$Geometrie\ WS2018/19$

Dozent: Prof. Dr. Arno Fehm

11. November 2018

In halts verzeichnis

I	Endliche Gruppen				
	1	Erinnerung und Beispiele	2		
	2	Ordnung und Index	6		
	3	Normalteiler und Quotientengruppen	9		
	4	Abelsche Gruppen	13		
	5	Direkte und semidirekte Produkte	17		
	6	Gruppenwirkungen	21		
	7	p-Gruppen	25		
	8	Die Sylow-Sätze	27		
II	Ko	mmutative Ringe	29		
Ш	Körpererweiterungen				
An	han		32		
A	Lis	ten	32		
	A.1	Liste der Theoreme	32		
	A.2	Liste der benannten Sätze, Lemmata und Folgerungen	33		

Vorwort

Wir freuen uns, dass du unser Skript für die Vorlesung *Geometrie* bei Prof. Dr. Arno Fehm im WS2018/19 gefunden hast. Da du ja offensichtlich seit einem Jahr Mathematik studierst, kannst du dich glücklich schätzen zu dem einen Drittel zu gehören, dass nicht bis zum zweiten Semester abgebrochen hat.

Wenn du schon das Vorwort zu *Lineare Algebra und analytische Geometrie* 1+2 gelesen hast, weißt du sicherlich, dass Prof. Fehm ein Freud der Algebra ist. Auf die Frage eines Kommilitonen, wo in seinem Inhaltsverzeichnis (Gruppen, Ringe, Körper) die Geometrie vorkomme, antwortete er:

Die Frage ist nicht, wieso wir in dieser Vorlesung Algebra statt Geometrie machen, sondern warum hier seit 20 Jahren Geometrie unterrichtet wird.

Wie auch im letzten Vorwort können wir dir nur empfehlen die Vorlesung immer zu besuchen, denn dieses Skript ist kein Ersatz dafür. Es soll aber ein Ersatz für deine unleserlichen und (hoffentlich nicht) unvollständigen Mitschriften sein und damit die Prüfungsvorbereitung einfacher machen. Im Gegensatz zu letztem Semester veröffentlicht Prof. Fehm auf seiner Homepage (http://www.math.tu-dresden.de/~afehm/lehre.html) kein vollständiges Skript mehr, sondern nur noch eine Zusammenfassung.

Der Quelltext dieses Skriptes ist bei Github (https://github.com/henrydatei/TUD_MATH_BA) gehostet; du kannst ihn dir herunterladen, anschauen, verändern, neu kompilieren, ... Auch wenn wir das Skript immer wieder durchlesen und Fehler beheben, können wir leider keine Garantie auf Richtigkeit geben. Wenn du Fehler finden solltest, wären wir froh, wenn du ein neues Issue auf Github erstellst und dort beschreibst, was falsch ist. Damit wird vielen (und besonders nachfolgenden) Studenten geholfen.

Und jetzt viel Spaß bei Geometrie!

Henry, Pascal und Daniel

 $^{^{1}}$ In Zukunft wird sich Prof. Fehm richtig freuen dürfen, denn im Zuge einer neuen Studienordnung, die am 1.4.2019 in Kraft tritt, kommt so gut wie keine Geometrie im *Bachelor Mathematik* vor.

Kapitel I

Endliche Gruppen

1. Erinnerung und Beispiele

▶ Erinnerung 1.1

Eine <u>Gruppe</u> ist ein Paar (G,*) bestehend aus einer Menge G und einer Verknüpfung $*: G \times G \to G$, dass die Axiome Assoziativität, Existenz eines neutralen Elements und Existenz von Inversen erfüllt, und wir schreiben auch G für die Gruppe (G,*). Die Gruppe G ist <u>abelsch</u>, wenn g*h = h*g für alle $g,h \in G$. Eine allgemeine Gruppe schreiben wir multiplikativ mit neutralem Element 1, abelsche Gruppen auch additiv mit neutralem Element 0.

Eine Teilmenge $H \subseteq G$ ist eine <u>Untergruppe</u> von G, in Zeichen $H \leq G$, wenn $H \neq \emptyset$ und H abgeschlossen ist unter der Verknüpfung und den Bilden von Inversen. Wir schreiben 1 (bzw. 0) auch für die triviale Untergruppe $\{1\}$ (bzw. $\{0\}$) von G.

Eine Abbildung $\varphi:G\to G'$ zwischen Gruppen ist ein Gruppenhomomorphismus , wenn

$$\varphi(g_1 \cdot g_2) = \varphi(g_1) \cdot \varphi(g_2) \quad \forall g_1, g_2 \in G$$

und in diesem Fall ist

$$Ker(\varphi) = \varphi^{-1}(\{1\})$$

der Kern von φ . Wir schreiben $\mathrm{Hom}(G,G')$ für die Menge der Gruppenhomomorphismen $\varphi:G\to G'$.

■ Beispiel 1.2

Sei $n \in \mathbb{N}$, K ein Körper und X eine Menge.

- (a) $\operatorname{Sym}(X)$, die $\operatorname{symmetrische} \operatorname{Gruppe}$ aller Permutationen der Menge X mit $f \cdot g = g \circ f$, insbesondere $S_n = \operatorname{Sym}(\{1, ..., n\})$
- (b) \mathbb{Z} sowie $\mathbb{Z}/n\mathbb{Z} = \{a + n\mathbb{Z} \mid a \in \mathbb{Z}\}$ mit der Addition
- (c) $GL_n(K)$ mit der Matrizenmultiplikation, Spezialfall $GL_1(K) = K^{\times} = K \setminus \{0\}$
- (d) Für jeden Ring R bilden die Einheiten R^{\times} eine Gruppe unter der Multiplikation, zum Beispiel $\operatorname{Mat}_n(K)^{\times} = \operatorname{GL}_n(K), \mathbb{Z}^{\times} = \mu_2 = \{1, -1\}$

■ Beispiel 1.3

Ist (G,\cdot) eine Gruppe, so ist auch (G^{op},\cdot^{op}) mit $G=G^{op}$ und $g\cdot^{op}h=h\cdot g$ eine Gruppe.

▶ Bemerkung 1.4

Ist G eine Gruppe und $h \in G$, so ist die Abbildung

$$\tau_h = \begin{cases} G \to G \\ g \mapsto gh \end{cases}$$

eine Bijektion (also $\tau_h \in \text{Sym}(G)$) mit Umkehrabbildung $\tau_{h^{-1}}$.

Satz 1.5

Sei G eine Gruppe. Zu jeder Menge $X\subseteq G$ gibt es eine kleinste Untergruppe $\langle X\rangle$ von G, die X enthält, nämlich

$$\langle X \rangle = \bigcap_{X \subseteq H \leq G} H$$

▶ Bemerkung 1.6

Man nennt $\langle X \rangle$ die von X <u>erzeugte</u> von G. Die Gruppe G heißt <u>endlich erzeugt</u>, wenn $G = \langle X \rangle$ für eine endliche Menge $X \subseteq G$.

Satz 1.7

Ein Gruppenhomomorphismus $\varphi: G \to G'$ ist genau dann ein Isomorphismus, wenn es einen Gruppenhomomorphismus $\varphi': G' \to G$ mit $\varphi' \circ \varphi = \mathrm{id}_G$ und $\varphi \circ \varphi' = \mathrm{id}_{G'}$ gibt.

■ Beispiel 1.8

Ist G eine Gruppe, so bilden die <u>Automorphismen</u> $\operatorname{Aut}(G) \subseteq \operatorname{Hom}(G,G)$ eine Gruppe unter $\varphi \circ \varphi' = \varphi' \circ \varphi$. Für $\varphi \in \operatorname{Aut}(G)$ und $g \in G$ schreiben wir $g^{\varphi} = \varphi(g)$.

Satz 1.9

Einen Gruppenhomomorphismus $\varphi: G \to G'$ ist genau dann injektiv, wenn $\operatorname{Ker}(\varphi) = 1$.

■ Beispiel 1.10

Sei $n \in \mathbb{N}$, K ein Körper.

- (a) sgn : $S_n \to \mu_2$ ist ein Gruppenhomomorphismus mit Kern die <u>alternierende Gruppe</u> A_n .
- (b) det: $GL_n(K) \to K^{\times}$ ist ein Gruppenhomomorphismus mit Kern $SL_n(K)$.
- (c) $\pi_{n\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, a \mapsto a + n\mathbb{Z}$ ist ein Gruppenhomomorphismus mit Kern $n\mathbb{Z}$
- (d) Ist A eine abelsche Gruppe, so ist

$$[n]: \begin{cases} A \to A \\ x \to nx \end{cases}$$

ein Gruppenhomomorphismus mit Kern A[n], die n-Torsion von A und Bild nA.

(e) Ist G eine Gruppe, so ist

$$\begin{cases} G \to G^{op} \\ g \mapsto g^{-1} \end{cases}$$

ein Isomorphismus.

Definition 1.11 (Zykel, disjunkte Zykel)

Seien $n, k \in \mathbb{N}$. Für paarweise verschiedene Elemente $i_1, ..., i_k \in \{1, ..., n\}$ bezeichnen wir mit $(i_1...i_k)$ das $\sigma \in S_n$ gegeben durch

$$\sigma(i_j) = i_{j+1} \quad \text{für } j = 1, ..., k-1$$

$$\sigma(i_k) = i_1$$

$$\sigma(i) = i \quad \text{für } i \in \{1, ..., n\} \setminus \{i_1, ..., i_k\}$$

Wir nennen $(i_1...i_k)$ eine k-Zykel $(i_1...i_k)$ und $(j_1...j_l) \in S_n$ heißen disjunkt, wenn $\{i_1,...,i_k\} \cap \{j_1,...,j_l\} = \emptyset$.

Satz 1.12

Jedes $\sigma \in S_n$ ist das Produkt von Transpositionen (das heißt 2-Zykeln).

Lemma 1.13

Disjunkte Zykel kommutieren, das heißt sind $\tau_1, \tau_2 \in S_n$ disjunkte Zykel, so ist $\tau_1 \tau_2 = \tau_2 \tau_1$.

Beweis. Sind $\tau_1 = (i_1...i_k)$ und $\tau_2 = (j_1...j_l)$ so ist

$$\tau_1 \tau_2(i) = \tau_2 \tau_1(i) = \begin{cases} \tau_1(i) & i \in \{i_1 ... i_k\} \\ \tau_2(i) & i \in \{j_1 ... j_l\} \\ i & \text{sonst} \end{cases}$$

Satz 1.14

Jedes $\sigma \in S_n$ ist ein Produkt von paarweise disjunkten k-Zykeln mit $k \geq 2$ eindeutig bis auf Reihenfolge (sogenannte Zykelzerlegung von σ).

Also ein 3-Zykel und ein 2-Zykel.

Beweis. Induktion nach $N = |\{i \mid \sigma(i) \neq i\}|.$

$$N=0$$
: $\sigma=\mathrm{id}$

 $\underline{N > 0}$: Wähle i_1 mit $\sigma(i_1) \neq i_1$, betrachte $i_1, \sigma(i_1), \sigma^2(i_1), \dots$ Da $\{1, \dots, n\}$ endlich und σ bijektiv ist, existiert ein minimales $k \geq 2$ mit $\sigma^k(i_1) = i_1$. Setze $\tau_1 = (i_1 \sigma(i_1) \dots \sigma^{k-1}(i_1))$. Dann ist $\sigma = \tau_1 \circ \tau_1^{-1} \sigma$, und nach Induktionshypothese ist $\tau_1^{-1} \sigma = \tau_2 \circ \dots \circ \tau_m$ mit disjunkten Zyklen τ_2, \dots, τ_m .

Eindeutigkeit ist klar, denn jedes i kann nur in einem Zykel $(i \sigma(i)...\sigma^{k-1}(i))$ vorkommen.

■ Beispiel

$$(1\,2\,3\,4\,5)(2\,4) = (1\,4\,5)(2\,3) = (2\,3)(1\,4\,5) = (3\,2)(1\,4\,5) = (3\,2)(4\,5\,1) \neq (3\,2)(1\,5\,4)$$

2. Ordnung und Index

Sei G eine Gruppe, $g \in G$.

Definition 2.1 (Ordnung)

- (a) $\#G = |G| \in \mathbb{N} \cup \{\infty\}$, die Ordnung von G.
- (b) $\operatorname{ord}(g) = \#\langle g \rangle$, die Ordnung von g.

■ Beispiel 2.2

- (a) $\#S_n = n!$
- (b) $\#A_n = \frac{1}{2}n! \text{ für } n \ge 2$
- (c) $\#\mathbb{Z}/n\mathbb{Z} = n$

Lemma 2.3

Für $X \subseteq G$ ist

$$\langle X \rangle = \{g_1^{\varepsilon_1} \cdot \dots \cdot g_r^{\varepsilon_r} \mid r \in \mathbb{N}_0, g_1, \dots, g_r \in X, \varepsilon_1, \dots, \varepsilon_r \in \{-1, 1\}\}$$

Beweis. klar, rechte Seite ist Untergruppe, die X enthält, und jede solche enthält alle Ausdrücke der Form $g_1^{\varepsilon_1} \cdot \cdot \cdot \cdot \cdot g_r^{\varepsilon_r}$.

Satz 2.4

- (a) Ist $ord(g) = \infty$, so ist $\langle g \rangle = \{..., g^{-2}, g^{-1}, 1, g^1, g^2, ...\}$
- (b) Ist $\operatorname{ord}(g) = n$, so ist $\langle g \rangle = \{1, g, g^2, ..., g^{n-1}\}$
- (c) Es ist $\operatorname{ord}(g) = \inf\{k \in \mathbb{N} \mid g^k = 1\}$

Beweis. Nach Lemma 2.3 ist $\langle g \rangle = \{g^k \mid k \in \mathbb{Z}\}$. Sei $m = \inf\{k \in \mathbb{N} \mid g^k = 1\}$.

- $|\{k \in \mathbb{N} \mid g^k = 1\}| = m$: Sind $g^a = g^b$ mit $0 \le a < b < m$, so ist $g^{b-a} = 1$, aber 0 < b-a < m, was ein Widerspruch zur Minimalität von m ist.
- $m = \infty \Rightarrow \operatorname{ord}(g) = \infty$: klar
- $m < \infty \Rightarrow \langle g \rangle = \{g^k \mid 0 \le k < m\}$: Für $k \in \mathbb{Z}$ schreibe k = qm + r mit $q, r \in \mathbb{Z}$ und $0 \le r < m$

$$g^{k} = g^{qm+r} = \underbrace{(g^{m})^{q} \cdot g^{r}}_{=1} = g^{r} \in \{1, g, ..., g^{m-1}\}$$

■ Beispiel 2.5

- (a) Ist $\sigma \in S_n$ ein k-Zykel, so ist $\operatorname{ord}(\sigma) = k$.
- (b) Für $\overline{1} \in \mathbb{Z}/n\mathbb{Z}$ ist $\operatorname{ord}(\overline{1}) = n$.

Definition 2.6 (Komplexprodukt, Nebenklasse)

Seien $A, B \subseteq G, H \leq G$

- (a) $AB := A \cdot B := \{ab \mid a \in A, b \in B\}$ das Komplexprodukt von A und B.
- (b) $gH := \{g\} \cdot H = \{gh \mid h \in H\}$ die <u>Linksnebenklasse</u> von H bezüglich g. $Hg := H \cdot \{g\} = \{hg \mid h \in H\}$ die Rechtsnebenklasse von H bezüglich g.
- (c) $G/H := \{gH \mid g \in G\}$ die Menge der Linksnebenklassen. $H \setminus G := \{Hg \mid g \in G\}$ die Menge der Rechtsnebenklassen.

■ Beispiel 2.7

Für $h \in H$ ist hH = H = Hh.

Lemma 2.8

Seien $H \leq G, g, g' \in G$.

- (a) $gH = g'H \Leftrightarrow g' = gh$ für ein $h \in H$ $Hg = Hg' \Leftrightarrow g' = gh$ für ein $h \in H$
- (b) Es ist gH = g'H oder $gH \cap g'H = \emptyset$ und Hg = Hg' oder $Hg \cap Hg' = \emptyset$.
- (c) Durch $gH \mapsto Hg^{-1}$ wird eine wohldefinierte Bijektion $G/H \to H\backslash G$ gegeben.

Beweis. (a) Hinrichtung: $gH=g'H\Rightarrow g'=g'\cdot 1\in g'H=gH\Rightarrow$ es existiert $h\in H$ mit g'=gh Rückrichtung: $g'=gh\Rightarrow g'H=ghH=gH$

- (b) Ist $gH \cap g'H \neq \emptyset$, so existieren $h, h' \in H$ mit $gh = g'h' \Rightarrow gH = ghH = g'h'H = g'H$
- (c) wohldefiniert: $gH = g'H \stackrel{a)}{\Rightarrow} g' = gh$ mit $h \in H \Rightarrow H(g')^{-1} = Hh^{-1}g^{-1} = Hg^{-1}$ bijektiv: klar, Umkehrabbildung: $Hg \mapsto g^{-1}H$

Definition 2.9 (Index)

Für $H \subseteq G$ ist

$$(G:H) := |G/H| + |H \setminus G| \in \mathbb{N} \cup \{\infty\}$$

der Index von H in G.

■ Beispiel 2.10

- (a) $(S_n : A_n) = 2 \text{ für } n \ge 2$
- (b) $(\mathbb{Z}: n\mathbb{Z}) = n$

Satz 2.11

Der Index ist multiplikativ: Sind $K \leq H \leq G$, so ist

$$(G:K) = (G:H) \cdot (H:K)$$

Beweis. Nach Lemma 2.8 bilden die Nebenklassen von H eine Partition von G, das heißt es gibt $(g_i)_{i\in I}$ in G

mit $G=\biguplus_{i\in I}g_iH.$ Analog ist $H=\biguplus_{j\in J}h_jK$ mit $h_j\in H.$ Dann gilt:

$$H = \biguplus_{j \in J} h_j K \overset{\text{1.4}}{\Rightarrow} gH = \biguplus_{j \in J} gh_j K \text{ für jedes } g \in G$$

$$G = \biguplus_{i \in I} g_i H = \biguplus_{i \in I} \biguplus_{j \in J} g_i h_j K = \biguplus_{(i,j) \in I \times J} g_i h_j K$$

$$G = \biguplus_{i \in I} g_i H = \biguplus_{i \in I} \biguplus_{j \in J} g_i h_j K = \biguplus_{(i,j) \in I \times J} g_i h_j K$$

Somit ist $(G : K) = |I \times J| = |I| \cdot |J| = (G : H) \cdot (H : K)$.

Folgerung 2.12 (Satz von Lagrange)

Ist G endlich und $H \leq G$, so ist

$$\#G = \#H \cdot (G:H)$$

Insbesondere gilt #H/#G und (G:H)/#G.

Beweis.
$$\#G = (G:1) \stackrel{2.11}{=} (G:H)(H:1) = (G:H) \cdot \#H$$
.

Folgerung 2.13 (kleiner Satz von Fermat)

Ist G endlich und n=#G, so ist $g^n=1$ für jedes $g\in G$.

Beweis. Nach Folgerung 2.12 gilt: $\operatorname{ord}(g) = \#\langle g \rangle | \#G = n$. Nach Satz 2.4 ist $g^{\operatorname{ord}(g)} = 1$, somit auch

$$g^{n} = (\underbrace{g^{\operatorname{ord}(g)}}_{=1})^{\frac{n}{\operatorname{ord}(g)}} = 1$$

▶ Bemerkung 2.14

Nach Folgerung 2.12 ist die Ordnung jeder Untergruppe von G ein Teiler der Gruppenordnung #G. Umgekehrt gibt es im Allgemeinen aber nicht zu jedem Teiler d von #G eine Untergruppe H von G mit #H = d.

3. Normalteiler und Quotientengruppen

Sei G eine Gruppe.

Definition 3.1 (normal, Normalteiler)

Eine Untergruppe $H \leq G$ ist <u>normal</u> (in Zeichen $H \leq G$), wenn $g^{-1}hg \in H$ für alle $h \in H$ und $g \in G$. Ein Normalteiler von G ist eine normale Untergruppe von G.

■ Beispiel 3.2

- (a) Ist G abelsch, so ist jede Untergruppe von G ein Normalteiler.
- (b) Ist $\varphi: G \to H$ ein Gruppenhomomorphismus, so ist $\operatorname{Ker}(\varphi) \leq G$, denn $\varphi(h) = 1 \Rightarrow \varphi(g^{-1}hg) = \varphi(g)^{-1}\varphi(h)\varphi(g) = 1 \ \forall g \in G$.
- (c) Jede Gruppe G hat die trivialen Normalteiler $1 \triangleleft G$ und $G \triangleleft G$.

Lemma 3.3

Sei $H \leq G$ und $N \leq G$.

- (a) $H \leq G \Leftrightarrow gH = Hg$ für alle $g \in G$
- (b) HN = NH, HN < G, $N \triangleleft HN$, $H \cap N < N$, $H \cap N \triangleleft H$
- (c) Sind $N, H \subseteq G$, so ist $H \cap N \subseteq G$, $HN \subseteq G$
- (d) Für $g, g' \in G$ ist $gN \cdot g'N = gg'N$

Beweis. (a) Hinrichtung: $\forall g \in G, \forall h \in H : g^{-1}hg \in H \Rightarrow gHg^{-1} \subseteq H \Rightarrow Hg = gH \text{ und } g^{-1}H \subseteq Hg^{-1} \Rightarrow gH = Hg$

Rückrichtung: $\forall g \in G: gH = Hg \Rightarrow \exists h' \in H: gh' = hg \Rightarrow g^{-1}hg = h \in H$

- (b) $HN = \bigcup_{n \in \mathbb{N}} hN = \bigcup_{n \in \mathbb{N}} Nh = NH$
 - $HN \cdot NH = H \cdot NH \cdot N = H \cdot HN \cdot N = HN$ $(HN)^{-1} = N^{-1}H^{-1} = NH = HN$
 - $N \subseteq HN$: klar
 - $H \cap N \leq N$: klar
 - $H \cap N \leq H$: $n \in H \cap N$, $h \in H \Rightarrow h^{-1}nh \in H \cap N$
- (c) $H \cap N \leq G$: $h \in H \cap N$, $g \in G \Rightarrow g^{-1}hg \in H \cap N$
 - $HN \subseteq G$: $g \in G \Rightarrow gHN \stackrel{a)}{=} Hg \cdot N = H \cdot gN \stackrel{a)}{=} H \cdot Ng = HNg$
- (d) $gN \cdot g'N = g \cdot Ng' \cdot N \stackrel{a)}{=} g \cdot g'N = gg'N$

Satz 3.4

Sei $N \subseteq G$. Dann ist G/N mit dem Komplexprodukt als Verknüpfung eine Gruppe, und $\pi_N : G \to G/N$, $g \mapsto gN$ ein Gruppenhomomorphismus mit Kern N.

Beweis. • Komplexprodukt ist Verknüpfung auf G/N: Lemma 3.3

- Gruppenaxoime übertragen sich von G auf G/N: klar
- π_N ist ein Homomorphismus: Lemma 3.3
- $\operatorname{Ker}(\pi_N) = N$: Lemma 2.8

Folgerung 3.5

Die Normalteiler sind genau die Gruppenhomomorphismen.

Definition 3.6 (Quotientengruppe)

Für $N \subseteq G$ heißt G/N zusammen mit dem Komplexprodukt als Verknüpfung die Quotientengruppe von G nach N (oder G modulo N).

Lemma 3.7

Sei $N \subseteq G$. Für $H \subseteq G$ ist $\pi_N(H) = HN/N \subseteq G/N$, und $H \mapsto \pi(H)$ liefert eine Bijektion zwischen

- den $H \leq G$ mit $N \leq H$ und
- den $H \leq G/N$

Beweis. • $\pi_N(H) = \{hN \mid h \in H\} = \{hnN \mid h \in H, n \in N\} = {}^{HN}/{}^{N}$

• Umkehrabbildung: $H \mapsto \pi_N^{-1}(H)$:

$$H \leq G/N$$
: $\pi_N(\pi_N^{-1}(H)) = H$, da π_N surjektiv $N \leq H \leq G$: $\pi_N^{-1}(\pi_N(H)) = \pi_N^{-1}(H^N/N) = HN \subseteq H \cdot H = H$

Satz 3.8 (Homomorphiesatz)

Sei $\varphi:G\to H$ ein Gruppenhomomorphismus und $N\unlhd G$ mit $N\le \mathrm{Ker}(\varphi)$. Dann gibt es genau einen Gruppenhomomorphismus $\overline{\varphi}:G/N\to H$ mit $\overline{\varphi}\circ\pi_N=\varphi$.

Beweis. Existiert so ein $\overline{\varphi}$, so ist $\overline{\varphi}(gN) = (\overline{\varphi} \circ \pi_N)(g) = \varphi(g)$ eindeutig bestimmt. Definiere $\overline{\varphi}$ nun so.

- $\overline{\varphi}$ ist wohldefiniert: $gN = g'N \overset{2.8}{\Rightarrow} \exists g' = gn$ für ein $n \in N \Rightarrow \varphi(g') = \varphi(g) \cdot \underbrace{\varphi(n)}_{=1} = \varphi(g)$, da $n \in \operatorname{Ker}(\varphi)$
- $\overline{\varphi}$ ist Homomorphismus: $\overline{\varphi}(gN \cdot g'N) = \overline{\varphi}(gg'N) = \varphi(gg') = \varphi(g) \cdot \varphi(g') = \overline{\varphi}(gN) \cdot \overline{\varphi}(g'N)$

Folgerung 3.9

Ein Gruppenhomomorphismus $\varphi:G\to H$ liefert einen Isomorphismus

$$\bar{\varphi}: G/\mathrm{Ker}(\varphi) \xrightarrow{\cong} \mathrm{Im}(\varphi) \leq H$$

Folgerung 3.10 (1. Homomorphiesatz)

Seien $H \leq G$ und $N \subseteq G$. Der Homomorphismus

$$\varphi: H \stackrel{i}{\hookrightarrow} HN \xrightarrow{\pi_N} {HN/N}$$

induziert einen Isomorphismus

$$\bar{\varphi}: H/_{H\cap N} \xrightarrow{\cong} HN/_N$$

Beweis. • φ ist surjektiv: Für $h \in H$ und $n \in N$ ist

$$hnN = hN = \varphi(h) \in \varphi(H) = \operatorname{Im}(\varphi)$$

• $\operatorname{Ker}(\varphi) = H \cap \operatorname{Ker}(\pi_N) = H \cap N$

Mit Folgerung 3.9 folgt die Behauptung.

Folgerung 3.11 (2. Homomorphiesatz)

Seien $N \subseteq G$ und $N \subseteq H \subseteq G$. Der Homomorphismus $\pi_H : G \to G/H$ induziert einen Isomorphismus

$$(G/N)/(H/N) \xrightarrow{\cong} G/H$$

Beweis. Da $N \leq H$ liefert π_H einen Epimorphismus (mit Satz 3.8) $\overline{\pi_H}: {}^G/N \to {}^G/H$.

Dieser hat Kern $\text{Ker}(\overline{\pi_H})$? $^H/N$, induziert nach Folgerung 3.9 einen Isomorphismus

$$(G/N)/\operatorname{Ker}(\overline{\pi_H}) \xrightarrow{\cong} \operatorname{Im}(\overline{\pi_H}) = G/H$$

Definition 3.12 (Konjugation)

Seien $x, x', g \in G$ und $H, H' \leq G$.

- (a) $x^g := g^{-1}xg$, Konjugation von x mit g
- (b) x und x' sind konjugiert (in $G) \Leftrightarrow \exists g \in G \colon x' = x^g$
- (c) H und H' heißen konjugiert (in G) $\Leftrightarrow \exists g \in G : H' = H^g = \{h^g \mid h \in H\}$

Lemma 3.13

Die Abbildung

int:
$$\begin{cases} G \to \operatorname{Aut}(G) \\ g \mapsto (x \mapsto x^g) \end{cases}$$

ist ein Gruppenhomomorphismus.

Beweis. • $int(g) \in Hom(G, G): (xy)^g = g^{-1}xyg = g^{-1}xgg^{-1}yg = x^g \cdot y^g$

- $(x^g)^h = h^{-1}g^{-1}xgh = (gh)^{-1}x(gh) = x^{gh}$
- $\operatorname{int}(g) \in \operatorname{Aut}(G)$: Umkehrabbildung zu $\operatorname{int}(g)$ ist $\operatorname{int}(g^{-1})$
- $int(g) \in Hom(G, Aut(G))$:

$$\operatorname{int}(gh) = \operatorname{int}(h) \circ \operatorname{int}(g) = \operatorname{int}(g) \cdot \operatorname{int}(h)$$

Definition 3.14 (innere Automorphismen, Zentrum, charakteristische Gruppe)

- (a) $\operatorname{Inn}(G) = \operatorname{Im}(\operatorname{int}) \leq \operatorname{Aut}(G)$, die Gruppe der inneren Automorphismen von G
- (b) $Z(G) = Ker(int) = \{g \in G \mid xg = gx \quad \forall x \in G\}$, das Zentrum von G
- (c) $H \leq G$ ist charakteristisch $\Leftrightarrow \forall \sigma \in \text{Aut}(G) \colon H = H^{\sigma}$

▶ Bemerkung 3.15

- (a) Konjugation ist eine Äquivalenzrelation
- (b) $H \leq G$ ist normal $\Leftrightarrow H = H^{\sigma} \quad \forall \sigma \in \text{Inn}(G)$
- (c) Deshalb gilt für $H \leq G$: H ist charakteristisch $\Rightarrow H$ ist normal

■ Beispiel 3.16

 $\mathbf{Z}(G)$ ist charakteristisch in G

4. Abelsche Gruppen

Sei G ein Gruppe.

Definition 4.1 (zyklische Gruppe)

Eine Gruppe G ist zyklisch $\Leftrightarrow G = \langle g \rangle$ für ein $g \in G$.

■ Beispiel 4.2

- (a) $\mathbb{Z} = \langle 1 \rangle$
- (b) $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$
- (c) $C_n = \langle (1 2 \dots n) \rangle \leq S_n$
- (d) Ist #G = p eine Primzahl, so ist G zyklisch (Übung 6)

Lemma 4.3

Die Untergruppen von $(\mathbb{Z}, +)$ sind genau die $\langle k \rangle = \mathbb{Z}k$ mit $k \in \mathbb{N}_0$ und für $k_1, ..., k_r \in \mathbb{Z}$ ist $\langle k_1, ..., k_r \rangle = \langle k \rangle$ mit

$$k = ggT(k_1, ..., k_r)$$

Beweis. Zwei Beweise sind möglich:

- 1. Jede Untergruppe von \mathbb{Z} ist ein Ideal von $(\mathbb{Z}, +, \cdot)$ und \mathbb{Z} ist ein Hauptidealring.
- 2. Sei $H \leq \mathbb{Z}$. Setze $k = \min\{H \cap N\}$, ohne Einschränkung $H \neq \{0\}$.

$$\bullet \quad H = \langle k \rangle \colon n \in H \Rightarrow n = qk + r \text{ mit } q, r \in \mathbb{Z}, \ 0 \leq r < k \Rightarrow r = n - \underbrace{qk}_{k + \ldots + k} \in H \xrightarrow{\text{k minimal mal}} r = 0 \Rightarrow n \in \langle k \rangle$$

•
$$\langle k_1, ..., k_r \rangle = \langle k \rangle \Rightarrow k = \operatorname{ggT}(k_1, ..., k_r)$$
:
 $k_i \in \langle k \rangle \Rightarrow k | k_i \quad \forall i$
 $k \in \langle k_1, ..., k_r \rangle \Rightarrow k = n_1 k_1 + ... + n_r k_r \text{ mit } n_i \in \mathbb{Z} \ \exists d | k_i \Rightarrow d | k \Rightarrow k = \operatorname{ggT}(k_1, ..., k_r)$

Satz 4.4 (Klassifikation von zyklischen Gruppen)

Sei $G = \langle g \rangle$ zyklisch. Dann ist G abelsch und

- (a) $G \cong (\mathbb{Z}, +)$ oder
- (b) $G \cong (\mathbb{Z}/n\mathbb{Z}, +)$ mit $n = \#G < \infty$

Beweis. Betrachte

$$\varphi: \begin{cases} \mathbb{Z} \to G \\ k \mapsto g^k \end{cases}$$

 φ ist ein Homomorphismus und surjektiv, da $G = \langle g \rangle$. Nach Folgerung 3.9 ist $G = \operatorname{Im}(\varphi) \cong \mathbb{Z}/\operatorname{Ker}(\varphi)$. Nach Lemma 4.3 ist $\operatorname{Ker}(\varphi) = \langle n \rangle$ für ein $n \in \mathbb{N}_0$.

- $\underline{n=0}$, so ist $\operatorname{Ker}(\varphi)=\langle 0 \rangle$, also φ injektiv und $G\cong \mathbb{Z}$.
- n > 0, so ist $G \cong \mathbb{Z}/n\mathbb{Z}$ und $n = \#\mathbb{Z}/n\mathbb{Z} = \#G$.

Satz 4.5

Sei $G = (G, +) = \langle g \rangle$ zyklisch der Ordnung $n \in \mathbb{N}$.

- (a) Zu jedem $d \in \mathbb{N}$ mit $d \mid n$ hat G genau eine Untergruppe der Ordnung d, nämlich $U_d = \langle \frac{n}{d}g \rangle$
- (b) Für $d \mid n$ und $d' \mid n$ ist $U_d \leq U_{d'} \Leftrightarrow d \mid d'$
- (c) Für $k_1, \ldots, k_k \in \mathbb{Z}$ ist $\langle k_1 g, \ldots, k_r g \rangle = \langle eg \rangle = U_{n/e}$ mit $e = \operatorname{ggT}(k_1, \ldots, k_r, n)$
- (d) Für $k \in \mathbb{Z}$ ist $\operatorname{ord}(kg) = \frac{n}{\operatorname{ggT}(k,n)}$

Beweis. Betrachte wieder

$$\varphi: \begin{cases} \bar{k} \to G \\ k \mapsto kg \end{cases}$$

(a) Nach Lemma 3.7 und Lemma 4.3 liefert φ Bijektion

$$\{e \in \mathbb{N} \mid n\mathbb{Z} \le e\mathbb{Z}\} \xrightarrow{1.1} \{H \le G\}$$

und $n\mathbb{Z} \leq e\mathbb{Z} \Leftrightarrow e \mid n$. Ist $H = \varphi(e\mathbb{Z}) = \langle eg \rangle$, so ist $H \cong e\mathbb{Z}/n\mathbb{Z}$, also $n = (\mathbb{Z} : n\mathbb{Z}) = (\mathbb{Z} : e\mathbb{Z}) \cdot (e\mathbb{Z} : n\mathbb{Z}) = e \cdot \#H$

- (b) $U_d \leq U_{d'} \Leftrightarrow \langle \frac{n}{d}g \rangle \leq \langle \frac{n}{d'}g \rangle \Leftrightarrow \frac{n}{d}\mathbb{Z} \leq \frac{n}{d'}\mathbb{Z} \Leftrightarrow \frac{n}{d'} \mid \frac{n}{d} \Leftrightarrow d \mid d'$
- (c) Mit $H = \langle k_1, \dots, k_r, n \rangle \leq \mathbb{Z}$ ist $n\mathbb{Z} \leq H$, $\varphi(H) = \langle k_1 g, \dots, k_r g$. Nach Lemma 4.3 ist $H = \langle e \rangle$ mit $e = \operatorname{ggT}(k_1, \dots, k_r, n)$, somit $\langle k_1 g, \dots, k_r g \rangle = \varphi(e\mathbb{Z}) = U_{n/e}$

(d)
$$\operatorname{ord}(kg) = \#\langle kg \rangle \stackrel{c)}{=} \#U_{n/e} \text{ mit } e = \operatorname{ggT}(k, n)$$

Lemma 4.6

Seien $a, b \in G$. Kommutieren a und b und sind ord(a) und ord(b) teilerfremd, so ist

$$\operatorname{ord}(a, b) = \operatorname{ord}(a) \cdot \operatorname{ord}(b)$$

Beweis. Nach Folgerung 2.12 ist $\langle a \rangle \cap \langle b \rangle = 1$. Ist $(ab)^k = 1 = a^k b^k$, so ist $a^k = b^{-k} \in \langle a \rangle \cap \langle b \rangle = 1$, also $a^k = b^k = 1$. Somit ist $(ab)^k = 1 \Leftrightarrow a^k = 1$ und $b^k = 1$ und damit $\operatorname{ord}(ab) = \operatorname{kgV}(\operatorname{ord}(a), \operatorname{ord}(b)) = \operatorname{ord}(a) \cdot \operatorname{ord}(b)$

Folgerung 4.7

Ist G abelsch und sind $a, b \in G$ mit $\operatorname{ord}(a) = m < \infty$, $\operatorname{ord}(b) = n = \infty$, so existiert $c \in G$ mit

$$\operatorname{ord}(c) = \operatorname{kgV}(\operatorname{ord}(a), \operatorname{ord}(b))$$

Beweis. Schreibe $m = m_0 m'$ und $n = n_0 n'$ mit $m_0 n_0 = \text{kgV}(m, n)$ und $\text{ggT}(m_0, n_0) = 1 \Rightarrow \text{ord}(a^{m'}) = m_0$, $\text{ord}(b^{n'}) = n_0 \Rightarrow \text{ord}(b^{n'} \cdot a^{m'}) \stackrel{4.6}{=} m_0 \cdot n_0 = \text{kgV}(m, n)$.

Theorem 4.8 (Struktursatz für endlich erzeugte abelsche Gruppen)

Jede endliche erzeugte abelsche Gruppe G ist eine direkte Summe zyklischer Gruppen

$$G \cong \mathbb{Z}^r \oplus \bigoplus_{i=1}^k \mathbb{Z}/d_i\mathbb{Z}$$

mit eindeutig bestimmten $d_1, \dots, d_k > 1$ die $d_i \mid d_{i+1}$ für alle i erfüllen.

Beweis. • Existenz: LAAG 2: VIII. 6.14

• Eindeutigkeit: Für $d \in \mathbb{N}$ ist

$$\#^{G}/dG = \#\left(\mathbb{Z}/d\mathbb{Z}\right)^{r} \oplus \bigoplus_{i=1}^{k} \frac{(\mathbb{Z}/d_{i}\mathbb{Z})}{d \cdot (\mathbb{Z}/d_{i}\mathbb{Z})}$$
$$\stackrel{4.5}{=} d^{r} \cdot \prod_{i=1}^{n} \frac{d_{i}}{\operatorname{ggT}(d, d_{i})}$$

und daraus kann man r, k, d_1, \ldots, d_k erhalten.

Lemma 4.9

Sei $G = (G, +) = \langle g \rangle$ zyklisch der Ordnung $n \in \mathbb{N}$. Die Endomorphismen von G sind genau die

$$\varphi_{\overline{k}}: \begin{cases} G \to G \\ x \mapsto kx \end{cases} \quad \text{für } \overline{k} = k + n\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z}$$

Dabei ist $\varphi_{\overline{l}} \circ \varphi_{\overline{k}} = \varphi_{\overline{kl}}$.

• $\varphi_{\overline{k}}$ wohldefiniert $\overline{k_1} = \overline{k_2} \Rightarrow k_2 = k_1 + an$ mit $a \in \mathbb{Z} \Rightarrow k_2 x = k_1 x + an \cdot x$, aber nx = 0.

- $\varphi_{\overline{k}} \in \text{Hom}(G, G)$: klar, da G abelsch
- $\overline{k} = \overline{l} \Leftrightarrow \varphi_{\overline{k}} = \varphi_{\overline{l}} : \varphi_{\overline{k}}(g) = \varphi_{\overline{l}}(g) \Rightarrow (k-l)g = 0 \xrightarrow{\operatorname{ord}(g) \atop = n} n \mid (k-l) \Rightarrow \overline{k} = \overline{l}$ $\varphi \in \operatorname{Hom}(G,G) \Rightarrow \varphi = \varphi_{\overline{k}} \text{ für ein } k \in \mathbb{Z} : \varphi(g) = kg \text{ für ein } k \Rightarrow \varphi = \varphi_{\overline{k}}$
- $\varphi_{\overline{k}} \circ \varphi_{\overline{l}} = \varphi_{\overline{kl}} : l(kx) = (lk)x$

Satz 4.10

Ist G zyklisch von Ordnung $n \in \mathbb{N}$, so ist

$$\operatorname{Aut}(G) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$$

 $\begin{aligned} &Beweis. \ \, \mathrm{Aut}(G)\subseteq \mathrm{Hom}(G,G)=\{\varphi_{\overline{k}}\mid \overline{k}\in \mathbb{Z}/n\mathbb{Z}\},\, \varphi_{\overline{k}}\in \mathrm{Aut}(G) \Leftrightarrow \mathrm{es\ existiert\ ein\ } \overline{l}\in \mathbb{Z}/n\mathbb{Z}\ \mathrm{mit\ } \varphi_{\overline{l}}\circ \varphi_{\overline{k}}=\varphi_{\overline{1}} \\ &\mathrm{also\ existiert\ ein\ } \overline{l}\in \mathbb{Z}/n\mathbb{Z}\ \mathrm{mit\ } \overline{kl}=1\Leftrightarrow \overline{k}\in (\mathbb{Z}/n\mathbb{Z})^{\times}\ \mathrm{und} \end{aligned}$

$$\begin{cases} (\mathbb{Z}/n\mathbb{Z})^{\times} & \to \operatorname{Aut}(G) \\ \bar{k} & \mapsto \varphi_{\overline{k}} \end{cases}$$

ist ein Isomorphismus.

Definition 4.11 (Euler'sche Phi-Funktion)

$$\Phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$$

ist die Euler'sche Phi-Funktion .

■ Beispiel 4.12

p prime $\Rightarrow \varphi(p) = p - 1$, da $\mathbb{Z}/p\mathbb{Z}$ Körper ist.

Satz 4.13

Ist K ein Körper und $H \leq K^{\times}$ abelsch, so ist H zyklisch.

Beweis. Setze $m = \max\{\operatorname{ord}(h) \colon h \in H\}$. Nach Folgerung 4.7 gilt $\operatorname{ord}(h) \mid m \forall h \in H$.

- \Rightarrow Jedes $n \in H$ ist Nullstelle von $f = X^m 1 \in K[X]$.
- $\Rightarrow \#H \leq \deg f = m \leq \#H$
- $\Rightarrow \#H=m.$

Ist $h \in H$ mit $m = \operatorname{ord}(h)$, so ist dann $H = \langle h \rangle$

Folgerung 4.14

Für $p \in \mathbb{N}$ prime ist

$$\operatorname{Aut}(C_p) \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \cong C_{p-1}.$$

5. Direkte und semidirekte Produkte

Sei G eine Gruppe und $n \in \mathbb{N}$.

Definition 5.1 (direktes Produkt)

Das direkte Produkt von Gruppen $G_1, ..., G_n$ ist das kartesische Produkt

$$G = \prod_{i=1}^{n} G_1 = G_1 \times ... \times G_n = \sum_{i=1}^{n} G_1$$

mit komponentenweiser Multiplikation.

▶ Bemerkung 5.2

(a) Wir identifizieren G_j mit der Untergruppe

$$G_j = \prod_{i \neq j} 1 = 1 \times \dots \times 1 \times G_j \times 1 \times \dots \times 1$$

von $\prod_{i=1}^n G_j$.

(b) Für $i \neq j$, $g_i \in G_i$, $g_j \in G_j$ gilt dann

$$g_i g_j = g_j g_i \tag{1}$$

Definition 5.3 (internes direktes Produkt)

Seien $H_1,...,H_n \leq G$. Dann ist G das <u>interne direkte Produkt</u> von $H_1,...,H_n$, in Zeichen

$$G = \prod_{i=1}^{n} H_i = H_1 \times \ldots \times H_n = \sum_{i=1}^{n} H_i$$

wenn

$$\begin{cases} H_1 \times \dots \times H_n & \to G \\ (g_1, \dots, g_n) & \mapsto g_1 \cdot \dots \cdot g_n \end{cases}$$

ein Gruppenisomorphismus ist.

Satz 5.4

Seien $U, V \leq G$. Dann sind äquivalent:

(i)
$$G = U \times V$$

(ii)
$$U \unlhd G$$
, $V \unlhd G$, $U \cap V = 1$, $UV = G$

Beweis. • $(i) \Rightarrow (ii)$: Im externen direkten Produkt $U \times V$ gilt:

–
$$UV = U \times V \colon \text{Für } u \in U, \, v \in V \text{ ist } (u,v) = (u,1) \cdot (1,v) \in UV$$

 $-U \cap V = 1$: klar

$$-U \leq U \times V$$
: Für $g = (u, v) \in U \times V$ und $u_0 = (u_0, 1) \in U$ ist

$$u_0^g = g^{-1}u_0g = (u^{-1}, v^{-1})(u_0, 1)(u, v) = (u_0^u, 1) \in U$$

• $(ii) \Rightarrow (i)$: betrachte

$$\varphi: \begin{cases} U \times V \to G \\ (u, v) \mapsto w \end{cases}$$

- Gleichung (1) gilt: Für $u \in U$, $v \in V$ gilt in G:

$$u^{-1}v^{-1}uv = \underbrace{(v^{-1})^u v}_{\in V} = \underbrace{u^{-1}u^v}_{\in U} \cap V = 1 \Rightarrow uv = vu$$

- φ ist Homomorphismus: $\varphi((u_1, v_1)(u_2, v_2)) = \varphi(u_1u_2, v_1v_2) = u_1u_2v_1v_2 \stackrel{(1)}{=} u_1v_1u_2v_2 = \varphi(u_1, v_1) \cdot \varphi(u_2, v_2)$
- $-\ \varphi$ surjektiv: $\mathrm{Im}(\varphi)=UV=G$
- $-\varphi \text{ injektiv: } 1 = \varphi(u, v) = uv \Rightarrow u = v^{-1} \in U \cap V = 1 \Rightarrow (u, v) = (1, 1)$

Folgerung 5.5

Seien $H_1,...,H_n \leq G$. Dann sind äquivalent:

- (i) $G = H_1 \times ... \times H_n$
- (ii) $G = H_1...H_n$ und $\forall i: H_i \leq G$ und $H_{i-1} \cap H_i = 1$

Beweis. Induktion nach n.

n=1: trivial

 $\underline{n > 1}$: Setze $U = H_1...H_{n-1}$ und $V = H_n$. Dann ist $U \subseteq G$ (Lemma 3.3 c) und $V \subseteq G$, $UV = H_1...H_n = G$, $U \cap V = 1$. Somit ist $\varphi : U \times V \to G$ ein Isomorphismus nach Satz 5.4. Da $H_i \subseteq U$ für i < n folgt nach Induktionshypothese, dass

$$\varphi': \begin{cases} H_1...H_{n-1} & \to U \\ (h_1,...,h_{n-1}) & \mapsto h_1...h_{n-1} \end{cases}$$

Somit ist

$$\varphi \circ (\varphi' \times \mathrm{id}_{H_n}) : \begin{cases} H_1 ... H_n & \to G \\ (h_1 ... h_n) & \mapsto \varphi(\varphi'((h_1, ..., h_{n-1}), h)) = h_1 ... h_n \end{cases}$$

ein Isomorphismus.

Definition 5.6 (internes semidirektes Produkt)

Seien $H, N \leq G$. Dann ist G das interne semidirekte Produkt von H und N, in Zeichen

$$G=H\ltimes N=N\rtimes H$$

wenn $N \leq G$, $H \cap N = 1$ und NH = G.

▶ Bemerkung 5.7

Ist $G = H \ltimes N$, so ist

$$\alpha: \begin{cases} H \to \operatorname{Aut}(N) \\ h \mapsto \operatorname{int}(h)|_{N} \end{cases}$$

ein Gruppenhomomorphismus. Im Fall $G = H \times N$ ist $\alpha(h) = \mathrm{id}_N$ für alle $h \in H$. Für $h_1, h_2 \in H$ und $n_1, n_2 \in N$ ist

$$h_1 n_1 \cdot h_2 n_2 = h_1 h_2 h_2^{-1} n_1 h_2 n_2$$

$$= h_1 h_2 \cdot \underbrace{n_1^{h_2}}_{\in N} \cdot n_2$$

$$= h_1 h_2 \cdot n_1^{\alpha(h_2)} \cdot n_2$$
(2)

Definition 5.8 (semidirektes Produkt)

Seien H, N Gruppen und $\alpha \in \text{Hom}(H, \text{Aut}(N))$. Das <u>semidirekte Produkt</u> $H \ltimes_{\alpha} N$ von H und N bezüglich α ist das kartesische Produkt $H \times N$ mit der Multiplikation

$$(h_1, n_1) \cdot (h_2, n_2) = (h_1 h_2, n_1^{\alpha(h_2)} n_2)$$

▶ Bemerkung 5.9

- (a) Wir identifizieren H, N mit der Teilmenge $H \times 1$ bzw. $N \times 1$ von $H \ltimes_{\alpha} N$.
- (b) Ist $\alpha \in \text{Hom}(H, \text{Aut}(N))$ trivial, also $\alpha(h) = \text{id}_N$ für alle $h \in H$, so ist $H \ltimes_{\alpha} N = H \times N$, das direkte Produkt.

Satz 5.10

Seien H, N Gruppen, $\alpha \in \text{Hom}(H, \text{Aut}(N))$. Dann ist $G = H \ltimes_{\alpha} N$ eine Gruppe, und diese ist das interne semidirekte Produkt von $H \leq G$ und $N \leq G$, wobei

$$\operatorname{int}(h)|_{N} = \alpha(h) \quad \forall h \in H$$

Beweis. Seien h_1 , h_2 , h_3 , $h \in H$ und n_0 , n_1 , n_2 , n_3 , $n \in N$.

• neutrales Element:

$$(1_H, 1_N)(h, n) = (h, 1_N^{\alpha(h)} n) = (h, n)$$
$$(h, n)(1_H, 1_N) = (h, n^{\alpha(1_H)} 1_H) \stackrel{(*)}{=} (h, n)$$

(*):
$$\alpha(1_H) = id$$

• Assoziativität:

$$\begin{split} &[(h_1,n_1)(h_2,n_2)](h_3,n_3) = (h_1h_2,n_1^{\alpha(h_2)}n_2)(h_3,n_3) = (h_1h_2h_3,(n_1^{\alpha(h_2)}n_2)^{\alpha(h_3)}n_3) \stackrel{(*)}{=} (h_1h_2h_3,n_1^{\alpha(h_2)\alpha(3)}n_2^{\alpha(h_3)}n_3) \\ &(h_1,n_1)[(h_2,n_2)(h_3,n_3)] = (h_1,n_1)(h_2h_2,n_2^{\alpha(h_3)}n_3) = (h_1h_2h_3,n_1^{\alpha(h_2)\alpha(3)}n_2^{\alpha(h_3)}n_3) \end{split}$$

- (*): $\alpha(h_3)$ ist ein Automorphismus und α ist ein Homomorphismus
- Inverses: $(h, n)^{-1} = (h^{-1}, (n^{-1})^{\alpha(h^{-1})})$
- $H \leq G$:

$$(h_1, 1)(h_2, 1) = (h_1 h_2, 1^{\alpha(h_2)} 1) = (h_1 h_2, 1) \in H$$

 $(h, 1)^{-1} = (h^{-1}, 1) \in H$

• $N \leq G$:

$$(1, n_1)(1, n_2) = (1, n_1^{\alpha(1)}n_2) = (1, n_1n_2) \in N$$

 $(1, n)^{-1} = (1, (n^{-1})^{\alpha(1^{-1})}) = (1, n^{-1}) \in N$

- $H \cap N = 1$: klar
- HN = G: $(h, 1)(1, n) = (h, 1^{\alpha(1)}n) = (h, n) \in G$
- $N \leq G$: $(h,n)^{-1}(1,n_0)(h,n) = (h^{-1},(n^{-1})^{\alpha(h^{-1})})(h,n_0^{\alpha(h)}n) = (1,...) \in N$
- $\operatorname{int}(h)|_{N} = \alpha(h)$:

$$\begin{split} n^{\text{int}(h)|_{N}} &= (h,1)^{-1}(1,n)(h,1) \\ &= (h^{-1},1)(h,n^{\alpha(h)}1) \\ &= (1,1^{\alpha(h)}n^{\alpha(h)}) \\ &= (1,n^{\alpha(h)}) \\ &= n^{\alpha(h)} \end{split}$$

Folgerung 5.11

Sei $G = H \ltimes N$ und α wie in Bemerkung 5.7. Dann ist

$$\varphi: \begin{cases} H \ltimes_{\alpha} N & \to G \\ (h, n) & \mapsto hn \end{cases}$$

ein Isomorphismus. Insbesondere ist G durch H, N und α bis auf Isomorphie eindeutig bestimmt.

Beweis. φ ist Homomorphismus: $\varphi((h_1, n_1) \cdot (h_2, n_2)) = \varphi(h_1 h_2, n_1^{\alpha(h_2)} n_2) = h_1 h_2 n_1^{\alpha(h_2)} n_2 \stackrel{(2)}{=} h_1 h_2 n_1 n_2 = \varphi(h_1, n_1) \cdot \varphi(h_2, n_2)$

- φ ist surjektiv: $Im(\varphi) = HN = G$
- φ ist injektiv: $H \cap N = 1$

■ Beispiel 5.12

Sei $G = H \ltimes N$.

- (a) $H = N = C_2$: Aut $(N) = \{ id_{C_2} \} \Rightarrow \alpha \in \text{Hom}(C_2, \text{Aut}(C_2)) = 1$ (konstante Abbildung) $\Rightarrow G = H \ltimes_{\alpha} N = H \times N \cong C_2 \times C_2 \cong V_4$
- (b) $H=C_2,\ N=C_3$: $\operatorname{Aut}(N)\cong (\mathbb{Z}/3\mathbb{Z})^{\times}\cong C_2\Rightarrow \alpha\in \operatorname{Hom}(C_2,\operatorname{Aut}(C_3))=\{\operatorname{id}_{C_2},1\}\Rightarrow H\ltimes_{\alpha}N=H\times N\cong C_6 \text{ oder } H\ltimes_{\operatorname{id}_{C_2}}N\cong S_3$

6. Gruppenwirkungen

Sei G eine Gruppe und X eine Menge.

Definition 6.1 (Wirkung, G-Menge)

Eine (rechts-)Wirkung von G auf X ist eine Abbildung

$$\begin{cases} X \times G \to X \\ (x,g) \mapsto x^g \end{cases}$$

mit $x \in X$ und $h,g \in G,$ wobei

- (W1): $x^{1_G} = x$ (W2): $(x^g)^h = x^{gh}$

Eine G-Menge ist eine Menge X zusammen mit einer Wirkung von G auf X.

■ Beispiel 6.2

- (a) Die symmetrische Gruppe G = Sym(X) wirkt auf X durch $x^{\sigma} = \sigma(x)$ mit $x \in X$, $\sigma \in G$. So wirkt zum Beispiel S_n auf $X = \{1, ..., n\}$.
- (b) G wirkt auf X = G durch Multiplikation $x^g = xg$, die sogenannte reguläre Darstellung von G.
- (c) G wirkt auf X = G durch Konjugation: $x^g = g^{-1}xg$.
- (d) G wirkt auf der Menge $\mathrm{UG}(G)$ der Untergruppen von G durch Konjugation $H^g=\{h^g\mid h\in G\}$ H} mit $H \leq G$.
- (e) Sind H, N Gruppen, so liefert jedes $\alpha \in \text{Hom}(H, \text{Aut}(N))$ eine Wirkung von H auf N durch $n^h = n^{\alpha(h)}$.
- (f) Ist K ein Körper, so wirkt K^{\times} auf K durch $x^y = xy$ mit $x \in K$ und $y \in K^{\times}$.
- (g) Ist K ein Körper, $n \in \mathbb{N}$, so wirkt $GL_n(K)^{op}$ auf K^n durch Multiplikation $x^A = Ax$

Anmerkung

op ist nötig, weil die Multiplikation "falsch herum" definiert wurde. g) wäre ein Beispiel für eine Linkswirkung, also ist es dann mit op eine Rechtswirkung.

▶ Bemerkung 6.3

Wirkt G auf X, so ist für jedes $g \in G$ die Abbildung

$$\sigma_g: \begin{cases} X \to X \\ x \mapsto x^g \end{cases}$$

bijektiv, da $\sigma_g \circ \sigma_{g^{-1}} = \sigma_{g^{-1}} \sigma_g = \sigma_1 = \mathrm{id}_X$, also $\sigma_g \in \mathrm{Sym}(X)$ und

$$\begin{cases} G \to \operatorname{Sym}(G) \\ g \mapsto \sigma_g \end{cases}$$

ist ein Gruppenhomomorphismus. Umgekehrt liefert jeder Homomorphismus $\sigma: G \to \operatorname{Sym}(G)$ eine Wirkung von G auf X durch $x^g = x^{\sigma(g)}$. Somit steht die Menge der Wirkungen von G auf X in natürlicher Bijektion zu $\operatorname{Hom}(G,\operatorname{Sym}(X))$.

Definition 6.4 (Fixpunkt, Stabilisator, Bahn, Bahnraum, G-invariant, treu, transitiv, frei) Sei X eine G-Menge, $g_0 \in G$, $x_0 \in X$

- (a) x_0 ist ein Fixpunkt von $g_0 \Leftrightarrow x_0^{g_0} = x_0$
- (b) $\text{Fix}(G) = X^G = \{x \in X \mid x^g = x \quad \forall g \in G\}$, die Menge der Fixpunkte von X unter G
- (c) $G_{x_0} = \text{Stab}(x_0) = \{g \in G \mid x_0^g = x\}$ der <u>Stabilisator</u> von x_0 in G
- (d) $x_0^G = \{x_0^g \mid g \in G\}$, die <u>Bahn</u> von x_0 unter G
- (e) $X/G = \{x^G \mid x \in X\}$, der <u>Bahnenraum</u>
- (f) $Y \leq X$ ist G-invariant $\Leftrightarrow Y^g = \{y^g \mid y \in Y\} \leq Y$
- (g) Die Wirkung von Gauf X ist
 - $\underline{\text{treu}}$, wenn $\bigcap_{x \in X} G_x = 1$
 - transitiv, wenn gilt: $\forall x, y \in X \exists g \in G: x^g = y$
 - frei , wenn $G_x = 1$ für alle $x \in X$

▶ Bemerkung 6.5

- (a) Der Stabilisator G_{x_0} besteht aus den $g \in G$, die x_0 als Fixpunkt haben.
- (b) Die Wirkung von G auf X ist
 - transitiv, wenn es nur eine Bahn gibt, also |X/G| = 1
 - frei, wenn kein $1 \neq g \in G$ einen Fixpunkt hat
 - treu, wenn kein $1 \neq g \in G$ alle $x \in X$ als fixiert

■ Beispiel 6.6

Für n > 1 wirkt $G = S_n$ auf $X = \{1, ..., n\}$ transitiv, treu, aber für $n \ge 3$ nicht frei. Der Stabilisator G_n von $n \in X$ ist eine Untergruppe von S_n isomorph zu S_{n-1} .

■ Beispiel 6.7

Die reguläre Darstellung von G auf X = G ist frei und transitiv:

- frei: $x^g = x \Rightarrow xq = x \Rightarrow q = 1$
- transitiv: $x, y \in X = G \Rightarrow \text{für } g = x^{-1}y \text{ ist } x^g = y$

Lemma 6.8

Sei X eine G-Menge.

- (a) Für $x \in X$ ist $G_x \leq G$.
- (b) Für $x, y \in X$ ist $x^G = y^G$ oder $x^G \cap y^G = \emptyset$.
- (c) $\bigcap_{x \in X} = \text{Ker}(\sigma), \ \sigma : G \to \text{Sym}(X)$ wie in Bemerkung 6.3
- (d) Für $x \in X$ und $g \in G$ ist $G_{x^g} = (G_x)^g$

Beweis. Seien $x, y \in X, g, h \in G$

(a) Sei $x^g = x$ und $x^h = x$. Dann

$$x^{g^h} = (x^g)^h = x^h = x \Rightarrow gh \in G_x$$

 $x^{g^{-1}} = (x^g)^{g^{-1}} = x^1 = x'g^{-1} \in G_x$

- (b) $x^g = y^h \Rightarrow x^G = (x^g)^G = (y^h)^H = y^H$
- (c) $g \in \bigcap_{x \in X} G_x \Rightarrow \forall x \in X : x^g = x \Leftrightarrow \sigma_g = \sigma(g) \operatorname{id}_X$

(d)
$$h \in G_{xg} \Leftrightarrow (x^g)^h = x^g \Leftrightarrow x^{ghg^{-1}} = x \Leftrightarrow h^{g^{-1}} \in G_x \Leftrightarrow h \in (G_x)^g$$

Satz 6.9 (Cayley)

Ist $n = \#G < \infty$, so ist G isomorph zu einer Untergruppe der S_n .

Beweis. Betrachte die reguläre Darstellung $\sigma: G \to \operatorname{Sym}(G)$. Da diese Wirkung frei ist (Beispiel 6.7), also insbesondere treu, ist σ injektiv (Lemma 6.8 c), somit $G \cong \operatorname{Im}(\sigma) \leq \operatorname{Sym}(G)$. Eine Aufzählung $G = \{g_1, ..., g_n\}$ liefert einen Isomorphismus

$$\varphi: \begin{cases} S_n \to \operatorname{Sym}(X) \\ \tau \mapsto (g_i \mapsto g_{\tau(i)}) \end{cases}$$

und somit ist $G \cong \varphi^{-1}(\operatorname{Im}(\sigma)) \leq S_n$.

Lemma 6.10

Für eine G-Menge X und $x \in X$ ist

$$\varphi: \begin{cases} G_x \backslash G \to x^G \\ G_x g \mapsto x^g \end{cases}$$

eine Bijektion.

Beweis. • φ would efinier: $G_x g = G_x g' \Rightarrow g' = gh$ mit $h \in G_x \Rightarrow x^{g'} = x^{hg} = x^g$

- φ surjektiv: klar
- φ injektiv: $x^g = x^{g'} \Leftrightarrow x = x^{g'g^{-1}} \Leftrightarrow g'g^{-1} \in G_x \Leftrightarrow g' \in G_x g \Leftrightarrow Gx'_g = G_x g$

Satz 6.11 (Bahn-Stabilisator-Satz)

Sei X eine G-Menge, $x \in X$. Dann ist

$$\#x^G = (G:G_x)$$

Beweis. Lemma 6.10

Folgerung 6.12 (Bahngleichung)

Ist X eine G-Menge und $X=\biguplus_{i=1}^n x_i^G$ die Zerlegung von X in Bahnen (vgl. Lemma 6.8 c) so ist

$$\#X = \sum_{i=1}^{n} (G:G_i)$$

Definition 6.13 (Zentralisator, Normalisator)

(a) Für $h \in H$ ist

$$C_G(h) = \{ g \in G \mid gh = hg \}$$

der Zentralisator von h.

(b) Für $H \leq G$ ist

$$N_G(h) = \{ q \in G \mid qH = Hq \}$$

der Normalisator von H.

▶ Bemerkung 6.14

- (a) Der Zentralisator von h ist der Stabilisator von h unter der Wirkung von G auf X = G durch Konjugation (Beispiel 6.2 c). Es ist die größte Untergruppe H mit $h \in Z(h)$.
- (b) Der Normalisator von $H \leq G$ ist der Stabilisator von H unter der Wirkung von G auf $X = \mathrm{UG}(G)$ durch Konjugation (Beispiel 6.2 d). Dies ist die größte Untergruppe N von G mit $H \leq N$.

Folgerung 6.15

Für $h \in G$ und $H \leq G$ ist $C_G(h) \leq G$ und $H \leq N_G(H) \leq G$ und

- (a) $(G:{\cal C}_G(h))$ ist genau die Anzahl der zuhkonjugierten Elemente von G
- (b) $(G:N_G(H))$ ist genau die Anzahl der zu H konjugierten Untergruppen von G

Beweis. Satz 6.11

Folgerung 6.16 (Klassengleichung)

Sei G endlich mit Zentrum $Z=\mathrm{Z}(G)$ und sei $x_1,...,x_n$ ein Repräsentantensystem der Konjugationsklassen in $G\setminus Z$. Dann ist

$$\#G = \#Z + \sum_{i=1}^{n} (G : C_G(x_i))$$

 $Beweis. \text{ aus Satz 6.11 und Folgerung 6.15, da } G = Z \uplus G \setminus Z = Z \uplus \biguplus_{i=1}^n x_i^G.$

7. p-Gruppen

Sei G eine endliche Gruppe und p eine Primzahl.

Definition 7.1 (p-Gruppe)

G ist eine p-Gruppe $\Leftrightarrow \#G = p^n$ für ein $n \in \mathbb{N}_0$.

Satz 7.2

Sei G eine p-Gruppe und X eine endliche G-Menge. Dann ist

$$\#\operatorname{Fix}_X(G) \equiv \#X \mod p$$

Beweis. Sei $x \in X$.

- $x \in \text{Fix}_X(G) \Rightarrow (G:G_x) = 1$
- $x \notin \text{Fix}_X(G) \Rightarrow 1 \neq (G : G_x) \mid \#G = p^n \Rightarrow (G : G_x) \equiv 0 \mod p$
- Ist $X = \biguplus_{i=1}^n x_i^G$, so ist

$$\#X = \sum_{i=1}^{n} (G:G_i) \equiv \#\operatorname{Fix}_X(G) \mod p$$

Folgerung 7.3 (Satz von Cauchy)

Teilt p die Ordnung von G, so hat G ein Element der Ordnung p.

Beweis. Sei $X = \{g_1, ..., g_p \in G^p \mid g_1 \cdot ... \cdot g_p = 1\}$. Es ist $\#X = (\#P)^{p-1}$ und $C_p = \langle (1 \, 2 \, ... \, p) \rangle \leq S_p$ wird auf X durch $(g_1, ..., g_p)^{\sigma} = (g_{\sigma(1)}, ..., g_{\sigma(p)})$ beschrieben. Mit Satz 7.2 gilt:

$$\#\operatorname{Fix}_X(C_p) \equiv \#X \equiv (\#G)^{p-1} \equiv 0 \mod p$$

Da $(1,...,1) \in \text{Fix}_X(C_p)$ folgt $\# \text{Fix}_X(C_p) \ge p \ge 2$, es existiert also $1 \ne g \in G$ mit $(g,...,g) \in X$, das heißt ord(g) = p.

Folgerung 7.4

Jede nicht-triviale p-Gruppe hat eine nicht-triviales Zentrum.

Beweis. Betrachte Wirkung von G auf X=G durch Konjugation (Beispiel 6.2 c). Dann

$$\#\operatorname{Z}(G) \equiv \operatorname{Fix}_X(G) \stackrel{7.2}{\equiv} \#G \equiv 0 \mod p$$

insbesondere ist $Z(G) \neq 1$.

Lemma 7.5

 $\#G = p \Rightarrow G$ ist zyklisch.

Beweis. Sei $1 \neq g \in G \Rightarrow 1 \neq \operatorname{ord}(g) \mid \#G \Rightarrow \operatorname{ord}(g) = p \Rightarrow G = \langle g \rangle$ ist zyklisch.

Lemma 7.6

G Z(G) zyklisch $\Rightarrow G$ ist stabil.

Beweis. Sei $a \in G$ mit $G/Z(G) = \langle aZ(G) \rangle$.

Dann ist

$$G = \bigcup_{k \in \mathbb{Z}} a^k Z(G).$$

Sind nun $x, y \in G$, so ist

$$x = a^k c, y = a^l d \text{ mit } k, l \in \mathbb{Z}, c, d \in Z(G)$$

 $\Rightarrow xy = a^k c a^l d = a^l d a^k c = yx$

Satz 7.7

Ist $\#G = p^2$, so ist G abelsch.

Beweis. Nach Folgerung 7.4 ist $Z(G) \neq 1$.

 $\Rightarrow \#G/Z(G) \mid p$

 $\stackrel{7.5}{\Rightarrow} G/Z(G)$ ist zyklisch

 $\stackrel{7.6}{\Rightarrow} G$ ist abelsch.

▶ Bemerkung 7.8

Mit dem Struktursatz Theorem 4.8 erhalten wir

$$\begin{split} \#G &= p \Rightarrow G \cong \mathbb{Z}/p\mathbb{Z} \\ \#G &= p^2 \Rightarrow G \cong \mathbb{Z}/p^2\mathbb{Z} \text{ oder} \\ G &\cong \mathbb{Z}/p\mathbb{Z} \bigoplus \mathbb{Z}/p\mathbb{Z} \end{split}$$

Satz 7.9

Ist $\#G = p^k$ und $l \le k$, so gibt es $H \le G$ mit $\#H = p^l$.

Beweis. Induktion nach l:

- l = 0: trivial Untergruppe!
- $l-1 \to l$: Nach 7.4 ist $\#Z(G) = p^a, a > 0$, nach Folgerung 7.3 (Cauchy) existiert somit ein $g \in Z(G)$ mit $\operatorname{ord}(g) = p$. Da $g \in Z(G)$ ist $\langle g \rangle \subseteq G$ und $\#G/\langle g \rangle = p^{k-1}$. Nach Induktionshypothese ist Untergruppe $H_0 \subseteq G/\langle g \rangle$ mit $\#H_0 = p^{l-1}$. Betrachte den hom $\pi_{\langle g \rangle} : G \to G/\langle g \rangle \Rightarrow H := \pi_{\langle g \rangle}^{-1}(H_0) \subseteq G, \ \#H = \#\ker(\pi_{\langle g \rangle}) \cdot \#H_0 = p \cdot p^{l-1} = p^l$.

8. Die Sylow-Sätze

Sei G eine endliche Gruppe und $p \in \mathbb{N}$ prime.

Definition 8.1

Sei $H \leq G$.

- 1. H ist p-Sylow-Untergruppe von G (oder p-Sylowgruppe von G) : $\Leftrightarrow H$ ist p-Gruppe und $p \nmid (G: H)$
- 2. $\operatorname{Syl}_n(G) = \{ H \leq G : \text{ ist } p\text{-Sylowgruppe von } G \}$

▶ Bemerkung 8.2

Schreib $\#G = p^k \cdot m$ mit $p \nmid m$. Dann gilt für $H \leq G$. $H \in \operatorname{Syl}_p(G) \Leftrightarrow \#H = p^k$.

■ Beispiel 8.3

- $Syl_3(S_3) = \{A_3\}$
- $\operatorname{Syl}_2(S_3) = \{\langle (12)\rangle, \langle (13)\rangle, \langle (23)\rangle\}$
- $Syl_2(S_4) \ni D_4$

Satz 8.4

Es gilt $\operatorname{Syl}_n(G) \neq \emptyset$.

Beweis. Induktion nach $n := \#G = p^k \cdot m, p \nmid m$.

- $n = 1: 1 \in Syl_2(1)!$
- n > 1: Ist $p \nmid n$, so ist $1 \in \operatorname{Syl}_p(G)$. Sei also $k \ge 1$.
 - 1. Fall: Es existiert $H \not\subseteq G$ mit $p \nmid (G : H)$. Nach Induktionhypothese existiert $S \in \operatorname{Syl}_p(H)$. Da $p \nmid (G : S) = (G : H)(H : S)$ ist $S \in \operatorname{Syl}_p(G)$.
 - 2. Fall: Es ist $p \mid (G : H)$ für alle $H \nleq G$. Nach Klassengleichung ??? ist $0 \equiv n = \#(Z(G)) + \sum_{i=1}^{r} (G : C_G(x_i)) = \operatorname{ord} Z(G) \mod p$, wobei $G \mid Z(G) = \biguplus_{i=1}^{r} x_i^G$, also $p \mid \#Z(G)$. Nach Folgerung 7.3 (Cauchy) $g \in Z(G)$ mit $\operatorname{ord}(g) = p$.
 - $\Rightarrow N := \langle g \rangle \supseteq G, \ \#N = p, \ \#G/N = p^{k-1}m.$ Nach Induktionshyptothese existiert $\bar{S} \in \mathrm{Syl}_p(G/N)$, d.h. setze $S := \pi_N^{-1}(\bar{S}) \subseteq G.$ Dann ist $\#S = \#\ker(\pi_N)\#(\bar{S} = p \cdot p^{k-1} = p^k,$ d.h. $S \in \mathrm{Syl}_p(G)$.

Folgerung 8.5

Ist $k \in \mathbb{N}$ mit $p^k \mid \#G$, so existiert $H \leq G$ mit $\#H = p^k$.

Beweis. Satz 8.4 und Satz 7.9.

Theorem 8.6 (Sylow-Sätze)

Sei G eine endliche Gruppe.

- 1. Jede p-Gruppe $H \leq G$ ist in einer p-Sylowgruppe von G enthalten.
- 2. Je zwei p-Sylowgruppen von G konjugieren.
- 3. Für die Anzahl $s_p:=\#\operatorname{Syl}_p(G)$ gilt $s_p=(G:N_G(S))=1 \mod p,$ wobei $S\in\operatorname{Syl}_p(G)$ beliebig.

Beweis. Wird noch ergänzt!

Folgerung 8.7

Sei $S \in \operatorname{Syl}_p(G)$. Genau dann ist $S \leq G$, wenn $s_p = 1$.

Folgerung 8.8

Schreibe # $G = p^k m, p \nmid m$. Dann gilt $s_p \mid m$ und $p \mid s_{p-1}$.

■ Beispiel 8.9

Sei #G = pq, mit Primzahlen p < q. Wähle $P \in \mathrm{Syl}_p(G)$, $Q \in \mathrm{Syl}_q(G)$.

- $s_q \mid p \text{ und } q \mid s_{q-1} \stackrel{p \leq q}{\Rightarrow} s_q = 1 \stackrel{8.7}{\Rightarrow} Q \subseteq G.$ $\Rightarrow G = P \ltimes Q \text{ (denn } P \cap Q = 1 \text{ und } PQ = G).$
- $s_p \mid q$ und $q \mid s_q 1 \Rightarrow s_p = 1$ oder $s_p = q$ und $q \equiv 1 \mod p$
 - 1. Fall mit $q \neq 1 \mod p$: Dann ist $s_p = 1 \Rightarrow P \leq G$ ⇒ $G = P \times Q \cong C_p \times C_q \cong C_{pq}$
 - 2. Fall mit $q=1 \mod p$: $\operatorname{Aut}(Q)\cong \operatorname{Aut}(C_q)\overset{4.14}{\cong} C_{q-1}$ hat genau eine Untergruppe mit Ordnung p, also ist $\operatorname{Hom}(P,\operatorname{Aut}(Q))\neq 1$. Es kann deshalb entweder $G\ltimes Q=P\times Q\cong C_{pq}$ abelsch oder $G=P\ltimes Q\cong C_p \unlhd_{\alpha} C_q$ mit $\alpha\neq 1$ nicht abelsch geben, z.B. $S_3\cong C_2\unlhd_{\alpha} C_3$.

Kapitel II

Kommutative Ringe

Kapitel III

$K\"{o}rpererweiterungen$

Anhang A: Listen

A.1. Liste der Theoreme

Theorem I.4.8:	Struktursatz für endlich erzeugte abelsche Gruppen	15
Theorem I.8.6:	Sylow-Sätze	28

A.2. Liste der benannten Sätze, Lemmata und Folgerungen

Folgerung I.2.12	2:	Satz von Lagrange	8
Folgerung I.2.13	3:	kleiner Satz von Fermat	8
Satz I.3.8:	Homo	omorphiesatz	10
Folgerung I.3.10):	1. Homomorphiesatz	10
Folgerung I.3.11	:	2. Homomorphiesatz	11
Satz I.4.4:	Klass	ifikation von zyklischen Gruppen	13
Satz I.6.9:	Cayl	EY	23
Satz I.6.11:	Bahn-	-Stabilisator-Satz	24
Folgerung I.6.12	2:	Bahngleichung	24
Folgerung I.6.16	3:	Klassengleichung	24
Folgerung I.7.3:		Satz von Cauchy	25