-0.890 -0.333 1.13 -0.344

0.445 0.176 0.314

8

	2e) row.medion = $\begin{bmatrix} -0.35 \\ -0.85 \\ -0.20 \end{bmatrix}$ Col. std = $\begin{bmatrix} 0.700 & 1.000 & 0.896 & 0.321 \end{bmatrix}$
	sum(!is.na(y))=48 They are different the there are 14 ran values in the NonD column.
36	$w = n\alpha. const(y)$ $w = y[!is.na(y)]$
	Bodylugt Brainlugt Nont Dream Sleep Span Grest 100-81 218.68 8.74 1.90 10,64 19.37 129.94
0	référence l'acode
3e)	[13.64 11.75 10.31 8.81 4.07]
40)	vor = 349.96 $vor = 291.26$
	View R code for histogram
145)	Normal distribution. There is a uniform random
0	event, dice roll, and X is the sum of 100 dice rolls. The control limit theory states that the
0	sum (or average) of many independent, desticity distributed values will be normal.
0	
0	Mean $(M) = (1+2+3+4+5+6)/6 \cdot 100 = 350$ Varionce $(\sigma^2) = [(1^2+2^2+3^2+4^2+5^2+6^2)/6 - M^2] \cdot 100 = 291.67$
	These are similar to what I found experimentally in (d)
0	