Университет ИТМО

Физико-технический мегафакультет

Физический факультет

Группа <u>Р3216</u>	К работе допущен
Студент <u>Ровкова</u> <u>Анастасия.</u> <u>Григорьев Даниил, Серенко Егор</u>	Работа выполнена
Преподаватель <u>Рудель А. Е</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы.

– Исследование распределения случайной величины на примере длительностей песен группы "Nirvana".

2. Задачи, решаемые при выполнении работы

- 1. Собрать данные о длительности всех песен группы Nirvana (в секундах).
- 2. Построить гистограмму распределения длительностей.
- 3. Вычислить среднее значение и дисперсию выборки.
- 4. Сравнить гистограмму с функцией нормального распределения с теми же параметрами.

3. Объект исследования.

Длительность песен группы "Nirvana" среди вкладки "популярное" в приложении Spotify.

4. Метод экспериментального исследования.

Многократное измерение длительности треков и оценка полученных в процессе значений случайной величины с целью определения статистических характеристик.

5. Рабочие формулы и исходные данные

$$\langle t \rangle = \frac{1}{N} \sum_{i=1}^{N} ti$$
 – среднее арифметическое всех результатов измерений.

$$\sigma = \sqrt{\frac{1}{N-1}\sum \left(ti - \langle t \rangle\right)^2}$$
 – выборочное среднеквадратичное отклонение.

$$ho_{max} = rac{1}{\sigma\sqrt{2\pi}}$$
 – максимальное значение плотности распределения.

$$p(t) = \frac{1}{\sigma\sqrt{2\pi}} exp \left\{ \left(-\frac{\left(t - \langle t \rangle_N \right)^2}{2\sigma^2} \right) \right\}$$
 — функция Гаусса

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)}\sum\limits_{i=1}^{N} \left(t_i - \left\langle t \right\rangle_N \right)^2}$$
 – среднеквадратичное отклонение среднего значения $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$ – доверительный интервал.

6. Измерительные приборы.

Nº	Наименование	Тип прибора		Погрешность
п/п			диапазон	прибора
1	Секундомер	Цифровой	0 - 306 c	0.3 c

7. Схема установки.

Используются уже измеренные данные, так что в установке нет необходимости.

8. Результаты прямых измерений и их обработки.

См. Таблица 1

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

-
$$\langle t \rangle = \frac{1}{38} \sum_{i=1}^{38} t_i = 190 \text{ c.}$$

-
$$\sigma = \sqrt{\frac{1}{38-1} \sum_{i=1}^{38} (t_i - 190)^2} = 59,16 \text{ c.}$$

-
$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}} = 0$$
, 0067 c.

$$- \sigma_{\langle t \rangle} = \sqrt{\frac{1}{38(38-1)} \sum_{i=1}^{38} (t_i - 190_N)^2} = 59,16324 * \sqrt{\frac{1}{38}} = 9,598 c.$$

Среди полученных данных ${\rm t_{min}}$ = 103 c и ${\rm t_{max}}$ = 306 c $\sqrt{N}~\approx~6$, $\Delta t~=~34$ c.

Nº	Границы интервалов, с	ΔΝ	ρ, C -1	t, c	$\rho(t), c^{-1}$
1	[103; 137]	4	0.01456	117	0.0031
2	[137; 171]	6	0.00790	157.11	0.0058
3	[171; 205]	7	0.00678	184	0.0067
4	[205; 239]	12	0.00773	221.25	0.0059
5	[239; 273]	5	0.01337	259.6	0.0034
6	[273; 306]	5	0.02904	291.5	0.0016

Стандартные доверительные интервалы

	Начало интервала, с	Конец интервала, с	ΔΝ	$\frac{\Delta N}{N}$	Р
$\left\langle t\right\rangle _{N}+\sigma_{N}$	199.99	180.80	0	0	0
$\langle t \rangle_N + 2\sigma_N$	209.59	171.20	7	0.184	0.2
$\langle t \rangle_N + 3\sigma_N$	219.19	161.60	18	0.473	0.4

- 1. Расчет вероятности попадания результата измерения в интервал $\left\langle t\right\rangle _{N}+\sigma_{N}$ —
- 2. Расчет вероятности попадания результата измерения в интервал $\left\langle t\right\rangle _{_{N}}+$ $2\sigma_{_{N}}$

P(171.20 < t < 209.59) =
$$\int_{171.20}^{209.59} \rho(t)dt \approx \frac{7}{38} \approx 0.2$$

3. Расчет вероятности попадания результата измерения в интервал $\left\langle t\right\rangle _{_{N}}+3\sigma _{_{N}}$

P(171.20 < t < 209.59) =
$$\int_{171.20}^{209.59} \rho(t)dt \approx \frac{18}{38} \approx 0.4$$

<u>Коэффициент Стьюдента</u> при доверительной вероятности α = 0,95 и степени свободы k = 37

$$t_{\alpha N} \approx 2.021$$

Доверительный интервал:

$$\Delta t$$
 = 2, 021 · 9,597544 = 19,396636424 c

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

 $\Delta_{_{tu}} \ = \ 0.3 \ c$ - инструментальная погрешность

$$\Delta_{t_{-}} = t_{\alpha,N} * \sigma_{\langle t \rangle} = 2,021 * 9,598 = 19,398 с - случайная погрешность$$

$$\Delta_{t} = \sqrt{\Delta_{t_{-}}^{2} + (\frac{2}{3}\Delta_{tH}^{2})^{2}} = \sqrt{19,398^{2} + (\frac{2*0.3}{3})^{2}} = 19,399 \text{ c}$$

$$\varepsilon_{t} = \frac{\Delta_{t}}{\langle t \rangle_{t}} * 100\% = \frac{19.399}{190} * 100\% = 10,21\%$$

11. Графики (перечень графиков, которые составляют Приложение 2).

См График 1

12. Окончательные результаты.

$$t = (201, 3\pm 19, 4) \text{ c}; \ \epsilon_t = 10, 21 \%; \ \alpha = 0, 95.$$

13. Выводы и анализ результатов работы.

В ходе работы были собраны данные о длительностях песен Nirvana и построена гистограмма их распределения. Среднее значение длительности оказалось около 190 секунд. Полученное распределение в целом имеет форму, близкую к нормальной. Это можно объяснить малым объемом выборки. В целом нормальное распределение может использоваться как приближенная модель, но для более точных выводов нужна большая выборка.

В нашем случае реальные значения оказались заметно меньше табличных. Это говорит о том, что распределение длительностей песен отличается от нормального: разброс значений больше.

Мы научились рассчитывать основные статистические характеристики, строить гистограммы и сравнивать экспериментальные данные с теоретической моделью, а также строить анализ по правилу трех сигм.

Приложение

Таблица 1

Nº	Название	t _{i,} c.	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, \mathbf{c}^2
1	Smells Like Teen Spirit	301	111	12233
2	Heart-Shaped Box	281	170	29034
3	About a girl	168	-22	502
3	Them Man Who Sold The World	261	71	4985
4	Come As You Are	218	28	762
5	All Apologies	233	43	1815
6	Rape Me	170	-20	416
7	You Know You're Right	217	27	708

8	Lithium	257	67	4436
9	Dumb	151	-39	1552
10	Love Buzz	215	25	605
11	Lake Of Fire-Live	175	-15	237
12	Something In The Way	232	42	1731
13	Aneurysm	275	85	7158
14	Marigold	154	-36	1325
15	Where Did You Sleep Last Night	306	116	13365
16	In Bloom	255	65	4174
17	Silver	136	-54	2959
18	Blew	174	-16	269
19	Oh Me	205	15	213
20	Drain You	223	33	1063
21	Serve The Servants	217	27	708
22	School	162	-28	806
23	Plateau	218	28	762
24	Dive	235	45	1990
25	Pennyroyal Tea	218	28	762
26	Negative Creep	175	-15	237
27	Jesus Doesn't Want Me For A Sunbeam	277	87	7500
28	Molly's Lips	114	-76	5836
29	Very Ape	115	-75	5684
30	Floyd The Barber	138	-52	2745
31	I Hate Myself And Want to	179	-11	130

	Die			
32	Sappy	205	15	213
33	Frances Farmer Will Have Her Revenge in Seattle	250	60	3553
34	Been A Son	175	-15	237
35	Moist Vagina	213	23	511
36	Verse Chorus Verse - Outtake	216	26	656
37	Downer	103	-87	7638

