Exomen Inferencia (
$$\frac{1}{2}$$
 ($\frac{1}{2}$) = $\frac{1}{2}$ = $\frac{1}{2}$ ($\frac{1}{2}$) = $\frac{1}{2}$ = $\frac{1}{2}$

 $J_{1}(8) = -\frac{1}{2} \left\{ \frac{1}{29^{2}} - \frac{\chi_{1}^{2}}{9^{3}} \right\} = -\frac{1}{29^{2}} + \frac{9}{9^{2}}$ $= \left[\frac{1}{29^{2}} - \frac{\chi_{1}^{2}}{9^{3}} \right] = \frac{1}{29^{2}}$

Por otro lado
$$Var\left(\widehat{\Theta}_{MV}\right) = Var\left(\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{i=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{i=1}^$$

d) Par norma lided avintotica In (Enu-D) de No 202)

Luego
$$IC_{+\alpha}^{2}(\theta) = [\hat{Q}_{\mu\nu} - \hat{z}_{+\alpha|\nu}]_{x}^{2\hat{Q}_{\mu\nu}}]$$
. Con $x = 0,05 \Rightarrow 20,935 = 1,96$
 $\hat{Q}_{\mu\nu} = \frac{500}{100} = 5$.

 $IC_{p,q5}(\theta) = [5 - 1,96]_{(00)}^{2\times(5)^{2}}; 5 + 1,96]_{(00)}^{2\times(5)^{2}}$
 $= [3,61]; 6.38]$.

2) a) Ho: $k = 1 \Rightarrow [x_{n} \rightarrow x_{n}]_{x}^{2}$
 $\lim_{x \to \infty} |x_{n}| = \lim_{x \to$

$$= P\left(\frac{|\ln (x_{n-1})|}{2}\right) = \frac{3}{2} = P(|z|) | |x| |x| | |x| |x| | |x| |x$$

$$= Pachs \left(1 - \frac{1}{4} \right) \times x_{N} + \frac{3}{4} \right)$$

$$= P \left(\frac{1 - L_{1}S}{2/\sqrt{16}} - \frac{3\sqrt{16}}{8} \right) \times \frac{x_{N} - L_{1}S}{2/\sqrt{16}} \times \frac{L - L_{1}S}{8} \right)$$

$$= P \left(-2, S + 7 + 0, 5 \right)$$

$$= 0,698 - 0,006 - \frac{0}{2}$$

3)
$$X \sim O$$
 or $f(9, l)$ Con O to rL

a) $L(9) = L \circ n$ $f(x_i)$

Greciente en $o = (o_i)$

182 O J Min g.Y..., Xn?

[1-8]N Enforces: min 2 X1, ..., X 2 0 Θμο: recia 24..., Va } EX) = 1 EXX; b) Pora obtener En: 2 = \(\overline{X}_{\sigma}\) $\frac{1}{9} = \frac{2}{2} \times 1 - 1$ Por oto lodo F(M(Bn,0): bias (Bn)+Var(BM = 2 (1+0)-1 = 0 (Justry) Vor(8n) = Vor(2xn-1) $= 4 Vor(xn) = 4 (1-9)^{2}$ $= 4 Vor(xn) = 4 (1-9)^{2}$ $= 4 Vor(xn) = 4 (1-9)^{2}$ ECM (Oni B) = (1-8)2 n=0 Sne consistent

C) Cours
$$\theta_{M0} = 0.11$$
 por inveriente
 \Rightarrow $\lambda_{MM} = \frac{1+0.1}{2}$
 \Rightarrow $\delta_{MM} = \frac{1-0.1^2}{12}$
 \Rightarrow $\delta_{MM} = \frac{1-0.1^2$

e) Com la prior y la posterior non beta, el reco delo 3 carjugado

of) 2 Ho= M < 1 Hi: -ll > 1

Couro E(X) = = = > Ho: = = 1-0 1

7 +6: 8 7 1/2 (H1: 8 2 1/2

Pora resolver coerstruines: Pression P(0 × 1/2 (Dals)) P(0 × 1/2)

FB (H1, H6) = P(0 × 1/2 (Dals)) P(0 × 1/2)

P(0 × 1/2 (Dals)) P(0 × 1/2)

P(0 × 1/2 (Dals)) P(0 × 1/2)