1

 $q^2=p$ for no positive rational number q. $q^2=p$ pour aucun nombre rationnel positif q. $q^2=p$ für keine positive rationale Zahl q. $q^2=p$ para nenhum número racional positivo q.

2

The collection of prime natural numbers is infinite. La collection d'entiers naturels primaires est infinie. Die Sammlung von unteilbaren natürlichen Zahlen ist unendlich. O collection de números naturais primos é infinito.

3

Let x, y be sets. x and y are equinumerous iff there exists a injective map from x to y and there exists an injective map from y to x.

Soient x, y des ensembles. x et y sont équinombreux si et seulement si il existe une correspondance injective de x à y et il existe une application injective de y à x.

Seien x, y Mengen. x und y sind gleichzahlig wenn und genau dann wenn es eine injektive Abbildung aus x nach y gibt und es eine injektive Abbildung aus y nach x gibt.

Deixe x, y ser conjuntos. x e y são equinumeiros se e só se existe uma função injetiva de x a y e existe uma aplicação injetiva de y a x.

4

For all finite sets X and all natural numbers n, if |X| = n, then $\mathcal{P}(X)$ is finite and $|\mathcal{P}(X)| = 2^n$. Pour tous les ensembles finis X et tous les entiers naturels n, si |X| = n, alors $\mathcal{P}(X)$ est fini et $|\mathcal{P}(X)| = 2^n$. Für alle endlichen Mengen X und alle natürlichen Zahlen n, wenn |X| = n, dann ist $\mathcal{P}(X)$ endlich und $|\mathcal{P}(X)| = 2^n$.

Para todos os conjuntos finitos X e todos os números naturais n, se |X|=n, então $\mathcal{P}(X)$ é finito e $|\mathcal{P}(X)|=2^n$.

5

Let s,t be real numbers such that s < t. Then there exists a real number r such that s < r < t. Soient s,t des nombres tel que s < t. Alors il existe un nombre r tel que s < r < t. Seien s,t reelle Zahlen derart dass s < t. Dann gibt es eine reelle Zahl r derart dass s < r < t. Deixe s,t ser números tal que s < t. Então existe um número r tal que s < r < t.

6

Let M be a set. Then there exists no surjection from M onto the powerset of M. Soit M un ensemble. Alors il n'existe aucune surjection de M sur l'ensemble puissance de M. Sei M eine Menge. Dann gibt es keine Surjektion aus M auf die Potenzmenge M. Deixe M ser um conjunto. Então não existe nenhuma sobrejecção de M sobre o conjunto de potência de M.

7

 $\begin{array}{l} \sum_{0 \leq i < n} x^i = \frac{1-x^n}{1-x} \text{ for all natural numbers } n. \\ \sum_{0 \leq i < n} x^i = \frac{1-x^n}{1-x} \text{ pour tous les entiers naturels } n. \\ \sum_{0 \leq i < n} x^i = \frac{1-x^n}{1-x} \text{ für alle natürlichen Zahlen } n. \\ \sum_{0 \leq i < n} x^i = \frac{1-x^n}{1-x} \text{ para todos os números naturais } n. \end{array}$

8

$$\begin{split} &\sum_{i=1}^{n} (a+d\cdot i) = n\cdot (a+\frac{(n+1)\cdot d}{2})..\\ &\sum_{i=1}^{n} (a+d\cdot i) = n\cdot (a+\frac{(n+1)\cdot d}{2})..\\ &\sum_{i=1}^{n} (a+d\cdot i) = n\cdot (a+\frac{(n+1)\cdot d}{2})..\\ &\sum_{i=1}^{n} (a+d\cdot i) = n\cdot (a+\frac{(n+1)\cdot d}{2}).. \end{split}$$

q

Let m, n be natural numbers such that m < n. Then the greatest common divisor of m and n is the greatest common divisor of n - m and m.

Soient m, n des entiers naturels tel que m < n. Alors le plus grand commun diviseur de m et de n est le plus grand commun diviseur de m et de m.

Seien m, n natürliche Zahlen derart dass m < n. Dann ist der größte gemeinsame Teiler m und n der größte gemeinsame Teiler n - m und m.

Deixe m, n ser números naturais tal que m < n. Então o máximo divisor comum de m e n é o máximo divisor comum de n - m e m.

10

Assume $A \subseteq \mathbb{N}$ and $0 \in A$ and for all $n \in A$, $n+1 \in A$. Then $A = \mathbb{N}$. Supposons que $A \subseteq \mathbb{N}$ et $0 \in A$ et pour tout $n \in A$, $n+1 \in A$. Alors $A = \mathbb{N}$. Wir nehmen an, dass $A \subseteq \mathbb{N}$ und $0 \in A$ und für alle $n \in A$, $n+1 \in A$. Dann $A = \mathbb{N}$. Admitemos que $A \subseteq \mathbb{N}$ e $0 \in A$ e para todo $n \in A$, $n+1 \in A$. Então $A = \mathbb{N}$.