实验2报告

一、算法说明

1. 核心功能

程序通过模拟多轮实验,统计两种策略下囚犯全员在指定尝试次数内找到自己编号的成功率。具体功能包括:

- 盒子初始化: 生成随机排列的盒子(每个盒子存放一个唯一的囚犯编号)。
- 策略模拟:实现两种搜索策略(随机搜索、循环策略),模拟囚犯寻找自己编号的过程。
- 成功率统计:通过多轮实验(用户可指定实验轮次),计算两种策略的总成功率并对比。

2. 关键算法

盒子初始化(box init 函数)

功能:生成一个随机排列的盒子列表,模拟监狱长随机放置囚犯编号的过程。、 实现逻辑:

输入参数 num 为囚犯数量(如 N=100)。

生成一个初始列表 boxes,元素为 0 到 num-1(对应囚犯编号)。

使用 random.shuffle 随机打乱列表,使每个盒子的编号排列完全随机。

随机搜索策略(random_strategy 函数)

功能:模拟"随机搜索"策略下的逃生成功率。每个囚犯随机选择最多 tries 个盒子, 检查是否包含自己的编号。

核心逻辑:

输入参数: 囚犯数量 num_prisoners、盒子列表 boxes、尝试次数 tries、实验轮次epoches。

单轮实验流程:

所有囚犯独立随机选择 tries 个盒子(使用 random.sample 确保不重复选择)。

每个囚犯检查选中的盒子中是否有自己的编号(即 boxes[index] == prisoner)。

若所有囚犯均找到自己的编号,该轮实验成功;否则失败。

统计:累计 epoches 轮中成功的轮次,计算成功率(成功轮次/总轮次)。

循环搜索策略(cycle_strategy 函数)

功能:模拟"循环搜索"策略下的逃生成功率。囚犯从自己编号对应的盒子开始,按盒内纸条编号跳转,直到找到自己的编号或超过尝试次数。

输入参数: 囚犯数量 num_prisoners、盒子列表 boxes、尝试次数 tries、实验轮次 epoches。

核心逻辑:

输入参数:同 random_strategy。

单轮实验流程:

每个囚犯 prisoner 从自己编号对应的盒子(索引为 prisoner)开始搜索。

检查当前盒子中的编号:若等于 prisoner (找到自己的编号),则成功;否则跳转到该编号对应的盒子(即 box index = boxes[box index])。

重复步骤 2,最多尝试 tries 次,若超过次数未找到,则该囚犯失败,整轮实验失败。统计:累计 epoches 轮中成功的轮次,计算成功率。

二、 实验结果与分析

N=100, K=50, T=10000 时:

input the number of prisoners100 input the total tries for each prisoner50 input the total epoches for all prisoners10000 正在模拟 100 名囚犯,每人尝试 50 次,共进行 10000 轮实验... 随机策略的成功率为 0.000000 循环策略的成功率为 0.312500

N=50, K=25, T=10000 时:

input the number of prisoners50 input the total tries for each prisoner25 input the total epoches for all prisoners10000 正在模拟 50 名囚犯,每人尝试 25 次,共进行 10000 轮实验... 随机策略的成功率为 0.000000 循环策略的成功率为 0.312900

10 次模拟实验下,成功率对比图

三、 理论计算

随机策略: $P = \left(\frac{1}{2}\right)^{100}$

循环策略:设置换π存在长度大于 50 的轮换 σ ,其长度为 l。则 σ 中元素有 $\binom{100}{l}$ 种可能的选择。选定 l 个元素后,可以形成(l-1)!种不同的轮换。所以选自 $1^{\sim}100$ 的、长为 l 的轮换个数是: $\binom{100}{l}(l-1)!$ 而剩余的个元素可以形成(100-l)! 种不同的置换。因此这样的置换一共有 $\binom{100}{l}(l-1)!$ ($(100-l)!=\frac{1}{l}*100!$ 个。囚犯遇到这样的置换的概率是 $P(\overline{A})=\frac{1}{100!}\sum_{l=51}^{100}\left(\frac{1}{l}*100!\right)=0.6882$ 。则成功概率是: $P(A)=1-P(\overline{A})=0.3118$

四、 优化思路

在计算速度上,发现当 epoch 很大时(例如 1000000),计算机将花费较长时间进行模拟计算。可以采用并行计算方式,将囚犯分组,分别进行实验。此方法可以减少计算时间。