

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: G01N 33/553, B32B 5/16	A1	(11) International Publication Number: WO 00/33079 (43) International Publication Date: 08 June 2000 (08.06.2000)
(21) International Application Number: PCT/US99/28387		
(22) International Filing Date: 30 November 1999 (30.11.1999)		Published
(30) Priority Data: 60/110,327 30 November 1998 (30.11.1998) US		
(60) Parent Application or Grant NANOSPHERE LLC [/]; O. MIRKIN, Chad, A. [/]; O. NGUYEN, SonBinh, T. [/]; O. MIRKIN, Chad, A. [/]; O. NGUYEN, SonBinh, T. [/]; O. CROOK, Wannell, M. ; O.		
(54) Title: NANOPARTICLES WITH POLYMER SHELLS (54) Titre: NANOParticules à ENVELOPPES POLYMERES		
(57) Abstract		
The invention provides a method of preparing nanoparticles having at least one polymer shell attached to them, each polymer shell having a selected property or properties. The method comprises attaching initiation monomers to the surfaces of the nanoparticles, contacting the nanoparticles having the initiation monomers attached to them with a transition metal ring-opening metathesis catalyst to activate the initiation monomers, and contacting the nanoparticles with one or more types of propagation monomers of the formula P-L-N under conditions effective so that the monomers are polymerized to form the one or more polymer shells. In the formula P-L-N, N is a cyclic olefin-containing group, P is a moiety which gives each polymer shell a selected property or properties, and L is a bond or linker. The invention also provides polymers formed by polymerizing the propagation monomers. The invention further provides the nanoparticles, the initiation monomers, and propagation monomers of formula P-L-N wherein P is a moiety having a property selected from the group consisting of redox activity, optical activity, electrical activity and magnetic activity, and L and N are defined above. The invention also provides binding monomers of formula B-L-N, wherein B is a binding moiety that binds specifically to an analyte, and N and L are defined above. Finally, the invention provides methods and kits for detecting or quantitating an analyte.		
(57) Abrégé		
La présente invention concerne un procédé de préparation de nanoparticules comprenant au moins une enveloppe polymère, chaque enveloppe polymère possédant une ou plusieurs propriétés sélectionnées. Le procédé consiste à fixer des monomères d'amorçage à la surface des nanoparticules, à mettre en contact les nanoparticules portant ces monomères d'amorçage avec un catalyseur de métathèse à ouverture de cycle, à base de métal de transition, afin d'activer les monomères d'amorçage, et à mettre en contact les nanoparticules avec un ou plusieurs types de monomères de propagation, de formule P-L-N, dans des conditions permettant polymériser les monomères pour former la ou les enveloppes polymères. Dans la formule P-L-N, N est un groupe contenant une oléfine cyclique, P est un résidu qui donne à chaque enveloppe polymère une ou plusieurs propriétés sélectionnées, et L est une liaison ou élément de liaison. L'invention concerne également des polymères formés par polymérisation des monomères de propagation. L'invention concerne, de plus, les nanoparticules, les monomères d'amorçage et des monomères de propagation de formule P-L-N, dans laquelle P est un résidu possédant une propriété choisie entre une activité redox, une activité optique, une activité électrique et une activité magnétique, L et N étant définis plus haut. L'invention concerne également des monomères de liaison de formule B-L-N, dans laquelle B est un résidu de liaison qui se fixe de manière spécifique sur un analyte, N et L étant définis plus haut. En dernier lieu, l'invention concerne des procédés et des kits de détection ou d'analyse quantitative d'un analyte.		

BEST AVAILABLE COPY

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : G01N 33/553, B32B 5/16		A1	(11) International Publication Number: WO 00/33079 (43) International Publication Date: 8 June 2000 (08.06.00)
(21) International Application Number: PCT/US99/28387 (22) International Filing Date: 30 November 1999 (30.11.99)		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 60/110,327 30 November 1998 (30.11.98) US		Published <i>With international search report.</i>	
(71) Applicant (for all designated States except US): NANOSPHERE LLC [US/US]; 111 16th Street, Wilmette, IL 60091 (US).			
(72) Inventors; and (75) Inventors/Applicants (for US only): MIRKIN, Chad, A. [US/US]; 111 16th Street, Wilmette, IL 60091 (US). NGUYEN, SonBinh, T. [US/US]; 2044 Pratt Court, Evanston, IL 60201-3116 (US).			
(74) Agents: CROOK, Wannell, M. et al.; Sheridan Ross P.C., Suite 1200, 1560 Broadway, Denver, CO 80202-5141 (US).			
(54) Title: NANOPARTICLES WITH POLYMER SHELLS			
(57) Abstract			
<p>The invention provides a method of preparing nanoparticles having at least one polymer shell attached to them, each polymer shell having a selected property or properties. The method comprises attaching initiation monomers to the surfaces of the nanoparticles, contacting the nanoparticles having the initiation monomers attached to them with a transition metal ring-opening metathesis catalyst to activate the initiation monomers, and contacting the nanoparticles with one or more types of propagation monomers of the formula P-L-N under conditions effective so that the monomers are polymerized to form the one or more polymer shells. In the formula P-L-N, N is a cyclic olefin-containing group, P is a moiety which gives each polymer shell a selected property or properties, and L is a bond or linker. The invention also provides polymers formed by polymerizing the propagation monomers. The invention further provides the nanoparticles, the initiation monomers, and propagation monomers of formula P-L-N wherein P is a moiety having a property selected from the group consisting of redox activity, optical activity, electrical activity and magnetic activity, and L and N are defined above. The invention also provides binding monomers of formula B-L-N, wherein B is a binding moiety that binds specifically to an analyte, and N and L are defined above. Finally, the invention provides methods and kits for detecting or quantitating an analyte.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LJ	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Description

5

10

15

20

25

30

35

40

45

50

55

5

NANOPARTICLES WITH POLYMER SHELLS

10

This application claims benefit of provisional application 60/110,327 filed November 30, 1998.

15

This invention was made with support from ARO through MURI, grant number DAAG55-97-1-0133. The U.S. government may have rights in the invention.

20

FIELD OF THE INVENTION

This invention relates to nanoparticles having polymer shells attached to them, the polymer shells imparting one or more selected properties to the nanoparticles. This invention also relates to a method of making the nanoparticles which utilizes a transition-metal, ring-opening metathesis polymerization of cyclic olefin derivatives, preferably norbornene derivatives, having a selected property. The method allows for the growth of the polymers off the surfaces of the nanoparticles. The invention also relates to certain novel monomers and polymers and to methods and kits for the detection or quantitation of an analyte.

25

30

BACKGROUND

In recent years, there has been considerable interest in developing methods for assembling nanoscale building blocks into periodic, functional materials. See Storhoff et al., *J. Clust. Sci.*, 8:179 (1997) and references cited therein, and Brousseau et al., *J. Am. Chem. Soc.*, 120:7645 (1998). These methods rely on access to both novel building block compositions and assembly strategies.

35

With regard to the former, both inorganic and organic compositions are now available. Importantly, some of these building blocks are accessible in macroscopic quantities and in monodisperse form. For example, a variety of methods exist for preparing monodisperse samples of CdS and CdSe particles (Murray et al., *J. Am. Chem. Soc.*, 115:8706 (1993); Weller, *Angew. Chem., Int. Ed. Engl.*, 32:41 (1993); Wang and Herron, *J. Phys. Chem.*, 95:525 (1991)) and gold particles (Grabar et al., *J. Anal. Chem.*, 67:735 (1995); Frens, *Nature Phys. Sci.*, 241:20 (1973); Hayat, M.A. (ed.), *Colloidal Gold: Principles, Methods and Applications* (Academic, San Diego, 1991)) with diameters ranging from 1 to 40 nm. Studies involving these well-defined inorganic particles not only have led to a greater understanding of quantum confinement effects but

40

45

50

55

5

also the development of new and useful spectroscopic methods (Freeman et al., *Science*, 267:1629 (1995); Zhu et al., *J. Am. Chem. Soc.*, 119:235 (1997)) and detection technologies (Mirkin et al., *Nature*, 382:607 (1996); Elghanian et al., *Science*, 277:1078 (1997); Storhoff et al., *J. Am. Chem. Soc.*, 120:1959 (1998)). Similarly, a great deal has been learned from the synthesis, characterization, and study of polymer particle compositions. Goodwin et al., *Colloid Polym. Sci.*, 525:464 (1974); Goodwin et al., *Colloid Polym. Sci.*, 257:61 (1979); Schmitt et al., *Adv. Mater.*, 9:61 (1997); José-Yacamán et al., *Appl. Phys. Lett.*, 7:913 (1969); Olsen and Kafafi, *J. Am. Chem. Soc.*, 113:7758 (1991); Spatz et al., *Adv. Mater.*, 8:337 (1996). However, far less is known about such systems with nanoscale dimensions (<100 nm).

10

The development of synthetic methods for preparing structures consisting of nanoparticle cores and organic polymer shells on this size scale would give entry into a new and versatile class of hybrid nanoparticle building blocks. Importantly, if it were possible to control the composition and thicknesses of the polymer shells, one would have unprecedented control over the chemical and physical properties of these novel materials.

15

20

25

30

SUMMARY OF THE INVENTION

35

The invention provides a method of preparing nanoparticles having at least one polymer shell attached thereto, each polymer shell having a selected property or properties. The method comprises attaching initiation monomers to the surfaces of the nanoparticles. Then, the nanoparticles having the initiation monomers attached to them are contacted with a transition metal, ring-opening, metathesis catalyst to activate the initiation monomers. The nanoparticles are also contacted with one or more types of propagation monomers of the formula P-L-N under conditions effective so that the monomers are polymerized to form one or more polymer shells attached to the nanoparticles. In the formula P-L-N, N is a cyclic olefin-containing group, P is a moiety which gives each polymer shell a selected property or properties, and L is a bond or linker. The invention also provides the nanoparticles, the initiation monomers, and propagation monomers wherein P is a moiety having a property selected from the group consisting of redox activity, optical activity, electronic activity and magnetic activity.

40

45

50

55

5

3

10

The invention further provides a method for detecting or quantitating an analyte comprising contacting a type of the nanoparticles of the invention with a sample suspected of containing the analyte and detecting or measuring the property or properties of the nanoparticles in order to detect or quantitate the analyte. The invention also provides a kit for detecting or quantitating an analyte comprising a container holding a type of the nanoparticles of the invention.

15

In addition, the invention provides a binding monomer. The binding monomer has the formula N - L - B, wherein B is a binding moiety that binds specifically to an analyte, and N and L are defined above.

20

The invention also provides a polymer formed by polymerizing one or more types of the propagation monomers of the invention. These polymers may be used to detect or quantitate an analyte when L comprises a binding moiety B. Thus, the invention also provides a method for detecting or quantitating an analyte comprising contacting a sample suspected of containing the analyte with the polymer and detecting or measuring the property or properties of the polymer in order to detect or quantitate the analyte. In addition, the invention provides a kit for detecting or quantitating an analyte comprising a container holding a polymer of the invention wherein L comprises a binding moiety B.

25

Finally, the invention provides a method of detecting or quantitating an analyte comprising contacting the analyte with a type of binding monomers of the invention so that the binding monomers bind to the analyte. Then, a type of propagation monomers

30

of the invention is added so that the propagation monomers polymerize to form a polymer attached to the analyte. Then, the property(ies) of the polymer attached to the analyte is(are) detected or measured in order to detect or quantitate the analyte. Finally, the invention provides a kit for detecting or quantitating an analyte comprising a container holding a type of binding monomers of the invention, a container holding a type of propagation monomers of the invention, or both.

40

BRIEF DESCRIPTION OF THE DRAWINGS

45

Figure 1: Schematic diagram of the preparation of nanoparticles with block copolymer shells. Shown are the formulas of compounds 1, 2, 3 and 4. In the formula of 1, Ph = phenyl and Cy = cyclohexyl.

50

55

5

10

15

20

25

30

35

40

50

Figures 2A-H: Figures 2A-E show the ^1H NMR spectra of gold nanoparticles (GNPs) functionalized with a 3:1 mixture of 1-dodecanethiol and 2 (δ 7 to 0 ppm) (Figure 2A), GNPs functionalized with a 3:1 mixture of 1-dodecanethiol and 2 (δ 6.3 to 5.2 ppm) (Figure 2B), 2-modified GNPs after treatment with one equivalent of 1 (δ 6.3 to 5.2 ppm) (Figure 2C), 2-modified GNPs after the addition of 20 equiv. of 3 to the ring-opening metathesis polymerization (ROMP) activated GNPs (δ 6.3 to 5.2 ppm) (Figure 2D), and the GNP - poly 3 - poly 4 hybrid system (δ 7 to 0 ppm) (Figure 2E). Figures 2F-H show cyclic voltammetry of the GNP - poly 3 system (Figure 2F), the GNP - poly 3 - poly 4 hybrid (Figure 2G), and poly 3 (Figure 2H). All cyclic voltammetry experiments utilized a gold working electrode, a platinum-gauze counter electrode, and a silver-wire reference electrode. Ferrocene (bis(cyclopentadienyl)iron) was used as an internal reference.

Figures 3A-B: Transmission electron microscopy (TEM) images of 2-functionalized GNPs (Figure 3A) and GNP - poly 3 (Figure 3B).

Figure 4: Diagram showing the structures of norbornenyl-containing monomers.

Figure 5A: Diagram of an assay for the detection of nucleic acid (Target) using GNP - poly 3.

Figure 5B: Diagram of an assay for the detection of nucleic acid using a fluorescent norbornenyl-containing monomer.

Figure 6: Graphs of fluorescence emission versus wavelength for monomer 9 (graph A) and GNP - poly 9 (graph B).

Figures 7A-B: Diagrams showing cross-linking of polymer-nanoparticle hybrids to produce nanoparticle polymer composites.

Figures 8A-B: Formulas of compounds 10-16.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

Nanoparticles useful in the practice of the invention include metal (e.g., gold, silver, copper, and platinum), semiconductor (e.g., Si, CdSe, CdS, and CdS coated with ZnS), polymer (e.g., polystyrene and polymethylmethacrylate), magnetic (e.g., ferromagnetite), insulator (e.g., SiO_2), and superconductor (e.g., $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$) colloidal materials. Other nanoparticles useful in the practice of the invention include ZnSe, ZnS,

5 ZnO, TiO₂, AgI, AgBr, HgI₂, PbS, PbSe, PbTe, ZnTe, SiO₂, CdTe, In₂S₃, In₂Se₃, In₂Te₃, Cd₃P₂, Cd₃As₂, InAs, InP, GaP, and GaAs. Presently preferred are gold nanoparticles.

10 The size of the nanoparticles is preferably from about 1 nm to about 150 nm (mean diameter). More preferably the nanoparticles are from about 2 to about 100 nm. Most 5 preferably the nanoparticles are from about 2 to about 30 nm.

15 Methods of making metal, semiconductor, and magnetic nanoparticles are well-known in the art. See, e.g., Schmid, G. (ed.) *Clusters and Colloids* (VCH, Weinheim, 1994); Hayat, M.A. (ed.) *Colloidal Gold: Principles, Methods, and Applications* (Academic Press, San Diego, 1991); Massart, R., *IEEE Transactions On Magnetics*, **17**, 10 1247 (1981); Ahmadi, T.S. et al., *Science*, **272**, 1924 (1996); Henglein, A. et al., *J. Phys. Chem.*, **99**, 14129 (1995); Curtis, A.C., et al., *Angew. Chem., Int. Ed. Engl.*, **27**, 1530 (1988); Brust et al., *J. Chem. Soc., Chem. Commun.*, 801 (1994); PCT application WO 20 98/21587.

25 Methods of making ZnS, ZnO, TiO₂, AgI, AgBr, HgI₂, PbS, PbSe, ZnTe, CdTe, In₂S₃, In₂Se₃, Cd₃P₂, SiO₂, Cd₃As₂, InAs, ZnSe, InP, GaP, and GaAs nanoparticles are also 15 known in the art. See, e.g., Weller, *Angew. Chem., Int. Ed. Engl.*, **32**, 41 (1993); Henglein, A., *Top. Curr. Chem.*, **143**, 113 (1988); Henglein, *Chem. Rev.*, **89**, 1861 (1989); Brus, *Appl. Phys. A.*, **53**, 465 (1991); Bahncmann, in Photochemical Conversion 30 and Storage of Solar Energy (eds. Pelizzetti and Schiavello 1991), page 251; Wang and Herron, *J. Phys. Chem.*, **95**, 525 (1991); Olshavsky et al., *J. Am. Chem. Soc.*, **112**, 9438 (1990); Ushida et al., *J. Phys. Chem.*, **95**, 5382 (1992); PCT application WO 98/21587; 20 Xu et al., *Mater. Res. Soc. Symp. Proc.*, **536**, 401-405 (1999); Malik et al., *J. Mater. Chem.*, **8**, 1885-1888 (1998); Haggata et al., *J. Mater. Chem.*, **7**, 1969-1975 (1997); 25 Pickett et al., *J. Mater. Chem.*, **7**, 1855-1865 (1997); Micic et al., *J. Lumin.*, **70**, 95-107 (1996); Micic et al., *J. Phys. Chem.*, **99**, 7754-9 (1995); and Viano et al., *Nanostruct. Mater.*, **3**, 239-44 (1993).

40 In addition, methods of making polymer nanoparticles are well known in the art. See, e.g., PCT application WO 98/21587; Gao, et al., *Chin. J. Polym. Sci.*, **17**, 595-601 (1999); Okubo et al., *Colloid Polym. Sci.*, **277**, 900-904 (1999); Cairns et al., *Langmuir*, 30 **15**, 8052-8058 (1999); Puig, *Rev. Mex. Fis.*, **45**, 18-20 (1999); Chen et al., *J. Polym. Sci. Part A: Polym. Chem.*, **37**, 2155-2166 (1999); Landfester et al., *Macromolecules*, **32**,

5

5222-5228 (1999); Stork et al., *Polym. Mater. Sci. Eng.*, **80**, 8-9 (1999); Xiangling et al., *Radiat. Phys. Chem.*, **54**, 279-283 (1999); Charreyre et al., *J. Bioact. Compat. Polym.*, **14**, 64-90 (1999); Sabel et al., PCT application WO 98/56361; Ming et al., *Macromolecules*, **32**, 528-530 (1999); Schaertl et al., *Prog. Colloid Polym. Sci.*, **110**, 285-290 (1998); Li et al., *Macromolecules*, **31**, 6841-6844 (1998); Ming et al., *Macromol. Chem. Phys.*, **199**, 1075-1079 (1998); Fritz et al., *J. Colloid Interface Sci.*, **195**, 272-288 (1997); Zhang et al., *Macromolecules*, **30**, 6388-6390 (1997); Cammas et al., *J. Controlled Release*, **48**, 157-164 (1997); Larpent et al., *React. Funct. Polym.*, **33**, 49-59 (1997); Huang et al., *Int. J. Polym. Mater.*, **35**, 13-19 (1997); Holderle et al., *Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)*, **38**, 479-480 (1997); Hoelderle, et al., *Book of Abstracts, 213th ACS National Meeting, San Francisco, April 13-17, 1997*, OLY-206 (1997); Larpent et al., *Macromolecules*, **30**, 354-362 (1997); Venier-Julienne et al., *Pharm. Acta Helv.*, **71**, 121-128 (1996); Levy et al., PCT applications WO 96/20698 and WO 99/53903; Banerjee et al., *Macromolecules*, **28**, 3940-3 (1995); Maruyama et al., *Biomaterials*, **15**, 1035-42 (1994); Stolnik et al., *J. Controlled Release*, **30**, 57-67 (1994); Paulke et al., *Acta Polym.*, **43**, 288-91 (1992); and Mueller, R. H.; Wallis, K. H. *Int. J. Pharm.*, **89**, 25-31 (1993).

Finally, methods of making superconductor nanoparticles are also well known in the art. See, e.g., Geohegan et al., *Appl. Phys. Lett.*, **74**, 3788-3790 (1999); Fukunaga et al., *Mater. Trans., JIM*, **40**, 118-122 (1999); Awano et al., *World Congr. Part. Technol.*, **3**, 1692-1699 (1998); Fukunaga et al., *J. Mater. Res.*, **13**, 2465-2471 (1998); Terrones et al., *Appl. Phys. A: Mater. Sci. Process.*, **A66**, 307-317 (1998); Reverchon et al., *Ind. Eng. Chem. Res.*, **37**, 952-958 (1998); Chhabra et al., *Tenside, Surfactants, Deterg.*, **34**, 156-158, 160-162, 164-168 (1997); Maser et al., *Adv. Mater. (Weinheim, Ger.)*, **9**, 503-506 (1997); Fukunaga et al., *Proc. Electrochem. Soc.*, **97-2**, 24-35 (1997); Eastoe et al., *Curr. Opin. Colloid Interface Sci.*, **1**, 800-805 (1996); Chhabra et al., *World Surfactants Congr.*, **4th**, **1**, 67-99 (1996); Pillai et al., *Adv. Colloid Interface Sci.*, **55**, 241-69 (1995); Kumar et al., *Mater. Lett.*, **16**, 68-74 (1993); Kumar et al., *Appl. Phys. Lett.*, **62**, 765-7 (1993); and Pillai et al., *Surfactant Sci. Ser.*, **66**, 227-246 (1997).

Suitable nanoparticles are also commercially available from, e.g., Ted Pella, Inc. (gold), Amersham Corporation (gold) and Nanoprobe, Inc. (gold), BBI (gold), Bangs

5

7

10

Laboratories (gold, polymers, silica, magnetic), Vector Laboratories (magnetic biopolymer), Polysciences (silica, polymers), Dynal, Inc. (polymer, magnetic), Accurate Polymers (polymer), Polymer Laboratories (polymer), PolyMicrospheres (polymer, magnetic), Spheredeletech (polymer, fluorescent, magnetic), Xenopore (polymer), and Interfacial Dynamic Corp. (polymer).

15

Each nanoparticle will have a plurality of initiation monomers attached to it. An "initiation monomer" is a compound comprising a functional group, which allows the initiation monomer to be attached to the nanoparticles, and a cyclic olefin group. The cyclic olefin group is located on the initiation monomer so that, when the initiation monomer is attached to the nanoparticles, the olefin functionality will be accessible to participate in the polymerization of subsequently-added cyclic olefin-containing propagation monomers (described below). This is accomplished by having the cyclic olefin group spaced apart from the functional group on the initiation monomer; preferably the cyclic olefin and the functional groups are at opposite ends of the initiation monomer.

20

Thus, the immobilized initiation monomers, once activated by the addition of a suitable catalyst (described below), provide sites for the polymerization of the subsequently-added propagation monomers and allow for the selective growth of polymer blocks off the surfaces of the nanoparticles.

25

As used herein, "cyclic olefin" means a compound containing 1-3 rings, each ring containing 3 or more carbon atoms, preferably 5-8 carbon atoms, and the compound further containing at least one carbon-carbon double bond in a ring (the "olefin functionality"). The cyclic olefin must be capable of undergoing ring-opening metathesis polymerization (ROMP). A cyclic olefin is capable of undergoing ROMP when it contains sufficient strain in the ring(s) so that a ring-opening reaction will release the strain and provide the thermodynamic driving force for the formation of the polymer. For an estimate of ring strain, consult Greenberg & Lieberman, *Strained Organic Molecules*, page 94 (Academic Press 1978). Preferably the cyclic olefin is norbornene, 7-oxonorbornene, cyclooctene, cyclooctadiene, cyclopentene, or cyclobutene. Most preferably, the cyclic olefin is norbornene.

30

Many compounds are known which can be attached to nanoparticles by means of a functional group (referred to hereinafter as "attachment compounds"). Methods of

40

25

45

50

55

5

8

10

making these attachment compounds and attaching them to nanoparticles are well known. Preferably, the attachment compounds are stably attached to the surfaces of the nanoparticles by chemisorption of the molecules of the compound onto the nanoparticles or by covalent linkage of the molecules of the compound to the nanoparticles.

15

Suitable attachment compounds for use in the practice of the invention, and the corresponding type(s) of nanoparticles to which they attach, include:

20

- a. Compounds of the formula R^1SH , R^1SSR^2 , R^1SR^2 , R^1NC , R^1CN , R^1CO_2H , R^1SO_2H , $(R^1)_3P$, $(R^1)_3N$, or $ArSH$ can be attached to gold nanoparticles;
- b. Compounds of formula R^1SH , $ArSH$, or $(R^1)_3N$ can be attached to silver, copper, palladium, and semiconductor nanoparticles;
- c. Compounds of the formula R^1NC , R^2SH , R^1SSR^2 , or R^1SR^2 can be attached to platinum nanoparticles;
- d. Compounds of the formula R^1SH can be attached to GaAs and InP nanoparticles;
- e. Organosilanes, including compounds of the formula R^1SiCl_3 and $R^1Si(OR^2)_3$, $(R^1COO)_2$, $R^1CH=CH_2$, R^1Li and R^1MgX , can be attached to Si and SiO_2 nanoparticles;
- f. Compounds of the formula R^1COOH or R^1CONHR^2 can be attached to metal oxide nanoparticles;
- g. Compounds of the formula R^1SH , R^1NH_2 , $ArNH_2$, pyrrole, or pyrrole derivatives, wherein R^1 is attached to one of the carbons of the pyrrole ring, can be attached to cuprate high temperature superconductor nanoparticles;
- h. Compounds of the formula R^1COOH can be attached to aluminum, copper, silver, and platinum nanoparticles; and
- i. Compounds that are unsaturated, such as azoalkanes (R^3NNR^3) and isothiocyanates (R^3NCS), can be attached to silicon nanoparticles.

25

30

In the above formulas:

35

R^1 and R^2 each has the formula $X(CH_2)_n$ and, if a compound is substituted with both R^1 and R^2 , R^1 and R^2 may be the same or different;

5

9

R³ has the formula CH₃(CH₂)_n;

n is 0-30;

Ar is an aryl; and

10

X is -CH₃, -CHCH₃, -COOH, -CO₂(CH₂)_mCH₃, -OH, -CH₂OH, ethylene glycol, hexa(ethylene glycol), -O(CH₂)_mCH₃, -NH₂, -NH(CH₂)_mNH₂, halogen, glucose, maltose, fullerene C60, a cyclic olefin, or a nucleic acid, where m is 0-30.

15

For a description of attachment compounds and their preparation and use, see Xia and Whitesides, *Angew. Chem. Int. Ed.*, **37**, 550-575 (1998) and references cited therein; Bishop et al., *Curr. Opinion Colloid & Interface Sci.*, **1**, 127-136 (1996); Calvert, *J. Vac. Sci. Technol. B*, **11**, 2155-2163 (1993); Ulman, *Chem. Rev.*, **96**:1533 (1996) (alkanethiols on gold); Dubois et al., *Annu. Rev. Phys. Chem.*, **43**:437 (1992) (alkanethiols on gold);

20

Ulman, *An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly* (Academic, Boston, 1991) (alkanethiols on gold); Whitesides, *Proceedings of the Robert A. Welch Foundation 39th Conference On Chemical Research Nanophase Chemistry*, Houston, TX, pages 109-121 (1995) (alkanethiols attached to gold); Mucic et al. *Chem. Commun.* 555-557 (1996) (describes a method of attaching 3' thiol DNA to gold surfaces); U.S. Patent No. 5,472,881 (binding of oligonucleotide-phosphorothiolates to gold surfaces); Burwell, *Chemical Technology*, **4**, 370-377 (1974) and Matteucci and Caruthers, *J. Am. Chem. Soc.*, **103**, 3185-3191 (1981) (binding of oligonucleotides-alkylsiloxanes to silica and glass surfaces); Grabar et al., *Anal. Chem.*, **67**, 735-743 (binding of aminoalkylsiloxanes and for similar binding of mercaptoalkylsiloxanes); Nuzzo et al., *J. Am. Chem. Soc.*, **109**, 2358 (1987) (disulfides on gold); Allara and Nuzzo, *Langmuir*, **1**, 45 (1985) (carboxylic acids on aluminum); Allara and Tompkins, *J. Colloid Interface Sci.*, **49**, 410-421 (1974) (carboxylic acids on copper); Iler, *The Chemistry Of Silica*, Chapter 6, (Wiley 1979) (carboxylic acids on silica); Timmons and Zisman, *J. Phys. Chem.*, **69**, 984-990 (1965) (carboxylic acids on platinum); Soriaga and Hubbard, *J. Am. Chem. Soc.*, **104**, 3937 (1982) (aromatic ring compounds on platinum); Hubbard, *Acc. Chem. Res.*, **13**, 177 (1980) (sulfolanes, sulfoxides and other functionalized solvents on platinum); Hickman et al., *J. Am. Chem. Soc.*, **111**, 7271 (1989) (isonitriles on platinum); Maoz and Sagiv, *Langmuir*, **3**, 1045 (1987) (silanes on silica); Maoz and Sagiv, *Langmuir*, **3**, 1034 (1987) (silanes on silica); Wasserman et al., *Langmuir*, **5**, 1074 (1989)

25

15 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9

5

10

10

(silanes on silica); Eltekova and Eltekov, *Langmuir*, **3**, 951 (1987) (aromatic carboxylic acids, aldehydes, alcohols and methoxy groups on titanium dioxide and silica); and Lec et al., *J. Phys. Chem.*, **92**, 2597 (1988) (rigid phosphates on metals); Lo et al., *J. Am. Chem. Soc.*, **118**, 11295-11296 (1996) (attachment of pyrroles to superconductors); Chen

5

et al., *J. Am. Chem. Soc.*, **117**, 6374-5 (1995) (attachment of amines and thiols to superconductors); Chen et al., *Langmuir*, **12**, 2622-2624 (1996) (attachment of thiols to superconductors); McDevitt et al., U.S. Patent No. 5,846,909 (attachment of amines and thiols to superconductors); Xu et al., *Langmuir*, **14**, 6505-6511 (1998) (attachment of amines to superconductors); Mirkin et al., *Adv. Mater. (Weinheim, Ger.)*, **9**, 167-173

15

10

(1997) (attachment of amines to superconductors); Hovis et al., *J. Phys. Chem. B*, **102**, 6873-6879 (1998) (attachment of olefins and dienes to silicon); Hovis et al., *Surf. Sci.*, **402**-**404**, 1-7 (1998) (attachment of olefins and dienes to silicon); Hovis et al., *J. Phys. Chem. B*, **101**, 9581-9585 (1997) (attachment of olefins and dienes to silicon); Hamers

20

et al., *J. Phys. Chem. B*, **101**, 1489-1492 (1997) (attachment of olefins and dienes to silicon); Hamers et al., U.S. Patent No. 5,908,692 (attachment of olefins and dienes to silicon); Ellison et al., *J. Phys. Chem. B*, **103**, 6243-6251 (1999) (attachment of

15

isothiocyanates to silicon); Ellison et al., *J. Phys. Chem. B*, **102**, 8510-8518 (1998) (attachment of azoalkanes to silicon); Ohno et al., *Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A*, **295**, 487-490 (1997) (attachment of thiols to GaAs); Reuter et al., *Mater. Res. Soc. Symp. Proc.*, **380**, 119-24 (1995) (attachment of thiols to GaAs); Bain, *Adv. Mater. (Weinheim, Fed. Repub. Ger.)*, **4**, 591-4 (1992) (attachment of thiols to GaAs); Sheen et al., *J. Am. Chem. Soc.*, **114**, 1514-15 (1992) (attachment of thiols to GaAs); Nakagawa et al., *Jpn. J. Appl. Phys., Part I*, **30**, 3759-62 (1991) (attachment of thiols to

30

20

GaAs); Lunt et al., *J. Appl. Phys.*, **70**, 7449-67 (1991) (attachment of thiols to GaAs); Lunt et al., *J. Vac. Sci. Technol., B*, **9**, 2333-6 (1991) (attachment of thiols to GaAs); Yamamoto et al., *Langmuir ACS ASAP*, web release number Ia990467r (attachment of thiols to InP); Gu et al., *J. Phys. Chem. B*, **102**, 9015-9028 (1998) (attachment of thiols to InP); Menzel et al., *Adv. Mater. (Weinheim, Ger.)*, **11**, 131-134 (1999) (attachment of disulfides to gold); Yonezawa et al., *Chem. Mater.*, **11**, 33-35 (1999) (attachment of disulfides to gold); Porter et al., *Langmuir*, **14**, 7378-7386 (1998) (attachment of

35

25

disulfides to gold); Son et al., *J. Phys. Chem.*, **98**, 8488-93 (1994) (attachment of nitriles to

40

30

InP); Lunt et al., *J. Vac. Sci. Technol., B*, **9**, 2333-6 (1991) (attachment of thiols to GaAs); Yamamoto et al., *Langmuir ACS ASAP*, web release number Ia990467r (attachment of thiols to InP); Gu et al., *J. Phys. Chem. B*, **102**, 9015-9028 (1998) (attachment of thiols to InP); Menzel et al., *Adv. Mater. (Weinheim, Ger.)*, **11**, 131-134 (1999) (attachment of disulfides to gold); Yonezawa et al., *Chem. Mater.*, **11**, 33-35 (1999) (attachment of disulfides to gold); Porter et al., *Langmuir*, **14**, 7378-7386 (1998) (attachment of

45

35

disulfides to gold); Son et al., *J. Phys. Chem.*, **98**, 8488-93 (1994) (attachment of nitriles to

50

40

InP); Lunt et al., *J. Vac. Sci. Technol., B*, **9**, 2333-6 (1991) (attachment of thiols to GaAs); Yamamoto et al., *Langmuir ACS ASAP*, web release number Ia990467r (attachment of thiols to InP); Gu et al., *J. Phys. Chem. B*, **102**, 9015-9028 (1998) (attachment of thiols to InP); Menzel et al., *Adv. Mater. (Weinheim, Ger.)*, **11**, 131-134 (1999) (attachment of disulfides to gold); Yonezawa et al., *Chem. Mater.*, **11**, 33-35 (1999) (attachment of disulfides to gold); Porter et al., *Langmuir*, **14**, 7378-7386 (1998) (attachment of

55

disulfides to gold); Son et al., *J. Phys. Chem.*, **98**, 8488-93 (1994) (attachment of nitriles to

5

11

to gold and silver); Steiner et al., *Langmuir*, **8**, 2771-7 (1992) (attachment of nitriles to gold and copper); Solomun et al., *J. Phys. Chem.*, **95**, 10041-9 (1991) (attachment of nitriles to gold); Solomun et al., *Ber. Bunsen-Ges. Phys. Chem.*, **95**, 95-8 (1991) (attachment of nitriles to gold); Henderson et al., *Inorg. Chim. Acta*, **242**, 115-24 (1996) (attachment of isonitriles to gold); Huc et al., *J. Phys. Chem. B*, **103**, 10489-10495 (1999) (attachment of isonitriles to gold); Hickman et al., *Langmuir*, **8**, 357-9 (1992) (attachment of isonitriles to platinum); Steiner et al., *Langmuir*, **8**, 90-4 (1992) (attachment of amines and phosphines to gold and attachment of amines to copper); Mayya et al., *J. Phys. Chem. B*, **101**, 9790-9793 (1997) (attachment of amines to gold and silver); Chen et al., *Langmuir*, **15**, 1075-1082 (1999) (attachment of carboxylates to gold); Tao, *J. Am. Chem. Soc.*, **115**, 4350-4358 (1993) (attachment of carboxylates to copper and silver); Laibinis et al., *J. Am. Chem. Soc.*, **114**, 1990-5 (1992) (attachment of thiols to silver and copper); Laibinis et al., *Langmuir*, **7**, 3167-73 (1991) (attachment of thiols to silver); Fenter et al., *Langmuir*, **7**, 2013-16 (1991) (attachment of thiols to silver); Chang et al., *Am. Chem. Soc.*, **116**, 6792-805 (1994) (attachment of thiols to silver); Li et al., *J. Phys. Chem.*, **98**, 11751-5 (1994) (attachment of thiols to silver); Li et al., *Report*, 24 pp (1994) (attachment of thiols to silver); Tarlov et al., U.S. Patent No. 5,942,397 (attachment of thiols to silver and copper); Waldeck, et al., PCT application WO/99/48682 (attachment of thiols to silver and copper); Gui et al., *Langmuir*, **7**, 955-63 (1991) (attachment of thiols to silver); Walczak et al., *J. Am. Chem. Soc.*, **113**, 2370-8 (1991) (attachment of thiols to silver); Sangiorgi et al., *Gazz. Chim. Ital.*, **111**, 99-102 (1981) (attachment of amines to copper); Magallon et al., *Book of Abstracts, 215th ACS National Meeting, Dallas, March 29-April 2, 1998*, COLL-048 (attachment of amines to copper); Patil et al., *Langmuir*, **14**, 2707-2711 (1998) (attachment of amines to silver); Sastry et al., *J. Phys. Chem. B*, **101**, 4954-4958 (1997) (attachment of amines to silver); Bansal et al., *J. Phys. Chem. B*, **102**, 4058-4060 (1998) (attachment of alkyl lithium to silicon); Bansal et al., *J. Phys. Chem. B*, **102**, 1067-1070 (1998) (attachment of alkyl lithium to silicon); Chidsey, *Book of Abstracts, 214th ACS National Meeting, Las Vegas, NV, September 7-11, 1997*, I&EC-027 (attachment of alkyl lithium to silicon); Song, J. H., Thesis, University of California at San Diego (1998) (attachment of alkyl lithium to silicon dioxide); Meyer et al., *J. Am. Chem. Soc.*, **110**, 4914-18 (1988) (attachment of amines to

5

12

10

semiconductors); and Brazdil et al. *J. Phys. Chem.*, **85**, 1005-14 (1981) (attachment of amines to semiconductors). Suitable initiation monomers for use in the practice of the invention include cyclic olefin-containing derivatives of these known attachment compounds having the formula:

5 N - L - A

wherein:

15

N is a cyclic olefin-containing group;

20

L is a bond or a linker whereby N is attached to A; and

25

A is an attachment compound-containing group.

The identity of A will depend on the identity of the material of which the nanoparticles are composed (see above).

In addition to being a bond, L can be a linker. As a linker, L can be any desired chemical group. For instance, L can be a polymer (e.g., polyethylene glycol, polymethylene, protein, peptide, oligonucleotide, or nucleic acid), —COO—,

15 —CH₂(CH₂)_mCOO—, —OCO—, —R¹N(CH₂)_m—NR¹—, —O(CH₂)_m—, —(CH₂)_m—,

30

35

40

and m is 0-30. L may also be or comprise a binding moiety B that binds specifically to an analyte (e.g., an antibody or oligonucleotide) (see below).

45

The initiation monomers can be synthesized by methods well known in the art. In particular, the synthesis of the initiation monomers utilizes standard organic chemistry synthetic procedures whereby the cyclic olefin-containing group, N, and the attachment compound-containing group, A, are coupled to each other through a bond or are sequentially coupled to the linker, L. See, e.g., Larock, *Comprehensive organic transformations: a guide to functional group preparations* (VCH Publishers, New York,

50

55

5

13

NY, 1989) and *Comprehensive organic functional group transformations* (Kratzky et al., eds., Pergamon Press, New York, 1995).

10

Presently preferred as the initiation monomers for use on a variety of nanoparticles are norbornenyl-containing alkanethiols. Example 1 below describes a method which can be used for the preparation of such initiation monomers.

15

The initiation monomers can be attached to the nanoparticles in the same manner as the attachment compounds are attached to nanoparticles. Such methods are well known in the art. See, e.g., the references cited in the above discussion of attachment compounds. Generally, the nanoparticles and the initiation monomers are simply brought into contact and allowed to remain in contact for a sufficient time so that initiation monomers attach to the nanoparticles. Preferably a mixture of initiation monomers and corresponding attachment compounds (as diluent) are attached to the nanoparticles to reduce crosslinking of the initiation monomers and the propagating polymer during the subsequent polymerization. The ratio of initiation monomer to attachment compound that gives optimum results can be determined empirically and will depend on the type of initiation monomer, the type of attachment compound, and the type and size of the nanoparticles. By "corresponding attachment compound" is meant that the initiation monomers and attachment compounds are preferably, but not necessarily, of the same general type (e.g., alkanes) and preferably, but not necessarily, have the same functional group (e.g., thiol).

20

25

30

35

After the initiation monomers have been attached to the nanoparticles, the resulting nanoparticles are contacted with a catalyst to initiate the polymerization. The catalyst is a transition metal ring-opening metathesis catalyst. Many such catalysts suitable for use with cyclic olefin derivatives are known. See, e.g., U.S. Patents Nos. 4,250,063, 4,727,215, 4,883,851, 4,945,135, 4,945,141, 4,945,144, 5,146,033, 5,198,511, 5,266,665, 5,296,566, 5,312,940, 5,342,909, 5,728,785, 5,750,815, 5,831,108, 5,849,851, and references cited therein; Schwab et al., *Angew. Chem. Int. Ed. Engl.*, 34:2039 (1995); Lynn et al., *J. Am. Chem. Soc.*, 120:1627 (1998).

40

45

30

Preferred are a family of function-group tolerant catalysts having the following formula:

50

5

14

10

15

wherein: M may be osmium (Os) or ruthenium (Ru); R¹ is hydrogen; X¹ and X² may be different or the same and are any anionic ligand; L¹ and L² may be different or the same and are any neutral electron donor; and R² may be hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted aryl. X¹ and X² are most preferably the same and are -Cl. L¹ and L² are preferably phosphines of the formula PhosR³R⁴R⁵, where Phos is phosphine, R³ is a secondary alkyl or cycloalkyl, and R⁴ and R⁵ (which may be the same or different) are aryl, C₁-C₁₀ primary alkyl, secondary alkyl, or cycloalkyl. L¹ and L² are most preferably the same and are -Phos(cyclohexyl)₃, -Phos(cyclopentyl)₃, or -Phos(isopropyl)₃. Preferably, R² is hydrogen, C₁-C₂₀ alkyl, or aryl. The C₁-C₂₀ alkyl may optionally be substituted with one or more aryl, halide, hydroxy, C₁-C₂₀ alkoxy, or C₂-C₂₀ alkoxy carbonyl groups. The aryl may optionally be substituted with one or more C₁-C₂₀ alkyl, aryl, hydroxyl, C₁-C₅ alkoxy, amino, nitro, or halide groups. The most preferred catalyst is compound 1 shown in Figure 1. The preparation of these catalysts and conditions for their use are described in Schwab et al., *Angew. Chem. Int. Ed. Engl.*, 34:2039 (1995), Lynn et al., *J. Am. Chem. Soc.*, 120:1627 (1998), and U.S. Patent No. 5,831,108, the complete disclosures of which are incorporated herein by reference. These catalysts produce a living polymerization having numerous attributes, including exceptional control over polymer length and chemical composition, and particle size, solubility, and shape.

20

10

25

15

30

15

35

20

40

25

50

Also preferred is a family of catalysts comprising a rhenium (VII) atom centrally linked to an alkylidene ligand (CR¹), an alkylidyne ligand (CHR²), and two other ligands (R³ and R⁴), at least one of which is an electron withdrawing ligand which is sufficiently electron withdrawing to render the rhenium atom electrophilic enough for metathesis reactions. Thus, the catalysts have the formula Re(CR¹)(CHR²)(R³)(R⁴). R¹ is selected from the group consisting of an alkyl having 1-20 carbon atoms, an aryl having 6-20 carbon atoms, an aralkyl having 7-30 carbon atoms, halogen substituted derivatives of

5

15

10

each, and silicon-containing analogs of each. R² is selected from the group consisting of R¹ or is a substituent resulting from the reaction of the Re=CHR² moiety of the catalyst with an olefin that is being metathesized. Examples of R¹ and R² include phenyl, t-butyl, trimethylsilyl, triphenyl, methyl, triphenylsilyl, tri-t-butyl, tri-t-butylsilyl, 2,6-diisopropylphenyl, 2,4,6-triisopropylphenyl, and 2,6-dimethylphenyl. R³ and R⁴ can be any group which is sufficiently electron withdrawing to render the rhenium atom electrophilic enough for metathesis reactions. While it is preferably that both R³ and R⁴ be electron withdrawing, the catalysts may contain only one electron withdrawing ligand. R³ and R⁴ can be individually selected from groups consisting of R¹, a halogen, triflate, and concatenated combinations of R³ and R⁴, wherein R³ and R⁴ individually may contain alkoxide oxygen atoms which are bound to the rhenium atom, provided that when R¹ and R² are t-butyl and R³ and R⁴ are the same, then R³ and R⁴ are groups other than t-butoxide, trimethylsiloxide, neopentyl or a halogen. Preferably R³ and R⁴ are both alkoxide ligands in which the alcohol corresponding to the electron withdrawing alkoxide ligands should have a pKa of about 9 or below. Suitable ligands which fall within this range include phenoxide, hexafluoro-t-butoxide and diisopropylphenoxyde. Examples of concatenated R³ and R⁴ groups are pinacolate, 2,6-dimethyl-2,6-heptanediolate and propan-1,3-diolate. The catalysts are typically monomers. However, they can form dimers, oligomers or polymers if the R³ and R⁴ groups are small enough to permit bridging of two or more metal centers. These rhenium catalysts and their synthesis and use are described in U.S. Patent No. 5,146,033, the complete disclosure of which is incorporated herein by reference.

25

10

15

30

20

35

40

25

45

30

50

An additional group of preferred catalysts are those having the formula: M(NR¹)(OR²)₂(CHR³). M is molybdenum or tungsten; R¹ and R² are alkyl, aryl, aralkyl, haloalkyl, haloaryl, haloaralkyl or a silicon-containing analog thereof; and R³ is alkyl, aryl, aralkyl or a substituent resulting from the reaction of the M=CHR³ moiety of said catalyst with an olefin being metathesized. The alkyls contain 1-20 carbon atoms, the aryls contain 6-20 carbon atoms, and the aralkyls contain 7-20 carbon atoms. Examples of R¹ include 2,6-diisopropylphenyl, 2,4,6-trimethylphenyl, 2,6-di-t-butylphenyl, pentafluorophenyl, t-butyl, trimethylsilyl, triphenylmethyl, triphenylsilyl, tri-t-butylsilyl, and perfluoro-2-methyl-2-pentyl. Examples of R² include t-butyl, trifluoro-t-butyl, perfluoro-t-butyl, perfluoro-2-

5

16

10

methyl-2-pentyl, 2,6-diisopropylphenyl, pentafluorophenyl, trimethylsilyl, triphenylsilyl, tri-t-butylsilyl, and hexafluoro-t-butyl. R³ is initially t-butyl or phenyl but, since the M=CHR³ moiety of the catalyst is intimately involved in the catalytic reaction, the CHR³ ligand is replaced by another alkylidene fragment from the olefins that are being metathesized. This family of catalysts and their synthesis and use are described in U.S. Patent No. 4,727,215, the complete disclosure of which is incorporated herein by reference.

15

20

The initiation monomers are activated with the catalyst by methods known in the art. See, e.g., those references cited above. Other suitable conditions and optimum conditions can be determined empirically.

25

After activation of the initiation monomers with the catalyst, a cyclic olefin-containing propagation monomer is added, and the propagation monomers are polymerized. The propagation monomers have the formula:

wherein:

N is a cyclic olefin-containing group;

L is a bond or a linker whereby N is attached to P; and

P is any moiety which provides a selected property to the resulting polymer.

L is the same as described above for the initiation monomers.

30

P will impart a desired property to the resulting polymer and polymer-nanoparticle hybrids. Such properties include hydrophilicity, hydrophobicity, optical properties (e.g., fluorescence, color, or non-linear optical character), magnetic activity (e.g., unpaired electron), electronic activity (e.g., conducting polymer), selective ion binding (e.g., binding of Na⁺, Pb²⁺, etc.), using crown-ethers, and redox activity (e.g., ferrocene derivatives). Preferably, the property is an optical property or redox activity.

40

Many suitable cyclic olefin-containing propagation monomers are known. See, e.g., U.S. Patents Nos. 4,250,063, 5,064,919, 5,117,327, 5,198,511, 5,200,470; Davies et al., *J. Chem. Soc. Perkin I*, 433 (1973); Posner et al., *Tetrahedron*, 32, 2281 (1976). Other cyclic olefin-containing propagation monomers can be synthesized by standard organic chemistry synthetic procedures. In particular, the cyclic olefin moiety, N, and the moiety, P, are coupled to each other through a bond or are sequentially coupled to the

45

50

5

17

10

linker, L, using well-known methods. See, e.g., Larock, *Comprehensive organic transformations: a guide to functional group preparations* (VCH Publishers, New York, NY, 1989) and *Comprehensive organic functional group transformations* (Katritzky et al., eds., Pergamon Press, New York, 1995). The synthesis of some propagation monomers is described in the Examples below.

15

Suitable conditions for polymerizing the propagation monomers include those known in the art for polymerizing cyclic olefin and cyclic olefin derivatives. See, e.g., U.S. Patents Nos. 4,883,851, 4,945,135, 4,945,141, 4,945,144, 5,198,511, 5,266,665, 5,296,437, 5,296,566, 5,312,940, 5,342,909, 5,728,785, 5,750,815, 5,831,108, 5,849,851, and references cited therein; Schwab et al., *Angew. Chem. Int. Ed. Engl.*, 34:2039 (1995); Lynn et al., *J. Am. Chem. Soc.*, 120:1627 (1998). Other suitable conditions and optimum conditions can be determined empirically.

20

25

In the polymerization, a single propagation monomer having a particular P group or a mixture of monomers having different P groups can be used to form a single polymer shell having a single or a plurality of properties. Also, polymerization of a single monomer or a mixture of monomers can be followed by polymerization of one or more additional monomers, together or singly, to form a plurality of polymer shells attached to the nanoparticles, each shell having a different property or properties.

30

The polymerization, and the resulting size(s) and properties of the polymer shell(s), can be controlled by suitable choices of the reaction conditions, including the catalyst, solvent, temperature, the type(s) of propagation monomer(s), the order of addition of the propagation monomer(s), and the amount(s) of the propagation monomer(s). Preferably, for greater control, the polymerization is halted by the addition of a compound that terminates polymerization. Suitable compounds are known in the art. See, e.g., those references cited above.

40

The polymer-nanoparticle hybrids of the invention have a variety of uses. For instance, they can be used as probes to detect or quantitate analytes. See, e.g., PCT application WO 98/04740; PCT application WO 98/21587; Storhoff et al., *J. Clust. Sci.*, 8:179 (1997); Brousseau et al., *J. Am. Chem. Soc.*, 120:7645 (1998); Freeman et al., *Science*, 267:1629 (1995); Zhu et al., *J. Am. Chem. Soc.*, 119:235 (1997); Mirkin et al.,

45

50

5

18

Nature, 382:607 (1996); Elghanian et al., *Science*, 277:1078 (1997); Storhoff et al., *J. Am. Chem. Soc.*, 120:1959 (1998).

10

Analytes that can be detected or quantitated according to the invention include polysaccharides, lipids, lipopolysaccharides, proteins, glycoproteins, lipoproteins, nucleoproteins, peptides, oligonucleotides, and nucleic acids. Specific analytes include antibodies, immunoglobulins, albumin, hemoglobin, coagulation factors, peptide and protein hormones (e.g., insulin, gonadotropin, somatotropin), non-peptide hormones, interleukins, interferons, other cytokines, peptides comprising a tumor-specific epitope (i.e., an epitope found only on a tumor-specific protein), cells (e.g., red blood cells), cell-surface molecules (e.g., CD antigens, integrins, cell receptors), microorganisms (viruses, bacteria, parasites, molds, and fungi), fragments, portions, components or products of microorganisms, small organic molecules (e.g., digoxin, heroin, cocaine, morphine, mescaline, lysergic acid, tetrahydrocannabinol, cannabinol, steroids, pentamidine, and biotin), etc. Nucleic acids and oligonucleotides that can be detected or quantitated include genes (e.g., a gene associated with a particular disease), viral RNA and DNA, bacterial DNA, fungal DNA, mammalian DNA (e.g., human DNA), cDNA, mRNA, RNA and DNA fragments, oligonucleotides, synthetic oligonucleotides, modified oligonucleotides, single-stranded and double-stranded nucleic acids, natural and synthetic nucleic acids, etc.

15

20

25

30

35

To serve as probes, the polymer-nanoparticle hybrids must have a binding moiety, B, attached to them that allows the polymer-nanoparticle hybrids to bind specifically to the analyte. Suitable binding moieties and methods of making them are well known in the art. For instance, essentially any analyte can be detected or quantitated using antibodies specific for the analyte. In addition, any molecule which binds specifically to the analyte can be used, and many such molecules are known in the art. For instance, nucleic acids can be detected or quantitated using oligonucleotides having a sequence which is complementary to at least a portion of the analyte nucleic acid. Also, lectins can be used to detect or quantitate polysaccharides and glycosylated proteins. As another example, a receptor can be used to detect its ligand and vice versa. Many other suitable binding moieties, B, are known.

40

45

The binding moiety B can be attached to the polymer-nanoparticle hybrids in a variety of ways. For instance, as noted above, the linker L of the initiation monomer or

5

19

10

propagation monomer may be any desired chemical group. Thus, the linker L in the propagation monomer and/or the initiation monomer may comprise a binding moiety B, such as a protein (e.g., antibody), an oligonucleotide, etc., and the binding moiety will be incorporated into the polymer shell(s) attached to the nanoparticles. Preferably, when the polymer-nanoparticle hybrids are used as probes, at least some of the propagation monomers have a linker L which comprises a desired binding moiety B. Alternatively, or in addition, a separate binding monomer may be attached to the polymer-nanoparticle hybrids after the polymerization of the propagation monomers has been completed. The binding monomers have the formula:

20

10

wherein:

25

- N is a cyclic olefin-containing group;
- L is a bond or a linker whereby N is attached to B; and
- B is a binding moiety.

15

L is the same as described above for the initiation monomers and propagation monomers. Preferably, however, L does not comprise a binding moiety B.

30

The binding monomers are synthesized and attached to the polymer-nanoparticle hybrids in the same manner as the propagation monomers. The binding monomers or, preferably, a mixture of binding monomers and propagation monomers having a desired property or properties may be attached to the polymer-nanoparticle hybrids to form a final polymer shell on the nanoparticles. The ratio of binding monomers to propagation monomers in such a mixture is preferably as low as possible. In this manner, even a single instance of the binding of B to its analyte can lead to a large detectable signal.

35

20

To perform an assay according to the invention, a sample suspected of containing an analyte is contacted with a type of polymer-nanoparticle hybrids having binding moieties B attached thereto. Any type of sample can be used. For instance, the sample may be a biological fluid (e.g., serum, plasma, blood, saliva, and urine), cells, cell lysates, tissues, libraries of compounds (e.g., organic chemicals or peptides), solutions containing PCR components, etc. Conditions and formats for performing such assays are well known in the art (see, e.g., the references cited above) or can be determined empirically by those of ordinary skill in the art.

40

25

45

30

50

55

5

20

10

5

Finally, the property or properties of the polymer attached to the nanoparticles is (are) detected or measured in order to detect or quantitate the analyte. The properties are those described above. Preferably, the property is redox activity or optical activity (e.g., fluorescence or color). Methods of detecting and measuring these properties are well known in the art.

15

One format for detecting or quantitating nucleic acids is illustrated in Figure 5A. As illustrated in Figure 5A, capture oligonucleotides (Capture Strand) are attached to a gold substrate (e.g., a gold electrode). Methods of attaching oligonucleotides to gold and other substrates are known. See, e.g., those references cited above describing functional groups, particularly PCT application WO 98/0470. The capture oligonucleotides have a sequence complementary to at least a portion of the sequence of a nucleic acid analyte (Target), and the analyte nucleic acid is contacted with the substrate so that it binds to the capture oligonucleotides attached to the substrate. Then, polymer-nanoparticle hybrids having oligonucleotides attached to them are contacted with the analyte nucleic acid attached to the substrate. The oligonucleotides on the polymer-nanoparticle hybrids have a sequence complementary to at least a portion of the sequence of the analyte nucleic acid and bind to the analyte nucleic acid attached to the substrate. After removing unbound materials, the property of the polymer attached to the nanoparticles is detected or measured. As illustrated in Figure 5A, the polymer is poly 3, a polymer which has redox activity, and this activity can be measured by cyclic voltammetry (see Example 1).

25

The invention further provides a kit for performing the assays for detecting or quantitating analytes. The kit comprises a container holding polymer-nanoparticle hybrids having binding moieties, B, attached to them. The kit may also contain other reagents and items useful for performing the assays. The reagents may include controls, standards, PCR reagents, hybridization reagents, buffers, etc. Other items which be provided as part of the kit include reaction devices (e.g., test tubes, microtiter plates, solid surfaces (possibly having a capture molecule attached thereto), syringes, pipettes, cuvettes, containers, etc.

30

The polymer-nanoparticle hybrids of the invention are also a new and versatile type of building block that chemists and material scientists can easily incorporate into many existing particle assembly strategies. See, e.g., PCT application WO 98/04740;

5

21

10

Storhoff et al., *J. Clust. Sci.*, 8:179 (1997). For instance, after forming the desired polymer shell(s) on the nanoparticles, the polymers could be reacted with a small amount of either a termination monomer or a propagation monomer containing a functional group so that at least some of the polymers on the nanoparticles would be capped with functional groups that would allow the polymer-nanoparticle hybrids to be attached to other nanoparticles (made of the same or a different material) or to solid substrates made of metal, magnetic or semiconductor materials (see above description of the materials from which the nanoparticles are made). "Termination monomers" are the same as the initiation monomers described above, and the "functional groups" referred to in this paragraph are the same ones referred to in the discussion of initiation monomers.

15

The novel cyclic olefin-containing monomers of the invention can also be polymerized alone (*i.e.*, not attached to nanoparticles) in the same manner as described above. Such polymers can be used in a variety of ways. For instance, polymers composed of propagation monomers wherein L comprises a binding moiety B (*e.g.*, an oligonucleotide) can be used to detect and/or quantitate analytes by detection of the property or properties of the P groups.

20

The invention further provides a kit for performing the assays for detecting or quantitating analytes. The kit comprises a container holding polymers formed from propagation monomers wherein L comprises a binding moiety B. The kit may also contain other reagents and items useful for performing the assays.

25

Further, propagation monomers wherein L comprises a binding moiety B can be used to detect and/or quantitate analytes by detection of the property or properties of the P groups. For instance, a format useful for the detection or quantitation of nucleic acids is illustrated in Figure 5B. In this format, a single strand of DNA, F, is synthesized and modified at its 3' end to incorporate a functional group (*e.g.*, an amino group) which is used for attachment of the DNA to a substrate (*e.g.*, a transparent glass slide). See the discussion above of functional groups and their attachment to substrates. The sequence of F is complementary to at least a portion of the sequence of a target DNA, F'-H-G'. The G' sequence of the target DNA is complementary to a third DNA strand G which has been modified with a cyclic olefin-containing group (*e.g.*, as illustrated, a norbornene group, prepared using the phosphoramidite D). After contacting the substrate having

5

22

10

15

20

25

30

35

40

45

50

capture DNA F attached thereto with a sample suspected of containing the target DNA for a time sufficient to allow the target DNA to hybridize to F, the substrate is then contacted with G. After a time sufficient to allow G to hybridize to the target DNA, the substrate is then treated with a ROMP catalyst (e.g., catalyst 1, Figure 1), followed by exposure to a cyclic olefin-containing fluorescent monomer (e.g., norbornene-modified fluorescein monomer E in hexanes) to produce fluorescent polymers attached to the DNA attached to the substrate. Since the cyclic olefin-modified DNA strand G is not complementary to the capturing strand F, exposing the substrate to the catalyst and then the fluorescent monomers will yield immobilized fluorescent polymer only if the target strand is present in the initial sample. Since a large excess of fluorescent monomer is used, the degree of polymerization on the substrate is dependent upon the reaction time, which is a tailorabile quantity. The fluorescence can be readily detected using a fluorescence microscope. This strategy allows for the high sensitivity and flexibility for DNA detection and quantitation for a number of reasons. First, any target can be detected as long as the sequences of the ends of the strand (F' and G') are known. Second, by using two shorter DNA strands, F and G, complementary to the target, the DNA synthetic chemistry becomes easier and more quantitative than using a longer strand (e.g., F-G or F-H-G). Finally, since a single hybridization event can lead to the surface attachment of hundreds of fluorescent monomers, this technique can be ultra-sensitive (*i.e.*, capable of detecting sub-femtomolar levels of DNA). Of course, other propagation monomers comprising different binding moieties and/or having different properties can also be used in this format for the detection of DNA and other analytes.

Finally, the invention provides a kit for performing the assays for detecting or quantitating analytes. The kit comprises a container holding propagation monomers wherein L comprises a binding moiety B. The kit may also contain other reagents and items useful for performing the assays.

As used herein, "a type of" refers to a plurality of the specified material having the same properties. For instance, "a type of" nanoparticles refers to nanoparticles which are the same (e.g., gold nanoparticles of a particular size). Similarly, "a type of" polymer-nanoparticle hybrids having binding moieties B attached to them refers to a plurality of nanoparticles having the same polymer(s) and binding moieties attached to them.

5

23

EXAMPLES**Example 1**

This example describes the preparation of new metal-organic hybrid nanoparticles by the controlled growth of polymers from the surface of gold nanoparticle templates by ring-opening metathesis polymerization (ROMP) as illustrated in Figure 1. In this methodology, a norbornenyl-terminated linear alkanethiol (**2**) is used to modify the surfaces of organic-soluble gold nanoparticles (GNPs). Then, a functional group tolerant ROMP catalyst (**1**) is used to initiate polymerization directly from the particle surface, after which a norbornenyl-containing monomer feedstock is injected into the solution with the initiated nanoparticles.

Two proof-of-concept systems are presented. The first involves GNPs with a polymerized shell of a redox-active norbornenyl-functionalized ferrocene **3**. The second involves GNPs functionalized with an initial block of **3** followed by a second block of another redox-active norbornenyl-containing monomer **4**. The redox-potential of **4** is 220 mV more negative than that of **3**, and the two can be easily differentiated by cyclic voltammetry. ¹H NMR spectroscopy, cyclic voltammetry, and transmission electron microscopy (Figures 2A-H and Figures 3A-B) have been used to characterize the polymerization process and the resulting polymer-modified nanoparticles.

These studies indicate that the synthesis strategy can be used to prepare a new class of metal-organic hybrid nanoparticles that can be functionalized with polymeric layers of virtually any norbornenyl-containing or cyclic olefin-containing monomer. Since the process is a living polymerization, the attributes of this strategy are numerous, including exceptional control over polymer length and chemical composition, and particle size, solubility, and shape.

A. Materials And General Methods

Unless otherwise noted, all reactions were carried out under a dry nitrogen atmosphere using standard Schlenk techniques or in an inert-atmosphere glovebox. Acetonitrile and dichloromethane were distilled over calcium hydride. Tetrahydrofuran (THF), benzene and diethyl ether were distilled over sodium/benzophenone. All solvents were distilled under nitrogen and saturated with nitrogen prior to use. Deuterated solvents were purchased from Cambridge Isotope Laboratories and used without further

5

24

10

purification, except for CDCl_3 , which was distilled over calcium hydride and vacuum transferred into an air-tight solvent bulb prior to transfer into the inert-atmosphere glovebox. Compounds 1, 2, 3, and 4 were synthesized as described below. All other reagents were purchased from Aldrich Chemical Company and used without further purification, unless otherwise noted. ^1H NMR and ^{13}C NMR spectra were recorded on a Varian Gemini 300 MHz FT-NMR spectrometer. For ^1H NMR of samples containing gold nanoparticles, the line broadening was set at 1 Hz. GC-MS experiments were recorded on a Hewlett-Packard HP 6980 Series instrument equipped with an HP 5 column (the initial temperature was set at 50°C for 2 minutes with a ramp of 20°C per minute and a final temperature of 280°C). Transmission electron microscopy (TEM) was performed on a Hitachi 8100 microscope. High resolution mass spectroscopy (HRMS) was performed on a VG 70-SE instrument. Elemental analysis was performed by Atlantic Microlab Inc. All flash column chromatography was performed using a 56 mm inner-diameter column using a 200 cm-long column of silica gel under a positive pressure of nitrogen, unless otherwise noted.

15

B. Synthesis of Catalyst 1

20

Catalyst 1 was synthesized using published procedures. Schwab et al., *Angew. Chem., Int. Ed. Engl.*, **34**:2039 (1995); Lynn et al., *J. Am. Chem. Soc.*, **120**:1627 (1998).

25

C. Synthesis of 1-mercaptop-10-(*exo*-5-norbornen-2-oxy)-decane (2)

30

There are two key steps in the synthesis of metathesis-ready GNPs. The first involves the synthesis and characterization of 1-mercaptop-10-(*exo*-5-norbornen-2-oxy)-decane, 2, which contains a ROMP-active norbornene segment attached to a long-chain alkanethiol. The *exo*- rather than the *endo*-isomer was chosen to optimize ROMP activity.

35

Wolfe, P.S., Ph.D. dissertation, University of Florida (1997).

40

To prepare 2, *exo*-5-norbornen-2-ol (Posner et al., *Tetrahedron*, **32**:2281 (1976); Davies et al., *J. Chem. Soc. Perkin I*, 433 (1973); 1.00 g, 9.1 mmol) was weighed into a 50 mL Schlenk flask in an inert atmosphere glovebox. THF (15 ml) was added, and the solution was stirred vigorously while oil-free sodium metal (250 mg, 10.8 mmol) was added. The mixture was then taken out of the glovebox, refluxed for 12 hours under a positive stream of nitrogen, and allowed to cool to room temperature. In a separate 100 mL Schlenk flask, 10-chloro-decyl toluene-4 sulfonate (Tomohiro et al., *Synthesis*, **7**:639

45

50

5

25

10

(1992)) (2.95 g, 9.5 mmol) was dissolved in THF (15 mL), and the flask was capped with a pressure-equalizing dropping funnel. The cooled solution of deprotonated *exo*-5-norbornen-2-ol was then transferred to the pressure-equalizing dropping funnel by cannula (excess Na was quenched with isopropanol) and slowly added to the decyl sulfonate ester solution with vigorous stirring over a period of 10 minutes. The dropping funnel was then replaced with a condenser, and the mixture was refluxed for an additional 12 hours under a positive stream of nitrogen. Upon cooling to room temperature, the reaction mixture was poured into ether (50 mL) and washed successively with water (50 mL), 0.1 M NaOH (50 mL), and brine (50 mL). The organic layer was collected, dried over sodium sulfate and filtered through a Buchner funnel. The solvent was removed on a rotary evaporator. Column chromatography of the slightly yellow oil on silica gel with 8% ether in hexanes as the eluent gave 1.94 g (6.9 mmol, 81%) of 1-chloro-10-(*exo*-5-norbornen-2-oxy)-decane as a clear oil. ^1H NMR (CDCl_3): 1.05 (m, 20H), 3.56 (s, 1H), 3.72 (s, 1H), 3.95 (m, 5H), 5.80 (m, 1H), 6.31 (m, 1H). ^{13}C NMR (CDCl_3): 26.33, 26.92, 28.92, 29.45, 29.49, 29.52, 30.12, 32.69, 34.48, 40.40, 45.26, 45.99, 46.44, 69.34, 80.22, 133.32, 140.61. GC-MS: One peak, retention time, 10.16 min; M^+ : 284 m/z.

solution with vigorous stirring over a period of 10 minutes. The dropping funnel was then replaced with a condenser, and the mixture was refluxed for an additional 12 hours under a positive stream of nitrogen. Upon cooling to room temperature, the reaction mixture was poured into ether (50 mL) and washed successively with water (50 mL), 0.1 M NaOH (50 mL), and brine (50 mL). The organic layer was collected, dried over sodium sulfate and filtered through a Buchner funnel. The solvent was removed on a rotary evaporator. Column chromatography of the slightly yellow oil on silica gel with 8% ether in hexanes as the eluent gave 1.94 g (6.9 mmol, 81%) of 1-chloro-10-(*exo*-5-norbornen-2-oxy)-decane as a clear oil. ^1H NMR (CDCl_3): 1.05 (m, 20H), 3.56 (s, 1H), 3.72 (s, 1H), 3.95 (m, 5H), 5.80 (m, 1H), 6.31 (m, 1H). ^{13}C NMR (CDCl_3): 26.33, 26.92, 28.92, 29.45, 29.49, 29.52, 30.12, 32.69, 34.48, 40.40, 45.26, 45.99, 46.44, 69.34, 80.22, 133.32, 140.61. GC-MS: One peak, retention time, 10.16 min; M^+ : 284 m/z.

2

10 sulfate and filtered through a Buchner funnel. The solvent was removed on a rotary evaporator. Column chromatography of the slightly yellow oil on silica gel with 8% ether in hexanes as the eluent gave 1.94 g (6.9 mmol, 81%) of 1-chloro-10-(*exo*-5-norbornen-2-oxy)-decane as a clear oil. ^1H NMR (CDCl_3): 1.05 (m, 20H), 3.56 (s, 1H), 3.72 (s, 1H), 3.95 (m, 5H), 5.80 (m, 1H), 6.31 (m, 1H). ^{13}C NMR (CDCl_3): 26.33, 26.92, 28.92, 29.45, 29.49, 29.52, 30.12, 32.69, 34.48, 40.40, 45.26, 45.99, 46.44, 69.34, 80.22, 133.32, 140.61. GC-MS: One peak, retention time, 10.16 min; M^+ : 284 m/z.

Potassium thioacetate (240 mg, 2.1 mmol) and the 1-chloro-10-(*exo*-5-norbornen-

20 Potassium thioacetate (2.40 mg, 2.1 mmol) and the 1-chloro-10-(*exo*-5-norbornen-2-oxy)-decano (500 mg, 1.8 mmol) were weighed into separate 50 mL Schenk flasks in an inert atmosphere glovebox. The flasks were taken out of the glovebox, and degassed ethanol (10mL) was transferred to each flask by cannula. The solution of 1-chloro-10-(*exo*-5-norbornen-2-oxy)-decano was then transferred to the potassium thioacetate solution by cannula, and the mixture was refluxed for 20 hours under a positive stream of nitrogen. Upon cooling to room temperature, the mixture was poured into H₂O (50 mL) and extracted with CH₂Cl₂ (3 x 50 mL). The combined organic extracts were washed with brine (3 x 50 mL), dried over sodium sulfate, and filtered through a Buchner funnel. The solvent was removed on a rotary evaporator. Column chromatography of the yellow oil on silica gel with CH₂Cl₂ as the eluent gave 488 mg of 1-(*exo*-5-norbornen-2-oxy)-10-(thioacetyl)-decano (1.5 mmol, 85%) as a clear oil. ¹H NMR (CHCl₃): 1.35 (m, 15H), 1.58 (m, 4H), 1.72 (d, 1H), 2.83 (s, 1H), 2.9 (t, 3H), 3.48 (m, 3H), 5.93 (m, 1H), 6.20 (m, 1H). GC-MS: One peak, retention time, 11.34 min. M⁺: 324 m/z.

•

extracted with CH_2Cl_2 ($3 \times 50 \text{ mL}$). The combined organic extracts were washed with brine ($3 \times 50 \text{ mL}$), dried over sodium sulfate, and filtered through a Buchner funnel. The solvent was removed on a rotary evaporator. Column chromatography of the yellow oil on silica gel with CH_2Cl_2 as the eluent gave 488 mg of 1-(*exo*-5 norbornen-2-oxy)-10-(thioacetyl)-decane (1.5 mmol, 85%) as a clear oil. ^1H NMR (CHCl_3): 1.35 (m, 15H), 1.58 (m, 4H), 1.72 (d, 1H), 2.83 (s, 1H), 2.9 (t, 3H), 3.48 (m, 3H), 5.93 (m, 1H), 6.20 (m, 1H). GC-MS: One peak, retention time, 11.34 min; M^+ : 324 m/z .

50

5

26

10

15

20

25

30

35

40

45

50

Sodium methoxide (8.1 mg, 0.15 mmol) and the 1-(*exo*-5-norbornen-2-oxy)-10-(thioacetyl)-decane (488 mg, 1.5 mmol) were weighed into separate 50 mL Schenk flasks in an inert atmosphere glovebox. The two flasks were taken out of the glovebox, and degassed methanol (10 mL) was transferred to each flask by cannula. The solution of 1-(norborn-2-en-5-*exo*-ol)-10-(thioacetyl)-decane was then transferred by cannula to the sodium methoxide solution, and the mixture was refluxed for six hours under a positive stream of nitrogen. Upon cooling to room temperature, the mixture was poured into 1.0 M HCl (50 mL) and extracted with ether (3 x 50 mL). The combined organic extracts were washed with brine (3 x 50 mL), dried over sodium sulfate, and the solvent was removed on a rotary evaporator to give 361 mg of 1-mercaptop-10-(*exo*-5-norbornen-2-oxy)-decane (1.23 mmol, 85%) of sufficient purity for further manipulations. ^1H NMR (C_6D_6): 1.25 (m, 18H), 1.61 (q, 4H), 1.88 (d, 1H), 2.28 (q, 2H), 2.63 (s, 1H), 2.90 (s, 1H), 3.35 (m, 3H), 5.94 (m, 1H). GC-MS: One peak, retention time, 10.43 min; M^+ : 282 *m/z*.

15 D. Synthesis of *exo*-5-norbornen-2-yl ferrocenecarboxylate (3)

Ferrocenecarboxylic acid (0.511 g, 2.22 mmol) was weighed into a 100 mL Schlenk flask. The flask was placed under nitrogen using standard Schlenk techniques. Dry dichloromethane (50 mL) was added by cannula, and oxalyl chloride (0.291 mL, 3.34 mmol) was syringed into the reaction vessel. The mixture was stirred at room temperature for 2 hours. The solvent and excess oxalyl chloride were removed by rotary evaporation, and dry benzene (50 mL) was added by cannula. Next, *exo*-5-norbornen-2-ol (0.244 g, 2.22 mmol) was weighed into a 250 mL round-bottom flask and placed under nitrogen using standard Schlenk techniques. Dry benzene (50 mL) was added by cannula, and triethylamine (0.62 mL, 4.44 mmol) was syringed into the reaction vessel. The acid chloride solution in the Schlenk flask was then transferred into the round-bottom flask containing the alcohol solution by cannula, and the mixture was refluxed under nitrogen for 12 hours. The solution was diluted with brine (100 mL) and extracted with benzene (3 x 100 mL). The benzene layers were combined, dried over magnesium sulfate, and the solvent was removed by rotary evaporation. Column chromatography on silica gel with pentane/ether (8:1) as the eluent gave 0.215 g (0.668 mmol, 30%) of desired product as a yellow solid. ^1H NMR (C_6D_6): 1.58 (m, 4H), 2.59 (s, 1H), 2.98 (s, 1H), 4.02 (m, 7H).

5

27

4.85 (d, 2H), 4.97 (d, 1H), 5.79 (m, 1H), 5.98 (m, 1H). $^{13}\text{CNMR}$ (CDCl_3): 34.78, 40.69, 46.37, 47.58, 69.69, 70.08, 71.19, 74.87, 132.85, 132.87, 141.15, 175.60. HRMS (EI) (M^+): calcd. for $\text{C}_{18}\text{H}_{14}\text{O}_2\text{Fe}$: 322.066 m/z ; found: 322.066 m/z . Anal: calcd. for $\text{C}_{18}\text{H}_{14}\text{O}_2\text{Fe}$: C: 67.1; H: 5.63; Found: C: 66.9; H: 5.76.

10

5 E. Synthesis of exo-5-norbornen-2-yl ferroceneacetate (4)

15

Ferroceneacetic acid (0.401 g, 1.64 mmol) was weighed into a 100 mL Schlenk flask. The flask was placed under nitrogen using standard Schlenk techniques. Dry dichloromethane (50 mL) was added by cannula, and oxalyl chloride (0.232 mL, 2.66 mmol) was syringed into the reaction vessel. The mixture was stirred at room temperature

20

for 2 hours. The solvent and excess oxalyl chloride were removed by rotary evaporation, and dry benzene (50 mL) was added by cannula. Next, *exo*-5-norbornen-2-ol (0.181 g, 1.64 mmol) was weighed into a 250 mL round-bottom flask and placed under nitrogen using standard Schlenk techniques. Dry benzene (50 mL) was added by cannula, and triethylamine (0.46 mL, 3.29 mmol) was syringed into the reaction vessel. The acid

25

chloride solution in the Schlenk flask was then transferred into the round-bottom flask containing the alcohol solution by cannula, and the mixture was refluxed under nitrogen for 12 hours. The solution was diluted with brine (100 mL) and extracted with benzene (3 x 100 mL). The benzene layers were combined, dried over magnesium sulfate, and the solvent was removed by rotary evaporation. The benzene layers were passed through a short plug of silica gel (30 mm long, in a Pasteur pipette), and removal of the solvent on

30

a rotary evaporator gave 0.281 g (0.84 mmol, 51%) of the desired product as a brown liquid. $^1\text{HNMR}$ (C_6D_6): 1.58 (m, 4H), 2.59 (s, 1H), 2.90 (s, 1H), 3.19 (d, 2H), 3.95 (d, 2H), 4.02 (s, 5H), 4.19 (d, 2H), 4.80 (m, 1H), 5.75 (m, 1H), 5.98 (m, 1H). $^{13}\text{CNMR}$

35

(CDCl_3): 34.45, 36.01, 40.35, 46.15, 47.36, 67.95, 68.46, 75.63, 80.95, 132.43, 141.50, 141.52, 171.55. HRMS (EI) (M^+): calcd. for $\text{C}_{19}\text{H}_{20}\text{O}_2\text{Fe}$: 336.081 m/z ; Found: 336.082 m/z .

40

45

45 F. Immobilization of 2 on GNPs and characterization of the 2-modified GNPs

50

The second key step in the preparation of metathesis-ready GNPs involves immobilization of 2 on 3 nm GNPs. The method of Schiffrin (Brust et al., *J. Chem. Soc.*,

5

28

10

Chem. Commun., 801 (1994)) was modified for preparing 3 nm GNPs capped with linear alkanethiols by reducing HAuCl₄ (2.24 mmoles) in the presence of a 3:1 mixture of 1-dodecanethiol (1.68 mmoles), and 2 (0.56 mmoles) to yield GNPs modified with the two adsorbates. The dodecanethiol diluent molecule was employed to minimize surface crosslinking of norbornenyl groups and propagating polymer.

15

The GNPs can be precipitated from CH₂Cl₂ by the addition of ethanol and redispersed in various organic solvents such as hexanes, ether, and CH₂Cl₂. The ¹HNMR spectrum of the modified particles in CDCl₃ confirms that the norbornene adsorbates are indeed attached to their surfaces, Figures 2A-B. The two resonances at approximately δ 5.9 and 6.2 are highly diagnostic of the two norbornenyl olefinic protons and compare well with those observed in the ¹HNMR spectrum of 2 (δ 5.9 and 6.2) in CDCl₃. The UV-visible spectrum of these particles in hexanes exhibits a weak plasmon band at 518 nm, which is characteristic of gold nanoparticles of this size. Duff et al., *J. Chem. Soc. Chem. Commun.*, 96 (1993).

20

15 G. Synthesis and characterization of GNP - poly 3

25

Inside an inert atmosphere glovebox, 3 nm GNPs modified with 2 (10 mg) were weighed into a screw-top NMR tube, and 100 μL of CDCl₃ was added. Catalyst 1 (1.5 mg, 1.8 μmol) was dissolved in 200 μL of CDCl₃ and syringed into the NMR tube containing the 2-modified GNPs. The NMR tube was capped and placed on a shaker for 10 minutes. Next, a solution of 3 (12 mg, 37 μmol in 200 μL of CDCl₃) was added, and the NMR tube was recapped and shaken for a further 30 minutes, after which time an ¹HNMR spectrum was taken. The catalyst was quenched with ethyl vinyl ether (about 100 μL). Isolation of the particle-polymer hybrids (21 mg) was achieved by pouring the CDCl₃ solution into a vigorously stirring solution of hexanes (100 mL). The mother liquor was decanted, and the resulting dark brown precipitate was washed with hexanes (3 x 50 mL) and dried under vacuum. The precipitate was redispersable in numerous organic solvents, such as CH₂Cl₂ and THF.

30

40 Ring-opening metathesis of the norbornene rings on the GNPs with catalyst 1 (1 equivalent; the number of norbornenyl rings on the particles was estimated from elemental

20

45

50

55

5 analysis and NMR titrations) was achieved in less than 10 minutes in CDCl₃. Evidence for this activation process is the loss of the olefinic resonances at δ 5.9 and 6.2, Figure 2C.

10 Subsequent addition of 20 equivalents of the redox-active complex 3 to this solution led to polymerization of 3, as evidenced by the appearance of broad resonances
5 at δ 5.7-5.2 in the ¹HNMR spectrum of the particle-polymer hybrids (GNP - poly 3), Figure 2D. These resonances are characteristic of polymers synthesized from
15 norbornenyl-containing starting materials. Schwab et al., *Angew. Chem., Int. Ed. Engl.*, 34:2039 (1995); Lynn et al., *J. Am. Chem. Soc.*, 120:1627 (1998). After 30 minutes there
is no evidence of monomer 3, indicating that polymerization is complete.

20 The polymers could be terminated irreversibly by the addition of a slight excess
of ethyl vinyl ether, a known ROMP termination agent for catalysts such as 1. Wu et al.,
J. Am. Chem. Soc., 117:5503 (1995).

25 Significantly, the GNP - poly 3 hybrids could be precipitated from CDCl₃ with
hexanes, a solvent in which the 2-modified GNPs were completely redispersable. Once
30 washed thoroughly with hexanes, the GNP - poly 3 hybrids could be redispersed in a
variety of more polar organic solvents, such as CH₂Cl₂ and THF. These solubility
properties mirror those of the untethered ferrocenyl homopolymer, which was
independently synthesized from I and 3 under nearly identical conditions (poly 3; see
below).

35 20 Cyclic voltammetry of the GNP - poly 3 hybrids cast onto the surface of an Au/Si
electrode in 0.1 M TBAPF₆/CH₃CN (TBAPF₆ = tetrabutyl ammonium
hexafluorophosphate) exhibited a reversible wave associated with ferrocenyl oxidation/
reduction at 180 mV versus FcH/FcH⁺ (ferrocene/ferricinium), Figure 2F.

40 25 Finally, TEM analysis of the GNP - poly 3 hybrids indicated that the hybrid
particles maintained their 3±1 nm diameter gold cores, but the polymer shell layers could
not be imaged by TEM due to the low density of their atomic constituents, Figures 3A-B.

H. Synthesis and characterization of GNP - poly 3 - poly 4

45 As a further demonstration of the generality and scope of the strategy for
preparing hybrid nanoparticles, block copolymers of two different norbornenyl ferrocenyl
30 derivatives, 3 and 4, were grown successively from the surfaces of 2-modified particles
treated with catalyst 1. Inside an inert atmosphere glovebox, 3 nm GNPs modified with
50

5

30

10

2 (10 mg) were weighed into a screw-top NMR tube, and 100 μ L of CDCl_3 was added. Catalyst **1** (1 equivalent, 1.5 mg, 1.8 μ mol) was dissolved in 200 μ L of CDCl_3 , and syringed into the NMR tube containing the **2**-modified GNPs. The NMR tube was capped and placed on a shaker for 10 minutes. Next, a solution of **3** (20 equivalents, 12 mg, 37 μ mol, in 200 μ L of CDCl_3) was added, and the NMR tube was recapped and shaken for a further 20 minutes, after which time an ^1H NMR spectrum was taken. Then, a solution of **4** (20 equivalents, 37 μ mol, in 200 μ L of CDCl_3) was added, and the NMR tube was recapped and shaken for another 20 minutes, after which time another ^1H NMR spectrum was taken. The catalyst was quenched with ethyl vinyl ether (~ 100 μ L). Isolation of the particle-polymer hybrids (32 mg) was achieved by pouring the CDCl_3 solution into a vigorously stirring solution of hexanes (100 mL). The mother liquor was decanted, and the resulting dark brown precipitate was washed with hexanes (3 x 50 mL) and dried under vacuum. The precipitate was redispersable in numerous organic solvents, such as CH_2Cl_2 and THF.

20

10

Compound **4** was chosen as the second polymer building block because it can be easily differentiated from **3** by cyclic voltammetry. The methylene group located between the carbonyl and ferrocenyl moiety in **4** makes it approximately 220 mV easier to oxidize than **3**. Moreover, this methylene group provides a spectroscopic tag that allows one to follow the polymerization reaction by ^1H NMR, Figure 2E (note the asterisked resonance). The growth of the broad resonance at δ 3.3, coupled with the complete loss of resonances associated with the starting monomer **4**, indicates complete conversion of **4** to a block of poly **4** (GNP - poly **3** - poly **4**).

25

15

The GNP - poly **3** - poly **4** system exhibited reversible electrochemistry with the expected two distinguishable waves associated with oxidation/reduction of the two different types of ferrocenyl moieties within the particle immobilized block copolymer shell ($E_{1/2} = -40$ mV for the block of poly **4** and 180 mV for the block of poly **3** vs FcH/FcH'), Figure 2G. A comparison of the integrated current associated with these two waves allows one to evaluate the relative amounts of **3** and **4** in the GNP - poly **3** - poly **4** structure. Based on this analysis, a 1.4:1 ratio was calculated for **3** and **4** in the block copolymer. The reason that this is not a 1:1 ratio may be due to small differences in polymer solvation and, therefore, different degrees of electrochemical accessibility for the

40

20

45

25

50

5

31

10

two layers or, alternatively, to stoichiometry errors due to the small amounts of reagents used. The ideal response associated with these waves (the peak current is linearly dependent upon the scan rate) and the lack of evidence for mediated electron transfer between the interior block of 3 and the electrode surface indicates that in these structures both polymer blocks are accessible to the electrode surface and solvated to the extent that ions can move in and out of the block copolymer structure. Significantly, both the homopolymers and the block copolymers formed from the polymerization of 3 and 4 exhibit broad waves characteristic of sluggish electron transfer and poor polymer solvation, Figure 2H (poly 3 is given as an example).

15

Finally, TEM analysis of the GNP - poly 3 - poly 4 hybrids indicated that the hybrid particles maintained their 3±1 nm diameter gold cores, but the polymer shell layers could not be imaged by TEM due to the low density of their atomic constituents.

20

I. Synthesis of poly 3

25

A solution of 3 (12 mg, 37 µmol in 200 µL of CDCl₃) was syringed into a screw-top NMR tube, followed by the addition of a solution of 1 (1.5 mg, 1.8 µmol in 300 µL of CDCl₃). The NMR tube was capped and placed on a shaker for 30 minutes. The catalyst was quenched with ethyl vinyl ether (~100 µL). Isolation of the polymer (11 mg) was achieved by pouring the CDCl₃ solution into a vigorously stirring solution of hexanes (50 mL). The mother liquor was decanted, and the resulting light brown precipitate was washed with hexanes (3 x 25 mL) and dried under vacuum. The precipitate was redispersable in numerous organic solvents, such as CH₂Cl₂ and THF.

30

35

J. Control experiment

40

As a control experiment, a solution consisting of the untethered ferrocenyl-containing poly 3 and 2-modified GNPs in a ratio comparable to that used for the GNP - poly 3 experiment (see section G above) was prepared. When a precipitation experiment was carried out for this control system, the 2-modified GNPs remained soluble in hexanes (as evidenced by ¹HNMR), while the homopolymer (poly 3) precipitated as expected. The difference in solubility between the 2-modified GNPs and the GNP - poly 3 hybrids is strong evidence that the polymers formed by surface polymerization are indeed tethered to the surfaces of the GNPs. Taken together, the data unambiguously confirm that the polymers grown off the surfaces of the GNPs remain attached to the particle surfaces.

45

50

5

32

10

15

20

25

30

35

40

45

50

These proof-of-concept results indicate that the particle synthesis strategy reported herein can be used to prepare a new class of nanoparticles that can be functionalized with polymeric layers of virtually any norbornenyl-containing monomer. Indeed, the strategy could be easily extended to other inorganic nanoparticle templates as well as optically active or electroactive norbornenyl groups. Traditional inorganic nanoparticles already have become the basis for many useful probe-type applications. Storhoff et al., *J. Clust. Sci.*, 8:179 (1997); Brousseau et al., *J. Am. Chem. Soc.*, 120:7645 (1998); Freeman et al., *Science*, 267:1629 (1995); Zhu et al., *J. Am. Chem. Soc.*, 119:235 (1997); Mirkin et al., *Nature*, 382:607 (1996); Elghanian et al., *Science*, 277:1078 (1997); Storhoff et al., *J. Am. Chem. Soc.*, 120:1959 (1998). The hybrid structures presented herein, with their high degree of synthetic tunability, are likely to become equally or even more important as diagnostic probes in chemical and biochemical detection strategies. Moreover, they are a new and versatile type of building block that chemists and material scientists can easily incorporate into many existing particle assembly strategies.

15

Example 2

This example describes the synthesis of compound 5 (see Figure 4). To a 100 mL Schlenk flask 2-norbornene-5-exo-ol (1.10 g, 10 mmol), 3-thiopheneacetic acid (1.42 g, 10 mmol), and *p*-toluenesulfonic acid monohydrate (80 mg, 0.42 mmol) were added. The three solids were dissolved in toluene (60 mL) and a Dean/Stark trap was fitted to the top of the flask. A water condenser was placed on top of the Dean/Stark trap, and the mixture was heated to reflux. Over a period of six hours, the reaction volume was reduced to 20 mL by occasionally collecting solvent from the bottom of the Dean/Stark trap. The mixture was cooled to room temperature, poured into water (50 mL), and extracted with ether (3 x 50 mL). The organic portions were combined, washed with brine (50 mL), dried over sodium sulfate, and filtered into a 500 mL round bottom flask. The solvent was removed under vacuum using a rotary evaporator. The pale yellow oil was chromatographed on silica using a 1:1 mixture of CH₂Cl₂ and hexanes as an eluent to yield the desired product (1.68 g, 7.2 mmol, 72 %) as a clear oil. ¹H NMR (CDCl₃): 1.40 (m, 1H), 1.60 (m, 2H), 1.71 (m, 1H), 2.87 (b, 2H), 3.65 (s, 2H), 4.70 (d, 1H), 5.97 (m, 1H), 6.24 (m, 1H), 7.05 (d, 1H), 7.15 (b, 1H), 7.30 (m, 1H). ¹³C NMR (CDCl₃):

55

5

33

34.7, 36.3, 40.7, 46.3, 47.3, 75.8, 122.7, 125.7, 128.5, 132.6, 133.9, 141.2, 171.3.
GCMS: Retention time 10.86 min, m/e⁺ 234. Anal: cald. for C₁₃H₁₄O₂S: C: 66.64; H: 6.02; S: 13.68; Found: C: 66.91; H: 6.15; S: 13.86.

10

5 **Example 3**

This example describes the synthesis of compound 6 (see Figure 4). In an inert atmosphere glovebox, *exo*-5-norbornen-2-ol (710 mg, 6.45 mmol) was weighed into a 50 mL Schlenk flask. THF (15 mL) was added, and the solution was stirred vigorously while oil-free sodium metal (160 mg, 6.96 mmol) was added. The mixture was then taken out of the glovebox, refluxed for 12 hours under a nitrogen bubble, and allowed to cool to room temperature. In a separate 100 mL Schlenk flask, 2,5-dibromo-3-bromo-methyl-thiophene (2.01 g, 6.00 mmol) was dissolved in THF (15 mL), and the flask was capped with a pressure-equalizing dropping funnel. The cooled solution of deprotonated *exo*-5-norbornen-2-ol was then transferred to the pressure-equalizing dropping funnel by cannula (excess Na was quenched with isopropanol) and slowly added to the thiophene solution with vigorous stirring over a period of 10 minutes. The dropping funnel was then replaced with a condenser, and the mixture was refluxed for an additional 12 hours under a positive stream of nitrogen. Upon cooling to room temperature, the reaction mixture was poured into ether (50 mL) and washed successively with water (50 mL), 0.1 M NaOH (50 mL), 1 M HCl (50 mL), and brine (50 mL). The organic layer was collected, dried over sodium sulfate and filtered through a Buchner funnel. The solvent was removed on a rotary evaporator. Column chromatography of the slightly yellow oil on silica gel with 20% CH₂Cl₂ in hexanes as the eluent gave 1.88 g (5.16 mmol, 86%) of the desired product as a clear oil. ¹H NMR (CDCl₃): 1.41 (m, 1H), 1.58 (m, 2H), 1.71 (m, 1H), 2.82 (b, 1H), 2.93 (b, 1H), 3.56 (m, 1H), 4.40 (m, 2H), 5.93 (m, 1H), 6.20 (m, 1H), 6.99 (m, 1H). ¹³C NMR (CDCl₃): 34.53, 40.47, 46.06, 65.12, 80.31, 109.59, 111.21, 131.03, 133.10, 139.80, 140.87. GCMS: Retention time 12.26 min, m/z 364.

45

50 **Example 4**

30 This example describes the preparation of compound 7 (see Figure 4). In a 100 mL Schlenk flask was added 2-norbornene-5-*exo*-acetic acid (450 mg, 3.0 mmol). The

55

5

34

10

flask was placed under nitrogen using standard Schlenk techniques. Dry CH₂Cl₂ (20 mL) was added by cannula, followed by oxalyl chloride (5 mL of a 2 M solution in CH₂Cl₂, 10 mmol). The mixture was allowed to stir for 2 hours at room temperature. The solvent and excess oxalyl chloride were removed under vacuum and the resulting acid chloride was redissolved in dry diethyl ether (20 mL). To a separate 100 mL Schlenk flask was added 3'-(2-hydroxyethyl)-2,2':5',2"-terthiophene (850 mg, 2.91 mmol). The flask was placed under nitrogen, and diethyl ether (20 mL) was added followed by triethyl amine (0.84 mL, 6 mmol). The flask was fitted with a pressure equalizing dropping funnel. The norbornenyl-acid chloride solution was transferred to the dropping funnel by cannula and subsequently added to the stirring solution of the terthiophene solution dropwise over a period of ten minutes. The mixture was stirred for an additional 10 minutes at room temperature and then poured into water (50 mL) and extracted with ether (3 x 50 mL). The organic portions were collected, washed with brine (50 mL), dried over sodium sulfate, and filtered into a 500 mL round bottom flask. The solvent was removed under vacuum using a rotary evaporator. The resulting oil was chromatographed on silica using 1:1 CH₂Cl₂ and pentane as an eluent to yield the desired product (1.15 g, 2.79 mmol, 96%) as a light green oil. ¹H NMR (CD₂Cl₂): 1.32 (m, 2H), 1.45 (m, 1H), 1.86 (m, 1H), 2.87 (b, 1H), 2.98 (b, 1H), 3.10 (t, 2H), 4.32 (t, 2H), 6.11 (m, 2H), 7.05 (m, 1H), 7.10 (m, 2H), 7.19 (m, 2H), 7.26 (d, 1H), 7.37 (d, 1H). HRMS: calcd. for C₂₂H₂₀O₂S₃: 412.06; Found: 412.06.

25

15

30

20

35

Example 5

40

25

45

30

50

This example describes the preparation of compound 8 (see Figure 4). PdCl₂ (1,1'-bis(diphenylphosphino)ferrocene) (39 mg, 0.05 mmol) was weighed into a 100 mL Schlenk flask containing a magnetic stir bar and fitted with a reflux condenser and an addition funnel. The flask was evacuated to remove air, and a solution of 6 (1.00 g, 2.75 mmol) in dry diethyl ether (20 mL) was added by cannula. The flask was cooled to -20 °C in an acetone/ice bath, and a solution of (2-thienyl)magnesiumbromide (8.22 g, 1.54 mmol) in dry diethyl ether (20 mL) was added by addition funnel over a 30 min period. The reaction was allowed to warm to room temperature and was then refluxed overnight under a positive stream of nitrogen. The excess Grignard was consumed by the slow

5

35

10

addition of a saturated solution of aqueous ammonium chloride to the organic layer, followed by three consecutive water washes (50 mL). The organic layer was collected, dried over sodium sulfate, and filtered into a 500 mL round bottom flask. The solvent was removed under vacuum using a rotary evaporator. The resulting dark brown oil was chromatographed on silica using 1:1 CH₂Cl₂ and hexanes as an eluent to yield the desired product (870 mg, 86 %) as a green oil. ¹H NMR (CDCl₃): 1.47 (m, 1H), 1.59 (m, 2H), 1.78 (m, 1H), 2.84 (b, 1H), 2.98 (b, 1H), 3.65 (m, 1H), 4.56 (m, 2H), 5.94 (m, 1H), 6.20 (m, 1H), 7.03 (m, 1H), 7.09 (m, 1H), 7.18 (m, 1H), 7.21 (m, 1H), 7.22 (m, 1H), 7.24 (m, 1H), 7.35 (m, 1H). ¹³C NMR (CDCl₃): GCMS: Retention time 18.73 min, m/e* 370.

15

Monomers such as 5, 7, and 8 are doubly polymerizable monomers that can undergo ROMP chemistry followed by a second cross-linking reaction to give a conducting graft copolymer composite. With these new monomers, new nanoparticles/conducting polymer composites can be made (see Figures 7A-B).

20

25

15 **Example 6**

30

This example describes the synthesis of *exo*-5-norbornen-2-yl pyrenecarboxylate (compound 9 in Figure 4). Pyrenecarboxylic acid (0.547 g, 2.22 mmol) was weighed into a 100 mL Schlenk flask. The flask was placed under nitrogen using standard Schlenk techniques. Dry dichloromethane (50 mL) was added by cannula, and oxalyl chloride (0.291 mL, 3.34 mmol) was syringed into the reaction vessel. The mixture was stirred at room temperature for 2 hours. The solvent and excess oxalyl chloride were removed by rotary evaporation, and dry benzene (50 mL) were added by cannula. Next, *exo*-5-norbornen-2-ol (0.244 g, 2.22 mmol) was weighed into a 250 mL round-bottom flask and placed under nitrogen using standard Schlenk techniques. Dry benzene (50 mL) was added by cannula, and triethylamine (0.62 mL, 4.44 mmol) was syringed into the reaction vessel. The acid chloride solution in the Schlenk flask was then transferred into the round-bottom flask containing the alcohol solution by cannula. The mixture was then refluxed under nitrogen for 12 hours. The solution was diluted with brine (100 mL) and extracted with benzene (3 x 100 mL). The benzene layers were combined, dried over magnesium sulfate, and the solvent was removed by rotary evaporation. Column chromatography on silica gel with pentane/ether (8:1) as the eluent gave 0.215 g (0.668

40

45

50

55

5

36

10

mmol, 30%) of the desired product as a yellow solid. ^1H NMR (C_6D_6): 1.62 (m, 2H), 1.79 (m, 2H), 2.62 (b, 1H), 3.05 (b, 1H), 5.20 (m, 1H), 5.94 (m, 1H), 6.05 (m, 1H), 7.70 (m, 2H), 7.81 (m, 2H), 7.87 (m, 2H), 7.99 (m, 1H), 8.72 (m, 1H), 9.79 (m, 1H). HRMS (EI) (M^+): calcd. for $\text{C}_{24}\text{H}_{18}\text{O}_2$: 338.13 m/z ; Found: 338.13 m/z .

15

5 Compound 9 is fluorescent, and the fluorescence emission spectra of the monomer and of poly 9 are shown in Figure 6. As expected, the fluorescence of poly 9 occurs at a lower wavelength, and is broader and less intense, than that of monomer 9 itself. These behaviors suggest the formation of intramolecular excimers in poly 9 due to the close proximity of the chromophores.

20

10 **Example 7**

25

This example describes the synthesis of α -bromo- α' -(exo-5-norbornene-2-ol)- p -xylene (10) (see Figure 8A). In an inert atmosphere glovebox, exo-5-norbornene-2-ol (820 mg, 7.44 mmol) was weighed into a 50 mL Schlenk flask. Dry THF (15 mL) was added and the solution was stirred vigorously while oil-free sodium metal (250 mg, 10.9 mmol) was added. The mixture was then taken out of the glovebox, refluxed for 12 hours under a positive stream of nitrogen, and allowed to cool to room temperature. In a separate 100 mL Schlenk flask, α,α' -dibromo- p -xylene (2.11 g, 8.00 mmol) was dissolved in dry THF (15 mL) and the flask was capped with a pressure-equalizing dropping funnel. The cooled solution of deprotonated exo-5-norbornen-2-ol was then transferred to the pressure-equalizing dropping funnel via cannula filtration and slowly added to the thiophene solution with vigorous stirring over a period of 10 minutes. The dropping funnel was then replaced with a condenser and the mixture was refluxed for an additional 12 hours under a positive stream of nitrogen. Upon cooling to room temperature, the reaction mixture was poured into benzene (50 mL) and washed successively with water (50 mL), 1.0 M NaOH (50 mL), 1.0 M HCl (50 mL), and brine (50 mL). The organic layer was collected, dried over sodium sulfate and filtered into a 500 mL round bottom flask. The solvent was removed on a rotary evaporator. Column chromatography on silica gel with 30% CH_2Cl_2 in hexanes as the eluent gave the desired product 10 (1.13 g, 3.87 mmol, 52 %) as a clear oil. ^1H NMR (C_6D_6): 1.42 (m, 2H), 1.60 (m, 1H), 1.85 (m, 1H), 2.61 (m, 1H), 2.84 (m, 1H), 3.44 (m, 1H), 3.99 (m, 2H), 4.24 (m, 2H), 5.76 (m,

30

20

35 25 The cooled solution of deprotonated exo-5-norbornen-2-ol was then transferred to the pressure-equalizing dropping funnel via cannula filtration and slowly added to the thiophene solution with vigorous stirring over a period of 10 minutes. The dropping funnel was then replaced with a condenser and the mixture was refluxed for an additional 12 hours under a positive stream of nitrogen. Upon cooling to room temperature, the reaction mixture was poured into benzene (50 mL) and washed successively with water

40

45 25 (50 mL), 1.0 M NaOH (50 mL), 1.0 M HCl (50 mL), and brine (50 mL). The organic layer was collected, dried over sodium sulfate and filtered into a 500 mL round bottom flask. The solvent was removed on a rotary evaporator. Column chromatography on silica gel with 30% CH_2Cl_2 in hexanes as the eluent gave the desired product 10 (1.13 g, 3.87 mmol, 52 %) as a clear oil. ^1H NMR (C_6D_6): 1.42 (m, 2H), 1.60 (m, 1H), 1.85 (m,

50

5

37

1H), 6.26 (m, 1H), 7.02 (m, 2H), 7.13 (m, 2H). ^{13}C NMR (C_6D_6): 33.6, 35.2, 41.2, 46.7, 71.1, 80.7, 129.6, 133.7, 137.5, 140.3, 141.2.

10

Example 8

5 This example describes the synthesis of N- α -(N, N-dimethylammonium-methylferrocene bromide)- α' -(exo-5-norbornene-2-ol)-p-xylene (11) (see Figure 8A). In
15 a 100 mL round bottom flask was added 10 (293 mg, 1.00 mmol), anhydrous diethyl ether (25 mL) and a magnetic stirring bar. To this stirring solution of 10 was added a solution of N, N-dimethylaminomethylferrocene (243 mg, 1.00 mmol) in anhydrous diethyl ether (25 mL). The mixture was stirred for 6 hours, during which time a yellow precipitate formed. After this time, a cannula filtration apparatus was used to removed the ether from
20 the flask and the resulting yellow powder was washed with ether (4 x 50 mL). The solid was dried overnight under vacuum to yield the desired product 11 (391 mg, 0.73 mmol, 73 %). ^1H NMR (D_2O): ^{13}C NMR (CDCl_3): 34.7, 40.6, 46.2, 46.7, 48.3, 65.8, 66.9, 69.8, 70.7, 70.8, 72.5, 80.9, 126.7, 128.3, 133.2, 133.5, 141.0, 142.0.

30

Example 9

This example describes a general polymerization procedure for 10 or 11. Polymerization of 11 is described. In an inert atmosphere glovebox, 11 (110 mg, 0.21 mmol) was weighed into a 25 mL round bottom flask equipped with a magnetic stirring bar and dry MeOH (4 mL). To the stirring solution of 11 was added a solution of catalyst 1 (7.0 mg, 0.0085 mmol, 4 mole %) in dry CH_2Cl_2 (0.5 mL). The mixture was stirred for 30 minutes, after which time it was removed from the dry box and the polymerization was terminated with ethyl vinyl ether (1 mL). The polymer (ROMP-poly11, 101 mg, 92%) was isolated by pouring the mixture into anhydrous diethyl ether (100 mL) and repeatedly filtering and washing with fresh diethyl ether (4 x 50 mL).

45

Example 10

This example describes the synthesis of 12-14 (see Figure 8A). The synthesis of 12 is representative. A mixture of 10 (440 mg, 1.5 mmol) and 9-N,N-dimethylaminomethylanthracene (235 mg, 1.0 mmol) in DMF (25 mL) was refluxed for 16 hours.

5

38

10

After this time, the mixture was poured into diethyl ether (250 mL). The yellow solid which precipitated from solution was filtered and washed successively with diethyl ether (4 x 50 mL) to yield the desired product 12 (432 mg, 0.82 mmol, 82 %).

20

5 Example 11

This example describes the synthesis of 15 (see Figure 8B). A mixture of *exo*-5-norbornene-2-ol (500 mg, 4.54 mmol), 2-cyanoethyl diisopropylchlorophosphoramidite (1.00 g, 4.22 mmol), and *N,N*-diisopropylethylamine (0.87 mL, 5.0 mmol) was stirred in dry THF under an atmosphere of nitrogen for a period of 3 hours. After this time, the mixture was poured into a cold solution of 1.0 M NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (3 x 50 mL). The solvent was removed under vacuum to yield the desired product 15 (1.24 g, 95%).

25

15 Example 12

This example describes the synthesis of 16 (see Figure 8B). A mixture of 10 (1.40 g, 4.77 mmol), fluorescein (800 mg, 2.40 mmol), and potassium carbonate (665 mg, 4.80 mmol) in acetone (25 mL) was refluxed for 36 hours. After this time, the mixture was poured into ice water (100 mL), filtered, and washed with water (400 mL). Recrystallization from DMF with acidic water yielded the desired product 16 (727 mg, 0.96 mmol, 40 %).

35

40

45

50

55

Claims

5

10

15

20

25

30

35

40

45

50

55

5

39

WE CLAIM:

1. A method of preparing nanoparticles having at least one polymer shell attached thereto comprising:

providing a type of nanoparticles; and

attaching a type of initiation monomers to the surfaces of the nanoparticles.

2. The method of Claim 1 wherein the initiation monomer comprises a cyclic-olefin-containing group.

3. The method of Claim 2 wherein the initiation monomer comprises a norbornenyl group.

4. The method of Claim 1 wherein the nanoparticles are gold nanoparticles.

5. The method of Claim 4 wherein the initiation monomer is a norbornenyl-containing alkanethiol.

6. The method of Claim 5 wherein the initiation monomer is 1-mercaptop-10-(*exo*-5-norbornen-2-oxy)-decane.

7. The method of Claim 1 wherein the initiation monomers are mixed with a type of attachment compounds, and both the initiation monomers and the attachment compounds are attached to the surfaces of the nanoparticles.

8. The method of Claim 1 further comprising:

contacting the nanoparticles having the initiation monomers attached to them with a transition metal ring-opening metathesis catalyst to activate the initiation monomers; and

contacting the nanoparticles with one or more types of propagation monomers of the formula P-L-N under conditions effective so that the propagation monomers are polymerized to form one or more polymer shells attached to the nanoparticles,

wherein:

N is a cyclic olefin-containing group;

P is a moiety which gives each polymer shell a selected property or properties; and

30 L is a bond or linker whereby N is attached to P.

9. The method of Claim 8 wherein L is a polymer, —COO—, —CH₂(CH₂)_mCOO—, —OCO—, —R'N(CH₂)_m—NR'¹—, —O(CH₂)_m—, —(CH₂)_m—,

45

50

55

5

40

25

moiety B that binds specifically to an analyte;

20

wherein:

R¹ has the formula X(CH₂)ₘ;

25

X is -CH₂-, -CHCH₂-, -COOH, -CO₂(CH₂)ₘCH₃, -OH, -CH₂OH, ethylene glycol, hexa(ethylene glycol), -O(CH₂)ₘCH₃, -NH₂, -NH(CH₂)ₘNH₂, halogen, glucose, maltose, fullerene C60, a cyclic olefin, or a nucleic acid; and

10

m is 0-30.

30

10. The method of Claim 8 wherein N is a norbornenyl-containing group.

11. The method of Claim 8 or 10 wherein the catalyst has the formula:

15

35

wherein:

40

M is osmium or ruthenium;

R¹ is hydrogen;

X¹ and X², which may be different or the same, are any anionic ligand;

45

20

L¹ and L², which may be different or the same, are any neutral electron donor; and

R² is hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted aryl.

50

12. The method of Claim 11 wherein M is ruthenium, R¹ is hydrogen, R² is

25

phenyl, X¹ and X² are both -Cl, and L¹ and L² are both tricyclohexylphosphine.

55

5

41

13. The method of Claim 8 or 10 wherein the catalyst has the formula:

10 wherein:

15 Re is rhenium (VII);

20 R¹ is selected from the group consisting of an alkyl having 1-20 carbon atoms, an aryl having 6-20 carbon atoms, an aralkyl having 7-30 carbon atoms, halogen substituted derivatives of each, and silicon-containing analogs of each;

25 R² is R¹ or is a substituent resulting from the reaction of the Re=CHR² moiety of the catalyst with an olefin that is being metathesized;

30 R³ and R⁴ are ligands which individually or together are sufficiently electron withdrawing to render the rhenium atom electrophilic enough for metathesis reaction; and

35 n is 1 or more.

40 14. The method of Claim 8 or 10 wherein the catalyst has the formula:

45 wherein:

50 M is molybdenum or tungsten;

55 R¹ and R² each individually may be an alkyl containing 1-20 carbon atoms, an aryl containing 6-20 carbon atoms, an aralkyl containing 7-20 carbon atoms, a halogen substituted derivative of the alkyl, aryl, or aralkyl, or a silicon-containing analog of one of the alkyl, aryl, or aralkyl; and

40 R³ is an alkyl containing 1-20 carbon atoms, an aryl containing 6-20 carbon atoms, an aralkyl containing 7-20 carbon atoms, or a substituent resulting from the reaction of the M=CHR³ moiety of said catalyst with an olefin being metathesized.

45 15. The method of Claim 8 or 10 wherein the nanoparticles are contacted with a single type of propagation monomers under conditions effective so that the monomers are polymerized to form a single polymer shell attached to the nanoparticles.

50 16. The method of Claim 15 wherein the polymer shell has redox activity.

55 17. The method of Claim 16 wherein the propagation monomer is *exo*-5-norbornen-2-yl ferrocenecarboxylate or *exo*-5-norbornen-2-yl ferroceneacetate.

50 18. The method of Claim 8 or 10 wherein:

the nanoparticles are contacted with a plurality of types of propagation monomers under conditions effective so that the monomers are polymerized to form one

55

5

42

or more polymer shells attached to the nanoparticles, each polymer shell having one or more selected properties.

10

19. The method of Claim 18 wherein:

the nanoparticles are contacted with a first type of propagation monomers under conditions effective so that the monomers are polymerized to form a first polymer shell attached to the nanoparticles, the first polymer shell having a first selected property; and

15

then the nanoparticles are contacted with a second type of propagation monomers under conditions effective so that the monomers are polymerized to form a second polymer shell attached to the first polymer shell, the second polymer shell having a second selected property which is different from the first selected property of the first polymer shell.

20

20. The method of Claim 19 wherein one of the polymer shells has redox activity.

25

21. The method of Claim 20 wherein the propagation monomer polymerized to form the shell is *exo*-5-norbornen-2-yl ferrocenecarboxylate or *exo*-5-norbornen-2-yl ferroceneacetate.

30

22. The method of Claim 19 wherein the both polymer shells have redox activity.

35

23. The method of Claim 22 wherein the two polymer shells have different redox activities.

40

24. The method of Claim 23 wherein the propagation monomer polymerized to form the first polymer shell is *exo*-5-norbornen-2-yl ferrocenecarboxylate and the propagation monomer polymerized to form the second polymer shell is *exo*-5-norbornen-2-yl ferroceneacetate.

25

25. The method of Claim 8 or 10 wherein the polymerization is stopped by adding a compound that terminates polymerization.

45

26. Nanoparticles having initiation monomers attached to them.

30

27. The nanoparticles of Claim 26 wherein the initiation monomers comprise

cyclic olefin-containing groups.

50

28. The nanoparticles of Claim 27 wherein the initiation monomers comprise norbornenyl groups.

5

43

29. The nanoparticles of Claim 28 wherein the initiation monomers are norbornenyl-containing alkanethiols.

10

30. The nanoparticles of Claim 29 wherein the initiation monomers are 1-mercaptop-10-(*exo*-5-norbornen-2-oxy)-decane.

15

31. Nanoparticles comprising one or more polymer shells attached to them, the polymer shells being formed by polymerizing one or more types of propagation monomers of the formula P-L-N,

wherein:

P is a moiety which provides a desired property or properties to each of the polymer shells;

N is a cyclic olefin-containing group; and

L is a bond or a linker whereby N is attached to P.

20

32. The nanoparticles of Claim 31 wherein L is a polymer, —COO—, —CH₂(CH₂)_mCOO—, —OCO—, —R¹N(CH₂)_n—NR¹—, —O(CH₂)_m—, —(CH₂)_m—,

30

35

B that binds specifically to an analyte,

wherein:

R¹ has the formula X(CH₂)_m;

40

X is —CH₃, —CHCH₃, —COOH, —CO₂(CH₂)_nCH₃, —OH, —CH₂OH, ethylene glycol, hexa(ethylene glycol), —O(CH₂)_nCH₃, —NH₂, —NH(CH₂)_nNH₂, halogen, glucose, maltose, fullerene C60, a cyclic olefin, or a nucleic acid; and

m is 0-30.

45

33. The nanoparticles of Claim 31 wherein N is a norbornenyl-containing group.

50

34. The nanoparticles of Claim 31 or 33 having a single polymer shell attached to them.

5

44

35. The nanoparticles of Claim 31 or 33 having a plurality of polymer shells attached to them.

10

36. The nanoparticles of Claim 35 having two polymer shells attached to them, the first polymer shell and the second polymer shell having different properties.

15

37. The nanoparticles of Claim 34 wherein the polymer shell has redox activity.

38. The nanoparticles of Claim 35 wherein one of the polymer shells has redox activity.

20

39. The nanoparticles of Claim 36 wherein the first polymer shell has redox activity and the second polymer shell has redox activity different than that of the first polymer shell.

40. The nanoparticles of Claim 31, 32 or 33 wherein a polymer shell comprises a binding moiety B that binds specifically to an analyte.

25

41. The nanoparticles of Claim 40 wherein the polymer shell comprising the binding moiety B is formed by polymerizing one or more types of binding monomers of the formula N-L-B, wherein N, L and B have the same meanings as in Claim 40.

30

42. The nanoparticles of Claim 41 wherein the polymer shell comprising the binding moiety B is formed by polymerizing a mixture of one or more types of binding monomers and one or more types of propagation monomers.

35

43. A propagation monomer having the formula P-L-N, wherein:

P is a moiety having a desired property selected from the group consisting of redox activity, optical activity, electronic activity, and magnetic activity;

N is a cyclic olefin-containing group;

L is a bond or linker whereby N is attached to P.

40

44. The monomer of Claim 43 wherein L is a polymer, —COO—, —CH₂(CH₂)_mCOO—, —OCO—, —R¹N(CH₂)_m—NR¹—, —O(CH₂)_m—, —(CH₂)_m—,

50

55

5

45

10

, or comprises a binding moiety B which binds specifically to an analyte;

wherein:

R¹ has the formula X(CH₂)_m;

15

X is -CH₃, -CH₂CH₃, -COOH, -CO₂(CH₂)_mCH₃, -OH, -CH₂OH, ethylene glycol, hexa(ethylene glycol), -O(CH₂)_mCH₃, -NH₂, -NH(CH₂)_mNH₂, halogen, glucose, maltose, fullerene C60, a cyclic olefin, or a nucleic acid; and

m is 0-30.

20

45. The monomer of Claim 43 wherein N is a norbornenyl-containing group.

10

46. The monomer of Claim 43 or 45 wherein P is a moiety having redox activity.

25

47. The monomer of Claim 46 wherein P is a ferrocene derivative.

48. The monomer of Claim 47 which is *exo*-5-norbornen-2-yl ferrocenecarboxylate or *exo*-5-norbornen-2-yl ferroceneacetate.

15

49. An initiation monomer having the formula:

30

N - L - A

wherein:

N is a cyclic olefin-containing group;

35

20

A is an attachment compound-containing group comprising a functional group suitable for attaching the initiation monomer to a nanoparticle; and

L is a bond or a linker whereby N is attached to A.

40

50. The initiation monomer of Claim 49 wherein L is a polymer, -COO-, -CH₂(CH₂)_mCOO-, -OCO-, -R¹N(CH₂)_m-NR¹-, -O(CH₂)_m-, -(CH₂)_m-,

45

25

50

55

5

46

, or comprises a binding moiety

10

B which binds specifically to an analyte;

wherein:

R¹ has the formula X(CH₂)_m;

15

X is -CH₃, -CHCH₃, -COOH, -CO₂(CH₂)_nCH₃, -OH, -CH₂OH, ethylene glycol, hexa(ethylene glycol), -O(CH₂)_mCH₃, -NH₂, -NH(CH₂)_nNH₂, halogen, glucose, maltose, fullerene C₆₀, a cyclic olefin, or a nucleic acid; and

20

m is 0-30.

51. The initiation monomer of Claim 49 comprising a norbornenyl-group.

10 52. The initiation monomer of Claim 51 which is a norbornenyl-containing alkanethiol.

25 53. The initiation monomer of Claim 52 which is 1-mercaptop-10-exo-5-norbornen-2-oxy-decane.

54. A method of detecting or quantitating an analyte comprising:

30

15 (a) contacting a sample suspected of containing the analyte with the nanoparticles of Claim 40; and

(b) detecting or measuring the property or properties of the nanoparticles in order to detect or quantitate the analyte.

35

55. The method of Claim 54 wherein the analyte is a nucleic acid and B is an oligonucleotide with a sequence complementary to at least a portion of the sequence of the analyte nucleic acid.

40

56. The method of Claim 54 wherein the analyte is an antigen or a hapten and B is an antibody specific for the antigen or hapten.

57. The method of Claim 54 wherein the property detected or measured is fluorescence.

45

58. The method of Claim 54 wherein the property detected or measured is color.

50

59. The method of Claim 54 wherein the property detected or measured is redox activity.

30 60. A kit for detecting or quantitating an analyte comprising a container holding the nanoparticles of Claim 40.

5

47

10 61. The kit of Claim 60 wherein the analyte is a nucleic acid and B is an oligonucleotide with a sequence complementary to at least a portion of the sequence of the analyte nucleic acid.

15 62. The kit of Claim 60 wherein the analyte is an antigen or a hapten and B is an antibody specific for the antigen or hapten.

20 63. The kit of Claim 60 wherein the property is fluorescence.

25 64. The kit of Claim 60 wherein the property is color.

30 65. The kit of Claim 60 wherein the property is redox activity.

35 66. A binding monomer having the formula:

40 N - L - B

45 wherein:

50 N is a cyclic olefin-containing group;

55 B is a binding moiety that binds specifically to an analyte; and

60 L is a bond or a linker whereby N is attached to B.

65 67. The binding monomer of Claim 66 wherein N is a norbornenyl-containing group.

70 68. The binding monomer of Claim 66 or 67 wherein B is an oligonucleotide.

75 69. The binding monomer of Claim 66 or 67 wherein B is an antibody.

80 70. A polymer formed by polymerizing one or more types of propagation monomers of the formula P-L-N,

85 wherein:

90 P is a moiety which provides a desired property or properties to the polymer;

95 N is a cyclic olefin-containing group; and

100 L is a bond or a linker whereby N is attached to P.

105 71. The polymer of Claim 70 wherein N is a norbornenyl-containing group.

110 72. The polymer of Claim 70 or 71 wherein L comprises a binding moiety B that binds specifically to an analyte.

115 73. A method of detecting or quantitating an analyte comprising:

120 contacting a sample suspected of containing the analyte with the polymer of Claim 72; and

125 detecting or measuring the property or properties of the polymer in order to detect or quantitate the analyte.

5

48

74. The method of Claim 73 wherein the analyte is a nucleic acid and B is an oligonucleotide.

10

75. A kit for detecting or quantitating an analyte comprising a container holding the polymer of Claim 72.

15

76. A method of detecting or quantitating an analyte comprising:

(a) contacting the analyte with a type of binding monomers having the formula:

20

 $N - L - B$

wherein:

N is a cyclic olefin-containing group;

B is a binding moiety that binds specifically to the analyte; and

L is a bond or a linker whereby N is attached to B;

so that the binding monomers bind to the analyte;

25

(b) then adding a type of propagation monomers having the formula

15 P-L-N, wherein:

P is a detectable or measurable property;

N is a cyclic olefin-containing group; and

L is a bond or linker whereby N is attached to P;

so that the propagation monomers polymerize to form a polymer attached to the analyte;

20 and

(c) detecting or measuring the property or properties of the polymer attached to the analyte in order to detect or quantitate the analyte.

77. The method of Claim 76 wherein N is a norbornenyl-containing group.

40

78. The method of Claim 76 or 77 wherein the analyte is a nucleic acid and B is an oligonucleotide.

25

79. The method of Claim 78 further comprising:

45

(i) providing a substrate having a type of capture oligonucleotides attached thereto which have a sequence complementary to at least a portion of the sequence of the analyte nucleic acid; and

30

(ii) contacting the analyte nucleic acid with the substrate so that the analyte nucleic acid hybridizes to the capture oligonucleotides prior to performing steps

50

(a) through (c).

80. The method of Claim 76 or 77 wherein P is fluorescence.

5

49

81. The method of Claim 78 wherein P is fluorescence.
82. The method of Claim 79 wherein P is fluorescence.
83. A kit for detecting or quantitating an analyte comprising:
 - (a) a container holding a type of binding monomers having the formula:

5

 $N - L - B,$

wherein:

15

N is a cyclic olefin-containing group;
B is a binding moiety that binds specifically to the analyte; and
L is a bond or a linker whereby N is attached to B;

20

- (b) a container holding a type of propagation monomers having the formula:

 $P-L-N,$

wherein:

25

P is a detectable or measurable property;

15

N is a cyclic olefin-containing group; and

L is a bond or linker whereby N is attached to P; or

30

- (c) both (a) and (b).

84. The kit of Claim 83 wherein N is a norbornenyl-containing group.

85. The kit of Claim 83 or 84 wherein P is fluorescence.

35

40

45

50

55

Figure 2

FIGURE 4

FIG.
3A

FIG.
3B

FIG. 5B

FIGURE 6

FIG. 7A

FIG. 7B

FIG. 8A

16

15

FIG. 8B

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/28387

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :G01N 33/553; B32B 5/16 US CL :436/525; 206/569; 428/407 According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S. : Please See Extra Sheet.		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched NONE		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) NONE		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	U.S. 4,023,981 A (PERRONIN et al) 17 May 1977, column 1, lines 41-57; column 3, lines 16-22; column 4, Examples 1-2; column 5, Example 3, column 6, Examples 4-5.	1-7, 26-30
Y	U.S. 4,454,234 A (CZERLINSKI) 12 June 1984, column 2, lines 18-23 and 51-66; column 4, lines 9-16; column 5, lines 33-65; column 7, Examples 1-2; column 8, Example 3; column 9, Example 4.	1-7, 26-30
A	U.S. 4,846,893 A (AKASAKI et al) 11 July 1989.	1-7, 26-30
A	U.S. 5,053,471 A (GOTO et al) 01 October 1991.	70-72
<input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.		
* Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document published on or after the international filing date "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		
Date of the actual completion of the international search 25 FEBRUARY 2000	Date of mailing of the international search report 21 MAR 2000	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer <i>Fred M. Teskin</i> Fred M. Teskin Telephone No. (703) 308-2456	

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/28387

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	U.S. 5,342,909 A (GRUBBS et al) 30 August 1994.	1, 8-14
Y	U.S. 5,639,620 A (SIIMAN et al) 17 June 1997, column 5, lines 6-28; column 6, lines 38-40; column 7, lines 54-60; column 9, lines 39-65; column 10, line 52 to column 11, line 15; column 13, lines 13-43; column 16, lines 18-39; column 20, Example 4; column 26, Example 6; column 28, Example 7.	1-7, 26-30, 54-65
A	U.S. 5,736,413 A (UZAN et al) 07 April 1998.	54-65, 73 - 85
A	U.S. 5,766,764 A (OLLI et al) 16 June 1998.	1-42

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/28387

B. FIELDS SEARCHED

Minimum documentation searched
Classification System: U.S.

206/369; 436/2, 518, 525, 526, 528, 532; 428/407; 523/205, 524/780, 852; 526/241, 281, 309; 556/144, 145;
560/125, 128; 564/454, 455; 568/62, 667

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.