Seminár 23: Geometria VI – miš-maš

Úloha 23.1. [66-II-3] Dokážte, že obdĺžnik s rozmermi 32×120 sa dá zakryť siedmimi zhodnými štvorcami so stranou 30.

Úloha 23.2. [60-S-2] Daný je štvorec so stranou dĺžky 6 cm. Nájdite množinu stredov všetkých priečok štvorca, ktoré ho delia na dva štvoruholníky, z ktorých jeden má obsah 12 cm^2 . (Priečka štvorca je úsečka, ktorej krajné body ležia na stranách štvorca.)

Úloha 23.3. [65-S-3] V kružnici so stredom S zostrojíme priemer AB a ľubovoľnú naň kolmú tetivu CD. Zdôvodnite, prečo je obvod trojuholníka ACD menší ako dvojnásobok obvodu trojuholníka SBC.

Úloha 23.4. [59-S-2] Kružnice k(S; 6 cm) a l(O; 4 cm) majú vnútorný dotyk v bode B. Určte dĺžky strán trojuholníka ABC, pričom bod A je priesečník priamky OB s kružnicou k a bod C je priesečník kružnice k s dotyčnicou z bodu A ku kružnici l.

Úloha 23.5. [63-II-4] Daný je konvexný štvoruholník ABCD s bodomE vnútri strany AB tak, že platí $|\angle ADE| = |\angle DEC| = |\angle ECB|$. Obsahy trojuholníkov AED a CEB sú postupne $18 \, \mathrm{cm}^2$ a $8 \, \mathrm{cm}^2$. Určte obsah trojuholníka ECD.