1. For the function f(x) = 1/x compute the derivative function from the definition using limits.

$$f'(x) = \lim_{b \to x} \frac{f(b) - f(x)}{b - x}$$

$$= \lim_{b \to x} \frac{1 - \frac{1}{x}}{b - x}$$

$$= \lim_{b \to x} \frac{x - b}{b - x}$$

$$= \lim_{b \to x} \frac{x - b}{b - x}$$

$$= \lim_{b \to x} \frac{-1}{b - x}$$

2. Find the equation of the tangent line to the curve y = 1/x at x = 2.

$$f(x) = \frac{1}{x} \qquad f'(z) = -\frac{1}{+2}$$

$$f(z) = \frac{1}{2} \qquad f'(z) = -\frac{1}{+}$$
Project slope form $y - y_0 = a_{11}(x - x_0)$

$$\frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}{4}$$

$$\frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}$$

3. Use the derivative approximation at x = 2 to estimate $\frac{1}{2.1}$.

For each of the remaining problems I have sketched for you the graph of f(x). Your job: sketch f'(x).

5.

7.

9.

