

HDU2020 Team: HDUNchar66

应以周 舒飘扬 郑豪杰

抵制不良游戏, 拒绝盗版游戏, 注意自我保护, 谨防受骗上当, 适度游戏益脑, 沉迷游戏伤身, 合理安排时间, 享受健康生活。 审批文号: 国新出审[2020]1407号 ISBN 978-7-498-07852-0 出版单位: 华东师范大学电子音像出版社有限公司 著作权人: 上海米哈游天命科技有限公司 本公司积极履行《网络游戏行业防沉迷自律公约》

目录

1	数论		6
	1.1	埃拉托斯特尼筛	6
	1.2	数论函数	6
	1.3	线性筛	6
	1.4	扩展欧几里得算法	8
	1.5	整除分块	9
	1.6	快速幂、费马小定理	9
	1.7	线性递推逆元	9
	1.8	欧拉定理/欧拉降幂	10
	1.9	狄利克雷卷积, 莫比乌斯反演	10
	1.10	中国剩余定理	12
	1.11	BSGS/exBSGS	13
	1.12	原根	15
	1.13	Lucas 定理	17
	1.14	杜教筛	17
	1.15	Min25 筛	19
	1.16	二次剩余	21
	1.17	Pollar-Rho	23
2	多项	式 2	25
	2.1	快速傅里叶变换 FFT	25
		2.1.1 FFT 模板	27
		212 三次李两次保业	26

		2.1.3 拆系数 FFT	29
	2.2	快速数论变换 NTT	30
		2.2.1 NTT 模板	31
		2.2.2 多项式乘法逆	34
		2.2.3 多项式带余除法	35
		2.2.4 多项式 Ln	35
		2.2.5 多项式 Exp	36
		2.2.6 多项式开根	36
		2.2.7 多项式快速幂	37
		2.2.8 减法卷积	38
		2.2.9 多项式平移	38
		2.2.10 分治 FFT	39
		2.2.11 启发式合并卷积	40
		2.2.12 三模 NTT	40
	2.3	上升幂、下降幂	44
	2.4	卷积字符串匹配	44
	2.5	快速沃尔什变换 FWT	45
3	数学		47
J	双子 3.1	。 高斯消元	47
	3.1	线性基	50
	3.3	矩阵快速幂	50
	3.4	康托展开	52
	3.5	曼哈顿距离	$\frac{52}{53}$
	3.6	高次方求和	53
	3.7	二阶差分	55
	5.1		55
4	组合	数学	55
	4.1	组合数公式	55
	4.2	生成函数	55
	4.3	容斥原理	56
	4.4	卡特兰数	57
	4.5	斯特林数	57
	4.6	贝尔数	59
	4.7	小球入盒模型	60
	4.8	欧拉数	60
	4.9	置换群	61
	4.10	杨表	61
5	数据	结构	61
J	5.1		61
	5.2	线段树	62
	0.4	MIATY	UΔ

		5.2.1 懒惰标记线段树	32
		5.2.2 动态开点线段树6	34
		5.2.3 复杂信息合并线段树	35
		5.2.4 暴力更新线段树 6	36
		5.2.5 pushup 带询问	37
		5.2.6 线段树上二分 \ldots	38
		5.2.7 线段树合并 $\dots\dots\dots$ \dots \in 6.2.7	39
		5.2.8 线段树分裂	39
		5.2.9 扫描线	72
		5.2.10 segment tree beats	74
	5.3	单调栈	75
	5.4	单调队列	77
	5.5	ST 表	78
	5.6	哈希表	78
	5.7	并查集	78
	5.8	主席树	31
	5.9	树套树	33
	5.10	李超线段树 8	34
	5.11	Trie 树	35
	5.12	可持久化 01Trie	35
	5.13	莫队	37
	5.14	平衡树	92
	5.15	动态树	98
	5.16	二叉堆)()
	5.17	左偏树 (可并堆))1
	5.18	笛卡尔树)3
6	图论		13
	6.1	最小生成树)3
	6.2	最短路	
		5.2.1 Floyd	
		3.2.2 Floyd 求最小环并计数)5
		3.2.3 Dijkstra	
		6.2.4 SPFA)7
	6.3	二分图最大匹配)8
	6.4	拓扑排序)9
	6.5	Tarjan)9
		3.5.1 有向图 scc)9
		3.5.2 无向图 edcc(割边)	11
		3.5.3 无向图 vdcc(割点)	13
		3.5.4 仙人掌建圆方树	14
		3.5.5 广义圆方树	١7

	6.6	差分约束	118
	6.7	2-SAT	119
	6.8	欧拉回路	122
	6.9	最大流	123
	6.10	最小割	125
	6.11	最小费用最大流	125
	6.12	线段树优化建图	127
	6.13	Kruskal 重构树	128
	6.14	二分图最大权匹配 KM 算法	128
	6.15	矩阵树定理	129
	6.16	LGV 引理	131
_	+a+ L	. (그 명조	101
7	树上	,问 必 树上倍增	131
	7.1 7.2	M工信増	
	7.3	dis /7	
	7.4	数拉序	
	7.4	点分治	
	7.6	点分柯	
	7.7		
	7.8	松工// 及八百开····································	
	7.9	虚树	
		树上游走	
	7.10	州工伽足	140
8	动态	规划	143
	8.1	树形背包	143
	8.2	区间 DP	
	8.3	数位 DP	144
	8.4	最长上升子序列	145
	8.5	所有字段和	146
	8.6	公共子序列	146
	8.7		147
	8.8	- / · · · ·	147
	8.9	高维前缀和	149
9	字符	· · · · · · · · · · · · · · · · · · ·	150
•	9.1		150
	9.2	失配树	
	9.3		152
	9.4		153
	9.5	Manacher	
		AC 自动机	

	9.7	后缀数组 SA	 	 	 	 	156
	9.8	后缀自动机 SAM	 	 	 	 	158
	9.9	广义 SAM	 	 	 	 	159
	9.10	子序列自动机	 	 	 	 	16
		回文自动机 PAM					
10	计算						167
		实数运算					
		克莱姆法则					
		自适应辛普森积分 .					
	10.4	点/向量类	 	 	 	 	168
	10.5	点线关系	 	 	 	 	169
	10.6	线线关系	 	 	 	 	169
	10.7	极角排序	 	 	 	 	170
	10.8	多边形、凸包	 	 	 	 	170
	10.9	旋转卡壳	 	 	 	 	172
	10.10)半平面交	 	 	 	 	172
	10.11	圆	 	 	 	 	174
	10.12	2公式	 	 	 	 	177
	10.13	3平面最近点对	 	 	 	 	177
11	博弈						178
		必败态					
		SG 函数					
		反 SG 游戏					
		巴什博奕					
	11.5	Nim 游戏	 	 	 	 	179
	11.6	阶梯 Nim	 	 	 	 	179
		Nim-k					
	11.8	威佐夫博弈	 	 	 	 	179
	11.9	树上删边游戏	 	 	 	 	180
	11.10	无向图删边游戏	 	 	 	 	180
	₩ 7.0:	\$ * ↑ ↓					104
12	基础						180
		二分查找					
		去重, 离散化					
		取出第 k 小/中位数					
		bitset					
		builtin 函数					
		归并排序求逆序对 .					
	12.7	计数排序	 	 	 	 	182
	12.8	基数排序	 	 	 	 	182

HDU2020 Team: HDUNchar66 (应以周、舒飘扬、郑豪杰)

	12.9 维护区间并集 12.10计算天数 12.11表达式求值	183
13	12777113177	187
	13.1 算 24 点	
	13.2 德州扑克	189
14		193
	14.1 C++ 编译命令	
	14.2 快读快写	
	14.3 对拍	
	14.4 pbds 库	195
	14.5 指令集优化	196

1 数论

1.1 埃拉托斯特尼筛

时间复杂度为调和级数 O(nlnn)

```
bool vis[maxn+5];
1
  void sieve(){
2
3
       for(int i=1;i<=maxn;++i){</pre>
            if(!vis[i]){//i是质数
4
                 for(int j=i+i;j<=maxn;j+=i)vis[j]=1;</pre>
5
6
            }
7
       }
8
  }
```

1.2 数论函数

设条件表达式
$$[x] = \begin{cases} 1, x = true \\ 0, x = false \end{cases}$$
 单位元函数: $\varepsilon(n) = [n = 1]$ 一函数: $1(n) = 1$ 自身函数: $id(n) = n$ 欧拉函数: $\varphi(n) = [1, n]$ 和 n 互质的整数个数 = $\sum_{i=1}^{n} [\gcd(i, n) = 1] = n \times \prod_{p_i \mid n} \frac{p_i - 1}{p_i}$, $\varphi(ij) = \frac{\varphi(i)\varphi(j)g}{\varphi(g)}$ 莫比乌斯函数: $\mu(n) = \begin{cases} 1, n = 1 \\ (-1)^k, n = p_1p_2...p_k \\ 0, n$ 有平方因子 因数个数: $d(n = p_1^{a_1}p_2^{a_2}...p_k^{a_k}) = (1 + a_1)(1 + a_2)...(1 + a_k)$ 因数和: $\sigma(n = p_1^{a_1}p_2^{a_2}...p_k^{a_k}) = \frac{1 - p_1^{a_1 + 1}}{1 - p_1} \frac{1 - p_2^{a_2 + 1}}{1 - p_k}$ 因数幂和: $\sigma_k(n) = \sum_{d \mid n} d^k$ 积性函数: 满足 $f(xy) = f(x)f(y)$

1.3 线性筛

[1,n] 的正整数中质数个数大约有 $\frac{n}{\ln n}$ 个 积性函数可以线性筛,每个数被最小质因子递筛一次 线性筛积性函数 f(n) 时,需要分三类情况递推函数值 1、i 是质数:直接得出 f(i) 2、 $i\%p_j \neq 0$, p_j 是 $i \times p_j$ 的最小质因数, $f(i \times p_j) = f(i)f(p_j)$ 3、 $i\%p_j = 0$, p_j 是 $i \times p_j$ 的最小质因数,且存在 p_j 的平方因子,需要根据函数定义计算贡献有时需要维护最小质因子的幂次 lpfpow, lpfcnt $\varphi(i) = i \prod_{p_k \mid i} \frac{p_k - 1}{p_k} \rightarrow \varphi(i \times p_j) = i \times p_j \prod_{p_k \mid i \times p_j} \frac{p_k - 1}{p_k} = \varphi(i) \times p_j$

```
\mu(i \times p_j) = 0,因为有平方因子 p_j^2 d(p^k) = k+1, \sigma(p^k) = \frac{1-p^kp}{1-p} d(i \times p_j) = d(lpfpow(i \times p_j))d(i \times p_j/lpfpow(i \times p_j))
```

```
const int maxn=1e6,N=maxn+4;
1
2 int p[N],hp;//p[1~hp]是质数
3 int lpf[N], lpfpow[N], lpfcnt[N]; // 最小质因子, lpf的幂, lpf的指数大小
4 | int phi[N], mu[N]; // 欧拉函数、莫比乌斯函数
5 int d[N];//约数个数
6 ll sigma[N];//约数和
7
   void sieve(int n){
8
       static bool vis[maxn+5];
9
       phi[1]=mu[1]=d[1]=sigma[1]=1;
       for(int i=2;i<=n;++i){</pre>
10
           if(!vis[i]){//1、i是质数
11
               p[++hp]=i;mu[i]=-1;phi[i]=i-1;
12
               lpf[i]=i;lpfpow[i]=i;lpfcnt[i]=1;
13
               d[i]=2; sigma[i]=i+1;
14
           }
15
16
           for(int j=1,x;j<=hp&&(x=i*p[j])<=n;++j){//maxn<=2e8不会爆int
17
               vis[x]=1; lpf[x]=p[j];
               if(i%p[j]==0){//2、p[j]是i的最小质因子
18
19
                   lpfpow[x]=lpfpow[i]*p[j];
                   lpfcnt[x]=lpfcnt[i]+1;
20
21
                   phi[x]=phi[i]*p[j]; mu[x]=0;
22
                   if(lpfpow[x]==x){
23
                       d[x]=lpfcnt[x]+1;
24
                       sigma[x]=(1-111*x*p[j])/(1-p[j]);
25
                   }
26
                   else{
27
                       d[x]=d[lpfpow[x]]*d[x/lpfpow[x]];
                       sigma[x]=sigma[lpfpow[x]]*sigma[x/lpfpow[x]];
28
29
                   }
30
                   break;
               }
31
32
               //3、p[j]是i*p[j]的最小质因子
33
               lpfcnt[x]=1;
34
               lpfpow[x]=p[j];
35
               phi[x]=phi[i]*phi[p[j]];
36
               mu[x]=-mu[i];
37
               d[x]=d[i]*d[p[j]];
38
               sigma[x]=sigma[i]*sigma[p[j]];
```

```
39
           }
       }
40
41
   }
42
   vector<int> factorize(int x){//对maxn范围内分解质因数O(logn)
43
       vector<int>v;
44
       while(x>1){
45
           int t=lpf[x];
46
           v.push_back(t);
           while(x\%t==0)x/=t;
47
48
       }
49
       return v;
50
   vector<int> factorize(ll x){//对maxn^2范围质因数分解O(根号n/logn)
51
52
       vector<ll>v;
       for(int i=1;i<=hp&&1ll*p[i]*p[i]<=x){</pre>
53
           if(x%p[i]==0){
54
               v.push back(p[i]);
55
               while(x%p[i]==0)x/=p[i];
56
           }
57
58
       }
       if(x>1)v.push back(x);//大于根号的质因数最多一个
59
       return v;
60
61
   }
```

1.4 扩展欧几里得算法

裴蜀定理: 对任何整数 a, b, x, y, ax + by 是 gcd(a, b) 的倍数,且不定方程 ax + by = gcd(a, b) 一定有解 若 a < 0,则把 ax + by = gcd(a, b) 转化为 |a|(-x') + by = gcd(|a|, b)

用扩展欧几里得算法可以求解不定方程 ax + by = c, 设 $g = \gcd(a, b)$

若 c 不是 g 的倍数,则无解

若有解,得到一组特解 x_0, y_0 ,且 $x_0 + k \frac{b}{g}, y_0 - k \frac{a}{g}$ 是通解,x 的最小正整数解为 $x_0 + k \frac{b}{g}$ 的最小正整数值 min_x , min_x 对应了 y 的最大正整数解 $max_y = \frac{c-a \cdot min_x}{b}$,若 $max_y \leq 0$,则不存在 x, y 均为正整数的解 求 $ax \equiv 1 \pmod{b}$,即求 ax + by = 1 的解中 x 的最小正整数值,有解条件是 $\gcd(a, b) = 1$

```
11 exgcd(11 a,11 b,11 &x,11 &y){
1
      if(!b){x=1;y=0;return a;}
2
      11 g=exgcd(b,a\%b,y,x);y==a/b*x;
3
      return g;
4
5
  }
  void solve(ll a,ll b,ll c){// 求解不定方程 ax+by = c
6
      11 x,y; 11 g=exgcd(a,b,x,y);
7
      if(c%g!=0){}//无解
8
```

```
9 a/=g;b/=g;c/=g;x*=c;y*=c;
10 ll minx=x%b+(x%b<=0)*b,maxy=(c-a*minx)/b;// x最小正整数解,y最大正整数解
11 miny=y%a+(y%a<=0)*a,maxx=(c-b*miny)/a;// y最小正整数解,x最大正整数解
12 if(maxy<=0){}//没有x,y均为正整数的解
13 else{}//正整数解有cnt=(maxx-minx)/b+1个,minx+k*b,maxy-k*a,0<=k<cnt
14 }
```

1.5 整除分块

 $\lfloor \frac{n}{r} \rfloor$ 的取值有 $2\sqrt{n}$ 种

```
for(ll l=1,r;l<=n;l=r+1){//0(n根号n)
ll t=n/l;r=n/t;//对n和m同步整除分块时,r=min(n/(n/l),m/(m/l));
//任意i属于[l,r],n/i==t
}
```

1.6 快速幂、费马小定理

费马小定理: $a^{p-1} \equiv 1 \pmod{p}$

```
1
  11 qpow(11 a,11 b){
2
      ll s=1;
      for(;b;b>>=1){
3
           if(b&a)s=s*a%mod;
4
           a=a*a%mod;
5
6
       }
7
       return s;
8
  ll inva = qpow(a,mod-2);//a的逆元
```

1.7 线性递推逆元

```
int inv[N];
void invwork(){//递推逆元
    inv[1]=1;
for(int i=2;i<N;++i){
    inv[i]=(1ll*mod-mod/i)*inv[mod%i]%mod;
}
</pre>
```

```
3
        return fac[n]*ifac[m]%mod*ifac[n-m]%mod;
4
   }
5
   int main(){
6
       fac[0]=ifac[0]=1;
        for(int i=1;i<N;++i)fac[i]=fac[i-1]*i%mod;</pre>
7
8
        ifac[N-1]=qpow(fac[N-1], mod-2);
        for(int i=N-2;i;--i)ifac[i]=ifac[i+1]*(i+1)%mod;
9
10
        for(int i=1;i<N;++i)inv[i]=ifac[i]*fac[i-1]%mod;</pre>
11
   }
```

1.8 欧拉定理/欧拉降幂

欧拉定理: 对任意 $a\in\mathbb{Z}, m\in\mathbb{N}^+$,若 $\gcd(a,m)=1$,则 $a^{\varphi(m)}\equiv 1\pmod m$ 欧拉降幂:

$$a^{b} \equiv \begin{cases} a^{b \mod \varphi(m)}, \gcd(a, m) = 1 \\ a^{b}, \gcd(a, m) \neq 1 \land b < \varphi(m) \\ a^{b \mod \varphi(m) + \varphi(m)}, \gcd(a, m) \neq 1 \land b \geq \varphi(m) \end{cases}$$
 (mod m)

注意当 $\gcd(a,m)=1 \land b < \varphi(m)$ 时, $a^b \not\equiv a^b \mod \varphi(m) + \varphi(m)$, (a=2,b=1,m=4) 求 $a^{a^{a^{--a}}} \pmod p$ (无限个 a)

```
11 qpow(11 a,11 b,11 mod){
1
2
       11 s=1;
        for(;b;b>>=1){
3
4
            if(b&1)s=s*a\%mod;
            a=a*a%mod;
5
6
        }
7
        return s;
8
   11 f(ll a,int mod){
9
        if(mod==1)return 0;
10
        return qpow(a,f(a,phi[mod])+phi[mod],mod);
11
12
   }
```

1.9 狄利克雷卷积, 莫比乌斯反演

```
狄利克雷卷积: 若 h 为 f 和 g 的狄利克雷卷积,记作 h=f*g,则 h(n)=\sum_{d\mid n}f(d)g(\frac{n}{d}) 莫比乌斯反演:若 f=g*1\iff g=f*\mu 常见狄利克雷卷积公式:\varepsilon=\mu*1,id=\varphi*1,\mu*id=\varphi 例题,保证 n\leq m
```

1.
$$\sum_{i=1}^{n} \gcd(i, n) = \sum_{g|n} g \sum_{i=1}^{\frac{n}{g}} [\gcd(i, \frac{n}{g}) = 1] = \sum_{g|n} g \varphi(\frac{n}{g})$$

$$2. \sum_{i=1}^{n} \mathrm{lcm}(i,n) = \sum_{i=1}^{n} \frac{in}{\gcd(i,n)} = \sum_{g|n} \sum_{i=1}^{n} \frac{in}{g} [\gcd(i,n) = g] = \sum_{g|n} \sum_{i=1}^{\frac{n}{g}} in [\gcd(i,\frac{n}{g}) = 1] = n \sum_{g|n} \sum_{i=1}^{g} i [\gcd(i,g) = 1]$$
 其中
$$\sum_{i=1}^{n} i [\gcd(i,n) = 1] = \sum_{i=1}^{n} i \sum_{d|\gcd(i,n)} \mu(d) = \sum_{d|n} d\mu(d) \sum_{i=1}^{\frac{n}{d}} i = \sum_{d|n} d\mu(d) \frac{1}{2} (\frac{n}{d} + \frac{n^2}{d^2}) = \frac{n\varepsilon(n) + n\varphi(n)}{2}$$
 进而得到
$$n \sum_{g|n} \sum_{i=1}^{g} i [\gcd(i,g) = 1] = n \sum_{g|n} \frac{\varepsilon(g) + g\varphi(g)}{2}$$

$$3, \sum_{i=1}^{n} \sum_{j=1}^{m} [\gcd(i,j) = 1] = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{\substack{d \mid \gcd(i,j)}} \mu(d) = \sum_{d=1}^{n} \mu(d) \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$$

$$4. \sum_{i=1}^{n} \sum_{j=1}^{m} \gcd(i,j) = \sum_{g=1}^{n} g \sum_{i=1}^{n} \sum_{j=1}^{m} [\gcd(i,j) = g] = \sum_{g=1}^{n} g \sum_{i=1}^{\lfloor \frac{n}{g} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{g} \rfloor} [\gcd(i,j) = 1]$$

$$= \sum_{g=1}^{n} g \sum_{i=1}^{\lfloor \frac{n}{g} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{g} \rfloor} \sum_{d|\gcd(i,j)} \mu(d) = \sum_{g=1}^{n} g \sum_{d=1}^{\lfloor \frac{n}{g} \rfloor} \mu(d) \lfloor \frac{n}{gd} \rfloor \lfloor \frac{m}{gd} \rfloor$$

$$= (T = gd) \sum_{T=1}^{n} \lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor \sum_{g|T} g\mu(\frac{T}{g}) = \sum_{T=1}^{n} \lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor \varphi(T)$$

$$5 \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{lcm}(i,j) = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{ij}{\gcd(i,j)} = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{g=1}^{min(i,j)} \frac{ij}{g} [\gcd(i,j) = g]$$

$$= \sum_{g=1}^{n} \sum_{i=1}^{\lfloor \frac{n}{g} \rfloor} \lfloor \frac{m}{g} \rfloor ijg [\gcd(i,j) = 1] \qquad (原先的 i,j 被替换为枚举 g 的 i,j 倍)$$

$$= \sum_{g=1}^{n} \sum_{i=1}^{\lfloor \frac{n}{g} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{g} \rfloor} ijg \sum_{d \mid \gcd(i,j)} \mu(d) = \sum_{g=1}^{n} g \sum_{d=1}^{\lfloor \frac{n}{g} \rfloor} \mu(d) d^{2} \sum_{i=1}^{\lfloor \frac{n}{g} d \rfloor} i \sum_{j=1}^{\lfloor \frac{m}{g} d \rfloor} j$$

$$= (T = gd, f(n) = \frac{n(n+1)}{2}) \sum_{g=1}^{n} g \sum_{d=1}^{\lfloor \frac{n}{g} \rfloor} \mu(d) d^{2} f(\lfloor \frac{n}{T} \rfloor) f(\lfloor \frac{m}{T} \rfloor)$$

$$= \sum_{T=1}^{n} f(\lfloor \frac{n}{T} \rfloor) f(\lfloor \frac{m}{T} \rfloor) \sum_{g \mid T} g \mu(\frac{T}{g}) (\frac{T}{g})^{2} = \sum_{T=1}^{n} f(\lfloor \frac{n}{T} \rfloor) f(\lfloor \frac{m}{T} \rfloor) \sum_{d \mid T} d\mu(d) T$$

$$6 \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} [\gcd(i,j)]$$
是质数]
$$= \sum_{p \in \mathbb{P}} \sum_{i=1}^{n} \sum_{j=1}^{m} [\gcd(i,j)] = p] = \sum_{p \in \mathbb{P}} \sum_{i=1}^{n} \sum_{j=1}^{m} [\gcd(i,j)] = 1]$$

$$= \sum_{p \in \mathbb{P}} \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d \mid \gcd(i,j)} \mu(d) = \sum_{p \in \mathbb{P}} \sum_{d=1}^{n} \mu(d) \lfloor \frac{n}{pd} \rfloor \lfloor \frac{m}{pd} \rfloor$$

$$= (\diamondsuit T = pd) \sum_{p \in \mathbb{P}} \sum_{d=1}^{n} \mu(d) \lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor = \sum_{T=1}^{n} \lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor \sum_{p \mid T, p \in \mathbb{P}} \mu(\frac{T}{p})$$

7、
$$d(n) = n$$
 的约数个数, $d(ij) = \sum_{x|i} \sum_{y|j} [\gcd(i,j) = 1]$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} d(ij) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{x|i} \sum_{y|j} [\gcd(i,j) = 1] = \sum_{i=1}^{n} \sum_{j=1}^{m} \lfloor \frac{n}{i} \rfloor \lfloor \frac{m}{j} \rfloor [\gcd(i,j) = 1] \quad (xy 提到前面, 再把 xy 写成 ij)$$

 $=\sum_{i=1}^n\sum_{j=1}^m\lfloor\tfrac{n}{i}\rfloor\lfloor\tfrac{m}{j}\rfloor\sum_{d\mid\gcd(i,j)}\mu(d)=\sum_{d=1}^n\mu(d)\sum_{i=1}^{\lfloor\tfrac{n}{d}\rfloor}\lfloor\tfrac{n}{id}\rfloor\sum_{j=1}^{\lfloor\tfrac{m}{d}\rfloor}\lfloor\tfrac{m}{jd}\rfloor\ \ \text{预处理}\ \sum_{i=1}^n\lfloor\tfrac{n}{i}\rfloor,\ \text{对}\ \mu\ \text{求前缀和,}\ \text{对}\ n\ m\ \text{整除分块}$

1.10 中国剩余定理

```
\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \dots \\ x \equiv a_n \pmod{m_n} \end{cases}
```

保证 m_i, m_j 两两互质,设 $s = \prod_{i=1}^n m_i$ 解为 $x = (\sum a_i * \frac{s}{m_i} * (\frac{1}{\frac{s}{m_i}} \pmod{m_i})) \mod s$

```
1 typedef __int128 ll;//可能会爆ll
2 11 n,m[15],a[15],s;
3 11 ans;
   void exgcd(ll a,ll b,ll &x,ll &y){
5
       if(!b)x=1,y=0;
       else exgcd(b,a%b,y,x),y-=a/b*x;
6
7
   }
8
   int main(){
9
       cin>>n;s=1;
10
       for(int i=1;i<=n;++i){</pre>
           cin>>m[i]>>a[i];
11
           s*=m[i];//需要保证m[i]之积在__int128范围之内
12
13
       for(int i=1;i<=n;++i){</pre>
14
           11 x,y,t=s/m[i];
15
           exgcd(t,m[i],x,y);
16
           x=(x+m[i])%m[i];
17
18
           ans+=a[i]*t*x;
19
20
       printf("%11d",ans%s);
21
   }
```

扩展中国剩余定理:

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \dots \\ x \equiv a_n \pmod{m_n} \end{cases}$$

```
不保证 m_i, m_i 两两互质
       设 lcm_i = lcm(m_1, m_2...m_i), ans_i = 方程 1 \sim i 的解
       方程 1 \sim i - 1 的通解为 ans_{i-1} + t * lcm_{i-1}
       解同余方程 ans_{i-1} + t * lcm_{i-1} \equiv a_i \pmod{m_i}
       \mathbb{P} lcm_{i-1} * t + m_i * k = a_i - ans_{i-1}
       若该同余方程无解,则原问题无解,反之用 exgcd 求解出 t
       递推式 ans_i = ans_{i-1} + t \times lcm_{i-1}
   int n; l1 m[N],a[N];
1
2
    __int128 exgcd(__int128 a,__int128 b,__int128 &x,__int128 &y){
        if(!b){x=1;y=0;return a;}
3
        __int128 g=exgcd(b,a%b,y,x);y-=a/b*x;
4
        return g;
5
6
   }
   11 excrt(){
7
8
        __int128 lcm=m[1],ans=a[1],x,y;
        for(int i=2;i<=n;++i){</pre>
9
             __int128 g=exgcd(lcm,m[i],x,y);
10
             if((a[i]-ans)%g)return -1;
11
12
             x*=(a[i]-ans)/g;
             ans+=x*lcm;
13
             lcm=lcm/g*m[i];
14
             ans%=1cm;
15
16
        }
        return (ans%lcm+lcm)%lcm;
17
18
   int main(){
19
        scanf("%d",&n);for(int i=1;i<=n;++i)scanf("%lld%lld",&m[i],&a[i]);</pre>
20
        printf("%lld",excrt());
21
22
   }
```

1.11 BSGS/exBSGS

在 $O(\sqrt{\varphi(p)})$ 的时间复杂度内求 $a^x \equiv b \pmod{p}$

```
1  ll qpow(ll a,ll b,ll p){
2     ll s=1;
3     for(;b;b>>=1){
4         if(b&1)s=s*a%p;
5         a=a*a%p;
6     }
7    return s;
8 }
```

```
9
   11 bsgs(ll a, ll b, ll p){//p是质数,求a^x=b(mod p)最小自然数x
10
       unordered_map<11,11>mp;
11
       b%=p; ll t=sqrt(p)+1;
       for(ll i=1;i<=t;++i){</pre>
12
           b=b*a%p;
13
14
           mp[b]=i;
15
       }
16
       a=qpow(a,t,p);
17
       if(!a)return b==0?1:-1;
18
       11 f=1;
19
       for(ll i=1;i<=t;++i){</pre>
           f=f*a%p;
20
           int j=mp.find(f)==mp.end()?-1:mp[f];
21
22
           if(j>=0&&i*t-j>=0)return i*t-j;
23
       }
       return -1;// 无解
24
25
   //---exBSGS
26
27
   11 exgcd(ll a, ll b, ll &x, ll &y){
       if(!b){x=1;y=0;return a;}
28
29
       11 g=exgcd(b,a%b,x,y);
30
       11 t=x; x=y; y=t-a/b*y;
31
       return g;
32
   }
33
   ll exbsgs(ll a,ll b,ll p) {// a^x=b(mod p)最小自然数x
       if(b==1||p==1)return 0;
34
       b%=p;ll f=1;
35
       for (int i = 0; i < 30; i++) {
36
            if(f==b)return i;
37
           f=f*a%p;
38
       }
39
       11 x,y;
40
41
       11 g=exgcd(f,p,x,y);
42
       if(x<0)x+=p;
       if(b%g)return -1;
43
       f/=g,b/=g,p/=g;
44
       b=b*x%p;
45
46
       11 ret=bsgs(a,b,p);
       return ~ret?ret+30:-1;//-1表示无解
47
48
   }
```

1.12 原根

```
const int N=1e6+6;
1
int p[N],hp,lpf[N],phi[N];
3 bool vis[N],hasrt[N];
   void sieve(int n){
4
5
        for(int i=2;i<=n;++i){</pre>
6
            if(!vis[i])p[++hp]=i,lpf[i]=i,phi[i]=i-1;
            for(int j=1;j<=hp&&i*p[j]<=n;++j){</pre>
7
8
                 int x=i*p[j];
9
                vis[x]=1;
10
                lpf[x]=p[j];
                 if(i%p[j]==0){
11
12
                     phi[x]=phi[i]*p[j];
13
                     break;
14
15
                 phi[x]=phi[i]*(p[j]-1);
16
            }
17
        }
        hasrt[2]=hasrt[4]=1;
18
        for(int i=2;i<=hp;++i){</pre>
19
            for(ll x=p[i];x<=n;x*=p[i]){</pre>
20
21
                 hasrt[x]=1;
                 if(x<<1<=n)hasrt[x<<1]=1;
22
23
            }
24
        }
25
   vector<int> factorize(int n){// n很大可以考虑用Pollar-Rho
26
27
        vector<int>v;
28
        while(n>1){
29
            int t=lpf[n];
```

```
30
           while(n%t==0)n/=t;
31
           v.push_back(t);
32
       }
33
       return v;
34
   11 qpow(11 a,11 b,const int mod){
35
36
       11 s=1;
37
       for(;b;b>>=1){
38
           if(b&1)s=s*a\%mod;
39
           a=a*a\%mod;
40
       }
41
       return s;
42
   }
   int min_rt(int n) {// 求n最小原根,不存在返回-1 0(pow(n,0.25) logn)
43
       if(!hasrt[n]) return -1;
44
45
       auto v=factorize(phi[n]);
       for(int i=1;i<n;++i){</pre>
46
           if(__gcd(i,n)!=1)continue;
47
48
           bool f=1;
           for(auto p:v)if(qpow(i,phi[n]/p,n)==1){f=0;break;}
49
           if(f) return i;
50
51
       }
52
       return -1;
53
   vector<int> all_rt(int n) { // 求所有原根 nlogn
54
       int g=min_rt(n); vector<int>ans;
55
56
       if (g==-1) return \{\};
57
       for (int i=1,t=1;i<=phi[n];++i) {</pre>
           t=111*t*g%n;
58
59
           if(__gcd(i,phi[n])==1)ans.push_back(t);
60
       }
       sort(ans.begin(),ans.end());//ans无序,考虑是否排序
61
       return ans;
62
63
   vector<int> quick_all_rt(int n){// 快速求所有原根 O(n log(log(log(n))) )
64
       int g=min_rt(n);
65
       if (g==-1) return {};
66
67
       vector<int>v=factorize(phi[n]),ans;
68
       static bool vis[N], ok[N];// 不用清空
69
       for(int p:v)for(int i=p;i<=phi[n];i+=p)vis[i]=1;</pre>
70
       for (int i=1,t=1;i<=phi[n];++i){</pre>
```

```
t=1ll*t*g%n;
if(!vis[i])ok[t]=1;
vis[i]=0;

for(int i=1;i<n;++i)if(ok[i])ans.push_back(i),ok[i]=0;
return ans;
}</pre>
```

1.13 Lucas 定理

$$C_n^m \equiv C_{n\%p}^{m\%p} C_{\lfloor \frac{n}{p} \rfloor}^{\lfloor \frac{m}{p} \rfloor} \pmod{p}$$

```
1 11 C(11 n,11 m){//要预处理1~mod的阶乘
2    return fac[n]*ifac[m]%mod*ifac[n-m]%mod;
3 }
4 11 lucas(11 n,11 m){//C(n,m)%mod
    if(!m)return 1;
6    return C(n%mod,m%mod)*lucas(n/mod,m/mod)%mod;
7 }
```

1.14 杜教筛

```
在 O(n^{3/4}) 时间复杂度内求积性函数前缀和 \sum_{i=1}^n f(i) = S(n) 构造一个积性函数 g,使得 f*g 的前缀和很好求 根据 \sum_{i=1}^n (f*g)(i) = \sum_{i=1}^n \sum_{d \mid i} f(d)g(\frac{i}{d}) = \sum_{d=1}^n g(d)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} f(i) = \sum_{d=1}^n g(d)S(\lfloor \frac{n}{d} \rfloor) 得到: g(1)S(n) = \sum_{i=1}^n g(i)S(\lfloor \frac{n}{i} \rfloor) - \sum_{i=1}^n g(i)S(\lfloor \frac{n}{i} \rfloor) = \sum_{i=1}^n (f*g)(i) - \sum_{i=1}^n g(i)S(\lfloor \frac{n}{i} \rfloor)
```

```
ll getS(int n){// 求g(1)S(n) 通常g(1)=1
1
2
      if(n<=N)return sum[n];//N以内线性筛
      if(mp.count(n))return mp[n];//N以外unordered_map记忆化
3
      11 ans=f_g_sum(n);//f*g的前缀和要能O(1)算出
4
      for(int l=2,r;l<=n;l=r+1){//注意1从2开始
5
          int t=n/l; r=n/t;
6
7
          ans-=(sumg(r)-sumg(l-1))*getS(t);//sum(g)=g的前缀和要能O(1)算出
8
      }
      return mp[n]=ans; // 记忆化
9
10
```

```
求 \sum_{i=1}^{n} \varphi(i),需要构造 g(n) = 1(n) = 1, \varphi * 1 = id 求 \sum_{i=1}^{n} \mu(i),需要构造 g(n) = 1(n) = 1, \mu * 1 = \varepsilon 求 \sum_{i=1}^{n} i^2 \varphi(i),需要构造 g(n) = n^2, (f * g)(n) = \sum_{d \mid n} d^2 \varphi(d)(\frac{n}{d})^2 = n^2 \sum_{d \mid n} \varphi(d) = n^3
```

```
const int N=2e6;//N > pow(maxn,2.0/3)
2 int p[N+5],hp;
3 bool vis[N+5];
   11 phi[N+5], mu[N+5];
4
5
   void seive(){
        phi[1]=1; mu[1]=1;
6
7
        for(int i=2;i<=N;++i){</pre>
8
             if(!vis[i]){
                 p[++hp]=i;
9
                 mu[i]=-1;
10
                  phi[i]=i-1;
11
12
             }
             for(int j=1;j<=hp&&i*p[j]<=N;++j){</pre>
13
                 vis[i*p[j]]=1;
14
                 if(i%p[j]==0){
15
16
                      phi[i*p[j]]=phi[i]*p[j];
                      break;
17
18
                 }
19
                  phi[i*p[j]]=phi[i]*(p[j]-1);
                 mu[i*p[j]]=-mu[i];
20
21
             }
22
        }
23
   }
24
    unordered_map<int,ll>mp_phi,mp_mu;
25
    11 sumphi(ll n){
        if(n<=N)return phi[n];</pre>
26
27
        if(mp_phi.count(n))return mp_phi[n];
28
        ll ans=n*(n+1)/2;
        for(ll l=2,r;l<=n;l=r+1){</pre>
29
             11 t=n/1;r=n/t;
30
             ans -=(r-l+1)*sumphi(t);
31
32
        }
        return mp_phi[n]=ans;
33
34
   }
35
    11 \quad summu(11 \quad n){
        if(n<=N)return mu[n];</pre>
36
```

```
37
        if(mp_mu.count(n))return mp_mu[n];
38
        ll ans=1;
39
        for(ll l=2,r;l<=n;l=r+1){</pre>
40
             11 t=n/1;r=n/t;
             ans -=(r-l+1)*summu(t);
41
42
        return mp_mu[n]=ans;
43
44
   int main(){
45
        seive();
46
        for(int i=1;i<=N;++i){</pre>
47
             phi[i]+=phi[i-1];
48
            mu[i]+=mu[i-1];
49
50
        }
        int T; scanf("%d",&T);
51
        while(T--){
52
             11 n; scanf("%11d",&n);
53
             printf("%lld %lld\n",sumphi(n),summu(n));
54
55
        }
56
   }
```

Min25 筛

```
用于在 O(\frac{n^{\frac{3}{4}}}{loan}) 时间复杂度内求 f 的前缀和,要求:
```

- 1、f 是积性函数, f(1) = 1, gcd(x, y) = 1 时, f(xy) = f(x)f(y)
- $2 \cdot f(p^k)$ 可以被表示为项数较小的多项式,如 $f(p^k) = p^k(p^k 1)$,对于有常系数的多项式 f(p) = k, $f(p) = kp^2$, 需要化为常系数为 1 的 f(p) = 1, $f(p) = p^2$, 求和后再乘以常数 k
 - 3、 $f(p^k)$ 可以快速求值,如 $\varphi(p^k) = (p-1)p^{k-1}$
 - 4、也可以筛 $\sum_{n\in\mathbb{P}} f(p)$,或者质数贡献方式特殊的函数,如 f(n) = n 的次大质因子

这里令 $\mathbb{P}=[1,n]$ 的质数集合, $\mathbb{P}'=[1,\sqrt{n}]$ 的质数集合, $LPF_i=i$ 的最小质因子, $p_i=$ 第 i 小质数

$$\sum_{i=1}^n f(i) = \sum_{p \in \mathbb{P}}^n f(p) + \sum_{i \notin \mathbb{P}}^n f(i) = \sum_{p \in \mathbb{P}}^n f(p) + \sum_{p \in \mathbb{P}}^{n} \sum_{c=1}^{p^c \le n} f(p^c) \sum_{i=1, LPF_i > p}^{\lfloor \frac{n}{p^c} \rfloor} f(i)$$

一、求质数部分

对某个单项式 $f(p)=p^2$,构造完全积性函数 F, F 和 f 在质数处取值相同,在合数处可能不同

设
$$g(n,j)=\sum\limits_{i=2}^n F(i)[i\in P\lor LPF_i>p_j]$$
,则 $g(n,|\mathbb{P}'|)=\sum\limits_{p\in\mathbb{P}}^n f(p)$

 $g(n,j) = g(n,j-1) - F(p_j)[g(\lfloor \frac{n}{p_j} \rfloor, j-1) - g(p_{j-1}, j-1)]$, 需要的值一定是 $g(\lfloor \frac{n}{x} \rfloor, j)$ 形式

 $|\frac{n}{x}|$ 的取值一共 $2\sqrt{n}$ 种,给每个 $|\frac{n}{x}|$ 一个下标,建立映射 $|\frac{n}{x}| \to index_{\lfloor \frac{n}{x} \rfloor}$

若 $\lfloor \frac{n}{x} \rfloor \leq \sqrt{n}$,则 $idx1[\lfloor \frac{n}{x} \rfloor] = index_{\lfloor \frac{n}{x} \rfloor}$;反之, $idx2[\lfloor \frac{n}{\lfloor \frac{n}{2} \rfloor} \rfloor] = index_{\lfloor \frac{n}{x} \rfloor}$

二、求质数 + 合数

设
$$S(n,j) = \sum_{i=2}^{n} f(i)[LPF_i > p_j]$$
,则 $S(n,0) + f(1)$ 即为所求 $\sum_{i=1}^{n} f(i)$

```
S(n,j) 的质数部分 g(n,|\mathbb{P}'|) - \sum_{i=1}^{j} f(p_i) S(n,j) 的合数部分 \sum_{p_k^c \leq n \wedge k > j} f(p_k^c)[S(\lfloor \frac{n}{p_k^c} \rfloor, k) + [c \neq 1]],递归求解总结: 线性筛 \sqrt{n} 以内质数,以及质数前缀和 sump[i] = \sum_{j=1}^{i} f(p_i) 递推出 g[index_{\lfloor \frac{n}{x} \rfloor}] = g(\lfloor \frac{n}{x} \rfloor, |\mathbb{P}'|),递归求解 S(n,0) + f(1)
```

```
const int N=1e6+5, mod=1e9+7; //N > 2sqrt(n)
2 11 f(11 pk){return pk*(pk-1)%mod;}//f(pk)=pk(pk-1)=F2(pk)-F1(pk)
3 11 F1(11 pk){return pk;}
4 11 F2(11 pk){return pk*pk%mod;}
   ll sumF1(ll n){return n*(n+1)/2\%mod-1;}//F1(2)+F1(3)+...+F1(n)
6 ll sumF2(ll n){return n_*(n+1)/2_* int128(2*n+1)/3%mod-1;}
   ll n, sqrtn, w[N]; //w[k] = kth floor(n/x)
   int idx1[N], idx2[N], tot; //idx1[n/x] = index(n/x), idx2[n/(n/x)] = index(n/x)
   11 g1[N],g2[N];//g1[i]=sigma[isprime(p)&&p<=i] F1(p)</pre>
   ll sump1[N], sump2[N]; // sump1[i]=F1(p[1])+F1(p[2])+...+F1(p[i])
10
   int p[N],hp;bool vis[N];
11
   void sieve(int n){
12
        for(int i=2;i<=n;++i){</pre>
13
            if(!vis[i])p[++hp]=i;
14
15
            for(int j=1;j<=hp&&i*p[j]<=n;++j){</pre>
16
                vis[i*p[j]]=1;if(i%p[j]==0)break;
17
            }
18
        }
19
        for(int i=1;i<=hp;++i){</pre>
20
            sump1[i]=(sump1[i-1]+F1(p[i]))%mod;
21
            sump2[i]=(sump2[i-1]+F2(p[i]))%mod;
22
        }
23
   11 S(11 x, int y){
24
25
        if(p[y]>=x)return 0;
26
        int k=x<=sqrtn?idx1[x]:idx2[n/x];</pre>
27
        11 s=(g2[k]-sump2[y])-(g1[k]-sump1[y]);
        for(int i=y+1;i<=hp&&1ll*p[i]*p[i]<=x;++i){</pre>
28
29
            for(ll pc=p[i],c=1;pc<=x;++c,pc*=p[i]){</pre>
                 s+=f(pc\%mod)*(S(x/pc,i)+(c!=1)); s\%=mod;
30
31
            }
32
        }
33
        return s;
34
   ll min25(ll n1){//f(1)+f(2)+...+f(n)}
35
```

```
36
        n=n1; sqrtn=sqrt(n)+1; tot=0;
37
        for(ll l=1,r;l<=n;l=r+1){</pre>
38
            11 t=n/l,x=t%mod; r=n/t; w[++tot]=t;
39
            g1[tot]=sumF1(x); g2[tot]=sumF2(x);
            if(w[tot]<=sqrtn)idx1[w[tot]]=tot;</pre>
40
            else idx2[n/w[tot]]=tot;
41
42
        }
43
        for(int i=1;i<=hp;++i){</pre>
            for(int j=1;j<=tot&&1ll*p[i]*p[i]<=w[j];++j){</pre>
44
                ll x=w[j]/p[i]; int k=x<=sqrtn?idx1[x]:idx2[n/x];
45
                g1[j]-=F1(p[i])*(g1[k]-sump1[i-1]); g1[j]%=mod;
46
                g2[j]-=F2(p[i])*(g2[k]-sump2[i-1]); g2[j]%=mod;
47
48
            }
49
        }
50
        11 ans=S(n,0)+1;//S(n,0)=f(2)+f(3)+...+f(n)
        ans=(ans%mod+mod)%mod;
51
        return ans;
52
53
54
   int main(){
        sieve(1000000);
55
        11 n;cin>>n;ll ans=min25(n);
56
57
   }
```

1.16 二次剩余

p =奇素数,已知 n,求 $x^2 \equiv n \pmod{p}$,时间复杂度 $O(\log p)$

```
using 11 = long long;
1
   struct cp {
2
3
       static int mod;
4
       static ll wp;
       11 x, y; // x:real y:imaginary
5
       cp(11 a = 0, 11 b = 0) : x(a), y(b) {}
6
7
       cp operator *(cp c) {
8
           11 a = (x * c.x + y * c.y \% mod * wp) \% mod;
9
           if (a < 0) a += mod;
           11 b = (x * c.y + y * c.x) \% mod;
10
           if (b < 0) b += mod;
11
12
           return cp(a, b);
13
       }
14
   };
15 int cp::mod;
```

```
16 11 cp::wp;
   ll cipolla(ll n, int p) { // x*x%p=n, 返回x,另一个解是-x
17
18
       cp::mod = p;
19
       11 \& w = cp::wp;
       auto qpowCP = [\&](cp a, ll b) {
20
21
           cp s(1, 0);
22
           for (; b; b >>= 1) {
                if (b \& 1)s = s * a;
23
24
                a = a * a;
25
           }
26
           return s.x;
27
       };
28
       auto qpow = [&](11 a, 11 b) {
29
           11 s = 1;
30
           for (; b; b >>= 1) {
                if (b \& 1) s = s * a % p;
31
32
                a = a * a % p;
33
           }
34
           return s;
35
       };
       n \% = p;
36
37
       if (qpow(n, p - 1 >> 1) == p - 1) return -1;
38
       11 a;
39
       while (1) {
40
           a = rand() \% p;
           w = (a * a - n) % p;
41
           if (w < 0) w += p;
42
43
           if (qpow(w, p - 1 >> 1) == p - 1) break;
44
45
       return qpowCP(cp(a, 1), p + 1 >> 1);
46
   int main() {
47
48
       srand(time(0)); int n, mod;
       scanf("%d%d", &n, &mod);
49
       if (!n) { puts("0"); return 0; }
50
       11 ans1 = cipolla(n, mod), ans2 = mod - ans1;
51
52
       if (ans1 == -1) puts("no answer!");
53
       else {
           if (ans1 > ans2) swap(ans1, ans2);
54
           if (ans1 == ans2) printf("%lld\n", ans1);
55
56
            else printf("%lld %lld\n", ans1, ans2);
```

```
57 }
58 }
```

1.17 Pollar-Rho

```
typedef long long 11;
1
2 typedef unsigned long long ull;
3 typedef long double db;
4 const int prime[]={2,3,5,7,11,13,17,19,23,29,31,37};
5 11 p[105];int hp;
6 mt19937_64 rnd(19260817);
7
  ull add(ull x,ull y,ull mod){return x+y>=mod?x+y-mod:x+y;}
   ull mul(ull x,ull y,ull mod){//x*y%mod,模数很大时可以溢出,不会出错
8
9
       ll s=x*y-ull(db(1)/mod*x*y)*mod;
10
       return s<0?s+=mod:(s>=mod?s-=mod:s);
11
   }
12
   11 qpow(11 a,11 b,const 11 mod){
13
       11 s=1;
14
       while(b){
           if(b&1)s=mul(s,a,mod);
15
           a=mul(a,a,mod);
16
17
           b>>=1;
       }
18
19
       return s;
20
   }
21
   bool check(11 p,11 n){
22
       int k=0;11 d=n-1,x,s;
23
       while(d&1^1)d>>=1,++k;
24
       x=qpow(p,d,n);
       while(k){
25
           s=mul(x,x,n);
26
27
           if(s==1)return x==1 | |x==n-1;
           --k;x=s;
28
29
       }
30
       return false;
31
   bool miller_rabin(ll n){
32
33
       for (int i=0; i<12; ++i){
34
           if (n==prime[i]) return true;
           if (!(n%prime[i])) return false;
35
           if (!check(prime[i],n)) return false;
36
```

```
37
38
        return true;
39
   }
40
   11 gcd(ll a,ll b){
        if(!a)return b;if(!b)return a;
41
42
        int t=__builtin_ctzll(a|b);
        a>>=__builtin_ctzll(a);
43
44
        do{
            b>>=__builtin_ctzll(b);
45
46
            if(a>b)swap(a,b);
            b-=a;
47
        }while (b);
48
        return a<<t;
49
50
   #define stp(x) (add(mul(x,x,n),r,n))
51
   11 find_div(ll n){
52
        if(n&1^1) return 2;
53
        static const int S=128;
54
55
        11 x=rnd()%n,r=rnd()%(n-1)+1;
        for(int l=1;;l<<=1){</pre>
56
57
            11 y=x,p=1;
            for(int i=0;i<1;i++) x=stp(x);</pre>
58
            for(int i=0;i<1;i+=S){</pre>
59
60
                 11 z=x;
                 for(int j=0;j<S&&j<l-i;++j)x=stp(x),p=mul(p,x+n-y,n);</pre>
61
62
                 p=gcd(p,n);
                 if(p==1)continue;
63
                 if(p<n)return p;</pre>
64
                 for (p=1,x=z;p==1;)x=stp(x),p=gcd(x+n-y,n);
65
66
                 return p;
67
            }
        }
68
69
70
   void pollar_rho(ll n){
71
        if(n==1) return;
72
        if(miller_rabin(n)) {
73
            p[++hp]=n; return;
74
        }
        11 d=n;
75
76
        while(d==n)d=find_div(n);
77
        pollar_rho(d);
```

```
78  pollar_rho(n/d);
79 }
80  int main(){
81    ll n;scanf("%lld",&n);
82    hp=0;pollar_rho(n);//p[1~hp]为质因数
83 }
```

2 多项式

2.1 快速傅里叶变换 FFT

单位根:
$$\omega_n^n = 1, \omega_n = \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}, \omega_n^k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, \omega_n^{k+\frac{n}{2}} = \omega_n^{-k}, \omega_{an}^{ak} = \omega_n^k$$
DFT(离散傅里叶变换): 保证 $n = 2^s$

$$A(x) = a_0x^0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_{n-1}x^{n-1}$$
令 $A_0(x) = a_0 + a_2x + a_4x^2 + \dots + a_{n-1}x^{\frac{n}{2}-1}$
令 $A_1(x) = a_1 + a_3x + a_5x^2 + \dots + a_nx^{\frac{n}{2}-1}$
得 $A(x) = A_0(x^2) + xA_1(x^2)$
要求出 $A(\omega_n^0), A(\omega_n^1), A(\omega_n^2), \dots, A(\omega_n^{n-1})$

$$\begin{bmatrix} A(\omega_n^0) \\ A(\omega_n^1) \\ A(\omega_n^2) \\ \vdots \\ A(\omega_n^{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_n & \omega_n^2 & \dots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \dots & \omega_n^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \dots & \omega_n^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

根据 $A(\omega_n^k)=A_0(\omega_{\frac{n}{2}}^k)+\omega_n^kA_1(\omega_{\frac{n}{2}}^k)$, $A(\omega_n^{k+\frac{n}{2}})=A_0(\omega_{\frac{n}{2}}^k)-\omega_n^kA_1(\omega_{\frac{n}{2}}^k)$ 用蝴蝶变换递推

$A_0(\omega_n^0)$	$A_0(\omega_n^1)$	$A_0(\omega_n^2)$	$A_0(\omega_n^3)$	$A_1(\omega_n^4)$	$A_1(\omega_n^5)$	$A_1(\omega_n^6)$	$A_1(\omega_n^7)$
$A_0(\omega_n^0)$	$A_0(\omega_n^2)$	$A_1(\omega_n^4)$	$A_1(\omega_n^6)$	$A_0(\omega_n^1)$	$A_0(\omega_n^3)$	$A_1(\omega_n^5)$	$A_1(\omega_n^7)$
$A_0(\omega_n^0)$	$A_1(\omega_n^4)$	$A_0(\omega_n^2)$	$A_1(\omega_n^6)$	$A_0(\omega_n^1)$	$A_1(\omega_n^5)$	$A_0(\omega_n^3)$	$A_1(\omega_n^7)$
a_0	a_4	a_2	a_6	a_1	a_5	a_3	a_7

IDFT(离散傅里叶逆变换): 保证 $n=2^s$, 根据以下等式

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_n & \omega_n^2 & \dots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \dots & \omega_n^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \dots & \omega_n^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_n^{-1} & \omega_n^{-2} & \dots & \omega_n^{-(n-1)} \\ 1 & \omega_n^{-2} & \omega_n^{-4} & \dots & \omega_n^{-2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{-(n-1)} & \omega_n^{-2(n-1)} & \dots & \omega_n^{-(n-1)(n-1)} \end{bmatrix} = \begin{bmatrix} n & 0 & 0 & \dots & 0 \\ 0 & n & 0 & \dots & 0 \\ 0 & 0 & n & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & n \end{bmatrix}$$

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_n^{-1} & \omega_n^{-2} & \dots & \omega_n^{-(n-1)} \\ 1 & \omega_n^{-2} & \omega_n^{-4} & \dots & \omega_n^{-2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{-(n-1)} & \omega_n^{-2(n-1)} & \dots & \omega_n^{-(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} A(\omega_n^0) \\ A(\omega_n^1) \\ A(\omega_n^2) \\ \vdots \\ A(\omega_n^{n-1}) \end{bmatrix}$$

IDFT 过程同 DFT,只需把 ω_n 的次数变为相反数,最后除以 n 以下为基础 FFT,不需要抄,需要抄的是下一段

```
const int L = 1 \ll 22;
1
2 using db = double;
3 using cp = complex<db>; // complex<double> a; a.real(); a.imag();
4 using Poly = vector<complex<db>>;
5 int r[L];
   const db pi = acos(-1);
6
   void InitR(int n) { // 蝴蝶变换
7
       int k = 0;
8
       while (1 << k < n) ++k;
9
       for (int i = 0; i < n; ++i) r[i] = r[i >> 1] >> 1 | (i & 1) << k - 1;
10
11
   void FFT(Poly &a, int f) { // f=1是DFT,f=-1是IDFT
12
13
       int n = a.size();
14
       for (int i = 0; i < n; i++) {
           if (i < r[i]) swap(a[i], a[r[i]]);</pre>
15
16
       for (int k = 1; k < n; k <<= 1) {
17
           cp wn(cos(pi / k), f * sin(pi / k));
18
19
           for (int i = 0; i < n; i += k << 1) {</pre>
20
                cp w(1, 0);
21
                for (int j = 0; j < k; ++j, w = w * wn) {
                    cp t1 = a[i + j], t2 = w * a[i + j + k];
22
                    a[i + j] = t1 + t2;
23
24
                    a[i + j + k] = t1 - t2;
25
                }
           }
26
27
       if (f == -1) for (auto &x: a) x /= n;
28
29
   Poly Mul(const Poly &A, const Poly &B) {
30
       int n = 1, n1 = A.size(), n2 = B.size();
31
       while (n < n1 + n2 - 1) n <<= 1;
32
       Poly a(n), b(n);
33
```

```
34
        for (int i = 0; i < n1; ++i) a[i] = A[i];</pre>
35
        for (int i = 0; i < n2; ++i) b[i] = B[i];</pre>
36
        InitR(n), FFT(a, 1), FFT(b, 1);
37
        for (int i = 0; i < n; ++i) a[i] = a[i] * b[i];</pre>
38
        FFT(a, -1);
39
        a.resize(n1 + n2 - 1);
40
        return a;
41
   }
```

2.1.1 FFT 模板

预处理单位根: $l < 2^k : w[2^k + l] = \omega_{2^k}^l$

DFT 用 DIT (Decimation in Time, 按时域抽取) 实现, IDFT 用 DIF (Decimation in Frequency, 按频域抽取) 实现,均不需要蝴蝶变换

仅包含 FFT 部分板子, 其他多项式操作在 NTT 中

```
using db = double;
1
   const double pi = acos(-1);
2
3
   struct cp { // complex x + iy
       db x, y;
4
       cp(db \ a = 0, \ db \ b = 0) : x(a), y(b) \{ \}
5
       cp operator +(cp b) { return cp(x + b.x, y + b.y); }
6
7
       cp operator -(cp b) { return cp(x - b.x, y - b.y); }
8
       cp operator *(cp b) \{ return cp(x * b.x - y * b.y, x * b.y + y * b.x); \}
9
   };
10 using Poly = vector<cp>;
  const int L = 1 \ll 22;
11
   cp w[L];
12
   void InitPoly(int n = L) {
13
14
       w[1] = 1;
       for (int i = 2; i < n; i <<= 1) {
15
            auto w0 = w + i / 2, w1 = w + i;
16
           cp wn(cos(pi / i), sin(pi / i));
17
18
           for (int j = 0; j < i; j += 2) {
19
                w1[j] = w0[j >> 1], w1[j + 1] = w1[j] * wn;
20
           }
21
       }
22
   void DFT(Poly &a) {
23
       int n = a.size();
24
25
       for (int k = n >> 1; k; k >>= 1) {
26
            for (int i = 0; i < n; i += k << 1) {
```

```
27
                for (int j = 0; j < k; ++j) {
28
                    cp x = a[i + j], y = a[i + j + k];
29
                    a[i + j + k] = (x - y) * w[k + j], a[i + j] = x + y;
30
                }
31
            }
       }
32
33
34
   void IDFT(Poly &a) {
       int n = a.size();
35
36
       for (int k = 1; k < n; k <<= 1) {
            for (int i = 0; i < n; i += k << 1) {
37
                for (int j = 0; j < k; ++j) {
38
39
                    cp x = a[i + j], y = a[i + j + k] * w[k + j];
40
                    a[i + j + k] = x - y, a[i + j] = x + y;
                }
41
42
            }
       }
43
44
       for (int i = 0; i < n; ++i) a[i].x /= n, a[i].y /= n;
45
       reverse(a.begin() + 1, a.end());
46
   Poly operator *(const Poly &A, const Poly &B) {
47
       int n1 = A.size(), n2 = B.size(), n = 1 << __lg(n1 + n2 - 1) + 1;
48
49
       assert(n1 && n2);
50
       Poly a(n), b(n);
       for (int i = 0; i < n1; ++i) a[i] = A[i];</pre>
51
       for (int i = 0; i < n2; ++i) b[i] = B[i];
52
53
       DFT(a), DFT(b);
54
       for (int i = 0; i < n; ++i) a[i] = a[i] * b[i];</pre>
       IDFT(a);
55
56
       a.resize(n1 + n2 - 1);
57
       return a;
58
   }
```

2.1.2 三次变两次优化

令 H(x) = F(x) + G(x)i, $H^2(x) = [F^2(x) - G^2(x)] + 2F(x)G(x)i$ H 的虚部的一半即为所求,这样可以减少一次 DFT 操作,时间复杂度常数乘以 $\frac{2}{3}$,精度差一些

```
Poly Mul(const Poly &A, const Poly &B) {
int n = 1, n1 = A.size(), n2 = B.size();
while (n < n1 + n2 - 1) n <<= 1;
Poly a(n);</pre>
```

```
for (int i = 0; i < n1; ++i) a[i].x = A[i].x;</pre>
5
6
        for (int i = 0; i < n2; ++i) a[i].y = B[i].x;</pre>
7
        DFT(a);
8
        for (cp &x: a) x = x * x;
9
        IDFT(a);
10
        a.resize(n1 + n2 - 1);
11
        for (cp &x: a) x = x.y * 0.5;
12
        return a;
13
   }
```

2.1.3 拆系数 FFT

为了使得整数多项式卷积 F(x)G(x) 获得更高的精度,大约有 10^{14} ,比三模 NTT 快很多将每一项系数变为 ka+b, $k=2^{15}(\sqrt{mod})$ $F(x)=kA_1(x)_+B_1(x), G(x)=kA_2(x)+B_2(x)$ $F(x)G(x)=k^2A_1(x)A_2(x)+kA_1(x)B_2(x)+kB_1(x)A_2(x)+B_1(x)B_2(x)$

```
vector<11> MTT(const vector<int> &A, const vector<int> &B, 11 mod) {
1
2
       int n1 = A.size(), n2 = B.size(), n = 1 << __lg(n1 + n2 - 1) + 1;
3
       Poly a(n), b(n), c(n), d(n);
       for (int i = 0; i < n1; ++i) {</pre>
4
            a[i] = A[i] >> 15;
5
            b[i] = A[i] & 0x7fff;
6
7
       }
8
       for (int i = 0; i < n2; ++i) {
            c[i] = B[i] \gg 15;
9
            d[i] = B[i] & 0x7fff;
10
       }
11
       DFT(a), DFT(b), DFT(c), DFT(d);
12
13
       for (int i = 0; i < n; ++i) {</pre>
            cp ta = a[i], tb = b[i], tc = c[i], td = d[i];
14
15
            a[i] = ta * tc;
            b[i] = ta * td + tc * tb;
16
17
            c[i] = tb * td;
18
       }
19
       IDFT(a), IDFT(b), IDFT(c);
       vector<ll> ret(n1 + n2 - 1);
20
21
       for (int i = 0; i < n1 + n2 - 1; ++i) {
22
            11 x = a[i].x + 0.5;
            11 y = b[i].x + 0.5;
23
24
            11 z = c[i].x + 0.5;
25
            ret[i] = ((x \% mod << 30) + (y \% mod << 15) + z) \% mod;
```

```
26 }
27 return ret;
28 }
```

2.2 快速数论变换 NTT

```
设 g 是质数 p 的原根,n=2^i(i>0),g_n=g^{\frac{p-1}{n}} (p=r\times 2^k+1,n|p-1) g_n^n\equiv 1\pmod p, g_n^{\frac{n}{2}}\equiv g_n^{\frac{p-1}{2}}\pmod p, g_{an}^{ak}\equiv g_n^k\pmod p, (g_n^{k+\frac{n}{2}})^2\equiv g_n^{2k}\pmod p g_n 性质和复数单位根 \omega_n 类似,mod=r\times 2^k+1 可以实现 2^k-1 次多项式 NTT 原根表:g 是 mod=r\times 2^k+1 的原根
```

$g \approx mod = r \times 2 + 1 \text{ figure}$						
mod	r	k	g			
7340033	7	20	3			
23068673	11	21	3			
104857601	25	22	3			
167772161	5	25	3			
469762049	7	26	3			
998244353	119	23	3			
1004535809	479	21	3			
2281701377	17	27	3			
4179340454199820289	29	51	3			

以下部分为基础的 NTT,不需要抄,多项式板子在后面的几章

```
const i32 mod = 998244353, g = 3; // 模数,原根
1
2 const i32 gi = 332748118; // 原根逆元
3 int r[L];
   void InitR(int n) { // 蝴蝶变换
4
       int k = 0;
5
6
       while (1 << k < n) ++k;
       for (int i = 0; i < n; ++i) r[i] = r[i >> 1] >> 1 | (i & 1) << k - 1;
7
8
   }
   void NTT(Poly &a, bool f) { // f=true是DFT,f=false是IDFT
9
       int n = a.size();
10
       for (int i = 0; i < n; i++) {
11
           if (i < r[i]) swap(a[i], a[r[i]]);</pre>
12
13
       }
       for (int k = 1; k < n; k <<= 1) {
14
           i32 wn = qpow(f ? g : gi, (mod - 1) / (k << 1));
15
           for (int i = 0; i < n; i += (k << 1)) {
16
               i32 w = 1;
17
               for (int j = 0; j < k; ++j, w = mul(w, wn)) {
18
19
                   i32 x = a[i + j], y = mul(w, a[i + j + k]);
20
                   a[i + j] = add(x, y);
```

```
a[i + j + k] = add(x, mod - y);
21
22
                }
23
            }
24
       }
       i32 t = qpow(n, mod - 2);
25
       if (!f) for (i32 &x: a) x = mul(x, t);
26
27
28
   Poly Mul(const Poly &A, const Poly &B) { // 多项式乘法
29
       int n = 1, n1 = A.size(), n2 = B.size();
       while (n < n1 + n2 - 1) n <<= 1;
30
       Poly a(n), b(n);
31
       for (int i = 0; i < n1; ++i) a[i] = A[i];</pre>
32
       for (int i = 0; i < n2; ++i) b[i] = B[i];
33
       InitR(n), NTT(a, 1), NTT(b, 1);
34
35
       for (int i = 0; i < n; ++i) a[i] = mul(a[i], b[i]);</pre>
36
       NTT(a, 0);
37
       a.resize(n1 + n2 - 1);
38
       return a;
39
   }
```

2.2.1 NTT 模板

抄模板注意事项

- 1、必须保证多项式中所有值永远处于 [0, mod),或在 add 函数中考虑负数后范围变为 (-mod, mod)
- 2、main 函数开头调用 InitPoly();
- 3、若使用超过 int 范围的模数,可以将开头改为 i32=long long, i64= int128
- 4、只抄需要的函数
- 5、常量 $L=2^s$ 表示 DFT 和 IDFT 的最大范围是 [0,L-1],必须大于多项式相乘后的最高次数,通常不超过 2^{21} ,例如 n-1 次多项式和 m-1 次多项式相乘,须有 $L \ge n+m-1$

最小的满足 $L=2^s \ge n$ 的 $s=\lceil \log_2(n-1) \rceil + 1$

i	2^i	i	2^i	i	2^i
17	131072	20	1048576	23	8388608
18	262144	21	2097152	24	16777216
19	524288	22	4194304	25	33554432

```
1 using i32 = int;
2 using i64 = long long;
3 using Poly = vector<i32>;
4 const int L = 1 << 21; // 大于多项式相乘后的最大长度
5 const i32 mod = 998244353, g = 3; // 模数,原根
6 i32 w[L]; // 单位根
7 //i32 inv[L + 1]; // 逆元,仅用于积分和多项式平移</pre>
```

```
8 //i32 fac[L + 1], ifac[L + 1]; // 阶乘, 仅用于多项式平移
9 i32 add(i32 x, i32 y) { return (x += y) >= mod ? x - mod : x; }
10 | i32 mul(i64 x, i32 y) { return x * y % mod; } // 注意第一个类型是i64
11 //using ull=unsigned long long; using ll=long long;
12 //ull mul(ull x,ull y){//x*y%mod,模数大于int范围可以用这个卡常
13
  // ll s=x*y-ull((long double)1/mod*x*y)*mod;
14
   // return s<0?s+mod:(s>=mod?s-mod:s);
15
  //}
   i32 qpow(i64 a, i64 b) {
16
17
       i64 s = 1;
18
       while (b) {
19
           if (b & 1) s = s * a % mod;
20
          a = a * a % mod;
21
           b >>= 1;
22
       }
23
       return s;
24
  }
   void InitPoly(int n = L) { // main函数开始时调用一次
25
26
       w[1] = 1; // 预处理单位根
       for (int i = 2; i < n; i <<= 1) {
27
           auto w0 = w + i / 2, w1 = w + i;
28
29
           i32 wn = qpow(g, (mod - 1) / (i << 1));
30
           for (int j = 0; j < i; j += 2) {
31
               w1[j] = w0[j >> 1];
32
               w1[j + 1] = mul(w1[j], wn);
33
           }
34
       }
35
  // inv[1] = 1; // 预处理逆元,仅用于积分
   // for (int i = 2; i <= n; ++i) inv[i] = mul(mod - mod / i, <math>inv[mod \% i]);
36
37
   // fac[0] = ifac[0] = 1; // 预处理阶乘,仅用于多项式平移
  // for (int i = 1; i <= n; ++i) fac[i] = mul(fac[i - 1], i);
38
   // ifac[n] = qpow(fac[n], mod - 2);
39
   // for (int i = n - 1; i; --i) ifac[i] = mul(ifac[i + 1], i + 1);
40
41
   void DFT(Poly &v) { // 离散傅里叶变换
42
       int n = v.size();
43
       for (int k = n >> 1; k; k >>= 1) {
44
45
           for (int i = 0; i < n; i += k << 1) {</pre>
               for (int j = 0; j < k; ++j) {
46
                   i32 \times v[i + j], y = v[i + j + k];
47
48
                   v[i + j] = add(x, y);
```

```
v[i + j + k] = mul(add(x, mod - y), w[k + j]);
49
               }
50
51
           }
52
       }
53
   void IDFT(Poly &v) { // 离散傅里叶逆变换
54
       int n = v.size();
55
56
       for (int k = 1; k < n; k <<= 1) {
           for (int i = 0; i < n; i += k << 1) {
57
               for (int j = 0; j < k; ++j) {
58
                    i32 x = v[i + j], y = mul(v[i + j + k], w[k + j]);
59
60
                    v[i + j] = add(x, y);
61
                    v[i + j + k] = add(x, mod - y);
62
               }
63
           }
64
       i32 t = qpow(n, mod - 2);
65
       for (i32 &x: v) x = mul(x, t);
66
67
       reverse(v.begin() + 1, v.end());
68
   Poly operator *(const Poly &a, i32 k) { // 多项式乘以常数,只用于多项式快速幂
69
70
       Poly ret(a);
71
       for (i32 &x: ret) x = mul(x, k);
72
       return ret;
73
   Poly operator +(const Poly &a, const Poly &b) { // 多项式加法, 不用于其他函数
74
75
       if (a.size() < b.size()) return b + a;</pre>
76
       Poly c(a);
       for (int i = 0; i < b.size(); ++i) c[i] = add(c[i], b[i]);</pre>
77
78
       return c;
79
   Poly operator *(const Poly &A, const Poly &B) { // 多项式乘法
80
81
       int n1 = A.size(), n2 = B.size(), n = 1 << __lg(n1 + n2 - 1) + 1;
82
       Poly a(n), b(n);
       for (int i = 0; i < n1; ++i) a[i] = A[i];</pre>
83
       for (int i = 0; i < n2; ++i) b[i] = B[i];</pre>
84
       DFT(a), DFT(b);
85
86
       for (int i = 0; i < n; ++i) a[i] = mul(a[i], b[i]);</pre>
87
       IDFT(a);
88
       a.resize(n1 + n2 - 1);
89
       return a;
```

```
90
91
    Poly Der(const Poly &a) { // 导数
92
        Poly b(a.size() - 1);
93
        for (int i = 0; i < b.size(); ++i) b[i] = mul(i + 1, a[i + 1]);</pre>
94
        return b;
95
    }
    Poly Int(const Poly &a) { // 积分
96
        Poly b(a.size() + 1);
97
        for (int i = b.size() - 1; i; --i) b[i] = mul(a[i - 1], inv[i]);
98
        b[0] = 0; // 积分加的常数记作0
99
100
        return b;
101
   }
```

2.2.2 多项式乘法逆

```
已知 n-1 次多项式 F(x),求 G(x) 满足 F(x)G(x)\equiv 1\pmod{x^n} 将 F(x) 的补齐为 2 的幂次长度,最高次项为 2^i-1 设 G_k(x) 满足 F(x)G_k(x)\equiv 1\pmod{x^k} 根据 F(x)G_k(x)\equiv 1\pmod{x^k}, F(x)G_{\frac{k}{2}}(x)\equiv 1\pmod{x^{\frac{k}{2}}} 得 G_k(x)-G_{\frac{k}{2}}(x)\equiv 0\pmod{x^{\frac{k}{2}}} 平方,再乘以 F,得 F(x)[G_k^2(x)-2G_k(x)G_{\frac{k}{2}}(x)+G_{\frac{k}{2}}^2(x)]\equiv 0\pmod{x^k} 移向得递推式: G_k(x)\equiv 2G_{\frac{k}{2}}(x)-F(x)G_{\frac{k}{2}}^2(x)\pmod{x^k} 时间复杂度 O(n\log n)
```

```
Poly Inv(const Poly &a) { // 多项式乘法逆
1
       Poly b(1, qpow(a[0], mod - 2));
2
       int n = 1 << __lg(a.size() - 1) + 1;</pre>
3
       for (int k = 2; k <= n; k <<= 1) {
4
            int 1 = k << 1;
5
6
           Poly c(a.begin(), a.begin() + min(k, int(a.size())));
           b.resize(1), c.resize(1);
7
           DFT(b), DFT(c);
8
9
           for (int i = 0; i < 1; ++i) {
10
                b[i] = mul(b[i], add(2, mod - mul(b[i], c[i])));
11
            }
12
           IDFT(b);
           b.resize(k);
13
14
       }
       b.resize(a.size());
15
       return b;
16
17
```

2.2.3 多项式带余除法

```
已知 F^{(n)}(x) 和 G^{(m)}(x),其中 F^{(n)}(x) 表示 F 的最高次项为 x^n 求 Q^{(n-m)}(x) 和 R(x),使得 F(x) = G(x)Q(x) + R(x) 设 F_R^{(n)}(x) = x^n F^{(n)}(\frac{1}{x}) 要满足 F(x) = G(x)Q(x) + R(x) 只要满足 x^n F(\frac{1}{x}) \equiv x^m G(\frac{1}{x})x^{n-m}Q(\frac{1}{x}) + x^{n-m+1}x^{m-1}R(\frac{1}{x}) 只要满足 F_R(x) \equiv G_R(x)Q_R(x) + x^{n-m+1}R_R(x) \pmod{x^{n-m+1}} 得 Q_R(x) \equiv F_R(x)G_R^{-1}(x) \pmod{x^{n-m+1}},进而得到 Q,R 时间复杂度为 O(n\log n)
```

```
pair<Poly, Poly> Divide(const Poly &a, const Poly &b) { // 多项式带余除法
1
       // a / b = c 余 d, return pair(c, d)
2
       int n = a.size(), m = b.size();
3
       Poly t1(a.rbegin(), a.rbegin() + n - m + 1);
4
       Poly t2(b.rbegin(), b.rend());
5
6
       t2.resize(n - m + 1);
7
       Poly c = Inv(t2) * t1;
8
       c.resize(n - m + 1);
9
       reverse(c.begin(), c.end());
10
       Poly d = c * b;
       d.resize(m - 1);
11
       for (int i = 0; i < d.size(); ++i) {</pre>
12
13
           d[i] = add(a[i], mod - d[i]);
14
       }
       return {c, d};
15
16
   // 以下两个可以不抄
17
   Poly operator /(const Poly &a, const Poly &b) {
18
       return Divide(a, b).first;
19
20
   Poly operator %(const Poly &a, const Poly &b) {
21
22
       return Divide(a, b).second;
23
   }
```

2.2.4 多项式 Ln

```
给定 n-1 次多项式 F(x),求 G(x) \equiv \ln F(x) \pmod{x^n},保证 F[0]=1 \frac{d}{dx} \ln F(x) = \frac{F'(x)}{F(x)} \ln F(x) = \int F'(x) \times \frac{1}{F(x)} dx,常数项为 \ln F[0] = 0 时间复杂度为 O(n \log n)
```

```
Poly Ln(const Poly &a) { // 多项式ln,要求a[0]=1
```

```
Poly res = Int(Der(a) * Inv(a));
res.resize(a.size());
return res;
}
```

2.2.5 多项式 Exp

```
给定 n-1 次多项式 F(x),求 G(x) \equiv e^{F(x)} \pmod{x^n},保证 F[0] = 0 设 G(x) = e^{F(x)}, H(G(x)) = \ln G(x) - F(x), H 看作是关于 G 的函数 需要令 H(G) \equiv 0 \pmod{x^n},用牛顿迭代法 最初令 G = e^{F[0]} = 1,不断迭代 G = G_0 - \frac{H(G_0)}{H'(G_0)} 至 H(G) \equiv 0 \pmod{x^n} 若 H(G_0) \equiv 0 \pmod{x^{\frac{n}{2}}},则 H(G) \equiv 0 \pmod{x^n},因此迭代 \log n 次,时间复杂度为 O(n \log n)
```

```
Poly Exp(const Poly &a) { // 多项式exp, 要求a[0]=0
1
2
        Poly b(1, 1);
3
        int n = 1;
        while (n < a.size()) n <<= 1;
4
        for (int k = 2; k \le n; k \le 1) {
5
6
            Poly c(b.begin(), b.end());
            c.resize(k);
7
8
            c = Ln(c);
            for (int i = 0; i < min(int(a.size()), k); ++i) {</pre>
9
                c[i] = add(a[i], mod - c[i]);
10
11
            }
            c[0] = add(c[0], 1);
12
            b = b * c;
13
            b.resize(k);
14
        }
15
        b.resize(a.size());
16
17
        return b;
18
   }
```

2.2.6 多项式开根

```
已知 n-1 次多项式 F(x),求一个 n-1 次多项式 G(x) 满足 G^2(x) \equiv F(x) \pmod{x^n} 设 G_k^2(x) \equiv F(x) \pmod{x^k}, G_{\frac{k}{2}}^2(x) \equiv F(x) \pmod{x^{\frac{k}{2}}} G_{\frac{k}{2}}^2(x) - F(x) \equiv 0 \pmod{x^{\frac{k}{2}}} [G_{\frac{k}{2}}^2(x) - F]^2(x) \equiv 0 \pmod{x^k} [G_{\frac{k}{2}}^2(x) + F(x)]^2 \equiv 4G_{\frac{k}{2}}^2(x)F(x) \pmod{x^k} \left[\frac{G_{\frac{k}{2}}^2(x) + F(x)}{2G_{\frac{k}{2}}(x)}\right]^2 \equiv F(x) \pmod{x^k} 两边同时开根号,得递推式 \frac{G_{\frac{k}{2}}^2(x) + F(x)}{2G_{\frac{k}{2}}(x)} \equiv G_k(x) \pmod{x^k}
```

```
当 F[0] \neq 0 时,G[0] = \sqrt{F[0]} \pmod{p} (二次剩余)
当 F[0] = 0 时,变形为 F = x^k H(x) (H[0] \neq 0),k 为偶数时才能开根,\sqrt{F(x)} \equiv x^{\frac{k}{2}} \sqrt{H(x)} \pmod{x^n}
时间复杂度为 O(n \log n)
```

```
Poly Sqrt(const Poly &a) { // 多项式开根,保证a[0]=1
1
2
       Poly b(1, 1); // 若a[0]!=1, 则b[0]=a[0]的二次剩余(注意选择较大or较小的一个)
       i32 inv2 = mod / 2 + 1;
3
       int n = 1;
4
5
       while (n < a.size()) n <<= 1;
       for (int k = 2; k <= n; k <<= 1) {
6
           Poly c(b.begin(), b.end()), d(a.begin(), a.begin() +
7
8
           min(int(a.size()), k));
           c.resize(k);
9
           c = Inv(c) * d;
10
           b.resize(k);
11
           for (int i = 0; i < k; ++i) b[i] = mul(add(b[i], c[i]), inv2);</pre>
12
13
       }
       b.resize(a.size());
14
       return b;
15
16
   }
```

2.2.7 多项式快速幂

```
给定 n-1 次多项式 F(x),求 G(x) \equiv F^k(x) \pmod{x^n} ln G(x) \equiv k \ln F(x) \pmod{x^n} G(x) \equiv e^{k \ln F(x)} \pmod{x^n} 由于 F^p(x) \equiv F(x^p) \pmod{p},且 n < p,得 F^p(x) \equiv F[0] \pmod{p} 当 F[0] = 1 时,k 可以对 p 取模,即 F^k(x) \equiv F^{k \bmod p}(x) \pmod{x^n} \pmod{p} 时间复杂度为 O(n \log n)
```

```
1 Poly Pow(const Poly &a, i32 k) { // 多项式快速幂,保证a[0]=1, O(nlogn)
2 return Exp(Ln(a) * k);
3 }
```

```
当 F[0] \neq 1 时,找到最小的系数不为 0 的项,转化为 F(x) = tx^l H(x) F^k(x) \equiv t^k x^{kl} H^k(x) \equiv t^{k \bmod \varphi(p)} x^{kl} H^{k \bmod p}(x) \pmod{x^n} \pmod{p} 需要传入 k \bmod p, k \bmod \varphi(p) 以及 bool 变量 k \geq n,范围可以是 (k \leq 10^{10^5})
```

```
Poly Pow(const Poly &a, i32 k_mod_p, i32 k_mod_phip, bool k_geq_n) {
int n = a.size(), idx = -1;
for (int i = 0; i < n; ++i) {
    if (a[i]) {
        idx = i;
        break;
}</pre>
```

```
7
            }
8
       }
9
       if (idx == -1 || idx > 0 && k_geq_n || !k_geq_n && i64(idx) * k_mod_p >= n)
10
            return Poly(n, 0);
       i32 t = a[idx], ti = qpow(t, mod - 2), tk = qpow(t, k_mod_phip);
11
12
       Poly b(n, 0);
       for (int i = idx; i < n; ++i) b[i - idx] = mul(a[i], ti);</pre>
13
14
       Poly c = Pow(b, k_mod_p);
       int offset = idx * k_mod_p;
15
       for (int i = n - 1; i >= offset; --i) c[i] = mul(c[i - offset], tk);
16
       for (int i = 0; i < offset; ++i) c[i] = 0;</pre>
17
18
       return c;
19
   }
```

2.2.8 减法卷积

```
已知 n 次多项式 F(x) 和 G(x),求 H(x) = \sum_{k=0}^{n} (\sum_{i=k}^{n} F_{i-k}G_{i})x^{k} 令 G^{R}(x) = x^{n}G(\frac{1}{x}) (系数翻转,G_{i} = G_{n-i}^{R}) H_{k} = \sum_{i=k}^{n} F_{i-k}G_{i} = \sum_{i=0}^{n-k} F_{i}G_{i+k} = \sum_{i=0}^{n-k} F_{i}G_{n-k-i}^{R} = \sum_{i+j=n-k}^{n-k} F_{i}G_{j}^{R} 先求出 H^{R}(x) = F \times G^{R},再翻转得到 H
```

```
Poly DMul(const Poly &A, const Poly &B) { // 差卷积, 要求A和B长度相同
1
2
       int n = 1, l = A.size();
       while (n < 2 * 1 - 1) n <<= 1;
3
       Poly a(n, 0), b(n, 0);
4
       for (int i = 0; i < 1; ++i) a[i] = A[i], b[i] = B[i];
5
6
       reverse(b.begin(), b.begin() + 1);
7
       DFT(a), DFT(b);
       for (int i = 0; i < n; ++i) a[i] = mul(a[i], b[i]);</pre>
8
9
       IDFT(a);
10
       a.resize(1);
       reverse(a.begin(), a.end());
11
12
       return a;
13
   }
```

2.2.9 多项式平移

已知
$$n$$
 次多项式 $F(x)$, 求 n 次多项式 $F(x+d)$ $\pmod{x^{n+1}}$
$$F(x+d) = \sum_{i=0}^{n} f_i(x+d)^i = \sum_{i=0}^{n} f_i \sum_{k=0}^{i} C_i^k x^k d^{i-k} = \sum_{k=0}^{n} \sum_{i=k}^{n} \frac{i! f_i d^{i-k}}{k! (i-k)!} x^k$$

$$G(x) = \sum_{i=0}^{n} \frac{d^i}{i!} x^i, H(x) = \sum_{i=0}^{n} i! x^i, F(x+d) = \sum_{k=0}^{n} \frac{1}{k!} (\sum_{i=k}^{n} G_{i-k} H_i) x^k$$
 求出 G 和 H 的减法卷积后,每一项乘以 $\frac{1}{k!}$

```
Poly Offset(const Poly &a, i32 d) { // 多项式平移
1
2
        int n = a.size();
        Poly b(n), c(n);
3
        i32 td = 1;
4
        for (int i = 0; i < n; ++i) {</pre>
5
6
            b[i] = mul(td, ifac[i]);
7
            td = mul(td, d);
8
        for (int i = 0; i < n; ++i) c[i] = mul(a[i], fac[i]);</pre>
9
        b = DMul(b, c);
10
        for (int i = 0; i < n; ++i) b[i] = mul(b[i], ifac[i]);</pre>
11
12
        return b;
13
   }
```

2.2.10 分治 FFT

已知 n 次多项式 g(x),求 n 次多项式 f(x) 满足 $f_i = \sum_{j=1}^i f_{i-j}g_j$,其中 $g_0 = 0$ (对 f 无影响),规定 $f_0 = 1$ 法一、生成函数 + 多项式求逆 $F(x) = \sum_{i=0}^{\infty} f_i x^i, G(x) = \sum_{i=0}^{\infty} g_i x^i$ $F(x)G(x) = \sum_{i=0}^{\infty} (\sum_{j+k=i} f_j g_k) x^i = \sum_{i=0}^{\infty} (\sum_{j=1}^i f_{i-j}g_j) x^i$ $F(x)G(x) \equiv F(x) - f_0 \pmod{x^{n+1}}$ 得 $F(x) \equiv \frac{f_0}{1-G(x)} \pmod{x^{n+1}}$ 法二、分治 FFT/NTT

先求出 f[l,mid], 计算出左半区间对右半区间每个位置的贡献, 再递归右半区间

```
void cdq_FFT(Poly &f, const Poly &g, int 1, int r) {
1
2
        if (1 == r) {
3
            if (1 == 0) f[1] = 1;
4
            return;
5
        }
        int mid = l + r >> 1;
6
7
        cdq_FFT(f, g, l, mid);
        Poly a(f.begin() + 1, f.begin() + mid + 1);
8
        Poly b(g.begin(), g.begin() + r - l + 1);
9
10
        a = a * b;
        for (int i = mid + 1; i <= r; ++i) f[i] = add(f[i], a[i - 1]);</pre>
11
        cdq_{FFT}(f, g, mid + 1, r);
12
13
   }
```

2.2.11 启发式合并卷积

求 m 个多项式的乘积 $\prod_{i=1}^m F_i(x)$,若 $\sum_{i=1}^m len(F_i) = n$,则时间复杂度为 $O(n \log^2 n)$

```
Poly merge(vector<Poly> &&v) { // 可以传入std::move(v)
1
2
       priority_queue<pair<int, Poly>, vector<pair<int, Poly>>, greater<>> q;
       for (auto &&p: v) { q.emplace(p.size(), std::move(p)); }
3
       while (q.size() > 1) {
4
           Poly x = q.top().second;
5
6
           q.pop();
7
           Poly y = x * q.top().second;
8
           q.pop();
9
           q.emplace(y.size(), std::move(y));
10
       return q.top().second;
11
12
  }
```

2.2.12 三模 NTT

精度在 1026 左右,常数巨大

```
1 using 11 = long long;
2 int Mod; // 最终要模的模数
3 const int mod1 = 998244353, mod2 = 1004535809, mod3 = 469762049, g = 3;
  const 11 mod12 = 111 * mod1 * mod2;
   11 qpow(ll x, ll n, int p) {
5
       11 s = 1;
6
7
       for (; n; n >>= 1, x = x * x % p)
       if (n \& 1) s = s * x % p;
8
9
       return s;
10 }
   const int inv1 = qpow(mod1, mod2 - 2, mod2);
11
   const int inv2 = qpow(mod12 % mod3, mod3 - 2, mod3);
12
   int add(int x, int y, int p) { return (x += y) >= p ? x - p : x; }
13
   struct Int {
14
       int x, y, z;
15
16
       Int() { x = y = z = 0; }
       Int(int x, int y, int z) : x(x \% mod1), y(y \% mod2), z(z \% mod3) {}
17
       Int(int v) : x(v \% mod1), y(v \% mod2), z(v \% mod3) {}
18
       friend Int operator +(const Int &u, const Int &v) {
19
20
           return Int(add(u.x,v.x,mod1), add(u.y,v.y,mod2), add(u.z,v.z,mod3));
21
       }
       friend Int operator -(const Int &u, const Int &v) {
22
```

```
23
            return Int(add(u.x, mod1 - v.x, mod1),
24
            add(u.y, mod2 - v.y, mod2), add(u.z, mod3 - v.z, mod3));
25
       }
26
       friend Int operator *(const Int &u, const Int &v) {
27
            return Int(111*u.x*v.x*mod1,111*u.y*v.y*mod2, 111*u.z*v.z* mod3);
28
       int get() const {
29
30
            11 t = 111 * add(y, mod2 - x, mod2) * inv1 % mod2 * mod1 + x;
            return (111 * add(z, mod3 - t % mod3, mod3) *
31
32
            inv2 % mod3 * (mod12 % Mod) % Mod + t) % Mod;
33
       }
34 | };
35 using Poly = vector<Int>;
36 const int L = 1 << 21;
37 Int w[L];
38
   int inv[L];
   void InitPoly(int n = L) {
39
40
       inv[1] = 1;
41
       for (int i = 2; i < L; ++i) inv[i]=(111*Mod-Mod/i)*inv[Mod%i]%Mod;</pre>
42
       w[1] = 1;
       for (int i = 2; i < n; i <<= 1) {</pre>
43
            auto w0 = begin(w) + i / 2, w1 = begin(w) + i;
44
45
            Int wn = Int(qpow(g, (mod1 - 1) / (i \lt\lt 1), mod1),
            qpow(g, (mod2 - 1) / (i << 1), mod2),
46
            qpow(g, (mod3 - 1) / (i << 1), mod3));
47
            for (int j = 0; j < i; j += 2)
48
            w1[j] = w0[j >> 1], w1[j + 1] = w1[j] * wn;
49
50
       }
51
52
   Poly operator -(const Int &v, const Poly &a) {
       Poly res(a);
53
54
       for (int i = 0; i < a.size(); ++i) res[i] = Mod - res[i];</pre>
       res[0] = res[0] + v;
55
56
       return res;
57 }
58
   /*
   Poly operator -(const Poly &a, const Int &v) {
59
60
       Poly b(a);
       b[0] = b[0] + (Mod - v);
61
62
       return b;
63 }
```

```
Poly operator *(const Poly &a, const Int &v) {
64
65
        Poly b(a);
66
        for (int i = 0; i < a.size(); ++i) b[i] = b[i] * v;
67
        return b;
68
    }*/
    void DFT(Poly &a) {
69
70
        int n = a.size();
71
        for (int k = n >> 1; k; k >>= 1) {
72
            for (int i = 0; i < n; i += k << 1) {
73
                for (int j = 0; j < k; ++j) {
                     Int x = a[i + j], y = a[i + j + k];
74
                     a[i + j + k] = (x - y) * w[k + j], a[i + j] = x + y;
75
76
                }
77
            }
78
        }
79
    void IDFT(Poly &a) {
80
81
        int n = a.size();
82
        for (int k = 1; k < n; k <<= 1) {
            for (int i = 0; i < n; i += k << 1) {
83
                 for (int j = 0; j < k; ++j) {
84
                     Int x = a[i + j], y = a[i + j + k] * w[k + j];
85
86
                     a[i + j + k] = x - y, a[i + j] = x + y;
                }
87
            }
88
89
        }
90
        Int inv = Int(qpow(n, mod1 - 2, mod1),
91
        qpow(n, mod2 - 2, mod2),
        qpow(n, mod3 - 2, mod3));
92
93
        for (int i = 0; i < n; ++i) a[i] = a[i] * inv;</pre>
        reverse(a.begin() + 1, a.end());
94
95
    void restore(Poly &a) {
96
97
        for (Int &x: a) x = x.get();
98
    Poly operator *(const Poly &A, const Poly &B) {
99
100
        int n = 1, n1 = A.size(), n2 = B.size();
101
        while (n < n1 + n2 - 1) n <<= 1;
102
        Poly a(A), b(B);
103
        a.resize(n), b.resize(n);
104
        DFT(a), DFT(b);
```

```
105
         for (int i = 0; i < n; ++i) a[i] = a[i] * b[i];</pre>
106
         IDFT(a);
107
         Poly ans(n1 + n2 - 1);
108
         for (int i = 0; i < n1 + n2 - 1; ++i) ans[i] = a[i].get();</pre>
109
         return ans;
110
    Poly Der(const Poly &a) {
111
112
         Poly b(a);
113
         for (int i = 0; i < a.size() - 1; ++i) b[i] = (i + 1) * b[i + 1];
114
         b.back() = 0;
115
         restore(b);
116
         return b;
117
    }
118
    Poly Integral(const Poly &a) {
119
         Poly b(a.size() + 1);
120
         for (int i = a.size() - 1; i >= 1; --i) b[i] = b[i - 1] * inv[i];
         b[0] = 0;
121
122
         restore(b);
123
         return b;
124
125
    Poly Inv(const Poly &a) {
126
         Poly res(1, Int(qpow(a[0].get(), Mod - 2, Mod)));
127
         int n = 1;
128
         while (n < a.size()) n <<= 1;</pre>
         for (int k = 2; k <= n; k <<= 1) {</pre>
129
130
             Poly t(a);
131
             t.resize(k);
132
             t = t * res;
             t.resize(k);
133
134
             res = res *(2 - t);
135
             res.resize(k);
         }
136
137
         res.resize(a.size());
         restore(res);
138
139
         return res;
140
141
    Poly Ln(const Poly &a) {
142
         Poly b = Integral(Der(a) * Inv(a));
         b.resize(a.size());
143
144
         restore(b);
145
         return b;
```

```
146
147
    Poly Exp(const Poly &a) {
148
         Poly b(1, 1);
149
         int n = 1;
         while (n < a.size()) n <<= 1;</pre>
150
         for (int k = 2; k \le n; k \le 1) {
151
             Poly c(b.begin(), b.end());
152
153
             c.resize(k); c = Ln(c);
             for (int i = 0; i < min(int(a.size()), k); ++i) {</pre>
154
                  c[i] = a[i] + (Mod - c[i]);
155
156
             }
             c[0] = c[0] + 1;
157
158
             restore(c);
             b = b * c;
159
             b.resize(k);
160
161
         b.resize(a.size());
162
         restore(b);
163
164
         return b;
165
    }
```

2.3 上升幂、下降幂

阶乘幂

上升幂:
$$x^{\overline{n}} = \prod_{i=0}^{n-1} (x+i) = {x+n-1 \choose n} n!$$

下降幂: $x^{\underline{n}} = \prod_{i=0}^{n-1} (x-i) = {x \choose n} n!$
上升幂和下降幂的转换: $x^{\underline{n}} = (-1)^n (-x)^{\overline{n}}, x^{\overline{n}} = (-1)^n (-x)^{\underline{n}}$

2.4 卷积字符串匹配

```
1、求 t_{0\sim m-1} 在 s_{0\sim n-1}(m\leq n) 中出现的所有下标令 T_i=idx(t_i), S_i=idx(s_i),构造一个匹配函数,使得匹配位置取值为 0,匹配不上的位置取值不为 0 m-1\leq k< n: F(k)=\sum\limits_{i=0}^{m-1}(S_{k-i}-T_{m-1-i})^2=\sum\limits_{i=0}^{m-1}S_{k-i}^2+\sum\limits_{i=0}^{m-1}T_i^2-2\sum\limits_{i+j=k}S_iT_j' 其中 T' 表示 T 翻转后的数组,T_j'=T_{m-1-j}。可以发现第三项为一个卷积 2、对于 t 和 s 中有通配符的情况,我们可以令通配符的 idx=0,其他字符 idx=1\sim 26 F(k)=\sum\limits_{i=0}^{m-1}(S_{k-i}-T_{m-1-i})^2S_{k-i}T_{m-1-i}=\sum\limits_{i+j=k}(S_i^3T_j'-2S_i^2T_j'^2+S_iT_j'^3)6 次 DFT,相乘相加,再 IDFT 得到函数 T_i0 的 T_i0 的 T_i0 为匹配位置 T_i1 为
```

```
int idx(char c) {
   if (c == '*') return 0;
   return c - 'a' + 1;
```

```
4
  }
   vector<int> match(string t, string s) { // t在s中出现位置的起始下标
5
6
       int m = t.length(), n = s.length(), l = 1 << __lg(n + m - 1) + 1;
7
       reverse(t.begin(), t.end());
       vector < Poly > v(6, Poly(1, 0)); // v[0~2] = s, s^2, s^3 v[3~5] = t, t^2, t^3
8
9
       for (int i = 0; i < m; ++i) {
            for (int j = 0, x = idx(t[i]); j < 3; ++j, x *= idx(t[i])) {
10
11
                v[j][i] = x;
12
            }
13
       }
       for (int i = 0; i < n; ++i) {</pre>
14
           for (int j = 0, x = idx(s[i]); j < 3; ++j, x *= idx(s[i])) {
15
                v[j + 3][i] = x;
16
17
           }
18
       }
19
       for (auto &p: v) DFT(p);
20
       for (int i = 0; i < 1; ++i) {
21
            i64 \times = (111 * v[0][i] * v[5][i] - 211 * v[1][i] * v[4][i] + 111 *
22
           v[2][i] * v[3][i]) % mod;
23
           if (x < 0) x += mod;
24
           v[0][i] = x;
25
       }
26
       IDFT(v[0]);
27
       vector<int> ret;
28
       for (int i = m - 1; i < n; ++i) {
29
           if (v[0][i] == 0) {
30
                ret.push_back(i - m + 1);
31
           }
32
       }
33
       return ret;
34 }
```

2.5 快速沃尔什变换 FWT

 $c_i = \sum\limits_{i=j\&k} a_j b_k$,保证 a,b,c 长度均为 2^s

```
using ll = long long;
const int mod = 998244353;
using Poly = vector<int>;
int add(int x, int y) { return (x += y) >= mod ? x - mod : x; }
int mul(ll x, int y) { return x * y % mod; }
```

```
void fwt_and(Poly &a, int f) {
6
7
       int n = a.size();
8
       for (int k = 1; k < n; k <<= 1) {
9
            for (int i = 0; i < n; i += k << 1) {
                for (int j = 0; j < k; ++j) {
10
                    a[i + j] = add(a[i + j], mul(a[i + j + k], f));
11
12
                }
13
            }
       }
14
15
   Poly conv_and(const Poly &A, const Poly &B) {
16
17
       Poly a(A), b(B);
       fwt_and(a, 1), fwt_and(b, 1);
18
       for (int i = 0; i < A.size(); ++i) a[i] = mul(a[i], b[i]);</pre>
19
20
       fwt_and(a, mod - 1);
21
       return a;
22
   }
```

 $c_i = \sum_{i=j|k} a_j b_k$,保证 a,b,c 长度均为 2^s

```
void fwt_or(Poly &a, int f) {
1
2
        int n = a.size();
        for (int k = 1; k < n; k <<= 1) {
3
            for (int i = 0; i < n; i += k << 1) {</pre>
4
                for (int j = 0; j < k; ++j) {
5
                     a[i + j + k] = add(a[i + j + k], mul(a[i + j], f));
6
7
                }
8
            }
9
        }
10
11
   Poly conv_or(const Poly &A, const Poly &B) {
12
        Poly a(A), b(B);
13
        fwt_or(a, 1), fwt_or(b, 1);
14
        for (int i = 0; i < A.size(); ++i) a[i] = mul(a[i], b[i]);</pre>
        fwt_or(a, mod - 1);
15
16
        return a;
17
  }
```

 $c_i = \sum\limits_{i=j\oplus k} a_j b_k$,保证 a,b,c 长度均为 2^s

```
void fwt_xor(Poly &a, int f) {
int n = a.size();
```

```
3
        for (int k = 1; k < n; k <<= 1) {
4
            for (int i = 0; i < n; i += k << 1) {</pre>
5
                for (int j = 0; j < k; ++j) {
6
                    int x = a[i + j], y = a[i + j + k];
                    a[i + j] = mul(add(x, y), f);
7
8
                    a[i + j + k] = mul(add(x, mod - y), f);
                }
9
10
            }
        }
11
12
   Poly conv_xor(const Poly &A, const Poly &B) {
13
14
        Poly a(A), b(B);
15
        fwt_xor(a, 1), fwt_xor(b, 1);
        for (int i = 0; i < A.size(); ++i) a[i] = mul(a[i], b[i]);</pre>
16
17
        fwt_xor(a, mod / 2 + 1);
18
        return a;
19
   }
```

3 数学

3.1 高斯消元

实数

```
int n,m,r;double a[N][M];
2
   void gauss(double a[N][M],int n,int m){
3
        r=0;//矩阵的秩
        int lim=min(n,m);
4
        for(int i=1;i<=lim;++i){//当前到第几列
5
6
            bool f=0;
7
            for(int j=r+1;j<=n;++j){</pre>
8
                if(abs(a[j][i])>1e-8){
9
                     swap(a[r+1],a[j]);
10
                     f=1; break;
11
                }
12
            }
            if(!f)continue;
13
            ++r;double t=a[r][i];
14
            for(int j=i;j<=m;++j)a[r][j]/=t;</pre>
15
16
            for(int j=1;j<=n;++j){</pre>
17
                if(j==r)continue;
18
                t=a[j][i];
```

整数取模

```
ll a[N][M]; const int mod=1e9+7; // 先写好快速幂qpow
   void gauss(ll a[N][M],int n,int m){//注意化简后有负数未取模为正
2
3
        r=0;//矩阵的秩
4
        int lim=min(n,m);
        for(int i=1;i<=lim;++i){</pre>
5
6
            bool f=0;
7
            for(int j=r+1; j<=n;++j){</pre>
8
                if(a[j][i]!=0){
9
                     swap(a[r+1],a[j]);
                     f=1; break;
10
                }
11
12
            }
            if(!f)continue;
13
14
            ++r;ll t=qpow(a[r][i],mod-2);
15
            for(int j=i;j<=m;++j)a[r][j]=a[r][j]*t%mod;</pre>
            for(int j=1;j<=n;++j){</pre>
16
                if(j==r)continue;
17
18
                t=a[j][i];
                for(int k=i;k<=m;++k)a[j][k]=(a[j][k]-t*a[r][k])%mod;</pre>
19
20
            }
21
        }
22
  }
```

异或 bitset

```
int n,m,r,a[N][M];
2
  |bitset<M>g[N];//转为int可以g[i][j]?1:0或int(g[i][j])
   void gauss(bitset<M>a[N],int n,int m){
3
       r=0; int lim=min(n,m);
4
       for(int i=1;i<=lim;++i){</pre>
5
6
            bool f=0;
7
            for(int j=r;j<n;++j){</pre>
8
                if(a[j][i]){
9
                     swap(a[r+1],a[j]);f=1;break;
                }
10
11
            }
12
            if(!f)continue;
```

行列式

```
1
   11 det(11 a[N][N], int n){
2
        11 s=1;
3
        for(int i=1;i<=n;++i){</pre>
4
             for(int j=i;j<=n;++j){</pre>
5
                 if(a[j][i]){
6
                      if(i!=j){
7
                           swap(a[j],a[i]);s=-s;
8
                      }
9
                      break;
                 }
10
             }
11
             if(!a[i][i])return 0;
12
13
             s=s*a[i][i]%mod;
             11 inv=qpow(a[i][i],mod-2);
14
15
             for(int j=i;j<=n;++j)a[i][j]=a[i][j]*inv%mod;</pre>
16
             for(int j=i+1;j<=n;++j){</pre>
17
                 11 t=a[j][i];
18
                 for(int k=i;k<=n;++k)a[j][k]-=t*a[i][k],a[j][k]%=mod;</pre>
19
             }
20
        }
21
        return s;
22
   }
```

辗转相减行列式 (模数不是质数时)

```
11 det(11 a[N][N], int n){
1
2
       ll ans=1;
3
       for(int i=1;i<=n;++i){</pre>
            for(int j=i+1;j<=n;++j){</pre>
4
5
                 while(a[j][i]){
6
                     11 t=a[i][i]/a[j][i];
7
                     for(int k=i;k<=n;++k){</pre>
8
                          a[i][k]-=t*a[j][k];
9
                          a[i][k]%=mod;
```

3.2 线性基

```
for(int i=1;i<=n;++i){//n个数的线性基
1
2
       11 x;scanf("%11d",&x);
3
       for(int j=62;j>=0;--j){
4
           if(x>>j&1){
5
                if(g[j])x^=g[j];
6
                else{
7
                    g[j]=x;
8
                    break;
9
                }
10
           }
       }
11
12
   }
13
   11 ans=0;
   for(int i=62;i>=0;--i){//选几个数的最大异或
14
       if(ans>>i&1)continue;
15
       ans^=g[i];
16
17
   }
```

3.3 矩阵快速幂

$$\begin{cases} f_{1} = 1, f_{2} = 1 \\ f_{n} = f_{n-1} + f_{n-2} \end{cases} \Rightarrow \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_{n-1} \\ f_{n-2} \end{bmatrix} = \begin{bmatrix} f_{n} \\ f_{n-1} \end{bmatrix} \Rightarrow \begin{bmatrix} f_{n} \\ f_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-2} \begin{bmatrix} f_{2} \\ f_{1} \end{bmatrix}$$

$$\begin{cases} a_{1} = 7, a_{2} = 12 \\ a_{n} = 2a_{n-1} - 3a_{n-2} + n^{2}, n \geq 2 \end{cases} \Rightarrow \begin{bmatrix} 2 & -3 & 1 & 2 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ a_{n-2} \\ (n-1)^{2} \\ n-1 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{n} \\ a_{n-1} \\ n^{2} \\ n \\ 1 \end{bmatrix}$$

```
1
   const int mod=998244353;
2
   const int n1=4;
   struct matrix{
3
        11 a[n1][n1];//此处过大可能导致本地RE
4
        void clear(){
5
6
            for(int i=0;i<n1;++i)memset(a[i],0,n1<<3);</pre>
7
        }
8
        void I(){
9
            clear();for(int i=0;i<n1;++i)a[i][i]=1;</pre>
10
        }
        11* operator [] (int i) {
11
12
            return a[i];
13
        }
        matrix(const initializer_list<ll>&l={}){
14
            int now=0;
15
            for(auto x:1){
16
17
                 a[now/n1][now%n1]=x;
18
                 ++now;
19
            }
20
        }
21
        matrix operator + (const matrix &b){
22
            static matrix c;
23
            for(int i=0;i<n1;++i){</pre>
                 for(int j=0;j<n1;++j){</pre>
24
25
                     c[i][j]=(a[i][j]+b.a[i][j])%mod;
26
                 }
27
            }
28
            return c;
29
        }
30
        matrix operator * (const matrix &b) {
31
            static matrix c;c.clear();
32
            for(int i=0;i<n1;++i){</pre>
33
                 for(int j=0;j<n1;++j){</pre>
34
                     for(int k=0;k<n1;++k){</pre>
35
                          c[i][j]+=a[i][k]*b.a[k][j];
                          if(k&3)c[i][j]%=mod;
36
37
                     c[i][j]%=mod;
38
39
                 }
40
            }
41
            return c;
```

```
42
   }
43
   };
44
   matrix qpow(matrix a,ll b){
45
       static matrix s;s.I();
46
       for(;b;b>>=1){
           if(b&1)s=s*a;
47
48
           a=a*a;
49
       }
       return s;
50
51
   }
   matrix powsum(matrix a,ll b){//幂和: A^0+A+A^2+A^3+...+A^b
52
       matrix I;I.I();
53
       if(!b)return I;
54
       if(b&1)return I+a*powsum(a,b-1);
55
       return I+(I+qpow(a,b/2))*a*powsum(a,b/2-1);
56
57
   int main(){
58
       matrix A({//需要定义列向量,可以使用矩阵的第一列
59
60
           1,1,1,2,
           1,2,1,2,
61
           3,4,0,3,
62
           2,4,1,4
63
64
       });
65
   }
```

3.4 康托展开

排列 $P = \{p_1, p_2, ..., p_n\}$ 是第 f(P) 小的排列 (12345 是第 0 小)

$$f(P) = \sum_{i=1}^{n} (n-i)! \times r(i)$$
 $r(i) = p_i$ 右边比 p_i 小的个数 逆康托展开: 已知排列的排名 $rank($ 从 0 开始 $)$,求出该排列

```
for(int i=1;i<=n;++i){</pre>
1
       int t=rank/fac[n-i];
2
       //p[i]右边比p[i]小的有t个,p[i]应该是剩余数字第t小
3
       rank%=fac[n-i];int cnt=0;
4
       for(int j=1;j<=n;++j){</pre>
5
           if(!vis[j])++cnt;
6
7
           if(cnt==t+1){
8
               vis[j]=1;p[i]=j;break;
9
           }
10
       }
```

11 }

3.5 曼哈顿距离

$$|x_1-x_2|+|y_1-y_2|=max(|(x_1+y_1)-(x_2+y_2)|,|(x_1-y_1)-(x_2-y_2)|)$$

3.6 高次方求和

用拉格朗日插值法求和,时间复杂度为O(k)

```
11 fac[N],pl[N],pr[N];
2
   ll calc(ll n, int k){//1^k+2^k+3^k+..+n^k} 0(k)
3
        11 y=0,ans=0;
4
        pl[0]=pr[k+3]=fac[0]=1;
        for(int i=1;i<=k+2;++i){</pre>
5
6
            fac[i]=fac[i-1]*i%mod;
7
            pl[i]=(n-i)%mod*pl[i-1]%mod;
8
        }
9
        for(int i=k+2;i;--i)pr[i]=(n-i)%mod*pr[i+1]%mod;
10
        for(int i=1;i<=k+2;++i){</pre>
11
            y += qpow(i,k); y\% = mod;
12
            ll a=pl[i-1]*pr[i+1]%mod;
            ll b=(k-i&1?-1:1)*fac[i-1]*fac[k+2-i]%mod;
13
14
            ans+=y*a%mod*qpow(b,mod-2); ans%=mod;
15
        }
16
        return ans;
17
   }
```

高次方求和公式

1 次方求和公式:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n$$
2 次方求和公式:
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$$
3 次方求和公式:
$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2$$
4 次方求和公式:
$$\sum_{i=1}^{n} i^4 = \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3 - \frac{1}{30}n$$
5 次方求和公式:
$$\sum_{i=1}^{n} i^5 = \frac{1}{6}n^6 + \frac{1}{2}n^5 + \frac{5}{12}n^4 - \frac{1}{12}n^2$$
6 次方求和公式:
$$\sum_{i=1}^{n} i^6 = \frac{1}{7}n^7 + \frac{1}{2}n^6 + \frac{1}{2}n^5 - \frac{1}{6}n^3 + \frac{1}{42}n$$
7 次方求和公式:
$$\sum_{i=1}^{n} i^7 = \frac{1}{8}n^8 + \frac{1}{2}n^7 + \frac{7}{12}n^6 - \frac{7}{24}n^4 + \frac{1}{12}n^2$$
8 次方求和公式:
$$\sum_{i=1}^{n} i^8 = \frac{1}{9}n^9 + \frac{1}{2}n^8 + \frac{2}{3}n^7 - \frac{7}{15}n^5 + \frac{2}{9}n^3 - \frac{1}{30}n$$
9 次方求和公式:
$$\sum_{i=1}^{n} i^9 = \frac{1}{10}n^{10} + \frac{1}{2}n^9 + \frac{3}{4}n^8 - \frac{7}{10}n^6 + \frac{1}{2}n^4 - \frac{3}{20}n^2$$

10 次方求和公式:
$$\sum_{i=1}^{i=1} i^{i} = \frac{1}{12} n^{12} + \frac{1}{2} n^{10} + \frac{1}{6} n^0 - n^7 + n^5 - \frac{1}{2} n^2 + \frac{1}{6} n^0$$

11 次方求和公式: $\sum_{i=1}^{i=1} i^{i} = \frac{1}{12} n^{12} + \frac{1}{2} n^{11} + \frac{1}{12} n^{10} - \frac{11}{8} n^2 + \frac{1}{16} n^0 - \frac{11}{8} n^4 + \frac{5}{12} n^2$

12 次方求和公式: $\sum_{i=1}^{i=1} i^{2} = \frac{1}{13} n^{13} + \frac{1}{2} n^{12} + n^{11} - \frac{11}{16} n^0 + \frac{27}{27} n^7 - \frac{33}{10} n^5 + \frac{5}{3} n^3 - \frac{691}{272m} n$

13 次方求和公式: $\sum_{i=1}^{i=1} i^{3} = \frac{1}{14} n^{14} + \frac{1}{2} n^{13} + \frac{13}{12} n^{12} - \frac{103}{60} n^{10} + \frac{143}{218} n^6 - \frac{143}{20} n^6 + \frac{62}{12} n^4 - \frac{691}{420} n^2$

14 次方求和公式: $\sum_{i=1}^{i=1} i^{3} = \frac{1}{16} n^{16} + \frac{1}{2} n^{14} + \frac{7}{6} n^{13} - \frac{3}{36} n^{11} + \frac{113}{12} n^{10} - \frac{120}{16} n^8 + \frac{120}{16} n^4 - \frac{691}{24} n^4 + \frac{35}{4} n^2$

15 次方求和公式: $\sum_{i=1}^{i=1} i^{16} = \frac{1}{16} n^{16} + \frac{1}{2} n^{17} + \frac{1}{2} n^{14} - \frac{21}{2} n^{12} + \frac{113}{12} n^{10} - \frac{120}{16} n^8 + \frac{125}{12} n^6 - \frac{691}{24} n^4 + \frac{35}{4} n^2$

16 次方求和公式: $\sum_{i=1}^{i=1} i^{16} = \frac{1}{17} n^{17} + \frac{1}{2} n^{16} + \frac{1}{3} n^{13} + \frac{27}{2} n^{11} - \frac{113}{12} n^6 + \frac{691}{20} n^7 - \frac{113}{12} n^5 + \frac{149}{20} n^3 - \frac{3617}{50} n^3$

17 次方求和公式: $\sum_{i=1}^{i=1} i^{16} = \frac{1}{17} n^{17} + \frac{1}{17} n^{16} - \frac{17}{17} n^{14} + \frac{27}{2} n^{12} - \frac{243}{10} n^{16} + \frac{125}{10} n^6 - \frac{91}{24} n^4 + \frac{65}{32} n^3 - \frac{91}{30} n^3$

18 次方求和公式: $\sum_{i=1}^{i=1} i^{18} = \frac{1}{10} n^{19} + \frac{1}{2} n^{18} + \frac{3}{2} n^{17} - \frac{24}{26} n^{18} + 34 n^{13} - \frac{293}{30} n^{10} + \frac{110}{10} n^8 - \frac{1774}{17} n^6 + \frac{93}{30} n^7 + \frac{91}{30} n^3$

19 次方求和公式: $\sum_{i=1}^{i=1} i^{18} = \frac{1}{9} n^{29} + \frac{1}{2} n^{18} + \frac{3}{2} n^{17} - \frac{1}{24} n^{18} n^{18} + \frac{233}{30} n^{14} + \frac{1199}{10} n^{19} n^{19} - \frac{222491}{90} n^7 + 714 n^5 - \frac{93}{30} n^{19} + \frac{119}{30} n^{19} - \frac{222491}{90} n^{19} n^{1$

30 次方求和公式:
$$\sum_{i=1}^n i^{30} = \frac{1}{31} n^{31} + \frac{1}{2} n^{30} + \frac{5}{2} n^{29} - \frac{203}{6} n^{27} + \frac{1131}{2} n^{25} - \frac{16965}{2} n^{23} + \frac{216775}{2} n^{21} - \frac{2304485}{2} n^{19} + \frac{19959975}{2} n^{17} - \frac{137514723}{2} n^{15} + \frac{731482225}{2} n^{13} - \frac{31795091601}{22} n^{11} + \frac{8053785025}{2} n^9 - \frac{102818379585}{14} n^7 + \frac{15626519181}{2} n^5 - \frac{23749461029}{6} n^3 + \frac{8615841276005}{14392} n$$

3.7 二阶差分

给一段区间等差数列

4 组合数学

4.1 组合数公式

4.2 生成函数

多项式公式

$$\begin{array}{l} e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\ldots+\frac{x^k}{k!}+\ldots\\ \ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots+(-1)^{k+1}\frac{x^k}{k}+\ldots\\ \frac{1}{1+x}=1-x+x^2-x^3+\ldots+(-1)^kx^k+\ldots\\ \frac{1}{1-x}=1+x+x^2+x^3+\ldots+x^k+\ldots\\ \ln\frac{1}{1-x}=-\ln(1-x)=x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\ldots+\frac{x^k}{k}+\ldots\\ \pm$$
 迅
五边形定理:
$$\prod_{i=1}^{\infty}(1-x^i)=\sum_{i=-\infty}^{\infty}(-1)^ix^{i(3i-1)/2}=1-x-x^2+x^5+x^7-x^{12}-x^{15}+\cdots\\$$
 普通生成函数 (OGF):

01 背包: 重量为 k 的物品生成函数为 $1+x^k$

多重背包: m 个重量为 k 的物品生成函数为 $1 + x^k + x^2k + ... + x^mk = \frac{1 - x^{(m+1)k}}{1 - x}$

完全背包: 重量为 k 的物品生成函数为 $1 + x^k + x^{2k} + ... = \frac{1}{1-x^k}$

背包装了 V 重量的方案数为所有物品生成函数卷积的 x^V 项系数

指数型生成函数 (EGF):

多次排列集计数:

n 个球分 m 种类型,第 i 种有 a_i 个, $\sum_{i=1}^m a_i = n$,则这 n 个球的排列方案数为 $\frac{n!}{a_1!a_2!...a_m!}$

$$\hat{F}(x) = \sum_{i=0}^{n} \frac{f_i}{i!} x^i, \hat{G}(x) = \sum_{i=0}^{m} \frac{g_i}{i!} x^i, (n \ge m)$$

EGF 卷积的组合意义: $\hat{F}(x)\hat{G}(x) = \sum_{i=0}^{n} (\sum_{j=0}^{i} f_{i-j}g_{j}\frac{1}{j!(i-j)!})x^{i} = \sum_{i=0}^{n+m} \frac{x^{i}}{i!} \sum_{j=0}^{i} {i \choose j} f_{i-j}g_{j} \ (j>m \ \text{时} \ {i \choose j}=0)$ m 种类型的球,第 i 种有 a_{i} 个,求共取出 n 个进行排列的方案数:

 $\hat{F}_i(x) = \sum_{i=1}^{a_i} \frac{1}{i!} x^i$,设 b_i 表示第 i 个球选中的个数

 $\prod\limits_{i=1}^m\hat{F}_i(x)$ 的 n 次项系数即为所有方案的 $\frac{1}{b_1!b_2!...b_m!}$ 之和,乘以 n! 即为所求多重排列集计数 EGF 的多项式 Exp 的组合意义:

若 $\hat{F}(x)$ 中 $i!f_i$ 表示 i 个有标号的元素放入一个集合的方案数

则 $\hat{G}(x) = e^{\hat{F}(x)}$ 中 $i!g_i$ 表示 i 个有标号元素分成若干个无标号的非空无序集合的方案数

4.3 容斥原理

设有 n 个不同性质, $A_i =$ 具有性质 i 的元素集合, $|A_i| = A_i$ 集合中元素个数容斥定理用于求 $|A_1 \cup A_2 \cup ... \cup A_n|$ 和 $|\overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n}|$

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{m=1}^{n} (-1)^{m+1} \sum_{p_i < p_{i+1}} \left| \bigcap_{i=1}^{m} A_{p_i} \right|$$
$$\left| \bigcap_{i=1}^{n} \overline{A_i} \right| = |U| - \left| \bigcup_{i=1}^{n} A_i \right|$$

广义容斥原理:

设有 n 种不同的性质

 $P_k = 至少有 k$ 个性质的元素个数, $Q_k =$ 恰好有 k 个性质的元素个数

$$Q_k = \sum_{i=0}^{n-k} (-1)^i C_{k+i}^k P_{k+i}$$

特别地,不具有所有性质的元素个数 $Q_0 = P_0 - P_1 + P_2 - P_3 + \dots$

计数时不一定要计算所有状态,只需要递推至少拥有奇数个/偶数个性质的个数二项式反演:

$$f_n = \sum_{i=0}^n C_n^i g_i \iff g_n = \sum_{i=0}^n (-1)^{n-i} C_n^i f_i$$

Min-Max 容斥:

$$\begin{aligned} \max(S) &= \sum_{T \subseteq S} (-1)^{|T|-1} min(T) \\ \min(S) &= \sum_{T \subseteq S} (-1)^{|T|-1} max(T) \end{aligned}$$

第 k 大
$$kmax(S) = \sum_{T \subseteq S} (-1)^{|T|-k} C_{|T|-1}^{k-1} min(T)$$
 第 k 小 $kmin(S) = \sum_{T \subseteq S} (-1)^{|T|-k} C_{|T|-1}^{k-1} max(T)$

4.4 卡特兰数

卡特兰数的组合意义为: n 个数的出栈序列有多少种,n 个结点可构造多少个不同的二叉树卡特兰数 $H_n = \frac{C_{2n}^n}{n+1} = C_{2n}^n - C_{2n}^{n-1} = \frac{H_{n-1}(4n-2)}{n+1}$, $H_n = \sum_{i=0}^{n-1} H_i H_{n-1-i}$, $H_0 = 1$

4.5 斯特林数

第一类斯特林数

第一类 Stirling 数 $\begin{bmatrix} n \\ k \end{bmatrix}$: 将 n 个物体排成 k 个非空圆排列的方案数

递推式:
$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}, 边界 \begin{bmatrix} n \\ k \end{bmatrix} = [n=0]$$

第二类斯特林数

第二类 Stirling 数 $\binom{n}{k}$: 将 n 个物体划分成 k 个非空的无编号集合的方案数

递推公式:
$${n \brace k} = {n-1 \brace k-1} + k {n-1 \brace k}, \text{ 边界: } {n \brace 0} = [n=0]$$

$${n \brace k} = \sum_{i=0}^{k} (-1)^{k-i} \frac{i^n}{i!(k-i)!}$$

阶乘幂与斯特林数

$$x^{\overline{n}} = \sum_{i=0}^{n} {n \brack i} x^{i}, \quad x^{n} = \sum_{i=0}^{n} {n \brack i} (-1)^{n-i} x^{\overline{i}}, \quad x^{\underline{n}} = \sum_{i=0}^{n} (-1)^{n-i} {n \brack i} x^{i}$$

$$x^{n} = \sum_{i=0}^{n} {n \brack i} x^{\underline{i}}, \quad x^{n} = \sum_{i=0}^{n} {n \brack i} x^{\underline{i}} = \sum_{i=0}^{n} {n \brack i} i! {x \choose i}$$

自然数幂和
$$F_k(n) = \sum_{i=0}^n i^k$$

$$x^n = x^{\underline{n}} - \sum_{i=0}^{n-1} \begin{bmatrix} n \\ i \end{bmatrix} x^i$$

$$F_k(n) = \sum_{i=0}^n i^k = \sum_{i=0}^n \left[i^{\underline{k}} - \sum_{j=0}^{k-1} (-1)^{k-j} \begin{bmatrix} k \\ j \end{bmatrix} i^j \right]$$

$$= \sum_{i=0}^n k! \binom{i}{k} - \sum_{j=0}^{k-1} (-1)^{k-j} \begin{bmatrix} k \\ j \end{bmatrix} \sum_{i=0}^n i^j = \frac{(i+1)^{k+1}}{k+1} - \sum_{i=0}^{k-1} (-1)^{k-i} \begin{bmatrix} k \\ i \end{bmatrix} F_i(n)$$

可以 $O(n^2)$ 递推,注意到不需要除法,因为连续 k+1 个数中一定有一个数是 k+1 的倍数 另外还可以做到 $O(k \log k)$,我们考虑利用第二类斯特林数进行化简,可以得到

$$F_k(n) = \sum_{i=0}^n i^k = \sum_{i=0}^n \sum_{j=0}^k {k \brace j} i^{\underline{j}} = \sum_{i=0}^n \sum_{j=0}^k {k \brace j} {i^{\underline{j}}} j!$$

$$= \sum_{j=0}^k {k \brace j} j! \sum_{i=0}^n {i \brack j} = \sum_{j=0}^k {k \brack j} j! {n+1 \choose j+1}$$

求斯特林数

第一类斯特林数-列

给定
$$n, k$$
,求所有 $i \in [0, n]$, $\begin{bmatrix} i \\ n \end{bmatrix}$, $n, k \le 2 \times 10^5$

构造 k=1 的指数型生成函数 $F(x)=\sum_{i=1}^n(i-1)!\frac{x^i}{i!}=\ln\frac{1}{1-x}$,答案就是 $\frac{F^k(x)}{k!}$,时间复杂度 $O(n\log n)$

第一类斯特林数-行

给定
$$n$$
, 求所有 $i \in [0, n]$, $\begin{bmatrix} n \\ i \end{bmatrix}$, $n \le 2 \times 10^5$

考虑 $\begin{bmatrix} n \\ k \end{bmatrix}$ 的生成函数 $F(x) = \sum_{i=0}^{n} \begin{bmatrix} n \\ i \end{bmatrix} x^i = x^{\overline{n}}$,同时我们有 $x^{\overline{2n}} = x^{\overline{n}}(x+n)^{\overline{n}}$,即 $F(x) = x^{\overline{n}}(x+n)^{\overline{n}}(x$

 $F_{2n}(x)F_n(x+n)$,那么我们直接倍增即可,时间复杂度为 $O(n \log n)$

```
1
   Poly solve(int n) {
2
       if (!n) return Poly { 1 };
3
       Poly res = solve(n / 2);
       res = Pol::operator*(res, Pol::Offset(res, n / 2));
4
       if (n & 1) {
5
            res.push back(0);
6
            for (int i = n; \sim i; --i)
7
            res[i] = ((i ? res[i - 1] : 0) + 111 * res[i] * (n - 1)) % p;
8
9
       }
10
       return res;
```

第二类斯特林数-列

给定
$$n, k$$
,求所有 $i \in [0, n]$, $\begin{cases} i \\ n \end{cases}$, $n, k \leq 2 \times 10^5$ 令 $F_k(x) = \sum_{i=0}^{\infty} \begin{cases} i \\ k \end{cases} x^i$,根据 $\begin{cases} n \\ k \end{cases} = \begin{cases} n-1 \\ k-1 \end{cases} + k \begin{cases} n-1 \\ k \end{cases}$,有 $F_k(x) = xF_{k-1}(x) + kxF_k(x)$, $F_0(x) = 1$ 即 $F_k(x) = \frac{x^k}{\prod_{i=1}^k (1-ix)}$,分治 NTT 求分母后求逆,时间复杂度 $O(n \log^2 n)$

第二类斯特林数-行

给定 n, 求所有 $i \in [0, n]$, $\begin{Bmatrix} n \\ i \end{Bmatrix}$, $n \le 2 \times 10^5$

考虑第二类斯特林数通项公式 $\binom{n}{k} = \sum\limits_{i=0}^k (-1)^{k-i} \frac{i^n}{i!(k-i)!}$,我们令 $A_i = \frac{(-1)^i}{i!}$, $B_i = \frac{i^n}{i!}$,容易发现就是一个卷积的形式,时间复杂度 $O(n \log n)$

4.6 贝尔数

贝尔数 B_n 表示基数为 n 的集合的划分方法的数目

组合意义: 将 n 个有标号的小球放到任意多个无标号盒子中的方案数

$$B_n = \sum_{i=0}^n \begin{Bmatrix} n \\ i \end{Bmatrix}$$

递推式: $B_n = \sum_{i=0}^{n-1} {n-1 \choose i} B_i$, 边界为 $B_0 = 1$

求贝尔数

 $O(n^2)$ 递推, $O(n \log n)$ 多项式 exp

注意 B_n 的递推式 $B_n = \sum_{i=0}^{n-1} \binom{n-1}{i} B_i$,令 B(x) 为 B 的 EGF,那么容易得到 $B(x) = 1 + \int B(x) e^x dx$,根据 B(0) = 1 能够的得到 $B(x) = e^{e^x - 1}$

```
11 fac[maxn], inv[maxn]; Poly B;
2
  void init(int n) {
      Poly A(n);
3
      fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = fac[i - 1] * i % p;
4
      inv[n] = pow mod(fac[n], p - 2); for (int i = n - 1; \sim i; --i) inv[i] = inv[i]
5
          +1] * (i + 1) % p;
      for (int i = 0; i < n; ++i) A[i] = inv[i]; A[0] = 0; // 泰勒展开
6
7
      B = Pol::Exp(A);
      for (int i = 0; i < n; ++i) B[i] = B[i] * fac[i] % p;</pre>
8
  }
```

贝尔数前 15 项:1,1,2,5,15,52,203,877,4140,21147,115975,678570,4213597,27644437,190899322

贝尔数性质

$$B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$$

 $B_n = \sum_{k=0}^n S(n,k)$,即每个贝尔数都是一行第二类斯特林数的和

$$B_{p+n} \stackrel{n-0}{=} B_n + B_{n+1} \pmod{p}, (p \in prime)$$

4.7 小球入盒模型

n 个球	m 个盒子	是否允许有空盒子	方案数
不同	不同	是	m^k
不同	不同	否	$m!S_2(n,m)$
不同	相同	是	$\sum_{i=1}^{m} S_2(n,i)$
不同	相同	否	$S_2(n,m)$
相同	不同	是	C_{n+m-1}^{m-1}
相同	不同	否	C_{n-1}^{m-1}
相同	相同	是	$\frac{1}{(1-x)(1-x^2)(1-x^m)}$ 的 x^n 项系数
相同	相同	否	$\frac{x^m}{(1-x)(1-x^2)(1-x^m)}$ 的 x^n 项系数

 $S_2(n,m)$ 分别表示第二类斯特林数

4.8 欧拉数

对于一个长度为 n 且有 k 个上升 $(p_i < p_{i+1})$ 的排列定义为欧拉数 $\left\langle {n \atop k} \right\rangle$ 递推式: $\left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (n-k) \left\langle {n-1 \atop k-1} \right\rangle$, 边界为 $\left\langle {n \atop k} \right\rangle = 1$ 恒等式: $x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}, \left\langle {n \atop k} \right\rangle = \sum_{i=0}^k (-1)^i {n+1 \choose i} (k-i+1)^n$ $\left\{ {n \atop k} \right\} = \frac{1}{k!} \sum_{i=0}^n \left\langle {n \atop k} \right\rangle {x-k \choose i} {x \atop k-1}, \left\langle {n \atop k} \right\rangle = \sum_{i=0}^n (-1)^{n-i-k} i! \left\{ {n \atop i} \right\} {x-i \choose k}$

求欧拉数

给定
$$n$$
,求所有 $i \in [0,n]$, $\left\langle {n\atop i} \right\rangle$, $n \leq 2 \times 10^5$ 考虑恒等式 $\left\langle {n\atop k} \right\rangle = \sum\limits_{i=0}^n (-1)^{n-i-k} i! \left\{ {n\atop i} \right\} \binom{n-i}{k}$,化简可以得到 $k! \left\langle {n\atop k} \right\rangle = \sum\limits_{i=0}^n \frac{(-1)^{n-(i+k)}}{(n-(i+k))!} \left\{ {n\atop i} \right\} i! (n-i)!$,我们令 $A_k = \left\{ {n\atop k} \right\} k! (n-k)!$, $B_k = \frac{(-1)^{n-k}}{(n-k)!}$,容易发现这是一个减法卷积的式子,第二类斯特林数同样可以用卷积求,时间复杂度 $O(n \log n)$

二阶欧拉数

对于有
$$k$$
 个上升的多重集 $1, 1, 2, 2, \dots, n, n$ 的排列定义为 $\left\langle \binom{n}{k} \right\rangle$ 递推式: $\left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (2n-k-1) \left\langle \binom{n-1}{k-1} \right\rangle$

恒等式:
$$\left\{ \begin{array}{c} x \\ x - n \end{array} \right\} = \sum_{i=0}^{n-1} \left\langle \left\langle \begin{array}{c} n \\ i \end{array} \right\rangle \right\rangle \binom{x+n-k-1}{2n}$$

4.9 置换群

Burnside 定理: $M=\frac{1}{|G|}\sum_{g\in G}c(g)$ 群 G 的等价类数量 = 群 G 中所有置换 g 的轮换数量 c(g) 的平均值 Polya 定理: $M=\frac{1}{|G|}\sum_{g\in G}m^{c(g)}$

4.10 杨表

给定 n 个方格的杨表,把 [1,n] 填入,要求从上到下,从左到右单调递减 hook(x)= 同行右边的方格数 + 同列下面的方格数 +1 方案数 $dim\pi_{\lambda}=\frac{n!}{\prod\limits_{x\in Y(\lambda)}hook(x)}$

5 数据结构

5.1 树状数组

```
1 ll tr[N]; // tr[i] = [i-lowbit(i)+1,i]区间的信息
2 void add(int x,ll k){for(;x<=n;x+=x&-x)tr[x]+=k;}//需要保证x!=0
3 ll qry(int x){ll s=0;for(;x;x-=x&-x)s+=tr[x];return s;}</pre>
```

树状数组维护二阶前缀和

要实现区间加区间求和,需要维护差分数组的二阶前缀和设 d, a, s 分别为差分数组,原数组,前缀和数组 $s[n] = \sum_{i=1}^{n} a[i] = \sum_{i=1}^{n} (n-i+1)d[i]$

接下来分别维护 d[i] 和 $i \times d[i]$ 的前缀和即可

```
11 t1[N],t2[N];
1
   void add(int x,ll k){
2
        for(int i=x;i<=n;i+=i&-i){</pre>
3
            t1[i]+=k;t2[i]+=x*k;
4
        }
5
6
   }
   11 qry(int x){
        11 s=0;
8
9
        for(int i=x;i;i-=i&-i)s+=(x+1)*t1[i]-t2[i];
10
        return s;
11
   }
```

树状数组上二分

```
int bs(ll k){//最大的sum<=k的下标, 若求最小的sum=k的下标, 可以bs(k-1)+1
1
2
      int now=0;11 sum=0;
      for(int i=21;i>=0;--i){
3
          if((now|1<<i)<=n\&sum+t[now|1<<i]<=k){
4
              now|=1<<i; sum+=t[now];
5
6
          }
7
      }
8
      return now;
9
  }
```

5.2 线段树

5.2.1 懒惰标记线段树

```
int n,a[N];
   struct sgt{
2
       int 1,r;
3
       ll v,tag;
4
   }t[N<<2];
5
6 #define ls (p<<1)
7 #define rs (p<<1|1)
8 void pushup(int p){t[p].v=t[ls].v+t[rs].v;}
   void up1(int p,ll x){//结点打上标记
9
10
       t[p].tag+=x;t[p].v+=x*(t[p].r-t[p].l+1);
11
   void pushdown(int p){
12
       if(t[p].tag){
13
14
           up1(ls,t[p].tag);up1(rs,t[p].tag);t[p].tag=0;
       }
15
16
17
   void build(int l,int r,int p){
18
       t[p].l=1;t[p].r=r;
19
       if(l==r){t[p].v=a[1]; return;}
20
       int mid=l+r>>1;
21
       build(1,mid,ls);build(mid+1,r,rs);
22
       pushup(p);
23
   }
   void upd(int l,int r,int p,ll c){
24
       if(1<=t[p].1&&t[p].r<=r){
25
26
            up1(p,c); return;
```

```
27
        pushdown(p);
28
29
        int mid=t[p].l+t[p].r>>1;
30
        if(1<=mid)upd(1,r,ls,c);
        if(r>mid)upd(l,r,rs,c);
31
32
        pushup(p);
33
34
   11 qry(int 1,int r,int p){
        if(1<=t[p].1&&t[p].r<=r)return t[p].v;</pre>
35
36
        pushdown(p);
        int mid=t[p].l+t[p].r>>1; ll s=0;
37
        if(l<=mid)s=qry(l,r,ls);</pre>
38
        if(r>mid)s+=qry(l,r,rs);
39
40
        return s;
41
   }
```

懒惰标记优先级 1、先乘法后加法:设区间乘法标记为 M_{tag} ,加法标记为 A_{tag} ,每次更新把区间乘以 M,再增加 A

$$\sum a_i = \sum (Ma_i + A) = M \sum a_i + A(r - l + 1)$$

$$M_{tag} = M \times M_{tag}, \quad A_{tag} = M \times A_{tag} + A$$

```
void up1(int p,int mul,int add){
1
2
       t[p].sum=mul*t[p].sum+add;
       t[p].mul*=mul;t[p].add=mul*t[p].add+add;
3
4
   }
   void upd(int p,int l,int r,int mul,int add){
5
6
       if(1<=t[p].1&&t[p].r<=r){
7
            up1(p,mul,add);return;
8
       }
9
       pushdown(p);
10
       int mid=t[p].l+t[p].r>>1;
11
       if(l<=mid)upd(ls,l,r,mul,add);</pre>
12
       if(r>mid)upd(rs,1,r,mul,add);
13
       pushup(p);
14
15
   //区间乘c: upd(1,1,r,c,0)
                                区间加c:upd(1,1,r,1,c)
```

2、维护区间交叉项和

维护区间
$$\sum a_i, \sum b_i, \sum a_i^2, \sum b_i^2, \sum a_i b_i$$

维护区间乘法矩阵 $M_{tag} = \begin{bmatrix} m_{00} & m_{01} \\ m_{10} & m_{11} \end{bmatrix}$,区间加法 $A_{tag} = \begin{bmatrix} t_a \\ t_b \end{bmatrix}$,设加入新的 tag 分别为 M, A $\sum a_i b_i = \sum (m_{00} a_i + m_{01} b_i + t_a)(m_{10} a_i + m_{11} b_i + t_b)$

```
= m_{00}m_{10} \sum a_i^2 + m_{01}m_{11} \sum b_i^2 + (m_{00}m_{11} + m_{01}m_{10}) \sum a_i b_i + (t_b m_{00} + t_a m_{10}) \sum a_i + (t_a m_{11} + t_b m_{01}) \sum b_i + t_a t_b (r - l + 1)
\sum a_i^2 = \sum (m_{00}a_i + m_{01}b_i + t_a)^2
= m_{00}^2 \sum a_i^2 + m_{01}^2 \sum b_i^2 + 2m_{00}m_{01} \sum a_i b_i + 2t_a m_{00} \sum a_i + 2t_a m_{01} \sum b_i + t_a^2 (r - l + 1)
\sum b_i^2 = \sum (m_{10}a_i + m_{11}b_i + t_b)^2
= m_{10}^2 \sum a_i^2 + m_{11}^2 \sum b_i^2 + 2m_{10}m_{11} \sum a_i b_i + 2t_b m_{10} \sum a_i + 2t_b m_{11} \sum b_i + t_b^2 (r - l + 1)
\sum a_i = \sum (m_{00}a_i + m_{01}b_i + t_a) = m_{00} \sum a_i + m_{01} \sum b_i + t_a (r - l + 1)
\sum b_i = \sum (m_{10}a_i + m_{11}b_i + t_b) = m_{10} \sum a_i + m_{11} \sum b_i + t_b (r - l + 1)
M_{tag} = M \times M_{tag}, \quad A_{tag} = M \times A_{tag} + A
3、先清空,再赋值
cl 表示是否清空 tag,add 表示加法 tag
```

```
void up1(int p,int cl,int add){
1
2
       if(cl){
3
            t[p].sum=add*(t[p].r-t[p].l+1);
            t[p].cl=1;t[p].add=add;
4
5
       }
       else{
6
            t[p].sum+=add*(t[p].r-t[p].l+1);
7
            t[p].add+=add;
8
9
       }
10
   }
```

5.2.2 动态开点线段树

```
const int N=1e5+5,M=N*150;
2
  struct sgt{
       int ls,rs;ll v,tag;//左右儿子,区间和,加法tag
3
4
  }t[M];
5 int rt,tot;//多棵树需要rt[N]
   int newnode(){
6
7
       int p=++tot;t[p].ls=t[p].rs=t[p].v=t[p].tag=0;return p;
8
   void up1(int p,ll c,int len){
9
       if(!p)p=newnode();
10
       t[p].v+=c*len;t[p].tag+=c;
11
12
   }
   void pushdown(int p,int len){
13
14
       if(t[p].tag){
           up1(t[p].ls,t[p].tag,len+1>>1);
15
```

```
up1(t[p].rs,t[p].tag,len>>1);
16
17
            t[p].tag=0;
18
        }
19
20
   void upd(int &p,int l,int r,int L,int R,ll c){
21
        if(!p)p=newnode();
22
        if(L<=1&&r<=R){up1(p,c,r-l+1);return;}</pre>
23
        pushdown(p,r-l+1);
24
        int mid=l+r>>1;
25
        if(L<=mid)upd(t[p].ls,l,mid,L,R,c);</pre>
26
        if(R>mid)upd(t[p].rs,mid+1,r,L,R,c);
27
        t[p].v=t[t[p].ls].v+t[t[p].rs].v;
28
   11 qry(int p,int l,int r,int L,int R){
29
30
        if(!p)return 0;
31
        if(L<=1&&r<=R)return t[p].v;</pre>
32
        pushdown(p,r-l+1);
        int mid=l+r>>1;ll s=0;
33
34
        if(L<=mid)s=qry(t[p].ls,l,mid,L,R);</pre>
        if(R>mid)s+=qry(t[p].rs,mid+1,r,L,R);
35
36
        return s;
37
38
   int main(){
39
        int n,q;scanf("%d%d",&n,&q);
40
        for(int x,i=1;i<=n;++i)scanf("%d",&x),upd(rt,1,n,i,i,x);</pre>
        while(q--){
41
42
            int op,1,r,k;scanf("%d%d%d",&op,&1,&r);
43
            if(op==1){scanf("%d",&k);upd(rt,1,n,1,r,k);}
44
            else printf("%lld\n",qry(rt,1,n,l,r));
45
        }
46
   }
```

5.2.3 复杂信息合并线段树

```
1 struct sgt{
2    int l,r;
3    int lmx,rmx;//包含左/右端点的区间最大子段和
4    int mx,sum;//区间最大子段和,区间和
5 }t[N<<2];
6 #define ls (p<<1)
7 #define rs (p<<1|1)
```

```
8
   sgt pushup(sgt sl,sgt sr){
9
        sgt s={sl.1,sr.r};
10
        s.lmx=max(sl.lmx,sl.sum+sr.lmx);
11
        s.rmx=max(sr.rmx,sr.sum+sl.rmx);
12
        s.mx=max({sl.mx,sr.mx,sl.rmx+sr.lmx});
13
        s.sum=sl.sum+sr.sum;
14
        return s;
15
   }
   void upd(int p,int idx,int c){
16
17
        if(t[p].l==t[p].r){
            t[p].lmx=t[p].rmx=t[p].sum=t[p].mx=c;
18
19
            return;
20
        }
        int mid=t[p].l+t[p].r>>1;
21
22
        if(idx<=mid)upd(ls,idx,c);</pre>
23
        else upd(rs,idx,c);
24
       t[p]=pushup(t[ls],t[rs]);
25
26
   sgt qry(int p,int l,int r){
27
        if(1<=t[p].1&&t[p].r<=r)return t[p];
28
        int mid=t[p].l+t[p].r>>1;
29
        if(r<=mid)return qry(ls,1,r);</pre>
30
        if(l>mid)return qry(rs,l,r);
31
        return pushup(qry(ls,1,r),qry(rs,1,r));
32
   }
```

5.2.4 暴力更新线段树

```
void upd(int 1,int r,int p,ll c){//少量暴力更新子树
1
2
       if(l<=t[p].1&&t[p].r<=r&&t[p].flag){//该子树可以剪枝
           up1(p,c);//打上标记
3
4
           return;
5
       }
       if(t[p].1==t[p].r){ //叶子节点更新
6
7
           return;
8
       }
       pushdown(p);
9
10
       int mid=t[p].l+t[p].r>>1;
11
       if(1<=mid)upd(1,r,ls,c);
12
       if(r>mid)upde(l,r,rs,c);
       pushup(p);
13
```

14 }

5.2.5 pushup 带询问

```
给定 a,b 数组 (a_i \in [1,10^9], b_i \in \{0,1\})
询问 [l,r] 区间从 l 开始的最长上升子序列 a_{p_1}, a_{p_2}, ..., a_{p_k}(有递增必须选),求 \sum_{i=1}^{k-1} b_{p_i} \oplus b_{p_{i+1}}
单点修改 a_i := c,区间修改 [l,r] 的 b_i := b_i \oplus 1
```

```
struct sgt{
1
2
       int 1,r;
       pair<int,int>mx;//a的最大值,最大值对应的b
3
       int sum,tag;//区间答案,区间翻转标记
4
   }t[N<<2];
5
  #define ls (p<<1)</pre>
6
7 #define rs (p<<1|1)
   void up1(int p){t[p].tag^=1;t[p].mx.second^=1;}
   void pushdown(int p){
9
10
       if(t[p].tag){up1(ls);up1(rs);t[p].tag=0;}
11
12
   int calc(int p,pair<int,int>&mx){
13
       if(t[p].l==t[p].r){
            if(t[p].mx.first>=mx.first){
14
15
                int ans=(mx.second!=t[p].mx.second);
                mx=t[p].mx;return ans;
16
17
            }
            else return 0;
18
       }
19
20
       pushdown(p);
       int mid=t[p].l+t[p].r>>1;
21
22
       if(t[p].mx.first<mx.first)return 0;</pre>
23
       if(t[ls].mx.first<mx.first)return calc(rs,mx);</pre>
       else{
24
25
            int ans=calc(ls,mx)+t[p].sum-t[ls].sum;
26
            mx=t[p].mx;return ans;
27
       }
28
   void pushup(int p){
29
30
       if(t[ls].mx.first<=t[rs].mx.first)t[p].mx=t[rs].mx;</pre>
31
       else t[p].mx=t[ls].mx;
32
       pair<int,int>pr=t[ls].mx;
```

```
33
       t[p].sum=t[ls].sum+calc(rs,pr);
34
   }
35
   void build(int p,int l,int r){
36
       t[p].1=1;t[p].r=r;
       if(l==r){
37
38
            t[p].mx={a[1],b[1]};t[p].sum=1;return;
39
        }
       int mid=l+r>>1;
40
        build(ls,1,mid);build(rs,mid+1,r);
41
42
        pushup(p);
43
   void upd1(int p,int idx,int x){
44
        if(t[p].l==t[p].r){t[p].mx.first=x;return;}
45
46
        pushdown(p);
47
        int mid=t[p].l+t[p].r>>1;
48
        if(idx<=mid)upd1(ls,idx,x);</pre>
        else upd1(rs,idx,x);
49
50
        pushup(p);
51
   }
   void upd2(int p,int l,int r){
52
53
        if(l<=t[p].1&&t[p].r<=r){up1(p);return;}</pre>
        pushdown(p);
54
55
        int mid=t[p].l+t[p].r>>1;
        if(1<=mid)upd2(1s,1,r);
56
        if(r>mid)upd2(rs,1,r);
57
58
        pushup(p);
59
60
   int qry(int p,int l,int r,pair<int,int>&mx){
61
        if(1<=t[p].1&&t[p].r<=r)return calc(p,mx);</pre>
62
        pushdown(p);
        int mid=t[p].l+t[p].r>>1,s=0;
63
        if(1<=mid)s=qry(1s,1,r,mx);
64
65
        if(r>mid)s+=qry(rs,1,r,mx);
66
        return s;
67
```

5.2.6 线段树上二分

```
int qry(int p,int 1,int x){//[1,n]第一个<=x的下标
if(t[p].l==t[p].r)return t[p].l;
pushdown(p);</pre>
```

```
int mid=t[p].l+t[p].r>>1;
4
5
        if(1<=t[p].1){
6
            if(t[ls].mn<=x)return qry(ls,1,x);</pre>
7
            if(t[rs].mn>x)return -1;
            return qry(rs,1,x);
8
9
        }
        else if(1<=mid){</pre>
10
11
            int s=qry(ls,l,x);
12
            if(s!=-1)return s;
13
            if(t[rs].mn>x)return -1;
            return qry(rs,1,x);
14
15
        }
        else{
16
            if(t[rs].mn>x)return -1;
17
18
            return qry(rs,1,x);
19
        }
20
   }
```

5.2.7 线段树合并

```
void merge(int &p,int q){
1
2
       if(!p||!q){p=p|q;return;}
3
       t[p].v+=t[q].v;
       merge(t[p].ls,t[q].ls);
4
       merge(t[p].rs,t[q].rs);
5
6
7
   int merge(int p,int q){//树形DP保留树上所有结点答案时,线段树合并需要新建结点
       if(!p||!q)return p|q;
8
       int now=++tot;
9
       t[now].v=t[p].v+t[q].v;
10
11
       t[now].ls=merge(t[p].ls,t[q].ls);
12
       t[now].rs=merge(t[p].rs,t[q].rs);
       return now;
13
14
  }
```

5.2.8 线段树分裂

```
1 int n,m,q,rt[N],tot,a[N];
2 map<int,int>mp;//mp[区间左端点]=区间右端点
3 int vis[N];//0:升序 1:降序
4 struct sgt{
```

```
5
        int ls,rs;
6
        int v,rev,rtag;//tag=1:需要翻转
7
   }t[N<<5];</pre>
8
   int newnode(int op){
9
        int p=++tot;
        t[p].rev=op;
10
11
        return p;
12
   }
   void pushup(int p){
13
        t[p].v=t[t[p].ls].v+t[t[p].rs].v;
14
15
   void upd(int &p,int l,int r,int x){
16
        if(!p)p=newnode(0);
17
        if(l==r){
18
19
            ++t[p].v;
20
            return;
21
        }
        int mid=l+r>>1;
22
23
        if(x<=mid)upd(t[p].ls,l,mid,x);</pre>
24
        else upd(t[p].rs,mid+1,r,x);
        pushup(p);
25
26
27
   void reverse1(int p){
28
        if(!p)return;
29
        t[p].rtag^=1;
        t[p].rev^=1;
30
        swap(t[p].ls,t[p].rs);
31
32
   }
   void pushdown(int p){
33
34
        if(t[p].rtag){
            reverse1(t[p].ls);
35
            reverse1(t[p].rs);
36
37
            t[p].rtag=0;
        }
38
39
   void merge(int &p,int q){
40
        if(!p||!q){
41
42
            p=p|q;return;
43
        }
        pushdown(p);pushdown(q);
44
45
        merge(t[p].ls,t[q].ls);
```

```
46
       merge(t[p].rs,t[q].rs);
47
       pushup(p);
48
49
   int kth(int p,int l,int r,int k){//从左往右第k个
50
       if(l==r)return 1;
       pushdown(p);
51
52
       int mid=l+r>>1;
53
       if(!t[p].rev){
54
           if(t[t[p].ls].v>=k)return kth(t[p].ls,l,mid,k);
           else return kth(t[p].rs,mid+1,r,k-t[t[p].ls].v);
55
       }
56
       else{
57
58
           if(t[t[p].ls].v>=k)return kth(t[p].ls,mid+1,r,k);
           else return kth(t[p].rs,l,mid,k-t[t[p].ls].v);
59
       }
60
61
   void splitL(int p,int &q,ll k){
62
       if(!p)return;
63
64
       q=newnode(t[p].rev);//新结点翻转状态一致
       pushdown(p);
65
       11 s=t[t[p].ls].v;
66
67
       if(k>=s){
68
           t[q].ls=t[p].ls;t[p].ls=0;
69
           if(k>s)splitL(t[p].rs,t[q].rs,k-s);
70
71
       else splitL(t[p].ls,t[q].ls,k);
72
       pushup(p);pushup(q);
73
   }
   void split(int L, int R, int 1, int r, int op){//从[L,R]中分裂出[1,r]
74
75
       if(1!=L){
           rt[1]=rt[L];
76
77
           splitL(rt[l],rt[L],l-L);
78
           mp[L]=1-1; mp[1]=R;
79
           vis[l]=vis[L];
80
       }
       if(r!=R){
81
82
           rt[r+1]=rt[1];
83
           splitL(rt[r+1],rt[l],r-l+1);
84
           mp[1]=r;mp[r+1]=R;
           vis[r+1]=vis[L];
85
86
       }
```

```
87
         if(vis[1]!=op){
88
             vis[1]=op;
             reverse1(rt[1]);
89
90
         }
91
92
    int main(){
         scanf("%d%d",&n,&m);
93
94
         for(int i=1;i<=n;++i){</pre>
95
             scanf("%d",&a[i]);
96
             upd(rt[i],1,n,a[i]);
97
             mp[i]=i;vis[i]=0;
        }
98
        while(m--){
99
             int op,1,r;scanf("%d%d%d",&op,&1,&r);
100
101
             auto pr1=*--mp.upper_bound(1);
102
             auto pr2=*--mp.upper_bound(r);
             int a=pr1.first,b=pr1.second;
103
104
             int c=pr2.first,d=pr2.second;
105
             if(pr1==pr2){
106
                 split(a,b,l,r,op);
107
             }
108
             else{
109
                 split(a,b,l,b,op); split(c,d,c,r,op);
110
                 for(auto it=mp.upper_bound(1);it!=mp.end()&&it->second<=r;it=mp.erase</pre>
                     (it)){
111
                      if (vis[it->first]!=op){
                          reverse1(rt[it->first]), vis[it->first]=op;
112
113
                      }
114
                      merge(rt[1],rt[it->first]);
115
                 }
116
                 mp[1]=r;
117
             }
118
         }
119
         scanf("%d",&q);
120
         int pos=(--mp.upper_bound(q))->first;
121
         int ans=kth(rt[pos],1,n,q-pos+1);
122
         printf("%d\n",ans);
123
    }
```

5.2.9 扫描线

```
1 //求n个矩形面积并
2 struct rectangle{int x1,y1,x2,y2;}a[N];
3 int n,b[N<<1],h,hb;</pre>
4 struct line{int x1,x2,y,c;}c[N<<1];</pre>
5 bool cmp(line a, line b){return a.y<b.y;}</pre>
6 struct sgt{
       int l,r,v,cnt;
8
  |}t[N<<3];//N个矩形有2N个x坐标, 要8N线段树结点
  #define ls (p<<1)
9
10 #define rs (p<<1|1)
   void build(int 1,int r,int p){
11
12
       t[p].l=1;t[p].r=r;
13
       if(l==r)return;
       int mid=l+r>>1;
14
       build(l,mid,ls);build(mid+1,r,rs);
15
16
   void pushup(int p){
17
       if(t[p].cnt)t[p].v=b[t[p].r+1]-b[t[p].1];//整个区间都有
18
19
       else{
20
           if(t[p].1==t[p].r)t[p].v=0;//叶子结点特判避免RE
           else t[p].v=t[ls].v+t[rs].v;//根据儿子更新
21
22
       }
23
   void upd(int 1,int r,int p,int c){//[1,r]被覆盖次数+=c
24
25
       if(1<=t[p].1&&t[p].r<=r){
26
           t[p].cnt+=c; pushup(p);//pushup来更新,比较方便
27
           return;
28
       }
       int mid=t[p].l+t[p].r>>1;
29
30
       if(l<=mid)upd(l,r,ls,c);</pre>
       if(r>mid)upd(l,r,rs,c);
31
32
       pushup(p);
33
34
   int main(){
       scanf("%d",&n);
35
36
       for(int i=1;i<=n;++i)scanf("%d%d%d%d",&a[i].x1,&a[i].y1,&a[i].x2,&a[i].y2);</pre>
37
       for(int i=1;i<=n;++i){b[++hb]=a[i].x1;b[++hb]=a[i].x2;}</pre>
38
       sort(b+1,b+1+hb);hb=unique(b+1,b+1+hb)-b-1;
       for(int i=1;i<=n;++i){//对x离散化
39
           a[i].x1=lower_bound(b+1,b+1+hb,a[i].x1)-b;
40
           a[i].x2=lower_bound(b+1,b+1+hb,a[i].x2)-b;
41
```

```
42
       for(int i=1;i<=n;++i){//在y1对x的区间+1,在y2对x的区间-1,大于0就是有的
43
44
          c[++h]={a[i].x1,a[i].x2,a[i].y1,1};
45
          c[++h]={a[i].x1,a[i].x2,a[i].y2,-1};
46
       }
       sort(c+1,c+1+h,cmp);
47
       build(1,hb-1,1);//化点为线,x坐标下标:x1--x2--x3--x4--x5--x6--x7
48
                                 线段下标: s1 s2 s3 s4 s5 s6
49
       long long ans=0;//
       for(int i=1;i<h;++i){</pre>
50
          upd(c[i].x1,c[i].x2-1,1,c[i].c);
51
          ans+=111*t[1].v*(c[i+1].y-c[i].y);//线段之和*高度(重合的扫描线高度差为0)
52
53
       }
54
       printf("%11d\n",ans);
55
   }
```

5.2.10 segment tree beats

实现区间加,区间对一个数取 min,区间和

维护区间最大值 mx1 和区间次大值 mx2,当区间对 c 取 min 时,c 小于 mx2 就暴力,否则打标记

```
void pushup(int p){
1
2
       t[p].v=t[ls].v+t[rs].v;
3
       if(t[ls].mx1>t[rs].mx1){
            t[p].mx1=t[ls].mx1;
4
            t[p].cnt=t[ls].cnt;
5
            t[p].mx2=max(t[ls].mx2,t[rs].mx1);
6
7
       }
       else if(t[ls].mx1==t[rs].mx1){
8
9
            t[p].mx1=t[ls].mx1;
            t[p].cnt=t[ls].cnt+t[rs].cnt;
10
            t[p].mx2=max(t[ls].mx2,t[rs].mx2);
11
12
       }
       else{
13
            t[p].mx1=t[rs].mx1;
14
15
            t[p].cnt=t[rs].cnt;
            t[p].mx2=max(t[rs].mx2,t[ls].mx1);
16
       }
17
18
19
   void up1(int p,int c){
       if(c<t[p].mx1){
20
21
            t[p].tag=c;
```

```
22
            t[p].v-=1ll*(t[p].mx1-c)*t[p].cnt;
23
            t[p].mx1=c;
24
        }
25
   }
   void upd(int l,int r,int p,int c){
26
27
        if(1<=t[p].1&&t[p].r<=r&&c>=t[p].mx2){
28
            up1(p,c);return;
29
        }
30
        if(t[p].l==t[p].r){
31
            t[p].cnt=1;
32
            t[p].mx1=c;
            t[p].mx2=-1;
33
34
            t[p].tag=c;
            t[p].v=c;
35
36
            return;
37
        }
38
        pushdown(p);
        int mid=t[p].l+t[p].r>>1;
39
40
        if(l<=mid)upd(l,r,ls,c);</pre>
        if(r>mid)upd(l,r,rs,c);
41
42
        pushup(p);
43
   }
```

5.3 单调栈

左边最近的小于 a[i] 的下标

```
int a[N],L[N],n;//L[i]=左边最近的小于a[i]的下标
2
  int sta[N],top;//单调递增的栈
   int main(){
3
4
       for(int i=1;i<=n;++i){</pre>
           while(top&&a[sta[top]]>=a[i]){
5
               //sta[top] 左 边 第 一 个 小 于 它 的 是 sta[top-1]
6
              //sta[top] 右边第一个小于等于它的是i
7
               --top;
8
9
          }
          L[i]=sta[top];sta[++top]=i;
10
11
       }
12
   }
```

最大子矩形

1 //给定一个只有A和B的矩阵,求最大的全是A的矩阵

```
int n,m,a[N][N],ans;//a[i][j]=(i,j)最大向上扩展(全A)的长度
  for(int i=1;i<=n;++i){//对每一行向上扩展取max
3
4
      sta[0]=0;
5
      for(int j=1;j<=m+1;++j){</pre>
          if(s[i][j]=='B'||j==m+1){//该位置是非法位置
6
7
              while(top){//清空栈并更新答案
                  ans=max(ans,(j-sta[top-1]-1)*a[i][sta[top]]);
8
9
                  --top;
10
              }
              sta[0]=j;//更新栈低下标
11
12
          else{//该位置是合法位置,需要在单调栈中对最大的矩形取max
13
              while(top&&a[i][sta[top]]>a[i][j]){
14
                  ans=max(ans,(j-sta[top-1]-1)*a[i][sta[top]]);
15
16
                  --top;
17
              sta[++top]=j;
18
19
          }
20
      }
21
  }
```

计算矩形个数

```
1
   struct P{
2
       int x,y;
       inline bool operator < (const P &b)const{</pre>
3
           return x < b \cdot x \mid x = b \cdot x & y < b \cdot y;
4
5
       }
6
  };
   ll calc(int h[],int l,int r){//[l,r]区间有几个矩形, 第i个位置高度为h[i]
7
       static int sta[N],top;
8
       //vl[i]=左边最近的小于h[i]的位置,不存在时为1-1
9
       //vr[i]=右边最近的小于等于<math>h[i]的位置,不存在时为r+1
10
       //ans=sum(vr[i]-i)*(i-vl[i])*h[i],实际不需要储存vl和vr数组
11
12
       11 ans=0;
                   sta[top=0]=1-1;
       for(int i=1;i<=r;++i){</pre>
13
           while(top&&h[sta[top]]>=h[i]){
14
               ans+=ll(sta[top]-sta[top-1])*(i-sta[top])*h[sta[top]];
15
16
               --top;
17
           sta[++top]=i;
18
19
```

```
20
       while(top){
21
           ans+=ll(sta[top]-sta[top-1])*(r+1-sta[top])*h[sta[top]];
22
23
       }
24
       return ans;
25
   }
   11 cnt_rectangle(vector<P>&v){
26
       static int h[N][N];//h[i][j]=(i,j)位置往上最多延申几个(包括自身)
27
28
       int top=0;
       sort(v.begin(),v.end());
29
30
       for(auto &p:v)h[p.x][p.y]=1;//记录询问的点
       11 ans=0;
31
       for(int i=0;i<v.size();++i){</pre>
32
33
           int j=i,x=v[i].x;
           while(j+1<v.size()&&v[j+1].x==x)++j;//提取同一行
34
           for(int k=i;k<=j;++k)h[x][v[k].y]=h[x-1][v[k].y]+1;</pre>
35
           for(int k=i;k<=j;++k){</pre>
36
               int t=k;
37
38
               while(t+1<=j&&v[t+1].y==v[t].y+1)++t;//提取相连的
39
               ans+=calc(h[x],v[k].y,v[t].y);
               k=t;
40
           }
41
           i=j;
42
43
44
       for(auto &p:v)h[p.x][p.y]=0;//删除询问的点
       return ans;
45
46
   }
```

5.4 单调队列

```
1 //dp[i]=min(dp[i-k],dp[i-k+1],...,dp[i-1])+a[i]
2 int q[N],fr=0;bc=-1;//单增队列,保证队首为区间最小值
3 q[++bc]=0;//先加入一个dp[0]=a[0]=0
4 for(int i=1;i<=n;++i){
    dp[i]=dp[q[fr]]+a[i];
    while(bc>=fr&&dp[q[bc]]>=dp[i])--bc;
    q[++bc]=i;
    while(bc>=fr&&q[fr]<=i-k)++fr;
9 }
```

5.5 ST 表

```
1 int st[22][N];
2 for(int i=2;i<N;++i)Log2[i]=Log2[i>>1]+1;//注意i从2开始
3 for(int i=1;i<=n;++i)st[0][i]=a[i];</pre>
4
   for(int i=1;1<<i<=n;++i){</pre>
5
        for(int j=1;j+(1<<i)-1<=n;++j){</pre>
6
            st[i][j]=max(st[i-1][j],st[i-1][j+(1<< i-1)]);
7
       }
8
9
   int qry(int 1,int r){
10
        int k=Log2[r-l+1];//也可以用__lg(r-l+1);
        return max(st[k][1],st[k][r-(1<<k)+1]);</pre>
11
12
   }
```

5.6 哈希表

```
const int HA=19260817, maxn=3e6+5;
1
   struct Hashtable{
2
3
       int h,hd[HA],nx[maxn];ll key[maxn]; ll val[maxn];
       void add(int x,ll y){key[++h]=y;val[h]=0;nx[h]=hd[x];hd[x]=h;}
4
       bool find(ll x){for(int i=hd[x%HA];i;i=nx[i])if(key[i]==x)return 1;return 0;}
5
6
       11& operator [] (const 11 &x){
7
           for(int i=hd[x%HA];i;i=nx[i])if(key[i]==x)return val[i];
8
           add(x%HA,x);return val[h];
9
       }
   }mp1,mp2;
10
```

5.7 并查集

路径压缩并查集

```
int n,fa[N];
int find(int x){
    return x==fa[x]?x:fa[x]=find(fa[x]);

int main(){
    for(int i=1;i<=n;++i)fa[i]=i;//初始化
    fa[find(x)]=find(y);//连接x,y

}</pre>
```

划分两个集合,可以令 x 为选择 x, x+n 为不选择 x,若 x 和 y+n 在同一个并查集,代表某一个集合选 x 并且不选 y

按秩合并并查集

```
int fa[N],sz[N];//也可以按dep合并
int find(int x){return x==fa[x]?x:find(fa[x]);}

void merge(int x,int y){
    x=find(x);y=find(y);
    if(sz[x]>sz[y])swap(x,y);
    fa[x]=y;sz[y]+=sz[x];
}
```

可撤销并查集

```
int n,fa[N],sz[N],top;
1
2
   pair<int,int>sta[N];
3
   int find(int x){
       return x==fa[x]?x:find(fa[x]);
4
   }
5
6
   void merge(int x,int y){
7
       int x=find(x),y=find(y);
       if(sz[fx]>sz[fy])swap(x,y);
8
9
       fa[x]=y;sz[y]+=sz[x];
       sta[++top]=make_pair(x,y);
10
11
   void del(){//后连接的必须先撤销
12
       pair<int,int>pr=sta[top--];
13
       int x=pr.first,y=pr.second;
14
       fa[x]=x;sz[y]-=sz[x];
15
16
   }
```

可持久化并查集

```
const int N=1e5+5,Q=2e5+5,LOGN=log2(N)+1;
1
2
  int n,rt[N<<1],tot,q;</pre>
   struct sgt{
3
        int ls,rs;
4
        int fa,d;
5
   }t[(N+Q)*LOGN];
6
   int build(int 1,int r){
7
8
        int p=++tot;
9
       if(l==r){
10
            t[p].fa=1;t[p].d=1;
```

```
11
            return p;
12
        }
13
        int mid=l+r>>1;
14
       t[p].ls=build(l,mid);
        t[p].rs=build(mid+1,r);
15
16
        return p;
17
18
   int upd_fa(int 1,int r,int last,int x,int fa){
19
        int p=++tot;
20
       t[p]=t[last];
21
        if(l==r){t[p].fa=fa;return p;}
22
        int mid=l+r>>1;
23
        if(x<=mid)t[p].ls=upd_fa(l,mid,t[last].ls,x,fa);</pre>
        else t[p].rs=upd_fa(mid+1,r,t[last].rs,x,fa);
24
25
        return p;
26
27
   void upd_dep(int 1,int r,int p,int x){
28
        if(l==r){++t[p].d;return;}
29
        int mid=l+r>>1;
        if(x<=mid)upd_dep(1,mid,t[p].ls,x);</pre>
30
        else upd dep(mid+1,r,t[p].rs,x);
31
32
   }
33
   int qry(int 1,int r,int x,int p){
34
        if(l==r)return p;
35
        int mid=l+r>>1;
        if(x<=mid)return qry(1,mid,x,t[p].ls);</pre>
36
        else return qry(mid+1,r,x,t[p].rs);
37
38
   }
   int find(int x,int p){
39
40
        int id=qry(1,n,x,p);
        int f=t[id].fa;
41
        return x==f?id:find(f,p);
42
43
   void merge(int x,int y,int &p){
44
        int fxid=find(x,p);
45
        int fyid=find(y,p);
46
        int fx=t[fxid].fa,fy=t[fyid].fa;
47
48
        int dx=t[fxid].d,dy=t[fyid].d;
49
        if(dx>dy)swap(fx,fy);
        p=upd_fa(1,n,p,fx,fy);
50
51
        if(dx==dy)upd_dep(1,n,p,fy);
```

```
52 }
53 int main(){rt[0]=build(1,n);}
```

5.8 主席树

区间第k小

```
int n,q,a[N],b[N],rt[N],tot;
2
   struct sgt{
3
       int v;
       int ls,rs;
4
   }t[N*33];//nlogC ,离散化后C=n
   int insert(int l,int r,int last,int x,int c){
6
7
       int p=++tot;
8
       t[p]=t[last];
9
       t[p].v+=c;
       if(1!=r){
10
11
           int mid=l+r>>1;
           if(x<=mid)t[p].ls=insert(1,mid,t[p].ls,x,c);</pre>
12
            else t[p].rs=insert(mid+1,r,t[p].rs,x,c);
13
14
       }
15
       return p;
16
   int qry(int 1,int r,int p1,int p2,int k){
17
18
       if(l==r)return 1;
       int s=t[t[p2].ls].v-t[t[p1].ls].v;
19
20
       int mid=l+r>>1;
21
       if(k<=s)return qry(1,mid,t[p1].ls,t[p2].ls,k);</pre>
22
       else return qry(mid+1,r,t[p1].rs,t[p2].rs,k-s);
23
   }// qry(1,n,rt[1-1],rt[r],k) = [L,R]区间第k小
```

区间 mex

```
int n,q,a[N];
1
2
  struct sgt{
       int ls,rs,v;//权值区间最后一次出现位置的最小值
3
  }t[N*33];//nlogC
4
   int rt[N],tot;
5
   int insert(int l,int r,int last,int x,int pos){
6
       int p=++tot;
7
8
       t[p]=t[last];
9
       if(l==r){
10
          t[p].v=pos;return p;
```

```
11
12
       int mid=l+r>>1;
13
       if(x<=mid)t[p].ls=insert(l,mid,t[last].ls,x,pos);</pre>
14
       else t[p].rs=insert(mid+1,r,t[last].rs,x,pos);
15
       t[p].v=min(t[t[p].ls].v,t[t[p].rs].v);
16
       return p;
17
18
   int qry(int l,int r,int lim,int p){//qry(0,n,l,rt[r])=区间[l,r]的mex
       if(l==r)return 1;
19
20
       int mid=l+r>>1;
21
       if(t[t[p].ls].v<lim)return qry(l,mid,lim,t[p].ls);</pre>
22
       else return qry(mid+1,r,lim,t[p].rs);
23 }
```

区间 lcm:

对于一个数,将其分解质因数,若有因子 p^k ,那么拆分出 k 个数 $p, p^2, ..., p^k$,权值都为 p, lcm([l, r]) = 区间权值之积

区间修改主席树:标记永久化,更新时可能会插入 2logn 个结点,询问时把 tag 递归下传

```
struct sgt{ int ls,rs;ll v,tag;}t[N*33]; int rt[N],tot;
   int newnode(){int p=++tot;t[p].ls=t[p].rs=t[p].v=t[p].tag=0;return p;}
  11 calc(int p,int len,ll tag){
3
       if(!p)return 0;
4
       return t[p].v+(t[p].tag+tag)*len;
5
6
  }
7
   void pushup(int p,int len){
8
       t[p].v=calc(t[p].ls,len+1>>1,0)+calc(t[p].rs,len>>1,0);
9
   int upd(int last,int l,int r,int L,int R,ll c){
10
       int p=newnode();
11
12
       t[p]=t[last];
13
       if(L<=1&&r<=R){ t[p].tag+=c;return p;}</pre>
14
       int mid=l+r>>1;
15
       if(L<=mid)t[p].ls=upd(t[last].ls,l,mid,L,R,c);</pre>
16
       if(R>mid)t[p].rs=upd(t[last].rs,mid+1,r,L,R,c);
17
       pushup(p,r-l+1);
18
       return p;
19
   11 qry(int p,int l,int r,int L,int R,ll tag){
20
21
       if(!p)return 0;
22
       if(L<=1&&r<=R)return calc(p,r-1+1,tag);</pre>
23
```

```
24     if(L<=mid)s=qry(t[p].ls,l,mid,L,R,tag+t[p].tag);
25     if(R>mid)s+=qry(t[p].rs,mid+1,r,L,R,tag+t[p].tag);
26     return s;
27 }
```

5.9 树套树

树状数组套动态开点线段树/01Trie 树

```
struct sgt{
1
2
       int ls,rs;
3
       int v;
   }t[N*200];//nlognlogC
4
   int rt[N],tot;
5
6
   void upd(int l,int r,int &p,int x,int c){
7
       if(!p)p=++tot;
8
       t[p].v+=c;
       if(l==r)return;
9
       int mid=l+r>>1;
10
11
       if(x<=m)upd(1,mid,t[p].ls,x,c);
       else upd(mid+1,r,t[p].rs,x,c);
12
13
   }
14
   int qry(int L,int R,int l,int r,int p){
       if(!p)return 0;
15
       if(L<=1&&r<=R)return t[p].v;</pre>
16
       int mid=l+r>>1,s=0;
17
       if(L<=m)s+=qry(L,R,1,mid,t[p].ls);
18
19
       if(R>m)s+=qry(L,R,mid+1,r,t[p].rs);
20
       return s;
21
22
   void add(int i,int x,int k){//第i棵线段树在x的位置+k
23
       for(;i<=n;i+=i&-i)upd(1,n,rt[i],x,k);</pre>
24
25
   int query(int x, int 1, int r){//询问[1,x]区间值域[1,r]的个数
       if(l>r)return 0;
26
27
       int s=0;
28
       for(;x;x-=x&-x)s+=qry(1,r,1,n,rt[x]);
29
       return s;
30
   }
```

线段树套动态开点线段树

1 //考虑权值套区间,还是区间套权值

```
2 //外层线段树应当只进行单点更新,且不需要pushup
3 //内存线段树动态开点,且可以进行区间打标记
```

5.10 李超线段树

```
struct Line {
1
2
       11 k, b;
3
  } lin[N];
   int lcnt;
4
   int add_line(ll k, ll b) {
5
6
       lin[++lcnt] = \{k, b\};
7
       return lcnt;
8
   }
9
   struct node {
10
       int ls, rs, u;
   } tr[N << 2];</pre>
11
12
   int tot;
   ll calc(int u, ll x) {
13
       return lin[u].k * x + lin[u].b;
14
15
   }
   bool cmp(int u, int v, ll x) {
16
17
       return calc(u, x) <= calc(v, x); // 如果要求最大值,只需要修改为大于等于
18
   void pushdown(int &p, int 1, int r, int v) {
19
20
       if (!p) p = ++tot;
21
       if (1 == r) return;
       int mid = (1 + r) >> 1;
22
23
       int &u = tr[p].u, b = cmp(v, u, mid);
24
       if (b) swap(u, v);
25
       int bl = cmp(v, u, 1), br = cmp(v, u, r);
26
       if (bl) pushdown(tr[p].ls, l, mid, v);
       if (br) pushdown(tr[p].rs, mid + 1, r, v);
27
28
   void update(int &p, int 1, int r, int L, int R, int v) {
29
       if (1 > R || r < L) return;
30
       if (!p) p = ++tot;
31
       int mid = (1 + r) >> 1;
32
       if (1 >= L && r <= R) return pushdown(p, 1, r, v), void();</pre>
33
34
       update(tr[p].ls, l, mid, L, R, v);
       update(tr[p].rs, mid + 1, r, L, R, v);
35
36
  }
```

```
37
   11 query(int p, int l, int r, ll pos) {
38
       if (!p) return 1e16;
39
       11 res = calc(tr[p].u, pos);
40
       int mid = (1 + r) >> 1;
       if (1 == r) return res;
41
       if (pos <= mid) {
42
            res = min(res, query(tr[p].ls, 1, mid, pos));
43
44
       } else res = min(res, query(tr[p].rs, mid + 1, r, pos));
       return res;
45
46
   }
47
   int main() {
48
       lin[0].b = 1e16;
49
50
       return 0;
51
   }
```

5.11 Trie 树

```
1
   const int N=1e5+10,M=N*30;
  | int t[M][26],cnt[M],tot;//M为单词字母个数和
3
   void insert(string &s){
       int p=0;
4
       for(int i=0;i<s.length();++i){</pre>
5
            int c=s[i]-'a';
6
            if(!t[p][c])t[p][c]=++tot;
7
            p=t[p][c];
8
9
       }
       ++cnt[p];
10
11
12
   int qry(string &s){//s有几个
       int p=0;
13
       for(int i=0;i<s.length();++i){</pre>
14
            int c=s[i]-'a';
15
            if(!t[p][c])return 0;
16
17
            p=t[p][c];
18
       }
       return cnt[p];
19
20
   }
```

5.12 可持久化 01Trie

```
//求max[l<=i<=r] a[i]^a[i+1]^...^a[n]^x,即求与(x^s[n])异或起来最大的s[i-1]
1
2 int n,q,a[N],s[N],rt[N];
3 int t[N*30][2],tot,lastvis[N*30];
   int insert(int last,int i,int k){
4
5
       int p=++tot;
6
       lastvis[p]=i;
7
       if(k<0)return p;</pre>
8
       int c=s[i]>>k&1;
9
       t[p][c^1]=t[last][c^1];
       t[p][c]=insert(t[last][c],i,k-1);
10
       return p;
11
12
   }
   int qry(int 1,int p,int x){//[1,r] \pm max(s[i]^x)}
13
       for(int i=30;i>=0;--i){
14
           int c=x>>i&1;
15
16
           if(lastvis[t[p][c^1]]>=1)p=t[p][c^1];
17
           else p=t[p][c];
18
       }
19
       return s[lastvis[p]]^x;
20
21
   void debug(int p,int k,string s){
22
       if(k<0){
23
           cout<<s<<endl;</pre>
24
           return;
25
       }
26
       if(t[p][0])debug(t[p][0],k-1,s+'0');
27
       if(t[p][1])debug(t[p][1],k-1,s+'1');
28
   int main(){
29
30
       scanf("%d%d",&n,&q);
31
       for(int i=1;i<=n;++i)scanf("%d",&a[i]);</pre>
32
       for(int i=1;i<=n;++i)s[i]=s[i-1]^a[i];</pre>
33
       lastvis[0]=-1;//0代表不存在的结点,必须赋值为-1
34
       rt[0]=insert(0,0,30);//建立前缀和数组时s[0]存在,需要插入
35
       for(int i=1;i<=n;++i)rt[i]=insert(rt[i-1],i,30);</pre>
36
       char op[3];
37
       for(;q--;){
38
           scanf("%s",op);
39
           if(op[0]=='A'){//数组尾部插入一个数字
                int x;scanf("%d",&x);
40
41
                a[++n]=x;s[n]=s[n-1]^a[n];
```

```
42
                 rt[n]=insert(rt[n-1],n,30);
43
            }
44
            else{
45
                 int 1,r,x;scanf("%d%d%d",&1,&r,&x);
46
                 int ans=qry(l-1,rt[r-1],x^s[n]);
                 printf("%d\n",ans);
47
48
            }
49
        }
50
   }
```

5.13 莫队

单点修改莫队

```
int n,m,a[N],pos[N];//pos[i]=i所在块
2 struct QQ{ int 1,r,id; }q[N];
3
   |inline bool cmp(QQ a,QQ b){//询问接块排序
       return pos[a.1]<pos[b.1]||pos[a.1]==pos[b.1]&&a.r<b.r;
4
5
   }
  | ll cnt[M],ans[N],now;//cnt[i]=数字出现次数,now=当前答案
6
   void add(int x){
7
       now+=cnt[s[x]]; ++cnt[s[x]];
8
9
10
   void sub(int x){
       now-=cnt[s[x]]-1; --cnt[s[x]];
11
12
13
   int main(){
       scanf("%d%d",&n,&m);int sz=sqrt(n);
14
       for(int i=1;i<=n;++i)scanf("%d",&a[i]),pos[i]=i/sz;</pre>
15
16
       for(int i=1;i<=m;++i){scanf("%d%d",&q[i].1,&q[i].r);q[i].id=i;}</pre>
17
       sort(q+1,q+1+m,cmp);
       int L=1,R=0; now=0;
18
19
       for(int i=1;i<=m;++i){</pre>
            while(q[i].l<L)add(--L);</pre>
20
21
            while(q[i].r>R)add(++R);
            while(q[i].l>L)sub(L++);
22
23
            while(q[i].r<R)sub(R--);</pre>
24
            ans[q[i].id]=now;
25
       }
26
       for(int i=1;i<=m;++i)printf("%lld\n",ans[i]);</pre>
27
   }
```

回滚莫队

```
const int maxn=3e5+25, INF=0x3f3f3f3f;
1
2 int block size;
3 int ans[maxn],color[maxn],cntl[maxn],cntr[maxn],s[maxn];
  int l=1,r=0,sum=0,n,m,mx;
   struct query {
5
6
        int l,r,id;
7
        bool operator<(const query& sec)const {</pre>
            if(1/block_size!=sec.1/block_size)return 1<sec.1;</pre>
8
9
            return r<sec.r;</pre>
10
       }
   } q[maxn];
11
12 int tmpl[maxn], tmpr[maxn];
   int __1[maxn], __r[maxn];
13
   int main() {
14
15
        memset(tmpl,INF,sizeof(tmpl));
16
        memset(cntl,INF,sizeof(cntl));
17
       n=read();
18
        block size=sqrt(n);
19
        for (int i = 1; i <= n; i++)s[i]=color[i]=read();</pre>
20
        sort(s+1,s+n+1);
21
        int sz=unique(s+1,s+n+1)-s-1;
22
        for(int i = 1; i <= n; i++)color[i]=lower_bound(s+1,s+1+sz,color[i])-s;</pre>
23
        m=read();
24
        for (int i = 1; i <= m; i++) {</pre>
25
            q[i].l=read();q[i].r=read();q[i].id=i;
26
        }
27
        sort(q+1,q+1+m);
        for (int i = 1; i <= m; i++) {</pre>
28
29
            int curmx = 0;
30
            if(q[i].1/block_size==q[i].r/block_size) { // 1,r在通一块,暴力
31
                for (int j = q[i].1; j <= q[i].r; j++) {</pre>
32
                     if (!__l[color[j]]) __l[color[j]] = j;
33
                     __r[color[j]] = j;
34
                     curmx = max(curmx, __r[color[j]] - __l[color[j]]);
35
                }
36
                for (int j = q[i].1; j <= q[i].r; j++) {</pre>
37
                     _{-1}[color[j]] = 0;
                     _{r[color[j]] = 0;}
38
39
                }
40
                ans[q[i].id] = curmx;
```

```
41
                continue;
42
            }
43
            if((q[i].l/block_size+1)*block_size!=1) { // 1在另一块
44
                mx=0;
                while(r>=1)cntl[color[r]]=0x3f3f3f,cntr[color[r]]=0,r--; // reset
45
46
                l=(q[i].l/block_size+1)*block_size;
47
                r=l-1;
48
            }
            while(r<q[i].r) {</pre>
49
50
                ++r;
                cntl[color[r]] = min(r,cntl[color[r]]);
51
52
                cntr[color[r]] = r;
53
                mx=max(mx,cntr[color[r]] - cntl[color[r]]);
54
            }
55
            curmx = mx;
56
            for (int j = q[i].1; j \leftarrow 1 -1; j++) {
                tmpl[color[j]] = min(j,tmpl[color[j]]);
57
58
                tmpr[color[j]] = max(j,tmpr[color[j]]);
59
                curmx=max(curmx,max(tmpr[color[j]], cntr[color[j]]) - min(tmpl[color[
                   j]], cntl[color[j]]));
60
            }
            for (int j = q[i].l; j <= l -1; j++) {
61
62
                tmpl[color[j]] = 0x3f3f3f3f;
63
                tmpr[color[j]] = 0;
64
            }
            ans[q[i].id]=curmx;
65
66
       }
67
       for (int i = 1; i <= m; i++)printf("%d\n",ans[i]);</pre>
68
   }
```

树上莫队

```
struct treenode {
1
2
        int fa,hson,sz,depth,top;
3
        vector<int>nxt;
   } t[maxn];
4
   struct Query {
5
6
        int l,r,id,version;
7
        int posl,posr;
8
        bool operator<(const Query& sec)const {</pre>
9
            if(posl!=sec.posl)return l<sec.l;</pre>
10
            if(posr!=sec.posr)return r<sec.r;</pre>
```

```
11
            return version<sec.version;</pre>
       }
12
13
   } q[maxn];
14 int block_size,Q;
int color[maxn],cnt[maxn],ver[maxn],save[maxn],v[maxn],w[maxn],c[maxn],vis[maxn];
int in[maxn],out[maxn],id[maxn]; //tree_to_array
17
   int l=1,r=0,n,m,version=0,tot=0,pos,newval,x,y,tmp1,tmp2,trans,stamp=1;
18
   11 sum=0,ans[maxn];
   void dfs1(int pos) {
19
20
       in[pos]=++stamp;
21
       id[stamp]=pos;
22
       t[pos].hson=-1; //heavyson shoule be -1
23
       t[pos].sz=1;
       for(int k:t[pos].nxt) {
24
25
            if(!t[k].depth) {
26
                t[k].depth=t[pos].depth+1;
27
                t[k].fa=pos;
28
                dfs1(k);
29
                t[pos].sz+=t[k].sz;
                if(t[pos].hson==-1||t[k].sz>t[t[pos].hson].sz) {
30
31
                    t[pos].hson=k;
32
                }
33
            }
34
       }
35
       out[pos]=++stamp;
36
       id[stamp]=pos;
37
38
   void dfs2(int pos,int top) {
39
       t[pos].top=top;
40
       if(t[pos].hson==-1)return;
       dfs2(t[pos].hson,top); //to visit heavy_son first
41
42
       for(int k:t[pos].nxt) {
43
            if(k!=t[pos].fa&&k!=t[pos].hson)dfs2(k,k);
44
       }
45
   int query_LCA(int a,int b) {
46
47
       while(t[a].top!=t[b].top) {
48
           if(t[t[a].top].depth<t[t[b].top].depth)swap(a,b);</pre>
49
            a=t[t[a].top].fa;
50
51
       return t[a].depth<t[b].depth?a:b;</pre>
```

```
52
   }
   void add(int cur) { //cur: the number of node, in xor, add and del are equivalent
53
54
        if(vis[cur]==0)sum+=111*v[color[cur]]*w[++cnt[color[cur]]];
55
        else sum-=1ll*v[color[cur]]*w[cnt[color[cur]]--];
        vis[cur]^=1;
56
57
   void work(int cur) { //cur: the version
58
59
        int num=ver[cur], clr=save[cur]; // clr:color
60
        if((1<=in[num]&&in[num]<=r)^(1<=out[num]&&out[num]<=r)) {
            sum+=1ll*v[clr]*w[++cnt[clr]];
61
            sum-=1ll*v[color[num]]*w[cnt[color[num]]--];
62
63
        }
        swap(save[cur],color[num]);
64
65
66
   int main() {
67
        n=read(),m=read(),Q=read();
68
        block size=pow((n << 1),0.667);
        for(int i=1; i<=m; i++)v[i]=read();</pre>
69
70
        for(int i=1; i<=n; i++)w[i]=read();</pre>
        for(int i=0; i<n-1; i++) {</pre>
71
72
            tmp1=read(),tmp2=read();
73
            t[tmp1].nxt.push back(tmp2);
74
            t[tmp2].nxt.push_back(tmp1);
75
        }
76
       t[1].depth=1; dfs1(1); dfs2(1,1);
77
        for(int i=1; i<=n; i++) color[i]=read();</pre>
78
        for(int i=0; i<0; i++) {</pre>
79
            trans=read();
            if(trans==1) {
80
81
                tmp1=read(),tmp2=read();
                if(in[tmp1]>in[tmp2])swap(tmp1,tmp2);
82
                if(out[tmp1]<out[tmp2])q[tot].l=out[tmp1];</pre>
83
                else q[tot].l=in[tmp1];
84
                q[tot].r=in[tmp2];
85
                q[tot].posl=q[tot].1/block_size;
86
                q[tot].posr=q[tot].r/block_size;
87
                q[tot].id=tot;
88
89
                q[tot].version=version;
90
                tot++;
91
            } else {
92
                version++;
```

```
93
                  ver[version]=read();
94
                  save[version]=read();
95
             }
96
         }
         sort(q,q+tot);
97
         version=0;
98
         for(int i=0; i<tot; i++) {</pre>
99
100
             while(1>q[i].1)add(id[--1]);
             while(r<q[i].r)add(id[++r]);</pre>
101
             while(l<q[i].1)add(id[1++]);</pre>
102
103
             while(r>q[i].r)add(id[r--]);
104
             while(version<q[i].version)work(++version);</pre>
105
             while(version>q[i].version)work(version--);
106
             x=id[l],y=id[r];
             int f=query_LCA(x,y);
107
108
             if(f!=x&&f!=y) {
                  add(f);
109
                  ans[q[i].id]=sum;
110
111
                  add(f);
             } else ans[q[i].id]=sum;
112
113
         }
114
         for(int i=0; i<tot; i++)printf("%lld\n",ans[i]);</pre>
115
    }
```

5.14 平衡树

Treap

```
struct treap{
1
        int 1,r;
2
3
        int v,k;
4
        int sz, cnt;
5
   }t[N];
   int rt,tot;
6
7
   int New(int x){
8
       t[++tot].v=x;
       t[tot].k=rand();
9
        t[tot].sz=t[tot].cnt=1;
10
        t[tot].1=t[tot].r=0;
11
        return tot;
12
13
   }
14 void upd(int p){
```

```
15
       t[p].sz=t[t[p].1].sz+t[t[p].r].sz+t[p].cnt;
16
   }
17
   void build(){
18
        srand(time(0));
19
       New(-inf); New(inf);
20
        rt=1;t[1].r=2;
21
        upd(rt);
22
   }
23
   void zig(int &p){
24
       int q=t[p].1;
25
       t[p].l=t[q].r;
26
       t[q].r=p;p=q;
27
       upd(t[p].r);upd(p);
28
29
   void zag(int &p){
30
        int q=t[p].r;
31
       t[p].r=t[q].1;
32
       t[q].l=p;p=q;
33
       upd(t[p].1);upd(p);
34
   void insert(int &p,int x){
35
36
       if(!p){
37
            p=New(x);
38
            return;
39
        }
        if(x==t[p].v){
40
41
            ++t[p].cnt;
42
            ++t[p].sz;
43
            return;
44
       }
       if(x<t[p].v){
45
46
            insert(t[p].1,x);
47
            if(t[t[p].1].k>t[p].k)zig(p);
48
        }
49
       else{
            insert(t[p].r,x);
50
51
            if(t[t[p].r].k>t[p].k)zag(p);
52
        }
53
       upd(p);
54
   void del(int &p,int x){
```

```
56
        if(!p)return;
57
        if(x==t[p].v){
58
            if(t[p].cnt>1){
59
                --t[p].cnt;
60
                --t[p].sz;
61
                return;
62
            }
63
            if(t[p].1||t[p].r){
64
                 if(!t[p].r||t[t[p].1].k>t[t[p].r].k){
65
                     zig(p);
                     del(t[p].r,x);
66
                }
67
                else{
68
69
                     zag(p);
70
                     del(t[p].1,x);
71
                }
72
                upd(p);
73
            }
74
            else p=0;
            return;
75
76
        }
77
        if(x<t[p].v)del(t[p].1,x);
        else del(t[p].r,x);
78
79
        upd(p);
80
   int getrk(int p,int x){
81
82
        if(!p)return 0;
        if(x==t[p].v)return t[t[p].1].sz+1;
83
        if(x<t[p].v)return getrk(t[p].1,x);</pre>
84
85
        return getrk(t[p].r,x)+t[t[p].1].sz+t[p].cnt;
86
87
   int getv(int p,int rk){
88
        if(!p)return inf;
89
        if(t[t[p].1].sz>=rk)return getv(t[p].1,rk);
90
        if(t[t[p].1].sz+t[p].cnt>=rk)return t[p].v;
        return getv(t[p].r,rk-t[t[p].1].sz-t[p].cnt);
91
92
   }
93
   int getpre(int x){
94
        int p=rt,s=1;
95
        while(p){
96
            if(x==t[p].v){
```

```
97
                 if(t[p].1){
98
                     p=t[p].1;
99
                     while(t[p].r)p=t[p].r;
100
                     s=p;
101
                 }
102
                 break;
103
104
            if(t[p].v<x&t[p].v>t[s].v)s=p;
105
            if(x<t[p].v)p=t[p].1;
106
            else p=t[p].r;
107
        }
108
        return t[s].v;
109
    }
110
    int getnext(int x){
        int p=rt,s=2;
111
        while(p){
112
            if(x==t[p].v){
113
114
                 if(t[p].r){
115
                     p=t[p].r;
116
                     while(t[p].1)p=t[p].1;
117
                     s=p;
118
                 }
                 break;
119
120
            }
121
            if(t[p].v>x&&t[p].v<t[s].v)s=p;
122
            if(x<t[p].v)p=t[p].1;
123
            else p=t[p].r;
124
        }
125
        return t[s].v;
126
    }
127
    int main(){
128
        build();memset(t,0,sizeof t);//多测要清空
129
        for(int n=rd();n;--n){
130
            int op=rd(),x=rd();
131
            if(op==1)insert(rt,x);
132
            else if(op==2)del(rt,x);
            else if(op==3)printf("%d\n",getrk(rt,x)-1);
133
            //注意平衡树初始有-inf和inf,所以这里要+1/-1
134
            else if(op==4)printf("%d\n",getv(rt,x+1));
135
136
            else if(op==5)printf("%d\n",getpre(x));
137
            else printf("%d\n",getnext(x));
```

```
138 }
139 }
```

splay

```
const int N=5e5+10,M=4e6+N,inf=1<<30;</pre>
1
2
  int n,a[N],rt,tot;
3
   struct Splay{
4
       int v, tag;
5
       int sz;
       int c[2],f;
6
7
   }t[M];
   inline int New(int x){
8
9
       t[++tot].v=x;t[tot].sz=1;
       return tot;
10
11
   }
12
   inline void pushup(int p){
13
       t[p].sz=t[t[p].c[0]].sz+t[t[p].c[1]].sz+1;
14
   }
   inline void pushdown(int p){}
15
16
   int build(int l,int r,int f){//建树
17
       if(l>r)return 0;
18
       int m=l+r>>1;
19
       int p=New(a[m]);
20
       // if(a[m]!=-inf)idx[a[m]]=p;
21
       t[p].f=f;
22
       t[p].c[0]=build(1,m-1,p);
23
       t[p].c[1]=build(m+1,r,p);
24
       pushup(p); return p;
25
26
   void rotate(int x){
27
       int y=t[x].f,z=t[y].f;
28
       int c=t[y].c[1]==x;
29
       t[z].c[t[z].c[1]==y]=x;t[x].f=z;
30
       t[y].c[c]=t[x].c[c^1];t[t[x].c[c^1]].f=y;
31
       t[x].c[c^1]=y;t[y].f=x;
32
       pushup(y);
33
34
   void splay(int x,int g){
       while(t[x].f!=g){
35
36
            int y=t[x].f,z=t[y].f;
            if(z!=g)rotate((t[y].c[1]==x)^(t[z].c[1]==y)?x:y);
37
```

```
38
           rotate(x);
39
       }
40
       pushup(x);if(!g)rt=x;
41
42
   int find(int k){
       int p=rt;
43
       while(1){
44
45
           pushdown(p);
           if(t[t[p].c[0]].sz>=k)p=t[p].c[0];
46
           else if(t[t[p].c[0]].sz+1>=k)return p;
47
48
           else{
               k=t[t[p].c[0]].sz+1;
49
50
               p=t[p].c[1];
51
           }
52
       }
53
   void gettree(int l,int r,int &x,int &y){//伸展[l,r]区间,t[y].c[0]即为区间的树根
54
       x=find(1); y=find(r+2);
55
56
       splay(x,0);splay(y,x);
57
   void getpos(int pos,int &x,int &y){//在pos和pos+1之间的位置t[y].c[0]
58
       x=find(pos+1);y=find(pos+2);
59
60
       splay(x,0);splay(y,x);
61
62
   void insert(int x, int y, int p){//已经getpos得到x, y之后, 在y的左子树插入结点p(p为结
      点下标)
63
       t[y].c[0]=p;t[p].f=y;
64
       pushup(y);pushup(x);
65
   int del(int l,int r){//摘下[1,r]区间的子树,返回子树的根结点
66
       int x,y;
67
       gettree(1,r,x,y);
68
69
       int p=t[y].c[0];
70
       t[y].c[0]=0;
71
       t[p].f=0;
72
       pushup(y);pushup(x);
73
       return p;
74
   int main(){
75
76
       scanf("%d%d",&n,&q);
77
       tot=0; memset(t,0,(n+5)*sizeof(Splay));
```

```
for(int i=1;i<=n;++i)scanf("%d",&a[i]);
    a[0]=a[n+1]=-inf;
    rt=build(0,n+1,0);
}</pre>
```

5.15 动态树

```
struct LCT{
1
2
       int c[2],f,rtag;
       int val, sum; // val = 点权, sum = 链和
3
       int sz,vsz;//sz=子树和,vsz=虚儿子和
4
  }t[N];
5
  #define notroot(x) (t[t[x].f].c[0]==x||t[t[x].f].c[1]==x)
6
7
   void pushup(int x){
8
       t[x].sum=t[t[x].c[0]].sum^t[t[x].c[1]].sum^t[x].val;
9
       t[x].sz=t[t[x].c[0]].sz+t[t[x].c[1]].sz+1+t[x].vsz;
10
   }
11
   void rev1(int x){
12
       t[x].rtag^=1; swap(t[x].c[0],t[x].c[1]);
13
   void pushdown(int x){
14
15
       if(t[x].rtag){
16
           t[x].rtag=0;
           if(t[x].c[0])rev1(t[x].c[0]);
17
18
           if(t[x].c[1])rev1(t[x].c[1]);
       }
19
20
21
   void rotate(int x){
22
       int y=t[x].f,z=t[y].f;
23
       int c=t[y].c[1]==x;
24
       if(notroot(y))t[z].c[t[z].c[1]==y]=x;t[x].f=z;
25
       t[y].c[c]=t[x].c[c^1];t[t[x].c[c^1]].f=y;
26
       t[x].c[c^1]=y;t[y].f=x;
27
       pushup(y);pushup(x);
28
29
   void splay(int x){
30
       static int sta[N],top;//注意修改此处的N
31
       int y=x; sta[top=1]=y;
32
       while(notroot(y))sta[++top]=y=t[y].f;
       while(top)pushdown(sta[top--]);
33
34
       while(notroot(x)){
```

```
35
            int y=t[x].f,z=t[y].f;
            if(notroot(y))rotate(t[y].c[1]==x^t[z].c[1]==y?x:y);
36
37
            rotate(x);
38
       }
39
40
   void access(int x){
       for(int f=0;x;f=x,x=t[x].f){
41
42
            splay(x);
            t[x].vsz+=t[t[x].c[1]].sz-t[f].sz;
43
            t[x].c[1]=f; pushup(x);
44
       }
45
46
   void makeroot(int x){
47
       access(x); splay(x); rev1(x);
48
49
   }
50
   int findroot(int x){
51
       access(x);splay(x);
       while(t[x].c[0])pushdown(x),x=t[x].c[0];
52
53
       splay(x);return x;
54
   void split(int x,int y){
55
       makeroot(x);access(y);splay(y);
56
57
   void link(int x,int y){
58
59
       if(findroot(x)==findroot(y))return;
60
       split(x,y); t[x].f=y;
61
       t[y].vsz+=t[x].sz;
62
       pushup(y);
63
64
   void cut(int x,int y){
       if(findroot(x)!=findroot(y))return;
65
       split(x,y);
66
67
       if(t[y].c[0]==x&&!t[x].c[1]){
            t[y].c[0]=t[x].f=0;pushup(y);
68
69
       }
70
   void upd(int x,int c){
71
72
       splay(x);t[x].val=c;pushup(x);
73
   int qrychain(int x,int y){
74
75
       split(x,y);return t[y].sum;
```

```
76 }
77 int qrysubtree(int rt,int x){
78  split(rt,x);return t[x].vsz+1;
79 }
```

5.16 二叉堆

改变大/小根堆,需要改变四个注释处的比较符号,当前是小根堆

```
int n,heap[N<<2],tot;</pre>
2 #define ls (p<<1)
3 #define rs (p<<1|1)
  #define fa (p>>1)
4
5
   void up(){
6
        int p=tot;
7
        while(p!=1&&heap[fa]>heap[p]){//1
             swap(heap[fa],heap[p]);
8
9
            p=fa;
10
        }
11
   void down(){
12
        int p=1;int s=ls;
13
        while(s<=tot){</pre>
14
            if(s<tot&&heap[s+1]<heap[s])++s;//2</pre>
15
            if(heap[s]<heap[p]){//3</pre>
16
                 swap(heap[s],heap[p]);
17
                 p=s;s=ls;
18
19
            }
            else break;
20
21
        }
22
23
   void push(int x){
        heap[++tot]=x;
24
        int p=tot;
25
        while(p!=1&&heap[fa]>heap[p]){//4
26
27
            swap(heap[fa],heap[p]);
28
            p=fa;
29
        }
30
31
   void pop(){
32
        heap[1]=heap[tot--];
33
        down();
```

34 }

5.17 左偏树 (可并堆)

可并堆

```
struct node{
1
2
       int ls,rs,dis;
3
       11 val, cnt; // 权值, 个数
   }t[M];
4
   int sta[M],top,htot;
5
   int newnode(ll v,ll c){
6
7
       int p=top?sta[top--]:++htot;
8
       t[p]={0,0,1,v,c};
9
       return p;
10
   }
11
   int merge(int x,int y){
12
       if(|x|||y) return x+y;
       if(t[x].val>t[y].val)swap(x,y);
13
14
       t[x].rs=merge(t[x].rs,y);
       if(t[t[x].ls].dis<t[t[x].rs].dis)swap(t[x].ls,t[x].rs);</pre>
15
       t[x].dis=t[t[x].rs].dis+1;
16
17
       return x;
18
   int pop(int x){
19
       sta[++top]=x;
20
21
       return merge(t[x].ls,t[x].rs);
22
23
   void push(int &x,ll v,ll c){
24
       int p=newnode(v,c);
25
       x=merge(x,p);
26
   }
   //用法
27
28
   push:push(root,v,c);
   pop: --t[root].cnt;if(!t[root].cnt)root=pop(root);
29
   top: t[root].val,t[root].cnt
30
```

带并查集功能

```
struct node{
int ls,rs,fa;//fa用来维护并查集
int val,dis;//val是关键字,dis是结点到最近不完整结点(至多一个儿子)的距离
4 }t[N];
```

```
int merge(int x,int y){//合并以x为根的堆,和以y为根的堆
5
6
       if(|x|||y) return x+y;
7
       if(t[x].val>t[y].val||t[x].val==t[y].val&&x>y)swap(x,y);
8
       t[x].rs=merge(t[x].rs,y);
9
       t[t[x].rs].fa=x;
10
       if(t[t[x].ls].dis<t[t[x].rs].dis)swap(t[x].ls,t[x].rs);
11
       t[x].dis=t[t[x].rs].dis+1;
12
       return x;
13
   int find(int x){//找到x结点所在堆的堆顶结点下标
14
       return x==t[x].fa?x:t[x].fa=find(t[x].fa);
15
16
   void pop(int x){//x为根的堆pop堆顶
17
       t[x].val=-1;//val=-1表示被删除
18
19
       t[t[x].ls].fa=t[x].ls;
20
       t[t[x].rs].fa=t[x].rs;
21
       t[x].fa=merge(t[x].ls,t[x].rs);
22
23
   int main(){
24
       int n,q;scanf("%d%d",&n,&q);
25
       t[0].dis=-1;
26
       for(int i=1;i<=n;++i)scanf("%d",&t[i].val),t[i].fa=i;</pre>
27
       while(q--){
28
           int op,x,y;scanf("%d%d",&op,&x);
29
           if(op==1){//合并x和y结点所在的堆
               scanf("%d",&y);
30
               if(t[x].val==-1||t[y].val==-1)continue;
31
               int fx=find(x),fy=find(y);
32
               if(fx!=fy)t[fx].fa=t[fy].fa=merge(fx,fy);
33
34
           }
           else{//找到x结点所在的堆的堆顶并pop
35
               if(t[x].val==-1)puts("-1");//x结点已被删除
36
37
               else{
                   int fx=find(x);
38
                   printf("%d\n",t[fx].val);
39
                   pop(fx);
40
               }
41
42
           }
43
       }
44 }
```

5.18 笛卡尔树

以下代码为小根堆

```
for(int i=1;i<=n;++i){
    while(top&&a[sta[top]]>a[i])t[i].ls=sta[top--];
    t[sta[top]].rs=i;
    sta[++top]=i;
}//单调栈建二叉树,入度为0是根
int root=sta[1];
```

6 图论

6.1 最小生成树

Kruskal

```
int n,m,fa[N],sum;
1
2
   int find(int x){
        return x==fa[x]?x:fa[x]=find(fa[x]);
3
4
   struct node{
5
6
        int x,y,z;
   }b[M];
7
8
   bool cmp(node a, node b){
9
        return a.z<b.z;</pre>
10
   }
11
   int main(){
12
        scanf("%d%d",&n,&m);
13
        for(int i=1;i<=n;++i)fa[i]=i;</pre>
        for(int i=1;i<=m;++i)scanf("%d%d%d",&b[i].x,&b[i].y,&b[i].z);</pre>
14
15
        sort(b+1,b+1+m,cmp);
        for(int i=1;i<=m;++i){</pre>
16
            int x=b[i].x,y=b[i].y;
17
18
            if(find(x)!=find(y)){
                 sum+=b[i].z;
19
                 fa[find(x)]=find(y);
20
21
            }
22
        }
23
   }
```

Prim

```
int n,m;
1
  int e[N][N], dis[N]; //e[i][j]: 边i->j的长度, dis[i]连通图到i的最短边
2
3 bool vis[N];
4
   inline void prim(){
        memset(dis,0x3f,n+1<<2);
5
6
        memset(vis+1,0,n);
7
        dis[1]=0;
        for(int i=1;i<n;++i){</pre>
8
9
            int x=0;
10
            for(int j=1;j<=n;++j)if(!vis[j]&&dis[j]<dis[x])x=j;</pre>
            vis[x]=1;
11
            for(int j=1;j<=n;++j)if(!vis[j])dis[j]=min(dis[j],e[x][j]);</pre>
12
13
        }
14
15
   int main(){
        scanf("%d%d",&n,&m);
16
17
        memset(e,0x3f,sizeof e);
        for(int i=1;i<=n;++i)e[i][i]=0;</pre>
18
19
        for(int i=1;i<=m;++i){</pre>
20
            int x,y,z;scanf("%d%d%d",&x,&y,&z);
21
            e[y][x]=e[x][y]=min(e[x][y],z);
22
        }
23
        prim();int sum=0;
24
        for(int i=1;i<=n;++i)sum+=dis[i];</pre>
25
   }
```

6.2 最短路

6.2.1 Floyd

```
int n,m,d[N][N];
1
2
   int main(){
3
       scanf("%d%d",&n,&m);
4
       memset(d,0x3f,sizeof d);
       for(int i=1;i<=n;++i)d[i][i]=0;</pre>
5
6
       for(int i=1;i<=m;++i){</pre>
7
          int x,y,z;scanf("%d%d%d",&x,&y,&z);
8
          d[x][y]=min(d[x][y],z);
9
          d[y][x]=min(d[y][x],z);
10
       }
       11
```

```
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}</pre>
```

6.2.2 Floyd 求最小环并计数

```
int n, m;
2
   11 f[N][N], g[N][N], cnt, mi, dis[N][N];
3
   void add(l1 &x, l1 y) {
4
       ((x += y) >= mod) && (x -= mod);
5
6
7
   void upd(ll x, ll y) {
8
       if (x > mi) return;
9
       if (x == mi) add(cnt, y);
       else mi = x, cnt = y;
10
11
   }
12
13
   void solve() {
14
       mi = 1e15, cnt = 0;
15
       cin >> n >> m;
       for (int i = 1; i <= n; i++) {</pre>
16
17
            for (int j = 1; j <= n; j++) {
18
                f[i][j] = dis[i][j] = 1e15;
19
                g[i][j] = 0;
20
            }
21
       }
22
       for (int i = 1; i <= m; i++) {
23
            int u, v;
24
            11 w;
25
            cin >> u >> v >> w;
            dis[u][v] = w;
26
27
            f[u][v] = w;
28
            g[u][v] = 1;
29
       }
30
       for (int k = 1; k <= n; k++) {
            for (int i = 1; i < k; i++) {
31
32
                for (int j = 1; j < i; j++) {
33
                    upd(dis[i][k] + dis[k][j] + f[j][i], g[j][i]);
                    upd(dis[k][i] + dis[j][k] + f[i][j], g[i][j]);
34
```

```
}
35
36
            }
37
            for (int i = 1; i <= n; i++) {
38
                 for (int j = 1; j <= n; j++) {</pre>
                      if (f[i][k] + f[k][j] == f[i][j]) {
39
40
                          add(g[i][j], g[i][k] * 111 * <math>g[k][j]);
                      } else if (f[i][k] + f[k][j] < f[i][j]) {</pre>
41
42
                          f[i][j] = f[i][k] + f[k][j];
                          g[i][j] = g[i][k] * 111 * g[k][j] % mod;
43
                      }
44
                 }
45
            }
46
47
        }
        for (int i = 1; i <= n; i++) {
48
49
            for (int j = i + 1; j <= n; j++) upd(dis[i][j] + dis[j][i], 1);</pre>
50
        if (mi == 1e15) cout << "-1 -1\n";</pre>
51
        else cout << mi << ' ' << cnt << '\n';</pre>
52
53
   }
```

6.2.3 Dijkstra

注意二维费用不能有 0 边,需要先对第一维跑最短路,得到最短路径,用第二维更新时必须在 第一维的路径上

```
priority_queue<pair<ll,int> >q;
2 11 d[N]; bool vis[N];
3
   void dij(int s){
       memset(d,0x3f,sizeof d);
4
5
       memset(vis,0,sizeof vis);
6
       d[s]=0;q.push(make_pair(0,s));
7
       for(;!q.empty();){
8
            int x=q.top().second;
9
           q.pop();
            if(vis[x])continue;
10
11
           vis[x]=1;
12
           for(int i=hd[x];i;i=e[i].nx){
                int y=e[i].to;
13
                if(d[y]>d[x]+e[i].v){
14
15
                    d[y]=d[x]+e[i].v;
                    q.push(make_pair(-d[y],y));
16
17
```

```
18 }
19 }
20 }
```

6.2.4 SPFA

按点判断负环

```
bool spfa(int s){
1
2
       memset(dis,0x3f,sizeof dis);
3
       //push_time和in_queue要清空
4
       dis[s]=0;in_queue[s]=1;
       queue<int>q({s});
5
6
       while(q.size()){
7
            int x=q.front();q.pop();
8
            in_queue[x]=0;
9
            for(int i=hd[x];i;i=e[i].nx){
10
                int y=e[i].to;
                if(dis[x]+e[i].v<dis[y]){</pre>
11
12
                    dis[y]=dis[x]+e[i].v;
13
                    if(!in_queue[y]){
14
                         if(push_time[y]>n)return 1;//有负环
                         q.push(y);in_queue[y]=1;++push_time[y];
15
16
                         //if(dis[q.back()]<dis[q.front()])swap(q.back(),q.front());</pre>
17
                    }
                }
18
19
            }
20
21
       return 0;//没有负环
22
   }
```

按边判断负环

```
bool in_queue[N];int edge_cnt[N];
1
2
   bool spfa(int s){
       memset(dis,0x3f,sizeof dis);
3
4
       dis[s]=0;in_queue[s]=1;
       queue<int>q({s});
5
6
       while(q.size()){
7
           int x=q.front();q.pop();
8
           in_queue[x]=0;
9
           for(int i=hd[x];i;i=e[i].nx){
                int y=e[i].to;
10
```

```
if(dis[x]+e[i].v<dis[y]){</pre>
11
12
                     dis[y]=dis[x]+e[i].v;
13
                     edge_cnt[y]=edge_cnt[x]+1;
14
                     if(edge_cnt[y]>=n+1)return 1;//有负环
15
                     if(!in_queue[y]){
16
                         q.push(y);
17
                         in_queue[y]=1;
18
                     }
                 }
19
20
            }
21
22
        return 0; // 没有负环
23
   }
```

6.3 二分图最大匹配

```
//二分图两个部分的点编号分别为1到n和1到m,边(i,j)表示左边的i到右边的j
  vector<int>e[N];
3 int n,m,t,match[N],v[N],ans;
   bool dfs(int x,int t){
4
       if(v[x]==t)return 0;
5
6
       v[x]=t;
7
       for(auto y:e[x]){
8
           if(!match[y]||dfs(match[y],t)){
9
               match[y]=x;
                return 1;
10
           }
11
12
       }
       return 0;
13
14
   }
   int main(){
15
       scanf("%d%d%d",&n,&m,&t);
16
       for(int i=1;i<=t;++i){</pre>
17
           int x,y;scanf("%d%d",&x,&y);
18
19
           e[x].push_back(y);
20
21
       for(int i=1;i<=n;++i)if(dfs(i,i))++ans;</pre>
22
       printf("%d\n",ans);
23
   }
```

最小路径覆盖 = 最大独立集 = 总节点数 - 二分图最大匹配数

最小点覆盖 = 二分图最大匹配数 最大独立集 + 最小点覆盖集 = V,最大团 = 补图的最大独立集。

6.4 拓扑排序

```
int n,in[N],rk[N];
2
   vector<int>e[N];
3
   int main(){
4
       queue<int>q;
       for(int i=1;i<=n;++i)if(!in[i])q.push(i);</pre>
5
6
       while(q.size()){
7
            int x=q.front();q.pop();
8
            for(auto y:e[x]){
9
                rk[y]=max(rk[y],rk[x]+1);//注意取max
                if(!--in[y])q.push(y);
10
11
            }
12
       }
13
   }
```

6.5 Tarjan

6.5.1 有向图 scc

```
1
   struct edge{
2
       int to,nx;
3
  }e[M],e1[M];
  int hd[N],hd1[N],tot,tot1;
4
5
   void add(int x,int y){
6
       e[++tot].to=y;e[tot].nx=hd[x];hd[x]=tot;
7
8
   void add1(int x,int y){
       e1[++tot1].to=y;e1[tot1].nx=hd1[x];hd1[x]=tot1;
9
10 }
  int n,m,a[N];//a[i]点权
11
12 int dfn[N],low[N],sta[N];
13 bool vis[N];//在栈内
14 int idx[N], tscc; //i号点所在的scc的下标
15 int cnt[N];//SCC中点的个数
16 ll sum[N];//SCC点权和
17 void tarjan(int x){
       low[x]=dfn[x]=++dfn[0];
18
```

```
19
       vis[x]=1;sta[++sta[0]]=x;
20
       for(int i=hd[x];i;i=e[i].nx){
21
            int y=e[i].to;
22
            if(!dfn[y]){
23
                tarjan(y);
24
                low[x]=min(low[x],low[y]);
25
            }
26
            else if(vis[y]){
27
                low[x]=min(low[x],dfn[y]);
28
            }
29
       }
       if(low[x]==dfn[x]){
30
31
            int y;++tscc;
32
            do{
                y=sta[sta[0]--];vis[y]=0;
33
                //接下来添加SCC信息
34
                ++cnt[tscc];sum[tscc]+=a[y];
35
                idx[y]=tscc;
36
37
            }while(y!=x);
38
       }
39
   void init(){
40
       memset(vis+1,0,n);
41
42
       memset(hd+1,0,n<<2);
43
       memset(hd1+1,0,n<<2);
       memset(low+1,0,n<<2);
44
       memset(dfn+1,0,n<<2);
45
       tot=tot1=dfn[0]=sta[0]=tscc=0;
46
       //接下来添加初始化
47
       memset(cnt+1,0,n<<2);
48
       memset(sum+1,0,n<<3);
49
50
   }
51
   void getscc(){
52
       for(int i=1;i<=n;++i)if(!dfn[i])tarjan(i);</pre>
       for(int x=1;x<=n;++x){</pre>
53
            for(int i=hd[x];i;i=e[i].nx){
54
                int y=e[i].to;
55
                if(idx[x]!=idx[y])add1(idx[x],idx[y]);//不属于同一SCC就连边
56
            }
57
58
       }
59
   }
```

```
60
   int main(){
61
       n=rd();m=rd();
62
       init();//初始化要在输入n之后
63
       for(int i=1;i<=m;++i){</pre>
           int x=rd(),y=rd(); add(x,y);
64
65
       }
66
       getscc();
       //缩点后的图用hd1[],e1[]表示
67
68
   }
```

6.5.2 无向图 edcc(割边)

```
1
   struct edge{
2
       int to,nx;
  }e[M<<1],e1[M<<1];
3
4 int n,m,hd[N],tot,hd1[N],tot1;
  void add(int x,int y){
5
       e[++tot].to=y;e[tot].nx=hd[x];hd[x]=tot;
6
7
  }
   void add1(int x,int y){//缩点后的图
8
9
       e1[++tot1].to=y;e1[tot1].nx=hd1[x];hd1[x]=tot1;
10
11 int a[N];//点权
12 int low[N], dfn[N];
13 | int idx[N], tedcc, cnt[N]; //idx[x]=x所属edcc, cnt[i]=第i个edcc里有几个点
14 | 11 sum[N];//sum[i]=第i个edcc里的点权之和
   bool bridge[M<<1];//割边
15
   void tarjan(int x,int eg){//eg=边下标
16
17
       low[x]=dfn[x]=++dfn[0];
       for(int i=hd[x];i;i=e[i].nx){
18
19
           int y=e[i].to;
20
           if(!dfn[y]){
               tarjan(y,i);
21
22
               low[x]=min(low[x],low[y]);
23
               if(dfn[x]<low[y])bridge[i]=bridge[i^1]=1;//是割边
24
           }
           else if(i!=(eg^1))low[x]=min(low[x],dfn[y]);//(eg^1)一定要加括号
25
       }
26
27
   void getedcc(int x){//缩点
28
       //接下来添加edcc信息
29
```

```
30
       idx[x]=tedcc;sum[tedcc]+=a[x];++cnt[tedcc];
31
       for(int i=hd[x];i;i=e[i].nx){
32
           int y=e[i].to;
33
           if(idx[y]||bridge[i])continue;//走过||是割边的话不走
34
           getedcc(y);
       }
35
36
37
   void getgraph(){// 求出缩点后的图
38
       for(int i=1;i<=n;++i)if(!dfn[i])tarjan(i,0);</pre>
39
       for(int i=1;i<=n;++i)if(!idx[i])++tedcc,getedcc(i);</pre>
       for(int i=2;i<=tot;i+=2){// 枚 举 所 有 边
40
           int x=e[i].to,y=e[i^1].to;
41
           if(idx[x]!=idx[y]){//所在edcc不同
42
                add1(idx[x],idx[y]);
43
                add1(idx[y],idx[x]);
44
45
           }
       }
46
47
48
   void init(){
49
       tot=tot1=1; tedcc=dfn[0]=0;
50
       memset(hd+1,0,n<<2);
51
       memset(hd1+1,0,n<<2);
52
       memset(low+1,0,n<<2);
53
       memset(dfn+1,0,n<<2);
54
       memset(bridge+1,0,m<<1);</pre>
       memset(idx+1,0,n<<2);
55
       //接下来添加初始化
56
       memset(cnt+1,0,n<<2);
57
       memset(sum+1,0,n<<3);
58
59
   }
   int main(){
60
       n=rd();m=rd();
61
62
       init();//初始化要在输入n之后
63
       for(int i=1;i<=n;++i)a[i]=rd();</pre>
       for(int i=1;i<=m;++i){</pre>
64
           int x=rd(),y=rd();
65
66
           if(x==y)continue;
67
           add(x,y);add(y,x);
68
       }
69
       getgraph();
70
       //缩点后的图用hd1[],e1[]表示
```

71 }

6.5.3 无向图 vdcc(割点)

```
1
   const int N=1e5+10,N1=N<<1;</pre>
2
   struct edge{
3
        int to,nx;
4
   }e[N<<1],e1[N1<<1];
   int n,m,a[N],hd[N],tot,hd1[N<<1],tot1;</pre>
5
   void add(int x,int y){
6
7
        e[++tot].to=y;e[tot].nx=hd[x];hd[x]=tot;
8
   }
9
   void add1(int x,int y){
        e1[++tot1].to=y;e1[tot1].nx=hd1[x];hd1[x]=tot1;
10
   }
11
12
   int rt,low[N],dfn[N],sta[N],tvdcc;
  vector<int>vdcc[N];
13
   bool cut[N];//是割点
14
15
   void tarjan(int x){
16
        low[x]=dfn[x]=++dfn[0];
17
        sta[++sta[0]]=x;
18
        int flag=0;
        for(int i=hd[x];i;i=e[i].nx){
19
20
            int y=e[i].to;
            if(!dfn[y]){
21
22
                tarjan(y);
23
                low[x]=min(low[x],low[y]);
24
                if(dfn[x]<=low[y]){</pre>
25
                     ++flag;
26
                     if(x!=rt||flag>1)cut[x]=1;
27
                     vdcc[++tvdcc].push_back(x);
28
                     int z;
29
                     do{
30
                         z=sta[sta[0]--];
                         vdcc[tvdcc].push_back(z);
31
32
                     }while(z!=y);
                }
33
34
            }
            else low[x]=min(low[x],dfn[y]);
35
36
        }
37
   }
```

```
void get_round_square_tree(){
38
39
       for(int i=1;i<=n;++i)if(!dfn[i])rt=i,tarjan(i);</pre>
40
       for(int i=1;i<=tvdcc;++i){</pre>
41
           for(auto x:vdcc[i]){
                add1(i+n,x);add1(x,i+n);
42
                //添加方点信息
43
44
           }
45
       }
46
   void init(){
47
       memset(dfn+1,0,n<<2);
48
       memset(low+1,0,n<<2);
49
50
       memset(hd+1,0,n<<2);
       memset(hd1+1,0,n<<3);
51
52
       dfn[0]=sta[0]=tvdcc=0;tot=tot1=1;
53
       for(int i=1;i<=n;++i)vdcc[i].clear();</pre>
       //接下来添加初始化
54
       memset(cut+1,0,n);
55
56
   }
   int main(){
57
       n=rd();m=rd();
58
       init();//初始化要在读入n之后
59
       for(int i=1;i<=m;++i){</pre>
60
           int x=rd(),y=rd();
61
62
           if(x==y)continue;
            add(x,y);add(y,x);
63
64
       }
65
       get_round_square_tree();
       //1~n 是 圆 点 下 标 , n+1 ~ n+t vdcc 是 方 点 下 标 , 圆 方 树 存 在 hd1[], e1[]
66
       //注意圆方树节点数最多为2N
67
68
   }
```

6.5.4 仙人掌建圆方树

```
const int N=1e4+5,N1=N<<1,M=2e5+5;
struct edge{
   int to,nx,v;
}e[M<<1],e1[N1<<1];
int hd[N],tot,hd1[N1],tot1;
void add(int x,int y,int z){
   e[++tot].to=y;e[tot].v=z;</pre>
```

```
8
       e[tot].nx=hd[x];hd[x]=tot;
9
   }
10
   void add1(int x,int y,int z){
11
       e1[++tot1].to=y;e1[tot1].v=z;
12
       e1[tot1].nx=hd1[x];hd1[x]=tot1;
13
   }
   int n,m,q,vercnt;
14
   int low[N],dfn[N],tdfn,fa[N],b[N],sum[N];
15
16
   void tarjan(int x,int f){
17
       low[x]=dfn[x]=++tdfn;
       for(int i=hd[x];i;i=e[i].nx){
18
19
            int y=e[i].to;
20
            if(y==f)continue;
            int z=e[i].v;
21
22
            if(!dfn[y]){
23
                fa[y]=x;b[y]=z;
                tarjan(y,x);
24
                low[x]=min(low[x],low[y]);
25
26
            }
27
            else
28
            low[x]=min(low[x],dfn[y]);
29
            if(dfn[x]>=low[y])continue;
30
            add1(x,y,z);add1(y,x,z);
31
       }
32
       for(int i=hd[x];i;i=e[i].nx){
33
            int y=e[i].to;
34
            if(fa[y]==x||dfn[x]>=dfn[y])continue;
35
            int s=e[i].v;
            for(int u=y;u!=fa[x];u=fa[u]){
36
37
                sum[u]=s;s+=b[u];
38
            }
39
            sum[++vercnt]=sum[x];sum[x]=0;
40
            for(int u=y;u!=fa[x];u=fa[u]){
                int w=min(sum[u],sum[vercnt]-sum[u]);
41
42
                add1(vercnt,u,w);add1(u,vercnt,w);
43
            }
       }
44
45
46
   int dis[N1], son[N1], d[N1], top[N1], dfn1[N1], sz[N1], ff[N1];
   void dfs1(int x,int f){
47
48
       sz[x]=1;
```

```
for(int i=hd1[x];i;i=e1[i].nx){
49
50
            int y=e1[i].to;
51
            if(y==f)continue;
52
            ff[y]=x;
            d[y]=d[x]+1;
53
54
            dis[y]=dis[x]+e1[i].v;
            dfs1(y,x);
55
56
            sz[x]+=sz[y];
            if(sz[y]>sz[son[x]])son[x]=y;
57
        }
58
59
   void dfs2(int x,int t){
60
        dfn1[x]=++dfn1[0];top[x]=t;
61
62
        if(!son[x])return;
63
        dfs2(son[x],t);
        for(int i=hd1[x];i;i=e1[i].nx){
64
            int y=e1[i].to;
65
            if(!dfn1[y])dfs2(y,y);
66
67
        }
68
   int lca(int x,int y){
69
70
        while(top[x]!=top[y]){
            if(d[top[x]]<d[top[y]])swap(x,y);</pre>
71
72
            x=ff[top[x]];
73
        }
74
        return d[x]<d[y]?x:y;</pre>
75
76
   int find(int x,int f){//方点lca下的圆点
        int s;
77
        while(top[x]!=top[f]){
78
            s=top[x];x=ff[top[x]];
79
80
        }
        return x==f?s:son[f];
81
82
   int main(){
83
        scanf("%d%d%d",&n,&m,&q);
84
85
        vercnt=n;
86
        for(int i=1;i<=m;++i){</pre>
87
            int x,y,z;
88
            scanf("%d%d%d",&x,&y,&z);
89
            add(x,y,z);add(y,x,z);
```

```
90
91
         tarjan(1,0);
92
         dfs1(1,0);dfs2(1,1);
93
         for(;q--;){
94
             int x,y;
             scanf("%d%d",&x,&y);
95
             int f=lca(x,y);
96
97
             int ans;
98
             if(f<=n)ans=dis[x]+dis[y]-2*dis[f];</pre>
99
             else{
100
                 int u=find(x,f),v=find(y,f);
                 ans=dis[x]+dis[y]-dis[u]-dis[v];
101
102
                 if(sum[u]<sum[v])swap(sum[u],sum[v]);</pre>
103
                 ans+=min(sum[u]-sum[v],sum[f]-(sum[u]-sum[v]));
104
             }
105
             printf("%d\n",ans);
106
        }
107
    }
```

6.5.5 广义圆方树

```
int stk[N], n, m, top, cnt, low[N], dfn[N], dfc;
2 bool vis[N];
   vector<int> G[N], T[N];
3
4
   void tarjan(int u) {
5
6
       stk[++top] = u;
7
       low[u] = dfn[u] = ++dfc;
       for (int v : G[u]) {
8
9
            if (!dfn[v]) {
                tarjan(v);
10
11
                low[u] = min(low[u], low[v]);
12
                if (low[v] == dfn[u]) {
                    cnt++;
13
                    for (int x = 0; x != v; --top) {
14
15
                        x = stk[top];
16
                        T[cnt].push_back(x);
                        T[x].push_back(cnt);
17
18
                        val[cnt]++;
19
20
                    T[cnt].push_back(u);
```

```
21
                      T[u].push_back(cnt);
22
                      val[cnt]++;
23
                 }
24
            } else low[u] = min(low[u], dfn[v]);
        }
25
26
27
   int main() {
28
        cnt = n;
29
        for (int i = 1; i <= n; i++) if (!dfn[i]) {</pre>
            tarjan(i);
30
            --top;
31
32
        }
33
   }
```

6.6 差分约束

$$\begin{cases} x_{a_1} - x_{b_2} \le dis_1 \\ x_{a_2} - x_{b_2} \le dis_2 \\ x_{a_n} - x_{b_n} \le dis_n \end{cases}$$

 $x_i - x_j \le dis$ 相当于一条 $x_j \to x_i$ 距离为 dis 的边 $a \to b$ 的最短路即为 $x_b - x_a$ 的最大值

要求一组解,可以用超级起点连接所有点 (长为 0, 用于处理部分点相互独立的情况),以超级起点为源点跑 SPFA, $x_i = dis[i]$ 即为满足条件的一组解

若存在负环, 相当于 $x_i - x_i < 0$, 即无解

下面的程序用于求出任意一个满足所有不等式的解

```
int n,m,hd[N],tot;
1
   struct edge{
2
3
       int to,nx,v;
  }e[N<<1];
4
   inline void add(int x,int y,int z){
       e[++tot]={y,hd[x],z};hd[x]=tot;
6
7
   }
8
  bool inq[N];//在队列内
  int dis[N],push_time[N];
9
   bool spfa(int s){
10
11
       queue<int>q({s});
12
       memset(dis,0x3f,sizeof dis);
```

```
dis[s]=0;inq[s]=1;
13
14
       while(q.size()){
15
            int x=q.front();q.pop();
16
            inq[x]=0;
            for(int i=hd[x];i;i=e[i].nx){
17
18
                int y=e[i].to;
19
                if(dis[x]+e[i].v<dis[y]){
20
                    dis[y]=dis[x]+e[i].v;
                    if(!inq[y]){
21
22
                         inq[y]=1;
23
                        ++push_time[y];
                         if(push_time[y]>n)return 1; //有负环,无解
24
25
                         q.push(y);
                    }
26
27
                }
            }
28
29
       }
       return 0; // 这里不要漏写
30
31
   }
32
   int main(){
33
       scanf("%d%d",&n,&m);
       for(int i=1;i<=n;++i)add(0,i,0);//超级源点,连通整张图
34
       for(int i=1;i<=m;++i){</pre>
35
36
            int x,y,z;scanf("%d%d%d",&x,&y,&z);
            add(y,x,z);
37
38
       if(spfa(0))puts("NO");//有负环
39
       else for(int i=1;i<=n;++i)printf("%d ",dis[i]);</pre>
40
41
   }
```

6.7 2-SAT

有 n 个布尔变量 $x_1, x_2, ..., x_n$,有多组限制条件 $x_i \to x_j$,是否存在满足所有条件的解每个变量在图上被抽象为 2 个点,i 点表示 $x_i = 1$,i + n 点表示 $x_i = 0$

对于限制条件 $x_i \to x_j$,你需要加一条 $i \to j$ 的边,类似地, $x_i \to \neg x_j$ 需要加一条 $i \to j+n$ 的边

对于限制条件 $x_i \lor x_j$,根据等价式 $\neg p \lor q \iff p \to q$,可以转化为 $i+n \to j$ 和 $j+n \to i$ 对于限制条件 $x_i = 1$,相当于 $\neg x_i \to x_i$,需要添加一条 $i+n \to i$ 的边设 idx[i] = i 所在强连通分量的编号,若 $\forall i : idx[i] \neq idx[i+n]$,则有解,否则无解因为 idx[i] = idx[i+n] 意义是 $x_i = 1$ 能推出 $x_i = 0$,且 $x_i = 0$ 能推出 $x_i = 1$,即 x_i 无解

Tarjan 判断有解/求一种方案

```
int n,m,dfn[N],low[N],sta[N],idx[N],tscc;
1
2
   bool vis[N];//在栈内
  void tarjan(int x){
3
       low[x]=dfn[x]=++dfn[0];
4
       vis[x]=1;sta[++sta[0]]=x;
5
6
       for(int i=hd[x];i;i=e[i].nx){
7
           int y=e[i].to;
8
           if(!dfn[y]){
9
               tarjan(y);
10
               low[x]=min(low[x],low[y]);
11
           }
12
           else if(vis[y]){
               low[x]=min(low[x],dfn[y]);
13
14
           }
15
       }
       if(low[x]==dfn[x]){
16
17
           int y;++tscc;
18
           do{
19
               y=sta[sta[0]--];vis[y]=0;
20
               idx[y]=tscc;
21
           }while(y!=x);
22
       }
23
   }
24
   int main(){
       scanf("%d%d",&n,&m);
25
       for(;m--;){//对于约束条件x or y,需要加边!x->y和!y->x
26
           int x,y,a,b;//x=a or y=b (a,b=0或1)
27
28
           scanf("%d%d%d%d",&x,&a,&y,&b);
29
           if(a&&b)add(x+n,y),add(y+n,x);
30
           else if(a&&!b)add(y,x),add(x+n,y+n);
31
           else if(!a&&b)add(x,y),add(y+n,x+n);
32
           else add(x,y+n),add(y,x+n);
33
       }//x号结点x=1,x+n表示x=0
34
       for(int i=1;i<=n*2;++i)if(!dfn[i])tarjan(i);//注意n*2
35
       for(int i=1;i<=n;++i){//判断不合法
36
           if(idx[i]==idx[i+n]){
37
                puts("IMPOSSIBLE");
                return 0;
38
39
           }
40
```

求出最小字典序

```
const int N=8005<<1,M=20005<<1;</pre>
1
2
   struct edge{
3
        int to,nx;
   }e[M];
4
   int n,m,hd[N],tot;
5
6
   void add(int x,int y){
        e[++tot]={y,hd[x]};hd[x]=tot;
7
8
   }
   int sta[N],top,choose[N];//choose=1:选, 2:不选, 0:没访问过
10
   bool dfs(int x){
11
       if(choose[x]==1)return 1;
12
        if(choose[x]==2)return 0;
13
        choose[x]=1; choose[x^1]=2;
14
        sta[++top]=x;
15
        for(int i=hd[x];i;i=e[i].nx){
            int y=e[i].to;
16
            if(!dfs(y))return 0;
17
18
        }
19
        return 1;
20
   }
21
   bool twosat(){
22
        memset(choose,0,n<<3);//2n个点清空
        for(int i=0;i<n<<1;++i){</pre>
23
            if(choose[i])continue;
24
25
            top=0;
            if(!dfs(i)){
26
                for(int j=1;j<=top;++j)choose[sta[j]]=choose[sta[j]^1]=0;</pre>
27
28
                if(!dfs(i^1))return 0;
29
            }
30
        }
31
        return 1;
32
```

```
33
   int main(){
34
        while(scanf("%d%d",&n,&m)!=EOF){
35
             memset(hd,0,n<<3);tot=0;
36
            for(int i=1;i<=m;++i){</pre>
                 int x,y;scanf("%d%d",&x,&y);
37
38
                 --x;--y;
                 add(x,y^1);add(y,x^1);
39
40
            }
            if(!twosat())puts("NIE");
41
            else{
42
                 for(int i=0;i<n<<1;++i)</pre>
43
                 if(choose[i]==1)printf("%d\n",i+1);
44
45
            }
46
        }
47
   }
```

前缀优化建图

- 1. 当前点选择说明之前的前缀都未选择
- 之前的前缀选择说明当前点位被选择
- 2. 之前的前缀选择说明当前前缀被选择
- 当前前缀未选择说明之前前缀未选择
- 3. 当前点选择说明当前前缀选择
- 当前前缀未选择说明当前点未选择

6.8 欧拉回路

```
int n,m,del[N],in[N],out[N],sta[M],top;
2
   vector<int>e[N];
   void dfs(int x){
3
        for(int i=del[x];i<e[x].size();i=del[x]){</pre>
4
            del[x]=i+1; dfs(e[x][i]);
5
6
        }
7
        sta[++top]=x;
8
9
   int main(){
        scanf("%d%d",&n,&m);
10
        for(int i=1;i<=m;i++){</pre>
11
12
            int x,y;scanf("%d%d",&x,&y);
13
            e[x].push_back(y);++out[x];++in[y];
14
15
        for(int i=1;i<=n;i++)sort(e[i].begin(),e[i].end());</pre>
```

```
16
       int S=1,c1=0,c2=0;bool flag=1;
17
       for(int i=1;i<=n;i++){</pre>
18
            if(in[i]!=out[i])flag=0;
19
            if(out[i]==in[i]+1)++c1,S=i;
20
            if(in[i]==out[i]+1)++c2;
21
       }
22
       if(!flag&&!(c2==c1&&c2==1)){puts("No");}
23
       else{dfs(S);while(top)printf("%d ",sta[top--]);}
24
  }
```

6.9 最大流

```
const int N=5e4+10,M=1e5+10;
2 const 11 inf=111<<<60;
3 struct edge{
       int to,nx;ll v;
4
  }e[M<<1];//注意有反边,边数要乘以2
   int n,m,s,t,vercnt,d[N],now[N],hd[N],tot=1;
7 ll maxflow; queue<int>q;
8
   void add(int x,int y,ll z){//一次加好正向和反向的边
9
       e[++tot]={y,hd[x],z};hd[x]=tot;
       e[++tot]={x,hd[y],0};hd[y]=tot;
10
11
12
   bool bfs(){
13
       for(;!q.empty();q.pop());
14
       q.push(s);
       memset(d,0,vercnt+1<<2);</pre>
15
16
       d[s]=1; now[s]=hd[s];
       while(q.size()){
17
           int x=q.front();
18
19
           q.pop();
20
           for(int i=hd[x];i;i=e[i].nx){
21
               int y=e[i].to;
22
               if(e[i].v&&!d[y]){
23
                   q.push(y);
24
                   now[y]=hd[y];
25
                   d[y]=d[x]+1;
26
                   if(y==t)return 1;
27
               }
28
           }
29
       }
```

```
30
       return 0;
31
   }
32
   11 dinic(int x, ll flow){
       if(x==t)return flow;
33
       int i;
34
       11 k,rest=flow;
35
       for(i=now[x];i&&rest;i=e[i].nx){
36
37
           int y=e[i].to;
           if(e[i].v&d[y]==d[x]+1){
38
                k=dinic(y,min(rest,e[i].v));
39
                if(!k)d[y]=0;
40
                e[i].v-=k;
41
                e[i^1].v+=k;
42
                rest-=k;
43
           }
44
45
       now[x]=i;
46
       return flow-rest;
47
48
   }
   void init(){
49
       tot=1; maxflow=0;
50
       memset(hd,0,vercnt+1<<2);</pre>
51
52
   }
   int main(){
53
54
       scanf("%d%d",&n,&m);
       s=0;//源点建议为0
55
       t=n+1;//汇点编号根据实际情况调整
56
       vercnt=t+1; // 点的个数 要求所有点编号在[0, vercnt]范围
57
       init();//初始化tot=1
58
       //开始加边
59
60
       //加边结束
61
62
       11 flow=0;
63
       while(bfs()){
           while(flow=dinic(s,inf)){
64
                maxflow+=flow;
65
66
           }
67
       printf("%lld\n", maxflow);
68
69
       return 0;
70
   }
```

6.10 最小割

最大流 = 最小割 = 对偶图最短路

平面图: 任意两条边的交点都在点上的无向图

平面图的对偶图:点边反转,边划分出的区域变成点,有公共边的区域代表的点直接连边,边 权是这条边的流量

6.11 最小费用最大流

```
#include <bits/stdc++.h>
  using i64 = long long;
2
3
4 const int N = 5000 + 5;
5 const int inf = 1e9;
6 int head[N], cur[N], ecnt, dis[N], s, t, n, m, mincost;
  bool vis[N];
7
   struct Edge {
8
       int nxt, v, flow, cap, w;
9
   }e[100002];
10
   void add_edge(int u, int v, int flow, int cap, int w) {
11
12
       e[ecnt] = {head[u], v, flow, cap, w}; head[u] = ecnt++;
       e[ecnt] = \{head[v], u, flow, 0, -w\}; head[v] = ecnt++;
13
14
   }
   bool spfa(int s, int t) {
15
       memset(vis, 0, sizeof vis);
16
       std::fill(dis + 1, dis + t + 1, inf);
17
18
       std::queue<int> q;
19
       q.push(s);
20
       dis[s] = 0;
21
       vis[s] = 1;
22
       while (!q.empty()) {
23
           int u = q.front();
24
           q.pop();
           vis[u] = 0;
25
26
           for (int i = head[u]; i != -1; i = e[i].nxt) {
27
                int v = e[i].v;
28
                if (e[i].flow < e[i].cap && dis[u] + e[i].w < dis[v]) {</pre>
                    dis[v] = dis[u] + e[i].w;
29
                    if (!vis[v]) vis[v] = 1, q.push(v);
30
31
                }
32
```

```
33
34
       return dis[t] != inf;
35
36
   int dfs(int u, int a) {
       if (vis[u]) return 0;
37
       if (u == t || !a) return a;
38
39
       vis[u] = 1;
40
       int b = 0;
       int flow = 0, f;
41
42
       for (int& i = cur[u]; i != -1; i = e[i].nxt) {
            int v = e[i].v;
43
            if (dis[u] + e[i].w == dis[v] && (f = dfs(v, std::min(a, e[i].cap - e[i].
44
               flow))) > 0) {
                e[i].flow += f;
45
                e[i ^ 1].flow -= f;
46
47
                flow += f;
                mincost += e[i].w * f;
48
                a -= f;
49
50
                if (!a) break;
51
            }
52
       }
       vis[u] = 0;
53
54
       return flow;
55
   }
56
   signed main() {
57
       memset(head, -1, sizeof head);
58
       //freopen("in.txt", "r", stdin);
59
       scanf("%d %d %d %d", &n, &m, &s, &t);
60
61
       for (int i = 1; i <= m; i++) {
            int u, v, w, ww;
62
63
            scanf("%d %d %d %d", &u, &v, &w, &ww);
64
            add_edge(u, v, 0, w, ww);
65
       }
       int ans = 0;
66
       while (spfa(s, t)) {
67
68
            for (int i = 0; i <= n; i++) cur[i] = head[i];</pre>
69
            ans += dfs(s, inf);
70
       printf("%d %d\n", ans, mincost);
71
72
       return 0;
```

73 }

6.12 线段树优化建图

idx = 0 为入树,idx = 1 为出树连完边后入树叶子节点向出树对应节点连边如果是区间-> 区间考虑建出虚点

```
struct Segment_Tree {
1
2
        int idx, rt;
3
        int mp[N];
        struct node {
4
            int ls, rs;
5
        } tr[N << 2];</pre>
6
7
        void build(int &p, int l, int r, int fr) {
8
            if (p == 0) {
9
                p = ++tot;
                if (fr != -1) {
10
11
                     if (idx == 0) G[fr].push_back({p, 0});
12
                     else G[p].push_back({fr, 0});
                }
13
            }
14
            if (1 == r) {
15
16
                mp[1] = p;
                return;
17
            }
18
            int mid = (l + r) \gg 1;
19
20
            build(tr[p].ls, l, mid, p);
21
            build(tr[p].rs, mid + 1, r, p);
22
        void update(int p, int l, int r, int L, int R, int to, int val) {
23
            if (r < L \mid | 1 > R) return;
24
            if (1 >= L \&\& r <= R) {
25
                if (idx == 0) G[to].push_back({p, val});
26
27
                else G[p].push_back({to, val});
                return;
28
29
            }
30
            int mid = (1 + r) >> 1;
            update(tr[p].ls, l, mid, L, R, to, val);
31
            update(tr[p].rs, mid + 1, r, L, R, to, val);
32
33
        }
   } tr[2];
34
```

6.13 Kruskal 重构树

```
int main(){
1
2
       vercnt=n; //1-n是原来的点, n+1~2n-1是新建的点, 边抽象为点
3
       sort(b+1,b+1+m,cmp);//边按边权排序
4
       for(int i=1;i<=m;++i){</pre>
5
           int x=b[i].u,y=b[i].v;
6
           int x1=find(x),y1=find(y);
7
           if(x1!=y1){
8
               ++vercnt;
               h[vercnt]=b[i].h;//边的信息存在新建的点上
9
               add(vercnt,x1); add(vercnt,y1);
10
               fa[x1]=vercnt; fa[y1]=vercnt;
11
12
               dis[vercnt]=min(dis[x1],dis[y1]);
13
           }
       }
14
15
   }
```

6.14 二分图最大权匹配 KM 算法

```
typedef long long 11;
2 const int N=505;
3 const 11 inf=0x3f3f3f3f3f3f3f3f3f;
4 int match[N];//右边的i匹配左边的match[i]
5 | 11 e[N][N]; //边, e[i][j]=左边的i匹配右边的j的边权
   11 dbx[N],dby[N],slack[N];
  int pre[N]; bool vis[N];
7
   int n,m;
8
9
   void bfs(int k) {
       int px,py=0,yy=0;11 d;
10
11
       memset(pre,0,sizeof pre);
       memset(slack,0x3f,sizeof slack);
12
       match[py]=k;
13
14
       do {
           px=match[py],d=inf,vis[py]=1;
15
           for(int i=1; i<=n; i++)</pre>
16
                if(vis[i]==0) {
17
                    if(slack[i]>dbx[px]+dby[i]-e[px][i])
18
                    slack[i]=dbx[px]+dby[i]-e[px][i],pre[i]=py;
19
                    if(slack[i]<d) d=slack[i],yy=i;</pre>
20
21
                }
```

```
22
            for(int i=0; i<=n; i++)</pre>
23
                if(vis[i]) dbx[match[i]]-=d,dby[i]+=d;
24
                else slack[i]-=d;
25
            py=yy;
       } while(match[py]!=0);
26
       while(py) match[py]=match[pre[py]],py=pre[py];
27
28
29
   void km() { //二分图最大权匹配算法
       memset(dbx,0,sizeof dbx);
30
       memset(dby,0,sizeof dby);
31
       memset(match,0,sizeof match);
32
       for(int i=1; i<=n; i++)</pre>
33
       memset(vis,0,sizeof vis),bfs(i);
34
35
36
   int main() {
       memset(e,0xcf,sizeof e);//初始化为-inf
37
       scanf("%d%d",&n,&m);
38
       for(int i=1; i<=m; ++i) {</pre>
39
            int x,y,z; scanf("%d%d%d",&x,&y,&z);
40
           e[x][y]=z;//左边的x匹配右边的y,价值为z
41
       }
42
       km();
                  11 ans=0;//最大权匹配sum
43
       for(int i=1; i<=n; ++i)ans+=e[match[i]][i];</pre>
44
       printf("%11d\n",ans);
45
       for(int i=1; i<=n; ++i)printf("%d ",match[i]);</pre>
46
47
```

6.15 矩阵树定理

一、无向无环图

A 为邻接矩阵, $A[i][j] = i \rightarrow j$ 的边数

D 为度数矩阵, $D[i][i] = \sum_{j=1}^{n} A[i][j] = i$ 的度数,其他位置为 0

基尔霍夫矩阵 K=D-A, 令 K'=K 的去掉第 k 行第 k 列 (k 任意) 的 n-1 阶主子式 det(K')= 该无向图生成树个数

特别地,完全图生成树个数是 n^{n-2}

二、加权

求所有生成树边权的乘积之和,需要把邻接矩阵中边的条数改为为边权和度数矩阵改为 $D[i][i] = \sum_{i=1}^n A[i][j]$

三、有向图

对于有根外向树,需要把度数矩阵改为入度和, $D[i][i] = \sum_{j=1}^{n} A[j][i]$

对于有根内向树,需要把度数矩阵改为出度和, $D[i][i] = \sum_{i=1}^{n} A[i][j]$

类似地,求所有有向生成树边权的乘积之和,需要把邻接矩阵改为入/出边边权和

四、变形: 边权和的和

求所有生成树边权和的和,给原先边权为w的边赋值为一次多项式wx+1,多项式乘法对 x^2 取模, $\prod(w_ix+1)$ 的一次项系数即为 w_i 之和

```
struct P {
1
2
       11 x,y;//x是一次项系数, y是常数项
       P (11 x=0,11 y=0):x(x),y(y){}
3
       friend P operator + (const P &u, const P &v) {
4
            return P(add(u.x, v.x), add(u.y, v.y));
5
6
       }
       friend P operator - (const P &u, const P &v) {
7
            return P(add(u.x, mod - v.x), add(u.y, mod - v.y));
8
9
       }
       friend P operator * (const P &u, const P &v) {
10
            return P(add(mul(u.x, v.y), mul(u.y, v.x)), mul(u.y, v.y));
11
12
       }
       friend P operator / (const P &u, const P &v) {
13
            11 inv=qpow(v.y, mod-2);
14
            return P(add(mul(u.x, v.y), mod - mul(u.y, v.x)) * inv % mod * inv % mod,
15
                mul(u.y, inv));
16
       }
17
   };
18
   P g[N][N];
19
   11 gauss(P g[N][N],int n){
       P res(0,1);
20
       for(int i=1;i<=n;++i) {</pre>
21
22
            int pos=-1;
23
           for(int j=i;j<=n;++j){</pre>
24
                if(g[j][i].y){
25
                    pos=j;break;
26
                }
27
            if(pos==-1)return 0;
28
29
            swap(g[i],g[pos]);
            if(pos!=i)res=res*P(0,mod-1);
30
```

```
31
            res=res*g[i][i];
32
            P inv=P(0,1)/g[i][i];
33
            for(int j=i+1; j<=n;++j){</pre>
34
                 P t=g[j][i]*inv;
                 for(int k=n;k>=i;--k)g[j][k]=g[j][k]-t*g[i][k];
35
36
            }
37
        }
38
        return res.x;
39
   }
```

6.16 LGV 引理

G 是一个有限的带权有向无环图。每个顶点的度是有限的,不存在有向环。

起点 $A = \{a_1, a_2, ..., a_n\}$, 终点 $B = \{b_1, b_2, ..., b_n\}$, 每条边 e 有边权 w_e

对于一个有向路径 P,定义 $\omega(P)$ 为路径上所有边权的积。

对任意顶点 (a,b),定义 $e(a,b)=\sum\limits_{P:a\to b}\omega(P)=$ 所有 $a\to b$ 的路径边权乘积之和

$$M = \begin{bmatrix} e(a_1, b_1) & e(a_1, b_2) & \cdots & e(a_1, b_n) \\ e(a_2, b_1) & e(a_2, b_2) & \cdots & e(a_2, b_n) \\ \vdots & \vdots & \ddots & \vdots \\ e(a_n, b_1) & e(a_n, b_2) & \cdots & e(a_n, b_n) \end{bmatrix}$$

一个排列 σ 对应 $a_i \rightarrow b_{\sigma(i)}$ 的一种路径方案

 $inv(\sigma) = 排列 \sigma$ 的逆序对, $a_i \to b_{\sigma(i)}$ 的路径交点数至少为 $inv(\sigma)$

设
$$P_i$$
 表示从 a_i 到 $b_{\sigma(i)}$ 的一条路径, $det(M) = \sum_{P: a \to b} (-1)^{inv(\sigma(P))} \prod_{i=1}^n \omega(P_i)$

即路径交点数至少为 0 个的边权乘积和,减去路径焦点数至少为 1 个的边权乘积和,加上路径交点数至少为 2 个的边权乘积和…

根据广义容斥定理, $det(M) = \sum_{P: a \to b, P_i \cap P_j = \emptyset} \prod_{i=1}^n \omega(P_i)$,即所有方案中所有路径边权积的积的和

7 树上问题

7.1 树上倍增

```
int d[N];//d[i]=i的深度,d[rt]=1,(不能为0)
int f[N][21],mx[N][21];
void dfs(int x,int fa){
    for(int i=hd[x];i;i=e[i].nx){
        int y=e[i].to;
        if(y==fa)continue;
        mx[y][0]=e[i].v;
```

```
8
            d[y]=d[x]+1;
9
            f[y][0]=x;
10
            for(int j=1;j<=20;++j){</pre>
11
                f[y][j]=f[f[y][j-1]][j-1];
12
                mx[y][j]=max(mx[y][j-1],mx[f[y][j-1]][j-1]);
13
            dfs(y,x);
14
15
        }
16
17
   int lca(int x,int y){
18
        if(d[x]<d[y])swap(x,y);</pre>
        for(int i=20; i>=0; --i){
19
            if(d[f[x][i]]>=d[y])x=f[x][i];//注意令根的深度=1, 否则会跳错
20
21
        }
22
        if(x==y)return x;
        for(int i=20; i>=0; --i){
23
24
            if(f[x][i]!=f[y][i]){
25
                x=f[x][i];y=f[y][i];
26
            }
27
        }
28
        return f[x][0];
29
30
   int chainmax(int x,int y){
31
        int s=0;
32
        if(d[x]<d[y])swap(x,y);</pre>
        for(int i=20;i>=0;--i){
33
            if(d[f[x][i]] >= d[y])x = max(x, mx[x][i]), x = f[x][i];
34
35
        }
36
        if(x==y)return x;
        for(int i=20;i>=0;--i){
37
38
            if(f[x][i]!=f[y][i]){
39
                s=max({s,mx[x][i],mx[y][i]});
40
                x=f[x][i];y=f[y][i];
41
            }
42
        }
        s=max({s,mx[x][0],mx[y][0]});
43
        return f[x][0];
44
45
   }
```

7.2 dfs 序

树上问题可以通过 dfs 序转化为序列问题 树的所有 dfs 序方案数为 $\prod_{i=1}^n cnt(son_i)!$,(感叹号表示阶乘), $cnt(son_i)=i$ 结点儿子个数 lca(-个点集)=lca(dfs 序最小的点,dfs 序最大的点)

树上从一个点出发,经过一个点集的所有点再回到起点,最短路径是按照 dfs 序走,每条边恰好走两次,set 中按 dfs 序排序点集 $v_1,v_2,...,v_k$,令 $sum=dis(v_1,v_2)+dis(v_2,v_3)+...+dis(v_k,v_1)$,树链并即为 sum/2

7.3 轻重链剖分

```
//假设线段树已经写好
1
   int dfn[N],sz[N],son[N],fa[N],top[N],d[N],tdfn;
3
   void dfs1(int x,int f){
4
       sz[x]=1;
       for(int i=hd[x];i;i=e[i].nx){
5
6
            int y=e[i].to;
7
            if(y==f)continue;
8
            fa[y]=x;
9
            d[y]=d[x]+1;
10
            dfs1(y,x);
            sz[x]+=sz[y];
11
            if(sz[son[x]]>sz[y])son[x]=y;
12
       }
13
14
   }
   void dfs2(int x,int t){
15
       top[x]=t;dfn[x]=++tdfn;
16
       if(son[x])dfs2(son[x],t);
17
       for(int i=hd[x];i;i=e[i].nx){
18
19
            int y=e[i].to;
            if(dfn[y])continue;//if(fa[x]==y||y==son[x])continue;
20
21
            dfs2(y,y);
22
       }
23
   }
   int lca(int x,int y){
24
25
       while(top[x]!=top[y]){
            if(d[top[x]]>d[top[y]])swap(x,y);
26
            x=fa[top[x]];
27
28
       }
29
       return d[x]<d[y]?x:y;</pre>
30 }
```

```
void updchain(int x,int y,int c){//更新树链,询问也类似
31
32
       while(top[x]!=top[y]){
33
           if(d[top[x]]<d[top[y]])swap(x,y);</pre>
34
           upd(dfn[top[x]],dfn[x],1,c);
35
           x=fa[top[x]];
36
       }
37
       if(d[x]>d[y])swap(x,y);
38
       upd(dfn[x],dfn[y],1,c);//若维护边的信息,最后需要改为:
39
                           //if(x!=y)upd(dfn[x]+1,dfn[y],1,c);
40
   }
   int main(){
41
       //输入点/边信息
42
       dfs1(1,0);dfs2(1,1);
43
       for(int i=1;i<=n;++i)v[dfn[i]]=a[i];</pre>
44
45
       build(1,n,1);
46
       upd(dfn[x],dfn[x]+sz[x]-1,1,c);//子树更新
47
  }
```

带方向的树链询问

```
1
   struct sgt{
      int 1=0, r=0, len=0; //注意初始化,或者再qrychain中进行初始化
2
3
      int lnum=0, rnum=0; // 两边的数字
      int i=0,li=0,ri=0;//LCIS(最长连续严格上升子段),左边开始的LCIS,右边开始的LCIS
4
      int d=0,1d=0,rd=0;//LCDS(最长连续严格下降子段),左边开始的LCDS,右边开始的LCDS
5
6
   }t[N<<2];
   int qrychain(int x,int y){//x->y有方向性的询问
7
      sgt sx,sy;//sx=深度递增以x为结尾的链信息, sy=深度递增以y为结尾的链信息
8
9
      while(top[x]!=top[y]){
          if(d[top[x]]>d[top[y]]){
10
              sgt s=qry(dfn[top[x]],dfn[x],1);
11
12
              sx=pushup(s,sx);
              x=fa[top[x]];
13
14
          }
          else{
15
              sgt s=qry(dfn[top[y]],dfn[y],1);
16
17
              sy=pushup(s,sy);
              y=fa[top[y]];
18
19
          }
20
21
      if(d[x]>d[y]){
22
          sgt s=qry(dfn[y],dfn[x],1);
```

```
23
            sx=pushup(s,sx);
24
        }
25
        else{
26
             sgt s=qry(dfn[x],dfn[y],1);
27
            sy=pushup(s,sy);
        }
28
29
        int ans=max(sx.d,sy.i);
30
        if(sx.lnum<sy.lnum)ans=max(ans,sx.ld+sy.li);</pre>
31
        return ans;
32
   }
```

7.4 欧拉序

```
| const int N=1e6+6;//欧拉序长度        N=2*n+1
2 int n,q,rt,Log2[N];
  int idx[N],euler[N],d[N],h;//euler[1~h]:欧拉序 idx[i]=i在欧拉序中第一次出现的下标
  pair<int,int>st[21][N];
4
   vector<int>e[N];
  void dfs(int x){//获得欧拉序
6
       euler[++h]=x;idx[x]=h;
7
8
       for(int y:e[x]){
9
           if(d[y])continue;
10
           d[y]=d[x]+1;
           dfs(y);
11
12
           euler[++h]=x;
       }
13
14
15
   pair<int,int> qry(int 1,int r){
16
       int k=Log2[r-l+1];
       return min(st[k][1],st[k][r-(1<<k)+1]);</pre>
17
18
   int lca(int x,int y){//x,y在欧拉序中第一次出现下标之间深度最小的点
19
20
       if(idx[x]>idx[y])swap(x,y);
21
       return qry(idx[x],idx[y]).second;
22
   }
23
   int main(){
24
       for(int i=2;i<N;++i)Log2[i]=Log2[i>>1]+1;
25
       d[rt]=1;dfs(rt);
26
       for(int i=1;i<=h;++i)st[0][i]={d[euler[i]],euler[i]};</pre>
27
       for(int i=1;1<<i<=h;++i){</pre>
28
           for(int j=1;j+(1<<i)-1<=h;++j){</pre>
```

7.5 点分治

```
int n,rt,hd[N],tot;
2
   struct edge{
3
       int to,nx,v;
4
  }e[N<<1];
   inline void add(int x,int y,int z){
5
       e[++tot]={y,hd[x],v};hd[x]=tot;
6
7
   }
  int maxson[N],sz[N],sum;
8
   bool vis[N];
9
   void getroot(int x,int fa){
10
       maxson[x]=0;sz[x]=1;//初始化最大子树大小以及size
11
12
       for(int i=hd[x];i;i=e[i].nx){
           int y=e[i].to;
13
           if(vis[y]||y==fa)continue;
14
15
           getroot(y,x);
16
           sz[x]+=sz[y];
17
           maxson[x]=max(maxson[x],sz[y]);
18
       }
       maxson[x]=max(maxson[x],sum-sz[x]);
19
       if(!rt||maxson[x]<maxson[rt])rt=x;</pre>
20
21
   }
   int b[N],c[N];
22
   void getsubtree(int x,int fa,ll len){//统计子树信息
23
24
       c[++c[0]]=len;
25
       for(int i=hd[x];i;i=e[i].nx){
26
           int y=e[i].to;
           if(vis[y]||y==fa)continue;
27
28
           getsubtree(y,x,len+e[i].v);
29
       }
30
   void calc(int x){
31
32
       b[b[0]=1]=0;//将根加入数组
33
       for(int i=hd[x];i;i=e[i].nx){
34
           int y=e[i].to;
```

```
if(vis[y])continue;
35
36
           c[0]=0;//记录子树的数组清空
37
           getsubtree(y,x,e[i].v);//枚举所有子树
           //新的子树和已访问子树连成的所有链
38
           for(int j=1;j<=c[0];++j){</pre>
39
               for(int k=1;k<=b[0];++k){</pre>
40
41
               }
42
           }
43
           //将新的子树加入数组
44
           for(int j=1;j<=c[0];++j)b[++b[0]]=c[i];</pre>
45
       }
46
       for(int i=1;i<=b[0];++i){//删除子树的贡献
47
       }
48
49
   void divide(int x){
50
       vis[x]=1;//分割该点
51
       calc(x);//统计该重心的子树
52
53
       for(int i=hd[x];i;i=e[i].nx){//枚举所有子树
           int y=e[i].to;
54
           if(vis[y])continue;
55
           sum=sz[y];rt=0;//sum=子树大小,初始化重心
56
           getroot(y,0);//找到子树的重心
57
           divide(rt);//递归子树
58
59
       }
60
61
   int main(){
62
       n=rd();
       for(int i=1;i<n;++i){</pre>
63
64
           int x=rd(),y=rd(),z=rd();
           add(x,y,z);add(y,x,z);
65
66
       }
67
       sum=n;rt=0;
       getroot(1,0);
68
69
       divide(rt);
70
   }
```

7.6 点分树

需要注意,点分树上的路径与原来的树完全没有关系。

```
#include <bits/stdc++.h>
```

```
2 using namespace std;
3
  using ll = long long;
4
5
  const int mod = 998244353;
   const int N = 2e5 + 5;
6
7
8
   int n, q, val[N], rt, siz[N], SUM, mx[N];
9
  int faz[N];
   vector<int> T[N];
10
   bool vis[N];
11
12
   // 假设树剖已经写好
13
14
   void getrt(int u, int fa) {
15
16
       siz[u] = 1;
17
       mx[u] = 0;
       for (int v : t.G[u]) if (v != fa && !vis[v]) {
18
           getrt(v, u);
19
20
           siz[u] += siz[v];
21
           mx[u] = max(mx[u], siz[v]);
22
       }
23
       mx[u] = max(mx[u], SUM - siz[u]);
24
       if (mx[u] < mx[rt]) rt = u;
25
   }
   void Dfs(int u, int fa) {
26
27
       vis[u] = 1;
28
       for (int v : t.G[u]) if (v != fa && !vis[v]) {
29
           rt = 0;
           SUM = siz[v];
30
31
           getrt(v, rt);
           T[u].push_back(rt);
32
           faz[rt] = u;
33
34
           Dfs(rt, rt);
35
       }
36
   }
37
   // 假设动态开点权值线段树已经写好
38
39
   void dfs(int u, const int now) { // 预处理
40
       add(rt1[now], 0, n, dist(faz[now], u), val[u]);
41
42
       add(rt0[now], 0, n, dist(u, now), val[u]);
```

```
for (int v : T[u]) dfs(v, now);
43
   }
44
45
   void upd(int u, int d) {
46
       int x = u;
       while (true) {
47
           add(rt1[u], 0, n, dist(x, faz[u]), d);
48
           add(rt0[u], 0, n, dist(x, u), d);
49
50
           if (u == root) break;
           u = faz[u];
51
52
       }
53
   int qry(int u, int k) {
54
55
       int ans = query(rt0[u], 0, n, 0, k), x = u;
       while (u != root) {
56
57
           if (k - dist(faz[u], x) >= 0) ans += query(rt0[faz[u]], 0, n, 0, k - dist
               (faz[u], x)) - query(rt1[u], 0, n, 0, k - dist(faz[u], x));
           u = faz[u];
58
59
       }
60
       return ans;
61
  }
```

7.7 树上启发式合并

```
1 int sz[N],son[N],Son;
2 int cnt[N];//color i 出现的次数
3 11 ans[N], sum, maxcnt;
   void dfs1(int x,int fa){
4
5
       int mx=0; sz[x]=1;
       for(auto y:e[x]){
6
           if(y==fa)continue;
7
           dfs1(y,x);
8
           sz[x]+=sz[y];
9
           if(sz[y]>mx){
10
11
                mx=sz[y];
12
                son[x]=y;
13
           }
       }
14
15
16
   void add(int x,int fa){
       ++cnt[a[x]];
17
18
       if(cnt[a[x]]>maxcnt){
```

```
19
            maxcnt=cnt[a[x]];sum=a[x];
20
        }
21
        else if(cnt[a[x]]==maxcnt)
22
        sum+=a[x];
        for(auto y:e[x]){
23
24
            if(y==fa||y==Son)continue;
25
            add(y,x);
26
       }
27
28
   void del(int x,int fa){
29
        --cnt[a[x]];
        for(auto y:e[x]){
30
            if(y==fa)continue;
31
32
            del(y,x);
       }
33
34
   void dfs2(int x,int fa,bool f){
35
        for(auto y:e[x]){
36
37
            if(y==fa||y==son[x])continue;
38
            dfs2(y,x,1);
39
        }
        if(son[x])dfs2(son[x],x,0);
40
41
        Son=son[x];add(x,fa);
42
       ans[x]=sum;
43
        if(f){
            del(x,fa);sum=0;maxcnt=0;
44
45
        }
46
47
   int main(){dfs1(1,0);dfs2(1,0,0);}
```

7.8 长链剖分

```
int f[N][20],son[N],d[N],maxd[N],top[N],dfn[N],len[N],highbit[N];
1
  vector<int>Up[N],Down[N];
2
3
  void dfs1(int x,int fa){
4
       \max d[x]=d[x]=d[fa]+1;f[x][0]=fa;
5
       for(int i=1;i<20;++i){</pre>
6
           if(!f[x][i-1])break;
7
           f[x][i]=f[f[x][i-1]][i-1];
8
9
       for(int i=hd[x];i;i=e[i].nx){
```

```
10
            int y=e[i].to;
11
            if(y==fa)continue;
12
            dfs1(y,x);
13
            if(maxd[y]>maxd[son[x]])son[x]=y,maxd[x]=maxd[y];
        }
14
15
   }
16
   void dfs2(int x,int t){
17
        top[x]=t;len[x]=maxd[x]-d[top[x]]+1;
18
        dfn[x]=++dfn[0];
19
        if(son[x])dfs2(son[x],t);
20
        for(int i=hd[x];i;i=e[i].nx){
21
            int y=e[i].to;
            if(y!=f[x][0]\&\&y!=son[x])dfs2(y,y);
22
23
        }
24
   }
25
   inline int find_kth_fa(int x,int k){
26
        if(k>d[x])return 0;if(k==0)return x;
27
        x=f[x][highbit[k]];k^=1<<highbit[k];</pre>
28
        if(!k)return x;
29
        if(d[x]-d[top[x]]==k)return top[x];
        if(d[x]-d[top[x]]>k)return Down[top[x]][d[x]-d[top[x]]-k-1];
30
31
        return Up[top[x]][k-d[x]+d[top[x]]-1];
32
33
   int main(){
34
        scanf("%d",&n);
        for(int i=1;i<n;++i){</pre>
35
            int x,y;scanf("%d%d",&x,&y);
36
37
            add(x,y);add(y,x);
38
        }
39
        dfs1(1,0);dfs2(1,1);
        for(int i=1;i<=n;++i){</pre>
40
            if(i==top[i]){
41
42
                 int l=0,x=i;
                while(l<len[i]&&x)x=f[x][0],++1,Up[i].push_back(x);</pre>
43
44
                1=0,x=i;
                 while(l<len[i])x=son[x],++1,Down[i].push_back(x);</pre>
45
            }
46
47
        for(int i=1, mx=1; i<=n; ++i){</pre>
48
49
            if(i>>mx&1)++mx;
50
            highbit[i]=mx-1;
```

```
51 }
52 find_kth_fa(x,k);//调用x的k级祖先
53 }
```

7.9 虚树

```
int h,b[N],root;ll dp[N];
  bool vis[N];//该点是询问点
   inline bool cmp(int a,int b){
3
        return dfn[a]<dfn[b];</pre>
4
5
   }
6
   int build_virtual_tree(int b[],int h){
7
        static int sta[N],top;
8
        tot1=0;
        sort(b+1,b+1+h,cmp);//按dfs序排序
9
10
        sta[top=1]=b[1];
        for(int i=2;i<=h;++i){</pre>
11
            int ff=lca(b[i],sta[top]);
12
            while(1){
13
                if(dfn[ff]>=dfn[sta[top-1]]){
14
                    if(ff!=sta[top]){
15
                         add1(ff,sta[top]);
16
                         if(ff!=sta[top-1])sta[top]=ff;
17
                         else --top;
18
19
                    }
20
                    break;
                }
21
22
                else{
                    add1(sta[top-1],sta[top]);
23
24
                    --top;
25
                }
26
            }
            sta[++top]=b[i];
27
28
        }
29
        while(--top)add1(sta[top],sta[top+1]);
30
        return sta[1]; // 虚 树 的 根 节 点 ( 所 有 询 问 点 的 l ca )
31
   }
32
   void dfs3(int x){//虚树上树形DP
33
        11 sum=0;
        for(int i=hd1[x];i;i=e1[i].nx){
34
            int y=e1[i].to;dfs3(y);sum+=dp[y];
35
```

```
36
       if(vis[x])dp[x]=mn[x];//询问点和非询问点分别算
37
       else dp[x]=min(mn[x],sum);
38
39
   void del_tree(int x){//清空虚树,记得在函数外tot1=0
40
       for(int i=hd1[x];i;i=e1[i].nx)del_tree(e1[i].to);
41
42
       hd1[x]=0;
43
   }
   int main(){
44
       // 询问b[1~h]这些结点
45
       for(int i=1;i=h;++i)vis[b[i]]=1;
46
       root=build_virtial_tree(b,h);
47
       dfs3(root); ans=dp[root];
48
       del_tree(root);
49
       for(int i=1;i<=h;++i)vis[b[i]]=0;</pre>
50
51
   }
```

7.10 树上游走

你在 x 点会等概率选择一条边并经过 $dp_x = x$ 走到 fa_x 需要的期望步数, $d_x = x$ 的度数, $sz_x = x$ 子树中点的个数 $dp_x = 1 + \sum_{y \in son_x} \frac{dp_y + dp_x}{dx} \Rightarrow d_x dp_x = d_x + (d_x - 1) dp_x + \sum_{y \in son_x} dp_y \Rightarrow dp_x = d_x + \sum_{y \in son_x} dp_y$ 子树内每条边被算 2 次,向父亲的边算一次,可得 $dp_x = 2 \times sz_x - 1$

8 动态规划

8.1 树形背包

1、具有树形先后关系的背包 (拿了根才能拿儿子)

```
void dfs(int x,int num){
    for(auto y:e[x]){
        for(int i=0;i<num;++i)dp[y][i]=dp[x][i]+a[y];
        dfs(y,num-1);
        for(int i=1;i<=num;++i)dp[x][i]=max(dp[x][i],dp[y][i-1]);
}
</pre>
```

2、没有先修关系,dp[x][y]=x 号子树中选了 y 个的价值

```
1
   // 假 设 预 处 理 好 子 树 size
2
   void dfs(int x,int f){
3
       dp[x][0]=dp[x][1]=0;
       for(auto y:e[x]){
4
           if(y==f)continue; //枚举到size,时间复杂度为0(nm)
5
           for(int i=min(sz[x],k);i>=0;--i){//x子树选几个
6
7
               for(int j=0;j<=i&&j<=sz[y];++j){//y子树选几个
8
                   dp[x][i]=max(dp[x][i],dp[y][j]+dp[x][i-j]);
9
               }
10
           }
11
       }
12
   }
```

8.2 区间 DP

```
1
   int main(){
2
      for(int i=1;i<=n;++i)dp[i][i]=0;//设置初始状态
      for(int len=2;len<=n;++len){</pre>
3
4
          for(int i=1;i+len-1<=n;++i){</pre>
              int j=i+len-1; //视情况而定,有两种可能的转移方式
5
6
          //1、枚举分段点/最后一个加进去的,有时可优化枚举个数
7
              for(int k=i;k<=j;++k)dp[i][j]+=dp[i][k]+dp[k+1][j]</pre>
8
          //2、每次只从相邻位置转移
9
              dp[i][j]=dp[i][j-1]+dp[i+1][j];
10
          }
11
      }
12
   }
```

8.3 数位 DP

```
const int N=20;//数字长度
1
2 int h,a[N];
  //dp第一维是搜索到第几位(从低到高),后面状态可以额外加
  //时间复杂度是所有状态数,即dp数组的空间大小
4
  11 dp[N][2][2][2];//dp[pos][f4][f62][pre6]
  11 dfs(int pos,bool f4,bool f62,bool pre6,bool lim){//lim:高位均相等
6
7
     //lim是必要参数,只有!lim才能剪枝,否则后续状态受到高位限制
     if(pos==0)return !f4&&!f62?1:0;//pos=0整个数字选好了,如果满足就是搜到一个
8
9
     if(!lim&&dp[pos][f4][f62][pre6]!=-1)
     return dp[pos][f4][f62][pre6];
10
```

```
11
       int mx=lim?a[pos]:9;
12
       11 s=0;
13
       for(int i=0;i<=mx;++i)</pre>
14
       s+=dfs(pos-1,f4||i==4,f62||(pre6&&i==2),i==6,lim&&i==mx);
       if(!lim)dp[pos][f4][f62][pre6]=s;
15
16
       return s;
17
18
   ll solve(ll x){//0~x的答案
19
       h=0; memset(dp,-1, sizeof dp);
20
       while(x){
21
            a[++h]=x%10;
22
           x/=10;
       }//a[1]=个位,a[h]=最高位
23
       return dfs(h,0,0,0,1);
24
25
   int main(){//没有62或4的数字
26
27
       11 x, y;
       while(scanf("%11d%11d",&x,&y)!=E0F&&x){
28
29
            printf("%lld\n", solve(y)-solve(x-1));
30
       }
31
   }
```

8.4 最长上升子序列

```
1 int n,a[N];
2 int dp1[N],len1;//len1=最长上升子序列长度
   int dp2[N], len2; // 最少len2个上升子序列可以覆盖整个数组
4
   int main(){
       n=rd();
5
6
       for(int i=1;i<=n;++i)a[i]=rd();</pre>
7
       dp1[len1=1]=a[1];
       for(int i=2;i<=n;++i){</pre>
8
           if(a[i]>dp1[len1])dp1[++len1]=a[i];
9
           else{
10
                //*lower_bound(dp1+1,dp1+1+len1,a[i])=a[i];
11
12
                int l=1,r=len1;
                while(l<=r){</pre>
13
14
                    int m=l+r>>1;
15
                    if(dp1[m]<=a[i])l=m+1;
                    else r=m-1;
16
17
```

```
18
                 // < < < < < > > >
19
                 //
                            r l
20
                 dp1[l]=a[i];
21
            }
22
        }
23
        printf("%d\n",len1);
24
        dp2[len2=1]=a[1];
25
        for(int i=2;i<=n;++i){</pre>
             if(a[i]<dp2[len2])dp2[++len2]=a[i];</pre>
26
27
             else{
28
                 int l=1,r=len2;
                 while(l<=r){</pre>
29
                      int m=l+r>>1;
30
                      if(dp2[m]>=a[i])l=m+1;
31
32
                      else r=m-1;
                 }
33
34
                 // > > > > < < < < <
                 //
35
36
                 dp2[1]=a[i];
37
            }
38
        }
39
        printf("%d\n",len2);
40
   }
```

8.5 所有字段和

```
1 for(int i=1;i<=n;++i){
2     dp[i]=dp[i-1]+i*a[i];
3     ans+=dp[i];//dp[i]=所有以i结尾的字段和
4 }</pre>
```

8.6 公共子序列

最长公共子序列(若元素不重复,可以重编号后求最长上升子序列)

```
int n,m,a[N],b[N],dp[N][N];
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i)scanf("%d",&a[i]);
    for(int i=1;i<=m;++i)scanf("%d",&b[i]);
    for(int i=1;i<=n;++i){</pre>
```

所有公共子序列个数

8.7 错位排列数

```
1 dp[i]=长度为i的排列,所有i满足p[i]!=i的方案数 dp[1]=0;dp[2]=1;dp[i]=(i-1)*(dp[i-1]+dp[i-2])
```

8.8 基环树直径

```
struct edge{
1
2
       int to,nx,v;
  }e[N<<1];
4
  int hd[N],tot;
   inline void add(int x,int y,int z){
5
6
      e[++tot]={y,hd[x],z};hd[x]=tot;
7
  bool vis[N];
9
  int sta[N],top;
10 int n,c[N],h;
  11 b[N];
11
12 11 maxd[N];
13 | 11 treeD;
15 | 11 preans[N], sufans[N];
```

```
16
   11 premax[N], sufmax[N];
17
   void find_circle(int x,int fa){
18
        sta[++top]=x;vis[x]=1;
19
        for(int i=hd[x];i;i=e[i].nx){
20
            int y=e[i].to;
21
            if(y==fa)continue;
22
            if(h)return;
23
            b[y]=e[i].v;
            if(!vis[y])find_circle(y,x);
24
25
            else{
26
                 while(sta[top]!=y){
27
                     c[++h]=sta[top--];
28
                 }
29
                 c[++h]=y;
30
                 return;
31
            }
32
        }
33
        --top;
34
   void getmaxd(int x,int fa){
35
        for(int i=hd[x];i;i=e[i].nx){
36
37
            int y=e[i].to;
            if(y==fa||vis[y])continue;
38
39
            getmaxd(y,x);
            treeD=max(treeD, maxd[x]+maxd[y]+e[i].v);
40
            maxd[x]=max(maxd[x],maxd[y]+e[i].v);
41
        }
42
43
   }
   int main(){
44
        scanf("%d",&n);
45
        for(int i=1;i<=n;++i){</pre>
46
47
            int x,y,z;scanf("%d%d%d",&x,&y,&z);
48
            add(x,y,z);add(y,x,z);
49
        }
        find_circle(1,0);
50
        memset(vis+1,0,n);
51
52
        for(int i=1;i<=h;++i)vis[c[i]]=1;</pre>
53
        for(int i=1;i<=h;++i)getmaxd(c[i],0);</pre>
54
        for(int i=1;i<=h;++i)presum[i]=presum[i-1]+b[c[i-1]];</pre>
        for(int i=h-1;i;--i)sufsum[i]=sufsum[i+1]+b[c[i]];
55
56
        11 mx=0;
```

```
57
        for(int i=1;i<=h;++i){</pre>
58
            preans[i]=max(preans[i-1],presum[i]+maxd[c[i]]+mx);
59
            mx=max(mx,maxd[c[i]]-presum[i]);
60
        }
61
        mx=0;
62
        for(int i=h;i;--i){
63
            sufans[i]=max(sufans[i+1],sufsum[i]+maxd[c[i]]+mx);
64
            mx=max(mx,maxd[c[i]]-sufsum[i]);
65
        }
66
        for(int i=1;i<=h;++i)premax[i]=max(premax[i-1],presum[i]+maxd[c[i]]);</pre>
67
        for(int i=h;i;--i)sufmax[i]=max(sufmax[i+1],sufsum[i]+maxd[c[i]]);
68
        ll ans=1ll<<60;
69
        for(int i=1;i<h;++i){</pre>
70
            11 now=max(preans[i], sufans[i+1]);
71
            now=max(now,premax[i]+sufmax[i+1]+b[c[h]]);
72
            ans=min(ans,now);
73
        }
74
        ans=max(ans,treeD);
75
        printf("%.1lf\n",1.0*ans/2);
76
  }
```

8.9 高维前缀和

SOS DP (sum of subset)

```
//a[i][j][k]=sum[1~i][1~j][1~k]
1
2
   for(int i = 1; i <= n; i++)</pre>
3
        for(int j = 1; j <= n; j++)</pre>
4
            for(int k = 1; k <= n; k++)</pre>
                a[i][j][k] += a[i - 1][j][k];
5
6
   for(int i = 1; i <= n; i++)</pre>
7
        for(int j = 1; j <= n; j++)
8
            for(int k = 1; k <= n; k++)
9
                a[i][j][k] += a[i][j - 1][k];
   for(int i = 1; i <= n; i++)</pre>
10
11
        for(int j = 1; j <= n; j++)
12
            for(int k = 1; k <= n; k++)
13
                a[i][j][k] += a[i][j][k - 1];
   //类似地,四维就再来一遍
14
```

若每一维只有2即(0,1)则可优化为(也即是求子集和)

```
1 for(int j = 0; j < n; j++)</pre>
```

```
for(int i = 0; i < 1 << n; i++)

if(i >> j & 1) f[i] += f[i ^ (1 << j)];</pre>
```

超集和 (超集: 若 S2 的每一个元素都在 S1 且 S1 可能包含 S2 中没有的元素, 则 S1 为 S2 的一个超集合)(其实就是子集反一下)

```
for(int j = 0; j < n; j++)
for(int i = 0; i < 1 << n; i++)
if(!(i >> j & 1)) f[i] += f[i ^ (1 << j)];</pre>
```

9 字符串

9.1 KMP 算法

一个字符串 s 的 border: 既是 s 的前缀又是 s 的后缀的真子串 KMP 算法可以建立 next 数组(p 数组), 使得 $next_i =$ 前缀 i 的最长 border 长度 串长-border 长度 = 周期,周期个数 =border 数量,最小循环节为 $n-next_n$

```
char s1[N],s2[N];
1
   int n,m,p[N];//p[i]=s2[1~i]后缀=前缀的最大长度(不包括本身)
   int main(){
3
       scanf("%s%s",s1+1,s2+1);
4
       n=strlen(s1+1); m=strlen(s2+1);
5
6
       for(int i=2,j=0;i<=m;++i){</pre>
           while(j&&s2[i]!=s2[j+1])j=p[j];
7
8
           if(s2[i]==s2[j+1])++j;
9
           p[i]=j;
10
       for(int i=1,j=0;i<=n;++i){</pre>
11
12
           while(j&&s1[i]!=s2[j+1])j=p[j];
           if(s1[i]==s2[j+1])++j;
13
14
           if(j==m){
                printf("%d\n",i-m+1);//s1中出现s2的下标
15
               j=p[j];//不能重叠: j=0
16
17
           }
18
       }
19
   }
```

9.2 失配树

建立 KMP 算法的 next 数组 (下标从 1 开始),建立 fail 树,fail[i] = p[i]

0 到 n 是失配树从根到叶子的拓扑序

求前缀 prefix(u) 和 prefix(v) 的最大公共 border

法一、求出 fail 树上 fa = lca(u, v), 若 $u \in v$ 的祖先, 则答案为 next[fa], 否则答案为 fa

```
int n,logn; char s[N]; //下标从1开始
1
2
   int f[21][N],d[N];//f[i][0]=s[1~i]最长border
   int lca(int x,int y){
3
4
       if(d[x]<d[y])swap(x,y);</pre>
       for(int i=logn;i>=0;--i){
5
6
            if(d[f[i][x]]>=d[y])x=f[i][x];
7
       }
       //若x==y,说明xy为祖先关系,最终答案为next[x],即f[0][x]
8
       for(int i=logn;i>=0;--i){
9
10
            if(f[i][x]!=f[i][y]){
11
                x=f[i][x];y=f[i][y];
12
            }
13
       }
14
       return f[0][x];
15
   int main(){
16
       scanf("%s",s+1);//ababaabab
17
18
       n=strlen(s+1);logn=log2(n)+1;
19
       d[1]=1;//root=0, fa[1]=0, dep[0]=0, dep[1]=1
       for(int i=2,j=0;i<=n;++i){</pre>
20
21
            while(j&&s[i]!=s[j+1])j=f[0][j];
22
            if(s[i]==s[j+1])++j;
            f[0][i]=j;d[i]=d[j]+1;
23
24
       }
       for(int i=1;i<=logn;++i){</pre>
25
26
            for(int j=1;j<=n;++j){</pre>
27
                f[i][j]=f[i-1][f[i-1][j]];
            }
28
29
       }
       int q;scanf("%d",&q);
30
       while(q--){
31
            int x,y;scanf("%d%d",&x,&y);
32
            printf("%d\n",lca(x,y));
33
34
       }
35
   }
```

法二、pre(u) 循环节长度为 u - next[u],根据循环节长度是否大于一半来分类讨论,使 u 或 v 每次减半

```
int n,p[N];char s[N];//下标从1开始
1
2
   int main(){
3
       scanf("%s",s+1);n=strlen(s+1);//ababaabab
       for(int i=2,j=0;i<=n;++i){</pre>
4
           while(j&&s[i]!=s[j+1])j=p[j];
5
6
           if(s[i]==s[j+1])++j;
7
           p[i]=j;
       }
8
9
       int q;scanf("%d",&q);
       while(q--){
10
           int u,v;scanf("%d%d",&u,&v);
11
12
           u=p[u];v=p[v];//一开始要先跳一次,保证非本身
13
           while(u!=v){
               if(u<v)swap(u,v);</pre>
14
               int d=u-p[u];//最小循环节
15
               if(d<u>>1){//小于一半
16
                   if((u-v)%d==0)u=v;//u和v恰好都是循环节的k倍,得到答案
17
                   else u=u%d+d;//循环节只保留一个abcabcab->abcab
18
19
               }
20
               else u=p[u];
21
           }
22
           printf("%d\n",u);
23
       }
24
  }
```

9.3 扩展 KMP

```
//z[i]=s[i~n]和s的最长公共前缀
  //p[i]=t[i~m]和s的最长公共前缀
3 int n,m,z[N],p[N];char s[N],t[N];
   void init_Z(char s[],int n,int z[]){
4
       z[1]=n;
5
6
       for(int i=2,1=0,r=0;i<=n;++i){</pre>
7
           z[i]=i <= r?min(z[i-l+1],r-i+1):0;
8
           while(i+z[i]<=n&&s[i+z[i]]==s[z[i]+1])++z[i];
9
           if(i+z[i]-1>r)l=i,r=i+z[i]-1;
10
       }
11
12
   void exkmp(char s[],int n,char t[],int m,int z[],int p[]){
13
       for(int i=1,l=0,r=0;i<=m;++i){</pre>
```

```
if(i<=r)p[i]=min(z[i-l+1],r-i+1);
while(i+p[i]<=m&&t[i+p[i]]==s[p[i]+1])++p[i];
if(i+p[i]-1>r)l=i,r=i+p[i]-1;
}
```

9.4 字符串哈希

如果怕自然溢出被卡,可以考虑自然溢出和 1e9+7/998244353 的双模哈希注意模 1e9+7 时必须用 long long 而非 unsigned long long 哈希判回文串:

```
using ll=long long;using ull=unsigned long long;
1
  const int N=1e5+5;
  const ull k=13331;//k看心情随便换
   int n; char s[N];
4
  ull hash1[N],hash2[N],kpow[N];
5
6
   bool check(int l,int r){//s[l,r]是回文串?
7
       ull hs1=hash1[r]-hash1[l-1]*kpow[r-l+1];//不需要考虑负数
       ull hs2=hash2[1]-hash2[r+1]*kpow[r-1+1];//自然溢出后是模2^64意义下的
8
9
       return hs1==hs2;
10
   }
   int main(){
11
12
       scanf("%d%s",&n,s+1);//n=strlen(s+1);
13
       kpow[0]=1;hash1[n+1]=0;
       for(int i=1;i<N;++i)kpow[i]=kpow[i-1]*k;</pre>
14
       for(int i=1;i<=n;++i)hash1[i]=hash1[i-1]*k+s[i];</pre>
15
16
       for(int i=n;i>=1;--i)hash2[i]=hash2[i+1]*k+s[i];
17
       int q;scanf("%d",&q);
       while(q--){
18
19
           int 1,r;scanf("%d%d",&1,&r);
20
           puts(check(1,r)?"YES":"NO");
       }
21
22
   /* hash("dcbe")='d'*k^3+'c'*k^2+'b'*k+'a'*1
23
24
   hash1[i]=hash({s[1],s[2],....,s[i]})
   hash2[i]=hash({s[n],s[n-1],...,s[i]})
25
                                                 */
```

双模哈希

```
1 ull kpow1[N],hs1[N];//% 2^64
2 ll kpow2[N],hs2[N];//% mod(1e9+7)
```

```
char s[N];int n;
3
   pair<ull, 11>gethash(int 1, int r){
4
5
       ull a=hs1[r]-hs1[l-1]*kpow1[r-l+1];
6
       11 b=hs2[r]-hs2[l-1]*kpow2[r-l+1];
       b=(b%mod+mod)%mod;//注意b要用有符号,绝对不要用unsigned long long
7
8
       return {a,b};
9
   map<pair<ull,ll>,int>mp;//双模哈希为key映射到其他信息
10
   int main(){
11
       kpow1[0]=kpow2[0]=1;
12
       for(int i=1;i<N;++i){</pre>
13
           kpow1[i]=kpow1[i-1]*13331;
14
15
           kpow2[i]=kpow2[i-1]*13331%mod;
16
       }
17
       scanf("%s",s+1);n=strlen(s+1);
18
       for(int i=1;i<=n;++i){</pre>
           hs1[i]=hs1[i-1]*13331+s[i];
19
           hs2[i]=(hs2[i-1]*13331+s[i])%mod;
20
21
       }
22
  }
```

9.5 Manacher

```
const int N=2.2e7+5;//strlen=2倍原字符串长度+1
1
2 int n,p[N];char s[N];
  bool check(int 1,int r){//[1,r]区间是否是回文串
3
       return p[1+r]>=r-1+1;
4
5
  }
   int main(){
6
       scanf("%s",s+1);n=strlen(s+1); // 将字符串acbc变为 #a#c#b#c#
7
8
       for(int i=n;i;--i)s[i<<1|1]='#',s[i<<1]=s[i];</pre>
       s[1]='#';s[0]='@';//第0个位置赋为不存在的字符,控制循环中的while的边界
9
       n=n<<1|1; int maxr=0,pos=0,ans=0;
10
       for(int i=1;i<=n;++i){</pre>
11
12
          if(i<maxr)p[i]=min(p[pos*2-i],maxr-i);</pre>
13
          while(s[i-p[i]-1]==s[i+p[i]+1])++p[i];
          if(i+p[i]>maxr)maxr=i+p[i],pos=i;
14
15
       }
16
       //p[i]=新串以i为中心的回文串单侧最大扩展长度
      //举例 : str = #a#b#b#c(下标从1开始),p[5]=2,p[4]=1
17
18
       //max(p[i])=原串最长回文串长度
```

9.6 AC 自动机

```
|const int N=2e5+10,M=N*30;//注意修改M的大小(文本串长度之和)
2 int t[M][26],fail[M],cnt[M],idx[M],tot;
3 string s[N];
4 vector<int>e[M];
5 int n;
   void insert(const string &s,int id){
6
7
       int p=0;
       for(auto ch:s){
8
            int c=ch-'a';
9
            if(!t[p][c])t[p][c]=++tot;
10
11
            p=t[p][c];
12
       }
       idx[id]=p;
13
14
   }
15
   void build_fail(){
16
       queue < int > q;
17
       for(int i=0;i<26;++i)if(t[0][i])q.push(t[0][i]);</pre>
18
       for(;!q.empty();){
            int p=q.front();q.pop();
19
20
            for(int i=0;i<26;++i){</pre>
21
                if(t[p][i]){
22
                    fail[t[p][i]]=t[fail[p]][i];
23
                    q.push(t[p][i]);
24
                }
25
                else t[p][i]=t[fail[p]][i];
26
            }
27
       }
28
29
   void query(const string &s){
30
       int p=0;
       for(auto c:s){
31
32
            p=t[p][c-'a'];
33
            ++cnt[p];
34
       }
```

```
35
   }
36
   void build failtree(){
37
        for(int i=1;i<=tot;++i)e[fail[i]].push_back(i);</pre>
38
39
   void dfs(int x){
40
        for(auto y:e[x]){
41
            dfs(y);
42
            cnt[x]+=cnt[y];
        }
43
44
   }
45
   int main(){
46
        cin>>n;
47
        for(int i=1;i<=n;++i)cin>>s[i];
48
        for(int i=1;i<=n;++i)insert(s[i],i);</pre>
49
        build fail();
                          build_failtree();
50
        string str; cin>>str;
        query(str); dfs(0);
51
52
        for(int i=1;i<=n;++i)cout<<cnt[idx[i]]<<"\n";</pre>
53
   }
```

9.7 后缀数组 SA

```
int n,m,s[N]; char str[N];
2 | int sa[N];//sa[i]=排名为i的后缀的下标(从1开始)
3 | int rk[N];//rk[i]=下标为i的后缀的排名
4 int height[N];//height[i]=lcp(suf(sa[i]),suf(sa[i-1])
   //lcp{suf(sa[i]),suf(sa[j])}=min{height[i+1,...,j]}
  int st[N][20];//用于求longest commen prefix
6
   int c[N],x[N],y[N];
7
8
   void get_sa(){//也可以传入int数组
9
       m=122;//ASCII最大值
       for(int i=1;i<=n;++i)++c[x[i]=s[i]];</pre>
10
11
       for(int i=2;i<=m;++i)c[i]+=c[i-1];</pre>
12
       for(int i=1;i<=n;++i)sa[c[x[i]]--]=i;</pre>
13
       for(int k=1;k<=n;k<<=1){</pre>
14
           int num=0; memset(c+1,0,m<<2);</pre>
           for(int i=n-k+1;i<=n;++i)y[++num]=i;</pre>
15
           for(int i=1;i<=n;++i)if(sa[i]>k)y[++num]=sa[i]-k;
16
17
           for(int i=1;i<=n;++i)++c[x[i]];</pre>
18
           for(int i=2;i<=m;++i)c[i]+=c[i-1];</pre>
19
           for(int i=n;i;--i)sa[c[x[y[i]]]--]=y[i],y[i]=0;
```

```
20
            swap(x,y);
21
            x[sa[1]]=1;num=1;
22
            for(int i=2;i<=n;++i)</pre>
23
            x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?num:++num;
24
            if (num==n) break;
25
            m=num;
        }
26
27
   }
28
   void get_height(){
29
        for(int i=1;i<=n;++i)rk[sa[i]]=i;</pre>
30
        int k=0;height[1]=0;
        for(int i=1;i<=n;++i){</pre>
31
32
            if(!rk[i])continue;
33
            if(k)--k;
34
            int j=sa[rk[i]-1];
35
            while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k])++k;</pre>
36
            height[rk[i]]=k;
37
        }
38
39
   int Log2[N];
40
   void build st(){
        for(int i=1;i<=n;++i)st[i][0]=height[i];</pre>
41
42
        for(int j=1;1<<j<=n;++j){</pre>
43
            for(int i=1;i+(1<<j)-1<=n;++i){
                 st[i][j]=min(st[i][j-1],st[i+(1<<j-1)][j-1]);
44
            }
45
        }
46
47
   int lcp(int l,int r){
48
49
        l=rk[1];r=rk[r];
        if(1>r)swap(1, r);++1;
50
51
        int k=Log2[r-1+1];
52
        return min(st[l][k],st[r-(1<<k)+1][k]);</pre>
53
   int main(){
54
55
        for(int i=2;i<N;++i)Log2[i]=Log2[i>>1]+1;
56
        scanf("%s",str+1);
57
        n=strlen(str+1);
58
        for(int i=1;i<=n;++i)s[i]=str[i];</pre>
59
        get_sa();get_height();build_st();
60
   }
```

9.8 后缀自动机 SAM

```
const int M=1e6+6;//M=size(SAM)=2*len
1
2 int ch[M][26];//当字符集较大可改为 map<int,int>ch[M];
3 int fa[M],sam_cnt,last,len[M],sz[M],sum[M];
  void sam_init(){last=sam_cnt=1;}
5
  void extend(int c){
6
       int p=last,np=++sam_cnt;
7
       last=np; len[np]=len[p]+1;
8
       while(p&&!ch[p][c])ch[p][c]=np,p=fa[p];
9
       if(!p)fa[np]=1;
       else{
10
           int q=ch[p][c];
11
12
           if(len[q]==len[p]+1)fa[np]=q;
13
           else{
14
              int nq=++sam_cnt;
15
              memcpy(ch[nq],ch[q],sizeof ch[nq]);//若ch是map,改为ch[nq]=ch[q]
              len[nq]=len[p]+1; fa[nq]=fa[q]; fa[q]=fa[np]=nq;
16
              while(p&&ch[p][c]==q)ch[p][c]=nq,p=fa[p];
17
18
          }
       }
19
20
  |//fa[i]=i点在parent树上的祖先
21
  //len[i]=i点endpos类中的最大字符串长度
22
   //sz[i]=i点endpos类的大小=i点字符串集合出现次数
23
   //sum[i]=从起点开始经过i点的路径数量
24
   void match suffix(string &str){//匹配后缀
25
26
       int p=1, l=0;
27
       for(int i=0;i<str.size();++i){</pre>
28
           int c=str[i]-'a';
          while(!ch[p][c]){
29
30
              p=fa[p];l=len[p];
31
          }
32
           if(ch[p][c]){
              p=t[p][c];++1;//l=str[0:i]能 匹 配 上 的 最 长 后 缀 长 度
33
34
           }
          //--1; if(p!=1&&len[fa[p]]>=1)p=fa[p];//删除当前str最左边的一个字符
35
36
       }
37
   int temp[M], rk[M]; //rk[i]=len 第 i 小 的 结 点 ( 树 从 根 到 叶 子 的 拓 扑 序 )
38
   inline void calc(){
39
40
       int Type=1; // Type=1: 不同位置的相同字符串算不同的,0:相同字符串算一次
```

```
41
        for(int i=1;i<=sam_cnt;++i)++temp[len[i]];</pre>
42
        for(int i=1;i<=sam_cnt;++i)temp[i]+=temp[i-1];</pre>
43
        for(int i=1;i<=sam_cnt;++i)rk[temp[len[i]]--]=i;</pre>
44
        for(int i=sam_cnt;i;--i)sz[fa[rk[i]]]+=sz[rk[i]];
45
        for(int i=1;i<=sam_cnt;++i)Type?sum[i]=sz[i]:sum[i]=sz[i]=1;</pre>
46
        sum[1]=sz[1]=0;
        for(int i=sam_cnt;i;--i){
47
48
            for(int j=0;j<26;++j){
                 sum[rk[i]]+=sum[ch[rk[i]][j]];
49
50
            }
        }
51
52
   void findkth(int x,int k){//第k小字典序子串
53
        if(k<=sz[x])return;</pre>
54
        k-=sz[x];
55
        for(int i=0;i<26;++i){</pre>
56
            int y=ch[x][i];
57
            if(sum[y]>=k){//空儿子的sum=0
58
59
                 putchar('a'+i);
                 findkth(y,k);
60
                 return;
61
62
            }
63
            else k-=sum[y];
        }
64
65
   int main(){
66
67
        sam init();
68
        for(int i=1;i<=n;++i){</pre>
            extend(s[i]-'a');
69
70
            ++sz[last];
        }
71
72
   }
```

9.9 广义 SAM

建立一个 SAM, 包含了多个串的所有子串

```
const int M=2e6+6;//M=2*sum(strlen)+1
int ch[M][26],len[M],fa[M],sz[M],last,sam_cnt;

void sam_init(){sam_cnt=last=1;}
int extend(int c,int last){//last=extend(c,last)
    if(ch[last][c]){
```

```
6
           int p=last,q=ch[p][c];
7
           if(len[p]+1==len[q])return q;
8
            else{
9
                int np=++sam_cnt;len[np]=len[p]+1;
10
                memcpy(ch[np],ch[q],sizeof ch[np]);
11
                fa[np]=fa[q],fa[q]=np;
12
                while(p&&ch[p][c]==q)ch[p][c]=np,p=fa[p];
13
                return np;
           }
14
15
       }
16
       int p=last,np=++sam_cnt;
17
       last=np; len[np]=len[p]+1;
18
       while(p&&!ch[p][c])ch[p][c]=np,p=fa[p];
19
       if(!p)fa[np]=1;
20
       else{
21
            int q=ch[p][c];
22
           if(len[q]==len[p]+1)fa[np]=q;
23
            else{
24
                int nq=++sam_cnt;
25
                memcpy(ch[nq],ch[q],sizeof ch[nq]);
                len[nq]=len[p]+1; fa[nq]=fa[q]; fa[q]=fa[np]=nq;
26
27
                while(p&&ch[p][c]==q)ch[p][c]=nq,p=fa[p];
28
           }
29
       }
30
       return np;
31
32
   char s[M];
33
   int main(){
       int n;scanf("%d",&n);sam_init();
34
       for(int i=1;i<=n;++i){//n个串在线建立广义SAM
35
            scanf("%s",s);
36
37
           int len=strlen(s);last=1;
38
           for(int j=0;j<len;++j){</pre>
                last=extend(s[j]-'a',last);
39
                ++sz[last];//所有子串都存在
40
           }
41
           //++sz[last];//只有完整的串存在
42
43
       }
44
   }
```

区间本质不同字串

```
1 #include < bits / stdc++.h>
2 using namespace std;
3 typedef long long 11;
4 const int N=1e5+10,M=N*2;
5
  struct sgt{
6
        int l,r;
7
       ll v,tag;
8
  }t1[M<<2];
  #define ls (p<<1)</pre>
9
10 #define rs (p<<1|1)
   void pushup1(int p){
11
12
       t1[p].v=t1[ls].v+t1[rs].v;
13
   }
14
   void build(int l,int r,int p){
15
       t1[p].l=l;t1[p].r=r;
16
       if(l==r)return;
        int mid=l+r>>1;
17
        build(l,mid,ls);
18
19
        build(mid+1,r,rs);
20
21
   void up1(int p,ll c){
22
       t1[p].tag+=c;
       t1[p].v+=c*(t1[p].r-t1[p].l+1);
23
24
   }
25
   void pushdown1(int p){
26
        if(t1[p].tag){
27
            up1(ls,t1[p].tag);
28
            up1(rs,t1[p].tag);
29
            t1[p].tag=0;
30
       }
31
32
   void upd(int l,int r,int p,ll c){
33
        if(1<=t1[p].1&&t1[p].r<=r){
34
            up1(p,c); return;
35
        }
        pushdown1(p);
36
37
        int mid=t1[p].l+t1[p].r>>1;
38
        if(l<=mid)upd(l,r,ls,c);</pre>
       if(r>mid)upd(l,r,rs,c);
39
40
        pushup1(p);
41
   }
```

```
42
   11 qry(int 1,int r,int p){
43
       if(l<=t1[p].1&&t1[p].r<=r)return t1[p].v;</pre>
44
       if(r<t1[p].1||1>t1[p].r)return 0;
45
       pushdown1(p);
46
       return qry(l,r,ls)+qry(l,r,rs);
47
   }
48
49
   int ch[M][26];
   int fa[M],sam_cnt,last,len[M],sz[M],sum[M];
50
   void sam_init(){last=sam_cnt=1;}
51
   void extend(int c){
52
53
       int p=last,np=++sam_cnt;
       last=np; len[np]=len[p]+1; sz[np]=1;
54
       while(p&&!ch[p][c])ch[p][c]=np,p=fa[p];
55
56
       if(!p)fa[np]=1;
57
       else{
            int q=ch[p][c];
58
            if(len[q]==len[p]+1)fa[np]=q;
59
60
            else{
61
                int nq=++sam_cnt;
62
                memcpy(ch[nq],ch[q],sizeof ch[nq]);
                len[nq]=len[p]+1; fa[nq]=fa[q]; fa[q]=fa[np]=nq;
63
64
                while(p&&ch[p][c]==q)ch[p][c]=nq,p=fa[p];
            }
65
66
       }
67
   }
68
69
   struct LCT{
70
       int c[2],f;
71
       int tag,pos;
   }t[M];
72
   #define notroot(x) (t[t[x].f].c[\theta]==x||t[t[x].f].c[1]==x)
73
74
   void make_tag(int x,int id){
       t[x].tag=t[x].pos=id;
75
76
   void pushdown(int x){
77
78
       if(t[x].tag){
79
            if(t[x].c[0])make_tag(t[x].c[0],t[x].tag);
80
            if(t[x].c[1])make_tag(t[x].c[1],t[x].tag);
81
            t[x].tag=0;
82
       }
```

```
83
    }
84
    void rotate(int x){
85
        int y=t[x].f,z=t[y].f;
86
        int c=t[y].c[1]==x;
        if(notroot(y))t[z].c[t[z].c[1]==y]=x;t[x].f=z;
87
        t[y].c[c]=t[x].c[c^1];t[t[x].c[c^1]].f=y;
88
        t[x].c[c^1]=y;t[y].f=x;
89
90
    }
91
    void splay(int x){
92
        static int sta[M],top;
93
        int y=x; sta[top=1]=y;
        while(notroot(y))sta[++top]=y=t[y].f;
94
        while(top)pushdown(sta[top--]);
95
96
        while(notroot(x)){
97
             int y=t[x].f,z=t[y].f;
             if(notroot(y))rotate(t[y].c[1]==x^t[z].c[1]==y?x:y);
98
99
             rotate(x);
        }
100
101
    }
102
    void access(int x,int id){
103
        int f=0;
        for(;x;f=x,x=t[x].f){
104
105
             splay(x);
106
             t[x].c[1]=f;
107
             if(t[x].pos){
108
                 upd(t[x].pos-len[x]+1,t[x].pos-len[t[x].f],1,-1);
109
             }
110
        }
        upd(1,id,1,1);
111
112
        make_tag(f,id);
113
    }
114
115 int n,m,idx[N];
116 char s[N];
117 vector<pair<int,int>>q[N];
118
    11 ans[M];
119
    int main(){
120
        sam_init();
121
        scanf("%s%d",s+1,&m);
122
        n=strlen(s+1);
123
        for(int i=1;i<=m;++i){</pre>
```

```
124
              int 1,r;scanf("%d%d",&1,&r);
125
              q[r].push_back({1,i});
126
         }
127
         for(int i=1;i<=n;++i){</pre>
128
              extend(s[i]-'a');
129
              idx[i]=last;
130
         for(int i=2;i<=sam_cnt;++i){</pre>
131
132
             t[i].f=fa[i];
133
         }
134
         build(1,sam cnt,1);
         for(int r=1;r<=n;++r){</pre>
135
136
              access(idx[r],r);
137
             for(auto pr:q[r]){
                  ans[pr.second]=qry(pr.first,r,1);
138
             }
139
140
         }
         for(int i=1;i<=m;++i)printf("%lld\n",ans[i]);</pre>
141
142
    }
```

按 Trie 树构造 (字符在边上)

```
//pos[x]=Trie树上的x在SAM中的编号
1
  //trie.c[x] fa[x] t[x] 分别代表该点字符,父亲和出边
3
  void build(){
4
       queue < int > q;
5
       for(int i=0;i<26;++i)if(trie.t[1][i])q.push({i);</pre>
       while(q.size()){
6
7
           int x=q.front();q.pop();
           pos[x]=extend(trie.c[x],trie.fa[x]);
8
9
           for(int i=0;i<26;++i)if(trie.t[x][i])q.push(trie.t[x][i]);</pre>
10
       }
11
  }
```

按树构造 (字符在点上)

```
void dfs(int x,int f,int last){
    int t=extend(c[x],last);
    for(auto y:e[x]){
        if(y==f)continue;
        dfs(y,x,t);
    }
}
```

9.10 子序列自动机

建立一个 0 号起点,和所有位置相连,转移边输入该位置的字符,每个位置记录下一个字符最近的位置(不包括自身位置)

这样,从0开始的所有路径都是原串的子序列

```
int ch[N][26],pos[26];
1
2
  void build(char s[],int n){
3
      memset(pos,0,sizeof pos);
      for(int i=n;i;--i){
4
          memcpy(ch[i],pos,sizeof pos);
5
6
          pos[s[i]-'a']=i;
7
8
      memcpy(ch[0],pos,sizeof pos);//0号点的出边为pos[]
9
  }
```

值域较大时,可以用 vector/set 保存每个值出现过的位置,每个点右边最近的 x 需要在 vector 上二分

```
int n,q,a[N],b[N],h;
   | set<int>pos[N];//pos[i]=i出现的位置,vector不带修,set带修
   bool match(int b[],int h){//b[1~h]是a[1~n]的子序列?
3
       int x=0;
4
5
       for(int i=1;i<=h;++i){</pre>
            auto it=pos[b[i]].upper_bound(x);//二分出下一个位置
6
            if(it==pos[b[i]].end())return 0;
7
8
           x=*it;
9
       }
10
       return 1;
11
   int main(){
12
13
       scanf("%d%d",&n,&q);
       for(int i=1;i<=n;++i){</pre>
14
            scanf("%d",&a[i]);pos[a[i]].insert(i);
15
16
       }
       while(q--){
17
18
            scanf("%d",&h);
           for(int i=1;i<=h;++i)scanf("%d",&b[i]);</pre>
19
            if(match(b,h))puts("Yes");
20
            else puts("No");
21
22
       }
23
   }
```

9.11 回文自动机 PAM

```
1 const int N=3e5+10;//PAM结点数<=串长
2 char s[N];
int ch[N][26],pam_cnt,last,fail[N],len[N],sz[N],pos[N];
  //0是偶回文串的根,1是奇回文串的根
  //fail[i]=i结点代表的串的最长真回文后缀的结点
6 //len[i]=i结点代表的串的长度
7 //sz[i]=i结点包含的回文子串个数
  //pos[i]=i结点代表的串的右端点在原串的下标
9 //cnt[i]=i结点代表的串出现次数,需要子树和
10 void pam_init(){
       for(int i=0;i<=pam_cnt;++i){</pre>
11
12
          memset(ch[i],0,sizeof ch[i]);
          len[i]=fail[i]=sz[i]=cnt[i]=0;
13
       }
14
15
       pam_cnt=1; last=0; fail[0]=1; fail[1]=1; len[1]=-1;
16
  }
   int getfail(int x,int i){
17
       while(i-len[x]-1<0||s[i-len[x]-1]!=s[i])x=fail[x];</pre>
18
19
       return x;
20
   void extend(int c,int i) {
21
22
       int f=getfail(last,i);
23
       if(!ch[f][c]){
24
          int p=++pam cnt;
25
          pos[p]=i;
          len[p]=len[f]+2;
26
27
          int q=getfail(fail[f],i);
28
          fail[p]=ch[q][c];
          sz[p]=sz[fail[p]]+1;
29
30
          ch[f][c]=p;
31
       }
32
       last=ch[f][c];
       ++cnt[last];
33
34
  }
   int main(){
35
       scanf("%s",s+1);
36
37
       int n=strlen(s+1);
38
       pam init();
39
       for(int i=1;i<=n;++i)extend(s[i]-'a',i);//i必 须1~n,因 为getfail用 到下标
40
       for(int i=2;i<=pam_cnt;++i){//枚举所有本质不同回文串
```

```
41     int r=pos[i],l=r-len[i]+1;//s[l,r]
42
43     }
44 }
```

10 计算几何

10.1 实数运算

```
typedef long double db;//便于修改double和long double
2 const int N=2e5+5;
3 const db eps=1e-18,pi=acos(-1);
4 int sgn(db x){return x<-eps?-1:x>eps;}//负数:-1,零:0,正数:1
5 int cmp(db a, db b){return sgn(a-b);}//小于:-1,等于:0,大于:1
6 void wt(db x){printf("%.5Lf",abs(x)<5e-6?0:x);}//避免输出负0(-0.0000)
7 void wtb(db x){wt(x);putchar(' ');}
  void wtl(db x){wt(x);putchar('\n');}
   //ceil(x)向上取整,floor(x)向下取整,round(x)四舍五入
   //解方程 ax^2+bx+c=0, 解为x1,x2(x1<=x2)
10
11
   bool solve eqution(db a,db b,db c,db &x1,db &x2){
12
       db delta=b*b-4*a*c;
       if(sgn(delta)==-1)return 0;
13
       db q,t=sqrt(delta);
14
       if(sgn(b)==-1)q=-0.5*(b-t);
15
       else q=-0.5*(b+t);
16
       x1=q/a; x2=c/q; if(cmp(x1,x2)==1)swap(x1,x2);
17
18
       return 1;
19
   }
```

10.2 克莱姆法则

解方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

$$\Leftrightarrow D = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}, \Leftrightarrow D_i = D \text{ 的第 } i \text{ 列变为 } b_1 \sim b_n, \text{ } M x_i = \frac{D_i}{D}$$

```
1 //a11*x + a12*y = b1, a21*x + a22*y = b2, 返回pair(x,y)
2 pair<db,db>solve(db a11,db a12,db b1,db a21,db a22,db b2){
3    db z=(a11*a22-a12*a21);
4    db x=(b1*a22-a12*b2)/z;
5    db y=(b2*a11-b1*a21)/z;
6    return {x,y};
7 }
```

10.3 自适应辛普森积分

```
db simpson(double 1,double r){
1
2
      return (f(1)+f(r)+4*f((1+r)/2.0))*(r-1)/6.0;
3
  db rsimpson(double 1, double r){//定积分[1,r] f(x)dx
4
      double mid=(1+r)/2.0;
5
6
      if(abs(simpson(l,r)-simpson(l,mid)-simpson(mid,r))<eps)</pre>
7
           return simpson(l,mid)+simpson(mid,r);
8
      return rsimpson(l,mid)+rsimpson(mid,r);
9
  }
```

10.4 点/向量类

```
struct P{//点、向量类
1
2
       db x,y;
       P(db \ a=0,db \ b=0):x(a),y(b){}
3
       P operator + (P p)const{return P(x+p.x,y+p.y);}
4
5
       P operator - (P p)const{return P(x-p.x,y-p.y);}
       P operator * (db a)const{return P(x*a,y*a);}
6
7
       P operator / (db a)const{return P(x/a,y/a);}
8
       db len(){return sqrt(x*x+y*y);}
9
       db len2(){return x*x+y*y;}
       P rotate90(){return P(-y,x);}
10
       P rotate270(){return P(y,-x);}
11
12
       P rotate(db a){db c=cos(a),s=sin(a);return P(c*x-s*y,s*x+c*y);}//绕原点逆时针
           旋转a
13
       P strech(db 1){return *this*1/len();}
       void rd(){scanf("%Lf%Lf",&x,&y);}
14
15
       void show(){printf("%.2Lf %.2Lf\n",x,y);}
```

```
16
       friend P operator * (db a,P p){return P(p.x*a,p.y*a);}
17
       bool operator<(const P&p)const{int c=cmp(x,p.x);return c?c==-1:cmp(y,p.y);}</pre>
18
       bool operator==(const P&p)const{return cmp(x,p.x)==0&&cmp(y,p.y)==0;}
19
       int up(){return sgn(y)>0||sgn(y)==0&&sgn(x)>0;}//用于极角牌序
20
   };
21
   db dot(P a,P b){return a.x*b.x+a.y*b.y;}//点积
   db cross(P a,P b){return a.x*b.y-a.y*b.x;}//叉积
23
   db dis(P a,P b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}//距离
   db sqdis(P a,P b){return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);}//距离的平方
24
   db get_angle(P a,P b){return abs(atan2(abs(cross(a,b)),dot(a,b)));}//获得向量OA和
25
      OB的夹角[0,pi/2]
   db get_angle1(P a,P b){return atan2(cross(a,b),dot(a,b));}//向量a逆时针转向b的角
26
      度
27
  |P lerp(P a,P b,db t){return a*(1-t)+b*t;}//直线上截取某一点连线
```

10.5 点线关系

```
bool point_on_line(P p,P s,P t){//p在点向式直线s+kt上
1
2
      return !sgn(cross(p-s,t));
3
  }
 bool point on seg(P p,P a,P b){//p在线段a-b上
4
      return sgn(cross(p-a,b-a))==0&&sgn(dot(p-a,p-b))<=0;</pre>
5
6
  }
 | P point_proj_line(P p,P s,P t){//p投影到点向式直线s+kt
7
8
      return s+t*(dot(p-s,t)/t.len2());
9
  }
```

10.6 线线关系

```
//判断两直线平行,方向向量为t1,t2
2 bool parallel(P t1,P t2){return !sgn(cross(t1,t2));}
3 //直线求交点
  |P_line_int_line(P_a,P_u,P_b,P_v){//点向式a+ku,b+kv,需要先判断不平行
4
      db t=cross(b-a,v)/cross(u,v);
5
6
      return a+u*t;
7
  //判断直线s+kt与线段ab是否相交 0:no 1:yes -1:交于端点
  int line_int_seg(P s,P t,P a,P b){
9
10
      int d1=sgn(cross(t,a-s));
      int d2=sgn(cross(t,b-s));
11
```

```
12
       if((d1^d2)=-2) return 1;// 1 xor -1 = -2
13
       if(d1==0) | d2==0) return -1;
14
       return 0;
15
   }
   //判断线段ab,pq间是否有交点,有交点的话可以用直线交点函数求出交点
16
   int seg_int_seg(P a, P b, P p, P q) {
17
       if (point_on_seg(p, a, b) || point_on_seg(q, a, b) ||
18
19
           point_on_seg(a, p, q) || point_on_seg(b, p, q)) {
           return -1; //重合或交点在端点
20
21
       }
22
       int d1 = sgn(cross(b - a, p - a)), d2 = sgn(cross(b - a, q - a));
       int d3 = sgn(cross(q - p, a - p)), d4 = sgn(cross(q - p, b - p));
23
       return (d1<sup>d2</sup>)==-2&&(d3<sup>d4</sup>)==-2; // 1:有交点,且交点不在端点, 0:无交点
24
25
   }
```

10.7 极角排序

```
//1、可以整数(long long)运算,以原点(0,0)为极点进行极角排序
  bool cmp(Pa,Pb){//角度划分为[0,180)和[180,360),再判断叉积>0
2
      return a.up()^b.up()?a.up()>b.up():cross(a,b)>0;
3
      //后半句可以不加,表示角度相同时离原点距离小的在前
4
      //cross(a,b)>0||cross(a,b)==0&&a.len2()<b.len2();
5
6
  }
  //2、按左下角的点极角排序
7
8
  void polar_angle_sort(P p[],int n,P O=P(0,0)){//以0为极点,极角排序p[1~n]
9
      for(int i=1;i<=n;++i){</pre>
          if(cmp(p[i].y,0.y)=-1||cmp(p[i].y,0.y)==0\&cmp(p[i].x,0.x)==-1)
10
11
              O=p[i];//选取y最小,x最小的点为极点
12
          }
13
      }
      sort(p+1,p+1+n,[&](P a,P b){
14
          db t=cross(a-0,b-0);
15
          return sgn(t)?t>0:sqdis(a,0)<sqdis(b,0);</pre>
16
      });
17
18
  }
```

10.8 多边形、凸包

```
bool cmpxy(P a,P b){
int k=cmp(a.x,b.x);
```

```
3
       return k=-1 | | k==0&&cmp(a.y,b.y)==-1;
4
   }
5
   int convex_hull(P a[],int n,P p[]){//a[1~n]凸包,返回p[1~top]
6
       static int sta[N]; int top=0;
7
       sort(a+1,a+1+n,cmpxy);
8
       for(int i=1;i<=n;++i){</pre>
9
           while(top>=2&&sgn(cross(a[i]-a[sta[top-1]],a[sta[top]]-a[sta[top-1]]))
               >=0)--top;
10
           sta[++top]=i;
       }
11
12
       int k=top;
       for(int i=n-1;i;--i){
13
           while(top>k&&sgn(cross(a[i]-a[sta[top-1]],a[sta[top]]-a[sta[top-1]]))>=0)
14
               --top;
15
           sta[++top]=i;
16
       if(n>1)--top;//去除首尾相连点
17
18
       for(int i=1;i<=top;++i)p[i]=a[sta[i]];</pre>
19
       return top;
20
   //求多边形面积
21
22
   db getS(P a[],int n){
23
       db s=0;
24
       for(int i=1;i<=n;++i)s+=cross(a[i],a[i+1]);</pre>
25
       return abs(s)/2;//s>0:点是逆时针顺序,s<0:点是顺时针顺序
26
   //求多边形重心
27
28
   P polycenter(P a[],int n){
29
       P ans(0,0); a[0]=a[n];
30
       for(int i=0;i<n;i++)ans=ans+(a[i]+a[i+1])*cross(a[i],a[i+1]);</pre>
       return ans/getS(a,n)/6;
31
32
   //判点在是否在多边形内或边上
33
   bool point_in_polygon(P p,P a[],int n){
34
35
       int s=0;a[n+1]=a[1];
       for(int i=1;i<=n;i++){</pre>
36
           P u=a[i],v=a[i+1];
37
38
           if(point_on_seg(p,u,v))return 1;
39
           if(cmp(u.y,v.y)<=0)swap(u,v);
           if(cmp(p.y,u.y)>0||cmp(p.y,v.y)<=0)continue;</pre>
40
41
           if(sgn(cross(v-p,u-p))==1)++s;
```

```
42 }
43 return s&1;
44 }
```

10.9 旋转卡壳

```
db rotating_calipers(P a[],int n,P ans[]){//凸包a[1~n](逆时针)
1
2
       //返回凸包直径,ans[0~3]是最小矩形覆盖的四个点(逆时针)
3
       db d=0,S=1e100; a[0]=a[n];
       if(n==2)return dis(a[0],a[1]);//只有两个点的时候不能构成多边形
4
       int j=2,1=0,r=0;
5
       for(int i=0;i<n;++i){</pre>
6
7
          while(cmp(cross(a[i+1]-a[i],a[j]-a[i]),cross(a[i+1]-a[i],a[j+1]-a[i]))
              ==-1)j=(j+1)%n;
          while(cmp(dot(a[i+1]-a[i],a[r+1]-a[i]),dot(a[i+1]-a[i],a[r]-a[i]))>=0)r=(
8
              r+1)%n;
9
          if(i==0)l=r;
          while(cmp(dot(a[i+1]-a[i],a[l+1]-a[i]),dot(a[i+1]-a[i],a[l]-a[i]))<=0)l=(
10
             1+1)%n;
          d=max({d,dis(a[i],a[j]),dis(a[i+1],a[j])});// 只求直径的话其他代码可以删除
11
          P v=a[i+1]-a[i];
12
          P A=point proj line(a[1],a[i],v);
13
          P B=point_proj_line(a[r],a[i],v);
14
15
          P C=point_proj_line(a[r],a[j],v);
16
          P D=point_proj_line(a[1],a[j],v);
          db now=dis(A,B)*dis(B,C);
17
18
          if(cmp(now,S)==-1)S=now,ans[0]=A,ans[1]=B,ans[2]=C,ans[3]=D;
19
       }
20
       return d;//d:凸包直径 S:最小矩形覆盖的矩形面积
21
  }
```

10.10 半平面交

```
typedef long double db;
const db eps=1e-20,inf=1e20;
const int N=1e4+10;
int sgn(db x){return x<-eps?-1:x>eps;}
struct P{
    db x,y;
    P(db a=0,db b=0):x(a),y(b){}
```

```
8
       P operator + (P b){return P(x+b.x,y+b.y);}
9
       P operator - (P b){return P(x-b.x,y-b.y);}
10
       P operator * (db b){return P(x*b,y*b);}
11
       int up(){return sgn(y)>0||sgn(y)==0&&sgn(x)>0;}//用于极角牌序
12
  }c[N],p[N];
13
  db cross(P a,P b){return a.x*b.y-a.y*b.x;}
  db dot(P a,P b){return a.x*b.x+a.y*b.y;}
15
  db angle(P a,P b){return atan2(cross(a,b),dot(a,b));}
  P line_int_line(P a,P u,P b,P v){
16
       db t=cross(b-a,v)/cross(u,v);
17
18
       return a+u*t;
19
20
   struct line{
       P a,v;//直线a+kv,半平面是向量v左边的区域
21
       int id;//有时需要一个id
22
23
   }a[N];
  P line int line(line a, line b){
24
25
       return line_int_line(a.a,a.v,b.a,b.v);
26
  }
  | void add(db A,db B,db C){//添加一个半平面Ax+By<=C
27
28
       if(sgn(B)!=0)a[++h]={P(0,C/B),P(-B,A)};
29
       else a[++h]={P(C/A,0),P(0,A)};
30
  }
31 int n,h;
   bool on_right(P p,line 1){
32
       //条件为<0:重合的点代表的边不算;条件为<=0:重合的点代表的边算上
33
       return sgn(cross(l.v,p-l.a))<0;</pre>
34
35
   }
   bool cmp(line l1, line l2){//半平面向量极角排序
36
37
       int f1=11.v.up(),f2=12.v.up();
       if(f1!=f2)return f1>f2;
38
       int c=sgn(cross(l1.v,l2.v));
39
40
       if(c!=0)return c>0;
       return sgn(cross(l1.v,l2.a-l1.a))>=0;//方向向量相同时, 左边的向量排在后
41
42
   int half_plane_intersection(line a[],P p[],int n){
43
       //输入a[1~n]是半平面,返回h=r-l+1半平面a[1~h],交点p[1~h]
44
       //线a[i]与a[i+1<=h?i+1:1]的交点是p[i]
45
       //通常需要考虑添加边界a[++n]=line(P(0,inf),P(-1,0))等
46
47
       static line q[N];
       int l=1,r=0;
48
```

```
49
        sort(a+1,a+1+n,cmp);
50
        for(int i=1;i<=n;++i){</pre>
51
            while(i<n&&sgn(angle(a[i].v,a[i+1].v))==0)++i;</pre>
52
            while(r-1>=1&&on_right(p[r-1],a[i]))--r;
            while(r-l>=1&&on_right(p[l],a[i]))++l;
53
54
            q[++r]=a[i];
            if(r-l>=1)p[r-1]=line_int_line(q[r-1],q[r]);
55
56
        }
        while(r-1>=1&&on_right(p[r-1],q[1]))--r;
57
58
        if(r-l<=1)return 0;</pre>
        p[r]=line_int_line(q[1],q[r]);
59
        for(int i=1;i<=r;++i)a[i-l+1]=q[i];</pre>
60
        for(int i=1;i<=r;++i)p[i-l+1]=p[i];</pre>
61
62
        return r-1+1;
63
   }
```

10.11 圆

```
struct circle{
1
2
       P c;db r;
       circle(P p=P(0,0),db x=1):c(p),r(x){}
3
       P point(db a){return P(c.x+r*cos(a),c.y+r*sin(a));}
4
5
  };
  //过点p做圆的切线
6
   int circletan(P p,circle C,P v[]){
7
       P u=C.c-p; db d=u.len();
8
       if(sgn(d-C.r)==-1)return 0;
9
10
       if(sgn(d-C.r)==0){v[0]=u.rotate90();return 1;}
       db a=asin(C.r/d);
11
12
       v[0]=u.rotate(-a);
       v[1]=u.rotate(a);
13
       return 2;
14
15
   //两圆共切线,返回切线条数,无数条返回-1, v1[i],v2[i]第i条切线在圆A,B上的切点
16
   int circle_tan(circle A,circle B,P v1[],P v2[]){
17
18
       int cnt=0;
19
       if(cmp(A.r,B.r)==-1)swap(A,B),swap(v1,v2);
20
       db d2=sqdis(A.c,B.c);
21
       db rsub=A.r-B.r;
       db rsum=A.r+B.r;
22
       if(sgn(d2-rsub*rsub)==-1)return 0;//内含
23
```

```
24
       db a=atan2(B.c.y-A.c.y,B.c.x-A.c.x);
25
       if(!sgn(d2)&&!sgn(A.r-B.r))return -1;//重合,无数切线
26
       if(!sgn(d2-rsub*rsub)){//内切,找到切点
27
           v1[cnt]=A.point(a);
28
           v2[cnt]=B.point(a);
29
           ++cnt; return 1;
30
       }
31
       db b=acos((A.r-B.r)/sqrt(d2));
32
       v1[cnt]=A.point(a+b);v2[cnt++]=B.point(a+b);
33
       v1[cnt]=A.point(a-b);v2[cnt++]=B.point(a-b);
       if(!sgn(d2-rsum*rsum)){
34
           v1[cnt]=A.point(a);
35
           v2[cnt++]=B.point(pi+a);
36
       }else if(sgn(d2-rsum*rsum)==1){
37
38
           b=acos((A.r+B.r)/sqrt(d2));
39
           v1[cnt]=A.point(a+b); v2[cnt++]=B.point(pi+a+b);
           v1[cnt]=A.point(a-b);v2[cnt++]=B.point(pi+a-b);
40
41
       }
42
       return cnt;
43
   //圆与直线交点,lerp(a,b,x1),lerp(a,b,x2)
44
   bool circle_int_line(circle c,P a,P b,db &x1,db &x2){
45
46
       P d=b-a;
       db A=dot(d,d),B=dot(d,(a-c.c))*2.0,C=dot(a-c.c,a-c.c)-c.r*c.r;
47
       return solve_eqution(A,B,C,x1,x2);
48
49
   //圆圆相交的交点
50
   bool circle int circle(circle a, circle b, P &p1, P &p2){
51
       db d=(a.c-b.c).len();
52
       if(cmp(d,a.r+b.r)==1||cmp(d,abs(a.r-b.r))==-1)return 0;
53
       db l=((a.c-b.c).len2()+a.r*a.r-b.r*b.r)/(2*d);
54
       db h=sqrt(a.r*a.r-l*l);
55
       P vl=(b.c-a.c).strech(1),vh=vl.rotate90().strech(h);
56
57
       p1=a.c+vl+vh;p2=a.c+vl-vh;
58
       return 1;
59
   //圆和三角形o+a,o+b,o交的面积, o是圆心
60
61
   db circle_int_triangle(circle c,P a,P b) {
       if(sgn(cross(a-c.c,b-c.c))==0)return 0;
62
       P q[5]; int cnt=0;
63
64
       db t0,t1; q[cnt++]=a;
```

```
65
        if( circle_int_line(c,a,b,t0,t1) ) {
66
             if(0<=t0&&t0<=1)q[cnt++]=lerp(a,b,t0);
67
            if(0<=t1&&t1<=1)q[cnt++]=lerp(a,b,t1);</pre>
68
        }
69
        q[cnt++]=b;db s=0;
70
        for(int i=1;i<cnt;++i) {</pre>
            P z=(q[i-1]+q[i])*0.5;
71
72
            if((z-c.c).len2()<=c.r*c.r)
            s+=abs(cross(q[i-1]-c.c,q[i]-c.c))*0.5;
73
74
            else
            s+=c.r*c.r*get_angle(q[i-1]-c.c,q[i]-c.c)*0.5;
75
76
        }
77
        return s;
78
    //圆与多边形相交的面积
79
    db circle_int_polygon(circle C,P p[],int n) {
80
81
        db s = 0;p[n+1]=p[1];
82
        for(int i=1;i<=n;++i)</pre>
83
        s+=circle_int_triangle(C,p[i],p[i+1])*sgn(cross(p[i]-C.c,p[i+1]-C.c));
84
        return abs(s);
85
    }
    db circle cover(vector<P>v,P &o){//最小圆覆盖,不得有重复点,时间复杂度O(N)
86
87
        random shuffle(v.begin(), v.end());
88
        db r2=0;
89
        for(int i=0;i<v.size();++i){</pre>
90
             if((v[i]-o).len2()>r2){
                 o=v[i];r2=0;
91
                 for(int j=0;j<i;++j){</pre>
92
                     if((v[j]-o).len2()>r2){
93
94
                         o=(v[i]+v[j])*0.5; r2=(v[j]-o).len2();
                         for(int k=0;k<j;++k){</pre>
95
96
                              if((v[k]-o).len2()>r2){
97
                                  o=line_int_line((v[i]+v[j])*0.5,(v[i]-v[j]).rotate90
                                     (),(v[i]+v[k])*0.5,(v[i]-v[k]).rotate90());
98
                                  r2=(v[k]-o).len2();
                              }
99
100
                         }
101
                     }
102
                 }
103
            }
104
        }
```

```
105 return sqrt(r2);
106 }
```

10.12 公式

海伦公式: 三角形三边为 a,b,c,令 $p=\frac{a+b+c}{2},S=\sqrt{p(p-a)(p-b)(p-c)}$ 球缺: 半径为 r 的球被切除高位 h 的球缺,剩下体积 $V=\frac{h^2(3r-h)\pi}{3}$,若球缺高为为 h,截面直径为 d,则 $V=\frac{h(3d^2+4h^2)\pi}{24}$

平面图欧拉公式: V-E+F=C+1, V= 顶点数, E= 边数, F= 区域数, C= 连通分量数

10.13 平面最近点对

乱搞法: 随机旋转角度, 按 x 排序/按 $x \times y$ 排序, 每个点枚举附近 100 个 $O(n \log^2 n)$ 先按 x 排序, 再归并排序 y, 取出横坐标离 x 中点近的统计答案

```
struct P{db x,y;}a[N],b[N],tmp[N];
1
2 int n,h;db ans=1e100;
   bool cmpx(P a,P b){return a.x<b.x;}</pre>
   db dis(P a,P b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}
5
   void merge(int 1,int r){
6
        if(1>=r)return;
7
        int mid=l+r>>1;db midx=a[mid].x;
8
        merge(1,mid);merge(mid+1,r);
        for(int p=1,q=mid+1,i=1;i<=r;++i){</pre>
9
            if(p>mid||q<=r&&a[q].y<a[p].y)tmp[i]=a[q++];
10
            else tmp[i]=a[p++];
11
12
        }
13
        for(int i=1;i<=r;++i)a[i]=tmp[i];</pre>
        h=0;
14
        for(int i=1;i<=r;++i)if(abs(a[i].x-midx)<ans)b[++h]=a[i];</pre>
15
        for(int i=1,k=1;i<h;++i){</pre>
16
            while(k<h&&b[k+1].y-b[i].y<ans)++k;
17
            for(int j=i+1;j<=k;++j){</pre>
18
                 ans=min(ans,dis(b[i],b[j]));
19
20
            }
21
        }
22
23
   int main(){
        scanf("%d",&n);
24
25
        for(int i=1;i<=n;++i)scanf("%lf%lf",&a[i].x,&a[i].y);</pre>
26
        sort(a+1,a+1+n,cmpx);
```

```
27 merge(1,n);
28 printf("%.0lf",ans*ans);
29 }
```

11 博弈

通常可以考虑最终状态,最后一步必胜策略,递归子问题等等

11.1 必败态

必胜态:存在一个后继状态是必败态

必败态:不存在一个后继状态是必败态

复杂状态:当前状态根据后继状态的最坏情况来判断。比如有输、赢、平局,后继最差是输, 当前就是赢,后继最差是平局,当前就是平局,后继最差是赢,当前就是输

11.2 SG 函数

必败状态的 SG=0

一个状态的 SG 函数值等于其后继状态 SG 值的 mex, 即 $SG(x) = mex_{x\to y}(SG(y))$

多个组合博弈游戏的和的 SG 值等于其所有子游戏 SG 值的异或和

```
int mex(vector<int>& v) { // O(n) mex
1
2
        int n = v.size();
        for (int i = 0; i < n; ++i) {
3
            while (v[i] >= 0 \&\& v[i] < n \&\& v[i] != v[v[i]]) {
4
                 swap(v[i], v[v[i]]);
5
6
            }
7
        }
        for (int i = 0; i < n; ++i) {</pre>
8
9
            if (v[i] != i) {
                return i;
10
11
            }
12
        }
13
        return n;
14
   }
   int mex(vector<int>&v){ // O(nlogn) mex
15
16
        sort(v.begin(),v.end());
        int ans=0;
17
        for(int x:v){
18
            if(x==ans)++ans;
19
20
            else if(x>ans)return ans;
```

```
21 }
22 return ans;
23 }
```

11.3 反 SG 游戏

最先不能操作的人获胜

必胜: $SG \neq 0$ 且至少有一个子游戏的 SG > 1,或 SG = 0 且每一个子游戏的 $SG \leq 1$ 否则必败

11.4 巴什博奕

n 个石头,每次可以拿 1 到 m 个,不能拿的失败,SG = n%(m+1)

11.5 Nim 游戏

n 堆石子,第 i 堆又 a_i 个,两人轮流操作,每次选一堆石头并拿走任意个,先不能拿的失败相当于 n 个子游戏,第 i 堆石子的 SG 值是 a_i ,总游戏的 $SG = xor_{i=1}^n a_i$

 $SG \neq 0$ 时先手拿最多石头的方案: O(n) 枚举 i, a_i 应该变为 $xorsum \oplus a_i$

必败态只拿一个,并让对手也只能只拿一个的方案: O(logC) 枚举所有 lowbit = lb,拿一个之后 xorsum 会变为 $xorsum \oplus lb \oplus (lb-1)$,并 O(n) 判断之后状态对手是否最多拿一个

11.6 阶梯 Nim

每次选某一堆,拿走任意个并放到前一堆,第 0 堆不能拿,即 a[i-1]+=x, a[i]-=x 后手可以让先手的偶数堆无效: 当 A 把 2k 堆拿出 x 个,B 就可以从 2k-1 堆拿出 x 个相当于只看奇数堆的 nim 游戏,设先手是 A

当 A 的奇数堆 nim 游戏必败时, B 会使 A 的偶数堆无效

当 A 的奇数堆 nim 游戏必胜时, A 会先把奇数堆 nim 游戏变为必败, 再使 B 的偶数堆无效

11.7 Nim-k

每次选 k 堆,在这 k 堆拿走分别任意个(可以不同),先不能拿的失败若二进制每一位的出现次数都是 k+1 的倍数则必败,否则必胜

11.8 威佐夫博弈

有两堆物品,两人轮流操作,每次操作从一堆中取任意个,或从两堆中取相同多个,先不能操 作的人失败

必败态为:
$$(1,2),(3,5),(4,7),(6,10)...(\lfloor \frac{k(1+\sqrt{5})}{2} \rfloor, \lfloor \frac{k(1+\sqrt{5})}{2} \rfloor + k)$$

每个
$$(a_i, b_i)$$
 中 $a_i = mex(\{0, a_1, b_1, a_2, b_2, ... a_{i-1}, b_{i-1}\})$

11.9 树上删边游戏

给定一棵有根树,两人轮流操作,每次操作选择一条边,删掉该边以及与根不连通的所有点和边(整棵子树),不能操作的人时失败,则叶子的 SG=0,非叶子的 $SG(x)=xor_{y\in son(x)}[SG(y)+1]$ 多棵竹子的删边游戏等价于 nim 游戏,等价于这些竹子的根合并为一个点后的树上删边游戏 克朗原理: 一个结点的所有儿子的子树都是竹子,则该节点子树可以等价于一根竹子,长度为各分支长度的异或和

11.10 无向图删边游戏

给定一张无向图,定义一些点在地上,每次选择一条边,删掉该边以及与所有地板上的点不连通的点和边,不能操作的人失败

费森原理: 偶环可以直接缩成一个点(类似边双连通分量缩点),奇环缩成一个点并额外挂着一条长为1的竹子

12 基础算法

12.1 二分查找

构造单调 bool 函数 check(x), 返回值为小的全 1,大的全 0,形如 11…1100…00 可以用二分查找算出最大的 x 使得 check(x) = 1,反过来也同理

```
1 //第k小: <=x的个数>=k的最小的x
2 //第k大: >=x的个数>=k的最大的x
3 while(l<=r){
    int mid=l+r>>1;// l+(r-l>>1)
    if(check(mid))ans=mid,l=mid+1;
    else r=mid-1;
}
vector<int>v;//求vector中[l,r]区间有几个数字
int cnt=upper_bound(v.begin(),v.end(),r)-lower_bound(v.begin(),v.end(),1);
```

12.2 去重, 离散化

```
int main(){
   int a[N];//数组离散化
   sort(a+1,a+1+h);//a[1...h]中包括有所有可能的数字
   h=unique(a+1,a+1+h)-a-1;
```

```
x=lower_bound(a+1,a+1+h,x)-a;//将x离散化后的值
vector<int>v;//vector离散化
sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
x=lower_bound(v.begin(),v.end(),x)-v.begin()+1;
}
```

12.3 取出第 k 小/中位数

```
1 int a[N];
2 nth_element(a+1,a+k,a+1+n);//O(N)
3 //未排序,但保证a[1]~a[k-1]比a[k]小,a[k+1]~a[n]比a[k]大
```

12.4 bitset

```
int main(){ bitset<100>a;
a.set();/*全设为1*/ a.reset();/*全设为0*/
a[2]=1;/*访问下标*/ cout<<a<<endl;//打印bitset,a[0]在最右边
a.count();/*1的个数*/a.any();/*有1?1:0*/a.flip();//全部取反
}
```

12.5 builtin 函数

```
__builtin_popcount(x);//二进制1的个数
__builtin_popcountll(x);//ll表示参数为long long,后面几个函数也可以加ll
__buitlin_clz(x);//二进制前导零个数
__builtin_ctz(x);//二进制后导零个数
__builtin_parity(x);//二进制1的个数是奇数?1:0
__builtin_ffs(x);//二进制最后一个1在第几位,从1开始,ffs(1)=1,ffs(0)=0
__builtin_sqrt(x);//x位double,开根号,比sqrt(x)快
```

12.6 归并排序求逆序对

```
int a[N],temp[N];ll ans;
void merge(int l,int r){
    if(l>=r)return;
    int mid=l+r>>1;
    merge(l,mid);merge(mid+1,r);
    int p=l,q=mid+1;
```

```
7
       for(int i=1;i<=r;++i){</pre>
           if(p>mid||q<=r&&a[q]<a[p]){//左边用完了or右边没用完and右边小
8
9
                ans+=mid-p+1;//逆序对个数
10
               temp[i]=a[q++];
11
           }
12
           else temp[i]=a[p++];
13
       }
14
       for(int i=1;i<=r;++i)a[i]=temp[i];</pre>
15
   }
```

12.7 计数排序

值域较小时适用,时间复杂度为O(N+C)

```
int n,a[N],cnt[N],C;//值域大小为[1,C]
1
2
   void count_sort(int a[],int n){//计数排序a[1~n]
3
        for(int i=1;i<=n;++i)++cnt[a[i]];</pre>
        int h=0;
4
5
        for(int i=1;i<=C;++i){</pre>
6
            while(cnt[i]--)a[++h]=i;
7
       }
8
9
   int rk[N];
10
   void count_sort_rank(int a[],int n){//求出rk[i]=a[i]是第几小
        for(int i=1;i<=n;++i)++cnt[a[i]];</pre>
11
        for(int i=1;i<=C;++i)cnt[i]+=cnt[i-1];</pre>
12
13
        for(int i=1;i<=n;++i)rk[i]=cnt[a[i]]--;</pre>
14
  }
```

12.8 基数排序

```
const int N=1e5+5,base=(1<<15)-1;</pre>
1
   int n,a[N],cnt[base+1],id[N],t[N];//id[i]=第i小的位置
   void radix_sort(int a[],int n){//int数组a[1~n],值域[0,2^30-1]
3
4
       for(int i=1;i<=n;++i)++cnt[a[i]&base];</pre>
5
       for(int i=1;i<=base;++i)cnt[i]+=cnt[i-1];</pre>
6
       for(int i=n;i;--i)id[cnt[a[i]&base]--]=i;
7
       memset(cnt,0,sizeof cnt);
8
       for(int i=1;i<=n;++i)++cnt[a[i]>>15],t[i]=id[i];
9
       for(int i=1;i<=base;++i)cnt[i]+=cnt[i-1];</pre>
10
       for(int i=n;i;--i)id[cnt[a[t[i]]>>15]--]=t[i];
```

```
for(int i=1;i<=n;++i)t[i]=a[id[i]];
for(int i=1;i<=n;++i)a[i]=t[i];
}</pre>
```

12.9 维护区间并集

```
map<int,int>mp;//对于区间[1,r] : mp[1]=r
   // [1,2]和[3,4]不能合并版本
3
   void insert(ll l,ll r){
       auto it=mp.upper_bound(1);
4
       if(it!=mp.begin()){
5
            --it;
6
7
           if(it->second>=1){
                l=it->first;
8
9
                r=max(r,it->second);
                mp.erase(it);
10
           }
11
12
       for(it=mp.lower_bound(1);it!=mp.end()&&it->first<=r;it=mp.erase(it))</pre>
13
            r=max(r,it->second);
14
       mp[1]=r;
15
16
   // [1,2]和[3,4]能合并为[1,4]版本
17
   void insert(ll l,ll r){
18
       auto it=mp.upper_bound(1);
19
       if(it!=mp.begin()){
20
            --it;
21
22
            if(it->second>=l-1){
23
                l=it->first;
                r=max(r,it->second);
24
25
                mp.erase(it);
26
           }
27
       }
       for(it=mp.lower_bound(l);it!=mp.end()&&it->first<=r+1;it=mp.erase(it))</pre>
28
29
       r=max(r,it->second);
30
       mp[1]=r;
31
   }
```

12.10 计算天数

```
int isleap(int x){return x\%4==0\&\&x\%100!=0||x\%400==0;}
1
   int month[]={0,31,28,31,30,31,30,31,30,31,30,31};
2
   int calcday(int y1,int m1,int d1,int y2,int m2,int d2){
3
        //从y1/m1/d1到y2/m2/d2过了几天
4
        int sum=0;
5
        if(y1==y2){
6
7
            if(m1==m2)return d2-d1;
            month[2]=isleap(y1)?29:28;
8
9
            sum=month[m1]-d1;
            for(int i=m1+1;i<m2;++i)sum+=month[i];</pre>
10
            sum+=d2;
11
12
        }
        else{
13
            month[2]=isleap(y1)?29:28;
14
            sum=month[m1]-d1;
15
            for(int i=m1+1;i<=12;++i)sum+=month[i];</pre>
16
            for(int i=y1+1;i<y2;++i)sum+=isleap(i)?366:365;</pre>
17
            month[2]=isleap(y2)?29:28;
18
            for(int i=1;i<m2;++i)sum+=month[i];</pre>
19
20
            sum+=d2;
21
        }
22
        return sum;
23
   }
```

蔡勒公式:

```
c = \lfloor \frac{year}{100} \rfloor = 年份前两位,y = year\%100 = 年份后两位,m = \beta, d = \beta w = (\lfloor \frac{c}{4} \rfloor - 2c + y + \lfloor \frac{y}{4} \rfloor + \lfloor \frac{13(m+1)}{5} \rfloor + d - 1) \mod 7 year 年 m 月 d 日是星期 w, (w = 0 是星期日)
```

12.11 表达式求值

```
inline ll fun(ll x,ll y,char c){
1
2
       switch(c){
           case '+':return x+y;
3
           case '-':return x-y;
4
           case '*':return x*y;
5
           case '/':{
6
                if(y==0)throw -1;//div 0
7
                if(x%y!=0)throw 1;//不能整除
8
9
                return x/y;
10
```

```
11
            case '%':{
12
                if(y==0)throw -1;// div 0
13
                return x%y;
14
            }
        }
15
16
   }
   inline 11 calc(string s){//"1+2++-3*4+-(3+4*1/2+4+5)"
17
18
        s="("+s+")";
19
        vector<ll>num,flag({1});
20
        vector<char>op;
21
        for(unsigned i=0;i<s.size();++i){</pre>
22
            if(isdigit(s[i])){
                ll x=s[i]-'0';
23
                while(i+1<s.length()&&isdigit(s[i+1]))x=x*10+s[i+1]-'0',++i;
24
25
                if(flag.back()==-1)x=-x;
26
                flag.pop_back();
27
                num.push_back(x);
28
            }
29
            else{
                if(s[i]=='+'||s[i]=='-'){
30
                    if(num.size()!=op.size()){
31
32
                         while(!op.empty()&&op.back()!='('){
33
                             11 x=num.back();num.pop_back();
34
                             char c=op.back();op.pop_back();
35
                             try{
                                  num.back()=fun(num.back(),x,c);
36
37
38
                             catch(int x){
39
                                 throw x;
40
                             }
                         }
41
                         op.push_back(s[i]);
42
43
                         flag.push_back(1);
44
                    }
                    else if(s[i]=='-')flag.back()=-flag.back();
45
                }
46
                else if(s[i]=='*'||s[i]=='/'||s[i]=='%'){
47
48
                    if(!op.empty()&&op.back()!='('){
                         if(op.back()=='+'||op.back()=='-'){
49
                             op.push_back(s[i]);
50
51
                         }
```

```
52
                         else{// * / %
53
                             int x=num.back();num.pop_back();
54
                             char c=op.back();op.pop_back();
55
                             try{
                                  num.back()=fun(num.back(),x,c);
56
57
                             }
                             catch(int x){
58
59
                                  throw x;
60
                             }
                             op.push_back(s[i]);
61
                         }
62
                     }
63
                     else op.push_back(s[i]);
64
                     flag.push_back(1);
65
                }
66
                else if(s[i]=='('){
67
                     num.push_back(0);op.push_back('(');
68
                     flag.push_back(1);
69
                }
70
                else if(s[i]==')'){
71
72
                     while(!op.empty()&&op.back()!='('){
73
                         11 y=num.back();num.pop_back();
                         char c=op.back();op.pop_back();
74
75
                         try{
76
                             num.back()=fun(num.back(),y,c);
77
                         }
                         catch(int x){
78
79
                             throw x;
                         }
80
                     }
81
                     11 x=num.back();num.pop_back();
82
83
                     if(flag.back()==-1)x=-x;
                     flag.pop_back();
84
                     num.back()=x;op.pop_back();
85
                }
86
                else{
87
                     throw 2;//不合法运算符
88
89
                }
90
            }
91
        }
92
        return num.front();
```

93 }

13 模拟游戏

13.1 算 24 点

```
int a[5],op[4];//options: 1+ 2- 3* 4/
1
2
   const int goal=24;
3
   double f(double a, double b, int op){
4
        switch(op){
5
            case 0:return a+b;
6
            case 1:return a-b;
7
            case 2:return a*b;
            default:
8
            if(abs(b)<1e-6)throw -1;</pre>
9
            return a/b;
10
        }
11
12
   int g(int a,int b,int op){
13
        switch(op){
14
15
            case 0:return a+b;
16
            case 1:return a-b;
17
            case 2:return a*b;
18
            default:
            if(b==0||a\%b!=0)throw -1;
19
            return a/b;
20
21
        }
22
   const char *ch="+-*/";
23
   bool find_double_one(){
24
25
        sort(a+1,a+1+4);
26
   do{
27
        for(int i=0;i<4;++i)</pre>
        for(int j=0;j<4;++j)</pre>
28
29
        for(int k=0; k<4;++k){
            double s;
30
            try{s=f(f(f(a[1],a[2],i),a[3],j),a[4],k);}
31
            catch(...){s=-1;}
32
            if(abs(s-goal)<1e-6){</pre>
33
            printf("((%d%c%d)%c%d)%c%d\n",a[1],ch[i],a[2],ch[j],a[3],ch[k],a[4]);
34
35
                 return 1;
```

```
36
            }
37
38
            try{s=f(f(a[1],a[2],i),f(a[3],a[4],k),j);}
39
            catch(...){s=-1;}
            if(abs(s-goal)<1e-6){</pre>
40
            printf("(%d%c%d)%c(%d%c%d)\n",a[1],ch[i],a[2],ch[j],a[3],ch[k],a[4]);
41
42
                 return 1;
43
            }
44
            try{s=f(f(a[1],f(a[2],a[3],j),i),a[4],k);}
45
            catch(...){s=-1;}
46
            if(abs(s-goal)<1e-6){</pre>
47
            printf("(%d%c(%d%c%d))%c%d\n",a[1],ch[i],a[2],ch[j],a[3],ch[k],a[4]);
48
                 return 1;
49
50
            }
51
52
            try{s=f(a[1],f(a[2],f(a[3],a[4],k),j),i);}
            catch(...){s=-1;}
53
54
            if(abs(s-goal)<1e-6){</pre>
            printf("%d%c(%d%c(%d%c%d))\n",a[1],ch[i],a[2],ch[j],a[3],ch[k],a[4]);
55
56
                 return 1;
            }
57
58
59
            try{s=f(a[1],f(f(a[2],a[3],j),a[4],k),i);}
60
            catch(...){s=-1;}
            if(abs(s-goal)<1e-6){</pre>
61
            printf("%d%c((%d%c%d)%c%d)\n",a[1],ch[i],a[2],ch[j],a[3],ch[k],a[4]);
62
63
                 return 1;
            }
64
65
        }
   }while(next_permutation(a+1,a+5));
66
67
        return 0;
68
   bool find_int_one(){
69
70
        sort(a+1,a+1+4);
   do{
71
72
        for(int i=0;i<4;++i)</pre>
73
        for(int j=0;j<4;++j)</pre>
        for(int k=0; k<4; ++k){
74
75
            int s=g(g(g(a[1],a[2],i),a[3],j),a[4],k);
76
            if(s==goal){
```

```
printf("((%d%c%d)%c%d)%c%d\n",a[1],ch[i],a[2],ch[j],a[3],ch[k],a[4]);
77
78
                 return 1;
79
            }
80
            s=g(g(a[1],a[2],i),g(a[3],a[4],k),j);
            if(s==goal){
81
            printf("(%d%c%d)%c(%d%c%d)\n",a[1],ch[i],a[2],ch[j],a[3],ch[k],a[4]);
82
83
                 return 1;
84
            }
85
            s=g(g(a[1],g(a[2],a[3],j),i),a[4],k);
86
            if(s==goal){
            printf("(%d%c(%d%c%d))%c%d\n",a[1],ch[i],a[2],ch[j],a[3],ch[k],a[4]);
87
88
                 return 1;
89
            }
            s=g(a[1],g(a[2],g(a[3],a[4],k),j),i);
90
91
            if(s==goal){
92
            printf("%d%c(%d%c(%d%c%d))\n",a[1],ch[i],a[2],ch[j],a[3],ch[k],a[4]);
93
                 return 1;
94
            }
95
            s=g(a[1],g(g(a[2],a[3],j),a[4],k),i);
            if(s==goal){
96
            printf("%d%c((%d%c%d)%c%d)\n",a[1],ch[i],a[2],ch[j],a[3],ch[k],a[4]);
97
98
                 return 1;
99
            }
100
101
    }while(next_permutation(a+1,a+5));
102
        return 0;
103
   }
```

13.2 德州扑克

判断牌型

```
struct poker{
1
2
      int a,b;//a=牌的数值(必须为2~14),b=牌的花色(1~4),也可以是任意四个不同的数
  };
3
4
   int hand_type(poker v[]){//判断v[0~4]这五张卡的牌型
      static int a[5],s;
5
      for(int i=0;i<5;++i)a[i]=v[i].a;</pre>
6
7
      sort(a,a+5);
      bool straight=1,flush=1;//是顺子 / 是同花
8
9
      for(int i=1;i<5;++i){</pre>
10
          if(a[i]-a[0]!=i)straight=0;
```

```
11
           if(v[i].b!=v[0].b)flush=0;
12
       }
13
       if(a[0]==2&&a[1]==3&&a[2]==4&&a[3]==5&&a[4]==14)straight=1;//特判A2345
14
       if(straight&&flush){
           if(a[4]==14&&a[3]==13)s=10;//royal flush 皇家同花顺(10JQKA)
15
           else s=9;//straight flush 同花顺
16
17
       }
18
       else if(straight)s=5;//straight 顺子
19
       else if(flush)s=6;//flush 同花
20
       else{
21
           int cnt[15]={0};
           int mx=0;//出现次数最多的牌的
22
           for(int i=0;i<5;++i)++cnt[a[i]],mx=max(mx,cnt[a[i]]);</pre>
23
           if(mx==4)s=8;//four of a kind 四条(炸弹)
24
           else if(mx==3){
25
               int f2=0;
26
               for(int i=0;i<=4;++i){</pre>
27
                   if(cnt[a[i]]==2)f2=1;
28
29
               }
               if(f2)s=7;//full house 葫芦(三带二)
30
               else s=4;//three of a kind 三条(三带一)
31
           }
32
33
           else if(mx==2){
               int c=0;
34
               for(int i=0;i<=4;++i){</pre>
35
                   if(cnt[a[i]]==2)++c;
36
37
38
               if(c==4)s=3;//two pairs 两对
               else s=2;//pair 一对
39
40
           }
           else s=1;//high card 高牌(散牌)
41
42
       }
43
       return s;
44 }
```

相同牌型比大小

```
int cmp_same_type(poker c[],poker d[],int id){//双方牌型均为id,比大小
static int a[5],b[5];
for(int i=0;i<5;++i)a[i]=c[i].a,b[i]=d[i].a;
switch(id){
    case 5://straight 顺子</pre>
```

```
6
            case 9://straight flush 同花顺
7
            {
8
                sort(a,a+5);sort(b,b+5);
9
                int u=a[4],v=b[4];
10
                if(a[0]==2&&a[4]==14)u=5;
11
                if(b[0]==2\&\&b[4]==14)v=5;
12
                if(u!=v)return u>v?1:-1;
13
                return 0;
14
            }
            case 1://highcard 高牌
15
            case 6://flush 同花
16
17
            {
18
                sort(a,a+5);sort(b,b+5);
                for(int i=4; i>=0; --i){
19
20
                    if(a[i]!=b[i])return a[i]>b[i]?1:-1;
                }
21
            }
22
            case 10://royal flush 皇家同花顺
23
24
                return 0;
25
            default:
26
            //
                    case 2://pair 一对
27
            //
                    case 3://two pairs 两对
                    case 4://three of a kind 三条
28
            //
29
            //
                    case 7://full house 葫芦
30
            //
                    case 8://four of a kind 四条
31
32
                int cnt1[15]={0}, cnt2[15]={0};
33
                static int t1[5],t2[5];
34
                int h1=0, h2=0, p1=4, p2=4, mx=0;
35
                for(int i=0;i<5;++i){</pre>
                    ++cnt1[a[i]];++cnt2[b[i]];
36
37
                    mx=max(mx,cnt1[a[i]]);
38
                }
                for(int i=0;i<5;++i){</pre>
39
40
                    if(cnt1[a[i]]==mx)t1[p1--]=a[i];
                    else t1[h1++]=a[i];
41
42
                    if(cnt2[b[i]]==mx)t2[p2--]=b[i];
43
                    else t2[h2++]=b[i];
                }
44
                if(id==2||id==3)sort(t1,t1+h1),sort(t2,t2+h2);
45
46
                if(id==3)sort(t1+h1,t1+5),sort(t2+h2,t2+5);
```

全手牌比大小

结算筹码

```
void calc money(int n,int rank[],long long c[],long long ans[]){
1
       //数组下标 1~n, rank[i]=第i个人的排名是第几大, rank[i]=1是最大的, 可能存在并列
2
       //c[i]=第i个人出的筹码 ans[i]=结算后第i个人获得的筹码
3
4
       static int id[N];
       for(int i=1;i<=n;++i)id[i]=i;</pre>
5
       sort(id+1,id+1+n,[&](int i,int j){return c[i]<c[j];});</pre>
6
7
       map<int,int>cnt;//cnt[i]=排名为i的人数
8
       for(int i=1;i<=n;++i)++cnt[rank[i]];</pre>
9
       int rk1=cnt.begin()->first;
       long long now=0, sub=0;
10
       for(int i=1;i<=n;++i){</pre>
11
12
           int t=id[i];
           long long x=c[t]-sub;
13
           now+=x*(n+1-i)/cnt.begin()->second;
14
15
           ans[t]=rk1==rank[t]?now:0;
           if(!--cnt[rank[t]]){
16
               cnt.erase(rank[t]);
17
18
               if(rk1==rank[t]&&cnt.size()){
                   rk1=cnt.begin()->first;
19
20
                   now=0;
21
               }
22
           }
23
           sub+=x;
24
```

25 }

14 其他技巧

14.1 C++ 编译命令

```
1 DEV C++使用C++11 工具->编译选项
2 编译时加入以下命令(V):-std=c++11
3 debug:工具->编译选项->代码生成/优化->产生调试信息YES
4 无限栈空间: #pragma comment(linker, "/STACK:102400000,102400000")
5 或在编译命令中加入 -Wl,--stack=102400000
```

14.2 快读快写

```
ll rd(){
1
2
       char c=getchar();11 x=0;bool f=1;
       for(;c<'0'||c>'9';c=getchar())f|=c=='-';
3
4
       for(;c>='0'&&c<='9';c=getchar())x=(x<<3)+(x<<1)+(c^48);</pre>
       return f?-x:x;
5
6
   }
7
   template<typename T>bool read(T &s){
       11 x=0;bool f=0;char c=getchar();
8
9
       for(;c<'0'||c>'9';c=getchar()){
            if(c==EOF)return 0;f|=c=='-';
10
11
       }
12
       for(;c>='0'&&c<='9';c=getchar())x=(x<<3)+(x<<1)+(c^48);
       if(c!='.')s=f?-x:x;
13
14
       else{
            double y=0, k=0.1;
15
            for(c=getchar();c>='0'&&c<='9';c=getchar())y+=(c^48)*k,k*=0.1;
16
17
            s=f?-x-y:x+y;
18
       }
19
       return 1;
20
   void wt(ll x){
21
       static char a[44];short h=0;
22
       if(x<0)x=-x,putchar('-');
23
       do{ a[++h]='0'+x%10;x/=10;}while(x);
24
25
       for(int i=h;i;--i)putchar(a[i]);
26
   }
```

```
void wtl(11 x){wt(x);putchar('\n');}
void wtb(11 x){wt(x);putchar(' ');}
```

fread/fwrite, 若不需要输出优化,也可以删掉所有输出相关函数并使用 printf/cout

```
struct FastIO{//不可与scanf,printf,getchar,putchar,gets,puts,cin,cout混用
1
2
       private:
       static const int BUFSIZE=1e5;//BUFSIZE不需要改
3
       char buf[BUFSIZE]; int pos, len; // 读入buffer(缓冲器)以及读入指针
4
       char wbuf[BUFSIZE];int wpos;//输出buffer以及输出指针
5
       #define gc() (pos<len||(len=(pos=0)+fread(buf,1,BUFSIZE,stdin))?buf[pos++]:</pre>
6
          EOF)
7
       #define pc(c) (wpos<BUFSIZE?wbuf[wpos++]=c:(fwrite(wbuf,1,BUFSIZE,stdout),
          wbuf[(wpos=0)++]=c))
8
       public:
9
       FastIO():wpos(0),pos(0),len(0){}
       ~FastIO(){fwrite(wbuf,1,wpos,stdout),wpos=0;}
10
       char getc(){return gc();}//读取char
11
12
       void putc(char c){pc(c);}//输出字符
13
       long long rd(){//读取long long
14
           long long x=0; char c=gc(); bool f=0;
15
           while(c<'0'||c>'9')f|=c=='-',c=gc();
16
           while(c \ge 0' \& c \le 9') x = (x < 3) + (x < 1) + (c^48), c = gc();
17
           return f?~x+1:x;
18
       }
       template<typename T>bool read(T &x){//多测读整数while(io.read(n))work();本地
19
          测试请输入两次ctrlZ
           x=0;char c=gc();bool f=0;
20
21
           while(c<'0'||c>'9'){if(c==EOF)return 0;f|=c=='-';c=gc();}
           while(c \ge 0' \& c \le 9') x = (x < 3) + (x < 1) + (c^48), c = gc();
22
23
           if(f)x=-x; return 1;
24
       }
       template<typename T>void wt(T x){//输出整数
25
26
           static char a[22];
27
           if(x<0)pc('-'),x=-x;int h=0;
28
           do{a[++h]='0'+x%10;x/=10;}while(x);
29
           while(h)pc(a[h--]);
30
       }
       template<typename T>void wtl(T x){wt(x);pc('\n');}//write line输出整数并换行
31
32
       template<typename T>void wtb(T x){wt(x);pc(' ');}//write blank输出整数并空格
33
       int gets(char *s){int l=0;char c=gc();while(c<=' ')c=gc();while(c>' ')s[l++]=
          c,c=gc();return s[1]=0,1;}//读取字符串
```

```
int getline(char *s){int l=0;char c=gc();while(c!=EOF&&c!='\n')s[l++]=c,c=gc
34
          ();return s[1]=0,1;}//读取一行
35
       void puts(const char *s){const char *p=s;while(*p)pc(*p++);}//输出字符串 (不
          带换行)
       template<typename T>FastIO & operator >> (T &a){return read(a),*this;}//io>>a
36
          >>b; 只能输入整数
       template<typename T>FastIO & operator << (T a){return wtb(a),*this;}//io<<a<</pre>
37
          b;输出整数并带有空格
       #undef gc
38
39
       #undef pc
   } io;//本地测试出入结束后请输入一次ctrl Z
40
```

14.3 对拍

```
查看是否配置g++编译环境:
1
  右键此电脑,属性,高级系统设置,环境变量,下面的系统变量,找到PATH,选中,编辑
  新建一条:....\Dev-Cpp\MinGW64\bin
  新建.txt文件,后缀名改为.bat,也可以右键.bat文件->编辑
4
  前三句编译命令可以考虑不加,并用DEV进行编译
5
  // g++ -std=c++11 rand.cpp -o rand.exe
6
7
  // g++ -std=c++11 std.cpp -o std.exe
8
  //
      g++ -std=c++11 tested.cpp -o tested.exe
9
      :loop
      rand.exe >in.txt
10
11
      std.exe <in.txt >out.txt
      tested.exe <in.txt >tested.txt
12
      fc out.txt tested.txt
13
14
      if not errorlevel 1 goto loop
15
      pause
      goto loop
16
```

14.4 pbds 库

头文件

```
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
```

堆

#include <ext/pb_ds/priority_queue.hpp>

```
2 __gnu_pbds::priority_queue<int,greater<int>> Q;
```

14.5 指令集优化

```
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
2 #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native
      ")
3 #include <immintrin.h>
   #include <emmintrin.h>
4
  int main() {
5
6
       __m256i a, b, c; int p[8];//a[0~3],a[i]=第i个64位代表的long long
7
       a=_mm256_set_epi64x(111,211,311,411);//a[0]=4,a[3]=1
8
       a=_mm256_setr_epi64x(111,211,311,411);//a[0]=1,a[3]=4
       b=_mm256\_set1\_epi64x(3);//b[0]=b[1]=b[2]=b[3]=311
9
       c=_mm256_add_epi64(a,b);
10
       for(int i=0;i<4;++i)printf("%lld ",c[i]);</pre>
11
       a=_mm256_setr_epi32(1,2,3,4,5,6,7,8);
12
       b=_mm256_set1_epi32(1);//每32位赋值成一个int
13
14
       c=_mm256_add_epi32(a,b);
15
       for(int i=0;i<4;++i)p[i<<1]=c[i],p[i<<1|1]=c[i]>>32;//p[0~7]={2,3,..,9}
16
  }
```