Q

0

Q

Q

Q

Introduction to Cuda Parallel Programming Homework Assignment 2

r08944022 蔡仲閔

vtsai01@cmlab.csie.ntu.edu.tw

.().

Disscusion

In this homework, we implemented the parallel reduction to find the maximum number in an array. Also, we use different block size and grid size in our experiments to do the optimization. In **table 1**, it shows that with both the block size and grid size increase we can reduce the time for computation.

However, we also care about the accuracy of our computation. From **figure 1** and **figure 2**, we can see that the error is becoming larger when block size and grid size increase. Therefore, the optimal parameters for this problem would be around (block size, grid size) = (2^64, 10^4).

figure 1: gpu time and error with block size increase

figure 2: gpu time and error with grid size increase

tags: NTU Homework

block size	grid size	gputime	diff	speedup
2	10	1089.41	1.79E-07	0.374051
2	100	125.814	1.13E-06	2.28305
2	1000	38.3184	1.91E-05	4.27015
2	1000	38.3306	4.68E-05	4.27145
2	10000	32.2284	0.000432909	4.54477
2	100000	32.2092	0.00222009	4.53108
8	10	313.228	5.96E-08	1.14616
8	100	32.1578	5.36E-06	4.57068
8	1000	10.9708	2.59E-05	5.84744
8	1000	10.947	5.96E-06	5.87766
8	10000	9.39043	0.000388563	5.94373
8	100000	9.89571	0.00355327	5.9401
16	10	161.367	5.96E-08	1.92233
16	100	16.1812	2.09E-06	5.4769
16	1000	5.59347	1.97E-06	6.32402
16	1000	5.58077	2.52E-05	6.30902
16	10000	4.81322	0.000424623	6.36728
16	100000	4.73104	0.00453991	6.384
64	10	40.3239	0	4.20245
64	100	4.41235	8.94E-07	6.41512
64	1000	2.38614	2.09E-05	6.5316
64	1000	2.38202	2.59E-05	6.62187
64	10000	2.2881	0.0001688	6.61926
64	100000	2.20038	0.00146359	6.66197
256	10	10.1169	4.77E-07	5.88996
256	100	2.24086	7.15E-07	6.60292
256	1000	2.27965	7.69E-06	6.60592
256	1000	2.2809	9.36E-06	6.6138
256	10000	2.22125	6.05E-05	6.67733
256	100000	3.2655	0.00499916	6.51829
1024	10	2.99923	2.38E-07	6.56726
1024	100	2.24586	2.15E-06	6.63229
1024	1000	2.26922	3.70E-05	6.65092
1024	1000	2.27018	6.56E-07	6.6149
1024	10000	2.65533	0.000142515	6.59369
1024	100000	17.7644	0.000217199	5.35461

table 1: results in different setting