TAREFA 2 (T2)

Use a propagação de erros para calcular as grandezas físicas mais prováveis abaixo. Desenvolva os cálculos das derivadas detalhadamente à mão. Contudo, os cálculos podem ser feitos no software Excel, por exemplo. Além disto, faça análises de qualidades usando as definições de precisão e acurácia.

2) 1) 3) $P \pm \delta P$ $s \pm \delta s$ $v \pm \delta v$ $v^2 = v_0^2 + 2a\Delta S$ P = mg $s = s_0 + v_0 t + 0.5 at^2$ $v_0 = (3.0 \pm 0.1) \, m \, s^{-1}$ $m = 78 \, kg$ $s_0 = (8 \pm 1) m$ $g = (9.89 \pm 0.01) \, m \, s^{-2}$ $a = 10 \, m \, s^{-2}$ $a = (0.05 \pm 0.01) \, m \, s^{-2}$ $P_{ref} = 800 N$ $t = (109 \pm 1) s$ $\Delta S = (12.02 \pm 0.02) m$ $v_0 = (0.42 \pm 0.02) \, m \, s^{-1}$ $v_{ref} = 10 \, m \, s^{-1}$ $s_{ref} = 65 \times 10^3 \, m$ 4) $x \pm \delta x$ $K \pm \delta K$ $w \pm \delta w$ $T^2 = Kr^3$ $x = \frac{yz}{r}$ $w^2 = kr^3$ $k = 2.976 \, s^2 \, m^{-3}$ $T = (155 \pm 1) \ anos$ $y = (20.974 \pm 0.007) m$ $r = (30.08 \pm 0.02) u. a.$ $r = (2.35 \pm 0.05) m$ $z = (0.35 \pm 0.01) m$ $K_{ref} = 1 \ anos^2 \ (u. \ a.)^{-3}$ $w_{ref} = 7.5 \, s$ $r = (890 \pm 5) \times 10^2 m$ $x_{ref} = 10^{-4} \, m$ 7) 9) $i \pm \delta i$ $\tau \pm \delta \tau$ $y \pm \delta y$ $i = i_0 e^{-\lambda t}$ $ddp = V_0 e^{-t/\tau}$ $y = A \sin(\omega t + \phi)$ $A = (2.5 \pm 0.5) m$ $i_0 = (1.06 \pm 0.01) A$ $ddp = (0.03 \pm 0.01) V$ $t = (31.4 \pm 0.1) s$ $\lambda = (0.2215 \pm 0.0005) \times 10^{-3} s$ $V_0 = (10.02 \pm 0.01) V$ $t = (20 \pm 1) s$ $\omega = (0.5 \pm 0.1) \, rad \, s^{-1}$ $t = 3000 \, s$ $\tau_{ref} = 3.7 \ s^{-1}$ $\phi = -\pi/2 \, rad$ $i_{ref} = 0.65 \, A$ $y_{ref} = 2 m$ 10) $f \pm \delta f$ $f = [e^{-\lambda t}\cos(\omega t)](at + b)$ $\lambda = (3.005 \pm 0.005) \times 10^{-2} \, \text{s}^{-1}$ $\omega = (7 \pm 1) \, rad/s$ $a = 10 \, s^{-1}$

 $b = (2.0 \pm 0.2)$

 $f_{ref} = 9.55$

t = 1 s