	Unedh
Name:	(4)
Roll No.:	Town or sandy and sales
Invigilator's Signature :	

CS/B.TECH(ECE)/SEM-5/EC-502/2011-12 2011

DIGITAL COMMUNICATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) Eye pattern is used to study
 - a) Bit Error Rate
 - b) Error Vector Magnitude
 - c) Quantization Noise
 - d) Inter Symbol Interference.

5202 [Turn over

CS/B.TECH(ECE)/SEM-5/EC-502/2011-12

ii) The bit rate of a digital communication system using QPSK modulation is 30 Mbps. The baud rate of the system will be

a)	60	Mbps

b) 15 Mbps

c) 30 Mbps

d) 7.5 Mbps.

iii) The number of bits required to represent a 256 level quantization in PCM is

a) 7

b) 8

c) 5

d) 6.

iv) In PCM, the amplitude levels are transmitted in a 7 unit channel code. The sampling is done at the rate of 10 Hz. The bandwidth preferred minimum should be

a) 5 kHz

b) 35 kHz

c) 70 kHz

d) 85 kHz.

v) Hamming distance between two code vectors x = (10101101) and y = (11011001) is

a) 2

b) 3

c) 5

d) 4.

5202

c)

d)

Spectral efficiency

Transmission gain.

CS/B.TECH(ECE)/SEM-5/EC-502/2011-12

- x) Alternate Mark Inversion (AMI) signaling is known a
 - a) Bipolar signaling
- b) Polar signaling
- c) Machester signaling
- d) Unipolar signaling.
- xi) Regenerative repeaters can be used in
 - a) Analog communication system only
 - b) Digital communication system only
 - c) Both analog and digital communication systems
 - d) Wireless communication only.
- xii) For encoding the binary data, the Differential encoding uses
 - a) signal transitions
 - b) signal frequency
 - c) signal amplitude
 - d) signal phase.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Draw the line codes corresponding to the binary data "1101001" for the following : $1\frac{1}{2}+1\frac{1}{2}+2$
 - a) Unipolar Nonreturn to zero
 - b) Palar Nonreturn to zero
 - c) Manchester coding.

5202

CS/B.TECH(ECE)/SEM-5/EC-502

- 3. Generate the *pn*-sequence "1110010" using a three-stage Linear Feedback Shift Register (LFSR).
- 4. Draw the block diagram of a QPSK modulator and explain its principle of operation.
- 5. A discrete memoryless source X has five symbols x_1 , ($I=1,\ldots,5$) with $p(x_1)=0.4$, $p(x_2)=0.19$, $p(x_3)=0.13$, $p(x_4)=0.16$, $p(x_5)=0.12$. Construct the Huffman code for x and calculate the efficiency of the code.
- 6. Draw an "Eye diagram" and mention the significance of its different parts.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) State Nyquist's criterion for zero Inter Symbol Interference (ISI).
 - b) Mention the limitations of the above criterion. 3
 - c) How can the above problems be solved by using a Raised cosine function.
 - d) A communication channel of bandwidth 50 khz is required to transmit binary data at the rate of 500 kbps using Raised cosine pulse. Determine the corresponding roll-off factor.

CS/	B.TE	CCH(ECE)/SEM-5/EC-502/2011-12
8.	a)	What are the salient features of spread spectrum? 2
	b)	With a neat block diagram, explain the principle of
		Direct Sequence Spread Spectrum (DSSS) transmitter
		and receiver. 8
	c)	Define processing gain. 2
	d)	A spread spectrum system has the following
		parameters:
		Message bit rate = 3 kbps
		$pn\text{-sequence}$ chip rate = 3·072 × 10 6
		Find processing gain. 3
9.	a)	Compare QPSK and OQPSK systems with respect to the
		following factors : 3×4
		i) Timing diagram
		ii) I - Q diagram
		iii) Non-linearity handling capability.
	b)	Compare the bandwidth efficiency of a BPSK system
		and a QPSK system. 3
10.	a)	What do you mean by an optimum filter ? When is it
		called matched filter? 3 + 3

Find the probability of error of the matched filter.

5202 6

b)

b) i) Find the transmitted code word for the data "101".

The generator matrix is given below:

$$G = \left[\begin{array}{cccccc} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{array} \right]$$

- ii) Find the correct code word if the receiver receives 101101. (Consider same generator matrix) 5+5
- 12. Write short notes on any *three* of the following : 3×5
 - a) Shannon's channel capacity
 - b) Adaptive delta modulation
 - c) Tapped delay equalizer
 - d) Companding
 - e) Differential encoding.