Inference Deep Learning Model to Web Service

Oleh:

-Bagaskara

Pamungkas

LINK MATERI DRIVE

shorturl.at/cgyG0

APA ITU WEB SERVICE?

sumber: https://qph.ec.quoracdn.net/main-qimg-112d229edc555091db7eb0a3cfcb7f7a

Web service adalah standar yang digunakan untuk melakukan pertukaran data antar aplikasi atau sistem, karena aplikasi yang melakukan pertukaran data bisa ditulis dengan bahasa pemrograman yang berbeda atau berjalan pada platform yang berbeda

JENIS-JENIS WEB SERVICE

- - SOAP(Simple Object Access Protocol):
- adalah sebuah spesifikasi protokol untuk pertukaran pesan/informasi terstruktur dalam implementasi web servis di jaringan komputer. SOAP menggunakan Extensible Markup Language (XML) sebagai format pesannya
- - REST(Representational State Transfer):
- Merupakan standar arsitektur berbasis web yang menggunakan protokol HTTP untuk berkomunikasi data

XML

JSON

```
<empinfo>
  <employees>
    <employee>
       <name>James Kirk</name>
       <age>40></age>
    </employee>
    <employee>
                                                 },
       <name>Jean-Luc Picard</name>
       <age>45</age>
    </employee>
    <employee>
       <name>Wesley Crusher</name>
       <age>27</age>
    </employee>
  </employees>
</empinfo>
```

```
"empinfo":
        "employees": [
            "name": "James Kirk",
            "age": 40,
            "name": "Jean-Luc Picard",
            "age": 45,
            "name": "Wesley Crusher",
            "age": 27,
```

Uraian	SOAP	REST	
(1)	(2)	(3)	
Protokol komunikasi	HTTP, HTTPS, SMTP, FTP	HTTP, HTTPS	
Penggunaan bandwidth	Dalam jumlah request yang banyak, relatif boros bandwidth. Hal ini karena banyaknya markup dalam penulisan format XML	Relatif hemat bandwidth, karena markup-markup ekstra seperti pada XML tidak dipakai	
Tren penggunaan	Banyak mulai beralih ke REST, meski masih tetap ada yang mempertahankan, misalnya untuk integrasi aplikasi ke sistem legasi pada sebuah perusahaan.	Mulai populer, banyak dipakai oleh penyedia web servis terkemuka, seperti twitter, yahoo!, flickr,bloglines, technorati, google, amazon, eBay, dsb	
Aturan penulisan	Ketat, mengikuti spesifikasi XML (SOAP v1.2)	Tidak ada spesifikasi khusus	
Format respon	XML dengan spesifikasi SOAP. Agak sulit bagi kita untuk membaca langsung dan memahaminya.	XML, JSON, atau format plain teks lainnya. Hal ini memudahkan penerima respon membaca dan memahaminya.	
Attachment file	Bisa (karena dapat mengembalikan respon dalam format binary)	Tidak bisa	
Sifat web servis pada umumnya	Tertutup, lebih ditujukan untuk vendor atau perusahaan tertent	Terbuka, bisa diakses siapa saja	
Caching web	Relatif sulit	Mudah, karena menggunakan URI	
Penggunaan standar	Standar lama (XML, HTTP) dan baru (SOAP) digunakan bersamaan	Standar yang sudah ada, seperti XML dan HTTP	
Tool pengembangan	Banyak, baik komersial maupun opensource	Beberapa, karena tidak begitu dibutuhkan	
Tool manajemen	Perlu, bahkan kadang harganya mahal	Menggunakan tool yang sudah ada pada sistem jaringan	
Ekstensibel	Bisa, banyak ekstensi termasuk standar WS-*	Relatif tidak ekstensibel	
Kemudahan implementasi	Mudah jika kita sudah memiliki lingkungan berbasis SOAP	Mudah	

Sumber: http://pusdiklat.bps.go.id/index.php?r=artikel/view&id=206

REST API WEB SERVICE

Metode Umum : GET, POST, PUT, DELETE

*KOMPONEN HTTP REQUEST:

- -HTTP method seperti GET, POST, PUT, DELETE
- -URI untuk mengetahui lokasi data di server
- -Request Header, berisi metadata seperti Authorization, tipe client dan lain
- -Request Body, data yang diberikan client ke server seperi URI params

*KOMPONEN HTTP RESPONSE:

- -Response Code, status server terhadap request yang diminta seperti 200, 500, 404 dan lainnya.
- -Response Header yang berisi meta data seperti contect type, cache tag dan yang lainnya.
- -Repsonse Body, data/resource yang diberikan oleh server baik itu berupa text, json ataupun xml

FLASK FRAMEWORK

Flask adalah kerangka kerja aplikasi web mikro yang ditulis dalam bahasa pemrograman Python dan berdasarkan Werkzeug toolkit dan template engine Jinja2 berlisensi BSD.

LETS TRY TO CODING

LANGKAH AWAL

Download Python

Install Flask

Buat Folder baru Buat file dengan nama app.py

Install Flask

Buat Folder Baru

Name	Size	Changed
app.py	1 KB	7/27/2019 1:04:43 AM 7/27/2019 1:04:54 AM

File app.py

```
from flask import Flask
    app = Flask(__name__)
    @app.route('/')
     def hello_world():
10
         return 'Hello, World!'
11
12
    if __name__ == '__main__':
         app.run(host="0.0.0.0", port=5150,debug=True)
13
```

Jalankan Web service dengan command python "namafile".py

```
root@portal: ~
root@portal:/home/bagas/workshop# python3 app.py
```

Langkah Berikutnya

Save Model Deep learning Copy saved model ke Web service folder

Load Model

Contoh model yang akan di inference ke Web Service

```
In [1]: 1 import numpy as np
         2 from keras.datasets import imdb
         3 from keras.models import Sequential
         4 from keras.layers import Dense
         5 from keras.layers import Flatten
         6 from keras.layers.convolutional import Conv1D
         7 from keras.layers.convolutional import MaxPooling1D
         8 from keras.layers.embeddings import Embedding
         9 from keras.preprocessing import sequence
         10 from keras.preprocessing.text import one hot
        Using TensorFlow backend.
In [2]: 1 top words = 5000
         2 max words = 500
         5 # save np.load
         6 np_load_old = np.load
         8 # modify the default parameters of np.load
         9 np.load = lambda *a,**k: np load old(*a, allow pickle=True, **k)
         11 # call load_data with allow_pickle implicitly set to true
         12 (X train, y train), (X test, y test) = imdb.load data(num words=top words)
         14 # restore np.load for future normal usage
         15 np.load = np_load_old
In [3]: 1 max words = 500
         2 X_train = sequence.pad_sequences(X_train, maxlen=max_words)
         3 X test = sequence.pad sequences(X test, maxlen=max words)
In [5]: 1 model = Sequential()
         2 model.add(Embedding(top_words, 32, input_length=max_words))
         3 model.add(Flatten())
         4 model.add(Dense(250, activation='relu'))
         5 model.add(Dense(1, activation='sigmoid'))
         6 model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
         7 #print(model.summary())
In [7]: 1 #model.fit(X train, y train, validation data=(X test, y test), epochs=5, batch size=128, verbose=2)
         2 scores = model.evaluate(X_test, y_test, verbose=θ)
         3 print("Accuracy: %.2f%%" % (scores[1]*100))
        Accuracy: 86.50%
In []: 1 model.save("savemodel.h5")
          2 model.save_weights("saveweights.h5")
```

Ditaruh didalam satu folder yang sama

Size	Changed
	7/26/2019 12:49:50 AM
2 KB	7/27/2019 12:18:08 AM
48,782 KB	7/25/2019 2:53:59 PM
16,267 KB	7/25/2019 2:51:29 PM
	2 KB 48,782 KB

Buat function baru yang bernama predictservice()

```
def hello world():
    return 'Hello, World!'
@app.route('/predictservice', methods=['POST'])
def predictservice():
    if request.method == 'POST':
        K.clear session()
        model = load model('savemodel.h5')
        model.load weights('saveweights.h5')
        array = []
        data = request.json
        teks = data['teks']
        array.append(teks)
        vocab_size = 5000
        encoded teks = [one hot(t,vocab size) for t in array]
        max words = 500
        encoded teks = sequence.pad sequences(encoded teks, maxlen=max words)
        hasil = ""
        predik = model.predict classes(encoded teks)
        if predik == 0:
            hasil = "positive"
        if predik == 1:
            hasil = "negative"
        return jsonify({"hasil":hasil})
        K.clear_session()
```

Buat function untuk validasi akurasi model

```
@app.route('/testing',methods=['GET'])
def test():
    if request.method == 'GET':
       K.clear session()
        model = load model('savemodel.h5')
        top words = 5000
        max words = 500
        np load old = np.load
        # modify the default parameters of np.load
       np.load = Lambda *a,**k: np load old(*a, allow pickle=True, **k)
       (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words)
        # restore np.load for future normal usage
        np.load = np load old
        max words = 500
        X train = sequence.pad sequences(X train, maxlen=max words)
        X test = sequence.pad sequences(X test, maxlen=max words)
        scores = model.evaluate(X_test, y_test, verbose=0)
        z = "Accuracy: %.2f%%" % (scores[1]*100)
        return jsonify({"hasil":z})
        K.clear session()
```

Test Web Service menggunakan Postman

Header

Body

Hasil Prediksi

