ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ ПОИСКА КРАТЧАЙШИХ ПУТЕЙ НА ГРАФАХ

Выполнил: Ткаченко Г.С.

Руководитель: Корнеев Г.А.

13 мая 2015 г.

Университет ИТМО

ПРОБЛЕМА И ЗАДАЧА

РЕШАЕМАЯ ПРОБЛЕМА

- · Недостаточное разнообразие параллельных алгоритмов для поиска кратчайших путей
- · Низкая производительность отдельных алгоритмов на специфичных графах

ПОСТАНОВКА ЗАДАЧИ

- · Эффективное применение алгоритмов поиска кратчайшего пути на **многопроцессорных** архитектурах
- · Разработка алгоритмов для поиска пути от одной вершины до всех (one-to-many)
- Разработка алгоритмов для поиска пути кратчайшего расстояния между каждой парой вершин (many-to-many)

3

ЗАДАЧА ONE-TO-MANY

ОБЗОР РЕШЕНИЙ

- Алгоритм Беллмана-Форда
 - · Классический
 - · На основе обхода в ширину
- Алгоритм Дейкстры
- Алгоритм Джонсона (Дейкстра с потенциалами)
- · Алгоритмы А* и D*

ПАРАЛЛЕЛЬНЫЙ БЕЛЛМАН-ФОРД

Три подхода

- · Параллелизация по ребрам вершины
- Параллелизация по всем ребрам
- Использование параллельного обхода в ширину

ПАРАЛЛЕЛИЗАЦИЯ ПО РЕБРАМ ВЕРШИНЫ

.

ПАРАЛЛЕЛИЗАЦИЯ ПО ВСЕМ РЕБРАМ

ПАРАЛЛЕЛИЗАЦИЯ ПО ВСЕМ РЕБРАМ

ИСПОЛЬЗОВАНИЕ ПАРАЛЛЕЛЬНОГО ОБХОДА В ШИРИНУ

ЗАДАЧА MANY-TO-MANY

АЛГОРИТМ ФЛОЙДА

- · В некоторых случаях классический алгоритм оказывается медленнее наивных алгоритмов
- · Для каждой вершины можно использовать любой алгоритм поиска кратчайшего пути

НАИВНАЯ ПАРАЛЛЕЛЬНАЯ ВЕРСИЯ

```
1: procedure ALLPAIRSPAR1(G)
      return HANDLEVERTICES(G, 0, |G.vertices|)
2:
3.
  procedure HANDLEVERTICES(G, startV, endV)
      if endV — startV < threshold then
5.
         run Bellman-Ford for [startV, endV)
6.
      else
7:
         midV \leftarrow (startV + endV)/2
8.
         fork2(
9:
             HANDLEVERTICES(G, startV, midV),
             HANDLEVERTICES(G, midV, endV));
```

АЛГОРИТМ ДЛЯ СОЦИАЛЬНЫХ ГРАФОВ

- · Основан на теории "Шести рукопожатий"
- · Работает не неориентированных невзвешенных социальных графах
- · Использует идею динамического программирования

динамика для большего множества

- · mask[u][i] множество вершин, расстояние от которых до и равно i
- · calc[u][i] не более i
- · Для вершины и имеют смысл расстояния [d K, d + K], где d = dist[base][u]

$$mask[v][i] = \neg calc[v][i-1] \land \bigvee_{\exists (u,v) \in E} mask[u][i-1]$$
 (1)

$$calc[v][i] = calc[v][i-1] \lor mask[v][i]$$
 (2)

СРАВНЕНИЕ ПАРАЛЛЕЛЬНЫХ ВЕРСИЙ БЕЛЛМАНА-ФОРДА

Идея алгоритма	Полный			Дере	ВО	Решетка	
	TS	+	+-	0.5	1	+	+-
Ребра вершины	2.43	4.65	∞	116.31	9.04	5.49	13.40
Все ребра	5.17	0.18	10.84	3.59	3.08	5.92	7.10
Обход в ширину	44.63	0.37	23.55	0.44	0.31	4.42	0.58

Таблица: Классические графы

Идея алгоритма	Разреженный			Плотный		
	0.5+	0.5-	0.96+	0.5+	0.5-	0.96+
Ребра вершины	∞	∞	24.35	∞	∞	5.01
Все ребра	2.77	14.68	2.42	0.48	6.38	0.46
Обход в ширину	0.98	22.59	0.76	0.60	10.25	0.71

Таблица: Случайные графы

РАССТОЯНИЕ МЕЖДУ КАЖДОЙ ПАРОЙ ВЕРШИН СОЦИАЛЬНОГО ГРАФА

Алгоритм	"Twitter graph"
Стандартная параллельная версия	427.217
Алгоритм для социальных графов	210.322

Таблица: Сравнение алгоритмов

