Statistical Inference For Data Science

Saul Diaz-Infante

1/16/23

Table of contents

Pr	etace	10
Int	roduction	11
	The tidyverse	11
I	R fundamentals in programming, data managment and visualization	13
Nι	its and bolts: Data types	15
	Entering Input: the assignment operator	15
Be	st Coding Practices for R	16
	What we mean when say "better coding practice"	16
	Folder Structure	17
	Code Structure	17
	Sections	17
	Structural Composition	17
	Identation	17
	Styling	17
	Final Comments	17
Tie	dyverse Fundamentals with R	18
	Introduction to Tidyverse	18
	Reshaping Data with tidyr	18
	Project	18
	Modeling with Data in the Tidyverse	18
	Communication with Data in the Tidyverse	18
	Categorical Data in the Tydiverse	18
Da	nta Manipulation	19
	Data Manipulation with dplyr	19
	Joining Data with dplyr	
	Case Study: Exploratory Data Analysis in R	
	Data Manipulation with data.table in R	
	Joining Data with data table in R	19

1	Intro	to basics	20
	1.1	How it works	20
		Instructions 100 XP	20
	1.2	Arithmetic with R	20
		Instructions 100 XP	21
		1.2.1 Variable assignment	21
		1.2.2 Variable assignment (2)	22
	1.3	Variable assignment (3)	23
		Instructions 100 XP	23
	1.4	Apples and oranges	23
		Instructions 100 XP	24
	1.5	Basic data types in R	$\frac{1}{24}$
		ructions 100 XP	25
	1.6	What's that data type?	26
		Instructions 100 XP	26
2	Vect	ors	27
	2.1	Create a vector	27
		Instructions 100 XP	27
	2.2	Create a vector (2)	27
		2.2.1 Create a vector (3)	28
		2.2.2 Naming a vector	29
	2.3	Naming a vector (2)	30
	2.4	Calculating total winnings	31
	2.5	Calculating total winnings (2)	32
	2.6	Calculating total winnings (3)	33
	2.7	Comparing total winnings	34
		Instructions 100 XP	34
	2.8	Vector selection: the good times	34
		Instructions 100 XP	35
	2.9	Vector selection: the good times (2)	35
		Instructions 100 XP	36
	2.10	Vector selection: the good times (3)	36
		Instructions 100 XP	36
	2.11	Vector selection: the good times (4)	37
		Instructions 100 XP	37
	2.12	Selection by comparison - Step 1	38
		Instructions 100 XP	38
	2.13	Selection by comparison - Step 2	39
		Instructions 100 XP	39
	2.14	Advanced selection	40
		2.14.1 Instructions 100 YP	40

3	Mat	rices	41
	3.1	What's a matrix?	41
		Instructions 100 XP	41
	3.2	Analyze matrices, you shall	42
		Instructions 100 XP	42
	3.3	Naming a matrix	42
		Instructions 100 XP	43
	3.4	Calculating the worldwide box office	43
		Instructions 100 XP	44
	3.5	Adding a column for the Worldwide box office	44
		Instructions 100 XP	45
	3.6	Adding a row	45
		Instructions 100 XP	45
	3.7	The total box office revenue for the entire saga	46
		Instructions 100 XP	46
	3.8	Selection of matrix elements	46
		Instructions 100 XP	47
	3.9	A little arithmetic with matrices	48
		3.9.1 Instructions 100 XP	48
	3.10	A little arithmetic with matrices (2)	48
		3.10.1 Instructions 100 XP	49
			-0
4	Fact		50
	4.1	What's a factor and why would you use it?	50
	4.0	Instructions 100 XP	50
	4.2	What's a factor and why would you use it? (2)	51
	4.0	Instructions 100 XP	51
	4.3	What's a factor and why would you use it? (3)	51
	4.4	Instructions 100 XP	52
	4.4	Factor levels	52
	4 -	Instructions 100 XP	53
	4.5	Summarizing a factor	53
	4.0	Instructions 100 XP	54
	4.6	Battle of the sexes	54
	4 7	Instructions 100 XP	54
	4.7	Ordered factors	55
	4.0	Instructions 100 XP	55
	4.8	Ordered factors (2)	56
	4.0	Instructions 100 XP	56
	4.9	Comparing ordered factors	57
		Instructions 100 XP	57

5	Data	a frames	5
	5.1	What's a data frame?	5
		Instructions 100 XP	5
	5.2	Quick, have a look at your dataset	5
		Instructions 100 XP	6
	5.3	Have a look at the structure	6
		Instructions 100 XP	6
	5.4	Creating a data frame	6
		Instructions 100 XP	6
	5.5	Creating a data frame (2)	6
		Instructions 100 XP	6
	5.6	Selection of data frame elements	6
		Instructions 100 XP	6
	5.7	Selection of data frame elements (2)	6
		Instructions 100 XP	6
	5.8	Only planets with rings	6
		Instructions 100 XP	6
	5.9	Only planets with rings (2)	6
		Instructions 100 XP	6
	5.10	Only planets with rings but shorter	6
		Instructions 100 XP	6
	5.11	Sorting	6
		Instructions 100 XP	6
	5.12	Sorting your data frame	6
		Instructions 100 XP	6
6	Lists		6
	6.1	Lists, why would you need them?	6
		Instructions 100 XP	6
	6.2	Lists, why would you need them? (2)	6
		Instructions 100 XP	6
	6.3	Creating a list	6
		Instructions 100 XP	6
	6.4	Creating a named list	6
		Instructions 100 XP	7
	6.5	Creating a named list (2)	7
		Instructions 100 XP	7
	6.6	Selecting elements from a list	7
		6.6.1 Instructions 100 XP	7
	6.7	Creating a new list for another movie	7
		Instructions 100 XP	7

I R fundamentals in programming, o	lata managment and visualization
elational and logical operators, and conc	litional statements
nditionals and Control Flow	
Instructions 100 XP	
Greater and less than	
Instructions 100 XP	
Compare vectors	
Instructions 100 XP	
Compare matrices	
Instructions 100 XP	
& and $ $	
Instructions 100 XP	
Instructions 100 XP	
Blend it all together	
_	
Instructions 100 XP	
Instructions 100 XP	
instructions 100 m · · · · · · · ·	
Loops	
7.1 Write a while loop	
Instructions 100 XP	
7.2 Throw in more conditionals	
T 1 12 100 TT	
-	
*	
*	
Instructions 100 XP	

	7.7	Loop over a matrix
		Instructions 100 XP
	7.8	Mix it up with control flow
		Instructions 100 XP
	7.9	Next, you break it
	7.10	Build a for loop from scratch
		Instructions 100 XP
8	Eune	etions 100
U	8.1	Function documentation
	0.1	Instructions 100 XP
	8.2	Use a function
	0.2	Instructions 100 XP
	8.3	Use a function (2)
	0.5	Instructions 100 XP
	8.4	Use a function (3)
	0.4	Instructions 100 XP
	8.5	Functions inside functions
	0.0	Instructions 100 XP
	8.6	Write your own function
	0.0	Instructions 100 XP
	8.7	Write your own function (2)
	0.1	Instructions 100 XP
	8.8	Write your own function (3)
	0.0	Instructions 100 XP
	8.9	Function scoping
	0.9	Instructions 50 XP
	8 10	R passes arguments by value
	0.10	Instructions 50 XP
	8 11	R you functional?
	0.11	Instructions 100 XP
	8 12	R you functional? (2)
	0.12	8.12.1 Instructions 100 XP
	8 13	Load an R Package
	0.10	Instructions 100 XP
	8 14	Different ways to load a package
	0.11	Instructions 50 XP
9	The	apply family 114
	9.1	Use lapply with your own function
		Instructions 100 XP
		Instructions 100 XP
		Instructions 100 XP

	9.2	Apply functions that return NULL	17
	9.3	How to use sapply	17
		9.3.1 Instructions 100 XP	18
	9.4	sapply with your own function	18
		Instructions 100 XP	19
	9.5	sapply with function returning vector	19
		Instructions 100 XP	
	9.6	sapply can't simplify, now what?	20
		Instructions 100 XP	
	9.7	sapply with functions that return NULL	
		Instructions 100 XP	
	9.8	Reverse engineering sapply	
	0.0	answer: (2) and (3)	
	9.9	Use vapply	
	0.0	Instructions 100 XP	
	0.10	Use vapply (2)	
	5.10	Instructions 100 XP	
	0.11	From sapply to vapply	
	9.11	Instructions 100 XP	
		Instructions 100 AP	24
10	Utili	ties 1	25
		Mathematical utilities	
	10.1	Instructions 100 XP	
	10.2	Find the error	
	10.2		
		Instructions 100 XP	26
	10.3	Instructions 100 XP	
	10.3	Data Utilities	26
		Data Utilities	26 27
		Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1	26 27 27
	10.4	Data Utilities	26 27 27 27
	10.4	Data Utilities	26 27 27 27 28
	10.4 10.5	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1	26 27 27 27 28 28
	10.4 10.5	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1	26 27 27 27 28 28 28
	10.4 10.5 10.6	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1 Instructions 100 XP 1 Instructions 100 XP 1	26 27 27 28 28 28 28 29
	10.4 10.5 10.6	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1 Instructions 100 XP 1 grepl & grep (2) 1	26 27 27 28 28 28 29 29
	10.4 10.5 10.6 10.7	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1 Instructions 100 XP 1 grepl & grep (2) 1 Instructions 100 XP 1 Instructions 100 XP 1	26 27 27 28 28 28 29 29 30
	10.4 10.5 10.6 10.7	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1 Instructions 100 XP 1 grepl & grep (2) 1 Instructions 100 XP 1 sub & gsub 1	26 27 27 28 28 28 29 29 30 30
	10.4 10.5 10.6 10.7 10.8	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1 Instructions 100 XP 1 grepl & grep (2) 1 Instructions 100 XP 1 sub & gsub 1 Instructions 100 XP 1	26 27 27 28 28 28 29 30 30 31
	10.4 10.5 10.6 10.7 10.8	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1 Instructions 100 XP 1 sub & gsub 1 Instructions 100 XP 1 sub & gsub 1 Instructions 100 XP 1 sub & gsub (2) 1	26 27 27 28 28 29 29 30 30 31 31
	10.4 10.5 10.6 10.7 10.8 10.9	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1 Instructions 100 XP 1 sub & grep (2) 1 Instructions 100 XP 1 sub & gsub 1 Instructions 100 XP 1 sub & gsub (2) 1 Instructions 50 XP 1	26 27 27 28 28 28 29 30 30 31 31 32
	10.4 10.5 10.6 10.7 10.8 10.9	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1 Instructions 100 XP 1 grepl & grep (2) 1 Instructions 100 XP 1 sub & gsub 1 Instructions 100 XP 1 sub & gsub (2) 1 Instructions 50 XP 1 ORight here, right now 1	26 27 27 28 28 29 30 30 31 31 32 32
	10.4 10.5 10.6 10.7 10.8 10.9	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1 Instructions 100 XP 1 sub & gsub 1 Instructions 100 XP 1 sub & gsub (2) 1 Instructions 50 XP 1 ORight here, right now 1 Instructions 100 XP 1	26 27 27 28 28 29 30 31 31 32 32 32
	10.4 10.5 10.6 10.7 10.8 10.9	Data Utilities 1 Instructions 100 XP 1 Find the error (2) 1 Instructions 100 XP 1 Beat Gauss using R 1 Instructions 100 XP 1 grepl & grep 1 Instructions 100 XP 1 grepl & grep (2) 1 Instructions 100 XP 1 sub & gsub 1 Instructions 100 XP 1 sub & gsub (2) 1 Instructions 50 XP 1 ORight here, right now 1 Instructions 100 XP 1 Ucreate and format dates 1	26 27 27 28 28 29 30 31 31 32 32 32

	10.12 Create and format times	134
	10.12.1 Instructions 100 XP	135
	10.13 Calculations with Dates	135
	Instructions 100 XP	136
	10.14 Calculations with Times	136
	Instructions 100 XP	137
	10.15Time is of the essence	137
	Instructions 100 XP	137
11	Data visualization with ggplot2 and friends	139
		1 4 6
111	The whole game of statistical Inference	140
		140
12	The whole game of statistical Inference Statistical Inference with resampling: Bootstrap and Jacknife. 12.1 Likelihood inference	142
12	Statistical Inference with resampling: Bootstrap and Jacknife.	142
12	Statistical Inference with resampling: Bootstrap and Jacknife. 12.1 Likelihood inference	142 142 142
12	Statistical Inference with resampling: Bootstrap and Jacknife. 12.1 Likelihood inference	142 142 142
12 13	Statistical Inference with resampling: Bootstrap and Jacknife. 12.1 Likelihood inference	142 142 142 142
12 13	Statistical Inference with resampling: Bootstrap and Jacknife. 12.1 Likelihood inference	142 142 142 142 143
12 13	Statistical Inference with resampling: Bootstrap and Jacknife. 12.1 Likelihood inference	142 142 142 142 143

Preface

Who I am. I am Saul Diaz Infante Velasco. I just starting as assistant professor at the Data Science graduate program of Universidad de Sonora at Hermosillo Mexico. My Background is related with numerical analysis and stochastic models. I'm are a enthusiastic of this treading topic called Data-Science, but perhaps at the moment I only have just intuition about what really it is. However, I have been programming almost 20 years an moved from old programming langues as FORTRAN, Pascal, Basic, Cobol, C, C++ to the new well established treading development workflows like R, Python and Julia. This is my firs attempt in R.

More of this book is work in progress. We aim to provide material as well we review and improve our basic skills to face the study of the most popular methods in Machine learning. Thus the book try to cover fundamentals in R programming as data types, flow control structures and put particular importance in the well practice of coding functions. Then we moves to the management of data whit dplyr and other packages. To finish this part we discuss some package to visualize data. Then, we face the problem o estimation and explore techniques based on bootstrap—and another sampling flavors.

This book has been started on January, 2023 as part of a course to the Master on Data Science from Universidad de Sonora.

I'm writing this book to follow a path of self learning, understanding and and joy for this matter called Data Science. I'm not try to become and expert instead I just pursuit the joy of the interaction of math, computational sciences and the generosity of this virtuous learning-teaching process.

https://sauldiazinfante.github.io/statisticalInferenceinR4DS/

Introduction

The focus of this course is int the programming and basic techniques for inference that are usually applied in data science. We start by reviewing and enforcing programming skills. Then we will use the database of entomological data practice and build the required bases for more structured tools like bootstrap or Jackknife cuts.

Figure 1 further explores the impact of temperature on ozone level.

Figure 1: Temperature and ozone level.

The tidyverse

We need to install a R package. The majority of the packages that we will use are part of the so-called tidyverse package. The packages in the tidyverse share a common philosophy of data and R programming, and are designed to work together naturally.

You can install the complete tidyverse with the line of code:

then we can use it by loading in the preamble section with

see https://www.tidyverse.org/ documentation.

Part I

R fundamentals in programming, data managment and visualization

We dedicate this part to overview the basics to program in R. The aim of this part is building the basis for Machine learning, namely data types as, vectors, lists, factors and matrices

Nuts and bolts: Data types

Entering Input: the assigment operator

The thing that we type on the R console prompt are expressions. The firs expression we discuses here is the assignment operator, please watch the following video https://www.youtube.com/watch?v=vGY5i_J2c-c&t=283s

At the R console, any executable typed text that we put a side of the prompt are called expressions. We start by the <- symbol is the assignment operator.

[1] 0

[1] 0

[1] "what's up"

The [1] shown in the output indicates that x is a vector and 0 is the element at position with index 1.

Best Coding Practices for R

What we mean when say "better coding practice"

R programmers have a bad reputation writing bad code. Perhaps the main reason is that the people whose write much of the package are not programmers but scientific from other areas. Sometimes we overestimate crucial aspects from a programming standpoint. As R programmers we overcome to write the code for production. Mostly we write scripts and when we deploy it the same when we just wrap it in a function and perhaps a package. It is common to face poorly written code—columns were referred by numbers, functions were dependent upon global environment variables, 50+ lines functions without arguments and with over-sized lines code 100 characters or more, not indentation, poor naming, conventions etc,...,.

We strongly encourage to use a style. Yea I know, there is not a unique way to do it, but the philosophy is to follow a consistent style. With respect to this regard made yourself a favor and read this great book for R

https://bookdown.org/content/d1e53ac9-28ce-472f-bc2c-f499f18264a3/

Folder Structure

Code Structure

Sections

Structural Composition

Identation

Styling

Final Comments

Tidyverse Fundamentals with R

Introduction to Tidyverse

Reshaping Data with tidyr

Project

Modeling with Data in the Tidyverse

Communication with Data in the Tidyverse

Categorical Data in the Tydiverse

Data Manipulation

Data Manipulation with dplyr

Joining Data with dplyr

Case Study: Exploratory Data Analysis in R

Data Manipulation with data.table in R

Joining Data with data.table in R

1 Intro to basics

1.1 How it works

In the text editor you should type R code to solve the exercises. When you hit **ctrl** + **enter**, every line of code is interpreted and executed by R and you get a message whether or not your code was correct.

R makes use of the # sign to add comments, so that you and others can understand what the R code is about. Comments are not run as R code, so they will not influence your result. For example, Calculate 3+4 in the editor on the right is a comment.

You can also execute R commands straight in the console. This is a good way to experiment with R code.

Instructions 100 XP

- In the text editor on the right there is already some sample code.
- Can you see which lines are actual R code and which are comments?
- Add a line of code that calculates the sum of 6 and 12, and hit the enter button

$ex_01.R$

```
# Calculate 3 + 4
3 + 4
# Calculate 6 + 12
6 + 12
```

1.2 Arithmetic with R

In its most basic form, R can be used as a simple calculator. Consider the following arithmetic operators:

• Addition: +

- Subtraction: -
- Multiplication: *
- Division: /
- Exponentiation: ^
- Modulo: %%

The last two might need some explaining:

- The ^ operator raises the number to its left to the power of the number to its right: for example 3^2 is 9.
- The modulo returns the remainder of the division of the number to the left by the number on its right, for example 5 modulo 3 or 5 %% 3 is 2.

Instructions 100 XP

- Type 2⁵ in the editor to calculate 2 to the power 5.
- Type 28 %% 6 to calculate 28 modulo 6.
- Run the answer in the console and have a look at the R output .
- Note how the # symbol is used to add comments on the R code.

$ex_02.R$

1.2.1 Variable assignment

A basic concept in (statistical) programming is called a variable.

A variable allows you to store a value (e.g. 4) or an object (e.g. a function description) in R. You can then later use this variable's name to easily access the value or the object that is stored within this variable.

You can assign a value 4 to a variable my var with the command

```
my_var < -4
```

1.2.1.1 Instructions 100 XP

Over to you: complete the code in the editor such that it assigns the value 42 to the variable x in the editor. Submit the answer. Notice that when you ask R to print x, the value 42 appears.

ex 03.R

```
# Assign the value 42 to x
# Print out the value of the variable x
print (x)
```

1.2.2 Variable assignment (2)

Suppose you have a fruit basket with five apples. As a data analyst in training, you want to store the number of apples in a variable with the name my apples.

1.2.2.1 Instructions 100 XP

- Type the following code in the editor: my_apples <- 5. This will assign the value 5 to my apples.
- Type: my_apples below the second comment. This will print out the value of my_apples.
- Run your answer, and look at the output: you see that the number 5 is printed. So R now links the variable my_apples to the value 5.

ex 04.R

```
# Assign the value 5 to the variable my_apples
my_apples <- 5
# Print out the value of the variable my_apples
```

```
print(my_apples)
```

1.3 Variable assignment (3)

Every tasty fruit basket needs oranges, so you decide to add six oranges. As a data analyst, your reflex is to immediately create the variable my_oranges and assign the value 6 to it. Next, you want to calculate how many pieces of fruit you have in total. Since you have given meaningful names to these values,

```
i you can now code this in a clear way:

my_apples + my_oranges
```

Instructions 100 XP

- Assign to my_oranges the value 6.
- Add the variables my_apples and my_oranges and have R simply print the result.
- Assign the result of adding my_apples and my_oranges to a new variable my_fruit.

$ex_05.R$

```
# Assign a value to the variables my_apples and my_oranges
my_apples <- 5
my_oranges <- 6

# Add these two variables together
my_apples + my_oranges

# Create the variable my_fruit
my_fruit <- my_apples + my_oranges</pre>
```

1.4 Apples and oranges

Common knowledge tells you not to add apples and oranges. But hey, that is what you just did, no :-)? The my_apples and my_oranges variables both contained a number in the previous exercise. The + operator works with numeric variables in R. If you really tried to add "apples" and "oranges", and assigned a text value to the variable my_oranges (see the

editor), you would be trying to assign the addition of a numeric and a character variable to the variable my_fruit. This is not possible.

Instructions 100 XP

- Run the answer and read the error message. Make sure to understand why this did not work.
- Adjust the code so that R knows you have 6 oranges and thus a fruit basket with 11 pieces of fruit.

$ex_06.R$

```
# Assign a value to the variable my_apples
my_apples <- 5
# Fix the assignment of my_oranges
my_oranges <- "six"
# Create the variable my_fruit and print it out
my_fruit <- my_apples + my_oranges
my_fruit</pre>
```

Response

$ex_06.R$

```
# Assign a value to the variable my_apples
my_apples <- 5
# Fix the assignment of my_oranges
my_oranges <- 6
# Create the variable my_fruit and print it out
my_fruit <- my_apples + my_oranges
my_fruit</pre>
```

1.5 Basic data types in R

R works with numerous data types. Some of the most basic types to get started are:

- Decimal values like 4.5 are called numerics.
- Whole numbers like 4 are called integers. Integers are also numerics.
- Boolean values (TRUE or FALSE) are called logical.
- Text (or string) values are called characters.

Note how the quotation marks in the editor indicate that "some text" is a string.

Instructions 100 XP

Change the value of the:

- my_numeric variable to 42.
- my_character variable to "universe". Note that the quotation marks indicate that "universe" is a character.
- my_logical variable to FALSE.

i Note that R is case sensitive!

Thus despite the varibales called var, Var, vAr, has the same fonetic characters, R understand each of these as different memory addresses.

$ex_07.R$

```
# Change my_numeric to be 42
my_numeric <- 42.5

# Change my_character to be "universe"
my_character <- "some text"

# Change my_logical to be FALSE
my_logical <- TRUE</pre>
```

Response

$ex_07.R$

```
# Change my_numeric to be 42
my_numeric <- 42

# Change my_character to be "universe"
my_character <- "universe"

# Change my_logical to be FALSE
my_logical <- FALSE</pre>
```

1.6 What's that data type?

Do you remember that when you added 5 + ``six'', you got an error due to a mismatch in data types? You can avoid such embarrassing situations by checking the data type of a variable beforehand. You can do this with the class() function, as the code in the editor shows.

Instructions 100 XP

Complete the code in the editor and also print out the classes of my_character and my_logical.

$ex_08.R$

```
# Declare variables of different types

my_numeric <- 42
my_character <- "universe"
my_logical <- FALSE
# Check class of my_numeric
class(my_numeric)

# Check class of my_character
class(my_character)

# Check class of my_logical
class(my_logical)</pre>
```

2 Vectors

2.1 Create a vector

Feeling lucky? You better, because this chapter takes you on a trip to the City of Sins, also known as Statisticians Paradise!

Thanks to R and your new data-analytical skills, you will learn how to uplift your performance at the tables and fire off your career as a professional gambler. This chapter will show how you can easily keep track of your betting progress and how you can do some simple analyses on past actions. Next stop, Vegas Baby... VEGAS!!

Instructions 100 XP

• Do you still remember what you have learned in the first chapter? Assign the value "Go!" to the variable vegas. Remember: R is case sensitive!

$ex_08.R$

```
# Define the variable vegas
vegas <- "Go!"</pre>
```

2.2 Create a vector (2)

Let us focus first!

On your way from rags to riches, you will make extensive use of vectors. Vectors are onedimension arrays that can hold numeric data, character data, or logical data. In other words, a vector is a simple tool to store data. For example, you can store your daily gains and losses in the casinos.

In R, you create a vector with the combine function c(). You place the vector elements separated by a comma between the parentheses.

```
numeric_vector <- c(1, 2, 3)
character_vector <- c("a", "b", "c")</pre>
```

Once you have created these vectors in R, you can use them to do calculations.

Instructions 100 XP

Complete the code such that boolean_vector contains the three elements: TRUE, FALSE and TRUE' (in that order).

$ex_09.R$

```
numeric_vector <- c(1, 10, 49)
character_vector <- c("a", "b", "c")

# Complete the code for boolean_vector
boolean_vector <-c(TRUE, FALSE, TRUE)</pre>
```

2.2.1 Create a vector (3)

After one week in Las Vegas and still zero Ferraris in your garage, you decide that it is time to start using your data analytical superpowers.

Before doing a first analysis, you decide to first collect all the winnings and losses for the last week:

For poker_vector:

- On Monday you won \$140
- Tuesday you lost \$50
- Wednesday you won \$20
- Thursday you lost \$120
- Friday you won \$240

For roulette_vector:

- On Monday you lost \$24
- Tuesday you lost \$50
- Wednesday you won \$100
- Thursday you lost \$350

• Friday you won \$10

You only played poker and roulette, since there was a delegation of mediums that occupied the craps tables. To be able to use this data in R, you decide to create the variables poker_vector and roulette_vector.

Instructions 100 XP

Assign the winnings/losses for roulette to the variable roulette_vector. You lost \$24, then lost \$50, won \$100, lost \$350, and won \$10.

$ex_10.R$

```
# Poker winnings from Monday to Friday
poker_vector <- c(140, -50, 20, -120, 240)

# Roulette winnings from Monday to Friday
roulette_vector <- c(-24, -50, 100, -350, 10)</pre>
```

2.2.2 Naming a vector

As a data analyst, it is important to have a clear view on the data that you are using. Understanding what each element refers to is therefore essential.

In the previous exercise, we created a vector with your winnings over the week. Each vector element refers to a day of the week but it is hard to tell which element belongs to which day. It would be nice if you could show that in the vector itself.

You can give a name to the elements of a vector with the names() function. Have a look at this example:

```
#| code-line-numbers: false
#| code-fold: false
#| code-summary: "Show the code"

some_vector <- c("John Doe", "poker player")
names(some_vector) <- c("Name", "Profession")</pre>
```

This code first creates a vector some_vector and then gives the two elements a name. The first element is assigned the name Name, while the second element is labeled Profession. Printing the contents to the console yields following output:

```
i Output

Name Profession

"John Doe" "poker player"
```

The code in the editor names the elements in poker_vector with the days of the week. Add code to do the same thing for roulette_vector.

$ex_11.R$

```
# Poker winnings from Monday to Friday
poker_vector <- c(140, -50, 20, -120, 240)

# Roulette winnings from Monday to Friday
roulette_vector <- c(-24, -50, 100, -350, 10)

# Assign days as names of poker_vector
names(poker_vector) <-
    c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")

# Assign days as names of roulette_vector

names(roulette_vector) <-
    c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")</pre>
```

2.3 Naming a vector (2)

If you want to become a good statistician, you have to become lazy. (If you are already lazy, chances are high you are one of those exceptional, natural-born statistical talents.)

In the previous exercises you probably experienced that it is boring and frustrating to type and retype information such as the days of the week. However, when you look at it from a higher perspective, there is a more efficient way to do this, namely, to assign the days of the week vector to a **variable**!

Just like you did with your poker and roulette returns, you can also create a variable that contains the days of the week. This way you can use and re-use it.

- A variable days_vector that contains the days of the week has already been created for you.
- Use days_vector to set the names of poker_vector and roulette_vector.

$ex_12.R$

```
# Poker winnings from Monday to Friday
poker_vector <- c(140, -50, 20, -120, 240)

# Roulette winnings from Monday to Friday
roulette_vector <- c(-24, -50, 100, -350, 10)

# The variable days_vector
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")

# Assign the names of the day to roulette_vector and poker_vector
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector</pre>
```

2.4 Calculating total winnings

Now that you have the poker and roulette winnings nicely as named vectors, you can start doing some data analytical magic.

You want to find out the following type of information:

- How much has been your overall profit or loss per day of the week?
- Have you lost money over the week in total?
- Are you winning/losing money on poker or on roulette? To get the answers, you have to do arithmetic calculations on vectors.

It is important to know that if you sum two vectors in R, it takes the element-wise sum. For example, the following three statements are completely equivalent:

You can also do the calculations with variables that represent vectors:

- Take the sum of the variables A_vector and B_vector and assign it to total_vector.
- Inspect the result by printing out total_vector.

$ex_13.R$

```
A_vector <- c(1, 2, 3)
B_vector <- c(4, 5, 6)

# Take the sum of A_vector and B_vector
total_vector <- A_vector + B_vector

# Print out total_vector
print(total_vector)</pre>
```

2.5 Calculating total winnings (2)

Now you understand how R does arithmetic with vectors, it is time to get those Ferraris in your garage! First, you need to understand what the overall profit or loss per day of the week was. The total daily profit is the sum of the profit / loss you realized on poker per day, and the profit / loss you realized on roulette per day.

In R, this is just the sum of roulette_vector and poker_vector.

Instructions 100 XP

Assign to the variable total_daily how much you won or lost on each day in total (poker and roulette combined).

$ex_14.R$

```
# Poker and roulette winnings from Monday to Friday:
poker_vector <- c(140, -50, 20, -120, 240)
roulette_vector <- c(-24, -50, 100, -350, 10)
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector

# Assign to total_daily how much you won/lost on each day
total_daily <- roulette_vector + poker_vector</pre>
```

2.6 Calculating total winnings (3)

Based on the previous analysis, it looks like you had a mix of good and bad days. This is not what your ego expected, and you wonder if there may be a very tiny chance you have lost money over the week in total?

A function that helps you to answer this question is sum(). It calculates the sum of all elements of a vector. For example, to calculate the total amount of money you have lost/won with poker you do:

```
total_poker <- sum(poker_vector)</pre>
```

Instructions 100 XP

- Calculate the total amount of money that you have won/lost with roulette and assign to the variable total_roulette.
- Now that you have the totals for roulette and poker, you can easily calculate total_week (which is the sum of all gains and losses of the week).
- Print out total_week.

$ex_15.R$

```
# Poker and roulette winnings from Monday to Friday:
poker_vector <- c(140, -50, 20, -120, 240)
roulette_vector <- c(-24, -50, 100, -350, 10)
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector

# Total winnings with poker
total_poker <- sum(poker_vector)

# Total winnings with roulette
total_roulette <- sum(roulette_vector)

# Total winnings overall
total_week <- total_poker + total_roulette

# Print out total_week
print(total_week)</pre>
```

2.7 Comparing total winnings

Oops, it seems like you are losing money. Time to rethink and adapt your strategy! This will require some deeper analysis...

After a short brainstorm in your hotel's jacuzzi, you realize that a possible explanation might be that your skills in roulette are not as well developed as your skills in poker. So maybe your total gains in poker are higher (or >) than in roulette.

Instructions 100 XP

- Calculate total_poker and total_roulette as in the previous exercise. Use the sum() function twice.
- Check if your total gains in poker are higher than for roulette by using a comparison. Simply print out the result of this comparison. What do you conclude, should you focus on roulette or on poker?

ex 16.R

```
# Poker and roulette winnings from Monday to Friday:
poker_vector <- c(140, -50, 20, -120, 240)
roulette_vector <- c(-24, -50, 100, -350, 10)
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector

# Calculate total gains for poker and roulette
total_poker <- sum(poker_vector)
total_roulette <- sum(roulette_vector)

# Check if you realized higher total gains in poker than in roulette
print(total_poker > total_roulette)
```

2.8 Vector selection: the good times

Your hunch seemed to be right. It appears that the poker game is more your cup of tea than roulette.

Another possible route for investigation is your performance at the beginning of the working week compared to the end of it. You did have a couple of Margarita cocktails at the end of the week...

To answer that question, you only want to focus on a selection of the total_vector. In other words, our goal is to select specific elements of the vector. To select elements of a vector (and later matrices, data frames, ...), you can use square brackets. Between the square brackets, you indicate what elements to select. For example, to select the first element of the vector, you type poker_vector[1]. To select the second element of the vector, you type poker_vector[2], etc. Notice that the first element in a vector has index 1, not 0 as in many other programming languages.

Instructions 100 XP

Assign the poker results of Wednesday to the variable poker_wednesday.

$ex_17.R$

```
# Poker and roulette winnings from Monday to Friday:
poker_vector <- c(140, -50, 20, -120, 240)
roulette_vector <- c(-24, -50, 100, -350, 10)
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector

# Define a new variable based on a selection
poker_wednesday <- poker_vector[3]</pre>
```

2.9 Vector selection: the good times (2)

How about analyzing your midweek results?

To select multiple elements from a vector, you can add square brackets at the end of it. You can indicate between the brackets what elements should be selected. For example: suppose you want to select the first and the fifth day of the week: use the vector c(1, 5) between the square brackets. For example, the code below selects the first and fifth element of poker_vector:

```
poker_vector[c(1, 5)]
```

Assign the poker results of Tuesday, Wednesday and Thursday to the variable poker_midweek.

$ex_18.R$

```
# Poker and roulette winnings from Monday to Friday:
poker_vector <- c(140, -50, 20, -120, 240)
roulette_vector <- c(-24, -50, 100, -350, 10)
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector

# Define a new variable based on a selection
poker_midweek <- poker_vector[c(2, 3, 4)]</pre>
```

2.10 Vector selection: the good times (3)

Selecting multiple elements of poker_vector with c(2, 3, 4) is not very convenient. Many statisticians are lazy people by nature, so they created an easier way to do this: c(2, 3, 4) can be abbreviated to 2:4, which generates a vector with all natural numbers from 2 up to 4.

So, another way to find the mid-week results is poker_vector[2:4]. Notice how the vector 2:4 is placed between the square brackets to select element 2 up to 4.

Instructions 100 XP

Assign to roulette_selection_vector the roulette results from Tuesday up to Friday; make use of : if it makes things easier for you.

$ex_19.R$

```
# Poker and roulette winnings from Monday to Friday:
poker_vector <- c(140, -50, 20, -120, 240)
roulette_vector <- c(-24, -50, 100, -350, 10)
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector</pre>
# Define a new variable based on a selection
```

```
roulette_selection_vector <- roulette_vector[2:5]</pre>
```

2.11 Vector selection: the good times (4)

Another way to tackle the previous exercise is by using the names of the vector elements (Monday, Tuesday, ...) instead of their numeric positions. For example,

```
poker_vector[c("Monday"]
```

will select the first element of poker_vector since "Monday" is the name of that first element.

Just like you did in the previous exercise with numerics, you can also use the element names to select multiple elements, for example:

```
poker_vector[c("Monday","Tuesday")]
```

Instructions 100 XP

- Select the first three elements in poker_vector by using their names: "Monday", "Tuesday" and "Wednesday". Assign the result of the selection to poker_start.
- Calculate the average of the values in poker_start with the mean() function. Simply print out the result so you can inspect it.

$ex_20.R$

```
# Poker and roulette winnings from Monday to Friday:
poker_vector <- c(140, -50, 20, -120, 240)
roulette_vector <- c(-24, -50, 100, -350, 10)
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector

# Select poker results for Monday, Tuesday and Wednesday
poker_start <- poker_vector[c("Monday", "Tuesday", "Wednesday")]

# Calculate the average of the elements in poker_start
mean(poker_start)</pre>
```

2.12 Selection by comparison - Step 1

By making use of comparison operators, we can approach the previous question in a more proactive way.

The (logical) comparison operators known to R are:

- < for less than
- \bullet > for greater than
- <= for less than or equal to
- >= for greater than or equal to
- == for equal to each other
- != not equal to each other

As seen in the previous chapter, stating 6 > 5 returns TRUE. The nice thing about R is that you can use these comparison operators also on vectors. For example:

[1] FALSE FALSE TRUE

This command tests for every element of the vector if the condition stated by the comparison operator is TRUE or FALSE.

Instructions 100 XP

- Check which elements in poker_vector are positive (i.e. > 0) and assign this to selection vector.
- Print out selection_vector so you can inspect it. The printout tells you whether you won (TRUE) or lost (FALSE) any money for each day.

ex 21.R

```
# Poker and roulette winnings from Monday to Friday:
poker_vector <- c(140, -50, 20, -120, 240)
roulette_vector <- c(-24, -50, 100, -350, 10)
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector

# Which days did you make money on poker?
selection_vector <-
poker_vector > 0
```

```
# Print out selection_vector
print(selection_vector)
```

2.13 Selection by comparison - Step 2

Working with comparisons will make your data analytical life easier. Instead of selecting a subset of days to investigate yourself (like before), you can simply ask R to return only those days where you realized a positive return for poker.

In the previous exercises you used selection_vector <- poker_vector > 0 to find the days on which you had a positive poker return. Now, you would like to know not only the days on which you won, but also how much you won on those days.

You can select the desired elements, by putting **selection_vector** between the square brackets that follow poker vector:

```
poker_vector[selection_vector]
```

R knows what to do when you pass a logical vector in square brackets: it will only select the elements that correspond to TRUE in selection_vector.

Instructions 100 XP

Use selection_vector in square brackets to assign the amounts that you won on the profitable days to the variable poker_winning_days.

ex 22.R

```
# Poker and roulette winnings from Monday to Friday:
poker_vector <- c(140, -50, 20, -120, 240)
roulette_vector <- c(-24, -50, 100, -350, 10)
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector

# Which days did you make money on poker?
selection_vector <- poker_vector > 0

# Select from poker_vector these days
poker_winning_days <- poker_vector[selection_vector]</pre>
```

2.14 Advanced selection

Just like you did for poker, you also want to know those days where you realized a positive return for roulette.

2.14.1 Instructions 100 XP

- Create the variable selection_vector, this time to see if you made profit with roulette for different days.
- Assign the amounts that you made on the days that you ended positively for roulette to the variable roulette_winning_days. This vector thus contains the positive winnings of roulette_vector.

ex 23.R

```
# Poker and roulette winnings from Monday to Friday:
poker_vector <- c(140, -50, 20, -120, 240)
roulette_vector <- c(-24, -50, 100, -350, 10)
days_vector <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
names(poker_vector) <- days_vector
names(roulette_vector) <- days_vector

# Which days did you make money on roulette?
selection_vector <- roulette_vector > 0

# Select from roulette_vector these days
roulette_winning_days <- roulette_vector[selection_vector]</pre>
```

3 Matrices

In this chapter, you will learn how to work with matrices in R. By the end of the chapter, you will be able to create matrices and understand how to do basic computations with them. You will analyze the box office numbers of the Star Wars movies and learn how to use matrices in R. May the force be with you!

3.1 What's a matrix?

In R, a matrix is a collection of elements of the same data type (numeric, character, or logical) arranged into a fixed number of rows and columns. Since you are only working with rows and columns, a matrix is called two-dimensional.

You can construct a matrix in R with the matrix() function. Consider the following example:

```
matrix(1:9, byrow = TRUE, nrow = 3)
```

In the matrix() function:

- The first argument is the collection of elements that R will arrange into the rows and columns of the matrix. Here, we use 1:9 which is a shortcut for c(1, 2, 3, 4, 5, 6, 7, 8, 9).
- The argument byrow indicates that the matrix is filled by the rows. If we want the matrix to be filled by the columns, we just place byrow = FALSE.
- The third argument nrow indicates that the matrix should have three rows.

Instructions 100 XP

Construct a matrix with 3 rows containing the numbers 1 up to 9, filled row-wise.

$ex_24.R$

```
# Construct a matrix with 3 rows that contain the numbers 1 up to 9
matrix(1:9, byrow = TRUE, nrow = 3)
```

3.2 Analyze matrices, you shall

It is now time to get your hands dirty. In the following exercises you will analyze the box office numbers of the Star Wars franchise. May the force be with you!

In the editor, three vectors are defined. Each one represents the box office numbers from the first three Star Wars movies. The first element of each vector indicates the US box office revenue, the second element refers to the Non-US box office (source: Wikipedia).

In this exercise, you'll combine all these figures into a single vector. Next, you'll build a matrix from this vector.

Instructions 100 XP

- Use c(new_hope, empire_strikes, return_jedi) to combine the three vectors into one vector. Call this vector box_office.
- Construct a matrix with 3 rows, where each row represents a movie. Use the matrix() function to do this. The first argument is the vector box_office, containing all box office figures. Next, you'll have to specify nrow = 3 and byrow = TRUE. Name the resulting matrix star_wars_matrix.

ex 25.R

```
# Box office Star Wars (in millions!)
new_hope <- c(460.998, 314.4)
empire_strikes <- c(290.475, 247.900)
return_jedi <- c(309.306, 165.8)

# Create box_office
box_office <- c(new_hope, empire_strikes, return_jedi)

# Construct star_wars_matrix
star_wars_matrix <- matrix (box_office, nrow = 3, byrow = TRUE)</pre>
```

3.3 Naming a matrix

To help you remember what is stored in star_wars_matrix, you would like to add the names of the movies for the rows. Not only does this help you to read the data, but it is also useful to select certain elements from the matrix.

Similar to vectors, you can add names for the rows and the columns of a matrix

```
rownames(my_matrix) <- row_names_vector
colnames(my_matrix) <- col_names_vector</pre>
```

We went ahead and prepared two vectors for you: region, and titles. You will need these vectors to name the columns and rows of star_wars_matrix, respectively.

Instructions 100 XP

- Use colnames() to name the columns of star_wars_matrix with the region vector.
- Use rownames() to name the rows of star_wars_matrix with the titles vector.
- Print out star_wars_matrix to see the result of your work.

ex 26.R

```
# Box office Star Wars (in millions!)
new_hope <- c(460.998, 314.4)
empire_strikes <- c(290.475, 247.900)
return_jedi <- c(309.306, 165.8)

# Construct matrix
star_wars_matrix <- matrix(c(new_hope, empire_strikes, return_jedi), nrow = 3, byrow = TRU

# Vectors region and titles, used for naming
region <- c("US", "non-US")
titles <- c("A New Hope", "The Empire Strikes Back", "Return of the Jedi")

# Name the columns with region
colnames(star_wars_matrix) <- region

# Name the rows with titles
rownames(star_wars_matrix) <- titles

# Print out star_wars_matrix
print(star_wars_matrix)</pre>
```

3.4 Calculating the worldwide box office

The single most important thing for a movie in order to become an instant legend in Tinseltown is its worldwide box office figures.

To calculate the total box office revenue for the three Star Wars movies, you have to take the sum of the US revenue column and the non-US revenue column.

In R, the function rowSums() conveniently calculates the totals for each row of a matrix. This function creates a new vector:

```
rowSums(my_matrix)
```

Instructions 100 XP

Calculate the worldwide box office figures for the three movies and put these in the vector named worldwide_vector.

$ex_26.R$

3.5 Adding a column for the Worldwide box office

In the previous exercise you calculated the vector that contained the worldwide box office receipt for each of the three Star Wars movies. However, this vector is not yet part of star_wars_matrix.

You can add a column or multiple columns to a matrix with the cbind() function, which merges matrices and/or vectors together by column. For example:

```
big_matrix <- cbind(matrix1, matrix2, vector1 ...)</pre>
```

Instructions 100 XP

Add worldwide_vector as a new column to the star_wars_matrix and assign the result to all_wars_matrix. Use the cbind() function.

ex 27.R

3.6 Adding a row

Just like every action has a reaction, every cbind() has an rbind(). (We admit, we are pretty bad with metaphors.)

Your R workspace, where all variables you defined 'live' (check out what a workspace is), has already been initialized and contains two matrices:

- star wars matrix that we have used all along, with data on the original trilogy,
- star_wars_matrix2, with similar data for the prequels trilogy.

Explore these matrices in the console if you want to have a closer look. If you want to check out the contents of the workspace, you can type ls() in the console.

Instructions 100 XP

Use rbind() to paste together star_wars_matrix and star_wars_matrix2, in this order. Assign the resulting matrix to all_wars_matrix.

$ex_28.R$

```
# star_wars_matrix and star_wars_matrix2 are available in your workspace
star_wars_matrix
star_wars_matrix2

# Combine both Star Wars trilogies in one matrix
all_wars_matrix <- rbind(star_wars_matrix, star_wars_matrix2)</pre>
```

3.7 The total box office revenue for the entire saga

Just like cbind() has rbind(), colSums() has rowSums(). Your R workspace already contains the all_wars_matrix that you constructed in the previous exercise; type all_wars_matrix to have another look. Let's now calculate the total box office revenue for the entire saga.

Instructions 100 XP

- Calculate the total revenue for the US and the non-US region and assign total revenue_vector. You can use the colSums() function.
- Print out total_revenue_vector to have a look at the results.

$ex_29.R$

```
# all_wars_matrix is available in your workspace
all_wars_matrix

# Total revenue for US and non-US
total_revenue_vector <- colSums(all_wars_matrix)

# Print out total_revenue_vector
print(total_revenue_vector)</pre>
```

3.8 Selection of matrix elements

Similar to vectors, you can use the square brackets [] to select one or multiple elements from a matrix. Whereas vectors have one dimension, matrices have two dimensions. You should therefore use a comma to separate the rows you want to select from the columns. For example:

- my_matrix[1,2] selects the element at the first row and second column.
- my_matrix[1:3,2:4] results in a matrix with the data on the rows 1, 2, 3 and columns 2, 3, 4.

If you want to select all elements of a row or a column, no number is needed before or after the comma, respectively:

- my_matrix[,1] selects all elements of the first column.
- my_matrix[1,] selects all elements of the first row.

Back to Star Wars with this newly acquired knowledge! As in the previous exercise, all_wars_matrix is already available in your workspace.

Instructions 100 XP

- Select the non-US revenue for all movies (the entire second column of all_wars_matrix), store the result as non_us_all.
- Use mean() on non_us_all to calculate the average non-US revenue for all movies. Simply print out the result.
- This time, select the non-US revenue for the first two movies in all_wars_matrix. Store the result as non_us_some.
- Use mean() again to print out the average of the values in non_us_some.

ex 30.R

```
# all_wars_matrix is available in your workspace
all_wars_matrix

# Select the non-US revenue for all movies
non_us_all <- all_wars_matrix[,2]

# Average non-US revenue
print(mean(non_us_all))

# Select the non-US revenue for first two movies
non_us_some <- all_wars_matrix[1:2, 2]

# Average non-US revenue for first two movies
print(mean(non_us_some))</pre>
```

3.9 A little arithmetic with matrices

Similar to what you have learned with vectors, the standard operators like +, -,/, *, etc. work in an element-wise way on matrices in R.

For example, 2 * my_matrix multiplies each element of my_matrix by two.

As a newly-hired data analyst for Lucasfilm, it is your job to find out how many visitors went to each movie for each geographical area. You already have the total revenue figures in all_wars_matrix. Assume that the price of a ticket was 5 dollars. Simply dividing the box office numbers by this ticket price gives you the number of visitors.

3.9.1 Instructions 100 XP

- Divide all_wars_matrix by 5, giving you the number of visitors in millions.
- Assign the resulting matrix to visitors.
- Print out visitors so you can have a look.

ex 31.R

```
# all_wars_matrix is available in your workspace
all_wars_matrix

# Estimate the visitors
visitors <- all_wars_matrix / 5

# Print the estimate to the console
print(visitors)</pre>
```

3.10 A little arithmetic with matrices (2)

Just like 2 * my_matrix multiplied every element of my_matrix by two, my_matrix1 * my_matrix2 creates a matrix where each element is the product of the corresponding elements in my_matrix1 and my_matrix2.

After looking at the result of the previous exercise, big boss Lucas points out that the ticket prices went up over time. He asks to redo the analysis based on the prices you can find in ticket_prices_matrix (source: imagination).

Those who are familiar with matrices should note that this is not the standard matrix multiplication for which you should use %*% in R.

3.10.1 Instructions 100 XP

- Divide all_wars_matrix by ticket_prices_matrix to get the estimated number of US and non-US visitors for the six movies. Assign the result to visitors.
- From the visitors matrix, select the entire first column, representing the number of visitors in the US. Store this selection as us_visitors.
- Calculate the average number of US visitors; print out the result.

$ex_32.R$

```
# all_wars_matrix and ticket_prices_matrix are available in your workspace
all_wars_matrix
ticket_prices_matrix

# Estimated number of visitors
visitors <- all_wars_matrix / ticket_prices_matrix

# US visitors
us_visitors <- visitors[, 1]

# Average number of US visitors
print(mean(us_visitors))</pre>
```

4 Factors

Data often falls into a limited number of categories. For example, human hair color can be categorized as black, brown, blond, red, grey, or white—and perhaps a few more options for people who color their hair. In R, categorical data is stored in factors. Factors are very important in data analysis, so start learning how to create, subset, and compare them now.

4.1 What's a factor and why would you use it?

In this chapter you dive into the wonderful world of factors.

The term factor refers to a statistical data type used to store categorical variables. The difference between a categorical variable and a continuous variable is that a categorical variable can belong to a limited number of categories. A continuous variable, on the other hand, can correspond to an infinite number of values.

It is important that R knows whether it is dealing with a continuous or a categorical variable, as the statistical models you will develop in the future treat both types differently. (You will see later why this is the case.)

A good example of a categorical variable is sex. In many circumstances you can limit the sex categories to "Male" or "Female". (Sometimes you may need different categories. For example, you may need to consider chromosomal variation, hermaphroditic animals, or different cultural norms, but you will always have a finite number of categories.)

Instructions 100 XP

Assign to variable theory the value "factors".

ex 33.R

```
# Assign to the variable theory what this chapter is about!
theory <- "factors"</pre>
```

4.2 What's a factor and why would you use it? (2)

To create factors in R, you make use of the function factor(). First thing that you have to do is create a vector that contains all the observations that belong to a limited number of categories. For example, sex_vector contains the sex of 5 different individuals:

```
sex_vector <- c("Male", "Female", "Female", "Male", "Male")</pre>
```

It is clear that there are two categories, or in R-terms 'factor levels', at work here: "Male" and "Female".

The function factor() will encode the vector as a factor:

```
factor_sex_vector <- factor(sex_vector)</pre>
```

Instructions 100 XP

- Convert the character vector sex_vector to a factor with factor() and assign the result to factor_sex_vector
- Print out factor_sex_vector and assert that R prints out the factor levels below the actual values.

ex 34.R

```
# Sex vector
sex_vector <- c("Male", "Female", "Female", "Male", "Male")

# Convert sex_vector to a factor
factor_sex_vector <- factor(sex_vector)

# Print out factor_sex_vector
print(factor_sex_vector)</pre>
```

4.3 What's a factor and why would you use it? (3)

There are two types of categorical variables: a nominal categorical variable and an ordinal categorical variable.

A nominal variable is a categorical variable without an implied order. This means that it is impossible to say that 'one is worth more than the other'. For example, think of the categorical variable animals_vector with the categories "Elephant", "Giraffe", "Donkey" and

"Horse". Here, it is impossible to say that one stands above or below the other. (Note that some of you might disagree;-)).

In contrast, ordinal variables do have a natural ordering. Consider for example the categorical variable temperature_vector with the categories: "Low", "Medium" and "High". Here it is obvious that "Medium" stands above "Low", and "High" stands above "Medium".

Instructions 100 XP

Submit the answer to check how R constructs and prints nominal and ordinal variables. Do not worry if you do not understand all the code just yet, we will get to that.

$ex_35.R$

```
# Animals
animals_vector <- c("Elephant", "Giraffe", "Donkey", "Horse")
factor_animals_vector <- factor(animals_vector)
factor_animals_vector

# Temperature
temperature_vector <- c("High", "Low", "High", "Low", "Medium")
factor_temperature_vector <-
    factor(
        temperature_vector,
        order = TRUE,
        levels = c("Low", "Medium", "High")
    )
factor_temperature_vector</pre>
```

4.4 Factor levels

When you first get a dataset, you will often notice that it contains factors with specific factor levels. However, sometimes you will want to change the names of these levels for clarity or other reasons. R allows you to do this with the function levels():

```
levels(factor_vector) <- c("name1", "name2",...)</pre>
```

A good illustration is the raw data that is provided to you by a survey. A common question for every questionnaire is the sex of the respondent. Here, for simplicity, just two categories were recorded, "M" and "F". (You usually need more categories for survey data; either way, you use a factor to store the categorical data.)

```
survey_vector <- c("M", "F", "F", "M", "M")</pre>
```

Recording the sex with the abbreviations "M" and "F" can be convenient if you are collecting data with pen and paper, but it can introduce confusion when analyzing the data. At that point, you will often want to change the factor levels to "Male" and "Female" instead of "M" and "F" for clarity.

Watch out: the order with which you assign the levels is important. If you type levels(factor_survey_vector), you'll see that it outputs [1] "F" "M". If you don't specify the levels of the factor when creating the vector, R will automatically assign them alphabetically. To correctly map "F" to "Female" and "M" to "Male", the levels should be set to c("Female", "Male"), in this order.

Instructions 100 XP

- Check out the code that builds a factor vector from survey_vector. You should use factor_survey_vector in the next instruction.
- Change the factor levels of factor_survey_vector to c("Female", "Male"). Mind the order of the vector elements here.

ex 36.R

```
# Code to build factor_survey_vector
survey_vector <- c("M", "F", "F", "M", "M")
factor_survey_vector <- factor(survey_vector)

# Specify the levels of factor_survey_vector
levels(factor_survey_vector) <- c("F", "M")

levels(factor_survey_vector) <- c("Female", "Male")</pre>
```

4.5 Summarizing a factor

After finishing this course, one of your favorite functions in R will be summary (). This will give you a quick overview of the contents of a variable:

```
summary(my var)
```

Going back to our survey, you would like to know how many "Male" responses you have in your study, and how many "Female" responses. The summary() function gives you the answer to this question.

Instructions 100 XP

Ask a summary() of the survey_vector and factor_survey_vector. Interpret the results of both vectors. Are they both equally useful in this case?

$ex_37.R$

```
# Build factor_survey_vector with clean levels
survey_vector <- c("M", "F", "F", "M", "M")
factor_survey_vector <- factor(survey_vector)
levels(factor_survey_vector) <- c("Female", "Male")
factor_survey_vector

# Generate summary for survey_vector
summary(survey_vector)

# Generate summary for factor_survey_vector
summary(factor_survey_vector)</pre>
```

4.6 Battle of the sexes

You might wonder what happens when you try to compare elements of a factor. In factor_survey_vector you have a factor with two levels: "Male" and "Female". But how does R value these relative to each other?

Instructions 100 XP

Read the code in the editor and submit the answer to test if male is greater than (>) female.

$ex_38.R$

```
# Build factor_survey_vector with clean levels
survey_vector <- c("M", "F", "F", "M", "M")
factor_survey_vector <- factor(survey_vector)
levels(factor_survey_vector) <- c("Female", "Male")</pre>
```

```
# Male
male <- factor_survey_vector[1]

# Female
female <- factor_survey_vector[2]

# Battle of the sexes: Male 'larger' than female?
male > female
```

4.7 Ordered factors

Ordered factors Since "Male" and "Female" are unordered (or nominal) factor levels, R returns a warning message, telling you that the greater than operator is not meaningful. As seen before, R attaches an equal value to the levels for such factors.

But this is not always the case! Sometimes you will also deal with factors that do have a natural ordering between its categories. If this is the case, we have to make sure that we pass this information to R...

Let us say that you are leading a research team of five data analysts and that you want to evaluate their performance. To do this, you track their speed, evaluate each analyst as "slow", "medium" or "fast", and save the results in speed vector.

Instructions 100 XP

As a first step, assign speed_vector a vector with 5 entries, one for each analyst. Each entry should be either "slow", "medium", or "fast". Use the list below:

- Analyst 1 is medium,
- Analyst 2 is slow,
- Analyst 3 is slow,
- Analyst 4 is medium and
- Analyst 5 is fast.

No need to specify these are factors yet.

ex 39.R

```
speed_vector <- c(
    "medium",
    "slow",</pre>
```

```
"slow",
"medium",
"fast"
```

4.8 Ordered factors (2)

speed_vector should be converted to an ordinal factor since its categories have a natural ordering. By default, the function factor() transforms speed_vector into an unordered factor. To create an ordered factor, you have to add two additional arguments: ordered and levels.

By setting the argument ordered to TRUE in the function factor(), you indicate that the factor is ordered. With the argument levels you give the values of the factor in the correct order.

Instructions 100 XP

From speed_vector, create an ordered factor vector: factor_speed_vector. Set ordered to TRUE, and set levels to c("slow", "medium", "fast").

$ex_40.R$

```
# Create speed_vector
speed_vector <- c("medium", "slow", "slow", "medium", "fast")

# Convert speed_vector to ordered factor vector
factor_speed_vector <-
factor(
    speed_vector,
    ordered = TRUE,
    levels = c("slow", "medium", "fast")
)

# Print factor_speed_vector
factor_speed_vector</pre>
```

4.9 Comparing ordered factors

Having a bad day at work, 'data analyst number two' enters your office and starts complaining that 'data analyst number five' is slowing down the entire project. Since you know that 'data analyst number two' has the reputation of being a smarty-pants, you first decide to check if his statement is true.

The fact that factor_speed_vector is now ordered enables us to compare different elements (the data analysts in this case). You can simply do this by using the well-known operators.

Instructions 100 XP

- Use [2] to select from factor_speed_vector the factor value for the second data analyst. Store it as da2.
- Use [5] to select the factor_speed_vector factor value for the fifth data analyst. Store it as da5.
- Check if da2 is greater than da5; simply print out the result. Remember that you can use the > operator to check whether one element is larger than the other.

$ex_41.R$

```
# Create factor_speed_vector
speed_vector <- c("medium", "slow", "slow", "medium", "fast")
factor_speed_vector <-
   factor(
      speed_vector,
      ordered = TRUE,
      levels = c("slow", "medium", "fast")
)

# Factor value for second data analyst
da2 <- factor_speed_vector[2]

# Factor value for fifth data analyst
da5 <- factor_speed_vector[5]

# Is data analyst 2 faster than data analyst 5?
   print(da2 > da5)
```

5 Data frames

5.1 What's a data frame?

You may remember from the chapter about matrices that all the elements that you put in a matrix should be of the same type. Back then, your dataset on Star Wars only contained numeric elements.

When doing a market research survey, however, you often have questions such as:

- 'Are you married?' or 'yes/no' questions (logical)
- 'How old are you?' (numeric)
- 'What is your opinion on this product?' or other 'open-ended' questions (character)
- ... The output, namely the respondents' answers to the questions formulated above, is a dataset of different data types. You will often find yourself working with datasets that contain different data types instead of only one.

A data frame has the variables of a dataset as columns and the observations as rows. This will be a familiar concept for those coming from different statistical software packages such as SAS or SPSS.

Instructions 100 XP

Submit the answer. The data from the built-in example data frame mtcars will be printed to the console.

	mpg	cyl	disp	hp	drat	wt	qsec	٧s	\mathtt{am}	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2

Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

5.2 Quick, have a look at your dataset

Wow, that is a lot of cars!

Working with large datasets is not uncommon in data analysis. When you work with (extremely) large datasets and data frames, your first task as a data analyst is to develop a clear understanding of its structure and main elements. Therefore, it is often useful to show only a small part of the entire dataset.

So how to do this in R? Well, the function head() enables you to show the first observations of a data frame. Similarly, the function tail() prints out the last observations in your dataset.

Both head() and tail() print a top line called the 'header', which contains the names of the different variables in your dataset.

Instructions 100 XP

Call head() on the mtcars dataset to have a look at the header and the first observations.

$ex_42.R$

```
# Call head() on mtcars
head(mtcars)
```

5.3 Have a look at the structure

Another method that is often used to get a rapid overview of your data is the function str(). The function str() shows you the structure of your dataset.

For a data frame it tells you:

- The total number of observations (e.g. 32 car types)
- The total number of variables (e.g. 11 car features)
- A full list of the variables names (e.g. mpg, cyl ...)
- The data type of each variable (e.g. num)
- The first observations

Applying the str() function will often be the first thing that you do when receiving a new dataset or data frame. It is a great way to get more insight in your dataset before diving into the real analysis.

Instructions 100 XP

Investigate the structure of mtcars. Make sure that you see the same numbers, variables and data types as mentioned above.

$ex_43.R$

```
str(mtcars)
```

5.4 Creating a data frame

Since using built-in datasets is not even half the fun of creating your own datasets, the rest of this chapter is based on your personally developed dataset. Put your jet pack on because it is time for some space exploration!

As a first goal, you want to construct a data frame that describes the main characteristics of eight planets in our solar system. According to your good friend Buzz, the main features of a planet are:

- The type of planet (Terrestrial or Gas Giant).
- The planet's diameter relative to the diameter of the Earth.
- The planet's rotation across the sun relative to that of the Earth.
- If the planet has rings or not (TRUE or FALSE).

After doing some high-quality research on Wikipedia, you feel confident enough to create the necessary vectors: name, type, diameter, rotation and rings; these vectors have already been coded up in the editor. The first element in each of these vectors correspond to the first observation.

You construct a data frame with the data.frame() function. As arguments, you pass the vectors from before: they will become the different columns of your data frame. Because every column has the same length, the vectors you pass should also have the same length. But don't forget that it is possible (and likely) that they contain different types of data.

Instructions 100 XP

Use the function data.frame() to construct a data frame. Pass the vectors name, type, diameter, rotation and rings as arguments to data.frame(), in this order. Call the resulting data frame planets_df.

$ex_44.R$

5.5 Creating a data frame (2)

The planets_df data frame should have 8 observations and 5 variables. It has been made available in the workspace, so you can directly use it.

Instructions 100 XP

Use str() to investigate the structure of the new planets_df variable.

```
ex_45.R
```

```
str(planets_df)
```

5.6 Selection of data frame elements

Similar to vectors and matrices, you select elements from a data frame with the help of square brackets []. By using a comma, you can indicate what to select from the rows and the columns respectively. For example:

- my_df[1,2] selects the value at the first row and second column in my_df.
- my_df[1:3,2:4] selects rows 1, 2, 3 and columns 2, 3, 4 in my df.

Sometimes you want to select all elements of a row or column. For example, my_df[1,] selects all elements of the first row. Let us now apply this technique on planets_df!

Instructions 100 XP

- From planets_df, select the diameter of Mercury: this is the value at the first row and the third column. Simply print out the result.
- From planets_df, select all data on Mars (the fourth row). Simply print out the result.

 $ex_46.R$

```
# The planets_df data frame from the previous exercise is pre-loaded
# Print out diameter of Mercury (row 1, column 3)
print(planets_df[1, 3])
# Print out data for Mars (entire fourth row)
print(planets_df[4, ])
```

5.7 Selection of data frame elements (2)

Instead of using numerics to select elements of a data frame, you can also use the variable names to select columns of a data frame.

Suppose you want to select the first three elements of the type column. One way to do this is

```
planets_df[1:3, 2]
```

A possible disadvantage of this approach is that you have to know (or look up) the column number of type, which gets hard if you have a lot of variables. It is often easier to just make use of the variable name:

```
planets_df[1:3,"type"]
```

Instructions 100 XP

Select and print out the first 5 values in the "diameter" column of planets_df.

```
ex 47.R
```

```
print(planets_df[1:5, "diameter"])
```

5.8 Only planets with rings

You will often want to select an entire column, namely one specific variable from a data frame. If you want to select all elements of the variable diameter, for example, both of these will do the trick:

```
planets_df[,3]
planets_df[,"diameter"]
```

However, there is a short-cut. If your columns have names, you can use the \$ sign:

```
planets_df$diameter
```

Instructions 100 XP

- Use the \$ sign to select the rings variable from planets_df. Store the vector that results as rings_vector.
- Print out rings_vector to see if you got it right.

$ex_48.R$

```
# planets_df is pre-loaded in your workspace
# Select the rings variable from planets_df
rings_vector <- planets_df$rings
# Print out rings_vector
print(rings_vector)</pre>
```

5.9 Only planets with rings (2)

You probably remember from high school that some planets in our solar system have rings and others do not. Unfortunately you can not recall their names. Could R help you out?

If you type rings_vector in the console, you get:

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE

This means that the first four observations (or planets) do not have a ring (FALSE), but the other four do (TRUE). However, you do not get a nice overview of the names of these planets, their diameter, etc. Let's try to use rings_vector to select the data for the four planets with rings.

Instructions 100 XP

The code in the editor selects the name column of all planets that have rings. Adapt the code so that instead of only the name column, all columns for planets that have rings are selected.

ex 49.R

```
# planets_df and rings_vector are pre-loaded in your workspace

# Adapt the code to select all columns for planets with rings
planets_df[rings_vector, "name"]
planets_df[rings_vector, ]
```

5.10 Only planets with rings but shorter

So what exactly did you learn in the previous exercises? You selected a subset from a data frame (planets_df) based on whether or not a certain condition was true (rings or no rings), and you managed to pull out all relevant data. Pretty awesome! By now, NASA is probably already flirting with your CV;-).

Now, let us move up one level and use the function subset(). You should see the subset() function as a short-cut to do exactly the same as what you did in the previous exercises.

```
subset(my_df, subset = some_condition)
```

The first argument of subset() specifies the dataset for which you want a subset. By adding the second argument, you give R the necessary information and conditions to select the correct subset.

The code below will give the exact same result as you got in the previous exercise, but this time, you didn't need the rings_vector!

```
subset(planets_df, subset = rings)
```

Instructions 100 XP

Use subset() on planets_df to select planets that have a diameter smaller than Earth. Because the diameter variable is a relative measure of the planet's diameter w.r.t that of planet Earth, your condition is diameter < 1.

```
ex 50.R
```

```
# planets_df is pre-loaded in your workspace
# Select planets with diameter < 1
subset(planets_df, diameter < 1)</pre>
```

5.11 Sorting

Making and creating rankings is one of mankind's favorite affairs. These rankings can be useful (best universities in the world), entertaining (most influential movie stars) or pointless (best 007 look-a-like).

In data analysis you can sort your data according to a certain variable in the dataset. In R, this is done with the help of the function order().

order() is a function that gives you the ranked position of each element when it is applied on a variable, such as a vector for example:

```
a <- c(100, 10, 1000)
order(a)
```

10, which is the second element in a, is the smallest element, so 2 comes first in the output of order(a). 100, which is the first element in a is the second smallest element, so 1 comes second in the output of order(a).

This means we can use the output of order(a) to reshuffle a:

```
a[order(a)]
```

Instructions 100 XP

Experiment with the order() function in the console. Submit the answer when you are ready to continue.

ex 51.R

```
x <- rnorm(10)
order(x)
```

5.12 Sorting your data frame

Alright, now that you understand the order() function, let us do something useful with it. You would like to rearrange your data frame such that it starts with the smallest planet and ends with the largest one. A sort on the diameter column.

Instructions 100 XP

- Call order() on planets_df\$diameter (the diameter column of planets_df). Store the result as positions.
- Now reshuffle planets_df with the positions vector as row indexes inside square brackets. Keep all columns. Simply print out the result.

ex 52.R

```
# planets_df is pre-loaded in your workspace

# Use order() to create positions
positions <- order(planets_df$diameter)

# Use positions to sort planets_df
planets_df[positions,]</pre>
```

6 Lists

As opposed to vectors, lists can hold components of different types, just as your to-do lists can contain different categories of tasks. This chapter will teach you how to create, name, and subset these lists.

6.1 Lists, why would you need them?

Congratulations! At this point in the course you are already familiar with:

- **Vectors (one dimensional array)** can hold numeric, character or logical values. The elements in a vector all have the same data type.
- Matrices (two dimensional array) can hold numeric, character or logical values. The elements in a matrix all have the same data type.
- Data frames (two-dimensional objects) can hold numeric, character or logical values. Within a column all elements have the same data type, but different columns can be of different data type. Pretty sweet for an R newbie, right? ;-)

Instructions 100 XP

Submit the answer to start learning everything about lists!

6.2 Lists, why would you need them? (2)

A list in R is similar to your to-do list at work or school: the different items on that list most likely differ in length, characteristic, and type of activity that has to be done.

A list in R allows you to gather a variety of objects under one name (that is, the name of the list) in an ordered way. These objects can be matrices, vectors, data frames, even other lists, etc. It is not even required that these objects are related to each other in any way.

You could say that a list is some kind super data type: you can store practically any piece of information in it!

Instructions 100 XP

Just submit the answer to start the first exercise on lists.

6.3 Creating a list

Let us create our first list! To construct a list you use the function list():

```
my_list <- list(comp1, comp2 ...)</pre>
```

The arguments to the list function are the list components. Remember, these components can be matrices, vectors, other lists, ...

Instructions 100 XP

Construct a list, named my_list, that contains the variables my_vector, my_matrix and my_df as list components.

ex 53.R

```
# Vector with numerics from 1 up to 10
my_vector <- 1:10

# Matrix with numerics from 1 up to 9
my_matrix <- matrix(1:9, ncol = 3)

# First 10 elements of the built-in data frame mtcars
my_df <- mtcars[1:10,]

# Construct list with these different elements:
my_list <- list(my_vector, my_matrix, my_df)</pre>
```

6.4 Creating a named list

Well done, you're on a roll!

Just like on your to-do list, you want to avoid not knowing or remembering what the components of your list stand for. That is why you should give names to them:

```
my_list <- list(name1 = your_comp1, name2 = your_comp2)
```

This creates a list with components that are named name1, name2, and so on. If you want to name your lists after you've created them, you can use the names() function as you did with vectors. The following commands are fully equivalent to the assignment above:

```
my_list <- list(your_comp1, your_comp2) names(my_list) <- c("name1", "name2")
```

Instructions 100 XP

- Change the code of the previous exercise (see editor) by adding names to the components. Use for my_vector the name vec, for my_matrix the name mat and for my_df the name df.
- Print out my_list so you can inspect the output.

ex 54.R

```
# Vector with numerics from 1 up to 10
my_vector <- 1:10

# Matrix with numerics from 1 up to 9
my_matrix <- matrix(1:9, ncol = 3)

# First 10 elements of the built-in data frame mtcars
my_df <- mtcars[1:10,]

# Adapt list() call to give the components names
my_list <- list(my_vector, my_matrix, my_df)
names(my_list) <- c("vec", "mat", "df")
# Print out my_list
print(my_list)</pre>
```

6.5 Creating a named list (2)

Being a huge movie fan (remember your job at LucasFilms), you decide to start storing information on good movies with the help of lists.

Start by creating a list for the movie "The Shining". We have already created the variables mov, act and rev in your R workspace. Feel free to check them out in the console.

Instructions 100 XP

Complete the code in the editor to create shining_list; it contains three elements:

- moviename: a character string with the movie title (stored in mov)
- actors: a vector with the main actors' names (stored in act)
- reviews: a data frame that contains some reviews (stored in rev)

Do not forget to name the list components accordingly (names are moviename, actors and reviews).

$ex_55.R$

```
# The variables mov, act and rev are available

# Finish the code to build shining_list
shining_list <-
    list(
        moviename = mov,
        actors = act,
        reviews = rev
)</pre>
```

6.6 Selecting elements from a list

Your list will often be built out of numerous elements and components. Therefore, getting a single element, multiple elements, or a component out of it is not always straightforward.

One way to select a component is using the numbered position of that component. For example, to "grab" the first component of shining_list you type

```
shining_list[[1]]
```

A quick way to check this out is typing it in the console. Important to remember: to select elements from vectors, you use single square brackets: []. Don't mix them up!

You can also refer to the names of the components, with [[]] or with the \$ sign. Both will select the data frame representing the reviews:

```
shining_list[["reviews"]]
shining_list$reviews
```

Besides selecting components, you often need to select specific elements out of these components. For example, with shining_list[[2]][1] you select from the second component, actors (shining_list[[2]]), the first element ([1]). When you type this in the console, you will see the answer is Jack Nicholson.

6.6.1 Instructions 100 XP

- Select from shining list the vector representing the actors. Simply print out this vector.
- Select from shining_list the second element in the vector representing the actors. Do a printout like before.

ex 56.R

```
# shining_list is already pre-loaded in the workspace

# Print out the vector representing the actors
print(shining_list[["actors"]])

# Print the second element of the vector representing the actors
print(shining_list[["actors"]][2])
```

6.7 Creating a new list for another movie

You found reviews of another, more recent, Jack Nicholson movie: The Departed!

Scores	Comments
4.6	I would watch it again
5	Amazing!
4.8	I liked it
5	One of the best movies
4.2	Fascinating plot

It would be useful to collect together all the pieces of information about the movie, like the title, actors, and reviews into a single variable. Since these pieces of data are different shapes, it is natural to combine them in a list variable.

movie_title, containing the title of the movie, and movie_actors, containing the names of some of the actors in the movie, are available in your workspace.

Instructions 100 XP

- Create two vectors, called scores and comments, that contain the information from the reviews shown in the table.
- Find the average of the scores vector and save it as avg_review.
- Combine the scores and comments vectors into a data frame called reviews_df.
- Create a list, called departed_list, that contains the movie_title, movie_actors, reviews data frame as reviews_df, and the average review score as avg_review, and print it out.

$ex_57.R$

```
# Use the table from the exercise to define the comments and scores vectors
scores \leftarrow c(4.6, 5, 4.8, 5, 4.2)
comments <-
    c(
        "I would watch it again",
        "Amazing!",
        "I liked it",
        "One of the best movies",
        "Fascinating plot"
    )
# Save the average of the scores vector as avg_review
avg_review <- mean(scores)</pre>
# Combine scores and comments into the reviews_df data frame
reviews_df <- data.frame(scores, comments)</pre>
# Create and print out a list, called departed_list
departed_list <- list(</pre>
    movie_title,
    movie_actors,
    reviews_df,
    avg_review
print(departed_list)
```

Part II

R fundamentals in programming, data managment and visualization

We dedicate this part to overview the basics to program in R. The aim of this part is building the basis for Machine learning, namely control flow, loops, functional programming.

Relational and logical operators, and conditional statements

Conditionals and Control Flow

In this chapter, you'll learn about relational operators for comparing R objects, and logical operators like "and" and "or" for combining TRUE and FALSE values. Then, you'll use this knowledge to build conditional statements.

Equality

The most basic form of comparison is equality. Let's briefly recap its syntax. The following statements all evaluate to TRUE (feel free to try them out in the console).

```
3 == (2 + 1)
"intermediate" != "r"
TRUE != FALSE
"Rchitect" != "rchitect"
```

Notice from the last expression that R is case sensitive: "R" is not equal to "r". Keep this in mind when solving the exercises in this chapter!

Instructions 100 XP

- In the editor on the right, write R code to see if TRUE equals FALSE.
- Likewise, check if -6 * 14 is not equal to 17 101.
- Next up: comparison of character strings. Ask R whether the strings "useR" and "user" are equal.
- Finally, find out what happens if you compare logicals to numerics: are TRUE and 1 equal?

ex 001.R

```
# Comparison of logicals
TRUE == FALSE
# Comparison of numerics
```

```
-6 * 14 != 17 -101
# Comparison of character strings
"useR" == "user"

# Compare a logical with a numeric
TRUE == 1
```

Greater and less than

Apart from equality operators, Filip also introduced the less than and greater than operators: < and >. You can also add an equal sign to express less than or equal to or greater than or equal to, respectively. Have a look at the following R expressions, that all evaluate to FALSE:

```
(1 + 2) > 4
"dog" < "Cats"
TRUE <= FALSE
```

Remember that for string comparison, R determines the greater than relationship based on alphabetical order. Also, keep in mind that TRUE is treated as 1 for arithmetic, and FALSE is treated as 0. Therefore, FALSE < TRUE is TRUE.

Instructions 100 XP

- Write R expressions to check whether:
- -6 * 5 + 2 is greater than or equal to -10 + 1.
- "raining" is less than or equal to "raining dogs".
- TRUE is greater than FALSE.

$ex_002.R$

```
# Comparison of numerics
-6 * 5 + 2 >= -10 +1
# Comparison of character strings
"raining" <= "raining dogs"</pre>
```

```
# Comparison of logicals
TRUE > FALSE
```

Compare vectors

You are already aware that R is very good with vectors. Without having to change anything about the syntax, R's relational operators also work on vectors.

Let's go back to the example that was started in the video. You want to figure out whether your activity on social media platforms have paid off and decide to look at your results for LinkedIn and Facebook. The sample code in the editor initializes the vectors linkedin and facebook. Each of the vectors contains the number of profile views your LinkedIn and Facebook profiles had over the last seven days.

Instructions 100 XP

Using relational operators, find a logical answer, i.e. TRUE or FALSE, for the following questions:

- On which days did the number of LinkedIn profile views exceed 15? When was your
- LinkedIn profile viewed only 5 times or fewer? When was your LinkedIn profile
- visited more often than your Facebook profile?

ex003.R

```
# The linkedin and facebook vectors have already been created for you
# The linkedin and facebook vectors have already been created for you
linkedin <- c(16, 9, 13, 5, 2, 17, 14)
facebook <- c(17, 7, 5, 16, 8, 13, 14)

# Popular days
linkedin > 15
# Quiet days
linkedin <= 5

# LinkedIn more popular than Facebook
linkedin > facebook
```

Compare matrices

R's ability to deal with different data structures for comparisons does not stop at vectors. Matrices and relational operators also work together seamlessly!

Instead of in vectors (as in the previous exercise), the LinkedIn and Facebook data is now stored in a matrix called views. The first row contains the LinkedIn information; the second row the Facebook information. The original vectors facebook and linkedin are still available as well.

Instructions 100 XP

Using the relational operators you've learned so far, try to discover the following:

- When were the views exactly equal to 13? Use the views matrix to return a logical matrix.
- For which days were the number of views less than or equal to 14? Again, have R return a logical matrix.

ex 004.R

```
# The social data has been created for you
linkedin <- c(16, 9, 13, 5, 2, 17, 14)
facebook <- c(17, 7, 5, 16, 8, 13, 14)
views <- matrix(c(linkedin, facebook), nrow = 2, byrow = TRUE)

# When does views equal 13?

views == 13
# When is views less than or equal to 14?

views <= 14</pre>
```

& and

Before you work your way through the next exercises, have a look at the following R expressions. All of them will evaluate to TRUE:

```
TRUE & TRUE
FALSE | TRUE
```

```
5 <= 5 & 2 < 3
3 < 4 | 7 < 6
```

Watch out: 3 < x < 7 to check if x is between 3 and 7 will not work; you'll need 3 < x & x < 7 for that.

In this exercise, you'll be working with the last variable. This variable equals the value of the linkedin vector that you've worked with previously. The linkedin vector represents the number of LinkedIn views your profile had in the last seven days, remember? Both the variables linkedin and last have been pre-defined for you.

Instructions 100 XP

Write R expressions to solve the following questions concerning the variable last:

- Is last under 5 or above 10?
- Is last between 15 and 20, excluding 15 but including 20?

$ex_005.R$

```
# The linkedin and last variable are already defined for you
linkedin <- c(16, 9, 13, 5, 2, 17, 14)
last <- tail(linkedin, 1)

# Is last under 5 or above 10?
last < 5 | last > 10

# Is last between 15 (exclusive) and 20 (inclusive)?
last > 15 | last < 20</pre>
```

& and | (2)

Like relational operators, logical operators work perfectly fine with vectors and matrices.

Both the vectors linkedin and facebook are available again. Also a matrix -views- has been defined; its first and second row correspond to the linkedin and facebook vectors, respectively. Ready for some advanced queries to gain more insights into your social outreach?

Instructions 100 XP

- When did LinkedIn views exceed 10 and did Facebook views fail to reach 10 for a particular day? Use the linkedin and facebook vectors.
- When were one or both of your LinkedIn and Facebook profiles visited at least 12 times?
- When is the views matrix equal to a number between 11 and 14, excluding 11 and including 14?

$ex_006.R$

```
# The social data (linkedin, facebook, views) has been created for you
# linkedin exceeds 10 but facebook below 10
linkedin > 10 & facebook < 10

# When were one or both visited at least 12 times?
linkedin >= 12 | facebook >= 12

# When is views between 11 (exclusive) and 14 (inclusive)?
views > 11 & views <= 14</pre>
```

Blend it all together

With the things you've learned by now, you're able to solve pretty cool problems.

Instead of recording the number of views for your own LinkedIn profile, suppose you conducted a survey inside the company you're working for. You've asked every employee with a LinkedIn profile how many visits their profile has had over the past seven days. You stored the results in a data frame called li_df. This data frame is available in the workspace; type li_df in the console to check it out.

Instructions 100 XP

 Select the entire second column, named day2, from the li_df data frame as a vector and assign it to second.

- Use second to create a logical vector, that contains TRUE if the corresponding number of views is strictly greater than 25 or strictly lower than 5 and FALSE otherwise. Store this logical vector as extremes.
- Use sum() on the extremes vector to calculate the number of TRUEs in extremes (i.e. to calculate the number of employees that are either very popular or very low-profile). Simply print this number to the console.

$ex_007.R$

```
# li_df is pre-loaded in your workspace

# Select the second column, named day2, from li_df: second
second <- li_df$day2

# Build a logical vector, TRUE if value in second is extreme: extremes
extremes <- second > 25 | second < 5

# Count the number of TRUEs in extremes
print(sum(extremes))</pre>
```

The if statement

Before diving into some exercises on the if statement, have another look at its syntax:

```
if (condition) {
   expr
}
```

Remember your vectors with social profile views? Let's look at it from another angle. The medium variable gives information about the social website; the num_views variable denotes the actual number of views that particular medium had on the last day of your recordings. Both variables have been pre-defined for you.

Instructions 100 XP

• Examine the if statement that prints out "Showing LinkedIn information" if the medium variable equals "LinkedIn". -Code an if statement that prints "You are popular!" to the console if the num_views variable exceeds 15.

$ex_008.R$

```
# Variables related to your last day of recordings
medium <- "LinkedIn"
num_views <- 14

# Examine the if statement for medium
if (medium == "LinkedIn") {
   print("Showing LinkedIn information")
}

# Write the if statement for num_views

if (num_views > 15) {
   print("You are popular!")
}
```

Add an else

You can only use an else statement in combination with an if statement. The else statement does not require a condition; its corresponding code is simply run if all of the preceding conditions in the control structure are FALSE. Here's a recipe for its usage:

```
if (condition) {
   expr1
} else {
   expr2
}
```

It's important that the else keyword comes on the same line as the closing bracket of the if part!

Both if statements that you coded in the previous exercises are already available to use. It's now up to you to extend them with the appropriate else statements!

Instructions 100 XP

Add an else statement to both control structures, such that

- "Unknown medium" gets printed out to the console when the if-condition on medium does not hold.
 - -R prints out "Try to be more visible!" when the if-condition on num_views is not met.

ex 009.R

```
# Variables related to your last day of recordings
medium <- "LinkedIn"
num_views <- 14
# Control structure for medium
if (medium == "LinkedIn") {
   print("Showing LinkedIn information")
} else{
   print("Unknown medium")
}

# Control structure for num_views
if (num_views > 15) {
   print("You're popular!")
} else{
   print( "Try to be more visible!")
}
```

Customize further: else if

The else if statement allows you to further customize your control structure. You can add as many else if statements as you like. Keep in mind that R ignores the remainder of the control structure once a condition has been found that is TRUE and the corresponding expressions have been executed. Here's an overview of the syntax to freshen your memory:

```
if (condition1) {
   expr1
} else if (condition2) {
   expr2
} else if (condition3) {
   expr3
} else {
   expr4
}
```

Again, It's important that the else if keywords comes on the same line as the closing bracket of the previous part of the control construct!

Instructions 100 XP

Add code to both control structures such that:

- R prints out "Showing Facebook information" if medium is equal to "Facebook". Remember that R is case sensitive!
- "Your number of views is average" is printed if num_views is between 15 (inclusive) and 10 (exclusive). Feel free to change the variables medium and num_views to see how the control structure respond. In both cases, the existing code should be extended in the else if statement. No existing code should be modified.

$ex_010.R$

```
# Variables related to your last day of recordings
medium <- "LinkedIn"</pre>
num_views <- 14
# Control structure for medium
if (medium == "LinkedIn") {
  print("Showing LinkedIn information")
} else if (medium == "Facebook") {
  # Add code to print correct string when condition is TRUE
  print("Showing Facebook information" )
} else {
  print("Unknown medium")
# Control structure for num_views
if (num_views > 15) {
  print("You're popular!")
} else if (num_views <= 15 & num_views > 10) {
  # Add code to print correct string when condition is TRUE
  print("Your number of views is average")
} else {
  print("Try to be more visible!")
}
```

Else if 2.0

You can do anything you want inside if-else constructs. You can even put in another set of conditional statements. Examine the following code chunk:

```
if (number < 10) {
   if (number < 5) {
     result <- "extra small"
   } else {
     result <- "small"
   }
} else if (number < 100) {
   result <- "medium"
} else {
   result <- "large"
}
print(result)</pre>
```

Have a look at the following statements:

- (1) If number is set to 6, "small" gets printed to the console.
- (2) If number is set to 100, R prints out "medium".
- (3) If number is set to 4, "extra small" gets printed out to the console.
- (4) If number is set to 2500, R will generate an error, as result will not be defined.

Select the option that lists all the true statements.

Run the code or a handwrite test (1, 3).

Take control!

In this exercise, you will combine everything that you've learned so far: relational operators, logical operators and control constructs. You'll need it all!

We've pre-defined two values for you: li and fb, denoting the number of profile views your LinkedIn and Facebook profile had on the last day of recordings. Go through the instructions to create R code that generates a 'social media score', sms, based on the values of li and fb.

Instructions 100 XP

Finish the control-flow construct with the following behavior:

- If both li and fb are 15 or higher, set sms equal to double the sum of li and fb.
- If both li and fb are strictly below 10, set sms equal to half the sum of li and fb.
- In all other cases, set sms equal to li + fb.
- Finally, print the resulting sms variable.

$ex_011.R$

```
# Variables related to your last day of recordings
li <- 15
fb <- 9

# Code the control-flow construct
if (li >= 15 & fb >= 15) {
    sms <- 2 * (li + fb)
} else if (li < 10 & fb < 10) {
    sms <- 0.5 * (li + fb)
} else {
    sms <- li + fb
}

# Print the resulting sms to the console
print(sms)</pre>
```

7 Loops

Loops can come in handy on numerous occasions. While loops are like repeated if statements, the for loop is designed to iterate over all elements in a sequence. Learn about them in this chapter.

7.1 Write a while loop

Let's get you started with building a while loop from the ground up. Have another look at its recipe:

```
while (condition) {
   expr
}
```

Remember that the condition part of this recipe should become FALSE at some point during the execution. Otherwise, the while loop will go on indefinitely.

If your session expires when you run your code, check the body of your while loop carefully.

Have a look at the sample code provided; it initializes the **speed** variables and already provides a **while** loop template to get you started.

Instructions 100 XP

Code a while loop with the following characteristics:

- The condition of the while loop should check if speed is higher than 30.
- Inside the body of the while loop, print out "Slow down!".
- Inside the body of the while loop, decrease the speed by 7 units and assign this new value to speed again. This step is crucial; otherwise your while loop will never stop and your session will expire.

If your session expires when you run your code, check the body of your while loop carefully: it's likely that you made a mistake.

$ex_012.R$

```
# Initialize the speed variable
speed <- 64

# Code the while loop
while (speed >30) {
  print("Slow down!")
  speed <- speed - 7
}

# Print out the speed variable
speed</pre>
```

7.2 Throw in more conditionals

In the previous exercise, you simulated the interaction between a driver and a driver's assistant: When the speed was too high, "Slow down!" got printed out to the console, resulting in a decrease of your speed by 7 units.

There are several ways in which you could make your driver's assistant more advanced. For example, the assistant could give you different messages based on your speed or provide you with a current speed at a given moment.

A while loop similar to the one you've coded in the previous exercise is already available for you to use. It prints out your current speed, but there's no code that decreases the speed variable yet, which is pretty dangerous. Can you make the appropriate changes?

Instructions 100 XP

If the speed is greater than 48, have R print out "Slow down big time!", and decrease the speed by 11. Otherwise, have R simply print out "Slow down!", and decrease the speed by 6. If the session keeps timing out and throwing an error, you are probably stuck in an infinite loop! Check the body of your while loop and make sure you are assigning new values to speed.

ex 013.R

```
# Initialize the speed variable
speed <- 64

# Extend/adapt the while loop
while (speed > 30) {
  print(paste("Your speed is",speed))
  if (speed > 48 ) {
    print("Slow down big time!")
    speed <- speed - 11
  } else {
    print("Slow down!")
    speed <- speed - 6
  }
}</pre>
```

7.3 Stop the while loop: break

There are some very rare situations in which severe speeding is necessary: what if a hurricane is approaching and you have to get away as quickly as possible? You don't want the driver's assistant sending you speeding notifications in that scenario, right?

This seems like a great opportunity to include the break statement in the while loop you've been working on. Remember that the break statement is a control statement. When R encounters it, the while loop is abandoned completely.

Instructions 100 XP

Adapt the while loop such that it is abandoned when the speed of the vehicle is greater than 80. This time, the speed variable has been initialized to 88; keep it that way.

ex 014.R

```
# Initialize the speed variable
speed <- 88

while (speed > 30) {
   print(paste("Your speed is", speed))

# Break the while loop when speed exceeds 80
   if (speed > 80) {
```

```
break
}

if (speed > 48) {
   print("Slow down big time!")
   speed <- speed - 11
} else {
   print("Slow down!")
   speed <- speed - 6
}
</pre>
```

7.4 Build a while loop from scratch

The previous exercises guided you through developing a pretty advanced while loop, containing a break statement and different messages and updates as determined by control flow constructs. If you manage to solve this comprehensive exercise using a while loop, you're totally ready for the next topic: the for loop.

Instructions 100 XP

Finish the while loop so that it:

- prints out the triple of i, so 3 * i, at each run.
- is abandoned with a break if the triple of i is divisible by 8, but still prints out this triple before breaking.

ex 015.R

```
# Initialize i as 1
i <- 1

# Code the while loop
while (i <= 10) {
   print(3 * i)
   if (i %% 8 ==0) {
      break
   }
   i <- i + 1</pre>
```

7.5 Loop over a vector

In the previous video, Filip told you about two different strategies for using the for loop. To refresh your memory, consider the following loops that are equivalent in R:

```
primes <- c(2, 3, 5, 7, 11, 13)

# loop version 1
for (p in primes) {
   print(p)
}

# loop version 2
for (i in 1:length(primes)) {
   print(primes[i])
}</pre>
```

Remember our linkedin vector? It's a vector that contains the number of views your LinkedIn profile had in the last seven days. The linkedin vector has been pre-defined so that you can fully focus on the instructions!

Instructions 100 XP

Write a for loop that iterates over all the elements of linkedin and prints out every element separately. Do this in two ways: using the loop version 1 and the loop version 2 in the example code above.

ex 016.R

```
# The linkedin vector has already been defined for you
linkedin <- c(16, 9, 13, 5, 2, 17, 14)

# Loop version 1
for (element in linkedin) {
    print(element)
}</pre>
```

```
# Loop version 2
for (i in 1:length(linkedin)){
    print(linkedin[i])
}
```

7.6 Loop over a list

Looping over a list is just as easy and convenient as looping over a vector. There are again two different approaches here:

```
primes_list <- list(2, 3, 5, 7, 11, 13)

# loop version 1
for (p in primes_list) {
   print(p)
}

# loop version 2
for (i in 1:length(primes_list)) {
   print(primes_list[[i]])
}</pre>
```

Notice that you need double square brackets - [[]] - to select the list elements in loop version 2.

Suppose you have a list of all sorts of information on New York City: its population size, the names of the boroughs, and whether it is the capital of the United States. We've already defined a list nyc containing this information (source: Wikipedia).

Instructions 100 XP

As in the previous exercise, loop over the nyc list in two different ways to print its elements:

- Loop directly over the nyc list (loop version 1).
- Define a looping index and do subsetting using double brackets (loop version 2).

$ex_017.R$

```
# The nyc list is already specified
nyc <- list(pop = 8405837,</pre>
```

```
boroughs = c(
    "Manhattan",
    "Bronx",
    "Brooklyn",
    "Queens",
    "Staten Island"
    ),
    capital = FALSE)

# Loop version 1
for(i in nyc){
    print(i)
}

# Loop version 2
for(i in 1:length(nyc)){
    print(nyc[[i]])
}
```

7.7 Loop over a matrix

In your workspace, there's a matrix ttt, that represents the status of a tic-tac-toe game. It contains the values "X", "O" and "NA". Print out ttt to get a closer look. On row 1 and column 1, there's "O", while on row 3 and column 2 there's "NA".

To solve this exercise, you'll need a for loop inside a for loop, often called a nested loop. Doing this in R is a breeze! Simply use the following recipe:

```
for (var1 in seq1) {
   for (var2 in seq2) {
     expr
  }
}
```

Instructions 100 XP

Finish the nested for loops to go over the elements in ttt:

- The outer loop should loop over the rows, with loop index i (use 1:nrow(ttt)).
- The inner loop should loop over the columns, with loop index j (use 1:ncol(ttt)).

• Inside the inner loop, make use of print() and paste() to print out information in the following format: "On row i and column j the board contains x", where x is the value on that position.

$ex_018.R$

```
# The tic-tac-toe matrix ttt has already been defined for you

# define the double for loop
for (i in 1:nrow(ttt)) {
   for (j in 1:ncol(ttt)) {
      print(
      paste(
         "On row",
         i,
         " and column",
         j,
         "the board contains",
      ttt[i, j]
      )
    }
}
```

7.8 Mix it up with control flow

Let's return to the LinkedIn profile views data, stored in a vector linkedin. In the first exercise on for loops you already did a simple printout of each element in this vector. A little more in-depth interpretation of this data wouldn't hurt, right? Time to throw in some conditionals! As with the while loop, you can use the if and else statements inside the for loop.

Instructions 100 XP

Add code to the for loop that loops over the elements of the linkedin vector:

- If the vector element's value exceeds 10, print out "You're popular!".
- If the vector element's value does not exceed 10, print out "Be more visible!"

ex 019.r

```
# The linkedin vector has already been defined for you
linkedin <- c(16, 9, 13, 5, 2, 17, 14)

# Code the for loop with conditionals
for (li in linkedin) {
   if ( li > 10) {
      print("You're popular!")
   } else {
      print("Be more visible!")
   }
   print(li)
}
```

7.9 Next, you break it

A possible solution to the previous exercise has been provided for you. The code loops over the linkedin vector and prints out different messages depending on the values of li.

In this exercise, you will use the break and next statements:

The break statement abandons the active loop: the remaining code in the loop is skipped and the loop is not iterated over anymore. The next statement skips the remainder of the code in the loop, but continues the iteration.

Instructions 100 XP Extend the for loop with two new, separate if tests as follows:

- If the vector element's value exceeds 16, print out "This is ridiculous, I'm outta here!" and have R abandon the for loop (break).
- If the value is lower than 5, print out "This is too embarrassing!" and fast-forward to the next iteration (next).

ex 019.R

```
# The linkedin vector has already been defined for you
linkedin <- c(16, 9, 13, 5, 2, 17, 14)

# Adapt/extend the for loop
for (li in linkedin) {
   if (li > 10) {
      print("You're popular!")
   } else {
      print("Be more visible!")
```

```
# Add if statement with break
if (li > 16 ){
   print("This is ridiculous, I'm outta here!")
   break
}

# Add if statement with next

if (li < 5){
   print("This is too embarrassing!")
   next
}

print(li)
}</pre>
```

7.10 Build a for loop from scratch

This exercise will not introduce any new concepts on for loops.

We already went ahead and defined a variable rquote. This variable has been split up into a vector that contains separate letters and has been stored in a vector chars with the strsplit() function.

Can you write code that counts the number of r's that come before the first u in rquote?

Instructions 100 XP

- Initialize the variable rount, as 0.
- Finish the for loop:
 - if char equals "r", increase the value of rount by 1.
 - if char equals "u", leave the for loop entirely with a break.
- Finally, print out the variable rount to the console to see if your code is correct.

$ex_020.R$

```
# Pre-defined variables
rquote <- "r's internals are irrefutably intriguing"
chars <- strsplit(rquote, split = "")[[1]]

# Initialize rcount
rcount <- 0

# Finish the for loop
for (char in chars) {
   if (char == "r"){
      rcount <- rcount + 1
   }

   if (char == "u"){
      break
   }

}

# Print out rcount
print(rcount)</pre>
```

8 Functions

Functions are an extremely important concept in almost every programming language, and R is no different. Learn what functions are and how to use them—then take charge by writing your own functions.

8.1 Function documentation

Before even thinking of using an R function, you should clarify which arguments it expects. All the relevant details such as a description, usage, and arguments can be found in the documentation. To consult the documentation on the sample() function, for example, you can use one of following R commands:

```
help(sample)
?sample
```

If you execute these commands, you'll be redirected to <www.rdocumentation.org.>

A quick hack to see the arguments of the sample() function is the args() function. Try it out in the console:

```
args(sample)
```

In the next exercises, you'll be learning how to use the mean() function with increasing complexity. The first thing you'll have to do is get acquainted with the mean() function.

Instructions 100 XP

- Consult the documentation on the mean() function: ?mean or help(mean).
- Inspect the arguments of the mean() function using the args() function.

$ex_021.R$

Consult the documentation on the mean() function

```
help(mean)
# Inspect the arguments of the mean() function
args(mean)
```

8.2 Use a function

The documentation on the mean() function gives us quite some information:

- The mean() function computes the arithmetic mean.
- ullet The most general method takes multiple arguments: x and \dots
- \bullet The x argument should be a vector containing numeric, logical or time-related information.

Remember that R can match arguments both by position and by name. Can you still remember the difference? You'll find out in this exercise!

Once more, you'll be working with the view counts of your social network profiles for the past 7 days. These are stored in the linkedin and facebook vectors and have already been created for you.

Instructions 100 XP

• Calculate the average number of views for both linkedin and facebook and assign the result to avg_li and avg_fb, respectively. Experiment with different types of argument matching!

-Print out both avg_li and avg_fb.

ex 022.R

```
# The linkedin and facebook vectors have already been created for you
linkedin <- c(16, 9, 13, 5, 2, 17, 14)
facebook <- c(17, 7, 5, 16, 8, 13, 14)

# Calculate average number of views
avg_li <- mean(linkedin)
avg_fb <- mean(facebook)

# Inspect avg_li and avg_fb
print(avg_li)</pre>
```

```
print(avg_fb)
```

8.3 Use a function (2)

Check the documentation on the mean() function again:

```
?mean
```

The Usage section of the documentation includes two versions of the mean() function. The first usage,

```
mean(x, ...)
```

is the most general usage of the mean function. The 'Default S3 method', however, is:

```
mean(x, trim = 0, na.rm = FALSE, ...)
```

The ... is called the ellipsis. It is a way for R to pass arguments along without the function having to name them explicitly. The ellipsis will be treated in more detail in future courses.

For the remainder of this exercise, just work with the second usage of the mean function. Notice that both trim and na.rm have default values. This makes them *optional arguments*.

Instructions 100 XP

- Calculate the mean of the element-wise sum of linkedin and facebook and store the result in a variable avg sum.
- Calculate the mean once more, but this time set the trim argument equal to 0.2 and assign the result to avg_sum_trimmed.
- Print out both avg_sum and avg_sum_trimmed; can you spot the difference?

$ex_023.R$

```
# The linkedin and facebook vectors have already been created for you
linkedin <- c(16, 9, 13, 5, 2, 17, 14)
facebook <- c(17, 7, 5, 16, 8, 13, 14)

# Calculate the mean of the sum
avg_sum <- mean(linkedin + facebook)</pre>
```

```
# Calculate the trimmed mean of the sum
avg_sum_trimmed <- mean(linkedin + facebook, trim = 0.2)
# Inspect both new variables
print(avg_sum)
print(avg_sum_trimmed)</pre>
```

8.4 Use a function (3)

In the video, Filip guided you through the example of specifying arguments of the sd() function. The sd() function has an optional argument, na.rm that specified whether or not to remove missing values from the input vector before calculating the standard deviation.

If you've had a good look at the documentation, you'll know by now that the mean() function also has this argument, na.rm, and it does the exact same thing. By default, it is set to FALSE, as the Usage of the default S3 method shows:

```
mean(x, trim = 0, na.rm = FALSE, ...)
```

Let's see what happens if your vectors linkedin and facebook contain missing values (NA).

Instructions 100 XP

- Calculate the average number of LinkedIn profile views, without specifying any optional arguments. Simply print the result to the console.
- Calculate the average number of LinkedIn profile views, but this time tell R to strip missing values from the input vector.

$ex_024.R$

```
# The linkedin and facebook vectors have already been created for you
linkedin <- c(16, 9, 13, 5, NA, 17, 14)
facebook <- c(17, NA, 5, 16, 8, 13, 14)

# Basic average of linkedin

mean(linkedin)
# Advanced average of linkedin
mean(linkedin, na.rm = TRUE)</pre>
```

8.5 Functions inside functions

You already know that R functions return objects that you can then use somewhere else. This makes it easy to use functions inside functions, as you've seen before:

```
speed <- 31
print(paste("Your speed is", speed))</pre>
```

Notice that both the print() and paste() functions use the ellipsis - ... - as an argument. Can you figure out how they're used?

Instructions 100 XP

Use abs() on linkedin - facebook to get the absolute differences between the daily LinkedIn and Facebook profile views. Place the call to abs() inside mean() to calculate the Mean Absolute Deviation. In the mean() call, make sure to specify na.rm to treat missing values correctly!

$ex_025.R$

```
# The linkedin and facebook vectors have already been created for you
linkedin <- c(16, 9, 13, 5, NA, 17, 14)
facebook <- c(17, NA, 5, 16, 8, 13, 14)
# Calculate the mean absolute deviation
mean(abs(linkedin - facebook), na.rm = TRUE)
```

8.6 Write your own function

Wow, things are getting serious... you're about to write your own function! Before you have a go at it, have a look at the following function template:

```
my_fun <- function(arg1, arg2) {
body
}</pre>
```

Notice that this recipe uses the assignment operator (<-) just as if you were assigning a vector to a variable for example. This is not a coincidence. Creating a function in R basically is the assignment of a function object to a variable! In the recipe above, you're creating a new R variable my_fun, that becomes available in the workspace as soon as you execute the definition. From then on, you can use the my_fun as a function.

Instructions 100 XP

- Create a function pow_two(): it takes one argument and returns that number squared (that number times itself).
- Call this newly defined function with 12 as input.
- Next, create a function sum_abs(), that takes two arguments and returns the sum of the absolute values of both arguments.
- Finally, call the function sum_abs() with arguments -2 and 3 afterwards.

$ex_026.R$

```
# Create a function pow_two()

pow_two <- function(x) {
   x ^ 2
}

# Use the function
pow_two(12)

# Create a function sum_abs()

sum_abs <- function(x1, x2){
   abs(x1 + x2)
}

# Use the function
sum_abs(-2, 3)</pre>
```

8.7 Write your own function (2)

There are situations in which your function does not require an input. Let's say you want to write a function that gives us the random outcome of throwing a fair die:

```
throw_die <- function() {
number <- sample(1:6, size = 1)
number
}
throw_die()</pre>
```

Up to you to code a function that doesn't take any arguments!

Instructions 100 XP

- Define a function, hello(). It prints out "Hi there!" and returns TRUE. It has no arguments.
- Call the function hello(), without specifying arguments of course.

$ex_027.R$

```
# Define the function hello()
hello <- function(){
  print("Hi there!")
  return TRUE
}

# Call the function hello()
hello()</pre>
```

8.8 Write your own function (3)

Do you still remember the difference between an argument with and without default values? The usage section in the sd() documentation shows the following information:

```
sd(x, na.rm = FALSE)
```

This tells us that x has to be defined for the sd() function to be called correctly, however, na.rm already has a default value. Not specifying this argument won't cause an error.

You can define default argument values in your own R functions as well. You can use the following recipe to do so:

```
my_fun <- function(arg1, arg2 = val2) {
body
}</pre>
```

The editor on the right already includes an extended version of the pow_two() function from before. Can you finish it?

Instructions 100 XP

- Add an optional argument, named print_info, that is TRUE by default.
- Wrap an if construct around the print() function: this function should only be executed
 if print_info is TRUE.
- Feel free to experiment with the pow_two() function you've just coded.

ex 028.R

```
# Finish the pow_two() function
pow_two <- function(x, print_info = TRUE) {
y <- x ^ 2
if(print_info){
  print(paste(x, "to the power two equals", y))
}
return(y)
}</pre>
```

8.9 Function scoping

An issue that Filip did not discuss in the video is function scoping. It implies that variables that are defined inside a function are not accessible outside that function. Try running the following code and see if you understand the results:

```
pow_two <- function(x) {
y <- x ^ 2
return(y)
}
pow_two(4)
y
x</pre>
```

y was defined inside the $pow_two()$ function and therefore it is not accessible outside of that function. This is also true for the function's arguments of course - x in this case.

Which statement is correct about the following chunk of code? The function two_dice() is already available in the workspace.

```
two_dice <- function() {
possibilities <- 1:6
dice1 <- sample(possibilities, size = 1)</pre>
```

```
dice2 <- sample(possibilities, size = 1)
dice1 + dice2
}</pre>
```

Instructions 50 XP

• Whatever the way of calling the two_dice() function, R won't have access to dice1 and dice2 outside the function.

8.10 R passes arguments by value

The title gives it away already: R passes arguments by value. What does this mean? Simply put, it means that an R function cannot change the variable that you input to that function. Let's look at a simple example (try it in the console):

```
triple <- function(x) {
  x <- 3*x
  x
  }
  a <- 5
  triple(a)
  a</pre>
```

Inside the triple() function, the argument x gets overwritten with its value times three. Afterwards this new x is returned. If you call this function with a variable a set equal to 5, you obtain 15. But did the value of a change? If R were to pass a to triple() by reference, the override of the x inside the R passes by value, so the R objects you pass to a function can never change unless you do an explicit assignment. a remains equal to 5, even after calling triple(a).

Can you tell which one of the following statements is false about the following piece of code?

```
increment <- function(x, inc = 1) {
x <- x + inc
x
}
count <- 5
a <- increment(count, 2)
b <- increment(count)
count <- increment(count, 2)</pre>
```

Instructions 50 XP

• In the end, count will equal 10.

8.11 R you functional?

Now that you've acquired some skills in defining functions with different types of arguments and return values, you should try to create more advanced functions. As you've noticed in the previous exercises, it's perfectly possible to add control-flow constructs, loops and even other functions to your function body.

Remember our social media example? The vectors linkedin and facebook are already defined in the workspace so you can get your hands dirty straight away. As a first step, you will be writing a function that can interpret a single value of this vector. In the next exercise, you will write another function that can handle an entire vector at once.

Instructions 100 XP

- Finish the function definition for interpret(), that interprets the number of profile views on a single day:
- The function takes one argument, num_views.
- If num_views is greater than 15, the function prints out "You're popular!" to the console and returns num_views.
- Else, the function prints out "Try to be more visible!" and returns 0. Finally, call the interpret() function twice: on the first value of the linkedin vector and on the second element of the facebook vector.

$ex_029.R$

```
# The linkedin and facebook vectors have already been created for you

# Define the interpret function
interpret <- function(num_views) {
  if (num_views > 15) {
    print("You're popular!")
    return(num_views)
} else {
    print("Try to be more visible!")
    return(0)
}
```

```
# Call the interpret function twice
interpret(linkedin[1])
interpret(facebook[1])
```

8.12 R you functional? (2)

A possible implementation of the interpret() function has been provided for you. In this exercise you'll be writing another function that will use the interpret() function to interpret all the data from your daily profile views inside a vector. Furthermore, your function will return the sum of views on popular days, if asked for. A for loop is ideal for iterating over all the vector elements. The ability to return the sum of views on popular days is something you can code through a function argument with a default value.

8.12.1 Instructions 100 XP

Finish the template for the interpret_all() function:

- Make return_sum an optional argument, that is TRUE by default.
- Inside the for loop, iterate over all views: on every iteration, add the result of interpret(v) to count. Remember that interpret(v) returns v for popular days, and 0 otherwise. At the same time, interpret(v) will also do some printouts.
- Finish the if construct:
- If return sum is TRUE, return count.
- Else, return NULL.

Call this newly defined function on both linkedin and facebook.

ex 029.R

```
# The linkedin and facebook vectors have already been created for you
linkedin <- c(16, 9, 13, 5, 2, 17, 14)
facebook <- c(17, 7, 5, 16, 8, 13, 14)

# The interpret() can be used inside interpret_all()
interpret <- function(num_views) {
if (num_views > 15) {
   print("You're popular!")
   return(num_views)
} else {
   print("Try to be more visible!")
```

```
return(0)
}
}
# Define the interpret_all() function
# views: vector with data to interpret
# return sum: return total number of views on popular days?
interpret_all <- function(views, return_sum = TRUE) {</pre>
count <- 0
for (v in views) {
  count <- count + interpret(v)</pre>
if (return_sum) {
  return (count)
} else {
  return (NULL)
}
}
# Call the interpret_all() function on both linkedin and facebook
interpret_all(linkedin)
interpret_all(facebook)
```

8.13 Load an R Package

There are basically two extremely important functions when it comes down to R packages:

- install.packages(), which as you can expect, installs a given package.
- library() which loads packages, i.e. attaches them to the search list on your R workspace.

To install packages, you need administrator privileges. This means that install.packages() will thus not work in the DataCamp interface. However, almost all CRAN packages are installed on our servers. You can load them with library().

In this exercise, you'll be learning how to load the ggplot2 package, a powerful package for data visualization. You'll use it to create a plot of two variables of the mtcars data frame. The data has already been prepared for you in the workspace.

Before starting, execute the following commands in the console:

- search(), to look at the currently attached packages and
- qplot(mtcarswt, mtcarshp), to build a plot of two variables of the mtcars data frame. An error should occur, because you haven't loaded the ggplot2 package yet!

Instructions 100 XP

- To fix the error you saw in the console, load the ggplot2 package. Make sure you are loading (and not installing) the package!
- Now, retry calling the qplot() function with the same arguments.
- Finally, check out the currently attached packages again.

ex 030.R

```
# Load the ggplot2 package
library(ggplot2)

# Retry the qplot() function
qplot(mtcars$wt, mtcars$hp)

# Check out the currently attached packages again
search()
```

8.14 Different ways to load a package

The library() and require() functions are not very picky when it comes down to argument types: both library(rjson) and library("rjson") work perfectly fine for loading a package.

Have a look at some more code chunks that (attempt to) load one or more packages:

```
# Chunk 1
library(data.table)
require(rjson)

# Chunk 2
library("data.table")
require(rjson)

# Chunk 3
library(data.table)
```

```
require(rjson, character.only = TRUE)

# Chunk 4
library(c("data.table", "rjson"))
```

Select the option that lists all of the chunks that do not generate an error. The console is yours to experiment in.

Instructions 50 XP

Possible Answers: (1) and (2)

9 The apply family

Whenever you're using a for loop, you may want to revise your code to see whether you can use the lapply function instead. Learn all about this intuitive way of applying a function over a list or a vector, and how to use its variants, sapply and vapply.

9.1 Use lapply with your own function

As Filip explained in the instructional video, you can use lapply() on your own functions as well. You just need to code a new function and make sure it is available in the workspace. After that, you can use the function inside lapply() just as you did with base R functions.

In the previous exercise you already used lapply() once to convert the information about your favorite pioneering statisticians to a list of vectors composed of two character strings. Let's write some code to select the names and the birth years separately.

The sample code already includes code that defined select_first(), that takes a vector as input and returns the first element of this vector.

Instructions 100 XP

- Apply select_first() over the elements of split_low with lapply() and assign the result to a new variable names.
- Next, write a function select_second() that does the exact same thing for the second element of an inputted vector.
- Finally, apply the select_second() function over split_low and assign the output to the variable years.

ex 0.32.R

```
# Code from previous exercise:
pioneers <-
   c("GAUSS:1777", "BAYES:1702", "PASCAL:1623", "PEARSON:1857")
split <- strsplit(pioneers, split = ":")
split_low <- lapply(split, tolower)
# Write function select_first()</pre>
```

```
select_first <- function(x) {
   x[1]
}
# Apply select_first() over split_low: names
names <- lapply(split_low, select_first)
# Write function select_second()
select_second <- function(x) {
   x[2]
}
# Apply select_second() over split_low: years
years <- lapply(split_low, select_second)</pre>
```

lapply and anonymous functions Writing your own functions and then using them inside lapply() is quite an accomplishment! But defining functions to use them only once is kind of overkill, isn't it? That's why you can use so-called anonymous functions in R.

Previously, you learned that functions in R are objects in their own right. This means that they aren't automatically bound to a name. When you create a function, you can use the assignment operator to give the function a name. It's perfectly possible, however, to not give the function a name. This is called an anonymous function:

```
# Named function
triple <- function(x) { 3 * x }

# Anonymous function with same implementation
function(x) { 3 * x }

# Use anonymous function inside lapply()
lapply(list(1,2,3), function(x) { 3 * x })</pre>
```

split_low is defined for you.

Instructions 100 XP

- Transform the first call of lapply() such that it uses an anonymous function that does the same thing.
- In a similar fashion, convert the second call of lapply to use an anonymous version of the select_second() function.
- Remove both the definitions of select_first() and select_second(), as they are no longer useful.

ex 033.R

```
# split_low has been created for you
split_low
# Transform: use anonymous function inside lapply
names <- lapply(split_low, function(x){ x[1] })
# Transform: use anonymous function inside lapply
years <- lapply(split_low, function(x){ x[2] })</pre>
```

Use lapply with additional arguments

In the video, the triple() function was transformed to the multiply() function to allow for a more generic approach. lapply() provides a way to handle functions that require more than one argument, such as the multiply() function:

```
multiply <- function(x, factor) {
   x * factor
}
lapply(list(1,2,3), multiply, factor = 3)</pre>
```

On the right we've included a generic version of the select functions that you've coded earlier: select_el(). It takes a vector as its first argument, and an index as its second argument. It returns the vector's element at the specified index.

Instructions 100 XP

Use lapply() twice to call select_el() over all elements in split_low: once with the index equal to 1 and a second time with the index equal to 2. Assign the result to names and years, respectively.

$ex_034.R$

```
# Definition of split_low
pioneers <-
c("GAUSS:1777", "BAYES:1702", "PASCAL:1623", "PEARSON:1857")
split <- strsplit(pioneers, split = ":")
split_low <- lapply(split, tolower)

# Generic select function
select_el <- function(x, index) {
    x[index]
}

# Use lapply() twice on split_low: names and years</pre>
```

```
names <- lapply(split_low, select_el, 1)
years <- lapply(split_low, select_el, 2)</pre>
```

9.2 Apply functions that return NULL

In all of the previous exercises, it was assumed that the functions that were applied over vectors and lists actually returned a meaningful result. For example, the tolower() function simply returns the strings with the characters in lowercase. This won't always be the case. Suppose you want to display the structure of every element of a list. You could use the str() function for this, which returns NULL:

```
lapply(list(1, "a", TRUE), str)
```

This call actually returns a list, the same size as the input list, containing all NULL values. On the other hand calling

```
str(TRUE)
```

on its own prints only the structure of the logical to the console, not NULL. That's because str() uses invisible() behind the scenes, which returns an invisible copy of the return value, NULL in this case. This prevents it from being printed when the result of str() is not assigned.

What will the following code chunk return (split_low is already available in the workspace)? Try to reason about the result before simply executing it in the console!

```
lapply(split_low, function(x) {
  if (nchar(x[1]) > 5) {
    return(NULL)
  } else {
    return(x[2])
  }
}
```

9.3 How to use sapply

You can use sapply() similar to how you used lapply(). The first argument of sapply() is the list or vector X over which you want to apply a function, FUN. Potential additional arguments to this function are specified afterwards (...):

```
sapply(X, FUN, ...)
```

In the next couple of exercises, you'll be working with the variable temp, that contains temperature measurements for 7 days. temp is a list of length 7, where each element is a vector of length 5, representing 5 measurements on a given day. This variable has already been defined in the workspace: type str(temp) to see its structure.

9.3.1 Instructions 100 XP

- Use lapply() to calculate the minimum (built-in function min()) of the temperature measurements for every day.
- Do the same thing but this time with sapply(). See how the output differs.
- Use lapply() to compute the maximum (max()) temperature for each day. Again, use sapply() to solve the same question and see how lapply() and sapply() differ.

ex 035.R

```
# temp has already been defined in the workspace

# Use lapply() to find each day's minimum temperature
lapply(temp, min)

# Use sapply() to find each day's minimum temperature
sapply(temp, min)

# Use lapply() to find each day's maximum temperature
lapply(temp, max)

# Use sapply() to find each day's maximum temperature
sapply(temp, max)
```

9.4 sapply with your own function

Like lapply(), sapply() allows you to use self-defined functions and apply them over a vector or a list:

```
sapply(X, FUN, ...)
```

Here, FUN can be one of R's built-in functions, but it can also be a function you wrote. This self-written function can be defined before hand, or can be inserted directly as an anonymous function.

Instructions 100 XP

- Finish the definition of extremes_avg(): it takes a vector of temperatures and calculates the average of the minimum and maximum temperatures of the vector.
- Next, use this function inside sapply() to apply it over the vectors inside temp.
- Use the same function over temp with lapply() and see how the outputs differ.

ex 036.R

```
# temp is already defined in the workspace

# Finish function definition of extremes_avg
extremes_avg <- function(x) {
    (min(x) + max(x)) / 2
}

# Apply extremes_avg() over temp using sapply()
sapply(temp, extremes_avg)

# Apply extremes_avg() over temp using lapply()
lapply(temp, extremes_avg)</pre>
```

9.5 sapply with function returning vector

In the previous exercises, you've seen how sapply() simplifies the list that lapply() would return by turning it into a vector. But what if the function you're applying over a list or a vector returns a vector of length greater than 1? If you don't remember from the video, don't waste more time in the valley of ignorance and head over to the instructions!

Instructions 100 XP

- Finish the definition of the extremes() function. It takes a vector of numerical values and returns a vector containing the minimum and maximum values of a given vector, with the names "min" and "max", respectively.
- Apply this function over the vector temp using sapply().
- Finally, apply this function over the vector temp using lapply() as well.

$ex_037.R$

```
# temp is already available in the workspace

# Create a function that returns min and max of a vector: extremes
extremes <- function(x) {
   c(min = min(x), max = max(x))
}

# Apply extremes() over temp with sapply()
sapply(temp, extremes)

# Apply extremes() over temp with lapply()
lapply(temp, extremes)</pre>
```

9.6 sapply can't simplify, now what?

It seems like we've hit the jackpot with sapply(). On all of the examples so far, sapply() was able to nicely simplify the rather bulky output of lapply(). But, as with life, there are things you can't simplify. How does sapply() react?

We already created a function, below_zero(), that takes a vector of numerical values and returns a vector that only contains the values that are strictly below zero.

Instructions 100 XP

- Apply below zero() over temp using sapply() and store the result in freezing s.
- Apply below_zero() over temp using lapply(). Save the resulting list in a variable freezing_1.
- Compare freezing_s to freezing_l using the identical() function.

$ex_038.R$

```
# temp is already prepared for you in the workspace
# Definition of below_zero()
below_zero <- function(x) {
   return(x[x < 0])
}</pre>
```

```
# Apply below_zero over temp using sapply(): freezing_s
freezing_s <- sapply(temp, below_zero)

# Apply below_zero over temp using lapply(): freezing_l
freezing_l <- lapply(temp, below_zero)

# Are freezing_s and freezing_l identical?
identical(freezing_s, freezing_s)</pre>
```

9.7 sapply with functions that return NULL

You already have some apply tricks under your sleeve, but you're surely hungry for some more, aren't you? In this exercise, you'll see how sapply() reacts when it is used to apply a function that returns NULL over a vector or a list.

A function print_info(), that takes a vector and prints the average of this vector, has already been created for you. It uses the cat() function.

Instructions 100 XP

- Apply print_info() over the contents of temp with sapply().
- Repeat this process with lapply(). Do you notice the difference?

$ex_039.R$

```
# temp is already available in the workspace

# Definition of print_info()
print_info <- function(x) {
   cat("The average temperature is", mean(x), "\n")
}

# Apply print_info() over temp using sapply()
sapply(temp, print_info)

# Apply print_info() over temp using lapply()
lapply(temp, print_info)</pre>
```

9.8 Reverse engineering sapply

```
sapply(list(runif (10), runif (10)),
    function(x) c(min = min(x), mean = mean(x), max = max(x)))
```

Without going straight to the console to run the code, try to reason through which of the following statements are correct and why.

- (1) sapply() can't simplify the result that lapply() would return, and thus returns a list of vectors
- (2) This code generates a matrix with 3 rows and 2 columns.
- (3) The function that is used inside sapply() is anonymous.
- (4) The resulting data structure does not contain any names.

Select the option that lists all correct statements.

```
answer: (2) and (3)
```

9.9 Use vapply

Before you get your hands dirty with the third and last apply function that you'll learn about in this intermediate R course, let's take a look at its syntax. The function is called vapply(), and it has the following syntax:

```
vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)
```

Over the elements inside X, the function FUN is applied. The FUN.VALUE argument expects a template for the return argument of this function FUN. USE.NAMES is TRUE by default; in this case vapply() tries to generate a named array, if possible.

For the next set of exercises, you'll be working on the temp list again, that contains 7 numerical vectors of length 5. We also coded a function basics() that takes a vector, and returns a named vector of length 3, containing the minimum, mean and maximum value of the vector respectively.

Instructions 100 XP

Apply the function basics() over the list of temperatures, temp, using vapply(). This time, you can use numeric(3) to specify the FUN.VALUE argument.

```
ex_040.R
```

```
# temp is already available in the workspace

# Definition of basics()
basics <- function(x) {
   c(min = min(x), mean = mean(x), max = max(x))
}

# Apply basics() over temp using vapply()
vapply(temp, basics, numeric(3))</pre>
```

9.10 Use vapply (2)

So far you've seen that vapply() mimics the behavior of sapply() if everything goes according to plan. But what if it doesn't?

In the video, Filip showed you that there are cases where the structure of the output of the function you want to apply, FUN, does not correspond to the template you specify in FUN.VALUE. In that case, vapply() will throw an error that informs you about the misalignment between expected and actual output.

Instructions 100 XP

- Inspect the pre-loaded code and try to run it. If you haven't changed anything, an error should pop up. That's because vapply() still expects basics() to return a vector of length 3. The error message gives you an indication of what's wrong.
- Try to fix the error by editing the vapply() command.

$ex_041.R$

```
# temp is already available in the workspace

# Definition of the basics() function
basics <- function(x) {
   c(min = min(x), mean = mean(x), median = median(x), max = max(x))
}

# Fix the error:
vapply(temp, basics, numeric(4))</pre>
```

9.11 From sapply to vapply

As highlighted before, vapply() can be considered a more robust version of sapply(), because you explicitly restrict the output of the function you want to apply. Converting your sapply() expressions in your own R scripts to vapply() expressions is therefore a good practice (and also a breeze!).

Instructions 100 XP

Convert all the sapply() expressions on the right to their vapply() counterparts. Their results should be exactly the same; you're only adding robustness. You'll need the templates numeric(1) and logical(1).

$ex_042.R$

```
# temp is already defined in the workspace

# Convert to vapply() expression
vapply(temp, max, numeric(1))

# Convert to vapply() expression
vapply(temp, function(x, y) { mean(x) > y }, y = 5, logical(1))
```

10 Utilities

Mastering R programming is not only about understanding its programming concepts. Having a solid understanding of a wide range of R functions is also important. This chapter introduces you to many useful functions for data structure manipulation, regular expressions, and working with times and dates.

10.1 Mathematical utilities

Have another look at some useful math functions that R features:

- abs(): Calculate the absolute value.
- sum(): Calculate the sum of all the values in a data structure.
- mean(): Calculate the arithmetic mean.
- round(): Round the values to 0 decimal places by default. Try out ?round in the console for variations of round() and ways to change the number of digits to round to.

As a data scientist in training, you've estimated a regression model on the sales data for the past six months. After evaluating your model, you see that the training error of your model is quite regular, showing both positive and negative values. A vector errors containing the error values has been pre-defined for you.

Instructions 100 XP

Calculate the sum of the absolute rounded values of the training errors. You can work in parts, or with a single one-liner. There's no need to store the result in a variable, just have R print it.

ex 043.R

```
# The errors vector has already been defined for you
errors <- c(1.9, -2.6, 4.0, -9.5, -3.4, 7.3)
# Sum of absolute rounded values of errors
sum(abs(round(errors)))</pre>
```

10.2 Find the error

We went ahead and pre-loaded some code for you, but there's still an error. Can you trace it and fix it?

In times of despair, help with functions such as sum() and rev() are a single command away; simply execute the code ?sum and ?rev.

Instructions 100 XP

Fix the error by including code on the last line. Remember: you want to call mean() only once!

ex 044.R

```
# Don't edit these two lines
vec1 <- c(1.5, 2.5, 8.4, 3.7, 6.3)
vec2 <- rev(vec1)

# Fix the error
mean(abs(vec1))</pre>
```

10.3 Data Utilities

R features a bunch of functions to juggle around with data structures::

- seq(): Generate sequences, by specifying the from, to, and by arguments.
- rep(): Replicate elements of vectors and lists.
- sort(): Sort a vector in ascending order. Works on numerics, but also on character strings and logicals.
- rev(): Reverse the elements in a data structures for which reversal is defined.
- str(): Display the structure of any R object.
- append(): Merge vectors or lists.
- is.*(): Check for the class of an R object.
- as.*(): Convert an R object from one class to another.
- unlist(): Flatten (possibly embedded) lists to produce a vector.

Remember the social media profile views data? Your LinkedIn and Facebook view counts for the last seven days have been pre-defined as lists.

Instructions 100 XP

- Convert both linkedin and facebook lists to a vector, and store them as li_vec and fb_vec respectively.
- Next, append fb_vec to the li_vec (Facebook data comes last). Save the result as social_vec.
- Finally, sort social vec from high to low. Print the resulting vector.

$ex_045.R$

```
# The linkedin and facebook lists have already been created for you
linkedin <- list(16, 9, 13, 5, 2, 17, 14)
facebook <- list(17, 7, 5, 16, 8, 13, 14)

# Convert linkedin and facebook to a vector: li_vec and fb_vec
li_vec <- unlist(linkedin)
fb_vec <- unlist(facebook)

# Append fb_vec to li_vec: social_vec
social_vec <- append(li_vec, fb_vec)

# Sort social_vec
print(sort(social_vec, decreasing=TRUE))</pre>
```

10.4 Find the error (2)

Just as before, let's switch roles. It's up to you to see what unforgivable mistakes we've made. Go fix them!

Instructions 100 XP

Correct the expression. Make sure that your fix still uses the functions rep() and seq().

$ex_046.R$

```
# Fix me
rep(seq(1, 7, by = 2), times = 7)
```

10.5 Beat Gauss using R

There is a popular story about young Gauss. As a pupil, he had a lazy teacher who wanted to keep the classroom busy by having them add up the numbers 1 to 100. Gauss came up with an answer almost instantaneously, 5050. On the spot, he had developed a formula for calculating the sum of an arithmetic series. There are more general formulas for calculating the sum of an arithmetic series with different starting values and increments. Instead of deriving such a formula, why not use R to calculate the sum of a sequence?

Instructions 100 XP

- Using the function seq(), create a sequence that ranges from 1 to 500 in increments of 3. Assign the resulting vector to a variable seq1.
- Again with the function seq(), create a sequence that ranges from 1200 to 900 in increments of -7. Assign it to a variable seq2.
- Calculate the total sum of the sequences, either by using the sum() function twice and adding the two results, or by first concatenating the sequences and then using the sum() function once. Print the result to the console.

ex 047.R

```
# Create first sequence: seq1
seq1 <- seq(1, 500, by = 3)

# Create second sequence: seq2
seq2 <- seq(1200, 900, by = -7)

# Calculate total sum of the sequences
print(sum(seq1) + sum(seq2))</pre>
```

10.6 grepl & grep

In their most basic form, regular expressions can be used to see whether a pattern exists inside a character string or a vector of character strings. For this purpose, you can use:

grep1(), which returns TRUE when a pattern is found in the corresponding character string. grep(), which returns a vector of indices of the character strings that contains the pattern. Both functions need a pattern and an x argument, where pattern is the regular expression you want to match for, and the x argument is the character vector from which matches should be sought.

In this and the following exercises, you'll be querying and manipulating a character vector of email addresses! The vector emails has been pre-defined so you can begin with the instructions straight away!

Instructions 100 XP

- Use grepl() to generate a vector of logicals that indicates whether these email addresses contain "edu". Print the result to the output.
- Do the same thing with grep(), but this time save the resulting indexes in a variable hits.
- Use the variable hits to select from the emails vector only the emails that contain "edu".

$ex_48.R$

```
# The emails vector has already been defined for you
emails <-
    c(
        "john.doe@ivyleague.edu",
        "education@world.gov",
        "dalai.lama@peace.org",
        "invalid.edu",
        "quant@bigdatacollege.edu",
        "cookie.monster@sesame.tv"
    )
# Use grepl() to match for "edu"
print(grepl('edu', emails))
# Use grep() to match for "edu", save result to hits
hits <- grep('edu', emails)
# Subset emails using hits
emails[hits]
```

10.7 grepl & grep (2)

You can use the caret, ^, and the dollar sign, \$ to match the content located in the start and end of a string, respectively. This could take us one step closer to a correct pattern for matching only the ".edu" email addresses from our list of emails. But there's more that can be added to make the pattern more robust:

- @, because a valid email must contain an at-sign.
- .*, which matches any character (.) zero or more times (*). Both the dot and the asterisk are metacharacters. You can use them to match any character between the at-sign and the ".edu" portion of an email address.
- \\.edu\$, to match the ".edu" part of the email at the end of the string. The \\ part escapes the dot: it tells R that you want to use the . as an actual character.

Instructions 100 XP

- Use grepl() with the more advanced regular expression to return a logical vector. Simply print the result.
- Do a similar thing with grep() to create a vector of indices. Store the result in the variable hits.
- Use emails[hits] again to subset the emails vector.

$ex_049.R$

```
# The emails vector has already been defined for you
emails <- c(
    "john.doe@ivyleague.edu",
    "education@world.gov",
    "dalai.lama@peace.org",
    "invalid.edu",
    "quant@bigdatacollege.edu",
    "cookie.monster@sesame.tv"
)
grepl("@.*\\.edu$", emails)
hits <- grep("@.*\\.edu$", emails)
emails[hits]</pre>
```

10.8 sub & gsub

While grep() and grepl() were used to simply check whether a regular expression could be matched with a character vector, sub() and gsub() take it one step further: you can specify a replacement argument. If inside the character vector x, the regular expression pattern is found, the matching element(s) will be replaced with replacement. sub() only replaces the first match, whereas gsub() replaces all matches.

Suppose that emails vector you've been working with is an excerpt of DataCamp's email database. Why not offer the owners of the .edu email addresses a new email address on the datacamp.edu domain? This could be quite a powerful marketing stunt: Online education

is taking over traditional learning institutions! Convert your email and be a part of the new generation!

Instructions 100 XP

With the advanced regular expression "@.*\\.edu\$", use sub() to replace the match with "@datacamp.edu". Since there will only be one match per character string, gsub() is not necessary here. Inspect the resulting output.

$ex_050.R$

```
# The emails vector has already been defined for you
emails <- c(
    "john.doe@ivyleague.edu",
    "education@world.gov",
    "global@peace.org",
    "invalid.edu",
    "quant@bigdatacollege.edu",
    "cookie.monster@sesame.tv"
)

# Use sub() to convert the email domains to datacamp.edu
sub("@.*\\.edu$", "@datacamp.edu", emails)</pre>
```

10.9 sub & gsub (2)

Regular expressions are a typical concept that you'll learn by doing and by seeing other examples. Before you rack your brains over the regular expression in this exercise, have a look at the new things that will be used:

- .*: A usual suspect! It can be read as "any character that is matched zero or more times".
- \s: Match a space. The "s" is normally a character, escaping it (\) makes it a metacharacter.
- [0-9]+: Match the numbers 0 to 9, at least once (+).
- ([0-9]+): The parentheses are used to make parts of the matching string available to define the replacement. The \1 in the replacement argument of sub() gets set to the string that is captured by the regular expression [0-9]+. {. r code-line-numbers="false"} awards <- c("Won 1 Oscar.", "Won 1 Oscar. Another 9 wins & 24 nominations.", "1 win and 2 nominations.", "2 wins & 3 nominations.", "Nominated for 2 Golden Globes. 1 more win & 2 nominations.", "4

wins & 1 nomination.") sub(".*\\s([0-9]+)\\snomination.*\$", "\\1", awards) What does this code chunk return? awards is already defined in the workspace so you can start playing in the console straight away.

Instructions 50 XP

Possible Answers

- A vector of integers containing: 1, 24, 2, 3, 2, 1.
- The vector awards gets returned as there isn't a single element in awards that matches the regular expression.
- A vector of character strings containing "1", "24", "2", "3", "2", "1".
- A vector of character strings containing "Won 1 Oscar.", "24", "2", "3", "2", "1".

10.10 Right here, right now

In R, dates are represented by Date objects, while times are represented by POSIXct objects. Under the hood, however, these dates and times are simple numerical values. Date objects store the number of days since the 1st of January in 1970. POSIXct objects on the other hand, store the number of seconds since the 1st of January in 1970.

The 1st of January in 1970 is the common origin for representing times and dates in a wide range of programming languages. There is no particular reason for this; it is a simple convention. Of course, it's also possible to create dates and times before 1970; the corresponding numerical values are simply negative in this case.

Instructions 100 XP

- Ask R for the current date, and store the result in a variable today.
- To see what today looks like under the hood, call unclass() on it.
- Ask R for the current time, and store the result in a variable, now.
- To see the numerical value that corresponds to now, call unclass() on it.

$ex_50.R$

```
# Get the current date: today
today <- Sys.date()
# See what today looks like under the hood
unclass(today)
# Get the current time: now</pre>
```

```
now <- Sys.time()
# See what now looks like under the hood
unclass(now)</pre>
```

10.11 Create and format dates

To create a Date object from a simple character string in R, you can use the as.Date() function. The character string has to obey a format that can be defined using a set of symbols (the examples correspond to 13 January, 1982):

- %Y: 4-digit year (1982)
- %y: 2-digit year (82)
- %m: 2-digit month (01)
- %d: 2-digit day of the month (13)
- %A: weekday (Wednesday)
- %a: abbreviated weekday (Wed)
- %B: month (January)
- %b: abbreviated month (Jan)

The following R commands will all create the same Date object for the 13th day in January of 1982:

```
as.Date("1982-01-13")
as.Date("Jan-13-82", format = "%b-%d-%y")
as.Date("13 January, 1982", format = "%d %B, %Y")
```

Notice that the first line here did not need a format argument, because by default R matches your character string to the formats "%Y-%m-%d" or "%Y/%m/%d".

In addition to creating dates, you can also convert dates to character strings that use a different date notation. For this, you use the format() function. Try the following lines of code:

```
today <- Sys.Date() format(Sys.Date(), format = "%d %B, %Y") format(Sys.Date(), format = "Today is a %A!")
```

Instructions 100 XP

• Three character strings representing dates have been created for you. Convert them to dates using as.Date(), and assign them to date1, date2, and date3 respectively. The code for date1 is already included.

• Extract useful information from the dates as character strings using format(). From the first date, select the weekday. From the second date, select the day of the month. From the third date, you should select the abbreviated month and the 4-digit year, separated by a space.

$ex_51.R$

```
# Definition of character strings representing dates
str1 <- "May 23, '96"
str2 <- "2012-03-15"
str3 <- "30/January/2006"

# Convert the strings to dates: date1, date2, date3
date1 <- as.Date(str1, format = "%b %d, '%y")
date2 <- as.Date(str2, format = "%Y-%m-%d")
date3 <- as.Date(str3, format = "%d/%B/%Y")

# Convert dates to formatted strings
format(date1, "%A")
format(date2, "%d")
format(date3, "%b %Y")</pre>
```

10.12 Create and format times

Similar to working with dates, you can use as.POSIXct() to convert from a character string to a POSIXct object, and format() to convert from a POSIXct object to a character string. Again, you have a wide variety of symbols:

- %H: hours as a decimal number (00-23)
- %I: hours as a decimal number (01-12)
- %M: minutes as a decimal number
- %S: seconds as a decimal number
- %T: shorthand notation for the typical format %H:%M:%S
- %p: AM/PM indicator

For a full list of conversion symbols, consult the strptime documentation in the console:

```
?strptime
```

Again, as.POSIXct() uses a default format to match character strings. In this case, it's %Y-%m-%d %H:%M:%S. In this exercise, abstraction is made of different time zones.

10.12.1 Instructions 100 XP

- Convert two strings that represent timestamps, str1 and str2, to POSIXct objects called time1 and time2.
- Using format(), create a string from time1 containing only the minutes.
- From time2, extract the hours and minutes as "hours:minutes AM/PM". Refer to the assignment text above to find the correct conversion symbols!

$ex_52.R$

10.13 Calculations with Dates

Both Date and POSIXct R objects are represented by simple numerical values under the hood. This makes calculation with time and date objects very straightforward: R performs the calculations using the underlying numerical values, and then converts the result back to human-readable time information again.

You can increment and decrement Date objects, or do actual calculations with them:

```
today <- Sys.Date()
today + 1
today - 1
as.Date("2015-03-12") - as.Date("2015-02-27")
```

To control your eating habits, you decided to write down the dates of the last five days that you are pizza. In the workspace, these dates are defined as five Date objects, day1 to day5. A vector pizza containing these 5 Date objects has been pre-defined for you.

Instructions 100 XP

- Calculate the number of days that passed between the last and the first day you ate pizza. Print the result.
- Use the function diff() on pizza to calculate the differences between consecutive pizza days. Store the result in a new variable day_diff.
- Calculate the average period between two consecutive pizza days. Print the result.

$ex_053.R$

```
# day1, day2, day3, day4 and day5 are already available in the
# workspace Difference between last and first pizza day
print(day5 - day1)
# Create vector pizza
pizza <- c(day1, day2, day3, day4, day5)
# Create differences between consecutive pizza days: day_diff
day_diff <- diff(pizza)
# Average period between two consecutive pizza days
print(mean(day_diff))</pre>
```

10.14 Calculations with Times

Calculations using POSIXct objects are completely analogous to those using Date objects. Try to experiment with this code to increase or decrease POSIXct objects:

Adding or subtracting time objects is also straightforward:

```
birth <- as.POSIXct("1879-03-14 14:37:23")
death <- as.POSIXct("1955-04-18 03:47:12")
einstein <- death - birth
einstein</pre>
```

You're developing a website that requires users to log in and out. You want to know what is the total and average amount of time a particular user spends on your website. This user has logged in 5 times and logged out 5 times as well. These times are gathered in the vectors login and logout, which are already defined in the workspace.

Instructions 100 XP

- Calculate the difference between the two vectors logout and login, i.e. the time the user was online in each independent session. Store the result in a variable time_online.
- Inspect the variable time_online by printing it.
- Calculate the total time that the user was online. Print the result.
- Calculate the average time the user was online. Print the result.

ex 054.R

```
# login and logout are already defined in the workspace
# Calculate the difference between login and logout: time_online

time_on_line <- logout - login

# Inspect the variable time_online
time_on_line

# Calculate the total time online
sum(time_on_line)

# Calculate the average time online
mean(time_on_line)</pre>
```

10.15 Time is of the essence

The dates when a season begins and ends can vary depending on who you ask. People in Australia will tell you that spring starts on September 1st. The Irish people in the Northern hemisphere will swear that spring starts on February 1st, with the celebration of St. Brigid's Day. Then there's also the difference between astronomical and meteorological seasons: while astronomers are used to equinoxes and solstices, meteorologists divide the year into 4 fixed seasons that are each three months long. (source: www.timeanddate.com)

A vector astro, which contains character strings representing the dates on which the 4 astronomical seasons start, has been defined on your workspace. Similarly, a vector meteo has already been created for you, with the meteorological beginnings of a season.

Instructions 100 XP

• Use as.Date() to convert the astro vector to a vector containing Date objects. You will need the %d, %b and %Y symbols to specify the format. Store the resulting vector as

- $astro_dates.$
- Use as.Date() to convert the meteo vector to a vector with Date objects. This time, you will need the %B, %d and %y symbols for the format argument. Store the resulting vector asmeteo_dates.
- With a combination of max(), abs() and -, calculate the maximum absolute difference between the astronomical and the meteorological beginnings of a season, i.e. astro_dates and meteo_dates. Simply print this maximum difference to the console output.

$ex_055.R$

```
# Convert astro to vector of Date objects: astro_dates

astro_dates <- as.Date(astro, "%d-%b-%Y")
# Convert meteo to vector of Date objects: meteo_dates
meteo_dates <- as.Date(meteo, format = "%B %d, %y")

# Calculate the maximum absolute difference between astro_dates and meteo_dates
max(abs(astro_dates - meteo_dates))</pre>
```

11 Data visualization with ggplot2 and friends

Part III

The whole game of statistical Inference

Our goal in this part of the book is to give you a rapid overview of the main tools of data science: **importing**, **tidying**, **transforming**, and **visualizing data**, as shown in **?@fig-ds-whole-game**. We want to show you the "whole game" of data science giving you just enough of all the major pieces so that you can tackle real, if simple, data sets. The later parts of the book, will hit each of these topics in more depth, increasing the range of data science challenges that you can tackle.

12 Statistical Inference with resampling: Bootstrap and Jacknife.

- 12.1 Likelihood inference.
- 12.2 Variance analisys.
- 12.3 ROC Curves

13 Lienar Regression

- 13.1 Linear Regression
- 13.2 Multiple linear_regression and generalized linear regresion

14 Summary

In summary, this book has no content whatsoever.

[1] 2

References

- [1] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning, Second, Springer, New York, 2009.
- [2] W.J. Krzanowski, D.J. Hand, ROC curves for continuous data, CRC Press, Boca Raton, FL, 2009.
- [3] R. Martin, A statistical inference course based on p-values, The American Statistician. 71 (2017) 128–136.
- [4] P. McCullagh, J.A. Nelder, Generalized linear models, Chapman & Hall, London, 1989.
- [5] B. Ratner, Statistical and machine-learning data mining:: Techniques for better predictive modeling and analysis of big data, third edition, CRC Press, 2017.
- [6] D.A. Sprott, Statistical inference in science, Springer-Verlag, New York, 2000.