CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

PROTEIN FOLDING: PLANAR CONFIGURATION SPACES OF DISC ARRANGEMENTS AND HINGED POLYGONS: PROTEIN FOLDING IN FLATLAND

A thesis submitted in partial fulfillment of the requirements For the degree of Master of Science in Mathematics

By

Clinton Bowen

Spring 2014

The thesis of Clinton Bowen is approve	d:
Dr. John Dye	Date
Dr. Silvia Fernandez	 Date
Dr. Bernardo Abrego	Date
Dr. Csaba Toth, Chair	 Date

California State University, Northridge

DEDICATIONS

ACKNOWLEGDEMENTS

Table of Contents

Signa	iture pag	ge	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
Dedic	cation.						•	•		•									٠									iii
Acknowledgement																	iv											
Abstr	act .																											vi
1	Introdu	ction .																										1
2	Backgr	ound .																										1
	2.1	Linkag	ges																									1
	2.2	Circle	Pacl	king	5																		•				•	2
2.2.1	Circle	Packin	gs aı	nd F	Poly	gc	ona	1 L	ink	ag	es																	
2.2.2	Hinge	d Polyg	ons																									
2.2.3	Hinge	d Hexag	gons	of	Fix	ed	Siz	ze																				
3	Config	onfiguration Spaces of Polygonal Chains															4											
	3.1	Polygo	onal	Lin	kag	ges						•					•		•				•					4
3.1.1	Config	guration	s an	d L	ock	ed	Co	onf	ìgu	rat	ion	S																
	3.2	Dissec	tion	s.																								4
	3.3	SAT P	roble	ems	· .														•						•			5
3.3.1																												
4	Probler	Problem															5											
	4.1	Proble																										5
	4.2	Decida																										5
	4.3	Hexag																										6
5	Conclu								-																			7

ABSTRACT

PROTEIN FOLDING: PLANAR CONFIGURATION SPACES

OF DISC ARRANGEMENTS AND HINGED POLYGONS:

PROTEIN FOLDING IN FLATLAND

Ву

Clinton Bowen

Master of Science in Mathematics

Insert Abstract here

Abstract

We look into the decidability of whether a hinged configuration locks.

1 Introduction

We look into the decidability of continuity on planar configuration space using regular, unitary hexagonal polygons. These polygons can also represent unit disk configurations [4]

Figure 1: A locked 7 ball configuration

Motivation Protein folding, graphite, crystalline structures in metallurgy; disc packing; hexagonal configurations; Determine whether chemical structures are realizable.

Outline Section 2 covers the necessary mathematical concepts to understanding the problem. Section 3 explains the problem, Section 4 covers the results and findings about the problem. Section 5, the conclusion, offers final remarks on the problem.

2 Background

Here we review some of the necessary mathematics behind the problem. The definitions found in this chapter are those found in [9, 11, 8].

2.1 Linkages

Definition 2.1 (Graph). An ordered pair G = (V, E) comprising a set V of vertices or nodes together with a set E of edges or lines

Definition 2.2 (Linkage). A collection of fixed-length 1D segments joined at their endpoints to form a graph.

A linkage can be thought of as a type of path-connected graph, i.e. the segments of a linkage are the edges of a graph, and the endpoints of the segments are the vertices. For this paper, we restrict our self to linkages that are simple planar graphs, i.e. a linkage that:

- (i) does not have multiple edges between any pair of vertices,
- (ii) does not have edges that cross, or
- (iii) have loops (i.e. $(v, v) \in E$).

Definition 2.3 (Cycle). A closed walk with no repetitions of vertices or edges allowed, other than the repetition of the starting and ending vertex

Definition 2.4 (Configuration). A specification of the location of all the link endpoints, link orientations and joint angles.[6]

Definition 2.5 (Configuration Space). The space of all configurations of a linkage.

A configurations space is said to be continuous if for any two configurations, \mathcal{A} and \mathcal{B} of a linkage L, \mathcal{A} can be continuously reconfigured to \mathcal{B} such that, the reconfigurations reside in the configuration domain, L remains rigid throughout reconfiguration (i.e. all links' lengths are preserved), and no violations of linkage intersection conditions.

Definition 2.6 (Pinned Joint). A vertex of a graph (or linkage) that is fixed to a position in a plane.

Definition 2.7 (Free Joint). A vertex of a graph (or linkage) that is not fixed to a position in a plane.

Figure 2: A linkage with joints.

For illustrations in the remainder of this paper, free joints will be represented as crosses and pinned joints will be represented as disks.

Figure 3: The cross represents a free joint; the pinned joints are denoted as disks. The range of motion shown by the arc describes the continous configuration space of the linkage.

Figure 4: This figure is an example of a circle packing for the given simple planar graph.

2.2 Circle Packing

Definition 2.8 (Circle Packing). P of a planar graph G is a set of of circles with disjoint interiors $\{C_v\}_{v \in G}$ such that two circles are tangent if and only if the corresponding vertices form an edge. [2]

Theorem 2.1 (Circle Packing Theorem). For every connected simple planar graph G there is a circle packing in the plane whose intersection graph is (isomorphic to) G.

A proof of Theorem 2.1 is found in [11].

2.2.1 Circle Packings and Polygonal Linkages

Given a circle of radius r and its center point, (x,y), we establish the isomorphism to a hexagon by circumscribing the vertices of the regular hexagon.

Figure 5: A circumbscribed hexagon

2.2.2 Hinged Polygons

Definition 2.9 (Polygonal Chain). A polygonal chain $P = (v_0, v_1, \dots, v_{n-1})$ is a sequence of consecutively joined segments (or edges) $e_i = v_i v_{i+1}$ of fixed lengths $l_i = |e_i|$, in a plane. [3]

A chain is said to be closed if $v_{n-1} = v_1$, otherwise it is said to be open. Hinged polygons have been researched for decades and related to linkage problems [3, 5].

Consider the locked configuration of figure 6. We can configure the hexagons to be locked by placing hinged points as follows:

Figure 6: A locked 7 hexagonal configuration. (needs to modify picture by placing red points for hing points.)

2.2.3 Hinged Hexagons of Fixed Size

The Shapes Figure 7 is a locking shape: Figure 7 shall reside in the boundary of a lattice and have a hinge

Figure 7: A locking shape in the lattice boundary's channel.

point at one vertex where the locking shape and boundary meet.

Junctions We define junctions to be the point three hexagons meet in a hexagonal lattice, e.g. Figure 8.

Figure 8: A portion of a hexagonal lattice.

Central Scaling

Junctions in Conjunctive Normal Form Explain the configurations we're interested in.

3 Configuration Spaces of Polygonal Chains

3.1 Polygonal Linkages

Figure 9: Not sure how to describe this graph with free joints, pinned joints. Do I need to define another joint(i.e. axis of rotation joint)?

3.1.1 Configurations and Locked Configurations

3.2 Dissections

Problem 3.1 (Polygonal Dissection). Given two polygons of equal area, P_1 and P_2 , partition P_1 into smaller pieces, $\{P_{1,i}\}_{i=1}^n$, rearrange the pieces to form P_2 . [8]

Theorem 3.1. Any finite collection of polygons of equal area has a common hinged dissection. [1]

Figure 10: An axample of two polygons of equal area that can be rearranged into the other by the given partition.[7]

3.3 SAT Problems

Problem 3.2 (Satisfiability Problem). Let $\{x_i\}_{i=1}^n$ be boolean variables, and $t_i \in \{x_i\}_{i=1}^n \cup \{\bar{x}_i\}_{i=1}^n$. A *clause* is is said to be a disjuction of distinct terms:

$$t_1 \vee \cdots \vee t_{j_k} = C_k$$

Then the satisfiability problem is the decidability of a conjuction of a set of clauses, i.e.:

$$\wedge_{i=1}^m C_i$$

[10]

3.3.1 3-SAT Problems

A 3-SAT problem is a SAT problem with all clauses having only three boolean variables.

4 Problem

4.1 Problem Statement

text

4.2 Decidability of Problem

test

4.3 Hexagonal Locked Configuration

Figure 11: 7 hexagonal configuration

5 Conclusion

We conclude...

References

- [1] Timothy G Abbott, Zachary Abel, David Charlton, Erik D Demaine, Martin L Demaine, and Scott Duke Kominers. Hinged dissections exist. *Discrete & Computational Geometry*, 47(1):150–186, 2012.
- [2] Omer Angel, Martin T. Barlow, Ori Gurel-Gurevich, and Asaf Nachmias. Boundaries of planar graphs, via circle packings. November 2013.
- [3] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O'Rourke, M. Overmars, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides. Locked and Unlocked Polygonal Chains in 3D, 1999.
- [4] Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard. *Computational Geometry*, 9(1–2):3–24, 1998. Special Issue on Geometric Representations of Graphs.
- [5] J. Canny. *The Complexity of Robot Motion Planning*. ACM doctoral dissertation award. MIT Press, 1988.
- [6] E.D. Demaine and J. O'Rourke. *Geometric Folding Algorithms: Linkages, Origami, Polyhedra*. Cambridge University Press, 2008.
- [7] David Eppstien. The Geometry Junkyard, November 2013.
- [8] G.N. Frederickson. Dissections: Plane and Fancy. Cambridge University Press, 1997.
- [9] J. Kleinberg and E. Tardos. Algorithm Design. Pearson Education, 2006.
- [10] S.S. Skiena. The Algorithm Design Manual. Springer, 2009.
- [11] K. Stephenson. *Introduction to Circle Packing: The Theory of Discrete Analytic Functions*. Cambridge University Press, 2005.