Experiment 8: Water Purification: Hardness Estimation by EDTA Method and its Removal using Ion-exchange Resin

Name: Vidhi Shah

Reg. No.: 21BCE1297

Slot: L11-L12

Date: 30/11/21

Titration-I: Standardization of EDTA

Table:

S. No.	Volume of standard hard water (mL)	Burette reading (mL)		Volume of EDTA
		Initial	Final	(V_1, mL)
1	20	0	20.4	20.4
2	20	0	20.4	20.4
3	_	_	_	_
	Concordant titer v	20.4		

Calculation:

20 mL of given hard water consumes V₁ mL of EDTA

20 mg of CaCO₃ requires V₁ mL of EDTA for complexation

 \therefore 1 mL of EDTA requires = 20/V₁ mg = 0.98 mg CaCO₃ for complexation

Titration-I Calculation:

20mL of given hard water consumes 20.4mL of EDTA

20mg of Ca(O3 requires 20.4mg of EDTA for complexation

: 1mL of EDTA requires = 20 = 0.98mg (a(O3 for complexation))

Titration-II: Estimation of total hardness of hard water sample

Table:

S. No.	Volume of sample hard water (mL)	Burette reading (mL)		Volume of EDTA
		Initial	Final	$(\mathbf{V_2},\mathbf{mL})$
1	20	0	8.2	8.2
2	20	0	8.2	8.2
3	-	_	_	
	Concordant titer v	8.2		

Calculation:

From Titration 1, we have the following relation:

 \therefore 1 mL of EDTA requires = 0.98 mg CaCO₃ for complexation

From Titration 2,

20 mL of sample hard water consumes = V_2 mL of EDTA.

=
$$V_2 \times 20/V_1$$
 mg of CaCO₃ eq.

:.1000 mL of hard water sample consumes = $V_2 \times \frac{20}{V_1} \times 1000/\frac{20}{20}$

$$= V_2/V_1 \times 1000 \ ppm$$

 \therefore Total hardness of the water sample = **X** ppm = 401.96 ppm

Titration-3: Removal of hardness using ion exchange method

Table:

S. No.	Volume of sample hard water (mL)	Burette reading (mL)		Volume of EDTA
		Initial	Final	(V ₃ , mL)
1	20	0	2.6	2.6
2	20	0	2.6	2.6
3	-	_	_	_
	Concordant titer va	2.6		

Calculation:

From Titration 1, we have the following relation:

 \therefore 1 mL of EDTA requires = 20/V₁ mg CaCO₃ for complexation

From this relation, it can be seen that

20 mL of water sample after softening through the column consumes = V_3 mL of EDTA.

=
$$V_3 \times 20/V_1$$
 mg of CaCO₃ eq.

:. 1000 mL of water sample after softening through the column consumes

$$= V_3 \times \frac{20}{V_1} \times \frac{1000}{20}$$

$$= V_3/V_1 \times 1000 \text{ ppm}$$

 \therefore Residual hardness of the water sample = **Y ppm** = **127.45 ppm**

Result:

- 1) Total hardness of the water sample = $\mathbf{X} \mathbf{ppm} = 401.96 \mathbf{ppm}$
- 2) Residual hardness in the water sample = **Y ppm** = **127.45 ppm**
- 3) Hardness removed through the column = (X-Y) ppm = 274.51 ppm