week5_hw.R

yangz

2022-09-29

```
# import the data
df <- read.delim("D:/GEORGIA INSTITUTE OF TECHNOLOGY/ISYE_6501/week5/hw5-SP22-1/data 8.2/uscrime.txt")
# set seed
set.seed(9876)
# check the head
head(df)</pre>
```

```
## N So Ed Pol Po2 LF M.F Pop NW U1 U2 Wealth Ineq Prob Time Crime
## 1 15.1 1 9.1 5.8 5.6 0.510 95.0 33 30.1 0.108 4.1 3940 26.1 0.084602 26.2011 791
## 2 14.3 0 11.3 10.3 9.5 0.583 101.2 13 10.2 0.096 3.6 5570 19.4 0.029599 25.2999 1635
## 3 14.2 1 8.9 4.5 4.4 0.533 96.9 18 21.9 0.094 3.3 3180 25.0 0.083401 24.3006 578
## 4 13.6 0 12.1 14.9 14.1 0.577 99.4 157 8.0 0.102 3.9 6730 16.7 0.015801 29.9012 1969
## 5 14.1 0 12.1 10.9 10.1 0.591 98.5 18 3.0 0.091 2.0 5780 17.4 0.041399 21.2998 1234
## 6 12.1 0 11.0 11.8 11.5 0.547 96.4 25 4.4 0.084 2.9 6890 12.6 0.034201 20.9995 682
```

```
# check the summary
summary(df)
```

Pop ## Min.	NW			Po1	Po2	LF	M.F
	•••						
2 40 ***	:11.90 M	in. :0.0000	Min. : 8.70	Min. : 4.50	Min. : 4.100	Min. :0.4800	Min. : 9
3.40 Mir	n. : 3.00	Min. : 0.20)				
## 1st Qu	ı.:13.00 1	st Qu.:0.0000	1st Qu.: 9.75	1st Qu.: 6.25	1st Qu.: 5.850	1st Qu.:0.5305	1st Qu.: 9
6.45 1st	Qu.: 10.00	1st Qu.: 2.40)				
## Mediar	n:13.60 M	edian :0.0000	Median :10.80	Median : 7.80	Median : 7.300	Median :0.5600	Median : 9
7.70 Med	lian : 25.00	Median : 7.60)				
## Mean	:13.86 M	ean :0.3404	Mean :10.56	Mean : 8.50	Mean : 8.023	Mean :0.5612	Mean : 9
8.30 Mea	an : 36.62	Mean :10.11	L				
## 3rd Qi	ı.:14.60 3	rd Qu.:1.0000	3rd Qu.:11.45	3rd Qu.:10.45	3rd Qu.: 9.700	3rd Qu.:0.5930	3rd Qu.: 9
9.20 3rd	l Qu.: 41.50	3rd Qu.:13.25	5				
## Max.	:17.70 M	ax. :1.0000	Max. :12.20	Max. :16.60	Max. :15.700	Max. :0.6410	Max. :10
7.10 Max	c. :168.00	Max. :42.30)				
##	U1	U2	Wealth	Ineq	Prob	Time	Crime
## Min.	:0.07000	Min. :2.000	Min. :2880	Min. :12.60	Min. :0.00690	Min. :12.20	Min. : 3
42.0							
## 1st Qi	ı.:0.08050	1st Qu.:2.750	1st Qu.:4595	1st Qu.:16.55	1st Qu.:0.03270	1st Qu.:21.60	1st Qu.: 6
58.5							
## Mediar	n :0.09200	Median :3.400	Median :5370	Median :17.60	Median :0.04210	Median :25.80	Median : 8
31.0							
## Mean	:0.09547	Mean :3.398	Mean :5254	Mean :19.40	Mean :0.04709	Mean :26.60	Mean : 9
05.1							
## 3rd Qu	1.:0.10400	3rd Ou.:3.850	3rd Ou.:5915	3rd Qu.:22.75	3rd Qu.:0.05445	3rd Qu.:30.45	3rd Ou.:10
57.5					, , , , , , , , , , , , , , , , , , , ,		
## Max.	:0.14200	Max. :5.800	Max. :6890	Max. :27.60	Max. :0.11980	Max. :44.00	Max. :19
93.0							

#
dim(df)

```
## [1] 47 16
```

```
#
hist(df[,15])
```

Histogram of df[, 15]


```
# calculate the sum of squares total
SST <- sum((df$Crime - mean(df$Crime))^2)
# build up general linear model
glm_model <- glm(Crime ~ . , data=df, family="gaussian")
# check the factors used and coefficients
summary(glm_model)</pre>
```

```
##
## Call:
  glm(formula = Crime ~ ., family = "gaussian", data = df)
##
## Deviance Residuals:
##
      Min
                10
                     Median
                                          Max
##
  -395.74
             -98.09
                      -6.69
                              112.99
                                        512.67
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.984e+03 1.628e+03 -3.675 0.000893 ***
## M
               8.783e+01 4.171e+01
                                     2.106 0.043443 *
## So
               -3.803e+00 1.488e+02 -0.026 0.979765
## Ed
               1.883e+02 6.209e+01 3.033 0.004861 **
                                     1.817 0.078892 .
## Po1
               1.928e+02 1.061e+02
## Po2
               -1.094e+02
                          1.175e+02
                                     -0.931 0.358830
## LF
               -6.638e+02
                          1.470e+03
                                      -0.452 0.654654
## M.F
               1.741e+01 2.035e+01
                                      0.855 0.398995
## Pop
              -7.330e-01 1.290e+00 -0.568 0.573845
## NW
               4.204e+00 6.481e+00
                                     0.649 0.521279
               -5.827e+03 4.210e+03 -1.384 0.176238
## II1
## U2
               1.678e+02 8.234e+01
                                      2.038 0.050161
               9.617e-02
                          1.037e-01
                                       0.928 0.360754
## Wealth
                                      3.111 0.003983 **
## Inea
               7.067e+01
                          2.272e+01
               -4.855e+03 2.272e+03 -2.137 0.040627 *
## Prob
              -3.479e+00 7.165e+00 -0.486 0.630708
## Time
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
  (Dispersion parameter for gaussian family taken to be 43707.93)
##
##
      Null deviance: 6880928 on 46 degrees of freedom
## Residual deviance: 1354946 on 31 degrees of freedom
## AIC: 650.03
##
## Number of Fisher Scoring iterations: 2
```

```
# assign values to variable we need to predict
M < -14.0
So <- 0
Ed <- 10.0
Po1 <- 12.0
Po2 <- 15.5
LF <- 0.640
M.F <- 94.0
Pop <- 150
NW < -1.1
U1 <- 0.120
U2 <- 3.6
Wealth <- 3200
Ineq <- 20.1
Prob <- 0.04
Time <- 39.0
# fit the variable in glm
{\tt glm\_model\_revised} \mathrel{<-} {\tt glm(Crime} \mathrel{\sim} {\tt M} + {\tt Ed} + {\tt Po1} + {\tt U2} + {\tt Ineq} + {\tt Prob} \; , \; {\tt data=df}, \; {\tt family="gaussian"})
# check the factors
summary(glm_model_revised)
##
## Call:
```

```
## glm(formula = Crime \sim M + Ed + Po1 + U2 + Ineq + Prob, family = "gaussian",
##
##
## Deviance Residuals:
##
               10
                     Median
                                  3Q
                     -19.68 133.12
##
  -470.68
            -78.41
                                       556.23
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                           899.84 -5.602 1.72e-06 ***
## (Intercept) -5040.50
## M
                105.02
                            33.30
                                    3.154 0.00305 **
## Ed
                196.47
                            44.75
                                    4.390 8.07e-05 ***
## Po1
                                    8.363 2.56e-10 ***
                115.02
                            13.75
## U2
                 89.37
                            40.91
                                   2.185 0.03483 *
                 67.65
                            13.94
                                   4.855 1.88e-05 ***
## Ineq
## Prob
              -3801.84
                          1528.10 -2.488 0.01711 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 40276.42)
##
##
      Null deviance: 6880928 on 46 degrees of freedom
## Residual deviance: 1611057 on 40 degrees of freedom
## AIC: 640.17
##
## Number of Fisher Scoring iterations: 2
```

```
# used cross validation with k=9
glm_cv <- cv.glm(df,glm_model,K=9)
glmr_cv <- cv.glm(df,glm_model_revised,K=9)
# calculate the cross-validated prediction error
glm_cv$delta</pre>
```

```
## [1] 79190.22 75568.42
```

```
# calculate R square
1 - glm_cv$delta[1]*nrow(df)/SST
```

```
## [1] 0.4590932
```

```
1 - glmr_cv$delta[1]*nrow(df)/SST
```

[1] 0.6544089

```
# calculate adjusted R square
1 - glm_cv$delta[2]*nrow(df)/SST
```

```
## [1] 0.4838319
```

```
1 - glmr_cv$delta[2]*nrow(df)/SST
```

```
## [1] 0.6617965
```

```
# predict using glm
test_data <-data.frame(M = 14.0,So = 0, Ed = 10.0, Po1 = 12.0, Po2 = 15.5,LF = 0.640, M.F = 94.0, Pop = 150, NW =
1.1, U1 = 0.120, U2 = 3.6, Wealth = 3200, Ineq = 20.1, Prob = 0.040,Time = 39.0)
pred_model <- predict(glm_model, test_data)
pred_model</pre>
```

```
## 1
## 155.4349
```

```
pred_revised_model <- predict(glm_model_revised, test_data)
pred_revised_model</pre>
```

```
## 1
## 1304.245
```