习题 2.9.6

叶卢庆*

杭州师范大学理学院, 浙江 杭州 310036

2014年3月28日

习题 (2.9.6.4). 若两曲线在 $p \neq 0$ 处相交成角 ϕ , 则它们在映射 $z \rightarrow \omega = z^2$ 下的象也在 $\omega = p^2$ 处以同样的角 ϕ 相交.

证明. 我们来看映射 $z \to z^2$ 意味着什么. 它把点 $z = (z_1, z_2)$ 变为点 $z' = (z_1^2 - z_2^2, 2z_1z_2)$. 易得

$$\frac{\partial z}{\partial z_1} = (1,0), \frac{\partial z}{\partial z_2} = (0,1),$$

$$\frac{\partial z'}{\partial z_1} = (2z_1, 2z_2), \frac{\partial z'}{\partial z_2} = (-2z_2, 2z_1).$$

由于

$$\begin{pmatrix} 2z_1 \\ 2z_2 \end{pmatrix} \begin{pmatrix} -2z_2 & 2z_1 \end{pmatrix} = 0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix},$$

且.

$$\left| \frac{\partial z'}{\partial z_1} \right| = \left| \frac{\partial z'}{\partial z_2} \right| \neq 0,$$

因此命题得证.

注. 我们探究一下 $z \to z^3$ 是不是有这样的性质. $z \to z^3$ 把点 (z_1,z_2) 变为 $(z_1^3 - 3z_2^2z_1, 3z_1^2z_2 - z_2^3)$. 易得 $z \to z^3$ 也是具有这样的性质的.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:h5411167@gmail.com