HW4. for Multivariate Statistics ll

November 10, 2020

201611531/Department of Statistics/Jeong Hojae

Chapter 8. Correspondence Analysis(CRA)

1. [Exercise 8.7] [Table 1] is a two-way table of the frequency and age of women's breast diagnosis

[Table 1]

λσο	Frequency of Breast Self Diagnosis		
Age	monthly	frequently	do not
< 45	91	90	51
45 - 49	150	200	155
50 +	109	198	172

(1) Make a null hypothesis for [Table 1] and apply the Chi-square test for this null hypothesis.

H0: The two variables 'Age' and 'Frequency of Breast Self Diagnosis' are independent of each other. (not relevant)

> chisq.test(0)

Pearson's Chi-squared test

data: O

X-squared = 25.086, df = 4, p-value = 4.835e-05

P-value is 4.835e-05. It is small than 0.05 (significance level). We can reject H0. So, the two variables 'Age' and 'Frequency of Breast Self Diagnosis' are related to each other.

(2) Apply the simple CRA according to the Simple CRA algorithm [Table 8.2.2].

[Step 1] n*p two-way table data matrix:
> O

[,1] [,2] [,3]

[1,] 91 90 51

[2,] 150 200 155

[3,] 109 198 172

[Step 2] Corresponence Matrix:

> F

[,1] [,2] [,3]

[1,] 0.07483553 0.07401316 0.04194079

[2,] 0.12335526 0.16447368 0.12746711

[3,] 0.08963816 0.16282895 0.14144737

Row and Column centroids

> r;c;

[1] 0.1907895 0.4152961 0.3939145

[1] 0.2878289 0.4013158 0.3108553

Centred correspondence matrix

> cF

[,1] [,2] [,3]

[1,] 0.019920793 -0.002553670 -0.017367123

[2,] 0.003821037 -0.002191179 -0.001629858

[3,] -0.023741830 0.004744849 0.018996981

[Step 3] SVD of residual matrix

marginal sum of rows and columns f

> Dr;Dc

[,1] [,2] [,3]

[1,] 2.289406 0.000000 0.000000

[2,] 0.000000 1.551748 0.000000

[3,] 0.000000 0.000000 1.593305

[,1] [,2] [,3]

[1,] 1.863944 0.000000 0.000000

[2,] 0.000000 1.578545 0.000000

[3,] 0.000000 0.000000 1.793581

[Step 4] Coordinates of rows and columns of Simple CRA Map:

> A;B

 $[,1] \qquad [,2]$

<45 -0.2548027 0.007356626

45-49 -0.0185402 -0.008323941

50+ 0.1429583 0.005212637

 $[,1] \qquad [,2]$

monthly -0.2068429 -0.004437538

frequently 0.0237898 0.008539783

do not 0.1608084 -0.006916074

[Step 5] Goodness-of fit of s(>=2)-dimensional Simple CRA Map:

eigenvalue and GOF

> rbind(round(eig, 3),round(per, 3))

[,1] [,2] [,3]

[1,] 0.021 0.000 0

[2,] 99.759 0.241 0

1-dimsion's GOF is 99.759.

2-dimsion's GOF is 0.241.

(3) Obtain and interpret the simple CRA Plot.

SCRA Algorithm : 이원분할표

Relative positions of the points: similarities and differences among rows and columns categories.

"<45" and "45-49" of Age are relatively similar group corresponding to "monthly" of frequency of breast self-diagnosis because they have same direction.

"50+" of Age is relatively similar group corresponding to "do not" and "frequently" of frequency of breast self-diagnosis because they have same direction.

We can see that frequency of breast self-diagnosis is high when their age is less than 50.

(4) Apply the simple CRA using the function ca() of R's library(ca).

> sca

Principal inertias (eigenvalues):

1 2

Value 0.02058 5e-05 Percentage 99.76% 0.24%

Rows:

 <45</th>
 45-49
 50+

 Mass
 0.190789
 0.415296
 0.393914

 ChiDist
 0.254909
 0.020323
 0.143053

 Inertia
 0.012397
 0.000172
 0.008061

 Dim.
 1
 -1.776152
 -0.129238
 0.996519

 Dim.
 2
 1.042431
 -1.179499
 0.738629

Columns:

Mass0.2878290.4013160.310855ChiDist0.2068900.0252760.160957Inertia0.0123200.0002560.008053Dim. 1-1.4418390.1658311.120947Dim. 2-0.6287971.210084-0.980005

The use of R's function ca() for the CRA gives the same result as (2) and (3).

2. Consider a three-way [Table 2] for AIDS Symptoms by AZT Use and Race. [Table 2]

Race	17T II	AIDS Symptoms	
	AZT Use	Yes	No
White	Yes	14	93
	No	32	81
Black	Yes	11	52
	No	12	43

(1) Make a null hypothesis for [Table 2] and test this null hypothesis.

 ${
m H0}$: The three variables 'Race' and 'AZT USE', 'AIDS Symptoms' are independent of each other. (not relevant)

> mantelhaen.test(AZT)

Mantel-Haenszel chi-squared test with continuity correction

data: AZT

Mantel-Haenszel X-squared = 6.0799, df = 1, p-value = 0.01367 alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

0.2818621 0.8414208

sample estimates:

common odds ratio

0.4869955

P-value is 4.835e-05. It is small than 0.05 (significance level). We can reject H0. So, the two variables 'Age' and 'Frequency of Breast Self Diagnosis' are related to each other.

(2) How can you make a 2-ways table [Table 3] from [Table 2]?

[Table 3]

Race	AZT Use	AIDS Symptoms	
		Yes	No
White + Black	Yes	25	145
	No	44	124

[Table 3] does not divide table according to race compared to [Table 2] Ignore race variables and add values corresponding to each variable.

> apply(AZT,c(1,2),sum)

AIDS_Symptoms

AZT_Use Yes No

Yes 25 145

No 44 124

(3) Make a null hypothesis and apply the Chi-square test for [Table 3].

H0: The two variables 'AZT Use' and 'AIDS Symptoms' are independent of each other. (not relevant)

> chisq.test(AZT_sum)

Pearson's Chi-squared test with Yates' continuity correction

data: AZT_sum

X-squared = 6.171, df = 1, p-value = 0.01299

P-value is 0.01299. It is small than 0.05 (significance level). We can reject H0. So, the two variables 'AZT Use' and 'AIDS Symptoms' are related to each other.

(4) Obtain and interpret the simple CRA Plot for [Table 3].

SCRA Algorithm : 이원분할표

Relative positions of the points: similarities and differences among rows and columns categories.

"AZT_USE_No" is relatively similar group corresponding to "AIDS_Symptoms_Yes" because they have same direction.

"AZT_USE_Yes" is relatively similar group corresponding to "AIDS_Symptoms_No" because they have same direction.

We can see that AZT is effective in eliminating AIDS symptoms.

```
main="SCRA Algorithm : 이원분할표")
#1-1
                                                 text(B[, 1:2], rownames(B), cex=0.8, col=2, pos=3)
O<-matrix(c(91, 90, 51,
                                                 points(A[, 1:2],pch=16, col=4)
           150, 200, 155,
                                                 text(A[, 1:2], rownames(A), cex=0.8, pos=3,
           109, 198, 172), byrow=T, nrow=3)
                                                 col=4)
chisq.test(0)
                                                 abline(v=0,h=0)
#1-2
                                                 #1-4
F \leftarrow O/sum(O)
                                                 O<-matrix(c(91, 90, 51,
r <- apply(F,1,sum)
                                                             150, 200, 155,
c <- apply(F,2,sum)
                                                             109, 198, 172), byrow=T, nrow=3)
                                                 rownames(O)<-c("<45", "45-49", "50+")
r;c;
                                                 colnames(O)<-c("monthly", "frequently", "do
Dr<- diag(1/sqrt(r))
                                                 not")
                                                 0
Dc<- diag(1/sqrt(c))
Dr;Dc
                                                 install.packages("ca")
cF < - F - r\% * \% t(c)
                                                 library(ca)
сF
                                                 sca=ca(O)
Y <- Dr%*%(cF)%*%Dc
                                                 sca
svd.Y \leftarrow svd(Y)
                                                 par(pty="s")
U <- svd.Y$u
                                                 plot(sca, main="SCRA package ca:
V <- svd Y$v
                                                 이원분할표")
D <- diag(svd.Y$d)
                                                 #2-1
A \leftarrow (Dr\%*\%U\%*\%D)[,1:2]
B \leftarrow (Dc\%*\%V\%*\%D)[,1:2]
                                                 AZT<-array(c(14,32,93,81,11,12,52,43),
rownames(A) <- c("<45", "45-49", "50+")
                                                            dim=c(2, 2, 2),
rownames(B) <- c("monthly", "frequently", "do
                                                            dimnames=list(AZT_Use=c("Yes",
not")
                                                 "No").
A;B
                                                                             AIDS_Symptoms
                                                 =c("Yes", "No"),
eig <- (svd.Y$d)^2
                                                                             response
per <- eig/sum(eig)*100
                                                 =c("White", "Black")))
gof <- sum(per[1:2])
rbind(round(eig, 3),round(per, 3))
                                                 mantelhaen.test(AZT)
#1-3
                                                 #2-2
par(pty="s")
                                                 apply(AZT,c(1,2),sum)
lim <-range(pretty(A))</pre>
                                                 AZT_sum=apply(AZT,c(1,2),sum)
plot(B[, 1:2],
xlab="Dim1(99.759%)",ylab="Dim2(0.241%)",xlim
                                                 #2-3
=lim,ylim=lim,pch=15,col=2,
                                                 chisq.test(AZT_sum)
```

```
#2.-4
                                                    rownames(B) <- c("AIDS_Symptoms_Yes",
                                                    "AIDS_Symptoms_No")
O=AZT_sum
F <- O/sum(O) #상대도수의 이원분할표로 이용
                                                    A;B
r \leftarrow apply(F,1,sum)
c <- apply(F,2,sum)
                                                    eig \leftarrow (svd.Y$d)^2
                                                    per <- eig/sum(eig)*100
Dr<- diag(1/sqrt(r))
                                                    gof <- sum(per[1:2])</pre>
                                                    rbind(round(eig, 3),round(per, 3))
Dc<- diag(1/sqrt(c))
r;c;Dr;Dc
cF < -F - r\% *\% t(c)
                                                    par(pty="s")
Y <- Dr%*%(cF)%*%Dc
                                                    \lim <-range(c(-0.3,0.3))
svd.Y \leftarrow svd(Y)
                                                     plot(B[, 1:2],
U <- svd.Y$u
                                                    xlab="Dim1(100%)",ylab="Dim2(0%)",xlim=lim,yli
V \leftarrow svd.Y$v
                                                    m=lim,pch=15,col=2,
D <- diag(svd.Y$d)
                                                          main="SCRA Algorithm : 이원분할표")
                                                    text(B[, 1:2],rownames(B),cex=0.8,col=2,pos=3)
A \leftarrow (Dr\%*\%U\%*\%D)[,1:2]
                                                    points(A[, 1:2],pch=16, col=4)
B \leftarrow (Dc\%*\%V\%*\%D)[,1:2]
                                                    text(A[, 1:2], rownames(A), cex=0.8, pos=3,
rownames(A) <- c("AZT_USE_Yes",
                                                    col=4)
"AZT_USE_No")
                                                    abline(v=0,h=0)
```