数学

試験時間:50分

平成 30 年度筑波大附属高校

大問は 1 から 5 まであります 解答は解答用紙に記入して下さい

- 1 次の① ~ ③の にあてはまる数を求めなさい.
- (1) $x+y=\sqrt{11},$ $x-y=\sqrt{3}$ のとき, $x^5y^5=$ ① である.

(2) 大小 2 個のさいころを同時に投げ、出た目をそれぞれ a, b とするとき、3 本の直線 $y=\frac{b}{a}x$, $y=\frac{a}{b}x$, $y=\frac{1}{2}x+1$ が三角形をつくる確率は ② である.

(3) 右の図のように、傾きが負である直線が、関数 $y=x^2$ のグラフおよび x 軸と 3 点 A, B, C で交わっている。 B の x 座標が 1 で、AB=BC であるとき、C の x 座標の値は 3 である。

$m{2}$ 1日目は 1 円, 2 日目は 2 円, \cdots というように,毎日 1 円ずつ金額を増やして貯金していき,両替が可能な金額がたまり次第, 5 円硬貨, 10 円硬貨を用いて手持ちの硬貨をできるだけ少なくしていく. 例えば, 3 日目には $1+2+3$ で 6 円がたまるので,手持ちの硬貨は 5 円硬貨 1 枚と 1 円硬貨 1 枚となる. このとき,次の 4 6 の にあてはまる数を求めなさい.
(1) はじめて 1 円硬貨と 5 円硬貨がともに手持ちからなくなるのは 4 日目であるが、2 回目にそうなるのは ④ 日目である.
(2) 1 日目から 50 日目までの間で、1 円硬貨と 5 円硬貨がともに手持ちからなくなる日は、全部で ⑤ 回である。
(3) 123 回目に 1 円硬貨と 5 円硬貨がともに手持ちからなくなるのは $\boxed{ 6 }$ 日目である.

(1) 線分 CE, ED の長さの比を最も簡単な整数の比で表すと,

である.

(2) 線分 AF の長さは, 8 cm である.

(3) $\triangle ADE$, $\triangle AFE$ の面積の比を最も簡単な整数の比で表すと,

$$\triangle ADE : \triangle AFE = \boxed{9 - 1} : \boxed{9 - 2}$$

である.

4 A 地点から B 地点に向かう長さ $60\mathrm{m}$ の一定速度で動く歩道 (水平型エスカレーター, 以下「歩道」とする)がある. この歩道を利用する人は 2 列となり, 左の列は歩かない人が, 右の列は歩く人が利用している. A から B までにかかる時間は, 歩かない人が 75 秒, 歩く人が 30 秒である. このとき, 次の $@$ ~ $@$ の にあてはまる数を求めなさい.
(1) 歩道が止まった場合, 右の列の人が A から B まで歩くのにかかる時間は \bigcirc \bigcirc 秒かかる.
(2) 多くの人が 2 列に分かれて歩道を利用する. 9 時ちょうど各列の先頭の人は同時に A を出発する. それぞれの列では人が等間隔に並ぶが、その間隔は右の列が左の列よりも $2m$ 長い. 9 時 5 分に各列の人が同時に B に到達し、この 5 分間で B に到達した人数はどちらの列も等しかった. この 5 分間で B に到達した人数は全部で ① 人である. また、 B に到達する人数が 802 人になる時刻は、
9 時 ① - 1 分 ② - 2 秒 である.

5 1 辺の長さが 4cm の立方体 ABCD-EFGH がある. 3 点 P, Q, R それぞれ頂点 A, B, G を同時に出発し, P は辺 AB 上, Q は辺 BC 上, R は辺 GC 上にそれぞれ毎秒 1cm の速さで移動して,もう一方の頂点に到着したら停止する.

このとき、次の ③ ~ ⑤ の にあてはまる数を求めなさい.

(1) 3 点 P, Q, R を通る平面でこの立方体を切断するときの切り口について考える.

出発してから 2 秒経過したとき, 切り口の多角形の周の長さは 🔃 cm であり, 出発してから 🚇 秒 経過したとき, 点 E が切り口の多角形の頂点の 1 つとなる.