

Outline of todays lecture

1	Classification	of	hydra	ulic	contro	Is

- 1.1 Resistance control
- 1.2 Displacement control
- 2 Hydrostatic transmission
- 3 Power split transmission
- 4 Thermo management
- 5 Summary

Structure of hydraulic systems

Structure of hydraulic systems

Classification of hydraulic controls

- Classification of systems in 4 quadrans
 - Supply:
 - Impressed flow
 - Impressed pressure
 - Control:
 - Resistance control
 - Displacement control

Control

		Resistance	Displacement
	MOIL		III
Ovingação	Liessale		IV

4 Quadrans

Classification of common types of hydrauli controls

Load conditions of a hydraulic linear drive

Passive Loads
Active Loads

Outline of todays lecture

- 1 Classification of hydraulic controls
 - 1.1 Resistance control
 - 1.2 Displacement control
- 2 Hydrostatic transmission
- 3 Power split transmission
- 4 Thermo management
- 5 Summary

Example Q I: Power Steering

Source: www.kfz-tech.de

Example Q II: Valve controlled linear drive

Outline of todays lecture

- 1 Classification of hydraulic controls
 - 1.1 Resistance control
 - 1.2 Displacement control
- 2 Hydrostatic transmission
- 3 Power split transmission
- 4 Thermo management
- 5 Summary

Example Q III: Displacement control – primary control (hydrostatic transmission)

Example Q IV: Impressed pressure + displacement control

Outline of todays lecture

- 1 Classification of hydraulic controls
 - 1.1 Resistance control
 - 1.2 Displacement control
- 2 Hydrostatic transmission
- 3 Power split transmission
- 4 Thermo management
- 5 Summary

Transformation features of hydrostatic transmission

Transformation features of hydrostatic transmission

Source: Bosch Rexroth

Methods of interconnection

Methods of interconnection

Half open / closed loop

Hydrostatic transmission in a closed circuit

- 1 Adjustable pump
- 2 Adjustable motor
- 3 Feed pump
- 4 PRV feed circuit

- 5 PRV flushing circuit
- 6 PRVs main circuit
- 7 Flushing valve

Lossless hydrostatic transmission with separate adjustment

- Starting from standstill with maximum torque
- Speed control via pump and subsequent motor adjustment

$$n_1 = \text{const.}$$
 $V_{1 \text{ max}} = V_{2 \text{ max}}$
 $M_{2 \text{ max}} = \frac{V_{2 \text{ max}}}{2\pi} \cdot \Delta p_{\text{max}}$

Lossless hydrostatic transmission with compound adjustment

$$n_1 = const.$$

$$V_{1 \text{ max}} = V_{2 \text{ max}}$$

$$M_{2 \text{ max}} = \frac{V_{2 \text{ max}}}{2\pi} \cdot \Delta p_{\text{max}}$$

Serial and parallel motor connection

Serial connection

Parallel connection

Outline of todays lecture

1	Cla	assifica	tion	of	hvdi	raulic	contro	S
		assilioa		O1	ııyaı	adilo	COLLIC	

- 1.1 Resistance control
- 1.2 Displacement control
- 2 Hydrostatic transmission
- 3 Power split transmission
- 4 Thermo management
- 5 Summary

Input-coupled power split transmission

Rotational speed ratio= const.

Torque ratio= const.

Output-coupled power split transmission

Example: Fendt Vario

Source: Fendt

Output-coupled power split transmission

$$Q_1 = \alpha_1^* V_1 n_e \frac{r_e}{r_f}; \quad with \quad \alpha_1^* = \frac{\alpha_1}{\alpha_{1max}}$$

$$Q_2 = \alpha_2^* V_2 n_h \frac{r_h}{r_g}; \quad with \quad \alpha_2^* = \frac{\alpha_2}{\alpha_{2max}}$$

Power flow

Basic ratio

$$n_a = \frac{r_d}{r_c + r_d} n_h$$

Pa Ma

Section I

$$n_a < \frac{r_d}{r_c + r_d} n_h$$
 1 – Motor 2 – Pump

Section II

$$n_a > \frac{r_d}{r_c + r_d} n_h$$
 1 – Pump 2 – Motor

hydrostatic active power

Characteristics of a hydrostatic transmission with separate adjustment

Outline of todays lecture

- 1 Classification of hydraulic controls
 - 1.1 Resistance control
 - 1.2 Displacement control
- 2 Hydrostatic transmission
- 3 Power split transmission
- 4 Thermo management
- 5 Summary

Losses in a hydraulic system

Losses in a hydraulic system

Hydraulic power of a pump: $P_{1A} = \Delta p_1 \cdot Q_{1eff}$

Power losses of a pump: $P_{1V} = \Delta p_1 \cdot Q_{1eff} \cdot (\frac{1}{\eta_{1ges}} - 1)$

Pressure losses in pipings:

$$\Delta p' = \sum \lambda \cdot \frac{l}{d} \cdot \frac{\rho}{2} \cdot v^2$$

Pressure losses in e.g. elbows:

$$\Delta p^{\prime\prime} = \sum \xi \cdot \frac{\rho}{2} \cdot v^2$$

Losses in a hydraulic system

Pressure difference at a motor:

$$\Delta p_2 = \Delta p_1 - \Delta p' - \Delta p'' = (1 - b_1) \cdot \Delta p_1$$

 $(b_1 = Part of pressure losses in the piping)$

Flow rate of a motor:

$$Q_{2eff} = (1 - b_2) \cdot Q_{1eff}$$

 $(b_2 = Part of splitted flow rate)$

Losses in the piping:

$$P_{LV} = \Delta p_1 \cdot Q_{1eff} \cdot (1 - (1 - b_1) \cdot (1 - b_2))$$

Losses of the motor:

$$\begin{aligned} P_{2V} &= \Delta p_2 \cdot Q_{2eff} \cdot (1 - \eta_{2ges}) \\ &= \Delta p_1 \cdot Q_{1eff} \cdot (1 - b_1) \cdot (1 - b_2) \cdot (1 - \eta_{2ges}) \end{aligned}$$

Total power losses:

$$\begin{split} P_{Vges} &= P_{1E} - P_{2A} = P_{IV} + P_{LV} + P_{2V} \\ &= \Delta p_1 \cdot Q_{1eff} \cdot \left[\frac{1}{\eta_{1ges}} - (1 - b_1) \cdot (1 - b_2) \cdot \eta_{2ges} \right] \end{split}$$

Heating and cooling characteristics of a hydraulic system

Power losses

Heat emission capacity

Heat storage capacity

Heating and cooling characteristics of a hydraulic system

Heat emission capacity:

$$B = \sum k_i \cdot A_i = \left[\frac{J}{m^2 s K} m^2 \right]$$

Heat storage capacity:

$$C = \sum c_i m_i = \left[\frac{J}{kgK} kg \right]$$

Thermal balance:

$$P_{Vges}dt = Cd\theta + (\theta - \theta_A)Bdt$$

Solution of the differential equation:

$$\theta = \theta_A + \frac{P_{Vges}}{B} \left(1 - e^{-t/\tau} \right)$$

with:
$$\tau = \frac{C}{B}$$

Final temperature $(t \to \infty)$:

$$\theta_E = \theta_A + \frac{P_{Vges}}{B}$$

Temperature rise at the beginning of the heating process:

$$\frac{d\vartheta}{dt}(t=0) = \frac{P_{Vges}}{B} \cdot \frac{1}{\tau} = \frac{P_{Vges} \cdot B}{B \cdot C} = \frac{P_{Vges}}{C}$$

Cooler

	Water cooling	Air cooling
Advantage	 low space requirements low purchasing cost good controllability silent operation 	 low operating costs, leakage visible immediately small installation effort
Disadvantage	 expensive water big installation effort corrosion causes consequential damage for facility and environment 	 high investment costs fan noise and draught higher space requirements fresh air and used air ducts often required

Outline of todays lecture

- 1 Classification of hydraulic controls
 - 1.1 Resistance control
 - 1.2 Displacement control
- 2 Hydrostatic transmission
- 3 Power split transmission
- 4 Thermo management
- 5 Summary

Summary

- Which basic types of hydraulic systems exist?
 - Resistance control, displacement control
 - Impressed pressure, impressed volume flow
- Which type of control is the most energetically favorable?
 - Positive displacement control, as there are no principle throttle losses
- What are the disadvantages of this type of control?
 - Expensive, slower dynamics
- What does a hydrostatic transmission consist of?
 - Pump, motor, feed pump, feed valve, pressure relief valves
- What influences the final temperature of a hydraulic system?
 - Power loss, heat dissipation capacity, cooling capacity

Thank you for your attention.

