Practical Al: speech processing

Stanislav Protasov for Harbour.Space University

Agenda

- Sound as a wave
- Speech recognition
 - Acoustic model
 - Language model
- Speech generation

What is the sound?

Sound is a **vibration** that propagates through a transmission medium such as a gas, liquid or solid.

Euler's identity

$$e^{ix} = \cos x + i\sin x,$$

https://www.youtube.com/watch?v=ykNtIbtCR-8

DTFT:
$$\hat{f}(w) = \int_{n=-\infty}^{+\infty} f(x)e^{\frac{2\pi i}{N}} dx$$

$$\sum_{n=-\infty}^{+\infty} f(nT) e^{-\frac{2\pi i}{N}} dx$$

DTFT: $X_{T}(\omega) = \sum_{n=-\infty}^{+\infty} f(nT) w(\frac{n}{M})e^{-\frac{2\pi i}{N}} dx$

DFT: $X_{T,N}(k) = X_{T}(\frac{k}{NT}) = k=0,1,...,N-1$

$$\sum_{n=0}^{+\infty} f(nT) w(\frac{n}{M}) e^{-\frac{2\pi i}{N}} dx$$

Wavelets

What is the sound for human?

We percept sound using **frequency** receptors. Each moment looks like this:

Timeline is like this:

Sound recording and playback

- Digital uncompressed sound consists of regular measurements of signal.
- Measurement frequency is managed using RATE parameter
 - 22050 means 22050 measurements per second (discretization)
- How accurate we measure in managed is tuned with format (quantization)
 - How many different amplitude values can be encoded
- Channels number of inputs/outputs (stereo=2, mono=1)
- BPS = RATE * CHANNELS * FORMAT
- Together this is PCM

Lab #0. Make this work

Recording and playing tutorial

https://github.com/hsu-ai-course/hsu.ai/blob/master/code/06.%20Sound%20record%20and%20play.ipynb

FFT tutorial

https://github.com/hsu-ai-course/hsu.ai/blob/master/code/06.%20Sound%20FFT.ipynb

Nyquist-Shannon (Kotelnikov) theorem

If a function **x(t)** contains no frequencies higher than **B** hertz, it is **completely determined** by giving its ordinates at a series of points spaced **1/(2B)** seconds apart.

What if contains? Aliasing. *n(k)*?

$$\left\{\sin(k x) = \sin(n x), n < k\right\}$$

• $sin(a)+sin(b) = 2 \cdot sin(\frac{1}{2}(a+b)) \cdot cos(\frac{1}{2}(a-b))$

Lab #1

Implement tutorial on chord transformation

https://github.com/str-anger/hsu.ai/blob/master/code/06. %20Chord.ipynb

- 1. Convert to frequencies
- 2. Find major frequencies
 - a. (*) do it automatically (with code, not with your eyes)
- 3. Can you say what is the chord?

 Chord is a set of pitches played simultaneously

 Refer http://pages.mtu.edu/~suits/notefreqs.html

Acoustic model

As text consist of letters, speech consists of phonemes.

AM: spectrum → phoneme

Language model

Probabilistic model that predicts probability of a word given a sequence of phonemes.

Similar model is used to model sentences of words.

Speech generation

- 1) Text preprocessing
 - a) Number to text
 - b) Abbreviations to text
 - c) Typo fix
- 2) Split text into phrases (punctuation, constructions)
- 3) Phonetic construction (language model)
 - a) queue [kju]
 - b) Арбалетчиков
 - i) a0 r b a0 lj e1 t ch i0 k o0 v

Speech generation

- 1) **Accents** are set
 - a) Using a dictionary
 - b) Using rules
 - c) Using statistics (speaker examples)
- 2) **Reversed acoustic model** is used to consider surrounding
- 3) **Timbre** is generation with **vocoder**
 - a) or RNNs

Lab #2

- Implement speech generation tutorial.
 https://github.com/hsu-ai-course/hsu.ai/blob/master/code/06.%20Speech%20generatio
 n.ipynb
 - Register all needed Google Cloud accounts
- (*) Implement speech recognition tutorial
 - Download and install CMU Sphinx for you native language (if present)

Hometask

- 1) Implement **speech recognition from microphone** using Google Cloud Platform.
- 2) (*) Implement speech-2-speech translation (babel fish)
- 3) (**) Podcast 2x speed
- 4) (***) ID recognition by voice