Facultad de Ciencias Exactas y Naturales Universidad Naciona de La Pampa

2022

Definición

Sea P un conjunto. Un orden o orden parcial es una relación binaria \leq sobre P tal que, $\forall x,y,z\in P$:

Definición

Sea P un conjunto. Un orden o orden parcial es una relación binaria \leq sobre P tal que, $\forall x,y,z\in P$:

 $ightharpoonup x \leq x$

Definición

Sea P un conjunto. Un orden o orden parcial es una relación binaria \leq sobre P tal que, $\forall x, y, z \in P$:

- $\rightarrow x \leq x$
- $\blacktriangleright x \le y \ e \ y \le x \ implica \ que \ x = y$

Definición

Sea P un conjunto. Un orden o orden parcial es una relación binaria \leq sobre P tal que, $\forall x, y, z \in P$:

- $\rightarrow x \leq x$
- \blacktriangleright $x \le y$ e $y \le x$ implica que x = y
- $ightharpoonup x \le y \ {
 m e} \ y \le z \ {
 m implica que} \ x \le z.$

Definición

Sea P un conjunto. Un orden o orden parcial es una relación binaria \leq sobre P tal que, $\forall x, y, z \in P$:

- $\rightarrow x \leq x$
- $\blacktriangleright x \le y \ e \ y \le x \ implica \ que \ x = y$
- $ightharpoonup x \le y \ {
 m e} \ y \le z \ {
 m implica que} \ x \le z.$

Un conjunto P equipado con una relación de orden es llamado un conjunto ordenado o un conjunto parcialmente ordenado.

Definición

Sea P un conjunto. Un orden o orden parcial es una relación binaria \leq sobre P tal que, $\forall x, y, z \in P$:

- $\rightarrow x < x$
- $\blacktriangleright x \le y \ e \ y \le x \ implica \ que \ x = y$
- $ightharpoonup x \le y \ {
 m e} \ y \le z \ {
 m implica que} \ x \le z.$

Un conjunto P equipado con una relación de orden es llamado un conjunto ordenado o un conjunto parcialmente ordenado.

Toda relación de orden \leq sobre P da lugar a una relación < de desigualdad estricta:

$$x < y \iff x \le y \ y \ x \ne y.$$

Ejemplo 1

Sea X un conjunto y sea $\mathcal{P}(X)$ el conjunto de partes de X.

Ejemplo 1

Sea X un conjunto y sea $\mathcal{P}(X)$ el conjunto de partes de X. Entonces, la relación

$$A \leq B \iff A \subseteq B$$

es un orden sobre $\mathcal{P}(X)$.

Ejemplo 1

Sea X un conjunto y sea $\mathcal{P}(X)$ el conjunto de partes de X. Entonces, la relación

$$A \leq B \iff A \subseteq B$$

es un orden sobre $\mathcal{P}(X)$.

Ejemplo 2

La relación \leq_d definida sobre $\mathbb N$ por

Ejemplo 1

Sea X un conjunto y sea $\mathcal{P}(X)$ el conjunto de partes de X. Entonces, la relación

$$A \leq B \iff A \subseteq B$$

es un orden sobre $\mathcal{P}(X)$.

Ejemplo 2

La relación \leq_d definida sobre $\mathbb N$ por

$$n \leq_d m \iff n \mid m$$

es un orden sobre \mathbb{N} .

Definición

Un conjunto ordenado P es llamado una cadena si $\forall x,y \in P$, $x \leq y$ o $y \leq x$.

Definición

Un conjunto ordenado P es llamado una cadena si $\forall x,y \in P$, $x \leq y$ o $y \leq x$.

- ▶ N con el orden usual es una cadena.
- ▶ El orden \leq_d no es una cadena sobre \mathbb{N} .
- $ightharpoonup \mathbb{Z}$ con el orden usual es una cadena.
- $ightharpoonup \mathbb{R}$ con el orden usual es una cadena.
- ightharpoonup Dado un conjunto $X, \mathcal{P}(X)$ no es una cadena.

Definición

Un conjunto ordenado P es llamado una cadena si $\forall x,y \in P$, $x \leq y$ o $y \leq x$.

- ▶ N con el orden usual es una cadena.
- ▶ El orden \leq_d no es una cadena sobre \mathbb{N} .
- $ightharpoonup \mathbb{Z}$ con el orden usual es una cadena.
- $ightharpoonup \mathbb{R}$ con el orden usual es una cadena.
- ▶ Dado un conjunto X, $\mathcal{P}(X)$ no es una cadena.

Definición

Un conjunto ordenado P es llamado una cadena si $\forall x,y \in P$, $x \leq y$ o $y \leq x$.

- ▶ N con el orden usual es una cadena.
- ▶ El orden \leq_d no es una cadena sobre \mathbb{N} .
- $ightharpoonup \mathbb{Z}$ con el orden usual es una cadena.
- $ightharpoonup \mathbb{R}$ con el orden usual es una cadena.
- ightharpoonup Dado un conjunto $X, \mathcal{P}(X)$ no es una cadena.

Definición

Un conjunto ordenado P es llamado una cadena si $\forall x, y \in P$, $x \leq y$ o $y \leq x$.

- ▶ N con el orden usual es una cadena.
- ▶ El orden \leq_d no es una cadena sobre \mathbb{N} .
- \triangleright \mathbb{Z} con el orden usual es una cadena.
- $ightharpoonup \mathbb{R}$ con el orden usual es una cadena.
- ightharpoonup Dado un conjunto $X, \mathcal{P}(X)$ no es una cadena.

Definición

Un conjunto ordenado P es llamado una cadena si $\forall x, y \in P$, $x \leq y$ o $y \leq x$.

- ▶ N con el orden usual es una cadena.
- ▶ El orden \leq_d no es una cadena sobre \mathbb{N} .
- \triangleright \mathbb{Z} con el orden usual es una cadena.
- $ightharpoonup \mathbb{R}$ con el orden usual es una cadena.
- ightharpoonup Dado un conjunto $X, \mathcal{P}(X)$ no es una cadena.

Definición

Un conjunto ordenado P es llamado una cadena si $\forall x, y \in P$, $x \leq y$ o $y \leq x$.

- ▶ N con el orden usual es una cadena.
- ▶ El orden \leq_d no es una cadena sobre \mathbb{N} .
- $ightharpoonup \mathbb{Z}$ con el orden usual es una cadena.
- $ightharpoonup \mathbb{R}$ con el orden usual es una cadena.
- ▶ Dado un conjunto X, $\mathcal{P}(X)$ no es una cadena.

Isomorfismo

Isomorfismo

Definición

Sean $\langle P, \leq_1 \rangle$ y $\langle Q, \leq_2 \rangle$ conjuntos ordenados. Diremos que P y Q son isomorficos si existe una función $\varphi \colon P \to Q$ sobreyectiva tal que $\forall x, y \in P$ se cumple que

$$x \le y \iff \varphi(x) \le \varphi(y).$$

Isomorfismo

Definición

Sean $\langle P, \leq_1 \rangle$ y $\langle Q, \leq_2 \rangle$ conjuntos ordenados. Diremos que P y Q son isomorficos si existe una función $\varphi \colon P \to Q$ sobreyectiva tal que $\forall x, y \in P$ se cumple que

$$x \le y \iff \varphi(x) \le \varphi(y).$$

Ejemplo 4

Sea $\mathbb{N}_0=\mathbb{N}\cup\{0\}$ con el orden usual. Entonces la función sucesor $s\colon\mathbb{N}_0\to\mathbb{N}$ dada por

$$s(n) = n + 1$$

es un isomorfismo entre los conjuntos ordenados \mathbb{N}_0 y \mathbb{N} .

Definición

Sea P un conjunto ordenado y sean $x,y\in P$. Diremos que x es cubierto por y si

x < y y no existe $z \in P$ tal que x < z < y.

Escribimos $x \prec y$.

Definición

Sea P un conjunto ordenado y sean $x,y\in P$. Diremos que x es cubierto por y si

$$x < y$$
 y no existe $z \in P$ tal que $x < z < y$.

Escribimos $x \prec y$.

- ightharpoonup En \mathbb{N} , $m \prec n \iff n = m + 1$.
- ▶ En \mathbb{R} , no existen $x, y \in \mathbb{R}$ tal que $x \prec y$.
- ▶ En $\mathcal{P}(X)$, $A \prec B \iff B = A \cup \{b\}$, para algún $b \in X A$.

Definición

Sea P un conjunto ordenado y sean $x,y\in P$. Diremos que x es cubierto por y si

$$x < y$$
 y no existe $z \in P$ tal que $x < z < y$.

Escribimos $x \prec y$.

- ightharpoonup En \mathbb{N} , $m \prec n \iff n = m + 1$.
- ▶ En \mathbb{R} , no existen $x, y \in \mathbb{R}$ tal que $x \prec y$.
- ▶ En $\mathcal{P}(X)$, $A \prec B \iff B = A \cup \{b\}$, para algún $b \in X A$.

Definición

Sea P un conjunto ordenado y sean $x,y\in P$. Diremos que x es cubierto por y si

$$x < y$$
 y no existe $z \in P$ tal que $x < z < y$.

Escribimos $x \prec y$.

- ightharpoonup En \mathbb{N} , $m \prec n \iff n = m + 1$.
- ▶ En \mathbb{R} , no existen $x, y \in \mathbb{R}$ tal que $x \prec y$.
- ▶ En $\mathcal{P}(X)$, $A \prec B \iff B = A \cup \{b\}$, para algún $b \in X A$.

Definición

Sea P un conjunto ordenado y sean $x,y\in P$. Diremos que x es cubierto por y si

$$x < y$$
 y no existe $z \in P$ tal que $x < z < y$.

Escribimos $x \prec y$.

- ightharpoonup En \mathbb{N} , $m \prec n \iff n = m + 1$.
- ▶ En \mathbb{R} , no existen $x, y \in \mathbb{R}$ tal que $x \prec y$.
- ▶ En $\mathcal{P}(X)$, $A \prec B \iff B = A \cup \{b\}$, para algún $b \in X A$.

- 1. A cada elemento $x \in P$ le asociamos un punto en el plano
- 2. Para cada par $x \prec y$, tomamos un segmento recto uniendo los puntos x e y.
- 3. Llevamos a cabo 1. y 2. de la siguiente forma:
 - ightharpoonup si $x \prec y$, entonces el punto x está por debajo del punto y.
 - Un punto z no intersecta el segmento uniendo x con y si $z \neq x \ \forall z \neq y$.

- 1. A cada elemento $x \in P$ le asociamos un punto en el plano.
- 2. Para cada par $x \prec y$, tomamos un segmento recto uniendo los puntos x e y.
- 3. Llevamos a cabo 1. y 2. de la siguiente forma:
 - \triangleright si $x \prec y$, entonces el punto x está por debajo del punto y
 - Un punto z no intersecta el segmento uniendo x con y si $z \neq x$ v $z \neq y$.

- 1. A cada elemento $x \in P$ le asociamos un punto en el plano.
- 2. Para cada par $x \prec y$, tomamos un segmento recto uniendo los puntos x e y.
- 3. Llevamos a cabo 1. y 2. de la siguiente forma:
 - \triangleright si $x \prec y$, entonces el punto x está por debajo del punto y.
 - Un punto z no intersecta el segmento uniendo x con y si $z \neq x$ v $z \neq y$.

- 1. A cada elemento $x \in P$ le asociamos un punto en el plano.
- 2. Para cada par $x \prec y$, tomamos un segmento recto uniendo los puntos x e y.
- 3. Llevamos a cabo 1. y 2. de la siguiente forma:
 - ightharpoonup si $x \prec y$, entonces el punto x está por debajo del punto y.
 - Un punto z no intersecta el segmento uniendo x con y si $z \neq x$ y $z \neq y$.

- 1. A cada elemento $x \in P$ le asociamos un punto en el plano.
- 2. Para cada par $x \prec y$, tomamos un segmento recto uniendo los puntos x e y.
- 3. Llevamos a cabo 1. y 2. de la siguiente forma:
 - ightharpoonup si $x \prec y$, entonces el punto x está por debajo del punto y.
 - Un punto z no intersecta el segmento uniendo x con y si $z \neq x$ y $z \neq y$.

- 1. A cada elemento $x \in P$ le asociamos un punto en el plano.
- 2. Para cada par $x \prec y$, tomamos un segmento recto uniendo los puntos x e y.
- 3. Llevamos a cabo 1. y 2. de la siguiente forma:
 - ightharpoonup si $x \prec y$, entonces el punto x está por debajo del punto y.
 - Un punto z no intersecta el segmento uniendo x con y si $z \neq x$ y $z \neq y$.

Sea P un conjunto ordenado. Representamos a P en el plano como sigue:

- 1. A cada elemento $x \in P$ le asociamos un punto en el plano.
- 2. Para cada par $x \prec y$, tomamos un segmento recto uniendo los puntos x e y.
- 3. Llevamos a cabo 1. y 2. de la siguiente forma:
 - ightharpoonup si $x \prec y$, entonces el punto x está por debajo del punto y.
 - Un punto z no intersecta el segmento uniendo x con y si $z \neq x$ y $z \neq y$.

La representación de P es llamado el diagrama de Hasse de P.

Sea P un conjunto ordenado. Representamos a P en el plano como sigue:

- 1. A cada elemento $x \in P$ le asociamos un punto en el plano.
- 2. Para cada par $x \prec y$, tomamos un segmento recto uniendo los puntos x e y.
- 3. Llevamos a cabo 1. y 2. de la siguiente forma:
 - ightharpoonup si $x \prec y$, entonces el punto x está por debajo del punto y.
 - Un punto z no intersecta el segmento uniendo x con y si $z \neq x$ y $z \neq y$.

La representación de P es llamado el diagrama de Hasse de P.

Ejemplo 6

Sea $P = \{1, 2, 3, 4, 6, 12\}$ y la relación divide sobre P. Realizar el diagrama de Hasse del conjunto ordenado P.

Elementos distinguidos

Definición: primer y último elemento

Sea P un conjunto ordenado. Diremos que P tiene un primer elemento si existe un $\bot \in P$ (llamado primer elemento) tal que

$$\perp \leq x, \quad \forall x \in P.$$

Definición: primer y último elemento

Sea P un conjunto ordenado. Diremos que P tiene un primer elemento si existe un $\bot \in P$ (llamado primer elemento) tal que

$$\perp \leq x, \quad \forall x \in P.$$

Diremos que P tiene un último elemento si existe un $\top \in P$ (llamado último elemento) tal que

$$x \leq \top$$
, $\forall x \in P$.

Definición: primer y último elemento

Sea P un conjunto ordenado. Diremos que P tiene un primer elemento si existe un $\bot \in P$ (llamado primer elemento) tal que

$$\perp \leq x, \quad \forall x \in P.$$

Diremos que P tiene un último elemento si existe un $\top \in P$ (llamado último elemento) tal que

$$x \leq \top$$
, $\forall x \in P$.

- ▶ En $\langle \mathcal{P}(X), \subseteq \rangle$, tenemos que $\bot = \emptyset$ y $\top = X$.
- $ightharpoonup \mathbb{N}$ tiene primer elemento $\bot = 1$, pero no tiene último elemento.
- ▶ Z no tiene ni primer ni último elemento.

Definición: primer y último elemento

Sea P un conjunto ordenado. Diremos que P tiene un primer elemento si existe un $\bot \in P$ (llamado primer elemento) tal que

$$\perp \leq x, \quad \forall x \in P.$$

Diremos que P tiene un último elemento si existe un $\top \in P$ (llamado último elemento) tal que

$$x \leq \top$$
, $\forall x \in P$.

- ▶ En $\langle \mathcal{P}(X), \subseteq \rangle$, tenemos que $\bot = \emptyset$ y $\top = X$.
- $ightharpoonup \mathbb{N}$ tiene primer elemento $\bot = 1$, pero no tiene último elemento.
- ▶ Z no tiene ni primer ni último elemento.

Definición: primer y último elemento

Sea P un conjunto ordenado. Diremos que P tiene un primer elemento si existe un $\bot \in P$ (llamado primer elemento) tal que

$$\perp \leq x, \quad \forall x \in P.$$

Diremos que P tiene un último elemento si existe un $\top \in P$ (llamado último elemento) tal que

$$x \leq \top$$
, $\forall x \in P$.

- ▶ En $\langle \mathcal{P}(X), \subseteq \rangle$, tenemos que $\bot = \emptyset$ y $\top = X$.
- ▶ N tiene primer elemento $\bot = 1$, pero no tiene último elemento.
- ▶ Z no tiene ni primer ni último elemento.

Definición: primer y último elemento

Sea P un conjunto ordenado. Diremos que P tiene un primer elemento si existe un $\bot \in P$ (llamado primer elemento) tal que

$$\perp \leq x, \quad \forall x \in P.$$

Diremos que P tiene un último elemento si existe un $\top \in P$ (llamado último elemento) tal que

$$x < \top$$
, $\forall x \in P$.

- ▶ En $\langle \mathcal{P}(X), \subseteq \rangle$, tenemos que $\bot = \emptyset$ y $\top = X$.
- ▶ N tiene primer elemento $\bot = 1$, pero no tiene último elemento.
- ▶ ℤ no tiene ni primer ni último elemento.

Definición: elementos mínimales y máximales

Sea P un conjunto ordenado. Sea $A \subseteq P$. Diremos que un elemento $a \in A$ es un elemento mínimal de A si

$$x \le a \ \mathrm{y} \ x \in A \implies a = x$$

Definición: elementos mínimales y máximales

Sea P un conjunto ordenado. Sea $A \subseteq P$. Diremos que un elemento $a \in A$ es un elemento mínimal de A si

$$x \le a \ y \ x \in A \implies a = x$$

Diremos que un elemento $a \in A$ es un elemento máximal de A si

$$a \le x \ y \ x \in A \implies a = x.$$

Definición: elementos mínimales y máximales

Sea P un conjunto ordenado. Sea $A \subseteq P$. Diremos que un elemento $a \in A$ es un elemento mínimal de A si

$$x \le a \ y \ x \in A \implies a = x$$

Diremos que un elemento $a \in A$ es un elemento máximal de A si

$$a \le x \ y \ x \in A \implies a = x.$$

Suma lineal

Suma lineal

Sean P y Q dos conjuntos ordenados disjuntos.

Suma lineal

Sean P y Q dos conjuntos ordenados disjuntos. La suma lineal $P\oplus Q$ es definida tomando la relación de orden \leq sobre $P\cup Q$: para todos $x,y\in P\cup Q$,

Suma lineal

Sean P y Q dos conjuntos ordenados disjuntos. La suma lineal $P \oplus Q$ es definida tomando la relación de orden \leq sobre $P \cup Q$: para todos $x,y \in P \cup Q$,

$$x \le y \iff \left\{\right.$$

Suma lineal

Sean P y Q dos conjuntos ordenados disjuntos. La suma lineal $P \oplus Q$ es definida tomando la relación de orden \leq sobre $P \cup Q$: para todos $x, y \in P \cup Q$,

$$x \le y \iff \begin{cases} x, y \in P & \text{y} & x \le_P y \\ \end{cases}$$

Suma lineal

Sean P y Q dos conjuntos ordenados disjuntos. La suma lineal $P \oplus Q$ es definida tomando la relación de orden \leq sobre $P \cup Q$: para todos $x, y \in P \cup Q$,

$$x \le y \iff \begin{cases} x, y \in P & \text{y} & x \le_P y \\ x, y \in Q & \text{y} & x \le_Q y \end{cases}$$

Suma lineal

Sean P y Q dos conjuntos ordenados disjuntos. La suma lineal $P \oplus Q$ es definida tomando la relación de orden \leq sobre $P \cup Q$: para todos $x, y \in P \cup Q$,

$$x \le y \iff \begin{cases} x, y \in P & \text{y} \quad x \le_P y \\ x, y \in Q & \text{y} \quad x \le_Q y \\ x \in P & \text{e} \quad y \in Q \end{cases}$$

Suma lineal

Sean P y Q dos conjuntos ordenados disjuntos. La suma lineal $P \oplus Q$ es definida tomando la relación de orden \leq sobre $P \cup Q$: para todos $x, y \in P \cup Q$,

$$x \le y \iff \begin{cases} x, y \in P & \text{y} \quad x \le_P y \\ x, y \in Q & \text{y} \quad x \le_Q y \\ x \in P & \text{e} \quad y \in Q \end{cases}$$

El diagrama de Hasse de $P \oplus Q$ es obtenido ubicando el diagrama de P directamente debajo del diagrama de Q y añadiendo un segmento de cada elemento máximal de P a cada elemento mínimal de Q.

Definición de producto

Sean P_1, \ldots, P_n conjuntos ordenados. Se define el orden \leq sobre el producto cartesiano $P_1 \times \cdots \times P_n$ por:

Definición de producto

Sean P_1, \ldots, P_n conjuntos ordenados. Se define el orden \leq sobre el producto cartesiano $P_1 \times \cdots \times P_n$ por:

$$(x_1,\ldots,x_n) \leq (y_1,\ldots,y_n) \iff x_i \leq_{P_i} y_i, \ \forall i$$

Definición de producto

Sean P_1, \ldots, P_n conjuntos ordenados. Se define el orden \leq sobre el producto cartesiano $P_1 \times \cdots \times P_n$ por:

$$(x_1,\ldots,x_n) \leq (y_1,\ldots,y_n) \iff x_i \leq_{P_i} y_i, \ \forall i$$

El diagrama de Hasse de un producto $P \times Q$ puede ser obtenido reemplazando cada punto del diagrama de P por una copia del diagrama de Q, y conectando los puntos correspondientes.

Definición de producto

Sean P_1, \ldots, P_n conjuntos ordenados. Se define el orden \leq sobre el producto cartesiano $P_1 \times \cdots \times P_n$ por:

$$(x_1,\ldots,x_n) \leq (y_1,\ldots,y_n) \iff x_i \leq_{P_i} y_i, \ \forall i$$

El diagrama de Hasse de un producto $P \times Q$ puede ser obtenido reemplazando cada punto del diagrama de P por una copia del diagrama de Q, y conectando los puntos correspondientes.

Proposición

Sea $X = \{a_1, \ldots, a_n\}$ un conjunto con n elementos. Entonces los conjuntos ordenados $\mathcal{P}(X)$ y $\mathbf{2}^n$ son isomorficos.

Definición: orden lexicógrafico

Sean P y Q conjuntos ordenados. Definimos el orden \leq_{ℓ} (llamado orden lexicógrafico) sobre $P \times Q$ por:

Definición: orden lexicógrafico

Sean P y Q conjuntos ordenados. Definimos el orden \leq_{ℓ} (llamado orden lexicógrafico) sobre $P \times Q$ por:

$$(x_1, x_2) \le_{\ell} (y_1, y_2) \iff x_1 < y_1 \text{ o } (x_1 = y_1 \text{ y } x_2 \le y_2).$$

Sea P un conjunto ordenado.

Un subconjunto I de P es llamado decreciente si cumple que:

Sea P un conjunto ordenado.

Un subconjunto I de P es llamado decreciente si cumple que:

si
$$x \le a$$
 y $a \in I \implies x \in I$.

Sea P un conjunto ordenado.

Un subconjunto I de P es llamado decreciente si cumple que:

si
$$x \le a$$
 y $a \in I \implies x \in I$.

Un subconjunto F de P es llamado creciente si:

Sea P un conjunto ordenado.

Un subconjunto I de P es llamado decreciente si cumple que:

si
$$x \le a$$
 y $a \in I \implies x \in I$.

Un subconjunto F de P es llamado creciente si:

si
$$a \le x$$
 y $a \in F \implies x \in F$.

Sea P un conjunto ordenado.

Un subconjunto I de P es llamado decreciente si cumple que:

si
$$x \le a$$
 y $a \in I \implies x \in I$.

Un subconjunto F de P es llamado creciente si:

si
$$a \le x$$
 y $a \in F \implies x \in F$.

Definición 9

Sea P un conjunto ordenado.

Un subconjunto I de P es llamado decreciente si cumple que:

si
$$x \le a$$
 y $a \in I \implies x \in I$.

Un subconjunto F de P es llamado creciente si:

si
$$a \le x$$
 y $a \in F \implies x \in F$.

Definición 9

$$\downarrow A = \{ y \in P : (\exists a \in A), \ y \le a \}$$

Sea P un conjunto ordenado.

Un subconjunto I de P es llamado decreciente si cumple que:

si
$$x \le a$$
 y $a \in I \implies x \in I$.

Un subconjunto F de P es llamado creciente si:

si
$$a \le x$$
 y $a \in F \implies x \in F$.

Definición 9

$$\downarrow A = \{ y \in P : (\exists a \in A), \ y \le a \} \qquad \forall x = \{ y \in P : y \le x \}$$

Sea P un conjunto ordenado.

Un subconjunto I de P es llamado decreciente si cumple que:

si
$$x < a$$
 y $a \in I \implies x \in I$.

Un subconjunto F de P es llamado creciente si:

si
$$a \le x$$
 y $a \in F \implies x \in F$.

Definición 9

$$\downarrow A = \{ y \in P : (\exists a \in A), y \le a \}$$
 $y \qquad \downarrow x = \{ y \in P : y \le x \}$

$$\uparrow A = \{ y \in P : (\exists a \in A), \ a \le y \} \qquad \forall x = \{ y \in P : x \le y \}_{\mathsf{f}_{3/17}}$$

Proposición

- 1. $\downarrow A$ es el menor subconjunto decreciente que contiene a A.
- 2. $\uparrow A$ es el menor subconjunto creciente que contiene a A.
- 3. A es decreciente si y sólo si $A = \downarrow A$
- 4. A es creciente si y sólo si $A = \uparrow A$.

Proposición

- 1. $\downarrow A$ es el menor subconjunto decreciente que contiene a A.
- 2. $\uparrow A$ es el menor subconjunto creciente que contiene a A.
- 3. A es decreciente si y sólo si $A = \downarrow A$
- 4. A es creciente si y sólo si $A = \uparrow A$

Proposición

- 1. $\downarrow A$ es el menor subconjunto decreciente que contiene a A.
- 2. $\uparrow A$ es el menor subconjunto creciente que contiene a A.
- 3. A es decreciente si y sólo si $A = \downarrow A$
- 4. A es creciente si y sólo si $A = \uparrow A$.

Proposición

- 1. $\downarrow A$ es el menor subconjunto decreciente que contiene a A.
- 2. $\uparrow A$ es el menor subconjunto creciente que contiene a A.
- 3. A es decreciente si y sólo si $A = \downarrow A$.
- 4. A es creciente si y sólo si $A = \uparrow A$.

Proposición

Sea P un conjunto ordenado y sea $A \subseteq P$. Entonces

- 1. $\downarrow A$ es el menor subconjunto decreciente que contiene a A.
- 2. $\uparrow A$ es el menor subconjunto creciente que contiene a A.
- 3. A es decreciente si y sólo si $A = \downarrow A$.
- 4. A es creciente si y sólo si $A = \uparrow A$.

Proposición

Sea P un conjunto ordenado y sea $A \subseteq P$. Entonces

- 1. $\downarrow A$ es el menor subconjunto decreciente que contiene a A.
- 2. $\uparrow A$ es el menor subconjunto creciente que contiene a A.
- 3. A es decreciente si y sólo si $A = \downarrow A$.
- 4. A es creciente si y sólo si $A = \uparrow A$.

Proposición

Sea P un conjunto ordenado y sean $x,y\in P$. Las siguientes son equivalentes:

- $1. \ x \le y;$
- $2. \downarrow x \subseteq \downarrow y;$
- 3. $(\forall I \in \mathcal{O}(P)), y \in I \implies x \in I$.

Proposición

Sea P un conjunto ordenado y sea $A \subseteq P$. Entonces

- 1. $\downarrow A$ es el menor subconjunto decreciente que contiene a A.
- 2. $\uparrow A$ es el menor subconjunto creciente que contiene a A.
- 3. A es decreciente si y sólo si $A = \downarrow A$.
- 4. A es creciente si y sólo si $A = \uparrow A$.

Proposición

Sea P un conjunto ordenado y sean $x,y\in P$. Las siguientes son equivalentes:

- 1. $x \leq y$;
- $2. \downarrow x \subseteq \downarrow y;$
- 3. $(\forall I \in \mathcal{O}(P)), y \in I \implies x \in I$.

Proposición

Sea P un conjunto ordenado y sea $A \subseteq P$. Entonces

- 1. $\downarrow A$ es el menor subconjunto decreciente que contiene a A.
- 2. $\uparrow A$ es el menor subconjunto creciente que contiene a A.
- 3. A es decreciente si y sólo si $A = \downarrow A$.
- 4. A es creciente si y sólo si $A = \uparrow A$.

Proposición

Sea P un conjunto ordenado y sean $x, y \in P$. Las siguientes son equivalentes:

- 1. $x \leq y$;
- 2. $\downarrow x \subseteq \downarrow y$;
- 3. $(\forall I \in \mathcal{O}(P)), y \in I \implies x \in I$.

Proposición

Sea P un conjunto ordenado y sea $A \subseteq P$. Entonces

- 1. $\downarrow A$ es el menor subconjunto decreciente que contiene a A.
- 2. $\uparrow A$ es el menor subconjunto creciente que contiene a A.
- 3. A es decreciente si y sólo si $A = \downarrow A$.
- 4. A es creciente si y sólo si $A = \uparrow A$.

Proposición

Sea P un conjunto ordenado y sean $x,y\in P.$ Las siguientes son equivalentes:

- 1. $x \leq y$;
- 2. $\downarrow x \subseteq \downarrow y$;
- 3. $(\forall I \in \mathcal{O}(P)), y \in I \implies x \in I$.

Definición

- ightharpoonup monótona si $x \leq_P y \implies \varphi(x) \leq_{\mathcal{O}} \varphi(y)$.
- ▶ un embedding si $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y)$.
- un isomorfismo si es un embedding y sobreyectiva.

Definición

- ▶ monótona si $x \leq_P y \implies \varphi(x) \leq_Q \varphi(y)$.
- ightharpoonup un embedding si $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y)$.
- un isomorfismo si es un embedding y sobreyectiva.

Definición

- ▶ monótona si $x \leq_P y \implies \varphi(x) \leq_Q \varphi(y)$.
- ▶ un embedding si $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y)$.
- un isomorfismo si es un embedding y sobreyectiva.

Definición

- ▶ monótona si $x \leq_P y \implies \varphi(x) \leq_Q \varphi(y)$.
- ▶ un embedding si $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y)$.
- un isomorfismo si es un embedding y sobreyectiva.

Definición

Sean P y Q conjuntos ordenados. Una función $\varphi\colon P\to Q$ es llamada:

- ▶ monótona si $x \leq_P y \implies \varphi(x) \leq_Q \varphi(y)$.
- ▶ un embedding si $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y)$.
- un isomorfismo si es un embedding y sobreyectiva.

Ejemplo 10

Sea P un conjunto ordenado. Entonces la función $\varphi \colon P \to \mathcal{O}(P)$ definida por $\varphi(x) = \downarrow x$ es un embedding.

Ejercicios propuestos

Ejercicios Pag. 25

$$1.1 - 1.3 - 1.4 - 1.7 - 1.8 - 1.10 - 1.13 - 1.22 - 1.24$$
.

Ejercicio 1

Sea P un conjunto ordenado y sea $A, B \subseteq P$. Probar que:

- (a) $\uparrow A$ es el menor subconjunto creciente que contiene a A.
- (b) A es creciente si y sólo si $A = \uparrow A$.
- (c) Si $A \subseteq B$, entonces $\uparrow A \subseteq \uparrow B$.

Ejercicio 2

Sea P un conjunto ordenado y sean $x,y\in P.$ Probar que las siguientes condiciones son equivalentes.

- 1. $x \leq y$.
- 2. $\uparrow y \subseteq \uparrow x$.
- 3. Para todo subconjunto creciente $F, x \in F \implies y \in F$.

Ejercicios propuestos

Ejercicio 3

Sean $\varphi\colon P\to Q$ y $\psi\colon Q\to R$ embeddings. Probar que $\psi\circ\varphi\colon P\to R$ es un embedding.