Mathematical Symmetries in Quantum Information Science

David W. Lyons

Professor of Mathematical Sciences, Lebanon Valley College

Perry Lectures, Eastern Illinois University

1 November 2019

Outline

- Introduction
 - Quantum states
 - Evolution of quantum states
 - Measurement of quantum states
- Werner Symmetry
 - Stabilizer groups
 - Werner operators and Werner states
 - Werner states
- Function-encoding States
 - Boolean functions
 - Pascal's triangle and the parity party trick

Outline

- Introduction
 - Quantum states
 - Evolution of quantum states
 - Measurement of quantum states
- Werner Symmetry
 - Stabilizer groups
 - Werner operators and Werner states
 - Werner states
- Function-encoding States
 - Boolean functions
 - Pascal's triangle and the parity party trick

String of *n* bits:

String of n bits: A string of 0's and 1's of length n

String of n bits: A string of 0's and 1's of length n

Example with n = 8: The ascii code for the letter 'G'

String of n bits: A string of 0's and 1's of length n

Example with n = 8: The ascii code for the letter 'G'

n-qubit state:

String of n bits: A string of 0's and 1's of length n

Example with n = 8: The ascii code for the letter 'G'

$$\bigcirc \bullet \bigcirc \bigcirc \bullet \bullet \bullet = 01000111$$

n-qubit state: A superposition of *n*-bit strings

String of n bits: A string of 0's and 1's of length n

Example with n = 8: The ascii code for the letter 'G'

n-qubit state: A superposition of *n*-bit strings

Example with n = 3:

$$2\bigcirc\bigcirc \bullet - i\bigcirc \bullet\bigcirc + (3+i)\bigcirc \bullet\bullet$$

String of n bits: A string of 0's and 1's of length n

Example with n = 8: The ascii code for the letter 'G'

n-qubit state: A superposition of *n*-bit strings

Example with n = 3:

$$2\bigcirc\bigcirc \bullet - i\bigcirc \bullet\bigcirc + (3+i)\bigcirc \bullet \bullet$$

$$2|001\rangle - i|010\rangle + (3+i)|011\rangle$$

String of n bits: A string of 0's and 1's of length n

Example with n = 8: The ascii code for the letter 'G'

\overline{n} -qubit state: A superposition of \overline{n} -bit strings

Example with n = 3:

$$2\bigcirc\bigcirc \bullet - i\bigcirc \bullet\bigcirc + (3+i)\bigcirc \bullet \bullet$$

$$2|001\rangle - i|010\rangle + (3+i)|011\rangle$$

n-qubit state space

- "superposition" means "linear combination"
- the set of *n*-qubit states is a complex vector space of dimension

String of n bits: A string of 0's and 1's of length n

Example with n = 8: The ascii code for the letter 'G'

\overline{n} -qubit state: A superposition of \overline{n} -bit strings

Example with n = 3:

$$2\bigcirc\bigcirc \bullet - i\bigcirc \bullet\bigcirc + (3+i)\bigcirc \bullet \bullet$$

$$2|001\rangle - i|010\rangle + (3+i)|011\rangle$$

n-qubit state space

- "superposition" means "linear combination"
- the set of n-qubit states is a complex vector space of dimension 2^n

Systems of many quantum bits

Combining two qubits

state of qubit
$$A = a \bigcirc + b \bigcirc$$

state of qubit $B = c \bigcirc + d \bigcirc$

Systems of many quantum bits

Combining two qubits

state of qubit
$$A = a \bigcirc + b \blacksquare$$

state of qubit
$$B = c \bigcirc + d \blacksquare$$

composite state of qubits
$$AB = (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Systems of many quantum bits

Combining two qubits

state of qubit
$$A = a \bigcirc + b \bigcirc$$

state of qubit $B = c \bigcirc + d \bigcirc$
composite state of qubits $AB = (a \bigcirc + b \bigcirc)(c \bigcirc + d \bigcirc)$
 $= ac \bigcirc + ad \bigcirc \bigcirc + bc \bigcirc \bigcirc + bd \bigcirc \bigcirc$

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc+\bigcirc\bullet+\bullet\bigcirc+\bullet\bullet\stackrel{?}{=}(a\bigcirc+b\bullet)(c\bigcirc+d\bullet)$$

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bigcirc \bullet + \bullet\bigcirc + \bullet \bullet \stackrel{?}{=} (a\bigcirc + b \bullet)(c\bigcirc + d \bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc \bigcirc + \bigcirc \bullet + \bullet \bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Puzzle: factor this 2-qubit state

$$\bigcirc \bigcirc + \bigcirc \bullet + \bullet \bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: This is not possible.

Puzzle: factor this 2-qubit state

$$\bigcirc \bigcirc + \bigcirc \bullet + \bullet \bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc$$
 + $\bullet \bullet \stackrel{?}{=}$ $(a\bigcirc + b \bullet)(c\bigcirc + d \bullet)$

Answer: This is not possible. Why?

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc+\bigcirc\bullet+\bullet\bigcirc+\bullet\bullet\stackrel{?}{=}(a\bigcirc+b\bullet)(c\bigcirc+d\bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bullet \bullet \stackrel{?}{=} (a\bigcirc + b \bullet)(c\bigcirc + d \bullet)$$

Answer: This is not possible. Why? Suppose factorization is possible.

Puzzle: factor this 2-qubit state

$$\bigcirc \bigcirc + \bigcirc \bullet + \bullet \bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc \bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: This is not possible. Why? Suppose factorization is possible.

Then we must have ac = bd = 1,

Puzzle: factor this 2-qubit state

$$\bigcirc \bigcirc + \bigcirc \bullet + \bullet \bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bullet \bullet \stackrel{?}{=} (a\bigcirc + b \bullet)(c\bigcirc + d \bullet)$$

Answer: This is not possible. Why? Suppose factorization is possible.

Then we must have ac = bd = 1, so a, b, c, d are all nonzero.

Puzzle: factor this 2-qubit state

$$\bigcirc \bigcirc + \bigcirc \bullet + \bullet \bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: This is not possible. Why? Suppose factorization is possible. Then we must have ac = bd = 1, so a, b, c, d are all nonzero. But we must also have ad = 0,

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc+\bigcirc\bullet+\bullet\bigcirc+\bullet\bullet\stackrel{?}{=}(a\bigcirc+b\bullet)(c\bigcirc+d\bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bullet \bullet \stackrel{?}{=} (a\bigcirc + b \bullet)(c\bigcirc + d \bullet)$$

Answer: This is not possible. Why? Suppose factorization is possible. Then we must have ac = bd = 1, so a, b, c, d are all nonzero. But we must also have ad = 0, so one or both of a, d must be zero.

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bigcirc \bullet + \bullet\bigcirc + \bullet \bullet \stackrel{?}{=} (a\bigcirc + b \bullet)(c\bigcirc + d \bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: This is not possible. Why? Suppose factorization is possible. Then we must have ac = bd = 1, so a, b, c, d are all nonzero. But we must also have ad = 0, so one or both of a, d must be zero. This is a contradiction.

Puzzle: factor this 2-qubit state

$$\bigcirc \bigcirc + \bigcirc \bullet + \bullet \bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bullet \bullet \stackrel{?}{=} (a\bigcirc + b \bullet)(c\bigcirc + d \bullet)$$

Answer: This is not possible. Why? Suppose factorization is possible. Then we must have ac = bd = 1, so a, b, c, d are all nonzero. But we must also have ad = 0, so one or both of a, d must be zero. This is a contradiction. Therefore factorization must not be possible.

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc+\bigcirc\bullet+\bullet\bigcirc+\bullet\bullet\stackrel{?}{=}(a\bigcirc+b\bullet)(c\bigcirc+d\bullet)$$

Answer: a = b = c = 1

Puzzle: factor this 2-qubit state

$$\bigcirc\bigcirc + \bullet \bullet \stackrel{?}{=} (a \bigcirc + b \bullet)(c \bigcirc + d \bullet)$$

Answer: This is not possible. Why? Suppose factorization is possible. Then we must have ac = bd = 1, so a, b, c, d are all nonzero. But we must also have ad = 0, so one or both of a, d must be zero. This is a contradiction. Therefore factorization must not be possible.

Product states versus Entangled states

A state that factors is called a *product* state. A state that does not factor is called *entangled*.

Outline

- Introduction
 - Quantum states
 - Evolution of quantum states
 - Measurement of quantum states
- Werner Symmetry
 - Stabilizer groups
 - Werner operators and Werner states
 - Werner states
- Function-encoding States
 - Boolean functions
 - Pascal's triangle and the parity party trick

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$
 $a\bigcirc + b \bullet \rightarrow Z \rightarrow$
 $a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$
 $a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$
 $a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$$

$$a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$$

$$\rightarrow H \rightarrow$$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$$

$$a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$$

$$\bigcirc \rightarrow H \rightarrow$$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$$

$$a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$$

$$\bigcirc \rightarrow H \rightarrow \frac{1}{\sqrt{2}}(\bigcirc + \bullet) = \bullet$$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$$

$$a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$$

$$\rightarrow H \rightarrow$$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$$

$$a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$$

$$\bullet \rightarrow H \rightarrow$$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$$

$$a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$$

$$\bullet \rightarrow H \rightarrow \frac{1}{\sqrt{2}}(\bigcirc - \bullet) = \bullet$$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$$

$$a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$$

$$\rightarrow H \rightarrow$$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$$

$$a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$$

$$a\bigcirc + b \bullet \rightarrow H \rightarrow$$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$$

$$a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$$

$$a\bigcirc + b \bullet \rightarrow H \rightarrow a \bullet + b \bullet$$

$$a\bigcirc + b \bullet \rightarrow X \rightarrow a \bullet + b\bigcirc$$

$$a\bigcirc + b \bullet \rightarrow Z \rightarrow a\bigcirc - b \bullet$$

$$a\bigcirc + b \bullet \rightarrow R_{\phi} \rightarrow a\bigcirc + b e^{i\phi} \bullet$$

$$a\bigcirc + b \bullet \rightarrow H \rightarrow a \bullet + b \bullet$$

$$\rightarrow CZ \rightarrow$$

$$a \bigcirc + b \bullet \longrightarrow X \longrightarrow a \bullet + b \bigcirc$$

$$a \bigcirc + b \bullet \longrightarrow Z \longrightarrow a \bigcirc - b \bullet$$

$$a \bigcirc + b \bullet \longrightarrow R_{\phi} \longrightarrow a \bigcirc + b e^{i\phi} \bullet$$

$$a \bigcirc + b \bullet \longrightarrow H \longrightarrow a \bullet + b \bullet$$

$$a \bigcirc + b \bigcirc \bullet$$

$$+ c \bullet \bigcirc + d \bullet \bullet \longrightarrow CZ \longrightarrow$$

$$a \bigcirc + b \bullet \longrightarrow X \longrightarrow a \bullet + b \bigcirc$$

$$a \bigcirc + b \bullet \longrightarrow Z \longrightarrow a \bigcirc - b \bullet$$

$$a \bigcirc + b \bullet \longrightarrow R_{\phi} \longrightarrow a \bigcirc + b e^{i\phi} \bullet$$

$$a \bigcirc + b \bullet \longrightarrow H \longrightarrow a \bullet + b \bullet$$

$$a \bigcirc + b \bigcirc \bullet$$

$$+ c \bullet \bigcirc + d \bullet \bullet \longrightarrow CZ \longrightarrow a \bigcirc + b \bigcirc \bullet$$

$$a \bigcirc + b \bullet \longrightarrow X \longrightarrow a \bullet + b \bigcirc$$

$$a \bigcirc + b \bullet \longrightarrow Z \longrightarrow a \bigcirc - b \bullet$$

$$a \bigcirc + b \bullet \longrightarrow R_{\phi} \longrightarrow a \bigcirc + b e^{i\phi} \bullet$$

$$a \bigcirc + b \bullet \longrightarrow H \longrightarrow a \bullet + b \bullet$$

$$a \bigcirc + b \bigcirc \bullet$$

$$+ c \bullet \bigcirc + d \bullet \bullet \longrightarrow CZ \longrightarrow a \bigcirc + b \bigcirc \bullet$$

Pop quiz! $Z = R_{\phi}$ for what value of ϕ ?

$$a \bigcirc + b \bullet \longrightarrow X \longrightarrow a \bullet + b \bigcirc$$

$$a \bigcirc + b \bullet \longrightarrow Z \longrightarrow a \bigcirc - b \bullet$$

$$a \bigcirc + b \bullet \longrightarrow R_{\phi} \longrightarrow a \bigcirc + b e^{i\phi} \bullet$$

$$a \bigcirc + b \bullet \longrightarrow H \longrightarrow a \bullet + b \bullet$$

$$a \bigcirc + b \bigcirc \bullet$$

$$+ c \bullet \bigcirc + d \bullet \bullet \longrightarrow CZ \longrightarrow a \bigcirc + b \bigcirc \bullet$$

Pop quiz! $Z = R_{\phi}$ for what value of ϕ ? Answer: $\phi = \pi$

Some quantum gates, cont'd

$$\bigcirc = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \qquad \bullet = \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

Some quantum gates, cont'd

$$\bigcirc = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$ullet = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\bullet = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\bigcirc = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \bullet = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \bullet = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \bullet = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Some quantum gates, cont'd

$$\bigcirc = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \bullet = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \bullet = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \bullet = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}
X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
Z = R_{\pi} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
R_{\phi} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix}
H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$X\bigcirc = \bullet$$
 $H\bigcirc = \bullet$

$$H\bigcirc = \bigcirc$$

$$X\bigcirc = \bullet$$

$$H\bigcirc = \bullet$$

$$(H \otimes H)\bigcirc \bullet =$$

$$X\bigcirc = \bullet$$

$$H\bigcirc = \bullet$$

$$(H \otimes H)\bigcirc \bullet = \bullet \bullet$$

$$X\bigcirc = \bullet$$

$$H\bigcirc = \bullet$$

$$(H \otimes H)\bigcirc \bullet = \bullet \bullet$$

$$CZ(\bigcirc \bigcirc + \bullet \bullet) =$$

$$X\bigcirc = \bullet$$

$$H\bigcirc = \bullet$$

$$(H \otimes H)\bigcirc \bullet = \bullet \bullet$$

$$CZ(\bigcirc + \bullet \bullet) = \bigcirc - \bullet \bullet$$

Some quantum gates: Quiz!

$$X \bigcirc = \bigcirc$$

$$H \bigcirc = \bigcirc$$

$$(H \otimes H) \bigcirc \bigcirc = \bigcirc$$

$$CZ(\bigcirc \bigcirc + \bigcirc \bigcirc) = \bigcirc \bigcirc - \bigcirc$$

$$(R_a \otimes R_b \otimes R_{-(a+b)})(\bigcirc \bigcirc \bigcirc + \bigcirc \bigcirc) =$$

Some quantum gates: Quiz!

$$X \bigcirc = \bullet$$

$$H \bigcirc = \bullet$$

$$(H \otimes H) \bigcirc \bullet = \bullet \bullet$$

$$CZ(\bigcirc \bigcirc + \bullet \bullet) = \bigcirc - \bullet \bullet$$

$$(R_a \otimes R_b \otimes R_{-(a+b)})(\bigcirc \bigcirc + \bullet \bullet \bullet) = \bigcirc \bigcirc + \bullet \bullet \bullet$$

Outline

- Introduction
 - Quantum states
 - Evolution of quantum states
 - Measurement of quantum states
- Werner Symmetry
 - Stabilizer groups
 - Werner operators and Werner states
 - Werner states
- Function-encoding States
 - Boolean functions
 - Pascal's triangle and the parity party trick

Measurement of $a \bigcirc + b \bullet$ results in . . .

Measurement of $a\bigcirc + b \bullet$ results in . . .

outcome (post-measurement state)	with probability
$\overline{}$	$ a ^2$
•	$ b ^2$

Measurement of $a\bigcirc + b \bullet$ results in . . .

outcome (post-measurement state)	with probability
0	$ a ^2$
•	$ b ^2$

Example: Measuring $\bullet = \frac{1}{\sqrt{2}} (\bigcirc + \bullet)$ results in outcome \bigcirc , \bullet with equal probability

Measurement of $a\bigcirc + b \bullet$ results in . . .

outcome (post-measurement state)	with probability
	$ a ^2$
•	$ b ^2$

Example: Measuring $\bullet = \frac{1}{\sqrt{2}} (\bigcirc + \bullet)$ results in outcome \bigcirc , \bullet with equal probability

Example: Measuring $\frac{3}{5}$ \bigcirc + $\frac{4}{5}$ \blacksquare results in outcome \bigcirc with probability

Measurement of $a\bigcirc + b \bullet$ results in . . .

outcome (post-measurement state)	with probability
0	$ a ^2$
•	$ b ^2$

Example: Measuring $\bullet = \frac{1}{\sqrt{2}} (\bigcirc + \bullet)$ results in outcome \bigcirc , \bullet with equal probability

Example: Measuring $\frac{3}{5}$ \bigcirc + $\frac{4}{5}$ \blacksquare results in outcome \bigcirc with probability 9/25

Summary: Quantum Mechanics* in a Nutshell

quantum states: linear combinations of bit strings

evolution of states: unitary transformations of state space

measurement: finite set of outcome states with probability distribution

quantum computer: put the above ingredients together

* (some details and complications are omitted)

Brief survey: some things quantum computers will do

- Shor's factoring algorithm
- Grover's search algorithm
- A zoo of linear algebra algorithms
- Monte Carlo simulation

Outline

- Introduction
 - Quantum states
 - Evolution of quantum states
 - Measurement of quantum states
- Werner Symmetry
 - Stabilizer groups
 - Werner operators and Werner states
 - Werner states
- Function-encoding States
 - Boolean functions
 - Pascal's triangle and the parity party trick

Examples of local unitary operators that do not affect a state

$$(X \otimes X)(\bigcirc \bigcirc + \bullet \bullet) = \bullet \bullet + \bigcirc \bigcirc$$
$$(I \otimes Z \otimes Z)(\bigcirc \bigcirc \bigcirc + \bullet \bullet \bullet) = \bigcirc \bigcirc \bigcirc + \bullet \bullet \bullet$$

Examples of local unitary operators that do not affect a state

$$(X \otimes X)(\bigcirc \bigcirc + \bullet \bullet) = \bullet \bullet + \bigcirc \bigcirc$$
$$(I \otimes Z \otimes Z)(\bigcirc \bigcirc \bigcirc + \bullet \bullet \bullet) = \bigcirc \bigcirc \bigcirc + \bullet \bullet \bullet$$

Definition: a linear operator A stabilizes a state vector ψ

Examples of local unitary operators that do not affect a state

$$(X \otimes X)(\bigcirc \bigcirc + \bullet \bullet) = \bullet \bullet + \bigcirc \bigcirc$$
$$(I \otimes Z \otimes Z)(\bigcirc \bigcirc \bigcirc + \bullet \bullet \bullet) = \bigcirc \bigcirc \bigcirc + \bullet \bullet \bullet$$

Definition: a linear operator A stabilizes a state vector ψ

$$A\psi = \psi$$

Examples of local unitary operators that do not affect a state

$$(X \otimes X)(\bigcirc \bigcirc + \bullet \bullet) = \bullet \bullet + \bigcirc \bigcirc$$
$$(I \otimes Z \otimes Z)(\bigcirc \bigcirc \bigcirc + \bullet \bullet \bullet) = \bigcirc \bigcirc \bigcirc + \bullet \bullet \bullet$$

Definition: a linear operator A stabilizes a state vector ψ

$$A\psi =$$
 (some constant times) ψ

Outline

- Introduction
 - Quantum states
 - Evolution of quantum states
 - Measurement of quantum states
- Werner Symmetry
 - Stabilizer groups
 - Werner operators and Werner states
 - Werner states
- Function-encoding States
 - Boolean functions
 - Pascal's triangle and the parity party trick

The Werner stabilizer group

Consider the group of operators of the form

$$U^{\otimes n} = U \otimes U \otimes \cdots \otimes U$$

where U is an arbitrary 1-qubit unitary operator

The Werner stabilizer group

Consider the group of operators of the form

$$U^{\otimes n} = U \otimes U \otimes \cdots \otimes U$$

where U is an arbitrary 1-qubit unitary operator

Motivation: These states are resources quantum codes, communication protocols, nonlocality study, more. . .

The Werner stabilizer group

Consider the group of operators of the form

$$U^{\otimes n} = U \otimes U \otimes \cdots \otimes U$$

where U is an arbitrary 1-qubit unitary operator

Motivation: These states are resources quantum codes, communication protocols, nonlocality study, more. . .

This motivates the following. . .

The Werner stabilizer group

Consider the group of operators of the form

$$U^{\otimes n} = U \otimes U \otimes \cdots \otimes U$$

where U is an arbitrary 1-qubit unitary operator

Motivation: These states are resources quantum codes, communication protocols, nonlocality study, more. . .

This motivates the following. . .

Problem: Classify the Werner states

(i) Describe all states that are stabilized by the Werner group.

The Werner stabilizer group

Consider the group of operators of the form

$$U^{\otimes n} = U \otimes U \otimes \cdots \otimes U$$

where U is an arbitrary 1-qubit unitary operator

Motivation: These states are resources quantum codes, communication protocols, nonlocality study, more. . .

This motivates the following. . .

Problem: Classify the Werner states

- (i) Describe all states that are stabilized by the Werner group.
- (ii) Eliminate redundancies from the answer to (i).

Outline

- Introduction
 - Quantum states
 - Evolution of quantum states
 - Measurement of quantum states
- Werner Symmetry
 - Stabilizer groups
 - Werner operators and Werner states
 - Werner states
- Function-encoding States
 - Boolean functions
 - Pascal's triangle and the parity party trick

Werner-stabilized states

Example: A state whose stabilizer is the Werner group

The "singlet" state $\bigcirc \bullet - \bullet \bigcirc$

Werner-stabilized states

Example: A state whose stabilizer is the Werner group

The "singlet" state $\bigcirc \bullet - \bullet \bigcirc$

For example:

$$(H \otimes H)(\bigcirc \bullet - \bullet \bigcirc) = \bullet \bullet - \bullet \bullet$$

$$= \frac{1}{2} ((\bigcirc + \bullet)(\bigcirc - \bullet) - (\bigcirc - \bullet)(\bigcirc + \bullet))$$

$$= -(\bigcirc \bullet - \bullet \bigcirc)$$

Werner-stabilized states

Example: A state whose stabilizer is the Werner group

The "singlet" state $\bigcirc \bullet - \bullet \bigcirc$

For example:

$$(H \otimes H)(\bigcirc \bullet - \bullet \bigcirc) = \bullet \bullet - \bullet \bullet$$

$$= \frac{1}{2} ((\bigcirc + \bullet)(\bigcirc - \bullet) - (\bigcirc - \bullet)(\bigcirc + \bullet))$$

$$= -(\bigcirc \bullet - \bullet \bigcirc)$$

Singlets as building blocks for Werner-stabilized states

- Products of singlets, for example $(\bigcirc \bullet \bullet \bigcirc)(\bigcirc \bullet \bullet \bigcirc)$
- Superpositions of products of singlets

Werner-stabilized states, cont'd

Fact: Any Werner-stabilized state is a superposition of products of singlets

Werner-stabilized states, cont'd

Fact: Any Werner-stabilized state is a superposition of products of singlets

Problem: Classify the Werner states.

- (i) Describe all states whose stabilizer is the Werner group.Answer: Any such state is a superposition of products of singlets.
- (ii) Eliminate redundancies from the answer to (i).

Werner-stabilized states, cont'd

Fact: Any Werner-stabilized state is a superposition of products of singlets

Problem: Classify the Werner states.

- (i) Describe all states whose stabilizer is the Werner group.
 Answer: Any such state is a superposition of products of singlets.
- (ii) Eliminate redundancies from the answer to (i).

Redundancy!

Noncrossing chord diagrams

Puzzle

Given n = 2m people seated at a round table, how many different noncrossing handshake configurations are there?

Noncrossing chord diagrams

Puzzle

Given n = 2m people seated at a round table, how many different noncrossing handshake configurations are there?

m	Noncrossing chord diagrams
2	
2	
3	

Noncrossing chord diagrams

Puzzle

Given n = 2m people seated at a round table, how many different noncrossing handshake configurations are there?

m	Noncrossing chord diagrams
2	
2	
3	
4	

Noncrossing chord diagrams

Puzzle

Given n = 2m people seated at a round table, how many different noncrossing handshake configurations are there?

m	Noncrossing chord diagrams						
2							
2							
3							
4	(42 in all)						

Noncrossing chord diagrams

Puzzle

Given n = 2m people seated at a round table, how many different noncrossing handshake configurations are there?

m	Noncrossing chord diagrams							
2								
2								
3								
4	(42 in all)							

Catalan numbers (sequence A000108 in the OEIS)

 $1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, \dots$

Werner-stabilized states, summary

Problem: Classify the Werner states

(i) Describe all states that are stabilized by the Werner group.
 Solution: Any such state is a superposition of products of singlets. In fact, any such state is a unique superposition of singlets in a noncrossing chord diagram.

Werner-stabilized states, summary

Problem: Classify the Werner states

- (i) Describe all states that are stabilized by the Werner group.
 Solution: Any such state is a superposition of products of singlets. In fact, any such state is a unique superposition of singlets in a noncrossing chord diagram.
- (ii) Eliminate redundancies from the answer to (i).

 Solution: You get a complete, non-redundant list of Werner states using superpositions of noncrossing chord diagrams.

Werner-stabilized states, summary

Problem: Classify the Werner states

- (i) Describe all states that are stabilized by the Werner group.

 Solution: Any such state is a supercostrion of products of singlets. In fact, any such state is a unique superposition of singlets in a noncrossing chord diagram.
- (ii) Eliminate redundancies from the answer to (i).

 Solution: You get a complete, non-redundant list of Werner states using superpositions of noncrossing chord diagrams.

Outline

- Introduction
 - Quantum states
 - Evolution of quantum states
 - Measurement of quantum states
- Werner Symmetry
 - Stabilizer groups
 - Werner operators and Werner states
 - Werner states
- Function-encoding States
 - Boolean functions
 - Pascal's triangle and the parity party trick

Boolean function

bit strings \longrightarrow bits

Boolean function

bit strings—→bits

Example: XOR

Boolean function

 $bit\ strings{\longrightarrow}bits$

Example: XOR

How many Boolean functions for *n*-bit inputs?

Question: How many inputs?

Boolean function

bit strings—→bits

Example: XOR

How many Boolean functions for *n*-bit inputs?

Question: How many inputs? Answer: 2^n

Boolean function

bit strings—→bits

Example: XOR

input	00		••
output	0		0

How many Boolean functions for *n*-bit inputs?

Question: How many inputs? Answer: 2^n

Question: How many functions?

Boolean function

bit strings—→bits

Example: XOR

input	00		••
output	0		0

How many Boolean functions for *n*-bit inputs?

Question: How many inputs? Answer: 2^n

Question: How many functions? Answer: $2^{(2^n)}$

Function-encoding states

$$[f(\mathsf{string}) = \bigcirc] o + \mathsf{string}$$

 $[f(\mathsf{string}) = lackbox{}] o - \mathsf{string}$

Function-encoding states

$$[f(\mathsf{string}) = \bigcirc] \to +\mathsf{string}$$

 $[f(\mathsf{string}) = \bullet] \to -\mathsf{string}$

Example: XOR as a quantum state

input	00			••
output	0		•	0
output $ ightarrow \pm 1$	+1	-1	-1	+1

Function-encoding states

$$[f(\mathsf{string}) = \bigcirc] \to +\mathsf{string}$$

 $[f(\mathsf{string}) = lackbox{}] \to -\mathsf{string}$

Example: XOR as a quantum state

input	00			••
output	0	•	•	0
output $ ightarrow \pm 1$	+1	-1	-1	+1

XOR state
$$= \bigcirc \bigcirc - \bigcirc \bullet - \bullet \bigcirc + \bullet \bullet$$

Example: xy + xz

input x, y, z	000	001	010	011	100	101	110	111
	0	0	0	0	0	1	1	0
output $(-1)^{xy+xz}$	+1	+1	+1	+1	+1	-1	-1	+1

$$xy + xz$$
 state = $000 + 001 + 010 + 011 + 100 - 101 - 110 + 111$

Example: xy + xz

input x, y, z	000	001	010	011	100	101	110	111
	0	0	0	0	0	1	1	0
output $(-1)^{xy+xz}$	+1	+1	+1	+1	+1	-1	-1	+1

$$xy + xz$$
 state = $000 + 001 + 010 + 011 + 100 - 101 - 110 + 111$

Fact

Every Boolean function is represented by a polynomial.

Example: xy + xz

input x, y, z	000	001	010	011	100	101	110	111
	0	0	0	0	0	1	1	0
output $(-1)^{xy+xz}$	+1	+1	+1	+1	+1	-1	-1	+1

$$xy + xz$$
 state = $000 + 001 + 010 + 011 + 100 - 101 - 110 + 111$

Fact

Every Boolean function is represented by a polynomial.

Quiz!

What is the polynomial for the function encoded in this state?

$$000 + 001 + 010 + 011 - 100 - 101 + 110 - 111$$

Example: xy + xz

input x, y, z	000	001	010	011	100	101	110	111
	0	0	0	0	0	1	1	0
output $(-1)^{xy+xz}$	+1	+1	+1	+1	+1	-1	-1	+1

$$xy + xz$$
 state = $000 + 001 + 010 + 011 + 100 - 101 - 110 + 111$

Fact

Every Boolean function is represented by a polynomial.

Quiz!

What is the polynomial for the function encoded in this state?

$$000 + 001 + 010 + 011 - 100 - 101 + 110 - 111$$

Answer: x + xy + xyz

Converting table of values to monomial coefficients, and vice-versa

Why do we care?

Monomials are blueprints for quantum gates to construct function-encoding states.

Converting table of values to monomial coefficients, and vice-versa

Why do we care?

Monomials are blueprints for quantum gates to construct function-encoding states.

Example: $x_2x_3x_5$ gate implementation

 $C_{2,3,5}$ gate acts on qubits 2,3,5, sends $\bullet \bullet \bullet \to -\bullet \bullet \bullet$, leaves all other strings unchanged.

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{array}{c} 000 \\ 001 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{array}{c} x^0y^0z^0 \\ 0 \\ 0 \\ x^0y^1z^0 \\ 0 \\ 1 \\ 100 \\ 0 \\ 1 \\ 0 \end{array} \begin{array}{c} x^1y^0z^0 \\ 0 \\ 1 \\ 0 \\ 110 \\ 1 \\ 1 \end{array} \begin{array}{c} x^1y^0z^0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array} \begin{array}{c} x^1y^0z^0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array} \begin{array}{c} x^1y^1z^0 \\ 1 \\ 1 \\ 1 \end{array}$$

 Pascal's triangle mod 2 converts Boolean function tables to polynomials

- Pascal's triangle mod 2 converts Boolean function tables to polynomials
- Pascal's triangle mod 2 is self inverse!

- Pascal's triangle mod 2 converts Boolean function tables to polynomials
- Pascal's triangle mod 2 is self inverse!
- Pascal's triangle mod 2 converts polynomials to Boolean function tables

Outline

- Introduction
 - Quantum states
 - Evolution of quantum states
 - Measurement of quantum states
- Werner Symmetry
 - Stabilizer groups
 - Werner operators and Werner states
 - Werner states
- Function-encoding States
 - Boolean functions
 - Pascal's triangle and the parity party trick

Pascal's triangle mod 2

Pascal's triangle mod 2

Question

Given n, k, what is the parity of $\binom{n}{k}$?

Parity party trick

Parity party trick

 $\binom{n}{k}$ even or odd?

Parity party trick

$\binom{n}{k}$	$\begin{pmatrix} 5\\2 \end{pmatrix}$
even or odd?	

$\binom{n}{k}$	$\binom{5}{2}$	
even or odd?	10	

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	
even or odd?	10		

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	
even or odd?	10	15	

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	$\binom{11}{5}$	
even or odd?	10	15		

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	$\binom{11}{5}$	
even or odd?	10	15	462	

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	$\binom{11}{5}$	$\binom{14}{6}$	
even or odd?	10	15	462		

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	$\binom{11}{5}$	$\binom{14}{6}$	
even or odd?	10	15	462	3003	

$\binom{n}{k}$	(⁵ ₂)	$\binom{6}{4}$	$\binom{11}{5}$	$\binom{14}{6}$	$\binom{17}{9}$
even or odd?	10	15	462	3003	

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	$\binom{11}{5}$	$\binom{14}{6}$	$\binom{17}{9}$
even or odd?	10	15	462	3003	24310

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	$\binom{11}{5}$	$\binom{14}{6}$	$\binom{17}{9}$
even or odd?	10	15	462	3003	24310
base 2	$\left(\begin{array}{c} 101\\10\end{array}\right)$	$\left(\begin{array}{c}110\\100\end{array}\right)$	$\left(\begin{array}{c}1011\\101\end{array}\right)$	$\left(\begin{array}{c}1110\\110\end{array}\right)$	$\left(\begin{array}{c}10001\\1001\end{array}\right)$

$\binom{n}{k}$	$\binom{5}{2}$	(⁶ ₄)	$\binom{11}{5}$	$\binom{14}{6}$	$\binom{17}{9}$
even or odd?	10	15	462	3003	24310
base 2	$\left \left(\begin{array}{c} 101 \\ 10 \end{array} \right) \right.$	$\left(\begin{array}{c} 110\\100\end{array}\right)$	(1011)	$\left(\begin{array}{c}1110\\110\end{array}\right)$	(10001)
	$\binom{n}{k}$		$\binom{13}{5}$	$\binom{13}{6}$	

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	$\binom{11}{5}$	$\binom{14}{6}$	$\binom{17}{9}$
even or odd?	10	15	462	3003	24310
base 2	$\left \left(\begin{array}{c} 101 \\ 10 \end{array} \right) \right.$	$\left(\begin{array}{c}110\\100\end{array}\right)$	$\left(\begin{array}{c}1011\\101\end{array}\right)$	$\left(\begin{array}{c}1110\\110\end{array}\right)$	$\left(\begin{array}{c}10001\\1001\end{array}\right)$
	$\binom{n}{k}$		$\binom{13}{5}$	$\binom{13}{6}$	
	even or odd?				

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	$\binom{11}{5}$	$\binom{14}{6}$	$\binom{17}{9}$
even or odd?	10	15	462	3003	24310
base 2	$\left \left(\begin{array}{c} 101 \\ 10 \end{array} \right) \right.$	$\left(\begin{array}{c} 110\\100\end{array}\right)$	$\left(\begin{array}{c}1011\\101\end{array}\right)$	$\left(\begin{array}{c}1110\\110\end{array}\right)$	$\left(\begin{array}{c}10001\\1001\end{array}\right)$
	$\binom{n}{k}$		$\binom{13}{5}$	$\binom{13}{6}$	
	even or odd?		odd	even	

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	$\binom{11}{5}$	$\binom{14}{6}$	$\binom{17}{9}$
even or odd?	10	15	462	3003	24310
base 2	$\left \left(\begin{array}{c} 101 \\ 10 \end{array} \right) \right \left(\begin{array}{c} 101 \\ 10 \end{array} \right)$	$ \begin{array}{c} 101 \\ 10 \end{array} \right) \left(\begin{array}{c} 110 \\ 100 \end{array}\right) $		$\left(\begin{array}{c}1110\\110\end{array}\right)$	$\left(\begin{array}{c}10001\\1001\end{array}\right)$
	$\binom{n}{k}$		$\binom{13}{5}$	$\binom{13}{6}$	
	even or odd?		odd	even	
	base 2		$\left(\begin{array}{c}1101\\101\end{array}\right)$	$\left(\begin{array}{c}1101\\110\end{array}\right)$	

$\binom{n}{k}$	$\binom{5}{2}$	$\binom{6}{4}$	$\binom{11}{5}$	$\binom{14}{6}$	$\binom{17}{9}$
even or odd?	10	15	462	3003	24310
base 2	$\left \left(\begin{array}{c} 101 \\ 10 \end{array} \right) \right.$	(110 100		$\left(\begin{array}{c}1110\\110\end{array}\right)$	$\left(\begin{array}{c}10001\\1001\end{array}\right)$
	$\binom{n}{k}$		$\binom{13}{5}$	$\binom{13}{6}$	
	even or odd?		odd	even	
	base 2		$\left(\begin{array}{c}1101\\101\end{array}\right)$	(1101 ₁₁₀)	

(A consequence of) Lucas' Theorem (1878)

 $\binom{n}{k}$ is even if and only if there is a position in which the base 2 expansion for k has a 1 and the base 2 expansion for n has a zero.

• Quantum mechanics blah blah blah . . .

- Quantum mechanics blah blah blah . . .
- Quantum computers blah blah blah . . .

- Quantum mechanics blah blah blah . . .
- Quantum computers blah blah blah . . .
- Expect surprises and adventure!

- Quantum mechanics blah blah blah . . .
- Quantum computers blah blah blah . . .
- Expect surprises and adventure!
- Be prepared to learn more combinatorics!

- Quantum mechanics blah blah blah . . .
- Quantum computers blah blah blah . . .
- Expect surprises and adventure!
- Be prepared to learn more combinatorics!
- Have fun!

Thank you!

LVC Mathematical Physics Research Group

David Lyons

Isaac Lehman

David Campbell

http://quantum.lvc.edu/mathphys