STAT5020 Topics in Multivariate Analysis (Qualifying exam 2019-2020)

1. (50%) A linear structural equation model (SEM), denoted as **Model I**, is defined as

$$\mathbf{y}_{i} = \boldsymbol{\mu} + \boldsymbol{\Lambda}\boldsymbol{\omega}_{i} + \boldsymbol{\epsilon}_{i}, \quad \boldsymbol{\eta}_{i} = \boldsymbol{\Pi}\boldsymbol{\eta}_{i} + \boldsymbol{\Gamma}\boldsymbol{\xi}_{i} + \boldsymbol{\delta}_{i}, \tag{1}$$

where \mathbf{y}_i is a $p \times 1$ vector of observed variables, $\boldsymbol{\mu}$ is a vector of intercepts, $\boldsymbol{\Lambda}$ is a $p \times q$ factor loading matrix, $\boldsymbol{\omega}_i = (\boldsymbol{\eta}_i^T, \boldsymbol{\xi}_i^T)^T$, $\boldsymbol{\eta}_i$ and $\boldsymbol{\xi}_i$ are $q_1 \times 1$ and $q_2 \times 1$ vectors of latent variables and $\boldsymbol{\Pi}$ and $\boldsymbol{\Gamma}$ are $q_1 \times q_1$ and $q_1 \times q_2$ matrices of unknown regression coefficients, respectively, and $\boldsymbol{\Phi}$, $\boldsymbol{\Psi}$, and $\boldsymbol{\Psi}_{\delta}$ are the covariance matrices of $\boldsymbol{\xi}_i$, $\boldsymbol{\epsilon}_i$, and $\boldsymbol{\delta}_i$, respectively.

- (a) (10%) Describe the assumptions and identifiability conditions of Model I.
- (b) (10%) In the classical covariance structural analysis (CSA), the covariance matrix of \mathbf{y}_i under Model I is formulated as a matrix function of the unknown parameter vector $\boldsymbol{\theta}$, $\boldsymbol{\Sigma}(\boldsymbol{\theta})$. Derive the specific form of $\boldsymbol{\Sigma}(\boldsymbol{\theta})$.
- (c) (10%) In CSA, the maximum likelihood estimator of $\boldsymbol{\theta}$ is obtained through the following discrepancy function $F(\boldsymbol{\theta}) = \log |\boldsymbol{\Sigma}(\boldsymbol{\theta})| + \operatorname{tr} \boldsymbol{S} \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1} \log |\boldsymbol{S}| p$, where \boldsymbol{S} is the sample covariance matrix of \boldsymbol{y}_i . Show how to obtain this function.
- (d) (10%) Explain why the classical CSA approach cannot be applied to the analyses of advanced SEMs, such as nonlinear, multilevel, and mixture SEMs.
- (e) (10%) Define a nonlinear SEM and describe its statistical inference.
- 2. (50%) For $i = 1, \dots, n$, let $\mathbf{u}_i = (u_{i1}, \dots, u_{ip})^T$ be a $p \times 1$ vector of observed variable and $\boldsymbol{\omega}_i = (\omega_{i1}, \dots, \omega_{iq})^T$ be a $q \times 1$ random vector of latent variables. A factor analysis model is defined as follows:

$$\mathbf{u}_i = \boldsymbol{\mu} + \boldsymbol{\Lambda} \boldsymbol{\omega}_i + \boldsymbol{\zeta}_i, \tag{2}$$

where $\boldsymbol{\mu}$ is a $p \times 1$ vector of intercepts, $\boldsymbol{\Lambda}$ is a $p \times q$ factor loading matrix, $\boldsymbol{\omega}_i \sim N[\mathbf{0}, \boldsymbol{\Phi}]$, and $\boldsymbol{\zeta}_i$ is a $p \times 1$ vector of random errors independent of $\boldsymbol{\omega}_i$ and distributed as $N[\mathbf{0}, \boldsymbol{\Psi}]$ with a diagonal covariance matrix $\boldsymbol{\Psi}$. Let $\mathbf{z}_i = (z_{i1}, \dots, z_{is})^T$ be an $s \times 1$ random vector of ordinal variables, where z_{ik} takes integer values in $\{1, 2, \dots, b_k\}$, and $\mathbf{y}_i = (y_{i1}, \dots, y_{is})^T$ be the vector of underlying continuous variables. The relationship between \mathbf{y}_i and \mathbf{z}_i is defined as follows: for $i = 1, \dots, n, k = 1, \dots, s$,

$$z_{ik} = m \quad \text{if} \quad \alpha_{k,m} \le y_{ik} < \alpha_{k,m+1}, \tag{3}$$

where $\{-\infty = \alpha_{k,1} < \alpha_{k,2} < \dots < \alpha_{k,b_k} < \alpha_{k,b_k+1} = +\infty\}$ is a set of thresholds. Let $\mathbf{x}_i = (x_{i1}, \dots, x_{ir})^T$ be an $r \times 1$ vector of observable covariates. To assess the effects of \mathbf{x}_i and $\boldsymbol{\omega}_i$ on z_{ij} , a regression model is considered as follows:

$$y_{ik} = \beta_{0k} + \boldsymbol{\beta}_{1k}^T \mathbf{x}_i + \boldsymbol{\beta}_{2k}^T \boldsymbol{\omega}_i + \epsilon_{ik}, \tag{4}$$

where β_{0k} is an intercept, β_{1k} and β_{2k} are the $r \times 1$ and $q \times 1$ vectors of regression coefficients, ϵ_{ik} is a random error distributed as $N[0, \sigma_k^2]$ and independent of ω_i .

Denote by **Model II** the model defined by (2)–(4). Answer the following questions:

- (a) (10%) Draw a path diagram for Model II.
- (b) (10%) Discuss the identifiability issues of Model II.
- (c) (10%) Specify prior distributions for the parameters.
- (d) (10%) Derive the posterior distributions of the unknowns.
- (e) (10%) Discuss the most challenging part of the posterior inference.