

Version with Markings to Show Changes Made:

IN THE CLAIMS:

Kindly amend the Claims as follows:

1. (Amended twice) A monocyclic compound having the formula (1):

$$R_{5}$$
 X_{1}
 X_{2}
 $(CH_{2})h$
 $(CH_{2})m$
 $(CH_{2})g$
 $(CH_{2})f$
 $(CH_{2})f$
 $(CH_{2})g$
 $(CH_{2})f$
 $(CH_{2})g$
 $(CH_{2})f$
 $(CH_{2})g$

in which:

 X_1, X_2, X_3, X_4 , which may be the same or different from one another, is selected from the group consisting of -CONR-, -NRCO-, -OCO-, -COO-, -CH₂NR- and -NR-CH₂-, where R is H or a C_{1-3} alkyl or benzyl;

[f,g, h, m, which may be the same or different form one another, represent a number selected from the group consisting of 0, 1 and 2;

R₁ and R₂, which may be the same or different from one another, represent a -(CH₂)_r-Ar group, where r = 0, 1, 2 and where Ar is an aromatic group selected from the group consisting of: benzene, naphthalene, thiophene, benzothiophene, pyridine, quinoline, indole, furan, benzofuran, thiazole, benzothiazole, imidazole, and benzo-imidazole, said Ar group being possibly substituted with a maximum of two residues selected from the group consisting of C₁₋₃ alkyl or halo-alkyl, C₁₋₃ alkoxyl, C₂₋₄ amino-alkoxyl, halogen, OH, NH₂, and NR₁₃R₁₄ where R₁₃ and R₁₄, which may be the same or different from one another, represent hydrogen or C₁₋₃ alkyl;

wherein R₃ is selected from the group consisting of:

- -hydrogen,
- -linear or branched alkyl having the formula C_nH_{2n+1}, with n='1-5, cyclo-alkyl or alkylcyclo-alkyl groups having the formula C_nH_{2n+1} , with n = 5-9,
- $-(CH_2)_r$ -Ar₁ group, where r= 0, 1, 2 and where Ar₁ is an aromatic group selected from the group consisting of: benzene, naphthalene, thiophéne, benzothiophene, pyridine, quinoline, indole, furan, benzofuran, thiazole, benzóthiazole, imidazole, and benzoimidazole, said Ar₁ group being possibly substituted with a maximum of two residues selected from the group consisting of C₁₋₃ alkyl or halo-alkyl, C₁₋₃ alkoxyl or aminoalkoxyl, halogen, OH, NH2 and NR13R14 where R13 and R14, which may be the same or different from one another, represent hydrogen or C₁₋₃ alkyl;
- wherein R₄ is selected from the group, consisting of:
- -hydrogen or C_{1-6} alkyl,
- L-O, where L is a chemical bond or a linear or branched C₁₋₆ alkyl residue and Q is selected from the group consisting of:
- i) H, OH, OR₉, NH₂, NR₉R₁₀,/guanidine, sulfate, phosphonate and phosphate where R₉ and R₁₀, which may be the same or different from one another, represent a hydrogen C_{1-3} alkyl group, C_{1-3} hydroxyalkyl, C_{1-3} dihydroxyalkyl, C_1 . 3alkyl-CONHR₁₂, C₁₋₃alkyltetrazole, C₁₋₃alkyl-COOH or wherein R₉R₁₀ joined together form with the N-atom a saturated 4-6 membered heterocycle possibly containing a further heteroatom selected from the group consisting of N, O and S and wherein R₁₂ is a mono-, di-, tri-glycosidic group possibly protected with one or more C₁₋₃₇ácyl groups or substituted with amino-groups or C₁₋₃ acylaminogroups;

ii) COOH, tetrazole, SO₂NH₂, SO₂NHCOOR₈, CONHR₈, NHCOR₈, where R₈ represents a linear or cyclic C₁₋₆ alkyl chain containing one or more polar groups selected from the group consisting of: OH, NR₁₅R₁₆, COOH, CONHR₁₂, PO₃H and SO₃H, OR₁₁ and where R₁₅ and R₁₆, which may be the same or different from one another, represent a hydrogen or C₁₋₃ alkyl group, and where R₁₁ is a C₁₋₃ alkyl or C₂₋₄ amino-alkyl chain, R₁₂ is a mono-, di-, tri-glycosidic group possibly protected with one or more C₁₋₃ acyl groups or substituted with amino-groups or C₁₋₃ acylamino-groups or R₁₅R₁₆ joined together form with the N-atom a saturated 4-6 membered heterocycle possibly substituted with C₁₋₃ alkyl-groups or with saturated 4-6 membered heterocycle-groups containing at least an N-atom;

iii) COOR₁₇, CONHR₁₂, OR₁₂ where R₁₂ is a mono-, di-, tri-glycoside group possibly protected with one or more C_{1-3} acyl groups or substituted with amine or C_{1-3} acylamine groups and R₁₇ is a group R₁₂ as above defined or a group C_{1-3} alkyl, C_{1-3} alkylphenyl, wherein the phenyl-group can be substituted with a group OH, NO₂, NH₂, CN, CH₃, Cl, Br;

R₅, R₆, R₇, which may be the same or different from one another, represent a hydrogen or C₁₋₃ alkyl group; with the proviso that when R₁ or R₂ are benzyl or 4-hydroxybenzyl then R₃ and R₄ are isopropyl_and an acceptable salt or enantiomer thereof] f, g, h, m, which may be the same or different from one another, may be 0 or 1; R₁ and R₂ which may be the same or different from one another, represent the side chain of a natural amino acid selected from the group consisting of tryptophan, phenylalanine, tyrosine and histidine, or the side chain of a non-natural amino acid selected from the group consisting of:

tryptophan and phenylalanine, either mono- or di-substituted with residues selected from the group consisting of C_{1-3} alkyl or halo-alkyl, C_{1-3} alkoxyl or amino-alkoxyl, halogen, OH, NH₂ and NR₁₃R₁₄, where R₁₃ and R₁₄, which may be the same or different from one another, represent a hydrogen or C_{1-3} alkyl group;

R₃ is selected from the group consisting of:

- linear or branched alkyl having the formula C_nH_{2n+1} with n = 1-5 (selected from the group consisting of methyl, ethyl, propyl, isopropyl, n-butyl and t-butyl) cycloalkyl or

alkylcycloalkyl of formula C_nH_{2n-1} with n = 5-9 (selected from the group consisting of: cyclopentyl, cyclohexyl and methylcyclohexyl)

-(CH₂)_r-Ar₁, where r = 1 or 2 and where Ar₁ is an aromatic group selected from the group consisting of: α-naphthyl, β-naphthyl, phenyl, indole, said Ar₁ group being possibly substituted with a maximum of two residues selected from the group consisting of: C₁₋₃ alkyl, CF₃, C₁₋₃ alkoxyl, Cl, F, OH and NH₂;

R₄ represents an L-Q group where:

L is a chemical bond or CH₂, and

Q is selected from the group consisting of:

— OH, NH₂, NR₉R₁₀, OR₁₁, and where R₉ and R₁₀, which may be the same or different from one another, represent a hydrogen or C₁₋₃ alkyl group, C₁₋₃hydroxy alkyl, C₁₋₃dihydroxyaklyl, C₁₋₃alkyl-CONHR₁₂ (wherein R₁₂ is a monoglycosidic group derived from D or L pentoses or hexoses (selected from the group consisting of ribose, arabinose, glucose, galactose, fructose, glucosamine, galactosamine, N-acetylglucosamine and N-acetylgalactosamine, C₁₋₃alkyltetrazole, C₁₋₃alkyl-COOH or wherein R₉R₁₀ are joined together to form with the N atom a morpholine or a piperidine ring and where R₁₁ is a C₁₋₃ alkyl chain, or a C₂₋₄ amino-alkyl chain; NHCOR₈ wherein R₈ is a cyclohexane containing from 2 to 4 OH groups, C₁₋₆ alkyl chain containing a polar group (chosen in the group consisting of NH₂, COOH, CONHR₁₂, (wherein R₁₂ is as hereabove defined) or ([1,4']bipiperidine) — COOH, COOR₁₇ or CONHR₁₂, wherein R₁₂ is as hereabove defined and R₁₇ is as R₁₂ or a group 4-nitrobenzyl.

 $-R_5$, R_6 , R_7 are H, in which the carbon atom that carries the substituents R_3 and R_7 has configuration R.

- 3. (Amended three times) A compound according to Claim 2 selected from:
- (a) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH_2C_6H_5)-CH_2-NH]\}$
- $(b) \qquad Cyclo \{-Suc-Trp-Phe-[(S)-NH-CH(CH_2C_6H_5)-CH_2-NH]\}$
- $(c) \qquad Cyclo \{-Suc\text{-}Trp\text{-}Phe\text{-}[(R)\text{-}NH\text{-}CH(CH_2C_6H_{11})\text{-}CH_2\text{-}NH]\}$
- (d) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₄(4-OCH₃))-CH₂-NH]\}$
- (e) Cyclo{-Suc-Trp(5F)-Phe-[(R)- NH-CH(CH₂C₆H₅)-CH₂-NH]}

- (f) Cyclo $\{-Suc-Trp(Me)-Phe-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]\}$
- (g) Cyclo $\{-Suc-Phe(3,4-Cl)-Phe-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]\}$
- (h) Cyclo $\{-Suc-Trp-Phe(3,4-Cl)-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]\}$
- (i) Cyclo $\{-Suc-Trp-Tyr-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]\}$
- (j) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH_2C_6H_3-3,4-diCl)-CH_2-NH]\}$
- (k) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₄-4-OH)-CH₂-NH]\}$
- (l) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-CH₂-C₆H₅)-CH₂-NH]\}$
- (m) $Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-2-napthyl)-CH₂-NH]}$
- (n) $Cyclo\{-Suc-Trp-Phe-[(R)-NH-CH(CH_2-indol-3-yl)-CH_2-NH]\}$
- (o) Cyclo {-Suc-Trp-Phe-[(R)-NH-CH(CH₂-5-F-indol-3-yl)-CH₂-NH]}
- (p) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₄-3-F)-CH₂-NH]\}$
- (q) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_3-3,4-diF-CH_2-NH]-\}$
- (r) $Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₄-4-CF₃-CH₂-NH]-}$
- (s) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH_2-CH(CH_2C_6H_5)-NH]\}$
- (t) Cyclo $\{-Suc-Trp-Phe-[(S)-NH-CH_2-CH(CH_2C_6H_5)-NH]\}$
- (u) Cyclo $\{-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-(CH_2)_3CO-\}$
- (v) Cyclo $\{-\text{Trp-Phe-}[(R)-\text{NH-CH}(CH_2-C_6H_5)-\text{CH}_2-\text{N}(CH_3)]-(CH_2)_3\text{CO-}\}$
- (w) $\text{Cyclo}\{-\text{Suc}[1(S)-\text{NH}_2]-\text{Trp-Phe-}[(R)\text{NH-CH}(\text{CH}_2-\text{C}_6\text{H}_5)-\text{CH}_2\text{NH}]-\}$
- (x) $Cyclo\{-Suc[1(R)-NH_2]-Trp-Phe-[(R)NH-CH(CH_2-C_6H_5)-CH_2NH]-\}$
- (y) $Cyclo \{-Suc[2(S)-NH_2]-Trp-Phe-[(R)NH-CH(CH_2-C_6H_5)-CH_2NH]-\}$
- (z) $\text{Cyclo}\left\{-\text{Suc}\left[2(R)-\text{NH}_2\right]-\text{Trp-Phe-}\left[(R)\text{NH-CH}\left(\text{CH}_2-\text{C}_6\text{H}_5\right)-\text{CH}_2\text{NH}\right]-\right\}$
- (aa) Cyclo $\{-Suc[1(S)-NH(CH_3)]-Trp-Phe-[(R)NH-CH(CH_2-C_6H_5)-CH_2NH]-\}$
- (ab) Cyclo {-Suc[1-COO(CH₂-C₆H₄-4-NO₂)]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (ac) Cyclo{-Suc(1-COOH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]} $[Cyclo{-Suc(1-COOH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]}]$
- (ad) Cyclo $\{-Suc(1-OH)-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]\}$
- (ae) Cyclo $\{-Suc(2-COOH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]\}$
- (af) $Cyclo\{-Suc(2-OH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]\}$
- (ag) Cyclo {-Suc[1(S)-(2H-tetrazolyl-5-ylmethyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoro-acetic acid

- (ah) Cyclo {-Suc[1(S)-(morpholin-4-yl)]-Trp-Phe-[(R)-NH-CH(CH $_2$ -C $_6$ H $_5$)-CH $_2$ -NH]-} trifluoroacetic acid
- (ai) $Cyclo\{-Suc[1(S)-N(CH_3)_2]-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-\}$ trifluoroacetic acid
- (aj) Cyclo {-Suc[1(S)-(piperidin-4-yl]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (ak) Cyclo {-Suc[1(S)-(N(CH₂CH₂OH)₂)]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]} trifluoroacetic acid
- (al) Cyclo {-Suc[1(S)-(N(CH₂CH(OH)CH₂OH)]-Trp-Phe-[(R)-NH-CH(CH₂- C_6H_5)-CH₂-NH]-} trifluoroacetic acid
- (am) Cyclo {-Suc[1(S)-(3-carboxypropanoyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-}.
- (an) Cyclo {-Suc[1(S)-[3-N'- β -D-glucopiranos-1-yl)-carboxamidopropanoyl]amino]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (ao) Cyclo {-Suc[1(S)-[(carboxymethyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂- C_6H_5)-CH₂-NH]-} trifluoroacetic acid
- (ap) Cyclo {-Suc[1(S)-[N'-\beta-D-glucopiranos-1-yl)-carboxyamideomethyl]amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- $(aq) \quad Cyclo \{-Suc[1(S)-(chinyl)amine] Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-\}$
- (ar) Cyclo {-Suc[1(S)-(4-aminobutanoyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (as) Cyclo{-Suc[1(S)-[1,4')bipiperidin-1-yl]acetamido]-Trp-Phe-[(R)-NH-CH(CH₂- C_6H_5)-CH₂-NH]-} trifluoroacetic acid
- (at) Cyclo{-Suc[1-N-(β -D-glucopiranos-1-yl)-carboxyamido]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-}; and
- (au) Cyclo {-Suc[1(S)-[N'-(2-N-acetyl- β -D-glucopiranos-1-yl)-carboxyamido]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-}.
- 5. (Amended twice) A composition comprising a compound of general formula (I) according to Claim 1 in combination with a suitable carrier or excipient.[.]

- 9. (Amended twice) A composition according to claim 7, adapted for use as <u>an</u> anxiolytic[s].
- 12. (Amended twice) A method of antagonizing an NK-2 receptor in a mammal afflicted with asthma comprising contacting an NK-2 receptor in said mammal with a compound according to Claim 1 for a time and under conditions effective to antagonize [an] said NK-2.
- 13. (Amended twice) A method of antagonizing an NK-2 receptor in a mammal afflicted with an anxiety disorder comprising contacting an NK-2 receptor with a compound according to Claim 1 for a time and under conditions effective to antagonize [an] said NK-2 receptor.
- 14. (Amended twice) A method for the treatment of the bronchospastic and inflammatory component of asthma, coughing, pulmonary irritation, intestinal spasms, spasms of the biliary tract, local spasms of the bladder and if the ureter during cystitis, and kidney infections and colics, in which quantities of between 0.02 and 10 mg/kg of body weight of active principle consisting of a compound of formula (l), according to Claim 1, are administered to the patient for a time and under conditions effective to antagonize an NK-2 receptor.