Berechenbarkeit

Vorlesung 3: Mächtigkeit Turingmaschine

24. April 2025

Termine — Modul Berechenbarkeit

ÜBUNGEN	Vorlesung
22.4.	24.4.
Übung 1	Turingmaschine II
A-Woche (Montag Feiertag)	(Übungsblatt 2)
29.4.	1.5.
Übung 2	
B-Woche	
6.5.	8.5.
Übung 2	Loop-Programme
A-Woche	(Übungsblatt 3)
13.5.	15.5.
Übung 3	While-Programme
B-Woche	
20.5.	22.5.
Übung 3	Rekursion I
A-Woche	(Übungsblatt 4)
27.5.	29.5.
Übung 4	
B-Woche	

Übungen	Vorlesung
3.6.	5.6.
Übung 4	Rekursion II
A-Woche	(Übungsblatt 5)
10.6.	12.6.
Übung 5	Entscheidbarkeit
B-Woche (Montag Feiertag)	
17.6.	19.6.
Übung 5	Unentscheidbarkeit
A-Woche	(Übungsblatt 6)
24.6.	26.6.
Übung 6	Spez. Probleme
B-Woche	
1.7.	3.7.
Übung 6	Klasse P
A-Woche	
8.7.	10.7.
Abschlussübung	NP-Vollständigkeit
beide Wochen	

Definition (§2.4 Turingmaschine; Turing machine)

Turingmaschine ist Tupel $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$

- endl. Menge Q von **Zuständen** (states) mit $Q \cap \Gamma = \emptyset$
- endl. Menge Σ von Eingabesymbolen (input symbols)
- endl. Menge Γ von Arbeitssymbolen (work symbols) mit $\Sigma \subseteq \Gamma$
- Übergangsrelation (transition relation)

$$\Delta \subseteq \left(\left(Q \setminus \{q_+, q_-\} \right) \times \Gamma \right) \times \left(Q \times \Gamma \times \{\triangleleft, \triangleright, \diamond\} \right)$$

• Leersymbol (blank) $\square \in \Gamma \setminus \Sigma$

$$(\Gamma_{\mathcal{M}} = \Gamma \setminus \{\Box\})$$

- Startzustand (initial state) $q_0 \in Q$
- Akzeptierender Zustand (accepting state) $q_+ \in Q$
- Ablehnender Zustand (rejecting state) q_− ∈ Q

⊲ = gehe nach links; ▷ = gehe nach rechts; ◇ = keine Bewegung

Transformationssemantik

- Für Berechnung Funktionen & Modularität
- Eingabe übersetzt in Bandinhalt bei Akzeptanz
 - Band vor Kopf leer
 - Ausgabe beginnend unter Kopf bis zum ersten 🗆
 - Band dahinter leer

Transformationssemantik

- Für Berechnung Funktionen & Modularität
- Eingabe übersetzt in Bandinhalt bei Akzeptanz
 - Band vor Kopf leer
 - Ausgabe beginnend unter Kopf bis zum ersten
 - Band dahinter leer
- Beispiel §2.5 aus VL 2 berechnet

$$\{(ww^R,\varepsilon)\mid w\in\{a,b\}^*\}$$

Transformationssemantik

- Für Berechnung Funktionen & Modularität
- Eingabe übersetzt in Bandinhalt bei Akzeptanz
 - Band vor Kopf leer
 - Ausgabe beginnend unter Kopf bis zum ersten
 - Band dahinter leer
- Beispiel §2.5 aus VL 2 berechnet

$$\{(ww^R,\varepsilon)\mid w\in\{a,b\}^*\}$$

§3.1 Definition (Transformationssemantik; input-output relation)

Sei
$$M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$$
 TM und $\Gamma_M = \Gamma \setminus \{\square\}$

$$T(M) = \{(w, \upsilon) \in \Sigma^* \times \Gamma_M^* \mid \exists x, y \in \{\Box\}^* \colon \varepsilon \ q_0 \ w\Box \ \vdash_M^* \ x \ q_+ \ \upsilon y\}$$

§3.2 Theorem (Vereinigung)

Gegeben Turingmaschinen

$$\begin{split} \mathit{M}_1 &= (\mathit{Q}, \Sigma, \Gamma, \Delta, \square, \mathit{q}_0, \mathit{q}_+, \mathit{q}_-) \text{ und } \mathit{M}_2 = (\mathit{P}, \Sigma, \Gamma, \nabla, \square, \mathit{p}_0, \mathit{p}_+, \mathit{p}_-) \\ \text{existiert TM } \mathit{M} \text{ mit } \mathit{L}(\mathit{M}) &= \mathit{L}(\mathit{M}_1) \cup \mathit{L}(\mathit{M}_2) \text{ und } \mathit{T}(\mathit{M}) = \mathit{T}(\mathit{M}_1) \cup \mathit{T}(\mathit{M}_2) \end{split}$$

§3.2 Theorem (Vereinigung)

Gegeben Turingmaschinen

$$M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-) \text{ und } M_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$$
 existiert TM M mit $L(M) = L(M_1) \cup L(M_2)$ und $T(M) = T(M_1) \cup T(M_2)$

Beweisansatz

- 1. Nutze neuen Startzustand r_0
- 2. Neue Übergänge ohne Änderungen zu alten Startzuständen q_0 und p_0

§3.2 Theorem (Vereinigung)

Gegeben Turingmaschinen

$$\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-) \text{ und } \mathcal{M}_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$$
 existiert TM \mathcal{M} mit $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}_1) \cup \mathcal{L}(\mathcal{M}_2)$ und $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1) \cup \mathcal{T}(\mathcal{M}_2)$

Beweisansatz

- 1. Nutze neuen Startzustand r_0
- 2. Neue Übergänge ohne Änderungen zu alten Startzuständen q_0 und p_0
- M₁ und M₂ laufen normal, wobei alle Übergänge in p₊ oder p₋ stattdessen in q₊ bzw. q₋ gehen

§3.2 Theorem (Vereinigung)

Gegeben Turingmaschinen

$$\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-) \text{ und } \mathcal{M}_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$$
 existiert TM \mathcal{M} mit $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}_1) \cup \mathcal{L}(\mathcal{M}_2)$ und $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1) \cup \mathcal{T}(\mathcal{M}_2)$

§3.2 Theorem (Vereinigung)

Gegeben Turingmaschinen

$$\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-) \text{ und } \mathcal{M}_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$$
 existiert TM \mathcal{M} mit $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}_1) \cup \mathcal{L}(\mathcal{M}_2)$ und $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1) \cup \mathcal{T}(\mathcal{M}_2)$

OBdA sei
$$Q \cap P = \emptyset$$
 und $r_0 \notin Q \cup P$. Konstruiere TM
$$M = \left(Q \cup P \cup \{r_0\}, \Sigma, \Gamma, \Delta \cup \nabla \cup R, \Box, r_0, q_+, q_-\right)$$

$$R = \left\{ (r_0, \gamma) \rightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gamma \right\} \cup \left\{ (r_0, \gamma) \rightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gamma \right\} \cup \left\{ (p, \gamma) \rightarrow (q_+, \gamma', d) \mid (p, \gamma) \rightarrow (p_+, \gamma', d) \in \nabla \right\} \cup \left\{ (p, \gamma) \rightarrow (q_-, \gamma', d) \mid (p, \gamma) \rightarrow (p_-, \gamma', d) \in \nabla \right\}$$

§3.2 Theorem (Vereinigung)

Gegeben Turingmaschinen

$$\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-) \text{ und } \mathcal{M}_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$$
 existiert TM \mathcal{M} mit $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}_1) \cup \mathcal{L}(\mathcal{M}_2)$ und $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1) \cup \mathcal{T}(\mathcal{M}_2)$

OBdA sei
$$Q \cap P = \emptyset$$
 und $r_0 \notin Q \cup P$. Konstruiere TM
$$M = (Q \cup P \cup \{r_0\}, \Sigma, \Gamma, \Delta \cup \nabla \cup R, \Box, r_0, q_+, q_-)$$

$$R = \{(r_0, \gamma) \rightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup$$

$$\{(r_0, \gamma) \rightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup$$

$$\{(p, \gamma) \rightarrow (q_+, \gamma', d) \mid (p, \gamma) \rightarrow (p_+, \gamma', d) \in \nabla\} \cup$$

$$\{(p, \gamma) \rightarrow (q_-, \gamma', d) \mid (p, \gamma) \rightarrow (p_-, \gamma', d) \in \nabla\}$$

§3.2 Theorem (Vereinigung)

Gegeben Turingmaschinen

$$\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-) \text{ und } \mathcal{M}_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$$
 existiert TM \mathcal{M} mit $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}_1) \cup \mathcal{L}(\mathcal{M}_2)$ und $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1) \cup \mathcal{T}(\mathcal{M}_2)$

OBdA sei
$$Q \cap P = \emptyset$$
 und $r_0 \notin Q \cup P$. Konstruiere TM
$$M = (Q \cup P \cup \{r_0\}, \Sigma, \Gamma, \Delta \cup \nabla \cup R, \Box, r_0, q_+, q_-)$$

$$R = \{(r_0, \gamma) \rightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup$$

$$\{(r_0, \gamma) \rightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup$$

$$\{(p, \gamma) \rightarrow (q_+, \gamma', d) \mid (p, \gamma) \rightarrow (p_+, \gamma', d) \in \nabla\} \cup$$

$$\{(p, \gamma) \rightarrow (q_-, \gamma', d) \mid (p, \gamma) \rightarrow (p_-, \gamma', d) \in \nabla\}$$

§3.2 Theorem (Vereinigung)

Gegeben Turingmaschinen

$$\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-) \text{ und } \mathcal{M}_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$$
 existiert TM \mathcal{M} mit $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}_1) \cup \mathcal{L}(\mathcal{M}_2)$ und $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1) \cup \mathcal{T}(\mathcal{M}_2)$

OBdA sei
$$Q \cap P = \emptyset$$
 und $r_0 \notin Q \cup P$. Konstruiere TM
$$M = (Q \cup P \cup \{r_0\}, \Sigma, \Gamma, \Delta \cup \nabla \cup R, \Box, r_0, q_+, q_-)$$

$$R = \{(r_0, \gamma) \rightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup \{(r_0, \gamma) \rightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup \{(p, \gamma) \rightarrow (q_+, \gamma', d) \mid (p, \gamma) \rightarrow (p_+, \gamma', d) \in \nabla\} \cup \{(p, \gamma) \rightarrow (q_-, \gamma', d) \mid (p, \gamma) \rightarrow (p_-, \gamma', d) \in \nabla\}$$

§3.2 Theorem (Vereinigung)

Gegeben Turingmaschinen

$$\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-) \text{ und } \mathcal{M}_2 = (P, \Sigma, \Gamma, \nabla, \square, p_0, p_+, p_-)$$
 existiert TM \mathcal{M} mit $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}_1) \cup \mathcal{L}(\mathcal{M}_2)$ und $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1) \cup \mathcal{T}(\mathcal{M}_2)$

OBdA sei
$$Q \cap P = \emptyset$$
 und $r_0 \notin Q \cup P$. Konstruiere TM
$$M = \begin{pmatrix} Q \cup P \cup \{r_0\}, \Sigma, \Gamma, \Delta \cup \nabla \cup R, \Box, r_0, q_+, q_- \end{pmatrix}$$
 $R = \{(r_0, \gamma) \rightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup$ $\{(r_0, \gamma) \rightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\} \cup$ $\{(p, \gamma) \rightarrow (q_+, \gamma', d) \mid (p, \gamma) \rightarrow (p_+, \gamma', d) \in \nabla\} \cup$ $\{(p, \gamma) \rightarrow (q_-, \gamma', d) \mid (p, \gamma) \rightarrow (p_-, \gamma', d) \in \nabla\}$ Dann $L(M) = L(M_1) \cup L(M_2)$ und $T(M) = T(M_1) \cup T(M_2)$

$$\Gamma_{\mathcal{M}} = \Gamma \setminus \{\Box\}$$

§3.3 Definition (normierte TM; standardized TM)

TM $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ normiert, falls $u \in \{\square\}^*$ und $v \in \Gamma_M^* \{\square\}^*$ für alle $w \in \Sigma^*$, $u, v \in \Gamma^*$ mit $\varepsilon q_0 w_\square \vdash_M^* u q_+ v$

$$\Gamma_{M} = \Gamma \setminus \{\Box\}$$

§3.3 Definition (normierte TM; standardized TM)

```
TM M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-) normiert, falls u \in \{\square\}^* und v \in \Gamma_M^* \{\square\}^* für alle w \in \Sigma^*, u, v \in \Gamma^* mit \varepsilon q_0 w_\square \vdash_M^* u q_+ v
```

Notizen

- Normierte TM kann nur akzeptieren, falls Band links des Kopfes aus {□}* und Band unter und rechts des Kopfes aus 「™ {□}*
- Konstruieren meist normierte TM
- Vereinigung normierter TM gemäß Theorem §3.2 ist normiert

§3.4 Definition (Verkettung; composition)

Verkettung R_1 ; R_2 von Relationen $R_1 \subseteq A \times B$ und $R_2 \subseteq B \times C$

$$R_1 : R_2 = \{(a, c) \in A \times C \mid \exists b \in B : (a, b) \in R_1, (b, c) \in R_2\}$$

§3.4 Definition (Verkettung; composition)

Verkettung R_1 ; R_2 von Relationen $R_1 \subseteq A \times B$ und $R_2 \subseteq B \times C$

$$R_1 : R_2 = \{(a, c) \in A \times C \mid \exists b \in B : (a, b) \in R_1, (b, c) \in R_2\}$$

Notizen

- Reihenschaltung (Hintereinanderschaltung)
- Erhalten für verdoppeln = $\{(n,2n) \mid n \in \mathbb{N}\} \subseteq \mathbb{N} \times \mathbb{N}$

verdoppeln; verdoppeln =
$$\{(n, 4n) \mid n \in \mathbb{N}\}$$

$$\Gamma_{M_1} = \Gamma \setminus \{\Box\}$$

§3.5 Theorem (Verkettung)

Gegeben TM

 $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_{M_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ wobei M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

$$\Gamma_{M_1} = \Gamma \setminus \{\Box\}$$

§3.5 Theorem (Verkettung)

Gegeben TM

 $\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $\mathcal{M}_2 = (P, \Gamma_{\mathcal{M}_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ wobei \mathcal{M}_1 normiert. Dann existiert TM \mathcal{M} mit $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1)$; $\mathcal{T}(\mathcal{M}_2)$. Falls \mathcal{M}_2 normiert ist, dann ist \mathcal{M} normiert.

Beweisansatz

1. Starte M_1

$$\Gamma_{M_1} = \Gamma \setminus \{\Box\}$$

§3.5 Theorem (Verkettung)

Gegeben TM

 $\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $\mathcal{M}_2 = (P, \Gamma_{\mathcal{M}_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ wobei \mathcal{M}_1 normiert. Dann existiert TM \mathcal{M} mit $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1)$; $\mathcal{T}(\mathcal{M}_2)$. Falls \mathcal{M}_2 normiert ist, dann ist \mathcal{M} normiert.

Beweisansatz

- 1. Starte M₁
- Starte M₂ bei Akzeptanz von M₁ (Normierung für Ausgangssituation)

$$\Gamma_{M_1} = \Gamma \setminus \{\Box\}$$

§3.5 Theorem (Verkettung)

Gegeben TM

 $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_{M_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ wobei M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

Beweisansatz

- 1. Starte M₁
- Starte M₂ bei Akzeptanz von M₁ (Normierung für Ausgangssituation)

3. M_2 läuft normal

§3.5 Theorem (Verkettung)

Gegeben TM

 $\mathcal{M}_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $\mathcal{M}_2 = (P, \Gamma_{\mathcal{M}_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ wobei \mathcal{M}_1 normiert. Dann existiert TM \mathcal{M} mit $\mathcal{T}(\mathcal{M}) = \mathcal{T}(\mathcal{M}_1)$; $\mathcal{T}(\mathcal{M}_2)$. Falls \mathcal{M}_2 normiert ist, dann ist \mathcal{M} normiert.

§3.5 Theorem (Verkettung)

Gegeben TM

 $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_{M_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ wobei M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

Beweis

OBdA sei $Q \cap P = \emptyset$. Wir konstruieren TM

$$M = (Q \cup P, \Sigma, \Psi, \Delta \cup \nabla \cup R, \square, q_0, p_+, p_-)$$

$$R = \{ (q_+, \gamma) \to (p_0, \gamma, \diamond) \mid \gamma \in \Gamma \}$$

§3.5 Theorem (Verkettung)

Gegeben TM

 $M_1 = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und $M_2 = (P, \Gamma_{M_1}, \Psi, \nabla, \square, p_0, p_+, p_-)$ wobei M_1 normiert. Dann existiert TM M mit $T(M) = T(M_1)$; $T(M_2)$. Falls M_2 normiert ist, dann ist M normiert.

Beweis

OBdA sei $Q \cap P = \emptyset$. Wir konstruieren TM

$$\mathcal{M} = (Q \cup P, \Sigma, \Psi, \Delta \cup \nabla \cup R, \square, q_0, p_+, p_-)$$

 $\mathcal{R} = \{(q_+, \gamma) \to (p_0, \gamma, \diamond) \mid \gamma \in \Gamma\}$

Dann
$$T(M) = T(M_1)$$
; $T(M_2)$

§3.6 Definition (Iteration; *iteration*)

Iteration R^* (reflexive, transitive Hülle) der Relation $R \subseteq A \times A$

$$R^* = \bigcup_{n \in \mathbb{N}} R^n$$
 mit $R^0 = \mathrm{id}_A$ und $R^{n+1} = R^n$; R

§3.6 Definition (Iteration; iteration)

Iteration R^* (reflexive, transitive Hülle) der Relation $R \subseteq A \times A$

$$R^* = \bigcup_{n \in \mathbb{N}} R^n$$
 mit $R^0 = \mathrm{id}_A$ und $R^{n+1} = R^n$; R

Notizen

- Beliebig häufige Wiederholung der Relation
- Erhalten für verdoppeln = $\{(n,2n) \mid n \in \mathbb{N}\} \subseteq \mathbb{N} \times \mathbb{N}$

$$\mathsf{verdoppeln}^* = \{(n, 2^m \cdot n) \mid m, n \in \mathbb{N}\}$$

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \Box, q_0, q_+, q_-)$ normierte TM.

Dann existiert normierte TM N mit $T(N) = T(M)^*$

§3.7 Theorem (Iteration)

Sei $\mathcal{M} = (Q, \Gamma_{\mathcal{M}}, \Gamma, \Delta, \square, q_0, q_+, q_-)$ normierte TM. Dann existiert normierte TM \mathcal{N} mit $\mathcal{T}(\mathcal{N}) = \mathcal{T}(\mathcal{M})^*$

Beweisansatz

- Nutze neuen Startzustand p₀ und neuen Akzeptanzzustand p₊
- 2. Übergang von p_0 zu p_+ (Abbruch)

§3.7 Theorem (Iteration)

Sei $\mathcal{M} = (Q, \Gamma_{\mathcal{M}}, \Gamma, \Delta, \square, q_0, q_+, q_-)$ normierte TM. Dann existiert normierte TM \mathcal{N} mit $\mathcal{T}(\mathcal{N}) = \mathcal{T}(\mathcal{M})^*$

Beweisansatz

- Nutze neuen Startzustand p₀ und neuen Akzeptanzzustand p₊
- 2. Übergang von p_0 zu p_+ (Abbruch)
- 3. Übergang von p_0 zu q_0 (Iteration)
- 4. *M* läuft normal; bei Erreichen von q_+ zurück in Startzustand p_0

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \Box, q_0, q_+, q_-)$ normierte TM.

Dann existiert normierte TM N mit $T(N) = T(M)^*$

§3.7 Theorem (Iteration)

Sei $\mathcal{M} = (Q, \Gamma_{\mathcal{M}}, \Gamma, \Delta, \square, q_0, q_+, q_-)$ normierte TM. Dann existiert normierte TM \mathcal{N} mit $\mathcal{T}(\mathcal{N}) = \mathcal{T}(\mathcal{M})^*$

Beweis

Seien $p_0 \notin Q$ und $p_+ \notin Q$ mit $p_0 \neq p_+$. Wir konstruieren TM

$$\begin{split} N &= \left(Q \cup \{p_0, p_+\}, \Gamma_{\mathsf{M}}, \Gamma, \Delta \cup R, \square, p_0, p_+, q_-\right) \\ R &= \left\{ \begin{pmatrix} p_0, \gamma \end{pmatrix} \rightarrow \begin{pmatrix} p_+, \gamma, \diamond \end{pmatrix} \mid \gamma \in \Gamma \right\} \cup \\ \left\{ \begin{pmatrix} p_0, \gamma \end{pmatrix} \rightarrow \begin{pmatrix} q_0, \gamma, \diamond \end{pmatrix} \mid \gamma \in \Gamma \right\} \cup \\ \left\{ \begin{pmatrix} q_+, \gamma \end{pmatrix} \rightarrow \begin{pmatrix} p_0, \gamma, \diamond \end{pmatrix} \mid \gamma \in \Gamma \right\} \end{split}$$

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \square, q_0, q_+, q_-)$ normierte TM. Dann existiert normierte TM N mit $T(N) = T(M)^*$

Beweis

Seien $p_0 \notin Q$ und $p_+ \notin Q$ mit $p_0 \neq p_+$. Wir konstruieren TM

$$egin{aligned} N &= ig(Q \cup \{p_0, p_+\}, \Gamma_{M}, \Gamma, \Delta \cup R, \square, p_0, p_+, q_-ig) \ R &= ig\{(p_0, \gamma)
ightarrow (p_+, \gamma, \diamond) \mid \gamma \in \Gammaig\} \cup \ ig\{(p_0, \gamma)
ightarrow (q_0, \gamma, \diamond) \mid \gamma \in \Gammaig\} \cup \ ig\{(q_+, \gamma)
ightarrow (p_0, \gamma, \diamond) \mid \gamma \in \Gammaig\} \end{aligned}$$

§3.7 Theorem (Iteration)

Sei $M = (Q, \Gamma_M, \Gamma, \Delta, \Box, q_0, q_+, q_-)$ normierte TM.

Dann existiert normierte TM N mit $T(N) = T(M)^*$

Beweis

Seien $p_0 \notin Q$ und $p_+ \notin Q$ mit $p_0 \neq p_+$. Wir konstruieren TM

$$\begin{split} \textit{N} &= \left(\textit{Q} \cup \{\textit{p}_0, \textit{p}_+\}, \textit{\Gamma}_\textit{M}, \textit{\Gamma}, \Delta \cup \textit{R}, \Box, \textit{p}_0, \textit{p}_+, \textit{q}_- \right) \\ \textit{R} &= \left\{ \left(\textit{p}_0, \gamma \right) \rightarrow \left(\textit{p}_+, \gamma, \diamond \right) \mid \gamma \in \Gamma \right\} \cup \\ &\left\{ \left(\textit{p}_0, \gamma \right) \rightarrow \left(\textit{q}_0, \gamma, \diamond \right) \mid \gamma \in \Gamma \right\} \cup \\ &\left\{ \left(\textit{q}_+, \gamma \right) \rightarrow \left(\textit{p}_0, \gamma, \diamond \right) \mid \gamma \in \Gamma \right\} \end{split}$$

Dann
$$T(N) = T(M)^*$$

Operationen

Vereinigung

Verkettung

Iteration

$$\mathsf{TM} \; \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \Box\}, \Delta, \Box, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \Box) \to (q_1, \Box, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \Box) \to (q_2, \Box, \triangleright) \quad (q_a, \Box) \to (q_*, a, \triangleleft) \quad (q_b, \Box) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \Box, \triangleright)$$

$$\mathsf{TM} \; \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \Box\}, \Delta, \Box, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \Box) \to (q_1, \Box, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \Box) \to (q_2, \Box, \triangleright) \quad (q_a, \Box) \to (q_*, a, \triangleleft) \quad (q_b, \Box) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \Box, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \Box\}, \Delta, \Box, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \Box) \to (q_1, \Box, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \Box) \to (q_2, \Box, \triangleright) \quad (q_a, \Box) \to (q_*, a, \triangleleft) \quad (q_b, \Box) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \Box, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \Box\}, \Delta, \Box, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \Box) \to (q_1, \Box, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \Box) \to (q_2, \Box, \triangleright) \quad (q_a, \Box) \to (q_*, a, \triangleleft) \quad (q_b, \Box) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \Box, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \Box\}, \Delta, \Box, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \Box) \to (q_1, \Box, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \Box) \to (q_2, \Box, \triangleright) \quad (q_a, \Box) \to (q_*, a, \triangleleft) \quad (q_b, \Box) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \Box, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \; \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \Box\}, \Delta, \Box, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \Box) \to (q_1, \Box, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \Box) \to (q_2, \Box, \triangleright) \quad (q_a, \Box) \to (q_*, a, \triangleleft) \quad (q_b, \Box) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \Box, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\begin{array}{lll} \mathsf{TM} \; \big(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ & (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ & (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ & (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ & (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ & (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ & (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ & (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright) \end{array}$$

$$\cdots \quad \Box \quad * \quad * \quad * \quad * \quad * \quad a \quad a \quad b \quad a \quad \Box \quad \cdots$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \Box\}, \Delta, \Box, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \Box) \to (q_1, \Box, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \Box) \to (q_2, \Box, \triangleright) \quad (q_a, \Box) \to (q_*, a, \triangleleft) \quad (q_b, \Box) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \Box, \triangleright)$$

$$\mathsf{TM} \, \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

$$\mathsf{TM} \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \rightarrow (q_0, a, \triangleright) \quad (q_0, b) \rightarrow (q_0, b, \triangleright) \quad (q_0, \square) \rightarrow (q_1, \square, \triangleleft) \\ (q_1, a) \rightarrow (q_a, *, \triangleright) \quad (q_1, b) \rightarrow (q_b, *, \triangleright) \quad (q_1, *) \rightarrow (q_1, *, \triangleleft) \\ (q_1, \square) \rightarrow (q_2, \square, \triangleright) \quad (q_a, \square) \rightarrow (q_*, a, \triangleleft) \quad (q_b, \square) \rightarrow (q_*, b, \triangleleft) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, *) \rightarrow (q_a, *, \triangleright) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, *) \rightarrow (q_b, *, \triangleright) \\ (q_*, a) \rightarrow (q_*, a, \triangleleft) \quad (q_*, b) \rightarrow (q_*, b, \triangleleft) \quad (q_*, *) \rightarrow (q_1, *, \triangleleft) \\ (q_2, a) \rightarrow (q_+, a, \diamond) \quad (q_2, b) \rightarrow (q_+, b, \diamond) \quad (q_2, *) \rightarrow (q_2, \square, \triangleright)$$

$$\mathsf{TM} \, \left(\{q_0, q_1, q_a, q_b, q_*, q_2, q_+, q_-\}, \{a, b\}, \{a, b, *, \square\}, \Delta, \square, q_0, q_+, q_- \right) \\ (q_0, a) \to (q_0, a, \triangleright) \quad (q_0, b) \to (q_0, b, \triangleright) \quad (q_0, \square) \to (q_1, \square, \triangleleft) \\ (q_1, a) \to (q_a, *, \triangleright) \quad (q_1, b) \to (q_b, *, \triangleright) \quad (q_1, *) \to (q_1, *, \triangleleft) \\ (q_1, \square) \to (q_2, \square, \triangleright) \quad (q_a, \square) \to (q_*, a, \triangleleft) \quad (q_b, \square) \to (q_*, b, \triangleleft) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, *) \to (q_a, *, \triangleright) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, *) \to (q_b, *, \triangleright) \\ (q_*, a) \to (q_*, a, \triangleleft) \quad (q_*, b) \to (q_*, b, \triangleleft) \quad (q_*, *) \to (q_1, *, \triangleleft) \\ (q_2, a) \to (q_+, a, \diamond) \quad (q_2, b) \to (q_+, b, \diamond) \quad (q_2, *) \to (q_2, \square, \triangleright)$$

Notizen

- Viele Operationen nötig für Navigation
- Oft viele Läufe zwischen Ein- & Ausgabe nötig

Notizen

- Viele Operationen nötig für Navigation
- Oft viele Läufe zwischen Ein- & Ausgabe nötig
- Erhöhter Komfort durch mehrere Bänder (und intuitiver)

§3.9 Definition (k-Band-Turingmaschine; k-tape Turing machine)

$$k$$
-Band-Turingmaschine ist Tupel $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$

- endl. Menge Q von Zuständen mit $Q \cap \Gamma = \emptyset$
- endl. Menge ∑ von Eingabesymbolen
- endl. Menge Γ von Arbeitssymbolen mit $\Sigma \subseteq \Gamma$
- Übergangsrelation $\Delta \subseteq \left((Q \setminus \{q_+, q_-\}) \times \Gamma^k \right) \times \left(Q \times (\Gamma \times \{\triangleleft, \triangleright, \diamond\})^k \right)$
- Leersymbol $\square \in \Gamma \setminus \Sigma$

$$(\Gamma_{\mathcal{M}} = \Gamma \setminus \{\Box\})$$

- Startzustand $q_0 \in Q$
- ullet Akzeptierender Zustand $q_+ \in Q$
- Ablehnender Zustand $q_- \in Q$

⊲ = gehe nach links; ▷ = gehe nach rechts; ◇ = keine Bewegung

Notizen

- k Arbeitsbänder
- *k* unabhängige Lese- & Schreibköpfe
- (gleiches Arbeitsalphabet)
 - (unabhängig beweglich)

Notizen

- k Arbeitsbänder
- k unabhängige Lese- & Schreibköpfe (unabhängig beweglich)
- (gleiches Arbeitsalphabet) (unabhängig beweglich)
- Übergänge $\tau \in \left(\left(Q \setminus \{q_+, q_-\} \right) \times \Gamma^k \right) \times \left(Q \times \left(\Gamma \times \{\triangleleft, \triangleright, \diamond\} \right)^k \right)$
 - Aktueller globaler Zustand
 - Inhalt aktuellen Zellen auf allen k Bändern
 - Globaler Zielzustand
 - Neuer Inhalt aller k Zellen
 - k Bewegungsrichtungen für k Köpfe

- Ausgangssituation
 - Eingabe auf erstem Band; andere Zellen & Bänder enthalten 🗆
 - TM in Startzustand q₀
 - Kopf <u>erstes Band</u> auf erstem Symbol der Eingabe

- Ausgangssituation
 - Eingabe auf <u>erstem</u> Band; andere Zellen & Bänder enthalten 🗆
 - TM in Startzustand q₀
 - Kopf <u>erstes Band</u> auf erstem Symbol der Eingabe
- Übergänge gemäß △

- Ausgangssituation
 - Eingabe auf erstem Band; andere Zellen & Bänder enthalten 🗆
 - TM in Startzustand q₀
 - Kopf <u>erstes Band</u> auf erstem Symbol der Eingabe
- Übergänge gemäß △
- Haltebedingung
 - Aktueller Zustand final; akzeptierend q_{+} oder ablehnend q_{-}
 - ullet Kein passender Übergang o TM hält <u>nicht</u> ordnungsgemäß

- Ausgangssituation
 - Eingabe auf <u>erstem</u> Band; andere Zellen & Bänder enthalten 🗆
 - TM in Startzustand q₀
 - Kopf <u>erstes Band</u> auf erstem Symbol der Eingabe
- Übergänge gemäß △
- Haltebedingung
 - ullet Aktueller Zustand final; akzeptierend q_+ oder ablehnend q_-
 - ullet Kein passender Übergang o TM hält <u>nicht</u> ordnungsgemäß

Akzeptanz Eingabe

Existenz Übergänge von Ausgangssituation in akzeptierenden Zustand

- Ausgangssituation
 - Eingabe auf erstem Band; andere Zellen & Bänder enthalten 🗆
 - TM in Startzustand q₀
 - Kopf <u>erstes Band</u> auf erstem Symbol der Eingabe
- Übergänge gemäß △
- Haltebedingung
 - ullet Aktueller Zustand final; akzeptierend q_+ oder ablehnend q_-
 - ullet Kein passender Übergang o TM hält <u>nicht</u> ordnungsgemäß

Akzeptanz Eingabe

Existenz Übergänge von Ausgangssituation in akzeptierenden Zustand

Ausgabe auf <u>letztem</u> Band (Band k) (normiert mind. auf letztem Band)

§3.10 Beispiel (2-Band-Turingmaschine)

2-Band-TM
$$M = (\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, q_+, q_-)$$

§3.10 Beispiel (2-Band-Turingmaschine)

2-Band-TM
$$M = (\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \square\}, \Delta, \square, q_0, q_+, q_-)$$

$$egin{aligned} (q_0,\langle a, \square
angle) &
ightarrow (q_0,\langle (\square,
hd), (a,
hd)
angle) & (q_0,\langle b, \square
angle)
ightarrow (q_0,\langle (\square,
hd), (b,
hd)
angle) \ (q_0,\langle \square, \square
angle) &
ightarrow (q_+,\langle (\square,
hd), (\square,
hd)
angle) \end{aligned}$$

§3.10 Beispiel (2-Band-Turingmaschine) 2-Band-TM $M = (\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, q_+, q_-)$ $(q_0, \langle a, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (a, \triangleleft) \rangle) \quad (q_0, \langle b, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (b, \triangleleft) \rangle)$ $(q_0,\langle\Box,\Box\rangle) o (q_+,\langle(\Box,\diamond),(\Box,\triangleright)\rangle)$

§3.10 Beispiel (2-Band-Turingmaschine) 2-Band-TM $M = (\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, q_+, q_-)$ $(q_0, \langle a, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (a, \triangleleft) \rangle) \quad (q_0, \langle b, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (b, \triangleleft) \rangle)$ $(q_0,\langle\Box,\Box\rangle) o (q_+,\langle(\Box,\diamond),(\Box,\triangleright)\rangle)$

§3.10 Beispiel (2-Band-Turingmaschine) 2-Band-TM $M = (\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \square\}, \Delta, \square, q_0, q_+, q_-)$ $(q_0, \langle a, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (a, \triangleleft) \rangle) \quad (q_0, \langle b, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (b, \triangleleft) \rangle)$ $(q_0, \langle \square, \square \rangle) \rightarrow (q_+, \langle (\square, \diamond), (\square, \triangleright) \rangle)$

§3.10 Beispiel (2-Band-Turingmaschine)

$$\begin{aligned} & \text{2-Band-TM } \textit{M} = \big(\{q_0, q_+, q_-\}, \{a, b\}, \{a, b, \square\}, \Delta, \square, q_0, q_+, q_- \big) \\ & (q_0, \langle a, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (a, \triangleleft) \rangle) \quad (q_0, \langle b, \square \rangle) \rightarrow (q_0, \langle (\square, \triangleright), (b, \triangleleft) \rangle) \\ & (q_0, \langle \square, \square \rangle) \rightarrow (q_+, \langle (\square, \diamond), (\square, \triangleright) \rangle) \end{aligned}$$

Simulation der k-Band-TM $(Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ durch TM

- Kodiere k Bänder durch 1 Band $\Gamma' = \Gamma \cup (\Gamma \cup \overline{\Gamma})^k$ (Tupelsymbole)
- Kodierung Position *k* Köpfe (Überstrich)

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase *p* in Bearbeitung mit weiteren Informationen

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$z = (q, lese, \langle \star, \star \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, lese, \langle a, \star \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, lese, \langle a, \star \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase *p* in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, lese, \langle a, \star \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, lese, \langle a, \star \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase *p* in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, lese, \langle a, \star \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$a = (q, lese, \langle a, \star \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, zurück, \langle a, a \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, zurück, \langle a, a \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase *p* in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, zurück, \langle a, a \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, zurück, \langle a, a \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase *p* in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, zurück, \langle a, a \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, zurück, \langle a, a \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase *p* in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$aa = (q, \mathsf{zur\"uck}, \langle a, a \rangle)$$

- 1. Merken aktueller Zustand in Zuständen (q, p, ...)
 - Zustand q k-Band-TM
 - Phase p in Bearbeitung mit weiteren Informationen
- 2. Aufsammeln Symbole unter Köpfen durch Ablaufen Band

$$z' = (q, w\ddot{a}hle, \langle a, a \rangle)$$

Simulation Ableitungsschritt k-Band-TM durch TM

- 1. ...
- 2. ...
- 3. Nichtdeterministische Auswahl passender Übergang

$$((\emph{q},\mathsf{w\"{a}hle},\langle \emph{s}_{1},\ldots,\emph{s}_{k}\rangle),\vec{a}) o ((\emph{q}',\mathsf{schreibe},\vec{r}),\vec{a},\diamond) \in \Delta$$

für alle Übergänge $(q,\langle s_1,\ldots,s_k\rangle) o (q',\vec{r})$ der k-Band-TM

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', lese, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', lese, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', lese, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', lese, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', lese, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', lese, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', lese, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', lese, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', lese, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', lese, \langle \star, \star \rangle)$$

- 1. ...
- 2. ...
- 3. ...
- 4. Anpassen Arbeitsband (Schreibvorgänge & Bewegungen)

$$z = (q', \text{schreibe}, \langle (e, \triangleright), (e, \triangleleft) \rangle)$$

$$z'' = (q', \mathsf{lese}, \langle \star, \star \rangle)$$

§3.11 Theorem

Für (normierte) k-Band-TM M existiert (norm.) TM N mit T(N) = T(M)

Beweisskizze

- 1. M_{start}: Einrichten Ausgangssituation (Erweitern Eingabe auf Tupel)
- 2. M_{simul} : Simulation Ableitungsschritte (wie gerade illustriert)
- 3. M_{ausgabe}: Ausgabe letztes Band (Reduktion Tupel, Löschen)

Standard-Operationen

• Band auf anderes Band kopieren

Standard-Operationen

- Band auf anderes Band kopieren
- TM M auf Band i laufen lassen

(M(i) ist diese k-Band-TM)

Standard-Operationen

- Band auf anderes Band kopieren
- TM M auf Band i laufen lassen

(M(i) ist diese k-Band-TM)

Konsequenzen

Verwende Bänder wie Variablen

Standard-Operationen

- Band auf anderes Band kopieren
- TM M auf Band i laufen lassen

(M(i) ist diese k-Band-TM)

Konsequenzen

- Verwende Bänder wie Variablen
- Verwende k-Band-TM statt TM

(äquivalente TM existiert)

Zusammenfassung

- Operationen auf Turingmaschinen
- *k*-Band-Turingmaschinen

Zweite Übungsserie bereits im Moodle