Sept 24 / 17.1) (certon 1 let 2 te Donnerstag f. X -> Y Eire finkhon fordnet jedem Element x einer Defihonsmenge Z genau ein (Definhunsbreich) / Element y einer Zelmenge Y zu. (ronge) (Wertebereich). Für das Element x e X zugwordnete Element der Zielmeng schreibt men im Allzemeiren f(x). Des Bild eines Elements x der Definitionson X ist einfech dur Finkhonsvert f(x). (Jedes x & X mit f(x)=y heisst ein Urbild von y) Das Bild einer Finkhun ist die Menge der Bilder aller Elemente der Definitionsnenge f(Z) = Sf(x) 1 x e x]- image = In(f) = fue Y | 3 x e X : y = f(x) ! Das Bild einer Finkhun ist folglich eine Teilmenge der Fielnen ge, und wird Bildnege generat As wertebereichs muss (venn Oberharpt) picht nur einem Element der Definitionsmerge zugeordnet worden sein

Sei f. X -> Y eine Abbildung.
Der Graph von f it die llege
alle Paare (x, f(x)) vobei x
alle Elemente der Merge X
duchläuft.
$Gr(f) := \{(x, f(x)) \mid x \in X\}$
jet eine Teilnenge von XxY.
$B_{SP} \bigcirc f(x) = sin x \qquad f: IR \rightarrow IR \\ \times \rightarrow sin x$
R= Y
oh il
(2) 12 m2 12 12
× × ×

f: X -3 X

Injektive: kein Element von Y

umd nehrfuch angenammer surfektive: jedes Element von Y wird angenommen bijekhve : jedes Element von Y genav einmal angenommen

Deln: (Kordinalität). Wir sogen zwei

Mengen X und Y sind gleichmächtig

falls eine bijektive Abbildung

f: X >> Y gibt. Mit den ersten Contorschen Diagonalvorscher kann man die Rohonalen zohlen abzählen d.h. Dund IN sind gleichmächtig

Server !

f 1 11 1 = 1

Sept 24 2013 bethe 2 (19-1).
Leve 2
Mit Abbildungen kann man "operieren"
Die Wichtigste Operation ist die
Die Wichtigste Operation ist die Verketting (oder Komposition) zweier Abbildungen (verknüpfung)
Abbildungen (verknüpfung)
Defn-
Abbildungen f. X - Y g. Y -> 2 kann man hintereinender ausführen. Dies ergibt) eine Neue Abbildung X f. Y g. 2 X -> 2
man hinteremendor ausführen. Dies ergibt
1) etre Neve Abbildung
X f y g z X t s z
$F := g \circ f : \times \rightarrow Z$
$\times \rightarrow q(+(x))$
Quei Finkhonen find glænnen verkettet
werden venn der wertebererch der ersten
Finkhin mit dem Definihonsbereich der
queter Finkhon übereinstimmt.
Mann sagt og komponiert mit f
$g \circ f$
Zu beachten:
In dieser Notation steht die zuest angewordte
Abbilding reekts: des teisst bet got
wird zuest die Finkhun f angewondt und
dann die Frikhon g. (im Gegersate zum
Diagram X + y 9, 2
F= gof

Die Identische Abbildung verhält sich
bei der Komposihon neuhol

für eine Finkhon

f: X 3 7 gilt also ford = f = rdy o y mober idx: X - X Tdy: Y >> Y Die Komposition von Finkhoren ist association d.h., für Finkhoren f., g. h git (hog) of = ho(gof) Moer die Komposihen von Finkhonen ist im Allgemeinen nicht kommutehis. Bsp $f = 1R \rightarrow 1R$ $g : 1R \rightarrow 1R$ $\times \rightarrow \times \neq 1$ fog=f(g(x)) = f(x+1)=(x+1)=x22x21 $g \circ f = g(f(x)) = g(x^2) = x^2 + 1$

For fof: Sei ye Y und sei x mut f(x)=yDann ist $(f \circ f^{-1})(y) = f(f^{-1}(y))$ = f(x) = y

fof-1-1dy

Ŧ	olgeringen 2.3 seien aibicidEIR
-	
(.	((1)) a+b=a+c = b=c und
	O is eindeulig the Folls ZeIR der
	Tignschafter A+Z=a Vae IR genogt,
	50 folgt 7=0.
_	
A	(1) VaibelR, Fleindweing beshmes) XEIR
	: a=x=b wir schreiben x=b-a
	und 0-a a Tit des additue Inverse
	7u a
	$ \left(\begin{array}{c} (\overline{D}) & b-\alpha=b \in (-\alpha) \end{array} \right) $
	$(\overline{v}) - (-a) = a$
	((V) Falls ab-ac und ato = b=c ind
	1 ist einduckg dah Folls XIEIR der
,	1 ist einducky dah Folls XIEIR der
	L'est einduche de la Folls XIEIR der Eigenschaften aux = a Vollie genügt
·	L'ist einduche de h Folls XIEIR der Eigenschaften aux=a Volle genügt so golgt X-1
5	I ist einduchg den Folls XIEIR der Eigenschaften a. X = a Vote IR genügt so glolgt X = 1 (VI) Valbe IR, a+o, 71 x e IR = ax = b
8	I ist einduchg den Folls XIEIR der Eigenschaften a. X = a Vote IR genügt so glolgt X = 1 (VI) Valbe IR, a+o, 71 x e IR = ax = b
5	L'est einduche de h Folls xiEIR der Eigenschaften a. x = a Volle R genügt. so golgt : x = 1 (vi) Va,beIR, a+o, 71 xeIR = ax = b wir schreiben x=b/a and 1/a=a-1 est das Mulhplikohu Inverse zu a
8	Eigenschaften a. x=a VcEIR genügt so glotgt :x-1 (vi) Va,beIR, a+o, 71 xeIR = ax=b Wir schreiben x=b/a and 1/a=a-1
	List einduchg, d.h. Folls xiEIR der Eigenschoften a. x = a Vot IR genügt so golgt x = 1 (vi) Varbelk, a + 0, 7! x e IR = ax = b Wir schreiben x = b/a and 1/a = a ⁻¹ ist das Mulhplitahu Inverse zu a (vii) Falls a + 0 = a ⁻¹ = a
	L'est einduche de h Folls xiEIR der Eigenschaften a. x = a Volle R genügt. so golgt : x = 1 (vi) Va,beIR, a+o, 71 xeIR = ax = b wir schreiben x=b/a and 1/a=a-1 est das Mulhplikohu Inverse zu a

31)
623 Infimm und Sypremin
In Zusammenhang mit der Ordnung führen wir einige Wichtige Definitionen ein:
Def 2.8. Set XCR eine Teilmenge (a) X ist nach oben beschränkt falls es CEIR gibt mit XCC XXEX.
Jeder derortige c'heisst ene obere schronke für X
(b) X ist nach unten beschränkt, falls es cell gibt mit x > c +x e x Jeder derartige c hersst eine untere Schränke for .X
(c) X ist beschränkt falls es nach oben und unten beschränkt ist
(d) Ein element a∈ X Tst ein moximales Element (oder Moximum) von X folls × ≤ a ∀x ∈ X (analog für ein Minimum)
Falls ein Meximundrespinnum) exishert wird es mit Mex X (Min X) bereichret Falls X beine obere schrönke hot, ist A
Falls & teine obere schrönke hot, ist to noch oben unbeschränkt (onolge for obere sch.)