STA 221: LECTURE 6

KRISHNA BALASUBRAMANIAN

(University of California, Davis)

Spectral Clustering

GRAPH CLUSTERING

 \triangleright Given a graph G = (V, E, W)

V: nodes $\{v_1, \dots, v_n\}$

E: edges $\{e_1, \cdots, e_m\}$

W: weight matrix

$$W_{ij} = \begin{cases} w_{ij}, & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

▶ Goal: Partition V into k clusters of nodes

$$V = V_1 \cup V_2 \cup \cdots \cup V_k, \quad V_i \cap V_j = \phi, \ \forall i, j$$

SIMILARLY GRAPH

- ▷ Example: similarity graph
- \triangleright Given samples x_1, \ldots, x_n
- ▶ Weight (similarities) indicates "closeness of samples"

Similarity Graph: G(V,E,W)

V – Vertices (Data points)
E – Edge if similarity > 0
W - Edge weights (similarities)

Data

Similarities

Similarity graph

Partition the graph so that edges within a group have large weights and edges across groups have small weights.

SIMILARITY GRAPH

E.g., Gaussian kernel $W_{ij} = e^{-\|\mathbf{x}_i - \mathbf{x}_j\|^2/\sigma^2}$

SOCIAL GRAPH

- ▶ Nodes: users in social network
- ightharpoonup Edges: $W_{ij}=1$ if user i and j are friends, otherwise $W_{ij}=0$

□ Graph Representation □

Matrix Representation

Node	1	2	3	4	5	6	7	8	9
1	-	1	1	1	0	0	0	0	0
2	1	-	1	0	0	0	0	0	0
3	1	1	-	1	0	0	0	0	0
4	1	0	1	-	1	1	0	0	0
5	0	0	0	1	-	1	1	1	0
6	0	0	0	1	1	_	1	1	0
7	0	0	0	0	1	1	-	1	1
8	0	0	0	0	1	1	1	-	0
9	0	0	0	0	0	0	1	0	-

Partitioning into Two Clusters

 \triangleright Partition graph into two sets V_1, V_2 to minimize the cut value:

$$cut(V_1, V_2) = \sum_{v_i \in V_1, v_j \in V_2} W_{ij}$$

- \triangleright Also, the size of V_1, V_2 needs to be similar (balance)
- ▷ One classical way of enforcing balance:

$$\begin{array}{ll} \min\limits_{V_1,V_2} \;\; \mathsf{cut}\big(V_1,V_2\big) \\ \text{s.t.} \;\; |V_1|=|V_2|, \;\; V_1\cup V_2=\{1,\cdots,n\}, V_1\cap V_2=\phi \end{array}$$

 \Rightarrow this is NP-hard (cannot be solved in polynomial time, a.k.a. "bad problems")

KERNIGHAN-LIN ALGORITHM

- \triangleright Starts with some partitioning V_1, V_2
- ▷ Calculate change in cut if 2 vertices are swapped
- \triangleright Swap the vertices (1 in V_1 & 1 in V_2) that decease the cut the most
- ▷ Iterative until convergence
- ▶ Used when we need exact balanced clusters (e.g., circuit design)

OBJECTIVE FUNCTION THAT CONSIDERS BALANCE

▶ Ratio-Cut:

$$\min_{V_1,V_2} \left\{ \frac{\mathsf{Cut}(V_1,V_2)}{|V_1|} + \frac{\mathsf{Cut}(V_1,V_2)}{|V_2|} \right\} := \mathsf{RC}(V_1,V_2)$$

▶ Normalized-Cut:

$$\min_{V_1,V_2} \left\{ \frac{\mathsf{Cut}(V_1,V_2)}{\mathsf{deg}(V_1)} + \frac{\mathsf{Cut}(V_1,V_2)}{\mathsf{deg}(V_2)} \right\} := \mathsf{NC}(V_1,V_2),$$

where

$$\mathsf{deg}(V_c) := \sum_{v_i \in V_c, (i,j) \in \mathcal{E}} W_{i,j} = \mathsf{links}(V_c, V)$$

Generalize to k clusters

▶ Ratio-Cut:

$$\min_{V_1, \dots, V_k} \sum_{c=1}^k \frac{\operatorname{Cut}(V_c, V - V_c)}{|V_c|}$$

▶ Normalized-Cut:

$$\min_{V_1, \dots, V_k} \sum_{c=1}^k \frac{\operatorname{Cut}(V_c, V - V_c)}{\operatorname{deg}(V_c)}$$

REFORMULATION

- $ightharpoonup \operatorname{\mathsf{Recall}} \operatorname{\mathsf{deg}}(V_c) = \operatorname{\mathsf{links}}(V_c,V)$
- ▷ Define a diagonal matrix

$$D = egin{bmatrix} \deg(V_1) & 0 & 0 & \cdots \ 0 & \deg(V_2) & 0 & \cdots \ 0 & 0 & \deg(V_3) & \cdots \ dots & dots & dots & dots & dots \end{bmatrix}$$

- $\triangleright \mathbf{y}_c = \{0,1\}^n$: indicator vector for the *c*-th cluster
- ▶ We have

$$\mathbf{y}_c^T \mathbf{y}_c = |V_c|$$

$$\mathbf{y}_c^T D \mathbf{y}_c = \deg(V_c)$$

$$\mathbf{y}_c^T W \mathbf{y}_c = \operatorname{links}(V_c, V_c)$$

REFORMULATION

- $ightharpoonup \operatorname{\mathsf{Recall}} \operatorname{\mathsf{deg}}(V_c) = \operatorname{\mathsf{links}}(V_c,V)$
- ▷ Define a diagonal matrix

$$D = egin{bmatrix} \deg(V_1) & 0 & 0 & \cdots \ 0 & \deg(V_2) & 0 & \cdots \ 0 & 0 & \deg(V_3) & \cdots \ dots & dots & dots & dots & dots \end{bmatrix}$$

- $\triangleright \mathbf{y}_c = \{0,1\}^n$: indicator vector for the *c*-th cluster
- ▶ We have

$$egin{aligned} \mathbf{y}_c^T \mathbf{y}_c &= |V_c| \ \mathbf{y}_c^T D \mathbf{y}_c &= \deg(V_c) \ \mathbf{y}_c^T W \mathbf{y}_c &= \operatorname{links}(V_c, V_c) \end{aligned}$$

RATIO CUT

▶ Rewrite the ratio-cut objective:

$$RC(V_1, \dots, V_k) = \sum_{c=1}^k \frac{\text{Cut}(V_c, V - V_c)}{|V_c|}$$

$$= \sum_{c=1}^k \frac{\deg(V_c) - \text{links}(V_c, V_c)}{|V_c|}$$

$$= \sum_{c=1}^k \frac{\mathbf{y}_c^T D \mathbf{y}_c - \mathbf{y}_c^T W \mathbf{y}_c}{\mathbf{y}_c^T \mathbf{y}_c}$$

$$= \sum_{c=1}^k \frac{\mathbf{y}_c^T (D - W) \mathbf{y}_c}{\mathbf{y}_c^T \mathbf{y}_c}$$

$$= \sum_{c=1}^k \frac{\mathbf{y}_c^T L \mathbf{y}_c}{\mathbf{y}_c^T \mathbf{y}_c} \quad (L = D - W \text{ is "Graph Laplacian"})$$

More on Graph Laplacian

▷ L is symmetric positive semi-definite

 \triangleright For any x,

$$\mathbf{x}^T L \mathbf{x} = \frac{1}{2} \sum_{(i,j)} W_{ij} (x_i - x_j)^2$$

More on Graph Laplacian

- ▷ L is symmetric positive semi-definite
- ⊳ For any x,

$$\mathbf{x}^T L \mathbf{x} = \frac{1}{2} \sum_{(i,j)} W_{ij} (x_i - x_j)^2$$

▶ We have shown Ratio-Cut is equivalent to

$$\mathsf{RCut} = \sum_{c=1}^k \frac{\mathbf{y}_c^\mathsf{T} L \mathbf{y}_c}{\mathbf{y}_c^\mathsf{T} \mathbf{y}_c} = \sum_{c=1}^k (\frac{\mathbf{y}_c}{\|\mathbf{y}_c\|})^\mathsf{T} L \frac{\mathbf{y}_c}{\|\mathbf{y}_c\|}$$

 \triangleright Define $\bar{\mathbf{y}}_c = \mathbf{y}_c / \|\mathbf{y}_c\|$ (normalized indicator),

$$Y = [\bar{\mathbf{y}}_1, \bar{\mathbf{y}}_2, \cdots, \bar{\mathbf{y}}_k] \Rightarrow Y^T Y = I$$

Relaxed to real valued problem:

$$\min_{Y^TY=I} \operatorname{Trace}(Y^TLY)$$

Solution: Eigenvectors corresponding to the smallest k eigenvalues of L

▶ We have shown Ratio-Cut is equivalent to

$$\mathsf{RCut} = \sum_{c=1}^{k} \frac{\mathbf{y}_{c}^{T} L \mathbf{y}_{c}}{\mathbf{y}_{c}^{T} \mathbf{y}_{c}} = \sum_{c=1}^{k} (\frac{\mathbf{y}_{c}}{\|\mathbf{y}_{c}\|})^{T} L \frac{\mathbf{y}_{c}}{\|\mathbf{y}_{c}\|}$$

 \triangleright Define $\bar{\mathbf{y}}_c = \mathbf{y}_c / \|\mathbf{y}_c\|$ (normalized indicator),

$$Y = [\bar{\mathbf{y}}_1, \bar{\mathbf{y}}_2, \cdots, \bar{\mathbf{y}}_k] \Rightarrow Y^T Y = I$$

▷ Relaxed to real valued problem:

$$\min_{Y^TY=I} \operatorname{Trace}(Y^T L Y)$$

Solution: Eigenvectors corresponding to the smallest k eigenvalues of L

▶ We have shown Ratio-Cut is equivalent to

$$\mathsf{RCut} = \sum_{c=1}^{k} \frac{\mathbf{y}_{c}^{\mathsf{T}} L \mathbf{y}_{c}}{\mathbf{y}_{c}^{\mathsf{T}} \mathbf{y}_{c}} = \sum_{c=1}^{k} (\frac{\mathbf{y}_{c}}{\|\mathbf{y}_{c}\|})^{\mathsf{T}} L \frac{\mathbf{y}_{c}}{\|\mathbf{y}_{c}\|}$$

 \triangleright Define $\bar{\mathbf{y}}_c = \mathbf{y}_c / \|\mathbf{y}_c\|$ (normalized indicator),

$$Y = [\bar{\mathbf{y}}_1, \bar{\mathbf{y}}_2, \cdots, \bar{\mathbf{y}}_k] \Rightarrow Y^T Y = I$$

▷ Relaxed to real valued problem:

$$\min_{Y^TY=I} \operatorname{Trace}(Y^TLY)$$

Solution: Eigenvectors corresponding to the smallest k
 eigenvalues of L

ho Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?

- \triangleright No, Y^* does not have 0/1 values (not indicators) (since we are solving a **relaxed** problem)
- \triangleright Solution: Run k-means on the rows of Y^*
- Summary of Spectral clustering algorithms:

Compute $Y^* \in \mathbb{R}^{n \times k}$: eigenvectors corresponds to k smallest eigenvalues of (normalized) Laplacian matrix Run k-means to cluster rows of Y^*

- \triangleright Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?
- \triangleright No, Y^* does not have 0/1 values (not indicators) (since we are solving a **relaxed** problem)
- \triangleright Solution: Run k-means on the rows of Y^*
- Summary of Spectral clustering algorithms:

Compute $Y^* \in \mathbb{R}^{n \times k}$: eigenvectors corresponds to k smallest eigenvalues of (normalized) Laplacian matrix Run k-means to cluster rows of Y^*

- ho Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?
- \triangleright No, Y^* does not have 0/1 values (not indicators) (since we are solving a **relaxed** problem)
- \triangleright Solution: Run k-means on the rows of Y^*
- Summary of Spectral clustering algorithms:

Compute $Y^* \in \mathbb{R}^{n \times \kappa}$: eigenvectors corresponds to k smallest eigenvalues of (normalized) Laplacian matrix Run k-means to cluster rows of Y^*

- ▷ Let $Y^* \in \mathbb{R}^{n \times k}$ be these eigenvectors. Are we done?
- \triangleright No, Y^* does not have 0/1 values (not indicators) (since we are solving a **relaxed** problem)
- \triangleright Solution: Run k-means on the rows of Y^*
- ▷ Summary of Spectral clustering algorithms:

Compute $Y^* \in \mathbb{R}^{n \times k}$: eigenvectors corresponds to k smallest eigenvalues of (normalized) Laplacian matrix Run k-means to cluster rows of Y^*

▶ If graph is disconnected (k connected components), Laplacian is block diagonal and first k eigen-vectors are:

- ▶ What if the graph is connected?
- ▶ There will be only one smallest eigenvalue/eigenvector.

$$L\mathbf{1} = (D - A)\mathbf{1} = 0$$

 $(\mathbf{1} = [1, 1, \cdots, 1]^T)$ is the eigenvector with eigenvalue 0)

However, the 2nd to k-th smallest eigenvectors are still useful for clustering

1	1	.2	0
1	1	0	.1
.2	0	1	1
0	.1	1	1

Sign of 2nd evec indicates blocks

- ▶ What if the graph is connected?
- ▶ There will be only one smallest eigenvalue/eigenvector:

$$L\mathbf{1} = (D - A)\mathbf{1} = 0$$

$$(\mathbf{1} = [1, 1, \cdots, 1]^T$$
 is the eigenvector with eigenvalue $0)$

However, the 2nd to k-th smallest eigenvectors are still useful for clustering

1	1	.2	0
1	1	0	.1
.2	0	1	1
0	.1	1	1

Sign of 2nd evec indicates blocks

- ▶ What if the graph is connected?
- ▶ There will be only one smallest eigenvalue/eigenvector:

$$L\mathbf{1}=(D-A)\mathbf{1}=0$$

 $(\mathbf{1} = [1, 1, \cdots, 1]^T$ is the eigenvector with eigenvalue 0)

 \triangleright However, the 2nd to k-th smallest eigenvectors are still useful for clustering

1	1	.2	0
1	1	0	.1
.2	0	1	1
0	.1	1	1

Sign of 2nd evec indicates blocks

NORMALIZED CUT

▷ Rewrite Normalized Cut:

$$\begin{aligned} \mathsf{NCut} &= \sum_{c=1}^k \frac{\mathsf{Cut}(V_c, V - V_c)}{\mathsf{deg}(V_c)} \\ &= \sum_{c=1}^k \frac{\mathbf{y}_c^T (D - A) \mathbf{y}_c}{\mathbf{y}_c^T D \mathbf{y}_c} \end{aligned}$$

ightharpoonup Let $ilde{\mathbf{y}_c} = rac{D^{1/2}\mathbf{y}_c}{\|D^{1/2}\mathbf{v}_c\|}$, then

$$\mathsf{NCut} = \sum_{c=1}^{k} \frac{\tilde{\mathbf{y}}_{c}^{T} D^{-1/2} (D-A) D^{-1/2} \tilde{\mathbf{y}}_{c}}{\tilde{\mathbf{y}}_{c}^{T} \tilde{\mathbf{y}}_{c}}$$

▶ Normalized Laplacian:

$$\tilde{L} = D^{-1/2}(D - A)D^{-1/2} = I - D^{-1/2}AD^{-1/2}$$

ightharpoonup Normalized Cut ightharpoonup eigenvectors correspond to the smallest eigenvalues of $ilde{L}$

KMEANS VS SPECTRAL CLUSTERING

- ▷ Spectral clustering: boundary can be non-convex curves

$$\sigma$$
 in $W_{ij}=e^{\frac{-\|\mathbf{x}_i-\mathbf{x}_j\|^2}{\sigma^2}}$ controls the clustering results (focus on local or global structure)

KMEANS VS SPECTRAL CLUSTERING

