Oblig 2 inf1080

Elsie Mestl

August 31, 2015

Oppgave 4.8:

En tautologi er et utrykk som allid er sann uavhengig av hva inputen er. En kontradiksjon er et utrykk som alltid er usannt uavhengig av input

 \mathbf{d}

P	Q	$P \rightarrow Q$	$(P \to Q) \land \neg Q$	$((P \to Q) \land \neg Q) \to \neg P$
\overline{T}	Т	Т	F	T
Τ	F T	F	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{T}	T	\mathbf{F}	${f T}$
\mathbf{F}	\mathbf{F}	T	${ m T}$	${f T}$

Ser at hele kolonnen til høyre alltid er sann, har dermed at utrykket er en tautologi.

 \mathbf{e}

$$\neg (P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor P) = \neg P \land \neg Q \land Q \land \neg R \land R \land \neg P$$

Utrykket er en kontradiksjon da Q kan ikke være både sann og usann samtidig

 \mathbf{f}

$$(\neg(F \lor Q)) \land P = \neg F \land \neg Q \land P$$

Hverken en tautologi eller en kontradiksjon da utrykket er sann er når F og Q er usanne og P er sann, men usant ellers.

Oppgave 5.5:

Bevis:

$$(P \to Q) \land (Q \to R) \to (P \to R)$$

 \mathbf{a}

Direktebevis:

Setter dermed inn i en sannhetsverditabell og ser at:

P	Q	R	$A = P \rightarrow Q$	$B=Q\to R$	$A\wedge B$	$P \to R$	$A \wedge B \to (P \to R)$
Т	Τ	Т	Т	Τ	Τ	Τ	T
\mathbf{T}	${ m T}$	F	T	\mathbf{F}	F	\mathbf{F}	${ m T}$
${\rm T}$	\mathbf{F}	\mathbf{T}	F	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{T}	\mathbf{F}	F	F	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$
\mathbf{F}	Τ	\mathbf{T}	T	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	Τ	F	T	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	Т	T	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	F	T	${ m T}$	${ m T}$	${ m T}$	${ m T}$

Siden den siste kollonnen allit
d er sann har vi at utsagnet vårt alltid vil stemme

\mathbf{c}

 ${\bf Motsigelses bevis:}$

Anta at utrykket er usant.