Lecture 13 Reachability in MDPs

Dr. Dave Parker

Department of Computer Science University of Oxford

Recall – MDPs

- Markov decision process: M = (S,s_{init},Steps,L)
- Adversary $\sigma \in Adv$ resolves nondeterminism
- σ induces set of paths Path σ (s) and DTMC D^{σ}
- D^o yields probability space Pro over Patho(s)
- Prob $\sigma(s, \psi) = Pr^{\sigma}_{s} \{ \omega \in Path^{\sigma}(s) \mid \omega \models \psi \}$
- MDP yields minimum/maximum probabilities:

$$p_{min}(s, \psi) = \inf_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$$
$$p_{max}(s, \psi) = \sup_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$$

$$p_{max}(s, \psi) = \sup_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$$

Probabilistic reachability

- Minimum and maximum probability of reaching target set
 - target set = all states labelled with atomic proposition a

$$p_{min}(s,F a) = \inf_{\sigma \in Adv} Prob^{\sigma}(s,F a)$$

$$p_{min}(s,Fa) = inf_{\sigma \in Adv} Prob^{\sigma}(s,Fa)$$

 $p_{max}(s,Fa) = sup_{\sigma \in Adv} Prob^{\sigma}(s,Fa)$

- Vectors: $\underline{\mathbf{p}}_{min}(\mathbf{F} \mathbf{a})$ and $\underline{\mathbf{p}}_{max}(\mathbf{F} \mathbf{a})$
 - minimum/maximum probabilities for all states of MDP

Overview

- Qualitative probabilistic reachability
 - case where $p_{min}>0$ or $p_{max}>0$
- Optimality equation
- Memoryless adversaries suffice
 - finitely many adversaries to consider
- Computing reachability probabilities
 - value iteration (fixed point computation)
 - linear programming problem
 - policy iteration

Qualitative probabilistic reachability

- Consider the problem of determining states for which $p_{min}(s, F a)$ or $p_{max}(s, F a)$ is zero (or non-zero)
 - max case: $S^{max=0} = \{ s \in S \mid p_{max}(s, F a) = 0 \}$
 - this is just (non-probabilistic) reachability

```
R := Sat(a) done := false while (done = false) R' = R \cup \{ s \in S \mid \exists (a,\mu) \in Steps(s) . \exists s' \in R . \mu(s') > 0 \} if (R' = R) \ then \ done := true R := R' endwhile return \ S \setminus R
```

Qualitative probabilistic reachability

• Min case: $S^{min=0} = \{ s \in S \mid p_{min}(s, F a) = 0 \}$

Optimality (min)

 The values p_{min}(s, F a) are the unique solution of the following equations:

- · This is an instance of the Bellman equation
 - (basis of dynamic programming techniques)

Optimality (max)

 Likewise, the values p_{max}(s, F a) are the unique solution of the following equations:

$$X_{s} = \begin{cases} 1 & \text{if } s \in Sat(a) \\ 0 & \text{if } s \in S^{max=0} \end{cases}$$

$$\max \left\{ \sum_{s' \in S} \mu(s') \cdot X_{s'} \mid (a, \mu) \in Steps(s) \right\} \text{ otherwise}$$

$$S^{max=0} = \{ s \mid p_{max}(s, Fa) = 0 \}$$

Memoryless adversaries

- Memoryless adversaries suffice for probabilistic reachability
 - i.e. there exist memoryless adversaries σ_{min} & σ_{max} such that:
 - Prob $\sigma_{min}(s, F a) = p_{min}(s, F a)$ for all states $s \in S$
 - $-\ Prob^{\sigma_{max}}(s,\,F\;a)=p_{max}(s,\,F\;a)\ \ for\ all\ states\ s\in S$
- Construct adversaries from optimal solution:

$$\sigma_{\min}(s) = \operatorname{argmin} \left\{ \sum_{s' \in s} \mu(s') \cdot p_{\min}(s', Fa) \mid (a, \mu) \in Steps(s) \right\}$$

$$\sigma_{\text{max}}(s) = \operatorname{argmax} \left\{ \sum_{s' \in S} \mu(s') \cdot p_{\text{max}}(s', Fa) \mid (a, \mu) \in \text{Steps}(s) \right\}$$

Computing reachability probabilities

- Several approaches...
- 1. Value iteration
 - approximate with iterative solution method
 - corresponds to fixed point computation
- 2. Reduction to a linear programming (LP) problem
 - solve with linear optimisation techniques
 - exact solution using well-known methods
- 3. Policy iteration
 - iteration over adversaries

better complexity; good for small examples

Preferable

in practice,

e.a. in PRISM

Method 1 – Value iteration (min)

For minimum probabilities p_{min}(s, F a) it can be shown that:

$$-p_{min}(s, Fa) = \lim_{n\to\infty} x_s^{(n)}$$
 where:

$$X_{s}^{(n)} = \begin{cases} 1 & \text{if } s \in Sat(a) \\ 0 & \text{if } s \in S^{min=0} \end{cases}$$

$$\min \left\{ \sum_{s' \in S} \mu(s') \cdot X_{s'}^{(n-1)} \mid (a, \mu) \in \textbf{Steps}(s) \right\} \text{ if } s \in S^{?} \text{ and } n > 0$$

- where: $S^? = S \setminus (Sat(a) \cup S^{min=0})$
- Approximate iterative solution technique
 - iterations terminated when solution converges sufficiently

Method 1 – Value iteration (max)

 Value iteration applies to maximum probabilities in the same way...

Example

Minimum/maximum probability of reaching an a-state

Example - Value iteration (min)


```
Compute: p_{min}(s_i, F a)
Sat(a) = \{s_2\}, S^{min=0} = \{s_3\}, S^? = \{s_0, s_1\}
         [x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]
n=0: [0,0,1,0]
n=1: [ min(1·0, 0.25·0+0.25·0+0.5·1),
                0.1 \cdot 0 + 0.5 \cdot 0 + 0.4 \cdot 1, 1, 0
       = [0, 0.4, 1, 0]
n=2:
          [ min(1.0.4,0.25.0+0.25.0+0.5.1),
                0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4 \cdot 1.1.01
        =[0.4, 0.6, 1, 0]
n=3:
```

Example - Value iteration (min)

Generating an optimal adversary

• Min adversary σ_{min}

Generating an optimal adversary

DTMC D^σmin

Value iteration as a fixed point

 Can view value iteration as a fixed point computation over vectors of probabilities y ∈ [0,1]^s, e.g. for minimum:

$$F(\underline{y})(s) = \begin{cases} 1 & \text{if } s \in Sat(a) \\ 0 & \text{if } s \in S^{min=0} \end{cases}$$

$$\min \left\{ \sum_{s \in S} \mu(s') \cdot \underline{y}(s') \mid (a, \mu) \in Steps(s) \right\} \text{ otherwise}$$

Let:

$$- \underline{x}^{(0)} = \underline{0}$$
 (i.e. $\underline{x}^{(0)}(s) = 0$ for all s)
 $- x^{(n+1)} = F(x^{(n)})$

Then:

$$- \underline{\mathbf{X}}^{(0)} \leq \underline{\mathbf{X}}^{(1)} \leq \underline{\mathbf{X}}^{(2)} \leq \underline{\mathbf{X}}^{(3)} \leq \dots$$

$$-\underline{p}_{min}(F a) = \lim_{n\to\infty} \underline{x}^{(n)}$$

Linear programming

Linear programming

- optimisation of a linear objective function
- subject to linear (in)equality constraints

General form:

- n variables: x₁, x₂, ... ,x_n
- maximise (or minimise):

$$\cdot c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

subject to constraints

$$\cdot a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$

$$\cdot a_{21}x_1 + a_{22}x_2 + ... \cdot a_{2n}x_n \le b_2$$

• ...

$$\cdot a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$$

Many standard solution techniques exist, e.g. Simplex, ellipsoid method, interior point method

In matrix/vector form: Maximise (or minimise) $\underline{c} \cdot \underline{x}$ subject to $\underline{A} \cdot \underline{x} \leq \underline{b}$

Method 2 - Linear programming problem

- Min probabilities p_{min}(s, F a) can be computed as follows:
 - $-p_{min}(s, Fa) = 1 \text{ if } s \in Sat(a)$
 - $-p_{min}(s, Fa) = 0 \text{ if } s \in S^{min=0}$
 - values for remaining states in the set $S^? = S \setminus (Sat(a) \cup S^{no})$ can be obtained as the unique solution of the following linear programming problem:

maximize
$$\sum_{s \in S^?} x_s$$
 subject to the constraints: $x_s \le \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in Sat(a)} \mu(s')$ for all $s \in S^?$ and for all $(a, \mu) \in Steps(s)$

Linear programming problem (max)

- Max probabilities $p_{max}(s, F a)$ can be computed as follows:
 - $-p_{max}(s, Fa) = 1 \text{ if } s \in Sat(a)$
 - $-p_{max}(s, Fa) = 0 \text{ if } s \in S^{max=0}$
 - values for remaining states in the set $S^? = S \setminus (Sat(a) \cup S^{no})$ can be obtained as the unique solution of the following linear programming problem:

Let
$$x_i = p_{min}(s_i, F a)$$

Sat(a):
$$x_2=1$$
, $S^{min=0}$: $x_3=0$

For
$$S^? = \{s_0, s_1\}$$
:

Maximise x_0+x_1 subject to constraints:

- $X_0 \le X_1$
- $x_0 \le 0.25 \cdot x_0 + 0.5$
- $x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$

Let
$$x_i = p_{min}(s_i, F a)$$

Sat(a):
$$x_2=1$$
, $S^{min=0}$: $x_3=0$

For
$$S^? = \{s_0, s_1\}$$
:

Maximise x_0+x_1 subject to constraints:

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$

DP/Probabilistic Model Checking, Michaelmas 2011

 X_0

Let
$$x_i = p_{min}(s_i, F a)$$

Sat(a):
$$x_2=1$$
, $S^{min=0}$: $x_3=0$

For
$$S^? = \{s_0, s_1\}$$
:

Maximise x_0+x_1 subject to constraints:

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$

Let
$$x_i = p_{min}(s_i, F a)$$

Sat(a):
$$x_2=1$$
, $S^{min=0}$: $x_3=0$

For
$$S^? = \{s_0, s_1\}$$
:

Maximise x_0+x_1 subject to constraints:

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$

Example - Value iteration + LP

Let
$$x_i = p_{max}(s_i, F a)$$

Sat(a):
$$x_2=1$$
, $S^{max=0}=\emptyset$

For
$$S^? = \{s_0, s_1, s_3\}$$
:

Minimise $x_0+x_1+x_3$ subject to constraints:

•
$$X_0 \ge X_1$$

•
$$x_0 \ge 2/3 + 1/3x_3$$
 • $x_3 \ge x_3$

•
$$x_1 \ge 0.2 \cdot x_0 + 0.8$$

•
$$X_3 \geq X_2$$

•
$$X_3 \geq X_3$$

DP/Probabilistic Model Checking, Michaelmas 2011

Let
$$x_i = p_{max}(s_i, F a)$$

Sat(a):
$$x_2=1$$
, $S^{max=0}=\emptyset$

For
$$S^? = \{s_0, s_1, s_3\}$$
:

Minimise $x_0+x_1+x_3$ subject to constraints:

•
$$X_0 \ge X_1$$

•
$$x_0 \ge 2/3 + 1/3x_3$$
 • $x_3 \ge x_3$

•
$$x_1 \ge 0.2 \cdot x_0 + 0.8$$

•
$$X_3 \geq X_2$$

•
$$X_3 \geq X_3$$

Generating an adversary

• Max adversary σ_{max}

Let
$$x_i = p_{max}(s_i, F a)$$

Sat(a):
$$x_2=1$$
, $S^{max=0}=\emptyset$

For
$$S^? = \{s_0, s_1, s_3\}$$
:

Minimise $x_0 + x_1 + x_3$ subject to constraints:

•
$$X_0 \ge X_1$$

•
$$X_3 \geq X_2$$

•
$$x_0 \ge 2/3 + 1/3x_3$$
 • $x_3 \ge x_3$

•
$$X_3 \ge X_3$$

•
$$x_1 \ge 0.2 \cdot x_0 + 0.8$$

Solution:

•
$$(x_0, x_1, x_3) = (1, 1, 1)$$

Method 3 – Policy iteration

- Value iteration:
 - iterates over (vectors of) probabilities
- Policy iteration:
 - iterates over adversaries ("policies")
- 1. Start with an arbitrary (memoryless) adversary σ
- 2. Compute the reachability probabilities $\underline{Prob}^{\sigma}(F a)$ for σ
- 3. Improve the adversary in each state
- 4. Repeat 2/3 until no change in adversary
- Termination:
 - finite number of memoryless adversaries
 - improvement (in min/max probabilities) each time

Method 3 – Policy iteration

- 1. Start with an arbitrary (memoryless) adversary σ
 - pick an element of **Steps**(s) for each state $s \in S$
- 2. Compute the reachability probabilities $\underline{\text{Prob}}^{\sigma}(F \text{ a})$ for σ
 - probabilistic reachability on a DTMC
 - i.e. solve linear equation system
- 3. Improve the adversary in each state

$$\sigma'(s) = \operatorname{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot \operatorname{Prob}^{\sigma}(s', Fa) \mid (a, \mu) \in \text{Steps}(s) \right\}$$

$$\sigma'(s) = \operatorname{argmax} \left\{ \sum_{s' \in S} \mu(s') \cdot \operatorname{Prob}^{\sigma}(s', Fa) \mid (a, \mu) \in \mathbf{Steps}(s) \right\}$$

4. Repeat 2/3 until no change in adversary

Example - Policy iteration (min)

Example - Policy iteration (min)

Refined adversary o':

Compute: $\underline{Prob}^{\sigma'}(F a)$

Let $x_i = \text{Prob}^{\sigma'}(s_i, F a)$

 $x_2=1$, $x_3=0$ and:

•
$$x_0 = 0.25 \cdot x_0 + 0.5$$

•
$$x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

$$\underline{\text{Prob}}^{\sigma'}(F \ a) = [2/3, 14/15, 1, 0]$$

This is optimal

Example - Policy iteration (min)

Summing up...

- Probabilistic reachability in MDPs
- Qualitative case: min/max probability > 0
 - simple graph-based computation
 - need to do this first, before other computation methods
- Memoryless adversaries suffice
 - reduction to finite number of adversaries
- Computing reachability probabilities...
 (and generation of optimal adversary)
- 1. Value iteration
 - approximate; iterative; fixed point computation
- · 2. Reduce to linear programming problem
 - good for small examples; doesn't scale well
- 3. Policy iteration