

B41 Oct 1 Lec 2 Notes

Ex 1:

=
$$\frac{R_{im}}{(x,y)-\phi(1,0)}$$
 (-y) = 0

So
$$\frac{Rim}{(x,y)+(1,0)} \frac{y \ln y}{x} = \frac{Rim}{\frac{(x,y)+(1,0)}{x}} \frac{y \ln y}{\frac{x}{(x,y)+(1,0)}} \times$$

Ex 2:

If
$$z \ge 0$$
, $-z \le \mp \sin(\frac{x}{2}) \le z$

$$0 = \lim_{(x,y,\xi) \to (0,0,0)} (-\xi) \le \lim_{(x,y,\xi) \to (0,0,0)} \# \sin\left(\frac{x}{y}\right) \le \lim_{(x,y,\xi) \to (0,0,0)} (\xi) = 0$$

Therefore,
$$(x,y,z)+(0,0,0) \neq \sin(\frac{x}{3})=0$$

Definition:

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a given function with domain U. Let $x_0 \in U$. We say f is continuous at $x_0 : f \in \mathbb{R}^n$ be a given function with domain U. Let $x_0 \in U$. We say f is continuous at $x_0 : f(x_0) : f(x_0)$

If f does not satisfy one of the three, we say f is not continuous at xo