51

2.2.1 Exercise

Problem 1. Find a constant a such that

$$f_{\mathbf{x}}(x) = a \sin(x)$$
 if $0 \le x \le \pi$
= 0 otherwise

is a density function. For this constant a find the distribution function $F_{\mathbf{x}}(x)$.

Problem 2. Find a constant a such that

$$f_{\mathbf{x}}(x) = ae^{-|x|}$$
 for $-\infty < x < \infty$

is a density function.

- For this constant a find the distribution function $F_{\mathbf{x}}(x)$.
- Find $P(1 \leq \mathbf{x})$.

Problem 3. Find a constant c such that

$$f_{\mathbf{x}}(x) = \frac{c}{\sqrt{x}}$$
 if $0 < x \le 4$
= 0 otherwise

is a density function.

- For this constant c find the distribution function $F_{\mathbf{x}}(x)$.
- Find $P(|\mathbf{x}| \leq 1)$.

Problem 4. Consider the uniform random variable \mathbf{x} over [0,1] whose density function is given by

$$f_{\mathbf{x}}(x) = 1$$
 if $0 \le x \le 1$
= 0 otherwise.

Let **y** be the random variable defined by $\mathbf{y} = \mathbf{x}^2$.

- Find the distribution function $F_{\mathbf{y}}(y)$ for \mathbf{y} .
- Find the density function $f_{\mathbf{y}}(y)$ for \mathbf{y} .

HINT:
$$F_{\mathbf{y}}(y) = P(\mathbf{y} \le y) = P(\mathbf{x}^2 \le y)$$
.