1001011101111000001

10100110100010ZO 1011110001110

0011011000111111010100 第五章 网络层

IPv6tttle

IPv6基本术语

IPv6的最显著变化—地址空间

- □ IPv4: 2³²=4×10⁹ (约40亿)
- □ IPv6地址空间:
 - $> 2^{128} = 3.4 \times 10^{38} = 340$ 间 (1 间 = 10**36)

IPv6的最显著变化—地址空间

340,282,366,920,938,463,463,374,607,431,768,211,456

- ▶连线到离地球最近的银河系仙女恒星(250万光年), 每纳米140万个
- ▶全球人均每人5×10²⁸个
- ▶每平方厘米6.7×10¹⁹个地址

世界上每一粒沙子都可以分到一个IP地址

IPv6地址首选格式:冒分十六进制

如何书写一个128位的地址? 大小写

IPv6地址表示

2001:0410:0000:0001:0000:0000:0000:45ff

规则1: 省略前导0

2001:410:0:1:0:0:0:45ff

规则2: 忽略全0

2001:410:0:1::45ff

IPv6地址表示

v6地址与v4地址表示方法有所不同

- □ 点分十进制 □ 冒分十六进制
- □ 用十六进制表示,如: FE08:....
- □ 4位一组,中间用":"隔开,如: 2001:12FC:....
- □ 若以零开头可以省略,全零的组可用"::"表示,如:
 - 1:2::ACDR:....
- □ 地址前缀长度用 "/xx"来表示,如: 1::1/64

同一个地址不同表示法

□ 0001:0123:0000:0000:0000:ABCD:0000:0001/96

□ 1:123:0:0:0:ABCD::1/96

□ 1:123::ABCD:0:1/96

IPv6地址分类

单播地址

(Unicast Address)

组播地址

(Multicast Address)

任播地址

(Anycast Address)

特殊地址

地址类型	二进制前缀	IPv6标识
未指定	000 (128 bits)	::/128
环回地址	001 (128 bits)	::1/128
组播	11111111	FF00::/8
链路本地地址	1111111010	FE80::/10
网点本地地址	1111111011	FEC0::/10
全局单播	(其他)	

单播地址

链路-本地

(Link-Local)

- □ 用在单一链路上
- □ 带有链路-本地源或目的地址的数据包不转发到其它链路
- □ 如: FE80: : 20C: 76FF: FE0A: 9A7C

链路本地地址

- □ 应用范围:只能在同一本地链路节点之间使用,FE80::/64
- □ 节点启动时,自动配置一个本地链路地址

10	54	64
1111111010	0	Interface ID

如何生成链路本地地址?

□ 前64位: FE80:0:0:0

□ 后64位: EUI-64地址

链路本地地址生成实例

一台主机的MAC地址是: 0012:3400:ABCD, 试求其生成的链路本地地址。

解: 首先将MAC地址写成二进制形式:

00000000 00010010 00110100 00000000 10101011 11001101

站点本地地址

- □ 应用范围:站点内,与IPv4私人地址类似
- □ FEC0:0:0:SID::/64
- □ 不是自动生成的

10	38	16	64
1111111011	0	Subnet ID	Interface ID

可聚合全球单播地址

□ 提供商分配的前缀: /48

□ Site拓扑: 由组织机构划分子网

□ 接口ID: 64

3	13	8	24	16	64
001	TLA	RES	NLA	SLA	Interface ID
	4	是供商分配	配的前缀	Site	接口ID

组播地址

8 4 4	80 bits	32 bits		
11111111 flgs scop	reserved must be zero	group ID		

Flags

用来表示permanent或transient组播组

Scope

表示组播组的范围

Group ID

组播组ID

Scope:

0: 预留

1: 节点本地范围

2: 链路本地范围

5: 站点本地范围

一些众所周知的组播地址

IPV6众所周知的组播地址	IPv4众所周知的组播地址	组播组				
节点-本地范						
FF01::1	224.0.0.1	所有-节点地址				
FF01::2	224.0.0.2	所有—路由器地址				
链路-本地范围						
FF02: : 1	224.0.0.1	所有-节点地址				
FF02: : 2	224.0.0.2	所有—路由器地址				
FF02: : 5	224.0.0.5	OSPFIGP				
FF02: : 6	224.0.0.6	OSPFIGP				
FF02: : 9	224.0.0.9	RIP路由器				
FF02: : D	224.0.0.13	所有PIM 路由器				
站点-本地范围						
FF05: : 2	224.0.0.2	所有—路由器地址				
任何有效范围						
FF0X: : 101	224.0.1.1	网络时间协议NTP				

IPv6地址新类型—任播(Anycast)

- □ 用于标识一组网络接口
- □ 目标地址为任播地址的数据报将发送给最近的一个接口
- □ 适合于One to One-of-Many的通讯场合

IPv6地址(截止到2015年10月30日)

項次	國家	201510	201509	201508	201507	201506	201505	201504	201503	201502	201501
1	美國	41402	41350	41297	41277	41235	40988	40713	40690	40654	40608
2	中國大陸	19404	19376	19362	19350	19335	19331	19323	19066	19058	18797
3	德國	14188	14112	13857	13792	13687	13503	13421	13302	13183	12977
4	法國	10342	10291	10247	10172	10154	10153	10095	10057	9961	9846
5	日本	<u>9636</u>	9635	9636	9634	9634	9632	9632	9631	9630	9629
6	澳大利亚	8764	8753	8749	8740	8738	8736	8732	8724	8721	8718
7	義大利	6297	6256	6216	6167	6111	6078	6037	5937	5907	5801
8	英國	5296	5072	4999	4930	4869	4740	4600	4503	4419	4294
9	南韓	5246	5246	5246	5246	5246	5246	5246	5246	5246	5246
10	南非	4604	4603	4343	4343	4340	4335	4331	4331	4331	4328
11	阿根廷	4448	4436	4431	4417	4412	4402	4397	4390	4387	4383
12	埃及	4105	4105	4105	4105	4105	4105	4105	4105	4105	4105
13	荷蘭	3345	3272	3162	3090	2985	2855	2782	2678	2612	2488
14	波蘭	3259	3202	3179	3178	3146	3128	3077	3054	3005	2972
15	巴西	2734	2690	2596	2510	2466	2409	2366	2328	2234	2201

/32

http://trace.twnic.net.tw/ipstats/statsipv6.php

怎么做到即插即用的?

- □ 启动时, 生成链路本地地址
- □ 该地址可和网关通信,获得全球IP地址前缀
- □ 也可利用DHCP获得上网所需的资源

后缀

- > 手工
- > EUI-64地址
- > 随机生成

注意: 各类地址的应用范围

IPv6地址子网规划

- □ IPv4 子网划分是管理地址稀缺性
- □ IPv6 子网划分是根据路由器的数量及它们所支持的网络来构

建寻址分层结构

IPv6地址子网规划

如果真的需要, 在半字节边界划分

半字节=4位(1个十六进制数)

例: IPv6地址规划

地址块: 2001:0DB8:ACAD::/48

例: IPv6地址规划

可以这样规划

小结

- □ IPv6地址由128位二进制构成,地址空间巨大。
- □ IPv6地址由冒分十六进制表示。
- □ IPv6地址分为单播地址、组播地址、任播地址三大类。
- □生成链路本地地址是自动配置的第一步。
 - >FE80::/64
 - >EUI-64
- □ IPv6地址规划简单,再无需精打细算。
 - >/48

思考题

- □ IPv4地址、MAC地址、IPv6地址分别是多少位二进制构成?
- □ IPv6链路本地地址怎么生成?
- □ IPv6地址自动配置过程是怎样的?
- □ IPv6地址规划如何进行?

1001011101111000001

001101100011111010100

20100110100010ZO

谢姚看

TITOTOOTOOOTITOOOT

1011110001110

致谢

本课程课件中的部分素材来自于: (1)清华大学出版社出 版的翻译教材《计算机网络》(原著作者: Andrew S. Tanenbaum, David J. Wetherall); (2) 思科网络技术学院教程; (3) 网络 上搜到的其他资料。在此,对清华大学出版社、思科网络技术学 院、人民邮电出版社、以及其它提供本课程引用资料的个人表示 衷心的感谢!

对于本课程引用的素材,仅用于课程学习,如有任何问题,请与我们联系!