

Universidade Federal de São Carlos - UFSCar

Joao Vitor Azevedo Marciano 743554 Lorhan Sohaky de Oliveira Duda Kondo 740951

Experimento 02 - Implementação de um meio-somador e uso de um display de 7 segmentos como dispositivo de saída

São Carlos - SP

Universidade Federal de São Carlos - UFSCar

Joao Vitor Azevedo Marciano 743554 Lorhan Sohaky de Oliveira Duda Kondo 740951

Experimento 02 - Implementação de um meio-somador e uso de um display de 7 segmentos como dispositivo de saída

Orientador: Fredy João Valente

Universidade Federal de São Carlos - UFSCar

Departamento de Computação

Ciência da Computação

Laboratório de Circuitos Digitais

São Carlos - SP 2017

Lista de ilustrações

Lista de tabelas

Lista de quadros

Lista de abreviaturas e siglas

Lista de símbolos

 Γ Letra grega Gama

 Λ Lambda

 \in Pertence

Sumário

1	RESUMO	8
2	DESCRIÇÃO DA EXECUÇÃO DO EXPERIMENTO	9
2.1	ETAPA 1 – Display de 7 segmentos	9
2.2	ETAPA 2 – Meio-somador 1 bit	9
2.3	ETAPA 3 – Meio-somador 4 bits	9
3	AVALIAÇÃO DOS RESULTADOS DO EXPERIMENTO	10
3.1	ETAPA 1 – Display de 7 segmentos	10
3.2	ETAPA 2 – Meio-somador 1 bit	10
3.3	ETAPA 3 – Meio-somador 4 bits	10
4	ANÁLISE CRÍTICA E DISCUSSÃO	11
4.1	ETAPA 1 – Display de 7 segmentos	11
4.2	ETAPA 2 – Meio-somador 1 bit	11
4.3	ETAPA 3 – Meio-somador 4 bits	11
	REFERÊNCIAS	12
	APÊNDICES	13
	APÊNDICE A – IMAGEM DO CIRCUITO PARA A REPRESEN- TAÇÃO DE UM NÚMERO DE 4 <i>BITS</i> EM UM DISPLAY DE 7 SEGMENTOS	14
	APÊNDICE B – IMAGEM DO CIRCUITO DO MEIO-SOMADOR DE 4 <i>BITS</i>	16
	ANEXOS	18
	ANEXO A – <i>DATASHEET</i> DO COMPONENTE 7449	19

1 Resumo

O experimento tem o objetivo de entender como implementar um meio-somador e 4 bits. Para tal, dividiu-se o experimento em 3 (três) etapas para facilitar o aprendizado.

A primeira etapa é para entender como utilizar um display de 7 (sete) segmentos, como dispositivo de saída do circuito, e como implementar algo similar ao componente TTL 7449.

A segunda etapa serve para entender como implementar um meio-somador de 1 (um) bit utilizando somente portas NAND e a saída sendo apresentada em um display de 7 (sete) segmentos.

A terceira etapa tem o objetivo de implementar um meio-somador de 4 (quatro) bits, tendo a saída apresentada em dois display de 7 (sete) segmentos.

1

Para mais detalles sobre o TTL 7449 acesse o Apêndice A

2 Descrição da execução do experimento

Para a realização deste experimento, foram utilizados o programa Quartus 13.0 SP 1 e a placa *Field Programmable Gate Array* - Arranjo de Portas Programáveis em Campo (FPGA) Cyclone II - EP2C20F484C7.

2.1 ETAPA 1 – Display de 7 segmentos

Para representar um número de 4 bits na placa, utilizou-se 4 switch, cada um representando um bit do número. Como um segmento do display poderia ser acendido em mais de um número, motou-se uma expressão lógica para cada segmento do display.

Para o display 0 montou-se a expressão

$$D'.C'.A' + A.C.B + A.C.D' + D'.B$$

, para o display 1 montou-se a expressão

$$D'.C + D'.A'.B' + A.B.C$$

, para o display 2 montou-se a expressão

$$C.D' + A.C'.D' + B'.C'.D' + A.B.C$$

, para o display 3 montou-se a expressão

$$C'.D'.A + C'.D'.B + A'.B.D' + A.B.C.D + A.B'C.D'$$

, para o display 4 montou-se a expressão

$$A'.C'.D' + A.B.C.D + A.B'.C.D'$$

, para o display 5 montou-se a expressão

$$A'.B'.D' + A'.C.D' + A.B.C + A.C.D'$$

, para o display 6 montou-se a expressão

$$C.D' + B.C'.D'$$

Com tais expressões, montamos o circuito conforme o Apêndice A.

2.2 ETAPA 2 - Meio-somador 1 bit

2.3 ETAPA 3 – Meio-somador 4 bits

3 Avaliação dos resultados do experimento

- 3.1 ETAPA 1 Display de 7 segmentos
- 3.2 ETAPA 2 Meio-somador 1 bit
- 3.3 ETAPA 3 Meio-somador 4 bits

Apresentar os resultados da simulação em software e da utilização do Kit DE1 e/ou protoboard. Utilizar figuras, descrevê-las e discuti-las.

4 Análise crítica e discussão

- 4.1 ETAPA 1 Display de 7 segmentos
- 4.2 ETAPA 2 Meio-somador 1 bit
- 4.3 ETAPA 3 Meio-somador 4 bits

Apresentar a visão do grupo sobre o experimento, apresentando pontos fáceis e de dificuldades para a realização do mesmo. Comente se os resultados obtidos representam o comportamento esperado do grupo para o circuito, fazendo relação com o conteúdo teórico.

Referências

APÊNDICE A – Imagem do circuito para a representação de um número de 4 *bits* em um display de 7 segmentos

APÊNDICE B – Imagem do circuito do meio-somador de 4 *bits*

ANEXO A – *Datasheet* do componente 7449

The HD74LS49 features active-high outputs for driving lamp buffer. This circuit incorporates a direct blanking input. Segment identification and resultant displays are shown below. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions. It contains an overriding blanking input (BI) which can be used to control the lamp intensity by pulsing or to inhibit the output. Inputs and outputs are entirely compatible for use with TTL or DTL logic outputs.

■BLOCK DIAGRAM

PIN ARRANGEMENT

■ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Ratings	Unit
Supply voltage	Vcc	7.0	V
Input voltage	Vin	7.0	V
Output current (off state)	IO(nff)	1	mΑ
Operating temperature range	Tupr	- 20 - + 75	°C
Storage temperature range	Tere	65~ + 150	ፕ

EFUNCTION TABLE

			Inputs			T			Outputs				Note
Decimal or Function	D	C	В	A	ВІ	a	ь	с	d	ę	f	В	Note
0	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	L	
1	L	L	L	Н	Н	L	Н	Н	L	L	L	L	
2	L	L	Н	L	Н	Н	Н	L	Н	н	L	Н	
3	L	L	Н	Н	Н	Н	. н	н	Н	L	L	Н	
4	L	Н	l.	L	Н	L	Н	Н	L	L	н	Н	
5	I.	Н	L	Н	Н	Н	L	Н	H	L	н	Н	
6	I.	Н	Н	L	Н	L	L	Н	Н	Н	Н	Н	
7	L	Н	Н	Н	Н	Н	Н	Н	L	L	L	L	
8	Н	L	L	L	Н	Н	H	Н	Н	H	H	Н	1
9	Н	L	L	Н	Н	Н	Н	Н	L	L	Н	Н	
10	Н	L	H	L,	Н	L	L	L	Н	H		H	
11	Н	L	Н	Н	н	L	L	Н	Н	L	L	Н	
12	Н	Н	L	L	Н	L	Н	L	L	L	H	Н	
13	Н	Н	L	Н	н	Н	L	L	Н	L	Н	Н	
14	Н	н	Н	L	Н	L	L	L	Н	Н	Н	H	
15	Н	Н	H	н	Н	L	L	L	L	L	L	L	
BI	×	×	×	×	L	L	L	L	L	L	L	L	2

H; high level, L; low level, X; irrelevant

Notes: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired.

2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75^{\circ}$)

Item	Symbol	Test Conditions	•	min	typ*	max	Unit
	VIH			2.0	-	-	V
Input voltage	VIL		,		_	0.8	V
Output current	Іон	$V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}, V_{IL} = 0.8 \text{V}, V_{IL} = 0.8 \text{V}$	он=5.5 V	-	-	250	μΑ
		.,	IoL=4mA	-	-	0.4	v
Output voltage	Vol	$V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}, V_{IL} = 0.8 \text{V}$	IoL = 8m A			0.5	¥
	Iн	$V_{CC} = 5.25 \text{V}, V_I = 2.7 \text{V}$		_	_	20	μA
Input current	IIL	$V_{\rm CC} = 5.25 \text{V}, V_{\rm f} = 0.4 \text{V}$			_	-0.4	mA
	Iı	$V_{CC} = 5.25 \text{V}, V_I = 7 \text{V}$				0.1	mА
Supply current **	Icc	Vcc=5.25V			8	15	mА
Input clamp voltage	Vik	$V_{CC} = 4.75 \text{V}, I_{IN} = -18 \text{mA}$				-1.5	V

^{*} VCC=5V, Ta=25°C

ESWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $T_a = 25^{\circ}C$)

Item	Symbol	Input	Test Conditions	min	typ	max	Unit
	tru.	A	C: =15-F P: = 91-O		_	100	ns
Donor - Allen Alma	* tPLH	1 A	$C_L = 15 \text{pF}, R_L = 2 \text{k}\Omega$			100	
Propagation delay time	iphl	ומ	$C_L = 15 \text{pF}, R_L = 6 \text{k}\Omega$			100	ns
	t P L H	BI			-	100	

TESTING METHOD

1) Test Circuit

Waveform

2) Testing Table

			Inputs				Outputs						
Item	BI	D	С	В	Α	а	b	С	ď	е	f	g	
	4.5V	GND	GND	GND	IN	OUT			OUT	OUT	OUT	_	
tpi.H	4.5V	GND	GND	4.5V	IN		_	OUT		OUT	_	_	
tPHL	4.5V	GND	4.5V	4.5V	IN	OUT	OUT	_	OUT	OUT	OUT	OUT	
	IN	GND	GND	GND	GND	OUT	OUT	OUT	OUT	OUT	OUT	_	

^{**} I_{CC} is measured with all outputs open and all inputs at 4.5 V.

Unit: mm

*Dimension including the plating thickness
Base material dimension

Hitachi Code	FP-14DA
JEDEC	
EIAJ	Conforms
Weight (reference value)	0.23 g

Unit: mm

Hitachi Code	FP-14DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.13 g

*Pd plating