

Education_____

Indian Institute of Technology, Bombay

October '21 - Present

Dept. of Aerospace Engineering

CPI: 8.22/10

Bachelor of Technology in Aerospace Engineering with Minor in Data Science and Artificial Intelligence

Research Experience_____

Optimization of Pipelines for GROWTH India Telescope (GIT)

May '23 - Present

Guide: Prof. Varun Bhalerao, Dept. of Physics, IIT Bombay

Data Reduction

- Improved the **image subtraction** pipeline by exploring different source masking techniques and developed a method to compute the net **efficiency** of image subtraction performed on a particular image.
- Implemented weighted stacking of processed science images using SWarp and standard deviation weight-maps to deliver better limiting magnitude and overall SNR compared to the conventional median stacking.

${\it Electro-Magnetic\ counterparts\ to\ Gravitational\ Waves\ (EMGW)}$

- Processed Ultra Violet Imaging Telescope (UVIT) data and calculated the upper limit of GRB 220408A.
- Working with Slack bots to complete the transition of the existing GCN alert system to Kafka.

Observational Experience

- Discovered a new optical transient AT 2023tkw in the host galaxy Messier 31 and published the results on the Transient Name Server (TNS) AstroNote 2023-255, and the Astronomer's Telegram ATel 16311
- Performed optical follow-ups and data reduction on multiple GRBs and published the results as NASA GCN Circulars GCN 35089, 35055, 35041, 35027, 34984, 34839, 34833, 34780, 34576, 34514, 34500, 34460, 34420.
- Carried out observations and calculations for multiple possible comet and Near Earth Object (NEO) and published the results on the Minor Planet Center - MPEC 2023-S264, 2023-R197, 2023-R115, 2023-O51.
- Performed calculations on tiling of past Fermi GBM localisations to determine coverage capabilities and follow-up criteria using GIT. Results include the follow-up of GRB 231018A (GCN 34839) covering ~ 22% of the probability.

Key Projects_____

Statistically Detecting Gamma Ray Bursts in CZTI | Github

May '23 - July '23

Krittika Summer Projects, Guides: Gaurav Waratkar, Meghna Dixit - IIT Bombay

- Studied physics of Gamma Ray Bursts (GRBs) and working of AstroSat's Cadmium-Zinc-Telluride Imager (CZTI).
- Generated and analyzed multiple time-binned light curves, spectral plots, spectrogram, and detector plane histogram
 for GRB 190928A in Python by using the data reduction modules from the CZT Pipeline.
- Analyzed the unknown distribution of noise data present in the light curves by fitting various known distributions, namely the **Gaussian**, **Poisson**, **SkewNorm** and **Gamma** distributions and statistically determined the best fit.
- Established a quantitative method to determine whether the true nature of a given signal is **cosmic** or **real** by determining the Signal to Noise Ratio (**SNR**) across different energy ranges and comparing the results.
- Designed and implemented a pipeline to accurately **uncover possible GRBs** using time-binned statistics for any given orbit file with testing done against 10 different known GRBs to achieve a success rate of 90%.

Time Series Analysis of Magnetic Cataclysmic Variables | Report

May '23 - July '23

Krittika Summer Projects, Guide: Abhinna Sundar - Max Planck Institute for Astronomy

- Studied the physics governing binary stars and cataclysmic variables (CVs) with emphasis on magnetic CVs.
- Performed **image reduction** and statistical analysis on data of the **polar** magnetic cataclysmic variable **BL Hydri** obtained from **AstroSat**'s Ultra Violet Imaging Telescope (**UVIT**) by the use of **CCDLAB**.
- Performed generation of light curves using the UVIT-specific data processing library **curvit** and accurately obtained the **orbital period** of the system by analyzing the **Lomb–Scargle Periodogram** of the light curve.
- Performed **phase folding** and correction of **ephemeris** on the obtained light-curve, furthermore, calculated the magnitudes, fluxes, and luminosities associated with each phase to determine the **physical state** of the system.

Stellar Analysis of Clusters using Gaia | Report

May '23 - July '23

Krittika Summer Projects

- Employed parallax and proper motion cuts on a dataset of 1 billion+ stars to find distances of 5 open clusters.
- Studied the phase space distribution of spectral types in open clusters and obtained the Salpeter Initial Mass Function (IMF) by using a comparison between HR diagrams and PARSEC isochrones.
- Obtained the age and metallicity of the globular cluster **Omega Centauri** by fitting isochrones on its HR diagram.

Analysis of Solar Flares and Prediction of Solar Activity | Github August '22 - November '22 Data Analysis (DS203) Course Project, Prof. Amit Sethi, Prof. Manjesh K. Hanawal

- Studied the underlying physics associated with solar flares and activity, and gathered datasets for analysis.
- Analysed the time series data from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Konus-Wind missions using both Long Short Term Memory (LSTM) and Autoregressive models.
- LSTM: Achieved a mean squared error of **0.021** and **0.026** on the RHESSI and Konus-Wind datasets respectively.
- Autoregression: Achieved a mean squared error of **0.012** and **0.017** on RHESSI and Konus-Wind datasets respectively.

Weather Classification via Computer Vision | Github

January '23 - April '23

Machine Learning (DS303) Course Project, Guide: Prof. Biplab Banerjee

- Implemented a ConvNet model for transfer learning with VGG16 backbone pre-trained on the ImageNet dataset
- Achieved an unprecedented validation accuracy of 85.61%, seeing an improvement of 5.34% over the original model.
- Fine-tuned the model with a head consisting of flatten, dense and dropout layers to improve accuracy by 4.38%

Correlation Between JEE Rank and Branch Chosen | Github

April '22 - July '22

Data Analysis (AE102) Course Project, Guide: Prof. Amuthan Ramabathiran

- Collected and filtered data from the **JoSAA** website to study the trend of popularity of branches at various IITs.
- Plotted the data and observed a **gradual shift** in the average ranks accepted into the **CSE** and **Electrical** branches.

Structural Analysis on Variable-Sweep Wing Aircraft

January '23 - April '23

Structures (AE238) Course Project, Guide: Prof. Amuthan Ramabathiran

- Performed comprehensive study on aerodynamic effects based on the Grumman F-14 Tomcat and built a simple working model with servo actuators, to demonstrate the variable-sweep wing characteristics of the aircraft.
- Analyzed and reported the variation of aeroelastic effects like flutter and divergence with change in sweep angle.

Positions of Responsibility

Team Krittika - Volunteer

December '22 - April '23

The Astronomy Club of IIT Bombay

- Increased astronomy awareness in the institute by conducting a stargazing session by employing Electronically Assisted Astronomy (EAA) to display live footage of comet C/2022 E3 (ZTF) for an audience of 250+ students.
- Assisted in club outreach by regularly capturing and posting images of deep sky objects such as the Orion Nebula, Leo Triplet, and Omega Centauri along with a transit of the International Space Station across the Sun.

Scholastic Acheivements

Top 0.73%, Joint Entrance Examination Mains among over 0.9 million candidates

February 2021

Top 1.15%, Joint Entrance Examination Advanced among over 0.14 million candidates

October 2021

Courses Undertaken_

Spaceflight Mechanics, Compressible and Incompressible Fluid Mechanics, Aircraft Propulsion Aerospace Mathematics Numerical Analysis, Partial Differential Equations, Multi-variable Calculus, Linear Algebra **Data Science**

Machine Learning, Programming for Data Science, Data Analysis and Interpretation

Quantum Physics and Application, Basics of Electricity and Magnetism, Introduction to Electrical and Other

Electronics Circuits, Computer Programming and Utilization

Technical Skills

Python, C++, SQL, HTML5, CSS, LATEX Languages Softwares CCDLAB, SWarp, SExtractor, DS9, Siril

Libraries AstroPy, NumPy, HealPy, SciPy, Pandas, Matplotlib, OpenCV, curvit