

2021-1 딥러닝기술 및 응용 - Paper Review

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean (Google Inc.)

KISTI-UST Donghun Yang

Contents

- 01 Introduction
- 02 The Skip-gram Model
- 03 Empirical Results
- 04 Learning Phrases
- 05 Additive Compositionality
- O6 Comparison to Published Word Representations
- 07 Condusion

Abstract

The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. (around 2x - 10x speed up)

[Original Skip-gram Model]

$$\log \sigma(v_{w_O}^{\prime \top} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v_{w_i}^{\prime \top} v_{w_I}) \right]$$

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left(\left[n(w,j+1) = \operatorname{ch}(n(w,j)) \right] \cdot v'_{n(w,j)}^{\mathsf{T}} v_{w_I} \right)$$

$$[\text{Negative Sampling}]$$

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

[Subsampling of Frequent Words]

Preliminary

[Category of NLP]

Preliminary

✓ Word Representation: A method of representing words as vectors so that computers can understand and process natural language efficiently.

[Dog]

[Cat]

[Horse]

[Cow]

How To?

Preliminary

✓ Discrete Representation (Sparse Representation)
 - Limitation : Curse of Dimensionality, Sparsity, Semantic

Preliminary

- ✓ Distributed Representation (Dense Representation)
 - Similar words are located in similar position in vector space.

Preliminary

✓ Sparse Representation V.S. Distributed Representation

	Sparse Representation	Distributed Representation
[Dog]	[1000 <mark>0</mark>]	[9000]
[Cat]	[0 1 0 0 <mark>0</mark>]	[9 1 0 0]
[Horse]	[0010 <mark>0</mark>]	[1019]
[Cow]	[0001 <mark>0</mark>]	[1091]
[rion]	[00001]	[1901]

Preliminary

O1 IntroductionPrevious Study - NPLM (Bengio 2003)

"발 없는 말이 천리 간다"

) 4-gram

발. 없는, 말이, ??(t=4)

없는, 말이, 천리, ??(t=5)

Goal: Predicting the target word using the previous n-1 words

Step 1: Initialize C (Shared-Lookup table)

Step 2: Dot product One-hot Vector of each word and C

Step 3 : Concatenate all x

$$x = [x_{t-1}, x_{t-2}, ..., x_{t-n+1}]$$

$$x = [\underbrace{10, 12, 19, 4, 6, 13, 23, 5, 7}_{\text{th}}]$$

Step 4:
$$y_{w_t} = b + Wx + Utanh(d + Hx)$$

Step 5: Apply softmax function to yw+

$$P(w_t|w_{t-1},...,w_{t-n+1}) = \frac{exp(y_{w_t})}{\sum_{i} exp(y_i)}$$

Previous Study - NPLM (Bengio 2003)

✓ Limitation: Too many parameters and computations

$$H \in R^{h \times (n-1)m}, \quad x_t \in R^{(n-1) \times m}, \quad d \in R^{h \times 1}$$
 $U \in R^{|V| \times h}, \quad b \in R^{|V|}, \quad y \in R^{|V|}, \quad C \in R^{m \times |V|}$

Previous Study - word2vec (Mikolov 2013)

Previous Study - word2vec (Mikolov 2013) - CBOW

- ✓ CBOW
 - Predicting target word using context word
 - Goal: Learning word representation

e.g. "The fat cat sat on the mat", n = 2X = [fat cat on the], y = sat

Step 2:
$$v = \frac{V_{fat} + V_{cat} + V_{on} + V_{the}}{2 \times n(winow \ size)}$$

Step 3:
$$z = v * w'$$
 $minimizeJ = -\log P(w_c | w_{c-m}, \dots, w_{c+m})$
 $= -\log P(u_c | v)$
Step 4: $Y = Softmax(z)$ $= -\log \frac{exp(u_c^{\mathsf{T}} \hat{v})}{\sum_{j=1}^{|V|} exp(u_j^{\mathsf{T}} \hat{v})}$
Step 5: Minimize loss $= -u_c^{intercal} \hat{v} + \log \sum_{j=1}^{|V|} exp(u_j^{\mathsf{T}} \hat{v})$

O2 The Skip-gram ModelOriginal Skip-gram Model

- ✓ Goal: To find word representations that are useful for predicting the surrounding words in a sentence or a document
- **Objective Function:**

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} \log p(w_{t+j}|w_t) \quad \text{c: The size of the training context} \\ w_t : \text{The center word}$$

$$p(w_O|w_I) = \frac{\exp\left(v_{w_O}^{\prime}^{\top}v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v_{w}^{\prime}^{\top}v_{w_I}\right)} \quad \begin{array}{l} w_I : \text{The input word} \\ v^{\prime} : \text{The vector representations of output word} \\ v : \text{The vector representations of input word} \end{array}$$

 w_0 : The output word

W: The number of words in vocabulary

Complexity : O(V)

[Original Skip-gram Model]

O2 The Skip-gram ModelOriginal Skip-gram Model

e.g. "The fat cat sat on the mat", n=2 (x, y) = (sat, fat), (sat, cat), (sat, on), (sat, the)

Step 6: Use W, W', WW' or (W+W')/2 as word representation

O2 The Skip-gram ModelNPLM V.S. CBOW V.S. Original Skip-gram Model

✓ The number of parameters is reduced.

$$2*w \times N + N \times V$$
 [CBOW]

$$(1 \times N + N \times V)^*2^*w$$
[Skip-gram]

 \checkmark But it's still too expensive because of the softmax function. (Complexity O(V))

Hierarchical Softmax

✓ Goal: To computationally efficient approximate the full softmax

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left(\llbracket n(w,j+1) = \operatorname{ch}(n(w,j)) \rrbracket \cdot v_{n(w,j)}'^{\top} v_{w_I}\right) \begin{array}{l} n(w,j) : \text{The j- th node on the polynomial} \\ L(w) : \text{The length of above path } n(w,1) : \text{The root } n(w,1) : \text{The root } n(w,1) : \text{The root } n(w,1) : w$$

n(w, j): The j-th node on the path from the root to w

n(w,L(w)):w

ch(n): The left child of n

[x]: 1 if x is true (left), -1 otherwise

$$\sigma(x) = \frac{1}{1 + exp(-x)}$$
: Sigmoid Function

$$\sum_{w=1}^{W} p(w|w_i) = 1$$

Complexity : $O(log_2V)$

Hierarchical Softmax

Step 2:

Step 1: Initialize output tree and matrix (V')

Step 3:
$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left(\llbracket n(w,j+1) = \operatorname{ch}(n(w,j)) \rrbracket \cdot v'_{n(w,j)}^{\top} v_{w_I}\right)$$

e.g. $p(w_{fat}|w_{cat}) = \sigma(\llbracket n(w_2,2) = \operatorname{ch}(n(w_2,1)) \rrbracket \cdot v'_{n(w_2,1)}^{\top} v_{w_I})$
 $\times \sigma(\llbracket n(w_2,3) = \operatorname{ch}(n(w_2,2)) \rrbracket \cdot v'_{n(w_2,2)}^{\top} v_{w_I})$
 $\times \sigma(\llbracket w_2 = \operatorname{ch}(n(w_2,3)) \rrbracket \cdot v'_{n(w_2,3)}^{\top} v_{w_I})$
 $= \sigma(1 \cdot v'_{n(w_2,1)}^{\top} v_{w_I}) \times \sigma(1 \cdot v'_{n(w_2,2)}^{\top} v_{w_I}) \times \sigma((-1) \cdot v'_{n(w_2,3)}^{\top} v_{w_I})$
 $= 0.57 \times 0.68 \times 0.72$

v_1'
v_2'
v_3'
v_4'
v_5'
v_6'
v_7'

Output matrix V'

Negative Sampling

- ✓ Goal: To computationally efficient approximate the full softmax
- ✓ Change problem setting multi classification to binary classification (+, -)

k: The number of negative sample (5-20 for small datasets, 2-5 for large datasets)

e.g. "The fat cat sat on the mat that can be tee of toy ", n=2, k=1

$$(x,y) = (sat, fat), \qquad (x1, x2) = (sat, fat), \qquad (sat, tee), \\ (sat, cat), \qquad (sat, cat), \qquad (sat, toy), \\ (sat, on), \qquad (sat, on), \qquad (sat, mat), \\ (sat, the) \qquad (sat, the) \qquad (sat, can)$$
 [Skip-gram with Negative Sampling]

O2 The Skip-gram ModelSubsampling of Frequent Words

Goal: To counter the imbalance between the rare and frequent words

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{j=0}^{n} (f(w_j)^{3/4})}$$

e.g. "A, A, B"
$$f(A) = p(A) = \frac{2}{3} \qquad f(B) = p(B) = \frac{1}{3}$$

$$P(A) = \frac{\left(\frac{2}{3}\right)^{\frac{3}{4}}}{\left(\frac{2}{3}\right)^{\frac{3}{4}} + \left(\frac{1}{3}\right)^{\frac{3}{4}}} = 0.6271$$

$$P(B) = \frac{\left(\frac{1}{3}\right)^{\frac{3}{4}}}{\left(\frac{2}{3}\right)^{\frac{3}{4}} + \left(\frac{1}{3}\right)^{\frac{3}{4}}} = 0.3729$$

[The probability of Negative sampling]

$$P(w_i) = 1 - \sqrt{rac{t}{f(w_i)}}$$
 t: Hyper Parameter (10⁻⁵)

- Calculate the probability of being excluded in training

e.g. "A, A, B"
$$f(A) = p(A) = \frac{2}{3} \qquad f(B) = p(B) = \frac{1}{3}$$

$$P(A) = 1 - \sqrt{\frac{10^{-5}}{\left(\frac{2}{3}\right)}} = 0.9961$$

$$P(B) = 1 - \sqrt{\frac{10^{-5}}{\left(\frac{1}{3}\right)}} = 0.9945$$

The probability of Subsampling

Code Review

- ✓ We will implement Word2Vec. (Skip-gram)
 - 1. Build corpus from nltk brown.
 - 2. Implement subsampling & Make vocabulary.
 - 3. Building bag of words.
 - 4. Implement network.
 - 5. Training network.
 - 6. Check original skip-gram result.
 - 7. Implement skip-gram with negative sampling.

03 Empirical Results

Empirical Results

- ✓ To evaluate the Hierarchical Softmax (HS), Noise Contrastive Estimation, Negative Sampling, and subsampling of the training words, the analogical reasoning task is used.
 - Datasets: Large dataset consisting of various news articles(an internal Google dataset with one billion words)
 All words that occurred less than 5 times in the training data is discarded from the vocabulary.
 (Final vocabulary of size 692K)
 - Ex) Vec("Berlin") Vec("Germany") + Vec("France") = Vec("Paris")

Method	Time [min]	Syntactic [%]	Semantic [%]	Total accuracy [%]	
NEG-5	38	63	54	59	
NEG-15	97	63	58	61	
HS-Huffman	41	53	40	47	
NCE-5	38	60	45	53	
The following results use 10^{-5} subsampling					
NEG-5	14	61	58	60	
NEG-15	36	61	61	61	
HS-Huffman	21	52	59	55	

Table 1: Accuracy of various Skip-gram 300-dimensional models on the analogical reasoning task as defined in [8]. NEG-k stands for Negative Sampling with k negative samples for each positive sample; NCE stands for Noise Contrastive Estimation and HS-Huffman stands for the Hierarchical Softmax with the frequency-based Huffman codes.

O3 Empirical ResultsEmpirical Results

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly the relationships between them, as during the training we did not provide any supervised information about what a capital city means.

http:/	//w.elnn.kr/	'search/
	레ㅁ	httm://www.

	데모	http://w.elnn.kr/	사랑+이별	그리움/Noun	추억/Noun	
버락_오바마-미국+러	블라디미르/Noun_푸	-	삼성-한화	노트북/Noun	후지필름/Noun	
시아	틴/Noun		소녀시대-소녀+아줌	아이유/Noun	에이핑크/Noun	
버락_오바마-미국+스	아나킨/Noun_스카이	-	마			
타워즈	워커/Noun	70 12 727 199	수학-증명	경영학/Noun	이산수학/Noun	
아카라카-연세대학교 +고려대학교	입실렌티/Noun	입실렌티/Noun	스파게티-소시지+김 치	칼국수/Noun	비빔국수/Noun	
아이폰-휴대폰+노트	아이패드/Noun	아이페드/Noun	아버지-남자+여자	어머니/Noun	어머니/Noun	
북						
컴퓨터공학-자연과학 +인문학	법학/Noun	게임학/Noun	아이유-노래+연기	송중기/Noun	송중기/Noun	
			안드로이드-자유	iOS/Alpha	아이폰/Noun	
플레이스테이션-소니 +마이크로소프트	엑스박 스/Noun_360/Numb er	MSX/Alpha	우주-빛	태양계/Noun_ 밖/Noun	NASA/Alpha	
한국-서울+파리	프랑스/Noun	프랑스/Noun	인간-직업	짐승/Noun	볼뉴르크/Noun	
컴퓨터-기계+인간	운영체제/Noun	일반인/Noun	최현석_셰프-허세+셰 프	이연/Noun_복/Noun	-	
게임+공부	프로그래밍/Noun	덕질/Noun				
박보영-배우+가수	애프터스쿨/Noun	허각/Noun	패스트푸드-체인점	영국/Noun_요 리/Noun	철물/Noun	

밥+했는지

끓였/Verb

저녁밥/Noun

O4 Learning PhrasesLearning Phrases

- ✓ To learn vector representation for phrases, this paper first find words that appear frequently together, and infrequently in other contexts.
- ✓ For example, "New York Times" and "Toronto Maple Leafs" are replaced by unique tokens in the training data, while a bigram "this is" will remain unchanged.

Method	Dimensionality	No subsampling [%]	10^{-5} subsampling [%]
NEG-5	300	24	27
NEG-15	300	27	42
HS-Huffman	300	19	47

Table 3: Accuracies of the Skip-gram models on the phrase analogy dataset. The models were trained on approximately one billion words from the news dataset.

	NEG-15 with 10^{-5} subsampling	HS with 10^{-5} subsampling
Vasco de Gama	Lingsugur	Italian explorer
Lake Baikal	Great Rift Valley	Aral Sea
Alan Bean	Rebbeca Naomi	moonwalker
Ionian Sea	Ruegen	Ionian Islands
chess master	chess grandmaster	Garry Kasparov

Table 4: Examples of the closest entities to the given short phrases, using two different models.

05 Additive CompositionalityAdditive Compositionality

✓ This paper found that the Skip-gram representations exhibit another kind of linear structure that makes it possible to meaningfully combine words by an element-wise addition of their vector representations.

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
CTK	Vietnamese	Lufthansa	Russia	Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two vectors are shown, using the best Skip-gram model.

O6 Comparison to Published Word RepresentationsComparison to Published Word Representations

Model	Redmond	Havel	ninjutsu	graffiti	capitulate
(training time)					
Collobert (50d)	conyers	plauen	reiki	cheesecake	abdicate
(2 months)	lubbock	dzerzhinsky	kohona	gossip	accede
	keene	osterreich	karate	dioramas	rearm
Turian (200d)	McCarthy	Jewell	-	gunfire	-
(few weeks)	Alston	Arzu	-	emotion	-
	Cousins	Ovitz	-	impunity	-
Mnih (100d)	Podhurst	Pontiff	-	anaesthetics	Mavericks
(7 days)	Harlang	Pinochet	-	monkeys	planning
	Agarwal	Rodionov	-	Jews	hesitated
Skip-Phrase	Redmond Wash.	Vaclav Havel	ninja	spray paint	capitulation
(1000d, 1 day)	Redmond Washington	president Vaclav Havel	martial arts	grafitti	capitulated
	Microsoft	Velvet Revolution	swordsmanship	taggers	capitulating

Table 6: Examples of the closest tokens given various well known models and the Skip-gram model trained on phrases using over 30 billion training words. An empty cell means that the word was not in the vocabulary.

07 CondusionConclusion

- ✓ This work show how to train distributed representations of words and phrases with the Skip-gram model and demonstrate that these representations exhibit linear structure that makes precise analogical reasoning possible.
- ✓ With the same size of datasets, word representation can be more efficiently trained.
- ✓ Hierarchical Softmax
- √ Negative Sampling
- ✓ Subsampling of Frequent Words

Thank you!

E-Mail: yangdonghun3@gmail.com

