МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Физический факультет Кафедра общей физики

Н. С. Буфетов, И. В. Литвинов, А. О. Замчий, Р. В. Оськин.

ЛАБОРАТОРНАЯ РАБОТА 2.8 КОМПРЕССОРНЫЙ ТЕПЛОВОЙ НАСОС

Молекулярный практикум

Новосибирск 2020

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1. ПРИНЦИП ДЕЙСТВИЯ ТЕПЛОВОГО НАСОСА	3
2.ОПИСАНИЕ ЭКСПЕРИМЕНТА	8
3.ЗАДАНИЯ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	10
3.1 Подготовка к работе	10
3.2 Подготовка к работе с планшетом регистратором	<i>t</i> 11
3.3 Задание 1. Проведение эксперимента	11
3.4 Задание 2. Расчеты	12
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА	14
ПРИЛОЖЕНИЕ. Диаграмма Молье (р-h диаграмма)	15

ВВЕДЕНИЕ

Тепловые насосы (теплонасосные установки) позволяют нагревать какой-либо объект или определенную среду путем отбора теплоты из окружающей среды или от низкотемпературных бытовых и промышленных отходов. Они не производят тепловую энергию, а за счет использования внешней работы переносят теплоту от теплоносителя, имеющего температуру 0...40 °C (называемого низкопотенциальным) к теплоносителю, применяемому, например, для отопления и горячего водоснабжения (называемого выскопотенциальным), нагревая его до 50...80 °C.

Преимущество применения теплонасосных установок (ТНУ) в си-стемах теплоснабжения по сравнению с другими способами тепло-снабжения состоит в значительной экономии затрат энергии. Тепловые насосы можно отнести к отдельному виду теплоэнергетического обо-рудования, для них нельзя использовать понятие коэффициента полез-ного действия, так как ТНУ позволяют вырабатывать тепловой энергии больше, чем в них затрачивается электроэнергии. Отношение вы-работанной теплоты к затраченной энергии на осуществление цикла теплонасосной установки называется коэффициентом преобразования теплоты, значение которого в тепловом насосе составляет от 2,5 до 8.

В выполняемой работе рассмотрен принцип действия теплового насоса, который основан на отдаче и поглощении теплоты рабочем телом (агентом) в цикле при периодическом переходе его из одного состояния в другое. В данном конкретном случае роль рабочего тела исполняет «хладагент» фреон R-22.

<u> Целью данной работы</u> является ознакомление с устройством и принципами работы тепловых насосов, измерением их параметров и характеристик, и представление результатов этих измерений на примере компрессионного теплового насоса.

1. ПРИНЦИП ДЕЙСТВИЯ ТЕПЛОВОГО НАСОСА

В основе действия любой тепловой машины (теплового двигателя, теплового насоса, холодильной машины) лежит второе начало термодинамики, которое применительно к тепловым насосам гласит: «для передачи теплоты от менее нагретого (холодного) тела к более нагретому необходимо затратить энергию».

Тепловые насосы по виду рабочего агента разделяются на три типа: парокомпрессионные, абсорбционные и термоэлектрические.

В парокомпрессионных тепловых насосах [1,2,3,4,5] рабочий агент переносит тепловую энергию в результате фазовых переходов из газообраз-

ного состояния в жидкое в результате компрессорного сжатия (отдача теплоты пространству, окружающее конденсатор) и обратного перехода в газообразное, где он откачивает теплоту из окружающей испаритель среды.

В абсорбционных насосах [1] роль компрессора исполняет абсорбент (жидкий поглотитель рабочего агента), который нагревается в результате перехода рабочего вещества (абсорбции) из газообразного в жидкий раствор с абсорбентом и охлаждается при десорбции при более низком давлении.

Термоэлектрические тепловые насосы [6,7] – устройства, использующие для перемещения тепловой энергии эффект Пельтье (Эффект Пельтье – термоэлектрическое явление, при котором происходит выделение или поглощение теплоты при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемой теплоты и её знак зависят от вида контактирующих веществ, направления и силы протекающего электрического тока.)

На Рис. 1 показаны принципиальные схемы действия теплового двигателя, в котором происходит превращение теплоты в механическую энергию (а) и теплового насоса (б). Требование непрерывности функционирования таких устройств приводит к необходимости совершения рабочим телом повторяющегося кругового процесса (термодинамического цикла), в котором оно претерпевает последовательное изменения состояния с возвращением в исходное состояние. Для непрерывного получения полезной работы необходимо располагать двумя объектами, обладающими разными температурами ($T_1 > T_2$) и являющимися как источниками, так и приемниками теплоты. В прямом цикле тепловая машина получает теплоту от горячего теплоносителя (Q_1) и отдает её часть холодному

Рис. 1: Термодинамическая схема тепловой машины: а – теплового двигателя и б – теплового насоса.

теплоносителю (Q_2) , совершая при этом работу A. Тепловой насос можно рассматривать как обращенную тепловую машину, в которой происходит обратный цикл, при потреблении работы A.

В том случае, когда оба теплоносителя имеют постоянные температуры, наиболее оптимальной комбинацией процессов, составляющих цикл, целью которого является получение максимальной работы, являются два изотермических и два адиабатических процесса. Такой цикл называется циклом Карно. Для анализа работы теплового насоса используются (T-S)- и (P-H)-диаграммы, где Т - температура, S - энтропия, Р - давление, Н - энтальпия. Согласно определению Рудольфа Клаузиуса, энтропия (S) — это функция состояния рабочего тела, полный дифференциал которой для равновесных процессов равен «приведенной теплоте» [1]:

$$dS = \delta Q/T$$

Таким образом, из второго начала термодинамики следует, что существует однозначная функция состояния S, которая при квазистатических адиабатных (изоэнтропийных - $\delta Q = 0$) процессах остаётся постоянной.

Энтальпия (H) — это инженерная функция состояния, определяемая как сумма внутренней энергии U и произведения давления P на объем V,

$$H=U+PV$$
.

Вместо экстенсивных величин S и H часто используют их отношения к массе тела, называемые удельными энтропией и энтальпией, обозначаемые S и h, соответственно [1].

В выполняемой работе изучается действие теплового насоса, который основан на отдаче и поглощении теплоты рабочего агента в цикле при периодическом переходе его из одного состояния в другое.

Принцип работы парокомпрессионного насоса основывается на циклическом процессе с фазовым переходом, которое претерпевает рабочее тело в насосе. Электроприводной компрессорный тепловой насос состоит из компрессора с электроприводом, конденсационного аппарата, расширительного клапана и испарителя.

В идеале этот процесс можно разделить на четыре этапа, а именно сжатие, сжижение, сброс давления и испарение (см. Рис. 2 и 3).

График давления p от удельной энтальпии h рабочего тела (Рис. 2), называемый диаграммой Молье, часто используется для представления цикла работы компрессорного теплового насоса. На этой диаграмме а) красные линии - изотермы, б) зелёные - изоэнтропы, в) черные - линии сухости пара: левая - граница жидкой фазы насыщения, правая — граница насыщенного пара.

Рабочее тело полностью конденсируется слева от линии границы раздела фаз испарения и присутствует в виде перегретого пара справа от границы раздела фаз конденсации и в виде смеси жидкости и газа между этими двумя границами. Эти две границы сходятся в критической точке.

Рис. 2: Идеальный циклический процесс теплового насоса на диаграмме Молье.

Рис. 3: Схематическое представление теплового насоса с компрессором (1→2), конденсационным аппаратом (2→3), расширительным клапаном (3→4) и испарителем (4→1). T1 – термопара на входе в компрессор, T2 – термопара на выходе из компрессора, T3 – термопара на входе в расширительный клапан, T4 – термопара после расширительного клапана.

Рассмотрим термодинамический цикл, совершаемый рабочим телом в процессе работы теплового насоса. Процесс 1-2 — обратимый изоэнтропийный процесс сжатия газообразного рабочего тела (сухого пара). На этапе сжатия цикла газообразное рабочее тело всасывается компрессором и сжимается без какого-либо изменения энтропии (S_1 = S_2) от P_1 , до P_2 , причем в ходе этого процесса рабочее тело нагревается, и его температура, соответственно, возрастает с T_1 до T_2 . Механическая работа по сжатию, совершаемая с единицей массы, равна ΔW = h_2 - h_1 . На практике компрессор должен сжимать только сухой пар, поэтому рабочее тело до входа в компрессор должно быть слегка перегрето, что соответствует смещению точки 1 с линии насыщения вправо.

Процесс 2-3 — изотермическая конденсация хладагента в конденсаторе и отдача теплоты высокопотенциальному теплоносителю. При этом, как видно из графика, прежде чем пар начнет конденсироваться, его следует охладить при постоянном давлении (до точки \mathbf{a}). Охлаждение агента происходит до температуры несколько ниже температуры конденсации. Причиной этого является более низкая температура в окружающем теплообменник резервуаре. Высвобождаемая в результате процесса конденсации теплота (избыток теплоты и скрытая теплота конденсации) на единицу массы составляет $\Delta q_{\kappa ono} = h_2 - h_3$. Это повышает температуру в окружающем теплообменник резервуаре. В реальных условиях потери давления в трубопроводах между конденсатором и расширительным клапаном приводят к частичному испарению рабочего тела. Таким образом, жидкость после конденсатора переохлаждают, при этом точка 3 смещается с линии насыщения влево, что снижает долю пара.

Процесс 3-4 — адиабатический процесс расширения рабочего тела в расширительном клапане. Сконденсировавшееся рабочее тело достигает выпускного клапана, где происходит сброс его давления (без совершения какой-либо механической работы). В ходе этого процесса температура также уменьшается благодаря работе, которую необходимо совершить, чтобы преодолеть молекулярные силы притяжения внутри рабочего тела (эффект Джоуля-Томсона). Процесс Джоуля-Томпсона протекает в теплоизолированных условиях и представляет собой процесс необратимого расширения, являясь при этом изоэнтальпическим (h_4 = h_3).

Процесс 4-1 –изотермическое испарение рабочего тела в испарителе за счет теплоты, отобранной у холодного теплоносителя. По мере того, как рабочее тело поглощает тепло внутри испарителя, оно полностью испаряется.

Это охлаждает окружающий его резервуар. Теплота, поглощаемая единицей массы, составляет $\Delta q_{ucn} = h_1 - h_4$.

Чтобы изобразить систему на диаграмме Молье, вышеописанный идеальный цикл можно определить путем измерения давлений $p_4 = p_1$ и $p_3 = p_2$, соответственно, перед и после расширительного клапана, а также температур T_1 , и T_3 , соответственно, перед компрессором и расширительным клапаном (Рис. 3).

2. ОПИСАНИЕ ЭКСПЕРИМЕНТА

Элементы установки в этом опыте соединяются с помощью медных трубок, образуя замкнутую систему, и монтируются на основании (Рис. 4). Благодаря наглядности установки, их легко связать с последовательностью фазовых превращений, происходящих в цикле работы теплового насоса.

Рис. 4: Общий вид экспериментальной установки

- 1 Планшет-регистратор «VinciLab»,
- 2 выключатель компрессора.
- 3 Испаритель,
- 4 Водохранилище вокруг испарителя

- 5 Смотровое окно в испарителе
- 6 Мешалка для испарителя
- 7 Цифровой термометр с датчиком температуры воды в ванне испарителя,
- 8 Термопара Т4 после расширительного клапана на входе в испаритель
- 9 Расширительный клапан
- 10 Энергетический монитор
- 11 Манометр для стороны низкого давления
- 12 Манометр для стороны высокого давления
- 13 Переключатель сброса
- 14 Выключатель избыточного давления
- 15 Термопара Т3 на входе в расширительный клапан после конденсатора
- 16 Цифровой термометр с датчиком температуры воды в ванне конденсатора
- 17 Смотровое окно в конденсаторе
- 18 мешалка для конденсатора,
- 19 конденсатор
- 20 водяная ванна конденсатора
- 21 компрессор
- 22 термопарный датчик температуры Т4
- 23 термопарный датчик температуры Т3
- 24 термопарный датчик температуры Т2
- 25 термопарный датчик температуры Т1

 T_1, T_2, T_3, T_4 — вход сигналов термопарных датчиков в планшет-регистратор

Испаритель и конденсационный аппарат выполнены в виде змеевиков из медных трубок; при этом каждый из них погружен в отдельную водяную ванну, которая служит резервуаром для определения, поглощенной или отданной теплоты. Два больших манометра показывают давление хладагента в обоих теплообменниках. Два аналоговых термометра позволяют измерять температуру в этих двух водяных ваннах. Датчики температуры со специально сконструированными измерительными клеммами используются для регистрации температур в медных трубках перед и после компрессора и расширительного клапана.

Основным показателем работы теплового насоса принято считать **коэффициент преобразования** ε , который является отношением удельной теплоты $q_{\kappa O H O}$ (кДж/кг), (теплота, приходящаяся на единицу массы хладагента), передаваемой горячему источнику, (в нашем случае – воде в ванне конденсатора) к удельной работе $W_{\mu u \kappa N}$ (кДж/кг), подводимой от внешнего источника (энергия, приходящаяся на единицу массы хладагента),.

$$\varepsilon = \frac{q_{\text{конд}}}{W_{\text{имкла}}} \tag{1}$$

А так как по диаграмме Молье:

$$q_{\mbox{\tiny КОНО}} = h_2 - h_3$$
 и $W_{\mbox{\tiny ЧИКЛ}} = h_2 - h_1$ то $\mathcal{E} = \frac{h_2 - h_3}{h_2 - h_1}$

Определение энтальпий h_1 , h_2 и h_3 идеального циклического процесса и количества теплоты $\Delta q_{\kappa o n \partial}$,, поступающей в резервуар горячей воды за интервал времени Δt дает возможность оценить массовый поток рабочего тела.

$$\frac{\Delta m}{\Delta t} = \frac{\Delta q_{\text{кон}\underline{\Lambda}}}{\Delta t} \cdot \frac{1}{h_2 - h_3} \tag{3}$$

3. ЗАДАНИЯ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

3.1 Подготовка к работе

- Изучите схему экспериментальной установки и найдите все обозначенные на ней элементы на реальной экспериментальной установке.
- 2. Разместите четыре датчика температуры BT01 на медных трубках (рис.3) перед входом в компрессор (точка 1), на выходе из компрессора (точка 2), перед расширительным клапаном (точка 3), и после него (точка 4).
- 3. Подсоедините четыре датчика температуры BT01 к аналоговым входам A1-A4 планшета-регистратора «VinciLab». Включите планшет и, в случае необходимости, подключите его к зарядке. Запустите приложение «Coach» и пиктограмму.
- 4. Аккуратно налейте 2000 мл воды в каждую кювету и разместите измерительные зонды цифровых термометров на дне кювет. Для этого заполните ванны водой и переместите их под испаритель и конденсатор стороной с низким краем. Далее поверните ванны на 180 градусов и закрепите их на металлических держателях (Рис. 5).

Рис. 5: Иллюстрация к замене воды.

5. Включите компрессор для выхода установки на рабочие характеристики (примерно 10 мин). Убедитесь, что измеритель электрической

- мощности выдает показания в Ваттах (последовательно переключая измерительный параметр с помощью кнопки «FUNC»).
- 6. Выключите компрессор, вылейте воду из двух кювет и налейте снова по 2000 мл и разместите температурные зонды.

3.2 Подготовка к работе с планшетом регистратором

Планшет-регистратор VinciLab позволяет регистрировать, визуализировать, а также сохранять и переносить экспериментальные данные на флеш-карту. Внутри регистратора находится аналогово-цифровой преобразователь, позволяющий опрашивать до 6 аналоговых каналов.

В данном случае вам предлагается регистрировать значения температуры с помощью датчиков ВТ-01 в точках 1—4 (рис. 3) в течение 25 минут с периодичностью в 1 минуту. При этом информация будет записываться в таблицу.

Чтобы создать таблицу необходимо нажать на вкладку пиктограмму \blacksquare , и во вкладке выберете «New table». Создайте таблицу из пяти столбцов, где $1^{\text{ый}}$ столбец — это время, $2 \cdot 4^{\text{ый}}$ столбцы показания температурных датчиков A1-A4. Пока таблица будет пустой

С помощью настройки регистрации , вы можете выбрать время опроса каналов и частоту дискретизации. При нажатии на значок начнётся регистрация сигналов, и таблица начнет заполняться.

По окончанию сбора данных полученную таблицу можно экспортировать, нажав «Export table» во вкладке . Полученный файл можно скопировать себе на флеш-карту. Для этого нужно выйти из приложения «Coach» в главное меню, сохранив свой эксперимент в формате «.cmг». Войти в приложение «Му files» и скопировать файл таблицы (.txt) из директории «/My files/Coach» в директорию «USB».

Можете запустить тестовую регистрацию с разумным временем опроса аналоговых каналов и частотой дискретизации. Произвести экспорт таблицы и копирование на флэш-карту.

3.3. Задание 1. Проведение эксперимента

Цель задания: провести экспериментальные измерения температуры «холодильника» и «нагревателя», температуры и давления рабочего тела в течение работы по термодинамическому циклу.

- 1. Установите время регистрации 25 минут с периодичностью 1 минута. Будьте готовы вручную записывать:
 - ${\bf a}$ значения показаний давления P1 и P2 на манометрах до и после расширительного клапана,

- **б** температуры $T_{\kappa o n \partial}$ и $T_{u c n a p}$ в обеих кюветах ($T_{\kappa o n \partial}$ температура в кювете конденсации хладагента (высокая), $T_{u c n a p}$ температура в кювете испарения хладагента (низкая),
- **в** значения потребляемой электрической мощности компрессором $W_{uu\kappa na}$, всего 5 параметров.

Таким образом, получится таблица из 4-х значений температуры, зарегистрированной с помощью планшета-регистратора, а также таблица из 5 параметров, записанных вручную, в течение времени эксперимента (25 минут).

2. Включите компрессор и одновременно запустите регистрацию температур с помощью значка . Записывайте показания раз в 1 минуту.

<u>Внимание!</u> Непрерывно перемешивайте воду в обеих кюветах, чтобы обеспечить равномерность температурного поля внутри кюветы.

- 3. По истечении 25 минут и завершению регистрации таблицы, выключите компрессор.
- 4. Осушите кюветы с водой.

3.4 Задание 2. Расчеты

- 1. В программе Excel сформируйте таблицу из 10-ти столбцов: времени t (мин), T_1 (°C), T_2 (°C), T_3 (°C), T_4 (°C), $T_{\kappa OHO}$ (°C), T_{ucnap} (°C), P_{ucnap} (bar), $P_{\kappa OHO}$ (bar), $W_{\kappa OMD}$ (Bm).
- 2. Постройте графики зависимостей T_1 , T_2 , T_3 , T_4 , $T_{конд}$, $T_{испар}$ от времени (t). Объясните характер полученных кривых.
- 3. Определите количество энергии, потребленной компрессором за время Δt (время от начала эксперимента до выбранного момента ≈ 15 мин):

$$Q_{\kappa o \mathit{M} n p} = W_{\kappa o \mathit{M} n p} \cdot \Delta t$$

4. Определите количество теплоты, переданной воде, охлаждающей конденсатор за время Δt :

$$Q_{\kappa o H \partial} = m_{H2O} \cdot C_{H2O} \cdot (T_{\kappa o H \partial \phi u H u u u} - T_{\kappa o H \partial c m a p m})$$

и мошность этого теплового потока

$$W_{\kappa o H \partial} = Q_{\kappa o H \partial} / \Delta t$$

5. Определите количество теплоты, изъятой из воды ванны испарителя за время Δt :

$$Q_{ucnap} = m_{H2O} \cdot C_{H2O} \cdot (T_{ucnap\ cmapm} - T_{ucnap\ финиш})$$

и мощность этого теплового потока

$$W_{ucnap} = Q_{ucnap} / \Delta t$$

6. Сделайте расчёт реального коэффициента преобразования ε_{pean} компрессора по формуле

$$\mathcal{E}_{pean} = W_{\kappa o H \partial} / W_{\kappa o M n p}$$

- 7. Составьте график циклического процесса теплового насоса, используя значения T_1 , T_2 , T_3 , T_4 , P_{ucnap} , $P_{кон}$ при фиксированном времени (t=15 мин) на диаграмме Молье (см. приложение). Считайте с диаграммы соответствующие значения удельной энтальпии h_1 , h_2 , h_3 и h_4 .
- 8. Оцените массовый поток рабочей телоты по формуле (3)
- 9. Произведите расчёт **коэффициента преобразования** *ємеор* по считанным с диаграммы Молье (см. Приложение) значениям энтальпии:

$$\varepsilon_{meop} = \frac{q_{\text{конд}}}{W_{\text{ЦИКЛ}a}} = \frac{h_2 - h_3}{h_2 - h_1}.$$

10. Рассчитайте массовый расход хладагента по формуле (3), зная значения энтальпии h_2 и h_3 из идеального термодинамического цикла. Указание: Значение T_1 и P_4 = P_1 =const определяют точку 1 на диаграмме Молье. Точка пересечения соответствующей изоэнтропы с горизонтальной линией постоянного значения P_3 = P_2 =const определяет точку 2. Пересечение горизонтальной линии с изотермами T_3 определяет точку 3, а перпендикулярная линия с горизонтальной линией постоянного значения P_4 =const определяет точку 4.

Таким образом, в результате выполнения работы проведено ознакомление с устройством и принципами функционирования тепловых насосов. Реализован термодинамический цикл, совершаемый в процессе работы компрессионного теплового насоса. Проведены измерения основных параметров цикла, определены характеристики представленного теплового насоса.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Вукалович М.П., Новиков И.И. Техническая термодинамика. М: «Энергия», 1968. 496 с., ил.
- 2. Румер Ю.Б., Рывкин М.Ш. Термодинамика, статистическая физика и кинетика, Учебное пособие. 2-е изд., испр. и доп. Новосибирск, Изд-во Новосибирского Университета, 2000. 608 с.
- 3. Трубаев П.А., Гришко Б.М. Тепловые насосы, Учебное пособие, Белгород: Изд-во БГТУ им. В.Г. Шухова, 2009. $142 \, \mathrm{c}$.
- 4. Морозюк Т.В. Теория холодильных машин и тепловых насосов, Одесса: Студия «Негоциант», 2006.-712 с.
- 5. Рей Д., Макмайкл Д. Тепловые насосы: Пер. с англ. М.: Энергоиздат, 1982. 224 с., ил.
- 6. Цветков Ю. Н., Аксенов С. С., Шульман В. М. Судовые термоэлектрические охлаждающие устройства. Л.: Судостроение, 1972. 191 с.
- 7. Мартыновский В. С. Циклы, схемы и характеристики термотрансформаторов.— М.: Энергия, 1979.— 285 с.

ПРИЛОЖЕНИЕ. Диаграмма Молье (р-h диаграмма)

Рис. П1. Диаграмма Молье.