## **Exercise 3D Maschine Vision**

Prof. Dr.-Ing. Volker Willert



Sheet 1

In this exercise we cover the *introductory chapter*, as well as *3D camera systems* and basics of *stereo vision*. The questions are small-part and can be seen as examples of potential exam problems.

| Task 1.1: Terms & Applications                                         |                                          |                                             |
|------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|
| 1.1a)                                                                  |                                          |                                             |
| Which application fields of 3D made bodies without creating a 3D recor |                                          | action of 3D pose and/or 3D motion of rigid |
| □ Visual SLAM                                                          | ☐ Visual odometry                        | ☐ Multi-View Reconstruction                 |
| ☐ Visual Servoing                                                      | ☐ Structure from Motion                  | ☐ 3D Tracking                               |
| ☐ Hand-Eye Calibration                                                 | ☐ Optical Flow                           | □ Ray Tracing                               |
| 1.1b)                                                                  |                                          |                                             |
| What is the difference between de                                      | oth images and volume images?            |                                             |
| 1.1c)                                                                  |                                          |                                             |
| Name three real-world challenges                                       | that 3D vision algorithms must deal with | 1?                                          |
| 1.1d)                                                                  |                                          |                                             |

What is the baseline? Why does the choice of baseline affect the choice of algorithms for 3D reconstruction from images?

| Task 1.2: 3D Camera Techniques                                                   |                                                                         |                                                   |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|--|
| Tuest 1121 OD Gamera Teolimiques                                                 |                                                                         |                                                   |  |
| 1.2a)                                                                            |                                                                         |                                                   |  |
| When recording point clouds with 3D cam                                          | neras, what conditions must be met to avo                               | oid large errors in depth measurement?            |  |
| ☐ Objects do not move                                                            |                                                                         |                                                   |  |
| ☐ Light sources are moving                                                       |                                                                         |                                                   |  |
| ☐ Camera system does not move                                                    |                                                                         |                                                   |  |
| ☐ Illuminance remains constant                                                   |                                                                         |                                                   |  |
| $\Box$ For a time-of-flight camera, the exp                                      | posure time must be less than the run ti                                | me                                                |  |
| ☐ When configuring a stereo system, t                                            | the ratio of baseline and disparity must b                              | oe matched to the selected depth range            |  |
| 1.2b)                                                                            |                                                                         |                                                   |  |
| compared to a stereo system with one ca principle for a measurement to be possib |                                                                         | inimum requirement for the respective             |  |
| <u>1.2c)</u>                                                                     |                                                                         |                                                   |  |
| What is the advantage of using amplitud also a disadvantage of amplitude modula  |                                                                         | ight in time-of-flight cameras? Is there          |  |
| 1.2d)                                                                            |                                                                         |                                                   |  |
| What systematic errors can be compensa                                           | ted for in a 3D camera by appropriate c                                 | calibration?                                      |  |
| □ errors because of occlusion                                                    | ☐ errors because of temperature changes                                 | □ constant offsets in depth                       |  |
| <ul> <li>errors because of multipath reflections</li> </ul>                      | □ errors due to variations in the strength of the reflected light       | □ errors due to interference light in-<br>fluence |  |
| $\square$ errors due to object motion                                            | <ul> <li>error due to the selected measurement time duration</li> </ul> | $\square$ errors due to camera noise              |  |

## Task 1.3: Stereo Vision

1.3a)

What is special about the stereo configuration of two cameras? What are the advantages?

1.3b)

From the equation of depth reconstruction  $Z=c\frac{b}{d}$ , which holds for a calibrated stereo system, calculate the

- 1. depth resolution  $\frac{\partial Z(Z)}{\partial d}$  and
- 2. the sensitivity of the disparity  $\frac{\partial d(Z)}{\partial Z}$ .

as a function of absolute depth Z.

1.3c)

Calculate the distance D of a 3D point as a function of the quantities x, y, c, b and d. If you cannot assign the letters to the characteristic values, then refer to the lecture notes.

1.3d)

Calculate the change in parallax in px/m (pixels per meter) for a stereo system with a baseline of 200mm, a focal length of f=100mm, and a pixel width of  $10\mu m$  for distances 10m and 100m, taking into account the approximation for far-field images:  $c\approx f$ .

1.3e)

Compare the accuracy of the angular measurement of triangulation with stereo vision by calculating the angular change for a measurement accuracy of  $\pm 1px$  in disparity a pixel width of  $10\mu m$  and a camera constant of c=3mm. Assume a disparity reference value of 100px.