

Floquet State Population at Conical Intersections of Quasienergies

Sigmund Kohler

Instituto de Ciencia de Materiales de Madrid, CSIC

CMD31, Braga, September 2024

Landau-Zener-Stückelberg-Majorana interference

ightharpoonup Interference pattern as function of detuning ϵ , amplitude A, (and driving frequency Ω)

Dispersive frame:

$$lacktriangledown$$
 cavity frequency shift $\omega_0 \longrightarrow \omega_0 + rac{g^2}{\epsilon_{
m qb}-\omega_0} \sigma_{
m Z}$

qubit excitation (under certain conditions)

Dispersive frame:

■ cavity frequency shift

$$\omega_0 \longrightarrow \omega_0 + rac{g^2}{\epsilon_{
m qb} - \omega_0} \sigma_{
m z}$$

→ qubit excitation (under certain conditions)

Non-equilibrium linear response:

- cavity → qubit → cavity
- response function

$$\chi(t) = -i\langle [Z(t), Z] \rangle \theta(t)$$

$$\rightarrow \omega_0 \longrightarrow \omega_0 + g^2 \chi(\omega_0)$$

Koski et al., PRL 2018

Mi, Petta, SK, PRB 2018

Experiments with DQDs in GaAs and Si are beyond ...

- low-frequency cavity
- two-level system
- dispersive limit
- → cavity signal ≠ excitation probability

.

Koski et al., PRL 2018

Mi, Petta, SK, PRB 2018

Experiments with DQDs in GaAs and Si are beyond ...

- low-frequency cavity
- two-level system
- dispersive limit
- → cavity signal ≠ excitation probability
- ? (Floquet) theory for measurement

Response function

$$\chi(t, t') = -i \langle [Z(t), Z(t')] \rangle_{\text{non-eq}} \theta(t - t') = \chi(t + T, t' + T)$$

such that

$$\chi(t, t - \tau) = \sum_{k} e^{-ik\Omega t} \int d\omega \, e^{-i\omega\tau} \chi^{(k)}(\omega)$$

Response function

$$\chi(t,t') = -i\langle [Z(t),Z(t')] \rangle_{\text{non-eq}} \theta(t-t') = \chi(t+T,t'+T)$$

such that

$$\chi(t, t - \tau) = \sum_{k} e^{-ik\Omega t} \int d\omega \, e^{-i\omega\tau} \chi^{(k)}(\omega)$$

Relevant component:

$$\chi^{(0)}(\omega_0) = \sum_{\beta,\alpha,k} \frac{(p_\alpha - p_\beta)|Z_{\beta\alpha,k}|^2}{\epsilon_\alpha - \epsilon_\beta + \omega_0 + k\Omega + i\gamma/2}$$

- Floquet theory \rightarrow quasi-energies ϵ_{α}
- Floquet-Bloch-Redfield → populations p_{α}

SK, PRL 2017 & PRA 2018

Readout of Floquet State Population

Chen *et al.*, Phys. Rev. B **103**, 205428 (2021) SK, arXiv:2405.12093

a

Motivation: Holes in interference fringes

Experiment (Cao & Guo, Hefei)

- holes in LZSM pattern
- GaAs DQD → two-level sys.

Motivation: Holes in interference fringes

Experiment (Cao & Guo, Hefei)

- holes in LZSM pattern
- GaAs DQD → two-level sys.

Susceptibility (two-level system)

$$\chi^{(0)}(\omega_0) = (\rho_0 - \rho_1) \sum_k \frac{|Z_{10,k}|^2}{\epsilon_1 - \epsilon_0 + \omega_0 + k\Omega + i\gamma/2}$$

Response determined by

Floquet state population

resonance condition

$$\Delta \epsilon = k\Omega$$

$$\Delta \epsilon + \omega_0 = k\Omega$$

- holes in fringes when $p_0 \approx p_1 \approx 1/2$
- competing resonance conditions verified
- → cavity response provides information about Floquet state population

R

Steady state of driven dissipative quantum system

quasi energy: $p_{\alpha} \propto e^{-\epsilon_{\alpha}/kT}$

mean energy: $p_{\alpha} \propto e^{-E_{\alpha}/kT}$

Steady state of driven dissipative quantum system

quasi energy: $p_{\alpha} \propto e^{-\epsilon_{\alpha}/kT}$

Floquet-Gibbs state vs. anti Floquet-Gibbs

mean energy: $p_{\alpha} \propto e^{-E_{\alpha}/kT}$

The present case!

Floquet state population

Measurement consistent with

- bath coupling via σ_X
- p_{α} determined by E_{α} i.e. mean-energy state

$$H(t) = \frac{\Delta}{2}\sigma_X + \frac{A}{2}\sigma_Z\cos(\Omega t)$$

■ spatio-temporal symmetry *G*:

$$\sigma_x$$
 & $(t \rightarrow t + T/2)$

→ even / odd states

$$H(t) = \frac{\Delta}{2}\sigma_{x} + \frac{A}{2}\sigma_{z}\cos(\Omega t) + \frac{\epsilon}{2}\sigma_{z}$$

■ spatio-temporal symmetry *G*:

$$\sigma_X \& (t \rightarrow t + T/2)$$

→ even / odd states

Floquet "ground state"

Two-state approximation for ϕ_0

- lacksquare basis: φ_- / φ_+ at tip

$$\phi_0 \longrightarrow \phi_1$$

$$p_0 \longrightarrow p_1 = 1 - p_0$$

Floquet "ground state"

Two-state approximation for ϕ_0

- basis: φ_- / φ_+ at tip

$$\phi_0 \longrightarrow \phi_1$$

$$p_0 \longrightarrow p_1 = 1 - p_0$$

Population for σ_X -coupling

- angles with $p_0 = p_1 = 1/2$
 - full mixture, max. entropy
 - cavity signal vanishes
- lacktriangle behaves like mean energy of ϕ_0

cf. discontinuity along *A*-axis

Engelhardt *et al.*, PRL 2019

Transition to Floquet-Gibbs state

Golden-rule rate with $S_{01}(t) = \langle \phi_0(t) | S | \phi_1(t) \rangle$ \Rightarrow sidebands S_k

Generic

- Ohmic $J(\omega) = \frac{\pi}{2}\alpha\omega$
- $\rightarrow k = 0$ suppressed

Transition to Floquet-Gibbs state

Golden-rule rate with $S_{01}(t) = \langle \phi_0(t) | S | \phi_1(t) \rangle$ \rightarrow sidebands S_k

Generic

- Ohmic $J(\omega) = \frac{\pi}{2}\alpha\omega$
- $\rightarrow k = 0$ suppressed

Exception: $S = \sigma_z$

- lacktriangle time-independent for large Ω
- $\rightarrow k \neq 0$ suppressed

- Crossover to Floquet-Gibbs: two lines with $p_0 = 1/2$ merge with increasing Ω
- Measurable signature of σ_z-coupling

SK, arXiv:2405.12093

Floquet State Population at Conical Intersections

- Dispersive readout
 - Theory for ac-driven systems
 - Non-equilibrium susceptibility
- Floquet state population
 - Holes in LZSM pattern
 - Floquet-state population
- Conical intersections of quasi-energies
 - Signature of qubit-bath coupling

Thanks to J. R. Petta (UCLA) and G. Cao (Hefei)

