Lecture 2

Linear recursive sequences

Recursive sequences

• Geometric sequences

$$q_0 = a, \qquad q_{n+1} = q_n \cdot c$$

Recursive sequences

• Geometric sequences

$$q_0 = a$$
, $q_{n+1} = q_n \cdot c$

• Arithmetic sequences

$$u_0=a, \qquad u_{n+1}=u_n+b$$

Recursive sequences

Geometric sequences

$$q_0 = a, \qquad q_{n+1} = q_n \cdot c$$

Arithmetic sequences

$$u_0=a, \qquad u_{n+1}=u_n+b$$

• Fibonacci sequence F_n

Fix a semiring $\mathbb{S}(\oplus, \odot, \mathbb{O}, \mathbb{1})$ (I often omit \odot)

$$u_{n+k} = a_k u_{n+k-1} \oplus a_{k-1} u_{n+k-1} \oplus \ldots \oplus a_1 u_n$$

fixing $a_1, \ldots, a_k \in \mathbb{S}$ and $u_0, \ldots, u_{k-1} \in \mathbb{S}$

Fix a semiring $\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1})$ (I often omit \odot)

$$u_{n+k} = a_k u_{n+k-1} \oplus a_{k-1} u_{n+k-1} \oplus \ldots \oplus a_1 u_n$$

fixing $a_1, \ldots, a_k \in \mathbb{S}$ and $u_0, \ldots, u_{k-1} \in \mathbb{S}$

• Examples for $\mathbb{S}(\oplus, \odot, \mathbb{O}, \mathbb{1}) = (\mathbb{Q}, +, \cdot, 0, 1)$:

Fibonacci sequence F_n k=2, $a_1=a_2=1$, $F_0=0$, $F_1=1$

Fix a semiring $\mathbb{S}(\oplus, \odot, \mathbb{O}, \mathbb{1})$ (I often omit \odot)

$$u_{n+k} = a_k u_{n+k-1} \oplus a_{k-1} u_{n+k-1} \oplus \ldots \oplus a_1 u_n$$

fixing $a_1, \ldots, a_k \in \mathbb{S}$ and $u_0, \ldots, u_{k-1} \in \mathbb{S}$

• Examples for $\mathbb{S}(\oplus, \odot, \mathbb{O}, \mathbb{1}) = (\mathbb{Q}, +, \cdot, 0, 1)$:

Fibonacci sequence F_n k=2, $a_1=a_2=1$, $F_0=0$, $F_1=1$

Geometric sequences q_n k = 1, $a_1 = c$, $q_0 = a$

Fix a semiring $\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1})$ (I often omit \odot)

$$u_{n+k} = a_k u_{n+k-1} \oplus a_{k-1} u_{n+k-1} \oplus \ldots \oplus a_1 u_n$$

fixing $a_1, \ldots, a_k \in \mathbb{S}$ and $u_0, \ldots, u_{k-1} \in \mathbb{S}$

• Examples for $\mathbb{S}(\oplus, \odot, \mathbb{O}, \mathbb{1}) = (\mathbb{Q}, +, \cdot, 0, 1)$:

Fibonacci sequence
$$F_n$$
 $k=2$, $a_1=a_2=1$, $F_0=0$, $F_1=1$

Geometric sequences q_n k = 1, $a_1 = c$, $q_0 = a$

Definition

 u_n is (homogeneous) linear recursive if there is

$$L(x_1, x_2, \ldots, x_k) = a_1 x_1 \oplus \ldots \oplus a_k x_k, \quad a_i \in \mathbb{S}$$

s.t. $u_{n+k} = L(u_n, ..., u_{n+k-1})$ for all n

Fix a semiring $\mathbb{S}(\oplus, \odot, \mathbb{O}, \mathbb{1})$ (I often omit \odot)

$$u_{n+k} = a_k u_{n+k-1} \oplus a_{k-1} u_{n+k-1} \oplus \ldots \oplus a_1 u_n$$

fixing $a_1, \ldots, a_k \in \mathbb{S}$ and $u_0, \ldots, u_{k-1} \in \mathbb{S}$

• Examples for $\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1})=(\mathbb{Q},+,\cdot,0,1)$:

Fibonacci sequence
$$F_n$$
 $k=2$, $a_1=a_2=1$, $F_0=0$, $F_1=1$

Geometric sequences
$$q_n$$
 $k=1$, $a_1=c$, $q_0=a$

Definition

 u_n is (homogeneous) linear recursive if there is

$$L(x_1, x_2, \ldots, x_k) = a_1 x_1 \oplus \ldots \oplus a_k x_k, \quad a_i \in \mathbb{S}$$

s.t.
$$u_{n+k} = L(u_n, ..., u_{n+k-1})$$
 for all n

Fibonacci:
$$L(x_1, x_2) = x_1 + x_2$$

Definition

 u_n is (nonhomogeneous) linear recursive if there is

$$L(x_1, x_2, \ldots, x_k) = a_1 x_1 \oplus \ldots \oplus a_k x_k \oplus a_0, \quad a_i \in \mathbb{S}$$

s.t.
$$u_{n+k} = L(u_n, ..., u_{n+k-1})$$
 for all n

Definition

 u_n is (nonhomogeneous) linear recursive if there is

$$L(x_1, x_2, \ldots, x_k) = a_1 x_1 \oplus \ldots \oplus a_k x_k \oplus a_0, \quad a_i \in \mathbb{S}$$

s.t.
$$u_{n+k} = L(u_n, ..., u_{n+k-1})$$
 for all n

• Example for $(\mathbb{Q}, +, \cdot, 0, 1)$

Arithmetic sequences u_n k = 1, $a_1 = 1$, $a_0 = b$, $u_0 = a$

Definition

 u_n is (nonhomogeneous) linear recursive if there is

$$L(x_1, x_2, \ldots, x_k) = a_1 x_1 \oplus \ldots \oplus a_k x_k \oplus a_0, \quad a_i \in \mathbb{S}$$

s.t. $u_{n+k} = L(u_n, ..., u_{n+k-1})$ for all n

• Example for $(\mathbb{Q}, +, \cdot, 0, 1)$

Arithmetic sequences u_n k=1, $a_1=1$, $a_0=b$, $u_0=a$

• But notice that $u_{n+1} - u_n = b$ for all n

Definition

 u_n is (nonhomogeneous) linear recursive if there is

$$L(x_1, x_2, \ldots, x_k) = a_1 x_1 \oplus \ldots \oplus a_k x_k \oplus a_0, \quad a_i \in \mathbb{S}$$

s.t. $u_{n+k} = L(u_n, ..., u_{n+k-1})$ for all n

• Example for $(\mathbb{Q}, +, \cdot, 0, 1)$

Arithmetic sequences u_n k=1, $a_1=1$, $a_0=b$, $u_0=a$

• But notice that $u_{n+1} - u_n = b$ for all n

So
$$u_{n+2} - u_{n+1} = u_{n+1} - u_n$$

Definition

 u_n is (nonhomogeneous) linear recursive if there is

$$L(x_1, x_2, \ldots, x_k) = a_1x_1 \oplus \ldots \oplus a_kx_k \oplus a_0, \quad a_i \in \mathbb{S}$$

s.t. $u_{n+k} = L(u_n, ..., u_{n+k-1})$ for all n

• Example for $(\mathbb{Q}, +, \cdot, 0, 1)$

Arithmetic sequences u_n k=1, $a_1=1$, $a_0=b$, $u_0=a$

• But notice that $u_{n+1} - u_n = b$ for all n

So
$$u_{n+2} - u_{n+1} = u_{n+1} - u_n$$

This gives us a homogeneous definition for k = 2

$$u_{n+2} = 2u_{n+1} - u_n$$

Definition

 u_n is (nonhomogeneous) linear recursive if there is

$$L(x_1, x_2, \ldots, x_k) = a_1x_1 \oplus \ldots \oplus a_kx_k \oplus a_0, \quad a_i \in \mathbb{S}$$

s.t. $u_{n+k} = L(u_n, ..., u_{n+k-1})$ for all n

• Example for $(\mathbb{Q}, +, \cdot, 0, 1)$

Arithmetic sequences u_n k=1, $a_1=1$, $a_0=b$, $u_0=a$

• But notice that $u_{n+1} - u_n = b$ for all n

So
$$u_{n+2} - u_{n+1} = u_{n+1} - u_n$$

This gives us a homogeneous definition for k=2

$$u_{n+2} = 2u_{n+1} - u_n$$

it's not a coincidence

Number of previous elements referred to (k)

Number of previous elements referred to (k)

Examples: Fibonacci k = 2, geometric k = 1,

arithmetic k = 2 (homogeneous) or k = 1 (nonhomogeneous)

Number of previous elements referred to (k)

Examples: Fibonacci k = 2, geometric k = 1, arithmetic k = 2 (homogeneous) or k = 1 (nonhomogeneous)

• Can we restrict to recursion depth 1?

Number of previous elements referred to (k)

Examples: Fibonacci k = 2, geometric k = 1, arithmetic k = 2 (homogeneous) or k = 1 (nonhomogeneous)

• Can we restrict to recursion depth 1?

Not for homogeneous: $u_{n+1} = c \cdot u_n$ are geometric sequences

For nonhomogeneous also no (see tutorials)

Number of previous elements referred to (k)

Examples: Fibonacci
$$k = 2$$
, geometric $k = 1$, arithmetic $k = 2$ (homogeneous) or $k = 1$ (nonhomogeneous)

• Can we restrict to recursion depth 1?

Not for homogeneous:
$$u_{n+1} = c \cdot u_n$$
 are geometric sequences

For nonhomogeneous also no (see tutorials)

Idea: system of linear sequences

Example: Fibonacci
$$F_n$$
 with an extra sequence G_n ($= F_{n+1}$)

$$\begin{cases} F_0 = 0 & \qquad \begin{cases} F_{n+1} = G_n \\ G_0 = 1 & \qquad \end{cases} G_{n+1} = F_n + G_n$$

System of linear sequences

Definition

A sequence is defined by a system of linear sequences if $u_n = u_n^1$ and

$$\begin{cases} u_0^1 = c_1 \\ u_0^2 = c_2 \end{cases} \qquad \begin{cases} u_{n+1}^1 = L_1(u_n^1, u_n^2, \dots, u_n^k) \\ u_{n+1}^2 = L_2(u_n^1, u_n^2, \dots, u_n^k) \\ \vdots \\ u_0^k = c_k \end{cases} \qquad \begin{cases} u_{n+1}^1 = L_1(u_n^1, u_n^2, \dots, u_n^k) \\ u_{n+1}^k = L_2(u_n^1, u_n^2, \dots, u_n^k) \end{cases}$$

where L_i are linear, $c_i \in \mathbb{S}$

System of linear sequences

Definition

A sequence is defined by a system of linear sequences if $u_n = u_n^1$ and

$$\begin{cases} u_0^1 = c_1 \\ u_0^2 = c_2 \end{cases} \qquad \begin{cases} u_{n+1}^1 = L_1(u_n^1, u_n^2, \dots, u_n^k) \\ u_{n+1}^2 = L_2(u_n^1, u_n^2, \dots, u_n^k) \\ \vdots \\ u_0^k = c_k \end{cases} \qquad \begin{cases} u_{n+1}^1 = L_1(u_n^1, u_n^2, \dots, u_n^k) \\ u_{n+1}^k = L_k(u_n^1, u_n^2, \dots, u_n^k) \end{cases}$$

where L_i are linear, $c_i \in \mathbb{S}$

This is equivalent to

We have k dimensional vector of sequences: $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$

With a k dimensional vector of initial values $I^{\mathsf{T}} = (c_1, \ldots, c_k)$

And a matrix M of dimension $k \times k$ s.t. $\vec{u_n}^T = I^T M^n$

$$(M[i, \bullet] = L_i)$$

System of linear sequences

Definition

A sequence is defined by a system of linear sequences if $u_n = u_n^1$ and

$$\begin{cases} u_0^1 = c_1 \\ u_0^2 = c_2 \end{cases} \qquad \begin{cases} u_{n+1}^1 = L_1(u_n^1, u_n^2, \dots, u_n^k) \\ u_{n+1}^2 = L_2(u_n^1, u_n^2, \dots, u_n^k) \\ \vdots \\ u_0^k = c_k \end{cases} \qquad \begin{cases} u_{n+1}^1 = L_1(u_n^1, u_n^2, \dots, u_n^k) \\ u_{n+1}^k = L_k(u_n^1, u_n^2, \dots, u_n^k) \end{cases}$$

where L_i are linear, $c_i \in \mathbb{S}$

$$\begin{cases} F_0 = 0 \\ G_0 = 1 \end{cases} \qquad \begin{cases} F_{n+1} = G_n \\ G_{n+1} = F_n + G_n \end{cases}$$

$$(F_n, G_n) = (0, 1) \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n$$

Over $(\mathbb{Q},+,\cdot,0,1)$

Over
$$(\mathbb{Q}, +, \cdot, 0, 1)$$

Consider
$$a_n = n^2$$
, recall $(n + 1)^2 = n^2 + 2n + 1$

Over
$$(\mathbb{Q}, +, \cdot, 0, 1)$$

Consider
$$a_n = n^2$$
, recall $(n + 1)^2 = n^2 + 2n + 1$

$$\begin{cases} a_0 = 0 \\ b_0 = 0 \\ c_0 = 1 \end{cases} \begin{cases} a_{n+1} = a_n + 2b_n + c_n \\ b_{n+1} = b_n + c_n \\ c_{n+1} = c_n \end{cases}$$

Over
$$(\mathbb{Q}, +, \cdot, 0, 1)$$

Consider
$$a_n = n^2$$
, recall $(n + 1)^2 = n^2 + 2n + 1$

$$\begin{cases} a_0 = 0 \\ b_0 = 0 \\ c_0 = 1 \end{cases} \begin{cases} a_{n+1} = a_n + 2b_n + c_n \\ b_{n+1} = b_n + c_n \\ c_{n+1} = c_n \end{cases}$$

$$I = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad M = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Over
$$(\mathbb{Q}, +, \cdot, 0, 1)$$

Consider
$$a_n = n^2$$
, recall $(n + 1)^2 = n^2 + 2n + 1$

$$\begin{cases} a_0 = 0 \\ b_0 = 0 \\ c_0 = 1 \end{cases} \begin{cases} a_{n+1} = a_n + 2b_n + c_n \\ b_{n+1} = b_n + c_n \\ c_{n+1} = c_n \end{cases}$$

$$I = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad M = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

$$(a_n, b_n, c_n) = I^\mathsf{T} M^n$$

Over $(\mathbb{Q}, +, \cdot, 0, 1)$

Example

Consider $a_n = n^2$, recall $(n + 1)^2 = n^2 + 2n + 1$

$$\begin{cases} a_0 = 0 \\ b_0 = 0 \\ c_0 = 1 \end{cases} \begin{cases} a_{n+1} = a_n + 2b_n + c_n \\ b_{n+1} = b_n + c_n \\ c_{n+1} = c_n \end{cases}$$

$$I = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad M = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

 $(a_n, b_n, c_n) = I^{\mathsf{T}} M^n$

Can you define it as a linear sequence?

Theorem

- If S is a commutative ring then
- (1) a_n is homogeneous linear recursive iff
- (2) a_n is nonhomogeneous linear recursive iff
- (3) a_n is definable as a system of linear equations

Theorem

If S is a commutative ring then

- (1) a_n is homogeneous linear recursive iff
- (2) a_n is nonhomogeneous linear recursive iff
- (3) a_n is definable as a system of linear equations

Proof.

- We will prove
 - $(1) \implies (2)$ obvious

Theorem

- If S is a commutative ring then
- (1) a_n is homogeneous linear recursive iff
- (2) a_n is nonhomogeneous linear recursive iff
- (3) a_n is definable as a system of linear equations

Proof.

- We will prove
 - $(1) \implies (2)$ obvious
 - $(2) \implies (3)$ next slide

Theorem

- If S is a commutative ring then
- (1) a_n is homogeneous linear recursive iff
- (2) a_n is nonhomogeneous linear recursive iff
- (3) a_n is definable as a system of linear equations

Proof.

- We will prove
 - $(1) \implies (2)$ obvious
 - $(2) \implies (3)$ next slide
 - $(3) \implies (1)$ the hard part

From nonhomogeneous to a system

Let
$$L(x_1, x_2, ..., x_k) = a_1x_1 + ... + a_kx_k + a_0$$
 (semiring +)

Such that
$$u_{n+k} = L(u_n, \ldots, u_{n+k-1})$$

From nonhomogeneous to a system

Let
$$L(x_1, x_2, ..., x_k) = a_1x_1 + ... + a_kx_k + a_0$$
 (semiring +)

Such that
$$u_{n+k} = L(u_n, \dots, u_{n+k-1})$$

• We use k extra sequences $u_n^0, u_n^1, \dots, u_n^k$, where $u_n = u_n^1$

From nonhomogeneous to a system

Let
$$L(x_1, x_2, ..., x_k) = a_1x_1 + ... + a_kx_k + a_0$$
 (semiring +)

Such that
$$u_{n+k} = L(u_n, ..., u_{n+k-1})$$

- We use k extra sequences $u_n^0, u_n^1, \ldots, u_n^k$, where $u_n = u_n^1$
- Define $u_0^0 = a_0$ and $u_{n+1}^0 = u_n^1$

From nonhomogeneous to a system

Let
$$L(x_1, x_2, ..., x_k) = a_1x_1 + ... + a_kx_k + a_0$$
 (semiring +)

Such that
$$u_{n+k} = L(u_n, ..., u_{n+k-1})$$

- We use k extra sequences $u_n^0, u_n^1, \ldots, u_n^k$, where $u_n = u_n^1$
- Define $u_0^0 = a_0$ and $u_{n+1}^0 = u_n^1$
- And $u_0^i = u_{i-1}$ for all $0 < i \le k$ and $u_{n+1}^i = u_n^{i+1}$ for 0 < i < k

From nonhomogeneous to a system

Let
$$L(x_1, x_2, ..., x_k) = a_1x_1 + ... + a_kx_k + a_0$$
 (semiring +)

Such that
$$u_{n+k} = L(u_n, \dots, u_{n+k-1})$$

- We use k extra sequences $u_n^0, u_n^1, \ldots, u_n^k$, where $u_n = u_n^1$
- Define $u_0^0 = a_0$ and $u_{n+1}^0 = u_n^1$
- And $u_0^i = u_{i-1}$ for all $0 < i \le k$ and $u_{n+1}^i = u_n^{i+1}$ for 0 < i < k
- Finally $u_{n+1}^k = a_1 u_n^1 + \ldots + a_k u_n^k + u_n^0$

From nonhomogeneous to a system

Let
$$L(x_1, x_2, ..., x_k) = a_1x_1 + ... + a_kx_k + a_0$$
 (semiring +)

Such that
$$u_{n+k} = L(u_n, \dots, u_{n+k-1})$$

- We use k extra sequences $u_n^0, u_n^1, \ldots, u_n^k$, where $u_n = u_n^1$
- Define $u_0^0 = a_0$ and $u_{n+1}^0 = u_n^1$
- And $u_0^i = u_{i-1}$ for all $0 < i \le k$ and $u_{n+1}^i = u_n^{i+1}$ for 0 < i < k
- Finally $u_{n+1}^k = a_1 u_n^1 + \ldots + a_k u_n^k + u_n^0$

• Example
$$u_{n+3} = 3u_{n+2} - 2u_{n+1} + 4u_n - 5 \rightsquigarrow \begin{cases} x_0 = -5 \\ u_0 = u_0 \\ b_0 = u_1 \\ c_0 = u_2 \\ d_0 = u_3 \end{cases} \begin{cases} x_{n+1} = x_n \\ u_{n+1} = b_n \\ b_{n+1} = c_n \\ c_{n+1} = d_n \\ d_{n+1} = 3u_n - 2b_n + 4c_n + x_n \end{cases}$$

• Suppose $\vec{u_n}^{\mathsf{T}} = I^{\mathsf{T}} M^n$ where $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$ and M is $k \times k$ dimensional $I^{\mathsf{T}} = (u_0^1, \dots, u_0^k)$ and $u_n = u_n^1$

• Suppose $\vec{u_n}^{\mathsf{T}} = I^{\mathsf{T}} M^n$ where $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$ and M is $k \times k$ dimensional $I^{\mathsf{T}} = (u_0^1, \dots, u_0^k)$ and $u_n = u_n^1$

Notice that $u_n = I^T M^n F$ for $F^T = (1, 0, \dots, 0)$

• Suppose $\vec{u_n}^{\mathsf{T}} = I^{\mathsf{T}} M^n$ where $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$ and M is $k \times k$ dimensional $I^{\mathsf{T}} = (u_0^1, \dots, u_0^k)$ and $u_n = u_n^1$

Notice that $u_n = I^T M^n F$ for $F^T = (1, 0, \dots, 0)$

• We fix the first k elements as $u_0^1, \ldots u_{k-1}^1$

• Suppose $\vec{u_n}^{\mathsf{T}} = I^{\mathsf{T}} M^n$ where $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$ and M is $k \times k$ dimensional $I^{\mathsf{T}} = (u_0^1, \dots, u_0^k)$ and $u_n = u_n^1$

Notice that
$$u_n = I^T M^n F$$
 for $F^T = (1, 0, \dots, 0)$

- We fix the first k elements as $u_0^1, \dots u_{k-1}^1$
- Let $det(\lambda Id M) = p(\lambda) = a_k \lambda^k + \ldots + a_1 \lambda^1 + a_0$

• Suppose $\vec{u_n}^{\mathsf{T}} = I^{\mathsf{T}} M^n$ where $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$ and M is $k \times k$ dimensional $I^{\mathsf{T}} = (u_0^1, \dots, u_0^k)$ and $u_n = u_n^1$

Notice that
$$u_n = I^T M^n F$$
 for $F^T = (1, 0, \dots, 0)$

- We fix the first k elements as $u_0^1, \dots u_{k-1}^1$
- Let $det(\lambda Id M) = p(\lambda) = a_k \lambda^k + ... + a_1 \lambda^1 + a_0$

$$p(\lambda)$$
 is the characteristic polynomial of M so:

$$a_k = 1$$

• Suppose $\vec{u_n}^{\mathsf{T}} = I^{\mathsf{T}} M^n$ where $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$ and M is $k \times k$ dimensional $I^{\mathsf{T}} = (u_0^1, \dots, u_0^k)$ and $u_n = u_n^1$

Notice that
$$u_n = I^T M^n F$$
 for $F^T = (1, 0, \dots, 0)$

- We fix the first k elements as $u_0^1, \ldots u_{k-1}^1$
- Let $det(\lambda Id M) = p(\lambda) = a_k \lambda^k + \ldots + a_1 \lambda^1 + a_0$

$$p(\lambda)$$
 is the characteristic polynomial of M so:

$$a_k = 1$$

$$p(A) = 0$$
 (Cayley–Hamilton theorem)

$$a_k M^k + \ldots + a_1 M^1 + a_0 I = 0$$

•
$$u_n = I^T M^n F$$

 $a_k M^k + \ldots + a_1 M^1 + a_0 I = 0$
 $a_k = 1$

•
$$u_n = I^T M^n F$$

 $a_k M^k + \ldots + a_1 M^1 + a_0 I = 0$
 $a_k = 1$

$$\bullet M^{n+k} = \sum_{i=0}^{k-1} -a_i M^{n+i}$$

•
$$u_n = I^T M^n F$$

 $a_k M^k + \ldots + a_1 M^1 + a_0 I = 0$
 $a_k = 1$

$$M^{n+k} = \sum_{i=0}^{k-1} -a_i M^{n+i}$$

$$u_{n+k} = I^{\mathsf{T}} M^{n+k} F = I^{\mathsf{T}} \left(\sum_{i=0}^{k-1} -a_i M^{n+i} \right) F$$

•
$$u_n = I^T M^n F$$

 $a_k M^k + \ldots + a_1 M^1 + a_0 I = 0$
 $a_k = 1$

$$\bullet M^{n+k} = \sum_{i=0}^{k-1} -a_i M^{n+i}$$

$$u_{n+k} = I^{\mathsf{T}} M^{n+k} F = I^{\mathsf{T}} \left(\sum_{i=0}^{k-1} -a_i M^{n+i} \right) F$$

By linearity:
$$u_{n+k} = \sum_{i=0}^{k-1} -a_i (I^T M^{n+i} F) = \sum_{i=0}^{k-1} -a_i u_{n+i}$$

•
$$u_n = I^T M^n F$$

 $a_k M^k + \ldots + a_1 M^1 + a_0 I = 0$
 $a_k = 1$

$$u_{n+k} = I^{\mathsf{T}} M^{n+k} F = I^{\mathsf{T}} \left(\sum_{i=0}^{k-1} -a_i M^{n+i} \right) F$$

By linearity:
$$u_{n+k} = \sum_{i=0}^{k-1} -a_i (I^T M^{n+i} F) = \sum_{i=0}^{k-1} -a_i u_{n+i}$$

This defines u_n as a homogeneous linear recursive sequence

Example

Consider
$$a_n = n^2$$
, recall $(n + 1)^2 = n^2 + 2n + 1$

$$\begin{cases} a_0 = 0 \\ b_0 = 0 \\ c_0 = 1 \end{cases} \begin{cases} a_{n+1} = a_n + 2b_n + c_n \\ b_{n+1} = b_n + c_n \\ c_{n+1} = c_n \end{cases}$$

Example

Consider
$$a_n = n^2$$
, recall $(n + 1)^2 = n^2 + 2n + 1$

$$\begin{cases} a_0 = 0 \\ b_0 = 0 \\ c_0 = 1 \end{cases} \begin{cases} a_{n+1} = a_n + 2b_n + c_n \\ b_{n+1} = b_n + c_n \\ c_{n+1} = c_n \end{cases}$$

$$I = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad M = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad det(\lambda \text{Id} - M) = \lambda^3 - 3\lambda^2 - 3\lambda - 1$$

Example

Consider
$$a_n = n^2$$
, recall $(n + 1)^2 = n^2 + 2n + 1$

$$\begin{cases} a_0 = 0 \\ b_0 = 0 \\ c_0 = 1 \end{cases} \begin{cases} a_{n+1} = a_n + 2b_n + c_n \\ b_{n+1} = b_n + c_n \\ c_{n+1} = c_n \end{cases}$$

$$I = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad M = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad det(\lambda \text{Id} - M) = \lambda^3 - 3\lambda^2 - 3\lambda - 1$$

Then $a_{n+3} = 3a_{n+2} - 3a_{n+1} + a_n$

Example

Consider $a_n = n^2$, recall $(n + 1)^2 = n^2 + 2n + 1$

$$\begin{cases} a_0 = 0 \\ b_0 = 0 \\ c_0 = 1 \end{cases} \begin{cases} a_{n+1} = a_n + 2b_n + c_n \\ b_{n+1} = b_n + c_n \\ c_{n+1} = c_n \end{cases}$$

$$I = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad M = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad det(\lambda \text{Id} - M) = \lambda^3 - 3\lambda^2 - 3\lambda - 1$$

Then $a_{n+3} = 3a_{n+2} - 3a_{n+1} + a_n$

Verify that
$$(n+3)^2 = 3(n+2)^2 - 3(n+1)^2 + n^2$$

• These worked for any semiring:

- $(1) \implies (2)$
- $(2) \implies (3)$

- These worked for any semiring:
 - $(1) \implies (2)$
 - $(2) \implies (3)$
- (3) ⇒ (1) this required the Cayley–Hamilton theorem which is true for commutative semirings

- These worked for any semiring:
 - $(1) \implies (2)$
 - $(2) \implies (3)$
- (3) ⇒ (1) this required the Cayley–Hamilton theorem which is true for commutative semirings
- The most general class:

The class of sequences defined by systems of linear sequences

When I refer to linear sequences I will refer to sequences definable by a system

• These worked for any semiring:

$$(1) \implies (2)$$

$$(2) \implies (3)$$

- (3) ⇒ (1) this required the Cayley–Hamilton theorem which is true for commutative semirings
- The most general class:
 The class of sequences defined by systems of linear sequences
 When I refer to linear sequences I will refer to sequences definable by a system
- On tutorials: for some semirings that are not rings the inclusions: $(1) \subseteq (2) \subseteq (3)$ are strict

Recall: $[\![\mathcal{A}]\!]:\Sigma^*\to\mathbb{S}$

$$\llbracket \mathcal{A} \rrbracket (a_1 a_2 \dots a_n) = I^{\mathsf{T}} M_{a_1} M_{a_2} \dots M_{a_n} F$$

Recall: $\llbracket \mathcal{A} \rrbracket : \Sigma^* \to \mathbb{S}$

$$\llbracket \mathcal{A} \rrbracket (a_1 a_2 \dots a_n) = I^\mathsf{T} M_{a_1} M_{a_2} \dots M_{a_n} F$$

• Assume that $\Sigma=\{a\}$, i.e. $|\Sigma|=1$ Then $\Sigma^*=\{\epsilon,a,a^2,\ldots\}\equiv \mathbb{N}$ (identify every word with its length)

Recall: $[\![\mathcal{A}]\!]:\Sigma^*\to\mathbb{S}$

$$\llbracket \mathcal{A} \rrbracket (a_1 a_2 \dots a_n) = I^\mathsf{T} M_{a_1} M_{a_2} \dots M_{a_n} F$$

• Assume that $\Sigma=\{a\}$, i.e. $|\Sigma|=1$ Then $\Sigma^*=\{\epsilon,a,a^2,\ldots\}\equiv \mathbb{N}$ (identify every word with its length)

 $\llbracket \mathcal{A} \rrbracket : \mathbb{N} \to \mathbb{S}$, they define sequences

$$\llbracket \mathcal{A} \rrbracket (n) = I^{\mathsf{T}} M^n F$$

Recall: $\llbracket \mathcal{A} \rrbracket : \Sigma^* \to \mathbb{S}$

$$\llbracket \mathcal{A} \rrbracket (a_1 a_2 \dots a_n) = I^\mathsf{T} M_{a_1} M_{a_2} \dots M_{a_n} F$$

• Assume that $\Sigma=\{a\}$, i.e. $|\Sigma|=1$ Then $\Sigma^*=\{\epsilon,a,a^2,\ldots\}\equiv \mathbb{N}$ (identify every word with its length)

 $[\![\mathcal{A}]\!]: \mathbb{N} \to \mathbb{S}$, they define sequences

$$\llbracket \mathcal{A} \rrbracket (n) = I^{\mathsf{T}} M^n F$$

• For F = (1, 0, ..., 0) these are sequences definable by systems On tutorials you'll see that for any F we are still in the same class

• Suppose $\vec{u_n}^{\mathsf{T}} = I^{\mathsf{T}} M^n$ where $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$ and M is $k \times k$ dimensional $I^{\mathsf{T}} = (u_0^1, \dots, u_0^k)$ and $u_n = u_n^1$

- Suppose $\vec{u_n}^{\mathsf{T}} = I^{\mathsf{T}} M^n$ where $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$ and M is $k \times k$ dimensional $I^{\mathsf{T}} = (u_0^1, \dots, u_0^k)$ and $u_n = u_n^1$
- Set $\mathcal{A} = (Q, \Sigma, T, I, F)$ $Q = \{1, \dots, k\}, I^{\mathsf{T}} = (u_0^1, \dots, u_0^k), F^{\mathsf{T}} = (1, 0, \dots, 0)$ $T = \{(p, a, s, q) \mid M_a[p, q] = s\}$

- Suppose $\vec{u_n}^{\mathsf{T}} = I^{\mathsf{T}} M^n$ where $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$ and M is $k \times k$ dimensional $I^{\mathsf{T}} = (u_0^1, \dots, u_0^k)$ and $u_n = u_n^1$
- Set $\mathcal{A} = (Q, \Sigma, T, I, F)$ $Q = \{1, \dots, k\}, I^{\mathsf{T}} = (u_0^1, \dots, u_0^k), F^{\mathsf{T}} = (1, 0, \dots, 0)$ $T = \{(p, a, s, q) \mid M_a[p, q] = s\}$
- Example

Fibonacci over
$$(\mathbb{Q},+,\cdot,0,1)$$
 $(F_n,G_n)=(0,1)\begin{pmatrix}0&1\\1&1\end{pmatrix}^n$

- Suppose $\vec{u_n}^{\mathsf{T}} = I^{\mathsf{T}} M^n$ where $\vec{u_n}^{\mathsf{T}} = (u_n^1, \dots, u_n^k)$ and M is $k \times k$ dimensional $I^{\mathsf{T}} = (u_0^1, \dots, u_0^k)$ and $u_n = u_n^1$
- Set $\mathcal{A} = (Q, \Sigma, T, I, F)$ $Q = \{1, \dots, k\}, I^{\mathsf{T}} = (u_0^1, \dots, u_0^k), F^{\mathsf{T}} = (1, 0, \dots, 0)$ $T = \{(p, a, s, q) \mid M_a[p, q] = s\}$
- Example

Fibonacci over
$$(\mathbb{Q}, +, \cdot, 0, 1)$$

$$(F_n, G_n) = (0, 1) \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n$$

$$a 1$$

$$F$$

$$a 1$$

$$G$$

$$a 1$$

• When weights are 1 then it is equivalent to counting the accepting runs

Closed form

Fix
$$(\mathbb{Q}, +, \cdot, 0, 1)$$

• $u_n = I^T M^n F$ characteristic polynomial $p(x) = (x - \lambda_1)^{m_1} \dots (x - \lambda_s)^{m_s}$

Closed form

Fix
$$(\mathbb{Q}, +, \cdot, 0, 1)$$

• $u_n = I^\mathsf{T} M^n F$ characteristic polynomial $p(x) = (x - \lambda_1)^{m_1} \dots (x - \lambda_s)^{m_s}$

$$M^{n} = BJ^{n}B^{-1}, \quad J^{n} = \begin{bmatrix} J_{m_{1}}^{n}(\lambda_{1}) & 0 & 0 & \cdots & 0 \\ 0 & J_{m_{2}}^{n}(\lambda_{2}) & 0 & \cdots & 0 \\ \vdots & \cdots & \ddots & \cdots & \vdots \\ 0 & \cdots & 0 & J_{m_{s-1}}^{n}(\lambda_{s-1}) & 0 \\ 0 & \cdots & \cdots & 0 & J_{m_{s}}^{n}(\lambda_{s}) \end{bmatrix}$$

$$J_{m_{i}}^{n}(\lambda_{i}) = \begin{bmatrix} \lambda_{i}^{n} & \binom{n}{1} \lambda_{i}^{n-1} & \binom{n}{2} \lambda_{i}^{n-2} & \cdots & \binom{n}{m_{i}-1} \lambda_{i}^{n-m_{i}+1} \\ 0 & \lambda_{i}^{n} & \binom{n}{1} \lambda_{i}^{n-1} & \cdots & \binom{n}{m_{i}-2} \lambda_{i}^{n-m_{i}+2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{i}^{n} & \binom{n}{1} \lambda_{i}^{n-1} \\ 0 & 0 & \cdots & 0 & \lambda_{i}^{n} \end{bmatrix},$$

Closed form

Fix
$$(\mathbb{Q}, +, \cdot, 0, 1)$$

• $u_n = I^\mathsf{T} M^n F$ characteristic polynomial $p(x) = (x - \lambda_1)^{m_1} \dots (x - \lambda_s)^{m_s}$

$$M^{n} = BJ^{n}B^{-1}, \quad J^{n} = \begin{bmatrix} J_{m_{1}}^{n}(\lambda_{1}) & 0 & 0 & \cdots & 0 \\ 0 & J_{m_{2}}^{n}(\lambda_{2}) & 0 & \cdots & 0 \\ \vdots & \cdots & \ddots & \cdots & \vdots \\ 0 & \cdots & 0 & J_{m_{s-1}}^{n}(\lambda_{s-1}) & 0 \\ 0 & \cdots & \cdots & 0 & J_{m_{s}}^{n}(\lambda_{s}) \end{bmatrix}$$

$$J_{m_i}^n(\lambda_i) = \begin{bmatrix} \lambda_i^n & \binom{n}{1} \lambda_i^{n-1} & \binom{n}{2} \lambda_i^{n-2} & \cdots & \binom{n}{m_i-1} \lambda_i^{n-m_i+1} \\ 0 & \lambda_i^n & \binom{n}{1} \lambda_i^{n-1} & \cdots & \binom{n}{m_i-2} \lambda_i^{n-m_i+2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_i^n & \binom{n}{1} \lambda_i^{n-1} \\ 0 & 0 & \cdots & 0 & \lambda_i^n \end{bmatrix},$$
Note $\lambda_i \in \mathbb{C}$

Closed form continued

•
$$u_n = I^T M^n F = \sum_{i=1}^s p_i(n) \lambda_i^n$$

Where $\lambda_i \in \mathbb{C}$ roots of the characteristic polynomial p_i are polynomials over \mathbb{C}

Closed form continued

•
$$u_n = I^T M^n F = \sum_{i=1}^s p_i(n) \lambda_i^n$$

Where $\lambda_i \in \mathbb{C}$ roots of the characteristic polynomial p_i are polynomials over \mathbb{C}

• For example for Fibonacci

Characteristic polynomial is
$$det \left(x \operatorname{Id} - \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}\right) = x^2 - x + 1$$
$$= \left(x - \frac{1 + \sqrt{5}}{2}\right)\left(x - \frac{1 - \sqrt{5}}{2}\right)$$

Closed form continued

•
$$u_n = I^T M^n F = \sum_{i=1}^s p_i(n) \lambda_i^n$$

Where $\lambda_i \in \mathbb{C}$ roots of the characteristic polynomial p_i are polynomials over \mathbb{C}

• For example for Fibonacci

Characteristic polynomial is
$$det \left(x \operatorname{Id} - \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}\right) = x^2 - x + 1$$

$$= \left(x - \frac{1 + \sqrt{5}}{2}\right)\left(x - \frac{1 - \sqrt{5}}{2}\right)$$

• One can verify that $F_n = \frac{1}{\sqrt{5}} \frac{1+\sqrt{5}}{2} - \frac{1}{\sqrt{5}} \frac{1-\sqrt{5}}{2}$

Lemma

If u_n is a linear recursive sequence over $(\mathbb{Q},+,\cdot,0,1)$ then $|u_n|\leqslant c^n$ for some $c\in\mathbb{Q}$

Lemma

If u_n is a linear recursive sequence over $(\mathbb{Q},+,\cdot,0,1)$ then $|u_n|\leqslant c^n$ for some $c\in\mathbb{Q}$

Corollary

The sequence $u_n=n!$ cannot be defined by weighted automata over $(\mathbb{Q},+,\cdot,0,1)$

Lemma

If u_n is a linear recursive sequence over $(\mathbb{Q},+,\cdot,0,1)$ then $|u_n|\leqslant c^n$ for some $c\in\mathbb{Q}$

Corollary

The sequence $u_n=n!$ cannot be defined by weighted automata over $(\mathbb{Q},+,\cdot,0,1)$

Proof.

 $n! > (\frac{n}{e})^n$ for n big enough (by Stirling)

Lemma

If u_n is a linear recursive sequence over $(\mathbb{Q},+,\cdot,0,1)$ then $|u_n|\leqslant c^n$ for some $c\in\mathbb{Q}$

Corollary

The sequence $u_n=n!$ cannot be defined by weighted automata over $(\mathbb{Q},+,\cdot,0,1)$

Proof.

 $n! > (\frac{n}{e})^n$ for n big enough (by Stirling)

$$\left(\frac{n}{e}\right)^n = 2^{n(\log(n) - \log(e))}$$