ゼミノート #3 \mathcal{M}_q の構成方針

七条彰紀

2018年5月29日

以降は, curve と言えば

smooth, complete, reduced and connected scheme of dimension 1 over $\mathbb C$

のことである. [2] II, 6.7 より,以上の意味での curve は projective である. (geometric) genus of curve は 通常 g で表す.

1 Moduli spaces we'll be concerned with

以降で考えていく moduli space を簡単に紹介する.

1.1 \mathcal{M}_g :: the coarse moduli space of curves of genus g.

これまで議論してきた.まだ存在は示されていない.trivial automorphism しか持たない curve に対応する M_g の点全体を M_g^0 と書くことにする.これは M_g の開集合であることが知られている.

1.2 $\mathcal{M}_{g,n}$:: the coarse moduli space of pairs of curve of genus g and n distinct points.

 $C_g = \mathcal{M}_{g,1}$ もここで述べる.

corve of genus g :: C と C の n 個の互いに異なる点 :: p_1,\ldots,p_n を合わせた順序組 (C,p_1,\ldots,p_n) の moduli space を $\mathcal{M}_{g,n}$ と呼ぶ.

[1] によれば、圏点をつけた条件(互いに異なる点の順序組)は、 $\mathcal{M}_{d,g}$ の compactification を考える上で必要である。また、curve :: C と、互いに異なるとは限らない点の順序無し組の組 $(C,\{p_1,\ldots,p_n\})$ の coarse moduli space を構成することも出来る.

 (C, p_1, \ldots, p_n) から n 点 p_1, \ldots, p_n の情報を忘れると、標準的な射 $\mathcal{M}_{g,n} \to \mathcal{M}_g$ が得られる.

 $\mathcal{M}_{g,n}$ は \mathcal{M}_g に比べて次元が n 大きく,元の \mathcal{M}_g の情報を得づらいという問題がある.しかし, $\mathcal{M}_{g,n}$ はしばしば自然に現れるので,文脈によっては大きな意味を持つ.

1.3 $\mathcal{P}_{d,g}$:: the coarse moduli space of pairs of curve of genus g and line bundle of degree d.

 $\mathcal{P}_{d,g}$ は、curve of genus g とその上の line bundle of degree d の組 (C,\mathcal{L}) から \mathcal{L} の情報を忘れれば、標準的な射 $\phi: \mathcal{P}_{d,g} \to \mathcal{M}_g$ が得られる.

■ 次の同型が存在する.

$$\mathcal{P}_{d,g} \cong \mathcal{P}_{d+(2g-2),g}, \qquad \mathcal{P}_{d,g} \cong \mathcal{P}_{-d,g}$$

 $(C,\mathcal{L}) \mapsto (C,L\otimes K_C), \qquad (C,\mathcal{L}) \mapsto (C,L^{-1}).$

このことと Exercise 2.6 から、互いに同型にならない $\mathcal{P}_{d,g}$ は、各 g に対して丁度 g-1 個ある $^{\dagger 1}$.

$$\mathcal{P}_{0,g}, \mathcal{P}_{1,g}, \dots, \mathcal{P}_{d-1,g}.$$

 $\mathcal{P}_{d,g}$ のうち、 $\mathcal{P}_{g-1,g}$ は "Theta characteristic"と呼ばれるものを付加構造とした moduli space である. 参考文献: Gavril Farkas "Theta characteristics and their moduli" †2

2 Constructions of \mathcal{M}_q

2.1 Generally Steps of Construction of Moduli Space.

moduli space の構成方法はある程度決まった手順がある. ここではそれを述べる.

まず、対象 X と付随する情報 (extra data) の組たちを、何らかの parameter space :: W の点に対応させる。parameter space は対象と付加情報の組そのもの(同値類でなく)が成す空間である。例えば平面上の原点を通る直線の parameter space は \mathbb{P}^1 である。1 つの対象の同型類 [X] に対応する W の点たちが成す集合 $S_{[X]}$ を観察する。この集合 $S_{[X]}$ を何らかの群 G の W への作用に拠る軌道と考えることが出来れば $(S_{[X]} = Gw$ なる $w \in W$ が存在すれば),求める moduli space は商空間 W/G として実現できる。

まとめると、moduli space を構成する際には以下の4つの要素を中心に考えることに成る.

Extra Data 分類対象 (Object) に付随させる情報.

Parameter Space 組 (Object, Extra Data) が成す空間.

Group Parameter Space に作用し、1 つの Object に対応する点の集合が 1 つの軌道である群.

例 2.1

([3]) k :: field とし,moduli space of hypersurface of degree d in \mathbb{P}^n_k を構成しよう。H :: hypersurface of degree d in \mathbb{P}^n_k は,次のような形の $k[x_1,\ldots,x_n]$ の斉次 d 次多項式で定まる.

$$\sum_{|\alpha|=d} a_{\alpha} x^{\alpha}.$$

ただし α は多重添字である.そして多項式はその係数 a で定まる.a は $k^{\oplus N}(N:=\binom{n+d}{d})$ の元である.した がって H は $\mathbb{A}^N_k(\operatorname{Parameter Space})$ の点 $(a_{(d,0,\dots,0)},\dots,a_{(0,\dots,0,d)})$ に対応する.

 $^{^{\}dagger 1}$ \mathbb{Z} を $s:d\mapsto d+(2g-2)$ と $t:d\mapsto -d$ の二つの自己同型で生成される群で割る. s が生成する群は $(2g-2)\mathbb{Z}(<\mathbb{Z})$ と同型で、t が生成する群は $\mathbb{Z}/2\mathbb{Z}$ と同型。よって $\#(\mathbb{Z}/(2g-2)\mathbb{Z}\times(\mathbb{Z}/2\mathbb{Z})))=(2g-2)/2=g-1$.

^{†2} https://arxiv.org/abs/1201.2557

しかし、a に正則行列 $g \in GL_{n+1}(k)$ (Group) を作用させた a' も、H と同型な hypersurface に対応する (g の作用のさせ方はここで述べない). 逆に H の同型な hypersurface に対応する \mathbb{A}^N の点の全体は, $GL_{n+1}(k)$ による a の軌道として得られる.よって $\mathbb{A}^N_k/GL_{n+1}(k)$ がもとめる moduli space である.

以下では \mathcal{M}_g :: the coarse moduli space of smooth curves of genus g の構成方法の概略を述べる. 分類 対象 (Object) に付随させる情報. 方法は大きく分けて 3 つある. 最初の二つは解析的な方法で,最後のものは完全に代数的である.

2.2 The Teichmüller approach

Extra Data Normalized set of generators for $\pi_1(C)$,

or Homeomorphism which C^{an} to standard compact orientable surface X_0 .

Parameter Space Teichmüller space :: $T_q \subseteq \mathbb{C}^{3g-3}$.

Group Γ_G :: Group of diffeomorphisms of X_0 , modulo isotopy.

この方法で構成された M_g は analytic variety になる.

この方法の利点は、 M_g の位相を扱いやすいことと、 M_g に自然な計量を入れられることである.

Teichmüller space :: T_g は、open ball であることが知られている.すなわち、contractable space となっている.そこで T_g の代わりに扱いやすい contractable space を考え,その Γ_g による商を考えることで M_g の cohomology について調べることが出来る.主に Harer がこの方法で成果をあげた.この成果についてはこのセミナーでものちに取り上げる.

 \mathcal{M}_g に計量を入れて、それをもちいて projective variety への埋め込みを与える、ということを Wolpert が行った。この埋め込み先の projective variety は Deligne–Mumford compactification と共通の良い性質を多く持っている。なお、計量の入れ方は複数存在する。参考文献は Kefeng Liu, Xiaofeng Sun, Shin-Tung Yau "Geometric Aspects of the Moduli Space of Riemann Surfaces" $^{\dagger 3}$.

2.3 The Hodge theory approach

Extra Data 1. Symplectic basis of $H_1(C, \mathbb{Z}) :: \{a_1, \dots, a_q, b_1, \dots, b_q\},\$

2. Basis of $H^0(C, K_C) :: \{\omega_1, ..., \omega_g\},\$

3. The intersection pairing.

Parameter Space $\mathfrak{c}_a \subseteq \mathfrak{h}_a$.

Correspondance $P = [\int_{b_i} \omega_j]_{i,j} \in \mathfrak{h}_g$

Group $Sp_{2q}(\mathbb{Z})$:: Symplectic group.

ここで \mathfrak{h}_a は次のように定義される.

$$\mathfrak{h}_g = \left\{ \tau \in M_{g \times g}(\mathbb{C}) \ \middle| \ \tau^T = \tau, \Im(\tau) :: \text{ positive difinite.} \right\}$$

これは Siegel upper-halfspace of dimension g と呼ばれている。 \mathfrak{h}_1 が通常の upper-half plane と一致することに注意。

^{†3} https://arxiv.org/abs/math/0411247

 $\{a_1,\ldots,a_g\}\subset H_1(C,\mathbb{Z})$ は $[\int_{b_i}\omega_j]_{i,j}=I_g$ (単位行列)であるように選ばれる。 b_1,\ldots,b_g の選び方によって $P=[\int_{b_i}\omega_j]_{i,j}\in\mathfrak{c}_g$ は変わるが,これは以下の $Sp_{2g}(\mathbb{Z})$ による作用に対応する.

$$Sp_{2g}(\mathbb{Z}) = \left\{ \gamma \in GL_{2g}(\mathbb{Z}) \mid \gamma^T \Omega \gamma = \Omega \right\}, \text{ where } \Omega = \begin{bmatrix} 0 & I_g \\ -I_g & 0 \end{bmatrix}.$$

構成方法から、 \mathcal{M}_g は $\mathcal{A}_g = \mathfrak{h}_g/Sp_{2g}(\mathbb{Z})$ に含まれる. \mathcal{A}_g は coarse moduli space for abelian varieties of dimension g である.

この方法は $Sp_{2g}(\mathbb{Z})$ が Γ_g よりも分かりやすいという点で Teichmüller approach に優っている. しかし \mathfrak{c}_g の方は把握が難しく, $\lceil \mathfrak{c}_g$ はどのようなものか」という問は the Schottky problem と呼ばれている. これについては様々な考察がなされているが, \mathfrak{c}_g の具体的な記述は得られていない.

この方法の別の利点は、compactification of A_g :: \tilde{A}_g †4 が自然に得られるということである. compactification of M_g :: \tilde{M}_g は Statake compactification と呼ばれ. \tilde{A}_g での M_g の閉包として得られる.

しかし, \tilde{M}_g はいかなる moduli functor の coarse moduli space でもないため,(以下で述べる例を除いては) M_g 自体の研究には役立てられない.実際, \tilde{M}_g-M_g は種数が g より小さい smooth curve に対応しているため, \tilde{M}_g 上の family を考えるということは出来ない.種数 g の曲線と種数が g 未満の曲線の両方をfiber にもつ family は,どこかで singular な fiber を持つからである(種数は homotopy/birational 不変量であったことを想起せよ).

 $\tilde{\mathcal{M}}_g$ を用いた議論によって, \mathcal{M}_g が projective でも affine でも無いことが分かる (TODO: ここでの \mathcal{M}_g って scheme ではないでのは?).

2.4 The geometric invariant theory (G.I.T.) approach

 $n \ge 3$ を任意にとって固定する.

Extra Data (Nothing.)

Parameter Space $K \subseteq \mathcal{H}_{2(g-1)n,g,N} \ (N := (2n-1)(g-1)-1).$

Group $PGL_{N+1}(\mathbb{C})$.

 $\mathcal{H}_{2(g-1)n,g,N}$ は subscheme of degree 2(g-1)n and genus g in \mathbb{P}^N の Hilbert scheme である. この方法の利点は、代数的であることの他に二つある.

- 1. \mathcal{M}_g が quasiprojective algebraic variety として得られる.
- 2. compactification of \mathcal{M}_g についての考察が自然に得られる.

2.4.1 Compactification of \mathcal{M}_q and Stable Curve.

compactification of \mathcal{M}_g (ここでは \mathcal{M}_g を含む projetive scheme) を得る方法として, K の $\mathcal{H}_{2(g-1)n,g,N}(=:\mathcal{H})$ での閉包を取って $PGL_{N+1}(\mathbb{C})$ で割る,ということが思いつく.しかしこれで得られるのは K の compactification でなく,K を含む集合 \tilde{K} の商 $\tilde{K}/PGL_{N+1}(\mathbb{C})$ の compactification である.これらの包含 関係は $K \subset \tilde{K} \subset \operatorname{cl}_{\mathcal{H}}(K)$ となる.

この拡張が必要な理由は、次のように説明される: 次のような $t \in \mathbb{A}^1 - \{0\}$ でパラメトライズされる family

 $^{^{\}dagger 4}$ \mathcal{A}_q を analytic open subset として含む compact analytic variety の事.

of smooth curves を考える. has only nodes as singularities and has only finitely many automor- phisms.

$$C: y^2z = x^3 - t^2axz - t^3bz^3$$
 where $a, b, t \in \mathbb{C}, t \neq 0$.

 $t \neq 0$ ならば $C_t \cong C_1$ となる. しかし C_0 は cuspidal curve となる. $C \to \mathbb{A}^1 - \{0\}$ に対応する j-invariant map を $\chi: \mathbb{A}^1 - \{0\} \to \mathbb{A}^1$ とすると, $t \to 0$ で χ の値は \mathbb{A}^1_j の外側の点に収束してしまう. なので $\mathcal{M}_1 = \mathbb{A}^1_j$ をコンパクト化するには, C_0 に対応する点を \mathcal{M}_1 に加えなければならない. なお, この曲線族は a,b の値を 変えることで任意の楕円曲線を含むものに成る.

では \tilde{K} に含まれる曲線は何だろうか、ということになるが、これは (Deligne-Mumford) stable curve と呼ばれるものである。次の session で詳しく述べる。

参考文献

- [1] Joe Harris and Ian Morrison. Moduli of Curves (Graduate Texts in Mathematics). Springer, 1998 edition, 8 1998.
- [2] Robin Hartshorne. Algebraic Geometry (Graduate Texts in Mathematics. 52). Springer, 1st ed. 1977. corr. 8th printing 1997 edition, 4 1997.
- [3] 向井茂. モジュライ理論〈1〉. 岩波書店, 12 2008.