Two-level Implementation

CS207 Chapter 4

James YU yujq3@sustech.edu.cn

Department of Computer Science and Engineering Southern University of Science and Technology

Jun. 28, 2021

NAND and **NOR** implementation

- Digital circuits are frequently constructed with NAND or NOR gates rather than with AND and OR gates.
 - NAND and NOR gates are easier to fabricate with electronic components.
 - They are the basic gates used in all IC digital logic families.
- Rules and procedures have been developed for the conversion from Boolean functions given in terms of AND, OR, and NOT into equivalent NAND and NOR logic diagrams.

- The NAND gate is said to be a universal gate.
- A convenient way to implement a Boolean function with NAND gates:
 - Obtain the simplified Boolean function in terms of Boolean operators;
 - Convert the function to NAND logic.
- Recall that:

• To facilitate the conversion to NAND logic, it is convenient to define an alternative graphic symbol for the gate.

AND-invert:

Invert-OR:

$$\begin{array}{ccc}
A \\
B \\
C
\end{array}$$

$$-F = (ABC)' = A' + B' + C'$$

$$A = B = B$$

$$C = B' + B' + C'$$

- The implementation of Boolean functions with NAND gates requires that the functions be in sum-of-products form.
- Take F = AB + CD as an example:

• F = AB + CD = ((AB)'(CD)')' according to DeMorgan property.

• Example: Implement the following Boolean function with NAND gates: $F(x,y,z) = \sum (1,2,3,4,5,7)$.

y^2	00	01	11	10
0		1	1	1
1	1	1	1	

 $\bullet \ F = xy' + x'y + z.$

• Example: Implement the following Boolean function with NAND gates:

$$F = xy' + x'y + z.$$

- A Boolean function can be implemented with two levels of NAND gates.
 - 1 Simplify the function and express it in **sum-of-products form**.
 - 2 Draw a NAND gate for each product term of the expression that has at least two literals. The inputs to each NAND gate are the literals of the term. This procedure produces a group of first-level gates.
 - 3 Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second level, with inputs coming from outputs of first-level gates.
 - A term with a single literal requires an inverter in the first level. However, if the single literal is complemented, it can be connected directly to an input of the second level NAND gate.

Multilevel NAND circuits

- The standard form of expressing Boolean functions results in a two-level implementation.
 - There are occasions when the design of digital systems results in gating structures with three or more levels.
 - Example: F = A(CD + B) + BC'.

Multilevel NAND circuits

- The standard form of expressing Boolean functions results in a two-level implementation.
 - There are occasions when the design of digital systems results in gating structures with three or more levels.
 - Example: F = A(CD + B) + BC'.

Multilevel NAND circuits

- The general procedure for converting a multilevel AND-OR diagram into an all-NAND diagram using mixed notation is as follows:
 - 1 Convert all AND gates to NAND gates with AND-invert graphic symbols.
 - 2 Convert all OR gates to NAND gates with invert-OR graphic symbols.
 - 3 Check all the bubbles in the diagram. For every bubble that is not compensated by another small circle along the same line, insert an inverter (a one-input NAND gate) or complement the input literal.

NOR circuits

- The NOR operation is the dual of the NAND operation.
- All procedures and rules for NOR logic are the duals of the corresponding procedures and rules developed for NAND logic.

$$A - \bigcirc -F = A'$$

$$A - \bigcirc -F = A + B$$

$$A - \bigcirc -F = (A' + B')' = AB$$

NOR circuits

• To facilitate the conversion to NOR logic, it is convenient to define an alternative graphic symbol for the gate.

OR-invert:

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$-F = (A + B + C)'$$

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$-F = A'B'C$$

NOR circuits

- A two-level implementation with NOR gates requires that the function be simplified into product-of-sums form.
- Change the OR gates to NOR gates with OR-invert graphic symbols and the AND gate to a NOR gate with an invert-AND graphic symbol.

Non-degenerate forms

- It will be instructive from a theoretical point of view to find out how many two-level combinations of gates are possible.
- We consider four types of gates: AND, OR, NAND, and NOR.
 - There are 16 possible combinations of two-level forms.
- Eight of these combinations are said to be degenerate forms.
 - They degenerate to a single operation.
 - Example: AND in the first level and second level degenerates to an AND of all inputs.
- The remaining eight nondegenerate forms produce an implementation in sum-of-products form or product-of-sums form.
 - 1) AND-OR 2) OR-AND 3) NAND-NAND 4) NOR-NOR
 - 5) NOR-OR 6) NAND-AND 7) OR-NAND 8) AND-NOR

AND-OR-INVERT implementation

- The two forms, NAND-AND and AND-NOR, are equivalent.
 - Both perform the AND-OR-INVERT function.
 - Example: F = (AB + CD + E)'.
- An AND-OR implementation requires an expression in sum-of-products form.
- The AND-OR-INVERT implementation is similar, except for the inversion.
 - If the complement of the function is simplified into sum-of-products form (by combining the 1's in the map), it will be possible to implement F with the AND-OR part of the function.

OR-AND-INVERT implementation

- The two forms, OR-NAND and NOR-OR, are equivalent.
 - Both perform the OR-AND-INVERT function.
 - Example: F = [(A+B)(C+D)E]'.
- The AND-OR-INVERT implementation requires an expression in product-of-sums form.

Exclusive-OR function

17 / 24

- Exclusive-OR, XOR: $x \oplus y = xy' + x'y$.
- Exclusive-NOR, XNOR or equivalency: $(x \oplus y)' = xy + x'y'$.
- The following identities apply to the XOR operation:
 - \bullet $x \oplus 0 = x$.
 - $x \oplus 1 = x'$.
 - $x \oplus x = 0$.
 - $x \oplus x' = 1$.
 - $x \oplus y' = x' \oplus y = (x \oplus y)'$.

XOR

- XOR is hard to fabricate, so it is typically constructed by other gates.
 - $(x' + y')x + (x' + y')y = xy' + xy' = x \oplus y$.

Or use NAND gates:

- The first NAND gate performs the operation (xy)' = x' + y'.
- The other two-level NAND circuit produces the sum of products.

XOR

- Only a limited number of Boolean functions can be expressed in terms of XOR operations.
- Particularly useful in arithmetic operations and error detection/correction circuits.

Odd function

 The XOR operation with three or more variables can be converted into an ordinary Boolean function by replacing the ⊕ with its equivalent Boolean expression.

$$A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C$$
$$= AB'C' + A'BC' + ABC + A'B'C$$
$$= \sum (1, 2, 4, 7)$$

- The three-variable XOR function is equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1.
 - An **odd** number of variables are equal to 1.
 - Odd function.

Odd function

• The three-input odd function is implemented by means of two-input XOR gates.

• Even function can also be implemented:

Parity generation and checking

- XOR functions are very useful in systems requiring error detection and correction codes.
 - A parity bit is an extra bit included with a binary message to make the number of 1's either odd or even.
- The circuit that generates the parity bit in the transmitter is called a *parity generator*.
- The circuit that checks the parity in the receiver is called a *parity checker*.

Parity generation and checking

• Consider a three-bit message to be transmitted together with an even-parity bit.

\overline{x}	y	z	Parity bit p
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

• p constitutes an odd function.

Parity generation and checking

- The three bits in the message, together with the parity bit, are transmitted to their destination.
- The four bits received must have an even number of 1's with even parity.

