Probability, Week 3, exerciese 2

庄永昊

March 20, 2020

0. By the definition of $\pi([a,b])$ and $\pi(\mathbb{R})$, $\pi([a,b])$ can be written as:

$$\pi([a,b]) = \{[a,x] \mid x \in [a,b]\}$$

1. Now prove that $\sigma(\pi([a,b])) \subseteq \mathcal{B}[a,b]$.

As all open subsets of [a, b] are in $\mathcal{B}[a, b]$, all closed subsets of [a, b] are also in $\mathcal{B}[a, b]$, so $\forall x \in [a, b], [a, x] \in \mathcal{B}[a, b]$.

So there is $\pi([a,b]) \subset \mathcal{B}[a,b]$. As $\mathcal{B}[a,b]$ is also a σ -algebra, $\sigma(\pi([a,b])) \subseteq \mathcal{B}[a,b]$.

2. Now prove that $\mathcal{B}[a,b] \subseteq \sigma(\pi([a,b]))$.

Since $\mathcal{B}[a,b]$ is generated by all open subsets of [a,b] (also open subsets of \mathbb{R}), each one (said s), can is a countably union of open intervals on \mathbb{R} , denoted by I_1, I_2, \cdots . So there is $s = \cap_i I_i$

Now Let $I_i' = I_i \cap [a, b]$, it is obvious that $s = \cap_i I_i'$. Otherwise, there are some elements in I_j but not I_j' for some j, so it is not in [a, b]. But $s \subset [a, b]$.

Now we prove that for each $i, I'_i \in \sigma(\pi([a, b]))$:

- 1) I'_i can only be form like [a, b], [a, x), (x, b], (x, y) where $x, y \in (a, b)$;
- $2)[a,b]\in\pi([a,b]),\,\text{so}\,\,[a,b]\in\sigma(\pi([a,b]));$
- 3)as x < b, we have $\exists n \to \forall i > n, x + 2^{-i} < b$. So $[a, x) = \bigcap_{i=n+1}^{\infty} [a, x + 2^{-i}]$ and $[a, x + 2^{-i}] \in \pi([a, b])$. So $[a, x) \in \sigma(\pi([a, b]))$
 - 4) as $[a,x],[a,b]\in\pi([a,b]),$ there is $(x,b]=[a,b]/[a,x]\in\pi([a,b])\subseteq\sigma(\pi([a,b]));$
 - 5) By 3) and 4) $[a,y),(x,b]\in\sigma(\pi([a,b])),$ there is $(x,y)=[a,y)\cap(x,b]\in\sigma(\pi([a,b])).$