Clustering

MKT 566

Instructor: Davide Proserpio

A few things...

- Survey
- Guest speaker next Monday

What is clustering?

- Clustering is an unsupervised (machine) learning technique
- Objective: Group similar observations together based on some of their characteristics
- Common applications:
 - Customer segmentation (e.g., by purchase behavior)
 - Grouping products by attributes
 - Grouping markets by demographic similarity

Why do we use clustering in marketing?

- Identify **distinct customer segments** with different behaviors/preferences.
- Tailor targeted campaigns and offers.
- Optimize product positioning and pricing.
- Improve resource allocation
 - Resources can then be shifted to growing clusters (e.g., emerging Gen Z customers)
 - Efficient Use of Marketing Budgets

Common clustering algorithms

K-Means Clustering

- Partitions data into *K* non-overlapping clusters
- Fast and scalable

Hierarchical Clustering

- Builds a tree of clusters (dendrogram)
- Useful for exploratory analysis

DBSCAN (Density-Based)

- Detects clusters of varying shape and size
- Handles noise well
- Well-suited for geographical data

Common clustering algorithms

K-Means Clustering

- Partitions data into *K* non-overlapping clusters
- Fast and scalable

Hierarchical Clustering

- Builds a tree of clusters (dendrogram)
- Useful for exploratory analysis

DBSCAN (Density-Based)

- Detects clusters of varying shape and size
- Handles noise well
- Well-suited for geographical data

Example: Customer segmentation

- Variables: Recency (first time they bought), Frequency (how often they buy), Spend
- Apply a clustering algorithm
- Result:
 - Cluster 1: High spenders, frequent buyers
 - Cluster 2: Low spenders, infrequent buyers
 - Cluster 3: New customers
 - Cluster 4: Lapsed customers

Visualizing clusters

PROBLEM: You often have more than two variables, so how can you plot the data?

PCA (Principal Component Analysis): a technique used for dimensionality reduction

- From N dimensions to two

 very useful for visualization!
- Very helpful for creating perceptual maps

PCA in a nutshell

Suppose you are analyzing customer survey data with 50 questions

 Some questions overlap ("How satisfied are you with service?" vs. "Would you recommend us?").

Challenge: How do we simplify the data without losing too much information?

- PCA looks for the **underlying dimensions** that explain the most variation in the data.
- Instead of 50 survey questions, maybe there are just 2 main themes:
 - "Overall satisfaction" (combining many service-related questions)
 - "Perceived value" (combining many price/benefit-related questions)
- These become principal components.

PCA vs. Clustering

Aspect	Clustering	PCA			
Purpose	Group similar points	Reduce dimensionality / visualize			
Output	Discrete cluster labels	Continuous components			
Focus	Segments of customers/items	Relationships among variables			
Uses	Market segmentation, recommender systems	Visualization, noise reduction, feature extraction			
Analogy	"Which students form study groups?"	"Which directions explain most variance in exam scores?"			

PCA + Clustering

- Clustering without PCA = labels only, no intuition about what dimensions matter.
- PCA without clustering = map only, but no hard group definitions.
- Both together = the best of both worlds:
 - PCA provides the map (market structure).
 - Clustering provides the segments (actionable groups).

Clustering best practice

- Standardize numerical variables before clustering
 - Not needed if variables use the same scale (but often is not the case)
- Try multiple algorithms and compare
- Visualizing clustering often helps
 - Check if clusters are well-separated or overlapping

Some high-level details on k-means

- 1. Choose K (number of clusters you want).
- 2. Randomly place **K "centroids"** in the data space.
- 3. Repeat until centroids don't move (or max iterations reached):
 - Assign each data point to the nearest centroid.
 - Update each centroid's position to the mean of its assigned points.

Choosing the number of clusters K

- Too few clusters → lose detail
- Too many clusters → overfit
 - Example: if you set K= number of points, each point becomes its own cluster. The fit is perfect, but you learn nothing!
- Common methods:
 - **Elbow method:** Look for the point where adding more clusters gives diminishing returns in **variance explained**
 - Plot the **sum of squared distances from each point to its cluster center**, across all clusters.

PCA example

Let's use a dataset from R for Marketing Students

• A survey in which respondents were asked to rate four brands of office equipment on six dimensions.

	brand	large_choice	low_prices	service_quality	<pre>product_quality</pre>	convenience	<pre>preference_score</pre>
	<char></char>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<int></int>
1:	OfficeStar	5.2	2.1	4.2	3.7	2.7	5
2:	PaperNCo	4.4	4.5	2.3	2.6	1.4	3
3:	OfficeEquipment	3.9	2.6	3.1	3.1	4.7	3
4:	Supermarket	2.3	4.1	1.8	2.9	5.1	1

Clustering (+PCA) example using k-means

- Let's use a dataset from R for Marketing Students
 - A survey in which 40 respondents were asked to rate the importance of several store attributes when buying equipment

	respondent_id	variety_of_choice	electronics	furniture	quality_of_service	low_prices	return_policy	professional	income	age
	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>	<num></num>
1:	1	8	6	6	3	2	2	1	40	45
2:	2	6	3	1	4	7	8	0	20	41
3:	3	6	1	2	4	9	6	0	20	31
4:	4	8	3	3	4	8	7	1	30	37
5:	5	4	6	3	9	2	5	1	45	56
6:	6	8	4	3	5	10	6	1	35	28