9.28 notes

1. Review

- pip line
- three hazard: data hazard, load hazard, control hazard

2. Performance

Boeing 747 VS Sud Concodre

Speed

depends on:

- Time to run the task Execution time, response time, latency (Execution Time)
- Tasks per day, hour, week, sec, ns ... (Performance)

CPU Performance

Aspects of CPU Performance (CPU Law)

CPU time	= Seconds	= Instructions x	Cycles x	Seconds
	Program	Program	Instruction	Cycle

	Inst Count	СРІ	Clock Rate
Program	X		
Compiler	Х	(X)	
Inst. Set.	X	X	
Organization		Х	Х
Technology			Х

1/17/01 C5252/Patterson Lec 1.37

How Compiler promotes CPI: reordering the instruction

Brook's "Man Month Myth"

Amdahl "Arch of IBM 360"

 $S_p=rac{1-\eta+\eta}{1-\eta+rac{\eta}{S}}$ and η means the most common part, S means the number of parallel operating units.

Parallelism:

- ILP (Arch)
- TLP (OS)
- LLP (Compiler)

Cache

Cache vs Buffer

Cache: to temporarily store the frequently used data

Buffer: to merge the gap of the data input speed and the data consuming speed

Memory visiting

Maurice Wilkes, EDSAC(英), Subroutine, micro-programming

1. 最经被访问,则最近被访问的概率更大:

the recently visited data are more likely to be visit in a short time span

2. 相邻数据访问概率大:

the nearby data are more likely to be visit in a short time span

AMAT: Average Mem Access Time

AMAT = Hit Time + Miss Rate \times Miss Penalty

Cache Mapping

1. DM: direct mapping

2. FA: Full Associative

3. SA: Set Associative