#### Coalescent inference of HIV transmission history

Raymond Heil
T-6: Theoretical Biology and Biophysics
Emma Goldberg, Thomas Leitner

20 July 2022



## Why this project?



- \* Prevalence of HIV
- \* Transmission pairs
- \* Using genetics to find transmission time



### What can we expect to see?







- \* Tips represent individual viral sequences
- \* Shows the evolutionary distance between individuals
- \* What can we infer about a single transmission time?















# **Coalescent modeling**

Node times as a function of population size



# Relationship between population and samples

Large N causes node times to be further apart, stretching the tree





### Effect of changing population size





# Predicting transmission time on a changing population





### Results

Highest Density Interval of N with Constant Population Trees





#### **Results**



Population size of a tree with b fixed at 1100





#### **Next steps**

**Immediately:** Solve numerical issues with multi-parameter optimization **Immediately:** Extend my current work to

- trees with multiple hosts
   \* Split tree by host
  - \* Isolate hosts until a transmission occurs



**Overall:** Find the most likely time of transmission for phylogenetic trees under a range of conditions (number of tips, population growth in each host, sampling times, etc.)



# Thank you!

