Arktos: Current Work and Next

Xiaoning Ding

Agenda

- Background
- Arktos
 - Features Overview
 - Current work
 - Next

CloudFabric Overview

- 1. Large-scale Cloud Platform: challenges and opportunities
 - Challenges: scalability; resource utilization, new workload types (containers & functions); new heterogenous hardware & high-speed network, etc.
 - Opportunities: new technologies in hardware and software, including hardware offloading, CPU QoS control, new networking capabilities in Linux kernel, etc.
- 2. CloudFabric: an open-source project group for large scale cloud platform
 - Arktos, computing platform, https://github.com/futurewei-cloud/arktos
 - Mizar, network data plane, https://github.com/futurewei-cloud/mizar
 - Alcor, network control plane, https://github.com/futurewei-cloud/alcor

Arktos: Overview

Unified Stack

- VM and containers share a same control plane.
- VM and containers share a shared resource pool.
- Built-in optimization for serverless functions.

Multi-tenancy

- Enable multi organizations and teams to share a same resource pool.
- Provide strong isolation and quota mechanism for resources.

<u>Virtualization</u>

- ARM virtualization & optimization.
- lightweight virtualization.

Large Scalability

- Targeting at 100K nodes per cluster and 300K nodes per region
- Make all components partitioned and replicated

Resource Utilization

- Vertical scaling and SLOdriven scaling.
- intelligent distributed scheduling.
- GPU scheduling.

Edge Cloud

- Cloud/Edge Scheduling
- Next version of KubeEdge

Arktos: Unified Stack


```
apiVersion: v1
kind: Pod
metadata:
   name: vm1
spec:
   virtualMachine:
    name: vm
    image: download.cirros-cloud.net/0.3.5/cirros-0.3.5-x86_64-disk.img
    resources:
        requests:
        cpu: "1"
        memory: "1Gi"
```

```
apiVersion: v1
kind: Pod
metadata:
   name: container1
spec:
   containers:
        - name: container1
        image: ubuntu
        command: ["/bin/bash", "-ec", "while :; do echo '.'; sleep 5 ; done"]
        resources:
        requests:
        cpu: "1"
        memory: "1Gi"
```

Arktos: Scalability

- Shard tenant data
- Scheduler has global view of all nodes in cluster

Arktos: Scalability

- List/watch by range of field value
- Multiple controller instances
 - Multiple controller managers works in active-active mode

Arktos: Multi-Tenancy

Hard Multi-Tenancy

- Enable organizations/departments to safely share one infrastructure, without deploying/operating multiple clusters.
- Support per-tenant resource view, access control, quota, etc.
- Assume no trust among tenants; ready for strict scenarios like public cloud.

Key Changes:

- A new API object: tenant
- All API objects have a new field *Tenant* in its *ObjectMeta* section
- A new resource URL scheme: tenants/{tenant}/namespaces/{namespace}/{objectTypes}/{objectName}
- Tenant-aware Client-Go library, scheduler, controllers, agent and CLI tools.

Next Step: Scheduling, Resource Utilization & SLO

- Cross-site scheduling
 - A global entry to schedule workloads across cloud data centers and Edge sites
 - Geo locality aware and application traffic-pattern aware
- Resource Utilization Improvements
 - In-place vertical scaling. Applications don't need to reserve the peak resource requirement up front.
 - SLO-driven resource management, including SLO specification, monitoring and intelligent resource adjustment to enforce the SLO requirements.

Next Step: ARM Optimization

- The eco system of ARM in data center is emerging. AWS released its Graviton cpu and Huawei released Kunpeng cpu.
- ARM CPU is usually more energy efficient and cost efficient than x86, but per-core performance is less than x86.
- Besides simply recompiling software for ARM platform, what software optimizations can we do? What new features can we build on ARM?
- Some initial efforts
 - Work with university researchers to implement enclave in normal world of ARM TrustZone. This potentially can provide a large enclave for sensitive cloud applications.

Thank you.