Université de Montpellier - Master 2 Module **Contraintes**

Feuille TD 3 - 13/11/2023

Exercice 1

Soit $\Delta = \{c_0, c_1, c_2, c_3, \mu_0, \mu_1\}$ un langage de contraintes sur le domaine $D = \{0, 1\}$ dont les fonctions sont définies comme suit :

$$c_{0}(x, y, z) = x \vee y \vee z = D^{3} \setminus \{(0, 0, 0)\}$$

$$c_{1}(x, y, z) = \overline{x} \vee y \vee z = D^{3} \setminus \{(1, 0, 0)\}$$

$$c_{2}(x, y, z) = \overline{x} \vee \overline{y} \vee z = D^{3} \setminus \{(1, 1, 0)\}$$

$$c_{3}(x, y, z) = \overline{x} \vee \overline{y} \vee \overline{z} = D^{3} \setminus \{(1, 1, 1)\}$$

$$\mu_{0}(x) = \{(0)\}$$

$$\mu_{1}(x) = \{(1)\}$$

Question 1. Démontrez que $CSP(\Delta)$ est NP-complet.

On suppose que $P \neq NP$. On dit qu'un langage $\Gamma_1 \subseteq \Delta$ est Δ -maximal si $CSP(\Gamma_1)$ est polynomial mais que $CSP(\Gamma_2)$ est NP-complet pour tout Γ_2 tel que $\Gamma_1 \subset \Gamma_2 \subseteq \Delta$.

Question 2. Justifiez qu'il existe au plus six langages Δ -maximaux.

Question 3. Déterminez tous les langages Δ -maximaux.

Exercice 2

Pour tout entier naturel n > 0 on définit $X_n = \{x_i \mid 1 \le i \le n\}$, $Y_n = \{y_i \mid 1 \le i \le n\}$, $\mathcal{Y}_n^{+1} = \{Y_n \cup \{x\} \mid x \in X_n\}$ et $\mathcal{X}_n^{+1} = \{X_n \cup \{y\} \mid y \in Y_n\}$. On considère la famille \mathcal{H} des hypergraphes dont l'ensemble des sommets est de la forme $X_n \cup Y_n$ (pour un n qui peut varier d'un hypergraphe à un autre) et dont les arêtes sont des éléments de $\mathcal{Y}_n^{+1} \cup \mathcal{X}_n^{+1}$.

Question 1. La treewidth des hypergraphes de \mathcal{H} est-elle bornée par une constante? Justifiez.

Question 2. Démontrez que tout $H \in \mathcal{H}$ a une hypertreewidth d'au plus 2.

Question 3. Soient n > 0 et H_n l'hypergraphe dont les sommets sont $X_n \cup Y_n$ et les arêtes sont $\mathcal{Y}_n^{+1} \cup \mathcal{X}_n^{+1}$. Montrer que l'hypertreewidth fractionnaire de H_n est strictement inférieure à 2.

Question 4. La famille \mathcal{H} a la propriété d'être hypertreewidth-monotone, c'est-à-dire que retirer une arête d'un hypergraphe de \mathcal{H} ne peut pas augmenter son hypertreewidth. Est-ce vrai en général, pour tous les

hypergraphes? Est-ce vrai en général pour la treewidth?

Question 5. Dans l'autre sens, il est évidemment possible qu'ajouter une arête à un hypergraphe augmente son hypertreewidth. Montrez que dans ce cas, son hypertreewidth augmente de 1 au maximum.

Exercice 3

Pour tout entier naturel k > 0 et tout ensemble $S \subseteq \{0, ..., k\}$, on définit la fonction booléenne $c_S^k = \{\tau \in \{0, 1\}^k \mid \sum_{i=1}^k \tau[i] \in S\}$. Par exemple, on a

$$c^3_{\{1,3\}}(x,y,z) = \begin{bmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad c^3_{\{0,1\}}(x,y,z) = \begin{bmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad c^2_{\{1\}}(x,y) = \begin{bmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Question 1. Soient k > 0 et $S \subseteq \{0, ..., k\}$ tel que $S \neq \emptyset$ et $0 \notin S$. Démontrez que l'opération \vee ("ou" logique) est un polymorphisme de c_S^k si et seulement si il existe $j \in \{1, ..., k\}$ tel que $S = \{j, ..., k\}$.

Question 2. Soient k > 0 et $S \subseteq \{0, \dots, k\}$. Montrez que l'opération \vee est un polymorphisme de c_S^k si et seulement si c'est un polymorphisme de $c_{S\setminus\{0\}}^k$. Déduisez-en une caractérisation précise des fonctions c_S^k qui admettent le polymorphisme \vee , en fonction de l'ensemble S.

Question 3. Soit k > 0. Pour tout ensemble $S \subseteq \{0, \dots, k\}$, on définit $S^{\perp} = \{k - i \mid i \in S\}$. Montrez que \vee est un polymorphisme de c_S^k si et seulement si \wedge est un polymorphisme de $c_{S^{\perp}}^k$.

On rappelle que $CSP(\Gamma)$ est $r\acute{e}solu$ par AC si la fermeture arc cohérente de toute instance insatisfiable de $CSP(\Gamma)$ contient un domaine vide.

Question 4. Soit Γ un langage booléen. Démontrez que $\mathrm{CSP}(\Gamma)$ est résolu par AC si et seulement si Γ admet un polymorphisme parmi $\{0, 1, \wedge, \vee\}$.

Question 5. Déduisez-en une caractérisation des langages finis $\Gamma \subset \{c_S^k \mid k > 0, S \subseteq \{0, \dots, k\}\}$ résolus par AC.

Exercice 4

On dit qu'une fonction booléenne $c: D^2 \to \{0,1\}$ est ZOA (Zero-One-All) s'il existe $D_1, D_2 \subseteq D$ tels que

- $(1): \forall (d_1, d_2) \in c$, on a $d_1 \in D_1$ et $d_2 \in D_2$
- $(2): \forall \alpha \in D_1, |\{d \in D_2 \mid (\alpha, d) \in c\}| \in \{1, |D_2|\}$
- $(3): \forall \beta \in D_2, |\{d \in D_1 \mid (d, \beta) \in c\}| \in \{1, |D_1|\}$

Par exemple, considérons les fonctions

$$c_1(x,y) = \begin{bmatrix} x & y \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 2 & 1 \end{bmatrix} \qquad c_2(x,y) = \begin{bmatrix} x & y \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 2 & 1 \\ 3 & 3 \end{bmatrix}$$

définies sur $D = \{1, 2, 3\}$. Informellement, la propriété ZOA signifie que chaque valeur qui apparaît dans une colonne est compatible avec soit *toutes* les valeurs apparaissant dans l'autre colonne, soit *une seule*. Ainsi, la fonction c_1 est ZOA avec $D_1 = \{1, 2\}$ et $D_2 = \{1, 2, 3\}$, mais la fonction c_2 ne l'est pas car on a $(1, 3), (3, 3) \in c_2$ mais $(2, 3) \notin c_2$.

Question 1. Soit D un domaine fini et l'opération $f_{dd}: D^3 \to D$ définie par

$$f_{dd}(x, y, z) = \begin{cases} x & \text{si } y \neq z \\ z & \text{sinon.} \end{cases}$$

Démontrez que si une fonction booléenne $c: D^2 \to \{0,1\}$ est ZOA, alors f_{dd} est un polymorphisme de c.

Question 2. Soit Γ un langage dont toutes les fonctions sont ZOA. En vous appuyant sur la réponse à la question précédente, démontrez que Γ a la propriété de *bounded width*. Quel algorithme utiliseriez-vous pour résoudre $CSP(\Gamma)$?

Exercice 5

Pour tout entier naturel $n \ge 2$ on définit l'hypergraphe H_n dont l'ensemble des sommets est $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$ et l'ensemble des arêtes est $\{\{x_i, x_{i+1}, y_{i+1}\} \mid 1 \le i \le n-1\} \cup \{\{x_i, y_i, y_{i+1}\} \mid 1 \le i \le n-1\}$.

Question 1. Démontrez que pour tout $n \geq 2$, l'hypertreewidth de H_n est égale à 1.

Question 2. Existe-t-il un entier $n \geq 2$ et un réseau de contraintes N dont l'hypergraphe est H_n , tels que N n'a pas de solution mais appliquer la 3-cohérence forte sur N ne vide aucun domaine? Justifiez votre réponse.