

Text Clustering

CPE 393: Text Analytics

Dr. Sansiri Tarnpradab

Department of Computer Engineering King Mongkut's University of Technology Thonburi

Pattern Text Web Scraping Intro Visualization Matching Text Text Text Feature Text Preparation Representation Classification Summarization Topic Modeling Text TBA ??? Clustering Advanced Topic

Outline

- Introducing clustering concepts
- Similarity
- Distance functions
- Quality of clustering
- Clustering: Partitioning-based method
- K-means clustering
- Lab

Cluster Analysis

Cluster

A collection of data objects

Similarity

Dissimilarity

Cluster Analysis

Finding Similarities

Characteristics

Grouping based on similarities

Similarity

- If two things are similar in some ways, they often share other characteristics.
- Applications:
 - Recommendations
 - Online Shopping: Amazon
 - Social Media: Facebook
 - Netflix, Hulu, Disney+
 - Reasoning
 - Troubleshooting
 - Knowledge Management
 - Customer Segmentation
 - What customers have in common
 - Even Classification or Regression

Those similar to each other are closer in distance.

MNIST 0-9

Recall this?

Distributed

Text Representation

SIMILARITY MEASURE

Two common methods to measure a distance between vectors in a vector space.

Euclidean Distance

$$euclidean(u,v) = \sqrt{\sum_{i=1}^n |u_i - v_i|^2}$$

Cosine Similarity

Dot product of the vectors divided by the product of their magnitudes.

$$\cos{(heta)} = rac{u \cdot v}{\|u\| \|v\|} = rac{\sum_{i=1}^n u_i imes v_i}{\sqrt{\sum_{i=1}^n u_i^2} \sqrt{\sum_{i=1}^n v_i^2}}$$

Distance Functions

Euclidean Distance (L2 norm)

$$d_{Euclidean}(X,Y) \, = \, \left| \left| X - Y
ight|
ight|_2 \, = \, \sqrt{\left(x_1 - y_1
ight)^2 + \left(x_2 - y_2
ight)^2 + \ldots}$$

Manhattan Distance (L1 norm)

$$|d_{Manhattan}(X,Y)\>=\>||X-Y||_1\>=\>|x_1-y_1|+|x_2-y_2|+\dots$$

Cosine Distance

$$d_{Cosine}(X,Y) \, = \, rac{X \cdot Y}{||X|| imes ||Y||}$$

- Shortest distance between two real-valued vectors
- Most common

- Taxicab or City-block distance
- Shortest distance between two real-valued vectors
- Right angles

- Cosine between two vectors
- Often used in higher dimensionality
- Measured in Θ
 - $\Theta = 0^{\circ} \rightarrow \text{similar (overlap)}$
 - $\Theta = 90^{\circ} \rightarrow \text{dissimilar}$

Example

Attributes	Α	В
Age	23	40
Years residing at the current address	2	10
Residential status (1 = owner, 2 = renter, 3 = others)	2	1

$$d(A,B) \,=\, \sqrt{\left(23-40
ight)^2+\left(2-10
ight)^2+\left(2-1
ight)^2} \ pprox 18.8$$

Not meaningful
Not enough context (there's only A and B)

Example: More Data Points

Customer	Age	Income (~k)	Cards	Response	Distance from David
David	37	50	2	?	0
John	35	35	3	Y	
Rachel	22	50	2	N	
Bob	63	200	1	N	
Jeffrey	59	170	1	N	
Norah	25	40	4	Y	

Issues

- Attribute may not all be numeric
- Values are not in the same range
- Some preprocessing is needed
 - Scaled
 - Normalized

Back to (Text) Clustering...

Quality of Clustering

- High intra-class similarity
- Low inter-class similarity

Good Example

Bad Example

Bad Example

Good Example

Partitioning

- Breaking down a large group of data points into partitions
- While still taking into account the distance → minimum

Basic Concept

Construct a partition of a database D of n objects into a set of k clusters, such that sum of squared distance is minimal

Basic Concept

Construct a partition of a database D of n objects into a set of k clusters, such that sum of squared distance is minimal

Computationally Infeasible

Partitioning: K-means

Each cluster is represented by the center of the cluster

Centroid

○ Center of the cluster → Average

Ref: https://towardsai.net/p/l/centroid-neural-network-an-efficient-and-stable-clustering-algorithm

K-means: **Steps**

- Partition objects into k non-empty subsets.
- Compute seed points as the centroids of the clusters of the current partition.
- Assign each object to the cluster with the nearest seed point.
- 4. Go back to Step 2, stop when no more new assignment.

K-means: Steps (1-2)

- 1. Partition objects into k non-empty subsets. (k=2)
- Compute seed points as the centroids of the clusters of the current partition.

K-means: Steps (3)

3. Assign each object to the cluster with the nearest seed point.

K-means: Steps (4)

4. Go back to **Step 2**, stop when no more new assignment.

Step 2: Compute seed points as the centroids of the clusters of the current partition.

Clustering: Customer Complaints

Task:

- Use the <u>customer complaints dataset</u>
- Perform data preprocessing
- Use a proper text representation
- Perform text clustering (k-means)
 - Try different number of k
- Print terms in each cluster
- Interpret results

```
from sklearn.cluster import KMeans
km = KMeans(n_clusters=11, random_state=42).fit(X)
```

```
order_centroids = km.argsort()[:, ::-1]
terms = vectorizer.get_feature_names_out()

for i in range(k):
    print(f"Cluster {i}: ", end="")
    for ind in order_centroids[i, :10]:
        print(f"{terms[ind]} ", end="")
    print()
```

Conclusion

- Introducing clustering concepts
- Similarity
- Distance functions
- Quality of clustering
- Clustering: Partitioning-based method
- K-means clustering

Q&A