3 Étude des anneaux quotients $\mathbb{Z}/n\mathbb{Z}$ et $\mathbb{K}[X]/P\mathbb{K}[X]$ (K un corps)

3.1 Étude de $\mathbf{Z}/n\mathbf{Z}$

Soit n un entier positif. On rappelle à toutes fins utiles que le morphisme quotient

$$\mathbf{Z} \longrightarrow \mathbf{Z}/n\mathbf{Z}$$
 $m \longmapsto [m]_n$

est surjectif de noyau $n\mathbf{Z}$ et que l'application

$$\{ m \in \mathbf{Z}, 0 \leqslant m \leqslant n - 1 \} \quad \longrightarrow \quad \mathbf{Z}/n\mathbf{Z}$$

$$m \quad \longmapsto \quad [m]_n$$

induite par restriction est une bijection.

3.1.1 Éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$

Théorème 1. Soit n un entier positif et $m \in \mathbb{Z}$. Alors $[m]_n \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ si et seulement si $\operatorname{pgcd}(m,n) = 1$. En particulier l'application

$$\{m \in \mathbf{Z}, 0 \leqslant m \leqslant n-1, \operatorname{pgcd}(m, n) = 1\} \longrightarrow (\mathbf{Z}/n\mathbf{Z})^{\times}$$

 $m \longmapsto [m]_n$

est une bijection.

Démonstration. Soit $m \in \mathbf{Z}$. Alors $[m]_n$ est inversible si et seulement s'il existe $x \in \mathbf{Z}/n\mathbf{Z}$ tel que $x[m]_n = [1]_n$ Ceci équivaut à l'existence de $r \in \mathbf{Z}$ tel que $[r]_n[m]_n = [1]_n$. Or, pour $r \in \mathbf{Z}$, on a $[r]_n[m]_n = [rm]_n$ et la condition $[rm]_n = [1]_n$ équivaut au fait que rm - 1 est un multiple de n. Ainsi la condition $[m]_n$ est inversible est équivalente à l'existence d'entiers $r, s \in \mathbf{Z}$ tels que rm - 1 = sn. D'après le théorème de Bezout, cette dernière condition équivaut au fait que m et n sont premiers entre eux.

Remarque. Dans la pratique, si m est un entier premier avec n, le calcul de $r \in \mathbb{Z}$ tel que $[r]_n[m]_n = [1]_n$, autrement dit le calcul d'un inverse de m modulo n, se fait en déterminant une relation de Bezout pour m et n; rappelons qu'on utilise pour cela l'algorithme d'Euclide (éventuellement étendu).

Remarque. Ce théorème décrit ensemblistement $(\mathbf{Z}/n\mathbf{Z})^{\times}$, mais ne dit rien a priori sur la structure de groupe du groupe $((\mathbf{Z}/n\mathbf{Z})^{\times}, \times)$

.

3.1.2 Endomorphismes de $\mathbb{Z}/n\mathbb{Z}$

L'étude des endomorphisme de $\mathbf{Z}/n\mathbf{Z}$ figure explicitement sur le programme officiel du module. On va faire une étude un peu plus générale à moindres frais.

Théorème 2. Soit n un entier positif et A un anneau. Alors l'ensemble $\operatorname{Hom}_{\operatorname{anneaux}}(\mathbf{Z}/n\mathbf{Z},A)$ est non vide si et seulement si la caractéristique de A divise n, et alors $\operatorname{Hom}_{\operatorname{anneaux}}(\mathbf{Z}/n\mathbf{Z},A)$ a un unique élément.

En particulier $\operatorname{Hom}_{\operatorname{anneaux}}(\mathbf{Z}/n\mathbf{Z},\mathbf{Z}/n\mathbf{Z}) = \operatorname{Id}_{\mathbf{Z}/n\mathbf{Z}}.$

 $D\acute{e}monstration$. Notons c la caractéristique de A et φ_A l'unique élément de $Hom_{anneaux}(\mathbf{Z},A)$ (cf. le théorème 15 du chapitre 2), qui est donc de noyau $c\mathbf{Z}$ (cf. la définition 29 du chapitre 2). D'après la propriété universelle de l'anneau quotient (théorème 47 du chapitre 2) l'ensemble $Hom_{anneaux}(\mathbf{Z}/n\mathbf{Z},A)$ est en bijection avec $\{\varphi\in Hom_{anneaux}(\mathbf{Z},A), n\mathbf{Z}\subset Ker(\varphi)\}$. Comme $Hom_{anneaux}(\mathbf{Z},A)$ possède un unique élément φ_A et que φ_A est de noyau $c\mathbf{Z}$, on en déduit que $Hom_{anneaux}(\mathbf{Z}/n\mathbf{Z},A)$ est vide si $c\mathbf{Z}$ ne contient pas $n\mathbf{Z}$ et égal à $\{\varphi_A\}$ si $c\mathbf{Z}$ contient $n\mathbf{Z}$. \square

Définition. Soit m, n des entiers positifs tels que m divise n. On note $\pi_{n,m}$ l'unique morphisme d'anneaux de $\mathbf{Z}/n\mathbf{Z}$ vers $\mathbf{Z}/m\mathbf{Z}$.

Remarque. Concrètement $\pi_{n,m}$ se décrit ainsi : soit $x \in \mathbf{Z}/n\mathbf{Z}$ et $y \in \mathbf{Z}$ tel que $x = [y]_n$; alors $\pi_{n,m}(x) = [y]_m$. On peut d'ailleurs vérifier « à la main » que cette application est bien définie et est l'unique morphisme d'anneaux de $\mathbf{Z}/n\mathbf{Z}$ vers $\mathbf{Z}/m\mathbf{Z}$

Plus généralement, si A est un anneau de caractéristique c divisant n, l'unique morphisme $\pi_{n,A} \colon \mathbf{Z}/n\mathbf{Z} \to A$ se décrit ainsi : soit $x \in \mathbf{Z}/n\mathbf{Z}$ et $y \in \mathbf{Z}$ tel que $x = [y]_n$. Alors $\pi_{n,A}(x) = y \cdot 1_A$.

Remarque. Si n_1, \ldots, n_r sont premiers entre eux deux à deux, le morphisme

$$\prod_{i=1}^r \pi_{n,n_i} \colon \mathbf{Z}/n\mathbf{Z} \to \prod_{i=1}^r \mathbf{Z}/n_i\mathbf{Z}$$

est l'isomorphisme décrit par le théorème chinois (théorème 49 du chapitre 2)

3.1.3 Les carrés dans $\mathbb{Z}/p\mathbb{Z}$, p premier

Définition 3. Soit A un anneau. On dit qu'un élément a de A est un carré (dans A) si l'équation

$$x^2 = a \quad x \in A$$

possède au moins une solution.

Théorème 4. Soit p un nombre premier impair.

1. L'application

$$(\mathbf{Z}/p\mathbf{Z})^{\times} \longrightarrow (\mathbf{Z}/p\mathbf{Z})^{\times}$$

 $x \longmapsto x^2$

est un morphisme de groupes, de noyau $\{[1]_p, [-1]_p\}$.

2. Il y a exactement $\frac{p+1}{2}$ éléments de $\mathbf{Z}/p\mathbf{Z}$ qui sont des carrés. En outre, soit $x \in$ $(\mathbf{Z}/p\mathbf{Z})^{\times}$; alors x est un carré si et seulement si $x^{\frac{p-1}{2}} = [1]_p$.

C'est en fait un cas particulier du théorème suivant.

Théorème 5. Soit **K** un corps de caractéristique différente de 2.

- 1. On a $1_{\mathbf{K}} \neq -1_{\mathbf{K}}$.
- 2. L'application

$$C_{\mathbf{K}} \colon \begin{array}{ccc} \mathbf{K}^{\times} & \longrightarrow & \mathbf{K}^{\times} \\ x & \longmapsto & x^2 \end{array}$$

est un morphisme de groupes, de noyau $\{1_{\mathbf{K}}, -1_{\mathbf{K}}\}$.

3. En particulier si **K** est un corps fini de cardinal q impair, il y a $\frac{q+1}{2}$ carrés dans **K**. Par ailleurs $x \in \mathbf{K}^{\times}$ est un carré si et seulement si $x^{\frac{q-1}{2}} = 1_{\mathbf{K}}$.

Démonstration. Rappelons qu'un corps n'est pas nul et que donc l'unique morphisme de Z dans K, à savoir $\varphi_K : n \mapsto n \cdot 1_K$ n'a pas pour noyau Z. Dire que 2 n'est pas la caractéristique de **K** est donc équivalent à dire que $2 \cdot 1_{\mathbf{K}} = 1_{\mathbf{K}} + 1_{\mathbf{K}} \neq 0_{\mathbf{K}}$.

La démonstration du fait que l'application $C_{\mathbf{K}}$ est un morphisme de groupes est a priori facile et laissée à titre d'exercice.

Étudions le noyau de $C_{\mathbf{K}}$. Par définition c'est $\{x \in \mathbf{K}, x^2 = 1_{\mathbf{K}}\}$ soit encore $\{x \in \mathbf{K}, x^2 = 1_{\mathbf{K}}\}$ $\mathbf{K}, (x-1_{\mathbf{K}})(x+1_{\mathbf{K}}) = 0_{\mathbf{K}}$. Comme un corps est anneau intègre, pour tout $x \in \mathbf{K}$, la relation $(x-1_{\mathbf{K}})(x+1_{\mathbf{K}})=0_{\mathbf{K}}$ équivaut à $x-1_{\mathbf{K}}=0_{\mathbf{K}}$ ou $x+1_{\mathbf{K}}=0_{\mathbf{K}}$. Donc $Ker(C_{\mathbf{K}}) = \{1_{\mathbf{K}}, -1_{\mathbf{K}}\}.$

Supposons à présent que ${\bf K}$ est un corps fini de cardinal q impair. Soit $\mathcal{C}_{\bf K}^*$ l'ensemble des carrés non nuls de K. Comme $\mathcal{C}_{\mathbf{K}}^*$ est l'image de \mathbf{K}^{\times} par le morphisme de groupes $C_{\mathbf{K}}$ et que card $(\text{Ker}(C_{\mathbf{K}})) = 2$, le cardinal de $\mathcal{C}_{\mathbf{K}}^*$ est $\frac{\text{card}(\mathbf{K}^{\times})}{2} = \frac{q-1}{2}$. Comme $0_{\mathbf{K}} = 0_{\mathbf{K}}^2$ est également un carré dans \mathbf{K} , on en déduit qu'il y a $\frac{q-1}{2} + 1 = \frac{q+1}{2}$ carrés dans \mathbf{K} . Soit x un élément de $\mathcal{C}_{\mathbf{K}}$ et $y \in \mathbf{K}$ tel que $y^2 = x$. En particulier y est non nul. Comme

le groupe $\mathbf{K}^{\times} = \mathbf{K} \setminus \{0_{\mathbf{K}}\}$ possède q-1 élément, le théorème de Lagrange (théorème 32

du chapitre 1) montre que $y^{q-1}=1_{\mathbf{K}}$. Donc $x^{\frac{q-1}{2}}=y^{q-1}=1_{\mathbf{K}}$. Ainsi $\mathcal{C}^*_{\mathbf{K}}$ est inclus dans l'ensemble $\mathcal{R}_{\mathbf{K}}$ des racines dans \mathbf{K} du polynôme $X^{\frac{q-1}{2}}-1_{\mathbf{K}}$. Or, d'après le corollaire 43 du chapitre 2, le cardinal de $\mathcal{R}_{\mathbf{K}}$ est majoré par $\frac{q-1}{2}$. Comme $\operatorname{card}(\mathcal{C}^*_{\mathbf{K}})=\frac{q-1}{2}$ on en déduit que $\mathcal{C}^*_{\mathbf{K}}=\mathcal{R}_{\mathbf{K}}$.

3.2 Étude de la K-algèbre K[X]/PK[X], où K est un corps et $P \in K[X]$

3.2.1 Structure de K-espace vectoriel sur les quotients de K[X]

Soit **K** un corps, et P un élément de $\mathbf{K}[X]$. Le morphisme $\mathbf{K} \to \mathbf{K}[X]$ induit par composition avec le morphisme quotient $\mathbf{K}[X] \to \mathbf{K}[X]/P\mathbf{K}[X]$ une structure de **K**-algèbre (donc de **K**-espace vectoriel) sur $\mathbf{K}[X]/P\mathbf{K}[X]$) (cf. la section 2.10 du chapitre 2).

Théorème 6. Soit \mathbf{K} un corps, et P un élément de $\mathbf{K}[X]$. Supposons P non constant. Soit $\pi\colon \mathbf{K}[X]\to \mathbf{K}[X]/P\mathbf{K}[X]$ le morphisme quotient et $x:=\pi(X)$. Alors $\{1,x,\ldots,x^{\deg(P)-1}\}$ est une base du \mathbf{K} -espace vectoriel $\mathbf{K}[X]/P\mathbf{K}[X]$ En particulier l'application

$$\{Q \in \mathbf{K}[X], \deg(Q) < \deg(P)\} \quad \longrightarrow \quad \mathbf{K}[X]/P\mathbf{K}[X] \\ Q \quad \longmapsto \quad \pi(Q)$$

est bijective.

Démonstration. Soit $A \in \mathbf{K}[X]$. Soit $Q, R \in \mathbf{K}[X]$, avec $\deg(R) < \deg(P)$, tels que A = PQ + R est la division euclidienne de A par P (P est non constant donc non nul). On voit alors que $\pi(A) = \pi(R)$. Écrivons $R = \sum_{i=0}^{\deg(P)-1} a_i \cdot X^i$ avec $(a_i) \in \mathbf{K}^{\deg(P)}$. Comme π est un morphisme de \mathbf{K} -algèbres, on obtient

$$\pi(R) = \sum_{i=0}^{\deg(P)-1} a_i \cdot x^i$$

ce qui montre que la famille $\{1, x, \dots, x^{\deg(P)-1}\}$ engendre le **K**-espace vectoriel $\mathbf{K}[X]/P\mathbf{K}[X]$. Soit à présent $(a_i)_{0 \le i \le \deg(P)-1} \in \mathbf{K}^{\deg(P)}$ tel que

$$\sum_{i=0}^{\deg(P)-1} a_i \cdots x^i = 0$$

Si on note $R := \sum_{i=0}^{\deg(P)-1} a_i \cdots X^i$, on a donc

$$\sum_{i=0}^{\deg(P)-1} a_i \cdots x^i = \pi(R).$$

Ainsi le polynôme R est dans $\text{Ker}(\pi)$, en d'autres termes, P divise R. Pour des raisons de degré, on a donc R = 0. Aisni, pour tout $i \in \{0, \ldots, \deg(P) - 1\}$, on a $a_i = 0$. Ceci montre que la famille $\{1, x, \ldots, x^{\deg(P) - 1}\}$ est une famille libre du \mathbf{K} -espace vectoriel $\mathbf{K}[X]/P\mathbf{K}[X]$.

3.2.2 Éléments inversibles des quotients de K[X]

Théorème 7. Soit \mathbf{K} un corps, et P un élément de $\mathbf{K}[X]$. Supposons P non constant. Soit $\pi \colon \mathbf{K}[X] \to \mathbf{K}[X]/P\mathbf{K}[X]$ le morphisme quotient.

Soit $Q \in \mathbf{K}[X]$. Alors $\pi(Q) \in (\mathbf{K}[X]/P\mathbf{K}[X])^{\times}$ si et seulement si P et Q sont premiers entre eux.

En particulier l'application

$$\{Q \in \mathbf{K}[X], \deg(Q) < \deg(P), \operatorname{pgcd}(P,Q) = 1 \} \quad \longrightarrow \quad (\mathbf{K}[X]/P\mathbf{K}[X])^{\times} \\ Q \quad \longmapsto \quad \pi(Q)$$

induite par restriction de π est une bijection.

 $D\acute{e}monstration$. La démonstration est formellement quasi-identique à la démonstration de la propriété analogue pour les quotients de \mathbf{Z} . Faites là!

3.2.3 Endomorphismes des quotients de K[X]

Comme pour les endomorphismes de $\mathbb{Z}/n\mathbb{Z}$, on va faire une étude un peu plus générale (et on va dévier un peu). À toutes fins utiles, on fait le rappel suivant. Soit \mathbb{K} un corps. Soit A une \mathbb{K} -algèbre et $a \in A$. Le morphisme d'évaluation $\operatorname{ev}_a \colon \mathbb{K}[X] \to A$ est l'unique morphisme de \mathbb{K} -alèbres $\mathbb{K}[X] \to A$ qui envoie X sur a.

Théorème 8. Soit K un corps. Soit A une K-algèbre Alors l'application

$$\begin{array}{ccc} A & \longrightarrow & \operatorname{Hom}_{\mathbf{K}-Alg}(\mathbf{K}[X],A) \\ a & \longmapsto & \operatorname{ev}_a \end{array}$$

est une bijection qui pour tout élément $P \in \mathbf{K}[X]$ induit une bijection de l'ensemble $\{a \in A, \text{ ev}_a(P) = 0\}$ (ie l'ensemble des zéros de P dans A) sur l'ensemble $\text{Hom}_{\mathbf{K}-Alq}(\mathbf{K}[X]/\langle P \rangle, A)$.

Démonstration. (esquisse) Le fait que la première application est une bijection vient de la propriété universelle de la \mathbf{K} -algèbre $\mathbf{K}[X]$ (théorème 75 du chapitre 2) compte tenu de la définition 76 du chapitre 2.

Par ailleurs la propriété universelle des algèbres quotients (cf. le théorème 77 du chapitre 2 et la remarque qui suit) montre que $\operatorname{Hom}_{\mathbf{K}-\operatorname{Alg}}(\mathbf{K}[X]/\langle P \rangle, A)$ est en bijection avec l'ensemble

$$\{\varphi \in \operatorname{Hom}_{\mathbf{K}-\operatorname{Alg}}(\mathbf{K}[X], A), \quad \langle P \rangle \subset \operatorname{Ker}(\varphi)\}$$

qui n'est autre que l'ensemble

$$\{\varphi \in \operatorname{Hom}_{\mathbf{K}-\operatorname{Alg}}(\mathbf{K}[X], A), \quad \varphi(P) = 0\}$$

On en profite pour introduire les quelques définitions et propriétés suivantes. La démonstration des propriétés fait l'objet d'exercices de TD.

Définition 9. Soit **K** un corps, A une **K**-algèbre et $a \in A$. On dit que a est transcendant sur **K** si ev_a est injectif. De manière équivalente, a n'est racine d'aucun polynôme non nul à coefficient dans A. Dans le cas contraire, a est dit algébrique sur **K**, et le générateur unitaire de Ker(ev_a) est appelé polynôme minimal de A (sur **K**).

Remarque. La notion de polynôme minimal ne s'étend pas directement au cas d'un élément d'une A-algèbre où A n'est plus un corps. Le problème est qu'il n'est plus vrai que tout idéal de A[X] est engendré par un élément. Considérons par exemple la \mathbf{Z} -algèbre $\mathbf{Z}/2\mathbf{Z}$ et le morphisme d'évaluation en $0_{\mathbf{Z}/2\mathbf{Z}}$. Ce morphisme envoie $P \in \mathbf{Z}[X]$ sur $[P(0)]_2$ et on montre que son noyau est $\langle 2, X \rangle$ et que ce noyau n'est pas engendré par un élément. Ainsi « le polynôme minimal de $0_{\mathbf{Z}/2\mathbf{Z}}$ sur \mathbf{Z} » ne fait pas vraiment sens.

Proposition 10. Soit K un corps et A une K-algèbre qui est un K-espace vectoriel de dimension finie. Alors tout élément de A est algébrique sur K.

Proposition 11. Soit **K** un corps et $P \in \mathbf{K}[X] \setminus \{0\}$, $A = \mathbf{K}[X]/P\mathbf{K}[X]$. Alors tout élément de A est algébrique sur **K**. En outre le polynôme minimal de x est P.

Proposition 12. Soit \mathbf{K} un corps, A une \mathbf{K} -algèbre intègre et $a \in A$ un élément algébrique. Alors le polynôme minimal de a sur \mathbf{K} est irréductible.

Définition 13. Soit K un corps. Une K-extension (ou extension de K) est une K-algèbre qui est un corps. En d'autres termes, une K-extension est la donnée d'un corps L et d'un morphisme d'anneaux $K \to L$.

Le degré d'une \mathbf{K} -extension \mathbf{L} est la dimension de \mathbf{L} en tant que \mathbf{K} -espace vectoriel. Il est noté $[\mathbf{L}:\mathbf{K}]$.

Remarque. Si L est une extension de K, K est isomorphe à un sous-corps de L.

Si $P \in \mathbf{K}[X]$ est un polynôme irréductible, le corps $\mathbf{L} = \mathbf{K}[X]/\langle P \rangle$ est une extension de \mathbf{K} de degré $\deg(P)$.

Exemple. Soit **K** un corps. Regardons l'exemple de $\operatorname{Hom}_{\mathbf{K}-\operatorname{alg}}(\mathbf{L},\mathbf{L})$ où **L** est la **K**-algèbre $\mathbf{K}[X]/P\mathbf{K}[X]$, avec $P \in \mathbf{K}[X]$ irréductible (donc **L** est un corps). On a donc

$$\operatorname{Hom}_{\mathbf{K}-\operatorname{alg}}(\mathbf{L}, \mathbf{L}) = \{ y \in \mathbf{L}, \quad P(y) = 0 \}$$

Comme tout élément de $\operatorname{Hom}_{\mathbf{K}-\operatorname{alg}}(\mathbf{L}, \mathbf{L})$ est une application linéaire injective et que \mathbf{L} est un \mathbf{K} -espace vectoriel de dimension finie, tout élément de $\operatorname{Hom}_{\mathbf{K}-\operatorname{alg}}(\mathbf{L}, \mathbf{L})$ est en fait un automorphisme de la \mathbf{K} -algèbre \mathbf{L} . Le groupe d'automorphismes $\operatorname{Hom}_{\mathbf{K}-\operatorname{alg}}(\mathbf{L}, \mathbf{L})$ est appelé le groupe de Galois de \mathbf{L}/\mathbf{K} . D'après le corollaire 43 du chapitre 2 et l'égalité ci-dessus, son cardinal est majoré par $\operatorname{deg}(P) = [\mathbf{L} : \mathbf{K}]$. L'extension \mathbf{L}/\mathbf{K} est dite galoisienne si le cardinal de son groupe de Galois est égal au degré $[\mathbf{L} : \mathbf{K}]$

Prenons par exemple $\mathbf{K} = \mathbf{Q}$. Si $P = X^2 - 2$, on peut montrer que l'extension obtenue est galoisienne, alors que ce n'est pas le cas pour $P = X^3 - 2$.