Programming Language

프로그래밍언어 (Programming Language)

교수 김 영 탁 영남대학교 정보통신공학과

(Tel: +82-53-810-2497; Fax: +82-53-810-4742 http://antl.yu.ac.kr/; E-mail: ytkim@yu.ac.kr)

프로그래밍언어 과목 개요

◆ 목적

- <u>C 프로그래밍언어</u>를 기반으로 한 공학문제의 해결 방법 습득, 소프트웨어 시스템 설계 및 구현 지식 습득
- C 프로그래밍 실습 및 설계 프로젝트 수행
- 관련 선수과목: 컴퓨터 프로그래밍 (C, Java, Python)

◆ 교재 및 참고문헌

- [1] 김영탁, 자료구조와 알고리즘을 함께 배우는 C 프로그래밍, 배움터, 2020.
- [2] 천정아, Core C Programming, 연두에디션, 2019
- [3] 천인국, 쉽게 풀어 쓴 C언어 Express, 개정판, 생능출판사, 2014.
- [4] 강환수, 강환일, 이동규, Perfect C 언어로 배우는 프로그래밍 기초, 인피니티북스, 2016.
- [5] Horowitz, Sahni, Anderson-Freed, Fundamentals of Data Structures in C, Silicon Press, 2008.
- [6] Walter Savitch, Absolute C++, 5th Ed, Pearson, 2013.
- [7] Deitel and Deitel, "How to Program C++," Prentice Hall, 2005.

컴퓨팅사고와 프로그래밍

- ◆ 프로그래밍/소프트개발과 인류문명의 진화 관련성
 - 새로운 도구와 재질, 동력장치를 사용하여 생산성 (productivities)을 향상:
 - 석기, 청동기, 철기, 증기(steam) 엔진, 전기, 산업용 로봇, <mark>컴퓨터</mark>, 인터넷, 분산처리, 인공지능 (AI), 빅데이터, 사물인터넷 (IoT)
 - 다수 인원의 효율적인 **협동/협력** (*collaborations*)
 - 부가가치 창출의 성능 (performance) 개선
 - 에너지 효율성 (energy efficiencies)

(b) 철기 농기구

(c) 증기 (steam) 에진

(d) 전기,

산업용로봇

(e) 컴퓨터, 인터넷, 분산처리

(f) 인공지능 (Al), 빅데이터, 사물인터넷(IoT)

제4차 산업혁명과 프로그래밍

◆ 산업혁명

산업혁명	시기	주요 변화
1차	18세기	증기 기관 (steam engine)의 발명으로 사람과 동물의 힘보다 더욱 더 큰 힘을 효율적으로 발생시킬 수 있었으며, 영국에서는 이를 활용하여 섬유생산을 획기적으로 증대시킴
2차	19세기 ~ 20세기 초반	전기 에너지 생산 및 공급 기술이 개발되고, 표준화된 모듈을 컨베이어 벨트에서 조립하는 대량 생산 기술이 개발됨
3차	20세기 후반	컴퓨터와 인터넷 기술의 개발로 과학 기술 분야의 대용량 데이터 처리가 가능하게 되었으며, 서로 다른 지역에 떨어져 있는 사람과 장치간의 협동 작업이 가능하게 되어 기술 발전이 더욱 가속화 됨
4차	2015년 ~ 현재	사물인터넷, 빅데이터, 인공지능, CPS (Cyber Physical System) 기술의 개발로 사람, 사물, 공간을 초연결, 초지능화 시킴

◆ 제4차 산업혁명의 핵심 기술

- 사물인터넷 (Internet of Things, IoT)
- 빅데이터 (Big Data)
- 인공지능 (Artificial Intelligence, AI)
- → 모두 소프트웨어가 핵심이 되는 기반 기술임!

컴퓨팅 사고

◆컴퓨팅사고 (Computational Thinking)

- 문제해결 방법에서 컴퓨터 장치와 프로그래밍을 활용하여 문제를 정확하고, 신속하며, 효율적으로 해결할 수 있도록 생각/사고
- 컴퓨터나 사람이 문제해결을 효과적으로 수행할 수 있도록 주어진 문제를 일반화(generalize)/추상화(abstract)하여 정의하고, 그 문제를 해결하는 방법을 체계적으로 정리하며, 이 문제와 유사한 다양한 변종 문제 해결에서도 사용할수 있게 하는 사고 과정 (thinking process) 전체를 의미

컴퓨터 구조 – 하드웨어, 운영 체제 및 응용 소프트웨어

프로그래밍언어 과목에서 무엇을 배우나?

- ◆ "엔지니어/과학자"로 생각하고 설계하는 방법을 배운다.
 - 컴퓨팅사고 (computational thinking)
 - Technician (기능공) vs. Engineer (엔지니어)/Scientist(과학자)
 - Simple passive & repeated implementation (단순 반복 작업, 구현 위주의 업무) vs.
 - creative design (창의적 설계) and fast prototyping (신속한 시제품 개발)
- ◆ 알고리즘과 자료구조의 기초에 대하여 배우며, 설계된 알고리즘/자료구조에 따라 프로그램을 설계/구현하는 기법을 배운다.
- ◆컴퓨팅사고와 프로그래밍의 즐거움을 느낄 것이다!

강의주제

Part 1) 알고리즘과 프로그래밍 소개

- 컴퓨터, 프로그래밍과 소프트웨어
- 순서도 (flow chart)와 의사코드 (pseudo code)
- 알고리즘 (algorithm)
- 자료구조 (data structure)

Part 2) C Programming

- 조건문: if, if-else, switch
- 입출력, printf(), scanf()
- 반복문: for, while, do-while
- 함수 (function)
- 재귀 (recursion)
- 배열 (array), 탐색 (searching)과 정렬(sorting)
- 파일 및 파일 입출력
- 구조체 (structure)
- 동적 메모리 할당 (dynamic memory allocation)
- 포인터 (pointers)

Part 3) 자료구조 (data structure) 기초

- 연결 리스트 (linked list)
- 이진 트리 (binary tree)

수업 진행 및 평가(1)

◆ 강의 및 실습

- 주당 2 시간 강의
- 주당 2 시간 실습
- 주당 2 시간 보충 설명 시간: 월요일/수요일 저녁 7:00 ~ 8:30 PM

◆ 시험

● 중간고사 및 기말고사는 실기 시험으로 진행 (직접 프로그램 소스 코드 작성 및 실행 결과물 제출)

◆ 수업시간(강의 및 실습)의 지참물

- 교재
- 강의노트
- 대학노트: 컴퓨팅 사고에 기반한 프로그램 기본 설계 스케치

수업 진행 및 평가 (2)

◆과제물 (homework)

- 각 장 (chapter) 별로 homework 부과
- 과제물 보고서는 각 장 별로 분리하여 제출
- 과제물 보고서 표지 구분 (과목명, 과제명, 제출일자, 제출자 학번, 성명)
- 과제물 제출 기한: 과제물 공지 후 1주일 이내 (수업시간에 제출)
- 과제물 제출 기한 초과시 1주일 단위로 20%씩 점수 감점

◆ 실습 평가

- 매 주별 실습 문제에 대한 결과물 제출 및 평가
- 결과물 제출 및 평가 기한 초과시 점수 감점

◆ 성적 평가 (총 800점 만점)

- 시험 2회 x 200 점 = 400점
- 실습 200점
- 출석 및 퀴즈 100점
- 과제물 100점
- 각 성적 평가 항목별 최저 한도를 만족하지 못하면 F 학점 부과 (시험 100점, 실습 100점, 출석 및 퀴즈 25점, 과제물 50점) !!

주별 실습 내용

실습	제목, 주제
1	정수 (integer) 데이터 입력, 최대값, 최소값, 평균값 산출
2	10진수 숫자의 역순 출력, 10진수 데이터의 8진수, 16진수, 2진수 표현, bit-wise 연산
3	Keyboard와 Beep함수를 사용한 5옥타브 전자피아노
4	비트단위 처리, printOctet_inBits, printInt_inBits, Numeric Operations, DaysFromAD010101
5	time(NULL) 함수 반환값을 사용한 연월일 시분초 계산, DaysFromAD010101
6	단어 배열의 정렬, 문자열의 암호코드를 사용하는 16진수 문자 암호화, 복호화
7	행렬의 계산, 2차원 배열을 사용한 연산 (덧셈, 뺄셈, 곱셈);
8	동적 배열, 선택 정렬, 퀵 정렬, 모듈 실행 시간 측정
9	첨가 행렬과 가우스 소거법을 사용한 선형방정식의 해
10	구조체 배열, 구조체 배열의 동적 생성 및 정렬,
11	이벤트(event) 처리와 우선 순위 큐 (priority queue)
12	Multi-thread, circular queue
13	Multi-thread, linked list queue

프로그래밍언어 과목의 성적 평점 수준별 필수 내용

과목 평점 목표 수준	이 평점을 받기 위하여 반드시 이해하고, 잘 활용할 수 있어야 하는 필수 주요 내용 (충분 조건은 아님)	관련 항목의 이해 및 활용도 평가 방법
В	(1학년 2학기의 컴퓨터 프로그래밍 내용의 완벽한 이해, 활용) 기본 C 프로그램 구성 및 디버깅 반복문 (loop, for, while) 배열 (array)	Ch 1 ~ 5 과제물 실습 1 ~ 5
B+	포인터 (pointer), call-by-pointer 동적 메모리 할당 (dynamic memory allocation) 동적 배열 (dynamic array) 탐색 (searching) 정렬 (sorting) (Selection sorting, Quick Sorting)	Ch 6 ~ 8 과제물 실습 6 ~ 8
А	구조체 (structure) 자기 참조 구조체 Multi-thread 기본 배열을 사용한 basic circular queue Shared resource와 critical section	Ch 9 ~ 11 과제물 실습 9 ~ 11
A+	기본 자료 구조 (Basic data structure) Linked List, Binary Tree Priority Queue Multi-thread 응용 Multi-thread와 Queue의 응용	Ch 11 ~ 13 과제물 실습 11 ~ 13

수업 진행 및 평가

- ◆실습담당 강사
 - 황현동 박사과정: 차세대 네트워킹 연구실, IT관 304호실
 - 전화: (053) 810-3940
 - E-mail: mch2d@ynu.ac.kr
- ◆과목담당 튜터: 향후 공지
- ◆과목 Peer Tutor: 향후 선발
- ◆강의지원시스템
 - 강의자료 및 보충 설명자료
 - 실습자료

감사합니다.