Nume și prenume student 1 GAUJANEANU NICOLETA VÎNĂTORU MARIA SILVIA MONICA

Nume și prenume student 2

FILTRE RC ACTIVE

fooj = 5,65 KH9

100s = 2,82 KHZ

B. Să se calculeze atenuările de inserție	pentru filtrele de mai jo	S:
---	---------------------------	----

	f[kHz]	0	2	$f_{\infty S}$	4	foot	6	8	10
Bw2	a _i [dB]	-4,0279	-3,7646	-3,0691	-1,0176	2,9449	3,4985	8,2765	11, 9996
Bw4	a _i [dB]	-8,2113	The second name of the second			4,0875		15,8834	23,6192
FTJ3	a _i [dB]	0,4005	3,0401		11,4903	104,9764	24,962	13, 9893	10.8124
FTS2	a _i [dB]	10,6774						6,99	6,1213
FTS1	a _i [dB]	8	8,2465						-3,9181

-	de determina scrizitivitate a atenuarii (+1) Butterworth de ordinul 2 la variația cu aproximativ 10% a rezistentei R ₁ :													
	R_g $[\Omega]$	f [kHz]	0,5	1	2	3	3,5	4	4,5	5	6	8	10	11
	50	$U_2[V]$	1,2597	1,2630	1,2534	1,1596	1,0675	0,9547	0,8358	0,7234	0,5393	0,3083	0,1913	0,1543
30				100000000000000000000000000000000000000		-350		-1287			Charles on the last of the las	HB 99		+14,0
ı	600	U ₂ [V]	1,2604	1,2657	1,2604	小5岁	1,0558	0,9339	0,8089	0,694	0,5094	0,2870	0,1765	0,1419
	-		-4,22	-426	-4,22	-3,49	-2,68	-1,62	40,34	+0,91	+3,64	+8,62	+12,8	+14;7
L		$S_{R_l}^a$	0	0,000	-0,000	-0,0324	-0,00gT	-0,009	-0,0399	0,04930	0,0144	0,00716	0,0052	0,0045

D. Se determină senzitivitatea atenuării FTJ Butterworth de ordinul 2 pentru o variație cu $\frac{\Delta k}{l}$ = 10%:

f[kHz]	0,5	1	2	3	3,5	4,5	5	(6)	8	10 -	11
U ₂ [V]	1,3977	154089	1,4219	1,3312	1,2231	0,9413	0,8050	0,5893	0, 3301	0,2033	0,1640
	-5,13	-5,19	-5,27	4,40	-3,96	-1,69	-0,33	+2,37	47,40	H1456	+13,4
S_k^a	2,156	2,240	2,604	3,428	4,244	更多	7年59	3月时	-0,738	-0,413	-0,428

E. Se reprezintă grafic variația în cele trei cazuri. 35,6 a = f(f) -> excee -2,452

concluzii: Din grafic se observa ca fictione trace jos casa na trocca se serventa mica oi la Clachenta pe cele de freventa mica oi la Clachenta pe cele de frevente mori

Comparație între rezultatele experimentale și cele teoretice:

sa/ 12 -> 6 12 = 6.4 = 24 dB/ octová (terretic)

G. Se mas	. Se masoara atenuarile iliteloi F131311152.											
	f [kHz]	0,5	1	2	$f_{\infty s}$	3	4	5	6	8	10	11
		0,0024	0,0550	0,2494	0,5267	0,5816	0,8408	4,0074	1,0986	1,1713	1,2004	1,2065
FTS1	a _i [dB]		22,58	8,85	3,34	2,48	-0,71	-2,28	-3,03	-3,61	-3,80	-3,85
	U ₂ [V]	0,2089	0,1911	051089	0,0205	1,010,0	430310	0,0312	0,3865	0,4216	0,4307	0,4327
FTS2	a _i [dB]	1150	1201	17,0	31,4	コキュキ	4154	7,34	6,03	5,28	5,09	5,05

Comparație între rezultatele experimentale și cele teoretice:

Resultatele experimentale ours aprepriate de cele terrelier

Grafic:

Grafice lucrare 1 – Filtre active

E. Se reprezinta grafic variatia in cele trei cazuri.

FTJ – lasa sa treaca semnalele de frecvente scazute si le atenueaza pe cele de frecvente inalte.

Pentru filtrele la care s-au masurat parametrii se constata o crestere pentru atenuare in jurul valorii f_{ooj} apoi o revenire catre caracteristica teoretica.

Rezultatele experimentale sunt apropiate de cele teoretice, caracteristicile in cele doua cazuri urmand aceasi monotonie.