

# Introduction to System-on-Chip and its Applications

**Display System** 





### **DISPLAY Systems**

- Liquid Crystal Display LCD
- **Light Emitting Diode LED**
- Organic Light Emitting Diode OLED



### **LCD** and **OLED** for **TV**







### Phase change of liquid crystal







# LCD(Liquid Crystal Display)

- 1. Light source (can't display without light source)
- 2. Light polarization plate
- 3. Bottom glass
- 4. Liquid Crystal
- 5. Upper glass
- 6. Depolarization plate





### Twist Nematic (TN)

How Liquid Crystal Bring Light to top of the display? Twist of liquid crystal of 90 degree to bring light to top polarity plane

Field OFF





# In-Plane-Switch(IPS) Mode LCDs

- LD remains flat steady when field is off
- •LD twists in flat when field is on(using voltage to control rotate angle)
- Good Viewing angle





# Vertical Alignment (VA) Mode LCDs

- LD remains steady up when field is off
- LD twists in flat when field is on(using voltage to control rotate angle)
- Good Viewing angle



# Comparison of Liquid Crystal Modes

#### TN





Strongly dependent on viewing angle

- 〇 低驅動電壓
- X 視角窄小(low-end display)

#### **IPS**





Slightly dependent on viewing angle

- 廣視角(High end display)
- X液晶反應速度慢
- X 畫面對比低
- X 畫面品質差

#### VA





Slightly dependent on viewing angle

- 畫面對比高(high end display)
- ○廣視角
- 〇 液晶反應速度快
- 彩色畫面顯像佳



# **TFT(Thin Film Transist**

Thin tilm transistor (MOSFET)

- Relatively thin compared to the plane of the device
- A FET on non-conducting substrate such as glass
- Semiconductor is amorphous (low mobility) or polysilicon
- (large device to device variation)
- transparent electrodes, such as indium tin oxide (ITO)



【圖一】 薄膜電晶體-液晶顯示器結構

# **TFT LCDs Equivale**

#### LCD Driver IC



【圖一】 薄膜電晶體-液晶顯示器結構







- Semiconductor light source (Self-luminous)
- Red, Green and Blue LED
- Electrons combine within holes(forward bias)
- Indirect bandgap can't emit light (Silicon)
- Direct bandgap-Release energy in the form of photons (Gallium Arsenide)
- Color depends on the energy gap of the semiconductor







### LED(light emitting diode)

#### ■ Indirect/Direct Bandgap



Indirect bandgap



Direct Band Gap

Direct bandgap





- Red Aluminium Gallium arsenide(AlGaAs)
- Green Gallium Phosphide(GaP)
- Blue Zinc selenide (ZnSe) or Indium Gallium Nitride (InGaN)
- White mix R,B,G three lights
- Phosphor-based white LED
  - Coating blue LED with phosphor of different colors







### White LED types

- White LED
- White mix R,B,G three lights
- Phosphor-based white LED
  - coating blue LED with phosphor of different colors.

|     | Blue LED + Yellow<br>Phosphor | UVLED + RGB<br>Phosphor | RGB 3 Chip               |
|-----|-------------------------------|-------------------------|--------------------------|
| 架構  | Phosphor Chip  Blue           | Phosphor Chip           | R G B                    |
| 晶片  | Blue: InGaN                   | UV: InGaN               | R,G: AlInGaP<br>B: InGaN |
| 演色性 | 80                            | 90                      | 90                       |

# MOCVD metalorganic chemical vapor deposition

- Epitaxial growth of materials-from the surface reaction of organic and metal hydrides containing the required chemical elements.
- MOCVD- the growth of crystals is by chemical reaction
- Not in a vacuum, but from the gas phase at moderate pressures (2 to 100 kPa).
- The dominant process for the manufacture of laser diodes, solar cells, and LEDs.

  Hydride Reaction Char



# MOCVD metalorganic chemical vapor deposition

■ indium phosphide could be grown in a reactor on a substrate by introducing Trimethylindium ((CH<sub>3</sub>)<sub>3</sub>In) and phosphine (PH<sub>3</sub>).







### **MicroLED**

- Combine Thin Film Transistor and LED
  - Size around1~10µm
  - Fabricate direct bandgap semiconductor

#### Comparison









#### Organic Light-Emitting Diode(OLED)

- Self-luminous
- Wide viewing angle
- Low power consumption
- Thin and light, flexible







#### OLED elements

- Metal Cathode
- Electron transport layer
- Organic emitters
- Hole injection layer
- Anode



■ OLED can emit the three primary colors of RGB, which can replace the LCD screen:

Backlight

- Liquid Crystal
- Color gel



Fig. OLED structure



photon



# **OLED Lighting 4 stages**

- 1. Injection of negative (electron) and positive (hole) charges at the electrode
- 2. Migration into the bulk material till they meet each other
- 3. **Formation Excitons** of bound couples of electrons and holes, named excitons.
- 4. Radiative recombination of the excitons will generate light giving electroluminescence



### **Property**

#### Organic

- The molecular structure of OLED contains organic matter
  - benzene ring and a compound of metal atoms and other elements (C, N,O,H).
- organometallic compounds
  - composed by a metal coordinated by organic ligands
- organometallic molecules stacked into thin film bendable
- molecular orbitals forms valence and conduction wavefunctions
- good charge transport and emissive properties



Fig. Alq<sub>3</sub> commonly used in small molecule OLEDs



# **OLED Color Property**

#### OLED color depends on

- Types of molecule
- Structure of the benzene ring

#### 高分子聚合物



#### R<sup>1</sup>和 R<sup>2</sup>接上氫與不同分子

$$R'=H$$
  
 $R^2=H$ 

$$R^{1} = \mathcal{R}^{2} = H$$

$$R^{1}=H$$

$$R^{2}=$$







#### pDPA

#### 變成發出不同藍光的化合物











pNPA



# **Light Emitting Mode**

#### OLED light emitting mode:

Fluorescent (poor luminous efficiency and short life) 1<sup>st</sup> generation Phosphorescent => PHOLED 2<sup>nd</sup> generation



A selection of first-generation OLED emitters based on fluorescent molecules.



The second generation of green OLED emitters is based or phosphorescent molecules.

Advanced Materials, Volume: 33, Issue: 9, First published: 18 January 2021, DOI: (10.1002/adma.202005630) https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202005630

A Brief History of OLEDs—Emitter Development and Industry Milestones



# **OLED Pros. & Cons.**

| Pros.                                      | Cons.                                                                  |  |
|--------------------------------------------|------------------------------------------------------------------------|--|
| Self-luminous                              | Poor sunlight readability                                              |  |
| High viewing angle (about >160°)           | Insufficient life of light-emitting elements (color decay)             |  |
| Fast response time (theoretical about 1µs) | Lack of mass production and large-<br>size panel technology, expensive |  |
| Good flexibility and bendable              |                                                                        |  |
| Thin and light panel (2 mm)                |                                                                        |  |



### PMOLED and AMOLED

#### OLED drive modes can be divided into:

- Passive-matrix OLED, PMOLED
  - Supply power to specific positive and negative poles from an external power source, and the corresponding pixels will be lit.
- Active-matrix OLED, AMOLED
  - The OLED is controlled by the Thin-Film Transistor in the structure.







# **Touch Panel Resistive Type**

- Voltage detection (Indium tin oxide (ITO))
- Resistance changes when the finger touches top plastic /Digital and analog
- 4, 5, 6, 7 or 8-wired models
- Film/Glass > Film/Film and Film/Plastic
- Market share: more than 60%









# **Touch Panel Capacitive Type**

- Using the capacitance change produced by the electrostatic combination between the electrode and the human body
- the induced current can be used to detect its coordinates and improve the resistance-type non-scratch characteristics.
- Market share: about 24%
- Good clarity and durability, can only respond to the touch of a finger or special tools.







# Resistive v.s Capacitive

|      | 電阻式   | 電容式   |  |
|------|-------|-------|--|
| 透光度  | 80%   | 91.5% |  |
| 硬度   | ЗН    | 7Mohs |  |
| 準確率  | 98.5% | 99%   |  |
| 反應時間 | 20ms  | 3 ms  |  |
| 操作高溫 | 50 C  | 70 C  |  |
| 抗 UV | 無     | 有     |  |
| 起始力量 | 50mg  | 0 mg  |  |



# **LCD/OLED/Micro LED Comparison**

| T.(T)             |               |                | N              |  |
|-------------------|---------------|----------------|----------------|--|
| Technology        | TFT LCD       | OLED           | Micro LED      |  |
| Light Source      | LCD backlight | Self emmit     | Self emmit     |  |
| Cost              | Low           | Medium         | High           |  |
| Power Consumption | High          | 60%-80% of LCD | 30%-40% of LCD |  |
| Brightness        | Low           | High           | High           |  |
| Efficiency        | Low           | Medium         | High           |  |
| Lifespan          | Long          | Medium         | Long           |  |
| Contrast          | Low           | High           | High           |  |
| Response Time     | ms            | μs             | ns             |  |





### Conclusion

- Lightweight, flexible, self-luminous and other characteristics, making OLED has various development possibilities.
- The high price keeps OLED from entering the market for a long time.
- Taiwan does not invest in the OLED industry.
- OLED is still one of the future trends, but we must first overcome the problems of burn-in, color decay and yield.



#### References

- Wikipedia: http://0rz.tw/6jMBJ
- 點子生活: http://0rz.tw/6Hws6
- 彰師大藍光實驗室: http://0rz.tw/Hj6nA
- PTT高手TanIsVaca: http://tinyurl.com/o3h79fb
- DigiTimes: http://orz.tw/n066U

http://0rz.tw/3ESTJ

- 烙印圖片1: http://0rz.tw/mBZkz
- 烙印圖片2: http://0rz.tw/Shd5g
- LG官方網站: http://lg.com
- 科技產業資訊室: http://0rz.tw/pD7BH
- Pchome電子報: http://0rz.tw/WtrsL





#### References

- http://arstechnica.com/gadgets/2013/04/from-touchdisplays-to-the-surface-a-brief-history-of-touchscreentechnology/
- http://www.cammaxlimited.co.uk/what-are-the-differenttypes-of-touchscreen/
- http://en.wikipedia.org/wiki/Touchscreen
- http://www.higgstec.com.tw/products/project\_capacitive\_t ouch\_panel.htm
- http://www.higgstec.com.tw/products/surface\_capacitive\_t ouch\_panel.htm
- http://www.higgstec.com.tw/products/5-wire.htm
- file:///C:/Users/lab-923/Downloads/etd-0911109-023800.pdf



#### References

- http://zh.wikipedia.org/wiki/%E8%A7%B8%E6%8E%A7%E 5%BC%8F%E8%9E%A2%E5%B9%95
- http://www.eettaiwan.com/SEARCH/SUMMARY/XINZHI/DATE/TOUCH+PANEL.HTM
- http://www.prweb.com/releases/2014/04/prweb11723360.h tm
- http://www.dgtruetouch.com/UpLoadpic/20091027181654.pdf
- http://140.125.49.24/greentech/data/download/01/11012Mi crosoft%20PowerPoint%20-%20Touch%20Panel%20Market%20and%20Technology% 20I(1025%202010)%201.pdf
- http://cc.shu.edu.tw/~clchen/courses/100(2)/IO/report/tou chpad.pdf