Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer

Brian M. Wolpin^{1,2*}, Cosmeri Rizzato^{3*}, Peter Kraft^{4,5*}, Charles Kooperberg^{6*}, Gloria M. Petersen^{7*}, Zhaoming Wang^{8,9}, Alan A. Arslan^{10,11,12}, Laura Beane-Freeman⁸, Paige M. Bracci¹³, Julie Buring^{14,15}, Federico Canzian³, Eric J. Duell¹⁶, Steven Gallinger¹⁷, Graham G. Giles^{18,19,20}, Gary E. Goodman⁶, Phyllis J. Goodman²¹, Eric J. Jacobs²², Aruna Kamineni²³, Alison P. Klein^{24,25}, Laurence N. Kolonel²⁶, Matthew H. Kulke¹, Donghui Li²⁷, Núria Malats²⁸, Sara H. Olson²⁹, Harvey A. Risch³⁰, Howard D. Sesso^{4,14,15}, Kala Visvanathan³¹, Emily White^{32,33}, Wei Zheng^{34,35}, Christian C. Abnet⁸, Demetrius Albanes⁸, Gabriella Andreotti⁸, Melissa A. Austin³³, Richard Barfield⁵, Daniela Basso³⁶, Sonja I. Berndt⁸, Marie-Christine Boutron-Ruault^{37,38,39}, Michelle Brotzman⁴⁰, Markus W. Büchler⁴¹, H. Bas Bueno-de-Mesquita^{42,43,44}, Peter Bugert⁴⁵, Laurie Burdette^{8,9}, Daniele Campa⁴⁶, Neil E. Caporaso⁸, Gabriele Capurso⁴⁷, Charles Chung^{8,9}, Michelle Cotterchio^{48,49}, Eithne Costello⁵⁰, Joanne Elena⁵¹, Niccola Funel⁵², J. Michael Gaziano^{14,15,53}, Nathalia A. Giese⁴¹, Edward L. Giovannucci^{4,54,55}, Michael Goggins^{56,57,58}, Megan J. Gorman¹, Myron Gross⁵⁹, Christopher A. Haiman⁶⁰, Manal Hassan²⁷, Kathy J. Helzlsouer⁶¹, Brian E. Henderson⁶², Elizabeth A. Holly¹³, Nan Hu⁸, David J. Hunter^{2,63,64}, Federico Innocenti⁶⁵, Mazda Jenab⁶⁶, Rudolf Kaaks⁴⁶, Timothy J. Key⁶⁷, Kay-Tee Khaw⁶⁸, Eric A. Klein⁶⁹, Manolis Kogevinas^{70,71,72}, Vittorio Krogh⁷³, Juozas Kupcinskas²⁴, Robert C. Kurtz⁷⁵, Andrea LaCroix⁶, Maria T. Landi⁸, Stefano Landi⁷⁶, Loic Le Marchand⁷⁷, Andrea Mambrini⁷⁸, Satu Mannisto⁷⁹, Roger L. Milne^{18,19}, Yusuke Nakamura⁸⁰, Ann L. Oberg⁸¹, Kouros Owzar⁸², Alpa V. Patel²², Petra H. M. Peeters^{83,84}, Ulrike Peters⁸⁵, Raffaele Pezzilli⁸⁶, Ada Piepoli⁸⁷, Miquel Porta^{71,88,89}, Francisco X. Real^{90,91}, Elio Riboli⁴⁴, Nathaniel Rothman⁸, Aldo Scarpa⁹², Xiao-Ou Shu

SUPPLEMENTARY INFORMATION

1. SUPPLEMENTARY TABLES

Supplementary Table 1. Description of studies included in stage 1 and replication stage of PanScan III

Supplementary Table 2. Stage 1 subjects genotyped, quality control exclusions, and subjects included in the European ancestry analysis

Supplementary Table 3. Characteristics of stage 1 cases and controls included for GWAS

Supplementary Table 4. Association results for 13 SNPs in stages 1 and 2 with combined P<5x10⁻⁵

Supplementary Table 5. Characteristics of cases and controls from studies included in the replication stage (5A), Subjects genotyped, quality control exclusions, and subjects included in the European ancestry analysis (5B)

Supplementary Table 6. Association results for the 13 SNPs in the replication studies

Supplementary Table 7: Chromosomal regions of newly implicated pancreatic cancer susceptibility loci

Supplementary Table 8: Association results for five new pancreatic cancer susceptibility loci and one suggestive locus stratified by geographic region

Supplementary Table 9: Association results for five new pancreatic cancer susceptibility loci and one suggestive locus stratified by smoking status

Supplementary Table 10. Association results for PanScan susceptibility loci among Asian subjects from SMWHS

Supplementary Table 11. Association results for Chinese and Japanese pancreatic cancer risk loci in participants of European descent in PanScan stages 1 and 2

Supplementary Table 12. Genomic and functional support for newly discovered and suggestive pancreatic cancer risk alleles and their correlated ($r^2 \ge 0.7$) surrogate SNPs

Supplemental Table 1. Description of studies included in PanScan III

Study	No. of cases	No. of controls	Location	Source of cases	Study reference
STAGE 1: PanScan III G	WAS				
Stage 1 Cohort Studies					
Agricultural Health Study (AHS)	27		USA	Linkage to state cancer registries.	Alavanja MC, et al. Cancer and noncancer risk to women in agriculture and pest control: the Agricultural Health Study. J Occup Med. 1994Nov;36(11):1247-50. [PMID: 7532217]
The Alpha-Tocopherol, Beta-Carotene Prevention Study (ATBC)	44	217	Finland	Linkage to Finnish Cancer registry	The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. Ann Epidemiol. 1994 Jan;4(1):1-10. [PMID: 8205268]
Cancer Prevention Study (CPS-II)	158	214	USA	Identified through self-report on biannual questionnaires starting in 1997 or through linkage with the National Death Index. Verified by medical records or linkage to state cancer registries.	Calle EE. et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer. Cancer 2002;94:2490-501. [PMID:11900235]
European Prospective Investigation Into Cancer and Nutrition Study (EPIC)	174	263	Europe	Cancer registries in participating countries (Denmark, Italy, The Netherlands, Norway, Spain, Sweden and the UK) and through health insurance records, cancer and pathology registries, and active followup of study subjects and next of kin (France, Germany, and Greece)	Riboli E. et al. The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol. Int J of Epidemiol 1997;26(1):S6-14. [PMID:9126529] Riboli E. et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. Public Health Nutr 2002;5(6B):1113-24. [PMID:12639222]
Health Professionals Follow-up Study (HFPS)	25	84	USA	Identified through self-report on biannual questionnaires or through linkage with the National Death Index. Verified by medical records or linkage to state cancer registries.	Rimm E. et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet. Lancet 1991;338:464-8. [PMID: 1678444]

The Melbourne Collaborative Cohort Study (MCCS)	77	75	Australia	Linkage to national cancer registries.	Giles GG. et al. The Melbourne Collaborative Cohort Study. IARC Sci Publ. IARC Sci Publ 2002;156:69-70. [PMID: 12484128]
Multiethnic Cohort Study of Diet and Health (MEC)	28	200	USA	Linkage to the Hawaii Tumor Registry, the Cancer Surveillance Program of Los Angeles County, and the California State Cancer Registry	Kolonel LN et al. A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am J Epidemiol. 2000 Feb 15;151(4):346-57. [PMID:10695593]
Nurse's Health Study (NHS)	29	437	USA	Identified through self-report on biannual questionnaires or through linkage with the National Death Index. Verified by medical records or linkage to state cancer registries.	Colditz GA. et al. The Nurses' Health Study: lifestyle and health among women. Nat Rev Cancer. Nat Rev Cancer 2005;5:388-96. [PMID: 15864280]
Physicians Health Study (PHS)	15		USA	Identified through self-report on biannual questionnaires or through linkage with the National Death Index. Verified by medical records or linkage to state cancer registries.	Manson JE et al. Aspirin in the primary prevention of angina pectoris in a randomized trial of United States physicians. <i>Am J Med</i> . 1990;89(6):772–776. [PMID:2252045]
Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial (PLCO)	91	3042	USA	Self-report through annual questionnaires. Confirmed by pathology reports and medical records.	Hayes RB et al. Methods for etiologic and early marker investigations in the PLCO trial. Mutat Res. Mutat Res 2005;592:147-54. [PMID: 16054167]
Selenium and Vitamin E Cancer Prevention Trial (SELECT)	54		USA	Self-report through bi-annual clinic visits during the trial. Confirmed by pathology reports.	Lippman SM et al. Designing the Selenium and Vitamin E Cancer Prevention Trial (SELECT). J Natl Cancer Inst. 2005 Jan 19;97(2):94- 102. [PMID: 15657339]
Vitamins and Lifestyle Study (VITAL)	48		USA	Linkage to the western Washington state SEER registry	White E et al. VITamins And Lifestyle cohort study: study design and characteristics of supplement users. Am J Epidemiol. 2004;159:83–93. [PMID:14693663]
Women's Health Initiative (WHI)	169	226	USA	Self-report through semi-annual clinic visits or annual	Anderson GL, et al. Implementation of the Women's Health Initiative study design. Ann Epidemiol. 2003

contact. Verified through medical records.

Oct;13(9 Suppl):S5-17. [PMID: 14575938]

				records.	
Total stage 1 cohort studies	939	4,758			
Stage 1 Case series or case-control studies					
Gastrointestinal Cancer Clinic of Dana-Farber Cancer Institute Study (DFCI-GCC)	360		USA	Pathologically- confirmed cases sequentially identified from an outpatient gastrointestinal cancer clinic	
PANcreatic Disease ReseArch (PANDoRA) consortium, Heidelberg	194		Germany	Confirmed cases from Heidelberg University Hospital	Campa D et al. Genetic susceptibility to pancreatic cancer and its functional characterisation: the PANcreatic Disease ReseArch (PANDoRA) consortium. Dig Liver Dis. 2013 Feb;45(2):95-9. [PMID: 23206934]
PANKRAS-II	89	445	Spain	Hospital-based, confirmed by oncologist review	Porta M et al; PANKRAS II Study Group. Timing of blood extraction in epidemiologic and proteomic studies: results and proposals from the PANKRAS II Study. Eur J Epidemiol. 2007;22(9):577-88. Epub 2007 Jul 18. Erratum in: Eur J Epidemiol. 2008;23(1):77. [PMID: 17636417]
Total stage 1 case series or case-control studies	643	445			
TOTAL STAGE 1 GWAS	1,582	5,203			
CTACE A D. C. T.	I II CXXA	1			
STAGE 2: PanScan I and	I II GWAS	•			
STAGE 2: PanScan I and Stage 2 Cohort studies	I II GWA	•			
	194	206	Finland	Linkage to Finnish Cancer registry	The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. Ann Epidemiol. 1994 Jan;4(1):1-10. [PMID: 8205268]
Stage 2 Cohort studies The Alpha-Tocopherol, Beta-Carotene Prevention Study			Finland Washington County MD, USA	_	lung cancer prevention study: design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. Ann Epidemiol. 1994 Jan;4(1):1-10.

				starting in 1997 or through linkage with the National Death Index. Verified by medical records or linkage to state cancer registries.	characteristics. Cancer. Cancer 2002;94:2490-501. [PMID:11900235]
European Prospective Investigation Into Cancer and Nutrition Study (EPIC)	418	432	Europe	Cancer registries in participating countries (Denmark, Italy, The Netherlands, Norway, Spain, Sweden and the UK) and through health insurance records, cancer and pathology registries, and active followup of study subjects and next of kin (France, Germany, and Greece)	Riboli E. et al. The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol. Int J of Epidemiol 1997;26(1):S6-14. [PMID:9126529] Riboli E. et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. Public Health Nutr 2002;5(6B):1113-24. [PMID:12639222]
Health Professionals Follow-up Study (HFPS)	52	49	USA	Identified through self-report on biannual questionnaires or through linkage with the National Death Index. Verified by medical records or linkage to state cancer registries.	Rimm E. et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet. Lancet 1991;338:464-8. [PMID: 1678444]
Nurse's Health Study (NHS)	81	83	USA	Identified through self-report on biannual questionnaires or through linkage with the National Death Index. Verified by medical records or linkage to state cancer registries.	Colditz GA. et al. The Nurses' Health Study: lifestyle and health among women. Nat Rev Cancer. Nat Rev Cancer 2005;5:388-96. [PMID: 15864280]
The New York University Women's Health Study (NYU- WHS)	10	11	USA	Self-report through questionnaires every 2-4 years, confirmed by medical and pathology records; and linkages to tumor registries of NY, NJ and Florida and NDI	Zeleniuch-Jacquotte A, et al. Postmenopausal levels of sex hormones and risk of breast carcinoma in situ: results of a prospective study. Int J Cancer. 2005 Mar 20;114(2):323-7. [PMID:15540225]
Physicians Health Study (PHS)	46	53	USA	Identified through self-report on biannual questionnaires or through linkage	Manson JE et al. Aspirin in the primary prevention of angina pectoris in a randomized trial of United States physicians. <i>Am J Med</i> . 1990;89(6):772–776.

				with the National Death Index. Verified by medical records or linkage to state cancer registries.	[PMID:2252045]
Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial (PLCO)	180	201	USA	Self-report through annual questionnaires. Confirmed by pathology reports and medical records.	Hayes RB et al. Methods for etiologic and early marker investigations in the PLCO trial. Mutat Res. 2005;592:147-54. [PMID: 16054167]
Women's Health Initiative (WHI)	206	208	USA	Self-report through semi-annual clinic visits or annual contact. Verified through medical records.	Anderson GL, et al. Implementation of the Women's Health Initiative study design. Ann Epidemiol. 2003 Oct;13(9 Suppl):S5-17. [PMID: 14575938]
Womens' Heath Study (WHS)	25	31	USA	Self report or death follow-up.	Rexrode KM, et al. Baseline characteristics of participants in the Women's Health Study. J Womens Health Gend Based Med. 2000 Jan-Feb;9(1):19-27. [PMID: 10718501] Wolpin BM, et al. Hyperglycemia, insulin resistance, impaired pancreatic β-cell function, and risk of pancreatic cancer. J Natl Cancer Lant. 2012, Jul. 17:105(14):1077-25
					Inst. 2013 Jul 17;105(14):1027-35.
Total stage 2 cohort studies	1,394	1,459			[PMID: PMC3714020]
	1,394	1,459			
studies Stage 2 Case-Control	1,394 178	1,459 175	USA	JHU Clinic Controls spouse (in- Law) of pancreatic cancer patient, no history pancreatic cancer	
Stage 2 Case-Control studies	·		USA Upper Mid- West: Minn., Iowa, Wisconsin, USA	Controls spouse (in- Law) of pancreatic cancer patient, no history pancreatic	
Stage 2 Case-Control studies Johns Hopkins Hospital Mayo Clinic Molecular Epidemiology Case-	178	175	Upper Mid- West: Minn., Iowa, Wisconsin,	Controls spouse (in- Law) of pancreatic cancer patient, no history pancreatic cancer Clinic Controls General Medical Evaluation (primary care) patients, no personal history of cancer (except non-melanoma	McWilliams RR, et al. Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk. Cancer Res. 2008 Jun 15;68(12):4928-35.
Stage 2 Case-Control studies Johns Hopkins Hospital Mayo Clinic Molecular Epidemiology Case-Control Study Memorial Sloan	178 635	175 617	Upper Mid- West: Minn., Iowa, Wisconsin, USA	Controls spouse (in- Law) of pancreatic cancer patient, no history pancreatic cancer Clinic Controls General Medical Evaluation (primary care) patients, no personal history of cancer (except non-melanoma of skin) Clinic Controls spouses of patients; visitors accompanying patients, no personal history of cancer (except non-melanoma	McWilliams RR, et al. Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk. Cancer Res. 2008 Jun 15;68(12):4928-35. [PMID: PMC2652067] Olson SH, et al. Allergies, variants in IL-4 and IL-4R alpha genes, and risk of pancreatic cancer. Cancer Detect Prev. 2007;31(5):345-51.

				patients at MDA, no personal history of cancer (except non-	Dec;102(12):2696-70. [PMID: PMC2423805]
PACIFIC Study	246	241	Seattle, WA and Northern California, USA	melanoma of skin) Group Health (Seattle Pufet Sound) and Kaiser Permanente	
Toronto	278	259	Ontario (cases) Greater Toronto (controls), Canada	Population-based cancer registry Controls Ontario population-based case control study of colorectal cancer, ARCTIC	Eppel A, et al. Allergies are associated with reduced pancreas cancer risk: A population-based case-control study in Ontario, Canada. Int J Cancer. 2007 Nov 15;121(10):2241-5. [PMID: 17582608]
UCSF	206	212	San Francisco Bay Area, USA	Population-based cancer registry/ Controls random digit- dial within six SF Bay Area counties, no history pancreatic cancer	Duell EJ, et al. Detecting pathway- based gene-gene and gene- environment interactions in pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2008 Jun;17(6):1470-9. [PMID: 18559563]
Yale	206	279	Connecticut, USA	Population-based cancer registry Controls block list- directed Random digit-dial, no personal history of cancer (except non-melanoma of skin)	Risch HA. Etiology of pancreatic cancer, with a hypothesis concerning the role of N-nitroso compounds and excess gastric acidity. J Natl Cancer Inst. 2003 Jul2;95(13):948-60. [PMID: 12837831]
Total stage 2 case- control studies	2,131	2,183			
TOTAL STAGE 2	3,525				
GWAS	3,323	3,642			
STAGE 3:	3,343	3,642			
	2000	4797	Europe	Clinic based caes from 15 basic and/or clinical research groups, across six European countries	Campa D et al. Genetic susceptibility to pancreatic cancer and its functional characterisation: the PANcreatic Disease Research (PANDoRA) consortium. Dig Liver Dis. 2013 Feb;45(2):95-9. [PMID: 23206934]
STAGE 3: REPLICATION	2000 a 307		Europe	from 15 basic and/or clinical research groups, across six European	susceptibility to pancreatic cancer and its functional characterisation: the PANcreatic Disease Research (PANDoRA) consortium. Dig Liver Dis. 2013 Feb;45(2):95-9.

Carotene and Retinol Efficacy Trial (CARET) and samples from studies with DNA that was inadequate for GWAS*	RET) tudies		Self-report to the Coordinating Center at the Hutchinson Cancer Center. Verified through pathology reports and medical records.	Thornquist MD et al. Statistical design and monitoring of the Carotene and Retinol Efficacy Trial (CARET). Control Clin Trials. 1993 Aug;14(4):308-24. [PMID: 8365195]			
TOTAL STAGE 3 REPLICATION	2,576	5,552					
GRAND TOTAL STAGE 1, 2, 3	7,683	14,397					

^{*} Cases from studies without adequate DNA for participation in the GWAS were used in the replication stage. These cases were drawn from: AHS, ATBC, CPS-II, DFCI, EPIC, HPFS, MCCS, MEC, PHS, PLCO, VITAL, and WHI.

Supplementary Table 2. Stage 1 subjects genotyped, quality control exclusions, and subjects included in the European ancestry analysis

Study	Genotyped Subjects	High missing rate	Extreme heterozygosity	Gender discordance	Unexpected duplicates	Non EUR	Missing phenotype	PI exclude or relatedness check	Unexpected duplicates with PanScan I+II	Final subjects included in the analysis	Control subjects from previous scans in analysis
	Cases	Cases	Cases	Cases	Cases	Cases	Cases	Cases		Cases	Controls
ATBC	45	1								44	217
AgHealth	36	5				2			2	27	
CPSII	167					3			6	158	214
DFCI	405	11	1	2	1	25			5	360	
EPIC	177	2				1				174	263
HPFS	27		1			1				25	84
Heidelberg	205	4			1	3	2		1	194	
MCCS	78					1				77	75
MEC	29					1				28	200
NHS	31					2				29	437
PHSI	15									15	
PLCO	141	39				9			2	91	3042
SELECT	70	1				14			1	54	
SMWHS	109	1				108					
PANKRASII	93			3		1				89	445
VITAL	52	3				1				48	
WHI	214	11			1	27		2	4	169	226
Total	1894	78	2	5	3	199	2	2	21	1582	5203

Supplementary Table 3. Characteristics of stage 1 cases and controls included for GWAS

	Age	Cas	se	Case	Cont	rol	Control	Grand
Study	category	Female	Male	Total	Female	Male	Total	Total
AgHealth	51_60	2		2				2
	61_70	4	7	11				11
	71_80		9	9				9
	OVER_80	1	4	5				5
AgHealth Total		7	20	27				27
ATBC	LESS_51					1	1	1
	51_60		1	1		33	33	34
	61_70		7	7		94	94	101
	71_80		32	32		72	72	104
	OVER_80		4	4		17	17	21
ATBC Total			44	44		217	217	261
CPSII	51_60	1		1	17	5	22	23
	61_70	11	8	19	50	59	109	128
	71_80	37	49	86	38	41	79	165
	OVER_80	23	29	52	4		4	56
CPSII Total		72	86	158	109	105	214	372
DFCI	LESS_51	22	21	43				43
	51_60	41	56	97				97
	61_70	61	66	127				127
	71_80	41	37	78				78
	OVER_80	7	8	15				15
DFCI Total		172	188	360				360
EPIC	LESS_51	4	1	5	9	14	23	28
	51_60	15	11	26	44	38	82	108
	61_70	41	33	74	59	53	112	186
	71_80	41	21	62	30	12	42	104
	OVER_80	6	1	7	3	1	4	11
EPIC Total		107	67	174	145	118	263	437
Heidelberg	LESS_51	10	13	23				23
_	51_60	25	26	51				51
	61_70	26	42	68				68
	71_80	21	27	48				48
	OVER_80	2	2	4				4
Heidelberg Total		84	110	194				194
HPFS	LESS_51					2	2	2
	51_60		1	1		12	12	13
	61_70		7	7		25	25	32

	71_80		8	8		37	37	45
	OVER_80		9	9		8	8	17
HPFS Total			25	25		84	84	109
MCCS	51_60	4	4	8	4	6	10	18
	61_70	12	10	22	13	14	27	49
	71_80	19	22	41	12	17	29	70
	OVER_80	3	3	6	7	2	9	15
MCCS Total		38	39	77	36	39	75	152
MEC	LESS_51	1		1	46		46	47
	51_60		2	2	71		71	73
	61_70	3	2	5	60		60	65
	71_80	5	4	9	23		23	32
	OVER_80	5	6	11				11
MEC Total		14	14	28	200		200	228
NHS	LESS_51				32		32	32
	51_60	1		1	142		142	143
	61_70	4		4	169		169	173
	71_80	16		16	89		89	105
	OVER_80	8		8	5		5	13
NHS Total		29		29	437		437	466
PHS	61_70		2	2				2
	71_80		9	9				9
	OVER_80		4	4				4
PHS Total			15	15				15
PLCO	51_60		1	1	15	316	331	332
	61_70	15	11	26	67	1624	1691	1717
	71_80	17	25	42	44	944	988	1030
	OVER_80	12	10	22		32	32	54
PLCO Total		44	47	91	126	2916	3042	3133
PANCRASII/SBCS	LESS_51	2	5	7	3	40	43	50
	51_60	7	14	21	5	97	102	123
	61_70	8	15	23	23	137	160	183
	71_80	13	14	27	27	112	139	166
	OVER_80	9	2	11		1	1	12
PANCRASII/SBCS Total		39	50	89	58	387	445	534
SELECT	51_60		2	2				2
·- -	61_70		32	32				32
	71_80		15	15				15
	OVER_80		5	5				5
SELECT Total	2 . 221_00		54	54				54
VITAL	51_60	2		2				2

	61_70	6	12	18				18
	71_80	14	11	25				25
	OVER_80	2	1	3				3
VITAL Total		24	24	48				48
WHI	51_60	4		4				4
	61_70	29		29	226		226	255
	71_80	95		95				95
	OVER_80	41		41				41
WHI Total		169		169	226		226	395
Grand Total	LESS_51	39	40	79	90	57	147	226
	51_60	102	118	220	298	507	805	1025
	61_70	220	254	474	667	2006	2673	3147
	71_80	319	283	602	263	1235	1498	2100
	OVER_80	119	88	207	19	61	80	287
Grand Total		799	783	1582	1337	3866	5203	6785

Supplementary Table 4. Association results for 13 SNPs in stages 1 and 2 with combined P<5x10⁻⁵

Chr	SNP	Position ^a	Minor allele	Major allele	Stage	Category ^b	Info ^c	Subje	ects	Minor a		Allelic OR ^e (95% CI)	$P^{ m f}$	$P_{ m Het}{}^{ m g}$
			aneie	aneie				Controls	Cases	Controls	Cases	(93 % C1)		
5p15.33	rs2736098	1,294,086	T	С	Stage 1	g	1	4683	1484	0.268	0.216	0.76 (0.68-0.86)	8.22x10 ⁻⁶	
					Stage 2	i	0.609	3641	3524	0.284	0.259	0.82 (0.74-0.90)	2.63x10 ⁻⁵	
					Combined ^d			8324	5008			0.80 (0.74-0.86)	1.42x10 ⁻⁹	0.373
7q32.3	rs6971499	130,680,521	C	T	Stage 1	g	1	5200	1582	0.155	0.127	0.79 (0.68-0.90)	6.58×10^{-4}	
					Stage 2	i	0.914	3641	3524	0.147	0.124	0.81 (0.74-0.90)	4.69x10 ⁻⁵	
					$Combined^d$			8841	5106			0.80 (0.74-0.87)	1.23x10 ⁻⁷	0.705
16q23.1	rs7190458	75,263,661	A	G	Stage 1	g	1	5185	1581	0.042	0.065	1.61 (1.32-1.96)	$4.14x10^{-6}$	
					Stage 2	i	0.585	3641	3524	0.039	0.049	1.47 (1.20-1.82)	2.17x10 ⁻⁴	
					$Combined^d$			8826	5105			1.55 (1.34-1.79)	4.73x10 ⁻⁹	0.569
13q12.2	rs9581943	28,493,997	A	G	Stage 1	g	1	5193	1580	0.397	0.441	1.23 (1.12-1.35)	1.34x10 ⁻⁵	
					Stage 2	i	0.987	3641	3524	0.406	0.434	1.12 (1.05-1.20)	5.51x10 ⁻⁴	
					Combined ^d			8834	5104			1.16 (1.10-1.23)	9.94x10 ⁻⁸	0.116
22q12.1	rs16986825	29,300,306	T	C	Stage 1	g	1	5155	1579	0.150	0.184	1.25 (1.10-1.42)	4.96x10 ⁻⁴	
					Stage 2	i	0.987	3642	3525	0.149	0.168	1.15 (1.05-1.26)	$2.11x10^{-3}$	
					$Combined^d$			8797	5104			1.18 (1.10-1.27)	6.11x10 ⁻⁶	0.303
8q24.21	rs1561927	129,568,078	C	T	Stage 1	g	1	5085	1559	0.269	0.251	0.88 (0.78-0.97)	1.59 x 10 ⁻²	
					Stage 2	g	1	3637	3519	0.279	0.250	0.86 (0.80-0.93)	1.11x10 ⁻⁴	
					$Combined^d$			8722	5078			0.87 (0.81-0.92)	5.36x10 ⁻⁶	0.842
12q24.31	rs1182933	121,454,622	T	C	Stage 1	g	1	5189	1582	0.296	0.315	1.09 (0.98-1.21)	0.108	
					Stage 2	i	0.982	3641	3525	0.300	0.333	1.15 (1.07-1.24)	$1.18x10^{-4}$	
					$Combined^d$			8830	5107			1.13 (1.07-1.20)	4.58x10 ⁻⁵	0.374
22q11.21	rs451740	18,316,620	T	C	Stage 1	g	1	5201	1581	0.298	0.333	1.28 (1.15-1.41)	2.33x10 ⁻⁶	
					Stage 2	g	1	3639	3523	0.292	0.310	1.09 (1.02-1.18)	0.014	
					$Combined^d$			8840	5104			1.15 (1.09-1.22)	2.30x10 ⁻⁶	0.016
10q23.33	rs4918797	96,750,251	T	C	Stage 1	g	1	5090	1565	0.203	0.187	0.82 (0.73-0.92)	$1.19x10^{-3}$	
					Stage 2	i	0.986	3641	3525	0.209	0.187	0.87 (0.8-0.95)	9.66×10^{-4}	
					$Combined^d$			8731	5090			0.85 (0.8-0.91)	5.25x10 ⁻⁶	0.418
6p25.1	rs10214456	6,592,095	C	T	Stage 1	g	1	5192	1579	0.365	0.396	1.12 (1.02-1.25)	1.65x10 ⁻²	
					Stage 2	i	0.993	3641	3524	0.364	0.393	1.14 (1.06-1.22)	2.61×10^{-4}	
					Combined ^d			8833	5103			1.13 (1.07-1.2)	1.27x10 ⁻⁵	0.913
5p12	rs10054519	43,444,233	A	G	Stage 1	g	1	4729	1491	0.477	0.503	1.12 (1.01-1.23)	0.026	
					Stage 2	i	0.993	3641	3525	0.470	0.503	1.14 (1.06-1.2)	$2.18x10^{-4}$	
					Combined ^d			8370	5016			1.13 (1.07-1.19)	1.56x10 ⁻⁵	0.884
9q34.2	rs4962153	136,323,754	A	G	Stage 1	g	1	5191	1577	0.155	0.177	1.20 (1.06-1.37)	3.38x10 ⁻³	
					Stage 2	i	0.683	3641	3524	0.158	0.174	1.19 (1.06-1.32)	1.84×10^{-3}	
					Combined ^d			8832	5101			1.20 (1.10-1.30)	1.97x10 ⁻⁵	0.841
7q36.3	rs167020	155,619,733	A	G	Stage 1	g	1	5200	1582	0.289	0.298	1.05 (0.94-1.16)	0.353	
					Stage 2	g	1	3642	3525	0.269	0.305	1.19 (1.11-1.28)	3.20x10 ⁻⁶	
					$Combined^d$			8842	5107			1.14 (1.08-1.21)	1.38x10 ⁻⁵	0.055

Results from unconditional logistic regression of genotypes in participants from Stage 1 and Stage 2. ^aPosition of SNP in NCBI genome build 37 (Hg19). ^bCategory: i=imputed, g=genotyped. ^cInfo: imputation information content. ^dCombined meta-analysis results for Stages 1 and 2. ^eFor Stage 1, per allele OR for the minor allele was adjusted for age, sex, geographic region, and significant principal components; for Stage 2, per allele OR for the minor allele was adjusted for age, sex, study, arm and significant principal components. ^f1 d.f. score test. ^gP value for heterogeneity.

Supplementary Table 5A. Characteristics of cases and controls from studies included in the replication stage

Crown A (CCD)	A as astagowy	Ca	ise	- Case Total -	Contr	ol	Control	Grand Total
Group A (CGR)	Age category	Female	Male	- Case Iotai	Female	Male	Total	Grand 10tai
AgHealth	61_70	3	2	5				5
	OVER_70		2	2				2
AgHealth Total		3	4	7				7
CARET	LESS_60	2	4	6				6
	61_70	3	19	22				22
	OVER_70	5	13	18				18
CARET Total		10	36	46				46
CPSII	OVER_70	1	2	3				3
CPSII Total		1	2	3				3
DFCI	LESS_60		3	3				3
	61_70	3	4	7				7
	OVER_70	1	1	2				2
DFCI Total		4	8	12				12
EPIC	LESS_60		1	1				1
	61_70		1	1				1
EPIC Total			2	2				2
Heidelberg	LESS_60	5	10	15				15
	61_70	5	11	16				16
	OVER_70	6	3	9				9
Heidelberg Total		16	24	40				40
HPFS	61_70		1	1				1
HPFS Total			1	1				1
MCCS	LESS_60	1	7	8				8
	61_70	15	9	24				24
	OVER_70	15	17	32				32
MCCS Total		31	33	64				64
MEC	LESS_60	1		1				1
	61_70	3	3	6				6
	OVER_70	3	4	7				7
MEC Total		7	7	14				14
PHS	61_70		1	1				1
	OVER_70		12	12				12

PHS Total			13	13				13
PLCO	LESS_60				31	45	76	76
	61_70	3	3	6	111	138	249	255
	OVER_70	9	19	28	14	39	53	81
PLCO Total		12	22	34	156	222	378	412
VITAL	LESS_60		2	2				2
	61_70	4	6	10				10
	OVER_70	4	3	7				7
VITAL Total		8	11	19				19
WHI	61_70	2		2				2
	OVER_70	12		12				12
WHI Total		14		14				14
Grand Total	LESS_60	9	27	36	31	45	76	112
	61_70	41	60	101	111	138	249	350
	OVER_70	56	76	132	14	39	53	185
Grand Total	Grand Total	106	163	269	156	222	378	647

Croup P	A go ootogowy	Ca	ise	- Case Total -	Conti	ol	Control	Grand Total
PANDoRA PANDoRA	Age category	Female	Male	Case Iotal	Female	Male	Total	Granu Totai
PANDoRA	LESS_40	13	17	30	211	247	458	488
	40_50	51	95	146	329	460	789	935
	50_60	179	264	443	648	703	1351	1794
	60_70	322	418	740	570	863	1433	2173
	OVER_70	285	356	641	379	387	766	1407
PANDoRA Total		850	1150	2000	2137	2660	4797	6797

Crown C	A go ootogowy	Ca	ise	- Case Total -	Contr	ol	Control	Grand Total
Group C	Age category	Female	Male	- Case Iotai	Female	Male	Total	Grand Total
CALGB	LESS_60	39	49	88				88
	60_69	43	47	90				90
	OVER_70	57	72	129				129
CALGB Total		139	168	307				307
PLCO	LESS_60				38	43	81	81
	60_69				103	130	233	233
	OVER_70				27	36	63	63
PLCO Total					168	209	377	377

Supplementary Table 5B. Subjects genotyped for replication, quality control exclusions, and subjects included in the European ancestry analysis

Replication study	Samples g	enotyped	Control GWAS	Exclusions*	Sample completion	inclı	al subjects ided in the inalysis	Locus completion cutoff (n loci)
CGR	Cases	Controls	study		cutoff	Cases	Controls	_ ` ` /
CGR	334 379	379 PLCO 66 80%		80%	269	378	None (n=13)	
CALGB 80303	334 351	378	PLCO	45	98%	307	377	90% (n=492,023)
PANDoRA	2196	4839	NA	238	80%	2000	4797	None (n=13)
Total						2576	5552	

^{*}Exclusions were based on low completion, non-European ancestry or missing phenotypes. NA: not applicable as PANDoRA samples were used for both cases and controls.

Chr	SNP	Position ^a	Minor allele	Major allele	Study	Category ^b	Info ^c	Subje	ects	Minor a freque		Allelic OR ^e (95% CI)	$ extbf{\emph{P}}^{ ext{f}}$	$P_{ m Het}^{ m \ g}$
			ancic	ancic				Controls	Cases	Controls	Cases	(33 /0 C1)		
5p15.33	rs2736098	1,294,086	T	С	CGR	g	0.703	377	267	0.287	0.213	0.66 (0.49-0.88)	4.98x10 ⁻³	
					PANDoRA	g	1	4044	1613	0.266	0.243	0.86 (0.78-0.95)	3.15×10^{-3}	
					CALGB	i	0.499	376	306	0.330	0.261	0.60 (0.42-0.84)	3.43×10^{-3}	
					$Combined^{d} \\$			4797	2186			0.81 (0.74-0.89)	1.36x10 ⁻⁵	0.045
7q32.3	rs6971499	130,680,521	C	T	CGR	g	0.937	377	268	0.162	0.104	0.58 (0.41-0.83)	$2.44x10^{-3}$	
					PANDoRA	g	1	3695	1750	0.145	0.117	0.79 (0.7.0-0.89)	2.49×10^{-4}	
					CALGB	i	0.884	376	306	0.146	0.139	0.82 (0.58-1.16)	2.64x10 ⁻¹	
					$Combined^d$			4448	2324			0.77 (0.69-0.86)	4.37x10 ⁻⁶	0.257
16q23.1	rs7190458	75,263,661	A	G	CGR	g	0.716	377	245	0.040	0.046	1.14 (0.56-2.27)	7.19×10^{-1}	
					PANDoRA	g	1	3712	1751	0.037	0.047	1.33 (1.08-1.64)	7.28×10^{-3}	
					CALGB	i	0.529	376	306	0.047	0.058	1.67 (0.83-3.33)	1.55x10 ⁻¹	
					$Combined^d$			4465	2302			1.33 (1.10-1.61)	3.14x10 ⁻³	0.744
13q12.2	rs9581943	28,493,997	A	G	CGR	g	0.992	377	267	0.392	0.427	1.16 (0.91-1.49)	2.29x10 ⁻¹	
		, ,			PANDoRA	g	1	3699	1733	0.410	0.438	1.11 (1.02-1.22)	1.36x10 ⁻²	
					CALGB	i	0.985	376	306	0.419	0.435	1.10 (0.86-1.39)	4.52x10 ⁻¹	
					$Combined^{d} \\$			4452	2306			1.11 (1.03-1.20)	4.80x10 ⁻³	0.933
22q12.1	rs16986825	29,300,306	T	C	CGR	g	0.987	378	265	0.170	0.196	1.28 (0.95-1.73)	1.10x10 ⁻¹	
-		,			PANDoRA	g	1	3644	1732	0.179	0.198	1.15 (1.03-1.27)	1.27x10 ⁻²	
					CALGB	i	0.983	377	307	0.150	0.205	1.42 (1.06-1.91)	1.99x10 ⁻²	
					$Combined^d$			4399	2304			1.18 (1.08-1.30)	5.13x10 ⁻⁴	0.351
8q24.21	rs1561927	129,568,078	C	T	CGR	g	1	378	263	0.245	0.261	0.99 (0.75-1.32)	9.48x10 ⁻¹	
•		12,,000,070			PANDoRA	g	1	3798	1834	0.278	0.258	0.91 (0.83-0.99)	3.77x10 ⁻²	
					CALGB	i	0.943	376	306	0.283	0.233	0.71 (0.55-0.93)	1.00×10^{-2}	
					$Combined^d$			4552	2403			0.89 (0.82-0.97)	6.44x10 ⁻³	0.171
12q24.31	rs1182933	121,454,622	T	C	CGR	g	0.99	378	266	0.292	0.316	1.06 (0.82-1.37)	6.41x10 ⁻¹	
•		121, 13 1,022			PANDoRA	g	1	3810	1821	0.327	0.346	1.11 (1.02-1.21)	1.57x10 ⁻²	
					CALGB	i	0.979	376	306	0.296	0.329	1.15 (0.90-1.49)	2.62x10 ⁻¹	
					$Combined^d$			4564	2393			1.11 (1.03-1.20)	7.74x10 ⁻³	0.902
22a11.21	rs451740	18,316,620	T	C	CGR	g	1	378	269	0.306	0.314	1.05 (0.81-1.35)	7.10x10 ⁻¹	
1		10,510,020	-	-	PANDoRA	g	1	3797	1827	0.293	0.291	0.98 (0.89-1.07)	6.35×10^{-1}	
					CALGB	g	1	377	307	0.296	0.301	1.11 (0.87-1.41)	4.02×10^{-1}	
					Combined ^d	6		4552	2403			1.00 (0.92-1.08)	9.81x10 ⁻¹	0.588
10q23.33	rs4918797	96,750,251	T	С	CGR	g	0.986	377	269	0.192	0.175	0.80 (0.59-1.09)	1.62x10 ⁻¹	2.200
1-2.23		70,730,231	_	-	PANDoRA	g	1	3811	1814	0.202	0.201	0.96 (0.87-1.06)	4.41×10^{-1}	

					CALGB	i	0.988	376	306	0.191	0.213	1.12 (0.84-1.50)	4.27x10 ⁻¹	
					Combined ^d			4564	2389			0.96 (0.88-1.05)	3.92x10 ⁻¹	0.295
6p25.1	rs10214456	6,592,095	C	T	CGR	g	0.993	377	267	0.359	0.351	0.93 (0.72-1.20)	5.95x10 ⁻¹	
					PANDoRA	g	1	3804	1818	0.364	0.371	1.02 (0.94-1.11)	6.02×10^{-1}	
					CALGB	i	0.992	376	306	0.372	0.396	1.15 (0.91-1.45)	2.55×10^{-1}	
					Combined ^d			4557	2391			1.03 (0.95-1.11)	4.94x10 ⁻¹	0.502
5p12	rs10054519	43,444,233	A	G	CGR	g	0.995	377	265	0.474	0.467	0.96 (0.75-1.22)	7.23×10^{-1}	
					PANDoRA	g	1	3803	1802	0.480	0.492	1.05 (0.97-1.15)	1.74x10 ⁻¹	
					CALGB	i	0.99	376	306	0.491	0.533	1.22 (0.97-1.54)	8.30×10^{-2}	
					Combined ^d			4556	2373			1.06 (0.99-1.15)	9.64x10 ⁻²	0.331
9q34.2	rs4962153	136,323,754	A	G	CGR	g	0.791	377	267	0.160	0.202	1.45 (1.03-2.04)	3.12×10^{-2}	
					PANDoRA	g	1	3671	1725	0.162	0.183	1.16 (1.04-1.30)	6.36×10^{-3}	
					CALGB	i	0.633	376	306	0.168	0.196	1.28 (0.89-1.85)	1.73×10^{-1}	
					$Combined^d$			4424	2298			1.2 (1.09-1.33)	4.44x10 ⁻⁴	0.458
7q36.3	rs167020	155,619,733	A	G	CGR	g	1	378	269	0.283	0.250	0.85 (0.64-1.11)	2.33×10^{-1}	
					PANDoRA	g	1	3975	1805	0.304	0.285	0.88 (0.81-0.97)	1.10×10^{-2}	
					CALGB	g	1	377	307	0.280	0.293	1.10 (0.85-1.41)	4.55×10^{-1}	
					$Combined^d$			4730	2381			0.91 (0.83-0.98)	1.69x10 ⁻²	0.255

Results from unconditional logistic regression of genotypes in participants from the replication studies. ^aPosition of SNP in NCBI genome build 37 (Hg19). ^bCategory: i=imputed, g=genotyped. ^cInfo: imputation information content. ^dCombined meta-analysis results for the replication studies. ^ePer allele OR for the minor allele adjusted for age, sex, and study. ^f1 d.f. score test. ^gP value for heterogeneity.

Supplemental Table 7. Chromosomal regions of newly implicated pancreatic cancer susceptibility loci

Chr	Index SNP	Position ^a	Nearest gene ^b	Genes located within chromosomal region ^c	Genes implicated in glucose homeostasis	Previously identified GWAS SNPs within chromosomal region and r ² >0.2 with index SNP ^d	r ² with index SNP ^e	Associated disease or trait ^d
5p15.33	rs2736098	1,294,086	TERT (synonymous)	ZDHHC11, BRD9, TRIP13, LOC100506688, NKD2, SLC12A7, MIR4635, SLC6A19, SLC6A18, TERT, MIR4457, CLPTM1L, SLC6A3, LPCAT1, SDHAP3, LOC728613, MIR4277		rs2853677 rs4975616 rs401681	0.229 0.236 0.216	Lung adenocarcinoma Lung cancer Melanoma, PSA level, Bladder cancer, Pancreatic cancer, Lung cancer
7q32.3	rs6971499	130,680,521	LINC-PINT (intronic)	COPG2, TSGA13, KLF14, MIR29A, MIR29B1, LOC646329, LINC-PINT, MKLN1	KLF14 ¹⁹			
16q23.1	rs7190458	75,263,661	BCAR1 (synonymous)	FA2H, WDR59, ZNFR1, LDHD, ZFP1, CTRB2, CTRB1, BCAR1, CFDP1, TMEM170A, CHST6, CHST5, TMEM231, GABARAPL2, ADAT1, KARS, TERF21P		rs7202877	0.322	Type 1 diabetes
13q12.2	rs9581943	28,493,997	<i>PDXI</i> (171 bp)	GSX1, PDX1-AS1, PDX1, ATP5EP2, CDX2, URAD, FLT3, PAN3-AS1, PAN3	PDX-1 ³¹⁻³³	rs2293941	0.201	Fasting glucose related traits
22q12.1	rs16986825	29,300,306	ZNRF3 (intronic)	TTC28, CHEK2, HSCB, CCDC117, XBP1, ZNRF3, ZNRF3-AS1, C22orf31, KREMEN1, EMID1, RHBDD3, EWSR1, GAS2L1, RASL10A, AP1B1, MIR3653, SNORD125	<i>XBP1</i> ⁷⁹	rs2239815 rs4823006	0.486 0.221	Esophageal SCC Waist-hip ratio
8q24.21	rs1561927	129,568,078	MIR1208 (406 kb)	PVT1, MIR1208		rs10088218 rs6651252	0.373 0.373	Ovarian cancer Crohn's disease

^aPosition of SNP in NCBI Genome Build 37 (Hg19). ^bThe RefSeq gene within which the index SNP is located. For SNPs not located within a gene, the nearest gene is provided with distance to index SNP in parentheses. ^cGenes within the chromosomal region of 1 MB flanking the index SNP. ^dData from the NHGRI GWAS catalogue and UCSC Genome Browser. ^cr² LD values from 1000 Genomes Project CEU data. Chr: chromosome and band.

Supplementary Table 8. Association results for five new pancreatic cancer susceptibility loci and one suggestive locus stratified by geographic region

SNP	Chr	Subgroup ^a	Cases	Controls	OR (95% CI)	P^{c}	$P_{ m Het}$	\mathbf{I}^2
rs2736098	5p15.33	Region US	3907	7146	0.79 (0.73-0.86)	4.50 x 10 ⁻⁸		
		Region CNE	1100	1177	0.84 (0.71-1.00)	0.051		
		Region SE ^b						
		Combined	5007	8323	0.80 (0.74-0.86)	8.06 x 10 ⁻⁹	0.499	0
rs6971499	7q32.3	Region US	3916	7203	0.79 (0.71-0.86)	2.88 x 10 ⁻⁷		
		Region CNE	1100	1192	0.78 (0.64-0.96)	0.020		
		Region SE	89	445	0.99 (0.56-1.75)	0.982		
		Combined	5105	8840	0.79 (0.72-0.85)	2.43 x 10 ⁻⁸	0.731	0
rs7190458	16q23.1	Region US	3915	7191	1.52 (1.27-1.82)	4.56 x 10 ⁻⁶		
		Region CNE	1100	1190	1.49 (1.08-2.08)	0.016		
		Region SE	89	445	1.72 (0.85-3.57)	0.130		
		Combined	5104	8826	1.52 (1.30-1.75)	7.25 x 10 ⁻⁸	0.928	0
rs9581943	13q12.2	Region US	3914	7197	1.18 (1.11-1.27)	2.10 x 10 ⁻⁷		
		Region CNE	1100	1191	1.05 (0.93-1.19)	0.434		
		Region SE	89	445	1.10 (0.76-1.59)	0.611		
		Combined	5103	8833	1.15 (1.09-1.22)	5.22 x 10 ⁻⁷	0.265	24.63
rs16986825	22q12.1	Region US	3914	7161	1.17 (1.08-1.28)	2.00 x 10 ⁻⁴		
	-	Region CNE	1101	1191	1.18 (0.99-1.39)	0.059		
		Region SE	89	445	1.67 (1.07-2.60)	0.025		
		Combined	5104	8797	1.19 (1.10-1.28)	7.20 x 10 ⁻⁶	0.320	12.28
rs1561927	8q24.21	Region US	3896	7121	0.85 (0.79-0.91)	7.86 x 10 ⁻⁶		
	•	Region CNE	1094	1158	0.93 (0.80-1.08)	0.317		
		Region SE	88	443	1.06 (0.71-1.59)	0.757		
		Combined	5078	8722	0.87 (0.81-0.93)	1.37 x 10 ⁻⁵	0.340	7.28

Results from unconditional logistic regression of genotypes in participants from Stage 1 and Stage 2 stratified by geographic region. $^{\rm a}$ Regions include, US: The United States, CNE: Central and Northern Europe and SE: Southern Europe. Participants from Region SE were only available from stage 1. $^{\rm b}$ rs2736098 was not polymorphic in subjects from Region SE. $^{\rm c}$ 1 d.f. score test. Chr: chromosome and band; OR, per-allele OR for the minor allele adjusted for age, sex and significant principal components for Stage 1; per-allele OR adjusted for age, sex and significant principal components for Stage 2. The analysis was performed separately in subjects from each geographic region followed by meta-analysis (results shown in bold). $P_{\rm Het}$: heterogeneity P-value; I^2 : heterogeneity statistic.

Supplementary Table 9: Association results for five new pancreatic cancer susceptibility loci and one suggestive locus stratified by smoking status.

SNP	Chr	Subgroupa	Cases	Controls	OR (95% CI)	P^{b}	$P_{ m Het}$	\mathbf{I}^2	$P_{\rm Int}$
rs2736098	5p15.33	Smoker	2580	4177	0.86 (0.78-0.96)	6.56 x 10 ⁻³			
		Nonsmoker	1601	3035	0.79 (0.70-0.90)	3.16 x 10 ⁻⁴			
		Combined	4181	7212	0.83 (0.77-0.90)	1.11 x 10 ⁻⁵	0.305	5.00	0.355
rs6971499	7q32.3	Smoker	2633	4539	0.83 (0.74-0.93)	1.94 x 10 ⁻³			
		Nonsmoker	1642	3185	0.79 (0.69-0.91)	1.05 x 10 ⁻³			
		Combined	4275	7724	0.81 (0.75-0.89)	7.18 x 10 ⁻⁶	0.663	0	0.469
rs7190458	16q23.1	Smoker	2633	4534	1.49 (1.20-1.82)	1.88 x 10 ⁻⁴			
		Nonsmoker	1641	3179	1.79 (1.41-2.33)	4.17 x 10 ⁻⁶			
		Combined	4274	7713	1.61 (1.37-1.89)	6.13 x 10 ⁻⁹	0.247	25.37	0.262
rs9581943	13q12.2	Smoker	2632	4537	1.15 (1.06-1.23)	5.94 x 10 ⁻⁴			
		Nonsmoker	1641	3180	1.14 (1.04-1.25)	6.74 x 10 ⁻³			
		Combined	4273	7717	1.15 (1.08-1.22)	1.23 x 10 ⁻⁵	0.924	0	0.894
rs16986825	22q12.1	Smoker	2632	4516	1.19 (1.08-1.32)	8.46 x 10 ⁻⁴			
		Nonsmoker	1641	3164	1.21 (1.06-1.37)	3.75 x 10 ⁻³			
		Combined	4273	7680	1.20 (1.11-1.30)	1.00 x 10 ⁻⁵	0.878	0	0.941
rs1561927	8q24.21	Smoker	2620	4479	0.89 (0.81-0.97)	0.011			
	•	Nonsmoker	1633	3131	0.86 (0.77-0.95)	5.54 x 10 ⁻³			
		Combined	4253	7610	0.88 (0.82-0.94)	2.00 x 10 ⁻⁴	0.604	0	0.499

Results from unconditional logistic regression of genotypes in participants from Stage 1 and Stage 2 stratified by smoking status. a Smoker: current and past smokers; Nonsmoker: never smokers. b 1 d.f. score test. Chr: chromosome and band; OR, per-allele OR for the minor allele adjusted for age, sex, geographic region and significant principal components for Stage 1; per-allele OR adjusted for age, sex, study, arm and significant principal components for Stage 2. The analysis was performed separately in smokers and nonsmokers followed by meta-analysis (results shown in bold). P_{Het} : heterogeneity P-value; I^{2} : heterogeneity statistic; P_{Int} : interaction P-value.

Supplementary Table 10: Association results for PanScan susceptibility loci among Asian subjects from SMWHS

SNP	Chr	Minor allele	Major allele	No. of Su	ıbjects	Minor : freque		Allelic OR ^a (95% CI)	$P^{ m b}$	Effect Direction ^c
		anere	aneie	Controls	Cases	Controls	Cases	(93 /6 CI)		Direction
rs10919791	1q32.1	G	A	425	169	0.321	0.287	0.84 (0.63-1.12)	0.237	Different*
rs31490	5p15.33	A	G			0.159	0.149	0.97 (0.68-1.38)	0.855	Different
rs687289	9q34.2	A	G	430 173 0.428 0.4		0.462	1.11 (0.86-1.44)	0.421	Same	
rs9543325	13q22.1	C	T			0.5	1.28 (0.99-1.64)	0.059	Same	
rs2736098 ^d	5p15.33	T	C							
rs6971499	7q32.3	C	T	409	173	0.032	0.035	1.17 (0.58-2.35)	0.669	Different
rs7190458	16q23.1	A	G	415	171	0	0.018			Same
rs9581943	13q12.2	A	G	402	171	0.346	0.386	1.16 (0.89-1.52)	0.272	Same
rs16986825	22q12.1	T	C	424 173 0.395 0.425 1.1		1.13 (0.87-1.46)	0.362	Same		
rs1561927	8q24.21	С	T	430	172	0.051	0.038	0.75 (0.39-1.43)	0.380	Same

Results from unconditional logistic regression of genotypes in participants from Shanghai Men's and Women's Health Study. ^aPer allele OR for the minor allele adjusted for age, sex, and significant principal components. ^b1 d.f. score test; ^cDirection of effect of the OR per minor allele for subjects of European and Asian descent. ^drs2736098 could not be accurately imputed in the majority of Asian subjects. Chr: chromosome and band. *Note that while the effect for the minor allele is the same, the minor allele in Europeans in the major allele in Asians.

Supplementary Table 11. Association results for Chinese and Japanese pancreatic cancer risk loci in participants of European descent in Stages 1 and 2

Chr	GWAS	SNP	SNP	\mathbf{r}^2	r ² 1000G	Surrogate	Genotype	Info ^b	Reference	Effect	Subje	ects	Stage	Effect a		Allelic OR ^c	P^{d}	$P_{ m het}^{ m e}$
			surrogate		Population	type	category		allele	allele	Controls	Cases		Controls	Cases	(95% CI)		act.
5p13.1	Chinese	rs2255280	rs3849766	0.895	Asians	Indirect	g	1	C	T	4746	1492	Stage 1	0.960	0.961	1.03 (0.80-1.33)	0.819	
							i	0.97	C	T	3642	3524	Stage 2	0.966	0.960	0.82 (0.69-0.98)	0.033	
											8388	5016	Combined			0.89 (0.76-1.03)	0.105	0.160
10q26.11	Chinese	rs12413624	rs4523612	1	Asians	Indirect	g	1	C	T	5187	1579	Stage 1	0.436	0.428	0.95 (0.86-1.04)	0.249	
							g	1	C	T	3637	3522	Stage 2	0.439	0.433	0.98 (0.92-1.05)	0.624	
											8824	5101	Combined			0.97 (0.92-1.03)	0.288	0.507
21q22.3	Chinese	rs1547374	rs1547374	1	Asians	Direct	g	1	A	G	5198	1582	Stage 1	0.313	0.340	1.14 (1.03-1.26)	0.013	
							g	1	A	G	3641	3524	Stage 2	0.312	0.313	1.00 (0.93-1.07)	0.929	
											8839	5106	Combined			1.04 (0.98-1.10)	0.173	0.037
21q21.3	Chinese	rs372883	rs388707	1	Asians	Indirect	g	1	C	T	5201	1581	Stage 1	0.574	0.570	0.99 (0.90-1.09)	0.823	
							i	1.00	C	T	3641	3524	Stage 2	0.589	0.583	0.98 (0.91-1.04)	0.463	
											8842	5105	Combined			0.98 (0.93-1.03)	0.465	0.815
22q13.32	Chinese	rs5768709	rs916283	0.899	Asians	Indirect	g	1	T	C	4751	1493	Stage 1	0.400	0.405	1.00 (0.91-1.11)	0.930	
							i	0.91	T	C	3641	3524	Stage 2	0.393	0.397	1.01 (0.94-1.08)	0.821	
											8392	5017	Combined			1.01 (0.95-1.07)	0.814	0.954
6p25.3	Japanese	rs9502893	rs9502893	1	Asians	Direct	g	1	C	T	5197	1582	Stage 1	0.564	0.538	0.86 (0.78-0.95)	0.002	
•	•						g	1	C	T	3641	3525	Stage 2	0.550	0.543	0.97 (0.91-1.04)	0.391	
							_				8838	5107	Combined			0.93 (0.89-0.99)	0.015	0.043
7q36.2	Japanese	rs6464375	rs7779540	1	Asians	Indirect	g	1	A	G	5188	1578	Stage 1	0.942	0.939	0.98 (0.80-1.20)	0.849	
•	•						g	1	A	G	3637	3523	Stage 2	0.945	0.943	0.95 (0.82-1.09)	0.460	
											8825	5101	Combined			0.96 (0.85-1.08)	0.477	0.783
12p11.21	Japanese	rs708224	rs813784	0.989	Asians	Indirect	g	1	C	T	4668	1489	Stage 1	0.647	0.642	0.98 (0.89-1.09)	0.762	
							i	0.99	C	T	3641	3524	Stage 2	0.667	0.651	0.93 (0.87-1.00)	0.037	
											8309	5013	Combined			0.95 (0.89-1.00)	0.058	0.355
5p13.1	Chinese	rs2255280 ^f																
10q26.11	Chinese	rs12413624	rs4523612	1	CEU	Indirect	α	1	С	T	5187	1579	Stage 1	0.436	0.428	0.95 (0.86-1.04)	0.249	
10q20.11	Cimicsc	1312413024	134323012	1	CLO	maneet	g g	1	C	T	3637	3522	Stage 2	0.439	0.433	0.98 (0.92-1.05)	0.624	
							8	1	C	1	8824	5101	Combined	0.437	0.433	0.97 (0.92-1.03)	0.024	0.507
21q22.3	Chinese	rs1547374	rs1547374	1	CEU	Direct	g	1	A	G	5198	1582	Stage 1	0.313	0.340	1.14 (1.03-1.26)	0.013	0.507
21422.5	Cimese	131347374	131547574	•	CLC	Direct	g	1	A	G	3641	3524	Stage 2	0.312	0.313	1.00 (0.93-1.07)	0.929	
							g	1	A	U	8839	5106	Combined	0.312	0.313	1.04 (0.98-1.10)	0.323	0.037
21q21.3	Chinese	rs372883	rs733610	0.884	CEU	Indirect	α	1	A	G	5199	1581	Stage 1	0.508	0.501	0.96 (0.87-1.05)	0.173	0.037
21421.3	Cimicsc	18372003	18755010	0.004	CLO	maneet	g g	1	A	G	3637	3521	Stage 2	0.519	0.517	0.99 (0.93-1.06)	0.797	
							8	1	А	G	8836	5102	Combined	0.517	0.517	0.98 (0.93-1.04)	0.477	0.568
22q13.32	Chinese	rs5768709	rs916283	1	CEU	Indirect	~	1	T	С	4751	1493	Stage 1	0.400	0.405	1.01 (0.91-1.11)	0.930	0.508
22q13.32	Cilliese	183708709	18910203	1	CEU	munect	g i	0.91	T	C	3641	3524	Stage 2	0.393	0.403	1.01 (0.94-1.11)	0.930	
							1	0.71	1	C	8392	5017	-	0.393	0.377	1.01 (0.94-1.08)	0.821	0.954
C-25.2	T	rs9502893	0502002	1	CEU	Dimen		1	С	T	8392 5197		Combined	0.564	0.538	0.86 (0.78-0.95)	0.002	0.954
6p25.3	Japanese	rs9502893	rs9502893	1	CEU	Direct	g	1	C	T		1582	Stage 1					
							g	1	C	1	3641	3525	Stage 2	0.550	0.543	0.97 (0.91-1.04)	0.391	0.042
7-262	T	6464275			CELL	To Division					8838	5107	Combined	0.042	0.020	0.93 (0.89-0.99)	0.015	0.043
7q36.2	Japanese	rs6464375	rs7779540	1	CEU	Indirect	g	1	A	G	5188	1578	Stage 1	0.942	0.939	0.98 (0.80-1.20)	0.849	
							g	1	A	G	3637	3523	Stage 2	0.945	0.943	0.95 (0.82-1.09)	0.460	0.702
10-11-01	T	709224	012704	0.710	CELL	To Division			C	т	8825	5101	Combined	0.647	0.642	0.96 (0.85-1.08)	0.477	0.783
12p11.21	Japanese	rs708224	rs813784	0.719	CEU	Indirect	g	1	С	T	4668	1489	Stage 1	0.647	0.642	0.98 (0.89-1.09)	0.762	
							i	0.99	C	T	3641	3524	Stage 2	0.667	0.651	0.93 (0.87-1.00)	0.037	
											8309	5013	Combined			0.95 (0.89-1.00)	0.058	0.355

Results from unconditional logistic regression of Chinese and Japanese pancreatic cancer susceptibility loci in participants of European descent from Stage 1 and Stage 2. "Genotype category: g=genotyped, i=imputed." Info: imputation information content/accuracy score. For stage 1, per allele OR for the effect allele adjusted for age, sex, geographic region, and significant principal components; For stage 2, per allele OR for the effect allele adjusted for age, sex, study, arm and significant principal components. d d.f. score test. P value for heterogeneity. frs2255280 is monomorphic in the 1000G CEU population. Chr. chromosome and band.

		LD				AFD	AME	ACN	Elip	SiPhy	Promoter	Enhancer		Proteins	Motifs	REFSEQ or GENCODE	dbSNP		MuTHER eQTL			Blood	l eQTL	
SNP/Chr	pos (hg19)	(r ²) (variant	Ref	Alt					cons	histone marks	histone marks	DNAse	bound	changed	genes	func annot	Gene	neg log 10 P	Tissue	Cis Gene	Cis P value	Cis Gene	Cis P value
rs2736098		(1-)	D)			neq	neq	пец	пец	cons	mistone marks	mistone marks	-	bound	Changeu	genes	iunc annot		-					
5	1294086	1	1 rs2736098	С	T	0.06	0.2	0.33	0.23			HI	H1-hESC,Myometr		9	TERT	synonymous							
5	1295349	0.74 (0.98 rs2853669	A	G	0.08	0.23	0.31	0.29		HepG2, H1	GM12878	GM12892,Huh-7,Ishikawa	POL2	7	164bp 5' of TERT								
5	1297075	0.65 (0.81 <u>rs201878870</u>	CCA	C	0.07	0.2	0.23	0.24						21	1.9kb 5' of TERT								
5	1297077	0.73 (0.94 rs145544133	ACC	A	0.07	0.21	0.24	0.27						19	1.9kb 5' of TERT								
5	1297081	0.73 (0.93 rs201578885	CCA	C	0.06	0.19	0.24	0.27						22	1.9kb 5' of TERT								
5	1297488	0.75 (0.97 rs2736108	C	T	0.07	0.23	0.26	0.28				10 cell types	EBFI	HEN1,Zfp161	2.3kb 5' of TERT								
5	1297854	0.65 (0.86 <u>rs2736107</u>	C	T	0.07	0.22	0.22	0.26						ERalpha-a,GATA,RXRA	2.7kb 5' of TERT								
COM1 100																								
rs6971499	120676042	0.84 (0.96 rs28651880	С	Т	0.15	0.11	0.04	0.13			NHLF	iPS_Adult_CD4_Th0		ATF3,ERalpha-a	LINC-PINT	intronic	_						
7			0.91 rs111819262	G	A	0.15	0.11	0.04				MILL	if 3,Addit_CD4_110		7 7	LINC-PINT	intronic							
7	130680521		1 rs6971499	T	C	0.15						5 cell types	8 cell types	TCF4	4	LINC-PINT	intronic							
7	130680521		1 rs6970779	G	A	0.15	0.11				Huvec, GM12878	5 cell types	34 cell types	14	5	LINC-PINT	intronic							
7	130689908		1 rs10248190	T	A	0.13	0.11				Huvec, GM112070	3 cen types	54 cen types	14	5	LINC-PINT	intronic							
7	130690134		1 rs28405257	C	T	0.14	0.11								,	LINC-PINT	intronic	-		-				
7	130690134		1 rs28413549	C	T	0.14			0.13							LINC-PINT	intronic							
7			0.94 rs10252282	T	C	0.14									Pax-4	LINC-PINT	intronic							
7			0.96 rs10237038			0.14			0.12						7 7	LINC-PINT	intronic							
	150051102	0.71	2.50 1310251050			0.15	0.11	0.00	0.13					-	,	Linerati	amona							
rs7190458																								
16	75263661	1	1 <u>rs7190458</u>	G	A	0.26	0.08	0.03	0.04				Caco-2	TAFI	p300	BCARI	synonymous				CFDP1	5.78E-07		
rs9581943																								
13	28461726	0.93 (0.98 rs61652270	C	Т	0.13	0.29	0.39	0.43						3	PDXI-AS1								
13	28461789			G	A	0.13	0.28								4	PDXI-ASI								
13			0.97 rs9554188	G	A	0.13	0.28								ATF3.Pax-5	PDXI-ASI								
13			0.98 rs9581927	G	T	0.13	0.28								Ik-1,VDR	PDXI-AS1								
13	28464201			TAC	т	0.1	0.28								8	PDXI-AS1								
13	28464203			C	Т	0.09	0.28								6	PDXI-AS1								
13	28466090			A	C	0.17	0.29								5	PDXI-AS1								
13	28468222			A	G	0.14	0.29								Evi-1	PDXI-ASI								
13	28470544			С	G	0.14	0.29								8	PDXI-AS1								
13	28471366			G	A	0.14	0.29		0.42						5	PDXI-AS1								
13	28472724			T	С	0.15	0.29								Hoxa9,Hoxb8,Hoxb9	PDXI-AS1								
13	28474236			TC	T	0.15	0.28								7	PDXI-AS1								
13	28476277			A	G	0.16	0.29								TCF12	PDXI-ASI		POMP	1.6/1.2	Skin/Liver				
13			0.99 rs11618581	G	A	0.16	0.29								ATF3,ZEB1	PDXI-AS1		POMP	1.7/1.2	Skin/Liver				
			0.99 rs9554197	С	Т	0.16	0.28								6	PDXI-AS1		POMP	1.7/1.2	Skin/Liver				
				T	C	0.16	0.29								ERalpha-a,RXRA	PDXI-AS1								
13		0.96		G	A	0.16	0.29								GATA,LUN-1,STAT	PDXI-ASI								
13	28477058		0.97 rs11618832													PDXI-ASI								
13 13	28477058 28477111	0.92	0.97 rs11618832 0.97 rs11616678	C	T	0.16	0.29	0.38																
13 13 13	28477058 28477111 28477117	0.92 (0.92 (0.97 rs11616678		T C	0.16	0.29								Mef2.Pou2f2	PDXI-AS1								
13 13 13 13	28477058 28477111 28477117 28477149	0.92 0 0.92 0 0.96 0	0.97 rs11616678	C	-		0.29 0.29 0.29	0.38	0.42						Mef2,Pou2f2 Zbtb3	PDXI-ASI PDXI-ASI								
13 13 13 13	28477058 28477111 28477117 28477149 28477268	0.92 (0.92 (0.96 (0.96 (0.97 rs11616678 0.99 rs11618052 0.99 rs9579127	C T	C G	0.16	0.29	0.38 0.38	0.42 0.42						Zbtb3	PDXI-AS1		POMP	1.7/1.2	Skin/Liver				
13 13 13 13 13 13 13	28477058 28477111 28477117 28477149 28477268 28477401	0.92 (0.92 (0.96 (0.96 (0.96 (0.97 rs11616678 0.99 rs11618052 0.99 rs9579127 0.99 rs7999100	C T A	C G A	0.16 0.16 0.16	0.29 0.29 0.29	0.38 0.38 0.38	0.42 0.42 0.42							PDXI-AS1 PDXI-AS1		POMP	1.7/1.2	Skin/Liver				
13 13 13 13 13 13 13 13	28477058 28477111 28477117 28477149 28477268 28477401 28477590	0.92 (0.92 (0.96 (0.96 (0.96 (0.96 (0.97 rs11616678 0.99 rs11618052 0.99 rs9579127 0.99 rs7999100 0.99 rs8000004	C T A C	C G	0.16 0.16 0.16 0.16	0.29 0.29 0.29 0.29	0.38 0.38 0.38 0.38	0.42 0.42 0.42 0.42			HenG?			Zbtb3 HDAC2,p300	PDXI-ASI PDXI-ASI PDXI-ASI		POMP	1.7/1.2	Skin/Liver				
13 13 13 13 13 13 13	28477058 28477111 28477117 28477149 28477268 28477401 28477590 28481938	0.92 (0.92 (0.96 (0.96 (0.96 (0.96 (0.96 (0.96 (0.97 rs11616678 0.99 rs11618052 0.99 rs9579127 0.99 rs7999100	C T A	C G A	0.16 0.16 0.16	0.29 0.29 0.29	0.38 0.38 0.38 0.38 0.38	0.42 0.42 0.42 0.42 0.42		Huvec	HepG2 HMEC	5 cell types		Zbtb3 HDAC2,p300 5	PDXI-AS1 PDXI-AS1								

Supplementary	y Table 12 (continued). Genomic and functi	onal suppo	ort for n	ewly dis	scovere	d and s	aggestive	pancreatic can	ncer risk alleles	and their correlated (r	² ≥0.7) surrogate SNPs											
rs16986825															-						П	
22	29178856 0.65 0.86 rs5752796	G	A	0.03	0.08	3 0.	17 0.14			HepG2			9	CCDC117	intronic							
22	29181302 0.65 0.87 rs5762794	G	A	0.01						HepG2			LUN-1	CCDC117	intronic							
22	29185096 0.65 0.87 rs140242933	TAAG	Т	0.03	0.08	3 0.	17 0.14						6	CCDC117								
22	29185113 0.65 0.87 rs1222	A	C	0.04	0.08	3 0.	17 0.1	L .					Foxd3,Maf,NRSF	CCDC117	3'-UTR	CCDC117	5	Liver	CCDC117	9.93E-09	XBP1	1.37E-05
22	29190471 0.65 0.87 rs2267131	T	C	0.03	0.08	3 0.	17 0.1				Medullo,CMK	POL2	4	71bp 3' of XBP1		CCDC117	4.9	Liver	CCDC117	9.08E-09	XBP1	1.14E-05
22	29194797 0.65 0.87 rs34718288	C	G	0.03	0.08	3 0.	17 0.1		5 cell types	4 cell types	GM12878,CMK		AIRE,Ets,NF-kappaB	XBP1	intronic							
22	29196843 0.67 0.89 rs2269578	G	C	0.01	0.08	3 0.	17 0.1		9 cell types		18 cell types	9	TCF12	CTA-292E10.6								
22	29200117 0.67 0.89 rs5762812	T	C	0.01	0.08	3 0.	17 0.1			HepG2			DMRT2,Sox	CTA-292E10.6								
22	29203964 0.67 0.89 rs5762814	G	A	0.08	0.09	0.	17 0.1			HepG2	LNCaP			CTA-292E10.6		CCDC117	5.1	Liver	CCDC117	9.03E-09	XBP1	1.17E-05
22	29204608 0.67 0.89 rs5752802	A	G	0.03	0.08	3 0.	17 0.1			HepG2, K562, Huvec			10	CTA-292E10.6								
22	29205004 0.67 0.89 rs5752803	G	A	0.03	0.08	3 0.	17 0.1			HepG2, Huvec	3 cell types	13	7	CTA-292E10.6		CCDC117	4.8	Liver	CCDC117	9.95E-09	XBP1	1.24E-05
22	29206209 0.67 0.89 rs5762816	T	C	0.01	0.08	3 0.	17 0.1			3 cell types			HMG-IY	CTA-292E10.6		CCDC117	4.8	Liver	CCDC117	1.00E-08	XBP1	1.24E-05
22	29207296 0.67 0.89 rs5762817	G	A	0.11	0.09	0.	17 0.14		Huvec	4 cell types	8 cell types	9	NRSF,SETDB1	CTA-292E10.6								
22	29208975 0.67 0.89 rs16987024	A	G	0.03	0.08	3 0.	17 0.1			HepG2, GM12878			LRHI	CTA-292E10.6								
22	29211435 0.67 0.89 rs5762818	C	T	0.03	0.08	3 0.	17 0.14			HepG2			4	CTA-292E10.6								
22	29212198 0.66 0.88 rs71327317	C	T	0.03	0.08	3 0.	17 0.14			HepG2			18	CTA-292E10.6								
22	29213034 0.67 0.89 rs28458474	A	G	0.03	0.08	3 0.	17 0.1			HepG2, GM12878			EBF,HDAC2	CTA-292E10.6								
22	29214606 0.67 0.89 rs2301428	G	C	0.01	0.08	3 0.	17 0.1			4 cell types	16 cell types	12	11	CTA-292E10.6		CCDC117	4.8	Liver	CCDC117	1.02E-08	XBP1	1.14E-05
22	29215703 0.67 0.89 rs16987027	G	A	0.03	0.09	0.	17 0.1			HepG2, GM12878	9 cell types	15	6	CTA-292E10.6								
22	29215803 0.67 0.89 rs66471734	G	A	0.03	0.08	3 0.	17 0.1			HepG2, GM12878	5 cell types	12	STAT,TCF12	CTA-292E10.6								
22	29216585 0.67 0.89 rs35017742	C	T	0.02	0.08	3 0.	17 0.1			GM12878, HepG2			Zbtb3	CTA-292E10.6								
22	29216776 0.67 0.89 rs5762819	G	A	0.03	0.08	3 0.	17 0.1			GM12878, HepG2			Nkx2,Pax-2	CTA-292E10.6								
22	29216813 0.67 0.89 ps5762820	C	T	0.04	0.09	0.	17 0.1	L .		GM12878, HepG2			CHOP::CEBPalpha,YY1	CTA-292E10.6								
22	29219472 0.67 0.89 rs5762821	G	A	0.03	0.08	3 0.	17 0.1			3 cell types	NH-A		Zec	CTA-292E10.6								
22	29220483 0.67 0.89 rs5752806	G	T	0.01	0.08	3 0.	17 0.1			HepG2			7	CTA-292E10.6								
22	29220758 0.67 0.89 rs5762823	C	G	0.03	0.08	3 0.	17 0.1			HepG2			LXR,Zbtb3	CTA-292E10.6								
22	29225592 0.68 0.9 rs5752811	C	G	0.03	0.08	3 0.	17 0.1			HepG2	91 cell types	16		CTA-292E10.6								
22	29234537 0.68 0.9 rs2881634	A	G	0.01	0.07	7 0.	17 0.1						AP-1	CTA-292E10.6								
22	29235973 0.68 0.9 rs5752816	G	A	0.01	0.08	3 0.	17 0.1			HepG2			Irf,SP1,THAP1	CTA-292E10.6								
22	29237958 0.68 0.9 rs60468718	С	G	0.01									Hoxa5,SP1,Znf143	CTA-292E10.6								
22	29247097 0.75 0.94 ps5762857	A	G	0.01									COMP1,Fox11,GR	2.5kb 3' of CTA		CCDC117	4.7	Liver	CCDC117	6.70E-09	XBP1	1.13E-05
22	29250505 0.65 0.96 ps5762861	T	G	0.48	0.23	2 0.:	53 0.2						Dobox4,IRC900814	6kb 3' of CTA					CCDC117	9.07E-05	XBP1	5.08E-25
22	29252732 0.65 0.96 rs5762862	G	A	0.47						HepG2, K562	HCT-116		Ets,Nkx6-2,Pax-4	8.2kb 3' of CTA					CCDC117	5.51E-05	XBP1	1.65E-19
22	29256093 0.74 0.94 rs34206997	T	A	0.01	0.07	7 0.	17 0.1			,			ERalpha-a,HNF4,RFX5	12kb 3' of CTA								
22	29258140 0.68 0.88 rs9625612	Т	A	0.17									13	14kb 3' of CTA								
22	29259102 0.74 0.94 rs13053879	T	A	0.01						HepG2				15kb 3' of CTA		CCDC117	4.9	Liver	CCDC117	2.15E-08	XBP1	5.82E-06
22	29264953 0.82 0.99 rs2347448	C	Т	0.01									Pax-4,SIRT6,p53	15kb 5' of ZNRF3								
22	29271088 0.82 0.99 rs73170679	G	Т	0.01						HepG2	3 cell types		4	8.5kb 5' of ZNRF3								
22	29273966 0.82 0.99 rs13058031	G	A	0.01							LNCaP,CD34+_Mobilized		5	5.6kb 5' of ZNRF3		CCDC117	5	Liver	CCDC117	1.10E-07	XBP1	5.05E-06
22	29285148 0.82 0.99 rs35814864	T	С	0.01	0.07	7 0.	16 0.1						FACI	ZNRF3	intronic							
22	29286405 0.82 0.99 rs35050306	G	A	0.01									4	ZNRF3	intronic							
22	29293162 0.83 1 rs59224170	G	C	0.01	0.07	7 0.	16 0.1			4 cell types			Myf	ZNRF3	intronic							
22	29293369 0.83 1 rs59203761	C	T	0.01	0.07	7 0.	16 0.1			4 cell types			4	ZNRF3	intronic							
22	29300306 1 1 rs16986825	C	Т	0.01						NHEK, HMEC, NHLF	27 cell types		Hsf,Nkx2	ZNRF3	intronic	CCDC117	3.9	Liver	CCDC117	5.99E-05	XBP1	3.40E-10
22	29308414 0.99 1 rs916332	C	Т	0.01						K562, HepG2, NHLF	8 cell types	TCF4	4	ZNRF3	intronic							
22	29311271 0.99 1 18739196	G	A	0.01						HepG2	Osteobl		4	ZNRF3	intronic	CCDC117	3.8	Liver	CCDC117	5.68E-05	XBP1	7.71E-10
22	29312578 0.99 1 rs16986838	C	T	0.01						HepG2	3 cell types		4	ZNRF3	intronic	CCDC117	3.8	Liver	CCDC117	4.95E-05	XBP1	2.76E-10
22	29327347 0.72 0.94 rs71327329	A	G	0.01						HepG2			Dlx2,Irf,Msx2	ZNRF3	intronic	11			11			
22	29338656 0.88 0.95 rs28360615	G	C	0.01						HepG2	Fibrobl		FXR	ZNRF3	intronic							
22	29343188 0.88 0.95 rs16986861	G	C	0.01							Osteobl	SETDB1		ZNRF3	intronic	CCDC117	3.8	Liver	CCDC117	5.65E-05	XBP1	2.21E-09
22	29347215 0.88 0.95 rs34578331	G	T	0.01								CTCF	RXRA	ZNRF3	intronic	11			11			
22	29349306 0.88 0.95 rs13056243	C	T	0.01						HepG2, H1				ZNRF3	intronic	CCDC117	3.8	Liver	CCDC117	5.79E-05	XBP1	2.27E-09
22	29350911 0.88 0.95 rs16986864	G	T	0.01						,,	Thl		4	ZNRF3	intronic	CCDC117	3.8	Liver	CCDC117	4.67E-05	XBPI	1.35E-08
22	29352495 0.85 0.93 rs4055	A	C	0.01			12 0.10			GM12878	GM12878,8988T		SIX5	ZNRF3	intronic	CCDC117	3.7	Liver	CCDC117	4.55E-05	XBPI	1.46E-08
22	29353630 0.83 0.91 rs13058453	T	C	0.02			12 0.10						GR	ZNRF3	intronic							
		<u> </u>	_	02		0.	3.1											-			11	$\overline{}$
rs1561927										-	-					+		+	+		11	+
8	129534534 0.68 -0.83 rs72724789	G	A	0.47	0.27	7 0	0.2						9			_		$\overline{}$	11		11	
8	129535877 0.78 -0.93 rs199804567	G	10-me										4									
8	129538595 0.78 -0.93 rs6995732	T	C C	0.65						HepG2			6									
8	129547378 0.78 0.98 rs12676584	G	A	0.36						Hepo2			CTCF.Rad21					+				
8	129552344 0.93 -0.98 rs7824269	C	T	0.63						5 cell types	4 cell types	USFI	FXR,Pou3f1			PVTI	1.5	Adipose				
0	129552344 0.93 -0.98 <u>rs7824269</u> 129558351 0.97 -0.99 <u>rs7819154</u>	C	A	0.63						5 cen types	4 cen types	USFI	COMP1			PVII	1.6	Adipose				
	127000331 0.97 -0.99 187819154															PVII						
	120569079 1 1 1 1561027		т																			
8 8	129568078 1 1 rs1561927 129569999 1 1 rs4733612	С	T	0.39			0.7:			4 cell types HepG2, K562		HEY1 TCF4	Pou2f2 Nkx2,Nkx3,PLZF			PVII	1.4	Adipose Adipose				

HaploReg, MuTHER and the Blood eQTL databases were used for this analysis. Note that no Trans-eQTLs were noted in the Blood eQTL database.

2. SUPPLEMENTARY FIGURES

Supplementary Figure 1. Flow diagram of PanScan III GWAS study design

Supplementary Figure 2. Risk allele counts (a) and odds ratios (95% confidence intervals) (b) for pancreatic cancer for a genetic risk score of the ten susceptibility loci identified in PanScan I, II, and III.

Supplementary Figure 3. Plot of estimated admixture for individuals in stage 1 of PanScan III GWAS

Supplementary Figure 4. Plot of top eigenvectors from stage 1 of PanScan III GWAS based on principal components analysis

Supplementary Figure 5. Quantile-quantile (Q-Q) plot of the association results in stages 1 and 2 of the PanScan III GWAS

Supplementary Figure 6. Manhattan plot showing statistical significance of the association for all genotyped SNPs in stages 1 and 2 of PanScan III GWAS

Supplementary Figure 1. Flow diagram of PanScan III study design. A schematic figure showing stage 1, stage 2 and replication stage with a total of 7,683 case and 14,397 control subjects included in the final analysis. Numbers of cases and controls in each stage are indicated as well as the array type, imputation and *P*- value threshold for SNPs moved forward to replication

Supplementary Figure 2. Risk allele counts (a) and odds ratios (95% confidence intervals) (b) for pancreatic cancer for a genetic risk score of the ten susceptibility loci identified in PanScan I, II, and III. (a) Percentage of cases and controls with each total number of risk alleles. Absolute number of participants provided above each vertical bar. (b) Results from unconditional logistic regression of the pancreatic cancer genotype score in participants from Stage 1 and Stage 2 of the PanScan III GWAS. For stage 1, model adjusted for age, sex, geographic region, and significant principal components. For stage 2, model adjusted for age, sex, study, and significant principal components. Referent is the most prevalent risk allele count in controls (n=10 risk alleles).

Panel (a)

Panel (b)

Supplementary Figure 3. **Plot of estimated admixture for individuals in stage 1 of PanScan III GWAS**. For details, see Online Methods. Individuals with <80% European ancestry were excluded from the main association analysis. Individuals with Asian ancestry from SMWHS were analyzed separately and included case and control subjects from SMWHS in stages 1 and 2 of PanScan III and control subjects from SMWHS that were previously genotyped.

O CASE
CONTROL

Supplementary Figure 4. Plot of top eigenvectors from stage 1 of PanScan III GWAS based on principal components analysis. For details, see Online Methods.

Supplementary Figure 5. Quantile-quantile (Q-Q) plot of the association results in stages 1 and 2 of the PanScan III GWAS

Supplementary Figure 6. Manhattan plot showing statistical significance of the association for all genotyped SNPs in stages 1 and 2 of PanScan III GWAS

3. SUPPLEMENTARY NOTE

ACKNOWLEDGEMENTS

Major support for PanScan III sample identification and processing was provided by the Lustgarten Foundation for Pancreatic Cancer Research.

Additional support from NIH/NCI K07 CA140790, American Society of Clinical Oncology Conquer Cancer Foundation, Howard Hughes Medical Institute, Lustgarten Foundation, Robert T. and Judith B. Hale Fund for Pancreatic Cancer Research, and Promises for Purple to Dr. Brian Wolpin.

The <u>NYU Women's Health Study</u> is supported by research grants R01CA034588, R01CA098661, center grant P30CA016087 from the NCI and the center grant ES000260 from the National Institute of Environmental Health Sciences.

The <u>WHI</u> program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C." The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at:

 $https://cleo.whi.org/researchers/Documents\%\,20\%\,20Write\%\,20a\%\,20Paper/WHI\%\,20Investigator\%\,20Short\%\,20List.pdf$

The NHS and HPFS are supported by the National Cancer Institute, National Institutes of Health (Grants No. P01 CA87969, P01 CA55075, U54 CA155626, P50 CA127003, R01 CA124908, R01 CA49449, 1UM1 CA167552).

The <u>PHS</u> was supported by grants CA 97193, CA 34944, CA 40360, HL 26490, and HL 34595 from the National Institutes of Health (Bethesda, MD).

The <u>WHS</u> is supported by grants CA047988, HL043851, and HL080467 from the National Institutes of Health (Bethesda, MD).

The Shanghai Men's Health Study was supported by the National Cancer Institute extramural research grant [R01 CA82729]. The Shanghai Women's Health Study was supported by the National Cancer Institute extramural research grant [R37 CA70867] and, partially for biological sample collection, by the Intramural Research Program of National Cancer Institute (Division of Cancer Epidemiology and Genetics). We are in debt to the contributions of Drs. Yu-Tang Gao and Yong-Bing Xiang in these two cohort studies. The studies would not be possible without the continuing support and devotion from the study participants and staff of the SMHS and SWHS.

<u>PLCO</u> was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics and by contracts from the Division of Cancer Prevention, National Cancer Institute, NIH, DHHS. The authors thank Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention, National Cancer Institute, the Screening Center investigators and staff of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, and Craig Williams, Michael Furr and staff at Information Management Services, Inc. Most importantly, we acknowledge the study participants for their contributions to making this study possible.

The <u>ATBC</u> Study was supported by U.S. Public Health Service contracts N01-CN-45165, N01-RC-45035, N01-RC-37004, and HHSN261201000006C from the National Cancer Institute, Department of Health and Human

Services, and by funding from the Intramural Research Program of the National Cancer Institute. Additional support to Dr. Satu Mannisto from the Academy of Finland (#136895 and 263836).

For the EPIC cohorts, all coauthors coordinated the initial recruitment and management of the studies. All authors contributed to the final paper. The authors thank all of the participants who took part in this research and the funders and support and technical staff who made this study possible. The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by Danish Cancer Society (Denmark); Liguecontre le Cancer, Société 3M, MutuelleGénérale de l'EducationNationale, Institut National de la Santé et de la RechercheMedicale (France); Deutsche Krebshilfe, DeutschesKrebsforschungszentrum and Federal Ministry of Education and Research (Germany); Stavros Niarchos Foundation and Hellenic Health Foundation (Greece); Italian Association for Research on Cancer (AIRC) and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (ZorgOnderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health Research Fund (FIS), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society, Swedish Scientific Council and Regional Government of Skåne and Västerbotten (Sweden); Cancer Research UK, Medical Research Council (United Kingdom).

CLUE II was supported by National Institute of Aging grant (5U01AG018033) and National Cancer Institute grants (CA105069, CA73790). The authors express their appreciation to the participants of the CLUE II cohort, and thank the staff at the George W. Comstock Center for Public Health Research and Prevention for their dedication and contributions to the study: Judy Hoffman-Bolton, Clara Krumpe, Kitty Spoonire and Betty Miner.Cancer incidence data have been provided by the Maryland Cancer Registry, Center for Cancer Surveillance and Control, Department of Health and Mental Hygiene, 201 W. Preston Street, Room 400, Baltimore, MD 21201, www.fha.state.md.us/cancer/registry/, 410-767-4055. We acknowledge the State of Maryland, the Maryland Cigarette Restitution Fund, and the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC) for the funds that helped support the availability of the cancer registry data.

The <u>CPS-II</u> is supported by the American Cancer Society. The authors thank all of the men and women in the Cancer Prevention Study II Nutrition Cohort for their many years of dedicated participation in the study. The authors acknowledge the contribution to this study of the central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, and the cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program.

The MCCS recruitment was funded by VicHealth and Cancer Council Victoria and obtains core recurrent funding from Cancer Council Victoria and grants from the NHMRC (#209057, #251533, #396414). The investigators would like to express their gratitude to the many thousands of Melbourne residents who continue to participate in the study.

<u>SELECT</u> is funded by Public Health Service grant CA37429 from the National Cancer Institute, Division of Cancer Prevention. The authors thank the site investigators and staff, the members of the Data and Safety Monitoring and Steering Committees and most importantly the 35,533 participants from SELECT who donated their time to the trial.

The <u>VITAL</u> study is supported by K05CA154337 from the National Cancer Institute and the Office of Dietary Supplements.

The work at <u>Johns Hopkins University</u> was supported by the NCI (Grants P50CA62924 and R01CA97075) and the Lustgarten Foundation for Pancreatic Cancer Research. Under a licensing agreement between Myriad

Genetics, Inc., and the Johns Hopkins University, M.G. and A.P.K. are entitled to a share of royalty received by the University on sales of products related to *PALB2*. The terms of this arrangement are managed by the Johns Hopkins University in accordance with its conflict-of-interest policies.

The <u>Mayo Clinic Molecular Epidemiology of Pancreatic Cancer study</u> is supported by the Mayo Clinic SPORE in Pancreatic Cancer (P50 CA102701).

The work at MD Anderson Cancer Center was supported by NIH grant R01 CA98380.

The <u>Memorial Sloan-Kettering Cancer Center Pancreatic Cancer Registry</u> is supported by the Prevention Control and Population Research Goldstein Award; the Society of MSKCC; and the Geoffrey Beene Cancer Research Fund.

The <u>PACIFIC</u> study was supported by grant R01 CA102765 from the National Cancer Institute.

The <u>UCSF</u> study was supported in part by National Cancer Institute grants CA59706, CA108370, CA109767, CA89726 (E.A. Holly, PI) and CA98889 (E.J. Duell, PI) and by the Rombauer Pancreatic Cancer Research Fund.

The <u>University of Toronto</u> study was supported by grants from the NIH (R01 CA97075, as part of the PACGENE consortium), The Lustgarten Foundation for Pancreatic Cancer Research and the Ontario Cancer Research Network. We acknowledge the Pancreatic Cancer Canada Foundation (www.pancreaticcancercanada.ca) for their continued support of research into the early detection of pancreatic cancer, and the Pancreas Cancer Screening Study at Mount Sinai Hospital and Princess Margaret Hospital.

The <u>Yale University</u> study was supported by grant number 5R01CA098870 from the NCI, NIH. The cooperation of 30 Connecticut hospitals, including Stamford Hospital, in allowing patient access in the Connecticut Pancreas Cancer Study is gratefully acknowledged. This study was approved by the State of Connecticut Department of Public Health Human Investigation Committee. Certain data used in this study were obtained from the Connecticut Tumor Registry in the Connecticut Department of Public Health. The authors assume full responsibility for analyses and interpretation of these data.

The research for <u>Alliance/CALGB 80303</u> was supported, in part, by grants from the National Cancer Institute (CA31946) to the Alliance for Clinical Trials in Oncology (Monica M. Bertagnolli, M.D., Chair) and to the Alliance Statistics and Data Center (Daniel J. Sargent, Ph.D., CA33601). This study was also supported by K07-CA140390-01, T32 MH200065-06, 5K24-CA113755, CA60138, the U01 GM61393, and the BioBank Japan Project that is funded by the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government. This study was supported by the NIH Pharmacogenomics Research Network (PGRN)–RIKEN Center for Genomic Medicine (CGM) Strategic Alliance. The CALGB investigators acknowledge the contributions of the following individuals: Cox NL, Kubo M, Zembutsu H, Mushiroda T, Giacomini KM, McLeod HL, Kindler HL, Goldberg R, Ratain MJ.

The <u>DFCI</u> study was supported in part by NIH/NCI P50 CA127003, the Robert T. and Judith B. Hale Fund for Pancreatic Cancer Research, and the Lustgarten Foundation.

The <u>PANKRAS II</u> and <u>SBC/EPICURO</u> studies were partially supported by RTICC (#RD12/0036/0050), Consolíder ONCOBIO and FIS Grants (#PI05-1436, #PI09-02102, #PI12-00815), MINECO, Madrid, Spain; EU 7FP_HELATH CANCERALIA (#259737) and European Cooperation in Science and Technology (COST Action #BM1204: EU_Pancreas); and Intramural Research Program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics (Contract NCI NO2-CP-11015).

The PANDoRA Consortium was supported by the National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, UK (University of Liverpool); the Czech Science Foundation (No. P301/12/1734) and Internal Grant Agency of the Czech Ministry of Health (IGA NT 13 263) (Czech Republic); the Italian "5x1000" voluntary contribution, grants from the Italian Ministry of Health (RC1203GA57, RC1303GA53, RC1303GA54, RC1303GA50), the Italian Association for Research on Cancer (AIRC n. 12182) the Italian Ministry of Research (FIRB - RBAP10AHJB), the Italian FIMP-Ministry of Health (CUP_J33G13000210001) (Italy); Federal Ministry of Education and Research (BMBF) grant 01GS08114, Heidelberger Stiftung Chirurgie, and the PancoBank of European Pancreas Centre (EPZ) (University Hospital Heidelberg). ARC-NET also acknowledges the contributions of the following individuals: Lawlor RT, Bassi C, Butturini G, Malleo G, Sperandio N. University Hospital Heidelberg also acknowledges the contributions made by the EPZ staff, U. Hinz, M. Meinhardt, J. Kleeff, C. Tjaden, J. Werner, O. Strobel, T. Hackert.

The authors acknowledge the contribution of the staff of the Cancer Genomics Research Laboratory (CGR). Specifically, we would like to thank Aurelie Vogt, Xiang Deng, Belynda Hicks and Amy Hutchinson as well as the CGR Infinium and CGR Production Genotyping teams including Salma Chowdhury, Kedest Teshome, Kerrie Lashley, Herbert Higson and Michelle Manning for their invaluable help throughout the project.

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.