MODERN ALGEBRA II SPRING 2013: SIXTH PROBLEM SET

- 1. Show that, if $r \in \mathbb{Q}$ and $r = \delta^2$ for some $\delta \in \mathbb{Q}(\sqrt{2})$, then either $r = s^2$ for some $s \in \mathbb{Q}$ or $r = 2s^2$ for some $s \in \mathbb{Q}$. Conclude that there is no $\delta \in \mathbb{Q}(\sqrt{2})$ such that $\delta^2 = 3$, i.e. $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$. Conclude that $x^2 3$ is irreducible in $\mathbb{Q}(\sqrt{2})[x]$, in other words that $x^2 3 = \operatorname{irr}(\sqrt{3}, \mathbb{Q}(\sqrt{2}), x)$
- 2. Let $\alpha = \sqrt{2} + \sqrt{3}$. Show that α is a root of $x^4 10x^2 + 1$ and hence that $\operatorname{irr}(\alpha, \mathbb{Q}, x)$ divides $x^4 10x^2 + 1$. Show that $\mathbb{Q}(\alpha)$ is contained in any subfield of \mathbb{R} containing $\sqrt{2}$ and $\sqrt{3}$. By experimentation and direct computation, show that $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\alpha)$ (for example, you can begin by showing that $\sqrt{6} \in \mathbb{Q}(\alpha)$) and hence that $\mathbb{Q}(\alpha)$ is the smallest subfield of \mathbb{R} containing $\sqrt{2}$ and $\sqrt{3}$.
- 3. (A nested radical.) Let $\alpha = \sqrt{3+2\sqrt{2}}$. Show that α is a root of the polynomial $x^4-6x^2+1=0$. However, show that x^4-6x^2+1 is reducible in $\mathbb{Q}[x]$ by writing it as a product $(x^2+ax+b)(x^2-ax+b)$ for appropriate a and b. Interpret this fact by showing that $\sqrt{3+2\sqrt{2}}=r+s\sqrt{2}$ for some $r,s\in\mathbb{Q}$.
- 4. In the ring $\mathbb{F}_2[x]$, list all of the irreducible monic polynomials of degree at most three (recall that $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$). (Note: you should find two of degree 1, one of degree 2, and two of degree 3.) Using this information, decide if the polynomial $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{F}_2[x]$. (First test to see if it has any roots in \mathbb{F}_2 .)
- 5. (Chinese remainder theorem for F[x].) Let F be a field and let $f(x) \in F[x]$ and $g(x) \in F[x]$ be relatively prime. Show that

$$F[x]/(f(x)g(x)) \cong (F[x]/(f(x))) \times (F[x]/(g(x))).$$

as follows: by the Fundamental Homomorphism Theorem (= First Isomorphism Theorem) it is enough to find a surjective homomorphism $\rho \colon F[x] \to (F[x]/(f(x))) \times (F[x]/(g(x)))$ whose kernel is (f(x)g(x)). Define ρ via:

$$\rho(h(x)) = (h(x) + (f(x)), h(x) + (g(x)).$$

(i) Show that $\rho(h(x)) = 0 \iff \text{both } f(x) \text{ and } g(x) \text{ divide } h(x) \iff f(x)g(x) \text{ divides } h(x) \iff h(x) \in (f(x)g(x)).$

(ii) Show that ρ is surjective using the fact that there exist $r(x), s(x) \in F[x]$ such that r(x)f(x)+s(x)g(x)=1. In fact, given $a(x),b(x)\in F[x]$, show that, if we set

$$h(x) = r(x)b(x)f(x) + s(x)a(x)g(x),$$

then $\rho(h(x)) = (a(x) + (f(x)), b(x) + (g(x)))$. Hence ρ is surjective.

In particular, if $a, b \in F$ and $a \neq b$, conclude that

$$F[x]/((x-a)(x-b)) \cong F \times F$$
,

generalizing Problem 3(iii) from HW 5.

- 6. As in the handout, "An analogy and an example," there exists a field with 4 elements $E = \mathbb{F}_2(\alpha)$, where α is a root of the polynomial $x^2 + x + 1 \in \mathbb{F}_2[x]$. Since $x \alpha = x + \alpha$ is a root of $x^2 + x + 1$, the polynomial $x^2 + x + 1$ must factor into a product of linear polynomials, one of which is $x + \alpha$. In other words, $x^2 + x + 1 = (x + \alpha)(x + \beta)$, where β is another root of $x^2 + x + 1$ (possibly equal to α). Find β , in other words find the complete factorization of $x^2 + x + 1$ into irreducible polynomials in E[x]. Why can't α be a repeated root of $x^2 + x + 1$, in other words why can't $x^2 + x + 1 = (x + \alpha)^2$? (Hint: recall the Frobenius homomorphism in characteristic 2.)
- 7. Let $f(x) = x^2 + 1 \in \mathbb{F}_3[x]$. Show that f(x) is irreducible in $\mathbb{F}_3[x]$, and let $E = \mathbb{F}_3(\alpha) = \mathbb{F}_3[x]/(f(x))$, where $\alpha = x + (f(x))$ and we identify \mathbb{F}_3 with its image in E. What is the complete factorization of f(x) into a product of linear factors in E[x]? Show that E has 9 elements and that $(E, +) \cong (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$. How many elements are there in (E^*, \cdot) ? By experiment, show that the multiplicative group (E^*, \cdot) is cyclic by finding a generator. In fact, you can clearly rule out elements of \mathbb{F}_3 as generators. Also, α will not work since $\alpha^4 = 1$, and similarly for $2\alpha = -\alpha$. How many generators does E^* have (i.e. what is $\varphi(8)$, where φ is the Euler φ -function)? By counting, any element of E^* not equal to $1, 2, \alpha, 2\alpha$ should be a generator. Verify this directly.