Automorphisms of C^* -algebras and von Neumann algebras

Soumyashant Nayak

University of Pennsylvania, Philadelphia

1 April , 2014

If α is an automorphisms of a C^* -algebra $\mathfrak A$ acting on a Hilbert space and α is weak-operator bicontinuous on the unit ball of $\mathfrak A$ (i.e. α is ultra-weakly bicontinuous on $\mathfrak A$) then α has an extension $\bar{\alpha}$ which is an automorphism of $\mathfrak A^-$, $\bar{\alpha}$ is ultra-weakly bicontinuous on $\mathfrak A^-$, and $\|\bar{\alpha} - \iota\| = \|\alpha - \iota\|$.

*-representations of self-adjoint operator algebras which have no unitarily equivalent non-zero subrepresentations are called *disjoint representations*

Lemma 2

if $\{\phi_{\alpha}\}$ are *-representations of the self-adjoint operator algebra $\mathfrak A$ then $\{\phi_{\alpha}\}$ consists of mutually disjoint representations if and only if $\phi(\mathfrak A)^- = \bigoplus (\phi_{\alpha}(\mathfrak A)^-)$, where $\phi = \bigoplus \phi_{\alpha}$.

If α is an automorphism of a C^* -algebra $\mathfrak A$ acting on a Hilbert space, and $\|\alpha - \iota\| < 2$, then α extends to an automorphism $\bar{\alpha}$ of $\mathfrak A^-$, leaving each element of the center of $\mathfrak A^-$ fixed, such that $\|\bar{\alpha} - \iota\| = \|\alpha - \iota\|$.

With E' a projection in \mathfrak{A}' , and ϕ defined by $\phi(A) = \alpha(A)E'$, for $A \in \mathfrak{A}$, $(\phi \bigoplus \iota)(\mathfrak{A})$ acting on $E'(\mathscr{H}) \bigoplus \mathscr{H}$ does not have strong-operator closure $\phi(\mathfrak{A})^- \bigoplus \mathfrak{A}^-$.

Let α be an inner automorphism of a von Neumann algebra \mathscr{R} , for which $\|\alpha-\iota\|<2$. Then there is a unitary operator U in \mathscr{R} , with spectrum $\sigma(U)$ in the half-plane $\{z: \operatorname{Re} z \geq \frac{1}{2}(4-\|\alpha-\iota\|^2)^{\frac{1}{2}}\}$, such that $\alpha(U)=UAU^*$ for all A in \mathscr{R} .

Step 1: Prove the result when $\mathscr{R}=\mathscr{M}_n$, the space of all operators on an n-dimensional Hilbert space, n being an integer. This involves proving that the convex hull of the eigenvalues of U is at a distance atleast $\frac{1}{2}(4-\|\alpha-\iota\|^2)^{\frac{1}{2}}$ from the origin.

Step 2: For any k such that $0 < k < \frac{1}{2}(4 - \|\alpha - \iota\|^2)^{\frac{1}{2}}$, prove that there is a U implementing α such that $\sigma(U)$ is in the half-plane $\{z : \operatorname{Re}z \geq k\}$. This is achieved by suitably approximating U by linear combinations of its spectral projections and appealing to Step 1. (Proof by contradiction) Step 3: Use a limiting argument to construct U satisfying the required properties in the theorem.

For $a \in [0, \frac{1}{2}\pi)$, define $S_a = \{\exp it : -a \le t \le a\}$. Let b be such that $2\sin b = \|\alpha - \iota\|$. Choose real numbers c, δ such that $b < c < \frac{1}{2}\pi$ and $0 < \delta < \frac{1}{2}\cos c$, and let $\epsilon_n = (c-b)(1-\delta)^{n-1}$.

Let E and F be spectral projections for U_n corresponding to the Borel sets $\{e^{it}: b+(1-2\delta)\epsilon_n \leq t \leq b+\epsilon_n\}, \{e^{it}: -b-\epsilon_n \leq t \leq -b-(1-2\delta)\epsilon_n\}.$

 $C_E C_F = 0$ and thus, there is a central projection $Q \in \mathcal{R}$ such that $E \leq Q$ and $F \leq I - Q$.

The unitary operator $U_{n+1}:=\{e^{-i\delta\epsilon_n}Q+e^{i\delta\epsilon_n}(I-Q)\}U_n$ has spectrum in $S_{b+\epsilon_{n+1}}$ and implements the automorphism.

Definition:

An automorphism α of a C^* -algebra $\mathfrak A$ acting on a Hilbert space $\mathscr H$ is said to be:

- (i) **extendable** if there is an automorphism of the weak-operator closure of $\mathfrak A$ equal to it on $\mathfrak A$.
- (ii) **spatial** if there is a unitary operator U on \mathscr{H} such that $\alpha(A) = UAU^*$ for each $A \in \mathfrak{A}$.
- (iii) weakly-inner if it is spatial and U can be chosen in the weak-operator closure of \mathfrak{A} .

If ϕ is a faithful representation of $\mathfrak A$ on a Hilbert space, $\epsilon_{\phi}(\mathfrak A)$, $\sigma_{\phi}(\mathfrak A)$, and $\iota_{\phi}(\mathfrak A)$, denote the groups of those elements α of the automorphism group of $\mathfrak A$ for which $\phi\alpha\phi^{-1}$ is extendable, spatial, and weakly-inner, respectively.

 $\pi(\mathfrak{A})$ denotes the intersection of all the subgroups $\iota_{\phi}(\mathfrak{A})$ and refer to its elements as *permanently weakly* (for brevity, $\pi-$) *inner* automorphisms of \mathfrak{A} .

If $t \to \alpha(t)$ is a norm-continuous one-parameter group of automorphisms of a C^* -algebra $\mathfrak A$ acting on a Hilbert space $\mathscr H$ then each $\alpha(t)$ is weakly-inner.

 $\alpha(t)[AB] = AB + t\delta(AB) + O(t^2) = \alpha(t)[A]\beta(t)[B] = AB + t(A\delta(B) + \delta(A)B) + O(t^2)$. Thus δ , the generator of the one-parameter group is a derivation.

By the Derivation Theorem, we have that $\delta=\operatorname{ad} iA|\mathfrak{A}$ with $A\in\mathfrak{A}^-$ (and $A=A^*$ as $\delta(B^*)=\delta(B)^*$).

 $\alpha(t)[B] = U_t B U_{-t}$, with $U_t (= \exp itA)$ a unitary operator in \mathfrak{A}^- .

If $\mathfrak A$ is a C^* -algebra and U a unitary operator acting on a Hilbert space $\mathscr H$ such that $\alpha(A)=UAU^*$ lies in $\mathfrak A$ for all A in $\mathfrak A$ and $\mathrm{Re} a>0$ for each a in $\sigma(U)$, then α lies on a norm-continuous one-parameter subgroup of $\alpha(\mathfrak A)$ and is π -inner.

Let $\bar{\alpha}$ be the extension of α to $\mathcal{B}(\mathcal{H})$ defined by $\bar{\alpha}(B) = UBU^*$. We may choose H self-adjoint with $\sigma(H)$ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $U = \exp iH$. Then, $\bar{\alpha} = \exp(i\mathrm{ad}H)$.

ad iH has spectrum in $\{it : |t| \le r\}$, where $2||H|| = r < \pi$, by choice of H. Thus, $\bar{\alpha}$ has spectrum in $\{\exp it : |t| \le r\}$.

 $\bar{\alpha}^s = \exp(\operatorname{ad} \mathit{isH})$ is an automorphism of $\mathcal{B}(\mathscr{H})$, for all real s.

$$\bar{\alpha}^s = \frac{1}{2\pi i} \int_C g_s(z) (z - \bar{\alpha})^{-1} dz$$

so that $\bar{\alpha}^s$ leaves $\mathfrak A$ invariant. (use Runge's theorem to approximate $(z_0-z)^{-1}$ by polynomials where $z_0\in\mathcal C$)

Theorem 7

If α is an automorphism of a C*-algebra $\mathfrak A$ and $\|\alpha-\iota\|<2$, then α lies on a norm-continuous one-parameter subgroup of $\alpha(\mathfrak A)$. Such subgroups generate $\gamma(\mathfrak A)$, the connected component of ι in $\alpha(\mathfrak A)$ with its norm topology, as a group; and $\gamma(\mathfrak A)$ is an open subgroup of $\alpha(\mathfrak A)$. Each element of $\gamma(\mathfrak A)$ is π -inner.

Pass to the reduced atomic representation of \mathfrak{A} . \mathfrak{A}^- is a type I von Neumann algebra. $\bar{\alpha}$ is a *-automorphism which preserves the center and hence is implemented by a unitary in \mathfrak{A}^- . Use previous theorems to conclude that α lies on a norm-continuous one-parameter subgroup of $\alpha(\mathfrak{A})$.

Corollary 8

Each norm-continuous representation of a connected topological group by automorphisms of a C^* -algebra has range consisting of π -inner automorphisms.

Corollary 9

If $\mathfrak A$ is a C^* -algebra which has a faithful representation φ as a von Neumann algebra then $\iota_0(\mathfrak A)=\gamma(\mathfrak A)=\iota_\varphi(\mathfrak A)$; and each element of $\gamma(\mathfrak A)$ lies on some norm-continuous one-parameterr subgroup of $\alpha(\mathfrak A)$.

Let $\mathfrak A$ be a C^* -algebra, φ a faithful representation of $\mathfrak A$.

Then $\gamma(\mathfrak{A}) \subseteq \pi(\mathfrak{A}) \subseteq \iota_{\varphi}(\mathfrak{A}) \subseteq \sigma_{\varphi}(\mathfrak{A}) \subseteq \epsilon_{\varphi}(\mathfrak{A}) \subseteq \alpha(\mathfrak{A})$. Thus each of the above groups contains the open ball, with center ι and radius 2, in $\alpha(\mathfrak{A})$. Each of these groups is open, hence closed, and the quotient of any of them by a smaller one is discrete.

The subgroups $\gamma(\mathfrak{A}), \pi(\mathfrak{A}), \iota_0(\mathfrak{A})$ of $\alpha(\mathfrak{A})$ are normal.

□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 釣魚◎

Let $\mathfrak{A}:=C(X)\otimes \mathscr{M}_n$, where X is a compact Hausdorff space and \mathscr{M}_n is the algebra of $n\times n$ complex matrices. The center \mathscr{C} of \mathfrak{A} is the set of matrices whose only non-zero entries consist of a single A in C(X) and as continuous functions on X with values in \mathscr{M}_n .

 $\pi(\mathfrak{A})$ consists of precisely those automorphisms of \mathfrak{A} which leave each element of \mathscr{C} fixed.

With $\alpha \in \pi(\mathfrak{A})$ and ρ a point of X, a homomorphism φ_{ρ} of $C(X) \otimes \mathcal{M}_n$ onto \mathcal{M}_n is determined by $\varphi_{\rho}(A \otimes B) = \rho(A)B$.

Define $\alpha(\rho)(B) := \varphi_{\rho}(\alpha(I \otimes B))$. Then $\alpha(\rho)$ is an isomorphism of \mathcal{M}_n into \mathcal{M}_n . $\rho \to \alpha(\rho)$ is norm-continuous. Conversely, a norm-continuous map $\rho \to \alpha(\rho)$ from X to $\alpha(\mathcal{M}_n)$ gives rise to an element of $\pi(\mathfrak{A})$.

The correspondence between elements of $\pi(\mathfrak{A})$ and continuous mappings of X into $\alpha(\mathcal{M}_n)$ is a group isomorphism when this second set is provided with pointwise multiplication through the group structure of $\alpha(\mathcal{M}_n)$.

 $\alpha(\mathcal{M}_n) \approx U(n)/T_1$, where U(n) is the group of unitary operators in \mathcal{M}_n and T_1 is the circle group.

Theorem 10 (Covering Homotopy Theorem)

Let \mathscr{B}' be a bundle over X'. Let X be a C_{σ} space (any covering has a countable subcovering), let $f_0: X \to B'$ be a map, and let $\overline{f}: X \times I \to X'$ be a homotopy of $p'f_0 = \overline{f_0}$. Then there is a homotopy $f: X \times I \to B'$ of f_0 covering \overline{f} (i.e. $p'f = \overline{f_0}$), and f is stationary with f.

- $\gamma(\mathfrak{A}) \subseteq \iota_0(\mathfrak{A}) \subseteq \pi(\mathfrak{A}).$
- $\pi(\mathfrak{A})/\gamma(\mathfrak{A})$ is the group of homotopy classes of mappings of X into $U(n)/T_1$.
- $\iota_0(\mathfrak{A})/\gamma(\mathfrak{A})$ is the group of homotopy of classes of mappings of X into $U(n)/T_1$ which can be lifted to U(n).

If X is contractible, then each continuous map of X is homotopic to a constant mapping. Thus $\gamma(\mathfrak{A}) = \iota_0(\mathfrak{A}) = \pi(\mathfrak{A})$.

If $X = U(n)/T_1$, then $\gamma(\mathfrak{A}) \subsetneq \iota_0(\mathfrak{A}) \subsetneq \pi(\mathfrak{A})$.

 $\iota_0(\mathfrak{A}) \subsetneq \pi(\mathfrak{A})$ as $\pi_1(U(n)/T_1) \approx \mathbb{Z}_n$ has torsion but $\pi_1(U(n)) \approx \mathbb{Z}$ has no torsion. Thus, the identity map from $U(n)/T_1$ to itself has no lifting to U(n).

 $\gamma(\mathfrak{A}) \subsetneq \iota_0(\mathfrak{A})$ as $p \circ i \circ r$ is not nulhomotopic where

 $U(n)/T_1 \approx SU(n)/\mathbb{Z}_n \xrightarrow{r} SU(n) \xrightarrow{i} U(n) \xrightarrow{p} U(n)/T_1$, r being the map that takes $U\mathbb{Z}_n$ to U^n , i being the inclusion map and p being the projection map.

References:

- Derivations and Automorphisms of C*-algebras Richard V. Kadison, John R. Ringrose, Comm. Math. Phys. Volume 4, Number 1 (1967), 1-76.
- Unitary Operators in C*-algebras. James Glimm, Richard Kadison, Pacific J. Math 10, 547-556 (1960).
- Unitary invariants for representations of operator algebras. Richard Kadison, Ann. of Math. 66, 304-379 (1957)
- The Topology of Fibre Bundles Norman Steenrod