Notebook

June 20, 2025

1 Brain Tumor Classification with a Convolutional Neural Network

1.1 1. Import Necessary Libraries

```
[52]: import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import visualkeras
import os
import random
import warnings
warnings.filterwarnings("ignore")
```

1.2 2. Set Global Parameters

```
[4]: # Model Training
IMAGE_SIZE = (150, 150)
BATCH_SIZE = 32
EPOCHS = 40
NUM_CLASSES = 4

# Setting seed for consistent results
SEED = 42
tf.keras.utils.set_random_seed(SEED)
tf.random.set_seed(SEED)
np.random.seed(SEED)
```

1.3 3. Load and Preprocess Data

```
[7]: # Load Training and Testing Data
os.environ['DATA_PATH'] = './data'
train_dir = os.path.join(os.environ['DATA_PATH'], 'Training')
test_dir = os.path.join(os.environ['DATA_PATH'], 'Testing')
```

```
[54]: # Preprocess Data
      train_ds = tf.keras.utils.image_dataset_from_directory(
              train_dir,
              validation_split=0.2,
              subset="training",
              seed=SEED,
              image_size=IMAGE_SIZE,
              batch_size=BATCH_SIZE,
              label_mode='categorical'
          )
      val_ds = tf.keras.utils.image_dataset_from_directory(
              train_dir,
              validation_split=0.2,
              subset="validation",
              seed=SEED,
              image_size=IMAGE_SIZE,
              batch_size=BATCH_SIZE,
              label_mode='categorical'
          )
      test_ds = tf.keras.utils.image_dataset_from_directory(
              test_dir,
              seed=SEED,
              image_size=IMAGE_SIZE,
              batch size=16,
              label_mode='categorical'
          )
      # Pull Class Names for Sample Images/Visualizations
      class_names = train_ds.class_names
      def normalize(image, label):
              # Convert to float32 and normalize
              image = tf.cast(image, tf.float32) / 255.0
              return image, label
      # Apply Normalization
      train_ds = train_ds.map(normalize, num_parallel_calls=tf.data.AUTOTUNE)
      val_ds = val_ds.map(normalize, num_parallel_calls=tf.data.AUTOTUNE)
      test_ds = test_ds.map(normalize, num_parallel_calls=tf.data.AUTOTUNE)
     Found 5712 files belonging to 4 classes.
     Using 4570 files for training.
     Found 5712 files belonging to 4 classes.
```

Using 1142 files for validation.

Found 1311 files belonging to 4 classes.

```
[11]: imgs, labs = next(iter(test_ds))
label_ids = np.argmax(labs, axis=1)

# Sample Images
plt.figure(figsize=(8,8))
for i in range(9):
    ax = plt.subplot(3,3,i+1)
    plt.imshow(imgs[i].numpy())
    plt.title(class_names[label_ids[i]])
    plt.axis("on")
plt.tight_layout()
plt.show()
```


1.4 4. Build Model

```
[14]: model = tf.keras.Sequential([
              # Input layer
              tf.keras.layers.Input(shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3)),
              # Convolutional layer 1
              tf.keras.layers.Conv2D(32, (4, 4), activation="relu"),
              tf.keras.layers.BatchNormalization(),
              tf.keras.layers.MaxPooling2D(pool_size=(3, 3)),
              tf.keras.layers.Dropout(0.25),
              # Convolutional layer 2
              tf.keras.layers.Conv2D(64, (4, 4), activation="relu"),
              tf.keras.layers.BatchNormalization(),
              tf.keras.layers.MaxPooling2D(pool_size=(3, 3)),
              tf.keras.layers.Dropout(0.25),
              # Convolutional layer 3
              tf.keras.layers.Conv2D(128, (4, 4), activation="relu"),
              tf.keras.layers.BatchNormalization(),
              tf.keras.layers.MaxPooling2D(pool_size=(3, 3)),
              tf.keras.layers.Dropout(0.25),
              # Convolutional layer 4
              tf.keras.layers.Conv2D(128, (4, 4), activation="relu"),
              tf.keras.layers.BatchNormalization(),
              tf.keras.layers.Flatten(),
              tf.keras.layers.Dropout(0.4),
              # Full connect layers
              tf.keras.layers.Dense(512, activation="relu",
                                  kernel_regularizer=tf.keras.regularizers.12(0.01)),
              tf.keras.layers.BatchNormalization(),
              tf.keras.layers.Dropout(0.5),
              tf.keras.layers.Dense(NUM_CLASSES, activation="softmax")
          ])
[16]: # Model Compilation
      model.compile(
          optimizer=tf.keras.optimizers.Adam(
              learning_rate=0.0005,
              beta_1=0.9,
              beta_2=0.999
```

```
),
    loss='categorical_crossentropy',
    metrics=['accuracy', tf.keras.metrics.AUC(name='auc'), 'precision',
    'recall']
)
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 147, 147, 32)	1,568
batch_normalization (BatchNormalization)	(None, 147, 147, 32)	128
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 49, 49, 32)	0
dropout (Dropout)	(None, 49, 49, 32)	0
conv2d_1 (Conv2D)	(None, 46, 46, 64)	32,832
<pre>batch_normalization_1 (BatchNormalization)</pre>	(None, 46, 46, 64)	256
<pre>max_pooling2d_1 (MaxPooling2D)</pre>	(None, 15, 15, 64)	0
dropout_1 (Dropout)	(None, 15, 15, 64)	0
conv2d_2 (Conv2D)	(None, 12, 12, 128)	131,200
<pre>batch_normalization_2 (BatchNormalization)</pre>	(None, 12, 12, 128)	512
<pre>max_pooling2d_2 (MaxPooling2D)</pre>	(None, 4, 4, 128)	0
dropout_2 (Dropout)	(None, 4, 4, 128)	0
conv2d_3 (Conv2D)	(None, 1, 1, 128)	262,272
<pre>batch_normalization_3 (BatchNormalization)</pre>	(None, 1, 1, 128)	512
flatten (Flatten)	(None, 128)	0

```
dropout_3 (Dropout)
                                  (None, 128)
                                                                        0
dense (Dense)
                                  (None, 512)
                                                                   66,048
                                  (None, 512)
                                                                    2,048
batch_normalization_4
(BatchNormalization)
dropout_4 (Dropout)
                                  (None, 512)
                                                                        0
dense_1 (Dense)
                                  (None, 4)
                                                                    2,052
```

Total params: 499,428 (1.91 MB)

Trainable params: 497,700 (1.90 MB)

Non-trainable params: 1,728 (6.75 KB)

```
[18]: # Visualize Model
visualkeras.layered_view(model, to_file='model_viz.png', legend=True)
```

[18]:

1.5 5. Train Model

```
[21]: # Create Callbacks
callbacks = [
    # Early Stopping
    tf.keras.callbacks.EarlyStopping(
        monitor='val_loss',
        min_delta=1e-4,
        patience=5,
        verbose=1,
        restore_best_weights=True
    ),
```

```
# Learning Rate Reduction
    tf.keras.callbacks.ReduceLROnPlateau(
        monitor='val_loss',
        factor=0.5,
        patience=5,
        min_lr=1e-6,
    )
1
# Train Model
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=EPOCHS,
    callbacks=callbacks
Epoch 1/40
143/143
                   28s 172ms/step -
accuracy: 0.4932 - auc: 0.7530 - loss: 3.3965 - precision: 0.5230 - recall:
0.4419 - val_accuracy: 0.4335 - val_auc: 0.5983 - val_loss: 4.2873 -
val_precision: 0.4422 - val_recall: 0.4291 - learning_rate: 5.0000e-04
Epoch 2/40
143/143
                   24s 167ms/step -
accuracy: 0.7125 - auc: 0.9052 - loss: 2.4002 - precision: 0.7354 - recall:
0.6754 - val_accuracy: 0.2644 - val_auc: 0.5665 - val_loss: 5.1575 -
val_precision: 0.2673 - val_recall: 0.2644 - learning_rate: 5.0000e-04
Epoch 3/40
143/143
                   24s 168ms/step -
accuracy: 0.7661 - auc: 0.9372 - loss: 1.9236 - precision: 0.7871 - recall:
0.7359 - val_accuracy: 0.5342 - val_auc: 0.7944 - val_loss: 2.6120 -
val_precision: 0.5536 - val_recall: 0.4974 - learning_rate: 5.0000e-04
Epoch 4/40
143/143
                   24s 167ms/step -
accuracy: 0.7858 - auc: 0.9483 - loss: 1.6173 - precision: 0.8042 - recall:
0.7643 - val_accuracy: 0.5902 - val_auc: 0.8236 - val_loss: 2.4681 -
val_precision: 0.6000 - val_recall: 0.5779 - learning_rate: 5.0000e-04
Epoch 5/40
143/143
                   24s 168ms/step -
accuracy: 0.8081 - auc: 0.9549 - loss: 1.3759 - precision: 0.8221 - recall:
0.7865 - val_accuracy: 0.7285 - val_auc: 0.9136 - val_loss: 1.5879 -
val_precision: 0.7377 - val_recall: 0.7119 - learning_rate: 5.0000e-04
Epoch 6/40
143/143
                   24s 168ms/step -
accuracy: 0.8272 - auc: 0.9609 - loss: 1.1838 - precision: 0.8423 - recall:
0.8107 - val_accuracy: 0.8039 - val_auc: 0.9529 - val_loss: 1.1597 -
```

```
val_precision: 0.8181 - val_recall: 0.7758 - learning_rate: 5.0000e-04
Epoch 7/40
143/143
                   24s 167ms/step -
accuracy: 0.8474 - auc: 0.9691 - loss: 0.9960 - precision: 0.8614 - recall:
0.8320 - val accuracy: 0.8634 - val auc: 0.9764 - val loss: 0.8669 -
val_precision: 0.8735 - val_recall: 0.8529 - learning_rate: 5.0000e-04
Epoch 8/40
143/143
                   24s 167ms/step -
accuracy: 0.8474 - auc: 0.9704 - loss: 0.8911 - precision: 0.8591 - recall:
0.8384 - val_accuracy: 0.6515 - val_auc: 0.8394 - val_loss: 2.2720 -
val_precision: 0.6564 - val_recall: 0.6506 - learning_rate: 5.0000e-04
Epoch 9/40
143/143
                   24s 170ms/step -
accuracy: 0.8722 - auc: 0.9783 - loss: 0.7379 - precision: 0.8824 - recall:
0.8623 - val_accuracy: 0.6865 - val_auc: 0.8922 - val_loss: 1.2605 -
val_precision: 0.7117 - val_recall: 0.6594 - learning_rate: 5.0000e-04
Epoch 10/40
143/143
                   24s 167ms/step -
accuracy: 0.8805 - auc: 0.9797 - loss: 0.6587 - precision: 0.8889 - recall:
0.8710 - val accuracy: 0.8240 - val auc: 0.9682 - val loss: 0.7687 -
val_precision: 0.8320 - val_recall: 0.8152 - learning_rate: 5.0000e-04
Epoch 11/40
143/143
                   24s 167ms/step -
accuracy: 0.8914 - auc: 0.9841 - loss: 0.5647 - precision: 0.8987 - recall:
0.8833 - val_accuracy: 0.8599 - val_auc: 0.9760 - val_loss: 0.6017 -
val_precision: 0.8707 - val_recall: 0.8494 - learning_rate: 5.0000e-04
Epoch 12/40
143/143
                   24s 166ms/step -
accuracy: 0.8975 - auc: 0.9861 - loss: 0.4997 - precision: 0.9075 - recall:
0.8904 - val_accuracy: 0.7916 - val_auc: 0.9551 - val_loss: 0.7371 -
val_precision: 0.8122 - val_recall: 0.7802 - learning_rate: 5.0000e-04
Epoch 13/40
143/143
                   24s 167ms/step -
accuracy: 0.8973 - auc: 0.9864 - loss: 0.4678 - precision: 0.9042 - recall:
0.8909 - val accuracy: 0.9028 - val auc: 0.9825 - val loss: 0.4780 -
val_precision: 0.9093 - val_recall: 0.8870 - learning_rate: 5.0000e-04
Epoch 14/40
143/143
                   24s 166ms/step -
accuracy: 0.9074 - auc: 0.9880 - loss: 0.4146 - precision: 0.9127 - recall:
0.9037 - val_accuracy: 0.8363 - val_auc: 0.9695 - val_loss: 0.5919 -
val_precision: 0.8404 - val_recall: 0.8301 - learning_rate: 5.0000e-04
Epoch 15/40
143/143
                   24s 167ms/step -
accuracy: 0.9257 - auc: 0.9906 - loss: 0.3584 - precision: 0.9285 - recall:
0.9198 - val_accuracy: 0.8468 - val_auc: 0.9721 - val_loss: 0.5647 -
val_precision: 0.8599 - val_recall: 0.8327 - learning_rate: 5.0000e-04
Epoch 16/40
143/143
                   24s 166ms/step -
```

```
accuracy: 0.9095 - auc: 0.9886 - loss: 0.3697 - precision: 0.9120 - recall:
0.9031 - val_accuracy: 0.8625 - val_auc: 0.9735 - val_loss: 0.5069 -
val_precision: 0.8761 - val_recall: 0.8546 - learning_rate: 5.0000e-04
Epoch 17/40
143/143
                   24s 167ms/step -
accuracy: 0.9231 - auc: 0.9889 - loss: 0.3413 - precision: 0.9276 - recall:
0.9181 - val accuracy: 0.9343 - val auc: 0.9905 - val loss: 0.3148 -
val_precision: 0.9350 - val_recall: 0.9326 - learning_rate: 5.0000e-04
Epoch 18/40
143/143
                   24s 166ms/step -
accuracy: 0.9326 - auc: 0.9940 - loss: 0.2750 - precision: 0.9354 - recall:
0.9304 - val_accuracy: 0.8047 - val_auc: 0.9516 - val_loss: 0.8220 -
val_precision: 0.8074 - val_recall: 0.8039 - learning_rate: 5.0000e-04
Epoch 19/40
143/143
                   24s 167ms/step -
accuracy: 0.9387 - auc: 0.9932 - loss: 0.2682 - precision: 0.9416 - recall:
0.9347 - val_accuracy: 0.9054 - val_auc: 0.9839 - val_loss: 0.3901 -
val_precision: 0.9083 - val_recall: 0.9019 - learning_rate: 5.0000e-04
Epoch 20/40
143/143
                   24s 167ms/step -
accuracy: 0.9344 - auc: 0.9931 - loss: 0.2628 - precision: 0.9389 - recall:
0.9310 - val_accuracy: 0.9440 - val_auc: 0.9949 - val_loss: 0.2379 -
val_precision: 0.9496 - val_recall: 0.9405 - learning_rate: 5.0000e-04
Epoch 21/40
143/143
                   24s 168ms/step -
accuracy: 0.9471 - auc: 0.9957 - loss: 0.2216 - precision: 0.9505 - recall:
0.9442 - val_accuracy: 0.6655 - val_auc: 0.8529 - val_loss: 1.8379 -
val_precision: 0.6684 - val_recall: 0.6620 - learning_rate: 5.0000e-04
Epoch 22/40
143/143
                   24s 167ms/step -
accuracy: 0.9413 - auc: 0.9933 - loss: 0.2475 - precision: 0.9426 - recall:
0.9366 - val_accuracy: 0.9002 - val_auc: 0.9828 - val_loss: 0.3930 -
val_precision: 0.9024 - val_recall: 0.8984 - learning_rate: 5.0000e-04
Epoch 23/40
143/143
                   24s 167ms/step -
accuracy: 0.9374 - auc: 0.9926 - loss: 0.2501 - precision: 0.9399 - recall:
0.9341 - val accuracy: 0.9028 - val auc: 0.9861 - val loss: 0.3467 -
val_precision: 0.9058 - val_recall: 0.9011 - learning_rate: 5.0000e-04
Epoch 24/40
                   24s 167ms/step -
143/143
accuracy: 0.9499 - auc: 0.9954 - loss: 0.2074 - precision: 0.9530 - recall:
0.9486 - val_accuracy: 0.9046 - val_auc: 0.9838 - val_loss: 0.3666 -
val_precision: 0.9142 - val_recall: 0.8958 - learning_rate: 5.0000e-04
Epoch 25/40
143/143
                   24s 168ms/step -
accuracy: 0.9492 - auc: 0.9957 - loss: 0.1978 - precision: 0.9510 - recall:
0.9461 - val_accuracy: 0.9133 - val_auc: 0.9857 - val_loss: 0.3296 -
val_precision: 0.9156 - val_recall: 0.9124 - learning_rate: 5.0000e-04
```

Epoch 25: early stopping Restoring model weights from the end of the best epoch: 20.

```
[29]: # Visualize Training Performance
      train_acc = history.history['accuracy']
      train_loss = history.history['loss']
      train_pre = history.history['precision']
      train_recall = history.history['recall']
      val acc = history.history['val accuracy']
      val_loss = history.history['val_loss']
      val per = history.history['val precision']
      val_recall = history.history['val_recall']
      index_loss = np.argmin(val_loss)
      val_lowest = val_loss[index_loss]
      index_acc = np.argmax(val_acc)
      acc_highest = val_acc[index_acc]
      index_precision = np.argmax(val_per)
      per_highest = val_per[index_precision]
      index_recall = np.argmax(val_recall)
      recall_highest = val_recall[index_recall]
      Epochs = [i + 1 for i in range(len(train_acc))]
      loss label = f'Best epoch = {str(index loss + 1)}'
      acc_label = f'Best epoch = {str(index_acc + 1)}'
      per label = f'Best epoch = {str(index precision + 1)}'
      recall_label = f'Best epoch = {str(index_recall + 1)}'
      plt.figure(figsize=(20, 12))
      plt.style.use('fivethirtyeight')
      plt.subplot(2, 2, 1)
      plt.plot(Epochs, train_loss, 'r', label='Training loss')
     plt.plot(Epochs, val_loss, 'g', label='Validation loss')
      plt.scatter(index_loss + 1, val_lowest, s=150, c='blue', label=loss_label)
      plt.title('Training and Validation Loss')
      plt.xlabel('Epochs')
      plt.ylabel('Loss')
      plt.legend()
      plt.grid(True)
      plt.subplot(2, 2, 2)
      plt.plot(Epochs, train_acc, 'r', label='Training Accuracy')
      plt.plot(Epochs, val_acc, 'g', label='Validation Accuracy')
      plt.scatter(index_acc + 1, acc_highest, s=150, c='blue', label=acc_label)
```

```
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True)
plt.subplot(2, 2, 3)
plt.plot(Epochs, train_pre, 'r', label='Precision')
plt.plot(Epochs, val_per, 'g', label='Validation Precision')
plt.scatter(index_precision + 1, per_highest, s=150, c='blue', label=per_label)
plt.title('Precision and Validation Precision')
plt.xlabel('Epochs')
plt.ylabel('Precision')
plt.legend()
plt.grid(True)
plt.subplot(2, 2, 4)
plt.plot(Epochs, train_recall, 'r', label='Recall')
plt.plot(Epochs, val_recall, 'g', label='Validation Recall')
plt.scatter(index_recall + 1, recall_highest, s=150, c='blue',_
 ⇔label=recall_label)
plt.title('Recall and Validation Recall')
plt.xlabel('Epochs')
plt.ylabel('Recall')
plt.legend()
plt.grid(True)
plt.suptitle('Model Training Metrics Over Epochs', fontsize=16)
plt.show()
```


1.6 6. Evaluate Model

```
[34]: # Evaluate
      train_score = model.evaluate(train_ds, verbose=1)
      valid_score = model.evaluate(val_ds, verbose=1)
      test_score = model.evaluate(test_ds, verbose=1)
      print(f"Train Loss: {train_score[0]:.4f}")
      print(f"Train Accuracy: {train_score[1]*100:.2f}%")
      print('-' * 20)
      print(f"Validation Loss: {valid_score[0]:.4f}")
      print(f"Validation Accuracy: {valid_score[1]*100:.2f}%")
      print('-' * 20)
      print(f"Test Loss: {test_score[0]:.4f}")
      print(f"Test Accuracy: {test_score[1]*100:.2f}%")
                         5s 31ms/step -
     accuracy: 0.9785 - auc: 0.9992 - loss: 0.1493 - precision: 0.9796 - recall:
     0.9767
                       1s 31ms/step -
     accuracy: 0.9519 - auc: 0.9960 - loss: 0.2237 - precision: 0.9562 - recall:
     0.9502
                       1s 17ms/step -
     accuracy: 0.9224 - auc: 0.9929 - loss: 0.2747 - precision: 0.9286 - recall:
     0.9158
```

```
Train Accuracy: 98.10%
     _____
     Validation Loss: 0.2379
     Validation Accuracy: 94.40%
     _____
     Test Loss: 0.2548
     Test Accuracy: 93.21%
[58]: # Get predictions and true labels
     y_pred = []
     y_true = []
     # Iterate through the dataset
     for images, labels in test_ds:
          # Get predictions for this batch
         predictions = model.predict(images, verbose=0)
         # Convert predictions and labels to class indices
         pred_indices = np.argmax(predictions, axis=1)
         true_indices = np.argmax(labels, axis=1)
         y_pred.extend(pred_indices)
         y_true.extend(true_indices)
     y_pred = np.array(y_pred)
     y_true = np.array(y_true)
     # Create confusion matrix
     cm = confusion_matrix(y_true, y_pred)
     # Plot
     plt.figure(figsize=(10, 8))
     sns.heatmap(cm,
                 annot=True,
                 fmt='d',
                 xticklabels=class_names,
                 yticklabels=class_names,
                 cmap='YlOrRd',
                 cbar_kws={'label': 'Number of Predictions'},
                 annot_kws={'size': 12},
                 square=True)
     plt.title('Confusion Matrix', pad=20)
     plt.ylabel('True Label')
     plt.xlabel('Predicted Label')
     # Adjust layout to prevent label cutoff
```

Train Loss: 0.1466

plt.tight_layout()

[60]: # Print Classification Report print(classification_report(y_true, y_pred, target_names=class_names))

	precision	recall	f1-score	support
glioma	0.94	0.91	0.92	300
meningioma	0.90	0.82	0.86	306
notumor	0.94	0.99	0.96	405
pituitary	0.94	1.00	0.97	300
accuracy			0.93	1311
macro avg	0.93	0.93	0.93	1311
weighted avg	0.93	0.93	0.93	1311

1.7 7. Test Model

```
[98]: # Make a Prediction
def predict_image(model, img_path, image_size, class_names):
    # Load & resize
    img = tf.keras.utils.load_img(img_path, target_size=image_size)

# Convert to array & normalize to [0,1]
    img_array = tf.keras.utils.img_to_array(img) / 255.0

# Add batch dimension
    img_batch = np.expand_dims(img_array, axis=0)

# Run model
    preds = model.predict(img_batch)
    pred_idx = np.argmax(preds[0])
    pred_label = class_names[pred_idx]
    confidence = preds[0][pred_idx]

    return img_array, pred_label, confidence
[90]: # Test
```

```
[90]: # Test
   img_path = './data/Testing/meningioma/Te-me_0014.jpg'
   img, label, conf = predict_image(model, img_path, IMAGE_SIZE, class_names)

plt.imshow(img)
   plt.title(f'Predicted: {label} ({conf:.1%})')
   plt.axis('off')
   plt.show()
```

1/1 0s 26ms/step

Predicted: meningioma (96.3%)


```
[92]: img_path = './data/Testing/glioma/Te-gl_0010.jpg'
img, label, conf = predict_image(model, img_path, IMAGE_SIZE, class_names)

plt.imshow(img)
plt.title(f'Predicted: {label} ({conf:.1%})')
plt.axis('off')
plt.show()
```

1/1 0s 26ms/step


```
[94]: img_path = './data/Testing/notumor/Te-no_0011.jpg'
img, label, conf = predict_image(model, img_path, IMAGE_SIZE, class_names)

plt.imshow(img)
plt.title(f'Predicted: {label} ({conf:.1%})')
plt.axis('off')
plt.show()
```

1/1 0s 26ms/step

Predicted: notumor (100.0%)


```
[96]: img_path = './data/Testing/pituitary/Te-pi_0027.jpg'
img, label, conf = predict_image(model, img_path, IMAGE_SIZE, class_names)

plt.imshow(img)
plt.title(f'Predicted: {label} ({conf:.1%})')
plt.axis('off')
plt.show()
```

1/1 0s 30ms/step

Predicted: pituitary (100.0%)

This notebook was converted with convert.ploomber.io