### 第6章 LR分析

- 6.1 自下而上分析及其LR分析概述
- 6.2 LR (0) 分析
- 6.3 SLR(1) 分析
- 6.4 LR (1) 分析
- 6.5 LALR(1)分析
- 6.6 使用二义文法
- 6.7 语法分析程序的自动构造工具YACC

清华大学出版社 TSINGHUA UNIVERSITY BI

### 自下而上分析算法: 能力强、构造复杂

最常用和最有效的模型---移进-归约



$$S \rightarrow E$$
  $E \rightarrow T \mid E + T$   $T \rightarrow int \mid (E)$ 

**Reduce:** 如能找到一产生式  $A \rightarrow w$  且栈中的内容是 qw (q 可能为空),则可以将其归约为 qA,即倒过来用这个产生式。

如上例,若栈中内容是 (int,我们使用产生式 T-> int 并把栈中内容归约为(T。

Shift: 如不能执行一个归约且在未消化的输入中还有token,就把它从输入移到栈中。

如上例,假定栈中内容是(,输入中还有 int+int)#。不能对(执行一个归约,因为它不和任何产生式的右端匹配。所以把输入的第一个符号移到栈中,于是栈中内容是 (int,而余留的输入是 +int)#。

Reduce**的一个特殊情况**: 栈中的全部内容w归约为开始符号S (即施用 S -> w), 且没有余留输入了, 意味着已成功分析了整个输入串。

移进归约分析中还会出现一种情况,就是出错, 比如当前的token不能构成一个合法句子的一部 分,例如上面的文法,试分析 int+)时就会发生 错误。 清华大学出版社

SINGHUA UNIVERSITY PRESS

### 移进-归约模型分析(int + int)的过程

| STACK      | REMAINING INPUT |
|------------|-----------------|
| 1          | (int + int)#    |
| 2 (        | int + int)#     |
| 3 (int     | + int)#         |
| 4 (T       | + int)#         |
| 5 (E       | + int)#         |
| 6 (E+      | int)#           |
| 7 (E + int | )#              |
| 8 (E+T     | )#              |
| 9 (E       | )#              |
| 10 (E)     | #               |
| 11 T       | #               |
| 12 E       | #               |
| 13 S       | #               |

#### PARSER ACTION

Shift

Shift

Reduce: T -> int

Reduce: E -> T

Shift

Shift

Reduce: T -> int

Reduce:  $E \rightarrow E + T$ 

Shift

Reduce:  $T \rightarrow (E)$ 

Reduce: E -> T

Reduce: S -> E

$$S \rightarrow E$$

$$E \rightarrow T \mid E + T$$

$$T \rightarrow int \mid (E)$$

Reduce:  $E \rightarrow E + T$ 

why不用 E -> T?

(E

)#

若使用了E -> T, 在栈中形成的(E+E不是规范句型的**活前缀**(viable prefixes)

(E+E不能和任何产生式的右端匹配 (E+E)不是规范 句型

活前缀是规范句型的前缀,但不超过句柄

移进归约分析的栈中出现的内容加上剩余输入构成 规范句型

# 规范推导 规范句型 规范归约

最右推导: 在推导的任何一步 $\alpha \Rightarrow \beta$ , 其中 $\alpha$ 、 $\beta$ 是句型, 都是 对α中的最右非终结符进行替换

最右推导被称为规范推导

由规范推导所得的句型称为规范句型

G[S]: 
$$S \rightarrow E$$
  $E \rightarrow E+T|T$   $T \rightarrow (E)|int$   
 $S \Rightarrow E \Rightarrow T \Rightarrow (E) \Rightarrow (E+T) \Rightarrow (E+int)$   
 $\Rightarrow (T+int) \Rightarrow (int+int)$ 

#### 规范归约

假定 $\alpha$ 是G的一个句子,称序列 $\alpha_n,\alpha_{n-1},...,\alpha_0$ 是 $\alpha$ 的一个规范 归约,

#### 如果该序列满足:

- (1)  $\alpha_n = \alpha$
- (2)  $\alpha_0$ 为文法的开始符号
- (3) 对任何j, 0 < j <= n,  $\alpha_{i-1}$ 是从 $\alpha_i$ 经把句柄替换为相应产生式 的左部而得到的

### 文法要求

shift-reduce or reduce-reduce 冲突 (conflicts)

分析程序不能决定是shift 还是 reduce 或者分析程序归约时有多个产生式可选

例子 (dangling else):

 $S \rightarrow if E then S \mid if E then S else S$ 

如输入if E then if E then S else S, 分析某一时刻,栈的内容:if E then if E then S 而 else 是下一 token,归约还是移进?

# - 神shift-reduce实现技术 LR 分析

L

R 最右推导

分析器模型和分析算法 LR 分析特征讨论

### LR分析器模型



# LR分析表

|   |    | A  | CTIO      | N         |            |     |   | GOT | O |
|---|----|----|-----------|-----------|------------|-----|---|-----|---|
|   | a  | c  | e         | b         | d          | #   | S | A   | В |
| 0 | S2 |    |           |           |            |     | 1 |     |   |
| 1 |    |    |           |           |            | acc |   |     |   |
| 2 |    |    |           | S4        |            |     |   | 3   |   |
| 3 |    | S5 |           | <b>S6</b> |            |     |   |     |   |
| 4 | r2 | r2 | r2        | r2        | r2         | r2  |   |     |   |
| 5 |    |    |           |           | <b>S</b> 8 |     |   |     | 7 |
| 6 | r3 | r3 | r3        | r3        | r3         | r3  |   |     |   |
| 7 |    |    | <b>S9</b> |           |            |     |   |     |   |
| 8 | r4 | r4 | r4        | r4        | r4         | r4  |   |     |   |
| 9 | r1 | r1 | r1        | r1        | r1         | r1  |   |     |   |
|   |    |    |           |           |            |     |   |     |   |

### LR分析算法

```
置ip指向输入串w的第一个符号
令S为栈顶状态
a是ip指向的符号
repeat begin
    if ACTION[S,a]=S_i
   then begin PUSH j,a(进栈)
             ip 前进(指向下一输入符号)
        end
   else if ACTION[S,a]=r<sub>i</sub> (第j条产生式为A→β)
```

### LR分析算法

```
then begin
     pop |β| 项
     令当前栈顶状态为S'
     push GOTO[S', A]和A(进栈)
  end
  else if ACTION[s,a]=acc
     then return (成功)
     else error
end
```

### 例6.1:

G[S]: S 
$$\rightarrow$$
aAcBe[1]  
A  $\rightarrow$ b[2]  
A  $\rightarrow$ Ab[3]  
B  $\rightarrow$ d[4]

w=abbcde#

| Step | <b>States</b> | <b>Syms</b> | The rest of input | Actio | n Goto    |
|------|---------------|-------------|-------------------|-------|-----------|
| 1    | 0             | #           | abbcde#           | s2    |           |
| 2    | 02            | #a          | bbcde#            | s4    |           |
| 3    | 024           | #ab         | bcde#             | r2    | goto(2,A) |
| 4    | 023           | #aA         | bcde#             | s6    |           |
| 5    | 0236          | #aAb        | cde#              | r3    |           |
| 6    | 023           | #aA         | cde#              | s5    |           |
| 7    | 0235          | #aAc        | de#               | s8    |           |
| 8    | 02358         | #aAcd       | e#                | r4    |           |
| 9    | 02357         | #aAcB       | e#                | s9    |           |
| 10   | 023579        | #aAcBe      | #                 | r1    |           |
| 11   | 01            | #S          |                   | acc   |           |

清水土豆里面对

文法**G**[S]:

- (1)  $S \rightarrow aAcBe$
- (2)  $A \rightarrow b$
- $(3) A \rightarrow Ab$
- $(4) B \rightarrow d$



| 步骤 符号栈 输入符号串 S 动作  1) # abbcde# 移进 2) #a bbcde# 移进 3) #ab bcde# 移进 5) #aAb cde# 归约(A→b) 6) #aA cde# 移进 7) #aAc de# 移进 8) # aAcd e# 归约(B→d) 9) #aAcB e# 移进 10) #aAcBe # 归约 11) #S # 接受 |     |        |                      |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----------------------|----------|
| 2) #a bbcde# 移进 3) #ab bcde# 归约(A→b) 4) #aA bcde# P归约(A→b) 5) #aAb cde# 归约(A→Ab) 6) #aA cde# 移进 7) #aAc de# 移进 8) # aAcd e# 归约(B→d) 9) #aAcB e# 移进 10) #aAcBe # 归约                    | 李骤  | N谷号栈 U | 输入符号串 <sup>ESS</sup> | 动作       |
| 3) #ab bcde# 归约(A→b) 4) #aA bcde# 鸦进 5) #aAb cde# 归约(A→Ab) 6) #aA cde# 移进 7) #aAc de# 移进 8) # aAcd e# 归约(B→d) 9) #aAcB e# 移进 10) #aAcBe # 归约                                          | 1)  | #      | abbcde#              | 移进       |
| 4) #aA bcde# 移进 5) #aAb cde# 归约(A→Ab) 6) #aA cde# 移进 7) #aAc de# 移进 8) # aAcd e# 归约(B→d) 9) #aAcB e# 移进 10) #aAcBe # 归约                                                               | 2)  | #a     | bbcde#               | 移进       |
| 5) #aAb cde# 归约(A→Ab) 6) #aA cde# 移进 7) #aAc de# 移进 8) # aAcd e# 归约(B→d) 9) #aAcB e# 移进 10) #aAcBe # 归约                                                                               | 3)  | #ab    | bcde#                | 归约(A→b)  |
| 6) #aA cde# 移进<br>7) #aAc de# 移进<br>8) # aAcd e# 归约(B→d)<br>9) #aAcB e# 移进<br>10) #aAcBe # 归约                                                                                         | 4)  | #aA    | bcde#                | 移进       |
| 7) #aAc de# 移进<br>8) # aAcd e# 归约(B→d)<br>9) #aAcB e# 移进<br>10) #aAcBe # 归约                                                                                                           | 5)  | #aAb   | cde#                 | 归约(A→Ab) |
| 8) # aAcd e# 归约(B→d) 9) #aAcB e# 移进 10) #aAcBe # 归约                                                                                                                                   | 6)  | #aA    | cde#                 | 移进       |
| 9) #aAcB e# 移进<br>10) #aAcBe # 归约                                                                                                                                                     | 7)  | #aAc   | de#                  | 移进       |
| 10) #aAcBe # 归约                                                                                                                                                                       | 8)  | # aAcd | e#                   | 归约(B→d)  |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                 | 9)  | #aAcB  | e#                   | 移进       |
| 11) #5 # 接受                                                                                                                                                                           | 10) | #aAcBe | #                    | 归约       |
|                                                                                                                                                                                       | 11) | #S     | #                    | 接受       |

对输入串abbcde#的移进-规约分析过程

符号串abbcde是否是G[S]的句子

 $S \Rightarrow aAcBe \Rightarrow aAcde \Rightarrow aAbcde \Rightarrow abbcde$ 

| 步骤  | 符号栈    | 输入符号串   | TS SOFFIUA UNIV        | 状态栈    | PLACTION       | GOTO                  |  |
|-----|--------|---------|------------------------|--------|----------------|-----------------------|--|
| 1)  | #      | abbcde# | 移进                     | 0      |                | S <sub>2</sub>        |  |
| 2)  | #a     | bbcde#  | 移进                     | 02     |                | <b>S</b> <sub>4</sub> |  |
| 3)  | #ab    | bcde#   | 归约( <mark>A→b</mark> ) | 024    | r <sub>2</sub> | 3                     |  |
| 4)  | #aA    | bcde#   | 移进                     | 023    |                | 5,                    |  |
| 5)  | #aAb   | cde#    | 归约(A→Ab)               | 0236   | r <sub>3</sub> | 3                     |  |
| 6)  | #aA    | cde#    | 移进                     | 023    |                | S <sub>5</sub>        |  |
| 7)  | #aAc   | de#     | 移进                     | 0235   |                | S <sub>8</sub>        |  |
| 8)  | #aAcd  | e#      | 归约(B→d)                | 02358  | $r_4$          | 7                     |  |
| 9)  | #aAcB  | e#      | 移进                     | 02357  | •              | S <sub>9</sub>        |  |
| 10) | #aAcBe | #       | 归约(S→aAcBe)            | 023579 | $\mathbf{r}_1$ | 1                     |  |
| 11) | #S     | #       | 接受                     | 01     | •              | acc                   |  |

#### 对输入串abbcde#的LR分析过程

ミルと ナーニン エードニッチ

#### 文法G[S]:

- (1)  $S \rightarrow aAcBe$
- (2)  $A \rightarrow b$
- (3)  $A \rightarrow Ab$
- (4)  $B \rightarrow d$

s<sub>i</sub>:移进,将状态i和输入<del>芯</del>进栈

r<sub>i</sub>:归约,用第i个产生式归约,同时状态栈与符号栈退出相应个符号,并把 GOTO表相应状态和第i个产生式的左 部非终结符入栈。

|                |                |                                                                                               |                                                                                                                                                                                           |                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>~</b>                                                                                                                                                                                                                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|----------------|----------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | ACTION         |                                                                                               |                                                                                                                                                                                           |                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GOTO                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| a              | С              | e                                                                                             | Ь                                                                                                                                                                                         | d                                    | #                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                                                                                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| S <sub>2</sub> |                |                                                                                               |                                                                                                                                                                                           |                                      |                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                |                |                                                                                               |                                                                                                                                                                                           |                                      | acc                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                |                |                                                                                               | S <sub>4</sub>                                                                                                                                                                            |                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                | <b>S</b> 5     |                                                                                               | S <sub>6</sub>                                                                                                                                                                            |                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| r <sub>2</sub> | r <sub>2</sub> | r <sub>2</sub>                                                                                | r <sub>2</sub>                                                                                                                                                                            | r <sub>2</sub>                       | r <sub>2</sub>                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                |                |                                                                                               |                                                                                                                                                                                           | S <sub>8</sub>                       |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| r <sub>3</sub> | r <sub>3</sub> | r <sub>3</sub>                                                                                | r <sub>3</sub>                                                                                                                                                                            | r <sub>3</sub>                       | r <sub>3</sub>                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                |                | <b>S</b> 9                                                                                    |                                                                                                                                                                                           |                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| r <sub>4</sub> | r <sub>4</sub> | r <sub>4</sub>                                                                                | r <sub>4</sub>                                                                                                                                                                            | r <sub>4</sub>                       | r <sub>4</sub>                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| r <sub>1</sub> | r <sub>1</sub> | r <sub>1</sub>                                                                                | r <sub>1</sub>                                                                                                                                                                            | r <sub>1</sub>                       | r <sub>1</sub>                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                | r <sub>2</sub> | a c s <sub>2</sub> s <sub>5</sub> r <sub>2</sub> r <sub>2</sub> r <sub>3</sub> r <sub>3</sub> | a c e s <sub>2</sub> s <sub>5</sub> r <sub>2</sub> r <sub>2</sub> r <sub>2</sub> r <sub>3</sub> r <sub>3</sub> r <sub>3</sub> s <sub>9</sub> r <sub>4</sub> r <sub>4</sub> r <sub>4</sub> | a       c       e       b         s2 | a       c       e       b       d         s2       s2       s4       s4       s5       s6       s6         r2       r2       r2       r2       r2       r2       r2       s8         r3       r3       r3       r3       r3       r3       r3       r3         r4       r4       r4       r4       r4       r4       r4 | a       c       e       b       d       #         s <sub>2</sub> acc         s <sub>2</sub> acc         s <sub>4</sub> s <sub>5</sub> s <sub>5</sub> s <sub>6</sub> r <sub>2</sub> | a       c       e       b       d       #       S         s <sub>2</sub> 1         s <sub>2</sub> acc         s <sub>4</sub> s <sub>5</sub> s <sub>6</sub> r <sub>2</sub> r <sub>2</sub> r <sub>2</sub> r <sub>2</sub> s <sub>8</sub> r <sub>3</sub> r <sub>3</sub> r <sub>3</sub> r <sub>3</sub> s <sub>9</sub> r <sub>4</sub> r <sub>4</sub> r <sub>4</sub> r <sub>4</sub> | a       c       e       b       d       #       S       A         s <sub>2</sub> -       -       -       1         s <sub>2</sub> -       -       -       1         acc       -       -       3         s <sub>5</sub> s <sub>6</sub> -       -         r <sub>2</sub> r <sub>2</sub> r <sub>2</sub> r <sub>2</sub> r <sub>2</sub> s <sub>8</sub> -       -       -         r <sub>3</sub> r <sub>3</sub> r <sub>3</sub> r <sub>3</sub> r <sub>3</sub> r <sub>4</sub> r <sub>4</sub> r <sub>4</sub> r <sub>4</sub> r <sub>4</sub> |  |

### LR 文法

对于一个cfg 文法,如果能够构造一张 LR 分析表,使得它的每一个入口均是唯一的(Sj, rj, acc, 空白),则称该 cfg 是LR 文法.

### LR分析

#### 特征:

- 规范的
- 符号栈中的符号串是规范句型的前缀,且其最右符号不超过句柄的末端(活前缀)
- 分析决策依据—栈顶状态和现行输入符号、识别活前缀的 DFA

#### 四种技术

LR(0) SLR(1) LR(1) LALR(1)

# LR(0) 分析

LR(0)文法 能力最弱,理论上最重要 存在FA 识别活前缀 识别活前缀的DFA如何构造 (LR(0)项目集规范族的构造) LR(0)分析表的构造

### 拓广文法

为使文法的初始符号不出现在任何产生式的右部,需对文法G[S]进行拓广:在原文法G中增加S'→S产生式。

### 文法G[S]:

- (1)  $S \rightarrow aAcBe$
- (2)  $A \rightarrow b$
- $(3) A \rightarrow Ab$
- (4)  $B \rightarrow d$

### 文法G[S']:

- (0) S'→S
- (1)  $S \rightarrow aAcBe$
- (2)  $A \rightarrow b$
- (3)  $A \rightarrow Ab$
- (4)  $B \rightarrow d$

#### 最右推导过程:

 $S' \Rightarrow S[0] \Rightarrow \alpha AcBe[1][0] \Rightarrow \alpha Acd[4]e[1][0]$ 

 $\Rightarrow$  aAb[3]cd[4]e[1][0]

 $\Rightarrow$  ab[2]b[3]cd[4]e[1][0]

规约时在栈中的句型的前缀

ab[2] aAb[3] aAcd[4] aAcBe[1] S[0] 规约前可在栈中出现的规范句型(不含句柄)的前缀

a,ab a,aA,aAb a,aA,aAc,aAcd a,aA,aAc,aAcB,aAcBe a,aA,aAc,aAcB,5

### 活前缀

给定文法G=(Vn,Vt, P, S), 若有规范推导  $S' \stackrel{*}{\Rightarrow} \alpha A \omega \Rightarrow \alpha \beta \omega, \gamma \neq \alpha \beta$  的 前 缀,则 称  $\gamma$  是 文 法 G的活前 缀.

#### 例如:

a,ab a,aA,aAb a,aA,aAc,aAcd a,aA,aAc,aAcB,aAcBe a,aA,aAc,aAcB,5

 $S \Rightarrow aAcBe \Rightarrow aAcde \Rightarrow aAbcde \Rightarrow abbcde$ 

## 识别活前缀的NFA



$$2$$
  $\xrightarrow{a}$   $3$   $\xrightarrow{b}$   $\boxed{4}$ 

$$5 \xrightarrow{a} 6 \xrightarrow{A} 7 \xrightarrow{b} 8$$

$$9 \xrightarrow{a} 10 \xrightarrow{A} 11 \xrightarrow{c} 12 \xrightarrow{d} (13)$$

$$14 \xrightarrow{a} 15 \xrightarrow{A} 16 \xrightarrow{c} 17 \xrightarrow{B} 18 \xrightarrow{e} 19$$



### $S' \Rightarrow S \Rightarrow aAcBe \Rightarrow aAcde \Rightarrow aAbcde \Rightarrow abibcde$

#### **DFA**



### 活前缀及可归前缀的计算

### 定义(非终结符的左文)

 $LC(A)=\{\beta \mid S' \overset{*}{\Longrightarrow} \beta A \omega, \beta \in V', \omega \in V_t^*\},$ 对拓广文法的开始符号S':

$$LC(S')=\{\epsilon\}$$

若 $B\rightarrow \gamma A\delta$ ,则: $LC(A)\supseteq LC(B).\{\gamma\}$ 

#### 清华大学出版社

TSINGHUA UNIVERSITY PRESS

G[S]: (0) S'
$$\rightarrow$$
S (1) S  $\rightarrow$ a A c B e  
(2)A  $\rightarrow$ b (3) A  $\rightarrow$ Ab (4)B  $\rightarrow$ d

#### 每个非终结符的左文方程组

$$LC(S')=\{\epsilon\}$$

$$LC(S)=LC(S').\{\epsilon\}$$

$$LC(A)=LC(S).\{a\}\cup LC(A)\{\epsilon\}$$

$$LC(B)=LC(S).\{aAc\}$$

化简为:

$$[S']=\varepsilon$$

$$[S]=[S']$$

$$[A] = [S]a + [A]$$

$$[B]=[S]aAc$$

#### 用代入法求解

$$[S']=\varepsilon$$

$$[S] = \varepsilon$$

$$[A]=a+[A]$$

$$[B]=aAc$$

$$\Leftrightarrow \Sigma = \{ [S'], [S], [A], [B], a, A, c \}$$

则方程两边都是∑上的正规式

清华大学出版社

ISINGHUA UNIVERSITY PRESS

G[S]: (0) S' $\rightarrow$ S (1) S  $\rightarrow$ a A c B e (2)A  $\rightarrow$ b (3) A  $\rightarrow$ Ab (4)B  $\rightarrow$ d

### 定义(产生式的LR(0)左文)

$$LR(0)C(A \rightarrow \alpha) = \{ \gamma | \gamma = \beta \alpha \blacksquare S' \underset{R}{\overset{*}{\Longrightarrow}} \beta A \omega \underset{R}{\Longrightarrow} \beta \alpha \omega, \omega \in V_t^* \}$$

推论:  $LR(0)C(A \rightarrow \alpha) = LC(A).\{\alpha\}$ 

### 则有:

$$LR(0)C(S' \rightarrow S)=S$$

$$LR(0)C(S \rightarrow aAcBe) = aAcBe$$

$$LR(0)C(A \rightarrow b) = ab$$

$$LR(0)C(A \rightarrow Ab) = aAb$$

$$LR(0)C(B\rightarrow d)=aAcd$$

$$(\Sigma = Vn \cup Vt)$$
上的正规式



链接

#### **DFA**



### LR(0)项目

### 构造LR(0)项目

### LR(0)项目或配置 (item or configuration)

### ---在右端某一位置有圆点的文法G的产生式

$$A \rightarrow xyz$$
  $A \rightarrow xyz$   
 $A \rightarrow x.yz$   
 $A \rightarrow xy.z$   
 $A \rightarrow xyz.$ 

如: S→aAd

 $S \rightarrow .aAd S \rightarrow a .Ad S \rightarrow aA .d S \rightarrow aAd .$ 

### 活前缀与句柄的关系

$$G[S]$$
:   
 $*$   $\alpha A \omega = R \beta \omega$  r是 $\alpha \beta$ 的前缀,则称

r是G的一个活前缀。

- 1. 活前缀已含有句柄的全部符号,表明产生式 $A \rightarrow \beta$ 的 右部  $\beta$ 已出现在栈顶
- 2.活前缀只含句柄的一部分符号表明 $A \rightarrow β_1β_2$ 的右部子串 $β_1$ 已出现在栈顶,期待从输入串中看到 $β_2$ 推出的符号
- 3. 活前缀不含有句柄的任何符号,此时期望A→β的右部所 推出的符号串

### 活前缀、句柄、 LR(0)项目

为刻划这种分析过程中的文法G的每一个产生式的右部符号已 有多大一部分被识别(出现在栈顶)的情况,分别用标有圆 点的产生式来指示位置。

 $A \rightarrow \beta$ . 刻划产生式 $A \rightarrow \beta$ 的 右部 $\beta$ 已出现在栈顶

 $A \rightarrow \beta_1 . \beta_2$  刻划 $A \rightarrow \beta_1 \beta_2$ 的右部子串 $\beta_1$ 已出现在栈顶,期待从输入串中看到 $\beta_2$ 推出的符号

 $A \rightarrow .\beta$  刻划没有句柄的任何符号在栈顶,此时期望 $A \rightarrow \beta$ 的右部所推出的符号串

对于 $A \rightarrow ε$ 的LR(0)项目只有 $A \rightarrow .$ 

### 由LR(0)项目构造 识别活前缀的NFA

清华大学出版社

TSINGHUA UNIVERSITY PRESS

G[S]: (0) S' $\rightarrow$ S (1) S  $\rightarrow$ a A c B e (2) A  $\rightarrow$ b (3) A  $\rightarrow$ Ab (4)B  $\rightarrow$ d

文法的项目为:

1. 
$$S' \rightarrow .S$$
 2.  $S' \rightarrow S$ .

3. S 
$$\rightarrow$$
.aAcBe 4. S  $\rightarrow$ a.AcBe 5. S  $\rightarrow$ aA.cBe

6. S 
$$\rightarrow$$
aAcBe 7. S  $\rightarrow$ aAcBe 8. S  $\rightarrow$ aAcBe.

9. 
$$A \rightarrow b$$
 10.  $A \rightarrow b$ .

11. A 
$$\rightarrow$$
.Ab 12. A  $\rightarrow$ A.b 13. A  $\rightarrow$ Ab.

14. B 
$$\rightarrow$$
.d 15. B  $\rightarrow$ d.

#### 项目就是状态!

# 项目(状态)之间的转换

#### 转换方法如下:

若有项目i:  $X \rightarrow X_1 X_2 \dots X_{i-1} \cdot X_i \dots X_n$ 

项目j:  $X \rightarrow X_1 X_2 \dots X_{i-1} X_i \cdot X_{i+1} \dots X_n$ 

则从状态i到状态j连一条标记为Xi的箭弧。

若有项目i:  $X \rightarrow \gamma \cdot A \delta$ 

项目k:  $A \rightarrow . \beta$ 

则从状态i画标记为的箭弧到状态k

点在最右边的项目为句柄识别态,即NFA的终态。

NFA?!

看看原来的



再将NFA转换成DFA?

Forward(DFA)

# LR(0)项目集的规范族

## LR(0) 项目集的闭包CLOSURE

若当前处于A->X•YZ刻划的情况,期望移进 First(Y)中的某些符号,假如有产生式

 $Y \rightarrow u \mid w$  。 那么 $Y \rightarrow \bullet u$ 和 $Y \rightarrow \bullet w$ 这两个项目便是刻划期望移进 First(Y)中的某些符号的情况。

 $A \rightarrow X \cdot YZ$ 

Y → •u

 $Y \rightarrow \bullet_W$ 

这三个项目对应移进归约分析的同一个状态,这 三个项目构成一个**配置集(项目集)**,对应每 个配置集,分析表将有一个状态。

# LR(0)项目集闭包的构造

```
LR(0)项目集的闭包CLOSURE
function CLOSURE (I); /* I 是项目集*/
{ J:= I;}
  <u>repeat</u> for J 中的每个项目A \rightarrow \alpha .B β 和产生式
       B \rightarrow \gamma,若B \rightarrow .\gamma 不在J中
       <u>do</u> 将 B→.γ 加到J中
  until 再没有项目加到J中
  return J
```

### 转换函数GO (I, X)

# GO 函数

GO(I, X) === CLOSURE(J);

其中, I:项目集, X: 文法符号,

J={任何形如A→α X. β 的项目|A→α .X β  $\in$  I}

## LR(0)项目集规范族的构造

```
计算LR(0)项目集规范族
C = \{I_0, I_1, ..., I_n\}
Procedure Itemsets(G');
  Begin C := \{ CLOSURE (\{S' \rightarrow .S\}) \}
     Repeat
       For C 中每一项目集I和每一文法符号x
       Do if GO(I, x) 非空且不属于C
          Then 把 GO(I, x) 放入C中
       Until C 不再增大
  End;
```

# LR(0)项目集的规范族构成识别一个文法活前缀的DFA的状态的全体。

#### 文法G:

- $(0)S' \rightarrow E$   $(1) E \rightarrow aA$   $(2) E \rightarrow bB$

- (3)  $A \rightarrow cA$  (4)  $A \rightarrow d$  (5)  $B \rightarrow cB$

(7)  $B \rightarrow d$ 

## LR(0) 项目集规范族(识别G的活前缀的DFA):

$$I_0: S \rightarrow E$$

$$I_1: S \rightarrow E$$
.

$$I_0: S \rightarrow E$$
  $I_1: S \rightarrow E$ .  $I_2: E \rightarrow a.A$ 

$$E \rightarrow aA$$

$$A \rightarrow cA$$

$$E \rightarrow .bB$$

$$A \rightarrow d$$

$$I_3$$
:  $E \rightarrow b.B$ 

$$B \rightarrow .cB$$

$$B \rightarrow .d$$

$$I_4$$
:  $A \rightarrow c.A$ 

$$A \rightarrow .cA$$

$$A \rightarrow .d$$

$$I_5: B \rightarrow c.B$$

$$B \rightarrow .cB$$

$$B \rightarrow d$$

$$E \rightarrow aA$$
.

I<sub>7</sub>:

$$E \rightarrow bB$$
.

**I**<sub>8</sub>:

$$A \rightarrow cA$$
.

$$I_0: B \rightarrow cB$$
.

$$I_{10}: A \rightarrow d$$
.

$$I_{11}$$
:  $B \rightarrow d$ .

# LR(0)分析表的构造

假定C= $\{I_0, I_1, \ldots, I_n\}$ , 令每个项目集 $I_k$ 的下标k 为分析器的一个状态,因此,G`的LR(0)分析表含有状态0, 1, ....., n。令那个含有项目S` $\rightarrow$ .S的 $I_k$ 的下标k为初态。ACTION和GOTO可按如下方法构造:

若项目 $A \rightarrow \alpha.a$ β属于 $I_k$ 且GO ( $I_k$ , a)=  $I_j$ , a为终结符,则置ACTION[k, a]为"把状态j和符号a移进栈",简记为"sj";

若项目 $A \rightarrow \alpha$ .属于 $I_k$ , 那么对任何终结符a, 置ACTION[k, a]为 "用产生式 $A \rightarrow \alpha$ 进行规约",简记为 "rj";其中,假定 $A \rightarrow \alpha$ 为文法G`的第j个产生式;

若项目 $S \rightarrow S$ .属于 $I_k$ ,则置ACTION[k, #]为"接受", 简记为"acc";

若 $GO(I_k, A)=I_j, A为非终结符,则置<math>GOTO(k, A)=j;$ 分析表中凡不能用规则1至4填入信息的空白格均置上"出错标志"。

按上述算法构造的含有ACTION和GOTO两部分的分析表,如果每个入口不含多重定义,则称它为文法G的一张LR(0)表。具有LR(0)表的文法G称为一个LR(0)文法。

LR(0)文法是无二义的。

TSINGHUA UNIVERSITY PRESS

文法G:(0) S' $\rightarrow$ E (1) E $\rightarrow$ aA (2) E $\rightarrow$ bB

(3)  $A \rightarrow cA$  (4)  $A \rightarrow d$  (5)  $B \rightarrow cB$  (6)  $B \rightarrow d$ 

| ACTION |    |    |    |     |     |  | GOTO |   |   |
|--------|----|----|----|-----|-----|--|------|---|---|
|        | a  | c  | b  | d   | #   |  | E    | A | В |
| 0      | S2 |    | S3 |     |     |  | 1    |   |   |
| 1      |    |    |    |     | acc |  |      |   |   |
| 2      |    | S4 |    | S10 |     |  |      | 6 |   |
| 3      |    | S5 |    | S11 |     |  |      |   | 7 |
| 4      |    | S4 |    | S10 |     |  |      | 8 |   |
| 5      |    | S5 |    | S11 |     |  |      |   | 9 |
| 6      | r1 | r1 | r1 | r1  | r1  |  |      |   |   |
| 7      | r2 | r2 | r2 | r2  | r2  |  |      |   |   |
| 8      | r3 | r3 | r3 | r3  | r3  |  |      |   |   |
| 9      | r5 | r5 | r5 | r5  | r5  |  |      |   |   |
| 10     | r4 | r4 | r4 | r4  | r4  |  | _    |   |   |
| 11     | r6 | r6 | r6 | r6  | r6  |  |      |   |   |

# **LR(0)项目**

根据圆点所在的位置和圆点后是终结符还是非终结符或为空 把项目分为以下几种:

移进项目,形如  $A \rightarrow \alpha \bullet \alpha \beta$   $\alpha$ 是终结符, $\alpha$ ,  $\beta \in V^*$  下同.

待约项目, 形如  $A \rightarrow \alpha \cdot B\beta$ 

**归约项目**,形如  $A \rightarrow \alpha$  •

接受项目, 形如 S' →S •

 $A \rightarrow \epsilon$ 的LR(0)项目只有 $A \rightarrow \bullet$  是归约项目

作用?

#### 例7.1 G[S]为:

 $S \rightarrow a A c B e$ 

 $A \rightarrow b$ 

 $A \rightarrow Ab$ 

 $B \rightarrow d$ 

- 1)构造识别活前缀的DFA
- 2)构造它的LR(0)分析表。
- 3)分别给出对输入符号串abbcde和abbce的LR(0)分析步骤。

TSINGHUA UNIVERSI G[S]拓广为:  $G[L] = ab^+cde$  $S' \rightarrow S$  $S \rightarrow a A c B e$  $A \rightarrow b$  $A \rightarrow b$  $A \rightarrow Ab$  $A \rightarrow Ab$  $B \rightarrow d$  $I_2: S \rightarrow a \cdot A \cdot B \cdot e$  $I_1: S'$ A  $I_3: S \rightarrow a \land c \land B e$  $A \rightarrow \bullet b$  $A \rightarrow A \cdot b$  $A \rightarrow \bullet Ab$ a  $I_0: S' \rightarrow S$  $l_5: S \rightarrow a A c \cdot B e$  $S \rightarrow \bullet a A c B e$ +  $I_7: S \rightarrow a A c B \cdot e$  $B \rightarrow \bullet d$  $l_0: S \rightarrow a A c B e \bullet$  $l_s: B \to d$ 

#### **DFA**



看看NFA

# 例7.1 G[S]的LR(0)分析表

|   | ACTION         |                       |                |                       |                |                | GOTO |   |   |
|---|----------------|-----------------------|----------------|-----------------------|----------------|----------------|------|---|---|
|   | a              | С                     | e              | Ь                     | d              | #              | S    | A | В |
| 0 | S <sub>2</sub> |                       |                |                       |                |                | 1    |   |   |
| 1 |                |                       |                |                       |                | acc            |      |   |   |
| 2 |                |                       |                | <b>S</b> <sub>4</sub> |                |                |      | 3 |   |
| 3 |                | <b>S</b> <sub>5</sub> |                | 56                    |                |                |      |   |   |
| 4 | r <sub>2</sub> | r <sub>2</sub>        | r <sub>2</sub> | r <sub>2</sub>        | r <sub>2</sub> | r <sub>2</sub> |      |   |   |
| 5 |                |                       |                |                       | S <sub>8</sub> |                |      |   | 7 |
| 6 | r <sub>3</sub> | r <sub>3</sub>        | r <sub>3</sub> | r <sub>3</sub>        | r <sub>3</sub> | r <sub>3</sub> |      |   |   |
| 7 |                |                       | 5,             |                       |                |                |      |   |   |
| 8 | r <sub>4</sub> | r <sub>4</sub>        | r <sub>4</sub> | r <sub>4</sub>        | r <sub>4</sub> | r <sub>4</sub> |      |   |   |
| 9 | r <sub>1</sub> | r <sub>1</sub>        | r <sub>1</sub> | r <sub>1</sub>        | r <sub>1</sub> | r <sub>1</sub> |      |   |   |

# 对输入串abbcde#的分析过程

| <b>Step</b> | states. | Syms. | The rest of input | action g   | <u>soto</u> |
|-------------|---------|-------|-------------------|------------|-------------|
| 1           | 0       | #     | abbcde#           | <b>s2</b>  |             |
| 2           | 02      | #a    | bbcde#            | <b>s4</b>  |             |
| 3           | 024     | #ab   | bcde#             | r2         | 3           |
| 4           | 023     | #aA   | bcde#             | <b>s6</b>  |             |
| 5           | 0236    | #aAb  | cde#              | r3         | 3           |
| 6           | 023     | #aA   | cde#              | <b>s</b> 5 |             |
| 7           | 0235    | #aAc  | de#               | <b>s8</b>  |             |
| 8           | 02358   | #aAcd | l e#              | r4         | 7           |
| 9           | 02357   | #aAcE | 8 e#              | <b>s9</b>  |             |
| 10          | 023579  | #aAcE | Be #              | r1         | 1           |
| 11          | 01      | #S    | #                 | acc        |             |

对输入串abbce#的分析过程

| <b>Step</b> | states.     | Syms. | The rest of input | <u>action</u> | action goto |  |
|-------------|-------------|-------|-------------------|---------------|-------------|--|
| 1           | 0           | #     | abbce#            | <b>s2</b>     |             |  |
| 2           | 02          | #a    | bbce#             | <b>s4</b>     |             |  |
| 3           | 024         | #ab   | bce#              | r2            | 3           |  |
| 4           | 023         | #aA   | bce#              | <b>s6</b>     |             |  |
| 5           | <b>0236</b> | #aAb  | ce#               | r3            | 3           |  |
| 6           | 023         | #aA   | ce#               | <b>s</b> 5    |             |  |
| 7           | 0235        | #aAc  | e#                | 出错            |             |  |

### 说明abbce#不是例7.1 文法 G[S]的句子

# The end of part 1