A Glimpse into Automotive Computer Vision Using Convolutional Neural Networks

by: Eric H. Lewis

Last Update: August 12th 2021

Table of Contents

01

Understanding the Motivation

- Describe Computer Vision
- Uses in Automotive Industry

02

Concepts

Data

- Image Classification
- Object Detection
- Image Segmentation

Origins of the Data

➤ German Dataset

04

Data Augmentation 05

CNN / Results 06

Pitfalls / Solutions

- Resize
- GrayScale
- Normalization

CNN Accuracy: 0.98

Conclusion

Downsides of Augmentation

Proof of Concept for I.C

Tools / Technologies

Understanding the Motivation

Understanding the Motivation

Computer Vision Essentials

Data

Image Classification

Dataset for Image Classification

ClassId	Name
0	Speed limit (20km/h)
1	Speed limit (30km/h)
2	Speed limit (50km/h)
3	Speed limit (60km/h)
4	Speed limit (70km/h)
5	Speed limit (80km/h)
6	End of speed limit (80km/h)
7	Speed limit (100km/h)
8	Speed limit (120km/h)
9	No passing
10	No passing for vechiles over 3.5 metric tons
11	Right-of-way at the next intersection
12	Priority road
13	Yield
14	Stop
15	No vechiles
16	Vechiles over 3.5 metric tons prohibited
17	No entry

Distribution of Data

Data Augmentation

- Resize (32, 32, 3)
- Grayscale
- Equalization
- Normalization

Convolutional Neural Network

Youtube Credit:

CodeBasics - Simple Explanation of Convolutional Neural Network

Convolutional Neural Network

Input Image Dimensions (32, 32, 3)

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	28, 28, 60)	1560
conv2d_1 (Conv2D)	(None,	24, 24, 60)	90060
max_pooling2d (MaxPooling2D)	(None,	12, 12, 60)	0
conv2d_2 (Conv2D)	(None,	10, 10, 30)	16230
conv2d_3 (Conv2D)	(None,	8, 8, 30)	8130
max_pooling2d_1 (MaxPooling2	(None,	4, 4, 30)	0
dropout (Dropout)	(None,	4, 4, 30)	Θ
flatten (Flatten)	(None,	480)	Θ
dense (Dense)	(None,	500)	240500
dropout_1 (Dropout)	(None,	500)	0
dense 1 (Dense)	(None,	43)	21543

Total params: 378,023 Trainable params: 378,023 Non-trainable params: 0

Results

TKinter GUI

Image Classification of Traffic Signs

Pitfalls

Solutions

- RollingTraining Sets
- Gather more data.

Do you have any questions?

