数字逻辑第三章组合线路设计

信息科学与工程学院计算机系

杨永全

yangyq@ouc.edu.cn

组合线路的设计

设计是与分析相反的过程,就是已知逻辑功能,画出实际的逻辑电路。

组合线路的设计

设计是与分析相反的过程,就是已知逻辑功能,画出实际的逻辑电路。

先看一个例子: 试用与非门组成一个多数表决电路, 以判断A、B、C三人中是否为多数赞同。

1、确定输入、输出

A、B、C 三个输入变量,"0"表示否决,"1"表示赞同。

输出F为"1"表示多数赞同,为"0"表示非多数赞同。

2、列真值表

А	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3、列表达式并化简

$$F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$
$$= BC + AC + AB$$

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}			1	
A		1	1	1

4、转换为与非门

$$F = BC + AC + AB$$

$$= \overline{BC + AC + AB}$$

$$= \overline{BC} \overline{AC} \overline{AB}$$

5、画逻辑电路

总结组合逻辑电路的设计步骤

确定输入、输出变量

列真值表, 写出逻辑表达式

化简

按要求变换逻辑表达式(可选)

画出逻辑电路

1、逻辑问题的描述

列出二进制一位全减器的输出逻辑表达式。

输入:

A:被减数;

B: 减数;

C_{i-1}: 上一位的借位,

输出:

D: 差;

C_i: 本位借位

2、列真值表

A	В	C _{i-1}	D	C _i
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

3、列表达式并化简

$$D = \overline{A} \, \overline{B} C_{i-1} + \overline{A} B C_{i-1} + A \overline{B} C_{i-1} + A B C_{i-1} = \sum (1,2,4,7)$$

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}		1		2
A	4		7	

$$C_i = \sum (1,2,3,7) = \overline{A}C + \overline{A}B + BC$$

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}		1	3	2
A			7	

再看一个例子

X=x₁x₂, Y=y₁y₂为两位二进制正整数, 判是否X>Y。 F=1,X>Y成立, F=0,X>Y不成立。 只列出使F=1的的部分真值表。

X ₁	X_2	Y ₁	Y ₂	F
1		0		1
1	1	1	0	1
0	1	0	0	1

$$F = x_1 \overline{y_1} + x_1 x_2 y_1 \overline{y_2} + \overline{x_1} x_2 \overline{y_1} \overline{y_2}$$

还是一个例子

客机安全起飞的条件,同时满足

- 1. 发动机启动开关接通
- 2. 飞行员入座,座位保险带扣上
- 3. 乘客入座,保险带扣上;或座位上无乘客 S=1,发动机启动开关接通;A=1,飞行员入座;B=1, 飞行员保险带扣上;M_i=1,乘客入座;N_i=1,乘客 保险带扣上。

可直接列逻辑表达式。

$$F = S \cdot A \cdot B \cdot \prod \left(M_i N_i + \overline{M_i} \right)$$

我决定再举一个栗子

设计一个血型配对指示器。输血时供血者和受血者配对情况。

供血者	配对条件
Α	A, AB
В	B, AB
AB	AB
0	A, B, AB, O

我决定再举一个栗子

供血者: A₁—A, A₂—B, A₃—AB, A₄—O

受血者: B₁—A, B₂—B, B₃—AB, B₄—O

我决定再举一个栗子

A_1	A ₂	A_3	A_4	B_1	B ₂	B_3	B ₄	F
0	0	0	1	0	0	0	1	1
				0	0	1	0	1
				0	1	0	0	1
				1	0	0	0	1
0	0	1	0	0	0	1	0	1
0	1	0	0	0	0	1	0	1
				0	1	0	0	1
1	0	0	0	0	0	1	0	1
				1	0	0	0	1

谁有更好的设计吗?

将最简式转换为要求的逻辑表达式形式。

一、用与非门实现:两次求反或三次求反

将 $F_1 = A\overline{B} + \overline{AB}$ 变换成与非的形式。

$$F_1 = \overline{\overline{F_1}} = \overline{\overline{AB} + \overline{AB}} = \overline{\overline{AB}} \cdot \overline{\overline{AB}}$$

将最简式转换为要求的逻辑表达式形式。

一、用与非门实现:两次求反或三次求反

将
$$F_2 = \overline{AB} + \overline{BC} + \overline{CD} + \overline{DA}$$
变换成与非的形式。

两次求反:

$$F_{2} = \overline{\overline{F_{2}}} = \overline{A\overline{B}} + \overline{B}C + C\overline{D} + D\overline{A}$$
$$= \overline{A\overline{B}} \cdot \overline{B}\overline{C} \cdot \overline{C}\overline{D} \cdot \overline{D}\overline{A}$$

实现该电路需要5个与非门。

将最简式转换为要求的逻辑表达式形式。

一、用与非门实现:两次求反或三次求反

将
$$F_2 = A\overline{B} + B\overline{C} + C\overline{D} + D\overline{A}$$
变换成与非的形式。

三次求反:

$$\overline{F_2} = A\overline{B} + B\overline{C} + C\overline{D} + D\overline{A}$$

$$= (\overline{A} + B)(\overline{B} + C)(\overline{C} + D)(\overline{D} + A)$$

$$= \overline{A} \overline{B} \overline{C} \overline{D} + ABCD$$

$$= \overline{A} \overline{B} \overline{C} \overline{D} + ABCD$$

$$F_2 = (\overline{F_2}) = \overline{A} \overline{B} \overline{C} \overline{D} + ABCD$$

$$= \overline{A} \overline{B} \overline{C} \overline{D} \cdot \overline{ABCD}$$

实现该电路需要4个与非门。

将最简式转换为要求的逻辑表达式形式。

一、用与或非门实现:两次求反

将 $F = A\overline{B} + B\overline{C} + C\overline{A}$ 变换成与或非的形式。

两次求反:

$$F = \overline{\overline{F}} = \overline{A\overline{B} + B\overline{C} + C\overline{A}}$$

将最简式转换为要求的逻辑表达式形式。

一、用与或非门实现:两次求反

将 $F = A\overline{B} + B\overline{C} + C\overline{A}$ 变换成与或非的形式。

两次求反:

$$F = \overline{\overline{F}} = \overline{A\overline{B} + B\overline{C} + C\overline{A}}$$
$$= \overline{\overline{A}\overline{B}\overline{C} + ABC}$$

总结组合逻辑电路的设计步骤

确定输入、输出变量

列真值表, 写出逻辑表达式

化简

按要求变换逻辑表达式(可选)

画出逻辑电路

任意项,就是根据约束条件,没有取值、没有意义、永远不会发生的最小项。

这些最小项,因为不会发生,所以他的取值可以是0, 也可以是1。

在卡诺图化简时,我们知道,卡诺图中的1越多,能够画的圈越大,那么形式会越简单,所以,应该尽可能多的利用任意项,让设计的电路更加简单。

还是举个栗子。

用与非门设计一个判别线路,判断8421码所表示的十进制数之值是否大于等于5。输入ABCD表示8421码,输出F:1表示大于等于,0表示小于

用与非门设计一个判别线路,判断8421码所表示的十进制数之值是否大于等于5。输入ABCD表示8421码,输出F:1表示大于等于,0表示小于

题目思考:

四位的8421码,能够表示16个数,从0到15. 而表示的如果是10进制数,意味着,最大能表示到9, 所以,超过9的那些8421码是永远也无法取值的, 也没有任何意义,那么就意味着,有任意项可以利 用。

用与非门设计一个判别线路,判断8421码所表示的十进制数之值是否大于等于5。输入ABCD表示8421码,输出F:1表示大于等于,0表示小于

用与非门设计一个判别线路,判断8421码所表示的十进制数之值是否大于等于5。输入ABCD表示8421码,输出F:1表示大于等于,0表示小于

题目思考:

那么,哪些最小项是任意项呢?就是永远也不会取 到的那些最小项。

$$\sum$$
 (10,11,12,13,14,15)

A	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	ф
1	0	1	1	ф
1	1	0	0	ф
1	1	0	1	ф
1	1	1	0	ф
1	1	1	1	ф

若不考虑任意项 (橙色):
$$F = \overline{ABD} + \overline{ABC} + \overline{ABC}$$

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$				
$\overline{A}B$		5	7	6
AB	ф	ф	ф	ф
$A\overline{B}$	8	9	ф	ф

若不考虑任意项 (橙色):
$$F = \overline{ABD} + \overline{ABC} + \overline{ABC}$$

若考虑任意项(红色):

$$F = BD + BC + A$$

注意:任意项化简时,每个圈都至少包含一个非任意项。

若不考虑任意项 (橙色):
$$F = \overline{ABD} + \overline{ABC} + \overline{ABC}$$

若考虑任意项(红色):

$$F = BD + BC + A$$

现在,请大家写出考虑任 意项的真值表,与之前的 对比

A	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	ф
1	0	1	1	ф
1	1	0	0	ф
1	1	0	1	ф
1	1	1	0	ф
1	1	1	1	ф

用与或非门设计一个操作码形成器, "*"、"+"、"-"产生操作码01、10、11,无操作时产生"00",不能同时按下两个键。输入三个键用ABC表示,输出F₁F₂

用与或非门设计一个操作码形成器, "*"、"+"、"-"产生操作码01、10、11,无操作时产生"00",不能同时按下两个键。输入三个键用ABC表示,输出F₁F₂

问题思考:

一共几个输入,几个输出?

用与或非门设计一个操作码形成器, "*"、"+"、"-"产生操作码01、10、11,无操作时产生"00",不能同时按下两个键。输入三个键用ABC表示,输出F₁F₂

问题思考:

一共几个输入,几个输出? 任意项都是什么情况?

可利用任意项的线路设计

用与或非门设计一个操作码形成器, "*"、"+"、"-"产生操作码01、10、11,无操作时产生"00",不能同时按下两个键。输入三个键用ABC表示,输出F₁F₂

问题思考:

从问题可以知道,一共三个按键,代表三个输入。 又因为,不能同时按下两个按键,所以两个按键同时按下(ABC有两个及以上同时为1时)的情况,就是任意项。

请大家写出真值表。

可利用任意项的线路设计

А	В	С	F ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	ф	ф
1	0	0	0	1
1	0	1	ф	ф
1	1	0	ф	ф
1	1	1	ф	ф

请大家化简。

可利用任意项的线路设计

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	BC
\overline{A}		X	Φ	2
A		\$ _	Д	ф

$$\overline{B} \overline{C} \overline{B} C BC B\overline{C}$$
 $\overline{A} \Phi \Phi \Phi$

$$F_1 = B + C$$

$$F_2 = A + C$$

要求逻辑电路只有原变形式,无反变量形式。

采用增加非门的方法

还是举个栗子: 用与非门实现下面函数

$$F = \sum (2,3,5,6)$$

$$=\overline{A}B + B\overline{C} + A\overline{B}C$$

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	BC
\overline{A}			3	12
A		5		6

画出逻辑电路图。

要求逻辑电路只有原变形式,无反变量形式。采用公式变换的方法

$$F = \sum (2,3,5,6)$$

$$= \overline{AB} + B\overline{C} + A\overline{BC}$$

$$= B\overline{AC} + AC(\overline{B} + \overline{C})$$

$$= B\overline{AC} + AC\overline{BC}$$

$$= B\overline{ABC} + AC\overline{ABC}$$

$$= B\overline{ABC} \cdot AC\overline{ABC}$$

需要几个与非门?

要求逻辑电路只有原变形式,无反变量形式。

采用公式变换的方法

方法总结:

1、合并原变量相同,其余为反变量的项

$$E_i = H_i \, \overline{T_{i1}} \, \overline{T_{i2}}$$

2、比较各个合并项, $F=E_1+E_2......$ 寻找合适的替代因子,使尾部因子种类最少。

替代因子E _i	原有尾因子	替代因子
$B\overline{AC}$	\overline{AC}	\overline{ABC}
$AC\overline{B}$	\overline{B}	$\overline{AB} \ \overline{CB} \ \overline{ACB}$

多输出函数的线路设计

从整体上考虑多输出线路,怎样最简。 试设计如下电路:

$$F_1 = \sum (1,3,4,5,7)$$

$$F_2 = \sum (3,4,7)$$

多输出函数的线路设计

从整体上考虑多输出线路,怎样最简。 试设计如下电路:

$$F_1 = \sum (1,3,4,5,7)$$

$$F_2 = \sum (3,4,7)$$

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	BC
\overline{A}		1	3	
A	4	5	7	

$$F_1 = \overline{\overline{C} \cdot \overline{A} \overline{\overline{B}}}$$

$$\overline{B} \overline{C} \overline{B} C BC B\overline{C}$$
 $\overline{A} \qquad 3 \qquad 7 \qquad 7$

$$F_1 = \overline{BC} \cdot \overline{A\overline{B}\ \overline{C}}$$

多输出函数的线路设计

从整体上考虑多输出线路,怎样最简。 试设计如下电路(统一考虑两个输出):

$$F_1 = \sum (1,3,4,5,7)$$

$$F_2 = \sum (3,4,7)$$

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	BC
\overline{A}		1	3	
A	4	5_	7	

$$F_1 = \overline{\overline{C} \cdot \overline{A} \overline{\overline{B}} \overline{\overline{C}}}$$

$$\overline{B} \overline{C} \overline{B} C BC B\overline{C}$$
 $\overline{A} \qquad 3 \qquad 7 \qquad 7$

$$F_1 = \overline{BC} \cdot \overline{A\overline{B}\ \overline{C}}$$

- 例1、设计一个二进制全加器
- 1) 用异或门、与或非门及与非门实现,且输入、输出都为反变量。
- 2) 采用与或非门,且输入为原变量、输出为反变量;或输入为反变量、输出为原变量。

例1、设计一个二进制全加器分析问题,列出真值表。

例1、设计一个二进制全加器分析问题,列出真值表。

例1、设计一个二进制全加器分析问题,列出真值表。

Α	В	C _{i-1}	S	C _i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

例1、设计一个二进制全加器列出表达式,变换形式。

例1、设计一个二进制全加器 列出表达式,变换形式。

$$S = \overline{A} \, \overline{B} C_{i-1} + \overline{A} B \overline{C_{i-1}} + A \overline{B} \, \overline{C_{i-1}} + A B C_{i-1}$$

$$= C_{i-1} \left(\overline{A} \oplus \overline{B} \right) + \overline{C_{i-1}} (A \oplus B)$$

$$= C_{i-1} \oplus (A \oplus B)$$

$$\overline{S} = \overline{C_{i-1}} \oplus (A \oplus B)$$

$$= C_{i-1} \oplus A \oplus \overline{B}$$

$$= \overline{C_{i-1}} \oplus \overline{A} \oplus \overline{B}$$

Ci的推导过程不再赘述。

例1、设计一个二进制全加器 2) 采用与或非门,且输入为原变量、输出为反变量。

留作练习。

多路选择器

拥有两个控制端,因此,需要挑选出两个变量作为控制端,其他的变量作为输入端。

$$f = a_0 \overline{x_0} \overline{x_1} + a_1 \overline{x_0} x_1 + a_2 x_0 \overline{x_1} + a_3 x_0 x_1$$

多路选择器

一言不合就举个栗子。

用多路选择器实现:

$$F(A, B, C) = \sum (1,2,3,4,5,6)$$

选择A和B作为地址输入,即控制信号。变换形式。

$$F = \overline{AB}C + \overline{A}B + A\overline{B} + AB\overline{C}$$

多路选择器

三变量练习。

用多路选择器实现:

$$F(A, B, C) = \sum (1,3,5,7)$$

多路选择器

四变量练习。

用多路选择器实现:

$$F(A, B, C, D) = \sum (0,1,2,3,12,13,14,15)$$