

Advanced Institute on Health Investigation and Air Sensing for Asian Pollution (Al on Hi-ASAP)

Shih-Chun Candice LUNG & Chun-Hu Liu 2020/10/05

Outline

- Get calibration factor from reference instrument
 - Rational of calefaction factor
 - How to run python code to set calibration factor
- Data cleaning
 - What data cleaning tasks need to be done
 - How to run python code to do data cleaning

Get calibration factor from reference instrument

Rationale of calibration factor

AS-Lung compare with reference instrument

Reference instrument

AS-Lung

Rename the filename to fit the python code

Rename the filename of AS-Lung

Ex: 2020-09-27.csv → AL-0001_2020-09-27.csv The filename should be contain AS-Lung ID (AL-0001 or AL0001)

Rename the filename of reference standard

Ex: Grimm026.xls → standard_Grimm026.xls
The filename should be contain "standard"
and with excel data file

Calibration factor

Factors of PM₁ and PM_{2.5} will be reported since PM10 of G3 sensor is not reliable.

Select regression model

Simple linear regression or Two segments regression

Rename the column name to fit the python code

Data format of AS-Lung

Do not modify the data format of AL-Lung

Data format of reference instrument

Rename the column name of time and PM Modify the data time format of time column

A	В	С	D	
datatime	std_PM10	std_PM2.5	std_PM1	
2020/4/8 13:46:01	5.5	5.4	5.1	
2020 4.8.1346401	5.2	52	5	

Regression model

Simple linear regression

160 140 120 100 PM25_AL0400 Grimm 08 • PM25_AL0401 PM25 AL0402 60 PM25 AL0403 PM25_AL0404 PM25 AL0405 40 PM25 AL0406 PM25_AL0407 20 PM25 AL0408 50 100 150 250 300 200 350 AS-Lung

Two segments regression

When run the python code, we can select regression model.

How to run the Python Code (1)

1. Open PyCharm -> project -> run.py

Step 1:

Copy raw data to the folder of "ASLung_Calibration_Factor_R awData"

Step 2:

Open run.py (double click)

Step 3:

Run the python code

How to run the Python Code (2)

2. Select 1) ASLung calibration factor from reference instrument to run the python code

- 3. Select Regression model and input PM value after "Maximum concentration of standard PM"
 - 3.1 Maximum concentration of standard PM is the highest concentration of the regression.
 - 3.2 We use 200 (chamber) or 150 (hood) as maximum value.
 - 3.2 If max value is 200, the calibration range is from 1 to 200.
- 4. The python code will automatically average data to 1 minutes.
- 5. The python code also select the calibration range from 1 to max value of input after the maximum value of the data set

How to run the Python Code (2)

How to run the Python Code (3)

6. When finish, the file will be save in the folder of "ASLung_Calibration_Factor"

7. Open the file, copy the calibration factor and past them to the google sheet.

https://docs.google.com/spreadsheets/d/1yuvjPvsr1sEzm_pXpZWpnMxEC3WbsKn65V-apohp86E/edit#gid=0

The format between csv file and google sheet are the same, DONOT change the data format

Google sheet

G.	1																				
fΧ		_		_	_	_	_		_						_	_	_	_		_	
	A 🔻	В	С	D	E	F	G	Н _		J	K	L	M	N	0	P	Q	R		S	T
1	Golden_ a		•		region1	region1	break_p	slope2	intercep	region2	region2		total_m	total_rr	n sample		high_co	low_cor		_	End_date
2	y_goldeA			2.982			10000					0.931				PM1	150	1	2	018/1/19	2020/2/15
3	y_goldeA	L-0045	0.53	7.472			10000					0.987				PM1	150	1	2	020/2/15	
4	y_goldeA	L-0077	0.776	1.93			10000					0.943				PM1	150	1	2	018/1/19	2020/5/29
5	y_gold(1 I.E			.	- - 1: - ::	L: £_			:	+	اء ما		مالا م	// C .o. al	- 	, , , , , , , , , , , , , , , , , , , ,		2	020/5/29	
6	y_golde 1	L. IT	you r	enew	the c	alibra	tion ta	actor,	pieas	е кеу і	in the	ena	date i	n the	Ena_	_aate	colur	nn.	2	018/3/22	2019/1/30
7	y_gold(2	2. A	dd a r	new ro	ow to	add n	ew ca	librat	ion fa	ctor, D	OO NO	T rep	lace t	he ol	d facto	r			2	019/1/30	
8	y_goldeA						10000					0.777				PM1	150	1	2	018/3/28	
9	y_goldeA	L-0120	0.663	4.441			10000					0.994				PM1	150	1	2	018/4/9	
10	y_goldeA	L-0124	0.681	2.18			10000					0.994				PM1	150	1	2	018/4/12	
11	y_goldeA	L-0125	0.697	3.723			10000					0.993				PM1	150	1	2	018/4/17	2019/1/31
12	y_goldeA	L-0125	0.383	3.42			10000					0.979				PM1	150	1	2	019/1/31	
13	y_goldeA	L-0128	0.709	2.662			10000					0.994				PM1	150	1	2	018/4/17	
14	y_goldeA	L-0131	0.536	0.353			10000					0.994				PM1	150	1	2	018/9/10	2019/1/31
15	y_goldeA	L-0131	0.501	2.731			10000					0.986				PM1	150	1	2	019/1/31	
16	y_goldeA	L-0136	0.61	0.422			10000					0.992				PM1	150	1	2	018/9/10	
17	y_goldeA	L-0138	0.694	2.29			10000					0.992				PM1	150	1	2	018/4/26	2020/7/7
18	y_goldeA	L-0138	0.647	2.663			10000					0.997				PM1	150	1	2	020/7/7	
19	y_goldeA	L-0139	0.591	2.215			10000					0.988				PM1	150	1	2	018/4/26	2019/1/31
20	y_goldeA	L-0139	0.662	2.389			10000					0.978				PM1	150	1	2	019/1/31	2020/7/7
21	y goldeA	L-0139	0.549	5.613			10000					0.994				PM1	150	1	2	020/7/7	

Data cleaning

What data cleaning tasks need to be done

AS-Lung monitoring data

Before

There are two ways toe get raw data 1.data in SD card or 2.Data from database

Data cleaning criteria

After

- 1. PM < 1
- 2. PM > 50 and PM1=PM2.5=PM10
- 3. Remove ghost peak

Set PM value as NaN NaN is equal null

Remove ghost peak

$$\frac{G}{AVG_{PM}} >_{10}$$

What data cleaning tasks need to be done

- 4. Remove data of temperature, humidity and CO2 when values are less than 1
- 5. Get calibration factor from google drive and calibrate AS-Lung data

Golden_standard":"Golden_standard","aslung_id":"aslung region2 rmse":"region2 rmse","r2":"r2","total mae": Golden standard": "y_goldenstand", "aslung_id": "AL-045", "slope1":0.498, "intercept1":2.982, "region1 mae" :"2018/1/19","End_date":"2020/2/15"},{"Golden_standard 945", "slope1":0.53, "intercept1":7.472, "region1 mae" "2020/2/15","End_date":""},{"Golden_standard":"y_golder ","slope1":0.776,"intercept1":1.93,"region1 mae '2018/1/19","End_date":"2020/5/29"},{"Golden_standard 7", "slope1":0.719, "intercept1":3.705, "region1 mae": "2020/5/29", "End_date": ""}, { "Golden_standard": "y_golde 02"."slope1":0.696."intercept1":2.259."region1 mae "2018/3/22", "End date": "2019/1/30"}, { "Golden_standard ,"slope1":0.438,"intercept1":2.515,"region1_mae": 2019/1/30", "End date": "" }, { "Golden standard": "y gol "slope1":0.663, "intercept1":4.441, "region1 mae" "slope1":0.681,"intercept1":2.18,"region1_mae" ,"slope1":0.697,"intercept1":3.723,"region1_mae" 2018/4/17", "End date": "2019/1/31"}, {"Golden standar 125","slope1":0.383,"intercept1":3.42,"region1_mae":" "2019/1/31", "End_date": ""}, { "Golden_standard": "y_gold 0128", "slope1":0.709, "intercept1":2.662, "region1 mae" 2018/4/17","End_date":""},{"Golden_standard":"y_gol

After

Calibration factor in google sheet

Calibration factor API from google sheet

- 6. If calibrated $PM_1 > PM_{2.5}$, $PM_1 = PM_{2.5}$
- 7. If the missing data is more than 1/3 in an hour, the python code will auto remove all the data in the hour

Google sheet

A ▼ B	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т
Golden_aslung_	slope1	intercep	region1	region1	break_p	slope2	intercep	region2	region2_	r2	total_m	total_rm	sample	PM	high_co	low_con	Start_date	End_date
y_goldeAL-0045	0.498	2.982			10000					0.931				PM1	150	1	2018/1/19	2020/2/15
y_goldeAL-0045	0.53	7.472			10000					0.987				PM1	150	1	2020/2/15	
y_goldeAL-0077	0.776	1.93			10000					0.943				PM1	150	1	2018/1/19	2020/5/29
y_goldeAL-0077	0.719	3.705			10000					0.995				PM1	150	1	2020/5/29	
y_goldeAL-0102	0.696	2.259			10000					0.994				PM1	150	1	2018/3/22	2019/1/30
y_goldeAL-0102	0.438	2.515			10000					0.995				PM1	150	1	2019/1/30	
y_goldeAL-0107	0.377	6.113			10000					0.777				PM1	150	1	2018/3/28	
y_goldeAL-0120	0.663	4.441			10000					0.994				PM1	150	1	2018/4/9	
y_goldeAL-0124	0.681	2.18			10000					0.994				PM1	150	1	2018/4/12	
y_goldeAL-0125	0.697	3.723			10000					0.993				PM1	150	1	2018/4/17	2019/1/31
y_goldeAL-0125	0.383	3.42			10000					0.979				PM1	150	1	2019/1/31	
y_goldeAL-0128	0.709	2.662			10000					0.994				PM1	150	1	2018/4/17	
y_goldeAL-0131	0.536	0.353			10000					0.994				PM1	150	1	2018/9/10	2019/1/31
y_goldeAL-0131	0.501	2.731			10000					0.986				PM1	150	1	2019/1/31	
y_goldeAL-0136	0.61	0.422			10000					0.992				PM1	150	1	2018/9/10	
y_goldeAL-0138	0.694	2.29			10000					0.992				PM1	150	1	2018/4/26	2020/7/7
y_goldeAL-0138	0.647	2.663			10000					0.997				PM1	150	1	2020/7/7	
y_goldeAL-0139	0.591	2.215			10000					0.988				PM1	150	1	2018/4/26	2019/1/31
y_golde AL-0139	0.662	2.389			10000					0.978				PM1	150	1	2019/1/31	2020/7/7
y golde AL-0139	0.549	5.613			10000					0.994				PM1	150	1	2020/7/7	

Calibration factor API

```
https://script.google.com/macros/s/AKfycbwfhUbpNqk5AE4HpUg0Dp-
                                                                                                                                                                                             OpT1oMKa1mxLzWWAXb3dlnhTYRN8/exec
                                                                                                                                      ":"Golden_standard","aslung_id":"aslung_id","slope1":"slope1","intercept1":"intercept1","region1_mae":"region1_mae","region1_rms
                                                                                                                                 region2 rmse","r2":"r2","total mae":"total mae","total mse":"total rmse","sample":"sample","PM":"PM","high conc":"high conc","ld"
                                                                                                                           ":"v goldenstand","aslung id":"AL-
                                                                                                         498, intercept1":2.982, region1 mae":"", region1 rmse":"", break point1":10000, slope2":"", intercept2":"", region2 mae":"", region2 mae":"", 498, intercept2":"", and a simple state of the same of t
 e":"2018/1/19","End_date":"2020/2/15"},{"Golden_standard":"y_goldenstand","aslung_id":"AL-
  0045", "slope1": 0.53, "intercept1": 7.472, "region1_mae": "", "region1_rmse": "", "break_point1": 10000, "slope2": "", "intercept2": "", "region2_mae": "", "region2_mae": "", "region3_mae": "", "region3
  ":"2020/2/15", "End date":""}, {"Golden standard": "y goldenstand", "aslung id": "AL-
  0077", "slope1": 0.776, "intercept1": 1.93, "region1_mae": "", "region1_rmse": "", "break_point1": 10000, "slope2": "", "intercept2": "", "region2_mae": "", "region2_mae": "", "region2_mae": "", "region2_mae": "", "region3_mae": "", "region4_mae": "", "region4_mae": "", "region4_mae": "", "region5_mae": "", "region6_mae": "", "region6
  ":"2018/1/19","End_date":"2020/5/29"},{"Golden_standard":"y_goldenstand","aslung_id":"AL-
  0077", "slope1": 0.719, "intercept1": 3.705, "region1_mae": "", "region1_rmse": "", "break_point1": 10000, "slope2": "", "intercept2": "", "region2_mae": "", "region2_mae": "", "region2_mae": "", "region2_mae": "", "region2_mae": "", "region3_mae": "", "region4_mae": "", "region4_mae": "", "region5_mae": "", "region6_mae": "", "region6_mae
  e":"2020/5/29", "End date":""}, {"Golden standard": "y goldenstand", "aslung id": "AL-
 0102", "slope1": 0.696, "intercept1": 2.259, "region1_mae": "", "region1_rmse": "", "break_point1": 10000, "slope2": "", "intercept2": "", "region2_mae": "", "region3_mae": "", "region3_mae": "", "region4_mae": "", "region4_mae": "", "region5_mae": "", "region6_mae": ", "region6_mae": "", "region6
 e":"2018/3/22","End date":"2019/1/30"},{"Golden standard":"y goldenstand","aslung id":"AL-
 0102", "slope1": 0.438, "intercept1": 2.515, "region1_mae": "", "region1_rmse": "", "break_point1": 10000, "slope2": "", "intercept2": "", "region2_mae": "", "region3_mae": "", "region3_mae": "", "region438, "intercept2": "", "intercept3": "", "region438, "intercept3": "", "region5_mae": "", "region6_mae": "",
       e":"2019/1/30","End date":""},{"Golden standard":"y goldenstand","aslung id":"AL-
  0107","slope1":0.377,"intercept1":6.113,"region1 mae":"","region1 rmse":"","break point1":10000,"slope2":"","intercept2":"","region2 mae":"","regi
  te":"2018/3/28","End date":""},{"Golden standard":"y goldenstand","aslung id":"AL-
 0120", "slope1":0.663, "intercept1":4.441, "region1 mae": "", "region1 rmse": "", "break point1":10000, "slope2": "", "intercept2": "", "region2 mae": "", "region2 mae": "", "region3 mae": "", "region4 mae": "", "region5 mae": "", "region6 mae": "", "region7 mae": "", "region6 mae": "", "region6 mae": "", "region6 mae": "", "region7 mae": "", "region7 mae": "", "region6 mae": "", "region7 mae": "", "region7 mae": "", "region8 m
 te":"2018/4/9", "End_date":""},{"Golden_standard":"y_goldenstand", "aslung_id":"AL-
 0124", "slope1": 0.681, "intercept1": 2.18, "region1_mae": "", "region1_rmse": "", "break_point1": 10000, "slope2": "", "intercept2": "", "region2_mae": "", "region2_mae": "", "region3_mae": "", "region3
 e":"2018/4/12", "End_date":""}, {"Golden_standard": "y_goldenstand", "aslung_id": "AL-
 0125", "slope1": 0.697, "intercept1": 3.723, "region1_mae": "", "region1_rmse": "", "break_point1": 10000, "slope2": "", "intercept2": "", "region2_mae": "", "region3_mae": ", "region3_mae": "", "region3
 te":"2018/4/17", "End date": "2019/1/31"}, {"Golden_standard": "y goldenstand", "aslung id": "AL-
0125", "slope1": 0.383, "intercept1": 3.42, "region1_mae": "", "region1_rmse": "", "break_point1": 10000, "slope2": "", "intercept2": "", "region2_mae": "", "region2_mae": "", "region3_mae": "", "region4_mae": "", "region4_mae": "", "region5_mae": "", "region6_mae": "", "region6
 e":"2019/1/31"."End date":""}.{"Golden standard":"v goldenstand"."aslung id":"AL-
```

We create calibration factor API from google sheet. Keep the format of the google sheet is very important.

Data prepare

1. Folder name of the data set should be contain AS-Lung ID, EX:AL-0001

2. Rename the filename is optional

How to run data cleaning

3. Open PyCharm -> project -> run.py

Step 1:

Copy raw data to the folder of "ASLung_RawData"

Step 2:

Open run.py (double click)

Step 3:

Run the python code

How to run data cleaning

4. Select 2) Data cleaning and calibrate ASLung raw data

- 5. Select your data source, SD card or database
- 6. Calibrated data will be save in the folder of

"ASLung_Calibrated_Data", the filename will add prefix of "cal_" in the front of original filename

Step of data cleaning will remind again when run the python code

Open CSV file after calibrated

Open the calibrated csv file, AS-Lung ID, lab id , calibrated PM_1 and $PM_{2.5}$ will add in the end column of the data set

A	В	С	D	Е	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ
datatime	id	date	time	sht_t	sht_h_ext	gps_lat	gps_lon	gps_alt	gps_speed	gps_dir	gps_fix	ai1_2	ai1_3	ai1_4	ERR	aslung_id	lab_id	cPM1	cPM2.5
2018/10/8 00:00	0C9A4249	2018/10/8	00:00:00	26.7	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	14.307	15.182
2018/10/8 00:00	0C9A4249	2018/10/8	00:00:15	26.7	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.708	14.278
2018/10/8 00:00	0C9A4249	2018/10/8	00:00:30	26.7	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.708	14.278
2018/10/8 00:00	0C9A4249	2018/10/8	00:00:45	26.8	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.708	13.826
2018/10/8 00:01	0C9A4249	2018/10/8	00:01:00	26.8	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.708	13.826
2018/10/8 00:01	0C9A4249	2018/10/8	00:01:15	26.8	0	25.03929	121.6129	0	0	0	() () () ()	AL-0211	AS_Lung_I	13.708	13.826
2018/10/8 00:01	0C9A4249	2018/10/8	00:01:30	26.8	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.708	13.826
2018/10/8 00:01	0C9A4249	2018/10/8	00:01:45	26.8	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.109	13.826
0 2018/10/8 00:02	0C9A4249	2018/10/8	00:02:00	26.8	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.109	13.826
1 2018/10/8 00:02	0C9A4249	2018/10/8	00:02:15	26.8	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.109	13.826
2 2018/10/8 00:02	0C9A4249	2018/10/8	00:02:30	26.8	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.109	13.826
3 2018/10/8 00:02	0C9A4249	2018/10/8	00:02:45	26.8	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.708	14.278
4 2018/10/8 00:03	0C9A4249	2018/10/8	00:03:00	26.8	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.708	13.826
5 2018/10/8 00:03	0C9A4249	2018/10/8	00:03:15	26.8	0	25.03929	121.6129	0	0	C	() () () ()	AL-0211	AS_Lung_I	13.708	14.278
6 2018/10/8 00:03	0C9A4249	2018/10/8	00:03:30	26.8	0	25.03929	121.6129	0	0	C	() () () ()	0 L-0211	AS_Lung_I	13.708	14.73
7 2018/10/8 00:03	10004000	2018/10/8	00:03:45	26.7	٥	25 03020	121 6120	٥	٥)	Λ ΔΙ		10.000	

How to update calibration factor API link

- 1.Open run.py
- 2.Go to line 5, find calfactorurl = "xxxxxxxxxxxxx"

```
import os
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)

def dataurls():
    calfactorurl = "https://script.google.com/macros/s/AKfycbwfhUbpNqk5AE4HpUg0Dp-0pT1oMKa1mxLzWWAXb3dlnhTYRN8/exec"
    return calfactorurl
```

3. Past the new link after calfactorurl="

You can get your google sheet and calibration factor API link from "GoogleSheetAndAPI.xlsx

Thanks!