Package 'deformula'

October 13, 2022

Type Package		
Title Integration of One-Dimensional Functions with Double Exponential Formulas		
Version 0.1.2		
Description Numerical quadrature of functions of one variable over a finite or infinite interval with double exponential formulas.		
<pre>URL https://github.com/okamumu/deformula/</pre>		
BugReports https://github.com/okamumu/deformula/issues		
License MIT + file LICENSE		
Encoding UTF-8		
RoxygenNote 7.2.0		
LinkingTo cpp11, Rcpp		
Imports Rcpp		
Suggests testthat (>= 3.0.0)		
Config/testthat/edition 3		
SystemRequirements C++11		
NeedsCompilation yes		
Author Hiroyuki Okamura [aut, cre] (https://orcid.org/0000-0001-6881-0593)		
Maintainer Hiroyuki Okamura <okamu@hiroshima-u.ac.jp></okamu@hiroshima-u.ac.jp>		
Repository CRAN		
Date/Publication 2022-05-30 06:40:15 UTC		
R topics documented:		
deformula2deformula.moneone2deformula.zeroinf3		
Index 5		

2 deformula.moneone

deformula

deformula: Integration of One-Dimensional Functions with Double Exponential Formulas

Description

Numerical quadrature of functions of one variable over a finite or infinite interval with double exponential formulas.

Author(s)

Maintainer: Hiroyuki Okamura <okamu@hiroshima-u.ac.jp> (ORCID)

See Also

Useful links:

- https://github.com/okamumu/deformula/
- Report bugs at https://github.com/okamumu/deformula/issues

deformula.moneone

Integration of one-dimensional functions over finite interval with the double exponential formula.

Description

Numerical quadrature of functions of one variable over (lower, upper) with the double exponential formula.

Usage

```
deformula.moneone(
   f,
   lower,
   upper,
   ...,
   zero.eps = 1e-12,
   rel.tol = 1e-08,
   start.divisions = 8,
   max.iter = 12
)
```

deformula.zeroinf 3

Arguments

f	An R function taking a numeric first argument.
lower	The lower limit of integration.
upper	The upper limit of integration.
• • •	Additional arguments to be passed to 'f'.
zero.eps	A threshold value to be zero.
rel.tol	A relative accuracy requested.
start.divisions	
	An integer. The initial number of subintervals.
max.iter	An integer for the maximum number of iterations to increase subintervals.

Value

A list with components;

value A value for integral.x A vector of subintervals.w A vector of weights.

t A vector of subintervals for trapezoid integral.

h A value of subinterval.

message OK or a string for the error message.

Examples

```
f \leftarrow function(x, a) \exp(-a*x)
deformula.moneone(f, 0, 1, a=0.1)
```

deformula.zeroinf

Integration of one-dimensional functions over infinite interval with the double exponential formula.

Description

Numerical quadrature of functions of one variable over [0, infinity) with the double exponential formula.

Usage

```
deformula.zeroinf(
   f,
    ...,
   zero.eps = 1e-12,
   rel.tol = 1e-08,
   start.divisions = 8,
   max.iter = 12
)
```

4 deformula.zeroinf

Arguments

f An R function taking a numeric first argument.

... Additional arguments to be passed to 'f'.

zero.eps A threshold value to be zero.
rel.tol A relative accuracy requested.

start.divisions

An integer. The initial number of subintervals.

max.iter An integer for the maximum number of iterations to increase subintervals.

Value

A list with components;

value A value for integral.x A vector of subintervals.w A vector of weights.

t A vector of subintervals for trapezoid integral.

h A value of subinterval.

message OK or a string for the error message.

Examples

```
f \leftarrow function(x, a) \exp(-a*x)
deformula.zeroinf(f, a=0.1)
```

Index

```
deformula, 2
deformula-package (deformula), 2
deformula.moneone, 2
deformula.zeroinf, 3
```