Math 217 Worksheet 8: Kernel, Span and Image (§3.1)

Definitions: Given a linear transformation $V \xrightarrow{T} W$ between vector spaces, we have

- The source of T is V, and the target of T is W.
- The **image** of T is the subset of the target $\{w \in W \mid w = T(v) \text{ for some } v \in V\}$.
- The **kernel** of T is the subset of the source $\{v \in V \mid T(v) = 0_W\}$. Put differently, the kernel of T is the *pre-image* of 0_W .

We write im T and ker T, respectively, for the image and kernel of T.

ADVICE: In encountering new definitions, please keep in mind concrete examples you already know—in this case, think about V as \mathbb{R}^n and W as \mathbb{R}^m the first time through. Model your future understanding on this case, but be aware that **there are other important examples** and there are important differences. Beware: it makes no sense to say **a linear map is "a matrix"** unless *source and target* are both *coordinate spaces* of column vectors.

Problem 1. Examples. For each linear transformation below, determine the source, target, image and kernel. Say whether or not T is injective, surjective and/or bijective.

(a)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 such that $T(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{bmatrix} x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \end{bmatrix}$. Describe $\ker T$ and $\operatorname{im} T$ geometrically, and in set notation.

(b)
$$T: \mathbb{R} \to \mathbb{R}^3$$
 defined by $T(x) = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$. For the image: describe im T geometrically, and in set notation.

(c)
$$\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$$
 given by left multiplication by $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. [Hint: Think geometrically!]

- (d) The transformation $d: \mathcal{P} \to \mathcal{P}$ sending f to its derivative df/dx.
- (e) The trace map $\mathbb{R}^{2\times 2} \to \mathbb{R}$ sending $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to a+d. Describe $\ker T$ in set notation.

Solution:

(a)
$$\ker T = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0 \right\}$$
. That's a plane through the origin with normal vector

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
. Not injective, since this whole plane collapses to the origin. The image im $T\subseteq \mathbb{R}^2$ is the line

y = x going through the origin and through $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Not surjective, since this line is not all of \mathbb{R}^2 .

(b) Source is
$$\mathbb{R}$$
, target is \mathbb{R}^3 , image im $T = \{ \begin{bmatrix} x \\ x \\ x \end{bmatrix} \in \mathbb{R}^3 | x \in \mathbb{R} \}$ is a line through the origin and $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Also $\ker T = \{0\}$. Injective, not surjective.

- (c) This is the map of rotation counterclockwise by θ . It is clearly both surjective and injective, since it has an inverse (rotation clockwise by θ). The image is thus all of \mathbb{R}^2 and the kernel is $\{\vec{0}\}$.
- (d) Source and target are both the polynomials \mathcal{P} . It is surjective: The image is all of \mathcal{P} since every polynomial has an anti-deriviative (which is also a polynomial). It is not injective, since x^2 and $x^2 + 1$ have the same image. The kernel is the set of constant functions.
- (e) The image is all of \mathbb{R} . The kernel is the set $\{\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a+d=0\}$. This is surjective but not injective.

Theorem A: A linear transformation $V \to W$ is injective if and only if its kernel is $\{0_V\}$.

Problem 2. Confirm that Theorem A holds in each of the 5 examples you studied in Problem 1.

Problem 3. Let $T_A: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by $\vec{x} \mapsto A\vec{x}$ where $A = \begin{bmatrix} \pi & 3 \\ \sqrt{17} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$. Show $\left\{ \begin{bmatrix} \pi \\ \sqrt{17} \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ \frac{1}{2} \\ 1 \end{bmatrix} \right\} \subseteq \text{im} T_A$. [Technique: to show $w \in \text{im} T$, find a vector v in the source such that T(v) = w.]

Solution: $\begin{bmatrix} \pi \\ \sqrt{17} \\ 0 \end{bmatrix} = A\vec{e}_1 = T_A(\vec{e}_1) \text{ so } \begin{bmatrix} \pi \\ \sqrt{17} \\ 0 \end{bmatrix} \in \text{im } T_A. \text{ Likewise, } \begin{bmatrix} 3 \\ \frac{1}{2} \\ 1 \end{bmatrix} = A\vec{e}_2 = T_A(\vec{e}_2). \text{ By the }$ "Unusually Useful Lemma," we see in general, the columns of A are in the image of T_A since $T(\vec{e}_i) = A\vec{e}_i$

is the i-th column of A.

Problem 4. True or False: A map is surjective if and only if its image is equal to its target. Explain!

Solution: TRUE! Surjective means every \vec{y} in the target is hit by the map—for every \vec{y} in the target, there exists an \vec{x} in the source such that $T(\vec{x}) = \vec{y}$. This simply says that every \vec{y} in the target is in the image. So Im T = Target.

Definition: The span of a set $\{v_1, v_2, \dots, v_n\}$ of vectors (in some vector space V) is the set of all linear combinations of the vectors v_1, v_2, \ldots, v_n .

That is, $\text{Span}\{v_1, v_2, \dots, v_n\} = \{c_1v_1 + c_2v_2 + \dots + c_nv_n \mid c_i \in \mathbb{R}\}.$

We also say the vectors $\{v_1, v_2, \dots, v_n\}$ span W to mean that $W = \text{Span}\{v_1, v_2, \dots, v_n\}$.

Problem 5. Span

- (a) Describe the **span** of the set $\{\vec{e}_1\}$ in \mathbb{R}^3 in simple geometric language. Do the same for $\{\vec{e}_1,\vec{e}_2\}$ in \mathbb{R}^3 . What about the span of $\{\vec{0}\}$ in \mathbb{R}^3 ? $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$?
- (b) Describe the span of the set $\left\{\begin{bmatrix}1\\0\\2\end{bmatrix},\begin{bmatrix}2\\0\\4\end{bmatrix},\begin{bmatrix}3\\0\\4\end{bmatrix},\begin{bmatrix}5\\0\\10\end{bmatrix}\right\}$ in a simple way as a subset of \mathbb{R}^3 . Write it in set-builder notation. Find the simplest/nicest two vectors that also span this subset.

- (c) What is the *smallest* number of vectors that can span the subset of \mathbb{R}^{10} spanned by $\vec{e}_1 + \vec{e}_2$, $\vec{e}_2 + \vec{e}_3$, $\vec{e}_3 + \vec{e}_4$, $\vec{e}_4 + \vec{e}_5$, $\vec{e}_5 + \vec{e}_1$, $\vec{e}_5 \vec{e}_4$, $\vec{e}_4 \vec{e}_3$, $\vec{e}_3 \vec{e}_2$, $\vec{e}_2 \vec{e}_1$?
- (d) Describe the span of the polynomials $x, x^2, x^3 + x$ in the vector space \mathcal{P} of all polynomials.
- (e) Describe the span of the matrices $E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ in the vector space $\mathbb{R}^{2 \times 2}$.

Solution:

- (a) The span of $\{\vec{e}_1\}$ is the x-axis $\{\begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} \mid x \in \mathbb{R}\}$. The span of $\{\vec{e}_1, \vec{e}_2\}$ is the xy-plane in \mathbb{R}^3 . The span of $\{\vec{0}\}$ is the origin in \mathbb{R}^3 . And Span $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\} = \mathbb{R}^3$.
- (b) This span is the xz plane in \mathbb{R}^3 . It is spanned by \vec{e}_1 and \vec{e}_3 . In set-builder notation it is $\left\{\begin{bmatrix} x \\ 0 \\ z \end{bmatrix} \mid x, z \in \mathbb{R}\right\}$. Another correct answer is $\left\{c_1 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} \mid c_1, c_2 \in \mathbb{R}\right\}$.
- (c) The smallest number of vectors that spans the given space is five. The set $\{\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4, \vec{e}_5\}$ is one such minimal set of spanning elements but not the only one.
- (d) Span $\{x, x^2, x^3 + x\} = \{ax + bx^2 + cx^3 \mid a, b, c \in \mathbb{R}\}$, the set of polynomials of degree three or less with constant term zero.
- (e) Span $\{E_{11}, E_{22}\}$ is the set of 2×2 diagonal matrices.

Theorem B: Let $\mathbb{R}^n \xrightarrow{T_A} \mathbb{R}^d$ be the linear transformation given by left multiplication by A. Then the image of T_A is equal to the span of the columns of A.

Problem 6. For parts (a) and (b) in Problem 1, confirm that Theorem B holds by examining the standard matrix of each transformation. Explain why Theorem B does not apply to parts (d) and (e).

Solution: For (a), the standard matrix is $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, which spans the line y = x in \mathbb{R}^2 . For (b), the standard matrix is $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, which spans the image line. For (d) and (e), the source and target are not coordinates spaces, so there is no standard matrix.

Problem 7: Proof of Theorem A. Let $T: V \to W$ be a linear transformation.

- (a) Explain why $0_V \in \ker T$.
- (b) Prove that if T is injective, then the kernel of T is $\{0_V\}$. [First Line: If not, suppose $v \in \ker T$ is non-zero...]
- (c) State and prove the converse to (b). [Hint: Use the standard technique to show injectivity— assume two elements v_1, v_2 of the source have the same image under T, then "do some math" to show $v_1 = v_2$.]
- (d) Explain how (b) and (c) together prove the following important theorem:

Solution:

- (a) We proved earlier that $T(0_V) = 0_W$ for any linear transformation. So $0_V \in \ker T$.
- (b) Assume T injective. Assume on the contrary, that $\ker(T)$ is not zero. Take any non-zero \vec{v} in the kernel. By definition $T(\vec{v}) = 0$. But also $T(\vec{0}) = \vec{0}$. So by the injectivity assumption, $\vec{v} = \vec{0}$. Thus $\ker(T) = \{0\}$.
- (c) Assume that $\ker(T) = \{0\}$. Let $v, w \in V$. Suppose that T(v) = T(w). Then by linearity of T(v) = T(v) T(w) = T(v) T(w) = 0.

so v - w is in the kernel of T. But then v - w = 0, which means v = w. So T is injective. Thus T injective.

(d) This is an if and only if statement, so we need to prove two implications. (b) is one implication and (c) is the other.

Problem 8: Proof of Theorem B. Fix $A \in \mathbb{R}^{d \times n}$. Let $\mathbb{R}^n \xrightarrow{T_A} \mathbb{R}^d$ be the linear transformation defined by $T_A(\vec{x}) = A\vec{x}$.

- (a) Let $\vec{C}_1, \dots, \vec{C}_n$ be the columns of A. Show that each \vec{C}_i is in the image of T_A . [Hint: You did this in Problem 3. Remember the unusually useful lemma: $A\vec{e}_j = ??$].
- (b) Prove that $\operatorname{Span}\{\vec{C}_1,\ldots,\vec{C}_n\}\subseteq \operatorname{im} T_A$. [First Line: "Take arbitrary $a_1\vec{C}_1+\cdots+a_n\vec{C}_n\in\operatorname{Span}\{\vec{C}_1,\ldots,\vec{C}_n\}$...]
- (c) Prove that im $T_A \subseteq \text{Span } \{\vec{C}_1, \dots, \vec{C}_n\}$. [FIRST LINE: "Take arbitrary $\vec{y} = T_A(\vec{x}) \in \text{im } T_A$. Write $A = \begin{bmatrix} \vec{C}_1 & \dots & \vec{C}_n \end{bmatrix} \dots$ "]
- (d) Put together the previous steps to prove Theorem B.

Solution:

- (a) We know $T_A(\vec{e}_j) = A\vec{e}_j = \vec{C}_j$ by the "Unusually Useful Lemma," so each column is in the image of T_A .
- (b) Take arbitrary $a_1\vec{C}_1 + \cdots + a_n\vec{C}_n \in \text{Span}\{\vec{C}_1, \dots, \vec{C}_n\}$. From (a), we have $a_1\vec{C}_1 + \cdots + a_n\vec{C}_n = a_1T_A(\vec{e}_1) + \cdots + a_nT_A(\vec{e}_n)$, which equals $T_A(a_1\vec{e}_1) + \cdots + T_A(a_n\vec{e}_n) = T_A(a_1\vec{e}_1 + \cdots + a_n\vec{e}_n)$ by linearity. This shows that $a_1\vec{C}_1 + \cdots + a_n\vec{C}_n$ is in the image of T_A .
- (c) Take arbitrary $\vec{y} \in \text{im } T_A$. Then there exists $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ such that $\vec{y} = T_A(\vec{x}) = A\vec{x} = \begin{bmatrix} \vec{C}_1 & \dots & \vec{C}_n \end{bmatrix} \vec{x} = x_1 \vec{C}_1 + \dots + x_n \vec{C}_n \in \text{Span } \{\vec{C}_1, \dots, \vec{C}_n\}.$
- (d) In (b), we showed that $\operatorname{Span}\{\vec{C}_1,\ldots,\vec{C}_n\}\subset \operatorname{im} T_A$. In (c), we showed that $\operatorname{im} T_A\subset \operatorname{Span}\{\vec{C}_1,\ldots,\vec{C}_n\}$. So $\operatorname{im} T_A=\operatorname{Span}\{C_1,\ldots,C_n\}$.

Problem 9. The **span** of an infinite subset S of a vector space V can also be defined. Try to write down a definition in proper set-builder notation. Caution! There is no such thing as an infinite sum of vectors! Find a spanning set for the vector space P of polynomials. Does P have a finite spanning set?

Solution: The **span** of a set S is the set of all (finite!) linear combinations of elements of S, or $\operatorname{Span}S = \{\sum_{i=1}^n c_i x_i \mid n \in \mathbb{N}, x_i \in S, c_i \in \mathbb{R}, \text{ for all } i = 1, \ldots, n\}$. The infinite set $\{1, x, x^2, x^3, \ldots\}$ spans P since every polynomial is a linear combination of these. No finite set spans P: given any finite set $\{g_1, \ldots, g_t\}$ of polynomials, there is a maximal degree d among them. No polynomial of degree greater than d can be written as a linear combination of the g_i 's since they all have degree less than or equal to d.