1. Soundness and completeness

This exercise is about the soundness lemma for the normal modal logic K_{σ} . Consider the following tableau in K_{σ} , which contains only one branch which we call b:

1: $\neg(\Box p \supset \Box \Box p), 0$

a) The branch is (open and) complete. Every rule that can be applied has been applied, including the symmetric (o) restriction.

b) Branch b is $\mathit{open}.$ Consider the interpretation $\mathcal{I} = \langle W, R, v \rangle$ with:

- $W = \{w_0, w_1\}$
- $R = \{\langle w_0, w_1 \rangle, \langle w_1, w_0 \rangle\}$
- $v_{w_0}(p) = 1$ and $v_{w_1}(p) = 0$

Moreover, consider partial function f from the natural numbers to W such that $f(1)=w_0$ and $f(0)=f(2)=w_1$.

Question: Does f show that \mathcal{I} is faithful to b? If so, show this step by step, considering each line from b. If not, provide a counterexample and show that it is one.

$$f(1) = \omega_0$$

$$f(0) = f(z) = \omega_1$$

-> | have no idea how to interpret the portial functions

$$\nabla_{\mathbf{x}} \square P_{\mathbf{x}} \wedge \Diamond Q_{\alpha}, 0$$
 $\neg \Diamond (P_{b} \wedge Q_{a}), 0$
 $\square \neg (P_{b} \wedge Q_{a}), 0$
 $\nabla_{\mathbf{x}} \square P_{\mathbf{x}}, 0$
 $\Diamond Q_{\alpha}, 0$
 $\neg P_{b}, 0$
 $\neg P_{$

5 to the bost of my knowledge. 10k what to do with that - 6b

two open and complete branches.