ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет «Санкт-Петербургская школа экономики и менеджмента»

КУРСОВАЯ РАБОТА

по направлению подготовки 01.04.02 <u>Прикладная математика и информатика</u> образовательная программа «Анализ больших данных в бизнесе, экономике и обществе»

по теме:

«Применение методов машинного обучения для обнаружения депрессии/эпилепсии по данным функционального МРТ»

Работа сдана в ОСУП		Студентки группы № <u>МБД171</u>		
«»	2018 г.	<u>Демидовой Анастасии</u>		
		<u>Анатольевны</u>		
Защита состояла	ась			
«»	2018 г.			
		(подпись)		
Состав комисси	и и подписи:			
1		Руководитель		
2		к.фм.н., доцент Бурнаев Евгений		
3		Владимирович		
Оценка за рабо	ту()			
оценка по пяти и (десяти) бальной		(подпись)		
системе		(подпись)		

Санкт-Петербург 2018

Оглавление

Введение	2
Обзор литературы	4
Методы	5
Данные	5
Предобработка данных	5
Построение функциональной сети головного мозга.	6
Извлечение признаков	10
Отбор признаков и классификация	12
Результаты	13
Заключение	17
Список Литературы	18

Введение

Человеческий мозг представляет собой сложную систему взаимосвязанных и специализированных структур, функционирование которых связано с многочисленными текущими биофизическими и биохимическими процессами. Эти процессы различаются у здоровых людей и у пациентов с эпилепсией и депрессией.

Эпилепсия - это хроническое расстройство мозга, поражающее людей всех возрастов. Эпилепсия относится к числу наиболее распространенных и социально значимых неврологических заболеваний. Около 50 миллионов человек во всем мире имеют эпилепсию, о которой сообщается на веб-сайте Всемирной организации здравоохранения (ВОЗ) (http://www.who.int/mediacentre/factsheets/fs999/en/).

Депрессия относится к числу наиболее распространенных психиатрических заболеваний во всем мире, от которой страдают более 300 миллионов человек

(http://www.who.int/mediacentre/factsheets/fs369/en/).

Депрессия является наиболее частым психическим расстройством, связанным с эпилепсией. Однако эти сопутствующие заболевания часто остаются недиагностированными и невылеченными, поскольку между этими нарушениями происходят взаимодействия как в их клинических проявлениях, так и в результате их лечения. Всемирная организация здравоохранения и национальные учреждения здравоохранения признают, что эпилепсия и депрессия являются серьезной проблемой общественного здравоохранения (http://www.who.int/mediacentre/factsheets/fs999/en/). Неточная оценка и неправильный диагноз частично связаны с отсутствием информации, связанной с нарушением работы мозга. Такая информация может быть приобретена, среди прочего, с помощью современных методов нейровизуализации и вычислительной техники.

Функциональная магнитно-резонансная томография (фМРТ) может помочь определить диагноз и лучше понять патогенез депрессии и эпилепсии [1]. Визуализация мозга представляет собой эффективный инструмент для изучения функциональных аномалий расстройства депрессии и эпилепсии [2]. фМРТ измеряет спонтанную активность мозга

как низкочастотные колебания в кислородно-зависимых (blood oxygen level-dependent - BOLD) сигналах крови [3].

Большое количество исследований по фМРТ показало аномальную функциональную сеть головного мозга у пациентов с расстройствами мозга. Однако модели для построения функциональной сети имеют несколько ограничений. Функциональная сеть головного мозга - математическое представление мозга, где области головного мозга - это узлы и функциональные соединения между каждой парой областей мозга - ребра. Корреляции Пирсона является часто используемой моделью для построения функциональной сети головного мозга, в котором оценивается значение функциональной коннективности по коэффициенту корреляции между областями мозга [4].

Поскольку с помощью функциональной сети головного мозга могут быть исследованы расстройства головного мозга, многие методы машинного обучения применяются для классификации пациентов с расстройством мозга от здоровых пациентов. Важной ключевой особенностью нейровизуализации данных является ее высокая размерность. Например, изображения fMRI представлены 4D-массивом трехмерных изображений, снятых с задержкой по времени, с низким разрешением (около 10^5 вокселей) и полной размерностью порядка 10^7 . Поэтому выделение признаков играет ключевую роль в методах классификации функциональной сети головного мозга [5].

Цель данного исследования состоит в том, чтобы предложить автоматизированный и точный метод классификации пациентов с эпилепсией/депрессией от здоровых пациентов. Провести статистический анализ, чтобы найти значимые корреляции у здоровых людей и пациентов с эпилепсией/депрессией. Затем эти корреляции сравнить, чтобы найти изменения в функциональной сети головного мозга во время эпилепсии/депрессии и провести классификацию пациентов с депрессией\эпилепсией от здоровых. Предполагается, что предлагаемый подход в текущем исследовании может точно различать здоровых пациентов от пациентов с эпилепсией/депрессией, что в дальнейшем может быть использовано при медицинской диагностике пациентов, страдающих эпилепсией/депрессией. Кроме того, выбранные признаки в модуле отбора признаков и статистический анализ предоставляют

информацию о функциональном изменении у пациентов с эпилепсией/депрессией.

Обзор литературы

Во многих исследованиях было доказано, что расстройства мозга могут быть диагностированы с использованием функциональной магнитно-резонансной томографии [6]

Информация из функциональной магнитно-резонансной томографии может значительно помочь в решении задач классификации и медицинской диагностики. Однако извлечение знаний из фМРТ является сложным процессом из-за высокой размерности исходных данных. Таким образом, существует несколько способов работы с данными фМРТ с точки зрения методов машинного обучения.

Одним из возможных способов является работа с исходным снимком функционального МРТ с помощью методов глубокого обучения. Глубокое обучение успешно применяется во многих задачах классификации изображений [7]. Таким образом, это может стать мощным инструментом для поиска биомаркеров психических и неврологических заболеваний. Для этой цели используется современный раздел машинного обучения, сверточная нейронная сеть (CNN). Подход к глубокому изучению был успешно применен для классификации болезни Альцгеймера [8]. CNN с архитектурой LeNet-5 был адаптирован для классификации функциональных данных МРТ болезни Альцгеймера от контроля с точностью 96,85%.

Другим способом извлечения признаков из данных фМРТ является создание функциональной сети головного мозга [9], отображающей структуру внутренней работы головного мозга [10], [11], [12]. Признаки, подсчитанные по графу, полезны при представлении функциональных связей мозга [13]. Общий способ вычисления графовых характеристик связан с характеристиками для вершин графа (degree, nodal clustering coefficients, nodal centrality) и глобальными характеристиками по всему графу (measures of integrations, measures of segregations) [10], [11].

Данный подход был успешно применен для классификации больных с депрессией от здорового контроля, где для построения функциональной сети головного мозга использовалась разреженная модель, которая

рассматривает взаимосвязь между двумя областями мозга, учитывая все остальные области мозга [10]. Функциональная сеть измеряется восемью характеристиками на основе графа. Протестировано по данным фМРТ у 31 пациента с депрессией и 29 здоровых, метод достигает 95% ассигасу, 96.77% sensitivity и 93.10% specificity.

Для анализа графика связности также использовались различные методы на основе ядра, основанные на подобии пар графов [14] - [16]. Они позволяют не извлекать признаки, а работать с алгоритмами машинного обучения, используя ядра на графах. Например, метод Weisfeiler-Lehman был эффективно использован для классификации больных с когнитивным расстройством [17]. Данный метод показал точность 91.9%.

Методы

Данные

Рассматриваемый набор данных содержит функциональные MPT снимки в состоянии покоя 100 пациентов: 25 здоровых добровольцев, 25 пациентов с депрессивным расстройством, 25 пациентов с эпилепсией и 25 пациентов с эпилепсией и депрессивным расстройством. Набор данных также содержит клиническую информацию, включая пол, возраст, продолжительность заболевания и другие медицинские показатели.

Предобработка данных

Чтобы найти функциональные биомаркеры депрессии и эпилепсии, мы исследовали функциональные снимки T2*MRI EPI ([64; 64; 30] вокселей), которые повторялись 133 раза с временем повторения (TR) 3,7 секунды.

Перед анализом снимки фМРТ прошли стандартную предобработку. Была выполнена коррекция времени среза. Затем выполнялось центрирование и пространственное сглаживание. Приведенные изображения затем подвергались полосовому фильтру (0,08-0,009 Гц) для сохранения низкочастотных колебаний фМРТ в состоянии покоя, которые были предложены для отражения спонтанной активности нейронов [18]. Более высокие частоты происходят из белого вещества и других

физиологических шумов, таких как дыхательные и сердечные сигналы. Чтобы уменьшить влияние физиологических артефактов, сигнал всего мозга удалялся с помощью множественной линейной регрессии.

Наконец, используется атлас автоматической анатомической маркировки (AAL) [19] для сегментирования мозга на 117 отдельных районов, которые далее будут являться вершинами функциональной сети головного мозга.

Обработка снимков функционального мрт производилась с помощью библиотеки python Nilearn.

Построение функциональной сети головного мозга.

Вершины сети головного мозга были определены путем парцеляции всего мозга на 117 различных областях с использованием атласа автоматической анатомической маркировки (AAL). Для получения временного ряда сигналы в каждом регионе мозга были усреднены по всем вокселям и полученный сигнал использовался в качестве репрезентативного сигнала вершины. После предварительной обработки размерность матрицы данных составляет 133 * 117 для каждого объекта.

Ребра, связывающие две вершины, представляют функциональную коннективность между двумя соответствующими областями мозга. Функциональная коннективность определяется как статистическая зависимость между всеми парами областями мозга [4]. Высокая корреляция между временными рядами двух областей мозга отражает высокий уровень функциональной коннективности между ними.

Для определения связей (ребер) в сети головного мозга использовался коэффициент корреляции Пирсона всех пар областей AAL.

Полученная матрица коннективности:

Функциональная сеть головного мозга:

Построенная функциональная сеть головного мозга содержит все полученные связи между вершинами, которые могут быть незначимыми и вносить шум в данные. Поэтому, чтобы избавиться от незначимой корреляции различные методы статистического анализа были рассмотрены, а именно были применены следующие методы:

- 1) Тест стьюдента, где в качестве нулевой гипотезы принимаем, что коэффициент корреляции равен нулю.
- 2) Тест стьюдента с поправкой Бонферрони на множественное сравнение, где вычисляется групповая вероятность ошибки первого рода. Метод поправки Бонферрони утверждает, что для сокращения ложноположительных результатов, необходимо удалить гипотезы, для которых $pvalue_i < \alpha/m$, где m это общее число гипотез.
- 3) Процедура Бенжамини-Хохберга-Иекутиели, контролирующий ожидаемую долю ложных отклонений гипотез [20]. Процедура состоит в следующем:
 - а) Найти наибольшее k, такое что $pvalue_k \leq \alpha k/(m*c(m)) \; k=1...m, \; c(m) \; = \; \sum_{i=1}^m 1/i \; \; , \; \text{где } pvalue_k$ отсортированы по неубыванию.
 - b) Отвергнуть нулевую гипотезу для всех H(i), i=1...k

Минимальный уровень корреляции после удаления незначимых коэффициентов при уровне значимости 0.1, полученый по тесту Стьюдента - 0.15, с поправкой Бонферрони - 0.4 и по процедуре Бенжамини-Хохберга-Иекутиели - 0.29.

Чтобы извлечь признаки на основе графа из построенной функциональной сети головного мозга, исходные матрицы функциональной коннективности сначала преобразуются в двоичные матрицы, устанавливая все ненулевые связи в единицу.

Бинарная матрица, полученная по тесту Стьюдента:

Бинарная матрица, полученная с поправкой Бонферрони:

Бинарная матрица, полученная по процедуре Бенжамини - Хохберга - Иекутиели :

Как видно из рисунков, чем больше порог для уровня корреляции, тем меньше связей остаются между вершинами графа.

Извлечение признаков

Полученная бинарная матрица функциональной коннективности используется как матрица смежности для построения графа. Для формирования признаков считаются различные числовые характеристики графа с помощью библиотеки python Netxokx.

Числовые характеристики, описывающие каждую вершину графа [21]:

- Степень вершины (degree) количество ребер, соединенных с вершиной
- Средняя степень соседей вершины (average neighborhood degree) определяется как

$$k_i = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j$$

- где N(i) множество соседей вершины i, k_j степень вершины j, принадлежащей к множеству N(i).
- Коэффициент кластеризации (clustering coefficient) мера глобальной сегрегации. Коэффициент кластеризации определяются как число соседей данного узла, соединенный с другими своими соседями, описывающего уровень локальных окрестностей кластеризации сети. Коэффициент кластеризации узла *i* определяется как

$$C_i = \frac{2r_i}{k_i(k_i-1)}$$

где r_i - число треугольников вокруг узла i, а k_i - степень узла i.

- Средняя кратчайшая длина пути (average shortest path length)- мера глобальной интеграции, определяется как среднее количество ребер на кратчайшем пути от одной вершины до всех остальных.
- Degree centrality для вершины і представляет собой долю вершин, с которыми она связана. Значения degree centrality нормируются делением на максимально возможную степень простого графа с n-1 вершиной.
- Closeness centrality вершины і является обратной величиной среднего кратчайшего расстояния пути до і по всем n-1 достижимым вершинам.

$$C_i = \frac{n-1}{\sum\limits_{j=1}^{n-1} d(j,i)}$$

где d(j,i) длина кратчайшего пути из вершины j в i, n - число вершин, из которых можно придти в i.

• Betweenness centrality вершины определяется как доля всех кратчайших путей, проходящих через вершину.

$$b_i = \frac{1}{(n-1)(n-2)} \sum_{h,j \in N} \frac{\rho_{hj}(i)}{\rho_{hj}}$$

где $\rho_{hl}(i)$ количество кратчайших путей между вершинами h и j, проходящих через вершину i, и ρ_{hj} количество всех кратчайших путей между вершинами h и j.

• Eigenvectors centrality для узла і определяется из уравнения:

$$Ax = \lambda x$$

где А - матрица смежности графа с собственными значениями λ .

Числовые характеристики описывающие весь граф целиком:

- Средний коэффициент кластеризации (average clustering coefficient) по всему графу
- Local efficiency описывает, насколько эффективна связь между соседями вершины *i* при удалении этой вершины. Локальная эффективность это среднее значение обратной длины кратчайшего пути между прямыми соседями узла. Оно определяется как

$$E_{loc,i} = \frac{\sum_{j,h \in G_i} |d_{jh}(G_i)|^{-1}}{k_i(k_i-1)}$$

где G_i - множество соседних вершин для вершины $i,\ d_{jh}(G_i)$ - длина кратчайшего пути между вершинами j и h, который содержит соседей вершины i.

• Global efficiency - это средняя обратная кратчайшая длина пути. Определяется как

$$E = \frac{1}{n} \sum_{i \in N} \frac{\sum\limits_{j \in N, j \neq i} d_{ij}^{-1}}{n-1}$$

где n - количество вершин в графе, N - множество всех вершин в графе, d_{ij} длина кратчайшего пути между вершинами і и j.

Подсчитав все числовые характеристики функциональной сети головного мозга графов, получаем векторов признаков для классификации. Для каждого пациента вектор признаков имеет размерность 939, который состоит из 117 * 8 характеристик для каждой вершины и 3 характеристик для всего графа.

Отбор признаков и классификация

Отбор признаков и методы классификации были реализован в IPython с использованием библиотеки Sklearn (http://scikit-learn.org/).

Цель отбора признаков - удалить нерелевантные или избыточные признаки и выбрать информативные признаки, что может привести к лучшей эффективности классификации модели.

Были рассмотрели два метода отбора признаков:

- 1) С помощью функции SelectKBest(), которая выбирает лучшие признаки на основе статистических тестов: хи-квадрат и ANOVA;
- 2) На основе конкретной модели классификации с помощью функции Sklearn SelectFromModel(), использующей логистическую регрессию (LR) и классификатор случайных лесов (RFC).

С помощью данных методов отбирается 20 наиболее информативных признаков.

В качестве алгоритмов классификации были рассмотрены: метод опорных векторов (SVM), логистическая регрессия (LR), метод к ближайших соседей (kNN) и метод случайных лесов (RF).

Перед обучением данные были нормированы. Разделение выборки на обучающую и тестовую происходит до отбора признаков. Поиск сетки параметров моделей основывался на leave-one-out кросс-валидации с 10 повторениями. В качестве метрики качества классификаторов используется гос-аuc.

Результаты

Были рассмотрели различные диагностические задачи, выбрав для каждой из задачи данные из разных групп пациентов в качестве входных данных:

- Классификация пациентов с эпилепсией против здорового контроля (EvsH 25 = 25 пациентов);
- Классификация пациентов с депрессией против здорового контроля (DvsH 25 = 25 пациентов);
- Классификация пациентов с эпилепсией и депрессией против пациентов только с депрессией (DEvsD 25=25 пациентов);
- Классификация пациентов с эпилепсией и депрессией против пациентов только с эпилепсией (DEvsE 25=25 пациентов);

Сравнивая различные датасеты и уровни значимости для корреляции $\alpha = 0.01$, $\alpha = 0.05$, $\alpha = 0.1$ наилучшее значения для классификации показал уровень значимости $\alpha = 0.1$ по данным, полученным с помощью теста стьюдента. Данные, полученные используя поправку Бонферронои

процедуру Бенжамини - Хохберга - Иекутиели, для классификации эпилепсии/депрессии не подходят, как как было обнулено много слабых связей, которые важны для классификации.

1. Классификация для пациентов с эпилепсией от здорового контроля

Классификато р	Параметры	Метод отбора признаков	mean roc_auc	std
SVM	C = 1, gamma =0.001 kernel = rbf	SelectFromModel(estimator = RandomForest)	0.53	0.2
LR	C = 0.0001 penalty = 12	SelectFromModel(estimator = RandomForest)	0.52	0.2
RF	n_estimators =100	SelectFromModel(estimator = LogisticRegression)	0.45	0.16
kNN	n_neighbors = 23 p = 1 weights = uniform	SelectKBest(ttest)	0.56	0.17

Лучшая модель - kNN

2. Классификация пациентов с депрессией от здорового контроля

Классификато р	Параметры	Метод отбора признаков	mean roc_auc	std
SVM	C = 10, gamma =0.001 kernel = rbf	SelectKBest(ANOVA)	0.76	0.14
LR	C = 0.0001 penalty = 12	SelectFromModel(estimator = RandomForest)	0.76	0.13
RF	n_estimators =130	SelectKBest(ANOVA)	0.73	0.16
kNN	n_neighbors = 17 p = 2 weights = distance	SelectFromModel(estimator = LogisticRegression)	0.76	0.15

Лучшая модель - kNN

3. Классификация пациентов с эпилепсией и депрессией против пациентов только с эпилепсией

Классификато	Параметры	Метод отбора	mean	std
--------------	-----------	--------------	------	-----

p		признаков	roc_auc	
SVM	C = 1, gamma =0.001 kernel = rbf	SelectKBest(ttest)	0.65	0.2
LR	C = 0.0001 penalty = 12	SelectKBest(ttest)	0.65	0.2
RF	n_estimators =190	SelectFromModel(estimator = LogisricRegression)	0.66	0.14
kNN	n_neighbors = 14 p = 1 weights = distance	SelectKBest(ttest)	0.64	0.17

Лучшая модель - RF

4. Классификация пациентов с эпилепсией и депрессией против пациентов только с депрессией

Классификато р	Параметры	Метод отбора признаков	mean roc_auc	std
SVM	C = 100,	SelectFromModel(0.67	0.14

	gamma =0.001 kernel = rbf	estimator = LogisticRegression)		
LR	C = 0.01 penalty = 12	SelectFromModel(estimator = LogisticRegression)	0.58	0.15
RF	n_estimators =130	SelectFromModel(estimator = LogisticRegression)	0.57	0.15
kNN	n_neighbors = 23 p = 1 weights = uniform	SelectFromModel(estimator = LogisticRegression)	0.55	0.18

Лучший метод - SVM

Как видно из результатов, хорошее качество предсказания получилось при классификации пациентов с депрессией. Следовательно, депрессия в отличие от эпилепсии может быть диагностирована по данным функционального мрт. Также можно сделать вывод, что при депрессии происходят функциональные изменения в головном мозге, которые отображаются на снимках фМРТ. В то время как при эпилепсии функциональных изменений мозга не выявляются.

Заключение

В данной работе предложена схема анализа данных для обработки данных фМРТ, основанный на методах анализа графов и методах

распознавания образов, чтобы классифицировать пациентов с эпилепсией/депрессией от здоровых пациентов.

Метод классификации, используемый в этом исследовании, состоит из четырех модулей, а именно: предварительная обработка, извлечение признаков, отбор признаков и классификация. Модуль извлечения признаков основан на подсчете различных характеристик функционального графа головного мозга. Модуль отбора признаков выбирает наиболее информативные признаки и улучшает точность окончательной классификации. В модуле классификации используется метод опорных векторов (SVM), логистическая регрессия (LR), метод k-ближайших соседей (kNN) и метод случайных лесов (RF).

Из полученных результатов можно сделать вывод, что данный подход отлично подходит для классификации пациентов с депрессией.

Список Литературы

- [1] X. Guo, B. Liu, L. Chen, G. Chen, Y. Pan, and J. Zhang, "Bayesian inference for functional dynamics exploring in fMRI data," Computational and Mathematical Methods in Medicine, vol. 2016, Article ID 3279050, 9 pages, 2016.
- [2] B. Zhang, M. Li, W. Qin et al., "Altered functional connectivity density in major depressive disorder at rest," European Archives of Psychiatry and Clinical Neuroscience, vol. 266, no. 3, pp. 239–248, 2016.
- [3] Jinhui Wang, Xinian Zuo and Yong He, "Graph-based network analysis of resting-state functional MRI", Frontiers in systems neuroscience, vol. 4, article 14, 2010.
- [4] Gael Varoquauxa,, R. Cameron Craddock, "Learning and comparing functional connectomes across subjects", NeuroImage, Elsevier, 2013, 80, pp.405-415.
- [5] M. Xi, J. Sun, L. Liu, F. Fan, and X. Wu, "Cancer feature selection and classification using a binary quantum-behaved particle swarm optimization and

- support vector machine," Computational and Mathematical Methods in Medicine, vol. 2016, Article ID 3572705, 9 pages, 2016.
- [6]"Applications of functional magnetic resonance imaging in psychiatry", *Journal of Magnetic Resonance Imaging*, vol. 23, no. 6, pp. 851-861, 2006.
- [7] N. Dvornek, P. Ventola, K. Pelphrey and J. Duncan, "Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks", 2018.
- [8] S. Sarraf and G. Tofighi, "Classification of Alzheimer's Disease using fMRI Data and Deep Learning Convolutional Neural Networks", *Arxiv.org*, 2018. [Online]. Available: https://arxiv.org/abs/1603.08631. [Accessed: 15- Apr-2018].
- [9] S. Smith, K. Miller, G. Salimi-Khorshidi, M. Webster, C. Beckmann, T. Nichols, J. Ramsey and M. Woolrich, "Network modelling methods for FMRI", 2018.
- [10] X. Wang, Y. Ren and W. Zhang, "Depression Disorder Classification of fMRI Data Using Sparse Low-Rank Functional Brain Network and Graph-Based Features", 2018.
- [11] T. Xu, K. Cullen, B. Mueller, M. Schreiner, K. Lim, S. Schulz and K. Parhi, "Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI", 2018.
- [12]J. Nielsen, B. Zielinski, P. Fletcher, A. Alexander, N. Lange, E. Bigler, J. Lainhart and J. Anderson, "Multisite functional connectivity MRI classification of autism: ABIDE results", 2018.
- [13] Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage. 2010 Sep;52(3):1059–69
- [14] S. Takerkart, G. Auzias, B. Thirion and L. Ralaivola, "Graph-Based Inter-Subject Pattern Analysis of fMRI Data", *Academia.edu*, 2018. [Online].

Available:

http://www.academia.edu/12310833/Graph-Based_Inter-Subject_Pattern_Analysis of fMRI Data. [Accessed: 15- Apr- 2018].

- [15]B. Jie, "The New Graph Kernels on Connectivity Networks for Identification of MCI", 2018.
- [16] K. Gkirtzou, J. Honorio, D. Samaras, R. Goldstein and M. Blaschko, "fMRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics", *Hal.inria.fr*, 2018. [Online]. Available: https://hal.inria.fr/hal-00845068. [Accessed: 15- Apr-2018].
- [17]B. Jie, D. Zhang, C. Wee and D. Shen, "Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification", 2018.
- [18] Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA, et al. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci 2007;104:18265–9.
- [19] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou et al., "Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single subject brain," NeuroImage, vol. 15, no. 1, pp. 273–289, 2002.
- [20] Daniel Yekutieli, Yoav Benjamini, "Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics", Journal of Statistical Planning and Inference 82 (1999) 171-196
- [21] Jinhui Wang, Xinian Zuo and Yong He, "Graph-based network analysis of resting-state functional MRI", Frontiers in Systems Neuroscience, 2010.