FRA231: Robotics Modelling & Experimentation (RMX)

By Bantoon Srisuwan

Lecture 11: Actuator 3

Lecture Contents

- 1. Introduction to Brushless DC Motors
- 2. Comparison with Traditional DC Motors
- 3. Types and Components
- 4. Working Principles
- 5. Rotor Position Sensing Methods
- 6. Speed Control Systems
- 7. Motor Characteristics and Applications

Lecture Objectives

By the end of this lecture, students will be able to:

- 1. Understand the fundamental principles of Brushless DC Motors
- 2. Differentiate between BLDC and traditional DC motors
- 3. Identify key components and types of BLDC motors
- 4. Comprehend the working principle and control methods
- 5. Analyze motor characteristics for different applications

Brushless DC Motor

What is Brushless DC Motor?

Why Brushless?

Brushless DC Motor

Brushless DC Motor – Types and Components

Outrunner vs Inrunner Brushless DC Motor

Outrunner BLDC

6 Exploded view of BLDC motor | Download Scientific Diagram

- higher torque
- lower speed
- bad heat dissipation

Inrunner BLDC

DC Motors: Intro to Servos, BLDC motors, Steppers & More | Circuit Crush

- lower torque
- higher speed
- good heat dissipation

Brushless DC Motor – Working principle

Rotor magnet and pole pairs

1. Basic Operation:

- Electronic commutation replaces mechanical commutation
 - Permanent magnets on rotor
 - Electromagnets on stator
 - Sequential energizing of stator coils

https://www.electricaleasy.com/2015/05/brushless-dc-bldc-motor.html

Brushless DC Motor – Working principle

Coil exciting sequences concept

2. Commutation Sequence:

- Six-step commutation
- 120° electrical spacing
- Proper timing for smooth rotation
- Phase energizing patterns

http://fab.academany.org/2020/labs/charlotte/students/sophia-vona/assignments/week12/

Brushless DC Motor – Working principle

Coil exciting sequences using a electrical switch

Hall effect sensor

- Working principle
 - Placement (120° apart)
 - Signal interpretation
 - Advantages and limitations

Hall effect sensor

Brushless DC Motor – Hall Sensors Wiring

Connection motor (Cable AWG 20)		
red	Motor winding 1	Pin 1
black	Motor winding 2	Pin 2
white	Motor winding 3	Pin 3
	N.C.	Pin 4
Connector	Part number	
Molex	39-01-2040	
Connection sensors (Cable AWG 26)		
yellow	Hall sensor 1	Pin 1
brown	Hall sensor 2	Pin 2
grey	Hall sensor 3	Pin 3
blue	GND	Pin 4
green	V _{Hall} 324 VDC	Pin 5
9	N.C.	Pin 6

Back EMF sensing (Trapezoidal)

- Sensorless operation
- Zero crossing detection
- Implementation challenges
- Advantages in cost and reliability

Zero crossing detection in back EMF signal

Zero crossing detection in back EMF signal

Zero crossing detection in back EMF signal

Brushless DC Motor – Speed controller

ESC (Electronics Speed Controller)

- 1. Components:
 - Microcontroller
 - Power MOSFETS
 - Current sensors
 - Signal processing circuits

- 2. Functions:
 - PWM generation
 - Current limiting
 - Temperature monitoring
 - Fault protection
 - Speed regulation

Brushless DC Motor – Speed controller

ESC (Electronics Speed Controller)

ELECTRONICS SPEED CONTROLLER

Brushless DC Motor – Speed controller

ESC (Electronics Speed Controller)

https://grauonline.de/wordpress/?page_id=3122

Brushless DC Motor – Rotor VS Stator Pole Pairs

Brushless DC Motor – Rotor VS Stator Pole Pairs

Brushless DC Motor – Torque Control

- 1. PWM (Pulse Width Modulation)
 - Easy to implement
 - Less Processing
 - Trapezoidal EMF
 - Suitable for not precise dynamic control
 - fans, pumps

- 2. FOC (Field Oriented Control)
 - Sinusoidal control signals
 - More Processing Power
 - Very Precise
 - Robotics, CNC

Brushless DC Motor – Torque Control

PWM (Pulse Width Modulation)

Brushless DC Motor – Torque Control

FOC (Field Oriented Control)

180°

Brushless DC Motor – Motor characteristics

EC-i 30 Ø30 mm brushless, 20 watt, with integrated electronics

Brushless DC Motor – Motor characteristics

ECX SPEED 16 M Ø16 mm, brushless, BLDC motor

Key Data: 20/26 W, 5.1 mNm, 55 000 rpm

Brushless DC Motor – Motor characteristics

Comparing with Brushed DC Motor

RE 25 Ø25 mm, graphite brushes, 20 watt

Brushless DC Motor – Comparison

Comparison of BLDC vs DC motor

- 1. Advantages of BLDC Motors:
 - Higher efficiency (90-95%)
 - Better speed-torque characteristics
 - Longer lifespan (no brush wear)
 - Lower maintenance
 - Better heat dissipation
 - Higher speed capability
 - Lower electromagnetic interference

- 2. Disadvantages:
 - Higher initial cost
 - More complex control system
 - Requires electronic commutation
 - More sophisticated driver circuits

Pneumatic and Hydraulic Systems

Fluid Power Systems: Use fluids to transmit force and motion

Pneumatic and Hydraulic Systems

- Fluid Power Systems: Use fluids to transmit force and motion
- Pneumatic Systems: Use compressed air or gas
- Hydraulic Systems: Use incompressible liquids (usually oil)

Both systems convert fluid pressure into mechanical force

Pneumatic: Working Principle

- Air is compressed in a compressor
- Compressed air is stored in receiver tank
- Air pressure typically ranges from 30-150 psi
- Force is transmitted through pipes and tubes
- Actuators convert air pressure to mechanical motion

Pneumatic: Component

Pneumatic: Actuator

Pneumatic: Applications

- Manufacturing assembly lines
- Pneumatic tools (nail guns, drills)
- Automated packaging machines
- Door systems (buses, trains)
- Dental and medical equipment
- Robot end effectors

Hydraulic: Working Principle

- Liquid is pressurized by a pump
- Pressure can reach several thousand psi
- Incompressible fluid transfers force effectively
- Higher pressure yields greater force output
 ***Normal hydraulic pressure is between 3,000 and 4,000 PSI
- Energy is transmitted through hydraulic circuits

Hydraulic: Component

https://www.shutterstock.com/image-vector/basic-hydraulic-system-explanatory-diagram-operation-1098736073

Hydraulic: Actuator

Hydraulic: Applications

- Construction equipment (excavators, cranes)
- Vehicle systems (brakes, power steering)
- Industrial machinery
- Aircraft control systems
- Elevators and lifts
- Metal forming machines

Pneumatic VS Hydraulic - Advantage

- **Pneumatic Systems**
- Clean and safe
- Low cost
- Simple maintenance
- Air is freely available
- No fluid leakage concerns

- **Hydraulic Systems**
- Higher force output
- More precise control
- Self-lubricating
- Smooth operation
- Better power density

Pneumatic VS Hydraulic - Limitations

- **Pneumatic Systems**
- Less precise control
- Lower force output
- Air compression losses
- Noisy operation
- Moisture concerns

- **Hydraulic Systems**
- Higher cost
- Risk of fluid leaks
- Regular fluid maintenance
- More complex system
- Temperature sensitivity