Technika Cyfrowa - ćwiczenie 2

Fortuna Wojciech, Ramut Michał, Stylski Bartłomiej, Tendaj Konrad Akademia Górniczo-Hutnicza w Krakowie

14 Maja 2024

1 Treść ćwiczenia 2

Korzystając wyłącznie z wybranych przerzutników oraz dowolnych bramek logicznych, proszę **zaprojektować** czterobitowy układ TIMER, odmierzający ustawiany za pomocą przełączników czas (od 0 do 15).

Po wciśnięciu przycisku STRAT, układ rozpoczyna odmierzanie czasu do tyłu (proszę dobrać częstotliwość tak, aby efekt był dobrze widoczny na ekranie). Po wyzerowaniu się licznika czasu, układ powinien się zatrzymać i włączyć alarm świetlny wykorzystujący diodę LED. Po ponownym wciśnięciu przycisku START, układ powinien wyłączyć alarm i ponownie rozpocząć odmierzanie ustawionego na przełącznikach czasu.

Aktualny wskazywany przez układ czas proszę pokazywać na wyświetlaczach siedmiosegmentowych.

2 Zegar

Zegar jest uniwersalnym źródłem czasu dla całego układu. Jest nim urządzenie DIGITAL_CLOCK ustawione na 80 Hz.

Rysunek 1: Zegar

3 Przełączniki i przycisk START

Przy pomocy przełączników użytkownik może ustawiać liczbę. Każdy z 4 przełączników odpowiada za inny bit od 2^0 (+1) do 2^3 (+8). Suma wartości na przełącznikach generuje liczbę. Możliwe jest więc uzyskanie wartości od 0 do 15.

Przycisk START wysyła sygnał o rozpoczęciu odliczania. Jeśli licznik był w trakcie odliczania to wciśnięciu tego przycisku resetuje stare odliczanie i zaczyna nowe.

Zarówno przełaczniki jak i przycisk START sa podłaczone do źródła napiecia typu DC.

Rysunek 2: Przełączniki i przycisk START

4 Ustawianie wartości na przerzutnikach

Podukład Set starting positions umożliwia sczytanie danych z przełączników i ustawienie ich na odpowiadającym każdemu z bitów przerzutnikach typu T przy pomocy Set i Reset.

Wartości są ustawiane jedynie zaraz po włączeniu przycisku START.

Sygnał	Wartość
A	2^3
В	2^2
С	2^1
D	2^{0}

Tabela 1: Oznaczenia sygnałów

Rysunek 3: Schemat podukładu Set starting positions

5 Projekt licznika z treści zadania

Nasz licznik będzie składać się z 10 wejść i 5 wyjść:

Rysunek 4: Schemat licznika (Podukład counter)

Wejścia A_SET, A_RESET, B_SET, B_RESET, C_SET, C_RESET, D_SET, D_RESET odpowiadają za ustawienie odpowiedniej wartości początkowej licznika, gdzie A_SET, A_RESET odpowiada za najbardziej znaczący bit, a D_SET, D_RESET za najmniej znaczący.

5.1 Ogólny schemat 4-bitowego licznika synchroniczego

Licznik składa się z 4 przerzutników typu T podłączonych do wspólnego zegara, do każdego z przerzutników podłączone jest odpowiednie wejście SET i RESET, które ustawiają licznik w odpowiednim stanie początkowym.

Rysunek 5: Schemat przerzutników

5.2 Tabele prawdy dla licznika

\mathbf{T}	$\mathbf{Q_n}$	$\mathbf{Q_{n+1}}$
0	0	0
0	1	1
1	0	1
1	1	0

Tabela 2: Tabela prawdy dla przerzutnika typu T

\mathbf{S}	R	$\mathbf{Q_{n+1}}$	\sim $\mathbf{Q_{n+1}}$
0	0	Q_n	$\sim Q_n$
0	1	0	1
1	0	1	0
1	1	-	-

Tabela 3: Tabela prawdy dla przerzutnika typu RS

D	$\mathbf{Q_n}$	$\mathbf{Q_{n+1}}$
0	0	0
0	1	0
1	0	1
1	1	1

Tabela 4: Tabela prawdy dla przerzutnika typu D

Q_A	Q_B	Q_C	Q_D	Q_A +	Q_B +	Q_C +	Q_D +	T_A	T_B	T_C	T_D
1	1	1	1	1	1	1	0	0	0	0	1
1	1	1	0	1	1	0	1	0	0	1	1
1	1	0	1	1	1	0	0	0	0	0	1
1	1	0	0	1	0	1	1	0	1	1	1
1	0	1	1	1	0	1	0	0	0	0	1
1	0	1	0	1	0	0	1	0	0	1	1
1	0	0	1	1	0	0	0	0	0	0	1
1	0	0	0	0	1	1	1	1	1	1	1
0	1	1	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	0	0	1	1
0	1	0	1	0	1	0	0	0	0	0	1
0	1	0	0	0	0	1	1	0	1	1	1
0	0	1	1	0	0	1	0	0	0	0	1
0	0	1	0	0	0	0	1	0	0	1	1
0	0	0	1	0	0	0	0	0	0	0	1
0	0	0	0	1	1	1	1	1	1	1	1

Tabela 5: Tabela prawdy dla układu licznika

Naszym zadaniem jest znając wartości wyjść Q_A, Q_B, Q_C, Q_D znaleźć co trzeba podać do wejść T_A, T_B, T_C, T_D

5.3 Tablice Karnaugh i wzory funkcji

Tablica Karnaugh dla wejścia $\mathbf{T}_{-}\mathbf{D}$

Możemy z tego wywnioskować, że:

 $T_D = 1$

Rysunek 6: Tablica dla T_D

Rysunek 7: Układ dla wejścia $\mathbf{T}_{-}\mathbf{D}$

Naszym otrzymanym równaniem T_C jest: $T_-D = \overline{\color{blue}D}$

Rysunek 8: Tablica dla T_C

Rysunek 9: Układ dla wejścia $\mathbf{T}_{-}\mathbf{C}$

Tablica Karnaugh dla wejścia T B

Naszym otrzymanym równaniem T_B jest: $T_B = \overline{CD}$

Rysunek 10: Układ dla wejścia $\mathbf{T}_{-}\mathbf{B}$

Rysunek 11: Układ dla wejścia $\mathbf{T}_{-}\mathbf{B}$

Tablica Karnaugh dla wejścia $\mathbf{T}_{_}\mathbf{A}$

Naszym otrzymanym równaniem T_A jest: $T_A = \overline{BCD}$

Rysunek 12: Tablica dla T_A

Rysunek 13: Układ dla wejścia $\mathbf{T}_{-}\mathbf{A}$

5.4 Cały układ licznika

Rysunek 14: Układ licznika w całości

5.5 Schemat podukładu Counter

Rysunek 15: Schemat licznika

Kolor	Znaczenie	
Zielony	Licznik	
Pomarańczowy	Sygnał z przycisku START jest zapisywany i wraz z sygnałem z zegara aktywuje licznik.	
1 Omaranczowy	Po skończeniu odliczania jest resetowany i zatrzymuje licznik	
Brozoniu	Gdy sygnał z przycisku START jest aktywowany do licznika przesyłany jest sygnał zegara.	
Brązowy	Po skończeniu odliczania sygnał jest resetowany i zatrzymuje licznik	
Niebieski	Gdy wartość licznika zejdzie do 0 wysyłany jest ciągły sygnał do alarmu	
Niebieski	i krótki sygnał resetujący przerzutnik typu SR	
Czerwony	W przypadku, gdy wartość na przełącznika wynosiła 0, to odliczanie nie jest uruchamiane	
Różowy	Opóźnia sygnał o cykl zegara, by początkowa wartość również	
Ttozow y	miała swój czas wyświetlenia na wyświetlaczach	

Tabela 6: Objaśnienie schematu podukładu Counter

6 Wyświetlacze siedmiosegmentowe

W układzie występują 2 pary wyświetlaczy typu "hex_display". Każdy z wyświetlaczy umożliwia reprezentację 1 cyfry w systemie 16-owym. Są one wykorzystywane jednak w tym układzie do reprezentacji liczby z systemu 10-ego. Każda z par ma za zadanie wyświetlać liczby od 0 do 15.

Na rysunku poniżej przedstawione są 2 pary wyświetlaczy, z czego:

- Otoczone czerwonym kolorem wyświetlają liczbę ustawioną na przełącznikach (wartość, od której odliczamy);
- Otoczone niebieskim kolorem wyświetlają liczbę z licznika;

Rysunek 16: Wyświetlacze

7 Konwersja sygnału na system dziesiętny

Ponieważ liczby wyświetlane na wyświetlaczach mają być w systemie 10-nym, a nie 16-owym. Dlatego potrzebna jest konwersja sygnału dla każdej pary wyświetlaczy.

Symbol	Wartość
A	2^{3}
В	2^{2}
С	2^{1}
D	2^{0}

Tabela 7: Oznaczenia dla sygnału wejścia (system 16-owy)

Symbol	Wartość	Cyfra
1D	2^{0}	Dziesiętna
2A	2^3	Jedności
2B	2^2	Jedności
2C	2^1	Jedności
2D	2^{0}	Jedności

Tabela 8: Oznaczenia dla sygnału **wyjścia** (system 10-ny)

Screen transcoder

Rysunek 17: Podukład odpowiadający za konwersję sygnału (Screen transcoder)

7.1 Tabela prawdy dla wyświetlaczy

Poniżej tabela reprezentująca konwersję sygnałów bitowych dla każdej z liczb.

Liczba	A	В	С	D	1D	2A	2B	2C	2D
0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	1
2	0	0	1	0	0	0	0	1	0
3	0	0	1	1	0	0	0	1	1
4	0	1	0	0	0	0	1	0	0
5	0	1	0	1	0	0	1	0	1
6	0	1	1	0	0	0	1	1	0
7	0	1	1	1	0	0	1	1	1
8	1	0	0	0	0	1	0	0	0
9	1	0	0	1	0	1	0	0	1
10	1	0	1	0	1	0	0	0	0
11	1	0	1	1	1	0	0	0	1
12	1	1	0	0	1	0	0	1	0
13	1	1	0	1	1	0	0	1	1
14	1	1	1	0	1	0	1	0	0
15	1	1	1	1	1	0	1	0	1

Tabela 9: Tabela konwersji sygnałów bitowych dla każdej z liczb

7.2 Bit odpowiadający za 2^0 dla cyfry dziesiętnej -> 1D

Wartość logiczna:

$$1D = AC + AB$$

Rysunek 18: Tablica Karnaugh dla 1D

Rysunek 19: Układ bramek logicznych dla 1D

7.3 Bit odpowiadający za 2^3 dla cyfry jedności -> 2A

Wartość logiczna:

$$2A = A\overline{BC}$$

Rysunek 20: Tablica Karnaugh dla 2A

Rysunek 21: Układ bramek logicznych dla 2A

7.4 Bit odpowiadający za 2^2 dla cyfry jedności -> 2B

Wartość logiczna:

$$2B = \overline{A}B + BC$$

Rysunek 22: Tablica Karnaugh dla 2B

Rysunek 23: Układ bramek logicznych dla 2B

7.5 Bit odpowiadający za 2^1 dla cyfry jedności -> 2C

Wartość logiczna:

$$2C = \overline{A}C + AB\overline{C}$$

Rysunek 24: Tablica Karnaugh dla 2C

Rysunek 25: Układ bramek logicznych dla 2C

7.6 Bit odpowiadający za 2^0 dla cyfry jedności -> 2D

Wartość logiczna:

$$2D = D$$

Rysunek 26: Tablica Karnaugh dla 2D

Rysunek 27: Układ bramek logicznych dla 2D

7.7 Cały układ transkodera

Rysunek 28: Transkoder w całości

8 Alarm

Kiedy po skończonym odliczaniu licznik schodzi do 0, dioda LED o nazwie ALARM zaczyna migać zgodnie z częstotliwością zegara uniwersalnego dla całego układu. Po rozpoczęciu nowego odliczania alarm się wyłącza.

Wejście / Wyjście	Symbol	Znaczenie
Wejście	Alarm_IN	Informuje, że licznik jest ustawiony na 0
Wejście	START	Informuje, że przed chwilą został wciśnięty przycisk START
Wejście	CLOCK	Zegar
Wyjście	ALARM_OUT	Informuje, że dioda ALARM ma się zaświecić

Tabela 10: Oznaczenia wejść i wyjść dla podukładu Alarm

Rysunek 30: Podukład Alarm

Rysunek 29: Schemat podukładu Alarm

Kolor	Znaczenie
Niebieski Dioda ALARM świeci się tylko wtedy, kiedy licznik jest ustawiony na 0,	
Medieski	było co najmniej jedno odliczanie i stan zegara wynosi 1
Czerwony	Zapisuje, czy było co najmniej jedno odliczanie
Zielony	Opóźnia sygnału, by zrównać z wartością na wyświetlaczu (więcej o tym rozdziale 9)

Tabela 11: Oznaczenia schematu podukładu Alarm

9 Schemat całego układu

Rysunek 31: Cały układ w programie multisim

10 Układ testujący

Układ testujący sprawdza, czy licznik poprawnie zmniejsza się o 1 zgodnie z częstotliwością zegara.

Układ testujący składa się z następujących części (kolory tekstu odpowiadają kolorom zakreśleń na rysunku):

- Word generator
- Logic analyzer
- Podukład Signal comparator
- Podukłady opóźniające sygnały

Rysunek 32: Schemat układu testującego

10.1 Word Generator

Word generator cyklicznie wysyła sygnały z przedziału od 15 do 0, zaczynając od miejsca w którym jest ustawiony kursor. Word generator jest ustawiany na falling edge i na External Trigger, który jest podłączony do uniwersalnego dla całego układu zegara. Sygnał z zegara do Word generator jest jednak blokowany dopóki użytkownik nie wciśnie przycisku START (więcej o tym później w podrozdziale 9.4.1).

Żeby poprawnie uruchomić test należy wcisnąć opcję Set Cursor na liczbie odpowiadjącej tej na przełącznikach.

10.2 Logic Analyzer

Urządzenie to rejestruje sygnały docierające do niego z Word generator i z licznika. Jeśli sygnały sobie odpowiadają to test przeszedł pomyślnie. Pierwszy cykl zegara się nie liczy, bo wyświetlany tam sygnał jest sygnałem domyślnym przed rozpoczęciem testu.

Na fioletowo są sygnały pochodzące z Word generatora, a na czerwono sygnały pochodzące z licznika. Zegar Logic Analyzer'a ma dwukrotnie wyższą częstotliwość w porównaniu z zegarem Word generatora, który jest podpięty do uniwersalnego dla całego układu zegara. Jest on zaznaczony na niebiesko.

Rysunek 33: Logic Analyzer

Z rysunku na widać, że test przeszedł pomyślnie.

Rysunek 34: Rejestrowane sygnały w Logic Analyzer

10.3 Signal comparator

Signal comparator jest to podukład, którego celem jest wyłapywanie różnic pomiędzy sygnałami otrzymywanymi z licznika, a sygnałami otrzymywanymi z Word generatora. Jeśli takiej różnicy nie ma, to test przeszedł pomyślnie. Jeśli sygnał na liczniku wynosi 0 to test nie jest przeprowadzany.

Jak widać z rysunku wychodzą z niego 2 diody:

- ERROR NOW informuje, że w tym momencie nastąpił błąd;
- ERROR ANY informuje, że w którymś momencie nastąpił błąd;

Ponadto do układu podpięty jest jeszcze przełącznik STOP TEST (który z kolei jest podłączony do źródła napięcia typu DC), jego odłączenie powoduje zaprzestanie wykonywania testu.

Rysunek 35: Podukład Signal comparator

Wejście / Wyjście	Nazwa	Rola
Wejście	A1, A2, A3, A4	Sygnały z licznika
Wejście	B1, B2, B3, B4	Sygnały z Word generatora
Wejście	Stop	Sygnał z STOP TEST
Wyjście	ERR_NOW	Sygnał na diodę ERROR NOW
Wyjście	ERR_ANY	Sygnał na diodę ERROR ANY

Tabela 12: Oznaczenia wejść i wyjść dla podukładu Signal comparator

Rysunek 36: Schemat podukładu Signal comparator

Kolor	Znaczenie
Zielony	Sprawdza, czy sygnały są identyczne
Niebieski	Różnica w sygnałach musi trwać przez pewien okres czasu
Czerwony	Gdy licznik pokazuje 0 błąd nie jest sprawdzany
Pomarańczowy	Wyłącza test, jeśli przełącznik STOP_TEST został odpięty
Różowy	Raz otrzymany błąd zostaje zapisany

Tabela 13: Objaśnienie schematu podukładu Signal comparator

10.4 Podukłady opóźniające sygnały

Żeby testy przechodziły poprawnie sygnały z licznika i z Word generatora muszą być ze sobą zbieżne. W tym celu do układu zostały wprowadzone podukłady mające na celu synchronizację sygnałów.

Ponadto sygnały docierające do Signal Analyzer'a muszą być opóźnione o jeden cykl zegara,w przeciwnym razie nie pokaże on sygnałów dla pierwszej z liczb.

W skład tych podukładów wchodzą:

- Start word generator
- Signal ready
- Signal delay ten podukład występuje 2 razy

10.4.1 Start word generator

Podukład ten blokuje sygnał zegara docierającego do Word generator dopóki co najmniej raz nie zostanie wciśnięty przycisk START.

Rysunek 37: Schemat podukładu Start word generator

10.4.2 Signal ready

Podukład ten zapewnia, że sygnał z przycisku START nie wykona żadnej operacji na liczniku, dopóki Word generator nie zacznie działać.

 $\textbf{Wejście}\ \mathbf{R}$ oznacza tu sygnał Ready z Word generatora.

Rysunek 38: Schemat podukładu Signal ready

Kolor	Znaczenie
Pomarańczowy	Sprawdza, czy sygnał z przycisku START został wysłany
	i czy Word Generator wysłał sygnał Ready
Czerwony	Informacja o uruchomieniu Word Generatora zostaje zapisana
Zielony	Informacja o wciśnięciu przycisku START zostaje zapisana, czeka na Word Generator.
	Po przejściu sygnału przez bramkę AND sygnał jest resetowany,
	co zapewnia jego krótki czas trwania
Niebieski	Sygnał jest jest resetowany dopiero kiedy trwał on już odpowiednią chwilę
	i gdy przycisk START nie jest włączony

Tabela 14: Objaśnienie schematu podukładu Signal ready

10.4.3 Signal delay

Podukład ten opóźnia sygnał na wszystkich bitach o jeden cykl zegara przy pomocy przerzutników typu D. Gdyby nie było tego opóźnienia to Logic Analyzer nie pokazywałby pierwszej liczby.

Istnieją dwa taki podukłady: dla licznika i dla Word generatora. Sygnał z licznika dociera opóźniony również do wyświetlaczy jak i do podukładu Signal comparator, w ten sposób dociera on do nich w tym samym czasie co do Logic Analyzer'a.

Rysunek 39: Schemat podukładu Signal delay

10.4.4 Alarm

W tym wcześniej już wspomnianym podukładzie zawierają się 2 przerzutniki typu D (zaznaczone na zielono), których celem jest opóźnienie sygnału docierającego do alarmu i synchronizującego go z wyświetlaczem, Logic Analayzer'em i podukładem Signal comparator.

Rysunek 40: Schemat podukładu Alarm z zaznaczonymi przerzutnikami typu D, opóźniającymi sygnał

11 Cały układ wraz z układem testującym

Rysunek 41: Cały układ w programie multisim

12 Wnioski

Co można by było zrobić inaczej:

 Układ mógł działać z odliczaniem od 0 do góry, gdzie później odwracalibyśmy każdy bit tworząc liczbę odwrotną w systemie szestnastkowym,

Praktyczne przykładowe zastosowania naszego układu:

- gry planszowe wymagające zrobienia czegoś szybko na czas,
- układ opóźniający sygnał wyjściowy o określony czas,
- stoper

13 Przykład z życia

Podręczny minutnik do gotowania dla informatyka

Bardzo przydatnym przyrządem przy gotowaniu jest minutnik, dzięki któremu możemy zminimalizować szansę na spalenie jedzenia które właśnie gotujemy. Unikatowy sposób ustawiania czasu z pewnością przypadłby do gustu studentom informatyki (i nie tylko!).

Rysunek 42: Schemat podręcznego minutnika

Odpowiednio przestawiając przełączniki możemy ustawić czas od 1 do 15 minut, co jest idealnym zakresem czasu do przyrządzania prostych potraw. Także, nasz minutnik może znaleźć zastosowania poza kuchnią, np. odliczanie czasu przerwy w robieniu sprawozdania.