```
In [1]: from matplotlib import pyplot as plt
        from matplotlib.dates import MonthLocator, num2date
        from matplotlib.ticker import FuncFormatter
        from prophet import Prophet
        from prophet.diagnostics import cross validation, performance metrics
        from prophet.plot import add changepoints to plot
        import pandas as pd
        import numpy as np
        import datetime as dt
        from collections import defaultdict
        import time
        import datetime as dt
        from pytz import timezone
        tz = timezone('EST')
        from tqdm import tqdm
        from sklearn.metrics import mean absolute error, mean absolute percentage error,
        import seaborn as sns
        %config InlineBackend.figure format = 'retina'
        %matplotlib inline
        from matplotlib import pyplot as plt
        from matplotlib import style
        sns.set()
        ri2011 = pd.read excel(ri2011, 'RI')
        ri2012 = pd.read excel(ri2012, 'RI')
```

```
In [2]: ri2011 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    ri2011 = pd.read_excel(ri2011, 'RI')
    ri2012 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    ri2012 = pd.read_excel(ri2012, 'RI')
    ri2013 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    ri2013 = pd.read_excel(ri2013, 'RI')
    ri2014 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    ri2014 = pd.read_excel(ri2014, 'RI')
    ri2015 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    ri2015 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    ri2016 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    ri2016 = pd.read_excel(ri2016, 'RI')
```

```
In [3]: ri2017 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    ri2018 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    ri2019 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    ri2020 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    ri2021 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    ri2022 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
```

In [4]: ri2022

Out[4]:

	Date	Hr_End	DA_Demand	RT_Demand	DA_LMP	DA_EC	DA_CC	DA_MLC	RT_LMP	RT_
0	2022 - 01-01	1	699.2	693.413	32.42	32.35	0.23	-0.16	25.83	25.
1	2022 - 01-01	2	677.8	662.089	32.54	32.31	0.28	-0.05	25.87	25.
2	2022 - 01-01	3	645.2	638.986	30.74	30.85	0.00	-0.11	27.53	27.
3	2022 - 01-01	4	642.4	625.841	29.59	29.69	0.00	-0.10	25.14	25.
4	2022 - 01-01	5	637.7	623.152	30.74	30.86	0.00	-0.12	29.26	29.
							•••			
739	2022- 01-31	20	1118.3	1141,213	227.10	226.40	0.00	0.70	296.70	295.
740	2022- 01-31	21	1064.9	1101.191	203.17	202.82	0.00	0.35	264.93	264.
741	2022- 01-31	22	985.5	1046.707	183.95	183.42	0.00	0.53	252.53	251.
742	2022- 01-31	23	907.8	984.058	179.94	179.93	0.00	0.01	191.17	190.
743	2022- 01-31	24	842.3	928.069	192.34	190.54	0.00	1.80	189.69	189.

744 rows × 14 columns

```
In [5]: val2011 = ri2011['DEMAND']
  val2012 = ri2012['DEMAND']
  val2013 = ri2013['DEMAND']
  val2014 = ri2014['DEMAND']
  val2015 = ri2015['DEMAND']
  val2016 = ri2016['RT_Demand']
  val2017 = ri2017['RT_Demand']
  val2018 = ri2018['RT_Demand']
  val2019 = ri2019['RT_Demand']
  val2020 = ri2020['RT_Demand']
  val2021 = ri2021['RT_Demand']
  val2022 = ri2022['RT_Demand']
```

In [6]: values = [val2011, val2012, val2013, val2014, val2015, val2016, val2017, val2018]

values_df = pd.concat(values, axis=0, ignore_index=False)

values_df = values_df.reset_index()

period = len(values_df)

```
In [7]: rng = pd.date range('2011-01-01', periods=period, freq='1H')
                           date df = pd.DataFrame({ 'ds': rng})
                           date_df = date_df.reset_index()
  In [8]: frames = [date_df, values_df]
                           ri_load = pd.concat(frames, axis=1, ignore_index=False)
                           ri_load = ri_load.rename(columns={ri_load.columns[1]: 'ds', ri_load.columns[3]:
                           frames2 = [ri load['ds'], ri load['y']]
                           ri load = pd.concat(frames2, axis=1, ignore_index=False)
                           ri_load
  Out[8]:
                                                                                   ds
                                                                                                             У
                                       0 2011-01-01 00:00:00
                                                                                               775.000
                                       1 2011-01-01 01:00:00
                                                                                               733.000
                                       2 2011-01-01 02:00:00
                                                                                               702.000
                                       3 2011-01-01 03:00:00
                                                                                               684.000
                                       4 2011-01-01 04:00:00
                                                                                               681.000
                             97171 2022-01-31 19:00:00 1141.213
                             97172 2022-01-31 20:00:00
                                                                                           1101.191
                             97173 2022-01-31 21:00:00 1046.707
                             97174 2022-01-31 22:00:00
                                                                                               984.058
                             97175 2022-01-31 23:00:00
                                                                                               928.069
                           97176 rows × 2 columns
  In [9]: model = Prophet(
                                                  changepoint prior scale=0.5,
                                                  seasonality_mode='multiplicative',
                                                  interval width=0.95,
                           model.add_country_holidays(country_name='US')
  Out[9]: cout[9]: <p
In [10]: model.fit(ri_load)
Out[10]:  content content
In [11]: | future_pd = model.make_future_dataframe(
                                                  periods=365,
                                                  freq='1H',
                                                  include history=True
                                       )
                           # make predictions
                           forecast_pd = model.predict(future_pd)
```

In [12]: forecast_pd[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

Out[12]:

	ds	yhat	yhat_lower	yhat_upper
97536	2022-02-16 00:00:00	798.123495	599.344577	993.996024
97537	2022-02-16 01:00:00	758.502063	565.280485	955.048214
97538	2022-02-16 02:00:00	735.267810	546.581224	927.245388
97539	2022-02-16 03:00:00	729.627914	529.106838	923.380495
97540	2022-02-16 04:00:00	745.894001	527.262747	945.770642

In [13]: fig1 = model.plot(forecast_pd)

In [14]: fig2 = model.plot_components(forecast_pd)

In [15]: forecast_pd

Out[15]:

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	Christmas Day	Christm Day_lov
0	2011- 01-01 00:00:00	936.122990	499.060706	907.386175	936.122990	936.122990	0.0	
1	2011- 01-01 01:00:00	936.130718	476.948914	868.036109	936.130718	936.130718	0.0	
2	2011- 01-01 02:00:00	936.138447	421.885007	830.431302	936.138447	936.138447	0.0	
3	2011- 01-01 03:00:00	936.146175	429.554392	820.737068	936.146175	936.146175	0.0	
4	2011- 01-01 04:00:00	936.153904	440.630758	840.178129	936.153904	936.153904	0.0	
97536	2022- 02-16 00:00:00	908.956471	599.344577	993.996024	905.589641	911.498232	0.0	
97537	2022- 02-16 01:00:00	908.958911	565.280485	955.048214	905.576123	911.511475	0.0	
97538	2022- 02-16 02:00:00	908.961350	546.581224	927.245388	905.562606	911.524718	0.0	
97539	2022- 02-16 03:00:00	908.963790	529.106838	923.380495	905.549088	911.537961	0.0	
97540	2022- 02-16 04:00:00	908.966230	527.262747	945.770642	905.535571	911.551204	0.0	

97541 rows × 73 columns

In []: