HEP NTUA Weekly Report

12/1/2022

George Bakas

Summary

- ttX analysis:
 - We are writing the AN:
 - 1. Basic outline along with text
 - 2. Input all images that are needed for the analysis
 - 3. Appendices that include
 - Response matrices, efficiencies, acceptance, purity and stability per year
 - Fiducial Measurements per year
 - Systematic uncertainties breakdown per year
 - Closure tests
 - Problem with $\cos\theta^*$ (leading and subleading jet) responses matrices
 - Not diagonal because we were looking into [-1,1] region
 - Switch to |cosθ*|
 - Using binning that ATLAS also used
 - Unfolded results (Parton & Particle Phase space)
 - JES uncertainties not included while ht condor is down
 - ArdEnvino
 - We need more BME280 sensors
 - System is built only to run on these sensors
 - Hardware looks ok, we need to find dynamic way to set MAC address of the Arduino Ethernet shield

Contents

1 Introduction		Introd	uction	
	2	Sample	es	
		2.1	Data	
		2.2	Simulation	
	3	Trigge	r	
	4	Recons	strunction and Selection	1
		4.1	Object Reconstruction	1
		4.2	Selection	1
		4.3	Multivariate Discriminant	1
		4.4	Parton level	1
		4.5	Particle level	1
	5	Signal	Extraction	
		5.1	Inclusive cross section	1
		5.2	Differential cross sections	
	6		s Monte Carlo	
	7	Fiducial Measurement		
	8		natic Uncertainties	
	9		nation of different years	
	-			
	10	Unfold	led Measurement	
		10.1	Parton Level	5
		10.2	Particle Level	5

Response Matrices with old binning

Response Matrices with new binning

Final Results Parton

Final Results Parton

Final Results Particle

Final Results Particle

BACKUP

Summary

- ttX analysis Pipeline Creation
 - 1. We want to be able to handle all Nominal files and their variations in an automated way
 - This requires deciding consistent naming conventions and a efficient planning
 - 3. Handling of:
 - 1. Nominal
 - 2. Parton Shower Weights
 - PDF Variations
 - 4. JES
 - 5. Scale Variations
 - 6. bTagVariations
 - 7. Top quark mass variations
 - 4. Per year For all these we need to
 - 1. Create template files that have 2btag and 0btag in Extended and Reduced jetMassSoftDrop phase space
 - 2. 9 variables (mJJ, pTJJ, yJJ, jetPt[0,1], jetY[0,1], chi, |cosTheta*|[0,1]
 - 3. Template fit files (bkg qcd, bkg subdominant) and signal templates for all variations
 - 4. Fit on extended signal region for all variations

- 5. Response matrices, Acceptance, Efficiency
- 6. Signal Extraction
- Combine all Fiducial Level results (4 years) into 1 Extracted Signal for all variations
- 6. Unfold the combined result into Parton & Particle levels
- 7. Show systematic variations compared to the Nominal file
- 8. The same procedure must be done using different nominal files
 - 1. Fill in 2btag histograms in our signal region in the parton
 - 2. For each variation and each year
 - 3. Combine all years together
 - 4. Calculate systematics for samples other than the nominal

Brazilian Plots (2016_preVFP, 2017 and 2018) with sliding mJJ Cut

2016_preVFP 2017

Combined Datacard for 2016 preVFP, 2017 and 2018

Mass Cut Mapping

```
{"mZ_1200_12":1000, "mZ_1400_14":1200, "mZ_1600_16":1400, "mZ_1800_18":1600, "mZ_2000_20":1600, "mZ_2500_25":2000, "mZ_3000_30":2000, "mZ_3500_35":2000, "mZ_4000_40":2000, "mZ_4500_45":2000}
```


Brazilian Plots (2016 preVFP, 2017 and 2018) with sliding mJJ Cut wrt 2018

2016_preVFP 2017

Combined Datacard for 2016 preVFP, 2017 and 2018 wrt 2018

Mass Cut Mapping

```
{"mZ_1200_12":1000, "mZ_1400_14":1200, "mZ_1600_16":1400, "mZ_1800_18":1600, "mZ_2000_20":1600, "mZ_2500_25":2000, "mZ_3000_30":2000, "mZ_3500_35":2000, "mZ_4000_40":2000, "mZ_4500_45":2000}
```


