

TXS0108E 8-Bit Bi-Directional, Level-Shifting, Voltage Translator for Open-Drain and Push-Pull Applications

1 Features

- No direction-control signal needed
- Maximum data rates:
 - 110Mbps (push pull)
 - 1.2Mbps (open drain)
- 1.4V to 3.6V on A port and 1.65V to 5.5V on B port $(V_{CCA} \le V_{CCB})$
- No power-supply sequencing required either V_{CCA} or V_{CCB} can be ramped first
- Latch-up performance exceeds 100mA per JESD 78, class II
- ESD protection exceeds JESD 22 (A port):
 - 2000 V Human Body Model (A114-B)
 - 150 V Machine Model (A115-A)
 - 1000 V Charged-Device Model (C101)
- IEC 61000-4-2 ESD (B-port):
 - ± 8kV Contact Discharge
 - ± 6kV Air Discharge

2 Applications

- Handsets
- **Smartphones**
- **Tablets**
- **Desktop PCs**

3 Description

This device is an 8-bit non-inverting level translator which uses two separate configurable power-supply rails. The A port tracks the V_{CCA} pin supply voltage. The V_{CCA} pin accepts any supply voltage between 1.4V and 3.6V. The B port tracks the V_{CCB} pin supply voltage. The V_{CCB} pin accepts any supply voltage between 1.65V and 5.5V. Two input supply pins allows for low Voltage bidirectional translation between any of the 1.5V, 1.8V, 2.5V, 3.3V, and 5V voltage nodes.

When the output-enable (OE) input is low, all outputs are placed in the high-impedance (Hi-Z) state.

To put the device in the Hi-Z state during power-up or power-down periods, tie OE to GND through a pulldown resistor. The current-sourcing capability of the driver determines the minimum value of the resistor.

Package Information

PART NUMBER	PACKAGE (1)	PACKAGE SIZE (2)
	PW (TSSOP, 20)	6.50mm × 6.40mm
	RGY (VQFN, 20)	4.50mm × 3.5 mm
TXS0108E	DGS (VSSOP, 20)	3.00mm x 5.10mm
TASUTUOL	RKS (VQFN, 20)	4.5mm x 2.5mm
	ZXY (UFBGA, 20)	2.50mm × 3.00mm
	NME (NFBGA, 20)	2.50mm × 3.00mm

- For more information, see Section 11
- The package size (length × width) is a nominal value and includes pins, where applicable.

Simplified Application

Table of Contents

1 Features1	6.1 Load Circuits	14
2 Applications1	6.2 Voltage Waveforms	15
3 Description1	7 Detailed Description	
4 Pin Configuration and Functions3	7.1 Overview	
5 Specifications5	7.2 Functional Block Diagram	16
5.1 Absolute Maximum Ratings5	7.3 Feature Description	
5.2 ESD Ratings5	7.4 Device Functional Modes	18
5.3 Recommended Operating Conditions6	8 Application and Implementation	19
5.4 Thermal Information6	8.1 Application Information	
5.5 Electrical Characteristics: T _A = -40°C to 85°C	8.2 Typical Application	
5.6 Timing Requirements: V _{CCA} = 1.5V ± 0.1 V8	8.3 Power Supply Recommendations	
5.7 Timing Requirements: V _{CCA} = 1.8V ± 0.15V8	8.4 Layout	20
5.8 Timing Requirements: V _{CCA} = 2.5V ± 0.2V8	9 Device and Documentation Support	22
5.9 Timing Requirements: V _{CCA} = 3.3V ± 0.3V8	9.1 Documentation Support	22
5.10 Switching Characteristics: V _{CCA} = 1.5V ± 0.1V9	9.2 Receiving Notification of Documentation Updates.	22
5.11 Switching Characteristics: V _{CCA} = 1.8V ± 0.15V 10	9.3 Support Resources	22
5.12 Switching Characteristics: V _{CCA} = 2.5V ± 0.2V 11	9.4 Trademarks	
5.13 Switching Characteristics: V _{CCA} = 3.3V ± 0.3V12	9.5 Electrostatic Discharge Caution	22
5.14 Operating Characteristics: V _{CCA} = 1.5V to 3.3V,	9.6 Glossary	22
V _{CCB} = 1.5V to 3.3V12	10 Revision History	
5.15 Typical Characteristics13	11 Mechanical, Packaging, and Orderable	
6 Parameter Measurement Information14	Information	23

4 Pin Configuration and Functions

Figure 4-1. ZXY Package, 20 BUMP (Bottom View)

Figure 4-2. NME Package, 20 BGA (Bottom View)

Pin Assignments for ZXY and NME Packages

	1	2	3	4	5
D	VCCB	B2	B4	B6	B8
С	B1	B3	B5	B7	GND
В	A1	A3	A5	A7	OE
Α	VCCA	A2	A4	A6	A8

Figure 4-3. PW or DGS Package, 20-Pin TSSOP or Figure 4-4. RKS Package, 20-Pin VQFN (Top View) 20-Pin VSSOP (Top View),

The exposed center pad, if used, must be connected as a secondary ground or left electrically open.

Figure 4-5. RGY Package, 20 Pins (Top View)

Table 4-1. Pin Functions

	PIN			
NAME	PW, RGY, DGS	ZXY, NME	TYPE ⁽¹⁾	DESCRIPTION
A1	1	B1	I/O	Input/output 1. Referenced to V _{CCA}
A2	3	A2	I/O	Input/output 2. Referenced to V _{CCA}
A3	4	B2	I/O	Input/output 3. Referenced to V _{CCA}
A4	5	A3	I/O	Input/output 4. Referenced to V _{CCA}
A5	6	В3	I/O	Input/output 5. Referenced to V _{CCA}
A6	7	A4	I/O	Input/output 6. Referenced to V _{CCA}
A7	8	B4	I/O	Input/output 7. Referenced to V _{CCA}
A8	9	A5	I/O	Input/output 8. Referenced to V _{CCA}
B1	20	C 1	I/O	Input/output 1. Referenced to V _{CCB}
B2	18	D2	I/O	Input/output 2. Referenced to V _{CCB}
B3	17	C2	I/O	Input/output 3. Referenced to V _{CCB}
B4	16	D3	I/O	Input/output 4. Referenced to V _{CCB}
B5	15	C3	I/O	Input/output 5. Referenced to V _{CCB}
B6	14	D4	I/O	Input/output 6. Referenced to V _{CCB}
B7	13	C4	I/O	Input/output 7. Referenced to V _{CCB}
B8	12	D5	I/O	Input/output 8. Referenced to V _{CCB}
GND	11	C5	_	Ground
OE	10	B5	I	Tri-state output-mode enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA} .
VCCA	2	A1	Р	A-port supply voltage. $1.4V \le V_{CCA} \le 3.6V$, $V_{CCA} \le V_{CCB}$.
VCCB	19	D1	Р	B-port supply voltage. 1.65V ≤ V _{CCB} ≤ 5.5V.
Thermal Pa	ad		_	For the RGY package, the exposed center thermal pad must be either be connected to Ground or left electrically opened.

⁽¹⁾ I = input, O = output, I/O = input and output, P = power

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

	,	MIN	MAX	UNIT
Supply voltage, V _{CCA}		-0.5	4.6	V
Supply voltage, V _{CCB}		-0.5	6.5	V
Input voltage, V _I ⁽²⁾	A port	-0.5	4.6	V
input voitage, v ₁	B port	-0.5	6.5	V
Voltage applied to any output	A port	-0.5	4.6	- V
in the high-impedance or power-off state, V _O ⁽²⁾	B port	-0.5	6.5	
Voltage applied to any output in the high or low state, $V_0^{(2)(3)}$	A port	-0.5	V _{CCA} + 0.5	V
voltage applied to any output in the high of low state, v_0	B port	-0.5	V _{CCB} + 0.5	V
Input clamp current, I _{IK}	V _I < 0		-50	mA
Output clamp current, I _{OK}	V _O < 0		-50	mA
Continuous output current, I _O		-50	50	mA
Continuous current through V _{CCA} , V _{CCB} , or GND		-100	100	mA
Junction temperature, T _J			150	°C
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input and output negative Voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

5.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
	Floatroatatio	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾		
V _(ESD)		Machine model (MM)	±150	V
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ ±1000	±8000		
		IEC 61000-4-2 ESD (B Port) Air-Gap Discharge	±6000	

- (1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1) (2)

		•	•	,	MIN	MAX	UNIT	
V _{CCA}	Supply voltage ⁽³⁾				1.4	3.6	V	
V _{CCB}	Supply voltage ⁽³⁾				1.65	5.5	V	
		A-Port I/Os	V _{CCA} (V) = 1.4 to 1.95	V _{CCB} (V) = 1.65 to 5.5	V _{CCI} - 0.2	V _{CCI}	V	
	High-level input	A-POIL I/OS	V _{CCA} (V) = 1.95 to 3.6	V _{CCB} (V) = 1.65 to 5.5	V _{CCI} - 0.4	V _{CCI}	V	
V _{IH}	voltage	B-Port I/Os	V _{CCA} (V) = 1.4 to 3.6	V _{CCB} (V) = 1.65 to 5.5	V _{CCI} - 0.4	V _{CCI}	V	
		OE	V _{CCA} (V) = 1.4 to 3.6	V _{CCB} (V) = 1.65 to 5.5	V _{CCA} × 0.65	5.5	V	
	Low-level input		A-Port I/Os	V _{CCA} (V) = 1.4 to 1.95	V _{CCB} (V) = 1.65 to 5.5	0	0.15	V
\/		A-POIL I/OS	V _{CCA} (V) = 1.95 to 3.6	V _{CCB} (V) = 1.65 to 5.5	0	0.15	V	
V _{IL}	voltage	B-Port I/Os	V _{CCA} (V) = 1.4 to 3.6	V _{CCB} (V) = 1.65 to 5.5	0	0.15	V	
		OE	V _{CCA} (V) = 1.4 to 3.6	V _{CCB} (V) = 1.65 to 5.5	0	V _{CCA} × 0.35	V	
		A-Port I/Os Push-pull	V _{CCA} (V) = 1.4 to 3.6	V _{CCB} (V) = 1.65 to 5.5		10	ns/V	
Δt/Δν	Input transition rise or fall rate	B-Port I/Os Push-pull	V _{CCA} (V) = 1.4 to 3.6	V _{CCB} (V) = 1.65 to 5.5		10	ns/V	
		Control input	V _{CCA} (V) = 1.4 to 3.6	V _{CCB} (V) = 1.65 to 5.5		10	ns/V	
T _A	Operating free-air	temperature			-40	85	°C	

5.4 Thermal Information

				TXS0108	E			
	THERMAL METRIC (1)		RGY (VQFN)	DGS (UFBGA)	RKS (VSSOP)	NME (NFBGA)	UNIT	
		20 PINS	20 PINS	20 PINS	20 PINS	20 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	88.9	46.9	96.0	54.4	131.4	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	32.9	46.4	38.7	54.2	56.5	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	50.9	24.9	53.0	27.8	83.2	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	1.4	2.3	2.1	2.9	1.5	°C/W	
ΨЈВ	Junction-to-board characterization parameter	50.5	24.8	52.6	27.7	82.6	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	11.7	_	11.5	_	°C/W	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.

 V_{CCI} is the V_{CC} associated with the data input port. V_{CCO} is the V_{CC} associated with the output port. V_{CCA} must be less than or equal to V_{CCB} , and V_{CCA} must not exceed 3.6V.

5.5 Electrical Characteristics: $T_A = -40$ °C to 85°C

over recommended operating free-air temperature range (unless otherwise noted)(1) (2) (3)

_	ADAMETED	TEST	V 00	V 00	1	Γ _A = 25°C		$T_A = -40$ °C to	85°C	LINUT
P	ARAMETER	CONDITIONS	V _{CCA} (V)	V _{CCB} (V)	MIN	TYP	MAX	MIN	MAX	UNIT
V _{OHA}	Port A output high voltage	$I_{OH} = -20\mu A$ $V_{IB} \ge V_{CCB} - 0.4V$	1.4	1.65 to 5.5	V _{CCA} × 0.67					V
		$I_{OL} = 180 \mu A, V_{IB} \le 0.15 V$	1.4	1.65 to 5.5					0.4	
.,	Port A output	I _{OL} = 220μA, V _{IB} ≤ 0.15V	1.65	1.65 to 5.5					0.4	V
V_{OLA}	low voltage	I _{OL} = 300μA, V _{IB} ≤ 0.15V	2.3	1.65 to 5.5					0.4	V
		I _{OL} = 400μA, V _{IB} ≤ 0.15V	3	1.65 to 5.5					0.55	
V _{OHB}	Port B output high voltage	$I_{OH} = -20\mu A,$ $V_{IA} \ge V_{CCA} - 0.2V$	1.4	1.65 to 5.5	V _{CCB} × 0.67					V
		$I_{OL} = 220 \mu A, V_{IA} \le 0.15 V$	1.4 to 3.6	1.65					0.4	
V	Port B output	I _{OL} = 300μA, V _{IA} ≤ 0.15V	1.4 to 3.6	2.3					0.4	V
V_{OLB}	low voltage	I _{OL} = 400μA, V _{IA} ≤ 0.15V	1.4 to 3.6	3					0.55	V
		I _{OL} = 620μA, V _{IA} ≤ 0.15V	1.4 to 3.6	4.5					0.55	
I _I	Input leakage current	OE: V _I = V _{CCI} or GND	1.4	1.65 to 5.5	-1		1		2	μA
I _{OZ}	High-impedance state output current	A or B port	1.4	1.65 to 5.5	-1		1	-2	2	μΑ
			1.4	1.65 to 5.5		1.5		-2	2	
	V _{CCA} supply current		1.5 to 3.6	2.3 to 5.5					2	
I _{CCA}		$V_I = V_O = Open, I_O = 0$	3.6	0					2	μA
			0	5.5					-1	
			1.4	1.65 to 5.5		1.5				
	V _{CCB} supply		1.5 to 3.6	2.3 to 5.5					6	
I _{CCB}	current		3.6	0					-1	μΑ
			0	5.5					1.4	
I _{CCA} +	Combined	V _I = V _{CCI} or GND,	1.4	2.3 to 5.5		3				μA
I _{CCB}	supply current	I _O = 0	1.5 to 3.6	2.3 to 5.5					8	
I _{CCZA}	High-impedance state V _{CCA} supply current	V _I = V _O = Open, I _O = 0, OE = GND	1.4	1.65 to 5.5		0.05				μA
I _{CCZB}	High-impedance state V _{CCB} supply current	V _I = V _O = Open, I _O = 0, OE = GND	1.4	1.65 to 5.5		4				μА
C _i	Input capacitance	OE	3.3	3.3		4.5			5.5	pF
	Input-to-output	A port	3.3	3.3		6			7	
C _{io}	internal capacitance	B port	3.3	3.3		5.5			6	pF

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

 ⁽¹⁾ V_{CCO} is the V_{CC} associated with the output port.
 (2) V_{CCI} is the V_{CC} associated with the input port.
 (3) V_{CCA} must be less than or equal to V_{CCB}, and V_{CCA} must not exceed 3.6V.

5.6 Timing Requirements: $V_{CCA} = 1.5V \pm 0.1 V$

over recommended operating free-air temperature range, $V_{CCA} = 1.5V \pm 0.1V$ (unless otherwise noted)

		0 , 00/1								
								V _{CC B} = 5V ± 0.5V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Push-pull			40		60	60			60	Mbps
Open-drain			0.8		0.8		1		1	IVIDPS
Data inputs	Push-pull	25		16.7		16.7		16.7		ne
Data inputs	Open-drain	1250		1250		1000		1000		ns
	Push-pull	Push-pull Open-drain Data inputs Push-pull	V _{CC B} = ± 0.15 MIN Push-pull Open-drain Data inputs Push-pull 25	VCC B = 1.8V ± 0.15V MIN MAX Push-pull 40 Open-drain 0.8 Data inputs Push-pull 25		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{CC B} = 1.8V ± 0.15V V _{CC B} = 2.5V ± 0.3 MIN MAX MIN M	V _{CC B} = 1.8V ± 0.15V V _{CC B} = 2.5V ± 0.3V V _{CC B} = 3.3V ± 0.3V MIN MAX MIN MAX MIN MAX Push-pull 40 60 60 Open-drain 0.8 0.8 1 Data inputs Push-pull 25 16.7 16.7	V _{CC B} = 1.8V ± 0.15V V _{CC B} = 2.5V ± 0.3V V _{CC B} = 3.3V ± 0.8 V _{CC B} = 2.5V ± 0.3V V _{CC B} = 3.3V ± 0.8 V _{CC B} = 2.5V ± 0.3V V _{CC B} = 3.3V ± 0.8 V _{CC B} = 2.5V ± 0.8 V _{CC B} = 3.3V ± 0.8 V _{CC B} = 2.5V ± 0.8 V _{CC B} = 3.3V ± 0.8 V _{CC B} = 2.5V ± 0.8 MIN MAX MIN MA	V _{CC B} = 1.8V ± 0.15V V _{CC B} = 2.5V ± 0.2V V _{CC B} = 3.3V ± 0.5V V _{CC B} = 5V ± 0.5V MIN MAX MIN MAX MIN MAX MIN MAX Push-pull 40 60 60 60 Open-drain 0.8 0.8 1 1 Data inputs Push-pull 25 16.7 16.7 16.7

5.7 Timing Requirements: $V_{CCA} = 1.8V \pm 0.15V$

over recommended operating free-air temperature range, V_{CCA} = 1.8V ± 0.15V (unless otherwise noted)

				V _{CC B} = ± 0.15		V _{CC B} = ± 0.2		V _{CC B} = ± 0.3		V _{CC B} = 5V ± 0.5V		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Data nata	Push-pull Open-drain			45		65		70		70	
	Data rate				0.8		0.8		8.0		1	Mbps
	Pulse w duration		Push-pull	22.2		15.3		15.3		15.3		
ı _w		Data inputs	Open-drain	1250		1250		1250		1000		ns

5.8 Timing Requirements: $V_{CCA} = 2.5V \pm 0.2V$

over recommended operating free-air temperature range, V_{CCA} = 2.5V ± 0.2V (unless otherwise noted)

						V _{CC} = 5V ± 0.5V		UNIT		
				MIN	MAX	MIN	MAX	MIN	MAX	
Determete		Push-pull			80		95		100	Man
	Data rate	Open-drain			0.8		0.8		1	Mbps
	t _w Pulse duration	Data innuta	Push-pull	12.5		10.5		10		20
t _w		se duration Data inputs Open-	Open-drain	1250		1250		1000		ns

5.9 Timing Requirements: $V_{CCA} = 3.3V \pm 0.3V$

over recommended operating free-air temperature range, $V_{CCA} = 3.3V \pm 0.3V$ (unless otherwise noted)

				V _{CCB} = 3.3V ± 0.3V	,	V _{CC} = 5V ± 0.5V		UNIT
				MIN	MAX	MIN	MAX	
	Data rate	Push-pull			100		110	Mbps
	Dala Tale	Open-drain			0.8		1.2	ivibps
	Pulse duration	Data innuta	Push-pull	10		9.1		
ι _W	ruise duration	Data inputs Open-drain		1250		833		ns

5.10 Switching Characteristics: $V_{CCA} = 1.5V \pm 0.1V$

over recommended operating free-air temperature range, $V_{CCA} = 1.5V \pm 0.1V$ (unless otherwise noted)

	PARAMETER	TEST C	V _{CCB} = 1 ± 0.15		V _{CCB} = 2 ± 0.2\		V _{CCB} = ± 0.3		V _{CCB} = 5V ± 0.5V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
	Propagation		Push-pull driving		11		9.2		8.6		8.6	
t _{PHL}	delay time (high-to-low output)	A-to-B	Open-drain driving	4	14.4	3.6	12.8	3.5	12.2	3.5	12	
	Propagation	_	Push-pull driving		12		10		9.8		9.7	ns
t _{PLH}	delay time (low-to-high output)	A-to-B	Open-drain driving	182	720	143	554	114	473	81	384	
	Propagation		Push-pull driving		12.7		11.1		11		12	
t _{PHL}	delay time (high-to-low output)	B-to-A	Open-drain driving	3.4	13.2	3.1	9.6	2.8	8.5	2.5	7.5	
	Propagation		Push-pull driving		9.5		6.2		5.1		1.6	ns
t _{PLH}	delay time (low-to-high output)	B-to-A	Open-drain driving	186	745	147	603	118	519	84	407	
t _{en}	Enable time	OE-to-A or B	Push-pull driving		200		200		200		200	ns
t _{dis}	Disable time	OE-to-A or B	Push-pull driving		400		400		400		400	ns
	Input rise time	A-port rise time	Push-pull driving	3.5	13.1	3	9.8	3.1	9	3.2	8.3	
t _{rA}	input rise time	A-port rise time	Open-drain driving	147	982	115	716	92	592	66	481	ns
+ _	Input rise time	B-port rise time	Push-pull driving	2.9	11.4	1.9	7.4	0.9	4.7	0.7	2.6	ns
t _{rB}	input rise time	b-port rise time	Open-drain driving	135	1020	91	756	58	653	20	370	115
t _{fA}	Input fall time	A-port fall time	Push-pull driving	2.3	9.9	1.7	7.7	1.6	6.8	1.7	6	
чA	input fail time	A-port fail time	Open-drain driving	2.4	10	2.1	7.9	1.7	7	1.5	6.2	ns
t _{fB}	Input fall time	B-port fall time	Push-pull driving	2	8.7	1.3	5.5	0.9	3.8	0.8	3.1	113
чв	input fail time	B-port fail time	Open-drain driving	1.2	11.5	1.3	8.6	1	9.6	0.5	7.7	
t _{SK(O)}	Skew (time), output	Channel-to- channel skew	Push-pull driving		1	1	1		1.1		1	ns
	Maximum	1	Push-pull driving	40		60		60		60		
	data rate A or B		Open-drain driving	0.8		0.8		1		1		Mbps

Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: TXS0108E

5.11 Switching Characteristics: $V_{CCA} = 1.8V \pm 0.15V$

over recommended operating free-air temperature range, $V_{CCA} = 1.8V \pm 0.15V$ (unless otherwise noted)

P/	ARA-METER	TEST CO	NDITIONS	V _{CCB} = 1 ± 0.15	1.8V	V _{CCB} = : ± 0.2	2.5V V	V _{CCB} = 3. ± 0.3V	3V	V _{CCB} = ± 0.5		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
to	Propagation delay time	A-to-B	Push-pull driving		8.2		6.4		5.7		5.6	
t _{PHL}	(high-to-low output)	Д-10-Б	Open-drain driving	3.6	11.4	3.2	9.9	3.1	9.3	3.1	8.9	ns
t _{PLH}	Propagation delay time	A-to-B	Push-pull driving		9		8.2		6.5		6.3	113
YPLH	(low-to-high output)	74.0-2	Open-drain driving	194	729	155	584	126	466	90	346	
t	Propagation delay time	B-to-A	Push-pull driving		9.8		8		7.4		7	
t _{PHL}	(high-to-low output)	B-10-A	Open-drain driving	3.4	12.1	2.8	8.5	2.5	7.3	2.1	6.2	ns
	Propagation delay time	B-to-A	Push-pull driving		10.2		7		5.8		5	115
t _{PLH}	(low-to-high output)	B-10-A	Open-drain driving	197	733	159	578	129	459	93	323	
t _{en}	Enable time	OE-to-A or B	Push-pull driving		200		200		200		200	ns
t _{dis}	Disable time	OE-to-A or B	Push-pull driving		410		410		410		410	ns
	l	A 4i	Push-pull driving	3.1	11.9	2.6	8.6	2.7	7.8	2.8	7.2	
t _{rA}	Input rise time	A-port rise time	Open-drain driving	155	996	124	691	100	508	72	350	ns
		D ti ti	Push-pull driving	2.8	10.5	1.8	7.2	1.2	5.2	0.7	2.7	
t _{rB}	Input rise time	B-port rise time	Open-drain driving	132	1001	106	677	73	546	32	323	ns
		A	Push-pull driving	2.1	8.8	1.6	6.6	1.4	5.7	1.4	4.9	
t _{fA}	Input fall time	A-port fall time	Open-drain driving	2.2	9	1.7	6.7	1.4	5.8	1.2	5.2	
		D 16 H.C	Push-pull driving	2	8.3	1.3	5.4	0.9	3.9	0.7	3	ns
t _{fB}	Input fall time	B-port fall time	Open-drain driving	0.8	10.5	0.7	10.7	1	9.6	0.6	7.8	
t _{SK(O)}	Skew (time), output	Channel-to- channel skew	Push-pull driving		1		1		1		1	ns
	Maximum	A or B	Push-pull driving	40		60		60		60		Mb
	data rate	A or B	Open-drain driving	0.8		0.8		0.8		1		Mbps

5.12 Switching Characteristics: $V_{CCA} = 2.5V \pm 0.2V$

over recommended operating free-air temperature range, $V_{CCA} = 2.5V \pm 0.2V$ (unless otherwise noted)

P/	ARA-METER	TEST COM	NDITIONS	V _{CCB} = 2. ± 0.2V		V _{CCB} = 3 ± 0.3V	.3V	V _{CCB} = ± 0.5		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
t	Propagation delay time	A -to-B	Push-pull driving		5		4		3.7	
t _{PHL}	(high-to-low output)	A -10-D	Open-drain driving	2.4	6.9	2.3	6.3	2.2	5.8	ns
t	Propagation delay time	A -to-B	Push-pull driving		5.2		4.3		3.9	115
t _{PLH}	(low-to-high output)	A -10-D	Open-drain driving	149	592	125	488	93	368	
t	Propagation delay time	B-to-A	Push-pull driving		5.4		4.7		4.2	
t _{PHL}	(high-to-low output)	B-10-A	Open-drain driving	2.5	7.3	2.2	6	1.8	4.9	ns
•	Propagation delay time	B-to-A	Push-pull driving		5.9		4.4		3.5	115
t _{PLH}	(low-to-high output)	B-10-A	Open-drain driving	150	595	126	481	94	345	
t _{en}	Enable time	OE-to-A or B	Push-pull driving		200		200		200	ns
t _{dis}	Disable time	OE-to-A or B	Push-pull driving		400		400		400	ns
	land the state of the state of	A and min a dimen	Push-pull driving	2	7.3	2.1	6.4	2.2	5.8	
t _{rA}	Input rise time	A-port rise time	Open-drain driving	110	692	93	529	68	369	ns
	land the state of	D want via a time a	Push-pull driving	1.8	6.5	1.3	5.1	0.7	3.4	
t _{rB}	Input rise time	B-port rise time	Open-drain driving	107	693	79	483	41	304	ns
	Input fall time	A-port fall time	Push-pull driving	1.5	5.7	1.2	4.7	1.3	3.8	
t _{fA}	input iaii time	A-port fall time	Open-drain driving	1.5	5.6	1.2	4.7	1.1	4	-
4	Innut fall time	D nort fell time	Push-pull driving	1.4	5.4	0.9	4.1	0.7	3	ns
t _{fB}	Input fall time	B-port fall time	Open-drain driving	0.4	14.2	0.5	19.4	0.4	3	
t _{SK(O)}	Skew (time), output	Channel-to- channel skew	Push-pull driving		1		1.2		1	ns
	Maximum	A or B	Push-pull driving	60		60		60		Mhn-
	data rate	A or B	Open-drain driving	0.8		0.8		1		Mbps

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

5.13 Switching Characteristics: $V_{CCA} = 3.3V \pm 0.3V$

over recommended operating free-air temperature range, V_{CCA} = 3.3V ± 0.3V (unless otherwise noted)

PARAMETER		TES	T CONDITIONS	V _{CCB} = 3.3V ± 0.3V	1	V _{CCB} = 5V ± 0.5V		UNIT
				MIN	MAX	MIN	MAX	
	Propagation		Push-pull driving		3.8		3.1	
t _{PHL}	delay time (high-to-low output)	A-to-B	Open-drain driving	2	5.3	1.9	4.8	ns
	Propagation		Push-pull driving		3.9		3.5	115
t _{PLH}	delay time (low-to-high output)	A-to-B	Open-drain driving	111	439	87	352	
	Propagation		Push-pull driving		4.2		3.8	
t _{PHL}	delay time (high-to-low output)	B-to-A	Open-drain driving	2.1	5.5	1.7	4.5	
	Propagation		Push-pull driving		3.8		4.3	ns
t _{PLH}	delay time (low-to-high output)	A-to-B	Open-drain driving	112	449	86	339	
t _{en}	Enable time	OE-to-A or B	Push-pull driving		200		200	ns
t _{dis}	Disable time	OE-to-A or B	Push-pull driving		400		400	ns
+	Input rise time	A-port rise time	Push-pull driving	1.8	5.7	1.9	5	20
t _{rA}	input rise time	A-port rise time	Open-drain driving	75	446	57	337	ns
t _{rB}	Input rise time	B-port rise time	Push-pull driving	1.5	5	1	3.6	ns
чв	input rise time	B-port rise time	Open-drain driving	72	427	40	290	113
t _{fA}	Input fall time	A-port fall time	Push-pull driving	1.2	4.5	1.1	3.5	
чА	input fail time	A-port fail time	Open-drain driving	1.1	4.4	1	3.7	ns
t _{fB}	Input fall time	B-port fall time	Push-pull driving	1.1	4.2	0.8	3.1	113
чв	input fail time	B-port fail time	Open-drain driving	1	4.2	0.8	3.1	
t _{SK(O)}	Skew (time), output	Channel-to- channel skew	Push-pull driving		1		1	ns
	Maximum data rate	Push-pull drivir		60		60		Mhna
	waximum data rate	A or B	Open-drain driving	0.8		1.2		Mbps

5.14 Operating Characteristics: V_{CCA} = 1.5V to 3.3V, V_{CCB} = 1.5V to 3.3V

 $T_A = 25^{\circ}C$

DAI	RAMETER	TEST CONDITIONS		V _{CCA} = 1.5V, V _{CCB} = 1.5V		V _{CCA} = 1.8V, V _{CCB} = 1.8V			_{CA} = 2. _{CB} = 2			_{CCA} = 2 CCB = 2		V _{CCA} = 3.3V, V _{CCB} = 3.3V			UNIT		
	NAME LEN			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MI N	TYP	MAX	
6	Power dissipation	CL = 0 f = 10	A-port input, B-port output		5.9			5.9			6.7			6.9			8		
C _{pdA}	capacitanc e	MHz tr= tf= 1ns	B-port input, A-port output		9.9			9.7			9.7			9.4			9.8		pF
	Power dissipation	OE = V _{CCA}	A-port input, B-port output		21.5			20.8			21			23.4			23		рг
OpdB	capacitanc enabled)		B-port input, A-port output		16.7			16.8			17.8			20.8			20.9		
6	Power dissipation	CL = 0 f = 10	A-port input, B-port output		0.01			0.01			0.01			0.01			0.01		
C _{pdA}	capacitanc e	MHz tr= tf= 1ns	B-port input, A-port output		0.01			0.01			0.01			0.01			0.01		pF
6	Power dissipation	OE =	A-port input, B-port output		0.01			0.01			0.01			0.03			0.02		рг
C _{pdB}	capacitanc e	(outputs enabled)	B-port input, A-port output		0.01			0.01			0.01			0.03			0.02		

5.15 Typical Characteristics

Figure 5-1. Low-Level Output Voltage $(V_{OL(Bx)})$ vs Low-Level Current $(I_{OL(Bx)})$

Figure 5-2. Low-Level Output Voltage $(V_{OL(Bx)})$ vs Low-Level Current $(I_{OL(Bx)})$

6 Parameter Measurement Information

6.1 Load Circuits

Figure 6-1 shows the push-pull driver circuit used for measuring data rate, pulse duration, propagation delay, output rise-time and fall-time. Figure 6-2 shows the open-drain driver circuit used for measuring data rate, pulse duration, propagation delay, output rise-time and fall-time.

- A. V_{CCI} is the V_{CC} associated with the input port.
- B. V_{CCO} is the V_{CC} associated with the output port.

Figure 6-1. Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time And Fall-Time Measurement Using a Push-Pull Driver

- A. V_{CCI} is the V_{CC} associated with the input port.
- B. V_{CCO} is the V_{CC} associated with the output port.

Figure 6-2. Data Rate (10pF), Pulse Duration (10pF), Propagation Delay, Output Rise-Time And Fall-Time Measurement Using an Open-Drain Driver

TEST	S1
t_{PZL},t_{PLZ} (t_{dis})	2 × V _{CCO}
t _{PHZ} , t _{PZH} (t _{en})	Open

- A. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- B. t_{PZL} and t_{PZH} are the same as t_{en} .

Figure 6-3. Load Circuit for Enable-Time and Disable-Time Measurement

6.2 Voltage Waveforms

Figure 6-4. Pulse Duration (Push-Pull)

Figure 6-5. Propagation Delay Times

7 Detailed Description

7.1 Overview

The TXS0108E device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A-port accepts I/O voltages ranging from 1.4V to 3.6V. The B-port accepts I/O voltages from 1.65V to 5.5V. The device uses pass gate architecture with edge rate accelerators (one shots) to improve the overall data rate. The pull-up resistors, commonly used in open-drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open-drain applications, the device can also translate push-pull CMOS logic outputs.

7.2 Functional Block Diagram

Each A-port I/O has a pull-up resistor (R_{PUA}) to V_{CCA} and each B-port I/O has a pull-up resistor (R_{PUB}) to V_{CCB} . R_{PUA} and R_{PUB} have a value of $40k\Omega$ when the output is driving low. R_{PUA} and R_{PUB} have a value of $4k\Omega$ when the output is driving high. R_{PUA} and R_{PUB} are disabled when OE = Low.

Product Folder Links: TXS0108E

7.3 Feature Description

7.3.1 Architecture

Figure 7-1 shows semi-buffered architecture design this application requires for both push-pull and open-drain mode. This application uses edge-rate accelerator circuitry (for both the high-to-low and low-to-high edges), a high-on-resistance N-channel pass-gate transistor (on the order of 300Ω to 500Ω) and pull-up resistors (to provide DC-bias and drive capabilities) to meet these requirements. This design does not need a direction-control signal to control the direction of data flow from A to B or from B to A. The resulting implementation supports both low-speed open-drain operation as well as high-speed push-pull operation.

Figure 7-1. Architecture of a TXS0108E Cell

When transmitting data from A-ports to B-ports, during a rising edge the one-shot circuit (OS3) turns on the PMOS transistor (P2) for a short-duration which reduces the low-to-high transition time. Similarly, during a falling edge, when transmitting data from A to B, the one-shot circuit (OS4) turns on the N-channel MOSFET transistor (N2) for a short-duration which speeds up the high-to-low transition. The B-port edge-rate accelerator consists of one-shot circuits OS3 and OS4. Transistors P2 and N2 and serves to rapidly force the B port high or low when a corresponding transition is detected on the A port.

When transmitting data from B- to A-ports, during a rising edge the one-shot circuit (OS1) turns on the PMOS transistor (P1) for a short-duration which reduces the low-to-high transition time. Similarly, during a falling edge, when transmitting data from B to A, the one-shot circuit (OS2) turns on NMOS transistor (N1) for a short-duration and this speeds up the high-to-low transition. The A-port edge-rate accelerator consists of one-shots OS1 and OS2, transistors P1 and N1 components and form the edge-rate accelerator and serves to rapidly force the A port high or low when a corresponding transition is detected on the B port.

7.3.2 Input Driver Requirements

The continuous DC-current *sinking* capability is determined by the external system-level open-drain (or push-pull) drivers that are interfaced to the TXS0108E I/O pins. Because the high bandwidth of these bidirectional I/O circuits is used to facilitate this fast change from an input to an output and an output to an input, they have a modest DC-current *sourcing* capability of hundreds of micro-amperes, as determined by the internal pull-up resistors.

The fall time (t_{fA} , t_{fB}) of a signal depends on the edge-rate and output impedance of the external device driving TXS0108E data I/Os, as well as the capacitive loading on the data lines.

Similarly, the t_{PHL} and maximum data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} , and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50Ω .

7.3.3 Output Load Considerations

TI recommends careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and so that proper one-shot triggering takes place. PCB signal trace-lengths should be kept short enough such that the round trip delay of any reflection is less than the one-shot duration. This improves signal integrity by allowing any reflection to see a low impedance at the driver. The one-shot circuits have been designed to stay on for approximately 30ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The one-shot duration has been set to best optimize trade-offs between dynamic I_{CC}, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance of the TXS0108E output. Therefore, TI recommends that this lumped-load capacitance is considered to avoid one-shot retriggering, bus contention, output signal oscillations, or other adverse system-level affects.

7.3.4 Enable and Disable

The TXS0108E has an OE pin input that is used to disable the device by setting the OE pin low, which places all I/Os in the Hi-Z state. The disable time (t_{dis}) indicates the delay between the time when the OE pin goes low and when the outputs actually get disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the design must allow for the one-shot circuitry to become operational after the OE pin goes high.

7.3.5 Pull-up or Pull-down Resistors on I/O Lines

The TXS0108E has the smart pull-up resistors dynamically change value based on whether a low or a high is being passed through the I/O line. Each A-port I/O has a pull-up resistor (R_{PUA}) to V_{CCA} and each B-port I/O has a pull-up resistor (R_{PUB}) to V_{CCB} . R_{PUA} and R_{PUB} have a value of $40k\Omega$ when the output is driving low. R_{PUA} and R_{PUB} have a value of $4k\Omega$ when the output is driving high. R_{PUA} and R_{PUB} are disabled when OE = Low. This feature provides lower static power consumption (when the I/Os are passing a low), and supports lower V_{OL} values for the same size pass-gate transistor, and helps improve simultaneous switching performance.

7.4 Device Functional Modes

The TXS0108E device has two functional modes, enabled and disabled. To disable the device set the OE pin input low, which places all I/Os in a high impedance state. Setting the OE pin input high enables the device.

Product Folder Links: TXS0108E

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The TXS0108E can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The device is an excellent choice for use in applications where an open-drain driver is connected to the data I/Os. The device is appropriate for applications where a push-pull driver is connected to the data I/Os, but the TXB0104 device, 4-Bit Bidirectional Voltage-Level Translator might be a better option for such push-pull applications. The device is a semi-buffered auto-direction-sensing voltage translator design is optimized for translation applications (for example, MMC Card Interfaces) that require the system to start out in a low-speed open-drain mode and then switch to a higher speed push-pull mode.

8.2 Typical Application

Figure 8-1. Typical Application Circuit

8.2.1 Design Requirements

For this design example, use the parameters listed in Table 8-1. Ensure that V_{CCA} ≤ V_{CCB}.

Table 8-1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	1.4V to 3.6V
Output voltage range	1.65V to 5.5V

8.2.2 Detailed Design Procedure

To begin the design process, determine the following:

Input voltage range

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

- Use the supply voltage of the device that is driving the TXS0108E device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the TXS0108E device is driving to determine the output voltage range.
 - The TXS0108E device has smart internal pull-up resistors. External pull-up resistors can be added to reduce the total RC of a signal trace if necessary.
- An external pull-down resistor decreases the output VOH and VOL. Use Equation 1 to calculate the VOH as a result of an external pull-down resistor.

$$V_{OH} = V_{CCx} \times R_{PD} / (R_{PD} + 4k\Omega)$$
 (1)

8.2.3 Application Curves

Figure 8-2. Level-Translation of a 2.5MHz Signal

8.3 Power Supply Recommendations

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. The sequencing of each power supply will not damage the device during the power up operation, so either power supply can be ramped up first. The output-enable (OE) input circuit is designed so that it is supplied by V_{CCA} and when the (OE) input is low, all outputs are placed in the high-impedance state. To put the outputs in the high-impedance state during power up or power down, tie the OE input pin to GND through a pull-down resistor, and do not enable the OE input until V_{CCA} and V_{CCB} are fully ramped and stable. The current-sourcing capability of the driver determines the minimum value of the pull-down resistor to ground.

8.4 Layout

8.4.1 Layout Guidelines

For device reliability, following common printed-circuit board layout guidelines is recommended.

- Bypass capacitors should be used on power supplies. Place the capacitors as close as possible to the VCCA, VCCB, and GND pin.
- Short trace lengths should be used to avoid excessive loading.
- PCB signal trace-lengths must be kept short enough so that the round-trip delay of any reflection is less than
 the one shot duration, approximately 30ns, causing any reflection to encounter low impedance at the source
 driver.

8.4.2 Layout Example

Keep OE low until V_{CCA} and V_{CCB} are powered up

Figure 8-3. Layout Example

9 Device and Documentation Support

9.1 Documentation Support

Related Documentation

For related documentation, see the following:

- Texas Instruments, A guide to Voltage level translation using TXS devices
- · Texas Instruments, Factors affecting the Vol of TXS Auto Bidirectional Devices
- Texas Instruments, Effects of Pullup and Pulldown resistors on TXS Devices

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

Submit Document Feedback

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision K (April 2024) to Revision L (November 2024)	Page
Added DGS package	1
Updated thermal information	
Updated pulse duration and open-drain in Timing Requirements	8
Changes from Revision J (December 2023) to Revision K (April 2024)	Page
Updated EN/DIS times in Switching Characteristics	9
Changes from Revision I (July 2023) to Revision J (December 2023)	Page
Updated Timing Parameters and Switching Characteristics	9

Changes from Revision H (May 2020) to Re	evision I (July 2023)	Page
Updated the numbering format for tables,	figures, and cross-references throughout the docu	ment 1
Changes from Revision G (April 2020) to R	levision H (May 2020)	Page
Changed V _{CCB} MAX from 5.5V to 6.5V in	the Absolute Maximum Ratings table	5
Changes from Revision F (January 2019) t	o Revision G (April 2020)	Page
Add NME package (NFBGA)		1
Changed V _{CCA} MIN from 1.2V in the Reco	ommended Operating Conditions table	6

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 17-Jun-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(5)	(4)	(5)		(0)
TXS0108EDGSR	Active	Production	VSSOP (DGS) 20	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	XS0108
TXS0108EDGSR.A	Active	Production	VSSOP (DGS) 20	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	XS0108
TXS0108ENMER	Active	Production	NFBGA (NME) 20	2500 LARGE T&R	Yes	SNAGCU	Level-2-260C-1 YEAR	-40 to 85	2APW
TXS0108ENMER.B	Active	Production	NFBGA (NME) 20	2500 LARGE T&R	Yes	SNAGCU	Level-2-260C-1 YEAR	-40 to 85	2APW
TXS0108EPWR	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	YF08E
TXS0108EPWR.A	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	YF08E
TXS0108EPWR.B	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	YF08E
TXS0108EPWRG4	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	YF08E
TXS0108ERGYR	Active	Production	VQFN (RGY) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YF08E
TXS0108ERGYR.A	Active	Production	VQFN (RGY) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YF08E
TXS0108ERGYR.B	Active	Production	VQFN (RGY) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YF08E
TXS0108ERGYRG4	Active	Production	VQFN (RGY) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YF08E
TXS0108ERGYRG4.A	Active	Production	VQFN (RGY) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YF08E
TXS0108ERGYRG4.B	Active	Production	VQFN (RGY) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YF08E
TXS0108ERKSR	Active	Production	VQFN (RKS) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TXS0108
TXS0108ERKSR.A	Active	Production	VQFN (RKS) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TXS0108

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

PACKAGE OPTION ADDENDUM

www.ti.com 17-Jun-2025

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TXS0108E:

Automotive: TXS0108E-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jun-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TXS0108EDGSR	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
TXS0108ENMER	NFBGA	NME	20	2500	330.0	12.4	2.85	3.4	1.34	4.0	12.0	Q2
TXS0108EPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
TXS0108ERGYR	VQFN	RGY	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1
TXS0108ERGYRG4	VQFN	RGY	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1
TXS0108ERKSR	VQFN	RKS	20	3000	180.0	12.4	2.8	4.8	1.2	4.0	12.0	Q1

www.ti.com 18-Jun-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TXS0108EDGSR	VSSOP	DGS	20	5000	353.0	353.0	32.0
TXS0108ENMER	NFBGA	NME	20	2500	336.6	336.6	31.8
TXS0108EPWR	TSSOP	PW	20	2000	356.0	356.0	35.0
TXS0108ERGYR	VQFN	RGY	20	3000	356.0	356.0	35.0
TXS0108ERGYRG4	VQFN	RGY	20	3000	356.0	356.0	35.0
TXS0108ERKSR	VQFN	RKS	20	3000	210.0	185.0	35.0

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. No JEDEC registration as of September 2020.
- 5. Features may differ or may not be present.

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

2.5 x 4.5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

3.5 x 4.5, 0.5 mm pitch

PLASTIC QUAD FGLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

PLASTIC BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

PLASTIC BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated