

DM280e

Specifications

Table of Contents

TABLE OF CONTENTS	1
SECTION 1: SPECIFICATION CONDITIONS	
SECTION 2: SPECIFICATIONS	
SECTION 3: REVISION HISTORY	
SECTION 4: CONTACT US	_

Section 1: Specification Conditions

This document contains the specifications and supplemental information of DM280e. Specifications are the standards against which the DM280e is tested. Upon leaving the factory the DM280e meets these specifications. Supplemental and typical values are non-warranted, apply at 23°C, and are provided solely as useful information.

Section 2: Specifications

Number of MIPI RFFE channels	2
MIPI RFFE terminals	SCLK0 and SDATA0 SCLK1 and SDATA1
Logic High of RFFE Channels	VIO
Impedance	75 Ohms
Communication Interface	PCIe
Half-speed read Access	Yes
Configurable Arbitrary Clock	32 KHz to 26 MHz
Configurable VIO Voltage Supply	1.5 - 3.8 volts ± 10%
Slave Emulator	Yes

Table 1: Specifications of DM280e

Note:

- 1. Voltage levels are common to all channels.
- 2. The frequency is common to all channels.
- 3. The default delay for the DUT (Device-Under-Test) to send data during retrieve operation is double of the configured frequency.

Supplemental Specifications

Bus Active Data Transmission Timing Specification

Figure 2: Bus Active Data Transmission Timing Specification

Symbol	Description	Half Spee	ed Device	Full Spee	d Device	Units
Cymbol	Description	Min	Max	Min	Max	Omis
T _D	Time for Data Output Valid from SCLK rising edge	0	22	0	10.25	ns
T _{SDATAOTR}	SDATA Output Transition (Rise/Fall) Time (Master only)	N/A	N/A	3.5	6.5	ns
SDATAOTR	SDATA Output Transition (Rise/Fall) Time (Slave only)	2.1	10	2.1	6.5	ns

Table 2: SDATA Output Timing Characteristics

1. In full-speed operation, DM280e takes 2.65ns of T_D , which falls between the range of 0 and 10.25ns.

2. In half-speed operation, DM280e takes 5.50ns of $T_{\text{\scriptsize D}}\text{,}$ which falls between 0 and 22ns.

Agilent Technologies MON APR 08 14:54:14 2013 1.00V/ 2 1.00V/ 3 1.25V 87.80g 10.00g/ Trig'd? £ $\Delta Y(1) = -4.70300V$ $\Delta X = 5.50$ ns $1/\Delta X = 181.82MHz$ X X1 76.40ns X2 81.90ns Mode Source ◆ X1 X2

Manual

3. Full-speed operation, T_{SDATAOTR} is 3.65ns, which falls between 3.5 and 6.5ns.

Clock Input Timing Requirements

Figure 3: Received Signal Clock Constraint

Symbol	Description	Half Speed Device		Full Speed Device		Units	
Symbol	Description	Min	Max	Min	Max	Offics	
T _{SCLKIH}	SCLK Input High Time	24		11.25		ns	
T _{SCLKIL}	SCLK Input Low Time	24		11.25		ns	

Table 3: Clock Input Timing Requirements

1. In full-speed operation, SCLK input high time is 12.30ns which is higher than 11.25ns.

2. In full speed operation, SCLK input low time is 12.30ns, which is higher than 11.25ns.

3. During half speed operation, SCLK input high time is 27.20ns, which is higher than 24ns.

4. During half speed operation, SCLK input low time is 29.30ns, which is higher than 24ns.

Data Setup and Hold Time Requirements

Figure 4: Bus Active Data Receiver Timing Requirements

Symbol	Description	Half Spee	ed Device	Full Spee	ed Device	Units
Symbol	Description	Min	Max	Min	Max	Units
T _S	Data setup time	2		1		ns
T _H	Data hold time	5		5		ns

Table 4: Data Setup and Hold Timing

1. Full speed condition, T_S is 12.50ns, which is higher than 1ns.

2. Half-speed condition, T_S is 29.40ns, which is higher than 2ns.

3. Full-speed condition, T_{H} is 15.20ns, which is higher than 5ns.

4. Half speed condition, T_{H} is 34.80ns, which is higher than 5ns.

Agilent Technologies MON APR 08 15:20:46 2013 1 1.00V/ 2 1.00V/ 3 20.00g/ Trig'd? £ 1 371.6g 1.25V 2 $\Delta X = 34.80$ ns 1/∆X = 28.736MHz $\Delta Y(1) = -100.00 \text{mV}$ ◆) Mode Manual X2 379.60ns X1 344.80ns Source Χ X1 X2

Clock Driver Output Waveform Constraints

Figure 5: Clock Driver Waveform Constraints

Symbol	Description	Half Spee	ed Device	Full Spee	ed Device	Units
Symbol	Description	Min	Max	Min	Max	Units
T _{SCLKOH}	Clock Output High Time	24		11.25		ns
T _{SCLKOL}	Clock Output Low Time	24		11.25		ns
T _{SCLKOTR}	Clock Output Transition (Rise/Fall) Time ¹	3.5	10	3.5	6.5	ns
T _{SCLKDCH}	Clock Output Duty Cycle, High Time ^{2,3}	45	55	45	55	%
T _{SCLKDCL}	Clock Output Duty Cycle, Low Time ^{2,3}	45	55	45	55	%

Table 5: Output Timing Characteristics

1. Rise time for half speed device is 3.9ons, which is between 3.5ons and 10.0ons.

2. Fall time for half speed device is 4.00ns, which is in between 3.50ns and 10.00ns.

3. Rise time for full speed device is 4.25ns which is in between 3.5ns and 6.5ns.

4. Fall time for full speed device is 4.15ns, which is in between 3.5ns and 6.5ns.

Section 3: Revision History

|--|

Section 4: Contact Us

To obtain service, warranty or technical assistance, please contact Aemulus.

Aemulus Corporation Berhad Krystal Point, B-2-04, B-2-05, B-2-06 & B-2-07 303, Jalan Sultan Azlan Shah, 11900 Penang, Malaysia

Tel: +604 6446399 Fax: +604 6466799

Web: www.aemulus.com
Email: enquiry@aemulus.com

Product specifications and descriptions in this document are subject to change without prior notice.