

Ngôn ngữ lập trình C++

10 BÀI TẬP VỀ CÂY ĐỔ THỊ (TREE)

1 $\stackrel{\smile}{ ightarrow}$. Tiền bối bậc 2^t

Cho cây T gồm n đỉnh được đánh số thứ tự 1, 2, ..., n. Gốc là đỉnh 1. Với mỗi đỉnh u thuộc cây T, sẽ có một đường đi duy nhất từ đỉnh 1 đến đỉnh u. Giả sử đường đi đó là:

$$1 = u_0 \rightarrow u_1 \rightarrow u_2 \rightarrow \dots \rightarrow u_m = u.$$

Khi đó ta nói:

 $1 = u_0$ là tiền bối bậc m của u.

 u_I là tiền bối bậc m-1 của u.

 u_2 là tiền bối bận m-2 của u.

 u_t là tiền bối bâc m-t của u.

Như vậy đỉnh v được gọi là tiền bối bậc k của u ($k \le m$) nếu đường đi từ v đến u có đúng k cạnh.

Ví du:

Với cây ở trên, ta có: 6 là tiền bối bậc 1 của 7; 4 là tiền bối bậc 2 của 7; 2 là tiền bối bậc 3 của 7; 1 là tiền bối bậc 4 của 7.

Yêu cầu: Cho đỉnh u và t, hãy tìm đỉnh tiền bối bậc 2^t của đỉnh u.

Dữ liệu cho trong file Ance2T.Inp gồm:

- Dòng đầu ghi số nguyên dương n là số đỉnh của cây.
- Tiếp theo gồm n-1 dòng, mỗi dòng gồm hai số u,v mô tả một cạnh của cây.
- Dòng tiếp theo ghi số q là số các truy vấn.
- q dòng cuối, mỗi dòng ghi hai số nguyên t, u mô tả truy vấn tìm đỉnh tiền bối bậc 2^t của u ($0 \le t \le 20$; $1 \le u \le n$).

Kết quả ghi ra file Ance2T.Out gồm q dòng, mỗi dòng là kết quả của một truy vấn tương ứng trong file dữ liệu. Nếu không có đỉnh tiền bối bậc 2^t của đỉnh u thì ghi kết quả là -1.

Ví dụ:

Ance2T.Inp	Ance2T.Out	Hình minh họa
7	6	1
12	1	
13	-1	
2 4		2 3
25		
4 6		(4) (5)
67		
3		6
0 7		
15		
27		7

Giới han:

• Sub1: $n, q \le 10^3$;

• Sub2: $n, q \le 2.10^5$;

2☆. Tiền bối bậc k

Cho cây T gồm n đỉnh được đánh số thứ tự 1,2,...,n. Gốc là đỉnh 1. Với mỗi đỉnh u thuộc cây T, sẽ có một đường đi duy nhất từ đỉnh 1 đến đỉnh u. Giả sử đường đi đó là:

$$1 = u_0 \to u_1 \to u_2 \to \ldots \to u_m = u.$$

Khi đó ta nói:

 $1 = u_0$ là tiền bối bậc m của u.

 u_1 là tiền bối bậc m-1 của u.

 u_2 là tiền bối bận m-2 của u.

 u_t là tiền bối bậc m-t của u.

Như vậy đỉnh v được gọi là tiền bối bậc k của u ($k \leq m$) nếu đường đi từ v đến u có đúng k cạnh.

Ví du:

Design and Analysis of Algorithms

Với cây ở trên, ta có: 6 là tiền bối bậc 1 của 7; 4 là tiền bối bậc 2 của 7; 2 là tiền bối bậc 3 của 7; 1 là tiền bối bậc 4 của 7.

Yêu cầu: Cho đỉnh u và k, hãy tìm đỉnh tiền bối bậc k của đỉnh u.

Dữ liệu cho trong file AnceK. Inp gồm:

- Dòng đầu ghi số nguyên dương n là số đỉnh của cây.
- Tiếp theo gồm n-1 dòng, mỗi dòng gồm hai số u, v mô tả một cạnh của cây.
- Dòng tiếp theo ghi số q là số các truy vấn.
- q dòng cuối, mỗi dòng ghi hai số nguyên k, u mô tả truy vấn tìm đỉnh tiền bối bậc k của u.

Kết quả ghi ra file AnceK.Out gồm q dòng, mỗi dòng là kết quả của một truy vấn tương ứng trong file dữ liệu. Nếu không có đỉnh tiền bối bậc k của đỉnh u thì ghi kết quả là -1. Vi du:

AnceK.Inp	AnceK.Out	Hình minh họa
7	2	(1)
1 2	2	
13	-1	
2 4	3	2 3
25		
4 6		4 (5)
67		
4		6
3 7	10) 4 10) 4 10)	
15		
3 5		7
03		

Giới hạn:

- Sub1: $n, q \le 10^3$;
- Sub2: $n, q \le 2.10^5$;

233. Tiền bối − Hậu duệ

Cho cây T = (V, E) gồm n đỉnh, các đỉnh được đánh số từ 1 đến n. Đỉnh 1 là gốc của cây. Mối quan hệ " $Tiền \, bối - Hậu \, duệ$ " được định nghĩa như sau:

Với một đỉnh v thuộc T có gốc u. Khi đó có đường đi duy nhất từ đỉnh gốc u đến v.

Giả sử đường đi quá các đỉnh: $u = u_1 \rightarrow u_2 \rightarrow u_3 \rightarrow ... \rightarrow u_{k-2} \rightarrow u_{k-1} \rightarrow u_k = v$.

- **4** Ta gọi: Đỉnh u_{k-1} là **đỉnh cha** của đỉnh v; v là **đỉnh con** của đỉnh u_{k-1} .
- lacksquare Các đỉnh: $u_1, u_2, ..., u_{k-1}$ được gọi là các **đỉnh tiền bối** của v, v là **đỉnh hậu duệ** của các đỉnh $u_1, u_2, ..., u_{k-1}$.

Yêu cầu: Với hai đỉnh u, v. Hãy kiểm tra xem u, v có mối quan hệ "Tiền bối - Hậu duệ" hay không? Tức là u có phải là tiền bối của v hay không? Hoặc v có phải là tiền bối của u hay không?

Dữ liệu cho trong file TREEANCE.INP như sau:

- Dòng đầu ghi hai số nguyên dương n và q tương ứng là số đỉnh và số truy vấn.
- n-1 dòng tiếp theo, mỗi dòng gồm hai số u, v mô tả cạnh (u, v) của cây.
- q dòng cuối, mỗi dòng ghi hai số nguyên x, y, cần xét mối quan hệ "Tiền bối Hậu duệ" của cặp đỉnh này.

Kết quả ghi ra file **TREEANCE.OUT** gồm q dòng, nếu x, y là "Tiền bối - Hậu duệ" của nhau thì ghi ra 1, ngược lại ghi ra 0.

Giới hạn:

- Sub1: $n \le 1000$, $q \le 100$;
- Sub2: $n \le 10^5$, $q \le 10^5$.

Ví du:

TREEANCE.INP	TREEANCE.OUT	Hình minh họa
5 3	1	Gố
1 2	1	
1 5	0	
2 3		2 5
2 4		
1 4		
3 2		3 4
4 5		

24☆. Nút cha chung gần nhất (The Lowest Common Ancestor - LCA)

Cho một cây có n đỉnh được đánh số từ 1 đến n. Cây có gốc là đỉnh 1. Có m truy vấy, mỗi truy vấn cần trả lời nút cha chung của cả hai đỉnh u và v đồng thời nút cha chung đó xa nút gốc nhất có thể (tức là gần u, v nhất có thể).

Dữ liệu cho trong file văn bản LCA.INP như sau:

- Dòng đầu tiên ghi hai số nguyên dương n, m ($3 \le n$, $m \le 10^5$) tương ứng là số đỉnh trên cây và số truy vấn.
- n-1 dòng sau mỗi dòng ghi hai số nguyên dương u, v mô tả cạnh u, v trên cây.
- m dòng cuối cùng, mỗi dòng ghi hai số u, v mô tả truy vấn cần đưa ra nút cha chung gần nhất của đỉnh u và v.

Kết quả ghi ra file LCA.OUT gồm m dòng, dòng thứ i là kết quả truy vấn của truy vấn thứ i. Ví dụ:

LCA.INP	LCA.OUT
8 3	1 * * * * *
1 2	3
1 3	
1 7	1
3 4	
3 5	多艺术业务艺术业务艺术 业
3 6	
6 8	· 维米。 "基本"、"基准"、
1 2	
4 8	
5 7	多艺术业务艺术业务艺术业

<mark>5☆.</mark> Đường đi 0 − 1

Cho cây gồm n đỉnh, n-1 cạnh. Mỗi cạnh có ghi trọng số là 0 hoặc 1. Với mỗi cặp đỉnh u, v, tồn tại đường đi p duy nhất trên cây từ đỉnh u đến đỉnh v; $p = u \rightarrow u_1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_k = v$. Đường đi p được gọi là đường đi 0-1 nếu:

- Hoặc các cạnh trên đường đi đều có trọng số bằng 0.
- Hoặc các cạnh trên đường đi đều có trong số bằng 1.
- Dọc theo đường đi từ u đến v, các cạnh có trọng số bằng 0 thuộc về một bên, các trọng số bằng 1 thuộc về bên còn lại.

Yêu cầu: Đếm xem có bao nhiều cặp đỉnh u, v (u < v) mà đường đi từ u đến v là đường đi 0 - 1. **Dữ liệu** cho trong file PATH01.Inp gồm:

- Dòng đầu ghi số nguyên dương n là số đỉnh ($n \le 10^5$) của cây.
- n-1 dòng sau, mỗi dòng ghi ba số u, v, c mô tả cạnh (u, v) có trọng số c (c = 0 hoặc 1).

Kết quả ghi ra file PATH01.Out là số cặp đỉnh u, v mà đường đi từ u đến v là đường đi 0-1. Vi du:

PATH01.Inp	PATH01.Out	Hình minh họa
5 1 2 0	9	1
1 3 1		0 1 1
141 350		2 3 4
		0
		5

Giải thích:

Có các cặp: (1, 2), (1, 3), (1, 4), (1, 5) (3, 5), (2, 3), (2, 4), (3, 4), (4, 5).