News, Networks, and Narratives

A Language Model and Social Simulation Approach

Amanul Haque Advised by: Dr. Munindar P. Singh March 22. 2025

Department of Computer Science

NC STATE UNIVERSITY

My Time at NC State University

Education

- MS in Computer Science under Dr. Lynch (2017 2019)
 Prioritizing Blended Course Discussion Forum Posts Using Linguistic Features and Metadata With Limited Labeled Instances
- PhD in Computer Science under Dr. Munindar P. Singh (2019 present)

Publications

- 4 as main author (1 workshop paper, 1 short paper, and 2 full papers)
- 3 as co-author (3 full papers) + 2 under review

Awards

- Outstanding TA Award 2021
- Oustanding Student Leader Award 2023

Industry

- · Internship at Lenovo, Seagate, and Coupang
- Research scholar at LAS-SCADS 2024

Leadership

- President and Head of events, IGSA (Maitri), Spring 2022 Fall 2023
- · Smallpack leader, Summer 2019
- Hosted initial webinars for the AI in Society series, Fall 2022

Motivation

- Rising polarization
 - Influences public discourse
 - · Hinders effective discussions
- News reporting is slanted
 - · Declining trust in readers
 - News source preference based on political party preference
- Social media Influence
 - Fastest growing platform for news dissemination
 - Selective exposure
 - Echo chambers

Thesis Statement

Computational news analysis reveals slants in political news and a moral divide on social media among audiences of different news sources as well as how news coverage by one publisher influences another.

Presentation Overview

1. Political Slant in News and User Engagement on Social Media

Favorability of news toward political figure
Understanding reader reactions through a moral lens

2. War News Analysis

Moral Framing in War News
War and Peace Journalism

3. Dynamics of Polarization in Social Networks

Political Slant in News

Political Slant in News

Favorability of news toward political figure

Research Questions

 RQ_{1a} Do news publishers contain political slant in election-related news?

• Compare news for the same entity across news publishers

 $RQ_{1b}\;\;$ Do reader reactions to election-related news on social media differ across news publishers?

• Analyze Twitter reactions to political news

Datset Curation

- 2020 US presidential elections (March 2020 to January 2021)
- News from traditional news websites and Twitter
- Reader reactions on Twitter

Publisher	Leaning ¹	News	Tweets	Reactions
CNN	LEFT	6485	6108	1 704 194
The Washington Post	LEFT	4678	6999	1 051 062
Fox News	RIGHT	8327	872	648 719
Breitbart News	RIGHT	7377	3243	474 525

¹https://www.allsides.com/media-bias/ratings

Favorability of News

• Target-based sentiments

• Target: Presidential candidates

NewsSentiment

Bidirectional GRU

Trained on NewsMTSC^[2]

Model	Range	Interpretation
VADER	[-1,1]	−1: Neg, 1: Pos
Textblob	[-1,1]	-1: Neg, 1: Pos
NewsSentiment	[0,1]	Pos + Neg + Neu = 1

	Headline	VADER	Textblob	NewsSentiment
H1	Trump Wants To Reopen the Economy, While <u>Biden</u> Wants To Shut It Down	0.00	0.0814	Trump: 0.587 (positive) Biden: 0.864 (negative)
H2	$\frac{\textit{Trump's}\ \textit{Inaction Causes More Deaths Due to Rising COVID-}}{19\ \textit{Cases}\ \textit{Across the U.S.}}$	-0.25	0.1875	Trump: 0.800 (negative)
НЗ	$\frac{\textit{Trump}}{\textit{COVID-}19}$ Addresses the Press Amidst Rising Deaths Due to $\frac{\textit{COVID-}19}{\textit{COVID-}19}$ Surge in the U.S.	0.00	-0.125	Trump: 0.833 (neutral)

^[2] Felix Hamborg and Karsten Donnay, "NewsMTSC: A Dataset for (Multi-)Target-dependent Sentiment Classification in Political News Articles." EACL, 2021, pp. 1663–1675

Left vs Right (News)

- News differ significantly between LEFT and RIGHT
- Effects are higher on social media than traditional online news platforms

Entity	Sentiment	$\frac{ \text{Tweets} }{ p \text{-value} } \text{effects } (\epsilon^2)$		Headlines		
				p-value	effects (ϵ^2)	
Biden	Negative	3.56e-97	0.078	9.59e-143	0.068	
	Positive	1.45e-112	0.090	1.78e-87	0.041	
Trump	Negative	7.66e-107	0.036	1.39e-34	0.007	
	Positive	1.04e-37	0.012	1.52e-25	0.005	

Effect Size	Interpretation
[0.00, 0.06)	Small
[0.06, 0.14)	Moderate
[0.14, 1.00]	Large

Political Slant in News

Understanding reader reactions through a moral lens

Moral Foundation Theory

Moral Foundation Theory

- Seeks to explain human moral reasoning
- Five foundational dimensions of morality

Virtue	Vice
Care	Harm
Fairness	Cheating
Loyalty	Betrayal
Authority	Subversion
Sanctity	Degradation

Identifying moral foundations in tweets

- RoBERTa (retrained on tweets)
- Fine-tuned on the Moral Foundation Twitter Corpus (MFTC)

Left vs Right (User Response)

Moral Foundations	p-value	effects (ϵ^2)
Care	0.00*	0.0011
Harm	0.00*	0.0004
Fairness	0.00*	0.0004
Cheating	0.00*	0.0002
Authority	0.00*	0.0001
Subversion	0.00*	0.0001
Loyalty	0.00*	0.0000
Betrayal	0.00*	0.0004
Sanctity	0.00*	0.0001
Degradation	0.00*	0.0000

Research Questions (Revisited)

 RQ_{1a} Do news publishers contain political slant in election-related news?

News shows signs of political slant

- Significant difference between LEFT and RIGHT
- Effects higher on social media
- RIGHT shows more favorability on social media than LEFT

 $RQ_{1b}\;\;$ Do reader reactions to election-related news on social media differ across news publishers?

Reader reactions show a moral divide across news sources

- Significant difference in moral foundations between LEFT and RIGHT
- Effects are small

War News Analysis

War News Analysis

Moral Framing in War News

Research Questions

• Analyze news on the ongoing Gaza war

 RQ_{2b} Does war news from one publisher influence the news from another?

• Use Granger's causality test to evaluate cross-publisher influence

Data Curation

Source	PALESTINE	Hamas	ISRAEL	OTHERS
Aljazeera	1372	807	3036	665
BBC	442	558	1310	392
Fox	479	1507	2423	485

Identifying Moral Framing: A Vector Subspace Approach

Debiasing word embeddings [3]

[3] Bolukbasi et al. 2016

Advantages

- Less resource intensive
- More interpretable than supervised training

Limitations

- Poor performance than supervised training
- Some vector subspaces may not be separable

Male	Female
he	she
his	her
man	woman
son	daughter
boy	girl

^[3] Bolukbasi et al. "Man Is to Computer Programmer as Woman Is to Homemaker? Debiasing Word Embeddings." NIPS, Barcelona, 2016, pp. 4356–4364.

Identifying Moral Vector Subspace

•	Care	Fair	ness	Auth	ority	Lo	yalty	Sand	tity
Vice	Virtue	Vice	Virtue	Vice	Virtue	Vice	Virtue	Vice	Virtue
danger	safety	killed	honored	desperate	eager	dirty	clean	killed	honored
detained suffered	freed benefited	enemies accident	friends safety	failure poor	success rich	lying injustice	honest justice	contempt reject	respect welcome
hatred weapons	compassion tools	fraud prosecuted	oath celebrated	denounced defeat	endorsed win	feared killer	respected hero	punished attacker	praised defender

Moral Framing of War News

Granger Causality Test

Influence across publishers

• Granger's causality test

$$Y_{t} = \alpha_{1} + \sum_{i=1}^{p} \beta_{i} Y_{t-i} + \sum_{i=1}^{p} \gamma_{i} X_{t-i} + \epsilon_{t}$$
$$X_{t} = \alpha_{2} + \sum_{i=1}^{p} \delta_{i} X_{t-i} + \sum_{i=1}^{p} \theta_{i} Y_{t-i} + \eta_{t}$$

Cross-Publisher Influence for Same Entity

p-values

Research Questions (Revisited)

 RQ_{2a} Do moral framing of war news differ across news publishers?

- Significant difference across publishers
- Effects from small to large
- Fox uses positive moral frames for Israel, whereas Aljazeera uses negative

 RQ_{2b} Does war news from one publisher influence the news from another?

- Significant Granger causality for some entities and publishers
- Signs of cross-publisher agenda-setting

War News Analysis

War and Peace Journalism

War and Peace Journalism

War and peace journalism (Johan Galtung (1965, 1986, 1998))

- Framework to analyze conflict-related news
- Sports vs healthcare news metaphor

War journalism

- Sensationalized
- Immediate visible effects
- Elite source
- War context

Peace journalism

- Objective
- Long-term less obvious effects
- People stories
- Broad context

Research Questions

 RQ_{3a} Do different news publishers covering a conflict portray the same victims and villains?

 RQ_{3b} Does the use of war and peace frame in conflict news reporting differ across news publishers?

Data Annotation

Phase 1	Phase 2	
Initial instructions	Updated instructions	• Final anno
 3 annotators 	33 annotators	• 1 11101 01111

- . 100 headlines annotated · Post annotation discussions
- · Update annotation instructions

- · 50 headlines annotated
- · Explanation for each annotation · Update annotation instructions

- Phase 3
- notation instructions
- 33 annotators
- · 3300 headlines annotated
- 3 annotations for each headline

Annotated Dataset

- Final label based on the majority vote
- · Removed headlines with no agreement among annotators

Class	Labels	Count	Agreement
Emotiveness Frame	{Sensationalized, Objective}	2601	0.42
Effect Frame	{Visible, Invisible, None}	2717	0.48
Source Frame	{Elite, People, None}	2834	0.51
Context Frame	{War, Broad, None}	2535	0.60
Role-Victim	{Israel, Palestine, Hamas, None}	2512	0.57
Role-Villain	{Israel, Palestine, Hamas, None}	2819	0.66

Fine-Tuned Language Models

	War and Peace Frames				Role	
Model	EMOTIVE	Effect	Source	Context	VICTIM	VILLAIN
BERT	80.52	69.1	79.69	77.8	72.39	79.27
RoBERTa	83.83	71.55	82.01	77.93	74.61	81.16
ConfliBERT	84.88	61.46	81.66	75.81	72.01	81.74
ModernBERT	79.3	66.84	79.87	75.6	70.16	74.88
GPT-2	79.82	69.93	78.79	67.68	74.02	75.72
BART	84.18	69.79	80.94	77.36	71.61	80.49
T5	77.79	69.52	65.37	56.18	69.52	69.55

Victims and Villains Across News Publishers

Statistical Analysis Results

Use of War and Peace Frames Across Publishers

Limitations of War and Peace Journalism

Peace frame \neq Peace journalism

 Headlines from Fox News classified as peace frame (broader context and indirect effects)

Anti-Israel agitators shut down traffic, disrupt cities all across US in demand for Gaza ceasefire.

'Radical' pro-Palestinian groups increasingly target houses of worship for protests in alarming trend.

- Multiple factors influence
 - Geographical location
 - Newsworthiness for publisher's audience

Research Questions (Revisited)

 RQ_{3a} Do different news publishers covering a conflict portray the same victims and villains?

- Significant difference with small to large effects
- Fox portrays Hamas as villain, whereas Aljazeera portrays Israel as villain

 RQ_{3b} Does the use of war and peace frame in conflict reporting differ across news publishers?

- Significant difference with small to large effects
- Other factors may influence use of war and peace frame

Dynamics of Polarization in Social

Networks

Challenges of Data Centric Approaches

Collecting data

- Expensive
- Privacy concerns

Require annotations

- Annotator Bias
- Non-scalable

Simulation-based evaluation offers a solution

Research Questions

 RQ_{4a} Does higher tolerance (for noncongenial content) among users in a social network mitigates polarization?

 RQ_{4b} Does selective exposure to congenial content lead to more polarization?

Social Simulation Design

Experimental Setup

Facebook Social Network^[4]

- 4039 nodes (agents)
- 88234 edges (connections)

Artificially generated posts

- 6 topics (5000 total posts)
- ullet Stance follows a normal distribution ($\mu=0.00, \sigma=0.52$)

Initial agent attributes

• Normal distributions

Agent Actions and Goals

Actions

- Share Post
 - Can start a new post
 - Share a post they receive
- Provide Sanctions
 - Positive sanctions to congenial content
 - Negative sanctions to noncongenial content

Goals

- Social acceptance
 - Change stance to get positive sanctions
- Promote views
 - · By providing sanctions

Evaluation Metrics

Polarity

Mean user stance

Polarization

- Based on electric dipole moment
- Measure distance between two opposing ideologies

Homophily

- Measures assortativity of the social network
- Homogeneity in the network

Satisfaction

Mean user satisfaction

Operationalizing Tolerance and Selective Exposure

Tolerance

- Social Judgment Theory [5]
 - Explains shift in attitude when two people interact
 - $\bullet \ \, \mathsf{Tolerance} = |\mathsf{Latitude}_{\textit{acceptance}} \mathsf{Latitude}_{\textit{rejection}}|$

Selective exposure

• Filter content based on difference in user stance

^[5] M. Sherif and C.I. Hovland. "Social Judgment: Assimilation and Contrast Effects in Communication and Attitude Change." New Haven, CT: Yale University Press, 1961.

Varying User Tolerance

Varying Selective Exposure

Final User States

Exp	Config	Agent State		
			Receiver	
		Nonreceiver	Spreader	Disinterested
Tolerant Users	Low	60.12	14.49	25.39
	Medium	53.95	17.30	28.75
	Нідн	62.99	13.36	23.65
Selective Exposure	None	54.76	16.88	28.36
	Low	55.44	16.48	28.08
	Medium	58.90	13.80	27.30
	Нідн	82.63	4.97	12.40

Research Questions (Revisited)

 $RQ_{Tolerance}$ Does higher tolerance among users in a social network help mitigate polarization?

Higher tolerance

- Slows down polarization
- Lower aggregate satisfaction
- · Higher network homophily

RQ_{Selective Exposure} Does selective exposure to congenial information contribute to polarization?

Higher selective exposure

- Speeds up polarization
- Higher aggregate satisfaction
- Higher network homophily
- Lower content reach

Thank you!

Have questions or suggestions? Email me at ahaque2@ncsu.edu