Evolution of Cooperation (Section 4)

21 February 2017

► Explain extensive-form games or "game trees".

- ► Explain extensive-form games or "game trees".
- ▶ Illustration: withdrawal of later cooperation favors cooperation in repeated games.

- Explain extensive-form games or "game trees".
- Illustration: withdrawal of later cooperation favors cooperation in repeated games.
- Illustration: cooperative reputations are rewarded and favor cooperation when cost of information is low.

- Explain extensive-form games or "game trees".
- Illustration: withdrawal of later cooperation favors cooperation in repeated games.
- Illustration: cooperative reputations are rewarded and favor cooperation when cost of information is low.
- Example: using costly signaling to communicate an unobserved trait.

Chicken

	TFT	ALLD
TFT	R/ ho, R/ ho	$S + \frac{(1-\rho)P}{\rho}$, $T + \frac{(1-\rho)P}{\rho}$
ALLD	$T + \frac{(1-\rho)P}{\rho}$, $S + \frac{(1-\rho)P}{\rho}$	P/ ho, P/ ho

▶ Suppose ρ is **termination** probability (note inversion from w!).

	TFT	ALLD
TFT	R/ ho, R/ ho	$S + \frac{(1-\rho)P}{\rho}$, $T + \frac{(1-\rho)P}{\rho}$
ALLD	$T + \frac{(1-\rho)P}{\rho}$, $S + \frac{(1-\rho)P}{\rho}$	P/ ho, P/ ho

- ▶ Suppose ρ is **termination** probability (note inversion from w!).
- ▶ E.g. two TFT meet, cooperate on first round and continue for expected total duration of $1/\rho$ rounds.

	TFT	ALLD
TFT	R/ ho, R/ ho	$S + \frac{(1- ho)P}{ ho}$, $T + \frac{(1- ho)P}{ ho}$
ALLD	$T+rac{(1- ho)P}{ ho}$, $S+rac{(1- ho)P}{ ho}$	P/ ho, P/ ho

- ▶ Suppose ρ is **termination** probability (note inversion from w!).
- ▶ E.g. two TFT meet, cooperate on first round and continue for expected total duration of $1/\rho$ rounds.
- ▶ E.g. TFT meets ALLD, receives S in first round, then P until game terminates. So multiply by prob. of 2nd round, (1ρ) , and expected number of rounds at beginning of any period, $1/\rho$.

	TFT	ALLD
TFT	R/ ho, R/ ho	$S + \frac{(1-\rho)P}{\rho}$, $T + \frac{(1-\rho)P}{\rho}$
ALLD	$T+rac{(1- ho)P}{ ho}$, $S+rac{(1- ho)P}{ ho}$	P/ ho, P/ ho

ightharpoonup Suppose au is fraction playing TFT

	TFT	ALLD
TFT	R/ ho, R/ ho	$S + \frac{(1-\rho)P}{\rho}$, $T + \frac{(1-\rho)P}{\rho}$
ALLD	$T + \frac{(1-\rho)P}{\rho}$, $S + \frac{(1-\rho)P}{\rho}$	P/ρ , P/ρ

- ▶ Suppose τ is fraction playing TFT

	TFT	ALLD
TFT	R/ ho, R/ ho	$S + \frac{(1-\rho)P}{\rho}$, $T + \frac{(1-\rho)P}{\rho}$
ALLD	$T+rac{(1- ho)P}{ ho}$, $S+rac{(1- ho)P}{ ho}$	P/ρ , P/ρ

- Suppose τ is fraction playing TFT
- $T_D = \tau \left[T + \frac{(1-\rho)P}{\rho} \right] + (1-\tau)\frac{P}{\rho}$

	TFT	ALLD
TFT	R/ ho, R/ ho	$S + \frac{(1-\rho)P}{\rho}$, $T + \frac{(1-\rho)P}{\rho}$
ALLD	$T + \frac{(1-\rho)P}{\rho}$, $S + \frac{(1-\rho)P}{\rho}$	P/ρ , P/ρ

- ▶ Suppose τ is fraction playing TFT
- $T_D = \tau \left[T + \frac{(1-\rho)P}{\rho} \right] + (1-\tau)\frac{P}{\rho}$
- ▶ Unstable equilibrium at $\tau^* = \frac{P-S}{2P-T-S+(R-P)/\rho}$

• Increasing ρ reduces expected cost of future retaliation for a defector.

- Increasing ρ reduces expected cost of future retaliation for a defector.
- ▶ Diminishes basin of attraction of cooperative equlibrium $(\tau = 1)$ by shifting unstable equilibrium to τ^+ .

	Inspect	Defect
Inspect	$R-\delta$, $R-\delta$	$P-\delta$, P
Defect	$P,P-\delta$	P,P

▶ Inspectors: inspect and respond to a cooperative partner by cooperating and defector by defecting.

	Inspect	Defect
Inspect	$R-\delta$, $R-\delta$	$P-\delta$, P
Defect	P , $P - \delta$	P,P

- ▶ Inspectors: inspect and respond to a cooperative partner by cooperating and defector by defecting.
- ▶ Suppose $\delta > 0$ is "inspection cost" to examine partner's reputation. Fraction α are Inspectors.

	Inspect	Defect
Inspect	$R-\delta$, $R-\delta$	$P - \delta$, P
Defect	$P,P-\delta$	P,P

- ▶ Inspectors: inspect and respond to a cooperative partner by cooperating and defector by defecting.
- ▶ Suppose $\delta > 0$ is "inspection cost" to examine partner's reputation. Fraction α are Inspectors.
- $\pi_I = \alpha(R \delta) + (1 \alpha)(P \delta)$

	Inspect	Defect
Inspect	$R-\delta$, $R-\delta$	$P-\delta$, P
Defect	P , $P - \delta$	P,P

- Inspectors: inspect and respond to a cooperative partner by cooperating and defector by defecting.
- ▶ Suppose $\delta > 0$ is "inspection cost" to examine partner's reputation. Fraction α are Inspectors.
- $\pi_I = \alpha(R \delta) + (1 \alpha)(P \delta)$
- \blacktriangleright $\pi_D = P$

	Inspect	Defect
Inspect	$R-\delta$, $R-\delta$	$P - \delta$, P
Defect	$P,P-\delta$	P,P

- ▶ Inspectors: inspect and respond to a cooperative partner by cooperating and defector by defecting.
- ▶ Suppose $\delta > 0$ is "inspection cost" to examine partner's reputation. Fraction α are Inspectors.
- $\pi_I = \alpha(R \delta) + (1 \alpha)(P \delta)$
- \blacktriangleright $\pi_D = P$
- ▶ Unstable equilibrium at $\alpha^* = \frac{\delta}{R-P}$

 \blacktriangleright Decreasing δ makes it less costly to know your partner's type.

- ▶ Decreasing δ makes it less costly to know your partner's type.
- Increases basin of attraction of cooperative equilibrium ($\alpha = 1$) by shifting unstable equilibrium to α^- .

► There are two players – often called a "sender" and a "receiver"

- ► There are two players often called a "sender" and a "receiver"
- ▶ The sender can be one of several *types*.

- ► There are two players often called a "sender" and a "receiver"
- ▶ The sender can be one of several *types*.
- ► The sender's type is **private information**: it is known to her, but not the receiver.

- ► There are two players often called a "sender" and a "receiver"
- ▶ The sender can be one of several *types*.
- ► The sender's type is **private information**: it is known to her, but not the receiver.
- ➤ The receiver has a single type, so her payoff function is common knowledge.

- There are two players often called a "sender" and a "receiver"
- ▶ The sender can be one of several *types*.
- ► The sender's type is **private information**: it is known to her, but not the receiver.
- The receiver has a single type, so her payoff function is common knowledge.
- 1. **Pooling equilibria**: All the types of Player 1 choose the same action, thus revealing nothing to Player 2.

- ► There are two players often called a "sender" and a "receiver"
- ▶ The sender can be one of several *types*.
- ► The sender's type is **private information**: it is known to her, but not the receiver.
- ➤ The receiver has a single type, so her payoff function is common knowledge.
- 1. **Pooling equilibria**: All the types of Player 1 choose the same action, thus revealing nothing to Player 2.
- Separating equilibria: Each type of Player 1 chooses a different action, thus revealing his type in equilibrium to Player 2.

Recipe for signaling game:

1. Nature chooses a type for Player 1 that Player 2 does not know, but cares about.

Recipe for signaling game:

- 1. Nature chooses a type for Player 1 that Player 2 does not know, but cares about.
- 2. Player 1 has atleast as many actions as there are types, and each action imposes a different cost on each type.

Recipe for signaling game:

- 1. Nature chooses a type for Player 1 that Player 2 does not know, but cares about.
- 2. Player 1 has atleast as many actions as there are types, and each action imposes a different cost on each type.
- 3. Player 1 chooses an action first, and Player 2 then responds after observing Player 1's choice.

Recipe for signaling game:

- 1. Nature chooses a type for Player 1 that Player 2 does not know, but cares about.
- 2. Player 1 has atleast as many actions as there are types, and each action imposes a different cost on each type.
- 3. Player 1 chooses an action first, and Player 2 then responds after observing Player 1's choice.
- 4. Given Player 2's belief about Player 1's strategy, Player 2 updates their belief after observing Player 1's choice. Player 2 then makes their choice as a best response to the updated beliefs.

Example: entry deterrence in elections

▶ In US Congressional (House and Senate) elections, incumbents tend to raise far more than necessary to finance campaigns.

- ▶ In US Congressional (House and Senate) elections, incumbents tend to raise far more than necessary to finance campaigns.
- ▶ In 2016 Senate races, average incumbent raised \$8.4m while average challenger raised only \$1.8m.

- ▶ In US Congressional (House and Senate) elections, incumbents tend to raise far more than necessary to finance campaigns.
- ▶ In 2016 Senate races, average incumbent raised \$8.4m while average challenger raised only \$1.8m.
- ▶ Incumbent re-election rates are usually well above 80%.

- ▶ In US Congressional (House and Senate) elections, incumbents tend to raise far more than necessary to finance campaigns.
- ▶ In 2016 Senate races, average incumbent raised \$8.4m while average challenger raised only \$1.8m.
- ▶ Incumbent re-election rates are usually well above 80%.
- Q: Why do incumbent politicians work so hard to raise more campaign money than necessary to finance their campaigns?

- ▶ In US Congressional (House and Senate) elections, incumbents tend to raise far more than necessary to finance campaigns.
- ▶ In 2016 Senate races, average incumbent raised \$8.4m while average challenger raised only \$1.8m.
- ▶ Incumbent re-election rates are usually well above 80%.
- Q: Why do incumbent politicians work so hard to raise more campaign money than necessary to finance their campaigns?
- ▶ A: Fundraising is a costly signal of incumbent's strength.

Setup for game:

► Suppose both the Challenger (C) and the Incumbent (I) receive 1 unit of utility from elected office.

- Suppose both the Challenger (C) and the Incumbent (I) receive 1 unit of utility from elected office.
- "Nature" decides whether incumbent is either Strong (S) or Weak (W).

- ► Suppose both the Challenger (C) and the Incumbent (I) receive 1 unit of utility from elected office.
- "Nature" decides whether incumbent is either Strong (S) or Weak (W).
- ▶ Probability C wins against W is π_w , against S is π_s .

- Suppose both the Challenger (C) and the Incumbent (I) receive 1 unit of utility from elected office.
- "Nature" decides whether incumbent is either Strong (S) or Weak (W).
- ▶ Probability C wins against W is π_w , against S is π_s .
- ▶ k is C's cost of running. Assume $\pi_w > k > \pi_s$.

- Suppose both the Challenger (C) and the Incumbent (I) receive 1 unit of utility from elected office.
- "Nature" decides whether incumbent is either Strong (S) or Weak (W).
- ▶ Probability C wins against W is π_w , against S is π_s .
- ▶ *k* is C's cost of running. Assume $\pi_w > k > \pi_s$.
- ▶ If $k > \pi_w$ then C never enters. If $k < \pi_s$ then C always enters.

- ► Suppose both the Challenger (C) and the Incumbent (I) receive 1 unit of utility from elected office.
- "Nature" decides whether incumbent is either Strong (S) or Weak (W).
- ▶ Probability C wins against W is π_w , against S is π_s .
- ▶ *k* is C's cost of running. Assume $\pi_w > k > \pi_s$.
- ▶ If $k > \pi_w$ then C never enters. If $k < \pi_s$ then C always enters.
- ▶ Types S and W incur different costs: $c_s < c_w$.

- ► Suppose both the Challenger (C) and the Incumbent (I) receive 1 unit of utility from elected office.
- "Nature" decides whether incumbent is either Strong (S) or Weak (W).
- ▶ Probability C wins against W is π_w , against S is π_s .
- ▶ *k* is C's cost of running. Assume $\pi_w > k > \pi_s$.
- ▶ If $k > \pi_w$ then C never enters. If $k < \pi_s$ then C always enters.
- ▶ Types S and W incur different costs: $c_s < c_w$.
- ▶ Incumbent decides to build a war chest WC or not $\neg WC$.

- ► Suppose both the Challenger (C) and the Incumbent (I) receive 1 unit of utility from elected office.
- "Nature" decides whether incumbent is either Strong (S) or Weak (W).
- ▶ Probability C wins against W is π_w , against S is π_s .
- ▶ *k* is C's cost of running. Assume $\pi_w > k > \pi_s$.
- ▶ If $k > \pi_w$ then C never enters. If $k < \pi_s$ then C always enters.
- ▶ Types S and W incur different costs: $c_s < c_w$.
- ▶ Incumbent decides to build a war chest WC or not $\neg WC$.
- ▶ After observing whether I builds a war chest, C decides whether to enter the race E or not $\neg E$.

Recall: $\pi_w > k > \pi_s$ and $c_s < c_w$

		Challenger	
		Ε	$\neg E$
Incumbent	WC Strong	$1-\pi_{s}-c_{s},\pi_{s}-k$	$1 - c_s, 0$
	WC Weak	$1-\pi_w-c_w,\pi_w-k$	$1-c_w,0$
	$\neg WC Strong$	$1-\pi_{s}$, $\pi_{s}-k$	1,0
	$\neg WC Weak$	$1-\pi_{w},\pi_{w}-k$	1,0

Only strong incumbent builds War Chest:

$$U_I(WC|Strong, E) > U_I(WC|Weak, E)$$

 $1 - \pi_s - c_s > 1 - \pi_w - c_w$
 $\pi_s + c_s < \pi_w + c_w$

Recall: $\pi_w > k > \pi_s$ and $c_s < c_w$

$$E \qquad \qquad E \qquad \qquad VC|Strong \qquad 1-\pi_s-c_s,\pi_s-k \qquad 1-c_s,0 \qquad \qquad \\ WC|Weak \qquad 1-\pi_w-c_w,\pi_w-k \qquad 1-c_w,0 \qquad \qquad \\ \neg WC|Strong \qquad 1-\pi_s,\pi_s-k \qquad 1,0 \qquad \qquad \\ \neg WC|Weak \qquad 1-\pi_w,\pi_w-k \qquad 1,0 \qquad \qquad \\$$

Only strong incumbent builds War Chest:

$$U_{I}(WC|Strong, \neg E) > U_{I}(WC|Weak, \neg E)$$
 $1 - c_{s} < 1 - c_{w}$ $c_{s} < c_{w}$

Recall: $\pi_w > k > \pi_s$ and $c_s < c_w$

Challenger does not enter if Incumbent builds war chest:

$$U_C(WC|Strong, E) < U_C(WC|Strong, \neg E)$$

 $\pi_s - k < 0$

Recall: $\pi_w > k > \pi_s$ and $c_s < c_w$

► Challenger only enters if Incumbent does *not* build war chest:

$$U_C(\neg WC|Weak, E) > U_C(\neg WC|Weak, \neg E)$$

 $\pi_W - k > 0$