TITANIC SURVIVAL PREDICTION

In this Task we will learn to predict the survival chances of the Titanic passengers using the given information about their sex, age, etc

Imoprting libraries

```
In [1]: import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    from sklearn.metrics import accuracy_score
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.svm import SVC
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.neighbors import KNeighborsClassifier
```

Reading and Loading Dataset

```
In [2]: df=pd.read_csv(r'C:\Users\user\Downloads\tested.csv')
    df
```

Out[2]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
	2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
	3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
	4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
	413	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	
	414	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	
	415	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	
	416	1308	0	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	
	417	1309	0	3	Peter, Master.	male	NaN	1	1	2668	22.3583	NaN	

418 rows × 12 columns

Exploratory Data Analysis(EDA)

In [3]: df.head()

Michael J

Out[3]:	Р	assengerId :	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far	e Cabin	Embar	ked
	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	2 NaN		Q
	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000) NaN		S
	2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.687	5 NaN		Q
	3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.662	5 NaN		S
	4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.287	5 NaN		S
In [4]:	df.	tail()												
Out[4]:	PassengerId		Survived	Pclass	s Name	Sex	Age	SibSp	Parch	Т	icket	Fare	Cabin	Emba
	413	1305	0	;	Spector, 3 Mr. Woolf	male	e NaN	0	0	A.5.	3236	8.0500	NaN	
	414	1306	1	:	Oliva y Ocana, Dona. Fermina	female	9.0	0	0	PC 1	17758 1	.08.9000	C105	
	415	1307	0	;	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON 310	/O.Q.)1262	7.2500	NaN	
	416	1308	0	;	Ware, 3 Mr. Frederick	male	e NaN	0	0	35	59309	8.0500	NaN	
	417	1309	0	;	Peter, Master. Michael J	male	e NaN	1	. 1		2668	22.3583	NaN	

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 418 entries, 0 to 417 Data columns (total 12 columns): Column Non-Null Count Dtype - - -0 PassengerId 418 non-null int64 418 non-null 1 Survived int64 2 Pclass 418 non-null int64 3 Name 418 non-null object 4 Sex 418 non-null object 5 Age 332 non-null float64 6 int64 SibSp 418 non-null 7 Parch 418 non-null int64 8 Ticket 418 non-null object 9 Fare 417 non-null float64 10 Cabin 91 non-null object 418 non-null 11 Embarked object dtypes: float64(2), int64(5), object(5)

memory usage: 39.3+ KB

df.describe() In [6]:

Out[6]: **PassengerId** Survived **Pclass** Age SibSp **Parch Fare** 418.000000 332.000000 418.000000 417.000000 count 418.000000 418.000000 418.000000 mean 1100.500000 0.363636 2.265550 30.272590 0.447368 0.392344 35.627188 std 120.810458 0.481622 0.841838 14.181209 0.896760 0.981429 55.907576 0.000000 min 892.000000 0.000000 1.000000 0.170000 0.000000 0.000000 25% 996.250000 0.000000 1.000000 21.000000 0.000000 0.000000 7.895800 50% 1100.500000 0.000000 3.000000 27.000000 0.000000 0.000000 14.454200 **75**% 1204.750000 1.000000 3.000000 39.000000 1.000000 0.000000 31.500000 1309.000000 3.000000 76.000000 8.000000 9.000000 512.329200 1.000000 max

```
In [7]:
        df.dtypes
        PassengerId
                           int64
Out[7]:
        Survived
                           int64
        Pclass
                           int64
        Name
                          object
        Sex
                          object
        Age
                         float64
        SibSp
                           int64
        Parch
                           int64
        Ticket
                          object
                         float64
        Fare
        Cabin
                          object
        Embarked
                          object
        dtype: object
```

In [8]: df.isnull().sum()

```
0
          PassengerId
 Out[8]:
          Survived
                            0
          Pclass
                            0
          Name
                            0
          Sex
                            0
          Age
                           86
          SibSp
                            0
          Parch
                            0
          Ticket
                            0
          Fare
                            1
          Cabin
                          327
          Embarked
                            0
          dtype: int64
 In [9]: df['Age'] = df['Age'].fillna(df['Age'].mean())
          df['Fare'] = df['Fare'].fillna(df['Fare'].mean())
In [10]:
          Embarked = df['Embarked'].unique()
          for Embarkeds in Embarked:
              print("->", Embarkeds)
          -> Q
          -> S
          -> C
          df['Embarked'] = df['Embarked'].map( {'Q': 0, 'S':1, 'C':2}).astype(int)
In [11]:
          df['Sex'] = df['Sex'].map( {'female': 1, 'male':0}).astype(int)
          df.dtypes
In [12]:
          PassengerId
                            int64
Out[12]:
          Survived
                            int64
          Pclass
                            int64
          Name
                           object
          Sex
                            int32
          Age
                          float64
          SibSp
                            int64
                            int64
          Parch
          Ticket
                           object
          Fare
                          float64
          Cabin
                           object
          Embarked
                            int32
          dtype: object
In [13]:
          df['Age'] = df['Age'].astype(int)
          df['Fare'] = df['Fare'].astype(int)
In [14]:
          data = df.drop(['PassengerId','Name','Cabin','Ticket'], axis =1, inplace=True)
In [15]:
          df.head()
In [16]:
Out[16]:
             Survived
                     Pclass Sex Age SibSp Parch Fare Embarked
          0
                                               0
                                                     7
                                                              0
                  0
                          3
                              0
                                  34
                                         0
                                                     7
                  1
                                               0
          1
                          3
                              1
                                  47
                                         1
                                                              1
          2
                  0
                                                     9
                          2
                                  62
                                         0
                                               0
                                                              0
          3
                  0
                          3
                              0
                                  27
                                         0
                                               0
                                                     8
                                                              1
                          3
                                  22
                                         1
                                                    12
                                                              1
          4
                   1
                              1
                                                1
```

Data Visualization

```
In [17]:
         import matplotlib.pyplot as plt
         fig = plt.figure(figsize =(10, 7))
         plt.hist(x = [df[df['Survived']==1]['Age'], df[df['Survived']==0]['Age']], stacked=True,
         plt.title('Age Histogram with Survival')
         plt.xlabel('Age')
         plt.ylabel('No of passengers')
         plt.legend()
```

<matplotlib.legend.Legend at 0x14c9e5a3a60> Out[17]:

Age Histogram with Survival 175


```
In [18]:
         fig = plt.figure(figsize =(10, 7))
         plt.hist(x = [df[df['Survived']==1]['Fare'], df[df['Survived']==0]['Fare']], stacked=Tru
         plt.title('Fare Histogram with Survival')
         plt.xlabel('Fare')
         plt.ylabel('No of passengers')
         plt.legend()
```

<matplotlib.legend.Legend at 0x14ca30533a0> Out[18]:

Fare Histogram with Survival


```
In [19]: column = 'Survived'

# Create a bar chart
survival_counts = df[column].value_counts()
survival_counts.plot(kind='bar', rot=0)

# Adding labels and title
plt.xlabel('Survived')
plt.ylabel('Count')
plt.title('Survival Count (0 = No, 1 = Yes)')

# Show the plot
plt.show()
```


Spliting the data

```
In [20]: Train = df.drop(['Survived'], axis=1)
   Test = df.iloc[:,1]
   x_train, x_test, y_train, y_test = train_test_split(Train, Test, test_size = 0.2, random
```

Survived

Model Building

```
In [21]: LR = LogisticRegression(solver='liblinear', max_iter=200)
    LR.fit(x_train, y_train)
    y_pred = LR.predict(x_test)
    LRAcc = accuracy_score(y_pred,y_test)
    print('Logistic regression accuracy: {:.2f}%'.format(LRAcc*100))
    Logistic regression accuracy: 92.86%
In []:
```