TECHNICAL LIBRARY

AD		

TECHNICAL REPORT ARLCB-TR-79030

DYNAMIC STABILITY OF COLUMNS SUBJECTED TO NONCONSERVATIVE FORCES

J. J. Wu J. D. Vasilakis

October 1979

LARGE CALIBER WEAPON SYSTEMS LABORATORY
BENÉT WEAPONS LABORATORY
WATERVLIET, N. Y. 12189

AMCMS No. 6111.01.91A0.0

DA Project No. 1L161101A91A

PRON No. 1A-9-2ZA01-Y

DTIC QUALITY INSPECTED 3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
ARLCB-TR-79030				
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
DYNAMIC STABILITY OF COLUMNS SUBJE	CTED TO			
NONCONSERVATIVE FORCES		6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(s)		
J. J. Wu J. D. Vasilakis				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK		
Benet Weapons Laboratory		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS PRON No.1A-9-2ZA01-y		
Watervliet Arsenal, Watervliet, NY	12189	AMCMS No. 6111.01.91A0.0		
DRDAR-LCB-TL	F	DA PRO.No.1L161101A91A		
11. CONTROLLING OFFICE NAME AND ADDRESS	, ,,	12. REPORT DATE		
US Army Armament Research and Deve	lopment Command	October 1979		
Large Caliber Weapon Systems Labor	ratory	13. NUMBER OF PAGES		
Dover, New Jersey 07801		21		
14. MONITORING AGENCY NAME & ADDRESS(If different	t from Controlling Office)	15. SECURITY CLASS. (of this report)		
		UNCLASSIFIED		
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Presented at the 25th (Silver Jubilee) Conf of Army Mathematicians, 6-8 Jun 79, Johns Hopkins Univ, Baltimore, MD. To be published in the Journal of Sound and Vibration.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Nonconservative Stability

Follower Forces

Unconstrained Variational Formulation

Finite Element

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The numerical results of a class of problems of linear elastic stability problems subjected to nonconservative forces and under various support conditions are presented here. A single solution formulation by which these results have been obtained is described. Accuracy of these results compared with those reported in the literature is discussed.

CLASSIFICATION OF TAIL PAGE (Then Data Sittered)	1 - "	
The second secon		
200		
A 4		
		4
Total State of the Control of the Co		
TO A MAN TOP TO THE TOTAL THE PARTY OF THE P		
02.5	10	
02. 100 -		

TABLE OF CONTENTS

•	Page
SUMMARY	1
INTRODUCTION	1
A CLASS OF PROBLEMS SUBJECTED TO FOLLOWER LOADS	2
SOLUTION FORMULATIONS	3
CASE I. $P(x) = P$, A Constant	6
CASE II. $P(x) = q(1-x)$	6
CASE III. $P(x) = q_0/2(1-x)^2$	7
NUMERICAL RESULTS AND DISCUSSION	8
- CASE I. $P(x) = P = Constant$	8
CASE II. $P(x) = q(1-x)$	9
CASE III. $P(x) = q_0/2(1-x)^2$	9
REFERENCES	10
TABLES	
I. NUMERICAL VALUES OF FIRST TWO LOWEST EIGENVALUES OF A CANTILEVERED COLUMN WITH $P(x) = P$, A CONSTANT.	11
II. NUMERICAL VALUES OF FIRST FOUR LOWEST EIGENVALUES OF A CANTILEVERED COLUMN WITH $P(x) = q(1-x)$.	12
III. NUMERICAL VALUES OF FIRST FOUR LOWEST EIGENVALUES OF A CANTILEVERED COLUMN WITH $P(x) = q(1-x)^2/2$	13
ILLUSTRATIONS	
1. Boundary Condition Associated with a Follower Force: Constant of Tangency $K_{\mbox{$\theta$}} \bullet$	14
2. Two Lowest Eigenvalues vs. Load Parameters Q/π^2 and q/π^2 . A Cantilevered Column of Case I and II.	15
3. Two Lowest Eignevalues vs. Load Parameter q_0/π^2 . A Cantilevered Column of Case III.	16

SUMMARY. The numerical results of a class of problems of linear elastic stability problems subjected to nonconservative forces and under various support conditions are presented here. A single solution formulation by which these results have been obtained is described. Accuracy of these results compared with those reported in the literature is discussed.

I. INTRODUCTION. Any particular subject of investigation in applied sciences is always motivated by the desire to understand some natural phenomena and hopefully to utilize the results of such an investigation for the benefit of human activities. The study of structural behavior under nonconservative loads is of no exception. Since follower forces are a special class of nonconservative forces [1], one is surprised to encounter frequently the question as to the relation between such a study and a real engineering problem. Physically, a follower force is simply one whose direction follows the structural deformation as in comparison with a dead load which acts in a fixed direction independent of deformation. Some obvious examples of follower forces are: thrust at the tail of a flexible rocket, jet engine thrust of an airplane, thrust on the propeller shaft of a ship, etc. Other examples such as the pressure-and-curvature induced forces included in the gun dynamic studies are less obvious [2].

Since the problems of follower forces are non-self-adjoint their treatment is more difficult than that for the self-adjoint problems. In the classical paper by Beck [3], it was demonstrated that the stability nature of a nonconservative problem can be quite different than that of a conservative one. For these reasons, a systematic approach to this class of problems and an understanding of some of the basic problems involving follower forces are desirable.

The purpose of this paper is to present a single solution approach to a class of problems of follower forces, including several classical examples, to present the numerical results so obtained, and to discuss the accuracy compared with those already published in literature.

In Section II, the class of problems will be defined by a general form of a differential equation and a set of boundary conditions. The solution formulation and its basis are given in Section III. Numerical results of some specific problems are given in Section IV together with a discussion and comparisons with data available in literature.

II. A CLASS OF PROBLEMS SUBJECTED TO FOLLOWER LOADS. The class of problems considered in this paper can be described by the differential equation

$$y'''' + P(x)y'' + \lambda^2 y = 0$$
 (1)

where y(x) denotes the lateral disturbance of a beam, as a function of the abscissa x, P(x) is the axial force always tangent to the deformed axis, and λ is the eigenvalue. As usual, a prime denotes differentiation with respect to x.

Eq. (1) is a non-self-adjoint differential equation (thus nonconservative problem) except for P(x) = constant. If the axial force P(x) remains fixed in the direction of the undeformed axis, the problem would be of conservative nature and the differential equation a self-adjoint one.

$$y'''' + [P(x)y']' + \lambda^2 y = 0$$
 (1')

Both Eqs. (1) and (1') are well known and the derivations are simple and they follow the procedures given in such textbooks as that by Timoshenko and Gere [4]. Boundary conditions considered will be in the following form:

$$y'''(0) + P(0)y'(0) + k_1(0) = 0$$
 (2a)

$$-y''(0) + k_2 y'(0) = 0$$
 (2b)

$$-y'''(1) - (1-k_5)P(1)y'(1) + k_3y(1) = 0$$
 (2c)

$$y''(1) + k_4 y'(1) = 0$$
 (2d)

where k_1 , k_2 are the deflection and rotation spring constants at x=0 and k_3 , k_4 are the same at x=1. The constant k_5 is related to a "constant of tangency" K_θ by equation

$$K_{\theta} = k_5 - 1 \tag{3}$$

so that Eq. (2c) becomes

$$-y^{\prime\prime\prime}(1) + K_{\theta}P(1)y^{\dagger}(1) + k_{\gamma}y(1) = 0$$
 (2c')

where now, if $P(1) \neq 0$, $\theta = K_{\theta}y'(1)$ denotes the angle that P(1) is to be rotated with respect to the tangent of the beam at x = 1 (Figure 1).

Eqs. (2) simply state that the total shear force and moment at x = 0 and x = 1 must be zero. As k_1 approaches infinity, Eq. (2a) requires that y(0) = 0. Thus a zero deflection boundary condition is arrived at. Similar options are provided for by other spring constants k_2 , k_3 and k_4 .

Three different P(x) will be considered in this paper: (1) P(x) = P, a constant, (2) P(x) = q(1-x), and (3) $P(x) = q_0/2(1-x)^2$ where $P(x) = q_0/2(1-x)^2$ where

III. SOLUTION FORMULATIONS. The solution method used here is the finite element unconstrained variational formulation which has proved to be efficient and simple to use for solutions of non-self-adjoint problems [7,8]. Finite elements are used in the usual sense that the unknown function is approximated by piecewise cubic splines. An unconstrained variational statement is established and used so that none of the boundary conditions need to be satisfied a priori. An outline of the formulation will be given here.

Introducing an adjoint field variable $y^*(x)$, it is a simple matter to see that the following variational statement will lead to the differential equation (1) and boundary conditions (2):

$$\delta I(y,y^*) = 0$$

$$I = \int_{0}^{1} (y''y^{*''}-P(x)y'y^{*'}-P'(x)y'y^{*}+\lambda^{2}yy^{*})dx$$

$$+ k_{1}y(0)y^{*}(0) + k_{2}y'(0)y^{*'}(0) + k_{3}y(1)y^{*}(1) + k_{4}y'(1)y^{*'}(1)$$

$$+ k_{5}P(1)y'(1)y^{*}(1) .$$
(4a)
$$(4a)$$

The fact that Eqs. (4) lead to the given differential equation and boundary conditions for y(x) independent of $y^*(x)$ implies that one can take the variation of I at $y^*(x) \equiv 0$ and $(\delta I)_{y^*\equiv 0} = 0$ still leads to the original problem. Hence our formulation begins with

$$(\delta I)_{y^* \equiv 0} = 0 \tag{5a}$$

or,
$$\int_{0}^{1} [y''\delta y^{*''} - P(x)y'\delta y^{*'} - P(x)y'\delta y^{*} + \lambda^{2}y\delta y^{*}] dx$$

$$+ k_{1}y(0)\delta y^{*}(0) + k_{2}y'(0)\delta y^{*'}(0) + k_{3}y(1)\delta y^{*}(1) + k_{4}y'(1)\delta y^{*'}(1)$$

$$+ k_{5}y'(1)\delta y^{*}(1) = 0$$
(5b)

Finite element discretization enters when the beam is divided into L equal elements and Eq. (5b) is written as

$$\sum_{i=1}^{L} \int_{0}^{1} [L^{3}y^{(i)} \delta y^{*(i)} - LP^{(i)}(\xi)y^{(i)} \delta y^{*(i)}] d\xi$$

$$- LP^{(i)} y^{(i)} \delta y^{*(i)} + \frac{\lambda^{2}}{L} y^{(i)} \delta y^{*(i)}] d\xi$$

$$+ k_{1}y^{(1)}(0) \delta y^{*(1)}(0) + k_{2}L^{2}y^{(1)}(0) \delta y^{*(1)}(0)$$

$$+ k_{3}y^{(L)}(1) \delta y^{*(L)}(1) + k_{4}L^{2}y^{(L)}(1) \delta y^{*(L)}(1)$$

$$+ k_{5}y^{(L)}(1) \delta y^{*(L)}(1) = 0$$
(6)

In obtaining Eq. (6) from (5b), one has effected a change of coordinates from x (global) to ξ (local) such that

$$\xi = \xi^{(i)} = Lx-i+1$$

$$d\xi = Ldx$$

$$y(x) = y^{(i)}(\xi)$$

$$y'(x) = \frac{d}{dx}y(x) = L\frac{d}{d\xi}y^{(i)}(\xi) = Ly^{(i)'}(\xi)$$
etc.
$$(7)$$

Introducing generalized coordinates vector $\mathbf{Y}^{(i)}$ and shape function vector $\mathbf{a}(\xi)$ such that

$$y^{(i)}(\xi) = a^{T}(\xi)Y^{(i)}(\xi)$$
 (8a)

with

$$Y^{(i)T} = \{Y_1^{(i)} \ Y_2^{(i)} \ Y_3^{(i)} \ Y_4^{(i)}\}$$
 (8b)

$$\frac{a}{a}(\xi) = \begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ \xi \\ \xi^{2} \\ \xi^{3} \end{pmatrix}$$
(8c)

where a superscript T denotes the transpose of a matrix. One observes that

$$Y_1^{(i)} = y^{(i)}(0)$$
 , $Y_2^{(i)} = y^{(i)}(0)$
 $Y_3^{(i)} = y^{(i)}(1)$, $Y_4^{(i)} = y^{(i)}(1)$ (8d)

The counterparts for $y^*(\xi)$ can be similarly defined.

In terms of $Y^{(i)}$, $Y^{*(i)}$, a, Eq. (6) can be written as:

$$\sum_{i=0}^{L} \delta Y^{*}(i)^{T} \{L^{3} \int_{0}^{1} \underline{a}^{"}(\xi) \underline{a}^{"}^{T}(\xi) d\xi - L \int_{0}^{1} P^{(i)}(\xi) \underline{a}^{"}(\xi) \underline{a}^{"}^{T}(\xi) d\xi \\
- L \int_{0}^{1} P^{(i)}(\xi) \underline{a}(\xi) \underline{a}^{"}^{T}(\xi) d\xi + \frac{\lambda^{2}}{L} \int_{0}^{1} \underline{a}(\xi) \underline{a}^{T}(\xi) d\xi \} \underline{Y}^{(i)} \\
+ \delta \underline{Y}^{*}(1)^{T} \{k_{1}\underline{a}(0)\underline{a}^{T}(0) + k_{2}L^{2}\underline{a}^{"}(0)\underline{a}^{"}^{T}(0)\} \underline{Y}^{(1)} \\
+ \delta \underline{Y}^{*}(L)^{T} \{k_{3}\underline{a}(1)\underline{a}^{T}(1) + k_{4}L^{2}\underline{a}^{"}(1)\underline{a}^{"}^{T}(1) + k_{5}\underline{a}(1)\underline{a}^{"}^{T}(1)\} \underline{Y}^{(L)} = 0 \quad (9)$$

It will be convenient to define the following matrices:

$$A_{1} = \int_{0}^{1} a(\xi) a^{T}(\xi) d\xi , \quad A_{2} = \int_{0}^{1} a'(\xi) a'^{T}(\xi) d\xi$$

$$A_{3} = \int_{0}^{1} a''(\xi) a''^{T}(\xi) d\xi , \quad A_{4} = \int_{0}^{1} a(\xi) a'^{T}(\xi) d\xi$$

$$A_{5} = \int_{0}^{1} \xi a'(\xi) a'^{T}(\xi) d\xi , \quad A_{6} = \int_{0}^{1} a(\xi) a'^{T}(\xi) d\xi$$

$$A_{7} = \int_{0}^{1} \xi^{2} a'(\xi) a'^{T}(\xi) d\xi$$

$$B_{1} = a(0) a^{T}(0) , \quad B_{2} = a'(0) a'(0)$$

$$B_{3} = a(1) a^{T}(1) , \quad B_{4} = a'(1) a'^{T}(1)$$

$$B_{5} = a(1) a'^{T}(1)$$

In terms of the matrices defined in (10), Eq. (9) is written as:

$$\sum_{i=1}^{L} \delta_{i}^{Y*}(i)^{T} \{L^{3}A_{3} + \frac{\lambda^{2}}{L} A_{1} - LM_{p}\}_{i}^{Y}(i)
+ \delta_{i}^{Y*}(1)^{T} \{k_{1}B_{1} + k_{2}L^{2}B_{2}\}_{i}^{Y}(1)
+ \delta_{i}^{Y*}(L)^{T} \{k_{3}B_{3} + k_{4}L^{2}B_{4} + k_{5}B_{5}\}_{i}^{Y}(L) = 0$$
(11)

where the matrix $\underline{\mathbf{M}}_{p}$ is defined as

$$M_{p} = \int_{0}^{1} P^{(i)} a^{i} a^{j} a^{T} d\xi + \int_{0}^{1} P^{(i)} a^{j} a^{T} d\xi .$$
 (12)

To proceed further, it is necessary to know the specific form of P(x). As we have mentioned earlier, three different forms of P(x) will be considered.

CASE I. P(x) = P, a Constant. In this case, one has

$$P(x) = P^{(i)}(\xi) = P$$

 $P'(x) = LP^{(i)'}(\xi) = 0$ (13)

Thus

i . .

$$M_{P} = P \int_{0}^{1} a'a'd\xi = PA_{2} . \qquad (14)$$

CASE II. P(x) = q(1-x).

$$P(x) = P^{(i)}(\xi) = \frac{q}{L} (L-i+1-\xi)$$

$$P^{(i)}(\xi) = -\frac{q}{L}$$
(15)

Thus,

$$M_{p} = \frac{q}{L} \{ [L - (i-1)] \int_{0}^{1} a'a'^{T} d\xi - \int_{0}^{1} \xi a'a'^{T} d\xi$$

or

$$M_{p} = \frac{q}{L} \{ [L - (i-1)] A_{2} - A_{5} \}$$
 (16)

CASE III.
$$P(x) = q_0/2(1-x)^2$$
.

$$P^{(i)}(\xi) = \frac{q_0}{2L^2}[(L-i+1)^2 - 2(L-i+1)\xi + \xi^2]$$

$$P^{(i)'}(\xi) = -\frac{q_0}{L^2}[(L-i+1) - \xi]$$
(17)

Thus,

$$M_{p} = \frac{q_{o}}{2L^{2}} \{ (L-i+1)^{2} \int_{0}^{1} a' a'^{T} d\xi - 2(L-i+1) \int_{0}^{1} \xi a' a'^{T} d\xi + \int_{0}^{1} \xi^{2} a' a'^{T} d\xi \}$$

$$- \frac{q_{o}}{L^{2}} \{ (L-i+1) \int_{0}^{1} a' a'^{T} d\xi - \int_{0}^{1} \xi a' a'^{T} d\xi \}$$

or,

$$M_{p} = \frac{q_{o}}{2L^{2}} \{ (L-i+1)^{2} A_{2} - 2(L-i+1) A_{5} + A_{7} \}$$

$$-\frac{q}{L^{2}} \{ (L-i+1) A_{2} - A_{5} \} . \tag{18}$$

With M_D defined for all three cases in Eqs. (14), (16), and (18) respectively, one can now assemble Eq. (11) into a global matrix equation. Introducing the global generalized coordinate vectors \underline{Y} and \underline{Y}^* as:

$$Y_{1}^{T} = \{ Y_{1}^{(1)} Y_{2}^{(1)} Y_{3}^{(1)} Y_{4}^{(1)} Y_{3}^{(2)} Y_{4}^{(2)} \dots Y_{3}^{(L)} Y_{4}^{(L)} \}
Y_{2}^{*T} = \{ Y_{1}^{*(1)} Y_{2}^{*(1)} Y_{3}^{*(1)} Y_{4}^{*(1)} Y_{3}^{*(2)} Y_{4}^{*(2)} \dots Y_{3}^{*(L)} Y_{4}^{*(L)} \}$$
(19)

Eq. (11) now can be written in terms of Y and δY^* as

$$\delta \underline{\mathbf{Y}}^{*T} \{ \underline{\mathbf{K}} - \lambda^2 \underline{\mathbf{M}} \} \underline{\mathbf{Y}} = 0$$
 (20)

where the global matrices K and M are formed by properly placing the local matrices defined in Eqs. (10) according to the correspondence between the local and global generalized coordinates indicated in Eqs. (19). Now since δY^* are not subject to any constraint conditions, Eq. (18) reduces to

$$(\overset{\mathsf{K}}{\sim} - \lambda^2 \overset{\mathsf{M}}{\sim}) \overset{\mathsf{Y}}{\sim} = 0 \tag{21}$$

which is solved for the eigenvalue λ and the eigenvector \underline{Y} .

IV. NUMERICAL RESULTS AND DISCUSSION. It is well known that the eigenvalue λ dictates the stability of the column: a pure imaginary λ is associated with a stable vibration, a real λ with instability of divergence, and a complex λ with instability of flutter [10].

Only cantilevered columns will be considered here. It will be seen that in all three loading cases, the cantilevered columns reaches an instability condition of flutter.

CASE I. P(x) = P = Constant. The characteristic equation in close form was obtained by Beck [3] as

$$2\lambda^{2} + Q^{2} + 2\lambda^{2} \cosh \alpha \cos \beta + Q\lambda \sinh \alpha \sin \beta = 0$$
 (22)

where

11 7-1 1

$$\alpha^{2} = \sqrt{\lambda^{2} + \frac{Q^{2}}{4}} + \frac{Q}{2}$$

$$\beta^{2} = \sqrt{\lambda^{2} + \frac{Q^{2}}{4}} + \frac{Q}{2}$$
(23)

For a given Q, the eigenvalue λ can be calculated from Eq. (22) and there are an infinite number of λ solutions for each Q. Eq. (22) is solved for two lowest branches of λ using an iterative procedure. The results are given in Table I. The critical load thus obtained is

$$Q_{CR} = 2.0318\pi^2 = 20.053$$

which agrees well with the value obtained originally by Beck as $Q_{\rm CR}$ = 20.05. The results for four lowest eigenvalues presently obtained using our finite element-unconstrained variational formulations are also shown in Table I. The first two branches obviously agree well with those from the exact characteristic equation. It should be pointed out that the numerical solutions to the Beck problem given in Reference [4] appear to be inaccurate. A plot of the eigenvalue curve showing the coalescense of the two lowest branches is given in Figure 2. The data from Reference [4] are indicated by small circles. The fact that these data points do not fall on a smooth curve further add to the doubt about their accuracy.

<u>CASE II.</u> P(x) = q(1-x). The numerical values of the four lowest eigenvalues up to the first critical load are given in Table II which the critical load is shown to be

$$q_{CR} = 4.0591\pi^2$$

compared with data given by Leipholz as $4.1238\pi^2 = 40.7$ [11] and again as $4.2058\pi^2 = 41.51$ [12]. The coalescence of the first two branches of eigenvalues is again shown in Figure 2.

CASE III. $P(x) = q_0/2(1-x)^2$. Similar data for this case are presented in Table III and in Figure 3. The critical load of flutter is obtained as

$$q_{oCR} = 15.2687\pi^2$$

In comparison, the value obtained by Hauger was q_{QCR} = 158.2 = 16.092 π^2 [6] and that by Leipholz, q_{QCR} = 150.80 = 15.279 π^2 [12].

REFERENCES

- H. Zeigler, <u>Principles of Structural Stability</u>, Blaisdell, 1968, p. 33.
- J. J. Wu, "Gun Dynamics Analysis by the Use of Unconstrained, Adjoint Variational Formulations," Proceedings of the Second U.S. Army Symposium on Gun Dynamics, September 1978, pp. II80-II99.
- 3. M. Beck, "Die Knicklast des einseitig einseitig eingespannten, tangential gedruckten Stabes," ZAMP, 1952, Vol. 52, pp. 225-229.
- 4. S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw-Hill, 1961, p. 3.
- 5. H. Leipholz, "Anwendung des Galerkinschen Verfahren auf nichtkonservative Stabilitätsprobleme des elastischen Stabes," ZAMP, 1962, Vol. 13, pp. 359-372.
- 6. W. Hauger, "Die Knicklasten elastischer Stabe under gleichmassig verteilten under linear veranderlichen, tangentialen Druckfreften," Ingenieur Archiv, 1966, Vol. 35, pp. 221-229.
- 7. J. J. Wu, "A Unified Finite Element Approach to Column Stability Problem," Development in Mechanics, Vol. 8, 1975, pp. 279-294.
- 8. J. J. Wu, "On Missile Stability Journal of Sound and Vibration," 1976, Vol. 49(1), pp. 141-147.
- 9. S. P. Timoshenko and J. M. Gere, <u>Theory of Elastic Stability</u>, McGraw-Hill, 1961, p. 155.
- 10. D. A. Peters and J. J. Wu, "Asymptotic Solution to a Stability Problem," Journal of Sound and Vibration, 1978, Vol. 59(4), pp. 591-610.
- 11. H. Leipholz, Stability Theory, Academic Press, 1972, pp. 239-241.
- 12. H. Leipholz, "On the Calculation of Buckling Loads by Means of Hybrid Ritz Equations," Archives of Mechanics, Warszawa 1973, Vol. 25(6), pp. 895-901.
- 13. H. Leipholz, "On the Solution of the Stability Problem of Elastic Rods Subjected to Triangularly Distributed Tangential Follower Forces," Ingenier Archiv, 1977, Vol. 46, pp. 115-124.

TABLE I. NUMERICAL VALUES OF FIRST TWO LOWEST EIGENVALUES OF A CANTILEVERED COLUMN WITH P(x) = P, A CONSTANT

	Q/π^2	0.	0.5	1.0	1.5	2.0	2.0318
	Present Results	3,5160	4.2072	5.1462	6.5546	9.8256	11.0167
ζ,	Exact	3,5160	4.2072	5,1461	6.5546	9.8282	
-1	Timo, & Gere	3.4894	5.0325	5.4158	6.6939	9.6702	
	Present Results	22,0356	20.4590	18.6410	16.3684	12.2599	11.0167
~	Exact	22.0345	20.4578	18.6395	16.3665	12.2545	
7	Timo. & Gere	21.7579	20,2266	17.9290	15.9143	9.9678	
	λ_3	61.7209	59,8566	57.9304	55.9366	53.8689	53.7348
	λ_4	121,0745	119.0413	116.9720	114.8648	112.7177	112.5797

11.0315 11.0315 53.6261 112.5295 12.2289 9.8811 53.7547 112.6595 4.0 NUMERICAL VALUES OF FIRST FOUR LOWEST EIGENVALUES OF A CANTILEVERED COLUMN WITH P(x) = q(1-x)6.5660 16.3664 55.8772 114.8332 3.0 57.9059 5.1499 18,6399 116.9586 2.0 4.2079 59.8516 20.4587 119.0382 1.0 TABLE II. 3,5160 22.0356 61.7209 121.0745 0 Q/π^2

γ2

4.05907

NUMBRICAL VALUES OF FIRST FOUR LOWEST EIGENVALUES OF A CANTILEVERED COLUMN WITH $P(x) = q_0(1-x)^2/2$ TABLE III.

			<i>C</i>		•
Q/π^2	0.	4.0	8.0	12.0	15.26866
γ_1	3.5160	4.3170	5.4413	7.2148	11.4874
22	22.0356	20.4456	18.5880	16.1747	11.4874
λ_3	61.7209	59.5525	57.2512	54.7927	52.6444
λ4	121.0745	118,6056	116.0544	113,4143	111.1856
					the same of the sa

Figure 1. Boundary Condition Associated with a Follower Force: Constant of Tangency \mathbf{K}_{θ} .

. ; 16

WATERVLIET ARSENAL INTERNAL DISTRIBUTION LIST

	NO. OF COPIES
COMMANDER	1
DIRECTOR, BENET WEAPONS LABORATORY	1
CHIEF, DEVELOPMENT ENGINEERING BRANCH ATTN: DRDAR-LCB-DA -DM -DP -DR	1 1 1
-DR -DS -DC	1 1 1
CHIEF, ENGINEERING SUPPORT BRANCH	1
CHIEF, RESEARCH BRANCH ATTN: DRDAR-LCB-RA -RC -RM -RP	2 1 1 1
TECHNICAL LIBRARY	5
TECHNICAL PUBLICATIONS & EDITING UNIT	2
DIRECTOR, OPERATIONS DIRECTORATE	1
DIRECTOR, PROCUREMENT DIRECTORATE	. 1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE	1

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: DRDAR-LCB-TL, OF ANY REQUIRED CHANGES.

EXTERNAL DISTRIBUTION LIST (CONT)

	O. OF		NO. OF COPIES
COMMANDER US ARMY RESEARCH OFFICE P.O. BOX 1211 RESEARCH TRIANGLE PARK, NC 27709	1	COMMANDER DEFENSE DOCU CEN ATTN: DDC-TCA CAMERON STATION ALEXANDRIA, VA 22314	12
COMMANDER US ARMY HARRY DIAMOND LAB ATTN: TECH LIB 2800 POWDER MILL ROAD ADELPHIA, MD 20783	1	METALS & CERAMICS INFO CEN BATTELLE COLUMBUS LAB 505 KING AVE COLUMBUS, OHIO 43201	1
DIRECTOR US ARMY INDUSTRIAL BASE ENG ACT ATTN: DRXPE-MT ROCK ISLAND, IL 61201	1	MPDC 13919 W. BAY SHORE DR. TRAVERSE CITY, MI 49684	1
CHIEF, MATERIALS BRANCH US ARMY R&S CROUP, EUR BOX 65, FPO N.Y. 09510	1	MATERIEL SYSTEMS ANALYSIS ACTV ATTN: DRXSY-MP ABERDEEN PROVING GROUND MARYLAND 21005	1
COMMANDER NAVAL SURFACE WEAPONS CEN AT'IN: CHIEF, MAT SCIENCE DIV DAHLGREN, VA 22448	1		
DIRECTOR US NAVAL RESEARCH LAB ATTN: DIR, MECH DIV CODE 26-27 (DOC LIB) WASHINGTON, D.C. 20375	1		
NASA SCIENTIFIC & TECH INFO FAC P.O. BOX 8757, ATTN: ACQ BR BALTIMORE/WASHINGTON INTL AIRPORT MARYLAND 21240	1		

NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVLIET ARSENAL, WATERVLIET, N.Y. 12189, OF ANY REQUIRED CHANGES.

EXTERNAL DISTRIBUTION LIST

	NO. OF COPIES		NO. OF COPIES
ASST SEC OF THE ARMY RESEARCH & DEVELOPMENT ATTN: DEP FOR SCI & TECH THE PENTAGON WASHINGTON, D.C. 20315	1	COMMANDER US ARMY TANK-AUTMV R&D COMD ATTN: TECH LIB - DRDTA-UL MAT LAB - DRDTA-RK WARREN, MICHIGAN 48090	1
COMMANDER US ARMY MAT DEV & READ. COMD ATTN: DRCDE 5001 EISENHOWER AVE ALEXANDRIA, VA 22333	1	COMMANDER US MILITARY ACADEMY ATTN: CHMN, MECH ENGR DEPT WEST POINT, NY 10996	1
COMMANDER US ARMY ARRADCOM ATTN: DRDAR-TSS DRDAR-LCA (PLASTICS TECH EVAL CEN) DOVER, NJ 07801	2	COMMANDER REDSTONE ARSENAL ATTN: DRSMI-RB DRSMI-RRS DRSMI-RSM ALABAMA 35809	2 1 1
COMMANDER US ARMY ARRCOM ATTN: DRSAR-LEP-L ROCK ISLAND ARSENAL ROCK ISLAND, IL 61299	1	COMMANDER ROCK ISLAND ARSENAL ATTN: SARRI-ENM (MAT SCI DIV) ROCK ISLAND, IL 61202 COMMANDER	1
DIRECTOR US ARMY BALLISTIC RESEARCH LABORATO ATTN: DRDAR-TSB-S (STINFO)	RY 1	HQ, US ARMY AVN SCH ATTN: OFC OF THE LIBRARIAN FT RUCKER, ALABAMA 36362	1
ABERDEEN PROVING GROUND, MD 21005 COMMANDER US ARMY ELECTRONICS COMD ATTN: TECH LIB FT MONMOUTH, NJ 07703	1	COMMANDER US ARMY FGN SCIENCE & TECH CEN ATTN: DRXST-SD 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901	1
COMMANDER US ARMY MOBILITY EQUIP R&D COMD ATTN: TECH LIB FT BELVOIR, VA 22060	1	COMMANDER US ARMY MATERIALS & MECHANICS RESEARCH CENTER ATTN: TECH LIB -DRXMR-PL WATERTOWN, MASS 02172	2

NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVLIET ARSENAL, WATERVLIET, N.Y. 12189, OF ANY REQUIRED CHANGES.