CSE 547 - Assignment 1

Philip Pham

May 10, 2018

Problem 0

List of collaborators: I have not collaborated with anyone.

List of acknowledgements: None.

Certify that you have read the instructions: I have read and understood these policies.

Problem 1: Gaussian Random Projections and Inner Products

Let $\phi(x) = \frac{1}{\sqrt{m}}Ax$ represent our random projection of $x \in \mathbb{R}^d$, with A an $m \times d$ projection matrix with each entry sampled i.i.d from N(0,1). Note that each row of A is a random projection vector, $v^{(i)}$.

The norm preservation theorem states that for all $x \in \mathbb{R}^d$, the norm of the random projection $\phi(x)$ approximately maintains the norm of the original x with high probability:

$$\mathbb{P}\left((1-\epsilon)\|x\|^2 \le (1+\epsilon)\|x\|^2 \le 1 - 2\exp\left(-\left(\epsilon^2 - \epsilon^3\right)m/4\right)\right),\tag{1}$$

where $\epsilon \in (1, 1/2)$.

Using the norm preservation theorem, prove that for any $u, v \in \mathbb{R}^d$ such that $||u|| \leq 1$ and $||v|| \leq 1$,

$$\mathbb{P}\left(\left|u \cdot v - \phi\left(u\right) \cdot \phi\left(v\right)\right| \ge \epsilon\right) \le 4\exp\left(-\left(\epsilon^2 - \epsilon^3\right)m/4\right) \tag{2}$$

Proof.

Problem 2: Locality-Sensitive Hashing (LSH) for Angle Similarity

Suppose our set of n points $D = \{p_1, \ldots, p_n\}$ are vectors in d dimensions. Our problem is: given a query point q find a point $p \in D$, which has a small angle with q. Recall that the angle between two vectors a and b is $\cos^{-1}\left(\frac{a \cdot b}{\|a\| \|b\|}\right)$.

As doing this exactly may be computationally expensive, let us try to do this approximately with a fast algorithm. The approximate objective is as follows: suppose there exists a point $p \in D$ which has cosine similarity larger than θ , then our goal is return a point with cosine similarity greater than $c\theta$. As doing this exactly may be computationally expensive, let us try to do this approximately with a fast algorithm. The approximate objective is as

follows: suppose there exists a point $p \in D$ which has cosine similarity larger than θ , then our goal is return a point with cosine similarity greater than $c\theta$.

Let us try to do this with LSH. Let us consider the a family of hash functions, where $h(p) = \text{sign}(u \cdot p)$ where we will sample u uniformly at random from a Gaussian (or from a unit sphere).

1. Provide an exact expression for $\mathbb{P}\left(h\left(p\right)=h\left(p'\right)\right)$ based on some geometric relation between p and p'.

Solution

Define

$$angle (u, v) = \cos^{-1} \left(\frac{u \cdot v}{\|u\| \|v\|} \right), \tag{3}$$

which is the angle between two vectors.

Then,

$$\mathbb{P}\left(h\left(p\right) = h\left(p'\right)\right) = 1 - \frac{\operatorname{angle}\left(p, p'\right)}{\pi}.$$
(4)

2. Provide an expression for P_1 and P_2 in terms of θ and $c\theta$. Note that since we want a large angle

3.