OBESITY DETECTION – SUMMARY

PAPER -1

Title of the paper	Ferdowsy, Faria, Kazi Samsu Ismail Jabiullah, and Md Tar "A machine learning approace prediction." <i>Current Researd</i> <i>Sciences</i> 2 (2021): 100053.	ek Habib. ch for obesity risk
Area of work	Prediction of Obesity	
Dataset	Collected 1100 data based of then labelled the class of ear data set by consulting with sand student counsellors institutions.	ach record of the some nutritionists
Methodology / Strategy	k-NN, Support Vector M Regression, Naïve Bias, Decision Tree, ADA Boostin Boosting are compared o Accuracy, Sensitivity, Spec Recall and F1-score.	Random Forest, g, MLP, Gradient on the basis of
Algorithm	k-NN, Support Vector Machine, Logistic Regression, Naive Bias, Random Forest, Decision Tree, ADA Boosting, MLP, Gradient Boosting.	
Result/Accuracy	Logistic Regression Naive Bayes k-NN Random forest Decision tree ADA boosting MLP Support Vector Machine Gradient boosting	97.09% 86.04% 77.50% 72.30% 70.30% 70.03% 66.02% 66.02% 64.08%

PAPER – 2

	Rodríguez, Elias, Elen	Rodríguez, Luiz
Title of the name	Nascimento, Aneirson Franci	<u> </u>
Title of the paper		
	Fernando Augusto Silva M	
	learning Techniques to Pred	_
	Obesity." In IDDM, pp. 190-20	04. 2021.
Area of work	Prediction of Overweight or O	besity
	The data set for this study was	collected through a
Dataset	survey, in which 16 questions related to the	
	interviewees' dietary habits and	l physical condition
	were applied.	
Methodology / Strategy	Decision Tree, Support Vec	
	Nearest Neighbours, Gaussian Naive Bias,	
<i>Si Si</i>	Multilayer Perceptron, Random Forest, Gradient	
	Boosting, Extreme Gradien	nt Boosting are
	compared on the basis of Accuracy, Precision,	
	Recall and F1-score.	
	Decision Tree, Support Vector	Machines, K
Algorithm	Nearest Neighbors, Gaussian Naive Bias,	
	Multilayer Perceptron, Random Forest, Gradient	
	Boosting, Extreme Gradient Boosting.	
Result/Accuracy	Random Forest	77.69%
	Gradient Boosting	73.43%
	Decision Tree	72.62%
	Extreme Gradient Boosting	70.06%
	K-Nearest Neighbors	67.69%
	Multilayer Perceptron	63.77%
	Support Vector Machines	59.45%
	Gaussian Naive Bayes	46.24%

PAPER - 3

Title of the paper	Solomon, D. D., Khan, S., Garg, S., Gupta, G., Almjally, A., Alabduallah, B. I., & Abdallah, A. M. A. (2023). Hybrid Majority Voting: Prediction and Classification Model for Obesity. <i>Diagnostics</i> , <i>13</i> (15), 2610.	
Area of work	Obesity Prediction and Classification Model	
Dataset	The dataset was taken from the UCI Machine Learning Repository. It consists of 2111 records with 17 features related to eating habits and physical conditions collected from Mexico, Peru, and Colombia.	
Methodology / Strategy	k-NN, Support Vector Machine, Logistic Regression, Random Forest, Decision Tree, Gradient Boosting, Extreme Gradient Boosting, MLP, Gaussian Naïve Bayes are compared on the basis of Accuracy, Precision Recall, F1-Score.	
Algorithm	k-NN, Support Vector Machine, Logistic Regression, Random Forest, Decision Tree, Gradient Boosting, Extreme Gradient Boosting, MLP, Gaussian Naïve Bayes.	
Result/Accuracy	Support Vector Machine Gaussian Naive Bayes k-Nearest Neighbours Logistic Regression Decision Tree P4.95% Random Forest Extreme Gradient Boosting Gradient Boosting (GBoost) Multilayer Perceptron (MLP) 93.38% Hybrid Model (XGBoost, GBoost, MLP): 97.16%	

PROJECT PROPOSAL

From the above three papers, we get to know that different approaches are used for obesity detection. From the observation it is found out that Logistic Regression and Random Forest are more accurate than the other algorithms with approximate accuracy of 97% and 78% respectively.