Рубежный контроль №1¶

машинного обучения и о возможном вкладе признаков в модель.

Карягин А.Д., группа ИУ5-62Б, вариант 8 (задача №1, набор данных №8)

Требование для студентов группы ИУ5-62Б - для произвольной колонки данных построить гистограмму.

In []:

import numpy as np import pandas as pd import seaborn as sns

data = pd.read_csv('data/google-play-store-apps/googleplaystore.csv', sep=",") In [126]:

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

import matplotlib.pyplot as plt

%matplotlib inline sns.set(style="ticks")

data.head() Out[126]:

In [128]:

data.head()

In [125]:

App Category Rating Reviews Size | Photo Editor & Candy Camera & Grid & ScrapBook ART_AND_DESIGN 4.1 159 ART_AND_DESIGN 3.9 **1** Coloring book moana ||967

2 U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyone	Art & Design	August 1, 2018	1.2.4	4.0.3 and up
3 Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen	Art & Design	June 8, 2018	Varies with device	4.2 and up
4 Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	Art & Design;Creativity	June 20, 2018	1.1	4.4 and up
Удаляем Категориальные признаки которые не будем кодировать <mark>.</mark>												
Удаляем Категориальны	е признакі	и ко	торь	ые і	не будо	em i	ко д	ировать	• <u>¶</u>			
Удаляем Категориальны In [127]:	е признакі	и ко	торы	ые і	не буде	2M 1	код	ировать	• <u>¶</u>			

|19M ||10,000+

|14M ||500,000+

Installs Type Price Content Rating

Everyone

Everyone

Free ||0

Free ||0

Genres

Art & Design; Pretend Play January 15, 2018 2.0.0

Art & Design

Last Updated

|January 7, 2018 ||1.0.0

Current Ver Android Ver

4.0.3 and up

4.0.3 and up

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей

Out[128]: ||Rating||Reviews|| Size Installs Type Content Rating

0 4.1 159 19M ||10,000+ Free | Everyone 1 3.9 967 14M 500,000+ Free | Everyone

2 4.7 87510 8.7M 5,000,000+ Free Everyone **3** 4.5 215644 25M |50,000,000+||Free ||Teen

4 4.3	967	2.8M 100,000	+ Free	Everyone	
In []:					
In [129]:					
data.isnu	ull().s	um()			
Out[120].					

1474

0

0

1

Out[129]: Rating Reviews

Installs

Туре Content Rating dtype: int64 In [130]: data.shape

Out[130]:

In [132]:

Installs

(10841, 6)

Так как Рейтинг может быть целевым признаком удалять этот столбец мы не будем. Пропуски в остальных столбцах малочисленны, так что удалим все строки с пропусками. In [131]: data.dropna(axis = 0, inplace= True)

data.isnull().sum()

Out[132]: Rating

0 Reviews 0 Size 0

0

Content Rating dtype: int64

Type In [133]:

data.corr() Out[133]: Rating

|| Rating || 1.0

Нужно преобразовать категориальные признаки в числовые In [134]: install_uniq = data['Installs'].unique()
install_dict = {uniq : re.sub(r"[+,]", "", uniq) for uniq in install_uniq}
data = data.replace({"Installs": install_dict}) data['Installs'] = data['Installs'].astype('int32')

In [135]:

Out[135]:

array([10000, 500000, 5000000, 10000000, 50000, 1000000, 1000000000, 1000, 500000000, 10, 50,

In [136]: cat_enc = pd.DataFrame({'Content':data.T[0]}) cat_enc Out[136]:

data['Installs'].unique()

Content Rating 4.1 159 Reviews

19M

Installs 10000 Type **Content Rating** Everyone In [137]: le = LabelEncoder() le.fit(data['Content Rating']) data['Content_rating_le'] = le.transform(data['Content Rating']) Out[137]:

4.1

3.9

4.5

1

3

Rating Reviews

159

967

87510

215644

398307

19M

14M

8.7M

25M

19M

Size

4.3 967 2.8M100000 Free Everyone **10834** 4.0 2.6M500 Everyone Free **10836** 4.5 38 53M 5000 Free Everyone **10837** 5.0 3.6M100 Free Everyone **10839** 4.5 Varies with device 1000 114 Mature 17+ Free

10000

500000

5000000

|50000000||Free

|10000000||Free

Size

Size

10000

100000

500

5000

Free

Free

Free

Free

Free

Free

50000000,

100,

100000,

500,

5000, 100000000,

1], dtype=int32)

Installs Type Content Rating Content_rating_le

Everyone

Everyone

Everyone

||Everyone

Everyone

|Everyone

Everyone

Everyone

Everyone

|Everyone

0.039581

-0.053102

-0.046892

1.000000

Teen

Installs Type Content Rating Content_rating_le Type_le

Teen

Free

Free

Free

le = LabelEncoder() le.fit(data['Type']) data['Type_le'] = le.transform(data['Type'])

4.1

4.3

Rating Reviews

159

967

9366 rows × 7 columns

10840 4.5

In [138]:

Out[138]:

1 3.9 967 14M 500000 87510 4.7 8.7M5000000 3 4.5 215644 25M |50000000||Free

19M

2.8M

2.6M

53M

10834 4.0 **10836** 4.5 **10837** 5.0

In [140]:

In [141]:

data.corr()

3.6M100 Free Everyone **10839** 4.5 114 Varies with device 1000 $\parallel 0$ Free Mature 17+ **10840** 4.5 398307 19M |10000000||Free Everyone 9366 rows × 8 columns In [122]: data.drop(['Installs'], axis='columns', inplace=True) Корреляционный анализ

Installs Content_rating_le Type_le

Out[140]: 1.000000||0.051355 ||0.019868 Rating

0.051355 1.000000 0.053359 **Installs** |Content_rating_le||0.019868||0.053359||1.000000 0.039581 -0.053102 -0.046892 Type_le

fig, ax = plt.subplots(figsize=(12,12))

sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f') Out[141]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0c924b9410>

In [145]: fig, ax = plt.subplots(figsize=(10,10)) sns.distplot(data['Rating'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f0c921c5fd0>

Out[145]:

