The Case Against Edit Scripts

Victor Cacciari Miraldo

December 30, 2019

1 Introduction

Edit scripts are bad. [(1.1) Victor:

- Too much redundancy implies expensive algorithms.
- Too restrictive on operations implies not being able to duplicate or permute.
- When coupled with line-based diff, merges are bad.
- Show a couple examples.

We propose an extensional approach.

2 Background

```
[ (2.1) Victor: Some edit-scripts; some about tree-diffing ]
[ (2.2) Victor: Primer on unification and substitution and term algebras
]
```

3 Extensional Patches

Instead of linearizing trees and relying on very local operations such as insertion, deletions and copying of a single constructor, we can take the extensional look over patches and describe them by a mapping between sets of trees. Lets look at a simple patch that deletes the left subtree of a binary tree – which can be described by the $Del\ Bin\ (Del\ ...\ (Cpy\ ...\ Nil))$ edit script. A Haskell function that performs that operation can be given by:

```
\begin{aligned} \operatorname{delL}\left(\operatorname{Bin}{}_{-}x\right) &= \operatorname{Just}\,x\\ \operatorname{delL}{}_{-} &= \operatorname{Nothing} \end{aligned}
```

The delL function specifies a domain – those trees with a Bin at their root – and a transformation, which forgets the root and its left child.

[(3.1) Victor: still deciding the order of examples here... this is messy; pardon]

Take the patch that swaps the children of a binary tree – which is already impossible to represent with edit-scripts. It could be represented by a Haskell function swap:

```
swap (Bin \ x \ y) = Just (Bin \ y \ x)
swap \ \_ = Nothing
```

This swap function has a pattern, which identifies the domain of the function. In our case, we can only swap trees with a Bin constructor at the root. That is, $dom\ swap$ is given by:

```
dom\ swap = \{Bin\ x\ y \mid x \in Tree, y \in Tree\} [ (3.2) Victor: Onto patches ]
```

Definition 1. Let \mathcal{T}_L be the term algebra for the language L augmented with a countable set V of variables. A patch $p = p_d \mapsto p_i$ consists in a pattern, p_d , and an expression, p_i — both elements of \mathcal{T}_L — such that **vars** $p_i \subseteq \mathbf{vars}$ p_d . We sometimes refer to p_d and p_i as the deletion and insertion contexts of p.

Definition 2. We say an element $x \in \mathcal{T}_L$ is a *term* whenever vars $x = \emptyset$.

The *swap* patch, for example, is represented by $Bin\ x\ y \mapsto Bin\ y\ x$, where x and y are taken from the set V of variables. Similarly to working with the λ -calculus, we assume variable names never clash between patches.

Definition 3. [(3.3) Victor: application] Let p be a patch over \mathcal{T}_L and x a term over \mathcal{T}_L , we say p applies to x whenever p_d unifies with x. Let α be such substitution, the result of the application is α p_i .

$$\mathbf{app} \ p \ x = y \iff \exists \alpha. \alpha \ x_d = \alpha \ x \land \alpha \ p_i = y$$

The identity patch is simply $x \mapsto x$.

Lemma 1. [(3.4) Victor: correctness of application] For all patch p and term x, if app p x = y then y is a term.

This notion of application gives rise to an extensional equality of patches. We say patches p and q are equal, denoted $p \approx q$, whenever

$$\forall x. (\mathbf{app} \ p \ x = y \iff \mathbf{app} \ q \ x = z) \land y = z$$

It is easy to prove that \approx above gives an equivalence relation.

Definition 4. [(3.5) **Victor:** composition] Let p and q be patches we say that p and q compose whenever p_d unifies with q_i — let σ be such mgu. Given two patches p and q that compose,

$$p \circ q = sigma \ q_d \mapsto sigma \ p_i$$

Lemma 2. [(3.6) Victor: composition is correct] Given p and q composable patches, $app (p \circ q) x = z$ iff $app q x = y \wedge app p y = z$.

<i>Proof.</i> transcribe from notebook	
Lemma 3. For any patch p , the identity patch $x \mapsto x$ is a left and right identity patch composition.	itity
Proof. trivial	
Lemma 4. Given p and q composable patches, let $\sigma = \mathbf{mgu}(p_d, q_i)$, then the exists σ_p, σ_q such that $\sigma = \sigma_p \cup \sigma_q$ and $\sigma_p p_d = \sigma_q q_i$.	here
<i>Proof.</i> Immediate since vars $p \cap \text{vars } q = \emptyset$.	
Lemma 5. Given p and q composable patches, let $\sigma = \mathbf{mgu}(p_d, q_i)$, then idempodent in q_d and p_i . That is, $\sigma \sigma q_d = \sigma q_d$ and similarly for p_i .	σ is
Proof. transcribe	
With these lemmas at hand, we can prove associativity of our compositoperator.	tion
Lemma 6. Let p and q be composable patches. Let r be a patch composable $p \circ q$. Then, q and r are composable and p and $q \circ r$ are composable. Moreo $(p \circ q) \circ r \approx p \circ (r \circ q)$	
<i>Proof.</i> transcribe from notebook; somewhat long.	