

CERTIFICATION

Schreiber Translations, Inc.

This is to certify that the attached English language document,

51 Monroe Street

identified as Patent Appl. Pub. No. Sho. 49-103499, is a true

Suite 101

and accurate translation of the original <u>Japanese</u>

Rockville, MD 20850

language document to the best of our knowledge and belief.

P: 301.424.7737

F: 301.424.2336

Executed this <u>27</u> day of July, 2004

Schreiber Translations, Inc. 51 Monroe Street, Suite 101 Rockville, Maryland 20850

ATA Member 212207

Schreiber Translations, Inc. uses all available measures to ensure the accuracy of each translation, but shall not be held liable for damages due to error or negligence in translation or transcription.

[Revenue Stamp] (2,000 yen)
Pater

Patent Application

(Patent application under the proviso of the Patent Law, Article 88)

February 7, 1973

[seal: illegible]

To the Commissioner of Patents: Mr.

Sachio MIYAKE

1. Title: Score Display Device for Beam Shooting

2. Number of claims: 2

3. Inventors:

HAYAKAWA, Kiyoshi Gakushu Kenkyusha K.K. 5-go, 40-ban, 4-chome, Kamiikedai, Ota-ku, Tokyo and 1 other

4. Applicant:

FURUOKA, Hideto

Acting Director

Gakushu Kenkyusha K.K. (098)

5-go, 40-ban, 4-chome, Kamiikedai,

Ota-ku, Tokyo

[seal: illegible]

5. Agent

KINUTANI, Nobuo Patent Attorney (6802)

Nichiei Patent Law Office

1-go, 4-ban, 1-chome, Marunouchi

Chiyoda-ku, Tokyo

Postal Code 100

Tel: (03) 214-2547 (Rep.)

[seal: illegible]

(19) Japan Patent Office

Patent Gazette

- (11) Patent Appl. Pub. No. Sho 49-103499
- (43) Date of Pub.: Sep. 30, 1974
- (21) Application No. Sho 48-15333
- (22) Application Date: Feb. 7, 1973

Examination: Requested (total 9 pages)

Internal Reference No.:

6935 25

6935 25

(52) Japanese Classification:

95 E291

95 E091

Specification

1. Title: Score Display Device for Beam Shooting

2. Claims

(1) A score display device for beam shooting characterized:

by being comprised of a group of moving terminals in which a number of terminals equal to the number of points earned are concentrically arranged in circles similar to a target comprised of concentric circles of effective areas, with individual terminals being mutually insulated and partitioned; a display member, electrically connected to the terminals of the group of terminals, operating based on the selective closing of the individual terminals and displaying the score; and fixed terminals selectively contacting and closing individual moving terminals; and

in that operations are performed on the light of a fired spot incident on the X and Y axes of a group of photoelectric conversion terminals positioned in the form of a cross in the X and Y directions, computed X and Y axis centers are outputted, and on that basis, said group of moving terminals is moved in the X and Y directions.

(2) A score display device for beam shooting characterized:

by being comprised of a pair of side-by-side groups of odd and even moving terminals having a number of terminals equal to the number of points earned concentrically arranged in circles similar to a target comprised of concentric circles of effective areas, the terminals being divided based on whether they are an odd or an even number from the center, and the terminals being mutually separated by gaps; a display member, electrically connected to the terminals of each of the groups of moving terminals, operating based on the selective closing of the individual terminals, and displaying the score; and fixed terminals, selectively contacting and closing the individual terminals of each of the groups of moving terminals,

in that operations are performed on the light of a fired spot incident on the X and Y axes of a group of photoelectric conversion terminals positioned in the form of a cross in the X and Y directions, computed X and Y axis centers are outputted, and on that basis, said group of moving terminals is moved in the X and Y directions.

3. Detailed Description of the Invention

The present invention relates to a score display device for beam shooting (a form of competitive shooting employing a beam of light), and more particularly, a device configured to externally display a score based on the position of a hit by a fired beam spot on a target equipped with a light receiving device.

In beam shooting, a shooting match is conducted with light beams instead of live ammunition. It is thus characterized by safety, not being limited by location, and being lightweight so that any person can participate. It is a simple sport that has attracted attention as a form of entertainment.

Figs. 1 and 2 show an example of a light beam gun and a target employed in beam shooting.

Light beam gun 1 is configured as shown in Fig. 1. Within the handle 2 of gun 1 is provided a power source circuit 4 containing a battery 3. Circuit 4 is electrically connected to an oscillation circuit 5. Oscillation circuit 5 is electrically connected to the drive circuit 8 of a light-emitting element 7 positioned in the base portion of gun body 6. A switch circuit 9 is positioned between drive circuit 8 and oscillation circuit 5. Circuit 9 is linked to a trigger 10, for example. Light-emitting element 7 is made of an infrared radiation emitting member so as to prevent malfunctioning due to external light sources. and fires an infrared beam. Based on response speed, GaAs emissive diodes are employed as the light-emitting elements to obtain infrared radiation of 9,000 to 10,000 Å. Operation of the switch circuit causes oscillation circuit 5 to send a pulse-modulated signal to drive circuit 8, thereby causing light-emitting element 7 to emit pulse-modulated infrared radiation. The infrared radiation passes through a slit in the slit sheet 11 of the front surface of light-emitting element 7, is converged by converging lens 12, and shoots toward the target. Fig. 2 shows an example of a target device in which a target portion 14 and a light-receiving element 15 beneath it are positioned in the center of a boxlike main body 13. A score display 16 is positioned above, and a hit position enlarged display 17 is

positioned below. The target device is also connected to a recording device 18 positioned externally.

In such beam shooting, the present invention relates to a device capable of detecting the score based on hits made by firing light beams and displaying the score externally.

In the target, the effective area is determined by concentric circles in a method where the score decreases sequentially from the center to the exterior. When firing live ammunition, it is possible to determine points by bullet marks on a target. In beam shooting, as well, the positions of hits by spots fired on a target are similarly detected, and a score corresponding to the position of the hit is displayed to permit effective competition. The competition is conducted with excitement and convenience.

The present inventors, in light of the above-described status of beam shooting, devised the present invention so that points corresponding to the positions of hits by shooting spots can be displayed externally.

An object of the present invention is to provide a score display device capable of displaying on the exterior a score permitting contestants to see and confirm their firing scores when a target is hit in beam shooting.

A further object of the present invention is to provide a score display device in which the target light receiving device is comprised of photoelectric conversion elements (referred to hereinafter as photoelectric elements) arranged in the form of a cross, the position of a hit at the center of a fired spot is computed and detected as the centers of incident light spots on the X and Y axes formed by the photoelectric element group, and based on the X and Y output signals, a displacement means electrically connected to the score display means is mechanically moved in the X and Y directions. This permits displaying the score without uselessly complicating the electric system, such as by digitally displaying as is a hit position detection signal outputted with the X and Y [signals]. The score display is accurate, operation is stable and reliable, and the configuration is simplified to the greatest degree possible.

An embodiment of the present invention is described in detail below based on the attached drawings.

The present invention detects the center position of a fired spot, that is, the hit position, by the following means.

Fig. 8 is a front view descriptive of the target light-receiving device. In this device, the configuration may be one that is integrated with target portion 14 on which the effective areas are displayed as concentric circles, or one in which they are separated and positioned side by side. Fig. 2 shows a configuration in which they are separated. In that case, sighting in is conducted so that the aiming of light beam gun 1 is identical to the path over which the light beam advances. Light-receiving device 15 is comprised of photoelectric elements 21... arranged in the form of a cross on base plate 20. Ten photoelectric elements 21... may be provided in both the positive and negative directions of both the X and Y axes, for example.

Light-receiving device 15 comprised of groups of photoelectric elements 21... is electrically connected to an electric system such as that shown in Fig. 6. That is, the group of photoelectric elements 21 is routed to an amplification circuit 22, wave detection circuit 23, memory and computation circuit 24, and oscillation circuit 25. Oscillation circuit 25 is electrically connected to hit position display device 17.

Oscillation circuit 25 is also connected to an X-direction drive motor 26 and a Y-direction drive motor 27 that move the score display device 16 of the present invention.

The method of detecting the center of the position of the beam spot fired by the light beam gun at the light-receiving device will be described next with Figs. 4 and 5. For simplicity of description, Figs. 4 and 5 denote photoelectric elements 21..., for detecting hit positions and arranged in the shape of a cross, in X and Y coordinates. Each of these has 10 divisions, there being 20 divisions along the X axis in the positive and negative directions combined and, similarly, 20 square divisions along the Y axis.

In Fig. 4, assume that the spot 8 of a light beam that has been fired has hit the position indicated. The circumference of spot 8 crosses both the X and Y axes on both their positive and negative sides. The intersection with the X axis on the positive side is located at 5 from center H, and on the negative side, at 8 from center H. These values are subtracted by the memory and computing circuit and the result is divided by two, giving a result of 1.5. Accordingly, the center of spot S in the X direction is determined to lie at a position 1.5 to the negative side. Similarly, the intersection with the Y axis on the positive side is located at 9 from center H, and at 4 on the negative side. These are subtracted, giving a result of 5. This is then divided by 2, revealing that the center of spot S in the Y direction lies at a position 2.5 to the positive side.

Thus, the position of the center of spot S is detected as lying at the point of intersection H' of an X coordinate of 1.5 on the negative side and a Y coordinate of 2.5 on the positive side in the second quadrant. The center H' of spot S can be obtained in this manner. In this case, outputs of 1.5 in the X direction and 2.5 in the Y direction are sent over the oscillation circuit to pulse motors 26 and 27. The outputs to pulse motors 26 and 27 are converted in advance to 1 for each 0.5, so outputs of 3 and 5 respectively are outputted to these motors to operate the external display.

Similarly, in Fig. 5, the center of spot S in the X direction is $10 - 8 = 7 \div 2 = 3.5$, so the X coordinate position is positive 3.5. In the Y direction, $7 - 4 = 3 \div 2 = 1.5$, so the Y coordinate position is positive 1.5. Thus, as above, the center of spot S in X, Y coordinates is detected as being H' in the first quadrant of the coordinate system.

As set forth above, the center of the spot, that is, the hit position, is detected based on incident light at a spot on the group of photoelectric elements 21....

The score display device operated in this manner is as follows.

Figs. 7 to 10 describe the score display device.

Fig. 7 is a plan view descriptive of the score detecting device in the score display device of the present invention. A record card R displaying the target on moving platform 28 displaced in the X and Y directions by pulse motors 26 and 27 is set. Based on movement of platform 28 in the X and Y directions by the above-described method, the hit position is detected and confirmed, and the position of the hit is recorded by a means such as hole punching on the target display of card R.

Platelike support members 30 and 31 on the surfaces of which are formed terminals in the same manner as in the target display of card R are arranged side by side on moving platform 28. As is clear from the enlargement of Fig. 8, support members 30 and 31 are formed of insulating base plates 32 and 33 of plastic or the like so as to be identical in size. Belt terminals 34... and 35... are individually concentrically embedded or the like into the surfaces of base plates 32 and 33 in the same manner as in the target display of recording card R and as in the partitions of the effective areas of the target. In

the present embodiment, the effective target area is divided into 10 portions, with a terminal being positioned in each portion. Since the terminals are positioned in close proximity, in order to prevent electrical short-circuiting of adjacent terminals and achieve correct detection of scores, the terminals are divided from the center into even-numbered areas and odd-numbered areas, with single terminal units 34a to 34 e and 35a to 35e being positioned with a spacing between them in concentric circles on the surfaces of base plates 32 and 33, respectively. Single terminal units 34a to 34e are positioned in ringlike fashion on the odd-numbered portions of the terminal areas obtained by partitioning support member 30 into 10 parts. Similarly, single terminal units 35a to 35e are positioned on the even-numbered portions of the terminal areas obtained by partitioning support member 31 into 10 parts.

The configuration is such that when these single terminal units are stacked on each other, the single terminal units of one of the base plates are correctly positioned over the insulating portions of the single terminal units of the other.

Thus configured support members 30 and 31 are positioned side by side on moving platform 28. The respective terminals 34..., 35... of support members 30 and 31 have lead wires 36 running out the back sides of support members 30 and 31. These pass via relays 37... and are connected to the switching means of a display member 38 in the form of several display tubes or the like.

Flexibly supported fixed terminals 39 and 40 are provided on support members 30 and 31. Terminals 39 and 40 are connected to the negative side of a power source, and the moving terminal 34... and 35... sides on the support member 30 and 31 sides are connected to the positive side of the power source, with terminal 34... forming an electrical circuit with 39, and 35... forming an electrical circuit with 40. Fixed terminals 39 and 40 are set so that in the starting position, they flexibly contact the center of the concentric circles formed by moving terminals 34... and 35... of support members 30 and 31. As shown in Fig. 9, in the starting position, fixed terminal 39 is flexibly in contact with moving terminal 34a and fixed terminal 40 is in flexible contact with the insulating surface at a position corresponding to moving terminal 34a between moving terminal 35a. The moving terminals 34... and 35... of support members 30 and 31 are connected to a number of the 10 display elements 41 constituting display member 38, and are connected to a number of the display elements 41 numbered 10 to 1 in sequentially decreasing fashion from the center terminal to the exterior terminal.

As set forth above, the inputting of a fired beam spot to light-receiving device 15 results in the outputting of X and Y pulse signals. These cause pulse motors 26 and 27 to be driven by the amount of the output, displacing moving platform 28 in the X and Y directions. Thus, both support members 30 and 31 are integrally displaced in the X and Y directions. At a position corresponding to the hit position, moving platform 28 stops. If it is an effective score area, one or the other of fixed terminals 39 and 40 contacts moving terminals 34... or 35..., the terminal is connected, the circuit containing the terminal is closed, the several display elements positioned in that circuit light up, and the score is displayed to the exterior.

By integrally displacing the moving terminals in the X and Y directions in this manner, the moving terminals are brought into selective contact with the fixed terminals and the score is displayed. Next, when the position hit by the fired beam is within the limits of the partitioned effective scoring areas, each of fixed terminals 39 and 40

contacts each of the moving terminals. As a result, two of the several display elements are lit up.

A system such as that shown in Fig. 10 is employed in the present embodiment to display an increasingly higher score. Constantly closed contact points 42 are inserted in several display circuits numbering ten or fewer and connected to relays (not shown) inserted into the next higher score circuits. In the embodiment shown, when fixed contact points 39 and 40 are connected to corresponding moving contact points 34a and 35a, respectively, the relay of a 10-point display circuit opens the constantly closed contact point of a nine-point display circuit. Opening this circuit closes just the 10-point display circuit, giving priority to the higher point. Although the higher point is given priority in this manner, the nine points below it are similarly configured and operate similarly.

The X-axis and Y-axis centers of the hit spot are detected and outputted, moving terminal support members 30 and 31 are displaced in the X and Y directions, and the score corresponding to the hit position is detected as set forth above.

Figs. 11 and 12 show an example of a mechanism for moving support members 30 and 31 in the X and Y directions.

Guide rails 51 and 51 are positioned with a gap in the center of base platform 50. A frame 52 moving in the Y direction is provided between guide rails 51 and 51. Moving frame 52 is connected via a connecting member 54 to a Y direction movement belt 53 driven by Y direction drive motor 27 provided on base platform 50, and is driven by motor 27 in the Y direction. X direction guide rails 55 and 55 are provided on Y direction moving frame 52. Moving platform 28 is provided in a fashion permitting displacement in the X direction between rails 55 and 55. Moving terminal support members 30 and 31 are integrally linked and secured side by side on moving platform 28.

Moving platform 28 is driven by X-direction drive motor 26. Motor 26 is positioned on base platform 50. In the embodiment shown, the gear 56a of bevel gear block 56 linked by Y-direction drive motor 27 and belt 53 is driven by belt 57, driving a pulley 59 linked thereto by a shaft 58. A pulley 62 linked to Y-direction displacement frame 52 is positioned in a manner permitting sliding between pulley 59 and pulley 61 linked by belt 60. The output shaft of pulley 62 is linked to a bevel gear block 63 provided on moving frame 52, driving through gear block 63 an X-direction displacement belt 64 provided on moving platform 28 and causing a moving platform 28 linked thereto to move in the X direction.

The present embodiment employs a configuration in which Y-direction drive motor 27 is driven by a Y signal output. This output is transmitted as ½ of the Y direction output through bevel gear block 56. X-direction drive motor 26 drives in the direction of bevel gear block 56 based on an X signal output, half of which is outputted and transmitted to drive shaft 58 as (X+Y)/2. Pulley 59, with a double diameter, drives with X+Y output. Pulley 61, which is driven by the transmission of this output, moves by an amount of X+Y due to Y-direction displacement of moving frame 52 including pulley 61. Moving platform 28 is moved by that amount, but since the input to pulley 61 is X+Y, driving in the Y direction cancels out and only X-direction drive output is transmitted, causing displacement in the X direction.

A displacement mechanism has been described above. However, the displacement mechanism is not limited thereto and may be suitably determined.

Although a design in which concentric circular moving terminals are divided from the center by even-numbered positions and odd-numbered positions into two moving terminal support members is described above, the forming of gaps between concentric round moving terminals on a single support member to provide precisely a number of terminals equal to the number of score displays is a premise of the present invention. Ten terminals connected to score displays have been described in the present embodiment, with the terminals being positioned by odd and even numbers on two support members for the above-stated reasons.

The present invention permits the detection of a hit position, converts this to a digital display and displays it externally, and permits competitors to see and confirm their scores for firing hits. It is this highly effective in shooting competition. The score can also be numerically displayed, increasing the entertainment afforded by beam shooting.

Further, the present invention can detect and output beam shooting hit positions as X-axis and Y-axis centers, convert this to a mechanical operation, change the operation electrically to achieve a digital score display, and render it as an external display. The center of a fired spot is outputted as X and Y signals to simplify the configuration without uselessly complicating the electric system, such as by electrically modifying the signals to achieve a digital display. Further, since mechanical displacement in the X and Y directions and electrical modification are used to operate several display elements in the display member, the advantages of reliable operation and reliable score display are afforded.

4. Brief Description of the Figures

Fig. 1 is a descriptive drawing of an example of a light-beam gun. Fig. 2 is a descriptive drawing of an example of a target device. Fig. 3 is a descriptive drawing of a light-receiving device. Figs. 4 and 5 are descriptive drawings of the method of detecting hit positions. Fig. 6 is a descriptive block diagram. Fig. 7 is a descriptive plan view in which moving terminals are mounted in a moving platform. Fig. 8 is an enlarged view of moving terminals. Fig. 9 is a descriptive systematic drawing in which the major components of a specific example of a score display are rendered as cross sections. Fig. 10 is a descriptive drawing of a higher score priority display circuit. Fig. 11 is a plan view of an example of a displacement mechanism. And Fig. 12 is a lateral view of the same.

In the figures, 34 and 35 denote moving terminals, 39 and 40 denote fixed terminals, and 36 denotes a display member.

- Fig. 1
- Fig. 2
- Fig. 3
- Fig. 4
- Fig. 5
- Fig. 6
- Fig. 7
- Fig. 8
- Fig. 9
- Fig. 10
- Fig. 11
- Fig. 12

Procedural Amendment

August 29, 1973

To the Commissioner of Patents: Mr. Sachio MIYAKE [seal: illegible]

1. Indication of Matter:

Patent Application No. Sho 48-15888

2. Title:

Score Display Device for Beam Shooting

3. Person Making Amendment

Relation to matter: Patent applicant

Gakushu Kenkyusha K.K. (098)

4. Agent

KINUTANI, Nobuo [seal: illegible]

Patent Attorney (6802)

Nichiei Patent Law Office

1-go, 4-ban, 1-chome, Marunouchi

Chiyoda-ku, Tokyo

Postal Code 100

and 2 others

5. Items to Be Amended

Application and Specification [seal: illegible]

- 6. List of Attached Documents
 - (1) Specification
- 1
- (2) Drawings
- 1
- (3) Copy of Application
- 1
- (4) Power of Attorney
- (5) Letter Requesting Examination of Application 1
- 7. Additional Inventors and Agents
 - (1) Inventor

HAYASHI, Kashiwa

Gakushu Kenkyusha K.K.

5-go, 40-ban, 4-chome, Kamiikedai, Ota-ku, Tokyo

(2) Agent

MORI, Tetsuya, Patent Attorney (6698) [seal: illegible]

Gakushu Kenkyusha K.K.

1-go, 4-ban, 1-chome, Marunouchi, Chiyoda-ku, Tokyo

Yoichiro, SHIMODA, Patent Attorney (6785) [seal: illegible]

Same address

Patent Application

(2,000 yen)

(Patent application under the proviso of the Patent Law, Article 88)

February 7, 1973

To the Commissioner of Patents: Mr. Sachio MIYAKE

- 1. Title: Score Display Device for Beam Shooting
- 2. Number of claims: 2
- 3. Inventors:

HAYAKAWA, Kiyoshi

Gakushu Kenkyusha K.K.

5-go, 40-ban, 4-chome, Kamiikedai, Ota-ku, Tokyo and 1 other

4. Applicant:

FURUOKA, Hideto, Acting Director

Gakushu Kenkyusha K.K. (098)

5-go, 40-ban, 4-chome, Kamiikedai, Ota-ku, Tokyo

5. Agent

KINUTANI, Nobuo Patent Attorney (6802)

Nichiei Patent Law Office

1-go, 4-ban, 1-chome, Marunouchi, Chiyoda-ku, Tokyo

Postal Code 100

Tel: Tokyo: 03 (214) 2547 (Rep.)

and 2 others

- 6. Contents of Amendment
- (1) Amendment as per addition to Application.
- (2) The claims are amended as per attachment: stricken out portions are deleted.
- (3) Line 16, page 8 of Specification:

" $10 - 3 = 7 \div 2 = 3.5$ " is hereby amended to "(10-3)/2 = 3.5". In line 16 of the same, " $7 - 4 = 3 \div 2 = 1.5$ " is hereby amended to "(7-4)/2 = 1.5".

- 7. List of Attached Documents
 - (1) Application
 - n
 - (2) Amended claims 1

- 6. List of Attached Documents
 - (1) Specification
 - (2) Drawings
 - (3) Copy of Application 1
 - (4) Power of Attorney
 - (5) Letter Requesting Examination of Application 1

1

1

- 7. Additional Inventors and Agents
 - (1) Inventor

HAYASHI, Kashiwa

Gakushu Kenkyusha K.K.

5-go, 40-ban, 4-chome, Kamiikedai, Ota-ku, Tokyo

(2) Agent

MORI, Tetsuya, Patent Attorney (6698) [seal: illegible]

Gakushu Kenkyusha K.K.

1-go, 4-ban, 1-chome, Marunouchi, Chiyoda-ku, Tokyo

Yoichiro, SHIMODA, Patent Attorney (6785) [seal: illegible]

Same address

Claims

(1) A score display device for beam shooting characterized:

by being <u>comprised of</u> a group of moving terminals in which a number of terminals equal to the number of points earned are concentrically arranged in circles similar to a target comprised of concentric circles of effective areas, with individual terminals being mutually insulated and partitioned; a display member, electrically connected to the terminals of the group of terminals, operating based on the selective closing of the individual terminals and displaying the score; and fixed terminals selectively contacting and closing individual moving terminals; and

in that said group of moving terminals is displaced in X and Y directions.

(2) A score display device for beam shooting characterized:

by being comprised of a pair of side-by-side groups of odd and even moving terminals having a number of terminals equal to the number of points earned concentrically arranged in circles similar to a target comprised of concentric circles of effective areas, the terminals being divided based on whether they are an odd or an even number from the center, and the terminals being mutually separated by gaps; a display member, electrically connected to the terminals of each of the groups of moving terminals, operating based on the selective closing of the individual terminals, and displaying the score; and fixed terminals, selectively contacting and closing the individual terminals of each of the groups of moving terminals,

in that said group of moving terminals is displaced in X and Y directions.

到大四小 特

·

(特許法第88条ただし書の規定による特許出願) 昭和48年2月17日

48. 2. 0

将許庁長官 三 宅 幸 夫 殿

1. 発明の名称・

ビームシューテイング に か け る 得点要 宗 装置 2. 特 許 請 求 の 範囲に 記 載 さ れ た 発 明 の 数 ・・・・ 2 3. 発 明 者

東京都大田区学施台4丁目40番5号株式会社学学学研究。

4. 特許出願人

東京都美田名光 施台 4 丁目 40 番 5 号 (098) 株式会社 "学" 智" 新 "党" 社 代表取締役 岩 崗 "筹" 人

5. 代 理 人

郵便番号 100

東京都千代田区丸の内1丁目4番1号

日 栄 特 許 事 務 所 電話 (08) 214 - 2547 (代表)

(6802) 弁理士 網 谷 信 雄

19 日本国特許庁

公開特許公報

①特開昭 49-103499

43公開日 昭49.(1974) 9.30

②特願昭 48-15333

②出願日 昭48.(1973) ~.7

審査請求 4

(全9頁)

庁内整理番号

(52)日本分類

6935 25 6935 25 95 E291 95 E091

剪細 1

1. 発明の名称

ビームシューテイングにおける符点表示装置 2. 特許請求の範囲

- (2) 有効範囲を同心円状に形成した線的と同様に 得点の数と同数の端子を同心円状に有し、この 端子を电心から偶数及び奇数の別によつて分割

し、端子相互に間隔を開けて並散された一対の 偶数が奇数の移動端子群と、の夫々の移動 端子群の場子と電気的に連結し、端子の夫々の 選択の場子と電気的に連結し、得点を表々の 選択が体と、前記各移動は、得子の 表示体と、前記各移動路子群の なり、なり、子が、 なり、なり、子が、 なり、子群のの中心を なり、といいの中心となり、 なり、といいの中心となり、 なり、といいの中心となり、 なり、といいの中心となり、 なり、といいの中心となり、 ないによりにしたと、 ないなり、といいの中心とない。 といいの中心とないの中心とない。 といいるようにしたとない。 させるようにないる得点表示要賞。

3. 発明の詳細な説明

この発明は、ビームシューテイング(Beam Shooting ビーム光線を利用した射撃競技)においける将点表示装置にかかり、特に受光装置を備えた標的装置の射撃ビームスポットの命中位置に応じてその得点を外部へ表示するようにした装置に関する。

ヒームシューテイングは、実弾に代え光線で射

特朗 昭49-1034 99(2)

撃競技を行うため、安全であること、場所的な制限がないこと、手軽に何人でも行えること等の特長を有し、簡便に行えるスポーツ、或は娯楽性のあるスポーツとして着目される。

第1図及び第2図は、ビームシューティングに おける光線銃及び標的装置の一例を示す。

光線鉄1は第1図の如き構成では、 の状況2内には、電池3を対域で電域で電域で電域で電域で電域で電域を対域で電域で電気を対した。 を投資で電域を対象を対したが設定された。 を発掘回路5個にはスイはがあいますののの気がでは、 を発掘回路5個にはスイはががありませる。 を発掘回路5個にはスイはがが、 を発掘回路5個にはスイはがが、 を発掘のの数がではなるが、 がでする。 を発掘のの数がではなるが、 がの数がではなるが、 がの数がではないが、 がの数がではないが、 がのかますが、 がいたが、 がいが、 がいがいが、 がいが、 光素子 7 はパルス変調した赤外線を発光する。赤外線で発光素子 7 前面のスリット板 1 1 のスリットを通り、 無光レンズ 1 2 で集光され、 傾的へ発射される。 第 2 図は標的装置の一例を示し、 箱状の本体 1 3 の中央には標的部分 1 4 及び この下辺に受光部分 1 5 が併設され、 上辺には得点表示装置 1 6、 又下辺には命中位置拡大表示装置 1 7 が設けられ、 更に標的装置は外部に設けた記録装置 1 8 とも連結している。

以上のようなビームシューテイングにおいて、 この発明は光線射撃の命中による得点を検出し、 これを外部へ表示することを可能とした装置に関 する。

射撃の徳的は、その有効範囲が同心円状に決決を おい、中心から外方へ順を被する方法を 用している。実弾射撃であれば、棟的の弾痕で得 点を検出するととができる。ピームシューテイン グでも同様に傾的への射撃スポットの命中位置 検出し、との命中位置に対応して得点を表示要を とができれば競技上有効であり、競技を興趣を

もつて行え、便利である。

この発明者は、ビームシューテイングにおいて 上記した事態に鑑み、射撃スポットの命中位電に 対応する得点を外部へ表示することを可能とすべ くこの発明をなすにいたつた。

この発明の目的とする処は、ビームシューテイングにおいて、当該射撃が様的に命中したさい、 その得点を外部へ表示し、当該射撃の得点を競技者が看取・確認することができる得点表示装置を 提供する。

点表示が正確で、作動が安定的で確実であり、構成を可及的に簡単化した得点表示装置を提供する。 以下にこの発明の一実施例を添付した図面に従

との発明は、射撃スポットの中心位置、即ち命中位置の検出を以下の手段により行う。

つて詳述する。

第8図は様的受光装置の説明的正面図で、この 装置は同心円状に有効範囲を表示した様的部分14 と一体とした形式でも、又分離併設した形式でも 良く、第2図は分離した形式を示し、この場合、 光線紙1の照準と光線の進路とが失々を照準する ように設定する。受光装置15は光電素子21・・・・・を基板20に十字型に配設して形成し、この 光電素子21・・・・・は、例えばX軸、Y軸の各正 負の方向へ各10個づつ設けられる。

この光電素子21・・・・・許よりなる受光装置15 は、第6図に示す如き電気系統に電気的に連結されている。即ち光電素子21・・・・・群は、増幅回路22、検波回路23、記憶・演算回路24、発援回路25に導かれる。この発振回路25は命中

特朗 昭49-103499(3)

位置表示装置17に電気的に連結される。又発振回路25は、この発明の得点表示装置16を作動させる※方向駆動モーター26及びY方向駆動モーター27に連結される。

次に徐的受光装置への光線鉄の射撃によるピーム光線スポットの中心位置検出方法を第4図及び第5回は説明する。第4図及び第5回は説明の便宜上十字型に配設された命中位置検出用の光電素子21・・・・をX座標、Y座標で表わし、夫々例えば10目盤、正負で合計X座標、20目盛、同様にY座標を20目盛の方眼として表した。

第4図において、射撃によるビーム光線のスポット 8 が図示の位置に命中したとしよう。スポット 8 の外間は X・Y 座標の夫々正側、負側にかかっている。 X 座標においては正側の X 方向へ中心 H から 5 の位置、又負側へ中心 H から 5 の位置、又負側路で放算し、その結果を2 で除し、1.5 の結果を算出し、従つてあるとと3 の X 方向の中心は負側へ 1.5 の位置であるととが判明する。又同様に Y 座標においては中心 H か

の入光によつてスポットの中心、即ち命中位置を 検出する。

これによつて作動される得点表示装置は以下の 如くである。

第7回乃至第10回は得点表示装置の説明図で ある。

第7図はとの発明にかかる得点表示装置における符点の検出装置の説明的平面図で、前記パルスモーター26,27でX・Y方向へ移動される移動台28に傾的を表示した記録カードRがセットされ、この移動台28の前記方法によるX・Y方向へ移動によつて命中位置を検出、確定し、カードRの標的表示上に穿孔等の手段で命中位置を記録する。

この移動台 2 8 に前記カード B の標的表示と同様に端子をその表面に形成した板状の保持体 3 0 , 3 1 は、第 8 図の拡大図で明らかなようにブラスチックス等の絶縁性の基板 3 2 , 3 3 で同一の大きさに形成される。各基板 3 2 , 3 3 表面には、前記記録カード

ら正側に 9、負倒へ 4 であるためこれを滅算して 5 の結果を得、これを 2 で除してスポット 8 の Y 方向の中心は正側の 2.5 の位置であることが判明 する。

これによりスポット 8 の中心位置が X 座標の負側へ1.5、 Y 座標の正側へ2.5 の第2 象限上の交点 H が中心であることが検出される。このようにしてスポット 8 の中心 H を求めることができ、この場合、 X 方向1.5、 Y 方向2.5 の各出力を発振回路を介してパルスモーター2 6 , 2 7 へ送信し、パルスモーター2 6 , 2 7 への出力を0.5 を1 としておけば夫々8 及び5 の出力をこのモーターへ出力し、外部表示装置を作動させる。

第 5 図でも同様に、スポット S の中心を X 方向が 1 0 - 8 = 7 ÷ 2 = 8.5 で X 座標の位置が正側へ 8.5、又 Y 方向が 7 - 4 = 8 ÷ 2 = 1.5 で Y 座標の位置が正側へ 1.5 であることが判明し、これで前記と同様に X ・ Y 座標上のスポット S の中心が座標の第 1 象限上の H であることを検出する。

以上の如く光電素子21・・・・・群へのスポット

この端子単体相互を重ねた場合、一方の基板の 端子単体が他方の端子単体間の絶線 配分に正確に 位置するように形成される。

このよりに形成した保持体 3 0 , 3 1 は移動台 2 8 に並散される。この保持体 3 0 , 3 1 の各端 子 3 4 ・・・、 3 5 ・・・ は、保持体 3 0 , 3 1 の裏 面にリード職 3 6 ・・・・・で導出され、夫々がリレー 3 7・・・・を介して数表示智等の表示体 3 8 の 開閉手段に連結される。

保持体30,31上には弾支された固定端子 39,40を設け、この端子39,40は電源の 負に、又保持体30,31側の移動端子34・・・、 ・・・ と 3 9 , 3 5 ・・・・ と 4 0 で電気回路を構成 する。固定端子39,40は、スタート位置では 保持体30,31の移動端子34・・・・、35・・ **・で形成される同心円の中心に弾接するように 設定する。スタート位置では、第9回に示す如く 固定端子39 は移動端子34 a に弾接し、又固定 端子40は移動端子35a間の前記移動端子34a に相当する位置の絶歓面に弾接する。各保持体30 , 3 1 の各移動端子 3 4 ・・・ 及び 3 5 ・・・ は、表 示体 3 8 を構成する 10 価の数表示要素 4 1・・・の 夫々に接続され、夫々中心の端子から外方へ順次 数字を減した10~1の数表示要素41・・・ 化接 続される。

これは10以下の数表示回路に常閉接点42を介入し、これを上位の得点の回路に介入したリレー(図示せず)に接続し、図示例で固定接点39,40が対応する移動接点34a及び35aの夫々に接触した場合、10点表示回路のリレーで9点表示回路の常閉接点を開き、この回路を開いて10点表示回路のみを閉成させ、上位点を優先させる。このように上位点を優先させるが、9点以下も同様に構成され、作動する。

以上の如く命中スポットのX軸、Y軸の中心を 検出し、これを出力し、移動端子保持体 3 0 , 3 1 を X · Y 方向へ移動させ、命中位置に対応する得 点を検出する。

第 1 1 図及び第12 図は保持体 3 0 、3 1 の X . Y 方向の移動機構の一例を示す。

進台 5 0 の中央に Y 方向ガイドレール 5 1,51 が間隔を钠けて設けられ、このガイドレール 5 1,51 間に Y 方向への移動枠 5 2 が設けられ、この移動枠 5 2 は、基台 5 0 に設けられた Y 方向駆動モーター 2 7 で駆動される Y 方向移動ベルト 53

前配の如く受光装置15への射撃ビームスポットの入力によつてX・Yのパルス信号を出力分配で、たれでパルスモーター26,27を出力分配を出力分配を対象をX・Y方向へ体にX・Y方向へ体にX・Y方向へ体にX・Y方向へ体にX・Y方向へ体にX・Y方向へ体にX・Y方向へ体にX・Y方向であから、有効範囲内であからとでを動し、のいずれかが移動端子34・・・、35・・・を受止する。当時に対するとは、外部へ得点を表示する。

このように移動端子のX・Y方向への一体の移動により、移動端子は選択的に固定端子に接触し、 得点を表示する。次に射撃ビームの命中位置が区 画された有効範囲の境界にある場合、固定端子 39、40の夫々は夫々移動端子に接触してしま う。この結果二個の数表示要素が点灯されること となる。

そこでこの実施例では、繰り上げて上位の得点 を表示するため、第10図の如き方式を採用した。

に連結部材 5 4 を介して連結され、このモーター2 7 の駆動で Y 方向へ移動する。 Y 方向移動枠 52 には X 方向ガイドレール 5 5 , 5 5 が設けられ、このレール 5 5 , 5 5 間には移動台 2 8 が X 方向へ移動可能に設けられ、移動端子保持体 3 0 , 3 1 は、移動台 2 8 に一体に連結固定され、並設される。

特開 昭49-103499(5)

以上の移動台28に移動端子保持体30,31 が一体に設置され、前記した如き電気回路を形成 し、数表示要素を作動させ、得点を表示させる。 以上移動機構を説明したが、移動機構は上例に 限らず適宜に設定することができる。

又以上では同心円状に形成された移動端子を中心から偶数位置及び奇数位置で分割し、二つの移

として出力し、これを電気的に変換してデジタル 表示を行う如く電気系統が徒らに複雑化せず、構 及を簡単化し、又X・Y方向への機械的移動によ つてこれを電気的に変換して表示体の数表示要素 を作動させるため、作動が確実で、得点表示を確 実に行う等の特長を発揮する。

4. 図面の簡単な説明

制図面中 3 4 , 3 5 は移動端子、3 9 , 4 0 は 固定端子、3 6 は表示体である。 動端子保持体に分割して設置したが、一つの保持体に同心円状の移動端子相互間に間隙を形成して この端子を得点表示の数だけ設けることはこの発 明の前提であり、この実施例では得点表示と連結 した端子を10個とし、前記した理由により端子 を偽数、奇数に分けて二つの保持体に設けた。

以上の如きとの発明によれば、以下の如き特長 を発揮する。

この発明によれば、ビームシューティングにおいて、命中位置を検出し、これをデジタル表示に 直換して外部へ表示し、競技者が射撃の命中による 得点を看取・確認することができ、射撃競技上 をもて有効であり、又その得点の表示も数字として 表示することができ、ビームシューティングの 興趣を向上する。

又との発明は、ビームシューテイングの命中位置をX軸、Y軸の中心として検出出力し、これを 様板的な作動に置換し、この作動を電気的に変換 させて得点をデジタル表示として外部表示するこ とを可能とし、射撃スポットの中心をX・Y信号

(2)

(3)

(4) 出願審査請求書

7. 前記以外の発明者及び代理人

(1) 発 明 者

東京都大田区上他台4丁目40番5号 株式会社 学 習 研 究 社 内 へさり カシウ 林 柏

(2) 代 理 人

東京都千代田区丸の内1丁目4番1号

(6698) 弁理士 森

同 所-

(6785) 弁理士 下

6.補正の内容。

- (1) 騒響を診附の如く訂正する。
- (2) 特許請求の範囲を別紙の如く訂正し、一 部分間を削除した。
- (3) 明細書第8頁第15行目「10-8=7÷ 2 = 8.5 」とあるを「 $\frac{10-8}{2} = 8.5$ 」と訂正 し、又同第16行目「7-4=8÷2=1.5」 とあるを「 $\frac{7-4}{2}$ = 1.5 」と町正する。
- 7. 添附 非熟の目録

正副各 1 通 (1) **斯**i

(2) 訂正した特許部求範囲を記載した書面

昭和48年8月29日

特許庁長官 三 宅 幸 夫 殿

1.事件の表示

. 特顧昭 48 - 15888 号

2. 発明の名称

ビームシユーテイングにおける得点表示装備

3.補正をする者。

事件との関係 特許出願人 (098) 株式会社 学習研究社

4. 代 理 人

郵便番号 100

東京都千代田区丸の内1丁目4番1号

5. 補正の対象

顧書及び明細書

昭和48年2月7日

特許庁長官 三宅幸夫 殷

1.発明の名称

ビームシューテイングにおける得点表示装置 2. 特許請求の範囲に記載された発明の数・・・・ 2

東京都关田区上批台 4 丁目 40 番 5 号。 株式会社 学 智 研 究 社 内

77

4. 特許出願人

東京都大田区上他台 4 丁目 40 番 5 号 (098) 株式会社 学 習 研 究 社 代表取締役 苦 闇 筹 人

5.代 理 人

郵便番号 100

東京都千代田区丸の内1丁目4番1号

日栄特許事務所

電話 東京 08 (214) 2547 代表:

(6802) 弁理士 絹

6. 添附書類の目録

(1) . 1 (2)1 通 (3) 顧 1 通 (4) 委 通 1 (5) 出願審査請求書 通

7. 前記以外の発明者及び代理人

(1) 発 明 者

東京都大田区上池台 4 丁目 40 番 5 号株式会社 学習研究社 行

(2)代 理 人

東京都千代田区丸の内1丁目4番1号

日栄特許事務所

(6698) 弁理士 森

哲也

同 所

(6785) 弁理士 下 田 容一郎

からなり、前配移動端子群をX . Y方向へ移動させるようにしたことを特徴とするビームシューティングにおける得点表示装置。

特許請求の範囲

- (1) 有効範囲を同心円状に形成した機的と同様に 得点の数と同数の端子を同心円状に散け、失々が相互に絶縁され、区画された移動端子群と、 この端子群の端子と電気的に連結し、この端子群の端子と電気的に連結し、この海沢的な開成によつて作動し、得選択的 表示する表示体と、前記移動端子の失々と選択的に接触して前記回路を開成する固定端子と駅が りたり、前記移動端子がとするといるとなり、前記移動端子が発出してが記したととを特徴とするビームシューティングにおける得点表示接置。