Network Layer Routing among AS EGP

Contents!

- How AS are connected?
- External routing. BGP
- Lab! BGP with Docker and Quagga

What is an Autonomous System(AS)?

One or more IP networks controlled by one or more operators with a clear policy that governs how routing decisions are made.

IGP: Interior gateway protocol

EGP: Exterior gateway protocol

EGP in action

traceroute unc.edu.ar

traceroute unc.edu.ar

How AS are connected?

UNC AS would need to peer every network in the world.

How AS are connected?

- **Transit ISP** would need to have a huge infrastructure and a lot of network resources.
- A message from Nati's home to unc.edu.ar would travel to USA and back to Argentina!

How AS are connected?

https://www.cabase.org.ar/wp-content/uploads/2018/07/Poster-Cabase-2018-FINAL -web.gif

BGP - Border Gateway Protocol

- Establish TCP connection between peers
- Each peer sends positive or negative reachability information
- Ongoing peer verification

AS PATH: contains the list of ASs through which the route advertisement has passed.

NEXT HOP: the IP address of the router interface that begins the AS-PATH

BGP - Border Gateway Protocol

Route Selection Algorithm

- 1. Highest local preference value
- 2. The shortest AS PATH
- **3.** The closest NEXT HOP router (hot potato algorithm)
- 4. Use BGP route identifiers

BGP Environment Setup

Goals:

- Identify the topology in docker-compose file.
- Read quagga bgp configuration files
- Read IPv6 routing tables

Steps:

- Clone the repository. (https://github.com/maticue/docker_quagga.git)
- Go to bgp folder. Run docker-compose up
- Verify docker port mapping in order to access the daemons via telnet

Useful commands:

- telnet localhost <daemon_port>
- docker exec -ti <container name> ash

Putting the pieces together

Goals:

- Add a web server and a client to the previous lab's topo.
- Test connectivity between client and server.

Steps:

- Add a web server to router r1.
- Add a client to router r2.
- Generate a http request from the client to the server.

Resources

- https://www.juniper.net/documentation/en_US/junos/topics/concept/ ospf-routing-designated-router-overview.html
- https://learningnetwork.cisco.com/blogs/vip-perspectives/2017/11/08/ /ospf-graphs-lsas-and-the-lsdb
- https://docs.cumulusnetworks.com/display/CL332/Configuring+Quag ga
- Configuring FRRouting (Similar to quagga): http://docs.frrouting.org/en/latest/index.html