SCALING OF PERCOLATION TRANSITIONS ON ERDÖS-RÉNYI NETWORKS UNDER CENTRALITY-BASED ATTACKS¹ PROCESOS DINÁMICOS EN REDES COMPLEJAS

Nicolás Vazquez

 $^{^1}$ Almeira, N., Billoni, O. V., & Perotti, J. I. (2020). Physical Review E, 101(1), 1–9.

PART I: DEMO PRESENTATION PART

1	Introd	uction
		Frames
	1.2	Typographics
	1.3	Lists
	1.4	Table
		Figures
	1.6	Blocks
2		
	2.1	Equations
	2.2	Theorem

PART II: DEMO PRESENTATION PART 2

1	Section	n
	1.1	Subsection
		1.1.1 Subsubsection
		1.1.2 Subsubsection
	1.2	Subsection
		1.2.1 Subsubsection
		1.2.2 Subsubsection
2	Section	n
	2.1	Subsection
		2.1.1 Subsubsection
		2.1.2 Subsubsection
	2.2	Subsection
		2.2.1 Subsubsection
		2.2.2 Subsubsection

Part I

Demo Part

- ► This template provides an elegant and minimalistic layout for beamer slides. Hence the name **Elegant Slides**.
- ▶ I created Elegant Slides because I wasn't satisfied with any of the existing Beamer templates, which look slightly different than Elegant Slides.
- ▶ My goal was to create a layout that is **simplistic but beautiful** and focuses on the content, rather than crowding each slide with lots of different coloured boxes.
- ▶ I designed Elegant Slides for lecture notes and technical presentations but it can be used for any kind of talk.

FRAMES

Unless the user enters their own custom frame titles and subtitles, Elegant Slides automatically inserts the section title and, if specified, the subsection title as frame titles and frame subtitles.

INTRODUCTION CUSTOM SUBSECTION

This frame has a custom subtitle. The frame title is automatically inserted and corresponds to the section title.

CUSTOM TITLE

CUSTOM SUBSECTION WITH FOOTNOTE

This frame has a custom title and a custom subtitle.²

²This is a footnote. See also Author (2022).

TYPOGRAPHICS

These examples follow the Metropolis Theme

- ► Regular
- ► Alert
- ► Italic
- ► Bold

LISTS

Items

- ► Cats
 - British Shorthair
- ► Dogs
- ► Birds

Enumerations

- 1. First
 - 1.1 First subpoint
- 2. Second
- 3. Last

Descriptions

Apples Yes

Oranges No

Grappes No

TABLE

Table. Largest cities in the world (source: Wikipedia)

City	Population
Mexico City	20,116,842
Shanghai	19,210,000
Peking	15,796,450
Istanbul	14,160,467

City	Population
Mexico City	20,116,842
Shanghai	19,210,000
Peking	15,796,450
Istanbul	14,160,467

FIGURES

BLOCKS

Default

Block content.

Alert

Block content.

Example

Block content.

MATHS

EQUATIONS

► A numbered equation:

$$y_t = \beta x_t + \varepsilon_t \tag{1}$$

► Another equation:

$$\mathbf{Y} = \boldsymbol{\beta}\mathbf{X} + \boldsymbol{\varepsilon}_t$$

THEOREM

▶ Theorems are numbered consecutively.

Theorem 1 (Example Theorem)

Given a discrete random variable X, which takes values in the alphabet \mathcal{X} and is distributed according to $p: \mathcal{X} \to [0,1]$:

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$
 (2)

MATHS

DEFINITIONS

▶ Definition numbers are prefixed by the section number in the respective part.

Definition 2.1 (Example Definition)

Given a discrete random variable X, which takes values in the alphabet \mathcal{X} and is distributed according to $p: \mathcal{X} \to [0,1]$:

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$
(3)

MATHS EXAMPLES

Examples are numbered as definitions.

Example 2.1 (Example Theorem)

Given a discrete random variable X, which takes values in the alphabet \mathcal{X} and is distributed according to $p: \mathcal{X} \to [0,1]$:

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$
(4)

Part II

DEMO PRESENTATION PART 2

REFERENCES I

Author, Example (2022). "Reference Title". In: *Journal of Examples* 0.0, pp. 1–10.