ZILFIMIAN

Regularization/R (Q7L8)

30% (6/20)

X 1. In Poisson regression...

- (A) The asymptotic distribution of the maximum likelihood estimates is multivariate normal.
- (B) The distribution of the maximum likelihood estimates is multivariate normal.
- The asymptotic distribution of the maximum likelihood estimates is multivariate Poisson distribution.
- I do not know

✓ 2. In the case of intercept-only model

- A The mean of the dependent variable equals the exponential value of intercept
- B The mean of the dependent variable equals the intercept
- $\left(\mathsf{C}\right)$ The mean of the dependent variable equals 0
- D I do not know

\times 3. ln(lambda) = 0.6 - 0.2* female [lamda = the average number of articles] Note: $e^{(-0.2)}=0.78$

- (A) One unit increase in female brings a 0.2 decrease in ln(lambda).
- Being female decreases the average number of articles by 0.78 percent
- (c) Being female decreases the average number of articles by 22%
- D I do not know

✓ 4. In the multiple linear regression, we assume that...

- A The number of observations is much larger than the number of variables (n>>p)
- (B) The number of observations is slightly larger than the number of variables (n>p)
- (C) The number of observations equals than the number of variables (n=p)
- $\left(\mathsf{D} \right)$ The number of observations is lees than the number of variables (n<p)
- (E) It is not important
- F I do not know

X	5.	The way of solving the problem of a large number of variables is Subset Selection & Shrinkage (Regularization)
	B	Shrinkage (Regularization) & Maximum Likelihood estimation
	(c)	Dimension Reduction & OLS estimation
		I do not know
	E	The absence of the right answer
×	6. (A)	The bias of an estimator (e.g. z^{-}) equalsHint: the OLS coefficients are unbias :) $E(z^{-}) - z$
	В	$E(z^2) - [E(z)]^2$
	C	$[E(z^2) - E(z)]^2$
	D	E(z^2)
	E	I do not know
X	7.	The main idea of regularization is
	\bigcirc A	To introduce a small amount of bias in order to have less variance.
	В	To introduce a small amount of variance in order to have less bias.
	(C)	To introduce a small amount of variance and bias in order to have less bias.
	D	I do not know
/	8.	With which function we can show regularization in R
	A	glmnet()
	B	regular()
	(C)	Im()
	D	glm()
	E	I do not know
×	9.	How the tune of any parametr can be made
	A	using Cross validation
	\bigcirc B	It is impossible
	C	I do not now
	D	using larger sample
	E	only having population

ANNA_0 Page 2 of 5

(A) the combination of L1 and L2 regularization the combination of L2 and L3 regularization is independent from other types of refularization I do not know not a type of regularization 11. Regularization is used only for Poisson Regression Linear Regression Logistic Regression any regression I do not know Regularization can solve the problem of 12. heteroscedasticity multicollinearity autocorrelation I do not know As a result of regularization we will have smaller slope than in case of OLS larger slope than in case of OLS the slope remains the same I do not know **X** 14. The ridge coefficient estimates shrink towards zero when lambda increases when lambda decreases when lambda = 0 I do not know

X 10.

Elastic Net is

ANNA 0 Page 3 of 5

×	15.	Which one can shrink the slope all the way to 0? Lasso
	В	Ridge
	(c)	Regression
	D	I do not know
	16. (A)	When lambda = 0, we have Ridge
	B	Lasso
	(c)	EL
	D	Regression
	E	I do not know
×	17.	
	(A)	Ridge
	(B)	Lasso
	(c)	
	D	Regression
	E	I do not know
×	18. knc	variables need to be incorporated in the model according to domain owledge
	This	s statement is true for
	A	Ridge
	\bigcirc B	Lasso
	(C)	EL
	D	Regression
	E	I do not know
×	19.	Which function can help to perform cross-validation for regularization in R?
	A	cv.glmnet()
	(B)	cros_val()
	(c)	glmnet(method = "cv)
	D	I do not know

X 20. Why we use set.seed() in R?

- (A) To have universal result
- (B) To perform better result
- C To have random models
- D I do not know

ANNA_0 Page 5 of 5