Transcrição

Nesta etapa, falaremos sobre as Medidas de Dispersão.

Anteriormente, abordamos as Medidas de Tendência Central e Separatrizes que sumarizam o dataset analisados.

Porém, nem sempre são suficientes para distinguir conjunto de dados diferentes, principalmente quando têm uma variação muito significativa.

Se pegarmos as notas médias do df que criamos como exemplo com o boletim de três alunos em sete matérias escolares, veremos que Fulano e Sic

df.mean()

Matérias

Beltrano 5.142867
Fulano 7.714286
Sicrano 7.714286

dtype: float64

Como temos poucas observações nesse conjunto, poderemos fazer uma análise prévia rapidamente com a tabela:

df

Matérias	Beltrano	Fulano	Sicrano
Matemática	10.0	8	7.5
Português	2.0	10	8.0
Inglês	0.5	4	7.0
Geografia	1.0	8	8.0
História	3.0	6	8.0
Física	9.5	10	8.5
Química	10.0	8	7.0

Sicrano possui notas menos dispersas e mais constantes, com notas altas e valores próximos em todas as matérias. Ao passo que Fulano apresenta un

Se calcularmos a mediana, veremos que ambos os alunos possuem o mesmo resultado também.

df.median()

Matérias

Beltrano 3.0 Fulano 8.0

```
Sicrano 8.0 dtype: float64
```

Ou seja, essas estatísticas de tendência central que estudamos não identificam essas questões que observamos diretamente no boletim. Porém, com un

Portanto, precisaremos da informação de Dispersão.

Começaremos abordando o desvio médio absoluto com a seguinte fórmula:

$$DM = rac{1}{n} \sum_{i=1}^n |X_i - X_i|$$

"DM" é igual ao somatório desses desvios, formado pelo módulo de "X" índice "i" que é o valor de cada nota do df menos a média geral "X". A últ positivos.

Em um caso onde a média é maior do que o valor, como o complemento de "X" sendo igual a "10" e "X" no índice "i" for igual a "2" por exemplo, o subtração, e entenderemos o porquê adiante.

Aplicaremos esta estatística para Fulano na célula nesta parte do notebook. Chamaremos a variável como notas_fulano sendo igual a df[] conte

```
notas_fulano = df['Fulano']
notas_fulano
```

```
Matemática 8

Português 10

Inglês 4

Geografia 8

História 6

Física 10

Química 8

Name: Fulano, dtype: int64
```

Se aplicarmos ainda mais um par de colchetes dentro de df[], criaremos um DataFrame de fato com Pandas.

```
notas_fulano = df[['Fulano']]
notas_fulano
```

Matérias	Fulano
Matemática	8
Português	10
Inglês	4
Geografia	8
História	6
Física	10
Química	8

Precisaremos de um DataFrame para adicionarmos novas variáveis que nos ajudarão a entendermos os cálculos melhor.

Agora que já temos o "X" índice "i", descobriremos a média com uma nova variável nota_media_fulano sendo igual a notas_fulano com .mean

```
nota_media_fulano = notas_fulano.mean()[0]
nota media fulano
```

Como resultado, obteremos a média 7.714285714285714.

Em seguida, criaremos o 'Desvio' dentro do notas_fulano[]. este será igual a notas_fulano[] recebendo 'Fulano' menos nota_media_ful

```
notas_fulano['Desvio'] = notas_fulano['Fulano'] - nota_media_fulano
notas_fulano
```

Matérias	Fulano	Desvio
Matemática	8	0.285714
Português	10	2.285714
Inglês	4	-3.714286
Geografia	8	0.285714
História	6	-1.714286
Física	10	2.285714
Química	8	0.285714

Notaremos a presença de alguns valores negativos nos casos em que a nota é menor do que a média.

Porém, se pegarmos notas_fulano[] com o 'Desvio' e somarmos com .sum() para aplicarmos a fórmula, teremos um valor negativo muito pro

```
notas_fulano['Desvio'].sum()
```

-8.881784197001252e-16

Isso acontece por conta das casas decimais, mas consideraremos zero absoluto.

Logo, se fizermos a conta de "0" dividido por "n", o resultado será "0" e o desvio médio não fará sentido. Portanto, pegaremos apenas os valores pos

Para isso, colocaremos Desvio entre barras e aspas simples sendo igual ao desvio médio com o método .abs(), o qual pegará um valor absoluto.

```
notas_fulano['|Desvio|'] = notas_fulano['Desvio'].abs()
notas fulano
```

Matérias	Fulano	Desvio	/Desvio/
Matemática	8	0.285714	0.285714
Português	10	2.285714	2.285714
Inglês	4	-3.714286	3.714286
Geografia	8	0.285714	0.285714
História	6	-1.714286	1.714286
Física	10	2.285714	2.285714
Química	8	0.285714	0.285714

Com isso, veremos os valores todos positivos que desconsideram sinais, e poderemos fazer a somatória em questão.

Em seguida, criaremos um gráfico de demonstração da variável ax com diversas configurações que podem ser observadas com calma posteriormen

```
ax = notas_fulano['Fulano'].plot(style = 'o')
ax.figure.set_size_inches(14, 6)
ax.hlines(y = nota_media_fulano, xmin = 0, xmax = notas_fulano.shape[0] - 1, colors = 'red')
for i in range(notas_fulano.shape[0]):
    ax.vlines(x = i, ymin = nota_media_fulano, ymax = notas_fulano['Fulano'][i], linestyle='dashed')
ax
```


A reta central representa a média de nossos dados, cada marcação com bolinhas serão os dados observados, e as linhas tracejadas serão os desvios.

No caso do desvio médio, esses valores negativos se tornarão positivos, pois os estamos pegando sem o sinal.

Em seguida, calcularemos a média das sete marcações para a Medida de Dispersão e variação dos dados.

Na célula seguinte, faremos o cálculo de fato; pegaremos a média .mean() de notas_fulano[] com '|Desvio|'.

```
notas_fulano['|Desvio|'].mean()
```

Como resultado, obteremos o valor 1.5510204081632648 obtido pela fórmula da média dos desvios.

Com isso, chegaremos a conclusão de que o Desvio Médio Absoluto representado pela variável desvio_medio_absoluto será igual a notas_fulan calculará este valor, e então exibiremos o resultado.

```
desvio_medio_absoluto = notas_fulano['Fulano'].mad()
desvio medio absoluto
```

O retorno apresentará o mesmo valor do comando anterior, portanto utilizar esta função é bem mais eficiente na área de Ciência ou Estatística de Das

A seguir, falaremos sobre as Medidas de Dispersão chamadas variância e desvio padrão.