DOCUMENT RESUME

ED 335 499 CE 058 659

TITLE A Development Curriculum Plan To Achieve a Sequenced

Curriculum between High School Courses in Automotive

Mechanics and the Mattatuck Community College Automotive Technician Program. Final Report.

INSTITUTION Mattatuck Community Coll., Waterbury, CT.

SPONS AGENCY Connecticut State Dept. of Education, Hartford. Div.

of Vocational, Technical, and Adult Education.

PUB DATE 31 Oct 90

NOTE 35p.

PUB TYPE Guides - Classroom Use - Teaching Guides (For

Teacher) (052) -- Tests/Evaluation Instruments (160)

EDRS PRICE MF01/PC02 Plus Postage.

DESCRIPTORS *Articulation (Education); *Auto Mechanics;

*Community Colleges; *Developmental Studies Programs; Engines; High Schools; *Motor Vehicles; Sequential Approach; Skilled Occupations; Test Items; Two Year

Colleges

IDENTIFIERS *Mattatuck Community College CT

ABSTRACT

This document contains a developmental curriculum plan for an articulated curriculum in automotive mechanics for Connecticut's Mattatuck Community College and area high schools. The curriculum guide includes a course description, criteria for evaluation, attendance policy, objectives, a curriculum outline, a three-part automotive technician test, and an automotive technician mathematics test. Topics covered in the curriculum are the following: job opportunities; safety; tools and equipment; automobile systems; types of engines; classifying engine types; compression and displacement; manuals; measuring instruments; diagnostic procedures; evaluating a used car; basic engine parts; valve jobs; lubrication system; cooling system; combustion chamber parts; compression and cylinder leakage tests; horsepower and torque; ignition system types and functions; fuel system types; brake system types; automotive electrical systems; and emissions and pollution. (KC)

A Developmental Curriculum Plan to Achieve a Sequenced Curriculum Between High School Courses in Automotive Mechanics and the Mattatuck Community College Automotive Technician Program.

FINAL REPORT

PREPARED BY
MATTATUCK COMMUNITY COLLEGE
750 CHASE PARKWAY
WATERBURY, CT 06708

PREPARED FOR

CONNECTICUT STATE DEPARTMENT OF EDUCATION
DIVISION OF VOCATIONAL, TECHNICAL AND ADULT EDUCATION
BUREAU OF VOCATIONAL SEPVICES
HARTFORD, CONNECTICUT

PROJECT DIRECTOR:
BARRY GROMAN
COORDINATOR
AUTOMOTIVE TECHNICIAN PROGRAM

THIS PROJECT WAS SUPPORTED BY FUNDS MADE AVAILABLE TO CONNECTICUT THROUGH P.L. 98-524

ALL OPINIONS EXPRESSED REFLECT THE VIEWS
OF THE AUTHOR AND ARE NOT NECESSARILY THOSE
OF THE STATE DEPARTMENT OF EDUCATION

OCTOBER 31, 1990

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as received from the person or organization originating it

Minor changes have been made to improve reproduction quality

 Points of view or opinions stated in this document do not necessarily represent official OERI position or policy "PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

TABLE OF CONTENTS

	Page
Course Description	1
Criteria for Evaluation	1
Attendance Policy	1
Ojectives	1.
Curriculum Outline Job Opportunities Safety on the Job Use of Tools and Equipment Systems of An Automobile Types of Engines Student Must Understand Classifying Engine Types Compression and Displacement Manuals Measuring Instruments Engine R & R Procedures How to Evaluate A Used Car Engine: Basic Component Parts Doing A Valve Job Lubrication System The Cooling System Combustion Chamber Parts Compression & Cylinder Leakage Tests Figuring Out H.P. & Torque Ignition System (Types) and Functions Fuel System Types Break System Types Automotive Electrical Systems Emissions & Pollution	2 2 3 4 4 5 5 5 5 6 6 6 7 7 7 8 8 9 9 9 10 11 12
Automotive Technician Test Part One Part Two Part Three	13 28 29
Automotive Technician Math Test	31

MATTATUCK COMMUNITY COLLEGE ACCESS PROGRAM AUTOMOTIVE TECHNICIAN

AT 100 INTEGRATED AUTOMOTIVE SYSTEMS

(3)

COURSE DESCRIPTION:

Prerequisite: satisfactory academic placement. This is an introductory course for the Automotive Technician providing the theory for a foundation in the field. Emphasis will be on the interrelationship of the various automotive systems. Shop safety, proper care and use of tools are included.

CRITERIA FOR EVALUATION

А.	NOTEDOOK	TOS
	1. Organization	
	2. Drawing & Diagrams	
В.	Independent research paper (Technical) 5-8 pages typed	15%
C.	Class participation (attendence requirement)	10%
D.	Comprehensive theory examination	50%
Ε.	Auto Shop math examination	15%

ATTENDANCE POLICY

Students are allowed a maximum of 10 absences for a one-year course; 5 absences for a 1/2 year course. Excessive absence will result in withdrawl from the ACCESS Program course objectives.

OBJECTIVES

See curriculum outline. Objectives stated at the begining of each section.

CURRICULUM OUTLINE

I. JOB OPPORTUNITIES (WITH AUTO TECH EDUCATION)

Students will be able to:

- . list and explain the major career areas in the automotive industry.
 - A. General Mechanics
 - B. Auto Electronics
 - C. Auto Service Writer
 - D. Auto Service Manager
 - E. Auto Diagnostician
 - F. Small Engine Mechanic
 - G. Motorcycle Mechanic
 - H. Auto Tools Sales
 - I. Auto Parts Sales
 - J. Auto Equipment Sales Representative
 - K. Auto Radiator Specialist
 - L. Diesel Mechanic
 - M. Engine Rebuilder
 - N. Auto Machinist
 - O. Auto Front End Mechanic
 - P. Marine Mechanic
 - Q. Heavy Duty Equipment Mechanic
 - R. Auto Body Technician
 - S. Automotive Engineer
 - T. High Performance Mechanic
 - U. Automotvie Instructor (high school or college)
 - V. Automotive Transmission Technician
 - W. Other

II. SAFETY ON THE JOB (AUTO TECH)

- . describe how to dress safely
- . identify major causes of accidents
- . identify classes of fires and how best to extinguish them
- describe precautions for handling and storing fuels, solvents, refrigerants, and carcinogenic materials.
- . list safety precautions in using tools and equipment
- . explain why a clean shop is safer than a cluttered one.
 - A. Attitudes
 - 1. Pro (A way of thinking)
 - 2. Con (may hurt himself & others)
 - B. History of Accidents
 - Effects on person & family, etc.
 - 2. How accidents could have been avoided

C. Legislation

- 1. "Right to Know" about hazardous material in the work place
- 2. Material safety data availabilty

III. USE OF TOOLS AND EQUIPMENT

- . identify and explain the proper use and operation of
 - A. Basic hand tools
 - 1. Ratchet Sets
 - a. Drives 1. (1/4" light duty)
 - 2. (3/8" standard duty)
 - 3. (1/2" heavy duty)
 - 4. (3/4" extra heavy duty)
 - b. Accessories
 - 1. Adaptors (1/4"-3/8", 3/8"-1/4",3/8"-1/2", 1/2"-3/8", 1/2"-3/4", 3/4"-1/2")
 - 2. Extentions
 - 3. Breaker Bars
 - 4. Universal joints
 - 5. Speeder handle
 - 6. Allen Wrench Adaptors
 - 7. Screwdriver Adaptor
 - 8. Crows Foot Adaptor
 - 9. Flair Nut Adaptor
 - 10. Slider Bar
 - c. Socket characteristics
 - 1. Drive (1/4, 3/8, 1/2, 3/4)
 - 2. Depth (std, deep, extra deep)
 - 3. # of points (6,12)
 - 4. Size, (Go over Metric & English std)
 - 5. Duty (Material of Socket) for impact, etc.
 - d. Basic Wrenches
 - 1. Open End
 - 2. Box End
 - 3. Combination
 - e. Specialty Wrenches
 - 1. Torque Wrench
 - 2. Torx Wrench
 - 3. Oil Filter
 - 4. Distributor Wrench
 - 5. Belt Wrench
 - 6. Chain Wrench
 - 7. Flex Head
 - 8. Tube Wrench
 - 9. Allen Wrench
 - 10. Moon Wreach

f. Air Tools

- 1. types
- 2. uses
- 3. precautions

IV. SYSTEMS OF AN AUTOMOBILE

Students will be able to:

- . identify the various sytems of the automobile and their functions.
 - A. Define System
 - B. Systems of the Engine (only)
 - 1. Cooling System
 - 2. Lubrication System
 - 3. Valve Train System
 - 4. Fuel System
 - 5. Ignition System
 - 6. Exhaust System
 - 7. Computer Control System
 - 8. Starting (Cranking System)
 - C. Systems of an Automobile (other than engine)
 - 1. Air Conditioning
 - 2. Suspension System
 - 3. Heating System
 - 4. Electrical System
 - 5. Charging System
 - 6. Steering System
 - 7. Audio System
 - 8. Brake System
 - 9. Gauges & Engine Monotoring
 - 10. Emission Control System

V. TYPES OF ENGINES STUDENTS MUST UNDERSTAND

- . explain theory and principals of operation of each engine type.
 - A. Theory & Principal of Operations
 - 1. 4 cycle (gas)
 - 2. 2 cycle (gas)
 - 3. 4 cycle (diesel)
 - 4. 2 cycle (diesel)
 - 5. Wankel (Rotary Piston Engine)
 - 6. Gas Turbine Engine
 - 7. Optional Engines
 - a. Rocket Engine
 - b. Jet Engine
 - c. Steam Engine Turbine & Piston
 - d. Electric Motor

VI. CLASSIFYING ENGINE TYPES

Students will be able to:

- . classify engines according to each of the following categories
 - A. # of cylinders
 - B. Compression Ratio
 - C. Fuel Type
 - D. Type of Fuel System
 - E. Ignition System
 - F. # of Strokes

- G. Cooling System
- H. Horsepower
- I. Size or Displacement
- J. Valve Train Type
- K. Block design (cylinder configuration)

VII. COMPRESSION & DISPLACEMENT

Students will be able to:

- A. Compute Compression Ratios
- B. Compute Displacement of Engines
- C. Convert Metric to English
- D. Convert English to Metric

VIII. MANUALS

Students will be able to:

- . identify the type, use, and importance of manuals
 - A. Type (Factory, General, Chiltons, Motors, specialty (Transmission)
 - B. Use (Important tool for all technicians)
 - C. Computers (store & use of material)

IX. MEASURING INSTRUMENTS

- . identify and explain the proper use of
 - A. Measuring instruments
 - 1. Micrometers
 - 2. Dial caliper
 - 3. Digital caliper
 - 4. Dial Indicator
 - 5. Feeler Gauge
 - B. Uses & How to Use

X. ENGINE R & R PROCEDURES

Students will be able to:

. list and explain proper R & R Procedures

XI. HOW TO EVALUATE A USED CAR

Students will be able to:

. list and explain evaluation procedures

XII. ENGINE: BASIC COMPONENT PARTS

- . identify and describe the function of each part.
 - A. Piston Types
 - 1. Dome
 - 2. Flat
 - 3. Knotched

- 4. Irregular
- 5. Concave (Dish)
- 6. Wedge

- B. Piston Parts
 - 1. Head
 - 2. Ring Groove
 - 3. Land
 - 4. Pin Boss

- 6. Expansion slot
- 7. Heat Dam
- 8. T slot
- 8. Skirt
- C. Valve Train Types
 - 1. I Head
 - 2. L Head
 - 3. F Head
 - 4. T Head
 - 5. H (Hemi) Head
- 6. DOHC
- 7. SCHC
- 8. OHV
- 9. OHC
- D. Parts of a Valve
 - 1. Head
 - 2. Face
 - 3. Neck
 - 4. Stem

- 5. Tip
- 6. Keeper Groove
- 7. Seat

XIII. DOING A VALVE JOB

Students will be able to:

- . reface valves using
 - A. Base Angles
 - B. Interference Angles
 - C. Competition 3 Angles Valve

Students will be able to:

. list advantages of interference angle

XIV. LUBRICATION SYSTEM

Students will be able to:

- . identify
 - A. Types of Systems
 - B. Types of Filtering System
 - C. Oil (Lubricants) Properties
 - 1. Viscosity
 - 2. Detergents
 - 3. Film strength

- 4. Anti Oxidizing Agents
- 5. Rust Inhibitors
- 6. Pour Point Depressent

- D. The Job Of Lubricant
 - 1. Cools
 - 2. Cleans
 - 3. Prevents Oxidation
- 4. Reduces Friction
- 5. Seals
- 6. Absorbs Shock

XV. THE COOLING SYSTEM

Students will be able to:

- . identify components and functions
 - A. Function-to keep engine at operating temperature
 - 1. Coolant

7. Fan Clutch

2. Radiator

8. Fan Shroud

3. Radiator Cap

9. Thermostat

- 4. Radiator Hoses
- 10. Recovery Tank

5. Fan

11. H2O Jackets

6. Drive Belts

- 12. Heater Core
- 13. Temperature sender & Gauge

XVIII. FIGURING OUT H.P. & TOROUE

Students will be able to:

- . explain and calculate
 - A. Types of Horsepower

Example

- 1. Din HP
- 2. Brake HP
- B. Torque (twisting power)

Units

- Newton-Meters (Metric)
- 2. Foot-Pounds (English)

XIX. IGNITION SYSTEM (TYPES) AND FUNCTIONS

Students will be able to:

- . identify types, components, and functions
 - A. Old (point typed)
 - B. Transistorized ignition
 - C. C.D. (Capacitor Discharge)
 - D. Magnetic Impulse
 - E. Photo Electric
 - F. Magneto
 - G. Distributorless
 - H. Hall Effect
 - I. Primary Ignition Circuit
 - 1. Battery
 - 2. Wires & Connections
 - Transistor or Points (module)
 - 4. Photo or Magnetic or Hall Pickup
 - 5. Coil Primary Windings
 - J. Secondary Ignition Circuit
 - 1. Coil secondary winding
 - 2. Coil secondary wire
 - 3. Distributor Cap
 - 4. Rotor
 - 5. Spark plug wire
 - 6. Spark Plug

XX. FUEL SYSTEM TYPES

- . identify types, components, and functions
 - A. Carburator
 - 1. Multiple Carburators or Barrels
 - 1. 1, 2, 4 Barrel carburators
 - 2. 1, 2, 3 or more carburators

Optional

- 1. Electric Fan Motor
- 2. Electrice Fan Switch
- 3. Oil Cooler (Engine)
- 4. Oil Cooler (Transmission)

XVI. COMBUSTION CHAMBER PARTS

Students will be able to:

- . identify components and functions
 - A. Head

E. Piston

B. Intake Valve

F. Piston Rings

C. Exhaust Valve

G. Cylinder

D. Head Gasket

H. Spark Plug

XVII. COMPRESSION & CYLINDER LEAKAGE TEST

- perform and interpret compression test and explain cylinder leakage test
 - A. Compression test prerequisites
 - 1. Get Engine to Operating Temperature
 - a. Clearances
 - b. Oil Viscosity
 - Engine (Cranking) starting system (must be in working order (100 RPM MIN)
 - B. Dry test (results)
 - C. Wet test (results)
 - 1. WHY
 - D. Cylinder leakage test (100 psi. Min.)
 - 1. Bad intake valve (Noise out of Carb. or FL. itself)
 - 2. Bad Exhaust valve (Noise out of Exhaust Pipe)
 - 3. Bad Head Gasket or Crack in Head (Block) Bubbles in Coolant)
 - 4. Bad Rings, Piston, or Cylinder (Noise out of Oil filter) (Breather)

- B. Fuel injection systems
 - 1. Types
 - a. Throttle Body
 - b. Ported
 - c. C.I.S. (Constant Fuel Injection System)
 - d. Electronic Fuel injection system (E.F.I.)
 - e. Mechanical Fuel injection (Some Gas Engine) all * Diesel Engines
- C. Parts of a Fuel system (in general)
 - 1. Gas tank
 - 2. Gas cap (vented/nonvented)
 - 3. Gas lines (type)

 - 4. Gas Filter (location & testing)5. Fuel pumps (types) Mechanical & Electric
 - 6. Intake Manifold
 - 7. Air intake & cleaners (functions & importance)
 - 8. Fuel injection system of Carburators
- D. Advantage of Fuel injection over Carburators
 - 1. *Lower Emmissions (less pollution)
 - 2. *Better Fuel Mileage
 - 3. *Mcce Power
 - 4. *Easier Starting

*Explain why

XXI. BRAKE SYSTEM TYPES

- . identify types, components, and functions:
 - A. Mechanical
 - 1. Disc-caliper
 - 2. Drum type
 - B. Hydraulic System
 - 1. Master Cylinder
 - 2. Wheel Cylinder
 - Calipers
 - a. types
 - 4. Proportioning Valve
 - 5. Pressure Differential Valve
 - 6. Combination Valve
 - C. Power Brake System
 - 1. Vacum Power Booster
 - 2. Air Brakes
 - 3. Power Hydraulic System
 - D. A B S (Brake Systems) Introduction
 - E. Basic trouble shooting & testing

XXII. AUTOMOTIVE ELECTRICAL SYSTEMS

- . explain the basic theories and principles of electricity
- . identify components, their functions, and testing
 - A. Battery Testing
 - B. Charging system
 - 1. types
 - 2. testing
 - C. Starting System
 - 1. Parts
 - a. starter
 - b. solenoid
 - c. starter relay
 - d. ignition switch
 - e. wires & connection
 - f. battery
 - D. Electricity
 - 1. What it is
 - 2. How it works
 - 3. Units of measurements
 - a. Volts
- c. Ohms
- b. Amps
- d. Watts
- 4. Ohms Law (Unit Relationship)
- 5. Types of basic electrical circuits
 - a. series
 - b. parallel
 - c. series-parallel
- 6. Basic Electrical Problems
 - a. short
 - b. open
 - c. ground circuit
 - d. bad ground circuit
- 7. Electrical trouble-shooting equipment
 - a. jumper wire
 - b. volt meter
 - c. Amp meter
 - d. Ohms meter
 - e. test light

XXIII. EMISSIONS & POLLUTION

Students will be able to:

- explain automotive emissions, its causes, and how they can be controlled.
 - 1. Emissions
 - A. Combustion

```
(Air) [N2+O2+CO2] + [HC] (Gas) = NOx+C+CO+H2O+O2+CO2
```

B. Ideal Combustion

N2+O2+CO2+HC = H2O+CO2+N2

C. Polluted Combustion

N2+O2+CO2+HC = NOX+C+CO+H2O+CO2

- D. How Automotive Equipment Combats Emmisions
 - Precombustion
 - a. Vapor Recovery (Gas Tank)
 - b. PCV (Positive Crankcase Ventilation)
 - c. fuel injection
 - d. temp controlled intake (Thermac Air Cleaner)
 - e. High temp cooling system
 - 2. Combustion
 - a. Combustion Chamber (shape)
 - b. spark advance & timing
 - c. spark plug gap & ignition output
 - d. camshaft
 - e. compression ratio
 - f. fuel (unleaded)
 - g. EGR (Exhaust Gas Recirculation)
 - 3. Post Combustion
 - a. AIR (Air Injection Reactor)
 - b. catalytic convertor
 - 1. Oxidizing
 - 2. Reducing
 - c. 02 sensor
 - 1. Feedback to the computer

MATTATUCK COMMUNITY COLLEGE ACCESS PROGRAM AUTOMOTIVE TECHNICIAN TEST

The instructor is required to have covered shop safety, proper use of tools, and shop practices and procedures. If the high school instructor feels the student has not mastered safety, tools, shop practices, and procedures the student will not be given credit.

1.	The	e shape(s) of a piston head is/are					
			flat c. irregular doomed d. all of the above				
2. pis	The ton p	thic in is	k area of the piston which supports the called the piston				
		a. b.	boss c. crown d. support				
	The		of a piston which expands the most is called the				
		a. b.	boss c. crown d. none of the above				
4.	The	job o	the mainbearings is to				
		b. c.	support the camshaft in the engine support the auxiliaryshaft connect the piston to the camshaft none of the above				
5.	The	job o	f the valve spring is to				
		b. c.	close the valves as the camshaft rotates open the valves as the camshaft rotates close the valves as the crankshaft rotates open the valve as the crankshaft rotates				
6.		motio	of the piston in the cylinder is best described as				
		a. b.	reciprocating c. vacillating rotary d. none of the above				

7. —	Throws		journals and	counter	wei	ights	are	all	parts	s of	the
		a. b.	camshaft connecting	rod	c.	engi:	ne blo k sha	ock ft			
			e crankshaft		.ng"	duri	ng po	ower	strol	ces	some
		a. b.	counter weight vibration data	ghts ampers		c. d.	conne	ecti:	ng roo	is	
9.	Con		ing rods an _•	nd main	bea	arings	s ar	e c	lassii	fied	as
		a. b.	sleeve bear: roller bear:	ings ing		c. d.	need:	le be	earing	j	
			of the enginand tin is					ked v	with I	layer	s of
		a. b.	piston connecting 1	rod	c. d.	preci push	sion rod	inse	ert be	earin	ıg
11. cyl	inder.	_		_ are us	ed	to se	eal th	ne p	pistor	ı in	the
			bolts rings		c. d.	bear:	ing dome:	S			
12.	A pi	ston	has	th	rust	suri	face.				
		_	2 4	c. 6 d. 8							
13.	Whic	h is	the best de	fintion c	of ar	n engi	ine?				
			a device use a group of p a group of to to convert b a group of convert rota	parts mad related p neat ener related	le of arts gy t part	meta in s o med s whi	al specifichanie ich af	cal e re pu	energy	/ gethe	_
14.	The		types of lin			ly fo	ound :	in ex	ngines	are	the
		b. c.	hydraulic and mechanical assolid and mechanical and mechanic and hydraulic and hydraul	and solid	l						

13.	Rotators	are used on valves	то
	a.	prevent carbon bui	ldup c. both a and b
	b.	prevent localized	heat d. none of the above
16.	Storage 1	batteries contain a	liquid called
	a. b.	sulphuric acid water	c. electrolyted. hydrometer
17. neut	The efiralized w	fects of battery	acid on other objects can be
	a. b.	sulphuric acid hydrometer	c. pie crustd. baking soda and water
18.	Storage 1	oatteries produce _	gas.
		hydrogen nitrogen	
19.		water sh	ould be used to fill a storage
batte	ery.		
	a.	tan c.	fluoridated
	b.	tap c. chlorinated d.	distilled
20.	Specific	gravity of batte	ry electrolyte is tested with a
	a. b.	battery tester hydrometer	<pre>c. voltmeter d. capacity tester</pre>
21.	Each ce	ell in a 12 volt volts.	battery produces approximately
			3.4 12.6
22.	We can cl	neck ignition timin	g with a
	a. b.	compression test tach and dwell met	c. timing lighterd. none of the above
23.	What show	ald be checked on n	ew spark plugs?
		electrodes gap	c. threadsd. all of the above
24. montl	Permanent ns.	anti-freeze should	d be changed every
	a. b.		c. 24 d. 48

25.	Radiator	s are pressurized t	:0	•
	b.	raise the boiling lower the boiling	point of t	he coolant
		speed the flow of operate the water		rough the engine
	A therm	nostat installed ups	side down	will cause an engine to
		run cold		not start
	D.	not stop	a.	run hot
fuel	and char	ng the engine with nging the proportion automobiles	ns under di	ble mixture of air and ffering conditions best
	a.	-	c.	lubrication system fuel pump
28.	Providir	- ng a high voltage su	rge, 30,00	0 volts or more to the
spar!	k plugs k	est describes the p	ourpose of	the
	a. b.	storage battery alternator	c. d.	electrical system ignition system
29.	Which pa	art/parts belong to	the engine	lubrication system?
	a. b.	pick-up screen pressure relief va	c. alve d.	filter all of the above
30.	P.C.V. s	stands for		
	b٠	pollution control positive crankcase positive crankshaf	ventilati	on
		pollution control		
31. curr	Since o	cars run on DC vcl AC current must be	tage and a	lternators produced AC
		reversed rectified	<pre>c. revo d. ampl</pre>	— - :-
32.	Oil is u	sed in engines as _		•
	a.	a cleaning agent	c.	a seal between rings and cylinder walls
	b.	a cooling agent	d.	all of the above

33.	How ea	sily an	oil flo	ws or	spreads	as	referred	' ట శ	ЗS
	a.	viscosity	,		fluidit				
	b.	body		d.	none of	thes	se		
34.	SAE is a	n abbrevi	ation fo	r			•		
		stationa society							
		static a							
		none of		e energ	Y				
35. for	Since oi the engin	l pumps e a	can prod	uce mor is inco	e pressu rporated	re th in t	nan is re the system	equire	∋d
	a.	bv-pass	valve		c. sh	unt s	val ve		
	b.	by-pass pcv valv	re		d. re	lief	valve		
36.	The ea	se at wh	nich gaso	oline v	aporizes	is	referred	to a	35
		octane			heptan				
	D.	volatili	.ty	d.	cetane				
37. spai	A secon ck plug ha	dary expl s fired i	osion in s called	the c	ombustion	n cha	amber afte	er tl	1e
	a.	detonati	.on	c.	dieseli	na			
	b.	pre-igni	tion	d.	spontan	eous	combustic	n	
38. call	Ignition led	of the	fuel cha	rge be	fore the	spar	kplug fir	es :	İs
	a.	detonati	on	c.	knockine	at .			
		pre-igni					combustic	n	
39.	The four	-stroke c	ycle ope	rates i	n which	order	·	•	
	a.	intake,	exhaust	. ignit	ion. com	press	sion		
		ignition							
		compress	ion, pow	er, int	ake, exh	aust			
	d.	intake,	compress	ion, po	wer, exh	aust			
40.	Valves a	re opened	by		•				
	a.	camshaft	lobes		c. the	e cra	nkshaft		
		connecti					prings		

41. Which of the following is not used in calculating engine displacement.
a. stroke c. number of cylinders b. bore d. valve arrangement
42. Piston rings
 a. are metal rings that fit into grooves in the piston b. form a tight seal between the piston and the cylinder wall c. both a and b
d. neither a nor b
43. The reciprocating motion of the piston is changed to rotar motion by
 a. a crankshaft and crankpin b. a piston and piston pin c. a piston ring and piston pin d. a connecting rod and crankshaft
44. The letters TDC stand for
a. top dead center c. transposed direct current
b. turning direction clockwise d. none of the above
45. In a four-cycle engine, a power stroke occurs ever
 a. crankshaft revolution b. other crankshaft revolution c. fourth crankshaft revolution d. half-revolution of the crankshaft
46. The compression ratio in a diesel engine is
 a. lower than in a spark-ignition engine b. higher than in a spark-ignition engine c. the same as in a spark-ignition engine d. none of the above
47. All diesel engine use
 a. fuel injection b. the two stroke cycle c. a blower d. multiple carburetors

48.	Firing o	rder is
	a.	the order in which the cylinders deliver their power strokes
	b.	
		the same as cylinder numbering none of the above
49.	Engi	nes with the same arrangements of cylinders
		always have the same firing order
		may have different firing orders
		use the same intake manifold are always carburetor
50.		e that can selectively cut out two or four cylinders
	а.	multiple-displacement engine
		diesel engine
		five-cylinder engine
		rotary engine
51.	In a die	sel engine, ignition is provided by
	a.	a spark plug c. a battery
	b.	a spark plug c. a battery heat of compression d. exploding gasoline
52. flows	The ass from	embly of tubes through which the air fuel mixture the carburetor to the intake ports is the
		cylinder head c. valve ports
	b.	intake manifold d. exhaust manifold
53. from	The asse	mbly of tubes through which the burned gases flow ust ports to the exhaust pipe is the
		intake manifold c. exhaust manifold
	D.	muffler d. catalytic converter
54.	The	bearing that supports the crankshaft is called
		connect-rod bearing c. camshaft bearing
	b.	main bearing d. bushing

55. reduc	The dev	rice mounted on the front onal twist	end of the crankshaft to
	a. b.	flywheel c. thrust bearing d.	vibration damper pulley
56. the	The space	e between the piston and t	he cylinder wall is called
			c. piston groovesd. piston rings
	Compre	ession rings seal in the	compression pressure and
		prevent blow by	temperature
	b.	contorl oil consumption	d. a & b
58.	The cams	haft rotates at	•
		one-half crankshaft speed	
		crankshaft speed twice crankshaft speed	
		none of the above	
59.	The ti	me that both valves are	open together is called
	a.		c. valve lash
	b.	valve clearance	d. valve rotation
	The purp	ose of the screw and lock	nut in some rocker arms is
	a.	eliminate tappet noises	
	b.	hold the rocketarm in pos	
		allow for valve-clearance	adjustments
	α.	all of the above	
	Devices	that turn the valves sligh	tly each time they
	a.	valve retainer	c. valve retractors
	b.	valve rotators	d. none of the above
62. adjus	The oil	-filled device used in v nd to reduce the noise are	alve trains to eliminate
	а.	hydraulic valve lifters	c. both a and b
	b.	mechanical valve lifters	d. neither a nor b

63. The purpoverhead cams	pose of the belt haft is to	tensioner used with a be	elt driver
b. c.	eliminate noise preload the camsh prevent the camsh all of the above	aft bearing aft from jumping time	
64. Engine to	rque is	·•	
b. c.	crankshaft to the	e the engine delivers at crankshaft the engine is working	the
65. A spark- torque at	-ignition engine	with throttle open deve	elops more
a. b.	low speed intermediate spee	c. high speedd d. very high speed	
66. On an or the reading is	utside micrometers the	, the part that turns to	indicate
a. b.	barrel anvil	<pre>c. racket screw d. thimble</pre>	
67. When the bottom of the	cylinder which of	m the top of the cylinde the following has occure	er to the ed?
	a cycle a stroke	c. both a and bd. neither a nor b	
68. A mixt	ure of air and	fuel enters the cylinde	er on the
a. b.	intake stroke compression strok	<pre>c. power stroke e d. exhaust stroke</pre>	
69. The burne	ed gases leave th	e cylinder on the	·•
a. b.	intake stroke compression strok	c. power strokee d. exhaust stroke	
70. Cranksha	fts are made by $_$	·	
a. b.	forging c casting d	machiningall of the above	

71.	Which	of the	following	is/are	a bea	ring	requir	ements
	a. b.	embedab:	ility ability	c. he	eat tra	nsfer he ab	ove	
	The chais called		ic of a bea	ring that	t allow	s dir	t to st	ick in
			ility ability					
	Which		following	are par	ts of	the	valve	train
			t c. d.		the ab	ove		
74.	The .	amount o	f time th	e valve	is o	pened	is	called
	a. b.	lift duration	c. n d.	overla ratio	ρ			
75.	The dis	tance the	valve is o	pened is	called			<u> </u>
			c. n d.		р			
76.	The sp	ace in the	e valve tr	ain for 1	heat ex	pansi	on is	called
		lash clearan	c. ce d.	both a neithe		b		
77.	The val	ve seat i	s part of t	he		•		
		valve cylinde	c. r d.	runner none o	f the a	bove		
78.	The lo	west cat	egory of s	ervice :	rating	of e	ngine o	il is
		SA SB		SD SE				
79.	Oil vis	cosity ra	ting are se	t up by			·•	
		API SAE		DIN both a	and b			

80. Oil service rating are set up by
a. API c. DIN b. SAE d. both a and b
81. Which of the following types of cooling system are use today
a. liquid c. both a and b b. air d. neither a nor b
82. Which of the following are caused by overcooling
a. poor mileage c. oil dilution b. high emissions d. all of the above
83. When the engine is cold, coolant flows
 a. into the bottom radiator tank b. only through the block c. only through the heat exchange d. none of the above
84. A vacuum is prevented in the radiator by the
a. pressure cap c. both a and b b. coolant recovery system d. none of the above
85. Which of the following is a type of fan
a. flexb. fixed bladec. clutchd. all of the above
86. Displacement is measured in
a. cubic inchesb. cubic centimetersd. neither a nor b
87. An engine size is specified by
a. boreb. strokec. displacementd. all of the above
88. Horsepower measured at the flywheel is
a. 1 HP c. plank b. BHP d. taxable
89. An engine with the cylinders placed in a straight line is which of the following arrangement
a. V-Type c. opposed b. in-line d. transverse

		e with the value of types				the cy	linders	head	lis
	a. b.	V-Type overhead		c. d.	flatioppos	head sed			
		e that uses hiding types					ition is	; wh	ich
	a. b.	diesel opposed		c. d.	flat	head head			
92.	Most cl	hainsaw engine: _?	s are	whic	ch o	f the	followir	ıg ty	'pes
	a. b.	flathead four stroke		c. d.	two s	stroke head			
		of the piston	that	conta	acts 1	the cyl	inders w	alls	is
		head c. skirt d.							
94. Who connect:	nich o	f the following	g part _?	ts co	onnec	ts the	piston	to	the
		rings bearing				n			
95. Pis	ston e	xpansion is con	trolle	ed by			:		
	a. b.	strut dam		slot all o	of the	e above	:		
96. Co	mpress:	ion pressures a	re co	ntroll	led by	у		:) •
		compression ris						b	
97. Oi	l is p	prevented from -•	ente	ring t	che (combust	ion cham	ber	by
		compression ris					and ber a nor	b	
98.	Engi	ne condition	may	be	de	termine	ed with	1 8	a(n)
	a.	oil pressure ga	auge		c.	cylind tester	ler leaka	ige	
	b.	compression ga	uge		d.			ve	

99.	Which	of the	following	is	a ty	p e	of	cylinder	wear
	a. b.	taper out-of-r	c. cound d.	bot!	h a an ther a	d b nor	b		
100.	Cylinde	rs may be	serviced b	ру				·	
	a. b.	glaze br honing	eaking	c. d.	bori all	.ng of t	he a	above	
101.	New pis	tons are	required af	ter .				•	
	a. b.	glaze br honing	eaking	c. d.	bori all	.ng of t	he a	above	
102.	Valve g	uides may	be service	ed by				•	
	a. b.	replacem knurling	ent	c. d.	slee all	eving of t	he a	above	
103.	The eng	ine oil l	evel is che	ecked	with			<u> </u>	
			light gauge					above	
104.	The oil	pressure	is checked	l with	h			•	
			light gauge						
105.	Oils sh	ould be c	hanged more	e for				·	
	b. c.	highway warm wea	trip drivir driving ther drivir the above	-					
106.	Oil sho	uld be ch	anged				.•		
	a. b.	while the	e oil is ho	ot	c. d.	eit non	her e of	a or b the abov	re
107.	It is b	est to ch	ange the oi	ll fi	lter _				_•
	a.	every oi	l change			cha	nae	third oil	
	b.	every ot	her oil cha	inge	d.	non	e of	the above	re
108.	Coolant	may be 1	ost			.•			
			he engine the engine						

109.	Overhea	ting may be caused
	a. b.	poor heat flow c. poor air flow poor coolant flow d. all of the above
110.	Poor ai	r flow may be caused by
	b. c.	clogged radiator finns a slipping fan belt a defective fan clutch all of the above
111.	The	coolant strength may be determined with a
		pump c. pressure tester hydrometer d. all of the above
	During	the power stroke, the intake and exhaust valves are
		closed and opened c. both closed opened and closed d. both opened
		soline is burned in the engine, the pollutants that tail pipe are
	a. b.	HC, CO, and NOx C. O, C, H, and N H2O, Co2, and O d. none of the above
114.	Ringing	is the characteristic sound of
	a. b.	normal combustion c. lead fuel pre-ignition d. all of the above
115.	Whi	ch of the following statements is/are true
	com II. Ca	bon deposits in the combustion chamber raise the pression ratio. rbon deposits in the combustion chamber increase the dency detonation to occur in an engine.
	a. b.	I only c. both I and II II only d. neither I nor II
116.	The pur	pose of the EGR system is to
	C.	push more air-fuel mixture into the engine keep the battery changed increase the compression ratio none of the above

		son that a riche s first started i				ed when	n a
	b. c.	this allows a hi only part of the thick engine none of the above	gasolin oil mus	e will v	vaporize wh	nen colo	d
118.	An ai	r fuel ratio of	12-1 m	eans tha	at the mi	xture l	has
	b. c.	12pds of gasolin 12pds of air to 1 gallon of gas 12 gallons of ai	1 pd of to 12 ga	gasoline llons of	e by weight f air	:	
119.	The	3 major pollut	ants i	n autor	mobile exh	naust a	are
	b. c.	sulfates, partic sulfates, carbon carbon monoxide, hydrocarbons, ca	monoxid oxides	e, nitro	ous oxide ogen, hydro		S
120.	Carbon	monoxide is a res	ult of _		•		
		incomplete combu a lean mixture			kcess oxyge mpurities i		
121.	The	combustion chamb	er is	usually	contained	in d	the
		engine block piston			ylinder hea ater jacket		
		urning a scored t cars would be _				overs:	iz∈
		0.060" 0.030"					
		nost common type is is the		c brake	e caliper	found	or
		Single piston sl Two piston fixed					
124.	To chec	k rotor paralleli	sm you u	se a		•	
	a. b.	Straight-edge Micrometer	c. d.	Dial in Special	ndicator l service t	cool	

125. A vehicle is equipped with power disc brakes. The owner says that in order to stop the car excessive pedal effort is required.

Mechanic A says that a faulty power booster is probably the cause.

Mechanic B says that air in the hydraulic system is probably the cause.

Who is right?

- a. Mechanic A
- c. both A and B
- b. Mechanic B
- d. neither A nor B
- 126. The figure 0.0005" is the dimension commonly used for maximum ______.
 - a. Rotor laternal run-out
- c. Rotor radial run-out
- b. Rotor parallelism
- d. Caliper bore wear
- 127. In an engine with an overhead camshaft the valves are located in _____.
 - a. the engine block
- c. the cylinder head
- b. the crankshaft
- d. none of the above
- 128. Modern day engines have pistons made of _____.
 - a. tungsten
- c. steel

b. bronze

d. aluminum

PART TWO

- 129. Explain Detonation
- 130. Explain Pre-Ignition
- 131. Why are pistons cam ground?
- 132. Explain the stratified charge combustion chamber and why it is used.
- 133. Describe valve overlap and why it is used.
- 134. Why is it necessary for valves to be adjusted and what would happen if they were not adjusted?
- 135. Why are catalytic converters used and briefly explain what they do.
- 136. What is the purpose of sodium filled valves and how do they work?

- 137. Why are three or more valve seats angles used when grinding a seat?
- 138. Why are Turbochargers more widely used today than in the past and why.
- 139. List four engine types.
- 140. Explain what is meant by the terms 10:1 compression ratio.

PART III.

- 141. Explain five types of processes we can do with Ox-Acyt torch and draw the three basic types of flames and label.
- 142. List three units of displacement.
- 143. Draw and label 6 types of Piston Head shapes.
- 144. List six functions (jobs) the lubrication system does.
- 145. Draw and label a Lubrication System.
- 146. List eleven parts of Cooling System.
- 147. Name all parts of a Piston.
- 148. Name four advantages of Fuel Injection over Carburation.
- 149. Draw a water parallel picture to Electricity and explain in detail each unit of electricity.
- 150. List seven system incorporated in an automobile engine. (in order for it to function)
- 151. List ten parts of the OHV valve train.
- 152. Name five materials gaskets can be made of.
- 153. Explain in detail how a 2 cycle Diesel works (diagrams of strokes needed).
- 154. Explain how to do wet and dry compression test (give some probable results).
- 155. Draw a 30 degree base angle and 45 degree angle competition valve job.
- 156. Name 10 systems incorporated in automobile other than the engine.
- 157. Name 5 differences of a diesel engine compared to a gas engine.

- 158. Name 8 parts of a combustion chamber.
- 159. Define combustion.
- 160. Define R.P.M.
- 161. Define T.D.C.
- 162. Define system.
- 163. Name 15 job opportunities in the Automotive Field.
- 164. Explain in detail with diagrams the four stroke of the internal combustion engine.
- 165. How would you properly maintain your cooling system and give reasons why?
- 166. Explain why a choke system is necessary on carburetors.
- 167. Explain the Venturi Effect and how it is put to use in the fuel system.
- 168. Explain in detail how the automotive alternator works. (including rectification, voltage, regulator operation)
- 169. Draw a basic starting system.
- 170. Explain in detail how a starter system works. (including starter drives and solenoids)
- 171. Why do some diesel engines use glow plugs and explain what they are?
- 172. Explain why most automobile manufacturers are changing from carburetors to fuel injection systems.
- 173. List the components necessary for a basic fuel injection system.
- 174. Explain in detail the types, uses, and importance of shop manuals.

MATTATUCK COMMUNITY COLLEGE AUTOMOTIVE TECHNICIAN MATH TEST

PLEASE SHOW ALL CALCULATIONS

- 1. What is the displacement of an eight-cylinder engine that has a 3.5 inch bore and a 3.75 inch stroke?
- Convert the answer obtained in question 1 into cubic centimeters.
- 3. What is the displacement of a four-cylinder engine in which bore and stroke are both 3.1 inches?
- 4. Convert the answer obtained in question 3 into liters.
- 5. What is the displacement of a four-cylinder engine that has an 8 cm bore and a 10 cm stroke? Give your answer in two commonly used metric units.
- 6. Convert the answer obtained in question 5 into cubic inches.
- 7. Coolant temperature of an engine is 80 degrees centigrade. Convert this reading to the Fahrenheit scale.
- 8. What is the compression ratio of an engine with a 50.3 cu. in. displacement per cylinder, with a combustion chamber cavity of 6.7 cu. in. ?

- 9. What is the compression ratio of an engine with a 322.5 cm3 displacement per cylinder, with a combustion chamber cavity of 43 cm3?
- 10. If an eight-cylinder engine with a 3.5 inch bore and a 3.75 inch stroke produces its maximum horsepower at 4400 rpm, what is its indicated horsepower when the average indicated pressure is 131 lb/in2?
- 11. The engine specified in question 10 produces 221 ft-lb of torque at 4400 rpm. What is the brake horsepower?
- 12. What is the mechanical efficiency of the engine specified in questions 10 and 11?

