ZESTAW ZADAŃ II

Zadanie 1

(a) W oparciu o definicję oblicz pochodną funkcji $f(x) = 2x^2 + 3x + 4$ w punkcie $x_0 = -1$, zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$,

(b) W oparciu o definicję wyprowadź wzór na pochodną funkcji $f(x) = \frac{x}{2x+3}$.

Zadanie 2 W oparciu o znane wzory i reguły różniczkowania oblicz pochodne podanych funkcji:

(a)
$$y = 2x^2 + 3x + 4$$
, (b) $y = \frac{1}{x^2}$, (c) $y = \sqrt{x^3}$, (d) $y = \sqrt[3]{x^2}$, (e) $y = \frac{1}{\sqrt[4]{x^3}}$, (f) $y = \frac{3}{x^2} - 2\sqrt{x^3} + \frac{5}{\sqrt[4]{x^3}}$, (g) $y = x^2 \sin x$, (h) $y = \frac{1}{\ln x}$, (i) $y = \frac{x^2}{1-x^3}$,

(f)
$$y = \frac{3}{x^2} - 2\sqrt{x^3} + \frac{5}{4\sqrt{x^3}}$$
, (g) $y = x^2 \sin x$, (h) $y = \frac{1}{\ln x}$, (i) $y = \frac{x^2}{1-x^3}$

(j)
$$y = \sin(5x)$$
, (k) $y = 3^{x^2+1}$, (l) $y = \operatorname{tg}(x^3)$, (m) $y = \arcsin^3 x$, (n) $y = e^{x^3 \cos x}$, (o) $y = \operatorname{arctg}^5(x^2)$, (p) $y = x^3 \ln \frac{3x+2}{2x+3}$, (q) $y = x^x$, (r) $y = (\cos x)^{\sin x}$.

(o)
$$y = \arctan^5(x^2)$$
, (p) $y = x^3 \ln \frac{3x+2}{2x+3}$, (q) $y = x^x$, (r) $y = (\cos x)^{\sin x}$.

Zadanie 3 Oblicz dwie pierwsze pochodne podanych funkcji:

(a)
$$y = e^{2x} \sin(3x)$$
, (b) $y = \ln(x^2 - 3x + 1)$, (c) $y = \frac{x}{x^2 + 1}$, (d) $y = x \arctan x$.

Zadanie 4 Sprawdź, że podane funkcje spełniają podane równania różniczkowe:

(a)
$$y = e^{-3x}$$
, równanie: $y' + 3y = 0$, (b) $y = 3\cos(5x) + 5\sin(5x)$, równanie $y'' + 25y = 0$,

(c)
$$y = 3e^{-x} + 5xe^{-x}$$
, równanie: $y'' + 2y' + y = 0$,

(d)
$$y = e^{-2x}(3\cos(3x) + 2\sin(3x))$$
, równanie: $y'' + 4y' + 13y = 0$.