MACM 101 Chapter 1 Homework

Alexander Ng

Monday, September 30, 2024

Question 4

Part a

p	q	r	$p \vee q$	$q \vee r$	$(p \lor q) \lor r$	$p \lor (q \lor r)$
1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	0	1	1	1	1	1
1	0	0	1	0	1	1
0	1	1	1	1	1	1
0	1	0	1	1	1	1
0	0	1	0	1	1	1
0	0	0	0	0	0	0

Part b

p	q	r	$p \wedge q$	$q \wedge r$	$(p \wedge q) \wedge r$	$p \wedge (q \wedge r)$
1	1	1	1	1	1	1
1	1	0	1	0	0	0
1	0	1	0	0	0	0
1	0	0	0	0	0	0
0	1	1	0	1	0	0
0	1	0	0	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0

Question 12

Part a

p	q	$p \lor q$	$\neg p$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \to q$
1	1	1	0	0	1
1	0	1	0	0	1
0	1	1	1	1	1
0	0	0	1	0	1

Part b

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \land (q \to r)$	$p \rightarrow r$	$\boxed{[(p \to q) \land (q \to r)] \to (p \to r)}$
1	1	1	1	1	1	1	1
1	1	0	1	0	0	0	1
1	0	1	0	1	0	1	1
1	0	0	0	1	0	0	1
0	1	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1

Part c

p	q	$p \to q$	$p \land (p \to q)$	$[p \land (p \to q)] \to q$
1	1	1	1	1
1	0	0	0	1
0	1	1	0	1
0	0	1	0	1

Part d

p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$(p \lor q) \land (p \to r)$	$(p \lor q) \land (p \to r) \land (q \to r)$	$[(p \lor q) \land (p \to r)]$
1	1	1	1	1	1	1	1	1
1	1	0	1	0	0	0	0	1
1	0	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0	1
0	1	1	1	1	1	1	1	1
0	1	0	1	0	0	0	0	1
0	0	1	0	1	1	0	0	1
0	0	0	0	0	1	0	0	1

Question 14

Part a

$$\neg p \land (p \lor q) \rightarrow q$$

 $p \to q$ is false when p is true and q is false.

Assume $\neg p \land (p \lor q)$ is true.

When $\neg p \land (p \lor q)$ is true, then both $\neg p$ and $p \lor q$ are true.

When $\neg p$ is true, then p is false.

When $p \lor q$ is true with p false, then we require that q is true, and thus $\neg p \land (p \lor q) \rightarrow q$ is always true (as we know that the conditional statement is also true whenever $\neg p \land (p \lor q)$ is false). This implies that $\neg p \land (p \lor q) \rightarrow q \equiv \mathbb{T}$.

Part b

$$[(p \to q) \land (q \to r)] \to (p \to r)$$

 $p \to q$ is false when p is true and q is false.

Assume $(p \to q) \land (q \to r)$ is true.

When $(p \to q) \land (q \to r)$ is true, then both $p \to q$ and $q \to r$ are true.

When p is true, because $p \to q$ is true, q must also be true, and because $q \to r$ is true, r must also be true. $p \to r$ is also true when both p and r are true.

When p is false, then $p \to r$ is true as well.

Therefore, $p \to r$ is true in each case, and thus $[(p \to q) \land (q \to r)] \to (p \to r)$ is always true (as we know that the conditional statement is also true whenever $(p \to q) \land (q \to r)$ is false).

This implies that $[(p \to q) \land (q \to r)] \to (p \to r) \equiv \mathbb{T}$

Part c

$$p \land (p \to q) \to q$$

 $p \to q$ is false when p is true and q is false.

Assume $p \wedge (p \rightarrow q)$ is true.

When $p \wedge (p \rightarrow q)$ is true, both p and $p \rightarrow q$ are true.

When $p \to q$ and p are both true, we also require that q is true. Thus, $p \land (p \to q) \to q$ is always true (since we know the conditional statement is also true whenever $p \land (p \to q)$ is false).

This implies that $p \wedge (p \to q) \to q \equiv \mathbb{T}$

Part d

$$[(p \vee q) \wedge (p \to r) \wedge (q \to r)] \to r$$

 $p \to q$ is false when p is true and q is false.

Assume $(p \lor q) \land (p \to r) \land (q \to r)$ is true.

When $(p \lor q) \land (p \to r) \land (q \to r)$ is true, then $p \lor q, p \to r$, and $q \to r$ are all true.

 $p \lor q$ being true implies that either p or q is true.

When p is true, then r is true as well (since $p \to r$ is true).

When q is true, then r is true as well (since $q \to r$ is true).

However, r is true in each case, and thus $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is always true (as we know that the conditional statement is also true whenever $(p \lor q) \land (p \to r) \land (q \to r)$ is false). This then gives us that

$$[(p \lor q) \land (p \to r) \land (q \to r)] \to r \equiv \mathbb{T}$$

Question 22

Show that $p \to q$ and $\neg q \to \neg p$ are logically equivalent.

- 1. $p \rightarrow q \equiv \neg p \lor q$ (Logical Equivalences)
- 2. $\equiv \neg p \lor \neg \neg q$ (Double Negation Law)
- 3. $\equiv \neg \neg q \vee \neg p$ (Commutative Law)
- 4. $\equiv \neg q \rightarrow \neg p$ (Logical Equivalences)
- $5. \therefore p \to q \equiv \neg q \to \neg p$

Question 24

Show that $\neg(p \oplus q)$ and $p \leftrightarrow q$ are logically equivalent.

1.
$$\neg (p \oplus q) \equiv \neg ((p \lor q) \land (\neg p \lor \neg q))$$
 (Definition)

2.
$$\equiv \neg[(p \land (\neg p \lor \neg q)) \lor (q \land (\neg p \lor \neg q))]$$
 (Distributive Law)

3.
$$\equiv \neg[((p \land \neg p) \lor (p \land \neg q)) \lor ((q \land \neg p) \lor (q \land \neg q))]$$
 (Distributive Law)

4.
$$\equiv \neg [(\mathbb{F} \vee (p \wedge \neg q)) \vee ((q \wedge \neg p) \vee \mathbb{F})] \text{ By } p \wedge \neg p \equiv \mathbb{F}$$

5.
$$\equiv \neg[(p \land \neg q) \lor (q \land \neg p)]$$
 (Identity Law)

6.
$$\equiv \neg(p \wedge \neg q) \wedge \neg(q \wedge \neg p)$$
 (De Morgan's Law)

7.
$$\equiv (\neg p \vee q) \wedge (\neg q \vee p)$$
 (De Morgan's Law and Double Negation Law)

8.
$$\equiv (p \rightarrow q) \land (q \rightarrow p)$$
 (Logical Equivalence)

9.
$$\equiv p \leftrightarrow q$$
 (Logical Equivalence)

Question 40

 $s^* = s$ if the compound proposition can be simplified to a variable or the negation of a variable

Question 46

Not sure how to do this one.