

**MYU** 

**DATA** SCIENCE

# word2vec and friends

https://github.com/bmtgoncalves/word2vec-and-friends/

Bruno Gonçalves

www.bgoncalves.com

# Teaching machines to read!

- Computers are really good at crunching numbers but not so much when it comes to words.
- Perhaps can we represent words numerically?

| а       | 1  |
|---------|----|
| about   | 2  |
| above   | 3  |
| after   | 4  |
| again   | 5  |
| against | 6  |
| all     | 7  |
| am      | 8  |
| an      | 9  |
| and     | 10 |
| any     | 11 |
| are     | 12 |
| aren't  | 13 |
| as      | 14 |
|         |    |

# Teaching machines to read!

- Computers are really good at crunching numbers but not so much when it comes to words.
- Perhaps can we represent words numerically?

$$v_{after} = \left(0, 0, 0, 1, 0, 0, \cdots\right)^T$$
 one-hot  $v_{above} = \left(0, 0, 1, 0, 0, 0, \cdots\right)^T$  encoding

Can we do it in a way that preserves semantic information?

"You shall know a word by the company it keeps" (J. R. Firth)



• Words that have similar meanings are used in similar contexts and the context in which a word is used helps us understand it's meaning.

The red house is beautiful.

The blue house is old.

The red car is beautiful.

The blue car is old.

@bgoncalves

www.bgoncalves.com

# Teaching machines to read!

"You shall know a word by the company it keeps" (J. R. Firth)



- → Words with similar meanings should have similar representations.
- From a word we can get some idea about the context where it might appear

 $\max p\left(C|w\right)$ 

And from the context we have some idea about possible words

The red \_\_\_\_\_ is beautiful.
The blue \_\_\_\_ is old.

 $\max p\left(w|C\right)$ 



# Skipgram

- Let us take a better look at a simplified case with a single context word
- ullet Words are one-hot encoded vectors  $w_j = (0,0,1,0,0,0,\cdots)^T$ of length  ${\sf V}$
- ullet  $\Theta_1$  is an (M imes V) matrix so that when we take the product:

$$\Theta_1 \cdot w_j$$

ullet We are effectively selecting the **j**'th column of  $\Theta_1$ :

$$v_j = \Theta_1 \cdot w_j$$

ullet The linear activation function simply passes this value along which is then multiplied by  $\Theta_2$ , a (V imes M) matrix.



Each element k of the output layer its then given by:

$$u_k^T \cdot v_j$$

• We convert these values to a normalized probability distribution by using the softmax

#### Softmax

A standard way of converting a set of number to a normalized probability distribution:

$$softmax(x) = \frac{\exp(x_j)}{\sum_{l} \exp(x_l)}$$

With this final ingredient we obtain:

$$p\left(w_{k}|w_{j}\right) \equiv softmax\left(u_{k}^{T}\cdot v_{j}\right) = \frac{\exp\left(u_{k}^{T}\cdot v_{j}\right)}{\sum_{l}\exp\left(u_{l}^{T}\cdot v_{j}\right)}$$

• Our goal is then to learn:

$$\Theta_1 \qquad \Theta_2$$

• so that we can predict what the next word is likely to be using

$$p\left(w_{j+1}|w_{j}\right)$$

 But how can we quantify how far we are from the correct answer? Our error measure shouldn't be just binary (right or wrong)...



# Cross-Entropy

• First we have to recall that what we are, in effect, comparing two probability distributions:

$$p\left(w_k|w_j\right)$$

and the one-hot encoding of the context:

$$w_{j+1} = (0, 0, 0, 1, 0, 0, \cdots)^T$$

 The Cross Entropy measures the distance, in number of bits, between two probability distributions p and q:

$$H\left(p,q\right) = -\sum_{k} p_k \log q_k$$

In our case, this becomes:

$$H[w_{j+1}, p(w_k|w_j)] = -\sum_k w_{j+1}^k \log p(w_k|w_j)$$

ullet So it's clear that the only non zero term is the one that corresponds to the "hot" element of  $w_{j+1}$   $H=-\log p\left(w_{j+1}|w_j
ight)$ 

$$GT \left( {}^{A}J + 1 \right)$$

ullet This is our Error function. But how can we use this to update the values of  $\Theta_1$  and  $\Theta_2$ ?

#### Gradient Descent



- Find the gradient for each training batch
- Take a step downhill along the direction of the gradient

$$\theta_{mn} \leftarrow \theta_{mn} - \alpha \frac{\partial H}{\partial \theta_{mn}}$$

- ullet where lpha is the step size.
- Repeat until "convergence".

#### Chain-rule

How can we calculate

$$\frac{\partial H}{\partial \theta_{mn}} = \frac{\partial}{\partial \theta_{mn}} \log p(w_{j+1}|w_j) \qquad \theta_{mn} = \left\{\theta_{mn}^{(1)}, \theta_{mn}^{(2)}\right\}$$

• we rewrite:

$$\frac{\partial H}{\partial \theta_{mn}} = \frac{\partial}{\partial \theta_{mn}} \log \frac{\exp(u_k^T \cdot v_j)}{\sum_l \exp(u_l^T \cdot v_j)}$$

and expand:

$$\frac{\partial H}{\partial \theta_{mn}} = \frac{\partial}{\partial \theta_{mn}} \left[ u_k^T \cdot v_j - \log \sum_l \exp \left( u_l^T \cdot v_j \right) \right]$$

• Then we can rewrite:

$$u_k^T \cdot v_j = \sum_q \theta_{kq}^{(2)} \theta_{qj}^{(1)}$$

and apply the chain rule:

$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \frac{\partial g(x)}{\partial x}$$

# Training procedures

- online learning update weights after each case
  - might be useful to update model as new data is obtained
  - subject to fluctuations
- mini-batch update weights after a "small" number of cases
  - batches should be balanced
  - if dataset is redundant, the gradient estimated using only a fraction of the data is a good approximation to the full gradient.
- momentum let gradient change the velocity of weight change instead of the value directly
- rmsprop divide learning rate for each weight by a running average of "recent" gradients
- learning rate vary over the course of the training procedure and use different learning rates for each weight

# SkipGram with Larger Contexts

$$H = -\log p\left(w_{j+1}|w_j\right)$$

$$H = -\frac{1}{T} \sum_{t} \log p(w_{j+t}|w_j)$$







- ullet Use the same  $\Theta_2$  for all context words.
- Use the average of cross entropy.
- word order is not important (the average does not change)
- Can essentially be trained one context word at at time...

#### @bgoncalves

# Continuous Bag of Words

• The process is essentially the same



#### Variations

#### • Hierarchical Softmax:

- Approximate the softmax using a binary tree
- ullet Reduce the number of calculations per training example from V to  $\log_2 V$  and increase performance by orders of magnitude.

#### Negative Sampling:

- Under sample the most frequent words by removing them from the text before generating the contexts
- Similar idea to removing stop-words very frequent words are less informative.
- Effectively makes the window larger, increasing the amount of information available for context

#### Comments

- word2vec, even in its original formulation is actually a family of algorithms using various combinations of:
  - Skip-gram, CBOW
  - Hierarchical Softmax, Negative Sampling
- The output of this neural network is deterministic:
  - $\bullet$  If two words appear in the same context ("blue" vs "red", for e.g.), they will have similar internal representations in  $\Theta_1$  and  $\Theta_2$
  - ullet  $\Theta_1$  and  $\Theta_2$  are vector embeddings of the input words and the context words respectively
- Words that are too rare are also removed.
- The original implementation had a dynamic window size:
  - for each word in the corpus a window size k' is sampled uniformly between 1 and k



#### Online resources

- C https://code.google.com/archive/p/word2vec/ (the original one)
- Python/tensorflow https://www.tensorflow.org/tutorials/word2vec
  - Both a minimalist and an efficient versions are available in the tutorial
- Python/gensim https://radimrehurek.com/gensim/models/word2vec.html
- Pretrained embeddings:
  - 30+ languages, https://github.com/Kyubyong/wordvectors
  - 100+ languages trained using wikipedia: https://sites.google.com/site/rmyeid/projects/polyglot

@bgoncalves

www.bgoncalves.com



@bgoncalves

www.bgoncalves.com



www.bgoncalves.com





www.bgoncalves.com





www.bgoncalves.com





www.bgoncalves.com





www.bgoncalves.com

# "You shall know a word by the company it keeps" (J. R. Firth)



# Analogies

• The embedding of each word is a function of the context it appears in:

$$\sigma (red) = f (context (red))$$

• words that appear in similar contexts will have similar embeddings:

$$context\left(red\right) \approx context\left(blue\right) \implies \sigma\left(red\right) \approx \sigma\left(blue\right)$$

• "Distributional hypotesis" in linguistics

Geometrical relations between contexts imply semantic relations between words!



$$\sigma\left(France\right) - \sigma\left(Paris\right) + \sigma\left(Rome\right) = \sigma\left(Italy\right)$$

$$\vec{b} - \vec{a} + \vec{c} = \vec{d}$$

www.bgoncalves.com

$$\vec{b} - \vec{a} + \vec{c} = \vec{d}$$

$$d^{\dagger} = \underset{x}{\operatorname{argmax}} \frac{\left(\vec{b} - \vec{a} + \vec{c}\right)^{T}}{\left|\left|\vec{b} - \vec{a} + \vec{c}\right|\right|} \vec{x}$$

$$d^{\dagger} \sim \operatorname*{argmax}_{x} \left( \vec{b}^{T} \vec{x} - \vec{a}^{T} \vec{x} + \vec{c}^{T} \vec{x} \right)$$

What is the word d that is most similar to b and c and most dissimilar to a?









https://github.com/bmtgoncalves/word2vec-and-friends/



#### Tensorflow



Search terms match specific words; topics are concepts that match similar terms in any language. Learn more





#### A diversion...

• Let's imagine I want to perform these calculations:

$$y = f(x)$$

$$z = g\left(y\right)$$

- ullet for some given x .
- ullet To calculate z we must follow a certain sequence of operations.



@bgoncalves

www.bgoncalves.com



#### A diversion...

Let's imagine I want to perform these calculations:

$$y = f\left(x\right)$$

$$z = g(y)$$

- ullet for some given x .
- ullet To calculate z we must follow a certain sequence of operations.
- ullet Which can be shortened if we are interested in just the value of y
- In Tensorflow, this is called a Computational Graph and it's the most fundamental concept to understand
- Data, in the form of tensors, flows through the graph from inputs to outputs
- Tensorflow, is, essentially, a way of defining arbitrary computational graphs in a way that can be automatically distributed and optimized.





# Computational Graphs

• If we use base functions, tensorflow knows how to automatically calculate the respective

gradients

Automatic BackProp

• Graphs can have multiple outputs

- Predictions
- Cost functions
- etc...





#### Sessions

- After we have defined the computational graph, we can start using it to make calculations
- All computations must take place within a "session" that defines the values of all required input values
- Which values are required for a specific computation depend on what part of the graph is actually being executed.
- When you request the value of a specific output, tensorflow determines what is the specific subgraph that must be executed and what are the required input values.
- For optimization purposes, it can also execute independent parts of the graph in different devices (CPUs, GPUs, TPUs, etc) at the same time.



#### Install TensorFlow

Assuming the prerequisite software is installed on your Mac, take the following steps:

1. Install TensorFlow by invoking one of the following commands:

```
$ pip install tensorflow  # Python 2.7; CPU support
$ pip3 install tensorflow  # Python 3.n; CPU support

If the preceding command runs to completion, you should now validate your installation.
```



# A basic Tensorflow program

$$z = c * (x + y)$$

```
import tensorflow as tf

x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
c = tf.constant(3.)

m = tf.add(x, y)
z = tf.multiply(m, c)

with tf.Session() as sess:
    output = sess.run(z, feed_dict={x: 1., y: 2.})
    print("Output value is:", output)
```



basic.py



# A basic Tensorflow program

$$z = c * (x + y)$$

```
import tensorflow as tf

x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
c = tf.constant(3.)

m = tf.add(x, y)
z = tf.multiply(m, c)

with tf.Session() as sess:
    output = sess.run(z, feed_dict={x: 1., y: 2.})
    print("Output value is:", output)
```



Jupyter Notebook

#### **Statistically Significant Detection of Linguistic Change**

Vivek Kulkarni Stony Brook University, USA vvkulkarni@cs.stonybrook.edu

Bryan Perozzi Stony Brook University, USA bperozzi@cs.stonybrook.edu Rami Al-Rfou Stony Brook University, USA ralrfou@cs.stonybrook.edu

Steven Skiena Stony Brook University, USA skiena@cs.stonybrook.edu

- Train word embeddings for different years using Google Books
- Independently trained embeddings differ by an arbitrary rotation
- Align the different embeddings for different years
- Track the way in which the meaning of words shifted over time!



KDD'16, 855 (2016)

#### node2vec: Scalable Feature Learning for Networks

Aditya Grover Stanford University adityag@cs.stanford.edu

Jure Leskovec Stanford University jure@cs.stanford.edu

- You can generate a graph out of a sequence of words by assigning a node to each word and connecting the words within their neighbors through edges.
- With this representation, a piece of text is a walk through the network. Then perhaps we can invert the process? Use walks through a network to generate a sequence of nodes that can be used to train node embeddings?
- node embeddings should capture features of the network structure and allow for detection of similarities between nodes.

#### node2vec

KDD'16, 855 (2016)

- The features depends strongly on the way in which the network is traversed
- Generate the contexts for each node using Breath First Search and Depth First Search



• Perform a biased Random Walk



- BFS Explores only limited neighborhoods.
   Suitable for structural equivalences
- DFS Freely explores neighborhoods and covers homophiles communities

 By modifying the parameter of the model it can interpolate between the BFS and DFS extremes

www.bgoncalves.com

arXiv: 1701.06279 (2017)

# dna2vec: Consistent vector representations of variable-length k-mers Patrick Ng ppn3@cs.cornell.edu

- Separate the genome into long non-overlapping DNS fragments.
- Convert long DNA fragments into overlapping variable length k-mers
- Train embeddings of each k-mer using **Gensim** implementation of SkipGram.
  - Summing embeddings is related to concatenating k-mers
  - Cosign similarity of k-mer embeddings reproduces a biologically motivated similarity score (Needleman-Wunsch) that is used to align nucleoti

- Apply word2vec to the 40 years of stock market data
- Identify significant semantic similarities between companies working in the same area



**②** 

#### stock2



ml-to-p-e-2e6ba407c24

# Thank you!

You can hear me speak more about word2vec in this weeks podcast!

