RELATIONS AND FUNCTIONS

Let A and B be two non-empty sets, let n(A) = m, n(B) = n and $f: A \to B$ be the function from A to B

Each element of A can be associated to n elements of B, so total number of functions that can be formed from A to B is $n \times n \times ... \times n$ (m times), i.e. \mathbf{n}^m .

Hence total number of functions from A to B = n^m

then number of relations possible from A to B is 2mn

Number of relations from A to B which are not functions is $2^{mn} - n^m$

number of 1-1 functions from A to B = $\begin{cases} {}^{\rm n}{\rm P_m} & \textit{if } m \leq n \\ \mathbf{0} & m > n \end{cases}$

number of bijective functions $= egin{cases} n! & if m = n \\ 0 & if m
eq n \end{cases}$

 $\textit{if} \, \textit{m} \leq \textit{n} \quad \text{then} \quad n^m - {}^n P_m \quad \text{ functions from A to B} \quad \text{are many-one functions}.$

If m > n, then all the n^m functions are many-one functions.

- 1. Number of relations from A to A is 2^{n^2} .
- 2. Number of reflexive relations from A to A is 2^{n^2-n} ...
- 3. Number of symmetric relations from A to A is $2^{\frac{n(n+1)}{2}}$.

INVERSE TRIGONOMETRY

S.no.	FUNCTION	DOMAIN	Range (Principal Value Branch)
1	$\sin^{-1} x$	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
2	$\cos^{-1} x$	[-1,1]	$[0,\pi]$
3	tan−1 x	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
4	cosec⁻¹ x	R - (-1, 1)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$
5	$\sec^{-1} x$	R - (-1, 1)	$[0,\boldsymbol{\pi}]-\left\{\frac{\boldsymbol{\pi}}{2}\right\}$
6	$\cot^{-1} x$	R	$(0,\pi)$

$$sin^{-1}(sin x) = x, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $cos^{-1}(cos x) = x, x \in [0, \pi]$
 $sin(sin^{-1} x) = x, x \in [-1, 1]$

MATRICES & DETERMINANTS

Following are the properties of transpose of a matrix:

- (i) $(A^{T})^{T} = A$
- (ii) $(A + B)^T = A^T + B^T$
- $(iii) (kA)^T = kA^T$
- (iv) $(AB)^T = B^T A^T$
- (v) $(AB)^{-1} = B^{-1} \cdot A^{-1}$ Where A and B are invertible matrices of the same order
- (vi) $(A^{-1})^{-1} = A$.

A square matrix A is called a symmetric matrix if $A = A^{T}$

A square matrix A is called a skew symmetric matrix if

$$A^{T} = -A$$

or

$$-A^{T} = A$$

All main diagonal elements of a skew-symmetric matrix are zero.

Every square matrix can be uniquely expressed as the sum of a symmetric and a skew-symmetric matrix.

$$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$$

Square Matrix = Symmetric Matrix + Skew-symmetric Matrix.

If A is a square matrix of order n, then $A(adjA) = |A|I_n = (adj A)A$.

If A and B are square matrices of the same order n, then

- (i) adj(AB) = (adj B)(adj A)
- (ii) $adj A^T = (adj A)^T$
- (iii) $adj(adj A) = |A|^{n-2}A$
- (iv) $|adj A| = |A|^{n-1}$
- (v) $|adj(adj A)| = |A|^{(n-1)^2}$
- (vi) If A and B are two invertible matrices of the same order, then

$$A^{-1} = \frac{1}{|A|} (adj A)$$

- (vii) If A is an invertible matrix, then $(A^T)^{-1} = (A^{-1})^T$.
- (viii) A is a non-singular matrix, then $|A^{-1}| = \frac{1}{|A|}$.
- (ix) $X = A^{-1}B$, if $|A| \neq 0$
- (x) If |A| = 0 and $(adj A) \neq 0$, then the system is inconsistent.
- (xi) adj $(A^{-1}) = (adjA)^{-1}$

APPLICATION OF DERIVATIVES

Continuity of a function at a point – A real valued function f(x) is said to be continuous at x = a if LHL at a = RHL at a = f(a) i.e. $\lim_{h \to 0} f(a - h) = \lim_{h \to 0} f(a + h) = f(a)$

Derivative of a function- The derivative of a function f(x) is defined by $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Left Hand Derivative (LHD) =
$$Lf'(a) = \lim_{h \to 0} \frac{f(a-h)-f(a)}{-h}$$

Right Hand Derivative (RHD) = $Rf'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$

A real valued function f(x) is said to be differentiable at x=a if its LHD and RHD at x=a exist and both are equal.

Sl. No	Function	Derivative
1	x^n	nxn-1
2	K (constant)	0
3	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
4	sin x	cos x
5	cos x	−sin x
6	tan x	sec ² x
7	sec x	sec x tan x
8	cosec x	-cosec x cot x
9	cot x	-cosec ² x
10	e ^x	e ^x
11	$\log_e x$	$\frac{1}{x}$
12	$sin^{-1}x$	$\sqrt{1-x^2}$
13	cos ⁻¹ x	$\frac{-1}{\sqrt{1-x^2}}$
14	$tan^{-1}x$	$\frac{1}{1+x^2}$
15	$sec^{-1}x$	$\frac{1}{x\sqrt{x^2-1}}$
16	cosec ⁻¹ x	$\frac{-1}{x\sqrt{x^2-1}}$
17	$cot^{-1}x$	$\frac{-1}{1+x^2}$
18	a^{χ}	$a^x \log_e a$

Product rule: If u and v are two differentiable functions of x, then

$$\frac{d}{dx}[u.v] = u.\frac{dv}{dx} + v.\frac{du}{dx}$$

Quotient rule: If u and v are two differentiable functions of x, then

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$$

Chain rule: If y = f(u) is a function of u and u = k(x) is a function of x, then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Methods of Finding Local Maxima and Local Minima

First Derivative Test: Let f be a function defined on an open interval I. Let f be continuous at a critical point c in I. Then

- (i) If f'(x) changes sign from positive to negative as x increases through c, i.e., if f'(x) > 0 at every point sufficiently close to and to the left of c, and f'(x) < 0 at every point sufficiently close to and to the right of c, then c is a point of *local maxima*.
- (ii) If f'(x) changes sign from negative to positive as x increases through c, i.e., if f'(x) < 0 at every point sufficiently close to and to the left of c, and f'(x) > 0 at every point sufficiently close to and to the right of c, then c is a point of *local minima*.
- (iii) If f'(x) does not change significantly as x increases through c, then c is neither a point of local maxima nor a point of local minima. In fact, such a point is called a *point of inflection*.

Second Derivative Test: Let f be a function defined on an open interval I and $c \in I$. Let f be twice differentiable at c. Then

- (i) x = c, is a point of local maxima if f'(c) = 0, and f''(c) < 0. The value f(c) is local maximum value of f.
- (ii) x = c is a point of local minima if f'(c) = 0, and f''(c) > 0. In this case, f(c) is local minimum value of f.
- (iii) The test fails if f(c) = 0, and f''(c) = 0.
 In this case, we go back to the first derivative test and find whether c is a point of local maxima, local minima, or a point of inflexion.

If c is a point of local maxima of f, then f(c) is a local maximum value of f. Similarly, if c is a point of local minima of f, then f(c) is a local minimum value of f.

INTEGRATION

Indefinite Integrals: Formulae

$$1.\int 1dx = x + c$$

$$2. \int x \, dx = x^2 + c$$

$$3. \int sinx dx = -cosx + c$$

$$4. \int cosxdx = sinx + c$$

5.
$$\int tanx dx = \log secx + c$$

6.
$$\int cosecx \, dx = \log|(cosecx - cotx)| + c$$

7.
$$\int secx dx = \log|secx + tanx| + c$$

$$8. \int cotx dx = log|sinx| + c$$

$$9. \int sec^2 x dx = tanx + c$$

10.
$$\int cosec^2x dx = -cotx + c$$

11.
$$\int secx. tanxdx = secx + c$$

12.
$$\int cosecx. cotxdx = -cosecx + c$$

13.
$$\int e^x dx = e^x + c$$

$$14. \int \frac{1}{x} dx = |x| + C$$

$$15. \int e^x dx = e^x + C$$

1.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$$
 2. $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$

3.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left| x + \sqrt{x^2 - a^2} \right| + c$$
 4. $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left| x + \sqrt{x^2 + a^2} \right| + c$

5.
$$\int \sqrt{x^2 - a^2} \ dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + c$$

6.
$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + c$$

	, ,	
S.No	Form of rational function	Form of Partial fraction
1	1	A _ B
	$\overline{(x-a)(x-b)}$	$\overline{(x-a)}^+\overline{(x-b)}$
2	px + q	A B
	$\overline{(x-a)(x-b)}$	$\overline{(x-a)}^+$
3	$px^2 + qx + c$	A . B . C
	$\overline{(x-a)(x-b)(x-c)}$	$(x-a)^+$ $(x-b)^+$ $(x-c)^-$
4	1	A B C
	$\overline{(x-a)(x-b)(x-c)}$	$\frac{1}{(x-a)} + \frac{1}{(x-b)} + \frac{1}{(x-c)}$
5	1	A B C
	$\overline{(x-a)^2(x-b)}$	$\frac{(x-a)^{+}}{(x-a)^{2}} + \frac{(x-b)^{-}}{(x-b)^{-}}$
6	px + q	A B C
	$\overline{(x-a)^2(x-b)}$	$(x-a)^+$ $(x-a)^2$ $(x-b)^-$
	$px^2 + qx + r$	11 DA G
8	$\overline{(x-a)(x^2+bx+c)}$	$\frac{1}{(x-a)} + \frac{1}{x^2 + bx + c}$
	where $x^2 + bx + c$ cannot be factorized further	

VECTORS AND 3D

- Multiple of a vector by a scalar: \vec{a} is any vector and $\lambda \in \mathbb{R}$ then $\lambda \vec{a}$ is a vector of magnitude $|\lambda| |\vec{a}|$ in a direction parallel to \vec{a} .
- If $|\vec{a}| \neq 0$ then, $\frac{\vec{a}}{|\vec{a}|}$ is a unit vector in direction \vec{a} .
- Scalar product: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$, where θ is the angle between $\vec{a} \& \vec{b}$.
- Projection of \vec{a} along \vec{b} is $\frac{\vec{a}.\vec{b}}{|\vec{b}|}$
- $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
- Vectors $\vec{a} \& \vec{b}$ are perpendicular iff $\vec{a} \cdot \vec{b} = 0$.
- Cross product: $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$, where \hat{n} is a unit vector perpendicular to $\vec{a} \& \vec{b}$ and θ is the angle between $\vec{a} \& \vec{b}$.
- Unit vector perpendicular to $\vec{a} \& \vec{b} \pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
- Vectors $\vec{a} \& \vec{b}$ are collinear if $\vec{a} \times \vec{b} = 0$.
- Area of triangle whose sides are $\vec{a} \& \vec{b}$ is $\frac{1}{2} |\vec{a} \times \vec{b}|$.
- Area of parallelogram whose adjacent sides are $\vec{a} \& \vec{b}$ is $|\vec{a} \times \vec{b}|$.
- Area of parallelogram whose diagonals are $\vec{p} \& \vec{q}$ is $\frac{1}{2} |\vec{p} \times \vec{q}|$.

$$If \vec{a} = x\hat{i} + y\hat{j} + z\hat{k},$$

then magnitude or length or norm or absolute value of \vec{a} is

$$\left|\overrightarrow{a}
ight|=a=\sqrt{x^2+y^2+z^2}$$

A vector of unit magnitude is unit vector.

If $ec{a}$ is a vector then unit vector of $ec{a}$ is denoted by \hat{a} and $\hat{a}=rac{ec{a}}{|ec{a}|}$

Important unit vectors are $\hat{i},\hat{j},\hat{k}, where \ \hat{i} = [1,0,0], \ \hat{j} = [0,1,0], \ \hat{k} = [0,0,1]$

If
$$l = \cos \alpha$$
, $m = \cos \beta$, $n = \cos \gamma$,

then α, β, γ , are called directional angles of the vectors \overrightarrow{a} and $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

Position Vector	$\overrightarrow{OP} = \vec{r} = \sqrt{x^2 + y^2 + z^2}$
Direction Ratios	$l=rac{a}{r}, m=rac{b}{r}, n=rac{c}{r}$
Vector Addition	$ec{PQ} + ec{QR} = ec{PR}$
Properties of Vector Addition	Commutative Property: $ec{a}+ec{b}=ec{b}+ec{a}$ Associative Property: $\left(ec{a}+ec{b} ight)+ec{c}=ec{a}+\left(ec{b}+ec{c} ight)$
Vector Joining Two Points	$\overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1}$
Skew Lines	$Cos heta = \left rac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2}\sqrt{a_2^2 + b_2^2 + c_2^2}} ight $
Equation of a Line	$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$

Direction ratios of a line through (x_1, y_1, z_1) and (x_2, y_2, z_2) are $x_2 - x_1$, $y_2 - y_1, z_2 - z_1$

Direction cosines of a line whose direction ratios are a, b, c are given by

$$I = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \, m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \, n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}}.$$

- (i) Vector equation of a line through point a and parallel to vector \overrightarrow{b} is $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$.
- (ii) Cartesian equation of a line through point (x_1, y_1, z_1) and having direction ratios a, b, c is

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}.$$

Angle ' θ ' between lines $\overrightarrow{r} = \overline{a_1} + \lambda \overline{b_1}$ and $\overrightarrow{r} = \overline{a_2} + \mu \overline{b_2}$ is given

by
$$\cos \theta = \frac{\overline{b_1} \cdot \overline{b_2}}{|\overline{b_1}| |\overline{b_2}|}$$

Two lines are perpendicular to each other if

$$\overline{b_1} \cdot \overline{b_2} = 0$$
 or $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$.

Cartesian equation of line through points (x_1, y_1, z_1) and (x_2, y_2, z_2) is

$$\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}$$

 $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}$ Shortest distance between two skew lines $\vec{r}=\vec{a}_1+\lambda\vec{b}_1$ and $\vec{r}=\vec{a}_2+\mu\vec{b}_2$ is given by

$$S.D = \begin{vmatrix} (\vec{a}_2 - \vec{a}_1).(\vec{b}_1 \times \vec{b}_2) \\ |\vec{b}_1 \times \vec{b}_2| \end{vmatrix}$$
. Note $S.D = 0$ implies lines are intersecting (Coplanar)

Distance between two parallel lines $\vec{\mathbf{r}} = \vec{\mathbf{a}}_1 + \lambda \vec{\mathbf{b}} \, \alpha n d \, \vec{\mathbf{r}} = \vec{\mathbf{a}}_2 + \mu \vec{\mathbf{b}}$ is given by $\frac{|\vec{\mathbf{a}}_2 - \vec{\mathbf{a}}_1| \times \vec{\mathbf{b}}}{|\vec{\mathbf{b}}|}$

Note: Before applying formula for finding distance, identify whether lines are parallel or not by taking ratio of direction vectors, then apply formula appropriately.

Two lines
$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$$
 and $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$ are coplanar Iff $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$

DIFFERENTIAL EQUATION

Homogeneous differential equations

Steps involved: If a first order first degree differential equation is expressible in the form $\frac{dy}{dx} = \frac{f(x,y)}{g(x,y)}$, where f(x,y) and g(x,y) are homogenous functions of the same degree, then it is called a homogenous differential equation. Such type of equations can be reduced to variable separable form by the substitution.

$$y = vx$$
 or $x = vy$.

Linear differential equations Steps involved:

If a differential equation is expressible in the form $\frac{dy}{dx} + py = Q$ where P and Q are functions of x, then it is called a linear differential equation. The solution of this equation is given by $y(e^{\int Pdx}) = \int (Qe^{\int Pdx})dx + C$

Sometimes a linear differential equation is in the form $\frac{dx}{dy} + Rx = S$, where R and S are functions of y. The solution of this equation is given by

$$x(e^{\int Rdy}) = \int (Q^{e \int Rdy})dy + C$$

PROBABILITY

$$P(A) = 1 - P(A')$$

multiplication rules (joint probability)

dependent
$$P(A \cap B) = P(A) * P(B|A)$$

independent
$$P(A \cap B) = P(A) * P(B)$$

mutually exclusive
$$P(A \cap B) = 0$$

addition rules (union of events)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

mutually exclusive
$$P(A \cup B) = P(A) + P(B)$$

conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$