	Assignment no 1	NAME: - NIHAR MUNIRATU.
		ID: - 2072857 email: - nommiraj@ depaul edu
1) a) f(n)=r And Let n	n-100 and g(n)=n-200. is first consider f(n) &	, g(n) as functions
$\Rightarrow f(n)$ $\Rightarrow g(n)$	n-100 and $g(n)=n-R00$. Is first consider $f(n)$, $g(n)=n-100$.	n-100=0(n-200)] Highs we get "f=0(g)">Bightheta
\Rightarrow After the by $f(n) =$	$i' = \theta(n)$. The observation of two functions of two functions $\theta(n) = n^{1/3}$. The consider functions $\theta(n) = n^{1/3}$. $\theta(n) = n^{1/3}$. $\theta(n) = \theta(n)$.	. $n-100=9(n-2)$. $n-100=9(n-2)$. $f=0(g)$ f
V	1/2	
=>gl -> Alter	(n) = Q(n ² 3). the observation of difference	vence b/w the powers when you get "f=Olg)" > Big 0.
6) f(n) =	$ g(n) \Rightarrow g(n)$	$gn)^{2}$ $=n+(lgn)^{2}$ $=\theta(n,lgn^{2})$
= 1.11		the fin me get f = O(g) BigTheta
	(

②
$$f(n) = n \cdot lg n$$
 and $g(n) = 10n \cdot lg(10n)$.

⇒ $f(n) = n \cdot lg n$ similarly $g(n) = 10 \cdot nlg(10n)$.

⇒ $f(n) = \theta(r \cdot lg n)$ similarly $g(n) = 10 \cdot nlg(10n)$.

∴ $10n + (lg(10) + lug n)$ ⇒ $10n \cdot lug n$ ⇒ $10n \cdot lug n$

Hence &= ag" => Big Omega

 $\mathcal{L}_{0.1} = \Omega \text{ whom's}$

f(n)=3(n0.1).

h)
$$f(n) = \sqrt{n}$$
 & $g(n) = (\lg n)^3$
 $\Rightarrow f(n) = \sqrt{n}$ Similary $\Rightarrow g(n) = (\lg n)^3$
 $\Rightarrow f(n) = \sqrt{n}$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$

i) $f(n)$ is more better than $g(n) = 6ig 0 meg a^n f = 0(g)^n$

i) $f(n) = n2^n$ and $g(n) = 3^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$ Similarly $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$
 $\Rightarrow f(n) = n2^n$
 $\Rightarrow f(n) = n2^n$
 $\Rightarrow f(n) = n2^n$
 $\Rightarrow g(n) = 6ig 0 meg a^n f = 0(g)^n$
 $\Rightarrow f(n) = n2^n$
 \Rightarrow

The two arrays are been sorted in a way to search and keep the track of both the iterations for the collections of X for Nuts [1...n] and Similary for Bolts [1...n]. => To Calculate the two souted aways lets us consider a, b where we first try to find the similar identical numbers in both Next we try to check if nuts y Bolts, then we'll check the Smaller number of the army weather if it is Nuts. if it is the Doll will income and will income Bolts will increase and it becomes bigger and we can compare and check the Loop and stopatiful it is True. I Next we have to check the Overlap condition because of the time taken it neight or might not match of doops to be used. => We get to know x for Nuts is smaller then we again inonement to mater y for bolds and check the range of the Integers. to match the size of Both Nuts & Both at a Certain Point. Ksucdocode:a, be- 1; while a < n and b < n do. if Nuts [x] = Botts[y] then. return true; else if Nuts [x] > Bolts [y] then y = y + ix= x+1; end return False;

3) Assuming that the A is souted has an array of two containers

(A[], ar_size, sum). Initalizing the fize of the two vivid index variables to find the canadate x &y in the souted Though are two ways to wolve the test most index: 1=0 and . Initializing the second element to the rightmost index: -> After considering this loop we have to send it one more Loop where LKY. Lets us take three conditions. if (A[1] +A[r]=sum) then we can return true. Else if (A[1]+ A[r]<8mm) then increment l++. Here me can decrement If the containers in the entire armay is return to 0 then the time complexity O(N) is traversing the entire array once and 36) The complexity is reduced to $O(n^2)$ for worting the array first and then using the sorted array as the input. => As me insert the element A[i] from where i is O to the size of -2. After using the 3 sum way of using the first element of triplets, me find the other two elements. using the sorting of the armay.

```
bool fond 3 Numbers (int A[], int arcsize, intsum)
seudocode:
      intl, r; l'sort the elements.
      Sort (A, A+ OTT_Size);
      for (int i=0; i<<arr-size-2; i++)
       r=arr_size-1; // index of the last element.
       J=171.
      if (A[i] + A[i] + A[i] == sum).

{
printf (" 3 elements are /d, %d, %d", A[i]), A[i]),
        return tme;
     else if (ACiJ+A[l]+A[r]<8nm).
          [++;
              11. If we cannot find return Jalese.
        return False;
```

Yes, Pinocchio is right way to wolve this problem.

Since the array is souted to me thank to map integers

to the Hash function. As Told in the class the teash functions

can be used to find the solution for these kind of Problems. => By Using that function we will be able to find the averall
Time complexibity by avoiding the problem of collosion. => The two Integers are paired and are sent to to hash table. indivivally by using the two sum Augorithm methond, where API... It is stored in hash Table as specified in class.

=> Hence both the size of an Array is been checked for each paid.

by using the methord we will be able to find weather the army takes O(n) time.

Pscudocode:

for j<1 ton do.

1000-A[j]; if in A[1...j] then return true; end; else return false;