

Publication Bias in Meta-Analysis

Giuachin Kreiliger

Cochrane Library

Database of high-quality, systematic reviews in clinical science.

Currently \sim 8,000 reviews, prepared by independent groups.

Reviews are peer-reviewed and prepared after guidelines.

Cochrane Library Dataset

5.016 systematic reviews with studies published until 2018.

52,995 studies.

463,820 study results.

Dataset Structure

Dataset Structure

- Comparison: What is compared, e.g. treatment vs. control
- Outcome: How it is compared
- Subgroup: Subgroup affiliation
- Meta-Analysis Group: Results from same comparison, outcome and subgroup

Review Example: binary outcome

Barbiturate efficacy for head injury treatment

Study	Comparison	Outcome	Events	Total	Events_c	Total_c
Bohn 1989	Barbiturate vs no b	Death at the end of	11	41	11	41
Bohn 1989	Barbiturate vs no b	Death or severe dis	18	41	13	41
Eisenberg 1988	Barbiturate vs no b	Uncontrolled ICP du	25	37	30	36
Eisenberg 1988	Barbiturate vs no b	Hypotension during	23	37	18	36
Perez-Barcena 2008	Pentobarbital vs Th	Death at the end of	16	21	9	21
Perez-Barcena 2008	Pentobarbital vs Th	Death or severe dis	17	21	13	21
Perez-Barcena 2008	Pentobarbital vs Th	Uncontrolled ICP du	18	22	11	22
Perez-Barcena 2008	Pentobarbital vs Th	Hypotension during	20	22	21	22
Schwartz 1984	Barbiturate vs Mann	Death at the end of	6	15	7	14
Schwartz 1984	Barbiturate vs Mann	Uncontrolled ICP du	19	28	12	31
Ward 1985	Barbiturate vs no b	Mean ICP during tre	0	27	0	26
Ward 1985	Barbiturate vs no b	Mean arterial press	0	27	0	26
Ward 1985	Barbiturate vs no b	Mean body temperatu	0	27	0	26

Dataset Properties

Missing data:

A 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	224	=
Missing mean values and mean differences	984	
Missing standard deviations and standard errors	1300	0
Missing sample sizes	12173	70
Missing study year	44649	/

Dataset Properties

Review and study properties:

	5% quantile	median	mean	95% quantile
Study number	1	7	12	40
Comparison number	1	2	4	12
-Group number	2	19	37	132
Study years	1981	2002	2000	2013
Study sample size	13	78	750	890

Pooling Studies - Meta-Analysis

Results are pooledin a meta-analysis

Multiple results in a meta-analysis group can be pooled:

	Cumulative sum of groups	ups	Number of gro	n
C 1	188079	344	102	71
	85735	686	31	2
	54049	072	16	3
	37977	628	9	4
	28349	444	6	5
	21905	230	4:	6
	17675	961	2	7
	14714	114	2	8
	12600	592	1:	9
-	-11008	800	11	10

Meta-analysis

Benefits:

- Summary of evidence (e.g. of a treatment)
- More reliable evidence (?)

Assumptions:

- Identical study settings (can be relaxed)
- Random sample of studies

Small Study Effects

"The tendency for the smaller studies to show larger treatment effects" (Sterne et al., 2001)

Small Study Effects

Causes:

- Selective publication of studies with large effects
- Bias in smaller studies
- Systematical differences in study settings
- **–** ...

Small Study Effect Tests

Tests applicable if:

- n large
- variation in the estimated variances of effects (here: $\frac{\sigma_{\max}}{\sigma_{\min}} > 4$)

Adjustments required if variance is dependent on effect size (e.g. log odds ratios)

Small Study Effect Tests

Funnel plots (continuous outcome examples):

Regression based Tests

Radial plots (continuous outcome examples):

Inverse of standard error

Regression based Tests

Continuous outcomes tests:

i being the ith study in a meta-analysis:

Let
$$y_i = \text{effect}_i/\text{se}_i$$
 and $x_i = 1/\text{se}_i$

- Egger et al. (1997) : $v_i \sim N(\beta_0 + \beta_1 x_i, v_i)$
- Thompson and Sharp (1999) : $y_i \sim N(\beta_0 + \beta_1 x_i, v_i + \tau^2)$

Egger's Tests

##

##14.2419inelaro Preparestrion test of funnel plot asymmetry 17

sample estimates:
bias se.bias slope
-2.4398295 0.6210298 0.2653786

Thompson and Sharp's Tests

##

###14,2019; Rubleation Bleelighte Assystion test of funnel plot asymmet Provise (metho

Regression based Tests

Adjustments for binary outcomes:

- Peters et al. (2006) : x_i = inverse of total sample size, variance, as weight.
- Harbord et al. (2006) :x : i = score of the log-likelihood of a proportion, variance; as weight.
- ? :Use arcsine variance stabilizing transformation for variances and effects, do e.g. Egger's test.

Rank based tests

Begg (1988) Let y_i the standardized effect size of a study i, v_i it's variance and n the number of studies

u the number of pairs (y_i, v_i) ranked in the same order, I the number of pairs in the opposite order

$$Z = (u - I)/\sqrt{n(n-1)(2n+5)/18}$$
 can be used as a test statistic (based on Kendall's Tau)

Rank based tests

Schwarzer et al. (2007) Let e_t the number of events in the treatment group

Given constant log odds ratio, E_t follows a hypergeometric distribution.

 $\mathbb{E}(E_t)$ and the variance can be estimated and used as in Begg (1988)

Test Results

Application of tests if:

- n > 10
- at least one statistically significant effect in a study
- $-\frac{\sigma_{\max}}{\sigma_{\min}} > 4$
- $-I^2 < 0.5$

From 5338 with $n \ge 10$, 1602 remain.

Continuous Outcome Test Results

Binary Outcome Test Results

p-values distribution:

Agreement in significance

Number of significant test results per meta-analysis:

Small Study Effect Adjustment

Three methods:

- Regression
- Copas selection model
- Trim-and-fill

Adjustment by regression

Similar to the tests, but with unnormalized effect y_i :

$$y_i = \beta_0 + \beta_1 x_i \tag{1}$$

 β_0 corresponds to y_i with $x_i = 0$

Adjustment by regression

Linear regression method:

Shrinkage Regression

Extended random effects model:

$$y_i = \beta_0 + \beta_1(\sqrt{v_i + \tau^2}) + \epsilon_i(\sqrt{s_i + \tau^2}), \epsilon_i \stackrel{\text{iid}}{\sim} N(0, 1)$$

$$\mathbb{E}(y_i) \to \beta_0 + \beta_1 \tau \text{ if } \sqrt{v_i} \to 0$$

 β_0, β_1 and τ can be estimated e.g. by ML and REML.

Shrinkage Regression

shrinking the within study variance:

$$y_i = \beta_0^* + \beta_1^* (\sqrt{v_i/M + \tau^2}) + \epsilon_i (\sqrt{s_i/M + \tau^2})$$

Letting $M \to \infty$ and substituting for all parameters and the observed residual

$$y_{\infty,i} = \beta_0^* + \sqrt{\frac{\tau^2}{v_i + \tau^2}} (y_i - \beta_0^*)$$
 (2)

Shrinkage Regression

Three different treatment effect estimates:

$$y_{\infty,i} = \beta_0^* + \sqrt{\frac{\tau^2}{v_i + \tau^2}} (y_i - \beta_0^*)$$
 (3)

References

- Begg, C. B. (1988). Statistical methods in medical research p. armitage and g. berry, blackwell scientific publications, oxford, u.k., 1987. no. of pages: 559. price £22.50. *Statistics in Medicine*, 7(7):817–818.
- Egger, M., Smith, G. D., Schneider, M., and Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *BMJ*, 315(7109):629–634.
- Harbord, R. M., Egger, M., and Sterne, J. A. C. (2006). A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. *Statistics in Medicine*, 25(20):3443–3457.
- Peters, J., Sutton, A., R Jones, D., Abrams, K., and Rushton, L. (2006). Comparison of two methods to detect publication bias in May 14, 2019 Publication Bias in Meta-Analysis