

Ţ <u>Help</u>

sandipan_dey 🗸

Next >

Discussion <u>Syllabus</u> laff routines **Community** <u>Progress</u> <u>Dates</u> <u>Outline</u> <u>Course</u>

★ Course / Exam 2 / E2.3 Exam 2

(

E2.3.5 Question 9

☐ Bookmark this page

< Previous</pre>

■ Calculator

Exam 2 due Dec 3, 2023 04:42 IST Completed

E2.3.5 Question 9

Question 9

10.0/10.0 points (graded)

Consider the following algorithm for computing y := Ax + y where A is an $n \times n$ symmetric matrix that is stored in the lower triangular part of the matrix.

Algorithm: $[y] := Symv_Lunb(A, x, y)$

Partition
$$A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}$$
, $x \rightarrow \begin{pmatrix} x_T \\ x_B \end{pmatrix}$, $y \rightarrow \begin{pmatrix} y_T \\ y_B \end{pmatrix}$

where A_{TL} is 0×0 , x_T has 0 rows, y_T has 0 rows

while $m(A_{TL}) < m(A)$ do

Repartition

$$\left(\begin{array}{c|c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \rightarrow \left(\begin{array}{c|c|c}
A_{00} & a_{01} & A_{02} \\
\hline
a_{10}^T & \alpha_{11} & a_{12}^T \\
\hline
A_{20} & a_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c}x_T \\
\hline
x_B
\end{array}\right) \rightarrow \left(\begin{array}{c}x_0 \\
\hline
\chi_1 \\
\hline
x_2
\end{array}\right), \left(\begin{array}{c}y_T \\
\hline
y_B
\end{array}\right) \rightarrow \left(\begin{array}{c}y_0 \\
\hline
\psi_1 \\
\hline
y_2
\end{array}\right)$$

where α_{11} is 1×1 , χ_1 has 1 row, ψ_1 has 1 row

$$\psi_1 := a_{21}^T x_2 + \psi_1$$

$$\psi_1 := \alpha_{11} \chi_1 + \psi_1$$

$$y_2 := \chi_1 a_{21} + y_2$$

Continue with

$$\left(\begin{array}{c|c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \leftarrow \left(\begin{array}{c|c|c}
A_{00} & a_{01} & A_{02} \\
\hline
a_{10}^T & \alpha_{11} & a_{12}^T \\
\hline
A_{20} & a_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c|c}
x_T \\
\hline
x_B
\end{array}\right) \leftarrow \left(\begin{array}{c|c}
x_0 \\
\hline
\chi_1 \\
\hline
x_2
\end{array}\right), \left(\begin{array}{c|c}
y_T \\
\hline
y_B
\end{array}\right) \leftarrow \left(\begin{array}{c|c}
y_0 \\
\hline
\psi_1 \\
\hline
y_2
\end{array}\right)$$

endwhile

During the kth iteration this captures the sizes of the submatrices:

$$k = 1 \qquad n-k-1$$

$$k = A_{00} \qquad a_{01} \qquad A_{02}$$

$$1 = a_{10}^{T} \qquad a_{11} \qquad a_{12}^{T}$$

$$(n-k-1) = A_{20} \qquad a_{21} \qquad A_{22}$$

(a) $\psi_1 := a_{21}^T x_2 + \psi_1$ is an example of a _____ operation.

dot ✓ Answer: dot

During the kth iteration it requires approximately ______ floating point operations.

 \bigcirc 2k

 $\bigcirc 2(n-1)$

~

(b) $y_2 := \chi_1 a_{21} + y_2$ is an example of a _____ operation.

axpy 🗸 🗸 Answer: axpy

During the kth iteration it requires approximately ______ floating point operations.

 \bigcirc 2k

 $\bigcirc 2(n-1)$

(c) What is the approximate cost of the above algorithm (in floating point operations) when executed with an $n \times n$ matrix.

 $\bigcirc 2n^3$

 $\bigcirc \ 2(n-k-1)^2$

Answer:

(a) (3 points) $\psi_1 := a_{21}^T x_2 + \psi_1$ is an example of a **dot** / **axpy** operation. (Circle the correct answer.)

During the kth iteration it requires approximately 2(n-k-1) floating point operations.

- (b) (3 points) $y_2 := \chi_1 a_{21} + y_2$ is an example of a **dot** / [axpy] operation. (Circle the correct answer.) During the kth iteration it requires approximately 2(n k 1) floating point operations.
- (c) (4 points)
 Use these insights to justify that this algorithm requires approximately $2n^2$ floating point operations.

We will ignore the cost of $\psi_1 := \alpha_{11}\chi_1 + \psi_1$:

$$\sum_{k=0}^{n-1} (2(n-k-1) + 2(n-k-1)) = \sum_{k=0}^{n-1} (4(n-k-1))$$

Previous

Next >

edX

About

Affiliates

edX for Business

<u>Open edX</u>

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>