Отчет

Работу выполнил:

Мирзазянов Глеб, 371 группа, матмех СПбГУ

Основные результаты:

https://github.com/Glebuska/formal-language2020

Железо:

OC: Ubuntu 20.04

CPU: Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz

RAM: 8Gb DDR3

Датасет:

https://drive.google.com/file/d/1BkiAFd1rYzPA0uoHo7TQvITvp-j8QVFM/view?usp=s haring

Цель эксперимента

Основная цель данного эксперимента: сравнение производительности CFPQ-запросов через следующие реализации:

- 1) Алгоритм Хеллингса
- 2) Через произведение булевых матриц
- 3)Через тензорное произведение булевых матриц, на входе данная грамматика
- 4) Через тензорное произведение булевых матриц, на входе ОНФХ-грамматика

Эксперименты проводились 5 раз для каждого метода и бралось среднее арифметическое.

Результаты эксперимента

Результаты замеров изложены в таблице ниже. Использовалась часть данных, так как на более ресурсоемкие графы не хватило оперативной памяти. К тому же, по таблице заметно, что я не проверял тензорное произведение для графов из папки MemoryAliases, опять же из-за нехватки

RAM. Еще один интересный момент, что на графах из этой же папки алгоритм Хеллингса медленнее перемножения больше чем в 100 раз.

				Algotit	
Directory	Graph	Grammar	m		Time
fullGraph		g3		hellings	12.417
				mult	0.002
				tensor	0.655
			wcnf	tensor_	1.550
		g2		hellings	41.418
				mult	0.004
				tensor	1.507
			wcnf	tensor_	2.911
	fullgraph_100			hellings	22.317
				mult	0.002
		g1		tensor	0.709
			wcnf	tensor_	2.138
		g4		hellings	56.624
				mult	0.004
				tensor	0.856
			wcnf	tensor_	2.341
	fullgraph_50	g3		hellings	1.677
				mult	0.001
				tensor	0.163
			wcnf	tensor_	0.388
		g2		hellings	5.287
				mult	0.002
				tensor	0.396
				tensor_	
			wcnf		0.651
		g1		hellings	3.129
				mult	0.001
				tensor	0.164

			woof	tensor_	0.560
			wcnf	hellings	0.569 7.521
		g4		mult	0.002
				tensor	0.002
					0.217
			wcnf	tensor_	0.650
		g3		hellings	0.022
				mult	0.000
				tensor	0.008
			wcnf	tensor_	0.018
				hellings	0.073
				mult	0.001
		g2		tensor	0.018
	f. II		wenf	tensor_	0.030
	fullgraph_10			hellings	0.056
		g1		mult	0.001
				tensor	0.010
			wenf	tensor_	0.027
		g4 g1		hellings	0.093
				mult	0.001
				tensor	0.010
			wcnf	tensor_	0.028
				hellings	0.006
	worstcase_4			mult	0.003
				tensor	0.001
			wcnf	tensor_	0.003
worst	worstcase_16	g1		hellings	0.061
case				mult	0.034
				tensor	0.001
			wenf	tensor_	0.006
	worstcase_128			hellings	3.349
				mult	5.591

				tensor	0.003
			_	tensor_	
			wcnf		0.033
	worstcase_64 worstcase_32			hellings	0.833
				mult	0.739
				tensor	0.002
			wcnf	tensor_	0.017
				hellings	0.218
				mult	0.138
				tensor	0.001
				tensor_	
			wcnf		0.010
	worstcase_256			hellings	13.846
				mult	71.013
				tensor	0.009
			wonf	tensor_	0.073
-		wcnf	WCIII	1 11:	
	worstcase_8			hellings	0.019
				mult	0.009
				tensor	0.001
			wcnf	tensor_	0.004
	wc.txt	g2		hellings	5.181
				mult	0.662
		g1		hellings	8.649
Memory				mult	0.136
Aliases	bzip2.txt -	g2		hellings	145.252
				mult	0.199
		g1		hellings	253.119
				mult	0.358

Выводы

Алгоритм произведения булевых матриц работал быстрее на всех данных. Алгоритм произведения через булевые матрицы с исходной грамматикой работает ощутимо быстрее, чем с преобразованием в ОНФХ-грамматику. Алгоритм Хеллингса оказался самым медленным из всех 4-х вариантов реализации.