$0.1 \quad 05.09.2019$

0.1.1 Примеры для \mathbb{R}^2

Будем в
$$\mathbb{R}^2$$
, $\rho((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Опр

$$f:E o\mathbb{R},\,E\subset\mathbb{R}^2,\,a\in\mathbb{R}^2$$
 - точка сгущения, $\lim_{x o a}f(x)=F,$ если $orall \mathcal{E}>0\quad \exists \delta>0:0<
ho(x,a)<\delta,\,x\in E\Rightarrow |f(x)-A|<\mathcal{E}$

 $B \mathbb{R}^2$ работают:

арифм. действия, теор. о двух миллиционерах, критерий Коши:

Опр

$$f:E \to \mathbb{R}$$
, частный случай $\exists \lim_{x \to a} f \forall \mathcal{E} > 0 \quad \exists \delta > 0:$ $|f(x) - f(y)| < \mathcal{E} \ 0 < \rho(x,a), \rho(y,a) < \delta \ (ynp)$

Упр

$$\exists \lim_{x \to a} f \forall \{x_n\} : x_n \neq a \quad x_n \to a \ (\rho(x_n, a) \to 0) \ \exists \lim_{n \to \infty} f(x_n)$$
 Обозначение:
$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = \lim_{\substack{(x, y) \to (x_0, y_0)}} f(x, y) \text{ - предел функции в т.}$$
 (x_0, y_0)

Пример

$$f(x,y) = (x+y) \sin \frac{1}{x} \sin \frac{1}{y}, \lim_{\substack{x \to 0 \\ y \to 0}} f(x,y) = 0, \text{ t.k.} |f(x,y)| \leqslant |x| + |y| \underset{\substack{x \to 0 \\ y \to 0}}{\to} 0,$$

$$\not\exists \lim_{y \to 0} \lim_{x \to y} f(x,y)$$

Пример

$$\overline{f(x,y)} = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$
 - не существует, так как $\lim f(x,x) = 1, \ f(x,2x) = 0$

Пример

Построить
$$f(x,y)$$
 т.ч. $\forall a,b \; \exists \lim_{t\to 0} f(at,bt) = A$, но $\angle \lim_{\substack{x\to 0 \ y\to 0}} f(x,y)$ $f=\frac{y^2}{x}=\frac{b^2}{a}t\to 0$, но при $x=\frac{1}{n^2}, \; y=\frac{1}{n}$ предел - единица

Замечание

Если
$$\gamma(t)_{t \to t_0}^{} \in \mathbb{R}^2$$
 и $\exists \lim_{x \to a} f(x) = A$, то $\exists \lim_{t \to t_0} f(\gamma(t))$

Замечание

Если
$$\forall \gamma: \gamma(t) \to a \in \mathbb{R}^2$$
 и $\exists \lim f(\gamma(t))$, то $\exists \lim_{x \to a} f$

Замечание

 $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$ - не предел по кривой (из-за необязательного равенства предела и значения в пределе). Более формально: пусть = $\lim_{x \to x_0} \overline{f}(x)$ $\overline{f}(x) = \lim_{y \to y_0} f(x,y) \neq$ (не обязательно) $\neq f(x,y_0)$

Опр

$$\lim_{\substack{x \to +\infty \ y \to +\infty}} f(x,y) = A,$$
 если $\forall \mathcal{E} > 0 \; \exists M > 0 : \forall x,y : \max(x,y) > M \; |f(x,y) - A| < \mathcal{E}$

Пример

$$f=rac{y}{x}tg(rac{x}{x+y})$$
 - не имеет предела, $f(x,x)=tg(rac{1}{2}),$ $f(x,x^2)=xtg(rac{1}{1+x}) o 0$