1. <u>Deep Learning for Computer Vision</u>

(ANN Architecture)

MNIST images Classification

(multi class classification, grayscale images)

Male Female Classification

(binary classification, grayscale images)

2. Deep learning for computer vision

(CNN Architecture)

Applying techniques are:

- Data Augmentation
- Using Pre-trained model
- Feature extraction with a pretrained model
- Fine-tuning a pretrained model
- MNIST images Classification

(multi class classification, grayscale images)

Cats vs. Dogs Classification

(binary classification, rgb images)

skin_cancer_malignant_vs_benign
(binary classification, rgb images)

- Sign Language Recognition (ASL)
 (multi class classification, rgb images)
- Male Female Classification (binary classification, grayscale images)
- Flowers Classification (variation of classes, Mixed dataset) (multi class classification, rgb images)

3. HeatMaps using pre-trained model

- elephant_heatmaps_with_vgg16
- heatmaps_with_InceptionV3

4. Images Segmentation

Cats vs. Dogs Datasets
 (binary classification, rgb images)

5. Object Detection using Yolov5

Create own datasets and trained model

Classification and regression

- Classifying movie reviews: A binary classification example (IMDB Datasets)
- classifying newswires: A multiclass classification example (The Reuters dataset)
- Predicting house prices: A regression example (The Boston housing price dataset)

Deep learning for time series

Jena weather dataset (jena_climate_2009_2016.csv)

Applying Techniques:

- Dense Network
- LSTM Network
- RNN Network

Deep learning for text

IMDB movie reviews data

(binary classification)

Two Approaches:

- Processing words as a set: The bag-of-words approach
- Processing words as a sequence: The sequence model approach

Implementing DeepDream in Keras

- ❖ Neural style transfer
- ❖ A schematic GAN implementation

Compiled by:

Engr Saeed