Intégrales dépendant d'un paramètre

I. La fonction Γ (banque CCINP MP)

1) Soit $x \in [0, +\infty[$.

La fonction $t \mapsto e^{-t}t^{x-1}$ est définie, positive et continue par morceaux sur

$$f(x,t) \underset{t\to 0^+}{\sim} t^{x-1}$$
 et $t\longmapsto t^{x-1} = \frac{1}{t^{1-x}}$ est intégrable sur $]0,1]$ (fonction de

Riemann avec 1 - x < 1).

Donc, par critère d'équivalence pour les fonctions positives, $t \mapsto f(x,t)$ est intégrable sur [0,1] . (*)

De plus, $\lim_{t \to +\infty} t^2 f(x,t) = 0$, donc, pour t au voisinage de $+\infty$,

$$f(x,t) = o(\frac{1}{t^2}).$$

Or $t \mapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$ (fonction de Riemann intégrable).

Donc $t \mapsto f(x,t)$ est intégrable sur $[1,+\infty[$. (**)

Donc, d'après (*) et (**), $t \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$.

2) Par intégration par parties, justifiée ci-après $\int_{a}^{+\infty} e^{-t}t^x dt =$ $\left[-e^{-t}t^{x}\right]_{0}^{+\infty} + x \int_{0}^{+\infty} e^{-t}t^{x-1} dt.$

Le crochet possède des limites finies à ses bornes par croissances comparées, et est de valeur nulle, ce qui valide ce calcul et donne $\Gamma(x+1) = x\Gamma(x).$

- 3) i) pour tout $x>0,\,t\longmapsto f(x,t)$ est continue par morceaux et intégrable sur $]0, +\infty[$ (d'après la question 1.).
 - ii) $\forall t \in]0, +\infty[$, la fonction $x \mapsto f(x,t)$ est dérivable et $\forall (x,t) \in]0, +\infty[^2, \frac{\partial f}{\partial x}(x,t) = (\ln t) \mathrm{e}^{-t} t^{x-1}.$
 - iii) Pour tout x > 0, $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $]0, +\infty[$.

iv) Pour tout t > 0, $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur $]0, +\infty[$.

v) Pour tout
$$[a, b] \subset]0, +\infty[$$
 et $\forall (t, x) \in]0, +\infty[\times [a, b] :$

$$\begin{vmatrix} \frac{\partial f}{\partial x}(x, t) \end{vmatrix} \leqslant \varphi(t) \text{ avec } \varphi(t) = \begin{cases} |\ln t| e^{-t} t^{a-1} & \text{si} \quad t \in]0, 1[\\ |\ln t| e^{-t} t^{b-1} & \text{si} \quad t \in [1, +\infty[$$

avec φ continue par morceaux et intégrable sur $]0, +\infty[$

En effet:

$$\varphi(t) \underset{0^+}{\sim} |\ln t| t^{a-1} = \varphi_1(t) \text{ et } \lim_{t \to 0^+} t^{1-\frac{a}{2}} \varphi_1(t) = \lim_{t \to 0} t^{\frac{a}{2}} |\ln t| = 0.$$

Donc, au voisinage de 0^+ , $\varphi_1(t) = o\left(\frac{1}{t^{1-\frac{a}{2}}}\right)$.

Or $t \mapsto \frac{1}{t^{1-\frac{a}{2}}}$ est intégrable sur]0,1[(fonction de Riemann avec $1-\frac{a}{2}<1).$ Donc, φ_1 est intégrable sur]0,1[.

Donc, par critère d'équivalence pour les fonctions positives, φ est intégrable sur]0, 1[.

$$\lim_{t \to +\infty} t^2 \varphi(t) = 0.$$

Donc, pour t au voisinage de $+\infty$, $\varphi(t) = o\left(\frac{1}{t^2}\right)$.

Or, $t \mapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$ (fonction de Riemann intégrable).

Donc φ est intégrable sur $[1, +\infty[$. (**)

D'après (*) et (**), φ est intégrable sur $]0, +\infty[$.

D'où, d'après le théorème de dérivation des intégrales à paramètres, Γ est de classe \mathscr{C}^1 sur $]0, +\infty[$.

De plus,
$$\forall x \in]0, +\infty[, \Gamma'(x) = \int_0^{+\infty} (\ln t) e^{-t} t^{x-1} dt.$$

II. Produit de convolution

- 1) Soit f une fonction continue T-périodique, avec T > 0. Soit $y \in f(\mathbb{R})$. Il existe donc $x \in \mathbb{R}$ tel que y = f(x). Posons $k = \left\lfloor \frac{x}{T} \right\rfloor$. Alors x = kT + (x - kT). Puisque $k \in \mathbb{Z}$, alors y = f(x) = f(x - kT). Mais $k \leq \frac{x}{T} < k + 1$ donc $0 \leq x - kT < T$, et ainsi $y \in f([0, T])$. Et donc $f(\mathbb{R}) \subset f([0, T])$.
 - Mais f est continue et [0,T] est un segment, donc f([0,T]) est un ensemble borné, donc $f(\mathbb{R})$ aussi.
- 2) Pour tout réel x, f * g(x) est définie comme intégrale sur un segment d'une fonction continue. Une fonction continue 2π -périodique est bornée. Donc on peut majorer :

$$\forall x \in \mathbb{R} \quad |(f * g)(x)| \leq 2\pi N_{\infty}(f) N_{\infty}(g),$$

ce qui permet de dire que f * g est bornée et $N_{\infty}(f * g) \leq 2\pi N_{\infty}(f)N_{\infty}(g)$.

3) La 2π -périodicité de f*g résulte immédiatement de celle de f. Il s'agit ensuite de montrer que, si f et g sont continues, f*g l'est. Définissons $\varphi:(x,t)\mapsto f(x-t)g(t)$ sur $\mathbb{R}\times[-\pi,\pi]$. Elle est continue par rapport à chacune de ses variables, et

$$\forall (x,t) \in \mathbb{R} \times [-\pi,\pi], \quad |\varphi(x,t)| \leq N_{\infty}(f)N_{\infty}(g).$$

Or la fonction $t \mapsto N_{\infty}(f)N_{\infty}(g)$ est continue sur $[-\pi,\pi]$ (la continuité par morceaux suffirait), intégrable sur ce segment. Le théorème de continuité sous le signe \int permet alors de conclure.

4) Nous avons

$$(f*g)(x) = \int_{-\pi}^{\pi} f(x-t)g(t) dt$$
$$= \int_{x-\pi}^{x+\pi} f(u)g(x-u) du \text{ (changement de variable } t=x-u).$$

Mais

$$\int_{x-\pi}^{x+\pi} f(u)g(x-u) \, du = \int_{x-\pi}^{-\pi} f(u)g(x-u) \, du + \int_{-\pi}^{\pi} f(u)g(x-u) \, du + \int_{\pi}^{x+\pi} f(u)g(x-u) \, du + \int_{\pi}^{x+\pi} f(u)g(x-u) \, du$$

et, en faisant le changement de variable $v=u+2\pi, u=v-2\pi$ dans la première intégrale, tenant compte de la 2π -périodicité de f et g, on obtient finalement

$$f * g = g * f.$$

$$(e_k * e_l)(x) = \int_{-\pi}^{\pi} e^{ik(x-t)} e^{ilt} dt$$

$$= \left(\int_{-\pi}^{\pi} e^{i(l-k)t} dt\right) e_k(x)$$
Si $k = l$, on obtient $\int_{-\pi}^{\pi} e^{i(l-k)t} dt = 2\pi$.

Si $k \neq l$, $\int_{-\pi}^{\pi} e^{i(l-k)t} dt = \left[\frac{1}{i(l-k)} e^{i(l-k)t}\right]_{-\pi}^{\pi} = 0$.

Finalement $e_k * e_l = \begin{cases} 0 & \text{si } k \neq l \\ 2\pi e_k & \text{si } k = l \end{cases}$.

III. L'intégrale de Gauss

- 1) On pose $f = F^2$ où $F: x \mapsto \int_0^x \mathrm{e}^{-t^2} \, \mathrm{d}t$ est la primitive s'annulant en 0 de $x \mapsto \mathrm{e}^{-x^2}$. La fonction F est de classe \mathscr{C}^1 sur \mathbb{R}^+ . Donc f l'est également, avec pour tout $x \geqslant 0$, $f'(x) = 2F'(x)F(x) = 2\mathrm{e}^{-x^2} \int_0^x \mathrm{e}^{-t^2} \, \mathrm{d}t$. Posons $h: (x,t) \mapsto \frac{\mathrm{e}^{-x^2(1+t^2)}}{1+t^2}$ pour $(x,t) \in \mathbb{R}^+ \times [0,1]$. Pour tout $x \geqslant 0$, $t \mapsto h(x,t)$ est continue sur [0,1] et donc intégrable sur [0,1]. Pour tout $t \in [0,1], x \mapsto h(x,t)$ est de classe \mathscr{C}^1 sur \mathbb{R}^+ avec $\frac{\partial h}{\partial x}(x,t) = -2x\mathrm{e}^{-(1+t^2)x^2}$. Pour $(x,t) \in \mathbb{R}^+ \times [0,1], \left|\frac{\partial h}{\partial x}(x,t)\right| \leqslant 1$ et $t \mapsto 1$ est continue et intégrable sur [0,1]. Donc g est de classe \mathscr{C}^1 sur \mathbb{R}^+ avec, pour tout $x \geqslant 0$, $g'(x) = -2x\int_0^1 \mathrm{e}^{-x^2(1+t^2)} \, \mathrm{d}t = -2\mathrm{e}^{-x^2} \int_0^1 \mathrm{e}^{-x^2t^2} x \, \mathrm{d}t$. Le changement linéaire u = xt donne $\forall x \in \mathbb{R}^+, g'(x) = -2\mathrm{e}^{-x^2} \int_0^x \mathrm{e}^{-u^2} du$.
- 2) D'après les calculs précédents, f+g est de classe \mathscr{C}^1 sur \mathbb{R}^+ , de dérivée nulle. La fonction f+g est donc constante. Or f(0)=0 et $g(0)=\int_0^1 \frac{\mathrm{d}t}{1+t^2}=$ Arctan $1=\frac{\pi}{4}$. Pour tout $x\geqslant 0, f(x)+g(x)=\frac{\pi}{4}$.
- 3) La fonction $\varphi: t\mapsto \mathrm{e}^{-t^2}$ est intégrable sur \mathbb{R}^+ car φ est continue sur \mathbb{R}^+ et $\varphi(t) = \underset{t\to +\infty}{o} (\mathrm{e}^{-t})$. Ainsi $\underset{x\to +\infty}{\lim} f(x) = I^2$. On détermine la limite de g en $+\infty$ par encadrement. Pour $x\geqslant 0$, on a $0\leqslant g(x)\leqslant \int_0^1 \frac{\mathrm{e}^{-x^2}}{1+t^2}\,\mathrm{d}t = \frac{\pi}{4}\mathrm{e}^{-x^2}$. Par encadrement, on obtient $\underset{x\to +\infty}{\lim} g(x) = 0$. En conclusion $I^2 = \frac{\pi}{4}$ et puisque $I\geqslant 0$, on obtient $I=\frac{\sqrt{\pi}}{2}$.

IV. Transformée de Laplace et intégrale de Dirichlet

1) F est bien définie sur \mathbb{R}_+^* car pour s > 0, on a $e^{-st} \frac{\sin(t)}{t} \xrightarrow[t \to +\infty]{} 1$ et $e^{-st} \frac{\sin(t)}{t} = o(\frac{1}{t^2})$ donc $t \mapsto e^{-st} \frac{\sin(t)}{t}$ est intégrable sur \mathbb{R}_+ pour s > 0.

D'après la première phrase de l'énoncé, F(0) est définie également. Montrons que F est de classe \mathscr{C}^1 sur \mathbb{R}^*_{\perp} .

Soit $f:(x,t) \in \mathbb{R}^+ \times \mathbb{R}_+^* \mapsto e^{-xt} \frac{\sin(t)}{t}$. Alors f est de classe \mathscr{C}^{∞} sur $\left(\mathbb{R}_+^*\right)^2$ avec $\frac{\partial f}{\partial x}(x,t) = -e^{-xt} \sin(t)$.

Soit a > 0, pour tout $x \ge a$ et t > 0, $\left| \frac{\partial f}{\partial x}(x,t) \right| = e^{-xt} |\sin(t)| \le e^{-at}$ et $t \mapsto e^{-at}$ est intégrable sur \mathbb{R}^+ , donc par théorème de dérivation sous le signe somme, F est de classe \mathscr{C}^1 sur $]a, +\infty[$, donc sur \mathbb{R}^*_+ , avec pour tout s > 0,

$$F'(x) = -\int_0^{+\infty} e^{-xt} \sin(t) dt = -\operatorname{Im}\left(\int_0^{+\infty} e^{-(x-i)t} dt\right)$$
$$= \operatorname{Im}\left(\frac{1}{i-x}\right) = -\frac{1}{1+x^2}.$$

Donc il existe $c \in \mathbb{R}$ tel que $\forall x > 0, F(x) = c - \arctan(x)$. Or, comme

$$|F(x)| \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$

On a donc $c = \frac{\pi}{2}$ et $\forall x > 0, F(x) = \frac{\pi}{2} - \arctan(x)$.

2) Il n'est pas possible d'utiliser le théorème de continuité sous le signe intégrale en l'état car $t\mapsto \frac{\sin(t)}{t}$ n'est pas intégrable sur \mathbb{R} . Posons

$$\begin{cases} F_1(x) = \int_0^1 e^{-xt} \frac{\sin(t)}{t} dt \\ F_2(x) = \int_1^{+\infty} e^{-xt} \frac{\sin(t)}{t} dt \end{cases}$$

de sorte que $F = F_1 + F_2$.

La fonction F_1 est de classe \mathscr{C}^1 sur \mathbb{R}^+ car on dispose de la domination $\left|\frac{\partial f}{\partial x}(x,t)\right| = \mathrm{e}^{-xt}|\sin(t)| \leqslant 1$ et la constante 1 est intégrable sur]0,1].

Montrons la continuité sur \mathbb{R}_+ de $F_2=\operatorname{Im} G$ avec $G:x\mapsto \int_1^{+\infty} \frac{\mathrm{e}^{-(x-i)t}}{t} \, \mathrm{d}t$. Pour $X\geqslant 1$,

$$\int_{1}^{X} \frac{e^{-(x-i)t}}{t} dt = \left[\frac{1}{i-x} \frac{e^{-(x-i)t}}{t} \right]_{1}^{X} + \frac{1}{i-x} \int_{1}^{X} \frac{e^{-(x-i)t}}{t^{2}} dt$$

Comme $\left|\frac{\mathrm{e}^{-(x-i)t}}{t^2}\right| \leqslant \frac{1}{t^2}$, la fonction $t \mapsto \frac{\mathrm{e}^{-(x-i)t}}{t^2}$ est intégrable et

$$G(x) = \frac{e^{i-x}}{x-i} + \frac{1}{i-x} \int_{1}^{+\infty} \frac{e^{-(x-i)t}}{t^2} dt$$

Or, $(x,t) \mapsto \frac{e^{-(x-i)t}}{t^2}$ est continue sur $\mathbb{R}^+ \times [1, +\infty[$ et on dispose de la domination $\left|\frac{e^{-(x-i)t}}{t^2}\right| \leqslant \frac{1}{t^2}$ donc G est continue sur \mathbb{R}^+ donc F_1 et F_2 le sont. Et donc F aussi.

3) On a donc $\frac{\pi}{2} = F(0) = \int_0^{+\infty} \frac{\sin(t)}{t} dt$.