#### **Introduction to Week Six**

### **Numerical Solutions of PDEs**

Direct Solution of Boundary Value Problems

Iterative Solution of Boundary Value Problems

## Time-stepping Methods for Initial Value Problems





- Reading: FTCS Scheme for the Advection Equation
  10 min
- Video: Von Neumann Stability
  Analysis of the FTCS Scheme |
  Lecture 70
  14 min
- Reading: Von Neumann Stability
  Analysis of the FTCS Scheme for the
  Advection Equation
  10 min
- Video: Implicit Methods for Solving the Diffusion Equation | Lecture 71 8 min
- Reading: Implicit Discrete Advection
  Equation
  10 min
- Video: Crank-Nicolson Method for the Diffusion Equation | Lecture 72 13 min
- Reading: Lax Scheme for the Advection Equation
  10 min
- Video: MATLAB Solution of the
  Diffusion Equation | Lecture 73
- Reading: Difference Approximations for the Derivative at Boundary Points

  1 min
- Ungraded External Tool: The
  Diffusion Equation with No-Flux
  Boundary Conditions
  30 min

### Quiz

Programming Assignment: Twodimensional Diffusion Equation

Farewell

# Using a Second-Order Time-Stepping Method

Use the second-order Runge-Kutta method known as the modified Euler method to write a two-step process for solving the one-dimensional diffusion equation.

| ✓ Completed | Go to next item |
|-------------|-----------------|
|             |                 |
|             |                 |

| <b>△</b> Like | <b>⊋</b> Dislike | Report an issue |  |  |
|---------------|------------------|-----------------|--|--|
|               |                  |                 |  |  |