提纲

- 🚺 次梯度的定义
- 2 次梯度的性质
- 3 凸函数的方向导数
- 4 次梯度的计算规则
- 5 对偶和最优性条件

一阶条件

回顾可微凸函数f 的一阶条件:

$$f(y) \ge f(x) + \nabla f(x)^{\mathrm{T}} (y - x)$$

- f 在点x 处的一阶近似是f 的一个全局下界
- $\nabla f(x)$ 可以诱导出上方图**epi** f 在点(x,f(x)) 处的支撑超平面

$$\begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \end{pmatrix} \le 0 \quad \forall (y,t) \in \mathbf{epi} f$$

若f 不可微,可否类似地定义一种梯度,使之具有梯度的一些性质?

次梯度

• 设f 为适当凸函数,x为定义域 $\operatorname{dom} f$ 中的一点. 若向量 $g \in \mathbb{R}^n$ 满足

$$f(y) \ge f(x) + g^{\mathrm{T}}(y - x), \quad \forall y \in \operatorname{dom} f,$$

则称g为函数f在点x处的一个次梯度.

• 进一步地, 称集合

$$\partial f(x) = \{ g \mid g \in \mathbb{R}^n, f(y) \ge f(x) + g^{\mathsf{T}}(y - x), \forall y \in \operatorname{dom} f \}$$

为f 在点x 处的次微分.

次梯度

- $f(x) + g^{T}(y x)$ 是f(y) 的一个全局下界
- g 可以诱导出上方图epif 在点(x,f(x)) 处的一个支撑超平面

$$\left[\begin{array}{c}g\\-1\end{array}\right]\left(\left[\begin{array}{c}y\\t\end{array}\right]-\left[\begin{array}{c}x\\f(x)\end{array}\right]\right)\leq 0\quad\forall\;(y,t)\in\operatorname{epi} f$$

- 如果f 是可微凸函数, 那么 $\nabla f(x)$ 是f 在点x 处的一个次梯度
- 例: g₂,g₃ 是点x₂ 处的次梯度; g₁ 是点x₁ 处的次梯度

次梯度存在性

设f为凸函数, $\mathbf{dom}\,f$ 为其定义域.如果 $x\in\mathbf{int}\,\mathbf{dom}\,f$,则 $\partial f(x)$ 是非空的,其 $\mathbf{rint}\,\mathbf{dom}\,f$ 的含义是集合 $\mathbf{dom}\,f$ 的所有内点.

证明:

- (*x*, *f*(*x*)) 是**epi** *f* 边界上的点
- 因此存在**epi** f 在点(x,f(x)) 处的支撑超平面:

$$\exists (a,b) \neq 0, \quad \begin{bmatrix} a \\ b \end{bmatrix}^{\mathrm{T}} \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \leq 0 \quad \forall (y,t) \in \mathbf{epi} f$$

- $\diamondsuit t \to +\infty$, 可知 $b \le 0$
- $\mathbb{R}y = x + \epsilon a \in \operatorname{dom} f$, $\epsilon > 0$, $\mathbb{T} \Rightarrow b \neq 0$
- 因此b < 0 并且g = a/|b| 是f 在点x 处的次梯度

- $\triangle x_0$ 处的次梯度可取范围[$\nabla f_1(x_0), \nabla f_2(x_0)$]
- 如果 $f_1(\hat{x}) > f_2(\hat{x}), f$ 在点 \hat{x} 处的次梯度等于 $\nabla f_1(\hat{x})$
- 如果 $f_1(\hat{x}) < f_2(\hat{x}), f$ 在点 \hat{x} 处的次梯度等于 $\nabla f_2(\hat{x})$

例

• 绝对值函数 f(x) = |x|

• 欧几里得范数 $f(x) = ||x||_2$

如果
$$x \neq 0, \partial f(x) = \frac{1}{\|x\|_2} x$$
,

如果 $x \neq 0$, $\partial f(x) = \frac{1}{\|x\|_2} x$, 如果 x = 0, $\partial f(x) = \{g | \|g\|_2 \le 1\}$

提纲

- 1 次梯度的定义
- ② 次梯度的性质
- 3 凸函数的方向导数
- 4 次梯度的计算规则
- 5 对偶和最优性条件

次微分是闭凸集

对任何 $x \in \operatorname{dom} f$, $\partial f(x)$ 是一个闭凸集(可能为空集).

证明:

• 设 $g_1, g_2 \in \partial f(x)$, 并设 $\lambda \in (0,1)$, 由次梯度的定义

$$\begin{split} f(y) &\geq f(x) + g_1^{\mathsf{T}}(y-x), \quad \forall y \in \mathsf{dom} f, \\ f(y) &\geq f(x) + g_2^{\mathsf{T}}(y-x), \quad \forall y \in \mathsf{dom} f. \end{split}$$

由上面第一式的 λ 倍加上第二式的 $(1-\lambda)$ 倍,我们可以得到 $\lambda g_1 + (1-\lambda)g_2 \in \partial f(x)$,从而 $\partial f(x)$ 是凸集.

• $\Diamond g_k \in \partial f(x)$ 为次梯度且 $g_k \to g$,则

$$f(y) \ge f(x) + g_k^{\mathrm{T}}(y - x), \quad \forall y \in \mathrm{dom} f,$$

在上述不等式中取极限,并注意到极限的保号性,最终我们有

$$f(y) \ge f(x) + g^{\mathsf{T}}(y - x), \quad \forall y \in \text{dom} f.$$

这说明 $\partial f(x)$ 为闭集.

内点的次微分非空有界

如果x ∈ int dom f ,则 $\partial f(x)$ 非空有界集.

证明:

- 非空可由次梯度存在性直接得出
- 取充分小的r > 0, 使得

$$B = \{x \pm re_i | i = 1, \cdots, n\} \subset \operatorname{dom} f$$

• 对任意非零的 $g \in \partial f(x)$, 存在 $y \in B$ 满足

$$f(y) \ge f(x) + g^{\mathrm{T}}(y - x) = f(x) + r||g||_{\infty}$$

由此得到∂f(x) 有界:

$$\|g\|_{\infty} \le \frac{\max_{y \in B} f(y) - f(x)}{r} < +\infty$$

可微函数的次微分

设凸函数f(x)在 $x_0 \in \mathbf{int\ dom\ } f$ 处可微,则 $\partial f(x_0) = \{\nabla f(x_0)\}.$

证明:

- 根据可微凸函数的一阶条件可知梯度 $\nabla f(x_0)$ 为次梯度.
- 下证f(x)在点 x_0 处不可能有其他次梯度. 设 $g \in \partial f(x_0)$,根据次梯度的定义,对任意的非零 $v \in \mathbb{R}^n$ 且 $x_0 + tv \in \mathbf{dom} f, t > 0$ 有

$$f(x_0+tv)\geq f(x_0)+tg^{\mathrm{T}}v.$$

若
$$g \neq \nabla f(x_0)$$
, 取 $v = g - \nabla f(x_0) \neq 0$, 上式变形为

$$\frac{f(x_0 + tv) - f(x_0) - t\nabla f(x_0)^{\mathrm{T}}v}{t\|v\|} \ge \frac{(g - \nabla f(x_0))^{\mathrm{T}}v}{\|v\|} = \|v\|.$$

• 不等式两边令 $t \to 0$,根据Fréchet 可微的定义,左边趋于0,而右边是非零正数,可得到矛盾.

次梯度的单调性

设 $f: \mathbb{R}^n \to \mathbb{R}$ 为 凸 函数, $x, y \in \operatorname{dom} f$, 则 $(u-v)^{\mathrm{T}}(x-y) \geq 0$,其 中 $u \in \partial f(x)$, $v \in \partial f(y)$.

证明:

• 由次梯度的定义,

$$f(y) \ge f(x) + u^{T}(y - x),$$

 $f(x) \ge f(y) + v^{T}(x - y).$

• 将以上两个不等式相加即得结论.

次梯度的连续性

设f(x) 是闭凸函数且 ∂f 在点 \bar{x} 附近存在且非空. 若序列 $x^k \to \bar{x}$, $g^k \in \partial f(x^k)$ 为f(x) 在点 x^k 处的次梯度,且 $g^k \to \bar{g}$,则 $\bar{g} \in \partial f(\bar{x})$.

证明:

• 对任意 $y \in \text{dom} f$,根据次梯度的定义,

$$f(y) \ge f(x^k) + \langle g^k, y - x^k \rangle.$$

• 对上述不等式两边取下极限,我们有

$$\begin{split} f(y) &\geq \liminf_{k \to \infty} [f(x^k) + \left\langle g^k, y - x^k \right\rangle] \\ &\geq f(\bar{x}) + \left\langle \bar{g}, y - \bar{x} \right\rangle, \end{split}$$

其中第二个不等式利用了f(x)的下半连续性以及 $g^k \to \bar{g}$,由此可推出 $\bar{g} \in \partial f(\bar{x})$.

次梯度的计算规则

弱次梯度计算:得到一个次梯度

- 足以满足大多数不可微凸函数优化算法
- ullet 如果可以获得任意一点处f(x) 的值,那么总可以计算一个次梯度

强次梯度计算: 得到 $\partial f(x)$, 即所有次梯度

- 一些算法、最优性条件等,需要完整的次微分
- 计算可能相当复杂

下面我们假设 $x \in \text{int dom } f$

基本规则

- 可微凸函数: 若凸函数f 在点x 处可微,则 $\partial f(x) = \{\nabla f(x)\}.$
- 凸函数的非负线性组合:设凸函数 f_1, f_2 满 \mathcal{L} int dom $f_1 \cap$ dom $f_2 \neq \emptyset$,而 $x \in$ dom $f_1 \cap$ dom $f_2 \cdot$ 若

$$f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x), \quad \alpha_1, \alpha_2 \ge 0,$$

则f(x)的次微分

$$\partial f(x) = \alpha_1 \partial f_1(x) + \alpha_2 \partial f_2(x).$$

• 线性变量替换: 设h 为适当凸函数, f 满足f(x) = h(Ax + b). 若存在 $x^{\sharp} \in \mathbb{R}^{m}$, 使得 $Ax^{\sharp} + b \in \text{int dom } h$, 则

$$\partial f(x) = A^{\mathrm{T}} \partial h(Ax + b), \quad \forall \ x \in \mathbf{int} \ \mathbf{dom} \ f.$$

两个函数之和的次梯度

设 $f_1, f_2: \mathbb{R}^n \to (-\infty, +\infty]$ 是两个凸函数,则对任意的 $x_0 \in \mathbb{R}^n$,

$$\partial f_1(x_0) + \partial f_2(x_0) \subseteq \partial (f_1 + f_2)(x_0).$$

进一步地,若**int dom** $f_1 \cap \mathbf{dom} f_2 \neq \emptyset$,则对任意的 $x_0 \in \mathbb{R}^n$,

$$\partial (f_1 + f_2)(x_0) = \partial f_1(x_0) + \partial f_2(x_0).$$

证明:

- 第一个结论由次梯度的定义是显然的. 以下我们证第二个结论.
- 对于任意给定的 x_0 ,设 $g \in \partial (f_1 + f_2)(x_0)$ · 如果 $f_1(x_0) = +\infty$,则 $(f_1 + f_2)(x_0) = +\infty$ · 由次梯度的定义,我们有

$$(f_1 + f_2)(x) \ge (f_1 + f_2)(x_0) + g^{\mathrm{T}}(x - x_0)$$

对任意 $x \in \mathbb{R}^n$ 成立,故 $f_1 + f_2 \equiv +\infty$ · 这与**int dom** $f_1 \cap$ **dom** $f_2 \neq \emptyset$ 矛盾,因此以下我们假设 $f_1(x_0), f_2(x_0) < +\infty$ ·

● 定义如下两个集合,容易验证S₁,S₂均为非空凸集

$$S_1 = \{(x - x_0, y) \in \mathbb{R}^n \times \mathbb{R} \mid y > f_1(x) - f_1(x_0) - g^{\mathsf{T}}(x - x_0)\},\$$

$$S_2 = \{(x - x_0, y) \in \mathbb{R}^n \times \mathbb{R} \mid y \le f_2(x_0) - f_2(x)\},\$$

• $\mathfrak{P}(x - x_0, y) \in S_1 \cap S_2$, 则

$$y > f_1(x) - f_1(x_0) - g^{\mathrm{T}}(x - x_0),$$

 $y \le f_2(x_0) - f_2(x).$

上两式相减即得

$$(f_1+f_2)(x) < (f_1+f_2)(x_0) + g^{\mathrm{T}}(x-x_0),$$

这与 $g \in \partial (f_1 + f_2)(x_0)$ 矛盾 · 因此 $S_1 \cap S_2 = \emptyset$ ·

ullet 根据凸集分离定理,存在非零的(a,b) 和另一个实数c ,使得

$$a^{\mathrm{T}}(x - x_0) + by \le c, \quad \forall (x - x_0, y) \in S_1,$$
 (1)

$$a^{\mathrm{T}}(x - x_0) + by \ge c, \quad \forall (x - x_0, y) \in S_2.$$
 (2)

注意到 $(0,0) \in S_2$,故 $c \le 0$ 此外, $(0,\varepsilon) \in S_1$ 对任何 $\varepsilon > 0$ 成立,由此可得c = 0 以及 $b \le 0$

• 如果b = 0,则由上两式即得 $a^{T}(x - x_{0}) = 0$ 对任 何 $x \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ 成立. 现在取 $\hat{x} \in \operatorname{int} \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$,并设 $\delta > 0$ 使得点 \hat{x} 处的邻域 $N_{\delta}(\hat{x}) \subset \operatorname{int} \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$,则

$$a^{\mathrm{T}}u = a^{\mathrm{T}}(\hat{x} + u - x_0)$$

对任何 $u \in \mathbb{R}^n$ 成立. 此时再令 $u = \frac{\delta a}{2||a||_2}$ 即得a = 0. 但这与(a,b)非零矛盾,故b 不可能为0.

• 现将(1) 式除以-b, 并令 $\hat{a} = -\frac{a}{b}$, 就得到

$$\hat{a}^{T}(x - x_0) \le y, \quad \forall (x - x_0, y) \in S_1,$$

 $\hat{a}^{T}(x - x_0) \ge y, \quad \forall (x - x_0, y) \in S_2.$

利用上面两个式子和 S_1 和 S_2 的定义可以分别得到 $g + \hat{a} \in \partial f_1(x_0)$ 和 $-\hat{a} \in \partial f_2(x_0)$ 因此 $g = (g + \hat{a}) + (-\hat{a}) \in \partial f_1(x_0) + \partial f_2(x_0)$ ·

函数族的上确界

设
$$f_1, f_2, \cdots, f_m : \mathbb{R}^n \to (-\infty, +\infty]$$
 均为凸函数,令
$$f(x) = \max\{f_1(x), f_2(x), \cdots, f_m(x)\}, \quad \forall x \in \mathbb{R}^n.$$

$$\forall x_0 \in \bigcap_{i=1}^m \mathbf{int} \mathbf{dom} f_i, \quad$$
定义 $I(x_0) = \{i \mid f_i(x_0) = f(x_0)\}, \quad$ 则

$$\partial f(x_0) = \mathbf{conv} \bigcup_{i \in I(x_0)} \partial f_i(x_0).$$

- I(x₀)表示点x₀ 处"有效"函数的指标
- $\partial f(x_0)$ 是点 x_0 处"有效"函数的次微分并集的凸包
- 如果 f_i 可微, $\partial f(x_0) = \mathbf{conv}\{\nabla f_i(x_0) \mid i \in I(x_0)\}$

例:分段线性函数

$$f(x) = \max_{i=1,2,\cdots,m} \{a_i^T x + b_i\}$$

$$f(x)$$

$$a_i^T x + b$$

● 点x 处的次微分是一个多面体

$$\partial f(x) = \mathbf{conv}\{a_i \mid i \in I(x)\}$$

其中
$$I(x) = \{i \mid a_i^{\mathrm{T}} x + b_i = f(x)\}$$

例: ℓ_1 -范数

$$f(x) = ||x||_1 = \max_{s \in \{-1,1\}^n} s^{\mathsf{T}} x$$

● 次微分是区间的乘积

$$\partial f(x) = J_1 \times \dots \times J_n, \quad J_k = \begin{cases} [-1,1], & x_k = 0 \\ \{1\}, & x_k > 0 \\ \{-1\}, & x_k < 0 \end{cases}$$

$$\partial f(0,0) = [-1,1] \times [-1,1]$$

$$\partial f(1,0) = \{1\} \times [-1,1]$$

$$\partial f(1,1) = \{(1,1)\}$$