

Plan today

- Classification
 - Decision tree classification finish off from last lecture
 - k nearest neighbor classification

Tree Induction

- Issues
 - Determine how to split the records
 - · How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- · Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5 C1: 5 C0: 9 C1: 1

Non-homogeneous, High degree of impurity Homogeneous,

Low degree of impurity

Measures of Node Impurity

- Entropy
 - We have seen entropy in the feature correlation section, where it was used to measure the amount of uncertainty in an outcome
 - Entropy can also be viewed as an impurity measure
 - The set {A,B,C,A,A,A,A,A} has low entropy: low uncertainty and **high purity**
 - The set {A,B,C,D,B,E,A,F} has high entropy: high uncertainty and low purity

Node Impurity Criteria based on Entropy

• Entropy (H) at a given node t:

$$H(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log $\rm n_c$) when records are equally distributed among all classes ($\rm n_c$ is number of classes)
 - Minimum (0.0) when all records belong to one class

Examples for computing Entropy

MELBOURNE

Examples for computing Entropy

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log_2 0 - 1 \log_2 1 = -0 - 0 = 0$$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$H(t) = -\sum_{j} p(j \mid t) \log_2 p(j \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log_2 0 - 1 \log_2 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2(1/6) - (5/6) \log_2(1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

MELBOURNE

Question: What is entropy of this node?

Question: What is entropy of this node?

$$H(t) = -\sum_{j} p(j \mid t) \log_2 p(j \mid t)$$

C1	13
C2	20

$$H(t) = -\sum_{j} p(j|t) \log_2 p(j|t)$$

$$P(C1) = \frac{13}{33} \qquad P(C2) = \frac{20}{33}$$

C1	13
C2	20

$$P(C1) = \frac{13}{33}$$
 $P(C2) = \frac{20}{33}$

Entropy =
$$-(\frac{13}{33}log_2\frac{13}{33} + \frac{20}{33}log_2\frac{20}{33})$$

How good is a Split?

- Compare the impurity (entropy) of parent node (before splitting)
- With the impurity (entropy) of the children nodes (after splitting)

$$\begin{aligned} Gain = & H(Parent) - H(Parent|Child) \\ = & H(Parent) - \sum_{j=1}^k \frac{N(v_j)}{N} H(v_j) \end{aligned}$$

- H(v_i): impurity measure of node v_i
- j: children node index
- N(v_i): number of data points in child node v_i
- N: number of data points in parent node
- The larger the gain, the better

THE UNIVERSITY OF MELBOURNE

How good is a Split?

- Note: the information gain is equivalent to the mutual information between the class feature and the feature being split on
- Thus splitting using the information gain is to choose the feature with highest information shared with the class variable

Question 2c) from 2016 exam

Given a dataset with two classes, A and B, suppose the root node of a decision tree has 50 instances of class A and 150 instances of class B. Consider a candidate split of this root node into two children, the first with (25 class A and 25 class B), the second with (25 class A and 125 class B). Write a formula to measure the utility of this split using the entropy criterion. Explain how this formula helps measure split utility

criterion. Explain how this formula helps measure split utility

Question 2c) from 2016 exam

Given a dataset with two classes, A and B, suppose the root node of a decision tree has 50 instances of class A and 150 instances of class B. Consider a candidate split of this root node into two children, the first with (25 class A and 25 class B), the second with (25 class A and 125 class B). Write a formula to measure the utility of this split using the entropy criterion. Explain how this formula helps measure split utility

$$\begin{aligned} \text{Entropy(root)} &= -(\frac{50}{200}) \log(\frac{50}{200}) - (\frac{150}{200}) \log(\frac{150}{200}) \\ &= -(\frac{25}{50}) \log(\frac{25}{50}) - (\frac{25}{50}) \log(\frac{25}{50}) \end{aligned} \qquad \begin{aligned} &\text{A:25} \\ &\text{B:25} \end{aligned} \qquad \begin{aligned} &\text{A:25} \\ &\text{B:125} \end{aligned} \qquad \end{aligned}$$

MELBOURNE

Question 2c) from 2016 exam

Given a dataset with two classes, A and B, suppose the root node of a decision tree has 50 instances of class A and 150 instances of class B. Consider a candidate split of this root node into two children, the first with (25 class A and 25 class B), the second with (25 class A and 125 class B). Write a formula to measure the utility of this split using the entropy criterion. Explain how this formula helps measure split utility

 $Split\ utility =\ Information\ Gain$

- = Entropy(root) Entropy(root|split)= $Entropy(root) [(\frac{50}{200}) * Entropy(left child)]$
- $+\left(\frac{150}{200}\right)*Entropy(right\ child)]$

How to determine the Best Split?

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

- Compute the gain of all splits
- Choose the one with largest gain

How to determine the Best Split?

Before Splitting: 10 records of class 0, 10 records of class 1

Own Car: Information gain=0.029 Car type: Information gain=0.62

We should choose Car type as the best split???!!!

Creating a decision tree

- Calc information gain [Left Child], [Right Child] for each of the following
 - Refund [Yes], [No]
 - Marital status [Single],[Married],[Divorced]
 - Taxable income

 - [60,60], (60,220] [60,70], (70,220]
 - [60,75],(75,220]
 - [60,85],(85,220] [60,90],(90,220]
 - [60,95],(95,220]
 - [60,100],(100,220]
 - [60,120],(120,220]
 - [60,125],(125,220]
- Choose feature+split with the highest information gain and use this as the root node and its split
- Do recursively, terminating when a node consists of only Cheat=No or Cheat=Yes.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Decision tree: advantages and disadvantages

- Advantages
 - Easy to interpret
 - Relatively efficient to construct
 - Fast for making a decision about a test instance
- · Disadvantages
 - A simple greedy construction strategy, producing a set of ``If ..then" rules. Sometimes this is too simple for data with complex structure:
 - ``Everything should be as simple as possible, but no
 - For complex datasets, the tree might grow very big and not be easy to understand
 - May behave strangely for some types of features (E.g. student ID feature from earlier slide)

Decision tree classifier: training and testing

- · Divide training data into:
 - Training set (e.g. 2/3)
 - Test set (e.g. 1/3)
- Learn decision tree using the training set
- Evaluate performance of decision tree on the test set

_				
Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	ank	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Metrics for Performance Evaluation

THE UNIVERSITY OF MELBOURNE

Metrics for Performance Evaluation

- Can be summarized in a Confusion Matrix (contingency table)
 - Actual class: {yes, no, yes, yes, ...}
 - Predicted class: {no, yes, yes, no...}

	PREDICTED CLASS			
	Class=Yes Class=No			
ACTUAL CLASS	Class=Yes	а	b	
	Class=No	С	d	

- a: TP (true positive)
- b: FN (false negative)
- c: FP (false positive) d: TN (true negative)

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

- Actual class: {yes, no, yes, yes, no, yes, no, no}
- Predicted: {no, yes, yes, no, yes, no, no, yes}

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a= 1 (TP)	b=3 (FN)
	Class=No	c=3 (FP)	d=1 (TN)

Question

- For an accurate decision tree classifier, we want to minimise both:
 - False positives (saying yes when we should say no)
 - False negatives (saying no when we should say yes)
- Describe a real scenario where it is
 - More important to minimise the false positives
 - More important to minimise the false negatives

Limitations of accuracy

THE UNIVERSITY OF MELBOURNE

2017 exam question 3f

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9~%
 - Accuracy is misleading here because model does not detect any class 1 example
 - Other metrics can be used instead of accuracy, that address this problem (but we won't cover these)
- (2 marks) What is the purpose of separating a dataset into training and test sets, when evaluating the performance of a classifier?

THE UNIVERSITY OF MELBOURNE

Why do we split the dataset into training and testing for evaluating accuracy?

K nearest neighbor classifier

Another widely used and intuitive algorithm for prediction

Nearest Neighbor Classifiers

- Basic idea:
 - "If it walks like a duck, quacks like a duck, then it's probably a duck"

Nearest-Neighbor Classifiers

Unknown record

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve

To classify an unknown record:

- Compute distance to other training records
- 2. Identify *k* nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

THE UNIVERSITY OF MELBOURNE

Distance measure

- Compute distance between two points $p=(p_1,p_2,...), q=(q_1,q_2,...)$
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Can also use Pearson coefficient (similarity measure)
- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Or weight the vote according to distance
 - weight factor, $w = \frac{1}{d^2}$

K- Nearest Neighbor classifier

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Points to remember from this lecture

THE UNIVERSITY OF MELBOURNE

References and Acknowledgement

- Understand the use of accuracy as a metric for measuring the performance of a classification method.
- Understand how TP,TN,FP and FN are used in the accuracy calculation. The formula for accuracy will be provided on the exam
- understand the operation and rationale of the k nearest neighbor algorithm for classification
- understand the advantages and disadvantages of using k nearest neighbor or decision tree for classification

This lecture was prepared using some material adapted from:

- https://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf
- CS059 Data Mining -- Slides
- http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap4_basic_classification.ppt