Report No: CCIS14110092702

FCC REPORT

Applicant: WirelessMe Limited

Address of Applicant: B210 Languang Building,NO.7 Xinxi Road, High-tech Park

North, Nanshan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Smart Watch

Model No.: Wi-Watch A3

Trade mark: WiMe

FCC ID: 2AC3S-WI-WATCH-A3

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 07 Nov., 2014

Date of Test: 07 Nov., to 03 Dec., 2014

Date of report issued: 04 Dec., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	04 Dec., 2014	Original

Prepared by: Date: 04 Dec., 2014

Report Clerk

Reviewed by: 04 Dec., 2014

Project Engineer

3 Contents

			Page
1	С	OVER PAGE	1
2	V	/ERSION	2
3		CONTENTS	
			_
4	Т	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	Т	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	17
	6.5	CARRIER FREQUENCIES SEPARATION	21
	6.6	Hopping Channel Number	26
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	_
	6.9	BAND EDGE	
	-	5.9.1 Conducted Emission Method	
	•	i.9.2 Radiated Emission Method	
	6.10	i.10.1 Conducted Emission Method	
	•	5.10.2 Radiated Emission Method	
_	-	EST SETUP PHOTO	
7	1	E31 3E1UP PHOTO	62
Ω	F	TIT CONSTRUCTIONAL DETAILS	63

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	WirelessMe Limited
Address of Applicant:	B210 Languang Building, NO.7 Xinxi Road, High-tech Park North, Nanshan District, Shenzhen, China
Manufacturer/Factory:	WirelessMe Limited
Address of Manufacturer/ Factory:	B210 Languang Building, NO.7 Xinxi Road, High-tech Park North, Nanshan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Smart Watch	
Model No.:	Wi-Watch A3	
Operation Frequency:	2402MHz~2480MHz	
Transfer rate:	1/2/3 Mbits/s	
Number of channel:	79	
Modulation type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation technology:	FHSS	
Antenna Type:	Internal Antenna	
Antenna gain:	1.37 dBi	
Power supply:	Rechargeable Li-ion Battery DC3.7V-520mAh	
Test Voltage:	AC 120V/60Hz	

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz		
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz		
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz		
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz		
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz		
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz		
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz		
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz		
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz		
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz		
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz		
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz		
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz		
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz		
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz		
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz		
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz		
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz		
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz		
19	2421MHz	39	2441MHz	59	2461MHz				
Remark: Ch	nannel 0, 39 &7	3 selected fo	or GFSK, π/4-D	QPSK and 8	BDPSK.				

Report No: CCIS14110092702

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:									
Item	Test Equipment Manufacturer		Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier(10kHz- 1.3GHz)		8447D	CCIS0003	04-01-2014	03-31-2015			
6	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-05-2015			
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015			
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015			
14	Universal radio		CMU200	CCIS0069	05-29-2014	05-28-2015			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015			

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-09-2015			
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 1.42 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.4:2003					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
Limit:	Frequency range (MHz)	Frequency range (MHz)				
	Quasi-peak Average					
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 60 50					
	* Decreases with the logarithm	•				
Test setup:	Reference Plane					
	AUX Equipment Remark E.U.T EMI Receiver Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Bluetooth (Continuous transmitting) mode					
Test results:	Pass					
	•					

Measurement Data

Trace: 5

Site

: FCC PART15 B QP LISN LINE

Condition EUT Smart Watch : Wi-Watch A3 Model Test Mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test	Engineer:	Garen							
		Read	LISN	Cable		Limit	Over		
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
	MHz	dBu∜	₫B	₫B	dBu₹	dBu∜	<u>dB</u>		
1	0.166	35.48	0.27	0.00	35.75	65.16	-29.41	Average	
2	0.202	25.89	0.28	10.76	36.93	63.54	-26.61	QP	
3	0.242	36.72	0.27	0.00	36.99	62.04	-25.05	Average	
4	0.330	25.04	0.27	10.73	36.04	59.44	-23.40	QP	
5	2.487	26.21	0.27	10.94	37.42	56.00	-18.58	QP	
6	2.622	30.59	0.27	0.00	30.86	56.00	-25.14	Average	
1 2 3 4 5 6 7 8 9	3.241	26.88	0.27	10.91	38.06	56.00	-17.94	QP	
8	4.574	30.92	0.29	0.00	31.21	56.00	-24.79	Average	
9	15.470	33.17	0.32	0.00	33.49	60.00	-26.51	Average	
10	20.486	27.25	0.36	10.93	38.54	60.00	-21.46	QP	
11	28.152	30.76	0.74	10.87	42.37	60.00	-17.63	QP	
12	28.452	39.68	0.75	0.00	40.43	60.00	-19.57	Average	

Neutral:

Site

Condition : FCC PART15 B QP LISN NEUTRAL

Smart Watch EUT Model : Wi-Watch A3 Test Mode : BT Mode

Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Garen

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	d₿	dBuV	dBu∀	₫B	
1	0.166	34.98	0.25	0.00	35.23	65.16	-29.93	Average
2	0.178	29.36	0.25	10.77	40.38	64.59	-24.21	QP
2	0.242	34.29	0.25	0.00	34.54	62.04	-27.50	Average
4	0.346	29.91	0.25	10.73	40.89	59.05	-18.16	QP
4 5 6 7	0.361	32.02	0.25	0.00	32.27	58.69	-26.42	Average
6	1.054	23.78	0.22	10.88	34.88	56.00	-21.12	QP
	2.664	34.36	0.29	0.00	34.65	56.00	-21.35	Average
8	3.310	31.02	0.29	10.91	42.22	56.00	-13.78	QP
9	14.440	37.94	0.25	0.00	38.19	60.00	-21.81	Average
10	15.388	27.17	0.25	10.90	38.32	60.00	-21.68	QP
11	28.603	38.07	0.76	0.00	38.83	60.00	-21.17	Average
12	28.755	27.34	0.77	10.87	38.98	60.00	-21.02	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

	GFSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	0.37	21.00	Pass	
Middle	0.93	21.00	Pass	
Highest	1.05	21.00	Pass	
	π/4-DQPSK ι	mode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	-0.45	21.00	Pass	
Middle	0.39	21.00	Pass	
Highest	0.55	21.00	Pass	
	8DPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	-0.34	21.00	Pass	
Middle	0.39	21.00	Pass	
Highest	0.55	21.00	Pass	

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

Toot shannel	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	849.70	1138.28	1186.37
Middle	849.70	1142.28	1186.37
Highest	849.70	1142.28	1186.37

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data

GFSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1002	566.47	Pass
Middle	1002	566.47	Pass
Highest	1002	566.47	Pass
	π/4-DQPSK mo	de	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1002	761.52	Pass
Middle	1002	761.52	Pass
Highest	1002	761.52	Pass
	8DPSK mode		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1002	790.91	Pass
Middle	1002	790.91	Pass
Highest	1002 790.91 Pass		Pass

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	849.70	566.47
π/4-DQPSK	1142.28	761.52
8DPSK	1186.37	790.91

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12896		
GFSK	DH3	0.26640	0.4	Pass
	DH5	0.31296		
	2-DH1	0.13088		
π/4-DQPSK	2-DH3	0.27088	0.4	Pass
	2-DH5	0.31040		
	3-DH1	0.12896		
8DPSK	3-DH3	0.26544	0.4	Pass
	3-DH5	0.31211		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.403*(1600/(2*79))*31.6=128.96ms DH3 time slot=1.665*(1600/(4*79))*31.6=266.40ms DH5 time slot=2.934(1600/(6*79))*31.6=312.96ms

2-DH1 time slot=0.409*(1600/ (2*79))*31.6=130.88ms

2-DH3 time slot=1.693*(1600/ (4*79))*31.6=270.88ms

2-DH5 time slot=2.910(1600/ (6*79))*31.6=310.40ms

3-DH1 time slot=0.403*(1600/ (2*79))*31.6=128.96ms

3-DH3 time slot=1.659*(1600/ (4*79))*31.6=265.44ms

3-DH5 time slot=2.926(1600/ (6*79))*31.6=312.11ms

Test plot as follows:

Modulation mode: π/4-DQPSK

2-DH1

2-DH3

2-DH5

Modulation mode: 8DPSK

3-DH1

3-DH3

3-DH5

Report No: CCIS14110092702

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

GFSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

<u> </u>	Nadiated Eiliission Met	<u>. </u>				
	Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205		
	Test Method:	ANSI C63.4: 20	03			
	Test Frequency Range:	2.3GHz to 2.5G	Hz			
	Test site:	Measurement D	istance: 3m			
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark
		Above 1GHz	Peak	1MHz	3MHz	Peak Value
	1 laste.	Frogue	Peak	1MHz Limit (dBuV	10Hz	Average Value Remark
	Limit:	Freque		54.0		Average Value
		Above 1	Peak Value			
	Test setup:	EUT Turn Table	4m 4m 0.8m A A		Antenna Horn Ant Spectrum Analyzer Ampli	enna
	Test Procedure:	ground at a 3 determine th 2. The EUT wa antenna, white tower. 3. The antennate ground to de horizontal and measuremer 4. For each sus and then the and the rotal maximum results of the emission of the emis	a meter camble position of the position of the set 3 meters in the set 3 meters in the set 3 meters in the set 4 meters in the	er. The table was set to Pea Maximum Hole Was set to Pea Maximum Hole Was set to Pea Maximum Hole EUT in peak In could be stop Was the each	was rotated diation. The interferer of a variable of a variable of the field one antenna was arrangents from 1 regrees to 360 at Detect Full Mode. The mode was apped and the missions the one using properties of the diagram of the missions the one using properties of the diagram of the missions the diagram of the missions the diagram of the diagram o	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the function and 10dB lower than the peak values of the nat did not have beak, quasi-peak or
	Test Instruments:	Refer to section	5.7 for detail	s		
	Test mode:	Non-hopping m	ode			
	Test results:	Passed				
Domo						

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Watch : Wi-Watch A3 EUT Model : BT-DH1-L Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Garen REMARK :

LIMIL			Antenna Factor						
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000				0.00 0.00				

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Model : Wi-Watch A3
Test mode : BT-DH1-L
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
RFMARK EUT : Smart Watch

REMARK

	ST. 100		Antenna Factor						
-	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	 -
	2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Watch Model : Wi-Watch A3
Test mode : BT-DH1-H
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C

Huni:55%

Test Engineer: Garen

REMARK

1 2

Free		Antenna Factor							
rred	rever	ractor	FOSS	ractor	rever	Line	LIMIT	Kemark	
MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB		-
2483,500 2483,500					63.33 45.79				

Site Condition EUT

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Smart Watch

Model : Wi-Watch A3
Test mode : BT-DH1-H
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

	Freq		Antenna Factor						
4	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Smart Watch Model : Wi-Watch A3 Test mode : BT-2DH1-L Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Garen REMARK :

UI.	TI								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹		<u>d</u> B	<u>ab</u>	dBu√/m	dBu∀/m	<u>ab</u>	
	2390.000								
	2300 000	7 20	27 58	5 67	0 00	40.45	54 00	-13 55	Amerade

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Smart Watch : Wi-Watch A3 Model Test mode : BT-2DH1-L Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Garen REMARK :

1 2

	Freq		Antenna Factor						
	MHz	dBu₹	— <u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
2	2390.000 2390.000				0.00 0.00				

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Watch Model : Wi-Watch A3
Test mode : BT-2DH1-H
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C

Huni:55%

Test Engineer: Garen REMARK :

TVL	TV :									
			Antenna					Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	— <u>d</u> B/m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		
2	2483.500 2483.500					63.19 45.86			Peak Average	

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smart Watch : Wi-Watch A3 : BT-2DH1-H Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5C

Huni:55%

Test Engineer: Garen REMARK :

		Read/ Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
	MHz	dBu₹	$\overline{dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
	2483,500				0.00				
2	2483.500	11.40	21.52	5. (0	0.00	44.62	54.00	-9. 58	Average

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Watch : Wi-Watch A3 : BT-3DH1-L Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Garen

REMARK

a	ALL .								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	— <u>d</u> B/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	7.745745			0.00				
	2390.000	1.19	21.00	0.01	0.00	40.44	34.00	-13.00	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Smart Watch Condition

: Smart Watch
Model : Wi-Watch A3
Test mode : BT-3DH1-L
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Garen
REMARK : EUT

Huni:55%

. Even									
rreq	rever	ractor	LOSS	ractor	rever	Line	Limit	Kemark	
MHz	dBu₹	dB/m	<u>d</u> B	dB	dBuV/m	dBuV/m	<u>dB</u>		
	Freq MHz 2390.000	Read. Freq Level MHz dBuV 2390.000 18.61	ReadAntenna Freq Level Factor MHz dBuV dB/m 2390.000 18.61 27.58	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 2390.000 18.61 27.58 5.67	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB dB 2390.000 18.61 27.58 5.67 0.00	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 2390.000 18.61 27.58 5.67 0.00 51.86	ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 2390.000 18.61 27.58 5.67 0.00 51.86 74.00	ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB dBuV/m dBuV/m dB dB dBuV/m dB dB dB dB dB dB dB d	ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Smart Watch : Wi-Watch A3 : BT-3DH1-H EUT Model Test mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Test Engineer: Garen REMARK : Huni:55%

EMAKE	:	_						2		
	Freq		Antenna Factor						Remark	
2	MHz	—dBu∜	— <u>dB</u> /m		<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		
1	2483.500	30.02	27.52	5.70	0.00	63.24	74.00	-10.76	Peak	
2	2483.500	12.34	27.52	5.70	0.00	45.56	54.00	-8.44	Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Watch Model : Wi-Watch A3
Test mode : BT-3DH1-H
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

	3655	ReadAntenna Level Factor		Cable Preamp Loss Factor					Remark	
-	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBu√/m	dBu√/m	dB		
	2483.500 2483.500									

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

GFSK

Lowest channel

Date: 12.NOV.2014 07:46:58

30MHz~25GHz

Middle channel

Date: 12.NOV.2014 07:48:59

30MHz~25GHz

Date: 12.NOV.2014 07:50:33

30MHz~25GHz

π/4-DQPSK

Lowest channel

Date: 12.NOV.2014 07:54:59

30MHz~25GHz

Middle channel

Date: 12.NOV.2014 07:53:18

30MHz~25GHz

Date: 12.NOV.2014 07:52:24

30MHz~25GHz

8DPSK

Lowest channel

Date: 12.NOV.2014 07:56:56

30MHz~25GHz

Middle channel

Date: 12.NOV.2014 07:57:51

30MHz~25GHz

Date: 12.NOV.2014 07:59:31

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission Mo	etnoa								
Test Requirement:	FCC Part 15 C	Section 15.20	9						
Test Method:	ANSI C63.4: 2003								
Test Frequency Range:	9 kHz to 25 GH	Z							
Test site:	Measurement D	istance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz- 1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 1G112	Peak	1MHz	10Hz	Average Value				
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark				
	30MHz-8	8MHz	40.0)	Quasi-peak Value				
	88MHz-2	16MHz	43.	5	Quasi-peak Value				
	216MHz-9	60MHz	46.0)	Quasi-peak Value				
	960MHz-	1GHz	54.0)	Quasi-peak Value				
	Abovo 1	CH-	54.0)	Average Value				
	Above	GHZ	74.0)	Peak Value				
Test setup:	Above 1GHz								

Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.7 for details Test mode: Non-hopping mode

Report No: CCIS14110092702

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Pass

Measurement data:

Test results:

Below 1GHz

Vertical:

Site Condition : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

EUT : Smart Watch Model : Wi-Watch A3
Test mode : BT Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

:								
	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu₹	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
43.506	32.87	13.56	0.55	29.87	17.11	40.00	-22.89	QP
121.549	41.97	10.19	1.13	29.38	23.91	43.50	-19.59	QP
333.687	43.81	13.92	1.89	28.52	31.10	46.00	-14.90	QP
447.982	45.41	15.57	2.25	28.87	34.36	46.00	-11.64	QP
564.639	41.02	17.83	2.56	29.05	32.36	46.00	-13.64	QP
903.309	40.34	21.12	3.36	27.87	36.95	46.00	-9.05	QP
	MHz 43.506 121.549 333.687 447.982 564.639	MHz dBuV 43.506 32.87 121.549 41.97 333.687 43.81 447.982 45.41	MHz dBuV dB/m 43.506 32.87 13.56 121.549 41.97 10.19 333.687 43.81 13.92 447.982 45.41 15.57 564.639 41.02 17.83	Freq Level Factor Loss MHz dBuV dB/m dB 43.506 32.87 13.56 0.55 121.549 41.97 10.19 1.13 333.687 43.81 13.92 1.89 447.982 45.41 15.57 2.25 564.639 41.02 17.83 2.56	MHz dBuV dB/m dB dB 43.506 32.87 13.56 0.55 29.87 121.549 41.97 10.19 1.13 29.38 333.687 43.81 13.92 1.89 28.52 447.982 45.41 15.57 2.25 28.87 564.639 41.02 17.83 2.56 29.05	MHz dBuV dB/m dB dB dBuV/m 43.506 32.87 13.56 0.55 29.87 17.11 121.549 41.97 10.19 1.13 29.38 23.91 333.687 43.81 13.92 1.89 28.52 31.10 447.982 45.41 15.57 2.25 28.87 34.36 564.639 41.02 17.83 2.56 29.05 32.36	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m 43.506 32.87 13.56 0.55 29.87 17.11 40.00 121.549 41.97 10.19 1.13 29.38 23.91 43.50 333.687 43.81 13.92 1.89 28.52 31.10 46.00 447.982 45.41 15.57 2.25 28.87 34.36 46.00 564.639 41.02 17.83 2.56 29.05 32.36 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 43.506 32.87 13.56 0.55 29.87 17.11 40.00 -22.89 121.549 41.97 10.19 1.13 29.38 23.91 43.50 -19.59 333.687 43.81 13.92 1.89 28.52 31.10 46.00 -14.90 447.982 45.41 15.57 2.25 28.87 34.36 46.00 -11.64 564.639 41.02 17.83 2.56 29.05 32.36 46.00 -13.64

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Smart Watch

Model : Wi-Watch A3

Test mode : BT Mode

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen REMARK :

Dinamar									
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBuV	<u>dB</u> /π	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	34.517	36.64	12.30	0.48	29.95	19.47	40.00	-20.53	QP
2	121.549	41.97	10.19	1.13	29.38	23.91	43.50	-19.59	QP
2	333.687	43.81	13.92	1.89	28.52	31.10	46.00	-14.90	QP
4	447.982	46.66	15.57	2.25	28.87	35.61	46.00	-10.39	QP
5	564.639	40.02	17.83	2.56	29.05	31.36	46.00	-14.64	QP
6	903.309	40.34	21.12	3.36	27.87	36.95	46.00	-9.05	QP

Above 1GHz:

Test channel:		Lowest			Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	47.28	31.53	8.90	40.24	47.47	74.00	-26.53	Vertical	
4804.00	47.32	31.53	8.90	40.24	47.51	74.00	-26.49	Horizontal	
Test cha	annel:	Lowest			Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	37.79	31.53	8.90	40.24	37.98	54.00	-16.02	Vertical	
4804.00	37.64	31.53	8.90	40.24	37.83	54.00	-16.17	Horizontal	

Test channel:			Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	45.30	31.58	8.98	40.15	45.71	74.00	-28.29	Vertical	
4882.00	45.52	31.58	8.98	40.15	45.93	74.00	-28.07	Horizontal	
Test cha	annel:	Middle			Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	35.04	31.58	8.98	40.15	35.45	54.00	-18.55	Vertical	
4882.00	35.20	31.58	8.98	40.15	35.61	54.00	-18.39	Horizontal	

Test channel:			Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	45.09	31.69	9.08	40.03	45.83	74.00	-28.17	Vertical	
4960.00	46.97	31.69	9.08	40.03	47.71	74.00	-26.29	Horizontal	
Test cha	annel:	Highest			Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	35.57	31.69	9.08	40.03	36.31	54.00	-17.69	Vertical	
4960.00	36.76	31.69	9.08	40.03	37.50	54.00	-16.50	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.