AD-A272 095

U.S. ARMY MATERIEL COMMAND

- COMMITTED TO PROTECTION OF THE ENVIRONMENT -

FINAL
PHASE II DATA ADDENDUM
SITE 2-17
LAKE LADORA AND LAKE MARY
VERSION 3.1

October 1988
Contract No. DAAK11-84-P-0017
TASK NO. 20 - Lower Lakes

EBASCO SERVICES INCORPORATED

R. L. Stollar and Associates California Analytical Laboratories, Inc. DataChem, Inc. Geraghty & Miller, Inc.

REQUESTS FOR COPIES OF THIS DOCUMENT
SHOULD BE REFERRED TO THE PROGRAM MANAGER
FOR THE ROCKY MOUNTAIN ARSENAL CONTAMINATION CLEANUP.
AMXRM ABERDEEN PROVING GROUND, MARYLAND

and hard the property week

LITIGATION TECHNICAL SUPPORT AND SERVICES ROCKY MOUNTAIN ARSENAL

FINAL
PHASE II DATA ADDENDUM
SITE 2-17
LAKE LADORA AND LAKE MARY
VERSION 3.1

October 1988 Contract No. DAAK11-84-D-0017 TASK NO. 20 - Lower Lakes

Prepared by:

EBASCO SERVICES INCORPORATED
R.L. STOLLAR AND ASSOCIATES
CALIFORNIA ANALYTICAL LABORATORIES, INC.
DATACHEM, INC. GERAGHTY & MILLER, INC.

Prepared for:

U.S. ARMY PROGRAM MANAGER'S OFFICE FOR ROCKY MOUNTAIN ARSENAL CONTAMINATION CLEANUP

THE INFORMATION AND CONCLUSIONS PRESENTED IN THIS REPORT REPRESENT THE OFFICIAL POSITION OF THE DEPARTMENT OF THE ARMY UNLESS EXPRESSLY MODIFIED BY A SUBSEQUENT DOCUMENT. THIS REPORT CONSTITUTES THE RELEVANT PORTION OF THE ADMINISTRATIVE RECORD FOR THIS CERCLA OPERABLE UNIT.

THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS. THE REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

This doctment has been approved by mublic release and solve it

REPORT DOCUMENTATION PAGE

57 17 4 17 2 10 - 500

Form Approved
OMB No. 0704-0188

Public reporting purden for this collection of information is estimated to average. Hour per response including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Tend comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to. Washington headquarters Services. Directorate for information Operations and Reports, 215 Jefferson David Hindway Suite 1264. Artifactor, 14, 2202-4302, and to the Office of Management and sources information. Project (0704-0188), Washington, 16, 2004-0188.

Davis High way, Nuite 1204 Arrington, 74 3	2202-4302. Indito the Office of Wanagement In	discoser - sperar in Rikedu. For Pr	Tect (0704-0188), 1485/119(01), DC 20303.
1. AGENCY USE ONLY (Leave to	2. REPORT DATE 10/00/88	3. REPORT TYPE A	NO DATES COVERED
4 PHASE AND SHA ADDENDUM, SI LOWER LAKES, FINAL, VERSION	TE 2-17, LAKE LADORA AND LAKE N	ARY, TASK 20,	5. FUNDING NUMBERS
6. AUTHOR(S)			DAAK11 84 D 0017
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
EBASCO SERVICES, INC.			87216R07A
9. SPONSORING / MONITORING /	AGENCY NAME(S) AND ADDRESS(E	5)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
ROCKY MOUNTAIN ARSENAL (CO.). PMRMA		
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILIT	TY STATEMENT		12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC	RELEASE; DISTRIBUTION 1	S UNLIMITED	·
BORINGS YIELDING 84 VOLATILE ORGANICS. VOLATILE HALOGENATED DBCP, AS, AND HG. T RESPECTIVE INDICATOR ISODR, DBCP, CH2CL2, WERE DETECTED WITHIN PPDDE, PPDDT, AND AL RESULTS OF THE PH	RAM FOR SITE 2-17, LAKE SAMPLES. THE BORINGS W SELECTED SAMPLES WERE A ORGANICS, VOLATILE HYD HE FOLLOWING ANALYTES W RANGES IN LAKE LADORA: 111TCE, CD, CR, CU, PE OR ABOVE THEIR RESPECT	TERE PLACED TO IN INALYZED FOR VOLA PROCARBONS, ORGAN TERE DETECTED WITE PPDDE, PPDDT, AS, ZN, AND AS. TO IVE INDICATOR RAIL WILL BE ASSESSED	VESTIGATE METALS AND TILE ORGANICS, COCHLORINE PESTICIDES, THIN OR ABOVE THEIR LDRN, DLDRN, ENDRN, THE FOLLOWING ANALYTES UNGES IN LAKE MARY:
14 CHRIST TERMS			15. NUMBER OF PAGES
14. SUBJECT TERMS SOIL, PESTICIDE			
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIF	CATION 20. LIMITATION OF ABSTRACT

TABLE OF CONTENTS

Secti	<u>on</u>	Page
1.0	PHASE II PROGRAM	. 1
2.0	PHASE II FIELD OBSERVATIONS	. 3
3.0	PHASE II GEOPHYSICAL EXPLORATION	. 4
4.0	PHASE II ANALYTE LEVELS AND DISTRIBUTION	. 4
5.0	REFERENCES CITED	. 25
	Appendix 2-17-II-A Chemical Names and Abbreviations	
	Appendix 2-17-II-B Phase II Chemical Data	

DTIC QUALITY INSPECTED 5

Acces	ion For		
1017	CRA&I FAB Position	000	
By Di tio	Incitu		
	vailability (Codes	-
опа Д -/	Aveil and Special	or	

LIST OF TABLES

Table		Page
2-17-11-1	Summary of Analytical Results for Site 2-17, Phase II	. 5
2-17-11-2	Results of Phase II Field Study	. 6
2-17-11-3	Tentative Identification of Nontarget Compounds, Phase II	. 16
2-17-11-4	Physical and Chemical Characteristics of Selected Phase II Samples	. 17
	LIST OF FIGURES	
<u>Figure</u>		Page
2-17-II-la	Phase I and Phase II Analytes Detected Within or Above Indicator Levels, Lake Ladora	. 22
2-17-11-1ь	Phase I and Phase II Analytes Detected Within or Above Indicator Levels, Lake Mary	. 23

1.0 PHASE II PROGRAM

During the Phase I program at Sites 2-17a (Lake Ladora) and 2-17b (Lake Mary), sediments from Lake Ladora were found to contain dibromochloropropane, tetrachloroethylene, methylisobutyl ketone, arsenic, mercury, chromium, copper, lead, zinc, and tenatively identified dichlorofluoromethane within or above their indicator levels. A previous study by the U.S. Army Engineering Waterways Experimental Station, reported by Myers and Greg in 1984, had also found aldrin, dieldrin, and endrin at concentrations below Phase I program detection limits, as well as mercury above its indicator level, in sediments from Lakes Mary and Ladora (Ebasco, 1987/RIC 87216R07). Due to the detection of these contaminants at Site 2-17, a Phase II program was initiated at the site in the fall of 1987.

The Phase II program was generally conducted as presented in the Phase I Contamination Assessment Report (CAR). The number of samples were as planned in the Phase I program, but there were minor deviations in boring locations and depths. Proposed Phase II Borings 22 and 23 were renumbered as Borings 50 and 51, respectively, to avoid confusion with Borings 22 and 23 from the Phase I program. Borings 43 and 44 were moved approximately 12 feet (ft) toward the shore of Lake Ladora, since the staked locations were in an arm of Ladora Lake too shallow to be accessed by barge and too deep to be sampled from land. Difficulty in collection of the lake sediment samples from the 4 to 5 ft boring intervals was discussed in the Phase I CAR, but only seven of the twenty-eight total borings were not drilled to the intended 5 ft depth. The 4 to 5 ft sample interval was adjusted accordingly for Boring 24 (3.3-4.3 ft), Boring 25 (3.9-4.9 ft), Boring 27 (3-4 ft), Boring 33 (3.4-4.4 ft), Boring 34 (3.3-4.3 ft), Boring 35 (3.2-4.2 ft), and Boring 51 (3.5-4.5 ft). The planned O to 1 ft samples for Borings 24 and 33 were collected from 0.3 to 1.3 ft, and the 2 to 3 ft sample for Boring 51 was collected from 1.5 to 2.5 ft. Except for the variations discussed above, borings were drilled to 5 ft and sampled at the 0 to 1, 2 to 3, and 4 to 5 ft intervals. In all, 28 borings were drilled, yielding 84 samples.

Prior to any Phase II drilling, the Program Manager's Office, Ebasco, Morrison-Knudsen Engineers (MKE), and R. L. Stollar and Associates formulated procedures for MKE to obtain subsamples from selected soil cores during Phase II drilling. MKE did not subsample any borings for Site 2-17.

Analytes and analytical methods were as planned in the Phase I CAR. Selected samples (see Table 2-17-II-2, Section 4.0 of this report) were analyzed by atomic absorption spectroscopy (AA) for arsenic and mercury, by gas chromatography/electron capture detector (GCECD) for dibromochloropropane and organochlorine pesticides, by an inductively coupled argon plasma (ICP) screen for metals, by gas chromatography/mass spectrometry (GC/MS) for volatile target organics (24 instead of 25 as planned), by gas chromatography/ conductivity detector (GCCON) for volatile halogenated organic compounds, and by gas chromatography/flame ionization detector (GCFID) for volatile hydrocarbon compounds. The GC/MS method can also be used to detect nontarget compounds. Due to coverage from volatile target organics analysis, no GC/MS confirmation analysis was performed. Although the maximum number of samples to be tested for OCPs was listed as 84 in the text of the Phase I CAR, the maps in the Phase I CAR (Figures 2-17-8a and 8b) correctly showed the number of samples as 78. The number of samples to be analyzed for mercury was listed as 18 in the Phase I CAR text, but, based on the maps, the number of samples planned for analysis was 33. This corresponded to the number of samples analyzed for mercury in the Phase II program for Site 2-17. Appendix 2-17-II-A presents a complete list of all analytical methods and target analytes used in the Phase I and Phase II programs; methods and analytes were chosen from the list for use at this site.

The analytical method for organochlorine pesticides is capable of detecting several analytes including hexachlorocyclopentadiene. For some samples analyzed for organochlorine pesticides, the quality control spike recovery for hexachlorocyclopentadiene was not within established quality control limits. The chemical characteristics of the constituent are such that it is not stable in the spike samples. For the samples in which the spike recovery for hexachlorocyclopentadiene was outside the control limits, the results are reported in Table 2-17-II-2 as "data unacceptable."

In addition to these analytes and analytical methods, Ebasco proposed to analyze a select group of the collected samples for a number of ancillary parameters. Ancillary parameters analyzed in Site 2-17 samples included total organic carbon, soil pH, electrical conductivity, redox potential, percent moisture, and particle size (Table 2-17-II-4, Section 4.0). Measurement of field temperature, originally intended as support for field pH measurements, was excluded from the suite of ancillary parameters once it was determined that pH could be more accurately measured in the laboratory.

2.0 PHASE II FIELD OBSERVATIONS

There were no appreciable changes at the site since the Phase I program was conducted in the fall of 1985 and spring of 1986. At the time of drilling, all of the Phase II borings were located in water, at depths of less than 1 ft to 17 ft in Lake Ladora, and in 4 to 16 ft of water in Lake Mary. Boring 49 was located in a separate body of water from the other Phase II Lake Mary borings.

In situ air monitoring was conducted during drilling operations for safety purposes using a photoionization detector (HNu) and an organic vapor analyzer (OVA). OVA readings above background were detected in thirteen borings. HNu readings were recorded above background level in nine borings. Several of these readings were thought to be associated with organic material on the lake floor. The results of the volatile organic readings down the borings at the sampled depths are presented in Table 2-17-II-2, Section 4.0 of this report.

The history of this site did not indicate a need for use of an M8 alarm or M18A2 test kit. No unexploded ordnance, buried metal, or other objects were detected during drilling. Drilling difficulties were mainly associated with recovery of wet soil samples. All of the borings were wet down to 3 ft, and most were wet to 5 ft. The location of Boring 49 in a separate body of water made it necessary to use a crane to lift the small barge on location and to pull the sample out of the boring. All except five borings (Borings 25, 38, 40, 43, and 48) penetrated from 0.3 to 3.5 ft of black lake sediment. Iron staining was observed in the 3.5 to 5 ft intervals of Borings 36 and 42, and

in the 4 to 5 ft interval of Boring 41. The staining was associated with lime-rich material in Boring 36, with lime and black staining in Boring 41, and with black staining on fractures in Boring 42. Lime was also observed in very thin veins in the 2.5 to 4.5 ft interval of Boring 51.

3.0 GEOPHYSICAL EXPLORATION

No geophysical survey was conducted at Site 2-17 during Phase II drilling because historic data indicated that the presence of unexploded ordnance, buried metal, or any other object was highly unlikely.

4.0 PHASE II ANALYTE LEVELS AND DISTRIBUTION

The number of samples containing each analyte, the concentration range, median, mean, standard deviation, detection limit, and indicator level are listed in Table 2-17-II-1. The results of geologic field observations, air monitoring during drilling, and the chemical analysis of each soil sample are summarized in Table 2-17-II-2. Table 2-17-II-3 lists the boring number, sample interval depth, relative retention time (shown as "unknown number" on the table), concentration, sample number, lot, best-fit identification, and comments for those nontarget compounds detected by GC/MS analysts of samples from Site 2-17. The physical and chemical ancillary parameters and results for selected samples are presented in Table 2-17-II-4. A tabulation of all analytical data associated with the Phase II program is presented in Appendix 2-17-II-B.

To assess the significance of metal and organic analytical values, indicator ranges were established during the Phase I program. For organic compounds, the indicator level is the method detection limit. For metals, a range of values was chosen to reflect the upper end of the expected natural range for each metal as normally found in RMA alluvial soil. The procedure for establishing indicator ranges is presented in the Introduction to the Contamination Assessment Reports (ESE, 1987/RIC 88204R02).

Table 2-17-11-1, Summary of Analytical Results for Site 2-17, Phase II. Page I of I.

					Concentration (ug/q)	(na/a)		
Constituent Detected	Number of Samples*	Range	Median**	Hean .	Standard Deviation**	DataChem Detection Limit	CAL Detection Limit	Indicator Level
Volatile Organica (N=24)								
1,1,1-Trichloroethane Methylene chloride	~ 9	0.6 1-2	1 7	1 74	•••	0.4	0.3	7 0
Volatile Halogenated Organics (N=9)								}
None detected "								
Dibromochloropropane (N-18)	7	0.0074-0.016	ı	•	· t	0.0050	0.014	DE
Organochlorine Pesticides (N=78)	al							
2,2-bis(Para-chlorophenyl)- 1,1-dichloroethane	€	0.0046-0.024	0.0082	0.010	0.0064	0.0024	ŧ	70
Z,Z-bis(Para-chlorophenyl)-	•	4						
I, I, I-trichloroethane	• •	0.0088-0.15		, (, ,	0.0020	•	ρţ
Dieldrin	'nm	0.0038-0.053		0.20	95.0	0.0019	::	2 2
Endrin	7	0.0069-0.0088	•		1	0,0058	•	3 z
nexachiorocyclopentadienev Isodrin	0 m	0.0042-0.042	,	1	ı	0.0018 0.0011	::	10
Volatile Hydrocarbon Compounds (N=9)	(6-N)							ļ
None detected								
ICP Metals (N=18)								
Cadmium	7	1.1		,		77	37 0	
Chromium	11	9.0-28	15	5	5.6		9.0	7-1
Copper	15	7.1-34	===	: <u>-</u>	8.0		3.6	20-35
Lead	1	12-64	19	24	18	4.8) (1	25-40
Zinc	18	22-120	39	46	25	8.7	9.5	60-80
Arsenic (N-6)	7	3.1-5.2		,	•	2.5	5.0	DL-10
Mercury (N=33)								
None detected						0.050	0.060	DL-0.10

DL - The indicator level is the detection limit for DataChem and CAL Laboratories, as appropriate

N - Number of samples analyzed

• - Number of samples in which constituent was detected; only these sample results were used in statistical analyses

• - Median, mean and standard deviation not calculated when constituent detected in fewer than 5 samples

• - Laboratory not certified for analytical method

+ - Analyte listed due to being listed on Table 2

Site 1-UNC 5146A/1129A

Table 2-17-II-2. Results of Phase II Field Study. Page 1 of 10.

		Boring 24			Boring 25			Boring 26	
Depth (feet) Geologic Material	0.3-1.3 Organic Silty Sand	2-3 Clayey Sand	3.3-4.3 Clayey Sand	0-1 Organic Sandy Silt	2-3 Clayey Sand	3.9-4.9 Clayey Sand	0-1 Organic Clayey Sand	2-3 Clayey Sand	4-5 Clayey Sand
Percent PinesVO	0	10	10	09	25	25	10	10	10
AIR MONITORING									
Volatile Organic Readings (ppm)									
HNUS	BKD	BKD	BKD	BKD	BKD	BKD	3.0	×	1.0
OVAS	BKD	BKD	вкр	BKD	BKD	ВКО	BKD	ĩ	1.0
SOIL CHEMISTRY									
Volatile Organics (ug/g)									
1, 1, 1-Trichloroethane	Y.	KA	NA NA	JQ8	BDL	TOB	TOR	BDL	BDL
Hethylene chloride	V V	4	4	2	,	7	BDL	BDL	BDL
Organics (ug/g)	BDL	BDL	BDL	4 2	ž	¥	¥¥	¥.	NA NA
Dibromochloropropane (ug/g)	W	¥.	¥.	BDL	BDL	BDL	BDL	BDL	Brl
Organochlorine Pesticides (ug/g)									
1,1-dichloroethane	0.0055	BDL	BDL	RDL	BDL	PDL	0.0046	BDL	BDL
2,2-bis(Para-chlorophenyl)-									
1,1,1-trichloroethane	BDL	BDL	306	107	80ľ	301	0.15	8 0¢	19 07
Aldrin	305	305	30 5	BDL	105 108	300	0.0038	706	308
	206	305	308	302	708	ng.	0.0088	308	80F
Hexachlorocyclopentadiene	BDL	BDL	BDL	2	28	2	20	2	2
Isodrin	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Volatile Hydrocarbon									
Compounds (ug/g)	BDL	BDL	BDL	¥2	Y	¥.	٧.	Y.	ď.
	4	2	4	4	4	4	AN	KN.	42
			1	4	4	4	× 2	2	× 2
Copper	NA NA	*	*	4	¥ X	¥	¥.	*	×
paul	4	*	ž	¥	NA	4×	42	4	4
Sinc 2	4	¥	¥	¥	Y.	Y.	¥	KN KN	¥
Arsenic (ug/g)	X.	Y.	42	Y.	K X	Y.	4	¥	K
Mercury (ug/g)	Y.	ž	¥2	Y.	¥	BDL	42	≨	BDL

BDL - Below detection limit

BKD - Background

DU - Data unacceptable

NA - Not analyzed

NR - Not recorded

S - As referenced to calibration standard of methane for OVA, and benzene for HNu; reading has been adjusted to account for background level

VO - As determined by visual observation and rounded to the nearest 5 percent

Table 2-17-II-2. Results of Phase II Field Study. Page 2 of 10.

		Boring 27		,	Boring 28			Boring 29	
Depth (feet) Geologic Material	0-1 Limey Clayey Sand W/Organics	2-3 Sand	3-4 Sand	0-1 Organic Sandy Clay	2-3 Sand/Sandy Clay	4-5 Sandy Clay	0-1 Organic Sandy Silt	2-3 Sand w/Clay	6-5 Sand w/Clay
Percent PinesVO	30	0	0	55	09/0	09	09	v.	·v
AIR MONITORING									
Volatile Organic Readings (ppm)									
HNuS	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	X 2	BKD	BKD 4.0	X X	BKD CX	0 KC 0 KC	Z 2	0 X 8
SOIL CHEMISTRY		i	:	:	ļ.			Í	
Volatile Organics (uc/g)									
1,1,1-Trichloroethane	BDL	BDL	708	BDL	BDL	BDL	ž	Y.	ž
Methylene chloride	BDL	300	108	BDL	BUL	BDL	YN.	NA.	NA
Organics (uq/q)	NA	NA NA	Υ.	Y.	ď	Y.	¥N.	**	¥
Dibromochloropropane (ug/g)	. YN	Y.	¥2	BDL	BDL	BDL	0.016	0.0074	BDI.
Organochlorine Pesticides (ug/g) 2,2-bis(Para-chlorophenyl)-									
1,1-dichloroethane 2.2-bis(Para-chlorophenyl)-	NA A	4	KX KA	BDL	BDL	BDL	9.014	B DL	BDL
1, 1, 1-trichloroethane	Y.	Y.	NA.	0.0088	BDL	BDL	BDL	BNL	BDL
Aldrin	YZ :	Y.	4	BDL	BOL	BDL	BDL	BDL	0.011
Dieldrin	¥ á	X 2	۲ : ۲ :	80ľ	305	3 0.00	BDL	BDL	9 0f,
	¥ ¥	< ×	4 2	7 PG	na na	7 20	200	3 70	700
Isodrin	KN KN	NA NA	NA.	BDL	BDL	BDL	BDL	BDL	BDL
Volatile Hydrocarbon	;	:	:	;	;	;	•	į	;
ICP Metals (ug/g)	Š	Š	₹	X	ď.	42	ď.	Y.	ď.
	¥	KN KN	¥.	42	¥	NA NA	BDt	BDL	BDL
Chromium	4	NA NA	¥	¥	¥2	YN.	28	9.1	15
Copper	Y.	¥	NA VA	¥	Y.	Y.	34	7.7	8.8
Lead	Y.	Y.	¥	Y.	¥.	Y.	94	12	76
Zinc	NA NA	¥	¥	Y.	¥	YN.	120	39	43
Arsenic (ug/g)	4	YN	Y 2	K.	¥	N.	42	NA	42
Mercury (ug/g)	NA.	KA K	NA NA	Y.	4 Z	BDL	NA NA	Y.	BDL

BDL - Below detection limit
BKD - Background
DU - Lata unacceptable
NA Hot analyzed
NK - Not recorded
NK - Not recorded
S - As referenced to calibration standard of methane for OVA, and believe for HNU; reading has been adjusted to account for background level
VO - As determined by visual observation and rounded to the nearest 5 percent.

Table 2-17-11-2. Results of Phase II Pield Study. Page 3 of 10.

		Boring 30			Boring 31			Por fra 33	
Depth (feet) Geologic Material	0-1 Organic Sandy Silt	2-3 Sand trace Clay	4-5 Sand trace Clay	0-1 Organic Clayey Sand	2-3 Sand w/Clay	4-5 Sand w/Clay	0-1 Organic Clayey Sand	2-3 Clayey Sand	4-5 Clayey Sand
Percent PinesVO	09	LT 5	5 TJ	30	s	S.	30	45	35
AIR MONITORING									
Volatile Organic Readings (ppm)									
Sun	7.0	£	BKD	1.0	X :	BKD	10	XX	BKD
•		ž	BKD	BKD	XX	BKD	BKD	XX.	BKD
SOIL CHEMISTRY									
Volatile Organics (ug/g)									
1, 1, 1-Trichloroethane	Y	£ :	Y.	Bot	BDL	BDL	BDL	BDL	9.0
volatile Balogenated	۲ R	۲ ۲	۲	BDL	BDL	BDL	BOL	BDL	708
Organics (ug/g)	4	4 2	¥	4	NA NA	Y.	¥.	ž	4
Dibromochloropropane (ug/g)	BDL	BDC	BDL	Y.	NA NA	NA	708	BDL	BOL
Organochlorine Pesticides (ug/g) 2,2-bis(Para-chlorophenyl)-									
1,1-dichloroethane	0.011	BDL	BDL	NA	NA	N.A	0.0077	BDL	BDL
2,2-bis(Para-chlorophenyl)-									
1,1,1-trichloroethane	0.037	BDF.	B D£	NA :	X	42	BDL	BDL	708
Dieldrin	0.0061	200	200	¥ :	¥ :	4 :	0.0029	305	305
Endrin	0.0069	708	BDL	V 4	.	< 4 2 2	BDL	BOL	90F
Hexachlorocyclopentadiene	26	20	20	ź	¥ ¥	X X		200	3 2
Isodrin	BDL	308	BDL	Y.	YN.	Y.	30F	BDL	BDL
Volatile Hydrocarbon									
ICP Metals (ug/g)	4	ž	¥	X.	≨	Y.	≨	NA NA	Y.
Cadmium	BDL	BDL	BDL	¥.	4 8	NA	42	42	5
Chromium	9.6	9.6	22	42	4 2	×2	* *	*	C A
Copper	70	7.1	26	NA NA	NA	ž	¥	2	*
Lead	12	BDL	BDC	¥	¥	42	Y.	¥	€ €
zinc	36	33	82	Y.	42	WA	Y.	¥	X
Arsenic (ug/g)	Y.	Y 2	YN.	NA NA	NA	MA	Y.	Y.	KA
Mercury (ug/g)	Y 2	K X	BDL	NA NA	¥	¥	NA.	Y.	BDL

BDL - Below detection limit

BKD - Background

BU - Background

DU - Data unacceptable

LT - Less than

NA - Not analyzed

NR - Not recorded

S - As referenced to calibration standard of methane for OVA, and benzene for HNu; reading has been adjusted to account for background level

VO - As determined by visual observation and rounded to the nearest 5 percent

Table 2-17-II-2. Results of Phase II Field Study. Page 4 of 10.

		Boring 33			Boring 34			Boring 35	
Depth (feet) Geologic Material	0.3-1.3 Sand	2-3 Clayey Band	3.4-4.4 Clayey Sand	0-1 Organic Sandy Silt	2-3 Organic Sandy Silt	3.3-4.3 Silty Sand	0-1 Organic Sandy Silt	2-3 Silty Band trace Clay	3.2-4.2 Silty Sand trace Clay
Percent PinesVO	0	10	10	09	09	40	09	30	30
AIR MONITORING									
Volatile Organic Readings (ppm)									
STAR	BRD	X.	BKD	BKD	4 2	BKD	BKD	XX	BKD
: ************************************	eko O	æ æ	BKD	300	AN.	вкр	1.0	AN.	BKD
SOIL CHEMISTRY									
Volatile Organics (ug/g)									
I, I, I-Trichloroethane	700	708	BDL	BDL	BDL	BDL	¥2	W.	Y.
Methylene chloride Volatile Halodenated	7	7	2	BDL	BDL	BDL	N.	Y.	Y.
Organics (ug/g)	KN	¥¥.	NA NA	Y.	¥.	42	¥	2	4
Dibromochloropropane (ug/g)	NA	42	X.	Y.	X	Y.	¥.	¥.	
Organochlorine Pesticides (ug/g) 2,2-bis(Para-chlorophenyl)-	•							ŧ	
1, 1-dichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	801	BDL	HD.
2,2-bis(Para-chlorophenyl)-						l i		2	
1,1,1-trichloroethane	BDL	308	BDL	BDL	BDL	BDL	BDL	BDL	JOS
Aldrin	BDL	708	BDL	BDL	BDL	BDL	BDL	BDL	708
Dieldrin	BDL	306	708	BDL	BDL	BDL	BDL	BDL	BOL
Endrin	305	305	306	BDĽ	BDL	BDL	BDL	BDL	BDL
nexachlor ocyclopentaglene Taodrin	20	BOL	BDL 95.	20.	2 :	2	20	2	22
Volatile Hydrocarbon		3	2	PUC	200	709	ກຸດຄ	BOL	BOL
Compounds (ug/g)	¥2	Y.	Y.	NA NA	NA NA	¥	¥¥	¥N	NA NA
	BDL	1.1	BDL	BDI.	BDL	BDC	YN.	MA	4
Chromium	17	12	15	18	BDL	0.6	Ψ.	4 2	4
Copper	14	11	14	19	BDL	8.7	4 2	¥	*
Lead	19	BDL	13	21	BDL	BDL	N.	××	NA NA
Zinc	20	39	52	76	11	33	42	Y.	¥
Arsenic (ug/q)	Y	KA	¥.	YN Y	NA NA	NA	YN.	44	AN.
Hercury (ug/g)	4	¥.	BDL	Y.	NA	BDL	Y 2	NA NA	BDL
BDL - Below detection limit									

BBD - Below detection limit
BKD - Background
BMD - Background
DU - Data unacceptable
NA - Not analyzed
NR - Not recorded
S - As referenced to calibration standard of methane for CVA, and benzene f~r HNU; reading has heen adjusted to account for background level
VO - As determined by visual observation and rounded to the nearest 5 percent

Table 2-17-II-2, Results of Phase II Field Study. Page 5 of 10.

		Boring 36			Boring 37			Boring 38	
Depth (feet) Geologic Material	0-1 Organic Sandy Clay	2-3 Clayey Sand	4-5 Sandy Clay W/Lime	0-1 Organic Sand	2-3 Organic Sandy Clay	4-5 Sandy Clay	0-1 Organic Sandy Clay/ Sand	2-3 8and	4-5 Gravelly Sand/Sandy
Percent PinesVO	06	45	55	0	70	08	0/08	•	09/0
AIR HOMITORING									
Volatile Organic Readings (ppm)									
HNUS OVAS	150	BKD BKD	200 BKD	200 BKD	n n	220 BKD	1.0	M W	BKD BKD
SOIL CHEMISTRY									
Volatile Organics (ug/q)									
I, I, I-Trichloroethane	XX	2 :	Y S	¥	¥ :	NA :	YN :	YN :	NA .
Volatile Balogenated	C.	Ç.		ć E	Ç.	ζ.	ď.	۲ ۲	۲ ۲
Organics (ug/g)	4 2	MA	¥.	KN	¥	N.	Y.	NA A	NA VA
Organochlorine Pesticides (ug/g) 2,2-bis(Para-chlorophenyl)-	Z	Y X	ş	X	Y	Š.	۷.	Ş.	₹2
1,1-dichloroethane 2,2-bis(Para-chlorophenyl)-	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,1-trichloroethane	BDL	BDL	BDL	BDL	BDL	PDL	BDL	BDL	BDL
Aldrin	BDL	3DF	708	BDL	BDL	BDL	0.047	BDC	BOL
Dieldrin	BDL	BDL	BDL	BDL	JQB	BDL	708	BDL	BDL
Endrin Hexachlorocyclobentadiene	30g	108 126	B D!.	30F	108 20	J08 12	302	B DC	B DL
Isodrin	B DL	BDL	BDL	900	70 8	308 108	90.F	00 100 100	30£
Volatile Hydrocarbon Compounds (ug/g)	ž	KA	XX	Š	4	4	1		•
ICP Metals (ug/g)						į		Į.	£
Cadmium	BDL	BDL	BDL	BDL	BDL	BDL	£	ş	KA
Chrosica	8DL	16	BDL	B DL	708	17	Y N :	4 :	Y :
Tead .	301.	BDI.	P. 1.0	שמים בית	100 100	/ • /	¥ :	≨ ;	≨ ;
Zinc	29	54	29	22	27	52	< ×	۲ ۲	4 4
Arsenic (ug/g)	BD[. NA	BD[,	5.2 BDL	3.1 NA	BDL	BDL	¥ \$	Y X	NA BDC
							į	į	

BDE - Below detection limit

BRD - Background

DU - Data unacceptable

NA - Not analyzed

NR - Not recorded

S - As referenced to calibration standard of methane for OVA, and benzene for HNU; reading has been adjusted to account for background level

VO - As determined by visual observation and rounded to the nearest 5 percent

Table 2-17-11-2. Results of Phase II Field Study, Page 6 of 10.

		Boring 39			Boring 40			Boring 41	
Depth (feet) Geologic Material	0-1 Organic Sandy Clay	2-3 Sandy Clay	4-5 Sand w/Clay	0-1 Organic Sand w/Clay	2-3 Sandy Clay	4-5 Sandy Clay	0-1 Organic Clayey Sand	2-3 Sandy Clay	4-5 Clay w/Lime
Percent PineaVO	09	08	ın.	\$	70	09	15	09	100
AIR MONITORING									
Volatile Organic Readings (ppm)									
BRUS OVAS	BKD BKD	r r	BKD	0.4 10	A R	BKD	BK D 90	~ ~ ~	e e
SOIL CHEMISTRY								İ	}
Volatile Organics (ug/g)									
1,1,1-Trichloroethane	8	MA	NA	NA	KA	< z	W.	ZN.	4
Methylene chloride Volatile Halogenated	Y.	XX	NA NA	Y.	٧.	Y.	¥.	X	Y.
Organics (ug/g)	42	Y.	2	Ý.	XX	Y.	¥.	¥.	4
Dibromochloropropene (ug/g) Organochlorine Pesticides (ug/g)	WA.	NA NA	42	NA NA	Y.	42	ž	NA.	¥2
2,2-bis(Para-chlorophenyl)-			•						
1,1-dichloroethane 2,2-bis(Para-chlorophenyl)-	Pol	BDL	BDL	BDL	BDL	807	BDL	BDL	708
1,1,1-trichloroethane	BDC	308	BDL	BDL	JOB	8 DL	807		<u>.</u>
Aldrin	708	BDL	BDL	BDL	BDL	BDL	1.7	BDL	306
Dieldrin	305	NDL	BDL	BDL	BDL	BDL	0.053	BDL	900
Bndrin Bossethleromen Joseph 1 2 2 2 2	3 0£	302	BDL	108	BDC	BDL	BDL	BDL	708
	3 6	8 8	2 1	2 :	2 .	2	26	2	2
Volatile Hydrocarbon	2		700	906	BUL	BUL	7.00	308	306
Compounds (ug/q) ICP Metals (ug/q)	Z.	W.	*	Y.	*	KN.	NA V	KA	KA
Cadmium	X	¥¥.	KN	¥	Y.	YN.	MA	4	V.
Chromium	KN.	Y.	KN KN	Y.	W	¥	Ž	¥	W.
Copper	K	¥	K.	NA.	¥	MA	Y.	€	¥.
Lead	KN.	*	KY	¥	Y.	KA	NA NA	ZZ.	ž
Zinc	XX.	KN KN	\$	KA.	MA	NA	¥2	¥	\$
Arsenic (ug/g)	4	NA	NA NA	MA	MA	¥	47	¥.	Y.
Mercury (ug/g)	Z.	NA NA	BDL	٧.	Y.	BDL	42	¥.	BDL

BBC - Below detection limit
BRD - Background
DV - Data unacceptable
NA - Not analyzed
NR - Not recorded
S - As referenced to calibration standard of methane for OVA, and benzene for HNU; reading has been adjusted to account for background level
VO - As determined by visual observation and rounded to the nearest 5 percent

Table 2-17-II-2. Results of Phase II Field Study. Page 7 of 10.

		Boring 42			Boring 43			Boring 44	
Depth (feet)	0-1	2-3	-5	0-1	2-1	¥-7	1-0		
Geologic Material	Organic Sand trace Clay	Sand w/Clay	Clay trace Sand	Organic Sand w/Silt	Silty Gravelly Sand	Silty Gravelly Sand	Organic Organic Pebbly Silty Sand/Silty	silty Sand	4-5 Silty Sand
Percent FinesVO	LT 5	ស	GT 95	۱A	10	10	15/20	20	15
AIR MONITORING									
Volatile Organic Readings (ppm)									
SINH	BKD	ž	BKD	BKD	2	C M	e de		1
OVAS	BKD	Z.	BKD	BKD	Z.	BKO	BKO	2 A	BKD
SOIL CHEMISTRY									
Volatile Organica (mg/g)									
1, 1, 1-Trichloroethane	W.	ž	Z.	4	42	4	42	4	á
Methylene chloride	YN.	Y.	×2	¥	Ž	Y N		£ 3	£ 3
Volatile Balogenated					ŀ	•	•	S	Š.
Organics (ug/g)	. YE	NA	MA	¥	Y.	Y.	¥	¥	42
Dibromochloropropane (ug/q) Organochlorine Pesticides (ug/q)	£	NA NA	NA	좦	KN KN	¥¥	Y.	42	44
2,2-bis(Para-chlorophenyl)-		į							
1,1-dichloroethane 2,2-bis(Para-chlorophenyl)-	208	BDL	BDC	BOL	BDL	B DL	BDL	BOL	3 0f
1,1,1-trichloroethane	BDL	308	BDL	JGB	BDL	305	, com		č
Aldrin	0.0071	0.020	BDL	BDL	BDL	BDL	BDL	108	
Dieldrin	BDL	BDL	BDL	BDL	BDL	BDL	708	BDL	BDL
	BDC	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
resection ocyclopentadiene	00	8	2	2	2	2	2	2	26
Volatile Hydrocarbon	0.037	BDL	BDL	BDL	BDL	BDL	BDL	708	708
Compounds (ug/g)	42	\$	NA.	4	7	4 2	3	4	
ICP Metals (ug/g)						<u> </u>	£	Ç	< E
Cadmium	*	KX	ź	Y.	42	Y.	Y.	42	2
Chromium	NA	Ş	¥	¥2	Y.	Y.	ž	*	
Copper	KN	NA	NA	KA VA	KY.	NA	NA	NA.	\$
Lead	ž	¥	Y.	Y.	Y 2	¥	¥	MA	X
zinc	X	¥	٧×	NA.	KA KA	۲×	¥	NA	Y.
Arsenic (ug/g)	X	ž	XX	Y 2	NA NA	Y.	**	MA	MA
Refcuty (ug/g)	4	4	BDL	۷×	٧	BDL	¥2	¥	BDC
BDL - Below detection limit									

Site 2-17 5103A/1129A

BDL - Below detection limit

BKD - Background

DU - Data unacceptable

CT - Greater than

CT - Creater than

LA - Not an alays

NR - Not recorded

S - As referenced to calibration standard of methane for OVA, and benzene for HNU; reading has been adjusted to account for background level

VO - As determined by visual observation and rounded to the nearest 5 percent

Table 2-17-II-2. Results of Phase II Field Study. Page 8 of 10.

		Boring 45			Boring 46			Boring 47	
Depth (feet) Geologic Material	0-1 Organic Clayey Sandy Silt	2-3 Silty Sand trace clay	4-5 Sand w/Gravel and Clay	0-1 Organic Silty Sand trace Gravel	2-3 Gravelly Sand w/Silt	4-5 Clayey Silty Sand W/Gravel	0-1 Organic Silty Sand	2-3 Gravelly Sand w/Silt	4-5 Gravelly Sand w/Silt
Percent PinesVO	09	15	v	0	15	30	0	'n	v
AIR HONITORING									
Volatile Organic Readings (ppm)									
SINH	•0.0	£	¥	A.R.	Æ	W.	195	195	8
• OVAS	6.5	XX	X.	1.0	NR N	XX.	15	¥	1.0-1.5
SOIL CHEMISTRY									
Volatile Organics (ug/q)									
1, 1, 1-Trichloroethane	MA	NA	¥	VN.	ž	Y.	K	KN	MA
Methylene chloride	42	NA NA	۲ ۲	YN Y	Y.Y	٧×	Y.	Y.	K
Organice (1979)	1	á	3	4	4	2	4	4	4
Dibronothionorgan		£	£ 5		£ 3	¥ 4	£ 5	£ 2	£ \$
Organochlorine Pesticides (ug/g)	E	§	5	Ç	Ę.	S.	£	S.	ŧ
2,2-bi-(Para-chlorophenyl)-									
1,1 tchloroethane	0.0082	BDL	BDL	BDL	BDL	B DL	308	708	305
2,2-bt (Para-chlorophenyl)-		į	į		į		į	•	4
1,1 1-trichloroethane	0.015	305	200	305	305	708	208	708	702
		700	10.0	770	7 2	700	700	100	700
	708	305	308	8DL	BDL	708	108	B DC	302
Hexachlorocyclopentadiene	900	BDL	BDC	BDL	BDL	BDL	708	90,	BDL
Isodrin	BDL	BDL	308	BDL	BDL	BDL	BDL	308	BDL
Volatile Hydrocarbon									
Compounds (19/9)	ž	X.	Y _N	Y.	¥	W.	≨	N.	Y.
Cadmium	4	¥	¥	K	ž	NA NA	¥	W.	W.
Chromium	K	¥	KN	42	¥¥	Y.	¥	KN KN	*
Copper	KN.	K	Y.	MA	¥	KA KA	¥	\$	¥
Lead	KA K	¥	KN KN	K.	42	Y.	¥	4	4
Zinc	4	≨	Y.	4 2	¥	NA NA	¥	KA	£
Arsenic (ug/g)	MA	4	4 8	Y.	¥	٧,	¥	Y.	¥
Mercury (ug/g)	BDL	BDL	BDL	BDL	30 F	BDL	BDL	BDL	BDL

BDL - Below detection limit
BKD - Background
NA - Not analyzed
S - As referenced to calibration standard of methane for OVA, and benzene for HNu; reading has been adjusted to account for background level
VO - As determined by visual observation and rounded to the nearest 5 percent

* - Recorded reading was zero, however background was not recorded

Table 2-17-11-2. Results of Phase II Field Study. Page 9 of 10.

		Boring 48			Boring 49			Boring 50	
Depth (feet) Geologic Material	0-1 Organic Bilty Sand trace Gravel	2-3 Gravelly Sand w/Silt	4-5 Sandy Clayey Silt	0-1 Organic Sandy Silt	2-3 Organic Sandy Silt/ Silty Sand W/Gravel	4-5 Silty Sand w/Gravel	0-1 Organic Sand and	2-3 Organic Sand and Silt	4-5 Clayey Sand w/Gravel
Percent PinesVO	20	so.	96	55	55/10	10	50	20	10
AIR MONITORING									
Volatile Organic Readings (ppm)									
HNUS OVAS	MR 0.5	AR AR	M. M.	NR 10	N N N	MR 0.5	BKD	e z	BKD BKD
SOIL, CHEMISTRY									
Volatile Organics (ug/g)	9	ā	ā	1	3	4	2	3	4
Methylene chloride	Y X	£ £	YN YN	S X	Y.	NA NA	ξ χ	Y X	Y X
Volatile Halogenated									
Organics (ug/g)	¥	Y2	\$	¥	¥	¥	708	BDE	B D(
Dibromochloropropane (ug/q) Organochlorine Pesticides (ug/q) 2.2-his(Para-chloropheny)		ď Z	لا	۲ ۲	Y z	₹ z	۲ ۲	4	¥ Z
1,1-dichloroethane	BDL	BDL	BDL	0.0062	BDL	BDL	0.024	BDL	BDL
1, 1, 1-trichloroethane	BDL	BDC	BDL	BDL	BDL	BDL	BDL	BDL	708
Aldrin	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDC
Dieldrin	708	BDL	BDL	BDC	BDL	708	BDL	JOS :	306
Endrin	B 01.	Bol	80L	708	708	30F	708	305	J.Ca
nexacitototyctopentantene Isodrin	306	90C	BDL	30F	BDL	BDL	0.0042	BDL	708
Volatile Hydrocarbon Compounds (ug/g)	×	\$	X	≨	¥	XX	BDL	BDL	BDL
ICP Metals (ug/g)	;	;	;	:	;	;	;	;	:
Cadmium	₹	£ :	¥ :	≨ :	≨ :	\$:	X	4	≨ ;
Chromium	4	Y :	Υ :	X	4	¥ :	¥ :	Š :	¥ :
Copper	¥ .	≨ ≨	¥ 2	¥ :	\$ 2	S 2	£ 2	£ 3	< 3
- Cead	¥ :	X :	¥ i	S :	۲ :	£ :	£ :	Ç 2	< 4 E 3
Z11C	5 2	4 2	< 4 Z 2	¥ 2	¥ 2	< 2 2	¥ 2	< 4 2 2	¥ 2
Arsenic (ug/g) Mercury (ug/g)	80Ľ	BDL	80L	BDL	BDL	8DL	ξ χ	£ £	Z Z

BDL - Below detection limit
BKD - Background
DU - Data unacceptable
NA - Not analyzed
NR - Not analyzed
NR - Not recorded
S - As referenced to calibration standard of methane for OVA, and benzene for HNU; reading has been adjusted to account for background Irvel
S - As referenced by visual observation and rounded to the nearest 5 percent

Table 2-17-11-2. Results of Phase II Field Study. Page 10 of 10.

		Boring 51	
Depth (feet)	0- 0	1.5-2.5	3 6.4
Geologic Material	0.0000		7.0-4.0
484 494 E. 74M)	Silt and	Silt and	Clayey Silty Gand
	Sand	Sand	
Percent PinesVO	20	50	55
AIR HOMITORING			
Volatile Organic Readings (ppm)			
HINES	•0.0	ž	0.0
OVAS	0.0	E	0.0
SOIL CHEMISTRY			
Volatile Organica (us/s)			
- T-T-1-1-1	\$	1	•
	¥ ;	£ :	S
	4	¥	\$
Day and Day of the Control of the Co		•	i
(A) (A)	200	706	709
DIDLOMOCUTOLODICOMINE (Md/d)	. 42	4	4
Organochlorine Pesticides (ug/g)			
2.2-bis(Para-chlorophenyl)-		200	BUL
1.1.1-trichloroethane		7	č
Aldrin	BDT.		. ב ב
Dieldrin	306	BDL	TOB
Endrin	90 C	900	708
Rexachlorocyclopentadiene	708	3 06	BOL
Isodrin	Bot	BDC	BOL
Volatile Hydrocarbon			
	305	BOT	BDL
ICP Metals (ug/g)			
Cadmium	\$	4	\$
Chromium	\$	KA	K.
Copper	W.	¥	*
[read	W	¥	W.
11nc	\$	*	*
Arsenic (ud/a)	4	4	4
Merchic (ng/g)	.		£ 5
The state of the s	5	£	¥

Site 2-17 5101A/1129A

BDL - Below detection limit
BKD - Background
NA - Not analyzed
NR - Not analyzed
NR - Not recorded
S - As referenced to calibration standard of methane for OVA, and benzene for HNU; reading has been adjusted to account for background level
VO - As determined by visual observation and rounded to the nearest 5 percent

Table 2-17-11-3. Tentative Identification of Montarget Compounds, Phase II. Page 1 of 1.

		Comments			٤ ،	≼ ;	M	*	*	*	=		: 1	٤ ،	K 1	*	*	ki,	×	*	No.	; 64	٤ ۽	< 1	٤ ١	.	ĸ	k <	M	: ×
	Best-fit	Identification																												
		25		CXI	CXL	3	2		2 2	STS	CYS	CYS	CYS	CYS	7	į	; ξ	5 8	5 !		CTT	£.5	CAO	CYL	5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3 6		CXO	CYU
	8 ample	Number		007	003	900	000		6		٠ ٩	900	700	800	007		2		500	90	200	800	902	900	900	200	Š	700	903	004
	Concentration	(wdd)										,																		
	Unknown	Mulber									•	;	-																	
Interval	Depth	1557	1.0	7 6	S-7	3.9-4.9		2-3	4-5	0-1	3-1		-	T-0	2-3	4-5	0-1	2-3	4-5	ָרָב <u>ָּ</u>		5-7	- -2	0.3-1.3	2-3	3.4-4.6	0-1	2-1		5.5-4.5
	Borehole Musber		*	}		;	70			27			•	87			31			32	:			33			7.			

K-None detected *-Values reported are blank corrected

Table 2-17-II-4. Physical and Chemical Characteristics of Selected Phase II Samples. Page 1 of 4.

		Boring 29			Boring 32			Boring 34	
Depth (feet) Geologic Naterial	0-1 Organic Sandy Silt	2-3 Sand w/Clay	4-5 Sand w/Clay	0-1 Organic Clayey Sand	2-3 Clayey Sand	4-5 and Clayey Sand W/Gravel	0-1 Organic Sandy Silt	2-3 Organic Sandy Silt	3.3-4.3 Silty Sand
Physical Parameters									
4 Moisture Particle Size Analysis 4 Passing Sieve Ro.:	N K	K K	X X	25	18	16	A A	X X	\$ \$
4 (Gravel) 10 (Sand) 40 (Sand) 200 (Silts/Clays)				100 98 85 32	100 100 94 64	100 98 87 51			
Chemical Parameters									
Total Organic Carbon (%) 2.6 Soil Reaction (pH) 7.7 Electrical Conductivity (umbos/cm) 1000 Redox Potential (mV)	2.6 7.7 7.7 hos/cm) 1000 NA	0.16 8.3 305 NA	0.20 8.5 408 NA	1.0 7.5 1110 168	0.30 8.0 761 182	0.17 8.0 783 176	0.17 7.7 953 NA	0.20 8.1 407 NA	0.15 8.5 307 NA

mV - Millivolts NA - Not analyzed Umhos/cm - Micromhos per centimeter

Table 2-17-II-4. Physical and Chemical Characteristics of Selected Phase II Samples. Page 2 of 4,

		Boring 36			Boring 39			Boring 42	
Depth (feet) Geologic Material	0-1 Organic Sandy Clay	2-3 Clayey Sand	4-5 Sandy Clay w/Lime	0-1 Organic Sandy Clay	2-3 Sandy Clay	4-5 Sand W/Clay	0-1 Organic Sand Trace	2-3 Sand w/Clay	4-5 lay Clay Trace Sand
Physical Parameters									
• Moisture Particle Sise Analysis • Passing Sieve No.:	K K K	žž	Z Z	23	16	16	4 4	4 4	Z Z
4 (Gravel) 10 (Sand) 40 (Sand) 200 (Silta/Clays)				100 100 94 56	100 100 84 36	100 98 84 28			
Chemical Parameters									
Total Organic Carbon (%)	0.32	0.24	0.03	0.53	0.30	0.13	0.53	0.03	0.07
Soil Reaction (pH)		6.7	7.5	7.9	7.7	7.8	7.0	2.0	~
Electrical Conductivity (umhos/cm)		324	267	123	350	362	369	216	
Redox Potential (mV)		42	Y.	87	234	227	N. V.	Y X	NA

mV - Millivolts
MA - Not analyzed
umhos/cm - Micromhos per centimeter

Table 2-17-II-4. Physical and Chemical Characteristics of Selected Phase II Samples. Page 3 of 4.

		Boring 44		Bor	Boring 46
Depth (feet) Geologic Material	0-1 Organic Pebbly Silty Sand/Silty	2-3 Silty Sand	4-5 Silty Sand	0-1 Organic Silty Sand Trace Gravel	2-3 Gravelly Sand w/Silt
Physical Parameters					
W Holsture Particle Size Analysis P Deserve Analysis	15	16	17	19	7
4 (Gravel)	100	100	100	100	100
40 (Sand)	9 KS	<i>y</i> 25	98 37	100 74	98 7
200 (Silts/Clays)	39	14	•	17	'n
Chemical Parameters					
Total Organic Carbon (%) 0.12	0.12	0.0	Q	0.04	Ž
Soil Reaction (pH)	7.8	7.6	7.8	7.5	7.6
Electrical Conductivity (u Redox Potential (mv)	umhos/cm) 279 224	388	141	104	114
AR 1543:330 : 1003:	7	967	C 77	166	503

mV - Millivolts
NA - Not analyzed
ND - Not detected
umhos/cm - Micromhos per centimeter

Table 2-17-II-4. Physical and Chemical Characteristics of Selected Phase II Samples. Page 4 of 4.

	Bor	Boring 47	Bor	Boring 49		Boring 51	
Depth (feet)	0-1	2-3	0-1	2-3	0-1	1.5-2.5	3.5-4.5
Geologic Material	Organic	Gravelly	Organic	Organic	Organic	Organic	Claye
	Silty Sand	Sand w/Silt	Sandy Silt	Sandy Silt/	Silt and	Silt and	Silty Sand
				Silty Sand w/Gravel	Sand	Sand	
Physical Parameters							
1 Moisture	2	\$	23	12	18	19	16
Particle Sise Analysis	\$	Y.					
4 (Gravel)			100	100	100	100	100
10 (Sand)			100	66	100	100	100
40 (Sand)			76	79	95	96	95
200 (Silts/Clays)			65	20	42	29	20
Chemical Parameters							
Total Organic Carbon (4)	0.53	Q.	0.33	ã	0.55	0.39	0.10
Soil Reaction (pH)	6.8	7.7	9.9	7.3	7.5	8.1	8.5
Electrical Conductivity (umb	08/CM)	314	350	131	1080	361	341
Redox Potential (mV)	N.	KN KN	206	376	67	163	190

mV - Millivolts NA - Not analyzed mmhos/cm - Micromhos per centimeter

Samples from the Phase II borings were analyzed for volatile target organics, volatile halogenated organics. dibromochloropropane, organochlorine pesticides, volatile hydrocarbon compounds, ICP metals (cadmium, chromium, copper, lead, zinc), arsenic, and mercury. Figures 2-17-II-la and lb, which show the locations of the borings as drilled in Lake Ladora and Lake Mary, respectively, illustrate the analytes detected within or above their indicator levels. 1,1,1-Trichloroethane, methylene chloride, dibromochloropropane, organochlorine pesticides, cadmium, chromium, copper, lead, zinc, and arsenic were detected in the samples from Site 2-17 (Tigures 2-17-II-la and lb). For purposes of comparison, the analytes detected within or above their indicator levels during the Phase I program are also presented in Figures 2-17-II-la and 1b. At Site 2-17, both Phase I and Phase II programs used the same methods of analysis and detection limits for volatile organics, ICP metals, arsenic, and mercury so the resulting data were directly comparable; however, volatile halogenated organics, organochlorine pesticides, and volatile hydrocarbon compounds were also analyzed by more sensitive methods in the Phase II program, enabling detection of these compounds at lower concentrations than by the GC/MS method. No nontarget compounds were detected by GC/MS analysis of samples from Site 2-17, and no hits were detected in any of the blanks.

The data reporting procedures as described in the Laboratory Quality Assurance Plan, RMA (Ebasco, 1985/RIC 86241RO2) required that all analyses on a sample be completed within the sample's respective holding time, and that analytical results be corrected for percent recovery and moisture content. During routine sample analysis, analytical results must either have fallen within or have been diluted within the certified range, provided that holding times had not expired.

During laboratory certification, an analytical method was tested over a certain concentration range to determine the certified range. A typical tested concentration range would have been 0, 0.5x, 1.0x, 2.0x, 5.0x, and 10.0x, where x was the Target Reporting Limit (TRL). The Certified Reporting

Legend ಄ Phase I boring (5) • ³⁰ Phase I boring with total deptr (ft.) drilled Analyte 3.1—Level(ug.分) Interval 2-3 Aldrin 0.020 (f t.) Phase II analytes detected by different method-see text TCLEE Tetrach.proethylene DBCP Dibromachloropropane **PPDDE** 2,2 - t s (Para - chlorophenyl) -1,1- = chloroethane 2,2 - bis Para - chloropheny!) -PPDDT 1,1. - trichloroethane CH2CL2 Methylete chloride BIL Below -sicotor Level

Methy: sobutyl Ketone

Compose of 1'-2' and 2'-3 Samples

MIBK

*

nager's Office for ain Arsenal Cleanup oving Ground, Maryland Phase I and Phase II Analytes
Detected Within or Above
Indicator Levels, Lake Ladora
Rocky Mountain Arsenal, Task 20
Prepared by: Ebasco Services Incorporated

Prepared for:

Program Manager's Office for Rocky Mountain Arsenal Cleanup Aberdeen Proving Ground; Maryland

Drafted: 6/10/88

FIGURE 2-17-11-16

Phase I and Phase II Analytes
Detected Within or Above Indicator
Levels, Lake Mary

Rocky Mountain Arsenal, Task 20

Prepared by: Ebasco Services Incorporated

Limit (CRL) was determined by comparing the target and actual concentrations of the tested range. The upper certified range was the highest target concentration achieved. If a sample analysis indicated that the sample was not diluted adequately to be within the certified range, the result was reported as greater than the upper certified range times any dilution factors.

If a sample had exceeded its holding time and the result was greater than the certified range, the result was reported as greater than the upper certified range. If holding times were exceeded in an attempt to dilute the sample until all results were within the certified range, results that were not identified above the certified range, but that may have been present at concentrations above the certified detection limit, were reported as the detection limit times the dilution factor.

Results of the Phase II sampling program at Site 2-17 are to be analyzed as part of the overall analysis for the Southern Study Area Report.5.0

REFERENCES CITED

RIC 86241R02

Ebasco (Ebasco Services Incorporated). 1985, August. Rocky Mountain Arsenal Procedures Manual to Technical Plan. Contract No. DAAK11-84-D-0017.

RIC 87216R07

Ebasco. 1987, July. Final Phase I Contamination Assessment Report; Site 2-17, Lake Ladora and Lake Mary; Version 3.2; Task 7. Contract No. DAAK11-84-D-0017. Prepared for Program Manager's Office for Rocky Mountain Arsenal Contamination Cleanup.

RIC 88204R02

ESE. (Environmental Science and Engineering). 1987. Introduction to the Contamination Assessment Report. RMA. Prepared for PMO for Rocky Mountain Arsenal Contamination Cleanup.

Appendix 2-17- II-A

Chemical Names
and
Abbreviations

APPENDIX 2-17-II-A Chemical Names and Abbreviations

Analytic Methods	Abbreviations
Atomic Absorption Spectroscopy	AA
Gas Chromatography/Conductivity Detector	GCCON
Gas Chromatography/Electron Capture Detector	GCECD
Gas Chromatography/Flame Ionization Detector	GCFID
Gas Chromatography/Flame Photometric Detector	GCFPD
Gas Chromatography/Mass Spectrometry	GCMS
Gas Chromatography/Nitrogen Phosphorous Detector	GCNPD
Gas Chromatography/Photoionization Detector	GCPID
High Performance Liquid Chromatography	HPLC
Inductive Coupled Argon Plasma Screen	ICP
Ion Chromatography	IONCHROM
Spectraphotometry	SPECT

PHASE I ANALYTES AND CERTIFIED METHODS SOIL SAMPLES

Analysis/Methods/Analytes	Synonymous Names Used in Appendix B	Abbreviations
AGENT PRODUCTS/HPLC		TDG
Chloroacetic acid	Chloroacetic acid	CLC2A
Thiodiglycol	Thiodiglycol (TDG)	TDGCL
		15002
AGENT PRODUCTS/IONCHROM		GBDP
Isopropylmethylphosphonic	Isopropylmethylphosphonate	IMPA
acid		
ANIONS/IONCHROM		ANTONO
Chloride	Chloride	ANIONS
Fluoride	Fluoride	<u>C</u> L
Sulfate	Sulfate	FL
parrace	Sullate	\$04
ARSENIC/AA	Arsenic	AS
		WE
DIBROMOCHLOROPROPANE/GCECD	Dibromochloropropane	DBCP
######################################		
HYDRAZINES/SPECT		НYD
Hydrazine	Hydrazine	HYDRZ
Methylhydrazine;	Methylhydrazine	MHYDRZ
Unsymmetrical dimethyl	Unsymmetrical dimethyl	
hydrazine	hydrazine	UDMH
MERCURY/AA	Mercury	
	nercury	<u>HG</u>

APPENDIX 2-17-II-A (Continued) Phase I

Analysis/Methods/Analytes	Synonymous Names Used in Appendix B	Abbreviations
METALS/ICP		ICP
Cadmium	Cadmium	CD
Chromium	Chromium	CR
Copper	Copper	CU
Lead	Lead	PB
Zinc	Zinc	ZN
ORGANONITROGEN COMPOUNDS/GCNPD		ONC
n-Nitrosodimethylamine	n-Nitrosodimethylamine	NNDMEA
n-Nitrosodi-n-propylamine	n-Nitrosodi-n-propylamine	NNDNPA
ORGANOPHOSPHOROUS COMPOUNDS/GCFPD		OPC
Diisopropylmethyl phosphonate	Diisopropylmethyl phosphonate	DIMP
Dimethylmethyl phosphonate	Dimethylmethyl phosphate	DMMP
SEMIVOLATILE ORGANIC COMPOUNDS/		
GCMS		svo
1,4-0xathiane	1,4-0xathiane	TAXO
2,2-bis(Para-chlorophenyl)-	Dichlorodiphenylethane	PPDDE
1,1-dichloroethane		
2,2-bis(Para-chlorophenyl)-	Dichlorodiphenyltrichloro-	PPDDT
1,1,1-trichloroethane	ethane	
Aldrin	Aldrin	ALDRN
Atrazine	Atrazine	ATZ
Chlordane	Chlordane	CLDAN
Chlorophenylmethyl sulfide	p-Chlorophenylmethyl sulfide	CPMS
Chlorophenylmethyl sulfone	p-Chlorophenylmethyl sulfone	CPMS02
Chlorophenylmethyl sulfoxide	p-Chlorophenylmethyl sulfoxide	CPMSO
Dibromochloropropane	Dibromochloropropane	DBCP
Dicylopentadiene	Dicyclopentadiene	DCPD
Dieldrin	Dieldrin	DLDRN
Diisopropylmethyl phosphonate	Diisopropylmethyl phosphonate	DIMP
Dimethylmethyl phosphonate	Dimethylmethyl phosphonate	DPMP*
Dithiane	Dithiane	DITH
Endrin	Endrin	ENDRN
Hexachlorocyclopentadiene	Hexachlorocyclopentadiene	CL6CP
Isodrin	Isodrin	ISODR
Malathion	Malathion	MLTHN
Parathion	Parathion	PRTHN
Supona	2-Chloro-1 (2,4-dichlorophenyl)	SUPONA
-	vinyldiethyl phosphates	
Vapona	Vapona	DDVP

^{*} DMMP is certified as part of the semivolatile organic compound method only for Hittman-Ebasco Laboratory.

APPENDIX 2-17-II-A (Continued) Phase I

Analysis/Methods/Analytes	Synonymous Names Used in Appendix B	Abbreviations
VOLATILE ORGANIC COMPOUNDS/		
1,1-Dichloroethane	1 1 Disklamaskkans	<u>vo</u>
1,2-Dichloroethane	1,1-Dichloroethane	11DCLE
	1,2-Dichloroethane	12DCLE
1,1,1-Trichloroethane	1,1,1-Trichloroethane	111TCE
1,1,2-Trichloroethane	1,1,2-Trichloroethane	112TCE
Benzene	Benzene	С6Н6
Bicycloheptadiene	Bicycloheptadiene	BCHPD
Carbon tetrachloride	Carbon tetrachloride	CCL4
Chlorobenzene	Chlorobenzene	CLC6H5
Chloroform	Chloroform	CHCL3
Dibromochloropropane	Dibromochloropropane	DBCP
Dicyclopentadiene	Dicyclopentadiene	DCPD
Dimethyldisulfide	Dimethyldisulfide	DMDS
Ethylbenzene	Ethylbenzene	ETC6H5
m-Xylene	m-Xylene	13DMB
Methylene chloride	Methylene chloride	CH2CL2
Methylisobutyl ketone	Methylisobutyl ketone	MIBK
o- and p-Xylene	Ortho- & Para-xylene	XYLEN
Tetrachloroethylene	Tetrachloroethene	TCLEE
Toluene	Toluene	
Trans-1,2-dichloroethylene	00-000	MEC6H5
	Trans-1,2-dichloroethene	12DCE
Trichloroethylene	Trichloroethene	TRCLE

APPENDIX 2-17-II-A Phase II

PHASE II ANALYTES AND CERTIFIED METHODS SOIL SAMPLES

	Synonymous Names Used	
Analysis/Methods/Analytes	in Appendix B	Abbreviations
AGENT PRODUCTS/HPLC (Same as Phase I)		IDG
AGENT PRODUCTS/IONCHROM (Same as Phase I)		GBDP
ANIONS/IONCHROM (Same as Phase I)		ANIONS
ARSENIC/AA	Arsenic	AS
DIBROMOCHLOROPROPANE/GC	Dibromochloropropane	DBCP
HYDRAZINES/SPECT (Same as Phase I)		HXD
MERCURY/AA	Mercury	<u>HG</u>
METALS/ICP (Same as Phase I)		ICP
ORGANOCHLORINE PESTICIDES/GCECD 2,2-bis(Para-chloropheny1)- 1,1-dichloroethane	Dichlorodiphenylethane	OCP PPDDE
2,2-bis(Para-chloropheny1)- 1,1,1-trichloroethane	Dichlorodiphenyltrichloro- ethane	PPDDT
Aldrin	Aldrin	ALDRN
Chlordane	Chlordane	CLDAN
Dieldrin	Dieldrin	DLDRN
Endrin	Endrin	ENDRN
Hexachlorocyclopentadiene	Hexachlorocyclopentadiene	CL6CP
Isodrin	Isodrin	ISODR
ORGANONITROGEN COMPOUNDS/GCNPD (Same as Phase I)		ONC
ORGANOPHOSPHOROUS COMPOUNDS/GCFPD (Same as Phase I)		OPC

APPENDIX 2-17-II-A (Continued) Phase II

Analysis/Methods/Analytes	Synonymous Names Used in Appendix B	Abbreviations
ORGANOPHOSPHORUS PESTICIDES/		077
GCNPD Atrazine	Atrazine	<u>OPP</u> ATZ
Malathion	Malathion	MLTHN
Parathion	Parathion	PRTHN
Supona	2-Chloro-1 (2,4-dichlorophenyl) vinyldiethyl phosphates	
Vapona	Vapona	DDVP
ORGANOSULPHUR COMPOUNDS/GCFPD		osc
1,4-0xathiane	1,4-0xathiane	OXAT
Chlorophenylmethyl sulfide	p-Chlorophenylmethyl sulfide	CPMS
Chlorophenylmethyl sulfone	p-Chlorophenylmethyl sulfone	CPMS02
Chlorophenylmethyl sulfoxide	p-Chlorophenylmethyl sulfoxide	CPMS0
Dimethyldisulfide	Dimethyldisulfide	DMDS
Dithiane	Dithiane	DITH
SEMIVOLATILE ORGANIC COMPOUNDS/		
(Same as Phase I)		<u>svo</u>
VOLATILE AROMATIC ORGANIC COMPOUNDS/GCPID Benzene Ethylbenzene m-Xylene o- and p-Xylene Toluene	Benzene Ethylbenzene m-Xylene Ortho- & Para-xylene Toluene	VAO C6H6 ETC6H5 13DMB XYLEN MEC6H5
VOLATILE HALOGENATED ORGANIC		
COMPOUNDS/GCCON		<u>VHO</u>
1,1-Dichloroethane	1,1-Dichloroethane	11DCLE
1,2-Dichloroethene	1,2-Dichloroethane	1 2DCLE
1,1-Dichloroethene	1,1-Dichloroethene	11DCE
1,1,1-Trichi@roethane	1,1,1-Trichloroethane	111TCE
1,1,2-Trichloroethane	1,1,2-Trichloroethane	112TCE
Carbon tetrachloride	Carbon tetrachloride	CCL4
Chlorobenzene	Chlorobenzene	CLC6H5
Chloroform	Chloroform	CHCL3
Methylene chloride	Methylene chloride	CH2CL2
Tetrachloroethylene	Tetrachloroethene	TCLEE
Trans-1,2-dichloroethylene	Trans-1,2-dichloroethene	T12DCE
Trichloroethylene	Trichloroethene	TRCLE

APPENDIX 2-17-II-A (Continued) Phase II

Analysis/Methods/Analytes	Synonymous Names Used in Appendix B	Abbreviations
VOLATILE HYDROCARBON COMPOUNDS/ GCFID		HYDCBN
Bicycloheptadiene	Bicycloheptadiene	BCHPD
Dicyclopentadiene	Dicyclopentadiens	DCPD
Methylisobutyl ketone	Methylisobutyl ketone	MIBK
VOLATILE ORGANIC COMPOUNDS/GCMS (Same as Phase I)		<u>vo</u>

Appendix 2-17- II-B

Phase II Chemical Data

APPENDIX 2-17-II-B Phase II Chemical Data

The analytical results of the laboratory analysis of soil samples collected as part of the program comprise the first part of Appendix 2-17-II-B. Data are listed sequentially by boring number and successive depths below the surface. Within each depth, all analytes for which the samples were tested are listed alphabetically. Results are given as less than (LT) the detection limit for the test laboratory, or as detected concentrations above this limit. Based on the accuracy of laboratory test methods, values for GC/MS volatile and GC/MS semivolatile compounds are considered accurate to one significant figure; values for analytes detected by all other methods used in this program are considered accurate to two significant figures.

The second part of Appendix 2-17-II-B contains data from the blanks associated with the analytical work. Blanks for the soil samples were based on a homogenized subsample of composited samples from a known uncontaminated soil that is stratigraphically similar to the RMA soils. Blanks for the water samples were based on distilled water. Control samples, or blanks, are introduced into the train of environmental samples to function as monitors on the performance of the analytical method. These samples function as quality control (QC) samples, and are an integral part of the quality assurance (QA) program for the project. The method blanks listed in this Appendix were utilized to verify that the laboratory was not a source of sample contamination. If contamination were detected in a method blank, corrective actions would have been taken to assure that reported concentrations of target analytes reflected sample analytes, and not analytes introduced by the laboratory process.

Phase II Analytical Results

Lake Ladors and Lake Mary

Task 20 , Site 2-17

Number	Depth (ft)	Type	Analytical Parameters	Results		Units	Number	
0024	0.3-1.3	Soil	1,1,1-Trichloroethane			0/00	CY0011	
			1,1,2-Trichloroethane		-1 -1	0/00	CY0011	
			1,1-Dichloroethene			0/00	CY0011	
			1.1-Dichloroethane	LT 7.40	7 0	0/00	CY0011	
			1,2-Dichloroethene	LT 2.60	7	0/00	CY0011	
			1.2-Dichloroethane	LT 8.50		0/00	CY0011	
			Aldrin	LT 1.90		0/00	CYND13	\
			Bicycloheptadiene		0	0/0n	CYP011	
			Carbon Tetrachloride	LT 1.20	•	0/00	CY0011	
			Methylene Chloride	LT 3.70	0	0/60	CY0011	
			Chloroform	LT 6.80		0/00	CY0011	
			Hexachlorocyclopentadiene	LT 1.80	5- O	0/00	CYN013	
			Chlorobenzene			0/00	CY0011	
			Chlordane		2- 0	0/00	CYN013	
			Dicyclopentadiene	LT 4.50		0/00	CYP011	
			Dieldrin	LT 3.30		0/00	CYND13	
			Endrin	LT 5.80	£- 0	0/00	CYN013	
			Isodrin	LT 1.10		0/00	CYN013	
			Methylisobutyl Ketone	LT 6.40		0/00	CYPO11	
			Dichlorodiphenylethane	5.46		0/00	CYND13	
			Dichlorodiphenyltrichloro-	LT 2.00	S- 0	B/00	CYN013	
			Tetnerh oncethens	17 2 70	1	0/01	CYOO1	
			Trichloroethene			0/00	CY0011	
0024	2-3	Soil	1.1.1-Trichloroethane	LT 8.80	-2	0/00	CY0012	
			1.1.2-Trichloroethane	LT 2.60		0/00	CY0012	
			1,1-Dichloroethene	LT 2.40		0/00	CY0012	
			1.1-Dichloroethene			0/00	CY0012	
	•		1,2-Dichloroethene	LT 2.60	77	0/00	CY0012	
			1,2-Dichloroethane	LT 8.50		0/00	CY0012	
			Aldrin	LT 1.90	•	0/00	CYN014	
			Bicycloheptadiene			0/00	CYP012	
			Carbon Tetrachloride	LT 1.20	.o -1	0/00	CY0012	
			Methylene Chloride	LT 3.70		0/05	CY0012	

۲.

()

Ebasco Services Inc	vices Incorporated	eted	Rocky Mountain Arsenal Program	1 Program		08/02/8
Phase II Analytical	nalytical Results	ilts	Task 20 , Site 2-17 Lake	Lake Ladora and Lake Mary	<u>}</u>	
Boring	Depth (ft)	Sample	Analytical Parameters	Results	Units	Sample Number
0024	2-3	Soil	Chloroform Hexachlorocyclopentadiene		0/00	CY0012 CYN014
			Chlorobenzene Chlordane Dicyclopentadiene	LT 2.00 -1 LT 2.30 -2 LT 4.50 -1	0 0 0	CY0012 CYN014 CYP012
			Dieldrin	LT 3.30 -3	0/00	CYN014
			Erdrin Teodrin	5.80	0 0/0 0 0	CYN014
			Methylisobutyl Ketone Dichlorodiphenylethane	6.40		CYP012 CYN014
			Dichlorodiphenyltrichloro-	LT 2.00 -3	0/00	CYND14
			etnane Tetrachloroethene Trichloroethene	LT 2.70 -1 LT 1.40 -1	0/0n	CY0012 CY0012
0024	3.3-6.3	5011	1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene	LT 8.80 -2 LT 2.60 -1 LT 2.40 -1 LT 7.40 -2 LT 2.60 -1	00000	CY0013 CY0013 CY0013 CY0013
			1,2-Dichloroethane Aldrin Bicycloheptadiene Carbon Tetrachloride Methylene Chloride	LT 8.50 -2 LT 1.90 -3 LT 1.10 0 LT 1.20 -1 LT 3.70 0	00000	CY0013 CY0015 CY0013 CY0013
	. ,		Chloroform Hexachlorocyclopentadiene Chlorobenzene Chlordane Dicyclopentadiene	LT 6.80 -2 LT 1.80 -3 LT 2.00 -1 LT 2.30 -2 LT 4.50 -1	00000	CY0013 CY0013 CY0013 CYN015 CYP013
			Dieldrin Endrin Isodrin Methylisobutyl Ketone Dichlorodiphenylethane	LT 3.30 -3 LT 5.80 -3 LT 1.10 -3 LT 6.40 -1 LT 2.40 -3	0 0 0 0 0	CYND15 CYND15 CYND13 CYP013

Note: Results for some parameters may appear in more than one analytical fraction.

	Tosk
Incorporated	Results
Services Inc	[Analytical
Ebasco S	Phase II

Depth (ft)

Boring Number 3,3-4,3

0024

0-1

0025

ted	Rocky Mountain Arsenal Program	F07			08/05/88
t s	Task 20 , Site 2-17 Lake Ladora and Lake Mary	brie .	Loke Ma	ì	
Sample	Analytical Parameters	8	Results	Units	Sample Number
Sof 1	Dichlorodiphenyltrichloro-	ב	2.00 -3	0/00	CYN015
	ethane Tetrachloroethere Trichloroethere	בַּ	2.70 -1	0/00	C) J013
		;			
Sof1	1,1,1-Trichloroethane		3.00 -1	0/00	CYL002
	1.1.Z-Irichloroethane	ב' ב			CYL002
	1,2-Dichloroethene	ב			CYLOD2
	1,2-Dichloroethane	ב	3.00 -1		CYL002
	S-X-I	L	7.00 -1	0/00	CYLD02
	Aldrin	-	9		CXXO10
	Bicycloheptadiene	1	3.00 -1		CAL002
	Benzene	۲		0/00	CYL002
	Carbon Tetrachloride	ב	3.00 -1	0/60	CVL002
	Methylene Chloride		1.64 0	0/00	CYL 002
	Chloroform	٦	3.00 -1		CYL002
	Chlorobenzene	ר			CYL002
	Chlordane	_	2.30 -2		CXX010
	Dibromochloropropane	ר			CXM007
	Dibromoch lonopropane	-	4.00 -1	0/00	CYL002
	Dicyclopentadiene	_	8		CYLOD2
	Dieldrin	٦			CXXO10
	Dimethyldisulfide	ב	8.00 -1	0/00	CVL002
	Endrin	ר			CXXO10
	Ethylbenzene	-1	3.00 -1	0/00	CYL002
	Isodrin	۲		0/00	CXX010
	Toluene	-			CYL002
	Methylisobutyl Ketone	_	3.00 -1	0/00	CYL002
	Dichlorodiphenylethane	ב	2.40 -3	0/00	cxx010
	Dichlorodiphenyltrichloro-	רַ	2.00 -3	0/00	CXXO10
	ethane Tethachloroethene	-1	3.00 -1	0/00	CYL002
	Trichloroethene	ב	3.00 -1		CAL.002
	Ortho- & Para-Xylene	ר	3.00 -1		CVL 002

ो

· ·

_

Ebasco Services Incorporated

•
J
*
•
_
_
•
ב
2
ō
•
_
6
Ĺ
ō
¥
g
G
7
~
•
J
*
0
_
~
-
,

Lake Ladora and Lake Mary	
Tesk 20 , Site 2-17	
Phase II Analytical Results	

Soil 1,1,1-Trichloroethane LT 3.00 1 us/g CYLD03 1,1,2-Dichloroethane LT 3.00 -1 us/g CYLD03 1,1-Dichloroethane LT 3.00 -1 us/g CYLD03 1,2-Dichloroethane LT 3.00 -1 us/g CYLD03 Aldrin B.Cycloheptadiene LT 3.00 -1 us/g CYLD03 Benzene LT 3.00 -1 us/g CYLD03 Carbon Tetrachloride LT 3.00 -1 us/g CYLD03 Chloroforme Dibromochloropropene LT 3.00 -1 us/g CYLD03 Discoloroproperate LT 3.00 -1 us/g CYLD03 Discoloropentant	1		Analytical Parameters	ě	Results	Chits	Number
LT 3.00 -1 09/9	Ó	110	1,1,1-Trichloroethane	5!		0/00	CYLDO3
LT 3.00 -1 ug/g			1,1,2-Irichioroethene	<u>.</u>		0 (0)	CYLOO3
LT 3.00 -1 ug/g LT 7.00 -1 ug/g LT 3.00 -1 ug/g LT 5.00 -1 ug/g			1.2-Dichloroethene	<u>בי</u>		0/07	CYLOGS
LT 7.00 -1 ug/g LT 3.00 -1 ug/g LT 2.30 -1 ug/g LT 2.30 -1 ug/g LT 2.30 -1 ug/g LT 3.00 -1 ug/g			1,2-Dichloroethane	בו		0/00	CYLOO3
LT 1.90 -3 u9/9 LT 3.00 -1 u9/9 LT 5.00 -1 u9/9			s-Xylene	-1		0/00	CYLDOS
LT 3.00 -1 u9/9 LT 2.30 -2 u9/9 LT 2.30 -1 u9/9 LT 3.00 -1 u9/9			Aldrin	ב		0/00	CXX011
LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 2.30 -1 ug/g LT 2.30 -1 ug/g LT 3.00 -1 ug/g			Bicycloheptadiene	11		0/00	CYLDOS
LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 2.30 -1 ug/g LT 2.30 -1 ug/g LT 2.00 -1 ug/g LT 3.00 -1 ug/g			Benzene	ב		0/00	CYLOO3
1.47 0 ug/g LT 3.00 -1 ug/g LT 2.30 -1 ug/g LT 2.30 -2 ug/g LT 2.00 -3 ug/g LT 3.00 -1 ug/g LT 2.00 -3 ug/g LT 2.00 -1 ug/g LT 3.00 -1 ug/g			Carbon Tetrachloride	ר		0/00	CYL003
LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 2.30 -1 ug/g LT 5.00 -3 ug/g LT 5.00 -1 ug/g LT 3.00 -1 ug/g LT 5.80 -1 ug/g LT 5.80 -1 ug/g LT 5.80 -1 ug/g LT 5.00 -1 ug/g			Methylene Chloride			0/00	CYLOO3
LT 3.00 -1 ue/e LT 2.30 -2 ue/e LT 2.30 -2 ue/e LT 3.00 -1 ue/e LT 2.00 -3 ue/e LT 2.00 -1 ue/e LT 2.00 -1 ue/e LT 3.00 -1 ue/e			Chloroform	ר		0/00	CVL DO3
LT 2.30 -2 ug/g LT 5.00 -3 ug/g LT 5.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 5.00 -1 ug/g LT 2.00 -1 ug/g LT 2.00 -1 ug/g LT 2.00 -1 ug/g LT 3.00 -1 ug/g			Chlorobenzene	-		0/00	CYLOO3
LT 5.00 -3 ug/g LT 4.00 -1 ug/g LT 3.00 -1 ug/g LT 5.00 -1 ug/g			Chlordane	רן		6/6n	CXX011
LT 4.00 -1 ue/e LT 3.00 -1 ue/e LT 3.30 -1 ue/e LT 5.30 -1 ue/e LT 5.30 -1 ue/e LT 5.00 -1 ue/e LT 1.10 -3 ue/e LT 3.00 -1 ue/e LT 2.40 -3 ue/e LT 2.40 -3 ue/e LT 2.00 -1 ue/e LT 2.00 -1 ue/e LT 3.00 -1 ue/e			Dibromochloropropane	ב		B/BN	CXMOOS
LT 3.00 -1 u9/9 LT 3.30 -3 u9/9 LT 5.30 -1 u9/9 LT 5.30 -1 u9/9 LT 5.30 -1 u9/9 LT 1.10 -3 u9/9 LT 3.00 -1 u9/9 LT 2.40 -3 u9/9 LT 2.00 -1 u9/9 LT 3.00 -1 u9/9 LT 3.00 -1 u9/9 LT 3.00 -1 u9/9 LT 3.00 -1 u9/9			Dibromochloropropane	ב		0/00	CYLOO3
LT 3.30 -3 u6/6 LT 8.00 -1 u9/9 LT 5.80 -1 u6/9 LT 1.10 -3 u6/6 LT 3.00 -1 u6/9 LT 2.40 -3 u6/9 LT 2.00 -1 u6/9 LT 2.00 -1 u6/9 LT 3.00 -1 u6/9 LT 3.00 -1 u6/9 LT 3.00 -1 u6/9 LT 3.00 -1 u6/9			Dicyclopentadiene	ב		6/6n	CYLOD3
LT 8.00 -1 09/9 LT 5.80 -3 09/9 LT 5.80 -1 09/9 LT 1.10 -3 09/9 LT 3.00 -1 09/9 LT 2.40 -3 09/9 LT 2.00 -1 09/9 LT 3.00 -1 09/9 LT 3.00 -1 09/9 LT 3.00 -1 09/9			Dieldrin	ב		0/00	CXX011
LT 5.80 -3 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 2.40 -3 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g			Dimethyldisulfide	ב		0/00	CYLDO3
oro- LT 3.00 -1 u9/9 LT 3.00 -1 u9/9 LT 2.40 -3 u9/9 LT 2.00 -3 u9/9 LT 2.00 -1 u9/9 LT 3.00 -1 u9/9 LT 3.00 -1 u9/9 LT 3.00 -1 u9/9			Endrin	ב		B/Bn	CXX011
oro- LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 2.40 -3 ug/g LT 2.00 -3 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g			Ethylbenzene	ב		0/8 0	CYLOO3
oro- LT 3.00 -1 u9/9 LT 3.00 -1 u9/9 LT 2.40 -3 u9/9 LT 2.00 -3 u9/9 LT 3.00 -1 u9/9 LT 3.00 -			Isodrín	ב		0/00	CXX011
oro- LT 2.40 -3 ug/g LT 2.00 -3 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g			Toluene	ר		0/00	CYLDD3
oro- LT 2.00 -3 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g			Methylisobutyl Ketone	ר		0/00	CYLOO3
LT 2.00 -3 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g ene LT 3.00 -1 ug/g			Dichlorodiphenylethane	ב		0/00	CXXD11
LT 3.00 -1 ug/g LT 3.00 -1 ug/g ene LT 3.00 -1 ug/g			Dichlorodiphenyltrichloro-	נו		0/00	CXXD11
LT 3.00 -1 ug/g LT 3.00 -1 ug/g ene LT 3.00 -1 ug/g			ethane				
A Para-Xylene LT 3.00 -1 us/s			Tetrachloroethene	ב		0/00	CYLOO3
& Para-Xylene LT 3.00 -1 ug/g			Ti-1chloroethene	ב		0/00	CYLDO3
			Ortho- & Para-Xylene	ב		0/0n	CYLDOS
			1,1,2-Trichloroethane	L	3.00 -1	0/00	CYLOO4
ane LT 3.00 -1 ug/g			1.1-Dionosthans	•			2

Note: Results for some parameters may appear in more than one analytical fraction.

€.

(

Lake Ladora and Lake Mary

Sample Results Units Number		3.00 -1 us/s CYL004	7.00 -1 ug/g CYLDO4	1.90 -3 ug/g CXX012	3.00 -1 ua/a CYLOO4	-1 ua/a	3.00 -1 ug/g CYLOO4		-1 ug/g	3.00 -1 ug/g CYLOO4	2.30 -2 ug/g CXXD12	5.00 -3 ug/g CXW009	4.00 -1 ug/g CYLO04		3.30 -3 ug/g CXXD12		5.80 -3 ug/g CXX012	-1 ug/g	5.00 -2 ug/g CXY011	r)	3.00 -1 ug/g CYL004	3.00 -1 ug/g CYLOO4		2.00 -3 ug/g CXXO12	3.00 -1 ug/g CYL004	3.00 -1 ug/g CYLO04	3.00 -1 ug/g CYLOO4	-1 ue/e	3.90 -1 ug/g CYSD02	0/00 0	1.70 0 ug/g CYS002	•
Resi	נל		֝֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡		5		ב			5	:	ב ב			;;		ב		ב			ב		5	5	נ	נו					
Analytical Peremeters	1,2-Dichloroethene	1,2-Dichloroethane	m-Xylene	Aldrin	Bicycloheptadiene	Benzene	Carbon Tetrachloride	Methylene Chloride	Chloroform	Chlorobenzene	Chlordene	Dibromochloropropane	Dibromochloropropane	Dicyclopentadiene	Dieldrin	Dimethyldisulfide	Endrin	Ethylbenzene	Mercury	Isodrin	Toluene	Methylisobutyl Ketone	Dichlorodiphenylethane	Dichlorodiphenyltrichloro-	Tetrachloroethene	Trichloroethene	Ortho- & Pars-Xylene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethene	
Sample	\$011																											Sof1				
Depth (ft)	3.9-4.9																											0-1				
Boring Number	0025																											0026				

·. .

``)

۲,

Ebasco Services Incorporated

Rocky Mountain Arsenal Program

Semple Number	CYSD02	CYMOOS	CYS002	CYS002	CY8002	CY\$002	CYS002	CYS002	CYMOOS	CY5002	CYVOOS	CY8002	CYMOOS	CY\$002	CYMOOS	CYS002	CYMODS	CYS002	CYS002	CYMOOS	CYMOOS		CYS002	CY\$002	CY\$002	CY\$003	CY\$003	CYS003	CYS003	CYS003	CYS003	CYMODE	7000
Unita	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00		0/00	0/00	0/00	0/00	0/07	0/00	D/00	0/00	0/00	0/00	0/01
Results					2.50 -1	1.50 0	2.90 -1		١		1.40 -2		3.81 -3		8.76 -3		1.10 -3	2.50 -1	7.30 -1	4.59 -3	1.50 -1			•	4.90 0		3.90 -1		1.70 0	5.60 -1	7.40 -1	2	
ž.	1	ļ	- 1	֖֖֖֖֖֖֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֡֓֡֓֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡֡֡	בֿ	ב	ב	רז	. 1.	ב	ב	-1		ב		ב	ב	L	ב				ב	L1	ב	LT	_	ב	-1	ב	5		
Analytical Perameters	M-Xylene	Aldrin	Bicycloheptadiene	Benzene	Carbon Tetrachloride	Methylene Chloride	Chloroform	Chlorobenzene	Chlordene	Dibromochloropropane	Dibromochloropropene	Dicyclopentadiene	Dieldrin	Dimethyldisulfide	Endrin	Ethylbenzene	Isodrin	Toluene	Methylisobutyl Ketone	Dichlorodiphenylethane	Dichlorodiphenyltrichloro-	ethane	Tetrachloroethene	Trichloroethene	Ortho- & Para-Xylene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethene	1,2-Dichloroethane	3-X×1000	Aldrin	
Sample	Soil																									5011							
Depth (ft)	0-1																							•		2-3					,		•
Boring	0026				•																					0026							

Note: Results for some parameters may appear in more than one analytical fraction.

(

Ebasco Serv	Ebasco Services Incorporated	ated	Rocky Mountain Arsenal Program	Program			08/02/88
Phase II Analytical	œ	esults	Task 20 , Site 2~17 Lake Li	adora an	Lake Ladora and Lake Mary	}	
Boring Number	Depth (ft)	Sample	Analytical Parameters	e l	Results	Units	Sample Number
0026	۵- د	Sofl	Carbon Tetrachloride Methylene Chloride Chloroform Chlorobenzene Chlordane	ללללל	2.50 -1 1.50 0 2.90 -1 1.50 0	00000	CYS003 CYS003 CYS003 CYS003 CYS003
			Dibromochloropropane Dibromochloropropane Dicyclopentadiene Dieldrin Dimethyldisulfide	ב בבבב	2.40 1.40 -2 6.40 -1 4.53 -3 2.00 1	000000	CYSDD3 CYWDD6 CYSDD3 CYMDD6 CYSDD3
			Ethylbenzene Isodrin Toluene Methylisobutyl Ketone Dichlorodiphenyltrichloro- ethane Tetrachloroethene Trichloroethene Ortho- & Para-Xylene	: dd	28.17. 2.2. 2.2. 2.2. 2.2. 2.2. 2.2. 2.2.		CYSOO3 CYBOO6 CYBOO6 CYBOO6 CYBOO6 CYSOO3 CYSOO3 CYSOO3
9009	4 N	9011	1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane M-Xylene Aldrin Bicycloheptadiene Benzene Carbon Tetrachloride Chloroform		3. 30 1. 70 1. 70 1. 70 1. 70 1. 70 1. 90 1. 90 1. 90 1. 50 1. 50		CYSOO4 CYSOO4 CYSOO4 CYSOO4 CYSOO4 CYSOO4 CYSOO4 CYSOO4 CYSOO4 CYSOO4 CYSOO4

3

<u>^`)</u>

~

Phase II Analytical Results

<u>`</u>
Σ
Leke
D
Ladora
LOKO
2-17
Site
20
188¥

Semple Number	CY8004 CYW007 CY8004 CYV007	CYS004 CYM007 CYS004	CYM007 CYS004 CXY014	CYM007 CYSD04 CYMD07 CYMD07 CYMD07	CYSD04 CYSD04 CYSD04	CYS005 CYS005 CYS005 CYS005 CYS005	CY\$00\$ CY\$00\$ CY\$00\$ CY\$00\$ CY\$00\$	CYS005 CYS005 CYS005 CYS005 CYS005
Units	9 9 9 9	0 00	000	00000	000		00000	00000
Results	LT 1.50 0 LT 2.30 -2 LT 2.40 0	3.30	8. 50 0. 00 0. 00	LT 1.10 -3 LT 2.50 -1 LT 2.40 -1 LT 2.60 -3 LT 2.00 -3	LT 2.50 -1 LT 5.40 -1 LT 4.90 0	LT 6.30 -1 LT 3.90 -1 LT 1.70 0 LT 1.70 0 LT 5.60 -1	LT 7.40 -1 LT 3.60 -1 LT 2.50 -1 LT 2.50 -1 LT 1.50 0	LT 2.90 -1 LT 1.50 0 LT 2.40 0 LT 6.40 -1 LT 2.00 1
Analytical Parameters	Chlorobenzene Chlordane Dibromochloropropane	Dicyclopentadiene Dieldrin Dimethyldisulfide	Endrin Ethylbenzene Mercury	Isodrin Toluene Methylisobutyl Ketone Dichlorodiphenylethene Dichlorodiphenyltrichloro- ethene	Tetrachloroethene Trichloroethene Ortho- & Pæra-Xylene	1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	m-Xylene Bicycloheptadiene Benzene Carbon Tetrachloride Methylene Chloride	Chloroform Chlorobenzene Dibromochloropropane Dicyclopentadiene Dimethyldiaulfide
Sample Type	5011					5011		
Depth (ft)	ही - -					. 6-1		
Boring	0026					0027		

íŧ

Note: Results for some parameters may appear in more than one analytical fraction.

0

Ĉ

(

Lake Ladora and Lake Mary

Type Analytical
Ethylbenzene
Methylisobutyl Ketone
Tetrachloroethene
Trichloroethene
Ortho- & Para-Xylene
1,1,1-Trichloroethane
ä
1,1-Dichloroethane
 2-Dichloroethene 2-Dichloroethane
m-Xylene
Bicycloheptadiene
Benzene
Carbon Tetrachloride
Methylene Chloride
Chloroform
Chlorobenzene
Dibromoch loropropene
Dicyclopentadiene
Ulmetny idi sultide
Ethy Ibenzene
Toluene
Methylisobutyl Ketone
Tetrachloroethene
Trichloroethene
Ortho- & Para-Xylene
1,1,1-Trichloroethane
1.1.2-Trichloroethene
1,1-Dichloroethane
1,2-Dichloroethene
1 2-Dichlonosthens

~

c

Task 20 , Site 2-17 Ebasco Services Incorporated Phase II Analytical Results

C

Lake Ladora and Lake Mary

Sample Number	CYSOO7 CYSOO7 CYSOO7 CYSOO7 CYSOO7	CYSOO7 CYSOO7 CYSOO7 CYSOO7 CYSOO7 CYSOO7 CYSOO7	CYSOO? CYSOOS CYSOOS CYSOOS CYSOOS CYSOOS	CY5008 CY5008 CY5008 CY5008 CY5008 CY5008 CY5008 CY5008 CY5008 CY5008 CY5008
Units	00000			
Results	LT 7.40 -1 LT 3.60 -1 LT 2.50 -1 LT 2.50 -1 LT 1.50 0		LT 5.30 -1 LT 6.30 -1 LT 1.30 -1 LT 1.70 0	LT 7.60 -1 LT 2.80 -1 LT 2.80 -1 LT 2.80 -1 LT 2.90 -1 LT 2.80 -1 LT 2.80 -2 LT 2.80 -2 LT 2.80 -2
Anslytical Parameters	m-Xylene Bicycloheptadiene Benzene Carbon Tetrachloride Methylene Chloride	Chloroform Chlorobenzene Dibromochloropropane Dicyclopentadiene Dimethyldisulfide Ethylbenzene Toluene Methylisobutyl Ketone	Trichloroethene Trichloroethene Ortho- & Para-Xylene 1,1,1-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	m-xylene Aldrin Bicycloheptmdiene Benzene Carbon Tetrachloride Chloroform Chlorobenzene Chlordane Dibromochloropane
Sample	Sof1		5011	
Depth (ft)	n 4-		0-1	
Boring	0027		0028	

12

Note: Results for some parameters may appear in more than one analytical fraction.

O

Ð

CYV008 CYS008

0/07 00/07

1.40 -2 6.40 -1

בב

Dibromochloropropane Dicyclopentadiene

(

•

Task 20 , Site 2-17 Phase II Analytical Results

Lake Ladora and Lake Mary

£C.	Type	Analytical Parameters Dieldrin	g	Results	Units -3 ug/g	Number Number CYMOOS
		Endrin Endrin Isodrin Toluene Methylisobutyl Ketone Dichlorodiphenylethene	בבב בבבו			60008 CYMOO8 CYMOO8 CYMOO8
		Dichlorodiphenyltrichloro- ethane Tetrachloroethene Trichloroethene Ortho- & Para-Xylene	לל ל	2.50 - 2.50 - 4.90	-3 ug/g -1 ug/g 0 ug/g	CY5008 CY5008 CY5008 CY5008
Sof 1		1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane m-Xylene Aldrin Bicycloheptadiene	5555 555!			CYT002 CYT002 CYT002 CYT002 CYT002 CYT002
		Benzene Carbon Tetrachloride Methylene Chloride Chloroform Chlorobenzene Chlordane Dibromochloropropane	ללללל לנ	08.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		CY1002 CY1002 CY1002 CY1002 CY1003 CY1002
		Dibromochloropropane Dicyclopentadiene Dieldrin Dimethyldisulfide	לללל	3.40 3.30 2.00 5.80	-2 uo/o -3 uo/o 1 uo/o -3 uo/o	CYV009 CYT002 CYW009 CYT002 CYW009

12

Ebasco Services Incorporated

Program
Arsenal
Mountain
Rocky

08/02/88

•

Tesk 20 , Site 2-17

Phase II Analytical Results

Lake Ladors and Lake Mary

Semple Number	CYTDD2 CYTDD2 CYTDD2 CYTDD2 CYMDD9 CYMDD9 CYTDD2	CYT003 CYT003 CYT003 CYT003 CYT003	CY1003 CYM010 CY1003 CY1003 CY1003 CY1003 CY1003 CY1003 CY1003 CY1003	CYV010 CYT003 CYT003 CYT003 CYT003 CXY015 CXY010
Units				00000 0000
Results	LT 3.80 -1 1.10 -3 1.1 1.10 -3 1.1 1.10 -3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	2.3 2.3 2.3 2.3 3.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	LT 7.40 -1 1.9	LT 1.40 -2 LT 5.40 -1 LT 3.30 -3 LT 2.90 1 LT 5.80 -3 LT 5.80 -1 LT 5.00 -2 LT 2.50 -1
Analytical Parameters	Ethylbenzene Isodrin Toluene Methylisobutyl Ketone Dichlorodiphenylethane Ethane Tetrachloroethene	Ortho- & Para-Xylene 1,1,1-Trichloroethane 1,1-2-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	m-Xylene Aldrin Bloycloheptadiene Benzene Carbon Tetrachloride Chloroform Chlorobenzene Chlorodene Chloromene	Dibromochloropropane Dicyclopentadiene Dieldrin Dimethyldisulfide Endrin Ethylbenzene Mercury Isodrin Toluene
Sample	Soi 1	\$011		
Depth (ft)	SS	4 N		
Boring	0028	0028		

(..

Note: Results for some parameters may appear in more than one analytical fraction.

O

()

1

Ebasco Services Incorporated Phase II Analytical Results

Task 20 , Site 2-17

Results for sime parameters may appear in more than one anilytical fraction. Note:

^

Rocky Mountain Arsenal Program

Ebasco Services Incorporated

Results Units Number	3.00 1 ug/g CXU019	1.10 -2 ug/g CXX015 7.40 -1 ug/g CXU020	-2 ug/g	.54 1 ug/g	8.78 0 ug/g cxU020	-3 ua/a	-3 ug/a	-3 ug/a	5.00 -2 u9/9 CXYU12 1.10 -3 u9/9 CXX015	1 00/0	6/60	r)	4.28 1 ug/g CXU020	-2 09/9	-1 ug/g	-2 ug/g	0/00	1.96 1 ug/g CYROOS	-2 ug/g	-3 ug/a	-3 ug/a	-3 ug/g	1.19 1 ug/g CYROOB	-2 09/0	3.71 -2 ug/g CYW011	3.58 1 ug/g CYROOB	2.18 -3 ug/g CYW012
χ. 80		1				ב	בו יב	ָבׁ!	לנ						ב	ב			כ			ב					-1
Andlytical Parameters	Zinc ,	Aldrin	Chlordane	Chromium	Copper	Dibromochloropropane	Dieldrin	Endrin	Mercury Isodrin	Less d	Dichlorodiphenylethane	Dichlorodiphenyltrichloro-	ethane Zinc	Aldrin	Codmitum	Chlordane	Chromium	Copper	Dibromochloropropene	Dieldrin	Endrin	Isodrin	Lead	Dichlorodiphenylethane	Dichlorodiphenyltrichloro-	ernane Zinc	Algric
Sample	Sof1	Sof 1												Soli													Sof1
Depth (ft)	2-3													0-1							•						
Boring	0029	0029												0030													0030

Note: Results for some parameters may appear in more than one analytical fraction.

C

•

Number	Depth (ft)	Sample Type	Analytical Parameters	Re	Results	1	Units	Sample Number
0030	2-3	Soil	Chromium . Copper		9.63	00	0/00	CYROD9 CYROD9
			Dibromochloropropane Dieldrin	בֿב	3.30	4 17	0/00	CYV012 CYW012
			Endrin	Ċ	5.80	i i	0/00	CYM012
			Isodrin	ב	1.10	Ŋ	0/00	CYW012
			Lead	ר	8.40		0/00	CYR009
			Dichlorodiphenylethene	בן י	2.40	P) P	0/00	CYM012
			ethane		2 %		0/07	CYROO9
0030	4-5	Soil	Aldrin	ב	1.90		0/00	CYM013
			Cadmium	ב	7.40		0/00	CYR010
			Chlordane	ר	2.30	ı	0/00	CYMD13
			Chromium		2.23	-	0/00	CYR010
			Copper		2.64	-	0/00	CYR010
			Dibromochloropropane	7	1.40	-2	0/00	CYV013
			Dieldrin	ב	3.30	r)	0/00	CYMOis
			Endrin	֡֡֝֝֡֝֟֝ ֡	. 80 8	P) :	0/00	CYM013
			Mercury Isodrin	כנ	5.00 1.10	7 17	0 0	CYWD18
			Lead	5	8.40	0	0/00	CYR010
			Dichlorodiphenylethane	7	2.40	۳)	0/00	CYM013
	•		Dichlorodiphenyltrichloro-	ב	2.00	r)	0/60	CYM013
			ethane Zinc		8.23	-	0/00	CYRO10
į					;	•		
0031	1-0	5011	1, 1, 1-Inichionoethene	בׁ.		۲.	0/0	CYTOOL
			1,1,2-Irichioroethane	ָב'	S	7 (0/00	CYTOOL
		•	1,1-Ulchioroethane	֖֖֖֖֖֡֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֓֡֓֓֡֝֡֡֓֓֓֡֝֡֓֡֓֡֡֝֡	P: 1	5 (0 \ 0 \	CY 1004
			1,2-Uichloroethene	ב	1.70	0	0/0	CYTODA
			1,2-Dichloroethane	ב	S. 60	-1	0/00	CYT004
			3					
			S-XY1000	ב	7.40	-1	0/00	CYT004

(

Ebasco Services Incorporated

Rocky Mountain Arsenal Program

Ebasco Serv	Ebasco Services Incorpor	porated	Rocky Mountain Arsenal Program	1 Program	08/05/88
Phase II Analytical	Œ	esults	Task 20 , Site 2-17 Lake L	Lake Ladora and Lake Mary	
Boring Number	Depth (ft)	Sample	Analytical Parameters	Results Units	Sample Number
0031	0-1	5011	Benzene Carbon Tetrachloride Methylene Chloride Chloroform Chlorobenzene	LT 2.50 -1 ug/g LT 2.50 -1 ug/g LT 1.50 0 ug/g LT 2.90 -1 ug/g LT 1.50 0 ug/g	6 CY1004 6 CYT034 6 CYT004 6 CYT004
			Dibromochloropropane Dicyclopentadiene Dimethyldisulfide Ethylbenzene Toluene	LT 2.40 0 ug/g LT 6.40 -1 ug/g LT 2.00 1 ug/g . LT 3.80 -1 ug/g LT 2.50 -1 ug/g	CYT004 CYT004 CYT004 CYT004 CYT004 CYT004
			Methylisobutyl Ketone Tetrachloroethene Trichloroethene Ortho- & Para-Xylene	LT 7.30 -1 ug/g LT 2.50 -1 ug/g LT 5.40 -1 ug/g LT 4.90 D ug/g	6 CYT004 6 CYT004 6 CYT004 6 CYT004
0031	2-3	5011	1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	LT 4.30 -1 uo/o LT 3.90 -1 uo/o LT 1.70 0 uo/o LT 1.70 0 uo/o LT 5.60 -1 uo/o	CYT005 CYT005 CYT005 CYT005 CYT005 CYT005
			m-Xylene Bicycloheptadiene Benzene Carbon Tetrachloride Methylene Chloride	LT 7.40 -1 ug/g LT 3.60 -1 ug/g LT 2.50 -1 ug/g LT 2.50 -1 ug/g LT 1.50 0 ug/g	6 CYTOOS 6 CYTOOS 6 CYTOOS CYTOOS CYTOOS
			Chloroform Chlorobenzene Dibromochloropropane Dicyclopentadiene Dimethyldisulfide	LT 2.90 -1 ug/g LT 1.50 0 ug/g LT 2.40 0 ug/g LT 6.40 -1 ug/g LT 2.00 1 ug/g	(a CYT005 (a CYT005 (a CYT005 (a CYT005
			Ethylbenzene Toluene Methylisobutyl Ketone Tetrachloroethene Trichloroethene	LT 3.80 -1 ug/g LT 2.50 -1 ug/g LT 7.30 -1 ug/g LT 2.50 -1 ug/g LT 5.40 -1 ug/g	(a CYTOOS (a CYTOOS (a CYTOOS (a CYTOOS

C

1.1.1	Boring	(H) Holes	Sample ::	Supplying the distribution	Results	Units	Sample Number
4-5 Soil iii-Trichloroethane	0031	2-3	Sof 1	Ortho- & Para-Xylene	4.90	ı	CYT005
1,1.2-Trichloroethane 1,1.2-Dichloroethane 1,1.2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1.2-Trichloroethane 1,1.2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,	0031	6-5	Soil	1,1,1-Trichloroethane	4.30		CYT006
1,2-Dichlorocthene				1,1,2-Trichloroethane	3.90		CY1006
1,2-Dichloroethane				1,1-Dignioroethane			CY 1008
## ## ## ## ## ## ## ## ## ## ## ## ##				1,2-Dichloroethane	5.60		CY1006
Bicycloheptadiene Bicycloheptadiene Characte Characte Chloroform Chloroberzene Chloroberze				\$ C	7.40		CY1006
Senzeer Carbon Tetrachloride 17 2.50 -1 us/ge				Dickel obening the	3.60		CYTOO
Carbon Tetrachloride Chloroform Chlorobenzene Discolpoentadiene Ethylbenzene Discolpoentadiene Ethylbenzene Chlorobenzene Discolpoentadiene Ethylbenzene Chlorobenzene Chlorobenzenie Chlorobenzen				Benzene	2,50		CY1006
Chloroform Chlorobenzene Chlor				Carbon Tetrachloride	2,50		CYT006
Chlorobenzene Chiorobenzene Ch				Methylene Chloride	1,50		CYT006
Chlorobenzene				Chloroform	2.90		CYT006
Disconchiometric 1				Chlorobenzene	5		CYTOOK
Dioyclopentadiene				Dibromoch oropropane	2.40		CY1006
Ethylbenzene				Dicyclopentadiene	6.40		CYT006
Ethylbenzene Toluene Methylisobutyl Ketone Tetrachloroethene Trichloroethene Ortho- & Para-Xylene 1,1,2-Trichloroethane 1,2-Dichloroethane 1,2-D				Dimethyldisulfide	2.00		CYT006
Toluene Methylisobutyl Ketone LT 7.30 -1 ua/9 Trichloroethene Ortho- & Para-Xylene Ortho- & Para-Xylene 1,1,2-Trichloroethane LT 4.30 -1 ua/9 L1,2-Dichloroethane LT 3.90 -1 ua/9 L1,2-Dichloroethane LT 1.70 0 ua/9 L2-Dichloroethane LT 1.70 0 ua/9 L3-Dichloroethane LT 1.70 0 ua/9 L3-Dichloroethane LT 1.70 1 ua/9 L3-Dichloroethane LT 2.60 -1 ua/9 Bicycloheptadiene LT 2.50 -1 ua/9				Ethy Ibenzene	3.80		CYT006
Methylisobutyl Ketone				Toluene	2.50		CYT006
Trichloroethene				Methylisobutyl Ketone	7,30		CYT006
Trichloroethene Ortho- & Para-Xylene 1,1,2-Trichloroethane 1,2-Dichloroethane LT 1,70 0 ua/a 1,2-Dichloroethane LT 1,70 0 ua/a L2-Dichloroethane LT 1,70 0 ua/a L1 2-Dichloroethane LT 3,60 -1 ua/a Bicycloheptadiene LT 3,60 -1 ua/a Bicycloheptadiene LT 2,50 -1 ua/a				Tetrachloroethene	2,50		CYT006
Ortho- & Pera-Xylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroeth				Trichloroethene	5.40		CY1006
0-1 Soil 1,1,1-Trichloroethane				Ortho- & Pers-Xylene	4.90		CYT006
1,1,2-Trichloroethene LT 3,90 -1 ug/g 1,1-Dichloroethene LT 1,70 0 ug/g 1,2-Dichloroethene LT 1,70 0 ug/g 1,2-Dichloroethene LT 5.60 -1 ug/g Aldrin Bicycloheptadiene LT 3.60 -1 ug/g Benzene LT 3.60 -1 ug/g	132	.0-1	5011	1,1,1-Trichloroethane	4.30		CYTD07
LT 1.70 0 ue/e LT 1.70 0 ue/e LT 5.60 -1 ue/e LT 7.40 -1 ue/e 2.87 -3 ue/e LT 3.60 -1 ue/e LT 2.50 -1 ue/e				1,1,2-Trichloroethane	3.90		CYT007
LT 1.70 0 ug/g LT 5.60 -1 ug/g LT 7.40 -1 ug/g 2.87 -3 ug/g LT 3.60 -1 ug/g LT 2.50 -1 ug/g				1,1-Dichloroethane	1.70		CY1007
LT 5.60 -1 ug/g LT 7.40 -1 ug/g 2.87 -3 ug/g LT 3.60 -1 ug/g LT 2.50 -1 ug/g				1,2-Dichloroethene	1.70		CYT007
LT 7.40 -1 ug/g 2.87 -3 ug/g LT 3.60 -1 ug/g LT 2.50 -1 ug/g				1,2-Dichloroe' 'ane	5.60		CYT007
2.87 -3 ug/g LT 3.60 -1 ug/g LT 2.50 -1 ug/g				s-Xylere	7.40		CY1007
LT 3.60 -1 09/9 LT 2.50 -1 09/9				Aldrin			CYM014
LT 2.50 -1 ug/g				Bicycloheptadiene	3.60		CYT007
				Benzene	2.50		CYT007

Ç

۲.,

à

(

Rocky Mountain Arsenal Program Ebasco Services Incorporated

Task 20 , Site 2-17

	Sample Number	CYT007 CYT007 CYT007	CY4014 CYT007	CY1007	CYM014 CYT007	CYM014	CYT007	CYM014	CY1007	CYMOIA	CYW014	CYT007	CYT007	CY1007	CYT008	CYT008	CYTOOS	CY 1008	CYT008	CYM015	CYT008	CYTOOS	CYTOOS	CYTOOS	CYT008	CYTOOS CYW015
	Units	000	0 0 0	0 0 0	0 0 00 00 00	0/0 0	0/00	0/60	0/07	9 0	e/en	0/00	0/00	0/00	0/00	8/8n	0/00	0 0	0/00	0/0n	0/00	0/00	0/07	0/00	0/00	0/07
Lake Ladora and Lake Mary	Results	1.50 2.90 1.50	2.30	6.40		LT 5.80 -3	LT 3.80 -1	1.10	LT 2.50 -1	7.65	LT 2.00 -3	2.50	5.40 -	LT 4.90 0		3.90	1.70	LT 1.70 0 LT 5.60 -1	LT 7.40 -1	1.90	3.60	LT 2.50 -1		LT 1.50 0	5.90	LT 1.50 0 LT 2.30 -2
Task 20 , Site 2-17 Lake Lado	Analytical Parameters	Methylene Chloride Chloroform Chlorobenzene	Chlordene Dibromochloropropane	Dibromochloropropane Dicyclopentadiene	Dieldrin Dimethyldisulfide	Endrin	Ethylbenzene	Isodi-în	Toluene	nethyllscoutyl Retone Dichlorodiphenylethene	Dichlorodiphenyltrichloro-	Tetrachloroethene	Trichloroethene	Ortho- & Para-Xylene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethene 1,2-Dichloroethane	=-X > 1ece	Aldrin	Bicycloheptadiene	Benzene	Carbon Tetrachloride	Methylene Chloride	Chloroform	Chlorobenzene Chlordene
11.9	Sample	So11													Soft											
nalytical Results	Depth (ft)	0-1													2-3											
Phase II Analytical	Boring	0032													0032											

C

Phase II Analytical Results

08/02/88

Task 20 , Site 2-17

Lake Ladora and Lake Mary

2.40	Number	Depth (ft)	Sample	Analytical Parameters	<u>я</u>	Results	, ر	Unita	Sample Number
1.40 - 2	32	2-3	Soil	Discompane	יו		0	0/00	CYT008
Discolopentadiene				Dibromochloropropane	ב		Ģ	B/80	CYV015
Dietarin Dietarin LT 3.30 - 3 us/9				Dicyclopentadiene	ב		4	0/00	CYT008
Endrin Endrin Endrin Endrin Endrin Endrin In 380 - 3 us/e Inluene In 1.10 - 3 us/e Inchiorodiphenylethane In 2.50 - 1 us/e Inchiorodiphenylethane In 2.50 - 3 us/e Introductorethane In 2.50 - 1 us/e In 1.11 - Trichloroethane In 2.50 - 1 us/e In 2.50 - 1 us/e In 2.50 - 1 us/e In 3.00 - 1 us/e In				Dieldrin	כ		ń	0/00	CYM015
Ethylbenzene				Dimethyldisulfide	ב		-	0/00	CYT008
Ethylbenzene				Endrin	<u>ר</u>		'n	0/00	CYM015
Isodrin				Ethylbenzene	1		4	0/07	CY1008
Toluene Hethylisobutyl Ketone LT 2.50 -1 ug/g				Isodrin	-1		ń	0/00	CYM015
## Hethyliaobutyl Ketone				Toluene	ב		~	0/00	CYT008
## Dichlorodiphenylethane 17 2.40 -3 ug/9 Ethane				Methylisobutyl Ketone	ב		~	0/en	CYT008
## A solid control of the control of				Dichlorodiphenylethane	<u>ר</u>		•	0/00	CYWO15
4-5 Soil 1,1,1-Trichloroethene				Dichlorodiphenyltrichloro-	ב		ņ	0/00	CYM015
## A comparison of the companies of the				ethane					
## Continuous properties				Tetrachloroethene	ב		-	0/6n	CYT008
4-5 Soil 1,1,1-Trichlorethane LT 3.00 -1 ug/e 1,1,2-Trichlorethane LT 3.00 -1 ug/e 1,2-Dichlorethane LT 3.00 -1 ug/e Aldrin Bicycloheptadiene LT 3.00 -1 ug/e Benzene Carbon Tetrachloride LT 3.00 -1 ug/e Carbon Tetrachloride LT 3.00 -1 ug/e Chlorotorm Chlorotome LT 3.00 -1 ug/e Chlorotorm LT 3.00 -1 ug/e Chlorotorpane LT 3.00 -1 ug/e Chlorotorpane LT 3.00 -1 ug/e Chloromochloropropane LT 4.00 -1 ug/e				Trichloroethene	ר		.	0/00	CYT008
4-5 \$011 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Dichloroethane 1,2-Dichloroethane 1,1,2-Trichloroethane 1,1,2-Trichl				Ortho- & Para-Xylene	ב		0	B/85	CYT008
4-5 Soil 1,1,1-Trichloroethane									
1 3.00 -1 ug/g	22	4-5	Sofl	1,1,1-Trichloroethane			-	0/00	CYUDOS
hloroethane				1,1,2-Trichloroethane	ר		~	0/00	CYU005
hloroethene				1,1-Dichloroethane	ב		-	0/07	CYUDOS
hloroethane LT 7.00 -1 ug/g LT 1.90 -3 ug/g LT 1.90 -3 ug/g LT 3.00 -1 ug/g Chloropropane LT 2.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g Chloropropane LT 1.40 -2 ug/g				1,2-Dichloroethene	ב		-	0/00	CYUGOS
LT 7.00 -1 ug/g LT 1.90 -3 ug/g heptadiene LT 5.00 -1 ug/g LT 5.00 -1 ug/g LT 5.00 -1 ug/g LT 5.00 -1 ug/g orm LT 7.00 -1 ug/g enzene LT 7.00 -1 ug/g LT 7.00 -1 ug/g chloropropane LT 2.30 -2 ug/g chloropropane LT 1.40 -2 ug/g				1,2-Dichloroethane	ב			0/00	CYU005
heptadiene				- X-E	-		7	0/01	
heptadiene				- T	-			0,0	ALONA
Tetrachloride LT 3.00 -1 ug/g LT 4.00 -1 ug/g Chloropropane LT 1.40 -2 ug/g		•		DACOCO CONTRACTOR	- -		, -	0/07	CVIDOS
Tetrachloride					· -		٠-	0/01	
oride									
oride LT 7.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 2.30 -2 ug/g propane LT 4.00 -1 ug/g				carbon letrachioride	_		.	0 / 0	CAOOLS
LT 3.00 -1 u9/9 LT 3.00 -1 u9/9 LT 2.30 -2 u9/9 propane LT 4.00 -1 u9/9 propane LT 1.40 -2 u9/9				Methylene Chloride	-1		-	0/00	CYUDOS
LT 3.00 -1 ua/g LT 2.30 -2 ua/g propane LT 4.00 -1 ua/g propane LT 1.40 -2 ua/a				Chloroform	ב		7	0/00	CYUDOS
LT 2.30 -2 ug/g propane LT 4.00 -1 ug/g propane LT 1.40 -2 ug/g				Chlorobenzene			-	0/00	CYUODS
LT 1.40 -2 ug/g				Chlordane	· •		Ġ	0/60	CYW016
LT 1.40 -2 09/9				Attended to contract	; <u>*</u>			1 (
LT 1.40 -2 ug/g					3		-		5000
		•		Ofbromochloropropane	٢		Ģ	0/00	CYV016

C

Ebasco Serv	5	ated	Rocky Mountain A	mereor		08/02/88
Phase II An	II Analytical Resu	esults	Task 20 , Site 2-17 Lake Lad	Lake Ladora and Lake Mary		
Boring Number	Depth (ft)	Sample Type	Analytical Parameters	Results	Units	Semple Number
0032	ત્ર શ	Sof 1	Dieldrin Dimethyldisulfide Endrin Ethylbenzene Mercury	LT 3.30 -3 LT 8.00 -1 LT 5.80 -3 LT 3.00 -1 LT 5.00 -2	00000	CYW016 CYU005 CYW016 CYU005 CXY017
			Isodrin Toluene Methylisobutyl Ketone Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	LT 3.00 -1 LT 3.00 -1 LT 2.40 -3 LT 2.00 -3	0/07	CYU005 CYU005 CYU005 CYU016 CYU016
			Tetrachloroethene Trichloroethene Ortho- & Para-Xylene	LT 3.00 -1 LT 3.00 -1 LT 3.00 -1	000	CYUDDS CYUDDS CYUDDS
0033	0.3-1.3	Soi 1	1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethane	LT 3.00 -1 LT 9.00 -1 LT 9.00 -1 LT 3.00 -1	00000	CYLODS CYLODS CYLODS CYLODS CYLODS
			m-Xylene Aldrin Bicycloheptadiene Benzene Carbon Tetrachloride	LT 7.00 -1 LT 3.00 -1 LT 3.00 -1 LT 3.00 -1	00000	CYL005 CYL005 CYL005 CYL005 CYL005
			Cadmium Methylene Chloride Chloroform Chlorobenzene Chlordane	LT 7.40 -1 1.78 0 LT 3.00 -1 LT 3.00 -1 LT 2.30 -2	00000	CYRODS CYLODS CYLODS CYLODS CXC16
			Chromium Copper Dibromochloropropane Dicyclopentadiene Dieldrin	1.65 1 1.37 1 LT 4.00 -1 LT 3.00 -1 LT 3.30 -3	00000	CYRODS CYLODS CYLODS CYLODS CXX016

Note: Results for some parameters may appear in more than one analytical fraction.

C

Roring Number

0033

ses Incorporated	Þ	Rocky Mountain Arsenal Program	Program			08/02/88	
lytical Results	ø	Task 20 , Site 2-17 Lake Le	edore and	Lake Ladora and Lake Mary	>		
S Depth (ft)	Sample	Analytical Parameters	2	Results	Units	Semple Number	ı
0.3-1.3	Sofl	Dimethyldisulfide	רז	8.00 -1	0/00	CYLOOS	
		Endrin	۲-		0/00	CXX016	
		Ethylbenzene	ב		0/00	CYLOOS	
		Isodrin	<u>ٿ</u>		0/07	CXX016	
		Toluene	ר	3.00 -1	0/00	CALDOS	
		Methylisobutyl Ketone	נ	3.00 -1	0/00	CYLOOS	
		Lead		1.91	0/00	CYROOS	
		Dichlorodiphenylethane	ר	2.40 -3	0/00	CXX016	
		Dichlorodiphenyltrichloro-	ב	2.00 -3	0/00	CXXD16	
		ethere	•		-7	3	
		Tetrachloroethene	-1	3.00 -1	0/07	CYLOOS	
		Trichloroethene	ב	3.00 -1	0/00	CYLOOS	
		Ortho- & Para-Xylene	ב	3.00 -1	0/00	CYLOOS	
		Zinc		5.02 1	0/0n	CYRODS	
2-3	Sofl	1,1,1-Trichloroethane	ב	3.00 -1	0/00	CYLDD6	
		1,1,2-Trichloroethane	ב	3.00 -1	0/00	CYL006	
		1,1-Dichloroethane	ר	9.00 -1	0/00	CYL006	
		1,2-Dichloroethene	17	3.00 -1	D/07	CYL006	
		1,2-Dichloroethane	ב	3.00 -1	B/BN	CXL006	
		E-Xylere	ב	7.00 -1	0/00	CYL006	
		Aldrin	רז	1.90 -3	0/00	CYNODS	
		Bicycloheptadiene	ר	3.00 -1	0/00	CYL006	
		Benzene	-1	3.00 -1	0/07	CYL006	
•		Carbon Tetrachloride	ב	3.00 -1	6/80	CYL006	
		Cadmium		1.09 0	8/BN	CYROD6	
		Methylene Chloride		1.93 0	0/00	CYL006	
		Chloroform	נ	3.00 -1	0/00	CYLOD6	
		Hexachlorocyclopentadiene	ב	1.80 -3	0/00	CYNODS	
		Chlorobenzene	ב	3.00 -1	6/Bn	CYL006	
		Chlordane	5	2.30 -2	8/80	CYNDOS	
•		Chromium		1.19 1	0/00	CVR006	
		Copper		1.08 1	0/00	CYROO6	
		Dibromochloropropane	11		0/00	CYLD06	
		Dicyclopentadiene	ר	3.00 -1	0/00	CYL006	

~

Phase II Analytical	nalytical Results	ults	Task 20 , Site 2-17 Lake La	Lake Ladora and Lake Mary	Mory			
Boring Number	Depth (ft)	Sample Type	Analytical Parameters	Results		Unite	Sample Number	
0033	N .	\$011	Dieldrin Dimethyldiaulfide Endrin Ethylbenzene Isodrin	LT 3.30 LT 5.80 LT 3.00 LT 3.00	1 1 1 1 1 10 4 10 4 10	0 0 0 0 0 0 0 0 0 0 0 0	CYNDOS CYLOD6 CYLOD6 CYLOD6 CYLOD6 CYLOD6	
			Toluene Methylisobutyl Ketone Lead Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	LT 3.00 LT 3.00 LT 8.40 LT 2.40 LT 2.40	44000	00000	CYLDO6 CYRDO6 CYNDO5 CYNDO5	
			Tetrachloroethene Trichloroethene Ortho- & Para-Xylene Zinc	1.1 3.00 1.1 3.00 1.1 3.00 1.00 3.00	7777	0/00	CYLDD6 CYLDD6 CYLDD6 CYRDD6	
0033	3.4-4.4	Soi 1	1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	LT 3.00 LT 3.00 LT 3.00 LT 3.00 LT 3.00	77777	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CYL007 CYL007 CYL007 CYL007	
			m-Xylene Aldrin Bicycloheptadiene Benzene Carbon Tetrachloride	LT 7.00 LT 1.90 LT 3.00 LT 3.00	77777	00000	CALDO7 CYLOD7 CYLOD7 CYLOD7 CYLOD7 CYLOD7	
			Cadmium Methylene Chloride Chloroform Hexachlorocyclopentadiene Chlorobenzene	LT 7.40 2.09 LT 3.00 LT 1.80 LT 3.00	10177	00000	CYROD7 CYLOD7 CYLOD7 CYNOD6 CYLOD7	
			Chlordane Chromium Copper Dibromochloropropane	LT 2.30 1.52 1.35 LT 4.00	9	00000	CYNOD6 CYROD7 CYROD7 CYLOD7	

23

Rocky Mountain Arsenal Program	Lake Ladora and Lake Mary	
Rocky Mountair	Task 20 , Site 2-17	
Ebasco Services Incorporated	Phase II Analytical Results	:

c c (

08/02/88

Semple Number	CYLOD7 CYNDD6 CYLOD7 CYNDD6 CYLOD7	CXY013 CYN006 CYL007 CYR007 CYN006 CYN006	CYLDD/ CYLDD/ CYUDD2 CYUDD2 CYUDD2 CYUDD2 CYUDD2	CYUBD2 CYXDB CYUBD2 CYUBD2 CYUBD2 CYUBD2	CYM011 CYU002 CYU002 CYU002 CYXO08
Unit.	00/00			00000	00000 0
Results	LT 3.00 -1 LT 3.30 -3 LT 8.00 -1 LT 5.80 -3 LT 3.00 -1	LT 3.00 -1 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.3		LT 7.00 -1 LT 1.90 -3 LT 3.00 -1 LT 3.00 -1 LT 3.00 -1	LT 7.40 -1 LT 7.00 -1 LT 3.00 -1 LT 3.00 -1 LT 2.30 -2 LT 2.30 -2
Anglytical Parameters	Dicyclopentadiene Dieldrin Dimethyldisulfide Endrin Ethylbenzene	Mercury Isodrin Toluene Methylisobutyl Ketone Lead Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane Tetrachloroethene	Trichloroethene Ortho- & Para-Xylene Zinc 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2-Oichloroethane 1,2-Oichloroethane 1,2-Oichloroethane	m-xylene Aldrin Bicycloheptadiene Benzene Carbon Tetrachloride	Cadmium Methylene Chloride Chloroform Chlorobenzene Chlordane
Sample Type	5011		So 11		
Depth (ft)	4.4-4.8	·	0-1		
Boring Number	0033		0034		

Note: Results for some parameters may appear in more than one analytical fraction.

C

Ebasco Services Incorporated Phase II Analytical Results

0034

Boring

5	
Ladora	
Leke	
_	
2-17	
Site 2-1	

Sample Units Number	1 ug/g CYR011	1 ue/e CYU002	1 ug/g CYU002	3 ug/g CYX008		3 ug/g CYXD08		3 ug/g CYX008	1 ug/g CYU002	1 ug/g CYU002	1 UG/9 CYR011	-3 ug/g CYXDO8	-3 ue/e CYX008	t va/a CYUNDO	0/01		0/00	1 ug/g CYR011	0/00	0/00	0/00	0/00	1 ug/g CYU003	0/00	-3 ug/g CYX009	0/00	0/05	1 ug/g CYU003	0/00	0/00	0/00	1 ug/g CYUDO3
Results	1.93	LT 4.00 -1	LT 3.00 -1	LT 3.30 -3		LT 5.80 -3		LT 1.10 -3	LT 3.00 -1		2.09		2.00	F - CO K	8 8	3	•	7.57					LT 3.00 -1	LT 7.00 -1	LT 1.90 -	3.00		LT 3.00 -1		LT 7.00 -1		LT 3.00 -1
Analytical Peremeters	Copper	Dibromochloropropane	Dicyclopentadiene	Dieldrin	Dimethyldisulfide	Endrin	Ethylbenzene	Isodrin	Toluene	Methylisobutyl Ketone	Leed	Dichlorodiphenylethene	Dichlorodiphenyltrichloro-	ethere tetrachicmentere	THE SCHOOL STATE		Ortho- & Para-Xylene	Zinc	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethene	1,2-Dichloroethane	B-XV1000	Aldrin	Bicycloheptadiene	Benzene	Carbon Tetrachloride	Codeica	Methylene Chloride	Chloroform	Chlorobenzene
Sample	Soft																		Sof1													
Depth (ft)	0-1																		2-3													

0034

..

Note: Results for some parameters may appear in more than one analytical fraction.

O

Phase II Analytical Results

Roring	Depth (ft)	Sample	Analytical Parameters	Rest	Results	Units	Sample Number	
0034	2-3	Sofi	Chromitum	L1	6.50 0	0/00	CYR012	
			Copper			0/00	CYR012	
			Dibromochloropropene			0/00	CYU003	
			Dicyclopentadiene	L1	3.00 -1	0/00	CYUDO3	
			Dieldrin		3,30 -3	0/00	CYX009	
			Dimethyldisulfide	1	8.00 -1	0/00	CYUDOS	
			Endrin			0/00	CYXD09	
			Ethylbenzene			0/00	CYUODS	
			Isodrin	-		0/00	CYX009	
			Toluene		3.00 -1	0/00	CYUDOS	
			Methylisobutyl Ketone		3.00 -1	0/00	CYUDOS	
			Lead			0/00	CYR012	
			Dichlorodiphenylethane		2.40 -3	0/00	CYX009	
			Dichlorodiphenyltrichloro-	7		0/00	CAX009	
			ethane					
			Tetrachloroethene	רן	3.00 -1	0/00	CYUDOS	
			Trichloroethene		3.00 -1	0/00	CYUDO3	
			Ortho- & Pere-Xvlene	-		0/00	CYUDO3	
			i			0/00	CYR012	
0034	3,3-4,3	Sofl	1.1.1-Trichloroethene	-1	3.00 -1	0/00	CYU004	
i L		! ! !	1.1.2-Trichloroethene			0/00	CYU004	
			1.1-Dichloroethene			0/00	CYU004	
			1,2-Dichloroethene	בי	3.00 -1	0/00	CYU004	
			1,2-Dichloroethane		3.00 -1	6/8n	CYU004	
	•		# X X I E	1	7.00 -1	0/00	CYUDO4	
			Aldrin		1.90 -3	0/00	CYX010	
			Bicycloheptadiene			0/00	CYU004	
			Benzene			0/00	CYU004	
			Carbon Tetrachloride		3.00 -1	0/6n	CYUDD4	
				LT 7	7.40 -1	0/00	CYR013	
			Methylene Chloride		7.00 -1	0/00	CYU004	
			Chloroform	-		0/00	CYUDO	
			Chlorobenzene			0/00	CYU004	
			Chlordane	ב	2.30 -2	0/00	CYXO10	

•

~

Ebasco Services Incorporated Phase II Analytical Results

Task 20 , Site 2-17

Lake Ladora and Lake Mary

Sample Number	CYR013 CYR013 CYU004 CYU004 CYX010	CYUDD4 CYXD10 CYUDD4 CXYO18 CYXD10	CYUDD4 CYUDD4 CYR013 CYX010 CYX010	CYUDO4 CYUDO4 CYUDO4 CYRD13 CYXD11 CYXD11 CYXD11 CYXD11	CYX011 CYX011 CYX012 CYX012 CYX012 CYX012
S Units N	00000	0000	00000		
Results	8.95 0 8.65 0 LT 4.00 -1 LT 3.00 -1	LT 8.00 -1 LT 5.80 -3 LT 3.00 -1 . LT 5.00 -2 LT 1.10 -3	LT 3.00 -1 LT 3.00 -1 LT 8.40 0 LT 2.40 -3 LT 2.00 -3	LT 5.00 -1 17 5.00 -1 17 5.00 -1 3.26 1 17 2.30 -2 17 2.30 -3 17 5.30 -3 17 5.30 -3 17 5.30 -3	LT 2.40 -3 LT 2.00 -3 LT 1.90 -3 LT 2.30 -2 LT 5.80 -3 LT 1.10 -3
Analytical Parameters	Chromium Copper Dibromochloropropane Dicyclopentadiene	Dimethyldisulfide Endrin Ethylbenzene Mercury Isodrin	Toluene Methylisobutyl Ketone Lead Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	Tetrachloroethene Trichloroethene Ortho- & Para-Xylene Zinc Aldrin Chlordøne Dieldrin Endrin	Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane Aldrin Chlordane Diclorin Endrin
Sample Type	5011			5011	5011
Depth (ft)	6. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.			0 .	2-3
Boring	0034			0035	0035

Note: Results for some parameters may appear in more than one analytical fraction.

Ebasco Services Incorporated Phase II Analytical Results

Task 20 , Site 2-17

the same of the sa

•

0035 2-3	Soil Soil	Dichlorodiphenylethane, Dichlorodishenyltrichloro- ethane Aldrin Chlordane Dieldrin Endrin Mercury	Į .		
	Soil	Dichlorodishenyltrichloro- ethene Aldrin Chlordene Dieldrin Endrin		0/00	CYX012
	Soil	Aldrin Chlordane Dieldrin Endrin Mercury	LT 2.00 -3	0/00	CYX012
	8011	Chlordane Dieldrin Endrin Mercury	LT 1.90 -3	0/00	CYX013
	8 110	Dieldrin Endrin Mercury	2.30		CYXD13
	Soli	Endrin Mercury	3.30	0/00	CYX013
	Soll	Mercury	5.80	0/00	CYX013
	Soli		LT 5.00 -2	0/00	CXY019
	Soll	Isodrin	LT 1.10 -3	0/00	CYX013
	5011	Dichlorodiphenylethane	2.40		CYX013
	5011	Dichlorodiphenyltrichloro- ethane	LT 2.00 -3	0/00	CYX013
		Aldrin	LT 1.90 -3	0/00	CYX014
		Arsenic	2.50		CZC005
		Codmium	7.40 -		CYR014
		Chlordane	2.30		CYX014
		Chromium			CYR014
		Copper		0/00	CYR014
		Dieldrin	3.30		CYXD14
		Endrin	5.80		CYX014
		Isodrin	1.10 -		CYX014
		Lead	LT 8.40 C	0/00	CYR014
		Dichlorodiphenylethane	LT 2.40 -3	0/00	CYX014
-		Dichlorodiphenyltrichloro-			CYX014
		ethane		,	
		Zinc	2.88 1	0/00	CVR014
0036 2-3	Soft	Aldrin	LT 1.90 -3	0/00	CYX015
	i i	Arbento	. 50		CZC006
		Codmica		_	CYR015
		Chlordene	2.30		CYX015
		Chromitum	1.57		CYR015
•					
		Copper	1.21	0/07	CYR015

Ċ

Note: Results for some parameters may appear in more than one analytical fraction.

Sample	CYX015 CYX015 CYR015 CYX015	CYX016 CYX016 CZC007 CYR016 CYX016	CYR016 CYX016 CYX016 CXY020 CYX016 CYR016 CYX016 CYX016	CZBODS CZCDOB CYRO17 CZBODS CYRO17 CZBODS CZBODS CZBODS CZBODS CZBODS CZBODS
Units	00000	0 0000		00000 00000
Results	LT 5.80 -3 LT 1.10 -3 LT 8.40 0 LT 2.40 -3 LT 2.00 -3	5.38 1 LT 1.90 -3 5.19 0 LT 7.40 -1 LT 2.30 -2	1. 6.50 0 7.58 0 1. 5.80 -3 1. 5.80 -3 1. 1.10 -3 1. 1. 10 -3 1. 2.40 -3 1. 2.40 -3 1. 2.40 -3	LT 1.90 -3 1.13 0 -1 1.7 2.30 -1 1.7 6.50 0 1.7 6.50 0 1.7 8.30 -3 1.7 8.60 -3 1.7 8.40 0
Anslytical Parameters	Endrin Isodrin Lead Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	Zinc Aldrin Arsenic Cadmium Chlordane	Chromium Copper Dieldrin Endrin Mercury Isodrin Lead Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	Aldrin Arsenic Cadmium Chlordane Chromium Copper Dieldrin Endrin Isodrin
Sample	5011	Soft		5011
Depth (ft)	2-3	\$- .		
Boring	0036	0036		0037

Note: Results for some parameters may appear in more than one analytical fraction.

(

40
80
2
2
80
O

Ebasco Seri	Ebasco Services Incorporated	ated	Rocky Mountain Arsenal Program	E 6			08/02/88
Phase II A	Phase II Analytical Resul	ilts	Task 20 , Site 2-17 Lake Ladora and Lake Mary	and Lake	Mery		
Boring	Depth (ft)	Sample Type	Analytical Parameters	Results	-	Units	Semple Number
0037	0-1	3011	Dichlorodiphenyltrichloro- ethane Zinc	LT 2.00	m e	0/00	CZB005 CYR017
0037	2-3	Soil	Aldrin Arsenic Cadmium Chlordene Chromium	LT 1.90 LT 2.50 LT 7.40 LT 2.30 LT 6.50	20440	00000	CZB006 CZC009 CYR018 CZB006 CYR018
			Copper Dieldrin Endrin Isodrin Lead	LT 4.70 LT 3.30 LT 5.80 LT 1.10 LT 8.40	0 1 1 1 0	00000	CYR018 CZB006 CZB006 CZB006 CYR018
·			Dichlorodibhenylethane Dichlorodiphenyltrichloro- ethane Zinc	LT 2.40 LT 2.00 2.65	5 , 10, 11	0/0n 0/0n	CZB006 CZB006 CYR018
0037	4-5	Soi 1	Aldrin Arsenic Cedmium Chlordene Chromium	LT 1.90 LT 2.50 LT 7.40 LT 2.30 1.65	20121	00000	CZBD07 CZC010 CYR019 CZBG07 CYR019
			Copper Dieldrin Endrin Mercury Isodrin	7.65 LT 3.30 LT 5.80 LT 5.00 LT 1.10	0 1 1 1 1 1	00000	CYR019 CZ8007 CZ8007 CZD005 CZ8007
			Lead Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane Zinc	LT 8.40 LT 2.40 LT 2.00 5.16	D W W T	0/00	CYR019 CZ8007 CZ8007 CYR019
0038	0-1	5011	Aldrin	4.71	7	e/en	CZG00\$

Phase II Analytical Results

Rocky Mountain Arsenal Program

Task 20 , Site 2-17

Lake Ladora and Lake Mary

Sample Number	CZG005 CZG005 CZG005 CZG005 CZG005 CZG005	\$200,000	CZG007 CZG007 CZG007 CZG007 CZG007 CZG007 CZG007 CZG007	CZGDO8 CZGDO8 CZGDO8 CZGDO8 CZGDO8 CZGDO8	600920
Unit.	000000	00000 00	00000 000	00000 00	0/00
Results	LT 2.30 -2 LT 3.30 -3 LT 1.10 -3 LT 2.40 -3 LT 2.00 -3	LT 1.90 -3 LT 2.30 -2 LT 5.30 -3 LT 5.80 -3 LT 2.40 -3 LT 2.40 -3	LT 1.90 -3 LT 2.30 -3 LT 3.30 -3 LT 5.80 -3 LT 1.10 -3 LT 2.40 -3 LT 2.00 -3	LT 1.90 -3 LT 3.30 -2 LT 5.80 -3 LT 1.10 -3 LT 2.40 -3 LT 2.00 -3	LT 1.90 -3
Analytical Peremeters	Chlordane Dieldrin Endrin Isodrin Dichlorodiphenyltrichloro-	Aldrin Chlordane Dieldrin Endrin Isodrin Dichlorodiphenylethane Dichlorodiphenylethane	Aldrin Chlordane Dieldrin Endrin Mercury Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	Aldrin Chlordane Dieldrin Endrin Isodrin Dichlorodiphenylethane ethane	Aldrin
Sample	5011	\$011	5011	Soi 1	Sof 1
Depth (ft)	0-1	6	S-	0-1	8-8
Boring Number	0038	0038	003 8	0039	0039

Note: Results for some parameters may appear in more than one analytical fraction.

0

C

Ebasco Serv	Ebasco Services Incorporated	orated	Rocky Mountain Arsenal Program	ogram		08/02/88
Phase II Ar	Phase II Analytical Results	sults	Task 20 , Site 2-17 Lake Lad	Lake Ladora and Lake Mary	<u>ک</u> د	
Boring Number	Depth (ft)	Sample } Type	Analytical Parameters	Results	Units	Semple Number
0039	2-3	8011	Chlordene Dieldrin Endrin Isodrin Dichlorodiphenylethene	2.30 3.30 5.80 1.10 2.60		60092 CZ6009 CZ6009 CZ6009
0039	4 N	\$011	Dichlorodiphenyltrichloro- ethane Aldrin Chlordane Dieldrin Endrin Mercury	LT 2.90 - LT 2.30 - LT 3.30 - LT 5.80 - LT 5.8	-3 CO	CZ6010 CZ6010 CZ6010 CZ6010 CZ6010 CZ6010
. 0040	0-1	5011	Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane Aldrin Chlordane Dieldrin Endrin Isodrin	LT 1.10 LT 2.40 LT 2.00 LT 2.30 LT 3.30 LT 5.80 LT 1.10	8 2 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	CZ6010 CZ6010 CZ6010 CZ8008 CZ8008 CZ8008 CZ8008 CZ8008 CZ8008
0700	. 5-3	5011	Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane Aldrin Chlordane Dieldrin Endrin	11.30 11.30 11.30 11.30 11.30 11.30 11.30	2 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CZBOD8 CZBOD9 CZBOD9 CZBOD9 CZBOD9 CZBOD9 CZBOD9
0040	, 4 . R	5011	Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane Aldrin	LT 2.40 - LT 2.00 - LT 1.90 -	-3 09/90 -3 09/90 -3 09/90	CZB009 CZB009 CZB010

Ebasco Services Incorporated

Phase II Analytical Results

Rocky Mountain Arsenal Program

Lake Ladora and Lake Mary

Sample Number	CZB010 CZB010	CZB010	CZB010	CZ8010	C28010	CZB011	CZ8011	CZ8011	CZ8011	CZ8011	CZB011	CZB012	CZB012	CZB012	CZB012	CZB012	CZB012	CZB012		CZB013	CZB013	CZB013	CZ8013	CZD007	CZ8013	CZB013	C ZB013
Units	0/00	0/0/0	0/00	0/00	0/00	0/00	0/00	0 0	0/00	0 0	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00		0/0n	0/00	0/00	0/00	6/60	0/00	0/00	0/00
Results		5.80 -3		2.40 -3	2.00 -3			5.30 -2		2.40 -3	2.00 -3			3.30 -3		1.10 -3	2.40 -3	2.00 -3				3.30 -3		5.00 -2		2.40 -3	2.00 -3
8	רנ י	בי בי	בי	ב	5		-1	-	;	֖֡֝֓֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֝֓֓֓֓֓֡֓֡֓֓֓֓֡֓֡֓֓֡֓֡֡֡	ב	ר	-1	-	ר	ב	ר	ל		ב	ב	-1	۲,	רן	ב	ב	ב
Analytical Parameters	Chlordane Dieldrin	Endrin	Isodrin	Dichlorodiphenylethane	Dichlorodiphenyltrichloro- ethane	Aldrin	Chlordane		Teodrin	Dichlorodiphenylethene	Dichlorodiphenyltrichloro- ethane	Aldrin	Chlordane	Dieldrin	Endrin	Isodrin	Dichlorodiphenylethane	Dichlorodiphenyltrichloro-	ethane	Aldrin	Chlordane	Dieldrin	Endrin	Mercury	Isodrin	Dichlorodiphenylethane	Dichlorodiphenyltrichloro- ethane
Sample	5011					Soil						5011								Soil							
Depth (ft)	8-5					0-1						2-3						•		5-4						•	
Boring Number	0040					0041						0041								0041							

Note: Results for some parameters may appear in more than one analytical fraction.

C

Task 20 , Site 2-17

C

C

Ebasco Services Incorporated Phase II Analytical Results

0-1

0042

0042

0042

•

Boring Number

Lake Ladora and Lake Mary Task 20 , Site 2-17

CZB015 CZB015 CZB015 CZB015 CZB015 CZB015 CZB016 CZB016 CZB016 CZB016 CZB016 Semple Number CZB014 CZB014 CZG011 CZG011 CZG011 CZG011 CZB015 CZB016 CZDOOS CZB016 CZB014 CZB014 CZB014 CZB014 CZB014 CZG011 CZ6011 CZG011 0/07 0/00 0/00 0/07 0/00 0/0n 0/00 0/00 0/00 0/00 00/00 0/00 0/00 0/00 0/00 B/85 0/00 0/00 0/00 0/00 e/en 0/00 0/00 0/00 Units 7 7 **5** 10 220 *** 19 P) 5 4 2 2 17 17 17 Ŋ 2.40 7.06 3.30 3.70 2.40 1.98 2.30 3.30 1.10 1.90 2.30 3.30 5.80 1.10 2.40 2.00 1.90 2.30 3.30 2.40 5.80 5.80 1.10 Results בן בן さささち こし ここち ここ ここに ここここち Dichlorodiphenyltrichloro-Dichlorodiphenylethane Dichlorodiphenyltrichloro-Dichlorodiphenyitrichloro-Dichlorodiphenylethane Dichlorodiphenyltrichloro-Dichlorodiphenylethane Dichlorodiphenylethane Analytical Parameters Chlordane Dieldrin Chlordane Chloredane Chlordane Chlordene Dieldrin Dieldrin Dieldrin Isodrin Isodrin Isodrin Mercury Sodrin ethane ethane ethane ethane Aldrin Endrin Aldrin Endrin Aldrin Endrin Aldrin Endrin Sample Type 5011 Soil Sof 1 Soil Depth (ft) 2-3 4-5

0-1

0043

(

Rocky Mountain Arsenal Program

Ebasco Services Incorporated

Sample	CZ6012 CZ6012 CZ6012 CZ6012 CZ6012	CZ6012 CZ6012	CZ6013 CZ6013 CZ6013 CZ6013 CZ6011	CZG013 CZG013 CZG013	CZ6014 CZ6014 CZ6014 CZ6014 CZ6014	CZ6014 CZ6014	CZ6015 CZ6015 CZ6015 CZ6015 CZ6015	CZ6015
Units	00000	0/00	00000	0/00	0/07 0/07 0/07	0/00	0/07 0/07 0/07	0/00
Results	1.90 -3 2.30 -2 3.30 -3 5.80 -3 1.10 -3	2.40 -3	1.90 -3 2.30 -2 3.30 -3 5.80 -3	1.10 -3 2.40 -3 2.00 -3	1.90 -3 2.30 -2 3.30 -3 5.80 -3 1.10 -3	2.40 -5	1.90 -3 2.30 -2 3.30 -3 5.80 -3 1.10 -3	2.40 -3
œ	ביביי	ננ	בבבבב	ללל		55	ממממ	5.
Analytical Parameters	Aldrin Chlordene Dieldrin Endrin Isodrin	Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	Aldrin Chlordane Dieldrin Endrin Mercury	Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	Aldrin Chlordene Dieldrin Endrin Isodrin	Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	Aldrin Chlordane Dieldrin Endrin Isodrin	Dichlorodiphenylethane
Sample	Soil		5011		Sofl		Soi 1	
Depth (ft)	8-8 8-8		8		0-1		2-3	
Boring	0043		0043		0044		0044	

Note: Results for some parameters may appear in more than one analytical fraction.

C

(

C

Ō
v
#
Ģ
Ē
ŏ
μ
⋋
×
×
<u>-</u>
_
- 1
ప
ŏ
~
>
Ĺ
Ü
6
0
Q
99
Ō
Ω٠
ш

Phase II Analytical Results

Program
Arsenal
Mountain
Rocky

Task 20 , Site 2-17

Lake Ladora and Lake Mary

Boring Number Depth (f	0044 4-5		0045 0-1		2-3	0045 4-5
Sample t) Type	Soil		Sof1		Sof 1	Soi 1
Analytical Parameters	Aldrin Chlordane Dieldrin Endrin Mercury	Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	Aldrin Hexachlorocyclopentadiene Chlordane Dieldrin Endrin	Mercury Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	Aldrin Hexachlorocyclopentadiene Chlordane Dieldrin Endrin Mercury	Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane Aldrin Hexachlorocyclopentadiene Chlordane
Kesults	LT 1.90 -3 LT 2.30 -2 LT 3.30 -3 LT 5.80 -3 LT 5.00 -2	LT 1.10 -3 LT 2.40 -3 LT 2.00 -3	4.85 -3 LT 1.80 -3 LT 2.30 -2 LT 3.30 -3 LT 5.80 -3	LT 5.00 -2 LT 1.10 -3 8.17 -3 1.53 -2	1.90 1.80 2.30 3.30 5.80 5.00	
Units	0 0 0 0 0	0/00	00000	0000		
Sample	CZG016 CZG016 CZG016 CZG016 CZG016	CZG016 CZG016 CZG016	CZNDOS CZNDOS CZNDOS CZNDOS CZNDOS	CZD013 CZN005 CZN005 CZN005	CZNDO6 CZNDO6 CZNDO6 CZNDO6 CZNDO6 CZNDO6 CZNDO6	CZNDO6 CZNDO6 CZNDO7 CZNDO7 CZNDO7

G

-

Rocky Mountain Arsenal Program

Ebasco Ser	Ebasco Services Incorporated	eted	Rocky Mountain Arsenal Program	me ubo.		08/03/8
Phase II Analytical	Analytical Results	it s	Task 20 , Site 2-17 Lake Lado	Lake Ladora and Lake Mary		
Boring Number	Depth (ft)	Sample	Analytical Parameters	Results U	Unite	Sample Number
0045	8-1	Soft	Endrin Mercury Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	LT 5.80 -3 LT 5.00 -2 LT 2.40 -3 LT 2.00 -3	9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0	CZND07 CZD018 CZND07 CZND07 CZND07
9700	0-1	So 11	Aldrin Hexachlorocyclopentadiene Chlordane Dieldrin	. LT 1.90 -3 LT 1.80 -3 LT 2.30 -3 LT 3.30 -3 LT 5.80 -3	0/07 0/07 0/07	CZNDD8 CZNDD8 CZNDD8 CZNDD8 CZNDD8
			Mercury Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	LT 5.00 -2 LT 1.10 -3 LT 2.40 -3 LT 2.00 -3	0 0 0 0 0 0 0 0 0 0 0 0 0	CZNDD8 CZNDD8 CZNDD8 CZNDD8
9700	2-3	Soil	Aldrin Hexachlorocyclopentadiene Chlordane Dieldrin Endrin	LT 1.90 -3 LT 2.30 -3 LT 3.30 -3 LT 3.30 -3 LT 5.80 -3	00000	CZNDD9 CZNDD9 CZNDD9 CZNDD9 CZNDD9
			Mercury Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	LT 5.00 -2 LT 1.10 -3 LT 2.40 -3 LT 2.00 -3	0/00 0/00 0/00 0/00	CZND09 CZND09 CZND09 CZND09
0046	ທ ເ	Soil	Aldrin Hexachlorocyclopentadiene Chlordane Dieldrin Endrin	LT 1.90 -3 LT 1.80 -3 LT 2.30 -3 LT 3.30 -3 LT 5.80 -3	00000	CZN010 CZN010 CZN010 CZN010 CZN010
			Mercury Isodrin	LT 5.00 -2 LT 1.10 -3	0/00	CZD018 CZN010

Note: Results for some parameters may appear in more than one analytical fraction.

O

•

Incorporated	
Services	
Ebasco	

Rocky Mountain Arsenal Program

Boring	Depth (ft)	Sample	Analytical Perameters	8	Results	Units	Sample Number
0046	6-5	Sofl	Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	לל	2.40 -3	6/6n	CZM010 CZW010
2700	0-1	Soil	Aldrin Hexachlorocyclopentadiene Chlordane Dieldrin Endrin	לבלבב	1.90 -3 1.80 -3 2.30 -2 3.30 -3 5.80 -3	00000	CZN011 CZN011 CZN011 CZN011 CZN011
			Mercury Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	לללל	5.00 -2 1.10 -3 2.40 -3 2.00 -3	0000	CZD019 CZN011 CZN011 CZN011
0047	2-3	\$011	Aldrin Hexachlorocyclopentadiene Chlordane Dieldrin Endrin	לללל	1.90 -3 1.80 -3 2.30 -2 3.30 -3 5.80 -3	00000	CZND12 CZND12 CZND12 CZND12 CZND12
			Mercury Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	לללל	5.00 -2 1.10 -3 2.40 -3 2.00 -3	0000	CZD020 CZN012 CZN012 CZN012
0047	-4 -	Soil	Aldrin Hexachlorocyclopentadiene Chlordane Dieldrin Endrin	בבבבב	1.90 -3 1.80 -3 2.30 -2 3.30 -3 5.80 -3	00000	CZN013 CZN013 CZN013 CZN013 CZN013
			Mercury Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	בבבב	5.00 -2 1.10 -3 2.40 -3 2.00 -3	0000	CZMODS CZND13 CZND13 CZND13
0048	0-1	Soi 1	Aldrin	ב	1.90 -3	0,000	410NC2

Ebasco Services Incorporated Phase II Analytical Results

Boring	Depth (ft)	Sample	Analytical Parameters	Results	Units	Sample Number
0048	0-1	Sof1	Hexachlorocyclopentadiene Chlordane Dieldrin Endrin Mercury	LT 1.80 -3 LT 2.30 -2 LT 3.30 -3 LT 5.80 -3 LT 5.00 -2	00000	CZN014 CZN014 CZN014 CZN014 CZN006
			Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	LT 1.10 -3 LT 2.40 -3 LT 2.00 -3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CZN014 CZN014 CZN014
0048	2-3	soil	Aldrin Mexachlorocyclopentadiene Chlordane Dieldrin Endrin	LT 1.90 -3 LT 2.30 -3 LT 2.30 -2 LT 3.30 -3 LT 3.80 -3	0/07	CZN015 CZN015 CZN015 CZN015 CZN015
			Mercury Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	LT 5.00 -2 LT 1.10 -3 LT 2.40 -3 LT 2.00 -3	0/00	CZNO15 CZNO15 CZNO15 CZNO15
0048	2-	Soil	Aldrin Hexachlorocyclopentadiene Chlordane Dieldrin Endrin	LT 1.90 -3 LT 1.80 -3 LT 2.30 -3 LT 3.30 -3 LT 5.80 -3	00000	CZN016 CZN016 CZN016 CZN016 CZN016
			Mercury Isodrin Dichlorodiphenylethane Dichlorodiphenyltrichloro- ethane	LT 5.00 -2 LT 1.10 -3 LT 2.40 -3 LT 2.00 -3	0/07	CZNO08 CZNO16 CZNO16 CZNO16
0049	0-1	5011	Aldrin Chlordene Dieldrin Endrin Mercury	LT 1.90 -3 LT 3.19 -2 LT 3.30 -3 LT 6.79 -3 LT 5.00 -2	00000	CZ0005 CZ0005 CZ0005 CZ0006 CZW009

÷

Note: Results for some parameters may appear in more than one analytical fraction.

0

0

CYNOO7 CYPOOS

0/00 0/00 0/00 0/07 0/00

440

8.50 1.90 1.10 1.20 3.70

こここち

Carbon Tetrachloride

1,2-Dichloroethane Bicycloheptadiene

1

Methylene Chloride

Chloroform

0/00

CY0005 CY0005 CY0005

٢

6.80

_

CY0005 CY0005

0/00

08/02/88 CZ0006 CZ0006 CZ0007 CZ0007 CZ0005 CZ0005 CZM010 CZ0005 CZ0006 **CZ0006** CZ0006 CZ0006 **CZ0006** CZ0007 CZ0007 CZ0007 CZ0007 CZM011 CZ0007 CY0005 CY0005 CY0005 CY0005 0/00 0/00 B/87 0/00 0/00 0/00 0/00 0/07 0/00 0/00 o/on 0/00 0/00 0/07 0/07 0/00 0/05 0/00 0/00 0/05 Lake Ladora and Lake Mary **** 999 ***** 777 500 1.10 6.22 3.04 1.90 2.30 3.30 5.80 1.10 2.40 2.00 1.90 2.30 3.30 5.80 1.10 2.40 2.00 2.40 7.40 2.60 8.80 Results Rocky Mountain Arsenal Program ۲ こここここ こここ こここ ここここ にこにに Dichlorodiphenylethane Dichlorodiphenyltrichloro-Dichlorodiphenyltrichloro-Dichlorodiphenylethene Dichlorodiphenyltrichloro-Analytical Parameters Dichlorodiphenylethane 1, 1, 1-Trichloroethene 1, 1, 2-Trichloroethane , Site 2-17 1,1-Dichloroethane 1,2-Dichloroethene 1,1-Dichloroethene Chlordane Chlordane Dieldrin Dieldrin Isodrin Isodrin Isodrin ethane Mercury ethane Mercury ethane Task 20 Aldrin Aldrin Endrin Endrin Semple Sof 1 Soil Sof 1 Type Soil Ebasco Services Incorporated Phase II Analytical Results Depth (ft) 2-3 6-5 9-1 0-1 Boring Number 6700 6700 0000 0049

<u>.</u>

(

Results for some parameters may appear in more than one analytical fraction. Note:

O

0

(

Ebasco Services Incorporated Phase II Analytical Results

D-1 Soil Hexachlarocyclopentadiene	Number	Depth (ft)	Туре	Analytical Parameters	~	Results	Units	Number
Chlorobenzene Chlorobenzene Chlorobenzene Chloromane Disclarin Disclarin Chloromane Chloromane Discretain Chloromane Chlo	20		5011	Hexachlorocyclopentadiene	נ		0/00	CYN007
Chlordene Discriptionentadise Discriptionentad				Chlorobenzene	ר		0/00	CY0005
Disclopentadiene				Chlordane	L		0/00	CYNOD7
Endrin Endrin Endrin Endrin Hathylisobutyl Ketone Dichlorodiphenylethane Dichlorodiphenylethane Dichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1				Dicyclopentadiene	LT		0/07	CYPOOS
Endrin Social Part Social				Dieldrin	ב		0/00	CYNDD7
Isodrin Hethylisobuty1 Ketone LT 6.22 - 3 UG/G Dichlorodiphenylethere LT 2.00 - 3 UG/G Dichlorodiphenylethere LT 2.00 - 3 UG/G Etrachloroethere LT 2.00 - 3 UG/G Tetrachloroethere LT 2.00 - 1 UG/G LT 2.01 LT 1.1 LT 1.1 LT 1.1 LT 2.02 LT 1.2 LT 1.1 LT 3.02 LT 3.03 LT 3.04 LT 3.04 LT 3.04 LT 3.04 LT 3.05 LT 3.05				Endrin	ב		0/00	CANDO7
Dichlorodishenvisthere				Isodrin			0/00	CYNDO7
Dichlorodiphenylethane				Methyllsobutyl Ketone	ב		0/00	CYPOO
Dichlorodiphenyltrichloro-				Dichlorodiphenylethene			0/00	CYNOO7
Tetrachloroethene 1.1,1-Trichloroethane 2-3 Soil 1,1,1-Trichloroethane 1,1-2-Trichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,4-Dichloroethane 1,4-Dichloroethane 1,5-Dichloroethane 1,5-Dichloroethane 1,7-Dichloroethane 1,7-Dichl				Dichlorodiphenyltrichloro-	נ		0/00	CYNDO
Trichloroethene								
1,1,1-Trichloroethane				Tetrachloroethene	ב		0/00	CY0005
Soil 1,1,1-Trichloroethane LT 2.60 -1 ug/g 1,1,2-Trichloroethane LT 2.60 -1 ug/g 1,1-Dichloroethane LT 2.40 -1 ug/g 1,2-Dichloroethane LT 2.60 -1 ug/g 1,2-Dichloroethane LT 2.60 -1 ug/g 1,2-Dichloroethane LT 2.60 -1 ug/g Aldrin Bicycloheptadiene LT 1.00 ug/g Carbon Tetrachloride LT 1.00 -3 ug/g Hethylene Chloride LT 3.70 0 ug/g Chlorobenzene LT 3.70 0 ug/g Chlorobenzene LT 2.80 -1 ug/g Chlorobenzene LT 2.80 -1 ug/g Chloropentadiene LT 2.80 -1 ug/g Dieldrin LT 3.30 -3 ug/g Endrin LT 3.30 -3 ug/g Isodrin LT 3.30 -3 ug/g Isodrin LT 3.00 -1 ug/g Isodrin LT 3.00 -1 ug/g Isodrin LT 3.00 -1 ug/g				Trichloroethene	ר		0/00	CYOODS
2-3 Soil 1.1.1-Trichloroethane								•
LT 2.60 -1 LT 2.40 -1 LT 2.40 -1 LT 2.40 -1 LT 2.60 -1 LT 3.50 -2 LT 1.90 -3 LT 2.90 -1 LT 2.90 -1 LT 2.90 -1 LT 2.90 -1 LT 3.90 -3 LT 5.90 -3 LT 5.90 -3 LT 5.90 -3 LT 5.90 -3 LT 6.60 -3	50	2-3	Soil	1,1,1-Trichloroethane	L		0/00	CYOODE
LT 2.40 -1 u9/9 LT 7.40 -2 u9/9 LT 7.40 -2 u9/9 LT 1.90 -3 u9/9 LT 1.10 -3 u9/9 LT 1.20 -1 u9/9 LT 2.30 -2 u9/9 LT 2.30 -1 u9/9 LT 3.30 -3 u9/9 LT 5.80 -3 u9/9 LT 5.80 -1 u9/9 LT 5.80 -3 u9/9 LT 5.80 -3 u9/9 LT 5.80 -3 u9/9				1,1,2-Trichloroethane	L		0/00	CYOOOE
LT 7.40 -2 U6/6 LT 2.60 -1 U6/6 LT 1.90 -3 U6/6 LT 1.20 -1 U6/6 LT 3.70 0 U6/6 LT 2.80 -2 U6/6 LT 2.80 -1 U6/6 LT 2.30 -2 U6/6 LT 5.80 -3 U6/6 LT 5.80 -1 U6/6 LT 5.80 -3 U6/6 LT 5.80 -3 U6/6 LT 5.80 -3 U6/6 LT 5.80 -3 U6/6				1,1-Dichloroethene	L.1		0/00	CY0006
LT 2.60 -1 u6/6 LT 1.30 -3 u6/6 LT 1.20 -1 u6/6 LT 3.70 0 u6/6 LT 2.80 -2 u6/6 LT 2.30 -2 u6/6 LT 2.30 -1 u6/6 LT 3.50 -1 u6/6 LT 5.50 -3 u6/6				1,1-Dichloroethane	ר		0/00	CY0006
LT 8.50 -2 ug/g LT 1.90 -3 ug/g LT 1.20 -1 ug/g LT 3.70 0 ug/g LT 5.80 -2 ug/g LT 2.30 -1 ug/g LT 2.30 -1 ug/g LT 3.30 -3 ug/g LT 5.80 -3 ug/g LT 5.80 -3 ug/g LT 5.80 -3 ug/g				1,2-Dichloroethene	5		0/0n	CY0006
LT 1.90 -3 ue/e LT 1.10 -0 ue/e LT 3.70 -1 ue/e LT 2.30 -2 ue/e LT 2.30 -1 ue/e LT 3.30 -3 ue/e LT 5.80 -3 ue/e LT 5.80 -1 ue/e LT 5.80 -3 ue/e LT 5.80 -3 ue/e				1.2-Dichloroethene			0/00	CYOOD6
LT 1.10 0 09/0 LT 3.70 0 09/0 LT 5.80 -2 09/0 LT 2.30 -3 09/0 LT 2.30 -1 09/0 LT 5.50 -1 09/0 LT 5.80 -3 09/0 LT 5.80 -3 09/0				Aldrin	נו	•	0/00	CYNOOS
LT 1.20 -1 09/0 LT 5.80 -2 09/0 LT 2.80 -3 09/0 LT 2.80 -1 09/0 LT 2.80 -1 09/0 LT 3.80 -3 09/0 LT 5.80 -3 09/0 LT 5.80 -3 09/0 LT 5.80 -3 09/0				Bicycloheptadiene	<u>_</u>		0/07	CYPOO
LT 3.70 0 ue/e LT 1.80 -2 ue/e LT 2.80 -1 ue/e LT 2.80 -1 ue/e LT 2.80 -1 ue/e LT 3.80 -3 ue/e LT 5.80 -3 ue/e LT 5.80 -3 ue/e LT 5.80 -3 ue/e				Carbon Tetrachloride	11	•	0/00	CY0006
LT 6.80 -2 U6/6 LT 2.00 -1 U6/6 LT 2.30 -2 U6/6 LT 2.30 -1 U6/6 LT 3.30 -3 U6/6 LT 5.80 -3 U6/6 LT 5.40 -3 U6/6				Methylene Chloride	-1		0/00	CY0006
LT 1.80 -3 ug/g LT 2.00 -1 ug/g LT 2.30 -2 ug/g LT 3.30 -3 ug/g LT 5.80 -3 ug/g LT 5.60 -3 ug/g LT 6.60 -1 ug/g		•		Chloroform	נ		0/00	CY0006
LT 2.00 -1 ug/g LT 2.30 -2 ug/g LT 3.30 -2 ug/g LT 3.30 -3 ug/g LT 5.80 -3 ug/g LT 5.80 -3 ug/g LT 5.40 -1 ug/g LT 6.40 -1 ug/g				Hexachlorocyclopentadiene	LT		0/00	CYNOOS
ntadiene LT 2.30 -2 ug/g LT 4.50 -1 ug/g LT 3.30 -3 ug/g LT 5.30 -3 ug/g LT 5.40 -3 ug/g LT 1.10 -3 ug/g LT 6.40 -1 ug/g LT 6.40 -1 ug/g				Chlorobenzene	LT		0/07	CY0006
LT 5.30 -1 ug/g LT 5.30 -3 ug/g LT 5.80 -3 ug/g LT 1.10 -3 ug/g tone LT 6.40 -1 ug/g				Chlordane	1		0/07	CYNDOS
In LT 3.30 -3 ug/g LT 5.80 -3 ug/g LT 5.80 -3 ug/g CT 1.10 -3 ug/g CT 1.10 -3 ug/g CT 6.40 -1				Dicyclopentadiene	ב		0/00	CYPDO6
LT 5.80 -3 ug/g LT 1.10 -3 ug/g [sobuty] Ketone LT 6.40 -1 ug/g				Dieldrin	ב		0/00	CYNDO
LT 1.10 -3 ug/g Sobuty1 Ketone				Endrin	-		0/00	CYNDO
LT 6.40 -1 ug/g				Isodrin	רן		0/00	CYNOOS
				Methylisobutyl Ketone	L	6.40 -1	0/00	CYPOO

Note: Results for some parameters may appear in more than one enalytical fraction.

Ċ

C

c (

(

Rocky Mountain Arsenal Program	Lake Ladors and Lake Mary
Y Moun	e 2-17
Rock	, Sit
	Task 20 , Site 2-17
Ebasco Services Incorporated	Phase II Analytical Results
ervices I	Analytic
0	H

Sample Number	CYNDO8 CYODD6 CYOOD6	CY0007 CY0007 CY0007 CY0007	CY0007 CYN009 CYF007 CY0007 CY0007	CYOOO7 CYNOOO7 CYNOOO9 CYNOOO9 CYNOOO9 CYNOOO9 CYNOOO9 CYNOOOO	CYODO3 CYODO3 CYODO3 CYODO3 CYODO3 CYODO3 CYODO3
Unita	0 0 0	00000	00000		0 00 00000
Results	LT 2.00 -3 LT 2.70 -1 LT 1.40 -1	LT 8.80 -2 LT 2.60 -1 LT 2.40 -1 LT 7.40 -2 LT 2.60 -1	LT 8.50 -2 LT 1.90 -3 LT 1.10 0 LT 1.20 -1 LT 3.70 0	LT 6.80 -2 LT 2.3 -3 LT 2.30 -2 LT 6.50 -1 LT 3.30 -3 LT 5.80 -3 LT 5.80 -3 LT 5.60 -3 LT 5.60 -3	LT 2.00 -3 LT 2.70 -1 LT 1.40 -1 LT 8.80 -2 LT 2.60 -1 LT 7.40 -2 LT 2.60 -1
Analytical Parameters	Dichlorodiphenyltrichloro- ethane Tetrachloroethene Trichloroethene	1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethane	1,2-Dichloroethane Aldrin Bicycloheptadiene Carbon Tetrachloride Methylene Chloride	Chloroform Hexachlorocyclopentadiene Chlorobenzene Chlordane Dicyclopentadiene Dieldrin Endrin Isodrin Methylisobutyl Ketone	Dichlorodiphenyltrichloro- ethane Tetrachloroethene Trichloroethene 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene
Sample	Soil	Soi 1			5011
Depth (ft)	2-3	4 N			0-1
Boring	0020	0020		·	0051

ŕ

• •

C

Ebasco Services Incorporated Phase II Analytical Results

Lake Ladora and Lake Mary

Semple Number	CY0008 CYN010	CYPOOS	CY0008	CY0008	CYODOB	CYNOIO	CY0008	CYNO10	CYPOOS	CYNO10	CYN010	CYNO10	CYPOOS	CYNO10	CYND10	CY0008	CYODOB	CY0009	CY0009	CX0009	CA0009	CA0009	CY0009	CYN011	CYP009	CY0009	6000AO	CY0009	CYN011	CY0009	CYN011	CYP009
Unit.	0/07	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	e/en	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00	0/00
Results	T 8.50 -2 T 1.90 -3		T 1.20 -1		6.80	1.80		2.30	4.50	3.30	5.80	1.10	6.40	2.40	.7 2.00 -3						7.40	2.60	T 8.58 -2	T 1.90 -3		1.20	3.70	6.80	1.80	2.00	2.30	
 		_	٠	_	_	ب	_	_	_	<i>ن</i>	_	~	J		_	_	_	_	_	_	_		ر	_				_	_	_	ب	_
Analytical Parameters	1,2-Dichloroethane Aldrin	Bicycloheptadiene	Carbon Tetrachloride	Methylene Chloride	Chloroform	Hexachlorocyclopentadiene	Chlorobenzene	Chlordane	Dicyclopentadiene	Dieldrin	Endrin	Isodrin	Methylisobutyl Ketone	Dichlorodiphenylethane	Dichlorodiphenyltrichloro- ethane	Tetrachloroethene	Trichloroethene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene	1,2-Dichloroethane	Aldrin	Bicycloheptadiene	Carbon Tetrachloride	Methylene Chloride	Chloroform	Hexachlorocyclopentadiene	Chlorobenzene	Chlordane	Dicyclopentadiene
Sample	Sofl																	5011														
Depth (ft)	0-1																	1.5-2.5				•							•		•	
Boring Number	0051																	0051														
	Sample Sample Analytical Parameters Results Units	Sample Analytical Peremeters Results Units Opth (ft) Type Analytical Peremeters Results Units Opth (ft) Type Analytical Peremeters Results Units Analytical Peremeters Results Units Opth (ft) Type Analytical Peremeters Results Units	Sample Analytical Peremeters Results Units O-1 Soil 1,2-Dichloroethane LT 1.90 -3 ug/g Bicycloheptadiene LT 1.10 0 ug/g	Sample Analytical Parameters Results Units O-1 Soil 1,2-Dichloroethane LT 1.90 -3 ug/g Bicycloheptadiene LT 1.10 0 ug/g Carbon Tetrachloride LT 1.20 -1 ug/g	Sample Analytical Perameters Results Units Units Type Analytical Perameters Results Units Units Units II,2-Dichloroethane LT 8.50 -2 Ug/9 LT 1.90 -3 Ug/9 LT 1.90 -3 Ug/9 Carbon Tetrachloride LT 1.20 -1 Ug/9 Methylene Chloride LT 3.70 0 Ug/9	Sample Analytical Parameters Results Units O-1 Soil 1,2-Dichloroethane LT 8.50 -2 ug/g Aldrin Aldrin Carbon Tetrachloride LT 1.10 0 ug/g Carbon Tetrachloride LT 3.70 0 ug/g Chloroform LT 6.80 -2 ug/g	Soil 1,2-Dichloroethane O-1 Soil 1,2-Dichloroethane Bicycloheptadiene Carbon Tetrachloride Chloroform Chloroform Chlorocyclopentadiene LT 1.80 -2 ug/g LT 1.10 0 ug/g LT 1.20 -1 ug/g Chloroform Chlorocyclopentadiene LT 6.80 -2 ug/g LT 1.80 -3 ug/g	Semple Analytical Perameters Results Units Units Type Aldrin Soil 1,2-Dichloroethane LT 1.90 -3 ug/g LT 1.90 -3 ug/g LT 1.10 0 ug/g Carbon Tetrachloride LT 1.20 -1 ug/g Methylene Chloride LT 3.70 0 ug/g Chloroform Hexachlorocyclopentadiene LT 1.80 -2 ug/g Chlorobenzene LT 2.00 -1 ug/g LT 2.00 -1 ug/g	Sample Analytical Perameters Results Units O-1 Soil 1,2-Dichloroethane LT 8.50 -2 U9/9 Bicycloheptadiene LT 1.10 0 U9/9 Carbon Tetrachloride LT 1.20 -1 U9/9 Chloroform Chlorocyclopentadiene LT 3.70 0 U9/9 Chlorobenzene LT 2.00 -1 U9/9 Chlorobenzene LT 2.30 -2 U9/9	Soil 1,2-Dichloroethane O-1 Soil 1,2-Dichloroethane Bicycloheptadiene Carbon Tetrachloride Chloroform Hexachlorocyclopentadiene Chlorobenzene Chlorobenzene Chlorobenzene Chloropentadiene LT 2.30 -2 ug/g LT 1.20 -1 ug/g LT 3.70 0 ug/g LT 3.70 0 ug/g Chlorobenzene Chlorobenzene Chlorobenzene Chloropentadiene LT 2.30 -2 ug/g LT 3.70 -1 ug/g Chlorobenzene Chlorobenzene Chlorobenzene Chloropentadiene LT 2.30 -2 ug/g LT 3.70 0 ug/g Chlorobenzene Chloropentadiene	Depth (ft) Type Analytical Parameters Results Units O-1 Soil 1,2-Dichloroethane LT 8.50 -2 ug/g Aldrin Aldrin Carbon Tetrachloride LT 1.20 -1 ug/g Carbon Tetrachloride LT 1.20 -1 ug/g Hexachlorocyclopentadiene LT 1.80 -3 ug/g Chlorobenzene Chloride LT 2.00 -1 ug/g Chlorobenzene Chloride LT 2.00 -1 ug/g Chlorobenzene Dicyclopentadiene LT 4.50 -1 ug/g	Soil 1,2-Dichloroethane O-1 Soil 1,2-Dichloroethane Bicycloheptadiene Carbon Tetrachloride Chloroform Chloroform Chlorobenzene Chlorobenzene Chlorobenzene Chlorobentadiene LT 2.30 -2 ug/g LT 1.20 -1 ug/g LT 3.70 0 ug/g LT 3.70 0 ug/g LT 2.00 -1 ug/g Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chloropentadiene LT 2.30 -2 ug/g LT 2.30 -2 ug/g LT 2.30 -3 ug/g LT 3.30 -3 ug/g Endrin Endrin	Sample Analytical Parameters Results Units O-1 Soil 1,2-Dichloroethane LT 8.50 -2 UG/9 Aldrin Bicycloheptadiene LT 1.10 0 UG/9 Carbon Tetrachloride LT 3.70 0 UG/9 Hexachlorocyclopentadiene LT 3.80 -2 UG/9 Chlorobenzene LT 2.80 -1 UG/9 Chlorobenzene LT 2.80 -1 UG/9 Chloropentadiene LT 3.30 -3 UG/9 Chloropentadiene LT 3.30 -3 UG/9 Dieldrin Endrin LT 5.80 -3 UG/9 Isodrin Isodrin LT 1.10 -3 UG/9	Sample Analytical Parameters Results Units O-1 Soil 1,2-Dichloroethane LT 8.50 -2 ug/9 Bicycloheptadiene LT 1.10 -3 ug/9 Carbon Tetrachloride LT 1.20 -1 ug/9 Methylene Chloride LT 3.70 -1 ug/9 Chloropentadiene LT 2.30 -2 ug/9 Chlordane Chloride LT 2.30 -2 ug/9 Chlordane Chloride LT 2.30 -1 ug/9 Chlordane Chloride LT 2.30 -1 ug/9 Chlordane Chloride LT 3.30 -3 ug/9 Endrin Isodrin LT 5.80 -1 ug/9 Isodrin Chlorobetyl Ketone L1 5.80 -1 ug/9 In addrin LT 3.30 -3 ug/9 In addrin LT 5.80 -1 ug/9 In addrin LT 5.80 -1 ug/9 In addrin LT 5.80 -1 ug/9	Sample	Soil 1,2-Dichloroethane	Depth (ft) Type Analytical Parameters Results Units 1,2-Dichloroethane LT 8.50 -2 ug/9 Bicycloheptadiene LT 1.10 0 ug/9 Carbon Tetrachloride LT 1.20 -1 ug/9 Methylene Chloride LT 3.70 0 ug/9 Chloroform Heachlorocyclopentadiene LT 3.70 0 ug/9 Chlorobenzene Chloride LT 3.70 0 ug/9 Chlorobenzene Chloroform Chloropentadiene LT 2.00 -2 ug/9 Chloropentadiene LT 2.00 -2 ug/9 Dichlorodiphenyltrichloro- LT 3.30 -3 ug/9 Dichlorodiphenyltrichloro- LT 2.00 -3 ug/9 Dichlorodiphenyltrichloro- LT 2.00 -3 ug/9 Dichlorodiphenyltrichloro- LT 2.00 -3 ug/9 Ethane LET 2.00 -3 ug/9	Sample	Semple	Semple Analytical Parameters Results Units	Sample	Sample	Soil 1,2-Dichloroethane	Sample	Sample	Sample	Sample	South (ft) Type	Sample	Soil 1,2-Dichloroethane	South Sample	South Sample Sample Sample Depth (ft) Type T

Note: Results for some parameters may appear in more than one analytical fraction.

O

Ċ

Boring

0051

0051

Lake Ladora and Lake Mary

3.30 5.80 6.40 1.10 2.40 2.40 2.40 2.40 1.40	Depth (ft)	Sample	Anglytical Parameters	ŭ	Results	Units	Semple
Endrin	.5-2.5	Sofi	Dieldrin	ן ב	1	0/00	CYN011
130drin 130drin 140drin 140d			Endrin	ר		0/00	CYN011
Methylisobutyl Ketone			Isodrin	-1		0/00	CYND11
Dichlorodiphenyltrichloro- Dichlorodiphenyltrichloro- Ethane Tetrachloroethene Tetrachloroethene 1,1.2—Trichloroethane 1,1.1—Dichloroethane 1,2—Dichloroethane 1,3—Dichloroethane 1,3—Dichloroethane 1,3—Dichloroethane 1,3—Dichloroethane 1,4—Dichloroethane 1,5—Dichloroethane 1,5—Dichlorodiphenyltrichloro- Dichlorodiphenyltrichloro- Dichlorodiphenyltrichloro- 1,3—10 Dichloroethane 1,3—10 Dichloroethane 1,4—10 Dichloroethane 1,5—10 Dichlor			Methylisobutyl Ketone	ר		0/00	CYP009
Dichlorodiphenyltrichloro- ethane Tetrachloroethene Trichloroethene Trichloroe			Dichlorodiphenylethane	ר		0/00	CYN011
Soil 1,1,1—Trichloroethene			Dichlorodiphenyltrichloro-	ר		0/00	CYN011
Soil 1,1,1—Trichloroethene			ethane				
Soil 1,1,1-Trichloroethene LT 1,60-1 ug/g 1,1,2-Trichloroethene LT 2.60 -1 ug/g 1,1,2-Trichloroethene LT 2.60 -1 ug/g 1,1-Dichloroethene LT 2.60 -1 ug/g 1,1-Dichloroethene LT 2.60 -1 ug/g 1,2-Dichloroethene LT 2.60 -1 ug/g Aldrin Bicycloheptadiene LT 1.10 -2 ug/g Aldrin Bicycloheptadiene LT 1.20 -1 ug/g Carbon Tetrachloride LT 1.20 -1 ug/g Chlorobenzene LT 3.70 -0 ug/g Chlorobenzene LT 2.00 -1 ug/g Chlorobenzene LT 2.30 -2 ug/g Chlorobenzene LT 2.00 -1 ug/g Dicyclopentadiene LT 2.00 -1 ug/g			Tetrachloroethene	ב		0/60	CYODO
Soil 1,1,1-Trichloroethane LT 8.80 -2 ug/g 1,1,2-Trichloroethane LT 2.40 -1 ug/g 1,1-Dichloroethane LT 2.40 -1 ug/g 1,2-Dichloroethane LT 2.60 -1 ug/g 1,2-Dichloroethane LT 2.60 -1 ug/g Aldrin Bicycloheptadiene LT 1.90 -3 ug/g Carbon Tetrachloride LT 1.10 0 ug/g Chloroform LT 1.20 1 ug/g Chlorobenzene LT 3.70 0 ug/g Chlorobenzene LT 2.30 2 ug/g Chlorobenzene LT 2.50 1 ug/g Chlorodarin Isodrin LT 2.50			Trichloroethene	ר		0/00	CY0009
1,1,2-Trichloroethane	5-4-5	5013	1.1.1-Trichloroethere	11		0/00	CY001(
LT 2.60 -1 09/9 LT 2.60 -1 09/9 LT 2.60 -1 09/9 LT 1.90 -3 09/9 LT 1.20 -1 09/9 LT 3.70 0 09/9 LT 2.30 -2 09/9 LT 2.30 -3 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 5.40 -1 09/9 LT 2.70 -1 09/9 LT 2.70 -1 09/9)	•	1.1.2-Trichloroethene	- -		0/00	CYOUTE
LT 2.60 -1 09/9 LT 2.60 -1 09/9 LT 1.90 -3 09/9 LT 1.10 -1 09/9 LT 1.20 -1 09/9 LT 1.20 -1 09/9 LT 2.00 -1 09/9 LT 2.00 -1 09/9 LT 2.30 -2 09/9 LT 3.30 -3 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 2.40 -3 09/9 LT 2.70 -1 09/9			1.1-Dichloroethene	; <u>-</u>		0/00	CY001
LT 2.60 -1			1.1-Dichloroethene	ב ו		0/00	CYODI
LT 8.50 -2 09/9 LT 1.90 -3 09/9 LT 1.120 -1 09/9 LT 3.70 0 09/9 LT 5.80 -2 09/9 LT 2.30 -1 09/9 LT 2.30 -2 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 2.40 -3 09/9 LT 2.40 -3 09/9 LT 2.70 -1 09/9			1,2-Dichloroethene	LT	2.60	0/0n	CY0010
LT 1.30 -3 09/9 LT 1.10 0 09/9 LT 3.70 0 09/9 LT 5.70 0 09/9 LT 2.00 -1 09/9 LT 2.30 -2 09/9 LT 2.30 -2 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 5.40 -3 09/9 LT 2.40 -3 09/9 LT 2.70 -1 09/9				-		5/0	2007
LT 1.90 -3 09/9 LT 1.10 0 09/9 LT 3.70 0 09/9 LT 2.80 -3 09/9 LT 2.80 -1 09/9 LT 2.30 -1 09/9 LT 3.30 -3 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 2.40 -3 09/9 LT 2.40 -3 09/9 LT 2.70 -1 09/9						3	
LT 1.10 - 10 09/9 LT 1.20 - 1 09/9 LT 1.80 - 3 09/9 LT 2.30 - 2 09/9 LT 2.30 - 2 09/9 LT 4.50 - 1 09/9 LT 5.80 - 3 09/9 LT 5.80 - 3 09/9 LT 5.80 - 3 09/9 LT 2.40 - 3 09/9 LT 2.70 - 1 09/9			Aldrin	- I		0 (O)	CYNOL
LT 1.20 -1 09/9 LT 3.70 0 09/9 LT 1.80 -2 09/9 LT 2.00 -1 09/9 LT 2.00 -1 09/9 LT 4.50 -1 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 5.40 -1 09/9 LT 2.40 -3 09/9 LT 2.70 -1 09/9			Bicycloheptadiene	<u>-</u>		0/00	CYPOI
LT 3.70 0 ug/g LT 6.80 -2 ug/g LT 2.00 -1 ug/g LT 2.30 -2 ug/g LT 2.30 -2 ug/g LT 5.30 -3 ug/g LT 5.80 -3 ug/g LT 5.40 -1 ug/g LT 2.40 -3 ug/g LT 2.70 -1 ug/g			Carbon Tetrachloride	ר		0/00	CX001
LT 6.80 -2 u9/9 LT 1.80 -3 u9/9 LT 2.00 -1 u9/9 LT 2.30 -2 u9/9 LT 4.50 -1 u9/9 LT 5.80 -3 u9/9 LT 5.80 -3 u9/9 LT 5.40 -1 u9/9 LT 2.40 -3 u9/9 LT 2.70 -1 u9/9			Methylene Chloride	-1		e/en	CY001
LT 2.00 -1 09/9 LT 2.00 -1 09/9 LT 2.30 -2 09/9 LT 4.50 -1 09/9 LT 5.30 -3 09/9 LT 5.80 -3 09/9 LT 5.40 -1 09/9 LT 2.40 -3 09/9 LT 2.70 -1 09/9			Chloroform	1		0/00	CY001
LT 2.00 -1 09/9 LT 2.30 -2 09/9 LT 4.50 -1 09/9 LT 5.80 -3 09/9 LT 5.80 -3 09/9 LT 2.40 -3 09/9 LT 2.00 -3 09/9 LT 2.70 -1 09/9			Hexach lorocyclopentadiene	1		0/00	CYNDI
LT 2.30 -2 u9/9 LT 4.50 -1 u9/9 LT 5.30 -3 u9/9 LT 5.80 -3 u9/9 LT 6.40 -1 u9/9 LT 2.40 -3 u9/9 LT 2.00 -3 u9/9 LT 2.70 -1 u9/9			Chlorobenzene	ב		0/00	CY0010
LT 4.50 -1 uq/q LT 3.30 -3 uq/q LT 5.80 -3 ug/q LT 1.10 -3 ug/q LT 2.40 -3 ug/q LT 2.00 -3 ug/q LT 2.00 -3 ug/q			Chlordane			0/00	CYN01:
LT 3.30 -3 u9/9 LT 5.80 -3 u9/9 LT 1.10 -3 u9/9 LT 2.40 -3 u9/9 LT 2.00 -3 u9/9 LT 2.70 -1 u9/9			Dicyclopentadiene	11		0/00	CYP010
LT 5.80 -3 u9/9 LT 1.10 -3 u9/9 LT 2.40 -1 u9/9 LT 2.40 -3 u9/9 LT 2.70 -1 u9/9			Dieldrin	-1		0/00	CYN013
LT 1.10 -3 u9/9 LT 6.40 -1 u9/9 LT 2.40 -3 u9/9 LT 2.00 -3 u9/9 LT 2.70 -1 u9/9			Endrin	-1		0/00	CYNOI
LT 2.40 -1 u9/9 LT 2.40 -3 u9/9 LT 2.70 -1 u9/9			Isodrin	<u>-</u>		0/00	CYNO1;
LT 2.40 -3 ug/g (LT 2.70 -1 ug/g (LT 2.70 -1 ug/g (Methylisobutyl Ketone	ב		0/00	CYPDIO
LT 2.70 -1 ug/g			Dichlorodiphenylethane	L		0/00	CYN012
LT 2.70 -1 ug/g			Dichlorodiphenyltrichloro-	L		0/00	CYNO12
LT 2.70 -1 ug/g			ethane				
	,		Tetrachloroethene	-		0/00	CY001

Cadmium						
Cadmium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromic Cept Cept Cept Cept Cept Cept Chromium Chromic Chromium Chromium Chromium Chlordane Dislication Chlordane Chromium Chlordane Chromium Chlordane Chromium Chlordane Chromium Chlordane Chromium Chlordane Chromium Ch		Type		Results	Units	Sample
Chromium Chromium Chromium Chromium Chromium List	B1ank	Codmica			CXU001	
Copper Lead Lead Lead Lead Lines Lead Lines Line		Blank	Chromium			CXUDO1
Lead		Blenk	Copper	9.85		CXU001
Dibromochloropropene		Blank	Lead	1.53		CXU001
Dibromochloropropene Aldrin Chordane Chlordane Dislocation Findin Isodrin Dischardane Dischardane Dischardane Dischardane Dischardane Dischardane LT 2.80 -3 ug/g 1, 1, 1-Trichloroethane LT 3.00 -1 ug/g 1, 1, 2-Dichloroethane LT 3.00 -1 ug/g Chloropenzene Chlo		Blank	Zinc	4.73		CXUDO1
Aidrin Chlordane Chlordane Dieldrin Endrin Isodrin		8190k	Dibromochloropropene			CXMOD1
Chlordane Dieldrin Endrin Isodrin Dielordin Dichlorodiphenylethane Dichlorodiphenyltrichloro- I,1,2-Trichloroethane I,2-Dichloroethane I,2-Dichloroethane I,2-Dichloroethane I,2-Dichloroethane I,2-Dichloroethane I,2-Dichloroethane I,2-Dichloroethane I,2-Dichloroethane I,3-Dichloroethane I,3-Dichlor		Blank	Aldrin			CXX001
Dieldrin Endrin Isodrin Isodrin Dichlorodiphenylethane LT 2.40 -3 ug/g Dichlorodiphenyltrichloro- LT 2.60 -3 ug/g Dichlorodiphenyltrichloro- LT 2.00 -3 ug/g Dichlorodiphenyltrichloro- LT 3.00 -1 ug/g L1,1-Dichloroethane LT 3.00 -1 ug/g L2-Dichloroethane LT 3.00 -1 ug/g L3-Dichloroethane LT 3.00 -1 ug/g Carbon Tetrachloride Carbon Tetrachloride Chloroform Chloropentadiene LT 3.00 -1 ug/g Chl		Blank	Chlordane			CXX001
Endrin Isodrin Isodrin Dichlorodiphenylethane LT 2.40 -3 ug/g ethane Hercury 1,1,1-Trichloroethane LT 3.00 -1 ug/g 1,2-Dichloroethane LT 3.00 -1 ug/g Bricycloheptadiene Expression Chloroform Chloropenzene	Blank	Dieldrin			CXX001	
Isodrin Dichlorodiphenylethane LT 2.40 -3 ug/g ethane ethane Mercury 1,1,1-Trichloroethane LT 3.00 -1 ug/g 1,1,2-Trichloroethane LT 3.00 -1 ug/g 1,2-Dichloroethane LT 3.00 -1 ug/g M-xylene Bicycloheptadiene LT 3.00 -1 ug/g Carbon Tetrachloride LT 3.00 -1 ug/g Chlorobenzene Chlorobenzene Chloropentadiene Dicyclopentadiene LT 3.00 -1 ug/g Chloropentadiene LT 3.00 -1 ug/g Chloropentadiene Dicyclopentadiene LT 3.00 -1 ug/g Chloropentadiene Dicyclopentadiene LT 3.00 -1 ug/g Chloropentadiene LT 3.00 -1 ug/g Dicyclopentadiene LT 3.00 -1 ug/g Dicyclopentadiene LT 3.00 -1 ug/g Chloropentadiene LT 3.00 -1 ug/g Dicyclopentadiene LT 3.00 -1 ug/g Chloropentadiene		Blank	Endrin			CXX001
Dichlorodiphenylethane LT 2.40 -3 ug/g ethane Mercury 1,1,1-Trichloroethane LT 3.00 -1 ug/g 1,2-Trichloroethane LT 3.00 -1 ug/g 1,2-Dichloroethane LT 3.00 -1 ug/g Merkylene Bicycloheptadiene Bicycloheptadiene Carbon Tetrachloride Carbon Tetrachloride Chloroform Chlorobenzene Chloroporm Chlorobentadiene LT 3.00 -1 ug/g Chloroporm Chlorobentadiene LT 3.00 -1 ug/g Chloroform Chlorobentadiene LT 3.00 -1 ug/g Dicyclohentadiene LT 3.00 -1 ug/g Dicyclohentadiene LT 3.00 -1 ug/g Dimethyldisulfide Ethylbenzene		Blank	Isodrin			CXX001
Dichlorodiphenyltrichloro- ethane Mercury 1,1,1—Trichloroethane 1,2—Dichloroethane 1,3—Dichloroethane		Blank	Dichlorodiphenylethane			CXX001
### ### ##############################		Blank	Dichlorodiphenyltrichloro-			CXX001
Mercury 1,1,1-Trichloroethane 1,1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichloro			ethane			
1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dic		Blank	Mercury			CXY001
1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichlo		Blank	1,1,1-Trichloroethane			CYL001
1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroe		Blank	1,1,2-Trichloroethane			CYL001
1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroe	•	Blank	1,1-Dichloroethane			CYL001
1,2-Dichloroethane LT 3.00 -1 Bicycloheptadiene LT 3.00 -1 Benzene Carbon Tetrachloride LT 3.00 -1 Ua/a Chlorobenzene Chlorobenzene Chlorobentadiene LT 3.00 -1 Ua/a Chlorobentadiene LT 3.00 -1 Ua/a Chlorobentadiene LT 3.00 -1 Ua/a Dicyclopentadiene LT 3.00 -1 Ua/a Ethylbenzene LT 3.00 -1 Ua/a Ethylbenzene LT 3.00 -1 Ua/a Ethylbenzene LT 3.00 -1 Ua/a LT 3.00 -1 Ua/a		81erk	1,2-Dichloroethene			CYL001
Bicycloheptadiene Bicycloheptadiene Benzene Carbon Tetrachloride Chloroform Chlorobenzene Chlorobentadiene Chlorobentadiene Chloropentadiene Chloro		81ank	1,2-Dichloroethane			CYL.001
Bicycloheptadiene Benzene Carbon Tetrachloride LT 3.00 -1 ug/g Carbon Tetrachloride LT 3.00 -1 ug/g Chlorobenzene Chlorobenzene Chlorobentadiene LT 3.00 -1 ug/g Chlorobentadiene LT 3.00 -1 ug/g Dicyclopentadiene LT 3.00 -1 ug/g Ethylbenzene LT 3.00 -1 ug/g LT 3.00 -1 ug/g Ethylbenzene LT 3.00 -1 ug/g Ethylbenzene LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g		81ank	a-Xylene			CYL001
Benzene Carbon Tetrachloride LT 3.00 -1 ug/g Methylene Chloride LT 3.00 -1 ug/g Chlorobenzene Chlorobenzene LT 3.00 -1 ug/g Dibromochloropropane LT 4.00 -1 ug/g Dicyclopentadiene LT 3.00 -1 ug/g Dicyclopentadiene LT 8.00 -1 ug/g Dimethyldisulfide LT 3.00 -1 ug/g Ethylbenzene LT 3.00 -1 ug/g Ethylbenzene LT 3.00 -1 ug/g LT 3.00 -1 ug/g		81ank	Bicycloheptadiene			CYLOD1
Carbon Tetrachloride Methylene Chloride Chloroform Chlorobenzene Chlorobenzene Chlorobentadiene Dicyclopentadiene Chloropentadiene LT 3.00 -1 ug/g Li y.00 -1 ug/g Dicyclopentadiene LT 3.00 -1 ug/g Dicyclopentadiene LT 3.00 -1 ug/g Li y.00 -1 ug/g		Blank	Benzene		_	CYLOD1
Methylene Chloride Chloroform Chlorobenzene Chlorobenzene LT 3.00 -1 ug/g Dibyclopentadiene LT 4.00 -1 ug/g Dicyclopentadiene LT 8.00 -1 ug/g Dicyclopentadiene LT 8.00 -1 ug/g Ethylbenzene Toluene Toluene H 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g		Blank	Carbon Tetrachloride			CYL001
Chloroform Chlorobenzene Chlorobenzene LT 3.00 -1 ug/g Discontadiene LT 4.00 -1 ug/g Discolpentadiene LT 3.00 -1 ug/g Dimethyldisulfide LT 8.00 -1 ug/g Ethylbenzene Toluene LT 3.00 -1 ug/g LT 3.00 -1 ug/g LT 3.00 -1 ug/g		Blank	Methylene Chloride			CYL001
Chlorobenzene Dibromochloropropane Discoplantadiene	•	Blank	Chloroform			CYL001
Dibromochloropropane LT 4.00 -1 ug/g Dicyclopentadiene LT 3.00 -1 ug/g Dimethyldisulfide LT 8.00 -1 ug/g Ethylbenzene LT 3.00 -1 ug/g Toluene LT 3.00 -1 ug/g Mathyliachutyl Katona LT 3.00 -1 ug/g		Blank	Chlorobenzene			CYL001
Dicyclopentadiene LT 3.00 -1 ug/g Dimethyldisulfide LT 8.00 -1 ug/g Ethylbenzene LT 3.00 -1 ug/g Toluene Methylischutyl Ketone		Blank	Dibromochloropropane			CYL001
Dimethyldisulfide LT 8.00 -1 ug/g Ethylbenzene LT 3.00 -1 ug/g Toluene LT 3.00 -1 ug/g Methylischutyl Ketone LT 3.00 -1 ug/g		Blank	Dicyclopentadiene			CYL001
Ethylbenzene LT 3.00 -1 ug/g Toluene Toluene LT 3.00 -1 ug/g Methylicohutyl Ketone LT 3.00 -1 ug/g		81ank	Dimethyldisulfide			CYLOO1
Toluene LT 3.00 -1 ug/g Methylischutyl Ketone 11 3.00 -1 ug/g		Blank	Ethylbenzene		000	CYL.001
Methylisechutyl Ketone	•	B) onk	Toluene			CYLOO1
		8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	Methylisobutyl Ketone		_	CYL 001

Ebasco Services Incorporated

Summary of Analytical Results

Rocky Mountain Arsenal Program

Blanks Associated with Task 20 Lake Ladora and Lake Mary - Site 2-17

Type	Analytical Perameters	Œ	Results		Units	Sample Number
.				1		
8) enk	Trichloroethene	1	3.00	7	0/00	CYLOGI
Blank	Ortho- & Para-Xylene	Ļ	3.00	Ţ	0/00	CYL 001
Blank	Aldrin	ב	1.90	'n	0/00	CYN001
B1 ank	Hexachlorocyclopentadiene	7	1.80	n	0/00	CYNDO1
Blank	Chlordane	1	2.30	7	0/00	CYN001
Blenk	Dieldrin	ב	3.30	P)	o/on	CYNDO1
Blank	Endrin	-	5.80	Ŋ	6/6n	CYN001
Blank	Isodrin	-1	1.10	*?	0/00	CYNO01
81ank	Dichlorodiphenylethane	[1	2.40	r)	0/00	CYNOO1
Blank	Dichlorodiphenyltrichloro-	ב	2.00	Ŋ	0/0n	CYNDO1
	ethane				,	
Blank	1,1,1-Trichloroethane	-1	8.80	ņ	0/00	CY0001
Blank	1,1,2-Trichloroethane	ב	2.60	7	0/00	CY0001
81ank	1,1-Dichloroethene	-1	2.40	4	0/00	CY0001
Blank	1,1-Dichloroethane	ר	7.40	7	0/00	CY0001
Blank	1,2-Dichloroethene	-1	2.60	-1	0/00	CYODO1
Blank	1,2-Dichloroethane	ב	8.50	7	0/00	CY0001
Blank	Carbon Tetrachloride	נ	1.20	7	6/6n	CY0001
81ank	Methylene Chloride	-1	3.70	0	0/0n	CY0001
Blank	Chloroform	ב	6.80	4	0/00	CY0001
Blank	Chlorobenzene	-	2.00	7	0/00	CY0001
Blank	Tetrachloroethene	רי	2.70	-1	0/00	CY0001
Blank	Trichloroethene	נ	1.40	-1	0/00	CY0001
8) enk	Bicycloheptadiene	-1	1.10	0	0/00	CYP001
Blank	Dicyclopentadiene	_	4.50	-1	0/00	CYPOOI
Blank	Methylisobutyl Ketone	-1	6.40	-1	0/00	CYPOO1
Blank	Cadmium	ב	7.40	-1	0/00	CYROO1
81ank	Chromium		1.52		0/00	CYROD1
81 ank	Copper		1.07	-	0/00	CYROD1
Blank	Lead		1.09	7	0/00	CYR001
Blank	Zinc		4.05	-	0/00	CYROD1
Rlank	1.1,1-Trichloroethane	LI	4.30	7	0/00	CYS001

۲,

Ć

C

Ebasco Services Incorporated

Rocky Mountain Arsenal Program

Summery of Analytical Results

Blanks Associated with Task 20 Lake Ladora and Lake Mary - Site 2-17

1,1-01chioroethane	Type	Analytical Parameters	Results	Units	Sample
1,2-Dichloroethene	۱.	1.1-Dichloroethane		0/00	CYS001
1,2-Dichloroethane		1,2-Dichloroethene	1.70	0/00	CYS001
## ## ## ## ## ## ## ## ## ## ## ## ##	~	1,2-Dichloroethane	5.60	0/00	CYS001
Bicycloheptadiene Benzene Carbon Tetrachloride Chlorodorm Methyliasobutyl Ketone Trichloroethene	¥	m-Xylene	7.40	0/00	CYS001
Benzene LT 2.50 -1 ug/g Carbon Tetrachloride LT 2.50 -1 ug/g Chloroform LT 2.50 -1 ug/g Chloroform LT 2.50 -1 ug/g Chloroform LT 2.50 -1 ug/g Dibromochloropane LT 2.40 0 ug/g Discolpentadiene LT 2.40 1 ug/g Discolpentadiene LT 2.50 -1 ug/g Ethylbenzene LT 2.50 -1 ug/g Tollene LT 2.50 -1 ug/g Tollene LT 2.50 -1 ug/g Tollene LT 2.50 -1 ug/g Tollene octhene LT 2.50 -1 ug/g I.1.2-Trichlorocthene LT 2.50 -1 ug/g I.1.1-Trichlorocthene LT 2.50 -1 ug/g I.1.2-Dichlorocthene LT 3.60 -1 ug/g I.2-Dichlorocthene LT 3.50 -1 ug/g I.2-Dichlorocthene LT 2.50 -1 ug/g <t< td=""><td>¥</td><td>Bicycloheptadiene</td><td>3.60</td><td>6/6n</td><td>CYS001</td></t<>	¥	Bicycloheptadiene	3.60	6/6n	CYS001
Carbon Tetrachloride	¥	Benzene	2.50	0/00	CYS001
Methylene Chloride	¥	Carbon Tetrachloride	2.50	0/00	CYS001
Chloroform Chlorobenzene Chlorobenzene Dibromochloropropane Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene LT 2.40 0 ug/g LT 2.80 -1 ug/g LT 2.50 -1 ug/g Carbon Tetrachloride LT 2.50 -1 ug/g Carbon Tetrachloride LT 2.50 -1 ug/g Chlorobenzene Chlorobenzene Chlorobenzene LT 2.50 -1 ug/g Chlorobenzene LT 2.50	¥	Methylene Chloride	1.50	0/00	CYS001
Dibromochloropropane	Y	Chloroform	2.90 -	0/00	CYSOO1
Dibromochloropropane UT 2.40 0 Dimethyldisulfide LT 2.00 1 Usyclopentadiene UT 2.00 1 Usyclopentadiene LT 2.00 1 Usyclopentadiene LT 3.80 -1 Usyclopentadiene LT 7.30 -1 Usyclopentadiene LT 7.30 -1 Usyclopentadiene LT 3.90 -1 Usyclopentadiene LT 3.90 -1 Usyclopentadiene LT 3.50 -1 Usyclopentadiene UT 3.50 -1 Usyclopentadiene LT 3.50 -1 Usyclopentadiene UT 3.50 -1 Usyclopentadiene UT 3.50 -1 Usyclopentadiene UT 3.50 -1 Usyclopentadiene UT 2.50 -1 Usyclopentadiene UT 3.50 -1 USycl	¥	Chlorobenzene	1.50	0/0n	CYS001
Dicyclopentadiene Dimethyldisulfide Ethylbenzene Ethylbenzene I	¥	Dibromochloropropane	2.40	0/00	CYS001
Ethylbenzene	¥.	Dicyclopentadiene	- 07.9	0/00	CYS001
Ethylbenzene Incluene Toluene		Dimethyldisulfide	2.00	0/00	CYS001
Methylisobutyl Ketone		Ethylbenzene	3.80	0/00	CYS001
Methylisobutyl Ketone LT 7.30 -1 ug/g Trichloroethene LT 5.40 -1 ug/g Trichloroethene LT 5.40 -1 ug/g LT 1.2-Trichloroethane LT 1.70 0 ug/g L1,1,2-Trichloroethane LT 1.70 0 ug/g L1,2-Dichloroethane LT 1.70 0 ug/g L2-Dichloroethane LT 1.70 0 ug/g L2-Dichloroethane LT 1.70 0 ug/g L2-Dichloroethane LT 2.50 -1 ug/g Bicycloheptadiene Bicycloheptadiene Chlorobenzene Chlorobenzene Chlorobentadiene Dicyclopentadiene LT 2.50 0 ug/g Chlorobentadiene LT 2.50 0 ug/g LT 2.50 -1 ug/g Dibromochloropropane LT 2.50 -1 ug/g Dicyclopentadiene LT 2.50 -1 ug/g LT 2.60 -1 ug/g Dicyclopentadiene LT 2.00 1 ug/g	v	Toluene	2.50	0/00	CYS001
Trichloroethene	Y	Methylisobutyl Ketone	7.30	0/60	CYS001
Trichloroethene	v	Tetrachloroethene	2.50	0/00	CYS001
Ortho- & Para-Xylene 1,1,2-Trichloroethane 1,1,2-Dichloroethane 1,2-Dichloroethane 1,3-60 -1 ug/g 1,1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1	v	Trichloroethene	5.40	8/8n	CYS001
1,1,1-Trichloroethane LT 3.90 -1 ug/g 1,1,2-Trichloroethane LT 3.90 -1 ug/g 1,2-Dichloroethane LT 1.70 0 ug/g 1,2-Dichloroethane LT 3.60 -1 ug/g 1,2-Dichloroethane LT 5.60 -1 ug/g Bicycloheptadiene LT 2.50 -1 ug/g Benzene LT 2.50 -1 ug/g Carbon Tetrachloride LT 2.50 -1 ug/g Methylene Chloride LT 2.50 -1 ug/g Chlorobenzene LT 2.50 -1 ug/g Dibromochloropropane LT 2.90 -1 ug/g Dicyclopentadiene LT 2.90 -1 ug/g Discyclopentadiene LT 2.40 0 ug/g Dimethyldisulfide LT 2.00 1 ug/g	.,	Ortho- & Para-Xylene	4.90	0/00	CYS001
1,1,2-Trichloroethane LT 3.90 -1 ug/g 1,1-Dichloroethane LT 1.70 0 ug/g 1,2-Dichloroethane LT 5.60 -1 ug/g 1,2-Dichloroethane LT 5.60 -1 ug/g Bicycloheptadiene LT 2.50 -1 ug/g Benzene LT 2.50 -1 ug/g Carbon Tetrachloride LT 2.50 -1 ug/g Methylene Chloride LT 2.50 -1 ug/g Chlorobenzene LT 2.90 -1 ug/g Dibromochloropropane LT 2.40 0 ug/g Dicyclopentadiene LT 2.40 0 ug/g Dimethyldisulfide LT 2.00 1 ug/g	v	1,1,1-Trichloroethane	4.30	0/0n	CYT001
1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-	v	1,1,2-Trichloroethane	3.90	0/00	CYTOD1
1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,1-S-60-1 1,00/9 1,1-S-1,00/9	J	1,1-Dichloroethane	1.70	0/00	CYT001
1,2-Dichloroethane	¥	1,2-Dichloroethene	1.70	0/00	CYT001
### ### ##############################	~	1,2-Dichloroethane	5.60	0/00	CYT001
Bicycloheptadiene Benzene Carbon Tetrachloride LT 2.50 -1 ug/g LT 2.50 -1 ug/g LT 2.50 -1 ug/g LT 2.50 -1 ug/g LT 1.50 0 ug/g Chlorobenzene Chlorobenzene LT 1.50 0 ug/g Dibromochloropropane LT 2.40 0 ug/g Dicyclopentadiene LT 2.40 1 ug/g Dicyclopentadiene LT 2.40 1 ug/g Dimethyldisulfide	v	B-XYlene	7.40	6/6n	CYT001
Benzene LT 2.50 -1 ug/g Carbon Tetrachloride LT 2.50 -1 ug/g Methylene Chloride LT 1.50 0 ug/g Chloroform LT 2.90 -1 ug/g Chlorobenzene LT 2.40 0 ug/g Dibromochloropropane LT 2.40 0 ug/g Discolopentadiene LT 2.40 0 ug/g Dimethyldisulfide LT 2.00 1 ug/g	¥	Bicycloheptadiene	3.60	0/00	CYT001
Carbon Tetrachloride LT 2.50 -1 ug/g Methylene Chloride LT 1.50 0 ug/g Chlorobenzene Chlorobenzene LT 1.50 0 ug/g Dibromochloropropane LT 2.40 0 ug/g Dicyclopentadiene LT 2.40 1 ug/g Dimethyldisulfide LT 2.00 1 ug/g	Y	Benzene	2.50	0/00	CYT001
Methylene Chloride LT 1.50 0 ug/g Chloroform LT 2.90 -1 ug/g Chlorobenzene LT 1.50 0 ug/g Dibromochloropropane LT 2.40 0 ug/g Dicyclopentadiene LT 6.40 -1 ug/g Dimethyldisulfide LT 2.00 1 ug/g	¥	Carbon Tetrachloride	2.50	0/00	CYT001
Chlorobenzene LT 2.90 -1 ug/g Chlorobenzene LT 1.50 0 ug/g Dibromochloropropane LT 2.40 0 ug/g Dicyclopentadiene LT 6.40 -1 ug/g Dimethyldisulfide LT 2.00 1 ug/g	×	Methylene Chloride	1.50	0/00	CYT001
Chlorobenzene LT 1.50 0 ug/g Dibromochloropropane LT 2.40 0 ug/g Dicyclopentadiene LT 6.40 -1 ug/g Dimethyldisulfide LT 2.00 1 ug/g	¥	Chloroform	2.90	0/00	CYT001
Dibromochloropropane LT 2.40 0 ug/g Dicyclopentadiene LT 6.40 -1 ug/g Dimethyldisulfide LT 2.00 1 ug/g	v	Chlorobenzene	1.50	6 /60	CY1001
Oicyclopentadiene LT 6.40 -1 ug/g Dimethyldisulfide LT 2.00 1 ug/g	¥	Dibromochloropropane	2.40	0/00	CYT001
Dimethyldisulfide LT 2.00 1 ug/g	~	Dicyclopentadiene	6.40	6/60	CY1001
	~	Dimethyldisulfide	2.00	0/00	CYT001

.

Ebasco Services Incomporated Summary of Analytical Results

Rocky Mountain Arsenal Program

Blanks Associated with Task 20 Lake Ladora and Lake Mary - Site 2-17

Type	Anglytical Parameters	Results	Units	Sample
Blank	Ethylbenzene	LT 3.80 -1	0/en	CY1001
81 ank	Toluene		0/00	CYT001
81 ank	Methyllsobutyl Ketone	LT 7.30 -1	ø/øn	CYT001
81enk	Tetrachloroethene	LT 2.50 -1	0/00	CYT001
Blank	Trichloroethene	5.40	0/00	CYT001
81enk	Ortho- & Para-Xylene	LT 4.90 0	0/6n	CYT001
Blank	1.1.1-Trichloroethene	LT 3.00 -1	0/00	CYUDO1
Black	1,1,2-Trichloroethane	3.00	0/00	CYUGO1
Blank	1,1-Dichloroethane		0/00	CYUDO1
Blank	1,2-Dichloroethene	LT 3.00 -1	0/00	CYU001
81ank	1,2-Dichloroethane	LT 3.00 -1	p/6n	CYU001
Blank	m-Xylene	LT 7.00 -1	0/0n	CYUDO1
Blank	Bicycloheptadiene		0/00	CYU001
81ank	Benzene		0/00	CYUDO1
81 ank	Carbon Tetrachloride		0/00	CYU001
81ank	Methylene Chloride	LT 7.00 -1	B/8n	CYUDOI
Blenk	Chloroform	LT 3.00 -1	0/00	CYUBO1
AC C	Chlorobenzene	3.00	0/00	CYUDO1
ACE TO SERVICE	Of browoch or opposed		0/07	CYUGO1
Blank	Dicyclopentadiene	3.00	0/07	CYU001
81ank	Dimethyldisulfide		6/6n	CYUDO1
81ank	Ethylbenzene		0/00	CYUGO1
81ank	Toluene		0/00	CYU001
. Blank	Methylisobutyl Ketone		0/00	CYU001
81ank	Tetrachloroethene	LT 3.00 -1	0/00	CYU001
Blank	Trichloroethene	LT 3.00 -1	0/0n	CYUDO1
Blank	Ortho- & Para-Xylene	LT 3.00 -1	0/00	CYU001
81ank	Dibromochloropropane		0/00	CYVDO1
Blank	Aldrin	LT 1.90 -3	0/00	CYMCO1
Blank	Chlordane	LT 2.30 -2	0/07	CYMOO1
Blank	Dieldrin	LT 3.30 -3	0/00	CYM001
, And I was		LT 5.80 -3	0/00	CYMOOI
ALE E			0/00	CVEDO
<u> </u>		•	à ì)

Note: Blanks are matched to analytical lots by the first three characters in the Sample Number.

Blanks Associated with Task 2D Lake Lidora and Lake Mary - Site 2-17

244	Analytical Parameters	*	Results	ا ڈ	Units	Number
B) enk	Dichlorodiphenylethane	1	2.40 -3		6/en	CYM001
7.5	Dich locodipheny trichloro-	-			0/07	CYMOD1
į	ethane	i I			,	
Bla:nk	Aldrin	ב	1.90 -3		0/00	CYX001
Blank	Chlordane	ב			6/6n	CYX001
Blank	Dieldrin	רן	3.30 -3		0/00	CYX001
81ank	Endrin	-1	5.80 -3	-	0/00	CYX001
Blank	Isodrin	-1	1.10 -3		B/60	CYX001
81ank	Dichlorodichenylethane	Ļ	2.40 -3	_	6/60	CYX001
Blank	Dichlorodiphenyltrichloro-	1	2.00 -3		6/60	CYXDO1
	ethene					
Blank	Aldrin	-1	1.90 -3	_	0/00	CZB001
Blank	Chlordane	1	2.302	_	o/on	CZB001
Blank	Dieldrin	ב	3.30 -3		6/6 0	CZB001
81ank	Endrin	ב	5.80 -3	_	0/00	CZB001
700	\$ \frac{1}{2} \fra	-	1 01 1		0/01	CZB001
700.0	Dichlorod(pheny)ethene	i -			0/01	CZROO1
7 7 7	Diet on distance of the contract	-			0/01	100827
£	ethere	į			• •	
81ank	Arsenic	ב	2.50 0	_	0/00	CZC001
Blank	Mercury	ΓŢ	5.00 -2		0/00	CZD001
Blank	Aldrin	ר	1.90 -3		0/00	CZ6001
Blank	Chlordane	-1	2.30 -2	Ī	0/00	CZG001
Blank	Dieldrin	LT	3.30 -3		0/00	CZG001
Blank	Endrin	٦	5.80 -3		0/00	CZG001
81ank	Isodrin	۲	1.10 -3		0/00	CZG001
Blank	Dichlorodiphenylethane	11	2.40 -3		0/00	c26001
Blank	Dichlorodiphenyltrichloro-	L	2.00 -3		0/00	CZG001
	ethane					
Blank	Mercury	רז			0/00	CZM001
Blank	Aldrin	L.T	1.90 -3		0/00	CZN001
81ank	Hexachlorocyclopentadiene	Ļ	1.80 -3	_	6/60	CZND01
Rlank	Chlordane	<u>ر</u>	2.30 -2		0/60	CZN001

Ebasco Services Incorporated

Summary of Analytical Results

Blanks Associated with Task 20 Lake Ladora and Lake Mary - Site 2-17

Type	Analytical Parameters	•	Results	Units	Sample Number
Blank	Endrin	5	5.80 -3	00/00	CZN001
Blank	Isodrin	-1	1.10 -3	0/00	CZNOD1
81ank	Dichlorodiphenylethane	L.1	LT 2.40 -3	0/00	CZNOD1
81 a nk	Dichlorodiphenyltrichloro- ethene	ב	LT 2.00 -3	8/8n	CZND01
81enk	Aldrin	-	1.90 -3	0/00	CZ0001
Blank	Chlordane	11	2.30 -2	0/00	C20001
Blank	Dieldrin	ב	3.30 -3	0/60	CZ0001
Blank	Endrin	ב	5.80 -3	0/60	CZ0001
Blank	Isodrin	-	1.10 -3	0/00	CZ0001
Blank	Dichlorodiphenylethane	1	2.40 -3	0/00	CZ0001
81ank	Dichlorodiphenyltrichloro-	٢	2.00 -3	0/00	CZ0001
	ethane				