Задача 1.

Записать выражения для мгновенных значений напряженностей электрического и магнитного полей плоской электромагнитной волны с частотой f = (10+N) ГГц в безграничной среде с относительной диэлектрической проницаемостью $\epsilon = (2+0,1N)$ и относительной магнитной проницаемостью $\mu = 1$. Амплитуда напряженности электрического поля N В/м. Определить длину волны и фазовую скорость. N — номер варианта, определяется по списку в журнале.

• КОСТАНТЫ

m6	0 = 1.25e-6
m@	= 1.2500e-06
e(0 = 8.85e-12
e0	= 8.8500e-12
С	= 3e8
С	= 300000000
	• дано
N e	= 7; % Вариант = N
е	= 7
m	= 1
m	= 1
ea	a = e0 * e
ea	= 6.1950e-11
ma	a = m0 * m
ma	= 1.2500e-06
f	= (10 + N) * 1e9 % ГГц
f	= 1.7000e+10
Er	n = N % B/M
Em	= 7

НАЙТИ

$$\overrightarrow{E}(t,z)$$
 -?

$$\overrightarrow{H}(t,z)$$
 -?

Определить длину волны и фазовую скорость.

• РЕШЕНИЕ

1. НЕЗАБУДЬ ПОДСТАВИТЬ ПРИ ВЫЧИСЛЕНИИ ВСЕ ЧИСЛА

Совмещаем ось z с направлением распрастронения волны.

$$\begin{cases} \overrightarrow{E}(t,z) = E_m \cos(\omega t - \beta z) \overrightarrow{x_0} \\ \overrightarrow{H}(t,z) = H_m \cos(\omega t - \beta z) \overrightarrow{y_0} \end{cases}$$

$$\omega[c^{-1}] = 2\pi f =$$

w = 2*pi*f % подставляем для своего варианта

w = 1.0681e + 11

$$\dot{k} = \beta - i\alpha$$

так как среда без потерь, то

$$\alpha = 0 \frac{1}{M}$$
.

Тогда

$$k\left[\frac{1}{M}\right] = \beta = \omega \sqrt{\varepsilon_a \mu_a} =$$

k = w*sqrt(ma*ea)

k = 939.9493

$$H_m \left[\frac{A}{M} \right] = \frac{E_m}{Z_c} \Longrightarrow Z_c [\mathrm{OM}] = \frac{\omega \mu_a}{k} = \frac{\omega \mu_a}{\omega \sqrt{\varepsilon_a \mu_a}} = \sqrt{\frac{\mu_0 \mu}{\varepsilon_0 \varepsilon}} = \sqrt{\frac{\mu_a}{\varepsilon_a}} =$$

Zc = sqrt(ma/ea)

Zc = 142.0477

Hm = Em/Zc

Hm = 0.0493

1. ПОДВЕДЕМ ИТОГ ПО ВЕКТОРУ Е И Н, ПОДСТАВЛЯЕМ ПОЛУЧЕННЫЕ ЗНАЧЕНИЯ !!!

$$\begin{cases} \overrightarrow{E}(t,z) = E_m \cos(\omega t - \beta z) \overrightarrow{x_0} & \overrightarrow{B}_M \\ \overrightarrow{H}(t,z) = H_m \cos(\omega t - \beta z) \overrightarrow{y_0} & \overrightarrow{A}_M \end{cases}$$

1. ВЫПОЛНЯЕМ ОСТАВШИЕСЯ ЗАДАНИЯ

Длина волны следует из

$$k = \omega \sqrt{\varepsilon_a \mu_a} = \frac{2\pi}{\lambda} \Longrightarrow \lambda[M] = \frac{2\pi}{k} =$$

$$lamda = (2*pi)/k$$

lamda = 0.0067

Фазовая скорость это

$$V_{\phi} \left[\frac{M}{C} \right] = \frac{\omega}{k} = \frac{\omega}{\omega \sqrt{\varepsilon_a \mu_a}} = \frac{1}{\sqrt{\varepsilon_0 \mu_0} \sqrt{\mu \varepsilon}} = \frac{C}{\sqrt{\mu \varepsilon}} = \frac{C}{\sqrt{\omega \varepsilon}} =$$

Vf = 1.1339e + 08

1. * НЕОБЯЗАТЕЛЬНО

$$T\left[c\right] = \frac{1}{\nu} =$$

$$T = 1/f$$

T = 5.8824e-11

OTBET

ВЫПИСАТЬ ВСЕ ЗНАЧЕНИЯ И Т Д ВЫШЕ ВСЕ ПОЛУЧЕНО. НЕ ЗАБЫВАЙТЕ ПОДСТАВЛЯТЬ В ФОРМУЛЫ ЧИСЛА.