

				Sub	ject	Coc	ie: I	KEE	<i>3</i> 03
Roll No:									·

B TECH (SEM-III) THEORY EXAMINATION 2020-21 BASIC SIGNAL AND SYSTEMS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief.	x 10 = 20)
Qno.	Question	Marks	СО
a.	Define Signal.	2	1
b.	Check the periodicity of the signals given below:	2	1
	$x(t) = \sin(8t-1) - \sin(3t-1)$		
c.	Differentiate between CTFT and DTFT.	2	2
d.	What are advantages of Laplace transform.	2	2
e.	Find the ROC of $x(t)=e^{-2t}u(t)+e^{-3t}u(t)$	2	3
f.	State the convolution property for continuous and discrete time domain signal in	2	3
	z-transform.		
g.	Draw the signal $x(t)=u(t)-u(t-3)$	2	3
h.	What is interpolation in sampling?	2	4
i.	What is the necessary condition for an LTI system to be stable?	2	4
j.	Write the S-domain transfer function of a first order system?	2	5

SECTION B

2.	Attempt any	v <i>three</i> o	f the	following:
----	-------------	------------------	-------	------------

3	X	10	= 30
_		10	20

Printed Page: 1 of 2

a. If $X(s)=(2s+3)/((s=1) (s+2)$, find $x(t)$ for i. System is stable. ii. System is causal. iii. System is non-causal b. Find the Fourier transform of the signals below: i) $x(t) = \begin{cases} A, & t < T_0 \\ 0, & t > T_0 \end{cases}$ ii) $x(t) = e^{-at} u(t)$ c. Explain the principle of linearity of DT system. d. Plot $x(t)=u(t)-r(t-1)+2r(t-2)-r(t-3)+u(t-4)-2u(t-5)$. Find the even and odd parts of 10 4 the signals	Qno.	Question	Marks	CO
ii. System is causal. iii. System is non-causal b. Find the Fourier transform of the signals below: i) $x(t) = \begin{cases} A, & t < T_0 \\ 0, & t > T_0 \end{cases}$ ii) $x(t) = e^{-at} u(t)$ c. Explain the principle of linearity of DT system. d. Plot $x(t) = u(t) - r(t-1) + 2r(t-2) - r(t-3) + u(t-4) - 2u(t-5)$. Find the even and odd parts of 10 4	a.	If $X(s)=(2s+3)/((s=1) (s+2)$, find $x(t)$ for	10	1
iii. System is non-causal b. Find the Fourier transform of the signals below: i) $x(t) = \begin{cases} A, & t < T_0 \\ 0, & t > T_0 \end{cases}$ ii) $x(t) = e^{-at} u(t)$ c. Explain the principle of linearity of DT system. d. Plot $x(t) = u(t) - r(t-1) + 2r(t-2) - r(t-3) + u(t-4) - 2u(t-5)$. Find the even and odd parts of 10 4		i. System is stable.		
b. Find the Fourier transform of the signals below: i) $x(t) = \begin{cases} A, & t < T_0 \\ 0, & t > T_0 \end{cases}$ ii) $x(t) = e^{-at} u(t)$ c. Explain the principle of linearity of DT system. d. Plot $x(t) = u(t) - r(t-1) + 2r(t-2) - r(t-3) + u(t-4) - 2u(t-5)$. Find the even and odd parts of 10 4		ii. System is causal.		
i) $x(t) = \begin{cases} A, & t < T_0 \\ 0, & t > T_0 \end{cases}$ ii) $x(t) = e^{-at} u(t)$ c. Explain the principle of linearity of DT system. 10 3 d. Plot $x(t) = u(t) - r(t-1) + 2r(t-2) - r(t-3) + u(t-4) - 2u(t-5)$. Find the even and odd parts of 10 4		iii. System is non-causal		
c. Explain the principle of linearity of DT system. 10 3 d. Plot x(t)=u(t)-r(t-1)+2r(t-2)-r(t-3)+u(t-4)-2u(t-5). Find the even and odd parts of 10 4	b.	Find the Fourier transform of the signals below:	10	2
d. Plot $x(t)=u(t)-r(t-1)+2r(t-2)-r(t-3)+u(t-4)-2u(t-5)$. Find the even and odd parts of 10 4		i) $x(t) = \begin{cases} A, & t < T_0 \\ 0, & t > T_0 \end{cases}$ ii) $x(t) = e^{-at} u(t)$		
	c.	Explain the principle of linearity of DT system.	10	3
the signals	d.	Plot $x(t)=u(t)-r(t-1)+2r(t-2)-r(t-3)+u(t-4)-2u(t-5)$. Find the even and odd parts of	10	4
the signals.		the signals.		
e. State and Prove sampling theorem 10 5	e.	State and Prove sampling theorem	10	5

SECTION C

3. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Prove that power of energy signal is zero over infinite time.	10	1
b.	What is Shannon's sampling theorem? Also discuss aliasing by taking example	10	1

4. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Determine whether the following continuous time system:	10	2
	$Y(t)=x(t)\cos(100\pi t)$ is		
	i) Linear and non-linear ii) Shift variant and shift invariant iii) stable or		
	unstable iii) causal and noncausal		
b.	Determine the impulse response function h(t) of ideal BPF with passband gain of	10	2
	A Hz and passband BW of B Hz centered on f ₀ Hz and having a linear phase		
	response.		

				Sub	ject	Coc	de: I	KEE	303
Roll No:									

Printed Page: 2 of 2

5. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Find the energy and power of the signal:	10	3
	i) $X(t)=\cos(at)$ ii) $x(t)=Ae^{-\alpha t}u(t)$ where $\alpha>0$		
b.	State and prove initial and final value theorem for z transform.	10	3

6. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	A causal LTI system is described by difference equation:	10	4
	y(n)=y(n-1)+y(n-2)+x(n-1)		
	find the system function H(z) for this system.		
b.	Explain Fourier transform of single sided exponential pulse.	10	4

7. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	If the Laplace transform of $x(t)$ is $(s+2)/(s^2+4s+5)$, determine the Laplace transform of $y(t)=x(2t-1)u(2t-1)$	10	5
b.	Explain system bandwidth and rise time for low pass filter and prove that t _r =0.35?B	10	5