Project presentation, Pneumonia Detection

Maximilian Hilger, Viktor Smedberg, Albin Thomsson

Introduction

- Brief introduction about the problem
- Information on the dataset
- Kundu R, Das R, Geem ZW, Han G-T, Sarkar R (2021) **Pneumonia detection in chest Xray images using an ensemble of deep learning models.**

Link to paper: https://doi.org/10.1371/journal.pone.0256630

Methods

- Transfer Learning (GoogleNet,ResNet,DenseNet)
- GradCam, t-SNE for Visualization
- Performance metrics: f1-Score, Accuracy, AUROC, Confusion Matrix

Link to paper: https://doi.org/10.1371/journal.pone.0256630

Implementation

- Best network hyperparameters
- Split of dataset; 80/11/9

Model architecture	Loss function	Optimizer	learning- rate	Batchsize	Epochs
Googlenet	Cross entropy	Adam	1e-5	32	10
ResNet50	Cross entropy	Adam + weight_decay = 0.01	1e-5	16	10 (early stopping: 5)
DenseNet	Cross entropy	Adam	1e-5	32	10

Results

Model architecture used	Training time [model]	Computational performance	loss testing	Accuracy testing	F1	AUROC
GoogleNet	21.9 min	See part 1.2	0.443	0.8798	0.8622	0.9620
ResNet50	18,4 min	See part 1.2	0.706	0.9183	0.9108	0.9666
DenseNet	20.3 min	See part 1.2	0.466	0.8766	0.8574	0.9716

Result 1.1 - plot over performance for the different models

Result 1.2 - plot over computational performance for the different models

Result 2 - tSNE

- applied before classifier
- only weak clusters

Result 3 - GradCAM

- red overlay: large gradient
- blue overlay: small gradient

 Network mostly looks at lungs, but sometimes only on small parts in the image

Result 4 - confusion matrix for the models

Learning outcomes and conclusion from result

- Data augmentation should be used carefully
- How to cope with data imbalance
- Importance of visualization
- Performance metrics (other than accuracy)
- Some models are more difficult to set up for transfer learning

Github link: https://github.com/laut/advanced deep learnig exercise 1/tree/master/project

(not fully completed by now)