

Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática Departamento de Engenharia de Computação

Relatório: Trabalho Prático 1

Multiplexador de Endereçamento e ULA

Professores: Antônio Hamilton Magalhães

Bruno Luiz Dias Alves de Castro Rafael Ramos de Andrade

Belo Horizonte Campus Coração Eucarístico

9 de novembro de 2024

Conteúdo

1	Introdução	3							
	1.1 Objetivos	3							
	1.2 Simulação via Quartus II	3							
	1.2.1 Bloco w_reg	3							
2	$\operatorname{fsr_reg}$	3							
	2.1 Implementação	3							
	2.2 Simulação								
3	status_reg 6								
	3.1 Implementação	6							
	3.2 Simulação								
4	stack 9								
	4.1 Implementação	9							
	4.2 Simulação								
5	Conclusão	12							

1 Introdução

Durante as aulas da disciplina de Sistemas Reconfiguráveis, fomos introduzidos à linguagem VHDL. VHDL (VHSIC Hardware Description Language) é uma linguagem de descrição de hardware. Com ela, podemos montar circuitos lógicos de maneira totalmente textual, o que garante à linguagem uma grande vantagem ante à soluções visuais.

1.1 Objetivos

1.2 Simulação via Quartus II

Nessa etapa realizamos testes no software Quartus II da altera.

1.2.1 Bloco w_reg

Nesta imagem é realizado 3 testes para verificar a funcionalidade do registrador, nos primeiros 60ns é alterado os bits da entrada de dados (d_in) para nivel lógico alto, o bit de reset (nrst) que é ativo em baixa, é desativado, ou seja, nível lógico alto e o bit de ativação (wr_en) é colocoado em nível lógico alto após 10ns. Assim é possível verificar a mudança na saída (w_out) com um tempo de delay de 6ns. No segundo teste a partir de 60ns até 140ns é resetado os bits da memória do registrador colocando reset em nível lógico zero, o resultado é propagada para a saída após o tempo de delay de aproximadamente 6ns. No terceiro teste foi verificados se o bit de ativação de escrita está funcionando corretamente, portanto com o bit 6 da saída em nível lógico alto esse valor será escrito apenas no tempo 160ns quando é colocado a porta de ativação do registrador em nível lógico alto e o registrador é escrito.

Figura 1: Simulação bloco w_reg

2 fsr_reg

O registrador FSR é um registrador semelhante ao implementado anteriormente. A principal diferença entre os dois está na presença de um sistema de endereçamento, e de duas entradas binárias independentes para habilitação da escrita e da leitura. Os requisitos são descritos na tabela abaixo.

2.1 Implementação

O registrador fsr_reg foi implementado utilizando a linguagem VHDL.

O código na íntegra está abaixo:

Nome	Tamanho	Tipo	Descrição
nrst	1 bit	Input	Entrada de <i>reset</i> assíncrono.
clk_in	1 bit	Input	Entrada de <i>clock</i> .
abus_in	9 bit	Input	Entrada de enderençamento.
dbus_in	8 bits	Input	Entrada de dados para escrita.
wr_en	1 bit	Input	Entrada de habilitação de escrita.
rd_en	1 bit	Input	Entrada de habilitação de leitura.
dbus_out	8 bits	Output	Saída de dados hailitada por rd_en.

Tabela 1: Entradas e Saídas de fsr_reg

```
1 LIBRARY ieee;
USE ieee.std_logic_1164.all;
3 USE ieee.std_logic_unsigned.all;
4 USE ieee.numeric_std.all;
6 ENTITY fsr_reg IS
    PORT (
          -- Inputs
          nrst : IN STD_LOGIC;
          clk_in: IN STD_LOGIC;
                                                            -- Clock
10
                                                            -- Enderecamento
          abus_in: IN STD_LOGIC_VECTOR(8 DOWNTO 0);
          dbus_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
                                                            -- Dados
12
          wr_en : IN STD_LOGIC;
                                                            -- Enable escrita
13
14
          rd_en : IN STD_LOGIC;
                                                            -- Enable leitura
15
16
          -- Outputs
17
          dbus_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
                                                           -- Registrador
          fsr_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
18
     );
20 END ENTITY;
21
22 ARCHITECTURE fsr_reg OF fsr_reg IS
      SIGNAL mem_reg: STD_LOGIC_VECTOR(7 DOWNTO 0);
23
24 BEGIN
    PROCESS (nrst, clk_in, mem_reg, abus_in, dbus_in)
25
      BEGIN
26
        IF nrst = '0' THEN
27
              mem_reg <= "00000000";
28
          ELSIF abus_in(6 DOWNTO 0) = "0000100" THEN
29
              IF RISING_EDGE(clk_in) THEN
                  IF wr_en = '1' THEN
31
                      mem_reg <= dbus_in;</pre>
32
33
                  END IF;
              END IF;
34
          END IF;
35
      END PROCESS;
36
37
      dbus_out <= mem_reg WHEN rd_en = '1' ELSE "ZZZZZZZZZ";</pre>
      fsr_out <= mem_reg;</pre>
39
40 END fsr_reg;
```

Listing 1: Código VHDL fsr_reg

2.2 Simulação

Para testar nosso código VHDL e certificar-nos de que nosso circuito funciona de maneira esperada, simulamos alguns casos de testes utilizando o software Quatus II.

Os testes realizados foram os seguites:

- 1. Escrita com enderaçamento incorreto (diferente de XX0000100).
 - Comportamento esperado:
 - dbus_out em alta impedância;
 - fsr_out sem alteração;

- 2. Leitura habilitada e escrita desabilitada.
 - Comportamento esperado:
 - dbus_out = frs_out = último valor escrito;
- 3. Leitura desabilitada e escrita habilitada.
 - Comportamento esperado:
 - dbus_out em alta impendância;
 - $frs_out = dbus_in;$
- 4. Reset com leitura habilitada.
 - Comportamento esperado:
 - $dbus_out = frs_out = "0b00000000";$

Figura 2: Simulação fsr_reg

3 status_reg

O status é um registrador semelhante ao implementado anteriormente. A diferença esta na presença de sinais de entrada e saída para controlar bits específicos. Assim como o anterior, existe um sistema de endereçamento que deve ser conferido para alterar o registrador.

As entradas e saídas do circuito são descritas na tabela a baixo:

Nome	Tamanho	Tipo	Descrição
nrst	1 bit	Input	Entrada de reset assíncrono.
clk_in	1 bit	Input	Entrada de <i>clock</i> .
abus_in	9 bit	Input	Entrada de enderençamento.
dbus_in	8 bits	Input	Entrada de dados para escrita.
wr_en	1 bit	Input	Entrada de habilitação de escrita.
rd_en	1 bit	Input	Entrada de habilitação de leitura.
z_i in	1 bit	Input	Entrada de dado para escrita no bit 2 do registrador.
dc_in	1 bit	Input	Entrada de dado para escrita no bit 1 do registrador.
c_{-in}	1 bit	Input	Entrada de dado para escrita no bit 0 do registrador.
z_wr_en	1 bit	Input	Entrada para habilitação da escrita no bit 2 do registrador.
dc_{wren}	1 bit	Input	Entrada para habilitação da escrita no bit 1 do registrador.
c_wr_en	1 bit	Input	Entrada para habilitação da escrita no bit 0 do registrador.
dbus_out	8 bits	Output	Saída de dados hailitada por rd_en.
irp_out	1 bit	Output	Saída correspondente ao bit 7 do registrador.
rp_out	2 bits	Output	Saída correspondente aos bits 6 e 5 do registrador.
z_out	1 bit	Output	Saída correspondente ao bit 2 do registrador.
dc_out	1 bit	Output	Saída correspondente ao bit 1 do registrador.
c_out	1 bit	Output	Saída correspondente ao bit 0 do registrador.

Tabela 2: Entradas e Saídas de status_reg

3.1 Implementação

O status_reg foi implementado utilizando a linguagem VHDL.

O código na íntegra está abaixo:

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
3 USE ieee.std_logic_unsigned.all;
4 USE ieee.numeric_std.all;
6 ENTITY status_reg IS
   PORT (
7
          -- Inputs
         nrst: IN STD_LOGIC;
          clk_in: IN STD_LOGIC;
                                                           -- Clock
10
                                                           -- Enderecamento
          abus_in: IN STD_LOGIC_VECTOR(8 DOWNTO 0);
         dbus_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
                                                           -- Dados
12
          wr_en: IN STD_LOGIC;
13
                                                           -- Enable escrita
          rd_en: IN STD_LOGIC;
                                                           -- Enable leitura
14
          z_in: IN STD_LOGIC;
                                                           -- Dados bit 2
15
          dc_in: IN STD_LOGIC;
16
                                                           -- Dados bit 1
          c_in: IN STD_LOGIC;
17
                                                           -- Dados bit 0
          z_wr_en: IN STD_LOGIC;
                                                           -- Enable escrita bit 2
18
19
          dc_wr_en: IN STD_LOGIC;
                                                           -- Enable escrita bit 1
          c_wr_en: IN STD_LOGIC;
                                                           -- Enable escrita bit 0
20
21
22
          dbus_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
                                                           -- Dados
23
                                                           -- Dados bit 7
          irp_out: OUT STD_LOGIC;
24
          rp_out: OUT STD_LOGIC_VECTOR(1 DOWNTO 0); -- Dados bit 6 e 5
```

```
z_out: OUT STD_LOGIC;
                                                                -- Dados bit 2
           dc_out: OUT STD_LOGIC;
                                                                 -- Dados bit 1
27
                                                                -- Dados bit 0
           c_out: OUT STD_LOGIC
28
29
30 END ENTITY;
31
32 ARCHITECTURE status_reg OF status_reg IS
       SIGNAL mem_reg: STD_LOGIC_VECTOR(7 downto 0);
33
34
       PROCESS(nrst, clk_in, mem_reg, wr_en, z_in, dc_in, c_in)
35
       BEGIN
36
37
           IF nrst = '0' THEN
                mem_reg <= "00000000";
38
           ELSIF RISING_EDGE(clk_in) THEN
               IF wr_en = '1' AND abus_in(6 DOWNTO 0) = "0000011" THEN
40
                    mem_reg <= dbus_in;</pre>
41
               END IF;
                IF z_wr_en = '1' THEN
43
                    mem_reg(2) <= z_in;
44
                END IF;
45
                IF dc_wr_en = '1' THEN
46
                    mem_reg(1) <= dc_in;</pre>
47
48
               IF c_wr_en = '1' THEN
49
50
                    mem_reg(0) <= c_in;
               END IF;
51
           END IF;
52
       END PROCESS;
53
54
       dbus_out <= mem_reg WHEN rd_en = '1' AND abus_in(6 DOWNTO 0) = "0000011" ELSE "ZZZZZZZZZ";
55
       irp_out <= mem_reg(7);</pre>
56
       rp_out <= mem_reg(6 DOWNTO 5);</pre>
57
       z_out <= mem_reg(2);</pre>
       dc_out <= mem_reg(1);</pre>
59
      c_out <= mem_reg(0);</pre>
60
61 END status_reg;
```

Listing 2: Código VHDL status_reg

3.2 Simulação

Para testar nosso código VHDL e certificar-nos de que nosso circuito funciona de maneira esperada, simulamos alguns casos de testes utilizando o software Quatus II.

Os testes realizados foram os seguites:

- 1. Escrita com enderaçamento incorreto (diferente de "0bXX0000011).
 - Comportamento esperado:

```
dbus_out em alta impedância;
rp_out = "0b00"
irp_out = z_out = dc_out = c_out = "0b0"
```

- 2. Leitura desabilitada e escrita habilitada;
 - $dbus_in = "0b01011000"$.
 - $z_{in} = dc_{in} = c_{in} = 1;$
 - $z_{\text{wr}} = dc_{\text{wr}} = c_{\text{wr}} = 0$;
 - Comportamento esperado:
 - dbus_out em alta impendância;rp_out = "10b"
 - $-irp_out = z_out = dc_out = c_out = "0b0"$
- 3. Leitura habilitada e escrita desabilitada.

- Valor salvo = "0b01011000".
- Comportamento esperado:
 - $dbus_out = "0b01011000";$
 - $\text{ rp_out} = "10b"$
 - $-irp_out = z_out = dc_out = c_out = "0b0"$
- 4. Leitura desabilitada e escrita habilitada;
 - $dbus_in = "0b10100000"$.
 - $z_{in} = dc_{in} = c_{in} = 1;$
 - $z_wr_e = dc_wr_e = c_wr_e = 1$;
 - Comportamento esperado:
 - dbus_out em alta impendância;
 - $\text{rp_out} = \text{``01b''}$
 - $\text{ irp_out} = \text{z_out} = \text{dc_out} = \text{c_out} = \text{``0b1''}$
- 5. Leitura habilitada e escrita desabilitada.
 - Valor salvo = "0b10100111".
 - Comportamento esperado:
 - $dbus_out = "0b10100111";$
 - $\text{ rp_out} = "10b"$
 - $-irp_out = z_out = dc_out = c_out = "0b1"$
- 6. Reset com leitura habilitada.
 - Comportamento esperado:
 - $dbus_out = "0b00000000";$
 - $\text{rp_out} = \text{``00b''}$
 - $\text{ irp_out} = \text{z_out} = \text{dc_out} = \text{c_out} = \text{``0b0''}$

Figura 3: Simulação status_reg

4 stack

O bloco **stack** é um conjunto de 8 registradores de 13 bits. As operações de *push* e *pop* adicionam e removem dados da pilha, respectivamente.

As entradas e saídas deste bloco estão descritas na tabela abaixo:

Nome	Tamanho	Tipo	Descrição
nrst	1 bit	Input	Entrada de reset assíncrono.
clk_in	1 bit	Input	Entrada de <i>clock</i> .
stack_in	13 bit	Input	Entrada de dados para a pilha.
stack_push	1 bit	Input	Entrada de habilitação para colocar valores na pilha.
stack_pop	1 bit	Input	Entrada de habilitação para retirar valores da pilha.
stack_out	13 bits	Output	Saída correspondente à primeira posição da pilha.

Tabela 3: Entradas e Saídas do bloco stack

4.1 Implementação

O bloco stack foi implementado utilizando a linguagem VHDL.

O código na íntegra está abaixo:

```
1 LIBRARY ieee;
  USE ieee.std_logic_1164.all;
3 USE ieee.std_logic_unsigned.all;
4 USE ieee.numeric_std.all;
6 ENTITY stack IS
      PORT (
           -- Inputs
8
          nrst: IN STD_LOGIC;
                                                              -- Reset
9
          clk_in: IN STD_LOGIC;
                                                              -- Clock
          stack_in: IN STD_LOGIC_VECTOR(12 DOWNTO 0);
                                                              -- Dados
11
          stack_push: IN STD_LOGIC;
                                                              -- Enable push op
12
           stack_pop: IN STD_LOGIC;
13
                                                              -- Enable pop op
14
15
           -- Outputs
           stack_out: OUT STD_LOGIC_VECTOR(12 DOWNTO 0)
                                                             -- Stack output
16
17
      ):
  END ENTITY;
18
19
  ARCHITECTURE stack OF stack IS
20
      SIGNAL mem_reg1, mem_reg2, mem_reg3, mem_reg4, mem_reg5, mem_reg6, mem_reg7, mem_reg8:
21
      STD_LOGIC_VECTOR(12 DOWNTO 0);
22 BEGIN
      PROCESS(nrst, clk_in, stack_push, stack_pop)
23
      BEGIN
24
          IF nrst = '0' THEN
               mem_reg1 <= "0000000000000";
26
               mem_reg2 <= "000000000000";
27
               mem_reg3 <= "000000000000";
28
               mem_reg4 <= "000000000000";
29
               mem_reg5 <= "000000000000";
30
               mem_reg6 <= "000000000000";
31
               mem_reg7 <= "0000000000000;
32
               mem_reg8 <= "0000000000000;
           ELSIF RISING_EDGE(clk_in) THEN
34
         stack_out <= "0000000000000";
35
               IF stack_pop = '1' THEN
36
                   stack_out <= mem_reg1;
37
38
                   mem_reg1 <= mem_reg2;</pre>
                   mem_reg2 <= mem_reg3;</pre>
39
                   mem_reg3 <= mem_reg4;</pre>
40
                   mem_reg4 <= mem_reg5;</pre>
```

```
mem_reg5 <= mem_reg6;</pre>
                      mem_reg6 <= mem_reg7;</pre>
43
                      mem_reg7 <= mem_reg8;</pre>
44
                      mem_reg8 <= "0000000000000";
45
                  ELSIF stack_push = '1' THEN
46
                       mem_reg8 <= mem_reg7;</pre>
                      mem_reg7 <= mem_reg6;
48
                       mem_reg6 <= mem_reg5;</pre>
49
                       mem_reg5 <= mem_reg4;</pre>
50
                       mem_reg4 <= mem_reg3;</pre>
51
                       mem_reg3 <= mem_reg2;</pre>
53
                       mem_reg2 <= mem_reg1;</pre>
                       mem_reg1 <= stack_in;</pre>
54
                 END IF;
             END IF;
56
        END PROCESS;
57
58 END stack;
```

Listing 3: Código VHDL status_reg

4.2 Simulação

Para testar nosso código VHDL e certificar-nos de que nosso circuito funciona de maneira esperada, simulamos alguns casos de testes utilizando o software Quatus II.

Os testes realizados foram os seguites:

- 1. Push até pilha cheia.
 - stack_in: Sequência de "0" à "7";
 - $stack_push = "1"$;
 - $stack_pop = "0"$;
 - Comportamento esperado:

```
- \operatorname{stack\_out} = "0";
```

- 2. Pop até pilha vazia.
 - $stack_push = "0"$;
 - $stack_pop = "1"$;
 - Comportamento esperado:

```
- stack_out = Sequência de "7" à "0";
```

- 3. Push até Stack Overvlow.
 - stack_in: Sequência de "0" à "9";
 - $stack_push = "1"$;
 - $\operatorname{stack_pop} = "0";$
 - Comportamento esperado:

```
- \operatorname{stack\_out} = "0";
```

- 4. Pop até Stack Underflow.
 - stack: Sequência de "9" à "2";
 - $stack_push = "0"$;
 - $stack_pop = "1"$;
 - Comportamento esperado:
 - stack_out = Sequência de "9" à "2", depois, "0";

- 5. Push e Pop simultâneo.
 - stack: "1";
 - $stack_push = "1"$;
 - stack_pop = "1";
 - Comportamento esperado:
 - Preferência do pop.
 - stack_out = "1", depois, "0";

Figura 4: Simulação bloco stack

5 Conclusão

Com estes dois projetos simples, tivemos um excelente primeiro contado com a linguagem VHDL, bem como à programação concorrente e desenvolvimento de circuitos FPGA. Os dois circuitos implementados (Multiplexador de Endereçamento e Unidade Lógica Aritimética) são blocos de construção chave para a maior parte dos circuitos complexos, e serão de suma importância não só para os demais trabalhos práticos que realizaremos ao longo do semestre, mas para nosso desenvolvimento acadêmico e profissional.