LAB EXERCISE 6

Learning Outcomes:

To create linked views using d3.js, donut chart and bar chart.

Create new HTML file in VS Code. Type! and press Tab key to get skeleton of HTML code.

Load d3.js libraries and CSS style in the <head> section of HTML

```
<!-- Load d3.js -->
<script src="https://d3js.org/d3.v2.js"></script>
<style type="text/css">
        #pieChart {
            position:absolute;
            top:10px;
            left:10px;
            width:400px;
            height: 400px;
        #barChart {
        position:absolute;
        top:160px;
        left:410px;
        height: 250px;
        .slice {
        font-size: 12pt;
        font-family: Verdana;
        fill: white;
        font-weight: bold;
               }
        .axis text {
            font-family: Verdana;
            font-size: 11px;
        .title {
            font-family: Verdana;
            font-size: 20px;
        .xAxis {
            font-family: verdana;
            font-size: 11px;
            fill: black;
        .yAxis {
            font-family: verdana;
            font-size: 11px;
            fill: white;
</style>
```

Add two div areas in HTML body

Link javascript file

Save your HTML file

Lesson 1: Creating an interactive donut chart

Create a new javascript file named dashboard.js.

Step 1: Create a variable for text formatting

Step 2: Create a function to plot pie/donut chart.

There are few sections in this function including

- a) Dataset creation
- b) Setting for the pie chart
- c) SVG element
- d) arc
- e) arc animation
- f) title

```
function dsPieChart() {
.....
}
dsPieChart();
```

```
function dsPieChart() {
   var dataset = [
          {category: "Samad", measure: 0.30},
          {category: "Phang", measure: 0.25}, {category: "Johan", measure: 0.15}, {category: "Rita", measure: 0.05}, {category: "Lenny", measure: 0.18}, {category: "Pian", measure: 0.04},
          {category: "Siti", measure: 0.03}
   var
        width = 400,
             height = 400,
             outerRadius = Math.min(width, height) / 2,
             innerRadius = outerRadius * .999,
             // for animation
             innerRadiusFinal = outerRadius * .5,
             innerRadiusFinal3 = outerRadius* .45,
             color = d3.scale.category20()
   var vis = d3.select("#pieChart")
         .append("svg:svg") //create the SVG element
                                     //associate data
         .data([dataset])
         .attr("width", width)
                                     //set the width and height
         .attr("height", height)
         .append("svg:g")
                                       /make a group to the chart
         //move the center of the pie chart
         .attr("transform", "translate(" + outerRadius + "," +
outerRadius + ")");
   var arc = d3.svg.arc()
                                  // create <path> elements
          .outerRadius (outerRadius) .innerRadius (innerRadius);
   // for animation
   var arcFinal = d3.svg.arc()
                 .innerRadius(innerRadiusFinal)
                .outerRadius (outerRadius);
   var arcFinal3 = d3.svg.arc()
                 .innerRadius(innerRadiusFinal3)
                 .outerRadius (outerRadius);
   var pie = d3.layout.pie()
         .value(function(d) { return d.measure; });
   var arcs = vis.selectAll("g.slice")
          .data(pie)
                                  //associate the generated pie data
          .enter()
                                  //create <g> elements
          .append("svg:g") //create a group to hold each slice
          .attr("class", "slice") //set style in the slices
          .on("mouseover", mouseover)
.on("mouseout", mouseout)
          .on("click", up)
```

```
arcs.append("svg:path")
               //set the color for each slice
               .attr("fill", function(d, i) { return color(i); } )
               .attr("d", arc)
                                 // actual SVG path
               .append("svg:title") //mouseover title
               .text(function(d) { return d.data.category + ": " +
formatAsPercentage(d.data.measure); });
        d3.selectAll("g.slice").selectAll("path").transition()
                   .duration(750)
                   .delay(10)
                   .attr("d", arcFinal )
     // Add a label to the larger arcs, translated to the arc centroid
     arcs.filter(function(d) { return d.endAngle - d.startAngle > .1; })
               .append("svg:text")
           .attr("dy", ".35em")
           .attr("text-anchor", "middle")
           .attr("transform", function(d) { return "translate(" +
arcFinal.centroid(d) + ")rotate(" + angle(d) + ")"; })
         //.text(function(d) { return formatAsPercentage(d.value); })
           .text(function(d) { return d.data.category; })
      // Computes the label angle of an arc, convert from rad to deg.
         function angle(d) {
            var a = (d.startAngle + d.endAngle) * 90 / Math.PI - 90;
             return a > 90 ? a - 180 : a;
         }
         // Pie chart title
         vis.append("svg:text")
         .attr("dy", ".35em")
           .attr("text-anchor", "middle")
           .text("Revenue 2022")
           .attr("class","title");
         function mouseover() {
           d3.select(this).select("path").transition()
               .duration(750)
               .attr("d", arcFinal3);
         }
         function mouseout() {
           d3.select(this).select("path").transition()
               .duration(750)
               .attr("d", arcFinal);
         }
   function up(d, i) {
   /* update bar chart when user selects piece of the pie chart */
                     updateBarChart(d.data.category, color(i));
   }
```

Step 3: Set Initial group value. By default, all sections of pie chart are selected.

```
var group = "All";
```

Step 4: Get data from CSV and Create Bar chart within d3.csv

```
d3.csv("revenueData.csv", function(revdata){
   function datasetChosen(group) {
     var ds = [];
     for (x in revdata) {
         if(revdata[x].group==group){
             ds.push(revdata[x]);
         }
      return ds;
    }
/*
        ########## BAR CHART #######################
        */
    //set margin to plot bar chart
    function dsBarChartBasics() {
        var margin = {top: 30, right: 5, bottom: 20, left: 50},
        width = 500 - margin.left - margin.right,
        height = 250 - margin.top - margin.bottom,
        colorBar = d3.scale.category20(),
        barPadding = 1
        return {
            margin : margin,
            width : width,
            height : height,
            colorBar : colorBar,
            barPadding : barPadding
        }
        ;
    }
```

```
function dsBarChart() {
        var firstDatasetBarChart = datasetChosen(group);
        var basics = dsBarChartBasics();
        var margin = basics.margin,
            width = basics.width,
            height = basics.height,
            colorBar = basics.colorBar,
            barPadding = basics.barPadding
        //set x and y scale
        var xScale = d3.scale.linear()
                    .domain([0, firstDatasetBarChart.length])
                    .range([0, width]);
        var yScale = d3.scale.linear()
                    .domain([0, d3.max(firstDatasetBarChart, function(d) {
return d.income; })])
                    .range([height, 0]);
        //Create SVG element, select css style for bar chart
        var svg = d3.select("#barChart")
                    .append("svg")
                    .attr("width", width + margin.left + margin.right)
                    .attr("height", height + margin.top + margin.bottom)
                    .attr("id","barChartPlot")
        var plot = svg.append("g")
                    .attr("transform", "translate(" + margin.left + "," +
margin.top + ")")
                    plot.selectAll("rect")
                    .data(firstDatasetBarChart)
                    .enter()
                    .append("rect")
                    .attr("x", function(d, i) {
                        return xScale(i);
                    })
                    .attr("width", width / firstDatasetBarChart.length -
barPadding)
                    .attr("y", function(d) {
                        return yScale(d.income);
                    .attr("height", function(d) {
                        return height-yScale(d.income);
                    })
                    .attr("fill", "lightgrey")
        // Add y labels to plot
        plot.selectAll("text")
            .data(firstDatasetBarChart)
            .enter()
            .append("text")
            .text(function(d) {
                    return formatAsInteger(d3.round(d.income));
            .attr("text-anchor", "middle")
```

```
// Set x position to the left edge of each bar plus half the bar width
            .attr("x", function(d, i) {
                    return (i * (width / firstDatasetBarChart.length)) +
((width / firstDatasetBarChart.length - barPadding) / 2);
            .attr("y", function(d) {
                    return yScale(d.income) + 14;
            .attr("class", "yAxis")
        // Add x labels to chart
        var xLabels = svg.append("g")
            .attr("transform", "translate(" + margin.left + "," +
(margin.top + height) + ")")
        xLabels.selectAll("text.xAxis")
                .data(firstDatasetBarChart)
                .enter()
                .append("text")
                .text(function(d) { return d.category;})
                .attr("text-anchor", "middle")
    // Set x position to the left edge of each bar plus half the bar width
                .attr("x", function(d, i) {
                                        return (i * (width /
firstDatasetBarChart.length)) + ((width / firstDatasetBarChart.length -
barPadding) / 2);
                .attr("y", 15)
                .attr("class", "xAxis")
        // Add Title of bar chart
        svg.append("text")
            .attr("x", (width + margin.left + margin.right)/2)
            .attr("y", 15)
            .attr("class","title")
            .attr("text-anchor", "middle")
            .text("Overall Income Breakdown 2022")
        }
//execute bar chart function
        dsBarChart();
```

/* ** UPDATE CHART ** */

```
/* updates bar chart on request. Set the function as global */
           window.updateBarChart= function(group, colorChosen) {
                   var currentDatasetBarChart = datasetChosen(group);
                   var basics = dsBarChartBasics();
                   var margin = basics.margin,
                       width = basics.width,
                       height = basics.height,
                       colorBar = basics.colorBar,
                       barPadding = basics.barPadding
                   var xScale = d3.scale.linear()
                       .domain([0, currentDatasetBarChart.length])
                       .range([0, width])
                   var yScale = d3.scale.linear()
                   .domain([0, d3.max(currentDatasetBarChart, function(d) {
  return d.income; })])
                   .range([height,0])
                   var svg = d3.select("#barChart svg");
                   var plot = d3.select("#barChartPlot")
                       .datum(currentDatasetBarChart)
/* Note that here we only need to select the elements */
                   plot.selectAll("rect")
                   .data(currentDatasetBarChart)
                   .transition()
                       .duration(750)
                       .attr("x", function(d, i) \{
                           return xScale(i);
                       })
                       .attr("width", width / currentDatasetBarChart.length
  - barPadding)
                       .attr("y", function(d) {
                           return yScale(d.income);
                       })
                       .attr("height", function(d) {
                           return height-yScale(d.income);
                       })
                       .attr("fill", colorChosen)
  // target the text element(s) which has a yAxis class defined
                   plot.selectAll("text.yAxis")
                       .data(currentDatasetBarChart)
                       .transition()
                       .duration(750)
                       .attr("text-anchor", "middle")
                       .attr("x", function(d, i) {
```

```
return (i * (width /
currentDatasetBarChart.length)) + ((width /
currentDatasetBarChart.length - barPadding) / 2);
                    .attr("y", function(d) {
                            return yScale(d.income) + 14;
                    .text(function(d) {
                        return formatAsInteger(d3.round(d.income));
                    .attr("class", "yAxis")
// target the text element(s) which has a title class defined
                svg.selectAll("text.title")
                    .attr("x", (width + margin.left + margin.right)/2)
                    .attr("y", 15)
                    .attr("class","title")
                    .attr("text-anchor", "middle")
                    .text(group + "'s Income Breakdown 2022")
            }
```

}); //close d3.csv

Step 4: Test your script.

Sample Output

Reference: http://bl.ocks.org/diethardsteiner/3287802

LAB TASK

Modify the dashboard.js script.

- a. Create Line chart and associate it to main pie/donut chart. Plot the line based on year and performance data in csv file.
- b. Consider appropriate pre-attentive attributes such as main title, label, color, legend,etc.

Submission item: HTML file.

Submission platform: ULearn

Deadline: 30th October 2023