

Sistemas de coordenadas tridimensionais Translação e rotação de sistemas

Prof. Dr. Carlos Aurélio Nadal

Rotação de um sistema de coordenadas

Rotação de um sistema de coordenadas

Rotação de um sistema de coordenadas

Reflexão de um sistema de coordenadas

Reflexão de um sistema de coordenadas

TRANSFORMAÇÕES GEOMÉTRICAS ESCALAÇÃO, OU TRANSFORMAÇÃO DE ESCALA:

- é obtida pela multiplicação de todas as coordenadas que definem a entidade, por fatores de escala não nulos.
- fator de escala horizontal: Ex
- fator de escala vertical: E_v

Escalação de um ponto P_1 (x, y), para P_1 (x', y'),

$$E_{x} x' = E_{x *} x$$

$$E_{y} y' = E_{y *} y$$

- E > 1 Um fator de escala E maior que 1 provoca uma ampliação da entidade na direção do eixo afetado pelo fator.
- 0 < E < 1 Um fator de escala E entre zero e 1 provoca uma redução da entidade.
- **E < 0** Um fator de escala E menor que zero, ou negativo, provoca um espelhamento da entidade em relação ao eixo não afetado pelo fator.

TRANSLAÇÃO:

Em termos visuais, a translação de uma entidade produz um efeito de mudança de posição de uma entidade gráfica, em relação ao seu sistema de coordenadas. Em termos matemáticos a translação de uma entidade gráfica é a operação de adição de constantes de translação (positivas e/ou negativas) às coordenadas dos elementos formadores da entidade.

Translação de um ponto P_1 (x, y), para P_1 (x', y'), com constantes de translação T_x e T_y :

$$x' = x + T_x$$
$$y' = y + T_y$$

ROTAÇÃO EM TORNO DE UM PONTO (CENTRO DE ROTAÇÃO):

Em termos visuais, a rotação de uma entidade produz um efeito de mudança de posição desta entidade gráfica, de modo que todos os pontos mantenham a mesma distância do centro de rotação.

O único parâmetro de transformação para a rotação é o ângulo α (convenção positiva: sentido anti-horário).

Rotação de um ponto P_1 (x, y), para P_1 (x, y), de um ângulo α em torno da origem, temos:

$$x' = x \cdot \cos \alpha - y \cdot \sin \alpha$$

 $y' = y \cdot \cos \alpha + x \cdot \sin \alpha$

TRANSFORMAÇÃO LINEAR

A equação matricial Y = A X

A = MATRIZ TRANSFORMAÇÃO X e Y vetores

Interpretações da equação:

 X e Y = diferentes vetores referidos ao mesmo sistema de coordenadas; transformação descreve coordenadas de Y em termos das coordenadas de X.

Operação: transformar X em Y.

A equação matricial

$$Y = A X$$

2) X e Y são o mesmo vetor, com seus elementos referidos a diferentes sistemas de coordenadas; A matriz A descreve a relação entre os sistemas de coordenadas.

Operação: transformar o sistema de coordenadas a que X se refere o sistema que se refere a Y

TRANSFORMAÇÃO LINEAR PROJETIVA

Matriz A = quadrada e não singular

$$|A| \neq 0$$

Existe a transformação inversa:

$$X = A^{-1} Y$$

TRANSFORMAÇÃO ORTOGONAL

-Não há variação no comprimento do vetor durante a transformação.

Quadrado do comprimento do vetor:

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$X^{T} X = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^{2} + x_2^{2}$$

Como o comprimento do vetor é invariável:

$$X^T X = Y^T Y$$

е

$$Y = A X$$

então,

$$Y^T Y = (A X)^T A X = X^T (A^T A) X = X^T X$$

TRANSFORMAÇÃO ORTOGONAL

REFLEXÃO: matriz ortogonal própria |A| = +1

ROTAÇÃO: matriz ortogonal imprópria |A| = -1

REFLEXÃO NO PLANO (DUAS DIMENSÕES)

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

1) SISTEMA DE COORDENADAS É O MESMO

$$y_1 = x_1$$
$$y_2 = -x_2$$

2) Muda o sistema de coordenadas e o vetor permanece inalterado

ROTAÇÃO NO PLANO (DUAS DIMENSÕES) Primeira interpretação

$$y_1 = r \cos \phi \cos \theta - r \sin \phi \sin \theta$$

 $y_2 = r \cos \phi \sin \theta + r \sin \phi \cos \theta$

ou,

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 ou,

$$Y = R X$$

R é ortogonal
$$R R^T = I$$

 $R^{-1} = R^T$
 $R^{-1}(\theta) = R^T(\theta) = R(-\theta)$

ROTAÇÃO NO PLANO (DUAS DIMENSÕES) Primeira interpretação

Rotação entre sistemas

- girar um sistema em relação a outro através do ângulo de rotação de α .

$$x_p = x'_p \cdot \cos \alpha + y'_p \cdot \sin \alpha$$

 $y_p = -x'_p \cdot \sin \alpha + y'_p \cdot \cos \alpha$

Rotação positiva no sentido anti-horário

Rotação e translação entre os sistemas

$$x_p = x'_p \cdot \cos \alpha + y'_p \cdot \sin \alpha + \Delta x$$

 $y_p = -x'_p \cdot \sin \alpha + y'_p \cdot \cos \alpha + \Delta y$

Transformação afim no plano

Exercício:

As coordenadas de um vértice de poligonal topográfica foram obtidas utilizando um azimute magnético para o lado que contem o vértice, obtendo-se:

 $x'_p = 10,003$ m e $y'_p = 2,005$ m. Ao se calcular a declinação magnética do local obteve-se δ =-17 W. Calcular as coordenadas deste vértice usando-se o azimute verdadeiro da direção considerada.

Solução:

A declinação magnética comporta-se como se fora uma rotação do sistema de coordenadas topográficas associada ao norte magnético para se chegar a um sistema associado ao norte verdadeiro como mostrado abaixo:

$$x_p = x'_p \cdot \cos \delta + y'_p \cdot \sin \delta$$

 $y_p = -x'_p \cdot \sin \delta + y'_p \cdot \cos \delta$
 $x_p = 10,003 \cos (-17) + 2,005 \sin (-17)$
 $x_p = 8,980 \text{m}$
 $y_p = -10,003 \sin (-17) + 2,005 \cos (-17)$
 $y_p = 4,842 \text{m}$

Translação de um sistema cartesiano tridimensional de coordenadas

Translação de um sistema cartesiano tridimensional de coordenadas

0

 ΔZ

 $\Delta Y \\$

 ΔX

Rotação de um sistema cartesiano tridimensional de coordenadas

Rotação de um sistema cartesiano tridimensional de coordenadas

Rotação de um sistema cartesiano tridimensional de coordenadas

Rotação de um sistema cartesiano tridimensional de coordenadas em torno do eixo X

Rotação de um sistema cartesiano tridimensional de coordenadas em torno do eixo X

Rotação de um sistema cartesiano tridimensional de coordenadas em torno do eixo X

Reflexão de um sistema cartesiano tridimensional de coordenadas

Reflexão de um sistema cartesiano tridimensional de coordenadas

Translação entre sistemas de coordenadas cartesianas ortogonais tridimensionais

As coordenadas da origem o' no sistema oxyz são: Δx , Δy , Δz .

$$x_p = x_p' + \Delta x$$

$$y_p = y_p' + \Delta y$$

$$z_p = z'_p + \Delta z$$

Exercício:

As coordenadas cartesianas ortogonais tridimensionais de um ponto obtidas do rastreio com o sistema GPS, no sistema geodésico WGS84 resultou em:

$$X = 3336578,238m$$

 $Y = -4693183,894m$
 $Z = -2733834,809m$

As normas técnicas do IBGE (PR-22) fornece os parâmetros de translação do sistema WGS-84 para o Sistema Geodésico Brasileiro (SAD-69):

$$\Delta x = +66,87m$$

$$\Delta y = -4,37m$$

$$\Delta z = 38,52m$$

Calcular as coordenadas cartesianas ortogonais tridimensionais geodésicas do ponto no sistema SAD-69.

Solução:

$$X' = X + \Delta x$$
 : $X' = 3336578,238 + 66,87$
 $Y' = Y + \Delta y$: $Y' = -4693183,894 - 4,37$
 $Z' = Z + \Delta z$: $Z' = -2733834,809 + 38,52$

Parâmetros de translação

$$\Delta x = +66,87m$$

$$\Delta y = -4,37m$$

$$\Delta z = 38,52m$$

Distância oo' = 77,295m

. MATRIZES DE ROTAÇÃO E REFLEXÃO

Tomando-se dois sistemas tridimensionais de coordenadas cartesiana ortogonais com mesma origem porém não coincidentes. Sejam x_p , y_p , z_p coordenadas cartesianas do ponto P no sistema oXYZ e x'_p , y'_p , z'_p no sistema oX'Y'Z'.

O problema consiste em: dadas as coordenadas de um ponto no primeiro sistema, deseja-se as coordenadas deste mesmo ponto no segundo sistema de coordenadas. Da Geometria Analítica tem-se que [Hatschbach, 1975]:

$$x'_{p} = x_{p} l_{11} + y_{p} l_{12} + z_{p} l_{13}$$

$$y'_{p} = x_{p} l_{21} + y_{p} l_{22} + z_{p} l_{23}$$

$$z'_{p} = x_{p} l_{31} + y_{p} l_{32} + z_{p} l_{33}$$

onde, l_{ji} é o co-seno diretor do ângulo formado entre o eixo respectivo do sistema oX'Y'Z' com o eixo do sistema oXYZ, por exemplo que o eixo x_i forma com o eixo x_i .

Sob a forma matricial tem-se que:

$$\begin{pmatrix} x'_{p} \\ y'_{p} \\ z'_{p} \end{pmatrix} = \begin{pmatrix} l_{11} & l_{12} & l_{13} \\ l_{21} & l_{22} & l_{23} \\ l_{31} & l_{32} & l_{33} \end{pmatrix} \begin{pmatrix} x_{p} \\ y_{p} \\ z_{p} \end{pmatrix}$$

ou, de forma simplificada:

$$Y = L X$$

Pode ser provado que dos nove co-senos diretores somente três são linearmente independentes, portanto, conhecidos os três ângulos formados entre os respectivos pares de eixos dos dois sistemas, os quais são denominados de ângulos de Euler, é possível a transformação de coordenadas de um sistema para outro.

entre si:

Seja, na figura, dois ternos coincidentes na origem e seus eixos oX e oX' coincidentes e os outros eixos formando o ângulo θ

Neste caso a matriz L assumirá a seguinte forma:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix} = R_1(\theta)$$

Similarmente, obter-se-ia a matriz L para uma rotação em torno do eixo y e do eixo z, respectivamente:

$$L = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix} = R_2(\theta)$$

$$L = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = R_3 (\theta)$$

As matrizes $R_1(\theta)$, $R_2(\theta)$ e $R_3(\theta)$ são conhecidas como **matrizes de rotação.**<u>A convenção adotada neste trabalho para o valor positivo do</u>

<u>ângulo de rotação θ , é a de que os sistemas devam ser dextrógiros e o ângulo θ correspondente à rotação deve ser medido no sentido anti-horário.</u>

Tome-se agora, dois sistemas coincidentes na origem o, com os eixos y e z coincidentes, e com os eixos oX' e oX com sentidos opostos

As matrizes R1, R2 e R3 são conhecidas com matrizes de reflexão e permitem a transformação de sistemas dextrógiros em levógiros e vice-versa.

Neste caso a matriz dos co-senos diretores assumirá a seguinte forma, denominada de reflexão do eixo dos x.

$$L = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = R1$$

Para o eixo dos y com orientação contrária tem-se:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = R2$$

e, para o eixo dos z da mesma forma que os anteriores tem-se:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = R3$$

As coordenadas geodésicas de um ponto situado no Salto Santa Rosa em Santa Catarina são fornecidas e iguais a:

φ= 26° 40′11,1818″S λ= 52° 05′43,5537″W
 h = 855,439m, sendo o datum utilizado o SAD-69.
 Transformando-se as coordenadas geodésicas fornecidas em coordenadas cartesianas ortogonais

tridimensionais no sistema SAD-69 obtendo-se:

X = 3504357,533 m

Y = -4500805,065 m

Z = -2845960,220 m

Calcular estas coordenadas no sistema SIRGAS2000, Utilizando-se o software freemat.

O IBGE fornece os parametros de translação para o sistema SIRGAS-2000(WGS-84)

SAD 69 para SIRGAS2000	• SIRGAS2000 para SAD 69		
a1 = 6.378.160 m	a1 = 6.378.137 m		
f1 = 1/298,25	f1 = 1/298,257222101		
a2 = 6.378.137 m	a2 = 6.378.160 m		
f2 = 1/298,257222101	f2 = 1/298,25		
$\Delta X = -67,35 \text{ m}$	$\Delta . X = + 67,35 \text{ m}$		
. Δ Y = + 3,88 m	. Δ Y = - 3,88 m		
$\Delta Z = -38,22 \text{ m}$. $\Delta Z = + 38,22 \text{ m}$		

$$X'=X+\Delta X$$

No software FreeMat v 3.5, digitam-se as matrizes e efetuam-se os cálculos:

http://freemat.sourceforge.net/wiki/index.php/Main_Page

format long (apresentar todas as casas decimais)

$$d = [-67.35; 3.88; -38.22]$$

$$y=x+d$$
 \Rightarrow $y=\begin{pmatrix} 3504290.183 \\ -4500801.185 \\ -2845998.440 \end{pmatrix}$

usar ponto separar;

Guardando dados em um arquivo texto para execução no Software FreeMat v3.5

```
📗 transl.m - Bloco de notas
Arquivo Editar Formatar Exibir Ajuda
x = [3504357.533; -4500805.065; -2845960.220]
d=[-67.35;3.88;-38.22]
V=X+d
 Salvar como; salvar como tipo: todo os arquivos;
 nome do arquivo - transl.m
 escolher a área a salvar disco local c:\
 No FreeMat v3.5 digitar
 cd c:\
 dir
 transl
```


x =

- 1.0e+006 *
- 3.50435753300000
- -4.50080506500000
- -2.84596022000000

d =

- -67.3499999999999
 - 3.88000000000000
- -38.22000000000000

у =

- 1.0e+006 *
- 3.50429018300000
- -4.50080118500000
- -2.84599844000000

Os dados estão carregados, digitados num editor de texto

x = [3504357.533; -4500805.065; -2845960.220]

d=[-67.35;3.88;-38.22]

y=x+d

Exercício de rotação de sistemas.

As coordenadas de um ponto no sistema OXYZ são conhecidas:

X = 1256.251 m; Y = 1456.853 m; Z = 855.326 mO sistema de coordenadas é dextrógira e deve ser efetuada uma rotação de $\theta = 17^{\circ}55'22.3''$ no sentido horário em torno do eixo Z. Determinar as novas coordenadas utilizando-se o software freemat.

$$X = \begin{bmatrix} 1256.251 \\ 1456.853 \\ 855.326 \end{bmatrix}$$

Matriz rotação do tipo 3 (eixo dos z)

$$R_3(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

A convenção adotada neste trabalho para o valor positivo do ângulo de rotação θ , é a de que os sistemas devam ser dextrógiros e o ângulo θ correspondente à rotação deve ser medido no sentido anti-horário.

$$\theta = -17^{\circ}55'22.3''$$

No bloco de notas:

```
Arquivo rota.m

x=[1256.251;1456.853;855.326]

te= -(17+55/60+22.3/3600)*pi/180

cv =cos(te)

sv =sin(te)

r3=[ cv sv 0;-sv cv 0;0 0 1]

y=r3*x

radianos
```

Se quiser colocar em qualquer área do disco rígido, utilizar A função para setar o programa cd 'd:\sistemas'

0

0

No FreeMat v 3.5:

Exercício de translação e rotação de coordenadas.

Utilizando-se uma estação total, na qual associa-se um sistema de coordenadas cartesianas ortogonais tridimensional com origem coincidente com seu centro óptico (ponto cardã), com o eixo y situado no plano horizontal com sentido positivo para o ponto cardeal norte geográfico, com o eixo x com sentido positivo para o ponto cardeal leste e o eixo z na vertical com sentido positivo para o zênite. Visou-se três alvos topográficos situados em uma parede Vertical obtendo-se as seguintes medidas:

Ponto visado (alvos)	Azimute (A)	Distância zenital (z)	Distância inclinada (di)
A1	10 05 20"	88 10 15"	7,114m
A2	25 12 31"	52 51 31"	9,706m
A3	41 50 02"	65 20 50"	10,337m

Calcular as coordenadas dos alvos neste sistema?

Solução:

Como o sistema é dextrógiro, as coordenadas dos alvos serão calculadas pelas expressões:

Resulta em:

Ponto	x'(m)	y'(m)	z'(m)	
visado				
A1	1,245566	7,000428	0,227076	
A2	3,295357	7,000259	5,860327	
A3	6,266085	6,999897	4,31175	

Representação esquemática do problema

Um programa no software FreeMat v 3.5

Pode usar na saída do programa ['vetor das coordenadas']

7.00042847471227

```
clear;clc
             % calculo de coordenadas de estações totais
             % entrada de dados iniciais
             % nu=numero total de pontos a serem calculados
             nu=3:
             % matriz dos azimutes dos alvos
             a=[10 5 20;25 12 31;41 50 2];
             for i=1:nu
             b(i)=(a(i,1)+a(i,2)/60+a(i,3)/3600)*pi/180;
             end
             % matriz distancia zenital dos alvos
             v=[88 10 15;52 51 31;65 20 50];
             for i=1:nu
             c(i)=(v(i,1)+v(i,2)/60+v(i,3)/3600)*pi/180;
             end
             % vetor distâncias inclinadas
             d=[7.114;9.706;10.337];
             % cálculo de coordenadas
             for i=1:nu
             x(1,i)=d(i)*sin(c(i))*sin(b(i));
             x(2,i)=d(i)*sin(c(i))*cos(b(i));
             x(3,i)=d(i)*cos(c(i));
             end
             X
1.24556564668607
                    3.29535686759801
                                         6.26608452396772
```

7.00025875268026 6.99989732241686

0.22707573677787 5.86032733818667 4.31175036546801

Prof. DR. Carlos Aurélio Nadal - Sistemas de Referência e Tempo em Geodésia - Aula 05

No software excel, ou outra planilha tem-se:

	А	В	С	D	Е	F	G	Н
1	ponto	azimute			azimute	distância zenital		
2	visado	grau	min	seg	radiano	grau	min	seg
3	A1	10	5	20	0,1760843	88	10	15
4	A2	25	12	31	0,4399733	52	51	31
5	A3	41	50	2	0,7301391	65	20	50
6								

	А	J	K	L	М
1	ponto	distância	Х	у	Z
2	visado	(m)	(m)	(m)	(m)
3	A1	7,114	1,245566	7,000428	0,227076
4	A2	9,706	3,295357	7,000259	5,860327
5	A3	10,337	6,266085	6,999897	4,31175
6					

Supor agora um sistema de coordenadas cartesianas ortogonais vinculado à parede vertical obtido pela rotação no sentido antihorário do sistema anterior de 90 em torno do eixo x , colocandose a origem do novo sistema no alvo A1, portanto, efetuando-se também uma translação da origem, do centro óptico da estação total para este alvo.

Calcular as coordenadas dos alvos A1, A2 e A3 neste novo sistema? Solução:

Como o sistema é dextrógiro e a rotação no sentido anti-horário em torno do eixo x, acrescendo-se a translação, pode-se escrever matricialmente os movimentos pela expressão:

Representação esquemática do problema

$$X = R1 (90) X + \Delta X$$

ou,

ou,
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(90) & \sin(90) \\ 0 & -\sin(90) & \cos(90) \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}$$

ou,

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix}$$

Efetuando-se os produtos matriciais, chega-se a:

$$x = x' + \Delta x$$

 $y = z' + \Delta y$
 $z = -y' + \Delta z$

Obs.: para quem não lembra de produto matricial, multiplica-se a primeira linha da matriz 3X3 pelo vetor 3x1, depois a segunda linha pelo vetor e após a terceira linha pelo vetor.

As translações nas coordenadas dos alvos para obtenção do novo sistema serão:

$$\Delta x = -1,245566$$

$$\Delta y = -7,000428$$

$$\Delta z = -0.227076$$

(coordenadas do alvo A1 no antigo sistema com sinal contrário)

Alvo A1 (será a origem do novo sistema):

$$x = 0,000m$$
 $y=0,000m$ $z=0,000m$

Alvo A2

$$x = 3,295357 - 1,245566$$

$$x = 2,050m$$

$$y = 5,860327 - 7,000428$$

$$y = -1,140m$$

$$z = -7,000259 - 0,227076$$

$$z = -8,163m$$

Alvo A3

x = 6,266085 - 1,245566

x = 5,021m

y = 4,31175 - 7,000428

y = -2,669m

z = -6,999897 - 0,227076

z = -7,227m