

BrbLibVc4 V5.04 Dokumentation

B&R übernimmt keine Haftung für Folgen, die durch die Implementierung sowie die Benutzung dieser Software entstehen!

Inhaltliche Änderungen dieses Dokuments behalten wir uns ohne Ankündigung vor. B&R haftet nicht für technische oder drucktechnische Fehler und Mängel in diesem Dokument. Außerdem übernimmt B&R keine Haftung für Schäden, die direkt oder indirekt auf Lieferung, Leistung und Nutzung dieses Materials zurückzuführen sind. Wir weisen darauf hin, dass die in diesem Dokument verwendeten Soft- und Hardwarebezeichnungen und Markennamen der jeweiligen Firmen dem allgemeinen warenzeichen-, marken- oder patentrechtlichen Schutz unterliegen.

ı

Inhaltsverzeichnis

Inhaltsverzeichnis	2
1 Allgemeines	6
1.1 Hinweise zum Compiler	
1.2 Abhängigkeiten	
1.3 Hinweise zu StructuredText und anderen IEC-Sprachen	6
1.4 Geprüft mit ClangTidy	
1.5 Quellcode und Binär-Variante der Bibliothek	
1.5.1 Quellcode-Variante	
1.5.2 Binär-Variante	
1.6 Neueste Versionen auf GitHub	·····/
0 B = 1-1-1-1 = 1 -1 1 (-1	
2 Revisionsgeschichte	8
2.1 BrbLibVc4 V5.04 – 2024-09-09	
2.1.1 Portierung auf neuere Versionen	
2.1.2 Änderung der HW-Konfigurationen	8
2.1.3 Entfernung der Binär-Variante aus dem Release	
2.1.4 Vorbereitungen für AS6.00	
2.1.4.1 Include geändert	8
	_
3 Pakete	
3.1 General	9
3.1.1 BrbVc4General	9
3.1.1.1 Struktur	
3.1.1.2 BrbVc4HandleGeneral	
3.1.2 BrbVc4PageHandling	
3.1.2.1 Struktur	
3.1.2.2 BrbVc4HandleChangePage	
3.1.2.3 BrbVc4ChangePage	
3.1.2.4 BrbVc4ChangePageBack	12
3.1.2.5 BrbVc4HandleScreenSaver	
3.2 Controls	
3.2.1 BrbVc4ControlStatusHandling	
3.2.1.1 BrbVc4SetControlEnability	
3.2.1.2 BrbVc4IsControlEnabled	
3.2.1.3 BrbVc4SetControlVisibility	
3.2.1.4 BrbVc4IsControlVisible	
3.2.1.5 BrbVc4SetControlFocus	
3.2.1.6 BrbVc4HasControlFocus	
3.2.1.7 BrbVc4lsControlInputActive	
3.2.1.8 BrbVc4OpenTouchpad	
3.2.1.9 BrbVc4CloseTouchpad	
3.2.1.10 BrbVc4IsTouchpadOpen	
3.2.1.11 BrbVc4SetControlColor	
3.2.2 Bitmap-Animation	
3.2.2.1 Struktur	
3.2.2.2 BrbVc4HandleAnimation	
3.2.3 Bargraph	
3.2.3.1 Struktur	
3.2.4 Bitmap	
3.2.4.1 Struktur	
3.2.5 Normaler Button	
3.2.5.1 Struktur	
J.Z. J.Z. DIDVC4HANDIEDUNUH	

,	3.2.6 Checkbox		
	3.2.6.1 Struktur	19	9
	3.2.6.2 BrbVc4HandleCheckbox		
	3.2.7 CheckboxButton		
•	3.2.7.1 Struktur.		
	3.2.7.1 Struktur	13	9
,	3.2.8 DateTime		
	3.2.8.1 Struktur	2	0
,	3.2.9 Drawbox	2	0
	3.2.9.1 Struktur	2	0
•	3.2.10 Dropdown		
	3.2.10.1 Struktur		
	3.2.10.2 BrbVc4HandleDropdown		
•	3.2.11 Edit		
	3.2.11.1 Struktur		
,	3.2.12 Gauge		
	3.2.12.1 Struktur	2	2
;	3.2.13 Hotspot	2	2
	3.2.13.1 Struktur	2	2
	3.2.14 Html		
	3.2.14.1 Struktur		
	3.2.15 HwPosSwitch2		
•			
	3.2.15.1 Struktur		
	3.2.15.2 BrbVc4HandleHwPosSwitch2		
,	3.2.16 HwSafetyButton		
	3.2.16.1 Struktur		
	3.2.16.2 BrbVc4HandleHwSafetyButton	2	4
;	3.2.17 IncButton	2	5
	3.2.17.1 Struktur	2	5
	3.2.17.2 BrbVc4HandleIncButton		
•	3.2.18 JogButton		
•	3.2.18.1 Struktur		
	3.2.18.2 BrbVc4HandleJogButton		
	3.2.19 Layer		
•			
	3.2.19.1 Struktur		
,	3.2.20 Listbox		
	3.2.20.1 Struktur		
,	3.2.21 Numeric	2	7
	3.2.21.1 Struktur		
	3.2.21.2 BrbVc4HandleNumericInput	2	7
	3.2.22 NumericEx		
	3.2.22.1 Struktur		
	3.2.22.2 BrbVc4HandleNumericInputEx		
	3.2.23 Optionbox		
•	/		_
	3.2.23.1 Struktur		
	3.2.23.2 BrbVc4HandleOptionbox		
,	3.2.24 OptionboxButton		
	3.2.24.1 Struktur		
	3.2.24.2 BrbVc4HandleOptionboxButton	3	1
,	3.2.25 Password	3	2
	3.2.25.1 Struktur	. 3	2
	3.2.26 PieChart		
•	3.2.26.1 Struktur		
	3.2.27 Scale		
•			
	3.2.27.1 Struktur		
	3.2.28 Scroll-Listen	_	
;	3.2.29 ScrollbarHorizontal		
	3.2.29.1 Struktur		
	3.2.29.2 BrbVc4HandleScrollbarHorizontal		
;	3.2.30 ScrollbarVertical	3	4
	3.2.30.1 Struktur		
	3.2.30.2 BrbVc4HandleScrollbarVertical		

3.2.31 Shape	
3.2.31.1 Štruktur	
3.2.32 Slider	. 35
3.2.32.1 Struktur	
3.2.33 String	
3.2.33.1 Struktur	
3.2.34 Tab-Control	
3.2.34.1 Struktur	. 30
3.2.34.2 BrbVc4HandleTabCtrl	. 36
3.2.34.3 BrbVc4SetTabPagesInvisible	. 37
3.2.35 Text	
3.2.35.1 Struktur	
3.2.36 ToggleButton	. 37
3.2.36.1 Struktur	
3.2.36.2 BrbVc4HandleToggleButton	37
3.2.37 ToggleButton Ext (erweitert)	38
3.2.37.1 Struktur	
3.2.37.1 Struktur 3.2.37.2 BrbVc4HandleToggleButton	
3.2.37.3 Unterschied zum normalen Toggle-Button	. 30
3.2.37.3 Unterschied zum normalen Toggle-Button	. 39
3.2.38 Touchgrid	
3.2.38.1 Struktur	
3.2.38.2 BrbVc4HandleTouchgrid	
3.3 Draw	.42
3.3.1 Linie	. 42
3.3.1.1 Struktur	
3.3.1.2 BrbVc4DrawLine	
3.3.1.3 BrbVc4DrawLine	
3.3.1.4 BrbVc4DrawLineClip	
3.3.2 Rechteck	
3.3.2.1 Struktur	
3.3.2.2 BrbVc4DrawRectangle	
3.3.2.3 BrbVc4DrawRectangleCorr	. 43
3.3.2.4 BrbVc4DrawRectangleClip	
3.3.3 Ellipse	44
3.3.3.1 Struktur	
3.3.3.2 BrbVc4DrawEllipse	
3.3.4 Arc	
3.3.4.1 Struktur	
3.3.4.2 BrbVc4DrawArc	
3.3.5 Text	
3.3.5.1 Struktur	
3.3.5.2 BrbVc4DrawText	. 46
3.3.6 Font	
3.3.6.1 Struktur	46
3.3.7 Hilfsfunktionen	
3.3.7.1 BrbVc4CorrectLine	_
3.3.7.2 BrbVc4ClipLine	
3.3.7.3 BrbVc4CorrectRectangle	
3.3.7.4 BrbVc4ClipRectangle	
3.3.7.5 BrbVc4IsPointWithinRectangle	. 47
3.4 DrawExt	.48
3.4.1 Trend	
3.4.1.1 Struktur.	
3.4.1.2 Konfiguration	
· · · · · · · · · · · · · · · · · · ·	
3.4.1.2.1 Allgemeines	
3.4.1.2.2 ScaleY – Werte-Skalen	
3.4.1.2.3 SourceBuffer und nSourceArrayIndexMax	
3.4.1.2.4 ScaleX – Zeit-Skala	. 50
3.4.1.2.5 TouchAction – Funktion des Touchs	
3.4.1.2.6 Curve – Kurven	. 52
3.4.1.2.7 Cursor	

3.4.1.2.9 pTag	
3.4.1.3 Status	55
3.4.1.4 Intern	
3.4.1.5 BrbVc4DrawTrend	55
3.4.1.6 BrbVc4GetTrendDisplayCoordinateY	55
3.4.1.7 BrbVc4GetTrendDisplayCoordinateX	56
3.4.1.8 BrbVc4GetTrendSampleIndexByTime	
3.4.1.9 BrbVc4GetTrendDisplayCoordXByTime	
3.4.1.10 BrbVc4GetTrendTimestampByIndex	
3.4.2 TrendLink	
3.4.2.1 Struktur	
3.4.2.2 Konfiguration	
3.4.2.3 BrbVc4LinkTrends	
3.4.3 XY-Plot	
3.4.3.1 Struktur	
3.4.3.2 Konfiguration	
3.4.3.2.1 Allgemeines	
3.4.3.2.2 ScaleY	
3.4.3.2.3 ScaleX	
3.4.3.2.4 TouchAction – Funktion des Touchs	
3.4.3.2.5 Curve – Kurven	
3.4.3.2.6 Cursor	
3.4.3.2.7 Callbacks	
3.4.3.2.8 pTag	
3.4.3.3 Status	
3.4.3.4 Intern	
3.4.3.5 BrbVc4DrawPlot	
3.4.3.6 BrbVc4GetPlotDisplayCoordinateY	
3.4.3.7 BrbVc4GetPlotDisplayCoordinateX	00
3.4.4 Achse linear darstellen	
3.4.4.1 Struktur	
3.4.4.2 BrbVc4DrawAxisLinear	
3.4.5 Achse radial darstellen	
3.4.5.1 Struktur	
3.4.5.2 BrbVc4DrawAxisRadial	
3.4.6 Treeview	
3.4.6.1 Struktur	
3.4.6.2 Konfiguration	
3.4.6.2.1 Allgemeines	72
3.4.6.2.2 pSourceNodeList und nSourceArrayIndexMax	
3.4.6.2.3 pInternNodeList	
3.4.6.2.4 Nodes	
3.4.6.2.5 Korrigieren des ScrollOffsetY	
3.4.6.2.6 Scrollbar	
3.4.6.2.7 TouchAction – Funktion des Touchs	
3.4.6.2.8 Callbacks	77
3.4.6.2.9 pTag	78
3.4.6.3 Steuerung	
3.4.6.4 Status	78
3.4.6.5 Intern	79
3.4.6.6 BrbVc4DrawTreeview	79
3.4.6.7 BrbVc4GetTreeviewInternNodeIndex	79

1 Allgemeines

Die Bibliothek "BrbLibVc4" enthält viele nützliche Funktionen für eine Vc4-Visualisierung. Damit können Projekte übersichtlich und transparenter gestaltet werden.

<u>Diese Bibliothek ist keine offizielle B&R-Software. Es besteht kein Anspruch auf Support, Wartung oder Fehlerbehebung. Die Benutzung geschieht auf eigene Gefahr.</u>

Die Bibliothek unterliegt der MIT-Lizenz (siehe "License.txt"), welche zwar unbeschränkte Nutzung auf eigene Gefahr gewährt, jedoch alle Haftungsansprüche ausschließt.

1.1 Hinweise zum Compiler

Das Entwicklungs- und Demo-Projekt ist auf den Compiler V6.3.0 gesetzt, mit dem das Projekt und damit auch die Bibliothek fehler- und warnungslos kompiliert werden können.

Die Bibliothek ist aber auch unter älteren Compiler-Versionen einsetzbar.

1.2 Abhängigkeiten

Es besteht eine Abhängigkeit von folgenden Bibliotheken:

- -BrbLib V5.04
- -VisApi

1.3 Hinweise zu StructuredText und anderen IEC-Sprachen

Die Bibliothek ist in ANSI-C geschrieben, kann aber auch in StructuredText und allen anderen IEC-Sprachen verwendet werden.

Einschränkung:

Bei manchen Funktionsblöcken sind optional über sogenannte Funktionszeiger benutzerdefinierte Erweiterungen implementiert. Beispiel: Beim FB ,BrbVc4DrawTrend' kann der Anwender den gezeichneten Trend um eigene Zeichnungen erweitern.

Da die IEC-Sprachen keine Funktionszeiger unterstützen, sind diese Erweiterungen nur in ANSI-C nutzbar. Die entsprechenden Eingänge des FB's für die Funktionszeiger müssen in IEC-Sprachen auf 0 gesetzt werden. Ansonsten können auch diese FB's ohne Probleme verwendet werden.

1.4 Geprüft mit ClangTidy

Das gesamte Entwicklungs- und Demo-Projekt wurde mit dem Code-Analyse-Tool ClangTidy geprüft (Details siehe Dokumentation der Basis-Bibliothek "BrbLib").

1.5 Quellcode und Binär-Variante der Bibliothek

Die Binär-Variante der Bibliothek ist ab V5.04 nicht mehr im Release enthalten, weil es zu viele Kombinationen (Zielsystem SG4 oder SGC, Prozessor Intel oder ARM, eingestellte Compiler-Version usw.) gibt, die Einfluss auf das Kompilat haben.

Außerdem ist es für den Anwender sehr leicht möglich, die benötigte Binär-Variante selbst zu erstellen (siehe AS-Hilfe GUID d750bdd3-0aad-4486-8c0d-4eb43372b325).

Welche Variante der Anwender in seinem Projekt verwende, sollte von diesen Punkten abhängig gemacht werden:

1.5.1 Quellcode-Variante

Sie enthält den kompletten Quellcode aller Funktionen in ANSI-C. Somit kann der Anwender diesen studieren und unter Umständen eine ähnliche/abgewandelte Funktion sehr leicht in einer eigenen Bibliothek implementieren. Auch das Online-Debuggen durch Breakpoints ist möglich.

Beim Rebuild wird allerdings auch diese Bibliothek nochmals kompiliert. Dies kann je nach verwendetem Rechner einige Zeit in Anspruch nehmen.

Hinweis: Von der Änderung der Funktionen in der ausgelieferten Bibliothek wird abgeraten, da dann ein Umstieg auf eine neuere Version schwierig bis unmöglich wird.

1.5.2 Binär-Variante

Sie enthält nur vorkompilierte Module der Bibliothek für einen bestimmten Prozessor und Compiler. Es ist also kein Quellcode enthalten. Der Vorteil besteht darin, dass die Bibliothek auch bei einem Rebuild nicht mehr kompiliert werden muss. Dies bedeutet unter Umständen einen großen Zeitvorteil.

Achtung: Bei einer für ARM-Prozessoren exportierten Binär-Bibliothek kann nicht in den ArSim-Modus geschalten werden, da ArSim wiederum die Intel-Version benötigt. Soll ArSim verfügbar sein, muss die Quellcode-Variante der Bibliothek eingefügt werden, denn nur dann kann sie je nach Prozessor kompiliert werden.

1.6 Neueste Versionen auf GitHub

GitHub ist eine öffentliche Plattform für kostenlose Software. Der Download ist ohne Anmeldung möglich. Darauf sind verschiedene Pakete des Autors kostenlos erhältlich. Sie unterliegen alle der MIT-Lizenz (siehe oben).

Die Bibliothek BrbLibVc4 und dessen unterlagerte Bibliothek BrbLib ist als eigenes Release-Paket erhältlich. Es enthält die Bibliotheken u.a. in Sourcecode- und Binär-Version:

https://github.com/br-automation-com/BrbLibs-lib-src/releases

Auch erhältlich ist das Windows-Tool 'RnCommTest' zum Testen von Kommunikationen. Es enthält u.a. folgende Module:

- -Serielle Kommunikation (RS232/485)
- -Tcp-Client, Tcp-Server
- -Udp
- -ModbusTcp-Master, ModbusTcp-Client
- -OpcUa-Client, OpcUa-Server, OpcUa-Subscriber

Es ist unter diesem Link erhältlich:

https://github.com/br-automation-com/RnCommTest-Windows/releases

Außerdem gibt es ein Beispiel-Projekt für OpcUa inklusive der Bibliothek BrbLibUa:

https://github.com/br-automation-com/OpcUaSamples-sample-AS/releases

2 Revisionsgeschichte

Ab V5.01 ist hier nur die letzte Version erwähnt. Die gesamte Revisionsgeschichte wurde in die Datei "BrbLib Revisionsgeschichte" ausgelagert.

2.1 BrbLibVc4 V5.04 - 2024-09-09

2.1.1 Portierung auf neuere Versionen

Beim Entwicklungs-Projekt wurden einige Versionen hochgezogen:

Alte Version Neue Version
Automation Studio 4.9.5.36 4.12.5.95
Automation Runtime I4.90 I4.93
VC4 4.72.9 4.73.1

Die Bibliothek sollte trotz der Portierung immer noch unter kleineren und größeren Versionen kompiliert und eingesetzt werden können.

2.1.2 Änderung der HW-Konfigurationen

Im Entwicklungs-Projekt wurde die HW-Konfiguration CP3586 entfernt, dafür wurde die Konfiguration CP3687X eingefügt.

2.1.3 Entfernung der Binär-Variante aus dem Release

Die Binär-Variante der Bibliothek ist ab dieser Version nicht mehr im Release enthalten. Siehe Quellcode und Binär-Variante der Bibliothek.

2.1.4 Vorbereitungen für AS6.00

Die Bibliothek wird es auch für Automation Studio AS6.00 und folgend geben. Als Vorbereitung dazu wurden jetzt schon einige Änderungen gemacht.

2.1.4.1 Include geändert

In den ersten AS-Versionen konnte die Header-Datei für Standard-AnsiC-Funktionen stdlib.h nicht original inkludiert werden, weil es damals Kollisionen mit B&R-System-Bibliotheken gab. Dazu wurde sie leicht abgeändert und unter dem Namen AnsiCFunc.h inkludiert.

Dies ist jetzt nicht mehr notwendig. Daher wurde die abgeänderte Version entfernt und die Original-Datei inkludiert

Dies wirkt sich nicht auf die Funktionalitäten aus.

3 Pakete

3.1 General

In diesem Paket finden sich Struktur-Deklarationen und Funktionen zur schnellen und transparenten Programmierung von Vc4-Visualisierungen. Das Konzept sieht vor, die gesamte Logik einer Visualisierung in einem Task zu implementieren.

3.1.1 BrbVc4General

Hiermit werden allgemein nützliche Datenpunkte und Funktionen zur Visualisierung angeboten.

3.1.1.1 Struktur

□ ■ BrbVc4General_TYP		
[®]	STRING[nBRBVC4_VIS_NAME_CHAR_MAX]	Eingang: Name des Vc-Objekts
[®]	TIME	Eingang: Zeit zwischen Loslassen und erneutem Drücken in [ms] zum Erkennen eines Doppelklicks
[®]	UDINT	Eingang: Max. Abstand zweier Klicks in [Pixel] zum Erkennen eines Doppelklicks
[®]	UINT	Eingang: Anzahl der Zyklen für das Zeichnen
[®]	BOOL	Eingang: 1=Löschen von eigenen Zeichnungen unterdrücken
[®]	UINT	Zur Anbindung an den Datenpunkt
nLanguageChange	UINT	Zur Anbindung an den Datenpunkt
[®]	UDINT	Zur Anbindung an den Datenpunkt
[®]	UDINT	Ausgang: VcHandle der Visualisierung
[™] Touch	BrbVc4GeneralTouch_TYP	Aktuelle Touch-Daten
[®]	UINT	Ausgang: Zähler fürs Zeichnen (bei = 0 darf gezeichnet werden)
↓ dtCurrentTime	DATE_AND_TIME	Ausgang: Aktueller Zeitstempel

Das Item "svisName" muss im Init mit dem Namen des Vc-Objekts belegt werden. Achtung: Es ist der abgekürzte Name zu verwenden.

Die Informationen dieser Struktur werden unter anderem auch von erweiterten Controls (z.B. Trend, siehe unten) verwendet.

3.1.1.2 BrbVc4HandleGeneral

```
plcbit BrbVc4HandleGeneral(struct BrbVc4General TYP* pVisGeneral)
Argumente:
    struct BrbVc4General TYP* pVisGeneral
            Zeiger auf eine Instanz von "BrbVc4General TYP"
```

Rückgabe:

BOOL

Immer 0

Beschreibung:

Diese Funktion sollte zyklisch vor der Seitenbearbeitung im Visualisierungs-Task aufgerufen werden. Sie erfüllt mehrere Funktionalitäten:

Sie ermittelt einmalig das "nvcHandle", welches für den programmseitigen Zugriff auf die Visualisierung benötigt wird.

Sie liefert zyklisch die zuletzt ausgeführte Touch-Aktion des Benutzers, welche unter anderem in eigenen, komplexeren, zusammengestellten Controls verwendet wird.

Der Touch wird in einer Unterstruktur veröffentlicht:

않 Brb	oVc4GeneralTouch_TYP			
	nX	UDINT		Ausgang: X-Koordinate in [Pixel]
	nY	UDINT		Ausgang: Y-Koordinate in [Pixel]
	eState	BrbVc4TouchStates_ENUM		Ausgang: Momentaner Status des Touchs
	eStateSync	BrbVc4TouchStates_ENUM		Ausgang: Mit Redraw-Counter synchronisierter Status des Touchs
	dtLastTouchAction	DATE_AND_TIME		Ausgang: Zeitstempel der letzten Touchaktion
	nTimeSinceLastTouchActi	UDINT		Ausgang: Zeit in [s] seit letzter Touchaktion
	fbDoubleClickDelay	TON		Interne Variable
	TouchAction	TouchAction		Interne Variable
	TouchActionOld	TouchAction		Interne Variable
	fbDTGetTime	DTGetTime	П	Interne Variable

Der aktuelle Status eines	s Klicks wird durch den	Ausgang "eState"	bzw. "eStateSvnc"	aufgeschlüsselt:

⊟ ¶ ½ BrbVc4TouchStates_ENUM		
4₂ eBRBVC4_TOUCHSTATE_UNPUSHED	0	0=Nicht gedrückt
	1	1=Gerade losgelassen
<>₃ eBRBVC4_TOUCHSTATE_PUSHED_EDGE	2	2=Gerade gedrückt
💜 eBRBVC4_TOUCHSTATE_PUSHED	3	3=Gedrückt
-	4	4=Doppelklick (nur für einen Zyklus)

Die Funktion kann außerdem zum Synchronisieren von Zeichenbefehlen genutzt werden. Das Zeichnen mithilfe der Funktionen der Bibliothek "Visapi" muss nicht zwangsweise in jedem Zyklus des Visu-Tasks ausgeführt werden. Die Anzeige der projektierten Elemente wird sowieso nur alle paar 100ms aufgefrischt und es wäre somit eine unnötig große Belastung der CPU. Ein weiterer Grund zur Synchronisierung ist folgender: Soll ein sich ändernder Inhalt nicht in einer Drawbox, sondern direkt auf einer Seite gezeichnet werden, muss vor jedem neuen Zeichnen die alte Zeichnung gelöscht werden. Das geschieht üblicherweise mit der Funktion "Visapi.VA_Redraw",

welche aber einige Zeit benötigt, während der der Zugriff für die normale Visualisierung gesperrt ist. Um diesen Umständen Rechnung zu tragen, wird hier ein entsprechender Mechanismus zur Verfügung gestellt:

Über den Eingang "nRedrawCycles" wird eine Grenze für den Zähler "nRedrawCounter" parametriert (bei einer Zykluszeit von 10ms sollte eine Grenze von 10 Zyklen = 100ms vollends genügen). Dieser Zähler zählt nun zyklisch von 0 auf diese Grenze. Ist der Zähler 0, wird automatisch ein "Visapi.Va_Redraw" ausgeführt. Eigene Zeichenbefehle direkt auf eine Seite sollten ebenfalls nur ausgeführt werden, wenn dieser Zähler 0 ist, und zwar nach dem Aufruf von "BrbVc4HandleGeneral". Das Ausführen von "Visapi.Va_Redraw" kann durch "bdisableRedraw" unterdrückt werden und spart somit erhebliche CPU-Leistung, wenn nicht direkt auf einer Seite gezeichnet wird.

Bei komplexeren Zeichenfunktionen (z.B. Trend) wird dieser Zähler benutzt, um das Zeichnen mehrerer Anzeigen auf verschiedene Zyklen zu verteilen und so eine gleichmäßigere Verteilung der CPU-Belastung zu erreichen.

Manche Controls dieser Bibliothek, welche Zeichenbefehle benutzen, machen von diesem Mechanismus Gebrauch (z.B. "Touchgrid").

Um Flanken des Touchs auch dann sicher auszuwerten, wenn der Counter benutzt wird, gibt es den Ausgang "Touch.estateSync". Dieser lässt den Flankenzustand (Edge) bis nach einem Zyklus von "nRedrawCounter" = 0 anstehen.

Über die Ausgänge 'dtLastTouchAction' und 'nTimeSinceLastTouchAction' werden Informationen über den zuletzt erkannten Touch-Klick ausgegeben. So könnte z.B. einfach eine Auto-LogOff-Funktion (automatisches Ausloggen des Benutzers nach einer bestimmten Zeit ohne Bedien-Aktion) realisiert werden.

3.1.2 BrbVc4PageHandling

3.1.2.1 Struktur

⊟	♦ BrbVc4PageHandling_TYP		
	🧼 nPageDefault	DINT	Eingang: Start-/Standard-Seite
	bChangePageDirect	BOOL	Eingang: Auf jeden Fall Seite wechseln
	🧼 nPageChange	DINT	Zur Anbindung an den Datenpunkt
	🧼 nPageCurrent	DINT	Zur Anbindung an den Datenpunkt
	♦ nPageNext	DINT	Interne Variable
	🧼 PagesPreviousLifo	BrbMemListManagement_Typ	Interne Variable
	🧼 nPagesPrevious	DINT[0nBRBVC4_PAGE_LAST_INDEX_MAX]	Interne Variable
	🧼 bPagelnit	BOOL	Ausgang: Flanke bei Einsprung eine Seite
	♦ bPageExit	BOOL	Ausgang: Flanke beim Verlassen einer Seite
	bPageChangeInProgress	BOOL	Ausgang: Seitenumschaltung im Gange

Hiermit kann eine komfortable Seitenumschaltung implementiert werden. Z.B. kann erkannt werden, wenn ein Einsprung auf eine Seite erfolgt oder wenn eine Seite verlassen wird. So kann dann einmalig Code für diese Ereignisse ausgeführt werden. Voraussetzung dafür ist, dass alle Seitenwechsel nur über

diese Funktionen ausgeführt werden. Außerdem sollte die Bearbeitung der Seiten-Logik in einer Switch-Anweisung erledigt werden. Das hat den weiteren Vorteil, dass der Code für eine Seite nur dann ausgeführt wird, wenn die Seite auch sichtbar ist. Beispiel:

Im 1.IF kann Einsprungs-Code ausgeführt werden. Das Flanken-Flag muss unbedingt zurückgesetzt werden.

Im 2.IF kann zyklischer Code ausgeführt werden.

Im 3.IF kann Verlassen-Code ausgeführt werden. Das Flanken-Flag muss unbedingt zurückgesetzt werden.

Weiterhin wird automatisch eine Liste der letzten Seiten geführt, um jederzeit eine Navigation zur vorherigen Seite auszuführen. Dadurch kann einfach eine anspruchsvolle Navigation mit einer Seiten-Hierarchie implementiert werden.

3.1.2.2 BrbVc4HandleChangePage

```
unsigned short BrbVc4HandleChangePage(struct BrbVc4PageHandling_TYP* pPageHandling)
Argumente:
    struct BrbVc4PageHandling_TYP* pPageHandling
        Zeiger auf die Instanz von "BrbVc4PageHandling_TYP*"
Rückgabe:
UINT
Immer 0
```

Beschreibung:

Diese Funktion sollte zyklisch im Visualisierungs-Task aufgerufen werden. Sie behandelt die Seitenumschaltung und das Setzen der Flags, sowie das Führen der Seiten-Liste.

3.1.2.3 BrbVc4ChangePage

Rückgabe:

BOOL

0=Es wurde versucht, auf die schon aktuelle Seite zu wechseln 1=Seitenumschaltung wird eingeleitet

Beschreibung:

Diese Funktion initialisiert den Wechsel auf eine Seite und das Setzen der Flags.

Wechsel auf die schon aktuelle Seite werden nicht gemacht, es sei denn der Eingang "bChangePage-Direct" in der Struktur "BrbVc4PageHandling_TYP" ist gesetzt. Dann werden auch die Init- und Exit-Flags richtig gesetzt. Der Eingang wird beim Aufruf von "BrbVc4ChangePage" automatisch zurückgesetzt.

3.1.2.4 BrbVc4ChangePageBack

```
plcbit BrbVc4ChangePageBack(struct BrbVc4PageHandling_TYP* pPageHandling)
Argumente:
    struct BrbVc4PageHandling_TYP* pPageHandling
    Zeiger auf die Instanz von "BrbVc4PageHandling_TYP*"
```

Rückgabe:

BOOL

0=Da die Liste keine Seiten mehr beinhaltet, wird auf die Standard-Seite gewechselt. 1=Seitenumschaltung auf die vorherige Seite wird eingeleitet

Beschreibung:

Diese Funktion initialisiert den Wechsel auf die vorherige Seite und das Setzen der Flags.

Bei "Brbvc4ChangePage" kann angegeben werden, welche Seiten in der Liste gespeichert werden.

Enthält die Liste keine Seite mehr, wird auf die Standard-Seite gewechselt.

Es werden max. die letzten 10 Seiten gespeichert. Das sollte mehr als ausreichend sein.

3.1.2.5 BrbVc4HandleScreenSaver

```
plcbit BrbVc4HandleScreenSaver(struct BrbVc4ScreenSaver_TYP* pScreenSaver, struct
BrbVc4General_TYP* pGeneral, struct BrbVc4PageHandling_TYP* pPageHandling)

Argumente:

struct BrbVc4ScreenSaver_TYP* pScreenSaver
Zeiger auf die Instanz von "BrbVc4ScreenSaver_TYP"

struct BrbVc4General_TYP* pGeneral
Zeiger auf die Instanz von "BrbVc4General_TYP"

struct BrbVc4PageHandling_TYP* pPageHandling
Zeiger auf die Instanz von "BrbVc4PageHandling TYP"
```

Rückgabe:

BOOL

0=Keine Umschaltung

1=Zeit ist abgelaufen und die Seitenumschaltung auf die Bildschirmschoner-Seite wird eingeleitet (nur für einen Zyklus)

Beschreibung:

Die Funktion implementiert einen Bildschirmschoner mit Umschaltung auf eine spezifizierte Seite, da der Bildschirmschoner von VC dafür nicht verwendet werden darf (die Umschaltung der Seite würde dabei nicht über BrbVc4ChangePage geschehen und damit die ganze Navigation und die Init- bzw. Exit-Funktionalität beeinträchtigen).

Die Parametrierung erfolgt dabei über eine Struktur:

⊟	♦ BrbVc4Scr	eenSaver_TYP		
	🧼 bEnab	le	BOOL	Eingang: 1=Eingeschaltet
	🧼 hsScre	en	BrbVc4Hotspot_TYP	Control: Optionaler Hotspot für Rückschaltung
	🧼 nScree	enSaverPage	UINT	Eingang: Bildschirmschoner-Seite
	🧼 fbScre	enSaver	TON	Interne Variable
	🧼 Touch	Old	BrbVc4GeneralTouch_TYP	Interne Variable
	- → nPage	BeforeScreenSaver	DINT	Interne Variable
+	8 BrbVc4Pag	geHandling_TYP		

Die Zeit ohne Mausklick, welche ablaufen muss, damit auf die parametrierte Seite umgeschaltet wird, muss über fbScreenSaver.PT in [ms] angegeben werden. Bei einem erneuten Mausklick wird auf die vorher gezeigte Seite zurückgeschaltet. Init- und Exit-Flags werden dabei richtig gesetzt. Optional kann auch ein Hotspot auf der Bildschirmschoner-Seite verwendet werden, welcher über "hsScreen" angebunden werden kann. Das ist nötig, wenn auf leistungsschwachen Zielsystemen der Zugriff auf den Touch (siehe "BrbVc4HandleGeneral") bei den meisten Aufrufen verweigert wird

3.2 Controls

In diesem Paket finden sich Struktur-Deklarationen und Funktionen zur transparenten Programmierung von Vc4-Controls.

Dabei werden visuelle Komponenten über eine Struktur angebunden. Die dazugehörige Funktion wertet die Eingaben aus, verändert evtl. die Darstellung und liefert dem Task die dazugehörigen Informationen, z.B. den Status eines Buttons.

Es gibt auch Strukturen ohne Funktion, z.B. "BrbVc4Bitmap_TYP". Sie dienen lediglich dem strukturierten Datenaustausch zwischen visueller Komponente und Logik.

Es ist nicht immer notwendig, alle Datenpunkte eines Steuerelements zu verbinden. Wenn z.B. der Farbumschlag nicht benötigt wird, muss auch der entsprechende Datenpunkt nicht verbunden werden. Mit der Bibliothek werden einige Bitmaps mitgeliefert, welche genutzt werden können (z.B. für die Darstellung einer Checkbox). Die transparente Farbe für alle diese Bitmaps ist Lila = 21 (R=255, G=0, B=255). Sollten diese Bitmaps nicht mit dem Aussehen der geplanten Visualisierung harmonieren, steht es dem Anwender frei, auch eigene Bitmaps zu verwenden.

3.2.1 BrbVc4ControlStatusHandling

Hierbei handelt es sich um Funktionen, die den Umgang mit dem Status-Datenpunkt eines Controls einfacher und transparenter machen.

3.2.1.1 BrbVc4SetControlEnability

Beschreibung:

Diese Funktion setzt oder löscht das Enable-Bit des Status-Datenpunktes.

3.2.1.2 BrbVc4IsControlEnabled

```
plcbit BrbVc4IsControlEnabled(unsigned short nStatus)

Argumente:
    UINT nStatus
    Status-Datenpunkt

Rückgabe:
    BOOL
    0=Disabled
    1=Enabled
```

Beschreibung

Diese Funktion gibt das Enable-Bit des Status-Datenpunktes zurück.

3.2.1.3 BrbVc4SetControlVisibility

```
plcbit BrbVc4SetControlVisiblity(unsigned short* pStatus, plcbit bVisible)

Argumente:

UINT* pStatus

Zeiger auf den Status-Datenpunkt

BOOL bVisible

0=Unsichtbar
```

1=Sichtbar

Rückgabe:

0=Unsichtbar 1=Sichtbar

Beschreibung:

Diese Funktion setzt oder löscht das Sichtbarkeits-Bit des Status-Datenpunktes.

3.2.1.4 BrbVc4lsControlVisible

```
plcbit BrbVc4IsControlVisible(unsigned short nStatus)
Argumente:
    UINT nStatus
            Status-Datenpunkt
Rückgabe:
```

BOOL

0=Unsichtbar 1=Sichtbar

Beschreibung:

Diese Funktion gibt das Sichtbarkeits-Bit des Status-Datenpunktes zurück.

3.2.1.5 BrbVc4SetControlFocus

```
plcbit BrbVc4SetControlFocus(unsigned short* pStatus, plcbit bFocus)
Argumente:
    UINT* pStatus
            Zeiger auf den Status-Datenpunkt
    BOOL bVisible
            0=Focus setzen
            1=Focus löschen
```

Rückgabe:

BOOT

0=Focus gesetzt 1=Focus gelöscht

Beschreibung:

Diese Funktion setzt oder löscht das Focus-Bit des Status-Datenpunktes.

Achtung: Auf einer Seite darf immer nur ein Control den Focus haben. Das Löschen des Focus-Bits aller anderen Controls muss applikativ gemacht werden.

3.2.1.6 BrbVc4HasControlFocus

```
plcbit BrbVc4HasControlFocus (unsigned short nStatus)
Argumente:
    UINT nStatus
            Status-Datenpunkt
```

Rückgabe:

0=Control hat den Focus 1=Control hat den Focus nicht

Beschreibung:

Diese Funktion gibt das Focus-Bit des Status-Datenpunktes zurück.

3.2.1.7 BrbVc4IsControlInputActive

```
plcbit BrbVc4IsControlInputActive(unsigned short nStatus)
Argumente:
    UINT nStatus
```

Status-Datenpunkt

Rückgabe:

BOO"

0=Eingabe am Control nicht aktiv 1=Eingabe am Control aktiv

Beschreibung:

Diese Funktion gibt das Edit-Bit des Status-Datenpunktes zurück.

3.2.1.8 BrbVc4OpenTouchpad

```
plcbit BrbVc4OpenTouchpad(unsigned short* pStatus)

Argumente:

UINT* pStatus

Zeiger auf den Status-Datenpunkt

Rückgabe:

BOOL
```

Beschreibung:

Diese Funktion setzt das Touchpad-Bit des Status-Datenpunktes. Auf einer Seite kann immer nur ein Control das Touchpad geöffnet haben.

3.2.1.9 BrbVc4CloseTouchpad

Immer 0

```
plcbit BrbVc4CloseTouchpad(unsigned short* pStatus)

Argumente:

UINT* pStatus
Zeiger auf den Status-Datenpunkt

Rückgabe:
BOOL
Immer 0
```

Beschreibung:

Diese Funktion löscht das Touchpad-Bit des Status-Datenpunktes. Auf einer Seite kann immer nur ein Control das Touchpad geöffnet haben.

3.2.1.10 BrbVc4lsTouchpadOpen

```
plcbit BrbVc4IsTouchpadOpen(unsigned short nStatus)

Argumente:
    UINT nStatus
    Status-Datenpunkt

Rückgabe:
    BOOL
    0=Touchpad geschlossen
    1= Touchpad geöffnet
```

Beschreibung:

Diese Funktion gibt das Touchpad-Bit des Status-Datenpunktes zurück.

3.2.1.11 BrbVc4SetControlColor

```
unsigned short BrbVc4SetControlColor(unsigned short* pColorDatapoint, plcbit bCondition, unsigned
short nColorTrue, unsigned short nColorFalse)

Argumente:
    UINT* pColorDatapoint
         Zeiger auf den Color-Datenpunkt
         BOOL bCondition
                Bedingung
UINT nColorTrue
```

```
Farbe für Bedingung = 1
UINT nColorFalse
Farbe für Bedingung = 0
```

Rückgabe:

UINT

Immer 0

Beschreibung:

Diese Funktion ersetzt eine If-Else-Anweisung zum Setzen einer Farbe in Abhängigkeit einer boolschen Bedingung.

3.2.2 Bitmap-Animation

3.2.2.1 Struktur

3.2.2.2 BrbVc4HandleAnimation

unsigned short BrbVc4HandleAnimation(struct BrbVc4Animation_TYP* pAnimation)

Argumente:

truct BrbVc4Animation_TYP* pAnimation
Zeiger auf die Instanz

Rückgabe:

UINT

Immer 0

Beschreibung:

Diese Funktion inkrementiert den Index für ein Bitmap in einem einstellbaren Intervall. Dadurch kann eine Animation durch eine Bitmap-Folge dargestellt werden.

3.2.3 Bargraph

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.3.1 Struktur

3.2.4 Bitmap

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.4.1 Struktur

☆ BrbVc4Bitmap_TYP		
🧼 nIndex	UINT	Zur Anbindung an den Datenpunkt
🧼 nColor	UINT	Zur Anbindung an den Datenpunkt
🧼 nFillColor1	UINT	Zur Anbindung an den Datenpunkt
🧼 nFillColor2	UINT	Zur Anbindung an den Datenpunkt
🧼 nStatus	UINT	Zur Anbindung an den Datenpunkt

3.2.5 Normaler Button

3.2.5.1 Struktur

☆ BrbVc4Button_TYP		
🧼 nBmpIndex	UINT	Zur Anbindung an den Datenpunkt
🧼 nTextIndex	UINT	Zur Anbindung an den Datenpunkt
🧼 nColor	UINT	Zur Anbindung an den Datenpunkt
🧼 bClicked	BOOL	Zur Anbindung an den Datenpunkt
🧼 nStatus	UINT	Zur Anbindung an den Datenpunkt

3.2.5.2 BrbVc4HandleButton

plcbit BrbVc4HandleButton(struct BrbVc4Button_TYP* pButton)
Argumente:
 struct BrbVc4Button_TYP* pButton
 Zeiger auf die Instanz

Rückgabe:

BOOL

0=Nicht gedrückt 1=Button wurde gedrückt

Beschreibung:

Diese Funktion behandelt die Logik eines normalen Buttons.

Das Item "bClicked" muss durch einen virtuellen Key vom Typ "SetDatapoint" auf 1 gesetzt werden. Das Löschen dieses Items erfolgt dann applikativ. Damit wird gewährleistet, dass der Klick auch wirklich erkannt und bearbeitet wird.

Das Item "nBmpIndex" wird automatisch gesetzt. Dabei wird folgende Projektierung vorausgesetzt:

0=Disabled (Ausgegrautes Bitmap)

1=Enabled (Normales Bitmap)

Beispiel für den Aufruf:

```
if(BrbVc4HandleButton(&Vis.PageControls.btnNormal) == 1)
{
    Vis.PageControls.btnNormal.bClicked = 0;
    // Code...
}
```

3.2.6 Checkbox

Es gibt kein fertiges Checkbox-Control. Hier wird es durch die Kombination von drei Controls realisiert (Bitmap, Text, Hotspot).

Die benötigten Bitmaps werden mit der Bibliothek mitgeliefert:

3.2.6.1 Struktur

☆ BrbVc4Checkbox_TYP		
🧼 bClicked	BOOL	Zur Anbindung an den Datenpunkt
🥏 nBmpIndex	UINT	Zur Anbindung an den Datenpunkt
🥏 nTextColor	UINT	Zur Anbindung an den Datenpunkt
🥏 nStatus	UINT	Zur Anbindung an den Datenpunkt
🔷 bChecked	BOOL	Ausgang: 1=Angehakt

3.2.6.2 BrbVc4HandleCheckbox

```
plcbit BrbVc4HandleCheckbox(struct BrbVc4Checkbox_TYP* pCheckbox)
Argumente:
    struct BrbVc4Checkbox TYP* pCheckbox
```

struct BrbVc4Checkbox_TYP* pCheckbox
Zeiger auf die Instanz

Rückgabe:

BOOL

0=Checkbox wurde nicht geändert 1=Checkbox wurde geändert

Beschreibung:

Diese Funktion behandelt die Logik für eine aus drei Controls zusammen gesetzten Checkbox (Bitmap, Text und Hotspot).

Das Item "bClicked" muss durch einen virtuellen Key vom Typ "SetDatapoint" auf 1 gesetzt werden.

Das Item "nBmpIndex" wird automatisch gesetzt. Dabei wird folgende Projektierung vorausgesetzt:

0=Nicht angehakt und Disabled (Ausgegrautes Bitmap)

1=Angehakt und Disabled (Ausgegrautes Bitmap)

2=Nicht angehakt und Enabled (Normales Bitmap)

3=Angehakt und Enabled (Normales Bitmap)

Das Item "nTextColor" wird automatisch gesetzt.

Beispiel für den Aufruf:

```
if(BrbVc4HandleCheckbox(&Vis.PageControls.chkTest1) == 1)
{
          // Code...
}
```

3.2.7 CheckboxButton

Es gibt kein fertiges Checkbox-Control. Hier wird es durch einen Button realisiert.

Die Projektierung ist schneller als mit der oben genannten Checkbox.

Die benötigten Bitmaps werden mit der Bibliothek mitgeliefert:

3.2.7.1 Struktur

3.2.7.2 BrbVc4HandleCheckboxButton

```
plcbit BrbVc4HandleCheckboxButton(struct BrbVc4CheckboxButton_TYP* pButton)

Argumente:
    struct BrbVc4Checkbox_TYP* pButton
    Zeiger auf die Instanz

Rückgabe:
    BOOL
```

Beschreibung:

Diese Funktion behandelt die Logik einer Checkbox als Button.

0=Checkbox wurde nicht geändert 1=Checkbox wurde geändert

Das Item "bVisPushed" muss durch einen virtuellen Key vom Typ "ToggleDatapoint" gesetzt werden.

Das Item "bChecked" kann zum Auswerten oder Umschalten des Signals im Programm verwendet werden.

Das Item "eToggleState" liefert den momentanen Zustand durch eine Enumeration:

Das Item "nBmpIndex" wird automatisch gesetzt. Dabei wird folgende Projektierung vorausgesetzt:

0=Nicht angehakt und Disabled (Ausgegrautes Bitmap)

1=Angehakt und Disabled (Ausgegrautes Bitmap)

2=Nicht angehakt und Enabled (Normales Bitmap)

3=Angehakt und Enabled (Normales Bitmap)

Beispiel für den Aufruf:

```
if(BrbVc4HandleCheckboxButton(&Vis.PageVc4.chkbtnTest3) == 1)
{
    // Code...
}
```

3.2.8 DateTime

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.8.1 Struktur

☆ BrbVc4DateTime_TYP		
🥏 dtValue	DATE_AND_TIME	Zur Anbindung an den Datenpunkt
🧼 nColor	UINT	Zur Anbindung an den Datenpunkt
🧼 nStatus	UINT	Zur Anbindung an den Datenpunkt

3.2.9 Drawbox

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.9.1 Struktur

Der Name der Drawbox wird in den erweiterten Zeichenfunktionen zur Referenzierung benötigt. Die Syntax ist folgende: "Seitenname/Layername/Controlname". Nur wenn diese Bezeichnung korrekt ist, kann in diese Drawbox gezeichnet werden (siehe AS-Hilfe "VisApi.VA_Attach").

3.2.10 Dropdown

3.2.10.1 Struktur

3.2.10.2 BrbVc4HandleDropdown

```
plcbit BrbVc4HandleDropdown(struct BrbVc4Dropdown_TYP* pDropdown)

Argumente:
    struct BrbVc4Dropdown_TYP* pDropdown
    Zeiger auf die Instanz
```

Rückgabe:

BOOL

0=Keine Eingabe 1=Eingabe abgeschlossen

Beschreibung:

Diese Funktion behandelt die Logik eines Dropdowns. Es können sowohl eine String- als auch eine Vc-Text-Liste angeschlossen werden.

Zum Besetzen des Options-Arrays wird eine Enumeration zur Verfügung gestellt:

```
      □
      □
      BrbVc4DropdownOptions_ENUM
      0
      0=Normal

      □
      □
      eBRBVC4_DDOPTION_NORMAL
      0
      0=Normal

      □
      □
      eBRBVC4_DDOPTION_DISABLED
      1
      1=Ausgegraut

      □
      □
      eBRBVC4_DDOPTION_INVISIBLE
      2
      2=Unsichtbar
```

Beispiel für den Aufruf:

```
if(BrbVc4HandleDropdown(&Vis.PageControls.ddTest1) == 1)
{
          // Code...
}
```

3.2.11 Edit

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.11.1 Struktur

⊟	↑ BrbVc4EditCtrl_TYP		
	🧼 nStatus	UINT	Zur Anbindung an den Datenpunkt
	🧼 nBusy	UINT	Zur Anbindung an den Datenpunkt
	🧳 sUrl	STRING[nBRB_URL_CHAR_MAX]	Zur Anbindung an den Datenpunkt
	🧼 sCmdRequest	STRING[nBRBVC4_EDIT_CTRL_CMD_CHAR_MAX]	Zur Anbindung an den Datenpunkt
	🧳 sCmdResponse	STRING[nBRBVC4_EDIT_CTRL_CMD_CHAR_MAX]	Zur Anbindung an den Datenpunkt
	🧼 nCmdStatus	UINT	Zur Anbindung an den Datenpunkt
	🧼 nCompletion	UINT	Zur Anbindung an den Datenpunkt
	🧼 nCursorLine	UDINT	Zur Anbindung an den Datenpunkt
	🧼 nCursorColumn	UDINT	Zur Anbindung an den Datenpunkt
	🧼 nInsertMode	USINT	Zur Anbindung an den Datenpunkt
	🧼 nModified	USINT	Zur Anbindung an den Datenpunkt
	🧼 nSelectionMode	USINT	Zur Anbindung an den Datenpunkt
	🧼 nLineCount	UDINT	Interne Variable
	🧼 nColumsMax	UDINT	Interne Variable
		STRING[nBRBVC4_EDIT_CTRL_CMD_CHAR_MAX]	Interne Variable

3.2.12 Gauge

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.12.1 Struktur

3.2.13 Hotspot

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.13.1 Struktur

Das Item "bClicked" sollte durch einen virtuellen Key vom Typ "SetDatapoint" auf 1 gesetzt werden. Das Löschen dieses Items erfolgt dann applikativ. Damit wird gewährleistet, dass der Klick auch wirklich erkannt und bearbeitet wurde.

Beispiel für die Verwendung:

```
if(Vis.PageControls.hsTest.bClicked == 1)
{
      Vis.PageControls.hsTest.bClicked = 0;
      // Code...
}
```

3.2.14 Html

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.14.1 Struktur

않 Bi	rbVc4Html_TYP		
(sCurrentUrl	STRING[nBRB_URL_CHAR_MAX]	Zur Anbindung an den Datenpunkt
(sChangeUrl	STRING[nBRB_URL_CHAR_MAX]	Zur Anbindung an den Datenpunkt
(sCurrentTitle	STRING[nBRB_URL_CHAR_MAX]	Zur Anbindung an den Datenpunkt
(bBusy	BOOL	Zur Anbindung an den Datenpunkt
(nHttpErrorCode	UDINT	Zur Anbindung an den Datenpunkt
(nStatus	UINT	Zur Anbindung an den Datenpunkt
	bBusyOld	BOOL	Interne Variable

3.2.15 HwPosSwitch2

Dies ist kein klassisches Vc4-Control. Hiermit kann ein Hardware-Schalter ausgewertet werden, welcher 3 Stellungen über 2 Eingänge an die Sps meldet.

3.2.15.1 Struktur

3.2.15.2 BrbVc4HandleHwPosSwitch2

 $\begin{array}{ll} \textbf{enum} \ \, \textbf{BrbVc4HwPosSwitchPositions_ENUM} \ \, \textbf{BrbVc4HandleHwPosSwitch2} \, \textbf{(struct} \ \, \textbf{BrbVc4HwPosSwitch2_TYP*pPosSwitch)} \end{array}$

Argumente:

struct BrbVc4HwPosSwitch2_TYP* pPosSwitch

Zeiger auf die Instanz

Rückgabe:

BrbVc4HwPosSwitchPositions ENUM

Siehe unten

Beschreibung:

Diese Funktion behandelt die Logik eines Hardware-Schalters.

Das Item "bPos0" muss durch den Eingang "Linke Stellung", das Item "bPos2" durch den Eingang "Rechte Stellung" gesetzt werden.

An den Items "nSwitchStatusX" wird automatisch das Unsichtbarkeits-Bit entprechend der Stellung gesetzt. So kann der Taster durch Bitmap-Controls visualisiert werden.

Das Item "ePos" liefert den momentanen Zustand durch eine Enumeration:

Beispiel für den Aufruf:

```
BrbVc4HandleHwPosSwitch2(&Vis.PageControls.btnHwPosSwitch);
if(Vis.PageControls.btnHwPosSwitch.ePos == eBRBVC4_HPSPOS_0_EDGE)
{
    // Code...
```

3.2.16 HwSafetyButton

Dies ist kein klassisches Vc4-Control. Hiermit kann ein Hardware-Taster ausgewertet werden, welcher zwei Kontakte (Schließer und Öffner) gleichzeitig betätigt. Meistens werden damit sicherheitstechnische Benutzer-Freigaben realisiert.

3.2.16.1 Struktur

4 \$ 1	BrbVc4HwSafetyButton_TYP		
	bNormallyOpened	BOOL	Hw-Eingang: Schliesser
	bNormallyClosed	BOOL	Hw-Eingang: Öffner
	nColor	UINT	Zur Anbindung an den Datenpunkt
	nStatus	UINT	Zur Anbindung an den Datenpunkt
	bPushedOld	BOOL	Interne Variable
	bPushed	BOOL	Ausgang: 0=Nicht gedrückt, 1=Gedrückt
İ		BrbVc4HwSafteyButtonStates_ENUM	Ausgang: Momentaner Status des Tasters

3.2.16.2 BrbVc4HandleHwSafetyButton

plcbit BrbVc4HandleHwSafetyButton(struct BrbVc4HwSafetyButton_TYP* pSafetyButton)

Argumente:
 struct BrbVc4HwSafetyButton_TYP* pSafetyButton
 Zeiger auf die Instanz

Rückgabe:

BOOL

0=Gedrückt 1=Nicht gedrückt

Beschreibung:

Diese Funktion behandelt die Logik eines Hardware-Tasters mit zwei komplementären Eingängen. Das Item "bNormallyOpened" muss durch den Eingang "Schließer", das Item "bNormallyClosed" durch den Eingang "Öffner" gesetzt werden.

Das Item "eState" liefert den momentanen Zustand durch eine Enumeration:

Beispiel für den Aufruf:

3.2.17 IncButton

Ein Inc-Button bietet die Funktion, bei einem dauerhaften Klick den ersten Impuls sofort zu liefern, dann eine Verzögerunszeit abzuwarten und dann einen Wiederhol-Impuls zu liefern. Diese Funktion ist z.B. bei Scroll-Buttons sehr komfortabel.

3.2.17.1 Struktur

⊟	n_TYP	
🧼 bEnabled	BOOL	Parameter: 1=Enabled
🔷 bSuppress	Delay BOOL	Parameter: 1=Keine Verzögerungszeit
🔷 bSuppress	Repeat BOOL	Parameter: 1=Keine Wiederholzeit
🧼 nBmpInde	x UINT	Zur Anbindung an den Datenpunkt
🧼 nTextInde	x UINT	Zur Anbindung an den Datenpunkt
🧼 nColor	UINT	Zur Anbindung an den Datenpunkt
🔷 bPushed	BOOL	Zur Anbindung an den Datenpunkt
🧼 nStatus	UINT	Zur Anbindung an den Datenpunkt
🧼 elncState	BrbVc4IncButtonStates_ENUM	Ausgang: Momentaner Status des Buttons
🔷 bPushedC	ld BOOL	Interne Variable
🧼 bEnabled(DId BOOL	Interne Variable
🥏 fbDelay	TON	Interne Variable (Zeit PT muss eingestellt werden)
ofbRepeat	TON	Interne Variable (Zeit PT muss eingestellt werden)

3.2.17.2 BrbVc4HandleIncButton

```
Plcbit BrbVc4HandleIncButton(struct BrbVc4IncButton_TYP* pButton)

Argumente:
    struct BrbVc4IncButton_TYP* pButton
    Zeiger auf die Instanz

Rückgabe:
    BOOL
    0=Gedrückt
    1=Nicht gedrückt
```

Beschreibung:

Diese Funktion behandelt die Logik eines Inkremental-Buttons.

Das Item "bPushed" muss durch einen virtuellen Key vom Typ "SetMomentaryDatapoint" auf 1 gesetzt werden.

Durch die Items "bSuppressDelay" und "bSuppressRepeat" kann festgelegt werden, dass keine Verzögerung bzw. Wiederholung gemacht werden soll.

Das Item "elncState" liefert den momentanen Zustand durch eine Enumeration:

Beispiel für den Aufruf:

3.2.18 JogButton

Ein Jog-Button bietet eine Tipp-Funktion mit Abschaltung nach einer einstellbaren Zeit.

Tipp-Funktionalität für kritische Module (z.B. Achsen) sollten aus sicherheitstechnischen Gründen nicht über eine Vc4-Visualisierung gemacht werden. Für unkritische Module kann dafür diese Logik verwendet werden.

3.2.18.1 Struktur

⊡ 👯 Brb	Vc4JogButton_TYP			
>	bEnabled	BOOL		Parameter: 1=Enabled
🧼	bSuppressTimeout	BOOL		Parameter: 1=Keine Verzögerungszeit
🧳	nBmpIndex	UINT		Zur Anbindung an den Datenpunkt
🧼	nTextIndex	UINT		Zur Anbindung an den Datenpunkt
🧼	nColor	UINT		Zur Anbindung an den Datenpunkt
🧼	bPushed	BOOL		Zur Anbindung an den Datenpunkt
🧼	nStatus	UINT		Zur Anbindung an den Datenpunkt
	eJogState	BrbVc4JogButtonStates_ENUM		Ausgang: Momentaner Status des Buttons
🧼	bPushed0ld	BOOL		Interne Variable
🧼	bEnabled0ld	BOOL		Interne Variable
🧼	fbUnpush	TON		Interne Variable

3.2.18.2 BrbVc4HandleJogButton

```
plcbit BrbVc4HandleJogButton (struct BrbVc4JogButton_TYP* pButton)

Argumente:
    struct BrbVc4JogButton_TYP* pButton
    Zeiger auf die Instanz

Rückgabe:
    BOOL
    0=Gedrückt
    1=Nicht gedrückt
```

Beschreibung:

Diese Funktion behandelt die Logik eines Tipp-Buttons mit Abschaltung nach spätestens einer einstellbaren Zeit, d.h. auch bei dauerhaft gedrücktem Button wird eine "UnpushedEdge" generiert. Der Benutzer muss dann loslassen und erneut drücken.

Das Item "bPushed" muss durch einen virtuellen Key vom Typ "SetMomentaryDatapoint" auf 1 gesetzt werden

Durch das Item "bSuppressTimeout" kann festgelegt werden, dass keine zeitliche Abschaltung erfolgen soll. Das Item "eJogState" liefert den momentanen Zustand durch eine Enumeration:

Beispiel für den Aufruf:

3.2.19 Layer

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.19.1 Struktur

3.2.20 Listbox

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.20.1 Struktur

3.2.21 Numeric

3.2.21.1 Struktur

Je nach Datentyp kann "nValue" oder "rValue" angebunden werden.

Hinweis: Diese Struktur ist nur noch aus Kompatibilitäts-Gründen vorhanden. Bei neuen Anwendungen sollte die Struktur 'BrbVc4NumericEx' verwendet werden, welche auch die Datentypen UDINT und LREAL unterstützt (siehe unten).

3.2.21.2 BrbVc4HandleNumericInput

plcbit BrbVc4HandleNumericInput(struct BrbVc4Numeric_TYP* pNumeric, unsigned long
pSourceValue, enum BrbVc4NumericDatatypes_ENUM eSourceDatatype)

Argumente:

struct BrbVc4Numeric_TYP* pNumeric
Zeiger auf die Instanz

UDINT pSourceValue

Zeiger auf den Quellwert

Rückgabe:

BOOT

0=Keine Eingabe 1=Eingabe abgeschlossen

Beschreibung:

Diese Funktion behandelt die Eingabe-Logik eines Numeric-Controls. Voraussetzung ist, dass der Datenpunkt "blnputCompleted" bei Abschluss der Eingabe auf "1" gesetzt wird, sowie der Datenpunkt "nValue" oder "rValue" (bei REAL) angeschlossen ist.

Bei Abschluss einer Eingabe wird der eingegebene Wert auf die Quelle kopiert, ansonsten wird die Quelle auf den Datenpunkt kopiert.

Achtung: Die Datentypen UDINT und LREAL werden nicht bzw. nicht korrekt unterstützt.

Hinweis: Diese Funktion ist nur noch aus Kompatibilitäts-Gründen vorhanden. Bei neuen Anwendungen sollte die Funktion 'BrbVc4HandleNumericInputEx' verwendet werden, welche auch die Datentypen UDINT und LREAL unterstützt (siehe unten).

Beispiel für den Aufruf:

BrbVc4HandleNumericInput(&Vis.PageControls.numTest2, (UDINT)&gPar.nInterval, eBRBVC4 NUMERIC DATATYPE UINT);

3.2.22 NumericEx

Die obige Implementierung ,Numeric' unterstützt die Datentypen UDINT und LREAL **nicht**. Deshalb gibt es diese erweiterte Implementierung ,NumericEx'.

3.2.22.1 Struktur

Je nach Datentyp kann "nValue", "nUValue" oder "rValue" angebunden werden.

3.2.22.2 BrbVc4HandleNumericInputEx

plcbit BrbVc4HandleNumericInputEx(struct BrbVc4NumericEx_TYP* pNumeric, unsigned long pSourceValue, enum BrbVc4NumericDatatypes_ENUM eSourceDatatype)

Argumente:

struct BrbVc4NumericEx TYP* pNumeric

Zeiger auf die Instanz

UDINT pSourceValue

Zeiger auf den Quellwert

 ${\tt enum} \ {\tt BrbVc4NumericDatatypes_ENUM} \ {\tt eSourceDatatype}$

Datentyp des Quellwerts

Datentyp des Quellwerts

BrbVc4NumericDatatypes_ENUM

BrbVc4NUMERIC_DATATYPE_SINT

BRBVC4_NUMERIC_DATATYPE_INT

BRBVC4_NUMERIC_DATATYPE_DINT

BRBVC4_NUMERIC_DATATYPE_USINT

BRBVC4_NUMERIC_DATATYPE_UINT

BRBVC4_NUMERIC_DATATYPE_UINT

BRBVC4_NUMERIC_DATATYPE_UDINT

42 eBRBVC4_NUMERIC_DATATYPE_REAL
 43 eBRBVC4_NUMERIC_DATATYPE_LREAL

Rückgabe:

BOOL

0=Keine Eingabe 1=Eingabe abgeschlossen

Beschreibung:

Diese Funktion behandelt die Eingabe-Logik eines Numeric-Controls. Voraussetzung ist, dass der Datenpunkt "blnputCompleted" bei Abschluss der Eingabe auf "1" gesetzt wird, sowie der Datenpunkt "nValue" (bei SINT, INT oder DINT), "nUValue" (bei USINT, UINT oder UDINT) oder "rValue" (bei REAL oder LREAL) angeschlossen ist.

Bei Abschluss einer Eingabe wird der eingegebene Wert auf die Quelle kopiert, ansonsten wird die Quelle auf den Datenpunkt kopiert.

Im Gegensatz zur obigen, normalen Implementierung 'BrbVc4HandleNumericInput' werden hier auch die Datentypen UDINT und LREAL korrekt unterstützt.

Beispiel für den Aufruf:

BrbVc4HandleNumericInputEx(&Vis.PageControls.numTestEx, (UDINT)&gPar.nSpeed, eBRBVC4 NUMERIC DATATYPE UDINT);

3.2.23 Optionbox

Es gibt kein fertiges Optionbox-Control. Hier wird es durch die Kombination von drei Controls realisiert (Bitmap, Text, Hotspot).

Die benötigten Bitmaps werden mit der Bibliothek mitgeliefert:

3.2.23.1 Struktur

☆ BrbVc4Optionbox_TYP		
🧼 bClicked	BOOL	Zur Anbindung an den Datenpunkt
🧼 nBmpIndex	UINT	Zur Anbindung an den Datenpunkt
🧼 nTextColor	UINT	Zur Anbindung an den Datenpunkt
🧼 nStatus	UINT	Zur Anbindung an den Datenpunkt
🔷 bChecked	BOOL	Ausgang: 1=Angehakt

3.2.23.2 BrbVc4HandleOptionbox

plcbit BrbVc4HandleOptionbox(struct BrbVc4Optionbox_TYP* pOptionbox)

Argumente:

```
struct BrbVc4Optionbox TYP* pOptionbox
        Zeiger auf die Instanz
```

Rückgabe:

BOOL

0=Optionsbox wurde gerade nicht angeklickt 1=Optionsbox wurde gerade angewählt

Beschreibung:

Diese Funktion behandelt die Logik für eine aus drei Controls zusammen gesetzten Optionbox.

Das Item "bClicked" muss durch einen virtuellen Key vom Typ "SetDatapoint" auf 1 gesetzt werden.

Das Item "nBmpIndex" wird automatisch gesetzt. Dabei wird folgende Projektierung vorausgesetzt:

0=Nicht angehakt und Disabled (Ausgegrautes Bitmap)

- 1=Angehakt und Disabled (Ausgegrautes Bitmap)
- 2=Nicht angehakt und Enabled (Normales Bitmap)
- 3=Angehakt und Enabled (Normales Bitmap)

Das Item "nTextColor" wird automatisch gesetzt.

Wenn mehrere Optionsboxen als Gruppe verwendet werden, in der nur eine gesetzt sein darf, muss das Rücksetzen der nicht gewählten applikativ gemacht werden (siehe Beispiel).

Beispiel für den Aufruf:

```
if(BrbVc4HandleOptionbox(&Vis.PageControls.optTest1) == 1)
       Vis.PageControls.optTest1.bChecked = 1;
       Vis.PageControls.optTest2.bChecked = 0;
       Vis.PageControls.optTest3.bChecked = 0;
if(BrbVc4HandleOptionbox(&Vis.PageControls.optTest2) == 1)
       Vis.PageControls.optTest1.bChecked = 0;
       Vis.PageControls.optTest2.bChecked = 1;
       Vis.PageControls.optTest3.bChecked = 0;
if (BrbVc4HandleOptionbox(&Vis.PageControls.optTest3) == 1)
       Vis.PageControls.optTest1.bChecked = 0;
       Vis.PageControls.optTest2.bChecked = 0;
       Vis.PageControls.optTest3.bChecked = 1;
```

3.2.24 OptionboxButton

Es gibt kein fertiges Optionbox-Control. Hier wird es durch einen Button realisiert. Die Projektierung ist schneller als mit der oben genannten Optionbox.

Die benötigten Bitmaps werden mit der Bibliothek mitgeliefert:

3.2.24.1 Struktur

⊟		
🧼 nBmplndex	UINT	Zur Anbindung an den Datenpunkt
/ nTextIndex	UINT	Zur Anbindung an den Datenpunkt
🔷 nColor	UINT	Zur Anbindung an den Datenpunkt
🧼 bVisPushed	BOOL	Zur Anbindung an den Datenpunkt
🧼 bChecked	BOOL	Ausgang: 1=Angehakt
🧼 nStatus	UINT	Zur Anbindung an den Datenpunkt
🧼 eToggleState	BrbVc4CheckboxButtonStates_ENUM	Ausgang: Momentaner Status des Buttons
🧼 bVisPushedOld	BOOL	Interne Variable
→ bCheckedOld	BOOL	Interne Variable

3.2.24.2 BrbVc4HandleOptionboxButton

```
\verb|plcbit| BrbVc4HandleOptionboxButton(struct| BrbVc4OptionboxButton\_TYP*| pButton)|
```

Argumente:

```
struct BrbVc4OptionboxButton_TYP* pButton
Zeiger auf die Instanz
```

Rückgabe:

BOOL

0=Optionbox wurde nicht geändert 1=Optionbox wurde geändert

Beschreibung:

Diese Funktion behandelt die Logik einer Optionbox als Button.

Das Item "bVisPushed" muss durch einen virtuellen Key vom Typ "ToggleDatapoint" gesetzt werden.

Das Item "bChecked" kann zum Auswerten oder Umschalten des Signals im Programm verwendet werden.

Das Item "eToggleState" liefert den momentanen Zustand durch eine Enumeration:

Das Item "nBmpIndex" wird automatisch gesetzt. Dabei wird folgende Projektierung vorausgesetzt:

0=Nicht angehakt und Disabled (Ausgegrautes Bitmap)

- 1=Angehakt und Disabled (Ausgegrautes Bitmap)
- 2=Nicht angehakt und Enabled (Normales Bitmap)
- 3=Angehakt und Enabled (Normales Bitmap)

Beispiel für den Aufruf:

```
if (BrbVc4HandleOptionboxButton(&Vis.PageVc4.optbtnTest4) == 1)
{
    Vis.PageVc4.optbtnTest4.bChecked = 1;
    Vis.PageVc4.optbtnTest5.bChecked = 0;
    Vis.PageVc4.optbtnTest6.bChecked = 0;
}
if (BrbVc4HandleOptionboxButton(&Vis.PageVc4.optbtnTest5) == 1)
{
    Vis.PageVc4.optbtnTest4.bChecked = 0;
    Vis.PageVc4.optbtnTest5.bChecked = 1;
    Vis.PageVc4.optbtnTest6.bChecked = 0;
}
if (BrbVc4HandleOptionboxButton(&Vis.PageVc4.optbtnTest6) == 1)
{
    Vis.PageVc4.optbtnTest4.bChecked = 0;
    Vis.PageVc4.optbtnTest5.bChecked = 0;
    Vis.PageVc4.optbtnTest5.bChecked = 0;
    Vis.PageVc4.optbtnTest5.bChecked = 1;
}
```

3.2.25 Password

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.25.1 Struktur

⊟	₹ \$ E	BrbVc4Password_TYP		
	(sPasswords	STRING[nBRBVC4_PASSWORD_CHAR_MAX][0nBRBVC4_PASSWORD_INDEX_MAX]	Passwörter
	(nLevel	UINT	Aktuelle Benutzer-Ebene
	(nColor	UINT	Zur Anbindung an den Datenpunkt
	(blnputCompleted	BOOL	Zur Anbindung an den Datenpunkt
	L. (nStatus	UINT	Zur Anbindung an den Datenpunkt

3.2.26 PieChart

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.26.1 Struktur

3.2.27 Scale

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.27.1 Struktur

3.2.28 Scroll-Listen

Es gibt keine fertigen scrollbaren List-Controls, welche über mehrere Spalten in einer Zeile verfügen. Sie müssen über eigens projektierte Controls, welche dann den Ausschnitt der Quelle wiedergeben, realisiert werden.

Optional, aber hilfreich im Umgang mit Scroll-Listen ist diese Struktur:

Für das Realisieren einer vertikalen oder horizontalen Scrollbar gibt es weiter unten auch Strukturen. Normalerweise gibt es auf jeder Seite maximal nur eine scrollbare Liste. Deshalb ist es ausreichend, nur eine Instanz der vertikalen und horizontalen Scrollbar zu haben. Dies verringert den Projektierungsaufwand wesentlich. Der Einfachkeit halber wird auch ein optionaler Typ zur Verfügung gestellt, der beide Scrollbars beinhaltet:

☆ BrbVc4Scrollbar_TYP		
🧼 Horizontal	BrbVc4ScrollbarHor_TYP	
🧼 Vertical	BrbVc4ScrollbarVer_TYP	

3.2.29 ScrollbarHorizontal

Es gibt keine fertigen Scrollbars. Hier wird sie durch die Kombination mehreren normaler bzw. Inc-Buttons realisiert.

Die benötigten Bitmaps werden mit der Bibliothek mitgeliefert:

3.2.29.1 Struktur

☐	⊟ 🎋 BrbVc4ScrollbarHor_TYP			
🧼 bDisabled	BOOL		Parameter: 1=Disabled	
🧼 nTotalIndexMin	DINT		Parameter: Kleinster Index des Quelle	
🧼 nTotalIndexMax	DINT		Parameter: Größter Index des Quelle	
🧼 nCountShow	UDINT		Parameter: Anzahl der angezeigen Zeilen	
🧼 nEntryCountTotal	UDINT		Kann zur Anzeige der totalen Einträge verwendet werden	
🧼 nScrollTotal	UDINT		Interne Variable	
🧼 btnLeft	BrbVc4Button_TYP		Control	
🧼 btnPageLeft	BrbVc4IncButton_TYP		Control	
🧼 btnLineLeft	BrbVc4IncButton_TYP		Control	
🧼 btnLineRight	BrbVc4IncButton_TYP		Control	
🧼 btnPageRight	BrbVc4IncButton_TYP		Control	
🧼 btnRight	BrbVc4Button_TYP		Control	
♦ bScrollDone	BOOL		Ausgang: 1=Es wurde gescrollt	

3.2.29.2 BrbVc4HandleScrollbarHorizontal

plcbit BrbVc4HandleScrollbarHorizontal(struct BrbVc4ScrollbarHor_TYP* pScrollbar, signed long*
pScrollOffset)

Argumente:

struct BrbVc4ScrollbarHor_TYP* pScrollbar
Zeiger auf die Instanz
DINT* pScrollOffset
Zeiger auf die Variable mit dem Scroll-Offset

Rückgabe:

BOOT

0= Es wurde nicht gescrollt 1=Es wurde gescrollt

Beschreibung:

Diese Funktion behandelt die Logik für eine aus mehreren Buttons zusammen gesetzten Scrollbar.

Die Items der beinhalteten Buttons müssen entsprechend der Deklaration projektiert werden (siehe normaler Button und IncButton).

Durch das Item "bDisabled" kann die gesamte Leiste ausgegraut werden.

Das Item "nBmpIndex" der Buttons wird dabei automatisch gesetzt. Dabei wird folgende Projektierung vorausgesetzt:

0=Disabled (Ausgegrautes Bitmap)

1=Enabled (Normales Bitmap)

Die Funktion berechnet den maximalen Scroll-Offset gemäß der übergebenen Parameter der Quelle und des angezeigten Ausschnitts. Außerdem werden die Buttons ausgegraut, welche zu drücken keinen Sinn macht (z.B. wenn sich der Ausschnitt ganz links befindet, kann nicht weiter nach links gescrollt werden).

Weiterhin wird der aktuelle Offset gemäß der Button-Klicks berechnet und begrenzt. Er kann verwendet werden, um den Ausschnitt der Quelle neu anzuzeigen.

Beispiel für den Aufruf:

```
if(HandleScrollbarHorizontal(&Vis.Scrollbar.Hor, &Vis.PageControls.ScrollHorTest.nOffset) ==
1)
{
     Vis.PageControls.ScrollHorTest.bGetList = 1;
}
```

3.2.30 ScrollbarVertical

Es gibt keine fertigen Scrollbars. Hier wird sie durch die Kombination mehreren normaler bzw. Inc-Buttons realisiert.

Die benötigten Bitmaps werden mit der Bibliothek mitgeliefert:

3.2.30.1 Struktur

☐		
🧼 bDisabled	BOOL	Parameter: 1=Disabled
🧼 nTotalIndexMin	DINT	Parameter: Kleinster Index des Quelle
🧼 nTotalIndexMax	DINT	Parameter: Größter Index des Quelle
🧼 nCountShow	UDINT	Parameter: Anzahl der angezeigen Zeilen
🧼 nEntryCountTotal	UDINT	Kann zur Anzeige der totalen Einträge verwendet werden
🧼 nScrollTotal	UDINT	Interne Variable
🧼 btnTop	BrbVc4Button_TYP	Control
🧼 btnPageUp	BrbVc4IncButton_TYP	Control
🧼 btnLineUp	BrbVc4IncButton_TYP	Control
🧼 btnLineDown	BrbVc4IncButton_TYP	Control
🧼 btnPageDown	BrbVc4IncButton_TYP	Control
🧼 btnBottom	BrbVc4Button_TYP	Control
🧼 bScrollDone	BOOL	Ausgang: 1=Es wurde gescrollt

3.2.30.2 BrbVc4HandleScrollbarVertical

 $\verb|plcbit BrbVc4HandleScrollbarVertical(struct BrbVc4ScrollbarVer_TYP* pScrollbar, signed long* pScrollOffset)|$

Argumente:

struct BrbVc4ScrollbarVer_TYP* pScrollbar

```
Zeiger auf die Instanz
DINT* pScrollOffset
Zeiger auf die Variable mit dem Scroll-Offset
```

Rückgabe:

B00

0= Es wurde nicht gescrollt 1=Es wurde gescrollt

Beschreibung:

Diese Funktion behandelt die Logik für eine aus mehreren Buttons zusammen gesetzten Scrollbar. Die Items der beinhalteten Buttons müssen entsprechend der Deklaration projektiert werden (siehe normaler Button und IncButton).

Durch das Item "bDisabled" kann die gesamte Leiste ausgegraut werden.

Das Item "nBmpIndex" der Buttons wird dabei automatisch gesetzt. Dabei wird folgende Projektierung vorausgesetzt:

0=Disabled (Ausgegrautes Bitmap)

1=Enabled (Normales Bitmap)

Die Funktion berechnet den maximalen Scroll-Offset gemäß der übergebenen Parameter der Quelle und des angezeigten Auschnitts. Außerdem werden die Buttons ausgegraut, welche zu drücken keinen Sinn macht (z.B. wenn sich der Ausschnitt ganz oben befindet, kann nicht weiter nach oben gescrollt werden). Weiterhin wird der aktuelle Offset gemäß der Button-Klicks berechnet und begrenzt. Er kann verwendet werden, um den Ausschnitt der Quelle neu anzuzeigen.

Beispiel für den Aufruf:

```
if(HandleScrollbarVertical(&Vis.Scrollbar.Ver, &Vis.PageControls.ScrollVerTest.nOffset) ==
1)
    {
            Vis.PageControls.ScrollVerTest.bGetList = 1;
        }
}
```

3.2.31 Shape

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.31.1 Struktur

☆ BrbVc4Shape_TYP		
🧼 nColor	UINT	Zur Anbindung an den Datenpunkt
🧼 nStatus	UINT	Zur Anbindung an den Datenpunkt

3.2.32 Slider

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.32.1 Struktur

3.2.33 String

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.33.1 Struktur

⊟	🎕 Br	bVc4String_TYP		
	🧼	sValue	STRING[nBRBVC4_STRING_INPUT_CHAR_MAX]	Zur Anbindung an den Datenpunkt
	🧼	nColor	UINT	Zur Anbindung an den Datenpunkt
	🧼	blnputCompleted	BOOL	Zur Anbindung an den Datenpunkt
	L 🧼	nStatus	UINT	Zur Anbindung an den Datenpunkt

Diesen Datentypen gibt es auch für Unicode-String "BrbVc4WcString TYP".

3.2.34 Tab-Control

Es gibt kein fertiges Tab-Control. Hier wird es durch die Kombination von mehreren Layern, Buttons und Shapes realisiert.

Normalerweise gibt es auf jeder Seite maximal nur ein Tab-Control. Deshalb ist es ausreichend, nur eine Instanz dieses Controls zu projektieren.

Die Anzahl der Reiter wurde auf maximal 8 beschränkt, was ausreichend sein sollte.

Die benötigten Border-Bitmaps werden mit der Bibliothek mitgeliefert:

3.2.34.1 Struktur

3.2.34.2 BrbVc4HandleTabCtrl

plcbit BrbVc4HandleTabCtrl(struct BrbVc4TabCtrl_TYP* pTabCtrl)
Argumente:
 struct BrbVc4TabCtrl_TYP* pTabCtrl
 Zeiger auf die Instanz

Rückgabe:

BOOL

0= Der Reiter wurde nicht gewechselt 1=Der Reiter wurde gewechselt

Beschreibung:

Diese Funktion behandelt die Logik für ein aus mehreren Controls zusammen gesetzten Tab-Control. Die Items der beinhalteten Buttons müssen entsprechend der Deklaration projektiert werden (siehe normaler Button).

Das Item "nStatus" jedes Reiters muss an den Status-Datenpunkt eines eigenen, lokalen Layers angebunden werden. Die Schaltung der Sichtbarkeit jedes Reiters wird von der Funktion übernommen. Ebenso wird das Item "nSelectedTabPageIndex" beim Wechsel durch einen Klick gesetzt.

Beispiel für den Aufruf:

```
BrbVc4HandleTabCtrl(&Vis.TabCtrl);
if(Vis.TabCtrl.nSelectedTabPageIndex == 0)
{
```

3.2.34.3 BrbVc4SetTabPagesInvisible

```
unsigned short BrbVc4SetTabPagesInvisible(struct BrbVc4TabCtrl_TYP* pTabCtrl)
Argumente:
    struct BrbVc4TabCtrl_TYP* pTabCtrl
    Zeiger auf die Instanz

Rückgabe:
    UINT
    Immer 0
```

Beschreibung:

Diese Funktion setzt alle Tab-Pages eines Tab-Controls auf unsichtbar. Das ist hilfreich, wenn innerhalb einer Tab-Page ein weiteres Tab-Control sitzt, nämlich zum Ausblenden der unteren Tab-Pages.

3.2.35 Text

Dieses Control besitzt keine dazugehörige Funktion. Der Datentyp dient lediglich der strukturierten Anbindung der Datenpunkte.

3.2.35.1 Struktur

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑		
🧼 nIndex	UINT	Zur Anbindung an den Datenpunkt
🧼 nColor	UINT	Zur Anbindung an den Datenpunkt
🧼 nStatus	UINT	Zur Anbindung an den Datenpunkt

3.2.36 ToggleButton

Ein Toggle-Button bietet die Funktion einer Umschaltung. Er ist aus Kompatibilitätsgründen zu alten Versionen enthalten. Bei der Neuerstellung einer Applikation sollte nur noch "ToggleButtonExt" verwendet werden.

3.2.36.1 Struktur

RrbVc4ToggleButton_TYP				
🧼	nBmpIndex	UINT		Zur Anbindung an den Datenpunkt
🧼	nTextIndex	UINT		Zur Anbindung an den Datenpunkt
🧼	nColor	UINT		Zur Anbindung an den Datenpunkt
🧼	bPushed	BOOL		Zur Anbindung an den Datenpunkt
🧼	nStatus	UINT		Zur Anbindung an den Datenpunkt
🧼	eToggleState	BrbVc4ToggleButtonStates_ENUM		Ausgang: Momentaner Status des Buttons
<i>></i>	bPushed0ld	BOOL		Interne Variable

3.2.36.2 BrbVc4HandleToggleButton

```
plcbit BrbVc4HandleToggleButton(struct BrbVc4ToggleButton_TYP* pButton)
Argumente:
    struct BrbVc4ToggleButton_TYP* pButton
    Zeiger auf die Instanz
```

Rückgabe:

BOOL

0=Umschaltung nicht geändert 1= Umschaltung geändert

Beschreibung:

Diese Funktion behandelt die Logik eines Umschalt-Buttons.

Das Item "bPushed" muss durch einen virtuellen Key vom Typ "ToggleDatapoint" gesetzt werden.

Das Item "eToggleState" liefert den momentanen Zustand durch eine Enumeration:

Beispiel für den Aufruf:

3.2.37 ToggleButton Ext (erweitert)

Dieser Toggle-Button bietet eine erweiterte Funktion zum normalen Toggle-Button. Bei einer Neuerstellung einer Applikation sollte nur dieser verwendet werden.

Achtung: Er behebt auch einen Fehler, welchen beim normalen Toggle-Button nur in ganz bestimmten Fällen auftritt (siehe unten).

3.2.37.1 Struktur

☐		
🧼 nBmpIndex	UINT	Zur Anbindung an den Datenpunkt
♦ nTextIndex	UINT	Zur Anbindung an den Datenpunkt
🧼 nColor	UINT	Zur Anbindung an den Datenpunkt
🧼 bVisPushed	BOOL	Zur Anbindung an den Datenpunkt
🧼 bPushed	BOOL	Zur Verwendung im Programm
🧼 nStatus	UINT	Zur Anbindung an den Datenpunkt
	BrbVc4ToggleButtonStates_ENUM	Ausgang: Momentaner Status des Buttons
🧼 bVisPushedOld	BOOL	Interne Variable
	BOOL	Interne Variable

3.2.37.2 BrbVc4HandleToggleButton

 $\verb|plcbit| BrbVc4HandleToggleButtonExt(struct| BrbVc4ToggleButtonExt_TYP*| pButton)|$

Argumente:

struct BrbVc4ToggleButtonExt_TYP* pButton
Zeiger auf die Instanz

Rückgabe:

BOOL

0=Umschaltung nicht von Visualisierung geändert 1= Umschaltung von Visualisierung geändert

Beschreibung:

Diese Funktion behandelt die Logik eines Umschalt-Buttons.

Das Item "bVisPushed" muss durch einen virtuellen Key vom Typ "ToggleDatapoint" gesetzt werden.

Das Item "bPushed" kann zum Auswerten oder Umschalten des Signals im Programm verwendet werden.

Das Item "eToggleState" liefert den momentanen Zustand durch eine Enumeration:

```
□ □ 1/2 BrbVc4ToggleButtonStates_ENUM
□ □ 1/2 eBRBVC4_TOGBTNSTATE_UNPUSHED
□ □ 0=Nicht gedrückt
□ □ 1/2 eBRBVC4_TOGBTNSTATE_UNPUSHED_EDG
□ 1=Gerade losgelassen
□ □ 1/2 eBRBVC4_TOGBTNSTATE_PUSHED_EDGE
□ 1/2 eBRBVC4_TOGBTNSTATE_PUSHED
□ 2=Gerade gedrückt
□ 1/2 eBRBVC4_TOGBTNSTATE_PUSHED
□ 3=Gedrückt
```

Beispiel für den Aufruf:

3.2.37.3 Unterschied zum normalen Toggle-Button

Die Anbindung an einen virtuellen Key geschieht nun über das Item "bvispushed". Umschaltungen durch das Programm können weiterhin am Item "bPushed" gemacht werden. Dadurch kann die Funktion unterscheiden, ob die Umschaltung durch einen Klick an der Visualisierung oder durch das Programm erfolgt. Der Rückgabewert ist nur noch 1, wenn die Umschaltung über die Visualisierung erfolgt ist. Das Item "eToggleState" liefert wie bisher den Status der Umschaltung, auch wenn er über das Programm erfolgt.

Achtung: Beim normalen Toggle-Button konnte es in sehr seltenen Fällen zu einem Fehlverhalten kommen.

Dieser Code wurde benutzt, um z.B. ein Ventil anzuzeigen und zu schalten, welches ebenfalls von der Automatik geschalten wird:

Wenn nun das Ventil "gcontrol.bvalveon" in einem schnelleren Task geschalten wurde, konnte es sporadisch zu einer Rückkopplung führen: Die Logik des Buttons erkannte das von außen geschaltete Signal nicht und setzte es bei dem nächsten Aufruf auf den noch in der Visualisierung bekannten Zustand! Dieses Fehlverhalten tritt mit dem erweiterten Toggle-Button nicht mehr auf, da dieser zwischen Visualisierungs- und Programm-Umschaltung unterscheiden kann.

3.2.38 Touchgrid

Ein Touchgrid kann verwendet werden, um die Auswahl und die Anzeige einer selektierten Zelle innerhalb eines Gitters einfach zu realisieren.

3.2.38.1 Struktur

□ ■ BrbVc4Touchgrid_TYP		
[®] <> bClickEnabled	BOOL	Eingang: 1=Klicks werden erkannt
	BOOL	Eingang: 1=Auswertung des synchronisierten TouchStates
[®]	BOOL	Eingang: 1=Gitter wird gezeichnet
[®]	BOOL	Eingang: 1=Markierung wird gezeichnet
[®]	DINT	Eingang: Linke Koordinate
[®]	DINT	Eingang: Obere Koordinate
[®] nCellWidth	UINT	Eingang: Breite einer Zelle
	UINT	Eingang: Maximaler Index der Zellen in X-Richtung
[®]	UINT	Eingang: Höhe einer Zelle
	UINT	Eingang: Maximaler Index der Zellen in Y-Richtung
[®]	UINT	Eingang: Farbe des Gitters
[●]	BrbVc4Figures_ENUM	Eingang: Figur der Markierung (z.B. Rechteck)
	BrbVc4Line_TYP	Eingang: Markierung als Linie
	BrbVc4Rectangle_TYP	Eingang: Markierung als Rechteck
[®]	BrbVc4Ellipse_TYP	Eingang: Markierung als Ellipse
[®]	BrbVc4Arc_TYP	Eingang: Markierung als Bogen
^{II} ✓ MarkerText	BrbVc4DrawText_TYP	Eingang: Markierung als Text
	UINT	Ausgang: Selektierte Spalte
	UINT	Ausgang: Selektierte Zeile
	UINT	Ein-/Ausgang: Selektierter Index
	UINT	Ausgang: Maximal Selektier-Index
[®]	BrbVc4TouchStates_ENUM	Ausgang: Momentaner Status des Touchs

3.2.38.2 BrbVc4HandleTouchgrid

```
unsigned short BrbVc4HandleTouchGrid(struct BrbVc4Touchgrid_TYP* pTouchgrid, struct
BrbVc4General TYP* pGeneral)
```

Argumente:

```
struct BrbVc4Touchgrid_TYP* pTouchgrid

Zeiger auf die Instanz

struct BrbVc4General_TYP* pGeneral

Zeiger auf die Instanz von "BrbVc4General TYP"
```

Rückgabe:

UINT

Status der intern verwendeten Funktionen der VisApi 0= Ok

Beschreibung:

Diese Funktion behandelt die Logik eines Touchgrids. Es entspricht einem rechteckigen, gleichmäßigen Gitter, bei dem jede Zelle durch einen Klick ausgewählt werden kann:

Wenn man das Touchgrid über projektierte Elemente setzt und das Gitter nicht zeichnen lässt, kann die Selektierung und Markierung einfach und ohne viel zusätzliche Projektierung wie Shapes und Hotspots verwirklicht werden.

Durch die Eingänge kann das Gitter sowie auch die Markierung in der Optik vielfältig angepasst werden, z.B. kann die Figur der Markierung gewählt werden:

Es gibt für jeden Typ eine Unterstruktur, welche das Aussehen der Markierung festlegt.

Der aktuelle Status des Touchs wird durch den Ausgang "estate" wie in "BrbVc4General" aufgeschlüsselt:

Das Item "nSelectedIndex" wird bei einem Klick berechnet, kann aber auch programmseitig geändert werden. Es wird dann automatisch die Spalte und die Zeile berechnet und die Markierung gesetzt.

Durch den Eingang "buseSyncTouchState" kann festgelegt werden, dass statt "General.Touch.eState" der State "General.Touch.eStateSync" zur Auswertung des Touchs herangezogen wird. Das ist nur nötig, wenn der Aufruf des Touchgrids synchronisiert zum "General.nRedrawCounter" gemacht wird, z.B. innerhalb eines selbst programmierten Controls.

3.3 Draw

In diesem Paket finden sich Funktionen zur einfacheren Behandlung selbstgezeichneter Elemente. Die Funktionen VA_Saccess und VA_Srealease müssen dabei vorher bzw. nachher selbst aufgerufen werden. So können mehrere Zeichenfunktionen in einem Block aufgerufen werden. Außerdem sollte das Zeichnen synchronisiert sein (siehe BrbVc4General).

3.3.1 Linie

3.3.1.1 Struktur

☆ BrbVc4Line_TYP			
🧼 nLeft	DINT]	Eingang: Linke Koordinate
····· 🧼 nTop	DINT]	Eingang: Obere Koordinate
🧼 nRight	DINT]	Eingang: Rechte Koordinate
🧼 nBottom	DINT]	Eingang: Untere Koordinate
····· 🧼 nColor	UINT]	Eingang: Farbe
🥏 nDashWidth	UINT]	Eingang: Breite für Strichelung (0=Solide)

3.3.1.2 BrbVc4DrawLine

```
unsigned short BrbVc4DrawLine(struct BrbVc4Line_TYP* pLine, struct BrbVc4General_TYP* pGeneral)
Argumente:
    struct BrbVc4Line TYP* pLine
```

```
Zeiger auf die Instanz

struct BrbVc4General_TYP* pGeneral
Zeiger auf die Instanz von "BrbVc4General_TYP"
```

Rückgabe:

UINT

Status der intern verwendeten Funktionen der VisApi 0= Ok

Beschreibung:

Diese Funktion zeichnet eine Linie nach den angegebenen Werten. Es werden auch gestrichelte Linien unterstützt.

3.3.1.3 BrbVc4DrawLineCorr

```
unsigned short BrbVc4DrawLineCorr(struct BrbVc4Line_TYP* pLine, struct BrbVc4General_TYP* pGen-
eral)
```

Argumente:

```
struct BrbVc4Line_TYP* pLine
Zeiger auf die Instanz
struct BrbVc4General_TYP* pGeneral
Zeiger auf die Instanz von "BrbVc4General TYP"
```

Rückgabe:

UINT

Status der intern verwendeten Funktionen der VisApi 0= Ok

Beschreibung:

Diese Funktion zeichnet eine Linie nach den angegebenen Werten (siehe BrbVc4DrawLine).

Allerdings werden die Koordinaten der Linie vorher korrigiert (siehe BrbVc4CorrectLine). Die Korrektur wird mit einer Kopie gemacht, das Original bleibt unverändert.

Diese Funktion braucht mehr Rechenleistung als die normale Zeichenfunktion, daher sollte sie nur dann angewendet werden, wenn eine Linie wegen dynamischer Koordinaten-Berechnung negative Koordinaten erhalten kann.

3.3.1.4 BrbVc4DrawLineClip

```
unsigned short BrbVc4DrawLineClip(struct BrbVc4Line_TYP* pLine, struct BrbVc4Rectangle_TYP*
pClip, struct BrbVc4General_TYP* pGeneral)

Argumente:
    struct BrbVc4Line_TYP* pLine
        Zeiger auf die Instanz
    struct BrbVc4Rectangle_TYP* pClip
        Zeiger auf den Ausschnitt
    struct BrbVc4General_TYP* pGeneral
        Zeiger auf die Instanz von "BrbVc4General_TYP"
```

Rückgabe:

UTNT

Status der intern verwendeten Funktionen der VisApi 0 = Ok

Beschreibung:

Diese Funktion zeichnet eine Linie nach den angegebenen Werten (siehe BrbVc4DrawLine).

Allerdings werden die Koordinaten der Linie vorher korrigiert (siehe BrbVc4ClipLine). Die Korrektur wird mit einer Kopie gemacht, das Original bleibt unverändert.

Diese Funktion braucht mehr Rechenleistung als die normale Zeichenfunktion, daher sollte sie nur dann angewendet werden, wenn eine Linie lediglich innerhalb eines Ausschnitts sichtbar sein soll, wegen dynamischer Koordinaten-Berechnung aber Koordinaten außerhalb des Ausschnitts erhalten kann.

3.3.2 Rechteck

3.3.2.1 Struktur

43	Brb\	/c4Rectangle_TYP		
-	*	nLeft	DINT	Eingang: Linke Koordinate
-	(nTop	DINT	Eingang: Obere Koordinate
-	*	nWidth	DINT	Eingang: Breite
-	*	nHeight	DINT	Eingang: Höhe
-	*	nFillColor	UINT	Eingang: Füll-Farbe
-	(nBorderColor	UINT	Eingang: Rand-Farbe
İ	(nDashWidth	UINT	Eingang: Breite für Strichelung (0=Solide)

3.3.2.2 BrbVc4DrawRectangle

```
unsigned short BrbVc4DrawRectangle(struct BrbVc4Rectangle_TYP* pRectangle, struct
BrbVc4General_TYP* pGeneral)
Argumente:
    struct BrbVc4Rectangle_TYP* pRectangle
```

```
Zeiger auf die Instanz
struct BrbVc4General_TYP* pGeneral
Zeiger auf die Instanz von "BrbVc4General TYP"
```

Rückgabe:

UINT

Status der intern verwendeten Funktionen der VisApi 0= Ok

Beschreibung:

Diese Funktion zeichnet ein Rechteck nach den angegebenen Werten. Es werden auch gestrichelte Rechtecke unterstützt. Bei nFillColor = 255 ist die Figur transparent.

3.3.2.3 BrbVc4DrawRectangleCorr

```
unsigned short BrbVc4DrawRectangleCorr(struct BrbVc4Rectangle_TYP* pRectangle, struct
BrbVc4General_TYP* pGeneral)
Argumente:
```

```
struct BrbVc4Rectangle TYP* pRectangle
        Zeiger auf die Instanz
       BrbVc4General TYP* pGeneral
        Zeiger auf die Instanz von "BrbVc4General TYP"
```

Rückgabe:

UINT

Status der intern verwendeten Funktionen der VisApi 0= Ok

Beschreibung:

Diese Funktion zeichnet ein Rechteck nach den angegebenen Werten (siehe BrbVc4DrawRectangle). Allerdings werden die Koordinaten des Rechtecks vorher korrigiert (siehe BrbVc4CorrectRectangle). Die Korrektur wird mit einer Kopie gemacht, das Original bleibt unverändert.

Diese Funktion braucht mehr Rechenleistung als die normale Zeichenfunktion, daher sollte sie nur dann angewendet werden, wenn ein Rechteck wegen dynamischer Koordinaten-Berechnung negative Koordinaten erhalten kann.

3.3.2.4 BrbVc4DrawRectangleClip

```
unsigned short BrbVc4DrawRectangleClip(struct BrbVc4Rectangle TYP* pRectangle, struct
BrbVc4Rectangle TYP* pClip, struct BrbVc4General TYP* pGeneral)
Argumente:
    struct BrbVc4Rectangle TYP* pRectangle
            Zeiger auf die Instanz
            struct BrbVc4Rectangle TYP* pClip
            Zeiger auf den Ausschnitt
    struct BrbVc4General TYP* pGeneral
            Zeiger auf die Instanz von "BrbVc4General TYP"
```

Rückgabe:

Status der intern verwendeten Funktionen der VisApi 0= Ok

Beschreibung:

Diese Funktion zeichnet ein Rechteck nach den angegebenen Werten (siehe BrbVc4DrawRectangle). Allerdings werden die Koordinaten des Rechtecks vorher korrigiert (siehe BrbVc4ClipRectangle). Die Korrektur wird mit einer Kopie gemacht, das Original bleibt unverändert.

Diese Funktion braucht mehr Rechenleistung als die normale Zeichenfunktion, daher sollte sie nur dann angewendet werden, wenn ein Rechteck lediglich innerhalb eines Ausschnitts sichtbar sein soll, wegen dynamischer Koordinaten-Berechnung aber Koordinaten außerhalb des Ausschnitts erhalten kann.

3.3.3 Ellipse

3.3.3.1 Struktur

_			
	☆ BrbVc4Ellipse_TYP		
	🧼 nLeft	DINT	Eingang: Linke Koordinate
	🧼 nTop	DINT	Eingang: Obere Koordinate
	🧼 nWidth	DINT	Eingang: Breite
	🧼 nHeight	DINT	Eingang: Höhe
	🧼 nFillColor	UINT	Eingang: Füll-Farbe
	🧼 nBorderColor	UINT	Eingang: Füll-Farbe
	🧼 nDashWidth	UINT	Eingang: Breite für Strichelung (0=Solide)

3.3.3.2 BrbVc4DrawEllipse

unsigned short BrbVc4DrawEllipse(struct BrbVc4Ellipse TYP* pEllipse, struct BrbVc4General TYP* pGeneral)

Argumente:

```
struct BrbVc4Ellipse_TYP* pEllipse

Zeiger auf die Instanz

struct BrbVc4General_TYP* pGeneral

Zeiger auf die Instanz von "BrbVc4General_TYP"
```

Rückgabe:

UINT

Status der intern verwendeten Funktionen der VisApi

Beschreibung:

Diese Funktion zeichnet eine Ellipse nach den angegebenen Werten. Es werden auch gestrichelte Ellipsen unterstützt. Bei nFillColor = 255 ist die Figur transparent.

3.3.4 Arc

3.3.4.1 Struktur

₹\$	BrbVc4Arc_TYP		
		DINT	Eingang: Linke Koordinate
	nTop	DINT	Eingang: Obere Koordinate
		DINT	Eingang: Breite
	nHeight	DINT	Eingang: Höhe
	rStartAngle	REAL	Eingang: Start-Winkel (0360*)
		REAL	Eingang: End-Winkel (0360*)
		UINT	Eingang: Füll-Farbe (momentan nicht unterstützt)
	nBorderColor	UINT	Eingang: Rand-Farbe
İ	🥏 nDashWidth	UINT	Eingang: Breite für Strichelung (0=Solide)

3.3.4.2 BrbVc4DrawArc

```
unsigned short BrbVc4DrawArc(struct BrbVc4Arc_TYP* pArc, struct BrbVc4General_TYP* pGeneral)

Argumente:
    struct BrbVc4Arc_TYP* pArc
        Zeiger auf die Instanz
    struct BrbVc4General_TYP* pGeneral
        Zeiger auf die Instanz von "BrbVc4General_TYP"
```

Rückgabe:

UINT

Status der intern verwendeten Funktionen der VisApi 0= Ok

Beschreibung:

Diese Funktion zeichnet einen Ellipsen-Bogen nach den angegebenen Werten. Es werden auch gestrichelte Bögen unterstützt. Gefüllte Bögen werden momentan nicht unterstützt (Figur ist immer transparent).

3.3.5 Text

3.3.5.1 Struktur

3.3.5.2 BrbVc4DrawText

```
unsigned short BrbVc4DrawText(struct BrbVc4DrawText_TYP* pText, struct BrbVc4General_TYP* pGeneral)

Argumente:
    struct Text* pText
        Zeiger auf die Instanz
    struct BrbVc4General_TYP* pGeneral
        Zeiger auf die Instanz von "BrbVc4General_TYP"

Rückgabe:
UINT
```

Beschreibung:

0= Ok

Diese Funktion zeichnet einen Text nach den angegebenen Werten.

Status der intern verwendeten Funktionen der VisApi

3.3.6 Font

3.3.6.1 Struktur

Diese Struktur wird benutzt, um Funktionen mit Informationen einer Schrift zur Darstellung von Text zu übergeben.

Da die Pixel-Ausmaße eines Textes nicht ermittelt werden können, können hier die durchschnittliche Breite eines Zeichens sowie die Höhe der Schrift angegeben werden. Dann können Texte auch zentriert oder rechtsbündig gezeichnet werden.

3.3.7 Hilfsfunktionen

3.3.7.1 BrbVc4CorrectLine

```
unsigned short BrbVc4CorrectLine(struct BrbVc4Line_TYP* pLine)

Argumente:
    struct BrbVc4Line_TYP* pLine
    Zeiger auf die Linie

Rückgabe:
    UINT
    Immer 0
```

Beschreibung:

Die Zeichen-Funktionen der VisApi können keine negativen Koordinaten verarbeiten. Diese Funktion korrigiert die Koordinaten einer Linie ins Positive. Die Steigung der Linie bleibt dabei unverändert.

3.3.7.2 BrbVc4ClipLine

Beschreibung:

Diese Funktion korrigiert die Koordinaten einer Linie, damit sie nur innerhalb des angegebenen Ausschnitts dargestellt wird. Die Steigung der Linie bleibt dabei unverändert.

3.3.7.3 BrbVc4CorrectRectangle

```
unsigned short BrbVc4CorrectRectangle(struct BrbVc4Rectangle_TYP* pRectangle)

Argumente:
    struct BrbVc4Rectangle_TYP* pRectangle
    Zeiger auf das Rechteck

Rückgabe:
    UINT
    Immer 0
```

Beschreibung:

Die Zeichen-Funktionen der VisApi können keine negativen Koordinaten verarbeiten. Diese Funktion korrigiert die Koordinaten des Rechtecks ins Positive. Die Maße des Rechtecks bleiben dabei unverändert.

3.3.7.4 BrbVc4ClipRectangle

Beschreibung:

Diese Funktion korrigiert die Koordinaten und die Maße eines Rechtecks, damit es nur innerhalb des angegebenen Ausschnitts dargestellt wird.

3.3.7.5 BrbVc4lsPointWithinRectangle

```
plcbit BrbVc4IsPointWithinRectangle(signed long nPointX, signed long nPointY, struct
BrbVc4Rectangle_TYP* pRectangle)

Argumente:

DINT nPointX

X-Koordinate des Punkts

DINT nPointY

Y-Koordinate des Punkts

struct BrbVc4Rectangle_TYP* pRectangle

Zeiger auf das Rechteck
```

Rückgabe:

UINT

0= Punkt ist außerhalb des Rechtecks 1=Punkt ist innerhalb des Rechtecks

Beschreibung:

Diese Funktion gibt zurück, ob sich ein Punkt mit den angegebenen Koordinaten innerhalb des Rechtecks inklusive des Rands befindet.

3.4 DrawExt

In diesem Paket finden sich Funktionen zum Zeichnen komplexer Controls, wie z.B. ein Trend.

3.4.1 Trend

Mit dieser Funktion kann ein Trend dargestellt werden, um aufgenommene Werte in einer oder mehreren Kurven zu visualisieren.

Nachteile gegenüber dem Vc4-Trend-Control:

- -Nur 4 Kurven
- -Nur 2 Wert-Skalen (links und rechts)
- -Werte müssen applikationsseitig aufgenommen werden

Vorteile gegenüber dem Vc4-Trend-Control:

- -Sample-Auflösung ab 1µs möglich
- -Einfache Parametrierung der Skalen
- -Trend-Gitter wird automatisch an die Skalen angepasst
- -Quelle kann auch ein Struktur-Array sein
- -Quelle kann auch ein Ringpuffer sein
- -Verschiedene Darstellungs-Möglichkeiten einer Kurve
- -Einfacheres Zooming und Scrolling
- -Implementierte Funktionen für Touch-Bedienung (Cursor setzen, Zoom und Scrolling)
- -Einfache Erweiterung der visuellen Darstellung durch Callback-Funktionen

3.4.1.1 Struktur

Der Funktionsblock wird nur ausgeführt, wenn der Eingang "bEnable" auf 1 ist. Dann wird in jedem Zyklus die Touch-Bedienung ausgewertet. Gezeichnet wird nur, wenn zusätzlich "General.nRedrawCounter" (siehe "BrbVc4General") den Wert von "nRedrawCounterMatch" entspricht. Damit kann das Zeichnen von mehreren Trends auf einer Seite auf verschiedene CPU-Zyklen aufgeteilt werden, um so eine gleichmäßigere Verteilung der CPU-Belastung zu erreichen.

3.4.1.2 Konfiguration

⊟	13	Brb\	/c4DrawTrendCfg_TYP		Konfiguration des Trends
		<i>></i>	Drawbox	BrbVc4Drawbox_TYP	Angaben zur Drawbox
		<i></i>	Padding	BrbVc4DrawPadding_TYP	Einrückung des Kurvenbereichs
			nCurveAreaColor	UINT	Farbe des Kurvenbereichs
		<i>></i> :	ScaleFont	BrbVc4Font_TYP	Eingang: Font der Skalierung
		<i>></i> :	ScaleY	BrbVc4DrawTrendCfgScaleY_TYP[0nBRBVC4_TREND_SCALE_Y_INDEX_MAX]	Konfiguration der Werte-Skalen
			nSourceArrayIndexMax	DINT	Eingang: Maximaler Index der Quell-Arrays
		<i>></i> !	ScaleX	BrbVc4DrawTrendCfgScaleX_TYP	Konfiguration der Zeit-Skala
		*	TouchAction	BrbVc4DrawTrendCfgTouchAct_TYP	Konfiguration der Touch-Aktion
		<i>(</i>	Curve	BrbVc4DrawTrendCfgCurve_TYP[0nBRBVC4_TREND_CURVE_INDEX_MAX]	Konfiguration der Kurven
		<i>(</i>	Cursor	BrbVc4DrawTrendCfgCursor_TYP[01]	Konfiguration der Cursor
	ļ	<i>(</i>	Callbacks	BrbVc4DrawTrendCfgCallbacks_TYP	Konfiguration der Aufrufe
	L	>	рТад	UDINT	Eingang: Zeiger auf Benutzer-Daten

Die Konfiguration ist der Übersichtlichkeit wegen in verschiedene Unter-Strukturen aufgeteilt.

3.4.1.2.1 Allgemeines

93	Brb	oVc4Drawbox_TYP		
		nLeft	UDINT	Eingang: Linke Koordinate
		nTop	UDINT	Eingang: Obere Koordinate
		nWidth	UDINT	Eingang: Breite
	~	nHeight	UDINT	Eingang: Höhe
	~	sFullName	STRING[nBRB_FILE_NAME_CHAR_MAX]	Pfad zur Anbindung
ļ	~	nBackgroundColor	UINT	Zur Anbindung an den Datenpunkt
L	*	nStatus	UINT	Zur Anbindung an den Datenpunkt

Die Angaben zur Drawbox sind korrekt auszufüllen, da nur dann alle Funktionalitäten richtig ausgeführt werden können. So werden z.B. die Koordinaten und Maße für die Touch-Funktionen benötigt. Der Name der Drawbox ist unbedingt auszufüllen, damit diese auch referenziert werden kann. Mit der Background-Color wird die Drawbox vor dem Zeichnen gelöscht.

☐		Einrückung
♦ nTop	DINT	Eingang: Einrückung Oben
🧼 nBottom	DINT	Eingang: Einrückung Unten
🧼 nLeft	DINT	Eingang: Einrückung Links
- ✓ nRight	DINT	Eingang: Einrückung Rechts

Das Padding legt die Einrückung des Kurvenbereichs fest. Es muss so gewählt werden, dass die Skalen genug Platz haben.

3.4.1.2.2 ScaleY - Werte-Skalen

☐ ♦ BrbVc4DrawTrendCfgSca	leY_TYP		Konfiguration einer Trend-Wert-Skala
🥏 bShow	BOOL		Eingang: 1=Anzeigen
🧼 nColor	UINT		Eingang: Farbe der Skala
🧼 nLinesCount	UINT		Eingang: Anzahl der Skalenstriche
🧼 nLineLength	DINT		Eingang: Länge der Skalenstriche
🧼 sUnit		DRAW_TEXT_CHAR_MAX]	Eingang; Angezeigter Einheiten-Text
🧼 Grid	BrbVc4DrawTrendCfg	gGrid_TYP	Konfiguration des Gitters
🧼 rMin	REAL		Eingang: Unterer Skalenwert
🧼 rMax	REAL		Eingang: Oberer Skalenwert
- onFractionDigits	UINT		Eingang: Anzahl der anzuzeigenden Nachkommastellen
□ ■ BrbVc4DrawTre	ndCfgGrid_TYP		Konfiguration eines Trend-Gitters
⊸ [∭]	В	OOL	Eingang: 1=Gitter anzeigen
[®]	U	INT	Eingang: Farbe des Gitters
[●]	n U	INT	☐ Eingang: Breite für Strichelung (0=Solide

Der Einheitentext wird mittig oberhalb der Hauptlinie gezeichnet.

Der Zoom bzw. Scroll wird mit "rMin" und "rMax" festgelegt.

3.4.1.2.3 SourceBuffer und nSourceArrayIndexMax

Ab V4.00 kann der Typ des Quell-Arrays eingestellt werden. Dazu gibt es folgende Unterstruktur:

- 10 1 110 0 110 11 1 1 1 1 1 1 1 1 1 1	-,	= .	9	
□ ■ BrbVc4DrawTrendCfgBuffer_TYP	·		V	Konfiguration des Trends
[®] ♦ eBufferType	BrbVc4TrendBufferType_ENUM		✓	Typ des Quell-Puffers (0=Normal, 1=Ring)
[®]	DINT		✓	Eingang: End-Index des Quell-Arrays
└─ / bOverflow	BOOL		✓	Eingang: Ringpuffer ist voll

Es gibt zwei Varianten, aus einem Quell-Array zu lesen:

□ 📑 BrbVc4TrendBufferType_ENUM	Typ des Quell-Puffers
	Normal von 0 beginnend
└─ 🔩 eBRBVC4_TREND_BUFFERTYPE_RING	Ringpuffer

3.4.1.2.3.1 Normal

Diese Einstellung ist kompatibel zu Versionen vor V4.00.

Der Puffer beginnt immer bei 0. In "nSourceArrayIndexMax" wird der maximale Index angegeben, bis zu dem das Quell-Array ausgewertet wird, also bis zu dem die aufgenommenen Punkte dargestellt werden. Wenn keine Werte vorhanden sind, muss er auf -1 gesetzt werden.

Bei einem laufenden Trend müssen, wenn der Puffer voll ist, alle Einträge um 1 nach oben geschoben werden und der neue Wert an unterster Stelle eingetragen werden.

3.4.1.2.3.2 Ring

Mit dieser Einstellung wird das Quell-Array als Ringpuffer definiert.

Der Eingang "nSourceArrayIndexMax" muss den maximalen Index des Quell-Arrays enthalten, unabhängig davon, ab wo die Daten tatsächlich beginnen.

Der Eingang "nSourceArrayIndexEnd" muss den Index des momentan letzten Wertes enthalten. Nach dem ersten Überlauf, wenn also der Ringpuffer voll ist, muss der Eingang "bOverflow" auf 1 gesetzt werden und neue Werte können wieder ab Index 0 eingetragen werden.

Damit entfällt das manchmal performance-verschlingende Hochschieben der Daten um 1 Eintrag.

3.4.1.2.4 ScaleX - Zeit-Skala

Das Format der Skala-Texte wird wie in der Funktion "BrbGetTimeText" beschrieben festgelegt. Zum Konvertieren eines anderen Zeitformats in die benötigte "DTStructure" gibt es Funktionen in der AS-Bibliothek "AsTime".

Der Zoom wird durch zwei Werte festgelegt:

Durch "nZoomValueCount" wird die Anzahl der anzuzeigenden Sample-Werte auf die ganze Trendbreite gesetzt. Er muss >= 1 sein.

Wenn er genau "nSourceArrayIndexMax" ist, wird die komplette Kurve dargestellt:

Ist er größer, wird die Kurve gestaucht:

Er muss >= 1, darf aber auch größer als "nSourceArrayIndexMax" sein.

Der Eingang "nScrollOffset" verschiebt den angezeigten Ausschnitt um x Werte. Er darf auch negativ sein oder über "nSourceArrayIndexMax" hinausgehen:

Mit dem Eingang "bLimitScrollOffset" kann festgelegt werden, dass "nScrollOffset" automatisch begrenzt wird, so dass nicht über die Kurve hinaus gescrollt werden kann. Das ist besonders bei Scrolling über den Touch sinnvoll.

3.4.1.2.5 TouchAction - Funktion des Touchs

Hier wird festgelegt, ob und welche Funktion durch den Touch bedienbar ist.

Mit der "BorderCorrection" kann ein Offset festgelegt werden, welcher die Koordinaten des Touchs aufgrund des Rahmens der Drawbox korrigiert. Der Rahmen "Flat_back" z.B. muss jeweils mit dem Wert 2 korrigiert werden, damit der Cursor auch exakt an dem berührten Punkt gesetzt wird.

Das Setzen der Cursor wird schon beim einmaligen Klicken ausgeführt.

Das Scrollen wird durch Verschiebe-Bewegung ausgelöst.

Beim Zoomen erscheint ein Fenster, welches auf den entsprechenden Ausschnitt gezogen werden kann. Wenn Scroll und Zoom gemeinsam aktiviert sind, wird zur Unterscheidung ein Timer eingesetzt.

Wenn innerhalb 1 Sekunde der Touch verschoben wird, wird die Scroll-Funktion ausgeführt. Wenn der Touch 1 Sekunde auf Position gehalten wird, wird das Zoom-Fenster eingeblendet.

3.4.1.2.6 Curve - Kurven

□ ■ BrbVc4DrawTrendCfgCurv	e_TYP	Konfiguration einer Trend-Kurve
[®] ♦ bShow	BOOL	Eingang: 1=Anzeigen
[®]	UINT	Eingang: Farbe
[®]	BrbVc4TrendScaleYIndex_ENUM	Eingang: Skalen-Zugehörigkeit (0=Links, 1=Rechts)
[®] ♦ eMode	BrbVc4TrendCurveMode_ENUM	Eingang: Kurven-Zeichen-Modus
[®]	BrbVc4TrendSource_ENUM	Eingang: Quelle
[®]	BrbVc4TrendValueDatatype_ENUM	Eingang: Datentyp
[®]	UDINT	Eingang: Zeiger auf den Anfang der Quelle
[®]	UDINT	Eingang: Größe der Struktur bei Struktur-Array-Quelle
	UDINT	Eingang: Offset des Wertes in der Struktur bei Struktur-Array-Quelle
[®]	REAL	Eingang: Faktor zur Umrechung der Quell-Daten auf die eingestellte Skala
	BOOL	Eingang: 1=Statistik-Werte berechnen

Der Eingang "eMode" bezeichnet den Modus zum Zeichnen einer Kurve:

Ε	∃ ₹1 BrbVc4TrendCurveMode_ENUM	Kurven-Zeichen-Modus
		Linear
	-	Gestuft

Auffällig wird dies erst beim Anzeigen sehr weniger Punkte.

Bei "eBRBVC4_TREND_CURVE_MODE_LINED" werden die Punkte durch Linien verbunden:

Der Eingang "eValueDatatype" legt den Datentyp der Quell-Kurvenwerte fest:

P1/2 BrbVc4TrendValueDatatype_ENUM	Datentyp der Kurven-Werte
→ q2 eBRBVC4_TREND_VALUE_DTYPE_REAL	REAL
→ eBRBVC4_TREND_VALUE_DTYPE_DINT	DINT
	INT

Der Eingang "eValueSource" legt die Strukturierung der Quell-Kurvenwerte fest:

₽2 BrbVc4TrendSource_ENUM	Quellen-Angabe 01
	Einfaches Array
	Struktur-Array

Wenn die Quelle ein Struktur-Array ist, müssen noch zwei zusätzliche Parameter übergeben werden: Bei "nStructSize" muss die Größe eines Eintrags übergeben werden, welcher einfach durch "sizeof()" ermittelt werden kann.

Bei "nStructMemberOffset" muss der Byte-Offset auf das Struktur-Item innerhalb der Struktur übergeben werden. Dieser kann bequem mit der Funktion BrbGetStructMemberOffset" ermittelt werden, welche in der Bibliothek "BrbLib" beschrieben ist.

Der Eingang "pValueSource" ist der Zeiger auf den Anfang des Quell-Arrays.

Mit dem Eingang "rConversionFactor" können die Rohdaten an die parametrierte Skala angeglichen werden. Im Normalfall ist er "1.0".

3.4.1.2.7 Cursor

□ ■ BrbVc4DrawTrendCfgCu	Konfiguration eines Trend-Cursors	
[®]	BOOL	Eingang: 1=Anzeigen
[®]	UINT	Eingang: Farbe
[●] nSampleIndex	DINT	Eingang: Position des Cursors

Es gibt zwei voneinander unabhängige Cursor.

Der Eingang "nSampleIndex" legt die Position des Cursors im gesamten Aufzeichnungs-Bereich fest.

3.4.1.2.8 Callbacks

Hinweis: Diese Funktionalität ist aufgrund von Funktionszeigern nur in ANSI-C nutzbar, aber nicht in IEC-Sprachen (siehe Punkt <u>Hinweise zu StructuredText und anderen IEC-Sprachen</u>)

Ξ	4 \$	BrbVc4DrawTrendCfgCallback	ks_TYP	Konfiguration der Trend-Aufrufe
		pCallbackAfterClear	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Löschen der Drawbox
		pCallbackAfterCurveArea	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen des Kurvenbereichs
		pCallbackAfterScaleLin	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen eines Werte-Skalierungs-Strichs
		pCallbackAfterScaleY	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen einer Werte-Skala
		pCallbackAfterScaleLin	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen eines Zeit-Skalierungs-Strichs
		pCallbackAfterScaleX	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen der Zeit-Skala
		pCallbackAfterCurve	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen einer Kurve
		pCallbackAfterCursor	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen eines Cursors
	Ĺ	pCallbackAfterZoomWin	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen des Zoom-Fensters
+	4 3	BrbVc4DrawTrendCfg_TYP		Konfiguration des Trends

Ein Callback ist ein Aufruf einer vom Anwender geschriebenen Funktion während des Zeichnens. Er arbeitet mit sogenannten Funktions-Zeigern. Dabei wird die Adresse einer Funktion übergeben, welche der Anwender selbst schreibt. Lediglich die Signatur, also die Anzahl, Reihenfolge und die Datentypen der Argumente sind dabei vorgeschrieben. Der Inhalt der Funktion bleibt vollkommen dem Anwender überlassen.

Es gibt 9 verschiedene Callbacks (siehe oben), welche nach dem Zeichnen des jeweiligen Elements aufgerufen werden können.

Für jeden Callback gibt es ein Muster der Signatur in der Datei "BrbVc4TrendCallbackTemplates.c" in der Bibliothek:

```
unsigned short BrbVc4TrendCallbackAfterClear(struct BrbVc4DrawTrend_TYP* pTrend)
```

unsigned short BrbVc4TrendCallbackAfterCrveArea(struct BrbVc4DrawTrend TYP* pTrend)

unsigned short BrbVc4TrendCallbackAfterScaleLineY(struct BrbVc4DrawTrend_TYP* pTrend,
BrbVc4TrendScaleYIndex_ENUM eScaleYIndex, UINT nLineIndex, BrbVc4Line_TYP* pScaleLine,
BrbVc4DrawText TYP* pScaleText, REAL rScaleValue)

```
unsigned short BrbVc4TrendCallbackAfterScaleY(struct BrbVc4DrawTrend_TYP* pTrend,
BrbVc4TrendScaleYIndex_ENUM eScaleYIndex)

unsigned short BrbVc4TrendCallbackAfterScaleLineX(struct BrbVc4DrawTrend_TYP* pTrend, UINT
nLineIndex, BrbVc4Line_TYP* pScaleLine, BrbVc4DrawText_TYP* pScaleText, DINT nSampleIndex)

unsigned short BrbVc4TrendCallbackAfterScaleX(struct BrbVc4DrawTrend_TYP* pTrend)

unsigned short BrbVc4TrendCallbackAfterCurve(struct BrbVc4DrawTrend_TYP* pTrend, UINT nCurveIndex)

unsigned short BrbVc4TrendCallbackAfterCursor(struct BrbVc4DrawTrend_TYP* pTrend, UINT nCursorIndex)

unsigned short BrbVc4TrendCallbackAfterZoomWind(struct BrbVc4DrawTrend_TYP* pTrend)
```

Manche Callbacks werden während des Zeichnens mehrmals aufgerufen, so z.B. nach dem Zeichnen jeder Kurve. Über Argumente werden aktuelle Werte übergeben, z.B. die aktuelle Kurve. Im Callback kann auf die gesamte Trend-Struktur zugegriffen werden, auch auf die intern berechneten Daten. ACHTUNG: Es sollten aber keine Werte verändert werden!

Soll ein Callback aktiviert werden, so ist dessen Adresse in die obige Struktur einzutragen. Beispiel:

Vor dem Aufruf der Trend-Funktion wird die Adresse des Callbacks übergeben Trend.Cfg.Callbacks.pCallbackAfterCurveArea; (UDINT) & TrendCallbackAfterCurveArea;

Innerhalb des Callbacks kann dann mit Zeichenfunktionen die visuelle Ausgabe erweitert werden, z.B. Texte oder zusätzliche Linien eingezeichnet werden.

Dadurch ergibt sich eine Vielfalt an Möglichkeiten, welche durch das herkömmliche Trend-Control nicht gegeben sind, z.B. könnte der Cursor-Kurven-Wert direkt neben dem Cursor ausgegeben oder die Statistikwerte an geeigneter Stelle eingeblendet werden.

Der Rückgabewert der Funktion ist egal.

ACHTUNG: Das Koordinaten-System bezieht sich auf die Trend-Drawbox, weil diese noch referenziert ist.

3.4.1.2.9 pTag

Dieser Zeiger wird von der Funktion nicht benutzt. Er kann vom Anwender als Zeiger auf Benutzer-Daten gesetzt und dann in den Callbacks verwendet werden.

3.4.1.3 Status

Diese Struktur enthält Ausgangs-Daten, welche für den Anwender interessant sein könnten:

⊒	*	BrbVc4DrawTrendState_TYP		Status des Trends
		eTouchAction	BrbVc4TrendTouchAction_ENUM	Status einer Touch-Aktion
	Ĺ	Curve	BrbVc4DrawTrendStateCurve_TYP[0nBRBVC4_TREND_CURVE_INDEX_MAX]	Status einer Kurve

Der Ausgang "eTouchAction" gibt den momentanen Stand der Touch-Bedienung an:

0 0 "	
₱12 BrbVc4TrendTouchAction_ENUM	Touch-Aktionen des Trends
→ eBRBVC4_TREND_TOUCHACT_NONE	Keine Touch-Aktion des Trends
<> eBRBVC4_TREND_TOUCHACT_CURS_SET	Cursor wurde gesetzt
→ eBRBVC4_TREND_TOUCHACT_SCROLL	Momentan wird gescrollt
→ eBRBVC4_TREND_TOUCHACT_ZOOM_DRAG	Momentan wird das Zoom-Fenster gezogen
	Das Zoom-Fenster wurde gesetzt

Abhängig vom Status bleibt er nur einen oder auch mehrere Zyklen anstehen.

Die Statistik-Werte in der folgenden Struktur werden nur berechnet, wenn in der Konfiguration das Berechnen der Statistik-Werte eingeschaltet ist, ansonsten sind sie 0.

		m doi Otanomi monto omig	goodination lot, allocations of the or	
Ξ	9 \$	BrbVc4DrawTrendStateCurve	_TYP	Status der Kurve
		rValueMax	REAL	Ausgang: Maximaler Wert der Kurve
	-	rValueMin	REAL	Ausgang: Minimaler Wert der Kurve
		rValueAverage	REAL	Ausgang: Wert-Durchschnitt der Kurve
	L	Cursor	BrbVc4DrawTrendStateCurveCur_TYP[01]	Status eines Cursors unter der Kurve

Hier werden auch die Kurven-Werte pro Cursor angeboten:

않 Brb	Vc4DrawTrendStateCurve	Cur_TYP	Status des Cursors unter der Kurve
🧼	rValue	REAL	Ausgang: Kurven-Wert unter dem Cursor
L 🧼	dtsTimeStamp	DTStructure	Ausgang: Zeitstempel unter dem Cursor

3.4.1.4 Intern

Diese Strukturen werden während des Aufrufs mit intern berechneten Daten gefüllt, z.B. Koordinaten und Maße einzelner Zeichen-Elemente. So ist z.B. der berechnete Kurvenbereich oder die Position des Zoom-Fensters enthalten.

Auf sie darf während eines Callbacks lesend zugegriffen werden, um eigene Elemente positionieren zu können. Auf keinen Fall sollten sie verändert werden!

3.4.1.5 BrbVc4DrawTrend

```
unsigned short BrbVc4DrawTrend(struct BrbVc4DrawTrend_TYP* pTrend, struct BrbVc4General_TYP*
pGeneral)

Argumente:
    struct BrbVc4DrawTrend _TYP* pTrend
        Zeiger auf die Instanz
    struct BrbVc4General_TYP* pGeneral
        Zeiger auf die Instanz von "BrbVc4General_TYP"
```

Rückgabe:

UINT

Immer 0

Beschreibung:

Zeichnet einen Trend nach Vorgaben. Der Aufruf sollte in der Restzeit-Task erfolgen. Es empfiehlt sich, die Instanz im Init des Tasks komplett auf 0 zu setzen.

3.4.1.6 BrbVc4GetTrendDisplayCoordinateY

```
signed long BrbVc4GetTrendDisplayCoordinateY(struct BrbVc4DrawTrend_TYP* pTrend,
BrbVc4TrendScaleYIndex_ENUM eScaleY, float rValue)

Argumente:
    struct BrbVc4DrawTrend _TYP* pTrend
    Zeiger auf die Instanz
```

```
BrbVc4TrendScaleYIndex_ENUM eScaleY
Angabe der zugehörigen Skala
REAL rValue
Rohwert
```

Rückgabe:

DINT

Y-Pixel-Koordinate

Beschreibung:

Gibt die Y-Pixel-Koordinate eines Trend-Wertes zurück.

3.4.1.7 BrbVc4GetTrendDisplayCoordinateX

```
signed long BrbVc4GetTrendDisplayCoordinateX(struct BrbVc4DrawTrend_TYP* pTrend, signed long
nSampleIndex)
```

Argumente:

```
struct BrbVc4DrawTrend _TYP* pTrend Zeiger auf die Instanz
DINT nSampleIndex
Index des Samplewerts
```

Rückgabe:

DINT

X-Pixel-Koordinate

Beschreibung:

Gibt die X-Pixel-Koordinate eines Trends aufgrund des Sample-Index zurück.

3.4.1.8 BrbVc4GetTrendSampleIndexByTime

```
signed long BrbVc4GetTrendSampleIndexByTime(struct BrbVc4DrawTrend_TYP* pTrend, struct DTStruc-
ture* pTimeStamp) Argumente:
    struct BrbVc4DrawTrend _TYP* pTrend
        Zeiger auf die Instanz
    struct DTStructure* pTimeStamp
        Zeiger auf den Zeitstempel
```

Rückgabe:

DINT

Sample-Index

Beschreibung:

Gibt den Sample-Index eines Trends aufgrund eines Zeitstempels zurück.

Achtung: Wenn der Zeitstempel vor dem Beginn des Trends liegt ("pTrend->cfg.Scalex.dtsStartTime"), wird ein negativer Wert zurückgegeben. Wenn der Zeitstempel nach dem Ende des Trends liegt, wird ein positiver Wert zurückgegeben. In beiden Fällen darf mit dem Index nicht auf das Quellen-Array zugegriffen werden, weil er außerhalb des gültigen Bereichs ist!

3.4.1.9 BrbVc4GetTrendDisplayCoordXByTime

```
signed long BrbVc4GetTrendDispCoordXByTime(struct BrbVc4DrawTrend_TYP* pTrend, struct DTStruc-
ture* pTimeStamp)
```

Argumente:

```
struct BrbVc4DrawTrend _TYP* pTrend
Zeiger auf die Instanz
struct DTStructure* pTimeStamp
Zeiger auf den Zeitstempel
```

Rückgabe:

DINT

X-Pixel-Koordinate

Beschreibung:

Gibt die X-Pixel-Koordinate eines Trends aufgrund eines Zeitstempels zurück.

Achtung: Die Koordinate kann auch außerhalb des Kurvenbereichs liegen!

3.4.1.10 BrbVc4GetTrendTimestampByIndex

Rückgabe:

DATE_AND_TIME

Ergebnis als DATE_AND_TIME 0, wenn Fehler (Null-Pointer)

Beschreibung:

Gibt den Zeitstempel eines Trends aufgrund des Sample-Index zurück.

Achtung: Der Index kann auch außerhalb des Kurvenbereichs liegen!

3.4.2 TrendLink

Mit dieser Funktion können die Touch-Aktionen von bis zu 4 Trends synchronisiert werden. Das heißt, eine an einem Trend ausgeführte Touch-Aktion wird auch an den gelinkten Trends ausgeführt.

3.4.2.1 Struktur

⊟	9 \$	BrbVc4LinkTrends_TYP		
		bEnable	BOOL	1=Aktiv
	Ĺ	Cfg	BrbVc4DrawTrendLinkCfg_TYP	Konfiguration des TrendLinks

Der Funktionsblock wird nur ausgeführt, wenn der Eingang "bEnable" auf 1 ist.

3.4.2.2 Konfiguration

Im Array "Trend" muss für jeden der bis zu 4 zu linkenden Trends der Zeiger auf dessen Struktur übergeben werden.

Mit den Eingängen kann festgelegt werden, welche Touch-Aktionen gelinkt werden. Eine Aktion wird nur zwischen Trends gelinkt, an denen die Aktion ebenfalls aktiviert ist. So können die unterschiedlichsten Kombinationen parametriert werden.

Die Zeitleiste (also Start-Zeitstempel und Intervall) der gelinkten Trends sollten gleich sein.

Ebenso sinnvoll, aber nicht notwendig ist es, dass die "rMin"- und "rMax"-Werte der Y-Skalierungen aller gelinkten Trends gleich sind.

3.4.2.3 BrbVc4LinkTrends

```
unsigned short BrbVc4LinkTrends(struct BrbVc4LinkTrends_TYP* pLinkTrends, struct
BrbVc4General_TYP* pGeneral)

Argumente:
    struct BrbVc4LinkTrends_TYP* pLinkTrends
        Zeiger auf die Instanz
    struct BrbVc4General_TYP* pGeneral
        Zeiger auf die Instanz

Struct BrbVc4General_TYP* pGeneral
        Zeiger auf die Instanz von "BrbVc4General_TYP"

Rückgabe:
UINT
```

Beschreibung:

Immer 0

Synchronisiert die Touch-Aktionen von bis zu 4 Trends. Der Aufruf und das Zeichnen sollten in der Restzeit-Task erfolgen.

Es empfiehlt sich, die Instanz im Init des Tasks komplett auf 0 zu setzen.

3.4.3 XY-Plot

Mit dieser Funktion können sehr einfach bis zu vier XY-Plots dargestellt werden, z.B. um Funktionsgraphen zu visualisieren.

Funktionsgraphen könnten auch mit der Trend-Funktion dargestellt werden (durch Ersetzen der Standard-Zeit-Skala durch eine selbstgezeichnete Wert-X-Skala). Dies bedingt aber, dass es zu jeder X-Koordinate nur eine Y-Koordinate gibt (Beispiel Sinus).

Die Plot-Funktion kann auch für Graphen verwendet werden, bei denen es für eine X-Koordinate mehrere Y-Koordinaten gibt (Beispiel Sechseck).

Nachteile gegenüber der Trend-Funktion:

- -Standardmäßig nur 1 Cursor, Referenz-Cursor müsste applikativ über Callbacks implementiert werden
- -Keine Scroll-Begrenzung möglich, da Kurven unterschiedliche Array-Längen haben können
- -Kein Link mehrerer Drawboxen möglich (siehe TrendLink)
- -Quell-Werte müssen als REAL vorliegen

Vorteile gegenüber der Trend-Funktion:

- -X-Skala ist von Haus aus eine Wert-Skala
- -Kurven können unterschiedliche Array-Längen haben
- -Cursor ist auf einen Funktionsgraphen optimiert
 - -Er kann nicht nur auf einen X-Wert, sondern auf einen X/Y-Wert gestellt werden
 - -Er kann kurvenbezogen gesetzt werden
 - -Beim Touch-Klick kann automatisch auf den nächstgelegenen Kurvenpunkt gestellt werden
- -Parametrierbare Darstellung der Null-Linie einer Skala

3.4.3.1 Struktur

Der Funktionsblock wird nur ausgeführt, wenn der Eingang "bEnable" auf 1 ist. Dann wird in jedem Zyklus die Touch-Bedienung ausgewertet. Gezeichnet wird nur, wenn zusätzlich "General.nRedrawCounter" (siehe "BrbVc4General") den Wert von "nRedrawCounterMatch" entspricht. Damit kann das Zeichnen von mehreren Plots auf einer Seite auf verschiedene CPU-Zyklen aufgeteilt werden, um so eine gleichmäßigere Verteilung der CPU-Belastung zu erreichen.

3.4.3.2 Konfiguration

[∃ 🔧 BrbVc4DrawPlotCfg_Ϋ́ΥP		Konfiguration des Plots
	🧼 Drawbox	BrbVc4Drawbox_TYP	Angaben zur Drawbox
	🧳 Padding	BrbVc4DrawPadding_TYP	Einrückung des Kurvenbereichs
	🥏 nCurveAreaColor	UINT	Farbe des Kurvenbereichs
	🧳 ScaleFont	BrbVc4Font_TYP	Eingang: Font der Skalierung
	🧳 ScaleY	BrbVc4DrawPlotCfgScaleY_TYP[0nBRBVC4_PLOT_SCALE_Y_INDEX_MAX]	Konfiguration der Y-Skalen
	🧳 ScaleX	BrbVc4DrawPlotCfgScaleX_TYP	Konfiguration der X-Skala
	🥏 TouchAction	BrbVc4DrawPlotCfgTouchAct_TYP	Konfiguration der Plot-Touch-Aktion
	🔷 Curve	BrbVc4DrawPlotCfgCurve_TYP[0nBRBVC4_PLOT_CURVE_INDEX_MAX]	Konfiguration der Kurven
	🔷 Cursor	BrbVc4DrawPlotCfgCursor_TYP	Konfiguration des Plot-Cursors
	🧳 Callbacks	BrbVc4DrawPlotCfgCallbacks_TYP	Konfiguration der Aufrufe
	└─ 🥠 pTag	UDINT	Eingang: Zeiger auf Benutzer-Daten

Die Konfiguration ist der Übersichtlichkeit wegen in verschiedene Unter-Strukturen aufgeteilt.

3.4.3.2.1 Allgemeines

☐ ☐ BrbVc4Drawbox_TYP		
🧼 nLeft	UDINT	Eingang: Linke Koordinate
- ✓ nTop	UDINT	Eingang: Obere Koordinate
	UDINT	Eingang: Breite
🔷 nHeight	UDINT	Eingang: Höhe
🧼 sFullName	STRING[nBRB_FILE_NAME_CHAR_MAX]	Pfad zur Anbindung
nBackgroundColor	UINT	Zur Anbindung an den Datenpunkt
	UINT	Zur Anbindung an den Datenpunkt

Die Angaben zur Drawbox sind korrekt auszufüllen, da nur dann alle Funktionalitäten richtig ausgeführt werden können. So werden z.B. die Koordinaten und Maße für die Touch-Funktionen benötigt. Der Name der Drawbox ist unbedingt auszufüllen, damit diese auch referenziert werden kann. Mit der Background-Color wird die Drawbox vor dem Zeichnen gelöscht.

☐		Einrückung
♦ nTop	DINT	Eingang: Einrückung Oben
🧼 nBottom	DINT	Eingang: Einrückung Unten
🧼 nLeft	DINT	Eingang: Einrückung Links
♦ nRight	DINT	Eingang: Einrückung Rechts

Das Padding legt die Einrückung des Kurvenbereichs fest. Es muss so gewählt werden, dass die Skalen genug Platz haben.

3.4.3.2.2 ScaleY

Diese Struktur gibt es für jede Skala (links und rechts)

	DIDVO	:4DrawPlotCigScale1_11P					Koniiguration der 1-Skala	
	🧼 b	Show	BOOL				Eingang: 1=Skalierung der Y-Achse darstellen	
	🧼 n(Color	UINT				Eingang: Farbe der Skala	
	o 🔷 nl	LinesCount	UINT				Eingang: Anzahl der Skalenstriche	
	🧼 nl	LineLength	DINT				Eingang: Länge der Skalenstriche	
	🧼 sl	Unit	STRIN	G[nBRBVC4_DRAW_TEXT_CHAR.	_MAX]		Eingang; Angezeigter Einheiten-Text	
	Z	eroLine	BrbVc4	IDrawPlotCfgZeroLine_TYP			Konfiguration der Null-Linie	
ļ	🧼 G	rid	BrbVc4	IDrawPlotCfgGrid_TYP			Konfiguration des Gitters	
	· 🧼 rN	∕lin	REAL				Eingang: Kleinster Wert der Y-Achse	
ļ	· 🧼 rN	Лах	REAL				Eingang: Größter Wert der Y-Achse	
ļ	🧼 nf	FractionDigits	UINT				Eingang: Anzahl der anzuzeigenden Nachkomm	astellen
⊟ ∰	💲 Brl	bVc4DrawPlotCfgZeroLir	ne_TY	P		I	Konfiguration einer Null-Linie	
	🔊 🤷	bShow		BOOL		-	Eingang: 1=Null-Linie anzeigen	
	®	nColor		UINT			Eingang: Farbe der Null-Linie	
ļ		nDashWidth		UINT		-	Eingang: Breite für Strichelung (0=Solide)	
⊟ ∰	😘 Brl	bVc4DrawPlotCfgGrid_T	ΥP			-	Konfiguration eines Plot-Gitters	
	🥟	bShow		BOOL		-	Eingang: 1=Gitter anzeigen	
	®	nColor		UINT		-	Eingang: Farbe des Gitters	
		nDashWidth		UINT		I	Eingang: Breite für Strichelung (0=Solide)	

Der Einheitentext wird mittig oberhalb der Hauptlinie gezeichnet.

Der Zoom bzw. Scroll wird mit "rMin" und "rMax" festgelegt.

3.4.3.2.3 ScaleX

⊟ 👫 Brb	Vc4DrawPlotCfgScaleX_TYF				Konfiguration der X-Skala
	bShow	BOOL	[Eingang: 1=Skalierung der X-Achse darstellen
138	nColor	UINT	[Eingang: Farbe der Skala
🦈	nLinesCount	UINT	[Eingang: Anzahl der Skalenstriche
	nLineLength	DINT	[Eingang: Länge der Skalenstriche
	sUnit	STRING[nBRBVC4_DRAW_TEXT_CHAR_N	//AX] [Eingang; Angezeigter Einheiten-Text
	ZeroLine	BrbVc4DrawPlotCfgZeroLine_TYP	[Konfiguration der Null-Linie
		BrbVc4DrawPlotCfgGrid_TYP	[Konfiguration des Gitters
		REAL	[Eingang: Kleinster Wert der X-Achse
		REAL	[Eingang: Größter Wert der X-Achse
	nFractionDigits	UINT	[Eingang: Anzahl der anzuzeigenden Nachkommastellen
⊡ ™ В	rbVc4DrawPlotCfgZeroLir	ne_TYP		Ko	nfiguration einer Null-Linie
	b Show	BOOL		Ein	igang: 1=Null-Linie anzeigen
	nColor	UINT		Ein	igang: Farbe der Null-Linie
	nDashWidth	UINT		Ein	igang: Breite für Strichelung (0=Solide)
⊡ ™ B	rbVc4DrawPlotCfgGrid_T	YP		Ko	nfiguration eines Plot-Gitters
	b Show	BOOL		Eir	igang: 1=Gitter anzeigen
	nColor	UINT		Eir	ngang: Farbe des Gitters
	nDashWidth	UINT		Eir	ngang: Breite für Strichelung (0=Solide)

Der Einheitentext wird rechts der Hauptlinie gezeichnet. Der Zoom bzw. Scroll wird mit "rMin" und "rMax" festgelegt.

3.4.3.2.4 TouchAction - Funktion des Touchs

BrbVc4DrawPlotCfgTouchAct_TYP			Konfiguration der Plot-Touch-Aktion
BorderCorrection	BrbVc4DrawTouchBorderCorr_TYP		□ Touch-Korrektur des Rahmens
🔷 bSetCursor	BOOL		☐ Eingang: 1=Cursor setzen
♦ bZoomX	BOOL		☐ Eingang: 1=ZoomX aktivieren
🔷 bZoomY	BOOL		☐ Eingang: 1=ZoomY aktivieren
🔷 bScrollX	BOOL		☐ Eingang: 1=ScrollingX aktivieren
	BOOL		□ Eingang: 1=ScrollingY aktivieren
☆ BrbVc4DrawTouchBorderCorr_TYP			Touch-Korrektur des Rahmens
🧼 nX	SINT		Eingang: Offset X für die Touch-Korrektur des Rahmens
/ nY	SINT	П	Eingang: Offset Y für die Touch-Korrektur des Rahmens

Hier wird festgelegt, ob und welche Funktion durch den Touch bedienbar ist.

Mit der "BorderCorrection" kann ein Offset festgelegt werden, welcher die Koordinaten des Touchs aufgrund des Rahmens der Drawbox korrigiert. Der Rahmen "Flat_back" z.B. muss jeweils mit dem Wert 2 korrigiert werden, damit der Cursor auch exakt an dem berührten Punkt gesetzt wird.

Das Setzen der Cursor wird schon beim einmaligen Klicken ausgeführt. Dabei wird der Cursor je nach Konfiguration (siehe unten) auf den der Klick-Position am nächst gelegenen Kurvenpunkt gesetzt. Das Scrollen wird durch Verschiebe-Bewegung ausgelöst.

Beim Zoomen erscheint ein Fenster, welches auf den entsprechenden Ausschnitt gezogen werden kann. Wenn Scroll und Zoom gemeinsam aktiviert sind, wird zur Unterscheidung ein Timer eingesetzt. Wenn innerhalb 1 Sekunde der Touch verschoben wird, wird die Scroll-Funktion ausgeführt. Wenn der Touch 1 Sekunde auf Position gehalten wird, wird das Zoom-Fenster eingeblendet.

3.4.3.2.5 Curve - Kurven

Diese Struktur gibt pro Kurve (max. 4).

Der Eingang "nSourceArrayIndexMax" gibt den maximalen Index an, bis zu dem das Quell-Array dieser Kurve ausgewertet wird, also bis zu dem die aufgenommenen Punkte dargestellt werden. Er kann für jede Kurve verschieden sein. Beginn ist immer bei 0. Wenn keine Werte vorhanden sind, muss er auf 0 gesetzt werden.

Der Eingang "eValueSource" legt die Strukturierung der Quell-Kurvenwerte fest:

RibVc4PlotSource_ENUM	Quellen-Angabe 01
2 eBRBVC4_PLOT_SOURCE_SINGLE_ARR	Einfaches Array
- 4₂ eBRBVC4_PLOT_SOURCE_STRUCT_ARR	Struktur-Array

Die Werte müssen als REAL vorhanden sein, entweder als einzelne Arrays oder als Struktur-Array. Bei "eBRBVC4_PLOT_SOURCE_SINGLE_ARR" müssen die Eingänge "pArrayX" und "pArrayY" auf den Anfang des jeweiligen Arrays gesetzt werden.

Bei "eBRBVC4_PLOT_SOURCE_STRUCT_ARR" muss der Eingang "pArrayStruct" auf den Anfang des Struktur-Arrays gesetzt werden. Zusätzlich müssen noch drei Parameter übergeben werden:

Bei "nStructSize" muss die Größe eines Eintrags übergeben werden, welcher einfach durch "sizeof()" ermittelt werden kann.

Bei "nStructMemberOffsetX" und "nStructMemberOffsetY" müssen die Byte-Offsets auf die Struktur-Items innerhalb der Struktur übergeben werden. Diese können bequem mit der Funktion "BrbGetStructMemberOffset" ermittelt werden, welche in der Bibliothek "BrbLib" beschrieben ist.

Mit dem Eingang "rConversionFactorX" bzw. "rConversionFactorY" können die Quell-Werte an die parametrierten Skalen angeglichen werden. Im Normalfall sollten sie "1.0" sein.

Der Eingang 'bCursorUseSourceValues' wirkt sich nur aus, wenn einer der Skalierungsfaktoren nicht 1.0 ist, denn dann sind Quell- und konvertierte Werte nicht gleich.

Ist er 0 (=Normal), so werden sowohl bei der Anzeige der Cursor-Koordinaten als auch bei den Statistik-Werten die konvertierten Werte verwendet.

Ist er 1, so werden sowohl bei der Anzeige der Cursor-Koordinaten als auch bei den Statistik-Werten die Quell-Werte (also die nicht konvertierten Werte) verwendet. Dadurch kann eine Kurve durch Skalierung an die anderen Kurven angepasst werden, ohne dass die Werte dieser Kurve zu einer der Y-Skalen passen. Die Anzeige der Cursor-Koordinaten passt dann zwar zu keiner Y-Skala, aber sie entsprechen den tatsächlichen Quell-Werten.

 $\label{lem:mitchen} \mbox{Mit dem Eingang ,bCalculateStatistics' werden beim Zeichnen automatisch die Min/Max-Werte für X und Y ermittelt (siehe ,Status' unten).}$

3.4.3.2.6 Cursor

Es gibt einen Cursor, welcher als Kreuz dargestellt wird.

⊟ 👫 Brb	Vc4DrawPlotCfgCursor_TYP		Konfiguration des Plot-Cursors
	bShow	USINT	Eingang: 1=Cursor darstellen
	nColor	UINT	Eingang: Farbe des Cursors
	eTouchCurve	BrbVc4PlotCursorCurve_ENUM	Kurve, auf die der Cursor bei Touch-Klick gesetzt wird
	eActCurve	BrbVc4PlotCursorCurve_ENUM	Kurve, auf die der Cursor gesetzt ist
	rCursorX	REAL	Eingang: Aktueller X-Cursor-Wert
	rCursorY	REAL	Eingang: Aktueller Y-CursorWert

Da es sich um einen Kreuz-Cursor handelt, muss festgelegt werden, ob und welche Kurve dazu verwendet wird

Dazu wird der Eingang "eTouchCurve" herangezogen.

=== ···· = ···· = ···· = ···· = ···· = ···· = ···· = ···· = ···· = ···· = ···· = ···· = ···· = ···· = ···· = ··· =							
⊟ □ BrbVc4PlotCursorCurve_ENUM □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Kurve, auf die der Cursor bei Touch-Klick gesetzt wird						
→ eBRBVC4_PLOT_CURSOR_CURVE_NONE	Cursor wird frei gesetzt						
— → 2 eBRBVC4_PLOT_CURSOR_CURVE_0	Cursor wird auf Kurve 0 gesetzt						
🔩 eBRBVC4_PLOT_CURSOR_CURVE_1	Cursor wird auf Kurve 1 gesetzt						
	Cursor wird auf Kurve 2 gesetzt						
🔩 eBRBVC4_PLOT_CURSOR_CURVE_3	Cursor wird auf Kurve 3 gesetzt						
- 4₂ eBRBVC4_PLOT_CURSOR_CURVE_ALL	Cursor wird auf die am nächsten gelegene Kurve gesetzt						

Bei "All" wird der Cursor auf die Kurve gelegt, welche am nächsten an der Klick-Position liegt. Am Element "eActCurve" wird dann der dazugehörige Kurven-Index ausgegeben.

Bei einer spezifischen Kurve ("0" bis "3") wird der Cursor auf diese Kurve gelegt. Am Element "eActCurve" wird dann der dazugehörige Kurven-Index ausgegeben.

Bei "None" wird der Cursor unabhängig von einer Kurve auf die geklickte Position gesetzt. Am Element "eActCurve" wird dann der Index der nächstgelegenen Kurve ausgegeben.

Die Elemente "eCursorX" und "eCursorY" enthalten nach einem Klick die Werte der angegebenen Kurve. Der Y-Wert richtet sich dabei nach der Skala, die bei der in "eActCurve" angegebenen Kurve parametriert ist. Über diese Elemente kann der Cursor auch per Programm gesetzt werden. Dazu wird ebenfalls die Y-Skala der in "eActCurve" angegebenen Kurve verwendet.

3.4.3.2.7 Callbacks

Hinweis: Diese Funktionalität ist aufgrund von Funktionszeigern nur in ANSI-C nutzbar, aber nicht in IEC-Sprachen (siehe Punkt <u>Hinweise zu StructuredText und anderen IEC-Sprachen</u>)

□ 🦸	😘 Bı	bVc4DrawPlotCfgCallbacks_TYF)	Konfiguration der Plot-Aufrufe
	🧳	pCallbackAfterClear	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Löschen der Drawbox
	🧳	pCallbackAfterCurveArea	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen des Kurvenbereichs
	🧳	pCallbackAfterScaleLineY	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen eines Y-Skalierungs-Strichs
	🧳	pCallbackAfterScaleY	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen einer Y-Skala
	🥥	pCallbackAfterScaleLineX	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen eines X-Skalierungs-Strichs
	🧳	pCallbackAfterScaleX	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen der X-Skala
	🧳	pCallbackAfterCurve	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen der Kurve
	🥥	pCallbackAfterCursor	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen des Cursors
Į	<i>(</i>	pCallbackAfterZoomWindow	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen des Zoom-Fensters

Ein Callback ist ein Aufruf einer vom Anwender geschriebenen Funktion während des Zeichnens. Er arbeitet mit sogenannten Funktions-Zeigern. Dabei wird die Adresse einer Funktion übergeben, welche der Anwender selbst schreibt. Lediglich die Signatur, also die Anzahl, Reihenfolge und die Datenty-

pen der Argumente sind dabei vorgeschrieben. Der Inhalt der Funktion bleibt vollkommen dem Anwender überlassen.

Es gibt 9 verschiedene Callbacks (siehe oben), welche nach dem Zeichnen des jeweiligen Elements aufgerufen werden können.

Für jeden Callback gibt es ein Muster der Signatur in der Datei "BrbVc4PlotCallbackTemplates.c" in der Bibliothek:

```
unsigned short BrbVc4PlotCallbackAfterCrveArea(struct BrbVc4DrawPlot_TYP* pPlot)

unsigned short BrbVc4PlotCallbackAfterCrveArea(struct BrbVc4DrawPlot_TYP* pPlot)

unsigned short BrbVc4PlotCallbackAfterScaleLineY(struct BrbVc4DrawPlot_TYP* pPlot,
BrbVc4PlotScaleYIndex_ENUM eScaleYIndex, UINT nLineIndex, BrbVc4Line_TYP* pScaleLine,
BrbVc4DrawText_TYP* pScaleText, REAL rScaleValue)

unsigned short BrbVc4PlotCallbackAfterScaleY(struct BrbVc4DrawPlot_TYP* pPlot,
BrbVc4PlotScaleYIndex_ENUM eScaleYIndex)

unsigned short BrbVc4PlotCallbackAfterScaleLineX(struct BrbVc4DrawPlot_TYP* pPlot, UINT nLineIndex, BrbVc4Line_TYP* pScaleLine, BrbVc4DrawText_TYP* pScaleText, REAL rScaleValue)

unsigned short BrbVc4PlotCallbackAfterScaleX(struct BrbVc4DrawPlot_TYP* pPlot)

unsigned short BrbVc4PlotCallbackAfterCurve(struct BrbVc4DrawPlot_TYP* pPlot, UINT nCurveIndex)

unsigned short BrbVc4PlotCallbackAfterCursor(struct BrbVc4DrawPlot_TYP* pPlot)

unsigned short BrbVc4PlotCallbackAfterCursor(struct BrbVc4DrawPlot_TYP* pPlot)

unsigned short BrbVc4PlotCallbackAfterZoomWind(struct BrbVc4DrawPlot TYP* pPlot)
```

Manche Callbacks werden während des Zeichnens mehrmals aufgerufen, so z.B. nach dem Zeichnen jeder Kurve. Über Argumente werden aktuelle Werte übergeben, z.B. die aktuelle Kurve. Im Callback kann auf die gesamte Plot-Struktur zugegriffen werden, auch auf die intern berechneten Daten. ACHTUNG: Es sollten aber keine Werte verändert werden!

Soll ein Callback aktiviert werden, so ist dessen Adresse in die obige Struktur einzutragen. Beispiel:

Vor dem Aufruf der Trend-Funktion wird die Adresse des Callbacks übergeben Plot.Cfg.Callbacks.pCallbackAfterCurveArea = (UDINT) &PlotCallbackAfterCurveArea;

Innerhalb des Callbacks kann dann mit Zeichenfunktionen die visuelle Ausgabe erweitert werden, z.B. Texte oder zusätzliche Linien eingezeichnet werden. Dadurch ergibt sich eine Vielfalt an Möglichkeiten. Der Rückgabewert der Funktion ist egal.

ACHTUNG: Das Koordinaten-System bezieht sich auf die Plot-Drawbox, weil diese noch referenziert ist.

3.4.3.2.8 pTag

Dieser Zeiger wird von der Funktion nicht benutzt. Er kann vom Anwender als Zeiger auf Benutzer-Daten gesetzt und dann in den Callbacks verwendet werden.

3.4.3.3 Status

Diese Struktur enthält Ausgangs-Daten, welche für den Anwender interessant sein könnten:

⊟	₹\$	BrbVc4DrawPlotState_TYF)	Status des Plots
		 eTouchAction 	BrbVc4PlotTouchAction_ENUM	Status einer Touch-Aktion
		· 🧼 Cursor	BrbVc4DrawPlotStateCursor_TYP	Cursor-Daten des Plots
	L	 Statistic 	BrbVc4DrawPlotStateStatistic_TYP	Statistische Werte

Der Ausgang "eTouchAction" gibt den momentanen Stand der Touch-Bedienung an:

☐ ₹2 BrbVc4PlotTouchAction_ENUM	Touch-Aktionen des Plots
→ eBRBVC4_PLOT_TOUCHACT_NONE	Keine Touch-Aktion
— ♠₂ eBRBVC4_PLOT_TOUCHACT_CURS_SET	Cursor wurde gesetzt
—	Momentan wird gescrollt
—	Momentan wird das Zoom-Fenster gezogen
- 4₂ eBRBVC4_PLOT_TOUCHACT_ZOOM_SET	Das Zoom-Fenster wurde gesetzt

Abhängig vom Status bleibt er nur einen oder auch mehrere Zyklen anstehen.

Unter "Cursor" stehen die Ausgänge des Cursors:

□ ■ BrbVc4DrawPlotStateCursor_TY	P	Cursor-Daten des Plots
on SampleIndex	UDINT	Ausgang: Sample-Index des geklickten Cursors

Der Ausgang "nSampleIndex" ist der Index im Quell-Array. Er bezieht sich immer auf die dem Cursor zugeordneten Kurve (siehe oben). Ist dem Cursor keine Kurve zugeordnet, ist der Ausgang "0". Liegen auf dem Cursor-Punkt mehrere Punkte derselben Kurve, wird immer der Index des ersten passenden Graph-Punktes ausgegeben.

Die Statistik-Werte gibt es pro Kurve.

Sie werden nur berechnet, wenn in der Konfiguration der Kurve das Berechnen der Statistik-Werte eingeschaltet ist.

3.4.3.4 Intern

Diese Strukturen werden während des Aufrufs mit intern berechneten Daten gefüllt, z.B. Koordinaten und Maße einzelner Zeichen-Elemente. So ist z.B. der berechnete Kurvenbereich oder die Position des Zoom-Fensters enthalten.

Auf sie darf während eines Callbacks lesend zugegriffen werden, um eigene Elemente positionieren zu können. Auf keinen Fall sollten sie verändert werden!

3.4.3.5 BrbVc4DrawPlot

```
unsigned short BrbVc4DrawPlot(struct BrbVc4DrawPlot_TYP* pPlot, struct BrbVc4General_TYP* pGen-
eral)
```

Argumente:

```
struct BrbVc4DrawPlot _TYP* pPlot
    Zeiger auf die Instanz
struct BrbVc4General_TYP* pGeneral
    Zeiger auf die Instanz von "BrbVc4General TYP"
```

Rückgabe:

UINT

Immer 0

Beschreibung:

Zeichnet einen XY-Plot nach Vorgaben. Der Aufruf sollte in der Restzeit-Task erfolgen. Es empfiehlt sich, die Instanz im Init des Tasks komplett auf 0 zu setzen.

3.4.3.6 BrbVc4GetPlotDisplayCoordinateY

```
signed long BrbVc4GetPlotDisplayCoordinateY(struct BrbVc4DrawPlot TYP* pPlot,
BrbVc4PlotScaleYIndex ENUM eScaleY, float rValue)
Argumente:
    struct BrbVc4DrawPlot TYP* pPlot
            Zeiger auf die Instanz
    BrbVc4PlotScaleYIndex ENUM eScaleY
            Angabe der zugehörigen Skala
    REAL rValue
            Rohwert
```

Rückgabe:

DINT

Y-Pixel-Koordinate

Beschreibung:

Gibt die Y-Pixel-Koordinate eines Plot-Wertes zurück.

3.4.3.7 BrbVc4GetPlotDisplayCoordinateX

```
signed long BrbVc4GetPlotDisplayCoordinateX(struct BrbVc4DrawPlot_TYP* pPlot, float rValue)
Argumente:
    struct BrbVc4DrawPlot TYP* pPlot
            Zeiger auf die Instanz
    REAL rValue
            Rohwert
Rückgabe:
```

DINT X-Pixel-Koordinate Beschreibung:

Gibt die X-Pixel-Koordinate eines Plot-Wertes zurück.

3.4.4 Achse linear darstellen

Mit dieser Funktion kann sehr einfach eine Achse linear dargestellt werden.

3.4.4.1 Struktur

⊟			
	BOOL	П	Eingang: 0=Horizontal, 1=Vertikal
→ bShowDrawArea	BOOL		Eingang: 1=Zeichenbereich darstellen
→ nDrawAreaLeft	UDINT		Eingang: Linke Koordinate des Zeichenbereichs in [Pixel]
→ nDrawAreaTop	UDINT		Eingang: Obere Koordinate des Zeichenbereichs in [Pixel]
→ nDrawAreaWidth	UDINT		Eingang: Breite des Zeichenbereichs in [Pixel]
→ nDrawAreaHeight	UDINT		Eingang: Höhe des Zeichenbereichs in [Pixel]
→ nDrawAreaColor	UINT		Eingang: Farbe des Zeichenbereichs
→ nDrawIndent	UDINT		Eingang: Einzug links + rechts bzw. oben + unten in [Pixel]
nAxisLimitMin	DINT		Eingang: Kleinste Achsposition in [Achseinheiten]
nAxisLimitMax	DINT		Eingang: Größte Achsposition in [Achseinheiten]
🔷 bShowAxisScale	BOOL		Eingang: 1=Skalierung darstellen
nAxisScaleCount	UINT		Eingang: Anzahl der Skalierungs-Striche
🧼 nAxisScaleColor	UINT		Eingang: Farbe der Skalierung
/ AxisScaleFont	BrbVc4Font_TYP		Eingang: Font der Skalierung
bHighlightActPosition	BOOL		Eingang: 1=Skalierung hervorheben, wenn Achse auf dieser Position
nAxisScaleHighlightColor	UINT		Eingang: Farbe der Hervorhebung
🧼 blnverted	BOOL		Eingang: 1=Achs-Richtung umdrehen
🧼 bClip	BOOL		Eingang: 1=Ausschnitt anzeigen
/ nAxisClipRange	UDINT		Eingang: Größe des Ausschnitts in [Achseinheiten]
bShowAxisPosLine	BOOL		Eingang: Achs-Positions-Strich darstellen
🧼 bShowAxisBorder	BOOL		Eingang: Achs-Beschriftungs-Umrandung darstellen
🧼 nAxisColor	UINT		Eingang: Farbe des Positions-Strichs und der Umrandung
— eAxisCaptionOrder	BrbVc4DrawAxisCaptionOrder_ENUM		Eingang: Reihenfolge der Achs-Beschriftung
	BOOL		Eingang: 1=Achsname darstellen
🧼 sAxisName	STRING[nBRBVC4_DRAW_TEXT_CHAR_MAX]		Eingang: Achsname
/ nAxisNameColor	UINT		Eingang: Farbe des Achsnamens
AxisNameFont	BrbVc4Font_TYP		Eingang: Font des Achsnamens
bShowAxisActPosition	BOOL		Eingang: 1=Aktuelle Achs-Position darstellen
/ rAxisActPosition	REAL		Eingang: Aktuelle Achs-Position
/ nAxisActPositionColor	UINT		Eingang: Farbe der Achs-Position
bShowAxisActVelocity	BOOL		Eingang: 1=Aktuelle Achs-Geschwindigkeit darstellen
🔷 rAxisActVelocity	REAL		Eingang: Aktuelle Achs-Geschwindigkeit
nAxisActVelocityColor	UINT		Eingang: Farbe der Achs-Geschwindigkeit
🔷 AxisValueFont	BrbVc4Font_TYP		Eingang: Font der Achs-Position und Geschwindigkeit
bShowAxisSetPosition	BOOL		Eingang: 1=Soll-Position darstellen
🧼 rAxisSetPosition	REAL		Eingang: Soll-Achs-Position
→ nAxisSetPositionColor	UINT		Eingang: Farbe der Soll-Achs-Position

3.4.4.2 BrbVc4DrawAxisLinear

float BrbVc4DrawAxisLinear(struct BrbVc4DrawAxisLinear_TYP* pAxis, struct BrbVc4General_TYP*
pGeneral)

Argumente:

```
struct BrbVc4DrawAxisLinear_TYP* pAxis
Zeiger auf die Instanz
struct BrbVc4General_TYP* pGeneral
Zeiger auf die Instanz von "BrbVc4General_TYP"
```

Rückgabe:

REAL

Der momentane Beginn der Skalierung entsprechend der Parametrierung

Beschreibung:

Mit den Eingängen kann die Darstellung der einzelnen Elemente sehr beeinflusst werden. So können z.B. die einzelnen Elemente ein- oder ausgeblendet und deren Farben gesetzt werden.

Beispiel-Darstellung horizontal:

Beispiel-Darstellung vertikal:

Zum besseren Verständnis werden hier einige Eingänge beschrieben:

-"nDrawAreaXXX"

Hier wird die obere, linke Ecke sowie Breite und Höhe des Zeichen-Bereichs parametriert. Wird in eine Drawbox gezeichnet, entspricht 0,0 der linken oberen Ecke.

-"nDrawIndent"

Der Einzug rückt die Skalierung bei horizontaler Darstellung links und rechts ein, bei vertikaler Darstellung oben und unten. Das ist notwendig, weil die Achsbeschriftung sonst bei Endlage aus dem Zeichenbereich rutscht.

-"nAxisLimitMin" +"nAxisLimitMax"

Hier wird die negative bzw. die positive Endlage der Achse angegeben. Ist der Achsbereich sehr groß, können kleine Positions-Änderungen nur schlecht erkannt werden. In diesem Fall sollte man evtl. die Clip-Funktionalität verwenden (siehe Eingang "bclip").

Es sollten außerdem keine "schiefen" Zahlen verwendet werden, da sonst die Rundungsfehler zu groß werden. Also besser "2000000000" als "2147483648".

-"bHighlightActPosition"

Hat die Achse die Position eines Skalierungs-Strichs, wird der Skalierungswert in einer anderen Farbe dargestellt.

-"bInverted"

Normalerweise wird die Achse mit positiver Richtung nach rechts bzw. nach unten dargestellt. Mit diesem Eingang kann die Richtung umgedreht werden.

-,bClip" +,nAxisClipRange"

Mit diesen Eingängen kann erreicht werden, dass nicht der komplette Achs-Bereich dargestellt wird, sondern nur ein Ausschnitt. Der Ausschnitt wird aufgrund der aktuellen Position und der angegebenen Ausschnitts-Größe berechnet.

-"eAxisCaptionOrder"

Hier kann die Reihenfolge der Achs-Beschriftungen von oben nach unten festgelegt werden:

₱½ BrbVc4DrawAxisCaptionOrder_ENUM ♣	
—	0=Name-Position-Geschwindigkeit
—	1=Name-Geschwindigkeit-Position
—	2=Position-Name-Geschwindigkeit
—	3=Position-Geschwindigkeit-Name
—	4=Geschwindigkeit-Name-Position
	5=Geschwindigkeit-Position-Name

3.4.5 Achse radial darstellen

Mit dieser Funktion kann sehr einfach eine Achse radial dargestellt werden. Dies eignet sich besonders gut für periodische Achsen.

3.4.5.1 Struktur

⊟ ⁴	1 3	BrbVc4DrawAxisRadial_TYP		
		bShowDrawArea	BOOL	Eingang: 1=Zeichenbereich darstellen
		nDrawAreaLeft	UDINT	Eingang: Linke Koordinate des Zeichenbereichs in [Pixel]
		nDrawAreaTop	NUDINT	Eingang: Obere Koordinate des Zeichenbereichs in [Pixel]
		nDrawAreaWidth	UDINT	Eingang: Breite des Zeichenbereichs in [Pixel]
		nDrawAreaHeight	UDINT	Eingang: Höhe des Zeichenbereichs in [Pixel]
		nDrawAreaColor	UINT	Eingang: Farbe des Zeichenbereichs
		nRadius	UDINT	Eingang: Radius der Skalierung in [Pixel]
		nAxisLimitMin	DINT	Eingang: Kleinste Achsposition in [Achseinheiten]
		nAxisLimitMax	DINT	Eingang: Größte Achsposition in [Achseinheiten]
		bShowAxisScale	BOOL	Eingang: 1=Skalierung darstellen
		nAxisScaleCount	UINT	Eingang: Anzahl der Skalierungs-Striche
		nAxisScaleColor	UINT	Eingang: Farbe der Skalierung
		AxisScaleFont	BrbVc4Font_TYP	Eingang: Font der Skalierung
		bHighlightActPosition	BOOL	Eingang: 1=Skalierung hervorheben, wenn Achse auf dieser Positio
		nAxisScaleHighlightColor	UINT	Eingang: Farbe der Hervorhebung
		blnverted	BOOL	Eingang: 1=Achs-Richtung umdrehen
		nOffset	UINT	Eingang: 1=Versatz der Achs-Position von 0 bis 360 in[*]
		bClip	BOOL	Eingang: 1=Ausschnitt anzeigen
		nAxisClipRange	UDINT	Eingang: Größe des Ausschnitts in [Achseinheiten]
		bShowAxisPosLine	BOOL	Eingang: Achs-Positions-Strich darstellen
		nAxisColor	UINT	Eingang: Farbe des Positions-Strichs und der Umrandung
		 eAxisCaptionOrder 	BrbVc4DrawAxisCaptionOrder_ENUM	Eingang: Reihenfolge der Achs-Beschriftung
	ļ	bShowAxisName	BOOL	Eingang: 1=Achsname darstellen
		sAxisName	STRING[nBRBVC4_DRAW_TEXT_CHAR_MAX]	Eingang: Achsname
	ļ	nAxisNameColor	UINT	Eingang: Farbe des Achsnamens
		AxisNameFont	BrbVc4Font_TYP	Eingang: Font des Achsnamens
		bShowAxisActPosition	BOOL	Eingang: 1=Aktuelle Achs-Position darstellen
		rAxisActPosition	REAL	Eingang: Aktuelle Achs-Position
		nAxisActPositionColor	UINT	Eingang: Farbe der Achs-Position
		bShowAxisActVelocity	BOOL	Eingang: 1=Aktuelle Achs-Geschwindigkeit darstellen
		rAxisActVelocity	REAL	Eingang: Aktuelle Achs-Geschwindigkeit
		nAxisActVelocityColor	UINT	Eingang: Farbe der Achs-Geschwindigkeit
		AxisValueFont	BrbVc4Font_TYP	Eingang: Font der Achs-Position und Geschwindigkeit
		bShowAxisSetPosition	BOOL	Eingang: 1=Soll-Position darstellen
		rAxisSetPosition	REAL	Eingang: Soll-Achs-Position
	L	nAxisSetPositionColor	UINT	Eingang: Farbe der Soll-Achs-Position

3.4.5.2 BrbVc4DrawAxisRadial

```
float BrbVc4DrawAxisRadial(struct BrbVc4DrawAxisRadial_TYP* pAxis, struct BrbVc4General_TYP* pGeneral)

Argumente:
    struct BrbVc4DrawAxisRadial_TYP* pAxis
    Zeiger auf die Instanz
    struct BrbVc4General_TYP* pGeneral
    Zeiger auf die Instanz von "BrbVc4General_TYP"
```

Rückgabe:

Der momentane Beginn der Skalierung entsprechend der Parametrierung

Beschreibung:

Mit den Eingängen kann die Darstellung der einzelnen Elemente sehr beeinflusst werden. So können z.B. die einzelnen Elemente ein- oder ausgeblendet und deren Farben gesetzt werden.

Beispiel-Darstellung:

Die meisten Eingänge sind schon bei "BrbVc4DrawAxisLinear_TYP" dokumentiert. Hier werden nur die erweiterten Eingänge beschrieben:

-"nOffset"

Normalerweise beginnt die Skalierung am oberen Punkt des Kreises. Hier kann der Beginn der Skalierung um eine Gradanzahl von 0° bis 360° verschoben werden.

3.4.6 Treeview

Mit dieser Funktion kann eine Baumansicht dargestellt werden, deren Knoten vom Anwender definiert sind. Das Layout kann auf vielfache Weise auf die Anforderungen angepasst werden. Auch das optionale Scrollen über den Touch ist implementiert.

3.4.6.1 Struktur

Der Funktionsblock wird nur ausgeführt, wenn der Eingang "benable" auf 1 ist. Dann wird in jedem Zyklus die Touch-Bedienung ausgewertet. Gezeichnet wird nur, wenn zusätzlich "General.nRedrawCounter" (siehe "BrbVc4General") den Wert von "nRedrawCounterMatch" entspricht. Damit kann das Zeichnen von mehreren Treeviews auf einer Seite auf verschiedene CPU-Zyklen aufgeteilt werden, um so eine gleichmäßigere Verteilung der CPU-Belastung zu erreichen.

3.4.6.2 Konfiguration

□ ■ BrbVc4DrawTreeviewCfg_TYP		Konfiguration des Treeviews
	BrbVc4Drawbox_TYP	Angaben zur Drawbox
[#] ♦ Padding	BrbVc4DrawPadding_TYP	Einrückung des Tree-Bereichs
	UDINT	Eingang: Zeiger auf den Anfang der Knoten-Liste
	DINT	Eingang: Maximaler Index der Quell-Arrays
[®]	UDINT	Eingang: Zeiger auf den Anfang der intern benötigten Liste
[®] ♦ Nodes	BrbVc4DrawTvCfgNodes_TYP	Konfiguration der Knoten
	BOOL	Eingang: 1=Korrigieren des ScrollIndexY
[®] ♦ Scrollbar	BrbVc4DrawTvCfgScrollbar_TYP	Konfiguration der Scroll-Leiste
[#]	BrbVc4DrawTvCfgTouchAct_TYP	Konfiguration der Treeview-Touch-Aktion
[®]	BrbVc4DrawTvCfgCallbacks_TYP	Konfiguration der Treeview-Aufrufe
	UDINT	Eingang: Zeiger auf Benutzer-Daten

Die Konfiguration ist der Übersichtlichkeit wegen in verschiedene Unter-Strukturen aufgeteilt.

3.4.6.2.1 Allgemeines

□		
🧼 nLeft	UDINT	Eingang: Linke Koordinate
♦ nTop	UDINT	Eingang: Obere Koordinate
🧼 nWidth	UDINT	Eingang: Breite
	UDINT	Eingang: Höhe
🔷 sFullName	STRING[nBRB_FILE_NAME_CHAR_MAX]	Pfad zur Anbindung
🔷 nBackgroundColor	UINT	Zur Anbindung an den Datenpunkt
→ nStatus	UINT	Zur Anbindung an den Datenpunkt

Die Angaben zur Drawbox sind korrekt auszufüllen, da nur dann alle Funktionalitäten richtig ausgeführt werden können. So werden z.B. die Koordinaten und Maße für die Touch-Funktionen benötigt. Der Name der Drawbox ist unbedingt auszufüllen, damit diese auch referenziert werden kann. Mit der Background-Color wird die Drawbox vor dem Zeichnen gelöscht.

☐		Einrückung
♦ nTop	DINT	Eingang: Einrückung Oben
🧼 nBottom	DINT	Eingang: Einrückung Unten
🧼 nLeft	DINT	Eingang: Einrückung Links
	DINT	Eingang: Einrückung Rechts

Das Padding legt die Einrückung des Baumbereichs fest. Allerdings werden nur "nTop" und "nLeft" berücksichtigt.

3.4.6.2.2 pSourceNodeList und nSourceArrayIndexMax

Anwenderseitig muss ein Array vom Typ ,BrbVc4TreeviewNode_TYP' angelegt werden. Übergeben wird der Zeiger auf den Anfang des Arrays und der maximale Index des Arrays. Das Array muss groß genug sein, um alle Knoten aufnehmen zu können.

Durch diese flache Liste wird der Aufbau des Baumes und seine Knoten beschrieben. "nIndent" (0..n) gibt die Einzugs-Ebene eines Knotens an. Der erste Knoten **muss** immer den Indent "0"

haben und wird diesbezüglich von der Funktion korrigiert.
Hat der nächste Knoten denselben Indent, so wird er als Knoten derselben Ebene interpretiert.

Hat der nächste Knoten einen um 1 höheren Indent, so wird er als Unterknoten interpretiert. Es ist darauf zu achten, den Indent nicht um mehr als 1 zu inkrementieren, da sonst die Anzeige nicht korrekt erfolgt! Achtung: Der größtmögliche Indent beträgt **63**. Er wird in der Funktion auf diesen Wert begrenzt.

Über ,bExpanded' kann festgelegt werden, ob der Knoten auf- oder zugeklappt erscheint. ,bChecked' gibt an, ob die (optionale) Checkbox des Knotens an- oder abgehakt ist (siehe unten). Mit ,nUserIconIndex' kann der Bitmap-Index des (optionalen) Icons angegeben werden (siehe unten).

<code>,sText</code> enthält die Beschriftung des Knotens. Sie darf nicht mehr als 200 Zeichen haben. Der Zeiger <code>,pTag</code> wird von der Funktion nicht benutzt. Er kann vom Anwender als Zeiger auf Benutzer-Daten gesetzt und dann in den Callbacks (siehe unten) verwendet werden.

3.4.6.2.3 pInternNodeList

Die Funktion benötigt intern ermittelte Daten für jeden Knoten als Liste. Da die Anzahl der Knoten vom Anwender festgelegt wird, muss er auch diese Liste zur Verfügung stellen.

Daher muss anwenderseitig ein Array vom Typ ,BrbVc4TreeviewInternNode_TYP' angelegt werden.

Übergeben wird der Zeiger auf den Anfang des Arrays. Achtung: Das Array **muss** mindestens genauso so groß sein wie das Quell-Array!

□ ■ BrbVc4TreeviewInternNode_TYP Eintrag der internen Knoten-Liste des Treeviews Intern: Index des Knotens in der Quell-Liste UINT Intern: 1=Knoten hat Unterknoten BOOL bHasFollowingNode BOOL Intern: 1=Knoten hat folgenden Knoten auf demselben Einzug[∭] ⊘ nNodeTop DINT Intern: Oberer Rand des Knotens DINT Intern: Mitte des Knotens DINT Intern: Unterer Rand des Knotens Expandbox BrbVc4Rectangle_TYP Intern: Position und Größe der Aufklapp-Box ExpandboxLine BrbVc4Line_TYP Intern: Position und Größe der Linie neben Aufklapp-Box Checkbox BrbVc4Rectangle_TYP Intern: Position und Größe der Checkbox BrbVc4Rectangle_TYP Intern: Position und Größe des benutzerdefinierten Icons BrbVc4DrawText_TYP Intern: Angaben zum Zeichnen des Knoten-Textes

Die Einträge werden von der Funktion befüllt. Diese Angaben sollten nicht verändert werden, da sonst die korrekte Anzeige nicht garantiert werden kann. Sie können aber in den Callbacks (siehe unten) verwendet werden.

Die Liste enthält nur diejenigen Knoten, welche durch das Aufklappen sichtbar sind. Wird also ein Knoten zugeklappt, enthält sie weniger Knoten als das Quell-Array. Ein Knoten-Index des Quell-Arrays entspricht also nicht zwingend dem Index in diesem Array.

3.4.6.2.4 Nodes

Diese Unterstruktur beinhaltet Angaben für das Layout des Baums und der Knoten.

Zur Anzeige der Aufklapp-Box müssen zwei Bitmaps in der Visu angelegt sein (zu- und aufgeklappt) und die entsprechenden Indizes übergeben werden:

Daccalha ailt für	dia antionala	Chackbox (at	und angehakt)
Dasseine giit iui	die optionale	CHECKDOX (at	r unu angenaki)

+

Optional kann für jeden Knoten auch ein Icon angezeigt werden, dessen Index in der Quell-Liste übergeben wird. Es können beliebig viele verschiedene Bitmaps angelegt werden, z.B.:

Um die Knoten korrekt zeichnen zu können, müssen die quadratischen Größen der Bitmaps unbedingt richtig angegeben werden. Es wird empfohlen, alle Bitmaps in der gleichen Größe zur Verfügung zu stellen. So sieht das Layout am besten aus.

Beispiele für die benötigten Bitmaps werden im Beispielprojekt der Bibliothek mitgeliefert.

Für die optionale Anzeige des selektierten Knotens kann eine andere Farbe gewählt werden.

Für die verwendete Schrift müssen folgende Parameter übergeben werden:

Da die Pixel-Ausmaße eines Textes nicht ermittelt werden können, müssen hier die durchschnittliche Breite eines Zeichens sowie die Höhe der Schrift angegeben werden. Dann können Texte auch zentriert gezeichnet werden. Die Werte verändern die Position und Größe der Knoten und müssen daher unbedingt korrekt angegeben werden!

Durch die horizontale und die vertikale Distanz kann der Abstand der Knoten zueinander auf die Größe der Bitmaps und der Schrift abgestimmt werden, um das optimale Layout zu erhalten. Es empfiehlt sich, das beste Layout empirisch (also durch Probieren) zu ermitteln.

Beispiele mit verschiedenen Optionen:

3.4.6.2.5 Korrigieren des ScrollOffsetY

Der ScrollOffset in "Ctrl" (siehe unten) gibt den Index des an oberster Position dargestellten Knotens an. Dieser Index bezieht sich auf die Quell-Liste. Ist dieser Koten nicht sichtbar (weil zugeklappt), so wird der nächste sichtbare Knoten an oberster Position dargestellt.

Ist nun diese Option eingeschaltet, wird der Scroll-Index automatisch auf den richtigen Wert korrigiert. Dies ist nützlich, wenn das Scrollen anwenderseitig gemacht wird, z.B. über eine anwenderseitige Scrollbar.

3.4.6.2.6 Scrollbar

□ ■ BrbVc4DrawTvCfgScrollbar_TYP		Konfiguration der Scroll-Leiste
[∅]	BOOL	Eingang: 1=Scroll-Leiste anzeigen
[,] ⊘ nWidth	UINT	Eingang: Breite der Scroll-Leiste
[®]	UINT	Eingang: Farbe der Scroll-Leiste
[®]	UINT	Eingang: Hintergrund-Farbe der Scroll-Marke
[®]	UINT	Eingang: Farbe des oberen Scroll-Marken-Randes
[®]	UINT	Eingang: Farbe des unteren Scroll-Marken-Randes
	UINT	Eingang: Mindest-Größe der Scroll-Marke

Hiemit kann die optionale Scroll-Leiste angepasst werden:

Die Farbangaben "nMarkerBorderColorTop" und "nMarkerBorderColorBottom" dienen dazu, der Scrollmarke ein 3-dimensionales Aussehen zu verleihen.

Die Größe der Marke wird über die Anzahl der Knoten bestimmt. Damit sie bei sehr vielen Knoten nicht zu klein wird und dadurch nicht mehr mit dem Finger getroffen wird, kann mit dem Parameter "nMarkerHeightmin" eine Mindestgröße angegeben werden.

Hinweis: Die Touch-Funktion der Scroll-Leiste muss extra aktiviert werden (siehe unten).

3.4.6.2.7 TouchAction - Funktion des Touchs

⊟ 👫 Brb	Vc4DrawTvCfgTouchAct_TYP		Konfiguration der Treeview-Touch-Aktion
	BorderCorrection	BrbVc4DrawTouchBorderCorr_TYP	Touch-Korrektur des Rahmens
	bSelect	BOOL	Eingang: 1=Auswahl aktivieren
	bExpand	BOOL	Eingang: 1=Auf-/Zuklappen aktivieren
	bCheck	BOOL	Eingang: 1=An-/Abhaken aktivieren
	bScrollYList	BOOL	Eingang: 1=ScrollingY in der Liste aktivieren
	bScrollYBar	BOOL	Eingang: 1=ScrollingY auf der Scroll-Leiste aktivieren

Ε	🛚 🎋 BrbVc4DrawTouchBo	rderCorr_TYP	Touch-Korrektur des Rahmens
	🧼 nX	SINT	Eingang: Offset X für die Touch-Korrektur des Rahmens
		SINT	Eingang: Offset Y für die Touch-Korrektur des Rahmens

Hier wird festgelegt, ob und welche Funktion durch den Touch bedienbar ist.

Mit der "BorderCorrection" kann ein Offset festgelegt werden, welcher die Koordinaten des Touchs aufgrund des Rahmens der Drawbox korrigiert. Der Rahmen "Flat_back" z.B. muss jeweils mit dem Wert 2 korrigiert werden, damit ein Klick auch exakt an dem berührten Punkt erkannt wird.

Das Setzen der Auswahl wird schon beim einmaligen Klicken ausgeführt. Das Auf-/Zuklappen sowie das An-/Abhaken wird durch Klick auf das entsprechende Bitmap ausgelöst.

Das Scrollen mit dem Touch ist optional über 2 Arten verfügbar, welche auch beide gleichzeitig aktiviert sein können:

3.4.6.2.7.1 Scrollen über die Liste

Das vertikale Ziehen in der Liste löst das Scrolling aus. Es wird dabei in die Richtung gescrollt, in die auch gezogen wird.

3.4.6.2.7.2 Scrollen über die Scroll-Leiste

Die Scroll-Leiste hat mehrere Touchfunktionen:

- -Klicken oberhalb der Marke: Seitenweises Scrollen der Liste nach oben
- -Klicken unterhalb der Marke: Seitenweises Scrollen der Liste nach unten
- -Klicken und Ziehen auf der Marke: Zeilenweises Scrollen in die gezogene Richtung. Dies eignet sich besonders gut zum schnellen Scrollen bei großen Listen.

Die Funktion entspricht somit im Wesentlichen einer Windows-Scrollbar.

Hinweis: Die Anzeige der Scroll-Leiste muss extra aktiviert werden (siehe oben).

3.4.6.2.8 Callbacks

Hinweis: Diese Funktionalität ist aufgrund von Funktionszeigern nur in ANSI-C nutzbar, aber nicht in IEC-Sprachen (siehe Punkt Hinweise zu StructuredText und anderen IEC-Sprachen)

□ ■ BrbVc4DrawTvCfgCallbacks_TYP		Konfiguration der Treeview-Aufrufe
	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Löschen der Drawbox
[®]	UDINT	Eingang: Funktions-Zeiger für Aufruf vor Zeichnen eines Knotens
[®]	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen eines Knotens
	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen aller Knoten
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	UDINT	Eingang: Funktions-Zeiger für Aufruf nach Zeichnen der Scroll-Leiste

Ein Callback ist ein Aufruf einer vom Anwender geschriebenen Funktion während des Zeichnens. Er arbeitet mit sogenannten Funktions-Zeigern. Dabei wird die Adresse einer Funktion übergeben, welche der Anwender selbst schreibt. Lediglich die Signatur, also die Anzahl, Reihenfolge und die Datentypen der Argumente sind dabei vorgeschrieben. Der Inhalt der Funktion bleibt vollkommen dem Anwender überlassen.

Es gibt 5 verschiedene Callbacks (siehe oben), welche nach dem Zeichnen des jeweiligen Elements aufgerufen werden können.

Für jeden Callback gibt es ein Muster der Signatur in der Datei "BrbVc4TreeviewCallbackTemplates.c" in der Bibliothek:

```
unsigned short BrbVc4TreeviewCallbackAfterClear(struct BrbVc4DrawTreeview_TYP* pTreeview)
unsigned short BrbVc4TreeviewCallbackBeforeNode(struct BrbVc4DrawTreeview_TYP* pTreeview, UINT
nNodeIndex, UINT nNodeIndexIntern)
unsigned short BrbVc4TreeviewCallbackAfterNode(struct BrbVc4DrawTreeview_TYP* pTreeview, UINT
nNodeIndex, UINT nNodeIndexIntern)
unsigned short BrbVc4TreeviewCallbackAfterNodes(struct BrbVc4DrawTreeview_TYP* pTreeview)
unsigned short BrbVc4TreeviewCallbackAfterScrollbar(struct BrbVc4DrawTreeview TYP* pTreeview)
```

Manche Callbacks werden während des Zeichnens mehrmals aufgerufen, so z.B. nach dem Zeichnen jeden Knotens. Über Argumente werden aktuelle Werte übergeben, z.B. die Indizes des aktuellen Knotens für die Quell- und die interne Liste.

Im Callback kann auf die gesamte Trend-Struktur zugegriffen werden, auch auf die intern berechneten Daten. ACHTUNG: Es sollten aber keine Werte verändert werden!

Soll ein Callback aktiviert werden, so ist dessen Adresse in die obige Struktur einzutragen. Beispiel:

```
Es wird eine Funktion angelegt, welche dem Muster entspricht:
```

Vor dem Aufruf der Trend-Funktion wird die Adresse des Callbacks übergeben

Treeview.Cfg.Callbacks.pCallbackAfterClear = (UDINT) &BrbVc4TreeviewCallbackAfterClear;

Innerhalb des Callbacks kann dann mit Zeichenfunktionen die visuelle Ausgabe erweitert werden, z.B. Texte oder zusätzliche Linien eingezeichnet werden.

Dadurch ergibt sich eine Vielfalt an Möglichkeiten, z.B. könnten die Knoten mit weiteren Ausgaben ergänzt werden.

Der Rückgabewert der Funktion ist egal.

ACHTUNG: Das Koordinaten-System bezieht sich auf die Treeview-Drawbox, weil diese noch referenziert ist.

Beispiel: Verlängern des Auswahl-Balkens über die komplette Breite:

3.4.6.2.9 pTag

Dieser Zeiger wird von der Funktion nicht benutzt. Er kann vom Anwender als Zeiger auf Benutzer-Daten gesetzt und dann in den Callbacks verwendet werden.

3.4.6.3 Steuerung

Über den Eingang "nscrolloffsety" kann der Index des Knotens, der an oberster Position dargestellt werden soll, festgelegt oder ausgelesen werden. Ist dieser nicht sichtbar (weil zugeklappt), so wird der nächste sichtbare Knoten an oberster Position dargestellt.

Mit "nSelectedIndex" kann festgelegt oder ausgelesen werden, welche Knoten gerade selektiert ist. Es kann auch ein Knoten angegeben werden, der gerade nicht sichtbar ist (zugeklappt oder außerhalb des Scroll-Ausschnitts).

3.4.6.4 Status

Diese Struktur enthält Ausgangs-Daten, welche für den Anwender interessant sein könnten:

Der Ausgang "eTouchAction" gibt den momentanen Stand der Touch-Bedienung an:

⊟ ¶ ½ BrbVc4TreeviewTouchAction_ENUM	Touch-Aktionen des Treeviews
—	Keine Touch-Aktion des Treeviews
—	Knoten wurde selektiert
—	Doppelklick
—	Knoten wurde aufgeklappt
— → → eBRBVC4_TV_TOUCHACT_UNEXPANDED	Knoten wurde zugeklappt
—	Knoten wurde angehakt
—	Knoten wurde abgehakt
—	Momentan wird über die Liste gescrollt
—	Momentan wird über die Leiste gescrollt

Abhängig vom Status bleibt er nur einen oder auch mehrere Zyklen anstehen.

Der Ausgang "nInternNodeListCount" gibt die momentane Anzahl der gültigen Einträge in der internen Knoten-Liste (siehe oben) an.

3.4.6.5 Intern

Diese Strukturen werden während des Aufrufs mit intern berechneten Daten gefüllt, z.B. Koordinaten und Maße einzelner Zeichen-Elemente. So sind z.B. berechnete Abstände enthalten.

Auf sie darf während eines Callbacks lesend zugegriffen werden, um eigene Elemente positionieren zu können. Auf keinen Fall sollten sie verändert werden!

3.4.6.6 BrbVc4DrawTreeview

```
unsigned short BrbVc4DrawTreeview(struct BrbVc4DrawTreeview_TYP* pTreeview, struct
BrbVc4General TYP* pGeneral)
```

Argumente:

```
struct BrbVc4DrawTreeview_TYP* pTreeview
    Zeiger auf die Instanz
struct BrbVc4General_TYP* pGeneral
    Zeiger auf die Instanz von "BrbVc4General TYP"
```

Rückgabe:

UINT

Immer 0

Beschreibung:

Zeichnet einen Treeview nach Vorgaben. Der Aufruf sollte in der Restzeit-Task erfolgen. Es empfiehlt sich, die Instanz im Init des Tasks komplett auf 0 zu setzen.

3.4.6.7 BrbVc4GetTreeviewInternNodeIndex

signed long BrbVc4GetTreeviewInternNodeIndex(struct BrbVc4DrawTreeview_TYP* pTreeview, unsigned
long nNodeIndex)

Argumente:

```
struct BrbVc4DrawTreeview_TYP* pTreeview
Zeiger auf die Instanz
UDINT nNodeIndex
Index des Knotens in der Quell-Liste
```

Rückgabe:

DINT

Index des Knotens in der internen Liste -1, wenn nicht vorhanden

Beschreibung:

Wenn ein Knoten zugeklappt ist, sind dessen Unter-Knoten nicht in der internen Liste enthalten. Ein Knoten-Index des Quell-Arrays entspricht also nicht zwingend dem Index im internen Array (siehe oben).

Diese Funktion gibt den Index der internen Knoten-Liste aufgrund eines Indizes der Quell-Knoten-Liste zurück. Ist dieser nicht in der internen Liste vorhanden (z.B. weil ein Oberknoten zugeklappt ist), wird als Ergebnis -1 zurückgeliefert.

Durch den implementierten Algorithmus wird dabei nicht die ganze interne Liste durchsucht. Vielmehr wird der Suchbereich solange halbiert, bis nur noch ein kleiner Bereich durchsucht werden muss. Trotz dieser Optimierung braucht eine große Liste auch entsprechend länger zum Ermitteln des gesuchten Indizes. Deshalb sollte der Aufruf dieser Funktion nur in der Restzeit-Task erfolgen.