Monads, partial algebras, and partial logic

Yuto Kawase

RIMS, Kyoto University

December 8, 2023.

Abstract

Goal

```
(classical) universal algebra = study of algebras on Set \downarrowgeneralize relativized universal algebra = study of algebras on \mathscr A (\mathscr A: a locally presentable category)
```

In this generalization,

classical algebra		relativized algebra
finite-arity	~ →	κ -arity (κ : a regular cardinal)
total function	~→	partial function
equation	~ →	Horn sequent

Our relativized algebra will be written in (infinitary) partial Horn logic [PV07].

Finally, we will give a generalized Birkhoff's variety theorem.

Partial Horn logic

2 Completeness theorem of PHL

Relativized algebra

4 Birkhoff-type theorem

Partial function

A small category $\mathscr C$ consists of...

```
a set ··· obℰ ("objects"),
a set ··· morℰ ("morphisms"),
a function ··· id: obℰ → morℰ ("identities"),
a function ··· d: morℰ → obℰ ("domain"),
a function ··· c: morℰ → obℰ ("codomain"), and
a partial function ··· o: morℰ × morℰ → morℰ ("composition").
```

- We can define "the theory of small categories" as a partial Horn theory.
- Partial Horn theory = a logical theory which can deal with partial functions (and relations).

Multi-sorted signature

Definition

S: the set of sorts. κ : an infinite regular cardinal.

An S-sorted (κ -ary) signature Σ consists of:

- function symbols f, f', f'', \ldots
- relation symbols R, R', R'', \ldots
- arity of each function symbol $f: \sqcap_{i<\alpha} s_i \to s, f': \sqcap \cdots$
- arity of each relation symbol $R: \sqcap_{j<\beta} s_j, R': \sqcap \cdots$

where $\alpha, \beta < \kappa$ and $s_i, s_j, s \in S$.

From now on, we fix κ .

Partial Horn theory

 Σ : an S-sorted signature.

- A term $\tau ::= x \mid f(\tau_i)_{i < \alpha}$;
- A Horn formula $\varphi ::= \top \mid \bigwedge_{i < \alpha} \varphi_i \mid \tau = \tau' \mid R(\tau_i)_{i < \alpha}$;
- A context \cdots $\vec{x} = (x_i)_{i < \alpha}$ (a family of distinct variables).

Here, $\alpha < \kappa$. The notation $\vec{x}.\varphi$ [resp. $\vec{x}.\tau$] means that all variables of φ [τ] are in the context \vec{x} . (Horn formula [term]-in-context)

Definition

4 A Horn sequent over Σ is an expression of the form

$$\varphi \vdash \vec{x} \psi$$
 (" φ implies ψ ")

 (φ, ψ) are Horn formulas over Σ in the same context \vec{x} .)

2 A partial Horn theory $\mathbb T$ over Σ is a set of Horn sequents over Σ .

Horn vs partial Horn

What is the difference between ordinary Horn theory and partial Horn theory? \rightsquigarrow It lies in the concept of models.

	(ordinary) Horn theory	partial Horn theory
Axiom	Horn sequent $\varphi \stackrel{\overrightarrow{x}}{\longleftarrow} \psi$	Horn sequent $arphi dash ec{ec{x}} \psi$
Interpretation of func.symb.	total map $M_{ec{s}} \xrightarrow{ \llbracket f rbracket_{M}} M_{s}$	partial map $M_{ec s}$ $\begin{tabular}{c} \llbracket f bracket_{M_{\chi}} \end{matrix} M_s$
Interpretation of rel.symb.	$\text{subset } [\![R]\!]_M \subseteq M_{\vec{s}}$	subset $[\![R]\!]_M\subseteq M_{\vec{s}}$
Validity of φ	" $arphi$ holds."	"All terms in $arphi$ are defined and $arphi$ holds."
Validity of $\varphi \stackrel{\overrightarrow{x}}{\longmapsto} \psi$	"If $arphi$ holds then ψ holds."	"If all terms in φ are defined and φ holds, then all terms in ψ are defined and ψ holds."

Especially,

An equation $\tau=\tau$ holds iff the value of the partial map $[\![\tau]\!]_M$ is defined.

So, we will use the abbreviation $\tau \downarrow$ for $\tau = \tau$.

Homomorphisms

Definition

 \mathbb{T} : a partial Horn theory. M,N: (partial) models of \mathbb{T} .

A homomorphism $M \xrightarrow{h} N$ is a (total) map $M \xrightarrow{h} N$ such that for each f, R:

- $\bullet \ \text{ if } \vec{a} \in [\![R]\!]_M \text{, then } h(\vec{a}) \in [\![R]\!]_N;$
- \bullet if $[\![f]\!]_M(\vec{a})$ is defined, then so is $[\![f]\!]_N(h(\vec{a}))$ and

$$h([\![f]\!]_M(\vec{a}))=[\![f]\!]_N(h(\vec{a})).$$

Notation

 \mathbb{T} : a partial Horn theory.

 $\operatorname{\mathbf{PMod}} \mathbb{T}$: the category of (partial) models of \mathbb{T} and homomorphisms.

Example: small categories

Example (small categories)

We can define the partial Horn theory $\mathbb{T}_{\mathrm{cat}}$ of small categories as follows:

The $S:=\{\mathrm{ob},\mathrm{mor}\}$ -sorted signature Σ_{cat} consists of:

$$\mathrm{id}\colon \mathrm{ob}\to \mathrm{mor},\quad \mathrm{d}\colon \mathrm{mor}\to \mathrm{ob},\quad \mathrm{c}\colon \mathrm{mor}\to \mathrm{ob},\quad \circ\colon \mathrm{mor}\sqcap \mathrm{mor}\to \mathrm{mor}.$$

The partial Horn theory \mathbb{T}_{cat} over Σ_{cat} consists of:

and so on.

 \leadsto We have $\mathbf{PMod}\,\mathbb{T}_{\mathrm{cat}}\cong\mathbf{Cat}.$

Example: posets

Example (posets)

We present the partial Horn theory \mathbb{T}_{pos} of posets. Let $S := \{*\}$, $\Sigma_{pos} := \{\leq : * \sqcap *\}$. The partial Horn theory \mathbb{T}_{pos} over Σ_{pos} consists of:

$$\top \vdash \xrightarrow{x} x \leq x, \quad x \leq y \land y \leq x \vdash \xrightarrow{x,y} x = y, \quad x \leq y \land y \leq z \vdash \xrightarrow{x,y,z} x \leq z.$$

Then, we have $\operatorname{\mathbf{PMod}}\nolimits \mathbb{T}_{\operatorname{pos}} \cong \operatorname{\mathbf{Pos}}\nolimits$.

Example: groups or empty

Example

$$S := \{*\}, \quad \Sigma_{\operatorname{grp}_{\varnothing}} := \left\{ e \colon () \to *, \quad ()^{-1} \colon * \to *; \right\}$$

The partial Horn theory $\mathbb{T}_{\operatorname{grp}_{\varnothing}}$ over $\Sigma_{\operatorname{grp}_{\varnothing}}$ consists of:

Then, a $\mathbb{T}_{\text{grp}_{\alpha}}$ -model is either a group or the empty set.

- Partial Horn logic
- 2 Completeness theorem of PHL

Relativized algebra

4 Birkhoff-type theorem

Inference rules

$$\frac{\varphi \stackrel{\overrightarrow{x}}{\longmapsto} \psi}{\varphi \stackrel{\overrightarrow{x}}{\mapsto} \varphi} \text{ (Id)} \qquad \frac{\varphi \stackrel{\overrightarrow{x}}{\longmapsto} \psi}{\varphi \stackrel{\overrightarrow{x}}{\mapsto} \chi} \text{ (Cut)}$$

$$\frac{\varphi \stackrel{\overrightarrow{x}}{\longmapsto} \psi}{\varphi \stackrel{\overrightarrow{x}}{\mid} \chi \mid} \text{ (Subst)} \qquad \frac{\varphi \stackrel{\overrightarrow{x}}{\longmapsto} \psi}{\neg \varphi \stackrel{\overrightarrow{x}}{\mid} \chi \mid} \text{ (Refl)}$$

$$\frac{\varphi \stackrel{\overrightarrow{x}}{\mapsto} \psi}{\varphi \land \bigwedge_{i < \alpha} x_i = y_i \stackrel{\overrightarrow{z}}{\longmapsto} \varphi (\vec{y}/\vec{x})} \text{ (Eq)} \qquad \frac{R(\tau_i)_{i < \alpha} \stackrel{\overrightarrow{x}}{\longmapsto} \tau_j \downarrow}{R(\tau_i)_{i < \alpha} \stackrel{\overrightarrow{x}}{\longmapsto} \tau_j \downarrow} \text{ (SRel)}$$

$$\frac{\varphi(\vec{\tau}/\vec{x}) \wedge \bigwedge_{i < \alpha} \tau_i \downarrow \vdash \vec{y} \quad \psi(\vec{\tau}/\vec{x})}{\forall \vdash \vec{x} \quad \psi(\vec{\tau}/\vec{x})} \qquad \frac{\neg \cdot \vec{x} \quad x_i \downarrow}{\neg \cdot \land \land_{i < \alpha} x_i = y_i \vdash \vec{z} \quad \varphi(\vec{y}/\vec{x})} \qquad (Eq) \qquad \frac{\neg \cdot \vec{x} \quad x_i \downarrow}{R(\tau_i)_{i < \alpha} \vdash \vec{x} \quad \tau_j \downarrow}$$

 $\frac{\phantom{\frac{1}{1}}}{\tau = \sigma \vdash \vec{x} \quad \tau \! \downarrow \wedge \sigma \! \downarrow} \text{ (SEq)}$ $\frac{}{f(\tau_i)_{i<\alpha} \vdash \vec{x} \quad \tau_i \downarrow} \text{ (SFun)}$ $\frac{(\varphi \vdash \vec{x} \quad \psi_i)_{i < \alpha}}{\varphi \vdash \vec{x} \quad \bigwedge_{i < \alpha} \psi_i} \text{ (IConj)}$ $\frac{}{\bigwedge_{i < \alpha} \varphi_i \vdash \vec{x} - \varphi_i}$ (EConj)

Derivation

Definition

A derivation from \mathbb{T} is a well-founded rooted tree of Horn sequents such that:

- ullet for every node, the number of its children is less than κ ;
- for every node, the pair of its children and itself exhibits an inference rule or axiom of T.

$$\frac{\vdots}{\varphi_0 \vdash \vec{x}_0} \psi_0 \quad \frac{\vdots}{\varphi_1 \vdash \vec{x}_1} \psi_1 \quad \dots \quad \frac{\vdots}{\varphi_i \vdash \vec{x}_i} \psi_i \quad \dots \quad (i < \alpha)$$

$$\varphi \vdash \vec{x} \quad \psi$$

Here $\alpha < \kappa$.

Definition

A Horn sequent $\varphi \vdash \vec{x} \psi$ is called a PHL_{κ} -theorem of $\mathbb T$ and written as

$$\mathbb{T} \vdash (\varphi \vdash \vec{x} \psi)$$

if there exists a derivation of $\varphi \vdash \vec{x} - \psi$ from \mathbb{T} .

Cut rule

Lemma (The cut rule)

$$\frac{(\varphi_i \vdash \vec{x} \quad \psi_i)_{i < \alpha} \quad \chi \land \bigwedge_{i < \alpha} \psi_i \vdash \vec{x} \quad \theta}{\chi \land \bigwedge_{i < \alpha} \varphi_i \vdash \vec{x} \quad \theta}$$

Proof. $\frac{\overline{x} \wedge \Lambda_{i < \alpha} \varphi_{i} \vdash \overline{x} \qquad \varphi_{j} \qquad \varphi_{j} \vdash \overline{x} \qquad \psi_{j}}{x \wedge \Lambda_{i < \alpha} \varphi_{i} \vdash \overline{x} \qquad \psi_{j}} \qquad \text{(Cut)}$ $\frac{(x \wedge \Lambda_{i < \alpha} \varphi_{i} \vdash \overline{x} \qquad \psi_{j})_{j < \alpha}}{x \wedge \Lambda_{i < \alpha} \varphi_{i} \vdash \overline{x} \qquad \chi_{j}} \qquad \text{(EConj)}$ $\frac{(x \wedge \Lambda_{i < \alpha} \varphi_{i} \vdash \overline{x} \qquad \psi_{j})_{j < \alpha}}{x \wedge \Lambda_{i < \alpha} \varphi_{i} \vdash \overline{x} \qquad \chi_{j}} \qquad \text{(EConj)}$ $\frac{x \wedge \Lambda_{i < \alpha} \varphi_{i} \vdash \overline{x} \qquad \chi_{j}}{x \wedge \Lambda_{i < \alpha} \varphi_{i} \vdash \overline{x} \qquad \chi_{j}} \qquad \text{(Cut)}$ $\frac{x \wedge \Lambda_{i < \alpha} \varphi_{i} \vdash \overline{x} \qquad \chi_{j}}{x \wedge \Lambda_{i < \alpha} \varphi_{i} \vdash \overline{x} \qquad \chi_{j}} \qquad \text{(Cut)}$

T-terms

Definition

1 A term $\vec{x}.\tau$ is called a T-term generated by $\vec{x}.\varphi$ if

$$\mathbb{T} \vdash (\varphi \vdash \vec{x} \quad \tau \downarrow).$$

2 $\vec{x}. au$, $\vec{x}. au'$: \mathbb{T} -terms generated by $\vec{x}.\varphi$ of the same type.

$$\vec{x}.\tau \approx_{\mathbb{T}} \vec{x}.\tau' \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \mathbb{T} \vdash (\varphi \vdash \stackrel{\vec{x}}{\longleftarrow} \tau = \tau')$$

Notation

 (S,Σ,\mathbb{T}) : a partial Horn theory.

 \mathbb{T} -Term $(\vec{x}.\varphi)$: the S-sorted set of all \mathbb{T} -terms generated by $\vec{x}.\varphi$. $\langle \vec{x}.\varphi \rangle_{\mathbb{T}} := \mathbb{T}$ -Term $(\vec{x}.\varphi)/\approx_{\mathbb{T}}$

Proposition

 $\langle \vec{x}.arphi
angle_{\mathbb{T}}$ becomes a (partial) \mathbb{T} -model.

Completeness theorem

Lemma

For any Horn formula $\vec{y}.\psi$,

$$[\![\vec{y}.\psi]\!]_{\langle\vec{x}.\varphi\rangle_{\mathbb{T}}}\ni ([\vec{x}.\tau_j])_j\quad\Leftrightarrow\quad \mathbb{T}\vdash \left(\varphi \vdash \stackrel{\vec{x}}{\longmapsto} \psi(\vec{\tau}/\vec{y})\right).$$

Completeness theorem of PHL

 \mathbb{T} : a partial Horn theory. For any Horn sequent $\varphi \vdash \stackrel{\overrightarrow{x}}{\longmapsto} \psi$, TFAE:

- $\bullet \ \mathbb{T} \vdash (\varphi \vdash \vec{x} \quad \psi).$

Proof.

[2 \Longrightarrow 1] By assumption, we particularly get $\langle \vec{x}.\varphi \rangle_{\mathbb{T}} \vDash (\varphi \vdash \vec{x} - \psi)$.

By Lemma, $\mathbb{T} \vdash (\varphi \vdash \stackrel{\vec{x}}{\longleftarrow} \varphi(\vec{\tau}/\vec{x}))$ implies $\mathbb{T} \vdash (\varphi \vdash \stackrel{\vec{x}}{\longleftarrow} \psi(\vec{\tau}/\vec{x}))$ $(\forall \vec{\tau})$.

Taking $\vec{\tau} \mapsto \vec{x}$, we have $\mathbb{T} \vdash (\varphi \vdash \vec{x} \quad \psi)$.

- Partial Horn logic
- 2 Completeness theorem of PHL

Relativized algebra

4 Birkhoff-type theorem

Multi-sorted algebras

Definition

An S-sorted algebraic theory (also called an equational theory) consists of:

- ullet Ω : a set of operators;
- arity $\omega \colon s_1 \sqcap \cdots \sqcap s_n \to s$ for each $\omega \in \Omega$;
- \bullet E: a set of equations.

Here $s_i, s \in S$.

Example (Chain complexes)

$$S := \mathbb{Z}, \qquad \Omega := \left\{ \begin{aligned} 0_n \colon () \to n, & -_n \colon n \to n; \\ +_n \colon (n,n) \to n, & d_n \colon n \to n+1. \end{aligned} \right\}$$

$$E := \{0_n +_n x \stackrel{x:n}{=} x, \text{ and so on.}\}$$

Finitary monads

Definition

A monad on a category \mathscr{C} consists of:

- a functor $T: \mathscr{C} \to \mathscr{C}$,
- a natural transformation $\eta: \mathrm{Id}_{\mathscr{C}} \Rightarrow T$,
- ullet a natural transformation $\mu: T^2(:=T\circ T)\Rightarrow T$

such that the following commute.

Definition

A monad (T, η, μ) is finitary when the functor T preserves filtered colimits.

Linton's theorem

Theorem ([Lin69])

There is an equivalence

 $\mathbf{Th}^S \simeq \mathbf{Mnd}_{\mathrm{f}}(\mathbf{Set}^S).$

Here,

 \mathbf{Th}^{S} : the category of S-sorted algebraic theories,

 $\mathbf{Mnd}_f(\mathbf{Set}^S)$: the category of finitary monads on \mathbf{Set}^S .

???

S-sorted algebraic theory = finitary monad on \mathbf{Set}^S

↓ generalize

S-relative algebraic theory $= \kappa$ -ary monad on $\operatorname{PMod} \mathbb{S}$

(S: a κ -ary partial Horn theory)

Relative algebraic theories

 (S,Σ,\mathbb{S}) : a κ -ary partial Horn theory

Definition ([Kaw23a; Kaw24])

An S-relative algebraic theory consists of:

- ullet Ω : a set of partial operators,
- \bullet E: a set of Horn sequents over $\Sigma+\Omega$
- such that
 - (arity) • For each sequent in E, its precondition is over Σ . (must contain no operator in Ω)

• For each operator $\omega \in \Omega$, its domain is defined by a Horn formula φ_{ω} over Σ .

Definition ([Kaw23a; Kaw24])

 (Ω,E) : an $\mathbb S$ -relative alg.theory. An (Ω,E) -algebra $\mathbb A$ is an $\mathbb S$ -model A with interpretation of all $\omega\in\Omega$ that satisfies all axioms in E.

$$\prod_{i < \alpha} A_{s_i} \supseteq [\![\vec{x}.\varphi_\omega]\!]_A \xrightarrow{[\![\omega]\!]_A} A_s$$

Via theory morphism

Definition

A theory morphism (translation) $(S, \Sigma, \mathbb{T}) \stackrel{\rho}{\longrightarrow} (S', \Sigma', \mathbb{T}')$ consists of the following assignments:

- $S \ni s \mapsto s^{\rho} \in S'$;
- $f \colon \sqcap_{i < \alpha} s_i \to s \text{ in } \Sigma \quad \mapsto \quad \text{a term } \vec{x}^{\rho}.f^{\rho} \text{ of type } s^{\rho} \text{ over } \Sigma';$
- $R \colon \sqcap_{i < \alpha} s_i \text{ in } \Sigma \mapsto \text{ a Horn formula } \vec{x}^{\rho}.R^{\rho} \text{ in } \Sigma'$

s.t. for every
$$\varphi \vdash \overrightarrow{x} \psi$$
 in \mathbb{T} , $\mathbb{T}' \vdash (\varphi^{\rho} \vdash \overrightarrow{x}^{\rho} \psi^{\rho})$. $(\overrightarrow{x}^{\rho} = (x_{i}^{\rho} : s_{i}^{\rho})_{i < \alpha})$

Remark

An (S, Σ, \mathbb{S}) -relative algebraic theory is precisely an extension $(S, \Sigma, \mathbb{S}) \xrightarrow{\rho} (S, \Sigma + \Omega, \mathbb{S} + E)$ such that

- a O contains no relation symbol:
- ullet Ω contains no relation symbol;
- E consists of: • $\omega(\vec{x}) \downarrow \stackrel{\vec{x}}{\longmapsto} \varphi_{\omega} \ (\varphi_{\omega}: \text{ over } \Sigma) \text{ for each } \omega \in \Omega;$
 - Horn sequents $\varphi \vdash \overrightarrow{x} \psi$ (φ : over Σ , ψ : over $\Sigma + \Omega$).

Ordinary algebra vs relative algebra

 (S, Σ, \mathbb{S}) : a partial Horn theory.

	S -sorted algebraic theory (Ω,E)	\mathbb{S} -relative algebraic theory (Ω,E)
Base category	\mathbf{Set}^S	$\mathbf{PMod}\mathbb{S}$
Operator	$(s_i)_i \xrightarrow{\omega} s$	$(x_i:s_i)_i. \xrightarrow{\varphi} \xrightarrow{\omega} s$
Axiom	equation $ au= au'$	$ \underbrace{\varphi}_{over\;\Sigma} $ $ \underbrace{\vec{x}}_{\psi}$

$$\begin{array}{ccc} \mathbf{Alg}(\Omega,E) & \mathbf{Alg}(\Omega,E) \\ F \left(\neg \right) U & F \left(\neg \right) U \\ \mathbf{Set}^S & \mathbf{PMod} \, \mathbb{S} \end{array}$$

In S-relative algebraic theory ...

- Each operator $\omega \in \Omega$ needs not be total, but its domain must be defined by "S's language."
- We can use (Horn) implications as axioms, but its precondition must not contain any operator $\omega \in \Omega$. Preconditions must be written in "S's language."

Examples

Example (Small categories)

The finitary partial Horn theory $\mathbb{S}_{\mathrm{quiv}}$ for quivers is given by:

$$S_{\mathrm{quiv}} := \{e,v\}, \quad \Sigma_{\mathrm{quiv}} := \{s,t \colon e \to v\}, \quad \mathbb{S}_{\mathrm{quiv}} := \{\top \vdash \overbrace{f \colon e} s(f) \downarrow \wedge t(f) \downarrow \}.$$

We define an $\mathbb{S}_{\mathrm{quiv}}\text{-relative finitary algebraic theory }(\Omega,E)$ as follows:

$$\Omega: \begin{array}{c|c} & \text{arity} & \text{type} \\ \hline \circ & (g,f{:}e).s(g) = t(f) & e \\ \text{id} & (x{:}v).\top & e \\ \end{array}$$

$$E := \left\{ \begin{array}{c} \top \ \ \, \stackrel{x:v}{\longmapsto} \ \, s(\operatorname{id}(x)) = x \wedge t(\operatorname{id}(x)) = x, \\ \\ s(g) = t(f) \ \ \, \stackrel{g,f:e}{\longmapsto} \ \, s(g \circ f) = s(f) \wedge t(g \circ f) = t(g), \\ \\ \top \ \ \, \stackrel{f:e}{\longmapsto} \ \, f \circ \operatorname{id}(s(f)) = f \wedge \operatorname{id}(t(f)) \circ f = f, \\ \\ s(h) = t(g) \wedge s(g) = t(f) \ \ \, \stackrel{h,g,f:e}{\longmapsto} \ \, (h \circ g) \circ f = h \circ (g \circ f) \end{array} \right\}$$

Then, we have $\mathbf{Alg}(\Omega, E) \cong \mathbf{Cat}$.

Example (ω -cpos)

Let \mathbb{S}_{pos} be the partial Horn theory of posets. In what follows, we regard \mathbb{S}_{pos} as an \aleph_1 -ary partial Horn theory. We present an \mathbb{S}_{pos} -relative \aleph_1 -ary algebraic theory (Ω, E) for ω -cpos. Let $\Omega := \{\sup\}$ with

$$\operatorname{ar}(\sup) := (x_n)_{n < \omega} . \bigwedge_{n < \omega} x_n \le x_{n+1}, \quad \operatorname{type}(\sup) := *.$$

The set E is defined by the following:

$$E := \left\{ \bigwedge_{n < \omega}^{n} x_n \le x_{n+1} \stackrel{(x_n)_{n < \omega}}{\longmapsto} \bigwedge_{n < \omega}^{n} x_n \le \sup(\vec{x}); \\ \bigwedge_{n < \omega}^{n} x_n \le x_{n+1} \land \bigwedge_{n < \omega}^{n} x_n \le y \stackrel{(x_n)_{n < \omega}, y}{\longmapsto} \sup(\vec{x}) \le y \right\}$$

Then, an (Ω,E) -algebra is precisely an ω -cpo, i.e., a poset where every ω -chain has a supremum.

A generalized Linton's theorem

Theorem ([Kaw23a; Kaw24])

There is an equivalence

$$\mathbf{Th}_{\kappa}^{\mathbb{S}} \simeq \mathbf{Mnd}_{\kappa}(\mathbf{PMod}\,\mathbb{S}).$$

Here,

 $\mathbf{Th}^{\mathbb{S}}$: the category of \mathbb{S} -relative (κ -ary) algebraic theories,

 $\mathbf{Mnd}_{\kappa}(\mathbf{PMod}\,\mathbb{S})$: the category of κ -ary monads on $\mathbf{PMod}\,\mathbb{S}$.

↑ generalize

Recall (Linton's theorem)

 $\mathbf{Th}^S \simeq \mathbf{Mnd}_{\aleph_0}(\mathbf{Set}^S).$

S-sorted algebraic theory $=(S,\varnothing,\varnothing)\text{-relative}$ algebraic theory

Partial Horn logic

2 Completeness theorem of PHL

Relativized algebra

4 Birkhoff-type theorem

Birkhoff's variety theorem

Birkhoff's variety theorem [Bir35]

 (Ω,E) : a single-sorted algebraic theory. $\mathscr{E}\subseteq\mathbf{Alg}(\Omega,E)$: fullsub. TFAE:

- ${\mathfrak S}\subseteq {\mathbf {Alg}}(\Omega,E)$ is closed under *products*, *subobjects*, and *quotients*.

closed under products: $A_i \in \mathscr{E} \implies \prod_i A_i \in \mathscr{E}$. closed under subobjects: $B \subseteq A$: sub, $A \in \mathscr{E} \implies B \in \mathscr{E}$. closed under quotients: $A \twoheadrightarrow B$: surj, $A \in \mathscr{E} \implies B \in \mathscr{E}$.

Birkhoff-type theorem for partial Horn logic

Theorem ([Kaw23a; Kaw24])

 $\mathbb{S} \xrightarrow{\rho} \mathbb{T}$: a theory morphism between $(\kappa$ -ary) partial Horn theories.

For every $\mathscr{E} \subseteq \mathbf{PMod} \, \mathbb{T}$, TFAE:

- $\bullet \ \mathscr{E} \subseteq \mathbf{PMod} \, \mathbb{T} \text{ is definable by } (\kappa\text{-ary}) \text{ Horn sequents in the form } \varphi^{\rho} \vdash \stackrel{\overrightarrow{x}^{\rho}}{\longleftarrow} \psi.$
- **②** $\mathscr{E} \subseteq \mathbf{PMod} \, \mathbb{T}$ is closed under products, \mathbb{T} -closed subobjects, U^{ρ} -retracts, and κ -filtered colimits.

Remark

- $\bullet \ \, \text{For example, } \mathbb{T}_{pos}\text{-closed sub} = \text{embedding}.$
- **2** $\mathbf{PMod} \mathbb{S} \xleftarrow{U^{\rho}} \mathbf{PMod} \mathbb{T}$ is the ρ -translation functor. $q \text{ in } \mathbf{PMod} \mathbb{T}$ is a U^{ρ} -retraction $\overset{\mathsf{def}}{\Leftrightarrow} U^{\rho}(q)$ is a retraction.

Taking ρ to be $(S, \emptyset, \emptyset) \to (S, \Sigma, \mathbb{T})$:

Corollary

 \mathbb{T} : a $(\kappa$ -ary) partial Horn theory. For every $\mathscr{E} \subseteq \mathbf{PMod}\,\mathbb{T}$, TFAE:

- **1** $\mathscr{E} \subseteq \mathbf{PMod} \, \mathbb{T}$ is definable by $(\kappa$ -ary) Horn formulas.
- **②** $\mathscr{E} \subseteq \mathbf{PMod} \, \mathbb{T}$ is closed under *products*, \mathbb{T} -closed subobjects, surjections, and κ -filtered colimits.

Taking ρ to be $\mathbb{T} \stackrel{\mathrm{id}}{\longrightarrow} \mathbb{T}$:

Corollary

 \mathbb{T} : a $(\kappa$ -ary) partial Horn theory. For every $\mathscr{E} \subseteq \mathbf{PMod}\,\mathbb{T}$, TFAE:

- **4** $\mathscr{E} \subseteq \mathbf{PMod} \mathbb{T}$ is definable by $(\kappa$ -ary) Horn sequents.
- **②** $\mathscr{E} \subseteq \mathbf{PMod} \mathbb{T}$ is closed under *products*, \mathbb{T} -closed subobjects, and κ -filtered colimits.

Axiomatizability of groups

$$S := \{*\}, \ \Sigma_{\text{mon}} := \{e \colon () \to *, \ \cdot : *\sqcap * \to *\},$$

$$\mathbb{T}_{\text{mon}} := \left\{ \begin{array}{l} \top \longmapsto e \downarrow, \quad \top \longmapsto x, y \\ \top \longmapsto x, y, z \\ \top \longmapsto x \cdot (x \cdot y) \cdot z = x \cdot (y \cdot z), \\ \top \longmapsto x \cdot e = x = e \cdot x \end{array} \right.$$

Then, we have $\operatorname{\mathbf{PMod}}\nolimits \mathbb{T}_{\operatorname{mon}} \cong \operatorname{\mathbf{Mon}}\nolimits$.

The inclusion $\mathbb{N} \hookrightarrow \mathbb{Z}$ in **Mon** is \mathbb{T}_{mon} -closed.

 $\{groups\} \subseteq \mathbf{PMod}\,\mathbb{T}_{mon}$ is **not** closed under \mathbb{T}_{mon} -closed sub.

> $\{groups\} \subseteq \mathbf{PMod} \, \mathbb{T}_{mon} \text{ is not }$ axiomatizable.

$$S := \{*\}, \ \Sigma_{\mathrm{mon}} := \{e \colon () \to *, \ \cdot \colon *\sqcap *\to *\},$$

$$\Sigma'_{\mathrm{mon}} := \Sigma_{\mathrm{mon}} + \{\bullet^{-1} \colon *\to *\},$$

$$\mathbb{T}'_{\mathrm{mon}} := \mathbb{T}_{\mathrm{mon}}$$

$$\top \vdash \underbrace{x, y, z}_{\top \vdash x} (x \cdot y) \cdot z = x \cdot (y \cdot z),$$

$$\top \vdash \underbrace{x}_{x} x \cdot e = x = e \cdot x$$

$$\top \vdash \underbrace{x, y, z}_{\top \vdash x} (x \cdot y) \cdot z = x \cdot (y \cdot z),$$

$$\top \vdash \underbrace{x, y, z}_{\top \vdash x} (x \cdot y) \cdot z = x \cdot (y \cdot z),$$

$$\exists x \cdot y = e = y \cdot x \vdash \underbrace{x, y}_{\top \vdash x} x^{-1} \cdot x = e = x \cdot x^{-1},$$

$$x \cdot y = e = y \cdot x \vdash \underbrace{x, y}_{\top \vdash x} x^{-1} = y$$
 Then, we have PMod $\mathbb{T}'_{\mathrm{mon}} \cong \mathrm{Mon}$.

The inclusion $\mathbb{N} \hookrightarrow \mathbb{Z}$ in Mon is not \mathbb{T}'_{mon} -closed.

 $\{groups\} \subseteq \mathbf{PMod}\,\mathbb{T}'_{mon}$ is closed under \mathbb{T}'_{mon} -closed sub.

 $\{\text{groups}\} \subseteq \mathbf{PMod}\,\mathbb{T}'_{mon}$ is axiomatizable.

Birkhoff's theorem for relativized algebra

Taking ρ to be a relative algebraic theory:

Corollary

 (Ω, E) : an S-relative algebraic theory. For every $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$, TFAE:

- $\bullet \ \mathscr{E} \subseteq \mathbf{Alg}(\Omega, E) \text{ is definable}.$
- **②** $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is closed under *products*, \mathbb{S} -closed subobjects, U-retracts, and κ -filtered colimits.

	single-sorted alg. $((1,\varnothing,\varnothing)$ -rel.alg.)		\mathbb{S} -relative alg.
_	products	~ →	products
	subobjects	\leadsto	S-closed subobjects
	quotients	\rightsquigarrow	U-retracts
		\rightsquigarrow	κ -filtered colimits (new)

The filtered colimit elimination problem

Question

Why can the closure property under filtered colimits be eliminated in the case of single-sorted algebra?

Answer

Because the category Set satisfies a "noetherian" condition.

Definition ([Kaw23b])

A category $\mathscr A$ satisfies the ascending chain condition (ACC) if it has no chain $A_0 \to A_1 \to A_2 \to \cdots$ of objects such that there is no morphism $A_n \leftarrow A_{n+1}$ for all n.

Filtered colimit elimination

Recall

 $\mathbb{S} \xrightarrow{\rho} \mathbb{T}$: a theory morphism. TFAE:

- **①** $\mathscr{E} \subseteq \mathbf{PMod} \, \mathbb{T}$ is definable by $(\kappa$ -ary) Horn sequents in the form $\varphi^{\rho} \vdash \overrightarrow{\vec{x}^{\rho}} \psi$.
- **②** $\mathscr{E} \subseteq \mathbf{PMod} \, \mathbb{T}$ is closed under *products*, \mathbb{T} -closed subobjects, U^{ρ} -retracts, and κ -filtered colimits.

 \downarrow Assuming that $\mathbf{PMod}\,\mathbb{S}$ satisfies ACC

Theorem ([Kaw23b; Kaw24])

also equivalent to the following:

③ $\mathscr{E} \subseteq \mathbf{PMod}\,\mathbb{T}$ is closed under *products*, \mathbb{T} -closed subobjects, and (U^{ρ},κ) -local retracts.

TFAE:

- **1** $\mathscr{E} \subseteq \mathbf{PMod} \mathbb{T}$ is definable by $(\kappa$ -ary) Horn formulas.
- **②** $\mathscr{E} \subseteq \mathbf{PMod}\,\mathbb{T}$ is closed under *products*, \mathbb{T} -closed subobjects, surjections, and κ -filtered colimits.

 \downarrow Assuming that \mathbf{Set}^S satisfies ACC

also equivalent to the following:

 $\bullet \ \mathscr{E} \subseteq \mathbf{PMod} \, \mathbb{T} \text{ is closed under } \textit{products, } \mathbb{T}\text{-}\textit{closed subobjects, } \text{and } \textit{surjections.}$

TFAE:

- **1** $\mathscr{E} \subseteq \mathbf{PMod} \, \mathbb{T}$ is definable by $(\kappa$ -ary) Horn sequents.
- **2** $\mathscr{E} \subseteq \mathbf{PMod} \mathbb{T}$ is closed under *products*, \mathbb{T} -closed subobjects, and κ -filtered colimits.

 \downarrow Assuming that $\mathbf{PMod}\,\mathbb{T}$ satisfies ACC

also equivalent to the following:

③ $\mathscr{E} \subseteq \mathbf{PMod} \mathbb{T}$ is closed under *products*, \mathbb{T} -closed subobjects, and κ -local retracts.

Recall

- (Ω, E) : an S-relative algebraic theory. TFAE:
 - \bullet $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is definable.
 - **②** $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is closed under *products*, \mathbb{S} -closed subobjects, U-retracts, and κ -filtered colimits.

↓ Assuming that PMod S satisfies ACC

Theorem ([Kaw23b; Kaw24])

also equivalent to the following:

 $\mathfrak{S} \subseteq \mathbf{Alg}(\Omega,E) \text{ is closed under } \textit{products}, \ \mathbb{S}\text{-closed subobjects}, \ \mathsf{and} \ (U,\kappa)\text{-local retracts}.$

This subsumes Birkhoff-type theorems for the following algebras:

- ullet Finite-sorted algebra $=(n,\varnothing,\varnothing)$ -relative algebra,
- ullet Ordered algebra $= \mathbb{T}_{pos}$ -relative algebra,
- Metric algebra, etc.

References

- [Bir35] G. Birkhoff. "On the structure of abstract algebras". In: *Math. Proc. Cambridge Philos. Soc.* 31.4 (1935), pp. 433–454.
- [Kaw23a] Y. Kawase. *Birkhoff's variety theorem for relative algebraic theories*. 2023. arXiv: 2304.04382 [math.CT].
- [Kaw23b] Y. Kawase. Filtered colimit elimination from Birkhoff's variety theorem. 2023. arXiv: 2309.05304 [math.CT].
- [Kaw24] Y. Kawase. "Relativized universal algebra via partial Horn logic". in preparation. MA thesis. Kyoto University, 2024.
- [Lin69] F. E. J. Linton. "An outline of functorial semantics". In: Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67). Springer, Berlin, 1969, pp. 7–52.
- [PV07] E. Palmgren and S. J. Vickers. "Partial Horn logic and cartesian categories". In: Ann. Pure Appl. Logic 145.3 (2007), pp. 314–353.