Lecture 14 – MOSFET 场效应晶体管-part1

Chapter 5 from Microelectronic Circuits Text by Sedra and Smith Oxford Publishing

课程纲要

- 9.1 场效应晶体管的结构和工作原理
- 9.1.1 重点介绍N沟道增强型MOSFET的结构和工作原理
- 9.1.2 认识不同类型场效应管的符号和结构差异
- 9.2 场效应晶体管的特性及其等效模型
- 9.2.1 输入特性、输出特性和转移特性
- 9.2.2 π型和T型等效电路(中频)
- 9.3 场效应晶体管放大电路的构成及其分析
- 9.3.1 直流偏置电路及其分析
- 9.3.2 三种接法放大电路的分析计算

Introduction

- Q: 一个 three-terminal device 可能的工作方式?
 - A: 受控源,如电压控制电流源,右图为一个典型的PMOS器件,"5V"和" V_G "之间的电压控制流过"5V"和" V_D "的电流
 - 电压控制电流源可用来设计电压 电压放大器

Introduction

note: MOSFET is more widely used in implementation of modern electronic devices 工业界,MOSFET是绝对主流

- Q: 两种主要的 three-terminal 半导体器件?
 - metal-oxide-semiconductor field-effect transistor (MOSFET)
 - bipolar junction transistor (BJT)
- Q: 其中MOSFET是最为广泛使用的?
 - 尺寸小
 - 容易制造
 - 功耗低

- Q: Transistor(晶体管)的主要应用
 - 信号放大器
 - 逻辑电路
 - Memory

- Q: Transistor(晶体管)的核心工作原理
 - 电压控制的电流源

Kirin 990 5G	Apple A13 Bionic	Snapdragon 855 Plus
Tri-cluster octa-core (2 x Cortex-A76 cores @2.86GHz 2x Cortex-A76 cores @2.36GHz 4x Cortex-A55 cores @1.95GHz)	Dual-cluster hexa-core (2x Lightning cores @2.66 GHz 4x Thunder efficiency cores)	Tri-cluster octa-core (1x Kryo 485 @2.96 GHz 3x Kryo 485 @2.42 GHz 4x Kryo 485 @1.78 GHz)
Mali-G76MP16, 700MHz	Apple-designed quad-core	Adreno 640, 700MHz
TSMS 7NM+ EUV	TSMS 7nm+	TSMS 7nm
2 + 1 Da Vinci (three cores)	octa-core Neural Engine	Qualcomm Hexagon 690
LPDDR4X	LPDDR4X	LPDDR4X
Integrated Balong 5G D/L Speed 2.3 Gbps U/L Speed 1.25 Gbps	LTE	Snapdragon X50 external 5G D/L speed 2 Gbps U/L speed 316 Mbps
	Cortex-A76 cores @2.86GHz 2x Cortex-A76 cores @2.36GHz 4x Cortex-A55 cores @1.95GHz) Mali-G76MP16, 700MHz TSMS 7NM+ EUV 2 + 1 Da Vinci (three cores)	Cortex-A76 cores @2.86GHz 2x Cortex-A76 cores @2.36GHz 4x Cortex-A55 cores @1.95GHz) Mali-G76MP16, 700MHz TSMS 7NM+ EUV TSMS 7Nm+ 2 + 1 Da Vinci (three cores) Dual-cluster hexa-core (2x Lightning cores @2.66 GHz 4x Thunder efficiency cores) Apple-designed quad-core TSMS 7nm+ 2 + 1 Da Vinci (three cores) octa-core Neural Engine

Year 2019

Year 2020

Year 2021

Industry-leading performance per watt

57 billion **Transistors**

Neural

11 trillion operations per second

5 nm process

400GB/s Memory bandwidth

Metal-Oxide-Semiconductor (MOS)

- MOS 结构可看作一平板电容,上电极(Conductive Plate)带正电,二氧化硅为中间介质,下电极(p-Type Silicon)带负电
- Q=CV, channel中的负电荷量(电子浓度、沟道电导率)受电压V₁控制,C越大,控制能力越强,所以要求SiO₂厚度小
- 施加V₂后,沟道中电子定向移动形成电流,电流大小受电压 V₁控制 → 电压控制电流源

5.1. Device Structure and Operation器件结 构与工作原理

- L的最小值是表征工艺的关键参数
- 对称结构,"源"和"漏"可以调换.
- 为了防止PN结正偏,B往往是系统 中的最低电位, 所以一般情况下可 以将其忽略→三端器件(S, D, G)

Figure 5.1. shows general structure of the *n*-channel enhancement-type MOSFET N沟道增强型MOSFET

Figure 5.1: Physical structure of the enhancement-type NMOS transistor: (a) perspective view, (b) crosssection. Note that typically L = 0.03um to 1um, W = 0.1um to 100um, and the thickness of the oxide layer (t_{ox}) is in the range of 1 to 10nm.

近几年的 N沟道增强型 MOSFET 结构

- 栅极采用多晶硅(polysilicon), 绝缘层采用SiO₂(也称为栅氧).
- p-衬底一般处于最低电位,所以衬底和S、D分别构成 两个反向偏置的pn结
- D的电位高于S的电位,电子从S流向D(电流从D流向S)

5.1.2. Operation with Zero Gate Voltage

- With zero voltage applied to gate, two back-to-back diodes exist in series between drain and source.
- "They" prevent current conduction from drain to source when a voltage v_{DS} is applied.
 - yielding very high resistance (10¹²ohms)

V_G = 0 时,S和D之间不导通

当Gate电压为0时,默认两个pn结仍在,永 远不会导通,不会有电流流过。

Figure 5.1: Physical structure...

Channel (沟道) 的形成

- 当V_{GS}从零开始增加时,首先,衬底的空穴被栅极的正电荷排斥,留下带负电的固定负离子,形成耗尽区;
- 然后,当 V_{GS} 继续增加时,电子被吸引到栅极和衬底的交界面,形成"反型层(沟道)"(使靠近栅极附近的极薄的一个衬底区域反型, $p\rightarrow n$,形成n沟道,连通n型的源极和n型的漏极);存在一个阈值,当 V_{GS} 大于该阈值时,沟道形成;该阈值称为阈值电压 V_{TH} (V_t),超出阈值电压部分的 V_{GS} 称为有效电压(或overdrive voltage) $v_{GS} V_t \equiv v_{OV}$

Channel (沟道) 的形成

where C_{ox} , called the **oxide capacitance**, is the capacitance of the parallel-plate capacitor per unit gate area (in units of F/m²), W is the width of the channel, and L is the length of the channel. The oxide capacitance C_{ox} is given by

$$C_{ox} = \frac{\epsilon_{ox}}{t}$$
 $\epsilon_{ox} = 3.9\epsilon_0 = 3.9 \times 8.854 \times 10^{-12} = 3.45 \times 10^{-11} \text{ F/m}$

Figure 5.2 The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n channel is induced at the top of the substrate beneath the gate.

压控电阻 (Voltage-Dependent Resistor)

- 反型沟道可以看作一个电阻;
- V_{GS} 越大 \rightarrow 沟道内电荷(电子)越多 \rightarrow 沟道电阻越小
- 沟道内的<mark>电荷密度取决于栅极电压</mark>,所以该电阻是一 压控电阻;

压控衰减器(Voltage-Controlled Attenuator)

- 当栅极电压降低时,沟道电阻增加,导致Vout减小;
- 应用: 当手机靠近基站时,接收到的信号强度显著增加,这时使用压控衰减器可以适当减小信号强度,以避免接收机饱和;

5.1.3. Creating a Channel for Current Flow

压控电阻的 定量分析 V_{tn} is used for n-type 1 N MOSFET, V_{tp} is used for p-channel

为了和 V_{T} (26 mV) 区分, 有时也将阈值电压写成 V_{TH}

- threshold voltage (V_t) is the minimum value of v_{GS} required to form a conducting channel between drain and source 阈值电压
 - typically between 0.3 and $0.6V_{dc}$
- field-effect when positive v_{GS} is applied, an electric field develops between the gate electrode and induced n-channel – the conductivity of this channel is affected by the strength of field
 - SiO₂ layer acts as dielectric

电压V_{GS}产生电场,该电场影响沟 道的电导率,故称为"<mark>场效应</mark>" • effective / overdrive voltage – is the difference between v_{GS} applied and V_{t} .有效电压

$$(eq5.1) \ v_{OV} \equiv v_{GS} - V_t$$

只有超过V_t部分的V_{cs}才是有效的

• oxide capacitance (C_{ox}) – is the capacitance of the parallel plate capacitor per unit gate area (F/m^2)

$$\varepsilon_{ox}$$
 is permittivity of SiO $_2$ =3.45**E**-11(F/m) t_{ox} is thickness of SiO $_2$ layer

(eq5.3)
$$C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}} \text{ in } F/m^2$$

5.1.3. Creating a Channel for Current Flow

目的: 求沟道电阻;

方法: 加电压, 求电流

- Q: What is main requirement for nchannel to form?
 - A: The voltage across the "oxide" layer must exceed V_t .
 - 形成沟道的条件: 栅极G与沟道的电压差 > V₊
- For example, when $v_{DS} = 0...$
 - the voltage at every point along channel is zero
 - the voltage across the oxide layer is uniform and equal to v_{GS}

真实的沟道不是均匀的,因为有VD

- Q: How can one express the magnitude of electron charge contained in the channel?
 - A: See below... 沟道内电荷量计算
 - 当V_{ov}=0时,沟道刚刚要形成, 此时Q=0;

W and L represent width and length of channel respectively

(eq5.2)
$$|Q| = C_{ox}(WL)v_{oy}$$
 in C

- Q: What is effect of v_{OV} on n-channel?
 - **A:** As v_{ov} grows, so does the electron density in the *n*-channel. Conductivity increases. v_{ov} 增加→ 沟道中的电荷增加→导电性增加

电荷密度和电流(回顾)

电流=每秒流过的电荷=电子每秒运动的距离*单位长度的电荷

■电子从源到漏运动形成的电流,与沟道内电荷密度、 电子运动的速度相关;

5.1.4. Applying a Small v_{DS}

- Q: For small values of v_{DS} , how does one calculate i_{DS} (aka. i_D)? A: Equation (5.7)...
- Q: What is the origin of this equation?
 - A: Current is defined in terms of charge per unit length of n-channel as well as electron drift velocity.

 $|Q| = C_{ox}(WL)v_{ov}$ $|Q| = C_{ox}(WL)v_{ov}$ $|Q| = -\mu_n E$ (eq5.7) $i_D = (C_{ox}Wv_{ov})$ $\frac{\mu_n v_{DS}}{L}$ in A 静位长度电荷 移动速度

电流=每秒流过的电荷=电子每秒运动的距离*单位长度的电荷

5.1.4. Applying a Small v_{DS}

当V_{GS}>V_t(V_{OV}>0),且V_{DS}较小时, MOSFET等效为一个电阻,其值受有 效电压Vov的控制

- Q: What is observed from equation (5.7)?
 - A: For small values of v_{DS} , the *n*-channel acts like a variable resistance whose value is controlled by v_{OV} .
 - 当V_{DS}较小时,沟道可看成一个压控电阻

(eq5.7)
$$i_D = \left[\left(\mu_n C_{ox} \right) \frac{W}{L} v_{OV} \right] v_{DS} \text{ in } A \qquad \Longrightarrow \qquad g_{DS} = \left(\mu_n C_{ox} \right) \left(\frac{W}{L} \right) v_{OV}$$

(eq5.8a)
$$r_{DS} = \frac{v_{DS}}{i_D} = \frac{1}{\left(\mu_n C_{ox}\right) \left(\frac{W}{L}\right) v_{OV}}$$
 in S

process transconductance aspect ratio parameter

电阻的电导计算:

$$g_{DS} = (\mu_n C_{ox}) \left(\frac{W}{L}\right) v_{OV}$$

只要比值· 多数性能都是一样的

5.1.4. Applying a Small v_{DS}

Note that this is one **VERY IMPORTANT** equation in Chapter 5.

m equation (5.7)?

 v_{DS} , the *n*-channel acts like a nose value is controlled by v_{OV} .

(eq5.7)
$$i_D = \left[\left(\mu_n C_{ox} \right) \frac{W}{L} v_{oV} \right] v_{DS}$$
 in A 适用的前提是vds差很小, 化vd基本为 $r_{DS} = \frac{v_{DS}}{i_D} = \frac{1}{\left(\mu_n C_{ox} \right) \left(\frac{W}{L} \right) v_{OV}}$ in Ω process transconductance aspect ratio

5.1.4. Applying a Small v_{DS}

K_n'和 k_n是两个常用参数,不要混淆

$$g_{DS} = (\mu_n C_{ox}) \left(\frac{W}{L}\right) v_{OV}$$

- Q: What three factors is r_{DS} dependent on?
 - A: process transconductance parameter for NMOS $(k_n' = \mu_n C_{ox})$ which is determined by the manufacturing process 工艺决定
 - A: aspect ratio (W/L) which is dependent on size requirements / allocations 设计师决定,L_{min}代表工艺
 - A: overdrive voltage (v_{OV}) which is applied by the user
 - MOSFET transconductance parameter k_n=k_n'*W/L

Figure 5.4: The i_D - v_{DS} characteristics of the MOSFET in Figure 5.3. when the voltage applied between drain and source V_{DS} is kept small.

MOSFET 特性

- MOSFET三端器件,<mark>有两个施加电压V_{GS}、V_{DS},一个响应电流</mark> I_{DS},因此,表征MOSFET"电压电流约束关系"的方法有
 - (b) 固定 V_D测量 I_D vs. V_G(转移特性);
 - (c) 固定 V_c测量 I_D vs. V_D(输出特性);
- (d)显示了栅极电压对沟道电阻的影响;
- MOSFET 的输入特性:无栅极电流,输入阻抗~

沟道长度 L 和 栅氧厚度 t_{ox} 的影响

$$r_{DS} = \frac{1}{(\mu_n C_{ox})(W/L)(v_{GS} - V_t)}$$

固定V_{GS}、V_{DS},分析L和t_{ox}对沟道电导的影响

■ 短的沟道长度和薄的栅氧厚度可以降低沟道电阻(为何?),从而导致漏极电流的增加

沟道宽度W的影响

 $r_{DS} = \frac{1}{(\mu_n C_{ox})(W/L)(v_{GS} - V_t)}$

- 沟道宽度增加→沟道电阻降低→漏极电流增加;但是,沟道宽度增加的同时,栅氧电容值也随之增加,这会限制电路的速度;
- 沟道宽度的增加可看作两个器件的并联;

5.1.5. Operation as v_{DS} is Increased

锥形沟道(图中没有画出W)内的电荷量: 有效电压用平均值替代

接下来考虑情况2: V_{DS}逐渐增大时...

5.1.5. Operation as v_{DS} is Increased

接下来考虑情况2: V_{DS}逐渐增大时...

- Q: What happens to i_D when v_{DS} increases beyond "small values"?
 - A: The relationship between them ceases to be linear.
- Q: How can this non-linearity be explained?
 - step #1: Assume that v_{GS} is held constant at value greater than V_t .
 - **step #2:** Also assume that v_{DS} is applied and appears as voltage drop across n-channel.
 - step #3: Note that voltage decreases from v_{GS} at the source end of channel to v_{GD} at drain end, where...

$$v_{GD} = v_{GS} - v_{DS}$$

当V_{DS}逐渐增大时,沟道内的电位从S到D逐渐增加,因此,G与沟道的电位差从S端的V_{GS}逐渐减小到D端的V_{GD}

沟道内某一点的电荷密度

更为严谨的分析

■ 令 x 为沟道内源和漏之间的一点, V(x) 为该点的电势; 那 么该点的电荷密度(单位长度内的电荷)为:

$$Q(x) = WC_{ox} \left[\underline{V_{GS}} - V(x) - V_{TH} \right]$$
 (C/µm)

栅极与x点的电势差

漏极电流

Figure 6.15 Relationship between charge velocity and current.

As explained in Chapter 2,

$$v = -\mu_n E, \tag{6.5}$$

$$= +\mu_n \frac{dV}{dx},\tag{6.6}$$

where dV/dx denotes the derivative of the voltage at a given point. Combining Eqs. (6.3), (6.4), and (6.6), we obtain

$$I_D = WC_{ox}[V_{GS} - V(x) - V_{TH}]\mu_n \frac{dV(x)}{dx}$$
. (6.7)

Interestingly, since I_D must remain constant along the channel (why?), V(x) and dV/dx must vary such that the product of $V_{GS} - V(x) - V_{TH}$ and dV/dx is independent of x.

While it is possible to solve the above differential equation to obtain V(x) in terms of I_D (and the reader is encouraged to do that), our immediate need is to find an expression for I_D in terms of the terminal voltages. To this end, we write

$$\int_{x=0}^{x=L} I_D dx = \int_{V(x)=0}^{V(x)=V_{DS}} \mu_n C_{ox} W[V_{GS} - V(x) - V_{TH}] dV.$$
 (6.8)

That is,

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2 \right].$$
 (6.9)

注意:该结论其实包含了我们的阶段性结论1。当Vps很小时,两次项可以忽略

I_D-V_{DS} 抛物线关系

阶段性结论1: 当V_{DS}极小时,MOSFET等效为一个压控电阻,i_D和V_{DS}呈线性关系

阶段性结论2: 当V_{DS}较小时,MOSFET的 i_D和 V_{DS} 呈抛物线关系

- 若固定 V_G,观察 I_D vs.V_{DS},则 I_D 和 V_{DS} 呈抛物线关系.
- 当 V_{DS} = V_{GS}- V_{TH} = V_{OV} 时, I_D 达到最大值

Vgs增加,抛物线发生变化

不同 V_{GS} 值对I_D-V_{DS}的 影响

线性电阻

阶段性结论1(线性电阻)是阶段性结论2 (抛物线)的特殊情况

The nonlinear relationship between I_D and V_{DS} reveals that the transistor cannot generally be modeled as a simple linear resistor. However, if $V_{DS} \ll 2(V_{GS} - V_{TH})$, Eq. (6.9) reduces to:

$$I_D \approx \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) V_{DS}, \qquad (6.11)$$

- 当 V_{DS} 比较小时,可看作一电阻,其阻值受栅极电压控制
- 应用:无线收发机的开关(switch)

$$R_{on} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$

■ 时分多址(TDMA)

GSM 的 TDMA/FDMA 接入方式

- GSM蜂窝系统采用时分多址、频分多址和频分双工(TDMA/FDMA/FDD)制式。
- 在25MHz的频段中共分125个频道,频道间隔200kHz。每载 波含8个(以后可扩展为16个)时隙,时隙宽为0.577ms。
- 8个时隙构成一个TDMA帧,帧长为4.615ms,如图7-7所示。

开启电阻的影响

■ 为了使信号衰减最小, <mark>开关的开启电阻 (R_{on}) 应尽可能小</mark>. 这意味着大的 W/L 或大的 V_{GS}.

Example 6.5

In the cordless phone of Example 6.4, the switch connecting the transmitter to the antenna must negligibly attenuate the signal, e.g., by no more than 10%. If $V_{DD} = 1.8 \text{ V}$, $\mu_n C_{ox} = 100 \,\mu\text{A/V}^2$, and $V_{TH} = 0.4 \,\text{V}$, determine the minimum required aspect ratio of the switch. Assume the antenna can be modeled as a $50-\Omega$ resistor.

39

Solution

As depicted in Fig. 6.20, we wish to ensure

$$\frac{V_{oin}}{V_{in}} \ge 0.9 \tag{6.13}$$

Transmitter

Figure 6.20 Signal degradation due to on-resistance of antenna switch.

and hence

$$r_{DS} = \frac{1}{(\mu_n C_{ox})(W/L)(v_{GS} - V_t)}$$
(6.14)

$$R_{on} \leq 5.6 \Omega$$
.

Setting V_{GS} to the maximum value, V_{DD} , we obtain from Eq. (6.12),

$$\frac{W}{L} \ge 1276.$$
 (6.15)

沟道夹断(Channel Pinch-Off)

思考1: 夹断点 左移后,电子在 L_1 和L点之间是 如何运动的?

A: (c)到达耗尽区边缘的电子被迅速扫到漏极

思考2: 夹断后的电流 I_D 等于多少?

A: <mark>耗尽区的电场强度不影响电</mark> 流。电流I_D与"沟道长度为L₁,D 处刚好夹断(V_{DS}=V_{OV})"的情形 一致

- 当漏极电压从零开始逐渐增加时,V_g-V_D逐渐减小,当V_g-V_D小到一定程度,不足以使漏极附近的衬底反型时,漏极处的沟道就消失了,我们称之为"沟道在此处夹断";
- 令反型所需的栅极与衬底之间的电压差为 V_{th} (阈值电压),那么,当 V_{G} – V_{D} = V_{th} 时,漏极处的沟道开始夹断;当 V_{D} 继续增加, V_{G} – V_{D} 必定有一点(V_{th}),其电势比 V_{th} 0,从, V_{th} 1,以新的夹断点,也即沟道变短

- 沟道越短,沟道调制效应越明显,越先进的工艺影响越大
- 初步分析时(特别是对于L较大的长沟道器件),可忽略 沟道调制效应 → 当V_{DS}>V_{OV}时,电流I_D保持恒定

λ和L的影响

沟道调制效应

延长线交于一点

Figure 5.17 Effect of v_{DS} on i_D in the saturation region. The MOSFET parameter V_A depends on the process technology and, for a given process, is proportional to the channel length L.

饱和区大信号等效电 路槽型

Figure 5.18 Large-signal, equivalent-circuit model of the *n*-channel MOSFET in saturation, incorporating the output resistance r_o . The output resistance models the linear dependence of i_D on v_{DS} and is given by Eq. (5.27).

$$r_o = \frac{V_A}{I_D'}$$
 $I_D' = \frac{1}{2} k_n' \frac{W}{L} (V_{GS} - V_{tn})^2$

不同的工作区域

(eq5.8a) $r_{DS} = \frac{v_{DS}}{i_D} = \frac{1}{\left(\mu_n C_{ox}\right) \left(\frac{W}{I}\right) v_{OV}}$ in Ω

parameter

transconductance aspect

小结

- 增强型NMOS的工作区域及其特性
 - 饱和区 $I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} V_{TH})^2$
 - 饱和区,考虑沟道调制效应 $I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} V_{TH})^2 (1 + \lambda V_{DS})$
 - ‡️10年1 $I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} V_{TH})V_{DS} V_{DS}^2 \right]$
 - 非饱和区, V_{DS} 很小时 $R_{on} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} V_{TH})}$

熟练掌握转移特性和输出特性的曲线 及关键坐标点

作业

- A 0.18- μ m fabrication process is specified to have $t_{ox} = 4$ nm, $\mu_n = 450 \text{ cm}^2/\text{V} \cdot \text{s}$, and $V_t = 0.5 \text{ V}$. Find the value of the process transconductance parameter k'_n . For a MOSFET with minimum length fabricated in this process, find the required value of W so that the device exhibits a channel resistance r_{DS} of 1 k Ω at $v_{GS} = 1$ V.
 - Ans. $388 \,\mu\text{A/V}^2$; $0.93 \,\mu\text{m}$

5.2 For a 65-nm process technology for which $t_{ox} = 1.4$ nm, $\mu_n = 216$ cm²/V·s, and $V_t = 0.35$ V, find C_{ox} , k'_n , and the values of v_{ov} and v_{os} required to operate a transistor having W/L = 10 in saturation with $i_D = 50 \,\mu\text{A}$. What is the minimum value of v_{DS} needed?

Ans. 24.6 fF/ μ m²; 531 μ A/V²; 0.14 V; 0.49 V; 0.14 V

- 5.6 An NMOS transistor is fabricated in a 0.18- μ m process having $\mu_n C_{ox} = 400 \,\mu$ A/V² and $V_A' = 5 \,\text{V/}\mu$ m of channel length. If $L = 0.8 \,\mu\text{m}$ and $W = 16 \,\mu\text{m}$, find V_A and λ . Find the value of i_D that results when the device is operated with an overdrive voltage $v_{ov} = 0.2 \text{ V}$ and $v_{os} = 0.8 \text{ V}$. Also, find the value of r_o at this operating point. If v_{DS} is increased by 1 V, what is the corresponding change in i_D ? Ans. 4 V; 0.25 V^{-1} ; $192 \mu\text{A}$; $25 \text{ k}\Omega$; $40 \mu\text{A}$