

CS310 - AI Foundations **Andrew Abel** February 2023

Week 6: Constraint Satisfaction Problems

1

Welcome!

- Constraint Satisfaction Problems

 - o This class starts out heavy but
 o A) It will make sense by the end!
 o B) Its totally worth it, its actually very interesting
 o C) You might not believe B at first, but it really is

2

Constraint Satisfaction Problems

Constraint Satisfaction

- Goal: find "admissible" valuation for given set of variables
 O Given some parameters/variables,
 O Try to find solutions that meet conditions

 - Example: The 8-queens problem
 O How to distribute 8 queens on a chess board such that none of them attack each other?
- Remarks:
- like planning, constraint satisfaction problems use a
- we take state structure into account when searching for a solution!
- Rather than seeing state as a "black box", we now take
 - it into account
 O general-purpose heuristics

4

Constraint Satisfaction Problem (formally)

- Previous slide was the "informal" definition
- A CSP consists of three components:
 - o a set of variables X=X₁,...,X_n,
 - a set of domains D= D₁,...,D_n (one for each variable)
 - Domain here refers to a set of possible values
 - o a set C of constraints that specify allowable combinations of values.

5

What does a constraint look like?

- A constraint C consists of a pair < scope, rel > where:
- Scope is a tuple of variables that participate in the constraint
- Rel is a relation that defines the values that those variables can take on
- Rel can be either given explicitly or using operators, e.g. suppose two variables $\rm X_1$ and $\rm X_2$ both have domain {A,B}, then the constraint that $\rm X_1$ is not equal to \boldsymbol{X}_2 can be written in either of the following ways:

 - $\begin{array}{ll} \text{O} & <\{X_1X_2\}, \ X_1 \neq X_2 > \\ \text{O} & <\{X_1X_2\}, \ \{(A,B),(B,A)\} > \\ & \blacksquare & \text{We omit (A,A), (B,B) since they would be equal} \end{array}$
- · Often better to use operators
- We often specify the constraint by only stating the relation rel in the example above we would simply write $X_1 \neq X_2$

What does a solution look like?

- Given a collection C₁,...C_n of constraints,
 - O an assignment is a map { X₁ := v₁,..., X₂ := v₂} where X₁,..., X₂ are variables occurring in C₁,... Cₙ and for each Xᵢ we have vᵢ ∈ Dᵢ

 Each variable assigned a value, and each value must be in the variable
 - o a complete assignment is an assignment that provides values for all

 - variables in C₁,... C_n

 i.e. all variables in our problem

 E.g. 8 queens problem, complete assignment is one where each queen specifies a position
 - o a solution is a complete assignment that ``satisfies all constraints", ie. for each constraint < (X₁,...,X_m), R(X₁,...,X_m) > we have
 R = the relationship, i.e. not equals from previous slide

 $(v_1,_ v_m) \in R$

7

8

Example: Colouring Australia Variables • X = {WA, NT, Q, NSW, V, SA, T} Northern Territory • same domain for all variables Queensland D={green, red, blue} Western Australia South Australia New South Wales Victoria

Example: Colouring Australia

- Constraint
- Adjacent tiles can not be the same colour
- constraints: C = {SA ≠ WA, SA \neq NT , SA \neq Q, SA \neq NSW , SA \neq V, WA \neq NT , NT \neq Q, Q \neq NSW , NSW \neq V }

10

Example formalised

- Variables X = {WA, NT, Q, NSW, V, SA, T}
- $\bullet \quad \text{same domain for all variables D=} \{ \text{green, red, blue} \}$
- constraints: C = {SA \neq WA, SA \neq NT , SA \neq Q, SA \neq NSW , SA \neq V, WA \neq NT , $NT \neq Q, Q \neq NSW, NSW \neq V$
- A solution:
- {SA = green, WA = red, NT = blue}, Q = red, NSW = blue, V = red, T=green}.

11

8 Queens Problem Solution

Variables: C₁, C₂, C₃, C₄, C₅, C₆, C₇, C₈ (each variable representing a column)

Domains: $D_1 = D_2 = ... D_8 = \{1,8\}$ (position on each column)

 $C_i \neq C_j$ for $i \neq j$, i < jConstraints:

 $\mid C_i - C_j \mid \neq j - i \text{ for } i \neq j, i < j$

						₩		
		₩						
							₩	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
				₩				
**		П						
					₩			
			·ww					

12

	1
Constraint Satisfaction	
Example: The 8-queens problem	
How to distribute 8 queens on a chess board	
such that none of them attack each other?	
	-
13	
	1
8 Queens Solution	
Have a think about it!	
Trave a clinik about it.	
14	
Structure of a CSP	
Structure of a CSP	

The Constraint Graph

- To analyse a CSP we consider its constraint graph
- Depicts dependences between variables
- variables are nodes
- an edge indicates that the variables occur in a constraint
- This is still a map of Australia!
 Variables are connected if they are participating in a constraint

16

Example: 2+2=4

- Famous arithmetic problem
- Solve for each letter between 0 and 9
- Two plus Two becomes 4 if we substitute numbers for letters!
- Each number must represent a different value
- T W O
- + T W O
- \overline{FOUR}

17

Example: 2+2=4

• Variables are the letters. Constraints are as follows:

T W O

• Variables: T,W, O, F, U, R

+ T W O

Variables: 1, W, O, F,Domain: D = {0,..,9}

 $\overline{F \cap II P}$

- We now have what looks like a set of obvious constraints
- O + O = R
- W + W = U
- T + T = O
- F = ?

Example: 2+2=4

- Constraint example: O + O = R?
- But what if O≥5
 - O R must be in range {0...9}
 - O So we need to carry the 10!

 $\begin{array}{ccccc}
T & W & O \\
+ & T & W & O \\
\hline
F & O & U & R
\end{array}$

- O + O = R + 10 C₁
- C₁ + W + W = U + 10 C₂
- C₂ + T + T = O + 10 C₃
- C₃ = F
- plus an Alldiff constraint that all letters represent different values!

19

Constraint Hypergraph

Hypergraph has ``hyperedges'' that connect more than two nodes:

 Non-binary constraints can always be replaced by binary ones (cf. Norvig & Russell 6.1.3).

20

Constraint Hypergraph

Hypergraph has "hyperedges" that connect more than two nodes:

 Non-binary constraints can always be replaced by binary ones (cf. Norvig & Russell 6.1.3).

Constraint Hypergraph

- In this Graph, all letter variables are connected to each other via the box at the top of the graph $% \left\{ 1,2,...,n\right\}$ (the hyperedge)

 O This is the "alldiff"
 - constraint
- $C_2 + T + T = 0 + 10 C_3$
 - O C2, T, O, C3 all participating in constraint
 - o All connected
- Can this help us solve problems more efficiently?

22

Types of constraints

- a unary constraint is a constraint involving only one variable o i.e. x < 5, only variable mentioned is x
- a binary constraint is a constraint involving two variables o i.e. $X_3 > X_4$
- a higher-order constraint is a constraint involving more than two variables
- We don't need all the hyper edges and graphs
 - Any CSP can be written into a CSP involving only binary constraints!

23

Binary constraints suffice

- Any CSP can be rewritten into a CSP involving only binary constraints.
- Remove unary constraints by restricting the domain of the relevant variable.
- for each higher-order constraint R(X₁, ..., X_n)
 - o introduce a new variable Y, and
 - $\circ \quad define \ its \ domain \ D_{Y} \ by$
 - $D(Y) = \{ (d_1,...,d_n) \mid R(d_1,...,d_n) \text{ is true.} \}$
- for each X_i add the constraint that $\pi[Y] = X_i$, i.e., the ith component of the value of Y has to be equal to X.
- Remove the higher-order constraint $R(X_1, ..., X_n)$.

Binary constraints suffice	7
 Remove unary constraints by restricting the domain of the relevant variable. So if X₁ < 5, just restrict D₁ to {0,4} and remove constraint for each higher-order constraint R(X₁,, X_n) 	
 introduce a new variable Y, and define its domain D_Y by ■ D(Y) = {(d₁,,d_n) R(d₁,,d_n) is true.} 	
 for each X₁ add the constraint that π[Y] = X₁, i.e., the ith component of the value of Y has to be equal to X. 	
• Remove the higher-order constraint $R(X_1,,X_n)$.	
25	
Binary constraints suffice	7
• for each higher-order constraint R(X ₁ ,, X _n)	
 Here we have n variables, and R is the relationship that should be satisfied for those n variables This is a form of constraint 	
 introduce a new variable Y define its domain D_Y exactly by the tuples D(Y) = { (d₁,,d_n) R(d₁,,d_n) is true.} 	
 We only keep the combination of the domain elements where the relation holds 	
 Result is a set of elements d₁ to d_n which satisfy this constraint Have a new variable Y with a specific domain, the exact combinations allowed! 	
<u> </u>	┙
Binary constraints suffice	T
 for each X_i add the constraint that π[Y] = X_i, i.e., the ith component of the value of Y has to be equal to X. 	
 Whenever we have values for X_i and a value for Y Then the X_i's are exactly the ith component of the value for Y Xi will satisfy the relation, because all Xi's will create an element of Y 	
and the elements of Y satisfy the constraints	
 Remove the higher-order constraint R(X₁,,X_n). O By using Y and restricting domain, we have only binary constraints 	

_				
Ar	c-cc	nsi	iste	ncv

- consider binary constraints (ie constraints with ≤ 2 variables)
- a variable is arc-consistent if every value in its domain satisfies the variable's binary constraints
- A network is arc-consistent if every variable is arc-consistent with every other variable
- Concretely: X_i is arc-consistent with respect to X_j if for every value in d_i ∈ D_i there exists a value in d_j ∈ D_j such that the pair d_i,d_j satisfies the constraint on (X_i,X_i).
- Example: Let X and Y be variables with domain {1,..., 10} and consider the
 constraint X²=Y. Then we have to restrict the values of X to {1,2,3} to make
 X arc-consistent.

4	

Arc-consistency

- Example: Let X and Y be variables with domain {1,..., 10} and consider the
 constraint X²=Y. Then we have to restrict the values of X to {1,2,3} to make
 X arc-consistent.
- So now X is arc-consistent with Y
 - O But now we have to make Y arc consistent with X
 - O So we have to restrict values of Y to {1,4,9}
- Imagine now we have a whole graph of connected nodes...
- How can we achieve overall arc-consistency for whole program

32

The AC-3 Algorithm

Taken from Russel and Norvig

function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary CSP with components (X, D, C) local variables, genes, a queue of ares, initially all the arcs in csp while queue is not empty do $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$ If REVISE(csp, X_i, X_j) then if size of $D_i = 0$ then return false for each X_i in X_i , Nightlengers, $\{X_j\}$ do add (X_i, X_i) to queue return frace return frace function REVISE(csp, X_i, X_j) then the first revised i for each i in D_i do if no value g in D_i allows (x, y) to satisfy the constraint between X_i and X_j then delete i from D_i revised i true return resided i.

The AC-3 Algorithm

- Returns true if it looks like a solvable problem
- Returns false if an inconsistency is found, i.e. it can't be solved

function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a briary CSP with components (X,D,C) local variables: queue, a queue of area, initially all the area in csp while queue is not empty do $(X_i,X_j) \leftarrow \text{REMOVE-PIRST}(queue)$ if $REVISE(csp,X_i,X_j)$ then $REVISE(csp,X_i,X_j)$ then $REVISE(csp,X_i,X_j)$ then $REVISE(csp,X_i,X_j)$ then $REVISE(csp,X_i,X_j)$ and $REVISE(csp,X_i,X_j)$ tho $REVISE(csp,X_i,X_j)$ to $REVISE(csp,X_i,X_j)$ function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i The constraint between X_i and X_j then it we revise use domain or X_j returns the first $in\ D_i$ do if no value g in D_j allows (x,y) to satisfy the constraint between X_i and X_j then delete x from D_i revised x true return revised.

34

The AC-3 Algorithm

- Returns true if it looks like a solvable problem
- Returns false if an inconsistency is found, i.e. it can't be solved
- Input is the CSP
- Queue of arcs created Arc is a directed
- connection between 2 variables
 O i.e. pair X -> Y
 O Pair Y -> X

function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary CSP with components (X, D, C) local variables: queue, a queue of arcs, initially all the arcs in csptotal variables: queue, a queue of arcs, initially while queue is not empty do (X_1, X_2) , —REMOVE-PIRST (queue) if $RNYSE(CSP, X_1, X_2)$ then if size of D_1 = 0 then return false for each X_3 in X_4 .NEIGHBORS - $\{X_j\}$ do add (X_3, X_2) to queue return f

function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i

35

The AC-3 Algorithm

- Remove each arc and check it
- Revise function removes any inconsistent values
- Check if the domain is empty O If empty, no possible values, so inconsistent
- If revised, have to add anything that is connected to X_i back into the queue

function AC-3(esp) **returns** false if an inconsistency is found and true otherwise **inputs**: esp, a binary CSP with components (X, D, C) **local variables**: queue, a queue of arcs, initially all the arcs in esp

local variables: queue, a queue of arcs, initially i while queue is not empty do (X_1, X_j) .— REMOVE-PIRST(queue) if $RIVISE(ssp, X_1, X_j)$ then if size of $D_i = 0$ then return false for each X_k in X_i , $NIRIGHBORS - \{X_j\}$ do add (X_k, X_i) to queue return true

function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i

resisted — false for each z in D, do if no value y in D, allows (x,y) to satisfy the constraint between X_i and X_j then delete z from the false x from x for x from x

The AC-3 Algorithm

- If algorithm produces at least one empty domain the CSP is unsolvable!
- Next, more detailed algorithm and an example!

function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary CSP with components (X, D, C) local variables: queue, a queue of arcs, initially all the arcs in cspnocal variables: queue, a queue of arcs, initially is while queue is not empty do $(X_1, X_j) \rightarrow REMOVE-PIRST(queue)$ if $REVISE(esp, X_i, X_j)$ then if size of $D_i = 0$ then return false for each X_k in X_i , $NEIGHBORS - \{X_j\}$ do add (X_k, X_i) to queue return truefunction REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i The constraint between X_i and X_j then it we revise use domain or X_j returns the first $in\ D_i$ do if no value g in D_j allows (x,y) to satisfy the constraint between X_i and X_j then delete x from D_i revised x true return revised.

37

The AC-3 Algorithm (simpified)

We had a queue of arcs...

- Turn each binary constraint into two arcs e.g. X₁ < X₂ becomes (X₁,X₂) and (X₂,X₁).

 1. Important to have both directions, X₁ is constrained by X₂, and X₂ is also constrained by X₁.
- 2. Add all arcs to an agenda.
- Repeat until agenda empty:

 o take an arc (X_i,X_j) of the agenda and check it

 o for every value of D₁ there must be some value of D_j

 o remove any inconsistent values from D₁

 o If domain of X_i has changed, add all arcs of the form (X_k,X_i) to the agenda

 only add the ones that are not there already
- This procedure can be done for pre-processing or after each (partial)
 - assignment.

 O If we do partial assignment and then check and find inconsistencies, then we know our partial assignment does not work!

38

Complexity of AC-3

- assume n variables, domain size at most d and value c=n²
 - $\circ \hspace{0.1in}$ c is measure of number of possible arcs in problem
- checking one arc for consistency can be done in O(d²)
 - o For every element in domain, we need to find an element in the other domain
- checking all arcs once is O(cd²)
- an arc can be added at most d times to the queue
- -> overall worst-case complexity is O(cd3).

Example D_X=D_Y=D_Z= {1,2,3,4} • X > Y and Y > Z 1. Draw the constraint graph! 2. Make this problem arc-consistent via AC-3. 3. Solve the remaining instance. 40 AC3 – Algorithm Example, 1 – Draw Constraint Graph • Domains $D_X = D_Y = D_Z = \{1,2,3,4\}$ • Constraints X > Y, Y > Z Constraint graph 41 AC3 – Algorithm Example, 2 – Make problem arc-consistent Add all arcs to agenda • Agenda = { (X,Y), (Y,X), (Y,Z), (Z,Y) } • Remove (X,Y): X>Y D_X = { 2,3,4} (Removed 1) Add (Y,X) to agenda if not there (it is, so we do not!) Agenda = { (Y,X), (Y,Z), (Z,Y) } Remove (Y, X): Y<X o $D_Y = \{1, 2, 3\}$ (4 is not smaller than anything, so we remove it) \circ Add (X,Y) to agenda if not there

o Agenda = { (Y,Z), (Z,Y), (X,Y) }

AC3 – Algorithm Example, 2 – Make problem arc-consistent	
 Remove (Y,Z): Y>Z D y= {2,3} (Removed 1) Add (Z,Y) to agenda if not there Agenda = { (Z,Y), (X,Y) } Remove (Z, Y): Z<y <ul=""> Dz = {1, 2} Add (Y,Z) to agenda if not there Agenda = { (X,Y), (Y,Z) } </y> Remove (X,Y): X>Z DX = {3,4} Add (Y,X) to agenda if not there Agenda = { (Y,Z), (Y,X)} 	
13	
AC3 – Algorithm Example, 2 – Make problem arc-consistent • Remove (Y,Z): Y>Z ○ D y= { 2,3} (No change) ○ Agenda = { ((Y,X) } • Remove (Y,X): Y <x (empty)="" (no="" 2,3}="" agenda="{" algorithm="" change)="" d="" d<sub="" terminates:="" y="{" }="" •="" ○="">X = {3,4}, D_Y = {2,3}, D_Z = {1,2}</x>	
14	
Another excellent video by John Levine Runs through AC-3 Algorithm as a detailed example	

Summary
This week was about learning to solve problems!
 Some of the theory was a bit heavy
 Unary, Binary, and Higher-order constraints Hypergraphs Theory of binary constraints
Constraint satisfaction with the AC3 Algorithm Very useful way of solving problem
 Some very real applications Useful for programming!