Logical Expression through avr-gcc

Md. Naveed Ahmed

CONTENTS TABLE I

1	Problem	Statement 1	
L	1 TODICIII	Statement	

- 2 Components 1 3 Solution:
- - Truth table for Boolean Logic 1 Based on Demorgans Law
- 4 Connections 2

1 PROBLEM STATEMENT

Question-14: In the logic circuit shown in the figure, Y is given by

 $\overline{\overline{A}} = A \tag{2}$

1

As per the boolean circuit A,B,C and D are inputs and Y is the output. The equivalent expression of the boolean logic is

$$Y = \overline{\overline{AB}.\overline{CD}}$$

- (a) Y = ABCD
- (b) Y = (A + B) (C + D)
- (c) Y = A + B + C + D
- (d) Y = AB + CD

By using equation(1) then the output Y is

$$Y = \overline{\overline{AB}} + \overline{\overline{CD}}$$

2 Components

Component	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Seven Segment		1
Display		
Decoder	7447	1
Jumper Wires	M-M	20
Breadboard		1

Again by using equation(2) then the output Y is

$$Y = AB + CD$$

3.2 Truth table for Boolean Logic

A	В	С	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

TABLE II

4 Connections

Input	A	В	С	D	
Output					Y
Arduino	2	3	4	5	13

TABLE III

5 Procedure

5.1 LED Blinking

- 1) Make connections as per TABLE-III
- 2) Connect Arduino ground to the led resistor end
- 3) Connect Arduino 8 pin to the LED Positive
- 4) In arduino we are having pins A,B,C,D.here we are using port B pin 8 is taken as output pin.
- 5) port D pins 2,3,4,5 pins are taken as a inputs. portD pins 2,3,4,5 pins are connected vcc or gnd in breadboard as per truth table
- 6) Execute the following code
- 7) Observe the results as per below TABLE II by changing input values

Observe the circuit and verify the program by executing the link provided below.

https://github.com/naveed790/FWC/