Mathematisches Institut der LMU München

Wintersemester 2008/2009

P. Garcia, A. Sachs

Klausur Analysis I (für Informatiker und Statistiker)

Name	
Matrikelnummer	

Aufgabe	1	2	3	4	5	Summe
zu erreichende Punktzahl	9	15	9	9	8	50
erreichte Punktzahl						

Schreiben Sie bitte auf jedes Blatt leserlich Ihren Vor- und Zunamen und Ihre Matrikelnummer. Blätter ohne Namen werden nicht korrigiert.

Aufgabe 1 (3+3+3 Punkte).

a) Man formuliere das Beweisprinzip der vollständigen Induktion

Man beweise durch vollständige Induktion:

b)
$$\sum_{k=1}^{n} k = \frac{n}{2} \cdot (n+1)$$

c)
$$\sum_{k=1}^{n} f_k = f_{n+2} - 1$$
, wobei $f_k = k$ -te Fibonacci-Zahl,

d.h.
$$f_1 := 1$$
, $f_2 := 1$, $f_{k+2} := f_k + f_{k+1}$.

Aufgabe 2 (3+3+3+3+3 Punkte).

 $(a_n)_{n\in\mathbb{N}}$ sei eine Folge reeller Zahlen.

a) Man formuliere die Definition für die Konvergenz $a_n \underset{n \to \infty}{\longrightarrow} a \in \mathbb{R}$.

Man untersuche auf Konvergenz (und bestimme den Grenzwert, falls er existiert) durch Anwendung geeigneter Regeln für (konvergente) Folgen

b)
$$a_n := 1 + \frac{1}{n}$$
 (hier ist a) nachzuprüfen).

c)
$$a_n := \frac{n^2}{n^3 + n^2 - 2}$$

d) $a_n := (-1)^n \cdot (\frac{n}{n^2+1})$ 22. $a_{2n} = 0$

e) $a_n := \left(\frac{n^4 - 1}{n^3 + n - 2}\right)$

Aufgabe 3 (3+3+3 Punkte). Gegeben sei eine Funktion $f: \mathbb{R} \to \mathbb{R}$.

- a) Man formuliere das Newton-Verfahren zur Lösung der Gleichung f(x) = 0.
- b) Man formuliere das Newton-Verfahren zur Berechnung von $\sqrt{2}$.
- c) Man berechne (in b)) ausgehend von $x_0 := 2$, den Wert x_1 .

Aufgabe 4 (3+3+3 Punkte).

 $(a_n)_{n\in\mathbb{N}}$ sei eine Folge reeller Zahlen.

a) Man formuliere die Definition der Konvergenz der unendliche Reihe $\sum\limits_{k=0}^{\infty}a_{k}$

Man beweise, ob die folgenden Reihen konvergieren oder nicht:

$$b) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$
, $x \in \mathbb{R}$

Aufgabe 5 (4+4 Punkte).

Man zeige

- a) Die Funktion $f \colon \mathbb{R} \to \mathbb{R}, \ x \mapsto \left\{ \begin{array}{ll} 1 & \text{falls } x > 0 \\ 0 & \text{falls } x = 0 \\ -1 & \text{falls } x < 0 \end{array} \right.$ ist in x = 0 nicht stetig.
- b) Wenn $g:[0,1] \to [0,1]$ eine stetige Funktion ist, dann $\exists x \in [0,1]: g(x) = x$