

Lab Report - 07

Course Title : Computer Networks Lab

Course Code : CSE 320

Report Name: Multi-Network Configuration and Routing Simulation.

Submitted By:

Name : Md. Mursalin Hasan Nirob

ID No : 21225103423

Intake: 49

Section: 10

Program: B.Sc. Engg. in CSE

Submitted To:

Name : Mr. Shamim Ahmed

Assistant Professor Department of : CSE

Bangladesh University of Business &

Technology

Date of Submission: 20/11/2024

1. Objectives

The aim of this lab is to implement and test a web service hosted on a server within a multi-network environment using Cisco Packet Tracer. This includes configuring HTTP servers, ensuring DNS resolution, and verifying connectivity through inter-network communication.

2. Necessary Tools

2.1 Software: Cisco Packet Tracer

2.2 Hardware: Two routers, two switches, multiple PCs, a server, and an access point.

2.3 Cables: Straight-through cables for wired connections.

3. Theory/Background

This lab demonstrates the implementation of a multi-network topology and tests basic networking services. Key concepts include:

IP Addressing and Sub-netting:

Devices were assigned IPs (e.g., 192.168.1.0/24 for Network 1) to enable communication.

Routing:

> RIP (Routing Information Protocol): Configured on routers to facilitate inter-network communication.

• Client-Server Architecture:

- HTTP Server hosted a web page accessed by PCs.
- > DNS Server translated domain names into IPs.

DHCP:

Automates IP assignment for network devices.

Protocols Used:

> HTTP: For web access.

> **ICMP:** For connectivity tests.

> RIP: For routing updates.

Devices and Technologies:

Switches, routers, and access points were used for wired and wireless connectivity.

This lab highlights the integration of services and protocols for scalable and efficient communication.

4. Figures

Figure 4.1: DNS Server.

5. Programs or Procedure

5.1 Topology Setup

- 1. **Add Devices:** Place routers, switches, servers, PCs, and an access point in the workspace.
- 2. **Connect Devices:** Establish connections between devices using appropriate cables.

5.2 IP Addressing

- Configure static IP addresses for servers.
- Set up a DHCP server to dynamically assign IPs to PCs and wireless devices.

5.3 Configure Routing

Enable RIP on Router0 and Router1 for route sharing between networks.

5.4 Server Configuration

HTTP Server:

Host a basic HTML page displaying the message: "Hello Nirob, How are you?".

DNS Server:

Enable DNS to resolve domain names for HTTP access.

5.5 Verify Connectivity

- Perform ping tests between devices in different networks.
- Test web page access via the HTTP server from PC0 and other devices.

6. Inputs and Outputs

Inputs:

- IP configuration for all devices.
- HTML code for the web page.
- RIP setup for routers.

Outputs:

- Ping Test Results:
 - > Devices successfully communicated across networks.
 - > HTTP server responded to requests from PC0 and laptops.
- Web Page Access:
 - PC0 successfully accessed the web page hosted on the HTTP server.
 - ➤ The page displayed the message: "Hello Nirob, How are you?".

7. Remarks/Comments

The lab was successfully completed, demonstrating effective configuration of DHCP, DNS, HTTP, and RIP for multi-network communication. Ping tests and HTTP access confirmed proper functionality.

Suggestions:

- Add backup routes for redundancy.
- Implement security measures like firewalls.

Overall, the lab provided valuable insights into real-world networking.