Lecture 20: The Eight-Point Algorithm

Readings T&V 7.3 and 7.4

CSE486, Penn State Essential/Fundamental Matrix

The essential and fundamental matrices are 3x3 matrices that "encode" the epipolar geometry of two views.

Motivation: Given a point in one image, multiplying by the essential/fundamental matrix will tell us which epipolar line to search along in the second view.

Robert Collins CSE486, Penn State E/F Matrix Summary

Longuet-Higgins equation $p_r^T E p_l = 0$

Epipolar lines: $\tilde{p_r}^T \tilde{l_r} = 0$ $\tilde{p_l}^T \tilde{l_l} = 0$ $\tilde{l_r} = E p_l$ $\tilde{l_l} = E^T p_r$

Epipoles: $e_r^T E = \mathbf{0}$ $E e_l = \mathbf{0}$

E vs F: E works in film coords (calibrated cameras)
F works in pixel coords (uncalibrated cameras)

Robert Collins CSE.486, Penn Sta Computing F from Point Matches

- Assume that you have m correspondences
- Each correspondence satisfies:

$$\bar{p_r}_i^T F \bar{p_l}_i = 0 \quad i = 1, \dots, m$$

- F is a 3x3 matrix (9 entries)
- Set up a **HOMOGENEOUS** linear system with 9 unknowns

Computing F $\bar{p}_{li} = (x_i \ y_i \ 1)^T \ \bar{p}_{ri} = (x_i' \ y_i' \ 1)^T \\ \bar{p}_{ri}^T F \bar{p}_{li} = 0 \ i = 1, \dots, m$ $\begin{bmatrix} x_i' \ y_i' \ 1 \end{bmatrix} \begin{bmatrix} f_{11} \ f_{12} \ f_{13} \\ f_{21} \ f_{22} \ f_{23} \\ f_{31} \ f_{32} \ f_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} = 0$

Computing F

$$\left[\begin{array}{ccc} x_i' & y_i' & 1 \end{array}\right] \left[\begin{array}{ccc} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{array}\right] \left[\begin{array}{c} x_i \\ y_i \\ 1 \end{array}\right] = 0$$

$$x_i x_i' f_{11} + x_i y_i' f_{21} + x_i f_{31} + y_i x_i' f_{12} + y_i y_i' f_{22} + y_i f_{32} + x_i' f_{13} + y_i' f_{23} + f_{33} = 0$$

Robert Collins CSE486, Penn State

Computing F

$$\left[\begin{array}{ccc} x_i' & y_i' & 1 \end{array}\right] \left[\begin{array}{ccc} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{array}\right] \left[\begin{array}{c} x_i \\ y_i \\ 1 \end{array}\right] = 0$$

Given m point correspondences...

Given m point correspondences...
$$\begin{bmatrix} x_1x'_1 & x_1y'_1 & x_1 & y_1x'_1 & y_1y'_1 & y_1 & x'_1 & y'_1 & 1 \\ \vdots & \vdots \\ x_mx'_m & x_my'_m & x_m & y_mx'_m & y_my'_m & y_m & x'_m & y'_m & 1 \end{bmatrix} \begin{bmatrix} f_{21} \\ f_{31} \\ f_{12} \\ f_{32} \\ f_{13} \\ f_{23} \end{bmatrix} = 0$$

Think: how many points do we need?

Robert Collins CSE486, Penn State

How Many Points?

Unlike a homography, where each point correspondence contributes two constraints (rows in the linear system of equations), for estimating the essential/fundamental matrix, each point only contributes one constraint (row). [because the Longuet-Higgins / Epipolar constraint is a scalar eqn.]

Thus need at least 8 points.

Hence: The Eight Point algorithm!

Robert Collins CSE486, Prom the Solving Homogeneous Systems Self-study

Assume that we need the non trivial solution of:

$$A\mathbf{x} = 0$$

with m equations and n unknowns, $m \ge n - 1$ and rank(A) = n-1

Since the norm of x is arbitrary, we will look for a solution with norm ||x|| = 1

Robert Collins CSE486, Ponn Sote Self-study

Least Square solution

We want Ax as close to 0 as possible and ||x|| = 1:

$$\min_{\mathbf{x}} ||A\mathbf{x}||^2 \text{ s.t. } ||x||^2 = 1$$

$$||A\mathbf{x}||^2 = (A\mathbf{x})^T (A\mathbf{x}) = \mathbf{x}^T A^T A\mathbf{x}$$
$$||\mathbf{x}||^2 = \mathbf{x}^T \mathbf{x} = 1$$

CSEASA Pour the Optimization with constraints Self-study

Define the following cost:

$$\mathcal{L}(\mathbf{x}) = \mathbf{x}^T A^T A \mathbf{x} - \lambda (\mathbf{x}^T \mathbf{x} - 1)$$

This cost is called the LAGRANGIAN cost and λ is called the LAGRANGIAN multiplier

The Lagrangian incorporates the constraints into the cost function by introducing extra variables.

CSE-486, Poen te Optimization with constraints Self-study

$$\min_{\mathbf{x}} \left\{ \mathcal{L}(\mathbf{x}) = \mathbf{x}^T A^T A \mathbf{x} - \lambda (\mathbf{x}^T \mathbf{x} - 1) \right\}$$

Taking derivatives wrt to x and λ :

$$A^T A \mathbf{x} - \lambda \mathbf{x} = 0$$
$$\mathbf{x}^T \mathbf{x} - 1 = 0$$

- ·The first equation is an eigenvector problem
- · The second equation is the original constraint

CSEASO, Program Tre Optimization with constraints Self-study

$$A^T A \mathbf{x} - \lambda \mathbf{x} = 0$$
$$A^T A \mathbf{x} = \lambda \mathbf{x}$$

·x is an eigenvector of A^TA with eigenvalue λ : e_{λ}

$$\mathcal{L}(\mathbf{e}_{\lambda}) = \mathbf{e}_{\lambda}^{T} A^{T} A \mathbf{e}_{\lambda} - \lambda (\mathbf{e}_{\lambda}^{T} \mathbf{e}_{\lambda} - 1)$$
$$\mathcal{L}(\mathbf{e}_{\lambda}) = \lambda \mathbf{e}_{\lambda}^{T} \mathbf{e}_{\lambda} = \lambda$$

·We want the eigenvector with smallest eigenvalue

Robert Collins CSE486, Poin Site

We can find the eigenvectors and eigenvalues of A^TA by finding the Singular Value Decomposition of A

Robert Collins CSE-486, Preparate Singular Value Decomposition (SVD)

Any m \times n matrix A can be written as the product of 3 matrices:

$$A = UDV^T$$

Where:

- \cdot U is m x m and its columns are orthonormal vectors
- \cdot V is n x n and its columns are orthonormal vectors
- \cdot D is m x n diagonal and its diagonal elements are called the singular values of A, and are such that:

$$\sigma_{\! 1}$$
 , $\sigma_{\! 2}$, ... $\sigma_{\! n}$, 0

SVD Properties

$$A = UDV^T$$

- The columns of U are the eigenvectors of AA^T
- \cdot The columns of V are the eigenvectors of A^TA
- . The squares of the diagonal elements of D are the eigenvalues of AA^{T} and $A^{\mathsf{T}}A$

Robert Collins CSE486, Penn St Computing F: The 8 pt Algorithm

$$A\mathbf{x} = 0$$
 A has rank 8
$$\min_{\mathbf{x}} ||A\mathbf{x}||^2 \text{ s.t. } ||x||^2 = 1$$

•Find eigenvector of A^TA with <u>smallest</u> eigenvalue!

Algorithm EIGHT POINT

The input is formed by m point correspondences, $m \ge 8$

- Construct the m x 9 matrix A
- Find the SVD of A: $A = UDV^T$
- The entries of F are the components of the column of V corresponding to the least s.v.

Robert Collins CSE486, Penn State

Algorithm EIGHT POINT

F must be singular (remember, it is rank 2, since it is important for it to have a left and right nullspace, i.e. the epipoles). To enforce rank 2 constraint:

- Find the SVD of F: $F = U_f D_f V_f^T$
- Set smallest s.v. of F to 0 to create D'_f
- Recompute F: $F = U_f D_f^* V_f^T$

Robert Collins CSE486, Poon Ste

Numerical Details

The coordinates of corresponding points can have a wide range leading to numerical instabilities.

• It is better to first normalize them so they have average 0 and stddev 1 and denormalize F at the end:

$$\hat{\boldsymbol{x}}_{i} = T\boldsymbol{x}_{i} \qquad \hat{\boldsymbol{x}}_{i}' = T'\boldsymbol{x}_{i}' \qquad \qquad \prod_{T=\begin{bmatrix} \frac{1}{\sigma^{2}} & 0 & -\mu_{s} \\ 0 & \frac{1}{\sigma^{2}} & -\mu_{s} \\ 0 & 0 & 1 \end{bmatrix}}$$

$$\boldsymbol{F} = (T')^{-1}\boldsymbol{F}_{n}\boldsymbol{T}$$

Hartley preconditioning algorithm: this was an "optional" topic in Lecture 16. Go back and look if you want to know more.

Robert Collins
CSE486, Penn State

A Practical Issue

How to "rectify" the images so that any scan-line stereo alorithm that works for simple stereo can be used to find dense matches (i.e. compute a disparity image for every pixel).

Image Reprojection
 reproject image planes onto common plane parallel to line between optical centers
 Notice, only focal point of camera really matters

Seitz, UW

Image Rectification

Method from T&V 7.3.7

Assuming extrinsic parameters R & T are known, compute a 3D rotation that makes conjugate epipolar lines collinear and parallel to the horizontal image axis

Remember: a rotation around focal point of camera is just a 2D homography in the image!

Note: this method from the book assumes calibrated cameras (we can recover R,T from the E matrix). In a moment, we will see a more general approch that uses F matrix.

Robert Collins CSE486, Penn State

Image Rectification

- Rectification involves two rotations:
 - First rotation sends epipoles to infinity
 - Second rotation makes epipolar lines parallel
- Rotate the left and right cameras with first R₁ (constructed from translation T)
- Rotate the right camera with the R matrix
- · Adjust scales in both camera references

Robert Collins CSE486, Penn State

eq. $\mathbf{e_1} = \frac{\mathbf{T}}{||\mathbf{T}||}$ Build the rotation:

where T is just a unit vector representing the epipole in the left image. We know how to compute this from E, from last class.

Robert Collins CSE486, Penn State

Image Rectification

Build the rotation: $R_{rect} = \begin{bmatrix} \mathbf{e_1}^T \\ \mathbf{e_2}^T \\ \mathbf{e_3}^T \end{bmatrix}$ $_{\text{with:}}$ $e_1 = rac{T}{||T||}$

$$\mathbf{e_2} = \frac{1}{\sqrt{T_x^2 + T_y^2}} \begin{bmatrix} -T_y \\ T_x \\ 0 \end{bmatrix} \mathbf{e_3} = \mathbf{e_1} \times \mathbf{e_2}$$

Verify that this homography maps e1 to [1 0 0]'

Robert Collins CSE486, Penn State

Algorithm Rectification

- Build the matrix R_{rect}
- Set $R_1 = R_{rect}$ and $R_r = R.R_{rect}$
- For each left point $p_1 = (x,y,f)^T$
 - compute $R_1 p_1 = (x', y', z')^T$
 - Compute $p'_1 = f/z' (x', y' z')^T$
- Repeat above for the right camera with R_r

