### Rules of Probability

Bayesian Modeling for Socio-Environmental Data

Chris Che-Castaldo, Mary B. Collins, N. Thompson Hobbs

August 2017

### Road map

- Rules of probability
  - Conditional probability
  - Independence
  - The law of total probability
- Factoring joint probabilities

### Why do we need to know this stuff?

- Conditional probability foundational for all the inferences that we make.
- **②** The law of total probability is the denominator of Bayes' Theorem.
- Factoring joint distributions is how we deal with complexity, reducing high dimensional problems.
- **Independence** allows us to simplify fully factored joint distributions.

#### Random variables

- are quantities governed by chance.
- have a specific value called an event or outcome.
- are summarized by probability distributions.
- Bayesians treat every unobserved quantity as a random variable.

### S=Sample Space

- The set of all possible events or outcomes of an experiment or survey.
- The sample space, S has a specific area.



### Events in S

- Can define and event, A.
- The area of event A is less than S.



### What is the probability of event A?



$$\Pr(A) = \frac{\text{Area of } A}{\text{Area of } S}$$

### Conditional Probability

Conditional probability is a measure of the probability of an event given that another event has occurred.



## What is the probability of event A, given that event B has occurred?



Pr(A|B) = prob' of A conditional on knowing B has occurred

# What is the probability of event A, given that event B has occurred?



$$Pr(B|A) = \frac{\text{Joint Prob}}{\text{Prob of A}} = \frac{\Pr(A \cap B)}{\Pr(A)} = \frac{\Pr(A,B)}{\Pr(A)}$$

# What is the probability of event A, given that event B has occurred?



$$Pr(B|A) = \frac{Pr(A,B)}{Pr(A)}$$

# We will make lots of use of the rearrangement of this equation

$$\Pr(B|A) = \frac{\Pr(A,B)}{\Pr(A)}$$

$$Pr(A, B) = Pr(A|B) Pr(B)$$
 and equivalently, (1)

$$Pr(A, B) = Pr(B|A) Pr(A)$$
 (2)

### Conditional probabilty

True or False?

$$Pr(B|A) = Pr(A|B)$$



In this case, events A and B are said to be **independent** 

## Events are independent if and only if...

$$Pr(A|B) = Pr(A)$$



## Assuming independence, the joint probability of event ${\sf A}$ and event ${\sf B}$



$$Pr(A, B) = Pr(A) Pr(B)$$

### The Law of Total Probability



We can define a set of events  $\{B_n : n = 1, 2, 3, ...\}$ , which taken together define the entire sample space,  $\sum_n B_n = S$ .

### What is the probability of event A?



$$Pr(A) = \sum_{n} Pr(A|B_n) Pr(B_n)$$
 (discrete case)

$$Pr(A) = \int Pr(A|B) Pr(B) dB$$
 (continuous case)

### Prob

Have a prob' where there is theta 1 through  $4\dots$  write out the full expression

#### The Chain Rule

In probability theory, the chain rule (also called the general product rule) permits the calculation of any member of the joint distribution of a set of random variables using only conditional probabilities.

$$Pr(z_1, z_2, ..., z_n) = Pr(z_n|z_{n-1}, ..., z_1)... Pr(z_3|z_2, z_1) Pr(z_2|z_1) Pr(z_1)$$

Notice the pattern here.

- z's can be scalars or vectors.
- Sequence of conditioning doesn't matter.
- When we build models, we choose a sequence that makes sense.

### Factoring joint probabilities

- The rules of probability allow us to take complicated joint distributions of random variables and break then down into chunks.
- Chunks can then be analyzed one at a time as if all other random variables were known and constant.
- Provide a usable graphical and mathematical foundation, which is critical for accomplishing the model specification step in the general modeling process.

# Consider a Bayesian Network (represented by a directed acyclic graph or DAG)



- Bayesian networks specify how joint distributions are factored into conditional distributions using nodes to represent RV's and arrows to represent dependencies.
- Nodes at the heads of arrows must be on the left hand side of the conditioning symbols;
- Nodes at the tails of arrows are on the right hand side of the conditioning symbols.
- Any node at the tail of an arrow without and arrow leading into it must be expressed unconditionally.



$$Pr(A, B) =$$



$$Pr(A, B) = Pr(A|B) Pr(B)$$



$$Pr(A, B, C) =$$



$$\Pr(A,B,C) = \Pr(A|B,C)\Pr(B|C)\Pr(C)$$

### Generalizing

$$\Pr(z_1, ..., z_n) = \prod_{i=1}^n \Pr(z_i | \{P_i\})$$

 $\{P_i\}$  is the set of parents of node  $z_i$ 

### Work on lab

Complete parts I-VI