# Aplikacja systemu pomiarowego do analizy składu spalin opartego o sieć ELAN

Mgr inż. Damian Karbowiak Mgr inż. Grzegorz Powała

Politechnika Śląska



Gliwice, 3 czerwca 2014

### Istota pomiarów

- Kontrola poprawności działania systemów pomiarowych zainstalowanych na obiekcie
- Wyznaczenie kierunków modernizacji istniejących instalacji
- Weryfikacja efektów przeprowadzonych modernizacji
- Okresowa kontrola poprawności funkcjonowania obiektu zgodność z obowiązującymi normami
- Wspomaganie procesu projektowania i wdrażania prototypowych instalacji i rozwiązań

### Współpraca od lutego 2013













- Wydział Automatyki, Elektroniki i Informatyki
  - Instytut Informatyki
    - Koło Naukowe Przemysłowych Zastosowań Informatyki "Industrum" mgr inż. Damian Karbowiak mgr inż. Grzegorz Powała
- Wydział Inżynierii Środowiska i Energetyki
  - Instytut Maszyn i Urządzeń Energetycznych
    - Zakład Kotłów i Wytwornic Pary mgr inż. Tomasz Kress

### Gas Analyzer - geneza

- Realizacja pomiarów przemysłowych
- Wykorzystywanie kilku analizatorów firmy Siemens
- Zapisywanie pomiarów w tabelce na kartce
- Ograniczona częstotliwość pomiarów

### Przykładowy wynik pomiarów



### Gas Analyzer - realizacja

- Wykorzystanie protokołu komunikacyjnego ELAN
- Możliwość podłączenia do 12 analizatorów firmy Siemens:
  - ULTRAMAT 6
  - OXYMAT 6 / OXYMAT 61
  - CALOMAT 6
  - ULTRAMAT 23
- Automatyczny odczyt stanu urządzeń
- Możliwość archiwizacji pomiarów z dowolnym interwałem czasowym, z rozdzielczością co sekundę
- Automatyczne wykrywanie urządzeń i wielkości mierzonych
- Konfigurowalna precyzja pomiarów (wyświetlanie i raporty)
- Generowanie raportów do PDF oraz XLS
- Niskie koszty uruchomienia



### Struktura sytemu pomiarowego



### Struktura aplikacji



### Wykres liczby odebranych ramek z danymi pomiarowymi



## Średni interwał czasu pomiędzy kolejnymi transmisjami poprawnych ramek pomiarowych z analizatorów

| Urządzenie      | Średni interwał [s] |  |  |
|-----------------|---------------------|--|--|
| urządzenie #16  | 0.501               |  |  |
| urządzenie #32  | 1.203               |  |  |
| urządzenie #48  | 0.498               |  |  |
| urządzenie #128 | 1.646               |  |  |

#### ELAN Network zasada działania buforów



- t<sub>0</sub> nadejście pomiaru z urządzenia 1
- t<sub>1</sub> nadejście pomiaru z urządzenia 3
- t<sub>2</sub> nadejście pomiaru z urządzenia 1
- t<sub>3</sub> nadejście pomiaru z urządzenia 2
- t<sub>4</sub> nadejście pomiaru z urządzenia 3
- $t_5$  Migawka, czyli zapis wszystkich buforów do bazy
- t<sub>6</sub> nadejście pomiaru z urządzenia 2

## Wyniki pomiarów czasów otrzymania potwierdzenia i odpowiedzi analizatorów na komendę – pomiar z zastosowaniem zestawu ewaluacyjnego

| Komenda          |      | Min [ms] | Max [ms]     | Średnia [ms] | σ [ms] |
|------------------|------|----------|--------------|--------------|--------|
| 'k' 2            | potw | 10,15    | 10,41        | 10,25        | 0,05   |
|                  | odp  | 20,25    | <u>78,47</u> | <u>26,78</u> | 8,80   |
| 'k' 2            | potw | 10,17    | 12,08        | 11,93        | 0,07   |
| z potwierdzeniem | odp  | 21,32    | 70,79        | 30,68        | 8,83   |
| 'k' 6            | potw | 10,17    | 10,35        | 10,24        | 0,03   |
|                  | odp  | 17,06    | 69,52        | 25,07        | 7,92   |
| 'k' 1 A0         | potw | 10,18    | 10,40        | 10,30        | 0,05   |
|                  | odp  | 17,69    | 67,07        | 21,82        | 6,67   |
| 'k' 1 A1         | potw | 10,21    | 10,40        | 10,31        | 0,04   |
|                  | odp  | 17,32    | 59,14        | 21,74        | 6,51   |
| 'k' 1 A7         | potw | 10,21    | 10,33        | 10,22        | 0,01   |
|                  | odp  | 17,82    | 46,46        | 19,98        | 4,42   |
| 'k' 1 AA         | potw | 10,21    | 10,28        | 10,22        | 0,01   |
|                  | odp  | 17,82    | 54,57        | 20,02        | 4,72   |
| 'w' 20           | potw | 10,21    | 10,40        | 10,31        | 0,05   |
|                  | odp  | 20,98    | 75,36        | 26,44        | 7,83   |

## Wyniki pomiarów czasów otrzymania potwierdzenia i odpowiedzi analizatorów na komendę – pomiar z zastosowaniem komputera przenośnego

| Komenda          |      | Min [ms] | Max [ms] | Średnia [ms] | σ [ms] |
|------------------|------|----------|----------|--------------|--------|
| 'k' 2            | potw | 7,00     | 23,00    | 14,44        | 0,85   |
|                  | odp  | 26,00    | 98,00    | 33,30        | 9,51   |
| 'k' 2            | potw | 15,00    | 27,00    | 16,49        | 0,78   |
| z potwierdzeniem | odp  | 28,00    | 102,00   | 36,83        | 9,90   |
| 'k' 6            | potw | 13,00    | 26,00    | 14,50        | 0,88   |
|                  | odp  | 23,00    | 89,00    | 33,65        | 7,78   |
| 'k' 1 A0         | potw | 13,00    | 23,00    | 14,48        | 0,84   |
|                  | odp  | 22,00    | 95,00    | 28,61        | 8,42   |
| 'k' 1 A1         | potw | 14,00    | 23,00    | 14,46        | 0,82   |
|                  | odp  | 22,00    | 88,00    | 28,41        | 8,10   |
| 'k' 1 A7         | potw | 14,00    | 27,00    | 14,42        | 0,82   |
|                  | odp  | 22,00    | 87,00    | 28,90        | 7,27   |
| 'k' 1 AA         | potw | 12,00    | 23,00    | 14,41        | 0,76   |
|                  | odp  | 21,00    | 87,00    | 29,02        | 7,17   |
| 'w' 20           | potw | 13,00    | 23,00    | 14,50        | 0,86   |
|                  | odp  | 26,00    | 103,00   | 32,90        | 8,69   |

# Wykres czasów otrzymania potwierdzenia oraz odpowiedzi na komendę 'k'2



### Podgląd sieci



### Podgląd urządzenia



### Przykładowy raport PDF



### Przykładowy raport XLS



### Testy w warunkach laboratoryjnych



### Testy w warunkach laboratoryjnych



### Testy w warunkach przemysłowych

- Elektrociepłownia Marcel Sp. z o.o.; Radlin marzec 2014
- Zespół Elektrociepłowni Wrocławskich KOGENERACJA S.A.;
  Wrocław marzec 2014
- ENERGA Elektrownie Ostrołęka S.A.; Ostrołęka grudzień 2013
- Laboratorium Procesów Kotłowych ZKiWP Instytutu Maszyn i Urządzeń Energetycznych Politechnika Śląska; Gliwice na co dzień

### Perspektywy rozwoju

- Generowanie przebiegów wybranych wartości
- Zmiana modelu wymiany danych
- Poprawa parametrów czasowych
- Implementacja oprogramowania analitycznego
- Integracja wielu standardów komunikacyjnych
- Utworzenie zintegrowanego systemu pomiarowego

#### Wnioski

- Brak determinizmu (CSMA\CD)
- Wystarczające (statystycznie) parametry czasowe
- Niski koszt rozwiązania
- Przenośność i łatwość rozbudowy aplikacji

### Podsumowanie oraz pytania

Dziękujemy za uwagę.

Czas na pytania.

mgr inż. Damian Karbowiak – Damian.Karbowiak@polsl.pl mgr inż. Grzegorz Powała – Grzegorz.Powala@polsl.pl