See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231728853

Platinum(II) and Mixed Platinum(II)/Gold(I) σ-Alkynyl Complexes. The First Anionic σ-Alkynyl Metal Polymers

ARTICLE in ORGANOMETALLICS · APRIL 2005

Impact Factor: 4.13 · DOI: 10.1021/om0501273

56 13

3 AUTHORS, INCLUDING:

CITATIONS

Jose Vicente
University of Murcia

285 PUBLICATIONS 7,419 CITATIONS

SEE PROFILE

READS

Teresa Chicote
University of Murcia

69 PUBLICATIONS **1,561** CITATIONS

SEE PROFILE

Platinum(II) and Mixed Platinum(II)/Gold(I) σ -Alkynyl Complexes. The First Anionic σ -Alkynyl Metal Polymers

José Vicente,*,† María-Teresa Chicote, and Miguel M. Alvarez-Falcón

Grupo de Química Organometálica, Departamento de Química Inorgánica, Universidad de Murcia, Apartado 4021, Murcia, 30071 Spain

Peter G. Jones*,‡

Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig, Germany

Received February 22, 2005

The alkynes $C_6Me_4(C = CH)_2 - 1,4$, $C_6Me_4(C = CH)_2 - 1,2$, and $C_6Me_3(C = CH)_3 - 1,3,5$ react with cis-[PtCl₂(PAr₃)₂] and NHEt₂ and a catalytic amount of CuI to give complexes trans-[Pt- $(C \equiv CC_6Me_4C \equiv CH-4)_2(PAr_3)_2$ [Ar = Ph (1a), C_6H_4Me-4 (To) (1b)], trans-[Pt($C \equiv CC_6Me_4$ - $C = CH-2)_2(PAr_3)_2$ [Ar = Ph (2a), To (2b)], and $trans-[Pt\{C = CC_6Me_3(C = CH)_2-3,5\}_2(PAr_3)_2]$ [Ar = Ph(3a), To(3b)], respectively. The reactions of $[Au(acac)PAr_3]$ (acac = acetylacetonato) with complex 1a or 1b (2:1) or with 3b (4:1) give the neutral mixed PtIIAuI2 or PtIIAuI4 σ -alkynyl complexes trans-[Pt(C \equiv CC₆Me₄C \equiv CAuPAr₃-4)₂(PAr₃)₂] [Ar = Ph (**4a**), To (**4b**)] or trans-[Pt{C=CC₆Me₃(C=CAuPTo₃)₂-3,5}₂(PTo₃)₂] (**5b**), respectively. Additionally, the replacement of the triarylphosphine ligands present in 1a, 2a, 4b, or 5b with various trialkylphosphines produces the homologous derivatives with PMe₃ (1c, 2c, 4c, 5c), PEt₃ (1d), or P(ⁿBu)₃ (1e), respectively. PPN[Au(acac)₂] reacts with complex 1a, 1c, or 1e (1:1) to give (PPN)_n- $[trans-Pt\{(C \equiv CC_6Me_4C \equiv C-4)_2Au\}(PR_3)_2]_n$ [R = Ph (6a), Me (6c), "Bu (6e)], while its reaction with **3b** (2:1) produces $(PPN)_{2n}[trans-Pt\{C \equiv CC_6Me_3(C \equiv C)_2-3,5Au_2(PTo_3)_2]_n$ (7). Complexes **6a**, **6c**, **6e**, and **7** are the first anionic σ -alkynyl metal polymers described so far. The crystal structures of 1a·CHCl₃, 2b·2CHCl₃, and 4b·5CH₂Cl₂ have been determined. Each complex displays crystallographic inversion symmetry.

Introduction

Most of the heteronuclear (alkynyl)gold(I) complexes described in the literature are clusters containing Cu, Ag, Fe, or Ir,¹ and those structurally characterized by X-ray crystallography show, apart from metal—metal bonds, interactions between the π -electron density of the AuC \equiv C group and the other metal center. These bonding interactions are also present in most of the few noncluster heteronuclear (alkynyl)gold(I) complexes containing Cu, Ag, Mo, W, or Pt.²-⁴ Additionally, some heteronuclear alkynylgold(I) complexes of the type [Au(C \equiv C-X)L] have been reported,².⁵-² X being an organometallic fragment in which the second metal is not coordinated to the C \equiv C moiety (Chart 1). Most such

‡ E-mail: p.jones@tu-bs.de.

(2) Lang, H. R.; Kocher, S.; Back, S.; Rheinwald, G.; Vankoten, G. Organometallics 2001, 20, 1968. Yam, V. W. W.; Cheung, K.-L.; Cheng, E. C.-C.; Zhu, N.; Cheung, K. K. J. Chem. Soc., Dalton Trans. 2003,

complexes were obtained from organometallic complexes bearing $C \equiv CH$ units and chlorogold(I) complexes in basic conditions.⁵⁻⁷ Some of them display NLO^5 or

NMe₂

[†] E-mail: jvs1@um.es. www: http://www.um.es/gqo.

⁽¹⁾ Abu-Salah, O. M.; Razzak, A.; Al-Ohaly, A. R.; Mutter, Z. F. J. Organomet. Chem. 1990, 389, 427. Abu-Salah, O. M. J. Organomet. Chem. 1998, 565, 211. Abu-Salah, O. M.; Knobler, C. B. J. Organomet. Chem. 1986, 302, C10. Bruce, M. I.; Corbin, P. E.; Humphrey, P. A.; Koutsantonis, G. A.; Liddell, M. J.; Tiekink, E. R. T. J. Chem. Soc., Chem. Commun. 1990, 674. Abu-Salah, O. M.; Al-Ohaly, A. A.; Knobler, C. B. J. Chem. Soc., Chem. Commun. 1985, 1502. Hussain, M. S.; Ul-Haque, M.; Abu-Salah, O. M. J. Cluster Sci. 1996, 7, 167.

⁽³⁾ Ferrer, M.; Rossell, O.; Seco, M.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics 1995, 14, 57.
(4) Bruce, M. I.; Hall, B. C.; Skelton, B. W.; Smith, M. E.; White, A.

⁽⁴⁾ Bruce, M. I.; Hall, B. C.; Skelton, B. W.; Smith, M. E.; White, A. H. J. Chem. Soc., Dalton Trans. 2002, 995.

⁽⁵⁾ Hurst, S. K.; Humphrey, M. G.; Morrall, J. P.; Cifuentes, M. P.; Samoc, M.; Luther-Davies, B.; Heath, G. A.; Willis, A. C. *J. Organomet. Chem.* **2003**, *670*, 56.

⁽⁶⁾ Wong, W.-Y.; Ho, K.-Y.; Choi, K.-H. *J. Organomet. Chem.* **2003**, 670, 17. Back, S.; Gossage, R. A.; Lang, H.; van Koten, G. *Eur. J. Inorg. Chem.* **2000**, 1457.

⁽⁷⁾ Shiotsuka, M.; Yamamoto, Y.; Okuno, S.; Kiton, M.; Nozaki, K.; Onaka, S. J. Chem. Soc., Chem. Commun. 2002, 590.

luminescent properties, 7 or their electrical properties have been studied with the purpose of designing molecular wires.⁷

Among the great variety of heteropolynuclear σ alkynyl complexes of any metal described in the literature, 8-13 we have found only two PtIIAuI derivatives, which contain 1,4-butadiyndiyl4,14 fragments and were characterized only by elemental analyses and NMR. We have just preliminarily reported the synthesis and crystal structure of the σ-alkynyl Pt^{II}₂Au^I triangle $PPN[Au\{Pt(PMe_3)_2\}_2\{\mu-C_6Me_4(C = C)_2-1,2\}_3]$ starting from complex 2c. 15 In general, polymers based on −C≡C− units and transition metals alternating along the polymeric backbone have been found to be of outstanding interest. 16,17 Most such σ -alkynyl polymers are homonuclear species, with metals of groups 8,18 9,10,11,19 and

(8) Wong, W.-Y.; Wong, C.-K.; Lu, G.-L.; Cheah, K.-W.; Shi, J.-X.; Lin, Z. J. Chem. Soc., Dalton Trans. 2002, 4587. Peters, T. B.; Zheung, Q.; Stahl, J.; Bohling, J. C.; Arif, A. M.; Hampel, F.; Gladysz, J. A. J. Organomet. Chem 2002, 641, 53.

(9) Sun, S.-S.; Anspach, J. A.; Lees, A. J.; Zavalij, P. Y. Organometallics **2002**, 21, 685. Lang, H. *Angew. Chem., Int. Ed. Engl.* **1994**, 33, 547. Belluco, U.; Bertani, R.; Michelin, R. A.; Mozzon, M. *J. Organomet.* Chem. 2000, 600, 37. Hurst, S. K.; Ren, T. J. Organomet. Chem. 2003, 670, 188. Rigaut, S.; Perruchon, J.; Pichon, L. L.; Touchard, D.; Dixneuf, P. H. J. Organomet. Chem. 2003, 670, 37. Davies, S. J.; Johnson, F. G.; Lewis, J.; Khan, M. S. J. Organomet. Chem. **1991**, 401, C43. Yam, V. W. W.; Zhang, L. J.; Tao, C. H.; Wong, K. M. C.; Cheung, K. K. J. Chem. Soc., Dalton Trans. **2001**, 1111. Siemsen, P.; Gubler, U.; Bosshard, C.; Gunter, P.; Diederich, F. Chem. Eur. J. **2001**, 7, 1333. James, S. L.; Verspui, G.; Spek, A. L.; van Koten, G. J. Chem. Soc., Chem. Commun. 1996, 1309. Brady, M.; Weng, W. Q.; Zhou, Y. L.; Seyler, J. W.; Amoroso, A. J.; Arif, A. M.; Bohme, M.; Frenking, G.; Gladysz, J. A. J. Am. Chem. Soc. 1997, 119, 775. Weng, W. Q.; Bartik, T.; Brady, M.; Bartik, B.; Ramsden, J. A.; Arif, A. M.; Gladysz, J. A. J. N. J.; Raithby, P. R.; Younus, M.; White, A. J. P.; Williams, D. J.; Payne, N. N.; Yellowlees, L.; Beljonne, D.; Chawdhury, N.; Friend, R. H. Organometallics 1998, 17, 3034. Onitsuka, K.; Iuchi, A.; Fujimoto, M.; Takahashi, S. J. Chem. Soc., Chem. Commun. 2001, 741. Hurst, M.; Takanasn, S. J. Chem. Soc., Chem. Commun. 2001, 741. Hurst, S. K.; Cifuentes, M. P.; Humphrey, M. G. Organometallics 2002, 21, 2353. Berenguer, J. R.; Falvello, L. R.; Forniés, J.; Lalinde, E.; Tomas, M. Organometallics 1993, 12, 6. Bruce, M. I.; Koutsantonis, G. A.; Tiekink, E. R. T. J. Organomet. Chem. 1991, 407, 391. Sappa, E.; Tiripicchio, A.; Lanfredi, M. M. J. Organomet. Chem. 1983, 249, 391. Bartik, T.; Bartik, B.; Brady, M.; Dembinski, R.; Gladysz, J. A. Angew. Chem. Int. Ed. Engl. 1996, 35, 414. McLennen, A. L. Puddephatt R. Chem., Int. Ed. Engl. 1996, 35, 414. McLennan, A. J.; Puddephatt, R. J. Organometallics 1985, 4, 485. Hutton, A. T.; Shebanzadeh, B.; Shaw, B. L. J. Chem. Soc., Chem. Commun. 1984, 549. Akita, M.; Chung, M. C.; Sakurai, A.; Sugimoto, S.; Terada, M.; Tanaka, M.; Morooka, Y. Organometallics 1997, 16, 4882. Hu, Q.; Lo, M. F.; Williams, I. D.; Koda, N.; Uchimaru, Y.; Jia, G. J. Organomet. Chem. 2003, 670, 243. Lavastre, O.; Plass, J.; Bachmann, P.; Guesmi, S.; Moinet, C.; Dixneuf, P. H. Organometallics 1997, 16, 184.

(10) Khan, M. S.; Davies, S. J.; Kakkar, A. K.; Schwartz, D.; Lin, B.; Johnson, B. F. G.; Lewis, J. *J. Organomet. Chem.* **1992**, 424, 87. (11) Fyfe, H. B.; Mlekuz, M.; Zargarian, D.; Taylor, N. J.; Marder, T. B. J. Chem. Soc., Chem. Commun. 1991, 188.

(12) Bruce, M. I.; Davy, J.; Hall, B. C.; van Galen, Y. J.; Skelton, B.

W.; White, A. H. Appl. Organomet. Chem. 2002, 16, 559.

(13) Long, N. J.; White, A. J. P.; Williams, D. J.; Younus, M. J. Organomet. Chem. 2002, 649, 94. Khan, M. S.; Almandhary, M. R. A.; Alsuti, M. K.; Hisahm, A. K.; Raithby, P. R.; Ahrens, B.; Mahon, M. F.; Male, L.; Marseglia, E. A.; Tedesco, E.; Friend, R. H.; Kohler, A.; Feeder, N.; Teat, S. J. J. Chem. Soc., Dalton Trans. 2002, 1358. Long, N. J.; Martin, A. J.; Vilar, R.; White, A. J. P.; Williams, D. J.; Younus, M. Organometallics 1999, 18, 4261. Lewis, J.; Raithby, P. R.; Wong, W. Y. J. Organomet. Chem. 1998, 556, 219.

(14) Bruce, M. I.; Costuas, K.; Halet, J. F.; Hall, B. C.; Low, P. J.; Nicholson, B. K.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 2002, 383.

(15) Vicente, J.; Chicote, M. T.; Álvarez-Falcón, M. M.; Jones, P. G. Chem. Commun. 2004, 2658.

(16) Frapper, G.; Kertesz, M. Inorg. Chem. 1993, 32, 732

10,^{10,20,21} although some heteronuclear²² d⁶/d⁸ (Fe/Pd, Fe/Ni, and Ru/Pd) derivatives are also known. The overwhelming majority of these polymers present a linear rigid-rod structure and are neutral. A few cationic²³ and some 2D-graphite-like polymers²⁴ have also been reported, but anionic polymers were unknown so far. Our previous experience on the use of the "acac method"25 for the synthesis of alkynylgold(I) derivatives²⁶⁻²⁸ prompted us to prepare a family of bis-(alkynyl)Pt(II) derivatives bearing C≡CH units that could be used as starting materials for the synthesis of new heteronuclear Pt^{II}Au^I alkynyl compounds, including anionic polymeric species.

Experimental Section

The IR spectra, elemental analyses, and melting point determinations were carried out as described earlier.²⁹ Technical grade solvents were purified by standard procedures. Unless otherwise stated, the reactions were carried out at room temperature without any special precautions to exclude oxygen or moisture. The complexes cis-[PtCl2(PR3)2] were prepared from trans-[PtCl₂(NCPh)₂] and the appropriate phosphine (2: 1, in CH₂Cl₂, 1 h at room temperature) and [Au(acac)PR₃] as previously described for R = Ph.³⁰ The syntheses of C₆Me₄- $(C \equiv CH)_2$ -1,4,28 1,3,5-C₆Me₃ $(C \equiv CH)_3$ -1,3,5,31 and PPN[Au(acac)2]30 were previously described. The NMR spectra were measured in CDCl₃ with Bruker Avance 200, 300, or 400 spectrometers. Chemical shifts are referred to TMS (1H), CDCl₃ (13C), or H₃PO₄ (31P). The FAB⁺ mass spectra were measured with a Fisons VG-Autospec spectrometer using 3-nitrobenzyl alcohol as the matrix.

Synthesis of $C_6Me_4(C \equiv CSiMe_3)_2$ -1,2. $Me_3SiC \equiv CH (9 mL,$ 64 mmol) was added to a mixture of C₆Me₄I₂-1,2,³² (6.24 g, 16 mmol), cis-[PdCl₂(PPh₃)₂] (449 mg, 0.64 mmol), and CuI (245 mg, 1.29 mmol) in degassed NHEt2 (70 mL). The mixture was stirred under nitrogen for 6.5 days, and the solvent was removed under reduced pressure. The residue was stirred with Et₂O (120 mL) and filtered. The solution was concentrated to ca. 50 mL and chromatographed on neutral Al₂O₃ to give a

(19) Davies, S. J.; Johnson, B. F. G.; Khan, M. S.; Lewis, J. J. Chem.

Organomet. Chem. 1980, 188, 237.

(22) Lavastre, O.; Even, M.; Dixneuf, P. H.; Pacrean, A.; Vairon, J.-P. Organometallics 1996, 15, 1530.

(23) Onitsuka, K.; Ogawa, H.; Joh, T.; Takahashi, S. Chem. Lett.

(24) Khan, M. S.; Schwartz, D. J.; Pasha, N. A.; Kakkar, A. K.; Lin, B.; Raithby, P. R.; Lewis, J. Z. Anorg. Allg. Chem. **1992**, 616, 121. (25) Vicente, J.; Chicote, M. T. Coord. Chem. Rev. 1999, 193-195,

(26) Vicente, J.; Chicote, M. T.; Abrisqueta, M. D. J. Chem. Soc., Dalton Trans. 1995, 497. Vicente, J.; Chicote, M. T.; Abrisqueta, M. D.; Jones, P. G. Organometallics 1997, 16, 5628. Vicente, J.; Chicote, M.-T.; Abrisqueta, M.-D.; Guerrero, R.; Jones, P. G. Angew. Chem., Int. Ed. Engl. 1997, 36, 1203. Vicente, J.; Chicote, M. T.; Alvarez-Falcón, M. M.; Fox, M. A.; Bautista, D. Organometallics 2003, 22, 4792. (27) Vicente, J.; Chicote, M. T.; Abrisqueta, M. D.; Alvarez-Falcón, M. M. J. Organomet. Chem. 2002, 663, 40.

(28) Vicente, J.; Chicote, M. T.; Alvarez-Falcon, M. M.; Abrisqueta, M. D.; Hernandez, F. J.; Jones, P. G. Inorg. Chim. Acta 2003, 347, 67.

(29) Vicente, J.; Chicote, M. T.; Guerrero, R.; Saura-Llamas, I. M.; Jones, P. G.; Ramírez de Arellano, M. C. Chem. Eur. J. 2001, 7, 638. (30) Vicente, J.; Chicote, M. T. Inorg. Synth. 1998, 32, 172.

(31) Ohshiro, N.; Takei, F.; Onitsuka, K.; Takahashi, S. Chem. Lett.

(32) Suzuki, H.; Nakamura, K.; Goto, R. Bull. Chem. Soc. Jpn. 1966, 39, 128.

⁽¹⁶⁾ Frapper, G.; Kertesz, M. Inorg. Chem. 1993, 32, 152.
(17) Manners, I. Angew. Chem., Int. Ed. Engl. 1996, 35, 1602.
(18) Faulkner, C. W.; Ingham, S. L.; Khan, M. S.; Lewis, J.; Long, N. J.; Raithby, P. R. J. Organomet. Chem. 1994, 482, 139. Atherton, Z.; Faulkner, C. W.; Ingham, S. L.; Kakkar, A. K.; Khan, M. S.; Lewis, J.; Long, N. J.; Raithby, P. R. J. Organomet. Chem. 1993, 462, 265. Johnson, B. F. G.; Kakkar, A. K.; Khan, M. S.; Lewis, J. J. Organomet. Chem. 1991, 409, C12.

Soc., Chem. Commun. 1991, 187.
(20) Lewis, J.; Khan, M. S.; Kakkar, A. K.; Johnson, B. F. G.; Marder, T. B.; Fyfe, H. B.; Wittmann, F.; Friend, R. H.; Dray, A. E. J. Organomet. Chem. 1992, 425, 165. Sonogashira, K.; Takahashi, S.; Hagihara, N. Macromolecules 1977, 10, 879. Sonogashira, K.; Kataoka, S.; Takahashi, S.; Hagihara, N. J. Organomet. Chem. 1978, 160, 319. Takahashi, S.; Kariya, M.; Yatake, T.; Sonogashira, K.; Hagihara, N. *Macromolecules* **1978**, *11*, 1063.

(21) Sonogashira, K.; Onga, K.; Takahashi, S.; Hagihara, N. *J.*

red solution, which was concentrated to dryness. Recrystallization of the crude product from EtOH (40 mL) gave colorless needles of the title compound. Yield: 4.3 g, 81%. Mp: 136 °C. Anal. Calcd for $C_{20}H_{30}Si_2$: C 73.54, H 9.26. Found: C 73.30, H 9.67. IR (cm⁻¹): ν (C=C) 2150 (s). ¹H NMR (200 MHz, CDCl₃): δ 2.42 (s, 6 H, Me), 2.22 (s, 6 H, Me), 0.31 (s, 18 H, SiMe₃). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 136.2 (Ar), 135.6 (Ar), 123.0 (Ar), 103.9 (CSi), 100.7 (C=CSi), 18.5 (Me), 16.7 (Me), 0.2 (Si Me_3).

Synthesis of C₆Me₄(C≡CH)₂-1,2. A solution of KOH (1 g, 18 mmol) in H₂O (3 mL) was added to a suspension of C₆Me₄-(C≡CSiMe₃)₂-1,2 (3 g, 9.12 mmol) in MeOH (50 mL), and the mixture was refluxed for 4 h. After diluting with H₂O (50 mL), the mixture was extracted with Et₂O (2 × 50 mL). The combined extracts were dried over anhydrous MgSO₄, and the solvent was removed under reduced pressure to give a purple solid, which was washed with cold EtOH (−70 °C, 10 mL), filtered, and air-dried to give colorless needles of the title compound. Yield: 1.38 g, 83%. Mp: 102 °C. Anal. Calcd for C₁₄H₁₄: C 92.26, H 7.74. Found: C 91.99, H 8.04. IR (cm⁻¹): ν (CH) 3310 (s), 3280 (s), ν (C≡C) 2098 (s). ¹H NMR (200 MHz, CDCl₃): δ 3.47 (s, 2 H, ≡CH), 2.42 (s, 6 H, Me), 2.20 (s, 6 H, Me). ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 136.6 (Ar), 136.0 (Ar), 122.3 (Ar), 83.6 (≡CH), 82.3 (C≡CH), 18.6 (Me), 16.7 (Me).

Synthesis of trans-[Pt(C≡CC₆Me₄C≡CH-4)₂(PAr₃)₂] [Ar = **Ph** (1a), **To** (1b)]. A mixture of $C_6Me_4(C≡CH)_2$ -1,4 (for 1a: 908 mg, 4.98 mmol; for 1b: 1.22 g, 6.67 mmol), cis-[PtCl₂(PR₃)₂] (R = Ph, 985 mg, 1.25 mmol; To, 1.460 g, 1.67 mmol), and CuI(**1a**: 24 mg, 0.12 mmol; **1b**: 32 mg, 0.17 mmol) in degassed NHEt₂ (1a: 30 mL; 1b: 65 mL) was stirred under nitrogen for 16.5 (1a) or 65 (1b) h. The solvent was removed under reduced pressure, and the residue was stirred with CHCl₃ (1a: 10 mL; 1b: 13 mL). The resulting suspension was added slowly dropwise into rapidly stirred EtOH (100 mL) and filtered. The solid was washed with EtOH (10 mL) and *n*-pentane (20 mL). The crude product was stirred in a mixture of CHCl₃ and Et₂O (2:1, 90 mL) and the resulting suspension filtered through Celite. The solution was concentrated under vacuum until a yellow solid began to precipitate, at which point n-pentane (50 mL) was added. The suspension was filtered and the solid was air-dried to give a pale yellow powder. 1b was additionally dried under reduced pressure (ca. 1 mbar) for 1 h.

1a: Yield 1.16 g, 86%. Mp: 185 °C (dec). Anal. Calcd for $C_{64}H_{56}P_2Pt$: C 71.03, H 5.22. Found: C 70.79, H 5.35. IR (cm⁻¹): ν (CH) 3302 (s), ν (C≡C) 2094 (s). ¹H NMR (200 MHz, CDCl₃): δ 7.81−7.71 (m, 15 H, PPh₃), 7.27−7.18 (m, 15 H, PPh₃), 3.38 (s, 2 H, ≡CH), 2.21 (s, 12 H, Me), 1.64 (s, 12 H, Me). APT ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 134.9 (d, σ -CH, PPh₃, ² J_{CP} = 6 Hz), 134.7 (Ar), 133.9 (Ar), 131.3 (d, i-C, PPh₃, ¹ J_{PC} = 29 Hz), 130.1 (ρ -CH, PPh₃), 127.6 (d, m-CH, PPh₃, ³ J_{CP} = 5 Hz), 129.4 (Ar), 120.9 (≡CPt, ¹ J_{CPt} = 30 Hz), 117.4 (Ar), 112.6 (C≡CPt, ² J_{CPt} = 2 Hz), 83.6 (≡CH), 18.2 (Me), 17.7 (Me). ³¹P{¹H} NMR (81 MHz, CDCl₃): δ 18.94 PPh₃ (s, ¹ J_{PPt} = 2672 Hz). MS (FAB⁺), m/z (%): 1083 (M⁺, 55). Crystals of **1a·**CHCl₃ suitable for an X-ray diffraction study were obtained by the liquid diffusion method using CH₂Cl₂ and n-pentane.

1b: Yield 1.38 g, 71%. Mp: 218 °C (dec). Anal. Calcd for C₇₀H₆₈P₂Pt: C 72.09, H 5.88. Found: C 71.72, H 5.91. IR (cm⁻¹): ν (CH) 3310 (s), ν (C≡C) 2088 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.66−7.61 (m, 12 H, PTo₃), 7.00−6.98 (m, 12 H, PTo₃), 3.38 (s, 2 H, ≡CH), 2.23 (s, 30 H, Me, PTo₃, C₆Me₄), 1.66 (s, 12 H, C₆Me₄). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 140.1 (m, p-CH, PTo₃), 135.0 (d, o-CH, PTo₃, ${}^2J_{\rm CP}$ = 7 Hz), 134.6 (Ar), 133.8 (Ar), 129.8 (Ar), 128.7 (d, i-C, PTo₃, ${}^1J_{\rm CP}$ = 30 Hz), 128.3 (m, m-CH, PTo₃, ${}^3J_{\rm CP}$ = 6 Hz), 117.3 (Ar), 112.8 (C≡CPt), 83.7 (≡CH), 83.3 (C≡CH), 21.2 (Me, PTo₃), 18.1 (Me), 17.6 (Me). 31 P{¹H} NMR (162 MHz, CDCl₃): δ 16.91 (s, ${}^{1}J_{\rm PPt}$ = 2644 Hz). MS (FAB⁺), m/z (%): 1166 (M⁺, 26).

Synthesis of trans-[Pt(C \equiv CC₆Me₄C \equiv CH-4)₂(PR₃)₂] [R = Me (1c), Et (1d), ⁿBu (1e)]. To a solution of 1c (190 mg,

0.18 mmol), **1d** (522 mg, 0.48 mmol), or **1e** (1.32 g, 1.22 mmol) in dry THF (10 mL for **1c,d**; 15 mL for **1e**) was added the appropriate phosphine (**1c**, PMe₃, 1 mL, 1 M in toluene, 1 mmol; **1d**, PEt₃, 0.43 mL, 2.9 mmol; **1e**, PⁿBu₃, 1.8 mL, 7.32 mmol). The solution was stirred under nitrogen for 15 (**1c**) or 23 (**1d,e**) h and concentrated under vacuum to ca. 2 mL. Then n-pentane (15 mL) was added to precipitate a colorless solid, which was filtered off, washed with n-pentane (5 mL), and airdried. In the case of **1e**, concentrating the solution to 1 mL, adding n-pentane (20 mL), and cooling to -78 °C was necessary; the resulting suspension was filtered and the colorless solid washed with cold n-pentane and dried at ca.1 mbar for 1 h.

1c: Yield 101 mg, 81%. Mp: 261 °C (dec). Anal. Calcd for $C_{34}H_{44}P_2Pt$: C 57.54, H 6.25. Found: C 57.24, H 6.63. IR (cm⁻¹): ν (CH) 3314 (s), 3268 (s), ν (C≡C) 2086 (s). ¹H NMR (200 MHz, CDCl₃): δ 3.5 (s, 2 H, ≡CH), 2.46 (s, 12 H, C₆Me₄), 2.41 (s, 12 H, C₆Me₄), 1.72 (m, 18 H, PMe₃, ${}^{3}J_{HPt} = 31$ Hz). APT ${}^{13}C\{{}^{1}H\}$ NMR (50 MHz, CDCl₃): δ 136.2 (Ar), 134.7 (Ar), 129.4 (Ar), 119.2 (Ar), 118.7 (≡CPt, ${}^{1}J_{CPt} = 31$ Hz), 107.7 (C≡CPt, ${}^{2}J_{CPt} = 4$ Hz), 84.6 (≡CH), 83.5 (C≡CH), 19.2 (Me), 18.8 (Me), 16.2 (virtual t, Me, PMe₃, | ${}^{1}J_{CP} + {}^{3}J_{CP}| = 40$ Hz, ${}^{2}J_{CPt} = 45$ Hz). ${}^{31}P\{{}^{1}H\}$ NMR (81 MHz, CDCl₃): δ −21.1 (s, ${}^{1}J_{PPt} = 2312$ Hz). MS (FAB+), m/z (%): 709 (M+, 26).

1d: Yield 250 mg, 66%. Mp: 185 °C (dec). Anal. Calcd for C₄₀H₅₆P₂Pt: C 60.52, H 7.11. Found: C 60.36, H 7.48. IR (cm⁻¹): ν (CH) 3306 (s), 3240 (s), ν (C≡C) 2082 (s). ¹H NMR (400 MHz, CDCl₃): δ 3.46 (s, 2 H, ≡CH), 2.44 (s, 12 H, C₆-Me₄), 2.41 (s, 12 H, C₆Me₄), 2.08 (m, 12 H, CH₂), 1.16 (m, 18 H, Me, PEt₃). APT ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 135.70 (Ar), 134.06 (Ar), 129.49 (Ar), 119.27 (≡CPt, ¹J_{CPt} = 29 Hz), 118.32 (Ar), 108.37 (CCPt), 83.99 (≡CH), 83.24 (C≡CH), 18.54 (Me), 18.41 (Me), 16.29 (virtual t, CH₂, |¹J_{CP} + ³J_{CP}| = 36 Hz,), 8.27 (Me, PEt₃). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 11.36 (s, ¹J_{PPt} = 2385 Hz). MS (FAB+), m/z (%): 793 (53, M+).

1e: Yield 650 mg, 56%. Mp: 120 °C. Anal. Calcd for C₅₂H₈₀P₂-Pt: C 64.91, H 8.38. Found: C 65.07, H 8.29. IR (cm⁻¹): ν-(CH) 3308 (s), ν(C≡C) 2086 (s). ¹H NMR (400 MHz, CDCl₃): δ 3.46 (s, 2 H, ≡CH), 2.43 (s, 12 H, C₆Me₄), 2.41 (s, 12 H, C₆Me₄), 2.03 (m, 12 H, PCH₂Pr), 1.57 (m, 12 H, PCH₂CH₂Et), 1.35 (m, 12 H, P(CH₂)₂CH₂Me), 0.87 (t, 18 H, P(CH₂)₃Me, ³J_{HH} = 7 Hz). APT ¹³C{¹H} NMR (100 MHz, CDCl₃): δ: 135.6 (Ar), 133.9 (Ar), 129.6 (Ar), 119.2 (Ar), 118.0 (C≡CPt), 107.8 (C≡CPt), 83.9 (≡CH), 83.4 (C≡CH), 26.5 [P(CH₂)₂CH₂Me], 24.3 (virtual t, PCH₂CH₂Et, |²J_{CP} + ⁴J_{CP}| = 14 Hz), 24.0 (virtual t, PCH₂Pr, |¹J_{CP} + ³J_{CP}| = 36 Hz), 18.6 (Me), 18.4 (Me), 13.8 [P(CH₂)₃Me]. ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 3.48 (s, ¹J_{PPt} = 2366 Hz). MS (FAB+), m/z (%): 963 (52) (M+).

Synthesis of *trans*-[Pt(C \equiv CC₆Me₄C \equiv CH-2)₂(PAr₃)₂] [Ar = Ph (2a), To (2b)]. A mixture of C₆Me₄(C \equiv CH)₂-1,2 (for 2a: 236 mg, 1.29 mmol; for 2b: 454 mg, 2.5 mmol), *cis*-[PtCl₂-(PR₃)₂] (for 2a: 256 mg, 0.32 mmol; for 2b: 545 mg, 0.62 mmol), and CuI (for 2a: 6 mg, 0.031 mmol, for 2b: 12 mg, 0.062 mmol) in degassed NHEt₂ (for 2a: 20 mL, for 2b: 30 mL) was stirred under nitrogen for 15 (2a) or 26 (2b) h. The solvent was removed under reduced pressure, the residue was stirred with CHCl₃ (ca. 3 mL), and the resulting suspension was added slowly dropwise into EtOH (40 mL) with vigorous stirring. The suspension was filtered and the colorless solid was air-dried to give 2a or 2b·0.5H₂O. Complex 2b was not dehydrated after treating it under reduced pressure (1 mbar) for 0.5 h.

2a: Yield 248 mg, 72%. Mp 236 °C (dec). Anal. Calcd for $C_{64}H_{56}P_2Pt$: C 71.03, H 5.22. Found: C 70.72, H 5.51. IR (cm⁻¹): ν (CH) 3284 (s), ν (C=C) 2102 (s). 1H NMR (400 MHz, CDCl₃): δ 7.87–7.82 (m, 15 H, PPh₃), 7.26–7.20 (m, 15 H, PPh₃), 3.01 (s, 2 H, =CH), 2.31 (s, 6 H, C₆Me₄), 2.07 (s, 6 H, C₆Me₄), 1.98 (s, 6 H, C₆Me₄), 1.55 (s, 6 H, C₆Me₄). APT $^{13}C_{14}H_{15}^{14}$ NMR (100 MHz, CDCl₃): δ 135.3 (m, m-CH, PPh₃), 134.7 (Ar), 134.4 (Ar), 134.1 (Ar), 131.5 (m, i-C, PPh₃), 130.5 (Ar), 129.8 (m, p-CH, PPh₃), 129.6 (Ar), 127.5 (m, o-CH, PPh₃), 120.0

(Ar), 118.6 (\equiv CPt, ${}^{1}J_{PtC} = 31 \text{ Hz}$), 112.4 ($C \equiv$ CPt, ${}^{2}J_{PtC} = 5 \text{ Hz}$), 84.3 (\equiv CH), 81.2 ($C\equiv$ CH), 18.5 (Me), 17.9 (Me), 16.6 (Me), 16.4 (Me). ${}^{31}P{}^{1}H} NMR (162 MHz, CDCl_3): \delta 17.17 (s, {}^{1}J_{PtP} = 2671)$

2b·0.5H₂O: Yield 467 mg, 65%. Mp: 229 °C (dec). Anal. Calcd for C₇₀H₆₉O_{0.5}P₂Pt: C 71.50, H 5.96. Found: C 71.36, H 5.84. IR (cm⁻¹): ν (CH) 3308, 3284 (s), ν (C=C) 2098 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.69 (m, 12 H, PTo₃), 7.00-6.98 (m, 12 H, PTo_3), 3.02 (s, 2 H, \equiv CH), 2.33 (s, 6 H, C_6Me_4), 2.20 (s, 18 H, Me, PTo₃), 2.07 (s, 6 H, C₆Me₄), 2.01 (s, 6 H, $C_6Me_4),\ 1.60\ (s,\ 6\ H,\ C_6Me_4),\ 1.53\ (s,\ 1\ H,\ H_2O).\ APT\ ^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃): δ 139.6 (p-C, PTo₃), 135.1 (m, o-CH, PTo₃), 134.5 (Ar), 134.2 (Ar), 134.0 (Ar), 130.1 (Ar), 129.9 (Ar), $128.7 \text{ (d, } i\text{-C, PTo}_3, {}^{1}J_{CP} = 30 \text{ Hz)}, 128.1 \text{ (m, } m\text{-CH, PTo}_3), 120.4$ $(\equiv \text{CPt}, {}^{1}J_{\text{CPt}} = 31 \text{ Hz}), 120.0 \text{ (Ar)}, 112.2 \text{ (}C \equiv \text{CPt}, {}^{2}J_{\text{CPt}} = 4 \text{ Hz)},$ 84.3 (\equiv CH), 81.1 (C \equiv CH), 21.2 (Me, PTo₃), 18.5 (Me), 17.8 (Me), 16.6 (Me), 16.3 (Me). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 16.35 (s, ${}^{1}J_{PPt} = 2650 \text{ Hz}$). MS (FAB+) m/z (%): 1166 (M+) 26). Single crystals of 2b·2CHCl3 suitable for an X-ray diffraction study were obtained by the liquid diffusion method using $CDCl_3$ and n-pentane.

Synthesis of trans-[Pt(C=CC₆Me₄C=CH-2)₂(PMe₃)₂] (2c). To a solution of 2a (0.418 g, 0.39 mmol) in dry THF (15) mL) under nitrogen was added PMe₃ (1 M in toluene, 2.32 mL, 2.32 mmol). After 14.5 h of stirring, the reaction mixture was concentrated under vacuum to ca. 3 mL, n-pentane (15 mL) was added, and after a few minutes of stirring, the suspension was filtered. The solid was washed with n-pentane (5 mL) and dried under reduced pressure (ca. 1 mbar) for 1 h to give 2c as a colorless microcrystalline powder. Yield: 243 mg, 88%. Mp: 234 °C (dec). Anal. Calcd for C₃₄H₄₄P₂Pt: C 57.54, H 6.25. Found: C 57.71, H 6.67. IR (cm⁻¹): ν (CH) 3234 (s), ν (C=C) 2084 (s). ¹H NMR (400 MHz, CDCl₃): δ 3.32 (s, 2 H, ≡CH), $2.48 (s, 6 H, C_6Me_4), 2.42 (s, 6 H, C_6Me_4), 2.20 (s, 6 H, C_6Me_4),$ 2.17 (s, 6 H, C_6Me_4), 1.77 (virtual t, 18 H, Me, PMe₃, $|^2J_{HP}|^2$ $^{4}J_{HP}$ = 8 Hz, $^{3}J_{HPt}$ = 30 Hz). APT $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ 136.0 (Ar), 135.5 (Ar), 134.7 (Ar), 131.8 (Ar), 129.0 (Ar), 120.8 (Ar), 116.0 ($C \equiv \text{CPt}$, ${}^2J_{\text{CPt}} = 31 \text{ Hz}$), 106.8 ($\equiv \text{CPt}$, ${}^{1}J_{\text{CPt}} = 267 \text{ Hz}$), 84.8 (\equiv CH), 82.4 (C \equiv CH), 19.0 (Me), 18.6 (Me), 16.9 (Me), 16.5 (Me), 16.0 (virtual t, Me, PMe₃, $|{}^{1}J_{CP} + {}^{3}J_{CP}| = 40 \text{ Hz}$). $|{}^{31}P\{{}^{1}H\} \text{ NMR (162 MHz, CDCl}_{3})}$: δ -21.62 (s, ${}^{1}J_{PtP} = 2320$ Hz). MS (FAB⁺), m/z (%): 709 (M⁺, 24).

Synthesis of trans-[Pt{C=CC₆Me₃(C=CH)₂-3,5}₂(PAr₃)₂] [Ar = Ph (3a), To (3b)]. A mixture of $C_6Me_3(C \equiv CH)_3$ -1,3,5 (for **3a**: 255 mg, 1.3 mmol; for **3b**: 357 mg, 1.86 mmol), the appropriate cis-[PtCl₂(PR₃)₂] (R = Ph, 262 mg, 0.33 mmol; To, 406 mg, 0.46 mmol), and CuI (for 3a: 6 mg, 0.033 mmol; for 3b: 9 mg, 0.05 mmol) in degassed NHEt₂ (25 mL) was stirred under nitrogen for 13 (3a) or 22 (3b) h. The suspension was concentrated to dryness, the residue was dissolved in CHCl₃ (5 mL), and the solution was added slowly dropwise into rapidly stirred EtOH (50 mL). The resulting suspension was filtered and the solid recrystallized from a 1:1 mixture of CHCl₃/Et₂O and *n*-pentane and dried under reduced pressure (1 mbar) for 1 h to give **3a**·H₂O or **3b**·H₂O as colorless powders.

3a·H₂O: Yield 168 mg, 46%. Mp: 212 °C (dec). Anal. Calcd for C₆₆H₅₄OP₂Pt: C 70.77, H 4.86. Found: C 70.74, H 4.88. IR (cm⁻¹): ν (CH) 3304 (s), ν (C≡C) 2098 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.78–7.18 (m, 30 H, PPh₃), 3.34 (s, 4 H, \equiv CH), 2.45 (s, 6 H, C₆Me₃), 1.84 (s, 12 H, C₆Me₃), 1.55 (s, 2 H, H₂O). APT ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 141.70 (Ar), 138.72 (Ar), 135.02 (m, o-CH, PPh₃), 131.19 (m, i-C, PPh₃), 130.24 (m, p-CH, PPh_3), 127.63 (m, m-CH, PPh_3), 119.84 (Ar), 118.48 (C \equiv CPt), $110.42 (C \equiv CPt)$, $83.54 (\equiv CH)$, $81.87 (C \equiv CH)$, 19.68 (Me), 19.63(Me). ${}^{31}P{}^{1}H} NMR (162 MHz, CDCl_3): \delta 18.63 (s, {}^{1}J_{PPt} = 2657)$ Hz). MS (FAB⁺), m/z (%): 1102 (M⁺, 10).

3b·H₂O: Yield 357 mg, 65%. Mp: 248 °C (dec). Anal. Calcd for C₇₂H₆₆OP₂Pt: C 71.80, H 5.52. Found: C 71.55, H 5.77. IR (cm $^{-1}$): $\nu({\rm CH})$ 3280 (s), 3270 (s), $\nu({\rm C}{\equiv}{\rm C})$ 2088 (s). $^{1}{\rm H}$ NMR (400 MHz, CDCl₃): δ 7.65-7.60 (m, 12 H, PT₀₃), 7.02-7.00

 $(m, 12 H, PTo_3), 3.34 (s, 4 H, \equiv CH), 2.46 (s, 6 H, C_6Me_3), 2.24$ (s, 18 H, Me, PTo₃), 1.84 (s, 12 H, C₆Me₃), 1.54 (s, 2H, H₂O). APT ¹³C{¹H} NMR (50 MHz, CDCl₃): δ 141.67 (Ar), 140.29 $(m, p-C, PTo_3), 138.40 (Ar), 134.92 (m, o-CH, PTo_3), 128.28 (m, o-C$ m-CH, PTo₃), 128.27 (d, i-C, PTo₃, ${}^{1}J_{CP} = 60$ Hz), 118.45 $(C \equiv CPt)$, 110.19 $(C \equiv CPt)$, 83.43 $(\equiv CH)$, 81.92 $(C \equiv CH)$, 21.22 (Me, PTo₃), 19.61 (Me), 19.58 (Me). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.13 (s, ${}^{1}J_{PPt} = 2633 \text{ Hz}$). MS (FAB⁺), m/z (%): 1186 $(M^+, 90).$

Synthesis of trans-[Pt(C=CC₆Me₄C=CAuPR₃-4)₂(PAr₃)₂] [Ar = Ph (4a), To (4b)]. To a solution of trans-[Pt{ $C \equiv C(C_6 Me_4$)C=CH-4 $_2$ (PAr₃)₂] [Ar = Ph (1**a**) 125 mg, 0.12 mmol; To (1b) 99 mg, 0.08 mmol] in degassed CH₂Cl₂ (1a, 20 mL) or acetone (1b, 20 mL) was added the appropriate [Au(acac)PR₃] complex [R = Ph (193 mg, 0.35 mmol), To (153 mg, 0.25 mmol)], and the mixture was stirred under nitrogen for 6 (4a) or 10.5 (4b) h. In the case of 4a a light suspension formed, which was filtered, the filtrate concentrated under vacuum to ca. 10 mL, and Et₂O (15 mL) added to give a yellow precipitate, which was filtered, washed with Et₂O (2 \times 5 mL), and dried under reduced pressure (ca. 1 mbar) for 1 h to give 4a·H₂O. In the case of **4b** a copious suspension formed, which was concentrated under vacuum to ca. 10 mL, and the yellow solid collected upon filtration was air-dried.

4a·H₂O: Yield 115 mg, 48%. Mp: 174 °C (dec). Anal. Calcd for C₁₀₀H₈₆Au₂OP₄Pt: C 59.56, H 4.30. Found: C 59.38, H, 4.32. IR (cm⁻¹): ν (C \equiv C) 2088 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.78–7.19 (m, 60 H, PPh₃), 2.35 (s, 12 H, C₆Me₄), 1.64 (s, 12 H, C₆Me₄), 1.55 (s, 2 H, H₂O). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 42.57 (s, AuPPh₃), 18.43 (s, PtPPh₃, ${}^{1}J_{PPt} = 2667$

4b: Yield 152 mg, 88%. Mp: 174 °C (dec). Anal. Calcd for C₁₁₂H₁₀₈Au₂P₄Pt: C 62.08, H 5.02. Found: C 62.01, H 5.25. IR (cm⁻¹): ν (C≡C) 2094 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.67-7.62 (m, 12 H, PTo₃), 7.45-7.40 (m, 12 H, PTo₃), 7.23-7.21 (m, 12 H, PTo₃), 6.99–6.97 (m, 12 H, PTo₃), 2.38 (s, 18 H, Me, PTo₃), 2.36 (s, 12 H, C₆Me₄), 2.22 (s, 18 H, Me, PTo₃), 1.64 (s, 12 H, C_6Me_4). $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃): δ 141.6 (d, p-C, PTo_3 , ${}^4J_{CP} = 2$ Hz), 140.0 (Ar), 139.9 (m, p-C, PTo_3), 135.0 (d, m-CH, PTo₃, ${}^{3}J_{CP} = 12$ Hz,), 134.2 (d, o-CH, PTo₃, ${}^{2}J_{CP} =$ 14 Hz), 133.7 (d, *i*-C, PTo₃, ${}^{1}J_{CP} = 86$ Hz), 129.7 (d, *o*-CH, PTo₃, $^2J_{\rm CP}=11$ Hz), 128.8 (Ar), 128.5 (Ar), 128.2 (d, m-CH, PTo₃, ${}^{3}J_{\text{CP}} = 6 \text{ Hz}$), 127.9 (Ar), 127.2 (d, *i*-C, PTo₃, ${}^{1}J_{\text{CP}} = 57 \text{ Hz}$), 120.7 (C≡C), 120.5 (C≡C), 112.8 (C≡C), 103.4 (d, ≡CAu, ${}^{2}J_{CP}$ = 27 Hz), 21.4 (Me, PTo₃), 21.3 (Me, PTo₃), 18.9 (Me), 17.8 (Me). ${}^{31}P{}^{1}H}$ NMR: (162 MHz, CDCl₃): δ 40.52 (s, AuPTo₃), 16.94 (s, PtPTo₃, ${}^{1}J_{PPt} = 2654 \text{ Hz}$). MS (FAB⁺), m/z (%): 2167 (M⁺, 6). Crystals of 4b·5CH₂Cl₂ suitable for an X-ray diffraction study were obtained by the liquid diffusion method using CH₂- Cl_2 and n-pentane.

Synthesis of trans-[Pt(C=CC₆Me₄C=CAuPR₃-4)₂(PMe₃)₂] (4c). To a suspension of 4b (301 mg, 0.14 mmol) in dry THF (5 mL) was added PMe₃ (1 M in toluene, 1.2 mL, 1.2 mmol), and the mixture was stirred under nitrogen for 25 h. The resulting suspension was filtered and the colorless solid collected, washed with n-pentane (2 \times 10 mL), and dried successively in an oven at 80 °C for 0.5 h and under reduced pressure (ca. 1 mbar) for 0.5 h to give 4c·1.5THF. Yield: 147 mg, 84%. Mp: 231 °C (dec). Anal. Calcd for C₄₆H₇₂Au₂O_{1.5}P₄-Pt: C 40.56, H 5.32. Found: C 40.44, H 5.50. IR (cm $^{-1}$): ν -(C≡C) 2088 (s). ¹³H NMR (400 MHz, CDCl₃): δ 3.75 (m, 6 H, THF), 2.50 (s, 12 H, C_6Me_4), 2.44 (s, 12 H, C_6Me_4), 1.85 (m, 6H, THF), 1.72 (m, 18 H, PtPMe₃), 1.52 (d, 18 H, AuPMe₃, ${}^{2}J_{HP}$ = 10 Hz). APT ${}^{13}C{}^{1}H}$ NMR (100 MHz, CDCl₃): δ 140.2 (Ar), 138.8 (Ar), 135.5 (Ar), 135.2 (Ar), 133.8 (Ar), 127.0 ($C \equiv CPt$), 122.0 (d, C≡CAu, ${}^{3}J_{CP} = 9$ Hz), 116.5 (≡CPt, ${}^{1}J_{PtC} = 30$ Hz), 103.3 (d, CAu, ${}^{2}J_{CP} = 29 \text{ Hz}$), 68.0 (CH₂, THF), 25.6 (CH₂, THF), 19.1 (Me), 18.9 (Me), 15.9 (virtual t, PtPMe₃, $|^{1}J_{CP}|$ + $^3J_{\rm CP}|=40$ Hz), 15.8 (d, AuPMe_3, $^1\!J_{\rm CP}=36$ Hz). $^{31}{\rm P}\{^1{\rm H}\}$ NMR: (162 MHz, CDCl₃): δ 1.25 (s, AuPMe₃), -21.46 (s, PtPMe₃, $^1\!J_{\rm PPt}$ = 2316 Hz). MS (FAB⁺), m/z (%): 1252 (M⁺, 13).

Synthesis of trans-[Pt{C=CC₆Me₃(C=CAuPTo₃)₂-3,5}₂- $(\mathbf{PTo_3})_2$ (5b). To a suspension of 3b (102 mg, 0.09 mmol) in a 1:1 CH₂Cl₂/acetone mixture (10 mL) was added a solution of [Au(acac)PTo₃] (310 mg, 0.52 mmol) in degassed acetone (10 mL). The mixture was stirred under nitrogen for 24 h, the resulting suspension was filtered and the colorless solid washed with Et₂O (5 mL) and air-dried. Yield: 226 mg, 79%. Mp: 223 °C (dec). Anal. Calcd for C₁₅₆H₁₄₄Au₄P₆Pt: C 58.78, H 4.55. Found: C 59.13, H 4.62. IR (cm⁻¹): ν (C=C) 2096 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.70-7.64 (m, 12 H, Ar, PtPTo₃), 7.46-7.41 (m, 24 H, AuPTo₃), 7.26-7.22 (m, 24 H, AuPTo₃), 6.99-6.97 (m, 12 H, PtPTo₃), 2.71 (s, 6 H, C₆Me₃), 2.39 (s, 36 H, Me, AuPTo₃), 2.21 (s, 18 H, Me, PtPTo₃), 2.07 (s, 12 H, C₆-Me₃). APT 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 141.6 (d, p-C, $AuPTo_3$, ${}^4J_{CP} = 2 Hz$, 140.0 (m, p-C, PtPTo₃), 139.3 (Ar), 136.9 (Ar), 134.9 (m, o-CH, PtPTo₃), 134.2 (d, o-CH, AuPTo₃, ${}^{2}J_{CP} =$ 14 Hz), 129.7 (d, m-CH, AuPTo₃, ${}^{3}J_{CP} = 12$ Hz), 128.5 (Ar), 128.2 (m, m-CH, PtPTo₃), 127.3 (d, i-C, AuPTo₃, ${}^{1}J_{CP} = 57 \text{ Hz}$), 127.1 (d, i-C, PtPTo₃, ${}^{1}\!J_{\rm CP} = 56~{\rm Hz}$), 126.1 (Ar), 120.8 (d, CCAu, ${}^{3}J_{CP} = 2 \text{ Hz}$), 117.7 (C=CPt), 111.8 (C=CPt), 102.6 (d, CAu, $^{2}J_{CP} = 27 \text{ Hz}$), 21.45 (Me, PTo₃), 21.34 (Me, PTo₃), 21.14 (Me), 20.46 (Me). ${}^{31}P{}^{1}H}$ NMR: (162 MHz, CDCl₃): δ 40.51 (s, AuPTo₃), 17.01 (s, PtPTo₃, ${}^{1}J_{PPt} = 2653 \text{ Hz}$). MS (FAB⁺), m/z(%): 3184 (M+, 22).

Synthesis of trans-[Pt{C=C(C₆Me₃)(C=CAuPMe₃)₂-3.5₂(PMe₃)₂] (5c). To a suspension of 5b (105 mg, 0.033) mmol) in dry THF (15 mL) was added PMe₃ (1 M in toluene, 0.29 mL, 0.29 mmol), and the mixture was stirred under nitrogen for 6 h. The solution was concentrated under reduced pressure to ca. 5 mL, and n-pentane (5 mL) was added to precipitate a colorless solid, which was filtered, washed with n-pentane (5 mL), and vacuum-dried (ca. 1 mbar) for 1 h. Yield: 58 mg, 91%. Mp: 196 °C (dec). Anal. Calcd for C₄₈H₇₂-Au₄P₆Pt: C 31.71, H 3.99. Found: C 32.07, H 4.02. IR (cm⁻¹): $\nu(C \equiv C) 2086 \text{ (s)}$. ¹H NMR (300 MHz, CDCl₃): $\delta 2.74 \text{ (s, 6 H,}$ C₆Me₃), 2.71 (s, 12 H, C₆Me₃), 1.71 (virtual t, 18 H, PtPMe₃, $|{}^{2}J_{HP} + {}^{4}J_{HP}| = 8 \text{ Hz}, {}^{3}J_{HPt} = 28 \text{ Hz}), 1.51 \text{ (d, 36 H, AuP}Me_{3},$ $^2J_{\rm HP} = 10$ Hz). APT $^{13}{\rm C}\{^1{\rm H}\}$ NMR (50 MHz, CDCl₃): δ 140.6 (Ar), 140.0 (Ar), 139.5 (Ar), 137.6 (Ar), 122.3 (C≡CAu), 114.8 $(C \equiv CPt)$, 106.9 $(C \equiv CPt)$, 102.9 (d, CAu, ${}^{2}J_{CP} = 30 \text{ Hz}$), 21.87 (Me), 21.59 (Me), 16.29 (virtual t, PtP Me_3 , $|{}^{1}J_{CP} + {}^{3}J_{CP}| = 38$ Hz), 16.20 (d, AuP Me_3 , ${}^1J_{CP} = 36$ Hz). ${}^{31}P\{{}^1H\}$ NMR: (121) MHz, CDCl₃): δ 1.63 (s, AuPMe₃), -21.10 (PtPMe₃, ${}^{1}J_{PPt} =$ 2329 Hz). MS (FAB+), m/z (%): 1817 (M+, 10).

Synthesis of $(PPN)_n[trans-Pt\{(C \equiv CC_6Me_4C \equiv C-4)_2Au\}$ - $(\mathbf{PR}_3)_2]_n$ [**R** = **Ph** (6a), **Me** (6c), ⁿ**Bu** (6e)]. To a solution of the appropriate complex 1 (1a: 161 mg, 0.15 mmol; 1c: 91 mg, 0.13 mmol; 1e: 155 mg, 0.16 mmol) in degassed CH₂Cl₂ (15 mL) was added a solution of PPN[Au(acac)₂] (for **6a**: 153 mg, 0.16 mmol; for **6c**: 132 mg, 0.14 mmol; for **6e**: 158 mg, 0.17 mmol) in the same solvent (10 mL). The mixture was stirred under nitrogen for 15.5 (6a), 5 (6c), or 26 (6e) h. In the first two cases a copious precipitate formed, which was filtered, washed with CH₂Cl₂ (10 mL), and dried in the air and then under reduced pressure (ca. 1 mbar) for 0.5 h to give a bright orange (6a) or bright yellow (6c) powder insoluble in all common organic solvents; thus further purification proved impossible. For **6e** a solution resulted that was filtered through Celite, the solvent removed under vacuum to ca. 5 mL, and *n*-pentane added (20 mL) to precipitate a colorless solid, which was filtered, washed with *n*-pentane $(2 \times 5 \text{ mL})$, and dried successively in the air and under reduced pressure (ca. 1 mbar) for 0.5 h.

6a: Yield 183 mg, 67%. Mp: 159 °C (dec). IR (cm⁻¹): ν (C=C) 2086(w).

6c: Yield 128 mg, 68%. Mp: 142 °C (dec). IR (cm⁻¹): ν (C≡C) 2082(s). 31 P{ 1 H} NMR (121 MHz, solid): δ 21.02 (br, PPN), −22.22 (s, PMe₃, $^{1}J_{\text{PPt}} = 2324$ Hz).

6e: Yield 207 mg, 76%. Mp: 194 °C (dec). Anal. Calcd for $C_{88}H_{108}AuNP_4Pt$: C 62.33, H 6.42, N 0.83. Found: C 62.00, H 6.39, N 0.86. IR (cm⁻¹): ν (C=C) 2086(s). ¹H NMR (400 MHz,

CD₂Cl₂): δ 7.47–7.26 (m, 30 H, PPN), 2.21–2.14 (three s, 24 H, C₆Me₄), 1.87 (m, 12 H, CH₂, Bu), 1.41 (m, 12 H, CH₂, Bu), 1.20 (m, 12 H, CH₂, Bu), 0.70 (m, 18 H, Me, Bu). APT ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 137.70, 134.55 (quaternary carbon nuclei, C₆Me₄), 134.16 (m, *p*-CH, PPN), 133.56, 133.47 (quaternary carbon nuclei, C₆Me₄) 132.51 (m, *m*-CH, PPN), 129.90 (m, *o*-CH, PPN), 127.38 (m, *i*-C, PPN), 26.91 (s, P(CH₂)₂CH₂-Me), 24.75 (virtual t, PCH₂CH₂Et, |²J_{CP} + ⁴J_{CP}| = 13.6 Hz), 24.32 (virtual t, PCH₂Pr, |J_{CP} + ³J_{CP}| = 34.6 Hz), 19.15, 19.10, 19.07 (s, C₆Me₄), 14.06 (s, Me, Bu). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂): δ 21.13 (s, PPN), 3.53 (br s, P(ⁿBu)₃, ¹J_{PPt} = 2377 Hz).

Synthesis of $(PPN)_{2n}[trans-Pt\{C\equiv CC_6Me_3(C\equiv C)_2-3,5\}_2Au_2(PTo_3)_2]_n$ (7). To a solution of **3b** (108 mg, 0.09 mmol) in degassed CH_2Cl_2 (15 mL) was added a solution of PPN[Au-(acac)_2] (0.179 g, 0.19 mmol) in the same solvent (5 mL), and the mixture was stirred under nitrogen for 24 h. The resulting suspension was filtered and the solid washed with CH_2Cl_2 (2 × 5 mL) and dried under reduced pressure (ca. 1 mbar) for 0.5 h to give a colorless powder insoluble in all common organic solvents. Yield: 184 mg, 77%. Mp: 206 °C (dec). IR (cm⁻¹): $\nu(C\equiv C)$, 2084(w).

X-ray Structure Determinations. Numerical details are presented in Table 1. Data were recorded at -140 °C on a Bruker SMART 1000 CCD diffractometer using Mo K α radiation ($\lambda=0.71073$ Å). Absorption corrections were based on multiple scans (program SADABS). Structures were refined anisotropically on F^2 using the program SHELXL-97 (Prof. G. M. Sheldrick, University of Göttingen). Acetylenic H atoms were refined freely; other H atoms, using a riding model or rigid methyl groups. Special features of refinement. 1a: The chloroform molecule is disordered over an inversion center. 4b: There are three dichloromethane sites, one of which is disordered over an inversion center.

Results and Discussion

Synthesis. The complexes trans-[Pt(C \equiv CC₆Me₄- $C = CH-4_2(PAr_3)_2$ [Ar = Ph (1a), To (1b)], trans-[Pt- $(C \equiv CC_6Me_4C \equiv CH-2)_2(PAr_3)_2$ [Ar = Ph (2a), To (2b)], and trans-[Pt(C \equiv CC₆Me₃(C \equiv CH)₂-3,5)₂(PAr₃)₂] [Ar = Ph (3a), To (3b)] were prepared by dehydrohalogenation reactions, catalyzed by 0.1% mol CuI, between the appropriate cis-[PtCl₂(PR₃)₂] complexes and excess of the alkynes $C_6Me_4(C \equiv CH)_2$ -1,4, $C_6Me_4(C \equiv CH)_2$ -1,2, or C₆Me₃(C≡CH)₃-1,3,5 (approximately 1:4 molar ratio), respectively, in diethylamine (Scheme 1). Some of the complexes crystallized with half (2b) or one (3a,b) molecule of water that we could not remove even after repeated recrystallization from CHCl₃/Et₂O mixtures. The PPh₃ ligands in complexes 1a and 2a can be replaced by more basic trialkylphosphines to give the homologous derivatives with PMe₃ (1c, 2c), PEt₃ (1d), or $P(^{n}Bu)_{3}$ (**1e**) (Scheme 1).

Our previous experience of the synthetic utility of the "acac method"²⁵ to prepare alkynylgold(I) complexes 26,28 from the acetylacetonatogold(I) complexes [Au(acac)-PAr₃] or [Au(acac)₂]⁻ and a variety of terminal alkynes prompted us to study the possibility of preparing heteronuclear Pt^{II}Au^I σ -alkynyl complexes from the alkynyl derivatives **1**–**3**, which could behave as terminal alkynes. Thus, the reactions of complexes **1a**, **1b**, and **3b** with an excess of the appropriate [Au(acac)PAr₃] gave, respectively, trinuclear Pt^{II}Au^I₂ or pentanuclear Pt^{II}Au^I₄ σ -alkynyl complexes trans-[Pt(C \equiv CC₆Me₄C \equiv CAuPAr₃-4)₂(PAr₃)₂] [Ar = Ph (**4a**), To (**4b**)] or trans-[Pt{C \equiv CC₆Me₃(C \equiv CAuPAr₃)₂-3,5}₂(PAr₃)₂] [Ar = Ph (**5a**), To (**5b**)], respectively, in good yield (Scheme 2).

Table 1. Crystal Data and Structure Refinement

	$1a\cdot \mathrm{CHCl_3}$	$2b \cdot 2CHCl_3$	$4b \cdot 5CH_2Cl_2$
formula	$C_{65}H_{57}Cl_3P_2Pt$	$\mathrm{C}_{72}\mathrm{H}_{70}\mathrm{Cl}_6\mathrm{P}_2\mathrm{Pt}$	C ₁₁₇ H ₁₁₈ Au ₂ Cl ₁₀ P ₄ Pt
fw	1201.49	1405.01	2591.52
cryst syst	triclinic	triclinic	triclinic
space group	$Par{1}$	$Par{1}$	$Par{1}$
a (Å)	9.0753(6)	10.2862(6)	12.3981(11)
b (Å)	11.5861(8	12.7169(8)	15.1902(12)
c (Å)	14.3546(11)	13.5664(11)	16.3181(14)
α (deg)	96.168(4)	77.919(4)	92.748(4)
β (deg)	102.756(4)	70.307(4)	104.496(4)
γ (deg)	104.817(4	76.817(4)	107.755(4
volume (Å ³)	1401.48(17)	1609.71(19)	2807.8(4)
Z	1	1	1
$ \rho_{\rm calcd} ({ m Mg \ m^{-3}}) $	1.424	1.449	1.533
$\mu \text{ (Mo K}\alpha) \text{ (mm}^{-1})$	2.743	2.520	4.190
F(000)	606	712	1286
cryst size (mm)	0.30 imes 0.14 imes 0.10	0.23 imes 0.21 imes 0.07	0.20 imes 0.16 imes 0.07
θ range (deg)	1.48 to 30.03	1.61 to 30.03	1.30 to 26.37
no. of reflns coll	28 596	33 598	47 189
no. of indep reflns	8158	9391	11442
$R_{ m int}$	0.0260	0.0305	0.0521
max, and min, transmsn	0.819 and 0.663	0.862 and 0.667	0.802 and 0.669
no. of restraints/params	105/343	106/378	198/604
goodness-of-fit on F^2	1.023	1.037	0.986
R1 $[I > 2\sigma(I)]$	0.0275	0.0229	0.0393
wR2 (all reflns)	0.0688	0.0543	0.1101
largest diff peak and hole (e Å ⁻³)	1.800 and -1.583	0.982 and -0.799	2.719 and -1.576

i: + $[PtCl_2(PR_3)_2]$ + Cul (cat.) + 2 NHEt₂ - 2 NH₂Et₂Cl. ii: + 2 PR₃ - 2 PPh₃

However, although its NMR spectra show $5a\cdot 2H_2O$ to be pure, the %C found is low (Anal. Calcd for $C_{138}H_{112}$ -

 $Au_4O_2P_6Pt:\ C\ 55.79,\ H\ 3.80.$ Found: C 54.33, H 3.77), which we could not improve even after repeated recrys-

tallizations. Under the same reaction conditions, the homologous complexes trans-[Pt(C=CC₆Me₄C=CAuPAr₃- $2)_2(PAr_3)_2$ (Ar = Ph, To) could not be obtained from **2a** or **2b** and [Au(acac)PAr₃], which we attribute to the steric hindrance between the *ortho*-C≡CH substituents in 2a or 2b and the bulky phosphine ligands, as confirmed by the crystal structure of **2b** (see below). The replacement of the PTo₃ ligands in complex 4b or 5b by PMe₃ allowed the synthesis of the homologous complexes **4c** and **5c**, respectively (Scheme 2). Similarly. the reaction of **4b** with PEt₃ (1:4) gave the corresponding complex with this ligand, but despite many recrystallizations, its NMR spectra and elemental analyses (Anal. Calcd for C₅₂H₈₄Au₂P₄Pt: C 43.92, H 5.95. Found: C 42.80, H 5.91) showed the presence of some impurity that we could not remove.

Apart from the metallamacrocyclic $Pt^{II}_2Au^I$ triangle $PPN[Au\{Pt(PMe_3)_2\}_2\{\mu\text{-}C_6Me_4(C\equiv C)_2\text{-}1,2\}_3]$, the synthesis and the crystal structure of which has been recently reported by us, 15 complexes $[Pt(C\equiv C-C\equiv CH)_{C\equiv C-C\equiv CAuPPh_3\}(dppe)]^{14}$ and the square metallamacrocycle $(PPN)_4[Pt(C\equiv C-C\equiv C-Au-C\equiv C-C\equiv C)(dppe)]_4^4$ are the only mixed $Pt^{II}Au^I$ σ -alkynyl complexes previously reported. They were obtained by reacting $[Pt-(C\equiv C-C\equiv CH)_2(dppe)]$ with nBuLi and $[AuCl(PPh_3)]$ or with $PPN[Au(acac)_2]$, respectively, but their crystal structures are unknown.

The reaction of PPN[$Au(acac)_2$] with **1a**, **1c**, **1e** (1:1) or **3b** (2:1) gave, respectively, the anionic σ -alkynyl $(PPN)_n[trans-Pt\{(C \equiv CC_6Me_4C \equiv C-4)_2Au\} (PR_3)_2]_n$ [R = Ph (**6a**), Me (**6c**), ⁿBu (**6e**)] and $(PPN)_{2n}$ - $[trans-Pt{C=CC_6Me_3(C=C)_2-3,5}_2Au_2(PTo_3)_2]_n$ (7), which were isolated in good yield (Scheme 3). Among them, only **6e** is soluble in organic solvents so as to allow its purification and the measuring of its NMR spectra, while the extreme insolubility of **6a**, **6b**, and **7** prevented their recrystallization and, as is usual for this type of polymeric materials, good elemental analyses (6a: Anal. Calcd for C₁₀₀H₈₄AuP₄Pt: C 66.15, H 4.66, N 0.77. Found: C 63.75, H 4.50, N 0.59; 6c: Anal. Calcd for C₇₀H₇₂AuNP₄Pt: C 58.25, H 5.03, N 0.97. Found: C 53.29, H 5.09, N 0.50; 7: Anal. Calcd for C₁₄₄H₁₂₀-Au₂N₂P₆Pt: C 65.18, H 4.56, N 1.06. Found: C 60.96, H 4.69, N 0.94). A GPC study on **6e** gave an average molecular weight of 7.7×10^5 amu corresponding to a medium value of 667 monomeric units, a number considerably higher than those found in other alkynyl metal-containing polymers. 11,13,17,21,22 However, the great polydispersity value ($I_p = 4.66$) is indicative that **6e** contains a wide range of polymeric materials. The polymers 6 and 7 are (i) the first heteronuclear alkynyl polymers of any d8/d10 system, (ii) the first anionic alkynyl polymers prepared to date, and (iii) the first alkynyl polymers that have been obtained by the "acac method", which turns out to be useful for the synthesis of organometallic polymers with a high degree of polymerization. In the hope of synthesizing soluble alkynyl Au^IPt^{II} polymers homologous to 6 and 7 we have undertaken the study of the reactivity of the dialkynes $C_6^tBu_4(C = CH)_2 - 1,4 \text{ and } C_6(^nC_4H_9)_4(C = CH)_2 - 1,4 \text{ toward}$ Pt(II) and "Au^I(acac)" complexes.

Crystal Structures of 1a·CHCl₃, 2b·2CHCl₃, and 4b·5CH₂Cl₂. The complexes 1a (Figure 1), 2b (Figure 2), and 4b (Figure 3) are centrosymmetric with the

inversion center at the Pt atoms (Table 1). In all cases the platinum is in a square planar environment coordinated to two alkynyl fragments and two phosphine ligands in mutually trans positions, the C-Pt-P angles being close to 90° . In **4b** the gold atoms coordinate to an alkynyl and a phosphine ligand in a linear environment [C-Au-P 175.2(2) °]. The C=C [1.214(3) Å (1a, 2b), 1.214 (9), 1.208(8) Å (4b)], C-Pt [1.998(2) Å (1a), 1.9973 (18) Å (2b), 2.007 (6) Å (4b)], P-Pt [2.2967(6) Å (1a), 2.3094(4) Å (2b), 2.3147(15) Å (4b)], C-Au [1.996(6) Å (4b)], and P-Au [2.2797(16) (4b) Å] bond distances are in the ranges previously found in related complexes.³³ The structure of 2b reveals that the C=CH hydrogen atoms lie between two aryl substitu-

Figure 1. Thermal ellipsoid plot (50% probability) of **1a**· CHCl₃. Selected bond lengths (Å) and angles (deg): Pt– C(1) 1.998(2), Pt–P 2.2967(6), C(1)–C(2) 1.214(3), C(2)–C(3) 1.438(3), C(1)#1–Pt–C(1) 180.0, C(1)#1–Pt–P 86.48(6), C(1)–Pt–P 93.52(6), C(2)–C(1)–Pt 175.8(2), C(1)–C(2)–C(3) 173.8(2). Solvent and phosphine hydrogens are omitted for clarity.

Figure 2. Thermal ellipsoid plot (40% probability) of **2b**·2CHCl₃. Selected bond lengths (Å) and angles (deg): Pt–C(1) 1.9973(18), Pt–P 2.3094(4), C(1)–C(2) 1.214(3), C(2)–C(3) 1.434(2), C(1)#1–Pt–C(1) 180.0, C(1)#1–Pt–P 90.34(5), C(1)–Pt–P 89.66(5), C(2)–C(1)–Pt 177.70(16), C(1)–C(2)–C(3) 176.42(19).

Figure 3. Thermal ellipsoid plot (30% probability) of **4b**· $5\mathrm{CH}_2\mathrm{Cl}_2$. Selected bond lengths (Å) and angles (deg): Pt– C(103) 2.007(6), Pt–P(1) 2.3147(15), Au–C(101) 1.996(6), Au–P(2) 2.2797(16), C(1)–C(102) 1.437(8), C(4)–C(104) 1.445(8), C(101)–C(102) 1.214(9), C(103)–C(104) 1.204(8), C(103)#1–Pt–C(103) 180.0, C(103)–Pt–P(1)#1 90.86(16), C(103)–Pt–P(1) 89.14(16), P(1)#1–Pt–P(1) 180.0, C(101)– Au–P(2) 175.2(2), C(102)–C(101)–Au 171.8(6), C(101)–C(102)–C(1) 174.7(7), C(104)–C(103)–Pt 176.6(5), C(103)–C(104)–C(4) 177.6(6). Solvent and H atoms are omitted for clarity.

ents of the phosphine, and the restricted access to these hydrogen atoms could explain why [Au(acac)PR₃] failed to react with **2a** and **2b**, as mentioned above. In compound **2b**, the chloroform is well-ordered and makes a very short contact to the centroid of the aromatic ring C41-46, as shown in Figure 2 [C-H normalized to 1.08 Å; H····Cent 2.39 Å, angle C-H····Cent 162°]. This type

of X $-H\cdots\pi$ hydrogen bond is well-documented.³⁴ The disordered or poorly resolved solvent of the other two structures precludes meaningful analysis of corresponding contacts.

Among the many (alkynyl)Pt(II) complexes structurally characterized by X-ray diffraction methods, 33 only a few contain, as do 1a and 2b, C=CH fragments and most contain the ligand -C=C-C=C-H. 14,35,36 Apart from our recently reported $Au^IPt^{II}_2$ triangle PPN[Au-{Pt(PMe_3)_2}_2{\$\mu\$-C_6Me_4(C=C)_2\$-1,2}_3], 15 4b is the only heteronuclear Pt^IIAu^I complex structurally characterized by X-ray crystallography.

NMR Spectra. The ¹H NMR spectra of complexes 1-5 show the resonances expected for the C_6Me_4 -1,4 (1, **4**), C_6Me_4 -1,2 (**2**), or C_6Me_3 -1,3,5 (**3**, **5**) fragments that they contain (see Experimental Section), and those of complexes 1-3 show, in addition, a singlet resonance for the C \equiv CH protons in the range 3.01 (2a) to 3.50 (1c) ppm. In the ³¹P{¹H} NMR spectra, the Pt(PR₃)₂ fragment gives rise to a singlet resonance with ¹⁹⁵Pt satellites. The ${}^{1}J_{\rm PPt}$ coupling constants are in the range 2312 (1c) to 2667 (4a) Hz, as found in other trans-[Pt-(alkynyl)₂(PR₃)₂] complexes,^{35,37} and are greater than those in the cis-isomers,38 in agreement with the weaker trans-influence of the phosphine with respect to the alkynyl ligands. The trans-geometry is confirmed for complexes 1c, 2c, and 5c by their ¹H NMR spectra, which show virtual triplets with ¹⁹⁵Pt satellites for the PMe₃ protons.³⁹ The AuPR₃ fragments in complexes 4 and 5 give rise to a singlet resonance in the 31P NMR spectra. The $\delta(P)$ and the J_{PPt} values for a given phosphine depend only very slightly on the alkynyl ligand and are not affected by the substitution of the $C \equiv CH$ hydrogen atoms by AuPAr₃.

The 13 C{ 1 H} NMR spectra of all complexes have been measured (see Experimental Section) with the exception of **4a**, **6a**, **6c**, and **7**, which, because of their insolubility, do not give any resonance even after 12 h of acquisition. We have assigned the $C_{\beta} \equiv C_{\alpha}$ Pt resonances only when the C-Pt coupling was observed, based on the general assumption that J_{CPt} is greater for the α carbon, although other authors make opposite assignments⁴⁰ or describe both resonances as due to the "C \equiv C-Pt" fragment. In our case the α carbon [δ , 116.5 (**4c**) to 120.9 (**1a**) ppm; $^{1}J_{\text{CPt}}$, 29–31 Hz] is at lower field than the β carbon [δ , 107.7 (**1c**) to 112.6 (**1a**) ppm; $^{2}J_{\text{CPt}}$, 2-4 Hz].

In the heteronuclear complexes **4** and **5**, the resonances of the alkynyl carbon nuclei of the $C_{\beta} \equiv C_{\alpha} AuPR_3$ fragments were assigned on the basis of the J_{CP} values.

 $^{(34)\,\}mathrm{Calhorda},\,\mathrm{M.}$ J. Chem. Commun. 2000, 801, and references therein.

⁽³⁵⁾ Onitsuka, K.; Fujimoto, M.; Ohshiro, N.; Takahashi, S. *Angew. Chem., Int. Ed.* **1999**, *38*, 689.

⁽³⁶⁾ Leininger, S.; Stang, P. J.; Huang, S. Organometallics 1998, 17, 3981. Alqaisi, S. M.; Galat, K. J.; Chai, M.; Ray III, D. G.; Rinaldi, P. L.; Tessier, C. A.; Youngs, W. J. J. Am. Chem. Soc. 1998, 120, 12149. Phillips, J. R.; Miller, G. A.; Trogler, W. C. Acta Crystallogr., Sect. C 1990, 46, 1648.

⁽³⁷⁾ Mayor, M.; Vonhanisch, C.; Weber, H. B.; Reichert, J.; Beckmann, D. *Angew. Chem., Int. Ed.* **2002**, *41*, 1183+. (38) Falvello, L. R.; Fornies, J.; Gomez, J.; Lalinde, E.; Martin, A.;

⁽³⁸⁾ Falvello, L. R.; Fornies, J.; Gomez, J.; Lalinde, E.; Martin, A.; Moreno, M. T.; Sacristan, J. Chem. Eur. J. 1999, 5, 474. (39) Parish, R. V. NMR, NQR, EPR, and Mössbauer Spectroscopy

⁽³⁹⁾ Parish, R. V. NMR, NQR, EPR, and Mössbauer Spectroscopy in Inorganic Chemistry, Ellis Horwood Series in Inorganic Chemistry; 1000

⁽⁴⁰⁾ Sebald, A.; Wrackmeyer, B.; Theocharis, C. R.; Jones, W. J. Chem. Soc., Dalton Trans. 1984, 747.

The α carbons give a doublet [in the range 102.6 (**5b**) to 103.4 (**4b**) ppm] with ${}^2J_{\rm CP}$ values of 23–30 Hz, while the β carbons are at lower field [120.8 (**5b**) to 122.0 (**4c**) ppm] and give a singlet or a doublet with smaller ${}^3J_{\rm CP}$ value (2–9 Hz).

The $^{31}P\{^{1}H\}$ NMR spectrum of **6e**, the only soluble polymer here described, shows one singlet resonance for the $Pt\{P(^{n}Bu)_{3}\}_{2}$ fragments, which suggests a high polymerization degree, in agreement with the mean molecular weight ($M_{\rm w}=7.7\times10^{5}$ amu) determined by GPC, which corresponds to some 667 monomeric units. This ^{31}P resonance, including the ^{195}Pt satellites, is appreciably wider than that due to the PPN cations, but a variable-temperature study of this compound in CDCl₃ shows both the ^{1}H and $^{31}P\{^{1}H\}$ NMR spectra to be independent of temperature changes. The resonances from the C \equiv C nuclei are not observed in the $^{13}C\{^{1}H\}$ NMR spectrum of **6e**, which confirms their elusive detectability, as previously reported. 41

IR Spectra. The IR spectra of complexes 1–7 show the $\nu_{C=C}$ bands in the range 2102–2082 and those of complexes 1–3 show, in addition, ν_{CH} bands in the range 3314–3240 cm⁻¹, similar to those found in other (alkynyl)Pt(II) complexes.^{8,12,42}

Mass Spectra. The FAB⁺ MS of complexes 1-5 (See Experimental Section) show the molecular peaks with relative intensities ranging from 6 to 53%, the major peaks corresponding to the fragments $[Pt(PR_3)_2]^{2+}$

(1–3, 55–85%) or [AuPR₃]⁺ and [Au(PR₃)₂]⁺ (4, 5, 90–100%). An attempted study of complex **6e** by MALDI using both linear and deflection, positive and negative modes, did not afford any conclusive results. Complex **6e** is only soluble in CHCl₃ or CH₂Cl₂ when freshly made. However, since a few days later it could not be dissolved in any of those solvents or in MeOH, the sample for the MALDI study was prepared by grinding the solid with a matrix of ditranol. For the low mass region only the PPN cation was detected, and when a 500 amu deflection was applied, the results show that fragmentation occurs in the tube of flight of the analyzer.

Conclusions. We report some of the few mononuclear Pt^{II} bis(σ -alkynyl) complexes of aryl di- and triacetylenes. These complexes are appropriate for the synthesis of the first σ -alkynyl trinuclear $Pt^{II}Au^{I}_{2}$ and pentanuclear $Pt^{II}Au^{I}_{4}$ complexes by reacting them with [Au-(acac)PR₃] complexes. Using instead PPN[Au(acac)₂] it is possible to isolate the first reported anionic σ -alkynyl metal polymers described so far.

Acknowledgment. We are grateful for the financial support of Ministerio de Ciencia y Tecnología, FEDER (CTQ2004-05396) and Fundación Séneca (Comunidad Autónoma de la Región de Murcia, Spain) for a grant to M.M.A.F.

Supporting Information Available: Listing of all refined and calculated atomic coordinates, anisotropic thermal parameters, and bond lengths and angles for **1a**·CHCl₃, **2b**·2CHCl₃, and **4b**·5CH₂Cl₂. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0501273

⁽⁴¹⁾ Bruce, M. I.; Grundy, K. R.; Liddell, M. J.; Snow, M. R.; Tiekink, E. R. T. J. Organomet. Chem. 1988, 344, C49. Bruce, M. I.; Liddell, M. J. J. Organomet. Chem. 1992, 427, 263. Liau, R. Y.; Schier, A.; Schmidbaur, H. Organometallics 2003, 22, 3199.

⁽⁴²⁾ Wong, W.-Y.; Lu, G.-L.; Choi, K.-H. J. Organomet. Chem. 2002, 659, 107