Teoria Axiomática dos Conjuntos

Beatriz de Faria, 11201810015

Fevereiro, 2021

1 Exercício 2.1.

Suponha, por absurdo, que existem 2 conjuntos (x,x') $x \neq x'$ que satisfazem a propriedade:

$$\forall y(y \notin Z) \tag{1}$$

Sendo Z, x ou x'.

Como $x \neq x'$, pelo axioma da existencionalidade temos que:

$$\exists a \in x (a \notin x')$$

(Ou vice-versa, mas, podemos supor a proposição acima sem perda de generalidade.) Porém, como a afirmação (1) é válida $\forall y$, ela é válida, em particular para a.

$$\therefore a \in x \land a \notin x$$

Portanto, não existe tal a.

q.e.d

2 Exercício 2.26

Para que $a \neq \emptyset \land \bigcap a = \bigcup a$, precisamos encontrar o conjunto a que satisfaça:

$$\forall z (z \in \bigcup a \Leftrightarrow \exists w (w \in a \land z \in w)) \tag{1}$$

$$\forall z(z \in \bigcap a \Leftrightarrow \forall w \in a(z \in w))$$
 (2)

Pelo Axioma da existencionalidade:

$$\bigcap a = \bigcup a \Leftrightarrow \forall z (z \in \bigcap a \Leftrightarrow z \in \bigcup a)$$

Em outras palavras, (1) ocorre \Leftrightarrow (2) ocorre:

$$\exists w(w \in a \land z \in w) \Leftrightarrow \forall w \in a(z \in w)$$

Note que, se existisse um conjunto $w' \in a$ tal que $\exists s \in w'(s \notin w)$. Logo $s \in \bigcup a$ e $s \notin \bigcap a$, o que contradiz a afirmação acima.

$$\therefore \forall w \in a(w=w)$$

Então podemos classificar a como:

$$a = \{w\}$$

Para um conjunto w qualquer.

3 Exercício 2.27

3.1 i

$$a \subseteq \wp(\bigcup a)$$

Queremos provar a equação acima, primeiramente, podemos reescreve-la como:

$$\forall x \in a \Rightarrow x \in \wp(\bigcup a)$$

Para demonstrar essa proposição, primeiramente, fixe um $x \in a$ qualquer. Dizer que $x \in \wp(\bigcup a)$ é equivalente à dizer que $x \subseteq \bigcup a$. Isto é:

$$\forall y \in x (y \in \bigcup a)$$

Tome um $y \in x$ qualquer, como $x \in a$, então $y \subseteq a$. Ou seja, precisamos mostrar que $a \in \bigcup a$. Para tanto, vamos lembrar a definição de $\bigcup a$

$$\forall z(z \in \bigcup a \Leftrightarrow \exists w(w \in a \land z \in w))$$

Em outras palavras, para mostrar que $a \in \bigcup a$, precisamos de um conjunto w tal que $w \in a \land \forall z \in w (z \in a)$. Note que a existência de w é garantida pelo axioma da especificação:

$$\forall a \exists w \forall z (z \in w \Leftrightarrow (z \in a \land \varphi(z)))$$

No nosso caso:

$$\forall a \exists w \forall z (z \in w \Leftrightarrow (z \in a))$$

q.e.d

3.2 iii

Primeiramente, vamos mostrar que $\bigcap (a \cup b) \subseteq (\bigcap a) \cap (\bigcap b)$. Tome um $x \in \bigcap (a \cup b)$ qualquer. Por definição, sabemos que:

$$\forall w \in a \cup b(x \in w)$$

$$\forall w(w \in a \lor w \in b(x \in w))$$

$$\forall w \in a(x \in w) \land \forall w \in b(x \in w)$$

$$x \in \bigcap a \land x \in \bigcap b$$

$$\therefore x \in (\bigcap a) \cap (\bigcap b)$$

Agora, vamos mostrar que $(\bigcap a) \cap (\bigcap b) \subseteq \bigcap (a \cup b)$. Para tanto tome um $x \in (\bigcap a) \cap (\bigcap b)$ arbitrário.

$$x \in \bigcap a \land x \in \bigcap b$$

$$\forall w \in a(x \in w) \land \forall w \in b(x \in w)$$

$$\forall w(w \in a \lor w \in b(x \in w))$$

$$\forall w \in a \cup b(x \in w)$$

$$x \in \bigcap (a \cup b)$$

q.e.d

3.3 vi

Primeiramente, vamos provar a ida (\Rightarrow)

$$\forall z(z\in\bigcup a\Leftrightarrow \exists x(x\in a\land z\in x)$$

Portanto, podemos reescrever $\bigcup a \subseteq \bigcap b$ como (peço desculpas porque vou escrever mesmo, em linguagem matemática me pareceu um pouco confuso):

Para todo z tal que $z \in x \wedge x \in w, \, z \in y$ para algum $y \in b$

E isto pode ser reescrito, mais uma vez, como:

$$\forall x \in a \forall y \in b (z \in x \Rightarrow z \in y)$$

Ou seja, $x \subseteq y$

Agora, vamos provar a volta (\Leftarrow)

$$\forall z(z \in \bigcup a \Leftrightarrow \exists \alpha \in a \land z \in \alpha) \tag{1}$$

$$\forall n (n \in \bigcap b \Leftrightarrow \forall y \in b (n \in y)) \tag{2}$$

Tome um $z \in \bigcup a$ qualquer. Por hipótese, nós temos que:

$$\forall x \in a \forall y \in b (x \subseteq y)$$

Como isto é válido $\forall x$, em particular, é válido para o conjunto α empregado em (1):

$$\forall z(z \in \bigcup a \Leftrightarrow \exists x \in a \land z \in x)$$

Como $x \in a, \forall y \in b \ (z \in y)$, devido a nossa hipótese. Em outras palavras:

$$z \in \bigcap b$$

q.e.d

4 Exercício 2.30

Suponha, por absurdo, que existem 2 conjuntos r e r' que satisfazem:

$$\forall z(z \in R \Leftrightarrow \exists x \in a \exists y \in b : z = (x, y))$$

Sendo a e b dois conjuntos arbitrários e R um conjunto tal que:

$$\forall x \in a \forall y \in b((x,y) \in R) \tag{1}$$

O Axioma da existencionalidade nos diz que:

$$r \neq r' \Leftrightarrow \exists z \in r'(z \notin r) \lor \exists z \in r(z \notin r')$$

Suponha, sem perda de generalidade que, $\exists z \in r'(z \notin r)$. Em outras palavras, existe, no mínimo, um z tal que:

$$z = (x,y) \land (x,y) \not\in r$$

Porém, pela equação (1) todo par ordenado formado pelos conjuntos a e $b \in R$, como r é um conjunto que satisfaz essa equação então $z \in r \land z \notin r$

q.e.d

5 Exercício 2.36

Por hipótese, temos que:

$$\forall z \in p \exists x \exists y (z = (x, y))$$

O axioma da especificação nos garante que podemos construir conjuntos a e b tais que:

$$\forall x(z = (x, y)) \Rightarrow x \in a \tag{1}$$

$$\forall y(z = (x, y)) \Rightarrow y \in b \tag{2}$$

Vamos demonstrar que p é uma relação de a em b, isto é $p \subseteq a \times b$. Tome um $z \in p$ qualquer,

$$\exists x \in a \exists y \in b(z = (x, y))$$

$$\therefore z \in a \times b$$

q.e.d

6 Exercício 2.40

Queremos mostrar que $\bigcup c$ é uma função que denotaremos pela letra R, isto é:

$$\forall x \in dom(\bigcup c) \exists ! y(xRy)$$

Note que

$$x \in dom(\bigcup c) \Leftrightarrow \exists f(dom(f) \in c \land x \in dom(f))$$
 (1)

Temos por hipótese que:

$$\forall g, h \in c(\forall z \in dom(g) \cap dom(h)(g(z) = h(z))) \tag{2}$$

Como isto vale para quaisquer funções, em particular vale para f (da proposição 1)

Isto nos garante que $\exists y (f(x) = y)$, agora resta mostrar que ele é único. Note que, para que y não seja único, precisamos de um x tal que $x \in dom(g) \land x \in dom(h)$, sendo dom(g) e dom(h) o domínio funções quaisquer em c. (se x não pertence a g ou h, x não está no domínio de c. Se x pertence há apenas dom(g) ou dom(h), então y é único, pois x é único).

Então, fixe um x tal que $x \in dom(g) \land x \in dom(h)$, note que, pela hipótese (proposição 2), g(x) = h(x) = y, portanto y é único.

q.e.d

7 Exercício 2.52

Queremos construir um conjunto b de forma que a função f da proposição seguinte:

$$\forall x \in a \forall y \in a (x \le y \Leftrightarrow f(x) \le f(y))$$

Sendo \leq a ordem parcial de ae
 \leq a ordem parcial de b definida como:

$$\forall x \in b \forall y \in b (x \le y \Leftrightarrow x \subseteq y)$$

A partir disto podemos reescrever nossa proposição inicial como:

$$\forall x \in a \forall y \in a (x \le y \Leftrightarrow f(x) \subseteq f(y))$$

Nosso objetivo é construir um conjunto b de modo que:

$$\forall y \in b \exists ! x \in a(xfy)$$