1 But du T.P.

Le but de ce T.P. est d'étudier le fonctionnement d'une diode. Ce composant peut être utilisé dans le redressement de tensions alternatives et la commutation d'alimentation.

2 Matériel

Materiel par poste de travail:

- 1 alimentation double
- 1 générateur basse fréquence (GBF)
- -1 oscilloscope +2 sondes
- 1 potentiomètre
- 1 diode 1N4148
- Résistances et condensateurs divers

3 La diode

Soit le montage ci-dessous avec $R=270\Omega$:

Avant de réaliser le montage, vous limiterez le courant de l'alimentation double à environ 50 mA. Remarque : Si vous ne vous rappelez plus de la procédure, regardez le sujet du TP1.

1. Réaliser le montage et remplir le tableau suivant :

E (V)	-5	-4	-3	-2	-1	0	1	2	3	4	5
V_D (V)											
V_R (V)											
I (mA)											

Attention: Vous devez déterminer l'intensité du courant I sans utiliser d'ampèremètre.

- 2. Tracer la courbe représentant l'intensité du courant I en fonction de la tension V_D .
- 3. Quels sont les deux états distincts que vous distinguez?
- 4. Quelle est l'utilité de la résistance dans un tel montage?

TP8-Diodes

4 Pont de Wheatstone

Une diode peut être modélisée de la manière suivante :

Dans le cas d'une diode idéale, R_D et V_{th} sont nulles, mais cela n'est pas le cas pour un composant réel. Le but de cet exercice est de déterminer les valeurs R_D et V_{th} des diodes disponibles en salle de TP.

1. Réaliser le montage ci-dessous sans diode et avec $E_2=0V$. On prend $R_1=100\Omega,\,R_2=820\Omega,\,R_3=150\Omega,\,R_4=47\Omega$ et $R_5=470\Omega$. Faire vérifier le montage avant de lancer l'alimentation.

TP8-Diodes

- 2. Régler le potentiomètre pour obtenir $U_{AB} = 0V$.
- 3. Sans dérégler le potentiomètre, placer la diode et régler le générateur E_1 à 7V. Régler maintenant E_2 pour obtenir $U_C = 0V$.
- 4. Quel est le but de cette manipulation? Expliquer par un schéma.
- 5. Sans dérégler V_2 , régler la valeur de E_1 à 10V et régler de nouveau le potentiomètre pour obtenir $U_{AB} = 0V$. En déduire la valeur de R_D .

Rappel sur les ponts de Wheatstone : $U_{AB} = 0V \Rightarrow (R_1 + R_2 + xR_P)(R_4 + R_D) = R_3R_5$

5 Redresseurs de tension

5.1 Préparation

Dans cette partie, nous considérons un GBF délivrant un signal sinusoïdal $V = \frac{V_{PP}}{2} \sin(2\pi ft)$ avec $V_{PP} = 5V$ et f = 5kHz.

- 1. Donner l'allure des composantes $U_1,\,U_2,\,I_1$ et I_2 sachant que la résistance R vaut $1k\Omega$.
- 2. Quelles sont les valeurs moyenne et efficace des tensions U_1 et U_2 ?
- 3. Donner l'allure de U_1 et U_2 si l'on place un condensateur de capacité $1\mu F$ en parallèle. Pour simplifier les calculs, on peut utiliser la formule suivante avec t_0 le temps de bascule en charge ou en décharge :

$$U_C(t_0+t)=rac{V_{PP}}{2}(1-e^{-rac{t}{ au}})$$
 pour la charge $U_C(t_0+t)=U_C(t_0)e^{-rac{t}{ au}}$ pour la décharge

5.2 Redresseur mono-alternance

- 1. Réaliser le schéma de gauche de la partie 5.1.
- 2. Donner l'oscillogramme de la tension U_1 .
- 3. Mesurer la tension moyenne ainsi que la tension efficace. Comparer avec les valeurs théoriques.
- 4. Ajouter dans le circuit un condensateur de capacité $1\mu F$ en parallèle avec la résistance. Donner l'oscillogramme de la tension U_1 . Interpréter le résultat obtenu.

Attention!! Le condensateur explose s'il est branché à l'envers! Faites vérifier...

5. Prendre une valeur plus grande de la résistance ou de la capacité. Donner l'oscillogramme de la tension U_1 . Interpréter le résultat obtenu.

5.3 Redresseur double-alternance

5.3.1 Filtrage simple

Simuler à l'aide de LTSpice le circuit ci-dessous avec $C_1 = 1\mu F$:

- 1. Représenter l'allure de la tension aux bornes de R_1 sur 10 ms avec différentes valeurs de $R_1:10k\Omega$; $5.6k\Omega$; $2.2k\Omega$; $1k\Omega$; 560Ω ; 220Ω ; 100Ω .
- 2. Que se passe-t-il lorsque R_1 diminue? Expliquer ce comportement.
- 3. Refaites la simulation avec un condensateur de $10\mu F$. Le signal est-il significativement amélioré? Justifier.

5.3.2 Filtrage double

Simuler à l'aide de LTSpice le circuit ci-dessous avec $C_1=10\mu F,\,C_2=2.2\mu F$ et $R_2=10\Omega$:

- 1. Représenter l'allure de la tension aux bornes de R_1 sur 10 ms avec différentes valeurs de $R_1:10k\Omega$; $5.6k\Omega$; $2.2k\Omega$; $1k\Omega$; 560Ω ; 220Ω ; 100Ω .
 - Pourquoi le signal est-il meilleur que précédemment? Que s'est-il passé?
- 2. Quel est le principal inconvénient de ce montage ?

