EEL7052-Sistemas Lineares

Avaliação 3 - Semestre 2015/2 - 03/12/2015 Departamento de Engenharia Elétrica e Eletrônica - UFSC

Profs. Bartolomeu F. Uchôa Filho e Márcio Holsbach Costa

- 1) Seja uma associação em cascata de dois sistemas discretos lineares e invariante no tempo, na qual x[n] é o sinal de entrada, w[n] é a saída do primeiro sistema, y[n] é a saída do segundo sistema e h₁[n]=u[n]-u[n-4] e h₂[n]=u[n+3]-u[n-1] são, respectivamente, as respostas ao impulso de cada um dos sistemas (sendo h₁[n] sujeito a x[n]):
 - a) Determine se os sistemas h₁[n] e h₂[n] são BIBO estáveis (justifique);
 - b) Classifique h₁[n] e h₂[n] quanto à causalidade e memória (justifique);
 - c) Determine analiticamente (no tempo discreto) e esboce w[n] para $x[n]=(-1)^nu[n]$;
 - d) Esboce a resposta ao impulso do sistema em cascata (justifique);
 - e) Determine as funções de transferência $H_1[z]$, $H_2[z]$ e H[z] (associação em cascata) e a região de convergência de cada uma delas, se existirem.
- 2) Para o sistema y[n]-(1/2)y[n-1]=x[n]-(1/3)x[n-1] para $n\ge 0$, $x[n]=(1/2)^nu[n]$ e y[-1]=1, determine a resposta de estado nulo, a resposta de entrada nula e a resposta global.
- 3) Assumindo que o sistema H(z) é causal: $H(z) = \frac{1}{\left(1 + \frac{1}{2}z^{-1}\right)(1 2z^{-1})(1 + 3z^{-1})}$
 - a) Apresente o diagrama de polos e zeros (justifique)
 - b) Apresente a região de convergência (justifique)
 - c) Determine se o sistema é BIBO estável (justifique)
 - d) Determine a resposta ao impulso

FORMULÁRIO Transformadas z e prop<u>riedades</u>

1 ransjorn				
x(n)	$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$			
δ(n-m)	z-m			
u(n)	z/(z-1) RC: z >1			
n.u(n)	z/(z-1) ² RC: z >1			
n².u(n)	z(z+1)/(z-1) ³			
$\gamma^n u(n)$	z/z-γ RC: z > γ			
$\gamma^n u(-n)$	γ /(γ -z) RC: z < γ			
γ ⁿ⁻¹ u(n-1)	1/(z-γ)			
n.γ ⁿ u(n)	γ z/(z-γ) ²			
γ ⁿ cos(βn).u(n)	$\frac{z(z- \gamma \cos(\beta))}{z^2-(2 \gamma \cos(\beta))z+ \gamma ^2}$			
γ ⁿ sen(βn).u(n)	$\frac{z y sen(\beta)}{z^2-(2 y cos(\beta))z+ y ^2}$			

omínio do tempo		Domínio de z	
x(n)		∞	
		$X(z)=\sum x(n) z^{-n}$ $n=-\infty$	
x(n-m)		z ^{-m} X(z)	
$x_1(n) * x_2(n) = \sum_{m=-\infty}^{\infty} x_1(m) x_2(n-m)$		$X_1(z).X_2(z)$	
Transformada z unilateral			
x(n)	X_{i}	$u(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$	
x(n-1)	$z^{-1}X_u(z) + x(-1)$		
x(n-2)	$z^{-2}X_u(z) + z^{-1}x(-1) + x(-2)$		
Soma dos termos de uma PG	$S_N = \frac{a_1 \left(1 - q^N\right)}{1 - q}$		

Pares de transformadas de Fourier

x(t)	Χ(jω)
$\delta(t)$	1
1	2πδ(ω)
u(t)	$\pi\delta(\omega) + 1/(j\omega)$
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
$sen(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
ret(t/τ)	τ .sinc($\omega \tau/2$)
$(W/\pi).sinc(Wt)$	ret(ω/2W)
$e^{-at} u(t)$, a>0	1/(a+jω)
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0), \omega_0 = \frac{2\pi}{T}$

Propriedades da transformada de Fourier

x(t)	X(j\omega)
y(t)	Y(j\omega)
a.x(t)+b.y(t)	$a.X(j\omega)+b.Y(j\omega)$
$x(t-\tau)$	$e^{-j\omega\tau}.X(j\omega)$
$e^{jWt}.x(t)$	$X(j(\omega-W))$
$x^*(t)$	X*(-jω)
x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
x(t)*y(t)	$X(j\omega).Y(j\omega)$
x(t).y(t)	$(1/2\pi).X(j\omega)*Y(j\omega)$
$\frac{d}{dt}x(t)$	$j\omega.X(j\omega)$

Expansão em Frações Parciais	SFTD	TFTD
$K_i = \frac{N(z)}{D(z)}(z - p_i)$	$x[n] = \sum_{n=1}^{N-1} D_n e^{jr\Omega n}$, 11 12
12=p1	r=0	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$
$K_{1r} = \frac{N(z)}{D(z)} (z - p_1)^r \Big _{z=p_1}$	$D_r = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jr\Omega n}$	$X(\Omega) = \sum_{n=0}^{\infty} x[n]e^{-j\Omega n}$
$K_{1 r-j} = \frac{1}{i!} \frac{d^{j}}{dz^{j}} \frac{N(z)}{D(z)} (s - p_{1})^{r}$	$ \Omega = 2\pi / N $	$A(S2) - \sum_{n=-\infty}^{\infty} x[n]e$