PHYSIQUE I (TP N° 04) EPST Tlemcen - 2012/2013

ÉCOLE PRÉPARATOIRE EN SCIENCES ET TECHNIQUES DE TLEMCEN

Département de Physique

PHYSIQUE I - TP Nº 04

La chute libre

1 Objectifs

- Montrer que tout corps qui effectue une chute libre possède une accélération constante.
- Montrer que l'énergie mécanique d'un corps soumis uniquement à son poids est constante.

2 Matériel utilisé

Le montage de la manipulation se trouve sur la figure ci-contre. Vous disposez du matériel suivant :

- 01 pince de table.
- 01 tige carrée de 1 m.
- 01 tige carrée de 25 cm.
- 01 marqueur de temps de fréquence f = 50 Hz.
- 01 mètre métal de longueur L=2 m.
- 01 porte-poids de masse m = 10 g.
- 03 poids à fente noirs m = 50 g.
- 01 bande enregistreuse.
- 02 noix doubles.
- 01 générateur.
- 02 fils électriques.
- 01 paire de ciseaux.

3 Important

- Donner en détail les calculs de la régression linéaire : tableau, expressions, applications numériques.
- Il est impératif de préparer à l'avance la partie théorique, la représentation des tableaux de mesures ainsi que la désignation des axes sur les feuilles millimétrées.

4 Étude théorique

On suspend un objet de masse m à la bande enregistreuse attaché par son autre extrémité à une tige puis on coupe le ruban et l'objet effectue alors une chute libre.

- 1. Faire une représentation schématique du système étudié.
- 2. Représenter les différentes forces appliquées à l'objet de masse m.
- 3. Écrire l'equation du mouvement de l'objet, en choisissant le sol comme origine des positions.
- 4. Vérifier que la vitesse instantannée de l'objet à un instant donné t, est égale au double de la vitesse moyenne de cet objet entre l'instant initial $t_0 = 0$ et l'instant t:

$$v(t) = 2 i$$

5. Trouver les relations des énergies cinétique E_c et potentielle E_p en fonction du temps.

PHYSIQUE I (TP N° 04) EPST Tlemcen - 2012/2013

5 Étude expérimentale

On suspend un objet de masse m à la bande enregistreuse attaché par son autre extrémité à la tige carrée de $25~\mathrm{cm}$.

- 1. Mesurer la hauteur initiale h_0 que va parcourir l'objet avant d'atteindre le sol.
- 2. Sachant que $h = h_0 y$, consigner vos résultats dans le tableau ci dessous. Où h représente la hauteur de l'objet par rapport au sol et y la distance parcourue par l'objet. (plus y augmente plus h diminue).
- 3. À l'aide d'une paire de ciseaux, après avoir mis le générateur sous tension, on coupe le ruban et l'objet effectue alors une chute libre.
- 4. On collecte les résultats sur le ruban sachant que la durée entre deux points consécutifs est toujours égale à $0.02 \mathrm{\ s}$.

t	(/s)	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.32
y	(/m)																
h	(/m)																
t^2	$(/s^2)$																
\bar{v}	(/m/s)																
E_c	(/J)																
E_p	(/J)																

- 5. Sachant que $\Delta t = 0$, tracer le graphe : $h = f(t^2)$ sur papier millimétré par la méthode de la régression linéaire en n'utilisant que les 4°, 7°, 10°, 13° et 16° points de mesure (n'utilisez pas tout le tableau).
- 6. Quelle est la nature du mouvement?
- 7. Déduire, du graphe, la valeur de l'accélération de la pesanteur terrestre g ainsi que son incertitude absolue.
- 8. Donner le résultat sous la forme : $g = \pm$ (unité)
- 9. Tracer, sur la même feuille millimétrée, les graphes $E_c = f(t^2)$, $E_p = f(t^2)$ et $E_T = f(t^2)$ en utilisant la méthode de la régression linéaire.
- 10. Que peut-on dire de l'énergie mécanique E_T ?