

Description

The vs60N10-TF uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_{D} = 60A$ $R_{DS(ON)} < 23m\Omega @ V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and High frequency circuits
- Uninterruptible power supply

Schematic diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VS60N10-TF	VS60N10-TF	TO-220F	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	60	Α	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	35	А	
Pulsed Drain Current	I _{DM}	210	Α	
Maximum Power Dissipation	P _D	60	W	
Derating factor		0.4	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	640	mJ	
Operating Junction and Storage Temperature Range	T_J, T_STG	-55 To 175	$^{\circ}$	

Vseei Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{0JC}	2.5	°C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter Syml		Condition	Min	Тур	Max	Unit
Off Characteristics			'			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	100	110		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =250μA	2.5	3.2	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	19.5	23	mΩ
Forward Transconductance	g FS	V _{DS} =25V,I _D =30A	85	-		S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ -05\/\/ -0\/	я	3250	-	PF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	670	: - :	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UMHZ	_	150	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}		-	26		nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_D =2A, R_L =15 Ω	=	24		nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	91	-	nS
Turn-Off Fall Time	t _f		-	39	-	nS
Total Gate Charge	Qg	V -20V I -20A	-	163		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=30A,$ $V_{GS}=10V$	-	31		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	_	64		nC
Drain-Source Diode Characteristics			,			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	60	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A	-	42		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	66		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

l_D=250μA

 $\mathsf{BV}_{\mathsf{DSS}}$

(norm)

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance