Bachelorarbeit

Thema:

Merkmalserkennung von Gebäuden und Grundstücken in Satellitenbildern mittels Deeplearning

Vorgelegt von: Sebastian Mischke

Dorfstraße 8, 01257 Dresden geb. am 09.11.1995 in Dresden Bibliotheksnummer: 37612

Studiengang: Medieninformatik

Externer Betreuer: Ann-Christin Storms

New Web Technology GmbH

Betreuender Prüfer: Prof. Dr. Marco Block-Berlitz

Zweitgutachter: ??

Abgabetermin:

Inhaltsverzeichnis

1	Einleitung und Motivation	1
2	Konkretisierung der Aufgabenstellung	1
3	Stand der Technik	1
4	Gesamtplan	1
5	Satellitenbilder 5.1 Google Static Maps API	
6	Erzeugung der Trainingsdaten	1
7	Erstellen eines Neuronalen Netzes	2
8	Ergebnisse	2
9	Ausblick	2

 ${\it Verzeichnis} \ {\it verwendeter} \ {\it Abk\"{u}rzungen}$

Verzeichnis verwendeter Begriffe und deren Bedeutung (Glossar)

Abbildungsverzeichnis

1	Oatenflussdiagramm	1
2	oint Plot Beispiel	2

Zusammenfassung

Inhalt der Arbeit

1 Einleitung und Motivation

- Bildanalyse mittels Deeplearning
- Marketing
- Datenanreicherung

2 Konkretisierung der Aufgabenstellung

- Vorgabe der Daten von NWT
- Liste mit zu erkennenden Merkmalen
- Entscheidung, welche Merkmale machbar sind
 - zeitlich
 - logisch
- Programmiersprache: Python

3 Stand der Technik

- CNN
- Keras

4 Gesamtplan

- Gesamtübersicht
- Datenflussdiagramm (siehe Abbildung 1
 - CSV-Datei
 - Satellitenbilder
 - Network
 - Ergebnisse

Abbildung 1: Datenflussdiagramm

5 Satellitenbilder

- Satellitenbilder / Flugzeugbilder
- Haus / Grundstück
- Probleme unterschiedlicher APIs
- Unterschiedliche Centermodes
 - XY
 - Adresse
 - Tiles

5.1 Google Static Maps API

- Bilder werden auf Bedarf erzeugt und heruntergeladen
- Unterschied zwischen XY und Adresse
- API-Key und Limitierungen

5.2 Bing Maps

- Bereits heruntergeladen mit zugehöriger CSV-Datei
- Tiles

6 Erzeugung der Trainingsdaten

• Probleme:

Algorithmus 1 Trainieren des Netzwerkes

```
1
  def main():
       # Load csv
2
3
       X_{train}, Y_{train} = load_{csv}("
           data.csv")
4
       # Create net
5
       model = create_net(X_train,
           Y_train)
       # Train net
6
       history = model.fit(x=X_train, y)
7
           =Y_train)
       # Save net
8
       save_model(model, "structure.
9
           json", "weights.h5")
```

- Aufwändig
- Vorwissen notwendig
- Nicht in Bild erkennbar
- Separate Anwendung
- Output:
 - CSV-Datei
 - SQLite

7 Erstellen eines Neuronalen Netzes

- Funktionsweise eines CNN
- Keras
- Merge Neural Networks Splitten von Image und Meta Daten
- Layer-Typen
- Aufbau des Netzes
- Training (siehe 1)

8 Ergebnisse

- Plot Point (siehe Abbildung 2)
- Liste mit Adressen für bestimmtes Merkmal

Abbildung 2: Point Plot Beispiel

9 Ausblick

- Verbesserung der API
- Anwendung zum Suchen bestimmter Merkmale

Literatur