データマイニング課題 手書き文字の認識

1930047 小林菜穂子

1 ネットワーク構造の変遷

1.1 中間層を増やす

中間層を3層 6層に変化

表 1: 中間層の変化

中間層の数	認識精度
3	9529/10000 (95%)
6	9488/10000 (94%)

1.2 最適化手法の変更,および weight decay の設定

最適化手法を Adam と MomentumSGD で比較 . また , weight decay の付加による変化を観察 .

表 2: 中間層の変更

最適化手法	weight decay	認識精度
Adam	0	9488/10000 (94%)
Adam	0.001	9076/10000 (90%)
MomentumSGD	0	9657/10000 (96%)
MomentumSGD	0.001	9619/10000 (96%)

1.3 畳み込みニューラルネットワーク

畳み込み層 2 層 + 全結合層 2 層に変更 . 最適化手法は Momentum SGD を採用し , weight decay=0.001 とした .

表 3: 畳み込みニューラルネットワーク

	, , , , , , , , , , , , , , , , , , ,
ニューラルネットワークの種類	認識精度
順伝播型ニューラルネットワーク	
畳み込みニューラルネットワーク	9813/10000 (98%)

1.4 Dropout の実装

畳み込み層のみ,全結合層のみ,両方に実装した場合で精度を比較する.Dropout のユニットの選出確率は 0.1 とした.

表 4: 畳み込みニューラルネットワーク

役4. 重砂心のニューフルイフェフ・フ				
各階層における Dropout 認識精度				
Conv1	Conv2	FC1	FC2	1000以作月/文
0				948/10000 (9%)
	\circ			962/10000 (9%)
0	0			1207/10000 (12%)
		0		847/10000 (8%)
			0	1141/10000 (11%)
		0	0	192/10000 (1%)
0	0	0	0	1249/10000 (12%)

1.5 学習率の変更

学習率を , 0.01 から 0.001,0.1 に変更し , 精度を比較する . 畳み込みニューラルネットワークを用い , 最適化手法は MomentumSGD を採用した . weight decay=0.001 . Dropout は実装しない .

表 5: 学習率の変更

学習率	認識精度
0.001	9437/10000 (94%)
0.01	9813/10000 (98%)
0.1	9231/10000 (92%)

1.6 Optuna を用いたハイパーパラメータのチューニング

Dropout は実装していない.

● 活性化関数: ReLU or ELU

• 最適化手法: Adam or MomentumSGD

● 学習率: 1.0×10⁻⁵ ~ 1.0×10⁻¹

• weight decay の設定: $1.0 \times 10^{-10} \sim 1.0 \times 10^{-3}$

Optunaで100回試行し,得られた最適なパラメータは以下の通り.

表 6: 最適化されたパラメータ

べ の 放送 しこ がこハンブ・ブ		
活性化関数	ReLU	
最適化手法	MomentumSGD	
学習率	0.048160721856100486	
weight decay	$2.940744863502711 \times 10^{-7}$	

また,表6のパラメータを用いた認識精度は99%であった.

2 ネットワークの意図

LeNet に近い構造を持つ,畳み込み層 2 層と全結合層 2 層から構成された,畳み込みニューラルネットワークを用いる.畳み込みニューラルネットワークは一般的な順伝播型のニューラルネットワークとは異なり,畳み込み層とプーリング層という二種類の階層を有していることが特徴であり,画像の特徴を際立たせ捉えることが可能である.最適化手法として MomentumSDG を用い,過学習を防止するため weight decay を付加する.また,ニューラルネットワークの学習率をチューニングすることで,計算速度と収束のバランスが取れたネットワークを構築する.