Chemistry Review:Inorganic Components of The Cell

Lecture 3

Objectives

Understand/know/focus on/note

- what the inorganic components of the body are & fluid compartments
- what hydrogen ion concentration is and its relationship to pH
- what strong and weak acids and bases are, what a buffer is, and what makes a good buffer
- what extremes of pH can occur naturally in cell physiology
- what extremes of pH can indicate a disorder: alkalosis or acidosis

Division of Body Water

Body compartments

/www.infobarrel.com/media/image/100142_max.ipg

Inorganic Components

- Water
 - Discussed as an important medium (making up 4/5th of cell mass)
- Acids & Bases & Salt forms
 - phosphates, carbonates
- Metals and Nonmetal ions
 - alkaline: Na, K
 - alkaline earth: Ca, Mg
 - transition: Fe, Cu, Zn, Mn, Mo

Elements Found in the Human Body

н																	He
Li	Be											В	c	N	0	F	Ne
Na	Mg											ΑI	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															

Common Elements

Trace Elements

Remaining Elements

Percentage of elements in human body

Hydrogen Ion Concentration

- In aqueous solutions (including cytoplasm of cells), the hydrogen ion concentration [H+] is important since it can affect biochemical reactions
- Water is a weak acid (acids donate protons H+)
- It is also a base (bases accept protons)
- Water can donate protons to itself:

$$H_2O + H_2O \longleftrightarrow H_3O^+ + OH^-$$

←→ is supposed to mean that there is a forward and reverse reaction

The reaction is often shown as this $H_2O \leftarrow \rightarrow H^+ + OH^-$

- In pure water, the H⁺ concentration reaches 10^{-7} moles per liter = 10^{-7} molar = 10^{-7} M
- This also implies that the [OH-] = 10-7 M

$K_{\rm w}$ & pH

 An equilibrium constant K is a quotient: it is the arithmetic product of the concentrations of all products divided the arithmetic product of the concentrations of all reactants

$$K = \frac{[\text{product1}][\text{product2}] \dots [\text{product}n]}{[\text{reactant1}][\text{reactant2}] \dots [\text{reactant}n]}$$

• The equilibrium constant for water dissociation is $K_{\rm w}$,:

$$K_{\rm w} = [H^+][OH^-] = [10^{-7}][10^{-7}] = 10^{-14}$$

those concentrations came from the previous slide

• Definition: $pH = -log[H^+]$ for pure water: $pH = -log 10^{-7} = 7$

Mineral Acid

Hydrochloric acid (HCl) is an example of a <u>strong</u>

whenever any uses term "mineral" acid, they imply strong acid

 Strong acids when added to water completely react with water molecules (which act as bases) to form hydronium ions (H₃O⁺)

$$HCI + H_2O \rightarrow H_3O^+ + CI^-$$

 Most chemists just leave out the fact that a proton (H+) is transferred to an accepting base (H₂O) and write:

$$HCI \rightarrow H^+ + CI^-$$

Mineral Acid

- If we add 1 mole HCl to 1 liter H₂O, all of the protons in HCl contribute to the [H⁺] concentration (100% ionization)
- So we have [H+] = 1 M, and so the pH = -log 1 = 0
- If we added 0.001 mole to 1 L water, then [H+] = 0.001 M, so pH = $-\log 0.001 = 3$

Mineral Bases

- Sodium hydroxide (NaOH) is an example of a strong (mineral) base
- It produces OH⁻ ions immediately, lowering the [H⁺]
- As OH^- and H^+ are in an equilibrium with H_2O and affected by its equilibrium constant K_w
- Suppose we add 1 mol NaOH to 1 L H_2O , which produces $[OH^-] = 1$ M. What is the $[H^+]$ and pH?

$$K_{\rm w} = 10^{-14} = [{\rm H}^{+}] [{\rm OH}^{-}]$$

the math says $[H^+] = 10^{-14} \text{ M}$, so pH = 14

• Now suppose we prepare 0.001 M NaOH. The math says $[H+] = 10^{-11}$ M, so pH = 11

Weak Acids & Bases

- Unlike HCl, weak acids do not completely give up their protons
- Acetic acid (CH₃COOH) is an example of a weak acid: when added to water, not all of it ionizes (gives H⁺ to the solution)
- Unlike NaOH, weak bases do not completely take up protons in solution
- Ammonia (NH₃) is an example of a weak base

Buffers

- HA ←→ H⁺ + A⁻
 if HA = HCl, then [HA] = 0 (no HA left)
 if HA = CH3COOH, there is much HA remaining
- B + H⁺ ← → BH⁺
 if B = NaOH, then [B] = 0 (no NaOH left)
 if B = NH3, there is much B remaining
- If you add HCl to just water, you get a change in pH that is dependent just on the H+ produced by HCl
- But if you add HCl to water containing a high concentration of CH₃COOH, the H⁺ resists changing because of the weak acid present

This makes weak acids and bases good buffers.

A buffer is a chemical that resists a change in pH when lots of H+ or OH- ions are produced

Buffering in the Body

- The pH of all body fluids, inside and outside of the cells, must be maintained in a narrow range or else enzymes stop doing metabolism
- Cytosolic pH values should be between 7.1-7.4
 Phosphate (H₂PO4⁻, HPO₄²⁻) optimally buffers at pH 7.2, and along with proteins, keeps intracellular pH stable
- Blood is buffered using the equilibrium between bicarbonate and carbon dioxide

$$HCO_3^- + H^+ \leftarrow \rightarrow H_2CO_3 \leftarrow \rightarrow H_2O + CO_2$$

The left side ions HCO_3^- and H^+ are dissolved forms in the blood, while the CO_2 is a gas that forms in the lungs (to be exhaled)

Acidosis & Alkalosis

- Normal cell metabolism produces acids that can lower pH. Proper kidney and lung function ensures there is no acid increase (metabolic acidosis)
- Hyperventilation causes exhalation of CO₂ in excessive quantities and respiratory alkalosis this pulls the equilibrium reaction shown on the previous slide to the right, causing a depletion of the H⁺ ion in the blood, thus increasing the pH and leading to alkalosis

Physiological Extremes of pH

- Extremes of pH can be generated quite naturally
- Within cells: membrane-bound lysosomes particularly within phagocytic immune cells (neutrophils) will produce an internal pH of about 2: shown by enzymes that work in the lysosome having a maximal activity at that low pH
- At organ/system level: it is well known that parietal cells in the stomach are engines that pump H+ into the gastric fluid for digestion, and that enzymes like pepsin have maximal activity at these low pH values

Reading (Sources)

Becker's WotC: Chapter 2

• Raven: Chap 2

• Marieb: pp 40-42