Automated Machine Learning (AutoML)

M. Lindauer F. Hutter

University of Freiburg

Lectures 11:

Beyond AutoML: Algorithm Configuration and Control

Where are we? The big picture

- Introduction
- Background
 - Design spaces in ML
 - Evaluation and visualization
- Hyperparameter optimization (HPO)
 - Bayesian optimization
 - Other black-box techniques
 - More details on Gaussian processes
- Pentecost (Holiday) no lecture
- Architecture search I + II
- Meta-Learning I + II
- → Beyond AutoML: algorithm configuration and control
 - Project announcement and closing

Learning Goals

After this lecture, you will be able to ...

- define the algorithm configuration problem
- discuss differences between HPO and algorithm configuration
- explain the components of SMAC to combine Bayesian Optimization across instances
- define and give examples for the algorithm control problem
- list some further topics related AutoML and algorithm configuration

Further Material

There is one recent tutorials on algorithm configuration:

 ICML'19: Frank Hutter and Kevin Leyton-Brown on "Algorithm configuration: learning in the space of algorithm designs" https://www.facebook.com/icml.imls/videos/vb.118896271958230/ 2044426569187107/

Lecture Overview

Algorithm Configuration

2 SMAC: BO for Algorithm Configuration

3 Algorithm Control

Other Related Topics

Generalization of HPO

• hyperparameter optimization (HPO) is not limited to ML

Generalization of HPO

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - 1 the algorithm at hand has parameters that influence its performance
 - 2 you care about the empirical performance of an algorithm

Generalization of HPO

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - 1 the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- ∼→ Can we find an algorithm's configuration that performs well and robustly across a set of tasks?
 - An hyperparameter configuration for a set of datasets
 - A parameter configuration of a SAT solver for a set of SAT instances
 - A parameter configuration of a AI planning solver for a set of planning problems
 - ...
- → Algorithm configuration

Algorithm Configuration Visualized

Definition

Given a parameterized algorithm ${\mathcal A}$ with possible parameter settings ${\boldsymbol \Lambda},$

Definition

Given a parameterized algorithm ${\cal A}$ with possible parameter settings ${\bf \Lambda}$, a set of training problem instances Π ,

Definition

Given a parameterized algorithm $\mathcal A$ with possible parameter settings $\mathbf \Lambda$, a set of training problem instances Π , and a cost metric $c:\mathbf \Lambda\times\Pi\to\mathbb R$,

Definition

Given a parameterized algorithm $\mathcal A$ with possible parameter settings Λ , a set of training problem instances Π , and a cost metric $c:\Lambda\times\Pi\to\mathbb R$, the algorithm configuration problem is to find a parameter configuration $\lambda^*\in\Lambda$ that minimizes c across the instances in Π .

Algorithm Configuration – Full Formal Definition

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- ullet \mathcal{A} is a parameterized algorithm;
- Λ is the parameter configuration space of A;
- ullet $\mathcal D$ is a distribution over problem instances with domain Π ;

Algorithm Configuration – Full Formal Definition

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- ullet \mathcal{A} is a parameterized algorithm;
- Λ is the parameter configuration space of A;
- ullet $\mathcal D$ is a distribution over problem instances with domain Π ;
- $\kappa < \infty$ is a cutoff time, after which each run of ${\mathcal A}$ will be terminated if still running

Algorithm Configuration – Full Formal Definition

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- ullet \mathcal{A} is a parameterized algorithm;
- Λ is the parameter configuration space of A;
- \mathcal{D} is a distribution over problem instances with domain Π ;
- $\kappa < \infty$ is a cutoff time, after which each run of ${\mathcal A}$ will be terminated if still running
- $c: \mathbf{\Lambda} \times \Pi \to \mathbb{R}$ is a function that measures the observed cost of running $\mathcal{A}(\lambda)$ on an instance $\pi \in \Pi$ with cutoff time κ

Algorithm Configuration - Full Formal Definition

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- \bullet \mathcal{A} is a parameterized algorithm;
- Λ is the parameter configuration space of A;
- \mathcal{D} is a distribution over problem instances with domain Π ;
- $\kappa < \infty$ is a cutoff time, after which each run of ${\mathcal A}$ will be terminated if still running
- $c: \mathbf{\Lambda} \times \Pi \to \mathbb{R}$ is a function that measures the observed cost of running $\mathcal{A}(\lambda)$ on an instance $\pi \in \Pi$ with cutoff time κ

The cost of a candidate solution $\lambda \in \Lambda$ is $f(\lambda) = \mathbb{E}_{\pi \sim \mathcal{D}}(c(\lambda, \pi))$. The goal is to find $\lambda^* \in \arg\min_{\lambda \in \Lambda} f(\lambda)$.

- NE

Distribution of Instances

We usually have a finite number of instances from a given application

- We want to do well on that type of instances
- Future instances of this type should be solved well

Distribution of Instances

We usually have a finite number of instances from a given application

- We want to do well on that type of instances
- Future instances of this type should be solved well

Like in machine learning

- We split the instances into a training set and a test set
- We configure algorithms on the training instances
- We only use the test instances afterwards
 - ightarrow unbiased estimate of generalization performance for unseen instances

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters
- Stochastic optimization
 - Randomized algorithms: optimization across various seeds
 - Distribution of benchmark instances (often wide range of hardness)
 - Subsumes so-called multi-armed bandit problem

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters
- Stochastic optimization
 - Randomized algorithms: optimization across various seeds
 - Distribution of benchmark instances (often wide range of hardness)
 - Subsumes so-called *multi-armed bandit problem*
- Generalization across instances
 - apply algorithm configuration to homogeneous instance sets
 - Instance sets can also be heterogeneous,
 i.e., no single configuration performs well on all instances
 - → combination of algorithm configuration and selection

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters
- Stochastic optimization
 - Randomized algorithms: optimization across various seeds
 - Distribution of benchmark instances (often wide range of hardness)
 - Subsumes so-called *multi-armed bandit problem*
- Generalization across instances
 - apply algorithm configuration to homogeneous instance sets
 - Instance sets can also be heterogeneous,
 i.e., no single configuration performs well on all instances
 - → combination of algorithm configuration and selection
- → Hyperparameter optimization is a subproblem of algorithm configuration

Lecture Overview

Algorithm Configuration

2 SMAC: BO for Algorithm Configuration

Algorithm Control

Other Related Topics

State-of-the-art Algorithm Configuration

SMAC: Sequential Model-based Algorithm Configuration =

- + Bayesian Optimization (instead of local search)
- + aggressive racing
- + adaptive capping (for optimizing runtime)

Algorithm 1: SMAC

Input : instance set Π , Algorithm $\mathcal A$ with configuration space Λ , Initial configuration λ_0 , performance metric c, Configuration budget b

Output: best incumbent configuration $\hat{\lambda}$

run history H \leftarrow initial design based on λ_0 ; // H = $(\lambda, \pi, c(\pi, \lambda))_i$

while b remains do

Algorithm 2: SMAC

Input: instance set Π , Algorithm $\mathcal A$ with configuration space Λ , Initial configuration λ_0 , performance metric c, Configuration budget b

Output: best incumbent configuration $\hat{\lambda}$

run history H \leftarrow initial design based on λ_0 ; // H = $(\lambda, \pi, c(\pi, \lambda))_i$

while *b* remains **do**

 $\hat{f} \leftarrow \text{train empirical performance model based on run history H};$

Algorithm 3: SMAC

Input : instance set Π , Algorithm $\mathcal A$ with configuration space Λ , Initial configuration λ_0 , performance metric c, Configuration budget b

Output: best incumbent configuration $\hat{\lambda}$

run history H \leftarrow initial design based on λ_0 ; // H = $(\lambda, \pi, c(\pi, \lambda))_i$

while b remains do

 $\hat{f} \leftarrow \text{train empirical performance model based on run history H};$

 $\Lambda_{challengers} \leftarrow$ select configurations based on \hat{f} ;

Algorithm 4: SMAC

```
Input: instance set \Pi, Algorithm \mathcal A with configuration space \Lambda, Initial configuration \lambda_0, performance metric c, Configuration budget b

Output: best incumbent configuration \hat{\lambda}

run history H \leftarrow initial design based on \lambda_0; // H = (\lambda, \pi, c(\pi, \lambda))_i

while b remains do

\hat{f} \leftarrow train empirical performance model based on run history H;

\Lambda_{challengers} \leftarrow select configurations based on \hat{f};
```

 $\hat{\lambda},\,\mathsf{H}\leftarrow\mathsf{intensify}(\mathbf{\Lambda}_{challengers},\,\hat{\lambda});$ // racing and capping

Algorithm 5: SMAC

```
Input : instance set \Pi, Algorithm \mathcal A with configuration space \Lambda, Initial configuration \lambda_0, performance metric c, Configuration budget b
```

Output: best incumbent configuration $\hat{\lambda}$

```
run history H \leftarrow initial design based on \lambda_0; // H = (\lambda, \pi, c(\pi, \lambda))_i
```

while b remains **do**

```
\hat{f} \leftarrow train empirical performance model based on run history H; \Lambda_{challengers} \leftarrow select configurations based on \hat{f}; \hat{\lambda}, H \leftarrow intensify(\Lambda_{challengers}, \hat{\lambda}); // racing and capping
```

return $\hat{\lambda}$

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - \bullet Compare λ' and λ based on N instances

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - \bullet Compare λ' and λ based on N instances
 - How does this relate to cross-validation?

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - Compare λ' and λ based on N instances
 - How does this relate to cross-validation?

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - Compare λ' and λ based on N instances
 - How does this relate to cross-validation?

- Problem of large N: evaluations are slow
- Problem of small N: overfitting to a small set of instances
- \rightarrow Tradeoff: Choose N of moderate size

Question: Which N instances should we use?

② The same set of N instances for the entire run

Question: Which N instances should we use?

- $oldsymbol{0}$ N different instances for each configuration
- $oldsymbol{0}$ The same set of N instances for the entire run

Answer: the same N instances, so that we compare apples with apples (but: using the same instances can also yield overtuning)

If we sampled different instances for each configuration:

- Some configurations would randomly get easier instances
- Those configurations would look better than they really are

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- Fix the seeds together with the instances

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- 2 Fix the seeds together with the instances

Answer: just like for instances, fix them to compare apples to apples

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- 2 Fix the seeds together with the instances

Answer: just like for instances, fix them to compare apples to apples

In summary, for each run of Basic(N): pick N (instance, seed) pairs and use them for evaluating each λ .

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- 2 Fix the seeds together with the instances

Answer: just like for instances, fix them to compare apples to apples

In summary, for each run of Basic(N): pick N (instance, seed) pairs and use them for evaluating each λ . (Different Basic(N) runs can use different instances and seeds.)

The concept of overtuning

Very related to overfitting in machine learning

- Performance improves on the training set
- Performance does not improve on the test set, and may even degrade

The concept of overtuning

Very related to overfitting in machine learning

- Performance improves on the training set
- Performance does not improve on the test set, and may even degrade

More pronounced for more heterogeneous benchmark sets

- But it even happens for very homogeneous sets
- Indeed, one can even overfit on a single instance, to the seeds used for training

Overtuning Visualized

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=100: average runlengths across 100 runs with different seeds
- Test cost of $\hat{\lambda}$ here based on 1000 new seeds

Overtuning Visualized

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=100: average runlengths across 100 runs with different seeds
- Test cost of $\hat{\lambda}$ here based on 1000 new seeds

M. Lindauer, F. Hutter AutoML 20

Overtuning Visualized

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=100: average runlengths across 100 runs with different seeds
- Test cost of $\hat{\lambda}$ here based on 1000 new seeds

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- Test cost of $\hat{\lambda}$ here based on 1000 new seeds

M. Lindauer, F. Hutter AutoML

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- Test cost of $\hat{\lambda}$ here based on 1000 new seeds

M. Lindauer, F. Hutter AutoML 21

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- Test cost of $\hat{\lambda}$ here based on 1000 new seeds

Which of these results corresponds to $N=1,\ N=10,\ {\rm and}\ N=100?$

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- Test cost of $\hat{\lambda}$ here based on 1000 new seeds

Which of these results corresponds to $N=1,\ N=10,\ {\rm and}\ N=100?$

- N=1: blue, N=10: red, N=100 dashed black
- N=1: dashed black, N=10: red, N=100 blue

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- Test cost of $\hat{\lambda}$ here based on 1000 new seeds

Which of these results corresponds to $N=1,\ N=10,\ {\rm and}\ N=100?$

- N=1: blue, N=10: red, N=100 dashed black
- N=1: dashed black, N=10: red, N=100 blue

Correct Answer: 1

Aggressive Racing (inspired by FocusedILS)

Intuition: get the best of both worlds

- Perform more runs for good configurations
 - to avoid overtuning
- Quickly reject poor configurations
 - to make progress more quickly

Aggressive Racing (inspired by FocusedILS)

Intuition: get the best of both worlds

- Perform more runs for good configurations
 - to avoid overtuning
- Quickly reject poor configurations
 - to make progress more quickly

Definition: $N(\lambda)$ and $c_N(\lambda)$

 $N(\lambda)$ denotes the number of runs executed for λ so far.

 $\hat{c}_N(\lambda)$ denotes the cost estimate of λ based on N runs.

Aggressive Racing (inspired by FocusedILS)

Intuition: get the best of both worlds

- Perform more runs for good configurations
 - to avoid overtuning
- Quickly reject poor configurations
 - to make progress more quickly

Definition: $N(\lambda)$ and $c_N(\lambda)$

 $N(\lambda)$ denotes the number of runs executed for λ so far.

 $\hat{c}_N(\lambda)$ denotes the cost estimate of λ based on N runs.

In the beginning: $N(\lambda) = 0$ for every configuration λ

Definition: domination

λ_1 dominates λ_2 if

- $N(\lambda_1) \geq N(\lambda_2)$ and
- $\hat{c}_{N(\lambda_2)}(\lambda_1) \leq \hat{c}_{N(\lambda_2)}(\lambda_2)$.

I.e.: we have at least as many runs for λ_1 and its cost is at least as low.

Definition: domination

λ_1 dominates λ_2 if

- ullet $N(\lambda_1) \geq N(\lambda_2)$ and
- $\hat{c}_{N(\lambda_2)}(\lambda_1) \leq \hat{c}_{N(\lambda_2)}(\lambda_2)$.

I.e.: we have at least as many runs for λ_1 and its cost is at least as low.

$better(\lambda', \lambda^*)$ in a nutshell

• λ^* is the current configuration to beat (incumbent)

M. Lindauer, F. Hutter AutoML

Definition: domination

λ_1 dominates λ_2 if

- $N(\lambda_1) \geq N(\lambda_2)$ and
- $\hat{c}_{N(\lambda_2)}(\lambda_1) \leq \hat{c}_{N(\lambda_2)}(\lambda_2)$.

I.e.: we have at least as many runs for λ_1 and its cost is at least as low.

$better(\lambda', \lambda^*)$ in a nutshell

- ullet λ^* is the current configuration to beat (incumbent)
- Perform runs of λ' until either
 - λ^* dominates $\lambda' \leadsto \text{reject } \lambda'$, or
 - λ' dominates $\lambda^* \leadsto$ change current configuration $(\lambda^* \leftarrow \lambda')$

M. Lindauer, F. Hutter AutoML

Definition: domination

λ_1 dominates λ_2 if

- $N(\lambda_1) \geq N(\lambda_2)$ and
- $\hat{c}_{N(\lambda_2)}(\lambda_1) \leq \hat{c}_{N(\lambda_2)}(\lambda_2)$.

I.e.: we have at least as many runs for λ_1 and its cost is at least as low.

$better(\lambda', \lambda^*)$ in a nutshell

- λ^* is the current configuration to beat (incumbent)
- Perform runs of λ' until either
 - λ^* dominates $\lambda' \leadsto \text{reject } \lambda'$, or
 - λ' dominates $\lambda^* \leadsto$ change current configuration $(\lambda^* \leftarrow \lambda')$
- ullet Over time: perform extra runs of λ^* to gain more confidence in it

FREB

- Let λ^* be the incumbent (evaluated on π_1, π_2, π_3)
- ullet We'll look at challengers λ' and λ''

	π_1	π_2	π_3
λ^*	3	2	10

- Let λ^* be the incumbent (evaluated on π_1, π_2, π_3)
- ullet We'll look at challengers λ' and λ''

π_1	π_2	π_3
λ^* 3	2	10
λ'		

- Let λ^* be the incumbent (evaluated on π_1, π_2, π_3)
- ullet We'll look at challengers λ' and λ''

	π_1	π_2	π_3
λ^*	3	2	10
λ'	2		

- Let λ^* be the incumbent (evaluated on π_1, π_2, π_3)
- ullet We'll look at challengers λ' and λ''

	π_1	π_2	π_3
λ^*	3	2	10
λ'	2	10	

- Let λ^* be the incumbent (evaluated on π_1, π_2, π_3)
- ullet We'll look at challengers λ' and λ''

	π_1	π_2	π_3
λ^*	3	2	10
λ'	2	10	
$ ightarrow$ reject, since $\hat{c}_2(\lambda')=6>\hat{c}_2(\lambda^*)=2.5$			

- Let λ^* be the incumbent (evaluated on π_1, π_2, π_3)
- ullet We'll look at challengers λ' and λ''

	π_1	π_2	π_3
λ^*	3	2	10
λ'	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(\lambda')=6>\hat{c}_2(\lambda^*)=2.5$	
λ''	3		

- Let λ^* be the incumbent (evaluated on π_1, π_2, π_3)
- ullet We'll look at challengers λ' and λ''

	π_1	π_2	π_3
$\overline{\lambda^*}$	3	2	10
$\overline{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(\lambda')=6>\hat{c}_2(\lambda^*)=2.5$	
λ''	3	1	

- Let λ^* be the incumbent (evaluated on π_1, π_2, π_3)
- ullet We'll look at challengers λ' and λ''

	π_1	π_2	π_3
λ^*	3	2	10
λ'	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(\lambda')=6>\hat{c}_2(\lambda^*)=2.5$	
λ''	3	1	5

- Let λ^* be the incumbent (evaluated on π_1, π_2, π_3)
- ullet We'll look at challengers λ' and λ''

	π_1	π_2	π_3
λ^*	3	2	10
λ'	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(\lambda')=6>\hat{c}_2(\lambda^*)=2.5$	
λ''	3	1	5

- new incumbent: $\lambda^* \leftarrow \lambda''$
- ullet Perform an additional run for new λ^* to increase confidence over time

Racing achieves the best of both worlds

Aggressive racing (aka FocusedILS): Fast progress and no overtuning

M. Lindauer, F. Hutter AutoML 25

Racing achieves the best of both worlds

Aggressive racing (aka FocusedILS): Fast progress and no overtuning

M. Lindauer, F. Hutter AutoML 25

Adaptive capping

- Assumptions
 - optimization of runtime
 - \bullet each configuration run has a time limit (e.g., $300~{\rm sec}$)

Adaptive capping

- Assumptions
 - optimization of runtime
 - each configuration run has a time limit (e.g., 300 sec)
- E.g., λ^* needed 1 sec to solve π_1
 - Do we need to run λ' for 300 sec?
 - ullet Terminate evaluation of λ' once guaranteed to be worse than λ^*

Adaptive capping

- Assumptions
 - optimization of runtime
 - each configuration run has a time limit (e.g., 300 sec)
- E.g., λ^* needed 1 sec to solve π_1
 - Do we need to run λ' for $300 \sec?$
 - ullet Terminate evaluation of λ' once guaranteed to be worse than λ^*
- \leadsto To compare against λ^* based on N runs, we can terminate evaluation of λ' after time $\sum_{i=1}^N c(\lambda^*,\pi_i)$

	π_1	π_2
λ^*	4	2

	π_1	π_2	
λ^*	4	2	
Wit	hout adaptive capping		
λ'			

	π_1	π_2	
λ^*	4	2	
Wit	hout adaptive capping		
λ'	3		

	π_1	π_2	
λ^*	4	2	
Wit	hout adaptive capping		
λ'	3	300	

	π_1	π_2
λ^*	4	2
Wit	hout	adaptive capping
λ'	3	300
		\rightarrow reject λ' (cost: 303)

	π_1	π_2
λ^*	4	2
Wit	hout	t adaptive capping
λ'	3	300
		\rightarrow reject λ' (cost: 303)
Wit	h ad	laptive capping
λ'		

1	π_1	π_2
λ^*	4	2
With	out adaptive ca	pping
λ'	3	300
		\rightarrow reject λ' (cost: 303)
With	adaptive capp	ng

	π_1	π_2
λ^*	4	2
Wit	hout adaptive capping	
λ'	3	300
	ightarrow reject	t λ' (cost: 303)
Wit	h adaptive capping	
λ'	3	300

	π_1	π_2
λ^*	4	2
Wit	hout adaptive ca	pping
λ'	3	300
		\rightarrow reject λ' (cost: 303)
Wit	h adaptive cappii	ng
λ'	3	300
	$\rightarrow {\sf cut\ off\ after}$	$\kappa=4$ seconds, reject λ' (cost: 7)

runtime cutoff $\kappa=300$, comparison based on 2 instances (using \hat{c}_3)

	π_1	π_2
λ^*	4	2
Wit	hout	adaptive capping
λ'	3	300
		\rightarrow reject λ' (cost: 303)
Wit	h ad	aptive capping
λ'	3	300
	\rightarrow	cut off after $\kappa=4$ seconds, reject λ' (cost: 7)

Note: To combine adaptive capping with BO, we need to impute the censored observations caused by adaptive capping.

SMAC: Overview

Algorithm 6: SMAC

```
Input : instance set \Pi, Algorithm \mathcal A with configuration space \Lambda, Initial configuration \lambda_0, performance metric c, Configuration budget b
```

Output: best incumbent configuration $\hat{\lambda}$

```
run history H \leftarrow initial design based on \lambda_0; // H = (\lambda, \pi, c(\pi, \lambda))_i while b remains do
```

 $\hat{f} \leftarrow$ train empirical performance model based on run history H; $\Lambda_{challengers} \leftarrow$ select configurations based on \hat{f} ; // BO with EI $\hat{\lambda}$, H \leftarrow intensify($\Lambda_{challengers}$, $\hat{\lambda}$); // racing and capping

return $\hat{\lambda}$

Lecture Overview

Algorithm Configuration

2 SMAC: BO for Algorithm Configuration

3 Algorithm Control

Other Related Topics

- Many heuristics in algorithms are dynamic and adaptive
 - 1 the algorithm's behavior changes over time
 - 2 the algorithm's behavior changes based on internal statistics
- these heuristics might control other parameters of the algorithms

- Many heuristics in algorithms are dynamic and adaptive
 - 1 the algorithm's behavior changes over time
 - 2 the algorithm's behavior changes based on internal statistics
- these heuristics might control other parameters of the algorithms
- example: learning rate schedules for training DNNs
 - exponential decaying learning rate: based on number of iterations, learning rate decreases

- Many heuristics in algorithms are dynamic and adaptive
 - 1 the algorithm's behavior changes over time
 - 2 the algorithm's behavior changes based on internal statistics
- these heuristics might control other parameters of the algorithms
- example: learning rate schedules for training DNNs
 - exponential decaying learning rate: based on number of iterations, learning rate decreases
 - Reduce learning rate on plateaus: if the learning stagnates for some time, the learning rate is decreased by a factor

- Many heuristics in algorithms are dynamic and adaptive
 - 1 the algorithm's behavior changes over time
 - 2 the algorithm's behavior changes based on internal statistics
- these heuristics might control other parameters of the algorithms
- example: learning rate schedules for training DNNs
 - exponential decaying learning rate: based on number of iterations, learning rate decreases
 - 2 Reduce learning rate on plateaus: if the learning stagnates for some time, the learning rate is decreased by a factor
- What examples for dynamic heuristics can you think of?

- Many heuristics in algorithms are dynamic and adaptive
 - 1 the algorithm's behavior changes over time
 - 2 the algorithm's behavior changes based on internal statistics
- these heuristics might control other parameters of the algorithms
- example: learning rate schedules for training DNNs
 - exponential decaying learning rate: based on number of iterations, learning rate decreases
 - 2 Reduce learning rate on plateaus: if the learning stagnates for some time, the learning rate is decreased by a factor
- What examples for dynamic heuristics can you think of?

 other examples: restart probability of search, mutation rate of evolutionary algorithms, . . .

- How would we parameterize learning rate schedules?
 - exponential decaying learning rate:
 - initial learning rate
 - minimal learning rate
 - multiplicative factor

- How would we parameterize learning rate schedules?
 - exponential decaying learning rate:
 - initial learning rate
 - minimal learning rate
 - multiplicative factor
 - 2 Reduce learning rate on plateaus:
 - patience (in number of epochs)
 - patience threshold
 - decreasing factor
 - cool-down break (in number of epochs)

- How would we parameterize learning rate schedules?
 - exponential decaying learning rate:
 - initial learning rate
 - minimal learning rate
 - multiplicative factor
 - 2 Reduce learning rate on plateaus:
 - patience (in number of epochs)
 - patience threshold
 - decreasing factor
 - cool-down break (in number of epochs)

→ Many parameters only to control a single parameter (learning rate)

- How would we parameterize learning rate schedules?
 - exponential decaying learning rate:
 - initial learning rate
 - minimal learning rate
 - multiplicative factor
 - 2 Reduce learning rate on plateaus:
 - patience (in number of epochs)
 - patience threshold
 - decreasing factor
 - cool-down break (in number of epochs)
- → Many parameters only to control a single parameter (learning rate)
- Still not guaranteed that optimal setting of learning rate schedules will lead to optimal learning rate behavior
 - Learning rate schedules are only heuristics

31

Algorithm Control [Biedenkapp et al. 2019]

- Goal: control a (set of) hyperparameter(s) during the run
- ullet Problem can be defined as an MDP $\mathcal{M} \coloneqq (\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R})$
 - State Space S At each time step t, internal state s_t of the target algorithm being controlled.
 - Action space \mathcal{A} Given a state s_t , the controller has to decide how to change the value $v \in \mathcal{A}_h$ of a hyperparameter h.
 - Transition Function \mathcal{T} dynamics of the algorithm at hand transitioning from s_t to s_{t+1} by applying action a_t with probability $t(s_t, a_t, s_{t+1})$
 - Reward \mathcal{R} Either sparse reward at the end of the algorithm run or intermediate run quality estimate

Algorithm Control [Biedenkapp et al. 2019]

- Goal: control a (set of) hyperparameter(s) during the run
- Problem can be defined as an MDP $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R})$
 - State Space S At each time step t, internal state s_t of the target algorithm being controlled.
 - Action space \mathcal{A} Given a state s_t , the controller has to decide how to change the value $v \in \mathcal{A}_h$ of a hyperparameter h.
 - Transition Function \mathcal{T} dynamics of the algorithm at hand transitioning from s_t to s_{t+1} by applying action a_t with probability $t(s_t, a_t, s_{t+1})$
 - Reward \mathcal{R} Either sparse reward at the end of the algorithm run or intermediate run quality estimate

$$\omega^*(s) \in \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} \mathcal{R}(s, a) + \mathcal{Q}_{\omega^*}(s, a)$$

$$Q_{\omega}(s, a) = \mathbb{E}_{\omega} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right]$$

Following the same arguments as for algorithm configuration, we want to learn a robust policy across instances $\pi \in \Pi$

M. Lindauer, F. Hutter AutoML 33

- homogeneous instances
 - instances are similar to each other and a good policy would perform well on all instances
 - instances provides some noise in the policy optimization
 - → more robust policies which generalize better to new instances

M. Lindauer, F. Hutter AutoML 34

- homogeneous instances
 - instances are similar to each other and a good policy would perform well on all instances
 - instances provides some noise in the policy optimization
 - → more robust policies which generalize better to new instances
- heterogeneous instances
 - instances have different characteristics s.t. the policy has to be adapted to the instance at hand
 - we might have to characterize the instances by using instance features (aka meta features)

Lecture Overview

Algorithm Configuration

2 SMAC: BO for Algorithm Configuration

3 Algorithm Control

Other Related Topics

 Observation: We collect a lot of data of the performance of an algorithm given its hyperparameter configuration and an instance

- Observation: We collect a lot of data of the performance of an algorithm given its hyperparameter configuration and an instance
- Question: Can we accurately predict the performance on new configurations and instances?

- Observation: We collect a lot of data of the performance of an algorithm given its hyperparameter configuration and an instance
- Question: Can we accurately predict the performance on new configurations and instances?
- Idea I (RF): For complex spaces (with continuous and categorical hyperparameter), we can use random forests [Hutter et al. '14]

- Observation: We collect a lot of data of the performance of an algorithm given its hyperparameter configuration and an instance
- Question: Can we accurately predict the performance on new configurations and instances?
- Idea I (RF): For complex spaces (with continuous and categorical hyperparameter), we can use random forests [Hutter et al. '14]
- Idea II (DNN): If we have randomized algorithms and we are interested in the algorithm's performance distribution, DNNs perform better [Eggensperger et al. '18]

• Observation: Often only a few hyperparameters are important to improve the performance of an algorithm

- Observation: Often only a few hyperparameters are important to improve the performance of an algorithm
- Question: How can we identify these important hyperparameters?

- Observation: Often only a few hyperparameters are important to improve the performance of an algorithm
- Question: How can we identify these important hyperparameters?
- Idea I (Local Importance) If we have an optimized configuration, how much would the performance change if we only change one hyperparameter of it.

- Observation: Often only a few hyperparameters are important to improve the performance of an algorithm
- Question: How can we identify these important hyperparameters?
- Idea I (Local Importance) If we have an optimized configuration, how much would the performance change if we only change one hyperparameter of it.
- Idea II (fANOVA): How much of the performance variance is explained by single hyperparameter marginalized across all other settings

- Observation: Often only a few hyperparameters are important to improve the performance of an algorithm
- Question: How can we identify these important hyperparameters?
- Idea I (Local Importance) If we have an optimized configuration, how much would the performance change if we only change one hyperparameter of it.
- Idea II (fANOVA): How much of the performance variance is explained by single hyperparameter marginalized across all other settings
- Idea II (Ablation): If we compare two configurations (e.g., default and incumbent), we flip with a greedy strategy the hyperparameters step by step such that we can order them

- Observation: Often only a few hyperparameters are important to improve the performance of an algorithm
- Question: How can we identify these important hyperparameters?
- Idea I (Local Importance) If we have an optimized configuration, how much would the performance change if we only change one hyperparameter of it.
- Idea II (fANOVA): How much of the performance variance is explained by single hyperparameter marginalized across all other settings
- Idea II (Ablation): If we compare two configurations (e.g., default and incumbent), we flip with a greedy strategy the hyperparameters step by step such that we can order them

 \leadsto CAVE for analyzing AutoML experiments: https://github.com/automl/CAVE

 Observation: Results in papers are often not comparable because authors use different benchmarks

- Observation: Results in papers are often not comparable because authors use different benchmarks
- Question: Can we design standardized benchmarks libraries?

- Observation: Results in papers are often not comparable because authors use different benchmarks
- Question: Can we design standardized benchmarks libraries?
- Benchmark I (HPOlib): Benchmark library with different HPO benchmarks

- Observation: Results in papers are often not comparable because authors use different benchmarks
- Question: Can we design standardized benchmarks libraries?
- Benchmark I (HPOlib): Benchmark library with different HPO benchmarks
- Benchmark II (NASBench 101): Tabular benchmark for neural architecture search

- Observation: Results in papers are often not comparable because authors use different benchmarks
- Question: Can we design standardized benchmarks libraries?
- Benchmark I (HPOlib): Benchmark library with different HPO benchmarks
- Benchmark II (NASBench 101): Tabular benchmark for neural architecture search
- Benchmark III (AClib) Benchmarks and cheap-to-run surrogate benchmarks for algorithm configuration

Learning Goals

After this lecture, you are able to ...

- define the algorithm configuration problem
- discuss differences between HPO and algorithm configuration
- explain the components of SMAC to combine Bayesian Optimization across instances
- define and give examples for the algorithm control problem
- list some further topics related AutoML and algorithm configuration

M. Lindauer, F. Hutter AutoML

Literature [These are links]

- SMAC [Sequential Model-Based Optimization for General Algorithm Configuration]
- [Pitfalls and Best Practices in Algorithm Configuration]
- [Towards White-box Benchmarks for Algorithm Control]
- [CAVE: Configuration Assessment, Visualization and Evaluation]

