

Global United Technology Services Co., Ltd.

Report No.: GTSE15050096201

FCC REPORT

Applicant: Vitall Inc.

Address of Applicant: 4539 Metropolitan Court, Frederick MD 21704 United States

Equipment Under Test (EUT)

Wireless HUB **Product Name:**

KY-CS01B Model No.:

FCC ID: 2ABMU-KY-CS01B

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2014

Date of sample receipt: July 07, 2015

Date of Test: July 07-08, 2015

Date of report issued: July 08, 2015

PASS * Test Result:

Authorized Signature:

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	July 08, 2015	Original

Tested By:	Sam. Gao	Date:	July 08, 2015
	Project Engineer		
Check By:	hank. yan Reviewer	Date:	July 08, 2015

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
_			
3	CON	TENTS	ა
4	TES	SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	
	5.6	TEST LOCATION	7
6	TES	TINSTRUMENTS LIST	8
7	TES	Γ RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
	7.7	SPURIOUS EMISSION	
	7.7.1		
	7.7.2	Radiated Emission Method	25
8	TES	T SETUP PHOTO	31
q	FUT	CONSTRUCTIONAL DETAILS	33

Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Frequency Range Measurement Uncertainty	
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 Client Information

Applicant:	Vitall Inc.	
Address of Applicant:	4539 Metropolitan Court, Frederick MD 21704 United States	
Manufacturer:	Shenzhen Qianhai Kunyuan Smarter Co., Ltd.	
Address of Manufacturer:	Room 607, Complex Building, Tsinghua High-Tech Park, Nanshan District, Shenzhen, P.R.C.	
Factory:	Shenzhen Zhonglongtong Electronic Co.,Ltd	
Address of Factory:	B4 Building, Pokeng 1st Industry Park,Nanpu Road,Shajing Town,Baoan,Shenzhen	

5.2 General Description of EUT

Product Name:	Wireless HUB	
Model No.:	KY-CS01B	
Operation Frequency:	2405MHz~2475MHz	
Channel Numbers:	5	
Channel Separation:	≥5MHz	
Modulation Type:	GFSK	
Antenna Type:	PCB antenna	
Antenna Gain:	2.0dBi (declare by Applicant)	
Power Supply:	AC/DC Adaptor:	
	Model No.:PGAE0500200U1CH	
	Input:100-240V~50/60Hz 0.3A	
	Output:5.0V == 2.0A	

Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2405MHz	2	2415MHz	3	2430MHz	
4	2450MHz	5	2475MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2430MHz
The Highest channel	2475MHz

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Description of Support Units

None

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 28 2015	Mar. 27 2016	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Jun. 30 2015	Jun. 29 2016	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jun. 30 2015	Jun. 29 2016	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Jun. 30 2015	Jun. 29 2016	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	Jun. 25 2016	Jun. 24 2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2015	Mar. 26 2016	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016	
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016	
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jun. 30 2015	Jun. 29 2016	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jun. 30 2015	Jun. 29 2016	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Jun. 25 2016	Jun. 24 2016	
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2015	Mar. 27 2016	
17	Power Meter	Anritsu	ML2495A	GTS540	Jun. 30 2015	Jun. 29 2016	
18	Power Sensor	Anritsu	MA2411B	GTS541	Jun. 30 2015	Jun. 29 2016	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Jun. 30 2015	Jun. 29 2016	
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jun. 30 2015	Jun. 29 2016	
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jun. 30 2015	Jun. 29 2016	
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jun. 30 2015	Jun. 29 2016	
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jun. 30 2015	Jun. 29 2016	
6	Coaxial Cable	GTS	N/A	GTS227	Jun. 30 2015	Jun. 29 2016	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	Jun 07 2015	Jun 06 2016	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 8 of 40

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 2.0dBi

7.2 Conducted Emissions

Test Method: ANSI C63.4:2014 Test Frequency Range: 150KHz to 30MHz Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56	BuV) Average 56 to 46*
Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Limit (dB Quasi-peak 0.15-0.5 66 to 56*	Average
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto	Average
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto	Average
Limit: Frequency range (MHz) Limit (dB Quasi-peak 0.15-0.5 0.15-0.5 66 to 56*	Average
0.15-0.5 Quasi-peak 66 to 56*	Average
	EC += 4C*
0.5-5	56 10 46"
	46
5-30 60	50
* Decreases with the logarithm of the frequency.	
Test setup: Reference Plane	
AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	
Test procedure: 1. The EUT and simulators are connected to the main line impedance stabilization network (L.I.S.N.). This 50ohm/50uH coupling impedance for the measuring 2. The peripheral devices are also connected to the m LISN that provides a 50ohm/50uH coupling impedant termination. (Please refer to the block diagram of the photographs). 3. Both sides of A.C. line are checked for maximum continuer interference. In order to find the maximum emission positions of equipment and all of the interface cable according to ANSI C63.4: 2014 on conducted measuring	s provides a g equipment. nain power through a nnce with 500hm ne test setup and onducted n, the relative es must be changed
Test Instruments: Refer to section 6.0 for details	
Test mode: Refer to section 5.3 for details	
Test results: Pass	

Measurement data

Line:

Site : Shielded room

Condition : EN 55022 CLASSB QP LISN-2013 LINE

Job No. : 0962RF

Test mode : Transmitter mode

Test Engineer: Song

CSI	Engineer.		0.11	LICH			0		
	Freq	Kead Level	Cable Loss			Limit Line	Over Limit	Remark	
	MHz	dBuV	d₿	d₿	dBuV	dBuV	dB	17 2	-
1	0.182	46.42	0.13	0.14	46.69	64.42	-17.73	QP	
2	0.494	45.86	0.11	0.12	46.09	56.10	-10.01	QP	
	0.953	40.31	0.13	0.14	40.58	56.00	-15.42	QP	
4 5	2.500	36.94	0.15	0.13	37.22	56.00	-18.78	QP	
5	6.627	35.40	0.16	0.24	35.80	60.00	-24.20	QP	
6	17.755	31.21	0.22	0.49	31.92	60.00	-28.08	QP	

Neutral:

Site : Shielded room

Condition : EN 55022 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0962RF

Test mode : Transmitter mode

Test Engineer: Song

	Freq		Cable Loss				Over Limit	Remark
_	MHz	dBu₹	dB	dB	dBu₹	dBuV	dB	
1	0.215	42.89	0.13	0.06	43.08	63.01	-19.93	QP
1 2 3	0.461	42.89	0.11	0.06	43.06	56.67	-13.61	QP
3	0.641	38.43	0.13	0.07	38.63	56.00	-17.37	QP
4	1.367	34.61	0.13	0.09	34.83	56.00	-21.17	QP
5	2.309	34.53	0.15	0.10	34.78	56.00	-21.22	QP
4 5 6	6.627	30.21	0.16	0.18	30.55	60.00	-29.45	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3 Conducted Output Power

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	13.08		
Middle	12.24	30.00	Pass
Highest	9.88		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Measurement Data

Test channel	Channel Bandwidth (KHz)	Limit(KHz)	Result
Lowest	1613		
Middle	1612	>500	Pass
Highest	1603		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Measurement Data

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	5.97		
Middle	5.37	8.00	Pass
Highest	2.84		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2014 and KDB558074 D01 DTS Meas Guidance V03
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Test plot as follows:

Highest channel

7.6.2 Radiated Emission Method

Test Method:			9 and 15.205		
	ANSI C63.4: 20	14			
Test Frequency Range:	All of the restrict 2500MHz) data			the worst ba	nd's (2310MHz to
Test site:	Measurement D				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Ab 2002 4011=	Peak	1MHz	3MHz	Peak
	Above 1GHz	RMS	1MHz	3MHz	Average
Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Value
	Above 1	CU-7	54.0	0	Average
	Above	GHZ	74.0	0	Peak
Test setup:	EUT Turn Table	3m <		Antenna Tower Horn Antenna Spectrum Analyzer Amplifier	
Test Procedure:	determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to dei horizontal an measuremen 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Bai 6. If the emissio the limit spec of the EUT w have 10dB m peak or avera sheet. 7. The radiation And found th	s meter cambe e position of the position of the set 3 meters ch was mountheight is varietermine the moderate devertical polate. pected emission antenna was table was turn reading. Eiver system with the polate of the cified, then test ould be reportargin would be age method at measurement of the cified and the could be reportary to the cified and the cif	er. The table whe highest races away from the ted on the toped from one maximum value arizations of the tion, the EUT tuned to heighed from 0 degrees set to Peak was set to Peak was set to Peak sting could be ted. Otherwische re-tested on as specified are the tested or the tested o	was rotated 3 diation. The interference of a variable of the field state antenna at the antenna at the arranged has from 1 magrees to 360 at Detect Furd Mode. The mode was 10 stopped and the emission by one us and then report the was a calculated and the arranged and the mode was 10 stopped and the emission by one us and then report the arranged in X, Y, 2 this worse calculated and the stopped and the arranged in X, Y, 2 this worse calculated as a calculated at the stopped and the arranged at the arranged	ce-receiving c-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find action and OdB lower than the peak values ons that did not ing peak, quasi-
	**************************************	.545 15 155514	led in the repo	,,,,	
Test Instruments:	Refer to section	6.0 for details	S		

Test results: Pass

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	49.07	27.59	5.38	30.18	51.86	74.00	-22.14	Horizontal
2400.00	58.00	27.58	5.39	30.18	60.79	74.00	-13.21	Horizontal
2390.00	50.57	27.59	5.38	30.18	53.36	74.00	-20.64	Vertical
2400.00	58.32	27.58	5.39	30.18	61.11	74.00	-12.89	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	36.58	27.59	5.38	30.18	39.37	54.00	-14.63	Horizontal
2400.00	39.59	27.58	5.39	30.18	42.38	54.00	-11.62	Horizontal
2390.00	38.19	27.59	5.38	30.18	40.98	54.00	-13.02	Vertical
2400.00	39.52	27.58	5.39	30.18	42.31	54.00	-11.69	Vertical

Test channel: Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	48.62	27.53	5.47	29.93	51.69	74.00	-22.31	Horizontal
2500.00	45.27	27.55	5.49	29.93	48.38	74.00	-25.62	Horizontal
2483.50	50.35	27.53	5.47	29.93	53.42	74.00	-20.58	Vertical
2500.00	47.30	27.55	5.49	29.93	50.41	74.00	-23.59	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	36.55	27.53	5.47	29.93	39.62	54.00	-14.38	Horizontal
2500.00	33.14	27.55	5.49	29.93	36.25	54.00	-17.75	Horizontal
2483.50	38.27	27.53	5.47	29.93	41.34	54.00	-12.66	Vertical
2500.00	34.92	27.55	5.49	29.93	38.03	54.00	-15.97	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2014 and KDB558074 D01 DTS Meas Guidance V03						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer Non-Conducted Table						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Test plot as follows:

Lowest channel

30MHz~10GHz

30MHz~10GHz

Highest channel

30MHz~10GHz

10GHz~25GHz

10GHz~25GHz

10GHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209										
Test Method:	ANSI C63.4: 201	ANSI C63.4: 2014									
Test Frequency Range:	30MHz to 25GHz	30MHz to 25GHz									
Test site:	Measurement Dis	Measurement Distance: 3m Frequency Detector RBW VBW Value									
Receiver setup:	Frequency	Frequency Detector RBW VBV									
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak						
	Above 1GHz	Peak	1MHz	3MHz	Peak						
	Above 1GHz	RMS	3MHz	Average							
Limit:	Frequen	RMS 1MHz 3MHz Frequency Limit (dBuV/m @3m)									
	30MHz-88	MHz	40.0	0	Quasi-peak						
	88MHz-216	SMHz	43.5	0	Quasi-peak						
	216MHz-96	0MHz	46.0	0	Quasi-peak						
	960MHz-1	GHz	54.0	0	Quasi-peak						
	A1	N	54.0	0	Average						
	Above 10	Above 1GHz 74.00									
	Tum 0.8m	Tum John Jable 0.8m Jm RF Test Receiver Ground Plane Above 1GHz Antenna Tower									
	EUT 31	m <									

Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis which it is worse case.

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
39.99	44.00	15.58	0.66	30.04	30.20	40.00	-9.80	Vertical
77.05	46.12	10.14	1.00	29.81	27.45	40.00	-12.55	Vertical
143.33	45.83	10.22	1.53	29.44	28.14	43.50	-15.36	Vertical
250.30	46.16	14.07	2.12	29.65	32.70	46.00	-13.30	Vertical
451.14	45.21	17.58	3.09	29.39	36.49	46.00	-9.51	Vertical
726.81	37.19	21.15	4.19	29.20	33.33	46.00	-12.67	Vertical
54.45	30.25	15.05	0.81	29.96	16.15	40.00	-23.85	Horizontal
93.77	35.01	14.58	1.14	29.73	21.00	43.50	-22.50	Horizontal
162.61	37.59	10.74	1.65	29.35	20.63	43.50	-22.87	Horizontal
350.48	45.81	16.27	2.62	29.73	34.97	46.00	-11.03	Horizontal
550.95	37.42	19.57	3.53	29.30	31.22	46.00	-14.78	Horizontal
731.92	38.27	21.19	4.20	29.20	34.46	46.00	-11.54	Horizontal

■ Above 1GHz

Test channe	l:			Lo	owest			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	37.92	31.79	8.62	32.10	46.23	74.00	-27.77	Vertical
7215.00	32.72	36.19	11.68	31.97	48.62	74.00	-25.38	Vertical
9620.00	31.64	38.07	14.16	31.56	52.31	74.00	-21.69	Vertical
12025.00	*					74.00		Vertical
14430.00	*					74.00		Vertical
16835.00	*					74.00		Vertical
4810.00	36.96	31.79	8.62	32.10	45.27	74.00	-28.73	Horizontal
7215.00	32.65	36.19	11.68	31.97	48.55	74.00	-25.45	Horizontal
9620.00	31.30	38.07	14.16	31.56	51.97	74.00	-22.03	Horizontal
12025.00	*					74.00		Horizontal
14430.00	*					74.00		Horizontal
16835.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	27.19	31.79	8.62	32.10	35.50	54.00	-18.50	Vertical
7215.00	21.64	36.19	11.68	31.97	37.54	54.00	-16.46	Vertical
9620.00	22.03	38.07	14.16	31.56	42.70	54.00	-11.30	Vertical
12025.00	*					54.00		Vertical
14430.00	*					54.00		Vertical
16835.00	*					54.00		Vertical
4810.00	26.62	31.79	8.62	32.10	34.93	54.00	-19.07	Horizontal
7215.00	21.28	36.19	11.68	31.97	37.18	54.00	-16.82	Horizontal
9620.00	21.09	38.07	14.16	31.56	41.76	54.00	-12.24	Horizontal
12025.00	*					54.00		Horizontal
14430.00	*					54.00		Horizontal
16835.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test channel	l:				Middle	Э			
Peak value:				•					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or ,	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4860.00	37.38	31.85	8.66	32.12	2	45.77	74.00	-28.23	Vertical
7290.00	33.05	36.37	11.71	31.9°	1	49.22	74.00	-24.78	Vertical
9720.00	32.84	38.27	14.25	31.56	6	53.80	74.00	-20.20	Vertical
12150.00	*						74.00		Vertical
14580.00	*						74.00		Vertical
17010.00	*						74.00		Vertical
4860.00	38.17	31.85	8.66	32.12	2	46.56	74.00	-27.44	Horizontal
7290.00	31.84	36.37	11.71	31.9 ⁻	1	48.01	74.00	-25.99	Horizontal
9720.00	32.80	38.27	14.25	31.56	6	53.76	74.00	-20.24	Horizontal
12150.00	*						74.00		Horizontal
14580.00	*						74.00		Horizontal
17010.00	*						74.00		Horizontal
Average val	ue:				-				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or ,	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4860.00	28.39	31.85	8.66	32.12	2	36.78	54.00	-17.22	Vertical
7290.00	21.41	36.37	11.71	31.9°	1	37.58	54.00	-16.42	Vertical
9720.00	22.13	38.27	14.25	31.56	6	43.09	54.00	-10.91	Vertical
12150.00	*						54.00		Vertical
14580.00	*						54.00		Vertical
17010.00	*						54.00		Vertical
4860.00	28.38	31.85	8.66	32.12	2	36.77	54.00	-17.23	Horizontal
7290.00	20.96	36.37	11.71	31.9 ⁻	1	37.13	54.00	-16.87	Horizontal
9720.00	22.55	38.27	14.25	31.56	6	43.51	54.00	-10.49	Horizontal
12150.00	*						54.00		Horizontal
14580.00	*						54.00	_	Horizontal

Remark:

17010.00

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Project No.: GTSE150500962RF

Horizontal

54.00

Test channel	l:			F	lighest			
Peak value:				,				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	1 6//61	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4950.00	40.78	31.90	8.70	32.15	49.23	74.00	-24.77	Vertical
7425.00	32.38	36.49	11.76	31.83	48.80	74.00	-25.20	Vertical
9900.00	35.18	38.62	14.31	31.77	56.34	74.00	-17.66	Vertical
12375.00	*					74.00		Vertical
14850.00	*					74.00		Vertical
17325.00	*					74.00		Vertical
4950.00	40.73	31.90	8.70	32.15	49.18	74.00	-24.82	Horizontal
7425.00	31.60	36.49	11.76	31.83	48.02	74.00	-25.98	Horizontal
9900.00	31.49	38.62	14.31	31.77	52.65	74.00	-21.35	Horizontal
12375.00	*					74.00		Horizontal
14850.00	*					74.00		Horizontal
17325.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	1 6//61	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4950.00	32.02	31.90	8.70	32.15	40.47	54.00	-13.53	Vertical
7425.00	22.38	36.49	11.76	31.83	38.80	54.00	-15.20	Vertical
9900.00	23.75	38.62	14.31	31.77	44.91	54.00	-9.09	Vertical
12375.00	*					54.00		Vertical
14850.00	*					54.00		Vertical
17325.00	*					54.00		Vertical
4950.00	31.31	31.90	8.70	32.15	39.76	54.00	-14.24	Horizontal
7425.00	21.06	36.49	11.76	31.83	37.48	54.00	-16.52	Horizontal
9900.00	20.81	38.62	14.31	31.77	41.97	54.00	-12.03	Horizontal
12375.00	*					54.00		Horizontal
14850.00	*					54.00		Horizontal
17325.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

-----End-----