GOLDEN OAK RESEARCH August 13, 2017

Standard Income Table:

Low (L)	High (H)	Midpoint (I)	Range (R)
\$0	\$10,000	\$5,000	\$10,000
\$10,000	\$14,999	\$12,500	\$4,999
\$15,000	\$19,999	\$17,500	\$4,999
\$20,000	\$24,999	\$22,500	\$4,999
\$25,000	\$29,999	\$27,500	\$4,999
\$30,000	\$34,999	\$32,500	\$4,999
\$35,000	\$39,999	\$37,500	\$4,999
\$40,000	\$44,999	\$42,500	\$4,999
\$45,000	\$49,999	\$47,500	\$4,999
\$50,000	\$59,999	\$55,000	\$9,999
\$60,000	\$74,999	\$67,500	\$14,999
\$75,000	\$99,999	\$87,500	\$24,999
\$100,000	\$124,999	\$112,500	\$24,999
\$125,000	\$149,999	\$137,500	\$24,999
\$150,000	\$199,99	\$175,000	\$49,999
\$200,000	\$275,000	\$237,500	\$75,000

Definition: Suppose $f \in C^1[a,b]$. Let the Income I_0, \ldots, I_n be distinct numbers in [a,b]However, since the range of the grouped frequencies are not uniform, we must map $f(I) \rightarrow \omega(I)$:

$$\omega = f(I_i) \left(\frac{m}{R_i}\right)$$
 where, $m = \min(R)$

Definition: Now suppose $\omega \in C^1[a,b]$. Let the Income $I_0, ..., I_n$ be distinct numbers in [a,b], such that the Hermite polynomial P(I) and approximates ω .

$$\begin{split} P(I_i) &= \omega(I_i), \ for \ i = 0, ..., n \\ \frac{dP(I_i)}{dI} &= \frac{d\omega(I_i)}{dI}, \ for \ i = 0, ..., n \end{split}$$

Theorem: if ω $\omega \in C^1[a,b]$ and partitioned into N Intervals $I_0,\ldots,I_n\in [a,b]$ district numbers the Hermite polynomial is:

$$H_{2n+1}(I) = \sum_{j=0}^{N} \omega(I_j) H_{n,j}(I) + \sum_{j=0}^{N} \omega'(I_j) \widehat{H}_{n,j}(I)$$
Where, $H_{n,j}(I) = [1 - 2(I - I_j) L'_{n,j}(I_j)] L^2_{n,j}(I)$

$$\widehat{H}_{n,j}(I) = (I - I_j) L^2_{n,j}(I)$$