VBLC: Visibility Boosting and Logit-Constraint Learning for Domain Adaptive Semantic Segmentation under Adverse Conditions

Mingjia Li 1,* Binhui Xie 1,* Shuang Li 1, Chi Harold Liu 1 Xinjing Cheng 2

Beijing Institute of Technology, Beijing, China 2 Inceptio Technology, Shanghai, China

Contact: mingjiali@bit.edu.cn

0.2 0.4 0.6 0.8 1.0

Gi

Hightlights

Normal-to-Adverse Domain Adaptation Transfer Target Model Source Domain (Clean Weather) Target Unlabeled Target Domain (Adverse Weather)

Problem: Normal-to-Adverse Domain Adaptation

- Input: Labeled source domain $\mathcal S$ in clean weather, Unlabeled adverse target domain $\mathcal T$ in adverse weather
- Core: Close the gap between clean weather and adverse weather conditions; avoid overconfidence caused by large domain gap.

Contributions:

- We propose **VBLC**, a *fully unsupervised* framework that enables adaptation to *hybrid* adverse weather conditions.
- **VBLC** yields good results *without* clean-target image pair as correspondence and achieves SOTA in Normal-to-Adverse DA.

Motivation

Normal-to-Adverse DA methods often adopt paired images as weak supervision, and train individual models for each adverse condition.

- How to remove image correspondence to simplify data preparation?
- How to adapt model to a hybrid of adverse weather conditions?
- How to avoid model overconfidence under large domain gap?

Observation: the *veiling effect* can be the major obstacle to a clear vision, which is tackable via a designed physical model.

Approach

Figure 1: VBLC for Normal-to-Adverse Domain Adaptive Semantic Segmentation.

Visibility Boost Module (VBM):

Atmosphere scatter model (ASM) for veiling effect:

$$I(x) = J(x)t(x) + A(1 - t(x)),$$

where I(x) is the observed image, J(x) is the restored image, t(x) is transmission map, A is global atmospheric light.

Dynamic estimation of transmission map:

$$t(x) = 1 - \omega_s \min_{c} \left(\min_{y \in \Omega(x)} \frac{I^c(y)}{A^c} \right) ,$$

where ω_s is calculated from image saturation for adaptive modulation. Inverse Switch for nighttime enhancement:

$$1 - I(x) = (1 - J(x))t(x) + A(1 - t(x)).$$

as inverted nighttime image can be viewed as hazy ones.

Logit-Constraint Learning (LCL):

Cross-entropy loss leads to overconfidence: the optimization is driven towards given label regardless of prediction confidence,

$$\frac{\partial \mathcal{L}_{ce}}{\partial z_j} = p_j - y_j, \mathcal{L}_{ce} = -\sum_{k=1}^K y_k \log(p_k), \text{ where } p_i = \frac{e^{z_i}}{\sum_{k=1}^K e^{z_k}}.$$

Logit-Constraint Learning loss mitigates overconfidence: the gradient is reduced when encountered with unconfident predictions,

$$\frac{\partial \mathcal{L}_{lc}}{\partial z_{j}} = \frac{1}{\|z\|} \left((p_{j}^{*} - y_{j}) - \sum_{k=1}^{K} \frac{z_{j} z_{k}}{\|z\|^{2}} (p_{k}^{*} - y_{k}) \right) ,$$

$$\mathcal{L}_{lc} = -\sum_{k=1}^{K} y_{k} \log(p_{k}^{*}), \text{ where } p_{i}^{*} = \frac{e^{z_{i}/\|z\|}}{\sum_{k=1}^{K} e^{z_{k}/\|z\|}}.$$

Findings

																				_
Method	road	side.	buil.	wall	fence	pole	light	sign	veg.	terr.	sky	pers.	rider	car	truck	bus	train	mbike	bike	mIoU
DeepLab-v2	71.9	26.2	51.1	18.8	22.5	19.7	33.0	27.7	67.9	28.6	44.2	43.1	22.1	71.2	29.8	33.3	48.4	26.2	35.8	38.0
AdaptSegNet	69.4	34.0	52.8	13.5	18.0	4.3	14.9	9.7	64.0	23.1	38.2	38.6	20.1	59.3	35.6	30.6	53.9	19.8	33.9	33.4
ADVENT	72.9	14.3	40.5	16.6	21.2	9.3	17.4	21.2	63.8	23.8	18.3	32.6	19.5	69.5	36.2	34.5	46.2	26.9	36.1	32.7
BDL	56.0	32.5	68.1	20.1	17.4	15.8	30.2	28.7	59.9	25.3	37.7	28.7	25.5	70.2	39.6	40.5	52.7	29.2	38.4	37.7
CLAN	79.1	29.5	45.9	18.1	21.3	22.1	35.3	40.7	67.4	29.4	32.8	42.7	18.5	73.6	42.0	31.6	55.7	25.4	30.7	39.0
CRST	51.7	24.4	67.8	13.3	9.7	30.2	38.2	34.1	58.0	25.2	76.8	39.9	17.1	65.4	3.7	6.6	39.6	11.8	8.6	32.8
FDA	73.2	34.7	59.0	24.8	29.5	28.6	43.3	44.9	70.1	28.2	54.7	47.0	28.5	74.6	44.8	52.3	63.3	28.3	39.5	45.7
DACS	58.5	34.7	76.4	20.9	22.6	31.7	32.7	46.8	58.7	39.0	36.3	43.7	20.5	72.3	39.6	34.8	51.1	24.6	38.2	41.2
VBLC	49.6	39.3	79.4	35.8	29.5	42.6	57.2	57.5	69.1	42.7	39.8	54.5	29.3	77.8	43.0	36.2	32.7	38.7	53.4	47.8
SegFormer	66.9	25.8	71.3	20.9	22.2	41.1	47.2	46.6	74.2	44.9	75.6	50.4	23.5	73.1	30.3	36.8	55.8	29.4	37.1	45.9
DAFormer	56.9	45.4	84.7	44.7	35.1	48.6	44.8	57.4	69.5	52.9	45.8	57.1	28.2	82.8	57.2	63.9	84.0	40.2	50.5	55.3
VBLC	89.2	59.8	85.9	44.0	37.2	53.5	64.5	63.2	72.4	56.3	84.1	65.5	37.7	85.1	60.1	71.8	85.2	47.7	56.3	64.2
Table 1:	\overline{C}	omi	nari	son	resi	ults	on	Cit	tvs	car	PS	\rightarrow	AC	TD	C se	2011	ents	atior	n ta	
	\circ	O111]			100	MI UD	OII		Jy D	cap		/	1 1 C	· • • • • • • • • • • • • • • • • • • •		\2\111	.01100	JUIUI		J1 7.
					_															

Method	road	side.	buil.	wall	tence	pole	light	sign	veg.	terr.	sky	pers.	rider	car	truck	bus	train	mbike	bike	mloU
DeepLab-v2	96.7	72.4	74.1	28.6	41.4	42.2	49.8	67.6	72.6	62.5	80.6	70.4	54.4	88.4	56.1	72.4	33.7	42.7	70.1	61.9
FDA	87.0	56.9	82.1	4.3	11.6	36.3	41.8	60.4	80.6	51.6	70.6	66.7	50.3	86.0	46.4	63.7	26.2	41.4	66.3	54.2
DACS	97.9	82.3	88.7	40.8	42.4	41.0	53.5	67.3	89.2	58.2	90.8	70.8	54.4	91.3	62.9	82.5	56.4	47.0	72.4	67.9
VBLC	98.6	86.9	87.2	62.1	55.3	54.2	65.1	77.8	86.9	66.8	90.1	77.5	63.2	93.7	77.3	86.6	55.0	59.4	79.5	74.9
VBLC SegFormer																		59.4 49.9		T
	97.8	81.6	86.9	54.3	48.3	49.2	57.3	71.6	86.9	65.5	83.4	71.9	57.1	91.8	67.9	80.1	73.1		74.6	71.0

Table 2: Comparison results on Cityscapes \rightarrow {Foggy,Rain}Cityscapes.

References

- Narasimhan et. al, "Contrast restoration of weather degraded images", TPAMI 2003.
- He et. al, "Single image haze removal using dark channel prior", CVPR 2009.
- Sakaridis et. al, "Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation", TPAMI 2022.