Методы машинного обучения для классификации электронной почты в системе защиты от массовых несанкционированных рассылок

выполнил студент 320 группы Конов Михаил Алексеевич

Научный руководитель: Царев Дмитрий Владимирович

Введение

- Спам массовая рассылка корреспонденции лицам, не выражавшим желания её получить.
- Важно построение персонифицированных систем фильтрации спама.
- Техники фильтрации спама:
 - На основе источника
 - На основе содержания
 - За 2019 год доля спама увеличилась на 4% и составила 56.51%.
 - Потери за 2018г. 257 млрд. долларов.

Постановка задачи

• Задачей данного исследования является проведение обзора и разработка методов машинного обучения для построения персонифицированных моделей классификации в системе защиты от массовых несанкционированных рассылок электронной почты.

Обзорная часть. Критерии оценки

- Критерии оценки наборов данных: год создания набора, число примеров в наборе, доля примеров спама.
- На основе 7 публикаций за 2016-2020 годы были выбраны алгоритмы: WOA, TFDCR, SVM(SMO), J48, Rotation Forest, Naive Bayes.
- Критерии оценки алгоритмов: Accuracy, Precision, Recall(ф-лы (1)-(3)).

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN} (1)$$

$$Precision = \frac{TP}{TP + FP} (2)$$

$$Recall = \frac{TP}{TP + FN} (3)$$

Обзорная часть. Наборы данных

Характеристики наборов данных

	Год	Число примеров	Процент примеров спама
Spambase	1999	4601	39%
Spam Assassin	2002	4198	33%
PU	2000, 2003	7101	57%
ENRON	2006	33090	52%
TREC 2007	2007	75419	67%
CEAS 2008	2008	140772	80%

Обзорная часть. Алгоритмы

Характеристики алгоритмов классификации и выбора признаков(*)

	Accuracy	Recall	Precision
Naive Bayes	0.91(SD)[3]	0.83(SD)[3]	0.83(SD)[3]
	0.85(SB)[3]	0.86(SB)[3]	0.88(SB)[3]
	0.885(SB)[4]	0.885(SB)[4]	0.885(SB)[4]
Rotation Forest	0.942(SB)[2, 4]	0.942(SB)[2, 4]	0.942(SB)[2, 4]
	0.969(EN)[2]	0.969(EN)[2]	0.969(EN)[2]
WOA +	0.9989(SB)[2]	0.999(SB)[2]	0.999(SB)[2]
Rotation Forest	0.9943(EN)[2]	0.9944(EN)[2]	0.9944(EN)[2]
J48	0.923(SB)[4]	0.923(SB)[4]	0.923(SB)[4]
	0.986(SA)[5]	0.989(SA)[5]	0.996(SA)[5]
TFDCR + SVM	0.939(EN)[6] 0.954(PU)[6]	-	-
TFDCR + Incr. SVM	0.975(EN)[6] 0.97(PU)[6]	-	-

Обзорная часть. Алгоритмы выбора признаков

- Алгоритм **TFDCR** сопоставляет каждому признаку вес на основе TF и DF в наборах легитимных и спамовых документов и выбирает признаки с наибольшим весом.
- Алгоритм WOA(whale optimization algorithm) выполняет поиск оптимального решения при помощи поисковых агентов, движущихся в пространстве векторов из 0 и 1. Выбор оптимальных признаков производится на основе ошибки простого классификатора(KNN) и доли выбранных признаков от общего числа.
- Алгоритм хи-квадрат(CHI2) считает зависимость результата от каждого признака на основе и выбирает признаки с наибольшей зависимостью результата от них.

Обзорная часть. Алгоритмы классификации

- **J48(C4.5)** алгоритм классификации, строящий дерево решений на основе критерия разбиения по наибольшему information gain.
- CART алгоритм классификации, строящий дерево решений на основе индекса Джини. Поддерживает числовые значения целевых переменных.
- Rotation Forest ансамблевый алгоритм, строящий деревья J48 на основе трансформированного методом главных компонент случайного разбиения изначального пространства признаков.
- **SVC** алгоритм строит поверхность с наилучшим разделением классов с использованием методов квадратичного программирования.
- SMO алгоритм строит поверхность с наилучшим разделением классов при помощи выбора и последовательной оптимизации двух параметров разделяющей поверхности.

Обзорная часть. Выводы

- Для обучения были выбраны наборы данных: ENRON, CEAS, TREC и SpamAssassin.
- Для выбора признаков в практической части будет использованы алгоритмы: TFDCR и CHI2.
- Алгоритм WOA не был реализован из-за большого времени работы.
- Для классификации были выбраны алгоритмы: SVC, CART Rotation Forest.

Построение решения. Декомпозиция.

- Решение задачи будет состоять из нескольких стадий:
 - 1)Извлечение векторов признаков, представляющих письма (feature extraction).
 - 2)Выбор наиболее информативных признаков из данных векторов (feature selection).
 - 3) Разбиение набора векторов писем на обучающую и тестовую выборку. Обучение и тестирование алгоритмов классификации.
 - 4)Оценка результатов классификации. Выбор алгоритмов классификации и выбора признаков для использования в системе фильтрации спама.

Построение решения. Метрики.

• Результаты работы алгоритмов оценивались по метрике точности(Accuracy) согласно формуле (1) и показателю ROC AUC или площади под ROC-кривой.

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN} (1)$$

Параметры алгоритмов классификации

SVC	max_iter=1000, n_features=10000(4000 для CEAS и TREC)
CART	n_features=10000(4000 для CEAS и TREC)
Rotation Forest	max_depth=50, n_estimators=5, n_features=10000 (для TREC max_depth=10, n_estimators=2, n_features=500, на CEAS не тестировался)

Построение решения. Spam Assassin; ENRON

Метрика ROC AUC на наборах ENRON и SA

merpina 1100 A00 na naoopax Entrott ii OA										
	SA	EN1	EN2	EN3	EN4	EN5	EN6			
TFDCR+SVC	0.7797	0.9651	0.9519	0.7196	0.9259	0.9338	0.8964			
CHI2+SVC	0.7354	0.9693	0.9574	0.7080	0.9272	0.9346	0.8919			
TFDCR+CAR T	0.9166	0.93	0.9293	0.9523	0.9502	0.9338	0.9302			
CHI2+CART	0.9068	0.9331	0.9267	0.9410	0.9489	0.9559	0.9387			
TFDCR+RotF	0.9132	0.9291	0.9489	0.9426	0.9553	0.9363	0.9334			
CHI2+RotF	0.9217	0.9366	0.9462	0.94	0.9457	0.9550	0.9297			

Метрика Accuracy на наборах ENRON и SA

	SA	EN1	EN2	EN3	EN4	EN5	EN6
TFDCR+SVC	0.8615	0.9666	0.9726	0.8543	0.9611	0.9631	0.9475
CHI2+SVC	0.8211	0.9649	0.9741	0.8340	0.9636	0.9614	0.9449
TFDCR+CAR T	0.9149	0.9461	0.9483	0.9593	0.9611	0.9479	0.9454
CHI2+CART	0.9098	0.9443	0.9503	0.9494	0.9621	0.9654	0.9561
TFDCR+RotF	0.9242	0.9402	0.9622	0.9533	0.9667	0.9491	0.95
CHI2+RotF	0.9307	0.9414	0.9581	0.9544	0.9626	0.9649	0.9571

Построение решения. TREC

Метрика ROC AUC на наборе TREC

	TR1	TR2	TR3	TR4	TR5	TR6	TR7	TR8
TFDCR+SVC	0.9482	0.9410	0.8813	0.9422	0.9372	0.9429	0.9401	0.9358
CHI2+SVC	0.9389	0.9419	0.8830	0.9469	0.9299	0.9521	0.9318	0.9418
TFDCR+CART	0.9688	0.9662	0.9704	0.9663	0.9701	0.9574	0.9665	0.9622
CHI2+CART	0.9690	0.9621	0.9688	0.9631	0.9668	0.9728	0.9682	0.9621
TFDCR+RotF	0.9603	0.96	0.9602	0.9588	0.9666	0.9691	0.9644	0.9695
CHI2+RotF	0.9634	0.9489	0.9592	0.9560	0.9681	0.9590	0.9648	0.9620

Метрика Accuracy на наборе TREC

	TR1	TR2	TR3	TR4	TR5	TR6	TR7	TR8
TFDCR+SVC	0.9614	0.9569	0.9196	0.9579	0.9563	0.9566	0.9566	0.9550
CHI2+SVC	0.9550	0.9585	0.9193	0.9598	0.9495	0.9662	0.9534	0.9585
TFDCR+CART	0.9733	0.9720	0.9736	0.9698	0.9724	0.9614	0.9714	0.9656
CHI2+CART	0.9736	0.9685	0.9727	0.9666	0.9711	0.9781	0.9724	0.9675
TFDCR+RotF	0.9685	0.9692	0.9695	0.9682	0.9717	0.9742	0.9708	0.9749
CHI2+RotF	0.9704	0.9611	0.9691	0.9646	0.9736	0.9672	0.9714	0.9692

Построение решения. CEAS

Метрика ROC AUC на наборе CEAS

	CE1	CE2	CE3	CE4	CE5	CE6	CE7	CE8
TFDCR+SVC	0.9213	0.9358	0.9187	0.9442	0.8905	0.9437	0.9477	0.9248
CHI2+SVC	0.9356	0.9483	0.8979	0.89	0.8979	0.9446	0.9497	0.9499
TFDCR+CART	0.9838	0.9821	0.9788	0.9823	0.9781	0.9807	0.9819	0.9842
CHI2+CART	0.9861	0.9795	0.9836	0.9835	0.9836	0.9762	0.9807	0.9787

Метрика Accuracy на наборе CEAS

	CE1	CE2	CE3	CE4	CE5	CE6	CE7	CE8
TFDCR+SVC	0.9213	0.9358	0.9187	0.9442	0.8905	0.9437	0.9477	0.9248
CHI2+SVC	0.9356	0.9483	0.8979	0.89	0.8979	0.9446	0.9497	0.9499
TFDCR+CART	0.9838	0.9821	0.9788	0.9823	0.9781	0.9807	0.9819	0.9842
CHI2+CART	0.9861	0.9795	0.9836	0.9835	0.9836	0.9762	0.9807	0.9787

Построение решения. Выводы

- На основе проведенных экспериментов было выявлено что лучше всего для использования в системе фильтрации спама подходят алгоритмы классификации CART и Rotation Forest.
- По результатам экспериментов, алгоритмы выбора признаков TFDCR и CHI2 могут использоваться в системе фильтрации спама взаимозаменяемо.
- Алгоритм SVC по результатам экспериментов не подходит для использования в системе фильтрации спама.

Описание практической части. Итоговый алгоритм

• Для написания практической части использовался язык **Python 3** и среда **Google Colaboratory**. Для запуска кода были использованы 2 процессора **Intel Xeon CPU** @ **2.30GHz** и графическая карта **Nvidia K80 / T4 GPU**. Максимальный объем оперативной памяти: 12 ГБ.

Описание практической части. Предобработка

- Извлечение: tarfile, zipfile
- Обработка писем: **email**
- Обработка HTML: **beautifulsoup**
- Токенизация, удаление стоп-слов: **nltk**
- Лемматизация: nltk.wordnet
- Размер модуля: 206 строк

Описание практической части. Выбор признаков

- "мешок слов", хи-квадрат: scikit-learn
- TFDCR: собственная реализация со встроенным алгоритмом "мешка слов"
- Размер модуля: 59 строк

Описание практической части. Классификация

- Использовалось разбиение на обучающую и тестовую выборки(размеры 0.67, 0.33)
- SVC, CART: scikit-learn
- Rotation forest: rotationforest
- Размер модуля: 123 строки

Результаты

- На основе проведенного обзора современных алгоритмов для классификации спама и выбора признаков для экспериментального исследования были выбраны алгоритмы: TFDCR, CHI2, SVM(SVC), CART, Rotation Forest.
- Построен программный стенд, позволяющий оценить работу выбранных алгоритмов на наборах данных TREC, CEAS, ENRON и Spam Assassin.
- На основе программного стенда для использования в системе фильтрации спама выбраны алгоритмы Rotation Forest и CART.

Планы на будущее

- Применение нейросетевых классификаторов
- Рассмотрение других алгоритмов получения векторных представлений (Word2vec, TF/IDF).
- Рассмотрение оптимизационных алгоритмов выбора признаков(WOA, Antlion optimization).
- Интеграция алгоритмических разработок в систему фильтрации спама.

Спасибо за внимание!

Список литературы

- [1] Bhuiyan H., Ashiquzzaman A., Juthi T., Biswas S., Ara J. A Survey of Existing E-Mail Spam Filtering Methods Considering Machine Learning Techniques // Global Journal of Computer Science and Technology: Software & Data Engineering. 2018. [2.] N 18. P. 21-29 [PDF] (https://computerresearch.org)
- [2] Shuaib M., Abdulhamid S.M., Adebayo O.S. et al. Whale optimization algorithm-based email spam feature selection method using rotation forest algorithm for classification. // SN Appl. Sci. 2019. [1.] N 390 [PDF] (https://doi.org/10.1007/s42452-019-0394-7)
- [3] Rusland N.F., Norfaradilla W., Shahreen K., Hanayanti H. Analysis of Naïve Bayes Algorithm for Email Spam Filtering across Multiple Datasets // IOP Conf. Ser.: Mater. Sci. Eng. 2017. N 226. [PDF] (https://iopscience.iop.org/article/10.1088/1757-899X/226/1/012091)
- [4] Shuaib M., Osho O., Alhassan J., Abdulhamid S., Ismaila I. Comparative Analysis of Classification Algorithms for Email Spam Detection. // International Journal of Computer Network and Information Security. 2018. N 1. P. 60-67. [PDF] (http://www.mecs-press.org/ijcnis)
- [5] Al-Shboul B., Hakh H., Faris H., Aljarah I., Alsawalqah H. Voting-based Classification for E-mail Spam Detection. // Journal Of ICT Research And Applications. 2016. [10.] N 1. P. 29-42. [PDF] (http://journals.itb.ac.id)
- [6] Sanghani G., Kotecha K. Incremental personalized E-mail spam filter using novel TFDCR feature selection with dynamic feature update // Expert Systems With Applications. 2019. N115. P. 287–299.
- [7] Gbenga Dada E., Bassi S.J., Chiroma H., Abdulhamid S.M., Adetunmbi A.O., Ajibuwa O.E Machine learning for email spam filtering: review, approaches and open research problems // Heliyon 2019. [6.] N 5. [PDF] (http://www.heliyon.com)