Pacemaker Linux

Domine os fundamentos de Alta Disponibilidade e configure clusters resilientes com Pacemaker, Corosync e STONITH.

Um curso prático e detalhado para iniciantes, com exercícios handson em Libvirt.

Por que Alta Disponibilidade é Crítica?

\$5.600 Custo por minuto

Custo médio de downtime em uma empresa de médio porte (dados de 2023).

99.99% Disponibilidade esperada

Padrão de indústria para serviços críticos (apenas 52 minutos de downtime por ano).

87% Clientes abandonam

Percentual de clientes que abandonam um serviço após experiência de downtime.

Continuidade de Negócios

Garante que serviços críticos estejam sempre disponíveis, mesmo diante de falhas.

Redução de Perdas Financeiras

Minimiza perdas associadas ao downtime, como perda de vendas e produtividade.

Confiança do Cliente

Mantém a reputação ao oferecer serviços confiáveis e ininterruptos.

Conformidade Regulatória

Ajuda a atender requisitos regulatórios e acordos de nível de serviço (SLAs).

Estrutura do Curso: Módulos 1-4

Iniciante

Módulo 01

Introdução à Alta Disponibilidade

Conceitos fundamentais de HA, componentes de um cluster e terminologia básica.

Iniciante

Módulo 02

Preparando o Ambiente Libvirt

Configuração de VMs, rede e ambiente de laboratório para prática.

Intermediário

Módulo 03

Instalação Pacemaker/Corosync

Instalação, configuração inicial e criação do cluster.

Intermediário

Módulo 04

Gerenciamento de Recursos

Criação de recursos, grupos e restrições com exercícios detalhados.

→ Os módulos 05-07 (STONITH/Fencing, Monitoramento e Tópicos Avançados) continuam na próxima seção, completando sua jornada até o nível avançado.

Estrutura do Curso: Módulos 5-7 (Avançado)

Intermediário

Módulo 05

STONITH/Fencing

Configuração de fencing com fence virsh e testes de failover.

Avançado

Módulo 07

Tópicos Avançados

Gerenciamento de VMs, Pacemaker Remote e casos de uso reais.

Avançado

Módulo 06

Monitoramento e Troubleshooting

Diagnóstico de problemas, análise de logs e resolução de cenários.

Progressão do Curso: Após completar os Módulos 01-04, você terá uma base sólida em conceitos de HA e gerenciamento de recursos. Os Módulos 05-07 aprofundam em mecanismos críticos de segurança, diagnóstico avançado e cenários do mundo real, preparando você para administrar clusters Pacemaker em produção.

Objetivos de Aprendizado: Módulos 1-4

Módulo 01: Introdução à HA

- ✓ Entender o conceito de Alta Disponibilidade
- ✓ Identificar componentes de um cluster HA
- ✓ Dominar terminologia básica (quórum, split-brain)

Módulo 02: Ambiente Libvirt

- ✓ Instalar e configurar Libvirt/KVM
- Criar máquinas virtuais para o cluster
- ✓ Configurar rede e conectividade entre nós

Módulo 03: Instalação Pacemaker

- ✓ Instalar Pacemaker, Corosync e pcs
- ✓ Configurar e criar um cluster
- ✓ Verificar status e quórum do cluster

Módulo 04: Gerenciamento Recursos

- Criar e configurar recursos (IP, serviços)
- Organizar recursos em grupos
- Aplicar restrições de localização e colocation

→ Os módulos 05-07 (STONITH/Fencing, Monitoramento e Tópicos Avançados) continuam na próxima seção com seus objetivos de aprendizado.

Objetivos de Aprendizado: Módulos 5-7 (Avançado)

Módulo 05: STONITH/Fencing

- ✓ Entender importância do STONITH
- ✓ Configurar fence_virsh com Libvirt
- Testar e validar failover com fencing

7

Módulo 07: Tópicos Avançados

- ✓ Gerenciar máquinas virtuais com Pacemaker
- ✓ Configurar Pacemaker Remote
- ✓ Integrar serviços específicos (BD, web)

Módulo 06: Monitoramento

- Usar comandos pcs para monitoramento
- Analisar logs do Pacemaker e Corosync
- ✓ Diagnosticar e resolver problemas comuns

Ao completar todos os módulos: Você terá domínio completo de Pacemaker Linux, desde conceitos fundamentais até configurações avançadas, e estará preparado para administrar clusters de alta disponibilidade em ambientes de produção.

Foco em Exercícios Práticos com Libvirt

Ambiente Realista sem Hardware Físico

Use seu computador para simular um cluster completo com múltiplas máquinas virtuais.

Prática Hands-on Segura

Teste failovers, STONITH e recuperação de falhas sem risco de perder dados reais.

Repetição e Aprendizado

Crie snapshots das VMs para reverter a estados anteriores e repetir exercícios.

Escalabilidade de Aprendizado

Comece com 2 nós e expanda para 3+ nós conforme sua compreensão aumenta.

Duas máquinas virtuais conectadas em rede, simulando um cluster Pacemaker real.

Arquitetura de um Cluster Pacemaker

Node 3

Servidores físicos ou virtuais que compõem o cluster e executam os serviços gerenciados pelo Pacemaker.

Pacemaker

Gerenciador de recursos que orquestra a movimentação de serviços entre os nós e toma decisões sobre o estado do cluster.

Corosync

Camada de comunicação que garante consenso entre os nós e evita o problema de split-brain.

STONITH

Mecanismo de fencing que isola nós falhos, protegendo a integridade dos dados compartilhados.

Conceitos-Chave: Pacemaker, Corosync e STONITH

Pacemaker

Orquestrador do Cluster

Gerenciador de recursos que orquestra a movimentação de serviços entre nós, monitora a saúde dos recursos e toma decisões sobre onde cada serviço deve ser executado.

- **⊘** Inicia, para e migra recursos
- Monitora saúde dos serviços
- Aplica restrições e políticas

Corosync

Camada de Comunicação

Motor de comunicação que garante que todos os nós tenham a mesma visão do estado do cluster, evitando split-brain através de mecanismos de quórum.

- Comunica entre nós
- Gerencia quórum
- Detecta falhas de nós

STONITH

Proteção contra Split-Brain

Mecanismo de fencing que isola nós problemáticos do cluster, garantindo que apenas um nó possa acessar recursos compartilhados e prevenindo corrupção de dados.

- Desliga nós falhados
- Revoga acesso ao armazenamento
- Garante integridade dos dados

© Como Funcionam Juntos

O Corosync fornece a comunicação confiável entre os nós, permitindo que o Pacemaker tome decisões informadas. O STONITH garante que essas decisões sejam seguras, isolando nós que não podem ser contatados. Juntos, esses três componentes criam um sistema resiliente onde a falha de um nó não compromete a disponibilidade dos serviços.

Ambiente de Laboratório: Duas VMs Conectadas

Especificações de Hardware por VM

▶ Memória: 2 GB RAM

Processador: 2 vCPUs

▶ Disco: 20 GB (QCOW2)

► **Hipervisor:** KVM/Libvirt

R Configuração de Rede

Node1: 192.168.122.101/24

Node2: 192.168.122.102/24

Gateway: 192.168.122.1

► **Bridge**: virbr0 (NAT)

Sistema Operacional

▶ Ubuntu Server 22.04 LTS

ou CentOS Stream 9

▶ ou RHEL 8/9

Caminho de Aprendizado: Do Básico ao Avançado

Conceitos

Entenda os fundamentos de HA e componentes do cluster

Setup

Configure seu ambiente de laboratório com Libvirt

Configuração

Instale e configure Pacemaker e Corosync

Prática

Crie recursos, grupos e teste failovers

Domínio

Domine troubleshooting e cenários avançados

Especialista

Recursos e Suporte Disponíveis

Materiais Complementares

- → ClusterLabs.org: Documentação oficial do Pacemaker
- → Red Hat Docs: Guias detalhados para RHEL/CentOS
- → SUSE HA Guide: Documentação para ambientes SUSE
- → Blogs Técnicos: Tutoriais e dicas de especialistas
- → YouTube: Vídeos de configuração e troubleshooting

Comunidades Online

- → **Reddit:** r/sysadmin, r/linuxadmin
- → Stack Overflow: Tag "pacemaker"
- → Linux Foundation: Comunidades de código aberto
- → Mailing Lists: Listas do Pacemaker e Corosync
- → **IRC/Discord:** Canais de suporte em tempo real

Como Contribuir

- → GitHub Issues: Reporte bugs e sugira melhorias
- → Pull Requests: Envie correções e novos exercícios
- → **Documentação:** Melhore textos e exemplos
- → Feedback: Compartilhe sua experiência de aprendizado
- → Traduções: Ajude a traduzir para outros idiomas

Comece Agora!

Sua jornada para dominar Pacemaker Linux começa aqui

Prepare o Ambiente

Siga o guia de instalação do README.md para configurar Libvirt/KVM e criar suas máquinas virtuais.

README.md

Estude o Módulo 01

Comece com os conceitos fundamentais de Alta Disponibilidade e familiarize-se com a terminologia.

■ Módulo 01

Execute os Exercícios

Pratique hands-on com os exercícios detalhados de cada módulo e consolide seu aprendizado.

</>> Módulo 02

→ README.md - Guia rápido

7 Módulos Completos

Exercícios Detalhados

GitHub - Contribua

Você tem tudo o que precisa para começar. Não hesite em revisar conceitos e explorar além do escopo do curso!