Reconocimiento de caras Lección 11.3

Dr. Pablo Alvarado Moya

MP6127 Visión por Computadora Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

L Cuatrimestre 2013

Contenido

Introducción

2 Eigenfaces

Biometría

- Visión por computador tiene gama de aplicaciones biométricas
 - Reconocimiento de huellas dactilares
 - Reconocimiento de patron de iris
 - Reconocimiento de patrón de venas
 - Reconocimiento de "paso" (gait)
 - Reconocimiento de caras

Reconocimiento de caras

- Reconocimiento de caras sigue siendo área activa de investigación
- Avances ya permiten su incorporación en productos comerciales (facebook, Picasa, Android, ...)
- Se usa en
 - Interacción Humano-Máquina
 - Verificación de identidad
 - Clave de ingreso
 - Monitorización médica
- Se imponen restricciones de escena (iluminación, pose) para alcanzar buenos resultados

Eigenfaces

Eigenfaces

- Reducción de dimensiones con ACP
- Considera cada imagen como vector
- Por ejemplo: $20 \times 20 \rightarrow 400$ dimensiones

MediaLab, MIT

Síntesis y análisis

• La cara $\tilde{\mathbf{x}}$ se sintetiza con

$$\tilde{\mathbf{x}} = \underline{\mu} + \sum_{i=0}^{M-1} a_i \underline{\mathbf{u}}_i = \underline{\mu} + \mathbf{U}\underline{\mathbf{a}}$$

- Subespacio M-dimensional engendrado por <u>u</u>_i (espacio de caras o face space)
- Vectores $\underline{\mathbf{u}}_i$: Eigenvectores de matriz de covarianza Σ

$$\Sigma = \frac{1}{N} \sum_{i=0}^{N-1} (\underline{\mathbf{x}}_j - \underline{\boldsymbol{\mu}}) (\underline{\mathbf{x}}_j - \underline{\boldsymbol{\mu}})^T$$

• Por ortonormalidad del conjunto de eigenvectores se cumple:

$$a_i = (\underline{\mathbf{x}} - \underline{\mu}) \cdot \underline{\mathbf{u_i}}$$
 $\underline{\mathbf{a}} = \mathbf{U}^T (\underline{\mathbf{x}} - \underline{\mu})$

- Truncamiento en la aproximación
- Distancia en el espacio característico (DIFS, Distance IN Feature Space)
- Distancia al espacio característico (DFFS, Distance FROM Feature Space)

$$DIFS = \|\underline{\tilde{\mathbf{x}}} - \underline{\boldsymbol{\mu}}\| = \sqrt{\sum_{i=0}^{M-1} a_i^2}$$

$$DFFS = \|\underline{\tilde{\mathbf{x}}} - \underline{\mathbf{x}}\|$$

- Se requieren uno o varios prototipos para cada persona
- Resultado es identificador de prototipo más cercano a patrón de entrada
- Necesario definir distancia entre caras.

Distancia simple

$$DIFS(\underline{\mathbf{x}},\underline{\mathbf{y}}) = \|\underline{\tilde{\mathbf{x}}} - \underline{\tilde{\mathbf{y}}}\| = \sqrt{\sum_{i=0}^{M-1} (a_i - b_i)^2}$$

$$con b_i = (\underline{\mathbf{y}} - \underline{\boldsymbol{\mu}}) \cdot \underline{\mathbf{u}}_i$$

• Esta distancia ignora forma de distribución gaussiana

P. Alvarado

Preferible usar distancia de Mahalanobis:

$$\mathit{DIFS'}(\underline{\mathbf{x}},\underline{\mathbf{y}}) = \|\underline{\tilde{\mathbf{x}}} - \underline{\tilde{\mathbf{y}}}\|_{\Sigma} = \sqrt{\sum_{i=0}^{M-1} \frac{(a_i - b_i)^2}{\lambda_i^2}}$$

- Puesto que $a_i = (\underline{\mathbf{x}} \underline{\mu}) \cdot \underline{\mathbf{u_i}}$ entonces puede precalcularse $\underline{\mathbf{u_i}}' = \underline{\mathbf{u_i}}/\lambda_i$
- A ese proceso se le denomina "emblanquecimiento" (whitening)

Discriminantes de Fischer

- Proceso basado en ACP no necesariamente favorece al reconocimiento
- Otros autores proponen el uso de Discriminantes de Fischer (también análisis de discriminantes lineales)

Varianza intra-clase

Belhumeur, Hespanha y Kriegman, 1997

Análisis de discriminantes lineales con caras

Szeliski, 2011

• La matriz de dispersión intra-clase es

$$\mathbf{S}_W = \sum_{k=0}^{K-1} \mathbf{S}_k = \sum_{k=0}^{K-1} \sum_{i \in C_k} (\underline{\mathbf{x}}_i - \underline{\boldsymbol{\mu}}_k) (\underline{\mathbf{x}}_i - \underline{\boldsymbol{\mu}}_k)^T$$

con

- C_k el conjunto de patrones de la clase k,
- $oldsymbol{eta}_{
 u}$ la media de dichos patrones
- $\mathbf{\overline{S}}_{k}^{\kappa}$ la matriz de dispersión de esa clase y
- K el número de clases
- Matriz de covarianza y de dispersión difieren en factor N_k

• Matriz de dispersión inter-clase es

$$\mathbf{S}_B = \sum_{k=0}^{K-1} N_k (\underline{\mu}_k - \underline{\mu}) (\underline{\mu}_k - \underline{\mu})^T$$

con N_k el número de elementos de la clase k y $\underline{\mu}$ la media total

Dirección discriminante

 La dirección que maximiza la dispersión inter-clase y minimiza la dispersión intra-clase es

$$\underline{\mathbf{u}}^* = \arg \max_{\underline{\mathbf{u}}} \frac{\underline{\mathbf{u}}^T \mathbf{S}_B \underline{\mathbf{u}}}{\underline{\mathbf{u}}^T \mathbf{S}_W \underline{\mathbf{u}}}$$

La solución cumple

$$\mathbf{S}_{B}\underline{\mathbf{u}} = \lambda \mathbf{S}_{W}\underline{\mathbf{u}} \qquad \Rightarrow \qquad \mathbf{S}_{W}^{-1}\mathbf{S}_{B}\underline{\mathbf{u}} = \lambda \underline{\mathbf{u}}$$

- En reconocimiento se usa dirección $\underline{\mathbf{u}}^*$ para decisión con mayor λ
- Más discriminantes ortogonales se obtienen con los otros eigenvectores
- El rango de las matrices es deficiente, así que la reducción es limitada

Modelos Activos de Apariencia

Modelos Activos de Apariencia

- Propuesta de Cootes, Edwards y Taylor, 2001 (Active Appearance Models, AAM)
- Método "combina" los MAF con Eigenfaces

Cootes, Edwards y Taylor, 2001

 Análisis de textura se normaliza a forma canónica antes de análisis

Modelos lineales

En MAA textura y forma siguen modelos lineales:

$$\underline{\mathbf{s}} = \underline{\mu}_s + \mathbf{U}_s \underline{\mathbf{a}}$$

$$\underline{\mathbf{t}} = \underline{\mu}_t + \mathbf{U}_t \underline{\mathbf{a}}$$

con \mathbf{U}_s y \mathbf{U}_t la matriz de eigenvectores enblanquecidos

- Al igual que en MAF, <u>s</u> se alinea a una posición y rotación canónica (análisis de Procrusto)
- La textura se normaliza con offset y escala para atenuar efectos de iluminación
- Mayor dificultad es ajustar modelo a imagen (decenas de propuestas)
- Reconocimiento se realiza usando <u>a</u> como descriptor

Enlaces

- Face Recognition Web Site
- Lección de Prof. Mubarak Shah

Resumen

Introducción

2 Eigenfaces

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make, Kazam, Xournal y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2013 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica