Scilab Textbook Companion for Unit Operations Of Chemical Engineering by W. L. McCabe, J. C. Smith And P. Harriot¹

Created by
Prashant Dave
Sr. Research Fellow
Chemical Engineering
IIT Bombay
College Teacher
NA
Cross-Checked by

July 13, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Unit Operations Of Chemical Engineering

Author: W. L. McCabe, J. C. Smith And P. Harriot

Publisher: McGraw - Hill, New Delhi

Edition: 5

Year: 1993

ISBN: 0-07-112738-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
1	Definitions and Principles	5
2	Fluid Statics and its Application	7
4	Basic Equations of Fluid Flow	9
5	Flow of Incompressible Fluids in Conduits and Thin Layers	15
6	Flow of Compressible Fluids	17
7	Flow Past Immersed Bodies	23
8	Transportation and Metering of Fluids	27
9	Agitation and Mixing of Liquids	35
10	Heat Transfer by Conduction	44
11	Principles of Heat Flow in Fluids	49
12	Heat Transfer to Fluids without Phase Change	51
13	Heat Transfer to Fluids with Phase Change	58
14	Radiation Heat Transfer	62
15	Heat Exchange Equipment	64

16 Evaporation	70
17 Equilibrium Stage Operations	7 5
18 Distillation	7 9
19 Introduction to Multicomponent Distillation	91
20 Leaching and Extraction	99
21 Principles of Diffusion and Mass Transer between Phases	107
22 Gas Absorption	114
23 Humidification Operations	127
24 Drying of Solids	131
25 Adsorption	137
26 Membrane Separation Processes	146
27 Crystallization	151
28 Properties Handling and Mixing of Particulate Soilds	159
29 Size Reduction	162
30 Mechanical Separations	166

List of Scilab Codes

Exa 1.1	Power calculation	5
Exa 2.1	reading in the mamometer	7
Exa 2.2	tank diameter	8
Exa 4.1	mass velocity through pipe	9
Exa 4.2	streamline discharge velocity	10
Exa 4.3	Force	11
Exa 4.4	Power	12
Exa 5.1	$flow_rate$	15
Exa 6.1	The Mach Number at dischage is	17
Exa 6.2	Mass velocity	19
Exa 6.3	Pressure calculation	21
Exa 7.1	Velocity	23
Exa 7.2	Calculating Reynolds Number	24
Exa 7.3	Velocity and pressure	25
Exa 8.1	vapor pressure	27
Exa 8.2	velocity	28
Exa 8.3	Cooling water requirement	29
Exa 8.4	$press_loss$	31
Exa 8.5	Maximum power consumption	32
Exa 8.6	volumetric flow rate	33
Exa 9.1	Power	35
Exa 9.2	Power calculation	36
Exa 9.3	Power calculation	37
Exa 9.4	Time	37
Exa 9.5	slurry density	38
Exa 9.6	find out mean bubble diameter	39
Exa 9.7	velocity	41
Exa 9.8	volume	42

Exa 10.1	temperature and thermal condutivity 4	4
Exa 10.2	the heat loss from unit square area	5
Exa 10.3	mean for silica	6
Exa 10.4	Temperature	7
Exa 10.5	penetration distance	7
Exa 11.1	Overall heat transfer coefficient	9
Exa 12.1	Delta t	1
Exa 12.2	overall coefficient	2
Exa 12.3	Laminar Range	4
Exa 12.4	lenght of heated section	5
Exa 13.1	coefficient of chlorobenzene	8
Exa 13.2	film coefficient	0
Exa 14.1	heat flux	2
Exa 15.1	heat transfer coefficient	4
Exa 15.2	heat exchanger	5
Exa 15.3	correct mean temperature drop 6	6
Exa 15.4	heat transfer coefficient	7
Exa 16.1	heating area required	0
Exa 16.2	boiling point	2
Exa 16.3	total rate of evaporation	3
Exa 17.1	number of ideal stages determined	5
Exa 17.2	percentage removal obtained	6
Exa 18.1	mole fraction	9
Exa 18.2	water needed	0
Exa 18.3	Temperature	2
Exa 18.4	Ideal plates needed	4
Exa 18.6	Froth height	5
Exa 18.7	F factor	8
Exa 18.8	composition of the remaining liquid 8	9
Exa 19.2	preheat temperature	1
Exa 19.3	ideal stages	3
Exa 19.4	tempeature in Lower zone and Upper zone 9	4
Exa 19.5	ideal plate required	7
Exa 20.1	ideal stages	9
Exa 20.2	Number of stages required	1
Exa 20.3	Number of stages	3
Exa 21.1	diffusion	7
Exa 21.2	Volumetric Diffusivity 10	8

Exa 21.3	Diffusivity	109
Exa 21.4	Effective thickness	110
Exa 21.5	efficieny	111
Exa 21.6	number of stages	112
Exa 22.1	pressure drop	114
Exa 22.2	pressure drop	115
Exa 22.3	temperatures	117
Exa 22.4	Transfer units	119
Exa 22.5	packing height	121
Exa 22.6	resistance	124
Exa 23.1	Adiabatic saturation temperature	127
Exa 23.3	volume of the spray chamber	129
Exa 24.1	drying time	131
Exa 24.2	drying time	132
Exa 24.3	Required drying time	133
Exa 24.4	diameter and length of the dryer	135
Exa 25.1	equilibrium capacity	137
Exa 25.2	break point-time	138
Exa 25.3	value of kca	141
Exa 25.4	carbon needed	142
Exa 26.1	membrane area	146
Exa 26.4	concentration differnce	148
Exa 26.5	pressure drop	149
Exa 27.1	kilograms of crystals	151
Exa 27.2	heat evolved	152
Exa 27.3	plotting	153
Exa 27.4	size of nuclues	154
Exa 27.5	Total evaporation rate	155
Exa 27.6	differential mass distribution	156
Exa 28.1	Fraction of the particle	159
Exa 28.2	sum	161
Exa 29.1	Power required	162
Exa 29.2	length	163
Exa 30.1	Overall Effectiveness	166
Exa 30.2	Emperical Equation	167
Exa 30.3	Filter Area	169
Exa 30.4	Plotting	170
Exa 30.5	Diffusion	173

Definitions and Principles

Scilab code Exa 1.1 Power calculation

Power calculation

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 / \text{Example } 1.1
7 // Solution
8 //(a)
9 // Using Eq.(1.6,), (1.26), and (1.27)
10 / \text{Let N} = 1N
11 N = 0.3048/(9.80665*0.45359237*0.3048); //[lbf]
12
13 //(b)
14 //Using (1.38), (1.16), (1.26), and (1.31)
15 / \text{Let B} = 1 \text{ Btu}
16 B = 0.45359237*1000/1.8; //[cal]
17
18 //(c)
```

Fluid Statics and its Application

Scilab code Exa 2.1 reading in the mamometer

reading in the mamometer

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 / \text{Example } 2.1
6 \text{ rho\_A} = 13590;
7 \text{ rho}_B = 1260;
8 \text{ Pa} = 14000;
9 gc = 1; //[ft-lb/lbf-s^2]
10
11 // \text{Using Eq.}(2.5); \text{ Zb} = 250 \text{ mmHg}
12 Pb = -(250/1000)*(9.80665/1)*13590;
13
14 // Using Eq. (2.10)
15 \text{ Rm} = (14000+33318)/(9.80665*(13590-1260))
16 disp('mm', Rm, 'The reading in the mamometer is (Rm) =
       ')
```

Scilab code Exa 2.2 tank diameter

tank diameter

```
1 // clear //
2 clear;
3 clc;
5 / \text{Example } 2.2
7 //(a)
8 // Using Eq.(2.15)
9 t = (100*1.1)/(1153-865)
10 rate_each_stream = (1500*42)/(24*60)
11 total_liquid_holdup = 2*43.8*23
12 vol = total_liquid_holdup/0.95
13 disp('gal',vol,'vessel size =')
14
15 //(b) tank diameter
16 \text{ Zt} = 0.90*4
17 ZA1 = 1.8 //[ft];
18 \text{ ZA2} = 1.8 + (3.6-1.8)*(54/72)
19 disp('ft',ZA2,'tank diameter =')
```

Basic Equations of Fluid Flow

Scilab code Exa 4.1 mass velocity through pipe

mass velocity through pipe

```
1 //clear//
2 clear;
3 clc;
5 //Example 4.1
7 // (a)
8 // density of the fluid
9 rho = 0.887*62.37; // [lb/ft<sup>3</sup>]
10 // total volumetric flow rate
11 q = 30*60/7.48; //[ft^3/hr]
12 // mass flow rate in pipe A and pipe B is same
13 mdot = rho*q //[lb/hr]
14 // mass flow rate in each pipe of C is half of the
      total flow
15 mdot_C = mdot/2 //[lb/hr]
16 disp('lb/hr', mdot, 'mass flow rate pipe A = ')
17 disp('lb/hr', mdot, 'mass flow rate pipe B = ')
18 \operatorname{disp}('lb/hr', mdot_C, 'mass flow rate pipe C = ')
```

```
19
20 // (b)
21 // \text{ Using Eq.}(4.4),
22 // velocity through pipe A
23 V_Abar = 240.7/(3600*0.0233) // [ft/s]
24
25 // velocity through pipe B
26 \text{ V\_Bbar} = 240.7/(3600*0.0513) //[ft/s]
27
28 // velocity through each pipe of C
29 V_Cbar = 240.7/(2*3600*0.01414) // [ft/s]
30
31 disp('ft/s', V_Abar, 'velocity through pipe A = ')
32 disp('ft/s',V_Bbar,'velocity through pipe B = ')
33 disp('ft/s', V_Cbar, 'velocity through pipe C = ')
34
35 // (c)
36 // Using Eq.(4.8),
37 // mass velocity through pipe A
38 GA = mdot/0.0233 // [kg/m^2-s]
39
40 // mass velocity through pipe B
41 GB = mdot/0.0513 / [kg/m^2-s]
42
43 // mass velocity through each pipe of C
44 GC = mdot/(2*0.01414) // [kg/m<sup>2</sup>-s]
45
46 disp('kg/m^2-s', GA, 'mass velocity through pipe A = '
47 disp('kg/m^2-s',GB, 'mass velocity through pipe B = '
48 \operatorname{disp}('kg/m^2-s',GC,'mass\ velocity\ through\ pipe\ C='
```

Scilab code Exa 4.2 streamline discharge velocity

streamline discharge velocity

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 4.2
6 //Applying Eq.(4.25)
7 //Pa = Pb, Ua = 0
8 // Zb = 0, Za = 5m
9
10 //The velocity at streamline discharge
11 Ub = sqrt(5*2*9.80665) // [m/s]
12 disp('m/s',Ub, 'streamline discharge velocity (Ub) ='
)
```

Scilab code Exa 4.3 Force

Force

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 4.3
6 rho = 998; // [kg/m^3]
7 Da = 50; //[mm]
8 Db = 20; //[mm]
9 pa = 100; //[N/m^2]
10
11 //(a)
12 Va_bar = 1.0; //[m/s]
13 Vb_bar = Va_bar*(Da/Db)^2 //[m/s]
14 //Using Eq.(4.29)
```

```
15 / Za = Zb, hf = 0
16 pb = pa-rho*(Vb_bar^2-Va_bar^2)/(2*1000) //[kN/m^2]
17 disp('kN/m^2',pb,'pb=')
18
19 // (b)
20 // \text{ Combining Eqs.} (4.14) & (4.15)
21 / For x direction,
22 / \sin ce \ Fg = 0, we get Eq.(4.30)
23 theta = \%pi/4;
24 Va_xbar = Va_bar;
25 Sa = (\%pi/4)*(Da/1000)^2; //[m^2]
26 \text{ Sax} = \text{Sa};
27 //From FIg 4.5
28 Vb_xbar = Vb_bar*\cos(theta); //[m/s]
29 Sb = \%pi/4*(Db/1000)^2; //[m^2]
30 Sbx = Sb*sin(theta); // [m^2]
31 // \text{Using Eq.} (4.6)
32 mdot = Va_bar*rho*Sa; //[kg/s]
33 //Substituting in Eq. (4.30)
34 //Solving for Fw, x
35 beta_a = 1; beta_b = 1;
36 Fw_x = mdot*(beta_b*Vb_xbar-beta_a*Va_xbar)-Sax*pa
      *1000+Sbx*pb*1000 //[N]
37
38 //For y direction,
39 / Va_ybar = 0, Say = 0
40 Vb_ybar = Vb_bar*sin(theta); //[m/s]
41 Sby = Sb*cos(theta); //[m^2]
42 Va_ybar = 0; //[m/s]
43 Say = 0; // [m/s]
44
45 Fw_y = mdot*(beta_b*Vb_ybar-beta_a*Va_ybar)-Say*pa
      *1000+Sby*pb*1000 //[N]
```

Scilab code Exa 4.4 Power

Power

```
1 //clear//
2 clear;
3 clc;
4
5 / \text{Example } 4.4
6 gc = 32.17; //[ft-lb/lbf-s^2]
7 rho_w = 62.37; //[lb/ft^3], density of water
8 \text{ sp\_gravity} = 1.84;
9 \text{ neta} = 0.60;
10 hf = 10; //[ft-lbf/lb], friction losses
11 Va_bar = 3; //[ft/s]
12 Da = 3; //[in.]
13 Db = 2; //[in.]
14 //From Appendix corss secional area respective to 3
      in. and 2in. diameter
15 Sa = 0.0513; //[ft^2]
16 Sb = 0.0233; //[ft^2]
17 Za = 0; //[ft]
18 Zb = 50; //[ft]
19 Vb_bar = Va_bar*(Sa/Sb); //[ft/s]
20 g = gc
21 / \text{Using Eq.} (4.32)
22 Wp = ((Zb*g/gc)+Vb_bar^2/(2*gc)+hf)/neta; //[ft-lbf/
      lb]
23
24 //Using Eq.(4.32) on pump itself
25 //station a is the suction connection and station b
      is the discharge
26 //Za = Zb
\frac{27}{\text{Eq.}(4.32)} becomes
\frac{28}{\text{the pressure developed by pume is deltaP}} = \text{pb-pa}
29 deltaP = sp_gravity*rho_w*(((Va_bar^2-Vb_bar^2)/(2*
      gc))+neta*Wp) //[lbf/ft^3]
30
31 mdot = Sa*Va_bar*sp_gravity*rho_w;
```

```
32

33 //the Power

34 P = mdot*Wp/550 //[hp]
```

Scilab code Exa 5.1 flow $_{r}$ at e

Flow of Incompressible Fluids in Conduits and Thin Layers

```
flow_rate
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 5.1
6 // Given
7 mu = 0.004; //[kg/m-s]
8 D = 0.0779; // [m]
9 rho = 0.93*998; //[kg/m^3]
10 L = 45; //[m]
11
12 //For fittings, form Table 5.1
13 \text{ sum}_Kf = 0.9 + 2*0.2;
14 / \text{From Eq.}(4.29), assuming alpha_a = 1,
15 // \text{ since pa} = \text{pb}, \text{ and Va\_bar} = 0
16 //A = Vb_bar^2/2 + hf = g*(Za-Zb)
17 A = 9.80665*(6+9); //[m^2/s^2]
```

Flow of Compressible Fluids

Scilab code Exa 6.1 The Mach Number at dischage is

The Mach Number at dischage is

```
1 // \operatorname{clear} //
 2 clear;
 3 clc;
 5 / \text{Example } 6.1
 6 //Given
 7 \text{ gama} = 1.4;
 8 M = 29;
9 R = 82.0568*10^-3; // [atm-m^3/Kg mol-K]
10 \text{ Nma} = 0.8;
11 gc = 1; //[ft-lb/lbf-s^2]
12 //At Entrance
13 p0 = 20; //[atm]
14 T0 = 555.6; //[K]
15
16 //(a)
17 \ // \ Using \ Eq.(6.28)
18 // Pressure at throat
```

```
19 pt = (1/(1+((gama-1)/2)*Nma^2)^(1/(1-1/gama)))*p0
      //[atm]
20 //From Eq.(6.10)
21 rho0 = (p0*M)/(R*T0); //[kg/m^3]
22 // Using Eq.(6.10) and Eq.(6.26), the velocity in
      the throat
23 ut = sqrt((2*gama*gc*R*T0)/(M*(gama-1))*(1-(pt/p0))
      (1-1/gama)); // [m^3-am/kg]^0.5
\frac{24}{\text{In terms of } [m/s]}, Using Appendix 2, 1 atm =
      1.01325*10^{N/m^2}
25 ut = ut*sqrt(1.01325*10^5) //[m/s]
\frac{26}{\sqrt{\text{Using Eq.}(6.23)}}, density at throat
27 rho_t = rho0*(pt/p0)^(1/gama) //[kg/m^3]
28 //The mass velocity at the throat,
29 Gt = ut*rho_t //[kg/m^2-s]
30 //Using Eq.(6.24), The temperature at throat
31 Tt = T0*(pt/p0)^(1-1/gama) // [K]
32
33 //(b)
34 // From Eq. (6.29)
35 pstar = ((2/(gama+1))^(1/(1-1/gama)))*p0 //[atm]
\frac{36}{\text{From Eq.}(6.24)} and \frac{6.29}{\text{Eq.}(6.24)}
37 Tstar = T0*(pstar/p0)^(1-1/gama) //[K]
38 //From Eq.(6.23)
39 rho_star = rho0*(pstar/p0)^(1/gama) //[Kg/m^3]
40 //From Eq.(6.30)
41 \text{ G\_star} = \frac{\text{sqrt}}{2 \cdot \text{gama} \cdot \text{gc} \cdot \text{rho0} \cdot \text{p0} \cdot 101.325 \cdot 10^3} / (\text{gama})
      -1))*(pstar/p0)^(1/gama)*sqrt(1-(pstar/p0)^(1-1/
      gama)) //[Kg-m^2/s]
42 u_star = G_star/rho_star //[m/s]
43
44 //(c)
45 // By continuity, G inversely proportional to S, the
       mass velocity at dischage is
46 G_r = G_star/2 / [Kg/m^3-s]
47 // Using Eq. (6.30)
48 // Let x = pr/p0
49 \text{ err} = 1;
```

Scilab code Exa 6.2 Mass velocity

Mass velocity

```
1 // clear //
2 clear;
3 clc;
4
5 / \text{Example } 6.2
6 // Given
7 \text{ Tr} = 1000; //[R]
8 \text{ pr} = 20; //[atm]
9 \text{ Ma_a} = 0.05;
10 \text{ gama} = 1.4;
11 gc = 32.174; //[ft-lb/lbf-s^2]
12 M = 29;
13 R = 1545;
14 //(a)
15 // \text{Using Eq.} (6.45)
16 A = 2*(1+((gama-1)/2)*Ma_a^2)/((gama+1)*Ma_a^2);
17 fLmax_rh = (1/Ma_a^2-1-(gama+1)*log(A)/2)/gama
18
```

```
19 // (b)
20 //Using Eq.(6.28), the pressure at the end of the
      isentropic nozzle pa
21 A = (1+(gama-1)*(Ma_a^2)/2);
22 pa = pr/(A^(gama/(gama-1))) // [atm]
23 //From Example 6.1, the density of air at 20atm and
      1000R is 0.795 lb/ft<sup>3</sup>
24 //Using Eq.(6.17), the acoustic velocity
25 Aa = sqrt(gc*gama*Tr*R/M) //[m/s]
26 //The velocity at the entrance of the pipe
27 ua = Ma_a*Aa //[m/s]
28 //When L_b = L_{max}, the gas leaves the pipe at the
      asterisk conditions, where
29 \text{ Ma_b} = 1;
30 // \text{Using Eq.} (6.43)
31 A = (gama - 1)/2;
32 Tstar = Tr *(1+A*Ma_a^2)/(1+A*Ma_b^2) // [K]
33 // \text{Using Eq.} (6.44)
34 \text{ rho\_star} = 0.795*Ma\_a/sqrt(2*(1+(gama-1)*Ma\_a^2/2)
      /(2.4)) //[lb/ft^3]
35 // \text{Using Eq.} (6.39)
36 pstar = pa*Ma_a/sqrt(1.2) // [atm]
37 //Mass velocity through the entire pipe
38 G = 0.795*ua //[lb/ft<sup>2</sup>-s]
39 ustar = G/rho_star //[ft/s]
40
41 //(c)
42 // \text{Using Eq.} (6.45) \text{ with } f_L \text{max\_rh} = 400
43
44 \text{ err} = 1;
45 \text{ eps} = 10^{-3};
46 \text{ Ma_ac} = rand(1,1);
47 i = 1;
48 while((err > eps))
     A = 2*(1+((gama-1)/2)*Ma_ac^2)/((gama+1)*Ma_ac^2);
     B = gama*400+1+(gama+1)*log(A)/2;
50
51
     Ma\_anew = sqrt(1/B);
52
     err = Ma_ac-Ma_anew;
```

```
53  Ma_ac = Ma_anew;

54  end

55  Ma_ac;

56  uac = Ma_ac*ua/Ma_a //[ft/s]

57  Gc = uac*0.795 //[lb/ft^2-s]
```

Scilab code Exa 6.3 Pressure calculation

Pressure calculation

```
1 // \operatorname{clear} //
2 clear;
3 clc;
4
5 //Example 6.3
6 //Given
7 \text{ pa} = 2.7; //[atm]
8 T = 288; //[K]
9 D = 0.075; //[m]
10 L = 70; //[m]
11 Vbar = 60; //[m/s]
12 M = 29;
13 rh = D/4; //[m]
14 mu = 1.74*10^{-5} / [kg/m-s] Appendix 8
15 rho_a = (29/22.4)*(2.7/1)*(273/288) // [kg/m<sup>3</sup>]
16 R = 82.056*10^{-3};
17 G = Vbar*rho_a //[kg/m^2-s]
18 Nre = D*G/mu;
19 kbyd = 0.00015*(0.3048/0.075);
20 f = 0.0044; // [from Fig. 5.9]
21
22 // \text{Using Eq.} (6.52)
23 //pbar = 1.982; //[atm]
24 / \text{pb} = 1.264; / \text{[atm]}
25 \text{ err} = 1;
```

```
26  eps = 10^-3;
27  pb = 1.5;
28
29  while(err>eps)
30  pbar = (pa+pb)/2;
31  A = ((f*L/(2*rh))+log(pa/pb));
32  pb_new = pa-(R*T*G^2/(pbar*29*101325))*A;
33  err = pb-pb_new;
34  pb = pb_new;
35  end
36  pb; //[atm]
37  pbar = (pa+pb)/2 // [atm]
```

Flow Past Immersed Bodies

```
Scilab code Exa 7.1 Velocity
   Velocity
1 // clear //
2 clear;
3 clc;
5 / \text{Example } 7.1
6 // Given
7 rho_p = 2800; // [kg/m^3]
8 \text{ g} = 9.80665; //[m/s^2]
9 ac = 50*g; // [m/s^2]
10 //(a)
11 //From appendix 20
12 \text{ Dp}_100 = 0.147; // [mm]
13 Dp_80 = 0.175; //[mm]
14 Dp = (Dp_100+Dp_80)/2; //[mm]
15
16 //From Appendix 14
17 mu = 0.801; //[cP]
18 rho = 995.7; //[kg/m^2]
19 // Using Eq. (7.45)
```

```
20 K = Dp*10^-3*(g*rho*(rho_p-rho)/(mu*10^-3)^2)^(1/3);
21 //This is slightly above the Stoke's-law range
22 //Assuming
23 \text{ N_rep} = 4.4;
24 //From Fig. 7.6
25 \text{ Cd} = 7.9;
26 //From Eq.(7.37)
27 \text{ mu_ta} = \frac{\text{sqrt}}{4*g*(\text{rho_p-rho})*Dp*10^-3/(3*Cd*rho)} //
       [m/s]
28
29 // (b)
30 //Using 'ac' in place of 'g' in Eq. (7.45)
31 K = K*50^(1/3); // Since only acceleration changes
32 //Etimating
33 N_rep = 80; //From Fig. (7.6)
34 \text{ Cd} = 1.2;
35 mu_tb1 = sqrt(4*ac*(rho_p-rho)*Dp*10^-3/(3*Cd*rho))
      // [m/s]
36 // For irregular particles Cd is about 20 percent
      greater
37 //than that for spheres
38 \text{ Cd} = 1.2*1.2;
39 \text{ mu\_tb2} = \text{sqrt}(4*ac*(rho_p-rho)*Dp*10^-3/(3*Cd*rho))
      // [m/s]
```

Scilab code Exa 7.2 Calculating Reynolds Number

Calculating Reynolds Number

```
1 // clear //
2 clear;
3 clc;
4
5 // Example 7.2
6 // Given
```

```
7 g = 32.174; //[ft-lb/lbf-s^2]
8 \text{ eps} = 0.8;
9 \text{ speg_s} = 4.0;
10 \text{ speg_c} = 1.594;
11 Ds = 0.004; //[in.]
12 rho_w = 62.37; //[lbf/ft^3]
13 delta_speg = speg_s-speg_c;
14 delta_rho = rho_w*delta_speg; //[lbf/ft^3]
15 rho_c = rho_w*speg_c; //[lbf/ft^3]
16 //From Appendix 9
17 mu = 1.03; //[cP]
18 // \text{Using Eq.} (7.45)
19 K = Ds/12*(g*rho_c*(delta_rho)/(mu*6.72*10^-4)^2)
      ^(1/3);
20 //Using Eq.(7.40)
21 ut = g*(Ds/12)^2*delta_rho/(18*mu*6.72*10^-4) //[ft/
      \mathbf{s}
22
23 //The terminal velocity in hindered settling
24 // Calculating Reynolds Number
25 Nre = ut*rho_c*Ds/(12*mu*6.72*10^-4);
26 //From Fig.(7.7)
27 n = 4.1;
28 // Using Eq. (7.46)
29 us = ut*eps^n //[ft/s]
```

Scilab code Exa 7.3 Velocity and pressure

Velocity and pressure

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 7.3
```

```
6 //The quantities needed are
7 \text{ mu} = 0.01; //[P]
8 delta_rho = 0.24; //[g/cm^3]
9 //Using Eq.(7.51), solving the quadratic equation for
       Vom_bar
10 a = 1.75*1/(0.11*0.4^3);
11 b = 150*0.01*0.6/(0.11^2*0.4^3);
12 c = -980*0.24;
13 Vom_bar = (-b+sqrt(b^2-4*a*c))/(2*a); //[cm/s]
14 //Corresponding Reynolds number
15 Nre = 0.11*0.194*0.124/0.01;
16 //From Fig 7.13
17 m = 3.9;
18 //For 25 percent exapnsion
19 LbyLm = 1.25;
20 \text{ eps} = 0.52;
21 //From Eq.(7.59)
22 Vo_bar = 1.94*(0.52/0.40)^3.9 // [mm/s]
```

Transportation and Metering of Fluids

Scilab code Exa 8.1 vapor pressure

```
vapor pressure
```

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 8.1
6 //Given
7 vdot = 40; //[gal/min]
8 pb = 50; //[lbf/in.^2]
9 Za = 4; //[ft]
10 Zb = 10; //[ft]
11 hfs = 0.5; //[lbf/in.^2]
12 hfd = 5.5; //[lbf/in.^2]
13 \text{ neta} = 0.6;
14 rho = 54; //[lb/ft^3]
15 pv = 3.8; //[lbf/in.^2]
16 g = 9.8; //[m/s^2]
17 gc = 32.17 / [ft - lb / lbf - s^2]
```

```
18 hf = hfs+hfd; // [lbf/in.^2]
19 //(a)
20 //Using data from Appendix 5
21 Vb_bar = vdot/6.34; //[ft/s]
22 // Using Eq. (4.32)
23
24 \text{ Wp_neta} = ((14.7+pb)*144/rho)+(g/gc*10)+(Vb_bar)
      ^2/(2*gc))+(hf*144/54)-(14.7*144/54); // [ft-lbf/
      1b
25 delta_H = Wp_neta;
26
27 //(b)
28 mdot = vdot*rho/(7.48*60); // [lb/s]
\frac{29}{\sqrt{\text{Using Eq.}(8.7)}}, the input power is
30 Pb = mdot*delta_H/(550*neta) // [hp]
31
32 / (c)
33 \text{ padash} = 14.7*144/\text{rho};
34 //The vapor pressure corresponding to a head
35 hv = pv*144/rho; // [ft-lbf/lb]
36 //friction in the suction line
37 hfs = 0.5*144/\text{rho}; // [ft-lbf/lb]
38 //Using Eq.(8.7), value of available
39 NPSH = padash-hv-hfs-Za // [ft]
```

Scilab code Exa 8.2 velocity

```
velocity
```

```
1 // clear //
2 clear;
3 clc;
4
5 // Example 8_2
6 // Given
```

```
7 pa = 29; //[in.Hg]
8 pb = 30.1; //[in.Hg]
9 \text{ va = 0; } //[ft/s]
10 vb = 150; //[ft/s]
11 Ta = 200; //[F]
12 vdot = 10000; //[ft^3/min]
13 \text{ neta} = 0.65;
14 M = 31.3;
15 R = 29.92;
16 gc = 32.17; //[ft-lb/lbf-s^2]
17 //actual suction density
18 rho_a = M*pa*(460+60)/(378.7*30*(460+Ta)); //[lb/ft]
      ^3]
19 //acual discharge density
20 rho_b = rho_a*pb/pa; //[lb/ft^3]
21 // average density of the flowing gas
22 rho = (rho_a+rho_b)/2; //[lb/ft^3]
23 //mass flow rate
24 mdot = vdot*M/(378.7*60) //[lb/s]
25 //developed pressure
26 dev_p = (pb-pa)*144*14.7/(R*rho); //[ft-lbf/lb]
27 // velocity head
28 vel_head = vb^2/(2*gc); //[ft-lbf/lb]
29 / Using Eq.(8.1), alpha_a = alpha_b = 1, va = 0, Za = 0
30 Wp = (\text{dev_p+vel_head})/\text{neta} // [\text{ft-lbf/lb}]
31 // \text{Using Eq.} (8.4)
32 Pb = mdot*Wp/550 //[hp]
```

Scilab code Exa 8.3 Cooling water requirement

Cooling water requirement

```
1 // clear //
2 clear;
```

```
3 \text{ clc};
5 / \text{Example } 8.3
6 //Given
7 vdot = 180; //[ft^3/min]
8 pa = 14; //[lbf/in.^2]
9 pb = 900; //[lbf/in.^2]
10 Ta = 80+460; //[K]
11 q0 = 0.063; //[m^3/s]
12 Cp = 9.3; //[Btu/lbmol-F]
13 \text{ gama} = 1.31;
14 delta_Tw = 20; // [F]
15 //(a)
16 \text{ neta} = 0.80;
17 //For a multistage compressor the total power is a
      minimum if each stage doed the same amount of
      work
18 //Hence using same copression ration for each stage
19 // Using Eq. (8.25)
20 //For one stage
21 \text{ comp_ratio} = (900/14)^{(1/3)};
22 //Using Eq.(8.29), the power required by each stage
23 Pb = (Ta*q0*gama*vdot)*(comp_ratio^(1-1/gama)-1)
      /(520*(gama-1)*neta); // [hp]
24 // Total Power
25 \text{ Pt} = 3*Pb // [hp]
26
27 //(b)
\frac{28}{\sqrt{\text{Using Eq.}(8.22)}}, the temperature at the exit of
      each stage
29 Tb = Ta*comp_ratio^(1-1/gama)
30
31 //(c) Since 1 lb mol = 378.7 std ft<sup>3</sup>, the flow rate
       is
32 vdot = vdot*60/378.7; //[lb mol/h]
33 // Heat load in each cooler is
34 Hl = vdot*Cp*(Tb-Ta) // [Btu/h]
35 //Total heat loss
```

```
36 Htotal = 3*H1; //[Btu/h]
37 //Cooling water requirement
38 cwr = Htotal/delta_Tw // [lb/h]
```

Scilab code Exa 8.4 press $_loss$

```
press_loss
1 // clear //
2 clear;
3 clc;
5 / \text{Example } 8.4
6 //Given
7 q = 75/3600 ; // [m^3/s]
8 rho = 62.37*16.018; //[kg/m^3] From Appendix 4
9 \text{ Cv} = 0.98;
10 g = 9.80665; //[m/s^2]
11 \text{ Sw} = 1;
12 \text{ Sm} = 13.6;
13 h = 1.25; //[m]
14 //(a)
15 // Using Eq. (2.10)
16 delta_p = g*h*(Sm-Sw)*rho; //[N/m^2]
17 // \text{Using Eq.}(8.36), neglecting the effect of beta
18 Sb = q/(Cv*sqrt(2*delta_p/rho));
19 Db = sqrt(4*Sb/\%pi)*100 // [mm]
20
21 //(b)
22 press_loss = 0.1*delta_p; //[N/m^2]
23 // Power required at full flow
24 P = q*press_loss/1000 // [kW]
```

Scilab code Exa 8.5 Maximum power consumption

Maximum power consumption

```
1 // clear //
2 clear;
3 clc;
4
5 / \text{Example } 8.5
6 // Given
7 T = 100; //[F]
8 \text{ mu}_0 = 5.45; //[cP]
9 \text{ spg}_0 = 0.8927;
10 \text{ spg_m} = 13.6;
11 \text{ spg_gl} = 1.11;
12 q = 12000; //[bbl/d]
13 rho_ratio = 0.984;
14 rho_w = 62.37; //[lb/ft^3]
15 h = 30; //[in.]
16 gc = 32.174; //[ft-lb/lbf-s^2]
17 //(a)
18 // \text{Using Eq.} (8.42)
19 rhoB_60 = spg_0*rho_w; //[lb/ft^3]
20 rho_100 = spg_0*rho_w*rho_ratio; //[lb/ft^3]
21 mdot = q*42*rhoB_60/(24*3600*7.48); // [lb/s]
22 Da = 4.026/12; //[ft]
23 delta_p = h/12*(spg_m-spg_gl)*rho_w*(1); //[lbf/ft]
      ^2]
24 // Using Eq. (8.42)
25 beeta = sqrt(4*mdot/(0.61*\%pi*Da^2*sqrt(2*gc*delta_p))
      *rho_100)));
26 Do = Da*beeta; //[ft]
27 // the orifice diameter
28 D = 12*Do //[in.]
29
30 //(b)
31 //Using Fig. 8.20, the fraction of differential
      pressure loss is
```

```
32 fra_prss_loss = 0.68;

33 //Maximum power consumption

34 P = mdot*delta_p*fra_prss_loss/(rho_ratio*rho_w* spg_0*550) //[hp]
```

Scilab code Exa 8.6 volumetric flow rate

volumetric flow rate

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 8.4
6 //Given
7 \text{ Cpt} = 0.98;
8 \text{ Ta} = 200; //[F]
9 Da = 36; //[in.]
10 pa = 15.25; //[in.]
11 h = 0.54; //[in.]
12 P = 29.92; //[in.]
13 spg_m =13.6; //[specific gravity of mercury]
14 rho_w = 62.37; //[lb/ft^3]
15 gc = 32.174; //[ft-lb/lbf-s^2]
16 // \text{Using Eq.} (8.52)
17 Pabs = P+pa/spg_m; //[in.]
18 rho = 29*492*31.04/(359*(200+460)*29.92); //[lb/ft]
      ^3]
19 //From manometer reading
20 delta_p = h/12*rho_w //[lbf/ft^3]
21
22 //Using Eq.(8.53, m*aximum velocity, assuming Nma is
       negligible
23 umax = Cpt*sqrt(2*gc*delta_p/rho) // [ft/s]
24 //The reynolds number based on maximum velocity
```

```
25 mu_air = 0.022 ; //[cP] form Appendix 8
26 Nre_max = (Da/12)*umax*rho/(mu_air*0.000672);
27 //Using Fig 5.7, to obtain average velocity
28 Vbar = 0.86*umax // [ft/s]
29 Nre = Nre_max*0.86;
30 //The volumetric flow rate
31 q = Vbar*(Da/12)^2*%pi/4*520/660*Pabs/P*60 //[ft^3/min]
```

Agitation and Mixing of Liquids

Scilab code Exa 9.1 Power

Power

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Exapmle 9.1
6 // Given
7 Dt = 6; //[ft]
8 h = 2; //[ft]
9 n = 90/60; //[rps]
10 mu = 12*6.72*10^-4; //[lb/ft-s]
11 g = 32.17; //[ft/s^2]
12 rho = 93.5; //[lb/ft^3]
13 Da = 2; // [ft]
14
15 Nre = Da^2*n*rho/mu;
16 //From curve A of Fig. 9.12
17 \text{ Np} = 5.8
```

```
18 //Form Eq.(9.20)

19 P = Np*rho*n^3*Da^5/g //[ft-lbf/s]

20 P = P/550 //[hp]
```

Scilab code Exa 9.2 Power calculation

Power calculation

```
1 // clear //
2 clear;
3 clc;
5 //Example 9.2
6 //Given
7 Dt = 6; //[ft]
8 h = 2; //[ft]
9 n = 90/60; //[rps]
10 mu = 12*6.72*10^-4; //[lb/ft-s]
11 g = 32.17; //[ft/s^2]
12 rho = 93.5; //[1b/ft^3]
13 Da = 2; // [ft]
14
15 Nre = Da^2*n*rho/mu;
16 //Froude number
17 Nfr = n^2*Da/g;
18 //From Table 9.1
19 \ a = 1;
20 b = 40.0;
21 // \text{Using Eq.} (9.19)
22 \text{ m} = (a-\log(Nre)/2.303)/b;
23 //Using Fig. 9.12, curve D,
24 \text{ Np} = 1.07;
25 //Corrected valus of Np
26 \text{ Np = Np*Nfr^m};
27
```

```
28 //Form Eq.(9.20)

29 P = Np*rho*n^3*Da^5/g //[ft-lbf/s]

30 P = P/550 //[hp]
```

Scilab code Exa 9.3 Power calculation

Power calculation

```
1 //clear//
2 clear;
3 clc;
5 / \text{Example } 9.3
6 // Given
7 Dt = 6; //[ft]
8 h = 2; //[ft]
9 n = 90/60; //[rps]
10 mu = 1200*6.72*10^-2; //[lb/ft-s]
11 g = 32.17; //[ft/s^2]
12 rho = 70 //[lb/ft^3]
13 Da = 2; // [ft]
14
15 Nre = Da^2*n*rho/mu;
16 //From Table 9.3
17 \text{ KL} = 65;
18 //From Eq. (9.21)
19 Np = KL/Nre;
20 P = Np*rho*n^3*Da^5/g //[ft-lbf/s]
21 P = P/550 //[hp]
```

Scilab code Exa 9.4 Time

Time

```
1 // clear //
2 clear;
3 clc;
4
5 / \text{Example } 9.4
6 // Given
7 Dt = 6; //[ft]
8 Da = 2; //[ft]
9 n = 80/60; //[rps]
10 T = 70; //[F]
11 rho = 62.3; //[lb/ft^3], From Appendix 14
12 mu = 6.6*10^-4; // [lb/ft-s], From Appendix 14
13
14 Nre = Da^2*n*rho/mu;
15 //From Fig. 9.15
16 \text{ ntT} = 36;
17 tT = ntT/1.333 //[s]
```

Scilab code Exa 9.5 slurry density

slurry density

```
1 // clear //
2 clear;
3 clc;
4
5 // Example 9.5
6 // Given
7 Dt = 6; // [ft]
8 H = 8; // [ft]
9 T = 70; // [F]
10 sp_gr = 3.18;
11 w_fr = 0.25;
12 Da = 2; // [ft]
13 h = 1.5; // [ft]
```

```
14 gc = 32.17; //[ft-lb/lbf-s^2]
15 // (a)
16 //Using data of Buurman et al. in Fig.(9.19)
17 //change in nc
18 delta_nc = (104/200)^0.2*(2.18/1.59)
      ^0.45*(33.3/11.1)^0.13;
19 //change in P
20 dalta_P = delta_nc^3;
21
22 //Using Fig. 9.19
23 V = \%pi/4*Dt^2*H*7.48 ; //[gal]
24 P = 3.3*V/1000 //[hp]
25
26 //(b)
27 //From Table 9.3, for a cour blade turbine,
28 \text{ KT} = 1.27;
29 \text{ Np} = \text{KT};
30 //slurry density
31 rho_m = 1/((w_fr/sp_gr)+(1-w_fr))*62; // [lb/ft^3]
32
33 nc = (P*gc*550/(Np*rho_m*Da^5))^(1/3) // [r/s]
```

Scilab code Exa 9.6 find out mean bubble diameter

find out mean bubble diameter

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 9.6
6 //Given
7 Dt = 2; //[m]
8 Da = 0.667; //[m]
9 n = 180/60; //[rps]
```

```
10 T = 20; //[C]
11 qg = 100; //[m^3/h]
12 rho = 1000; //[kg/m^3]
13 mu = 10^-3; //[kg/m-s]
14 ut = 0.2; //[m/s]
15 //(a)
16 //The power input is calculated and followed by
      correction of gas effect
17 Nre = n*Da^2*rho/mu;
18 //For a flat blade turbine, from Table 9.3
19 KT = 5.75;
20 // \text{Using Eq.} (9.24)
21 Po = KT*n^3*Da^5*rho/1000; //[kW]
22 At = \%pi/4*Dt^2; //[m^2]
23 // Superficial gas velocity
24 Vs_bar = At*qg/3600/10 //[m/s]
\frac{25}{\text{From Fig.}} 9.20 \text{ Pg/Po} = 0.60
26 \text{ Pg} = \text{Po}*0.6; //[kW]
27 //From Fig. 9.7, depth of liquid is equal to diameter
       of the tank
28 //Hence, liquid volume
29 V = \%pi/4*Dt^2*Dt; //[m^3]
30 //The input power per unit volume
31 PgbyV = Pg/V ; //[kW/m^3]
32
33 //(b)
34 sigma = 72.75; //[g/s^2]
35 rho_L = 10^-3; //[g/mm]
36 PgbyV = PgbyV*10^3; //[g/mm-s^2]
37 // \text{Using Eq.} (9.46)
38 / \text{Let } x = \sinh^{\circ}(0.5)
39 //solving the equation as quadratic equation
40 \ a = 1;
41 b = -(Vs_bar/ut)^0.5;
42 c = -0.216*((PgbyV)^0.4)*(rho_L^0.2)/(sigma^0.6)*(
      Vs_bar/ut)^(0.5);
43 x = (-b+sqrt(b^2-4*a*c))/(2*a);
44 shi = x^2;
```

Scilab code Exa 9.7 velocity

velocity

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 / \text{Exapmle } 9.7
6 //Given
7 Dt = 2; //[m]
8 \text{ Da} = 0.667; //[m]
9 n = 180/60; //[rps]
10 T = 20; //[C]
11 qg = 100; //[m^3/h]
12 rho = 1000; //[kg/m^3]
13 mu = 10^-3; //[kg/m-s]
14 ut = 0.2; //[m/s]
15 At = \%pi/4*Dt^2; //[m^2]
16 //Using values form Example 7.6
17 // Assuming Pg/Po decresaes to 0.25
18 PgbyV = 0.25*20490/6.28; //[W/m^3]
19 // Using Eq. (9.47)
20 Vs_barc = 0.114*(PgbyV)*(Dt/1.5)^0.17/1000 //[m/s]
```

```
21 qg = Vs_barc*At*3600 //[m^3/h]
22 //The calculated flooding velocity is beyond the
    range of the data on which Eq.(9.47)
23 //was based, so it may not be relaible. Based on
    Vs_barc, the highest measured value, qg
24 //would be 850 m^3/h.
```

Scilab code Exa 9.8 volume

volume

```
1 //clear//
2 clear;
3 clc;
5 / \text{Example } 9.8
6 // Given
7 D1 = 1; //[ft]
8 D6 = 6
9 \text{ Nre_i} = 10^4;
10 Da = 4; //[in.]
11 t1 = 15; //[s]
12 P = 2; //[hp/gal]
13
14 //(a)
15 // Using Fig. 9.15
16 //the mixing factor ntT is constant and time tT is
      asumed constant,
17 //speed n will be the same in both vessels.
18 //Using Eq.(9.24) with consant density
19 PbyD_ratio = (D6/D1)^2;
20 //The Power input required in the 6-ft vessel is
      then
21 Pin = 2*PbyD_ratio //[hp/1000 gal]
22
```

```
23 //(b)
24 //Using Eq.(9.54) with same input power per unit
    volume in both vessels
25 n6byn1 = (D6/D1)^(2/3)
26 //blending in the 6-ft vessel would be
27 t6 = t1*n6byn1 // [s]
```

Heat Transfer by Conduction

Scilab code Exa 10.1 temperature and thermal condutivity

temperature and thermal condutivity

```
1 // clear //
2 clear;
3 clc;
5 //Exmple 10.1
6 //Given
7 \text{ T1} = 32; //[F]
8 \text{ T2} = 200; //[F]
9 \text{ k1} = 0.021; //[Btu/ft-h-F]
10 k2 = 0.032; //[Btu/ft-h-F]
11 A = 25; //[ft^2]
12 B = 6/12; //[ft]
13 //average temperature and thermal condutivity of the
       wall
14 Tavg = (40+180)/2; //[F]
15 kbar = k1+(Tavg-T1)*(k2-k1)/(T2-T1); //[Btu/ft-h-F]
16 delta_T = 180-40; //[F]
17 // \text{Using Eq.} (10.5)
18 q = kbar*A*delta_T/B //[Btu/h]
```

Scilab code Exa 10.2 the heat loss from unit square area

the heat loss from unit square area

```
1 //clear//
2 clear;
3 clc;
5 //Example 10.2
6 //Given
7 delta1 = 4.5/12; //[ft]
8 \text{ k1} = 0.08; //[Btu/ft-h-F]
9 delta2 = 9/12; //[ft]
10 k2 = 0.8; //[ft]
11 Tin = 1400 //[F]
12 Tout = 170 //[F]
13 Rc = 0.5; //[ft^2-h-F/Btu]
14 / (a)
15 // Considering unit cross sectional area
16 A = 1; //[ft^2]
17 RA = delta1/k1; //[ft^2-h-F/Btu]
18 RB = delta2/k2; //[ft^2-h-F/Btu]
19 R = RA+RB; //[ft^2-h-F/Btu]
20 delta_T = Tin-Tout; //[F] overall temperature drop
21 // \text{Using Eq.} (10.9)
22 q = A*delta_T/R //[Btu/h]
23
24 //(b)
25 //The temperature drop in one series of resistances
     is to the
26 //individual resistance as the overall temperature
      drop is to the
27 //overall resistance, or
28 delta_TA = RA*delta_T/R; //[F]
```

```
29 //Temperature at the inteface
30 Tf = Tin-delta_TA //[F]
31
32 //(c) The total resistance will now include contact
    resistance
33 R = R+Rc; //[ft^2-h-F/Btu]
34 //the heat loss from unit square area
35 q = delta_T/R //[Btu/h]
```

Scilab code Exa 10.3 mean for silica

mean for silica

```
1 //clear//
2 clear;
3 clc;
5 //Example 10.3
6 // Given
7 \text{ r1} = 60/2; //[mm]
8 r2 = (50+r1); // [mm]
9 \text{ k2} = 0.055; //[W/m-C]
10 r3 = 40+r2; //[mm]
11 k3 = 0.05; //[W/m-C]
12 To = 30; //[C]
13 Ti = 150; //[C]
14 //Logrithimic mean for silica layer and cork layer
15 rl_s = (r2-r1)/log(r2/r1) //[mm]
16 rl_c = (r3-r2)/log(r3/r2) // [mm]
17
18 //Using Eq.(10.15) and Eq.(10.14) simulataneously
19 //And Adding these two Equations
20 qbyL = (Ti-To)/4.13 / [W/m]
```

Scilab code Exa 10.4 Temperature

Temperature

```
1 // clear //
2 clear;
3 clc;
4
5 //Example 10.4
6 //Given
7 k = 0.075; //[Btu/ft-h-F]
8 rho = 56.2; //[lb/ft^3]
9 Cp = 0.40; //[Btu/lb-F]
10 s = 0.5/12; //[ft.]
11 Ts = 250; //[F]
12 Ta = 70; //[F]
13 Tb_bar = 210; //[F]
14
15 //(a)
16 Temp_diff_ratio = (Ts-Tb_bar)/(Ts-Ta);
17 alpha = k/(rho*Cp);
18 // From Fig.10.6
19 N_Fo = 0.52;
20 tT = N_Fo*s^2/alpha //[h]
21
22 //(b)
23 //Substituting in Eq.(10.23)
24 QTbyA = s*rho*Cp*(Tb_bar-Ta) //[Btu/ft^2]
```

Scilab code Exa 10.5 penetration distance

penetration distance

```
1 // clear //
2 clear;
3 clc;
4
5 //Example 10.5
6 // Given
7 \text{ Ts} = -20; //[C]
8 \text{ Ta} = 5; //[C]
9 T = 0; //[C]
10 t = 12; //[h]
11 alpha = 0.0011; //[m^2/h]
12
13 //(a)
14 Temp_diff_ratio = (Ts-T)/(Ts-Ta);
15 //From Fig.(10.8),
16 \ Z = 0.91;
17 //therefore depth
18 x = Z*2*sqrt(alpha*t) //[m]
19
20 //(b)
21 //From Eq.(10.27), the penetration distance is
22 \text{ x_rho} = 3.64*\text{sqrt}(\text{alpha*t}) //[m]
```

Principles of Heat Flow in Fluids

Scilab code Exa 11.1 Overall heat transfer coefficient

Overall heat transfer coefficient

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 11.1
6 //From Appendix 5
7 Di = 1.049/12; //[ft]
8 Do = 1.315/12; //[ft]
9 \text{ xw} = 0.133/12; //[ft]
10 km = 26; //[Btu/ft-h-F]
11 //Using Eq.(10.15) for Logrithmic mean diameter
      DL_bar
12 DL_bar = (Do-Di)/log(Do/Di); //[ft]
13 //From Table 11.1
14 hi = 180; //[Btu/ft^2-h-F]
15 ho = 300; //[Btu/ft^2-h-F]
16 hdi = 1000; //[Btu/ft^2-h-F]
```

Heat Transfer to Fluids without Phase Change

```
Scilab code Exa 12.1 Delta t
   Delta t
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 12.1
6 \text{ To} = 230; //[F]
7 Ti = 80; //[F]
8 //Using Table 12.1
9 hi = 400; //[Btu/ft^2-h-F]
10 ho = 500; //[Btu/ft^2-h-F]
11 //From Appendix 6
12 Di = 0.620; //[in.]
13 Do = 0.750; //[in.]
14 // Using Eq.(12.39)
15 \det La_Tt = (1/hi)/(1/hi+(Di/(Do*ho)))*(To-Ti)
```

Scilab code Exa 12.2 overall coefficient

overall coefficient

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 12.2
6 //Given
7 Tb1 = 141; //[F]
8 \text{ Tb2} = 79; //[F]/
9 Tw1 = 65; //[F]
10 Tw2 = 75; //[F]
11 Vb_bar = 5; //[ft/s]
12 rho_b = 53.1; //[lb/ft^3]
13 mu_b = 1.16; //[lb/ft-h], Form Appendix 9
14 k_b = 0.089; //[Btu/ft-h-F], From Appendix 13
15 Cp_b = 0.435; //[Btu/lb-F], From Appendix 16
16 //Using Appndix 14
17 rho_w = 62.3; //[lb / ft^3]
18 mu_w = 2.34; //[lb/ft-h]
19 k_w = 0.346; //[Btu/ft-h-F]
20 Cp_w = 1; //[Btu/lb-F]
21
22
23 // Soultion
24 Tavg_b = (Tb1+Tb2)/2; //[F]
25 \text{ Tavg_w} = (Tw1+Tw2)/2; //[F]
26 Dit = 0.745/12; //[ft]
27 \text{ Dot} = 0.875/12; //[ft]
28 //Using Appendix 5
29 //The inside diameter of the jacket
30 Dij = 1.610/12; //[ft]
```

```
31 //From Appendix 6, the inside sectional area of the
      copper tube (for a 7/8 in. BWG 16 tube)
32 S = 0.00303; //[ft^2]
33 //Equivalent diameter of the annular jacket space
34 De = 4*(\%pi/4*(Dij^2-Dot^2)/(\%pi*(Dij+Dot))); //[ft]
35 mb_dot = Vb_bar*rho_b*S; //[lb/s]
36 //The rate of heat flow
37 q = mb_dot*Cp_b*(Tb1-Tb2); //[Btu/s]
38 //mass flow rate of water
39 mw_dot = q/(Cp_w*(Tw2-Tw1)); //[lb/s]
40 //Water velocity
41 Vw_bar = mw_dot/(\%pi/4*(Dij^2-Dot^2)*rho_w); //[ft/s]
42 //Reynolds number for benzene and water
43 Nre_b = Dit*Vb_bar*rho_b*3600/mu_b;
44 \text{ Nre_w} = \text{De}*Vw\_bar*rho\_w*3600/mu\_w;}
45 //Prandtl Number for benzene and water
46 \text{ Npr_b} = \text{Cp_b*mu_b/k_b};
47 \text{ Npr_w} = \text{Cp_w*mu_w/k_w};
48
49 // Preliminary estimates of the coefficients are
      obtained using Eq. (12.32), omitting the
50 //correction for viscosity ratio:
51 //Benzene
52 hi = 0.023*Vb_bar*3600*rho_b*Cp_b/(Nre_b^0.2*Npr_b
      (2/3); //[Btu/ft^2-h-F]
53 //Water
54 \text{ ho} = 0.023*Vw_bar*3600*rho_w*Cp_w/(Nre_w^0.2*Npr_w
      (2/3); //[Btu/ft^2-h-F]
55 // \text{Using Eq.} (12.39)
56 //Temperature drop over the benzene resistance
57 \text{ delta_Ti} = (1/\text{hi})/(1/\text{hi+Dit}/(\text{Dot*ho}))*(\text{Tavg_b-Tavg_w})
      ); //[F]
58 \text{ Tw} = \text{Tavg_b} - \text{delta_Ti;} //[F]
60 //The viscosities of the liquids at Tw
61 muw_b = 1.45; //[lb/ft-h]
62 muw_w = 2.42*0.852; //[lb/ft-h]
```

```
63 //Using Eq.(12.24), viscosity-correction factors phi
       are
64 phi_b = (mu_b/muw_b)^0.14;
65 \text{ phi_w} = (mu_w/muw_w)^0.14;
66 //The corrected coefficients are
67 hi = hi*phi_b; //[Btu/ft^2-h-F]
68 ho = ho*phi_w; //[Btu/ft^2-h-F]
69 //The temperature drop over the benzene resistance
      and the wall temperature
70 delta_Ti = (1/hi)/(1/hi+Dit/(Dot*ho))*(Tavg_b-Tavg_w
      ); //[F]
71 Tw = Tavg_b - delta_Ti //[F]
72 //This is so close to previously calculated wall
      temperature that a second approximation
73 //is unnecessary
74 //Using Eq.(11.29), neglecting the resistance of the
       tube wall
75 Uo = 1/(Dot/(Dit*hi)+1/ho); //[Btu/ft^2-h-F]
76 disp('The overall coefficient is');
77 \operatorname{disp}(\operatorname{'Btu/ft^2-h-F'}, \operatorname{Uo});
```

Scilab code Exa 12.3 Laminar Range

Laminar Range

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 12.3
6 //Given
7 L = 15; //[ft]
8 k = 0.082; //[Btu/ft-h-F]
9 Cp = 0.48; //[Btu/lb-F]
10 T1 = 150; //[F]
```

```
11 T2 = 250; //[F]
12 Tw = 350; //[F]
13 //From Table 12.3
14 mu1 = 6; //[cP]
15 mu2 = 3.3; //[cP]
16 \text{ mu_w} = 1.37; //[cP]
17 mu = (mu1+mu2)/2; //[cP]
18 //From Appendix 5
19 D = 0.364/12; //[ft]
20 //viscosity-correction factor phi is
21 phi = (mu/mu_w)^0.14;
22 //Assuming Laminar flow and Graetz number large
      enough to apply Eq.(12.25)
23 // \text{Using Eq.} (12.25)
24 / h = k/D*2*phi*(Cp*mdot/(k*L))^(1/3);
25 //\text{To use Eq.}(12.18)
26 \text{ Log}_T = ((Tw-T1)-(Tw-T2))/\log((Tw-T1)/(Tw-T2)); //[F]
   //From Eq.(12.18)
27
28 / h = Cp*100*mdot/(\%pi*D*L*Log_T)
29 //From Eq.(12.25) and Eq.(12.18)
30 mdot = (4.69/0.233)^(3/2); //[lb/h]
31 / and
32 h = 0.233*mdot; //[Btu/ft^2-h-F]
33 disp('lb/h',mdot,'oil flow rate')
34
35 disp('Btu/ft^2-h-F',h,'Expected Coefficient')
36 \text{ Ngz} = \text{mdot}*\text{Cp}/(\text{k*L});
37 //This is large enough so that Eq.(12.25) applies,
38 //Reynolds Number
39 Nre = D*mdot/((\%pi/4*D^2)*mu*2.42);
40 // Nre is in Laminar Range
```

Scilab code Exa 12.4 length of heated section

lenght of heated section

```
1 // clear //
2 clear;
3 clc;
4
5 //Example 12.4
6 //Given
7 P = 1; //[atm]
8 Vbar = 1.5; //[ft/s]
9 Ti = 68; //[F]
10 To = 188; //[F]
11 Tw = 220; //[F]
12 Tbar = (Ti+To)/2; //[F]
13 D = 2.067/12; //[ft], from Appendix 5
14 mu = 0.019; //[cP], at 128[F], from Appendix 8
15 rho = 29/359*(492/(68+460)); //[lb/ft^3], at 68[F]
16 G = Vbar*rho*3600; //[lb/ft^2-h]
17 Nre = D*G/(mu*2.42);
18 g = 32.14;
19 //Hence the flow is laminar
20 // Applying Eq. (12.25)
21 Cp = 0.25; //[Bu/lb-F], at 128[F], Appendix 15
22 k = 0.0163; //[Btu/ft-h-F], at 128[F], Appendix 12
23 //By linear interpolation
24 mu_w = 0.021; //[cP], Appendix 5
25 //internal cross sectional area of pipe is
26 S = 0.02330; //[ft^2], Appendix 5
27 //mass flow rate
28 mdot = G*S; //[1b/h]
29 //the heat load
30 q = mdot*Cp*(To-Ti); //[Btu/h]
31 //The logrithmic mean temperature difference is
32 \text{ delta_T1} = \text{Tw-To}; //[F]
33 delta_T2 = Tw-Ti; //[F]
34 Log_T = (delta_T1-delta_T2)/log(delta_T1/delta_T2);
      //[F]
35
36 //heat transfer coefficient h = q/A*Log_T
37 //A = 0.541*L
```

```
\frac{38}{\text{Also from Eq.}(12.25)}, the heat transfer
      coefficient is
39 //h = 2*k/D*(mdot*Cp/k*L)^(1/3)*(mu/mu_w)^(1/4)
40 //Equating the two realtionships for h
41 L = (6.820/0.9813)^(3/2); // [ft]
42 //This result is corrected for the effect of natural
       convection
43 //To use Eq. (12.80)
44 beeta = 1/(460+Tbar); //[R^-1], at 128[F]
45 delta_T = Tw-Tbar; //[F]
46 rho = 0.0676; //[lb/ft^3]
47 // Grashof number
48 Ngr = D^3*rho^2*g*beeta*delta_T/(mu*6.72*10^-4)^2;
49 //From Eq.(12.80)
50 phi_n = 2.25*(1+0.01*Ngr^(1/3))/log10(Nre);
51 //this is factor is used to correct the value of L
52 L = L/phi_n; //[ft]
53 disp('ft',L,'lenght of heated section is')
```

Heat Transfer to Fluids with Phase Change

Scilab code Exa 13.1 coefficient of chlorobenzene

coefficient of chlorobenzene

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 13.1
6 // Given
7 Pa = 1; //[atm]
8 lambda = 139.7; //[Btu/lb]
9 L = 5; //[ft]
10 Tw = 175; //[F]
11 hi = 400; //[Btu/ft^2-h-F]
12 g = 4.17*10^8; //[ft/h^2]
13 Th = 270; //[F]
14 rho_f = 65.4; //[lb/ft^3]
15 kf = 0.083; //[Btu/ft-h-F], from Appendix 13
16 muf = 0.726; //[lb/ft-h], from Appendix 9
17 Do = 0.75/12; //[ft]
```

```
18 Di = Do -(2*0.065)/12; //[f]
19 //(a)
20 Twall = 205; //[F]
21 \text{ err} = 50;
22 h = 1.13;
23 while(err>10)
24 delta_To = Th-Twall;
25 //from Eq.(13.11)
26 Tf = Th-3*(Th-Twall)/4; //[F]
27 h = h*(kf^3*rho_f^2*g*lambda/(delta_To*L*muf))^(1/4)
      ; //[Btu/ft^2-h-F]
28 // \text{Using Eq.} (12.29)
29 delta_Ti = 1/hi/(1/hi+Di/(Do*h))*(Th-Tw); //[F]
30 Twall_new = Tw + delta_Ti; //[F]
31 err = Twall_new-Twall; //[F]
32 \text{ Twall} = \text{Twall\_new}; //[F]
33 end
34 //To ckeck whether the flow is actually laminar
35 Ao = 0.1963*L; //[ft^2], from Appendix 6
36 //the rate of heat transfer
37 q = h*Ao*(Th-Twall); //[Btu/h]
38 mdot = q/lambda; //[lb/ft-h]
39 \operatorname{disp}('[\operatorname{Btu}/\operatorname{ft^2-h-F}]',h,'\operatorname{coefficient}) of
      chlorobenzene is')
40
41
42 //(b)
43 //For a horizontal condenser, Using Eq.(13.16)
44 N = 6;
45 Twall = 215; //[F]
46 \text{ err} = 50;
47 h = 0.725;
48 muf = 0.68; //[lb/ft-h], from Appendix 6
49 while (err > 10)
50 delta_To = Th-Twall;
51 //from Eq.(13.11)
52 Tf = Th-3*(Th-Twall)/4; //[F]
53 h = h*(kf^3*rho_f^2*g*lambda/(6*delta_To*Do*muf))
```

```
^(1/4); //[Btu/ft^2-h-F]

54 //Using Eq.(12.29)

55 delta_Ti = 1/hi/(1/hi+Di/(Do*h))*(Th-Tw); //[F]

56 Twall_new = Tw + delta_Ti; //[F]

57 err = Twall_new-Twall; //[F]

58 Twall = Twall_new; //[F]

59 end

60 disp('[Btu/ft^2-h-F]',h,'coefficient of chlorobenzene is')
```

Scilab code Exa 13.2 film coefficient

film coefficient

```
1 // \operatorname{clear} //
2 clear;
3 \text{ clc};
4
5 //Example 13.2
6 // Given
7 P = 2; //[atm]
9 //(a)
10 //From Fig. 13.7
11 // Critical pressure of benzene
12 Pc = 47.7; //[atm]
13 PbyPc = P/Pc;
14 //From Fig. 13.7 the ordinate (q/A)\max/Pc is about
      190, and
15 qbyA_max = 190*Pc*14.696; //[Btu/h-ft^2]
16 disp('Btu/h-ft^2',qbyA_max,'The maximum heat flux is
17 // Also from Fig. 13,7
18 delta_Tc = 62; //[F]
```

```
19 disp('F',delta_Tc,'The critical temperature
      difference is')
20 // film coefficient
21 h = qbyA_max/delta_Tc; //[Btu/h-ft^2-F]
22 disp('Btu/h-ft^2-F',h,'The film coefficient is')
23
24 //(b)
25 // Given
26 P = 0.2; //[atm]
27 \text{ PbyPc} = P/Pc;
28 // \text{Using Eq.} (13.20)
29 //noting that lambda, sigma and rho_L are nearly
      constant and rho_L>rho_V
30 // qbyA<sub>max</sub>rho<sub>V</sub>(1/2) P^(1/2)
31 qbyA_max = qbyA_max*(0.2/2)^(1/2); //[Btu/h-ft^2]
32 disp('Btu/h-ft^2',qbyA_max,'The maximum heat flux is
      ')
33 //The critical temperature difference would be
      greater than 100 [F] and
34 //the film coefficient would be less than 410 [Btu/h
     -ft^2-F
```

Radiation Heat Transfer

Scilab code Exa 14.1 heat flux

```
heat flux
```

```
1 // clear //
2 clear;
3 clc;
5 //Example 14.1
6 // Given
7 d = 150; //[mm]
8 \text{ T1} = 300+272; //[K]
9 T3 = 25+273; //[K]
10 \text{ eps1} = 0.56;
11 \text{ eps2} = 1.0;
12 \text{ eps3} = \text{eps1};
13 \text{ sigma} = 5.672
14
15 //(a)
16 // Using Eq.(14.38)
17 / q12 = sigma*A1*F12*(T1^4-T2^4)
18 / q23 = sigma *A2*F23*(T2^4-T3^4)
19 //At equilibrium, q12=q23
```

```
20  //From Eq.(14.39)
21  F12 = 1/(1/eps1+1/eps2-1)
22  F23 = F12;
23  //A1 = A2
24  T2 = (100*((T1/100)^4+(T3/100)^4)^(1/4))/2^(1/4); //
        [K]
25  disp('F',T2,'the temperature of lacquered sheet is')
26
27  //(b)
28  //From Eq.(14.38), heat flux
29  q12byA = sigma*F12*((T1/100)^4-(T2/100)^4); // [W/m^2]
30  disp('W/m^2',q12byA,'the heat flux is')
```

Heat Exchange Equipment

Scilab code Exa 15.1 heat transfer coefficent

heat transfer coefficent

```
1 //clear//
2 clear;
3 clc;
5 //Example 15.1
6 //Given
7 Ds = 35/12; //[ft]
8 \text{ Do} = 0.75/12; //[ft]
9 p = 1/12; //[ft]
10 P = 1; //[ft]
11 mdot = 10^5; //[lb/h]
12 mu_60 = 0.70; //[cP], at 60 [F], from Appendix 9
13 mu_140 = 0.38; //[cP], at 140 [F], from Appendix 9
14 Cp = 0.41; //[Btu/lb-F], from Appendix 16
15 k = 0.092; //[Btu/ft-h-F], from Appendix 13
17 // Shell side coefficient is found using Donohue Eq
      .(15.4)
18 //From Eq.(15.2), the area for crossflow is
```

```
19 Sc = 2.9167*P*(P-Do/p); //[ft^2]
20 //The number of tubes in the baffle window is
      approximately equal to the fractional
21 //area of the window f times the total nmber of
      tubes. For a 25 percent baffle
22 f = 0.1955
23 \text{ Nb} = f*828;
24 //Nb~161
25 \text{ Nb} = 161;
\frac{26}{\sqrt{\text{Using Eq.}(15.1)}}, area of the baffle window
27 Sb = (f*\%pi*Ds^2/4)-(Nb*\%pi*Do^2/4); // [ft^2]
28 //Using Eq.(15.3), the mass velocities are
29 Gc = mdot/Sc; //[lb/ft^2-h]
30 Gb = mdot/Sb; //[lb/ft^2-h]
31 Ge = sqrt(Gc*Gb); //[lb/ft^2-h]
32 // \text{Using Eq.} (15.4)
33 ho = k/Do*(0.2*(Do*Ge/(mu_60*2.42))^0.6*(Cp*mu_60)
      *2.42/k) ^{0.33}*(mu_{60}/mu_{140}) ^{0.14}); // [Btu/ft^{2}-h-
34 disp('Btu/ft^2-h-F',ho,'The individual heat transfer
       coefficent of benzene is')
```

Scilab code Exa 15.2 heat exchanger

heat exchanger

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 15.2
6 //Given
7 Tca = 70; //[C]
8 Tcb = 130; //[C]
9 Tha = 240; //[C]
```

```
10 Thb = 120; //[C]
11 //Solution
12 // \text{Using Eq.} (15.7) \text{ and } (15.8)
13 neta_h = (Tcb-Tca)/(Tha-Tca);
14 Z = (Tha-Thb)/(Tcb-Tca);
15 //From Fig 15.7a, the correction factor is found
16 \text{ Fg} = 0.735;
17 //the temperature drops are
18 //At shell inlet:
19 deltaT_i = Tha-Tcb; //[C]
20 //At shell outlet:
21 deltaT_o = Thb-Tca; //[C]
22 Log_T = (deltaT_i-deltaT_o)/log(deltaT_i/deltaT_o);
23 // the correct value of Log_T is
24 \text{ Log}_T = \text{Fg*Log}_T; //[C]
25 disp('C',Log_T,'The correct mean emperature drop is'
\frac{26}{4} //Because of low value of Fg, a 1-2 heat exchanger
      is not suitable for this duty
```

Scilab code Exa 15.3 correct mean temperature drop

correct mean temperature drop

```
1 //clear//
2 clear;
3 clc;
4
5 //Exapmle 15.3
6 //Given
7 Tca = 70; //[C]
8 Tcb = 130; //[C]
9 Tha = 240; //[C]
10 Thb = 120; //[C]
11 //Solution
```

```
//Using Eq.(15.7) and (15.8)
neta_h = (Tcb-Tca)/(Tha-Tca);
Z = (Tha-Thb)/(Tcb-Tca);
//Using Fig 15.7b, the correction factor is
Fg = 0.945;
//the temperature drops are
//At shell inlet:
deltaT_i = Tha-Tcb; //[C]
//At shell outlet:
deltaT_o = Thb-Tca; //[C]
Log_T = (deltaT_i-deltaT_o)/log(deltaT_i/deltaT_o);
// the correct value of Log_T is
Log_T = Fg*Log_T; //[C]
disp('C',Log_T,'The correct mean emperature drop is')
)
```

Scilab code Exa 15.4 heat transfer coefficent

heat transfer coefficent

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 15.4
6 //Given
7 N = 28;
8 xF = 0.5/12; // [ft]
9 yF = 0.035/12; // [ft]
10 km = 26; // [Btu/ft-h-F]
11 AT = 2.830; // [ft^2/ft]
12 Ab = 0.416; // [ft^2/ft]
13 hi = 1500; // [Btu/ft^2-h-F]
14 G = 5000; // [lb/h-ft^2]
15 Tavg = 130; // [F]
```

```
16 Tw = 250; //[F]
17 mu = 0.046; //[lb/ft-h], from Appendix 8
18 Cp = 0.25; //[Btu/lb-F], from Appendix 15
19 k = 0.0162; //[Btu/ft-h-F], from Appendix 12
20 ID_shell = 3.068/12; //[ft], from Appendix 5
21 OD_pipe = 1.9/12; //[ft], from Appendix 5
22 //cross sectional area of shell space
23 Ac = \%pi/4*(ID_shell^2-OD_pipe^2)-N*xF*yF // [ft^2]
24 //The perimeter of air space
25 Ap = \%pi*ID_shell+AT; //[ft]
26 //hydraulic radius
27 rh = Ac/Ap; //[ft]
28 //equivalent diameter
29 De = 4*rh; //[ft]
30 //Reynolds Number
31 Nre = De*G/mu
32 //In computing mu_w the resistance of the wall and
      the steam film
33 //are considered negligible, so
34 mu_w = 0.0528; //[lb/ft-h]
35 \text{ Npr} = \text{mu*Cp/k}
36 //Using Fig. 15.17, the heat transfer factor is
37 \text{ jh} = 0.0031;
38 ho = jh*Cp*G*(mu/mu_w)^0.14/Npr^(2/3); //[Btu/ft^2-h]
     -F
39
40 //For rectangular fins, disregarding the
      contribution of the ends of the fins to
41 //the perimeter, Lp = 2L and S = Lyf, where yf is
      the fin thickness and L is the
42 //length of the fin. Then, from Eq. (15.11)
43 aFxF = xF*sqrt(2*ho/(km*yF));
44 //From Fig. 15.16
45 \text{ netaF} = 0.93;
46 Dt = 1.610/12; //[ft], from Appendix 5
47 DLbar = (OD_pipe-Dt)/log(OD_pipe/Dt); //[ft]
48 Ai = \%pi*Dt*1.0; //[ft^2]
49 AF = AT-Ab; //[ft^2/ft]
```

```
50 xw = (OD_pipe-Dt)/2; //[ft]
51
52 //Using Eq.(15.10), the overall coefficient
53 Ut = 1/(Ai/(ho*(netaF*AF+Ab))+(xw*Dt/(km*DLbar))+1/
         hi); //[Btu/ft^2-h-F]
54 disp('Btu/ft^2-h-F',Ut, 'The overall heat transfer coefficient is')
```

Evaporation

Scilab code Exa 16.1 heating area required

heating area required

```
1 // clear //
2 clear;
3 clc;
5 //Example 16.1
6 // Given
7 mdot = 20000; //[lb/h]
8 \text{ xin} = 0.20;
9 \text{ xout = } 0.50;
10 Pg = 20; //[lbf/in.^2]
11 Pabs = 1.93; //[lbf/in.^2]
12 U = 250; //[Btu/ft^2-h-F]
13 Tf = 100; //[F]
14
15 // Solution
16 //the amount of water in feed and thick liquor, from
       material balance
17 w_feed = 80/20; //[lb/per pound of solid]
18 w_liquor = 50/50; //[lb/per pound of solid]
```

```
19 //water evaporated
20 w_eva = w_feed-w_liquor; //[lb/per pound of solid]
22 w_eva = w_eva*mdot*xin; //[lb/h]
23 //Flow raye of thick liquor is
24 ml_dot = mdot - w_eva //[lb/h]
25
26 //Steam consumed
27 //Since with strong solutions of NaOH the heat of
      dilution is not negligible,
  //the rate of heat transfer is found from Eq. (16.4)
     and Fig. 16.8.
29
  //The vaporiztion temperature of the 50 percent
      solution at a pressure of 100 mmHg
30 //is found as follows
31 Tb_w = 124; //[F], at 100 mmHg, from Appendix 7
32 Tb_s = 197; //[F], from Fig. 16.8
33 BPE = Tb_s-Tb_w; //[F]
34 //From Fig. 16.8, the enthalpies of the feed and
     thick liquor are found
35 Hf = 55; //[Btu/lb], 20% solids, 100 [F]
       = 221; //[Btu/lb], 50% solids, 197 [F]
37 //Enthalpy of the leaving water vapor is found from
     the steam table
38 Hv = 1149; //[Btu/lb], At 197 [F] and 1.93 [lbf/in]
39 //Enthalpy of the vapor leaving the evaporator
40 lambda_s = 939; //[Btu/lb], At 20 [lbf/in.^2], from
     Appendix 7
41 //Using Eq.(16.4), the rate of heat transfer and
     steam consumption
42 q = (mdot-ml_dot)*Hv + ml_dot*H - mdot*Hf; //[Btu/h]
43 ms_dot = q/lambda_s; //[lb/h]
44 disp('lb/h',ms_dot,'steam consumed is')
45 //Economy
46 Economy = ml_dot/ms_dot
47 disp(Economy, 'Economy')
48 // Heating Surface
```

```
49 //The condensation temperature of the steam is 259 [
    F], the heating area required is
50
51 A = q/(U*(259-197)) //[ft^2]
52 disp('ft^2',A,'heating area required is')
```

Scilab code Exa 16.2 boiling point

boiling point

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 16.2
6 // Given
7 \text{ Ti} = 108; //[C]
8 T1 = 52; //[C]
9 U1 = 2500; //[W/m^2]
10 U2 = 2000; //[W/m^2]
11 U3 = 1000; //[W/m^2]
12
13 //Solution
14 // Total temperature drop
15 delta_T = Ti-Tl; //[C]
16 //From Eq.(16.13), the temperature drops in several
      effects will be
17 //approximaely inversely proportional to the
      coeficients. Thus
18 delta_T1 = 1/U1/(1/U1+1/U2+1/U3)*delta_T; //[C]
19 delta_T2 = 1/U2/(1/U1+1/U2+1/U3)*delta_T; //[C]
20 delta_T3 = 1/U3/(1/U1+1/U2+1/U3)*delta_T; //[C]
21 //Consequently the boiling points will be
22 Tb1 = Ti-delta_T1; //[C]
23 Tb2 = Tb1-delta_T2; //[C]
```

```
24 disp('C',Tb1,'The boiling point in the first effect
    is')
25 disp('C',Tb2,'The boiling point in the second effect
    is')
```

Scilab code Exa 16.3 total rate of evaporation

total rate of evaporation

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 16.3
6 //Given
7 \text{ mdot_ft} = 60000; //[lb/h]
8 \text{ xin} = 0.10;
9 Tin = 180; //[F]
10 \text{ xout} = 0.50
11 Ps = 50; //[lbf/in.^2]
12 Tc = 100; //[F]
13
14 //Solution
15 //From Table 16.2
16 U1 = 700; //[Btu/ft^2-h-F]
17 U2 = 1000; //[Btu/ft^2-h-F]
18 U3 = 800; //[Btu/ft^2-h-F]
19 //The total rate of evaporation is calculated from
      an overall material balance
20 //assuming the solds go through the evaporator
      without loss
21 //Table 16.3
22 mdot_fs = 6000; //[lb/h]
23 mdot_fw = 54000; //[lb/h]
24 mdot_lt = 12000; //[lb/h]
```

```
25 mdot_ls = 6000; //[lb/h]

26 mdot_lw = 6000; //[lb/h]

27 w_evap = mdot_ft-mdot_fs; //[lb/h]
```

Equilibrium Stage Operations

Scilab code Exa 17.1 number of ideal stages determined

number of ideal stages determined

```
1 // clear //
2 clear;
3 clc;
5 //Example 17.1
6 //Given
7 \text{ yb} = 0.30;
9 //Let
10 Vb = 100; //[mol]
11 Ace_in = yb*Vb; //[mol]
12 Air_in = Vb-Ace_in; //[mol]
13 //97 percent acetone aborbed, Acetone leaving is
14 Ace_out = 0.03*Ace_in; //[mol]
15 ya = Ace_out/(Air_in+Ace_out);
16 // Acetone absorbed
17 Ace_abs = Ace_in-Ace_out; //[mol]
18 //10 percent acetone in the leaving solution and no
      acetone in the entering oil
```

```
19 Lb = Ace_abs/0.1; //[mol]
20 La = Lb-Ace_abs; //[mol]
21 //To find out as intermediate point on the operating
       line, making an acetone balance
22 //around the top part of the tower, assuming a
      particular value of yV the moles of
23 //acetone left in the gas.
24 \text{ for } i=1:30
25
     y(i) = i/(i+Air_in);
26 //The moles of acetone lost by the gas in the secion
      , must equal to the moles gained by //the liquid
27 Ace_lost = i-Ace_out; //[mol]
28 //Hence
29 x(i) = Ace_lost/(La+Ace_lost);
30 \text{ end}
31 \text{ xe} = linspace(0.001, 0.15, 100);
32 \text{ ye} = 1.9*xe;
33
34 plot(x,y)
35 plot(xe,ye,'r')
36 xlabel('x')
37 ylabel('y')
38 legend('Operating line', 'Equilibrium line')
39 title('Diagram Example 17.1')
40 //The number of ideal stages determined from Fig is
      4
```

Scilab code Exa 17.2 percentage removal obtained

percentage removal obtained

```
1 //clear//
2 clear;
3 clc;
```

```
5 //Example 17.2
6 //Given
7 \text{ Nreal} = 7;
8 \text{ VbyL} = 1.5;
9 m = 0.8;
10 \text{ yb} = 0;
11 \text{ xb\_star} = 0;
12 / xb = 0.1 * xa;
13
14 //(a)
15 //Stripping Factor
16 S = m*VbyL;
17 //From an ammonia balance,
18 //ya = 0.9 * xa/VbyL;
19 // Also
20 / xa_star = ya/m
21 // \text{Using Eq.} (17.28)
22 / N = \ln ((xa - 0.75*xa) / (0.1*xa - 0)) / \ln (S)
23 N = log(0.25/0.1)/log(S);
24 disp(N, 'Number of ideal trays required are')
25 stage_eff = N/Nreal*100;
26 disp('%', stage_eff, 'Stage Efficiency is')
27
28 //(b)
29 \text{ VbyL} = 2;
30 S = m*VbyL;
31 / Then
32 / \text{Let A} = (xa - xa \cdot star) / xb
33 A = \exp(5.02);
34 //Let 'f' be the fraction of NH3 removed. Then xb =
      (1-f) *xa.
35 //By a material balance
36 //y = L/V*(xa-xb) = 1/2*(xa-(1-f)*xa) = 1/2*f*xa
37 // xa_star = ya/m = 0.5*f*xa/0.8 = 0.625*f*xa
38 //Thus,
39 / xa - xa - star = (1 - 0.625 * f) * xa
40 // Also,
41 //xa - xa \cdot star = 10.59 * xb = 10.59 * (1 - f) * xa
```

```
42 //from these
43 f = 0.962
44 disp('%',f,'percentage removal obtained in this case
        is')
```

Distillation

Scilab code Exa 18.1 mole fraction

mole fraction

```
1 // clear //
2 clear;
3 clc;
5 //Example 18.1
6 // Given
7 \text{ xF} = 0.50;
8 P = 1; //[atm]
9 f =0.0001:0.2:1.2;
10 A = -(1./f-1);
11 x = [0.01:0.01:1];
12 for i =1:length(f)
     y(i,:) = -A(i)*x+xF/f(i)
13
14 end
15 //From Fig. 18.2
16 \text{ xB} = [0.50, 0.455, 0.41, 0.365, 0.325, 0.29];
17 \text{ yD} = [0.71, 0.67, 0.63, 0.585, 0.54, 0.5];
18 //From Fig 18.3
19 T = [92.2, 93.7, 95.0, 96.5, 97.7, 99];
```

```
20 plot(f,T./100,f,xB,f,yD)
21 xlabel('f-moles vaporized per mole of feed')
22 ylabel('Concentration, mole fraction Benzene')
23 legend('Temperature(C)*100', 'Con. of Bnzene in liquid', 'Con. of Bnzene in vapor')
```

Scilab code Exa 18.2 water needed

water needed

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 18.2
6 // Given
7 mdot = 30000; //[kg/h]
8 \text{ wF_b} = 40;
9 \text{ wD} = 97;
10 \text{ wB} = 2;
11 R = 3.5;
12 lambda_b = 7360; //[cal/g mol]
13 lambda_t = 7960; //[cal/g mol]
14 \text{ alpha} = 2.5;
15 TB = 95; //[C]
16 TF = 20; //[C]
17 P = 1; //[atm]
18 \text{ Mb} = 78;
19 \text{ Mt} = 92;
20 Cp = 0.44; //[cal/g-C]
21 //(a)
22 //The concentrations of feed, overhead and bottoms
      in mole fraction of benzene are
23 xF = (wF_b/Mb)/(wF_b/Mb+((100-wF_b)/Mt));
24 \text{ xD} = (\text{wD/Mb})/(\text{wD/Mb}+((100-\text{wD})/\text{Mt}));
```

```
25 \text{ xB} = (wB/Mb)/(wB/Mb+((100-wB)/Mt));
26 //The average molecular weight of the feed is
27 \text{ Mavg} = 100/(wF_b/Mb+(100-wF_b)/Mt);
28 //the average heat of vaporization
29 lambda_avg = xF*lambda_b+(1-xF)*lambda_t; //[cal/g]
      mol]
30 //Feed rate
31 F = mdot/Mavg; //[kg mol/h]
32 //Using Eq.(18.5), by overall benzene balance
33 D = F*(xF-xB)/(xD-xB); //[kg mol/h]
34 B = F-D; //[kg \text{ mol/h}]
35 disp('respectively', 'kg mol/h',B,'kg mol/h',F,'the
      mole of overhead and bottom products are')
36
37
\frac{38}{\sqrt{(b)}} Determination of number of ideal plates and
      position of feed plate
39 //(i)
40 //Using Fig.18.16
41 //Drawing the feed line with f = 0 on equilibrium
      diagram,
42 // Plotting the operating lines with intercept from
     Eq.(18.19) is 0.216
43 //By counting the rectangular steps it is found that
      , besides the reboiler,
  //11 ideal plates are neded and feed should be
      introduced on the 7th plate from
  //the top.
45
46
47 //(ii)
48 //The latent heat of vaporization of the feed
49 lambda = lambda_avg/Mavg; //[cal/g]
50 // Using Eq. (18.24)
51 q = 1+Cp*(TB-TF)/lambda;
52 //From Eq.(18.31)
53 \text{ slope} = -q/(1-q);
54 //From Fig. 18.17
55 //It is found that a reboiler and 10 ideal plates
```

```
are needed and feed is to be introduced
56 //on the fifth plate
57
58 //(iii)
59 q = 1/3;
60 slope = -q/(1-q);
61 //From Fig. 18.18
62 //It calls for a reboiler and 12 plates, with the
      feed entering on the 7th plate
63
64 // (c)
65 //vapor flow in the rectifying section is
66 V = 4.5*D; //[kg mol/h]
67 lambda_s = 522; //[cal/g], From Appendix 7
68 q = [1, 1.37, 0.333]
69 // Using Eq. (18.27)
70 Vbar = V-F*(1-q)
71 //Using Eq.(18.32), steam required
72 ms_dot = lambda_t/lambda_s*Vbar; //[kg/h]
73 disp('respectively', 'kg/h', ms_dot(3), 'kg/h', ms_dot
      (2), 'kg/h', ms_dot(1), 'the steam consumption in
      the above three cases is')
74
75
76 // (d)
77 Tw1 = 25; //[C]
78 Tw2 = 40; //[C]
79 //The cooling water needed is same in all cases,
      Using Eq.(18.33)
80 mw_dot = V*lambda_t/(Tw2-Tw1); //[kg/h]
81 rho_25 = 62.24*16.018; //[kg/m^3]
82 vw_dot = mw_dot/rho_25; //[m^3/h]
83 disp('m^3/h',vw_dot,'cooling water needed is')
```

Scilab code Exa 18.3 Temperature

Temperature

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 18.3
6 //Given
7 mdot = 30000; //[kg/h]
8 \text{ wF_b} = 40;
9 \text{ wD} = 97;
10 \text{ wB} = 2;
11 R = 3.5;
12 lambda_b = 7360; //[cal/g mol]
13 lambda_t = 7960; //[cal/g mol]
14 \text{ alpha} = 2.5;
15 TB = 95; //[C]
16 TF = 20; //[C]
17 P = 1; //[atm]
18 \text{ Mb} = 78;
19 \text{ Mt} = 92;
20 Cp = 0.44; //[cal/g-C]
21 // Solution
22 \text{ xF} = (wF_b/Mb)/(wF_b/Mb+((100-wF_b)/Mt));
23 \text{ xD} = (\text{wD/Mb})/(\text{wD/Mb}+((100-\text{wD})/\text{Mt}));
24 \text{ xB} = (wB/Mb)/(wB/Mb+((100-wB)/Mt));
25 //The average molecular weight of the feed is
26 \text{ Mavg} = 100/(wF_b/Mb+(100-wF_b)/Mt);
27 //the average heat of vaporization
28 lambda_avg = xF*lambda_b+(1-xF)*lambda_t; //[cal/g]
      mol]
29 //Feed rate
30 F = mdot/Mavg; //[kg mol/h]
31 //Using Eq.(18.5), by overall benzene balance
32 D = F*(xF-xB)/(xD-xB); //[kg mol/h]
33 B = F-D; //[kg \text{ mol/h}]
34 //Using Table 18.3, in all three cases respectively
```

```
35 \text{ xprime} = [0.44, 0.521, 0.3];
36 \text{ yprime} = [0.658, 0.730, 0.513];
37
38 //(a)
39 // Using Eq. (18.43)
40 RDm = (xD-yprime)./(yprime-xprime)
41 disp('respectively', RDm(3), RDm(2), RDm(1), 'Minimum
      Reflux Ratio for three cases is')
42
43 //(b)
44 //For minimum umber of plates the, the reflux ratio
      is infinite, the operating lines
45 //coincides with the diagonal, and there are no
      differences between the three cases.
46 //The plot is given by Fig 18.22. A reboiler and
      eight plates are needed.
```

Scilab code Exa 18.4 Ideal plates needed

Ideal plates needed

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 18.4
6 //Given
7 xa = 0.02;
8 Vbar = 0.2; //[mol/mol of Feed]
9 xb = 0.0001;
10 yb = 0;
11 xe = 0:0.01:1;
12 m = 9
13 ye = m*xe;
14 //Let
```

Scilab code Exa 18.6 Froth height

Froth height

```
1 // clear //
2 clear;
3 clc;
4
5 //Example 18.6
6 // Given
7 \text{ xF} = 0.40;
8 P = 1; //[atm]
9 D = 5800; //[kg/h]
10 R = 3.5;
11 LbyV = R/(1+R);
12 // Solution
13 // Physical properties of methanol
14 M = 32;
15 Tnb = 65; //[C]
16 rho_v = M*273/(22.4*338); //[kg/^3]
```

```
17 rho_1_0 = 810; //[kg/m^3], At 0C, from Perry,
      Chemical Engineers' Handbook
18 rho_1_20 = 792; //[kg/m^3], At 20C, from Perry,
      Chemical Engineers' Handbook
19 rho_1 = 750; //[kg/m^3], At 65C
20 sigma = 19; //[dyn/cm], from Lange's Handbook of
      Chemistry
21 / (a)
22 //Vapor velocity and column diameter
23 //Using Fig. 18.28, the abscissa is
24 abscissa = LbyV*(rho_v/rho_l)^(1/2);
25 //for 18-in. plate spacing
26 \text{ Kv} = 0.29;
27 // Allowable vapor velocity
28 uc = Kv*((rho_l-rho_v)/rho_v)^(1/2)*(sigma/20)^(0.2)
      ; //[ft/s]
29 //Vapor flow rate
30 V = D*(R+1)/(3600*rho_v); //[m^3/s]
31 //Cross setional area of the column
32 Bubbling_area = V/2.23; //[m^2]
33 //If the bubble area is 0.7 of the total column area
34 Column_area = Bubbling_area/0.7; //[m^2]
35 //Column diameter
36 Dc = sqrt(4*Column_area/\%pi); //[m]
37 disp('respectively', 'm', Dc, 'and', 'ft/s', uc, 'the
      allowable velocity and colmn diameter are')
38
39 // (b)
40 // Pressure drop:
41 // Area of one unit of three holes on a trangular
     3/4-in. pitch is
42 //1/2*3/4*(3/4* \operatorname{sqrt}(3/2)) in . 2. The hole area in
      this section (half a hole) is
  //1/2*\%pi/4*(1/4)^2 in.^2. Thus the hole area is %pi
      /128*64/9*sqrt(3), or 10.08 percent
44 //of the bubbling area.
45 //Vapor velocity through holes:
46 uo = 2.23/0.1008; //[m/s]
```

```
47 // \text{Using Eq.} (18.58),
48 //From Fig. 18.27
49 \text{ Co} = 0.73;
50 hd = 51.0*uo^2*rho_v/(Co^2*rho_1); //[mm methanol]
51 //Head of liquid on plate:
52 //Weir height
53 \text{ hw} = 2*25.4; // [mm]
54 // Height of the liquid above weir:
55 //Assuming the downcomer area is 15 percent of the
      column
  //area on each side of th column. From Perry, the
      chord
57 //length for such a segmental downcomer is 1.62 times
       the radius
58 //of the colmn, so
59 \text{ Lw} = 1.62*2.23/2; //[m]
60 //Liquid Flow rate:
61 qL = D*(R+1)/(rho_1*60); //[m^3/min]
62 //From Eq.(18.60)
63 how = 43.4*(qL/Lw)^(2/3) //[mm]
64 / \text{From Eq.} (18.59), with
65 \text{ beeta} = 0.6;
66 \text{ hI} = \text{beeta*(hw+how); } // [\text{mm}]
67 //Total height of liquid, from Eq.(18.62)
68 \text{ hT} = \text{hd+hI}; //[\text{mm}]
69 disp('mm methanol', hT, 'pressure drop per plate is')
70
71 //(c)
72 //Froth height in th downcomer :
73 // Using Eq. (18.62)., Estimating
74 hf_L = 10; //[mm methanol]
75 //Then,
76 Zc = (2*hI)+hd+hf_L; //[mm]
77 //from Eq.(18.63)
78 \ Z = Zc/0.5; \ // [mm]
79 disp('mm methanol', Z, 'Froth height in the downcomer
      is')
```

Scilab code Exa 18.7 F factor

F factor

```
1 //clear//
2 clear;
3 clc;
5 //Example 18.7
6 //Given
7 \text{ xF} = 0.40;
8 P = 1; //[atm]
9 D = 5800; //[kg/h]
10 R = 3.5;
11 LbyV = R/(1+R);
12 //Solution
13 // Physical properties of methanol
14 M = 32;
15 Tnb = 65; //[C]
16 rho_v = M*273/(22.4*338); //[kg/^3]
17 rho_1_0 = 810; //[kg/m^3], At 0C, from Perry,
      Chemical Engineers' Handbook
18 rho_1_20 = 792; //[kg/m^3], At 20C, from Perry,
      Chemical Engineers' Handbook
19 rho_1 = 750; //[kg/m^3], At 65C
20 sigma = 19; //[dyn/cm], from Lange's Handbook of
      Chemistry
21 / (a)
22 //Vapor velocity and column diameter
23 //Using Fig. 18.28, the abscissa is
24 abscissa = LbyV*(rho_v/rho_l)^(1/2);
25 //for 18-in. plate spacing
26 \text{ Kv} = 0.29;
27 // Allowable vapor velocity
```

Scilab code Exa 18.8 composition of the remaining liquid

composition of the remaining liquid

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 18.8
6 //Given
7 \times 0A = 0.15;
8 \text{ xAi} = 0.015;
10 P = 1; //[atm]
11
12 // Solution
13
14 Pv = 3.4; //[atm]
15 alpha_o = 3.4; //at 36 C
16 Tbi = 27; //[C]
17 \text{ alpha_i} = 3.6
18 alpha = (alpha_o+alpha_i)/2;
19 // Basis 1 mol Feed
20 nOA = 0.15; //[mol]
21 \text{ nA} = 0.015; //[mol]
22 \text{ nOB} = 0.85; //[mol]
23 // Using Eq. (18.79)
24 nB = nOB*(nA/nOA)^(1/alpha); //[mol]
25 n = nA+nB; // [mol]
```

```
26 xA = nA/n;
27 disp('mol',nB,'pentane removed is')
28 disp((1-xA),'xB',xA,'xA','composition of the remaining liquid is')
```

Introduction to Multicomponent Distillation

Scilab code Exa 19.2 preheat temperature

preheat temperature

```
1 // \operatorname{clear} //
 2 clear;
 3 clc;
5 //Example 19.2
6 //Given
7 P = 1.2; //[atm]
8 \text{ Tb} = 97; //[C]
9 \text{ Td} = 105; //[C]
10 	 f = 0.6;
11
12 xF(1) = 0.33;
13 \text{ xF}(2) = 0.37;
14 \text{ xF}(3) = 0.30;
15
16 // Solution
17 / (a)
```

```
18
19 //From Fig. 19.1
20 \text{ K(1)} = 2.68/P;
21 \text{ K}(2) = 1.21/P;
22 \text{ K(3)} = 0.554/P;
23 //In Eq.(19.12), the right hand side of the equation
       becomes
24 RHS = (xF./(f*(K-1)+1));
25 \text{ RHS2} = \text{sum}(\text{RHS})
26 disp('C', Td, 'flash temperature is');
27 disp('percent', RHS(3), 'n-octaneexane', 'percent', RHS
      (2), 'n-heptane', 'percent', RHS(1), 'n-hexane', '
      Composition of the liquid product is');
28 y = RHS.*K;
29 disp('percent', y(3), 'n-octane', 'percent', y(2), 'n-
      heptane', 'percent', y(1), 'n-hexane', 'Composition
      of the vapor product is');
30
31 //(b)
32 //To determine the temperature of the feed before
      flashing,
33 //an enthalpy balance is made using 105 C as the
      reference temperature.
34 //The heats of vaporization at 105~\mathrm{C} and the average
       heat capacities of the
  //liquid from 105 to 200 C are obtained from the
      literature.
36 Cp = [62,70,78]'; //[cal/mol-C], Cp(1) = n-hexane,
      Cp(2) = n-heptane, and Cp(3) = n-octane
37 delta_Hv = [6370,7510,8560]'; //[cal/mol], delta_hv
      (1) = n-hexane, delta_hv(2) = n-heptane, and
      delta_hv(3) = n-octane
38 //Based on liquid at 105 C, the enthalpies of the
      product are
39 H_vapor = f*sum((y.*delta_Hv)) //[cal]
40 \text{ H_liquid} = 0;
41 //For the feed
42 Cp_bar = sum(xF.*Cp) // [cal/mol-C]
```

```
43 TO = H_vapor/Cp_bar+Td;
44 disp('C',TO,'preheat temperature is')
```

Scilab code Exa 19.3 ideal stages

ideal stages

```
1 // \operatorname{clear} //
2 clear;
3 clc;
4
5 //Example 19.3
6 // Given
7 \text{ xF} = [0.33, 0.37, 0.30]'; //[\text{mole fraction}] \text{ xF}(1) = \text{n}
      hexane, xF(2) = n-heptane, and xF(3) = n-octane
8 P = 1.2; //[atm]
9 f = 0.60;
10 xD_hex = 0.99; //[mole fraction]
11 xB_hex = [0.01]; //[mole fraction]
12 \text{ K}(1) = 2.68/P;
13 \text{ K}(2) = 1.21/P;
14 \text{ K(3)} = 0.554/P;
15 // Solution
16 //The n-hexane is the light key(LK), the n-hepane is
       the heavy key (HK), and the
17 //n-octane is a heavy nonkey (HNK)
18 // Aplying mass balance and assuming no n-octane and
      0.99 mole fraction n-hexane in the
19 // distillate.
20 // Basis:
21 F = 100; //[mol/h]
22 / B + D = 100;
23 //For hexane,
24 / F*xF = D*xD+B*xB
25 //from the above two equaiton
```

```
26 \text{ A\_BD} = [1,1;xD\_hex xB\_hex];
27 B_BD = [F; F*xF(1)];
28 //A_BD*x_BD = B_BD
29 \times BD = inv(A_BD)*B_BD;
30 D = x_BD(1);
31 B = x_BD(2);
32 \text{ xD} = [0.99, 0.01, 0.0]';
33 \times B = [0.01, 0.544, 0.446]';
34 \text{ comp}_D = xD.*D;
35 \text{ comp}_B = xB.*B;
36
37 \operatorname{disp}('\operatorname{mol/h}', \operatorname{comp_D}(3), '\operatorname{n-octane}', '\operatorname{mol/h}', \operatorname{comp_D}(2),
       'n-heptane', 'mol/h', comp_D(1), 'n-hexane', 'The
       composition of the overhead
                                           product is');
38 \operatorname{disp}('\operatorname{mol/h}', \operatorname{comp_B}(3), '\operatorname{n-octane}', '\operatorname{mol/h}', \operatorname{comp_B}(2),
       'n-heptane', 'mol/h', comp_B(1), 'n-hexane', 'The
       composition of the bottom product is');
39
40 //To find out minimum number of plates, using Eq.
       .(19.13) [Fenske Equation]
41 //using relative volativity of the light key to the
       heavy key, which is the
   //ratio of the K factors. The K values at the flash
       temperatue are taken from Example 19.2
43 alpha_LK_HK = K(1)/K(2);
44 Nmin = \log((xD(1)/xD(2))/(xB(1)/xB(2)))/\log(
       alpha_LK_HK)-1;
45 disp('plus a reboiler', Nmin, 'The minimum number of
       ideal stages is');
```

Scilab code Exa 19.4 tempeature in Lower zone and Upper zone tempeature in Lower zone and Upper zone

```
1 / clear /
```

```
2 clear;
3 clc;
5 //Example 19.4
6 // Given
7 / (x(1)) = n-pentane, x(2) = n-hexane, x(3) = n-
      heptane and x(4) = n-octane
8 / xF = feed, xD = distillate and xB = bottom
9 \text{ xF} = [4 \ 40 \ 50 \ 6]'./100 //[mole fraction]
10 P = 1; //[atm]
11 \times D1(2) = 0.98;
12 \times D1(3) = 0.01;
13
14 // Solution
15 //The keys are n-hexane and n-heptane, and the other
       components are
16 //sufficiently different in volatility to be
      distributed.
17 // Basis:
18 F = 100; //[mol]
19 \times D1(1) = 1;
20 \times D1(4) = 0;
21 D = sum(F*xF.*xD1); //[mol]
22 \times D = (F*xF.*xD1)./(D)
23 B = F-D; //[mol]
24 xB = (F*xF-D*xD)/B;
25 \text{ K}_{80} = [3.62, 1.39, 0.56, 0.23];
26 \text{ K}_81 = [3.72, 1.43, 0.58]';
27 \text{ K}_81_2 = [3.74, 1.44, 0.584]';
28 \text{ KxF} = [0.145, 0.556, 0.280, 0.014]';
29
30 //(a)
31 //The bubble point is 80 C, and at this temperature
32 \text{ alphaLK_HK} = K_80./K_80(3);
33 //For an approximate solution, using Eq.(19.15)
34 \text{ RDm} = (F/D)*(((D*xD(2)/(F*xF(2)))-alphaLK_HK(2)*(D*xD(2)))
      xD(3)/(F*xF(3)))/(alphaLK_HK(2)-1))
35
```

```
36 //To use Underwood method, the K values at 80 C are
       converted to relative
37 //volatilities and the root of Eq.(19.29) between 1
       and 2.48 is found by trial.
\frac{38}{\text{Since q}} = 1.0, the terms must sum to zero.
39 \text{ phi} = 1.5
40 f = 0;
41 \text{ err} = 1;
42 while (err > 0.1)
      fnew = sum(((alphaLK_HK.*xD)./(alphaLK_HK-phi)));
      err = abs(f-fnew);
44
     if (f>fnew)
45
46
        phi=phi+0.01;
47
      else
48
        phi=phi-0.01;
49
      end
50
        f = fnew;
51 end
52 \text{ RDm} = f-1;
53
54 //(b)
55 //To get the conditions in the upper invariant zone,
        using Eq.(19.24) with
56 \text{ VbyD} = \text{RDm} + 1;
57 \text{ DbyV} = inv(VbyD);
58 \text{ VbyF} = \text{VbyD*D/F};
59 \text{ LbyV} = \text{RDm}/(\text{RDm}+1);
60 \text{ y}_80 = \text{DbyV}*xD(1:3)./(1-LbyV./K_80(1:3))
61 \quad y_81_1 = [0.046, 0.637, 0.317]';
62 \times 81_1 = y_81_1./K_81;
63 //The vapor composition for lower inavariant zone is
64 / \text{using Eq.} (19.28), for q = 1.0
65 \text{ BbyVb} = 0.552;
66 \text{ LbbyVb} = 1.55;
67 \text{ K}_{83} = [1.52, 0.618, 0.258]';
68 \text{ y}_83 = \text{BbyVb}*xB(2:4)./(LbbyVb./K_83-1);
69 \quad y_83_3 = [0.662, 0.326, 0.012]';
70 \text{ x}_83_3 = \text{y}_83_3./\text{K}_83;
```

```
disp('respectively', 'C',81.1, 'C',83.3, 'The
    tempeature in Lower zone and Upper zone is')
disp('respectively',y_83_3(1),'y =',x_83_3(1),'x = ', 'The LK composition in Lower zone is')
disp('respectively',y_83_3(2),'y =',x_83_3(2),'x =', 'The HK composition in Lower zone is')
disp('respectively',y_81_1(2),'y =',x_81_1(2),'x =', 'The LK composition in Upper zone is')
disp('respectively',y_81_1(3),'y =',x_81_1(3),'x =', 'The HK composition in Upper zone is')
```

Scilab code Exa 19.5 ideal plate required

ideal plate required

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 19.5
6 //Given
7 \text{ Nmin} = 9.4+1;
8 //From Example 19.3
9 \text{ xF} = [0.33, 0.37, 0.30]';
10 \text{ xD} = [0.99, 0.01, 0];
11 K = [2.23, 1.01, 0.462];
12 alpha = [2.21,1.0,0.457];
13
14 //For a liquid feed
15 q = 1;
16 \text{ phi} = 1.45;
17 f = 0;
18 \text{ err} = 1;
19 while (err > 0.1)
```

```
fnew = sum(((alpha.*xD)./(alpha-phi)));
20
21
     err = abs(f-fnew);
     if (f>fnew)
22
23
       phi=phi+0.01;
24
     else
25
       phi=phi-0.01;
26
     end
27
       f = fnew;
28
     end
29
     RDm = f-1;
     RD = RDm * 1.5;
30
31
32 //A = (RD-RDm)/RD+1
33 //from Fig. 19.5
34 N = (Nmin+0.41)/(1-0.41);
36 disp(N, 'The number of ideal plate required are')
```

Leaching and Extraction

```
Scilab code Exa 20.1 ideal stages
   ideal stages
1 // clear //
2 clear;
3 clc;
5 / \text{Example } 20_{-}1
6 //Given
7 Fin = 2*10^3; //[kg/day]
8 //w(1) = paraffin wax, w(2) = paper pulp
9 wi = [0.25,0.75]'; //[wieght percent]
10
11 //Solution
12 //Using convenient units in Eq. (17.24)
13 //As the ratio of kerosene to pulp is constant, flow
       rates should be
14 //expressed in pounds of kerosene. Then, all the
      concentrations must
15 //be in pound of wax-free kerosene. The unextracted
      paper had no kerosene
16 //so the first cell must be treated separately.
```

```
17 // Referring to the Fig. 20.3
18 // Basis:
19 F = 100; //[lb wax + kerosene-free pulp]
20 //By making a mass balance over wax
21 //wax_in = F*(wi(1)/wi(2)) + 0.0005*s (s is the wax
      input with solvent)
22 / wax_out = F*(0.002) + (s-200)*0.05
23 //by wax_in = wax_out
24 \text{ s_in} = (33.33+9.8)/(0.05-0.0005); //[lb]
25 //The concentration of this stream is, therefore
26 \text{ s_out} = 200; //[1b]
27 \text{ s\_stsol} = \text{s\_in-s\_out}; //[lb]
28 \text{ wax\_sol} = \text{s\_stsol}*0.05; //[lb]
29 //The concentration in the underflow to the second
      unit equals that
30 //of the overflow from the first stage, or 0.05 lb
      of wax per pound
31 //of kerosene. The wax in the underflow to unit 2 is
32 \text{ wax\_uflow\_2} = \text{s\_out*0.05}; //[lb]
33 wax_oflow_21 = wax_uflow_2+wax_sol-F*(wi(1)/wi(2))
      //[lb]
34
35 //The concentrations of this stream is, therefore,
36 \text{ ya} = \text{wax_oflow_21/871};
37 \text{ yastar} = 0.05;
38 \text{ xa} = \text{yastar};
39 \text{ ybstar} = 0.2/\text{s_out};
40 \text{ xb} = \text{ybstar};
41 \text{ yb} = 0.0005;
42
43 //Since 1 stage has already ben taken into account,
\frac{44}{\text{Eq.}(17.24)}, will give N-1 stages, Hence
45 N = log((yb-ybstar)/(ya-yastar))/log((yb-ya)/(ybstar))
      -yastar));
46 disp(N+1, 'The total number of ideal stages is');
```

Scilab code Exa 20.2 Number of stages required

Number of stages required

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 20.2
6 //Given
7 F = 1000; //[kg]
8 \text{ solv}_0 = 10; //[kg]
9 \text{ solv_B} = 655; //[kg]
10 w_out = 60; //[kg]
11 //Solution
12 //Let solution retained is SR, from Table 20.1
13 SR =
       [0.5,0.505,0.515,0.530,0.550,0.571,0.595,0.620];
14 \text{ xb} = 0:0.1:0.7;
15 //Let x and y be the mass fraction of oil in the
      underflow and
16 //overflow solutions.
17
18 //At the solvent inlet,
19 Vb = solv_0 + solv_B; // [kg solution/h]
20 \text{ yb} = \text{solv}_0/\text{Vb};
21 \text{ err} = 1;
22 i = 1;
23 \text{ sr} = SR(2);
24 \text{ xb1} = 0.0;
25 while (err > 0.001)
    Lb = sr*F;
26
27
     xbnew = w_out/Lb;
     err = abs(xb1-xbnew);
```

```
29
     xb1 = xbnew;
     sr = SR(i) + (xb1-xb(i))/(xb(i+1)-xb(i))*(SR(i+1)-SR
30
        (i));
     i = i + 1;
31
32 end
33 \text{ Lb} = \text{sr*F};
34 //Benzene in the underflow at Lb is
35 Underlow_B = Lb-w_out; //[kg solutions/h]
36
37 // At the solid inle
38 La = 400+25; //[kg solutions/h]
39 \text{ xa} = 400/\text{La};
40 w_in = 10+400; //[kg/h]
41 Extract_0 = w_in - w_out; //[kg/h]
42 Extract_B = 655+25-447; //[kg/h]
43 Va = Extract_0+Extract_B; //[kg/h]
44 ya = Extract_0/Va;
45
46 //The answers to parts (a) to (d) are
47 //(a)
48 disp(ya, 'The concentration of strong solution is');
49 //(b)
50 disp(xb1, 'The concentration of the soultion adhering
       to the extracted solids is');
51 //(c)
52 disp('kg/h',Lb,'The mass of solution leaving with
      the extracted meal is');
53 //(d)
54 disp('kg/h', Va, 'The mass of extract is');
55
56 //(e)
57 //To determine an intermediate point on the
      operating line, choosing,
58 \text{ xn} = 0.5;
59 //Soulion retained
60 Ln = 0.571*F; //[kg/h]
61 //By overall balance, Eq.(20.1)
62 V_n_1 = Va+Ln-La; //[kg/h]
```

Scilab code Exa 20.3 Number of stages

Number of stages

```
1 // clear //
2 clear;
3 clc;
4
5 / \text{Example } 20.3
6 // Given
7 T = 25; //[C]
8 //x(1) = Acetone, x(2)= water and x(3)= MIK
9 / F = feed
10 \text{ xF} = [0.40, 0.60, 0.0]
11 \times MIK_i = [0.0, 0.0, 1.0];
12
13 // Solution
14 //Using data from Fig. 20.10, to plot equilibrium
      curve
15 // Fig. 20.13.
```

```
16 // Basis:
17 F = 100; //[mass units/h]
18 / \text{Let n} = \text{mass flow rate of H2O in extarct}
19 / m = mass flow rate of MIK in raffinate
20 //For 99 percent recovery of A, the extarct has
21 E_A = 0.99 * xF(1) *F;
22 //And the Raffinate has
23 R_A = xF(1)*F-E_A;
24 //The total flows are
25 //At the top,
26 / \text{La} = F = 40*A + 60*H2O
27 / Va = 39.6 * A + n * H20 + (100 - m) * MIK = 139.6 + n - m
28 //At the bottom,
29 \text{ Vb} = 100; // \text{MIK}
30 / \text{Lb} = 0.4 * A + (60 - n) * H2O + m * MIK = 60.4 + m - n
31 //Since n and m are small and tend to cancel in the
      summatios for Va and La,
32 //the total extract flow Va is about 140, which
       would make
33 \text{ yA}_a = 39.6/140;
34 \text{ xA} = 0.4/60;
35 //From Fig 20.10, for
36 \text{ yA} = 0.283, \text{ yH20} = 0.049
37 \text{ xA} = 0.007, \text{ xMIK} = 0.02
38 \text{ nm} = [6;2];
39 \text{ err} = 1;
40 while (err > 0.1)
      nmold = nm;
41
     nm(1) = yH20/(1-yH20)*(39.6+100-nm(2));
42
     nm(2) = xMIK/(1-xMIK)*(0.4+60-nm(1));
43
44
      err = norm(nm-nmold);
45 end
46 n = nm(1);
47 m = nm(2);
48 \text{ Va} = 139.6 + n - m;
49 \text{ yA}_a = 39.6/Va;
50 \text{ Lb} = 60.4 + m - n;
51 \text{ xA_b} = 0.4/\text{Lb};
```

```
52
53 //For an intermediate point on the operating line,
      picking
54 \text{ yA} = 0.12;
55 //From Fig. 20.10,
56 \text{ yH2O} = 0.03;
57 \text{ yMIK} = 0.85;
58 //Since the raffinate phase has only 2 to 3 pecent
      MIK, assuming
59 //that the amount of MIK in the extract is 100, the
      same as the solvent
60 //fed:
61 V = 100/yMIK;
62 //By an overall balance from the solvent inlet (
      bottom) to the intermediate
63 // point
64 \text{ xb} = \text{xA_b};
65 L = Lb+V-Vb;
66 \text{ yb} = 0;
67 //A balance on A over the same section gives xA;
68 \text{ xA} = (0.4+117.6*0.12-0)/L;
69 //For xA and xMIK = 0.03, A balance on MIK from the
      solvent
70 //inlet to the intermediate point gives
71 \ V_{revised} = 101.1/0.85;
72 \text{ L_revised} = 54.4+118.9-100;
73 \text{ xA\_revised} = (0.4+118.9*0.12)/73.3;
74 \quad y = 0:0.1:1;
75 \quad x = y;
76 plot(x,y,[0.00074,0.2,0.4,],[0,0.12,0.272,])
77 xgrid()
78 \text{ xlabel}('x')
79 ylabel('y')
80 title('Figure 20.13')
81 legend('y=x', 'operating line')
82
83 //From Fig. 20.13
84 disp(3.4, 'Number of stages')
```

Principles of Diffusion and Mass Transer between Phases

Scilab code Exa 21.1 diffusion

```
diffusion
```

```
1 //clear//
2 clear;
3 clc;
4
5 //Exapmle 21.1
6 //Given
7 yA = 0.20;
8 yAi = 0.10;
9
10 //Solution
11 //(a)
12 //Let A = Dv*rho_M/BT
13 A = 1; //assumed
14
15 //Using Eq.(21.19), for euilmolal diffusion,
16 JA = A*(yA-yAi);
17 //Form Eq.(21.24), for one way diffusion,
```

```
18 NA = A*log((1-yAi)/(1-yA));
19 NAbyJA = NA/JA;
20 disp('In this case the transfer rate with one-way diffusion is', NAbyJA-1, 'percent greater than that with equimolal diffusion');
21
22 //(b)
23 //Whwn, b = BT/2
24 A = A*2;
25 yA = 1-exp(NA/2)*(1-yA)
26 disp(yA, 'The value of yA halfway through the layer for one-way diffusion is');
```

Scilab code Exa 21.2 Volumetric Diffusivity

Volumetric Diffusivity

```
1 // clear //
2 clear;
3 clc;
4
5 //Example 21.2
6 //Given
7 K = 273.16
8 T = 100+K ; //[K]
9 P = 10; //[atm]
10 //From Table 21.1
11 TcA = 198+K; //[K]
12 TcB = -147+K; //[K]
13 rho_cA = 0.552; //[g/cm^3]
14 rho_cB = 0.311; //[g/cm^3]
15 \text{ MA} = 137.5;
16 \text{ MB} = 28;
17
18 // Solution
```

Scilab code Exa 21.3 Diffusivity

Diffusivity

```
1 // clear //
2 clear;
3 clc;
5 //Example 21.3
6 // Given
7 //1 = benzene and 2 = toluene
8 M1 = 78.11;
9 M2 = 92.13;
10 T1_bp = 80.1+273; //[K]
11 T2_bp = 110.6+273; //[K]
12 VA1 = 96.5; //[\text{cm}^3/\text{mol}]
13 VA2 = 118.3; //[\text{cm}^3/\text{mol}]
14 mu1 = 0.24; //[cP]
15 mu2 = 0.26; //[cP]
16 T = 110+273; //[K]
17 // Solution
18 //From Eq.(21.26)
19 //For benzene in toulene,
20 Dv1 = 7.4*10^-8*(M2)^0.5*T/(mu2*VA1^0.6); //[cm^2/s]
21
22 //For toluene in benzene,
23 Dv2 = 7.4*10^-8*(M1)^0.5*T/(mu1*VA2^0.6); //[cm^2/s]
24
```

Scilab code Exa 21.4 Effective thickness

Effective thickness

```
1 // \operatorname{clear} //
2 clear;
3 clc;
4
5 //Example 21.4
6 //Given
7 \text{ Nre} = 20000;
8 T = 40; //[C]
9 D = 2; //[in.]
10 Dv1 = 0.288; //[cm^2/s], for water-air
11 Dv2 = 0.145; //[cm^2/s], for ethanol-air
12 //Solution
13 //For air at 40 C
14 rho = 29/22410*273.16/313.16; //[g/cm^3]
15 mu = 0.0186; //[cP], from Appendix 8
16 mubyrho = mu*10^-2/rho; //[cm^2/s]
17
18 //(a)
19 // For the air-water system,
20 Nsc = mubyrho/Dv1;
21 //Form Eq.(21.54)
22 \text{ Nsh} = 0.023*(Nre/2)^0.81*Nsc^0.44;
23 //In the film theory kc = D/BT and since Nsh = kc*D/BT
      Dv
24 BT1 = D/Nsh; //[in.]
```

Scilab code Exa 21.5 efficieny

efficieny

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 21.5
6 // Given
8 T = 110; //[C]
9 P = 1; //[atm]
10 mu = 0.26; //[cP]
11 Dvx = 6.74*10^-5; //[cm^2/s]
12 rho_mx = 8.47; //[mol/L]
13 Dvy = 0.0494; //[\text{cm}^2/\text{s}]
14 rho_my = 0.0318; //[mol/L]
15
16 //(a)
17 // Using Eq.(21.78)
18 kybykx = (Dvy/Dvx)^0.5*(rho_my/rho_mx);
19 //The gas-film coefficient predicted is only 10
      percent
```

```
20 //and if m=1, 90 percent of the overall resistance
      to mass
21 //transfer would be in the gas film.
22 disp(kybykx*100, 'fraction of the overall resistance
     in the gas phase is');
23
24 //(b)
25 //Assuming the column is operated at the same factor
      F
26 //Gas film:
27 rho_myprime = 0.00894; //[mol/L]
28 Dvyprime = (341/383)^1.81*(Dvy/0.25);
29 deltakyprime = sqrt(Dvyprime/Dvy)*rho_myprime/rho_my
30 //Liquid film:
31 rho_mxprime = 8.93; //[mol/L]
32 muprime = 0.35; //[cP]
33 Dvxprime = (341/383)*0.26*Dvx/muprime;
34 deltakxprime = sqrt(Dvxprime/Dvx)*(rho_mxprime/
     rho_mx);
35 //kyprime = deltakyprime*ky;
36 //kxprime = deltakxprime/0.102*ky;
37 //At 1 atm and ky = 0.102 kx and Ky = 0.907 / ky
38 / \text{Kyprime} = 0.476 * \text{ky}
39 //For overall transfer units
40 \text{ NOy} = 2*0.476/0.53;
41 neta = 1-\exp(-NOy);
42 disp(neta, 'The efficieny will be')
```

Scilab code Exa 21.6 number of stages

```
number of stages
```

```
1 // clear //
2 clear;
```

```
3 clc;
4
5 //Example 21.6
6 //Given
7 Dvprime = 10^-7; //[cm^2/s]
8 rp = 0.04/2; //[cm]
9 t = 30*60; //[s]
10 //Then,
11 beeta = Dvprime*t/rp^2;
12 //form Fig. 10.6
13 phi = 0.26;
14 // Murphree efficiency
15 neta_M = 1-phi;
16 //Here the average efficieny is nearly equal to the Murphree efficiency.
17 disp(4/neta_M, 'The actual number of stages is')
```

Gas Absorption

```
Scilab code Exa 22.1 pressure drop
   pressure drop
1 // clear //
2 clear;
3 clc;
5 //Example 22.1
6 // Given
7 Dp = 1; //[in.]
8 \text{ vdot} = 25000; //[ft^3/h]
9 T = 68; //[F]
10 P = 1; //[atm]
11 \text{ ya} = 0.02;
12 \text{ Mair} = 29;
13 \text{ Mg} = 17;
14 //Solution
15 //The average molecular weiht of the entering gas
16 M = (1-ya)*Mair+ya*Mg;
17 rho_y = M*492/(359*(460+68)); //[lb/ft^3]
18
19 // (a)
```

```
20 //Using Fig. 22.5, when Gy =Gx;
21 Gy = 0.472; //[lb/ft^2-s]
22 Gx = Gy; //[lb/ft^2-h]
23 des_value = Gy/2; //[lb/ft^2-h]
24 mdot = vdot*rho_y/3600; //[lb/s]
25 //Cross-sectional area of the tower
26 S = mdot/des_value //[ft^2]
27 // the diameter of the tower is
28 Dtower = sqrt(4*S/\%pi); //[ft]
29 disp('ft', Dtower, 'The tower diameter is');
30
31 / (b)
32 h = 20; //[ft]
33 //Using Fig 22.4, the pressure drop for
34 Gy = 850; //[1b/f^2-h]
35 \text{ Gx} = \text{Gy};
36 delta_P = 0.35; //[in.] (H2O/ft)
37 //The total pressure drop
38 Pt = delta_P*h; //[in.] H2O
39 disp('in. H2O', Pt, 'The pressure drop would be');
```

Scilab code Exa 22.2 pressure drop

pressure drop

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 22.2
6 //Given
7 Dp = 1; //[in.]
8 vdot = 25000; //[ft^3/h]
9 T = 68; //[F]
10 P = 1; //[atm]
```

```
11 \text{ ya} = 0.02;
12 \text{ Mair} = 29;
13 \text{ Mg} = 17;
14 // Solution
15 //The average molecular weiht of the entering gas
16 M = (1-ya)*Mair+ya*Mg;
17 rho_y = M*492/(359*(460+68)); //[lb/ft^3]
18 rho_x = 62.3; //[lb/ft^3]
19 //(a)
\frac{1}{20} //Using Fig. (22.8), from Example 22.1 A = Gx/Gy = 1
      and
21 //Let
22 A = 1;
23 B = A*sqrt(rho_y/rho_x);
24 //Form Fig 22.8, the superficial vapor velocity at
      flooding
25 //is uof*sqrt(rho_y/(rho_x-rho_y))=0.11, therefore
26 uof = 0.11/sqrt(rho_y/(rho_x-rho_y)); //[m/s]
27 //The allowable vapor velocity
28 uo = uof *0.5; //[m/s]
29 uo = uo*3.28; //[ft/s]
30 //the corresponding mass velocity
31 Gy = uo*rho_y; //[lb/ft^2-s]
32 //The allowable mass velocity in the example was
      0.236 \, \text{lb/ft^2-s}.
33 //The increase by using structured packing is
34 \text{ increase} = (Gy/0.236)-1;
35 disp(increase * 100, 'The percent increase in mass
      velocity is');
36
37 //(b)
38 //The pressure drop
39 delta_P = 20*1.22*(0.5/0.9)^1.8; //[in. H2O]
40 //This is 1.2 times the pressure drop of 7 in H2O in
       the Intolax saddles.
41 disp('The pressure drop will be greater than Intolax
       Saddles')
```

Scilab code Exa 22.3 temperatures

temperatures

```
1 // clear //
2 clear;
3 clc;
5 //Example 22.3
6 //Given
7 vdot = 4500; //[SCFM]
8 \text{ yin} = 0.06;
9 \text{ yout = } 0.0002;
10 P = 1; //[atm]
11 Tiy = 20; //[C]
12 Tix = 25; //[C]
13
14 // Solution
15 //From Perry
16 \times = [0.0308, 0.0406, 0.0503, 0.0735]';
17 \text{ y} 20 = [0.0239, 0.0328, 0.0417, 0.0658]';
18 \text{ y30} = [0.0389, 0.0528, 0.0671, 0.1049];
19 \text{ y}40 = [0.0592, 0.080, 0.1007, 0.1579]';
20 deltaH = -8.31*10^3; //[cal/g mol], fro NH3=NH3(aq)
21 / Basis:
22 gas_in = 100; //[g \text{ mol dry}]
23 air_in = (1-yin)*gas_in; //[mol]
24 NH3_in = yin*gas_in; //[mol]
25 H2O_in = 2.4; //[mol]
26 \text{ air\_out = air\_in; } //[\text{mol}]
27 //The moles of NH3 in the outlet gas,
28 NH3_out = air_out*(yout/(1-yout)); //[mol NH3]
29 //The amount of NH3 absorbed
30 NH3_abs = NH3_in-NH3_out; //[mol]
```

```
31 //Heat Effects:
32 //The heat of absorption
33 Qa = -NH3_abs*deltaH; //[cal]
34 //Sensible heat changes in the gas are
35 Qair = air_in*7*5; //[cal]
36 QH20 = H20_in *8*5; //[cal]
37 \text{ Qsy} = 3290+96; //[cal]
38 //The amount of vaporization of water from the
      liquid
39 pH20_20 = 17.5; //[mm \text{ Hg}], at 20C
40 pH20_25 = 23.7; //[mm Hg], at 25C
41 H2O_inlet = gas_in*(pH2O_20/742.5); //[mol]
42 H2O_outlet = 94.02*(pH2O_25/736.3); //[mol]
43 //The amount of water vaporized
44 H2O_vaporized = H2O_outlet-H2O_inlet; //[mol]
45 deltaHv = 583; //[cal/g]
46 Qv = deltaHv*H2O_vaporized*18.02; //[cal]
47 //From Eq. (22.31)
48 Qsx = Qa-(Qv+Qsy); //[cal]
49
50 Cp = 18; //[cal/g-mol-C]
51 \text{ xmax} = 0.031;
52 \text{ Tb} = 40; //[C]
53 \text{ Ta} = 25; //[C]
54 \text{ err = 1;}
55 while (err > 0.01)
56
     Lb = NH3_abs/xmax;
57
     Tbnew = Qsx/(Lb*Cp)+Ta;
58
     err = Tb-Tbnew;
59
     Tb=Tbnew;
60
     xmax = xmax + 0.002;
61 end
62 Lmin = Lb-NH3_in; //[mol\ H2O]
63 La = 1.25*Lmin; //[mol]
64 \text{ Lb} = \text{La+NH3\_in}; // [\text{mol}]
65 //The temperature rise of the liquuid is
66 Tb = Qsx/(Lb*Cp)+Ta; //[C]
67 \text{ xb} = \text{NH3_in/La}; //[C]
```

```
68 \text{ ystar} = 0.044;
69 //Assuming temperature to be linear function of x,
70 T = 30;
71 //x = 0.0137;
72 //Using the data given for 30C and interpolating to
      get the
73 //initial slope for 25 and the final value ystar for
       35, the
74 //euilibrium line is drawn
75 \text{ y} = [0.06, 0.03, 0.01, 0.0002]';
76 \text{ ystar} = [0.048, 0.017, 0.0055, 0];
77 delta_y = y-ystar;
78 delta_yL = [0.0125, 0.0080, 0.00138];
79 \text{ delta_NOy} = [2.4, 2.5, 7.1]';
80 NOy = sum(delta_NOy);
81 disp(NOy, 'The value of NOy is');
82
83
84
85 plot(x,y20,x,y30,x,y40);
86 xgrid();
87 \text{ xlabel}('x');
88 ylabel('y');
89 legend('20C','30C','40C');
90 title('x vs y of NH3 at different temperatures');
```

Scilab code Exa 22.4 Transfer units

Transfer units

```
1 //clear//
2 clear;
3 clc;
```

```
5 //Example 22.4
6 //Given
7 ieee();
8 \text{ H} = 0.0075; //[TCE]
9 T = 20; //[C]
10 P = 1; //[atm]
11 wa = 6*10^-6; //[g]
12 Ca = 6; //[ppm]
13 wb = 4.5*10^-9 //[g]
14 M = 18;
15
16 //Solution
17 m = H/P*10^6/M;
18 //With this large value of m, the desorption is
      liquid - phase controlled.
19 //At the minimum air rate, the exit gas will be in
      equilibrium with the
20 //incoming solution.
21 \text{ MTCE} = 131.4;
22 \quad j = 1.5;
23 \text{ for } i = 1:7
24 \text{ xa} = \text{wa/MTCE*M};
25 \text{ ya} = \text{m}*\text{xa};
26 //Per cubic meter of solution fed, the TCE removed
27 VTCE = 10^6*(wa-wb)/MTCE; //[mol]
28 //The total amount of gas leaving is
29 V = VTCE/ya; //[mol]
30 Fmin = V*0.0224; //[std m^3], as 1 gmol = 0.0224 std
       m^3
31 \text{ Vmin} = \text{Fmin}*j;
32 //Density at the standard conditions,
33 rho = 1.259; //[kg/m^3],
34 //so the minimum rate on a mass basis is,
35 / \text{Let A} = (Gy/Gx) \min
36 A = Vmin*rho/1000; //[kg \text{ air}/kg \text{ water}]
37 // If the air rate is 1.5 times the minimum value,
      then
```

```
38 \text{ ya} = \text{ya/j};
39 \text{ xastar} = \text{ya/m};
40 Castar = xastar*MTCE/M *10^6; //[ppm]
41 delta_Ca = Ca-Castar;
42
43 //At bottom
44 Cb = 0.0045; //[ppm]
45 Cbstar = 0; //[ppm]
46 delta_Cb = Cb-Cbstar; //[ppm]
47 delta_CL = (delta_Ca-delta_Cb)/log(delta_Ca/delta_Cb
      ); //[ppm]
48 \text{ Nox(i)} = (Ca-Cb)/delta_CL;
49 \quad j = j+0.5;
50 end
51
52 \text{ Hox} = 3; //[ft]
53 Z = Hox*Nox; //[ft]
54 //Going from 1.5 to 2Vmin or from 2 to 3Vmin
      decreases the tower height
55 //considerably, and the reduction in pumping work
      for water is more than
56 //the additional energy needed to force air through
      the column. Further
57 //increase in V does not change Z very much, and the
       optimum air rate is
58 //probably in the range 3 to 5Vmin./
59
60 disp(Nox, 'Number of Transfer units with minimum air
      rates')
```

```
Scilab code Exa 22.5 packing height packing height
```

```
1 // clear //
```

```
2 clear;
3 clc;
5 //Example 22.5
6 //Solution
7 //Equlibrium data are shown in Fig. 22.22
8 //By a heat balance similar to that of Eample 22.3
9 //The temperature rise of the liqui was estimated
10 //to be
11 delta_T = 12.5; //[C]
12 // Basis:
13 dry_gas_in = 100; //[mol]
14 sol_in = 140; //[mol]
15 N2_in = 87; //[mol]
16 CO2_{in} = 10; //[mol]
17 EO_in = 3; //[mol]
18 N2_out = 87; //[mol]
19 CO2_{out} = 10; //[mol]
20 \text{ EO_out} = 3*0.02; //[mol]
21 IN = N2_{in}+C02_{in}+E0_{in}; //[mol]
22 OUT = N2_out+CO2_out+EO_out; // [mol]
23 //Assuming negligible CO2 absorption and neglect
      effect of H2O on
24 // gas composition.
25 //At top:
26 \text{ xt} = 0.004;
27 \text{ yt} = EO_out/OUT;
28 //Moles of EO absorbed
29 EO_abs = 3*0.98; //[mol]
30 //Moles of EO absorbed in water
31 \text{ EO}_{H20} = 140*0.0004; //[mol]
32 //At bottom:
33 \text{ xb} = (EO_abs+EO_H2O)/(140+EO_abs);
34 \text{ yb} = 0.03;
35 //From Fig 22.22
36 y = [0.03, 0.015, 0.005, 0.0006]';
37 \text{ delta_y1} = [0.008, 0.0006, 0.0024, 0.0003];
38
```

```
39 for i = 1: length(y) - 1
     delta_y = y(i) - y(i+1);
40
     delta_yL = (delta_y1(i)-delta_y1(i+1))/log(
41
        delta_y1(i)/delta_y1(i+1));
     Noy1(i) = delta_y/delta_yL;
42
43 end
44 Noy = sum(Noy1);
45
46 //Column diameter:
47 //Using generalize pressure-drop correlation, Fig.
      . 22.6
48 //Based on the inlet gas,
49 Mbar = 0.87*28+0.1*44+0.03*44;
50 //At 40C,
51 \text{ rho_y} = 30.1/359*20*273/313 //[lb/ft^3]
52 \text{ rho_x} = 62.2; //[lb/ft^3]
53 //Let A = Gx/Gy*sqrt(rho_y/(rho_x-rho_y))
54 A = 1.4*18/(1*30.1)*sqrt(rho_y/(rho_x-rho_y));
55 //From Fig. 22.6, for
56 \text{ delta_P} = 0.5; //[in.H2O/ft]
57 // Let B = Gy^2*Fp*mux^0.1/(rho_y*(rho_x-rho_y)*gc)
58 B = 0.045;
59 //From Table 22.1,
60 \text{ Fp} = 40;
61 \text{ mu} = 0.656; //[cP]
62 // so
63 Gy = sqrt(B*(rho_y)*(rho_x-rho_y)*32.2/(Fp*mu^0.1));
       //[lb/ft^2-h]
64 //or
65 Gy = Gy * 3600; //[1b/ft^2-s]
66 Gx = 1.4*18/(1*Mbar)*Gy; //[lb/f^2-s]
67 //For a feed rate
68 F = 10000*Mbar; //[lb/h]
69 S = F/Gx; //[ft^2]
70 D = sqrt(S*4/\%pi); //[ft]
71 //Column heigth:
72 //From Fig. 22.20 at Gy = 500 and Gx = 1500
73 Hy_NH3 = 1.4; //[ft]
```

```
74 mu_40 =0.0181*10^-2; //[P], Appendix 8
75 Dv = 7.01*10^-3; //[cm^2/s], from Eq.(21.25)
76 rho = 2.34*10^-2; //[lb/ft^3]
77 Nsc = mu_40/(rho*Dv);
78 //Form Table 22.1,
79 \text{ fp} = 1.36;
80 \text{ Hy\_EO} = 1.4*(1.1/0.66)^0.5*1/1.36*(Gy/500)
      ^0.3*(1500/Gx)^0.4; //[ft]
81 //Form Fig. 22.19,
82 \text{ Hx}_02 = 0.9; //[ft]
83 \text{ Gx1} = 1500;
84 \text{ mu1} = 0.00656; //[P]
85 rho1 = 1; //[lb/ft^3]
86 // Using Eq. (21.28)
87 Dv1 = 2.15*10^-5; //[cm^2/s]
88 Nsc1 = mu1/(rho1*Dv1);
89 //Using Eq.(22.35), with the correction factor fp
      and Nsc = 381,
90 //for O2 in water at 25 C
91 Hx_E0 = Hx_02*(Gx/(mu1*100)/(Gx1/0.894))^0.3*(Nsc1
      /381) ^0.5/1.36; //[ft]
92 //From Fig 22.22, the average value of m
93 \text{ m} = 1.0;
94 //From Eq.(22.30)
95 HOy = 1.71+(1*0.96)/1.4; // [ft]
96
97 disp(Noy, 'number of transfer units required')
98 disp('ft',D,'diameter of the column')
99 disp('ft', HOy, 'packing height')
```

Scilab code Exa 22.6 resistance

resistance

```
1 / clear /
```

```
2 clear;
3 clc;
4
5
6 //Example 22.6
7 //Solution
8 rho_m = 62.2/18; //[mol/ft^3]
9 / \text{kya} = 0.025 * \text{Gy} ^0.7 * \text{Gx} ^0.25
10 \text{ H20byS02} = 2*0.98964/0.01036;
11 //and
12 \text{ xb} = 1/(H20byS02+1);
13 //The molal mass velocity of the feed gas Gm is
14 Gm_in = 200/29*(1/0.8); //[mol/ft^2-h]
15 SO2_in = Gm_in*0.2; //[mol/ft^2-h]
16 Air_in = Gm_in*0.8; //[mol/ft^2-h]
17 Air_out = Air_in; //[mol/ft^2-h]
18 SO2_out = Air_out*(0.005/(1-0.005)); //[mol/ft^2-h]
19 SO2_abs = SO2_in-SO2_out; //[mol/ft^2-h]
20 H2O_in = H2ObySO2*SO2_abs; //[mol/ft^2-h]
21 //Operating line
22 x = 0:6;
23 x = x/10^3;
24 A = x./(1-x);
25 B = H20_in/Air_in*A+(0.005/0.995);
26 y = B./(B+1);
27 plot(x,y)
28 xgrid();
29 xlabel('x');
30 ylabel('y');
31 //legend ('20C', '30C', '40C');
32 title('x vs y');
33 Gxbar = H20_{in}*18.02+S02_{abs}*64.1/2; //[lb/ft^2-h]
34 kxa = 0.131*Gxbar^0.82; //[mol/ft^3-h]
35 //The gas film coefficients are calculated for the
      bottom
36 //and the top of the tower:
37 //At bottom:
38 Gy_B = (Air_in*29) + (SO2_in*64.1); //[lb/ft^2-h]
```

```
39 kya_B = 0.025*Gy_B^0.7*Gxbar^0.25; //[mol/ft^3-h]
40 //At top:
41 Gy_T = (Air_out*29) + (SO2_out*64.1); //[lb/ft^2-h]
42 kya_T = 0.025*Gy_T^0.7*Gxbar^0.25; //[mol/ft^3-h]
43 // Assuming
44 \text{ yLbar} = 0.82
45 C = kxa*yLbar/kya_B;
46 //a line from (yb,xb) with a slope of -C, gives
47 \text{ yi} = 0.164;
48 \text{ yLbar} = 0.818;
49 m = 20.1
50 Kya_prime = 1/(yLbar/kya_B+m/kxa); //[mol/ft^3-h]
51 //The fraction of the total resistance that is in
      the liquid is
52 \text{ Rf} = \text{m/kxa/(1/Kya_prime)};
53 //For different values of y1
54 \text{ y1} = [0.2, 0.15, 0.1, 0.05, 0.02, 0.005]';
55 \text{ delta_y1} = [0.103, 0.084, 0.062, 0.034, 0.015, 0.005]
56 \text{ y1i} = [0.164, 0.118, 0.074, 0.034, 0.012, 0.002];
57 \text{ delta_yi} = y1-y1i;
```

Humidification Operations

Scilab code Exa 23.1 Adiabatic saturation temperature

Adiabatic saturation temperature

```
1 // clear //
2 clear;
3 clc;
5 //Example 23.1
6 //Given
7 T = 320; //[F]
8 P = 1 ; //[atm]
9 / (1) = CO2, (2) = H2O, (3) = O2, (4) = N2
10 y_{in} = [0.14, 0.07, 0.03, 0.76];
11 Tw = 80; //[F]
12 //Solution
13 //(a)
14 // Basis
15 F = 100; //[mol], of gas
16 Ts = 120; //[F]
17 Cps = [9.72, 8.11, 7.14, 6.98]';
18 n_in = F*y_in; //[mol]
19 nCp = n_in.*Cps; //
```

```
20 \quad sum_nCp = sum(nCp);
21 sum_n_in = sum(n_in); //[mol]
22 Tavg = (Ts+T)/2; //[F]
23 lambda_s = 1025.8*18; //[Btu/lb mol], at Ts, from
      Appendix 7
24 //Making a heat balance for z moles of water
      evaporated
25 	ext{ z = sum_nCp*(T-Ts)/(lambda_s+18*(Ts-Tw));}
26 //Total moles of water in exit gas
27 \text{ n_out(2)} = z+n_in(2); //[mole]
28 // Partial pressure of the water in the exit gas
29 PH20 = n_{out}(2)/107.76*760; //[mm Hg]
30 //But at 120 F, PH2Oprime = 87.5 mm Hg (Appendix 7).
       Saturation
31 //temperature Ts must be greater than 120 F. Trying
32 \text{ Ts} = 126; // [F]
33 Tavg = (Ts+T)/2; //[F]
34 lambda_s = 1022.3*18; //[Btu/lb mol], at Ts, from
      Appendix 7
  //Making a heat balance for z moles of water
      evaporated
36 z = sum_nCp*(T-Ts)/(lambda_s+18*(Ts-Tw));
37 //Total moles of water in exit gas
38 n_{out}(2) = z + n_{in}(2); //[mole]
39 // Partial pressure of the water in the exit gas
40 PH20 = n_{out}(2)/107.76*760; //[mm Hg]
41 //This is close enough to the value of PH2Oprime
42 disp('F',Ts,'Adiabatic saturation temperature');
43
44 //(b)
45 //for Tin = Ts, by heat balance
46 z = sum_nCp*(T-Ts)/(lambda_s);
47 n_{out}(2) = z + n_{in}(2); //[mole]
48 // Partial pressure of the water in the exit gas
49 PH20 = n_{out}(2)/107.85*760; //[mm Hg]
50 //This is higher than the vapor pressure of water at
       126 F,
51 //103.2 mm Hg, and Ts>126 F. Trying
```

Scilab code Exa 23.3 volume of the spray chamber

volume of the spray chamber

```
1 // \operatorname{clear} //
2 clear;
3 clc;
4
5 //Example 23.3
6 //Given
7 Hair_in = 0.022;
8 Tair_inpre = 70; //[F]
9 mdot = 15000; //[lb/h]
10 //Solution
11 //Using Fig. 23.10
12 Tair_inreh = 85; //[F]
13 Tair_outreh = 130; //[F]
14 \text{ Hin} = 0.0030;
15 \text{ hya} = 85;
16 Ts = 81; //[F]
```

```
17 Tair_outpre = 168; //[F]
18 humid_heat1 = 0.241; //[Btu/lb-F]
19 //Heat required to preheat the air is
20 Qpre = humid_heat1*mdot*(Tair_outpre-Tair_inpre); //
     [Btu/h]
21 humid_heat2 = 0.250; //[Btu/lb-F]
22 //Heat required in the reheater is
23 Qreh = humid_heat2*mdot*(Tair_outreh-Tair_inreh); //
     |Btu/h]
24 //Total heat required
25 Qt = Qpre+Qreh; //[Btu/h]
26 //To caluculate the volume of the sprqy chamber, Eq
     (23.41) may
27 //be used. The average humid heat is
28 csbar = (humid_heat1+humid_heat2)/2; //[Btu/lb dry]
      air -F
29 //Substituing in Eq.(23.41) gives
30 VT = log((Tair_outpre-Ts)/(Tair_inreh-Ts))*mdot*
     csbar/hya; //[ft^3]
31 disp('ft^3',VT,'The volume of the spray chamber is')
```

Drying of Solids

Scilab code Exa 24.1 drying time

```
drying time
```

```
1 // clear //
2 clear;
3 clc;
5 //Example 24.1
6 // Given
7 Twb = 80; //[F]
8 \text{ Tdb} = 120; //[F]
9 v = 3.5; //[ft/s]
10 rho = 120; //[lb/ft^3]
11 Xe = 0;
12 \text{ Xc} = 0.09;
13 lambda = 1049; //[Btu/lb]
14 M = 29;
15 B = 24; //[in.]
16 D = 2; //[in.]
17 Dc = 2; //[ft]
18 // Solution
19 //(a)
```

```
20 //mass velocity
21 G = v*M*492*3600/(359*(460+120)); //[lb/ft^2-h]
22 //the coefficent, by Eq.(24.13), in fps units, is
23 h = 0.01*G^0.2/2^0.2; //[Btu/ft^2-h-F]
24 //Substituting in Eq.(21.15) gives
25 Rc = 1.94*(Tdb-Twb)/(lambda); //[lb/ft^2-h]
26 disp('lb/ft^2-h',Rc,'Drying rate during the constant
       period is')
27
28 //(b)
29 //Since drying is from both faces, area
30 A = Dc*(B/12)^2; /[ft^2]
31 //The rate of drying
32 mvdot = Rc*A; //[lb/h]
33 //Volume of the cake
34 Vc = (B/12)^2*D/12; //[ft^3]
35 //mass of the bone-dry solid is
36 \text{ mdot\_bd} = \text{rho*Vc}; //[lb]
37 //The quantity of moisture to be vaporized is
38 X2 = 0.20;
39 \times 1 = 0.10;
40 Q = mdot_bd*(X2-X1); //[lb]
41 // Drying time
42 tT = Q/mvdot; //[h]
43 disp('h',tT,'drying time')
```

Scilab code Exa 24.2 drying time

```
drying time
```

```
1 // clear //
2 clear;
3 clc;
4
5 // Example 24.2
```

```
6  //Given
7  X1 = 0.25;
8  X = 0.05;
9  Dvprime = 8.3*10^-6;  //[cm^2/s]
10  D = 25.4;  //[mm]
11
12  //Solution
13  s = D/(2*10);  //[cm]
14  tT = 4*s^2/(%pi^2*Dvprime)*log(8*X1/(%pi^2*X))/3600;  //[h]
15  disp('h',tT,'drying time is')
```

Scilab code Exa 24.3 Required drying time

Required drying time

```
1 // clear //
2 clear;
3 clc;
4
5 //Example 24.3
6 // Given
7 \text{ Tw} = 80; //[F]
8 \text{ Tdb} = 120; //[F]
9 v = 3.5; //[ft/s]
10 rho = 120; //[lb/ft^3]
11 Xe = 0;
12 \text{ Xc} = 0.09;
13 lambda = 1049; //[Btu/lb]
14 M = 29;
15 B = 24; //[in.]
16 D = 2; //[in.]
17 Dc = 2; //[ft]
18 \text{ X2} = 0.20;
19 X1 = 0.10;
```

```
20 Dcyl = 1/4; //[in.]
21 L = 4; //[in.]
22 Vbar = 3.5; //[ft/s]
23 Thb = 120;
24
25 // Solution
26 //Since the Xc is less than 10 percent, all drying
      takes place
  //in the constant-rate period and the vaporrization
      temperature,
28 //as before, is 80 F.
29 //From Exapmle 24.1, mass of water to be evaporated
30 mdot = 8*(X2-X1); //[lb]
31 //The quantity of heat to be transferred
32 QT = mdot*lambda; //[Btu]
33 //mass of the dry soild in one cylinder is
34 mp = \%pi/4*(Dcyl/12)^2*(L/12)*rho; //[lb]
35 //surface area of one cylinder is
36 \text{ Ap} = \text{\%pi*(Dcyl/12)*(L/12); //[ft^2]}
37 //Total area exposed by 8 lb solids
38 A = 8/mp*Ap; //[ft^2]
39 //The heat transfer coefficient is found from the
40 // equivalent form of Eq.(21.62)
41 / \text{hDbyk} = 1.17 * \text{Nre} 0.585 * \text{Npr} (1/3)
42 //For air at 1 atm and 120F, the properties are
43 rho_a = M/359*492/580; //[lb/ft^3]
44 mu_a = 0.019; //[cP], from Appendix 8
45 \text{ k_a} = 0.0162; //[Btu/ft-h-F], from Appendix 12
46 Cp_a = 0.25; //[Btu/lb-F], from Appendix 15
47 Nre = 1/48*Vbar*rho_a/(mu_a*6.72*10^-4);
48 \text{ Npr} = mu_a*2.42*Cp_a/k_a;
49 //Form Eq.(21.62)
50 h = (k_a*1.17*Nre^0.585*Npr^(1/3))/(1/48); //[Btu/ft
      ^2-h-F
51 \text{ mdot_g} = v*3600*rho_a; //[lb]
52 //From Fig. 23.2
53 \text{ cs} = 0.25;
54 \text{ delta\_Thb} = \text{Thb-Tw}; //[F]
```

```
55 delta_Tha = 8.24; //[F]
56 //The heat transferred form the gas to a thin
        section of the bed
57 delta_TL = (delta_Thb-delta_Tha)/log(delta_Thb/
        delta_Tha); //[F]
58 //rate of heat transfer
59 qT = h*A*delta_TL; //[Btu/h]
60 //drying time
61 tT = QT/qT; //[h]
62 disp('h',tT,'Required drying time is')
```

Scilab code Exa 24.4 diameter and length of the dryer

diameter and length of the dryer

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 24.4
6 // Given
7 msdot = 2800; //[lb/h]
8 \text{ Xa} = 0.15;
9 \text{ Xb} = 0.005;
10 Ti = 80; //[F]
11 To = 125; //[F]
12 Thb = 260; //[F]
13 Hb = 0.01; //[lb water/lb dry air]
14 G = 700; //[lb/ft^2-h]
15 Cps = 0.52; //[Btu/lb-F]
16
17 // Solution
18 //Counter current operation will be used.
19 // Assuming
20 Nt = 1.5; //NTU
```

```
21 //From Fig. 23.2
22 Twb = 102; //[F]
\frac{23}{\text{From Eq.}} (2.48)
24 Tha = (Thb-Twb)/exp(Nt)+Twb; //[F]
25 Tsb = To; //[F]
26 lambda = 1036; //[Btu/lb], at 102 F, from Appendix 7
27 Cpv = 0.45; //[Btu/lb-F], from Appendix 15
28 Cpl = 1.0; //[Btu/lb-F]
29 //From Eq.(24.9)
30 mvdot = msdot*(Xa-Xb); //[lb/h]
31 //The heat duty is found form substitution in Eq
      . (24.1)
32 \text{ qTdot} = \text{Cps}*(\text{To}-\text{Ti})+\text{Xa}*\text{Cpl}*(\text{Twb}-\text{Ti})+(\text{Xa}-\text{Xb})*\text{lambda}+
      Xb*Cpl*(To-Twb)+(Xa-Xb)*Cpv*(Tha-Twb); //[Btu/lb]
33 qT = qTdot*msdot; //[Btu/h]
34 //The flow rate of the entering air is found from a
      heat balance and the humid heat csb.
35 //From Fig. 23.2
36 csb = 0.245; //[Btu/lb-F],
37 mgdot = qT/(csb*(Thb-Tha)*(1+Hb)); //[lb/h \text{ of } dry]
      air]
\frac{1}{38} //From Eq. (24.10), The outlet humidity
39 Ha = Hb+mvdot/mgdot; //[lb/lb]
40
41 //For a given flow rate, the cross-sectional area of
       the dryer must be
42 Ac = qT/(csb*(Thb-Tha))/G; //[ft^2]
43 //The dryer diameter is
44 D = (4*Ac/\%pi)^0.5; //[ft]
45 delta_TL = ((Thb-Twb)-(Tha-Twb))/log((Thb-Twb)/(Tha-Twb))
      Twb)); //[F]
46 //Using Eq.(24.29), the dryer length
47 L = qT/(0.125*\%pi*D*G^0.67*delta_TL); //[ft]
48 disp('respectively', 'ft', L, 'ft', D, 'Required diameter
       and length of the dryer is')
```

Adsorption

Scilab code Exa 25.1 equilibrium capacity

equilibrium capacity

```
1 // clear //
2 clear;
3 clc;
5 //Example 25.1
6 // Given
7 \text{ ya} = 0.002;
8 T = 20+273; //[K]
10 // Solution
11 //(a)
12 M = 86.17;
13 //from Perry's Chemical Engineers' Handbook, 6th ed.
14 Pprime = 120; //[mm Hg]
15 fs = Pprime; //[mm Hg]
16 rho_L = 0.615; //[g/cm^3], at normal boiling point
      (68.7 \text{ C})
17 P = 760; //[mm Hg]
18 p = ya*P; //[mm Hg]
```

```
19 f = p; //[mm \ Hg]
20 V = M/rho_L; //[cm^3/g mol]
21 / Let
22 A = T/V*log10(fs/f);
23 //From Fig. 25.4, volume adsorbed
24 V_ads = 31/100; //[cm^3 \text{ liquid/g carbon}]
25 W = V_ads*rho_L; //[g/g carbon]
26 disp('g/g carbon', W, 'The equilibrium capacity for
      the bed is')
27
28 // (b)
29 T = 40+273; //[K]
30 Pprime = 276; //[mm Hg]
31 fs = Pprime; //[mm Hg]
32 A = T/V*log10(fs/f);
33 //From Fig. 25.4, volume adsorbed
34 V_ads = 27/100; //[cm^3 \text{ liquid/g carbon}]
35 W = V_ads*rho_L; //[g/g carbon]
36 disp('g/g carbon', W, 'The equilibrium capacity for
      the bed is')
```

Scilab code Exa 25.2 break point-time

break point-time

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 25.2
6 //Solution
7 cbyc0 =0.05;
8 u0 = 58; //[cm/s]
9 Dv = 0.37; //[m^2/g]
10 c0 = 365; //[ppm]
```

```
11 S = 1194; //[m^2/g]
12 T = 25; //[C]
13 rho_b = 0.461; //[g/cm^3]
14 P = 737; //[mm Hg]
15 M = 74.12; //[g/mol]
16 \text{ eps} = 0.457;
17 t = 1:0.5:8.5;
18 \ t(4) = 2.4; \ t(5) = 2.8; \ t(6) = 3.3;
19 cbyc0
      = [0.005, 0.01, 0.027, 0.05, 0.1, 0.2, 0.29, 0.56, 0.0019, 0.003, 0.0079, 0.0
20 t1 = t(1:8);
21 	 t2 = t(9:16);
22 \text{ cbyc01} = \text{cbyc0}(1:8);
23 \text{ cbyc02} = \text{cbyc0}(9:16);
24 plot(t1,cbyc01,t2,cbyc02);
25 xgrid();
26 xlabel('t, Hours');
27 ylabel('c/c0');
28 title('Brakthrough curves for Example 25.2');
29 legend('L = 8 \text{cm}', 'L = 16 \text{cm}');
30
31 / (a)
32 \text{ FA} = u0*c0*10^-6/22400*273/298*737/760*M*3600; // [g/
      cm^2-h
33
  // The total solute adsorbed is the area above the
      graph multiplied
34 //by FA. For the 8-cm bed, the area is
35 Area_bed = 4.79; //[h]
36 //This area corresponds to the ideal time that would
       be required to adsorb
37 //the same amount if the breakthrough curve were a
      vertical line. The mass
38 //of carbon per unit cross-sectional area of the bed
39 Ac = 8*rho_b; //[g/cm^2]
40 //Thus,
41 Wsol = FA*Area_bed/Ac; //[g solute/g carbon]
```

```
42 //At the break point, where
43 \text{ cbyc0\_break} = 0.05;
44 // and
45 \text{ t_break} = 2.4; //[h]
46 Area_bed_break = 2.37; //[h]
47 //The amount adsorbed up to the break point is then
48 Wb = FA*t_break/Ac; //[g solute/g carbon]
49 \text{ ratio_W = Wb/Wsol;}
50 //Thus 50 percent of the bed capacity is unused,
      which can be represented
51 //by a length 4 cm.
52 //For the 16-cm bed the breakthrough curve has the
      same initial slope as the cuve
53 //for 8-cm bed, and although data were not taken
     beyond cbyc0 = 0.25,
54 //the curves are assumed to be parallel
55 //For the entire bed,
56 \text{ tT} = 9.59; //[h]
57 Wsat = FA*tT/(16*rho_b); //[g solute/g carbon]
58 //At
59 \text{ cbyc0\_break} = 0.05;
60 t_break =7.1; //[h]
61 Area_break = 7.07; //[h]
62 Wb = FA*Area_break/(16*rho_b); //[g solute/g carbon]
63 ratio_W = Wb/Wsat;
64 //At the break point, 74 percent of the bed capacity
       is used,
65 //which corresponds to an unused section of length
      0.26*16 cm.
66 //Within experimental error, the lengths of unused
      bed agree,
  //and 4.1 cm is expected value for a still longer
67
      bed.
68 disp('cm',4.2, 'length of the bed used', 'percent',
      ratio_W, 'saturation capacity of the carbon')
69
70 //(b)
71 L = 32; //[cm]
```

```
72 L_exp = L-4.1; //[cm]
73 //Fraction of the bed used
74 fra_bed = L_exp/L;
75 //The break-point time is,
76 tb = L_exp*rho_b*Wsat/FA; //[h]
77 disp('h',tb,'break point-time')
```

Scilab code Exa 25.3 value of kca

value of kca

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 25.3
6 // Solution
7 \text{ cbyc0} = 0.05;
8 \text{ u0} = 58; //[\text{cm/s}]
9 Dv = 0.37; //[m^2/g]
10 c0 = 365; //[ppm]
11 S = 1194; //[m^2/g]
12 T = 25; //[C]
13 rho_b = 0.461; //[g/cm^3]
14 P = 737; //[mm Hg]
15 M = 74.12; //[g/mol]
16 \text{ eps} = 0.457;
17 L = 8; //[cm]
18
19 //(a)
20 //From Example 25.2
21 \text{ ratio_W} = 0.495;
22 \text{ tou = } 0.495;
23 //From Fig. 25.10
24 N = -1.6/(tou-1); //at c/c0 = 0.05
```

```
25 Kca = N*u0/L; //[s^-1]
26 disp('s^-1', Kca, 'Kca = ', N, 'N = ')
\frac{27}{\text{plot}}(\text{t1}, \text{cbyc01}, \text{t2}, \text{cbyc02})
28
29 // (b)
30 Dp = 0.37; //[cm]
31 mubyrho = 0.152; //[\text{cm}^2/\text{s}], at 25C, 1atm
32 Dv = 0.0861; //[\text{cm}^2/\text{s}]
33 Nre = Dp*u0/mubyrho;
34 \text{ Nsc} = \text{mubyrho/Dv};
35 //From Eq.(21.62),
36 \text{ Nsh} = 1.17*\text{Nre}^0.585*\text{Nsc}^(1/3);
37 kc = Nsh*Dv/Dp; //[cm/s]
38 a = 6*(1-eps)/Dp; //[cm^2/cm^3]
39 kca = kc*a; //[s^{-1}]
40 //Since Kca is slightly less than half the predicted
       value of kca,
41 //the external resistance is close to half the total
       resistance, and
42 //the calculated value of N need not be revised. The
       internal
43 //coefficient can be obtained from
44 Kc = Kca/a; //[cm/s]
45 kc_int1 = 1/(1/Kc-1/kc); //[cm/s]
46 //If the diffusion into the particle occurred only in
       the gas phase, the
47 //maximum possible value of De would be about Dv/4,
      which leads to
48 kc_int2 = 10*Dv/(4*Dp); //[cm/s]
49 disp('Kca is slightly less than half the predicted
      value of kca');
```

Scilab code Exa 25.4 carbon needed

carbon needed

```
1 // clear //
2 clear;
3 clc;
4
5 //Example 25.4
6 y = 0.0012;
7 vdot = 16000; //[ft^3/min]
8 P = 760; //[mm Hg]
9 rho_b = 30; //[1b/ft^3]
10 Lun = 0.5; //[ft]
11 L = 3;
12
13 // Solution
14 //(a)
15 //Form the hand book
16 Pprime = 151; //[mm \ Hg]
17 fs = Pprime; //[mm Hg]
18 rho_L = 0.805; //[g/cm^3], at 20C
19 Tnb = 79.6; //[C]
20 rho_e = 0.75; //[g/cm^3]
21 M = 72.1;
22 V = M/rho_e;
23 p = y*P; //[mm Hg]
24 f = p; //[mm Hg]
25 //At 35C
26 T = 35+273; //[K]
27 A = T/V*log10(fs/f);
28 //Form Fig. 25.4,
29 //the volume adsorbed
30 V_ads = 24; //[\text{cm}^3/100 \text{ g carbon}]
31 Wsat = V_ads*rho_e; //[g/100 \text{ g carbon}]
32 W0 = 1/3*Wsat; //[g/100 \text{ g carbon}]
33 Working_capacity = Wsat-W0; //[g/100 \text{ g carbon}]
34 //or
35 Working_capacity = Working_capacity/100; //[lb/lb]
      carbon
36 disp(Working_capacity, 'Working capacity of the bed
      is ')
```

```
37
38 //(b)
39 u0 = 1; //[ft/s]
40 A = vdot/u0; //[ft^2]
41 D = sqrt(4*A/\%pi); //[ft]
42 Abed = 10*27; //[ft^2]
43 L1 = 4; //[ft]
44 c0 = y/359*273/298*72.1; //[lb/ft^3]
45 //Form Eq.(25.3)
46 tstar = L1*rho_b*(Working_capacity)/(u0*c0*3600); //
      [ h ]
47 \text{ Lu1} = L-Lun; //[ft]
48 tb1 = Lu1/L*tstar; //[h]
49
50 // if
51 L2 = 3; //[ft]
52 \text{ Lu2} = \text{L2-Lun};
53 \text{ tb2} = \text{Lu2/L*tstar}; //[h]
54 //checking for delta_P
55 // \text{Using Eq.} (7.22)
56 phi_s = 0.7; //from Table 28.1
57 \text{ eps} = 0.35; //\text{from Table } 7.1
58 mu = 1.21*10^{-5}; //[lb/ft-s]
59 rho = 0.074; //[lb/ft^3]
60 //For a 4*10-mesh carbon
61 Dp = 1.108*10^-2; // [ft]
62 deltaPbyL = 150*1*mu*(1-eps)^2/(32.2*phi_s^2*Dp^2*
      eps^3) + (1.75*rho*1^2*(1-eps)/(32.2*0.7*Dp*eps^3))
      ; //[1bf/ft^2-ft]
63 deltaPbyL = deltaPbyL*12/62.4; //[in \cdot H2O/ft]
64 / for
65 deltaP = 3*deltaPbyL; //[in. H2O]
66 //which satisfactory.
67 \text{ mc} = 2*(10*27*3)*30; //[lb]
69 disp('ft', L2, 'Allowing for uncertainties in the
      calculations, satisfactory bed length will be')
70 disp('ft/s',u0, 'gas velocity needed')
```

71 disp('lb',mc,'carbon needed')

Membrane Separation Processes

Scilab code Exa 26.1 membrane area

membrane area

```
1 // \operatorname{clear} //
 2 clear;
 3 clc;
5 //Example 26.1
 6 //Given
 7 \text{ alpha} = 5;
8 per = 0.2; //[scf/ft^2-h-atm]
9 Pf = 150; //[lbf/in.^2]
10 Pp = 15; //[lbf/in.^2]
11
12 // Solution
13 //(a)
14 R = Pp/Pf;
15 //At the feed inlet
16 \text{ xin} = 0.209;
17 // \text{Using Eq.} (26.17)
```

```
18 A = alpha-1;
19 B = 1-alpha-1/R-xin*(alpha-1)/R;
20 C = alpha*xin/R;
21 yi_i = (-B-sqrt(B^2-4*A*C))/(2*A);
22 //At the discharge end
23 \text{ xd} = 0.05;
24 // Using Eq. (26.17)
25 A = alpha-1;
26 B = 1-alpha-1/R-xd*(alpha-1)/R;
27 C = alpha*xd/R;
28 \text{ yi_d} = (-B-sqrt(B^2-4*A*C))/(2*A);
29
30 //For an approximate solution, these terminal
      compositions are
31 //averaged to give
32 \text{ ybar} = (yi_in+yi_d)/2;
33 //From an overall material balance
34 // Basis
35 Lin = 100; //[scfh]
36 \ V = (\text{Lin}*xin-\text{Lin}*xd)/(ybar-xd);
37 // disp (ybar, 'and permeate composition is', 'percent',
      V/Lin*100, 'The permeate in the feed is');
38
39
40 //For more accurate calculation
41 \quad j = 2;
42 \text{ yi}_{in}(1) = 0.5148;
43 \times (1) = 0.209;
44 y(1) = 0.5148;
45 L = Lin;
46 \text{ deltaV} = [];
47 deltaVybar = [];
48 \text{ ybar = [];}
49 \text{ for } i = 0.2:-0.01:xd
50 x(j) = i;
51 A = alpha-1;
52 B = 1-alpha-1/R-x(j)*(alpha-1)/R;
53 C = alpha*x(j)/R;
```

```
54 \text{ yi}_in(j) = (-B-sqrt(B^2-4*A*C))/(2*A);
55 \text{ ybar}(j-1) = (yi_in(j-1)+yi_in(j))/2;
56 \text{ deltaV}(j) = L*(x(j-1)-x(j))/(ybar(j-1)-x(j));
57 V = sum(deltaV);
58 L = Lin - V;
59 \text{ deltaVybar(j)} = \text{deltaV(j-1)*ybar(j-1)};
60 deltaVybarsum = sum(deltaVybar);
61 \text{ y(j-1)} = \text{deltaVybarsum/V};
62 \quad j = j+1;
63 end
64 disp(y($), 'and permeate composition is', 'percent', V/
      Lin*100, 'The permeate recovered');;
65
66
67 //(b)
68 //The membrane area obtained from the flux of A
      using
69 / \text{Eq.}(26.29) and (26.13)
70 //for the first increment x = 0.209 to x = 0.2
71 deltaybar1 = 1.4856; //[scfh], for Lin = 100 scfh
72 / At x = 0.209
73 \quad A1 = 0.209 - 0.1 * 0.5148;
74 / At x = 0.2
75 A2 = 0.2-0.1*(0.50);
76 \text{ Aavg} = (A1 + A2)/2
77 QAP1 = 0.2*10; //scfh/ft^3
78 //for specified flow of 300
79 deltaA = 1/2*1.486/Aavg*180; //[ft^2]
80 //The calculation continued with increments of 0.01
81 A = 211/2.0*180; //[ft^2]
82 disp('ft^2',A,'The membrane area needed is')
```

Scilab code Exa 26.4 concentration difference

concentration differnce

```
1 // \operatorname{clear} //
2 clear;
3 clc;
4
5 //Example 26.4
6 // Given
7 F = 10; //[gal/day-ft^3]
8 \text{ Do} = 300*10^-6; //[m]
9 Di = 200*10^-6; //[m]
10 vi = 0.5; //[cm/s]
11 rho = 1; //[g/cm^3]
12 mu = 0.01; //[g/cm-s], assumed
13 f = 0.97;
14
15 //Solution
16 // For 10 gal/day-ft^2
17 Jw = F*231*16.3871/(24*3600*929); //[cm/s]
18 Nre = Do*100*vi*rho/mu;
19 Ds = 1.6*10^-5; //[cm^2/s]
20 Nsc = mu/(rho*Ds);
21
22 //Using Eq.(12.69), Analogously to mass transfer
23 \text{ Nsh} = (0.35+0.56*Nre^0.52)/Nsc^-0.3;
24 kc = Nsh*Ds/(Do*100); //[cm/s]
25 //From Eq.(26.49)
26 \text{ gama} = Jw*f/kc;
27 disp('A concentration difference of 12 percent will
      not be significant till good flow distribution is
       maintained');
```

```
Scilab code Exa 26.5 pressure drop
```

pressure drop

```
1 / clear /
```

```
2 clear;
3 clc;
5 //Example 26.5
6 //Given (from Example 26.4)
7 F = 10; //[gal/day-ft^2], based on external area
8 Do = 300*10^-6; //[m]
9 Di = 200*10^-6; //[m]
10 vi = 0.5; //[cm/s]
11 rho = 1; //[g/cm^3]
12 mu = 10^-3; // [Pa-s], assumed
13 f = 0.97;
14 L = 3; //[m]
15
16 // Solution
17 / (a)
18 //Jw based on area
19 Jw = 4.72*10^-4*Do/Di*10^-2; //[m/s]
20 \text{ dt} = 200*10^-6; //[m]
21 D = dt; //[m]
22 //From Eq.(26.53)
23 Vbar = 4*(Jw)*L/Di; //[m/s]
24 //From Eq.(26.56)
25 delta_ps = (Vbar*32*mu*L)/(D)^2*(1/2)/10^5; //[atm]
26 disp('atm',delta_ps,'pressure drop = ','m/s',Vbar,'
      exit velocity = ');
27
28 //(b)
29 // If the fibres are open at both ends, the effective
       length is 1.5m and
30 //the exit velocity is half as great. The pressure
      drop is one-fourth as
31 //large as it was:
32 \text{ deltaP} = \text{delta_ps/4}; //[atm]
33 disp('atm',deltaP, 'pressure drop (if both ends are
      open) = ')
```

Crystallization

Scilab code Exa 27.1 kilograms of crystals

kilograms of crystals

```
1 // clear //
2 clear;
3 clc;
5 //Example 27.1
6 // Given
7 T = 60; //[F]
8 \text{ wA} = 0.30; //[MgSO4]
9 \text{ wB} = 0.70; //[H2O]
10
11 // Solution
12 //From Fig. 27.3 it is noted that the crystals are
      MgSO4.7H2O
13 //and that the concentration of the mother liquid is
14 xA = 0.245; //[anhydrous MgSO4]
15 \text{ xB} = 0.755; //[H2O]
16 // Bases:
17 F_in = 1000; //[kg]
18 H20_{in} = F_{in}*wB; //[kg]
```

```
19  H20_evp = 0.05*H20_in; //[kg]
20  M1 = 120.4; //[MgSO4 molecular weight]
21  M2 = 246.5; //[MgSO4.7H2O molecular weight]
22  M2_in = wA*F_in*M2/M1; //[kg]
23  H20_free = F_in-H20_evp-M2_in; //[kg]
24  ML = 100; //[kg]
25  M2_in100 = ML*xA*M2/M1; //[kg]
26  H20_free100 = ML - M2_in100; //[kg]
27  M2_ML = M2_in100/H20_free100*H20_free; //[kg]
28  FC = M2_in - M2_ML; //[kg]
29  disp(FC, 'kilograms of crystals obtained per kilogram of original mixture = ')
```

Scilab code Exa 27.2 heat evolved

heat evolved

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 27.2
6 //Given
7 / A = MgSO4, B = MgSO4.7H2O and C = H2O
8 T = 120; //[F]
9 \text{ wA} = 0.325;
10
11 //Solution
12 //From Fig 27.4
13 //Enthalpy coordinate of the point wA
14 H1 = -33; //[Btu/lb]
15 //Enthalpy coordinate of the final magma at
      concentration wA
16 H2 = -78.4; //[Btu/lb]
```

```
//Per hundred pouds of original solution the change
    in enthalpy

F = 100; //[lb]

delta_H = F*(H1-H2); //[Btu]

//Applying "center-of gravity principle" to 70 F
    isotherm in Fig. 27.3

C_ML = 0.259;

C_CRY = 0.488;

//Crystals are

Cry = F*(wA-C_ML)/(C_CRY-C_ML); //[lb/100lb slurry]

//The heat evolved per ton of crystals is

H = delta_H/Cry*2000; //[Btu/ton]

disp('Btu/ton',H,'The heat evolved per ton of crystals is')
```

Scilab code Exa 27.3 plotting

```
plotting
```

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 27.3
6 //Given
7 sigma = 2.5; //[erg/cm^3]
8 T = 300; //[K]
9 N = 6.0222*10^23;
10 R = 8.3134*10^7; //[erg/g mol-K]
11 //Solution
12 M = 74.56; //[Molecular weight]
13 rho = 1.988; //[g/cm^3]
14 \text{ nu} = 2;
15 VM = M/rho //[\text{cm}^3/\text{g mol}]
16 // Using Eq. (27.11)
```

```
17 //Exponential term, excluding 's'
18 A = 16*%pi*VM^2*N*sigma^3*10/(3*(T*R)^3*nu^2)
19 B0 = 1;
20 s(1) = sqrt(-A/log(B0/10^25));
21 //For B0;
22 s = s(1):0.0001:0.029;
23 B0 = exp(57.565)*exp(-A./s.^2);
24 plot(s,B0)
25 title('B0 vs s')
26 xlabel('s')
27 ylabel('B0')
```

Scilab code Exa 27.4 size of nuclues

size of nuclues

```
1 // clear //
2 clear;
3 clc;
4
5 / \text{Example } 27.4
6 //Given
7 \text{ alpha} = 1+0.029;
8 //From Example 27.3
9 sigma = 2.5; //[erg/cm^3]
10 T = 300; //[K]
11 N = 6.0222*10^23;
12 R = 8.3134*10^7; //[erg/g mol-K]
13 M = 74.56; //[Molecular weight]
14 rho = 1.988; //[g/cm^3]
15 \text{ nu} = 2;
16 VM = M/rho; //[\text{cm}^3/\text{g mol}]
17
18 // Using Eq. (27.9)
19 L = 4*VM*sigma/(2*R*T*log(alpha))*10^7; //[nm]
```

Scilab code Exa 27.5 Total evaporation rate

Total evaporation rate

```
1 // clear //
2 clear;
3 clc;
4
5 //Example 27.5
6 / \text{Let}: A = MgSO4; B = MgSO4.7H2O; C = H2O
7 // Given
8 \text{ xA} = 0.31;
9 T = 86; //[F]
10 Tb = 2; //[F]
11 \text{ vbys} = 0.15;
12 / PB =
13 rho_cr = 105; //[lb/ft^3]
14 rho_ml = 82.5; //[lb/ft^3]
15
16 // Solution
17 // Basis:
18 F = 10000; //[lb/h]
19 //From Fig 27.13 and Fig 27.4
20 crbyml = vbys*rho_cr/((1-vbys)*rho_ml);
21 ml_prod = F/crbyml; //[lb/h]
22 magma_prod = F+ml_prod //[lb/h]
23 \text{ xA_avg} = (\text{crbyml}*0.488+0.285)/1.224;
24 //The enthalpy of the magam
25 Hmag = (crbyml*(-149)+(-43))/1.224; //[Btu/lb]
26 //These are the concentrations of the point e. The
      point for the feed must
27 //lie on the straight line ae.
28 //The enthalpy of the feed
```

```
29 Hf = -21; //[Btu/lb]
30 //Temperature of the feed
31 Tf = 130; //[F]
32 //By COG principle, the evaporation rate
33 evap_rate = magma_prod*(Hf-Hmag)/(1098-Hf); //[lb/h]
34 Total_feed = magma_prod+evap_rate; //[lb/h]
35 disp('F',Tf,'Temperature of the feed is');
36 disp('lb/h',Total_feed,'Total feed rate');
37 disp('lb/h',evap_rate,'Total evaporation rate');
```

Scilab code Exa 27.6 differential mass distribution

differential mass distribution

```
1 // clear //
2 clear;
3 \text{ clc};
4
5 / \text{Example } 27.6
6 //Given
7 G = 0.0018; //[ft/h]
8 //Solution
9 //Screen opening of 20-mesh standard screen is,
10 L = 0.00273; //[ft], Appendix 20
11 a = 1; //[Eq.27.16]
12 //From Example 27.5
13 //The volume flow rate of mother liquor in the
      product magma
14 Q = 44520/82.5; //[ft^3/h]
15 //Since, when z=3,
16 Lpr = L; //[ft]
17 // \text{Using Eq.}(27.28)
18 //drawdown time
19 tou = Lpr/(3*G); //[h]
20 //volume of the liquid in the crystallizer
```

```
21 Vc = tou*Q; //[ft^3]
22 //Total magma volume
23 Vmagma = Vc/0.85*7.47; //[gal]
24 disp('gal', Vmagma, 'The magma volume in the
      crystallizer be');
25 // Using Eq.(27.44)
26 //The nucleation rate is
27 C = 10000; //[lb/h]
28 \text{ rho_c} = 105;
29 B0 = 9*C/(2*rho_c*Vc*Lpr^3); //[nuclei/ft^3-h]
30 \operatorname{disp}('\operatorname{nuclei}/\operatorname{ft}^3-\operatorname{h}',BO,'\operatorname{The nucleation rate})
      necessary is');
  //Using Eq.(27.40), the zero-size particle density
31
      is
32 n0 = B0/0.0018; //[nuclei/ft^4]
33 L1 = (0:8)*10^-3;
34 // \text{Using Eq.} (27.27)
35 / \text{Let A} = \log 10 (n), B = \log 10 (n0)
36 B = log10(n0);
37 A = B - 1.1*10^3*L1/(2.3026);
38 figure(1);
39 plot(L1*10^3,A);
40 xgrid();
41 xlabel('L x 10^3 ft');
42 ylabel('log n');
43 title('Population density vs length');
44
45 //From Fig. 27.15c for values of z corresponding to
      mesh openings.
46 \text{ L1} = [11,14,16,19,23,27,33,38,46,54,65,78] '*10^-2;
47 z = L1/(tou*G*100); //[mm]
48 t = 0;
49 \quad function \quad f = fun(z,xm)
50
     f = z^3*\exp(-z)/6;
51 endfunction
52 [xm] = ode(0,0,z,fun);
53 for i=1:length(xm)
      Diff(i) = z(i)^3*exp(-z(i))/6;
54
```

```
55 end
56 figure(2);
57 subplot(2,1,1);
58 plot(z,xm);
59 xgrid();
60 xlabel('z');
61 ylabel('xm');
62 title('cumulative mass distribution');
63 subplot(2,1,2);
64 plot(z,Diff)
65 xgrid();
66 xlabel('z');
67 ylabel('dxm/dz');
68 title('differential mass distribution');
```

Properties Handling and Mixing of Particulate Soilds

Scilab code Exa 28.1 Fraction of the particle

Fraction of the particle

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 28.1
6 //Given
7 rho_p = 0.002650; //[g/mm^3]
8 \ a = 2;
9 \text{ phi_s} = 0.571;
10 // Solution
11 //(a)
12 //For the 4/6-mesh increment, from Table 28.2
13 x =
      [0,2.51,12.5,32.07,25.7,15.9,5.38,2.10,1.02,0.77,0.58,0.41,0.31,0
       //[mass fraction]
14 Dp =
      [4.699,3.327,2.362,1.651,1.168,0.833,0.589,0.417,0.295,0.208,0.14]
```

```
// [mm]
15 Dpbar(1) = 10^-5;
16 for i =2:length(Dp)
     Dpbar(i) = (Dp(i-1)+Dp(i))/2;
17
18 end
19
20 //(a)
21 // Using Eq. (28.4)
22 Aw = 6/(phi_s*rho_p)*sum(x(1:$-1)./Dpbar(1:$-1))/(1-
      x(\$)); //[mm^2/g]
23 Nw = 1/(a*rho_p)*sum(x(1:\$-1)./Dpbar(1:\$-1)^3)/(1-x(
      $)); //[particles/g]
24 disp('particles/g', Nw, 'Nw = ', 'mm^2/g', Aw, 'Aw = ');
25
26 //(b)
27 // Using Eq. (28.9)
28 Dvbar = (1/sum(x(1:\$-1)./Dpbar(1:\$-1)^3)/(1-x(\$)))
      (1/3); //[mm];
29 disp('mm', Dvbar, 'Dvbar = ');
30
31 //(c)
32 // \text{Using Eq.} (28.6)
33 Dsbar = 1/sum(x(1:\$-1)./Dpbar(1:\$-1))/(1-x(\$)); //[
      mm]
34 \text{ disp}('\text{mm}', \text{Dsbar}, '\text{Dsbar} = ');
35
36 //(d)
37 // Using Eq. (28.8) and Table 28.3
38 Dwbar = sum(x.*Dpbar); //[mm]
39 disp('mm', Dwbar, 'Dwbar = ');
40
41 // (e)
42 // Using Eq. (28.11)
43 N2 = x(\$-1)/(a*rho_p*Dpbar(\$-1)^3); //[particles/g]
44 disp('particles/g', N2, 'Nt = ');
45 \text{ fra} = N2/Nw;
46 disp(fra, 'Fraction of the particles in te top 12
      increments = ');
```

Scilab code Exa 28.2 sum

sum

```
1 // clear //
2 clear;
3 clc;
4
5 //Example 28.2
6 //Given
7 x = 0.14;
8 \text{ xavg} = 0.10;
9 t = 3; //[min]
10 x
      =[10.24,9.3,7.94,10.24,11.08,10.03,11.91,9.72,9.20,10.76,10.97,10
11
12 // Solution
13 \text{ mu = } xavg;
14 N = 12;
15 xbar = mean(x);
16 // Substituing in Eq.(28.20)
17 Ip = sqrt((N-1)*mu*(1-mu)/(sum(x^2)-xbar*sum(x)));
18 // Using Eq.(28.18)
19 s = stdev(x);
20 \text{ disp(s,'s =',Ip,'Ip =')}
```

Size Reduction

Scilab code Exa 29.1 Power required

```
Power required
```

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 29.1
6 //Given
7 mdot = 100; //[ton/h]
8 w1 = 0.80;
9 w2 = 0.80;
10 //Solution
11 Wi = 12.74; //From Table 29.1
12 Dpa = 2*25.4; //[mm]
13 Dpb = 0.125*25.4; //[mm]
14 //Using Eq.(29.10)
15 P = mdot*0.3162*Wi*(1/Dpb^0.5-1/Dpa^0.5); //[kW]
16 disp('kW',P,'Power required (P) = ');
```

Scilab code Exa 29.2 length

length

```
1 // clear //
2 clear;
3 clc;
4
5 //Example 29.2
6 //Given
7 n = 1:7;
8 \text{ beeta} = 1.3;
9 //From Table 29.2
10 Dpn = [3.327,2.362,1.651,1.168,0.833,0.589,0.417];
      // [mm]
11 Dpu = Dpn; // [mm]
12 \text{ xn0} =
      [0.0251, 0.125, 0.3207, 0.2570, 0.1590, 0.0538, 0.0210];
13 Su(1) = 10*10^-4; //[s^-1]
14 / B(1) = 1;
15 // Solution
16
17 //(a)
18 //For the 4/6-mesh materials there is no input from
      coarser
19 //material and applying Eq.(29.11). At the end of
      time tT
20 	 x1 = xn0(1)*0.9;
21 tT = 1/Su(1)*log(xn0(1)/x1); //[s]
22 disp('s',tT,'Required time is');
23
24 //(b)
25
26 // Assuming Su varies with Dp<sup>3</sup>
27 for i = 1:length(Dpn)-1
     Su(i+1) = Su(i)*(Dpn(i+1)/Dpn(i))^3; //[s^-1]
29 end
```

```
30 for i = 1:length(Dpn)
     for j = 1:length(Dpu)
31
32 // \text{Using Eq.} (29.13)
33
       if (j<i)</pre>
34
          B(i,j)=0;
35
          B(i,j) = (Dpn(j)/Dpn(i))^beeta;
36
37
        end
38 end
39 end
40
41 for i = 1:length(Dpn)-1
     for j = 1:length(Dpu)-1
        if (j<i)</pre>
43
44
          delta_B(i,j)=0;
45
          delta_B(i,j) = B(i,j)-B(i,j+1);
46
47
        end
48
     end
49 end
50 disp(delta_B, 'individual breakage functions');
51
52 //(c)
53 \text{ deltaT} = 30; //[s]
54 // Using Eq.(29.15)
55 x = [];
56 x(:,1) = xn0;
57 \text{ for } n = 1:length(xn0)
       for t = 1:720
58
       if (n==1)
59
60
          x(n,t+1) = x(n,t)*(1-Su(n)*deltaT);
61
62
          x(n,t+1) = x(n,t)*(1-Su(n)*deltaT)+ deltaT*Su(
             n-1)*delta_B(n-1,n-1)*x(n-1,t);
63
        end
64
     end
65 end
66 time = linspace(0,6,721);
```

```
67  for i =1:length(xn0)
68    plot2d(time,x(i,:),style = i);
69    xgrid();
70    xlabel('time (h)');
71    ylabel('mass fraction (xa)');
72    title('Mass fractions');
73    legend('x1','x2','x3','x4','x5','x6','x7');
74  end
```

Mechanical Separations

Scilab code Exa 30.1 Overall Effectiveness

Overall Effectiveness

```
1 // \operatorname{clear} //
2 clear;
3 clc;
5 //Example 30.1
6 // Given
7 //From Table 30.1
8 Dp =
      [4.699,3.327,2.362,1.651,1.168,0.833,0.589,0.417,0.208,0.0000001]
       // [mm]
9 F =
      [0,0.025,0.15,0.47,0.73,0.885,0.94,0.96,0.98,1.0];
10 0 = [0,0.071,0.43,0.85,0.97,0.99,1.00]'; //[1 to 7]
11 U = [0.0, 0.195, 0.58, 0.83, 0.91, 0.94, 0.975, 1.00]'; //
      [3 \text{ to } 10]
12
13 // Solution
14 plot(Dp,F)
```

```
15 plot(Dp(1:7),0,'r')
16 plot(Dp(3:$),U,'g')
17 xgrid();
18 xlabel('Dp mm');
19 ylabel ('Cumulative mass fraction larger than Dp');
20 title ('Analysis for Example 30.1');
21 legend('Feed', 'Oversize', 'Undersize');
22
23 //Cut-point diameter from the Table 30.1
24 Dcp = 1.651; //[mm]
25 \text{ xF} = 0.47;
26 \text{ xD} = 0.85;
27 \text{ xB} = 0.195;
28 //From Eq.(30.3)
29 DbyF = (xF-xB)/(xD-xB);
30 \text{ BbyF} = 1-\text{DbyF};
31 // \text{Using Eq.} (30.7), overall effectiveness
32 E = (xF-xB)*(xD-xF)*(1-xB)*(xD)/((xD-xB)^2*((1-xF)*
33 disp('respectively', BbyF, DbyF, 'mass ratio of
      overflow and underflow is');
34 disp(E, 'Overall Effectiveness (E) = ');
```

Scilab code Exa 30.2 Emperical Equation

Emperical Equation

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 30.2
6 //Given
7 //From Table 30.2
8 V = linspace(0.5,6,12)'; //[L]
```

```
9 t1 = [17.3,41.3,72,108.3,152.1,201.7]'; //[s]
10 t2 = [6.8, 19, 34.6, 53.4, 76, 102, 131.2, 163]'; //[s]
11 t3 = [6.3,14,24.2,37,51.7,69,88.8,110,134,160]'; //[
      s
12 t4 =
      [5,11.5,19.8,30.1,42.5,56.8,73,91.2,111,133,156.8,182.5]';
13 	 t5 =
      [4.4,9.5,16.3,24.6,34.7,46.1,59,73.6,89.4,107.3];
      //[s]
14 figure(1);
15 plot(V(1:length(t1)),t1./V(1:length(t1)));
16 plot(V(1:length(t2)),t2./V(1:length(t2)), 'r');
17 plot(V(1:length(t3)),t3./V(1:length(t3)), 'g');
18 plot(V(1:length(t4)),t4./V(1:length(t4)),'k');
19 plot(V(1:length(t5)),t5./V(1:length(t5)),'y');
20 xgrid();
21 xlabel('V (L)');
22 ylabel('t/V (s/L)');
23 legend('deptaP = 6.7', 'deptaP = 16.2', 'deptaP = 28.2
      ', 'deptaP = 36.3', 'deptaP = 49.1');
24 title('t/V vs V');
25
26 deltaP = [965,2330,4060,5230,7070]'; //[lbf/ft^2]
27 //From Fig. 30.15
28 //Slope(Kc/2)
29 slope = [10440,5800,3620,3060,2400]'; //[s/ft^6]
30 Kc = slope*2; //[s/ft^6]
31 / Intercept (1/q0)
32 Inter = [800,343,267,212,180]'; //[s/ft^3]
33 // Viscosity of water
34 muw = 5.95*10^-4; //[lb/ft-s], from Appendix 14
35 // Filter area
36 A = 440/30.48^2; //[ft^2]
37 //concentration
38 c = 23.5*28.31/454; //[lb/ft^3]
39 \text{ gc} = 32.14;
40 // Using Eq. (30.22)
```

```
41 Rm = A*gc/muw*deltaP.*(Inter)/10^10; // [ft
      ^{-1*10^{10}}
42 // \text{Using Eq.} (30.24)
43 alpha = A^2*gc/(c*muw)*deltaP.*(Kc)/10^11; //[ft/lb]
      *10^{-}11
44 figure(2);
45 plot2d(deltaP,Rm);
46 xgrid();
47 xlabel('deltaP (lbf/ft^2)');
48 ylabel('Rm (ft^-1*10^-10)');
49 title('Rm vs deltaP');
50 figure (3);
51 plot2d(log(deltaP),log(alpha));
52 xgrid();
53 xlabel('deltaP (lbf/ft^2)');
54 ylabel('alpha (lb/ft*10^-11)');
55 title('alpha vs deltaP');
56 //Form 30.17
57 disp(Rm, 'Rm (ft^-1*10^-10) = ');
58 disp(alpha, 'alpha (lb/ft*10^-11) = ');
59 \text{ alpha0} = 1.75*10^11/1000^0.26;
60 \operatorname{disp}('alpha = 2.9*10^10*\operatorname{deltaP}^2.6', 'Emperical')
      Equation for the cake');
```

Scilab code Exa 30.3 Filter Area

Filter Area

```
1 // clear //
2 clear;
3 clc;
4
5 // Example 30.3
6 // Given
7 f = 0.30;
```

```
8 tc = 5*60; //[s]
9 n = 1/\text{tc}; //[s^-1]
10 cF = 14.7; //[lb/ft^3]
11 \text{ deltaP} = 1414;
12 \text{ mFbymC} = 2
13 //Solution
14 alpha0 = 2.9*10^10; //[ft/lb], From Example 30.2
15 s = 0.26;
16 mu = 6.72*10^-4; //[lb/ft-s]
17 rho = 62.3; //[lb/ft^3]
18 \text{ gc} = 32.17;
19 // Using Eq. (30.19)
20 c = cF/(1-(mFbymC-1)*(cF/rho)); //[lb/ft^3]
21 mcdot = 10/(60*7.48)*(1/(cF/168.8+1))*cF; //[lb/s]
22 //Solving Eq.(30.34)
23 AT = mcdot*(alpha0*mu/(2*c*1414^(1-s)*gc*f*n))^(0.5)
24 disp('ft^2',AT,'Filter Area(AT) =');
```

Scilab code Exa 30.4 Plotting

Plotting

```
1 //clear//
2 clear;
3 clc;
4
5 //Example 30.4
6 //Given
7 D = 2; //[cm]
8 Vbar = 150; //[cm/s]
9 rho = 1; //[g/cm^3]
10 mu = 0.01; //[g/cm-s]
11 Dv = 4*10^-7; //[cm^2/s]
```

```
13 // Solution
14 //(a)
15 Nre = Vbar*D*rho/mu;
16 Nsc = mu/(rho*Dv);
17 // \text{Using Eq.} (21.55)
18 \text{ Nsh} = 0.0096*\text{Nre}^0.913*\text{Nsc}^0.346;
19 kc = Nsh*Dv/D; //[cm/s]
20 pi = poly([0,4.4*10^-3,-1.7*10^-6,7.9*10^-8], 'c',"
      coeff");
21 / For
22 c1 = 10; //[g/L]
23 v = 10^-3; //[cm/s]
24 // \text{Using Eq.} (30.53)
25 cs = c1*exp(v/kc); //[g/L]
26 deltaPi = horner(pi,cs);
27 \text{ Qm} = 250/36000; //[cm/s-atm]
28 // \text{Using Eq.} (30.50)
29 deltaP = v/Qm+deltaPi; //[atm]
30 // \text{Using Eq.} (30.53)
31 \text{ cs} = 400;
32 vmax = kc*log(cs/c1); //[cm/s]
33 deltaP = vmax/Qm+horner(pi,cs); //[tm]
34 c = [10, 20, 40];
35 V = [];
36 deltaP=[];
37 \text{ for } j = 1:length(c)
38 c1 = c(j);
39 i = 1;
40 vmax = kc*log(cs/c1)*10^4;
41 h = (vmax - 1)/1000;
     for v = 1:h:vmax
42
43
         cs = c1*exp(v*10^-4/kc); //[g/L]
         deltaPi = horner(pi,cs); //[atm]
45
         deltaP(j,i) = v*10^-4/Qm+deltaPi; //[atm]
         V(j,i) = v*10^-4;
47
         i = i+1;
48
      end
49 end
```

```
50 V = V*36000;
51 for l=1:length(c)
52
     figure(1)
     plot2d(deltaP(1,:),V(1,:),style=1);
53
54
     xgrid();
55
     xlabel('deltaP (atm)');
     ylabel ('Permeate flux (L/m^2-h)');
56
     title ('Effective pressure drop and concentration
57
        on flux')
     legend('Cf=10,','Cf=20','Cf=40');
58
59 end
60
61 //(b)
62 Qmb = Qm/5; //[cm/s-atm]
63 vb = 10^-3; //[cm/s]
64 c = 40; //[g/L]
65 \text{ c1} = 40;
66 \text{ csb} = c1*\exp(vb/kc);
67 deltaPi = horner(pi,csb);
68 deltaPb = vb/Qmb+deltaPi;
69 disp ('The largest effect of the lower membrane
      permeability is a 30 percent reduction in low
      pressure drop');
70 i = 1;
71 vmax = kc*log(400/c1)*10^4;
72 h = (vmax-1)/1000;
73 for vb = 1:h:vmax
74
        csb = c1*exp(vb*10^-4/kc); //[g/L]
        deltaPi = horner(pi,csb); //[atm]
75
76
        deltaPb(i) = vb*10^-4/Qmb+deltaPi; //[atm]
77
        Vb(i) = vb*10^-4;
78
        i = i+1;
79 end
80 \text{ Vb} = \text{Vb}*36000;
81 plot2d(deltaPb, Vb, style = 1+1)
82 legend ('Cf=10,','Cf=20','Cf=40','Cf = 40(Qm = 250/5)
      ');
```

Scilab code Exa 30.5 Diffusion

Diffusion

```
1 // clear //
2 clear;
3 clc;
5 //Example 30.5
6 //Given
7 D = 1.5; //[cm]
8 \text{ Nre} = 25000;
9 Qm = 40; //[L/m62-h]
10 \text{ Mw} = 30000;
11 Dv = 5*10^-7; //[cm^2/s]
12 R = 0.75;
13
14 // Solution
15 //(a)
16 //Base case:
17 \text{ v} = Qm*2.78*10^-5; //[cm/s]
18 \text{ Nsc} = 0.01/\text{Dv};
19 // Using Eq. (21.55)
20 \text{ Nsh} = 0.0096*\text{Nre}^0.913*\text{Nsc}^0.346;
21 kc = Nsh*Dv/D; //[cm/s]
22 / \text{Let A} = K/(1-K)
23 A = (1-R)/R*exp(-v/kc);
24 K = A/(1+A);
25 //If the flux is reduced to 0.556*10^{-3} cm/s
26 / \text{Let B} = (1-R)/R
27 B = K/(1-K)*\exp(0.556*10^{-3}/kc);
28 R = 1/(1+B);
29 //As flux approaches zero R appraoches 1-K:
30 \text{ Rmax} = 1-K;
```

```
31 disp(R, 'fraction rejected (R) = ');
32 disp(Rmax, 'maximum rejection (Rmax) =');
33
34 //(b)
35 // Using Fig. (30.24)
36 \text{ kc1} = \text{kc};
37 \text{ M2} = 10000;
38 R2 = 0.35;
39 \text{ K1} = \text{K};
40 \quad lambda1 = 1-K1^0.5;
41 \quad lambda2 = lambda1*(10000/Mw)^(1/3);
42 \text{ K2} = (1-lambda2)^2;
43 kc2 = kc1*3^0.22; //[cm/s]
44 // \text{Let B2} = (1-R2)/R2
45 B2 = K2/(1-K2)*exp(v/kc2);
46 R2 = 1/(1+B2);
47 disp(R2, 'fraction rejected (R2) = ');
48
49 //(c)
50 Dpore = 10^-7; //[cm^2/s]
51 \text{ eps} = 0.5;
52 \text{ tou = 2};
53 De = 2.5*10^-8; //[cm^2/s]
54 L = 2*10^-5; //[cm]
55 \text{ v} = 5.56*10^-4; //[\text{cm/s}]
56 \text{ vLbyDe} = \text{v*L/De};
57 // Using Eq. (30.63)
58 K = 0.101;
59 c2bycs = K*exp(vLbyDe)/(K-1+exp(vLbyDe));
60 disp('Diffusion in the membrane makes the premeate
      concentrations about twice as high as it would be
       if c2=Kcs=0.101cs, indicating that the partition
        coefficient is lower than that estimated in part
      (a) ');
```