

Efficient and Thrifty Voting By Any Means Necessary

Debmalya Mandal¹, Ariel D. Procaccia², Nisarg Shah³, and David P. Woodruff²

[1] Columbia University, [2] Carnegie Mellon University, and [3] University of Toronto

Voting

NYC Participatory Budgeting

What should the self-driving car do?

Moral Machine Awad et. al., 2018

Model

Implicit Utilitarian Voting

[Procaccia, Rosenschein, 2006]

- Communication Complexity C(f): #bits elicited by f from each voter.
- Distortion dist(f): $\max_{v} \frac{\max_{a} E[sw(a, v)]}{E_{\hat{a} \sim f(v)}[sw(\hat{a}, v)]}$

For a given budget of k bits per voter, what's the minimum achievable distortion?

Results

Upper Bounds:

- Ranking achieves distortion \sqrt{m} with communication $\Theta(m\log m)$ [Boutilier et. al., 2015]
- Threshold approval achieves distortion $\log m$ with communication $\Theta(m)$ [Benadè et. al., 2017]

We show

- There is a voting rule with deterministic elicitation, and aggregation and achieves distortion d with communication $\tilde{O}(m/d)$.
- Randomized aggregation can achieve distortion o(m) with communication o(log m).

Results (contd.)

Lower Bounds:

- Any voting rule with distortion d must have communication
 - $\Omega(m/d^2)$ if using deterministic elicitation
 - $\Omega(m/d^3)$ if using randomized elicitation

Future Work

- Can randomized aggregation help to improve the distortion of voting rules?
- Can we use adaptive, and possibly non-uniform elicitation across voters?