Chad McKell updated: 5/21

ABOUT

 $9500~\mathrm{Gilman~Dr~MC}$ 0099 Address

La Jolla, CA 92093-0099

Phone $+1\ 661\ 289\ 4215$ Email cmckell@ucsd.edu Website chadmckell.com

I am a Ph.D. student at UC San Diego. In my research, I develop computational Summary

and mathematical tools for simulating sound. For my Ph.D. thesis, I study computational geometric techniques for sound synthesis. My research has applications in computer

music, computer animation, augmented reality, and other fields.

EDUCATION

9/19-	University of California San Diego, Ph.D. in Computer Music
	GPA: 4.0. Coursework: acoustics, computer graphics, digital signal processing.
	Thesis topic: computational geometric techniques for sound synthesis.
	Mentors: Tamara Smyth, Shahrokh Yadegari, and Miller Puckette.
9/16-10/17	University of Edinburgh, M.S. in Acoustics and Music Technology
8/09-12/15	Wake Forest University, M.S. in Physics
6/02-8/09	Brigham Young University, B.S. in Biophysics

ACADEMIC APPOINTMENTS

9/19-	University of California San Diego, Teaching Assistant/Researcher (Music)
9/12-12/12	University of North Carolina School of the Arts, Adjunct Instructor (Physics)
9/09-9/11	Wake Forest University, Teaching Assistant (Physics)
9/08-6/09	Brigham Young University, Tutorial Lab Assistant (Physics)
8/07-3/09	Brigham Young University, Research Assistant (Philosophy)

PROFESSIONAL EMPLOYMENT

7/18-7/19	Applied Research in Acoustics, R&D Scientist
-----------	--

Culpeper, Virginia. Developed physics-based signal processing algorithms for naval sonar systems. Processed acoustic signals using methods such as matched filtering, sparse estimation, and beamforming. Researched sound propagation and reverberation.

10/14-8/16 J.P. Morgan/Neovest, Software Development Engineer in Test

> Orem, Utah. Developed Java-based automation software for J.P. Morgan's investment trading platform, Neovest. Created object-oriented unit tests to validate new features and locate software bugs.

9/12-12/12Bennett Aerospace, Engineering Intern

Cary, North Carolina. Assisted in drafting a NASA SBIR solicitation. Helped design a crowd sourcing project for a biosensor device. Provided statistical analysis for a company staffing report.

CONSULTING

5/18-5/18	Moog Music : Audio effects development in C++ for digital sound synthesizers.
4/17 - 9/17	Lofelt: Audio algorithm development and mathematical modeling for audio-haptic

devices, including the Razer Nari Ultimate headsets.

ACADEMIC RESEARCH ACTIVITIES

1/20-	University of California San Diego, Ph.D. Student La Jolla, California. Research areas: acoustics, applied mathematics, digital signal processing. Study computational geometric techniques for sound synthesis. Topics of interest include spatial audio, structural acoustics, aeroacoustics, and differential geometry.
1/17-8/17	University of Edinburgh, Master's Student Edinburgh, Scotland. Research areas: acoustics, digital signal processing. Developed physics-based numerical simulations of speech sounds and structural vibrations with Stefan Bilbao. Simulation methods included modal synthesis and FDTD schemes.
1/10-9/13	Wake Forest University, Master's Student Winston-Salem, North Carolina. Research areas: optics, fluid dynamics. Achieved the first known realization of transverse particle tracking in surface-isolated laser traps. Study topics included laser beam characterization, fluid diffusion, fluorescence microscopy, and particle tracking.
8/07-8/09	Brigham Young University , Undergraduate Student Provo, Utah. Research areas: <i>biophysics</i> , <i>condensed matter physics</i> . Studied structural properties of biological materials using atomic force microscopy.

TEACHING EXPERIENCE

UCSD MUS 5 MUS 6 MUS 15 MUS 15 MUS 172	Sound in Time—TA. Spring 2020 (1 term). Student approval: 100%. Electronic Music—TA. Fall 2020 (1 term). Student approval: 100%. Popular Music: David Bowie—TA. Winter 2021 (1 term). Student approval: 92%. Popular Music: Video Game Music—TA. Winter 2020 (1 term). Student approval: 100%. Computer Music II—TA. Spring 2021 (1 term).
UNCSA SCI 1100	General Physics—Instructor. Fall 2012 (1 term).
<u>WFU</u> PHY 113 PHY 114	General Physics I (Mechanics)—TA. 2009–2011 (4 terms). General Physics II (E&M)—Tutor. Fall 2010 (1 term).
BYU PHSCS 105 PHSCS 106 PHSCS 121 PHSCS 123 PHSCS 220	General Physics 1 (Mechanics)— <i>Tutor</i> . 2008–2009 (2 terms). General Physics 2 (E&M)— <i>Tutor</i> . Winter 2009 (1 term). Principles of Physics 1 (Mechanics)— <i>Tutor</i> . 2008–2009 (2 terms). Principles of Physics 2 (Waves/Thermo)— <i>Tutor</i> . W/Sp 2009 (2 terms). Principles of Physics 3 (E&M)— <i>Tutor</i> . W/Sp 2009 (2 terms)

PH.D. COURSEWORK

CSE 167	Computer Graphics I (Jürgen Schulze)
CSE 169	Computer Animation—audit (Steve Rotenberg)
CSE 274	Discrete Differential Geometry (Albert Chern)
CSE 291	Physical Simulation—audit (Steve Rotenberg)
CSE 299	Differential Geometry Research (Albert Chern)
MUS 270A	Digital Audio Processing (Tamara Smyth)
MUS 270B	Analysis of Musical Sound (Miller Puckette)
MUS 270C	Compositional Algorithms (Miller Puckette)
MUS 270D	Advanced Projects in Computer Music (Puckette/Smyth)
MUS 206	Deep Learning for Music Generation (Shlomo Dubnov)
MUS 206	Computational Acoustic Modeling (Tamara Smyth)
MUS 206	Spatial Audio (Shahrokh Yadegari)
MUS 298	Spatial Audio Research (Puckette/Smyth/Dubnov)

PUBLICATIONS

Journal Articles

(1) C. McKell and K. Bonin, "Optical corral using a standing-wave Bessel beam," Journal of the Optical Society of America B, Vol. 35, No. 8, 1910–1920, 2018.

Conference Proceedings

(2) C. McKell, "Sonification of Optically-Ordered Brownian Motion," In Proceedings of the International Computer Music Conference (ICMC), Utrecht, Netherlands, September 2016.

Master's Theses

- (3) C. McKell, Real-Time Physical Modeling for Haptic Feedback Rendering, Final Project Dissertation, University of Edinburgh, Acoustics and Audio Group, 2017. (Advisor: Stefan Bilbao).
- (4) C. McKell, Finite-Difference Simulations of Speech with Wall Vibration Losses, Special Project Dissertation, University of Edinburgh, Acoustics and Audio Group, 2017. (Advisor: Stefan Bilbao).
- (5) C. McKell, Confinement and Tracking of Brownian Particles in a Bessel Beam Standing Wave, Master's Thesis, Wake Forest University, Department of Physics, 2015. (Advisor: Keith Bonin).

Technical Reports

(6) C. McKell, H. Conley, and D. Busath, "AFM Study of Structural Changes in Supported Planar DPPC Bilayers Containing General Anesthetic Isoflurane," Brigham Young University, Paper 827, 2010.

Conference Abstracts

(7) K. Bonin and C. McKell, "Tracking Brownian Particles in a Standing-Wave Bessel Beam 2D Optical Trap," SPIE: Optical Trapping and Optical Micromanipulation, XIV Meeting, 2017.