Bioinformatics training on VM and cloud technologies

An educational option in the GTPB programme

Pedro L. Fernandes Instituto Gulbenkian de Ciência Oeiras, PT

The GTPB Programme

GTPB delivers hands-on intensive training in Portugal since 1999

- >300 training courses
- >4700 participants

We try to tackle Bioinformatics user needs

We seek improvement in training methods

GTPB in 2015

IB15F - Introductory Bioinformatics (w/ 2d NGS intro) April 13-17

PHSMCP15 - Promoter hunting and systems modelling of cellular pathways April 22-24

SMLMC15 - Structural Modelling for Large Macromolecular Complexes *April 27-30*

ARANGS15 - Automated Reproducible Analysis of NGS Data *May* 11-15

MEVR15 - Molecular Epidemiology of Viruses using R May 25-28

IBSTATB15 - Introductory Biostatistics for Biologists *June* 15-19

PGDH15 - Population genetics and demographic history: model-based approaches July 6-9

BPBR15 - Bioinformatics using Python for Biomedical Researchers *July 20-24*

PDA15 - Proteomics Data Analysis September 7-10

GACT15 - Genomic Architecture of Complex Traits September 28 – October 1

TBHD15 - Translational Bioinformatics in Health and Disease November 30 - December 3

IB15S - Introductory Bioinformatics (w/ 2d NGS intro) December 14-18

ARANGS12 - The motivation

In 2012, a new course design was proposed. The motivation came from the observation that NGS workflows were often irreproducible.

We went after the most plausible reasons:

- Authors do not use revision control in their scripts
- Not concerned about workflow portability
- Did not foresee consequences of software updates
- Did not consider recording parameter changes
- Ignored that data itself is not (necessarily) stable...

ARANGS12 Design

Best practices

Standardized project organization

Projects fully 'runnable' without user intervention

No loss of data, metadata or source code through versioning

Technologies

Next generation sequencing platforms

File formats

Command-line executables, command line scripting and batching

High-level programming with domain-specific toolkits

Revision control systems

Workflow environments (both visual and command line)

Use cases

Phylogenetic placement of metagenomic data

Typing of pathogens

Comparative analysis of multicellular genomic data

Improving towards ARANGS16

Best practices

Command line scripting of analysis steps

Provisioning systems to standardise software environment requirements

Packaging of compute environment into static, portable units Sharing of compute environment packages

Technologies

Next generation sequencing platforms

Command-line executables, command line scripting and batching

Provisioning Systems: Puppet, Dockerfile

Virtualisation with Virtualbox and Vagrant

Containerization with **Docker**

ARANGS16 team

Vagrant

Managed, scriptable virtualisation with a single file that contains a RUBY script

Command line launching at the host

Zhost> vagrant init

Zhost> vagrant up

Zhost> vagrant ssh

Zhost> vagrant halt

Zhost> vagrant destroy

Simple Vagrantfile

```
Vagrant.configure do |config|
config.vm.box = "olbat/tiny-core-micro"
config.vm.provider "virtualbox" do |vb|
# Display the VirtualBox GUI when booting the machine
vb.gui = true
# Customize the amount of memory on the VM:
vb.memory = "2048"
end
config.ssh.shell="sh"
```

Vagrant BOX

A vagrant box contains minimal functional elements

- Package manager
- SSH
- SSH user
- Provisioning (Chef or Puppet, etc)

Vagrant boxes easily created for Cloud providers (AWS, etc.) using Packer.

(see https://www.vagrantup.com)

Puppet

Software to specify a manifest, equivalent to saying in a json file:

I want my system to have wget, bzip2, tar, git, build-essential, gzip, zlibg-dev, ncurses-dev

Provisioning of the guest is performed via a host command

Zhost> vagrant provision

Comparable Vagrant & Docker features

As seen by the course participants at the end of day 4

Docker vs. Vagrant

Docker	Vagrant
potential security nightmare	sandboxed
lightweight	entire OS
linux dependent	standalone
requires docker	requires virtualbox and vagrant
docker language	uses ruby
invoke tools from outside	log in on environment
???	deploy on grid
resource efficient	less so due to virtualization
works on MPI cluster	not so much
docker hub	vagrant cloud

Virtualisation example

SuperSmart

Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and

Relationships of Taxa

https://peerj.com/preprints/501v1/

http://www.supersmart-project.org/

On Github: https://github.com/naturalis/supersmart

Box: https://atlas.hashicorp.com/Naturalis/boxes/supersmart/

Tutorial: Building a phylogenetic tree of the large cats

https://atlas.hashicorp.com/Naturalis/boxes/supersmart/versions/0.1.22

Slides:

http://www.slideshare.net/rvosa/assembling-the-tree-of-life-from-public-dna-sequence-data

The environment of a course

... can be replicated using virtualisation.

See this example GTPB

http://bioinformatics-core-shared-training.github.io/ndarc16/

Look for the docker file and inspect it.

Thank you for your attention

pfern@igc.gulbenkian.pt

http://gtpb.igc.gulbenkian.pt