# Data types van getallen en snelheid

#### Richèl Bilderbeek





# Vragen

- Welk data type moet ik gebruiken?
  - Type
  - Bereik
  - Snelheid
- Antwoord is afhankelijk van:
  - Chip
  - C++ standaard
  - Beschikbare bibliotheken

# Soorten getallen

- Hele getallen
- Gebroken getallen



# Hele getallen



# Hele getallen

- 10 types!
- 5 basis types: char, short, int, long, long long1
- 2 modifiers: signed, unsigned
  - int = signed int
  - unsigned int ≠ int

- Bereikgrootte afhankelijk van het aantal bytes van het basis type
- Dit is chip afhankelijk!

<sup>&</sup>lt;sup>1</sup> long long is een C++11 data type

# Hele getallen

```
void setup() {
  Serial.begin(9600);
  Serial.println("Datatype sizes (in bytes)");
  Serial.print("char: "); Serial.println(sizeof(char));
  Serial.print("short: "); Serial.println(sizeof(short));
  Serial.print("int: "); Serial.println(sizeof(int));
  Serial.print("long: "); Serial.println(sizeof(long));
  Serial.print("long long: "); Serial.println(sizeof(long long));
}
void loop() {}
```

# Atmega 328P-PU

Datatype sizes (in bytes)

char: 1

short: 2

int: 2

long: 4

long long: 8

32 KB flash geheugen 8 bit



#### Bereik

- Bereik van n bytes:  $(28)^n = (256)^n$
- Unsigned: [0,b-1]
- Signed: [- ½ \* b, ½ \* b 1]

- Bijvoorbeeld: char = 1 byte (per definitie)
- Bereik:  $(28)^n = (256)^n = 256$
- unsigned char: [0,255]
- char: [-128,127]

# Atmega 328P-PU

 $2^{16}/2-1$ 

char: 127  $2^8/2-1$ 

short: 32767

int: 32767

long: 2147483647

long long: 9223372036854775807 **2<sup>64</sup>/2-1** 

232 / 2 -1

75807 **2<sup>64</sup>/2-1** 

### Snelheid

- Snelheid is te meten met een benchmarks
- Een benchmark is moeilijk te schrijven
- Resultaten van een benchmark verschillen per chip
- De conclusies van een benchmark zijn lastig te trekken

#### Benchmark

```
template <class T>
int Test() { //Return type is int, omdat T niet mag
  const int sz = 150; //Arraygrootte
  const int r = 1000; //Aantal herhalingen
  T v[sz]; //Array met willekeurige waarden
  T sum = 0;
  for (int j=0; j!=r; ++j) {
    for (int i=0; i!=sz; ++i) {
      ++v[i];
      sum += v[i];
  return sum; //Geef iets meetbaars terug
```

#### Benchmark

```
void loop() {
  const double t0 = millis();
  const int s0 = Test<char>();
  const double t1 = millis();
  const double t char = t1-t0;
  Serial.print("char: ");
  Serial.println(t char);
  Serial.print("char (per byte): ");
  Serial.println(t char/sizeof(char));
```

# Atmega 328P-PU

char: 95.00

short: 151.00

int: 152.00

long: 264.00

long long: 982.00



# Atmega 328P-PU

```
char (per byte): 94.00
short (per byte): 75.50
int (per byte): 76.00
long (per byte): 66.00
long long (per byte): 122.75
```

# Conclusies Atmega 328P-PU

- short en int zijn hetzelfde
- Snelheid is niet van belang: het bereik varieert meer dan snelheid:
  - Bereik long long is 200000000x groter dan long
  - Snelheid long long is 2x hoger per byte dan long

## Discussie

- Hele getallen met groter bereik nodig?
  - Gebruik dan een bibliotheek
  - (Google op 'big integer library Arduino')
  - Toepassing?
- Het bereik van een long long is misschien onnodig groot:
  - Meer dan het aantal zandkorrels op alle stranden ter wereld
  - Meer dan het aantal sterren binnen het zichtbaar universum

#### Advies

- Kies het kleinste data type dat past bij het bereik
- Kies liever te groot dan te klein
- In de regel: int
- Gebruik geen unsigned (Stroustrup, 1997, 2005):
  - Onverwachte uitkomsten bij berekeningen
  - Moeilijker debuggen





# Gebroken getallen

# Gebroken getallen

- 3 types: float, double en long double
- Geen modifiers

#### Grootte

Datatype sizes (in bytes)

Gebroken getallen:

double: 4

float: 4

long double: 4



#### Bereik

- Van -3.4 \* 1038 tot 3.4 \* 1038
- 6-7 decimalen precisie
- Laagste waarde boven nul: 1.17549e-38



#### Snelheid

```
float: 2173.00

double: 2177.00

long double: 2186.00

float (per byte): 543.25

double (per byte): 544.25

long double (per byte): 546.50
```



#### Conclusie

 float en double en long double zijn hetzelfde op de Atmega 328P-PU

### Discussie

- Nauwkeurigere gebroken getallen nodig?
   Gebruik dan een bibliotheek (Google op 'arbitrary precision floating point library Arduino)
  - Toepassing?
- De meeste sensoren hebben veel minder dan 6-7 decimalen precisie

#### Eindconclusie

- Hele getallen:
  - Gebruik geen unsigned
  - Kies een type met het juiste bereik
- Gebroken getallen:
  - Type maakt niet uit
- Snelheid maakt geen verschil