Generative Ratio Matching Networks

Akash Srivastava *,1,2 , Kai Xu *,3 , Michael U. Gutmann 3 , Charles Sutton 3,4,5

* denotes equal contributions

To appear in ICLR 2020; OpenReview: https://openreview.net/forum?id=SJg7spEYDS

 $^{^1}$ MIT-IBM Watson AI Lab 2 IBM Research 3 University of Edinburgh 4 Google AI 5 Alan Turing Institute

Introduction and motivations

Implicit deep generative models: $x = \mathrm{NN}(z; heta)$ where $z \sim$ noise

Maximum mean discrepancy networks (MMD-nets)

- X can only work well with low-dimensional data
- **v** are very **stable** to train by avoiding the saddle-point optimization problem

Adversarial generative models (e.g. GANs, MMD-GANs)

- **c**an generate **high-dimensional** data such as natural images
- X are very **difficult** to train due to the saddle-point optimization problem

Q: Can we have two **?**?

A: Yes. Generative ratio matching (GRAM) is a *stable* learning algorithm for *implicit* deep generative models that does **not** involve a saddle-point optimization problem and therefore is easy to train **½**.

Background: maximum mean discrepancy

The maximum mean discrepancy (MMD) between two distributions p and q is defined as

$$\mathrm{MMD}_{\mathcal{F}}(p,q) = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_p[f(x)] - \mathbb{E}_q[f(x)]
ight)$$

Gretton et al. (2012) shows that it is sufficient to choose $\mathcal F$ to be a unit ball in an reproducing kernel Hilbert space (RKHS) $\mathcal R$ with a characteristic kernel k s.t.

$$\mathrm{MMD}_{\mathcal{F}}(p,q) = 0 \iff p = q$$

The empirical estimate of the (squared) MMD with $x_i \sim p$ and $y_j \sim q$ by Monte Carlo is

$$ext{MMD}_{\mathcal{R}}^2(p,q) = rac{1}{N^2} \sum_{i=1}^N \sum_{i'=1}^N k(x_i,x_{i'}) - rac{2}{NM} \sum_{i=1}^N \sum_{j=1}^M k(x_i,y_j) + rac{1}{M^2} \sum_{j=1}^M \sum_{j'=1}^M k(y_j,y_{j'})$$

MMD-nets trains neural generators by minimizing this empirical estimate.

Background: density ratio estimation via moment matching

Density ratio estimation: find $\hat{r}(x)pprox r(x)=rac{p(x)}{q(x)}$ with samples from p and q

Finite moments under the fixed design setup gives $\hat{\mathbf{r}}_q = [\hat{r}(x_1^q),...,\hat{r}(x_M^q)]$ for $x^q \sim q$

$$\min_r \left(\int \phi(x) p(x) dx - \int \phi(x) r(x) q(x) dx
ight)^2$$

Huang et al. (2007) shows that by changing $\phi(x)$ to k(x;.), where k is a characteristic kernel in RKHS, we can match infinite moments and the optimization below agrees with the true r(x)

$$\min_{r \in \mathcal{R}} \left\| \int k(x;.) p(x) dx - \int k(x;.) r(x) q(x) dx
ight\|_{\mathcal{R}}^2$$

Analytical solution: $\hat{\mathbf{r}} = \mathbf{K}_{q,q}^{-1}\mathbf{K}_{q,p}\mathbf{1}$, where $[\mathbf{K}_{p,q}]_{i,j} = k(x_i^p, x_j^q)$ given samples $\{x_i^p\}$ and $\{x_j^q\}$.

GRAM: an overview

Two targets in the training loop

- 1. Learning a projection function $f_{ heta}$ that maps the data space into a low-dimensional manifold which preserves the density ratio between data and model.
 - \circ "Preserves": $rac{p_x(x)}{q_x(x)}=rac{ar{p}(f_ heta(x))}{ar{q}(f_ heta(x))}$, measured by $D(heta)=\int q_x(x)\left(rac{p_x(x)}{q_x(x)}-rac{ar{p}(f_ heta(x))}{ar{q}(f_ heta(x))}
 ight)^2dx$
 - \circ ? $\frac{p_x(x)}{q_x(x)}$ is hard to estimate in the high-dimensional space ...
- 2. Matching the model G_γ to data in the low-dimensional manifold by minimizing MMD
 - Image: Ima
 - $\circ ext{ MMD} = 0$ $ightharpoonup rac{ar{p}(f_{ heta}(x))}{ar{q}(f_{ heta}(x))} = 1$ $ightharpoonup rac{p_x(x)}{q_x(x)} = 1$

Both with empirical estimates based on samples from the data $\{x_i^p\}$ and the model $\{x_j^q\}$.

 $f_{ heta}$ and G_{γ} are simultaneously updated.

GRAM: tractable ratio matching

lacktriangledown Learning the projection function $f_{ heta}(x)$ by minimizing the squared difference

$$D(\theta) = \int q_x(x) \left(\frac{p_x(x)}{q_x(x)} - \frac{\bar{p}(f_{\theta}(x))}{\bar{q}(f_{\theta}(x))}\right)^2 dx$$

$$= C - 2 \int p_x(x) \frac{\bar{p}(f_{\theta}(x))}{\bar{q}(f_{\theta}(x))} dx + \int q_x(x) \left(\frac{\bar{p}(f_{\theta}(x))}{\bar{q}(f_{\theta}(x))}\right)^2 dx$$

$$= C - 2 \int \bar{p}(f_{\theta}(x)) \frac{\bar{p}(f_{\theta}(x))}{\bar{q}(f_{\theta}(x))} df_{\theta}(x) + \int \bar{q}(f_{\theta}(x)) \left(\frac{\bar{p}(f_{\theta}(x))}{\bar{q}(f_{\theta}(x))}\right)^2 df_{\theta}(x)$$

$$= C' - \left(\int \bar{q}(f_{\theta}(x)) \left(\frac{\bar{p}(f_{\theta}(x))}{\bar{q}(f_{\theta}(x))}\right)^2 df_{\theta}(x) - 1\right) = C' - \text{PD}(\bar{q}, \bar{p})$$

... or by equivalently maximizing the Pearson divergence 😄.

A reminder on LOTUS: $\int p(x)g(f(x))dx = \int p(f(x))g(f(x))df(x)$

[1]: A derivation of the reverse order for a special case of projection functions was also shown in (Sugiyama et al., 2011).

GRAM: Pearson divergence maximization

Monte Carlo approximation of PD

$$ext{PD}(ar{q},ar{p}) = \int ar{q}(f_{ heta}(x)) \left(rac{ar{p}(f_{ heta}(x))}{ar{q}(f_{ heta}(x))}
ight)^2 df_{ heta}(x) - 1 pprox rac{1}{N} \sum_{i=1}^N \left(rac{ar{p}(f_{ heta}(x_i^q))}{ar{q}(f_{ heta}(x_i^q))}
ight)^2 - 1$$

where $x_i^q \sim q_x$ or equivalently $f_{ heta}(x_i^q) \sim ar{q}.$

Given samples $\{x_i^p\}$ and $\{x_j^q\}$, we use the density ratio estimator based on infinite moments matching (Huang et al., 2007, Sugiyama et al., 2012) under the fixed-design setup

$$[\hat{\mathbf{r}}_{q,_{ heta}}=\mathbf{K}_{q,q}^{-1}\mathbf{K}_{q,p}\mathbf{1}=[\hat{r}_{ heta}(x_1^q),...,\hat{r}_{ heta}(x_M^q)]^{ op}$$

where
$$[\mathbf{K}_{p,q}]_{i,j}=k(f_{ heta}(x_i^p),f_{ heta}(x_j^q))$$
 and $r_{ heta}(x)=rac{ar{p}(f_{ heta}(x))}{ar{q}(f_{ heta}(x))}.$

GRAM: matching projected model to projected data

2 Minimizing the empirical estimator of MMD in the low-dimensional manifold

$$egin{aligned} \min_{\gamma} \left[rac{1}{N^2} \sum_{i=1}^{N} \sum_{i'=1}^{N} k(f_{ heta}(x_i), f_{ heta}(x_{i'})) - rac{2}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} k(f_{ heta}(x_i), f_{ heta}(G_{\gamma}(z_j)))
ight. \ \left. + rac{1}{M^2} \sum_{j=1}^{M} \sum_{j'=1}^{M} k(f_{ heta}(G_{\gamma}(z_j)), f_{ heta}(G_{\gamma}(z_{j'})))
ight] \end{aligned}$$

with respect to its parameters γ .

GRAM: the complete algorithm

Loop until convergence

- 1. Sample a minibatch of data and generate samples from G_{γ}
- 2. Project data and generated samples using $f_{ heta}$
- 3. Compute the kernel Gram matrices using Gaussian kernels in the projected space
- 4. Compute the objectives for $f_{ heta}$ and G_{γ} using the same kernel Gram matrices
- 5. Backprop two objectives to get the gradients for heta and γ
- 6. Perform gradient update for heta and γ

run fact: the objectives in our GRAM algorithm both heavily relies on the use of kernel Gram matrices.

How do GRAM-nets compare to other deep generative models

GAN	MMD-net	MMD-GAN	GRAM-net
$z \sim p_z$ \downarrow^{γ} x^q $x^p \sim p_x$ \downarrow^{θ} \downarrow^{θ} \downarrow^{θ} \downarrow^{θ} \downarrow^{ψ}	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$z \sim p_z x^p \sim p_x$ $\downarrow^{\gamma} \downarrow^{ heta}$ $x^q f_{ heta}(x^p)$ $\downarrow^{ heta} \downarrow^{ heta}$ $f_{ heta}(x^q) \longrightarrow \mathbf{K}$ $\downarrow^{ heta}$ $\downarrow^{ heta}$ $\downarrow^{ heta}$ $\downarrow^{ heta}$ $\downarrow^{ heta}$	$z \sim p_z x^p \sim p_x$ $\downarrow^{\gamma} \downarrow^{ heta}$ $x^q f_{ heta}(x^p)$ $\downarrow^{ heta} \downarrow$ $f_{ heta}(x^q) \longrightarrow \mathbf{K}$ $\mathcal{L}_{\gamma} \qquad \mathcal{L}_{ heta}$

Illustration of GRAM training

Blue: data, Orange: samples

Top: original, Bottom: projected

Evaluations: the stability of models

x-axis = noise dimension and y-axis = generator layer size

Evaluations: the stability of models (continued)

x-axis = noise dimension and y-axis = generator layer size

Quantitative results: sample quality

Table 1: Sample quality (measured by FID; lower is better) of GRAM-nets compared to GANs.

Arch.	Dataset	MMD-GAN	GAN	GRAM-net
DCGAN Weaker DCGAN	Cifar10 Cifar10 CelebA	40.00 ± 0.56 210.85 ± 8.92 41.105 ± 1.42	$26.82 \pm 0.49 31.64 \pm 2.10 30.97 \pm 5.32$	$24.85 \pm 0.94 \ 24.82 \pm 0.62 \ 27.04 \pm 4.24$

Qualitative results: random samples

(a) CIFAR10 (b) CelebA

The end