	#1. Generate a list of 100 integers containing values between 90 to 130 and store it in the variable `int_list`. After generating the list, find the following: #(i) Write a Python function to calculate the mean of a given list of numbers. Create a function to find the median of a list of numbers. int_list = [random.randint(90,130) for _ in range(100)] print("Mean: ", statistics.mean(int_list)) print("Median: ", statistics.median(int_list)) Mean: 109.84 Median: 110.0
n [5]: n [9]: n []:	#(ii) Develop a program to compute the mode of a list of integers. int_list = [random.randint(90,130) for _ in range(100)] print("Mode: ", statistics.mode(int_list)) Mode: 115 #(iii) Implement a function to calculate the weighted mean of a list of values and their corresponding weights int_list = [random.randint(90,130) for _ in range(100)] weights = np.random.dirichlet(np.ones(len(int_list)), size = 1)[0] print("Weighted Mean: ",np.average(int_list, weights = weights))
n []: [14]: n []:	<pre>Weighted Mean: 113.03992468026703 # (iv) Write a Python function to find the geometric mean of a list of positive numbers. int_list = [random.randint(90,130)for _ in range(100)] print("Geometric Mean:", stats.gmean(int_list)) Geometric Mean: 109.91660612028284 # (v) Create a program to calculate the harmonic mean of a list of values. int_list = [random.randint(90,130)for _ in range(100)] print("Harmonic Mean:", statistics.harmonic_mean(int_list))</pre>
n []: [17]: n []:	Harmonic Mean: 110.45933268218363 #(vi) Build a function to determine the midrange of a list of numbers (average of the minimum and maximum). int_list = [random.randint(90,130)for _ in range(100)] print("Mid range:", (min(int_list)+max(int_list))/2) Mid range: 110.0 #(vii) Implement a Python program to find the trimmed mean of a list, excluding a certain percentage of outliers. int_list = [random.randint(90,130)for _ in range(100)] print("Trimmed mean(10%):",np.mean(np.sort(int_list)[10:-10]))
n []: n []: n []:	Trimmed mean(10%): 110.0625 #2.Generate a list of 500 integers containing values between 200 to 300 and store it in the variable `int_list2`. After generating the list, find the following: #(i) Compare the given list of visualization for the given data: #1. Frequency & Gaussian distribution int_list2 = [random.randint(200,300) for _ in range(500)] plt.figure(figsize = (10,6)) sns.histplot(int_list2, bins = 30,kde = True , stat = "density") plt.title(#Tsequency & Gaussian 30,kde = True , stat = "density")
	plt.title("Frequency & Gaussian Distribution") plt.show() Frequency & Gaussian Distribution 0.0175 - 0.0150 -
	0.0125 - 0.0100 - 0.0075 - 0.0050 -
	0.0025
	plt.figure(figsize = (10,6)) sns.kdeplot(int_list2) plt.stitle("Frequency smoothened KDE plot") plt.show() Frequency smoothened KDE plot 0.010 -
	0.008 - 0.006 - 0.004 -
	0.002 - 0.000
	plt.figure(figsize = (10,6)) sns.histplot(int_list2, bins = 30,kde = True , stat = "density") sns.kdeplot(int_list2) plt.title("Gaussian Distribution & smoothened KDE plot") plt.show() Gaussian Distribution & smoothened KDE plot 0.016 -
	0.012 - 0.010 - 215 0.008 - 0.006 -
n []:	#(ii) Write a Python function to calculate the range of a given list of numbers.
n []:	<pre>int_list2 = [random.randint(200,300) for _ in range(500)] print("Range: " , max(int_list2) - min(int_list2)) Range: 100 #(iii) Create a program to find the variance and standard deviation of a list of numbers. import random import math int_list2 = [random.randint(200,300) for _ in range(500)] print("Maxingage " a tablishing apprints (int_list2))</pre>
n []:	<pre>print("Variance: ", statistics.variance(int_list2)) print("Standatd deviation : ", statistics.stdev(int_list2)) Variance: 905.3535711422845 Standatd deviation : 30.089093890349783 #(iv) Implement a function to compute the interquartile range (IQR) of a list of values. int_list2 = [random.randint(200,300) for _ in range(500)] q75 , q25 = np.percentile(int_list2, [75 ,25]) iqr = q75 - q25 print("Interquartile Range(IQR):" , iqr)</pre>
n []:	Interquartile Range(IQR): 50.5 #(v) Build a program to calculate the coefficient of variation for a dataset. int_list2 = [random.randint(200,300) for _ in range(500)] cv = np.std(int_list2) / np.mean(int_list2)* 100 print("coefficient of variation(cv): ", cv) coefficient of variation(cv): 11.892439901885568 #(vi) Write a Python function to find the mean absolute deviation (MAD) of a list of numbers.
n []:	<pre>int_list2 = [random.randint(200,300) for _ in range(500)] mad = np.mean([abs(x - np.mean(int_list2)) for x in int_list2]) print("Mean Absolute Deviaiton(MAD):" , mad) Mean Absolute Deviaiton(MAD): 26.0544 #(vii) Create a program to calculate the quartile deviation of a list of values. int_list2 = [random.randint(200,300) for _ in range(500)] q1 , q3 = np.percentile(int_list2 , [25,75])</pre>
n []:	<pre>quartile_deviation = (q3-q1) / 2 print("Quartile Deviation : " , quartile_deviation) Quartile Deviation : 26.0 #(viii) Implement a function to find the range-based coefficient of dispersion for a dataset. int_list2 = [random.randint(200,300) for _ in range(500)] dis_coff = ((max(int_list2) - min(int_list2)) / (max(int_list2)) + min(int_list2)))*100 print("Range-Based cofficient of Disperson: " , dis_coff) Range-Based cofficient of Disperson: 20.0 #3.Write a Python class representing a discrete random variable with methods to calculate its expected value and variance.</pre>
[44]: n []: [46]:	<pre>v , p = [1,2,3,4,5] , [0.1 , 0.2 , 0.3 , 0.2 , 0.2] print("Expected value : " , np.average(v,weights = p)) print("Variance: " , np.var(v, ddof = 1)) Expected value : 3.2 Variance: 2.5 #4.Implement a program to simulate the rolling of a fair six-sided die and calculate the expected value and variance of the outcomes. o =[random.randint(1,6) for _ in range(10000)] print("Expected value: " , sum(o)/len(o)) print("Variance : " , sum(o)/len(o))**2 for x in o)/len(o))</pre>
n []: [53]: n []:	Expected value: 3.4997 Variance: 2.90819991 #5.Create a Python function to generate random samples from a given probability distribution (e.g., binomial, Poisson) and calculate their mean and variance. dist , params , size = 'binomial' , [10,0.5],1000 s = np.random.choice([np.random.binomial, np.random.poisson]) (*params , size) print(f"Mean: {s.mean()} , variance:{s.var()}") Mean: 5.026 , variance:2.619323999999998 #6.Write a Python script to generate random numbers from a Gaussian (normal) distribution and compute the mean, variance, and standard deviation of the samples. mean, std_dev, size = 0, 1, 1000
n []:	mean, std_dev, size = 0, 1, 1000 samples = np.random.normal(mean, std_dev, size) print(f"Mean: {np.mean(samples)}") print(f"Variance: (np.var(samples)}") print(f"Standard Deviation: {np.std(samples)}") Mean: -0.0444845817560295 Variance: 1.0216830176845484 Standard Deviation: 1.0107833683260465 #7.Use seaborn library to load tips dataset. Find the following from the dataset for the columns total_bill and tip': #(i) Write a Python function that calculates their skewness.
[58]: n []:	<pre>import seaborn as sns from scipy.stats import skew tips = sns.load_dataset('tips') print(skew(tips['total_bill'])) print(skew(tips['tip'])) 1.1262346334818638 1.4564266884221506 #(ii) Create a program that determines whether the columns exhibit positive skewness, negative skewness, or is approximately symmetric. tips = sns.load_dataset('tips')</pre>
n []:	<pre>for col in ['total_bill', 'tip']: print(f"(col.capitalize()): {skew(tips[col])} ({'+' if skew(tips[col])} > 0 else '-' if skew(tips[col]) < 0 else 'Symmetric'} skewness)") Total_bill: 1.1262346334818638 (+ skewness) Tip: 1.4564266884221506 (+ skewness) #(iii) Write a function that calculates the covariance between two columns. tips = sns.load_dataset('tips') print(tips['total_bill'].cov(tips['tip'])) 8.323501629224854 #(iv) Implement a Python program that calculates the Pearson correlation coefficient between two columns.</pre>
[61]: n []:	correlation = tips['total_bill'].corr(tips['tip']) print(f"Pearson Correlation Coefficient: {correlation}") Pearson Correlation Coefficient: 0.6757341092113645 #(v) Write a script to visualize the correlation between two specific columns in a Pandas DataFrame using scatter plots. tips = sns.load_dataset('tips') sns.scatterplot(x='total_bill', y='tip', data=tips) plt.show()
	10 - 8 - 6 -
	4 - 2 - 10 20 30 40 50 total_bill
	#8.Write a Python function to calculate the probability density function (PDF) of a continuous random variable for a given normal distribution. import numpy as np from scipy.stats import norm import matplotlib.pyplot as plt x = np.linspace(-5, 5, 100) plt.plot(x, norm.pdf(x)) plt.vlabel('x'); plt.ylabel('Probability Density'); plt.title('Normal Distribution PDF') plt.show() Normal Distribution PDF
	0.40 - 0.35 - 0.30 - 25 - 20 0.25 - 20 0.20 - 20 0.15 -
	#9.Create a program to calculate the cumulative distribution function (CDF) of exponential distribution.
	<pre>lam = 1 x = np.linspace(0, 10, 100) cdf = 1 - np.exp(-lam * x) plt.plot(x, cdf) plt.xlabel('x') plt.ylabel('Cumulative Probability') plt.title('Exponential Distribution CDF') plt.show()</pre> <pre> Exponential Distribution CDF</pre>
	0.8 - 0.6 - 0.4 -
	#10. Write a Python function to calculate the probability mass function (PMF) of Poisson distribution.
	<pre>from scipy.stats import poisson x = np.arange(0, 100, 0.5) y = poisson.pmf(x, mu=40, loc=10) plt.plot(x, y) plt.show()</pre> 0.06 -
	0.03 - 0.02 - 0.01 - 0.00 -
n []:	#11.A company wants to test if a new website layout leads to a higher conversion rate (percentage of visitors who make a purchase). They collect data from the old and new layouts to compare. # To generate the data use the following command: # ```python # import numpy as np # # 50 purchases out of 1000 visitors
	<pre># old_layout = np.array([1] * 50 + [0] * 950) # # 70 purchases out of 1000 visitors # new_layout = np.array([1] * 70 + [0] * 930) # ``` # Apply z-test to find which layout is successful. import numpy as np import statsmodels.stats.proportion</pre>
	<pre>old = np.array([1] * 50 + [0] * 950) new = np.array([1] * 70 + [0] * 930) z, p = proportion.proportions_ztest([sum(new), sum(old)], [len(new), len(old)], alternative='larger') if p < 0.05: print("New layout is better.") else: print("No significant difference.") New layout is better. #12.A tutoring service claims that its program improves students' exam scores. A sample of students who participated in the program was taken, and their scores before and after the program were recommendation.</pre>
[103	# Use the below code to generate samples of respective arrays of marks: # ```python before_program = np.array([75, 80, 85, 70, 90, 78, 92, 88, 82, 87]) after_program = np.array([80, 85, 90, 80, 92, 80, 95, 90, 85, 88]) # ``` # Use z-test to find if the claims made by tutor are true or false.
n []:	before_program = np.array([75, 80, 85, 70, 90, 78, 92, 88, 82, 87]), np.array([80, 85, 90, 80, 92, 80, 95, 90, 85, 88]) z = (np.mean(after_program) - np.mean(before_program)) / (np.std(before_program, ddof=1) / np.sqrt(len(before_program))) p_val = 2 * norm.sf(abs(z)) print(f"Z-score: {z}, P-value: {p_val}") print("Tutor's claims are true" if p_val < 0.05 else "Tutor's claims are false") Z-score: 1.714528046981441, P-value: 0.0864317906048479 Tutor's claims are false #13.A pharmaceutical company wants to determine if a new drug is effective in reducing blood pressure. They conduct a study and record blood pressure measurements before and after administering the # Use the below code to generate samples of respective arrays of blood pressure:
	# ```python # before_drug = np.array([145, 150, 140, 135, 155, 160, 152, 148, 130, 138]) # after_drug = np.array([130, 140, 132, 128, 145, 148, 138, 136, 125, 130]) # ``` # Implement z-test to find if the drug really works or not. b, a = np.array([145, 150, 140, 135, 155, 160, 152, 148, 130, 138]), np.array([130, 140, 132, 128, 145, 148, 138, 136, 125, 130])
n []:	<pre>z = (np.mean(a) / (np.std(b, ddof=1) / np.sqrt(len(b))) p_val = 2 * norm.sf(abs(z)) print(f"Z-score: {z}, P-value: {p_val}") print("Drug is effective" if p_val < 0.05 else "Drug is not effective") Z-score: 3.374800990700482, P-value: 0.0007386908781037341 Drug is effective #14.A customer service department claims that their average response time is less than 5 minutes. A sample of recent customer interactions was taken, and the response times were recorded. # Implement the below code to generate the array of response time: # Northern</pre>
	# response_times = np.array([4.3, 3.8, 5.1, 4.9, 4.7, 4.2, 5.2, 4.5, 4.6, 4.4]) # ''' # Implement z-test to find the claims made by customer service department are tru or false. r = np.array([4.3, 3.8, 5.1, 4.9, 4.7, 4.2, 5.2, 4.5, 4.6, 4.4]) z = (np.mean(r) - 5) / (np.std(r, ddof=1) / np.sqrt(len(r))) p_val = norm.sf(abs(z)) print(f"Z-score: {z}, P-value: {p_val}") print("Claims are false" if p_val < 0.05 else "Claims are true")
n []: n []: n []:	Z-score: -3.184457226042963, P-value: 0.0007251287113068958 Claims are false #15.A company is testing two different website layouts to see which one leads to higher click-through rates. Write a Python function to perform an A/B test analysis, including calculating the t-state that the following data: #use the following data: #python
	<pre>layout_a_clicks = [28, 32, 33, 29, 31, 34, 30, 35, 36, 37] layout_b_clicks = [40, 41, 38, 42, 39, 44, 43, 41, 45, 47] a = [28, 32, 33, 29, 31, 34, 30, 35, 36, 37] b = [40, 41, 38, 42, 39, 44, 43, 41, 45, 47] ma, mb = np.mean(a), np.mean(b) sa, sb = np.std(a, ddof=1), np.std(b, ddof=1) n = len(a) t = (mb - ma) / np.sqrt((sa**2 / n) + (sb**2 / n))</pre>
n []:	<pre>df = 2 * n - 2 print(f"T-statistic: {t}, Degrees of freedom: {df}") T-statistic: 7.298102156175071, Degrees of freedom: 18</pre>
	<pre>existing_drug_levels = [180, 182, 175, 185, 178, 176, 172, 184, 179, 183] new_drug_levels = [170, 172, 165, 168, 175, 173, 170, 178, 172, 176] ma, mb = np.mean(existing_drug_levels), np.mean(new_drug_levels) sa, sb = np.std(existing_drug_levels, ddof=1), np.std(new_drug_levels, ddof=1) n = len(existing_drug_levels) t = (mb - ma) / np.sqrt((sa**2 / n) + (sb**2 / n)) df = 2 * n - 2 print(f"T-statistic: {t}")</pre>
n []:	print(f"Degrees of freedom: (df)") T-statistic: -4.140480986208661 Degrees of freedom: 18 #17.A school district introduces an educational intervention program to improve math scores. Write a Python function to analyze pre- and post-intervention test scores, calculating the t-statistic an # Use the following data of test score: # ```python # pre_intervention_scores = [80, 85, 90, 75, 88, 82, 92, 78, 85, 87]
[n []:	<pre># post_intervention_scores = [90, 92, 88, 92, 95, 91, 96, 93, 89, 93] # import numpy as np from scipy.stats import ttest_rel a = [80, 85, 90, 75, 88, 82, 92, 78, 85, 87] b = [90, 92, 88, 92, 95, 91, 96, 93, 89, 93] t, p = ttest_rel(a, b) print(f"T-statistic: {t}, P-value: {p}") print("Intervention was effective" if p < 0.05 else "Intervention was not effective")</pre>
	T-statistic: -4.42840883965761, P-value: 0.0016509548165795493 Intervention was effective #18.An HR department wants to investigate if there's a gender-based salary gap within the company. Develops program to analyze salary data, calculate the t-statistic, and determine if there's a state of the below code to generate synthetic data: # ```python # Generate synthetic salary data for male and female employees np.random.seed(0) # For reproducibility
	<pre>import numpy as np from scipy import stats np.random.seed(0) male_salaries = np.random.normal(50000, 10000, 20) female_salaries = np.random.normal(55000, 9000, 20) t, p = stats.ttest_ind(male_salaries, female_salaries, equal_var=False) if p < 0.05: print("Salary gap exists.") else:</pre>
[n []:	print("No significant gap.") No significant gap. #19.A manufacturer produces two different versions of a product and wants to compare their quality scores. Create a Python function to analyze quality assessment data, calculate the t-statistic, and # Use the following data: # ```python version1_scores = [85, 88, 82, 89, 87, 84, 90, 88, 85, 86, 91, 83, 87, 84, 89, 86, 84, 88, 85, 86, 99, 90, 87, 88, 85]
	<pre>version2_scores = [80, 78, 83, 81, 79, 82, 76, 80, 78, 81, 77, 82, 80, 79, 82, 79, 80, 81, 79, 82, 79, 78, 80, 81, 82] m1, m2 = np.mean(version1_scores), np.mean(version2_scores) s1, s2 = np.std(version1_scores), dodf=1), np.std(version2_scores, ddof=1) n1, n2 = len(version1_scores), len(version2_scores) t = (m2 - m1) / np.sqrt((s1**2 / n1) + (s2**2 / n2)) df = n1 + n2 - 2 print(f"T-statistic: {t}") print(f"Degrees of freedom: {df}")</pre>
n []:	Testatistic: -11.325830417646698 Degrees of freedom: 48 #20.A restaurant chain collects customer satisfaction scores for two different branches. Write a program toanalyze the scores, calculate the t-statistic, and determine if there's a statistically significantly si
n []:	t_stat = (np.mean(branch_b_scores) - np.mean(branch_a_scores)) / np.sqrt((np.std(branch_a_scores, ddof=1)**2 / len(branch_a_scores)) + (np.std(branch_b_scores, ddof=1)**2 / len(branch_b_scores))) print(f"T-statistic: {t_stat}") T-statistic: -5.480077554195743 #21.A political analyst wants to determine if there is a significant association between age groups and voter preferences (Candidate A or Candidate B). They collect data from a sample of 500 voters # Use the below code to generate data: # ```python np.random.seed(0)
	age_groups = np.random.choice(['l8-30', '31-50', '51+'], size=30) voter_preferences = np.random.choice(['Candidate A', 'Candidate B'], size=30) observed = np.array([[sum((age_groups == '18-30') & (voter_preferences == 'Candidate A')), sum((age_groups == '18-30') & (voter_preferences == 'Candidate B'))],
n []:	#22. A company conducted a customer satisfaction survey to determine if there is a significant relationship between product satisfaction levels (Satisfied, Neutral, Dissatisfied) and the region when # Sample data: # ```python # #Sample data: Product satisfaction levels (rows) vs. Customer regions (columns) # data = np.array([[50, 30, 40, 20], [30, 40, 30, 50], [20, 30, 40, 30]]) import numpy as np from scipy.stats import chi2_contingency
	<pre>from scipy.stats import chi2_contingency data = np.array([[50, 30, 40, 20], [30, 40, 30, 50], [20, 30, 40, 30]]) chi2, p, _, _ = chi2_contingency(data) if p < 0.05: print("Satisfaction and region are related.") else: print("Satisfaction and region are independent.") Satisfaction and region are related. #23. A company implemented an employee training program to improve job performance (Effective, Neutral, Ineffective). After the training, they collected data from a sample of employees and classified.</pre>
	#33. A company implemented an employee training program to improve job performance (Effective, Neutral, Ineffective). After the training, they collected data from a sample of employees and classifies # Sample data: # ```python # Sample data: Job performance levels before (rows) and after (columns) training # data = np.array([[50, 30, 20], [30, 40, 30], [20, 30, 40]]) import numpy as np from scipy.stats import chi2_contingency data = np.array([[50, 30, 20], [30, 40, 30], [20, 30, 40]]) chi2, p, _, _ = chi2_contingency(data)
n []:	<pre># Use the following data: # ```python</pre>
n []:	print("Training changed job performance.") else: print("No significant change.") Training changed job performance. #24.A company produces three different versions of a product: Standard, Premium, and Deluxe. The company wants to determine if there is a significant difference in customer satisfaction scores among # Use the following data:

