Trace the execution of Dijkstra's algorithm to find the shortest path from Philadelphia to the other cities shown in the following graph.

Table			
City	<u>d[v]</u>	p[v]	
Ph	0	null	
Pi	320	Ph	
CI	450	Pi	
Со	500	Pi	
То	570	CI	
De	630	То	
An	610	То	
In	680	Co	
Fo	800	In	
Ch	970	An	

$$S = \{Ph\}$$

2. Trace the execution of Dijkstra's algorithm to find the shortest paths from vertex 0 to the other vertices in the following graph.

3. Trace the execution of Prim's algorithm to find the minimum spanning tree for the graph shown in Exercise 2.

 Trace the execution of Prim's algorithm to find the minimum spanning tree for the graph shown in Exercise 1.

