Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Katedra Automatyki

LABORATORIUM Elektronika z techniką mikroprocesorową

Ćwiczenie nr 8 – TI Zestaw 4					
Wydział EAIIB Kierunek AiR rok II	Laboratorium 5	Czwartek 15:30			
LP.	lmię i nazwisko				
1.	Łukasz Radzio	Data wykonania ćwiczenia			
2.	Dawid Legutki	28.05.2015			
3.	Bartłomiej Czapla				

1.1) Wstęp

Ćwiczenie składa się z dwóch części. Pierwsza polega na zbadaniu charakterystyk logarytmicznych modułu i fazy dla czterech filtrów: dolno-przepustowego, górno-przepustowego, pasmowo-przepustowego oraz pasmowo-zaporowego. Druga część z kolei miała na celu przefiltrowanie sygnału prostokątnego w taki sposób aby na wyjściu układu otrzymać podstawową harmonikę fali wejściowej.

1.2) Schemat

Punkty pomiarowe:

- U1 filtr pasmowo przepustowy (Band Pass Filter)
- U2 filtr dolno-przepustowy (Low Pass Filter)
- U3 filtr górno-przepustowy (High Pass Filter)
- U4 filtr pasmowo-zaporowy (Band Stop Filter)

2.1) Filtr pasmowo-zaporowy

2.2) Filtr górno-przepustowy

2.3) Filtr dolno-przepustowy

2.4) Filtr pasmowo-przepustowy

2.5) Wnioski

- Punkty pomiarowe pokrywają się z wynikami symulacji. Lekkie odstępstwa można wytłumaczyć błędami pomiarowymi.
- Pasmo przepuszczania dla każdego filtra ma wzmocnienie -6,85 dB, czyli $\frac{1}{2,2} \approx 0,455$
- Powyższa własność jest wynikiem tego, że rezystor na wejściu ma wartość 2,2kOm, a pozostałe 1kOm, podstawiając te wartości do wzorów na transmitancje poszczególnych filtrów otrzymuje się zmierzone wzmocnienie.

3) Filtrowanie pierwszej harmonicznej sygnału prostokątnego

Pomiary wykonaliśmy dla dwóch częstotliwości: pierwsza to 160Hz czyli częstotliwość graniczna, a druga 960Hz która znajduje się w paśmie zaporowym. Jako wyjście przyjęliśmy U2, czyli sygnał prostokątny został przez nas przepuszczony przez filtr dolnoprzepustowy.

3.1) Fala prostokątna o częstotliwości 160Hz

Pomiary:

Symulacja:

3.2) Wnioski:

- Dla częstotliwości 160Hz pierwsza składowa została zaobserwowana na wyjściu
- Jest ona przesunięta w fazie o 90 deg, co jest zgodne z wyznaczoną charakterystyką bodego
- Dane pomiarowe zgadzają się z przeprowadzoną symulacją
- Amplituda fali wyjściowej wynosi ok. 0.6V, wynik zgadza się z teorią:

$$V_o = \frac{4}{\pi} V_i \cdot H_0 = 0.579$$
 , gdzie $V_i = 1V$, $H_0 = 1/2.2 \approx 0.455$

3.3) Fala prostokątna o częstotliwości 960Hz

Pomiary:

3.4) Wnioski:

- Filtr tłumi wszystkie składowe harmoniczne, częstotliwość graniczna filtru wynosi ok. 160Hz
- zgodność pomiarów z symulacją, początkowe odstępstwa to stan przejściowy, stan ustalony jest zgodny z pomiarami

4) Dane pomiarowe z wynikami obliczeń

Band Pass Filter							
f	dt	input pp	output pp	magnitude	magnitude [dB]	phase [deg]	
10	-2,60E-02	3,54	0,10	0,03	-30,64	-93,60	
90	-4,00E-03	4,20	1,27	0,30	-10,39	-129,60	
160	-3,00E-03	4,16	1,90	0,46	-6,81	-172,80	
360	-1,90E-03	4,04	0,90	0,22	-13,04	-246,24	
600	4,80E-04	4,04	0,54	0,13	-17,48	-256,32	
3000	8,70E-05	4,00	0,09	0,02	-32,58	-266,04	

	Band Stop Filter							
f	dt	input pp	output pp	magnitude	magnitude [dB]	phase [deg]		
20	2,60E-0	3,88	1,78	0,46	-6,77	187,20		
60	7,20E-0	3 4,10	1,70	0,41	-7,65	155,52		
120	2,70E-0	3 4,20	0,94	0,22	-13,00	116,64		
160	4,60E-0	3 4,12	0,11	0,03	-31,47	264,96		
280	2,20E-0	3 4,08	1,45	0,36	-8,99	221,76		
600	-7,60E-0	4,00	1,80	0,45	-6,94	195,84		

High Pass Filter							
f	dt	input pp	output pp	magnitude	magnitude [dB]	phase [deg]	
10	4,80E-02	3,54	0,01	0,00	-50,98	172,80	
50	8,90E-03	4,08	0,20	0,05	-26,19	160,20	
90	4,30E-03	4,20	0,71	0,17	-15,46	139,32	
160	1,50E-03	4,12	1,96	0,48	-6,45	86,40	
1100	4,00E-05	4,04	1,86	0,46	-6,74	15,84	

Low Pass Filter							
f	dt	input pp	output pp	magnitude	magnitude [dB]	phase [deg]	
20	-2,00E-03	3,86	1,80	0,47	-6,63	-14,40	
90	-1,20E-03	4,24	2,18	0,51	-5,78	-38,88	
160	4,60E-03	4,16	1,82	0,44	-7,18	-95,04	
300	2,00E-03	4,04	0,58	0,14	-16,86	-144,00	
1200	-3,88E-04	4,00	0,03	0,01	-41,67	-167,62	