Lecture 5: A Survey of Model-Free Reinforcement Learning

Optimal policies for Lagrangian turbulence – Dr. Robin Heinonen Aqtivate workshop on data-driven and model-based tools for complex flows and complex fluids

June 3-7

Going model-free

- So far, we have always assumed the dynamics of the system are known:
 - 1. In Optimal Control, we have the underyling differential equation
 - 2. In MDP, we know the state transition and reward probabilities Pr(s', r|a, s)
 - 3. In POMDP, we know the obs likelihood Pr(o|s,a)
- This allowed us to plan an optimal strategy a priori
- In the real world, **this knowledge is a luxury**. Dynamics are frequently complicated and rarely known precisely if at all
- In this final lecture: suppose we have MDP with $\Pr(s', r | a, s)$ unknown. How to develop strategies in systems where we don't have a model?
- Idea: learn from experience and system exploration how to estimate V_{π} or Q_{π} and/or improve policy
- This is a rich subject and I cannot cover everything

A first attempt: Monte Carlo methods

- Simplest model-free method
- Follow a given π in repeated trials ("episodes") and record $s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_{N-1}, a_{N-1}, r_N$
- Suppose we visit s at time t in some episode. Record $R_s=r_{t+1}+\gamma r_{t+2}+\gamma^2 r_{t+3}+\cdots+\gamma^{N-t-1}r_N$
- After M visits, estimate $V_{\pi}(s) \approx \frac{1}{M}(R_{s,1} + \dots + R_{s,M})$
- This can be used to rank policies, but not good systematic way to obtain π^*

Figure 5.1: Approximate state-value functions for the blackjack policy that sticks only on 20 or 21, computed by Monte Carlo policy evaluation. ■

On-policy Monte Carlo

- A better approach: try to estimate $Q^*(s,a)$. Then we know optimal policy $\pi^*(s) = \arg\max Q^*(s,a)$.
- Why doesn't this work for V^* ?
- This leads to simple algorithm:
 - 1. Generate an episode (or batch of episodes) using policy π
 - 2. Make MC estimate of $Q_{\pi}(s, a)$
 - 3. Update policy $\pi \leftarrow \arg \max Q_{\pi}(s, a)$
 - 4. Repeat
- Example of **on-policy** learning: exploration using same policy that we want to converge to π^*

- MC has good theoretical guarantees provided you are able to explore the set of state-action pairs effectively
- Potential issue: how to explore with a policy that is supposed to be near-optimal?
- ε -greedy exploration: with probability $0<\varepsilon<1$, take random action. ε typically decays over episodes
- Alternative: **off-policy** control. Policy used to update $Q^*(s,a)$ is **not** the same as policy used to explore. Independent **behavior** policy and **target** policy

 ε -greedy method

Initially: ε close to 1. Near-random agent, mostly exploration

 ε decays...

 ε small. Agent nearly on-policy

episodes

SARSA

- MC can be extremely slow, since learning is episodic
- Temporal difference learning: class of methods to learn actionby-action. Often converges much faster
- SARSA: on-policy TD. Named because it uses tuples $(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})$ to update Q: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t)]$
- Actions are chosen by being arepsilon-greedy wrt Q By Bellman, averages to zero when $Q=Q^*$
- $\alpha \in (0,1)$ is hyperparameter called "learning rate." Must be tuned
- ullet Idea: slowly nudge Q towards Bellman optimality

Q-learning

- Off-policy TD learning
- Uses slightly different update rule $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) Q(s_t, a_t)]$
- Both Q-learning and SARSA guaranteed to converge to Q^{\ast} as long as all state-action pairs continue to be visited
- Main difference: SARSA uses a_{t+1} chosen ε -greedily to update Q. Q-learning updates Q using greedy action (not necessarily the one taken)

SARSA vs. Q-learning

Sarsa (on-policy TD control) for estimating $Q \approx q_*$ Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Loop for each step of episode: Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]$ $S \leftarrow S'$: $A \leftarrow A'$:

True or false? Q-learning is the same as SARSA when $\varepsilon = 0$ (greedy action selection)

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

until S is terminal

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```

False! Q-learning will not necessarily take the same action that it used in update

Example: cliff-walking problem

- Want to get from S to G
- If enter "cliff" region: r=-100, Optimal path sent back to S
- Otherwise r = -1
- When $\varepsilon > 0$ SARSA learns to take safer but suboptimal path
- Q-learning takes optimal path but Sum of rewards occasionally falls off the cliff due to during randomness

Example: learning to soar in turbulence

- Birds of prey use turbulent thermal plumes to glide upwards without flapping ("soaring")
- Reddy et al. (PNAS 2016, Nature 2018) used Q-learning to learn strategy to move upwards in thermal plume, both in simulation and in the field

• States: discretized upward wind acc. a_z and spatial gradient of wind across wings ω (torque), bank angle μ

• Reward: a_z

• Actions: increase, decrease, or maintain μ

Example: olfactory search without a map

- Rando et al. (arXiv 2024) took alternative approach to olfactory search in turbulent flow
- No spatial map $b(\mathbf{x})$. Instead crafted features based on the last N measurements of c (after filtering out $c < c_{thr}$)
- Features: mean filtered c and fraction of time $c>c_{thr}$
- Used Q-learning to learn search strategy
- When agent is lost (filtered c=0 for all t in memory), used Q-learning again. New state number of timesteps since last detection
- Agent found the source ~95% of the time

Deep Q-learning

- So far Q(s,a) has always been a big matrix, $\pi^*(s)$ just a lookup table
- Alternate approach (Mnih $et\ al.\ 2013)\ Q$ is instead a deep neural network
- May include memory using recurrent network, e.g. LSTM
- Instead of TD algorithm, use stochastic gradient descent on the loss

$$L = E\left[\left(r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_{t}, a_{t}) \right)^{2} \right]$$

(minimize Bellman error)

• Approximating Q,V and/or π by NN is common theme in modern RL

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Mnih et al used DQL to achieve then state-of-the-art performance on several Atari games

Reward shaping

- Frequently, rewards are **sparse**. E.g. in search problems, typically only receive reward when arrive at target
- Sparse rewards can make learning very slow
- One technique to accelerate learning: give small extra "fake" reward F(s,s'). "Reward shaping"
- In general this breaks guarantees of convergence to optimality
- But if $F(s,s') = \gamma \phi(s') \phi(s)$ for some $\phi: S \to \mathbb{R}$, can prove that the shaping preserves π^* (exercise)
- "Potential-based reward shaping" (Ng et al. 1999)
- Example: for olfactory search, a non-potential-based shaping might be reward for detection. $\phi(\mathbf{x}) = -c \|\mathbf{x}\|_1$ ($\mathbf{x} = \mathbf{x}_a \mathbf{x}_s$) generates good potential-based shaping, i.e. reward moving closer to source

Policy gradient methods

- A different way to do of model-free RL
- Parametrize the policy. Common choice is "softmax"

$$\pi(a|s, \boldsymbol{\theta}) = \frac{\exp(\beta h(s, a, \boldsymbol{\theta}))}{\sum_{a'} \exp(\beta h(s, a', \boldsymbol{\theta}))}$$

with $h(s, a, \theta)$ a "preference function" (frequently a NN)

- Advantages: don't need ε -greedy, also can model situations where optimal policy is stochastic (e.g. rock-paper-scissors, poker)
- Idea of policy gradient: iterate $\theta_{t+1} = \theta_t + \alpha \ \widehat{\nabla_{\theta}J}$ where J is a performance index (e.g. $V_{\pi}(s_0)$) and $\widehat{\nabla_{\theta}J}$ is stochastic estimate of the gradient
- Theorem: $\nabla_{\theta} J \propto \sum_{s} p_{\pi}(s) \sum_{a} Q_{\pi}(s, a) \nabla_{\theta} \pi(a|s, \theta)$
- In particular, don't need to compute derivatives wrt states!

REINFORCE

- Simplest policy gradient method. Williams (1992)
- Borrows ideas from Monte Carlo: compute episodic returns $R_t=r_{t+1}+\gamma r_{t+2}+\cdots$ starting from each visited state s_t
- Using policy gradient theorem, can show that $\nabla_{\theta} J \propto E_{\pi}[R_t \nabla_{\theta} \log \pi(a_t | s_t, \theta)]$ where $J = V_{\pi}(s_0)$
- Leads to following algorithm. For each t of each episode:
 - 1. Compute return $R_t = r_{t+1} + \gamma r_{t+2} + \cdots$ starting from state s_t
 - 2. Update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t R_t \nabla_{\boldsymbol{\theta}} \log \pi(a_t | s_t, \boldsymbol{\theta})$

Example: model-free olfactory search

- Singh et al. (Nature Mach. Intell. 2023) used "proximal policy optimization" (a state-of-the-art policy gradient method) for model-free olfactory search
- Policy represented by an RNN
- Not a real flow, rather a simple diffusive plume model
- Plume was allowed to bend in space
- States: local wind vel. and concentration
- Reward shaped using potential $\phi(\mathbf{x}) = -\|\mathbf{x}\|$, also a non-potential-based penalty for leaving plume

Actor-critic methods

- One of the most successful classes of RL methods. Combines policy gradient with value-function learning
- In addition to $\pi(a|s, \theta)$, also parametrize V(s, w) (e.g. NN)
- π is the "actor," V is the "critic" which evaluates actions chosen by π
- Simplest version: one-step AC. For each episode:
 - 1. Take action $a \sim \pi(a|s, \theta)$, observe s', r
 - 2. Estimate Bellman error $\delta = r + \gamma V(s', \mathbf{w}) V(s, \mathbf{w})$
 - 3. Update $\mathbf{w} \leftarrow \mathbf{w} + \alpha_w \delta \nabla_{\mathbf{w}} V(s, \mathbf{w})$ (gradient descent of δ^2)
 - 4. Update $\theta \leftarrow \theta + \alpha_{\theta} \gamma^{t} \nabla_{\theta} \log \pi(a|s,\theta)$ (t current timestep)
 - 5. Repeat until episode done

Example: Zermelo problem

- Biferale *et al*. (2019) used applied AC to Zermelo problem in chaotic flow
- States: gridworld discretization of arena
- Actions: $\theta_j = \frac{j\pi}{4}$, j = 0, 1, ..., 7
- Policy parametrization: softmax with action preference $h(s_i, a_j, \mathbf{q}) = q_{ij}$
- Value function parametrization: $V(s_i, \mathbf{w}) = w_i$
- Potential-based reward shaping
- Able to solve both time-independent *and* time-dependent cases, without stability issues!

Conclusion

- Powerful tools exist for decision making when the dynamics are unknown
- Modern methods marry model-free RL with NNs for function approximation
- Challenge: need to choose algorithm, hyperparameters, set of states, reward + shaping. Best choices not always obvious, often more art than science
- Also: training may take a very long time and is not always very stable