Name: Kuntumalla Jayashree

Date: 24/12/2022

# TIME SERIES FORECASTING

**WINES DATA** 

# TABLE OF CONTENTS

# <u>List of Tables</u>

| Table1: Trena-seasonal-residual-Kose1      | / |
|--------------------------------------------|---|
| Table2: Trend-seasonal-residual-Sparkling1 | 9 |
| <u>List of figures</u>                     |   |
| Fig1: Sparkling data7                      |   |
| Fig2: Rose data7                           |   |
| Fig3: Rose describe8                       |   |
| Fig4: Sparkling describe8                  |   |
| Fig5: Rose data plot8                      |   |
| Fig6: Sparkling data plot9                 |   |
| Fig7: Descriptive stats9                   |   |
| Fig8: Info-Rose wine10                     |   |
| Fig9: Info-Sparkling wine10                |   |
| Fig10: Rose Yearly Boxplot10               |   |
| Fig11: Sparkling Yearly Box plot11         |   |
| Fig12: Rose Monthly Box plot11             |   |
| Fig13: Sparkling Monthly Box plot12        |   |
| Fig14: Rose Month plot12                   |   |
| Fig15: Sparkling Month plot13              |   |
| Fig16: Rose Quarterly Box plot13           |   |
| Fig17: Sparkling Quarterly Box plot14      |   |
| Fig18: Pivot Monthly sales-Rose14          |   |
| Fig19: Monthly sales Graph-Rose15          |   |
| Fig20: Pivot Monthly sales-Sparkling15     |   |

| Fig21: Monthly sales Graph-Sparkling                               | 16 |
|--------------------------------------------------------------------|----|
| Fig22: Additive decomposition-Rose                                 | 16 |
| Fig23: Multiplicative decomposition-Rose                           | 17 |
| Fig24: Additive decomposition-Sparkling                            | 18 |
| Fig25: Multiplicative decomposition-Sparkling                      | 18 |
| Fig26: Training and Testing dataset of Rose and Sparkling          | 20 |
| Fig27: Train and Test split-Rose wine                              | 21 |
| Fig28: Train and Test split-Sparkling wine                         | 21 |
| Fig29: Linear Regression-Rose wine                                 | 22 |
| Fig30: Linear Regression-Sparkling wine                            | 22 |
| Fig31: RMSE-LR                                                     | 22 |
| Fig32: Naïve-Rose                                                  | 23 |
| Fig33: Naïve-Sparkling                                             | 23 |
| Fig34: Naïve-RMSE                                                  | 24 |
| Fig35: Simple Average-Rose                                         | 24 |
| Fig36: Simple Average-Sparkling                                    | 25 |
| Fig37: Simple Average-RMSE                                         | 25 |
| Fig38: Moving Average-Rolling means on whole data-Rose             | 26 |
| Fig39: Moving Average-Rolling means on Whole data-Sparkling        | 26 |
| Fig40: Moving Average-Rolling means on Train & Test data-Rose      | 27 |
| Fig41: Moving Average-Rolling means on Train & Test data-Sparkling | 27 |
| Fig42: RMSE after Moving average                                   | 28 |
| Fig43: Models Comparison1-Rose                                     | 28 |
| Fig44: Models Comparison1-Sparkling                                | 29 |
| Fig45: Simple Exponential Smoothing-Rose                           | 29 |
| Fig46: Simple Exponential Smoothing-Sparkling                      | 30 |
| Fia47: Models-RMSE                                                 | 30 |

| Fig48: Different Alpha-RMSE-Rose                                                                                                                                                                                                                                                            | 31                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Fig49: Different Alpha-RMSE-Sparkling                                                                                                                                                                                                                                                       | 31                   |
| Fig50: SES-Rose-Aplha-1,0.1                                                                                                                                                                                                                                                                 | 32                   |
| Fig51: SES-Sparkling-Aplha-1,0.1                                                                                                                                                                                                                                                            | 32                   |
| Fig51.1: RMSE-SES                                                                                                                                                                                                                                                                           | 33                   |
| Fig52: RMSE-DES-Rose                                                                                                                                                                                                                                                                        | 33                   |
| Fig53: RMSE-DES-Sparkling                                                                                                                                                                                                                                                                   | 33                   |
| Fig54: DES-Rose                                                                                                                                                                                                                                                                             | 34                   |
| Fig54.1: DES-Sparkling                                                                                                                                                                                                                                                                      | 34                   |
| Fig55: RMSE-DES                                                                                                                                                                                                                                                                             | 35                   |
| Fig56: TES-Rose1                                                                                                                                                                                                                                                                            | 35                   |
| Fig57: TES-Sparkling1                                                                                                                                                                                                                                                                       | 36                   |
| Fig58: TES-different values of alpha,beta,gamma-Rose                                                                                                                                                                                                                                        | 36                   |
|                                                                                                                                                                                                                                                                                             |                      |
| Fig58.1: TES-different values of alpha, beta, gamma-Sparkling                                                                                                                                                                                                                               | 36                   |
| Fig58.1: TES-different values of alpha,beta,gamma-Sparkling Fig59: TES-with optimal of alpha,beta,gamma-Rose                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                             | 37                   |
| Fig59: TES-with optimal of alpha,beta,gamma-Rose                                                                                                                                                                                                                                            | 37                   |
| Fig59: TES-with optimal of alpha,beta,gamma-RoseFig59.1: TES-with optimal of alpha,beta,gamma-Sparkling                                                                                                                                                                                     | 37                   |
| Fig59: TES-with optimal of alpha,beta,gamma-Rose  Fig59.1: TES-with optimal of alpha,beta,gamma-Sparkling  Fig59.2: TES-Rmse                                                                                                                                                                | 37<br>37<br>37       |
| Fig59: TES-with optimal of alpha,beta,gamma-Rose  Fig59.1: TES-with optimal of alpha,beta,gamma-Sparkling  Fig59.2: TES-Rmse  Fig60: ADF-Rose                                                                                                                                               | 37<br>37<br>38<br>39 |
| Fig59: TES-with optimal of alpha,beta,gamma-Rose  Fig59.1: TES-with optimal of alpha,beta,gamma-Sparkling  Fig59.2: TES-Rmse  Fig60: ADF-Rose  Fig61: ADF-Rose-after differencing-1.                                                                                                        | 3737373839           |
| Fig59: TES-with optimal of alpha,beta,gamma-Rose  Fig59.1: TES-with optimal of alpha,beta,gamma-Sparkling  Fig59.2: TES-Rmse  Fig60: ADF-Rose  Fig61: ADF-Rose-after differencing-1  Fig62: ADF-Sparkling                                                                                   | 3737383939           |
| Fig59: TES-with optimal of alpha,beta,gamma-Rose  Fig59.1: TES-with optimal of alpha,beta,gamma-Sparkling  Fig59.2: TES-Rmse  Fig60: ADF-Rose  Fig61: ADF-Rose-after differencing-1  Fig62: ADF-Sparkling  Fig63: ADF-Sparkling-after differencing-1                                        | 373738393940         |
| Fig59: TES-with optimal of alpha,beta,gamma-Rose  Fig59.1: TES-with optimal of alpha,beta,gamma-Sparkling  Fig59.2: TES-Rmse  Fig60: ADF-Rose  Fig61: ADF-Rose-after differencing-1  Fig62: ADF-Sparkling  Fig63: ADF-Sparkling-after differencing-1  Fig64: AIC Rose                       | 37373839394041       |
| Fig59: TES-with optimal of alpha,beta,gamma-Rose  Fig59.1: TES-with optimal of alpha,beta,gamma-Sparkling  Fig59.2: TES-Rmse  Fig60: ADF-Rose  Fig61: ADF-Rose-after differencing-1  Fig62: ADF-Sparkling  Fig63: ADF-Sparkling-after differencing-1  Fig64: AIC Rose  Fig65: AIC Sparkling | 373738394041         |

| Fig67: ARIMA-Diagnostic-Rose                        | 43 |
|-----------------------------------------------------|----|
| Fig68: ARIMA-Diagnostic-Sparkling                   | 43 |
| Fig69: ACF plot-rose                                | 44 |
| Fig70: ACF plot-Sparkling                           | 44 |
| Fig71: SARIMA-Rose-6                                | 46 |
| Fig72: SARIMA-Sparkling-6                           | 46 |
| Fig73: SARIMA-Rose-12                               | 47 |
| Fig74: SARIMA-Sparkling-12                          | 47 |
| Fig75: RMSE-SARIMA                                  | 48 |
| Fig76: ACF-PACF-ROSE                                | 49 |
| Fig77: Rose-ARIMA-plot params                       | 50 |
| Fig78: Rose-Diagnostics-plot params                 | 50 |
| Fig79: ACF-PACF-sparkling                           | 51 |
| Fig80: Sparkling- ARIMA-plot params                 | 53 |
| Fig81: Sparkling-Diagnostics-plot params            | 53 |
| Fig82: RMSE -plot params                            | 53 |
| Fig83: SARIMA –Rose plot params1-6                  | 53 |
| Fig83.1: SARIMA –Sparkling plot params1-6           | 54 |
| Fig84: RMSE with plot params-6                      | 54 |
| Fig85: SARIMA-Rose-Seasonality12-plot params        | 55 |
| Fig85.1: SARIMA-Sparkling-Seasonality12-plot params | 55 |
| Fig86: RMSE-Seasonality12                           | 56 |
| Fig86.1: RMSE-Test data                             | 57 |
| Fig87: Rose-Predicted values                        | 58 |
| Fig88: Rose-Forecast 12 months                      | 58 |
| Fig89: Rose-Predicted values1                       | 58 |
| Fig90: Rose-Forecast 12 months-1                    | 59 |

| Fig91: S       | parkling 12months forecast values59                                                                                                                                                                                                                                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig92: S       | parkling 12months forecast plot60                                                                                                                                                                                                                                                                                                                                         |
| Fig93: R       | ose Box plot160                                                                                                                                                                                                                                                                                                                                                           |
| Fig94: S       | parkling Box plot161                                                                                                                                                                                                                                                                                                                                                      |
| <u>Problei</u> | n Statement7                                                                                                                                                                                                                                                                                                                                                              |
| <u>Questi</u>  | <u>ons</u>                                                                                                                                                                                                                                                                                                                                                                |
| 1.<br>2.<br>3. | Read the data as an appropriate Time Series data and plot the data                                                                                                                                                                                                                                                                                                        |
| 4.             | Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE                                       |
| 5.             | Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.  Note: Stationarity should be checked at alpha = 0.05 |
| 6.             | Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE                                                                                                                                                     |
| 7.             | Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE48                                                                                                                                                                                                                          |
| 8.             | Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data                                                                                                                                                                                                                                         |
| 9.             | Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands57                                                                                                                                                                                            |
| 10.            | Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales                                                                                                                                                                                                                                      |

### **Problem 1:**

### Wines Data Analysis:

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

Data set for the Problem: Sparkling.csv and Rose.csv.

### <u>Data Dictionary of Sparkling and Rose datasets:</u>

**YearMonth**: Year and month for which sales count is calculated

**Sparkling** : Sales of Sparkling wine

**Rose** : Sales of Rose wine.

### 1) Read the data as an appropriate Time Series data and plot the data.

- Both datasets are read and stored in the pandas dataframes (df\_rose and df\_spar) for the purpose of analysis.
- Datasets are loaded as time series data with parse\_date as true and "YearMonth" as index.
- There is total of 187 records from 1980 to 1995 of wine types Rose and sparkling.
- There are no duplicates in both datasets.
- There are 2 null values in the Rose wine dataset while the sparkling dataset has no null values in it.

|            | Sparkling |            | Rose  |
|------------|-----------|------------|-------|
| YearMonth  |           | YearMonth  |       |
| 1980-01-01 | 1686      | 1980-01-01 | 112.0 |
| 1980-02-01 | 1591      | 1980-02-01 | 118.0 |
| 1980-03-01 | 2304      | 1980-03-01 | 129.0 |
| 1980-04-01 | 1712      | 1980-04-01 | 99.0  |
| 1980-05-01 | 1471      | 1980-05-01 | 116.0 |

Fig1: Sparkling data Fig2: Rose data

- We have imputed the null values in the Rose dataset with forward values using ffill() method of python. "ffill()" method is used to fill the missing values in the dataframe. Ffill stands for forward fill.
- Data Description is as below:

| std         39.244440         std         1295.111540           min         28.000000         min         1070.000000           25%         62.500000         25%         1605.000000           50%         85.000000         50%         1874.000000           75%         111.000000         1874.000000 |       | Rose       | _ |       | Sparkling   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|---|-------|-------------|
| std         39.244440         std         1295.111540           min         28.000000         min         1070.000000           25%         62.500000         25%         1605.000000           50%         85.000000         50%         1874.000000                                                      | count | 187.000000 |   | count | 187.000000  |
| min         28.000000         min         1070.000000           25%         62.500000         25%         1605.000000           50%         85.000000         50%         1874.000000                                                                                                                      | mean  | 89.909091  |   | mean  | 2402.417112 |
| 25% 62.500000 25% 1605.000000<br>50% 85.000000 50% 1874.000000                                                                                                                                                                                                                                             | std   | 39.244440  |   | std   | 1295.111540 |
| 50% 85.000000<br>50% 1874.000000                                                                                                                                                                                                                                                                           | min   | 28.000000  |   | min   | 1070.000000 |
| 50% 1874.000000<br>75% 111.000000                                                                                                                                                                                                                                                                          | 25%   | 62.500000  |   | 25%   | 1605.000000 |
| 75% 111.000000 75% 2549.000000                                                                                                                                                                                                                                                                             | 50%   | 85.000000  |   | 50%   | 1874.000000 |
|                                                                                                                                                                                                                                                                                                            | 75%   | 111.000000 |   | 75%   | 2549.000000 |
| max         267.000000           rig3:         Rose describe           Fig4:         Sparkling de                                                                                                                                                                                                          |       |            |   |       |             |

- Minimum number of sales of Rose wine type is 28 while the maximum sales count is 267. Average count of sales of Rose wine is nearly 90.
- We see maximum sales of Rose wine type happened in Dec 1980 while minimum sales happened in May-1995.
- Minimum number of sales of Sparkling wine type is 1070 while the maximum sales count is 7242. Average count of sales of Rose wine is nearly 2402.
- We see maximum sales of Sparkling wine type happened in Dec 1987 while minimum sales happened in Jan-1995.

### Rose Data Plot:





Fig6: Sparkling data plot

### Observations:

- There is a slight downward trend with seasonality associated. Average sales and most of the sales are almost same .i.e Mean and median are almost near to each other.
- There is a some upward and downward trend with some seasonality associated. Most of the sales count is around 1990.

# 2) Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Descriptive statistics of both the datasets:



Fig7: Descriptive stats

Info:

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 187 entries, 1980-01-01 to 1995-07-01
Data columns (total 1 columns):
   Column Non-Null Count Dtype
    Rose
            185 non-null
                            float64
dtypes: float64(1)
memory usage: 2.9 KB
     Fig8: Info-Rose wine
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 187 entries, 1980-01-01 to 1995-07-01
Data columns (total 1 columns):
   Column
               Non-Null Count Dtype
               -----
   Sparkling 187 non-null
                               int64
dtypes: int64(1)
memory usage: 2.9 KB
```

Fig9: Info-Sparkling wine



Fig10: Rose Yearly Boxplot

- Downward trend in the sales of the Rose wine from 1980 to 1995
- Highest number of sales got recorded in the year 1981 and least in the year 1995



Fig11: Sparkling Yearly Box plot

- Polynomial trend in the sales count of the Sparkling wine type.
- Max sales count is in the year 1988 while the least is in the year 1995

### Monthly Box Plot:



Fig12: Rose Monthly Box plot

- We can observe there are some outliers in the month of June, July, August, September and December in Rose wine type.
- Highest sales happened in the month of December while the least in January across various years.

• Sales got increased in the 4th quarter and decreased in quarter1 starting.



Fig13: Sparkling Monthly Box plot

- We can observe there are some outliers in the month of January, February and July in Sparkling wine type.
- Highest sales happened in the month of December while the least in June across various years.
- Sales increased in the quarter4 and drastically decreased by quarter1 starting.

Sales of both the wines increased in quarter4 due to holiday season.

### Month plot across different years and within different months across years:



Fig14: Rose Month plot

• This plot shows us the behavior of the Time Series ('Rose sales' in this case) across various months. The red line is the median value.



• This plot shows us the behavior of the Time Series (Sparkling sales' in this case) across various months. The red line is the median value.

### Quarterly Box Plot:



• Most of the sales is observed in the 4th quarter.

• Less number of sales is observed in the 1st quarter.



Fig17: Sparkling Quarterly Box plot

- Most of the sales is observed in the 4th quarter.
- Less number of sales is observed in the 2nd quarter.

## Monthly sales graph across years:

| YearMonth | April | August | December | February | January | July  | June  | March | May   | November | October | September |
|-----------|-------|--------|----------|----------|---------|-------|-------|-------|-------|----------|---------|-----------|
| YearMonth |       |        |          |          |         |       |       |       |       |          |         |           |
| 1980      | 99.0  | 129.0  | 267.0    | 118.0    | 112.0   | 118.0 | 168.0 | 129.0 | 116.0 | 150.0    | 147.0   | 205.0     |
| 1981      | 97.0  | 214.0  | 226.0    | 129.0    | 126.0   | 222.0 | 127.0 | 124.0 | 102.0 | 154.0    | 141.0   | 118.0     |
| 1982      | 97.0  | 117.0  | 169.0    | 77.0     | 89.0    | 117.0 | 121.0 | 82.0  | 127.0 | 134.0    | 112.0   | 106.0     |
| 1983      | 85.0  | 124.0  | 164.0    | 108.0    | 75.0    | 109.0 | 108.0 | 115.0 | 101.0 | 135.0    | 95.0    | 105.0     |
| 1984      | 87.0  | 142.0  | 159.0    | 85.0     | 88.0    | 87.0  | 87.0  | 112.0 | 91.0  | 139.0    | 108.0   | 95.0      |
| 1985      | 93.0  | 103.0  | 129.0    | 82.0     | 61.0    | 87.0  | 75.0  | 124.0 | 108.0 | 123.0    | 108.0   | 90.0      |
| 1986      | 71.0  | 118.0  | 141.0    | 65.0     | 57.0    | 110.0 | 67.0  | 67.0  | 76.0  | 107.0    | 85.0    | 99.0      |
| 1987      | 86.0  | 73.0   | 157.0    | 65.0     | 58.0    | 87.0  | 74.0  | 70.0  | 93.0  | 96.0     | 100.0   | 101.0     |
| 1988      | 66.0  | 77.0   | 135.0    | 115.0    | 63.0    | 79.0  | 83.0  | 70.0  | 67.0  | 100.0    | 116.0   | 102.0     |
| 1989      | 74.0  | 74.0   | 137.0    | 60.0     | 71.0    | 86.0  | 91.0  | 89.0  | 73.0  | 109.0    | 87.0    | 87.0      |
| 1990      | 77.0  | 70.0   | 132.0    | 69.0     | 43.0    | 78.0  | 76.0  | 73.0  | 69.0  | 110.0    | 65.0    | 83.0      |
| 1991      | 65.0  | 55.0   | 106.0    | 55.0     | 54.0    | 96.0  | 65.0  | 66.0  | 60.0  | 74.0     | 63.0    | 71.0      |
| 1992      | 53.0  | 52.0   | 91.0     | 47.0     | 34.0    | 67.0  | 55.0  | 56.0  | 53.0  | 58.0     | 51.0    | 46.0      |
| 1993      | 45.0  | 54.0   | 77.0     | 40.0     | 33.0    | 57.0  | 55.0  | 46.0  | 41.0  | 48.0     | 52.0    | 46.0      |
| 1994      | 48.0  | 45.0   | 84.0     | 35.0     | 30.0    | 45.0  | 45.0  | 42.0  | 44.0  | 63.0     | 51.0    | 46.0      |
| 1995      | 52.0  | NaN    | NaN      | 39.0     | 30.0    | 62.0  | 40.0  | 45.0  | 28.0  | NaN      | NaN     | NaN       |

Fig18: Pivot Monthly sales-Rose



Fig19: Monthly sales Graph-Rose

| YearMonth | April  | August | December | February | January | July   | June   | March  | May    | November | October | September |
|-----------|--------|--------|----------|----------|---------|--------|--------|--------|--------|----------|---------|-----------|
| YearMonth |        |        |          |          |         |        |        |        |        |          |         |           |
| 1980      | 1712.0 | 2453.0 | 5179.0   | 1591.0   | 1686.0  | 1966.0 | 1377.0 | 2304.0 | 1471.0 | 4087.0   | 2596.0  | 1984.0    |
| 1981      | 1976.0 | 2472.0 | 4551.0   | 1523.0   | 1530.0  | 1781.0 | 1480.0 | 1633.0 | 1170.0 | 3857.0   | 2273.0  | 1981.0    |
| 1982      | 1790.0 | 1897.0 | 4524.0   | 1329.0   | 1510.0  | 1954.0 | 1449.0 | 1518.0 | 1537.0 | 3593.0   | 2514.0  | 1706.0    |
| 1983      | 1375.0 | 2298.0 | 4923.0   | 1638.0   | 1609.0  | 1600.0 | 1245.0 | 2030.0 | 1320.0 | 3440.0   | 2511.0  | 2191.0    |
| 1984      | 1789.0 | 3159.0 | 5274.0   | 1435.0   | 1609.0  | 1597.0 | 1404.0 | 2061.0 | 1567.0 | 4273.0   | 2504.0  | 1759.0    |
| 1985      | 1589.0 | 2512.0 | 5434.0   | 1682.0   | 1771.0  | 1645.0 | 1379.0 | 1846.0 | 1896.0 | 4388.0   | 3727.0  | 1771.0    |
| 1986      | 1605.0 | 3318.0 | 5891.0   | 1523.0   | 1606.0  | 2584.0 | 1403.0 | 1577.0 | 1765.0 | 3987.0   | 2349.0  | 1562.0    |
| 1987      | 1935.0 | 1930.0 | 7242.0   | 1442.0   | 1389.0  | 1847.0 | 1250.0 | 1548.0 | 1518.0 | 4405.0   | 3114.0  | 2638.0    |
| 1988      | 2336.0 | 1645.0 | 6757.0   | 1779.0   | 1853.0  | 2230.0 | 1661.0 | 2108.0 | 1728.0 | 4988.0   | 3740.0  | 2421.0    |
| 1989      | 1650.0 | 1968.0 | 6694.0   | 1394.0   | 1757.0  | 1971.0 | 1406.0 | 1982.0 | 1654.0 | 4514.0   | 3845.0  | 2608.0    |
| 1990      | 1628.0 | 1605.0 | 6047.0   | 1321.0   | 1720.0  | 1899.0 | 1457.0 | 1859.0 | 1615.0 | 4286.0   | 3116.0  | 2424.0    |
| 1991      | 1279.0 | 1857.0 | 6153.0   | 2049.0   | 1902.0  | 2214.0 | 1540.0 | 1874.0 | 1432.0 | 3627.0   | 3252.0  | 2408.0    |
| 1992      | 1997.0 | 1773.0 | 6119.0   | 1667.0   | 1577.0  | 2076.0 | 1625.0 | 1993.0 | 1783.0 | 4096.0   | 3088.0  | 2377.0    |
| 1993      | 2121.0 | 2795.0 | 6410.0   | 1564.0   | 1494.0  | 2048.0 | 1515.0 | 1898.0 | 1831.0 | 4227.0   | 3339.0  | 1749.0    |
| 1994      | 1725.0 | 1495.0 | 5999.0   | 1968.0   | 1197.0  | 2031.0 | 1693.0 | 1720.0 | 1674.0 | 3729.0   | 3385.0  | 2968.0    |
| 1995      | 1862.0 | NaN    | NaN      | 1402.0   | 1070.0  | 2031.0 | 1688.0 | 1897.0 | 1670.0 | NaN      | NaN     | NaN       |

Fig20: Pivot Monthly sales-Sparkling



Fig21: Monthly sales Graph-Sparkling

### Additive Decomposition of Rose:



**Multiplicative Decomposition of Rose:** 



|           | Additive Decompostion |           |                         |           |               |  |  |  |  |  |
|-----------|-----------------------|-----------|-------------------------|-----------|---------------|--|--|--|--|--|
| YearMonth | Rose Trend            | YearMonth | <b>Rose Seasonality</b> | YearMonth | Rose Residual |  |  |  |  |  |
| 1980-1-1  | NaN                   | 1980-1-1  | -27.903092              | 1980-1-1  | NaN           |  |  |  |  |  |
| 1980-2-1  | NaN                   | 1980-2-1  | -17.431663              | 1980-2-1  | NaN           |  |  |  |  |  |
| 1980-3-1  | NaN                   | 1980-3-1  | -9.279878               | 1980-3-1  | NaN           |  |  |  |  |  |
| 1980-4-1  | NaN                   | 1980-4-1  | -15.092378              | 1980-4-1  | NaN           |  |  |  |  |  |
| 1980-5-1  | NaN                   | 1980-5-1  | -10.190592              | 1980-5-1  | NaN           |  |  |  |  |  |
| 1980-6-1  | NaN                   | 1980-6-1  | -7.672735               | 1980-6-1  | NaN           |  |  |  |  |  |
| 1980-7-1  | 147.083333            | 1980-7-1  | 4.880241                | 1980-7-1  | -33.963575    |  |  |  |  |  |
| 1980-8-1  | 148.125               | 1980-8-1  | 5.460797                | 1980-8-1  | -24.585797    |  |  |  |  |  |
| 1980-9-1  | 148.375               | 1980-9-1  | 2.780241                | 1980-9-1  | 53.844759     |  |  |  |  |  |
| 1980-10-1 | 148.083333            | 1980-10-1 | 1.877464                | 1980-10-1 | -2.960797     |  |  |  |  |  |
| 1980-11-1 | 147.416667            | 1980-11-1 | 16.852464               | 1980-11-1 | -14.26913     |  |  |  |  |  |
| 1980-12-1 | 145.125               | 1980-12-1 | 55.71913                | 1980-12-1 | 66.15587      |  |  |  |  |  |

|           | Multiplicative Decompostion |           |                  |           |               |  |  |  |  |  |
|-----------|-----------------------------|-----------|------------------|-----------|---------------|--|--|--|--|--|
| YearMonth | Rose Trend                  | YearMonth | Rose Seasonality | YearMonth | Rose Residual |  |  |  |  |  |
| 1980-1-1  | NaN                         | 1980-1-1  | 0.670182         | 1980-1-1  | NaN           |  |  |  |  |  |
| 1980-2-1  | NaN                         | 1980-2-1  | 0.806224         | 1980-2-1  | NaN           |  |  |  |  |  |
| 1980-3-1  | NaN                         | 1980-3-1  | 0.901278         | 1980-3-1  | NaN           |  |  |  |  |  |
| 1980-4-1  | NaN                         | 1980-4-1  | 0.854154         | 1980-4-1  | NaN           |  |  |  |  |  |
| 1980-5-1  | NaN                         | 1980-5-1  | 0.889531         | 1980-5-1  | NaN           |  |  |  |  |  |
| 1980-6-1  | NaN                         | 1980-6-1  | 0.924099         | 1980-6-1  | NaN           |  |  |  |  |  |
| 1980-7-1  | 147.083333                  | 1980-7-1  | 1.057682         | 1980-7-1  | 0.758514      |  |  |  |  |  |
| 1980-8-1  | 148.125                     | 1980-8-1  | 1.035066         | 1980-8-1  | 0.841382      |  |  |  |  |  |
| 1980-9-1  | 148.375                     | 1980-9-1  | 1.017753         | 1980-9-1  | 1.357534      |  |  |  |  |  |
| 1980-10-1 | 148.083333                  | 1980-10-1 | 1.022688         | 1980-10-1 | 0.970661      |  |  |  |  |  |
| 1980-11-1 | 147.416667                  | 1980-11-1 | 1.192494         | 1980-11-1 | 0.853274      |  |  |  |  |  |
| 1980-12-1 | 145.125                     | 1980-12-1 | 1.628848         | 1980-12-1 | 1.129506      |  |  |  |  |  |

Table1: Trend-seasonal-residual-Rose

### Additive Decomposition of Sparkling:



Fig24: Additive decomposition-Sparkling

### **Multiplicative Decomposition of Sparkling:**



Fig25: Multiplicative decomposition-Sparkling

|           | Additive Decompostion |           |                    |           |                 |  |  |  |  |  |
|-----------|-----------------------|-----------|--------------------|-----------|-----------------|--|--|--|--|--|
| YearMonth | Sparkling Trend       | YearMonth | rkling Seasonality | YearMonth | rkling Residual |  |  |  |  |  |
| 1980-1-1  | NaN                   | 1980-1-1  | -854.260599        | 1980-1-1  | NaN             |  |  |  |  |  |
| 1980-2-1  | NaN                   | 1980-2-1  | -830.350678        | 1980-2-1  | NaN             |  |  |  |  |  |
| 1980-3-1  | NaN                   | 1980-3-1  | -592.35663         | 1980-3-1  | NaN             |  |  |  |  |  |
| 1980-4-1  | NaN                   | 1980-4-1  | -658.490559        | 1980-4-1  | NaN             |  |  |  |  |  |
| 1980-5-1  | NaN                   | 1980-5-1  | -824.416154        | 1980-5-1  | NaN             |  |  |  |  |  |
| 1980-6-1  | NaN                   | 1980-6-1  | -967.434011        | 1980-6-1  | NaN             |  |  |  |  |  |
| 1980-7-1  | 2360.666667           | 1980-7-1  | -465.502265        | 1980-7-1  | 70.835599       |  |  |  |  |  |
| 1980-8-1  | 2351.333333           | 1980-8-1  | -214.332821        | 1980-8-1  | 315.999487      |  |  |  |  |  |
| 1980-9-1  | 2320.541667           | 1980-9-1  | -254.677265        | 1980-9-1  | -81.864401      |  |  |  |  |  |
| 1980-10-1 | 2303.583333           | 1980-10-1 | 599.769957         | 1980-10-1 | -307.35329      |  |  |  |  |  |
| 1980-11-1 | 2302.041667           | 1980-11-1 | 1675.067179        | 1980-11-1 | 109.891154      |  |  |  |  |  |
| 1980-12-1 | 2293.791667           | 1980-12-1 | 3386.983846        | 1980-12-1 | -501.775513     |  |  |  |  |  |

|           | Multiplicative Decompostion |           |                    |           |                 |
|-----------|-----------------------------|-----------|--------------------|-----------|-----------------|
| YearMonth | Sparkling Trend             | YearMonth | rkling Seasonality | YearMonth | rkling Residual |
| 1980-1-1  | NaN                         | 1980-1-1  | 0.649843           | 1980-1-1  | NaN             |
| 1980-2-1  | NaN                         | 1980-2-1  | 0.659214           | 1980-2-1  | NaN             |
| 1980-3-1  | NaN                         | 1980-3-1  | 0.75744            | 1980-3-1  | NaN             |
| 1980-4-1  | NaN                         | 1980-4-1  | 0.730351           | 1980-4-1  | NaN             |
| 1980-5-1  | NaN                         | 1980-5-1  | 0.660609           | 1980-5-1  | NaN             |
| 1980-6-1  | NaN                         | 1980-6-1  | 0.603468           | 1980-6-1  | NaN             |
| 1980-7-1  | 2360.666667                 | 1980-7-1  | 0.809164           | 1980-7-1  | 1.02923         |
| 1980-8-1  | 2351.333333                 | 1980-8-1  | 0.918822           | 1980-8-1  | 1.135407        |
| 1980-9-1  | 2320.541667                 | 1980-9-1  | 0.894367           | 1980-9-1  | 0.955954        |
| 1980-10-1 | 2303.583333                 | 1980-10-1 | 1.241789           | 1980-10-1 | 0.907513        |
| 1980-11-1 | 2302.041667                 | 1980-11-1 | 1.690158           | 1980-11-1 | 1.050423        |
| 1980-12-1 | 2293.791667                 | 1980-12-1 | 2.384776           | 1980-12-1 | 0.94677         |

Table2: Trend-seasonal-residual-Sparkling

### Additive Model:

Seasonality remains constant over time yt = Trend + Seasonalit y + Residual

### Multiplicative Model:

Seasonality changes (increases or decreases) over time yt = Trend \* Seasonalit y \* Residual

### Observations:

From above graphs, we can say that Rose is Multiplicative while sparkling is Additive.

### 3) Split the data into training and test. The test data should start in 1991

Both datasets start split at 1991.

Training Data is till the end of 1990. Test Data is from the beginning of 1991 to the last time stamp provided.

| Rose wine:<br>First few | rows o | f Training Data |            |        |        |     |
|-------------------------|--------|-----------------|------------|--------|--------|-----|
|                         | Rose   |                 | First few  | Rose   | Test   | Dat |
| YearMonth               |        |                 | YearMonth  |        |        |     |
| 1980-01-01              | 112.0  |                 | 1991-01-01 | 54.0   |        |     |
| 1980-02-01              | 118.0  |                 | 1991-02-01 | 55.0   |        |     |
| 1980-03-01              | 129.0  |                 | 1991-03-01 | 66.0   |        |     |
| 1980-04-01              | 99.0   |                 | 1991-04-01 | 65.0   |        |     |
| 1980-05-01              | 116.0  |                 | 1991-05-01 | 60.0   |        |     |
| Last few r              | ows of | Training Data   | Last few r | ows of | Test D | ata |
|                         | Rose   |                 |            | Rose   |        |     |
| YearMonth               |        |                 | YearMonth  |        |        |     |
| 1990-08-01              | 70.0   |                 | 1995-03-01 | 45.0   |        |     |
| 1990-09-01              | 83.0   |                 | 1995-04-01 | 52.0   |        |     |
| 1990-10-01              | 65.0   |                 | 1995-05-01 | 28.0   |        |     |
| 1990-11-01              | 110.0  |                 | 1995-06-01 | 40.0   |        |     |
| 1990-12-01              | 132.0  |                 | 1995-07-01 | 62.0   |        |     |
|                         |        |                 |            |        |        |     |

Sparkling wine:

First few rows of Training Data First few rows of Test Data

| 5            | parkling           | 5            | parkling      |
|--------------|--------------------|--------------|---------------|
| YearMonth    |                    | YearMonth    |               |
| 1980-01-01   | 1686               | 1991-01-01   | 1902          |
| 1980-02-01   | 1591               | 1991-02-01   | 2049          |
| 1980-03-01   | 2304               | 1991-03-01   | 1874          |
| 1980-04-01   | 1712               | 1991-04-01   | 1279          |
| 1980-05-01   | 1471               | 1991-05-01   | 1432          |
| Last few row | s of Training Data | Last few row | s of Test Dat |
| 5            | parkling           | S            | parkling      |
| YearMonth    |                    | VessMonth    |               |

| YearMonth  |      |
|------------|------|
| 1990-08-01 | 1605 |
| 1990-09-01 | 2424 |
| 1990-10-01 | 3116 |
| 1990-11-01 | 4286 |
| 990-12-01  | 6047 |

Fig26: Training and Testing dataset of Rose and Sparkling



Fig27: Train and Test split-Rose wine



Fig28: Train and Test split-Sparkling wine

4) Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression, naive forecast models and simple average models. Should also be built on the training data and check the performance on the test data using RMSE.

Various Forecasting models applied on the data are as below:

- Linear Regression
- Naïve Forecasting
- Simple Average model
- Moving Average model
- Exponential Smoothing Techniques(Single,Double and Triple exponential smoothing techniques)

Accuracy metric considered to validate performance is RMSE-Root Mean Square Error.

### Linear Regression:

### Linear Regression

We have applied linear regression on both the datasets (Rose and Sparkling) by modifying the datasets and tagged sales to their individual time.

### LR-ROSE



Fig29: Linear Regression-Rose wine





Fig30: Linear Regression-Sparkling wine

### RMSE post Regression

|                  | Test RMSE-Rose | Test RMSE-Sparkling |
|------------------|----------------|---------------------|
| RegressionOnTime | 51.45105       | 1275.867052         |

Fig31: RMSE-LR

### Naïve Forecasting:

Estimating technique in which the last period's actual s are used as this period's forecast, without adjusting them or attempting to establish causal factors

### Naïve Forecast -Rose



Fig32: Naïve-Rose

### Naïve Forecast -Sparkling



Fig33: Naïve-Sparkling

### Naïve Forecast –RMSE:

Test RMSE-Rose Test RMSE-Sparkling

| RegressionOnTime | 51.45105 | 1275.867052 |
|------------------|----------|-------------|
| NaiveModel       | 79.73855 | 3884.279352 |

Fig34: Naïve-RMSE

### Simple Average:

Forecast the expected value equal to the average of all previously observed points.

### Simple Average Forecast -Rose



Fig35: Simple Average-Rose

### Simple Average Forecast -Sparkling



Fig36: Simple Average-Sparkling

### Simple Average Forecast -RMSE

|                    | Test RMSE-Rose | Test RMSE-Sparkling |
|--------------------|----------------|---------------------|
| RegressionOnTime   | 51.45105       | 1275.867052         |
| NaiveModel         | 79.73855       | 3864.279352         |
| SimpleAverageModel | 79.73855       | 1275.081804         |

Fig37: Simple Average-RMSE

### Moving Average:

The technique represents taking an average of a set of numbers in a given range while moving the range. Rolling method from python is used to shift the range. Here we have taken 2point,4point,6point and 9pointMoving Average.

 $\underline{\text{2-point MA}}$ : Considering  $1^{st}$  and  $2^{nd}$  values to predict the  $3^{rd}$  value. Same way considering the  $2^{nd}$  and  $3^{rd}$  to predict the 4th value and so on.

 $\underline{4\text{-point MA}}$ : Considering  $1^{st}$ ,  $2^{nd}$ ,  $3^{rd}$  and  $4^{th}$  values to predict the  $5^{th}$  value. Same way considering the  $2^{nd}$ ,  $3^{rd}$ ,  $4^{th}$  and  $5^{th}$  to predict the  $6^{th}$  value and so on.

<u>6-point MA</u>: Considering  $1^{st}$ ,  $2^{nd}$ ,  $3^{rd}$ ,  $4^{th}$ ,  $5^{th}$  and  $6^{th}$  values to predict the  $7^{th}$  value. Same way considering the  $2^{nd}$ ,  $3^{rd}$ ,  $4^{th}$ ,  $5^{th}$ ,  $6^{th}$  and  $7^{th}$  to predict the  $8^{th}$  value and so on.

 $\underline{9\text{-point MA}}$ : Considering  $1^{st}$ ,  $2^{nd}$ ,  $3^{rd}$ ,  $4^{th}$ ,  $5^{th}$ ,  $6^{th}$ ,  $7^{th}$ ,  $8^{th}$  and 9th values to predict the  $10^{th}$  value. Same way considering the  $2^{nd}$ ,  $3^{rd}$ ,  $4^{th}$ ,  $5^{th}$ ,  $6^{th}$ ,  $7^{th}$ ,  $8^{th}$ ,  $9^{th}$  and  $10^{th}$ , to predict the  $11^{th}$  value and so on

### Moving Average Forecast -Whole Rose data



### Moving Average Forecast -Whole Sparkling data



Fig39: Moving Average-Rolling means on Whole data-Sparkling

### Moving Average Forecast –Train and Test Rose data



Fig40: Moving Average-Rolling means on Train & Test data-Rose

### Moving Average Forecast -Train and Test Sparkling data



Fig41: Moving Average-Rolling means on Train & Test data-Sparkling

### Moving Average Forecast -RMSE

| Test RMSE-Rose | Test RMSE-Sparkling                                                        |
|----------------|----------------------------------------------------------------------------|
| 51.451050      | 1275.867052                                                                |
| 79.738550      | 3864.279352                                                                |
| 79.738550      | 1275.081804                                                                |
| 11.529409      | 813.400684                                                                 |
| 14.455221      | 1156.589694                                                                |
| 14.572009      | 1283.927428                                                                |
| 14.731209      | 1346.278315                                                                |
|                | 51.451050<br>79.738550<br>79.738550<br>11.529409<br>14.455221<br>14.572009 |

Fig42: RMSE after Moving average

From above RMSE data, we see 2 point trailing moving average is giving the best results with low RMSE values for both Rose and Sparkling datasets

### Model comparison plots-Rose Data:



### Model comparison plots-Sparkling Data:



Fig44: Models Comparison1-Sparkling

### Simple Exponential Smoothing:

SES is a time series forecasting method with only single parameter alpha which is called as smoothing factor, without trend and seasonality. This method uses weighted moving averages with exponentially decreasing weights.

For Rose ,level parameter (alpha ) is 0.0987



Fig45: Simple Exponential Smoothing-Rose

### For Sparkling ,level parameter (alpha ) is 0.0.0496



Fig46: Simple Exponential Smoothing-Sparkling

### RMSE values post the SES:

|                                              | Test RMSE-Rose | Test RMSE-Sparkling |
|----------------------------------------------|----------------|---------------------|
| RegressionOnTime                             | 51.451050      | 1275.867052         |
| NaiveModel                                   | 79.738550      | 3864.279352         |
| SimpleAverageModel                           | 79.738550      | 1275.081804         |
| 2pointTrailingMovingAverage                  | 11.529409      | 813.400684          |
| 4pointTrailingMovingAverage                  | 14.455221      | 1156.589694         |
| 6pointTrailingMovingAverage                  | 14.572009      | 1283.927428         |
| 9pointTrailingMovingAverage                  | 14.731209      | 1346.278315         |
| Alpha = 0.0987, Simple Exponential Smoothing | 36.816905      | NaN                 |
| Alpha=0.0496, SimpleExponential Smoothing    | NaN            | 1316.034674         |

Fig47: Models-RMSE

For now 2 point Moving average has low RMSE score for both Rose and Sparkling Wine.

RMSE for different alpha values:

Performed validation with different Alpha values. Below is the result .

|   | Alpha Values | Train RMSE | Test RMSE |
|---|--------------|------------|-----------|
| 0 | 0.1          | 31.815610  | 36.848694 |
| 1 | 0.2          | 31.979391  | 41.382452 |
| 2 | 0.3          | 32.470164  | 47.525251 |
| 3 | 0.4          | 33.035130  | 53.787686 |
| 4 | 0.5          | 33.682839  | 59.661932 |
| 5 | 0.6          | 34.441171  | 64.991324 |
| 6 | 0.7          | 35.323261  | 69.718108 |
| 7 | 0.8          | 36.334596  | 73.793865 |
| 8 | 0.9          | 37.482782  | 77.159094 |

Fig48: Different Alpha-RMSE-Rose

|   | Alpha Values | Train RMSE  | Test RMSE   |
|---|--------------|-------------|-------------|
| 0 | 0.1          | 1333.873836 | 1375.393398 |
| 1 | 0.2          | 1356.042987 | 1595.206839 |
| 2 | 0.3          | 1359.511747 | 1935.507132 |
| 3 | 0.4          | 1352.588879 | 2311.919615 |
| 4 | 0.5          | 1344.004369 | 2666.351413 |
| 5 | 0.6          | 1338.805381 | 2979.204388 |
| 6 | 0.7          | 1338.844308 | 3249.944092 |
| 7 | 0.8          | 1344.462091 | 3483.801006 |
| 8 | 0.9          | 1355.723518 | 3686.794285 |

Fig49: Different Alpha-RMSE-Sparkling

For both Rose and Sparkling wines, Alpha=0.1 gave the low RMSE value.

Below are the graphs:



Fig50: SES-Rose-Aplha-1,0.1



Fig51: SES-Sparkling-Aplha-1,0.1

### RMSE:

|                                              | Test RMSE-Rose | Test RMSE-Sparkling |
|----------------------------------------------|----------------|---------------------|
| RegressionOnTime                             | 51.451050      | 1275.867052         |
| NaiveModel                                   | 79.738550      | 3864.279352         |
| SimpleAverageModel                           | 79.738550      | 1275.081804         |
| 2pointTrailingMovingAverage                  | 11.529409      | 813.400684          |
| 4pointTrailingMovingAverage                  | 14.455221      | 1156.589694         |
| 6pointTrailingMovingAverage                  | 14.572009      | 1283.927428         |
| 9pointTrailingMovingAverage                  | 14.731209      | 1346.278315         |
| Alpha = 0.0987, Simple Exponential Smoothing | 36.816905      | NaN                 |
| Alpha = 0.0496, Simple Exponential Smoothing | NaN            | 1316.034674         |
| Alpha=0.1,SimpleExponentialSmoothing         | 36.848694      | 1375.393398         |
| Alpha=0.1, Simple Exponential Smoothing      | 36.848694      | 1375.393398         |

Fig51.1: RMSE-SES

Even now the 2-point moving average is having low RMSE.

### <u>Double Exponential Smoothing (Holt's Model):</u>

DES is a time series forecasting method with 2 parameters alpha which is called as smoothing factor and beta which is called as trend without seasonality.

RMSE for different alpha and beta values:

Performed validation with different Alpha and beta values. Below is the result .

|    | Alpha Values | Beta Values | Train RMSE | Test RMSE  |
|----|--------------|-------------|------------|------------|
| 0  | 0.3          | 0.3         | 35.944983  | 265.591922 |
| 8  | 0.4          | 0.3         | 36.749123  | 339.330850 |
| 1  | 0.3          | 0.4         | 37.393239  | 358.775361 |
| 16 | 0.5          | 0.3         | 37.433314  | 394.296935 |
| 24 | 0.6          | 0.3         | 38.348984  | 439.320331 |

Fig52: RMSE-DES-Rose

Train RMSE Test RMSE Alpha Values Beta Values 0 0.3 0.3 1592.292788 18259.110704 8 0.4 0.3 1569.338606 23878.496940 0.3 0.4 1682.573828 26069.841401 0.5 16 0.3 1530.575845 27095.532414 24 0.6 0.3 1506.449870 29070.722592

Fig53: RMSE-DES-Sparkling

For both Rose and Sparkling wines, Alpha=0.3 and beta=0.3 gave the low RMSE value. Below are the graphs:





RMSE:

|                                               | Test RMSE-Rose | Test RMSE-Sparkling |
|-----------------------------------------------|----------------|---------------------|
| RegressionOnTime                              | 51.451050      | 1275.867052         |
| NaiveModel                                    | 79.738550      | 3864.279352         |
| SimpleAverageModel                            | 79.738550      | 1275.081804         |
| 2pointTrailingMovingAverage                   | 11.529409      | 813.400684          |
| 4pointTrailingMovingAverage                   | 14.455221      | 1156.589694         |
| 6pointTrailingMovingAverage                   | 14.572009      | 1283.927428         |
| 9pointTrailingMovingAverage                   | 14.731209      | 1346.278315         |
| Alpha=0.0987, SimpleExponential Smoothing     | 36.816905      | NaN                 |
| Alpha=0.0496, SimpleExponential Smoothing     | NaN            | 1316.034674         |
| Alpha=0.1, SimpleExponential Smoothing        | 36.848694      | 1375.393398         |
| Alpha=0.1, SimpleExponential Smoothing        | 36.848694      | 1375.393398         |
| Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing | 265.591922     | 1375.393398         |

Fig55: RMSE-DES

2point moving average model is considered best one till now with low RMSE values for both Rose and Sparkling wine

<u>Triple Exponential Smoothing (Holt - Winter's Model):</u>
TES is a time series forecasting method with 3 parameters alpha which is called as smoothing factor and beta which is called as trend and gamma which is seasonality.



Fig56: TES-Rose1



Fig57: TES-Sparkling1

### RMSE for different alpha, beta and gamma values:

Performed validation with different Alpha, beta and gamma values. Below is the result.

|     | Alpha Values | Beta Values | Gamma Values | Train RMSE | Test RMSE |
|-----|--------------|-------------|--------------|------------|-----------|
| 1   | 0.3          | 0.3         | 0.4          | 24.588120  | 10.158543 |
| 9   | 0.3          | 0.4         | 0.4          | 25.599445  | 10.361475 |
| 80  | 0.4          | 0.5         | 0.3          | 26.917917  | 13.375197 |
| 24  | 0.3          | 0.6         | 0.3          | 25.815213  | 15.497246 |
| 194 | 0.6          | 0.3         | 0.5          | 31.758130  | 17.249825 |

Fig58: TES-different values of alpha, beta, gamma-Rose

|     | Alpha Values | Beta Values | Gamma Values | Train RMSE | Test RMSE  |
|-----|--------------|-------------|--------------|------------|------------|
| 0   | 0.3          | 0.3         | 0.3          | 397.797318 | 361.397300 |
| 17  | 0.3          | 0.5         | 0.4          | 452.801424 | 512.542557 |
| 376 | 8.0          | 1.0         | 0.3          | 790.740855 | 580.266110 |
| 66  | 0.4          | 0.3         | 0.5          | 448.661280 | 592.153132 |
| 8   | 0.3          | 0.4         | 0.3          | 415.172097 | 605.110479 |

Fig58.1: TES-different values of alpha, beta, gamma-Sparkling

For Rose wines, Alpha=0.3 , beta=0.3 and gamma=0.4 gave the low RMSE value. For Sparkling wines, Alpha=0.3 , beta=0.3 and gamma=0.3 gave the low RMSE value. Below are the graphs :



Fig59: TES-with optimal of alpha, beta, gamma-Rose



Fig59.1: TES-with optimal of alpha, beta, gamma-Sparkling

# RMSE:

|                                                                    | Test RMSE-Rose | Test RMSE-Sparkling |
|--------------------------------------------------------------------|----------------|---------------------|
| RegressionOnTime                                                   | 51.451050      | 1275.867052         |
| NaiveModel                                                         | 79.738550      | 3864.279352         |
| SimpleAverageModel                                                 | 79.738550      | 1275.081804         |
| 2pointTrailingMovingAverage                                        | 11.529409      | 813.400684          |
| 4pointTrailingMovingAverage                                        | 14.455221      | 1156.589694         |
| 6pointTrailingMovingAverage                                        | 14.572009      | 1283.927428         |
| 9pointTrailingMovingAverage                                        | 14.731209      | 1346.278315         |
| Alpha=0.0987, SimpleExponential Smoothing                          | 36.816905      | NaN                 |
| Alpha=0.0496, SimpleExponential Smoothing                          | NaN            | 1316.034674         |
| Alpha=0.1, SimpleExponential Smoothing                             | 36.848694      | 1375.393398         |
| Alpha=0.3, Beta=0.3, Double Exponential Smoothing                  | 265.591922     | 1375.393398         |
| Alpha=0.070, Beta=0.046, Gamma=4.039, Triple Exponential Smoothing | 20.359348      | NaN                 |
| Alpha=0.111,Beta=0.049,Gamma=0.362,TripleExponentialSmoothing      | NaN            | 402.946854          |
| Alpha=0.3,Beta=0.3,Gamma=0.4,TripleExponentialSmoothing            | 10.158543      | NaN                 |
| Alpha=0.3,Beta=0.3,Gamma=0.3,TripleExponentialSmoothing            | NaN            | 361.397300          |

Fig59.2: TES-Rmse

Alpha=0.3, Beta=0.3, Gamma=0.4, Triple Exponential Smoothing is considered best one till now with low RMSE values for Rose and Alpha=0.3, Beta=0.3, Gamma=0.3, Triple Exponential Smoothing is considered best for Sparkling wine

5) Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

To check whether the series is stationary, we use the Augmented Dickey Fuller (ADF)test whose null and alternate hypothesis can be simplified to

- Null Hypothesis H0: Time Series is non-stationary
- Alternate Hypothesis Ha: Time Series is stationary

At our desired level of significance (chosen alpha value), we can test for stationary using the ADF test. Given That alpha to be considered is 0.05(Confidence interval to be 95%)

If p-value from ADF test is less than alpha then reject the null hypothesis and hence data is said to be stationary.

If p-value from ADF test is greater than alpha then accept the null hypothesis and hence data is said to be non-stationary.

If data is non-stationary then we take appropriate levels of differencing to make a Time Series stationary. We can try various mathematical transformations to make the series stationary.

- Apply transformation and/or differencing.
- Check for stationarity.
- •If the time series is not stationary repeat the process of differencing
- •Remember, complicated transformations might give us a stationary series very easily but after the forecast values are obtained we need to get back to the original series by tracing back the transformation steps.

#### ADF test for Rose wine:



Fig60: ADF-Rose

We see that at 5% significant level the Time Series is non-stationary. Let us take a difference of order 1 and check whether the Time Series is stationary or not.



From results, we see differential data of order 1 is stationary since p-value is less than 0.05.

#### ADF test for Sparkling wine:



We see that at 5% significant level the Time Series is non-stationary.





From results, we see differential data of order 1 is stationary since p-value is less than 0.05.

# 6) Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

ARIMA and SRIMA are time series forecasting models where ARIMA stands for Auto Regressive Integrated Moving Average while the SARIMA is Seasonal ARIMA

Before building ARIMA model, data stationary is checked. Since non-stationary data is differenced with 1. Building an ARIMA model: (Automated):

A grid of (p,d,q) is created with all possible combinations.

P and q ranges from 0 to 3 while d from 0,1

Some parameter combinations for the Model...

Model: (0, 1, 1) Model: (0, 1, 2) Model: (1, 1, 0) Model: (1, 1, 1) Model: (1, 1, 2) Model: (2, 1, 0) Model: (2, 1, 1) Model: (2, 1, 2)

ARIMA model is built on the train data and fit to forecast on test data.

Parameter considered for evaluation is RMSE(Root Mean Square Error).

p,d,q combination that results in less AIC value is chosen as the best parameter values for building model.

|   | param       | AIC         |   |   | param     | -         |
|---|-------------|-------------|---|---|-----------|-----------|
| 2 | (0, 1, 2)   | 1279.671529 |   | 0 | (0, 1, 0) | 1281.8707 |
| 5 | (1, 1, 2)   | 1279.870723 |   | 1 | (0, 1, 1) | 1281.870  |
| 4 | (1, 1, 1)   | 1280.57423  |   | 2 | (0, 1, 2) | 1281.870  |
| 7 | (2, 1, 1)   | 1281.507862 |   | 3 | (1, 1, 0) | 1281.870  |
| 8 | (2, 1, 2)   | 1281.870722 |   | 4 | (1, 1, 1) | 1281.870  |
| 1 | (0, 1, 1)   | 1282.309832 |   | 5 | (1, 1, 2) | 1281.870  |
| 6 | (2, 1, 0)   | 1298.611034 |   | 6 | (2, 1, 0) | 1281.8707 |
| 3 | (1, 1, 0)   | 1317.350311 |   | 7 | (2, 1, 1) | 1281.8707 |
| 0 | (0, 1, 0)   | 1333.154673 |   | 8 | (2, 1, 2) | 1281.870  |
|   | 1 - C 1 - 7 | TC Dogo     | - | 7 | 65. 770   | Q1-7      |

Fig64: AIC Rose

Fig65: AIC Sparkling

For Rose, pdq values with low AIC value is (0.1.2) while for Sparkling its (0,1,0) Models are built using the above p,d,q values.

|            |                | SARI         | [MAX Resul            | ts            |        |          |
|------------|----------------|--------------|-----------------------|---------------|--------|----------|
|            |                |              |                       |               |        |          |
| Dep. Varia |                |              |                       | Observations: |        | 132      |
| Model:     |                | ARIMA(0, 1,  | <ol><li>Log</li></ol> | Likelihood    |        | -636.836 |
| Date:      | Sa             | t, 24 Dec 20 | 322 AIC               |               |        | 1279.672 |
| Time:      |                | 22:27:       | 36 BIC                |               |        | 1288.297 |
| Sample:    |                | 01-01-19     | 980 HQIC              | :             |        | 1283.176 |
|            |                | - 12-01-19   | 990                   |               |        |          |
| Covariance | e Type:        |              | ppg                   |               |        |          |
| =======    |                |              |                       |               |        |          |
|            | coef           | std err      | Z                     | P>   Z        | [0.025 | 0.975]   |
| mp 11      | -0.6970        | 0.072        | 0 600                 | 0.000         | A 030  | 0.556    |
|            |                |              |                       |               |        |          |
|            | -0.2042        |              |                       |               |        |          |
| _          | 965.8407       |              |                       |               |        |          |
|            | (L1) (0):      |              |                       | Jarque-Bera   |        | 39.      |
| Prob(0):   | (/ (€/-        |              |                       | Prob(JB):     | (/-    | 0.       |
|            | dasticity (H): |              | 0.36                  |               |        | 0.       |
|            | two-sided):    |              | 0.00                  |               |        | 5.       |
| riob(n) (  | two-sided).    |              | 0.00                  | Kui COSIS.    |        | ٥.       |

### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Fig64.1: Rose summary (0,1,2)

# **Model Summary-Sparkling:**

| Dep. Varia |                |              |          | Observations: |         | 132      |      |
|------------|----------------|--------------|----------|---------------|---------|----------|------|
| Model:     |                | ARIMA(0, 1,  |          | Likelihood    |         | -636.836 |      |
| Date:      | Sa             | t, 24 Dec 20 | 322 AIC  |               |         | 1279.672 |      |
| Time:      |                | 22:27        | 36 BIC   |               |         | 1288.297 |      |
| Sample:    |                | 01-01-19     | 980 HQIC |               |         | 1283.176 |      |
|            |                | - 12-01-19   | 990      |               |         |          |      |
| Covariance | Type:          |              | opg      |               |         |          |      |
|            |                |              |          |               |         |          |      |
|            | coef           |              |          | P> z          | -       | 0.975]   |      |
| ma.L1      | -0.6970        |              |          |               |         | -0.556   |      |
| ma.L2      | -0.2042        | 0.073        | -2.794   | 0.005         | -0.347  | -0.061   |      |
| sigma2     | 965.8407       | 88.305       | 10.938   | 0.000         | 792.766 | 1138.915 |      |
| Ljung-Box  | (11) (0):      |              | 0.14     | Jarque-Bera   | (1R):   | 20       | 9.24 |
| Prob(0):   | (LI) (Q).      |              | 0.71     |               | (30).   |          | 0.00 |
|            | tacticity (U): |              | 0.71     |               |         |          | 3.83 |
|            | lasticity (H): |              |          |               |         | -        |      |
| Prob(H) (T | :wo-sided):    |              | 0.00     | Kurtosis:     |         |          | 5.13 |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step). Fig65.1: Sparkling summary (0,1,0)

# RMSE post the Automated ARIMA MODEL:

|                                                                    | Test RMSE-Rose | Test RMSE-Sparkling |
|--------------------------------------------------------------------|----------------|---------------------|
| RegressionOnTime                                                   | 51.451050      | 1275.867052         |
| NaiveModel                                                         | 79.738550      | 3864.279352         |
| SimpleAverageModel                                                 | 79.738550      | 1275.081804         |
| 2pointTrailingMovingAverage                                        | 11.529409      | 813.400684          |
| 4pointTrailingMovingAverage                                        | 14.455221      | 1156.589694         |
| 6pointTrailingMovingAverage                                        | 14.572009      | 1283.927428         |
| 9pointTrailingMovingAverage                                        | 14.731209      | 1346.278315         |
| Alpha=0.0987, SimpleExponential Smoothing                          | 36.816905      | NaN                 |
| Alpha=0.0496, SimpleExponential Smoothing                          | NaN            | 1316.034674         |
| Alpha=0.1, SimpleExponential Smoothing                             | 36.848694      | 1375.393398         |
| Alpha=0.1, SimpleExponential Smoothing                             | 36.848694      | 1375.393398         |
| Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing                      | 265.591922     | 1375.393398         |
| Alpha=0.070,Beta=0.046,Gamma=4.039,TripleExponentialSmoothing      | 20.359346      | NaN                 |
| Alpha=0.111, Beta=0.049, Gamma=0.362, Triple Exponential Smoothing | NaN            | 402.946854          |
| Alpha=0.3,Beta=0.3,Gamma=0.4,TripleExponentialSmoothing            | 10.158543      | NaN                 |
| Alpha=0.3, Beta=0.3, Gamma=0.3, Triple Exponential Smoothing       | NaN            | 361.397300          |
| ARIMA_R(0,1,2)                                                     | 37.327049      | NaN                 |
| ARIMA_R(0,1,0)                                                     | NaN            | 3864.279352         |

Fig66: ARIMA-RMSE



Fig68: ARIMA-Diagnostic-Sparkling

ACF Plot:



Fig69: ACF plot-rose

From above plot, we can see some seasonality at 1 and 12. We will run our auto SARIMA models by setting seasonality both as 1 and 12



Activ

Fig70: ACF plot-Sparkling

From above plot, we can see some seasonality at 1 and 12. We will run our auto SARIMA models by setting seasonality both as 1 and 12  $\,$ 

#### Observation:

p value from PACF plot is 0 as we can see there is sharp decline from the original to lag 1 q value from ACF plot is 0 as we can see there is sharp decline from the original to lag 1 Examples of some parameter combinations for Model...

Model: (0, 0, 1)(0, 0, 1, 6)

```
Model: (0, 0, 2)(0, 0, 2, 6)
Model: (0, 1, 0)(0, 1, 0, 6)
Model: (0, 1, 1)(0, 1, 1, 6)
Model: (0, 1, 2)(0, 1, 2, 6)
Model: (1, 0, 0)(1, 0, 0, 6)
Model: (1, 0, 1)(1, 0, 1, 6)
Model: (1, 0, 2)(1, 0, 2, 6)
Model: (1, 1, 0)(1, 1, 0, 6)
Model: (1, 1, 1)(1, 1, 1, 6)
Model: (1, 1, 2)(1, 1, 2, 6)
Model: (2, 0, 0)(2, 0, 0, 6)
Model: (2, 0, 1)(2, 0, 1, 6)
Model: (2, 0, 2)(2, 0, 2, 6)
Model: (2, 1, 0)(2, 1, 0, 6)
Model: (2, 1, 1)(2, 1, 1, 6)
Model: (2, 1, 2)(2, 1, 2, 6)
```

### **SARIMA-ROSE**

param seasonal AIC

107 (0, 1, 2) (2, 1, 2, 12) 774.969119

215 (1, 1, 2) (2, 1, 2, 12) 776.940108

323 (2, 1, 2) (2, 1, 2, 12) 776.996101

269 (2, 0, 2) (2, 1, 2, 12) 780.716945

161 (1, 0, 2) (2, 1, 2, 12) 780.992967

SARIMA-SPARKLING

param seasonal AIC

param seasonal AIC
203 (1, 1, 2) (0, 1, 2, 12) 1382.34778
95 (0, 1, 2) (0, 1, 2, 12) 1382.484254
209 (1, 1, 2) (1, 1, 2, 12) 1384.137874
311 (2, 1, 2) (0, 1, 2, 12) 1384.317618
101 (0, 1, 2) (1, 1, 2, 12) 1384.398867

For rose, the least AIC is for combination- (0, 1, 2) (1, 1, 2, 6) and (0, 1, 2) (2, 1, 2, 12)

For Sparking, the AIC value is least for combination - (0, 1, 2)(1,1,2,6) and (1, 1, 2) (0, 1, 2, 12)

#### SARIMA-Rose:

#### SARIMAX Results

| Dep. Variab  | le:          |              |            | y No. O     | bservations: |         | 132      |
|--------------|--------------|--------------|------------|-------------|--------------|---------|----------|
| Model:       | SARI         | MAX(0, 1, 2) | x(1, 1, 2, | , 6) Log L: | ikelihood    |         | -472.310 |
| Date:        |              | Sat          | , 24 Dec 2 | 2022 AIC    |              |         | 956.620  |
| Time:        |              |              | 23:59      | 5:35 BIC    |              |         | 972.823  |
| Sample:      |              |              |            | 0 HQIC      |              |         | 963.192  |
|              |              |              | -          | 132         |              |         |          |
| Covariance 1 | Type:        |              |            | opg         |              |         |          |
|              |              |              |            |             |              |         |          |
|              | coef         | std err      | z          | P> z        | [0.025       | 0.9751  |          |
|              |              |              |            |             |              |         |          |
| ma.L1        | -0.8657      | 0.129        | -6.711     | 0.000       | -1.119       | -0.613  |          |
| ma.L2        | -0.2372      | 0.105        | -2.259     | 0.024       | -0.443       | -0.031  |          |
| ar.S.L6      | -0.9513      | 0.015        | -61.761    | 0.000       | -0.982       | -0.921  |          |
| ma.S.L6      | 0.3785       | 0.154        | 2.457      | 0.014       | 0.077        | 0.680   |          |
| ma.S.L12     | -0.8505      | 0.112        | -7.590     | 0.000       | -1.070       | -0.631  |          |
| sigma2       | 197.7246     | 53.589       | 3.690      | 0.000       | 92.691       | 302.758 |          |
| =========    |              |              |            |             |              |         |          |
| Ljung-Box (I | L1) (Q):     |              | 0.00       | Jarque-Bera | (JB):        | 1       | 1.96     |
| Prob(Q):     |              |              | 0.96       | Prob(JB):   |              | (       | 0.38     |
| Heteroskeda  | sticity (H): |              | 0.62       | Skew:       |              | (       | 0.32     |
| Prob(H) (tw  | o-sided):    |              | 0.16       | Kurtosis:   |              |         | 3.09     |
|              |              |              |            |             |              |         |          |
|              |              |              |            |             |              |         |          |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Fig71: SARIMA-Rose-6

# **SARIMA-Sparkling:**

#### SARIMAX Results

| Dep. Varia | ble:          |             |            | y No. 0     | bservations: |          | 132      |
|------------|---------------|-------------|------------|-------------|--------------|----------|----------|
| Model:     | SARI          | MAX(0, 1, 2 | )x(1, 1, 2 | , 6) Log L  | ikelihood.   |          | -814.465 |
| Date:      |               | Sa          | t, 24 Dec  | 2022 AIC    |              |          | 1640.931 |
| Time:      |               |             | 23:5       | 5:37 BIC    |              |          | 1657.134 |
| Sample:    |               |             |            | 0 HQIC      |              |          | 1647.503 |
|            |               |             | -          | 132         |              |          |          |
| Covariance | Type:         |             |            | opg         |              |          |          |
|            |               |             |            |             |              |          |          |
|            | coef          | std err     | Z          | P>   Z      | [0.025       | 0.975]   |          |
|            |               |             |            |             |              |          |          |
| ma.L1      | -0.7629       | 0.107       | -7.153     | 0.000       | -0.972       | -0.554   |          |
| ma.L2      | -0.1424       | 0.113       | -1.262     | 0.207       | -0.364       | 0.079    |          |
| ar.S.L6    | -1.0186       | 0.008       | -119.905   | 0.000       | -1.035       | -1.002   |          |
| ma.S.L6    | 0.1051        | 0.149       | 0.708      | 0.479       | -0.186       | 0.396    |          |
| ma.S.L12   | -0.5578       | 0.083       | -6.733     | 0.000       | -0.720       | -0.395   |          |
| sigma2     | 1.556e+05     | 1.57e+04    | 9.898      | 0.000       | 1.25e+05     | 1.86e+05 |          |
|            |               |             |            |             |              |          | ==       |
| Ljung-Box  | (L1) (Q):     |             | 0.02       | Jarque-Bera | (JB):        | 34.      | 51       |
| Prob(Q):   |               |             | 0.90       | Prob(JB):   |              | 0.       | 99       |
| Heterosked | asticity (H): |             | 1.82       | Skew:       |              | 0.       | 61       |
| Prob(H) (t | wo-sided):    |             | 0.07       | Kurtosis:   |              | 5.       | 46       |
|            |               |             |            |             |              |          | ==       |
|            |               |             |            |             |              |          |          |

### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Fig72: SARIMA-Sparkling-6

# SARIMA Rose-12:

#### SARIMAX Results

| Dep. Varia  | ole:          |           |             | y 1      | lo. | Observations: |        | 132      |
|-------------|---------------|-----------|-------------|----------|-----|---------------|--------|----------|
| Model:      | SARI          | MAX(0, 1, | 2)x(2, 1, 2 | , 12) l  | .og | Likelihood    |        | -380.485 |
| Date:       |               |           | Sun, 25 Dec |          |     |               |        | 774.969  |
| Time:       |               |           | •           | 16:43 E  |     |               |        | 792.622  |
| Sample:     |               |           |             | 0 H      | OIO | -             |        | 782.094  |
|             |               |           |             | - 132    |     | -             |        |          |
| Covariance  | Type:         |           |             | opg      |     |               |        |          |
|             |               |           |             |          |     |               |        |          |
|             |               |           |             |          |     | [0.025        |        |          |
|             |               | 300 011   |             | ' ~   .  | ٠,  | [0.025        | 0.5/5] |          |
| ma.L1       | -0.9524       | 0.184     | -5.166      | 0.00     | 90  | -1.314        | -0.591 |          |
| ma.L2       | -0.0764       | 0.126     | -0.605      | 0.54     | 15  | -0.324        | 0.171  |          |
| ar.S.L12    | 0.0480        | 0.177     | 0.271       | 0.78     | 36  | -0.299        | 0.395  |          |
| ar.S.L24    | -0.0419       | 0.028     | -1.513      | 0.13     | 80  | -0.096        | 0.012  |          |
|             |               |           |             |          |     | -1.342        |        |          |
|             |               |           |             |          |     | -0.472        |        |          |
|             |               |           |             |          |     | 99.127        |        |          |
| ========    |               |           |             |          |     |               |        |          |
| Ljung-Box   | (L1) (Q):     |           | 0.06        |          |     | a (JB):       |        | 4.86     |
| Prob(Q):    |               |           | 0.81        | Prob(JB) | :   |               |        | 0.09     |
| Heteroskeda | asticity (H): | :         | 0.91        | Skew:    |     |               |        | 0.41     |
| Prob(H) (to | vo-sided):    |           | 0.79        | Kurtosis | ::  |               |        | 3.77     |
| ========    |               |           |             |          |     |               |        |          |
|             |               |           |             |          |     |               |        |          |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Fig73: SARIMA-Rose-12

# SARIMA-Sparkling-12:

#### SARIMAX Results

| Dep. Variab | ole:         |            |             | y No.      | Observations: |          | 132      |
|-------------|--------------|------------|-------------|------------|---------------|----------|----------|
| Model:      | SARI         | [MAX(1, 1, | 2)x(0, 1, 2 | , 12) Log  | Likelihood    |          | -685.174 |
| Date:       |              |            | Sun, 25 Dec | 2022 AIC   |               |          | 1382.348 |
| Time:       |              |            | 00:         | 16:45 BIC  |               |          | 1397.479 |
| Sample:     |              |            |             | 0 HQI      | С             |          | 1388.455 |
|             |              |            |             | - 132      |               |          |          |
| Covariance  | Type:        |            |             | opg        |               |          |          |
|             |              |            |             |            |               |          |          |
|             | coef         | std err    | Z           | P> Z       | [0.025        | 0.975]   |          |
|             |              |            |             |            |               |          |          |
| ar.L1       | -0.5507      | 0.287      | -1.922      | 0.055      | -1.112        | 0.011    |          |
| ma.L1       | -0.1612      | 0.235      | -0.687      | 0.492      | -0.621        | 0.299    |          |
| ma.L2       | -0.7218      | 0.175      | -4.132      | 0.000      | -1.064        | -0.379   |          |
| ma.S.L12    | -0.4062      | 0.092      | -4.401      | 0.000      | -0.587        | -0.225   |          |
| ma.S.L24    | -0.0274      | 0.138      | -0.198      | 0.843      | -0.298        | 0.243    |          |
| sigma2      | 1.705e+05    | 2.45e+04   | 6.956       | 0.000      | 1.22e+05      | 2.19e+05 |          |
|             |              |            |             |            |               |          | ==       |
| Ljung-Box ( | (L1) (Q):    |            | 0.00        | Jarque-Ber | a (JB):       | 13.      | 48       |
| Prob(Q):    |              |            | 0.95        | Prob(JB):  |               | 0.       | .00      |
| Heteroskeda | sticity (H): | :          | 0.89        | Skew:      |               | 0.       | 60       |
| Prob(H) (t  | vo-sided):   |            | 0.75        | Kurtosis:  |               | 4.       | .44      |
|             |              |            |             |            |               |          | ==       |
|             |              |            |             |            |               |          |          |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Fig74: SARIMA-Sparkling-12

#### **RMSE after SARIMA:**

|                                                                          | Test RMSE-Rose | Test RMSE-Sparkling |
|--------------------------------------------------------------------------|----------------|---------------------|
| RegressionOnTime                                                         | 51.451050      | 1275.867052         |
| NaiveModel                                                               | 79.738550      | 3864.279352         |
| SimpleAverageModel                                                       | 79.738550      | 1275.081804         |
| 2pointTrailingMovingAverage                                              | 11.529409      | 813.400684          |
| 4pointTrailingMovingAverage                                              | 14.455221      | 1156.589694         |
| 6pointTrailingMovingAverage                                              | 14.572009      | 1283.927428         |
| 9pointTrailingMovingAverage                                              | 14.731209      | 1346.278315         |
| Alpha=0.0987, SimpleExponential Smoothing                                | 36.816905      | NaN                 |
| Alpha=0.0496, SimpleExponential Smoothing                                | NaN            | 1316.034674         |
| Alpha=0.1, SimpleExponential Smoothing                                   | 36.848694      | 1375.393398         |
| Alpha=0.1, SimpleExponential Smoothing                                   | 36.848694      | 1375.393398         |
| Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing                            | 265.591922     | 1375.393398         |
| Alpha = 0.070, Beta = 0.046, Gamma = 4.039, Triple Exponential Smoothing | 20.359346      | NaN                 |
| Alpha=0.111,Beta=0.049,Gamma=0.362,TripleExponentialSmoothing            | NaN            | 402.946854          |
| Alpha=0.3,Beta=0.3,Gamma=0.4,TripleExponentialSmoothing                  | 10.158543      | NaN                 |
| Alpha=0.3, Beta=0.3, Gamma=0.3, Triple Exponential Smoothing             | NaN            | 361.397300          |
| ARIMA_R(0,1,0)                                                           | NaN            | 3864.279352         |
| SARIMA(0,1,2)(1,1,2,6)                                                   | 18.444903      | 558.345168          |
| ARIMA_R(0,1,2)                                                           | 37.327049      | NaN                 |
| SARIMA(0,1,2)(2,1,2,12)                                                  | 16.519152      | NaN                 |
| SARIMA(1,1,2)(0,1,2,12)                                                  | NaN            | 382.576754          |
|                                                                          |                |                     |

Fig75: RMSE-SARIMA

# 7) Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE

<u>ACF Plot:</u> Auto Correlation Function is the correlation between a time series with the lagged version of itself. The autocorrelation function (ACF) evaluates the correlation between observations in a time series over a given range of lags. It is used to determine a time series' randomness and stationarity In an ACF plot, each bar represents the size and direction of the connection. Bars that cross the red line are statistically significant.

<u>PACF plot:</u> Partial Auto correlation Function gives the partial correlation of a stationary time series with its own lagged values regressed the values of the time series at all shorter lag. It contrasts with the autocorrelation function, which does not control for other lags.

### ACF plot and PACF plot for Rose wine data:





Fig76: ACF-PACF-ROSE

Here, we have taken alpha=0.05.

The Auto-Regressive parameter in an ARIMA model is 'p' which comes from the significant lag before which the PACF plot cuts-off to 2.

The Moving-Average parameter in an ARIMA model is 'q' which comes from the significant lag before the ACF plot cuts-off to 2.

By looking at the above plots, we can say that PACF plot cuts-off at lag 2 and ACF plot cuts-off at lag 2 Seasonality is observed at 6 and 12 and taking D as 6 and 12.

ARIMA model for Rose wine data with best parameters that are selected by looking at the ACF and the PACF plots:

# SARIMAX Results

| Dep. Varia | ble:          | Ro           | se No.                  | Observations: |         | 132      |
|------------|---------------|--------------|-------------------------|---------------|---------|----------|
| Model:     |               | ARIMA(2, 1,  | <ol> <li>Log</li> </ol> | Likelihood    |         | -635.935 |
| Date:      | Su            | n, 25 Dec 20 | 22 AIC                  |               |         | 1281.871 |
| Time:      |               | 07:13:       | 19 BIC                  |               |         | 1296.247 |
| Sample:    |               | 01-01-19     | 80 HOIC                 |               |         | 1287.712 |
|            |               | - 12-01-19   | 90                      |               |         |          |
| Covariance | Type:         | 0            | pg                      |               |         |          |
|            |               |              |                         |               |         |          |
|            | coef          | std err      | Z                       | P>   z        | [0.025  | 0.9751   |
|            |               |              |                         |               |         |          |
| ar.L1      | -0.4540       | 0.469        | -0.969                  | 0.333         | -1.372  | 0.464    |
| ar.L2      | 0.0001        | 0.170        | 0.001                   | 0.999         | -0.334  | 0.334    |
| ma.L1      | -0.2541       | 0.459        | -0.554                  | 0.580         | -1.154  | 0.646    |
| ma.L2      | -0.5984       | 0.430        | -1.390                  | 0.164         | -1.442  | 0.245    |
| sigma2     | 952.1601      | 91.424       | 10.415                  | 0.000         | 772.973 | 1131.347 |
| Ljung-Box  | (11) (0):     |              | 0.02                    | Jarque-Bera   | (JB):   | 34.16    |
| Prob(0):   | (22) (2).     |              | 0.88                    | Prob(JB):     | (55).   | 0.00     |
|            | asticity (H): |              |                         | Skew:         |         | 0.79     |
| Prob(H) (t |               |              |                         | Kurtosis:     |         | 4.94     |
|            |               |              |                         |               |         |          |
|            |               |              |                         |               |         |          |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).





Fig78: Rose-Diagnostics-plot params

# Sparkling data:



p value from PACF plot is 1 as we can see there is sharp decline from the original to lag 1 q value from ACF plot is 2 as we can see there is sharp decline from the original to lag 2 Seasonality value D is 6 and 12.

#### SARIMAX Results

| Dep. Varia | ble:           | Sparkli       | ing No.  | Observations: |          | 132       |  |  |
|------------|----------------|---------------|----------|---------------|----------|-----------|--|--|
| Model:     |                | ARIMA(1, 1,   | 2) Log   | Likelihood    |          | -1113.264 |  |  |
| Date:      | Su             | ın, 25 Dec 20 | 322 AIC  |               |          | 2234.527  |  |  |
| Time:      |                | 07:22         | 07 BIC   |               |          | 2246.028  |  |  |
| Sample:    |                | 01-01-19      | 980 HQIC |               |          | 2239.200  |  |  |
|            |                | - 12-01-19    | _        |               |          |           |  |  |
| Covariance | : Type:        | (             | opg      |               |          |           |  |  |
|            |                |               |          |               |          |           |  |  |
|            | coef           | std err       | Z        | P>   Z        | [0.025   | 0.975]    |  |  |
|            |                |               |          |               |          |           |  |  |
| ar.L1      |                |               |          | 0.492         |          |           |  |  |
| ma.L1      | -0.6943        | 0.385         | -1.803   | 0.071         | -1.449   | 0.060     |  |  |
| ma.L2      | -0.2852        | 0.372         | -0.767   | 0.443         | -1.014   | 0.443     |  |  |
| sigma2     | 1.378e+06      | 1.34e+05      | 10.284   | 0.000         | 1.12e+06 | 1.64e+06  |  |  |
| Ljung-Box  | (11) (0):      |               | 0.01     | Jarque-Bera   | (JB):    | 11.16     |  |  |
| Prob(0):   | (21) (2).      |               |          | Prob(JB):     | (55).    | 0.00      |  |  |
|            | acticity (UV)  |               |          |               |          |           |  |  |
|            | lasticity (H): |               | 2.72     |               |          | 0.44      |  |  |
| Prob(H) (t | :wo-sided):    |               | 0.00     | Kurtosis:     |          | 4.12      |  |  |
|            |                |               |          |               |          |           |  |  |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Fig80: Sparkling- ARIMA-plot params



Fig81: Sparkling-Diagnostics-plot params

# <u>RMSE</u>:

|                                                               | Test RMSE-Rose | Test RMSE-Sparkling |
|---------------------------------------------------------------|----------------|---------------------|
| RegressionOnTime                                              | 51.451050      | 1275.867052         |
| NaiveModel                                                    | 79.738550      | 3864.279352         |
| SimpleAverageModel                                            | 79.738550      | 1275.081804         |
| 2pointTrailingMovingAverage                                   | 11.529409      | 813.400684          |
| 4pointTrailingMovingAverage                                   | 14.455221      | 1156.589694         |
| 6pointTrailingMovingAverage                                   | 14.572009      | 1283.927428         |
| 9pointTrailingMovingAverage                                   | 14.731209      | 1346.278315         |
| Alpha=0.0987, SimpleExponential Smoothing                     | 36.816905      | NaN                 |
| Alpha=0.0496, SimpleExponential Smoothing                     | NaN            | 1316.034674         |
| Alpha=0.1, SimpleExponential Smoothing                        | 36.848694      | 1375.393398         |
| Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing                 | 265.591922     | 1375.393398         |
| Alpha=0.070,Beta=0.046,Gamma=4.039,TripleExponentialSmoothing | 20.359346      | NaN                 |
| Alpha=0.111,Beta=0.049,Gamma=0.362,TripleExponentialSmoothing | NaN            | 402.946854          |
| Alpha=0.3,Beta=0.3,Gamma=0.4,TripleExponentialSmoothing       | 10.158543      | NaN                 |
| Alpha=0.3,Beta=0.3,Gamma=0.3,TripleExponentialSmoothing       | NaN            | 361.397300          |
| ARIMA_R(0,1,2)                                                | 37.327049      | NaN                 |
| ARIMA_S(0,1,0)                                                | NaN            | 3864.279352         |
| ARIMA_R(2,1,2)                                                | 36.891832      | NaN                 |
| ARIMA_S(1,1,2)                                                | NaN            | 1316.597320         |

Fig82: RMSE -plot params

# SARIMA-Plot Parameters with Seasonality at 6:

| Dep. Variab  | le:          |              |            | y No. O     | bservations: |          | 133     |
|--------------|--------------|--------------|------------|-------------|--------------|----------|---------|
| Model:       | SAR          | IMAX(2, 1, 2 | )x(2, 1, 2 | , 6) Log L: | ikelihood    |          | -470.90 |
| Date:        |              | Su           | n, 25 Dec  | 2022 AIC    |              |          | 959.80  |
| Time:        |              |              | 08:3       | 0:20 BIC    |              |          | 984.11  |
| Sample:      |              |              |            | 0 HQIC      |              |          | 969.66  |
|              |              |              | -          | 132         |              |          |         |
| Covariance ' | Type:        |              |            | opg         |              |          |         |
|              |              |              |            |             |              |          |         |
|              | coef         | std err      | Z          | P>   z      | [0.025       | 0.975]   |         |
|              |              |              |            |             |              |          |         |
| ar.L1        | -0.7002      | 0.120        | -5.832     | 0.000       | -0.936       | -0.465   |         |
| ar.L2        | 0.1834       | 0.105        | 1.745      | 0.081       | -0.023       | 0.389    |         |
| ma.L1        | 0.0658       | 424.138      | 0.000      | 1.000       | -831.229     | 831.360  |         |
| ma.L2        | -0.9342      | 396.270      | -0.002     | 0.998       | -777.608     | 775.740  |         |
| ar.S.L6      | -0.9504      | 0.075        | -12.710    | 0.000       | -1.097       | -0.804   |         |
| ar.S.L12     | 0.0001       | 0.076        | 0.001      | 0.999       | -0.148       | 0.148    |         |
| ma.S.L6      | 0.3895       | 0.170        | 2.288      | 0.022       | 0.056        | 0.723    |         |
| ma.S.L12     | -0.8156      | 0.142        | -5.756     | 0.000       | -1.093       | -0.538   |         |
| sigma2       | 223.4544     | 9.48e+04     | 0.002      | 0.998       | -1.85e+05    | 1.86e+05 |         |
|              |              |              |            |             |              |          |         |
| Ljung-Box (  | L1) (Q):     |              | 0.01       | Jarque-Bera | (JB):        |          | 2.24    |
| Prob(Q):     |              |              | 0.93       | Prob(JB):   |              |          | 0.33    |
| Heteroskeda: | sticity (H): | :            | 0.64       | Skew:       |              |          | 0.34    |
| Prob(H) (tw  | o-sided):    |              | 0.17       | Kurtosis:   |              |          | 3.15    |
|              |              |              |            |             |              |          |         |

Fig83: SARIMA -Rose plot params1-6

#### SARIMAX Results

| Dep. Varia           | ble:          |              |             | y No. 0     | bservations: |          | 132      |
|----------------------|---------------|--------------|-------------|-------------|--------------|----------|----------|
| Model:               | SARI          | MAX(1, 1, 2) | )x(1, 1, 2  | , 6) Log L  | ikelihood    |          | -824.123 |
| Date:                |               | Sur          | n, 25 Dec : | 2022 AIC    |              |          | 1662.247 |
| Time:                |               |              | 08:3        | 0:41 BIC    |              |          | 1681.150 |
| Sample:              |               |              |             | 0 HQIC      |              |          | 1669.914 |
|                      |               |              | _           | 132         |              |          |          |
| Covariance           | Type:         |              |             | opg         |              |          |          |
|                      |               |              |             |             |              |          |          |
|                      | coef          | std err      | z           | P> z        | [0.025       | 0.9751   |          |
|                      |               |              |             |             |              | -        |          |
| ar.L1                | -0.6035       | 0.155        | -3.885      | 0.000       | -0.908       | -0.299   |          |
| ma.L1                | -0.1382       | 0.603        | -0.229      | 0.819       | -1.321       | 1.044    |          |
| ma.L2                | -0.8637       | 0.557        | -1.551      | 0.121       | -1.955       | 0.228    |          |
| ar.S.L6              | -0.9975       | 0.018        | -55.530     | 0.000       | -1.033       | -0.962   |          |
| ma.S.L6              | 893.7927      | 445.081      | 2.008       | 0.045       | 21.450       | 1766.135 |          |
| ma.S.L12             | 4023.3187     | 98.844       | 40.704      | 0.000       | 3829.588     | 4217.050 |          |
| sigma2               | 0.0114        | 0.007        | 1.616       | 0.106       | -0.002       | 0.025    |          |
|                      |               |              |             |             |              |          |          |
| Ljung-Box (L1) (Q):  |               |              | 0.15        | Jarque-Bera | (JB):        |          | 3.12     |
| Prob(Q):             |               |              | 0.70        | Prob(JB):   |              |          | 0.21     |
| Heteroskeda          | asticity (H): |              | 1.21        | Skew:       |              |          | 0.02     |
| Prob(H) (two-sided): |               |              | 0.56        | Kurtosis:   |              |          | 3.82     |
|                      |               |              |             |             |              |          |          |

- Warnings:
  [1] Covariance matrix calculated using the outer product of gradients (complex-step).
  [2] Covariance matrix is singular or near-singular, with condition number 3.68e+17. Standard errors may be unstable.

Fig83.1: SARIMA -Sparkling plot params1-6

# RMSE:

| TVISE.                                                        |                |                          |
|---------------------------------------------------------------|----------------|--------------------------|
|                                                               | Test RMSE-Rose | Test RMSE-Sparkling      |
| RegressionOnTime                                              | 51.451050      | 1275.867052              |
| NaiveModel                                                    | 79.738550      | 3864.279352              |
| SimpleAverageModel                                            | 79.738550      | 1275.081804              |
| 2pointTrailingMovingAverage                                   | 11.529409      | 813.400684               |
| 4pointTrailingMovingAverage                                   | 14.455221      | 1156.589694              |
| 6pointTrailingMovingAverage                                   | 14.572009      | 1283.927428              |
| 9pointTrailingMovingAverage                                   | 14.731209      | 1346.278315              |
| Alpha=0.0987, SimpleExponential Smoothing                     | 36.816905      | NaN                      |
| Alpha=0.0496, SimpleExponential Smoothing                     | NaN            | 1316.034674              |
| Alpha=0.1, SimpleExponential Smoothing                        | 36.848694      | 1375.393398              |
| Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing                 | 265.591922     | 1375.393398              |
| Alpha=0.070,Beta=0.046,Gamma=4.039,TripleExponentialSmoothing | 20.359346      | NaN                      |
| Alpha=0.111,Beta=0.049,Gamma=0.362,TripleExponentialSmoothing | NaN            | 402.946854               |
| Alpha=0.3,Beta=0.3,Gamma=0.4,TripleExponentialSmoothing       | 10.158543      | NaN                      |
| Alpha=0.3,Beta=0.3,Gamma=0.3,TripleExponentialSmoothing       | NaN            | 361.397300               |
| ARIMA_R(0,1,2)                                                | 37.327049      | NaN                      |
| ARIMA_S(0,1,0)                                                | NaN            | 3864.279352              |
| ARIMA_R(2,1,2)                                                | 36.891832      | NaN                      |
| ARIMA_S(1,1,2)                                                | NaN            | 1316.597320              |
| SARIMA(0,1,2)(1,1,2,6)                                        | 18.444903      | 558.345168               |
| SARIMA(0,1,2)(2,1,2,12)                                       | 16.519152      | NaN                      |
| SARIMA(1,1,2)(0,1,2,12)                                       | NaN            | 382.576754               |
| SARIMA(2,1,2)(2,1,2,6)                                        | 18.649293      | NaN                      |
| SARIMA(1,1,2)(1,1,2,6)                                        | NaN            | 334.815 <mark>310</mark> |

Fig84: RMSE with plot params-6

# Seasonality with 12:

#### SARIMAX Results

| Dep. Variab | ole:     |             |            | y No.       | Observations: | 132      |
|-------------|----------|-------------|------------|-------------|---------------|----------|
| Model:      | SARI     | MAX(2, 1, 2 | )x(2, 1, 2 | , 12) Log   | Likelihood    | -379.498 |
| Date:       |          | S           | un, 25 Dec | 2022 AIC    |               | 776.996  |
| Time:       |          |             | 08:        | 35:06 BIC   |               | 799.692  |
| Sample:     |          |             |            | 0 HQIC      | :             | 786.156  |
| -           |          |             |            | - 132       |               |          |
| Covariance  | Type:    |             |            | opg         |               |          |
|             |          |             |            |             |               |          |
|             |          |             |            |             | [0.025        |          |
|             |          |             |            |             |               |          |
|             |          |             |            |             | -1.142        |          |
|             |          |             |            |             | -0.247        |          |
|             |          |             |            |             | -0.348        |          |
|             |          |             |            |             | -1.237        |          |
|             |          |             |            |             | -0.328        |          |
| ar.S.L24    | -0.0459  | 0.029       | -1.599     | 0.110       | -0.102        | 0.010    |
| ma.S.L12    | -0.7224  | 0.333       | -2.172     | 0.030       | -1.374        | -0.071   |
| ma.S.L24    | -0.0771  | 0.212       | -0.363     | 0.716       | -0.493        | 0.339    |
| sigma2      | 192.1955 | 39.484      | 4.868      | 0.000       | 114.809       | 269.582  |
| Ljung-Box ( |          |             |            | Jarque-Bera |               | 7.06     |
| 3 0 1 7 107 |          |             | 0.86       |             | . (55).       | 0.03     |
|             |          |             | 0.87       |             |               | 0.45     |
| Prob(H) (tw |          |             | 0.71       |             |               | 4.01     |
|             |          |             |            |             |               |          |
|             |          |             |            |             |               |          |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Fig85: SARIMA-Rose-Seasonality12-plot params

#### SARIMAX Results

| Dep. Varia  | ble:       |           |             | y No.      | Observations: |          | 132      |
|-------------|------------|-----------|-------------|------------|---------------|----------|----------|
| Model:      | SARI       | MAX(1, 1, | 2)x(1, 1, 2 | , 12) Log  | Likelihood    |          | -685.069 |
| Date:       |            |           | Sun, 25 Dec |            |               |          | 1384.138 |
| Time:       |            |           |             | 35:30 BIC  |               |          | 1401.790 |
| Sample:     |            |           |             | Ø HQIO     | -             |          | 1391.263 |
| Jump 201    |            |           |             | - 132      | -             |          | 13311203 |
| Covariance  | Type:      |           |             |            |               |          |          |
|             |            |           |             | opg        |               |          |          |
| =======     |            |           |             |            |               |          |          |
|             |            |           |             |            | [0.025        |          |          |
|             |            |           |             |            |               |          |          |
|             |            |           |             |            | -1.134        |          |          |
| ma.L1       | -0.1375    | 0.238     | -0.578      | 0.563      | -0.603        | 0.328    |          |
| ma.L2       | -0.7335    | 0.169     | -4.346      | 0.000      | -1.064        | -0.403   |          |
| ar.S.L12    | -0.1807    | 1.545     | -0.117      | 0.907      | -3.209        | 2.847    |          |
| ma.S.L12    | -0.2324    | 1.552     | -0.150      | 0.881      | -3.274        | 2.809    |          |
| ma.S.L24    | -0.1009    | 0.662     | -0.152      | 0.879      | -1.399        | 1.197    |          |
| sigma2      | 1.706e+05  | 2.46e+04  | 6.939       | 0.000      | 1.22e+05      | 2.19e+05 |          |
| Liung Pov   | (11) (0):  |           | 0.01        | larque Der | . /10):       | 13.      | ==<br>27 |
|             |            | 0.92      |             | (36).      | 0.            |          |          |
|             |            |           |             |            |               |          |          |
|             |            |           | 0.88        |            |               | 0.       |          |
| Prob(H) (to | wo-sided): |           | 0.73        | Kurtosis:  |               | 4.       | 43       |
|             |            |           |             |            |               |          | ==       |
|             |            |           |             |            |               |          |          |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Fig85.1: SARIMA-Sparkling-Seasonality12-plot params

#### RMSE:

|                                                                    | Test RMSE-Rose | Test RMSE-Sparkling |
|--------------------------------------------------------------------|----------------|---------------------|
| RegressionOnTime                                                   | 51.451050      | 1275.867052         |
| NaiveModel                                                         | 79.738550      | 3884.279352         |
| SimpleAverageModel                                                 | 79.738550      | 1275.081804         |
| 2pointTrailingMovingAverage                                        | 11.529409      | 813.400684          |
| 4pointTrailingMovingAverage                                        | 14.455221      | 1156.589694         |
| 6pointTrailingMovingAverage                                        | 14.572009      | 1283.927428         |
| 9pointTrailingMovingAverage                                        | 14.731209      | 1348.278315         |
| Alpha=0.0987, SimpleExponential Smoothing                          | 38.816905      | NaN                 |
| Alpha=0.0496, SimpleExponential Smoothing                          | NaN            | 1318.034874         |
| Alpha=0.1, SimpleExponential Smoothing                             | 38.848694      | 1375.393398         |
| Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing                      | 265.591922     | 1375.393398         |
| Alpha=0.070, Beta=0.046, Gamma=4.039, Triple Exponential Smoothing | 20.359346      | NaN                 |
| Alpha=0.111, Beta=0.049, Gamma=0.362, Triple Exponential Smoothing | NaN            | 402.946854          |
| Alpha=0.3,Beta=0.3,Gamma=0.4,TripleExponentialSmoothing            | 10.158543      | NaN                 |
| Alpha=0.3,Beta=0.3,Gamma=0.3,TripleExponentialSmoothing            | NaN            | 381.397300          |
| ARIMA_R(0,1,2)                                                     | 37.327049      | NaN                 |
| ARIMA_S(0,1,0)                                                     | NaN            | 3864.279352         |
| ARIMA_R(2,1,2)                                                     | 36.891832      | NaN                 |
| ARIMA_S(1,1,2)                                                     | NaN            | 1316.597320         |
| SARIMA(0,1,2)(1,1,2,6)                                             | 18.444903      | 558.345168          |
| SARIMA(0,1,2)(2,1,2,12)                                            | 16.519152      | NaN                 |
| SARIMA(1,1,2)(0,1,2,12)                                            | NaN            | 382.576754          |
| SARIMA(2,1,2)(2,1,2,6)                                             | 18.649293      | NaN                 |
| SARIMA(1,1,2)(1,1,2,6)                                             | NaN            | 334.815310          |
| SARIMA(2,1,2)(2,1,2,12)                                            | 16.569775      | NaN                 |
| SARIMA(1,1,1)(1,1,2,12)                                            | NaN            | 401.515730          |

Fig86: RMSE-Seasonality12

# Observations:

We can see from the above RMSE values, SARIMA(0,1,2)(2,1,2,12) is the optimal model for Rose wine type while SARIMA(1,1,2)(0,1,2,12) for SPARIMA(1,1,2)(0,1,2,12) for SPARIMA(1,1,2)(0,1,2,12)

8) Build a table (create a data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data

Below is the RMSE values test results dataframe for all models:

|                                                               | Test PMSE-Pose   | Test RMSE-Sparkling |
|---------------------------------------------------------------|------------------|---------------------|
| RegressionOnTime                                              | 51.451050        | 1275 887052         |
| NaiveModel                                                    | 79.738550        | 3864.279352         |
| SimpleAverageModel                                            | 79.738550        | 1275.081804         |
| 2pointTrailingMovingAverage                                   | 11.529409        | 813.400684          |
| 4pointTrailingMovingAverage                                   | 14.455221        | 1158.589894         |
| 6pointTrailingMovingAverage                                   | 14.572009        | 1283.927428         |
| 9pointTrailingMovingAverage                                   | 14.731200        | 1348.278315         |
| Alpha=0.0987, SimpleExponential Smoothing                     | 38.818905        | NaN                 |
| Alpha=0.0496, SimpleExponential Smoothing                     | 30.610803<br>NaN | 1318 034874         |
| Alpha=0.1, SimpleExponential Smoothing                        | 36.848694        | 1375.393398         |
| Alpha=0.3, Beta=0.3, DoubleExponential Smoothing              | 265.591922       | 1375.393398         |
| Alpha=0.070,Beta=0.046,Gamma=4.039,TripleExponentialSmoothing | 20.359348        | NaN                 |
| Alpha=0.111,Beta=0.049,Gamma=0.362,TripleExponentialSmoothing | 20.558540<br>NaN | 402.946854          |
| Alpha=0.3,Beta=0.3,Gamma=0.4,TripleExponentialSmoothing       | 10.158543        | NaN                 |
| Alpha=0.3,Beta=0.3,Gamma=0.3,TripleExponentialSmoothing       | NaN              | 381.397300          |
| ARIMA R(0.1.2)                                                | 37.327049        | NaN                 |
| ARIMA_K(0,1,2)                                                | 37.327048<br>NaN | 3884.279352         |
| ARIMA_3(0.1.0)                                                | 36.891832        | NaN                 |
| ARIMA \$(1,1,2)                                               | NaN              | 1316.597320         |
| SARIMA(0.1,2)(1.1,2,6)                                        | 18.444903        | 558.345168          |
| SARIMA(0,1,2)(1,1,2,0)                                        | 16.519152        | NaN                 |
| SARIMA(0,1,2)(2,1,2,12)                                       | 10.518152<br>NaN | 382.576754          |
| SARIMA(1,1,2)(0,1,2,12)<br>SARIMA(2,1,2)(2,1,2,6)             | 18.649293        | 362.570754<br>NaN   |
| SARIMA(2,1,2)(2,1,2,6)<br>SARIMA(1,1,2)(1,1,2,6)              | 16.048283<br>NaN | 334.815310          |
| SARIMA(1.1,2)(1.1,2,6) SARIMA(2.1,2)(2.1,2,12)                | 16.589775        | 334.819310<br>NaN   |
| ,,,,                                                          | 10.008775<br>NaN | 401.515730          |
| SARIMA(1,1,1)(1,1,2,12)                                       | Nan              | 401.010/30          |

Fig86.1: RMSE-Test data.

### From above RMSE values,

- Alpha=0.3, Beta=0.3, Gamma=0.4, TripleExponentialSmoothing is the optimal model for Rose wine dataset as it resulted in low RMSE value.
- SARIMA(1,1,2)(1,1,2,6) is the optimal model for Sparkling wine dataset with low RMSE results
- 9) Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Building TripleExponentialSmoothing model with Alpha=0.3, Beta=0.3, Gamma=0.4 parameters for whole Rose wine dataset as it resulted in low RMSE compared to other models

Predicted Values as below with seasonality as Multiplicative:

```
1995-08-01
             47.582258
             44.331039
1995-09-01
1995-10-01
             43.260058
1995-11-01
             49.520605
1995-12-01
             67.320363
1996-01-01
             28.997325
1996-02-01
             32.482033
1996-03-01
             35.320631
1996-04-01
             31.107448
1996-05-01
             33.483025
1996-06-01
             35.728600
1996-07-01
             39.489194
```

Fig87: Rose-Predicted values



Fig88: Rose-Forecast 12 months

#### Predicted Values as below with seasonality as Additive:

```
1995-08-01
             50.132262
1995-09-01
             46.986428
            45.701327
1995-10-01
1995-11-01
           60.288510
1995-12-01
            98.547665
1996-01-01
            14.070885
1996-02-01
             24.380181
1996-03-01
             31.945905
1996-04-01
            24.733174
1996-05-01
           28.088762
           33.534757
1996-06-01
        44.233175
1996-07-01
```

Fig89: Rose-Predicted values1



Fig90: Rose-Forecast 12 months-1

Building SARIMA(1,1,2)(1,1,2,6) for whole Sparkling wine dataset as it resulted in low RMSE compared to other models

# Predicted Values as below:

|  | Sparkling  | mean        | mean_se    | mean_ci_lower | mean_ci_upper |
|--|------------|-------------|------------|---------------|---------------|
|  | 1995-07-01 | 1876.060647 | 389.457904 | 1112.737182   | 2639.384113   |
|  | 1995-08-01 | 2478.217110 | 394.168624 | 1705.680804   | 3250.773416   |
|  | 1995-09-01 | 3293.555584 | 394.318119 | 2520.708272   | 4066.404896   |
|  | 1995-10-01 | 3933.325337 | 395.602520 | 3157.958646   | 4708.692027   |
|  | 1995-11-01 | 6132.783764 | 395.653854 | 5357.316460   | 6908.251067   |
|  | 1995-12-01 | 1244.081710 | 398.241414 | 467.462809    | 2020.700610   |
|  | 1996-01-01 | 1582.434484 | 396.438804 | 805.428707    | 2359.440261   |
|  | 1996-02-01 | 1836.383355 | 396.843319 | 1058.584743   | 2614.181968   |
|  | 1996-03-01 | 1819.012343 | 397.115073 | 1040.681102   | 2597.343583   |
|  | 1996-04-01 | 1664.539905 | 397.462382 | 885.527950    | 2443.551859   |
|  | 1996-05-01 | 1615.814946 | 397.763140 | 836.213517    | 2395.416375   |
|  | 1996-06-01 | 2016.543329 | 398.090836 | 1236.299627   | 2796.787031   |

Fig91: Sparkling 12months forecast values



Fig92: Sparkling 12months forecast plot

# 10) Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales

- We see there is significant decrease in the sale of rose wine thru years from 1980 to 1995.
- There is spike in the rose wine sales in quarter4 due to holiday season.
- There seems to be no trend in the sales of Sparkling wine with high sales in the quarter 4.
- Sudden fall in the sales of Wines in the Jan month with slow sales improve from July for sparkling wine sales.
- After June Sales of Rose wine slowly increased



Fig93: Rose Box plot1

• After June, Sales of Sparkling also increased slowly



Fig94: Sparkling Box plot1

- December month sales of Sparkling wine are 3 times more than the June month Sales.
- TripleExponentialSmoothing gave the low RMSE values on the test data for Rose wine and so final model is built using TripleExponentialSmoothing for consistent forecast with respect to data.
- SARIMA model is choose for building final model of Sparkling wine as it resulted in low RMSE value
- For Rose wine, year on year there is a decline in the sales where as for sales of Sparkling there is no significant increase or decrease.
- Special offers and ads to be introduced by the company to improve the sales and if sales didn't improve company has to investigate in depth about the cause or drop the variant and introduce new upgraded one.
- Holiday season is more important attract customers with different offers and company need to benefited from holiday season. Need to investigate in depth about the sharp sales fall in order to improve sales.
- Sparkling wine has more popularity.
- Offering the add-ons along with the Wine may lead to increase the sales.