Uma Breve Introdução à Grupos Topológicos

Gleberson Gregorio da Silva Antunes Orientador: Prof. Dr. Kisnney Emiliano de Almeida

Universidade Estadual de Feira de Santana

XIX Semana de Matemática da UEFS

Grupos Topológicos

Definição

Seja (G, \cdot) um grupo e τ_G uma topologia em G.

Grupos Topológicos

Definição

Seja (G, \cdot) um grupo e τ_G uma topologia em G. O trio (G, \cdot, τ_G) é dito um grupo topológico se as funções

$$i: G \longrightarrow G$$

 $x \longmapsto x^{-1}$ $\cdot: G \times G \longrightarrow G$
 $(x,y) \longmapsto x \cdot y$

chamadas de inversão e operação de G respectivamente, são contínuas.

Exemplo 1

Considere o grupo (\mathbb{K}_4 , ·) e $\tau = \{\emptyset$, $\{1$, ab $\}$, $\{a$, b $\}$, $\mathbb{K}_4\}$.

Exemplo 1

Considere o grupo (\mathbb{K}_4 , ·) e $\tau = \{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\}$. O trio (\mathbb{K}_4 , ·, τ) é um grupo topológico.

Exemplo 2

Considere o grupo (\mathbb{Q}_8, \cdot) e $N = \{1, -1\}$.

Exemplo 2

Considere o grupo (\mathbb{Q}_8 , ·) e N = {1, -1}. A topologia τ gerada pela base \mathcal{B} = {Nx : x $\in \mathbb{Q}_8$ } é tal que (\mathbb{Q}_8 , ·, τ) é um grupo topológico.

Exemplo 3

Considere o grupo $(GL_n(\mathbb{R}), \cdot)$ munido com a topologia induzida por \mathbb{R}^{n^2} .

Exemplo 4

Considere o grupo (\mathbb{S}^1,\cdot) munido com a topologia induzida por $(\mathbb{C},\cdot,\tau_{\mathbb{C}})$.

Exemplo 4

Considere o grupo (\mathbb{S}^1, \cdot) munido com a topologia induzida por ($\mathbb{C}, \cdot, \tau_{\mathbb{C}}$). Então, o produto cartesiano $\mathbb{S}^1 \times \mathbb{S}^1 = \mathbb{T}^2$ é um grupo topológico, que conhecemos como

Exemplo 4

Considere o grupo (\mathbb{S}^1, \cdot) munido com a topologia induzida por ($\mathbb{C}, \cdot, \tau_{\mathbb{C}}$). Então, o produto cartesiano $\mathbb{S}^1 \times \mathbb{S}^1 = \mathbb{T}^2$ é um grupo topológico, que conhecemos como

Figura 1 - Toro **Fonte**: Blossier, Matheus, 2018.

Teorema 1

Seja (G,\cdot) um grupo e τ_G uma topologia em G.

Teorema 1

Seja (G,\cdot) um grupo e τ_G uma topologia em G. Então, (G,\cdot,τ_G) é um grupo topológico se, e somente se, a função

$$f: \mathsf{G} \times \mathsf{G} \longrightarrow \mathsf{G}$$
$$(x,y) \longmapsto x \cdot y^{-1}$$

é contínua.

Suponhamos que (G, \cdot, τ_G) é um grupo topológico.

Demonstração \Rightarrow

Suponhamos que (G, \cdot, τ_G) é um grupo topológico. Então, as funções i e \cdot são contínuas.

Suponhamos que (G, \cdot, τ_G) é um grupo topológico. Então, as funções i e \cdot são contínuas. Segue que f é contínua pois é a composição de funções contínuas.

Suponhamos que (G, \cdot, τ_G) é um grupo topológico. Então, as funções i e \cdot são contínuas. Segue que f é contínua pois é a composição de funções contínuas.

onde $s(x,y) = (x,y^{-1})$ e · é a operação de G.

Suponhamos que (G, \cdot, τ_G) é um grupo topológico. Então, as funções i e \cdot são contínuas. Segue que f é contínua pois é a composição de funções contínuas.

onde $s(x,y)=(x,y^{-1})$ e · é a operação de G. Temos que $f=\cdot \circ s$.

Suponhamos que f é contínua.

Suponhamos que f é contínua. Segue que i é contínua pois é a composição de duas funções contínuas

$$\begin{array}{cccc} G & \xrightarrow{I_x} & G \times G & \xrightarrow{f} & G \\ x & \longmapsto & (1, x) & \longmapsto & x^{-1} \end{array}$$

Suponhamos que f é contínua. Segue que i é contínua pois é a composição de duas funções contínuas

$$\begin{array}{ccccc} G & \xrightarrow{I_x} & G \times G & \xrightarrow{f} & G \\ x & \longmapsto & (1,x) & \longmapsto & x^{-1} \end{array}$$

onde $I_x(x) = (1, x)$ e $f(x, y) = xy^{-1}$. Temos que $i = f \circ I_x$.

Suponhamos que f é contínua. Segue que i é contínua pois é a composição de duas funções contínuas

$$\begin{array}{ccccc} G & \xrightarrow{I_x} & G \times G & \xrightarrow{f} & G \\ x & \longmapsto & (1,x) & \longmapsto & x^{-1} \end{array}$$

onde $I_x(x) = (1, x)$ e $f(x, y) = xy^{-1}$. Temos que $i = f \circ I_x$. Da mesma maneira, · também é contínua, pois é a composição de funções contínuas

Suponhamos que f é contínua. Segue que i é contínua pois é a composição de duas funções contínuas

$$\begin{array}{ccccc} G & \xrightarrow{I_x} & G \times G & \xrightarrow{f} & G \\ x & \longmapsto & (1,x) & \longmapsto & x^{-1} \end{array}$$

onde $I_x(x) = (1, x)$ e $f(x, y) = xy^{-1}$. Temos que $i = f \circ I_x$. Da mesma maneira, · também é contínua, pois é a composição de funções contínuas

onde $s(x, y) = (x, y^{-1})$ e $f(x, y) = xy^{-1}$. Temos que $\cdot = f \circ s$.

Fixado g \in G,

Fixado g \in G, as aplicações

$$\mathsf{t}_d,\,\mathsf{t}_e,\,\mathsf{i}_g:\,\mathsf{G}\longrightarrow\mathsf{G}$$

das por $t_d(x) = xg$, $t_e(x) = gx$ e $i_g(x) = gxg^{-1}$, são chamadas de translação à direita, translação à esquerda e automorfismo interno, respectivamente, são homeomorfismos.

Fixado $g \in G$, as aplicações

$$\mathsf{t}_d,\,\mathsf{t}_e,\,\mathsf{i}_g:\,\mathsf{G}\longrightarrow\mathsf{G}$$

das por $t_d(x) = xg$, $t_e(x) = gx$ e $i_g(x) = gxg^{-1}$, são chamadas de translação à direita, translação à esquerda e automorfismo interno, respectivamente, são homeomorfismos.

É fácil ver que toda vizinhança U de um ponto g em G é a imagem de uma vizinhaça de $\mathbf{1}_G$, o elemento neutro do grupo, pela aplicação de translação.

Daí, se dá uma das vantagens de se trabalhar com grupos topológicos, que é poder inferir resultados sobre o grupo inteiro ou sobre uma uma vizinhança em particular entendendo como as vizinhanças do elemento neutro funcionam.

Daí, se dá uma das vantagens de se trabalhar com grupos topológicos, que é poder inferir resultados sobre o grupo inteiro ou sobre uma uma vizinhança em particular entendendo como as vizinhanças do elemento neutro funcionam.

Agora, determinaremos uma condição para que um homomorfismo de grupos topológicos seja contínuo.

Teorema 2

Sejam (G,\cdot,τ_G) , (H,\circ,τ_H) grupos topológicos e $f:G\to H$ um homomorfismo de grupos. Então, f é contínua se, e somente se, é contínua em $1_G\in G$.

Demonstração.

 \Rightarrow Imediata.

Teorema 2

Sejam (G,\cdot,τ_G) , (H,\circ,τ_H) grupos topológicos e $f:G\to H$ um homomorfismo de grupos. Então, f é contínua se, e somente se, é contínua em $1_G\in G$.

Demonstração.

- \Rightarrow Imediata.
- \Leftarrow Sendo f contínua em $1_G \in G$ então, para cada vizinhança U de $1_H \in H$, vai existir uma vizinhança V de 1_G tal que $f(V) \subset U$.

Teorema 2

Sejam (G,\cdot,τ_G) , (H,\circ,τ_H) grupos topológicos e $f:G\to H$ um homomorfismo de grupos. Então, f é contínua se, e somente se, é contínua em $1_G\in G$.

Demonstração.

- \Rightarrow Imediata.
- \Leftarrow Sendo f contínua em $1_G \in G$ então, para cada vizinhança U de $1_H \in H$, vai existir uma vizinhança V de 1_G tal que $f(V) \subset U$. Segue daí que, dado $g \in G$

$$f(g \cdot V) = f(g) \cdot f(V) \subset f(g) \cdot U.$$

Logo, f é contínua.

Definições importantes

Definição

Seja X um conjunto. Uma família não-vazia \mathscr{F} de subconjuntos de X é chamada de filtro se satisfaz as seguintes condições:

- (1) $\emptyset \notin \mathscr{F}$.
- (2) Se A, $B \in \mathscr{F}$ então $A \cap B \in \mathscr{F}$.
- (3) Se $A \in \mathscr{F}$ e $A \subset B$, então $B \in \mathscr{F}$.

Definições importantes

Definição

Seja X um conjunto. Uma família não-vazia \mathscr{F} de subconjuntos de X é chamada de filtro se satisfaz as seguintes condições:

- (1) $\emptyset \notin \mathscr{F}$.
- (2) Se A, $B \in \mathscr{F}$ então $A \cap B \in \mathscr{F}$.
- (3) Se $A \in \mathscr{F}$ e $A \subset B$, então $B \in \mathscr{F}$.

Exemplo 5

Seja (X, τ_X) um espaço topológico. Dado $x \in X$, chamamos de *filtro de vizinhanças* de x conjunto $\mathscr{V} = \{ \mathsf{U} \subset \mathsf{X} \mid \exists \mathsf{N}_x \in \tau_X, \, \mathsf{x} \in \mathsf{N}_x \subset \mathsf{U} \}$ formado por todas as vizinhanças U de x.

Nosso objetivo neste seção é entender como o filtro das vizinhanças do elemento neutro funciona e sobre como ele descreve uma única topologia de grupo sobre o grupo.

Nosso objetivo neste seção é entender como o filtro das vizinhanças do elemento neutro funciona e sobre como ele descreve uma única topologia de grupo sobre o grupo.

Definição

Seja (G, \cdot, τ_G) um grupo e $g \in G$. Chamamos de filtro de todas as vizinhanças de g o conjunto:

$$\mathcal{V}(\mathsf{g}) := \{ \mathsf{U} \subset \mathsf{G} \mid \mathsf{g} \in \mathsf{N}_{\mathsf{g}} \subset \mathsf{U}, \, \mathsf{N}_{\mathsf{g}} \in \tau_{\mathsf{G}} \}.$$

o conjunto formado por todas as vizinhanças de g \in G.

Teorema 3

Seja (G, \cdot, τ_G) um grupo topológico e $\mathcal{V}(1)$ o filtro de todas as vizinhanças de 1_G nessa mesma topologia. Então:

- (1) Para cada $U \in \mathcal{V}(1)$, existe $V \in \mathcal{V}(1)$ tal que $V \cdot V \subset U$.
- (2) Para cada $U \in \mathcal{V}(1)$, existe $V \in \mathcal{V}(1)$ tal que $V^{-1} \subset U$.
- (3) Para cada $U \in \mathcal{V}(1)$, existe $V \in \mathcal{V}(1)$ tal que $V \cdot V^{-1} \subset U$.
- (4) Para cada $U \in \mathcal{V}(1)$ e $a \in G$, existe $V \in \mathcal{V}(1)$ tal que a $Va^{-1} \subset U$.

Teorema 3

Seja (G,\cdot,τ_G) um grupo topológico e $\mathcal{V}(1)$ o filtro de todas as vizinhanças de 1_G nessa mesma topologia. Então:

- (1) Para cada $U \in \mathcal{V}(1)$, existe $V \in \mathcal{V}(1)$ tal que $V \cdot V \subset U$.
- (2) Para cada $U \in \mathcal{V}(1)$, existe $V \in \mathcal{V}(1)$ tal que $V^{-1} \subset U$.
- (3) Para cada $U \in \mathcal{V}(1)$, existe $V \in \mathcal{V}(1)$ tal que $V \cdot V^{-1} \subset U$.
- (4) Para cada $U \in \mathcal{V}(1)$ e $a \in G$, existe $V \in \mathcal{V}(1)$ tal que $aVa^{-1} \subset U$.

Demonstração.

Seja $\mathsf{U} \in \mathcal{V}(1)$ e $\mathsf{int}(\mathsf{U}) = \mathit{U}^\circ$. É claro que $1_{\mathit{G}} \in \mathit{U}^\circ$.

(1) Como a operação do grupo, \cdot , é contínua

$$\cdot^{-1}(U^{\circ}) \in \tau_{G \times G}$$
.

Desse modo, existem A, B $\in \tau_G$ abertos básicos que contém 1_G tais que

$$(1_G,1_G)\in\mathsf{A}\times\mathsf{B}\subset\cdot^{-1}(U^\circ).$$

Tome então $V = A \cap B$. Segue-se daí que

$$\mathsf{V}\cdot\mathsf{V}\subset\mathsf{A}\cdot\mathsf{B}\subset\mathit{U}^\circ\subset\mathsf{U}.$$

$$V \cdot V \subset A \cdot B \subset U^{\circ} \subset U$$
.

(2) Ora, sabemos que a inversão i é um homeomorfismo. Desse modo, tome $V=i(U^\circ)$. Então $V^{-1}=U^\circ\subset U$.

$$V \cdot V \subset A \cdot B \subset U^{\circ} \subset U$$
.

- (2) Ora, sabemos que a inversão i é um homeomorfismo. Desse modo, tome $V=i(U^\circ)$. Então $V^{-1}=U^\circ\subset U$.
- (3) Sabemos por (1) que, dado $U \in \mathcal{V}(1)$, existe $W \in \mathcal{V}(1)$ tal que $W \cdot W \subset U$. Tome então $V = W \cap W^{-1}$. Logo, $V \cdot V^{-1} \subset W \cdot W \subset U$.

$$V \cdot V \subset A \cdot B \subset U^{\circ} \subset U$$
.

- (2) Ora, sabemos que a inversão i é um homeomorfismo. Desse modo, tome $V=i(U^\circ)$. Então $V^{-1}=U^\circ\subset U$.
- (3) Sabemos por (1) que, dado $U \in \mathcal{V}(1)$, existe $W \in \mathcal{V}(1)$ tal que $W \cdot W \subset U$. Tome então $V = W \cap W^{-1}$. Logo, $V \cdot V^{-1} \subset W \cdot W \subset U$.
- (4) Dado a \in G, considere a aplicação

$$V \cdot V \subset A \cdot B \subset U^{\circ} \subset U$$
.

- (2) Ora, sabemos que a inversão i é um homeomorfismo. Desse modo, tome $V=i(U^\circ)$. Então $V^{-1}=U^\circ\subset U$.
- (3) Sabemos por (1) que, dado $U \in \mathcal{V}(1)$, existe $W \in \mathcal{V}(1)$ tal que $W \cdot W \subset U$. Tome então $V = W \cap W^{-1}$. Logo, $V \cdot V^{-1} \subset W \cdot W \subset U$.
- (4) Dado a \in G, considere a aplicação

$$i_a^{-1}: G \longrightarrow G$$

 $x \longmapsto a^{-1}xa$

Tome então V = $i_a^{-1}(U) = a^{-1}Ua$. Logo $i_a(V) = aVa^{-1} = i_a(i_a^{-1}(U)) = U$ $\subseteq U$. .

O próximo Teorema é o resultado mais importante deste trabalho. É através dele que, dado um grupo (G,\cdot) , podemos determinar uma topologia τ em G de forma que (G,\cdot,τ) se torne um grupo topológico por meio de filtros.

Teorema 4

Seja (G,\cdot) um grupo e $\mathcal V$ um filtro que satisfazas condições do Teorema 3. Então, existe uma única topologia τ em G que torna (G,\cdot,τ) um grupo topológico e que faz $\mathcal V$ coincidir com $\mathcal V(1)$, o filtro de todas as vizinhanças de 1_G .

Teorema 4

Seja (G,\cdot) um grupo e $\mathcal V$ um filtro que satisfazas condições do Teorema 3. Então, existe uma única topologia τ em G que torna (G,\cdot,τ) um grupo topológico e que faz $\mathcal V$ coincidir com $\mathcal V(1)$, o filtro de todas as vizinhanças de 1_G .

Demonstração. A saber, $\tau := \{ \mathsf{U} \subset \mathsf{G} \mid \forall x \in U, \ \exists V \in \mathcal{V}, \ xV \subset U \}.$

Agradecimentos

Agradeço ao Professor Dr. Kisnney Emiliano de Almeida, meu orientador, pelo seu apoio, dedicação e disposição para a realização deste trabalho. Agradeço também a FAPESB pelo apoio financeiro concedido a mim. Agradeço aos membros da Comissão Científica pelas sugestões e correções do meu trabalho e, por fim, agradeço ao DA de Matemática pela organização do evento.

Referências

- [1] DIKRANJAN, Dikran. **Introduction to topological groups**. preparation, http://users. dimi. uniud. it/ dikran. dikranjan/ITG. pdf, 2013.
- [2] KUMAR, A. Muneesh; GNANACHANDRA, P. **Exploratory results on finite topological groups**. JP Journal of Geometry and Topology, v. 24, n. 1-2, p. 1-15, 2020.
- [3] MEZABARBA, Renan Maneli. **Fundamentos de Topologia Geral**. [S. l.: s. n.], 2022. 574 p. Disponível em:
- https://sites.google.com/view/rmmezabarba/home?authuser=0. Acesso em: 10 set. 2022.
- [4] MUNKRES, James R. **Topology**. Upper Saddle River: Prentice Hall, 2000.
- [5] SHICK, Paul L. **Topology: point-set and geometric**. John Wiley Sons, 2011.