CSE543T: Algorithms for Nonlinear Optimization

Yixin Chen, PhD
Professor
Department of Computer Science & Engineering
Washington University in St Louis

Nonlinear Programming (NLP) problem

Minimize f(x)(optional) Subject to h(x) = 0g(x) <= 0

Characteristics:

- variable space X: continuous, discrete, mixed,
 curves
 - Decision variables, control variables, system inputs
- function properties
 - Closed form, evaluation process, stochastic, ...

Why non-linear?

- Deal or no deal? You can choose
 - Take \$2M and go home; Or,
 - Deal: could get \$0.1 or \$5M
 - What will you choose?

Why study nonlinear optimization?

- Optimization is everywhere
 - Constraints are everywhere
 - The world is nonlinear
 - Need to make balanced decisions
- Plenty of applications
 - Investment, networking design, machine learning (NN, HMM, CRF), data mining, sensors, structural design, bioinformatics, medical treatment planning, games
- Nonlinear optimization is difficult
 - Curse of dimensionality, among many other reasons

Example: Linear Regression

Logistic Regression

- Y=0 or 1 (e.g. stroke or not)
- Where nonlinear functions clearly make more sense
- $P(Y=1) = 1/(1 + \exp(-\mathbf{w}^T\mathbf{x}))$
- Find w to maximize

$$\prod_{i=1..n} P(Y_i=1)^{Y_i} (1-P(Y_i=1))^{(1-Y_i)}$$

Comparing the LP and Logit Models

SVM

- Minimize | | w||
- subject to: $y_i(\mathbf{w} \ \mathbf{x}_i - \mathbf{b}) \ge 1$

Sensor network optimization

Variables

- Number of sensors
- Locations of sensors

Functions

- Minimize the maximum false alarming rate
- Subject to minimum detection probability > 95%
- Highly nonlinear functions
 - Based on a Gaussian model and voting procedure
 - Computed by a Monte-Carlo simulation

Sodoku

9			8		2		m	6
	8		9	m	3	m	100	
3		7				4		8
		2	5		7	8		
	4						3	
	1	6	1		4	2	m	
2		8				1		3
			3		9			
6	m		4	m	8	m	1	2

Application: Radiation Oncology Planning

Example CT image of head and neck tumor

Intensity-modulated radiation therapy (IMRT)

Field superposition: a basic principle of treatment planning

Schematic of patient cross section and three incident unmodulated beams

Sample dose distribution resulting from IMRT beamlet optimization

Optimization quality: critical for survival chance of patients

Mathematical control variables

- Fixed:
 - Numbers of beams
 - Angles of incidence of beams
- Control variable
 - Fluence (amount of radiation) of each beamlets

Example Plan Acceptance Criteria

TABLE 2-3. BASIC PLAN ACCEPTANCE CRITERIA FOR CASES OF HEAD AND NECK CANCER

		Priority*
PTV-GTV	>95% volume received Rx dose >99% volume received 93% of Rx dose	2
PTV-CTV	>95% volume received Rx dose >99% of volume received 93% of Rx dose	
Spinal cord	Maximum <45 Gy, or no more than 1 cc of volume >45 Gy	1
Brainstem	Maximum <54 Gy, or no more than 1% of volume >54 Gy	1
Optic structures	Maximum <54 Gy	2
Eye/retina	Maximum <50 Gy	3
Parotid glands	Mean <26 Gy, or 50% of volume <30 Gy	3
Mandible	Maximum <70 Gy, or no more than 1 cc of volume >70 Gy	3

PTV, planning target volume; GTV, gross tumor volume; CTV, clinical target volume; Rx, treatment. * 1 is the highest priority.

From: Chao, C. (2005). *Practical Essentials of Intensity Modulated Radiation Therapy*, 2nd ed.

Formulation of Doses for Each Voxel

$$\mathbf{d} = \mathbf{A}\mathbf{w}$$

$$d_i = \sum_{j=1}^{\text{beamlets}} A_{i,j} w_j,$$

The intensity for each voxel (unit of tissue) is the summation of contributing beamlets

Formulation: Constrained Nonlinear Optimization

min
$$\sum_{k=1}^{\# \text{ of structures}} c_k \frac{1}{N_k} \sum_{i=1}^{N (\# \text{ of voxels})} (d_i^k - d_{i, \text{prescribed}}^k)^2$$
w.r.t. **w**
with constraints
max $\mathbf{d}_{\text{spinal cord}} < 45 \text{ Gy}$
max $\mathbf{d}_{\text{brain stem}} < 55 \text{ Gy}$
max $\mathbf{d}_{\text{anywhere}} < 80 \text{ Gy}$
••••••

(Localized constraints, one for each region)

- Hundreds of thousands of variables
- Nonlinear constraints
- Very difficult to solve (has been studied for long)

Goals of the course

- Introduce the theory and algorithms for nonlinear optimization
 - One step further to the back of the blackbox
 - Able to hack solvers
 - But not too much gory details of mathematics
- Hands-on experiences with optimization packages
 - Know how to choose solvers
 - Understanding of the characteristics of problems/solvers
- Mathematical modeling
 - Modeling languages
 - CSE applications
- Help solve problems in your own research