EE473 HomeWork3

Halil İbrahim Güllük 2015401225

I. PART A

Fig. 1. Magnitude of Ideal Frequency Response

II. PART B

Fig. 2. Magnitudes of Desired Frequency Response

As it has 1's near zero and near 2π , and 0's between them, it does actually look like a low-pass filter.

III. PART C

Because of the fact that it is delayed version of a signal by $\frac{N-1}{2}$, whose frequency response is real; it's frequency response must be something real multiplied with $e^{-j\omega\frac{N-1}{2}}$. Then our phase angle is nothing but $-\omega\frac{N-1}{2}$.

After computing and wrapping to the range $(0, 2\pi)$ we get; $H_p = [0, 3.49, 0.69, 4.18, 1.39, 4.88, 2.09, 5.58, 2.79]$

IV. PART D

As $H_m = [111000011]$ and we know H_p from Part C, then we can calculate **H** matrix as point-wise multiplication of H_m and exponential values of H_p . Then we can solve the equation $\mathbf{F}x = \mathbf{H}$ After solving we get impulse response which is shown in Fig.3

Fig. 3. Impulse Response Values are shown

V. PART E

Fig. 4.

Even if in the Fig.4 the x labels are shown from 0 to 8, it actually is going from 0 to 2000 in Discrete Time Fourier Transform of the signal. To do see clearly that they are actually equal the values that we got from ideal low-pass filter. And it can be easily seen that it verifies what we want.