ICE503 DSP-Homework#1

1. Consider a discrete-time system which can develop the output sequence:

$$y[n] = 3x[n] + 4x[n-1] - x[n-2] + 2x[n-4]$$

- (a) Plot the block diagram for this system.
- (b) The input sequence x[n] is shown in Figure 1, sketch and label y[n].
- (c) Following (b), sketch and label the down sampling sequence y[3n].
- (d) Following (b), sketch and label the up sampling sequence $y[\frac{1}{2}n]$.

Figure 1: The input sequence x[n]

2. Determine whether each of the following signals is periodic. If the signal is periodic, state its fundamental period.

(a)
$$x[n] = 6\cos\left(\frac{\pi}{2}n\right)$$

(b)
$$x[n] = n \sin\left(\frac{\pi}{12}n\right)$$

(c)
$$x[n] = e^{j\frac{3}{4}\pi n}$$

3. MATLAB simulation:

(a) Generate the complex-valued signal.

$$x[n] = e^{j\frac{1}{10}\pi n}, \qquad n = -10, \dots, -1, 0, 1, \dots 10$$

- (b) Use stem function to plot the real part and the imaginary part of x[n].
- (c) Determine whether x[n] is a conjugate symmetric sequence or a conjugate antisymmetric sequence, and explain the reason.