Topic 5G. Chemical Equilibrium

- 5G.I The Reversibility of Reactions
- 5G.2 Equilibrium and the Law of Mass Action
- 5G.3 The Origin of Equilibrium Constants
- 5G.4 The Thermodynamic Description of Equilibrium

The Reversibility of Reactions

- Consider the ammonia synthesis reaction $N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$
- The slope becomes zero to show that the concentration of each species has become constant in time: chemical equilibrium
 - → Rates of the forward and reverse reactions are equal.

The Reversibility of Reactions

- All chemical equilibria are dynamic equilibria.
 - → They respond to changes in temperature, pressure, and the addition or removal of even a small amount of reagent.
- Consider three cases

The Reversibility of Reactions

Dynamic equilibria

Guldberg and Waage (1884) proposed the law of mass action.

$$2 SO_2 (g) + O_2 (g) \leftrightarrow 2SO_3 (g)$$

$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$ at 1000. K					
P _{SO₂} /bar	$P_{\rm O_2}$ /bar	P _{SO₃} /bar	<i>K</i> *		
0.660	0.390	0.0840	0.0415		
0.0380	0.220	0.00360	0.0409		
0.110	0.110	0.00750	0.0423		
0.950	0.880	0.180	0.0408		
1.44	1.98	0.410	0.0409		

$$K = \frac{(P_{SO_3}/P^{\circ})^2}{(P_{SO_2}/P^{\circ})^2(P_{O_2}/P^{\circ})} \qquad K = \frac{(P_{SO_3})^2}{(P_{SO_2})^2 P_{O_2}}$$

- Equilibrium constant, *K*
 - → characteristic of the composition of the reaction mixture at equilibrium
- For a reaction

$$a ext{ A (g)} + b ext{ B (g)} \leftrightarrow c ext{ C (g)} + d ext{ D (g)}$$

$$K = \frac{(P_{\text{C}})^c (P_{\text{D}})^d}{(P_{\text{A}})^a (P_{\text{B}})^b}$$

• For a general case, activity is introduced.

substance	Activity Simplified form (no ι	
Ideal gas	$a_{\rm A} = P_{\rm A}/P^{\rm o}$	$a_{\rm A} = P_{\rm A}$
Solute in a dilute solution	$a_{\rm A} = [{\rm A}]/c^{\rm o}$	$a_{A} = [A]$
Pure solid and liquid	$a_{\rm A}=1$	$a_{\rm A}=1$

For a generalized version of equation

$$aA + bB \leftrightarrow cC + dD$$

$$K = \frac{(a_{\rm C})^c (a_{\rm D})^d}{(a_{\rm A})^a (a_{\rm B})^b}$$

- K is a constant for a given temperature (T)
- However, the equilibrium concentrations will not always be the same.
- Example: $A + B \rightarrow C$: K = [C]/([A][B]) = 10

Equilibrium concentrations can be any of the following

$$[C] = 10, [A] = 1, [B] = 1; K = 10/(1 \times 1) = 10$$

$$[C] = 20, [A] = 2, [B] = 1; K = 20 / (2 \times 1) = 10$$

- Homogeneous equil.: reactants and products all in the same phase
- Heterogeneous equil.: reactants and products with different phase
 - The position of a heterogeneous equilibrium does not depend on the amounts of pure solids or liquids present, as long as there exist some amount of the solid and liquid in the equilibrium mixture.
 - Pure solid and pure liquid concentration do not appear in the equilibrium equation.
- Why do we omit pure liquids and solids in equilibrium expression?
 - Densities of pure liquids and solids are constant for a given temperature.
 - Therefore, "concentration" of pure liq. and solids are constant.

- Examples of heterogeneous equilibria
 - $H_2O(I) \leftrightarrow H^+(aq) + OH^-(aq)$

$$K = [H^+][OH^-] = 10^{-14}$$

For neutral water, $[H^+] = [OH^-] = x$
 $K = [H^+][OH^-] = x^2 = 10^{-14}$
Therefore, $[H^+] = [OH^-] = 10^{-7} M$

• $Ca(OH)_2$ (s) \leftrightarrow Ca^{2+} (aq) + $2OH^-$ (aq)

$$K = \frac{a_{\text{Ca}^{2+}}(a_{\text{OH}^{-}})^{2}}{a_{\text{Ca}(\text{OH})_{2}}} = [\text{Ca}^{2+}][\text{OH}^{-}]^{2}$$
1 for a pure solid

Reaction	T/K^*	K	$K_{ m c}^{\dagger}$
$H_2(g) + Cl_2(g) \rightleftharpoons 2 HCl(g)$	300	4.0×10^{31}	4.0×10^{31}
	500	4.0×10^{18}	4.0×10^{18}
	1000	5.1×10^{8}	5.1×10^{8}
$H_2(g) + Br_2(g) \rightleftharpoons 2 HBr(g)$	300	1.9×10^{17}	1.9×10^{17}
	500	1.3×10^{10}	1.3×10^{10}
	1000	3.8×10^{4}	3.8×10^{4}
$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$	298	794	794
2.07	500	160	160
	700	54	54
$2 \operatorname{BrCl}(g) \Longrightarrow \operatorname{Br}_2(g) + \operatorname{Cl}_2(g)$	300	377	377
	500	32	32
	1000	5	5
$2 \text{ HD}(g) \rightleftharpoons H_2(g) + D_2(g)$	100	0.52	0.52
2.0	500	0.28	0.28
	1000	0.26	0.26
$F_2(g) \rightleftharpoons 2 F(g)$	500	3.0×10^{-11}	7.3×10^{-1}
	1000	1.0×10^{-2}	1.2×10^{-4}
	1200	0.27	2.7×10^{-3}
$Cl_2(g) \rightleftharpoons 2 Cl(g)$	1000	1.0×10^{-5}	1.2×10^{-7}
	1200	1.7×10^{-3}	1.7×10^{-5}
$Br_2(g) \rightleftharpoons 2 Br(g)$	1000	3.4×10^{-5}	4.1×10^{-7}
	1200	1.7×10^{-3}	1.7×10^{-5}
$I_2(g) \rightleftharpoons 2 I(g)$	800	2.1×10^{-3}	3.1×10^{-5}
	1000	0.26	3.1×10^{-3}
	1200	6.8	6.8×10^{-2}
$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$	298	6.8×10^{5}	4.2×10^{8}
	400	41	4.5×10^{4}
	500	3.6×10^{-2}	62
$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$	298	4.0×10^{24}	9.9×10^{25}
- 0 0 0	500	2.5×10^{10}	1.0×10^{12}
	700	3.0×10^4	1.7×10^{6}
$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$	298	0.15	6.1×10^{23}
The second secon	400	47.9	1.44
	500	1.7×10^{3}	41

^{*}Three significant figures.

 $^{{}^{\}dagger}K_{\rm c}$ is the equilibrium constant in terms of molar concentrations of gases (Topic 5H).

■ For an ideal gas: $a A + b B \leftrightarrow c C + d D$

$$\Delta G = \sum nG_{\rm m}({\rm products}) - \sum nG_{\rm m}({\rm reactants})$$

$$\Delta G_{\rm r} = \sum n_{\rm r} G_{\rm m}({\rm products}) - \sum n_{\rm r} G_{\rm m}({\rm reactants})$$

$$G_{\rm m}(J) = G_{\rm m}^{\circ}(J) + RT \ln \frac{P_{\rm J}}{P^{\circ}}$$

$$G_{\rm m}(J) = G_{\rm m}^{\rm o}(J) + RT \ln a_{\rm J}$$

$$\Delta G_{\rm r} = \{cG_{\rm m}({\rm C}) + dG_{\rm m}({\rm D})\} - \{aG_{\rm m}({\rm A}) + bG_{\rm m}({\rm B})\}$$

$$= \{c[G_{\rm m}^{\circ}({\rm C}) + RT \ln a_{\rm C}] + d[G_{\rm m}^{\circ}({\rm D}) + RT \ln a_{\rm D}]\}$$

$$- \{a[G_{\rm m}^{\circ}({\rm A}) + RT \ln a_{\rm A}] + b[G_{\rm m}^{\circ}({\rm B}) + RT \ln a_{\rm B}]\}$$

$$\Delta G_{\rm r}^{\circ}$$

$$= \{cG_{\rm m}^{\circ}({\rm C}) + dG_{\rm m}^{\circ}({\rm D})\} - \{aG_{\rm m}^{\circ}({\rm A}) + bG_{\rm m}^{\circ}({\rm B})\}$$

$$+ RT\{(c \ln a_{\rm C} + d \ln a_{\rm D}) - (a \ln a_{\rm A} + b \ln a_{\rm B})\}$$

$$\Delta G_{\rm r}^{\circ} = \{cG_{\rm m}^{\circ}({\rm C}) + dG_{\rm m}^{\circ}({\rm D})\} - \{aG_{\rm m}^{\circ}({\rm A}) + bG_{\rm m}^{\circ}({\rm B})\}$$

$$\Delta G_{\rm r} = \Delta G_{\rm r}^{\circ} + RT\{(c \ln a_{\rm C} + d \ln a_{\rm D}) - (a \ln a_{\rm A} + b \ln a_{\rm B})\}$$

$$\Delta G_{\rm r} = \Delta G_{\rm r}^{\circ} + RT \ln \frac{(a_{\rm C})^c (a_{\rm D})^d}{(a_{\rm A})^a (a_{\rm B})^b}$$

The above equation can be written as

$$\Delta G_{\rm r} = \Delta G_{\rm r}^{\rm o} + RT \ln Q$$

Reaction quotient

$$Q = \frac{(a_{\rm C})^{c} (a_{\rm D})^{d}}{(a_{\rm A})^{a} (a_{\rm B})^{b}}$$

• At equilibrium, Q = K and $\Delta G_r = 0$

$$0 = \Delta G_{\rm r}^{\rm o} + RT \ln K$$

$$\Delta G_{\rm r}^{\,\circ} = -RT \ln K$$

- Predicting the direction of reaction
 - If ΔG_r ° is negative, then K > I; products are favored at equilibrium.
 - If ΔG_r ° is positive, then K < I; reactants are favored at equilibrium.

The above equation can be written as

$$\ln K = -\frac{\Delta G_{\rm r}^{\circ}}{RT} = -\frac{\Delta H_{\rm r}^{\circ}}{RT} + \frac{\Delta S_{\rm r}^{\circ}}{R}$$

$$K = e^{-\Delta H_{\rm r}^{\circ}/RT + \Delta S_{\rm r}^{\circ}/R} = e^{-\Delta H_{\rm r}^{\circ}/RT} e^{\Delta S_{\rm r}^{\circ}/R}$$

16

Topic 5H. Alternative Forms of the Equilibrium Constant

- 5H.I Multiples of Chemical Equation
- 5H.2 Composite Equations
- 5H.3 Molar Concentrations of Gases

Multiples of Chemical Equation

$$H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$$
 $K_1 = \frac{(P_{HI})^2}{P_{H_2}P_{I_2}} = 160$

$$2 \text{ H}_2(g) + 2 \text{ I}_2(g) \iff 4 \text{ HI}(g)$$
 $K_2 = \frac{(P_{\text{HI}})^4}{(P_{\text{H}_2})^2 (P_{\text{I}_2})^2} = K_1^2 = 160^2 = 2.96 \times 10^4$

$$2 \text{ HI(g)} \iff H_2(g) + I_2(g) \qquad K_3 = \frac{P_{H_2}P_{I_2}}{(P_{HI})^2} = \frac{1}{K_1} = \frac{1}{160} = 0.0063$$

Multiples of Chemical Equation

TABLE 5H.1 Relations Between Equilibrium Constants*

Chemical equation Equilibrium constant

$$a A + b B \Longrightarrow K_{1}$$

$$c C + d D$$

$$c C + d D \Longrightarrow K_{2} = 1/K_{1} = A + b B \Longrightarrow K_{1}^{-1}$$

$$N(a A + b B \Longrightarrow K_{3} = K_{1}^{N}$$

$$c C + d D)$$

*For a reaction that can be expressed as the sum of other reactions, the equilibrium constant is the product of the equilibrium constants of the component reactions. Thus, for $A \rightleftharpoons B(K_1)$ and $B \rightleftharpoons C(K_2)$, then for $A \rightleftharpoons C$, $K = K_1K_2$.

Composite Equations

$$2 \text{ P(g)} + 3 \text{ Cl}_{2}(g) \iff 2 \text{ PCl}_{3}(g) \qquad K_{1} = \frac{(P_{\text{PCl}_{3}})^{2}}{(P_{\text{P}})^{2}(P_{\text{Cl}_{2}})^{3}}$$

$$P\text{Cl}_{3}(g) + \text{Cl}_{2}(g) \iff P\text{Cl}_{5}(g) \qquad K_{2} = \frac{P_{\text{PCl}_{5}}}{P_{\text{PCl}_{3}}P_{\text{Cl}_{2}}}$$

$$2 \text{ P(g)} + 5 \text{ Cl}_{2}(g) \iff 2 \text{ PCl}_{5}(g) \qquad K_{3} = \frac{(P_{\text{PCl}_{5}})^{2}}{(P_{\text{P}})^{2}(P_{\text{Cl}_{2}})^{5}}$$

$$K_{3} = \frac{(P_{\text{PCl}_{5}})^{2}}{(P_{\text{PCl}_{5}})^{2}} = \frac{K_{1}}{(P_{\text{PCl}_{3}})^{2}} \times \frac{K_{2}^{2}}{(P_{\text{PCl}_{5}})^{2}} = K_{1}K_{2}^{2}$$

Molar Concentrations of Gases

■ For a reaction $aA + bB \leftrightarrow cC + dD$

$$K = \frac{(a_{\rm C})^c (a_{\rm D})^d}{(a_{\rm A})^a (a_{\rm B})^b}$$

• For gases, the following constant is also used.

$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$$
 $K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$

•
$$K \text{ and } K_c$$

$$K = \left(\frac{c^{\circ}RT}{P^{\circ}}\right)^{\Delta n_r} K_c$$