B + 2I = P^{-1}A^*P + 2I$ 的特征向量分别

为
$$P^{-1}\alpha_i(i=1,2,3)$$
.即 $\begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ -\mathbf{1} \end{pmatrix}$, $\begin{pmatrix} -\mathbf{1} \\ \mathbf{1} \\ \mathbf{0} \end{pmatrix}$, $\begin{pmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix}$,

28.设

$$A = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$$

有 3 个线性无关的特征向量, $\lambda = 2$ 是 A 的 2 重根. 求可逆矩阵 P 使得 $\Lambda = P^{-1}AP$ 是一对角矩阵 Λ .

解. 直接计算 $|\lambda E - A|$ 求得 $\lambda_1 = \lambda_2 = 2, \lambda_3 = 6$. 对于 $\lambda_1 = \lambda_2 = 2$, r(A-2I)=1,求得 x=2, y=-2. 然后求解齐次线性方程组 (2E-A)X=0及(6E-A)X=0,

$$(2E - A) = \begin{pmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ 3 & 3 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

得解 $(1,0,1)^T$, $(1,-1,0)^T$;解(6E-A)X=0得解 $(\frac{1}{2},-1,\frac{3}{2})^T$.

則
$$P = \begin{pmatrix} 1 & 1 & \frac{1}{2} \\ 0 & -1 & -1 \\ 1 & 0 & \frac{3}{2} \end{pmatrix}$$
, $\Lambda = P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & & 6 \end{pmatrix}$