Charotar University of science & Technology (CHARUSAT) Devang Patel Institute of Advance Technology and Research Unit test 1

Subject Name: Machine Learning (CS344)

Date: 17/01/2020 Time: 9:45 to 10:45 Total Marks: 30

dfo

SET 1

	JLI I						
1.	In which algorithm computation time is required more to test unseen samples? a. K-Nearest Neighbors b. Decision Tree c. SVM d. Neighborhood	(1 Mark)					
2.		er-class 1 Mark)					
3.	The K-means clustering algorithm is not sensitive to outliers. a. True b. False	1 Mark)					
4.	Following is not a library of Deep Learning Algorithm. a. Tensorflow b. PyTorch c. Keras d. Sci-Kit Learn	1 Mark)					
5.	import pandas as pdo						
	dfo = pdo.read_csv("autom.csv")						
	dfo = dfo [['company','price']][dfo.price==dfo['price'].max()]						

index	company	body-style	wheel- base	length	engine- type	num_cylinders	hp	avg_mileage	price
0	alpha- romero	convertible	88.6	168.8	dohc	four	111	21	13495.0
1	alpha- romero	convertible	88.6	168.8	dohc	four	111	21	16500.0
2	alpha- romero	hatchback	94.5	171.2	ohcv	six	154	19	16500.0
3	audi	sedan	99.8	176.6	ohc	four	102	24	13950.0

4	audi		sedan	99.4	176.6	ohc	five	115	18		17450.0
	a. b. c. d. Gini Inda a. b. c.	the the the No dex 0		isive car isive car isive car ove	compa compa	iny name	with pric			(1 M	·
7.	a. b. c.	0		qually d	ivided b	y target	classes,	it has entrop	by of	('	1 Mark)
8.	feeding a.							to be identifi	ed by an		t before Mark)
9.	a. b. c.	Me Mc me			is a	a better m	neasure (of central te	ndency.	(1	Mark)
10.	a. b. c.	Dro Re As	u handle misop missing replace missing sign a unique of the above	ows or c g values e catego	olumns s with m	nean/med	lian/mod			(1	Mark)
11.	Calcula a. b. c.		.81 .15					s of X = [2,4	,5,6] and	Y = [4 (3 M	
12.	feet): 6 a. b. c.	5, 21 57, 54, 54,	ariance for th , 98, 200, 18 44.36 47.63 97.63 47.36		ing set	of data re	epresenti	ng trees in (California	(heig (2 M	

13. For the below data, where 'Eat Pizza?' is the target variable, what will be the root node using Information Gain? (5 Mark)

Time of Day	Day	No of People	Income	Eat Pizza?
Day	Weekday	4	Medium	No
Night	Weekend	3	Low	No
Day	Weekday	2	High	No
Day	Weekday	4	Medium	No
Day	Weekday	4	Low	No
Night	Weekend	1	High	Yes
Day	Weekend	2	High	Yes
Night	Weekend	3	Medium	Yes
Day	Weekday	4	Low	No
Night	Weekend	3	Low	Yes
Night	Weekend	2	Medium	Yes
Day	Weekend	1	Low	Yes
Night	Weekday	2	High	Yes
Night	Weekend	3	Medium	Yes

- a. Time of Day
- b. Day
- c. Income
- d. No of People
- 14. For k=3, and Centers initialized as C1 = P1, C2 = P2, C3 = P3, what will be the Clusters after the first iteration of k-means clustering algorithm? Use Manhattan distance instead of Euclidean distance. Manhattan Distance for two 2D points i and $j = (|x_i x_j| + |y_i y_j|)$ (5 Mark)

	X	Y	Z
P1	2	5	1
P2	3	3	4
P3	5	4	3
P4	5	7	4
P5	4	5	1
P6	1	1	6
P7	1	6	1

P8 4 2 8

- a. $\{P1,P2,P3\}, \{P4,P5\}, \{P6,P7,P8\}$
- b. {P1, P5, P7}, {P2, P6}, {P3, P4, P8}
- c. {P1}, {P2, P4, P5, P6, P7, P8}, {P3}
- d. {P1, P5, P7}, {P2, P6, P8}, {P3, P4}
- 15. Using K-Nearest Neighbors, what will be the values marked as "?". k = 5. Raining = 1 indicates that it is raining and 0 indicates that it is not raining.

 Liea Manhattan distance as a measure. Manhattan distance of two points i and i = |x-x| +

Use Manhattan distance as a measure. Manhattan distance of two points i and $j = |x_i - x_j| + |y_i - y_j|$ (5 Mark)

ID	Temperature	Wind Speed	Raining
1	5	0.4	1
2	17	1.5	0
3	7	5.0	1
4	10	3.5	1
5	22	2.2	0
6	13	4.5	1
7	15	3.0	1
8	25	2.6	0
9	20	1.0	1
10	30	5.6	0
11	18	3.2	?
12	20	2.0	?

- a. 0, 0
- b. 0, 1
- c. 1, 0
- d. 1, 1