Epreuve écrite

Examen de fin d'études secondaires 2015

Section: C

Branche: Biologie

Numéro d'ordre du candidat

Question I: Mécanismes immunitaires, VIH, séropositivité (20 points)

- 1) Décrivez les mécanismes immunitaires mis en jeu lors de l'infection d'une personne permettant d'aboutir à la séropositivité.
- 2) On cherche à comprendre la cause de l'évolution de la séropositivité pour le VIH de deux enfants : : E1 né de la mère M1 et E2 né de la mère M2.

En utilisant les informations apportées par les documents 1 à 3 et vos connaissances, expliquez les évolutions différentes de la séropositivité chez ces deux enfants.

Document 1 : Résultats de tests réalisés chez les différents individus

Le test Elisa révèle la présence d'anti-VIH grâce à une réaction colorée. La charge virale mesure le nombre de copies d'ARN viral par mL de plasma.

Individus testés	Témoin T1	Témoin T2	Mère de E1	Enfant E1	Mère de E2	Enfant E2
	non contaminé par le VIH	infecté par le VIH	Tests réalisés lors de la grossesse	Tests réalisés à la naissance	Tests réalisés lors de la grossesse	Tests réalisés à la naissance
Test Elisa	Négatif : cupule non colorée	Positif : cupule colorée	Cupule colorée	Cupule colorée	Cupule colorée	Cupule colorée
Charge virale en copie d'ARN par mL	0	comprise entre 10 ¹ et 10 ⁸	environ 10⁴	0	environ 10⁴	environ 5.10 ²

Document 2 : Mesures du taux d'anticorps anti-VIH chez E1 et E2

Taux d'anticorps anti-VIH (unités arbitraires)

<u>Document 3</u>: Evolution de la concentration de tous les anticorps dans le sang d'un enfant en fonction de leur origine

Question II : Exercice de génétique (20 points)

On dispose de 2 lots de graines de Betteraves appartenant à deux lignées pures distinctes :

- L'une ayant des racines courtes, mais pauvres en sucre
- L'autre ayant des racines longues, mais riches en sucre.

Si l'on sait que l'on obtient en F_1 des plantes ayant toutes des racines courtes, pauvre en sucre, que peut-on en déduire concernant les dominances ?

Si on laisse les plants F_1 s'autoféconder, quels résultats statistiques peut-on prévoir en F_2 , dans les deux hypothèses suivantes :

- a) On suppose que les facteurs sont indépendants.
- b) On suppose que l'on est dans un cas de liaison entre les facteurs considérés. En faire l'interprétation chromosomique.
- c) Si l'on obtient en réalité en F2 les résultats suivants :
- 2800 plantes à racines courtes, pauvres en sucre
- 545 plantes à racines longues, riches en sucre
- 212 plantes à racines courtes, riches en sucre
- 208 plantes à racines longues, pauvres en sucre.

Quelle est l'hypothèse à retenir pour la disposition des gènes correspondants sur les chromosomes ?

Question III : Une famille multigénique (20 points)

Les globines sont des protéines qui constituent la molécule d'hémoglobine.

Chez l'homme, il existe six globines différentes.

On propose d'étudier trois globines (Alpha, Bêta, Delta) à l'aide des documents suivants :

<u>Document 1</u>: structure tridimensionnelle du squelette carboné de différentes globines et locus des différents gènes correspondants

gène de la Delta globine		gène de la Bêta globine	_
	chromos	ome 11	
	gène de l'Alp	ha globine	_
	chromos	ome 16	D'après ressources INRP

Document 2: matrice présentant le nombre d'acides aminés identiques entre les différentes globines

	Alpha globine	Delta globine	Bêta globine
Alpha globine	-	68	69
Delta globine		-	137
Bêta globine			-

D'après Phylogène INRP

<u>Document 3</u>: données biologiques et paléontologiques

	Âge du plus ancien fossile connu	Globines présentes
Poissons sans mâchoire	500 Ma	Alpha globine
Poissons à mâchoire, Oiseaux et Mammifères	450 M a	Alpha globine et bêta globine
Primates	40 Ma	Alpha globine, bêta globine et delta globine

D'après Ressources INRP

- 1) Expliquez le terme « famille multigénique » et précisez les mécanismes qui en sont, en général, à l'origine.
- 2) A l'aide des documents 1 et 2, montrez que les gènes des 3 globines étudiés peuvent être désignés comme une famille multigénique.

 Comment expliquez-vous les différences et les similitudes entre les 3 gènes ?
- 3) A partir du document 3, proposez un modèle, sous forme de schéma-bilan, de l'histoire évolutive de cette famille multigénique.