LOGICĂ MATEMATICĂ ȘI COMPUTAȚIONALĂ

CURS 7

- cea mai eficace metodă de demonstraţie algoritmică a LP, precum şi(vezi cap. 4), a logicii predicatelor LPr.
- constituie metoda de demonstraţie pe care se bazează limbajul de programare logică PROLOG.
- este o metodă de demonstraţie prin respingere, la fel ca demonstraţiile Beth.

RECAPITULARE

 Un literal este orice atom sau negaţia acestuia.

De exemplu: $\neg A, B, \neg C$ sunt literali.

 Ştim că putem dezvolta orice propoziţie din LP într-o formă normală conjunctivă FNC, care este echivalentă cu propoziţia iniţială. O componentă a FNC este de fapt o disjuncţie de literali, astfel că în fiecare disjuncţie nici un literal nu apare mai mult decât o dată.

RECAPITULARE

(i) legile lui De Morgan:

$$\neg (A \land B) \leftrightarrow \neg A \lor \neg B$$

$$\neg (A \land B) \longleftrightarrow \neg A \lor \neg B$$
 şi $\neg (A \lor B) \longleftrightarrow \neg A \land \neg B$

(ii) proprietățile de asociativitate ale lui ∧ și ∨:

$$(A \land B) \land C \longleftrightarrow A \land (B \land C)$$
 şi $(A \lor B) \lor C \longleftrightarrow A \lor (B \lor C)$

(iii) proprietățile de comutativitate ale lui ∧ și ∨:

$$A \wedge B \leftrightarrow B \wedge A$$

$$A \wedge B \longleftrightarrow B \wedge A$$
 şi $A \vee B \longleftrightarrow B \vee A$

(iv) proprietățile de distributivitate ale lui ∧ față de ∨ și ale lui ∨ față de ∧:

$$A \wedge (B \vee C) \leftrightarrow (A \wedge B) \vee (A \wedge C)$$

$$A \lor (B \land C) \leftrightarrow (A \lor B) \land (A \lor C)$$

(v) propozițiile:

$$A \vee A \leftrightarrow A$$

$$A \wedge A \longleftrightarrow A$$

$$A \wedge (B \vee \neg B) \longleftrightarrow A$$

$$A \wedge (B \vee \neg B) \leftrightarrow A$$
 $A \vee (B \wedge \neg B) \leftrightarrow A$

RECAPITULARE

Exemplul 1: Dezvoltaţi propoziţia *S* într-o **FNC** unde:

S:
$$\neg ((A \lor B) \land (\neg A \lor \neg B) \land C$$

Pasul 1: Mutăm negațiile spre interiorul parantezelor folosind legile lui De Morgan:

a:
$$S \leftrightarrow [\neg (A \lor B) \lor \neg (\neg A \lor \neg B)] \land C$$

b:
$$S \leftrightarrow [(\neg A \land \neg B) \lor (\neg \neg A \land \neg \neg B)] \land C$$

<u>Pasul 2</u>: Folosim proprietățile de asociativitate și comutativitate pentru a aduce la un loc literalii aceluiași atom. Apoi putem simplifica dublele negații, termenii dubli de forma $A \lor A$ și $A \land A$ precum și termenii inutili de forma $B \land \neg B$ sau $B \lor \neg B$ folosind teorema substituției echivalențelor:

$$S \leftrightarrow [(\neg A \land \neg B) \lor (A \land B)] \land C$$

Pasul 3: Conform proprietăților de distributivitate avem:

$$S \leftrightarrow [((\neg A \land \neg B) \lor A) \land ((\neg A \land \neg B) \lor B)] \land C$$

Continuăm prin repetarea pașilor al doilea și al treilea. până ce stabilim FNC finală:

Pasul 1':
$$S \leftrightarrow ((\neg A \land \neg B) \lor A) \land ((\neg A \land \neg B) \lor B) \land C$$

Pasul 2':
$$\longleftrightarrow (\neg A \lor A) \land (\neg B \lor A) \land (\neg A \lor B) \land (\neg B \lor B) \land C$$

Pasul 3':
$$\leftrightarrow (\neg B \lor A) \land (\neg A \lor B) \land C$$

care este **FNC** a lui *S* pe care o cautăm

- Disjuncţia unui număr finit de literali poate fi reprezentată conform teoriei mulţimilor ca o mulţime ale cărei elemente sunt literalii în cauză. Această mulţime se numeşte clauză. Astfel, o clauză este echivalentă cu o propoziţie disjunctivă din LP.
- Din motive tehnice vom introduce şi noţiunea de clauză vidă, o clauză care nu conţine literali şi este întotdeauna neverificabilă. Clauza vidă se notează prin □.
- Conjuncţia unui număr finit de clauze poate fi reprezentată conform teoriei mulţimilor ca o mulţime ale cărei elemente sunt aceste clauze. Aceasta mulţime se numeşte mulţime de clauze.

Exemplul 2: Mulţimea de clauze:

$$\{ \{A,B\}, \underbrace{\{\neg B, \neg C\}}_{2}, \{D\} \}$$

reprezintă propoziția:

$$(\underbrace{(A \lor B)}_{1} \land \underbrace{(\neg B \lor \neg C)}_{2} \land D)$$

Rezoluţia este o regulă deductivă prin care, într-o clauză, putem deduce o propoziţie din alte două propoziţii.

 Să considerăm ca fiind date următoarele clauze:

$$C_1 = \{A_1, ..., A_i, \neg B_1, ..., \neg B_j\}$$
 $C_2 = \{D_1, ..., D_k, \neg F_1, ..., \neg F_l\}$
unde $A_1, ..., A_i, \neg B_1, ..., \neg B_j, D_1, ..., D_k, \neg F_1, ..., \neg F_l$ sunt atomi.

• Să presupunem că A_1 coincide cu F_1 . Putem atunci rescrie cele două clauze după cum urmează:

$$C_1 = \{A_1\} \cup C'_1 \text{ unde } C'_1 = \{A_2, ..., A_i, \neg B_1, ..., \neg B_j\}$$

 $C_2 = \{\neg A_1\} \cup C'_2 \text{ unde } C'_2 = \{D_1, ..., D_k, \neg F_2, ..., \neg F_l\}$

 Atunci, regula rezoluţiei pe care vrem să o stabilim va trebui să ne permită să producem drept deducţie clauza următoare:

$$C = C'_1 \cup C'_2$$

Rezoluţia, o descriere formalizată:

• Fie C_1 şi C_2 două clauze şi fie L un literal astfel încât $L \in C_1$ şi $(\neg L) \in C_2$.

Putem atunci deduce rezolventul D al lui C_1 şi C_2 :

$$D = (C_1 - \{L\}) \cup (C_2 - \{\neg L\})$$

Exemplul 3: Să considerăm următoarele clauze:

 $\{\neg A, B\}$

{*A*, *C*}

Aplicând rezoluţia, putem deduce: $\{B, C\}$

- Fie $S = \{C_1, C_2, ..., C_n\}$ o multime de clauze. Atunci mulţimea: $R(S) = S \cup \{D \mid D \text{ este rezolventul clauzelor } C_i, C_j \in S, i \neq j, 1 \leq i, j \leq n\}$ este rezolventul lui S.
- Fireşte, putem continua cu aplicarea metodei, luând succesiv mulţimile următoare:

$$R^0 = S$$
, $R^1(S) = R(S)$, $R^2(S) = R(R(S))$,..., $R^n(S) = R(R^{n-1}(S))$,
şi, în final:
 $R^*(S) = \bigcup_{i=1}^{n} R^n(S) = \{C_i \mid C_i \in R^j(S) \text{ şi } j \in N \}$

unde C_i sunt clauzele conținute în al j-lea rezolvent al lui S.

De notat că $R^*(S)$ este o mulţime finită dacă şi numai dacă S este finită.

Exemplul 4: Fie S o mulţime de clauze:

$$S = \left\{ \underbrace{\{A, \neg B, \neg C\}}_{1}, \underbrace{\{B, D\}}_{2}, \underbrace{\{\neg A, \neg D\}}_{3} \right\}$$

Aplicând regula rezoluţiei perechilor de clauze ale lui *S*, avem:

1
$$\{A, \neg B, \neg C\}$$

$$3 \{ \neg A, \neg D \}$$

3
$$\{ \neg A, \neg D \}$$

1
$$\{A, \neg B, \neg C\}$$

4 {
$$A$$
, D , $\neg C$ }

6
$$\{ \neg B, \neg C, \neg D \}$$

şi, în final:

$$R(S) = \left\{ \underbrace{\{A, \neg B, \neg C\}}_{1}, \underbrace{\{B, D\}}_{2}, \underbrace{\{\neg A, \neg D\}}_{3}, \underbrace{\{A, D, \neg C\}}_{4}, \underbrace{\{B, \neg A\}}_{5}, \underbrace{\{\neg B, \neg C, \neg D\}}_{6} \right\}$$

• Fie S o mulţime de clauze. O *demonstraţie prin rezoluţie* din S este o secvenţă finită de clauze C_1 , C_2 ,..., C_n , astfel încât pentru fiecare C_i , i = 1, ..., n, avem:

$$C_i \in (S)$$
 sau $C_i \in R(\{C_j, C_k\})$ $1 \le j, k \le i \le n$.

• O clauză C este demonstrabilă prin rezoluţie dintr-o mulţime de clauze S, formalizat $S
subsete_R C$, dacă există o demonstraţie prin rezoluţie din S a cărei ultimă clauză este C. Evident, $C \in R^*(S)$

Ex1: Aflați toți rezolvenții mulțimii de clauze:

$$S = \{\{A, B\}, \{\neg A, \neg B\}\}.$$

Ex2: Se dă următoarea propoziție:

S:
$$((A \leftrightarrow (B \rightarrow C)) \land (A \leftrightarrow B) \land (A \leftrightarrow \neg C)$$

Demonstraţi că S nu este verificabilă.

BIBLIOGRAFIE

BIBLIOGRAFIE RECOMANDATĂ LA UNITATEA DE INVATARE NR.2

- G. Metakides, A. Nerode Principii de logică şi programare logică, Editura Tehnică, Bucureşti, 1998
- 2. G. Georgescu *Elemente de logică matematică*, Editura Academiei Tehnice Militare, Bucureşti, 1978
- 3. D. Busneag, D. Piciu, *Probleme de logica si teoria multimilor*, Craiova, 2003.
- 4. G. Georgescu, A. lorgulescu, *Logica matematica*, Ed. ASE, Bucuresti, 2010
- 5. Gr. C Moisil, *Elemente de logica matematica si de teoria multimilor*, Ed. Stiintifica, Bucuresti, 1968
- 6. J.D. Monk, Mathematical Logic, Springer Verlag, 1976
- 7. V. E. Cazanescu, *Curs de bazele informaticii*, Tipografia Universitatii din Bucuresti, 1976
- 8. S. Rudeanu, *Curs de bazele informaticii*, Tipografia Universitatii din Bucuresti, 1982
- 9. M. Huth, M. Ryan, *Logic in Computer Science*: Modelling and Reasoning about Systems, Cambridge Univ. Press, 2009
- 10. A.R. Bradley, Z. Manna, *The Calculus of Computation Decision Procedures with Applications to Verification*, Springer, 2007
- 11. M. Ben-Ari, *Mathematical Logic For Computer Science*, Springer, 2003

MULŢUMESC!

Ex1: Exprimați următoarele propoziții ca mulțimi de clauze:

- a) $\neg (A \land B \land \neg C)$
- b) $A \leftrightarrow (\neg B \land \neg C)$

Ex2: Care dintre următoarele mulțimi de clauze este verificabilă și de ce? Pentru fiecare mulțime verificabilă, stabiliți o valorizare de adevăr care o satisface.

- a) $\{\{A, B\}, \{\neg A, \neg B\}, \{\neg A, B\}\}$
- b) {{¬ A }, {A, ¬ B}, {B} }
- c) {{A}, □}
- d) {□ }

Ex3: Stabiliți rezolventul R(S) al mulțimii S în următoarele cazuri:

a)
$$S=\{\{A, \neg B\}, \{A, B\}, \{\neg A\}\}$$

Ex4: Aplicând rezoluția, demonstrați că următoarele mulțimi nu sunt verificabile:

- a) S={¬ A ∨ B ∨D, ¬ B ∨ D ∨ A, ¬D ∨C, ¬D ∨A, A ∨B, B ∨ ¬C, ¬A ∨ ¬B}
- b) $S=\{\neg A \lor B, \neg B \lor C, \neg C \lor A, A \lor C, \neg A \lor \neg C\}$
- c) $S=\{A \lor B \lor C, A \lor B \lor \neg C, A \lor \neg B, \neg A \lor \neg C, \neg A \lor C\}$

Ex5: Aplicând rezoluția, demonstrți că:

$$\{A \land B \rightarrow C, A \rightarrow B\} \vdash_R A \rightarrow C$$

Ex6: Fiind dată propoziția Q următoare:

$$(A \land B \rightarrow C) \land A \land (\neg B \rightarrow C)$$

- a) Stabiliţi pentru Q forma potrivit teoriei mulţimilor.
- b) Demonstrați prin rezoluție că Q \vdash_R C
- c) Date fiind propozițiile Q și A $\rightarrow \neg$ C, ce putem conchide asupra valorii de adevăr a lui B?

4	Miros		Vant	ABIS
3	Ž.	Vant Miros	ABIS	Vant
2	Miros		Vant	
1		Vant	ABIS	Vant
	1	2	3	4

- Tabela cu patratele (pestera) este inconjurata de ziduri.
- Agentul (exploratorul) porneste intotdeauna din coltul din stanga jos (1, 1).
- Patratele adiacente Wumpus-ului si patratul lui au miros (neplacut).
- Patratele adiacente abisurilor contin adieri de vant.
- Daca exploratorul se afla in patrat cu aur, acesta straluceste.
- Impuscatura il ucide pe Wumpus daca omul este indreptat catre el.
- Impuscatura se face in directia orientarii omului, iar glontul merge pana ucide wumpus-ul daca e pe directie sau cand ajunge la capatul liniei/coloanei.

- Aurul se poate lua doar daca se afla in patratul cu aur.
- Cand agentul intra intr-un zid, simte o lovitura.
- Cand wumpus-ul este ucis, acesta scoate un strigat care se poate auzi in intreaga pestera.
- Perceptiile agentului de la mediul inconjurator vin in forma a 5 simboluri:
 - Daca simte miros, vant, stralucire, nu se loveste si nu aude tipat, lista va arata astfel:

[Miros, Vant, Stralucire, Nimic, Nimic]

 Agentul poate merge inainte, se poate roti la stanga si la dreapta cu 90°.

- Agentul poate luα aurul daca se afla in patratul cu aur.
- Poate trage un (singur) foc in line dreapta.
- Poate iesi din pestera, dar numai pe la (1,1).
- Agentul moare daca intra intr-un patrat cu abis sau intr-unul cu ur wumpus in viata.
- Scopul agentului: sa gaseasca aurul si sa iese cu el din pestera.
- Castiguri si penalizari:
 - 1 000 puncte daca iese cu aurul din pestera
 - -1 punct pentru fiecare actiune facuta
 - -10 000 puncte daca moare.

- Agentul este mereu initializat la patratul (1,1) cu tata spre deapta.
- Locatiile pentru wumpus si pentru aur sunt alese aleator, fara pozitia (1,1).
- Fiecare locatie cu exceptia (1,1) are 20% sanse sa contina un abis.
 - Deci un abis poate fi in casuta cu aur sau in cea cu wumpus-ul.
- Desigur, pot fi situatii cand agentul nu poate ajunge la aur.
 - Viata este uneori nedreapta.
- Evident, agentul nu stie de la inceput ce se afla in fiecare patrat.
 - El doar poate simti prezenta vantului, a mirosului sau poate vedea stralucirea dintr-un patrat.

ABIS Miros Vant Vant **ABIS** Vant Miros @ Miros Vant Vant **ABIS** Vant

1

4

3

2

1 2 3 4

- Agentul este plasat la (1,1).
 - Nu simte nici vant, nici miros.
 - Deduce ca (1,2) si (2,1) nu contin pericole.

1,4	2,4	3,4	4,4	A – Agent Ab – Abis Au – Aur M – Miros
1,3	2,3	3,3	4,3	OK – Patrat OK V – Vant Viz - Vizitata W – Wumpus
1,2	2,2	3,2	4,2	W Wellipes
1,1 A	2,1	3,1	4,1	

Miros Vant ABIS

Vant Miros Vant

Age	entul	este	pl	asat	la	(1,1)).
						\ 1 /	

- Nu simte nici vant, nici miros.
- Deduce ca (1,2) si (2,1) nu contin pericole.
- Le marcheaza pe acestea cu OK.
- De asemenea, (1,1) este OK.
- Un agent precaut se muta intrun patrat numai daca este OK.

1,4	2,4	3,4	4,4	A – Agent Ab – Abis Au – Aur M – Miros
1,3	2,3	3,3	4,3	OK – Patrat OK V – Vant Viz - Vizitata W – Wumpus
OK	2,2	3,2	4,2	vv vvempes
A OK	2,1 OK	3,1	4,1	

3

1

- Presupunem ca agentul se muta la (2,1).
- Aici detecteaza vant.

1,4	2,4	3,4	4,4	A – Agent Ab – Abis Au – Aur M – Miros
1,3	2,3	3,3	4,3	OK – Patrat OK V – Vant Viz - Vizitata
1,2 OK	2,2	3,2	4,2	. W – Wumpus
Viz OK	A V OK	3,1	4,1	

Miros Vant ABIS

Vant Miros Vant

Vant

Vant

Vant

Vant

Vant

Vant

Vant

1 2 3 4

- Presupunem ca agentul se muta la (2,1).
- Aici detecteaza vant.
 - In (1,1) nu poate fi abis pentru ca de acolo vine.
 - Deci este un abis la (2,2) sau la (3,1). (indicam cu Ab?)

1,4	2,4	3,4	4,4	A – Agent Ab – Abis Au – Aur M – Miros
1,3	2,3	3,3	4,3	OK – Patrat OK V – Vant Viz - Vizitata W – Wumpus
OK	^{2,2} Ab?	3,2	4,2	- vv – vvompos
Viz OK	A V OK	3,1 Ab?	4,1	

3

2

Miros Vant ABIS Vant
Miros Vant
Vant ABIS Vant

Vant
ABIS Vant

Vant
Vant
Vant

- Mai este un singur patrat "OK" in care A nu a fost, (1,2).
- A se intoarce prin (1,1) si merge in (1,2).
- Detecteaza miros in (1,2), deci este un wumpus pe aproape.
 - Acesta nu e in (1,1) si nu poate fi nici in (2,2) pentru ca ar fi detectat miros cand se afla in (2,1).
- Din acest rationament reiese ca W
 este in (1,3).

1,4	2,4	3,4	4,4	A – Agent Ab – Abis Au – Aur M – Miros
1,3 W!	2,3	3,3	4,3	OK – Patrat OK V – Vant Viz - Vizitata W – Wumpus
A M OK	2,2 OK	3,2	4,2	vv vvompos
Viz OK	V Viz OK	3,1 Ab?	4,1	

4

3

1

3 -

Miros		Vant	ABIS
Ž.	Vant Miros	ABIS	Vant
Miros		Vant	
A	Vant	ABIS	Vant

- Lipsa vantului in (1,2) indica faptul ca nu este abis in (2,2) deci trebuie sa fie unul la (3,1).
- Aceasta inferenta se bazeaza pe cunostinte castigate in timpi diferiti si pe lipsa unei perceptii pentru a trage o concluzie.

1,4	2,4	3,4	4,4	A – Agent Ab – Abis Au – Aur M – Miros
1,3 W!	2,3	3,3	4,3	OK – Patrat OK V – Vant Viz - Vizitata W – Wumpus
A M OK	2,2 OK	3,2	4,2	Trompos
Viz OK	V Viz OK	3,1 Ab!	4,1	

4 Miros Vant ABIS

3 Vant Miros Vant

4 Miros Vant

5 Vant Vant

1 Vant ABIS Vant

1 Vant ABIS Vant

Agenti	ul se afla ir	situ	atia	din
figura	alaturata,	dar	nυ	stie
inca ur	nde este W.			

- La fiecare pas, perceptiile agentului se transforma in propozitii.
- Notatii:
 - M12 in celula (1,2) exista miros
 - V21- in celula (2, 1) exista vant

1,4	2,4	3,4	4,4	A – Agent Ab – Abis Au – Aur M – Miros
1,3 W!	2,3	3,3	4,3	OK – Patrat OK V – Vant Viz - Vizitata W – Wumpus
A M OK	2,2 OK	3,2	4,2	Trompos
Viz OK	V Viz OK	3,1 Ab!	4,1	

4 Miros Vant ABIS

3 Vant Miros Vant

4 Miros Vant

5 Vant ABIS Vant

1 Vant ABIS Vant

- Cunostintele adunate pana acum sunt urmatoarele:
 - ¬ M₁₁
 - ¬ M21
 - M₁₂
 - ¬V11
 - V21
 - ¬V12
- In plus, agentul stie ca daca nu simte miros intr-o celula, atunci acea celula si nicio alta celula adiacenta nu contin un wumpus.

Miros Vant ABIS

Vant Miros Vant

Vant ABIS

Vant

Vant

Vant

Vant

Vant

Vant

Vant

ABIS

Vant

- Agentul trebuie sa stie acest lucru pentru fiecare celula din pestera.
- Ne reducem doar la ce a descoperit agentul pana la momentul curent:
- $M11 \rightarrow -W11 \land -W12 \land -W21$
- ¬ M21 → ¬ W11 ∧ ¬ W21 ∧ ¬ W22 ∧¬ W31
- M12 \rightarrow W11 \vee W12 \vee W22 \vee W13
- Poate deduce agentul W13! folosind aceste cunostinte si logica computationala?

1,4	2,4	3,4	4,4	A – Agent Ab – Abis Au – Aur M – Miros
1,3 W!	2,3	3,3	4,3	OK – Patrat OK V – Vant Viz - Vizitata W – Wumpus
A M OK	2,2 OK	3,2	4,2	
Viz OK	V Viz OK	3,1 Ab!	4,1	

4

3

1

Cunostintele dobandite:

- ¬ M11
- ¬ M21
- M12
- $-M11 \rightarrow -W11 \land -W12 \land -W21$
- $\neg M21 \rightarrow \neg W11 \land \neg W21 \land \neg W22 \land \neg W31$
- M12 \rightarrow W11 \vee W12 \vee W22 \vee W13

Avand starea din figura alaturata, sa se demonstreze ca abisul se afla la (3,1).

Miros		Vant	ABIS
Ž.	Vant Miros	ABIS	Vant
Miros		Vant	
A	Vant	ABIS	Vant

1,4	2,4	3,4	4,4	A – Agent Ab – Abis Au – Aur M – Miros OK – Patrat OK V – Vant Viz - Vizitata W – Wumpus
1,3 W!	2,3	3,3	4,3	
A M OK	2,2 OK	3,2	4,2	
Viz OK	V Viz OK	3,1 Ab!	4,1	

3

2

1

- Logica propozitionala poate fi folosita cu succes pentru inferente care sa ne descopere unde este wumpusul sau un abis.
- Pentru a folosi insa informatia, avem nevoie de reguli care sa ii spuna agentului cum sa se deplaseze.
- Daca wumpusul se afla chiar in fata, cel mai bine ar fi ca agentul sa nu se deplaseze chiar inainte...
 - Acest lucru se poate reprezenta prin o serie de reguli, una pentru fiecare locatie si orientare a agentului.

- Daca agentul se gaseste la (1, 1) cu fata spre est (dreapta se schimba in functe de orientarea agentului), o regula ar fi:
 - A11 \wedge Est_A \wedge W21 \rightarrow \neg Inainte
- Pentru o lume de 4 x 4 cu (16 patrate si 4 orientari posibile), numai regula care spune sa nu mearga inainte daca este un wumpus in fata ar duce la crearea de 16 x 4 = 64 de reguli.
- Luand in calcul multitudinea de reguli care ar trebui adaugate, numai intr-o lume de 4x4 am ajunge la mii de reguli necesare pentru a realiza un agent competent.

- Daca marim dimensiunea lumii, lucrurile se complica exponential.
- Plus ca lumea (pestera) se schimba odata cu trecerea timpului.
 - Nu vrem sa uitam de la un moment la altul ce a fost intr-un patrat, deci vom folosi notatii diferite pentru timpi diferiti:
 - $A^111 \wedge Est_A^1 \wedge W^121 \rightarrow \neg Inainte_1^1$
 - $A^211 \wedge Est_A^2 \wedge W^221 \rightarrow \neg Inainte_2...$
 - Asadar, regulile ar trebui rescrise pentru fiecare moment in timp.

- Daca agentul ar rula pentru 100 de pasi, am avea 6400 de reguli numai pentru a ii spune agentului sa nu mearga inainte daca wumpusul este acolo.
- Asadar, problema este ca logica propozitiilor utilizeaza pentru reprezentare o singura componenta: propozitia.
- In logica de ordinul I se pot reprezenta obiecte si relatii intre obiecte in plus fata de propozitii.
 - Cele 6400 de reguli vor fi reduse numai la 1.