Standard Rothe Tableaux

Neil J.Y. Fan

Department of Mathematics, Sichuan University

对称函数讨论班(南开) Aug 5, 2020 A Coxeter system is a pair (W,S) consisting of a group W and a set of generators S, subject only to

$$(ss')^{m(s,s')} = 1,$$

where $m(s,s)=1, m(s,s')=m(s',s)\geq 2$ for $s\neq s'$ in S.

Ex1. The symmetric group S_n , with $S=\{s_1,\ldots,s_{n-1}\},$ where $s_i=(i,i+1)$ and

$$s_i^2 = 1$$
, for $1 \le i \le n - 1$;
 $(s_i s_j)^2 = 1$ (or $s_i s_j = s_j s_i$), for $1 \le i, j \le n - 1$ and $|i - j| > 1$;
 $(s_i s_{i+1})^3 = 1$ (or $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$), for $1 \le i \le n - 2$.

An element $w \in W$ can be written as

$$w = s_{i_1} s_{i_2} \cdots s_{i_r},$$

where $s_{i_k} \in S$. If r is minimal, then such an expression is called reduced, and r is called the length of w, denoted $\ell(w)$. The set of reduced expressions of w is denoted by R(w).

Ex2. Let $w = 4213 \in S_4$. Since

$$1234 \xrightarrow{\quad s_3\quad} 1243 \xrightarrow{\quad s_2\quad} 1423 \xrightarrow{\quad s_1\quad} 4123 \xrightarrow{\quad s_2\quad} 4213,$$

we have

$$w = s_3 s_2 s_1 s_2 = s_3 s_1 s_2 s_1 = s_1 s_3 s_2 s_1 \Rightarrow |R(w)| = 3.$$

Question: $\forall w \in S_n, |R(w)| = ?$

Theorem (Stanley, Euro. J. Combin., 1984)

Let $w_0=n\cdots 21$ and $\delta=(n-1,\ldots,1)$. Then $|R(w_0)|=f^\delta,$ where f^δ is the number of SYT of shape $\delta.$

The Stanley symmetric function of a permutation w is defined as

$$F_w = \sum_{\substack{a_1 a_2 \cdots a_\ell \in R(w) \\ a_i < a_{i+1} \Rightarrow b_i < b_{i+1}}} \sum_{\substack{x_{b_1} x_{b_2} \cdots x_{b_\ell}. \\ a_i < a_{i+1} \Rightarrow b_i < b_{i+1}}} x_{b_1} x_{b_2} \cdots x_{b_\ell}. \tag{1}$$

Since F_w is symmetric,

$$F_w = \sum_{\lambda} c_{\lambda}^w s_{\lambda} \implies |R(w)| = \sum_{\lambda} c_{\lambda}^w f^{\lambda}$$

where the coefficients c^w_λ are called the Stanley coefficients or Edelman-Greene coefficients.

 $\mathrm{BYT}(\lambda)$ (resp. $\mathrm{SYT}(\lambda)$): the set of balanced (resp. standard) Young tableaux of shape λ .

Theorem (Edelman-Greene, Adv. Math. 1987)

Let $\delta=(n-1,\ldots,1)$ and $w_0=n\cdots 21$. Then there are bijections

$$\operatorname{BYT}(\delta) \stackrel{\Phi}{\longleftrightarrow} R(w_0) \stackrel{\Gamma}{\longleftrightarrow} \operatorname{SYT}(\delta).$$

$$\mathrm{BYT}(\lambda) \stackrel{\Omega}{\longleftrightarrow} \mathrm{SYT}(\lambda), \quad \forall \lambda \vdash n.$$

balanced hook

not balanced hook

The Rothe diagram D(w) of a permutation w:

Figure: Rothe diagrams for w = 426315 and w = 562341

Fact: For a dominant permutation w, i.e., 132-avoiding, the Rothe diagram $\lambda(w)$ of w is a Young diagram. Actually, if w is 132-avoiding, then

$$\operatorname{BYT}(\lambda(w)) \stackrel{\Omega}{\longleftrightarrow} \operatorname{SYT}(\lambda(w)) \stackrel{\Gamma'}{\longleftrightarrow} R(w).$$

BRT(w): the set of balanced Rothe tableaux of w.

Theorem (Fomin-Greene-Reiner-Shimozono, Euro.J.C. 1997) Let $w \in S_n$. Then there is a bijection

$$R(w) \stackrel{\Phi'}{\longleftrightarrow} BRT(w).$$

Let w = 426315.

4	8	1	•		
3	•				
6		5		2	•
7		•			
•					
				•	

$$T_a \longleftarrow a = s_3 s_5 s_1 s_2 s_4 s_3 s_4 s_1 \in R(w)$$
 for $i = 1, \dots, \ell(w)$, let $T_a(p,q) = i$, where a_i transposes w_p and q $(q < w_p)$.

a balanced Rothe tableau

Theorem (Fomin-Greene-Reiner-Shimozono, Euro.J.C. 1997) Let $w \in S_n$. Then the Schubert polynomial

$$\mathfrak{S}_w(x_1,\ldots,x_n) = \sum_{T \in \mathrm{BFL}(w)} x^T,$$

where $\mathrm{BFL}(w)$ is the set of balanced column-strict labelling of D(w) such that $T(i,j) \leq i$ for $(i,j) \in D(w)$.

Question: set-valued balanced column-strict flag labelling for Grothendieck polynomials?

SRT(w): the set of standard Rothe tableaux of w.

Theorem (F., Discrete Math., 2019)

Let $w \in S_n$. Then

$$|SRT(w)| \le |BRT(w)| = |R(w)|,$$

with equality if and only if w avoids 2413, 2431, 3142 and 4132.

1	2	4	•		
3	•				
5		6		8	•
7		•			
•					
				•	

The Case of Equality

The inversion code $c(w) = (c_1, \ldots, c_n)$ of $w = w_1 \cdots w_n$ is defined by where $c_i = |\{j > i : w_j < w_i\}|$.

Given $u=u_1\cdots u_k\in S_k$ and $v=v_1\cdots v_{n-k}\in S_{n-k}$, define the direct sum of u and v to be $u\oplus v=u_1\cdots u_k(v_1+k)\cdots (v_{n-k}+k)$.

w is called decomposable if it can be expressed as the direct sum of two nontrivial permutations, and indecomposable otherwise.

If w avoids 2413, 2431, 3142 and 4132, then the Rothe diagram of w can be divided into nonintersecting Young diagrams.

Theorem (F., Discrete Math. 2019)

Let $w \in S_n$ be a permutation that avoids the patterns 2413, 2431, 3142 and 4132. Assume that $w = w^1 \oplus \cdots \oplus w^k$, where w^i is indecomposable and $c(w^i) = \lambda^i$ for $1 \le i \le k$. Then each λ^i is a partition and

$$|R(w)| = |BRT(w)| = |SRT(w)| = \begin{pmatrix} \ell(w) \\ |\lambda^1|, \dots, |\lambda^k| \end{pmatrix} \prod_{i=1}^k f^{\lambda^i},$$

where f^{λ^i} is the number of standard Young tableaux of shape $\lambda^i.$

The General Case

Suppose that \boldsymbol{w} contains one of the patterns 2413,2431,3142,4132. In order to show

$$|SRT(w)| < |BRT(w)| = |R(w)|,$$

the key step is to transform w into a 132-avoiding permutation $\widetilde{w}.$

We aim to construct an injection:

$$\Psi: \operatorname{SRT}(w) \xrightarrow{\eta} \operatorname{SRT}(\widetilde{w}) \xleftarrow{\Gamma'} R(\widetilde{w}) \longrightarrow R(w).$$

The construction of \widetilde{w} :

Keep killing the first ascent of w until we reach a dominant permutation. That is, there exist positive integer sequences i_1, i_2, \ldots, i_k , with k minimal, such that i_1 is the first ascent of w, and for $2 \leq j \leq k$, i_j is the first ascent of $ws_{i_1} \cdots s_{i_{j-1}}$, and

$$\widetilde{w} = w s_{i_1} \cdots s_{i_k}$$

is a dominant permutation.

$$w = 426315 \xrightarrow{s_2} 462315 \xrightarrow{s_1} 642315 \Rightarrow \widetilde{w} = ws_2s_1.$$

The lifting operation η_i :

Let $w=w_1\cdots w_n$ be an indecomposable permutation that contains a 132 pattern and i be the first ascent of w. Given $T\in \mathrm{SRT}(w)$, we construct an operation η_i on T, called the lifting operation of T at (i,w_i) , as follows.

- (1) Apply outward jdt from the empty cell (i, w_i) of T.
- (2) Fill (1,1) with 0, and then add 1 to all the entries of T.
- (3) Move the cells of T that are in the (i+1)-st row and to the right of the column w_i to the i-th row.

To construct

$$SRT(w) \xrightarrow{\eta} SRT(\widetilde{w}),$$

apply a sequence of lifting operations η_i to any $T \in SRT(w)$, such that $T\eta_{i_1} \cdots \eta_{i_k} \in SRT(\widetilde{w})$ and $\widetilde{w} = ws_{i_1} \cdots s_{i_k}$ is 132-avoiding.

For example, let w = 426315.

The lifting operation η_2 on $T \in SRT(w)$:

	$ \begin{array}{c c} & 1 & 6 \\ \hline 2 & 3 & \\ \hline 4 & 7 & \\ \end{array} $	$ \begin{array}{c c} & 16 \\ \hline 23 \\ \hline 4 \\ 7 \end{array} $	$ \begin{array}{c} $	$ \begin{array}{c} $	$ \begin{array}{c} $
5	5	5			6

To construct

$$SRT(w) \xrightarrow{\eta} SRT(\widetilde{w}),$$

apply a sequence of lifting operations η_i to any $T \in SRT(w)$, such that $T\eta_{i_1} \cdots \eta_{i_k} \in SRT(\widetilde{w})$ and $\widetilde{w} = ws_{i_1} \cdots s_{i_k}$ is 132-avoiding.

For example, let w = 426315.

The lifting operation η_2 on $T \in SRT(w)$:

The lifting operation η_1 on $T\eta_2 \in SRT(ws_2)$:

1 2 7 •	127 -	$\rightarrow 1 27 -$	$\rightarrow 0127$ -	$\rightarrow 1238$ -	1 2 3 8 10
9 4 9	2 4 9 0				/ 1 1 1 1 1 1 1 1 1
[3]4[8] [9]	[3]4[8] [9]	[3 4 8 9	[3 4 8 9	[4 5 9] 10	[4]5[9]
5	5	5	5	6	6
	E	 		 	품
6	0	0	6	7	7

Given $T \in \mathrm{SYT}(\lambda)$ with $\lambda \vdash n$, the promotion operation on T, denoted by $\partial(T)$, is defined as follows:

jeu de taquin

Given $T \in \mathrm{SYT}(\lambda)$ with $\lambda \vdash n$, the promotion operation on T, denoted by $\partial(T)$, is defined as follows:

jeu de taquin

The dual-promotion operation on T, denoted by $\partial^*(T)$, is defined as below:

Clearly,
$$\partial = (\partial^*)^{-1}$$
.

Let $w_0 = n \cdots 21$ and $\delta = (n-1, \dots, 1)$. Edelman and Greene constructed the bijection

$$\Gamma: \mathrm{SYT}(\delta) \longrightarrow R(w_0).$$

The coordinates of the first cell in each promotion path are

$$(2,3), (4,1), (3,2), (4,1), (1,4), (2,3), (3,2), (1,4), (4,1), (2,3).$$

Then

$$\Gamma(T) = s_3 s_1 s_2 s_1 s_4 s_3 s_2 s_4 s_1 s_3 \in R(54321).$$

The construction of $\Gamma^*(T)$.

The last cells of the inward jdt paths at each step are

$$(3,2), (1,4), (4,1), (2,3), (3,2), (4,1), (1,4), (2,3), (1,4), (3,2).$$

$$\Gamma^*(T) = s_3 s_1 s_4 s_2 s_3 s_4 s_1 s_2 s_1 s_3.$$

Fact: $\Gamma(T)$ and $\Gamma^*(T)$ are reverses of each other.

To construct the inverse of Γ , Edelman and Greene introduced the Coxeter-Knuth insertion, which is the "right" version of the classical Robinson-Schensted-Knuth correspondence for reduced words.

Insert the sequence 3142341213 by Coxeter-Knuth insertion:

Insertion tableau: 1234. Recording tableau: 1356 2410 78

Let w be 132-avoiding, then

$$\Gamma' : \operatorname{SYT}(\lambda(w)) \longleftrightarrow R(w).$$

For example, let w = 632415, then $\lambda(w) = (5, 2, 1, 1)$.

Let w = 246153.

$$\lambda(\widetilde{w})$$
 $\lambda(\widetilde{w})^+$

$$\widetilde{w} = ws_1s_2s_1s_4s_3 = 645213.$$

$$\Gamma(\lambda(\widetilde{w})^+) = \frac{s_1 s_2 s_4}{s_3 s_4 s_5 s_3 s_4 s_5 s_1 s_2 s_3 s_1 s_2 s_1 s_4 s_3}.$$

$$\Gamma'(\lambda(\widetilde{w})) = s_5 s_3 s_4 s_5 s_1 s_2 s_3 s_1 s_2 s_1 s_4 s_3.$$

$$\Psi(T) = s_5 s_3 s_4 s_5 s_1 s_2 s_3 \in R(w).$$

Theorem (F., Discrete Math. 2019)

Let w be a permutation that contains one of the four patterns 2413, 2431, 3142 and 4132. Then

In either case, $a' \leq c' - 2$. It is easy to construct a tableau $T \in SRT(\widetilde{w})$ with a' = c' - 1.

The Type ${\cal B}$ Case

Let B_n be the set of signed permutations on $\{1, \ldots, n\}$. (B_n, S) is a Coxeter system, where $S = \{s_0, s_1, \ldots, s_n\}$ and

$$s_i^2 = 1$$
, for $0 \le i \le n$;
 $(s_i s_j)^2 = 1$ (or $s_i s_j = s_j s_i$), for $0 \le i, j \le n - 1$ and $|i - j| > 1$;
 $(s_i s_{i+1})^3 = 1$ (or $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$), for $1 \le i \le n - 1$.
 $(s_0 s_1)^4 = 1$ (or $s_0 s_1 s_0 s_1 = s_1 s_0 s_1 s_0$).

The following theorem was conjectured by Stanley and proved by Haiman.

Theorem (Haiman, Discrete Math., 1989)

The number of reduced expressions of the longest element $w_0^B := [-1, -2, \cdots, -n]$ in B_n is equal to the number SYT of shape $n \times n$.

Ex5. Let n=2. Then $w_0^B=[-1,-2]=s_0s_1s_0s_1=s_1s_0s_1s_0$ and $f^{(2,2)}=2$.

1	2	
3	4	

Ex6. For n=3 and $w_0^B=[-1,-2,-3]. \ |R(w_0^B)|=f^{(3,3,3)}=42.$

Question 1: The type B version of standard/balanced Rothe tableaux?

Question 2: $\forall w \in B_n, |R(w)| = ?$

Thank You!