Prepoznavanje novčanica

Bojan Vujić RA170/2017

MOTIVACIJA

Plaćanje papirnim novcem je jedan od najrasprostranjenijih vidova plaćanja na svetu. Prepoznavanje papirnih novčanica sa slike može naći mnogobrojne primene u praksi. Neke od primena su: pomoć slepim osobama pri kupovini, detekcija novčanica u prtljazima putnika na graničnim prelazima u cilju sprečavanja prenošenja ilegalno stečenog novca, softver se može ugraditi i u mašine za brojanje novčanica.

SKUP PODATAKA

Skup podataka je ručno pravljen. Sve fotografije su uslikane kamerom mobilnog telefona. Skup podataka čine fotografije novčanica uslikane na različitim pozadinama, u različitim uslovima osvetljenosti, novčanice su postavljene pod različitim uglovima...

Fotografije su razvrstane po folderima čiji nazivi predstavljaju klasu kojoj novčanica pripada. Kada su u pitanju fotografije koje sadrže više novčanica, labeliranje podataka je vršeno ručno, tako što je u csv fajlu zapisan naziv fotografije i zatim slede klase novčanica koje se nalaze na fotografiji.

1	5e	2/21/2021 6:47 PM	File folder
1	10d	2/19/2021 1:28 AM	File folder
1	10e	2/21/2021 6:42 PM	File folder
1	20d	2/21/2021 6:48 PM	File folder
1	20e	2/21/2021 6:48 PM	File folder
1	50d	2/19/2021 1:14 AM	File folder
1	50e	2/21/2021 6:39 PM	File folder
1	100d	2/21/2021 6:49 PM	File folder
1	100e	2/26/2021 5:41 PM	File folder
1	200d	2/19/2021 1:30 AM	File folder
1	200e	2/19/2021 12:52 AM	File folder
1	500d	2/19/2021 1:25 AM	File folder
	500e	2/21/2021 6:50 PM	File folder
1	1000d	2/19/2021 1:38 AM	File folder
1	2000d	2/26/2021 6:37 PM	File folder

	А	В	C	D
1	20210207_005704.jpg	20e	50e	100e
2	20210207_005719.jpg	20e	50e	100e
3	20210207_005731.jpg	50e	20e	100e
4	20210218_194715.jpg	500d	1000d	2000d

PRISTUPI REŠAVANJA PROBLEMA

Za rešavanje projektnog zadatka korišćena su dva pristupa. Prvi pristup predstavlja upotreba **SIFT** (Scale invariant feature transform) algoritma za izdvajanje feature-a i upotreba **KNN** klasifikatora. Drugi pristup predstavlja upotreba **CNN** (Convolutional neural network)

SIFT + KNN

Pretprocesiranje pojedinacne fotografije podrazumeva izdvajanje novčanica sa fotografija. Naredni koraci pretprocesiranja primenjeni su na fotografije trening i test skupa podataka:

- 1. Fotografija se pretvori u grayscale.
- 2. Grayscale fotografija se pretvori u binarnu.
- 3. Dobijena binarna fotografija se invertuje.
- 4. Vrši se izdvajanje onog dela fotografije na kojem se nalazi novčanica.
- 5. Ovako dobijena fotografija se ponovo pretvori u grayscale i zatim se primenjuje **SIFT** algoritam za izdvajanje feature-a

Ovim koracima se eliminiše faktor pozadine fotografije u cilju da se **SIFT** algoritmu da što "čistija" fotografija kako bi bile izdvojene samo one osobine koje pripadaju samoj novčanici. Za fotografije na kojima se nalazi više novčanica primenjen je **watershed** algoritam kako bi se razdvojili regioni (novčanice) koji se preklapaju.

Za svaku detektovanu novčanicu trening i test skupa računaju se **deskriptori** (descriptors) i **ključne tačke** (keypoints) i vrši se upoređivanje deskriptora svake trening fotografije sa svakom test fotografijom. Test fotografija čiji deskriptori imaju najviše sličnosti sa deskriptorima trening fotografije predstavlja rezultat predikcije.

Problematične situacije

Primećeno je da ovakav pristup rešavanja problema ne radi baš najbolje kada su u pitanju zamućene fotografije.

U slučaju prve fotografije stvarna klasa je 100e, a prediktovana 2000d. Kod druge fotografije je stvarna klasa 5e, a prediktovana 50e.

Mane

Kako **KNN** spada u grupu lazy algoritama za klasifikaciju, mana ovog pristupa je velika vremenska kompleksnost. Ovaj problem se može rešiti upotrebom drugih klasifikatora, kao što je recimo **SVM**.

Rezultati

U ovom pristupu korišćena je accuracy metrika. Postignuta je tačnost od 91.49%

CNN

Pretprocesiranje fotografije kod ovog pristupa podrazumeva promenu njene veličine. Nakon ovog koraka svaka fotografija je dimenzija 64x64 piksela. Konvolutivna neuronska mreža ima 10 slojeva, od toga je 9 skrivenih i 1 izlazni.

Skup podataka je ručno pravljen i sam po sebi ne sadrži dovoljnu količinu trening fotografija. Kako bi se trening skup dodatno proširio korišćena je tehnika augmentacije podataka. Augmentacija podataka se vrši u dva prolaza. U prvom prolazu se na svaku fotografiju trening skupa primenjuje flipovanje, zumiranje, rotacija i translacija. U drugom prolazu se za svaku fotografiju dobijenu prvim prolazom ponovo vrše navedene transformacije.

Problematične situacije

Primećeno je da kod ovog pristupa rešavanja problema CNN gotovo svaku fotografiju sa žutom pozadinom svrsta u klasu 200e.

Rezultati

Kao i u prethodnom pristupu i ovde je korišćena accuracy metrika. Kod ovog pristupa na žalost rezultati nisu tako dobri. Postignuta tačnost iznosi svega **42.49**%