Университет ИТМО, факультет программной инженерии и компьютерной техники Двухнедельная отчётная работа по «Информатике»: аннотация к статье

Дата прошедшей лекции: <u>11.10.2023</u> Ном	иер прошедшей лекции: <u>№3</u>	Дата сдачи: <u>25.10.2023</u>
--	---------------------------------	-------------------------------

Выполнил(а)	Тимошкин Р.В.	, № группы <u>Р3131,</u> оценка	
() -	Фамилия И.О. стулента	у 13 <u>——</u> , т	лнять

Название статьи/главы книги/видеолекции

Python (+numba) быстрее Си — серьёзно?!

ФИО автора статьи (или e-mail)	Дата публикации	Размер статьи
@axi1	(не старше 2020 года)	(от 400 слов)
	"16" января 2023 г.	2034

Прямая полная ссылка на источник или сокращённая ссылка (bit.ly, tr.im и т. п.)

https://habr.com/ru/articles/484136/ https://habr.com/ru/articles/484142/

Теги, ключевые слова или словосочетания

Python, numba, JIT, LLVM

Перечень фактов, упомянутых в статье (минимум три пункта)

- 1. Практически сразу после появления Python стали появляться решения для его ускорения.
- 2. На данный момент самые востребованные Cython, pypy, numba.
- 3. numba поддерживает NumPy.
- 4. В numba своя реализация типизированного словаря. Все ключи должны быть одного типа, ровно как и значения. Питоновский dict нельзя передать в numba, зато нумбовский numba.typed.Dict можно создавать в питоне и передавать в/из нумбы (при этом в питоне он работает чуть медленнее питоновского).
- 5. Некоторые задачи (например, умножение матрицы на число) распараллеливаются естественным образом.

Позитивные следствия и/или достоинства описанной в статье технологии (минимум три пункта)

- 1. В numba разгоняется не вся программа, а отдельные функции (с помощью декоратора), это позволяет совместить высокую скорость и обратную совместимость с библиотеками, которые numba (пока) не поддерживает.
- 2. numba обгоняет Cython за счёт использования нативных процессорных инструкций (Cython не умеет в JIT-компиляцию), а руру за счёт более эффективного выполнения байткода LLVM.
- 3. Сигнатуры для подлежащих компиляции функций (и их локальных переменных!) можно задавать заранее, что позволяет им выполнятся быстро без «прогрева» (первичной генерации LLVM байткода).
- 4. Numba умеет выполнять разогнанный код на GPU, причём в отличие от того же, например, pycuda или pytorch, не только на nvidia, но и на amd'шных карточках.

Негативные следствия и/или недостатки описанной в статье технологии (минимум три пункта)

- 1. Никакие другие библиотеки (в частности, scipy и pandas) numba не понимает совсем.
- 2. Из разогнанных функций можно вызывать только разогнанные, не разогнанные нельзя (хотя разогнанные функции можно вызывать и из разогнанных и из не разогнанных).
- 3. В разогнанных функциях глобальные переменные становятся константами: их значение фиксируется на момент компиляции функции.
- 4. Поддержка классов эксперементальна, поэтому ООП код сделать быстрым не получится.
- 5. Numba до сих пор не хватает толковой документации. Она есть, но в ней есть не всё.

```
Ваши замечания, пожелания преподавателю unu анекдот о программистах def f():
```

```
print('Traceback (most recent call last):\n File "<stdin>", line 1, in <module>\n
File "<stdin>", line 3, in f\n File "<stdin>", line 3, in f\n File "<stdin>", line 3, in
f\n [Previous line repeated 992 more times]\n File "<stdin>", line 2, in f\
nRecursionError: maximum recursion depth exceeded while calling a Python object')
    f()
f()
```