Calculabilité et Complexité: CM2

Florian Bridoux

Polytech Nice Sophia

2023-2024

Table des matières

Propriétés de clôture

2 Code d'une machine de Turing

3 Problème de l'arrêt

Table of Contents

Propriétés de clôture

2 Code d'une machine de Turing

Problème de l'arrêt

Theorem

Les propriétés suivantes sont vraies :

- la famille des langages décidables est close par complémentation;
- 2 Les familles des langages décidables et semi-décidables sont closes par union et intersection;
- **③** Un langage $L \subseteq \Sigma^*$ est décidable si et seulement si L est semi-décidable et co-semi-décidable (= $\Sigma^* \setminus L$ est semi-décidable).

- $L(M) = \{0^n 1^n \mid n \in \mathbb{N}\}.$
- L(M) est décidable: en un temps fini, on se retrouve dans l'état q_F et on accepte le mot ou on trouve une transition qui n'existe pas et on rejette.
- Mais comment décider le complémentaire de L(M): {0,1}* \ L(M)?

• Étape 1: On remplace les transitions qui n'existent pas par de nouvelles transitions vers q_F : Si un mot était rejeté, il sera maintenant accepté (en un temps fini).

• Étape 1: On remplace les transitions qui n'existent pas par de nouvelles transitions vers q_F : Si un mot était rejeté, il sera maintenant accepté (en un temps fini).

• Étape 1: On remplace les transitions qui n'existent pas par de nouvelles transitions vers q_F : Si un mot était rejeté, il sera maintenant accepté (en un temps fini).

- Étape 1: On remplace les transitions qui n'existent pas par de nouvelles transitions vers q_F: Si un mot était rejeté, il sera maintenant accepté (en un temps fini).
- Étape 2: On supprime les anciennes transitions vers q_F : si un mot était accepté, il sera maintenant rejeté (en un temps fini).

- Étape 1: On remplace les transitions qui n'existent pas par de nouvelles transitions vers q_F: Si un mot était rejeté, il sera maintenant accepté (en un temps fini).
- Étape 2: On supprime les anciennes transitions vers q_F : si un mot était accepté, il sera maintenant rejeté (en un temps fini).

- Etape 1: On remplace les transitions qui n'existent pas par de nouvelles transitions vers q_F : Si un mot était rejeté, il sera maintenant accepté (en un temps fini).
- Etape 2: On supprime les anciennes transitions vers q_F : si un mot était accepté, il sera maintenant rejeté (en un temps fini).
- La nouvelle machine décide maintenant le complémentaire de $L(M): \{0,1\}^* \setminus L(M):$ c'est un langage décidable.

Théorème

Les familles des langages décidables et semi-décidables sont closes par union et intersection.

Idée de preuve:

- On suppose qu'on a deux langages décidables/semi-décidables $L(M_1)$ et $L(M_2)$.
- On veut trouver une machine M_3 qui décide/semi-décide $L(M_1) \cup L(M_2)$ (resp. $L(M_1) \cap L(M_2)$).
- M_3 va simuler en parallèle M_1 et M_2 et va accepter ssi M_1 ou M_2 (resp. M_1 et M_2) acceptent.

Théorème

Un langage $L \subseteq \Sigma^*$ est décidable si et seulement si L est semi-décidable et co-semi-décidable (= $\Sigma^* \setminus L$ est semi-décidables).

Le sens de gauche à droite est trivial.

Idée de preuve pour l'implication de droite à gauche:

- On a M_1 et M_2 qui semi-décident respectivement $L \subseteq \Sigma^*$ et $\Sigma^* \setminus L$.
- On veut trouver une machine M_3 qui décide L.
- Pour tout mot w, M₃ simule en parallèle M₁ et M₂.
 Si w ∈ L, alors M₁ atteint un état acceptant et M₃ accepte w.
 Si w ∈ Σ* \ L, M₂ atteint un état acceptant et M₃ rejette w.
- Dans les deux cas, la machine M_3 s'arrête en un temps fini. Donc $L(M_3) = L$ et L est donc décidable.

Table of Contents

Propriétés de clôture

2 Code d'une machine de Turing

Problème de l'arrêt

Dans la suite du cours, nous allons étudier des problèmes dans lesquels une machine de Turing doit répondre à une question sur les machines de Turing.

Pour cela, il faut pouvoir donner en entrée à une machine de Turing la définition (le code, le programme) d'une autre machine de Turing. Deux possibilités :

- en donnant le numéro de la machine dans une énumération des machines de Turing,
- en écrivant le code de la machine sur le ruban.

Pour la première possibilité, il faut fixer une énumération des machines de Turing, c'est-à-dire fixer une bijection entre $\mathbb N$ et l'ensemble des machines de Turing, afin de pouvoir désigner la machine numéro 0, la machine numéro 1, la machine numéro 2, etc.

Pour la seconde possibilité, il faut *encoder* la définition d'une machine de Turing dans le mot d'entrée.

Notation

 $\langle M \rangle$ est le code de la machine de Turing M.

Il y a de nombreuses façons d'encoder les machines de Turing sur le ruban. Par exemple, en numérotant de q_1 à q_n les états (avec q_1 l'état initial et q_n l'état final) et de a_1 à a_m les symboles de ruban (avec a_m le symbole blanc B) d'une machine M, et en fixant $\leftarrow = 0$ et $\rightarrow = 00$, il est possible d'encoder chaque transition $\delta(q_i, a_j) = (q_k, a_\ell, \rightarrow)$ de M par la séquence

$$\mathsf{transition} = \underbrace{0\dots01}_{i}\underbrace{0\dots01}_{j}\underbrace{0\dots01}_{k}\underbrace{0\dots01}_{\ell}\underbrace{0\dots}_{\ell}\underbrace{0\dots}_{j}.$$

Notation

 $\langle M \rangle$ est le code de la machine de Turing M.

On peut alors encoder une machine complète en commençant par dire combien elle a d'états, combien elle a de symboles de ruban, puis en listant ses x transitions une à une :

$$\langle M \rangle = \underbrace{0 \dots 0}_{n} 11 \underbrace{0 \dots 0}_{m} 11 \text{transition}_{1} 11 \dots 11 \text{transition}_{x}.$$

Par convention, nous pouvons énumérer les transitions dans l'ordre lexicographique selon l'état courant et le symbole lu (pratique pour décoder, mais pas nécessaire). On se convaincra que le résultat suivant est vrai.

Lemme

Le langage $L_{enc} = \{w \in \{0,1\}^* \mid w = \langle M \rangle \text{ pour une MT } M\}$ est décidable.

Autrement dit, on peut écrire une machine de Turing qui reconnaît les mots binaires qui encodent une machine de Turing de la façon que l'on vient de définir.

$$\langle M \rangle = \dots$$

$$\langle M \rangle = \underbrace{000}_{n=|Q|} 11 \underbrace{000}_{m=|\Gamma|} 11 t_1 11 t_2 11 t_3 11 t_4$$

$$\langle M \rangle = \underbrace{000}_{n=|Q|} 11 \underbrace{000}_{m=|\Gamma|} 11 t_1 11 t_2 11 t_3 11 t_4$$

$$t_1 = \underbrace{0}_{q_0} \underbrace{1}_{0} \underbrace{0}_{q_0} \underbrace{1}_{q_0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{00}_{ o}$$

$$\langle M \rangle = \underbrace{000}_{n=|Q|} \underbrace{11}_{m=|\Gamma|} \underbrace{000}_{m=|\Gamma|} \underbrace{11}_{11} \underbrace{11}_{211} \underbrace{t_{3}} \underbrace{11}_{t_{4}}$$

$$t_1 = \underbrace{0}_{q_0} \underbrace{1}_{0} \underbrace{0}_{q_0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{\rightarrow} \underbrace{00}_{\rightarrow}, \quad t_2 = \underbrace{0}_{q_0} \underbrace{1}_{0} \underbrace{00}_{1} \underbrace{1}_{q_0} \underbrace{1}_{0} \underbrace{1}_{0} \underbrace{1}_{0} \underbrace{00}_{1} \underbrace{1}_{\rightarrow} \underbrace{00}_{\rightarrow} \underbrace{1}_{\rightarrow} \underbrace{00}_{1} \underbrace{$$

$$\langle M \rangle = \underbrace{000}_{n=|Q|} 11 \underbrace{000}_{m=|\Gamma|} 11 t_1 11 t_2 11 t_3 11 t_4$$

$$t_1 = \underbrace{0}_{q_0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{q_0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{000}_{0} \underbrace{1}_{0} \underbrace{00}_{0} \underbrace{1}_{0} \underbrace{00}_{0} \underbrace{1}_{0} \underbrace{00}_{1} \underbrace{$$

$$\langle M \rangle = \underbrace{000}_{n=|Q|} 11 \underbrace{000}_{m=|\Gamma|} 11 t_1 11 t_2 11 t_3 11 t_4$$

$$t_{1} = \underbrace{0}_{q_{0}} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{q_{0}} \underbrace{0}_{1} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{0$$

$$\langle M \rangle = \underbrace{000}_{n=|Q|} 11 \underbrace{000}_{m=|\Gamma|} 11 t_1 11 t_2 11 t_3 11 t_4$$

avec:

$$t_1 = \underbrace{0}_{q_0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{q_0} \underbrace{0}_{1} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{0}, \quad t_2 = \underbrace{0}_{q_0} \underbrace{1}_{0} \underbrace{0}_{1} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{1} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{1} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{0}_{0$$

Table of Contents

Propriétés de clôture

2 Code d'une machine de Turing

3 Problème de l'arrêt

Définition la fonction halt

halt:
$$(\langle M \rangle, w) \mapsto \begin{cases} 0 \text{ si } M(w) \uparrow \\ 1 \text{ sinon} \end{cases}$$
.

où $M(w) \uparrow$ signifie que M lancée sur l'entrée w entre dans une boucle infinie (et ne termine donc pas).

Théorème de l'arrêt

La fonction halt n'est pas calculable.

Preuve du théorème de l'arrêt:

- Par l'absurde, supposons qu'il existe M_{halt} qui prend un mot $\langle M \rangle \# w$ et qui **décide** si M(w) s'arrête.
- Nous pouvons alors construire (preuve au tableau) la machine M_{diag} suivante :

$$M_{diag}(i) = \begin{cases} 1 \text{ si } M_{halt}(i,i) = 0 \\ \uparrow \text{ si } M_{halt}(i,i) = 1 \end{cases}$$

Lançons maintenant M_{diag} sur son propre code. Deux cas possibles:

- Si $M_{diag}(\langle M_{diag} \rangle) = 1$ alors, par définition de M_{diag} , nous avons $M_{halt}(\langle M_{diag} \rangle, \langle M_{diag} \rangle) = 0$ ce qui signifie, par définition de M_{halt} , que $M_{diag}(\langle M_{diag} \rangle) \uparrow$, une contradiction.
- Si $M_{diag}(\langle M_{diag} \rangle) \uparrow$ alors, par définition de M_{diag} , nous avons $M_{halt}(\langle M_{diag} \rangle, \langle M_{diag} \rangle) = 1$ ce qui signifie, par définition de M_{halt} , que $M_{diag}(\langle M_{diag} \rangle)$ s'arrête, une contradiction.

Dans les deux cas nous arrivons à une contradiction > < = > < = >

Théorème

Le langage $L_{halt} = \{ \langle M \rangle \# w \mid M(w) \text{ s'arrête } \}$ n'est pas décidable. Il est en revanche semi-décidable et non co-semi-décidable

La preuve de semi-décidabilité est très compliquée à écrire rigoureusement (beaucoup de détails techniques). Idée de preuve:

- On peut crée une machine de Turing qui prend en entrée le code d'une autre machine de Turing M et la simule pas à pas sur une entrée w quelconque.
- Si la machine simulée s'arrête sur l'entrée w alors la machine stimulante aussi et le mot $\langle M \rangle \# w$ est reconnu (le langage est donc semi-décidable).
- En revanche, si la machine M ne s'arrête pas sur l'entrée w alors la machine stimulante non plus.

Comme le langage est semi-décidable mais pas décidable alors il n'est pas co-semi-décidable.

Théorème

Le langage $L_{halt} = \{ \langle M \rangle \# w \mid M(w) \text{ s'arrête } \}$ n'est pas décidable. Il est en revanche semi-décidable et non co-semi-décidable

Question

Pouvez-vous trouver un langage co-semi-décidable mais pas semi-décidable?

What if Alan Turing had been an engineer?