Simulating Language 14: From individual to population

Simon Kirby simon@ling.ed.ac.uk

What are the right questions about learning?

- We've looked at two types of learning: Hebbian, and Lateral Inhibition
- Smith (2002) looks at a huge range of different weight update rules and their influence on the way language evolves.

Smith, K. 2002. The cultural evolution of communication in a population of neural networks, Connection Science, 14:1, 65-84

- Most obvious question about learning: can a learner acquire an optimal language
- But this isn't the only relevant question...

The "acquisition test"

 Do the Hebbian and Lateral Inhibition learners pass the test? Can they learn an optimal language?

Hebbian:

TRAINING m1→s1 m2→s2

m3→s3

	s1	s2	s3
m1	٦-	0	0
m2	O	1	0
m3	0	0	1

RESULT $m1 \rightarrow s1$ $m2 \rightarrow s2$ $m3 \rightarrow s3$

The "acquisition test"

 Do the Hebbian and Lateral Inhibition learners pass the test? Can they learn an optimal language?

Lateral Inhibition:

TRAINING m1→s1

m2→s2

m3→s3

	s1	s2	s3
m1	1	<u>ე</u>	ကို
m2	-3	1	3
m3	-3	-3	1

RESULT

m1→s1

m2→s2

m3→s3

The "construction test"

- Both pass the acquisition test just fine...
- If learning a language was all we cared about, we'd have nothing more to say. Either learner is fine.
- But what about evolving a language in the first place?
- This is why we implemented cultural evolution!
- The construction test: can a population of learners construct an optimal language starting from sub-optimal ones?

Hebbian: passes acquisition test but does not construct

Lateral inhibition: passes acquisition test and does construct

Difference only visible at the population level (and after cultural evolution)

Bias

- · Different weight update rules correspond to different ways of learning
- They come with different biases
 - Although that's not immediately obvious just from looking at acquisition
- Population's language (in this case, just a vocabulary really) evolves to fit these biases
- But what exactly are these different biases?
- How do they relate to the human vocabulary learning strategy?

Constructor bias

TRAINING

m1→s1

	s1	s2	s3
m1	1	-	-1
m2	-1	0	0
m3	-1	0	0

RESULT

 $m1 \rightarrow s1 \text{ (not s2, s3)}$

m2→s2, s3 (not s1)

This learning rule is biased against synonyms (because inhibition is spread along the row)

It's also biased against homonyms (because inhibition is spread down the column)

Hebbian bias?

TRAINING

m1→s1

	s1	s2	s3
m1	Ψ-	0	0
m2	0	0	0
m3	0	0	0

RESULT

 $m1 \rightarrow s1 \text{ (not s2, s3)}$

m2→s1, s2, s3

This learning rule is biased against synonyms (because only activation on the row is for the signal seen)

It is neutral with respect to homonyms (because other weights are unchanged)

Languages adapt to the bias

- Population's vocabulary changes over time to match the bias of learners
- Constructors (like the lateral inhibition learner) are biased in favour of oneto-one mappings between meanings and signals
- One-to-one systems happen to be optimal for communication, so this is what emerges through the process of iterated learning
- This is adaptation without biological evolution

What about real humans?

Experiment on children's learning bias
 Markman & Wachtel (1988) on synonymy

"Show me the fendle."

Children pick the unfamiliar object given an unfamiliar word

Anti-synonymy bias (Mutual Exclusivity)

Before

banana

???

After (two possibilities)

fendle

Homonymy bias (Doherty 2004)

• "... at the zoo, they saw a strange tapir from Brazil. Hamish thought the tapir's long nose looked funny"

"Which one is the tapir in this story?"

Homonymy bias (Doherty 2004)

• "... at the zoo, they saw a strange **cake** from Brazil. Hamish thought the **cake's** long nose looked funny"

"Which one is the cake in this story?"

Anti-homonymy bias

Before

cake

???

After (two possibilities)

cake

???

Children's learning biases

- Children don't like:
 - synonymy
 - homonymy
- They have the same biases as the lateral inhibition learners in our simple model and populations of such learners evolve optimal communication systems
- Our model would predict that human vocabularies would be pushed in this direction simply through iterated learning

But but but... wait...

Where do these biases come from?

- A tempting answer: They evolved, just like the innate signalling systems supporting optimal communication did.
- Instead of evolving the signalling systems directly, biases that lead to the cultural evolution of optimal signalling could have evolved biologically.
- Easy enough to test! Just treat the learning algorithm as being genetically inherited whilst also transmitting languages culturally via iterated learning. Select on the basis of good communication.
- Smith (2004) tried just this.

Smith, K. (2004). The evolution of vocabulary. Journal of theoretical biology, 228(1), 127-142.

Invasion of the mutants

- Smith (2004) plays lateral inhibition and Hebbian learners off against each other
- Create a population mainly made up of one type, but with a small number of another type (the mutant)
- Agents inherit both the communication system (by cultural transmission), and their learning strategy (by genetic transmission)
- Both culture and biology evolve
- If selection is based on mutual communicative success, which mutants will invade?

Surprising result: evolution is hard

- Lateral inhibition learners don't often invade, even though it would increase the fitness of the population if they did
- Two problems:
 - Need a lot of mutants before they start to have a good effect on the population's language...
 - ...and even then, there's a time-delay before the good language evolves culturally.
- Speculative conclusion: human learning biases haven't evolved only for communication.

An alternative solution: communicative rationality

Routes to communication

- We've now seen three ways of getting optimal signalling off the ground
 - 1. Biological evolution of innate signalling (under certain circumstances)
 - 2. Cultural evolution of signalling in a population of learners with the right kind of learning bias
 - 3. Cultural evolution of signalling in a population of learners who do some rational inference about communication
- Which is it for language?
 It can't be 1, but we don't actually know between 2 and 3.

The story so far, and what comes next

- Signalling systems (and languages) can evolve as a result of their transmission
 - We can model this
- The biases of learners shapes what evolves
- This potentially allows us to link findings about biases in learning at the individual level to predictions / observations about language at the population level
 - But caution (or better, a model) is required the acquisition test here was misleading, there is more than one route to optimal systems
- Next up: a class of models that allow us to be very clear and very precise about bias