By Wenjie

Graph ADT

- **Data**: all vertices, all edges, and the structure to maintain relations between vertices and edges.
- Functions:
 - o insert vertex/edge,
 - remove vertex/edge,
 - o find incident edges,
 - o check if two vertices are adjacent, and
 - In case of directed graph find origin/destination.

Question: Implementation 2 runs in either O(1) or O(n), while Implementation 1 runs in either O(1) or O(m). Which one is better?

- Depends on the data. If the graph is not connected Implementation 1 is better even though it seems bad when we look at the worst case running time.
- Before we decide on the implementation we need to consider what our data set looks like.

Graph implementation 3: ADJ List

- We will maintain a hash table of vertices, and every vertex in the table has a linked list of pointers which point to edges in the edge list.
- Elements from the edge list will point back to the hash table.

- The running time of **insert vertex** would be $O(1) \rightarrow$ we would just add a vertex to the hash table.
- The running time of **remove vertex** would be O(deg(v)):
 - loop through the list of incident edges \rightarrow each node v has deg(v) incident edges, so we have to go over deg(v) edges to remove a vertex.

- To **check adjacent nodes**, we need to go through incident edges of one of the vertices. We will chose the vertex with smaller list. The running time is O(min(deg(v1), deg(v2))).
- o **Find incident edge**s takes O(deg(v)).
- \circ InsertEdges: O(1) + O(1) + O(1) = O(1)

By Wenjie

Summary of graph implementation run time

	Edge List	Adjacency Matrix	Adjacency List
space	n+m	n^2	n+m
insert vertex	1 😛	n	1 😛
remove vertex	m	n	deg(v) 😛
insert edge	1 😛	1 😛	1 😛
remove edge	1 😀	1 😛	1 😀
incident edges	m	n	deg(v) 😛
are adjacent	m	1 😛	min(deg(v), deg(w))

- When removing a vertex deg(v) is always the best: if m = 0, deg(v) = 0; if the graph is simple, deg(v) = n-1.
- If we care about areAdjacent we are going to use adjacency matrix. On the other hand, if we care about incident vertices, we will use adjacency list. Insert/remove and edge takes O(1) because we are just adding/removing from the front of the linked list.
- Some possible cases:
 - Sparse graphs: the graph is not connected $\rightarrow m < n$ which implies deg(v) < n. So in the case of sparse graph, we want to use adjacency list implementation.
 - Dense graphs: the graph is almost fully connected $\rightarrow m \sim n^2$. So in the case of dense graph, we can use either adjacency list or adjacency matrix. It depends on the operations we need (are adjacent or insert vertex).

By Wenjie

Traversal

- <u>Objective</u>: Visit every vertex and every edge exactly once
- Purpose: Search for interesting substructures in the graph
- We've done it on trees, but it was easier

Trees	Graphs			
 Ordered → we always go from parents to children. Obvious start → we start at the root node. Notion of completeness → we are done when we reach leaf nodes. 	 Unordered → no notion of children nodes, just neighbours. No obvious start → we can start anywhere. No notion of completeness → we need to know when we have visited all nodes. 			

BFS

- Setup:
 - o Maintain a queue
 - Maintain a table of vertices with following features:
 - Boolean flag visited
 - Distance from the start
 - Predecessor
 - List of adjacent vertices

key	visited	dist.	pred.	adj. vertices
Α				CBD
В				AEC
С				ABDEF
D				ACFH
E				BCG
F				CDG
G				EFH
Н				D G

Queue				

- Algorithm:
 - 1. Add the starting point
 - 2. While the queue is not empty
 - a. Dequeue v
 - b. For all of the $\underline{unlabeled}$ edges adjacent to v
 - If an adjacent edge "discovers" a new vertex **t**:
 - Label the edge a "discovery edge"
 - Enqueue t, update the information of t (distance
 = dist(v) + 1, predecessor = v)
 - If an adjacent edge is between two visited vertices
 - Label the edge a "cross edge"

- Example:
 - A as a starting point:

key	visited	dist.	pred.	adj. vertices
Α	✓	0	null	CBD
В				AEC
С				ABDEF
D				ACFH
E				BCG
F				CDG
G				EFH
Н				D G

Queue				
Α				

- o dequeue A and examine vertices C, B, and D.
- First examine C. It hasn't been visited, so we add a discovery edge, update visited flag, set distance to parent's distance plus vertex distance which is one in this case, set predecessor to A, and add C to the queue.

key	visited	dist.	pred.	adj. vertices
Α	✓	0	null	CBD
В				AEC
С	✓	1	Α	ABDEF
D				ACFH
Е				BCG
F				CDG
G				EFH
Н				D G

Queue				
A C				

By Wenjie

• We do the same for B and D.

key	visited	dist.	pred.	adj. vertices
Α	✓	0	null	CBD
В	✓	1	Α	AEC
С	✓	1	Α	ABDEF
D	✓	1	Α	ACFH
E				BCG
F				CDG
G				EFH
Н				D G

Queue						
A	С	В	D			

- Repeat this process until the queue is empty.
- Dequeue C and examine its adjacent edges. A has been visited and the edge is labeled as discovery edge, so it is just ignored. B and D have been visited from another node, so we add a cross edge but do not update anything. E and F have not been discovered yet, therefore we add discovery edges to the graph, add vertices to the queue, and update the table.

By Wenjie

key	visited	dist.	pred.	adj. vertices
Α	✓	0	null	CBD
В	✓	1	Α	AEC
С	✓	1	Α	ABDEF
D	✓	1	Α	ACFH
E	√	2	С	BCG
F	✓	2	С	CDG
G				EFH
Н				D G

Queue					
A & B	D	E	F		

• Next, dequeue B and add a cross edge to E.

key	visited	dist.	pred.	adj. vertices
Α	✓	0	null	CBD
В	✓	1	Α	AEC
С	✓	1	Α	ABDEF
D	✓	1	Α	ACFH
E	✓	2	С	BCG
F	✓	2	С	CDG
G				EFH
Н				D G

Queue					
A & B	D	E	F		

o Dequeue D, add cross edge to F, and update H.

By Wenjie

key	visited	dist.	pred.	adj. vertices
Α	~	0	null	CBD
В	✓	1	Α	AEC
С	✓	1	Α	ABDEF
D	✓	1	Α	ACFH
Е	✓	2	С	BCG
F	✓	2	С	CDG
G				EFH
Н	√	2	D	D G

Queue				
A 6 B D	E	F	Н	

o Then, dequeue E and update G.

key	visited	dist.	pred.	adj. vertices
Α	✓	0	null	CBD
В	✓	1	Α	AEC
С	✓	1	Α	ABDEF
D	✓	1	Α	ACFH
Е	✓	2	С	BCG
F	✓	2	С	CDG
G	✓	3	Е	EFH
Н	✓	2	D	D G

Queue				
A & B	D E F	Н	G	

- o Dequeue F and add cross edge to G; Dequeue H and add cross edge to G.
- o Finally dequeue G and we are done.

key	visited	dist.	pred.	adj. vertices
Α	✓	0	null	CBD
В	✓	1	Α	AEC
С	✓	1	Α	ABDEF
D	✓	1	Α	ACFH
E	✓	2	С	BCG
F	✓	2	С	CDG
G	✓	3	E	EFH
Н	✓	2	D	D G

