جمعية أصدقاء الرياضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

DEVOIR DE MATHS

Niveau: 4AS Durée: 2h Proposé le 04 février 2017 de 8h à 10h

Exercice1: (7 Points)

Dans cet exercice, on propose pour chaque question trois réponses : A , B et C . Choisir parmi ces réponses celle qui vous parait exacte, en justifiant votre choix.

	Choisir parim ces reponses cene qui vous parait exacte, en justinant votre choix:				
N°	Question	Réponse A	Réponse B	Réponse C	
1	$\sqrt{25} + \sqrt{75}$ est égale à	$\sqrt{100}$	$5\sqrt{3}$	$5(1+\sqrt{3})$	
2	La solution de l'équation	$-3+3\sqrt{3}$	$3-\sqrt{3}$	$3+3\sqrt{3}$	
	$(1+\sqrt{3})x = 3 \text{ est}$	2	$\sqrt{3}$	2	
3	$\sqrt{28} - 12\sqrt{7} + \sqrt{700} =$	$2\sqrt{7}$	0	$(4-12+100)\sqrt{7}$	
4	La mesure en radian de	LCL # IL.	2π	9π	
	l'angle 40 ⁰ est	$\frac{\overline{4}}{4}$	9	2	
5	Le triangle ABC dont les			_	
	côtés: $AB = \sqrt{32}$ cm, $BC =$	12712712	amin	nathi	
	$4\sqrt{2}$ cm et AC= $3\sqrt{5}$ cm	Rectangle en A	Rectangle en B	Isocèle	
	est un triangle :				
6	7 4 15 2	221		11×17	
W	13/5/3-5 min	1015/n.	mr	15×9	
7	La mesure en degré de	45 ⁰	36^{0}	50°	
	l'angle 40 grade est				

Exercice 2: (5 Points)

On considère les expressions suivantes :

E =
$$(x-8)^2 + (x-8)(2x-1)$$
 et F = $2x^2 - 32x + 128$

- 1.Développer, réduire et ordonner l'expression E. 2. Factoriser les expressions E et F
- 3. Résoudre dans IR les équations E = 0, F = 0, E = F et 3E = 4F

Exercice 3: (6 Points)

Sur la figure ci – contre (C) est un cercle de centre O.

A,B,C et D sont quatre points de (C) tel que les angles au

centre \widehat{AOB} et \widehat{COD} sont droits

- 1. Montrer que les droites (AD) et (BC) sont parallèles.
- 2. Montrer que les droites (AC) et (BD) sont perpendiculaires.
- 3. Montrer que AC = BD.

Présentation et rédaction : 2 points

Fin

www.amimath.i