- 1 Perceptron Algorithm and Convergence Analysis
- 1.
- (a) A two-input Boolean function can be: $y = x1 \land x2$:
- x1 x2 $y = x1 ^ x2$
- 0 0 0 (-)
- 0 1 0(-)
- 1 0 0(-)
- 1 1 1 (+)

The equation of a separating hyperplane is: y = -x1 + x2 + 1.5 = 0.

- (b) A two-input Boolean function that can not be represented by a single perceptron can be: y = x1 XOR x2.
- x1 x2 y = x1 XOR x2
- 0 0 0 (-)
- 0 1 1 (+)
- 1 0 1(+)
- 1 1 0 (-)

Assume the hyperplane is w0 + w1x1 + w2x2 = 0.

$$w0 + 0 * w1 + 0 * w2 \le 0$$
 \Leftrightarrow $w0 \le 0$

$$w0 + 0 * w1 + 1 * w2 \ge 0$$
 \Leftrightarrow $w0 \ge -w2$

$$w0 + 1 * w1 + 0 * w2 \ge 0$$
 \Leftrightarrow $w0 \ge -w1$

$$w0 + 1 * w1 + 1 * w2 \le 0$$
 \Leftrightarrow $w0 \le -w1 - w2$ contradictory.

(c) A three-input Boolean function can be: $y = x1 ^ x2 ^ x3$.

Only point (1, 1, 1) is classified as positive. All the other points are classified as negative.

The equation of a separating hyperplane is: $x_1/4 + x_2/4 + x_3/4 - 5/8 = 0$. The plane passes through point (1, 1, 0.5), point (1, 0.5, 1) and point (0.5, 1, 1).

2.

In the figure above, the Euclidean Distance from point x to the decision boundary is r. Point x' is point x' s corresponding point on the decision boundary. And x-x' is perpendicular to the decision boundary and parallel to the normal vector \mathbf{w} .

So,
$$\mathbf{x'} = \mathbf{x} - \operatorname{yr} \frac{\beta}{\|\beta\|_2}$$
.

Since \mathbf{x}' is on the decision boundary, $\boldsymbol{\beta}_0 + \boldsymbol{\beta}^T \mathbf{x}' = 0$.

$$r=yrac{oldsymbol{eta}_0+oldsymbol{eta}^T\mathbf{x}}{\|oldsymbol{eta}\|_2}$$
 . Equivalently, $\mathbf{r}=rac{1}{\|oldsymbol{eta}\|_2}yf(x)$.

2 Programming Assignment

1.

(a) Observation: the accuracy fluctuates and slowly approaches 1 as epochs grow. The following figures are when epochs = 100, epochs = 1000 and epochs = 10.

epochs	Final accuracy
10	0.9673518742442564
100	0.9787182587666263

So we can go to the conclusion that the larger the epochs, the more accurate the model.

(b) Observation: Orange line for testing dataset and blue line for training dataset. So we can see the testing dataset always gets a lower accuracy than training dataset.

(c) the confusion matrix:

	y = +1	y = -1
$\hat{y} = +1$	TP = 2637	FP = 137
$\hat{y} = -1$	FN = 101	TN = 2637

Accuracy = 0.956821480406386

(d) The AUC of the classifier with weight vector \mathbf{w}^* is larger than that of the classifier with \mathbf{w}' . So, weight vector \mathbf{w}^* leads to a better decision boundary.

(e) The AUC of the classifier with w' is 0.9912513137711291, and the AUC of the classifier with w* is 0.998035309675626.

2.

(a) When eta = 0.1:

$\hat{y} = +1$	TP = 2582	FP = 80
$\hat{y} = -1$	FN = 156	TN = 2694

Accuracy = 0.9571843251088534

(b) The technique I use to tune eta is: If \mathbf{w}^* is a very good separator, $y_i(\mathbf{w}^*x_i) \geq \mathbf{\pounds}$ for all i. So we need to find δ , which is the minimum margin. So I initialize δ to max float value and go through all the images x_i . If $y_i(\mathbf{w}^*x_i) > 0$ (since after 100 epochs the algorithm still can't converge) and $y_i(\mathbf{w}^*x_i) < \mathbf{\pounds}$, I update δ to $y_i(\mathbf{w}^*x_i)$. After the loop, I substitute δ into $\eta = \frac{1}{2}\ln{(\frac{1+\mathbf{\pounds}}{1-\mathbf{\pounds}})}$ to get new η and test it on the test set to see if accuracy goes up. If the new accuracy we got is greater than the previous accuracy, we think this η is better than the previous η . We choose η with the highest accuracy to be our optimal η .

```
eta = 0.1, test accuracy = 0.9571843251088534

eta = 6.83143847e-06, test accuracy = 0.9571843251088534

eta = 4.86124361e-09, test accuracy = 0.9571843251088534

eta = 3.45812268e-12, test accuracy = 0.9609941944847605

eta = 3.33066907e-16, test accuracy = 0.9511973875181422

eta = 0.
```

So, optimal eta = 3.45812268e-12