Design and Development of IoT Applications

Dr. -Ing. Vo Que Son

Email: sonvq@hcmut.edu.vn

Content

- ☐ Chapter 1: Introduction to WSNs
 - Wireless Sensor Networks
 - Applications
 - Challenges
- ☐ Chapter 2: Technologies and Hardware Architecture
 - ❖ Node architecture and HW platforms
 - ❖ RF Technologies and IEEE 802.15.4
 - Embedded processing and Sensing
 - Hardware reference designs

Wireless Sensor Networks and IoT

Wireless Sensor Networks

- ☐ A Wireless Sensor Network (WSN) consists of base stations and a number of wireless sensors (nodes).
- ☐ Characteristics of Wireless Sensor Networks
 - ❖ Requirements: small size, large number, tether-less, and low cost. Constrained by
 - Energy, computation, and communication
 - ❖ Small size implies small battery
 - Low cost & energy implies low power CPU, radio with minimum bandwidth and range
 - ❖ Ad-hoc deployment implies no maintenance or battery replacement
 - ❖ To increase network lifetime, no raw data is transmitted

Wireless Sensor Networks

- ☐ Large number of self-organizing static or mobile nodes that are possibly randomly deployed
- ☐ Near(est)-neighbor communication
- Wireless connections
 - Links are fragile, possibly asymmetric
 - Connectivity depends on power levels and fading
 - Interference is high for omnidirectional antennas
- ☐ Sensor Networks and Sensor-Actuator Networks are a
 - prominent example.
- ☐ Integrated 3 core technologies:
 - Radio communication
 - Sensing
 - Distributed computation

Enclosure

Mote:

Clock

Storage

Sensors

Battery/

Power

Microcontroller

- ☐ Distinguishing Features
 - WSNs are ad hoc networks (wireless nodes that selforganize into an infrastructureless network).
- ☐ BUT, in contrast to other ad hoc networks:
 - Sensing and data processing are essential
 - WSNs have many more nodes and are more densely deployed
 - Hardware must be cheap; nodes are more prone to failures
 - WSNs operate under very strict energy constraints
 - WSN nodes are typically static
 - The communication scheme is many-to-one (data collected at a base station) rather than peer-to-peer

☐ Lifetime

- Nodes are battery-powered
- Nobody is going to change the batteries. So, each operation brings the node closer to death.
- ☐ "Lifetime is crucial!"
- ☐ To save energy:
 - ❖ Sleep as much as possible.
 - Acquire data only if indispensable.
 - Use data fusion and compression.
 - Transmit and receive only if necessary. Receiving is just as costly as sending.

- ☐ Scalability and Reliability, WSNs should
 - self-configure and be robust to topology changes (e.g., death of a node)
 - maintain connectivity: can the Base Station reach all nodes?
 - ensure coverage: are we able to observe all phenomena of interest?
- ☐ Maintenance
 - *Reprogramming is the only practical kind of maintenance.
 - It is highly desirable to reprogram wirelessly.

□ Data Collection

- Centralized data collection puts extra burden on nodes close to the base station. Clever routing can alleviate that problem
- Clustering: data from groups of nodes are fused before being transmitted, so that fewer transmissions are needed
- Often getting measurements from a particular area is more important than getting data from each node
- Security and authenticity should be guaranteed. However, the CPUs on the sensing nodes cannot handle fancy encryption schemes.

☐ Power Supply

- ❖ AA batteries power the vast majority of existing platforms. They dominate the node size.
- Alkaline batteries offer a high energy density at a cheap price. The discharge curve is far from flat, though.
- Lithium coin cells are more compact and boast a flat discharge curve.
- *Rechargeable batteries: Who does the recharging?
- Solar cells are an option for some applications.
- Fuel cells may be an alternative in the future.
- Energy scavenging techniques are a hot research topic (mechanical, thermodynamical, electromagnetic).

□Radio

- Commercially-available chips
- Available bands: 433 and 916MHz, 2.4GHz ISM bands
- ❖Typical transmit power: 0dBm.

☐ Power control

- ❖ Sensitivity: as low as -110dBm
- ❖ Narrowband (FSK) or Spread Spectrum communication. DS-SS (e.g., ZigBee) or FH-SS (e.g., Bluetooth)
- Relatively low rates (<100 kbps) save power.

☐ CPU

- The Microcontroller Unit (MCU) is the primary choice for in-node processing.
- ❖ Power consumption is the key metric in MCU selection.
- The MCU should be able to sleep whenever possible, like the radio.
- Memory requirements depend on the application
- ATmega128L and MSP430 are popular choices

☐ Sensors

- The power efficiency of the sensors is also crucial, as well as their duty cycle.
- MEMS techniques allow miniaturization.
- ☐ Applications of Wireless Sensor Networks
 - Military and national security application
 - Environment monitoring
 - Medical application
 - ❖ Nearly anything you can imagine

Applications: Internet of Things

Applications of WSNs

- Monitoring Spaces
 - Env. Monitoring, Conservation biology, ...
 - Precision agriculture,
 - built environment comfort & efficiency ...
 - ❖ alarms, security, surveillance, EPA, OSHA, treaty verification ...
- Monitoring Things
 - automated meter reading
 - condition-based maintenance
 - disaster management
 - Civil infrastructure
- ☐ Interactions of Space and Things
 - manufacturing, asset tracking, fleet & franchise
 - context aware computing, non-verbal communication
 - Assistance home/elder care
- Action and control
 - Optimizing processes
 - Automation

Environmental Monitoring Characteristics

Large number of nodes spread over physical space of interes
Low sample rate (of multiple sensor modes)
Further reduced by node signal processing and compression
Reliable dissemination of configuration, command, or query
Low-rate scalar data collection
Many options for reliability, Predictable reporting delays
Low duty cycle for long lifetime
Energy availability is application specific
Extension to event detection and triggering demands more responsive protocols
Extension to control requires predictable outward routing

Intel Fab & BP Machine Monitoring

- ☐ Goal: Pre-empt equipment failures through non-destructive analysis
- Media Gap: Majority of data is collected by hand
 - Thousands of sense points
- Intel Fab and an Oil Tanker engine room
- Wireless vibration data collection
 - ❖ High-speed sampling, reliable bulk transfer
 - Sensor-to-Analysis App flow
 - Overcome interference
 - Support disconnected operation
- ☐ Loch Rannoch Network
 - 150 accelerometers
 - ❖ 26 motes
 - 4 stargates
 - ❖ 1 PC
- ☐ Efficient installation and management
 - 36hr install period on tanker
 - No crew intervention

Golden Gate Bridge Structural Monitoring

Machine Monitoring Characteristics

■ Nodes clustered on specific equipment ☐ High sample rate (over short bursts) Substantial local signal processing Control and management is like Env. Monitoring Data collection in single-point streams * Reliable end-to-end transport ☐ Shallow networks in practice lacksquare Well understood but not yet well supported Energy availability is site specific ☐ Natural extensions for local access (inspector) ☐ Structural monitoring is much harder than CBM Time coordinated samples, cross-node data analysis Environmental factors critical to sensing accuracy

Medical Monitoring

Proximity, Tracking, Compliance

Food traceability

Interaction Monitoring Characteristics

☐ Many different forms of monitoring Untagged vs tagged items ☐ Mobility is central Mobile nodes moving through stationary networks Networks moving through networks Proximity detection and action ☐ Wide range of communication patterns Mobile-mobile routing ☐ Adaptive protocols ☐ Sophisticated routing ☐ Reliability through custody transfer ☐ Deep interactions with IT infrastructure

Core Challenges

- ☐ Long-lived, unattended, reliable operation
 - Power: wireless often means self-powered
 - Batteries
 - Ambient sources (light, current, vibration, heat, ...)
 - Limited Memory
 - Self-organization and Management
 - Error, fault, noise mitigation
- ☐ Ease of broad application development
 - ❖ New forms of information
 - Integration into enterprise processes and actions
 - Extracting value from vast, novel sources of information

A System Challenge

Monitoring & Managing Spaces and Things

Miniature, low-power connections to the physical world