第1页 吉林大学物理实验报告

♪ 实验目的

- 1. 学习用双臂电桥测低电阻的原理和方法。
- 2. 用双臂电桥测量几种导体的电阻率。

❷ 实验仪器

名 称	使用情况(良好、一般、故障)	
直流双臂电桥	良好	
待测金属固定板	良好	
滑线变阻器	良好	
标准电阻	良好	
双刀换向开关	良好	
螺旋测微计	良好	
直流检流计	良好	
安培表	良好	

注:实验目的、实验仪器名称要在课前预习时填写。

▶ 实验原理(请用自己的语言简明扼要地叙述,注意原理图需要画出、主要公式需要写明)

由于导线电阻和接触电阻的存在,用单臂电桥测量 1Ω 以下的电阻时误差很大。为了减少误差,可将单臂电桥改为双臂电桥。

伏安法测量金属棒的电阻

首先,分析导线电阻和接触电阻(数量级为 $10^{-2}\Omega\sim 10^{-5}\Omega$) 对测量结果的影响。例如,用伏安法测量金属棒的电阻 R_x 的情况,如图一所示。通过电流表的电流 I 流经 A 点分为 I_1,I_2 两路。 I_1 经过电流表与金属棒间的接触电阻和导线电阻 R_1 再流人 R_x,I_2 经过电流表与电压表间的接触电阻和导线电阻 R_3 再流入电压表,其等效电路如图二所示,其中 R_2,R_4 与 R_1,R_3 的情况类似。因此, R_1,R_2 应算作与 R_x 串联, R_3,R_4 应算作与电压表串联。所以电压表测量的电压不是 R_x 两端的电压,测量结果有误差。如果 R_x,R_1,R_2 的阻值为同数量级,则测量结果的误差相当大。

四段接法测量金属棒的电阻

将测量线路改成如图三所示,其中 AB 段是被测电阻 R_x . 经同样的分析可知,虽然接触电阻和导线电阻仍然存在,但所处的位置不同,构成的等效电路如图四所示。由于电压表的内阻远大于 R_3 , R_4 , R_x , 所以电压表和电流表的读数可以相当准确地反映电阻 R_x 上的电压降和通过它的电流,故利用**欧姆定律**就可算出电阻 R_x .

双臂电桥的原理

测量低电阻时,为了消除接触电阻的影响,将通过电流的接点(称电流接点)和测量电压的接点(称电压接点)分开,并将电压节点放在里面。

如图五所示,在待测电阻上作四个接点,即电压接点 P_1 , P_2 和电流接点 C_1 , C_2 . P_1 , P_2 段为被测电阻 R_x , P_3 , P_4 段为标准电阻 R_N (值为已知)。 R 为 C_2 , C_3 之间的接触电阻和导线电阻。由上述分析可知, C_1 , C_2 点的接触电阻在 R_x 之外,对 R_x 的测量无影响。 P_1 , P_2 点的接触电阻应分别视为与 R_1 , R_2 串联,因 R_1 , R_2 的阻值很大,故接触电阻可以忽略。标准电阻 R_N 处的情况与此相同。

双臂电桥的平衡条件

适当调节 R_1,R_2,R_3,R_4,R_x , 使灵敏电流计中没有电流通过,此时说电桥处于平衡状态。 当电桥平衡时, $I_g=0$,通过 R_1,R_3 的电流相等,以 I_1 表示;通过 R_2,R_4 的电流相等,以 I_2 表示;通过 R_x,R_N 的电流相等,以 I_3 表示。因为 I_2 表示;通过 I_3 表示。因为 I_3 表示。因为 I_4 形成的电势相等,故有

$$\begin{cases} I_1R_1 &= I_3R_x + I_2R_2, \\ I_1R_3 &= I_3R_N + I_2R_4, \\ I_2(R_2 + R_4) &= (I_3 - I_2)R. \end{cases}$$

解得

$$R_x = rac{R_1}{R_3} R_N + rac{R R_4}{R + R_2 + R_4} \left(rac{R_1}{R_3} - rac{R_2}{R_4}
ight).$$

注:实验原理课前预习时填写,要画原理图(电路或光路图)上课前教师检查。

式中, 若 $R_1R_4=R_2R_3$,则右边第二项变为零,此时有

$$R_x = rac{R_1}{R_3} R_N = rac{R_2}{R_4} R_N.$$

可见,当电桥平衡时,此式成立的条件是 $R_1R_4=R_2R_3$. 为保持该等式在使用电桥的过程中始终成立,常将电桥做成一种特殊的结构,即将比率臂采用双十进电阻箱。在这种电阻箱里,两个相同十进电阻的转臂连接在同一转轴上,因此在转臂的任一位置都保持 $R_1=R_2,R_3=R_4$.

双臂电桥的优点

双臂电桥就是在单臂电桥的基础上,增加了两个电阻臂 R_2, R_4 ,并使 R_2, R_x 分别随原有臂 R_1, R_3 作相同的变化,当电桥平衡时可以消除附加电阻的影响。

温差电动势对测量结果的影响

用双臂电桥测低电阻时,需要注意到温差电动势对测量结果的影响。当回路中有电流通过时,产生焦耳热,将使整个线路的各部分出现温差而导致温差电动势的产生。它对测量带来误差,在测量过程中应设法消除。温差电动势只与焦耳热产生的温差有关,而与电流方向无关。但电阻上的电压降与电流方向有关。因此,当流过线路的电流方向改变时,各电阻上的电压降改变方向,但温差电动势的方向仍不改变。这样温差电动势产生的效果一次是相加,一次是相减,故可用改变电流的方向测量两次来消除温差电动势的影响。

♪ 实验内容与步骤

连接电路

如图一,其中 R_x 为被测电阻, $R_N=0.01\Omega$ 为标准电阻。

仪器初始化

置 $R_1=R_2=10^2\Omega, R_3(\times 100)=0, R_3(\times 10)\neq 0$; 滑动变阻器电阻 R 调至最大阻值位置;电源选择"双桥"。

打开电源开关。

调节滑动变阻器 R 使电流为 1.0A, 然后调 R_3 使电桥平衡。

测量 R_3

两次调节 R_3 ,使得检流计指针分别向左、右偏一个小格,分别读出此时 R_3 的数值,记 $R'_{3\perp}, R'_{3 \Gamma}$. 改变电路方向,重复上述步骤,记 $R_{3\perp}, R_{3\Gamma}$.

测量导体 R_x 两个电压接点之间的距离 l, 测量一次。

用螺旋测微器测量导体 R_x 直径 d, 测量五次。

更换其他材导体, 重复上述步骤。

注:实验内容与实验步骤课后填写。

♪ 实验记录

R_x	铝棒	铜棒	铁棒
$R_{3\perp}/\Omega$	11.45	22.43	42.77
R_{3} \digamma/Ω	12.46	23.44	43.83
R_{3}^{\prime} \perp $/\Omega$	12.42	23.45	44.11
R_{3}^{\prime} $/\Omega$	11.47	22.48	42.85
l/mm	400.0	400.0	400.0
d/mm	4.035	3.973	3.995
(5次)	4.031	3.978	3.996
	4.043	3.976	3.989
	4.038	3.975	3.994
	4.033	3.978	3.991

注:自行设计规范的数据表格,表格中填写原始数据,注意单位和有效数字。

❷ 数据处理及误差分析

计算铝棒的电阻率

计算铁棒的电阻率

$$\begin{split} \overline{R_3} &= \frac{1}{4} (R_{3\perp} + R_{3\parallel} + R'_{3\perp} + R'_{3\parallel}) \\ &= \frac{1}{4} (42.77 + 43.83 + 44.11 + 42.85) \\ &= 43.39\Omega, \\ \overline{d} &= \frac{1}{5} \sum d \\ &= \frac{1}{5} (3.995 + 3.996 + 3.989 + 3.994 + 3.991) \\ &= 3.993 \text{mm}, \\ \overline{R_x} &= \frac{R_N}{R_1} \overline{R_3} \\ &= \frac{0.01}{10^2} 43.39 \\ &= 4.339 * 10^{-3} \Omega, \\ \overline{\rho} &= \frac{\pi \overline{d}^2}{4t} \overline{R_x} \\ &= \frac{3.1416 * 3.993^2}{4 * 400.0} 4.339 * 10^{-3} \\ &= 1.623 * 10^{-4} \Omega \cdot \text{mm}. \end{split}$$

计算铜棒的电阻率

$$\begin{split} \overline{R_3} &= \frac{1}{4} (R_{3\perp} + R_{3\parallel} + R'_{3\perp} + R'_{3\parallel}) \\ &= \frac{1}{4} (22.43 + 23.44 + 23.45 + 22.48) \\ &= 22.95\Omega, \\ \overline{d} &= \frac{1}{5} \sum d \\ &= \frac{1}{5} (3.973 + 3.978 + 3.976 + 3.975 + 3.978) \\ &= 3.976 \text{mm}, \\ \overline{R_x} &= \frac{R_N}{R_1} \overline{R_3} \\ &= \frac{0.01}{10^2} 22.95 \\ &= 2.295 * 10^{-3} \Omega, \\ \overline{\rho} &= \frac{\pi \overline{d}^2}{4l} \overline{R_x} \\ &= \frac{3.1416 * 3.976^2}{4 * 400.0} 2.295 * 10^{-3} \\ &= 8.513 * 10^{-5} \Omega \cdot \text{mm}. \end{split}$$

注:数据处理要写出公式及详细计算过程。

第7页 吉林大学物理实验报告

$$\begin{array}{lll} & \text{iffiliate dual path paramete} \\ U_{\overline{R}3} = \frac{1}{4}(|R_{3\perp} - R_{3\top}| + |R'_{3\perp} - R'_{3\top}|) & \ln \overline{\rho} = \ln \frac{\pi \overline{d}^2}{4l} \overline{R_x} \\ &= \frac{1}{4}(|11.45 - 12.46| + |12.42 - 11.47|) & = 2 \ln \overline{d} + \ln \overline{R_x} - \ln l + \ln \pi - \ln 4, \\ &= 1.96 \Omega, & U_{\overline{\rho}} = \sqrt{\left(\frac{\partial \ln \overline{\rho}}{\partial \overline{d}} U_{\overline{d}}\right)^2 + \left(\frac{\partial \ln \overline{\rho}}{\partial \overline{R_x}} U_{\overline{R_x}}\right)^2 + \left(\frac{\partial \ln \overline{\rho}}{\partial l} U_l\right)^2} \\ &= \frac{R_N}{R_1} U_{R_3} & & & & & & & & & & & \\ &= \frac{0.01}{10^2} 1.96 & & & & & & & & & & \\ &= 1.96 * 10^{-4} \Omega. & & & & & & & & & & \\ U_d = \sqrt{U_{dA}^2 + U_{dB}^2} & & & & & & & & & \\ &= \sqrt{\frac{t_p^2}{4 * 5} \sum (\overline{d} - d)^2 + \left(\frac{0.01}{2 * 3}\right)^2} & & & & & & & & & \\ &= \sqrt{\frac{1.14^2}{4 * 5} (0.001^2 + 0.005^2 + 0.007^2 + 0.002^2 + 0.003^2) + \left(\frac{0.01}{2 * 3}\right)^2} & & & & & & & & & \\ &= \frac{1}{2 * 3} & & & & & & & & \\ &= 0.2 \text{mm.} & & & & & & & \\ \end{array}$$

▶ 思考题及实验小结

双臂电桥与单臂电桥有哪些异同?

不同点:

工作原理: 单桥内部只有一个桥臂回路, 双桥有两个桥臂回路: 外臂用于测量被测电阻的数值, 内臂用于消除引线电阻影响。

适用条件:单桥一般用于测量 10Ω 以上的电阻,双桥一般测量 10Ω 以下的电阻。

测量端:单桥有两个测量端,双桥有四个测量端。

测量电源与电流: 单桥电压一般大于 3V, 电流较小; 双桥一般电压小于 1.5V, 电流较大。

电路结构:单桥测量桥臂一般为独立结构;双桥的内臂和外臂为联动调节,且阻值保持同步,需加标准电阻,连接线需粗导线,结构比单桥复杂。单桥除桥臂电阻外,不需要另外的标准电阻;双桥需要另外增加标准电阻,标准电阻有的是内附的,有的是外接的。

灵敏度:限于测量电流不能很大的条件,双桥的灵敏度一般比单桥要低。

导线:双桥一般需要较粗的导线连接,一般要求其引线电阻不大于被测电阻的十分之一。

相同点:

抗干扰能力:没有明显区别。

利用了比较法:检流计指零,电桥达到平衡状态。

双臂电桥连线时,哪些部分用较粗而短的导线为好?对哪些部分可以不做此要求?

将双臂电桥与 R_N,R_x 连接的导线需要用较粗而短的导线;其余部分可以不做此要求。

实验小结

学习会了用双臂电桥测低电阻的原理和方法,并用双臂电桥发测量了铝、铜、铁三种导体的电阻率。

注:请在完成实验后一周内交实验报告。