VERTEX ALGEBRAS

github.com/danimalabares/vertex-algebras

Contents

1.	Cartan subalgebra, Cartan matrix and Serre relations	1
2.	Some infinite dimensional Lie algebras	3
3.	Kac-Moody algebras	6
4.	Affine Kac-Moody algebras	8
5.	Weyl group	9
6.	Weyl character formula	11
7.	Characters of integrable highest weight for affine Kac-Moody algebras	15
8.	θ -functions	17
9.	Vertex algebras	18
10.	The residue pairing	23
11.	A second definition of vertex algebra	25
12.	Calculating vertex algebras	29
13.	The charged free fermions: a vertex superalgebra	33
14.	Universal affine vertex algebra	38
15.	Another presentation the charged free Fermions	41
16.	Schur polynomials	44
17.	The Tate extension and the Japanese cocycle	45
18.	Representing the endomorphisms algebra on the charged fermions	50
19.	The 26-dimensionality of the universe	52
20.	Lattice Vertex algebras	56
Ref	References	

1. CARTAN SUBALGEBRA, CARTAN MATRIX AND SERRE RELATIONS

Kac-Moody algebras are Lie algebras, whose definition is motivated by the structure of finite-dimensional simple Lie algebras over \mathbb{C} .

Let $\mathfrak g$ be a finite-dimensional semisimple Lie algebra over $\mathbb C$. Then $\mathfrak g$ has a Cartan $\mathit{subalgebra}\ \mathfrak{h} \subset \mathfrak{g}\ (\mathrm{abelian} + \dots).$ Fixing $\mathfrak{h} \subset \mathfrak{g}$ gives a root space decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{lpha\in\Delta}\mathfrak{g}_lpha$$

where $\Delta \subset \mathfrak{h}^*$ linear dual, and, by definition

$$\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g} | [H, X] = \alpha(H)X \ \forall H \in \mathfrak{h} \}$$

Turns out the \mathfrak{g}_{α} are all 1-dimensional, though this property is lost when we go to Kac-Moody algebras.

$$[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subset\mathfrak{g}_{\alpha+\beta}$$

The Killing form $\kappa : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$, $\kappa(x,y) = \operatorname{Tr}_{\mathfrak{g}} \operatorname{ad}(x) \operatorname{ad}(y)$ is nondegenerate. "This is kind of the definition of semisimple." (Think of \mathfrak{h} as \mathfrak{g}_0 , btw.)

 $\kappa|_{\mathfrak{g}_{\alpha}\times\mathfrak{g}_{\beta}}\neq 0$ only when $\beta=-\alpha$. $\kappa|_{\mathfrak{h}\times\mathfrak{h}}$ is non-degenerate. This gives a linear isomorphism $\mathfrak{h}\stackrel{\nu}{\to}\mathfrak{h}$ via $\nu(H)(H')=\kappa(H,H')$.

So, \mathfrak{h}^* comes with a non-degenerate bilinear form.

The reflection $r_{\alpha}: \mathfrak{h} \to \mathfrak{h}^*$ in $\alpha \in \mathfrak{h}^*$ (usually a root) is $r_{\alpha}(\lambda) = \lambda - 2\frac{(\lambda,\alpha)}{(\alpha,\alpha)} \cdot \alpha$.

"Classify root systems [...] classify semisimple Lie algebras" It is a fact that $r_{\alpha}(\Delta) = \Delta$ for all $\alpha \in \Delta$, which motivates the definition of *root system* and permits classification.

Example 1.1. $\mathfrak{g} = \mathfrak{sl}_2$, $\mathfrak{h} = \text{diagonal matrices}$

$$\begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & & \\ & 1 & \\ & & -1 \end{pmatrix}$$

is a basis of \mathfrak{h} . There are 6 roots vectors

$$E_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $E_{23}, E_{13}, \text{ etc.}$

Exercise 1.2.
$$[H_1, E_{12}] = 2E_{12}, [H_2, E_{12}] = -E_{12}, \alpha_{12} = (2, -1).$$

[Drawing of roots]

Notions of positive roots and simple roots (set of rank \mathfrak{g} simple roots has ℓ elements, where $\ell = \dim(\mathfrak{h}^*)$. This will also fail for Kac-Moody algebras more generally). Next write the Cartan matrix

$$A = (a_{ij}),$$
 $a_{ij} = 2\frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$

for $1 \le i, j \le \ell$.

Example 1.3. \mathfrak{sl}_3 . [Picture, hexagonal pattern]. $(\alpha_1, \alpha_1) = (\alpha_2, \alpha_2) = 2, (\alpha_1, \alpha_2) = -1$, so

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

Example 1.4. \mathfrak{sl}_5 . [Picture, square pattern]. $|\alpha_2| = 1$, $|\alpha_1| = 2$, $(\alpha_1, \alpha_2) = -2$, so

$$A = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$$

Remark 1.5. Since \mathfrak{g}_{α} is 1-dimensional, set $\mathfrak{g}_{\alpha} = \mathbb{C}E_{\alpha}$ and $E_i = E_{\alpha_i}$, $i = 1, 2, \dots, \ell$ (simple root vectors). It turns out that

$$ad(E_i)^{1-a_{ij}}E_j = 0.$$

This is called a Serre relation.

2. Some infinite dimensional Lie algebras

Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra, and define the *loop algebra*

$$L\mathfrak{g} = \mathfrak{g}[t, t^{-1}], \text{ (with basis } at^m|^{a \in \text{a basis of } \mathfrak{g}} \text{)}$$
$$= \mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$$

with the Lie bracket

$$[at^m, bt^n] = [a, b]t^{m+n}.$$

"This construction is absurdely general — we don't need $\mathfrak g$ to be semisimple [...]"

Take $\mathfrak{g} = \mathfrak{sl}_2$. Recall that

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

[Picture with $F, H, E, Ft, Ht, Et, Et^2...$] E was a root vector, corresponding to the unique root in \mathfrak{sl}_2 , call it α_1 . We seem to have a second simple root α_0 , corresponding to Ft.

This looks like it wants to have a Cartan matrix

$$A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

We will indeed recover (a variant of) $L\mathfrak{g}$ as a Lie algebra "built from" $A=\begin{pmatrix}2&-2\\-2&2\end{pmatrix}$, a Kac-Moody algebra. But note first, $\mathfrak{h}=\mathbb{C}H$ is too small. "Problem with α_0 and α_1 being linearly independent ..."

Exercise 2.1. Consider $L\mathfrak{g} \oplus \mathbb{C}d$, and set $[d, at^m] = mat^m$, [d, d] = 0. Check this defines a Lie algebra.

Proof. Skew-commutativity, i.e. for all $x \in L\mathfrak{g} \oplus \mathbb{C}d$,

$$[x, x] = 0,$$

is immediate from skew commutativity in $L\mathfrak{g}$ and the hypothesis that [d,d]=0.

To confirm Jacobi identity, i.e. that for all $x, y, z \in L\mathfrak{g} \oplus \mathbb{C}d$

$$[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0,$$

notice that since this is a cyclic sum on x,y,z we only need to consider three elements in $L\mathfrak{g}\oplus\mathbb{C} d$ up to cyclic permutation. The cases in which the three elements are either in $L\mathfrak{g}$ or in $\mathbb{C} d$ are obvious, so that there are only two interesting possibilities:

$$(2.1.3) x = d, y = at^m, z = bt^n$$

$$(2.1.4) x = d, y = d, z = at^n$$

Case 2.1.3 gives

$$\begin{split} &[d,[at^m,bt^n]] + [at^m,[bt^n,d]] + [bt^n,[d,at^m]] \\ &= [d,[a,b]t^{m+n}] + [at^m,-nbt^n] + [bt^n,mat^m] \\ &= (m+n)[a,b]t^{m+n} - n[a,b]t^{m+n} + m[b,a]t^{m+n} \\ &= (m+n)[a,b]t^{m+n} - n[a,b]t^{m+n} - m[a,b]t^{m+n} \\ &= (m+n)[a,b]t^{m+n} - (m+n)[a,b]t^{m+n} = 0. \end{split}$$

Case 2.1.4 gives

$$\begin{aligned} &[d,[d,at^m]] + [d,[at^m,d]] + [at^m,[d,d]] \\ &= [d,mat^m] + [d,-mat^m] = 0. \end{aligned}$$

The Kac-Moody algebra turns out to be, not quite this, but slightly larger still. Recall that an *invariant bilinear form* (\cdot,\cdot) on a Lie algebra $\mathfrak g$ is a bilinear form such that

(2.1.5)
$$([a, b], c) = (a, [b, c]) \quad \forall a, b, c \in \mathfrak{g}.$$

Exercise 2.2. Prove that an invariant bilinear form on a simple Lie algebra must in fact be symmetric.

Proof. It's enough to show that \mathfrak{g} is *perfect*, i.e. that $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$. In this case, let $a,b \in \mathfrak{g}$ and suppose that b = [x,y]. Then

$$(a,b) = (a,[x,y]) = (a,-[y,x]) = (-[a,y],x) = ([y,a],x)$$

= $(y,[a,x]) = (y,-[x,a]) = (-[y,x],a) = ([x,y],a) = (b,a)$

To confirm that \mathfrak{g} is perfect just observe that $[\mathfrak{g},\mathfrak{g}]$ is a nontrivial ideal of \mathfrak{g} .

Definition 2.3. Given \mathfrak{g} simple, with $(\cdot, \cdot) : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ invariant bilinear form, the *affine Lie algebra* is

$$\hat{\mathfrak{g}} = L\mathfrak{g} \oplus \mathbb{C}K,$$

with
$$[K, \hat{\mathfrak{g}}] = 0$$
, and $[at^m, bt^n] = [a, b]t^{m+n} + m(a, b)\delta_{m, -n}K$.

"For the construction to work it doesn't actually have to be nondegenerate."

Exercise 2.4. Check that the affine Lie algebra $\hat{\mathfrak{g}}$ is a Lie algebra.

Proof. (Skew-commutativity.) Since $[K, \hat{\mathfrak{g}}] = 0$ and $K \in \hat{\mathfrak{g}}$, it is immediate that [K, K] = 0. For the case of an element in $L\mathfrak{g}$, we see that $[at^m, at^m] = 0$ by skew-commutativity of the bracket in \mathfrak{g} and the Kronecker delta.

(Jacobi identity.) As in Exercise 2.1, any choice of x,y,z involving K is immediate by $[K,\hat{\mathfrak{g}}]=0$. Thus the only interesting case is for Jacobi identity consider the cases

$$\begin{split} &[at^m,[bt^n,ct^\ell]] + [bt^n,[ct^\ell,at^m]] + [ct^\ell,[at^m,bt^n]] \\ &= [at^m,[b,c]t^{n+\ell} + n(b,c)\delta_{n,-\ell}K] \\ &+ [bt^n,[c,a]t^{\ell+m} + \ell(c,a)\delta_{\ell,-m}K] \\ &+ [ct^\ell,[a,b]t^{m+n} + m(a,b)\delta_{m,-n}K] \\ &= [at^m,[b,c]t^{n+\ell}] + [at^m,n(b,c)\delta_{n,-\ell}K] \\ &+ [bt^n,[c,a]t^{\ell+m}] + [bt^n,\ell(c,a)\delta_{\ell,-m}K] \\ &+ [ct^\ell,[a,b]t^{m+n}] + [ct^\ell,m(a,b)\delta_{m,-n}K] \\ &+ [ct^\ell,[a,b]t^{m+n}] + [ct^\ell,m(a,b)\delta_{m,-n}K] \\ &= [a,[b,c]]t^{m+(n+\ell)} + m(a,[b,c])\delta_{m,-(n+\ell)}K \\ &+ [b,[c,a]]t^{n+(\ell+m)} + n(b,[c,a])\delta_{n,-(\ell+m)}K \\ &+ [c,[a,b]]t^{\ell+(m+n)} + \ell(c,[a,b])\delta_{\ell,-(m+n)}K = 0 \end{split}$$

It is clear that we obtain a Jacobi equation on \mathfrak{g} . To see that the remaining terms vanish, notice that the condition on the Kronecker delta in its three appearances is the same, namely, $m+n+\ell=0$. In this case, we only need to check that (a,[b,c])=(b,[c,a])=(c,[a,b]) to conclude. This follows from the invariance of (\cdot,\cdot) and the fact that \mathfrak{g} simple using Exercise 2.2.

We also have

Definition 2.5. The extended affine Lie algebra is

$$\tilde{\mathfrak{g}} = L\mathfrak{g} \oplus \mathbb{C}K \oplus \mathbb{C}d,$$

with $[d, at^m] = mat^m$ as before, and [K, d] = 0.

The extended affine Lie algebra is an example of a Kac-Moody algebra.

Exercise 2.6 (For those who like geometry). Let $R = \mathbb{C}[t,t^{-1}]$. If $D \in \mathrm{Der}(R)$, then $L\mathfrak{g} \oplus \mathbb{C}d$ is a Lie algebra with $[d,a\otimes r]=a\otimes D(r)$. Is $(\mathfrak{g}\otimes R)\oplus \mathrm{Der}(R)$ a Lie algebra? (The Lie alegra $L\mathfrak{g} \oplus \mathbb{C}d$ from Exercise 2.1 is a particular case, for $D=t\frac{d}{dt}$.)

Proof. Checking that $L\mathfrak{g}\oplus\mathbb{C}d$ is a Lie algebra with $[d,a\otimes r]=a\otimes D(r)$ is similar to Exercise 2.1: skew-commutativity is immediate from skew-commutativity in each of the components, while Jacobi identity is verified in two cases. For x=y=d and $z=a\otimes r$ we quickly obtain

$$\begin{split} &[x,[y,z]] + [y,[z,x]] + [z,[x,y]] \\ &= [d,[d,a\otimes r]] + [d,[a\otimes r,d]] + [a\otimes r,[d,d]] \\ &= [d,a\otimes D(r)] + [d,-a\otimes D(r)] = 0. \end{split}$$

And for x = d, $y = a \otimes r$ and $z = b \otimes s$, we get

$$(2.6.1) \begin{tabular}{l} & [x,[y,z]] + [y,[z,x]] + [z,[x,y]] \\ & = [d,[a\otimes r,b\otimes s]] + [a\otimes r,[b\otimes s,d]] + [b\otimes s,[d,a\otimes r]] \\ & = [d,[a,b]\otimes rs] + [a\otimes r,-b\otimes D(s)] + [b\otimes s,a\otimes D(r)] \\ & = [a,b]\otimes D(rs) - [a,b]\otimes rD(s) + [b,a]\otimes sD(r) = 0. \end{tabular}$$

To check whether $(\mathfrak{g} \otimes R) \oplus \operatorname{Der}(R)$ is a Lie algebra first put the Lie bracket on $\operatorname{Der}(R)$ as $[D, D_1] = DD_1 - D_1D$. It is clear that this bracket is skew-commutative. Jacobi identity reads

$$\begin{split} &[D,[D_1,D_2]]+[D_1,[D_2,D]]+[D_2,[D,D_1]]\\ &=[D,D_1D_2-D_2D_1]+[D_1,D_2D-DD_2]+[D_2,DD_1-D_1D]\\ &=D(D_1D_2-D_2D_1)-(D_1D_2-D_2D_1)D+D_1(D_2D-DD_2)\\ &-(D_2D-DD_2)D_1+D_2(DD_1-D_1D)-(DD_1-D_1D)D_2\\ &=DD_1D_2-DD_2D_1-D_1D_2D+D_2D_1D+D_1D_2D-D_1DD_2\\ &-D_2DD_1+DD_2D_1+D_2DD_1-D_2D_1D-DD_1D_2+D_1DD_2=0. \end{split}$$

Now put the bracket on $(\mathfrak{g} \otimes R) \oplus \operatorname{Der}(R)$ as $[D, a \otimes r] = a \otimes D(r)$. Skew-commutativity is immediate. Jacobi identity for $x = D, y = a \otimes r$ and $z = b \otimes s$ is

identical to the computation 2.6.1. In the case x = D, $y = D_1$ and $z = a \otimes r$, we get

$$[D, [D_1, a \otimes r]] + [D_1, [a \otimes r, D]] + [a \otimes r, [D, D_1]]$$

= $[D, a \otimes D_1(r)] + [D_1, -a \otimes D(r)] + [a \otimes r, [D, D_1]]$
= $a \otimes DD_1(r) - a \otimes D_1D(r) - a \otimes [D, D_1](r) = 0$

3. Kac-Moody algebras

Recall the notion of the free Lie algebra on a vector space V of generators (or a set X, think of V as a vector space with basis X):

Definition 3.1. The *free Lie algebra* on V is characterized by the universal property

That is, for any linear map $f: V \to \mathfrak{g}$ with \mathfrak{g} Lie algebra, there exists a unique \tilde{f} homomorphism of Lie algebras $F(V) \to \mathfrak{g}$ such that $\tilde{f} \circ i = f$.

$$\operatorname{Hom}_{\operatorname{Lie}}(F(V),\mathfrak{g}) = \operatorname{Hom}_{\operatorname{Vec}}(V,\mathfrak{g})$$

naturally.

That is, F and the forgetful functor $G: \text{Lie} \to \text{Vec}$ are adjoint:

$$\operatorname{Hom}_{\operatorname{Lie}}(F(V),\mathfrak{g}) \xrightarrow{\simeq} \operatorname{Hom}_{\operatorname{Vec}}(V,G(\mathfrak{g}))$$

A realisation of F(V). Let

$$T(V) = \mathbb{C} \oplus V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \dots$$

be the tensor algebra of V.

Then inside T(V) consider F(V) the span of iterated commutators of elements of V.

Proposition 3.2. This realises the free Lie algebra.

Proof. In online notes.
$$\Box$$

In the finite dimensional simple case, we had

$$a_{ij} = \frac{2(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)},$$

which we think also as $\alpha_i, \alpha_j \in \mathfrak{h}^*$, and $\alpha_i^{\vee} = \frac{2}{(\alpha_i, \alpha_i)} \nu^{-1}(\alpha_i) \in \mathfrak{h}$.

Clearly, $\alpha_{ii} = 2$ for all i. a_{ij} might not equal a_{ji} , but certainly $a_{ij} = 0 \iff a_{ji} = 0$. And $\forall i \neq j, a_{ij} \leq 0$.

One further property. Set

$$\varepsilon_i = \frac{2}{(\alpha_i, \alpha_i)}, \quad \text{and} \quad D = \frac{\text{diagonal matrix}}{\text{with entries } \varepsilon_i}$$

Then A = DB, where $B = ((\alpha_i, \alpha_i))$ is symmetric. If a matrix A is equal to (diag)(symm), we call it symmetrizable.

Definition 3.3. A generalized Cartan matrix is an integer matrix $A = (a_{ij})$ which

- symmetrizable,
- $a_{ii} = 2$ for all i,
- $a_{ij} = 0 \iff a_{ji} = 0,$ $a_{ij} \le 0$ for $i \ne j$.

Definition 3.4. A realisation of a generalized Cartan matrix is a complex vector space \mathfrak{h} , and two sets

$$\Pi^{\vee} = \{\alpha_1^{\vee}, \alpha_2^{\vee}, \dots, \alpha_n^{\vee}\}, \text{ and,}$$
$$\Pi = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$$

such that $\langle \alpha_i^{\vee}, \alpha_j \rangle = a_{ij}, 1 \leq i, j \leq n$.

Exercise 3.5. $\dim(\mathfrak{h}) \geq 2n - \operatorname{rank}(A)$.

Proof. For
$$A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$
, a realisation is given by

$$\Pi^{\vee} = \{H_1, H_0\}, \qquad \Pi = \{\alpha_0, \alpha_1\}$$

$$\mathfrak{h}=\mathbb{C}H\oplus\mathbb{C}d\oplus\mathbb{C}K,$$

$$\mathfrak{h}^* = \mathbb{C}\alpha_1 \oplus \mathbb{C}\delta \oplus \mathbb{C}\Lambda_0$$

(Canonical dual, $\langle \alpha_1, H \rangle = 2$, $\langle \delta, d \rangle = 1 = \langle \Lambda_0, K \rangle$, every other pairing 0.)

$$\begin{cases} \alpha_1 = \alpha_1 \\ \alpha_0 = \delta - \alpha_1 \end{cases} \qquad \begin{cases} \alpha_1^{\vee} = H \\ \alpha_0^{\vee} = K - H \end{cases}$$

So we obtain

$$\langle \alpha_0^{\vee}, \alpha_1 \rangle = \langle K - H, \alpha_1 \rangle = 2$$

 $\langle \alpha_1^{\vee}, \alpha_0 \rangle = \langle H, \delta - \alpha_1 \rangle = -2$

$$\langle \alpha_0^{\vee}, \alpha_0 \rangle = \langle K - H, \delta - \alpha_1 \rangle = +2$$

Finally let's define Kac-Moody algebras.

Let A be a generalized Cartan matrix. Let

$$\tilde{\mathfrak{n}}_+ = F(e_1, \dots, e_n),$$

the free Lie algebra on n generators, and similarly

$$\tilde{\mathfrak{n}}_- = F(f_1, \ldots, f_n).$$

Let \mathfrak{h} be a realisation of A. Set $\tilde{\mathfrak{g}}(A) = \tilde{\mathfrak{n}}_- \oplus \mathfrak{h} \oplus \tilde{\mathfrak{n}}_+$.

Make $\tilde{\mathfrak{g}}(A)$ a Lie algebra by defining

- $[\mathfrak{h}, \mathfrak{h}] = 0$,
- $\forall H \in \mathfrak{h}$, $[H, e_i] = \langle \alpha_i, H \rangle e_i = \alpha_i(H)e_i$. And similarly, $[H, f_i] = -\alpha_i(H)f_i$.
- $[e_i, f_i] = \delta_{ii} \alpha_i^{\vee}$.

Then $\tilde{\mathfrak{g}}(A)$ is a Lie algebra (though not yet the Kac-Moody algebra). See Kac, [Kac90, Thorem 1.2].

Remark 3.6. In \mathfrak{h} we have a lattice

$$Q^{\vee} = \mathbb{Z}\alpha_1^{\vee} + \ldots + \mathbb{Z}\alpha_n^{\vee}, \quad \text{and} \quad Q = \mathbb{Z}\alpha_1 + \ldots + \mathbb{Z}\alpha_n \text{ in } \mathfrak{h}^*$$

(root and coroot lattices). $\tilde{\mathfrak{g}}(A)$ is naturally Q-graded, with

$$\tilde{\mathfrak{g}}(A)_{\beta} = \operatorname{span}\{\operatorname{commutators of } e_i \text{ with } \sum \alpha_i = \beta\}.$$

$$\tilde{g}(A) = \mathfrak{h}.$$

Theorem 3.7 (Gabber-Kac). Denote by $I \subset \tilde{\mathfrak{g}}(A)$ the maximal Q-graded ideal, such that $I \cap \mathfrak{h} = \{0\}$. Then I is generated by the Serre relations

$$ad(e_i)^{1-a_{ij}}e_j$$
 and $ad(f_i)^{1-a_{ij}}f_j$, $i \neq j$.

Proof. [Kac90, Theorem 9.11].

(The existence of the ideal I does not need the theorem; the importance of the theorem is providing an expression for the generators.)

Definition 3.8. The Kac-Moody algebra $\mathfrak{g}(A)$ is $\tilde{\mathfrak{g}}(A)/I$.

4. Affine Kac-Moody algebras

Let \mathfrak{g} be a finite-dimensional simple Lie algebra, with $(\cdot,\cdot):\mathfrak{g}\times\mathfrak{g}\to\mathbb{C}$ invariant bilinear form,

$$([x,y],z) = (z,[y,z]) \quad \forall x,y,z \in \mathfrak{g}$$

(Eg. the Killing form $\kappa(x,y) = \text{Tr}_{\mathfrak{g}} \text{ad}(x) \text{ad}(y)$ is invariant.)

Typically we normalise (\cdot, \cdot) so that $(\alpha, \alpha) = 2$ for the long roots of \mathfrak{g} .

Then $\hat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$ (affine Lie algebra),

$$[at^m, bt^n] = [a, b]t^{m+n} + m\delta_{m,-n}(a, b)K, \qquad [K, \hat{\mathfrak{g}}] = 0$$

and $\tilde{\mathfrak{g}} = \hat{\mathfrak{g}} \oplus \mathbb{C}d$, [d, K] = 0, $[d, at^m] = mat^m$, (affine Kac-Moody algebra or "extended affine Lie algebra")

Theorem 4.1. $\tilde{\mathfrak{g}}$ is a Kac-Moody algebra.

Let
$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$$
, $(\mathfrak{g}_{\alpha} = \mathbb{C}E_{\alpha})$.

The simple roots and coroots. $\tilde{\mathfrak{h}} = \mathfrak{h} \oplus \mathbb{C}K \oplus \mathbb{C}d$. We identify $\tilde{\mathfrak{h}}^*$ with $\mathfrak{h}^* \oplus \mathbb{C}\Lambda_0 \oplus \mathbb{C}\delta$ where

$$\Lambda_0(\mathfrak{h}) = \delta(\mathfrak{h}) = 0$$

$$\Lambda_0(d) = \delta(K) = 0$$

$$\Lambda_0(K) = \delta(d) = 1$$

The real coroots are

$$\hat{\Delta}^{V,re} = \{ E_{\alpha} t^m | \alpha \in \Delta, m \in \mathbb{Z} \}$$

and there are also imaginary roots and coroots

$$\hat{\Delta}^{V,im} = \{Ht^m | H \in \mathfrak{h}, m \in \mathbb{Z} \setminus \{0\}\}\$$

Roots:

$$\hat{\Delta}^{re} = \{\alpha + m\delta | \alpha \in \Delta, m \in \mathbb{Z}\}$$
$$\hat{\Delta}^{im} = \{m\delta | m \neq 0\}$$

 Xt^m :

$$\begin{split} [H,Xt^m] &= [H,x]t^m, \qquad H \in \mathfrak{h} \\ [K,xt^m] &= 0 \\ [d,xt^m] &= mxt^m \end{split}$$

so it $x \in \mathfrak{g}_{\alpha}$, $xt^m \in \tilde{\mathfrak{g}}_{\alpha+m\delta}$.

The invariant bilinear form (\cdot, \cdot) from $\mathfrak{g} \times \mathfrak{g}$ extends uniquely to (\cdot, \cdot) : $\tilde{\mathfrak{g}} \times \tilde{\mathfrak{g}} \to \mathbb{C}$. (d, d) = (K, K) = 0, (d, K) = 1 and $(d, \mathfrak{h}) = (K, \mathfrak{h}) = 0$.

So, in $\tilde{\mathfrak{h}}^*$:

$$(\Lambda_0, \Lambda_0) = (\delta, \delta) = 0$$

$$(\Lambda_0, \mathfrak{h}^*) = (\delta, \mathfrak{h}^*) = 0$$

$$(\Lambda_0, \delta) = 1.$$

Hence, $|\alpha + m\delta|^2 = |\alpha|^2$, $|m\delta|^2 = 0$.

Example 4.2. $\widetilde{\mathfrak{sl}_2}, \widetilde{\mathfrak{h}}^* = \operatorname{span}\{\alpha, \Lambda_0, \delta\}$ with Gram matrix ...

We can make a choice of positive roots,

$$\hat{\Delta}_{+} = \{\alpha + m\delta | \alpha \in \Delta, m > 0\} \cup \{m\delta | m > 0\} \cup \Delta_{+}$$

Obviously, if $\alpha \in \Delta_+$ is simple, $\alpha \in \hat{\Delta}_+$ is simple.

Notation. Let $\theta \in \Delta_+$ be a the highest root. ($\not\exists \alpha \in \Delta_+$ such that $\alpha - \theta \in \mathbb{Z}_+\Delta_+$.) and $\alpha = \delta - \theta$.

ad $\alpha = \delta - \theta$. Then $\alpha_0 \in \hat{\Delta}_+$ is simple and the set of simple roots is $\hat{\Pi} = \{\alpha_0, \underbrace{\alpha_1, \dots, \alpha_\ell}_{\text{the finite simple roots}}\}$.

where $\ell = \operatorname{rank}(\mathfrak{g})$.

The coroot corresponding to α_0 is

$$\alpha_0^{\vee} = K - \theta^{\vee}, \qquad \theta^{\vee} = \frac{2}{(\theta, \theta)} \nu^{-1}(\theta) \in \mathfrak{h}$$

and $E_{\alpha_0} = E_{-\theta} t.$

5. Weyl group

Upshot. The Weyl group is a semidirect product of pseudoreflections and translations.

In any Kac-Moody algebra, we have

roots
$$\Pi = \{\alpha_1, \dots, \alpha_\ell\} \subset \mathfrak{h}^*$$
coroots
$$\Pi^{\vee} = \{\alpha_1^{\vee}, \dots, \alpha_\ell^{\vee}\} \subset \mathfrak{h},$$

and reflections $r_i \in GL(\mathfrak{h}^*)$, defined by

$$r_i(\lambda) = \lambda - \langle \lambda, \alpha_i^{\vee} \rangle \alpha_i.$$

One can check that

$$(r_i\lambda, r_i\mu) = (\lambda, \mu) \quad \forall \lambda, \mu \in \mathfrak{h}^*$$

The Weyl group W is $\langle r_i | i = 1, ..., \ell \rangle \subset GL(\mathfrak{h}^*)$.

Example 5.1. For $\widetilde{\mathfrak{sl}_2}$, r_1 is easy.

$$r_1(\alpha) = -\alpha$$
 (as in \mathfrak{sl}_2)
 $r_1(\delta) = \delta$, $r_1(\Lambda_0) = \Lambda_0$.

To compute r_0 take an arbitrary element $m\alpha_1 + k\Lambda_0 + f\delta$ and do:

$$r_0(m\alpha_1 + k\Lambda_0 + f\delta) = m\alpha_1 + k\Lambda_0 + f\delta - \langle \alpha_0^{\vee}, m\alpha_1 + k\Lambda_0 + f\delta \rangle \alpha_0$$
$$\alpha_0 = \delta - \alpha_1, \qquad \alpha_0^{\vee} = K - \alpha^{\vee}$$

so we obtain

$$= m\alpha_1 + k\Lambda_0 + f\delta - (k - 2m)(\delta - \alpha_1)$$
$$(k - m)\alpha_1 + k\Lambda_0 + (f - k + 2m)\delta.$$

Relative to basis $\{\alpha_1, \Lambda_0, \delta\}$.

$$r_{1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, r_{0} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} m \\ k \\ f \end{pmatrix}$$
$$t = r_{1}r_{0} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix}$$

Notice that δ is fixed by all r_i . Also $m\alpha + k\Lambda_0 + f\delta$, the *coefficient* of Λ_0 is fixed by all r_i .

Then

$$t(m\alpha_1 + k\Lambda_0 + f\delta) = (m - k)\alpha_1 + k\Lambda_0 + (f - k + 2m)\delta.$$

Think of t as a translation.

The number k in

$$\mathfrak{h}^* \ni \hat{\lambda} = \lambda + k\Lambda_0 + f\delta$$

is called the *level* of $\hat{\lambda}$.

 $\hat{\mathfrak{h}}$ = union of (hyper)planes of constant level which are stable under W. The roots α are all of level 0.

[Picture] " r_1 changes the sign of the finite path". And $t=r_1r_0$ is a sort of translation. Indeed, in general we can consider $t_{\alpha_i}=r_{\alpha_i}\circ r_0\in W$,

$$t_{\alpha}(\beta + m\delta) = \beta + (m + (\beta, \alpha_i))\delta$$

One can describe the action of t_{α} on $\hat{\lambda}$ in general (e.g. see [Kac90, Chapter 6])

Proposition 5.2. For the affine Kac-Moody algebra $\hat{\mathfrak{g}}$ with $\hat{W} = \langle r_0, r_1, \dots, r_\ell \rangle$ its Weyl group (and $W = \langle r_1, \dots, r_\ell \rangle \subset \hat{W}$ the Weyl group of \mathfrak{g}), then $\hat{W} \simeq W \times t_{Q^\vee}$ (where it should be semidirect product instead of $\times \dots$) where Q^\vee is the coroot lattice of \mathfrak{g} .

Remark~5.3. For general Kac-Moody algebras, the Weyl groups are much larger, hyperbolic reflection groups.

In the affine case, \hat{W} fixes level k, and $|\hat{\lambda}|$. One gets, in the intersection, paraboloids [Picture of section of hyperboloid that is a parabola].

6. Weyl Character formula

Highest weight representations of Kac-Moody algebras. Let $\lambda \in \mathfrak{h}^*$, where $\mathfrak{g}(A) = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ is a Kac-Moody algebra. We define a *Verma module*

$$M(\Lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{h}+\mathfrak{n}_+)} \mathbb{C}v_{\Lambda}$$

where $\mathfrak{h} + \mathfrak{n}_+$ acts on V_{Λ} by:

$$Xv_{\Lambda} = 0,$$
 $\forall x \in \mathfrak{n}_{+}$
 $Hv_{\Lambda} = \Lambda(H)v_{\Lambda},$ $\forall H \in \mathfrak{h}$

So $\mathbb{C}v_{\Lambda}$ is a $U(\mathfrak{h} + \mathfrak{n}_{+})$ -module,

$$U(\mathfrak{h} + \mathfrak{n}_+)$$
 \downarrow
 $U(\mathfrak{a})$

By the PBW theorem, $M(\Lambda)$ has a linear \mathbb{C} -basis.

Let $\{F_{\alpha,i}: i=1,\ldots,\dim\mathfrak{g}_{\alpha}\}$ be a basis of $\mathfrak{g}_{-\alpha}$, $\forall \alpha\in\Delta_{+}$. Also choose a total order on Δ_{+} . (Some sort of lexicographical order that takes longer to write than to say.)

$$F_{\alpha_1,i_1}, F_{\alpha_2,i_2}, \dots, F_{\alpha_s,i_s}, v_{\Lambda}$$

$$\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_2 \text{ and if } \alpha_p = \alpha_{p+1}, i_p \leq i_{p+1}$$

We have $M(\Lambda)_{\lambda} = \{m | Hm = \lambda(H)m\}$ weight spaces.

$$M(\Lambda) = \bigoplus_{\lambda \in \mathfrak{h}^*} M(\Lambda)_{\lambda}$$

The vector v_{Λ} is in $M(\Lambda)_{\Lambda}$ by definition,

$$F_{\alpha,i}V_{\Lambda} \in M(\Lambda)_{\Lambda-\alpha}$$

$$H(Fv_{\Lambda}) = \underbrace{[H,F]v_{\Lambda}}_{=-\alpha(H)Fv_{\Lambda}} + \underbrace{FHv_{\Lambda}}_{=\Lambda(H)FV_{\Lambda}}$$

So $\chi_{M(\Lambda)} = \sum_{\lambda \in \mathfrak{h}^*} \dim M(\Lambda)_{\lambda} e^{\lambda}$ is computed by counting monomials y with fixed $\sum_i \alpha_i$.

(6.0.1)
$$\chi_{M(\Lambda)} = e^{\Lambda} \prod_{\alpha \in \Delta_{+}} \frac{1}{(1 - e^{-\alpha})^{\dim \mathfrak{g}_{\alpha}}}.$$

The product on Eq. 6.0.1 is called Weyl denominator.

Exercise 6.1. Convince yourself of this.

Example 6.2. $\mathfrak{g} = \mathfrak{sl}_2$, [Picture]

$$\chi_{M(\Lambda)} = e^{\Lambda} + e^{\Lambda - \alpha} + e^{\Lambda - 2\alpha} + \dots$$
$$= e^{\Lambda} (1 + e^{-\alpha} + e^{-2\alpha} + \dots$$
$$= e^{\Lambda} \frac{1}{1 - e^{-\alpha}}.$$

For certain Λ , $M(\Lambda)$ is reducible (i.e. there exists a submodule $0 \neq N \subset M(\Lambda)$ (with proper contention).

Lemma 6.3. For any submodule N,

$$N = \bigoplus_{\mu \in \mathfrak{h}^*} N \cap M(\Lambda)_{\mu}.$$

Corollary. The sum of all proper submodules of $M(\Lambda)$ is proper, in particular there is a maximal proper submodule.

Notation. $L(\Lambda) = M(\Lambda) / \binom{\text{max. proper}}{\text{submodule}}$

Example 6.4. \mathfrak{sl}_2 . $\Lambda = 3\omega$ (ω : fundamental weight, $\alpha = 2\omega$.) $L(3\omega) = \mathbb{C} \langle e^{3\omega}, e^{-\omega}, e^{-3\omega} \rangle$. [Picture]

Definition 6.5. A g-module is *integrable* if

- $V=\bigoplus_{\mu\in \mathfrak{h}^*}V_{\mu}$ (weight module). For all simple roots α_i ; e_i and f_i are locally nilpotent on V (i.e. for all $v\in V$ there exists N such that $e_i^Nv=f_i^Nv=0$.)

• Vermas are not integrable.

- $\dim V < \infty \implies V$ integrable.
- g itself (Kac-Moody) is integrable.

Dominant integrable weights. Let $\{\alpha_1^{\vee}, \ldots, \alpha_{\ell}^{\vee}\} \subset \mathfrak{h}$ be the simple coroots.

Definition 6.7. The dominant integral weights are the weights that pair with the coroots to give integers:

$$P_{+} = \{ \lambda \in \mathfrak{h}^* : \langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{>0,1}, i = 1, \dots, \ell \}.$$

For $L(\Lambda)$ to be integrable, it is necessary that $\Lambda \in P_+$.

Indeed, suppose $L(\Lambda)$ is integrable. Then $f_i^N v_{\Lambda} = 0$ in $L(\Lambda)$, or rather

$$\underbrace{e_i f_i^{N+1} v_{\Lambda}}_{K f_i^N = 0} \in M(\Lambda),$$

and K can only be zero if $\langle \Lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{>0}$. Applying for all i, we find $\Lambda \in P_+$ is necessary.

Proposition 6.8. $L(\Lambda)$ is integrable if and only if $\Lambda \in P_+$.

Proof. For the converse, use induction and Serre relations (we know the result for the highest weight, and want to prove for others).

Example 6.9. \mathfrak{sl}_3 . [Picture]

Example 6.10. $\widehat{\mathfrak{sl}}_2$. [Picture, P_+ looks like diagonal lines.]

$$\alpha_0^\vee = K - H, \qquad \alpha_1^\vee = H \in \mathfrak{sl}_2, \qquad \langle \delta, \alpha_i^\vee \rangle = 0, \quad i = 0, 1$$

Remark 6.11. For affine Kac-Moody algebras, almost nothing about the structure of $M(\Lambda)$ depends on the coefficient of δ in Λ . So it's common to consider

$$M(\Lambda) = M_k(\lambda) = M(k\Lambda_0 + \lambda), \qquad \lambda \in \mathfrak{h}^*$$

where k, the level of Λ , is super important.

Then

$$\underbrace{\hat{P}_{+}}_{\substack{\delta\text{-coef.}\\ =0}} = \bigcup_{k \in \mathbb{Z}_{\geq 0}} \{k\Lambda_0 + \lambda | \lambda \in P_{+}^k\} \{k\Lambda_0 + \lambda | \lambda \in P_{+}^k\}.$$

$$P_{+}^{k} = \{\lambda \in P_{+} | \langle \lambda, \theta \rangle \leq k\} \subset P_{+} \text{ for } \mathfrak{g}.$$

Consider $V = \bigoplus_{\mu \in \mathfrak{h}^*} V_{\mu}$ integrable, and $V_{\lambda} \neq 0$. Let $i \in \{1, \dots, \ell\}$. Consider $U = \bigoplus_{n \in \mathbb{Z}} V_{\lambda + n\alpha_i} \subset V$, and the action of e_i, f_i and $h_i = [e_i, f_i]$.

 $\mathfrak{sl}_2 \cap U$, locally integrable. By structure of \mathfrak{sl}_2 -representations, U must be finite-dimensional with "symmetrical" weight space multiplicities, i.e.,

$$\{\lambda + n\alpha_i | n \in \mathbb{Z}\} \cap \{\text{weights of } V\} = \{\lambda + n\alpha_i | -p \le n \le q\}.$$

and

$$\langle \lambda - p\alpha_i, h_i \rangle = -\langle \lambda + q\alpha_i, h_i \rangle$$
.

Consequently, the reflection $r_i(\lambda) := \lambda - \langle \lambda, \alpha_i^{\vee} \rangle \alpha_i$ has the same multiplicity as λ .

[Picture]

Now consider $M(\lambda)$ and $L(\Lambda)$ for $\Lambda \in P_+$. Actually, for general Λ , $M(\Lambda)$, while not necessarilly irreducible, has an $(\Omega$ -)composition series* by irreducibles $L(\lambda)$.

$$M(\Lambda) = V_0 \supset V_1 \supset V_2 \supset \ldots \supset V_n = 0,$$

such that V_i/V_{i+1} is $\simeq L(\lambda_i)$ (i.e. an irreducible highest weight module) for some $\lambda_i = \Lambda - \beta_i, \ \beta_i \in Q$. For Kac-Moody algebras we also consider the case that $(V_i/V_{i+1}) = 0$ for all $\mu \in \Omega + Q_+$, (which is the Ω -composition series).

[Picture.]

For an Ω -composition series, as above, we have

$$\operatorname{ch}_{M(\Lambda)} - \sum_{\lambda \geq \Omega} \underbrace{[M(\Lambda) : L(\lambda)]}_{\text{$\#$ of times $L(\lambda)$}} \operatorname{ch}_{L(\lambda)} \in \langle e^{\mu} : \mu \not\geq \Omega \rangle$$

Sending " $\Omega \to -\infty$ ", the identity

$$\mathrm{ch}_{M(\Lambda)} = \sum_{\lambda < \Lambda} [M(\Lambda) : L(\lambda)] \mathrm{ch}_{L(\lambda)}$$

makes sense.

Notation. $b_{\Lambda,\lambda} = [M(\Lambda) : L(\lambda)].$

Remark 6.12. Recall the partial order on weights that $\lambda \leq \Lambda$ if $\Lambda - \lambda \in Q = \sum \mathbb{Z}_+ \alpha_i$. $b_{\Lambda,\lambda} = 1$ if $\lambda = \Lambda$ and $b_{\Lambda,\lambda} = 0$ if not $(\lambda \leq \Lambda)$.

If we choose a total order on \mathfrak{h}^* , compatible with \leq . Then $\{b_{\Lambda,\lambda}\}$ is a lower triangular matrix with 1 on the diagonal. We an define $\{m_{\Lambda,\lambda}\}$ the *inverse matrix*. It's again lower triangular, 1 on the diagonal, and all $m_{\Lambda,\lambda}$ are <u>integers</u> (maybe negative now). And we have

(6.12.1)
$$\operatorname{ch}_{L(\Lambda)} = \sum_{\lambda \leq \Lambda} m_{\Lambda,\lambda} \operatorname{ch}_{M(\lambda)}.$$

Example 6.13. \mathfrak{sl}_2 . $M(3) \underset{L(3)}{\supset} M(-5) \underset{L(-5)}{\supset} 0$. Since M(-5) is already irreducible. [Missing...]

We want to discover $m_{\Lambda,\lambda}$. In general massively difficult. For $\Lambda \in P_+$, $m_{\Lambda,\lambda}$ easy. Multiply Eq. 6.12.1 by R

$$R\operatorname{ch}_{L(\Lambda)} = \sum_{\lambda > \Lambda} m_{\Lambda,\lambda} e^{\lambda} \cdot e^{\rho} R\operatorname{ch}_{L(\Lambda)} = \sum_{\lambda < \Lambda} m_{\Lambda,\lambda} e^{\lambda + \rho}.$$

What's ρ ? It's $\rho \in \mathfrak{h}^*$ chosen so that $\langle \rho, \alpha_i^{\vee} \rangle = 1$, and it's called the Weyl vector.

Remark 6.14. For $\mathfrak g$ finite-dimensional, $\rho = \sum_{i=1}^\ell \omega_i$ necessarily. (And equals $\frac{1}{2} \sum_{\alpha \in \Delta_+} \alpha$.

For \mathfrak{g} finite dimensional and the affine $\hat{\mathfrak{g}}$, $\hat{\rho} = h^{\vee} \Lambda_0 + \rho$ works.

For $w \in W = \langle r_i | i = 1, \dots, \ell \rangle$, define $w(\operatorname{ch}_V) = \sum \dim V_{\mu} e^{W(\mu)}$. We saw $w(\operatorname{ch}_V) = \operatorname{ch}_V$ if V integrable. In particular $w(\operatorname{ch}_{L(\Lambda)} = \operatorname{ch}_{L(\Lambda)}, \Lambda \in P_+$.

Lemma 6.15. $m_{\Lambda,\lambda} = 0$ unless $\lambda + \rho = w(\Lambda + \rho)$ for some $w \in W$

Claim. $r_i(e^{\rho}R) = -e^{\rho}R$. So $w(e^{\rho}R) = \det(w)e^{\rho}R$ for all $w \in W$.

Proof.

$$R = \prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})^{\text{mult}(\alpha)}.$$

Note that

- (1) $\operatorname{mult}(r_i(\alpha)) = \operatorname{mult}(\alpha)$ for all $\alpha \in \Delta$. (Since \mathfrak{g} is integrable!)
- (2) $r_i(\Delta_+) = \{-\alpha_i\} \cup (\Delta_+ \setminus \{\alpha_i\}.$

Any $\alpha \in \Delta_+$ is of the form $\alpha = \sum_{i=1}^{\ell} k_i \alpha_i$. If $\alpha \neq \alpha_i$, some $k_{j_0} \neq 0$, $j_0 \neq i$ and

$$r_{i}(\alpha) = \sum_{j} k_{j} \alpha_{j} \langle \alpha, \alpha_{i}^{\vee} \rangle \alpha_{i}$$

$$= \sum_{j} k'_{j} \alpha_{j}$$

$$= e^{\rho} (e^{-\alpha_{i}} - 1) \left(\prod_{\alpha \in \Delta_{+} \backslash \alpha_{i}} \right)$$

$$= -e^{\rho} R$$

for $k'_{j_0} = k_{j_0} > 0$. Can't have a mixture of signs, so $r_i(\alpha) \in \Delta_{\perp}$.

$$r_i(e^{\rho}R) = \prod_{\alpha \in \Delta_+ \backslash \alpha_i} (1 - e^{-\alpha})^{\text{mult}(\alpha)} \cdot (1 - e^{t\alpha_i} \cdot e^{\rho - \alpha_i})$$

$$r_i = \rho - \langle \alpha_i^{\vee}, \rho \rangle \alpha_i = \rho - \alpha_i$$

Hence

$$\sum_{\lambda \le \Lambda} m_{\Lambda,\lambda} e^{\lambda + \rho}$$

is W-skew-invariant. (Lemma 6.15.)

Hence

$$\sum_{\lambda \le \Lambda} m_{\Lambda,\lambda} e^{\lambda + \rho} = \sum_{w \in W} \det(w) \cdot e^{w(\Lambda + \rho)}$$

In conclusion, the Weyl character formula

$$\operatorname{ch}_{L(\Lambda)} = \sum_{w \in W} \det(w) \cdot \frac{e^{w(\Lambda + \rho) - \rho}}{R}$$

Corollary (Weyl denominator formula).

$$e^{\rho}R = \sum_{w \in W} \det(w)e^{w(\rho)}.$$

Next time: Affine case, θ -functions. Modular forms (Poisson summation.)

7. Characters of integrable highest weight for affine Kac-Moody algebras

Can be calculated using the Weyl character formula.

Recall: $\hat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \widetilde{\mathbb{C}}K \oplus \widetilde{\mathbb{C}}d.$

Dual Cartan $\hat{\mathfrak{h}}^* = \mathfrak{h}^* \oplus \mathbb{C}\Lambda_0 \oplus \mathbb{C}\delta$.

We consider weights $\Lambda = k\Lambda_0 + \lambda$, $\lambda \in \mathfrak{h}^*$, $k \in \mathbb{Z}_+$, $\lambda \in P_+^k$.

Simple roots: $\alpha_0 = \delta - \theta$, $\{\alpha_1, \dots, \alpha_\ell\} \subset \mathfrak{h}^*$.

The affine Weyl group is (the *semidirect* product!)

$$\widehat{W} = \langle r_0, \dots, r_\ell \rangle \cong W \times T$$

where $T = \{t_{\alpha} | \alpha \in Q\}$, where t_{α} is the translation

$$t_{\alpha}(\Lambda) = \Lambda + k\alpha - \left((\lambda, a) + k \frac{|\alpha|^2}{2}\right)\delta$$

 $\Lambda = k\Lambda_0 + \lambda$.

Let's compute $\chi_{L(\Lambda_0)}$ using the Weyl character formula

$$\chi_{L(\Lambda)} = \frac{\sum_{w \in \tilde{W}} \varepsilon(w) e^{W(\Lambda + \rho) - \rho}}{R}$$

Firstly $R = \prod_{\alpha \in \hat{\Delta}} (1 - e^{-\alpha})^{\text{mult}(\alpha)}$

Recal

$$\hat{\Delta}_+ = \{m\delta|m\in\mathbb{Z}_{\geq 1}\} \cup \{\alpha_1 + m\delta|m\in\mathbb{Z}_{\geq 0}\} \cup \{-\alpha_1 + m\delta|m\in\mathbb{Z}_{\geq 1}\}$$

So let's write $e^{m\delta}=q^m$ (i.e. $q=e^{-\delta},$ is a symbol) and $y=e^{\alpha_1}.$

So

$$R = \prod_{n=1}^{\infty} \underbrace{(1 - y^{-1}q^{n-1})}_{\alpha + (n-1)\delta} \underbrace{(1 - q^n)}_{n\delta} \underbrace{(1 - yq^n)}_{-\alpha + n\delta}$$

Now let's express numerator also in terms of q and y

$$\hat{\rho} = h^{\vee} \Lambda_0 + \rho$$

 h^{\vee} dual Coxeter number for \mathfrak{g} . For $\mathfrak{g}=\mathfrak{sl}_2,\ h^{\vee}=2$. (For $\mathfrak{g}=\mathfrak{sl}_n,\ h^{\vee}=n$ and $\mathfrak{g}=E_8,\ h^{\vee}=30$.)

For \mathfrak{sl}_2 , $\rho = \frac{1}{2}\alpha_1 = \omega_1$.

$$\Lambda = \Lambda_0, \ \Lambda + \rho = 3\Lambda_0 + \omega_1.$$

Using the formula, we find

$$t_{m\alpha_1}(3\Lambda_0 + \omega_1) - (\Lambda_0 + \omega_1) = \dots, \Lambda_0 - 3\alpha, -2\delta, \Lambda_0, \Lambda_0 + 3\alpha_1 - 4\delta, \dots$$

[Picture]

 $\hat{W} = T \cup T\sigma$, $\sigma = r_1$ finite reflection.

Notation. $w(\Lambda + \rho) := w \circ \Lambda$.

One finds

$$\sum_{w \in \widehat{W}} \varepsilon(w) e^{w \circ \Lambda_0} = e^{\Lambda_0} \left(\underbrace{1 + y^3 q^4 + y^{-3} q^2 + \dots}_{\text{+ signs because } w \in T} \underbrace{-y^{-1} - y^2 q^2 - \dots}_{\text{- signs because } w \in T_\sigma} \right)$$

We find explicitly

$$\chi_{L(\Lambda_0)} = e^{\Lambda_0} \frac{\sum_{m \in \mathbb{Z}} y^{3m} q^{3m^2 + m} - \sum_{m \in \mathbb{Z}} y^{3m - 1} q^{3m^2 - m}}{\prod_{n=1}^{\infty} (1 - y^{-1} q^{n - 1}) (1 - q^n) (1 - y q^n)}$$

Exercise 7.1. Put this formula in mathematica and confirm that [Picture]

$$\chi_{L(\Lambda_0)} = e^{\Lambda_0} \left(1 + q(y^{-1} + 1 + y) + q^2(y^{-1} + 2 + y) + (q^3(2y^{-1} + 3 + 2y) + \ldots \right)$$

Appears that the central column here are partitions, i.e. p(n) = # of partitions of n. To see why recall the generating function $\sum_{n=0}^{\infty} q^n p(n) = \prod_{k=1}^{\infty} \frac{1}{1-q^k}$, and expand.

It would appear that

$$\chi_{L(\Lambda_0)} = \prod_{k=1}^{\infty} \frac{1}{1 - q^k} \cdot \sum_{m \in \mathbb{Z}} y^m q^{m^2}$$

This identity is true, and we will see it has a vertex-algebra interpretation.

Remark 7.2. If we compute L(0) = 1 using the formula, we obtain

$$\prod_{n=1}^{\infty} (1 - yq^{n-1})(1 - q^n)(1 - y^{-1}q^n) = \sum (\text{exercise})$$

This identity is called the Jacobi triple product identity.

These functions

$$\sum_{n\in\mathbb{Z}}q^{n^2}, \sum_{n\in\mathbb{Z}}y^nq^{n^2}, \sum_{n\in\mathbb{Z}}y^{3n}q^{3n^2+n}, \text{ etc.} ...$$

are all examples of θ -functions.

Remark 7.3. In the formula for $\chi_{L(\Lambda_0)}(y,q)$, we could put y=1 to get

$$\chi_{L(\Lambda_0)}(q) = 1 + 3q + 4q^2 + 7q^3 + \dots$$
$$= \prod \frac{1}{1 - q^k} \cdot \sum_{m \in \mathbb{Z}} q^{m^2}$$

If one looks at $L(\Lambda_0 + \omega_1)$ (the other $\Lambda \in P^1_+$),

$$\chi_{L(\Lambda+\omega_1)} = \prod \frac{1}{1-q^k} \sum_{m \in \mathbb{Z}} q^{(m+1/2)^2 - 1/4}$$

8. θ -functions

Let's consider

$$\theta(\tau) = \sum_{n \in \mathbb{Z}} q^{n^2/2}, \qquad q = e^{2\pi i \tau}$$

This converges (absolutely on compact regions in) the comain $\text{Im}(\tau) > 0$. Consider the Fourier transform

$$\hat{g}(y) = \int_{-\infty}^{\infty} g(x)e^{2\pi ixy}dx$$

Theorem 8.1 (Poisson summation).

$$\sum_{n \in \mathbb{Z}} g(n) = \sum_{n \in \mathbb{Z}} \hat{g}(n)$$

Let's take $g(x,t)=e^{-\pi tx^2}$. Then $\theta(it)=\sum_{n\in\mathbb{Z}}g(n,t)$. In this case

$$\hat{g}(y) = \sqrt{t}e^{-\pi y^2/t}$$

(integral of Gaussian).

So we conclude that

$$\theta\left(-\frac{1}{\tau}\right) = \sqrt{\frac{\tau}{i}}\theta(\tau)$$

Note also that

$$\theta(\tau + 2) = \theta(\tau)$$

because $q^{\frac{1}{2}} = e^{\pi i \tau}$.

So $\theta(\tau)$ is an example of a modular for.

What is a modular form? Let

$$\operatorname{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z}, \det = 1 \right\},$$

which acts on $\mathbb{H} = \{ \tau \in \mathbb{C} | \operatorname{Im}(\tau) > 0 \}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}.$$

Definition 8.2. Let $\Gamma = \operatorname{SL}_2(\mathbb{Z})$ or some subgroup. A *(weak) modular form (of weight k)* is $f : \mathbb{H} \to \mathbb{C}$ holomorphic such that

(8.2.1)
$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau).$$

If we demand that Γ contains $\begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix}$ for some $N \geq 1$, (so $f(\tau + N) = f(\tau)$, and so $f(\tau) = \sum_{n=-\infty}^{\infty} a(n)q^{2\pi i n/2}$), for $f: \mathbb{H} \to \mathbb{C}$ satisfying Eq. 8.2.1 and such that $f(\tau)$ is "meromorphic at cusps", i.e. $f(\tau) = \sum_{n \geq N_0} a(n)q^{n/N}$, etc.

Finally we would add a factor

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = \varepsilon(A)(c\tau+d)^k f(\tau).$$

So in particular a weight-0 modular form is a modular function.

Denote
$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. So $S\tau = -\frac{1}{\tau}$, and denote $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, so $T\tau = \tau + 1$.
Then $\Gamma = \langle S, T^2 \rangle \subset \operatorname{SL}_2(\mathbb{Z})$.

We saw

$$\begin{split} \theta(T^2\tau) &= \theta(\tau) \\ \theta(S\tau) &= \sqrt{\frac{\tau}{i}}\theta(\tau) = i^{-1/2}(c\tau+d)^{1/2}\theta(\tau). \end{split}$$

So $\theta(\tau)$ is a modular form of weight 1/2, for the group $\Gamma = \langle S, T^2 \rangle$ with multiplier system $\varepsilon : \Gamma \to \mathbb{C}^{\times}$ defined by

$$\varepsilon(S) = i^{-1/2}$$
$$\varepsilon(T^2) = 1$$

Theorem 8.3. The Dedekind eta function

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \qquad q = e^{2\pi i \tau}$$

is also a modular form of weight 1/2 for $SL_2(\mathbb{Z}) = \langle S, T \rangle$.

$$\eta\left(-\frac{1}{\tau}\right) = \sqrt{\frac{\tau}{i}}\eta(\tau)$$
$$\eta(T\tau) = e^{2\pi i/24}\eta(\tau).$$

9. Vertex algebras

(1) Recall $\hat{\mathfrak{a}} = \mathbb{C}K \oplus \bigoplus_{n \in \mathbb{Z}} \mathbb{C}h_n$ the Heisenberg Lie algebra, or oscillator Lie algebra,

$$[h_m, h_n] = m\delta_{m-n}K, \qquad [K, \hat{\mathfrak{a}}] = 0.$$

Remark 9.1. "It's the simplest case of an affine Lie algebra: a 1-dimensional Lie algebra with a bilinear form". It's an example of the affine Lie algebra construction $\mathfrak{g} \leadsto \hat{\mathfrak{g}}$, where now $\mathfrak{a} = \mathbb{C}$, and

$$(\cdot,\cdot): \mathfrak{a} \times \mathfrak{a} \longrightarrow \mathbb{C}$$

 $(1,1) \longmapsto 1$

(2) Witt Lie algebra

$$W = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}D_n,$$
$$[D_m, D_n] = (m - n)D_{m+n}.$$

The oscillator algebra $\hat{\mathfrak{a}}$ has a representation which we have seen already:

$$H = \mathbb{C}[x_1, x_2, \ldots]$$

$$h_n \mapsto \begin{cases} n \frac{\partial}{\partial x_n} & \text{if } n > 0 \\ x_{-n} & \text{if } n < 0 , \\ 0 & \text{if } n = 0 \end{cases} K \mapsto \text{Id}$$

A picture of H [Picture].

Here I am introducing a grading of H:

$$H = \bigoplus_{n \in \mathbb{Z}_{>0}} H_n, \qquad H_n = \operatorname{span}\{x_{m_1}, \dots, x_{m_s} | \sum m_s = n\}.$$

Remark 9.2. dim (H_n) =# {integer partitions of n} = p(n) and $\sum_{n=0}^{\infty} \dim(H_n)q^n = \prod_{k=1}^{\infty} \frac{1}{1-q^k}$.

Remark 9.3 (Verma module style). H can be presented alternatively as

$$H = U(\hat{\mathfrak{a}}) \otimes_{U(\hat{\mathfrak{a}}_+)} \mathbb{C}1$$

where $\mathbb{C}1$ is a 1-dimensional representation of

$$\hat{\mathfrak{a}}_+ = \bigoplus_{n \geq 0} \mathbb{C} h_n \oplus \mathbb{C} K.$$

$$h_n \cdot 1 = 0 \qquad \forall n \geq 0, \qquad K \cdot 1 = 1$$

Exercise 9.4. H is irreducible.

Proof. We need to prove that there is no vector subspace $V \subset \mathbb{C}[x_1, x_2, \ldots] = H$ such that $xV \subset V$ for all $x \in \hat{\mathfrak{a}}$. And then the proof is basically noticing that the orbit of the action of $\hat{\mathfrak{a}}$ on H is all of H. That is, if we had proper subspace of H, we can always find an element of $\hat{\mathfrak{a}}$ that takes some element in V to the one of the elements that is not in V. Indeed, by applying h_n for different values of positive n we can take any element of V to a constant. Then we apply h_n for different values of negative n to obtain any monomial. Then we add these monomials and obtain any polynomial in H.

Notation. Instead of 1 let's write $|0\rangle$.

Remark 9.5. We can easily generalise H to

$$H^{\mu} = U(\hat{\mathfrak{a}}) \otimes_{U(\hat{\mathfrak{a}}_{\perp})} \mathbb{C} |\mu\rangle,$$

 $(\mu \in \mathbb{C})$, where $\hat{\mathfrak{a}}_+$ is the same, but now

$$h_n|\mu\rangle = \begin{cases} 0 & \text{if } n > 0 \\ \mu \cdot |\mu\rangle & \text{if } n = 0 \end{cases}$$
 $K|\mu\rangle = |\mu\rangle.$

 H^{μ} is again a (irreducible) $\hat{\mathfrak{a}}$ -module.

Generalise even more: Let \mathfrak{h} be a finite-dimensional vector space, and $(\cdot, \cdot): \mathfrak{h} \times \mathfrak{h} \to \mathbb{C}$ a symmetric bilinear form. $\hat{\mathfrak{h}} = \mathfrak{h}[t, t^{-1}] \oplus \mathbb{C}K$,

$$[at^m, bt^n] = m(a, b)\delta_{m, -n}K, \qquad [K, \hat{\mathfrak{h}}] = 0.$$

Let $\mu \in \mathfrak{h}$. Define $H^{\mu} = U(\hat{\mathfrak{h}}) \otimes_{U(\hat{\mathfrak{h}})} \mathbb{C}|\mu\rangle$, $\hat{\mathfrak{h}}_{+} = \mathfrak{h}[t] \oplus \mathbb{C}K$, and

$$at^m \cdot |\mu\rangle = \begin{cases} (\mu, a) |\mu\rangle & \text{if } m = 0\\ 0 & \text{if } m > 0. \end{cases}$$

Returning to $\hat{\mathfrak{a}} \curvearrowright H = H^0$. Introduce

$$L_m = \frac{1}{2} \sum_{k \in \mathbb{Z}} h_{m-k} h_k.$$

If $m \neq 0$, this sum is well-defined in $\operatorname{End}(H)$.

Indeed, h_{m-k} and h_k commute $(m \neq 0)$, and $\forall p(\underline{x}) \in H$, there exists N such that $p(\underline{x}) = p(x_1, \dots, x_{N-1})$, then $h_k \cdot p(x) = 0 \ \forall k \geq N$, and $h_{m-k} \cdot p(x) = 0 \ \forall m-k > N$.

So $(\sum h_{m-k}h_k)p(\underline{x})$ is a <u>finite</u> sum. Of course, the number of terms in the sum depends on p(x) and can be arbitrarily large.

Exercise 9.6. If m, n and m + n are not zero, then

$$[L_m, L_n] = (m-n)L_{m+n}$$

holds in $\operatorname{End}(H)$.

(Trying to be a representation of W

$$D_n \mapsto L_n \in \operatorname{End}(H)$$
.)

But $\sum_{k\in\mathbb{Z}} h_{-k}h_k$ is not well-defined. Indeed,

$$\left(\sum_{k\in\mathbb{Z}} h_{-k}h_k\right)1 = \sum_{k\geq 1} k\frac{\partial}{\partial x_k}(x_k1)$$
$$= (1+2+3+4+\ldots)1$$

!

Normal ordering idea ("that physicist do"). Let's cheat and redefine the product as

$$: h_{-k}h_k := \begin{cases} h_{-k}h_k & \text{if } k \ge 0\\ h_k h_{-k} & \text{if } k < 0. \end{cases}$$

Now $\sum_{k\in\mathbb{Z}} : h_{-k}h_k$: is well-defined!

Notation. Let us consider series of the form

$$a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad a_{(n)} \in \text{End}(V),$$

where V is a vector space.

Definition 9.7 (Most important in the course). We say a(z) is a quantum field on V if, for every $v \in V$ there exists $N \in \mathbb{Z}$ such that $a_{(n)}v = 0 \ \forall n \geq N$.

Example 9.8. $V = H = \mathbb{C}[x_1, x_2, ...],$

$$a(z) = h(z) = \sum_{n \in \mathbb{Z}} h_n z^{-n-1}.$$

$$h(z) = \dots + 3z^{-4} \frac{\partial}{\partial x_3} + 2z^{-3} \frac{\partial}{\partial x_1} + x_1 + x_2 z + x_3 z^2 + \dots$$

Any fixed $v \in H$ is $v = p(x_1, \dots, x_{N-1})$ for some N. Then $h_N v = N \frac{\partial}{\partial x_N} v = 0$. So $h(z) \curvearrowright H$ is a quantum field.

Definition 9.9. For a quantum field (or any series in fact) $a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$, define the *creation* and *annihilating operators*

$$a(z)_{+} = \sum_{n < -1} a_{(n)} z^{-n-1}, \qquad a(z)_{-} = \sum_{n > 0} a_{(n)} z^{-n-1}.$$

The quantum field condition solves the problem of the infinite series...

The normally order product of quantum fields $a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$, and $b(z) = \sum_{n \in \mathbb{Z}} b_{(n)} z^{-n-1}$ is.

$$: a(z)b(z) := a(z)_+b(z) + b(z)a(z)_-.$$

Exercise 9.10 (Most important of the course). Show that if a(z) and b(z) are quantum fields, then a(z)b(z): is well-defined, and is a quantum field.

Next idea: in our example of $h(z) \cap H$, the coefficients h_n were coming from a Lie algebra, so we had relations $[h_m, h_n] = (\ldots)$. (Indeed, $[h_m, h_n] = m\delta_{m,-n} \operatorname{Id}_H$ in this case.) We sould like to interpret such relations at the level of h(z).

$$[h(z), h(z)] = h(z)h(z) - h(z)h(z)$$

$$= \sum_{p} \sum_{m+n=p} h_m h_n z^{-(m+n)-2} - \sum_{m+n=p} h_n h_m z^{-(m+n)-2}$$

$$= \sum_{p} z^{-p-2} \left(\sum_{\substack{m+n=p \text{ infinite}^2}} [h_m, h_n] \right)$$

which is a bad idea, since that sum can be infinite. Better idea: change a variable:

$$[h(z), h(w)] = \sum_{m, n \in \mathbb{Z}} [h_m, h_n] z^{-m-1} w^{-n-1}.$$

In this example,

$$[h(z), h(w)] = \sum_{m,n \in \mathbb{Z}} m \delta_{m,-n} z^{-m-1} w^{-n-1} I_H$$
$$= \sum_{m \in \mathbb{Z}} z^{-m-1} w^{m-1} I_H.$$

Observe (geometric series):

$$\frac{1}{z-w} = \sum_{k\geq 0} z^{-k-1} w^k \quad \text{(convergent for } |z| > |w|)$$

$$\frac{1}{z-w} = -\sum_{k\geq 0} w^{-k-1} z^k$$

$$= -\sum_{k< 0} z^{-k-1} w^k \quad \text{(convergent for } |z| < |w|)$$

So, in a sense

$$\sum_{k \in \mathbb{Z}} z^{-k-1} w^{k} = \frac{1}{z-w} - \frac{1}{z-w}.$$

This motivates us to introduce the expression

Definition 9.11. The formal delta function is

$$\delta(z,w) = \sum_{k\in\mathbb{Z}} z^{-k-1} w^k \in \mathbb{C}[\![z,z^{-1},w,w^{-1}]\!].$$

Why delta function? It behaves like Dirac delta. Recall that $\delta(x)$ is the distribution on \mathbb{R} defined by $\delta[f(x)] = f(0)$ for all test functions f(x). Every function k(x) gives a distribution D_k .

$$D_k[f] = \int_{-\infty}^{\infty} k(x)f(x)dx,$$

 $f \in C_c^{\infty}(\mathbb{R}).$

If δ were of the form D_k (it's not) it would have to look like [Picture, positive part of y axis, all x axis.

One can show that (it's a theorem by Plamelj)

$$\delta(x) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \left(\frac{1}{x - i\varepsilon} - \frac{1}{x - i\varepsilon} \right)$$

as distributions (i.e. limit taken in "distributional sense".)

(So that's why we called the delta function that way.)

Denote by $i_{z,w}$ the "expansion in positive powers of w". E.g.

$$i_{z,w} \frac{1}{z-w} = \sum_{k>0} z^{-k-1} w^k,$$

similarly,

$$i_{z,w} \frac{1}{(z-w)^2} = \sum_{k \ge 0} kz^{-k-1} w^{k-1},$$
$$i_{z,w}(w^{-2}) = w^{-2}.$$

Exercise 9.12. So, in fact,

$$[h(z), h(w)] = i_{z,w} \frac{1}{(z-w)^2} - i_{w,z} \frac{1}{(z-w)^2} = \partial_w \delta(z, w).$$

What exactly is $i_{z,w}$?

Notation.

 $\mathbb{C}[z]$ ring of polynomials

 $\mathbb{C}[z,z^{-1}]$ ring of Laurent polynomials

 $\mathbb{C}[\![z]\!]$ ring of power series

 $\mathbb{C}[z,z^{-1}]$ vector space (not ring!) of formal distributions

 $\mathbb{C}((z))$ field of Laurent series

where the last is $\sum_{n>N} fa_n z^n$ for some N.

Since $\mathbb{C}((z))$ is a field, $\mathbb{C}((z))((w))$ is also a field.

There are natural inclusions

$$\mathbb{C}[z,w] \to \mathbb{C}(\!(z)\!)(\!(w)\!) \to \mathbb{C}[\![z^{\pm 1},w^{\pm 1}]\!].$$

Let $\mathbb{C}(z, w)$ denote the fraction field of the domain $\mathbb{C}[z, w]$. By the property of $\mathbb{C}(z, w)$, there exists an embedding

The following diagram does not commute: [diagram]

We computed

$$[h(z), h(w)] = \partial_w \delta(z, w)$$

We can similarly compute

$$h(z)h(w) = :h(z)h(w): +i_{z,w} \frac{1}{(z-w)^2}$$

$$h(w)h(z) = :h(z)h(w): +i_{w,z} \frac{1}{(z-w)^2}.$$

Notation. We write $\partial_w = \frac{\partial}{\partial w}$ and $\partial_w^{(j)} = \frac{1}{i!}\partial_w^j$.

Lemma 9.13. (1) If we multiply the delta function with (z - w) we get zero, that is,

$$(z - w)\delta(z, w) = 0.$$

(2)
$$i_{z,w} \frac{1}{(z-w)^{j+1}} - i_{w,z} \frac{1}{(z-w)^{j+1}} = \partial_w^{(j)} \delta(z,w).$$

 $(3) \ \forall j \ge 0,$

$$(z-w)^{j+1}\partial_w^{(j)}\delta(z,w) = 0.$$

(4) Whenever $m \leq j$,

$$(z-w)^m \partial^{(j)}(z,w) = \partial_w^{(j-m)} \delta(z,w).$$

 \square

Remark 9.14. All this is completely parallel to the Dirac δ -distribution $\delta(x)$.

$$x\delta(x) = 0,$$
 $x\delta'(x) = \delta(x), \text{ etc.}, x^2\delta'(x) = 0.$

10. The residue pairing

Let $f(z) \in \mathbb{C}[z, z^{-1}]$, which is a vector space with basis $\{z^n : n \in \mathbb{Z}\}$. An element of the dual vector space is a formal linear combination

$$\sum_{n \in \mathbb{Z}} c_n \varphi_n, \quad \text{where } \varphi_n(z^k) = \begin{cases} 0 & \text{if } k \neq n \\ 1 & \text{if } k = n \end{cases}$$

(no restriction on the $c_n \in \mathbb{C}$).

Identify $\sum c_n \varphi_n$ with

$$c(z) = \sum c_n z^{-n-1} \in \mathbb{C}[z^{\pm 1}]$$

so that φ acts on $f(z) = \sum f_n z^n \in \mathbb{C}[z^{\pm 1}]$, as

$$\varphi(f) = \sum_{n} c_n f_n = \text{Res}_z c(z) f(z) dz,$$

where

Definition 10.1. If U is a vector space and $a(z) = \sum_n a_n z^n \in U[[z^{\pm 1}]],$

$$\operatorname{Res}_z a(z) dz = a_{-1}$$

Let's record a few properties of $\operatorname{Res}_z(\cdot)dz := \operatorname{Res}_z(\cdot)$.

Lemma 10.2. (1) $Res_z f(z) \delta(z, w) = f(w)$.

(2)
$$Res_z f(z)(\partial_z g(z)) = -Res_i \partial_z f(z)) fg(z)$$
.

Proof. (1) Straightforward computation.

(2) Product rule, and uses that derivatives have no residues.

So, in our example, H, h(z) we see that

$$(z-w)^2[h(z), h(w)] = 0,$$

which is a nontrivial example: we really need to take the square, and also the bracket is not zero.

Definition 10.3. Two quantum fields a(z) and b(z) on a vector space V are $mutually\ local$ if there exists N such that

$$(z-w)^N[a(z), b(w)] = 0.$$

Remark 10.4. See [?, Chapter 1] for physics motivation. More generally, if $D = \sum_{m,n} D_{m,n} z^m w^n \in U[[z^{\pm 1}, w^{\pm 1}]]$, we call D local if $(z - w)^N D = 0$ for some N.

Proposition 10.5. Let a(z), b(z) be a local pair of quantum fields on V. Then

(10.5.1)
$$a(z)b(w) =: a(z)b(z): + \sum_{j=0}^{N-1} c_j(w)i_{z,w} \frac{1}{(z-w)^{j+1}}$$

and

(10.5.2)
$$b(w)a(z) =: a(z)b(z): + \sum_{j=0}^{N-1} c_j(w)i_{w,z} \frac{1}{(z-w)^{j+1}}$$

In particular,

(10.5.3)
$$[a(z), b(w)] = \sum_{j=0}^{N-1} c_j(w) \partial_w^{(j)} \delta(z, w).$$

Furthermore

(10.5.4)
$$c_i(w) = Res_z(z - w)^j [a(z), b(w)].$$

Proof. First we prove 10.5.3 using 10.5.4.

Exercise 10.6. Deduce 10.5.1 and 10.5.2 from 10.5.3.

Notation. If a(w) and b(w) are quantum fields on V, we denote

$$a(w)_{(j)}b(w) = \operatorname{Res}_{z}(z-w)^{j}[a(z),b(w)]$$

for $j \in \mathbb{Z}_{\geq 0}$.

Example 10.7. On H, $[h(z), h(w)] = \partial_w \delta(z, w) I_H$. So $\text{Res}_z \partial_w \delta(z, w) I_H = 0$ and $\text{Res}_z(z-w) \partial_w \delta(z, w) I_H = \text{Res}_z \delta(z, w) I_H = I_H$.

Note that I_H is a (very simple) quantum field.

The following definition generalizes the j-product to any integer, possible negative.

Definition 10.8. For $n \in \mathbb{Z}$, and a(w), b(w) quantum fields, we define the n^{th} product $a(w)_{(n)}b(w)$ as

$$a(w)_{(n)}b(w) = \text{Res}_{z}[i_{z,w}(z-w)^{n}a(z)b(w) - i_{w,z}(z-w)^{n}b(w)a(z)].$$

Remark~10.9.(1) We recover the prior definition: if $n \geq 0$,

$$i_{z,w}(z-w)^n = i_{w,z}(z-w)^n = \sum_{r=0}^n \binom{n}{r} z^{n-r} (-w)^r,$$

a finite sum.

(2) (Exercise.) If n = 1, then

$$a(w)_{(-1)}b(w) = a(w)_{+}b(w) + b(w)a(w)_{-}$$

=: $a(w)b(w)$:

(3) (Exercise.) The more negative products are not something new: for $k \geq 0$,

$$a(w)_{(-k-1)}b(w) =: (\partial_w^{(k)}a(w))b(w):$$

We have actually already used the following proposition:

Proposition 10.10. If a(w), b(w) are quantum fields, then $a(w)_{(n)}b(w)$ is also a quantum field for all $n \in \mathbb{Z}$.

Definition 10.11. A vertex algebra consists of a vector space V, a set \mathcal{F} of quantum fields on V, a nonzero vector $|0\rangle \in V$, and a linear map $T: V \to V$, such that

- (1) $T|0\rangle = 0$, and $[T, a(z)] = \partial_z a(z) \ \forall a(z) \in \mathcal{F}$. (2) V is spanned by $a^{i_1}_{(n_1)}, \dots, a^{i_s}_{(n_s)}|0\rangle$, where $a^{i_j}(z) \in \mathcal{F}$ (and $s(z) = \sum a_{(n)}z^{-n-1}$
- (3) All pairs $a(z), b(z) \in \mathcal{F}$ are mutually local. (We saw (ref?) that this is equivalent to $[a(z),b(w)] = \sum_{j=0}^{N-1} c_j(w) \partial_w^{(j)} \delta(z,w)$ and described the coefficients c_i, \ldots

We call $|0\rangle$ the vacuum vector and T the translation operator.

In fact, our Heisenberg example that we've been discussing so far is an example:

Example 10.12. $V = H = \mathbb{C}[x_1, x_2, ...], \mathcal{F} = \{h(z)\}, |0\rangle = 1, T =?, \text{ is a vertex}$

Answer 1. Recall $L(z) = \frac{1}{2} : h(z)h(z) := \frac{1}{2}h(z)_{(-1)}h(z), L(z) = \sum_{m \in \mathbb{Z}} L_m z^{-m-z}.$ In particular, $L_{-1} = \frac{1}{2} \sum_{k \in \mathbb{Z}} h_k h_{-1-k}$. Well, $T = L_{-1}$. **Answer 2.** Given that T must satisfy T1 = 0, and $[T, h(z)] = \partial_z h(z)$, i.e.

$$[T, h_n] = -nh_{n-1},$$

and H is generated from 1 by $\{h_n|n\leq -1\}$, the action of T on H (if well-defined) is completely determined.

Exercise 10.13. Write a formula for $T(x_1^{m_1}x_2^{m_2}\dots x_s^{m_2})$.

11. A SECOND DEFINITION OF VERTEX ALGEBRA

Now we aim for a second definition of vertex algebras.

Let $(V, |0\rangle, T, \mathcal{F})$ be a vertex algebra. Define

$$\begin{split} \tilde{\mathcal{F}} &= \{ \text{quantum fields } a(z) \text{ on } V | [T, a(Z)] = \partial_z a(z) \} \\ \overline{\mathcal{F}} &= \bigcup_{k \geq 0} \mathcal{F}_k, \\ \mathcal{F}_0 &= \{ I_V \}, \\ \mathcal{F}_k &= \{ a(z)_{(n)} b(z) | a(z) \in \mathcal{F}, b(z), \mathcal{F}_{k-1} \} \\ \mathcal{F}' &= \{ b(z) \in \tilde{\mathcal{F}} | a(z), b(z) \text{ is local, } \forall a(z) \in \mathcal{F} \} \end{split}$$

Where I_V is the identity of V considered as a quantum field. The idea is that this is like taking a subalgebra and taking the commutator over and over again.

Lemma 11.1. $a(z)_{(-1)}I_V = a(z)$.

Proof. Direct calculation.

Lemma 11.2. $a(z)_{(-n-1)}I_V = \partial_z^{(n)}a(z)$.

Proof. Similar.

Lemma 11.3 (Dong). Suppose a(z), b(z) and c(z) are mutually local in pairs. Let $n \in \mathbb{Z}$. Then $a(z)_{(n)}b(z)$ and c(z) is a local pair.

Proof. Done in lecture. \Box

Therefore

$$\mathcal{F} \subset \overline{\mathcal{F}} \overset{\mathrm{Dong}}{\subset} \mathcal{F}' \subset \tilde{\mathcal{F}}$$

Remark 11.4. To be sure, we should check $\overline{\mathcal{F}} \subset \tilde{\mathcal{F}}$.

F tilde is the translation invariant

Exercise 11.5. If $[T, a(z)] = \partial_z a(z)$, $[T, b(z)] = \partial_z b(z)$, then

$$[T, a(z)_{(n)}b(z)] = \partial_z(a(z)_{(n)}b(z)).$$

Theorem 11.6. (1) For any $a(z) \in \tilde{\mathcal{F}}$,

$$a(z)|0\rangle = v + z \cdot Tv + \frac{z^2}{2}T^2v + \dots$$

= e^{2T} $(v \in V)$

Thus we define

$$s: \tilde{\mathcal{F}} \longrightarrow V$$

$$a(z) \longmapsto a(z)|0\rangle|_{z=0}$$

(2)
$$s(z(z)_{(n)}b(z) = a_{(n)}s(b(z)).$$

(3) Let $\mathcal{G} \subset \tilde{\mathcal{F}}$ be such that $s(\mathcal{G}) = V$, and suppose a(z) is local with all $b(z) \in \mathcal{G}$. "If you commute with a large enough bunch of guys, you are close enough to being zero." If s(a(z)) = 0, then a(z) = 0.

Proof. (1) We need to prove $a(z)|0\rangle$ does not have negative powers of z. So suppose it does, i.e. there is $n \geq 0$ such that $a_{(n)}|0\rangle z^{-n-1} \neq 0$.

Idea: use translation invariance to pair n and -n, and then the fact that a(z) is a quantum field to get some vanishing.

So first we translate and find that:

$$Tv(z) = Ta((z)|0\rangle = (Ta(z) - a(z)T)|0\rangle = \partial_z a(z)|0\rangle$$

so that

(11.6.1)
$$v_n = -\frac{1}{n} T v_{n-1}, \qquad (n \neq 0).$$

So, $v_n \neq 0$ for some $n < 0 \implies v_{n-1}$ also not zero. But we also know by a(z) being a quantum field that there exists N such that $a_{(n)}|0\rangle = 0$ for all $n \geq N$. So, we'd have a contradiction. So $v(z) = \sum_{n \geq 0} v_n z^n$.

Now Eq. 11.6.1 also implies

$$v_1 = Tv_0, v_0 = \frac{1}{2}Tv_1, \dots, v_n = \frac{1}{n!}T^nv_0.$$

So
$$a(z)|0\rangle = e^{zT}v_0 \ (v_0 \in V).$$

(2) Consider

$$a(w)_{(n)}b(w)|0\rangle = \text{Res}_z(a(z)b(w)i_{z,w}(z-w)^n - \underbrace{b(w)a(z)i_{w,z}(z-w)^n}_{=0}$$

where that vanishing is because the $i_{w,z}$ expands the argument in positive powers, and b(w)a(z) also has only positive powers since $a(z)|0\rangle$ also has only positive powers (and the residue picks the coefficient of the power -1). So we obtain

$$= \operatorname{Res}_z a(z)b(w)i_{z,w}(z-w)^n.$$

But

$$s(a(w)_{(n)}b(w)) = (\operatorname{Res}_z s(z)b(w)i_{z,w}(z-w)^n|0\rangle)|_{w=0}$$

$$= \operatorname{Res}_z a(z)b(w)z^n|0\rangle|_{z=0}$$

$$= \operatorname{Res}_z z^n a(z)(s(b(w)))$$

$$= \operatorname{Res}_z z^n \sum_k a_{(k)} z^{-k-1} s(b)$$

$$= a_{(k)} s(b)$$

(3) By locality, there exists N such that

$$(z - w)^N a(z)b(w)|0\rangle = (z - w)^N b(w)a(z)|0\rangle$$

$$= (z - w)^N b(w)e^{2T}s(a) = 0$$

$$(z - w)^N a(z)b(w)|0\rangle|_{w=0} = 0$$

$$\implies z^N a(z)s(b) = 0$$

$$\implies a(z)v = 0$$

$$\implies a(z) = 0$$

- (1) $S|_{\mathcal{F}'}$ is injective.
- (2) $S|_{\overline{F}}$ is surjective.
- (3) $S|_{\mathcal{F}}$ is isomorphism $\overline{\mathcal{F}} \to V$.

So we define the inverse (linear) map $Y:V\to \overline{\mathcal{F}}$, i.e. for all $a\in V$, Y(a,z) denotes $s^{-1}(a)\in \overline{\mathcal{F}}$.

(4) $(V, |0\rangle, T, \overline{\mathcal{F}})$ is a vertex algebra, and

$$Y(a_{(n)}b, z) = Y(a, z)_{(n)}Y(b, z) \qquad \forall a, b \in V.$$

So we have

Proof. (1) Now we apply part 3 in the theorem to $a(z) \in \mathcal{F}'$, $\mathcal{G} = \overline{\mathcal{F}}$. If s(a(z)) = 0, then a(z) = 0. So $s : \mathcal{F}' \to V$ is injective (as in the diagram).

(2) By iterating the property in the theorem that $a_{(n)}s(b(z))=s(a(z)_{(n)}b(z))$ so we can take out "one by one" in the following product to obtain

$$a_{(n_1)}^1 \dots a_{(n_s)}^s |0\rangle = s(a^1(z)_{(n)} \dots a^s(z)_{(n_s)} I_V$$

This proves the double headed arrow in the diagram.

(3) Now define $Y(-,z):V\to \overline{\mathcal{F}}$.

$$s(Y(a,z)_{(n)}Y(b,z)) = a_{(n)}s(Y(b,z)) = a_{(n)}b.$$

(4) Then all the axioms in our definition of vertex algebra are satisfied!

Remark 11.7. Let $(V, |0\rangle, T, \mathcal{F})$ be a vertex algebra. $\overline{\mathcal{F}}$ and Y as above. $\forall a, b \in V$,

(11.7.1)
$$[Y(a,z),Y(b,w)] = \sum_{j=0}^{N-1} c_j(w)\partial_w^{(j)}\delta(z,w).$$

$$c_j(w) = Y(a, w)_{(j)}Y(b, w) = Y(a_{(j)}b, w).$$

Which is like something we had written before. But now we know more. Let us extract the z^{-m-1}, w^{-n-1} coefficient of Eq. 11.7.1. We obtain

$$LHS = \sum_{m,n} [a_{(m)}z^{-m-1}, b_{(n)}w^{-n-1}] = [a_{(m)}, b_{(n)}]$$

$$RHS = \sum_{j} \left(\sum_{k} (a_{(j)}b)_{(k)} w^{-k-1} \right) \left(\sum_{s} \binom{s}{j} z^{-s-1} w^{s-j} \right)$$

The coefficient of $z^{-m-1}w^{-n-1}$ of RHS is, s=m,

$$\sum_{j} {m \choose j} w^{m-j} (a_{(j)}b)_{(k)} w^{-k-1} = \sum_{j} {m \choose j} (a_{(j)}b)_{(m+n-j)}$$

So we put this as a proposition:

Proposition 11.8 (Commutator formula). In a vertex algebra $(V, |0\rangle, T, Y)$, we have

$$[a_{(m)}, b_{(n)}] = \sum_{j>0} {m \choose j} (a_{(j)}b)_{(m+n-j)} \qquad \forall a, b \in V, \quad m, n \in \mathbb{Z}$$

Exercise 11.9. Prove that in a vertex algebra (11.9.1)

$$[Y(a,z)Y(b,w)i_{z,w} - Y(b,w)Y(a,z)i_{w,z}](z-w)^n = \sum_{j>0} Y(a_{(n+j)}b,w)\partial_w^{(j)}\delta(z,w).$$

Hint. Prove that he left hand side is local.

By extracting coefficients of Eq. 11.9.1, we obtain for all $a,b,c\in V$ and $m,n,k\in\mathbb{Z}$:

(11.9.2)
$$\sum_{j\geq 0} {m \choose j} (a_{(n+j)}b)_{(m+k-j)}c$$

$$= \sum_{j\geq 0} (-1)^j {n \choose j} \left(a_{(m+n-j)}b_{(k+j)}c - (-1)^n b_{(n+k-j)}a_{(m+j)}c\right)$$

This is called *Borcherd's identity*, and is the key ingredient in our second definition of vertex algebra (see [Kac01, Proposition 4.8(b)]):

Definition 11.10. A vertex algebra is a vector space V, a nonzero vector $|0\rangle \in V$, and a set of bilinear products $V \times V \to V$, $a, b \mapsto a_{(n)}b$, $n \in \mathbb{Z}$ such that

- (1) $\forall a, b \in V \ \exists N \ \text{such that} \ a_{(n)}b = 0 \ \forall n \geq N.$
- (2) $\forall a \in V, |0\rangle_{(n)}a = \delta_{n,-1}a.$
- (3) $\forall a \in V, \ a_{(-1)}|0\rangle = a \text{ and } a_{(>0)}|0\rangle = 0.$
- (4) Equation 11.9.2 holds $\forall a, b, c \in V, m, n, k \in \mathbb{Z}$.

12. Calculating vertex algebras

We begin with some notation.

Definition 12.1. Let V be a vertex algebra and $a, b \in V$. We package the elements $a_{(0)}b, a_{(1)}b, \ldots$ into a series

$$[a_{\lambda}b] = \sum_{j>0} a_{(j)}b \frac{\lambda^j}{j!}$$

called the λ -bracket or operator product expansion (OPE) of a and b.

Recall that elements in V correspond to fields Y(a,z) and Y(b,z). They are local, and the coefficients of their bracket are $c_j(w) = Y(a_{(j)}b, w)$. So we put that information in the λ -bracket.

We also denote by :ab: the vector corresponding to the normally ordered product :Y(a,z)Y(b,z):. Again, by last time's theorem, $:ab:=a_{(-1)}b.$

Example 12.2. $V = H = \mathbb{C}[x_1, x_2, \ldots], \ \mathcal{F} = \{h(z)\}\$ where $h(z) = \sum_{n \in \mathbb{Z}} z^{-n-1}$ (so in this example we are denoting $h_n \equiv h_{(n)}$), where, as before,

$$h_n = \begin{cases} n \frac{\partial}{\partial x_n} & n > 0 \\ x_n & n < 0 \end{cases}$$

Recall we completed \mathcal{F} to $\overline{\mathcal{F}}$ and discovered

$$V \xrightarrow{\simeq} \overline{\mathcal{F}}$$

$$a(z)|0\rangle|_{z=0} \underset{s}{\longleftarrow} a(z)$$

$$a \xrightarrow{V} Y(a,z)$$

For $I_V \in \overline{\mathcal{F}}$, where

$$I_V = \sum_{i=1}^{n} I_{V(n)} z^{-n-1}$$

$$I_{V(n)} = \begin{cases} I_V & \text{if } n = -1\\ 0 & \text{if } n \neq -1 \end{cases}$$

we get $I_V|0\rangle|_{z=0}=|0\rangle$. So,

$$Y(|0\rangle, z) = I_V$$

This shows that the vacuum $|0\rangle$ corresponds to the identity. Next h(z) in our example. We have

$$h(z)|0\rangle = \sum_{n \in \mathbb{Z}} h_n 1 z^{-n-1}$$

$$= \sum_{k \ge 1} x^k z^{k-1} + \sum_{k \ge 1} k \frac{\partial}{\partial x_k} 1$$

$$\implies h(z)|0\rangle|_{z=0} = x_1$$

$$\implies S(h(z)) = x_1$$

$$\implies Y(x, z) = h(z).$$

So, x_1 corresponds to the sort of "generating field" h(z).

What about x_2 ? Well, $h(z) = h(z)_{(-1)}I_V$. There was a lemma (maybe Remark 10.9?) that

$$a(z)_{(-2)}I_V = \partial_z a(z).$$

So $\partial_z h(z) \in \overline{\mathcal{F}}$,

$$a(\partial_z h(z)) = \partial \sum_{k \ge 1} x_k z^{k-1} \Big|_{z=0}$$
$$= \sum_{k \ge 1} (k-1) x_k z^{k-2} \Big|_{z=0}$$
$$= x_2.$$

So

$$Y(x_{n+1}, z) = \partial_z^{(n)} h(z).$$

Continuing:

$$Y(x_3, z) = \frac{1}{2}\partial_z^2 h(z),$$

and in general

$$Y(x_{n+1}, z) = \partial_z^{(n)} h(z).$$

The next question is: what about x_1^2 ? The trick here is that x_1 is identified with h, so

$$Y(x_1^2, z) = Y(x_1 \cdot x_1, z)$$

$$= Y(h_{(-1)}x_1, z)$$

$$= Y(x_1, z)_{(-1)}Y(x, z)$$

$$= :h(z)h(z): .$$

Recall that $L(z) = \frac{1}{2} : h(z)h(z):$. We have claimed (Exercise 9.6) that $[L_m, L_n] = (m-n)L_{m+n}$ when $m, n, m+n \neq 0$ where

$$L(z) = \sum_{m \in \mathbb{Z}} L_m z^{-m-2}$$
$$= \sum_{n \in \mathbb{Z}} L_{(n)} z^{-n-1}.$$

What about the λ -bracket? Let's denote $h = x_1$, (so Y(h, z) = h(z), $L = \frac{1}{2}x_1^2$ and Y(L, z) = L(z)).

Well, long ago we computed that

$$\begin{split} [h(z),h(w)] &= \partial_w \delta(z,w) I_V \\ &= \sum_{j\geq 0} Y(h_{(j)}h,w) \partial_w^{(j)} \delta(z,w). \end{split}$$

Then

$$\begin{split} Y(h_{(0)}h,w) &= 0 \\ Y(h_{(1)}h,w) &= I_V \\ Y(h_{\geq 2)}h,w) &= 0 \\ &\Longrightarrow h_{(1)}h = |0\rangle, \text{ and } \\ h_{(j)}h &= 0, \qquad j = 0 \text{ and } j \geq 2. \end{split}$$

So we see that

$$[h_{\lambda}h] = \lambda |0\rangle.$$

We often omit " $|0\rangle$ " from these computations, as if it were "1". So

$$[h_{\lambda}h]=\lambda.$$

 $[h_{\lambda}|0\rangle] = 0 = [|0\rangle_{\lambda}h]$ because $[h(z), I_V] = 0$. In fact $[x_{\lambda}|0\rangle] = [|0\rangle_{\lambda}x] = 0$ for all $x \in V$.

What about $h_{(0)}h$? Well, $h_{(0)}=0$ by definition of h(z). So $h_{(0)}h=0$. Next, $h_{(j)}=j\frac{\partial}{\partial x_j}$ for j>0, so

$$h_{(1)}h = \frac{\partial}{\partial x_1}(x_1) = 1 = |0\rangle.$$

So $[h_{\lambda}h] = \lambda$ again.

What I really want is $[L_{\lambda}L] = ?$ Let's use Borcherd's formula 11.9.2.

First let's compute $(h_{(-1)}h)_{(0)}L$, i.e. we are putting n=-1, m=0 and k=0.

[missing computations]

Exercise 12.3. Check $(h_{(-1)}h)_{(1)}h = 2h$ and $(h_{(-1)}h)_{\geq 2}h = 0$. Thus $[L_{\lambda}h] = Th + \lambda h$.

If we wanted, we could continue to calculate $[L_{\lambda}L]$ by putting $c=\frac{1}{2}x_1^2$ above instead of $c=x_1$.

We find

$$[L_{\lambda}L] = \underbrace{TL}_{L_{(0)}L} + \underbrace{2\lambda L}_{L_{(1)}L} + \underbrace{\frac{\lambda^3}{12}|0\rangle}_{L_{(2)}L}.$$

This means

$$(12.3.1) [L(z), L(w)] = (\partial_w L(w))\delta(z, w) + 2L(w)\partial_w \delta(z, w) + \frac{1}{12}\partial_w^3 \delta(z, w)I_V.$$

So we can extract coefficients:

$$LHS = \sum_{m,n} [L_m, L_n] w^{-m-2} z^{-n-2}$$

Coefficient of $w^{-m-2}z^{-n-2}$ on RHS is:

$$\sum_{k} (-k-2)L_k w^{-k-3} \sum_{a} z^{-a-1} w^a + 2\sum_{k} L_k w^{-k-2} \sum_{a} a z^{-a-1} w^{a-1} + \frac{1}{12} \sum_{a} a(a-1)(a-2)z^{-a-1} w^{a-3}.$$

So actually we found

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3 - m}{12}\delta_{m,-n}I_V.$$

The moral is: one tries to define $L = \frac{1}{2}h^2$ naively, expecting $[L_m, L_n] = (m - n)L_{m+n}$. Need to "normally order/normalise" to make L well-defined, now $L = \frac{1}{2}:hh:$. The "cost" is that the expected relation $[L_m, L_n] = (m-n)L_{m+n}$ gets altered by an "anomaly" $\frac{m^3-m}{12}I_V$.

Right, so we showed how to compute this using Bochner's formula, but there's actually another way using λ -bracket:

Theorem 12.4. Let V be a vertex algebra, $a, b, c \in V$. Then

$$[Ta_{\lambda}b] = -\lambda[a_{\lambda}b]$$

$$[a_{\lambda}Tb] = (T+\lambda)[a_{\lambda}b]$$

$$(12.4.3) T(:ab:) = :(Ta)b: + :a(Tb):$$

$$[b_{\lambda}a] = -[a_{-\lambda - T}b]$$

(12.4.5)
$$[a_{\lambda} : bc :] = :[a_{\lambda}b]c : + :b[a_{\lambda}c] : + \int_{0}^{\lambda} [[a_{\lambda}b]_{\mu}c]d\mu$$

$$[a_{\lambda}[b_{\mu}c]] - [b_{\mu}[a_{\lambda}c]] = [[a_{\lambda}b]_{\lambda+\mu}c].$$

Proof. For the first one use $\partial_z \delta(z, w) = -\partial_z \delta(z, w)$.

For the last one notice that

$$-[a_{-\lambda - T}b] = \sum_{j} \frac{1}{j!} (-\lambda - T)^{j} (a_{(j)}b)$$

if
$$[a_{\lambda}b] = \sum_{j} \frac{\lambda^{j}}{j!}b$$
.

Remark 12.5. By noting that $[a_{\lambda}b] = \text{Res}_z e^{\lambda z} Y(a,z)b$, these identities can be proved pretty efficiently.

That is,

Exercise 12.6. Use the fifth equation to prove what we proved with Bochner's formula.

And another one:

Exercise 12.7. Let $V = H = \mathbb{C}[x_1, x_2, \ldots]$ again. Define $B = \frac{1}{2} : hh : +\beta Th$ with $\beta \in \mathbb{C}$. Confirm that

$$[B_{\lambda}B] = TB + 2\lambda B = \frac{1}{12}(1 - 12\beta^2)|0\rangle.$$

Definition 12.8. The Virasoro Lie algebra is

$$\operatorname{Vir} = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}L_n \oplus \mathbb{C}C$$

with Lie bracket

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3 - m}{12}\delta_{m,-n}C, \qquad [C, Vir] = 0.$$

By the discussion above (all we've said so far!), there is a representation ρ of Vir in H given by

$$\rho(\underbrace{L_n}_{\text{as an abstract object in Vir}}) = \underbrace{L_n}_{\text{as a complicated operator}}, \qquad \rho(C) = I_H.$$

Also H carries a representation ρ_{β} of Vir,

$$\rho_{\beta}(L_n) = B_n, \qquad \rho_{\beta}(C) = (1 - 12\beta^2)I_V$$

If (M, ρ) is a representation of Vir, in which $\rho(C) = c \cdot I_M$ for some scalar c, we say M has a central charge c.

Looks like we have a second example of a vertex algebra. Consider V = H, $|0\rangle = 1$, T = T from before, but this time put $F = \{B(z)\}$. Then all the axioms of the first definition of vertex algebra are satisfied, except the second: $B_{(n_1)}B_{(n_2)}\dots B_{(n_s)}|0\rangle$ might not span all of V = H. So take $V = \text{span}\{\text{these monomials}\} \subset H$. One can check that $T(V) \subset V$, and B(z) is a quantum field on V. So $(V, 1, T, \{B(z)\})$ is a vertex algebra, called the *Virasoro vertex algebra*.

13. The charged free fermions: a vertex superalgebra

Also known as:

- The Clifford (vertex) algebra.
- The Dirac sea.
- The bc system.

First we consider a vector superspace with basis φ and φ^*

$$\mathfrak{a} = \mathbb{C}\varphi + \mathbb{C}\varphi^*$$

(where φ and φ^* are odd, so this is a O,2-dimensional superspace).

(A vector superspace is a $\mathbb{Z}/2$ -graded vector space, i.e. a vector space split in two pieces, $V = V_0 \oplus V_1$, which we call even and odd.)

We consider a bilinear form

$$\begin{split} \langle \cdot, \cdot \rangle : \mathfrak{a} \times \mathfrak{a} &\longrightarrow \mathbb{C} \\ \langle \varphi^*, \varphi \rangle &= 1 \\ \langle \varphi, \varphi^* \rangle &= 1 \text{ (why? see below)} \end{split}$$

Now consider

$$\tilde{\mathfrak{a}} = \underbrace{t^{1/2}\mathfrak{a}[t, t^{-1}]}_{\text{odd}} \oplus \underbrace{\mathbb{C}K}_{\text{even}}.$$

with Lie bracket

$$[at^m, b^n] = \delta_{m,-n} \langle a, b \rangle K,$$
$$[K, \tilde{\mathfrak{a}}] = 0.$$

(Notice the small difference from the Heisenberg case: there is no m before the $\delta!$) To see why $\langle \varphi, \varphi^* \rangle = 1$, notice that in a Lie superalgebra we always want $[x, y] = (-1)(-1)^{p(x)p(y)}[y, x]$ where p denotes the parity. Since both at^m and bt^n are odd, we have $[at^m, bt^n] = [bt^n, at^m]$. Then apply the definition of bracket.

Since a, b odd here, we say $\langle a, b \rangle = \langle b, a \rangle$ means $\langle \cdot, \cdot \rangle$ is skew-super symmetric.

Definition 13.1. A bilinear form

$$(\cdot,\cdot):U\times U\to\mathbb{C}$$

is supersymmetric if $(b, a) = (-1)^{p(a)p(b)}(a, b)$, and skew-supersymmetric if $(b, a) = -(-1)^{p(a)p(b)}(a, b)$.

Exercise 13.2. Invent the definition of Lie superalgebra, and confirm that if $U = U_0 \oplus U_1$ is a vector superspace, $\operatorname{End}(U)$ is a Lie superalgebra with $[X,Y] := XY - (-1)^{p(X)p(Y)}YX$.

Let's build a Fock-type representation of $\tilde{\mathfrak{a}}$.

Construction 1.

$$\tilde{\mathfrak{a}}_{+} = \bigoplus_{n>0} t^n \mathfrak{a} \oplus \mathbb{C}K, \qquad (n \in \frac{1}{2} + \mathbb{Z}, \text{ recall})$$

 $\tilde{\mathfrak{a}_+} \subset \tilde{\mathfrak{a}}$ is a superalgebra.

Consider $U(\tilde{\mathfrak{a}})$ and $U(\tilde{\mathfrak{a}}) \subset U(\tilde{\mathfrak{a}})$.

Recall that the PWB theorem says that $U(\mathfrak{g})$ "looks like" polynomials on \mathfrak{g} . When \mathfrak{g} is pure even, this says: take $\{a_1, a_1, \ldots\}$ a basis of \mathfrak{g} , then

$$\{a_{i_1}^{m_1}, a_{i_2}^{m_2} \dots a_{i_s}^{m_s} : i_1 \le i_2 \le \dots \le i_s, m_j \ge 1\}.$$

For $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ super Lie algebra, the statement is similar, only now, we take each a^i homogeneous ($\in \mathfrak{g}_0$ or \mathfrak{g}_1):

$$\{a_{i_1}^{m_1}a_{i_2}^{m_2}\dots a_{i_s}^{m_s}, i_1 \leq i_2 \leq \dots \leq i_s, m_j \geq 1, \text{ if } a_{i_j} \text{ odd}, m_j = 1\}.$$

The point is that if we put an odd guy twice it becomes one.

Why? Because in $U(\mathfrak{g})$, $X \in \mathfrak{g}_1$ should satisfy XX + XX = [X, X] = 0. So $X^2 = 0$. So we only allow odd basis vectors to appear 0 or 1 times each.

Dfine $F = U(\tilde{\mathfrak{a}}) \otimes_{U(\tilde{\mathfrak{a}}_+)} \mathbb{C}|0\rangle$, where $at^n \cdot |0\rangle$ for all $n > \frac{1}{2}$, and $K|0\rangle = |0\rangle$. [Picture of F]

We can introduce a bi-grading of F:

$$F = \bigoplus_{\substack{c \in \mathbb{Z} \\ \Delta \in \frac{1}{2}\mathbb{Z}_+}} F^c_{\Delta}$$

where, for a monomial

$$\varphi_{-n}^* \varphi_{-n_2}^* \dots \varphi_{-n_s}^* \varphi_{-m}, \varphi_{-m_2} \dots \varphi_{-m_t} | 0 \rangle$$

we define its energy by $\Delta = \sum_{i} n_i + \sum_{j} m_j$ and its charge by c = s - t.

The point is that F is an infinite-dimensional vector space, but we get a reasonable mental picture of what it looks like.

What is dim F_{Δ}^{c} ? Let's write...

So we have a vector superspace F, and an action on F of $\tilde{\mathfrak{a}}$. Let's build some quantum fields!

There are going to be two: $\varphi(z)$ and $\varphi^*(z)$.

$$\varphi(z) = \sum_{n \in \frac{1}{2} + \mathbb{Z}} \varphi_n z^{-n - \frac{1}{2}}$$

(Notice the exponent on z is an integer!)

$$\varphi^*(z) = \sum_{n \in \frac{1}{2} + \mathbb{Z}} \varphi_n^* z^{-n - \frac{1}{2}}.$$

Now let's compute $[\varphi^*(z), \varphi(w)]$.

$$\begin{split} [\varphi^*(z),\varphi(w)] &= \sum_{m,n \in \frac{1}{2} + \mathbb{Z}} [\varphi_m^*,\varphi_n] z^{-m - \frac{1}{2}} w^{-n - \frac{1}{2}} \\ &= \sum_{n \in \frac{1}{2} + \mathbb{Z}} K z^{n - \frac{1}{2}} w^{-n - \frac{1}{2}} \\ &= \sum_{\substack{r \in \mathbb{Z} \\ r = n - \frac{1}{2}}} z^r w^{-r - 1} \\ &= \delta(z,w). \end{split}$$

So $F, |0\rangle, \mathcal{F} = \{\varphi(z), \varphi^*(z)\}, T: F \to F$, is a vertex superalgebra. Here $T: F \to F$ has to satisfy $T|0\rangle = 0$ and $[T, \varphi(z)] = \partial_z \varphi(z)$,

$$\sum [T, \varphi_n] z^{-n - \frac{1}{2}} = \sum (-n - \frac{1}{2}) \varphi_n z^{-n - \frac{3}{2}}$$
$$= \sum (-k + \frac{1}{2}) \varphi_{k-1} z^{-k - \frac{1}{2}}$$

after putting n = k - 1. So

$$[T, \varphi_n] = -(n - \frac{1}{2})\varphi_{n-1}.$$

Inductively, this determines how T acts on F.

In λ -bracket notation, this just says

$$[\varphi_{\lambda}^*\varphi] = |0\rangle.$$

Skew-symmetry says $[b_{\lambda}a] = -(-1)^{p(a)p(b)}[a_{-\lambda-T}b].$ For example,

$$\begin{aligned} [h_{\lambda}h] &= \lambda |0\rangle, \\ [h_{\lambda}h] &= -[h_{-\lambda-T}h] = -(-\lambda - T)|0\rangle \\ &= T\lambda |0\rangle \end{aligned}$$

In this case $[\varphi_{\lambda}\varphi^*] = +|0\rangle$ too. Notice $\sum \varphi_n z^{-n-\frac{1}{2}} = \sum \varphi_{(m)} z^{-m-1}$.

So

$$\varphi_{(m)} = \varphi_{m-\frac{1}{2}}$$
 and
$$\varphi_{(m)}^* = \varphi_{m-\frac{1}{2}}.$$

So

$$\begin{split} : & \varphi^* \varphi \colon = \varphi_{(-1)}^* \varphi_{(-1)} | 0 \rangle \\ & = \varphi_{-\frac{1}{2}}^* \varphi_{-\frac{1}{2}} | 0 \rangle. \end{split}$$

I.e.

$$\varphi = \varphi_{(-1)}|0\rangle = \varphi_{-\frac{1}{2}}|0\rangle$$

Now we can put the former picture but with the associated operators using the second definition of vertex algebra: [Picture]

Let's compute some brackets: [lots of computations] So,

$$[\alpha_{\lambda}\alpha] = \lambda|0\rangle.$$

Just like $[h_{\lambda}h] = \lambda |0\rangle$. This relation is the basis of the "boson-fermion correspondence", i.e. consider the subspace $U \subset F$ defined as

$$U = \operatorname{span}\{\alpha_{n_1}\alpha_{n_2}, \dots, \alpha_{n_s}|0\rangle : n_i \in \mathbb{Z}\}.$$

We claim that since $[T, \alpha(z)] = \partial_z \alpha(z)$, $[T, \alpha_n] = -n\alpha_{n-1}$.

So $T(U) \subset U$. Put $\mathcal{F}_1 = \{\alpha(z)\}$. Then $(U, |0\rangle, T|_U, \{\alpha(z)\})$ is a vertex algebra (an honest one, not super).

Proposition 13.3. U is isomorphic to the Heisenberg vertex algebra. (In particular, $U \simeq \mathbb{C}[x_1, x_2, \ldots]$ as a vector space.)

Proof. Next time.
$$\Box$$

Since $[\alpha_0, \varphi_n] = -\varphi_n$, $[\alpha_0, \varphi_m^*] = \varphi_m^*$, and $\alpha_0|0\rangle = 0$, in fact the charge of a monomial is exactly the eigenvalue of α_0 acting on it.

$$\begin{split} \alpha_0 \cdot \varphi_{-m}^* \varphi_{-m_2}^* \varphi_{-n} |0\rangle &= [\alpha_0, \varphi_{-m}^*, \varphi_{-m_2}^*, \varphi_{-n}] |0\rangle \\ &= \underbrace{(+1+1-1)}_{\text{charge}} \varphi_{-m_1}^* \varphi_{-m_2} \varphi_{-n} |0\rangle. \end{split}$$

From $[\alpha_{\lambda}\alpha] = \lambda|0\rangle$, we get

$$[\alpha_m, \alpha_n] = m\delta_{m,-n}I_F$$
 (as for h)

So $[\alpha_0, \alpha_n] = 0$ for all $n \in \mathbb{Z}$. Thus $\alpha_0|_U = 0$ and thus $U \subset F^{(0)}$.

Proposition 13.4. $U = F^{(0)}$.

Proof. Next time.
$$\Box$$

Let's take two copies of F, i.e. $F_2 = F \otimes F$ with fields $\varphi^1(z), \varphi^2(z), \varphi^{1*}(z), \varphi^{2*}(z)$ $[\varphi_{\lambda}^{i*}\varphi^{j}]=\delta_{ij}.$

Basis of F_2 is

$$\varphi_{-n_1}^1 \dots \varphi_{-n_2}^1 \varphi_{-m_1}^2 \dots \varphi_{-m_t}^2 \varphi_{-n_1}^{*-1} \dots \varphi_{-n_u}^{*-1} \varphi_{-n_1}^{*2} \dots \varphi_{-n_u}^{*2} |0\rangle.$$

36

Let $\alpha^{ij} = : \varphi^{j*} \varphi^i : .$

$$\left[\alpha_{\lambda}^{ij}\alpha^{k\ell}\right] = ?$$

(certainly $\left[\alpha_{\lambda}^{ii}\alpha^{ii}\right] = \lambda|0\rangle$.) In general

$$[\varphi_{\lambda}^k \alpha^{ij}] = \text{computation} = \delta_{ki} \varphi^j.$$

Similarly

$$[\varphi_{\lambda}^{k*}\alpha^{ij} = -\delta_{kj}\varphi^{i*}.$$

$$[\alpha_{\lambda}^{ij}\varphi^k] = -\delta_{ik}\varphi^j$$

$$[\alpha_{\lambda}^{ij}\varphi^{k*}] = +\delta_{jk}\varphi^{i*}.$$

We would like to consider

$$F_n = F^{\otimes n} = F \otimes \ldots \otimes F$$

where on the *i*-th factor we have φ_i, φ_i^* .

Then we have relations among the generators:

$$[\varphi_{\lambda}^{i}\varphi_{j}^{*}] = [\varphi_{j}^{*}\lambda\varphi_{i}] = \delta_{ij}|0\rangle$$

Today let's define

$$\alpha_{ij} = : \varphi_i \varphi_j^* :$$

We notice that

- the φ_i behave like e_i ,
- the α_{ij} behave like E_{ij} .
- the φ_i^* behave like e_i^* .

[Computations of some λ -brackets]

Recall, the E_{ij} span a Lie algebra: \mathfrak{gl}_n . It has a representation on $\mathbb{C}^n = \langle e_1, \dots, e_n \rangle$ by $E_{ij}e_k = \delta_{ik}e_i$, and on $(\mathbb{C}^n)^*$ we have

[computations]

$$E_{ij}e_k^* = -\delta_{ki}e_j^*.$$

Let $A \in \mathfrak{gl}_n$. Let's write

$$\alpha^A = \sum_{i,j} a_{ij} \alpha_{ij} \in F_n$$

We'd like to compute $[\alpha_{\lambda}^{A} \alpha^{B}]$.

Some computations done in lecture are the proof of

Theorem 13.5. For $\alpha_{ij} = : \varphi_i \varphi_i^* : \in F_n$, and α^A as above,

$$[\alpha_{\lambda}^{A}\alpha^{B}] = \alpha^{[A,B]} + \lambda \operatorname{Tr}(AB)|0\rangle.$$

Which says that α^A behaves like matrices, but with that correction term.

Nex, let $\mathfrak{g} \subset \mathfrak{gl}_n$ be a Lie subalgebra. For $A,B \in \mathfrak{g},\, [A,B] \in \mathfrak{g}$ also, and so the set

$$\mathcal{F} = \{ \alpha^A : A \in \mathfrak{g} \cup \{ |0\rangle \} \}$$

is "closed under λ -brackets".

More precisely, for

$$F_n \supset V = \operatorname{span}\{\alpha_{(n_1)}^{A_1} \dots \alpha_{(n_s)}^{A_s} : n_i \in \mathbb{Z}, A_i \in \mathfrak{g}\},$$

with
$$|0\rangle = |0\rangle$$
, $T = T$ and $\mathcal{F} = \{\alpha^A(z) : A \in \mathfrak{g}\} \cup \{I\}$ is a vertex algebra.

14. Universal affine vertex algebra

Recall the construction of the affine vertex algebra, Definition 2.3.

Let (M, ρ) be a representation of $\hat{\mathfrak{g}}$.

For $a \in \mathfrak{g}$, define

(14.0.1)
$$a^{M}(z) = \sum_{n \in \mathbb{Z}} \rho(at^{n}) z^{-n-1} \in \text{End}(M) [\![z^{\pm 1}]\!].$$

Definition 14.1. A smooth $\hat{\mathfrak{g}}$ -module is a $\hat{\mathfrak{g}}$ -module (M, ρ) such that for each $m \in M$ there is $N \in \mathbb{Z}$ such that $\rho(at^n)m = 0$ for all $a \in \mathfrak{g}$ and $n \geq N$.

Notice that on a smooth module M, the fields $a^M(z)$ are quantum fields. We may calculate:

$$\begin{split} [a^m(z),b^m(w)] &= \sum_{m,n} [\rho(at^m),\rho(bt^n)] z^{-m-1} w^{-n-1} \\ &= \sum_{m,n} z^{-m-1} w^{-n-1} ([a,b] t^{m+n} + m \delta_{m,-n}(a,b) \rho(K)) \\ &= \sum_{m,n} ([a,b] t^{m+n} w^{-(m+n)-1}) z^{-m-1} w^m + \sum_{m,n} z^{-m-1} w^{-n-1} \delta_{m,-n}(a,b) \rho(K) \\ &= [a,b]^m(w) \delta(z,w) + (a,b) \partial_w \delta(z,w) \rho(K). \end{split}$$

Now suppose the K acts by some constant, i.e. $\rho(K) = kI_M$. Then our quantum fields $a^M(z)$ are mutually local, with exponent 2, i.e. $(z-w)^2[a^M(z), b^M(w)] = 0$.

As a special case, we may take M to be a sort of "Fock space":

$$\hat{\mathfrak{g}}_{+} = \mathfrak{g}[t] \oplus \mathbb{C}K \subset \hat{\mathfrak{g}}.$$

Let $\hat{\mathfrak{g}}_+$ act on $\mathbb{C}|0\rangle$ by

$$at^m|0\rangle = 0 \quad \forall m \ge 0,$$

 $K \cdot |0\rangle = k|0\rangle \quad (k \in \mathbb{C} \text{ called } level).$

Consider

$$V^k(\mathfrak{g}) = U(\hat{\mathfrak{g}}) \otimes_{U(\hat{\mathfrak{g}}_+)} \mathbb{C}|0\rangle.$$

Remark 14.2. $H = \mathbb{C}[x_1, x_2, \ldots]$ is an example of this construction with \mathfrak{g} one-dimensional and (h, h) = 1.

Exercise 14.3. $V^k(\mathfrak{g})$ is a smooth $\hat{\mathfrak{g}}$ -module, in which $K \mapsto k \mathrm{Id}$.

Proof. To prove $V^k(\mathfrak{g})$ is smooth we need to show that for every formal power series of endomorphisms of $V^k(\mathfrak{g})$ of the form Equation 14.0.1, the coefficient operators vanish at every v for sufficiently large n. But to define these power series we need to find a copy of $\hat{\mathfrak{g}}$ inside $V^k(\mathfrak{g})$.

The set $\mathcal{F}=\left\{a(z)=\sum_{n\in\mathbb{Z}}(at)^nz^{-n-1}:a\in\mathfrak{g}\right\}$ are mutually local quantum fields.

Define $T: V^k(\mathfrak{g}) \curvearrowright V^k(\mathfrak{g})$ by the relation $T|0\rangle = 0$ and $[T, at^m] = -mat^{m-1}$. $V^k(\mathfrak{g})$ is a vertex algebra called the *universal affine vertex algebra* of level k associated with \mathfrak{g} .

[Picture of $V^k(\mathfrak{g})$ for $\mathfrak{g} = \mathfrak{sl}_2$.]

We have a bigrading, vertical grading Δ (energy) is

$$\Delta(a_{(-n_1)}^1 a_{(-n_2)}^2 \dots a_{(-n_s)}^s |0\rangle = n_1 + n_2 + \dots + n_s.$$

Notice that for $a \in \mathfrak{g}$, we have

$$\mathcal{F} \ni a(z) \stackrel{s}{\mapsto} a(z)|0\rangle|_{z=0}$$

$$= \sum_{m} at^{m}|0\rangle z^{-m-1}|_{z=0}$$

$$= (at^{-1})|0\rangle + (at^{-2})z|0\rangle + \dots$$

$$= at^{-1}|0\rangle.$$

Thus we can think of $\{at^{-1}|0\rangle : a \in \mathfrak{g}\} \subset V^k(\mathfrak{g})$ as a "copy" of \mathfrak{g} inside $V^k(\mathfrak{g})$. Let's **abuse notation** and write a for $at^{-1}|0\rangle$.

Then
$$at^{-2}|0\rangle = Ta$$
, also $(at^{-1})(bt^{-1})|0\rangle = :ab:$, etc. $e = et^{-1}|0\rangle = e_{(-1)}|0\rangle$, $\Delta(e) = 1$.

In fact $\Delta(a) = 1$ for all $a \in \mathfrak{g}$, $\Delta(Ta) = 2$, $\Delta(:ab:) = 2$, etc.

In this example, i.e. $\mathfrak{g} = \mathfrak{sl}_2$, \mathfrak{sl}_2 is itself a \mathbb{Z} -graded Lie algebra,

$$w(E) = 2$$
 $[H, E] = 2E$
 $W(H) = 0$ $[H, H] = 0$
 $w(F) = -2$ $[H, F] = -2F$.

(That is, $\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$, $[\mathfrak{g}_m, \mathfrak{g}_n] = \mathfrak{g}_{m+n}$.) w = eigenvalue of ad(H). This induces a \mathbb{Z} -grading on $V^k(\mathfrak{sl}_2)$, compatible, i.e.

$$w(a_{(-n_1)}^1 \dots a_{(-n_s)}^s | 0 \rangle = 2\#(E) - 2\#(F).$$

As for the character,

$$\chi(q, u) = \sum_{\Delta, w} \dim V^k(\mathfrak{g})_{\Delta}^w q^{\Delta} u^w$$

= 1 + q(u^2 + 1 + u^{-2}) + q^2(u^4 + 2u^2 + 2 + 2u^{-2} + u^{-4} + ...

Then by the generating function argument we have discussed before,

$$\chi(q,u) = \prod_{n=1}^{\infty} \frac{1}{(1 - u^2 q^n)(1 - q^n)(1 - u^{-2} q^n)}.$$

Can discard u to get vertical grading

$$\chi(q) = \prod_{n=1}^{\infty} \frac{1}{(1 - q^n)^3}.$$

[Missing: we changed a little the definition of $V^k(M)$; now it also depends on a bilinear form B.]

Here's another example:

Example 14.4.
$$\mathfrak{g} = \mathfrak{gl}_n$$
, with $B(X,Y) = \text{Tr}(XY)$, and $k = 1$.

Remark 14.5. In general $V^1(\mathfrak{g},kB)=V^k(\mathfrak{g},B)$. If \mathfrak{g} is finite-dimensional simple, we typically take $B(a,b)=\frac{1}{2h^{\vee}}\kappa(a,b)$ where κ is the Killing form. (This B has the property that $B(\theta,\theta)=2$ for long roots $\theta\in\Delta\subset\mathfrak{h}^*$.) (In fact, in a simple f.d. there's all invariant forms are proportional.) Then we write this vertex algebra as $V^k(\mathfrak{g})$ without specifying B.

So perhaps that's why last time we didn't put B.

Back to the Fermion algebra F_n , and now denoting J instead of α , we built fields $\{J^A:A\in\mathfrak{gl}_n\}$ with λ -bracket $[J^A_\lambda J^B]=J^{[A,B]}+\lambda\mathrm{Tr}(AB)|0\rangle$. This suggests a relation with $V^1(\mathfrak{gl}_n, B)$, where B(X, Y) = Tr(X, Y).

Consider $\mathcal{F} = \{J^A(z) : A \in \mathfrak{gl}_n\} \subset \mathbb{F}_{F_n} \cong F_n$. Let $V = \operatorname{span}\{J_{(n_1)}^{A_1} \dots J_{(n_n)}^{A_n}|0\rangle$: $A_i \in \mathfrak{gl}_n, n_i \in \mathbb{Z} \} \subset F_n.$

Then $(V, \mathcal{F}, T|_V, |0\rangle)$ is a vertex algebra. $V \subset F_n$. Notice that $V \neq F^n$ since Vconsists only of even fields, indeed, $V = \langle : \varphi_i \varphi_i^* : \rangle$.

Here $[T, \varphi_{(n)}] = -n\varphi_{(n-1)}$.

$$T(\varphi_{(n_1)}^{i_1} \dots \varphi_{(n_s)}^{i_s} | 0 \rangle) = -\sum_{j=1}^s n_j \varphi_{(n_1)}^{i_1} \dots vo_{(n_j-1)}^{i_j} \dots \varphi_{(n_s)}^{i_s} | 0 \rangle.$$

Does $V = F_n^{(0)}$ then?

Let's examine n = 1 first. $\mathfrak{g} = \mathbb{C}1$, B(1,1) = 1, k = 1. We just remarked that $V^1(\mathfrak{g},B)=H$ is Heisenberg. And $F_1=F=\langle \varphi,\varphi^*\rangle$ which we have drawn previously. We also computed the character as an infinite product.

We have $F^{(0)} \ni J = : \varphi \varphi^* :$ with λ -bracket relation $[J_{\lambda}J] = \lambda |0\rangle$. Recall $J(z) = \sum_{n \in \mathbb{Z}} J_{(n)} z^{-n-1} = \sum_{n \in \mathbb{Z}} J_n z^{-n-1}$. The λ -bracket relation implies

$$[J(z), J(w)] = \partial_w \delta(z, w) I$$

$$\implies [J_m, J_n] = m \delta_{m, -n} I.$$

This implies that $F^{(0)}$ is a representation of the oscillator Lie algebra $\hat{\mathfrak{a}} = \bigoplus_{m \in \mathbb{Z}} \mathbb{C}h_n \oplus \mathbb{C}h_n$ $\mathbb{C}K$, in which $h_m \mapsto J_m$, $k \mapsto I$ and $h_m|0\rangle$ for all $m \ge 0$.

Proposition 14.6. As representations of \mathfrak{a} , $F^{(0)} \simeq H = \mathbb{C}[x_1, x_2, \ldots]$.

Proof. Using $H \simeq U(\hat{\mathfrak{a}}) \otimes_{U(\hat{\mathfrak{a}_+})} \mathbb{C}1$, by its universal property, there exists a morphism of $\hat{\mathfrak{a}}$ -representations $f: H \to F^{(0)}$, such that $f(1) = |0\rangle$.

By Exercise 9.4 we know H is irreducible, so $f: H \to F^{(0)}$ is injective. Is it an isomorphism? Consider $\tilde{F} = F^{(0)}/f(H)$. We want to prove $\tilde{F} = \{0\}$. The trick is to consider $L = \frac{1}{2} : JJ:$.

We have seen that

$$F^{(m)} = \{ v \in F : J_0 v = mv \}$$

(since $[J_{\lambda}\varphi] = -\varphi$ and $[J_{\lambda}\varphi^*] = +\varphi^*$, $[J_0, \varphi_n] = -\varphi_n$). Write $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$, then $L_0 = \frac{1}{2}J_0^2 + \sum_{m>0} J_{-m}J_m$. This implies (for example) that $L_0|0\rangle = 0$.

One may compute

$$[L_{\lambda}\varphi] = T\varphi + \frac{1}{2}\lambda\varphi$$

$$[L_{\lambda}\varphi^*] = T\varphi^* + \frac{1}{2}\lambda\varphi^*.$$

If you expand these in terms of coefficients, you find $[L_0, \varphi_n] = -n\varphi_n$, $[L_0, \varphi_n^*] =$ $-n\varphi_n^*$.

From these relations we conclude that Δ (monomial) = L_0 -eigenvalue (monomial), i.e., the (charge, energy)-grading is the eigenspace grading by (J_0, L_0) . Suppose $\tilde{F} \neq 0$. Then $\exists \overline{v} \in \tilde{F}$ for which $J_m \overline{v} = 0$ for all m > 0. Indeed, by Lemma

(?) the \mathbb{Z}_+ -grading of $F^{(0)}$ is inherited by \tilde{F} . Since $|0\rangle \in f(H)$, $\tilde{F} = \bigoplus_{\Delta \geq N} \tilde{F}_{\Delta}$ for some N > 0. Let $\overline{v} \in \tilde{F}_N$, $\overline{v} \neq 0$. For m > 0, $J_m \overline{v} \in \tilde{F}_{N-m} = 0$. Key point: $J_0 \overline{v}$, because \tilde{F} is quotient of $F^{(0)}$. Hence $L_0 \overline{v} = 0$. But $L_0 = \Delta$,

Key point: $J_0\overline{v}$, because \tilde{F} is quotient of $F^{(0)}$. Hence $L_0\overline{v} = 0$. But $L_0 = \Delta$, and we know the only element of $F^{(0)}$ with $\Delta = 0$ is $|0\rangle$. This contradiction implies $\tilde{F} = 0$, hence $F^{(0)} = f(H) \simeq H$.

In the process we saw that Δ coincides with L_0 , where $L = \frac{1}{2} : JJ :$, and J = f(h). So consider $L = \frac{1}{2} : hh_i :$.

We have $[L_{\lambda}h] = Th + \lambda \bar{h}$ so $[L_0, h_n] = -nh_n$ in particular, and

$$L_0(h_{-n_1}, h_{-n_2}, \dots, h_{-n_s}|0\rangle = L_0(x_{n_1}x_{n_2} \dots x_{n_s}|0\rangle) = \left(\sum_j n_j x_{n_1} \dots x_{n_s}|0\rangle\right)$$

Using this we obtain

$$\chi_{F^{(0)}}(q) = \sum_{\Delta} \dim(F_{\Delta}^{(0)}) q^{\Delta} = \prod_{m=1}^{\infty} \frac{1}{1 - q^m}.$$

In $F^{(m)}$, let us denote

$$|m\rangle = \begin{cases} \varphi_{-1/2}\varphi_{-3/2}\varphi_{-5/2}\dots\varphi_{-\frac{2(-m)-1}{2}}|\rangle & \text{if } m < 0\\ \varphi_{-1/2}^*\varphi_{3/2}^*\dots\varphi_{-\frac{2m-1}{2}}^* & \text{if } m > 0 \end{cases}$$

We observe that $\Delta(|m\rangle) = \frac{m^2}{2}$ and $F_{m^2/2}^{(m)} = \mathbb{C}|m\rangle$.

Proposition 14.7. As an $\hat{\mathfrak{a}}$ -module, $F^{(m)} \simeq H^m$, and is irreducible.

Proof. Same as above.

This gives a formula

$$\chi_{F^{(m)}}(q) = \sum_{\Delta} \dim F_{\Delta}^{(m)} q^{\Delta} = q^{m/2} \prod_{k=1}^{\infty} \frac{1}{1 - q^k}.$$

As a corollary, we obtain again Jacobi's triple product formula. (Again!)

$$\prod_{m=1}^{\infty} (1 + yq^{m-1/2})(1 + y^{-1}q^{m-1/2}) = \prod_{k=1}^{\infty} \frac{1}{1 - q^k} \left(\sum_{n \in \mathbb{Z}} y^n q^{n^2/2} \right).$$

15. Another presentation the charged free Fermions

The idea is to consider $X = \bigoplus_{i \in \mathbb{Z}} \mathbb{C}e_i$, a countably infinite dimensional space, and define

$$\Lambda^{\infty/2} = \left\{ \begin{array}{ll} \text{span of symbols of the form} \\ e_{i_0} \wedge e_{i_1} \wedge e_{i_3} \wedge \dots \\ \text{where } \exists N \text{ s.t. } \forall n \geq N, i_{n+1} = i_n + 1 \end{array} \right\} \left/ \begin{array}{ll} \text{relation that} \\ e_i \wedge e_j = -e_j \wedge e_i \\ \text{"wherever it occurs"}. \end{array} \right.$$

That is, the indices can dance around as they like but at some point they will become consecutive. Clearly a basis of $\Lambda^{\infty/2}$ is given by those "semi-infinite monomials" for which $i_0 < i_1 < i_2 < \dots$

For any semi infinite monomial $\underline{e} = e_{i_0} \wedge e_{i_1} \wedge \dots$ there exists a number m such that $i_j = -m + j$ for all $j \gg 0$. This number is called the *charge* of \underline{e} .

We have a decomposition in vector spaces

$$\Lambda^{\infty/2} = \bigoplus_{m \in \mathbb{Z}} \Lambda^{\infty/2,(m)}$$

called charge decomposition.

Let's introduce some operators in $\Lambda^{\infty/2}$:

$$\varphi_{(n)}: \Lambda^{\infty/2} \longrightarrow \Lambda^{\infty/2}$$
$$\varphi_{(n)}(\underline{e}) = e_n \wedge \underline{e}$$

i.e. we just put e_n at the beginning of the monomial. Next

$$\varphi_{(n)}^* : \Lambda^{\infty/2} \longrightarrow \Lambda^{\infty/2}$$

$$\varphi_{(n)}^* = \sum_{k \ge 0} (-1)^k \delta_{n, i_k} e_{i_0} \wedge e_{i_1} \wedge \dots \wedge \underbrace{\widehat{e_{i_k}}}_{\text{remove this}} \wedge \dots$$

so in analogy, we remove this term. The $(-1)^k$ accounts for moving around the unwanted term to the beginning of the monomial.

Exercise 15.1. Something like

$$\varphi_{(m)}\varphi_{(n)}^* + \varphi_{(n)}^*\varphi_{(m)} = \delta_{m,+n}I_{\Lambda^{\infty/2}}$$

Let's introduce some quantum fields now:

$$\varphi(w) = \sum_{n \in \mathbb{Z}} \varphi_{(n)} w^{-n-1}$$

which vanishes for very large n because we eventually get to the "consecutive" region, and

$$\varphi^*(w) = \sum_{n \in \mathbb{Z}} \varphi_{(n)}^* w^n$$

which vanishes for very negative n since the star operators are defined to give zero if the e_n is not found in the monomial.

Notice that the convention $\varphi^*(w) = \sum \varphi_{(n)}^* w^n$, instead of $\sum \varphi_{(n)}^* w^{-n}$ is so that $\varphi^*(w)$ is a quantum field (indeed, by our convention on how we write quantum fields, see Definition 9.7). The convention $\varphi^*(w) = \sum \varphi_{(n)}^* w^n$ instead of, say, $\sum \varphi_{(n)}^* w^{n+1}$ is so that the equation in Exercise 15.1 turns into a nice relation

$$[\varphi(z), \varphi^*(z)] = \delta(z, w)I,$$

(i.e. $[\varphi_{\lambda}\varphi^*] = |0\rangle$, just like in the charged fermions $F^{\text{ch}}!$)

Exercise 15.2. These fields will match with our previous φ, φ^* as

$$\sum \varphi_{(n)} z^{-n-1} = \sum \varphi_n z^{-n-1/2} : \varphi_n = \varphi_{n-1/2}$$
$$\sum \varphi_{(n)}^* z^n = \sum \varphi_n^* z^{-n-1/2} : \varphi_n^* = \varphi_i$$

The space $\Lambda^{\infty/2}$ has a super-structure with parity $\Lambda^{\infty/2,(m)} =$ the parity of m. Setting $|0\rangle = e_0 \wedge e_1 \wedge e_2 \dots$, $\mathcal{F} = \{\varphi(z), \varphi^*(z)\}$, T what it needs to be, we get a vertex superalgebra. In fact,

$$F^{\mathrm{ch}} = U(\hat{\mathfrak{a}}) \otimes_{U(\hat{\mathfrak{a}_+})} \mathbb{C}|0\rangle \xrightarrow{\simeq} \Lambda^{\infty/2}$$

is an isomorphism of vertex algebras. Indeed, if $n_i, m_k \geq 1$,

$$\varphi_{(n-1)}\varphi_{(-n_2)}\dots\varphi_{(-n_s)}\varphi_{(m_1)}^*\dots\varphi_{(m_t)}^*|0\rangle = \pm e_{-n_1}\wedge e\dots\wedge e_{-n_s}\wedge\underbrace{\underbrace{(e_0\wedge e_1\wedge\dots)}_{\substack{\text{but with}\\e_{m_1}\dots e_{m_t}\\\text{missing}}}}$$

But these two pictures are bases of $F^{\rm ch}$ and $\Lambda^{\infty/2}$, so we have our linear isomorphism $F^{\rm ch} \to \Lambda^{\infty/2}$. Just need to check carefully φ and φ^* are compatible with it.

Pauli exclusion principle. In an ensemble state of fermions, two cannot occupy the same state, (so they are modelled by odd variables like " e_n " such that $e_n \wedge e_n = 0$.)

Electron waves should obey "quantized" wave-equation, which is something like

$$\partial_t^2 \psi = (-\overline{h}^2 \nabla + m) \psi$$
$$\partial_t \psi = \sqrt{-\overline{h} \nabla + m} \psi.$$

A solution to this is, instead of

$$\sqrt{\partial_{xx}+m}$$
,

try to define

$$\sqrt{(\partial_{xx}+m)I_4}$$

where I_4 is the identity 4×4 matrix. Then the "square root" of $-\overline{h}^2\nabla + m$ becomes a matrix valued differential operator, denoted sometimes as $\partial + \gamma$, where γ is an explicit 4×4 matrix. In $\partial_t \psi = \ldots, \psi$ has become a vector-valued function on space, with a splitting in spin up and spin down parts of the electron wavefunction, and also an "unphysical" part. The latter can be interpreted as the positrons.

Problem: the Dirac equation has positive and negative energy solutions.

Let's examine the neutral part of $\Lambda^{\infty/2(0)}$. Consider the element

$$\underline{e} = e_{-4} \wedge e_{-2} \wedge e_{-1} \wedge e_0 \wedge e_1 \wedge e_4 \wedge e_5 \wedge \underbrace{e_7 \wedge e_8 \wedge e_9 \wedge \dots}_{\text{consecutive part}}$$

The successive differences are

$$2 \ 1 \ 1 \ 1 \ 3 \ 1 \ 2 \ 1 \ 1 \ \dots$$

Since the sequence will stabilize at 1, we might as well subtract 1 and obtain the finite sequence

$$(1 \quad 0 \quad 0 \quad 0 \quad 2 \quad 0 \quad 1)$$

In fact, you could reconstruct \underline{e} from this list, and knowing that charge(\underline{e}) = 0. Form the partial sums

$$1000201 \to 4333311$$

these numbers are non-increasing, so define uniquely a partition of some integer (in this case 18), and if we compare with

$$e = \pm \varphi_{-4} \varphi_{-2} \varphi_{-1} \varphi_2^* \varphi_3^* \varphi_6^* |0\rangle$$

which has energy

$$\Delta = (4 - 1/2) + (2 - 1/2) + (1 - 1/2) + (2 + 1/2) + (3 + 1/2) + (6 + 1/2) = 18.$$

We denote by \underline{e}_{λ} the semi-infinite monomial of charge 0 given by this procedure.

So we have a basis $\{\underline{e}_{\lambda}|\lambda \text{ integer partitions}\}\ \text{of }F^{(0)}\simeq H=\mathbb{C}[x_1,x_2,x_3,\ldots],\ \text{which also has the basis }\{\underline{x}_{\lambda}=x_1^{\lambda_1}\dots x_5^{\lambda_5}|\lambda \text{ integer partitions}\}\ \text{where }\lambda=(1^{\lambda_1},2^{\lambda_2},\dots,s^{\lambda_s}),\ \text{that is, 1 appears }\lambda_1 \text{ times and so on. We do } \mathbf{not} \text{ have }\underline{e}_{\lambda}=\underline{x}_{\lambda}!$

16. Schur Polynomials

The Schur polynomials are given by the exponential generating function of $\sum z^k x_k$. More precisely,

Definition 16.1. We set $S_k(\underline{x})$ by

$$\sum_{k\geq 0} z^k S_k(\underline{x}) = \exp\left(\sum_{k\geq 1} z^k x_k\right).$$

For a partition $\lambda = (1^{\lambda_1} 2^{\lambda_2} \dots k^{\lambda_k})$, define

$$S_{\lambda}(\underline{x}) = \det \begin{pmatrix} S_{\lambda_1} & S_{\lambda_1+1} & \cdots & S_{\lambda_1+k-1} \\ S_{\lambda_2-1} & S_{\lambda_2} & \cdots & \\ \vdots & & & \vdots \\ S_{\lambda_k-k+1} & & & S_{\lambda_k} \end{pmatrix}$$

Recall we defined $X = \bigoplus_{i \in \mathbb{Z}} \mathbb{C}e_i$ and $\Lambda^{\infty/2} = \langle e_{i_0} \wedge \ldots \rangle$. Let $g: X \to X$ be an invertible endomorphism. We would like to define an endomorphism

$$R(g): \Lambda^{\infty/2} \longrightarrow \Lambda^{\infty/2}$$

$$R(g)(e_{i_0} \wedge e_{i_1} \wedge \ldots) = (ge_{i_0}) \wedge (ge_{i_1}) \wedge \ldots$$

For some g, εg , $g(e_n) = e_{-n}$, R(g) does not make sense (or does not send $\Lambda^{\infty/2} \to \Lambda^{\infty/2}$).

As a note, if X were finite-dimensional, say $X = \langle e_1, \dots, e_n \rangle$, then R(g): $\Lambda^{k+1}X \to \Lambda^{k+1}X$ has matrix entry

$$(e_{i_0} \wedge e_{i_1} \wedge \ldots \wedge e_{i_k}) \rightarrow (e_{j_0} \wedge e_{j_1} \wedge \ldots \wedge e_{j_k}),$$

(with strictly increasing indices on both sides, up to a sign maybe) given by the determinant of the $(k+1) \times (k+1)$ matrix given by selecting the rows i_0, i_1, \ldots, i_k , and the columns j_0, j_1, \ldots, j_k of the matrix of g.

For our X and $\Lambda^{\infty/2}$, R(g) makes sense if g is such that

$$q(e_i) - e_i \in \operatorname{span}\{e_{>i}\} \quad \forall i.$$

Proposition 16.2. $\underline{e}_{\lambda} = S_{\lambda}(\underline{x})$ where

Proof. Write $\underline{e}_{\lambda} = P(x)$. We wish to show $P(x) = S_{\lambda}(x)$. Introduce new variables y_1, y_2, \ldots and consider

$$F(y) = \exp\left(\sum_{k>0} y_k \frac{\partial}{\partial x_k}\right) P(x)\Big|_{x=0}$$

First we observe that

$$F(y) = P(x_1 + y_1, x_2 + y_2, ...)|_{x=0} = P(x+y)|_{x=0} = P(y)$$

since in general exponentiaing a differential operator gives shifting by the coefficient, i.e. $e^{a\frac{\partial}{\partial t}}f(t)=f(t+a)$.

Considering

$$P(x) \in \mathbb{C}[x_1, x_2, \ldots] = H \simeq F^{(0)}$$

observe that for k > 0,

$$\frac{\partial}{\partial x_k} = h_k = (:\varphi\varphi^*:)_k = \sum_{i \in \mathbb{Z}} \varphi_{k+1} \varphi_i^*$$

i.e. it's a sum of "remove e_i " and "insert e_{k+i} ".

Denote

$$\Lambda_k : X \longrightarrow X$$

$$\Lambda_k(e_n) = e_{n+k} \qquad \forall n \in \mathbb{Z}$$

 $R(\Lambda_k) = \frac{\partial}{\partial x_k}$, since $\Lambda^{\infty/2(0)} \xrightarrow{\simeq} H$.

Therefore

$$F(y) = \operatorname{Rexp}\left(\sum_{k>0} y_k \Lambda_k\right) \underline{e}_{\lambda} \Big|_{\text{coef. in } |0\rangle}.$$

Notice that $R\exp(\Lambda_k)$ is of the form $g(e_i) - e_i$.

Finally, notice that $\Lambda_k = \Lambda_1^k$, so

$$R\exp\left(\sum_{k>0} y_k \Lambda_k\right) \underline{e}_{\lambda} \Big|_{\text{coef. in } |0\rangle}$$

$$= R\exp\left(\sum_{k} y_k \Lambda_1^k\right) \underline{e}_{\lambda}$$

$$= R((S_k \Lambda_k) \underline{e}_{\lambda}.$$

17. THE TATE EXTENSION AND THE JAPANESE COCYCLE

Recall $X = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}e_n$ and $\Lambda^{\infty/2}$. (You can be floppy and think that $\Lambda^{\infty/2}$ is the exterior power of X, though that's not completely right.) Define

$$\mathfrak{gl}_{\infty} = \left\{ (a_{ij}) : \underset{\text{all but finitely many of the } a_{ij} \text{ vanish}}{i,j \in \mathbb{Z}, a_{ij} \in \mathbb{C}} \right\},$$

add and multiply as usual.

 $\operatorname{GL}_{\infty} = \{I + (a_{ij}) : a_{ij} \in \mathfrak{gl}_{\infty}\}, \text{ with } I = (I_{ij}) \text{ and } I_{ij} = \delta_{ij}. \text{ A typical element of } \mathfrak{gl}_{\infty} \text{ is } E_{ij} \text{ with } E_{ij}(e_k) = \delta_{jk}e_i.$

Last time we used shift operators $\Lambda_k : e_n \mapsto e_{n+k}$ for all n. These are **not** in \mathfrak{gl}_{∞} , but **are** in

$$\widetilde{\mathfrak{gl}_{\infty}} = \left\{ (a_{ij}) : \begin{array}{l} \exists Ns.t. a_{ij} = 0 \\ \text{whenever } |i-j| > N \end{array} \right\}.$$

Then $\Lambda_k = \sum E_{i+k,k} \in \widetilde{\mathfrak{gl}_{\infty}}$.

Remark 17.1. $\widetilde{\mathfrak{gl}_{\infty}}$ is an associative Lie algebra (hence a Lie algebra with commutator). This is because the condition of finiteness in the definition excludes the possibility of infinite sums.

We have a representaion r of \mathfrak{gl}_{∞} on $\Lambda^{\infty/2}$ by

$$r: E_{ij} \mapsto \varphi_i \varphi_j^*$$

But this doesn't extend to $\widetilde{\mathfrak{gl}_{\infty}}$. For instance, $r(\Lambda_0) = \sum_{j \in \mathbb{Z}} \varphi_{-j} \varphi_j^*$ diverges.

A "solution" is to use normal order, so $r(\Lambda_0) = \sum_{j \in \mathbb{Z}} : \varphi_{-j} \varphi_j^* :$, is now well-defined, but r is no longer a representation.

Today: more conceptual point of view. Consider the vector space $\mathbb{C}((t)) = X$. (Which is uncountably infinite-dimensional.) Give X a linear topology with a base of open neighbourhoods of 0 being $t^N\mathbb{C}[\![t]\!]$ for $N\in\mathbb{Z}$. The idea is that t,t^2,t^3,\ldots "tends to 0" in this topology.

Definition 17.2. A Tate vector space is a linearly topologised vector space X and a set \mathcal{L} of linear subspaces $L \subset X$ (called *lattices*) such that

- (1) (Separated.) Any neighbourhood of 0 contains a lattice.
- (2) (Exhaustive.) Every $x \in X$ is contained in some lattice.
- (3) (Commensurable.) For all $L_1, L_2 \in \mathcal{L}$, $L_1 \cap L_2$ has finite codimension in L_1 (and in L_2). (This says that any two lattices cannot be "infinitely far apart".)
- (4) (Complete.) For all $L_1, L_2 \in \mathcal{L}$, all vector subspaces $L_1 \cap L_2 \subset S \subset L_1 + L_2$ then $S \in \mathcal{L}$.
- (5) (Another completeness.) By the universal property of limit, we know there exists a map $X \to \lim_{L \to 0} L \in \mathcal{L}$ We ask this is an isomorphism.

Example 17.3. (1) Laurent series is an example of a Tate vector space. Let $X = \mathbb{C}((t))$ with

$$\mathcal{L} = \left\{ L \subset X : \exists N \text{ s.t. } t^N \mathbb{C}[\![t]\!] \subset L \subset t^{-N} \mathbb{C}[\![t]\!] \right\}.$$

We can also say that \mathcal{L} is the unique structure such that $\mathcal{L} \ni \mathbb{C}[t]$.

- (2) If $\mathcal{L} = \{0\}$, then $\mathcal{L} = \{L \subset X | \dim(L) < \infty\}$.
- (3) If $\mathcal{L} \ni X$, then $\mathcal{L} = \{L \subset X | \dim(X/L) < \infty\}$.

Since we introduced a topology on X, we can consider the continuous endomorphisms $\operatorname{End}_{\operatorname{cont}}(X)$. Let's denote throughout this section

$$\operatorname{End}(X) = \{ f \in \operatorname{End}_{\operatorname{cont}}(X) : \exists U, V \in \mathcal{L}, f(U) \subset V \}.$$

Relative to the "basis" $\{t^n | n \in \mathbb{Z}\}\$, the matrix of $f \in \text{End}(X)$ looks like

$$\begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \begin{pmatrix} 0 \\ * \end{pmatrix}$$

since the vectors in $V \subset t^m \mathbb{C}[\![t]\!]$ have zeroes before a certain index n.

$$\operatorname{End}_{c}(X) = \left\{ f \in \operatorname{End}(X) | \exists V \in \mathcal{L} \text{ s.t. } f(X) \subset V \right\} = \left\{ \begin{pmatrix} 0 & 0 \\ * & * \end{pmatrix} \right\}$$

$$\operatorname{End}_{d}(X) = \left\{ f \in \operatorname{End}(X) | \exists U \in \mathcal{L} \text{ s.t. } f(U) = 0 \right\} = \left\{ \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix} \right\}$$

$$\operatorname{End}_{f}(X) = \operatorname{End}_{c}(X) \cap \operatorname{End}_{d}(X) = \left\{ \begin{pmatrix} 0 & 0 \\ * & 0 \end{pmatrix} \right\}.$$

Remark 17.4. For $f \in \operatorname{End}_f(X)$, the trace $\operatorname{Tr}(f) \in \mathbb{C}$ is well-defined because the intersection of the diagonal with the lower-left part of any matrix in $\operatorname{End}_f(X)$ is finite. For End_c and End_d trace is not well-defined.

We introduce the map

$$p: \operatorname{End}_c(X) \oplus \operatorname{End}_d(X) \longrightarrow \operatorname{End}(X) \to 0$$

 $(f,g) \longmapsto f+g$

which is clearly surjective since we can put

$$\begin{pmatrix} A & 0 \\ B & C \end{pmatrix} = \begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix}.$$

We can complete this to a short exact sequence (of vector spaces) by putting

$$i: \operatorname{End}_f(X) \longrightarrow \operatorname{End}_c \oplus \operatorname{End}_d$$

 $h \longmapsto (h, -h).$

Considering the trace Tr : $\operatorname{End}_f(X) \to \mathbb{C}$, we can form the pushout L in the category of **vector spaces**

$$0 \longrightarrow \operatorname{End}_f \longrightarrow \operatorname{End}_c(X) \oplus \operatorname{End}_d(X) \longrightarrow \operatorname{End}(X) \longrightarrow 0$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{C} \longrightarrow L$$

Concretely,

$$L = \frac{(\operatorname{End}_c(X) \oplus \operatorname{End}_d(X)) \oplus \mathbb{C}}{\langle (h, -h) = (0, 0, \operatorname{Tr}(h)) | \forall h \in \operatorname{End}_f(X) \rangle}.$$

Notice that the map i is **not** a Lie algebra map: for this it would have to be a Lie algebra map in both entries, which is true in the first entry but not on the second. Meanwhile, p is a morphism of Lie algebras. We could correct i to map $h \mapsto (h,h)$ and then change p to be $\beta - \gamma$, but then p would stop being a Lie algebra morphism. So this is not a short exact sequence of Lie algebras; indeed it's not sensible to think of short exact sequences of Lie algebras since Lie algebras do not form an Abelian category.

But it is a short exact sequence of vector spaces and we can form its exact sequence pushout by the following exercise. (Also see Stacks Project tag 010I.)

Exercise 17.5. Let

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

be a short exact sequence of vector spaces and $t:A\to K$ a linear map of vector spaces. Let X be the pushout

$$\begin{array}{ccc}
A & \xrightarrow{i} & B \\
\downarrow^{t} & & \downarrow^{r} \\
K & \longrightarrow X.
\end{array}$$

Explicitly,

$$X = \frac{K \oplus B}{\langle (t(a), 0) - (0, i(a)) | a \in A \rangle}.$$

Show that there exists a short exact sequence

$$0 \longrightarrow K \longrightarrow X \longrightarrow C \longrightarrow 0$$

such that

commutes.

Proof. To define a map $X \to C$ we first notice that all we have to do is define the map on $K \oplus B$ at points not coming from A, i.e. whose entries are not of the form (i(a), t(a)) for $a \in A$. Indeed, those are cancelled by the pushout definition as a quotient. Further, we already have a map $\varphi : B \to C$ defined on elements not of the form i(a) for $a \in A$ by exactness of the given short exact sequence. Then we must define $(k, b) \mapsto \varphi(b)$ for the diagram to commute.

The resulting exact sequence is exact once we know that $K \to B$ in the pushout is given by $k \mapsto (k, 0) \mod \sim$.

Then we obtain

Notice that the exact sequence

$$0 \longrightarrow \operatorname{End}_f \stackrel{i}{\longrightarrow} \operatorname{End}_d \oplus \operatorname{End}_f \stackrel{p}{\longrightarrow} \operatorname{End} \longrightarrow 0$$

is a bit more than just a short exact sequence of vector spaces. Notice that $\operatorname{End}_d, \operatorname{End}_c \subset \operatorname{End}$ are ideals. Indeed, if $f \in \operatorname{End}_c$ and $g \in \operatorname{End}$, then $f \circ g \in \operatorname{End}_c$ obviously, $f(X) \subset V$ so $g \circ f(X) \subset g(V)$, continuity of g (plus axioms of Tate vector space) implies that there exists $\widetilde{V} \in \mathcal{L}$ such that $g(V) \subset \widetilde{V}$.

Exercise 17.6. Spell this out.

So $g \circ f \in \text{End}_c$.

Exercise 17.7. End_d \subset End is an ideal too.

So End_c , End_d are End -modules (as associative algebras and as Lie algebras), and

$$0 \longrightarrow \operatorname{End}_f \longrightarrow \operatorname{End}_d \oplus \operatorname{End}_c \longrightarrow \operatorname{End} \longrightarrow 0$$

is a short exact sequence of End-modules.

Let $\mathfrak g$ be a Lie algebra, E a $\mathfrak g$ -module with $E \xrightarrow{p} \mathfrak g$ surjective $\mathfrak g$ -module morphism. Consider

$$0 \longrightarrow \mathfrak{a} \stackrel{i}{\longrightarrow} E \stackrel{p}{\longrightarrow} \mathfrak{g} \longrightarrow 0$$

i.e. $\mathfrak{a} = \operatorname{Ker}(p)$.

Then one obtains a symmetric bilinear form defined by

$$(a,b) = p(a)b + p(b)a.$$

Exercise 17.8. This form is (1) symmetric and (2) g-invariant.

Exercise 17.9. Check that the data above, satisfying $(\cdot, \cdot) = 0$ is the same as a central extension of \mathfrak{g} by \mathfrak{a} , i.e. Lie bracket $[\cdot, \cdot] : E \times E \to E$ compatible with $[\cdot, \cdot]$ on \mathfrak{g} such that $\mathfrak{a} \subset E$ is central. **Hint.** Set $[a, b]^E = p(a)b$.

As a particular case of this, if we have

- g a Lie algebra,
- $\mathfrak{a}_1, \mathfrak{a}_2 \subset \mathfrak{g}$ two ideals such that $\mathfrak{g} = \mathfrak{a}_1 + \mathfrak{a}_2$,
- setting $\mathfrak{a}_0 = \mathfrak{a}_1 \cap \mathfrak{a}_2$, a linear map $\mathfrak{a}_0 \xrightarrow{T} K$ such that $T([x_1, x_2]) = 0$ for all $x_1 \in \mathfrak{a}_1$ and $x_2 \in \mathfrak{a}_2$.

Then we can form

with pushout at level of vector spaces and $i: \alpha \mapsto (\alpha, -\alpha)$ and $p: (\beta, \gamma) \mapsto \beta + \gamma$.

Exercise 17.10. Then X will become a Lie algebra with K central and $\mathfrak{a}_1 \oplus \mathfrak{a}_2 \to X$ a map of Lie algebras.

The main point of this construction is to use $T([x_1, x_2])$ to confirm that

$$T(p(a)b + p(b)a) = 0$$
 $\forall a, b \in \mathfrak{a}_1 \oplus \mathfrak{a}_2.$

Indeed, write $a = (a_1, a_2)$ and $b = (b_1, b_2)$. Then

$$\begin{split} &T(([a_1,a_2,b_1],[a_1+a_2,b_2]) + ([b_1+b_2,b_1],[b_1+b_2,a_2]) \\ &= T([a_1,b_1] + [a_2,b_1] + [b_1,a_1] + [b_2,a_1],[a_1,b_2] + [a_2,b_2] + [b_1,a_2] + [b_2,a_1]) \\ &= T(i(\underbrace{[a_2,b_1]}_{\in [\mathfrak{a}_1,\mathfrak{a}_2]} + \underbrace{[b_2,a_1]}_{\in [\mathfrak{a}_2,\mathfrak{a}_1]})) \\ &= 0 \qquad \text{by hypothesis.} \end{split}$$

We apply this, in particular, to

$$\mathfrak{g} = \operatorname{End}(X)$$
 $\mathfrak{a}_1 = \operatorname{End}_d(X)$ $\mathfrak{a}_2 = \operatorname{End}_c(X)$ $\mathfrak{a}_0 = \operatorname{End}_f(X)$

X our Tate vector space T trace.

For the construction above to work we still have to check that

$$Tr([A_d, A_c]) = 0$$

whenever $Ad \in End_d$ and $A_c \in End_c$. You would think this is obvious, but it isn't. (I.e., Tr(AB - BA) = 0 for $A, B \in End(finite-dimensional vector space).)$

Let us sketch the proof. Let $f \in \operatorname{End}_c$ and $f(X) \subset V$ $(V \in \mathcal{L})$, and $g \in \operatorname{End}_d$ and g(U) = 0 $(U \in \mathcal{L})$. Then

$$X \xrightarrow{f} \underbrace{f(X)}_{\subseteq V} \xrightarrow{g} \underbrace{gf(X)}_{\subseteq g(V)}.$$

And

$$X \xrightarrow{g} g(X) \to \underbrace{fg(X)}_{\subseteq V}.$$

So $\text{Im}[f, g] \subset V + g(V)$ So $[f, g](U \cap f^{-1}(U)) = 0$.

$$\underbrace{f^{-1}g^{-1}(0)}_{\subset f^{-1}(U)} \xrightarrow{f} \underbrace{g^{-1}(0)}_{\subset U} \xrightarrow{g} 0$$

and

$$\underbrace{g^{-1}f^{-1}(U)}_{\subset U} \xrightarrow{g} f^{-1}(0) \xrightarrow{f} 0.$$

Now the idea is to argue that

$$\operatorname{Tr}[f,g] = \operatorname{Tr}_Q[f,g],$$

where

$$Q = (V + g(V))/(U \cap f^{-1}(U))$$

is a finite-dimensional vector space. But on finite dimensional vector spaces the trace of commutator vanishes.

You might imagine that Tr[f,g] = 0 whenever $[f,g] \in End_f(X)$, but this is false.

Example 17.11. Let $A \subset \operatorname{End}(X)$ be a commutative subalgebra. (For instance, if $X = \mathbb{C}((t))$, then $f(t) \in \mathbb{C}((t))$ we have $\mu_f \in \operatorname{End}(X)$ and $\mu_f(g) = fg$.) Then I claim, if $f, g \in A$, $f = f_c + f_d$, $g = g_c + g_d$, that $[f_c, g_c] \in \operatorname{End}_f$. Obviously $[f_c, g_c] \in \operatorname{End}_c$, but also

$$[f_c, g_c] = [f - f_d, g - g_d]$$

$$= \underbrace{[f, g]}_{=0} \underbrace{-[f, g_d] - [f_d, g] + [f_d, g_d]}_{\in \text{End}_d \text{ because}}.$$

$$\underbrace{\text{End}_d \text{ C}}_{\text{ideal}} \text{End}$$

I claim that $Tr[f_c, g_c]$ might not vanish.

In fact let $X = \mathbb{C}((t))$, $f = \mu_{t^{-2}}$, $g = \mu_{t^2}$ (or with any $N \ge 0$ in place of 2). To fix f_c, g_c , lwt's make the following choice:

$$\pi: X \longrightarrow X$$
$$\pi(t^n) = \delta_{n \ge 0} t^n.$$

Then set $f_c = \pi \circ f$, etc. Let's compute $[f_c, g_c]$. [Picture]. We obtain $\text{Tr}[f_c, g_c] = 2$.

The next proposition is "Tate's definition of the residue". Tate was trying to generalize the Residue Theorem, i.e. that $\sum_{p \in C} \mathrm{Res}_p \omega = 0$ for points on a curve C and a differential form ω .

Proposition 17.12. For any choice of splittings, $f = f_c + f_d$, etc, and for all $f, g \in \mathbb{C}((t))$,

$$Tr[f_c, q_c] = Res_t f \cdot dq$$
.

18. Representing the endomorphisms algebra on the charged fermions

We want to represent $\operatorname{End}(X)$ on $\Lambda^{\infty/2}$. We start presenting the naive idea. Let $x \in X$ and $\varphi \in X^*$. We already have

$$\rho(x) = x \wedge (-) \in \text{End}(\Lambda^{\infty/2})$$

and

$$\rho(\varphi) = \sum_{i=0}^{\infty} (-1)^{j} \varphi(x_{i_j}) x_{i_0} \wedge x_{i_1} \wedge \ldots \wedge \widehat{x_{i_j}} \wedge \ldots$$

We already saw that $\rho(\hat{x}_i)\rho(\hat{\varphi}_j)+\rho(\hat{\varphi}_j)\rho(\hat{x}_i)=\delta_{ij}I$ (here I'm identifying $\hat{x}_i\equiv t^i\in\mathbb{C}((t))=X,\ \varphi_i\in X^*$ is $\hat{\varphi}_i(\sum c_jt^j)=c_j$). See Exercise 15.1.

If $f \in \text{End}_d$, we can think of f as

$$f = \sum_{i=0}^{a} x_i \otimes \varphi_i,$$

where $\varphi_i \to 0$ as $i \to \infty$.

Here $x_i \to 0$ means $\forall N \ge 0 \ \exists n_0$ such that $x_n \in t^N \mathbb{C}[[t]]$ for all $n \ge n_0$. And $\varphi_i \to 0$ means $\forall N \ge 0 \ \exists n_0$ such that $\varphi_n(t^{-N}\mathbb{C}[[t]]) = 0$ for all $n \ge n_0$.

One can confirm that for $f \in \text{End}_d$,

$$\rho_d(f) := \sum_i \rho(x_i) \rho(\varphi_i)$$

acts a finite sum, when applied to any fixed vector of $\Lambda^{\infty/2}$. So

$$\rho_d : \operatorname{End}_d \to \operatorname{End}(\Lambda^{\infty/2}X)$$

is well defined.

For $\operatorname{End}_c \ni f$, we can write

$$f = \sum_{i} x_i \otimes \varphi_i,$$

where $x_i \to 0$. Now $\rho_d(f)$ makes no sense, but

$$\rho_c(f) := \sum_{i=0}^{\infty} \rho(\varphi_i) \rho(x_i)$$

does.

Exercise 18.1. Confirm that $\rho_d : \operatorname{End}_d \to \operatorname{End}(\Lambda^{\infty/2})$ and $\rho_c : \operatorname{End}_c \to \operatorname{End}(\Lambda^{\infty/2}X)$ are morphisms of Lie algebras.

(Neither of these morphisms work at the level of associative algebras.)

We notice that, for $f \in \operatorname{End}_f(X)$,

$$\rho_d(f) - \rho_c(f) = \operatorname{Tr}(f).$$

This means

$$\operatorname{End}_d \oplus \operatorname{End}_c \xrightarrow{(\rho_d, \rho_c)} \operatorname{End}(\Lambda^{\infty/2}X)$$

descends to a morphism

Theorem 18.2. Let X be a Tate vector space. There exists a natural representation of $\mathfrak{gl}^{\flat}(X)$ on $\Lambda^{\infty/2}(X)$.

Next time we'll apply this to the case X itself is already a Lie algebra!

19. The 26-dimensionality of the universe

Last time: X a Tate vector space (for us $X = \mathbb{C}((t))$). We say that $\operatorname{End}(X) = \operatorname{End}_c(X) + \operatorname{End}_d(X)$ comes with a canonical central extension (as a Lie algebra

$$0 \longrightarrow \mathbb{C} \longrightarrow \mathfrak{gl}(X)^{\flat} \longrightarrow \operatorname{End}(X) \longrightarrow 0$$

with

$$\mathfrak{gl}(X)^\flat = \frac{\operatorname{End}_c \oplus \operatorname{End}_d \oplus \mathbb{C}}{\langle (h, -h, 0) = (0, 0, \operatorname{Tr}(h)) | h \in \operatorname{End}_f(X) \rangle},$$

and there is a canonical representation of $fl(X)^{\flat}$ on the semi-infinite wedge space $\Lambda^{\infty/2}(X) = \langle i_{i_0} \wedge e_{i_1} \wedge \ldots \rangle$ defined by

(19.0.1)
$$\rho_d(\underbrace{\sum_i x_i \varphi_i}) = \sum_i \rho(x_i) \rho(\varphi_i)$$

$$\rho_c(\underbrace{\sum_i x_i \varphi_i}) = -\sum_i \rho(\varphi_i) \rho(x_i),$$

where

$$\rho(x) = x \wedge (-), \qquad \rho(\varphi) = \sum_{i=0}^{\infty} (-1)^{i} \varphi(e_{i_j}) e_{i_0} \wedge e_{i_1} \wedge \ldots \wedge \widehat{e_{i_j}} \wedge \ldots$$

Now suppose X itself were a Lie algebra.

Example 19.1. $X = \mathbb{C}((t))$ as above, but we identify $t^m \rightsquigarrow L_m$ in Vir @ c = 0. So $[t^m, t^n] = (m-n)t^{m+n}$. To avoid confusion, let's write t^m as L_m in fact. In such situation, we have a linear map $\mathrm{ad}: X \to \mathrm{End}(X)$.

We can pull back $\mathfrak{gl}(X)^{\flat}$

$$0 \longrightarrow \mathbb{C} \longrightarrow \mathfrak{gl}(X)^{\flat} \xrightarrow{\pi} \operatorname{End}(X) \longrightarrow 0$$

$$\uparrow \qquad \qquad \downarrow \text{ad} \qquad \uparrow \qquad \qquad \downarrow$$

$$\hat{X} \longrightarrow X.$$

Explicitly,

$$\hat{X} = \{(x, A) \in X \oplus \mathfrak{gl}(X)^{\flat} | \operatorname{ad}(X) = \pi(A) \text{ in } \operatorname{End}(X) \}.$$

Exercise 19.2. Similarly to Exercise 17.5, show \hat{X} fits into a sequence

$$0 \longrightarrow \mathbb{C} \longrightarrow \hat{X} \longrightarrow X \longrightarrow 0.$$

So we get a (canonical!) central extension of X:

$$0 \longrightarrow \mathbb{C} \longrightarrow \mathfrak{gl}(X)^{\flat} \stackrel{\pi}{\longrightarrow} \operatorname{End}(X) \longrightarrow 0$$

$$\downarrow^{\operatorname{id}} \qquad \uparrow^{\operatorname{ad}} \qquad \downarrow^{\operatorname{ad}}$$

$$0 \longrightarrow \mathbb{C} \longrightarrow \hat{X} \longrightarrow X \longrightarrow 0$$

For $X = \text{Der}(\mathbb{C}[t^{\pm 1}]) = \text{centerless Vir}$, we will find the canonical central extension is Vir @ c = -26. (i.e. charge is -26.)

What might be amazing here is that any infinite-dimensional Lie algebra has a central extension — just by being infinite-dimensional.

We'll exploit

$$\Lambda^{\infty/2}(X) = \langle L_{m_0} \wedge L_{m_1} \wedge L_{m_2} \wedge \ldots \rangle.$$

We have quantum fields

$$\varphi(w) = \sum_{n} \varphi_{n} w^{-n-1}, \qquad \varphi = L_{n} \wedge (-),$$

$$\varphi^{*}(w) = \sum_{n} \varphi_{n}^{*} w^{n}, \qquad \varphi_{n}^{*}(\underline{L}) = \sum_{n} (-1)^{j} \varphi(L_{i_{j}}) L_{i_{0}} \wedge L_{i_{1}} \wedge \dots$$

Now for

$$L_m \in X,$$
 $L_m : L_n \mapsto (m-n)L_{m+n},$
$$\operatorname{ad}(L_m) = \underbrace{\sum_{n \in \mathbb{Z}} (m-n)L_{m+n}L_n^*}_{\in \operatorname{End}_c + \operatorname{End}_d}.$$

To represent $\operatorname{ad}(L_m)$ on $\Lambda^{\infty/2}$ we have to split $\operatorname{ad}(L_m)$ into pieces in End_d and End_c and send each part to their corresponding pieces according to Equation 19.0.1.

Let's work at the level of fields.

$$L(w) = \sum_{m} \rho(\operatorname{ad}(L_{m})) w^{-m-2}$$

$$= \sum_{m,n} (m-n) \rho(L_{m+n}L_{n}^{*}) w^{-m-2}$$

$$= \sum_{m,n} (m-n) : \varphi_{m+n}\varphi_{n}^{*} : w^{-m-2}$$

$$= \sum_{m,n} (m-n) : (\varphi_{m+n}w^{-(m+n)-?}) (\varphi_{n}^{*}w^{+n+?} : w^{-m-2})$$

where

$$\rho(L_{m+n}L_n^*) = \begin{cases} \rho(L_{m+n})\rho(L_n^*) & \text{when } n \ll 0\\ -\rho(L_n^*)\rho(L_{m+n}) & \text{when } n \gg 0. \end{cases}$$

Notice that

$$\partial_w \varphi(w) = \partial_w \sum_{m} \varphi_{m+n} w^{-m+nj}$$

$$= -\sum_{m} (m+n) \varphi_{m+n} w^{-(m+n)-1}$$

$$= \sum_{m} n \varphi_n^* w^{m-1}$$

since m - n = (m + n) - 2n, so it seems we should consider

$$-:(\partial\varphi)\varphi^*:-2:\varphi(\partial\varphi^*):k$$

So, we have a vertex superalgebra $V = \Lambda^{\infty/2}$, with quantum fields φ and φ^* , OPE relation $[\varphi_{\lambda}\varphi^*] = 1$.

We are defining a field

$$L = - :(\partial \varphi)\varphi^* : -2 : \varphi(\partial \varphi^*):,$$

(which is a quantum field, $L(w) = \sum_{m} L_m w^{-m-2}$), adn we want to know/check

$$[L_m, L_n] = (m-n)L_{m+n} + \delta_{m,-n} \frac{m^3 - m}{12} CI_{\Lambda^{\infty/2}}.$$

So, what's c? Let's do it.

- (Method 1.) Brute force.
- (Method 2.) Use mathematica (Thielman's package).
- (Method 3.) Recall $\alpha = : \varphi \varphi^* :$, satisfies $[\alpha_{\lambda} \alpha] = \lambda$ and $L^0 = \frac{1}{2} : \alpha \alpha :$ is Virasoro @ c = 1.

$$[L_{\lambda}^{0}L^{0}] - TL^{0} + 2\lambda L^{0} + \frac{\lambda^{3}}{12}.$$

$$L^{0} = \frac{1}{2} : \alpha\alpha:$$

$$= \frac{1}{2} : (:\varphi\varphi^{*}:)(:\varphi\varphi^{*}:):$$

$$= \dots$$

$$= \frac{1}{2}(:(T\varphi)\varphi^{*}: + :\varphi(T\varphi^{*}): .$$

How to see this? Recall Borcherds identity (Equation 11.9.2):

$$\sum_{j\geq 0} {m \choose j} (a_{(n+j)}b)_{(m+k-j)}c$$

$$= \sum_{j\geq 0} (-1)^j {n \choose j} (a_{(a+m-j)}b_{(k+j)}c - (-1)^n b_{(n+k-j)}a_{(m+j)}c.$$

So put

$$\begin{aligned} a &= \varphi & m &= 0 \\ b &= \varphi^* & n &= -1 \\ c &= : \varphi \varphi^* \colon & k &= -1. \end{aligned}$$

Then

$$LHS = (a_{(-1)}b)_{(-1)}c = : (:\varphi\varphi^*:)(:\varphi\varphi^*:):$$

and

$$RHS = \sum_{j\geq 0} (\varphi_{(-i-j)} \varphi_{(-1+j)}^* \varphi_{(-1)} \varphi^* + \varphi_{(-2-j)}^* \varphi_{(j)} \varphi_{(-1)} \varphi^*).$$

[Picture]

$$RHS = \varphi_{(-1)}\varphi_{(-1)}^*\alpha + \varphi_{(-2)}\varphi_{(0)}^*\alpha + \varphi_{(-2)}^*\varphi_{(0)}\alpha.$$

Note:

$$\varphi_{(0)}\alpha = -\alpha_{(0)}\varphi = +\varphi.$$

In general

$$b_{(0)}a = -\sum_{j>0} \frac{1}{j!} T^j(a_{(j)}b) = -a_{(0)}b + T(\text{stuff}).$$

Remark 19.3. Recall (ref?) that if V is any vertex algebra, V/TV, $[\overline{a}, \overline{b}] = a_{(0)}b$, is a Lie algebra.

So,

$$RHS = \varphi_{(-1)}\varphi_{(-1)}^*\alpha - \varphi_{(-2)}\varphi^* + \varphi_{(-2)}^*\varphi.$$

Now, since in general

$$b_{(n)}a = -(-1)^{p(a)p(b)} \sum_{j\geq 0} \frac{(-1)^j}{j!} T^j(a_{(n+j)}b,$$

then

$$\varphi_{(-2)}^* \varphi = \sum_{j>0} \frac{(-1)^j}{j!} T^j (\varphi_{(-2+j)} \varphi^*.$$

But this led to mistaken calculations. I was trying to do the following: we know that $\alpha = : \varphi \varphi^* :$ satisfies $[\alpha_{\lambda} \alpha] = \lambda$, and $L^0 = \frac{1}{2} : \alpha \alpha :$ is $\mathrm{Vir}[L^0_{\lambda} L^0] = TL^0 + 2\lambda L^0 + \frac{\lambda^3}{12} \ (c=1)$. Also, if $B = L^0 + kT_{\alpha}$ then

$$[B_{\lambda}B] = TB + 2\lambda B + \frac{\lambda^3}{12}c_k, \qquad c_k = 1 - 12k^2.$$

Writing B in terms of vp, φ^* , one gets something like

$$B = b : (T\varphi)\varphi^* : +(1-b) : \varphi(T\varphi^*) : .$$

The correct answer is: if $L = -: (T\varphi)\varphi^*: -2: \varphi(T\varphi^*):$, we may verify that

$$[L_{\lambda}L] = TL + 2\lambda L - \frac{26}{12}\lambda^3.$$

In summary, today we did the following. For φ, φ^* odd, $[\varphi_{\lambda}\varphi^*] = 1$, we define the operator

$$L = -: (T\varphi)\varphi^* := 2: \varphi(T\varphi^*):$$

Then compute and find out that

$$[L_{\lambda}L] = TL + 2\lambda L + \frac{c}{12}\lambda^{3},$$

where c = -26.

That is, after computing the central extension of the Virasoro algebra, we turn to the vertex algebra language to find that the central charge is -26.

Even more explicitly: by the Tate vector space construction we have the central extension

$$0 \longrightarrow \mathbb{C}C \longrightarrow \mathfrak{gl}(X)^{\flat} \longrightarrow \mathfrak{gl}(X) \longrightarrow 0$$

where $W = \mathbb{C}((t))$ is the Witt algebra, with bracket $[L_m, L_n] = (m-n)L_{m+n}$. And then we do the pullback in the following way:

Then we get a representation in which K goes to the identity, namely

$$\mathfrak{gl}(X)^{\flat} \curvearrowright \Lambda^{\infty/2}, \qquad K \mapsto \mathrm{Id}.$$

So, the vertex algebra language allows us to compute the central charge of the new algebra we obtained, $W \oplus \mathbb{C}K$, and realise it's -26. So the bracket in the new algebra is

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3 - m}{12}(-26)K.$$

20. Lattice Vertex algebras

Definition 20.1. A lattice (for us) is a discrete subgroup $L \subset \mathbb{R}^n$, $L \simeq \mathbb{Z}^n$, and such that $(\alpha, \beta) \in \mathbb{Z}$ for all $\alpha, \beta \in L$, where $(\cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is the standard bilinear form $((u_1, \ldots, u_n), (v_1, \ldots, v_n)) = \sum u_i v_i$.

In particular, L contains a basis of the ambient space \mathbb{R}^n .

Example 20.2. (1) $\mathbb{Z}^n \subset \mathbb{R}^n$ is a lattice.

(2) A_2 , the root lattice of \mathfrak{sl}_3 , is a lattice. Recall this looks like a triangular tiling with $(\alpha_1, \alpha_1) = 2$, $(\alpha_2, \alpha_2) = 2$ and $(\alpha_1, \alpha_2) = -1$, which in says that the angle between α_1 and α_2 is 120 degrees.

Definition 20.3. A lattice is called *even* if $(\alpha, \alpha) \in 2\mathbb{Z}$ for all $\alpha \in L$.

(That is, the product of every element with *itself* is even, not that $(\alpha, \beta) \in 2\mathbb{Z}$ for all $\alpha, \beta \in L$.)

So A_2 is even. In fact, whenever the basis elements are even, say $(\alpha, \alpha), (\beta, \beta) \in 2\mathbb{Z}$, then the lattice is even since $(\alpha \pm \beta, \alpha \pm \beta) = (\alpha, \alpha) \pm 2(\alpha, \beta) + (\beta, \beta) \in 2\mathbb{Z}$ too.

Definition 20.4. The dual of L is

$$L^{\vee} = \{ x \in \mathbb{R}^n | (x, \alpha) \in \mathbb{Z} \forall \alpha \in L \}.$$

Clearly $L \subset L^{\vee}$. But L^{\vee} might be strictly larger.

Exercise 20.5. L^{\vee}/L is a finite group.

Notice that for $\gamma, \delta \in L^{\vee}$ it might happen that $(\gamma, \delta) \notin \mathbb{Z}$.

For $L = A_2$ we find that

$$L^{\vee} = A_2 \cup (\omega + A_2) \cup (2\omega + A_2).$$

So $L^{\vee}/L \simeq \mathbb{Z}/3$ as groups.

For $L = \mathbb{Z}^n$, we have $L^{\vee} = \mathbb{Z}^n = L$, that is, \mathbb{Z}^n is self dual. On the other hand \mathbb{Z}^n is not even.

Are there any other even self-dual lattices (other than $\{0\}$)?

The simplest nontrivial example is

$$E_8 = \{(x_1, x_2, \dots, x_8) \in \mathbb{Z}^8 \cup (\frac{1}{2} + \mathbb{Z})^8 | \sum_{i=1}^8 \equiv 0 \mod 2 \}.$$

Lemma 20.6. E_8 is even and self-dual.

Theorem 20.7. (1) If $L \subset \mathbb{R}^n$ is even and self dual, then 8|n

(2) If, also, n = 8, then $L \simeq E_8$.

Remark 20.8. Let L be an even lattice. On the group $D = L^{\vee}/L$ we define

$$q: D \longrightarrow \mathbb{Q}/\mathbb{Z}$$

 $q(a) = (\alpha, \alpha)/2 \mod \mathbb{Z}.$

Then q is a well-defined quadratic form.

Indeed, for $\beta \in L$,

$$q(\alpha + \beta) = \frac{(\alpha + \beta, \alpha + \beta)}{2} = \underbrace{\frac{(\alpha, \alpha)}{2}}_{=q(\alpha)} + \underbrace{\frac{2(\alpha, \beta)}{2}}_{\in \mathbb{Z}} + \underbrace{\frac{(\beta, \beta)}{2}}_{\in \mathbb{Z}}.$$

We call (D, q) the discriminant form of L.

Now we explain the neighbour construction/orbifold. Let L be a self-dual even lattice. Let $\phi: L \to \mathbb{Z}/2$ a homomorphism (i.e. if $\{e_1, \ldots, e_n\}$ is a basis of L, set $\phi(e_i) = \varepsilon_i \in \{0, 1\}$ and $\phi(\sum m_i e_i) = \sum m_i \varepsilon_i \mod 2$.

Assume ϕ is nontrivial and surjective, so that its kernel $L_0 = \operatorname{Ker} \phi \subset L$ has index 2. That is, $L/L_0 \simeq \mathbb{Z}/2$.

index 2. That is,
$$L/L_0 \simeq \mathbb{Z}/2$$
.
Now we have $L_0 \subset L = L^{\vee} \subset L_0^{\vee}$.
$$\lim_{\text{index 2}} L = L^{\vee} \subset L_0^{\vee}$$
.

Remark 20.9. $D = L_0^{\vee}/L_0 \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$.

Why? If $\omega \in L_0^{\vee}$, then 2ω ... Exercise.

What about (D,q)? I claim there are two possibilities (up to \simeq):

$$\begin{pmatrix} 0 & 0 \\ 0 & 1/2 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1/4 \\ 0 & 3/4 \end{pmatrix}$$

Exercise.

Suppose (by choice of ϕ) we are in the first case. Then $L = L_0 \cup (\alpha + L_0)$, $q(\beta) = 0$, i.e. $(\beta, \beta) \equiv 0 \mod 2$,

$$\begin{pmatrix} L_0 & \beta + L_0 \\ \alpha + L_0 & \gamma + L_0 \end{pmatrix}.$$

Define $L^{\operatorname{orb}(\phi)} = L_0 \cup (\beta + L_0)$.

Lemma 20.10. $L^{orb(\phi)}$ is an even lattice.

Proof. Exercise. Idea: $(L_0, L_0) \subset \mathbb{Z}$ and $(L_0, \beta + L_0) \subset \mathbb{Z}$ by definition.

For $\beta, \beta' \in \beta + L_0$,

$$(\beta', \beta) = (\beta + \alpha, \beta), \quad \alpha \in L_0$$
$$= \underbrace{(\beta, \beta)}_{\in \mathbb{Z}} + \underbrace{(\alpha, \beta)}_{\in \mathbb{Z}} \in \mathbb{Z}$$

Also, $(L^{\operatorname{orb}(\phi)})^{\vee} = L^{\operatorname{orb}(\phi)}$. Indeed

$$L_0 \underbrace{\subset}_{\text{index 2}} L^{\operatorname{orb}(\phi)} \underbrace{\subset}_{\text{by above}} (L^{\operatorname{orb}(\phi)})^{\vee} \underbrace{\subset}_{\text{index 2}} L_0^{\vee}.$$

Theorem 20.11 (Niemer). If we consider the set Γ_n of all even self-dual lattices of rank n (8|n) as a graph, with edge whenever there exists an operation $L \to L^{orb(\phi)}$, then Γ_n is connected for all n.

Remark 20.12. There is a reverse orbifold construction.

Let L be even self dual, $L = L_0 \cup L_1$, and

$$\begin{pmatrix} L_0 & L_+ \\ L_1 & L_- \end{pmatrix}$$

 $L_0^{\vee} = L_0 \cup L_1 \cup L_+ \cup L_-$, say L_+ is $q(\alpha) = 0$ for all $alp \in L_+$ and $q(\beta) = 1/2$ for all $\beta \in L_-$ since we are fixed in the first case of Equation 20.9.1. Define

$$\psi: L^{\operatorname{orb}(\phi)} \longrightarrow \mathbb{Z}/2$$

$$\psi(\alpha) = \begin{cases} 0 & \text{for } \alpha \in L_0 \\ 1 & \text{for } \alpha \in L_+. \end{cases}$$

By definition, $\operatorname{Ker}(\psi) = (L^{\operatorname{orb}(\phi)})_0 = L_0 \subset L^{\operatorname{orb}(\phi)}$. So $(L^{\operatorname{orb}(\phi)})_0^{\vee} = L_0^{\vee}$ and the discriminant form $(L^{\operatorname{orb}(\phi)})_0^{\vee}/L_0^{\operatorname{orb}(\phi)}$ brecovers the same picture.

$$(L^{\operatorname{orb}(\phi)})^{\operatorname{orb}(\phi)} = L.$$

$$L \underbrace{0}_{L_0^{\operatorname{orb}(\phi)} = L_0} 0 \quad M$$

$$0 \quad 1/2$$

Definition 20.13. Let $L \subset \mathbb{R}^n$ be an even lattice. The *root system* of L is

$$\Delta(L) = \{ \alpha \in L | (\alpha, \alpha) = 2 \}.$$

Proposition 20.14. The root system of an even lattice is a root systems.

Example 20.15. The root system of E_8 (the lattice) is E_8 (the root system).

If
$$\Delta(L_1) \not\simeq \Delta(L_2)$$
 then $L_1 \not\simeq L_2$.

In fact, in \mathbb{R}^{16} there exists two even self-dual lattices, with root systems $E_8 \oplus E_8$ and D_{16} .

For rank 24, there exist (coincidentally) 24 even self-dual lattices called *Neimeier lattices*. They are constructed as a graph going from one another by applying the orbifold construction on different homomorphisms ϕ . Eventually the graph looks like this:

where Λ is the *Leech lattice*, which has *empty* root system, that is, Λ contains 0, and no vectors of norm 2, and 196560 (?) vectors of squared norm 4.

There is something called the Siegel mass formula. Consider the orthogonal group of a lattice, namely

$$\operatorname{Aut}(L) = \{ g \in \operatorname{GL}_n(\mathbb{R}) | (g\alpha, g\beta) = (\alpha, \beta) \forall \alpha, \beta \in L \text{ and } g(L) \subset L \}$$

= \{ g \in O_n(\mathbb{R}) | g(L) \in L \},

which is a finite group.

Then

$$\sum_{L \in \Gamma_n} \frac{1}{\# \operatorname{Aut}(L)} = \frac{|B_{n/2}|}{n} \prod_{1 \le j \le n/2} \frac{|B_{2j}|}{4j}$$

where \mathcal{B}_k is a Bernoulli number. (See Wikipedia page for Neimeier lattice.)

References

- [Kac90] V.G. Kac, Infinite-dimensional lie algebras, Progress in mathematics, Cambridge University Press, 1990.
- [Kac01] _____, Vertex algebras for beginners, University lecture series, American Mathematical Society, 2001.