

1 1. A method of characterizing a color imaging
2 system, the method comprising:
3 obtaining first data indicative of output of the
4 color imaging system;
5 processing the first data, to yield second data,
6 according to a color appearance model that varies in
7 accordance with neutrality of colors indicated by the first
8 data.

1 2. The method of claim 1 wherein the color
2 appearance model varies according to a white reference
3 vector that is a weighted combination of a local white point
4 of the color imaging system and a common white point, the
5 white reference vector being weighted more to the local
6 white point the more a color indicated by the first data is
7 neutral and being weighted more to the common white point
8 the more the indicated color is saturated.

1 3. The method of claim 2 wherein the color imaging
2 system is an emissive system and processing the first data
3 includes using a media white point as the local white point
4 to implement absolute colorimetry.

1 4. The method of claim 1 wherein the color
2 appearance model varies as a function of intensity of the
3 color indicated by the first data.

1 5. The method of claim 4 wherein the color
2 appearance model includes a luminance descriptor, and a pair
3 of color descriptors that quantify relative amounts of red,
4 green, yellow, and blue in a color indicated by the second
5 data;

6 wherein the luminance descriptor varies as a
7 function of Y, Y being one of tristimulus values X, Y, and Z
8 of the color indicated by the first data; and

9 wherein the pair of color descriptors vary as
10 functions of the neutrality of the color indicated by the
11 first data.

1 6. The method of claim 5 wherein the luminance
2 descriptor varies as a function of a Y-reference that is a
3 weighted combination of a local white point Y-value and a
4 common white point Y-value, the Y-reference being weighted
5 more toward the local white point Y-value the closer the Y-
6 value of the color indicated by the first data is to the
7 local white point Y-value and being weighted more toward the
8 common white point Y-value the more the Y-value of the color
9 indicated by the first data and the local white point Y-
10 value differ.

1 7. The method of claim 6 wherein the second data
2 include values for L*, a*, and b*; and

3 wherein

4 $L^* = 116 \times f(Y/Y_n'') - 16$

5 $Y_n'' = Y_{LW}(1 - \text{sat}(Y, Y_{LW})) + Y_{CW} * \text{sat}(Y, Y_{LW})$

6 $\text{sat}(Y, Y_{LW}) = 1.0 - (Y/Y_{LW})$

7 $a^* = 500(f(X/X_n') - f(Y/Y_n'))$

8 $b^* = 200(f(Y/Y_n') - f(Z/Z_n'))$

9 $f(\omega) = (\omega)^{1/3} \quad \omega > 0.008856$

10 $f(\omega) = 7.787(\omega) + 16/116 \quad \omega \leq 0.008856$

11 $X_n' = X_{LW}(1 - \text{sat}(C, C_{LW})) + X_{CW} * \text{sat}(C, C_{LW})$

12 $Y_n' = Y_{LW}(1 - \text{sat}(C, C_{LW})) + Y_{CW} * \text{sat}(C, C_{LW})$

13 $Z_n' = Z_{LW}(1 - \text{sat}(C, C_{LW})) + Z_{CW} * \text{sat}(C, C_{LW})$

14 $C = (X, Y, Z)$

15 $C_{LW} = (X_{LW}, Y_{LW}, Z_{LW})$

```
16      sat(C, CLW) = (devX' Y' Z' / maxDev)γ  
17      maxDev=sqrt(6.0/9.0) * max(X', Y', Z')  
18      devX' Y' Z' = sqrt((X'-avgX' Y' Z')2+(Y'-avgX' Y' Z')2  
19          +(Z'-avgX' Y' Z')2)  
20      avgX' Y' Z' = (X' + Y' + Z')/3.0  
21      X'=X/XLW  
22      Y'=Y/YLW  
23      Z'=Z/ZLW
```

24 where C_{LW} is a local white vector representing a local white
25 point of the system, $C_{CW}=(X_{CW}, Y_{CW}, Z_{CW})$ is a common white vector
26 for a common white point of the system, and γ is a variable
27 for scaling the local white vector C_{LW} relative to the
28 common white vector C_{CW} .

1 8. The method of claim 5 wherein the second data
2 include values for L*, a*, and b*;

3 wherein L* is closer to a relative colorimetric
4 value of L* than an absolute colorimetric value of L* the
5 closer the value of Y is to a local white point value Y_{LW};
6 and

7 wherein a* and b* are closer to relative colorimetric
8 values of a* and b*, respectively, than to absolute
9 colorimetric values of a* and b*, respectively, the closer
10 the indicated color is to neutral.

1 9. The method of claim 8 wherein

```
2       L*=(1.0-sat_L*) * L*rel + sat_L* * L*abs;  
3       a*=(1.0-sat_a*b*) * a*rel + sat_a*b* * a*abs;  
4       b*=(1.0-sat_a*b*) * b*rel + sat_a*b* * b*abs;  
5       sat_L*=1.0-(Y/YLW);  
6       sat_a*b*=(sqrt(a*2 + b*2))/L*; and  
7       wherein L*rel, a*rel, and b*rel are values of L*, a*,  
8 and b*, respectively, using relative colorimetry, and L*abs,
```

9 a^*_{abs} , and b^*_{abs} are values of L^* , a^* , and b^* , respectively,
10 using absolute colorimetry.

1 10. A computer program product residing on a
2 computer readable medium, for characterizing a color imaging
3 system, comprising instructions for causing a computer to:
4 obtain first data indicative of output of the color
5 imaging system;
6 process the first data, to yield second data,
7 according to a color appearance model that varies in
8 accordance with neutrality of a color indicated by the first
9 data.

1 11. The computer program product of claim 10
2 wherein the color appearance model varies according to a
3 white reference vector that is a weighted combination of a
4 local white point of the color imaging system and a common
5 white point, the white reference vector being weighted more
6 to the local white point the more a color indicated by the
7 first data is neutral and being weighted more to the common
8 white point the more the indicated color is saturated.

1 12. The computer program product of claim 11
2 wherein the color imaging system is an emissive system and
3 the instructions for causing the computer to process the
4 first data cause the computer to use a media white point as
5 the local white point to implement absolute colorimetry.

1 13. The computer program product of claim 10
2 wherein the color appearance model varies as a function of
3 intensity of the color indicated by the first data.

1 14. The computer program product of claim 13
2 wherein the color appearance model includes a luminance
3 descriptor, and a pair of color descriptors that quantify
4 relative amounts of red, green, yellow, and blue in a color
5 indicated by the second data;

6 wherein the luminance descriptor varies as a
7 function of Y, Y being one of tristimulus values X, Y, and Z
8 of the color indicated by the first data; and

9 wherein the pair of color descriptors vary as
10 functions of the neutrality of the color indicated by the
11 first data.

1 15. The computer program product of claim 14
2 wherein the luminance descriptor varies as a function of a
3 Y-reference that is a weighted combination of a local white
4 point Y-value and a common white point Y-value, the Y-
5 reference being weighted more toward the local white point
6 Y-value the closer the Y-value of the color indicated by the
7 first data is to the local white point Y-value and being
8 weighted more toward the common white point Y-value the more
9 the Y-value of the color indicated by the first data and the
10 local white point Y-value differ.

1 16. The computer program product of claim 15
2 wherein the second data include values for L*, a*, and b*;
3 and

4 wherein

5 $L^* = 116 \times f(Y/Y_n'') - 16$

6 $Y_n'' = Y_{LW} (1 - sat(Y, Y_{LW})) + Y_{CW} * sat(Y, Y_{LW})$

7 $sat(Y, Y_{LW}) = 1.0 - (Y/Y_{LW})$

8 $a^* = 500 (f(X/X_n') - f(Y/Y_n'))$

9 $b^* = 200 (f(Y/Y_n') - f(Z/Z_n'))$

10 $f(\omega) = (\omega)^{1/3} \quad \omega > 0.008856$

```

11      f(ω) = 7.787(ω) + 16/116      ω ≤ 0.008856
12      Xn' = XLW(1 - sat(C, CLW)) + XCW * sat(C, CLW))
13      Yn' = YLW(1 - sat(C, CLW)) + YCW * sat(C, CLW))
14      Zn' = ZLW(1 - sat(C, CLW)) + ZCW * sat(C, CLW))
15      C = (X, Y, Z)
16      CLW = (XLW, YLW, ZLW)
17      sat(C, CLW) = (devX' Y' Z' / maxDev)γ
18      maxDev = sqrt(6.0/9.0) * max(X', Y', Z')
19      devX' Y' Z' = sqrt((X' - avgX' Y' Z')2 + (Y' - avgX' Y' Z')2
20          + (Z' - avgX' Y' Z')2)
21      avgX' Y' Z' = (X' + Y' + Z') / 3.0
22      X' = X / XLW
23      Y' = Y / YLW
24      Z' = Z / ZLW

```

25 where C_{LW} is a local white vector representing a local white
 26 point of the system, C_{CW} = (X_{CW}, Y_{CW}, Z_{CW}) is a common white vector
 27 for a common white point of the system, and γ is a variable
 28 for scaling the local white vector C_{LW} relative to the
 29 common white vector C_{CW}.

1 17. A method of producing a color on a device, the
 2 method comprising:
 3 obtaining first data associated with a first device
 4 and indicative of a first color;
 5 determining second data related to stimulus data of
 6 the first device by a color appearance model that converts
 7 input data to output data using a white reference vector
 8 that varies in association with a neutrality of a color
 9 indicated by the input data;
 10 actuating a second device according to the second
 11 data to produce a second color to approximate the first
 12 color.

1 18. The method of claim 17 wherein the white
2 reference vector approaches a white point associated with
3 first device as the color indicated by the input data
4 approaches a neutral color.

1 19. The method of claim 18 wherein the color
2 appearance model includes a luminance descriptor, and a pair
3 of color descriptors that quantify relative amounts of red,
4 green, yellow, and blue in a color indicated by the output
5 data;

6 wherein the luminance descriptor varies as a
7 function of Y, Y being one of tristimulus values X, Y, and Z
8 of the color indicated by the first data; and

9 wherein the pair of color descriptors vary as
10 functions of the neutrality of the color indicated by the
11 first data.

1 20. The method of claim 17 wherein the first data
2 are first device stimulus data of the first device and the
3 second data are second device stimulus data of the second
4 device, and determining the second data comprises mapping
5 third data to fourth data, the third data being converted
6 from the first data using the color appearance model and the
7 fourth data being converted from the second data using the
8 color appearance model.

1 21. A computer program product residing on a
2 computer readable medium, for producing a color on a device,
3 comprising instructions for causing a computer to:

4 obtain first data associated with a first device and
5 indicative of a first color;

6 determine second data related to stimulus data of
7 the first device by a color appearance model that converts

8 input data to output data using a white reference vector
9 that varies in association with a neutrality of a color
10 indicated by the input data;
11 actuate a second device according to the second data
12 to produce a second color to approximate the first color.

1 22. The computer program product of claim 21
2 wherein the white reference vector approaches a white point,
3 associated with each device whose data are used as the input
4 data, as the color indicated by the input data approaches
5 white or a neutral color.

1 23. The computer program product of claim 21
2 wherein the first data are first device stimulus data of the
3 first device and the second data are second device stimulus
4 data of the second device, and the instructions that cause
5 the computer to determine the second data cause the computer
6 to map third data to fourth data, the third data being
7 converted from the first data using the color appearance
8 model and the fourth data being converted from the second
9 data using the color appearance model.

1 24. A method of producing a color with an emissive
2 device using absolute colorimetry, the method comprising:
3 obtaining first data indicative of a first color;
4 determining second data related to the first data by
5 a color appearance model that uses a white point of the
6 emissive device as a white reference vector;
7 actuating the emissive device according to the
8 second data to implement absolute colorimetry to produce a
9 second color to approximate the first color.

1 25. The method of claim 24 wherein the white
2 reference vector varies in association with neutrality of
3 colors to be produced on the emissive device.

1 26. The method of claim 25 wherein the white
2 reference vector varies from the white point of the emissive
3 device when the second color is near white to a common white
4 reference, different from the white point of the emissive
5 device, when the second color departs from a near-white,
6 neutral color.

1 27. A computer program product residing on a
2 computer readable medium, for producing a color with an
3 emissive device using absolute colorimetry, comprising
4 instructions for causing a computer to:
5 obtain first data indicative of a first color;
6 determine second data related to the first data by a
7 color appearance model that uses a white point of the
8 emissive device as a white reference vector;
9 actuate the emissive device according to the second
10 data to implement absolute colorimetry to produce a second
11 color to approximate the first color.

1 28. A method of characterizing an emissive device
2 for absolute colorimetry, the method comprising:
3 obtaining first data indicative of output of the
4 emissive device;
5 converting the first data to second data using a
6 color appearance model that uses a white point of the
7 emissive device as a reference white vector;
8 providing the second data for use in absolute
9 colorimetric color reproduction.

1 29. The method of claim 28 wherein converting the
2 first data to second data further includes using, as the
3 white reference vector, a composite white reference vector
4 that is a weighted combination of the white point of the
5 emissive device and a predetermined white point, the
6 composite white reference vector being closer to the white
7 point of the emissive device the closer a color indicated by
8 the first data is to being neutral.

1 30. A computer program product residing on a
2 computer readable medium, for characterizing an emissive
3 device for absolute colorimetry, comprising instructions for
4 causing a computer to:

5 obtain first data indicative of output of the
6 emissive device;

7 convert the first data to second data using a color
8 space that uses a white point of the emissive device as a
9 reference white vector;

10 provide the second data for use in absolute
11 colorimetric color reproduction.

1 31. A method of characterizing colors for
2 reproduction between a first device and a second device, the
3 method comprising:

4 normalizing first tristimulus values indicative of a
5 color of the first device using local black point values;

6 transforming the normalized first tristimulus values
7 to obtain color values indicative of modified cone responses
8 of the human eye;

9 chromatically adapting the color values from a local
10 condition to a reference condition; and

11 transforming the adapted color values to obtain
12 second tristimulus values.

1 32. The method of claim 31 wherein a neutral axis
2 of the local condition is mapped to a neutral axis of the
3 reference condition.

1 33. The method of claim 31 wherein normalizing the
2 first tristimulus values includes dividing by a difference
3 between a local luminance value and a local black point
4 luminance value.

1 34. The method of claim 33 wherein transforming the
2 adapted color values includes multiplying the adapted color
3 values by a reference white point luminance value divided by
4 a difference between a local white point luminance value and
5 the local black point luminance value.

1 35. The method of claim 31 wherein transforming the
2 normalized first tristimulus values is performed using a
3 Bradford transformation.

1 36. The method of claim 35 wherein normalizing the
2 first tristimulus values and transforming the normalized
3 first tristimulus values are performed according to

4 $[R_1] = [(X_1 - X_{1k}) / (Y_1 - Y_{1k})]$

5 $|G_1| = M_b |(Y_1 - Y_{1k}) / (Y_1 - Y_{1k})|$

6 $[B_1] = [Z_1 - Z_{1k}] / (Y_1 - Y_{1k})]$

7 where $[X_{1k}, Y_{1k}, Z_{1k}]$ is the local black point, X_1 , Y_1 , and Z_1
8 are the first tristimulus values,

9 $[0.8951 \ 0.2664 \ -0.1614]$

10 $M_b = [-0.7502 \ 1.7135 \ 0.0367]$

11 $[0.0389 \ -0.0685 \ 1.0296]$, and

12 R_1 , G_1 , and B_1 are the color values indicative of modified
13 cone responses of the human eye.

1 37. The method of claim 36 wherein chromatically
2 adapting the color values is performed according to

3 $R_{ref} = (R_{rw}/R_{lw}) \times R_l$

4 $G_{ref} = (G_{rw}/G_{lw}) \times G_l$

5 $B_{ref} = \text{Sign}[B_l] \times (B_{rw}/B_{lw})^{\beta} \times |B_l|^{\beta}$

6 $\beta = (B_{lw}/B_{rw})^{0.0834}$

7 where R_{rw} , G_{rw} , and B_{rw} are RGB values of a reference white
8 point, R_{lw} , G_{lw} , and B_{lw} are RGB values of a local white
9 point.

1 38. The method of claim 37 wherein transforming the
2 adapted color values to second tristimulus values is
3 performed according to

4 $[X_{ref}] = [R_{ref} \times Y_l \times Y_{rw}/(Y_{lw} - Y_{lk})]$

5 $|Y_{ref}| = M_b^{-1} [G_{ref} \times Y_l \times Y_{rw}/(Y_{lw} - Y_{lk})]$

6 $[Z_{ref}] = [B_{ref} \times Y_l \times Y_{rw}/(Y_{lw} - Y_{lk})]$.

1 39. The method of claim 31 wherein transforming the
2 normalized first tristimulus values is performed using a von
3 Kries transformation.

1 40. The method of claim 39 wherein

2 $[X_{ref}] = [L_{rw} \ 0 \ 0] [1/(L_{lw}-L_{lk}) \ 0 \ 0] [X_l]$

3 $|Y_{ref}| = M_v^{-1} [0 \ M_{rw} \ 0] [0 \ 1/(M_{lw}-M_{lk}) \ 0] [Y_l]$

4 $[Z_{ref}] = [0 \ 0 \ S_{rw}] [0 \ 0 \ 1/(S_{lw}-S_{lk})] [Z_l]$

5 where

6 $[0.38791 \ 0.68898 \ -0.07868]$

7 $M_v = [-0.22981 \ 1.18340 \ 0.04641]$

8 $[0 \ 0 \ 1.0]$

9 and where [L_{rw}, M_{rw}, S_{rw}] are LMS (long, medium, and short
10 wavelength band) values of the reference white, [L_{lw}, M_{lw},
11 S_{lw}] are LMS values for local white, [L_{lk}, M_{lk}, S_{lk}] are LMS
12 values for local black, X_l, Y_l, and Z_l are the first
13 tristimulus values, and X_{ref}, Y_{ref}, and Z_{ref} are the second
14 tristimulus values.

1 41. The method of claim 31 wherein the first device
2 is a print device and the second device is a print device,
3 tristimulus values of a common illuminant are used as
4 reference tristimulus white values for both print devices,
5 media white tristimulus values of each print device are used
6 as local tristimulus white values for both print devices,
7 and Bradford-type adaptations are used for both print
8 devices to implement media-relative colorimetry.

1 42. The method of claim 31 wherein the first device
2 is a print device and the second device is a display device,
3 tristimulus values of a reference illuminant are used as
4 reference tristimulus white values, media white tristimulus
5 values of the print device are used as local tristimulus
6 white values for the print device, monitor white tristimulus
7 values of the display device are used as local tristimulus
8 values for the display device, and Bradford-type adaptations
9 are used for both the first and second devices to implement
10 media-relative colorimetry.

1 43. The method of claim 31 wherein the first device
2 is a print device and the second device is a display device,
3 tristimulus values of a reference illuminant are used as
4 reference tristimulus white values, media white tristimulus
5 values of the print device are used as local tristimulus
6 white values, monitor white tristimulus values of the

7 display device are used as local tristimulus values for the
8 display device, Bradford-type adaptation is used for the
9 display device, and absolute CIE-Lab is used for the print
10 device to implement absolute colorimetry.