Combinational Circuits

Outline

- □ Input Ordering
- Symmetric Gates
- Asymmetric Gates
- □ Skewed Gates
- Circuit Families

Input Order

- Our parasitic delay model was too simple to calculate parasitic delay for Y falling if
 - B arrives later than A?
 - A arrives later than B?

Input Order

- Calculate parasitic delay for Y falling
 - If B arrives later? t_{pdf}=R/2*(2C)+(R/2+R/2)*6C=7RC=2.33τ
 - If A arrives later? $t_{pdf} = (R/2+R/2)*6C=6RC=2\tau$

Inner & Outer Inputs

- ☐ Outer input is closest to rail (B) (Vdd/gnd rail)
- ☐ *Inner* input is closest to output (A)
- ☐ If input arrival time is known
 - Connect latest input to inner terminal

Symmetric Gates

☐ Inputs can be made perfectly symmetric by connecting each input to inner and outer

Asymmetric Gates

- □ Asymmetric gates favor one input over another
- ☐ Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input

reset

- So total resistance is same
- \Box $g_A =$
- \Box $g_B =$
- \Box Asymmetric gate approaches g = 1 on critical input
- □ But total logical effort goes up

Asymmetric Gates

- □ Asymmetric gates favor one input over another
- ☐ Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input

- So total resistance is same
- \Box g_A = 10/9
- \Box $g_{reset} = 2$
- \square Asymmetric gate approaches g = 1 on critical input
- □ But total logical effort goes up

reset

Skewed Gates

- □ Skewed gates favor one edge over another
- ☐ Ex: suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

- Calculate logical effort by comparing skewed gate to unskewed inverter with same effective resistance on that edge.
 - $-g_u =$
 - $-g_d =$

Skewed Gates

- Skewed gates favor one edge over another
- Ex: suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

- Calculate logical effort by comparing skewed to unskewed inverter with same effective resistance on that edge.
 - $g_{IJ} = 2.5 / 3 = 5/6$ up logical effort
- - $g_d = 2.5 / 1.5 = 5/3$ down logical effort

HI- and LO-Skew Summary

- ☐ Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- ☐ Skewed gates reduce size of noncritical transistors
 - HI-skew gates favor rising output (small nMOS)
 - LO-skew gates favor falling output (small pMOS)
- ☐ Logical effort is smaller for favored direction
- But larger for the other direction

Catalog of Skewed Gates

Inverter

NAND2

NOR2

LO-skew A $g_u = 4/3$ $g_d = 2/3$ $g_{avg} = 1$

Catalog of Skewed Gates

Inverter

NAND2

NOR2

LO-skew

Catalog of Skewed Gates

Inverter

NAND2

NOR2

$$g_{avg} = 3/2$$

$$A \qquad \qquad \downarrow 2$$

$$B \qquad \qquad \downarrow 2$$

$$g_u = 2$$

$$g_d = 1$$

$$g_{avg} = 3/2$$

Circuit Families Introduction

- What makes a circuit fast?
 - -I = C dV/dt -> $t_{pd} \propto (C/I) \Delta V$
 - low capacitance
 - high current
 - small swing
- Logical effort is proportional to C/I
- pMOS are the enemy!
 - High capacitance for a given current
- ☐ Can we take the pMOS capacitance off the input?
- ☐ Various circuit families try to do this...

Pseudo-nMOS

- ☐ In the old days, nMOS processes had no pMOS
 - Instead, use pull-up transistor that is always ON
- In CMOS, use a pMOS that is always ON
 - Ratio issue

Make pMOS about ¼ effective strength of

pulldown network (1/3—1/6)

Pseudo-nMOS Gates

- □ Design for unit current on output to compare with unit inverter.
- pMOS fights nMOS

Inverter

NAND2

NOR2

Pseudo-nMOS Gates

- □ Design for unit current on output to compare with unit inverter.
- pMOS fights nMOS

Inverter

NAND2

NOR2

Pseudo-nMOS Power

- \square Pseudo-nMOS draws power whenever Y = 0
 - Called static power $P = I \cdot V_{DD}$
 - A few uA / gate * 1M gates would be a problem
- Use pseudo-nMOS sparingly for wide NORs
- ☐ Turn off pMOS when not in use

Ratio Example

- ☐ The chip contains a 32 word x 48 bit ROM
 - Uses pseudo-nMOS decoder and bitline pullups
 - On average, one wordline and 24 bitlines are high
- □ Find static power drawn by the ROM
 - $-I_{on-p} = 36 \mu A, V_{DD} = 1.0 V$
- ☐ Solution:

$$P_{\text{pull-up}} = V_{DD}I_{\text{pull-up}} = 36 \text{ }\mu\text{W}$$

$$P_{\text{static}} = (31 + 24)P_{\text{pull-up}} = 1.98 \text{ }\text{mW}$$

Dynamic Logic

- □ Dynamic gates uses a clocked pMOS pullup
- ☐ Two modes: *precharge* and *evaluate*

The Foot

- What if pulldown network is ON during precharge?
- ☐ Use series evaluation transistor to prevent fight.

Dynamic Logical Effort

Inverter

NAND2

NOR2

unfooted

$$A \longrightarrow \boxed{1}$$

$$B \longrightarrow \boxed{1}$$

footed

Dynamic Logical Effort

Inverter

NAND2

NOR2

unfooted

$$\phi \rightarrow \boxed{1}$$

$$A \rightarrow \boxed{2}$$

$$B \rightarrow \boxed{2}$$

$$g_d = p_d = 0$$

footed

$$\phi \qquad \downarrow 1 \qquad$$

Dynamic Logical Effort

Inverter

NAND2

NOR2

unfooted

$$\phi \rightarrow \boxed{1}$$

$$A \rightarrow \boxed{1}$$

$$g_d = 1/3$$

$$p_d = 2/3$$

footed

Monotonicity

- Dynamic gates require monotonically rising inputs during evaluation
 - -0 -> 0
 - -0 -> 1
 - -1 -> 1
 - But not 1 -> 0

Output should rise but does not

Monotonicity Woes

- But dynamic gates produce monotonically falling outputs during evaluation
- □ Illegal for one dynamic gate to drive another!

Monotonicity Woes

- □ But dynamic gates produce monotonically falling outputs during evaluation
- □ Illegal for one dynamic gate to drive another!

Domino Gates

- ☐ Follow dynamic stage with inverting static gate
 - Dynamic / static pair is called domino gate
 - Produces monotonic outputs

