Artificial Intelligence vs. Natural Stupidity

A Collection of Computer Cartoons T. McCracken

CS 4200: ARTIFICIAL INTELLIGENCE

Dr. Daisy Tang

Outline

- Course Overview
- What is Artificial Intelligence (AI)
- History of Al
- The State of the Art

Course Overview

See blackboard

Course Overview

- Week/Module 1:
 - Introduction; Intelligent agents
- □ Week/Module 2:
 - Uninformed Search; Informed Search
- Week/Module 3:
 - Local search; Constraint Satisfaction Problem
- Week/Module 4:
 - Adversarial Search; Logical Agent
- □ Week/Module 5:
 - First-Order Logic; Planning

What is Al?

Definition from John McCarthy

It is the science and engineering of making intelligent machines, especially intelligent computer programs.

- What is intelligence then?
 - The computational part of the ability to achieve goals in the world. Varying kinds and degrees of intelligence occur in people, many animals and some machines.

John McCarthy's What is AI?

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

The Rise of Al

□ Do you use Al in your daily life?

- □ Some examples:
 - Google Assistant can now make real phone calls for you:
 - https://www.youtube.com/watch?v=JvbHu_bVa_g
 - Covid-19 accurately diagnosed by Al model
 - https://www.genengnews.com/news/covid-19-accuratelydiagnosed-by-ai-model/

In-Class Exercise #1.1

□ Requirements:

- Please write a 1-2 paragraphs of summary about your own definition of Al (in your own words) followed by the discussion of one recent event on how Al is being used in our daily life.
- Please include a link to either a youtube video or an article that your reference.
- Submission Deadline: 7/4/2020

Four Categories Views of Al

Please watch a short video about 4 views of Al

Acting Humanly: Turing Test

Proposed by Alan Turing in 1950

- Suggested major components of AI?
- Loebner Prize (Mitsuku, 2016 winner)
- http://www.loebner.net/Prizef/loebner-prize.html

Thinking Humanly: Cognitive Modeling

- Requires scientific theories of internal activities of the brain
- How to validate? Requires
 - Predicting and testing behavior of human subjects
 - Direct identification from neurological data
- Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from Al

Thinking Rationally: Laws of Thoughts

Aristotle:

what are correct arguments/thought processes?

Problems:

- not easy to state informal knowledge in the formal terms required by logical notation
- big difference between being able to solve a problem in principle and doing so in practice

Acting Rationally: Rational Agent

- □ Agent: something that acts
 - Agents are not merely "program"
- Rational: doing the right thing
 - It is expected to maximize goal achievement, given the available information
- Doesn't necessarily involve thinking e.g., blinking reflex but thinking should be in the service of rational action
- Two advantages: more general than "thinking rationally",
 better than human standards

Foundations of Al

[Philosophy	Logic, methods of reasoning, mind as physical system foundations of learning, language, rationality
I	Mathematics	Formal representation and proof algorithms, computation, (un)decidability, (in)tractability, probability
[Economics	utility, decision theory, game theory
[Neuroscience	physical substrate for mental activity
[Psychology	phenomena of perception and motor control, experimental techniques
[Computer engineering	building fast computers
I	Control theory	design systems that maximize an objective function over time
[Linguistics	knowledge representation, natural language

History of Al

1943	McCulloch & Pitts: Boolean circuit model of brain
1950	Turing's "Computing Machinery and Intelligence"
1956	Dartmouth meeting: "Artificial Intelligence" adopted
1952—69	Look, Ma, no hands!
1950s	Early Al programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
1965	Robinson's complete algorithm for logical reasoning
1966—73	Al discovers computational complexity Neural network research almost disappears
1969—79	Early development of knowledge-based systems
1980	Al becomes an industry
1986	Neural networks return to popularity
1987	Al becomes a science
1995	The emergence of intelligent agents
2011	Availability of very large data sets

Branches of Al

- Logical Al
- Search
- Pattern recognition
- Representation
- Inference
- Common sense knowledge and reasoning
- Learning from experience
- Planning
- Heuristics
- Genetic programming
- Robotics
- And many others

State of the Art

- Machine learning
- Robotics: DARPA Grand/Urban Challenges
- Speech recognition: banking agent, travel agent
- Autonomous planning and scheduling: NASA's autonomous planning programs
- Game playing: IBM's Deep Blue, Google's AlphaGo
- Spam fighting
- Logistic planning: during the Persian Gulf crisis of 1991, U.S. forces deployed a tool to do automated logistics planning and scheduling for transportation, hours vs. weeks of efforts
- Robotics: Roomba that helps cleanning, PackBots that handle hazardous materials, clear explosives and identify location of snipers
- Machine translation
- □ many others

Examples

Packbot 510

gamescrafter @ Berkeley

Autonomous Vehicle

DARPA Urban Challenge

https://www.youtube.com/watch?v=cdgQpa1pUUE (Self Driving Car)
https://www.youtube.com/watch?v=vC66XFoN4DE (Alpha Go)

In-Class Exercise #1.2

□ Requirements:

- Given the most recent Al application (you can reuse the same application from the previous exercise or a brand new one), list the key areas of Al that you will need to explore to implement this application.
- Submission Deadline: 7/11/2021

Next Subject ...

Intelligent agent