Az informatika logikai alapjai 10. feladatsor

1. Igazoljuk az implikációval kapcsolatos "kvantorkiemelés"-es szabályokat.

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv, $A, B \in Form$ két formula és $x \in Var$ egy változó.

Ha $x \notin FreeVar(A)$, akkor

- $1. A \supset \forall x B \Leftrightarrow \forall x (A \supset B)$
- 2. $\forall x B \supset A \Leftrightarrow \exists x (B \supset A)$

Ha $x \notin FreeVar(A)$, akkor

- 1. $A \supset \exists xB \Leftrightarrow \exists x(A \supset B)$
- 2. $\exists x B \supset A \Leftrightarrow \forall x (B \supset A)$

Definíció

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy tetszőleges elsőrendű nyelv.

Az A ∈ Form formulát prenex alakúnak nevezzük ha az alábbi két feltétel valamelyike teljesül:

- 1. az A formula kvantormentes, azaz sem a ∀ sem a ∃ kvantor nem szerepel benne;
- 2. az A formula $Q_1x_1Q_2x_2...Q_nx_nB$ (n=1,2,...) alakú, ahol
 - a. $B \in Form$ kvantormentes formula;
 - b. $x_1, x_2 ... x_n \in Var$ különböző változók;
 - c. $Q_1, Q_2, ..., Q_n \in \{\forall, \exists\}$ kvantorok.

Megjegyzés

 A definíció értelmében ha az A formula kvantormentes, azaz egyetlen kvantor sem szerepel benne, akkor az A formula prenex alakú.

> Például: Prenexformulák: $\neg P(x, x), \forall x \forall y (Q(x, y) \supset \neg P(x))$ Nem prenexformula: $\forall x \forall y Q(x, y) \supset \neg P(x)$

1.
$$\neg \exists x A \Leftrightarrow \forall x \neg A$$

2.
$$\neg \forall x A \Leftrightarrow \exists x \neg A$$

Ha $x \notin FreeVar(A)$, akkor

1.
$$A \supset \forall x B \Leftrightarrow \forall x (A \supset B)$$

2.
$$\forall x B \supset A \Leftrightarrow \exists x (B \supset A)$$

Ha $x \notin FreeVar(A)$, akkor

$$1. A \supset \exists xB \Leftrightarrow \exists x(A \supset B)$$

2.
$$\exists x B \supset A \Leftrightarrow \forall x (B \supset A)$$

Hozzuk a

$$\forall x(\forall y Q(x,y) \supset \neg \exists x P(x)) \supset \forall y Q(x,y)$$

formulát prenex alakúra.

Változóiban tiszta alakra hozás:

$$\forall v(\forall wQ(v,w) \supset \neg \exists zP(z)) \supset \forall yQ(x,y)$$

De Morgan törvényeinek alkalmazása:

$$\forall v(\forall w Q(v, w) \supset \forall z \neg P(z)) \supset \forall y Q(x, y)$$

Kvantorkiemelés:

$$\forall v \exists w \forall z (Q(v, w) \supset \neg P(z)) \supset \forall y Q(x, y)$$

Kvantorkiemelés:

$$\exists v \forall w \exists z \forall y ((Q(v, w) \supset \neg P(z)) \supset Q(x, y))$$

 $\text{Ha } x \notin FreeVar(A)$, akkor

1.
$$A \land \forall x B \Leftrightarrow \forall x (A \land B)$$

2.
$$A \land \exists xB \Leftrightarrow \exists x(A \land B)$$

Ha $x \notin FreeVar(A)$, akkor

1.
$$A \lor \forall x B \Leftrightarrow \forall x (A \lor B)$$

2.
$$A \lor \exists xB \Leftrightarrow \exists x(A \lor B)$$

2.13. FELADAT. Határozzuk meg az alábbi formulák prenex alakját!

- a) $\forall x P(x) \supset \neg \exists x P(x) \lor Q(x,c)$
- b) $\exists x \forall y \ P(x,y) \lor \exists x \forall y Q(x,y)$
- h) $\forall x (\exists y Q(x, y) \supset \forall x P(x)) \supset \neg(\forall x P(x) \lor \forall x R(x))$

$$\forall x(p(x) \lor q(x)), \neg p(a_{2}), \neg q(a_{1}) \\ \forall x(p(x) \lor q(x)), p(a_{1}) \lor q(a_{1}), \neg p(a_{2}), \neg q(a_{1}) \\ \forall x(p(x) \lor q(x)), p(a_{2}) \lor q(a_{2}), p(a_{1}) \lor q(a_{1}), \neg p(a_{2}), \neg q(a_{1}).$$

$$\forall x(p(x) \lor q(x)), p(a_{2}) \lor p(a_{1}) \lor q(a_{1}), \neg p(a_{2}), \neg q(a_{1}).$$

$$\forall x(p(x) \lor q(x)), p(a_{2}), p(a_{1}) \lor q(a_{1}), \neg p(a_{2}), \neg q(a_{1}).$$

$$\forall x(p(x) \lor q(x)), p(a_{1}), p($$

TehaiA: A sahai hor

α	α_1	α_2	β	β_1	β_2
$ \begin{array}{c} \neg \neg A_1 \\ A_1 \wedge A_2 \\ \neg (A_1 \vee A_2) \\ \neg (A_1 \supset A_2) \end{array} $	A_1 A_1 A_1 A_1	A_2 $\neg A_2$ $\neg A_2$	$ \begin{array}{c} \neg (B_1 \wedge B_2) \\ B_1 \vee B_2 \\ B_1 \supset B_2 \end{array} $	$\neg B_1$ B_1 $\neg B_1$	
			2	\$(a)	

γ	$\gamma(a)$
$\forall x A(x)$	A(a)
$\neg \exists x A(x)$	$\neg A(a)$

δ	$\delta(a)$
$\exists x A(x) \\ \neg \forall x A(x)$	$A(a)$ $\neg A(a)$

,

Telait: Ar algoritum

Adett: Pfamula fa Eednes: Egy graf (nematikus feistle), akul an aigur végződhetnek nyílt levéllel, zárt levéllel, vagy lehetnek végtelenek.

· A fa log singa l, U(l), ((l)

Kerdesber de a heme

ling roustansor.

Az algori trus / forg fates

Vegjin i en llevelet i am mig griffnet ven Zistner jeli lue. Frigselve a somerdre leggi 4 an alailiteatent:

- 1. Ha U(l)-lun van Generalementer literailfois, jelêstir l-let zais trol
- . Ha W(l)-her nemer objen famleir, anvir hen literailer, veggnist len & B, & famleit, A-t - Hata punle, janjur el noraisan
 - Ha Appenler, jargin kel norajosan

2 a Gaustans de luluriet ne nailtertenne

- He A of famles, all l'est in crises, alul
$$U(l') = U(l) - \{A\} \cup \{S \cup \{a'\}\}\}$$
 a' in cos komplemens literálpár és elfogytak az α, β, δ formulák:

Az $U(l)$ Mels r famleih eleggerer nalvily

Ha nincs komplemens literálpár és elfogytak az α, β, δ forṁulák:

· Az U(l) hels & famlin leggerer

{ Yen 1 - - 1 Yemy 19i C(l) = { cen 1 - - , (le) 1

$$((\ell') = U(l) \cup \left\{ \bigcup_{i=1}^{m} \bigcup_{j=1}^{k} \gamma_{l_i}(c_{l_j}) \right\}$$

$$((\ell') = ((\ell))$$

- la gor de familier nemer, ei U(l) = U(l), aller l-et jeli lini 4 mitettaar.

serit $\delta(a)$

 $\exists x A(x)$ A(a)

 $\neg \forall x A(x)$ $\neg A(a)$

7.P.5. Logikai törvények-e az alábbi formulák?

- (a) $\neg \exists x \neg P(x) \lor \forall x \neg P(x)$
- (b) $\exists x P(x) \land \neg \forall x P(x)$
- (c) $\exists x \forall y Q(x,y) \supset \forall y \exists x Q(x,y)$
- (d) $\forall x \exists y Q(x,y) \supset \forall y \exists x Q(x,y)$
- (e) $\forall x P(x) \lor \exists x R(x) \supset \forall x (P(x) \lor R(x))$

A c) és az e) formulákat vizsgáljuk meg a szemantikus tablók módszerével.

7.P.17. Ellenőrizzük, hogy helyesek-e az alábbi következtetések!

(d) Premisszák:

Minden hegymászó bátor. Minden hegymászó óvatos.

Konklúzió:

Van, aki bátor, de óvatos.

(e) Premisszák:

A vizsgán volt olyan feladat, amelyiket minden hallgató megoldott. Konklúzió:

Tehát minden hallgató meg tudott oldani legalább egy feladatot.

(g) Premisszák:

Csak azok a hallgatók tanulnak logikát, akik vagy matematikát, vagy informatikát tanulnak. Van olyan hallgató, aki matematikát ugyan nem, de logikát tanul.

Konklúzió:

Van, aki informatikát tanul, de matematikát nem.