Reconstructing trees from small cards

Carla Groenland* Tom Johnston† Alex Scott†‡ Jane Tan†

Abstract

The ℓ -deck of a graph G is the multiset of all induced subgraphs of G on ℓ vertices. In 1976, Giles proved that any tree on $n \geq 6$ vertices can be reconstructed from its ℓ -deck for $\ell \geq n-2$. Our main theorem states that it is enough to have $\ell \geq (8/9 + o(1))n$, making substantial progress towards a conjecture of Nýdl from 1990. In addition, we can recognise connectedness from the ℓ -deck if $\ell \geq 9n/10$, and reconstruct the degree sequence from the ℓ -deck if $\ell \geq \sqrt{2n\log(2n)}$. All of these results are significant improvements on previous bounds.

1 Introduction

Throughout this paper, all graphs are finite and undirected with no loops or multiple edges. Given a graph G and any vertex $v \in V(G)$, the card G - v is the subgraph of G obtained by removing the vertex v together with all edges incident to v. The deck $\mathcal{D}(G)$ is then the multiset of all unlabelled cards of G. A graph G is said to be reconstructible from its deck if any graph with the same deck is isomorphic to G.

The graph reconstruction conjecture of Kelly and Ulam [11, 12, 24] states that all graphs on at least three vertices are reconstructible. While this classical conjecture was verified for trees by Kelly in [12], it remains open even for simple classes of graphs such as planar graphs and graphs of bounded maximum degree. However, various graph parameters, such as the degree sequence and connectedness, are known to be reconstructible for general graphs in the sense that they are determined by the deck.

A significant body of research has looked at the problem of reconstructing graphs and graph parameters from cards with fewer vertices. In the standard reconstruction conjecture, each card is an induced subgraph on n-1 vertices, but one can instead look at cards that are induced subgraphs on ℓ vertices,

^{*}Utrecht University, Utrecht, The Netherlands, c.e.groenland@uu.nl. Partially supported by the project CRACKNP that has received funding from the European Research Council under the EU Horizon 2020 research and innovation programme (grant agreement no. 853234).

 $^{^\}dagger Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK {thomas.johnston,scott,jane.tan}@maths.ox.ac.uk$

[‡]Supported by EPSRC grant EP/V007327/1.

where ℓ could be much smaller than n-1. The ℓ -deck of G, denoted $\mathcal{D}_{\ell}(G)$, is the multiset of all induced subgraphs of G on ℓ vertices. In this notation, $\mathcal{D}(G) = \mathcal{D}_{n-1}(G)$.

Reconstruction from small cards was first introduced by Kelly in [12], although it did not receive much attention until it was studied by Manvel in 1974 [18]. Manvel showed that several classes of graphs, such as connected graphs, trees, regular graphs and bipartite graphs, can be recognised from the (n-2)-deck where $n \geq 6$ is the number of vertices – that is, whether a given graph is a member of such a class is determined by its (n-2)-deck. Since then, the problem has been widely studied, and the reconstructibility of graphs from smaller cards is known for many classes of graphs including trees, 3-regular graphs, random graphs and graphs with maximum degree 2 [8, 13, 22]. However, many of the bounds are far from tight.

In general, it is not possible to reconstruct a graph from the ℓ -deck unless $\ell = (1 - o(1))n$, as shown by the following theorem of Nýdl.

Theorem 1 (Nýdl [21]). For any integer n_0 and $0 < \alpha < 1$, there exist two non-isomorphic graphs on $n > n_0$ vertices that share the same multiset of subgraphs of order at most αn .

However, it might be possible to do much better when reconstructing specific families of graphs, such as the class of trees. In fact, Nýdl conjectured in 1990 that no two non-isomorphic trees have the same ℓ -deck when ℓ is slightly larger than n/2.

Conjecture 2 (Nýdl [20]). For any $n \ge 4$ and $\ell \ge \lfloor n/2 \rfloor + 1$, any two trees on n vertices with the same multiset of ℓ -vertex induced subgraphs are isomorphic, and this threshold is sharp.

The conjectured bound would be sharp: Nýdl [20] constructed trees for which $\ell \geq \lfloor n/2 \rfloor + 1$ is necessary.

There has been no progress on Nýdl's conjecture since it was made in [20]. Indeed, the best result is an earlier bound of Giles [8] from 1976, which states that no two non-isomorphic n-vertex trees have the same (n-2)-deck for $n \geq 5$. Using the result of Manvel [18] on the recognition of trees, Giles' result shows that trees can be reconstructed from their (n-2)-deck for all $n \geq 6$.

This is not the only strengthening of Kelly's result that trees are reconstructible. For example, assuming we know a priori the graph is a tree, Harary and Palmer [10] showed how to recover a tree using only the cards which are subtrees, Bondy [1] showed that only the cards where peripheral vertices have been removed are needed and Manvel [17] showed that the set (as opposed to the multiset) of cards which are trees suffices (except in four cases). It has also been shown that trees with at least 3 cutvertices can be reconstructed (amongst all graphs) from the cards corresponding to removing a cutvertex [16], and that only 3 carefully chosen cards are needed to reconstruct a tree when $n \geq 5$ [19].

Our main theorem improves very substantially on the result of Giles and takes a significant step towards Conjecture 2, showing that we can take $n-\ell$ to be of linear size.

Figure 1: Two non-isomorphic trees on 13 vertices which have the same 7-deck.

Theorem 3. For all $n \ge 3$, any n-vertex tree T can be reconstructed from $\mathcal{D}_{\ell}(T)$ when $\ell > \frac{8n}{9} + \frac{4}{9}\sqrt{8n+5} + 1$.

We remark that Conjecture 2 is false in the case n=13 as demonstrated by the two graphs in Figure 1, but it is true for all other values $4 \le n \le 19$ and it remains open for large n.

We have already mentioned Manvel's result in [18] that the class of connected graphs is recognisable from the (n-2)-deck for $n \geq 6$. Extending this, Kostochka, Nahvi, West, and Zirlin [14] showed that the connectedness of a graph on $n \geq 7$ vertices is determined by $\mathcal{D}_{n-3}(G)$. As shown by Spinoza and West [22], if we take $G_1 = P_n$ (the path on n vertices) and $G_2 = C_{\lceil n/2 \rceil + 1} \sqcup P_{\lfloor n/2 \rfloor - 1}$ the disjoint union of a cycle and a path, we find $\mathcal{D}_k(G_1) = \mathcal{D}_k(G_2)$ for all $k \leq \lfloor n/2 \rfloor$. However, G_1 is connected and G_2 is not. This suggests the following natural conjecture.

Conjecture 4 (Spinoza and West [22]). For $n \geq 6$ and $\ell \geq \lfloor n/2 \rfloor + 1$, the connectedness of an n-vertex graph G is determined by $\mathcal{D}_{\ell}(G)$, and this threshold is sharp.

Spinoza and West proved in [22] that connectedness can be recognised from $\mathcal{D}_{\ell}(G)$ provided

$$n - \ell \le (1 + o(1)) \sqrt{\frac{2 \log n}{\log(\log n)}}.$$

We significantly improve the bound above to allow a linear gap between n and ℓ

Theorem 5. For all $n \geq 3$, the connectedness of an n-vertex graph G can be recognised from $\mathcal{D}_{\ell}(G)$ provided $\ell \geq 9n/10$.

By Theorem 5 (and the fact that we can reconstruct the number of edges), we can recognise trees from the ℓ -deck when $\ell \geq 9n/10$. In order to prove Theorem 3, we need a slightly stronger bound.

Theorem 6. For $\ell \geq (2n+4)/3$, the class of trees on n vertices is recognisable from the ℓ -deck.

As we were completing this paper, Kostochka, Nahvi, West and Zirlin [15] independently announced a similar result to Theorem 6. In fact, they proved the stronger result that one can recognise if a graph is acyclic from the ℓ -deck when $\ell \geq \lfloor n/2 \rfloor + 1$, which verifies Conjecture 4 for the special case of forests. This has the particularly nice consequence that trees can be recognised from their ℓ -deck, and so Conjecture 2 is equivalent to the reconstruction of trees

amongst general graphs. Our proof of Theorem 6 is short, and our theorem is (more than) sufficient for our main result on reconstructing trees, so we have retained our proof for the sake of completeness.

The proof of Theorem 5 relies on an algebraic result (Lemma 11) which we also apply to reconstructing degree sequences. The story in the literature here is similar to that for connectedness. Chernyak [7] showed that the degree sequence of an n-vertex graph can be reconstructed from its (n-2)-deck for $n \geq 6$, and this was later extended by Kostochka, Nahvi, West, and Zirlin [14] to the (n-3)-deck for $n \geq 7$. The best known asymptotic result is due to Taylor [23], and implies that the degree sequence of a graph G on n vertices can be reconstructed from $\mathcal{D}_{\ell}(G)$ where $\ell \sim (1-1/e)n$. Our improved bound is as follows.

Theorem 7. For $n \geq 3$, the degree sequence of an n-vertex graph G can reconstructed from $\mathcal{D}_{\ell}(G)$ for any $\ell \geq \sqrt{2n \log(2n)}$.

In Section 2, we give ℓ -deck versions of both Kelly's Lemma [12] and a result on counting maximal subgraphs by Greenwell and Hemminger [9], as well as an algebraic result of Borwein and Ingalls [5] bounding the number of moments shared by two distinct sequences. These are used to deduce Theorem 7 (Section 3) and Theorem 5 (Section 4). Our main result on reconstructing trees, Theorem 3, is proved in Section 5. We conclude with a number of open problems in Section 6.

2 Preliminaries

This paper makes extensive use of three key results which we give in this section.

2.1 Kelly's Lemma

Let $\widetilde{n}_H(G)$ and $n_H(G)$ denote the number of subgraphs and induced subgraphs of G isomorphic to H respectively. We will reserve the word copy of H for an induced subgraph isomorphic to H.

In the classical graph reconstruction problem, Kelly's Lemma states that we can reconstruct $n_H(G)$ and $\tilde{n}_H(G)$ provided |V(H)| < |V(G)|, and there are many variants of the lemma for other reconstruction problems (see [2]). We use the following variant.

Lemma 8. Let $\ell \in \mathbb{N}$ and let H be a graph on at most ℓ vertices. For any graph G, the multiset of ℓ -vertex induced subgraphs of G determines both the number of subgraphs of G that are isomorphic to H and the number of induced subgraphs that are isomorphic to H.

In particular, Kelly's Lemma means that $\mathcal{D}_{\ell'}(G)$ can be reconstructed from $\mathcal{D}_{\ell}(G)$ for all $\ell' \leq \ell$.

Despite its considerable usefulness, the proof of Kelly's Lemma is remarkably simple. Count the number of (possibly induced) copies of H in each of

the ℓ -cards of G, and take the sum over all cards. Each copy of H in G will be counted exactly $\binom{n-|V(H)|}{\ell-|V(H)|}$ times toward this total. Hence, we can reconstruct the number $n_H(G)$ of copies of H in G from the ℓ -deck as

$$n_H(G) = \binom{n - |V(H)|}{\ell - |V(H)|}^{-1} \sum_{C \in \mathcal{D}_{\ell}(G)} n_H(C).$$

2.2 Counting maximal subgraphs

Given a class of graphs \mathcal{F} , a subgraph F' of some graph G is said to be an \mathcal{F} -subgraph if F' is isomorphic to some $F \in \mathcal{F}$, and is a maximal \mathcal{F} -subgraph if the subgraph F' cannot be extended to a larger \mathcal{F} -subgraph, that is, there does not exist an \mathcal{F} -subgraph F'' of G such that $V(F') \subseteq V(F'')$.

Let m(F,G) denote the number of \mathcal{F} -maximal subgraphs in G which are isomorphic to F. We give a slight variation of a classical "Counting Theorem" due to Bondy and Hemminger [3] (see also [9]) which reconstructs m(F,G) from the ℓ -deck.

Lemma 9. Let $n \in \mathbb{N}$, let $\ell \in [n-1]$ and let \mathcal{G} be a class of n-vertex graphs. Let \mathcal{F} be a class of graphs such that for any $G \in \mathcal{G}$ and for any \mathcal{F} -subgraph F of G,

- (i) $|V(F)| \leq \ell$;
- (ii) F is contained in a unique maximal \mathcal{F} -subgraph of G.

Then for all $F \in \mathcal{F}$ and $G \in \mathcal{G}$, we can reconstruct m(F, G) from the collection of cards in the ℓ -deck that contain an \mathcal{F} -subgraph.

This result can be proved using following argument of Bondy and Hemminger [3] together with some additional observations. For completeness, we sketch the proof below.

Define an (F,G)-chain of length k to be a sequence (X_0,\ldots,X_k) of \mathcal{F} -subgraphs of G such that

$$F \cong X_0 \subset X_1 \subset \cdots \subset X_k \subset G$$
.

The rank of F in G is the length of a longest (F, G)-chain, and two chains are called isomorphic if they have the same length and the corresponding terms are isomorphic. Bondy and Hemminger prove that

$$m(F,G) = \sum_{k=0}^{\operatorname{rank}_{G}(F)} \sum_{C_{k}(F,G)} (-1)^{k} \widetilde{n}_{X_{1}}(F) \widetilde{n}_{X_{2}}(X_{1}) \cdots \widetilde{n}_{X_{k}}(X_{k-1}) \widetilde{n}_{G}(X_{k}), \quad (2.1)$$

where the inner sum is taken over the set $C_k(F,G)$ of all non-isomorphic (F,G)-chains (X_0,X_1,\ldots,X_k) of length k. Any such chain must satisfy $|V(X_k)| \leq \ell$ by assumption (i). So, in order to prove Lemma 9, it is enough to show that it is possible to reconstruct (2.1) from the ℓ -deck.

For any $X_k \in \mathcal{F}$ on at most ℓ elements, we can compute $\widetilde{n}_G(X_k)$ from the collection \mathcal{C} of cards in the ℓ -deck that contain an \mathcal{F} -subgraph. Indeed, we find

$$\widetilde{n}_G(X_k) = \binom{n - |V(X_k)|}{\ell - |V(X_k)|}^{-1} \sum_{C \in C} \widetilde{n}_{X_k}(C)$$

since $\widetilde{n}_{X_k}(C) = 0$ if $C \in \mathcal{D}_{\ell}(G)$ does not contain X_k .

When computing (2.1) we need to enumerate the (F, G)-chains, however, in (2.1) the inner summand will be zero if we consider a sequence

$$F \cong X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_k$$

of graphs in \mathcal{F} for which one of the terms (and hence X_k) is not a subgraph of G. We can therefore reconstruct the right-hand side of (2.1) from \mathcal{C} by instead summing over all chains of graphs from \mathcal{F} where the final graph has at most ℓ elements (which is something we can easily determine). This proves the lemma.

We note that the result above assumes that properties (i) and (ii) have been guaranteed; in particular we do not assume or guarantee that \mathcal{G} can be recognised from the given collection of cards, in contrast to Bondy and Hemminger [3].

2.3 Shared moments of sequences

We will need a bound on the maximum number of shared moments that two sequences $\alpha, \beta \in \{0, ..., n\}^m$ can have. This result follows from a theorem of Borwein, Erdélyi and Kós [4] on the number of positive real roots of a polynomial.

Theorem 10 (Theorem A in [4]). Suppose that the complex polynomial

$$p(z) := \sum_{j=0}^{n} a_j z^j$$

has k positive real roots. Then

$$k^{2} \le 2n \log \left(\frac{|a_{0}| + |a_{1}| + \dots + |a_{n}|}{\sqrt{|a_{0}a_{n}|}} \right).$$

The result that we require was proved by Borwein and Ingalls [5, Proposition 1]. We give the following formulation which is tailored to our purposes.

Lemma 11. Let $\alpha, \beta \in \{0, ..., n\}^m$ be two sequences that are not related to each other by a permutation. If

$$\binom{\alpha_1}{j} + \dots + \binom{\alpha_m}{j} = \binom{\beta_1}{j} + \dots + \binom{\beta_m}{j} \quad \text{for all } j \in \{0, \dots, \ell\}, \quad (2.2)$$

then $\ell + 1 \le \sqrt{2n\log(2m)}$.

Proof. Since $\alpha_i, \beta_j \in \{0, \dots, n\}$ for all $i, j \in [m]$,

$$p_{\alpha,\beta}(x) := \sum_{i=1}^{m} x^{\alpha_i} - \sum_{i=1}^{m} x^{\beta_i}$$
 (2.3)

is a polynomial of degree at most n. For $c \in \mathbb{C}$, let $\operatorname{mult}_c(p_{\alpha,\beta})$ denote the multiplicity of the root at c, or 0 if c is not a root of $p_{\alpha,\beta}$. We will show that $\ell + 1 \leq \operatorname{mult}_1(p_{\alpha,\beta}) \leq \sqrt{2n \log(2m)}$.

Since α and β are not related by a permutation, the polynomial $p_{\alpha,\beta}$ is non-zero. We may write (with $r = \text{mult}_0(p_{\alpha,\beta})$)

$$p_{\alpha,\beta}(x) = x^r \left(\sum_{j=0}^{n'} a_j x^j\right)$$

where a_0 and $a_{n'}$ are non-zero and $n' \leq n$. The coefficients are all integral, so $\sqrt{|a_0 a_{n'}|} \geq 1$. Moreover, from the definition (2.3), we have $\sum_{i=0}^{n'} |a_i| \leq 2m$.

By Theorem 10, the number of positive real zeros of $\sum_{j=0}^{n'} a_j x^j$ is at most

$$\sqrt{2n'\log\left(\frac{|a_0| + |a_1| + \dots + |a_{n'}|}{\sqrt{|a_0 a_{n'}|}}\right)} \le \sqrt{2n\log(2m)}$$

and in particular, $\operatorname{mult}_1(p_{\alpha,\beta}) \leq \sqrt{2n\log(2m)}$. On the other hand, for all $j \in \{0,\ldots,\ell\}$, equation (2.2) shows that

$$\left| \left(\frac{d}{dx^j} \left[\sum_{i=1}^m x^{\alpha_i} - \sum_{i=1}^m x^{\beta_i} \right] \right) \right|_{x=1} = \sum_{i=1}^m j! \binom{\alpha_i}{j} - \sum_{i=1}^m j! \binom{\beta_i}{j} = 0.$$

Hence, $\ell + 1 \leq \text{mult}_1(p_{\alpha,\beta})$, and $\ell + 1 \leq \sqrt{2n \log(2m)}$ as desired.

Condition (2.2) is equivalent to the condition that the first ℓ moments of α and β agree. To see this, observe that $\{x^i : i \in \{0, \dots, \ell\}\}$ and $\{\binom{x}{i} : i \in \{0, \dots, \ell\}\}$ both form a basis for the polynomials of degree at most ℓ .

3 Reconstructing the degree sequence

The tools of the preceding section allow us to prove that the degree sequence of an n-vertex graph G can be reconstructed from the ℓ -deck of G whenever $\ell \geq \sqrt{2n\log(2n)}$. The proof is identical to the proof given by Taylor [23], except for the use of the stronger bounds provided by Lemma 11.

Proof of Theorem 7. Let G be an n-vertex graph with vertices v_1, \ldots, v_n , and let $\ell \geq \sqrt{2n \log(2n)}$ be an integer. By Lemma 8, we can reconstruct the number of subgraphs of G isomorphic to the star $K_{1,j}$ for all $j \in \{2, \ldots, \ell-1\}$. Since vertex v lies at the centre of $\binom{d(v)}{j}$ copies of $K_{1,j}$, we can compute the quantity

$$\widetilde{n}_{K_{1,j}}(G) = \sum_{v \in V(G)} \binom{d(v)}{j}$$

from the ℓ -deck. We can also reconstruct

$$\sum_{v \in V(G)} \binom{d(v)}{0} = n \text{ and } \sum_{v \in V(G)} \binom{d(v)}{1} = 2 \cdot e(G)$$

from the 2-deck. Write $\alpha_i = d(v_i)$ for $i \in [n]$ where we may assume $d(v_1) \leq \cdots \leq d(v_n)$. Suppose, for a contradiction, that a different degree sequence $\beta_1 \leq \cdots \leq \beta_n$ gives the same counts. Thus, for $j \in \{0, \ldots, \ell-1\}$,

$$\sum_{i=1}^{n} {\alpha_i \choose j} = \sum_{i=1}^{n} {\beta_i \choose j}.$$

Since $\alpha, \beta \in \{0, \dots, n-1\}^n$ are not permutations of each other, Lemma 11 applies to show $\ell \leq \sqrt{2(n-1)\log(2n)}$ as desired.

4 Recognising connectedness

We prove that the connectedness of an n-vertex graph G can be reconstructed from ℓ -deck of G whenever $\ell \geq 9n/10$. Recall that throughout this paper, a copy H' of H in some graph G refers to an induced subgraph of G that is isomorphic to H.

Proof of Theorem 5. Let G be an n-vertex graph and let $\varepsilon = 1/10$. Suppose ℓ is an integer such that $\ell \geq 9n/10 = (1-\varepsilon)n$. We wish to recognise if G is connected from the ℓ deck. It was shown by Kostochka, Nahvi, West, and Zirlin [14] that the connectedness of a graph can be recognised from the (n-3)-deck for $n \geq 7$, so we can assume that $n \geq 39$.

Suppose that G is disconnected and let H be the largest component. If $|V(H)| \leq \ell - 1$, then we can easily recognise that G is disconnected. Indeed, let $n_H(G)$ denote the number of copies of H in G, which we can compute from the ℓ -deck by Lemma 8. We can also compute $n_{H'}(G)$ for all connected graphs H' on $|V(H)| + 1 \leq \ell$ vertices that contain H; but $n_{H'}(G) = 0$ for all such H' as H is the largest component. This allows us to identify that G has $n_H(G)$ components isomorphic to H, and that G is disconnected. We may therefore assume that G is either connected, or its largest component has order at least ℓ . In particular, if G is not connected then it has a component of order at most $n - \ell$.

We will reconstruct all components of order at most $n - \ell \leq \varepsilon n$ from the ℓ -deck. Let H be a connected graph on $1 \leq h \leq \varepsilon n$ vertices. Since $h \leq \ell$, we may compute $n_H(G)$ from the ℓ -deck by Lemma 8. Suppose $m = n_H(G) > 0$. Write H_1, \ldots, H_m for the induced copies of H in G, and define the neighbourhood of H_i by

$$\Gamma(H_i) = \{ v \in V(G) \setminus V(H_i) : vu \in E(G) \text{ for some } u \in H_i \}.$$

We define the *degree* of H_i to be $|\Gamma(H_i)|$, and we denote it by α_i . Note that G has a component isomorphic to H if and only if $\alpha_i = 0$ for some $i \in [m]$. We

now show that we can reconstruct the sequence $(\alpha_1, \ldots, \alpha_m) \in \{0, \ldots, n-h\}^m$ up to a permutation.

Since $1 \le h \le \varepsilon n$ and $m \le {n \choose h} \le {\left(\frac{en}{h}\right)}^h$ we have

$$\sqrt{2(n-h)\log(2m)} \le \sqrt{2(n-h)h\log(en/h) + 2n\log(2)}$$

$$\le n\sqrt{2(1-\varepsilon)\varepsilon\log(e/\varepsilon) + 2\log(2)/n}.$$

Hence by Lemma 11, it suffices to show that we can reconstruct

$$\sum_{i=1}^{m} {\alpha_i \choose j} \text{ for all integers } 0 \le j \le N, \tag{4.1}$$

where $N = n\sqrt{2(1-\varepsilon)\varepsilon\log(e/\varepsilon) + 2\log(2)/n}$.

Let P denote the set of pairs of vertex sets (A, B) where $A \subseteq B \subseteq V(G)$, $G[A] \cong H$, |B| = |A| + j and A is dominating in G[B] – that is, each vertex in $B \setminus A$ is adjacent to some vertex in A. Each $(A, B) \in P$ has some $i \in [m]$ for which $G[A] \cong H_i$ and B is contained in the neighbourhood of H_i , so $|P| = \sum_{i=1}^{m} {\alpha_i \choose j}$.

For $j \geq 0$, let \mathcal{H}_j denote the set of (h+j)-vertex graphs that consist of H along with j additional vertices, all of which are adjacent to at least one vertex in the copy of H (we include each isomorphism type at most once). If $(A, B) \in P$, then B corresponds to some $H' \in \mathcal{H}_j$. By definition, there are $n_{H'}(G)$ vertex sets $B \subseteq V(G)$ with $G[B] \cong H'$. Since \mathcal{H}_j and H are known to us, for each $H' \in \mathcal{H}_j$ we can calculate the number n(H, H') of dominating copies of H in H'. Since

$$\sum_{H'\in\mathcal{H}_j} n(H,H') n_{H'}(G) = |P| = \sum_{i=1}^m {\alpha_i \choose j},$$

it only remains to show that we can determine $n_{H'}(G)$ from the ℓ -deck.

We may use Lemma 8 to reconstruct $n_{H'}(G)$ if $|H'| = h + j \le \ell$. We find that

$$h + j < \varepsilon n + N < n - \varepsilon n < \ell$$

for $j \leq N$ and $n \geq 39$, where the middle inequality follows from the fact that

$$\sqrt{2(1-\varepsilon)\varepsilon\log(e/\varepsilon) + 2\log(2)/39} \le 1 - 2\varepsilon$$

for $\varepsilon = 1/10$.

This shows that we can reconstruct (4.1), and hence the number of components isomorphic to H.

We remark that the constant 9/10 can be improved slightly in the proof above provided n is large enough. Indeed, the proof works for any n and ε such that

$$\sqrt{2(1-\varepsilon)\varepsilon\log(e/\varepsilon)+2\log(2)/n} \le 1-2\varepsilon,$$

and, for large enough n, we can take $\varepsilon \approx 0.1069$.

5 Reconstructing trees

The proof of Theorem 3 is split into three parts. First, we address the recognition problem in Section 5.2 and prove Theorem 6.

Next, reconstruction is split into two cases depending on whether the tree T contains a path that is long relative to the size of the graph n and the size of each card ℓ . Let the *length* of a path P be the number of edges in P, or equivalently |V(P)| - 1. The *diameter* of a graph G is the maximum distance between two vertices in G, and for a tree T this is the same as the length of a longest path. In particular, we will refer to the aforementioned cases as the high diameter and low diameter cases.

Assuming we have determined that T is a tree, the high diameter case is handled by the following lemma which we prove in Section 5.3.

Lemma 12. Let $n \geq 3$ and $\ell, k \in [n]$ with $k > 4\sqrt{\ell} + 2(n - \ell)$. If T is an n-vertex tree with diameter k - 1, then T can be reconstructed from its ℓ -deck provided $\ell \geq \frac{2n}{3} + \frac{4}{9}\sqrt{6n + 7} + \frac{11}{9}$.

If T has low diameter, then we instead use the following lemma which we prove in Section 5.4.

Lemma 13. Suppose that T is a tree on $n \geq 3$ vertices with diameter k-1. Then T can be reconstructed from its ℓ -deck for any $\ell \in [n]$ such that $n-\ell < \frac{n-3k+1}{3}$ if k is odd or $n-\ell < \frac{n-3k-1}{3}$ if k even.

For all three results, we crucially keep track of copies of fixed graphs in T that have a specified distinguished subgraph. We think of these as extensions of copies of that subgraph. In the spirit of Bondy and Hemminger's Counting Theorem discussed in Section 2.2, we show that it is possible to reconstruct the number of such extensions from the ℓ -deck under certain conditions. This strategy may be of independent interest, and is introduced in Section 5.1.

The proof of Theorem 3 then amounts to verifying that the assumptions are sufficient for recognition, and that our definitions of high and low diameter together cover the full range.

Proof of Theorem 3. Let k be the number of vertices in the longest path in T. The conditions on ℓ and n imply that $\ell \geq \frac{2n}{3} + \frac{4}{9}\sqrt{6n+7} + \frac{11}{9}$. This allows us to recognise that T is a tree by Theorem 6, and moreover that T is reconstructible by Lemma 12 when $k > 4\sqrt{\ell} + 2(n-\ell)$. For the remaining k, we show that the conditions of Lemma 13 are then satisfied. It suffices to verify that $n-\ell < \frac{n-3k-1}{3}$. The right hand side is decreasing in k, and now $k \leq 4\sqrt{\ell} + 2(n-\ell)$, so Lemma 13 applies provided

$$n - \ell < \frac{n - 12\sqrt{\ell} - 6(n - \ell) - 1}{3}$$

which is equivalent to our assumed condition

$$\ell > \frac{8n}{9} + \frac{4}{9}\sqrt{8n+5} + 1.$$

5.1 Counting extensions

Given a graph H, we define an H-extension to be a pair $H_e = (H^+, A)$ where H^+ is a graph and $A \subseteq V(H^+)$ is a subset of vertices with $H^+[A] \cong H$. The idea is that H^+ may contain multiple copies of H as a subgraph, so we are picking out one in particular. The order of $H_e = (H^+, A)$ is $|H_e| = |V(H^+)|$.

We will usually work with H-extensions in a setting where H is an induced subgraph of an ambient graph G, and in this case a natural family of H-extensions can be obtained by considering neighbourhoods. Specifically, for $d \in \mathbb{N}$, the (closed) d-ball of an induced subgraph H of a graph G is

$$B_d(H,G) = G[\{v \in V(G) : d_G(v,H) \le d\}],$$

the subgraph induced by the set of vertices of distance at most d from H including the vertices of H itself. It is useful to view the d-ball of H as the H-extension $(B_d(H,G),V(H))$.

Two H-extensions (G_1, A_1) and (G_2, A_2) are isomorphic if there is a graph isomorphism $\varphi : G_1 \to G_2$ with $\varphi(A_1) = A_2$. Let $m_d(H_e, G)$ be the number of copies of H in G whose d-ball is isomorphic (as an H-extension) to H_e . In addition, we say that an H-extension (H^+, A) is a sub-H-extension of (H^{++}, B) if H^+ is an induced subgraph of H^{++} and H^+ and H^+ is an induced subgraph of H^+ and H^+ and H^+ is an induced subgraph of H^+ in the subgraph of H^+ is an induced subgraph of H^+ and H^+ in the subgraph of H^+ is an induced subgraph of H^+ in the subgraph of

Our key counting result for extensions states that it is possible to reconstruct $m_d(H_e, G)$ from the ℓ -deck provided the d-balls of all copies of H are small enough to appear on a card.

Lemma 14. Let $\ell, d \in \mathbb{N}$ and let G be a graph on at least $\ell + 1$ vertices. For any graph H on at most $\ell - 1$ vertices, at least one of the following conditions must hold:

- 1. There is a copy of H in G whose d-ball in G has at least ℓ vertices.
- 2. For any H-extension H_e , we can reconstruct $m_d(H_e, G)$ from the ℓ -deck of G.

Proof. Let \mathcal{H} denote the set of graphs H^+ such that $|V(H^+)| \leq \ell$, and there is a copy H' of H in H^+ such that all vertices of H^+ are at distance (in H^+) at most d from H'. These represent all possible d-neighbourhoods of H with at most ℓ vertices, and in particular, \mathcal{H} contains all actual d-balls of copies of H in G with at most ℓ vertices. Note that it is not necessary (nor guaranteed) that all copies of H in H^+ satisfy the above distance condition, rather only that there is at least one such copy.

For any $H^+ \in \mathcal{H}$, we can reconstruct $n_{H^+}(G)$ from the ℓ -deck using Lemma 8. We can also recognise (from the ℓ -deck) whether Condition 1 of Lemma 14 holds. Suppose that it does not hold, meaning no copy of H has a d-ball containing more than $\ell - 1$ vertices. Then set

$$k = \max\{|V(H^+)| : H^+ \in \mathcal{H}, \ n_{H^+}(G) > 0\}.$$

For a fixed $H^+ \in \mathcal{H}$ with $|V(H^+)| = k$, we observe that every copy H' of H for which $B_d(H', H^+) \cong H^+$ also satisfies $B_d(H', G) \cong H^+$ by the maximality of k and the definition of \mathcal{H} .

Let \mathcal{H}_e denote the set of isomorphism classes of H-extensions (H^+, A) with $H^+ \in \mathcal{H}$. By the preceding observation, if $H_e = (H^+, A) \in \mathcal{H}_e$ with $|H^+| = k$, then

$$m_d(H_e, G) = n_{H^+}(G)m_d(H_e, H^+),$$
 (5.1)

the number of copies of H^+ in G times the number of copies of H in H^+ whose d-ball (within H^+) is isomorphic to H_e (as H-extensions). Both of these quantities are reconstructible from the ℓ -deck, so we are done in this case.

If $|H^+| < k$, the d-ball of H may be strictly larger than H^+ and the formula (5.1) does not apply. This can be corrected by subtracting the number of $H \subseteq H^+$ for which H^+ is not the d-neighbourhood of that copy of H in G. To count these, we select each 'maximal' d-neighbourhood in turn, and subtract one from the relevant count for each strictly smaller H^+ that it contains. Any leftover H^+ that have not been accounted for must then be maximal.

For $H'_e \in \mathcal{H}_e$ distinct from H_e , let $n(H_e, H'_e)$ give the number of sub-H-extensions of H'_e isomorphic to H_e . We claim that

$$m_d(H_e, G) = n_{H^+}(G)m_d(H_e, H^+) - \sum_{\substack{H'_e \in \mathcal{H}_e \\ |H'_e| > |H_e|}} n(H_e, H'_e)m_d(H'_e, G).$$

Note that when $|H_e| = k$, this formula agrees with (5.1). The terms $m_d(H_e, H^+)$ $n(H_e, H'_e)$ and the domain of the summation are already known to us, and we can reconstruct $n_{H^+}(G)$ for all $H^+ \in \mathcal{H}$ using Kelly's lemma. Moreover, we may assume that we have reconstructed the terms $m_d(H'_e, H^+)$ for $|H'_e| > |H_e|$ by induction with base case $|H_e| = k$, so verifying the formula will complete the proof.

The first term of the formula $n_{H^+}(G)m_d(H_e, H^+)$ counts the number of pairs $(A, B) \subseteq V(G) \times V(G)$ such that

- G[B] is a copy of H^+ and corresponds to one object counted by n_{H^+} ,
- \bullet $A \subseteq B$,
- G[A] is a copy of H and is counted by $m_d(H_e, H^+)$ for a fixed copy of H^+ (determined by B),
- B is a subset of the d-ball around A (i.e. $B \subseteq B_d(G[A], G)$) due to the definition of H-extension.

Compared to $m_d(H_e, G)$, we are overcounting whenever $B \subsetneq B_d(G[A], G)$. Thus, it just remains to verify that there are $\sum_{|H'_e|>|H_e|} n(H_e, H'_e) m_d(H'_e, G)$ pairs for which $B \neq B_d(G[A], G)$. To see this, we can think of the correction term as counting triples (A, B, C) with $A \subseteq B \subsetneq C \subseteq V(G)$ such that

- G[A] is a copy of H,
- G[B] is a copy of H^+
- $G[C] \cong B_d(G[A], G)$.

The first two conditions follow from the definition when H_e is a sub-H-extension of H'_e , and the latter follows from the definition of $m_d(H'_e, G)$. The fact that $B \subsetneq C$ follows from the strict inequality $|H'_e| > |H_e|$. Each pair (A, B) with $B \neq B_d(G[A], G)$ is in a unique such triple, namely with $C = V(B_d(G[A], G))$; if $B = B_d(G[A], G)$ then no suitable C with $B \subsetneq C$ can be found. \square

As an aside, we mention that by setting d=1 and considering the H-extension (H,V(H)) in Lemma 14, one can count the number of components isomorphic to H.

Corollary 15. Let H and G be graphs with $|V(H)| \le \ell - 1$ and n = |V(G)|. If there is no copy of H in G for which $|B_1(H,G)| \ge \ell$, then we can reconstruct the number of components of G isomorphic to H from $\mathcal{D}_{\ell}(G)$.

5.2 Recognising trees

In this section we prove Theorem 6, which allows us to recognise whether a given ℓ -deck belongs to a tree on n vertices for $\ell \geq (2n+4)/3$.

Proof of Theorem 6. Let G be a graph and suppose we are given $\mathcal{D}_{\ell}(G)$. By Kelly's Lemma (Lemma 8), we can reconstruct the number of edges m provided $\ell \geq 2$. We may suppose that m = n - 1, otherwise we can already conclude that G is not a tree. It suffices to show that we can determine whether G contains a cycle, or equivalently to determine whether G is connected.

If G has a cycle of length at most ℓ , then the entire cycle will appear on a card and we can conclude that G is not a tree. We may therefore assume that every cycle in G has length greater than ℓ . By applying Kelly's Lemma with every connected graph on ℓ vertices, we can determine whether all components of G have order at most $\ell-1$, and if so conclude that G is not a tree. We may therefore assume that the largest component in G, say A, has at least $\ell \geq (2n+4)/3$ vertices, and all other components have at most $n-\ell \leq \ell-1$ vertices.

Let $d = \lfloor \ell - n/2 - 1 \rfloor$. For a vertex $x \in V(G)$, denote the d-ball around x by $B_d(x) := B_d(\{x\}, G)$. Using Lemma 14 with H being the graph consisting of a single vertex, we find that either there is an $x \in V(G)$ with d-ball of order at least ℓ or we can reconstruct the collection of d-balls (with 'distinguished' centres).

Suppose firstly that there exists $x \in V(G)$ such that $|B_d(x)| \geq \ell$. We claim then that G is a tree. Assume towards a contradiction that there is a cycle in G. Since every cycle has length at least ℓ , any cycle in G must be contained in the largest component A. Let C be a shortest cycle in A. Note that $x \in A$, since otherwise the d-ball around x cannot have ℓ vertices (the smaller components have order at most $\ell - 1$). If $|B_d(x) \cap C| \leq 2d + 1$, then

$$|B_d(x)| \le n - |C \setminus B_d(x)| \le n - \ell + 2d + 1 \le \ell - 1$$

by our choice of d. Thus, $B_d(x) \cap C$ contains at least 2d + 2 vertices. We can choose two vertices $c_1, c_2 \in B_d(x) \cap C$ such that there is a subpath C' of

C between c_1 and c_2 that does not contain any other vertices of $B_d(x) \cap C$, allowing the possibility that C' is a single edge. Let C'' be the other path from c_1 to c_2 in C. This must contain at least 2d other vertices of $B_d(x) \cap C$, so C'' is a path of length at least 2d + 1. However, there is also a path P from c_1 to c_2 in the d-ball around x of length at most 2d, and this intersects C' only at the endpoints c_1 and c_2 . Replacing the path C'' with the path P forms a cycle which is strictly shorter than C, giving a contradiction. Hence, G cannot have any cycles and must be a tree.

We may now assume that we can reconstruct the collection of d-balls and will show how to recognise whether the graph is connected in this case. In any component of order at most $n-\ell$, there must be some vertex x such that the distance from x to any vertex in the same component is at most $(n-\ell)/2$. By our choice of ℓ and d,

$$\frac{n-\ell}{2} \le \ell - \frac{n}{2} - 2 \le d - 1.$$

Thus, if there is a component of order at most $n-\ell$ (which happens if and only if G is not a tree), then there must be a d-ball with radius at most d-1. Conversely, if we discover such a d-ball, then we know that the graph is disconnected since the d-ball must form a component due to its radius, yet has at most $\ell-1$ vertices. Hence, G is a tree if and only if all d-balls have radius d. This shows that we can recognise connectedness and completes the proof.

5.3 High diameter case

The main result in this section is Lemma 12, which states that a tree T is reconstructible from its ℓ -deck provided it contains a sufficiently long path.

Consider the collection of components of T-e as e varies over all edges, viewed as induced subgraphs. Each element R in this collection has a natural counterpart $R^c := T[V(G) - V(R)]$. Our goal is to recognise a pair (R, R^c) for which we can also deduce which vertex in each subgraph was incident to e (assuming this is the pair of components in T-e). With this information, one can easily obtain T by gluing via one extra edge between the 'indicated vertices'.

Instead of working just with copies of R (and R^c), we are specifically interested in copies which connect to the rest of the graph by a single edge. For a graph H let a leaf H-extension be a pair $H_e = (H^+, A)$ where

- H^+ is obtained by adding a single vertex connected by a single edge to a vertex of H, and
- $A \subset V(H^+)$ is such that $H^+[A] \cong H$.

This is a special case of the extensions defined in Section 5.1. Note that the 1-ball of our special component R of T gives a leaf R-extension, but there may be multiple (non-isomorphic) leaf R-extensions in T.

The extra edge in a leaf extension indicates where to glue, so we would be done if we could identify two leaf extensions $C = (C^+, V_C)$ and $D = (D^+, V_D)$ for which the vertex set of G is the disjoint union of V(C) and V(D). We demonstrate in Lemma 16 that this can be done using counts of the relevant leaf extensions in cases where these can be obtained by Lemma 14. The final step to proving Lemma 12 consists of showing that there exist suitable R and R^c in T for which Lemma 16 applies, and it is only then that we use the assumption of high diameter.

Lemma 16. Let G be a connected graph with a bridge e, and $R, R^c \subseteq G$ be the connected components of G - e. If G has no induced subgraph H isomorphic to R or R^c with $|V(B_1(H,G))| \ge \ell$, then G is reconstructible from $\mathcal{D}_{\ell}(G)$.

Proof. Given any connected graph H on at most $\ell-1$ vertices and $\mathcal{D}_{\ell}(G)$, we can check whether there is a copy of H in G with $|V(B_1(H,G))| \geq \ell$. Suppose H is a connected graph for which no such copy exists. For every leaf H-extension H_e of H, apply Lemma 14 to reconstruct $m_1(H_e, G)$. Recall that this is the number of copies of H in G whose 1-ball in G is obtained by adding an edge at a specified vertex. Let \mathcal{H} denote the set of connected graphs H for which we have now reconstructed that $m_1(H_e, G) > 0$ for at least one leaf H-extension H_e .

We may assume that $|V(R^c)| \geq |V(R)|$. Note that \mathcal{H} is reconstructible from $\mathcal{D}_{\ell}(G)$, and by assumption R and R^c are elements of \mathcal{H} . Consider all pairs (C, D) of elements in \mathcal{H} for which |V(C)| + |V(D)| = n and $|V(C)| \leq |V(D)|$. Given a leaf C-extension $C_e = (C^+, V_C)$ with $m_1(C_e, G) > 0$ and also a leaf D-extension $D_e = (D^+, V_D)$ with $m_1(D_e, G) > 0$, we will show that it is possible to determine whether $C \cong D^c$ and gluing C_e and D_e on their additional edge gives G. This will complete the proof that G is reconstructible from its ℓ -deck since the existence of such a good pair is guaranteed by the fact that (R, R^c) is necessarily among the pairs considered, and suitable leaf extensions R_e and R_e^c exist.

Fix any pair (C, D) together with leaf extensions C_e and D_e . Since D_e is a leaf extension, we know that G is obtained by adding a single edge between D and D^c where $|V(D^c)| = |V(C)|$. Let D_e^c be the other extension in this gluing. The fact that G is connected implies that D and D^c are connected. In particular, if $D' \subset D$ is a non-spanning subgraph, then $B_1(D')$ contains a vertex of V(D) - V(D'). The same holds if we replace D with D^c . This implies that any copy of C containing vertices from both D^c and D satisfies $|V(B_1(C))| \geq |V(C)| + 2$, and so does not contribute to $m_1(C_e, G)$. Since $|V(C)| = |V(D^c)|$, a copy of C cannot cover some of D^c and none of D. Hence, the only way a copy of C which contributes to $m_1(C_e, G)$ can contain vertices from D^c is if it covers all of D^c , and since $|V(C)| = |V(D^c)|$, this implies that $C \cong D^c$. There is therefore at most one leaf C-extension for which the copy of C contains vertices from D^c and it exists if and only if C_e and D_e glue on the indicated edge to give G.

Any other contributing copy of C must be contained in D, and the corresponding copy of C^+ is contained in D^+ (possibly using the extra edge).

Now let $N(C_e, D^+)$ be the number of leaf C-extensions $(C^{+'}, V_C')$ in D^+ isomorphic to C_e with $V_C' \subseteq V_D$, which can be calculated directly for our fixed C_e and D_e . By the preceding discussion, either $m_1(C_e, G) = N(C_e, D^+)$ or $m_1(C_e, G) = N(C_e, D^+) + 1$. In the latter case, the additional leaf C-extension contains all vertices of D^c (and hence $C = D^c$), and exists if and only if $C_e \cong D_e^c$. Since $m_1(C_e, G)$ and $N(C_e, D^+)$ are known, we can hence recognise whether C_e and D_e glue on the indicated edge to give G.

We are now ready to prove the main result in this section. It remains to show that Lemma 16 applies to trees with large enough diameter (depending on both n and ℓ). For this, we need to find subtrees R and S for which T has no copy of R or S with a large 1-ball; informally, we would like T to not be too star-like, and this is the case when T has a long path.

Proof of Lemma 12. Let $n \ge 3$ and $k, \ell \in [n]$ with $k > 4\sqrt{\ell} + 2(n - \ell)$ and $\ell \ge \frac{2n}{3} + \frac{4}{9}\sqrt{6n + 7} + \frac{11}{9}$.

We assume that we have already determined that T is a tree, and note that we can recognise from the ℓ -deck whether a longest path contains more than $4\sqrt{\ell} + 2(n-\ell)$ vertices. Indeed, our choice of ℓ guarantees that $\ell \geq 4\sqrt{\ell} + 2(n-\ell) + 1 > \lceil 4\sqrt{\ell} + 2(n-\ell) \rceil$.

Fix a longest path in T with k vertices. Create two rooted subtrees R and S by removing the central edge of the path if k is even, or one of the two central edges if k is odd (and rooting the subtrees at the vertex which had an incident edge removed). By Lemma 16, if T has no induced subgraph H isomorphic to R or S with $|V(B_1(H,T))| \ge \ell$, then T is reconstructible from $\mathcal{D}_{\ell}(T)$. We assume, in order to derive a contradiction, that T contains a copy S' of S with $|V(B_1(S',T))| \ge \ell$.

Set $r = n - \ell$. Let $\varphi: S \to S'$ be an isomorphism, and let P_0 be a path in R containing at least (k-1)/2 vertices which starts at the root of R. Consider the intersection of S' with the path P_0 . Since $V(S') \neq V(S)$, this intersection must be non-empty, and it must be connected since both T and S are trees, so S' and P_0 intersect on a subpath Q_0 . Moreover, the intersection of $B_1(S',T)$ and P_0 must also be a path with at most $|V(Q_0)| + 2$ vertices. This means that there are at least $|V(P_0)| - |V(Q_0)| - 2$ vertices on P_0 which are not in $B_1(S',T)$. By assumption we have $|V(B_1(S',T))| \geq n-r$ meaning T has at most r vertices not in $B_1(S',T)$, so it follows that $|V(Q_0)| \geq |V(P_0)| - r - 2$.

Now let P_1 be the path $\varphi^{-1}(V(Q_0))$ in S and note that P_1 is vertex-disjoint from P_0 as P_0 is contained in R. Define Q_1 to be the intersection of S' with P_1 , which is again a path. Furthermore, the intersection of $B_1(S',T)$ and P_1 is also a path, this time with at most $|V(Q_1)| + 2$ vertices. The number of vertices of P_1 and P_0 which are not in $B_1(S',T)$ is at least $|V(P_0)| + |V(P_1)| - |V(Q_0)| - |V(Q_1)| - 4$, which gives the inequality $|V(Q_0)| + |V(Q_1)| \ge |V(P_0)| + |V(P_1)| - r - 4$. Since $|V(Q_0)| = |V(P_1)|$, this becomes $|V(Q_1)| \ge |V(P_0)| - r - 4$.

We now continue iteratively to build two sequences of paths: given P_i , define $Q_i := S' \cap P_i$ which is a subpath of P_i and then let $P_{i+1} := \varphi^{-1}(V(Q_i))$ which is a path in S. Note that P_{i+1} is disjoint from P_0, \ldots, P_i . Since P_0 is contained in P_0, \ldots, P_{i+1} cannot intersect P_0 . If P_{i+1} intersects a path P_j , then

 Q_i must intersect Q_{j-1} which in turn implies P_i intersects P_{j-1} . Hence, the paths are disjoint by induction. By the finiteness of T, we must eventually reach a j such that $|V(Q_{j-1})| = |V(P_j)| = 0$. At this point, we have disjoint paths P_1, \ldots, P_j in S that satisfy $|V(P_i)| = |V(Q_{i-1})| \ge |V(P_0)| - r - 2i$ for all $i = 1, \ldots, j$. In particular, setting i = j to use the fact that $|V(P_j)| = 0$ shows that $j \ge (|V(P_0)| - r)/2$. We may then calculate

$$|V(S)| \ge |V(P_1)| + \dots + |V(P_j)|$$

$$\ge \sum_{i=1}^{\lfloor (|P_0| - r)/2 \rfloor} (|P_0| - r - 2i)$$

$$= (|P_0| - r) \left\lfloor \frac{|P_0| - r}{2} \right\rfloor - 2 \binom{\lfloor (|P_0| - r)/2 \rfloor + 1}{2}$$

$$= \left\lfloor \frac{|P_0| - r}{2} \right\rfloor \left\lceil \frac{|P_0| - r - 2}{2} \right\rceil$$

$$\ge \frac{(|P_0| - r)(|P_0| - r - 2)}{4},$$

where we have used $|P_0|$ as shorthand for $|V(P_0)|$.

Since $|V(S)| \leq n - |V(P_0)|$, we must have $|V(P_0)| \leq \sqrt{4n - 4r + 1} + r - 1$ and $k \leq 2|V(P_0)| + 1 \leq 2\sqrt{4n - 4r + 1} + 2r - 1$. Finally, note that $2\sqrt{x + 1} - 1 \leq 2\sqrt{x}$ for all $x \geq 1$ to find $k \leq 4\sqrt{\ell} + 2r$, a contradiction. The same argument shows that T has no copy R' of R with $|V(B_1(R',T))| \geq \ell$. Hence, by Lemma 16 we can reconstruct T from $\mathcal{D}_{\ell}(T)$.

5.4 Low diameter

Throughout this section, we will assume that T has n vertices and $r := n - \ell < \frac{n-3k+1}{3}$, where k is the number of vertices in a longest path in T. This means that $k+1 \le \ell$ so we can reconstruct k from the ℓ -deck.

If k is odd, the *centre* of T is the vertex in the middle of each longest path, and if k is even, the centre consists of the two middle vertices. The centre is unique, so in particular it does not depend on the choice of longest path. Let us assume for now that T has a unique central vertex, leaving the even case to be handled later by subdividing the central edge. Given a vertex $u \in T$ with neighbours v_1, v_2, \ldots, v_a , let the *branches* at u be the rooted subtrees b_1, b_2, \ldots, b_a where b_i is the component of T - u that contains v_i , rooted at v_i .

An end-rooted path is a path rooted at an endvertex. In this section, all longest paths P_k will be rooted at the central vertex c, and are hence not end-rooted, whilst all of the shorter paths mentioned will be end-rooted. Given two rooted trees T_1 and T_2 with roots u and v respectively, let $T_1 \frown T_2$ denote the (unrooted) tree given by adding an edge between u and v (see Figure 2).

By restricting our attention to the cards that have diameter k-1, we may assume that we can always identify the centre of the graph. Our basic strategy is to reconstruct the branches at the centre separately, knowing that we can later join them together using the centre as a common point of reference. This can be done via a counting argument when all branches at the centre have

Figure 2: An example of the tree grafting operation $T_1 \frown T_2$.

at most $\ell-k$ vertices, but when one branch is 'heavy' and contains many (at least $\ell-k$) of the vertices a slightly more finicky argument is required to reconstruct the heavy branch which cannot be seen on a single card. It is possible to recognise these cases from the ℓ -deck, a statement which we prove as part of Lemma 13. As such, we simply state Lemma 17 and Lemma 18 with the assumption that we know a priori whether or not all branches have less than $\ell-k$ vertices.

Lemma 17. Let T be a tree with even diameter k-1. Suppose it is known that every branch from the centre has fewer than $\ell-k$ vertices. Then T is reconstructible from the subset of the ℓ -deck consisting only of cards that contain a copy of P_k .

Proof. Let c be the central vertex of T and $B = \{b_1, \ldots, b_a\}$ be the branches at c that we wish to reconstruct. We first reconstruct all branches that are not end-rooted paths. For any fixed b which is a rooted tree but not an end-rooted path, we will use Lemma 9 to count each branch at c isomorphic to b once for every P_k in T. Dividing this number, denoted N_b , by the number $n_{P_k}(T)$ of copies of P_k in T then tells us the multiplicity of b in T (which may be zero). Note that $n_{P_k}(T)$ can be determined by Kelly's Lemma as $k < \ell$ (recall that we are assuming $n - \ell < \frac{n-3k+1}{3}$), so it suffices to reconstruct N_b .

Fix b to be any rooted tree that is not an end-rooted path. We will actually determine N_b in two parts. Let π_b be the number of pairs consisting of one copy b' of b that is a branch at c, and one copy P'_k of a longest path that is disjoint from b'. Similarly, let τ_b count pairs (b', P'_k) where the copy P'_k intersects b'. It is clear that $N_b = \pi_b + \tau_b$.

We begin with π_b . Let \mathcal{G} be the family of all n-vertex trees with diameter k-1 and where all branches from the centre have fewer than $\ell-k$ vertices, and let \mathcal{F} be the family of graphs of the form $P_k \cap S$, where S is a rooted tree that is not an end-rooted path and P_k is rooted at its central vertex (see Figure 3). Fix $G \in \mathcal{G}$ and consider some $F \in \mathcal{F}$. If $F' = P'_k \cap S'$ is a copy of F in G, then it is contained in a unique maximal \mathcal{F} -subgraph, namely P'_k together with the unique branch b' containing S'. Also, since every branch has fewer than $\ell - k$ vertices by assumption, these maximal elements have fewer than ℓ vertices. Thus, by Lemma 9 we can reconstruct the number of \mathcal{F} -maximal copies of each F in G from $\mathcal{D}_{\ell}(G)$. If this is non-zero for $F = P_k \cap S$ then G has a branch isomorphic to S (but the converse may not hold).

Now let $F = P_k \frown b$. Since $T \in \mathcal{G}$ and $F \in \mathcal{F}$, we may reconstruct the number of \mathcal{F} -maximal copies of F in T as above. This is precisely π_b . To see

this, consider a particular copy b' of b that occurs as a branch and observe that F occurs as a maximal \mathcal{F} -subgraph with this b' as the copy of b once for every longest path in the tree which avoids b'.

There is a similar argument to determine τ_b . Keeping \mathcal{G} as before, let \mathcal{F}' be the family of graphs of the form $P_{(k-1)/2+1} \frown S$ where S is a rooted tree which contains an end-rooted $P_{(k-1)/2}$, but is not itself an end-rooted path. Again, an element $F = P_{(k-1)/2+1} \frown S$ is \mathcal{F}' -maximal when S is an entire branch, and for any $G \in \mathcal{G}$ and $F \in \mathcal{F}'$ we can reconstruct the number of \mathcal{F}' -maximal copies of each F in G by Lemma 9. This time there is at least one \mathcal{F}' -maximal copy of $F = P_{(k-1)/2+1} \frown S$ if and only if G has a branch isomorphic to S (although we do not need to use both directions explicitly).

Let $m_{F'}$ be the number of \mathcal{F}' -maximal copies of $F' = P_{(k-1)/2+1} \frown b$ in T, which we can reconstruct as argued above. A particular copy b' of b that occurs as a branch contributes one to $m_{F'}$ for each copy of $P_{(k-1)/2+1}$ that starts at the central vertex c and is disjoint from b'. Thus, letting $n_{P^{\bullet}}(b)$ be the number of end-rooted copies of $P_{(k-1)/2+1}$ in b' with roots coinciding (this is the same for any copy of b and does not depend on the deck), one can construct all of the copies of longest paths that intersect b' by gluing together one $P_{(k-1)/2+1}$ from inside b' and one that is disjoint from it. Doing so for every copy of b shows that we can reconstruct $\tau_b = m_{F'} \cdot n_{P^{\bullet}}(b)$. The number of copies of b that occur as a branch can then be reconstructed as

$$\frac{N_b}{n_{P_k}(T)} = \frac{\pi_b + \tau_b}{n_{P_k}(T)}.$$

It remains to determine the number of branches isomorphic to an endrooted path P_i , which we do using the fact that we know all of the other branches not of this form. Starting with j = (k-1)/2, this being the maximum possible length of a path branch, we compare the number of copies of $P_{(k-1)/2+j+1}$ in T to the number of copies in the graph \widetilde{T} obtained by gluing all of the known branches at a single vertex c. The former count can be obtained by Kelly's Lemma, and the latter directly from inspecting \widetilde{T} . If there are more copies in T than in the current \widetilde{T} , then there must be at least one more end-rooted P_j as a branch so we add one copy to our list of known branches. We then repeat this step with j fixed but \widetilde{T} updated to include this new path branch. If the counts match, meaning all copies of $P_{(k-1)/2+j+1}$ in G are already present in \widetilde{T} , then reduce j by 1 and continue iteratively until j=0. Note that it is important that we handle the different path lengths in this order. At this point, we have reconstructed all branches and the final \widetilde{T} is exactly T. \square

We now consider the case where one of the branches contains a lot of vertices. Since this branch contains so many vertices, we can find a card showing all the other branches in their entirety. This reduces the problem to reconstructing the large branch. We will move the "centre" one step inside the branch and continue doing this until no branch is too big. At this point we can apply the proof of the previous lemma (with some minor modifications) to reconstruct the branches off the new "centre". The condition that T has

Figure 3: Elements of \mathcal{F} and \mathcal{F}' .

Figure 4: A longest path that avoids b' (green) contributes one to the number of times $P_k \frown b$ occurs as a maximal subgraph. A longest path that uses b' (magenta) consists of a $P_{(k-1)/2+1}$ outside b' and a $P_{(k-1)/2}$ inside.

small diameter ensures that we do not have to take too many steps away from the true centre in this process. Recall that $r = n - \ell < \frac{n-3k+1}{3}$ by assumption.

Lemma 18. Let T be a tree of even diameter k-1. Suppose it is known that T has a branch with at least $\ell-k$ vertices. Then T is reconstructible from the subset of the ℓ -deck consisting only of cards which contain a copy of P_k .

Proof. Let c be the central vertex of T. First, note that $\ell-k=n-r-k>2n/3$, so there can be at most one branch with at least $\ell-k$ vertices. Call this the heavy branch. The total number of vertices in the remaining branches is at most k+r. Taking a connected card in which the maximum number of vertices in any branch is as small as possible among those which contain a copy of P_k , we see that the heavy branch must still have at least n-2r-k vertices visible on the card whilst each of the other branches have at most k+r vertices. Thus, on any card containing P_k we can directly identify which is the heavy branch and the entirety of all of the smaller branches.

Set $c_0 := c$. To reconstruct the heavy branch, we construct a sequence of vertices c_0, c_1, c_2, \ldots to act as new "centres" until the branches at some c_j are all small enough for us to apply Lemma 9. Let c_1 be the vertex in the heavy branch adjacent to c_0 . If the branches at c_1 , which we call 1-branches, all have less than $\ell - k - 1$ vertices, then we terminate with j = 1. Otherwise, take a connected card containing a copy of P_k in which the heaviest 1-branch is as small as possible. The heaviest branch has at least $\ell - k - r - 1$ vertices, which is greater than the maximum number of vertices in any other branch (now k + r + 1). This ensures that the heaviest 1-branch is contained in the original heavy branch, and we can identify all smaller 1-branches. Now set

Figure 5: Potential elements of \mathcal{F} along with their 'moving centres'.

 c_2 to be the vertex in the heaviest 1-branch adjacent to c_1 and repeat the argument. In the *i*th step, we terminate if every branch from c_i has weight less than $\ell - k - i$, and otherwise completely determine all but the heaviest *i*-branch and proceed by taking a step into this *i*-branch. To do this we only require $\ell - k - r - i > k + r + i$, which holds for $i \le (k - 1)/2$ by our choice of r. Suppose the process terminates at the *j*th step. Since the longest path in G contains k vertices, the longest path in the heavy branch with one endvertex at the root contains at most (k + 1)/2 vertices and hence $j \le (k - 1)/2$.

The remainder of the argument closely follows the proof of Lemma 17. Let \mathcal{G} be the family of trees of n-vertex trees with diameter k-1, and \mathcal{F} be the family of graphs that can be constructed as follows. Let $i \in \{0, \ldots, j-1\}$, let v_1, \ldots, v_k be the vertices in a P_k and let u_1, \ldots, u_{j-i} be the vertices in a (disjoint) P_{j-i} . A graph in \mathcal{F} is formed by adding an edge from u_1 to $v_{\frac{k+1}{2}+i}$, and then attaching a rooted tree S which is not an end-rooted path to the vertex u_{j-i} . The condition that the attached tree is not a path ensures that it is easy to identify P_k and the added tree in any \mathcal{F} -graph. An example is given in Figure 5.

Each \mathcal{F} -subgraph of $G \in \mathcal{G}$ is contained in a unique maximal \mathcal{F} -subgraph, given by extending the tree attachment to the whole of the relevant branch at u_{j-i} . Applying Lemma 9 allows us to determine the number of occurrences of each maximal \mathcal{F} -subgraph, as we did in the proof of Lemma 17.

At this point, each branch b' has contributed one to the relevant count for each copy of P_k which does not use b', so we again need to determine the number of P_k which use b'. This can be done using an identical argument to that in Lemma 17 except replacing c with c_j , replacing $P_{(k-1)/2+1} \cap S$ with $P_{(k-1)/2+j+1} \cap S$ and suitably adjusting S.

We have now identified the total number of branches of each isomorphism class (except those which are end-rooted paths), although we do not know they are all branches at c_j . However, we have already reconstructed all of the tree except for the branches at c_j , so we can subtract the counts of all the appropriate branches not at c_j from the total: the remainder must be attached at c_j .

Finally, the end-rooted paths attached at c_j can be reconstructed using the argument from the end proof of Lemma 17.

Proof of Lemma 13. Let T be an n-vertex tree with diameter k-1, and hence

k vertices in any longest path. First assume that k is odd, so there is a central vertex c of T. If one of the branches at c has at least $\ell - k$ vertices, then there must be a card containing a longest path with a branch of at least $\ell - k$ vertices (the branch and the path need not be disjoint, but their union contains at most ℓ vertices). Thus we can recognise from the ℓ -deck whether there is a branch with at least at least $\ell - k$ vertices. If there is no such branch then we are done by Lemma 17, and if there is one, we are done by Lemma 18.

When k is even, we reduce to the odd case by instead considering the tree T' obtained by subdividing the central edge. Since we can recognise the central vertex in T' and hence recover T, it suffices to reconstruct T'. Moreover, we can obtain the cards in the $(\ell + 1)$ -deck of T' that contain a longest path by taking the cards in the ℓ -deck of T that contain a longest path and subdividing the central edge. These are the only cards required by Lemma 17 and Lemma 18.

6 Open problems

The example in Figure 1 shows that the conjectured lower bound for reconstructing trees of $\lfloor n/2 \rfloor + 1$ is false for n = 13, but the bound is still the best known for all other values of n. It may well be the case that the conjecture is asymptotically true, or even true exactly for large enough n.

Problem 1. Is there a function $\ell(n) = (\frac{1}{2} + o(1))n$ such that all n-vertex trees be reconstructed from their $\ell(n)$ -deck?

We also leave the following natural question open.

Problem 2. Asymptotically, what is the minimal $\ell = \ell(n)$ for which the degree sequence of every n-vertex graph can be reconstructed from the ℓ -deck?

In terms of lower bounds on $\ell(n)$, we remark that it is easy to obtain one which is polynomial in $\log n$. Indeed, each ℓ -vertex graphs appears at most $\binom{n}{\ell}$ times in the ℓ -deck, so there are at most $(n^{\ell})^{2^{\ell^2}}$ possible ℓ -decks. There are at least $\Omega(4^n/n)$ possible degree sequences [6], and hence we need

$$2^{\log_2(n)\ell 2^{\ell^2}} \ge 2^{2n - \log_2(n)} \implies \ell = \Omega(\sqrt{\log n}).$$

By considering restricted graph classes, this can be slightly improved, but it would be interesting to see whether the bound can be improved to n^{ε} for some $\varepsilon > 0$.

While Theorem 10 is tight up to constants, we do not know if the $\log(2m)$ factor is required in Lemma 11. Without it, our upper bound of $O(\sqrt{n \log n})$ would become $O(\sqrt{n})$.

Problem 3. Can the upper bound on ℓ in Lemma 11 be improved to $O(\sqrt{n})$? Lastly, we pose the following problem.

Problem 4. Let $\ell_k(n)$ be the minimum ℓ such that, for every n-vertex graph G, whether G is k-colourable can be recognised from the ℓ -deck. What are the asymptotics of $\ell_k(n)$?

A special case that would make an interesting starting point is to recognise whether the graph is bipartite. A lower bound of $\lfloor n/2 \rfloor$ follows from the example of Spinoza and West [22] mentioned in the introduction (consider a path and the disjoint union of an odd cycle and a path). Manvel [18] proved that the (n-2)-deck suffices, but it is possible that a non-constant or even linear number of vertices could be removed from the cards in this case as well.

Acknowledgements We would like to thank Doug West for helpful suggestions.

References

- [1] J. Bondy. On Kelly's congruence theorem for trees. Mathematical Proceedings of the Cambridge Philosophical Society, 65(2):387–397, 1969.
- [2] J. A. Bondy. A graph reconstructor's manual. Surveys in Combinatorics, London Mathematical Society Lecture Note Series, 166:221–252, 1991.
- [3] J. A. Bondy and R. L. Hemminger. Graph reconstruction—a survey. *J. Graph Theory*, **1**(3):227–268, 1977.
- [4] P. Borwein, T. Erdélyi and G. Kós. Littlewood-type problems on [0, 1]. *Proc. Lond. Math. Soc.*, **79**(1):22–46, 1999.
- [5] P. Borwein and C. Ingalls. The Prouhet-Tarry-Escott problem revisited. Enseign. Math., 40(2):3–27, 1994.
- [6] J. M. Burns. The number of degree sequences of graphs. PhD thesis, Massachusetts Institute of Technology, 2007.
- [7] Z. A. Chernyak. Some additions to an article by B. Manvel: "Some basic observations on Kelly's conjecture for graphs" (Russian). *Vestsi Akad. Navuk BSSR Ser. Fz.-Mat. Navuk*, **126**:44–49, 1982.
- [8] W. B. Giles. Reconstructing trees from two point deleted subtrees. *Discrete Math.*, **15**(4):325–332, 1976.
- [9] D. L. Greenwell and R. L. Hemminger. Reconstructing the *n*-connected components of a graph. *Aequationes Math.*, **9**:19–22, 1973.
- [10] F. Harary and E. Palmer. The reconstruction of a tree from its maximal subtrees. *Canadian Journal of Mathematics*, **18**:803–810, 1966.
- [11] P. J. Kelly. On isometric transformations. PhD thesis, University of Wisconsin, 1942.

- [12] P. J. Kelly. A congruence theorem for trees. Pacific J. Math., 7(1):961–968, 1957.
- [13] A. V. Kostochka, M. Nahvi, D. B. West and D. Zirlin. 3-regular graphs are 2-reconstructible. *arXiv:1908.01258* preprint, 2019.
- [14] A. V. Kostochka, M. Nahvi, D. B. West and D. Zirlin. Degree lists and connectedness are 3-reconstructible for graphs with at least seven vertices. *Graphs Combin.*, **36**:491–501, 2020.
- [15] A. V. Kostochka, M. Nahvi, D. B. West and D. Zirlin. Acyclic graphs with at least $2\ell+1$ vertices are ℓ -recognizable. arXiv:2103.12153 preprint, 2021.
- [16] J. Lauri. Proof of Harary's conjecture on the reconstruction of trees. Discrete Mathematics, 43(1):79–90, 1983.
- [17] B. Manvel. Reconstruction of trees. Canadian Journal of Mathematics, 22(1):55–60, 1970.
- [18] B. Manvel. Some basic observations on Kelly's conjecture for graphs. *Discrete Math.*, 8(2):181–185, 1974.
- [19] W. Myrvold. The ally-reconstruction number of a tree with five or more vertices is three. *Journal of Graph Theory*, **14**(2):149–166, 1990.
- [20] V. Nýdl. A note on reconstructing of finite trees from small subtrees. *Acta Universitatis Carolinae*. *Mathematica et Physica*, **31**(2):71–74, 1990.
- [21] V. Nýdl. Finite undirected graphs which are not reconstructible from their large cardinality subgraphs. *Discrete Math.*, **108**(1-3):373–377, 1992.
- [22] H. Spinoza and D. B. West. Reconstruction from the deck of k-vertex induced subgraphs. J. Graph Theory, 90(4):497-522, 2019.
- [23] R. Taylor. Reconstructing degree sequences from k-vertex-deleted subgraphs. Discrete Math., 79(2):207-213, 1990.
- [24] S. M. Ulam. A Collection of Mathematical Problems, volume 8 of Interscience tracts in pure and applied mathematics. Interscience Publishers, 1960.