Getting Started

CS771: Introduction to Machine Learning
Purushottam Kar

Please enrol on Piazza

http://tinyurl.com/ml17-18adf

Recap

Input driven ML

Batch Learning

Active Learning Robust Learning

Semi-supervised Supervised Learning
Learning Online Learning

Unsupervised Learning

Reinforcement Learning

August 2, 2017 26

Output driven ML

Process driven ML

30 August 2, 2017

ML Primitives

A first look

Image Tagging

Celebrity Names

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

Image Tagging as Multi-label Classification

Celebrity Names

1. Asin

2. Angelina

3. Aamir

4. Brad

5. Bradley

6. Channing

7. Deepika

8. Dhanush

9. Ellen

10.Hansika

11. Hrithik

12.lleana

13.Jared

14. Jennifer

15.Julia

16.Kajal

17. Katrina

18.Kevin

19.Lupita

20.Meryl

21. Mohanlal

22.Nayantara

23.Peter

24.Prabhas

25.Rajnikanth

26.Shahrukh

27. Suriya

28.Sonam

29.Taapsee

30. Vikram

Image Tagging

Face Detection

Face Tagging

Face Detection

Face Detection as Binary Classification

Face Detection as Regression

Given any bounding box, predict the likelihood score of it containing a single face

Face Detection as Ranking

Celebrity Names

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

Celebrity Names

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

Celebrity Names

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

Celebrity Names

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

Celebrity Names

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

Celebrity Names

1. Angelina	0.01
2. Brad	0.01
3. Bradley	0.01
4. Channing	0.01
5. Ellen	0.99
6. Jared	0.01
7. Jennifer	0.25
8. Julia	0.34
9. Kevin	0.01
10.Lupita	0.01
11. Meryl	0.45
12.Peter	0.01

Celebrity Names

1. Angelina	0.01
2. Brad	0.25
3. Bradley	0.99
4. Channing	0.01
5. Ellen	0.01
6. Jared	0.01
7. Jennifer	0.01
8. Julia	0.01
9. Kevin	0.11
10.Lupita	0.01
11. Meryl	0.01
12.Peter	0.01

Celebrity Names

1. Angelina	0.65
2. Brad	0.01
3. Bradley	0.01
4. Channing	0.01
5. Ellen	0.44
6. Jared	0.01
7. Jennifer	0.01
8. Julia	0.99
9. Kevin	0.01
10.Lupita	0.01
11. Meryl	0.22
12.Peter	0.01

Note: a separate regression problem for each celebrity

Celebrity Names

1. Angelina	0.65
2. Brad	0.01
3. Bradley	0.01
4. Channing	0.01
5. Ellen	0.44
6. Jared	0.01
7. Jennifer	0.01
8. Julia	0.99
9. Kevin	0.01
10.Lupita	0.01
11. Meryl	0.22
12.Peter	0.01

... or else, a multi-regression /vector regression problem

Celebrity Names

1. Angelina	0.65
2. Brad	0.01
3. Bradley	0.01
4. Channing	0.01
5. Ellen	0.44
6. Jared	0.01
7. Jennifer	0.01
8. Julia	0.99
9. Kevin	0.01
10.Lupita	0.01
11. Meryl	0.22
12.Peter	0.01

Celebrity Names

- 5. Ellen
- 8. Julia
- 11. Meryl
- 1. Angelina
- 4. Channing
- 6. Jared
- 7. Jennifer
- 2. Brad
- 9. Kevin
- 10. Lupita
- 3. Bradley
- 12. Peter

Celebrity Names

- 3. Bradley
- 2. Brad
- 9. Kevin
- 6. Jared
- 12. Peter
- 4. Channing
- 7. Jennifer
- 8. Julia
- 11. Meryl
- 10. Lupita
- 1. Angelina
- 5. Ellen

Celebrity Names

8. Julia

11. Meryl

10. Lupita

5. Ellen

1. Angelina

7. Jennifer

3. Bradley

2. Brad

9. Kevin

12. Peter

6. Jared

4. Channing

Note: can use regression to solve the ranking problem!

Celebrity Names

- 8. Julia
- 11. Meryl
- 10. Lupita
- 5. Ellen
- 1. Angelina
- 7. Jennifer
- 3. Bradley
- 2. Brad
- 9. Kevin
- 12. Peter
- 6. Jared
- 4. Channing

... but need not ... ranking this way is not scalable

Celebrity Names

8. Julia

11. Meryl

10. Lupita

5. Ellen

1. Angelina

7. Jennifer

3. Bradley

2. Brad

9. Kevin

12. Peter

6. Jared

4. Channing

Exercise: Recommendation Systems

Multi-Classification Regression

Ranking

Multi-Label Classification

Binary Classification

ML Workflows

Revisited

Supervised Batch Binary Classification

Supervised Batch Binary Classification

Too much variety in Red class

Supervised Batch Binary Classification

Too much variety in Red class

Splitting Data Train Train Train Validation Data **Test** Test **Test**

August 4, 2017

"Held-out" validation set

Multiple Splits

Fantastic Features

... and how to find them

What is a feature?

Raw/Low-level features

Derived/ Highlevel features

What is raw for you may have been derived by someone else

Types of Features

- Numerical features (pixel value, temperature)
- Categorical features (income bracket, blood type)
- Structured features (graph, tree, list)
- Relational features (neighbourhood, similarity)
- Bagged features (count statistics of other features)
 - Bag of words, bag of edges
- Pooled features (max, average of other features)
 - Popular in neural networks
- Missing and latent/hidden features

Exert caution with features

- Tricks, mnemonics lessen cognitive load, increase speed
- Easy questions can be solved in one step with a mnemonic!
- Too many mnemonics can confuse you at time of exam

- Derived features make learning easier, faster at test
- What you are trying to predict is just another (latent) feature!
- Too many useless features can confuse classifier