

SEQUENCE LISTING

<110> Gillies, Stephen
Lo, Kin Ming

<120> Multiple Cytokine Protein Complexes

<130> LEX-010

<140>
<141>

<150> 60/147,924

<151> 1999-08-09

<160> 32

<170> PatentIn Ver. 2.0

<210> 1

<211> 582

<212> DNA

<213> Mus musculus

<220>

<223> Description of Artificial Sequence: murine p35
coding sequence for mature protein

<400> 1

agggttcattc cagtctctgg acctgccagg tgtcttagcc agtcccggaaa cctgctgaag 60
accacagatg acatggtaaa gacggccaga gaaaaactga aacattattc ctgcactgct 120
gaagacatcg atcatgaaga catcacacgg gaccaaaccga gcacattgaa gacctgttt 180
ccactggAAC tacacaagaa cgagagtgc ctggctacta gagagacttc ttccacaaca 240
agagggagct gcctgcccc acagaagacg tcttgatga tgaccctgtg ctttgttagc 300
atctatgagg acttgaagat gtaccagaca gagtccagg ccataaacgc agcacttcag 360
aatcacaacc atcagcagat cattctagac aaggcatgc tggtgccat cgatgagctg 420
atgcagtctc tgaatcataa tggcgagact ctgcggcaga aacctcctgt gggagaagca 480
gacccttaca gagtggaaat gaaagctctgc atcctgcttc acgccttcag caccgcgtc 540
gtgaccatca acagggttat gggctatctg agctccgcct ga 582

<210> 2

<211> 1472

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: murine
p40-IL-2 fusion protein coding sequence

<400> 2

atgtgtcctc agaagctaac atgtgtcctc agaagctaac catctcctgg tttgccatcg 60
ttttgctgt gtctccactc atggccatgt gggagctgaa gaaagacgtt tatgtttag 120
aggtggactg gactcccgat gcccctggag aaacagtgaa cctcacctgt gacacgcctg 180
aagaagatga catcacctgg acctcagacc agagacatgg agtcataggc tctggaaaga 240
ccctgaccat cactgtcaaa gagtttctag atgtggcca gtacacctgc cacaaggag 300
gcgagactct gagccactca catctgctgc tccacaagaa ggaaaatgga atttggtcca 360
ctgaaattt aaaaaatttc aaaaacaaga ctttcctgaa gtgtgaagca ccaaattact 420

ccggacggtt cacgtgetca tggctggc aaagaaaacat ggacttgaag ttcaacatca 480
agagcagtag cagttccc gactctcggt cagtgcacatg tgaatggcg tctctgtctg 540
cagagaaggta cacactggac caaaggact atgagaagta ttcatgtcc tgccaggagg 600
atgtcacctg cccaactgcc gaggagacc tgccattga actggcggtt gaagcacggc 660
agcagaataa atatgagaac tacagcacca gcttcttcat cagggacatc atcaaaccag 720
acccggccaa gaacttgcag atgaagcatt tgaagaactc acaggtggag gtcagctggg 780
atgaccctga ctccctggagc actccccatt cctacttctc cctcaagttc tttgttcgaa 840
tcctcgccaa gaaagaaaaag atgaaggaga cagaggagg gtgttaaccag aaaggtgcgt 900
tcctcgtaga gaagacatct accgaaatgc aatgccaaagg cggaaatgtc tgcgtgdaag 960
ctcaggatcg ctattacaat tcctcatgca gcaagtgcc atgtttccc tgcagggtcc 1020
gateccccggg taaagcaccctt acttcaagct ctacagcgga agcacagcag cagcagcagc 1080
agcagcagca gcagcagcag cacctggagc agctgttgc ggcacatc gagctctga 1140
gcaggatggc gaattacagg aacctgaaac tccccaggat gtcacatc aaattttact 1200
tgcccaagca gcccacagaa ttgaaagatc ttcatgtcc taaagatgaa cttggacctc 1260
tgcggcatgt tctggattt actcaaagca aaagcttca attggaagat gctgagaatt 1320
tcatcagcaa ttcagatgtt actgttgc aactaaaggg ctctgacaac acatttgagt 1380
gccaatttca gcatgttgc gcaactgtgg tggacttctt gaggagatgg atagccttct 1440
gtcaaaatcat catctcaaca agccctcaat aa 1472

<210> 3

<211> 1409

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: murine
p40-GM-CSF fusion protein coding sequence

<400> 3

atgtgtcctc agaagctaac atgtgtcctc agaagctaac catctcctgg tttgccatcg 60
ttttgttgtt gtctccactc atggccatgt gggagcttgc gaaagacgtt tatgttgttag 120
aggtggactg gactcccgat gcccctggag aaacagtggaa cctcacatgt gacacgcctg 180
aagaagatga catcacatgg acctcagacc agagacatgg agtcataggg tctggaaaga 240
ccctgaccat cactgtcaaa gagtttctag atgctggcca gtacacatgc cacaaggagg 300
gcgagactct gagccactca catctgctgc tccacaagaa ggaaaatggaa atttggtcca 360
ctgaaaatttt aaaaatttc aaaaacaaga ctttctgaa gtgtgaagca ccaaattact 420
ccggacggtt cacgtgtca tggctggc aaagaaaacat ggacttgaag ttcaacatca 480
agagcagtag cagttccc gactctcggt cagtgcacatg tgaatggcg tctctgtctg 540
cagagaaggta cacactggac caaaggact atgagaagta ttcatgtcc tgccaggagg 600
atgtcacctg cccaactgc gaggagacc tgccattga actggcggtt gaagcacggc 660
agcagaataa atatgagaac tacagcacca gcttcttcat cagggacatc atcaaaccag 720
acccggccaa gaacttgcag atgaagcatt tgaagaactc acaggtggag gtcagctggg 780
atgaccctga ctccctggagc actccccattt cctacttctc cctcaagttc tttgttcgaa 840
tcctcgccaa gaaagaaaaag atgaaggaga cagaggagg gtgttaaccag aaaggtgcgt 900
tcctcgtaga gaagacatct accgaaatgc aatgccaaagg cggaaatgtc tgcgtgdaag 960
ctcaggatcg ctattacaat tcctcatgca gcaagtgcc atgtttccc tgcagggtcc 1020
gateccccggg aaaaacccccc gcccgcctc ccataattgt taccggccatg 1080
tagaggccat caaaacccccc tggatgacat gcctgtcactg ttgaatgaag 1140
aggttagaagt cgtcttcaac gagtttcttcat tcaagaagct aacatgtgtt cagacccggcc 1200
tgaagatatt cgagcagggt ctacggggca atttccacca actcaagggg gccttgaaca 1260
tgacagccag ctactaccag acataactgc ccccaactcc ggaaacggac tttgtaaacac 1320
aagtaccac ctatgcggat ttcatagaca gccttaaaac ctttctgact gatatccccct 1380
ttgaatgcaaaaatcat caaaaatga 1409

<210> 4

<211> 1389

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: human
p40-IL-2 fusion protein coding sequence

<400> 4

atgtgtcacc agcagtttgtt catctcttgg ttttcctgg tttttctggc atctcccttc 60
gtggccatat gggaaactgaa gaaagatgtt tatgtcgttag aattggattt gtatccggat 120
gccctggag aaatgggtt cctcacctgt gacaccctg aagaagatgg tattcacctgg 180
accttggacc agagcagtga ggtcttaggc tctggaaaa ccctgaccat ccaagtc当地 240
gagtttgag atgctggcca gtacacctgt cacaaaggag gcgagggttct aagccattcg 300
ctcctgctgc ttccaaaaaa ggaagatggg atttggtcca ctgatatttt aaaggaccag 360
aaagaaccca aaaataagac ctttctaaga tgccggcca agaattattt tggacgtttc 420
acctgttgtt ggctgacgac aatcagtact gatttgacat tcagtgtcaa aagcagcaga 480
ggcttctctg acccccaagg ggtgacgtgc ggagctgta cactctctgc agagagagtc 540
agaggggaca acaaggagta tgagtactca gtggagtgc aggaggacag tgccctgccc 600
gctgctgagg agagtctgcc cattgagggtc atgggtggat ccgttccaaa gctcaagtat 660
gaaaactaca ccagcagctt cttcatcagg gacatcatca aacctgacc acccaagaac 720
ttgcagctga agccattaaa gaattctcg caggtggagg tcagctgggta gtaccctgac 780
acctggagta ctccacattc ctacttctcc ctgacatttcc gcttcaggtt ccaggcgaag 840
agcaagagag aaaagaaaaga tagagtcttc acggacaaga cctcagccac ggtcatctgc 900
cgaaaaatg ccagcattag cgtcgcccc caggaccgt actatagctc atcttggagc 960
gaatggcat ctgtgccttg cagtgcaccc acttcaagtt ctacaaagaa aacacagcta 1020
caactggacg atttactgtt ggatttacag atgattttga atgaaattaa taattacaag 1080
aatcccaaac tcaccaggat gtcacattt aagtttaca tgcccaagaa ggccacagaa 1140
ctgaaacatc ttcaagtgtct agaagaagaa ctcaaacctc tggaggaagt gctaaattta 1200
gctcaaagca aaaacttca cttaagaccc agggacttaa tcagcaatat caacgtaata 1260
gttctggAAC taaagggttc tggaaacaaca ttcatgtgtt aatatgtctga tgagacagca 1320
accattgttag aatttctgaa cagatggatt acctttgtc aaagcatcat ctcaacacta 1380
acttgataa 1389

<210> 5

<211> 1278

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: murine
Fc-p35 fusion protein coding sequence

<400> 5

gagcccacaaat caagccctgt cctccatgca aatgccacgc acctaaccctc 60
ttgggtggac catccgtctt catcttccctt ccaaagatca aggtatgtact catgatctcc 120
ctgagcccca tagtcacatg tgggtgggt gatgtgagcg aggtatgaccc agatgtccag 180
atcagcttgtt ttgtgaacaa cgtggaaatgtt cacacagctc agacacaaaac ccataagagag 240
gattacaaca gtactctccg ggtggtcagt gccctccca tccagcacca ggactggatg 300
agtggcaagg agttcaaatg caaggtcaac aacaaagacc tcccagcgcc catcgagaga 360
accatctcaa aacccaaagg gtcagtaaga gctccacagg tatatgtctt gcctccacca 420
gaagaagaga tgactaagaa acaggtcaact ctgacccgtca tggtcacaga ctccatgcct 480
gaagacattt acgtggagtg gaccaacaaac gggaaaacacg agctaaacta caagaacact 540
gaaccagtcc tggactctga tgggtcttac ttcatgtaca gcaagctgag agtggaaaag 600
aagaactggg tggaaagaaa tagtactcc tgggttgc tccacggagg tctgcacaat 660
caccacacga ctaagagctt ctcccgaccc cgggttaggg tcattccagt ctctggaccc 720
gccaggtgtc tttagccagtc cggaaacctg ctgaagacca cagatgacat ggtgaagacg 780
gccagagaaa aactgaaaca ttattcctgc actgctgtt aatgtgttccatc tgaagacatc 840
acacgggacc aaaccagcac attgaagacc tggtaaccac tggaaactaca caagaacgag 900

agttgcctgg ctactagaga gacttcttcc acaacaagag ggagctgcct gcccccacag 960
aagacgtctt tcatgtgac cctgtgcctt ggttagcatct atgaggactt gaagatgtac 1020
cagacagagt tccaggccat caacgcagca cttcagaatc acaaccatca gcagatcatt 1080
ctagacaagg gcatgtcggt gcccattcgat gagctgatgc agtctctgaa tcataatggc 1140
gagactctgc gccagaaaacc tcctgtggga gaagcagacc ctacagagt gaaaatgaag 1200
ctctgcattcc tgcttcacgc cttcagcacc cgctcgta ccatcaacag ggtgatggc 1260
tatctgagct ccgcctga 1278

<210> 6
<211> 1287
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: human Fc-p35
fusion protein coding sequence

<400> 6
gagcccaaattt cttgtgacaa aactcacaca tgcccccgtt gcccaggcacc tgaactcttg 60
gggggaccgtt cagtcttctt ctccccccaa aaacccaaagg acaccctcat gatctcccg 120
acccctgagg tcacatgcgtt ggtgggtggac gtgagccacg aagaccctga ggtcaagttc 180
aactggtacg tggacggcgtt ggagggtgtt aatgccaaga caaagcccgccgg 240
tacaacagca cgttaccgtgtt ggtcagcgctt ctcaccgttcc tgaccaggat 300
ggcaaggagt acaagtgcattt ggtctccaaac aaacccctcc cagccccat cggaaaaacc 360
atctccaaagg ccaaaggggca gccccggagaa ccacaggtgtt acaccctgccc cccatcacgg 420
gaggagatgatc ccaagaacca ggtcagcgctt acctgcctgg tcaaaggctt ctatcccacg 480
gacatcgccg tggagttggatc gagcaatggg cagccggaga acaactacaa gaccacgcct 540
ccctgtgtgg actccgcacgg ctcccttcttc ctctatagca agtccaccgtt ggacaagagc 600
agggtggcagc aggggaacgtt ctctctatgc tccgtgtatgc atgaggctctt gcacaaccac 660
tacacgcaga agaccccttc cctgtccccgg ggaagaaaacc tccccgtggc cactccacac 720
ccaggaatgtt tcccatgcattt tcaccactcc caaaacctgc tgaggccgtt cagcaacatg 780
ctccagaagg ccagacaaac ttcttgcattt tacccttgcattt ctctgtatgc gattgtatcat 840
gaagatatca caaaagataaa aaccacgcata gttggaggcctt gtttaccattt ggaatttacc 900
aagaatgaga gttgcctaaa ttccagagatc acctctttca taactaatgg gagttgcctg 960
gcctccagaa agacccctttt tatgtatggcc ctgtgccttta gtatgtatcat tgaagacttg 1020
aagatgtacc aggtggagttt caagaccatgtt aatgcataacc ttctgtatggatc tcctaagagg 1080
cagatctttc tagatcaaaa catgctggca gtttattgtatgc agtctgtatgc ggcctgtatc 1140
ttcaacagtgtt agactgtgcc accaaaaatcc tcccttgcattt aaccggattt ttataaaaact 1200
aaaatcaagc tctgcataactt tttcatgtttt ttcagaatttcc gggcagtgtac tattgacaga 1260
gtgacgagctt atctgtatgc ttccctaa 1287

<210> 7
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: forward primer
for construction of murine p40-IL-2 fusion
protein

<220>
<221> misc_feature
<222> (12)..(14)
<223> translation initiation codon

<400> 7

aagcttagcac catgtgtccct cagaagctaa cc

32

<210> 8

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: reverse primer
for construction of murine p40-IL-2 fusion
protein

<220>

<221> misc_feature

<222> Complement((7)..(9))

<223> translation stop codon

<400> 8

ctcgagctag gatcggaccc tgcaggg

27

<210> 9

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: DNA sequence
at the junction of murine p40-IL-2 fusion protein

<220>

<221> misc_feature

<222> (14)..(16)

<223> encodes the C-terminal amino acid residue of
murine p40

<220>

<221> misc_feature

<222> (26)..(28)

<223> encodes the N-terminal amino acid residue of
mature murine IL-2

<400> 9

ctgcagggtc cgatccccgg gtaaaaggacc c

31

<210> 10

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: DNA sequence
at the junction of single-chain murine IL12 and
GMCSF

<220>

<221> misc_feature

<222> (14)..(16)

<223> encodes the C-terminal amino acid residue of
murine p40

<220>

<221> misc feature

<222> (26)..(28)

<223> encodes the N-terminal amino acid residue of
mature murine GMCSF

<400> 10

ctgcagggtc cgatccccgg gaaaagca

28

<210> 11

<211> 2013

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: murine
p35-linker-p40-IL-2 fusion protein coding sequence

<400> 11

agggtcattc cagtctctgg acctgccagg tgccttagcc agtccccaaa cctgctgaag 60
accacagatg acatggtaa gacggccaga gaaaaactga aacattattc ctgcactgct 120
gaagacatcg atcatgaaga catcacacgg gaccaaaccg gcacattgaa gacctgtta 180
ccactggAAC tacacaagaa cgagagttgc ctggctacta gagagacttc ttccacaaca 240
agagggagct gcctgcccccc acagaagacg tctttgtatgaa tgaccctgtg ccttggtagc 300
atctatgagg acttgaagat gtaccagaca gagttccagg ccatcaacgc agcacttcag 360
aatcacaacc atcagcagat cattcttagac aaggccatgc tggtgccat cgatgagctg 420
atgcagtctc tgaatcataa tggcgagact ctgcgccaga aacctctgtt gggagaagca 480
gacccttaca gagtggaaat gaagctctgc atcctgttc acgccttcag cacccgcgtc 540
gtgaccatca acagggtgat gggctatctg agctccgcgt cgagcggggc cagcgggggc 600
ggaggccagcg gcggggggcg atccggccatg tgggtgttgg agaaaagacgt ttatgttcta 660
gaggtggact ggactcccgaa tgccctgttggaa gaaacagtga acctcacctg tgacacgcct 720
gaagaagatg acatcacctg gacccctcagac cagagacatg gagtcataagg ctctgaaag 780
accctgacca tcactgtcaa agatTTCTA gatgtgttgc agtacacactg ccacaaagga 840
ggcgagactc tgagccactc acatctgtct ctccacaaga agaaaaatgg aatttggtcc 900
actgaaattt taaaaattt caaaaacaag actttcttga agtgtgaagc accaaattac 960
tccggacgggt tcacgtctc atggctgggtg caaagaaaaca tggacttggaa gttcaacatc 1020
aagagcagta gcagttcccc ttgactctcg gcaagtgcgt gtggaaatggc gtctctgtct 1080
gcagagaagg tcacacttggaa ccaaaggggac tatgagaagt attcagtgtc ctgcaggag 1140
gatgtcacct gcccacttcg cgaggagacc ctgcccattt aactggcggtt ggaagcacgg 1200
cagcagaata aatatgagaa ctacagcacc agtctttca tcagggacat catcaaacc 1260
gaccggccca agaacttgcgatgaaaccc ttgaaactt cacagggtggaa ggtcagctgg 1320
gagtaccctg actcctggag cactccccat tccctacttct ccctcaagtt ctttggtctga 1380
atccagcgcgca agaaagaaaa gatgaaggag acagaggagg ggtgttaaccg gaaaggtgcg 1440
ttcctcgtag agaagacatc taccgaagtc caatgcggaa gggggatgt ctgcgtgcaa 1500
gctcaggatc gctattacaa ttccctcatgc agcaagtggg catgtgttcc ctgcagggtc 1560
cgatccccgg gtaaagcacc cacttcaagc tctacagcgg aacgcacagca gcagcagcag 1620
cagcagcagc agcagcagca gcacctggag cagctgttga tggacctaca ggagctcctg 1680
agcaggatgg agaattacag gaaacctgaaa ctccccggaa tgctcacctt caaattttac 1740
ttgccccaggc aggcacaga attgaaagat cttcagtgtcc tagaagatga acttgacact 1800
ctgcggcatg ttctggattt gactcaaagc aaaagcttca aatttggaaaga tgctgagaat 1860
ttcatcagca atatcagat aactgttggaa aaactaaagg gctctgacaa cacatttgag 1920
tgccaattcg atgatgagtc agcaactgtg gtggacttcc tgaggagatg gatagccttc 1980
tgtcaaagca tcatctcaac aagccctcaa taa

2013

<210> 12
<211> 1569
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: murine
p35-linker-p40 fusion protein coding sequence

<400> 12

agggtcattc cagtctctgg acctgccagg tgtcttagcc agtcccggaaa cctgctgaag 60
accacagatg acatggtaaa gacggccaga gaaaaactgaa aacattatttc ctgcactgct 120
gaagacatcg atcatgaaga catcacacgg gaccaaaccg gcacattgaa gacctgttta 180
ccactggAAC tacacaagaa cgagagttgc ctggctacta gagagacttc ttccacaaca 240
agagggagct gcctggcccc acagaagacg tctttgatga tgaccctgtg cttggtagc 300
atctatgagg acttgaagat gtaccagaca gagttccagg ccatcaacgc agcacttcag 360
aatcacaacc atcagcagat cattctagac aagggcatgc tggccatcgatgactg 420
atgcagtctc tgaatcataa tggcgagact ctgcggcaga aacctcctgt gggagaagca 480
gacccttaca gagtggaaat gaagctctgc atcctgcttc acgccttcag caccggcgtc 540
gtgaccatca acagggtgat gggctatctg agctccgcgt cgagcgggggg cagcgggggc 600
ggagggcagcg gccccccatg atccgcctgg agaaaagacgt ttatgttga 660
gaggtggact ggactcccga tgcccttggaa gaaacagtga acctcacctg tgacacgcct 720
gaagaagatg acatcacctg gacccatcgac cagagacatg gagtcatagg ctctggaaag 780
accctgacca tcactgtcaa agagttctca gatgctggcc agtacacactg ccacaaagga 840
ggcgagactc tgagccactc acatctgctg ctccacaaga agaaaaatgg aatttggtcc 900
actgaaattt taaaaaaattt caaaaacaag actttcctga agtgtgaagc accaaattac 960
tccggacggt tcacgtgctc atggctggtg caaagaaaaca tgacttgaa gttcaacatc 1020
aagagcgtt gcaagttcccc tgaactctcg gcaagtgcacat gtggaaatggc gtctctgtct 1080
gcagagaagg tcacacttggaa cccaaaggac tatgagaagt attcagtgtc ctgcccaggag 1140
gatgtcacct gcccactgc cgaggagacc ctgcccattt aactggcggtt ggaagcacgg 1200
cagcagaata aatatgagaa ctacagcacc agtcttca tcaaggacat catcaaacca 1260
gaccggccca agaacttgc gatgaaggct ttgaagaact cacaggttgg ggtcagctgg 1320
gagtaaccctg actcctggag cactcccat tccctacttct ccctcaagtt ctttggcga 1380
atccagcgcga agaaaagaaaa gatgaaggag acagaggagg ggtgttaaccg gaaagggtgcg 1440
ttccctgttag agaagacatc taccgaagtc caatgcaaa gccccatgt ctgcgtgcaa 1500
gctcaggatc gctattacaa ttccctcatgc agcaagtggg catgtgttcc ctgcagggtc 1560
cgatccttag 1569

<210> 13
<211> 2709
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: murine
Fc-p35-linker-p40-IL-2 fusion protein coding
sequence

<400> 13

gagcccagag ggcccaaat caagccctgt cctccatgca aatgcccagg acctaaccctc 60
ttgggtggac catccgttccatcttccct cccaaagatca agatgtact catgatctcc 120
ctgagccca tagtcacatg tgggtggtg gatgtgagcg agatgaccc agatgtccag 180
atcagctgtt tggtaacaa cgtggaaatgta cacacagtc agacacaaac ccatacgagag 240
gattacaaca gtactctccg ggtggtcagt gcccctccca tccagccatgaa ggactggatg 300
agtggcaagg agtcaaatg caaggtcaac aacaaagacc tcccgccgc catcgagaga 360
accatctcaa aacccaaagg gtcagtaaga gctccacagg tatatgttctt ccctccacca 420
gaagaagaga tgactaagaa acaggtcaact ctgacccatgca tggtcacaga cttcatgcct 480

gaagacattt acgtggagt gaccaacaac gggaaaacag agctaaacta caagaacact 540
 gaaccagtcc tggactctga tggttcttac ttcatgtaca gcaagctgag agtggaaaag 600
 aagaactggg tggaaagaaa tagctactcc tggtagtgg tccacgaggg tctgcacaat 660
 caccacacga ctaagagctt ctccccggacc ccgggttaggg tcattccagt ctctggacct 720
 gccagggtgtc tttagccagtc ccgaaacactg ctgaagacca cagatgacat ggtgaagacg 780
 gccagagaaa aactgaaaca ttattccctgc actgctgaag acatcgatca tgaagacatc 840
 acacgggacc aaaccagcac attgaagacc tggttaccac tgaactaca caagaacgag 900
 atttgcctgg ctactagaga gacttcttcc acaacaagag ggagctgcct gcccccacag 960
 aagacgtctt tggatgtgac cctgtgcctt ggttagcatct atggaggactt gaagatgtac 1020
 cagacagagt tccaggccat caacgcagca cttcagaatc acaaccatca gcagatcatt 1080
 cttagacaagg gcatgctggt ggcacatcgat gagctgatgc agtctctgaa tcataatggc 1140
 gagactctgc gccagaaacc tcctgtggga gaagcagacc cttagaggt gaaaatgaag 1200
 ctctgcattcc tgcttcacgc cttcagcacc cgcgtcgtga ccatcaacag ggtgatggc 1260
 tatctgagct ccgcgtcggag cggggccggc gggggccggag gcagcggccg gggcggatcc 1320
 gccatgtggg tgctggagaa agacgtttat gttgttagagg tgactggac tcccgtgcc 1380
 cctggagaaa cagtgaacct cacctgtgac acgcctgaag aagatgacat cacctggacc 1440
 tcagaccaga gacatggagt cataggctct ggaaagaccc tgaccatcac tgtcaaagag 1500
 tttcttagatg ctggccagta cacctgccac aaaggaggcg agactctgag ccactcacat 1560
 ctgctgctcc acaagaagga aaatgaaatt tggccactg aaattttaaa aaatttcaaa 1620
 aacaagactt tcctgaagtg tgaagcacca aattactccg gacggttcaac gtgtcatgg 1680
 ctggtgcaaa gaaacatgga cttaagatcc aacatcaaga gcagtagcag ttccctgac 1740
 tctcgggcag tgacatgtgg aatggcgtct ctgtctgcag agaaggtcac actggaccaa 1800
 aggactatg agaagtattc agtgtcctgc caggaggatg tcacctgccc aactgccgag 1860
 gagaccctgc ccattgaact ggcgttggaa gcacggcagc agaataaata tgagaactac 1920
 agcaccagct tcttcatcg ggacatcatc aaaccagacc cggccaagaa cttgcagatg 1980
 aagccttga agaactcaca ggtggaggc agctggaggat accctgactc ctggagcact 2040
 ccccatccct acttctccct caagttctt gttcgaatcc agcgaagaa agaaaagatg 2100
 aaggagacag aggaggggtg taaccagaaa ggtgcgttcc tcgttagagaa gacatctacc 2160
 gaagtccaat gcaaaggccg gaatgtctgc gtcaagctc agatcgcta ttacaattcc 2220
 tcatgcagca agtgggcatg tttccctgc agggtccat ccccggtaa agcaccact 2280
 tcaagctta cagcggaaagc acagcagcagc cagcagcagc agcagcagca gcagcagcac 2340
 ctggagcagc tggtgtatgg cctacaggag ctccgtgac ggatggagaa ttacaggaac 2400
 ctgaaactcc ccaggatgtc cacccatccaa tttacttgc ccaagcaggc cacagaattg 2460
 aaagatctt agtgcetaga agatgaactt ggacctctgc ggcatgttct ggatttact 2520
 caaagcaaaa gcttcaatt ggaagatgtc gagaatttca tcaagcaatat cagactaact 2580
 gttgtaaaac taaagggttc tgacaacaca tttgagtgcc aattcgatga tgagtcaagca 2640
 actgtggtgg actttctgag gagatggata gcctctgtc aaagcatcat ctcaacaagc 2700
 cctcaataa 2709

<210> 14
 <211> 33
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: forward primer
 for PCR amplification of murine p35 subunit of
 IL-12

<220>
 <221> misc_feature
 <222> (16)..(18)
 <223> translation initiation codon

<400> 14
 aagttgcta gcagcatgtg tcaatcacgc tac

<210> 15
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: reverse primer
for PCR amplification of murine p35 subunit of
IL-12

<220>
<221> misc_feature
<222> Complement((10)..(12))
<223> translation stop codon

<400> 15
ctcgagcttt caggcggagc tcagatagcc

30

<210> 16
<211> 61
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: coding
sequence at the junction between p35 and p40 that
comprise the murine single-chain IL-12

<220>
<221> misc_feature
<222> (8)..(10)
<223> encodes the C-terminal amino acid residue of
murine p35

<220>
<221> misc_feature
<222> (59)..(61)
<223> encodes the N-terminal amino acid residue of
mature murine p40

<400> 16
gagctccgcg tcgagcgggg gcagcggggg cggaggcagc ggcggggcg gatccgcatt 60
g

61

<210> 17
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Protein
sequence at the junction between p35 and p40 that
comprise the murine single-chain IL-12

<400> 17
Ser Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Ala
1 5 10 15

<210> 18
<211> 73
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: coding sequence at the junction between murine p40 and the mature N-terminus of KS heavy chain

<220>
<221> misc_feature
<222> (14)..(16)
<223> encodes the C-terminal amino acid residue of murine p40

<220>
<221> misc_feature
<222> (71)..(73)
<223> encodes the N-terminal residue of mature KS heavy chain

<400> 18
ctgcagggtc cgatccccgg gatccggagg ttcagggggc ggaggttagcg gcggaggggg 60
ctcctaagg cag 73

<210> 19
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: protein sequence at the junction between murine p40 and the mature N-terminus of KS heavy chain

<400> 19
Pro Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

Leu Ser

<210> 20
<211> 64
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: coding sequence at the junction between murine p35 and the KS light chain

<220>

<221> misc_feature
<222> (8)..(10)
<223> encodes the C-terminal amino acid residue of
murine p35

<220>
<221> misc_feature
<222> (62)..(64)
<223> encodes the N-terminal amino acid residue of the
light chain

<400> 20
gagctccgcg tcgagcgggg gcagcggggg cggaggcagc ggccggggcg gatccttaag 60
cgag 64

<210> 21
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: protein
sequence at the junction between murine p35 and
the KS light chain

<400> 21
Ser Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Leu
1 5 10 15

Ser

<210> 22
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: forward primer
for the PCR amplification of murine IL-4

<220>
<221> misc_feature
<222> (9)..(11)
<223> translation initiation codon

<400> 22
tctagaccat gggctctcaac cccccagc 27

<210> 23
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: reverse primer

for the PCR amplification of murine IL-4

<220>
<221> misc_feature
<222> Complement((8)..(10))
<223> encodes the C-terminal amino acid residue of murine IL-4

<400> 23
cgatccccgtatccatt tgcatgatgc tcttttaggct ttccagg

47

<210> 24
<211> 57
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: coding sequence at the junction of murine IL-4 and the mature KS-1/4 light chain

<220>
<221> misc_feature
<222> (1)..(3)
<223> encodes the C-terminal serine residue of murine IL-4

<220>
<221> misc_feature
<222> (55)..(57)
<223> encodes the N-terminal amino acid residue of the mature KS-1/4 light chain

<400> 24
tcgggatccgg gaggttcagg gggcggaggt agcggcggag ggggctcctt aagcgag

57

<210> 25
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: protein sequence at the junction of murine IL-4 and the mature KS-1/4 light chain

<400> 25
Ser Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

Leu Ser Glu

<210> 26
<211> 27
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: forward primer
for the PCR amplification of murine IL-4

<220>

<221> misc_feature

<222> (9)..(11)

<223> translation initiation codon

<400> 26

tctagaccat ggggtctcaac ccccaagg

27

<210> 27

<211> 52

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: reverse
primer for the PCR amplification of murine IL-4

<220>

<221> misc_feature

<222> Complement((13)..(15))

<223> encodes the C-terminal amino acid residue of
murine IL-4

<400> 27

cgtatatcccg gacgagtaat ccatttgcat gatgctcttt aggctttcca gg

52

<210> 28

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: coding
sequence at the junction between murine IL-4 and
murine GM-CSF

<220>

<221> misc_feature

<222> (1)..(12)

<223> encodes the C-terminal sequence of muIL4

<220>

<221> misc_feature

<222> (28)..(39)

<223> encodes the N-terminal sequence of muGM-CSF

<400> 28

atggattact cgtccggat gggaaaagca cccgccccgc

39

<210> 29

<211> 32

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: forward primer
for the PCR amplification of murine lymphotactin

<220>
<221> misc_feature
<222> (13)..(15)
<223> translation initiation codon

<400> 29
tctagagcca ccatgagact ttccttcctg ac 32

<210> 30
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: reverse primer
for the PCR amplification of murine lymphotactin

<220>
<221> misc_feature
<222> Complement((7)..(9))
<223> encodes the C-terminal amino acid residue of
murine lymphotactin

<400> 30
ggatccccca gtcagggtta ctgctg 26

<210> 31
<211> 57
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: coding
sequence at the junction between murine
lymphotactin and KS-IL2 heavy chain

<220>
<221> misc_feature
<222> (1)..(3)
<223> encodes the C-terminal amino acid residue of
murine lymphotactin

<220>
<221> misc_feature
<222> (55)..(57)
<223> encodes the N-terminal amino acid residue of the
KS-IL2 heavy chain

<400> 31
cccgatccg gaggttcagg gggcggaggt agcggcggag ggggctcctt aagccag 57

<210> 32
<211> 17
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: protein
sequence at the junction between murine
lymphotactin and KS-IL2 heavy chain

<400> 32

Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Leu
1 5 10 15

Ser