T-cell repertoire annotation and motif discovery

An AIRR-Seq data analysis tutorial in R

Mikhail Shugay, PhD

Skolkovo Institute of Science and Technology

June 22, 2019

Introduction

Setting

Interactive part

Aims of this tutorial

Aim1 Learn how to infer T-cells specific to certain epitopes and extract T-cell receptor (TCR) sequence motifs from high-throughput sequencing data (AIRR-Seq).

Aim2 Get familiar with VDJdb database, VDJtools software and some useful R templates for TCR sequence analysis.

Disclaimer This tutorial will not cover AIRR-Seq data processing and basic¹ analysis.

¹Repertoire diversity analysis, segment usage, etc. See **Examples** section of VDJtools docs for this.

VDJdb database

VDJdb is a curated database of T-cell receptor sequences of known antigen specificity that can be accessed at http://vdjdb.cdr3.net

Clonotype tables

We define a clonotype as a unique combination of Variable (V) and Joining (J) segment and CDR3nt sequence observed in our sequencing data.

Index	Frequency	Count	CDR3AA	٧	D	J	CDR3NT
1	1.0%	3913	CSAGGLGSTDTQYF	TRBV20- 1	TRBD1	TRBJ2- 3	TGCAGTGCTGGGGGGCTCGGTAGCACAGATACGCAGTATTTT
2	0.90%	3440	CASNSGSSYNEQFF	TRBV5-1	TRBD2	TRBJ2- 1	TGCGCCAGCAATAGCGGGAGCTCCTACAATGAGCAGTTCTTC
3	0.79%	3021	CSARQGNQPQHF	TRBV20- 1	TRBD1	TRBJ1- 5	TGCAGTGCGCGACAGGGGAATCAGCCCCAGCATTTT
4	0.65%	2490	CASSQEPGGEQFF	TRBV4-1	TRBD2	TRBJ2- 1	TGCGCCAGCAGCCAAGAGCCGGGCGGGGAGCAGTTCTTC
5	0.61%	2336	CASSYGMNTEAFF	TRBV6-6	TRBD2	TRBJ1-	TGTGCCAGCAGTTACGGGATGAACACTGAAGCTTTCTTT
6	0.52%	1992	CASSQGGRAPHTQYF	TRBV4-3	TRBD2	TRBJ2- 3	TGCGCCAGCAGCCAAGGGGGGAGGGCCCCCCATACGCAGTATTTT
7	0.49%	1871	CASSQSQGGSYEQYF	TRBV5-1	TRBD1	TRBJ2- 7	TGCGCCAGCAGCAAAGTCAAGGGGGGTCCTACGAGCAGTACTTC
8	0.48%	1847	CASSRPKSGRSGELFF	TRBV11- 2	TRBD2	TRBJ2- 2	TGTGCCAGCAGCCGACCCAAGAGCGGGAGAAGTGGGGAGCTGTTTTTT

TCR motif inference

Motif inference in present tutorial is based on the TCR neighbor enrichment test (TCRNET) implemented in VDJtools.

TCRNET scans TCR sequence graph from a sample of interest and detects nodes having a degree higher than would be expected from placing a given node in the control sample.

Test for TCR neighbor enrichment

Let n_i^s be the number of clonotypes in sample s that differ from i^{th} clonotype by no more than d=1 substitutions in the CDR3aa sequence.²

Let N_i^s be the total number of clonotypes having the same V/J segments as i^{th} clonotype in sample s.

Select clonotypes with more neighbors than expected by chance by assuming that

$$n_i^s \stackrel{H_0}{\sim} Poisson\left(N_i^s \frac{n_i^c}{N_i^c}\right)$$
 (1)

where c is the control sample.

 $^{^{2}}$ They don't have to have the same V/J segments

Introduction

Setting

Interactive part

Dataset

We'll use AIRR-Seq data from Emerson et al. Nat Genet 2017

Sample	ID	a1	a2	b1	b2	status
B35+	HIP02877	A*26	A*33	B*14	B*35	CMV-
CMV+	HIP13994	A*02	A*02	B*07	B*44	CMV+
Control-1	HIP03484	A*02	A*02	B*07	B*58	CMV-
Control-2	HIP03592	A*02	A*32	B*07	B*39	CMV-
Control-3	HIP04532	A*02	A*24	B*07	B*51	CMV-
Control-4	HIP04576	A*02	A*30	B*07	B*18	CMV-

Experiment - 1

Comparing B35+ sample versus samples without this allele

Sample	ID	a1	a2	b1	b2	status
B35+	HIP02877	A*26	A*33	B*14	B*35	CMV-
CMV+	HIP13994	A*02	A*02	B*07	B*44	CMV+
Control-1	HIP03484	A*02	A*02	B*07	B*58	CMV-
Control-2	HIP03592	A*02	A*32	B*07	B*39	CMV-
Control-3	HIP04532	A*02	A*24	B*07	B*51	CMV-
Control-4	HIP04576	A*02	A*30	B*07	B*18	CMV-

Experiment - 2

Comparing CMV+ and CMV- samples for A*02 and B*07

Sample	ID	a1	a2	b1	b2	status
B35+	HIP02877	A*26	A*33	B*14	B*35	CMV-
CMV+	HIP13994	A*02	A*02	B*07	B*44	CMV+
Control-1	HIP03484	A*02	A*02	B*07	B*58	CMV-
Control-2	HIP03592	A*02	A*32	B*07	B*39	CMV-
Control-3	HIP04532	A*02	A*24	B*07	B*51	CMV-
Control-4	HIP04576	A*02	A*30	B*07	B*18	CMV-

Introduction

Setting

Interactive part

Interactive part

Introduction

Setting

Interactive part

Overview

- Annotated our samples with VDJdb and quality-filtered results
- ► Filtered annotation results based on our allele of interest (HLA-B35) or donor status (CMV+)
- Inferred antigen-specific clonotype groups using TCRNET algorithm in VDJtools
- Overlaped VDJdb annotations and TCRNET results and extract CDR3 sequence motifs

Potential pitfalls

- Repertoires are extremely diverse making TCR annotation an imbalanced classification problem. Even when matching against VDJdb with high specificity³ one will observe many false-positives.
 - Use proper controls, e.g. naive T-cells
- ► TCRNET will fail in some cases simply because the repertoire of T-cells specific to a given antigen is dominated by a single hyperexpanded clonotype. Always annotate and check large clonotypes

 $^{^3}$ According to VDJdb benchmark odds of matching the same epitope given 1 substitution in CDR3 β are around 200+ to 1

Note on CMV-specific clonotypes

Diverse repertoire of dissimilar TCRs, individuals are likely to carry a single hyperexpanded clonotype with no subvariants

Thank you for listening!

Contacts

antigenomics

mikessh, antigenomics

mikhail.shugay@gmail.com