Estimating the relative impact of VMMC and ART on HIV incidence in a declining epidemic: Results from Rakai, Uganda

Adam Akullian, Raphael Sauter, Kate Grabowski, Anna Bershteyn, Christophe Fraser and the Rakai Health Sciences Program

Background and motivation

- Significant HIV incidence declines observed in Rakai, Uganda with scale-up of ART and VMMC programs (Grabowski, NEJM, 2017).
 - ~60% VMMC coverage and 90-90-90 achieved by 2016 resulting in 42% decline in incidence.
 - Greater HIV incidence declines observed in men compared to women
- Relative impact of interventions unable to be determined using standard statistical approaches because they were scaled simultaneously.

Grabowski, NEJM, 2017

Methods

- Two different model-based approaches fit to Rakai data (1999-2016) to estimate relative impact of ART and VMMC.
 - **1. EMOD-HIV** (*Institute for Disease Modeling*): Microsimulation-model that models flow of individuals through configurable HIV care cascade
 - **2. Individual-based Model** (*Oxford Big Data Institute*): Individual-based simulation model of HIV transmission developed for HPTN-071 and adapted to RCCS
- To estimate impact of ART vs. VMMC, baseline plus 3 alternative scenarios of HIV epidemic simulated.
 - 1. **Both interventions**: A baseline scenario to match historical scale-up ART and VMMC by age and gender
 - 2. VMMC only: A counterfactual scenario without ART
 - 3. ART only: A counterfactual scenario without VMMC scale-up
 - 4. No interventions: A counterfactual scenario without ART or VMMC

Results: Simulated HIV incidence trends

Results: Relative impact of interventions

AR% is the percent by which risk is reduced from each scenario relative to the counterfactual scenario without ART or VMMC

EMOD-HIV

	All		Women		Men	
Scenario	AR%	CI	AR%	CI	AR%	CI
ART + VMMC	49.3	(32.3 - 63.7)	44.5	(25.5 - 61.7)	54.1	(35.7 - 71.0)
VMMC only	18.4	(-5.7 - 34.1)	15.3	(-14.1 - 31.8)	23.3	(-15.5 - 47.0)
ART only	35.7	(16.2 - 51.5)	35.0	(9.4 - 50.3)	38.1	(7.9 - 56.5)

Individual-based Model

	All		Women		Men	
Scenario	AR%	CI	AR%	CI	AR%	CI
ART + VMMC	52.3	(39.6 - 63.1)	47.1	(32.7- 59.3)	59.1	(45.6 - 70.5)
VMMC only	26.0	(13.1- 35.7)	18.8	(4.1- 30.6)	35.0	(20.8- 48.5)
ART only	33.8	(20.0-46.5)	33.6	(18.9 - 46.8)	34.4	(17.6 - 48.4)

Conclusions

- Two models, similar findings: ART and VMMC had independent impact on observed HIV incidence declines.
 - Effects of interventions appeared to be additive.
 - VMMC and ART had ~equal impact in men.
 - ART had bigger impact in women
- Thus, even in settings with high ART coverage (90-90-90), VMMC has significant impact on population-level HIV incidence in both genders.
- Important caveats:
 - Both models overestimated HIV incidence among women compared to observed data.
 - Models were not fully parameterized to Rakai demographic/sexual behavior data.
 - Long term impact or cost effectiveness of interventions not estimated.
 - More analyses in progress, but preliminary results promising.