Forward-Feeding Neural Networks (FFNNs): Forward & Backward Passes

STUFF TO KNOW BY HEART - EVEN WHEN DRUNK!

- 1. FFNNs are **supervised** learning models
- 2. An FFNN consists of layers of transformation functions and weights
- 3. FFNNs' forward pass models hypothesized output
- 4. FFNNs' backward pass computes partial derivatives of cost function with respect to weight layers, for use in mathematical optimization

Model Structure / Hypothesis: Forward Pass

In a generalized sense, an FFNN models Hypothesized Output $\mathbf{H} = h(\mathbf{X}, \mathbf{W}^{[1]}, \mathbf{W}^{[2]}, \dots, \mathbf{W}^{[L]})$ through 1 input layer and L additional layers of transformation functions and parameters (called "weights") in the following manner:

network layer 1:
$$\mathbf{A}^{[1]} = \text{Input } \mathbf{X}$$

network layer 2: $\mathbf{A}^{[2]} = f^{[1]}(\mathbf{A}^{[1]}, \mathbf{W}^{[1]})$
network layer 3: $\mathbf{A}^{[3]} = f^{[2]}(\mathbf{A}^{[2]}, \mathbf{W}^{[2]})$
...
network layer $(L+1)$: $\mathbf{H} = \mathbf{A}^{[L+1]} = f^{[L]}(\mathbf{A}^{[L]}, \mathbf{W}^{[L]})$

where:

- A's are called the layers' "activations" and inter-layer parameters W's are called "weights". The way the FFNN computes H from input X through layers of transformation functions and weights is called the "forward pass".
- Each "forward function" f is a structurally pre-defined transformation function $\mathbf{Output} = f(\mathbf{Input}, \mathbf{Parameter})$ such that, given partial derivative $\frac{\partial v}{\partial \mathbf{Output}}$ of a scalar variable v with respect to \mathbf{Output} , the following partial derivatives with respect to \mathbf{Input} and $\mathbf{Parameter}$ can be computed by certain "backward functions" b_{Input} and $b_{Parameter}$:

$$\frac{\partial v}{\partial \mathbf{Input}} = b_{Input}(\frac{\partial v}{\partial \mathbf{Output}}, \text{local state})$$

$$\frac{\partial v}{\partial \mathbf{Parameter}} = b_{Parameter}(\frac{\partial v}{\partial \mathbf{Output}}, \text{local state})$$

where the term "local state" refers to current values of function *f*'s **Input**, **Parameter** and **Output**

(for each neural network layer l, we henceforth denote its corresponding "backward functions" $b_A^{[l]}$ and $b_W^{[l]}$)

The purpose of knowing such partial derivatives will become clear later when we discuss the "backward pass" or "backpropagation" procedure.

Backward Pass / Backpropagation procedure to derive $\frac{\partial c}{\partial \mathbf{W}^{[l]}}$ for each layer l, to be used in optimization

With the structure of the transformation functions f's fixed, in the learning/training process, our job is to adjust/update the values of weight layers $\mathbf{W}^{[1]}$, $\mathbf{W}^{[2]}$, ..., $\mathbf{W}^{[L]}$ so as to make the cost function $c(\mathbf{H}, \mathbf{Y})$ decrease. This invariably requires us to know or be able to estimate the partial derivative $\frac{\partial c}{\partial \mathbf{W}^{[l]}}$ for each layer l. We can compute such partial derivatives through the following "backpropagating" procedure:

Illustration of Forward and Backward Passes

The following diagram illustrates an FFNN's forward and backward passes: