https://yasirbhutta.github.io/

Math Library in Python

Math Library for Advanced Calculations

The math library is built-in, so you don't need to install anything to use it. You can import it simply by using import math.

1. Basic Functions

The math library provides several basic mathematical functions, similar to what you might find on a calculator.

```
import math

# Absolute value
abs_val = math.fabs(-10) # Output: 10.0

# Factorial
factorial_val = math.factorial(5) # Output: 120
```

2. Exponential and Logarithmic Functions

These functions are useful for growth calculations, interest calculations, and scientific computations.

- **Exponent** (math.exp(x)): Returns e raised to the power of x.
- Logarithm:

```
    math.log(x): Natural logarithm (base e).
    math.log(x, base): Logarithm of x to a specified base.
    math.log10(x): Logarithm of x to base 10.
    math.log2(x): Logarithm of x to base 2.
```

```
exp_val = math.exp(2)  # e^2
log_val = math.log(10)  # ln(10)
log10_val = math.log10(100)  # log_10(100)
```

3. Power and Root Functions

These functions are essential in algebra for handling exponents and square roots.

- **Power** (math.pow(x, y)): Returns x raised to the power of y.
- **Square Root** (math.sqrt(x)): Returns the square root of x.
- **Cube Root**: No direct function, but you can use x ** (1/3).

```
power_val = math.pow(3, 4)  # 3^4
sqrt_val = math.sqrt(16)  # \dagger{16}
cube_root = 27 ** (1/3)  # 3\dagger{27}
```

4. Trigonometric Functions

The library includes all basic trigonometric functions, which are helpful in geometry, physics, and engineering.

• Sine, Cosine, Tangent:

```
    math.sin(x): Sine of x (x is in radians).
    math.cos(x): Cosine of x.
    math.tan(x): Tangent of x.
```

• Inverse Trigonometric Functions:

```
    math.asin(x): Inverse sine.
    math.acos(x): Inverse cosine.
    math.atan(x): Inverse tangent.
```

Conversion Functions:

```
math.radians(degrees): Converts degrees to radians.math.degrees(radians): Converts radians to degrees.
```

```
angle_rad = math.radians(90)  # Convert 90 degrees to radians
sin_val = math.sin(angle_rad)  # Sine of 90 degrees
```

5. Hyperbolic Functions

Hyperbolic functions are analogs of trigonometric functions for the hyperbola, used in calculus and complex analysis.

```
    Hyperbolic Sine: math.sinh(x)
    Hyperbolic Cosine: math.cosh(x)
    Hyperbolic Tangent: math.tanh(x)
```

```
sinh_val = math.sinh(1)
cosh_val = math.cosh(1)
tanh_val = math.tanh(1)
```

6. Angular Functions

The library also offers functions for converting between radians and degrees, which is essential for working with angles in various units.

```
    math.degrees(x): Converts radians to degrees.
```

• math.radians(x): Converts degrees to radians.

```
degrees = math.degrees(math.pi) # Output: 180
radians = math.radians(180) # Output: π (approx 3.14159)
```

7. Special Constants

The math library provides access to several useful mathematical constants:

- **Pi** (math.pi): Ratio of a circle's circumference to its diameter (~3.14159).
- **Euler's Number** (math.e): Base of the natural logarithm (~2.71828).
- **Tau** (math.tau): Ratio of a circle's circumference to its radius (~6.28318).

```
print(math.pi) # 3.14159
print(math.e) # 2.71828
print(math.tau) # 6.28318
```

8. Rounding and Precision Functions

Rounding functions are useful for rounding numbers to the nearest integer or truncating decimal values.

- **Ceiling** (math.ceil(x)): Rounds x up to the nearest integer.
- **Floor** (math.floor(x)): Rounds x down to the nearest integer.
- **Truncate** (math.trunc(x)): Truncates x to the integer part only.

```
ceil_val = math.ceil(4.3)  # Output: 5
floor_val = math.floor(4.7)  # Output: 4
trunc_val = math.trunc(4.9)  # Output: 4
```

9. Greatest Common Divisor and Least Common Multiple

- GCD (math.gcd(x, y)): Finds the greatest common divisor of x and y.
- LCM (math.lcm(x, y)): Finds the least common multiple of x and y (available in Python 3.9+).

```
gcd_val = math.gcd(8, 12)  # Output: 4
lcm_val = math.lcm(4, 6)  # Output: 12 (Python 3.9+)
```

10. Combinatorics

The math library also has functions for combinatorics, such as combinations and permutations, useful in probability and statistics.

- **Permutations** (math.perm(n, k)): Returns the number of ways to arrange k items from n items.
- **Combinations** (math.comb(n, k)): Returns the number of ways to choose k items from n items without repetition.

```
perm_val = math.perm(5, 3) # 5P3
comb_val = math.comb(5, 3) # 5C3
```

Summary Table

Function Type	Examples
Basic Functions	math.fabs, math.factorial
Exponential and Logarithmic	math.exp, math.log, math.log10
Power and Roots	math.pow, math.sqrt
Trigonometric Functions	math.sin, math.cos, math.tan
Hyperbolic Functions	math.sinh, math.cosh, math.tanh
Angular Conversion	math.degrees, math.radians
Special Constants	math.pi, math.e, math.tau
Rounding and Precision	math.ceil, math.floor, math.trunc
GCD and LCM	math.gcd, math.lcm
Combinatorics	math.perm, math.comb

The math library is a comprehensive toolset for performing a wide range of mathematical calculations, making Python versatile for both basic and advanced math applications. Let me know if you'd like further details or examples on any specific function!