Bandit Convex Optimisation – Exercise Solutions

Ludovic Schwartz, Baptiste Abeles

Contents

3	Mathematical tools	2
	Exercise 2	2
	Exercise 5	2
	Exercise 9	3
	Exercise 17	4
	Exercise 19	4
	Exercise 22.	4

Chapter 3

Mathematical tools

Exercise 3.2

Prove the following statements:

- (a) Given convex bodies $K \subset J$, polarity reverses inclusion: $J^{\circ} \subset K^{\circ}$.
- (b) The polar body of a non-empty ball $K = \mathbb{B}_r^d$ is $K^{\circ} = \mathbb{B}_{1/r}^d$.
- (c) For symmetric convex body K, $||\cdot||_K := \pi_K(\cdot)$ is a norm.
- (d) For symmetric convex body K, the dual of $||\cdot||_K$ is $||\cdot||_{K^{\circ}}$ where:

$$||u||_K = \max\{\langle u, x \rangle : ||x||_K \le 1, x \in \mathbb{R}^d\}.$$

Solution: (a) For sake of concreteness we recall that $K^{\circ} = \{u \in \mathbb{R}^d : h_K(u) \leq 1\}$ where $h_K(u) = \sup_{x \in K} \langle u, x \rangle$. Now remark that $K \subset J$ implies that $h_K(u) \leq h_J(u)$ for all $u \in \mathbb{R}^d$, in particular let $u \in J^{\circ}$ then the following holds:

$$h_K(u) \le h_J(u) \le 1$$

thus $u \in J^{\circ}$ which concludes.

- (b) We will show the statement by double inclusion. If $u \in K = \mathbb{B}^d_r$ then by Cauchy-Scwharz $\langle u, x \rangle \leq ||u||||x||$ for all $x \in K$ so in particular $h_K(u) \leq ||u||||x|| \leq r \times 1/r = 1$ and therefore $u \in K^\circ$. Conversely let $u \in K^\circ$ and assume $u \neq 0$ (we can discard the case u = 0 because the stament is trivial in that case) then $\langle u, x \rangle \leq 1$ for all $x \in \mathbb{B}^d_r$ in particular it holds for $x^0 = r \frac{u}{||u||}$. therefore $\langle u, x^0 \rangle = r||u|| \leq 1$ which implies that $||u|| \leq 1/r$ thus $K^\circ = \mathbb{B}^d_{1/r}$ which concludes.
 - (c) We assume K is symmetric, i.e K = -K, and recall that $\pi_K(x) = \inf\{t > 0 : x \in tK\}$.

Positive definiteness: Suppose $\pi_K(x) = 0$ and $x \neq 0$ then because K is a convex body there exist $\epsilon > 0$ such that $\mathbb{B}^d_{\epsilon} \subset K$ and therefore since $x \in \mathbb{B}^d_{||x||}$ setting $t = \frac{||x||}{\epsilon}$ ensures that $x \in tK$ which contradicts that $\pi_K(x) = 0$. So necessarily x = 0.

Homogenity: By definition $\pi_K(\lambda x) = \inf\{t > 0 : \lambda x \in tK\} = |\lambda| \inf\{t > 0 : x \in tK\} = |\lambda| \pi_K(x)$. In the second inequality we used the fact that if $\lambda x \in K$, $-\lambda x \in K$.

Triangle Inequality: $\pi_K(x+y) = \inf\{t > 0 : x+y \in tK\} \le \inf\{t > 0 : x \in tK\} + \inf\{t > 0 : y \in tK\} = \pi_K(x) + \pi_K(y).$

∇

Exercise 3.5

Suppose that $f \in \mathcal{F}_{sm,sc}$ and f is twice differentiable. Show that

$$\alpha \mathbf{1} \preceq f''(x) \preceq \beta \mathbf{1}$$
 for all $x \in int(K)$.

Solution: Since $f \in \mathcal{F}_{sm,sc}$, it holds that $g: x \mapsto f(x) - \frac{\alpha}{2}||x||^2$ is convex and $h: x \mapsto f(x) - \frac{\beta}{2}||x||^2$ is concave. Further more f is twice differentiable which implies that g and h are also twice differentiable and it follows that:

$$g''(x) \succeq 0$$
 and $h''(x) \preceq 0$ for all $x \in int(K)$.

Remarking that $g''(x) = f''(x) - \alpha \mathbf{1}$ and $h''(x) = f''(x) - \beta \mathbf{1}$ yields the statement.

Exercise 3.9

Suppose that A is convex and f has directional derivatives and $Df(x)[\eta] \leq L$ for all $x \in A$ and $\eta \in \mathbb{S}_1^{d-1}$. Show that $\text{lip}_A(f) \leq L$.

Solution: We remark that if A is open and f is differentiable on A, the result is a direct consequence of the mean value theorem. Indeed, let $x \neq y \in A$ and define

$$g: [0,1] \longrightarrow \mathbb{R}$$

 $t \longmapsto f((1-t)x + ty).$

g is then differentiable on [0,1] and by the mean value theorem, we can find a real number $c \in]0,1[$ such that g(1) - g(0) = g'(c). Moreover, by the chain rule we have

$$g'(c) = \nabla f((1-c)x + cy) \cdot (y-x)$$

$$= Df((1-c)x + cy)[x-y]$$

$$= ||x-y|| Df((1-c)x + cy) \left[\frac{x-y}{||x-y||} \right]$$

$$\leq ||x-y|| L.$$

where we use the fact that $\frac{x-y}{\|x-y\|} \in \mathbb{S}_1^{d-1}$. Then we have

$$f(y) - f(x) = g(1) - g(0) = g'(c) \le ||x - y|| L.$$

By symmetry of x and y, we have proven $|f(x) - f(y)| \le L ||x - y||$.

We now look at the case where we don't assume that f is differentiable but just has directional derivatives. As before, we will show that $g(1) - g(0) \le ||x - y|| L$. We let M = ||x - y|| L, $\epsilon > 0$ and $h(x) = g(x) - (M + \epsilon)x$. We will show that h is decreasing. The hypothesis that f has directional derivatives translates into g having left and right derivatives. Moreover for any $t \in [0, 1]$

$$g'^{+}(t) = \lim_{h \to 0^{+}} \frac{g(t+h) - g(t)}{h} = ||x - y|| Df((1-t)x + ty) \left[\frac{y - x}{||y - x||} \right] \le ||x - y|| L = M.$$

As a consequence of this $h'^+(x) = g'^+(x) - (M + \epsilon) \le -\epsilon < 0$. We will now show that h is decreasing on [0, 1] by contradiction.

Assume that there are $0 \le u < v < 1$ such that h(u) < h(v). We let $w = \inf\{\{z \in [u, 1], h(u) < h(z)\}\}$). Since $h'^+(u) < 0$, there is an $\alpha > 0$ such that for any $z \in [u, u + \alpha], h(z) \le h(u)$. This proves that w > u. Also, because h is continuous(Because it has left and right derivatives), we must have h(w) = h(u).

Now since $g'^+(w) < 0$, there is once again an $\alpha > 0$ such that for any $z \in [w, w + \alpha], h(z) \le h(w)$. Now by the definition of w, we can find an element $z \in]w, w + \alpha[$ such that h(z) < h(u) = h(w), this is a contradiction.

Finally we have proven that h is decreasing on [0,1] (and on [0,1] by continuity). This means that

$$0 \le h(0) - h(1) = g(0) - g(1) + (M + \epsilon).$$

Rearranging we get

$$f(y) - f(x) \le M + \epsilon$$
.

Since ϵ was arbitrary, this means that $f(y) - f(x) \leq M$ and finally by symmetry

$$|f(y) - f(x)| \le M = L ||x - y||.$$

∇

Exercise 3.17

Prove Proposition 3.16. We suggest you start by assuming dom(f) has non-empty interior. In case dom(f) has no interior you should first extend f to the affine hull of the relative interior and then extend the extension to the whole space. You may find it useful to use the fact that for $y \in int(dom(f))$, $Df(y)[h] = \sup_{q \in \partial f(y)\langle q,h\rangle}$.

Exercise 3.19

Give an example showing that the constant mR in the last term of the definition of \bar{f} cannot be reduced.

Exercise 3.22

Suppose that $f: \mathbb{R}^d \to \mathbb{R} \bigcup \{\infty\}$ is convex and $\operatorname{lip}(f) \leq \infty$ and let $g = f * \phi_{\epsilon}$ with * the convolution, which is defined on $\operatorname{dom}(g) = \{x \in \mathbb{R}^d : x + \mathbb{B}^d_{\epsilon} \subset \operatorname{cl}(\operatorname{dom}(f))\}$. Prove the following statements:

- (a) g is twice differentiable on int(dom(g)).
- (b) $lip(g) \le lip(f)$.
- (c) g is smooth: $||g''(x)|| \leq \frac{(d+1)(d+6)\mathrm{lip}(f)}{\epsilon}, \forall x \in \mathrm{int}(\mathrm{dom}(g)).$
- (d) $\max_{x \in \text{dom}((g))} |f(x) g(x)| \le \epsilon \text{lip}(f)$.