北京工业大学 2012-2013 学年第一学期期末

数理统计与随机过程(研) 课程试卷

学号	成绩
----	----

注意: 试卷共七道大题,请写明详细解题过程。数据结果保留3位小数。

考试方式: 半开卷, 考试时**只允许看教材**《概率论与数理统计》 浙江大学 盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。考试时**允许使用计算器**。

考试时间 120 分钟。考试日期: 2013 年 1 月日

- 一、(10 分)欲对某班《数理统计与随机过程》的期末考试成绩作分析。假设这门课成绩 X (单位:分)服从正态分布 $N(\mu,\sigma^2)$ 。若班级平均成绩在 75 分以上则认为该班成绩良好。现从该班中随机抽取 约名同学,得到他们成绩的平均分为 78. 44,标准差为 11. 40。请根据以上结果回答如下问题:
 - (1) 取显著性水平 $\alpha=0.05$,分别给出下述两个问题的检验结果:

检验问题 I "H。: $\mu \le 75$, H_i: $\mu > 75$ "

检验问题 II "Ho: $\mu \ge 75$, H_i: $\mu < 75$ "

- (2) 对以上结论你如何解释?
- 解: (1) 由书中结论知, 检验问题 I 的拒绝域为

$$\frac{\overline{X} - 75}{S / \sqrt{n}} \ge t_{\alpha}(n - 1)$$

检验问题 II 的拒绝域为

$$\frac{\overline{X} - 75}{S / \sqrt{n}} \le -t_{\alpha}(n-1)$$

而由题设知 $\overline{X} = 78.44$,S = 10.4,n = 9,故 $\frac{\overline{X} - 75}{S / \sqrt{n}} = \frac{78.44 - 75}{11.4 / 3} = 0.905$

查表得 $t_{\alpha}(n-1) = t_{0.05}(8) = 1.8595$ 。

由此易见,两个检验问题的检验结果都是"接受原假设 H₀"。

- (2) 表面上看,这两个结论是对立的。但是,由于考虑到显著性检验只控制了犯第一类错误的概率,因而接受原假设时,犯第二类错误的概率可能很大,故此时的检验结果不是都很可信,因而从这个意义上来说并不矛盾。
- 二、(15 分)将酵母细胞的稀释液置于某种计量仪器上,数出每一小格内的酵母细胞数X,共观察了 413 个小方格,结果见下表。试问根据该资料,X 是否服从 Poisson分布?(显著性水平取 $\alpha=0.05$)

方格内细胞 数	0	1	2	3	4	5	6	7
实际方格数	103	143	98	42	18	6	2	1

$$\mathcal{H}: \hat{\lambda} = \frac{0*103+1*143+\dots+7*1}{413} = 1.41889$$

A_i	f_i		f_i \hat{p}_i $n\hat{p}_i$		i	$\int_{i}^{2}/n\hat{p}_{i}$
A_0	10	3	0. 24198	99. 9	39	106. 1548
$A_{\rm i}$	14	3	0. 34335	141.8	302	144. 2081
A_2	98	3	0. 24359	100. 6	501	95. 4663
A_3	42)	0.11521	47. 58		37. 0744
A_4	18		0. 04087	16. 8	78	19. 1966
A_5	6		0. 01160	4. 79		
A_6	2	9	0.00274	1.133	6. 201	13. 0624
A_7	1		0. 00067	0. 278		$\Sigma = 415.1626$

并组后 k=6。而此处 r=1,故 χ^2 分布自由度为k-r-1=4。而 $415.1626-413=2.1626=\chi^2<\chi_4^2(0.05)=9.488$

三、(15分)某公司在为期8个月内的利润表如下:

月份	1	2	3	4	5	6	7	8]
利润	1.88	2. 15	2.09	2.30	2. 26	2.39	2. 62	2. 58	

(1) 求该公司月利润对月份的线性回归方程; (2) 对回归方程进行显著性检验: (取 $\alpha = 0.05$); (3) 解释回归系数的意义; (4) 求第 11 月利润的预测区间 (取 $\alpha = 0.05$)。 (本题计算结果保留两位小数)。 解答:

	T			
X	У	X ^{2:}	y^2	ху
1	1.88	1	3. 5344	1.88
2	2. 15	4	4. 6225	4. 30
3	2.09	9	4. 3681	6. 27
4	2. 30	16	5. 29	9. 20
5	2. 26	25	5. 1076	11. 30
6	2. 39	36	5. 7121	14. 34

7	2. 62	49	6.8644	18. 34
8	2. 58	64	6. 6564	20.64
\sum 36	18. 27	204	42. 1555	86. 27

$$Sxx = \sum_{i=1}^{8} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{8} x_i \right)^2 = 204 - \frac{1}{8}36^2 = 42$$

$$Sxy = \sum_{i=1}^{8} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{8} x_i \right) \cdot \left(\sum_{i=1}^{8} y_i \right) = 86.27 - \frac{1}{8}36 \times 18.27 = 4.055$$

$$\hat{b} = \frac{s_{xy}}{s_{xx}} = 0.09656$$

$$\hat{a} = \overline{y} - \hat{b}\overline{x} = \frac{1}{8} \times 18.27 - 0.09655 \times \frac{1}{8} \times 36 = 1.8493.$$

(2)对回归方程进行检验:
$$H_{\mathsf{n}}:b=0$$

Syy =
$$\sum_{i=1}^{8} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{8} y_i \right)^2 = 42.1555 - \frac{1}{8} 18.27^2 = 0.43139$$

$$Q_e = S_{yy} - \hat{b}S_{xy} = 0.43139 - 0.09656 \times 4.055 = 0.03984$$

$$\therefore \frac{Q_e}{n-2} = \frac{0.60989}{6} = 0.00664; \ \sigma = 0.081486$$

$$|t| = \frac{|\hat{b}|}{\hat{\sigma}} \sqrt{S_{xx}} = \frac{0.09656}{0.081486} \sqrt{42} = 7.6853$$

$$t_{\frac{\alpha}{2}}(n-2) = t_{0.025}(8) = 2.306$$

$$|t| > t_{\frac{\alpha}{2}}(n-2)$$
 : 拒绝原假设,回归方程很显著。

(3) 表明公司月利润逐月增长率为 0.0965;

区间预测:
$$\left($$
路 $\hat{b}x_0 \pm t_{\alpha/2}(n-2)\sigma\sqrt{1+\frac{1}{n}+\frac{(x_0-\overline{x})^2}{S_{xx}}}\right)$

代入数值计算得: [2.620, 3.203].

四、(15分)某消防队要考察4种不同型号冒烟报警器的反应时间(单位:秒)。今将 每种型号的报警器随机抽取5个安装在同一条烟道中,当烟量均匀时观测报警器的反 应时间,得数据如下:

报警器型号		F	应 时) E T	
A 型	5. 2	6.3	4.9	间	
B 型	7.4	8. 1	5. 9	3. 2	6.8
C型	3. 9	6. 4	7. 9	6.5	4.9
D 型	12. 3	9. 4	7.8	9.2	4.1
(1) 夕玉山玉	1 FT 44, 155 state 555			10.8	8.5

(1) 各种型号的报警器的反应时间有无显著性差异? (显著性水平 $\alpha = 0.05$)

(2) 如果各种型号的报警器的反应时间有显著性差异,求均值差 $\mu_A - \mu_B$ 的置信 水平为95%的置信区间。

(1) 在 1 中, s=4, $n_1 = n_2 = n_3 = n_4 = 5$, n=20, 列方差分析表如下:

	来源		1 7 373	在为"机农知下:	7/14X 9/1 1:		
-	不 源	平方和	自由度	均方和	p/de		
	因素 A	56. 29		HV CC Co.	<i>F</i> 值		
		50.29	3	18.76			
L	误差	48.77	16	2 05	F=6.15		
L	7 (2 16) 0	04 4 5	<u> </u>	3. 05			

 $F_{0.05}$ (3, 16) =3.24 < F=6.15,

检验结果拒绝 H。

$$\overline{X}_1 = 5.28$$
 $\overline{X}_2 = 6.56$ $\overline{X}_3 = 6.30$ $\overline{X}_4 = 9.76$ $\hat{\mu}_1 = 5.28$ $\hat{\mu}_2 = 6.56$ $\hat{\mu}_3 = 6.30$ $\hat{\mu}_4 = 9.76$ $\hat{\mu}_5 = \frac{S_E}{n-s} = 48.77/16 = 3.105;$

则
$$\sigma^2 = \frac{S_E}{n-s} = 48.77/16 = 3.105$$

$$t_{0.025}(n-s) = t_{0.025}(16) = 2.1199$$

$$t_{0.025}(16)\sqrt{\overline{S_E}(\frac{1}{n_j} + \frac{1}{n_k})} = 2.1199\sqrt{3.105 \times \frac{2}{5}} = 2.3625$$

故置信区间为:

$$5.25 - 6.56 \pm 2.3625 = -1.28 \pm 2.3625 = (-3.64, 1.08)$$

五、(15分)设 $\{N(t), t \ge 0\}$ 是强度为 $\lambda = 2$ 的 Poisson 过程, 试求

- (1) $P\{N(1) < 2\}$;
- (2) $P\{N(1)=1 \perp N(2)=3\}$;
- (3) $P\{N(1) \ge 2 | N(1) \ge 1\}$.

解: (1)
$$P(N(1) < 2) = \sum_{k=0}^{1} \frac{2^{k} e^{-2}}{k!} = 3e^{-2}$$

(2)

$$P(N(1) = 1, N(2) = 3) = P(N(1) = 1, N(2) - N(1) = 2)$$

$$= P(N(1) = 1)P(N(2) - N(1) = 2)$$

$$= \frac{2^{1}e^{-2}}{1!} \frac{2^{2}e^{-2}}{2!} = 4e^{-4}$$

(3)

$$P(N(1) \ge 2 | N(1) \ge 1) = \frac{P(N(1) \ge 2, N(1) \ge 1)}{P(N(1) \ge 1)} = \frac{P(N(1) \ge 2)}{P(N(1) \ge 1)}$$

$$= \frac{1 - P(N(1) < 2)}{1 - P(N(1) < 1)} = \frac{1 - \frac{2^{0} e^{-2}}{0!} - \frac{2^{1} e^{-2}}{1!}}{1 - \frac{2^{0} e^{-2}}{0!}} = \frac{1 - 3e^{-2}}{1 - e^{-2}}$$

初始分布P(X₀=1)=P(X₀=2)=0.25。

- (1) 求P (X₀=1, X₁=3, X₃=2, X₄=3) 的值;
- (2) 求P (X₀=3, X₃=1 | X₁=1, X₂=2) 的值;
- (3) 判断 $\{X_n, n \ge 0\}$ 是否为遍历的,请说明理由;若是遍历的,求其平稳分布。

解:

$$P^{2} = \begin{bmatrix} 0.5 & 0.25 & 0.25 \\ 0.5 & 0.5 & 0.25 \\ 0.25 & 0.5 & 0.5 \end{bmatrix}$$

- (1) $P(X_0=1, X_1=3, X_3=2, X_4=3,) = P(X_0=1) P(X_1=3|X_0=1) P(X_3=2|X_1=3,) P(X_4=3|X_3=2)$ $=0.25\times0.5\times0.25\times0.5=1/64$
- (2) P ($X_0=3$, $X_3=1$ | $X_1=1$, $X_2=2$) = P ($X_0=3$, $X_3=1$, $X_1=1$, $X_2=2$) / P ($X_1=1$, $X_2=2$) = P (X_0 =3) P (X_1 =1 | X_0 =3) P (X_2 =2 | X_1 =1) P (X_3 =1 | X_2 =2) /[P (X_1 =1) P (X_2 =2 | X_1 =1)] =0. $5 \times 0. 5 \times 0. 5 \times 0. 5 \div 0. 375 \div 0. 5 = 1/3$
 - (3) P² 皆正元 , 故遍历。 设平稳分布为 (x_1, x_2, x_3) ,由 (x_1, x_2, x_3) $P=(x_1, x_2, x_3)$ 及 $x_1+x_2+x_3=1$ 可得平稳分布为(1/3, 1/3, 1/3)。

七、(15 分) 设有随机过程 $X(t) = A\cos(\omega t + \Theta)$, 式中 A 是服从瑞利分布的随机变量,其概率密度函数为:

$$f(x) = \begin{cases} \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

 $\Theta \sim U(0,2\pi)$,且 Θ 与A相互独立, ω 为常数,证明X(t)为平稳过程。

(提示: X,Y 是相互独立随机变量,且 f(x),g(y) 是连续函数,则 f(X),g(Y) 仍然是相互独立的随机变量。)

解:由题设随机变量 Θ 与A相互独立,于是 $\cos(\omega t + \Theta)$ 与A也相互独立,又 $\cos(\omega t + \Theta)\cos(\omega s + \Theta)$ 与 A^2 也相互独立,所以,由期望的性质知:

$$E(X(t)) = E(A\cos(\omega t + \Theta)) = EA \bullet E(\cos(\omega t + \Theta)) = 0$$
又因为:
$$E\cos(\omega t + \Theta)\cos(\omega s + \Theta)$$

$$= E\left[\frac{1}{2}\cos(\omega s + \Theta) + \frac{1}{2}\cos(\omega s + \omega t + 2\Theta)\right]$$

$$= \frac{1}{2}\cos(\omega s + \omega t) + \frac{1}{4}\int_{0}^{2\pi}\cos(\omega s + \omega t) + 2\Theta d\Theta$$

$$= \frac{1}{2}\cos(\omega s + \omega t)$$

及:

$$EA^{2} = \int_{0}^{\infty} \frac{x^{3}}{\sigma^{2}} \exp\left\{-\frac{x^{2}}{2\sigma^{2}}\right\} dx = \int_{0}^{\infty} (-x^{2}) d\left(\exp\left\{-\frac{x^{2}}{2\sigma^{2}}\right\}\right)$$

$$= -x^{2} \exp\left\{-\frac{x^{2}}{2\sigma^{2}}\right\}\Big|_{0}^{\infty} + \int_{0}^{\infty} 2x \exp\left\{-\frac{x^{2}}{2\sigma^{2}}\right\} dx - \int_{0}^{\infty} e^{-\frac{x^{2}}{2\sigma^{2}}} d$$

所以,X(t)是平稳过程。