《计算机组成原理》实验报告

实验题目 实验一基础实验 实验时间 2020 年 11 月 8 日 实验地点 26 楼 E342 实验成绩 优秀/良好/中等 实验性质 □验证性 实验性质 □设计性 □综合性	年级、专业、班级	2018 级自动化 1 班	姓名	杨朋雨	
□验证性 实验成绩 优秀/良好/中等 实验性质 □设计性	实验题目	实验一基础实验			
实验成绩 优秀/良好/中等 实验性质 □设计性	实验时间	2020年11月8日	实验地点	26 楼 E342	
				□验证性	
□综合性	实验成绩	优秀/良好/中等	实验性质	☑设计性	
				□综合性	

教师评价:

□算法/实	验过程正确;	□源程序	/实验内	容提交;	□程序约	吉构/实验	步骤合理;
	□实验结果正	三确;	□语法	、语义正确	; □	报告规范;	
其他:							

实验目的

- (1)理解流水线 (Pipeline) 设计原理;
- (2)了解算术逻辑单元 ALU 的原理;
- (3)熟悉并运用 Verilog 语言设计 ALU;
- (4)熟悉并运用 Verilog 语言设计流水线全加器;

报告完成时间: 2020年 10月 16日

评价教师: 崔自强

1 实验内容

1.1 ALU 设计实验

实验要求实现以下算术运算功能,其对应的控制码及功能如下:

F _{2:0}	功能	F _{2:0}	功能
000	A + B(Unsigned)	100	\overline{A}
001	A - B	<i>101</i>	SLT
010	A AND B	110	未使用
011	A OR B	111	未使用

表 1: 算数运算控制码及功能

实验要求:

- 1. 根据 ALU 原理图,使用 Verilog 语言定义 ALU 模块,其中输入输出端口参考实验原理,运算指令码长度为[2:0]。
- 2. 内置一个 32 位 num2(值为 32h'01)作为输入到运算器端口 A;
- 3. 将 sw0-sw7 输入到 num1, 经过无符号扩展至 32 位后, 输入到运算器的端口 B;
- 4. 运算器支持"加、减、与、或、非"5种运算,需要 3位(8个操作)。将 sw15-sw14 输入到 op 作为运算器的控制信号;
- 5. 实现 SLT 功能。
- 6. 将计算 32 位结果 s 显示到七段数码管 (16 进制)。
- 7. 验证表 1中所有功能。
- 8. 给出 RTL 源程序(.v 文件)

1.2 流水线实验

本次实验为仿真实验,设计完成后仅需进行行为仿真。

实验要求:

- 1. 实现 4 级流水线 8bit 全加器, 需带有流水线暂停和刷新;
- 2. 模拟流水线暂停, 仿真时控制 10 周期后暂停流水线 2 周期(第2级), 流水线恢复流动;
- 3. 模拟流水线刷新,仿真时控制 15 周期时流水线刷新(第3级)。

2 实验设计

这一节,主要描述各个模块的功能、接口、逻辑控制方法(状态机控制方法)等。(红字为内容说明,请删除)

2.1 ALU

2.1.1 功能描述

简单描述实现的功能即可,一句话亦可(红字为内容说明,请删除)

2.1.2 接口定义

接口定义请使用表格,需要包括接口信号名、方向、宽度、含义(红字为内容说明,请删除)

表 2:接口定义模版

信号名	方向	位宽	功能描述
valid	Output	1-bit	If CPU stopped or any exception hap-
			pens, valid signal is set to 0.

2.1.3 逻辑控制

逻辑控制部分仅需要写清重点控制逻辑,或自行添加的优化逻辑(红字为内容说明,请删除)

2.2 有阻塞 4 级 8bit 全加器

- 2.2.1 功能描述
- 2.2.2 接口定义
- 2.2.3 逻辑控制

3 实验过程记录

记录实验的过程,完成了什么样的工作,存在的问题包括哪些,解决方案如何等。subsubsection 名称自行设定。记录实验的过程,完成了什么样的工作,存在的问题包括哪些,解决方案如何等。subsubsection 名称自行设定。(红字为内容说明,请删除)

3.1 问题 1:xxxxxxx

问题描述:xxxxxxxx

解决方案:xxxxxxxx

4 实验结果及分析

4.1 ALU 验证实验结果

操作	Num1	Result
A + B(Unsigned)	8'b00000010	
A - B	8'b11111111	
A AND B	8'b11111110	
A OR B	8'b10101010	
\overline{A}	8'b11110000	
SLT	8'b10000001	

表 3: ALU 结果表

4.2 流水线阻塞(暂停)仿真图

图 1: 占位图

4.3 流水线刷新(清空)仿真图

A ALU 代码

仅需要 alu.v,填充至 lstlisting 中 (红字为内容说明,请删除)

B 8bit 全加器代码

仅需要 stallable_pipeline_adder.v,填充至 lstlisting 中 (红字为内容说明,请删除)