

FIG.2

CALCULATION OF HUE ANGLE

FIG.5

	AO20001	AO20001 AO20002 AO20005 AO20007 AO20008 AO20009 AO20010	AO20005	AO20007	AO20008	AO20009	AO20010
ALUMINUM FLAKE PIGMENT A			5.7		•		
ALUMINUM FLAKE PIGMENT B		3.2		17.0	17.0	14.3	14.3
ALUMINUM FLAKE PIGMENT C	5.5	7.7					
ALUMINUM FLAKE PIGMENT D			7.2				
ALUMINUM FLAKE PIGMENT E	5.5						
CARBON BLACK PIGMENT A	0.01	10.0		0.3	0.3	0.5	0.5
ORGANIC REDDISH PIGMENT A	0.02	0.02					
INORGANIC REDDISH PIGMENT A	0.3	0.3	1.4				
ORGANIC YELLOWISH PIGMENT A			0.05				
ORGANIC YELLOWISH PIGMENT B			9.0				
ORGANIC BLUISH PIGMENT A				0.3	0.3	3.0	3.0
TOTAL PWC	11.33	11.23	14.95	17.6	17.6	17.8	17.8

FIG.6

PAINT PROCESS: BASE COATING TWICE WITH 90 SECOND INTERVALA

PAINTING MACHINE	ABB 1N1072F
PAINT DISCHARGE RATE	220 cc/min
SHAPING AIR	520 Nm³/min
ROTATION	25000 RPM
PAINTING MACHINE LINEAR SPEED	900 mm/min
DISTANCE TO PAINTING OBJECT	300 mm

FIG.7

MEASURED VALUE AND CALCULATED VALUE

-	PAINIED BOARD ID	200000	ACCOURT ACCOURT ACCOURT ACCOURT ACCOURT ACCOURT ACCOURT ACCOURT	2000			200		****	2000		
	GLTTER REPRESENTING VALUE	126	138	211	97	113	135	175	194	182	176	181
	VISUAL MOTTLING	2.5	2.5	2.25	2.25	2.5	2.75	2.5	2.5	2.25	2.25	2.25
	15° L*	128.76	128.16	118.30	50.87	66.92	133.68	120.40	116.60	117.14	115.85	117.36
	15° a*	-1.87	17.1-	-8.64	-3.09	-0.49	-1.82	-8.11	-8.73	-6.82	-8.66	-9.77
Rite	15° b*	4.96	18.4	-15.05	-1.82	3.51	2.80	-10.99	-11.27	-11.85	-14.56	-16.18
68M2	25° L*	105.01	102.45	88.20	37.26	51.30	105.66	95.01	91.36	93.22	91.37	90.58
	25° a*	-2.03	-2.04	-6.79	-3.19	-0.60	-2.00	-6.99	-7.36	-5.95	-7.45	-7.99
	25° b*	4.61	4.61	-11.60	-1.10	3.19	4.86	-8.95	-9.25	98'6-	-12.09	-12.87
	45° L*	63.90	60.62	44.50	16.53	27.82	61.85	25.49	50.66	52.89	51.45	20.08
	45° a*	-1.49	-1.46	-3.05	-1.48	-0.21	-1.37	-4.02	-4.21	-3.35	-4.25	-4.20
	45° b*	86.2	2.54	-8.02	-2.34	1.61	2.71	-6.82	-7.26	-7.54	-8.96	-9.38
	75° L*	39.96	37.64	22.97	6.22	12.44	37.50	28.29	27.52	28.47	27.60	26.16
	75° a*	-1.81	-1.89	-2.08	-0.50	0.10	-1.71	-3.14	-3.56	-2.59	-3.10	-2.84
	75° b*	3.01	2.31	-8.27	-2.41	0.47	2.84	-7.05	-7.66	-7.86	-8.77	-9.01
	110° L*	32.92	30.82	16.35	3.57	6.50	30.95	20.41	20.03	20.22	19.75	18.68
	110° a*	-2.35	-2.38	-2.14	-0.02	0.12	-2.20	-3.40	-3.84	-2.68	-3.06	-2.83
	110° b*	3.85	3.31	-8.77	-1.89	0.47	4.12	-7.55	-8.15	-8.27	-9.19	-9.36
	15° C VALUE	5.30	5.10	17.35	3.59	3.54	6.08	13.66	14.26	13.67	16.94	18.90
	25°C VALUE	5.04	5.04	13.44	3.37	3.25	5.26	11.36	11.82	11.52	14.20	15.15
	45° C VALUE	3.33	2.93	8.58	2.77	1.62	3.04	7.92	8.39	8.25	9.92	10.28
	75° C VALUE	3.51	2.98	8.53	2.46	0.48	3.32	7.72	8.45	8.28	9.30	9.45
	110° C VALUE	4.51	4.08	9.03	1.89	0.49	4.67	8.28	9.01	8.69	9.69	9.78
	15° -100° C VALUE	0.79	1.03	8.33	1.70	3.06	1.41	5.38	5.25	4.98	7.25	9.12
	15° HUE ANGLE	110.66	109.57	240.14	210.50	97.95	107.42	233.57	232.24	240.08	239.28	238.88
	25° HUE ANGLE	113.77	113.87	239.66	199.03	100.65	112.37	232.01	231.49	238.89	238.36	238.17
	45° HUE ANGLE	116.57	119.89	249.18	237.69	97.43	116.82	239.48	239.89	246.04	244.62	245.88
	75° HUE ANGLE	84.78	85.71	116.83	124.02	85.86	84.76	109.06	110.93	111.24	113.94	115.75
	110° HUE ANGLE	121.40	125.72	256.29	269.39	75.68	118.10	245.76	244.77	252.04	251.58	253.18
	15° -100° HUE ANGLE	-10.74	-16.15	-16.15	-58.90	22.27	-10.68	-12.18	-12.53	-11.97	-12.33	-14.30
	12° -100° L* VALUE	95.84	97.34	101.95	47.3	60.42	102.73	99.99	96.57	96.92	96.1	98.68
•			•		•				•			

FIG.8

GSAR ANALYSIS

										$\overline{}$
CORRELATION FORMULA	$3.35962+0.000474*X1^2+0.11361*<2.25-X1>^2+0.057642*<"X2"-97>-0.064096*<"X2"-90>-0.006376*<103.37-X3>+0.000767*<52.36-X4>^2$	3.36022+0.000476*X1^2+0.000727*<53.49-X4>^2+0.113511*<2.25-X1>^2+0.057554*<"X2"-97>-0.064014*<"X2"-90>-0.006606*<103.37-X3>	$3.2996+0.013184*X1-0.007534*(95.09-X3)+0.000785*(52.38-X4)^2+0.130979*(2.25-X1)^2-0.065116*("X2"-90)+0.058619*("X2"-97)$	3.34463-0.00732*<95.09-X3>+0.0008*<52.36-X4>^2+0.08307*<2.54-X1>^2+0.000443*X1^2+0.077622*<"X2"-95>-0.08417*<"X2"-90>	3.30917+0.08094*<"X2"-95>+0.012971*X1-0.007545*<95.09-X3>+0.000773*<52.36-X4>^2+0.128525*<2.25-X1>^2-0.087593*<"X2"-90>	3.34619-0.007719*<95.09-X3>+0.041874*<"X2"-97>-0.048411*<"X2"-88>+0.000448*X1^2+0.08304*<2.54-X1>^2+0.000771*<53.49-X4>^2	$3.38101 + 0.000461 *X1^2 - 0.053049 *< "X2" - 88 > -0.008198 *< 95.47 - X3 > +0.000655 *< 59.63 - X3 > ^2 +0.139831 *< 2.05 - X1 > ^2 +0.04662 *< "X2" - 97 > 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.000655 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< 0.00065 *< $	3.35299+0.000801*<52.36-X4>^2-0.007387*<95.09-X3>+0.042493*<"X2"-97>-0.049023*<"X2"-88>+0.000439*X1^2+0.111768*<2.25-X1>^2	3.35271+0.000705*<55.45-X4>^2-0.008205*<95.09-X3>+0.042084*<"X2"-97>-0.048633*<"X2"-88>+0.000441*X1^2+0.111394*<2.25-X1>^2	$3.34303+0.000757*(53.49-X4)^2+0.117817*(2.25-X1)^2+0.058131*("X2"-97)-0.064606*("X2"-90)-0.007873*(95.09-X3)+0.013639*("X1"-3.99)$
CORRELATION COEFFICIENT)	0.885	0.885	0.885	0.885	0.885	0.883	0.883	0.883	0.883	0.885
(CONTRIBUTION (CORRELATION RATIO)	0.774	0.774	0.774	0.773	0.773	0.770	0.770	0.770	0.770	0.774
		2	6	4	2	9		8	6	10

45° CHROMA SATURATION	X1
GLITTER REPRESENTING VALUE	X2
15° L*	хз
BRIGHTNESS FF	X4
HUE ANGLE FF	X5
CHROMA SATURATION FF	X6
45° HUE ANGLE	X7
VISUAL MOTTLING VALUE	٨

CALCULATED MOTTLING

30 VISUAL MOTTLING VALUE DATABASE VALUE DATABASE REPRESENTING INFORMATION **COLOR VALUE** DATABASE DATABASE BLENDING GLITTER 7 105 106 -107 **COLOR VALUE** INFORMATION INFORMATION INFORMATION **ACQUISITION ACQUISITION ACQUISITION** PAINT FILM **BLENDING** MEANS MEANS **MEANS** PREDICTION MEANS 7104 **MOTTLING VALUE** 7.103 CALCULATING GENERATING PAINT FILM MOTTLING **PREDICTED** PAINT FILM MOTTLING FORMULA **MEANS** VALUE ACQUISITION MEANS **VISUAL MOTTLING** 102 100 REPRESENTING VALÜE ACQUISITION **MEANS** GLITTER

FIG. 10