PYNQ-Z2와 ZYBO Z7-20은 동일한 Zynq XC7Z020-1CLG400C 칩을 사용하지만, 주변 장치와 확장 커넥터 구성이 달라 XDC(Xilinx Design Constraints) 파일에 차이가 있습니다.

XDC 파일은 FPGA의 각 핀에 연결되는 신호(포트)의 물리적 위치, 전압 표준 등을 정의하는 중요한 파일입니다. 두 보드의 마스터 XDC 파일을 비교하여 주요 차이점을 시트 형식으로 정리했습니다.

주요 하드웨어 구성 차이

비교에 앞서, 두 보드의 하드웨어 구성 차이를 이해하면 XDC 파일의 차이를 더 쉽게 파악할 수 있습니다.

특징	PYNQ-Z2	ZYBO Z7-20
확장 포트	2x Pmod, 1x Arduino, 1x Raspberry Pi	6x Pmod
НОМІ	입력 및 출력 포트 각 1개	입력 및 출력 포트 각 1개
오디오	ADI AU1761 코덱 (헤드폰 출력, 마이크, 라인 입력)	SSM2603 코덱 (헤드폰 출력, 마이크, 라인 입력)
기본 I/O	스위치 2 개, RGB LED 2개	스위치 4 개 , RGB LED 없음
시스템 클럭	125MHz	125MHz

XDC 파일 비교 시트

아래는 두 보드의 XDC 파일에서 주요 포트들의 핀 할당을 비교한 표입니다.

1. 공통 및 수정된 포트

두 보드에 모두 존재하지만 핀 위치나 이름이 다른 주요 포트입니다.

71 -	시동 /교도	DVNO 70 11	7/00	. Ь ГП	ш¬
기능	신호 (포트 이름)	PYNQ-Z2 핀	ZYBO Z7-20 핀	상태	비고
시스템 클럭	sys_clk	H16	K17	수정	클럭 입력 핀 위치가 다릅니다.
LED	leds_4bits_t ri_o[0-3]	R14, P14, N16, M14	M14, M15, G14, D18	수정	4 개의 LED 핀 위치가 모두 다릅니다.
푸시버튼	btns_4bits_ tri_i[0-3]	D19, D20, L20, L19	K18, P16, K19, Y16	수정	4개의 버튼 핀 위치가 모두 다릅니다.
HDMI RX (입력)	TMDS_IN_cl k_p/n	N18 / P19	U18 / U19	수정	HDMI 입력 클럭 핀 위치가 다릅니다.
HDMI RX (입력)	TMDS_IN_d ata_p/n[0-2]	V20/W20, T20/U20, N20/P20	V20/W20, T20/U20, N20/P20	토 진 0	데이터 핀은 동일합니다.
HDMI TX (출력)	TMDS_OUT _clk_p/n	L16 / L17	H16 / H17	수정	HDMI 출력 클럭 핀 위치가 다릅니다.
HDMI TX (출력)	TMDS_OUT _data_p/n[O-2]	K17/K18, K19/J19, J18/H18	D19/D20, C20/B20, B19/A20	수정	데이터 핀 위치가 모두 다릅니다.
오디오 I2C	i2c_scl_io, i2c_sda_io	P15, P16	M17, M18	수정	오디오 코덱 제어용 I2C 핀이

					다릅니다.
Pmod A	ja[1-4, 7-10]	Y18, Y19, Y16, Y17, U18, U19, W18, W19	N15, L14, K16, K14, N16, L15, J16, J14	수정	Pmod A 포트의 핀 위치가 모두 다릅니다.
Pmod B	jb[1-4, 7-10]	W14, Y14, T11, T10, V16, W16, V12, W13	V8, W8, U7, V7, Y7, Y6, V6, W6	수정	Pmod B 포트의 핀 위치가 모두 다릅니다.

2. PYNQ-Z2 전용 포트

PYNQ-Z2 보드에만 존재하는 확장 헤더 관련 포트입니다.

기능	신호 (포트 이름)	PYNQ-Z2 핀	상태	비고
슬라이드 스위치	sws_2bits_tri_i[O-1]	M2O, M19	PYNQ-Z2 전용	2 개의 슬라이드 스위치입니다.
RGB LED	rgb_led_tri_o[0 -5]	L15, G17, N15, G14, L14, M15	PYNQ-Z2 전용	2개의 RGB LED (각 3핀) 입니다.
Arduino 헤더	arduino	다수	PYNQ-Z2 전용	아두이노 쉴드 호환 헤더 관련 핀입니다.
Raspberry Pi 헤더	raspberry_pi	다수	PYNQ-Z2 전용	라즈베리 파이 호환 헤더 관련 핀입니다.

3. ZYBO Z7-20 전용 포트

ZYBO Z7-20 보드에만 존재하는 Pmod 확장 포트입니다.

기능	신호 (포트 이름)	ZYBO Z7-20 핀	상태	비고
슬라이드 스위치	sws_4bits_tri_i[O-3]	G15, P15, W13, T16	ZYBO Z7 전용	4개의 슬라이드 스위치입니다.
Pmod C	jc[1-4, 7-10]	V15, W15, T11, T10, W14, Y14, T12, U12	ZYBO Z7 전용	
Pmod D	jd[1-4, 7-10]	T14, T15, P14, R14, U14, U15, V17, V18	ZYBO Z7 전용	
Pmod E	je[1-4, 7-10]	V12, W16, J15, H15, V13, U17, T17, Y17	ZYBO Z7 전용	
Pmod F (Pcam)	mipi	K18, K19, M20, M19, L17,	ZYBO Z7 전용	MIPI CSI-2 카메라 인터페이스용 핀입니다.

결론 💡

PYNQ-Z2와 ZYBO Z7-20은 같은 심장(Zynq SoC)을 가졌지만, 외부 세계와 소통하는 방식(I/O)이 다릅니다.

• PYNQ-Z2는 Arduino와 Raspberry Pi 생태계와의 연결성을 강조하여 소프트웨어

개발자나 메이커들이 기존의 다양한 쉴드와 HAT을 활용하기에 용이합니다.

• ZYBO Z7-20은 6개의 Pmod 포트와 MIPI CSI-2 카메라 포트를 제공하여, Digilent의 다양한 Pmod 모듈을 활용한 임베디드 시스템 및 비전 시스템 확장에 더 중점을 둡니다.

따라서 어떤 보드를 선택할지는 프로젝트의 확장 I/O 요구사항에 따라 달라집니다. Vivado 프로젝트 생성 시 사용하는 보드를 정확히 선택해야 올바른 XDC 파일이 적용되어 하드웨어를 정상적으로 제어할 수 있습니다.