Econometrics I Empircial Question

Eric Schulman

February 13, 2018

a) Below are the results of the regression described in part (a).

Dep. Variable:	lwage	R-squared:	0.233
Model:	OLS	Adj. R-squared:	0.233
Method:	Least Squares	F-statistic:	428.8
Date:	Sat, 10 Feb 2018	Prob (F-statistic):	3.57e-243
Time:	16:31:36	Log-Likelihood:	-3651.2
No. Observations:	4230	AIC:	7310.
Df Residuals:	4226	BIC:	7336.
Df Model:	3		

		_				
	coef	std err	t	P > t	[0.025	0.975]
const	1.1852	0.045	26.488	0.000	1.097	1.273
educ	0.0904	0.003	33.051	0.000	0.085	0.096
exp	0.0354	0.003	14.083	0.000	0.030	0.040
exp_sq	-0.0005	5.03e-05	-9.251	0.000	-0.001	-0.000
Omnibu	ıs:	1562.688	Durbin	-Watsor	ղ։	1.770
Prob(O	mnibus):	0.000	Jarque	-Bera (J	IB): 34	1837.483
Skew:		-1.229	Prob(J	B):		0.00
Kurtosi	s:	16.843	Cond.	No.	4	.31e+03

b) Summing the residuals in Python effectively produces 0 with some floating point error. My last program output was -1.56521018368e - 10.

Again, they residuals multiplied with X is effectively 0 with some floating point error. $\langle -1.56560986e - 10 \quad -1.82083681e - 09 \quad -3.00428837e - 09 \quad -7.82019924e - 08 \rangle$

c) Below are the results of the regression described in part (c).

Dep. Variable:	lwage	R-squared:	0.035
Model:	OLS	Adj. R-squared:	0.035
Method:	Least Squares	F-statistic:	77.07
Date:	Sat, 10 Feb 2018	Prob (F-statistic):	1.33e-33
Time:	16:31:36	Log-Likelihood:	-4137.4
No. Observations:	4230	AIC:	8281.
Df Residuals:	4227	BIC:	8300.
Df Model:	2		

Schulman Page 2

	coef	std err	t	$\mathbf{P}{>} \mathbf{t} $	[0.025	0.975]
const	2.3471	0.031	75.594	0.000	2.286	2.408
exp	0.0344	0.003	12.195	0.000	0.029	0.040
exp_sq	-0.0006	5.62e-05	-10.986	0.000	-0.001	-0.001
Omnib	us:	965.638	Durbin-	Watson:	: 1	1.692
Prob(C)mnibus):	0.000	Jarque-	Bera (JE	3): 162	245.042
Skew:		-0.633	Prob(JE	3):		0.00
Kurtos	is:	12.517	Cond. I	Vo.	2.6	57e+03

The average product of the residuals and education is 0.940. Obviously, this is non-zero as education was not included in the regression.

d) Below are the results of the regression described in part (d).

Dep. Variable:	educ	R-squared:	0.112
Model:	OLS	Adj. R-squared:	0.112
Method:	Least Squares	F-statistic:	267.1
Date:	Sat, 10 Feb 2018	Prob (F-statistic):	6.00e-110
Time:	16:31:36	Log-Likelihood:	-10954.
No. Observations:	4230	AIC:	2.191e+04
Df Residuals:	4227	BIC:	2.193e+04
Df Model:	2		

	coef	std err	t	P > t	[0.025	0.975]
const	12.8461	0.156	82.572	0.000	12.541	13.151
exp	-0.0113	0.014	-0.797	0.425	-0.039	0.016
exp_sq	-0.0017	0.000	-5.967	0.000	-0.002	-0.001
Omnibus:		65.618	Durbin	-Watsor	1:	1.674
Prob(C)mnibus):	0.000	Jarque-Bera (JB): 96.1		96.128	
Skew:		-0.174	Prob(JB):		1.	.34e-21
Kurtos	is:	3.652	Cond.	No.	2.	67e+03

The average product of the new residuals and education is 10.396. One would expect the product to be greater than zero based on the proof below.

$$ye'$$

$$= yy' - y\hat{y}'$$

$$= (X\hat{\beta} + \hat{e})(X\hat{\beta} + \hat{e})' - (X\hat{\beta} + \hat{e})(X\hat{\beta})'$$

Since X and \hat{e} are orthogonal,

$$= (X\hat{\beta})(X\hat{\beta})' + \hat{e}\hat{e}' - (X\hat{\beta})(X\hat{\beta})'$$
$$= \hat{e}\hat{e}' \ge 0$$

Since the matrix has quadratic form.

Schulman Page 3

e) Below are the results form (e). As you can see the coefficients on the residuals are the same.

Dep. Variable:	у	R-squared:	0.205
Model:	OLS	Adj. R-squared:	0.205
Method:	Least Squares	F-statistic:	1093.
Date:	Sat, 10 Feb 2018	Prob (F-statistic):	2.01e-213
Time:	16:31:36	Log-Likelihood:	-3651.2
No. Observations:	4230	AIC:	7304.
Df Residuals:	4229	BIC:	7311.
Df Model:	1		

		coef	std err	t	P > t	[0.025	0.975]	
	x1	0.0904	0.003	33.063	0.000	0.085	0.096	
Or	nnib	us:	1562.6	88 D u	rbin-Wat	son:	1.770	
Pr	ob(O	mnibus):	0.000	Jar	que-Bera	a (JB):	34837.483	
Sk	ew:		-1.229	9 Pro	b(JB):		0.00	
Kι	ırtosi	is:	16.84	3 Co ı	nd. No.		1.00	

- f) In (c) we calculated $M_{X_1}y$.
 - In (d) we calculated $M_{X_1}X_2$.
 - In (e) we calculated $((M_{X_1}X_2)'M_{X_1}X_2)^{-1}((M_{X_1}X_2)'M_{X_1}y)$.

Adding a column of ι as an intercept we have:

$$\begin{split} &(\left[M_{X_{1}}X_{2} \quad \iota\right]' \left[M_{X_{1}}X_{2} \quad \iota\right])^{-1}((\left[M_{X_{1}}X_{2} \quad \iota\right])'M_{X_{1}}y) \\ &= \left[\binom{(M_{X_{1}}X_{2})'M_{X_{1}}X_{2}}{\iota'M_{X_{1}}X_{2}} \quad \binom{(M_{X_{1}}X_{2})'\iota}{\iota'\iota}\right]^{-1}((\left[M_{X_{1}}X_{2} \quad \iota\right])'M_{X_{1}}y) \\ &\iota \text{ should be orthogonal to } M_{X_{1}}X_{2} \text{ as it was included in } X_{1} \text{ so} \end{split}$$

$$= \begin{bmatrix} (M_{X_1}X_2)'M_{X_1}X_2 & 0\\ 0 & \iota'\iota \end{bmatrix}^{-1} \begin{bmatrix} (M_{X_1}X_2)'M_{X_1}y\\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} ((M_{X_1}X_2)'M_{X_1}X_2)^{-1}((M_{X_1}X_2)'M_{X_1}y)\\ 0 \end{bmatrix}$$

Since, M_{X_1} is idempotent and symmetric, this is equivalent to

$$= \begin{bmatrix} (X_2' M_{X_1} X_2)^{-1} X_2' M_{X_1} y \\ 0 \end{bmatrix}$$

Finally, we proved in lecture that the top term is the coefficient on X_2

$$=\begin{bmatrix} \hat{\beta}_2 \\ 0 \end{bmatrix}$$

Python Code 1

Schulman Page 4

```
import pandas
import math
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
FNAME = '../cps09mar.dta'
def write_result(model, no):
        result_doc = open('tex/hw2_reg%s.tex'%no,'w+')
        result_doc.write( model.summary().as_latex() )
        result_doc.close()
def main():
        #filter matrix and load it into memory
        df = pandas.read_stata(FNAME)
        X = df[(df.female == 0) & (df.hisp == 1) & (df.race == 1)]
        print X['educ'].count()
        y = X['lwage']
        #part a
        X1 = X.loc[:,('educ','exp')]
        X1['exp_sq'] = X1['exp']**2
        X1 = sm.add\_constant(X1)
        model1 = sm.OLS(y, X1). fit()
        write_result (model1,1)
        #part b
        e1 = model1.resid
        print sum(e1)
        print np.matmul(e1,X1)
        #part c
        X2 = X1.loc[:,('exp','exp_sq')]
        X2 = sm.add\_constant(X2)
        model2 = sm.OLS(y, X2). fit()
        write_result (model2,2)
        #actual test part c
        e2 = model2.resid
        print np.matmul(e2,X1['educ'])/X1['educ'].count()
        #part d
        model3 = sm.OLS(X1['educ'], X2). fit()
        write_result (model3,3)
```

Schulman Page 5

```
e3 = model3.resid
    print np.matmul(e3, X1['educ'])/X1['educ'].count()

#part e
    model4 = sm.OLS(e2, e3). fit()
    write_result(model4,4)

#part f

if __name__ == "__main__":
    main()
```