交流永磁同步电动机弱磁控制*

贾正春 许锦兴 金振荣

(电力工程系)

摘 要 提出了一种模拟式永磁同步电动机的弱磁控制方式,建立了一个函数发生器,在实际 速度高达某一数值之后,函数发生器就根据某一规律送出弱磁分量电流 Ia;由速度调节器根据 指令速度与实际速度之差产生转矩电流分量 1%. 旋转变压器作磁场定向的位置传感器,提供 $\sin\theta$ 和 $\cos\theta$ 信号实现 I_a 和 I_a 的坐标变换. 为了增强弱磁效果, 电机转子由永磁部分和各向异 性的磁阻部分组成.实验结果表明.加 1。进行弱磁控制,永磁同步电动机速度控制范围能拓宽一 倍以上,且恒功率控制效果较好.

关键词 永磁同步电动机;弱磁控制;磁阻铁芯转子;恒功率控制 分类号 TM 351

永磁同步电动机 (PMSM) 的气隙磁场是由永磁体产生的恒定磁场,直接弱磁效果甚微, 实际上为等效弱磁,即在电动机内部产生一个感应电势,其方向与反电势 E_0 的方向相反,以抵 消一部分由于转速升高而使反电势 E_0 所产生的增量,这个电势与直轴电流 I_0 和直轴电抗 x_0 的大小有关,从原理上分析, Ia和 za越大,弱磁效果越好工,但 Ia受绕组电流的限制, za受电机 结构与性能的限制.对 PMSM 弱磁控制研究文献2~4,都是在不改动电机的基础上,依据电机 及逆变器的最大转矩/电流轨迹,电流极限圆和电压极限椭圆这些特征曲线,求得不同转速下 的最佳电流矢量去控制逆变器取得一定的效果. W Muhlegger 和 W Teppan 第 第一次提出在

永磁同步电动机转子上加一段特殊的不对称磁阻的铁芯,该铁芯 $L_a\gg L_a$,弱磁控制时,直轴电枢反应明显地增强,速度控制范围变 宽. 他们得到的结论是:该磁阻部分的长度占整个转子长度的 20%,就可将 PMSM 的速度控制范围拓宽一倍.

本文提出了一种利用旋转变压器两定子绕组的信号进行坐标 变换的方式来实现弱磁控制,有磁阻铁芯转子的三相四极 PMSM 进行弱磁控制的实验结果表明,恒功率控制的效果较好.

图 1 PMSM 矢量图

控制原理

在转速高达一定值时,电阻的影响可以忽略,图 1 为 PMSM

收稿日期:1993-06-22.

贾正春,男,1938年生,副教授;武汉,华中理工大学电力工程系(430074).

*国家自然科学基金资助项目.

的矢量图,图中,反电势 $E_0 = \omega \psi_1, x_d = \omega L_d, x_u = \omega L_d$. 很明显,定子端电压 U_s 和相电流 I_s 受到逆 变器输出电压和输出电流极限 (U_{lim} 和 I_{lim}) 的限制. 由此可得:

电流极限圆 $I_a^2 + I_a^2 \leq I_{lm}^2$;

电压极限椭圆 $(E_0 + I_d x_d)^2 + (I_q x_q)^2 \leq U_{lim}^2$;

电磁转矩 $T_{\epsilon} = (mP/\omega)[E_0 + (x_d - x_g)I_d]I_g = mP[\psi_i + (L_d - L_g)I_d]I_g$,

式中,m 代表相数;P 代表极对数. 电压极限椭圆方程可改写为

$$(\psi_{\rm f} + I_{\rm d} L_{\rm d})^2 + (I_{\rm g} L_{\rm g})^2 \leqslant (U_{\rm lim}/\omega)^2$$
.

随着电机转速 ω 升高, U_{lim}/ω 项减小,且因 φ_l , L_a 及 L_a 近似为常数,满足上述方程的 I_a 与 I_a 值 将随 ω 增加而减小,图 2 示出不同 ω 值的电压椭圆轨迹,

处于椭圆内的 I_a , I_a 值可以满足相应的 ω 值.

永磁同步电动机的运行范围是受以满足电流极限圆和 电压极限椭圆为条件限制的,即电机的电流矢量 1,(其分 量为 I₄及 I₄) 应处于两曲线共同包围的面积内,如图中阴 影部分表示在 ω₂转速下,I₃可能的值. 由图 2 可以看出,电 机转速 ω 升高, I_a 分量趋于增大,相应的 I_a 分量必须减小, 因此,电机的电磁转矩也随转速升高而下降,显示出恒功率 的特性.

从向量图和上述方程可见,在 PMSM 中,Ia和 I。互相 耦合,是典型的非线性系统,用数字式在线计算和实时控

图 2 电压电流矢量限制

^{词 ⑤}能得到较好的控制结 朵. 在模拟控制系统中,建立 函数发生器 $I_a = f(\omega)$,在 实际速度高到某一数值之 后,函数发生器就根据某一 规律送出弱磁分量电流 Ii, 由速度调节器根据指令速度 和实际速度之差产生转矩分 量的电流 I; . 旋转变压器作 磁场定向的位置传感器,提 供 $sin\theta$ 和 $cos\theta$ 信号,实现 对 13 和 13 的坐标变换,产

图 3 控制框图

生 $I_*^*I_*^*I_*$. 电流调节器输出控制 PMSM 逆变器,使电流 $I_*I_*I_*$ B随电流 $I_*^*I_*^*I_*^*$ 的变化,其控 制系统框图如图 3 所示. PMSM 由 VVVF 晶体管逆变器供电.

2 控制电机

根据图 1 可知,直轴电枢反应电势 I_ax_a ,与 I_a 和 $x_a = \omega L_a$ 成正比, I_a 受绕组电流和逆变器 输出电流的限制,若 La较大弱磁效果也明显增强. 我们采用了在电机转子上加一段各向异性 的磁阻铁芯,如图 4 所示. 这一部分的 $L_a\gg L_a$,在加 $I_a(I_a<0)$ 时,弱磁效果显著增加. 电机定 子内径为 \$110 mm, 定子长度 260 mm, 三相四极, 转子永磁部分长度为 198 mm, 磁阻部分长 度为 66 mm,这两部分的长度之比为 3:1. 电机的额定相电流为 42 A,输出功率7.5 kW.

3 试验结果

实载运行,VVVF 变换器直流链电压为 300 V, I_a =0 的速度为 1 500 r/min;加 I_a ,并维持绕组电流不超

(a) 定转子结构 (b) 磁阻部分铁芯截片 图 4 PMSM 的结构

过额定值时,运行速度拓宽到 3 500 r/min 以上.负载运行,电机、扭矩传感器和粉末制动器(负载)三者同轴联结组成一测功系统,见图 3 所示.在恒定电流下测电机的输出转矩和输出功率同转速的关系曲线,图 5 是在额定电流下的转矩、功率和速度的关系曲线.

4 实验结果分析

a. 加 Ia确实能拓宽永磁同步电动机的速度控制范围,使其在逆变器输入直流电压为 300 V 时运行到 3 500 r/min 以上.

图 5 实验曲线

- b. 从图 5 的曲线可以看出,在 2 000 r/min 以下为恒扭矩控制区,2 000 r/min 以上为恒功率区,证明实现了弱磁控制,且恒功率控制的效果较好.
- c. 从上述实验结果可见,只要将 VVVF 变换器改成 380 V 整流,输出电压即电动机的供电电压提高到 $\sqrt{3}$ 倍,根据电压极限椭圆方程可知,电动机的运行速度即可提高 $\sqrt{3}$ 倍;就能更好地满足高速伺服和主传动的需要.

参考文献

- 1 Richard F S, Thomas A L. Power Capability of Salient Pole Permanent Magnet Synchronous Motors in Variable Speed Drive Applications. IEEE Ind Appl, 1990 (1): 115~123
- 2 Jahns T M. Flux-Weakening Regime Operation of An Interior Permanent Magnet Synchronous Motor Drive. Conf. Rec. Ann Meet IEEE, 1986.
- 3 Satoshi Ogasawara, Miohiaki Nighimura, Hirofumi Akagi, et al. A High Performance AC Servo System with Permanent Magnet Synchronous Motors. IEEE Trans, Ind Appl, 1986 (1): 87~91
- 4 Yi Tong, Hiroshi Shimamoto, Shigo Morimoto, et al. High Performance Variable Speed Drive System of Permanent Magnet Synchronous Motors. Proceeding of ICEM 1991. 509~514
- 5 Muhlegger W, Teppan W. Manfred Rentmeister, Working conditions of a Permanent Excited Synchronous Motor in Flux-Weakening Mode. Proceeding of ICEM 1990. 1 107~1 110
- 6 许 强,贾正春,许锦兴. 作主轴传动的永磁同步电机弱磁控制系统. 华中理工大学学报,1993,21 (2):31 ~36

Field-weakening Control for Permanent Magnet AC Synchronous Motors

Jia Zhenchun Xu Jinxing Jin Zhenrong
Abstract

This paper presents an analog type of field-weakening control for permanent magnet synchronous motors. A demagnetizing component I_d^* of stator current is provided by a function generator according to a given rule when the actual motor speed exceeds the base one. The difference between the reference speed and the actual speed serves as teh input to a speed controller and the output of which is the current I_q^* , the torque producing the component of stator current. The components I_d^* and I_q^* are transformed into a stationary reference frame by the application of $\sin\theta$ and $\cos\theta$ signals provided by a position sensing resolver for field-oriented control. The rotor of the permanent magnet synchronous motor is composed of a permanent magnet section and a reluctance section to improve the field-weakening effect. Experimental results show that the speed range of the motor can be extended to twice the base speed and has better system performance in constant power operation.

Key words: permanent magnet synchronous motor; field-weakening control; reluctance rotor core; constant power control

Jia Zhenchun, assoc. prof.; Dept. of Elec. Power Engin., H. U. S. T., Wuhan 430074, China.

华中「型数控加工系统研制成功

我校承担的国家八五科技攻关课题"高性能数控系统的开发研究"取得阶段性成果:研制成功的华中I型数控加工系统,属我国独创,具有国际先进水平.

国家教委主持的鉴定认为,这套新系统在复杂轮廓加工、轨迹控制技术方面,达到当前的国际先进水平,使复杂曲面的加工可实现高精度、高速度和高效益.

我校研制的高档华中 I 型数控系统中独有的曲面加工直接插补功能,将目前只能加工直线、圆弧线,提高到能直接加工复杂的曲面. 它以曲面方程直接插补的方式,可使零件程序量减少到原来的万分之一,由此,极大地降低加工辅助费用,从整体上提高了效益. 它还能用工艺参数进行现场修改和实时补偿,从而达到数控加工原理级精度.

华中 I 型数控系统实现了造形设计、编程、控制加工一体化,在加工功能上已超过国外高档数控系统,而价格只相当于同类产品的一半.它还具有开放性,便于升级和二次开发.