Lambda Calculus and LISP

Lambda Calculus: First Functional Language

• Church, A., 1932, "A set of postulates for the foundation of logic", *Annals of Mathematics* (2nd Series), 33(2): 346–366.

Example

Scala equivalent

Lambda calculus

$$(((x : Any) => (y : Any) => x)(a))(b)$$

 $(\lambda xy. x)$ a b

Lambda calculus has only variables (x,y,a,b,...) and these two constructs:

Scala equivalent

Lambda calculus

$$(x:Any) => M$$

$$\lambda x.M$$

The main rule: argument substitution (β -reduction)

Functions have one argument. We use abbreviations such as these:

$$\lambda xy.MN = \lambda x.(\lambda y.(MN))$$
 similar to $(x,y) => M(N)$
f M N = $((f M) N)$ similar to $f(M,N)$

We do not worry about types in the (untyped) λ calculus

Example of applying β -reduction (special case of Lecture 1 substitution model): $(\lambda x.M)N \Rightarrow_{\beta}$ "term obtained from M by replacing all x occurrences with N"

- $(\lambda x. x)$ (a b) \Rightarrow_{β} (a b)
- $(\lambda xy. c x) a b = ((\lambda x. (\lambda y. (c x))) a) b \Rightarrow_{\beta} (\lambda y. (c a)) b \Rightarrow_{\beta} c a$
- $(\lambda f x. f(f x)) (\lambda y. a) b \Rightarrow_{\beta} (\lambda y. a) ((\lambda y. a) b) \Rightarrow_{\beta} a$

λ calculus can do: Booleans

Given hypothetical if statement if (b) M N represent Boolean values as the functions corresponding to "if (b)" code fragment

if (false) M N should be N

Define

true =
$$\lambda x$$
 y. x true M N = $(\lambda x$ y. x) M N \Rightarrow_{β} M false = λx y. y false M N = $(\lambda x$ y. y) M N \Rightarrow_{δ} N

So instead of if (b) M N we just write (b M N)

λ calculus can do: Pairs

Pair is something from which we can get the first and the second element Define

$$(M,N) = \lambda f. f M N$$

 $P._1 = P (\lambda x y. x)$
 $P._2 = P (\lambda x y. y)$

Why does this work?

$$(M,N)._1 = (\lambda f. f M N) (\lambda x y. x) \Rightarrow_{\beta} (\lambda x y. x) M N \Rightarrow_{\beta} M$$

$$(M,N)._2 = (\lambda f. f M N) (\lambda x y. y) \Rightarrow_{\beta} (\lambda x y. x) M N \Rightarrow_{\beta} M$$

λ calculus can do: Lists

A list is something we can match on and deconstruct if it is not empty:

```
list match {
  case Nil => M
  case Cons(x,y) => N(x,y)
}
```

A list value is given by how it interacts with two terms M and N

We define it as a function that will take such M and N as arguments

```
Nil = \lambdamn. m Nil M N \Rightarrow_{\beta} M Cons(P,Q) = \lambdamn. n (P,Q) Cons(P,Q) M (\lambdap. p._1) \Rightarrow_{\beta} (\lambdamn. n (P,Q)) M (\lambdap. p._1) \Rightarrow_{\beta} (\lambdap. p._1) (P,Q) \Rightarrow_{\beta} (P,Q)._1
```

Cons is like a pair, but takes m as argument, too, to fit along with Nil

Returning pair (tail, tail) if list non-empty, else Z

```
list match {
 case Nil => 7
 case Cons(x,y) => (y,y)
Becomes nothing else but
       list Z (\lambdap. (\lambday. (y,y)) (p. 2))
i.e.
       list Z (\lambda p. (\lambda y. \lambda f. f y y) (p (\lambda u v v. v)))
```

Computation that takes any number of steps

```
(\lambda x. x x) (\lambda x. x x) \Rightarrow_{\beta} (\lambda x. x x) (\lambda x. x x) \Rightarrow_{\beta} ...
                                                                       loops.
More usefully: (\lambda x. F(x x)) (\lambda x. F(x x)) \Rightarrow_{\beta} F((\lambda x. F(x x))(\lambda x. F(x x)))
If we denote Y_F = (\lambda x. F(x x)) (\lambda x. F(x x)) (for each term F)
        Then Y_F \Rightarrow_{\beta} F ((\lambda x. F (x x)) (\lambda x. F (x x))) = F Y_F i.e. Y_F \Rightarrow_{\beta} F(Y_F)
A recursive function uses itself in its body (typically applies it):
         def h(x:Any) = P(h(Q(x)),x)
                                                             for some P and Q
         def h = ((x:Any) => P(h(Q(x)),x))
Denote right-hand side of the last def by F(h), since x is a bound variable
        def h = F(h)
                                            to unfold recursion, replace h by F(h) in body
We define h = Y_F
                           so h = Y_F \Rightarrow_{\beta} F Y_F \Rightarrow_{\beta} F(F Y_F) = F(F h) \Rightarrow_{\beta} ...
```

Replace all list elements by Z: List(1,2,3) \rightarrow List(Z,Z,Z)

```
def mkZ(list) = list match {
 case Nil => Nil
 case Cons(x,y) => Cons(Z, mkZ(y))
After encoding match, still using recursion
         mkZ = \lambdalist. list Nil (\lambda p. Cons(Z, mkZ(p. 2)))
After encoding recursion, it becomes mkZ = Y_{F}
for
                  F = \lambda self. \lambda list. list Nil (\lambda p. Cons(Z, self(p. 2)))
So mkZ can be defined as Y<sub>F</sub> which in this case is:
(\lambda x. (\lambda \text{ self. } \lambda \text{ list. list Nil } (\lambda p. \text{Cons}(Z, \text{self}(p._2)))) (x x))
 (\lambda x. (\lambda \text{ self. } \lambda \text{ list. list Nil } (\lambda p. \text{Cons}(Z, \text{self}(p. 2)))) (x x))
```