

Lecture No-06

Topics to be Covered

Exponential Distribution

Linear Regression

Correlation Coefficient

Joint Probability distributions

Revision

On (Successes are Time Indefendent)

Besnoulli Trials

Binomial distribution

Poisson distribution.

(Success are Time defendent)

When 'n' is large, Binomial distribution affroaches to Poisson distribution.

$$P(x=x) = \prod_{x \in X} P \cdot q^{x-x}; \qquad P(x=x) = e^{x} \cdot x$$

$$P(x=x) = e^{x} \cdot x$$

$$P(x=x) = e^{x} \cdot x$$

$$P(x=x) = e^{x} \cdot x$$

Binomial:

Mean = nP; Vosiance = nPq; = InPq.

Poisson:

Normal Graussian distribution:
$$p(x) = \frac{1}{\sqrt{2\pi}} \cdot exp^{-\frac{(x-\mu)}{2\sigma^{-2}}}$$

$$Z = \frac{1}{\sqrt{2\pi}} P(z) = \frac{1}{\sqrt{2\pi}} e P(-1 \le z \le 1) = 0.68$$

$$P(-2 \le z \le 2) = 0.95$$

$$P(-3 \le z \le 3) = 0.997$$

$$A. Alto x. Cumulative function is 'S' Shafed$$

P(=)
$$P(z) = \frac{1}{\sqrt{2\pi}} \cdot e$$

P(-1 \le \ge \le 1) = 0.68

P(-2 \le \ge \le 2) = 0.95

P(-3 \le \ge \le 3) = 0.997

An More of Cumulative function is 's' Shafed

Exponential Distribution

The Probability density function of a Continuous Random Vasiable that is exponentially distributed is given as

$$P(\pi) = \begin{cases} \lambda \cdot \bar{e} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}$$

where Mean of the Variable = $\frac{1}{\lambda}$.

Mean =
$$\int x \cdot P(x) dx$$

= $\int x \cdot (0) dx + \int x \cdot (\lambda \cdot e^{-\lambda x}) dx$
= $\int (\lambda x) \cdot (e^{-\lambda x}) dx$
let $\lambda x = t$
 $\Rightarrow \lambda \cdot dx = dt \Rightarrow dx = dt$
 $\Rightarrow \lambda \cdot dx = dt \Rightarrow dx = dt$
U.L. $\lambda x = t \Rightarrow \lambda(0) = t \Rightarrow t \Rightarrow 0$
U.L. $\lambda x = t \Rightarrow \lambda(0) = t \Rightarrow t \Rightarrow 0$

$$\therefore$$
 Mean = $\frac{1}{\lambda}$

-> Variance:
$$\sigma'$$
.

$$\sigma' = E(\pi') - (E(\pi))^{x}.$$

$$E(\pi') = \int_{-\infty}^{\infty} \pi' P(\pi) d\pi$$

$$= \int_{0}^{\infty} \pi' \lambda e^{\lambda x} dx$$

$$\text{let } \lambda x = t \Rightarrow x = t \Rightarrow dx = dt$$

$$\text{let } \lambda x = t \Rightarrow \lambda(0) = t \Rightarrow t \Rightarrow 0$$

$$\lambda x = t \Rightarrow \lambda(\infty) = t \Rightarrow t \Rightarrow \infty$$

.: Fox a exponentially distributed Variable;

Statistical Attributes: The Palameters that governs the distribution

Distribution:

1. Binomial

2. Poisson 3. Gaussian/Normal 4. Exforential

Distribution: Statistical Attaibutes

Linear Regression

Regression -> fitting of a Curve b/w let the Dota Points be (x, y,), (x2, y2), (x3, y3), -- · (x, y,) Y; -> Actual Data Point Value. 9. -> fitted value. $Exxox = e = y - y = y - (a_0 + a_1 x_1)$

Sum of Squares of errors: "> eiv.

: Fox the fit be a good fit, Sum of Squares of exposs should be least Possible.

$$\Rightarrow f(\alpha_0, \alpha_i) = \sum_{i=1}^{N} (y_i - \alpha_0 - \alpha_i x_i)$$

 $f(\alpha_0,\alpha_1) = \sum_{i=1}^{N} (y_i^{\gamma} + \alpha_0^{\gamma} + \alpha_1^{\gamma} x_i^{\gamma} - 2\alpha_0 y_i + 2\alpha_0 \alpha_1 x_i - 2y_i \alpha_1 x_i)$

Fox f(ao,ai) to be minimum,

$$\frac{\partial f}{\partial a_0} = 0 \text{ and } \frac{\partial f}{\partial a_1} = 0$$

$$\frac{\partial f}{\partial a_0} = 0 \Rightarrow \sum_{i=1}^{N} (2\alpha_0 - 2y_i + 2\alpha_i x_i) = 0 \Rightarrow \sum_{i=1}^{N} \alpha_0 - \sum_{i=1}^{N} y_i + \alpha_i \sum_{i=1}^{N} x_i = 0$$

$$\frac{\partial f}{\partial a_{i}} = 0 \Rightarrow \sum_{i=1}^{N} (2a_{i}x_{i}^{2} + 2a_{0}x_{i} - 2x_{i}y_{i}) = 0 \Rightarrow \sum_{i=1}^{N} (2a_{i}x_{i}^{2} + \sum_{i=$$

$$=) a_0 \cdot N + a_1 \cdot \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} y_i \rightarrow 0$$

$$a_0 \cdot \sum_{i=1}^{N} x_i + a_1 \cdot \sum_{i=1}^{N} x_i' = \sum_{i=1}^{N} x_i y_i \rightarrow 0$$

$$a_0. \sum_{i=1}^{N} x_i + a_1. \sum_{i=1}^{N} x_i^{N} = \sum_{i=1}^{N} x_i y_i \rightarrow 2$$

Solving above two Equations.

$$(1) \times \sum_{i=1}^{N} x_i - (2) \times N$$

$$\Rightarrow a_{1}\left\{\left(\sum_{i=1}^{N}x_{i}\right)-N\sum_{i=1}^{N}x_{i}^{2}\right\}=\left(\sum_{i=1}^{N}x_{i}\right)\left(\sum_{i=1}^{N}y_{i}\right)-N\sum_{i=1}^{N}x_{i}y_{i}$$

$$=) a_{1} = \frac{N \cdot (\sum_{i=1}^{N} x_{i} y_{i}) - (\sum_{i=1}^{N} x_{i} \cdot \sum_{i=1}^{N} y_{i})}{N \cdot \sum_{i=1}^{N} x_{i}^{N} - (\sum_{i=1}^{N} x_{i})^{N}}$$

Since y=aotax -> a, is slope of the line.

$$: \alpha_1 = N. \leq \chi y - (\leq \chi)(\leq y)$$

$$N. \leq \chi^{\gamma} - (\leq \chi)^{\gamma}$$

Substituting a, in O

$$=) \alpha_{0}.N + N. \sum_{i=1}^{N} x_{i} y_{i} \cdot \sum_{i=1}^{N} x_{i} - \left(\sum_{i=1}^{N} x_{i}\right)^{N} \left(\sum_{i=1}^{N} y_{i}\right) = \sum_{i=1}^{N} y_{i}$$

$$\frac{N.N \times x_{i}^{N} - \left(\sum_{i=1}^{N} x_{i}\right)^{N}}{N.N \times x_{i}^{N} - \left(\sum_{i=1}^{N} x_{i}\right)^{N}} = \sum_{i=1}^{N} y_{i}$$

$$= N \cdot \alpha_0 \cdot \sum_{i=1}^{N} x_i^{i} - N \cdot \alpha_0 \left(\sum_{i=1}^{N} x_i \right) + N \cdot \sum_{i=1}^{N} x_i^{i} \cdot \sum_{i=1}^{N} x_i^{i} - \sum_{i=1}^{N} x_i^{i} \cdot \sum_{i=1}^{N} x_i^$$

$$=) \alpha_{0} = \frac{\sum_{i=1}^{N} x_{i}^{N} \sum_{i=1}^{N} y_{i}}{\sum_{i=1}^{N} x_{i}^{N} \sum_{i=1}^{N} x_{i}^{N}} - \sum_{i=1}^{N} (x_{i} y_{i}^{N}) \sum_{i=1}^{N} x_{i}^{N}}{\sum_{i=1}^{N} x_{i}^{N} - (\sum_{i=1}^{N} x_{i}^{N})^{N}}$$

$$a_0 = (\xi x^{\nu})(\xi y) - (\xi xy).(\xi x)$$
 $a_1 = n(\xi xy) - (\xi x)(\xi y)$
 $n(\xi x^{\nu}) - (\xi x)^{\nu}$
 $n(\xi x^{\nu}) - (\xi x)^{\nu}$

R-> Coefficient of determination.

$$R = 1 - \frac{SS|_{Res}}{SS|_{Tot}}$$

$$=) R = 1 - \frac{(y_{i-1}^{2})^{2}}{2}$$

$$=) (y_{i-1}^{2})^{2}$$

$$=(y_{i-1}^{2})^{2}$$

$$=(y_{i-1}^{2})^{2}$$

$$y = \sum_{i=1}^{3} y_i$$
 $(y_i - y_i) \rightarrow Deviation$

Correlation Coefficient

Coxelection coefficient =
$$x = \frac{\text{Cov}(x,y)}{n \cdot \sqrt{x} \cdot \sqrt{y}}$$

$$\text{Cov}(x,y) = E(x \cdot \overline{x})(y - \overline{y})$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})$$

$$\leq y = a \Sigma 1 + b \cdot \Sigma x$$

$$\exists \frac{1}{N} \cdot \xi y = \frac{\alpha}{N} \cdot \xi 1 + \frac{b}{N} \cdot \xi x$$

$$\frac{\overline{y}}{y} = a + b.\overline{x}$$

For 'N' data Points

$$(x_1,y_1),(x_2,y_2),---(x_n,y_n),$$

the Mong(x, y) lie on the fit

since
$$\Sigma y = a \cdot + b \cdot \Sigma x$$

 $\Rightarrow \Sigma xy = a \cdot \Sigma x + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.
 $\Rightarrow \lambda x = \lambda + b \cdot \Sigma x^{2}$.

$$\Delta = (x-\pi)(y-y) = a.\Sigma(x-\pi) + b.\Sigma(x-\pi)^{v}$$

(sum of deviations is o).

$$=) b = Slope = \frac{\sum (x-\overline{x})(y-\overline{y})}{\sum (x-\overline{x})^{\gamma}}$$

$$\sigma_{x} = \frac{1}{n} \cdot \Sigma(x - \overline{x})^{x}$$

$$\Rightarrow b = slope = \sum (x-x)(y-y)$$

$$1 - \sqrt{x}$$

For two independent vossiables, cov(x,y)=0

Angle blw the => cosselation coefficient = 0 = 8.

Co-66elation lines

Tan
$$\theta = 1 - \frac{1}{3}$$
 $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

Redrenyia line-

If
$$\lambda=0 \Rightarrow \theta=\frac{\pi}{2}$$
 (lines are ferferdicular to each other)^x
If $\lambda=1 \Rightarrow \theta=0$; (lines are forable) or coincident)

