4. Espaços vetoriais

Exercícios para as aulas

Exercício 4.1 Verifique que o conjunto $\mathcal{P}_n(x)$ dos polinómios na variável x de grau menor ou igual a n com coeficientes reais, algebrizado por meio da adição de polinómios e da multiplicação de um polinómio por um número real, é um espaço vetorial real.

Exercício 4.2 Considere o conjunto C([a,b]) das funções reais de variável real contínuas em [a,b]. Se $f,g \in C([a,b])$ considere definida a soma f+g por

$$(f+g)(x) = f(x) + g(x), x \in [a,b].$$

Se $\alpha \in \mathbb{R}$ e $f \in C([a, b])$ considere αf definida por

$$(\alpha f)(x) = \alpha f(x), \quad x \in [a, b].$$

Prove que C([a,b]) é um espaço vetorial real para as operações acima definidas.

Exercício 4.3 Mostre que se U é um subespaço vetorial de um espaço vetorial V então $\mathbf{0}_V \in U$.

Exercício 4.4 Verifique se os seguintes conjuntos são subespaços vetoriais do espaço vetorial V indicado.

- a) $V = \mathbb{R}^2$, $S = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 = x_2\}$.
- b) $V = \mathbb{R}^2$, $T = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0\}$.
- c) $V = \mathbb{R}^3$, $U = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = 0\}$.

Exercício 4.5 Prove que o conjunto formado pelas matrizes reais simétricas de ordem n é um subespaço vetorial de $\mathbb{R}^{n \times n}$.

Exercício 4.6 Seja $A \in \mathbb{R}^{m \times n}$ e $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{b} \neq \mathbf{0}$. Mostre que:

- a) O conjunto das soluções do sistema homogéneo $A\mathbf{x}=\mathbf{0}$ é um subespaço de \mathbb{R}^n . (Recorde o Exercício 2.10.)
- b) O conjunto das soluções do sistema $A\mathbf{x} = \mathbf{b}$ não é um subespaço de \mathbb{R}^n .

Exercício 4.7 Indique, sem efetuar quaisquer cálculos, quais dos seguintes conjuntos são subespaços do espaço V indicado.

- a) $V = \mathbb{R}^3$, $U_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$;
- b) $V = \mathbb{R}^3$, $U_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1\}$;
- c) $V = \mathbb{R}^4$, $U_3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 \in x_3 = x_4\}$;
- d) $V = \mathbb{R}^4$, $U_4 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 + x_3 \in x_4 = 5\}$.

Exercício 4.8 Identifique o subespaço de R3 gerado pelos vetores:

- a) $\mathbf{u}_1 = (1,0,0) \in \mathbf{u}_2 = (0,1,1).$
- b) $\mathbf{v}_1 = (1, 2, 1), \mathbf{v}_2 = (2, -1, -3) \in \mathbf{v}_3 = (0, 1, 1).$
- c) $\mathbf{w}_1 = (1, 1, 1), \mathbf{w}_2 = (2, 1, 1) \in \mathbf{w}_3 = (0, 1, 3)$

Exercício 4.9 Identifique o seguinte subespaço de $\mathbb{R}^{2\times 2}$:

$$S = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle.$$

Exercício 4.10 Sejam v_1, v_2, \dots, v_n vetores de um espaço vetorial V e $\alpha \in \mathbb{R}$, $\alpha \neq 0$. Prove que:

- a)* $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle = \langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$.
- b) $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle = \langle \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$.

Exercício 4.11 Considere os vetores de \mathbb{R}^2 , $\mathbf{v}_1 = (1,0)$ e $\mathbf{v}_2 = (1,1)$.

- a) Escreva $\mathbf{v}=(3,-1)$ como combinação linear de \mathbf{v}_1 e \mathbf{v}_2 .
- b) Mostre que v₁ e v₂ são linearmente independentes.
- c) Verifique que qualquer vetor $\mathbf{x}=(a,b)\in\mathbb{R}^2$ pode ser escrito como combinação linear de \mathbf{v}_1 e \mathbf{v}_2 .

Exercício 4.12 Verifique se são linearmente independentes os vetores de \mathbb{R}^3 apresentados em seguida. No caso de serem linearmente dependentes escreva um deles como combinação linear dos restantes.

- a) (1,0,0),(0,1,0),(1,-1,1).
- b) (1,0,1),(0,1,0),(1,-1,1).

Exercício 4.13 Sejam $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ vetores de um espaço vetorial V e $\alpha \in \mathbb{R}$, $\alpha \neq 0$. Mostre que, se $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ são vetores linearmente independentes (dependentes), então:

- a)* $\alpha \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ também são linearmente independentes (dependentes);
- b) $\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2, \dots, \mathbf{v}_n$ também são linearmente independentes (dependentes).

Exercício 4.14 Determine uma base e a dimensão dos subespaços apresentados nos Exercícios 4.4 e 4.7.

Exercício 4.15 Determine uma base e a dimensão dos seguintes subespaços de R4:

- a) $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 = x_3 + x_4 \};$
- b) $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 = x_3\}.$

Exercício 4.16 Apresente uma base e indique a dimensão dos subespaços de $\mathbb{R}^{2\times 2}$ formado pelas matrizes:

- a) Simétricas de ordem 2.
- b) Triangulares superiores de ordem 2.
- c) Diagonais de ordem 2.

Exercício 4.17^* Seja V um espaço vetorial de dimensão n. Mostre que:

- a) Se $V = \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$, então $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ é uma base de V.
- b) Se $\mathbf{v}_1, \dots, \mathbf{v}_n$ são vetores de V linearmente independentes, então $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ é uma base de V.

Exercício 4.18* Seja V um espaço vetorial e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ uma sua base. Mostre que qualquer vetor $\mathbf{v} \in V$ se escreve, de forma única, como combinação linear dos vetores $\mathbf{v}_1, \dots, \mathbf{v}_n$.

Observação: Os coeficientes da combinação linear são chamados as coordenadas do vetor em relação a essa base.

Exercício 4.19 a) Determine as coordenadas do vetor $\mathbf{x}=(1,-4,2)$ em relação à base canónica de \mathbb{R}^3 .

- b) Sejam $\mathbf{u}_1 = (1,0,0)$, $\mathbf{u}_2 = (1,-1,0)$, e $\mathbf{u}_3 = (1,0,-1)$. Mostre que $(\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3)$ é uma base de \mathbb{R}^3 . Determine as coordenadas de vetor \mathbf{x} , dado na alínea anterior, relativamente a esta base.
- Exercício 4.20 a) No espaço $\mathcal{P}_2(x)$, determine as coordenadas, na base $(1, x, x^2)$, de

$$p(x) = 1 - 4x + 2x^2.$$

b) Considere os polinómios definidos por

$$p_1(x) = 1$$
, $p_2(x) = 1 - x$, $p_3(x) = 1 - x^2$,

Mostre que (p_1, p_2, p_3) é uma base de $\mathcal{P}_2(x)$. Determine as coordenadas do polinómio p, dado na alínea anterior, relativamente a esta base.

- Exercício 4.21 a) Mostre que os vetores $\mathbf{u}_1=(1,0)$, $\mathbf{u}_2=(1,1)$ e $\mathbf{u}_3=(0,-1)$ constituem um sistema de geradores de \mathbb{R}^2 .
 - Retire vetores, entre os dados, para obter uma base de R².
- Exercício 4.22 Determine os valores de k para os quais ((1,0,2),(-1,2,-3),(-1,4,k)) é uma base de \mathbb{R}^3 .
- Exercício 4.23 Determine uma base do subespaço de \mathbb{R}^3 , $U = \langle (1,0,1), (2,2,4), (0,0,1), (1,2,3) \rangle$.

Exercício 4.24 Seja $U = \{(3a + b, 2a - b, a + 2b) : a, b \in \mathbb{R}\}.$

- a) Verifique que U é um subespaço vetorial de R³.
- b) Determine uma base de U.
- c) Determine α de modo que o vetor (2, 3, α) pertença a U.

Exercício 4.25 Seja $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + z = 0\}.$

- a) Verifique que S é um subespaço vetorial de R³.
- b) Determine uma base de S.
- c) Determine $\alpha \in \mathbb{R}$ de modo que $S = \langle (1, 0, -1), (-1, 1, \alpha) \rangle$.

Exercício 4.26 Determine a dimensão e indique uma base para o espaço das colunas e para o espaço das linhas de cada uma das seguintes matrizes.

a)
$$A = \begin{pmatrix} 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

c)
$$C = \begin{pmatrix} -1 & 3 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ -1 & 3 & 0 & 2 \end{pmatrix}$$
 d) $D = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ e) $E = \begin{pmatrix} 3 & 0 & -6 & 0 \\ 1 & 0 & -2 & 0 \end{pmatrix}$

Exercício 4.27 Determine a dimensão e indique uma base para o núcleo de cada uma das matrizes do exercício anterior.

Exercício 4.28* Construa uma matriz cujo espaço nulo seja gerado pelo vetor (2,0,1).

Exercício 4.29* Existe alguma matriz A tal que $(1,1,1) \in \mathcal{L}(A)$ e $(1,0,0) \in \mathcal{N}(A)$?

Exercício 4.30 Considere a matriz
$$A = \begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ 0 & 0 & 2 & 4 & 0 \\ 2 & -2 & -1 & 2 & 1 \\ -1 & 1 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- a) Calcule a nulidade e a característica de A.
- b) Determine bases para o espaço das colunas de A e para o espaço nulo de A.
- c) Indique uma solução do sistema de equações lineares $A\mathbf{x} = \mathbf{b}$, onde $\mathbf{b} = (1\ 0\ 2\ -1\ 0)^T$. (Note que \mathbf{b} é a primeira coluna de A.)

Exercícios suplementares

Nas questões 4.31 a 4.39, indique, a(s) alínea(s) correta(s).

Exercício 4.31 Os seguintes subconjuntos de \mathbb{R}^4 são subespaços vetoriais de \mathbb{R}^4 .

a)
$$A_1 = \{(x, y, z, w) \in \mathbb{R}^4 : x - y = 2\}.$$

b)
$$A_2 = \{(x, y, z, w) \in \mathbb{R}^4 : z = x + 2y \in w = x - 3y\}.$$

c)
$$A_3 = \{(x, y, z, w) \in \mathbb{R}^4 : x = 0 \text{ e } y = -w\}.$$

d)
$$A_4 = \{(x, y, z, w) \in \mathbb{R}^4 : x = y = 0\}.$$

e)
$$A_5 = \{(x, y, z, w) \in \mathbb{R}^4 : x = 1, y = 0, x + w = 1\}.$$

f)
$$A_6 = \{(x, y, z, w) \in \mathbb{R}^4 : x > 0 \text{ e } y < 0\}.$$

Exercício 4.32 Os seguintes subconjuntos de $\mathbb{R}^{n \times n}$ são subespaços vetoriais de $\mathbb{R}^{n \times n}$.

- a) O conjunto de todas as matrizes invertíveis de ordem n.
- b) O conjunto de todas as matrizes diagonais de ordem n.
- c) O conjunto de todas as matrizes triangulares superiores de ordem n.
- d) O conjunto de todas as matrizes singulares de ordem n.

Exercício 4.33 Os seguintes vetores geram \mathbb{R}^3 .

- a) (1,-1,2), (0,1,1).
- b) (1,2,-1), (6,3,0), (4,1,1), (-1,1,1).
- c) (2,2,3), (-1,-2,1), (0,1,0).
- d) (1,1,-1), (1,0,3), (-1,-2,5).

Exercício 4.34 Os seguintes polinómios geram $P_2(x)$.

- a) $x^2 + 1$, $x^2 + x$, x + 1.
- b) $x^2 + 1$, $x^2 + x$.
- c) $x^2 + 2$, $2x^2 x + 1$, x + 2, $x^2 + x + 4$.
- d) $x^2 3x + 2$, $x^2 1$.

Exercício 4.35 Os seguintes vetores de \mathbb{R}^3 são linearmente dependentes.

- a) (1,2,-1), (3,2,5).
- b) (4,2,1), (2,6,-5), (1,-2,3).
- c) (1,1,0), (0,2,3), (1,2,3), (3,6,6).
- d) (1, 2, 3), (1, 1, 1), (1, 0, 1).

Exercício 4.36 Os seguintes vetores de $\mathcal{P}_2(x)$ são linearmente dependentes.

- a) $x^2 + 1$, x 2, x + 3.
- b) $2x^2 + 1$, $x^2 + 3$, x.
- c) 3x + 1, $3x^2 + 1$, $2x^2 + x + 1$.
- d) x^2-4 , $5x^2-5x-6$, $3x^2-5x+2$, 2x-1.

Exercício 4.37 Os seguintes vetores de $\mathbb{R}^{2\times 2}$ são linearmente dependentes.

$$\text{a)} \quad \left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array}\right), \ \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right), \ \left(\begin{array}{cc} 0 & 3 \\ 1 & 2 \end{array}\right), \ \left(\begin{array}{cc} 2 & 6 \\ 4 & 6 \end{array}\right).$$

b)
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$.

$$c) \quad \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right), \ \left(\begin{array}{cc} 2 & 3 \\ 1 & 2 \end{array}\right), \ \left(\begin{array}{cc} 3 & 1 \\ 2 & 0 \end{array}\right), \ \left(\begin{array}{cc} 2 & 2 \\ 1 & 1 \end{array}\right).$$

Exercício 4.38 Os seguintes vetores de \mathbb{R}^3 formam uma base de \mathbb{R}^3 .

a)
$$(1,2,0)$$
, $(0,1,-1)$.

b)
$$(1, 1, -1), (2, 3, 4), (1, -2, 3), (2, 1, 1).$$

c)
$$(1,1,0)$$
, $(0,2,3)$, $(-2,0,3)$.

d)
$$(3,2,2)$$
, $(-1,2,1)$, $(0,1,0)$.

Exercício 4.39 Os seguintes vetores de $\mathcal{P}_2(x)$ formam uma base de $\mathcal{P}_2(x)$.

a)
$$-x^2 + x + 2$$
, $2x^2 + 2x + 3$, $4x^2 - 1$.

b)
$$2x^2 + 1$$
, $x^2 + 3$.

c)
$$x^2 + 1$$
, $3x^2 + 1$, $2x^2 + x + 1$, $3x^2 - 5x + 2$.

d)
$$3x^2 + 2x + 1$$
, $x^2 + x + 1$, $x^2 + 1$.

Nas questões 4.40 a 4.46, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F).

Exercício 4.40 Seja V um espaço vetorial real.

a) Se
$$(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$$
 é uma base de V , então $(3\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$ também é uma base de V .

b) Se
$$V = \langle \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \rangle$$
, então dim $V = n$.

c) Se
$$(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$$
 é uma base de V , então o vetor nulo não pode escrever-se como combinação linear dos vetores $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$.

d) Se dim
$$V=n$$
 e $\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_n$ são vetores de V linearmente independentes, então $(\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_n)$ é uma base de V .

Exercício 4.41 Seja V um espaço vetorial real de dimensão n.

a) Se
$$V = \langle \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \rangle$$
, então $(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$ é uma base de V .

b) Se
$$(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$$
 é uma base de V , então $(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_1 + \mathbf{v}_n)$ também é uma base de V .

c) Quaisquer
$$n-1$$
 vetores de V são linearmente independentes.

d) O conjunto
$$T = \{\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 : \alpha, \beta \in \mathbb{R}, \mathbf{v}_1, \mathbf{v}_2 \in V\}$$
 é um subespaço vetorial de V .

Exercício 4.42 Seja $S = \langle (1,0,1), (1,2,1), (3,4,3) \rangle$. Então:

a)
$$S = \mathbb{R}^3$$
.

b)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x = z\}.$$

c)
$$(2,3,4) \in S$$
.

d) os vetores
$$(-2, 4, -2)$$
 e $(-2, 0, -2)$ constituem uma base de S .

Exercício 4.43 Seja $T = \langle (1,1,0,0), (1,0,-1,0), (1,1,1,1) \rangle$. Então:

a)
$$T=\mathbb{R}^3$$
.

F

b)
$$T = \{(a, b, c, d) \in \mathbb{R}^4 : a = b - c + d\}.$$

c)
$$(0,0,0,0) \in T$$
.

d)
$$((1,1,0,0),(1,0,-1,0),(0,0,1,1))$$
 é uma base de T .

Exercício 4.44 Seja A uma matriz de ordem 4×5 .

a) As colunas de A são linearmente dependentes.

b) O sistema $A\mathbf{x} = \mathbf{0}$ tem solução única.

c) car $A \leq 4$.

d) A dimensão do núcleo de A é 2.

Exercício 4.45 Seja $S = \{(\alpha + \beta, \alpha - \beta, 2\alpha) : \alpha, \beta \in \mathbb{R}\}.$

a)
$$S = \{(x, y, x) \in \mathbb{R}^3 : x + y - z = 0\}.$$

b)
$$(1,1,1) \in S$$
.

c)
$$S = \langle (1, -1, 0), (1, 1, 2), (1, 0, 1) \rangle$$
.

d)
$$S$$
 é um subespaco vetorial de \mathbb{R}^3 de dimensão 2.

Exercício 4.46 Considere as matrizes

$$A = \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 5 \end{array}\right) \quad \text{e} \quad B = \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

V F

a) $\ B$ pode obter-se por operações elementares sobre as linhas de A.

- 0 0
- b) ((1,1,2,0),(1,2,3,1),(1,4,5,5)) é uma base do espaço das colunas de A.
- 0 0
- c) ((1,1,1,1),(1,2,3,4),(2,3,4,5)) é uma base do espaço das linhas de A.
- 0 0

d) $(-1,1,-1,1) \in \mathcal{N}(A)$.

0 0