Ean 315. Lest 2. Dand Com $a) G(s) = \int \frac{s^2 - 4s + 8}{s^2 + 4s + 3}$ Z: 2+2i P: -1, -3 , $P-Z=\emptyset \Rightarrow N_0$ assymtopes circula sketch path

$$G(s) = \frac{5+4}{s(5+6)(5+3)(5+1)}$$

$$\frac{7:-4}{9:0,-6,-3,-1}, \quad p-7=3$$

$$G_{a} = \frac{2p-4z}{3} = -2$$

$$\frac{7}{3} = \frac{2(2+1)\pi}{3}, \quad \frac{1}{12} = \frac{1}{12}$$

$$\frac{5\pi/3}{3} = \frac{5\pi/3}{3}$$

1b)
$$C_{153} = \frac{5^2 + 10s + 24}{s^2 + 3s + 2}$$
 $Z: -4, -6$
 $P: -1, -2$
 $P-Z=0$

Break away a Break in point allowy P

 $1 + \text{KCres} = 0$, $X = -\frac{1}{4ss}$, re find point of max gain on R (Breb away)

 $X = \frac{5^2 + 3s + 2}{5^2 + 10s + 24}$
 $X = \frac{5^2 + 3s + 2}{5^2 + 10s + 24}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 44s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 4s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 4s + 52}{(5^2 + 10s + 24)^2}$
 $X = \frac{7s^2 + 4s + 52}{(5^2 + 10s + 24)^2}$

2. a)
$$G(s) = \frac{5+300}{5^2+105} = \frac{5+300}{5(5+10)} = \frac{300}{10} = \frac{1}{5(5+10)} = \frac{300}{5(5+10)} = \frac{1}{5(5+10)} = \frac{300}{5(5+10)} = \frac{$$

2(b)

P: -3, -8, -100

$$P: -3, -8, -100$$
 $X = 10^{\frac{5}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) (\frac{5}{6} + 1) \frac{1}{319100}$
 $X = 10^{\frac{3}{2}} (\frac{5}{6} + 1) \frac{1}{319100}$
 $X =$

For $\zeta < 0.65$ we can use the approximation $\phi_m = 100 \zeta.$

Therefore, for a phase margin of \sim 50, the damping factor is \sim 0.5

2e)
$$G(5) = 20000 = 20 \cdot \frac{1}{5} \cdot (\frac{5}{100} + 1) \cdot (\frac{5}{10} + 1)$$

20. log (20) = 26.02 dB

Cjum that I am is the only regument a Kp L1

2+12db > Kp = 0.25