An Empirical Guide to the Behavior and Use of Scalable Persistent Memory

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, Steven Swanson

Non-Volatile Systems Laboratory

Department of Computer Science & Engineering

University of California, San Diego

Department of Electrical, Computer & Energy Engineering
University of Colorado, Boulder

Cool.

Not Just Slow Dense DRAMTM

Not Just Slow Dense DRAMTM

- Slower media
 - -> More complex architecture
 - -> Second-order performance anomalies
 - -> Fundamentally different

Outline

- Background
- Basics: Optane DIMM Performance
- Lessons: Optane DIMM Best Practices
 - *not included: Emulation Study, Best Practices in Macrobenchmarks (see the paper)
- Conclusion

Background

Optane DIMM

2

Background: Optane Interleaving

 Optane is interleaved across NVDIMMs at 4KB granularity.

Background: Optane Interleaving

 Optane is interleaved across NVDIMMs at 4KB granularity.

Basics: How does Optane DC perform?

Basics: Our Approach

- Microbenchmark sweeps across state space
 - Access Patterns (random, sequential)
 - Operations (read, ntstore, clflush, etc.)
 - Access/Stride Size
 - Power Budget
 - NUMA Configuration
 - Address Space Interleaving
- Targeted experiments
- Total: 10,000 experiments
 - https://github.com/NVSL/OptaneStudy

Test Platform

- CPU
 - Intel Cascade Lake, 24 cores at 2.2 GHz in 2 sockets
 - Hyperthreading off
- DRAM
 - 32 GB Micron DDR4 2666 MHz
 - 384 GB across 2 sockets w/ 6 channels
- Optane
 - 256 GB Intel Optane 2666 MHz QS
 - 3 TB across 2 sockets w/ 6 channels
- OS
 - Fedora 27, 4.13.0

Basics: Latency

- 2x -3x as slow as DRAM
- Write latency masked by ADR

Basics: Bandwidth

~Scalable reads, Non-scalable writes

Basics: Bandwidth

Access size matters

Basics: Bandwidth

A mystery!

Lessons: What are Optane Best Practices?

Lessons: What are Optane Best Practices?

- Avoid small random accesses
- Use ntstores for large writes
- Limit threads accessing one NVDIMM
- Avoid mixed and multi-threaded NUMA accesses

Lesson #1: Avoid small random accesses

Lesson #1: Avoid small random accesses

Lesson #1: Avoid small random accesses

Lesson #1: Avoid small random accesses

Lessons: Optane Buffer Size

Write amplification if working set is larger than Optane Buffer

Lesson #1: Avoid small random accesses

- Bad bandwidth with:
 - Small random writes (<256B)
 - Not tiny working set / NVDIMM (>16KB)
- Good bandwidth with
 - Sequential accesses

Lesson #2: Use ntstores for large writes

Lessons: Store instructions

ntstore

store + clwb

store

Lessons: Store instructions

ntstore

store + clwb

*lost bandwidth

store

*lost locality

Lesson #2: Use ntstores for large writes

Lesson #2: Use ntstores for large writes

- Non-temporal stores bypass the cache
 - Avoid cache-line read
 - Maintain locality

Lesson #3: Limit threads accessing one NVDIMM

Lesson #3: Limit threads accessing one NVDIMM

Contention at Optane Buffer

Contention at iMC

Lessons: Contention at Optane Buffer

More threads = access amplification = lower bandwidth

Lessons: Contention at iMC

- iMCs aren't designed for slow, variable latency accesses
 - Short queues end up clogged

Lessons: Contention at iMC

Vary #threads/NVDIMM (total threads = 6)

Lesson: Contention at iMC

iMC contention is largest when random access size = interleave size (4KB)

Lesson: Contention at iMC

- iMC contention is largest when random access size = interleave size (4KB)
- iMC load is fairest when access size = #DIMMs x interleave size (24KB)

Lesson #3: Limit threads accessing one NVDIMM

- Contention at Optane Buffer
 - Increase access amplification
- Contention at iMC
 - Lose bandwidth through uneven NVDIMM load
 - Avoid interleave aligned random accesses

NUMA effects impact Optane more than DRAM

- NUMA effects impact Optane more than DRAM
- R/W ratio is more important

Conclusion

Conclusion

- Not Just Slow Dense DRAM
- Slower media
 - -> More complex architecture
 - -> Second-order performance anomalies
 - -> Fundamentally different

- Max performance is tricky
 - Avoid small random accesses
 - Use ntstores for large writes
 - Limit threads accessing one NVDIMM
 - Avoid mixed and multi-threaded NUMA accesses

