Reading group: (Barth et al. 2021)

G. Moroz

Linguistic Convergence Laboratory, NRU HSE

13 September 2022

Outline of the talk

Context of the paper

Goal of the paper

Modeling

Domains

Family Problems picture task, (San Roque et al. 2012)

This task was developed for a research of the grammaticized expression of **social cognition**, that combines

- "social facts" such as kinship relationships;
- "psychological facts" (such as feelings, desires, or attentional states);
- and something else.

Family Problems picture task, (San Roque et al. 2012)

This task was developed for a research of the grammaticized expression of **social cognition**, that combines

- "social facts" such as kinship relationships;
- "psychological facts" (such as feelings, desires, or attentional states);
- and something else.

Authors wanted to create a task that stimulates production

- of different speech types (descriptions, dialogic interactions, narratives);
- of linguistic expressions relevant to the domain of social cognition;
- of some known interesting grammatical categories (e.g. evidentiality);
- of parallel but spontaneous texts (in the broad sense) across different languages.

Family Problems picture task, (San Roque et al. 2012)

"Two participants (A and B) sit together, either side-by-side or oriented slightly toward each other, with an open flat space (e.g., the ground, a table) in front of them. The activity involves three components:

- *i*. the participants are given the pictures one at a time and describe the content of each;
- *ii.* the participants are asked to arrange the pictures as an ordered narrative, working together;
- *iii.* participants are asked to tell the story from start to finish, from both third- person and first-person perspectives, typically to an audience that had not seen the pictures or heard the story before." (San Roque et al. 2012: 144–145)

Canonical order defined by (San Roque et al. 2012)

Presentation order defined by (San Roque et al. 2012)

The Social Cognition Parallax¹ Interview Corpus (SCOPIC)

There are just seven languages in (San Roque et al. 2012). The main drivers of this project (D. Barth and N. Evans) got funding, and as a result in (Barth and Evans 2017) they claimed to have 24 (and over 30 languages now).

- corpus website;
- recordings and some annotations are available in PARADISEC catalog;
- 31 publications including (Barth et al. 2021).

¹By 'parallax corpus' we mean 'broadly comparable formulations resulting from a comparable task', to avoid the implications of 'parallel corpus' that there will be exact semantic equivalence across languages. (Barth and Evans 2017: 1)

The Social Cognition Parallax Interview Corpus (SCOPIC)

30 languages of the database (present in PARADISEC catalog):

The Social Cognition Parallax Interview Corpus (SCOPIC)

13 languages from (Barth et al. 2021):

Outline of the talk

Context of the paper

Goal of the paper

Modeling

Domains

Goal of the paper

The authors make it clear on the second page of the paper:

- "Can we measure the relative contributions of language structures and individual variation to how people formulate statements about the world?
- Do accounts of typological differences need to take individual variation into account, and is such variation more prevalent in some kinds of linguistic domains than others?" (Barth et al. 2021: 181)

Goal of the paper

The authors make it clear on the second page of the paper:

- "Can we measure the relative contributions of language structures and individual variation to how people formulate statements about the world?
- Do accounts of typological differences need to take individual variation into account, and is such variation more prevalent in some kinds of linguistic domains than others?" (Barth et al. 2021: 181)

Figure 1: Language and individuals affect usage frequency and each other.

Outline of the talk

Context of the paper

Goal of the paper

Modeling

Domains

Imagine some variation pattern (e.g. [pəˈteɪ.toʊ] vs [pəˈtaː.toʊ]).

• some speakers (Type 1) could use just one variant

Imagine some variation pattern (e.g. [pəˈteɪ.toʊ] vs [pəˈtaː.toʊ]).

- some speakers (Type 1) could use just one variant
- some speakers (Type 2) can use both variants with some probability... 0.7 of [e1]

Imagine some variation pattern (e.g. [pəˈteɪ.toʊ] vs [pəˈtaː.toʊ]).

- some speakers (Type 1) could use just one variant
- some speakers (Type 2) can use both variants with some probability... 0.7 of [e1]
- there should be some proportion of speakers of Type 1 (0.3 [e1], 0.1 [a1]) and Type 2 (0.6)

Imagine some variation pattern (e.g. [pəˈteɪ.toʊ] vs [pəˈtaː.toʊ]).

- some speakers (Type 1) could use just one variant
- some speakers (Type 2) can use both variants with some probability... 0.7 of [e1]
- there should be some proportion of speakers of Type 1 (0.3 [e1], 0.1 [a1]) and Type 2 (0.6)
- But we don't know anything like this just observe real usage!

So we can run some tests, obtain some results and create a language model:

We can expect slightly different models for different English dialects:

Modeling in (Barth et al. 2021)

• In (Barth et al. 2021) they use logistic mixed effect regressions:

name	PREDICT	fixed ef.	random ef.	random ef.
Mod-LI	variation variation variation	0 0		stimuli card stimuli card stimuli card

Compare models

Modeling in (Barth et al. 2021)

• In (Barth et al. 2021) they use logistic mixed effect regressions:

name	PREDICT	fixed ef.	random ef.	random ef.
Mod-LI	variation variation variation	0 0		stimuli card stimuli card stimuli card

- Compare models
- Show model estimates with confidence intervals for the contribution of language

Outline of the talk

Context of the paper

Goal of the paper

Modeling

Domains

Domains examined

In the paper they examined four domains:

- Propositional framing (grammatical)
- Reported speech, thought, and action constructions (grammatical)
- Reported speech, thought, and action predicates (semantic)
- Human reference lexical choice (semantic)

References

- D. Barth and N. Evans. Scopic: design and overview. *Language Documentation and Conservation*, (12), 2017.
- D. Barth, N. Evans, I. W. Arka, H. Bergqvist, D. Forker, S. Gipper, G. Hodge, E. Kashima, Y. Kasuga, C. Kawakami, Y. Kimoto, D. Knuchel, N. Kogura, K. Kurabe, J. Mansfield, H. Narrog, D. P. E. Pratiwi, S. van Putten, C. Senge, and O. Tykhostup. Language vs. individuals in cross-linguistic corpus typology. In G. Haig, S. Schnell, and F. Seifart, editors, *Doing corpus-based typology with spoken language data: State of the art*, pages 179–232. University of Hawai'i Press, Honolulu, 2021. URL http://hdl.handle.net/10125/74661.

References

L. San Roque, L. Gawne, D. Hoenigman, J. Miller, S. Spronck, A. Rumsey, A. Carroll, and N. Evans. Getting the story straight: Language fieldwork using a narrative problem-solving task. *Language Documentation and Conservation*, 6:135–174, 2012. URL http://hdl.handle.net/10125/4504.