

Évaluation nº 05 Suites (1) Fondements

 $\begin{array}{c} \text{janvier 2024} \\ \text{dur\'ee} \approx 1 \text{h 15min} \end{array}$

Consignes
Nom et prénom :
$\bigcirc G \ \bigcirc H \ \bigcirc I \ \bigcirc J \ \bigcirc K \ \bigcirc L \ \bigcirc M \ \bigcirc N \ \bigcirc O \ \bigcirc P \ \bigcirc Q \ \bigcirc R \ \bigcirc S \ \bigcirc T \ \bigcirc U \ \bigcirc V \ \bigcirc W \ \bigcirc X \ \bigcirc Y \ \bigcirc Z$
Cochez les 3 premières lettres de votre nom et prénom et complétez l'encadré. OA OB OC OD OE Ol

Aucun document n'est autorisé.

L'usage de la calculatrice est autorisé.

Le total des points est 25.

Vous devez colorier les cases au stylo bleu ou noir pour répondre aux questions. En cas d'erreur, effacez au « blanco » sans redessiner la case.

Toute action volontaire rendant impossible ou difficile l'identification ou la correction de la copie engendre une dégradation de la note finale.

Pour les questions ouvertes, tous les calculs seront justifiés et la clarté de la rédaction sera prise en compte dans la notation. Respect des consignes $\bigcirc -1 \bigcirc -0,5 \bigcirc 0$ Réservé

Soit (u_n) la suite définie pour tout entier $n \ge 0$ par $u_n = 1 - \frac{1}{2n+1}$.

- 1. Déterminer les valeurs $u_0,\,u_1,\,u_2.$ Montrer les calculs.
- 2. Est-il possible de déterminer directement u_{25} ? Justifier votre réponse.
- 3. Par la méthode de votre choix, donner u_{100} .

On considère la suite (v_n) définie par $v_1=-1$ et pour tout $n>1, \quad v_n=2(5-2v_{n-1})$

- 1. Calculer v_2 , v_3 et v_4 . Montrer les calculs.
- 2. Est-il possible de déterminer directement v_{25} ? Justifier votre réponse.
- 3. Par la méthode de votre choix, donner v_{10} .

Soit (a_n) la suite définie pour tout entier nature l n par $a_n=n^2-16n-2$.

- 1. Soit n un entier naturel. Exprimer a_{n+1} en fonction de n.
- 2. Montrer que $a_{n+1} a_n = 2n 15$.
- 3. À l'aide du calcul précédent, justifier le sens de variation de (a_n) . Vous préciserez le rang N à partir duquel la suite est monotone.

On considère la suite (b_n) définie pour tout entier naturel n par $b_n = \frac{n+2}{n+1}$.

- 1. Soit n un entier naturel. Exprimer b_{n+1} en fonction de \boldsymbol{n}
- 2. En déduire que $b_{n+1} b_n = -\frac{1}{(n+1)(n+2)}$
- 3. Justifier le sens de variation de la suite (b_n) .

On considère la suite (c_n) positive définie pour tout entier naturel n par $c_n = \frac{0.4^n}{5}$.

Soit n un entier naturel. Déterminer $\frac{c_{n+1}}{c_n}$ et en déduire le sens de variation de la suite (c_n) .

Exercice 6

Soit un réel k. On considère la suite (u_n) vérifiant pour tout $n \ge 1$, $u_{n+1} = ku_n + 5$.

Sachant que $u_1 = 2$, exprimer u_2 et u_3 en fonction de k.

À compter du jour 0, un patient prend $50\,\mathrm{mg}$ d'un ingrédient actif chaque matin. On sait que le corps élimine 40% de cet ingrédient chaque $24\,\mathrm{h}$.

On note A_n la quantité en mg d'ingrédient actif présent dans le corps au jour n immédiatement après la prise de médicament.

- 1. Donner A_0 .
- 2. Justifier que pour tout $n \ge 0$, $A_{n+1} = 0.6A_n + 50$.
- 3. On a tracé ci-dessous la droite représentative de la fonction f définie sur \mathbb{R} par f(x) = 0.6x + 50, ainsi que la droite d'équation réduite y = x.

Construire le diagramme en escalier de la suite (A_n) en plaçant les termes successifs de A_0 à A_3 sur l'axe des abscisses (sans les calculer).

- 4. Conjecturer le sens de variation et la limite de la suite (A_n) .
- 5. Quel est la quantité d'ingrédient actif accumulée dans le corps après une utilisation prolongée?

On souhaite déterminer par itération une valeur approchée de la solution positive de l'équation

$$x(x+1) = 15$$

Pour cela, on considère la suite (u_n) définie pour tout $n \ge 0$ par $\begin{cases} u_0 = 4 \\ u_{n+1} = \frac{15}{u_n + 1} \end{cases}$.

1. Compléter les lignes 1, 2 et 3 de l'algorithme Python ci-dessous permettant de calculer et d'afficher les valeurs de u_1 à u_{100} .

```
u = \dots
  for n in range (1, \ldots):
3
         u = \dots
         print("u({})={})".format(n,u)) \quad \#affiche \ u(\langle valeur \ de \ n \rangle)=\langle valeur \ de \ u \rangle
```

- 2. Conjecturer par la méthode de votre choix, la limite x^* de la suite (u_n) . Vous donnerez une valeur approchée à 10^{-3} de la limite.
- 3. Un terme u_n est assez proche de la solution x^* recherchée lorsque $u_n(u_n+1) \approx 15 \pm 0{,}001$. Compléter les lignes 2, 3 et 4 du script ci-dessous pour qu'il affiche le premier rang n_0 de la suite qui vérifie $|u_n(u_n+1)-15| \le 0.001$

```
n = 0
1
  while abs(.....)....0.001 : #l'instruction abs(x) retourne |x|
3
      n = n + 1
5
  print("n_0={}".format(n))
```

4. Déterminer n_0 par la méthode de votre choix.

| Évaluation nº 05 de Mathématiques | Sujet 1 | Page : 10 / 10 |