Théorème de convergence dominée :

Soient $f_n:(X,\mathcal{A},\mu)\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une suite de fonctions intégrables,

$$f:(X,\mathcal{A},\mu)\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$$
une fonction mesurable,

$$g:(X,\mathcal{A},\mu)\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$$
une fonction intégrable positive

telles que :

$$-f_n \to f$$
 presque partout,

$$-\forall n \geq 1, |f_n| \leq g$$

Alors:

-f est intégrable

$$-\int f d\mu = \lim_{n} \int f_n d\mu$$

Preuve : Soit $E = \{x \in X, f_n(x) \to f(x)\}$, de sorte que $\mu(E^c) = 0$. On définit

$$\widetilde{f}(x) = \begin{cases} f(x) & \text{si } x \in E \\ 0 & \text{sinon} \end{cases}$$

Pour $a \in \mathbb{R}$, si $a \ge 0$,

$$\{\widetilde{f} > a\} = \{f > a\} \in \mathcal{A}$$

Si a < 0,

$$\begin{split} \{\widetilde{f} > a\} &= \{x \in E, \widetilde{f}(x) > a\} \cup \{x \in E^c, \widetilde{f}(x) > a\} \\ &= \{x \in E, f(x) > a\} \cup \{x \in E^c, 0 > a\} \\ &= \{f > a\} \cup E^c \end{split}$$

On sait (cf exos) que $E \in \mathcal{A}$, donc $E^c \in \mathcal{A}$. Donc $\{\widetilde{f}(x) > a\} \in \mathcal{A}$.

On définit également

$$\widetilde{f_n}(x) = \begin{cases} f_n(x) & \text{si } x \in E \\ 0 & \text{sinon} \end{cases}$$

$$\widetilde{g}(x) = \begin{cases} g(x) & \text{si } x \in E \\ 0 & \text{sinon} \end{cases}$$

- De même \widetilde{g} et les $\widetilde{f_n}$ sont mesurables, avec $\int |\widetilde{g}| d\mu = \int_E |\widetilde{g}| d\mu + \int_{E^c} |\widetilde{g}| d\mu = \int_E |\widetilde{g}| d\mu = \int_E |g| d\mu < \infty$ donc \widetilde{g} intégrable.
- $\forall n \geq 1, |\widetilde{f_n}| \leq \widetilde{g}$ donc les $\widetilde{f_n}$ intégrables. On a de plus $|\widetilde{f}| \leq \widetilde{g}$ donc \widetilde{f} intégrable.

On montre facilement le lemme suivant : si $a \in \mathbb{R}$ et (b_n) est une suite réelle, $\lim\inf(a+b_n)=a+\liminf b_n.$

L'inégalité $|\widetilde{f_n}| \leq \widetilde{g}$ implique $\widetilde{f_n} + \widetilde{g} \geq 0$. Le lemme de Fatou donne alors

$$\int \widetilde{f} d\mu + \int \widetilde{g} d\mu = \int \left(\widetilde{f} + \widetilde{g}\right) d\mu \quad \text{car } \widetilde{f} \text{ et } \widetilde{g} \text{ intégrables}$$

$$= \int \liminf \left(\widetilde{f_n} + \widetilde{g}\right) d\mu \quad \text{par le lemme}$$

$$\leq \liminf \int \left(\widetilde{f_n} + \widetilde{g}\right) d\mu \quad \text{Fatou}$$

$$= \liminf \left(\int \widetilde{f_n} d\mu + \int \widetilde{g} d\mu\right)$$

$$= \liminf \left(\int \widetilde{f_n} d\mu\right) + \int \widetilde{g} d\mu \quad \text{par le lemme}$$

Donc

$$\int \widetilde{f} d\mu \le \liminf \left(\int \widetilde{f_n} d\mu \right)$$

On a de même $\widetilde{g} - \widetilde{f_n} \ge 0$, donc

$$\int \widetilde{g} d\mu - \int \widetilde{f} d\mu = \int \left(\widetilde{g} - \widetilde{f}\right) d\mu \quad \text{car } \widetilde{f} \text{ et } \widetilde{g} \text{ intégrables}$$

$$= \int \liminf \left(\widetilde{g} - \widetilde{f_n}\right) d\mu \quad \text{par le lemme}$$

$$\leq \liminf \int \left(\widetilde{g} - \widetilde{f_n}\right) d\mu \quad \text{Fatou}$$

$$= \liminf \left(\int \widetilde{g} d\mu - \int \widetilde{f_n} d\mu\right)$$

$$= \int \widetilde{g} d\mu + \liminf \left(-\int \widetilde{f_n} d\mu\right) \quad \text{par le lemme}$$

$$= \int \widetilde{g} d\mu - \limsup \left(\int \widetilde{f_n} d\mu\right)$$

Donc

$$\int \widetilde{f} d\mu \ge \limsup \left(\int \widetilde{f_n} d\mu \right)$$

Conclusion : $\limsup \left(\int \widetilde{f_n} d\mu \right) = \liminf \left(\int \widetilde{f_n} d\mu \right) = \int \widetilde{f} d\mu$

Ceci implique $\int \widetilde{f_n} d\mu \to \int \widetilde{f} d\mu$. Comme E^c est de mesure nulle, on peut écrire $\int_E \widetilde{f_n} d\mu \to \int_E \widetilde{f} d\mu$ ou encore $\int_E f_n d\mu \to \int_E f d\mu$. Comme E^c est de mesure nulle, on écrit $\int f_n d\mu \to \int f d\mu$.