Relazione esperienza di laboratorio

Gruppo BI: Federica Maria Surace, Marco Cilibrasi

20 novembre 2014

Esercitazione N. 6: Transistor JFET

1 Studio funzionamento JFET

Nella prima parte dell'esperienza abbiamo montato il circuito richiesto con i seguenti componenti:

- $R_1 = 0.986 \pm 0.008k\Omega$
- $R_2 = 2.04 \pm 0.02k\Omega$
- Led rosso.
- Transistor JFET 2N3819.
- Trimmer: la resistenza totale misurata è $105.7 \pm 0.8 k\Omega$.

Abbiamo osservato il comportamento del circuito al variare della posizione del trimmer: per V_{GS} minore (in modulo) di circa 1.14V il Led si accende (abbiamo passaggio di corrente nel Drain); al di sopra di questo valore il Led è spento perchè il canale è totalmente chiuso, cioè il transistor è in interdizione e non si ha passaggio di corrente. Riportiamo in tabella 1 e nel grafico in figura 1 i valori di I_D (ottenuta misurando la caduta di tensione sulla resistenza R_1) al variare di V_{GS} .

Tabella 1: Comportamento JFET

$-V_{GS}[mV]$	$V_{R_1}[V]$	$I_D[mA]$
860 ± 20	0.203 ± 0.002	0.206 ± 0.003
730 ± 20	0.414 ± 0.003	0.420 ± 0.005
650 ± 20	0.591 ± 0.003	0.599 ± 0.006
560 ± 20	0.818 ± 0.004	0.830 ± 0.008
496 ± 8	0.988 ± 0.005	1.00 ± 0.01
420 ± 8	1.203 ± 0.006	1.22 ± 0.01
356 ± 8	1.404 ± 0.007	1.42 ± 0.01
300 ± 8	1.585 ± 0.008	1.61 ± 0.02
232 ± 4	1.815 ± 0.009	1.84 ± 0.02
156 ± 4	2.07 ± 0.02	2.10 ± 0.03
98 ± 2	2.29 ± 0.02	2.32 ± 0.03
46.8 ± 0.8	2.49 ± 0.02	2.53 ± 0.03
16.2 ± 0.6	2.61 ± 0.02	2.65 ± 0.03
7.0 ± 0.2	2.66 ± 0.02	2.70 ± 0.03

Fittando i dati con una parabola generica ($\chi^2_{red} \simeq 2$) abbiamo ricavato le intersezioni con gli assi ottenendo $V_P = -1012 \pm 9 mV$ e $I_{DSS} = 2.75 \pm 0.02$, valori in accordo con quanto indicato nel datasheet.

Figura 1: I_D vs V_{GS}

2 Montaggio amplificatore

Abbiamo montato l'amplificatore mostrato in figura e abbiamo regolato il potenziometro in modo che la corrente di quiescenza fosse circà la metà di I_{DSS} , cioè $I_D = \frac{V_R}{R_1} = 1.42 \pm 0.02 mA$. Abbiamo misurato $V_{GS} = 0.285 \pm 0.002 V$ e, usando i valori trovati per I_{DSS} e V_P nel punto precedente, abbiamo verificato la relazione $I_D = I_{DSS} \left(\frac{V_{GS}}{V_P} - 1\right)^2 = 1.42 \pm 0.02 mA$, esattamente in accordo con il valore atteso. Per il circuito FET abbiamo che la trasconduttanza è $g_m = \frac{2I_{DSS}}{|V_P|} \sqrt{\frac{I_D}{I_{DSS}}} = \frac{2}{|V_P|} \sqrt{I_D I_{DSS}}$, per cui nel nostro caso $g_m = 3.91 \pm 0.04 mS \left(\frac{1}{k\Omega}\right)$. Questo valore è nel range indicato dal datasheet per $V_{DS} = 15V$ (nel nostro caso è leggermente diverso) e $V_{GS} = 0V$.

3 Misure a frequenza fissa

Abbiamo utilizzato ora un segnale in ingresso alternato a frequenza fissa $\simeq 1kHz$ di ampiezza variabile e osservato il segnale in uscita nelle due configurazioni: Common Source e Source Follower.

3.1 Configurazione Common Source

Abbiamo misurato il guadagno in tensione $A_V = \frac{v_{OUT}}{v_{IN}}$ della configurazione Common Source. Riportiamo i dati ottenuti in tabella 2 e nel grafico in figura 2.

Notiamo innanzitutto l'inversione di fase del segnale previsto teoricamente (nella figura 3 insieme al clipping) dalla relazione $A_V = -\frac{g_m R_D}{1+g_m R_S}$. Per piccoli segnali $(v_{IN} < 650 mV)$ abbiamo fittato i dati con una retta, ottenendo come coefficiente angolare $A_V = 1.60 \pm 0.01$ con $\chi^2_{red} = 0.27$. Per valori più grandi di v_{IN} il circuito non è più lineare e il guadagno diminuisce: infatti, in questo range si ha $i_D \simeq 1.4 mA \simeq I_D$ e non vale più l'approssimazione per piccoli segnali. Alla tensione di circa 1.1 V si comincia ad osservare il clipping superiore (figura 3) poichè il transistor va in interdizione $(v_{GS} < V_P)$.

Tabella 2: Misure a a frequenza fissa: Common Source

2. Misure a a frequenza fissa: Commo			
$v_{in}[mV]$	$v_{out}[mV]$	A_V	
52 ± 2	88 ± 6	1.7 ± 0.1	
100 ± 4	168 ± 6	1.68 ± 0.09	
152 ± 4	260 ± 8	1.71 ± 0.07	
200 ± 8	332 ± 8	1.66 ± 0.08	
248 ± 8	420 ± 20	1.69 ± 0.10	
304 ± 8	500 ± 20	1.64 ± 0.08	
356 ± 8	580 ± 20	1.63 ± 0.07	
400 ± 20	650 ± 20	1.62 ± 0.10	
460 ± 20	730 ± 20	1.59 ± 0.08	
500 ± 20	800 ± 40	1.60 ± 0.10	
550 ± 20	900 ± 40	1.64 ± 0.09	
600 ± 20	960 ± 40	1.60 ± 0.09	
650 ± 20	1040 ± 40	1.60 ± 0.08	
704 ± 16	1100 ± 40	1.56 ± 0.07	
750 ± 20	1180 ± 40	1.57 ± 0.07	
800 ± 40	1240 ± 40	1.55 ± 0.09	
860 ± 40	1300 ± 40	1.51 ± 0.08	
900 ± 40	1340 ± 40	1.49 ± 0.08	
960 ± 40	1420 ± 40	1.48 ± 0.07	
1000 ± 40	1460 ± 40	1.46 ± 0.07	

Figura 2: Misure a frequenza fissa: Common Source

Il valore atteso per $A_V=-\frac{g_mR_D}{1+g_mR_S}=-1.89\pm0.02$ (con $R_S=265\pm2\Omega$) e il valore misurato $A_V=1.60\pm0.01$ non sono compatibili all'interno dell'errore. Questo potrebbe essere dovuto al fatto che g_m dipende da I_D , cioè dal punto di lavoro. I valori di $i_D=\frac{v_{out}}{R_1}$ vanno circa da 0.1mA a 1mA

Figura 3: Clipping Common Source

che sono comparabili con I_D . Perciò non valgono più le approssimazioni in cui abbiamo ricavato g_m .

3.2 Configurazione Source Follower

Riportiamo in tabella 3 e nel grafico 4 le misure effettuate per il guadagno in tensione della configurazione Source Follower.

Tabella 3: Misure a a frequenza fissa: Source Follower

$v_{in}[mV]$	$v_{out}[mV]$	A_V
50 ± 2	23.2 ± 0.8	0.46 ± 0.02
100 ± 4	46 ± 2	0.46 ± 0.03
150 ± 4	70 ± 2	0.47 ± 0.02
200 ± 8	94 ± 4	0.47 ± 0.03
250 ± 20	116 ± 4	0.46 ± 0.04
300 ± 20	140 ± 4	0.47 ± 0.03
350 ± 20	162 ± 4	0.46 ± 0.03
400 ± 20	184 ± 4	0.46 ± 0.03
460 ± 20	212 ± 8	0.46 ± 0.03
500 ± 20	236 ± 8	0.47 ± 0.02
550 ± 20	260 ± 8	0.47 ± 0.02
600 ± 20	280 ± 8	0.47 ± 0.02
650 ± 20	304 ± 8	0.47 ± 0.02
700 ± 20	332 ± 8	0.47 ± 0.02
750 ± 20	352 ± 8	0.47 ± 0.02
800 ± 40	390 ± 20	0.49 ± 0.03
860 ± 40	420 ± 20	0.49 ± 0.03
900 ± 40	430 ± 20	0.48 ± 0.03
960 ± 40	460 ± 20	0.48 ± 0.03
1000 ± 40	480 ± 20	0.48 ± 0.03

Come si osserva in figura 5 il segnale in uscita è in fase rispetto al segnale in ingresso, in accordo con la relazione attesa $A_V = \frac{g_m R_S}{1+g_m R_S}$. Per piccoli segnali $(v_{IN} < 800mV)$ abbiamo fittato i dati con una retta, ottenendo come coefficiente angolare $A_V = 0.468 \pm 0.002$ con $\chi^2_{red} = 0.1$. Rispetto alla configurazione Common Source la non linearità (che ci aspettiamo per gli stessi motivi del Common Source) è meno evidente e anche per valori elevati di v_{in} la retta di fit passa per i punti all'interno delle barre d'errore (che sono più ampie poichè è diverso il fondo scala dello strumento). Si osserva il fenomeno del clipping (figura 5) per tensioni in ingresso superiori a circa 1.1V (anche in questo caso si ha che il transistor va in zona di interdizione).

Figura 4: Misure a frequenza fissa: Source Follower

Figura 5: Clipping Source Follower

Anche in questo caso ill
 valore atteso per $A_V=\frac{g_mR_S}{1+g_mR_S}=0.491\pm0.002$ e il valore misurato $A_V=0.468\pm0.002$ non sono compatibili all'interno dell'errore per gli stessi motivi del Common Source.

4 Misura impedenza di ingresso

Per la misura dell'impedenza di ingresso abbiamo utilizzato una resistenza dell'ordine di R_3 (ci aspettiamo che R_{in} sia leggermente inferiore a R_3). Abbiamo scelto $R_{test}=6.42\pm0.06M\Omega$. I valori misurati sono: $V_1=22.0\pm0.8mV$ (senza R_{test}) e $V_2=9.2\pm0.4mV$ (con R_{test}). Si ricava $R_{in}=\frac{R_{test}}{\frac{V_1}{V_2}-1}=4.6\pm0.4M\Omega$. Abbiamo ripetuto la misura a una frequenza di circa 10kHz ottenendo: $V_1=22.4\pm0.8mV$, $V_2=3.6\pm0.2mV$. Si ha $R_{in}=1.2\pm0.1M\Omega$. L'impedenza è notevolmente

inferiore a causa degli effetti capacitivi del transistor. Ci aspettiamo che la resistenza di ingresso sia un parallelo di R_3 con l'impedenza relativa alla capacità del transistor (dal datasheet Common-Source Input Capacitance ha un valore compreso tra 2.2 e 8 pF), in quanto sia R_2 che C_1 hanno effetti trascurabili. Alla frequenza di 1kHz il contributo della capacità è trascurabile, quindi $R_{in} \simeq R_3$. Invece, alla frequenza di 10KHz bisogna tenerne conto e si ottiene R_{in} compreso fra $1.4M\Omega$ e $3.0M\Omega$.

5 Aumento del guadagno

Il massimo guadagno si ottiene ovviamente per $R_S=0$. Abbiamo misurato $I_D=2.74\pm0.02mA$. In queste condizioni ci si aspetta $A_V=-\frac{2I_{DSS}R_D}{V_P}\sqrt{\frac{I_D}{I_{DSS}}}=5.4\pm0.1$. Abbiamo misurato l'amplificazione ottenendo: $v_{in}=12.4\pm0.4mV$, $v_{out}=50\pm2mV$, quindi $A_V=4.0\pm0.2$. I due valori si discostano del 25% e non sono compatibili all'interno dell'errore e questo ci fa dubitare del modello e delle approssimazioni fatte per giungere al risultato.