Automate de Glushkov : régulier \implies reconnaissable

- Une expression régulière est **linéaire** si chaque lettre y apparaît au plus une fois : $a(d+c)^*b$ est linéaire mais pas ac(a+b).
- Soit L un langage. On définit :
 - $-\ P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset \}$ (premières lettres des mots de L)
 - $S(L) = \{a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
 - $-F(L) = \{u ∈ Σ² | Σ*uΣ* ∩ L ≠ ∅\}$ (facteurs de longueur 2 des mots de L)
 - L est local si, pour tout mot $u = u_1 u_2 ... u_n \neq \varepsilon$:

$$u \in L \iff u_1 \in P(L) \land u_n \in S(L) \land \forall k, u_k u_{k+1} \in F(L)$$

Il suffit donc de regarder la première lettre lettre, la dernière lettre et les facteurs de taille 2 pour savoir si un mot appartient à un langage local.

Remarques:

- $* \Longrightarrow \text{est toujours vrai donc il suffit de prouver} \longleftarrow.$
- * Définition équivalente :

$$L \text{ local} \iff L \setminus \{\varepsilon\} = (P(L) \cap S(L)) \setminus N(L)$$

où
$$N(L) = \Sigma^2 \setminus F(L)$$
.

Exemples:

- $\overline{-\text{ Si } L_2} = (ab)^* \text{ alors } P(L_2) = \{a\}, \ S(L_2) = \{b\} \text{ et } F(L_2) = \{ab, ba\}. \text{ De plus si } u = u_1u_2...u_n \neq \varepsilon \text{ avec } u_1 \in P(L), u_n \in S(L), \text{ et } \forall k, u_ku_{k+1} \in F(L) \text{ alors } u_1 = a, \ u_n = b \text{ et on montre (par récurrence) que } u = abab...ab \in {}_2. \text{ Donc } L_2 \text{ est local.}$
- Si $L_3 = a^* + (ab)^*$ alors $P(L_3) = \{a\}$, $S(L_3) = \{a, b\}$, $F(L_3) = \{aa, ab, ba\}$. Soit u = aab. La première lettre de u est dans $P(L_3)$, la dernière dans $S(L_3)$ et les facteurs de u sont aa et ba qui appartiennent à $F(L_3)$. Mais $u \notin L_3$, ce qui montre que L_3 n'est pas local.
- Un automate déterministe (Σ, Q, q_0, F, E) est **local** si toutes les transitions étiquetées par une même lettre aboutissent au même état : $(q_1, a, q_2) \in E \land (q_3, a, q_4) \in E \implies q_2 = q_4$
- Un langage local L est reconnu par un automate local.

<u>Preuve</u>: L est reconnu par (Σ, Q, q_0, F, E) où:

- $-\ Q = \Sigma \cup \{q_0\}$: un état correspond à la dernière lettre lue
- -F = S(L) si $\varepsilon \notin L$, sinon $F = S(L) \cup \{q_0\}$.
- $-\ E = \{(q_0, a, a) \ | \ a \in P(L)\} \cup \{(a, b, b) \ | \ ab \in F(L)\}$
- L'algorithme de Berry-Sethi permet de construire un automate à partir d'une expression régulière e.

Exemple avec $e = a(a+b)^*$:

- 1. On linéarise e en e', en remplaçant chaque occurrence de lettre dans e par une nouvelle lettre : $e' = e_1(e_2 + e_3)^*$
- 2. On peut montrer que L(e') est un langage local.
- 3. Un langage local est reconnu par l'automate local $A = (\Sigma, Q, q_0, F, E)$

4. On fait le remplacement inverse de 1. sur les transitions de A pour obtenir un automate reconnaissant L(e):

Automate de Thompson : régulier \implies reconnaissable

- Une ε -transition est une transition étiquetée par ε .
- Un automate avec ε -transitions est équivalent à un automate sans ε -transitions.

<u>Preuve</u>: Si $A = (\Sigma, Q, I, F, \delta)$ est un automate avec ε -transitions, on définit $A' = (\Sigma, Q, I', F, \delta')$ où :

- I' est l'ensemble des états atteignables depuis un état de I en utilisant uniquement des ε -transitions.
- $-\delta'(q, a)$ est l'ensemble des états q' tel qu'il existe un chemin de q à q' dans A étiqueté par un a et un nombre quelconque de ε (ce qui peut être trouvé par un parcours de graphe).
- L'automate de Thompson est construit récursivement à partir d'une expression régulière e :
 - Cas de base :

 $-T(e_1e_2)$: ajout d'une ε-transition depuis chaque état final de $T(e_1)$ vers chaque état initial de $T(e_2)$.

 $-T(e_1|e_2)$: union des états initiaux et des états finaux.

 $-T(e_1^*)$: ajout d'une ε -transition depuis chaque état final vers chaque état initial.

Élimination des états : reconnaissable \implies régulier

• Tout automate est équivalent à un automate avec un unique état initial sans transition entrante et un unique état final sans transition sortante.

<u>Preuve</u>: On ajoute un état initial q_i et un état final q_f et des transitions ε depuis q_i vers les états initiaux et depuis les états finaux vers q_f .

• Méthode d'élimination des états : On considère un automate A comme dans le point précédent. Tant que A possède au moins 3 états, on choisit un état $q \notin \{q_i, q_f\}$ et on supprime q en modifiant les transitions :

Exemple:

1. On commence par se ramener à un automate avec un état initial sans transition entrante et un état final sans transition sortante :

2. Suppression de l'état 1 :

3. Suppression de l'état 4 :

Avec $u = b^*ba$.

4. Suppression de l'état 3 :

5. Suppression de l'état 2 :

On obtient l'expression régulière $a|a(bu)^*bu(au|au(bu)^*bu)$, où $u=b^*ba$.

$régulier \iff reconnaissable$

- Théorème de Kleene : un langage est régulier si et seulement si il est reconnaissable par un automate.
- Les théorèmes sur les automates s'appliquent aussi aux langages réguliers, et inversement. Notamment, les langages réguliers sont stables par union, concaténation, étoile, intersection, complémentaire, différence.