Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

Análisis de Variable Compleja - Catedrático: Dorval Carías 29 de noviembre de 2022

Parcial 4

1. Funciones armónicas

NOTA (Notación interesante). *Tenemos:*

- El plano extendido, $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$
- \blacksquare \overline{A} cerradura de A.
- La frontera extendida, $\partial_{\infty} = \partial G \cup \{\infty\}$. Un caso particular cuando G está acotado, entonces $\partial_{\infty} = \partial G$.
- Función de Green. Sea G un conjunto y a un punto $\partial_{\infty}G$, sea

$$G(a;r) = G \cap B(a;r), \forall r > 0$$

1.1. Motivación

Teorema 1. Una función f en una región G es análitica si y solo si $\operatorname{Re} f = u$ y $\operatorname{Im} f = v$ son funciones armónicas que satisfacen las ecuaciones de Cauchy Riemann.

Teorema 2. Una región G es simplemente conexa si y solo si para cada función armónica u sobre G existe una función armónica v sobre G tal que f = u + iv es analítica en G.

Definición 1 (Ecuación de Laplace). Si G es un subconjunto abierto de \mathbb{C} entonces una función $u: G \to \mathbb{R}$ es armónica, si u tiene segundas derivadas parciales y

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

El propósito de esta definición es presentar propiedades derivadas de él y que guíen a la resolución del **Problema de Dirichlet**.

Dicho problema ha tenido diversas soluciones a lo largo de la historia:

- Teorema de Green. Último subcapítulo del Conway.
- Solución de Dirichlet a través de Perron.
 - 1. Propiedades básicas
 - Teorema del valor medio
 - 2. Funciones armónicas en un disco
 - Principio máximo (primera y segunda versión)
 - Principio del mínimo
 - 3. Funciones armónicas en un disco
 - Teorema y desigualdad de Harnack
 - 4. Funciones subarmónicas y superarmónicas
 - Principio máximo (tercera y cuarta versión)
 - 5. El problema de Dirichlet
- Versión de Weierstrass y posteriormente Hilbert.

Definición 2 (Problema de Dirichlet). Consiste en determinar todas las regiones G tales que para cualquier función continua

$$f:\partial G\to\mathbb{R}$$

existe una función continua

$$u: \overline{G} \to \mathbb{R}$$
.

tal que

$$u(z) = f(z)$$

en donde $z \in \partial G$ y u es una función armónica en G.

1.2. Propiedades básicas

Teorema 3 (Teorema del valor medio - MVP). Sea $u: G \to \mathbb{R}$ una función armónica y sea $\bar{B}(a;r)$ un disco cerrado contenido en G. Si γ es el círculo |z-a|=r, entonces

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u\left(a + re^{i\theta}\right) d\theta$$

Demostración. Sea D un disco tal que $\bar{B}(a;r) \subset D \subset G$ y sea f una función analítica en D tal que u = Re f. Entonces, usando la FIC

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f\left(a + re^{i\theta}\right) d\theta.$$

2

Definición 3. Una función continua $u:G\to\mathbb{R}$ tiene el MVP si para cualquier $\vec{B}(a;r)\subset G$

$$u(a) = \frac{1}{2\pi} \int_{0}^{2\pi} u\left(a + re^{i\theta}\right) d\theta$$

Teorema 4 (Principio máximo (1 versión)). Sea G una región y supóngase que u es una función real continua en G con el MVP. Si existe un punto a en G tal que $u(a) \geq u(z)$ para todo z en G entonces u es una función constante.

Demostración. Los pasos:

1. Sea A, el conjunto definido por

$$A = \{ z \in G : u(z) = u(a) \}.$$

Como u es continua, A es cerrado en G. Si $z_0 \in A$ sea r es elegida tal que $\bar{B}(z_0;r) \subset G$. Supóngase que existe un punto b en $B(z_0;r)$ tal que $u(b) \neq u(a)$; entonces, u(b) < u(a).

- 2. Por la continuidad, $u(z) < u(a) = u(z_0)$ para todo z en un vecindario de b.
- 3. En particular, si $\rho = |z_0 b|$ y $b = z_0 + \rho e^{i\beta}$, $0 \le \beta < 2\pi$ entonces hay un intervalo propio I de $[0, 2\pi]$ tal que $\beta \in I$ y $u\left(z_0 + \rho e^{i\theta}\right) < u\left(z_0\right)$ para todo θ en I.
- 4. Entonces, por el MVP

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + \rho e^{i\theta}) d\theta < u(z_0),$$

una contradicción.

5. Entonces $B(z_0; r) \subset A$ y A es también abierta. Por lo tanto, por la conexidad de G, A = G.

Teorema 5 (Principio máximo (2 versión)). Sea G uuna región y sean u y v dos funciones reales continuas en G que tiene el MVP. Si para cada punto a en la frontera extendida $\partial_{\infty}G$,

$$\limsup_{z \to a} u(z) \leq \liminf_{z \to a} v(z)$$

entonces se cumple: $u(z) < v(z), \forall z \in G \text{ o } u = v.$

Teorema 6 (Principio del mínimo). Sea G una región y supóngase que u es una función real continua en G con el MVP. Si existe un punto a en G tal que $u(a) \leq u(z)$ para todo z en G entonces u es una función constante.

1.3. Funciones armónicas en un disco

Una aplicación en pequeñas dimensiones. Estudio de funciones armónicas en discos abiertos ($\{z:|z|<1\}$)

Definición 4 (Kernel de Poisson). La función

$$P_r(\theta) = \sum_{n=-\infty}^{\infty} r^{|n|} e^{in\theta},$$

para $0 \le r < 1$ $y - \infty < \theta < \infty$.

Luego de varios pasos:

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos\theta + r^2} = \operatorname{Re}\left(\frac{1 + re^{i\theta}}{1 - re^{i\theta}}\right)$$

Definición 5 (Desigualdad de Harnack). Si $u : \bar{B}(a; R) \to \mathbb{R}$ es continua, armónico en B(a; R), $y \ u \ge 0$ entonces para $0 \le r < R$ y para todo θ

$$\frac{R-r}{R+r}u(a) \le u\left(a+re^{i\theta}\right) \le \frac{R+r}{R-r}u(a)$$

Definición 6. Si G es un subconjunto abierto de \mathbb{C} entonces $\operatorname{Har}(G)$ es el espacio de funciones armónicas en G. Como $\operatorname{Har}(G) \subset C(G,\mathbb{R})$ está dado por la métrica que hereda de $C(G,\mathbb{R})$.

Definición 7 (Teorema de Harnack). Sea G una región. be a region.

- 1. El espacio métrico Har(G) es completo.
- 2. Si $\{u_n\}$ es una sucesión en $\operatorname{Har}(G)$ tal que $u_1 \leq u_2 \leq \ldots$ entonces: $u_n(z) \to \infty$ uniformemente sobre compactos de G o $\{u_n\}$ converge en $\operatorname{Har}(G)$ a una función armónica.

1.4. Funciones subarmónicas y superarmónicas

Definición 8. Sea G una región y sea $\varphi: G \to \mathbb{R}$ una función continua. φ es una función subarmónica si para cualquier $\bar{B}(a;r) \subset G$,

$$\varphi(a) \le \frac{1}{2\pi} \int_0^{2\pi} \varphi(a + re^{i\theta}) d\theta.$$

 φ es una función superarmónica si para cualquier $\bar{B}(a;r) \subset G$,

$$\varphi(a) \ge \frac{1}{2\pi} \int_0^{2\pi} \varphi\left(a + re^{i\theta}\right) d\theta.$$

Teorema 7 (Principio Máximo (3 versión)). Sea G una región y sea $\varphi: G \to \mathbb{R}$ sea una función subarmónica. Si existe un punto $a \in G$ con $\varphi(a) \ge \varphi(z)$ para todo $z \in G$ entonces φ es una función constante.

Teorema 8 (Principio Máximo (4 versión)). Sea G una región y sea φ y ψ sea funciones reales definidas sobre G tal que φ es subarmónico y ψ es superarmónica. Si para cada punto a en $\partial_{\infty}G$

$$\limsup_{z \to a} \varphi(z) \le \liminf_{z \to a} \psi(z),$$

entonces: $\varphi(z) < \psi(z), \forall z \in G \text{ o } \varphi = \psi \text{ y } \varphi \text{ es armónico.}$

Definición 9. Si G es una región y $f: \partial_{\infty}G \to \mathbb{R}$ es una función continua entonces la Familia Perron, P(f,G), consiste en todas las funciones subarm 's $\varphi: G \to \mathbb{R}$ tales que:

$$\limsup_{z \to a} \varphi(z) \le f(a)$$

para todo a en $\partial_{\infty}G$.

Ejemplo 1. La solución para el problema de Dirichlet para un disco unitario en \mathbb{R}^2 está dado por la fórmula integral de Poisson.

Si f es una función continua sobre el contorno ∂D del disco unitario abierto D, entonces la solución al problema de Dirichlet es u(z) dado por:

$$u(z) = \begin{cases} \frac{1}{2\pi} \int_0^{2\pi} f\left(e^{i\psi}\right) \frac{1-|z|^2}{|z-e^{i\psi}|^2} d\psi & \text{si } z \in D\\ f(z) & \text{si } z \in \partial D \end{cases}$$

La solución u es continua en el disco unitario cerrado \bar{D} y armónica sobre D. El integrando se conoce como kernel de Poisson; esta solución resulta de la función de Green en dos dimensiones:

$$G(z,x) = -\frac{1}{2\pi} \log|z - x| + \gamma(z,x)$$

donde $\gamma(z,x)$ es armónica

$$\Delta_x \gamma(z, x) = 0$$

y elegida tal que G(z,x)=0 para $x\in \partial D$.

1.5. El problema de Dirichlet

Definición 10. Una región G es llamado Región de Dirichlet si el problema de Dirichlet que puede ser resuelto por G. Entonces, G es una región de Dirichlet si para cada función continua $f: \partial_{\infty} G \to \mathbb{R}$ existe una función continua $u: G^- \to \mathbb{R}$ tal que u es armónico en G y u(z) = f(z) para todo z en $\partial_{\infty} G$.

Definición 11. Sea G una región y sea $a \in \partial_{\infty}G$. Una **barrera** para G en a es una familia $\{\psi_r : r > 0\}$ de funciones tales que:

- 1. ψ_r es definido y superarmónico en G(a;r) con $0 \le \psi_r(z) \le 1$;
- 2. $\lim_{z\to a} \psi_r(z) = 0$;
- 3. $\lim_{z\to w} \psi_r(z) = 1 \ para \ w \ en \ G \cap \{w : |w-a| = r\}.$

$$\psi_r:G(a;r)\to\mathbb{R},$$

$$\psi_r(z)=\frac{1}{c_r}\min\left\{u(z),c_r\right\}$$

Teorema 9. Sea G una región y sea $a \in \partial_{\infty}G$ tal que existe una barrera para G en a. Si $f:\partial_{\infty}G\to\mathbb{R}$ es continuo y u es la función Perron asociado con f entonces:

$$\lim_{z \to a} u(z) = f(a)$$

Demostración. Los pasos:

- 1. Sea $\{\psi_r : r > 0\}$ una barrera para G en a y asúmase que $a \neq \infty$; además considere que f(a) = 0.
- 2. Sea $\epsilon > 0$ y sea $\delta > 0$ tal que $|f(w)| < \epsilon$ cuando $w \in \partial_{\infty} G$ y $|w a| < 2\delta$
- 3. Sea $\psi = \psi_{\delta}$.
- 4. Sea $\hat{\psi}:G\to\mathbb{R}$ definido por $\hat{\psi}(z)=\psi(z)$ para z en $G(a;\delta)$ y $\hat{\psi}(z)=1$ para z en $G-B(a;\delta)$.
- 5. Entonces $\hat{\psi}$ es superarmónica. Si $|f(w)| \leq M$ para todo w en $\partial_{\infty}G$, entonces $-M\hat{\psi}-\epsilon$ es superarmónica.

Corolario 9.1. Una región G es una región de Dirichlet si y solo si es una barrera para G en cada punto de $\partial_{\infty}G$.

[1] [2] [3]

Referencias

- [1] John B Conway. Functions of one complex variable II, volume 159. Springer Science & Business Media, 2012.
- [2] Theodore Gamelin. Complex analysis. Springer Science & Business Media, 2003.
- [3] James S Tanton. Encyclopedia of mathematics. Infobase Publishing, 2005.