Determine whether the set \mathcal{B} is a basis for the vector space V.

$$V=M_{22}$$

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\}$$

Page 1 of 8 May 17, 2016

Determine whether the set \mathcal{B} is a basis for the vector space V.

$$V = \mathcal{P}_2$$

$$\mathcal{B} = \left\{ x, 1 + x, x - x^2 \right\}$$

Page 2 of 8 May 17, 2016

Find the coordinate vector of $p(x) = 1 + 2x + 3x^2$ with respect to the basis $\mathcal{B} = \{l + x, 1 - x, x^2\}$ of \mathcal{P}_2 .

Page 3 of 8 May 17, 2016

Find the dimension of the vector space V and give a basis for V.

 $V = \{A \text{ in } M_{22} \colon A \text{ is skew-symmetric} \}$

Page 4 of 8 May 17, 2016

Determine whether T is a linear transformation.

$$T: M_{nn} \to \mathbb{R}$$
 defined by $T(A) = \operatorname{rank}(A)$

Page 5 of 8 May 17, 2016

Let $T: M_{22} \to \mathbb{R}$ be a linear transformation for which

$$T\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = 1,$$
 $T\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = 2,$ $T\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = 3,$ $T\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 4$

$$T\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = 2,$$

$$T\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = 3,$$

$$T\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 4$$

• Find
$$T\begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$

• Find
$$T\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Prove Theorem 6.14(b)

Theorem 6.14:

a.
$$T(0) = 0$$

b.
$$T(-\mathbf{v}) = -T(\mathbf{v})$$
 for all \mathbf{v} in V

c.
$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v})$$
 for all \mathbf{u} and \mathbf{v} in V

Page 7 of 8 May 17, 2016

For each square matrix below, calculate its eigenvalues and eigenvectors. Then verify that PDP^{-1} is equal to the original matrix, where D is a diagonal matrix with your eigenvalues along its diagonal and P is a matrix with your eigenvectors as its columns.

$$(a) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & -13 & -4 \\ 0 & -3 & 0 \\ 1 & 13 & 0 \end{bmatrix}$$