тренованої на повному наборі, до #320, помилка прогнозу взагалі не перевищує 40%.

Таблиця 1.7 — Результати апроксимації експериментальних ВАХ та тестування передбачень щодо вмісту заліза за допомогою ГНМ

Зразок	$N_{\text{Fe,MEAS}}$,	<i>T</i> , K	$N_{\rm Fe, PRED}, 10^{12} {\rm cm}^{-3}$			
	10^{12} cm^{-3}		$\mathrm{DNN}_{\mathrm{FeFeB}}$		DNN _{FeFeB-FeB}	
			трен	повн	трен	повн
#320	2,0±0,4	300	3,9	2,8	3,0	2,0
		320	6,6	1,9	16	19
		340	3,8	1,2	89	574
#349	6,7±0,7	300	8,9	5,6	15	11
		320	1,2	0,4	10	32
		340	9,8	1,7	26	411

Також зауважимо, що результати для реальних ВАХ підтверджують тенденції, виявлені при роботі з синтетичними ВАХ. Зокрема, точність прогнозу падає при температурах, вищих 320 К та концентраціях заліза, близьких до верхньої межі $(10^{13} \text{ см}^{-3})$ використаного діапазону. Це повністю збігається з даними на Рис. 3.2а та Рис. 3.5а, відповідно. Крім того, значення $(N_R = 1.4 * 10^{15} \text{ cm}^{-3})$ рівня легування бази реальних KCE використовувалося при створенні тренувального набору розмічених даних, проте зустрічалося в B-varied наборі (а отже, і в повному). З Таблиці 1.7 видно, що передбачення DNN_{FeFeB} , тренованої на повному наборі, кращі ніж у випадку використання лише тренувального набору, особливо для #320. Ця особливість підтверджує зроблений раніше висновок про важливість тренування ГНМ з тими значеннями N_B , які очікуються у об'єктах майбутніх досліджень.