LISTING OF THE CLAIMS:

- 1 1. (Previously Presented) An optical device comprising a periodic multilayer structure, wherein
- an end surface of said multilayer structure which is not parallel to layer surfaces of said
- multilayer structure is used as at least one of a beam incidence surface and a beam exit surface;
- 4 said periodic multilayer structure being a one-dimensioned photonic crystal.
- 2. (Original) An optical device according to Claim 1, wherein the length a of one period in said
- periodic multilayer structure with respect to a wavelength λ used is in a range given by an
- 3 expression:
- 4 $\lambda /2n_{M} \leq a$
- 5 in which n_M is an average refractive index in the one-period range of said
- 6 multilayer structure in the wavelength λ .
- 1 3. (Original) An optical device according to Claim 1, wherein said one period in said periodic
- 2 multilayer structure is constituted by layers formed out of different materials.
- 4. (Original) An optical device according to Claim 1, wherein a layer varying continuously in
- 2 terms of composition or characteristic is contained in a boundary between every two layers
- 3 constituting said periodic multilayer structure.
- 5. (Original) An optical device according to Claim 1, wherein a maximum refractive index
- 2 difference between a plurality of materials constituting said periodic multilayer structure is not
- 3 smaller than 0.1 in a wavelength used.
- 6. (Original) An optical device according to Claim 1, wherein an end surface of said periodic
- 2 multilayer structure on which beam is incident crosses said layer surfaces of said multilayer
- 3 structure perpendicularly.

1	7. (Original) An optical device according to Claim 1, wherein an end surface of said periodic
2	multilayer structure from which beam is made to exit crosses said layer surfaces of said
3	multilayer structure.
1	8. (Original) An optical device according to Claim 1, wherein an end surface of said periodic
2	multilayer structure on which beam is incident and an end surface of said periodic multilayer
3	structure from which beam is made to exit are parallel to each other.
1	9. (Original) An optical device according to Claim 1, wherein said periodic multilayer structure is
2	an optical multilayer film in which one structure formed on a transparent substrate is repeated
3	with respect to a wavelength used.
1	10. (Previously Presented) A spectroscopic apparatus comprising:
2	an optical device constituted by a periodic multilayer structure as defined
3	in Claim 1; said optical device having a beam incidence end surface; said optical
4	device further having a beam exit end surface from which may be made to exit
5	beam rays;
6	a means for making a mixture of various luminous flux having a plurality of wavelengths
7	incident on the beam incidence end surface of said optical device; and
8	a means for detecting the beam rays made to exit from a the beam exit end surface of said
9	optical device at different angles in accordance with said wavelengths.
1	11. (Original) A spectroscopic apparatus according to Claim 10, wherein: said periodic
2	multilayer structure is an optical multilayer film in which one structure formed on a surface of a
3	transparent substrate is repeated with respect to a wavelength used; and beam rays made to exit
4	from said multilayer film toward said substrate are totally reflected in the inside of said substrate
5	and taken out from an end surface of said substrate.

- 1 12. (Previously Presented) An optical device according to Claim 1, wherein the periodic
- 2 multilayer structure is a one-dimensional photonic crystal having a plurality of layer surfaces, the
- 3 end surface used as the beam incident surface is approximately perpendicular to said layer
- 4 surfaces of said multilayer structure, and at least one surface parallel to said layer surfaces is
- 5 provided as a beam exit surface.
- 1 13. (Original) An optical device according to Claim 12, wherein a length of one period is a and
- 2 satisfies a condition given by an expression:
- $\lambda_o/2n_M \leq a$
- 4 when n_M is an average refractive index in one period of said periodic multilayer
- structure with respect to beam with a wavelength λ_0 in vacuum.
- 1 14. (Previously Presented) An optical device wherein the periodic multilayer structure is a one-
- dimensional photonic crystal having a plurality of layer surfaces, the end surface used as the
- 3 beam incident surface is approximately perpendicular to said layer surfaces of said multilayer
- 4 structure, and at least one surface parallel to said layer surfaces is provided as a beam exit
- 5 surface; wherein a length of one period is a and satisfies a condition given by an expression:
- 6 $\lambda_o/2n_M < a$
- 7 when n_M is an average refractive index in one period of said periodic multilayer
- structure with respect to beam with a wavelength λ_0 in vacuum; and
- 9 configured wherein a condition:
- $10 0 < k_s \cdot \lambda_o / (2\pi \cdot n_s) < 1$
- is satisfied when k_s is a magnitude of a wave vector of a not-lowest-order coupled band in said
- photonic crystal with respect to said wavelength λ_0 in a direction which is parallel to said layer
- surfaces and which does not have any periodic structure, and n_s is a refractive index at said
- wavlength λ_o of a medium tangent to said surface parallel to said layer surfaces and serving as
- said beam exit surface of said multilayer structure.

- 1 . 15. (Previously Presented) An optical device according to Claim 1, wherein said periodic
- 2 multilayer structure is a one-dimensional photonic crystal having a plurality of layer surfaces,
- wherein the beam incidence surface is a surface parallel to said layer surfaces of said multilayer
- 4 structure, and wherein the beam exit surface is approximately perpendicular to said layer
- 5 surfaces.
- 1 16. (Original) An optical device according to Claim 15, wherein a length of one period is a and
- 2 satisfies a condition given by an expression:
- $\lambda_o/2n_M \leq a$
- 3 when n_M is an average refractive index in one period of said periodic multilayer
- structure with respect to beam with a wavelength λ_0 in vacuum.
- 1 17. (Previously Presented) An optical device comprising a periodic multilayer structure, wherein
- an end surface of said multilayer structure which is not parallel to layer surfaces of said
- multilayer structure is used as at least one of a beam incidence surface and a beam exit surface;
- 4 wherein said periodic multilayer structure is a one-dimensional photonic crystal having a
- 5 plurality of layer surfaces, wherein the beam incidence surface is a surface parallel to said layer
- 6 surfaces of said multilayer structure, and wherein the beam exit surface is approximately
- perpendicular to said layer surfaces; wherein a length of one period is a and satisfies a condition
- 8 given by an expression: $\lambda_0/2n_M < a$
- when n_M is an average refractive index in one period of said periodic multilayer structure with
- 10 respect to beam with a wavelength λ_o in vacuum;
- configured according to a condition:
- $0 < k_s \cdot \lambda_o / (2\pi \cdot n_s) < 1$

- 12 wherein
- k_s is a magnitude of a wave vector, for wavelength λ_o , of a coupled band as a not-lowest-order
- band in said photonic crystal in a direction which is parallel to said layer surfaces and which
- 15 lacks any periodic structure, and
- n_s is a refractive index of a medium which is tangent to said surface parallel to said layer surfaces
- and through which beam of wavelength λ_0 enters the multilayer structure.

- 1 18. (Previously Presented) An optical device according to Claim 14, wherein said
- 2 coupled band is a second coupled band from a lowest-order band.
- 1 19. (Previously Presented) An optical device according to Claim 14, wherein a
- 2 condition by an expression:
- 3 $\cos 60^{\circ} \le k_s \cdot \lambda_o / (2\pi \cdot n_s) \le \cos 20^{\circ}$
- 4 is satisfied.
- 1 20. (Previously Presented) An optical device according to Claim 14, wherein said k_s
- 2 satisfies a condition:
- 3 $0.9k_l/m \le 1.1k_l/m$ (m is an integer not smaller than 2)
- when k₁ is a magnitude of a wave vector of the lowest-order coupled band.
- 1 21. (Previously Presented) An optical device according to Claim 14, wherein said
- 2 medium tangent to said surface of said multilayer structure provided as said beam
- 3 incidence surface or as said beam exit surface is air or vacuum.
- 1 22. (Previously Presented) An optical device according to Claim 14, wherein: said
- 2 periodic multilayer structure is an optical multilayer film in which one structure
- formed on a transparent substrate is repeated periodically with respect to a
- 4 wavelength used; and a surface of said multilayer film tangent to said substrate is
- 5 provided as said beam incidence surface or as said beam exit surface.
- 1 23. (Previously Presented) An optical device according to Claim 14, wherein said
- 2 one period in said periodic multilayer structure is constituted by layers formed out
- 3 of different materials.

USSN 09/942,663 Our ref: 02410252aa

Page 8

1	24. (Previously Presented) An optical device according to Claim 14, wherein a layer varying
2	. continuously in terms of composition or characteristic is contained in a boundary between every
3	two layers constituting said periodic multilayer structure.
1	25. (Previously Presented) An optical device according to Claim 14, wherein a ratio of a
2	maximum refractive index to a minimum refractive index of a plurality of materials constituting
3	said periodic multilayer structure is not smaller than 1.1 in a wavelength used.
1	26. (Previously Presented) A spectroscopic apparatus comprising;
2	an optical device constituted by a periodic multilayer structure as defined in Claim 14,
3	a means for making a mixture of various luminous flux having a plurality of wavelengths
4	incident on the end surface of said multilayer structure of said optical device, and
5	a means for detecting beam rays made to exit from a the end surface of
6	said multilayer structure at different angles in accordance with the wavelengths.
1	27. (Previously Presented) A polarization separating apparatus comprising:
2	an optical device constituted by a periodic multilayer structure as defined in Claim 14,
3	a means for making a mixture of various luminous flux having a plurality of wavelengths
4	incident on the end surface of said multilayer structure of said optical device, and
5	a means for detecting beam rays made to exit from a the end surface of said multilayer
6	structure at different angles in accordance with polarized beam components.
1	28. (Previously Presented) The optical device of claim 1, wherein the photonic crystal comprises
2	respective layers continuously changing in terms of refractive index, and a refractive index
3	difference is kept between the respective layers.