PRÁCTICA 3 METAHEURÍSTICAS

PROBLEMA 1: MDD

David Muñoz Sánchez 07256819C

dmunozs14@correo.ugr.es Grupo A3

(Martes)

Algoritmos considerados: ES, BMB, ILS.

Índice

Índice	2
Descripción del problema	3
Descripción de los algoritmos empleados y consideraciones estos	comunes a
Función objetivo	4
Generación de soluciones aleatorias	6
Componentes particulares de cada algoritmo	7
Esquema de búsqueda	7
Enfriamiento simulado	7
BMB	8
ILS	9
Enfriamiento simulado	10
Cálculo Temperatura inicial	10
Esquema de enfriamiento	10
Búsqueda Local	11
Método creación de lista de candidatos	11
Exploración de entorno	11
Generación de vecino	12
ILS	12
Operador de mutación	12
Procedimiento desarrollo	13
Experimentos y análisis de resultados	14

Descripción del problema

El problema es el MDD (Minimum Differential Dispersion Problem), que consiste en seleccionar un conjunto de m elementos de un conjunto inicial de n elementos de forma que se minimice la dispersión entre los elementos escogidos, de los que tenemos las distancias entre ellos.

La dispersión es la diferencia entre la distancia acumulada máxima y la mínima de un conjunto de m elementos. La distancia acumulada de un elemento es la suma de distancias de ese elemento a todos los demás.

A partir de una solución inicial aleatoria, o, en el caso de esta práctica, varias soluciones aleatorias, se tiene que conseguir una buena solución.

Descripción de los algoritmos empleados y consideraciones comunes a estos

Antes de comenzar con la explicación de los algoritmos y las consideraciones comunes a estos es necesario indicar el esquema de representación de soluciones. Todas las versiones trabajan con conjuntos soluciones formados por números reales entre 0 y n (tamaño del problema). Las soluciones tienen todas tamaño m (m < n) y los elementos que forman la solución no se pueden repetir.

Se han implementado varias versiones de algoritmos que se basan en la búsqueda por trayectorias, que tienen como objetivo mejorar la búsqueda local, que se queda estancada en mínimos locales rápidamente.

El Enfriamiento Simulado parte de una solución aleatoria de la que generamos un vecino hasta máximo de vecinos. Cuando tenemos cierto número de éxitos, es decir, que aceptemos la solución o bien porque mejore la que tenemos ahora o por la función de probabilidad, también empezamos de nuevo con el proceso. Este proceso se repite hasta que no haya éxitos en una iteración o hasta que se llegue a las 100'000 evaluaciones de la función objetivo.

ILS y BMB sin embargo se basan en la búsqueda multiarranque. Partimos de una solución aleatoria y diez, respectivamente. Les vamos aplicando búsqueda local y siempre mantenemos la mejor solución encontrada hasta el momento. En ILS la búsqueda local se tiene que ejecutar 10 veces, las mismas que en BMB.

Función objetivo

```
Tenemos dos formas de calcular la función objetivo:
```

```
maximo ← 0
minimo ← 0
suma ← 0
para i ← 0 hasta TAMAÑO de elegidos[]
[incremento 1] hacer
     para j \leftarrow 0 hasta TAMAÑO de elegidos[]
     [incremento 1] hacer
           Si elegidos[i] <> elegidos[j] entonces
                 suma ← suma +
           distancias[elegidos[i]][elegidos[j]]
                 //La matriz de distancias se pasa como
           parámetro a la función objetivo
     fin para
     Si suma > maximo entonces
           maximo ← suma
     Fin si
     Si minimo = 0 entonces
           minimo ← suma
     Sino entonces
           Si suma < minimo entonces
               minimo ← suma
           Fin si
     Fin si
     suma ← 0
fin para
Devolver maximo - minimo
```

Esta primera forma es más costosa que la segunda, que se basa en la factorización y calcula el fitness a partir del vector de distancias acumuladas de una solución, la matriz de distancias y una solución vecina (es decir, que a nuestra solución se le haya aplicado un movimiento de intercambio en alguna posición).

```
\begin{array}{l} maximo\_nuevo \leftarrow 0 \\ minimo\_nuevo \leftarrow 0 \\ suma \leftarrow 0 \\ distancias \ acumuladas[] \ //Float \end{array}
```

```
indice cambio //Pasado como argumento, único índice en el que
difieren las dos soluciones
     para i \leftarrow 0 hasta TAMAÑO de distancias acumuladas[]
      [incremento 1] hacer
           Si i <> indice cambio entonces
                 distancias \ acumuladas[i] \leftarrow
     distancias acumuladas[i]-matriz distancias[solucion actual[ind
     ice cambio]][solucion actual[i]]
           Fin si
     fin para
     para i ← 0 hasta TAMAÑO de distancias acumuladas[]
     [incremento 1] hacer
           Si i <> indice cambio entonces
                 distancias acumuladas[i] ←
     distancias acumuladas[i]+matriz distancias[solucion_vecina[ind
     ice cambio]][solucion actual[i]]
                 suma ← suma +
     matriz distancias[solucion vecina[indice cambio]][solucion act
     ual[i]]
           Fin si
     fin para
     distancias\_acumuladas[indice\_cambio] \leftarrow suma
     para i \leftarrow 0 hasta TAMAÑO de distancias acumuladas[]
      [incremento 1] hacer
           distancia ← distancias acumuladas[i]
           Si distancia > maximo nuevo entonces
                 maximo_nuevo ← distancia
           Fin si
           Si minimo_nuevo = 0 entonces
                 minimo nuevo ← distancia
           Sino entonces
                 Si distancia < minimo nuevo entonces
                       minimo nuevo ← distancia
                 Fin si
           Fin si
      fin para
```

Generación de soluciones aleatorias

Tanto ES como ILS crean una única solución aleatoria que se hace de la siguiente forma:

```
primer\_sel \leftarrow seleccionables[] \ \'uttimo \ Elemento //Iremos \ sacando posibles números de nuestra solución de seleccionables, que es un vector con número de 0 a n-1 seleccionables[] <math>\leftarrow quitar \'uttimo \ Elemento \ solucion\_inicial[] <math>\leftarrow añadir primer_sel solucion_actual[] \leftarrow añadir primer_sel mejor_solucion[] \leftarrow añadir primer_sel //Se rellenan todos los vectores por comodidad
```

 $\begin{tabular}{ll} \it Mientras TAMA\~NO DE solucion_inicial[] < m entonces \\ \it Random \leftarrow mezclar seleccionables[] \end{tabular}$

sel ← seleccionables[] ÚLTIMO ELEMENTO
seleccionables[] ← quitar ÚLTIMO ELEMENTO
solucion_inicial[] ← añadir sel
solucion_actual[] ← añadir sel
mejor_solucion[] ← añadir sel

Fin mientras

El algoritmo con una forma un poco diferente de tratar las soluciones iniciales aleatorias es BMB, ya que debemos generar 10. Las 10 se construyen de forma que no se pueden repetir elementos entre ellas.

 $primer_sel \leftarrow seleccionables[] \ \'ultimo \ Elemento \ //Iremos sacando posibles números de nuestra solución de seleccionables, que es un vector con número de 0 a n-1$

```
seleccionables[] ← quitar ÚLTIMO ELEMENTO
solucion_inicial[] ← añadir primer_sel
//Rellenamos_solo_solucion_inicial[] por la co
```

 $// {\it Rellenamos\ solo\ solucion_inicial[]\ por\ la\ construcción}$ del algoritmo

```
\begin{tabular}{ll} \it Mientras TAMA\~NO DE solucion\_inicial[] < m entonces \\ \it Random \leftarrow mezclar seleccionables[] \\ \it sel \leftarrow seleccionables[] \'ULTIMO ELEMENTO \\ \it seleccionables[] \leftarrow quitar \'ULTIMO ELEMENTO \\ \it solucion\_inicial[] \leftarrow a\~nadir sel \\ \it Fin mientras \\ \end{tabular}
```

 $soluciones iniciales[][] \leftarrow añadir solucion inicial[]$

```
solucion_inicial[] ← limpiar
    contador_soluciones ← contador_soluciones + 1
    seleccionables[] ← seleccionables_anterior[]
Fin_mientras
```

Componentes particulares de cada algoritmo

Esquema de búsqueda

A continuación, se muestran unos esquemas generales en forma de pseudocódigo para ilustrar cómo cada algoritmo intenta obtener la mejor solución posible. En dichos códigos, se van a obviar los procedimientos (se reflejaran como ES y BL), que se usan para buscar y se mostrará el tratamiento que se da a las soluciones que se van obteniendo, es decir, cómo se busca realmente.

Enfriamiento simulado

Partimos de una solución inicial aleatoria y se inicializan las variables necesarias para la correcta ejecución del algoritmo, tales como max_vecinos, max_exitos, beta (necesario para el enfriamiento), así como los vectores de distancias acumuladas.

Hacer

 $exitos \leftarrow 0$

 $distancias_originales \leftarrow distancias acumuladas$

//Guardo este vector porque en el fitness factorizado se modifica y ya no tendríamos el vector de distancias de la solución actual si no de la vecina

para $i \leftarrow 0$ hasta max_vecinos and exitos < max_exitos [incremento 1] hacer

GENERACION VECINO Y CALCULO DE SU FITNESS

variacion_fitness ← fitness_nuevo - fitness_original //En la primera iteración fitness_original vale ness que es el fitness de la solución inicial en ese

 ${\it mejor_fitness}$ que es el fitness de la solución inicial en ese ${\it momento}$

 $valor_random \leftarrow N\'umero\ random\ entre\ 0.0\ y\ 1.0$ $valor\ prob \leftarrow exp((-1.0\ *\ variacion_fitness)\ /$ temperatura);

 $Si\ variacion_fitness < 0\ or\ valor_random <= \\ valor_prob\ entonces$

 $\begin{array}{l} \textit{exitos} \; \leftarrow \; \textit{exitos} \; + \; 1 \\ \textit{solucion_actual[]} \; \leftarrow \; \textit{solucion_vecina[]} \\ \end{array}$

```
seleccionables[] ← quitamos ultimo elemento
                        //Lo hemos metido en la vecina
                        seleccionables[] ← añadir elemento quitado de
                  la solucion actual
                        fitness\_original \leftarrow fitness\_nuevo
                        distancias originales[] ←
                  distancias acumuladas[]
                        Si fitness nuevo < mejor fitness entonces
                             mejor solucion[] ← solucion actual[]
                             mejor \ fitness \leftarrow fitness \ nuevo
                        Fin si
                  Si no entonces
                        distancias_acumuladas[] \leftarrow
distancias originales[]
                  Fin si
            fin para
```

LLAMADA AL PLANIFICADOR DE TEMPERATURA PARA ENFRIAR

Mientras cuenta ev < EVALUACIONES and exitos <> 0

BMB

En este algoritmo partimos de un vector de soluciones aleatorio. A cada solución se le aplicará búsqueda local y mantendremos siempre la mejor solución obtenida.

```
para i ← 0 hasta NUM_SOLUCIONES [incremento 1] hacer

cuenta_ev ← 0

soluciones[] //Enteros
vecinos[] //Vector de pares

stuck ← true
solucion_actual[] ← soluciones_iniciales[i]
mejor_fitness ← Dispersión sin factorizar de solucion

actual
distancias_acumuladas[] ← Procedimiento para calcular las
distancias
```

BÚSQUEDA LOCAL() La solución obtenida estará en solución actual

```
Si primera entonces

mejor solucion[] ← solucion actual[]
```

```
fitness\_maximo \leftarrow mejor\_fitness
Fin\_si
Si mejor\_fitness < fitness\_maximo entonces
mejor\_solucion[] \leftarrow solucion\_actual[]
fitness\_maximo \leftarrow mejor\_fitness
Fin\_si
fin para
```

ILS

Este algoritmo también aplica 10 veces la búsqueda local, pero parte de una única solución inicial.

Primero se aplica búsqueda local a la inicial y obtenemos una solución, la cual vamos a mutar y aplicaremos búsqueda local a la mutación para después quedarnos con la solución original o lo que nos ha devuelto la BL sobre la mutada (según cual sea mejor).

```
para i \leftarrow 0 hasta NUM SOLUCIONES [incremento 1] hacer
      solucion original[]
      fitness original
      solucion original[] ← solucion actual[]
      solucion actual mutada[] ← MUTACIÓN SOBRE SOLUCION ACTUAL
      fitness original ← dispersión sin factorizar de
      solución actual
      cuenta ev \leftarrow 0
      soluciones[]
      soluciones anterior[]
      vecinos[]
      stuck \leftarrow true
      Si first ite entonces
            solucion \ actual[] \leftarrow solucion \ inicial[]
           first ite ← false
      Sino entonces
            solucion actual[] ← solucion actual mutada[]
      Fin si
      mejor_fitness ← dispersión sin factorizar de
      solucion actual
      distancias \ acumuladas[] \ \leftarrow \ se \ calculan \ con \ procedimiento
      BÚSQUEDA LOCAL () //Nos interesa la solución que ha dejado
      Si primera entonces
           mejor solucion[] ← solucion actual[]
            solucion_maxima[] ← mejor_solucion[]
```

```
fitness maximo \leftarrow mejor fitness
           primera ← false
     Sino entonces
           //Tenemos que elegir entre la actual (mutada a la
     que hemos aplicado BL) y la original
           Si mejor fitness < fitness original entonces
                mejor solucion[] ← solucion actual[]
           Sino entonces
                solucion actual[] ← solucion original[]
                mejor fitness ← fitness original
           Fin si
           //Actualizamos la mejor solución hasta ahora
           Si mejor fitness < fitness maximo entonces
                solucion maxima[] ← solucion actual[]
                 fitness maximo ← mejor fitness
           Fin si
     Fin si
fin para
```

Enfriamiento simulado

Cálculo Temperatura inicial

La temperatura inicial se calcula según la fórmula que aparece en el guión de esta práctica.

```
t_{inicial} \leftarrow (0.3 * mejor_{fitness}) / (-1.0 * log(0.3))
//Mejor fitness se corresponde en esta sentencia con el fitness de la solución inicial aleatoria que hemos generado
```

Esquema de enfriamiento

Del enfriamiento se encarga un método llamado t_scheduler, al que se le pasa el valor beta de la fórmula de enfriamiento y la temperatura que hay ahora mismo, por referencia.

```
Lo primero, beta se calcula de la siguiente forma: beta \leftarrow (t\_inicial - t\_final) \ / \ ((\textit{EVALUACIONES} \ / \ \textit{max\_vecinos}) \ * \\ t\_final \ * \ t\_inicial)
```

El método encargado de enfriar tiene la siguiente forma:

```
nueva_temperatura \leftarrow temperatura / (1 + beta * temperatura) temperatura \leftarrow nueva temperatura
```

Búsqueda Local

```
Método creación de lista de candidatos
     vecinos[] ← limpiar //Vector de pares de enteros
     soluciones[] <- limpiar</pre>
     //El primer elemento de cada par es el elemento a sacar y el
segundo el elemento a meter
     para i \leftarrow 0 hasta TAMAÑO de solucion_actual[]
      [incremento 1] hacer
           soluciones[] ← añadir solucion actual[i]
     fin para
     sin asignar[] //Vector de enteros
     para i ← 0 hasta n [incremento 1] hacer
           Si i NO está en soluciones entonces
                 sin asignar[] \leftarrow a\tilde{n}adir i
           seleccionables[solucion actual[i]] ← false
     fin para
     para i ← 0 hasta TAMAÑO de soluciones[]
      [incremento 1] hacer
           para j \leftarrow 0 hasta TAMAÑO de sin asignar[]
           [incremento 1] hacer
                 vecinos[] ←añadir par(soluciones[i], sin asignar[j])
           fin para
     fin para
     Exploración de entorno
     distancias originales[] ← distancias acumuladas[]
     nueva dispersion
     improved \leftarrow false
     stuck ← true
     para i \leftarrow 0 hasta TAMAÑO de vecinos[] and improved = false
      [incremento 1] hacer
           cambio \leftarrow vecinos[i]
           solucion_vecina ← genero vecino con cambio first y cambio
second
           indice ← indice cambio(solucion actual, solucion vecina)
           //Indice cambio se encarga de devolver la única posición
en la que difieren la solución actual y su solución vecina
           nueva dispersión ← fitness usando factorización
```

```
cuenta_ev ← cuenta_ev + 1

Si nueva_dispersion < mejor_fitness entonces
        improved ← true
        stuck ← false
        mejor_fitness ← nueva_dispersion
        solucion_actual[] ← solucion_vecina[]

Sino entonces
        distancias_acumuladas[] ← distancias_originales[]
Fin_si

fin_para</pre>
```

Esta exploración del entorno se hace en un do_while por cada conjunto de vecinos que obtengamos dependiendo de cuál sea la solución actual en cada momento. El do_while termina cuando no obtenemos ningún vecino mejor en todo el entorno o cuando realizamos 100'000 evaluaciones de la función objetivo.

Generación de vecino

Se hace con un método al que se le pasa la solución actual, el elemento a sacar, el elemento a meter y el total de elementos.

ILS

Operador de mutación

Hay que mutar exactamente 0.3 * m elementos de la solución.

 $\verb|seleccionables|| \leftarrow \verb|tamaño|| n | y | todos | los | elementos | a | true | indices_seleccionables|| \leftarrow tamaño | m | y | todos | los | elementos | a | true | true | true | todos | los | elementos | a | true | true | todos | los | elementos | a | true | todos | los | elementos | a | true | todos | los | elementos | a | true | todos | los | elementos | a | true | todos | los | elementos | a | true | todos | los | elementos | a | todos | los | todos | todos | los | todos | todos$

```
indices seleccionados[] //Enteros
      resultado[] //Enteros
     resultado[] \( \text{solucion_actual} \)
      a_seleccionar \leftarrow 0.3 * m
     para i \leftarrow 0 hasta TAMAÑO de solucion actual[]
      [incremento 1] hacer
            seleccionables[solucion actual[i]] ← false
      fin para
     para i ← 0 hasta a seleccionar [incremento 1] hacer
           indice ← número random entre 0 y m-1
           Si indices seleccioables[indice] = true entonces
                  indices seleccioados[] ← añadir indice
                  indices\ seleccionables[indice]\ \leftarrow\ false
            Fin si
      fin para
     para i \leftarrow 0 hasta TAMAÑO de indices seleccionados[]
      [incremento 1] hacer
           primer elemento ← indices seleccionados[i]
           elemento a meter ← número random entre 0 y n-1
           Mientras seleccionables[elemento a meter] = false
entonces
                 elemento a meter ← número random entre 0 y n-1
           Fin mientras
            traslado \leftarrow resultado[primer_elemento]
           resultado[primer elemento] ← elemento a meter
           seleccionables[elemento a meter] \leftarrow false
           seleccionables[traslado] ← true
      fin para
     Devolver resultado
```

Procedimiento desarrollo

La práctica ha sido desarrollada haciendo uso de C++. Para la implementación de la práctica, se ha tomado el código para leer los archivos con las distancias de la Práctica 1. Para leer los archivos, hago uso de las principales funciones de **fstream**, para el control de flujo y de errores. Se sigue la misma política que en

la práctica anterior de introducir la semilla para inicializar los números aleatorios como argumento de la ejecución (esta vez puede ser cualquier número, no solo entre 1 y 5).

Todo lo demás se ha hecho desde cero haciendo uso sobre todo del tipo de dato **vector** de la *STL* y, por consiguiente, de los métodos asociados a este así como de iteradores y sus métodos para borrar valores concretos de los vectores.

Experimentos y análisis de resultados

Es importante resaltar antes de proceder con el análisis, que todos los experimentos se han hecho introduciendo como argumento la **semilla 1.** No obstante, para las ejecuciones de Greedy y BL que se hicieron en la práctica 1, se hicieron 5 ejecuciones con semilla entre 1 y 5 y se calculó la media de tiempos y de desviación.

	Algoritmo ES			
Caso	Coste medio obtenido	Desv	Tiempo (ms)	
GKD-b_1_n25_m2	0,0000	0,00	No medido	
GKD-b_2_n25_m2	0,0000	0,00	No medido	
GKD-b_3_n25_m2	0,0000	0,00	No medido	
GKD-b_4_n25_m2	0,0000	0,00	No medido	
GKD-b_5_n25_m2	0,0000	0,00	No medido	
GKD-b_6_n25_m7	36,9192	65,55	3,84E+00	
GKD-b_7_n25_m7	32,2670	56,31	2,72E+00	
GKD-b_8_n25_m7	24,4014	31,31	4,00E+00	
GKD-b_9_n25_m7	45,7637	62,70	3,22E+00	
GKD-b_10_n25_m7	35,1925	33,89	3,94E+00	
GKD-b 11 n50 m5	3,7085	48,06	1,18E+01	
GKD-b_12_n50_m5	7,2844	70,88	1,19E+01	
GKD-b_13_n50_m5	8,5195	72,27	8,08E+00	
GKD-b_14_n50_m5	9,9233	83,24	7,92E+00	
GKD-b 15 n50 m5	4,3659	34,65	7,95E+00	
GKD-b_16_n50_m15	139,8630	69,44	1,11E+01	
GKD-b_17_n50_m15	88,0914	45,39	1,08E+01	
GKD-b_18_n50_m15	107,7540	59,91	7,82E+00	
GKD-b_19_n50_m15	99,2251	53,23	1,16E+01	
GKD-b_20_n50_m15	55,8000	14,49	1,98E+01	
GKD-b_21_n100_m10	49,2106	71,89	2,13E+01	
GKD-b_21_m100_m10				
GKD-b_23_n100_m10	34,9562	60,91	2,77E+01	
GKD-b_24_n100_m10	37,8170	59,42	2,05E+01	
	32,7662	73,63	1,72E+01	
GKD-b_25_n100_m10 GKD-b_26_n100_m30	40,2160	57,23	1,65E+01	
GKD-b_20_11100_11130	318,9830	47,10	3,34E+01	
GKD-b_27_I1100_I1130	295,9270	57,05	3,96E+01	
	358,4960	70,33	2,56E+01	
GKD-b_29_n100_m30	309,7230	55,62	4,44E+01	
GKD-b_30_n100_m30	234,6390	45,67	3,91E+01	
GKD-b_31_n125_m12	22,3617	47,48	3,25E+01	
GKD-b_32_n125_m12	49,5857	62,11	2,70E+01	
GKD-b_33_n125_m12	44,8375	58,67	3,53E+01	
GKD-b_34_n125_m12	43,9128	55,62	3,36E+01	
GKD-b_35_n125_m12	48,2032	62,42	4,49E+01	
GKD-b_36_n125_m37	419,6500	62,96	7,34E+01	
GKD-b_37_n125_m37	471,8540	57,85	2,23E+01	
GKD-b_38_n125_m37	490,1090	61,65	6,37E+01	
GKD-b_39_n125_m37	528,5900	68,11	2,65E+01	
GKD-b_40_n125_m37	409,3480	56,47	4,15E+01	
GKD-b_41_n150_m15	40,9578	43,00	6,15E+01	
GKD-b_42_n150_m15	109,9870	75,64	3,25E+01	
GKD-b_43_n150_m15	72,8826	63,29	4,81E+01	
GKD-b_44_n150_m15	73,1569	64,55	4,70E+01	
GKD-b_45_n150_m15	64,8298	57,16	3,28E+01	
GKD-b_46_n150_m45	458,6410	50,34	4,56E+01	
GKD-b_47_n150_m45	382,2820	40,20	9,75E+01	
GKD-b_48_n150_m45	508,1380	55,38	4,53E+01	
GKD-b_49_n150_m45	501,0280	54,81	4,19E+01	
GKD-b_50_n150_m45	761,8830	67,34	3,31E+01	

Media Desv: 51,30 Media Tiempo: 2,60E+01

Algoritmo BMB			
Caso	Coste medio	Desv	Tiempo
	obtenido		(ms)
GKD-b_1_n25_m2	0,0000	0,00	No medido
GKD-b_2_n25_m2	0,0000	0,00	No medido
GKD-b_3_n25_m2	0,0000	0,00	No medido
GKD-b_4_n25_m2	0,0000	0,00	No medido
GKD-b_5_n25_m2	0,0000	0,00	No medido
GKD-b_6_n25_m7	21,6578	41,28	9,49E+00
GKD-b_7_n25_m7	16,7430	15,79	6,69E+00
GKD-b_8_n25_m7	16,7612	0,00	8,48E+00
GKD-b_9_n25_m7	26,3009	35,10	9,33E+00
GKD-b_10_n25_m7	23,2652	0,00	8,89E+00
GKD-b_11_n50_m5	7,3354	73,74	1,02E+01
GKD-b_12_n50_m5	2,0513	-3,29	1,05E+01
GKD-b_13_n50_m5	9,5894	75,37	1,22E+01
GKD-b_14_n50_m5	2,6613	37,50	1,08E+01
GKD-b_15_n50_m5	2,9438	3,08	1,06E+01
GKD-b_16_n50_m15	62,4366	31,54	4,88E+01
GKD-b_17_n50_m15	88,9011	45,89	4,43E+01
GKD-b_18_n50_m15	54,4863	20,72	4,31E+01
GKD-b_19_n50_m15	93,1396	50,17	4,03E+01
GKD-b_20_n50_m15	47,7151	0,00	4,44E+01
GKD-b_21_n100_m10	20,8901	33,79	5,30E+01
GKD-b_22_n100_m10	31,2433	56,26	4,76E+01
GKD-b_23_n100_m10	14,7113	-4,13	5,75E+01
GKD-b_24_n100_m10	25,5234	66,15	4,46E+01
GKD-b_25_n100_m10	30,8494	44,24	4,17E+01
GKD-b_26_n100_m30	294,1460	42,64	2,69E+02
GKD-b_27_n100_m30	221,8660	42,71	3,06E+02
GKD-b_28_n100_m30	214,4100	50,39	2,92E+02
GKD-b_29_n100_m30	191,7320	28,31	2,50E+02
GKD-b_30_n100_m30	207,8940	38,68	2,92E+02
GKD-b_31_n125_m12	32,9456	64,35	1,09E+02
GKD-b_32_n125_m12	32,3981	42,01	7,66E+01
GKD-b_33_n125_m12	32,4875	42,96	9,62E+01
GKD-b_34_n125_m12	37,0155	47,35	7,99E+01
GKD-b_35_n125_m12	33,2081	45,46	1,01E+02
GKD-b_36_n125_m37	231,8690	32,96	5,01E+02
GKD-b_37_n125_m37	347,4190	42,75	5,06E+02
GKD-b_38_n125_m37	287,9430	34,72	5,95E+02
GKD-b_39_n125_m37	288,1650	41,50	4,62E+02
GKD-b_40_n125_m37	365,9900	51,31	4,58E+02
GKD-b_41_n150_m15	44,8451	47,94	1,29E+02
GKD-b_42_n150_m15	48,0067	44,20	1,54E+02
GKD-b_43_n150_m15	42,1887	36,58	1,51E+02
GKD-b_44_n150_m15	41,3745	37,32	1,32E+02
GKD-b_45_n150_m15	31,8207	12,72	1,44E+02
GKD-b_46_n150_m45	450,7100	49,47	8,68E+02
GKD-b_47_n150_m45	350,3790	34,76	8,78E+02
GKD-b_48_n150_m45	337,5350	32,82	9,15E+02
GKD-b_49_n150_m45	433,4260	47,76	1,00E+03
GKD-b_50_n150_m45	381,0060	34,68	1,11E+03

Media Desv: 32,99 Media Tiempo: 2,09E+02

	Algoritmo ILS			
Caso	Coste medio	Desv	Tiempo	
	obtenido		(ms)	
GKD-b_1_n25_m2	0,0000	0,00	No medido	
GKD-b_2_n25_m2	0,0000	0,00	No medido	
GKD-b_3_n25_m2	0,0000	0,00	No medido	
GKD-b_4_n25_m2	0,0000	0,00	No medido	
GKD-b_5_n25_m2	0,0000	0,00	No medido	
GKD-b_6_n25_m7	31,2907	59,36	7,58E+00	
GKD-b_7_n25_m7	20,9563	32,72	7,63E+00	
GKD-b_8_n25_m7	21,8265	23,21	9,45E+00	
GKD-b_9_n25_m7	25,6540	33,46	8,17E+00	
GKD-b_10_n25_m7	30,8805	24,66	7,63E+00	
GKD-b_11_n50_m5	3,9112	50,75	1,16E+01	
GKD-b_12_n50_m5	8,4387	74,87	1,05E+01	
GKD-b_13_n50_m5	8,2132	71,24	1,03E+01	
GKD-b_14_n50_m5	5,1549	67,74	8,36E+00	
GKD-b_15_n50_m5	6,6529	57,11	1,30E+01	
GKD-b_16_n50_m15	42,7458	0,00	3,93E+01	
GKD-b_17_n50_m15	59,9642	19,77	3,81E+01	
GKD-b_18_n50_m15	54,7947	21,17	4,40E+01	
GKD-b_19_n50_m15	56,8737	18,39	3.54E+01	
GKD-b_20_n50_m15	71,3043	33,08	3,78E+01	
GKD-b_21_n100_m10	29,5233	53,15	4,80E+01	
GKD-b_22_n100_m10	21,6023	36,75	5,12E+01	
GKD-b_23_n100_m10	24,5966	37,61	4,46E+01	
GKD-b_24_n100_m10	29,1972	70,41	4,21E+01	
GKD-b_25_n100_m10	24,0596	28,51	4,51E+01	
GKD-b_26_n100_m30	186,7370	9,64	2,50E+02	
GKD-b 27 n100 m30	196,4480	35,30	2,46E+02	
GKD-b 28 n100 m30	221,5910	51,99	2,69E+02	
GKD-b_29_n100_m30	203,1450	32,34	2,51E+02	
GKD-b_30_n100_m30	220,3780	42,15	2,38E+02	
GKD-b_31_n125_m12	16,1464	27,26	1,05E+02	
GKD-b_32_n125_m12	35,2791	46,74	7,14E+01	
GKD-b_33_n125_m12	35,0743	47,16	8,17E+01	
GKD-b_34_n125_m12	28,9771	32,75	7,88E+01	
GKD-b_35_n125_m12	27,4741	34,07	8,21E+01	
GKD-b_36_n125_m37	201,6090	22,90	3,76E+02	
GKD-b_37_n125_m37	348,1890	42,88	4,90E+02	
GKD-b_38_n125_m37	276,9280	32,12	5,00E+02	
GKD-b_39_n125_m37	273,3680	38,33	4,63E+02	
GKD-b_40_n125_m37	303,5070	41,29	5,06E+02	
GKD-b_41_n150_m15	39,9764	41,60	1,18E+02	
GKD-b_42_n150_m15	54,6899	51,02	1,13E+02	
GKD-b_42_n150_m15	44,5641		1,13E+02 1,21E+02	
GKD-b_43_11150_11115	37,1146	39,96 30,12	1,30E+02	
GKD-b_45_n150_m15		41,90		
GKD-b_45_II150_III15	47,7999 337,4600		1,06E+02	
		32,51	7,91E+02	
GKD-b_47_n150_m45 GKD-b_48_n150_m45	338,0430	32,37	7,06E+02	
	391,1270	42,03	8,28E+02	
GKD-b_49_n150_m45	411,7040	45,01	6,78E+02	
GKD-b_50_n150_m45	358,7920	30,64	7,44E+02	

 Media Desv:
 34,76

 Media Tiempo:
 1,77E+02

RESULTADOS GLOBALES			
Algoritmo	Desv	Tiempo (ms)	
Greedy	63,99	1,15E+01	
BL	54,77	2,25E+01	
ES	51,30	2,60E+01	
BMB	32,99	2,09E+02	
ILS	34,76	1,77E+02	

Los algoritmos que mejores resultados han dado son aquellos que usan las trayectorias simples varias veces. Para BMB e ILS ejecutamos varias veces la búsqueda local y nos quedamos con la mejor solución.

En cuanto a BL y ES, ambos obtienen tiempos y resultados muy parecidos. En la Práctica 1, la búsqueda local quedaba rápidamente estancada en un mínimo local y se realizaban pocas evaluaciones. práctica, el ES en las primeras iteraciones temperaturas relativamente altas), actualiza más veces la solución que en las últimas (donde la temperatura es más baja). Por tanto, cuando la temperatura es baja, es menos probable que actualicemos la solución, porque, primero, es más difícil que sea mejor (ya llevamos varias iteraciones) y es más difícil tomar una solución peor (por la función de probabilidad). Esto en parte hace que al principio variemos más la solución para evitar mínimos locales pero al final ya no cambia tanto para no producir efectos poco deseados en el fitness que tenemos actualmente. Se ha observado que la práctica totalidad de las ejecuciones de ES terminan porque ha caído en un mínimo local y no obtiene ningún éxito a la hora de actualizar la solución actual.

ES es una opción mucho más deseable que BL ya que obtenemos unos resultados un poco mejores en el mismo tiempo de cálculo y es, en general, más fácil de implementar.