核磁共振 实验报告

蔡丹杨

(北京大学化学与分子工程学院 1700011774)

1 数据处理

打开电源,首先用特斯拉计粗测磁场大小约 0.47T,推算氢核共振频率约为 20MHz。然后,向凹槽中上样,用粗调旋钮调节射频线圈的发射频率,观察到: 当频率计的示数约为 20.3MHz 时,波形中出现明显的衰减尾波,如图 1 所示;否则,只能观察到与输入信号略微成正比的噪声。

图 1 衰减尾波图形

(1) 水探头测量中心磁场强度

随后,用细调旋钮调节发射频率至示波器上信号电压峰值最大,左右移动装置,得到在

x=113mm 处有最多的尾波。在此处调节扫场电压,结果如表 1 所示。

		, ,			
U _{p-p} /V	$\nu_H/{ m MHz}$	v_H'/MHz	v_H''/MHz	$B_0 = \frac{v_H}{\gamma_H/2\pi}/T$	$\Delta B_0 = \frac{(\nu_H' - \nu_H'')/20}{\gamma_H/2\pi} / T$
8.64	20.3380	20.3873	20.2880	0.47767	0.00012
7.36	20.3375	20.3790	20.2948	0.47766	0.00010
5.60	20.3369	20.3689	20.3041	0.47764	0.00008
3.60	20.3362	20.3564	20.3164	0.47763	0.00005
2.40	20.3351	20.3490	20.3216	0.47760	0.00003
1.33	20.3344	20.3413	20.3271	0.47759	0.00002
0.824	20.3338	20.3382	20.3287	0.47757	0.00001

表 1 水探头测量装置中心磁场结果($\gamma_H/2\pi \approx 42.577469 MHz/T$)

取不确定度最小的结果,测得的磁场强度为 $B_0 + \Delta B_0 = (0.47757 + 0.00001)$ T。

(2) 水探头测量磁场水平分布

在测定中心的磁场强度之后,在中心两侧的水平线上分别取点,测量了这些点的磁场强 度,结果如表 2 所示。由于边缘信号衰减过快,最远只测到离中心 2.5cm 处。

U _{p-p} /V	x/mm	$\nu_H/{ m MHz}$	v_H'/MHz	v_H''/MHz	$B_0 = \frac{v_H}{\gamma_H/2\pi}/T$	$\Delta B_0 = \frac{(\nu_H' - \nu_H'')/20}{\gamma_H/2\pi} / T$
0.640	88	20.3234	20.3284	20.3196	0.477328	0.000010
0.640	93	20.3232	20.3265	20.3201	0.477323	0.000008
0.640	103	20.3227	20.3262	20.3195	0.477311	0.000008
0.592	113	20.3222	20.3252	20.3191	0.477299	0.000007
0.592	123	20.3211	20.3243	20.3177	0.477274	0.000008
0.632	133	20.3196	20.3230	20.3157	0.477238	0.000009
0.656	138	20.3184	20.3221	20.3136	0.477210	0.000010

表 2 水探头测量装置磁场分布结果 $(\gamma_H/2\pi \approx 42.577469 \text{MHz/T})$

据此作出的 B-x 关系图如图 2 所示 (对这组数据的解释见"分析与讨论")。

图 2 装置水平方向 B-x 关系图

(3) 核磁共振测量氟核的朗德 g 因子

将样品换为聚四氟乙烯柱,在之前测得信号最强处(x=113mm)调节峰-峰电压,记录 数据如表 3 所示。观察到,即使加大峰-峰电压,信噪比也很低,且基本没有尾波。

U _{p-p} /V	$\nu_F/{ m MHz}$	$\nu_F'/{ m MHz}$	$\nu_F''/{ m MHz}$	$g = \frac{\nu_F/B}{\mu_N/h}$	$\Delta g = g\sqrt{(\Delta \nu_F/\nu_F)^2 + (\Delta B_0/B_0)^2}$
8.64	19.1220	19.1708	19.0748	5.25228	0.026
5.60	19.1217	19.1526	19.0912	5.25220	0.017
2.40	19.1215	19.1351	19.1073	5.25215	0.008
0.768	19.1210	19.1251	19.1159	5.25201	0.003

表3 测量氟核朗德 g因子结果($\mu_N/h \approx 7.6225914 MHz/T$)

取不确定度最小的结果,测得的朗德 g 因子为 $g + \Delta g = (5.252 + 0.003)$ 。

2 思考题

- (1) 是否对于所有的原子核都可以观察到核磁共振现象?
- 答:不是。一方面,有的原子核自旋量子数为 0,在磁场中不发生能级裂分,也就不存在共振吸收;另一方面,有的原子核磁旋比很小,则即使有非零自旋,由于能级差极小,共振频率很低,且两能级布居数接近,难以观察到发生的共振吸收。
- (2) 在相同的外加磁场下,自旋角动量相同的原子核其核磁共振频率是否都相同? 若是同一种原子核呢?
- 答:通常不是,因为这些原子核的磁旋比一般不相等,同一磁场中分裂的能级差也不一定相等,则共振吸收的频率也不一定相等。同一原子核的共振频率也不一定相等,因为化学环境等因素会改变原子的电子云密度和核受到的实际磁场,造成共振频率细微变化。

3 分析与讨论

(1) 水探头在不同位置的核磁共振信号波形

共振条件下的信号波形如图 3(a)所示,非共振条件下的波形如图 3(b)所示,正弦波为外加交变磁场。造成这一差别的原因主要是,水在实验条件下有较大的弛豫时间,如果发生共振吸收,会有明显的感应衰减波形;而非共振频率下由于不合拍,不能形成稳定的共振吸收,基本测不到吸收信号而只能测到交变线圈引起的噪声,它与交变电流幅度有一定关系。

图 3 水探头在不同位置的核磁共振信号波形

(2) 水探头在不同位置的磁场 B 和磁场不确定度测量结果

如图所示, B 随着探头位置移动一直在下降, 但由测量吸收信号最大值得出的结果又确实是在 *x*=113mm 处有最大磁场。结合其他数据, 推出的结论是: 实验过程中装置产生的磁场一直在缓慢减小(更多讨论见"(4)其他"), 如果扣除这一趋势(见图 2 中红色点线的趋势线), 可以看到磁场确实在 *x*=113mm 处最大, 而在 113mm 两侧对称地减小。造成这一现象的原因是螺线管磁场除了轴线上外不是均匀的, 且越远离圆心磁感应强度越小。

(3) 聚四氟乙烯探头与水探头的共振信号波形差别

水探头共振条件下的信号波形如图 4(a)所示,聚四氟乙烯探头共振条件下的波形如图 4(b)所示,正弦波为外加交变磁场。两者的差别为,氢核信号较强且波形光滑振荡衰减,而 氟核信号较弱且非常粗糙,几乎看不到第二次振荡。造成这一差别的主要原因是,对于固态样品,分子的快速运动受到限制,化学位移各向异性等各种作用的存在使噪声干扰十分严重; 而液态样品中分子的运动造成弛豫等过程较快,噪声很快被平均化。另外,相对而言四氟乙烯中氟的数密度不是很大(约是氢核数密度的 80%),所以信号较弱。

图 4 聚四氟乙烯探头与水探头的共振信号波形差别

(4) 其他

书中提到水中可加入少量三氯化铁,这样做是利用 Fe³⁺具有较多未成对电子和较大的磁矩来缩短水分子的弛豫时间,辅助测定;但另一方面,这使得水中部分氢核以水合质子形式存在,可能对共振频率有影响。

从实验数据中可明显看到,在所有实验过程中都发现中央共振频率 ν 一直下降,说明随着时间推移核感受到的磁场在减弱。一个原因可能是装置中样品移动的直线不在线圈正中的水平线上;但更重要的原因可能是,由于线圈长时间通电,电热引起的电阻升高可能没有被电路合适地调控,造成电路电流下降,"恒定"磁场减弱。因此,测量氟核朗德 g 因子时使用的磁场偏大,造成计算结果偏小。

4 收获与感想

通过本次实验,我将学到的核磁共振理论与实践结合起来,提高了操作测量仪器的动手能力,为日后的其他实验打下了基础。

感谢老师对理论原理和实验过程的指导,以及孙思原同学对操作仪器的帮助。