Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

CA5CO34 Data Structures & Algorithms

Programme: MCA / BCA -

Branch/Specialisation: Computer

MCA (Integrated)

Application

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

I	1.	which operation on stack requires a loop?					
		(a) push	(b) pop	(c) peek	(d) None of these		
	ii.	Which data st	ructure is No	n – linear?		1	
		(a) Stack	(b) Queue	(c) Link list	(d) Tree		
	iii.	Pick the corre	ct statement to	o add an element	item at end of linear queue	1	
		using array in	nplementation	l-			
		(a) front = front +1; a[front] =item;					
		(c) rear = rear +1; a[rear] =item;					
		(d) $rear = rear$	r -1; a[rear] =i	tem;			
	iv. Which condion is check for underflow in circular queue?					1	
		(a) if(rear ==	MAX-1) {}				
		(b) if(front ==	= -1) {}				
		(c) if((front== $0 \&\& rear == MAX - 1) (front == rear + 1)) {}$					
		(d) if(front == $0 \&\& rear == MAX - 1) \{ \}$					
	v.	Accessing an item/element is faster in				1	
		(a) Array		(b) Link list			
		(c) Circular li	nk list	(d) Doubly li	nk list		
	vi.	Which operat	ion requires a	loop?		1	
		Note: Head p	ointer points t	o first node. No	tail pointer is available		
		(a) Insert a no	de at beginni	g in link list			

(b) Insert a node at beginnig in circular link list(c) Insert a node at beginnig in doubly link list

(d) None of these

	vii.	Which sort uses the pivot element?			
		(a) Insertion (b) Bubble (c) Merge (d) Quick			
	viii.	The time complexity of the binary search is-	1		
		(a) $O(n)$ (b) $O(\log_2 n)$ (c) $O(n\log_2 n)$ (d) $O(n^2)$			
	ix.	Number of edges in a tree of n nodes are			
		(a) n (b) n-1			
		(c) n ² (d) Any number of edges is possible			
	х.	Graph is said to be connected when	1		
		(a) There must be an edge between every two vertices.			
		(b) There must be a path between every two vertices.			
		(c) There must be a cycle in the graph.			
		(d) Graph must be directed.			
Q.2	i.	Explain stack and its usage.	4		
	ii.	Convert infix to postfix-	6		
		$A+(B*C-(D/E^{\uparrow}F)*G)*H$			
OR	iii.	Write a complete C program for the implementation of stack operations	6		
		using array.			
Q.3	i.	Draw a diagram to explain, how circular queues solve the problem of	2		
		queue?			
	ii.	Write a C program for array implementation of circular queue.	8		
OR	iii.	Write a C program for linked list implementation of queue.	8		
Q.4	i.	Compare the array and linked list.	4		
	ii.	Write a C program for implementation of insert a node at beginning	6		
		and display all items in the linked list. Write main function to call other			
		functions.			
OR	iii.	Write a C program for the implementation of insert a node at last and	6		
		search in the doubly linked list. Write main function to call other			
		functions.			
Q.5	i.	Explain how binary search works using an example.	4		
	ii.	Write a complete C program to sort an array using quick sort.	6		
OR	iii.	Sort the array using merge sort-	6		
		10 90 20 30 60 100 70 50 40 80			

Q.6 Attempt any two:

i. Draw the adjacency matrix, adjacency list, and adjacency multi-list of 5 the graph given below

5

5

ii. Write Kruskals algorithm.

iii. Explain how BFS and DFS work with the help of an example.

[4]

Marking Scheme

CA5CO34 (T)-Data Structures & Algorithms (T)

Q.1	i)	Which operation on stack requires a loop?	1		
	ii)	(d) None of theseWhich data structure is Non – linear?(d) Tree	1		
	iii)	Pick the correct statement to add an element item at end of linear queue using array implementation. (c) rear = rear +1; a[rear] = item;			
	iv)	Which condion is check for underflow in circular queue? (b) if(front == -1) {}			
	v)	Accessing an item/element is faster in (a) Array	1		
	vi)	Which operation requires a loop? Note: Head pointer points to first node. No tail pointer is available (b) Insert a node at beginnig in circular link list			
	vii)	Which sort uses the pivot element? (d) Quick	1		
	viii)	The time complexity of the binary search is: (b) O(log ₂ n)	1		
	ix)	Number of edges in a tree of n nodes are? (b) n-1	1		
	x)	Graph is said to be connected when? (b) There must be a path between every two vertices.	1		
Q.2	i.	Explain stack and its usage. Stack: 2 Marks Usage: 2 Marks	4		
	ii.	Convert infix to postfix $A+(B*C-(D/E^{\uparrow}F)*G)*H$ Conversion: 6 Marks	6		
OR	iii.	Write a complete C program for the implementation of stack operations using array.	6		
		Push:2 MarksPop:2 MarksDisplay:1 MarksMain:1 Marks			
Q.3	i.	Draw a diagram to explain, how circular queues solve the problem of queue?	2		

		Diagram:	2 Marks	
	ii.	Write a C program for array implementation of	f circular queue.	8
		Insert:	2 Marks	
		Delete:	2 Marks	
		Display:	2 Marks	
		Main:	2 Marks	
OR	iii.	Write a C program for linked list implementati	on of queue.	8
		Insert:	² Marks	
		Delete:	2 Marks	
		Display:	2 Marks	
		Main:	2 Marks	
Q.4	i.	Compare the array and linked list.		4
		1 Comparison: 1 Mark:	1* 4 Marks 4 Marks	
	ii.	Write a C program for implementation of insert		6
		and display all items in the linked list. Write r	nain function to call	
		other functions.		
		Insert a node at beginning:	2 Marks	
		Display:	2 Marks	
		Main function:	2 Marks	
OR	iii.	Write a C program for the implementation of	insert a node at last	6
		and search in the doubly linked list. Write m	nain function to call	
		other functions.		
		Insert a node at last:	2 Marks	
		Search:	2 Marks	
		Main function:	2 Marks	
Q.5	i.	Explain how binary search works using an exa	mple.	4
		Binary search using an example:	4 Marks	
	ii.	Write a complete C program to sort an array us	sing Quick Sort.	6
		Partition function & Recursive function:	4 Marks	
		Main function:	2 Marks	
OR	iii.	Sort the array using merge sort		6
		10 90 20 30 60 100 70 50 40 80		
Q.6		Attempt any two:		
	i.	Draw the adjacency matrix, adjacency list, and	adjacency multi-list	5
		of the graph given below		

P.T.O.

[2]

Adjacency matrix:
Adjacency list:
Adjacency multilist:

Write Kruskals algorithm.

Kruskals algorithm:

Explain how BFS and DFS work with the help of an example.

BFS with Example:

2.5 Marks

DFS with Example:

2.5 Marks
