Monte Carlo Simulation of Two-dimensional Ising model

Tong Li

Department of Physics & Astronomy Michigan State University

May 3, 2018

Outline

Introduction

Properties of 2D Ising model from its analytical solution

The solution of 2×2 Ising model

Properties of phase transition in 2D Ising model

Monte Carlo methods for Ising model

Results and discussion

Results of 2×2 case

Convergence and probability distribution

Phase transition

Conclusions

Ising model is a simple but important model for the explanation of ferromagnetism.

- Ising model is a simple but important model for the explanation of ferromagnetism.
- Atomic spins are located on a *N*-dimensional lattice grid, and these spins only have two discrete states, up $(\sigma = 1)$ or down $(\sigma = -1)$.

- Ising model is a simple but important model for the explanation of ferromagnetism.
- Atomic spins are located on a N-dimensional lattice grid, and these spins only have two discrete states, up $(\sigma = 1)$ or down $(\sigma = -1)$.
- Only neighboring spins can interact with each other, and thus its Hamiltonian can be written as

$$H = -J \sum_{\langle kl \rangle}^{N} \sigma_k \sigma_l \,, \tag{1}$$

where J > 0 and $\langle kl \rangle$ indicates that we only sum over nearest neighbors.

- Only one- and two-dimensional cases has been solved analytically and they show several interesting properties of phase transition.
- ► Therefore, it is necessary to develop an efficient numerical method for the simulation of Ising model.

- Only one- and two-dimensional cases has been solved analytically and they show several interesting properties of phase transition.
- ► Therefore, it is necessary to develop an efficient numerical method for the simulation of Ising model.
- ▶ In this work we focus on the Monte Carlo simulation of 2D Ising model, which can be benchmarked with analytical solution.

- ▶ Only one- and two-dimensional cases has been solved analytically and they show several interesting properties of phase transition.
- ► Therefore, it is necessary to develop an efficient numerical method for the simulation of Ising model.
- ▶ In this work we focus on the Monte Carlo simulation of 2D Ising model, which can be benchmarked with analytical solution.
- Our numerical framework can also be easily extended to higher dimensions.

Outline

Introduction

Properties of 2D Ising model from its analytical solution The solution of 2×2 Ising model Properties of phase transition in 2D Ising model

Monte Carlo methods for Ising model

Results and discussion

Results of 2 × 2 case Convergence and probability distribution Phase transition

Conclusions

Properties of 2D Ising model from its analytical solution

► We first solve 2 × 2 case with periodic boundary condition for benchmark.

Properties of 2D Ising model from its analytical solution

- We first solve 2 × 2 case with periodic boundary condition for benchmark.
- Periodic boundary condition: a spin on one boundary will interact with another spin on the opposite boundary.

Properties of 2D Ising model from its analytical solution

- ▶ We first solve 2 × 2 case with periodic boundary condition for benchmark.
- ▶ Periodic boundary condition: a spin on one boundary will interact with another spin on the opposite boundary.
- ▶ All possible microscopic states of 2 × 2 Ising model. The energy is in the unit of *J*.

Number of spins up	Degeneracy	Energy	Magnetization	
4	1	-8	4	
3	4	0	2	
2	4	0	0	
2	2	8	0	
1	4	0	-2	
0	1	-8	-4	

 \blacktriangleright The partition function of canonical ensemble can be obtained by summing over all these microscopic states α

$$Z = \sum_{\alpha} e^{-\beta E_{\alpha}} = 2e^{8\beta} + 2e^{-8\beta} + 12 = 4\cosh(8\beta) + 12, (2)$$

where $\beta = 1/T$ and T is temperature in the unit of J ($k_B = 1$).

▶ The partition function of canonical ensemble can be obtained by summing over all these microscopic states α

$$Z = \sum_{\alpha} e^{-\beta E_{\alpha}} = 2e^{8\beta} + 2e^{-8\beta} + 12 = 4\cosh(8\beta) + 12, (2)$$

where $\beta = 1/T$ and T is temperature in the unit of J ($k_B = 1$).

 \blacktriangleright The mean energy of the system (in the unit of J) is

$$\langle E \rangle = -\frac{\partial \ln Z}{\partial \beta} = -\frac{8 \sinh (8\beta)}{\cosh (8\beta) + 3}.$$
 (3)

The mean magnetization of the system is

$$\langle |M| \rangle = \frac{1}{Z} \sum_{\alpha} |M_{\alpha}| e^{-\beta E_{\alpha}} = \frac{1}{Z} \left(8e^{8\beta} + 4 \right) = \frac{2e^{8\beta} + 1}{\cosh(8\beta) + 3}. \tag{4}$$

▶ The heat capacity is

$$C_V = \frac{\partial \langle E \rangle}{\partial T} = -\beta^2 \frac{\partial \langle E \rangle}{\partial \beta} = \beta^2 \frac{64 \left[1 + \cosh \left(8\beta \right) \right]}{\left[6 + \cosh \left(8\beta \right) \right]^2} \,. \tag{5}$$

The heat capacity is

$$C_V = \frac{\partial \langle E \rangle}{\partial T} = -\beta^2 \frac{\partial \langle E \rangle}{\partial \beta} = \beta^2 \frac{64 \left[1 + \cosh \left(8\beta \right) \right]}{\left[6 + \cosh \left(8\beta \right) \right]^2} \,. \tag{5}$$

 Also it can be proved that for any system under canonical ensemble

$$C_V = \beta^2 \left(\langle E^2 \rangle - \langle E \rangle^2 \right) \,, \tag{6}$$

where for 2×2 case

$$\langle E^2 \rangle = \frac{1}{Z} \sum_{\alpha} E_{\alpha}^2 e^{-\beta E_{\alpha}} = \frac{64 \cosh(8\beta)}{\cosh(8\beta) + 3}. \tag{7}$$

Similarly, we have

$$\langle M^2 \rangle = \frac{1}{Z} \sum_{\alpha} M_{\alpha}^2 e^{-\beta E_{\alpha}} = \frac{8 \left(e^{8\beta} + 1 \right)}{\cosh \left(8\beta \right) + 3}, \tag{8}$$

and define susceptibility as

$$\chi = \beta \left(\langle M^2 \rangle - \langle |M| \rangle^2 \right) . \tag{9}$$

▶ One interesting aspect of 2D (and higher dimensional) Ising model is the second-order phase transition at a nonzero critical temperature T_C .

- ▶ One interesting aspect of 2D (and higher dimensional) Ising model is the second-order phase transition at a nonzero critical temperature T_C .
- ▶ There is a sharp transition from nonzero $\langle |M| \rangle$ (ordered phase) to $\langle |M| \rangle = 0$ (disordered phase) when temperature T increases from $T < T_C$ to $T > T_C$.

- ▶ One interesting aspect of 2D (and higher dimensional) Ising model is the second-order phase transition at a nonzero critical temperature T_C .
- ▶ There is a sharp transition from nonzero $\langle |M| \rangle$ (ordered phase) to $\langle |M| \rangle = 0$ (disordered phase) when temperature T increases from $T < T_C$ to $T > T_C$.
- According to the analytical solution of 2D Ising model, the mean magnetization is given by

$$\langle M(T) \rangle \sim (T - T_C)^{\beta} , \qquad (10)$$

where $\beta=1/8$ is a critical exponent. Similarly heat capacity satisfies

$$C_V(T) \sim |T_C - T|^{\alpha} , \qquad (11)$$

and the susceptibility

$$\chi(T) \sim |T_C - T|^{\gamma} , \qquad (12)$$

with $\alpha = 0$ (logarithmic divergence) and $\gamma = 7/4$.

▶ A second-order phase transition is characterized by a correlation length ξ that spans the whole system.

- ightharpoonup A second-order phase transition is characterized by a correlation length ξ that spans the whole system.
- ▶ When $T >> T_C$, spins orient randomly without correlation, and ξ is of the order of lattice spacing.

- ightharpoonup A second-order phase transition is characterized by a correlation length ξ that spans the whole system.
- ▶ When $T >> T_C$, spins orient randomly without correlation, and ξ is of the order of lattice spacing.
- ▶ Spins become more and more correlated as T goes down and approaches T_C , ξ increases significantly.

The divergent behavior of ξ near T_C is

$$\xi(T) \sim |T_C - T|^{-\nu} ,$$
 (13)

with u=1 given by the analytical solution.

- ightharpoonup A second-order phase transition is characterized by a correlation length ξ that spans the whole system.
- ▶ When $T >> T_C$, spins orient randomly without correlation, and ξ is of the order of lattice spacing.
- Spins become more and more correlated as T goes down and approaches T_C, ξ increases significantly.
 The divergent behavior of ξ near T_C is

$$\xi(T) \sim |T_C - T|^{-\nu}$$
, (13)

with $\nu=1$ given by the analytical solution.

ightharpoonup Because we are limited to a finite lattice, ξ will be proportional with the size of the lattice when phase transition occurs.

- A second-order phase transition is characterized by a correlation length ξ that spans the whole system.
- ▶ When $T >> T_C$, spins orient randomly without correlation, and ξ is of the order of lattice spacing.
- ▶ Spins become more and more correlated as T goes down and approaches T_C , ξ increases significantly.

The divergent behavior of ξ near T_C is

$$\xi(T) \sim |T_C - T|^{-\nu} , \qquad (13)$$

with $\nu=1$ given by the analytical solution.

- ▶ Because we are limited to a finite lattice, ξ will be proportional with the size of the lattice when phase transition occurs.
- ► Through finite size scaling relation we get the critical temperature that scales as

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu}$$
, (14)

where a is a constant and ν is defined in Eq. 13.

Outline

Introduction

Properties of 2D Ising model from its analytical solution. The solution of 2×2 Ising model. Properties of phase transition in 2D Ising model.

Monte Carlo methods for Ising model

Results and discussion

Results of 2×2 case Convergence and probability distribution Phase transition

Conclusions

▶ We use Metropolis algorithm based on the theory of Markov chain and detailed balance.

- We use Metropolis algorithm based on the theory of Markov chain and detailed balance.
- ► The transition rate between two microscopic states i and j should satisfy

$$\frac{W(j\to i)}{W(i\to j)} = \frac{w_i}{w_j} = e^{-\beta(E_i-E_j)}, \qquad (15)$$

with $w_i = \frac{1}{Z}e^{-\beta E_i}$

- We use Metropolis algorithm based on the theory of Markov chain and detailed balance.
- ► The transition rate between two microscopic states i and j should satisfy

$$\frac{W(j\to i)}{W(i\to j)} = \frac{w_i}{w_j} = e^{-\beta(E_i-E_j)}, \qquad (15)$$

with $w_i = \frac{1}{7}e^{-\beta E_i}$

$$W(j \to i) = T(j \to i)A(j \to i). \tag{16}$$

- We use Metropolis algorithm based on the theory of Markov chain and detailed balance.
- ► The transition rate between two microscopic states i and j should satisfy

$$\frac{W(j\to i)}{W(i\to j)} = \frac{w_i}{w_j} = e^{-\beta(E_i-E_j)}, \qquad (15)$$

with $w_i = \frac{1}{7}e^{-\beta E_i}$

•

$$W(j \to i) = T(j \to i)A(j \to i). \tag{16}$$

▶ We have no physical insight of $T(j \rightarrow i)$, so we simply assume that all $T(j \rightarrow i)$ are the same.

- ► We use Metropolis algorithm based on the theory of Markov chain and detailed balance.
- ► The transition rate between two microscopic states i and j should satisfy

$$\frac{W(j\to i)}{W(i\to j)} = \frac{w_i}{w_j} = e^{-\beta(E_i-E_j)}, \qquad (15)$$

with $w_i = \frac{1}{Z}e^{-\beta E_i}$

$$W(j \to i) = T(j \to i)A(j \to i). \tag{16}$$

▶ We have no physical insight of $T(j \rightarrow i)$, so we simply assume that all $T(j \rightarrow i)$ are the same.

$$\frac{A(j\to i)}{A(i\to j)} = e^{-\beta(E_i-E_j)}, \qquad (17)$$

which describes the probability of accepting a transition from j to i in our simulation.

```
Input: Size of the system L, temperature T, number of Monte
            Carlo cycles MC.
   Output: \langle E \rangle, \langle E^2 \rangle, \langle |M| \rangle, \langle M^2 \rangle, C_V and \chi.
 1 Initialize spin lattice a (in an ordered or random way);
2 Calculate E, E^2, |M|, M^2 of the initial lattice;
|E_{tot} = 0, E_{tot}^2 = 0, |M|_{tot} = 0, M_{tot}^2 = 0;
4 for i = 1 : i <= MC : i + + do
       for i = 1; i <= L; i + + do
            for k = 1: k <= L: k + + do
 6
                r = a uniformly distributed random number in [0, 1];
 7
                Flip spin at position (i, k):
 8
                Calculate the change of energy \Delta E:
                if \Delta E < 0 or r < \exp(-\Delta E/T) then
10
                     Accept this spin flip:
11
                    Update E, E^2, |M|, M^2;
12
13
                end
                else
14
                     Reverse this spin flip;
15
                end
16
                Add E, E^2, |M|, M^2 to their corresponding "tot"
17
                  variables:
18
            end
19
       end
20 end
21 Calculate \langle E \rangle, \langle E^2 \rangle, \langle |M| \rangle, \langle M^2 \rangle by dividing L^2MC;
22 Calculate C_V and \chi;
```

Algorithm 1: Metropolis algorithm for the simulation of Ising model.

Outline

Introduction

Properties of 2D Ising model from its analytical solution. The solution of 2×2 Ising model. Properties of phase transition in 2D Ising model.

Monte Carlo methods for Ising model

Results and discussion

Results of 2×2 case Convergence and probability distribution Phase transition

Conclusions

Results of 2×2 case

Table 1: Results for 2×2 case with temperature T = 1.0. Analytical results are provided for benchmark. Energy is in the unit of J.

MC	10	100	1000	10000	Analytical
$\langle E \rangle$	-7.2	-7.92	-7.986	-7.988	-7.98393
$\langle M \rangle$	3.75	3.975	3.9955	3.99625	3.99263
$\langle E^2 angle$	57.6	63.36	63.888	63.904	63.8714
$\langle M^2 angle$	14.7	15.87	15.977	15.9805	15.9732
C_V	5.76	0.6336	0.111804	0.095856	0.128329
<u> </u>	0.6375	0.069375	0.0129798	0.0104859	0.0320873

Convergence and probability distribution

Figure 1: Energy as a function of the number of Monte Carlo cycles for $T=1.0,\ L=20.$

Convergence and probability distribution

Figure 2: Magnetization as a function of the number of Monte Carlo cycles for $T=1.0,\ L=20.$

Convergence and probability distribution

Figure 3: Energy as a function of the number of Monte Carlo cycles for $T=2.4,\ L=20.$

Figure 4: Magnetization as a function of the number of Monte Carlo cycles for $T=2.4,\ L=20.$

Figure 5: Distribution of energy for T=1.0, L=20.

Figure 6: Distribution of magnetization for T = 1.0, L = 20.

Figure 7: Distribution of energy for T=2.4, L=20.

Figure 8: Distribution of magnetization for T=2.4, L=20.

Figure 9: Magnetization per spin as a function of temperature. Temperature step is 0.02 and the number of Monte Carlo cycles is 10^6 .

Figure 10: Energy per spin as a function of temperature. Temperature step is 0.02 and the number of Monte Carlo cycles is 10^6 .

Figure 11: Heat capacity per spin as a function of temperature. Temperature step is 0.02 and the number of Monte Carlo cycles is 10^6 .

Figure 12: Susceptibility per spin as a function of temperature. Temperature step is 0.02 and the number of Monte Carlo cycles is 10^6 .

By the following equation

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu},$$
 (18)

where a is a constant and $\nu=1$, we can estimate T_C for an infinitely large system from the results with finite L.

By the following equation

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu},$$
 (18)

where a is a constant and $\nu=1$, we can estimate T_C for an infinitely large system from the results with finite L.

▶ It is quite difficult to determine the critical temperature from previous figures because our resolution is not small enough.

By the following equation

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu},$$
 (18)

where a is a constant and $\nu=1$, we can estimate T_C for an infinitely large system from the results with finite L.

- ▶ It is quite difficult to determine the critical temperature from previous figures because our resolution is not small enough.
- From the peaks of χ we estimate that $T_C(L=60)=2.3$ and $T_C(L=140)=2.28$. Then we obtain

$$\begin{cases} a = 2.1, \\ T_C(L = \infty) = 2.265. \end{cases}$$
 (19)

By the following equation

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu},$$
 (18)

where a is a constant and $\nu=1$, we can estimate T_C for an infinitely large system from the results with finite L.

- ▶ It is quite difficult to determine the critical temperature from previous figures because our resolution is not small enough.
- From the peaks of χ we estimate that $T_C(L=60)=2.3$ and $T_C(L=140)=2.28$. Then we obtain

$$\begin{cases} a = 2.1, \\ T_C(L = \infty) = 2.265. \end{cases}$$
 (19)

Our estimation is close to the analytical result 2.269.

Outline

Introduction

Properties of 2D Ising model from its analytical solution The solution of 2×2 Ising model Properties of phase transition in 2D Ising model

Monte Carlo methods for Ising model

Results and discussion

Results of 2 imes 2 case Convergence and probability distribution Phase transition

▶ Our numerical results of L=2 case agrees well with the analytical values, and calculations of L=20 case to confirm that the system converges fast to equilibrium in the simulation.

- ▶ Our numerical results of L=2 case agrees well with the analytical values, and calculations of L=20 case to confirm that the system converges fast to equilibrium in the simulation.
- ▶ As expected the energy distribution centers around the mean value and a higher temperature leads to a broader distribution.

- ▶ Our numerical results of L=2 case agrees well with the analytical values, and calculations of L=20 case to confirm that the system converges fast to equilibrium in the simulation.
- As expected the energy distribution centers around the mean value and a higher temperature leads to a broader distribution.
- ▶ In phase transition, the behaviors of different physical quantities agree well with the analytical solution.

- ▶ Our numerical results of L=2 case agrees well with the analytical values, and calculations of L=20 case to confirm that the system converges fast to equilibrium in the simulation.
- ▶ As expected the energy distribution centers around the mean value and a higher temperature leads to a broader distribution.
- ▶ In phase transition, the behaviors of different physical quantities agree well with the analytical solution.
- ▶ From the peak of susceptibility we estimate that the critical temperature for infinitely large lattice is 2.265, which is close to the analytical value 2.269.

- ▶ Our numerical results of L=2 case agrees well with the analytical values, and calculations of L=20 case to confirm that the system converges fast to equilibrium in the simulation.
- As expected the energy distribution centers around the mean value and a higher temperature leads to a broader distribution.
- ▶ In phase transition, the behaviors of different physical quantities agree well with the analytical solution.
- ▶ From the peak of susceptibility we estimate that the critical temperature for infinitely large lattice is 2.265, which is close to the analytical value 2.269.
- ► This work provides a powerful tool for the simulation of 2D Ising model, which can be extended to three-dimensional case.

References

Morten Hjorth-Jensen.

Overview of course material: Computational physics.

https:

//compphysics.github.io/ComputationalPhysicsMSU/doc/web/course. Accessed May 2, 2018.

Lars Onsager.

Crystal statistics. I. a two-dimensional model with an order-disorder transition. *Phys. Rev.*, 65:117–149. Feb 1944.

R.K. Pathria and Paul D. Beale.

12 - Phase transitions: Criticality, universality, and scaling. In R.K. Pathria and Paul D. Beale, editors, *Statistical Mechanics (Third Edition)*, pages 401 – 469. Academic Press, Boston, third edition edition, 2011.

R.K. Pathria and Paul D. Beale.

13 - Phase transitions: Exact (or almost exact) results for various models. In R.K. Pathria and Paul D. Beale, editors, *Statistical Mechanics (Third Edition)*, pages 471 – 537. Academic Press, Boston, third edition edition, 2011.

Acknowledgment

I am grateful for the sincere guidance from Prof. Morten Hjorth-Jensen.

Thanks for your attention! Any question?