Calcul et irrationalité de zeta(2)

Dans ce problème, pour une fonction f et un entier naturel k, $f^{(k)}$ désigne la dérivée k ème de la fonction f avec $f^{(0)} = f$. Sauf s'il est précisé entier naturel, un entier peut être positif ou négatif. Les parties I, II et IV sont indépendantes entre elles.

Partie I – Convergence de la suite
$$\left(\sum_{k=1}^{n} \frac{1}{k^{p}}\right)_{n\geq 1}$$

Dans cette partie, p et n sont deux entiers naturels non nuls avec $p \ge 2$, et on pose $S_n(p) = \sum_{k=1}^n \frac{1}{k^p}$.

- 1. Etudier la monotonie de la suite $(S_n(p))_{n\geq 1}$.
- 2.a Montrer que pour tout entier $k \ge 1$, $\frac{1}{(k+1)^p} \le \int_k^{k+1} \frac{1}{t^p} dt \le \frac{1}{k^p}$.
- 2.b Montrer que pour tout $n \ge 2$, $S_n(p) 1 \le \int_1^n \frac{1}{x^p} dx \le \frac{1}{p-1}$.
- 2.c Conclure que $S_n(p)$ converge. On pose $\zeta(p) = \lim_{n \to +\infty} S_n(p)$.

Partie II – Nombres de Bernoulli

1. Soit f une fonction définie et continue sur $[0,\pi]$ à valeurs réelles. Montrer qu'il existe une unique fonction $F:[0,\pi] \to \mathbb{R}$ de classe \mathcal{C}^1 telle que :

$$F' = f$$
 et $\int_0^{\pi} F(t) dt = 0$

2. Pour tout $p \in \mathbb{N}$, on considère les fonctions $B_p:[0,\pi] \to \mathbb{R}$ définies par :

$$B_0=1$$
 et $\forall p\in\mathbb{N}$, $B_{p+1}'=B_p$ et $\int_0^\pi B_{p+1}(t)\mathrm{d}t=0$.

- 2.a Exprimer $B_1(t)$ et $B_2(t)$.
- 2.b Montrer que pour tout $p \ge 2$, $B_p(0) = B_p(\pi)$.
- 3.a Montrer qu'il existe une unique suite réelle $(\beta_p)_{p\in\mathbb{N}}$ telle que :

$$\beta_0 = 1$$
 et pour tout $p \ge 2$, $\sum_{k=1}^{p} {p \choose k} \beta_{p-k} = 0$

- 3.b Calculer β_1 , β_2 , β_3 et β_4 .
- 4. Pour tout $p \in \mathbb{N}$, on définit $\hat{B}_p : [0, \pi] \to \mathbb{R}$ par :

$$\forall t \in [0, \pi], \ \hat{B}_p(t) = \frac{1}{p!} \sum_{k=0}^{p} {p \choose k} \beta_{p-k} \pi^{p-k} t^k.$$

- 4.a Calculer $\int_0^\pi \hat{B}_p(t) dt$ et observer que pour tout $p \ge 1$, $\hat{B}_p'(t) = \hat{B}_{p-1}(t)$.
- 4.b En déduire que pour tout $\,p\in\mathbb{N}\,$, $\,B_{\scriptscriptstyle p}=\hat{B}_{\scriptscriptstyle p}\,$.
- 4.c Que vaut $B_{\nu}(0)$?

Partie III – Calcul de $\zeta(2p)$

1. Calculer, pour $t \in]0,\pi]$, $\sum_{k=1}^{n} \cos(2kt)$ puis déterminer une constante λ telle que :

$$\forall t \in]0,\pi], \frac{\sin((2n+1)t)}{2\sin t} = \sum_{k=1}^{n} \cos(2kt) + \lambda$$

2. Montrer à l'aide d'une intégration par parties que pour toute fonction $f:[0,\pi]\to\mathbb{R}$ de classe \mathcal{C}^1 :

$$\lim_{n \to +\infty} \int_0^{\pi} f(t) \sin((2n+1)t) dt = 0$$

- 3. Pour des entiers $p \ge 0$ et k > 0 , on pose $I_{p,k} = \int_0^\pi B_{2p}(t) \cos(2kt) dt$.
- 3.a A l'aide de deux intégrations par parties, calculer $I_{1,k}$.
- 3.b Trouver, pour $p \ge 2$, une relation entre $I_{p,k}$ et $I_{p-1,k}$.
- 3.c En déduire l'expression de $I_{p,k}$ en fonction de p et de k .
- 4. On suppose $p \ge 1$ et on définit la fonction $\varphi_p: [0,\pi] \to \mathbb{R}$ par :

$$\varphi_p(0) = 0$$
, $\varphi_p(\pi) = 0$ et $\forall t \in]0, \pi[$, $\varphi_p(t) = \frac{B_{2p}(t) - B_{2p}(0)}{\sin t}$.

Nous **admettons** que cette fonction φ_p est de classe \mathcal{C}^1 .

- 4.a Exprimer $\int_0^\pi \varphi_p(t) \sin((2n+1)t) dt$ en fonction de $p \ge 1$, de n et de $B_{2p}(0)$.
- 4.b En déduire la valeur de $\zeta(2p)$ en fonction de p et de $B_{2p}(0)$.
- 5. Donner les valeurs de $\zeta(2)$ et de $\zeta(4)$.

Partie IV – Irrationalité de $\zeta(2)$

Dans cette partie, pour n entier naturel non nul et x réel, on pose $f_n(x) = \frac{x^n(1-x)^n}{n!}$.

- 1. Dans cette question, n est un entier naturel non nul.
- 1.a Montrer qu'il existe n+1 entiers $e_n, e_{n+1}, \dots, e_{2n}$ tels que $f_n(x) = \frac{1}{n!} \sum_{i=1}^{2n} e_i x^i$.
- 1.b Montrer que pour tout entier naturel k, $f_n^{(k)}(0)$ est entier.
- 1.c En remarquant que $f_n(x) = f_n(1-x)$, observer $f_n^{(k)}(1)$ est aussi entier pour tout $k \in \mathbb{N}$.

On veut montrer que π^2 est un irrationnel, et on va **raisonner par l'absurde :** on suppose que $\pi^2 = \frac{a}{b}$ où a et b sont deux entiers naturels non nuls.

- 2. On pose, pour n entier naturel non nul et x réel : $F_n(x) = b^n \left(\pi^{2n} f_n(x) \pi^{2n-2} f_n^{(2)}(x) + \pi^{2n-4} f_n^{(4)}(x) \dots + (-1)^n f_n^{(2n)}(x) \right).$
- 2.a Montrer que $F_n(0)$ et $F_n(1)$ sont des entiers.
- 2.b On pose, pour n entier naturel non nul et x réel :

$$g_n(x) = F'_n(x)\sin(\pi x) - \pi F_n(x)\cos(\pi x)$$

Montrer que, pour $\,n\,$ entier naturel non nul et $\,x\,$ réel :

$$g_n'(x) = \pi^2 a^n f_n(x) \sin(\pi x).$$

2.c Etablir que $A_n = \pi \int_0^1 a^n f_n(x) \sin(\pi x) dx$ est un entier.

- 3. On pose, toujours pour le même entier a, $u_n = \frac{a^n}{n!}$.
- 3.a Montrer qu'il existe un entier naturel n_0 tel que pour tout entier $n \ge n_0$, $u_n < \frac{1}{2}$.
- 3.b Montrer que pour tout réel $x \in [0,1]$, $0 \le f_n(x) \le \frac{1}{n!}$.
- 3.c Montrer alors que, pour tout entier $n \geq n_0$, $A_n \in \left]0,1\right[$ et conclure que π^2 est irrationnel.
- 3.d Peut-on déduire de ce qui précède l'irrationalité de π ?