

Homework #8 (0.5/1)

Завдання 773(с)

$$egin{aligned} P(x_1,x_2,x_3) &= (x_1^2 + x_1 x_2 + x_2^2)(x_2^2 + x_2 x_3 + x_3^2)(x_3^2 + x_3 x_1 + x_1^2) \ f(x) &= 5 x^3 - 6 x^2 + 7 x - 8, \ f(x_1) &= f(x_2) = f(x_3) = 0 \end{aligned}$$

Розв'язок. Нехай (x_1,x_2,x_3) — трійка розв'язків f(x)=0. За теоремою Вієтта, маємо

$$\sigma_1(x_1,x_2,x_3)=-rac{-6}{5}=rac{6}{5},\ \sigma_2(x_1,x_2,x_3)=rac{7}{5}$$
 $\sigma_3(x_1,x_2,x_3)=-rac{-8}{5}=rac{8}{5}$

Залишилось виразити $P(x_1,x_2,x_3)$ через $(\sigma_1,\sigma_2,\sigma_3)$. Старший член $x_1^4x_2^2$. В такому разі маємо таку таблицю

x_1	x_2	x_3	σ_1	σ_2	σ_3	Product
4	2	0	2	2	0	$\sigma_1^2\sigma_2^2$
4	1	1	3	0	1	$\sigma_1^3\sigma_3$
3	3	0	0	3	0	σ_2^3
3	2	1	1	1	1	$\sigma_1\sigma_2\sigma_3$
2	2	2	0	0	2	σ_3^2

Отже маємо $P=\sigma_1^2\sigma_2^2+\alpha\sigma_1^3\sigma_3+\beta\sigma_2^3+\gamma\sigma_1\sigma_2\sigma_3+\delta\sigma_3^2$. Спочатку підставимо (1,-1,0). Отримаємо $\sigma_1=0,\sigma_2=-1,\sigma_3=0$, тому

$$P=-eta=1
ightarroweta=-1$$

Тепер занулимо σ_1 без занулення σ_3 . Для цього підставимо (1,1,-2). В такому випадку отримаємо $\sigma_1=0,\sigma_2=-3,\sigma_3=-2$. Тоді

$$P=eta\sigma_2^2+\delta\sigma_2^2=27+4\delta=27
ightarrow\delta=0$$

Нехай тепер відставимо (1,1,1) та (1,1,-1). Для першого випадку $\sigma_1=3,\sigma_2=3,\sigma_3=1$, для другого $\sigma_1=1,\sigma_2=-1,\sigma_3=-1$. Отже, будемо мати

$$P(1,1,1) = 81 + 27\alpha + 27\beta + 9\gamma + \delta = 27 \rightarrow 27\alpha + 9\gamma = -27$$

Тобто звідси $3\alpha + \gamma = -3$.

Тепер підставляємо (1,1,-1):

$$P(1,1,-1) = 1 - \alpha + 1 + \gamma = 3 \rightarrow -\alpha + \gamma = 1$$

Звідси $lpha=-1, \gamma=0$. Отже маємо

$$P(\sigma_1,\sigma_2,\sigma_3)=\sigma_1^2\sigma_2^2-\sigma_1^3\sigma_3-\sigma_2^3$$

Підставляємо $\sigma_1 = 6/5, \sigma_2 = 7/5, \sigma_3 = 8/5$. Маємо

$$P = -\frac{1679}{625}$$

Завдання 786

Очевидно, що $s_1=\sigma_1$. Далі скористаємось формулою Ньютона:

$$s_2-s_1\sigma_1+2\sigma_2
ightarrow s_2=s_1\sigma_1-2\sigma_2=\sigma_1^2-2\sigma_2$$

Цей результат ми отримували у минулому домашньому завданні 🙂

Далі

$$s_3 - s_2\sigma_1 + s_1\sigma_2 - 3\sigma_3 o s_3 = (\sigma_1^2 - 2\sigma_2)\sigma_1 - \sigma_1\sigma_2 + 3\sigma_3$$

A отже $s_3=\sigma_1^3-3\sigma_1\sigma_2+3\sigma_3$.

Далі
$$s_4-s_3\sigma_1+s_2\sigma_2-s_1\sigma_3+4\sigma_4 o s_4=(\sigma_1^3-3\sigma_1\sigma_2+3\sigma_3)\sigma_1-(\sigma_1^2-2\sigma_2)\sigma_2+\sigma_1\sigma_3-4\sigma_4=\sigma_1^4-4\sigma_1^2\sigma_2+2\sigma_2^2+4\sigma_1\sigma_3-4\sigma_4$$

Аналогічним чином отримаємо

$$s_5 = \sigma_1^5 - 5\sigma_1^3\sigma_2 + 5\sigma_1\sigma_2^2 + 5\sigma_1^2\sigma_3 - 5\sigma_2\sigma_3 - 5\sigma_1\sigma_4 + 5\sigma_5$$

$$s_6 = \sigma_1^6 - 6\sigma_1^4\sigma_2 + 9\sigma_1^2\sigma_2^2 + 6\sigma_1^3\sigma_3 - 2\sigma_2^3 - 12\sigma_1\sigma_2\sigma_3 - 6\sigma_1^2\sigma_4 + 3\sigma_3^2 + 6\sigma_2\sigma_4 + 6\sigma_1\sigma_5 - 6\sigma_6$$