```
1
       ************
           U.S. Environmental Protection Agency
           Storm Water Management Model (SWMM)
             Version 4.40 (Lahey, CDM beta)
       ***********
                    Developed by
       ************
                  Metcalf & Eddy, Inc.
                 University of Florida
             Water Resources Engineers, Inc.
            (Now Camp, Dresser and McKee, Inc.)
                  September 1970
       **********
              Distributed and Maintained by
       ***********
            U.S. Environmental Protection Agency
       * Center for Exposure Assessment Modeling (CEAM)*
           Athens Environmental Research Laboratory
                 960 College Station Road
                 Athens, GA 30605-2720
       *************
       ************
            This is a new release of SWMM. If any
            problems occur executing this model
            system, contact Mr. Frank Stancil,
            U.S. Environmental Protection Agency.
            706/355-8328 (voice)
            e-mail: stancil@athens.ath.epa.gov
            Or contact Wayne C. Huber at Oregon St. U.*
            541/737-6150 or huberw@ccmail.orst.edu
            Or Michael F. Schmidt at Camp Dresser &
            McKee (904) 281-0170 SCHMIDTMF@CDM.COM
       ***********
       ************
       * This is an implementation of EPA SWMM 4.40. *
       * "Nature is full of infinite causes which
       * have never occurred in experience" da Vinci *
       **********
 File names by SWMM Block
       JIN -> Input to a Block
       JOUT -> Output from a Block
 **************************************
                          0 JIN.UF
   JIN for Block #
                 1 File #
  JOUT for Block #
                 1 File # 31 JOT.UF
   JIN for Block #
                  2 File # 31 JOT.UF
  JOUT for Block #
                  2 File #
                          0 JOT.UF
```

NSCRAT # 1 File # 21 SCRT1.UF	
NSCRAT # 2 File # 22 SCRT2.UF	
NSCRAT # 3 File # 23 SCRT3.UF	
NSCRAT # 4 File # 24 SCRT4.UF	
NSCRAT # 5 File # 25 SCRT5.UF	
NSCRAT # 6 File # 26 SCRT6.UF	
Noticial # 0 life # 20 bekio.or	

* Parameter Values on the Tapes Common Block *	

Number of Subcatchments in the Runoff Block (NW)	1000
Number of Channel/Pipes in the Runoff Block (NG)	1000
Number of Connections to Runoff Channels/Inlets (NCP).	6
Number of Runoff Water Quality Constituents (NRQ)	10
Number of Runoff Land Uses per Subcatchment (NLU)	10
Number of Groundwater Subcatchments in Runoff (NGW)	100
Number of Interface Locations for all Blocks (NIE)	1000
Number of Elements in the Transport Block (NET)	300
Number of Storage Junctions in Transport (NTSE)	100
Number of Input Hydrographs in Transport (NTH)	80
Number of Tabular Flow Splitters in Transport (NTSP)	50
Number of Elements in the Extran Block (NEE)	1400
Number of Pumps in Extran (NEP)	75
Number of Orifices in Extran (NEO)	200
Number of Tide Gates/Free Outfalls in Extran (NTG)	200
Number of Extran Weirs (NEW)	60
Number of Extran Printout Locations (NPO)	30
Number of Tide Elements in Extran (NTE)	20
Number of Natural Channels (NNC)	200
Number of Storage Junctions in Extran (NVSE)	300
Number of Time History Data Points in Extran (NTVAL)	500
Number of Data Points for Variable Storage Elements	
in the Extran Block (NVST)	25
Number of Input Hydrographs in Extran (NEH)	400
Number of Allowable Channel Connections to	1.5
Junctions in the Extran Block (NCHN)	15
Number Rain Gages in Rain and Runoff (MAXRG)	200
Number PRATE/VRATE Points for Extran Pump	10
Input (MAXPRA) Number of Variable Orifices in Extran (NVORF)	50
Number of Variable Orifice Data Points (NVOTIM)	50
Number of Allowable Precip. Values/yr in Rain (LIMRN).	
Number of Storm Events for Rain Analysis (LSTORM)	
Number of Plugs for Plug-flow in S/T (NPLUG)	
Number Conduits for Extran Results to ASCII	3000
File (MXFLOW)	150
1110 (111111011)	150
######################################	
<pre># Entry made to the Runoff Block, last updated by # # Oregon State University, CDM, and XP Software, #</pre>	
<pre># Oregon State University, CDM, and XP Software, # # July 1997. #</pre>	
# July 1997. #	
# "And wherever water goes, amoebae go along for #	
# the ride" Tom Robbins #	

APPLICATION OF STORM WATER MANAGEMENT MODEL (SWMM)

POWELLS CREEK SIMULATION

	Snowmelt parameter - ISNOW	0		
	Number of rain gages - NRGAG	1		
	Horton infiltration equation used - INFILM	0		
	Quality is not simulated - KWALTY	0		
	Default evaporation rate used - IVAP	0		
	Hour of day at start of storm - NHR	3		
	Minute of hour at start of storm - NMN	0		
	Time TZERO at start of storm (hours)	3.000		
	Use Metric units for I/O - METRIC ===> Ft-sec units used in all internal computation	ns 1		
	Runoff input print control	0		
	Runoff graph plot control	0		
	Runoff output print control	2		
	Limit number of groundwater convergence messages to	o 10000 ((if simulated)
	Month, day, year of start of storm is:	4/23/89		
	Wet time step length (seconds)	15.		
	Dry time step length (seconds)	240.		
	Wet/Dry time step length (seconds)	120.		
	Simulation length is	1200.0	Minutes	
	Percent of impervious area with zero detention dept	th 25.0		
-	Horton infiltration model being used Rate for regeneration of infiltration = REGEN * I DECAY is read in for each subcatchment REGEN =			
	Rainfall from E3 Data Group			
	KTYPE - Rainfall input type	0		

NHISTO - Tot	al number o	of rainfall	values	330			nbbz_wen.o		
		es (pairs) p		10					
KPRINT - Pri KTIME - Pre	nt raintall cipitation		No)	0					
		Hours		0					
	cipitation								
		> Volume.		0					
KTHIS - Vari		all interva. es		0					
THISTO - Rai				2.00					
TZRAIN - Sta				180.00					
Rainfall	printout fo	or gage numl	ber	1					
Time(mn)/Ra				Time(mn)/Ra		Time(mn)/		Time(mn)/R	ain(mm/hr)
0.00/	0.0000	2.00/	0.0000	4.00/	0.0000	6.00/	0.0000	8.00/	2.3000
10.00/	0.0000	12.00/	0.0000	14.00/	0.0000	16.00/	0.0000	18.00/	0.0000
20.00/	0.0000	22.00/	0.0000	24.00/	0.5000	26.00/	65.0000 0.0000	28.00/	0.0000
30.00/ 40.00/	5.5000 0.0000	32.00/ 42.00/	0.0000	34.00/ 44.00/	0.0000	36.00/ 46.00/	0.0000	38.00/ 48.00/	0.0000
50.00/	0.0000	52.00/	0.0000	54.00/	0.0000	56.00/	1.5000	58.00/	0.0000
60.00/	0.0000	62.00/	0.0000	64.00/	0.0000	66.00/	0.0000	68.00/	0.0000
70.00/	0.0000	72.00/	0.0000	74.00/	0.0000	76.00/	0.0000	78.00/	3.8000
80.00/	0.0000	82.00/	0.0000	84.00/	0.0000	86.00/	0.0000	88.00/	0.0000
90.00/	0.0000	92.00/	0.0000	94.00/	0.0000	96.00/	0.0000	98.00/	0.0000
100.00/	0.0000	102.00/	0.0000	104.00/	0.0000	106.00/	0.0000	108.00/	0.0000
110.00/	0.0000	112.00/	0.0000	114.00/	0.0000	116.00/	0.0000	118.00/	0.0000
120.00/	0.0000	122.00/	0.0000	124.00/	0.0000	126.00/	0.0000	128.00/	0.0000
130.00/	0.0000	132.00/	0.0000	134.00/	0.9000	136.00/	0.0000	138.00/	7.1000
140.00/	0.0000	142.00/	0.0000	144.00/	0.0000	146.00/	0.0000	148.00/	1.7000
150.00/	0.0000	152.00/	0.0000	154.00/	0.0000	156.00/	0.0000	158.00/	0.0000
160.00/ 170.00/	0.0000	162.00/ 172.00/	0.0000	164.00/	0.0000	166.00/ 176.00/	0.0000	168.00/ 178.00/	0.0000
180.00/	0.0000	182.00/	0.0000	174.00/ 184.00/	1.4000	186.00/	0.0000	188.00/	0.0000
190.00/	0.4000	192.00/	0.0000	194.00/	0.0000	196.00/	3.1000	198.00/	0.0000
200.00/	0.0000	202.00/	0.0000	204.00/	0.0000	206.00/	0.0000	208.00/	0.0000
210.00/	0.0000	212.00/	0.0000	214.00/	0.0000	216.00/	0.0000	218.00/	0.0000
220.00/	0.0000	222.00/	0.0000	224.00/	0.0000	226.00/	0.0000	228.00/	0.0000
230.00/	0.0000	232.00/	0.0000	234.00/	0.0000	236.00/	0.0000	238.00/	0.0000
240.00/	0.6000	242.00/	12.3000	244.00/	0.0000	246.00/	4.9000	248.00/	0.0000
250.00/	1.5000	252.00/	0.0000	254.00/	6.8000	256.00/	0.0000	258.00/	0.0000
260.00/	0.0000	262.00/	6.2000	264.00/	0.0000	266.00/	0.0000	268.00/	0.0000
270.00/	2.2000	272.00/	0.0000	274.00/	0.0000	276.00/	0.0000	278.00/	1.6000
280.00/	11.2000	282.00/	3.6000	284.00/	0.0000	286.00/	2.4000	288.00/	0.0000
290.00/	0.0000	292.00/	0.0000	294.00/	0.0000	296.00/	0.0000	298.00/	0.0000
300.00/	0.0000	302.00/	1.2000	304.00/	0.0000	306.00/	0.0000	308.00/	2.3000
310.00/	2.6000	312.00/	0.0000	314.00/	6.2000	316.00/	6.9000	318.00/	4.3000
320.00/	0.0000	322.00/	0.0000	324.00/	2.4000	326.00/	0.0000	328.00/	0.0000
330.00/	0.0000	332.00/	0.0000	334.00/	0.0000	336.00/	1.7000	338.00/	1.0000
340.00/	0.0000	342.00/	9.5000	344.00/	0.0000	346.00/	1.9000	348.00/	0.0000
350.00/	0.0000	352.00/	1.0000	354.00/	0.0000	356.00/	0.0000	358.00/	0.1000
360.00/	2.2000	362.00/	0.0000	364.00/	2.4000	366.00/	0.0000	368.00/	0.0000
370.00/	0.5000	372.00/	0.0000	374.00/	2.0000	376.00/	0.0000	378.00/	0.0000
380.00/	3.3000	382.00/	2.2000	384.00/	0.0000	386.00/	0.0000	388.00/	0.0000
390.00/	9.5000	392.00/	0.8000	394.00/	0.0000	396.00/	7.5000	398.00/	0.0000
400.00/	0.0000	402.00/	0.0000	404.00/	2.7000	406.00/	0.0000	408.00/	4.4000
410.00/	0.0000	412.00/	0.0000	414.00/	0.0000	416.00/	0.0000	418.00/	0.0000
420.00/ 430.00/	10.8000 36.9000	422.00/ 432.00/	0.6000 25.7000	424.00/	14.5000 37.0000	426.00/ 436.00/	0.0000	428.00/ 438.00/	12.1000 30.4000
430.00/	30.3000	432.00/	23.7000	434.00/	37.0000	±30.00/	0.0000	430.00/	30.4000

Page 4

						;	Ass2_wch.ou	t	
440.00/	0.0000	442.00/	0.0000	444.00/	23.9000	446.00/	0.0000	448.00/	50.0000
450.00/	11.9000	452.00/	4.0000	454.00/	12.4000	456.00/	37.9000	458.00/	20.7000
460.00/	0.0000	462.00/	0.0000	464.00/	4.4000	466.00/	0.0000	468.00/	1.9000
470.00/	3.1000	472.00/	0.0000	474.00/	4.6000	476.00/	0.0000	478.00/	4.5000
480.00/	0.0000	482.00/	0.0000	484.00/	4.0000	486.00/	0.0000	488.00/	0.0000
490.00/	5.3000	492.00/	0.0000	494.00/	7.3000	496.00/	9.7000	498.00/	0.0000
500.00/	0.0000	502.00/	7.0000	504.00/	0.0000	506.00/	5.6000	508.00/	9.9000
510.00/	0.0000	512.00/	9.2000	514.00/	0.0000	516.00/	0.0000	518.00/	5.8000
520.00/	8.0000	522.00/	0.0000	524.00/	2.8000	526.00/	0.0000	528.00/	0.0000
530.00/	0.0000	532.00/	1.1000	534.00/	0.0000	536.00/	0.0000	538.00/	3.6000
540.00/	0.0000	542.00/	1.6000	544.00/	0.0000	546.00/	0.0000	548.00/	0.0000
550.00/	0.0000	552.00/	0.0000	554.00/	0.0000	556.00/	0.0000	558.00/	0.0000
560.00/	0.0000	562.00/	0.0000	564.00/	0.0000	566.00/	0.0000	568.00/	0.0000
570.00/	0.0000	572.00/	0.0000	574.00/	0.0000	576.00/	0.0000	578.00/	0.0000
580.00/	0.0000	582.00/	0.0000	584.00/	0.0000	586.00/	0.0000	588.00/	0.0000
590.00/	0.0000	592.00/	0.0000	594.00/	1.5000	596.00/	0.0000	598.00/	0.0000
600.00/	0.0000	602.00/	0.0000	604.00/	0.0000	606.00/	0.0000	608.00/	0.0000
610.00/	0.0000	612.00/	0.6000	614.00/	0.0000	616.00/	0.0000	618.00/	0.0000
620.00/	0.0000	622.00/	0.0000	624.00/	0.0000	626.00/	0.0000	628.00/	0.0000
630.00/	0.0000	632.00/	0.0000	634.00/	0.0000	636.00/	0.0000	638.00/	0.0000
640.00/	0.0000	642.00/	0.0000	644.00/	0.0000	646.00/	0.8000	648.00/	0.0000
650.00/	0.0000	652.00/	0.0000	654.00/	7.2000	656.00/	0.0000	658.00/	2.4000
******	*****	******	***						

* Rainfall input summary from Runoff *

Total rainfall for gage # 1 is 22.1933 mm

Data Group F1 # Evaporation Rate (mm/day) #

JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC.

************* CHANNEL AND PIPE DATA * ************

Input Sequen Number	NAMEG: Channel ID #	Drains to NGTO:	Channel Type	Width (m)	Length (m)	Invert Slope (m/m)	L Side Slope (m/m)	R Side Slope (m/m)	Intial Depth (m)	Max Depth (m)	Mann- ings "N"	Full Flow (cms)
1	101	102	Circular	0.8	114.7	0.0168	0.0000	0.0000	0.0	0.0	0.0100	2.10E+00
2	401	102	Circular	0.6	25.1	0.0308	0.0000	0.0000	0.0	0.0	0.0100	1.57E+00
3	102	103	Circular	0.8	34.2	0.0308	0.0000	0.0000	0.0	0.0	0.0100	2.85E+00
4	103	104	Circular	0.9	60.4	0.0133	0.0000	0.0000	0.0	0.0	0.0100	3.04E+00
5	104	105	Circular	0.9	144.4	0.0118	0.0000	0.0000	0.0	0.0	0.0100	2.87E+00
6	105	106	Circular	1.1	100.6	0.0167	0.0000	0.0000	0.0	0.0	0.0100	5.15E+00
7	106	107	Circular	1.2	30.2	0.0093	0.0000	0.0000	0.0	0.0	0.0100	5.48E+00
8	107	108	Circular	1.2	62.4	0.0100	0.0000	0.0000	0.0	0.0	0.0100	5.68E+00
9	301	302	Circular	0.5	116.9	0.0313	0.0000	0.0000	0.0	0.0	0.0100	7.35E-01
10	302	303	Circular	0.5	100.5	0.0286	0.0000	0.0000	0.0	0.0	0.0100	1.06E+00
11	501	303	Circular	0.5	59.4	0.0217	0.0000	0.0000	0.0	0.0	0.0100	9.22E-01

									Ass2 wch.	out	
12	303	304	Circular	0.8	189.1	0.0189	0.0000	0.0000	0.0	0.0	0.0100 2.23E+00
13	304	305	Circular	0.8	45.3	0.0081	0.0000	0.0000	0.0	0.0	0.0100 1.46E+00
14	305	108	Circular	0.9	62.4	0.0167	0.0000	0.0000	0.0	0.0	0.0100 3.41E+00
15	108	109	Circular	1.5	146.9	0.0083	0.0000	0.0000	0.0	0.0	0.0100 9.39E+00
16	109	110	Circular	1.7	152.9	0.0083	0.0000	0.0000	0.0	0.0	0.0100 1.21E+01
17	110	111	Circular	1.9	213.6	0.0061	0.0000	0.0000	0.0	0.0	0.0100 1.38E+01
18	601	602	Circular	0.8	222.3	0.0167	0.0000	0.0000	0.0	0.0	0.0100 2.70E+00
19	602	603	Circular	1.0	55.9	0.0112	0.0000	0.0000	0.0	0.0	0.0100 3.70E+00
20	603	111	Circular	1.0	40.2	0.0431	0.0000	0.0000	0.0	0.0	0.0100 7.26E+00
21	111	112	Circular	1.9	144.8	0.0097	0.0000	0.0000	0.0	0.0	0.0100 1.74E+01
22	112	113	Circular	1.9	155.4	0.0097	0.0000	0.0000	0.0	0.0	0.0100 1.84E+01
23	701	113	Circular	0.5	47.8	0.0549	0.0000	0.0000	0.0	0.0	0.0100 1.47E+00
24	113	114	Circular	2.1	106.1	0.0068	0.0000	0.0000	0.0	0.0	0.0100 2.09E+01
25	114	115	Circular	2.2	307.2	0.0068	0.0000	0.0000	0.0	0.0	0.0100 2.29E+01
26	115	116	Circular	2.3	67.0	0.0068	0.0000	0.0000	0.0	0.0	0.0100 2.51E+01
27	201	202	Circular	0.8	144.0	0.0143	0.0000	0.0000	0.0	0.0	0.0100 2.50E+00
28	202	203	Circular	0.8	72.8	0.0323	0.0000	0.0000	0.0	0.0	0.0100 3.76E+00
29	203	204	Circular	0.9	60.8	0.0111	0.0000	0.0000	0.0	0.0	0.0100 2.78E+00
30	801	204	Circular	0.8	145.0	0.0200	0.0000	0.0000	0.0	0.0	0.0100 2.30E+00
31	204	205	Circular	1.1	93.5	0.0111	0.0000	0.0000	0.0	0.0	0.0100 5.04E+00
32	205	206	Circular	1.2	240.0	0.0111	0.0000	0.0000	0.0	0.0	0.0100 5.99E+00
33	206	207	Circular	1.4	161.1	0.0105	0.0000	0.0000	0.0	0.0	0.0100 7.98E+00
34	207	208	Circular	1.5	258.3	0.0071	0.0000	0.0000	0.0	0.0	0.0100 8.69E+00
35	208	209	Circular	1.7	48.7	0.0142	0.0000	0.0000	0.0	0.0	0.0100 1.58E+01
36	209	116	Circular	1.7	50.9	0.0040	0.0000	0.0000	0.0	0.0	0.0100 8.40E+00
37	116		Trapezoid	3.2	40.2	0.0076	0.0500	0.0500	0.0	2.0	0.0100 5.43E+01
38	117	118	Trapezoid	3.2	111.8	0.0036	0.0500	0.0500	0.0	2.0	0.0100 3.74E+01

1

SUBCATCH- MENT NO.	CHANNEL OR INLET		AREA (HA)	PERCENT IMPERV.	SLOPE (M/M)	RESISTANCE IMPERV.	FACTOR PERV.	DEPRES. STO	PERV.	INFILT RATE(I MAXIMUM	MM/HR)	DECAY RATE (1/SEC)	GAGE NO.
1 1001	101	300.00	8.46	58.00	0.0350	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
2 4001	401	230.00	5.87	58.00	0.0450	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
3 1002	102	100.00	5.87	58.00	0.0480	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
4 1003	103	240.00	4.25	58.00	0.0450	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
5 1004	104	500.00	12.22	58.00	0.0400	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
6 1005	105	250.00	8.42	58.00	0.0500	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
7 1006	106	0.00	0.01	58.00	0.0000	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
8 1007	107	220.00	3.04	58.00	0.0500	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
9 3001	301	250.00	3.44	58.00	0.0450	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
10 3002	302	100.00	0.93	58.00	0.0350	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
11 5001	501	300.00	7.69	58.00	0.0650	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
12 3003	303	300.00	6.15	58.00	0.0500	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
13 3004	304	120.00	1.25	58.00	0.0310	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
14 3005	305	300.00	2.06	58.00	0.0520	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
15 1008	108	130.00	0.65	58.00	0.0240	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
16 1009	109	400.00	10.36	58.00	0.0550	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
17 1010	110	450.00	14.65	58.00	0.0400	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
18 6001	601	700.00	23.35	58.00	0.0480	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
19 6002	602	0.00	0.01	58.00	0.0000	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
20 6003	603	0.00	0.01	58.00	0.0000	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
21 1011	111	330.00	1.74	58.00	0.0160	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1
22 1012	112	300.00	5.67	58.00	0.0250	0.012	0.050	1.500	10.500	162.50	9.50	0.00056	1

Page 6

23 7001	701 450.00	10.52	58.00	0.03	50	0.012	0.050
	113 250.00	7.28	58.00	0.03		0.012	0.050
	114 260.00	5.67	58.00	0.01		0.012	0.050
	115 100.00	0.81	58.00	0.01		0.012	0.050
	201 500.00	23.55	58.00	0.05		0.012	0.050
	202 350.00	1.86	58.00	0.06		0.012	0.050
29 2003	203 0.00	0.01	58.00	0.00	00	0.012	0.050
30 8001	801 450.00	15.99	58.00	0.05	00	0.012	0.050
31 2004	204 400.00	5.14	58.00	0.04	20	0.012	0.050
32 2005	205 300.00	5.38	58.00	0.03	00	0.012	0.050
33 2006	206 700.00	18.78	58.00	0.03	00	0.012	0.050
34 2007	207 600.00	11.57	58.00	0.03	00	0.012	0.050
	208 80.00	0.65	58.00	0.03		0.012	0.050
	209 0.00	0.01	58.00	0.00		0.012	0.050
	116 400.00	3.27	58.00	0.03		0.012	0.050
	117 0.00	0.01	58.00	0.05		0.012	0.050
30 1017	117 0.00	0.01	30.00	0.03	40	0.012	0.030
MOMAT MIMPED	OE GUDGAMGUMEN	TIC .		2.0			
	OF SUBCATCHMEN		0.1	38			
	ARY AREA (HECTAI			36.60			
	REA (HECTARES).			37.23			
	A (HECTARES)			99.37			
	(METERS)			60.00			
PERCENT IMPE	RVIOUSNESS		į	58.00			
1							
*******	******	******	*****	*****	*****	**	
* Arrang	ement of Subcate	chments	and Char	nnel/Pi	pes	*	
*******	******	******	*****	*****	*****	**	
Channel							
or Pipe							
101	No Tributary	Channel	/Pipes				
	Tributary Sul			1001			
401	No Tributary			1001			
401	Tributary Sul			4001			
102				101	401		
102	Tributary Cha				401		
100	Tributary Sul			1002			
103	Tributary Cha			102			
	Tributary Sul			1003			
104	Tributary Cha			103			
	Tributary Sul			1004			
105	Tributary Cha			104			
	Tributary Sul	oareas		1005			
106	Tributary Cha	annel/Pi	pes	105			
	Tributary Sul	oareas		1006			
107	Tributary Cha	annel/Pi	pes	106			
	Tributary Sul	oareas		1007			
301	No Tributary						
	Tributary Sul			3001			
302	Tributary Cha			301			
552	Tributary Sul			3002			
501	No Tributary			5002			
331	Tributary Sul			5001			
303	-			302	501		
303	Tributary Cha				201		
204	Tributary Sul			3003			
304	Tributary Cha		pes	303			

Tributary Subareas..... 3004

Tributary Channel/Pipes... 304

305

Ass2_wch.out

10.500 162.50

162.50

162.50

162.50

162.50

162.50

162.50

162.50

162.50

162.50

162.50

162.50

162.50

162.50

162.50

10.500

10.500

10.500

10.500

10.500

10.500

10.500

10.500

10.500

10.500

10.500

10.500

10.500

10.500

10.500 162.50

9.50

9.50

9.50

9.50

9.50

9.50

9.50

9.50

9.50

9.50

9.50

9.50

9.50

9.50

9.50

9.50

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

0.00056

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1.500

1.500

1.500

1.500

1.500

1.500

1.500

1.500

1.500

1.500

1.500

1.500

1.500

1.500

1.500

1.500

	Tributary Subareas	3005	
108	Tributary Channel/Pipes	107	305
	Tributary Subareas	1008	
109	Tributary Channel/Pipes	108	
	Tributary Subareas	1009	
110	Tributary Channel/Pipes	109	
	Tributary Subareas	1010	
601	No Tributary Channel/Pipes		
	Tributary Subareas	6001	
602	Tributary Channel/Pipes	601	
	Tributary Subareas	6002	
603	Tributary Channel/Pipes	602	
	Tributary Subareas	6003	
111	Tributary Channel/Pipes	110	603
	Tributary Subareas	1011	
112	Tributary Channel/Pipes	111	
112	Tributary Subareas	1012	
701	No Tributary Channel/Pipes	1012	
701	Tributary Subareas	7001	
113		112	701
113	Tributary Channel/Pipes		701
	Tributary Subareas	1013	
1			
1	*********		
	ement of Subcatchments and Cha		
******	********	*****	******
-1 1			
Channel			
or Pipe			
114	Tributary Channel/Pipes	113	
	Tributary Subareas	1014	
115	Tributary Channel/Pipes	114	
	Tributary Subareas	1015	
201	No Tributary Channel/Pipes		
	Tributary Subareas	2001	
202	Tributary Channel/Pipes	201	
	Tributary Subareas	2002	
203	Tributary Channel/Pipes	202	
	Tributary Subareas	2003	
801	No Tributary Channel/Pipes		
	Tributary Subareas	8001	
204	Tributary Channel/Pipes	203	801
	Tributary Subareas	2004	
205	Tributary Channel/Pipes	204	
	Tributary Subareas	2005	
206	Tributary Channel/Pipes	205	
200	Tributary Subareas	2006	
207	Tributary Channel/Pipes	206	
207			
200	Tributary Subareas	2007	
208	Tributary Channel/Pipes	207	
200	Tributary Subareas	2008	
209	Tributary Channel/Pipes	208	
	Tributary Subareas	2009	000
116	Tributary Channel/Pipes	115	209
	Tributary Subareas	1016	
117	Tributary Channel/Pipes	116	
	Tributary Subareas	1017	

0

```
INLET
    118
         Tributary Channel/Pipes... 117
         No Tributary Subareas.....
****************
* Hydrographs will be stored for the following 1 INLETS *
************
      118
***********
* Ouality simulation not included in this run *
*************
  *******
  * DATA GROUP M1 *
  ******
TOTAL NUMBER OF PRINTED GUTTERS/INLETS...NPRNT..
NUMBER OF TIME STEPS BETWEEN PRINTINGS..INTERV..
STARTING AND STOPPING PRINTOUT DATES.....
                                  0
  *******
  * DATA GROUP M3 *
  ******
CHANNEL/INLET PRINT DATA GROUPS..... 118
************
* Precipitation Interface File Summary
* Number of precipitation station....
**********
Location Station Number
_____
   1.
        1
***************
* Summary of Quantity and Quality results for *
    April 1989
************
Day Inlet Rain Flow
      mm
```

23 118 22.19 11.349 Total 118 22.19 11.349 Year 118 22.19 11.349

							ASSZ_W	cn.out

			op in Runof					
*******	******	******	******	*****				
Final Date	(Mo/Day/Y	(ear) =		4	/23/89			
Total numb					2910			
Final Juli					89113			
Final time					82800. sec	onda		
				,				
Final time				_	23.00 h			
Final runn						ours.		
Final runn	ing time =	:			0.9583	days.		
*******	*****	******	*******	*****				
* Extr	apolation	Summary fo	or Watershe	ds *				
* # Steps	==> Total	Number of	Extrapolat	ed Steps *				
			OVERLND Ca					

Subcatch	# Steps	# Calle	Subcatch	# Steps	# Calle	Subcatch	# Steps	# Calls
	# 5ceps			# 5ceps			# 5ceps	# Calls
1001	15645	5215	4001	15621	5207	1002	15723	5241
1003	15174	5054	1004	15621	5207	1005	15645	5215
1006	23597	5679	1007	14712	4892	3001	14803	4925
3002	14305	4739	5001	15413	5135	3003	15303	5093
3004	14625	4863	3005	13826	4378	1008	13938	4426
1009	15525	5175	1010	15651	5217	6001	15645	5215
6002	23597	5679	6003	23597	5679	1011	14098	4606
1012	15615	5205	7001	15621	5207	1013	15639	5213
1014	15633	5211	1015	15086	5018	2001	15687	5229
2002	13528	4156	2003	23597	5679		15651	5217
2004	14735	4901	2005	15444	5148	2006	15645	5215
2007	15534	5178	2008	14198	4670	2009	23597	5679
1016	14229	4699	1017	23597	5679			
******	******	******	*****	******				
* Extr	apolation	Summary fo	or Channel/	Pipes *				
			Extrapolat					
			GUTNR Call					

(1						/ 1		
Chan/Pipe			Chan/Pipe			Chan/Pipe		# Calls
101	8075	2653	401	9560	2644	102	9314	2662
103	8384	2664	104	8133	2671	105	8215	2673
106	8866	2602	107	8414	2678	301	7771	2537
302	7953	2571	501	8206	2618	303	8061	2655
304	8472	2656	305	8399	2657	108	8375	2689
109	8242	2698	110	8294	2718	601	8025	2663
602	8071	2593	603	8876	2592	111	8435	2721
112	8457	2727	701	8959	2645	113	8482	2734
114	8518	2762	115	8797	2763	201	8068	2664
202	8440	2664	203	8088	2596	801	8069	2655
204	8216	2672	205	8189	2691	206	8202	2698
207	8228	2720	208	8967	2721	209	8242	2650
116	9569	2775	117	8338	2726			
1								
	*****	*****	*****	****				
* Co	ntinuity C	heck for S	Surface Wat	er *				

* Continuity Check for Surface Water *

	TOTAL	TOTAL	PEAK	PE.	 AK	PEAK	PEAK
			OUS AREA			SUBCATCHMENT	
	SUMMARY STAT						
Error		0.111	Percent				
* Final Storage + Outflow + Eva	******	0 111	Danzant				
* Final Storage + Outflow + Evapo * Watershed Runoff - Groundwater * Initial Channel/Pipe Storage *	Inflow - * ge *						
Initial Channel/Pipe Storage Final Channel/Pipe Storage Surface Runoff from Watersheds Groundwater Subsurface Inflow Evaporation Loss from Channels Channel/Pipe/Inlet Outflow Initial Storage + Inflow Final Storage + Outflow		0.0 0.0 2.6 0.0 1.0 2.6 2.6	abic meters 000000E+00 000000E+00 882146E+04 000000E+00 014796E+00 685027E+04 682146E+04 885128E+04	11.336 0.000 0.000	ver		
**************************************	**************************************	:	cene				
* Precipitation + Initial Snow Co	*****	0.033 Per	cent				
The error in continuity is calcul ************************ * Precipitation + Initial Snow Co * - Infiltration - *Evaporation - Snow removal - *Surface Runoff from Watersheds - *Water in Surface Storage - *Water remaining in Snow Cover *	****** * * . * *						
Infiltration + Evaporation + Surface Runoff + Snow removal + Water remaining in Surface Storag Water remaining in Snow Cover Total Precipitation + Initial Sto			249105E+04 250828E+04	22.186 22.193			
Total Precipitation (Rain plus Sr Total Infiltration Total Evaporation Surface Runoff from Watersheds Total Water remaining in Surface Infiltration over the Pervious Ar	Storage	5.2 2.1 3.4 2.6 5.4	abic meters 250828E+04 169823E+04 124555E+03 582146E+04 168154E+02 169823E+04	11.336	ver		

Ass2_wch.out CHTTER SIMULATED RUNOFF TOTAL RUNOFF RUNOFF RUNOFF RUNOFF RUNOFF UNIT SUBCATCH-OR INLET AREA PERCENT RAINFALL DEPTH LOSSES RATE DEPTH RATE DEPTH RATE RUNOFF MENT NO. NO. (HA) IMPER. (MM) (MM) (MM) (CMS) (MM) (CMS) (MM) (CMS) (MM/HR) 1001 101 8.46 58.0 22.19 0.000 22.193 0.00 19.539 0.31 11.333 0.31 4001 401 5.87 58.0 22.19 0.000 22.193 0.00 19.555 0.23 11.342 0.23 1002 102 5.87 58.0 22.19 0.000 22.193 0.00 19.484 0.19 11.301 0.19 1003 103 4.25 58.0 22.19 0.000 22.193 0.00 19.582 0.19 11.358 0.19 1004 104 12.22 58.0 22.19 0.000 22.193 0.00 19.554 0.49 11.341 0.49 22.19 22.193 19.539 11.333 1005 105 8.42 58.0 0.000 0.00 0.31 0.31 1006 106 0.01 58.0 22.19 0.000 22.193 0.00 0.000 0.00 0.000 0.00 22.19 1007 107 3.04 58.0 0.000 22.193 0.00 19.606 0.15 11.372 0.15 0.000 22.193 3001 22.19 0.00 19.602 11.369 301 3.44 58.0 0.16 0.16

13.307 14.489 11.470 16.257 14.409 13.311 0.000 17.501 17.315 22.19 0.000 22.193 11.382 3002 302 0.93 58.0 0.00 19.624 0.05 0.05 18.259 5001 501 7.69 58.0 22.19 0.000 22.193 0.00 19.569 0.33 11.350 0.33 15.386 22.19 0.000 22.193 19.576 0.27 11.354 3003 303 6.15 58.0 0.00 0.27 15.827 3004 304 1.25 58.0 22.19 0.000 22.193 0.00 19.610 0.06 11.374 0.06 17.662 3005 305 2.06 58.0 22.19 0.000 22.193 0.00 19.660 0.12 11.403 0.12 20.668 1008 108 0.65 58.0 22.19 0.000 22.193 0.00 19.655 0.04 11.400 0.04 20.141 22.19 0.000 22.193 19.562 11.346 1009 109 10.36 58.0 0.00 0.43 0.43 14.923 1010 110 14.65 58.0 22.19 0.000 22.193 0.00 19.533 0.52 11.329 0.52 12.896 6001 601 23.35 58.0 22.19 0.000 22.193 0.00 19.538 0.85 11.332 0.85 13.253 22.193 0.000 6002 602 0.01 58.0 22.19 0.000 0.00 0.000 0.00 0.00 0.000 6003 603 0.01 58.0 22.19 0.000 22.193 0.00 0.000 0.00 0.000 0.00 0.000 0.000 22.193 11.389 0.09 1011 111 1.74 58.0 22.19 0.00 19.637 0.09 18.784 22.193 22.19 0.000 0.00 19.556 11.342 0.23 1012 112 5.67 58.0 0.23 14.522 22.193 7001 701 10.52 58.0 22.19 0.000 0.00 19.552 0.41 11.340 0.41 14.293 1013 113 7.28 58.0 22.19 0.000 22.193 0.00 19.543 0.27 11.335 0.27 13.621 5.67 22.19 22.193 0.00 19.546 11.336 0.22 1014 114 58.0 0.000 0.22 13.778 1015 115 0.81 58.0 22.19 0.000 22.193 0.00 19.588 0.04 11.361 0.04 16.559 2001 201 23.55 58.0 22.19 0.000 22.193 0.00 19.510 0.77 11.316 0.77 11.845 2002 202 1.86 58.0 22.19 0.000 22.193 0.00 19.686 0.12 11.418 0.12 23.526 0.01 22.19 22.193 0.000 2003 203 58.0 0.000 0.00 0.000 0.00 0.00 0.000 8001 801 15.99 58.0 22.19 0.000 22.193 0.00 19.535 0.57 11.330 0.57 13.025 5.14 58.0 22.19 0.000 22.193 0.00 19.605 0.25 11.371 0.25 17.446 2004 204 2005 205 5.38 58.0 22.19 0.000 22.193 0.00 19.567 0.23 11.349 0.23 15.243 2006 18.78 58.0 22.19 0.000 22.193 0.00 19.537 0.68 11.331 13.161 206 0.68 2007 207 11.57 58.0 22.19 0.000 22.193 0.00 19.561 0.47 11.346 0.47 14.882 2008 208 0.65 58.0 22.19 0.000 22.193 0.00 19.631 0.03 11.386 0.03 18.538 2009 209 0.01 58.0 22.19 0.000 22.193 0.00 0.000 0.00 0.000 0.00 0.000 1016 116 3.27 58.0 22.19 0.000 22.193 0.00 19.628 0.17 11.384 0.17 18.422 1017 117 0.01 58.0 22.19 0.000 22.193 0.00 0.000 0.00 0.000 0.00 0.000

*** NOTE *** IMPERVIOUS AREA STATISTICS AGGREGATE IMPERVIOUS AREAS WITH AND WITHOUT DEPRESSION STORAGE

SUMMARY STATISTICS FOR CHANNEL/PIPES _____

LENGTH MAXIMUM MAXIMUM MAXIMUM MAXIMUM TIME MAXIMUM RATIO OF RATIO OF FULL FULL COMPUTED COMPUTED COMPUTED COMPUTED OF OF MAX. TO MAX. DEPTH SURCHARGE CHANNEL FLOW VELOCITY DEPTH INFLOW OUTFLOW DEPTH VELOCITY OCCURRENCE SURCHARGE VOLUME FULL TO FILL. NUMBER (CMS) (M/S) (M) (CMS) (CMS) (M) (M/S)DAY HR. (HOUR) (CU-M) FLOW DEPTH . _ _ _ _ _____ 5.01 0.61 0.23 0.23 0.16 3.65 4/23/89 10.27 0.00 0.00000E+00 0.16 0.27 401 1.46 3.09 4/23/89 10.27 0.00000E+00 101 1 96 4.29 0.76 0.31 0.30 0.20 0.00 0.15 0.26 102 2.65 5.81 0.76 0.69 0.68 0.26 4.88 4/23/89 10.27 0.00 0.00000E+00 0.26 0.35 301 0.68 4.17 0.46 0.16 0.16 0.15 3.38 4/23/89 10.27 0.00 0.00000E+00 0.23 0.33

								Ass2_wch.out				
103	2.83	4.31	0.91	0.86	0.86	0.34	3.78	4/23/89 10.27	0.00	0.00000E+00	0.30	0.38
501	0.86	3.84	0.53	0.33	0.32	0.22	3.55	4/23/89 10.27	0.00	0.00000E+00	0.37	0.42
302	0.98	4.41	0.53	0.20	0.20	0.16	3.45	4/23/89 10.27	0.00	0.00000E+00	0.20	0.30
104	2.66	4.06	0.91	1.32	1.28	0.45	4.02	4/23/89 10.27	0.00	0.00000E+00	0.48	0.49
303	2.08	4.55	0.76	0.78	0.74	0.32	4.17	4/23/89 10.27	0.00	0.00000E+00	0.36	0.41
105	4.79	5.36	1.07	1.56	1.55	0.42	4.78	4/23/89 10.28	0.00	0.00000E+00	0.32	0.39
304	1.36	2.98	0.76	0.80	0.79	0.42	3.09	4/23/89 10.27	0.00	0.00000E+00	0.58	0.55
106	5.10	4.37	1.22	1.55	1.55	0.46	3.83	4/23/89 10.28	0.00	0.00000E+00	0.30	0.38
201	2.33	4.22	0.84	0.77	0.76	0.33	3.78	4/23/89 10.67	0.00	0.00000E+00	0.33	0.39
305	3.17	4.83	0.91	0.88	0.87	0.33	4.13	4/23/89 10.27	0.00	0.00000E+00	0.28	0.36
107	5.29	4.53	1.22	1.66	1.65	0.47	4.00	4/23/89 10.28	0.00	0.00000E+00	0.31	0.38
202	3.50	6.34	0.84	0.83	0.83	0.28	5.20	4/23/89 10.66	0.00	0.00000E+00	0.24	0.33
601	2.51	4.56	0.84	0.85	0.79	0.32	4.04	4/23/89 10.27	0.00	0.00000E+00	0.31	0.39
108	8.73	4.79	1.52	2.54	2.50	0.56	4.13	4/23/89 10.29	0.00	0.00000E+00	0.29	0.37
801	2.14	4.68	0.76	0.57	0.55	0.26	3.92	4/23/89 10.27	0.00	0.00000E+00	0.26	0.35
203	2.58	3.94	0.91	0.83	0.83	0.36	3.51	4/23/89 10.67	0.00	0.00000E+00	0.32	0.39
602	3.44	4.24	1.02	0.79	0.79	0.33	3.44	4/23/89 10.27	0.00	0.00000E+00	0.23	0.32
109	11.25	5.10	1.68	2.83	2.79	0.57	4.23	4/23/89 10.29	0.00	0.00000E+00	0.25	0.34
204	4.69	4.57	1.14	1.55	1.55	0.45	4.10	4/23/89 10.67	0.00	0.00000E+00	0.33	0.40
603	6.75	8.33	1.02	0.79	0.78	0.23	5.56	4/23/89 10.28	0.00	0.00000E+00	0.12	0.23
110	12.87	4.70	1.87	3.21	3.14	0.63	3.88	4/23/89 10.30	0.00	0.00000E+00	0.24	0.34
205	5.57	4.77	1.22	1.74	1.71	0.46	4.20	4/23/89 10.67	0.00	0.00000E+00	0.31	0.38
111	16.22	5.93	1.87	3.92	3.89	0.62	4.87	4/23/89 10.30	0.00	0.00000E+00	0.24	0.33
206	7.42	5.02	1.37	2.33	2.30	0.52	4.43	4/23/89 10.67	0.00	0.00000E+00	0.31	0.38
701	1.36	6.11	0.53	0.41	0.41	0.20	5.33	4/23/89 10.27	0.00	0.00000E+00	0.30	0.37
112	17.12	6.01	1.90	4.04	4.02	0.63	4.91	4/23/89 10.30	0.00	0.00000E+00	0.23	0.33
207	8.08	4.43	1.52	2.69	2.62	0.60	3.95	4/23/89 10.68	0.00	0.00000E+00	0.32	0.39
113	19.40	5.42	2.13	4.50	4.49	0.70	4.41	4/23/89 10.32	0.00	0.00000E+00	0.23	0.33
208	14.72	6.67	1.68	2.63	2.63	0.48	5.05	4/23/89 10.68	0.00	0.00000E+00	0.18	0.29
114	21.30	5.55	2.21	4.66	4.63	0.70	4.44	4/23/89 10.34	0.00	0.00000E+00	0.22	0.32
209	7.81	3.54	1.68	2.63	2.63	0.67	3.19	4/23/89 10.69	0.00	0.00000E+00	0.34	0.40
115	23.31	5.68	2.29	4.66	4.65	0.69	4.43	4/23/89 10.34	0.00	0.00000E+00	0.20	0.30
116	54.27	8.22	2.00	7.19	7.19	0.49	4.56	4/23/89 10.70	0.00	0.00000E+00	0.13	0.24
117	37.35	5.66	2.00	7.19	7.17	0.63	3.54	4/23/89 10.70	0.00	0.00000E+00	0.19	0.31
118				7.2				4/23/89 10.70				

TOTAL NUMBER OF CHANNELS/PIPES = 39

*** NOTE *** THE MAXIMUM FLOWS AND DEPTHS ARE CALCULATED AT THE END OF THE TIME INTERVAL

Page 13

Page 14

Page 15

Ass2_wch.out 60.000 -Τ I RAINFALL I IN MM/HR 40.000 -I I Τ I I 20.000 -10.0 10.4 10.8 11.2 11.6 12.0 12.4 12.8 13.2 13.6 LOCATION NO. : 538976288 TIME IN HOURS RAINFALL HYETOGRAPH 1 10.000 I-----I-----I-----I-----I------I I 8.000 -I 6.000 -

Page 16

Page 17

Ass2_wch.out Ι RUNOFF I IN I CUB M/S 4.000 -2.000 -I I I 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 0.0 4.0 8.0 LOCATION NO. : FLOW SUM TIME IN HOURS SURFACE INLET HYDROGRAPH FLOW SUMMATION FOR ALL INLETS 1 80.000 I-----I-----I-----I-----I I I I 60.000 -I I 40.000 -I I

Page 18

			11552_wc11.00c								
INFILTRATN	I	*		**							I
	I	*		* *							I
IN	I	*		**							I
	I	*		**							I
MM/HR	I	*		**							I
	I	*		* *							I
	I	*		* *							I
20.0	00 -	*		* * *							_
	I	*		***							I
	I	*		***							I
	I	*		***							I
	I	*	*	* * *							I
	I	*	* * *	***							I
	I	*	* * *	****	*						I
	I	* *	** ** *	****	*						I
	I	* * *	** ** *	*****	*						I
	Ī	* * *	* *****	*****	*						Ī
0.0	00 -	**************									
I											T
	Ī										T
	Ī										T
	Ī										Ī
	Ī										T
	Ī										T
	T										_ T
	Ī										T
	Ī										Ī
-20.0	00 I	I	I	I	I	I	T	T	T	T	T
20.0	0.0	4.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	40.0

TIME IN HOURS

PLOT OF INFILTRATION RATE

LOCATION NO. : INFILTRA

APPLICATION OF STORM WATER MANAGEMENT MODEL (SWMM) POWELLS CREEK SIMULATION

Chan/Inlt 118 Mo/Da/Yr Hr:Min Cubic m/s -----4/23/89 3 30 0.029 4/23/89 3 35 0.789 4/23/89 3 40 1.062 4/23/89 3 45 0.755 0.523 4/23/89 3 50 4/23/89 3 55 0.377 4/23/89 4 0 0.285 0.232 4/23/89 4 5 4/23/89 4 10 0.192 4/23/89 4 15 0.157 4/23/89 4 20 0.127 4/23/89 4 25 0.119 4/23/89 4 30 0.122

```
4/23/89 4 35
                    0.119
 4/23/89 4 40
                    0.106
 4/23/89 4 45
                    0.089
 4/23/89 4 50
                    0.073
 4/23/89
        4 55
                    0.059
 4/23/89
         5
           0
                    0.048
 4/23/89
         5
           5
                    0.039
 4/23/89
         5 10
                    0.032
 4/23/89
         5 15
                    0.026
 4/23/89
         5 20
                    0.022
 4/23/89
         5 25
                    0.030
 4/23/89
         5 30
                    0.059
 4/23/89
         5 35
                    0.096
 4/23/89
        5 40
                    0.117
 4/23/89
        5 45
                    0.113
 4/23/89
        5 50
                    0.097
 4/23/89 5 55
                    0.080
 4/23/89 6 0
                    0.065
 4/23/89 6 5
                    0.052
 4/23/89 6 10
                    0.044
 4/23/89 6 15
                    0.039
 4/23/89 6 20
                    0.038
 4/23/89 6 25
                    0.044
 4/23/89 6 30
                    0.053
 4/23/89 6 35
                    0.057
 4/23/89 6 40
                    0.055
 4/23/89 6 45
                    0.048
 4/23/89 6 50
                    0.041
 4/23/89 6 55
                    0.033
 4/23/89
        7 0
                    0.027
 4/23/89
        7 5
                    0.026
 4/23/89
        7 10
                    0.086
 4/23/89
        7 15
                    0.277
 4/23/89
        7 20
                    0.462
 4/23/89
        7 25
                    0.519
        7 30
 4/23/89
                    0.538
 4/23/89
        7 35
                    0.497
 4/23/89 7 40
                    0.421
**************
**********
```

* Summary of quantity results (flow in cms) *

APPLICATION OF STORM WATER MANAGEMENT MODEL (SWMM) POWELLS CREEK SIMULATION

Chan/Inlt 118 Date Time Flow Mo/Da/Yr Hr:Min Cubic m/s 4/23/89 7 45 0.474 4/23/89 7 50 0.700 4/23/89 7 55 0.700 4/23/89 8 0 0.540 4/23/89 8 5 0.401 4/23/89 8 10 0.315 4/23/89 8 15 0.291

```
4/23/89 8 20
                     0.409
 4/23/89 8 25
                     0.698
 4/23/89
         8 30
                     0.732
 4/23/89
         8 35
                     0.587
 4/23/89
         8 40
                     0.449
 4/23/89
         8 45
                     0.397
 4/23/89
         8 50
                     0.501
         8 55
 4/23/89
                     0.547
 4/23/89
         9 0
                     0.468
 4/23/89
         9 5
                     0.382
         9 10
 4/23/89
                     0.344
 4/23/89
         9 15
                     0.316
 4/23/89
         9 20
                     0.286
 4/23/89
         9 25
                     0.276
 4/23/89
         9 30
                     0.297
 4/23/89
         9 35
                     0.363
 4/23/89 9 40
                     0.524
 4/23/89 9 45
                     0.642
 4/23/89 9 50
                     0.599
 4/23/89 9 55
                     0.564
 4/23/89 10 0
                     0.492
 4/23/89 10 5
                     0.492
 4/23/89 10 10
                     0.926
 4/23/89 10 15
                     3.377
 4/23/89 10 20
                     7.114
 4/23/89 10 25
                     5.759
 4/23/89 10 30
                     4.762
 4/23/89 10 35
                     6.654
 4/23/89 10 40
                     6.547
 4/23/89 10 45
                     6.021
 4/23/89 10 50
                     3.390
 4/23/89 10 55
                     2.151
 4/23/89 11 0
                     1.574
 4/23/89 11 5
                     1.253
 4/23/89 11 10
                     1.005
 4/23/89 11 15
                     0.852
 4/23/89 11 20
                     0.992
 4/23/89 11 25
                     1.192
 4/23/89 11 30
                     1.206
 4/23/89 11 35
                     1.434
 4/23/89 11 40
                     1.461
 4/23/89 11 45
                     1.407
 4/23/89 11 50
                     1.292
***********
* Summary of quantity results (flow in cms) *
  APPLICATION OF STORM WATER MANAGEMENT MODEL (SWMM)
  POWELLS CREEK SIMULATION
```

```
4/23/89 12 5
                      0.578
  4/23/89 12 10
                      0.503
  4/23/89 12 15
                      0.407
  4/23/89 12 20
                      0.314
  4/23/89 12 25
                      0.242
  4/23/89 12 30
                      0.188
  4/23/89 12 35
                      0.148
  4/23/89 12 40
                      0.118
  4/23/89 12 45
                      0.095
  4/23/89 12 50
                      0.076
  4/23/89 12 55
                      0.062
  4/23/89 13 0
                      0.052
  4/23/89 13 5
                      0.047
  4/23/89 13 10
                      0.043
  4/23/89 13 15
                      0.038
  4/23/89 13 20
                      0.034
  4/23/89 13 25
                      0.031
  4/23/89 13 30
                      0.027
  4/23/89 13 35
                      0.023
  4/23/89 13 40
                      0.019
  4/23/89 13 45
                      0.016
  4/23/89 13 50
                      0.013
  4/23/89 13 55
                      0.011
  4/23/89 14 0
                      0.014
  4/23/89 14 40
                      0.058
  4/23/89 15 20
                      0.010
  4/23/89 16 0
                      0.002
  4/23/89 16 40
                      0.001
  4/23/89 17 20
                      0.000
  4/23/89 18 0
                      0.000
  4/23/89 18 40
                      0.000
  4/23/89 19 20
                      0.000
  4/23/89 20 0
                      0.000
Flow wt'd means....
                      0.3729
Flow wt'd std-devs.
                     1.0411
Maximum value.....
                     7.1678
Minimum value.....
                     0.0000
Total loads.....
                    2.69E+04
                     Cubic-m
 ===> Runoff simulation ended normally.
 ===> SWMM 4.40 simulation ended normally.
     Always check output file for possible warning messages.
 ===> Your input file was named : Ass2.dat
 ===> Your output file was named: Ass2.wch
 *************
       SWMM 4.40 Simulation Date and Time Summary *
 **************
 * Starting Date... September 16, 98
          Time... 21:29:25:79
    Ending Date... September 16, 98
          Time... 21:33:33:34
 * Elapsed Time...
                             4.133 minutes.
 * Elapsed Time...
                            248.003 seconds.
```
