計量経済 I:中間テスト

村澤 康友

2025年6月10日

注意:3 問とも解答すること.PC・スマホを含め,何を参照してもよいが,決して他の受験者と相談しないこと.

- 1. (20点)以下で定義される統計学・計量経済学の専門用語をそれぞれ書きなさい.
 - (a) 母集団のうち実際に観察される部分
 - (b) 確率変数の k 乗の期待値
 - (c) とりあえず真と想定する仮説
 - (d) 回帰変動÷総変動
- 2. (30点)「教育の収益率」を推定したい. そこであるデータを用いて年収(対数値)を修学年数で説明する単回帰分析を行った. 分析結果のコンピューター出力(の一部)は以下の通りであった.

モデル 1: 最小二乗法 (OLS), 観測: 1–4327 従属変数: lincome

係数 標準誤差

const 4.38520 0.100312

yeduc 0.0651801 0.00717354

古典的正規線形回帰モデルを仮定し、検定の有意水準を5%として、以下の問いに答えなさい.

- (a)「教育の収益率」とは何かを説明し、その推定値を単位も含めて正確に答えなさい.
- (b) 前問の推定値の t 値と F 値を求めなさい.
- (c) 前間の t 値と F 値は帰無仮説の下でそれぞれどのような分布に(厳密に)したがうか? (次頁に続く)

3. (50 点) 民主党(当時) に対する支持感情 (0 \sim 100 点) を年収(万円) と修学年数で説明する重回帰分析を行い、次の結果を得た.

モデル 1: 最小二乗法 (OLS), 観測: 1–4218 従属変数: minshu

	係数	標	摩準誤差	t-ratio	p 値
const	39.3028	2.1	2491	18.50	0.0000
income	0.002002	27 0.0	0121897	1.643	0.1005
yeduc	0.334907	0.1	54250	2.171	0.0300
Mean depende	ent var 44	.47606	S.D. de	pendent v	rar 18.51297
Sum squared	resid 1	442201	回帰の標	票準誤差	18.49754
R^2	0.0	002139	Adjuste	ed R^2	0.001665
F(2,4215)	4.8	517554	P-value	(F)	0.010969

ただし標本には年収0の人が約12.2%含まれる。そこで年収ありダミーを説明変数に加えて改めて重回帰分析を行い、次の結果を得た。

モデル 2: 最小二乗法 (OLS), 観測: 1–4218 従属変数: minshu

	係数		標準誤差		t-ratio	p 値	
const	40.5141		2.25218		17.99	0.0000	
income	0.002	88366	0.0	0133462	2.161	0.0308	
yeduc	0.328	981	0.1	54264	2.133	0.0330	
d_income	-1.548	19	0.9	55481	-1.620	0.1052	
Mean dependent var		44.47606		S.D. dependent var		18.51	297
Sum squared resid		1441303		回帰の標準誤差		18.49	398
R^2		0.00276	0	Adjusted	$1 R^2$	0.002	050
F(3,4214)		3.88801	4	P-value(F)	0.008	686

古典的正規線形回帰モデルを仮定し、検定の有意水準を5%として、以下の問いに答えなさい.

- (a) 支持感情の標本平均と標本分散は幾らか?
- (b) モデル 1 において、年収から支持感情への限界効果は 0 でないと主張できるか?適切な統計量を参照して説明しなさい.
- (c) モデル 2 において,年収から支持感情への限界効果は 0 でないと主張できるか?適切な統計量を参照して説明しなさい.
- (d) モデル 1 とモデル 2 のどちらが予測モデルとして優れているか?適切な統計量を参照して説明しなさい.
- (e) モデル2によれば、年収が1000万円で修学年数が10年の人の平均支持感情は何点か?

解答例

- 1. 統計学・計量経済学の基本用語
 - (a) 標本
 - (b) (k 次の) 積率 (モーメント)
 - (c) 帰無仮説
 - (d) 決定係数
- 2. 単回帰
 - (a)「教育の収益率」は「修学年数が1年増えることによる年収の増加率」. その推定値は6.51801%.
 - ●「教育の収益率」の説明で5点,推定値で5点.
 - ●「増加」でなく「増加率」と明記しなければ不可.
 - (b) t値は $0.0651801/0.00717354 \approx 9.086$. F値は $9.086^2 \approx 82.55861$.
 - 各5点.
 - 2乗の計算ミスは1点減.
 - (c) 帰無仮説の下で t 値は t(4325), F 値は F(1,4325) にしたがう.
 - 各 5 点.
 - 自由度を明記しなければ各1点.
- 3. 重回帰
 - (a) 標本平均は 44.47606,標本分散は $18.51297^2 \approx 342.73$.
 - 各5点.
 - 2乗の計算ミスは1点減.
 - (b) モデル 1 において、年収の回帰係数の両側 p 値は 0.1005 > 0.05. p 値 > 有意水準より回帰係数=0 の帰無仮説は棄却されないので、年収から支持感情への限界効果は 0 でないと主張できない.
 - p 値を明記しなければ 0 点.
 - t値と棄却域による説明も可.
 - (c) モデル 2 において,年収の回帰係数の両側 p 値は 0.0308 < 0.05. p 値 < 有意水準より回帰係数=0 の帰無仮説は棄却されるので,年収から支持感情への限界効果は 0 でないと主張できる.
 - p 値を明記しなければ 0 点.
 - t値と棄却域による説明も可.
 - (d) モデル 1 は $\bar{R}^2 = 0.001665$,モデル 2 は $\bar{R}^2 = 0.002050$. したがって \bar{R}^2 が大きいモデル 2 の方が予測モデルとして優れている.
 - \bar{R}^2 の値を明記して比較しなければ 1 点.
 - R² で比較したら 0 点.
 - (e) $40.5141 1.54819 + 0.00288366 \times 1000 + 0.328981 \times 10 = 45.13938$ 点.