Wave operator and propagator

	$\Delta_{1}^{\#1}{}_{lphaeta}$	$\Delta_{1}^{\#2}{}_{lphaeta}$	$\Delta_{1}^{\#3}{}_{lphaeta}$	$\Delta_{1}^{\#1}{}_{\alpha}$	$\Delta_{1^{-}\alpha}^{\#2}$	$\Delta_{1^{-}\alpha}^{\#3}$	$\Delta_{1^{-} \alpha}^{\#4}$	$\Delta_{1^{-} \ lpha}^{\# 5}$	$\Delta_{1^{-}\ lpha}^{\#6}$	${\mathcal T}_{1^-lpha}^{\sharp 1}$
$\Delta_{1}^{\#1} \dagger^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
$\Delta_{1}^{#2} \dagger^{lphaeta}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2(a_0^2 - 14a_0a_1k^2 - 35a_1^2k^4)}{a_0^2(a_0 - 29a_1k^2)}$	$\frac{1}{a_0^2 - 29 a_0 a_1 k^2}$	0	0	0	0	0	0	0
$\Delta_{1}^{#3} \dagger^{lphaeta}$	0	$\frac{40\sqrt{2} a_1 k^2}{a_0^2 - 29 a_0 a_1 k^2}$	$\frac{4}{a_0-29a_1k^2}$	0	0	0	0	0	0	0
$\Delta_1^{#1} \uparrow^{lpha}$	0	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$-\frac{2k^2}{\sqrt{3} a_0 (2+k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$	0	$-\frac{2i\sqrt{2}k}{a_0(2+k^2)}$
$\Delta_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$\frac{a_0^2 (4+k^2)^2 - 30 a_0 a_1 k^2 (4+k^2) (4+3 k^2) + a_1^2 k^4 (6416 + 7928 k^2 + 1901 k^4)}{2 a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{k^2 (a_0^2 (-2+k^2) + a_0 a_1 (560 + 302 k^2 + 71 k^4) - 2 a_1^2 k^2 (9440 + 1901 k^2 (4+k^2)))}{2 \sqrt{6} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0+a_1 (40-31 k^2))}{2 a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{k^2 (2 a_0^2 (5 + 2 k^2) - a_0 a_1 (880 + 778 k^2 + 199 k^4) + a_1^2 k^2 (9440 + 1901 k^2 (4 + k^2)))}{2 \sqrt{3} a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{k^2 \left(-a_0 + a_1 \left(200 + 43 k^2\right)\right)}{\sqrt{6} \ a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$-\frac{i k (-30 a_0 a_1 k^4 + a_0^2 (4 + k^2) + 27 a_1^2 k^4 (-28 + 3 k^2))}{a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$
$\Delta_{1}^{#3} \dagger^{\alpha}$	0	0	0	$-\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$	$\frac{k^2 (a_0^2 (-2+k^2) + a_0 a_1 (560 + 302 k^2 + 71 k^4) - 2 a_1^2 k^2 (9440 + 1901 k^2 (4+k^2)))}{2 \sqrt{6} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{-a_0^2 \left(76+52 k^2+3 k^4\right)+4 a_0 a_1 k^2 \left(472+214 k^2+19 k^4\right)+4 a_1^2 k^4 \left(5120+7280 k^2+1901 k^4\right)}{12 a_0^2 \left(2+k^2\right)^2 \left(a_0-33 a_1 k^2\right)}$	$\frac{\sqrt{5} (10 a_0 + (3 a_0 - 328 a_1) k^2 - 62 a_1 k^4)}{12 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{2{a_0}^2(-2+k^2) + a_0a_1k^2(472 + 934k^2 + 289k^4) - 2a_1^2k^4(5120 + 7280k^2 + 1901k^4)}{6\sqrt{2}{a_0}^2(2+k^2)^2(a_0 - 33a_1k^2)}$	$-\frac{2 a_0 + (3 a_0 - 56 a_1) k^2 + 86 a_1 k^4}{6 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{i k (54 a_1^2 k^4 (40 + 3 k^2) + a_0^2 (6 + 5 k^2) - 3 a_0 a_1 k^2 (86 + 23 k^2))}{\sqrt{6} a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$
$\Delta_1^{\#4} \uparrow^{\alpha}$	0	0	0	0	$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0+a_1 (40-31 k^2))}{2 a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{\sqrt{5} (10 a_0 + k^2 (3 a_0 - 2 a_1 (164 + 31 k^2)))}{12 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{1}{12a_0-396a_1k^2}$	$\frac{\sqrt{\frac{5}{2}} (-2 a_0 + a_1 k^2 (164 + 31 k^2))}{6 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{i\sqrt{\frac{5}{6}}k(a_0-51a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$
$\Delta_1^{\#5} \uparrow^{\alpha}$	0	0	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	$\frac{k^2 \left(2 a_0^{ 2} (5 + 2 k^2) - a_0 a_1 (880 + 778 k^2 + 199 k^4) + a_1^{ 2} k^2 (9440 + 1901 k^2 (4 + k^2))\right)}{2 \sqrt{3} a_0^{ 2} (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{2a_0^2(-2+k^2) + a_0a_1k^2(472 + 934k^2 + 289k^4) - 2a_1^2k^4(5120 + 7280k^2 + 1901k^4)}{6\sqrt{2}a_0^2(2+k^2)^2(a_0 - 33a_1k^2)}$	$\frac{\sqrt{\frac{5}{2}} \left(-2 a_0 + a_1 k^2 \left(164 + 31 k^2\right)\right)}{6 a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$\frac{4 a_0^2 (17 + 14 k^2 + 3 k^4) - 4 a_0 a_1 k^2 (236 + 287 k^2 + 77 k^4) + a_1^2 k^4 (5120 + 7280 k^2 + 1901 k^4)}{6 a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$	$-\frac{a_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{i k (2 a_0^2 (3+k^2)-27 a_1^2 k^4 (40+3 k^2)+3 a_0 a_1 k^2 (34+7 k^2))}{\sqrt{3} a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$
$\Delta_1^{\#6} \uparrow^{lpha}$	0	0	0	0	$\frac{k^2 \left(-a_0 + a_1 \left(200 + 43 k^2\right)\right)}{\sqrt{6} \ a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$-\frac{2 a_0 + (3 a_0 - 56 a_1) k^2 + 86 a_1 k^4}{6 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{a_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{5}{3(a_0-33a_1k^2)}$	$-\frac{i\sqrt{\frac{2}{3}}k(a_0+57a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$
${\mathcal T}_1^{\sharp 1}$ † lpha	0	0	0	$\frac{2i\sqrt{2}k}{2a_0+a_0k^2}$	$\frac{i(-30 a_0 a_1 k^5 + a_0^2 k(4+k^2) + 27 a_1^2 k^5 (-28+3 k^2))}{a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$	$-\frac{i\left(54a_{1}^{2}k^{5}(40+3k^{2})+a_{0}^{2}k(6+5k^{2})\cdot3a_{0}a_{1}k^{3}(86+23k^{2})\right)}{\sqrt{6}a_{0}^{2}(2+k^{2})^{2}(a_{0}-33a_{1}k^{2})}$	$\frac{i\sqrt{\frac{5}{6}} k(a_0-51a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$	$-\frac{i\left(2{a_{0}}^{2}k(3+k^{2})\text{-}27{a_{1}}^{2}k^{5}(40+3k^{2})+3a_{0}a_{1}k^{3}(34+7k^{2})\right)}{\sqrt{3}{a_{0}}^{2}(2+k^{2})^{2}(a_{0}\text{-}33a_{1}k^{2})}$	$\frac{i\sqrt{\frac{2}{3}}k(a_0+57a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$	$\frac{2k^2(a_0^2+30a_0a_1k^2-459a_1^2k^4)}{a_0^2(2+k^2)^2(a_0-33a_1k^2)}$

	${\cal A}_{1}^{\sharp 1}{}_{lphaeta}$	$\mathcal{A}_{1}^{\#2}{}_{lphaeta}$	${\mathcal R}_{1}^{\#3}{}_{lphaeta}$	${\mathcal R}_{1^-lpha}^{\sharp 1}$	$\mathcal{A}_{1}^{\#2}{}_{\alpha}$	${\mathcal R}_1^{\sharp 3}{}_{lpha}$	${\mathscr R}_{1^- \; lpha}^{\# 4}$	${\mathcal R}_{1^- lpha}^{{\#}^5}$	${\mathcal R}_{1^{-}lpha}^{ ext{\#}6}$	$h_{1}^{\#1}{}_{\alpha}$
$\mathcal{A}_{1}^{\sharp 1}\dagger^{lphaeta}$	$\frac{1}{4} \left(-a_0 - 15 a_1 k^2 \right)$	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	0	0	0	0	0	0
$\mathcal{A}_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\mathcal{A}_{1}^{\sharp 3}\dagger^{lphaeta}$	$5a_1k^2$	0	$\frac{1}{4}(a_0-29a_1k^2)$	0	0	0	0	0	0	0
$\mathcal{A}_{1}^{\sharp 1}\! +^lpha$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 a_1 k^2 \right)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2} \sqrt{3} a_1 k^2$	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	$5\sqrt{\frac{3}{2}}a_1k^2$	$-\frac{5a_1k^2}{\sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{2}}$
$\mathcal{A}_{1}^{\#2}\dagger^{lpha}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\mathcal{A}_{1}^{#3}\dagger^{\alpha}$	0	0	0	$\frac{5}{2} \sqrt{3} a_1 k^2$	0	- <u>a₀</u> 3	$\frac{1}{6} \sqrt{5} (a_0 - 8 a_1 k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	<u>iao k</u> 4 √6
$\mathcal{A}_{1}^{\#4}\dagger^{lpha}$	0	0	0	$-\frac{5}{2} \sqrt{\frac{5}{3}} a_1 k^2$	0	$\frac{1}{6} \sqrt{5} (a_0 - 8 a_1 k^2)$		$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16 a_1 k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	$-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$
$\mathcal{A}_{1}^{\#5}\dagger^{lpha}$	0	0	0	$5\sqrt{\frac{3}{2}}a_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16 a_1 k^2)$	<u>a₀</u> 3	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$
$\mathcal{A}_{1}^{\#6}\dagger^{lpha}$	0	0	0	$-\frac{5a_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	$\frac{5}{12}$ $(a_0 - 17 a_1 k^2)$	$\frac{i a_0 k}{4 \sqrt{6}}$
$h_{1}^{#1} + \alpha$	0	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{6}}$	0

			. , –	. 10	1 0	. 40	. 10
	$\Delta_0^{\#1}$	Δ ₀ #2	Δ ₀ ^{#3}	$\Delta_0^{\#4}$	${\mathcal T}^{\sharp 1}_{0^+}$	${\cal T}_0^{\#2}$	$\Delta_0^{\#1}$
<u>+</u>	0	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$-\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	$-\frac{2i\sqrt{2}}{a_0k}$	$-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	0
2 + [$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{48 (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	$\frac{16(19a_0 + (3a_0 + 197a_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8i\sqrt{3}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{24 i k (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	0
<u></u> +	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{16(19a_0 + (3a_0 + 197a_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{16(35a_0+(6a_0+197a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$\frac{8i(a_0-65a_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$-\frac{8ik(19a_0+(3a_0+197a_1)k^2)}{a_0^2(16+3k^2)^2}$	0
<u> </u>	$-\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$\frac{32 (13 a_0 + (3 a_0 - 197 a_1) k^2)}{3 a_0^2 (16 + 3 k^2)^2}$	$\frac{8i\sqrt{\frac{2}{3}}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{4i\sqrt{2}k(10a_0+(3a_0-394a_1)k)}{a_0^2(16+3k^2)^2}$	0
<u>+</u>	2 i √2 a ₀ k	$\frac{8i\sqrt{3}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$-\frac{8i(a_0-65a_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$-\frac{8i\sqrt{\frac{2}{3}}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{4(a_0-25a_1k^2)}{{a_0}^2k^2}$	$\frac{4\sqrt{3}(a_0-65a_1k^2)}{a_0^2(16+3k^2)}$	0
² †	$\frac{2i\sqrt{6}k}{16a_0 + 3a_0k^2}$	$-\frac{24 i k (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	$\frac{8ik(19a_0 + (3a_0 + 197a_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{4i\sqrt{2}k(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$\frac{4\sqrt{3}(a_0-65a_1k^2)}{a_0^2(16+3k^2)}$	$-\frac{12 k^2 (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	0
1+	0	0	0	0	0	0	$-\frac{2}{a_0-a_1k^2}$

Δ ₀ -	U		U	C	,		0	
	$\mathcal{A}_{0^{+}}^{\sharp 1}$	$\mathcal{A}_{0}^{\#2}$	$\mathcal{A}_{0}^{\#3}$	${\mathcal R}_{0}^{\#4}$	$h_{0}^{\#1}$	h ₀ ^{#2}	$\mathcal{A}_0^{\#.1}$	
#1 0+	$\frac{1}{2}\left(-a_0+25a_1k^2\right)$	0	$10\sqrt{\frac{2}{3}}a_1k^2$	$-\frac{10 a_1 k^2}{\sqrt{3}}$	$-\frac{i a_0 k}{2 \sqrt{2}}$	0	0	
#2 0 ⁺ †	0	0	<u>a₀</u> 2	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	
#3 0 ⁺ †	$10 \sqrt{\frac{2}{3}} a_1 k^2$	<u>a₀</u> 2	$\frac{23a_1k^2}{3}$	$-\frac{3a_0+46a_1k^2}{6\sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{1}{4}\bar{l}a_0k$	0	
#4 0 ⁺ †	$-\frac{10a_1k^2}{\sqrt{3}}$	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{3a_0+46a_1k^2}{6\sqrt{2}}$	$\frac{1}{6} (3 a_0 + 23 a_1 k^2)$	$-\frac{i a_0 k}{4 \sqrt{6}}$	<u>ia₀ k</u> 4 √2	0	
#1 0+ †	$\frac{i a_0 k}{2 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{3}}$	<i>i</i> a ₀ k 4 √6	0	0	0	
#2 0 ⁺ †	0	0	<u>i a ₀ k</u> 4	$-\frac{i a_0 k}{4 \sqrt{2}}$	0	0	0	
# <u>1</u> †	0	0	0	0	0	0	$\frac{1}{2} \left(-a_0 + a_1 k^2 \right)$	

	${\cal A}^{\#1}_{2^+lphaeta}$	${\cal A}_{2}^{\#2}{}_{lphaeta}$	${\cal A}_{2}^{\#3}{}_{lphaeta}$	$h_{2}^{\#1}{}_{lphaeta}$	${\mathcal H}_2^{\sharp 1}{}_{lphaeta\chi}$	$\mathcal{A}_{2-lphaeta\chi}^{\#2}$
$\mathcal{A}_{2}^{\sharp 1}\dagger^{lphaeta}$	$\frac{1}{4} (a_0 + 11 a_1 k^2)$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\frac{5 a_1 k^2}{\sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0
$\mathcal{A}_{2}^{\#2}$ † $^{\alpha\beta}$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\frac{1}{6} \left(-3 a_0 + a_1 k^2 \right)$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	0	0
$\mathcal{A}_{2}^{\#3}\dagger^{\alpha\beta}$	$\frac{5 a_1 k^2}{\sqrt{3}}$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{1}{12} \left(3 a_0 + a_1 k^2 \right)$	$-\frac{i a_0 k}{4 \sqrt{6}}$	0	0
$h_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
$\mathcal{A}_{2}^{\sharp 1}\dagger^{lphaeta\chi}$	0	0	0	0	$\frac{1}{4}(a_0-a_1k^2)$	0
$\mathcal{A}_{2}^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{1}{4}(a_0-5a_1k^2)$

Quadratic (free) actio	n
$S == \iiint (\frac{1}{4} (2 a_0 \mathcal{A}^{\alpha})^{\beta})$	$\mathcal{H}_{\beta\chi}^{\chi} + 4 h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \left(-2 a_0 \mathcal{A}_{\beta\chi\alpha} + 4 \Delta_{\alpha\beta\chi}\right)$
	$a_0 h_{\chi}^{\chi} \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha\beta} + a_0 h_{\chi}^{\chi} \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha\beta} - 2 a_0 h_{\alpha\chi} \partial_{\beta} \mathcal{A}^{\alpha\beta\chi} +$
	$22 a_1 \partial^{\alpha} \mathcal{A}^{\chi \delta}{}_{\delta} \partial_{\beta} \mathcal{A}_{\chi \alpha}{}^{\beta} + 2 a_1 \partial^{\alpha} \mathcal{A}_{\chi \alpha}{}^{\beta} \partial_{\beta} \mathcal{A}^{\chi \delta}{}_{\delta} -$
	$76 a_1 \partial^{\alpha} \mathcal{A}^{\chi \delta}_{\chi} \partial_{\beta} \mathcal{A}_{\delta \alpha}^{\beta} + 2 a_0 h_{\beta \chi} \partial^{\chi} \mathcal{A}^{\alpha \beta}_{\alpha} - 2 a_1 \partial_{\beta} \mathcal{A}^{\delta}_{\chi \delta}$
	$\partial^{\chi} \mathcal{A}^{\alpha}_{\alpha}{}^{\beta} - 2 a_{1} \partial_{\beta} \mathcal{A}^{\delta}_{\delta \chi} \partial^{\chi} \mathcal{A}^{\alpha}_{\alpha}{}^{\beta} + 2 a_{1} \partial_{\chi} \mathcal{A}^{\delta}_{\beta}{}^{\delta}_{\delta} \partial^{\chi} \mathcal{A}^{\alpha}_{\alpha}{}^{\beta}$
	$2a_1\partial_{\chi}\mathcal{A}^{\delta}_{\beta\delta}\partial^{\chi}\mathcal{A}^{\alpha}_{\alpha}^{\beta}-2a_1\partial_{\chi}\mathcal{A}^{\delta}_{\delta\beta}\partial^{\chi}\mathcal{A}^{\alpha}_{\alpha}^{\beta}-$
	$22 a_1 \partial_{\beta} \mathcal{A}_{\chi \delta}^{\delta} \partial^{\chi} \mathcal{A}_{\alpha}^{\alpha\beta} + 38 a_1 \partial_{\beta} \mathcal{A}_{\chi \delta}^{\delta} \partial^{\chi} \mathcal{A}_{\alpha}^{\alpha\beta} +$
	$22 a_1 \partial_{\chi} \mathcal{A}_{\beta \delta}^{\delta} \partial^{\chi} \mathcal{A}_{\alpha}^{\alpha\beta} - 2 a_1 \partial_{\chi} \mathcal{A}_{\beta \delta}^{\delta} \partial^{\chi} \mathcal{A}_{\alpha}^{\alpha\beta} +$
	$4a_1\partial_{\alpha}\mathcal{A}_{\chi\delta}^{\delta}\partial^{\chi}\mathcal{A}^{\alpha\beta}_{\beta}-4a_1\partial_{\chi}\mathcal{A}_{\alpha\delta}^{\delta}\partial^{\chi}\mathcal{A}^{\alpha\beta}_{\beta}-$
	$2a_1\partial_\chi\mathcal{A}^{lphaeta\chi}\partial_\delta\mathcal{A}_{lphaeta}^{\delta}$ - $2a_1\partial_\beta\mathcal{A}^{lphaeta\chi}\partial_\delta\mathcal{A}_{lpha\chi}^{\delta}$ -
	$2a_1\partial_{\beta}\mathcal{A}^{\alpha\beta\chi}\partial_{\delta}\mathcal{A}_{\alpha}{}^{\delta}_{\chi} + 38a_1\partial_{\chi}\mathcal{A}^{\alpha\beta\chi}\partial_{\delta}\mathcal{A}_{\beta\alpha}{}^{\delta} +$
	$4a_1\partial^{\chi}\mathcal{A}^{\alpha}_{\alpha}{}^{\beta}\partial_{\delta}\mathcal{A}^{\delta}_{\beta}{}_{\chi}$ - 22 $a_1\partial^{\chi}\mathcal{A}^{\alpha\beta}_{\beta}\partial_{\delta}\mathcal{A}^{\delta}_{\chi\alpha}$ +
	$2a_1\partial^{\chi}\mathcal{A}^{\alpha\beta}_{\alpha}\partial_{\delta}\mathcal{A}_{\chi\beta}^{\delta}$ - $2a_1\partial_{\beta}\mathcal{A}^{\alpha\beta\chi}\partial_{\delta}\mathcal{A}_{\chi\alpha}^{\delta}$ -
	$2 a_1 \partial^{\chi} \mathcal{A}^{\alpha\beta}_{\beta} \partial_{\delta} \mathcal{A}_{\chi \alpha}^{\delta} + 2 a_1 \partial^{\chi} \mathcal{A}_{\beta\alpha}^{\beta} \partial_{\delta} \mathcal{A}_{\chi}^{\delta\alpha} +$
	$4a_1\partial^{\chi}\mathcal{A}^{\alpha}_{\alpha}{}^{\beta}\partial_{\delta}\mathcal{A}^{\delta}_{\chi}{}^{\delta}_{\beta}$ $-2a_1\partial_{\beta}\mathcal{A}^{\alpha}_{\alpha}{}^{\beta}\partial_{\delta}\mathcal{A}^{\chi}_{\chi}{}^{\delta}$ $+$
	$4a_1\partial_{\beta}\mathcal{A}^{\alpha}_{\alpha}{}^{\beta}\partial_{\delta}\mathcal{A}^{\chi\delta}_{\chi}$ $-2a_1\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha}\partial_{\delta}\mathcal{A}^{\chi\delta}_{\chi}$ $+$
	$2 a_1 \partial_{\alpha} \mathcal{A}_{\beta \chi \delta} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} + 4 a_1 \partial_{\alpha} \mathcal{A}_{\beta \delta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} +$
	$4 a_1 \partial_{\alpha} \mathcal{A}_{\chi\beta\delta} \partial^{\delta} \mathcal{A}^{\alpha\beta\chi} + 2 a_1 \partial_{\alpha} \mathcal{A}_{\chi\delta\beta} \partial^{\delta} \mathcal{A}^{\alpha\beta\chi} +$
	$4a_1\partial_{\alpha}\mathcal{A}_{\delta\beta\chi}\partial^{\delta}\mathcal{A}^{\alpha\beta\chi} + 4a_1\partial_{\alpha}\mathcal{A}_{\delta\chi\beta}\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}$
	$2a_1\partial_{\beta}\mathcal{A}_{\alpha\chi\delta}\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}$ - $2a_1\partial_{\beta}\mathcal{A}_{\alpha\delta\chi}\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}$ -
	$2a_1\partial_{\beta}\mathcal{A}_{\chi\delta\alpha}\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}-2a_1\partial_{\chi}\mathcal{A}_{\alpha\beta\delta}\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}-$
	$2 a_1 \partial_{\chi} \mathcal{A}_{\beta \alpha \delta} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} + 4 a_1 \partial_{\chi} \mathcal{A}_{\beta \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} -$
	$4 a_1 \partial_{\delta} \mathcal{A}_{\alpha\beta\chi} \partial^{\delta} \mathcal{A}^{\alpha\beta\chi} - 4 a_1 \partial_{\delta} \mathcal{A}_{\alpha\chi\beta} \partial^{\delta} \mathcal{A}^{\alpha\beta\chi} -$
	$2a_1 \partial_{\delta} \mathcal{A}_{\beta \alpha \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 2a_1 \partial_{\delta} \mathcal{A}_{\beta \chi \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} -$
	$2 a_1 \partial_{\delta} \mathcal{A}_{\chi\beta\alpha} \partial^{\delta} \mathcal{A}^{\alpha\beta\chi} + 2 a_1 \partial_{\beta} \mathcal{A}_{\delta\alpha}^{\ \beta} \partial^{\delta} \mathcal{A}^{\chi\alpha}_{\ \chi} +$
	$2a_1\partial_{\beta}\mathcal{A}_{\delta\alpha}^{ \beta}\partial^{\delta}\mathcal{A}_{\chi}^{\chi\alpha}))[t,x,y,z]dzdydxdt$

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$2\mathcal{T}_{0^{+}}^{\#2} - ik\Delta_{0^{+}}^{\#2} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \Delta^{\alpha\beta\chi}$	1
$\Delta_{0^{+}}^{\#3} + 2 \Delta_{0^{+}}^{\#4} + 3 \Delta_{0^{+}}^{\#2} == 0$	$\partial_{\alpha}\Delta^{\alpha\beta}_{\ \beta} == 0$	1
$6 \mathcal{T}_{1}^{\#1\alpha} - i k (3 \Delta_{1}^{\#2\alpha} -$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \Delta^{\beta \alpha \chi} ==$	3
$\Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha}) == 0$	$2\partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta} + \partial_{\delta}\partial_{\chi}\partial_{\beta}\partial^{\alpha}\Delta^{\beta\chi\delta}$	
$2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} +$	$\partial_{\beta}\partial^{\alpha}\Delta^{\beta\chi}_{\chi} == \partial_{\chi}\partial^{\chi}\Delta^{\alpha\beta}_{\beta}$	3
$2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$		
Total constraints/gauge genera	ators:	8

Massive and massless spectra

	Massive partic	le
?	Pole residue:	$-\frac{4164}{24389a_1} >$
=1+	Polarisations:	3
?	Square mass:	$\frac{a_0}{29a_1} > 0$
?	Spin:	1
	Parity:	Even

	Massive particle			
?	Pole residue:	$\frac{2}{7a_1}$		
$J^P = 3^-$	Polarisations:	7		
$\overrightarrow{k^{\mu}}$	Square mass:	$-\frac{a_0}{7a_1}$		
?	Spin:	3		
	Parity:	Odd		

lassive partic		
ole residue:	$\frac{4}{5a_1} > 0$?
olarisations:	5	
quare mass:	$\frac{a_0}{5a_1} > 0$	2
pin:	2	•
arity:	Odd	

sive partic	?	
residue:	$-\frac{2}{a_1} > 0$	
risations:	1	?
are mass:	$\frac{a_0}{a_1} > 0$	
:	0	
tv:	Odd	

, ,	Quadratic pole	<u> </u>
?	Pole residue:	$-\frac{1}{a_0}$
	Polarisations:	2
1		

 $\Delta_{2}^{\#3}_{+\alpha\beta}$

 $-\frac{2\sqrt{2}(a_0+52a_1k^2)}{3a_0^2}$

 $\frac{8(a_0-26a_1k^2)}{3a_0^2}$

 $4i\sqrt{\frac{2}{3}}(a_0+31a_1k^2)$

 ${\cal T}_{2}^{\#1}{}_{lphaeta}$

 $\frac{4i\sqrt{2}}{a_0k}$

 $-\frac{4\,i\,(a_0+31\,a_1\,k^2)}{\sqrt{3}\,{a_0}^2\,k}$

 $4i\sqrt{\frac{2}{3}}(a_0+31a_1k^2)$

 $-\frac{8 \left(a_0 + 11 a_1 k^2\right)}{{a_0}^2 k^2}$

0

0

 $\Delta_{2}^{\#1}{}_{\alpha\beta\chi}$ $\Delta_{2}^{\#2}{}_{\alpha\beta\chi}$

 $\frac{4}{a_0 - a_1 k^2}$

0

 $\frac{4}{a_0-5\,a_1\,k^2}$

 $\Delta_{2}^{\#2}{}_{lphaeta}$

 $-\frac{8(a_0+13a_1k^2)}{3a_0^2}$

 $-\frac{2\sqrt{2}(a_0+52a_1k^2)}{3a_0^2}$

 $-\frac{4i\sqrt{2}}{a_0k} \qquad \frac{4i(a_0+31a_1k^2)}{\sqrt{3}a_0^2k}$

 $\Delta_2^{\#2} \uparrow^{\alpha\beta\chi}$