6.852: Distributed Algorithms Fall, 2015

Class 19

Today's plan

- Atomic objects:
 - Atomic snapshots of shared memory: Snapshot atomic objects.
 - Read/write atomic objects
- Reading: Sections 13.3-13.4
- Next:
 - Wait-free synchronization.
 - Reading:
 - [Herlihy, Wait-free synchronization] Dijkstra prize paper
 - [Attiya, Welch, Chapter 15]

Last week

- Defined Atomic Objects.
- An atomic object of a given type is similar to an ordinary shared variable of that type, but it allows concurrent accesses by different processes.
- Still looks "as if" operations occur one at a time, sequentially, in some order consistent with order of invocations and responses.
- Correctness conditions:
 - Well-formedness, atomicity, failure-free termination
 - Fault-tolerance conditions:
 - Wait-free termination
 - f-failure termination

Atomic sequences

- Suppose β is any well-formed sequence of invocations and responses. Then β is atomic provided that one can
 - Insert serialization points for all complete operations.
 - Select a subset Φ of incomplete operations.
 - For each operation in Φ , insert a serialization point somewhere after the invocation, and make up a response.
 - In such a way that moving all matched invocations and their responses to the serialization points yields a trace of the variable type.

Canonical atomic object automaton

- The canonical object automaton keeps an internal copy of the variable, plus delay buffers for invocations and responses.
- 3 kinds of steps:
 - Invoke: Invocation arrives, gets put into in-buffer.
 - Perform: Invoked operation gets performed on the internal copy of the variable, response gets put into resp-buffer.
 - Respond: Response returned to user.
- Perform step corresponds to serialization point.

Canonical atomic object automaton

- Equivalent to the original specification for a waitfree atomic object, in a precise sense.
- Can be used to prove correctness of algorithms that implement atomic objects, e.g., using simulation relations.
- Theorem 1: Every fair trace of the canonical automaton (with well-formed U) satisfies the properties that define a wait-free atomic object.
- Theorem 2: Every trace allowed by a wait-free atomic object (with well-formed U) is a fair trace of the canonical automaton.

Atomic objects vs. shared variables

- Can substitute atomic objects for shared variables in a shared-memory system, and the resulting system "behaves the same".
- Theorem: For any execution α of Trans \times U, there is an execution α' of A \times U (the original shared-memory system) such that:
 - $-\alpha \mid U = \alpha' \mid U$ (looks the same to the users), and
 - $stop_i$ events occur for the same i in α and α' (same processes fail).
 - Needs a technical assumption.
 - Construction also preserves liveness:
 - $-\alpha$ fair implies α' fair.
 - Provided that the atomic objects don't introduce new blocking.
 - E.g., wait-free.
 - E.g., at most f failures for A and each atomic object guarantees ffailure termination.

Can use Trans to justify:

- Implementing fault-tolerant atomic objects using other fault-tolerant atomic objects.
- Building shared-memory systems, including sharedmemory implementations of fault-tolerant atomic objects, hierarchically.

Snapshot Atomic Objects

Snapshot Atomic Objects

- Common shared-memory model:
 - Single-writer multi-reader read/write shared variables,
 - Each process writes to one variable, others read it.
- Limitation: Process can read only one variable at a time.
- Atomic snapshot object adds the capability for a process to read everyone's variables in one step.

- We will:
 - Define atomic snapshot objects.
 - Show that they do not add any power: they can be implemented, with wait-free termination, using only simple read/write shared variables!

Variable type for snapshot objects

- Assume a lower-level value domain W (for the values that the individual processes write), with initial value w₀.
- Value domain for the snapshot object: Vectors v of fixed length m, with values in W.
- Initial value: (w₀, w₀, w₀, ...,w₀).
- Invocations and responses:
 - update(i,w):
 - Writes value w into component i.
 - · Reponds "ack".
 - snap:
 - Responds with the entire vector.
- External interface: m "update ports", p "snapshot ports".
- Each update port i is for updates of vector component i, update(i,w)_i.

Implementing snapshot atomic objects

- Goal: Implement an atomic snapshot object using a shared-memory system, one process per port, with only singlewriter multi-reader shared variables.
- Unbounded-size-variable algorithm [Afek, Attiya, Dolev, Gafni, Merritt, Shavit]
- Also a bounded-size-variable version.
- Shared variables:
 - For each update port i, shared variable x(i), written by update process i, read by everyone.
 - Each x(i) holds:
 - val, an element of W.
 - tag, a natural number.
 - Something else, we'll see shortly.
- Processes use all these separate read/write variables to implement a single snapshot atomic object.

Idea 1

update(w,i)_i:

- To write w to vector component i, update process i writes it in x(i).val.
- Adds a tag that uniquely identifies the update (a sequence number, starting with 1).

snap:

- Read all the x(i)s, one at a time.
- Read them all again.
- If the two read passes yield the same tags, then return the vector of x(i).val values.
 - The vector actually appears in the memory at some point in real time.
 - That can be the serialization point for the snap.
- If not, then keep trying, until two consecutive read passes yield the same tags.
- This is correct, if it completes.
- But the snap might never complete, because of continuing concurrent updates.

Idea 2 (Clever)

- Suppose the snap sees the same x(i) variable with four different tag values t₁, t₂, t₃, t₄.
- Then it knows that the interval of the update operation that wrote t₃ is entirely contained in the interval of the snap.
- Why:
 - Since the snap sees t₁, i's update with tag t₂ doesn't finish before the snap starts.
 - So i's update with tag t₃ starts after the snap starts.
 - Since the snap sees t₄, i's update with tag t₄ must start before the snap finishes.
 - So i's update with tag t₃ finishes before the snap finishes.
- So, modify update process i:
 - Before it writes to x(i), executes its own embedded-snap subroutine, which
 is just like a snap.
 - When it writes (val, tag) to x(i), also writes the result of its embedded-snap.
- Now, a snap that sees four different tags t₁, t₂, t₃, t₄, in x(i) returns the recorded value of the embedded-snap associated with t₃.
- Embedded-snap behaves the same as a real snap.

In more detail:

- x(i) contains:
 - val in W, initially w₀
 - tag, a natural number, initially 0
 - view, a vector indexed by $\{1,...,m\}$ of W, initially $(w_0)^m$.

snap:

- Repeatedly read all x(i)s (any order) until one of the following occurs:
 - 2 passes yield the same x(i).tag for every i.
 - Then return the common vector of x(i).val values.
 - For some i, four distinct x(i).tags are seen.
 - Then return x(i).view from the third x(i).tag.

update(i,w):

- Perform embedded-snap, same as snap (but don't return).
- Write to x(i):
 - val := w
 - tag := next sequence number (local count)
 - view := vector produced by the embedded snap
- Return ack.

Correctness

 Theorem: This algorithm implements a wait-free snapshot atomic object.

Proof:

- Well-formedness: Clear.
- Wait-free termination: Easy---always returns by one case or the other.

– Atomicity:

- Show we can insert serialization points appropriately.
- By Lemma 13.10, it's enough to consider executions in which all operations complete.
- So, fix an execution α of the algorithm + users, and assume that all operations complete in α .
- Insert serialization points:
 - For update: Just after the write step.
 - For snap: We need a more complicated rule:

Serialization points for snaps

- Assign serialization points to all snaps/embedded-snaps.
- For every snap/embedded-snap that terminates by performing two read passes with the same tags (type 1):
 - Choose any point between end of the first pass and beginning of the second pass.
- Then, for all the snap/embedded-snaps that terminate by finding four distinct tags for some x(i) (type 2):
 - Insert serialization pts one by one, in order of operation completion.
 - For each such snap/embedded-snap π in turn:
 - The vector returned comes from some embedded-snap ϕ (from some update) whose interval is completely contained within the interval of π :

- Insert serialization point for π right after the one for ϕ .

Correctness

- All serialization points are in the required intervals:
 - updates:
 - Obvious.
 - Type 1 snaps/embedded-snaps (terminate with two identical read phases):
 - Obvious.
 - Type 2 snaps/embedded-snaps (terminate with four distinct values):
 - Argue inclusion by induction on the number of response events.
 - Use the containment property.
- Result of shrinking operations to their serialization points is a serial trace:
 - Because each snap returns the "correct" vector at its serialization point (result of all writes up to that point).
 - Easy for Type 1 snaps.
 - For Type 2 snaps, use induction on number of response events.

Complexity

Shared memory size:

- m variables for length m vector.
- Each variable is of unbounded size (because x(i).tag is unbounded).

Time for snapshot:

- At most (3m+1) m shared memory accesses
- O(m² I) time

Time for update:

Also O(m² I), because of the embedded-snap.

Algorithm using bounded variables

- Also by [Afek, Attiya, Dolev, Gafni, Merritt, Shavit], based on ideas by Peterson.
- Uses bounded tags.
- Involves a slightly tricky handshake protocol.
- See [book, Section 13.3.3].
- Other snapshot algorithms have been developed, improving further on complexity, more complicated.
- Moral: Wait-free snapshot atomic objects can be implemented from simple wait-free read/write registers.
- So snapshots don't add extra computing power, compared to reads/writes.

Read/Write Atomic Objects

Read/write atomic objects

- Consider implementing an atomic mwriter, p-reader register, using lowerlevel primitives.
- Q: What lower-level primitives?
- Try 1-writer, 1-reader registers.
- Several published algorithms, some quite complicated.
- Consider a simple one, with unbounded tags [Vitanyi, Awerbuch].
- Caution: Bounded-tag algorithm in that same paper is incorrect.

Vitanyi-Awerbuch algorithm

- m-writer, p-reader read/write atomic objects from 1-writer, 1-reader read/write registers.
- Use n² shared variables, n = m + p:
- Caps for high-level operations
- x(i,j) has:
 - val in V, initially v_0
 - tag, a natural number, initially 0
 - index, a write process index, initially 1

Vitanyi-Awerbuch algorithm

WRITE(v)_i:

- Process i reads all variables in its row.
- Let k = largest tag it sees.
- Writes to each variable in its column:
 - val := v, tag := k+1, index := i
- Responds "ack".

READ_i:

- Process i reads all variables in its row.
- Let (v,k,j) be a triple with maximum (tag,index) (lexicographic order).
- "Propagates" this information by writing to each variable in its column:
 - val := v, tag := k, index := j
- Finally, responds v.

Correctness

- Theorem: Vitanyi-Awerbuch implements a wait-free m-writer p-reader read/write atomic object.
- Well-formed, wait-free: Easy.
- Atomicity:
 - Proceed as in snapshot proof, describing exactly where to put the serialization points?
 - But it's not so obvious where to put them:
 - E.g., each WRITE and READ does many write steps.
 - Contrast: Each update in snapshot algorithm does just one write step.
 - Placement of serialization points seems to depend on "races" between processes reading their rows and other processes writing their columns.
 - Use a different proof method:
 - Define a partial ordering of the high-level operations, based on (tag,index), and prove that the partial order satisfies certain conditions:

A useful lemma (Lemma 13.16)

- Let β be a (finite or infinite) sequence of invocations and responses for a read/write atomic object, that is well-formed for each i, and that contains no incomplete operations.
- Let Π be the set of operations in β .
- Suppose there is an irreflexive partial ordering < of Π satisfying:
 - 1. For any operation π in Π , there are only finitely many operations ϕ such that $\phi < \pi$.
 - 2. If the response for π precedes the invocation for ϕ in β , then we don't have $\phi < \pi$.
 - 3. If π is a WRITE in Π and ϕ is any operation in Π then either $\pi < \phi$ or $\phi < \pi$.
 - 4. Value returned by each READ is the one written by the last preceding WRITE, according to <. (Or v₀, if there is no such WRITE.)
- Then β satisfies the atomicity property.

Proof of lemma

- Insert serialization points using the rule:
 - Insert serialization point for π just after the latest of the invocations for π and for all operations ϕ with $\phi < \pi$.
 - Condition 1 implies this latest invocation is well-defined.
 - Order contiguous serialization points consistently with <.
- Claim 1: The order of the serialization points is consistent with the < ordering on Π ; that is, if $\phi < \pi$ then the serialization point for ϕ precedes the serialization point for π .
- Claim 2: The serialization point for each π is in the interval of π .
 - Obviously after the invocation of π .
 - Could it be after the response of π ?
 - No: If it were, then the invocation for some $\phi < \pi$ would come after the response of π , violating Condition 2.
- Claim 3: Each READ returns the value of the WRITE whose serialization point comes right before the READ's serialization point.
 - Condition 3 says all WRITES are ordered w.r.t. everything.
 - Condition 4 says that the READ returns the result written by the last preceding WRITE in <.
 - Since order of ser. pts. is consistent with <, that's the right value to return.

The Lemma

- Let β be a (finite or infinite) sequence of invocations and responses for a read/write atomic object, that is well-formed for each i, and that contains no incomplete operations.
- Let Π be the set of operations in β .
- Suppose there is an irreflexive partial order < of Π satisfying:
 - 1. For any operation π in Π , there are only finitely many operations ϕ such that $\phi < \pi$.
 - 2. If the response for π precedes the invocation for ϕ in β , then we don't have $\phi < \pi$.
 - 3. If π is a WRITE in Π and ϕ is any operation in Π then either $\pi < \phi$ or $\phi < \pi$.
 - 4. Value returned by each READ is the one written by the last preceding WRITE, according to <. (Or v₀, if there is no such WRITE.)
- Then β satisfies the atomicity property.

Using the lemma to show atomicity for [Vitanyi, Awerbuch]

- Consider any execution α of V-A, assume no incomplete operations.
- Construct a partial order based on (tag,index) pairs:
 - $-\pi < \phi$ iff
 - π writes (or propagates) a smaller tag pair than ϕ , or
 - π and ϕ write (or propagate) the same tag pair, π is a WRITE and ϕ is a READ.
 - That is, $\pi < \phi$ iff
 - tagpair(π) < tagpair(ϕ), or
 - tagpair(π) = tagpair(ϕ), π is a WRITE and ϕ is a READ.
- Show this satisfies Conditions 1-4.
- Condition 1 follows from Condition 2 and the fact that there are no incomplete operations.
- Show Condition 2:

Condition 2

- Claim: The (tag,index) pairs in any particular variable x(i,j) never decrease during α.
- Proof of Claim:
 - -x(i,j) is written only by process j.
 - j's high-level operations are sequential.
 - Each operation of j involves reading row j, choosing a tag pair ≥ the maximum one it sees, then writing it to column j.
 - Among the variables j reads is the diagonal x(j,j), so j's chosen pair is ≥ the one in x(j,j).
 - Since x(i,j) contains the same pair as x(j,j), j's chosen pair is also ≥ the one in x(i,j).
 - Writes x(i,j) with this tag pair, nondecreasing.

Condition 2

• Condition 2: If the response for π precedes the invocation for ϕ in β , then we can't have $\phi < \pi$.

Proof:

- Suppose we have: π
- Then before the response event, π has written tagpair(π) to its entire column.
- − So (by Claim 1), ϕ reads a tagpair \geq tagpair(π).
- Then (by the way the algorithm works), φ chooses a tag pair, tagpair(φ), that is ≥ tagpair(π); furthermore, if φ is a WRITE, then tagpair(φ) > tagpair(π).
- Then we can't have $\phi < \pi$:
 - Since tagpair(φ) ≥ tagpair(π), the only way we could have φ < π is if tagpair(φ) = tagpair(π), φ is a WRITE and π is a READ (by definition of <).
 - But in this case, tagpair(ϕ) > tagpair(π), contradiction.

Condition 3

- Condition 3: WRITEs are ordered with respect to each other and with respect to all READs.
- Proof:
 - Follows because all WRITEs get distinct tagpairs.
 - Why distinct?
 - Different ports: Different indices.
 - Same port i:
 - WRITEs on port i are sequential.
 - Each WRITE by i reads its previous tag in its own diagonal variable x(i,i) and chooses a larger tag.
- Condition 4: LTTR
- Apply the Lemma, implies that V-A satisfies atomicity, as needed.

Complexity

Shared memory size:

 (m + p)² variables, each of unbounded size (because of x(i).tag).

Time for read:

- At most 2 (m + p) shared memory accesses
- -O((m + p) I) time

Time for write:

- Also O((m + p) I)

More on read/write atomic objects

- [Vitanyi, Awerbuch] algorithm is not too costly in time, but uses unbounded variables.
- Q: Can we implement multi-writer multi-reader atomic objects in terms of single-writer singlereader registers, using bounded variables?
- Yes. Several published algorithms:
 - [Burns, Peterson]
 - [Dolev, Shavit]
 - [Vidyasankar]
 - **–** ...
 - Bounded-tag algorithm in [Vitanyi, Awerbuch] incorrect.
- Fairly complicated, costly.
- Usually divide the problem into:
 - 1-writer multi-reader from 1-writer 1-reader.
 - Multi-writer multi-reader from 1-writer multi-reader.

Bloom algorithm

- A simple special case, illustrates:
 - Typical difficulties that arise
 - Interesting proof methods
- 2-writer multi-reader register from 1-writer multi-reader registers
- Shared variables:
 - x(1), x(2), with:
 - val in V, initially v₀
 - tag in {0,1}, initially 0
 - x(1) written by WRITER 1, read by everyone
 - x(2) written by WRITER 2, read by everyone

Bloom algorithm

WRITE(v)₁:

- Read x(2).tag, say b
- Write:
 - x(1).val := v,
 - x(1).tag := 1 b
- Tries to make tags unequal.

• WRITE $(v)_2$:

- Read x(1).tag, say b
- Write:
 - x(2).val := v,
 - x(2).tag := b
- Tries to make tags equal.

READ:

- Read both registers.
- If tags are unequal then reread and return x(1).val.
- If tags are equal then reread and return x(2).val.

Correctness

- Well-formedness, wait-freedom: Clear
- Atomicity:
 - Could use:
 - Explicit serialization points, or
 - Partial-order lemma
 - Instead, use a simulation relation, mapping the algorithm to a simpler unbounded-tag version

Unbounded-tag algorithm

Shared variables:

- x(1), x(2), with:
 - val in V, initially v₀
 - tag, a natural number;
 initially x(1).tag = 0, x(2).tag = 1

WRITE(v)₁:

- Read x(2).tag, say t
- Write x(1).val := v, x(1).tag := t + 1

WRITE(v)₂:

- Read x(1).tag, say t
- Write x(2).val := v, x(2).tag := t + 1

READ:

- Read both registers, get tags t₁ and t₂.
- If | t₁ t₂ | ≤ 1 then reread the register x(i) with the higher tag and return x(i).val.
- Else reread and return either (choose nondeterministically)

Why the nondeterministic choice?

- The extra generality provided by the nondeterministic choice is needed to make a simulation relation from the Bloom algorithm work correctly.
- The integer algorithm works even with the nondeterministic choice.
- The nondeterminism doesn't significantly complicate the integer algorithm.
- Doesn't complicate the proof at all; in fact, makes it easier to see what's needed.

Proof for the integer algorithm

Invariant:

- x(1).tag is always even
- x(2).tag is always odd
- | x(1).tag x(2).tag | = 1
- Well-formedness, wait-freedom: Clear
- Atomicity:
 - E.g., use the partial-order lemma.
 - Define the partial order < using the tags:
 - Order WRITEs by the tags they write.
 - Break ties (sequential operations by the same WRITER) in temporal order.
 - Insert each READ just after the WRITE whose value it gets.
 - Check Conditions 1-4 of the partial order lemma.

E.g., Condition 2

• Condition 2: If the response for π precedes the invocation for ϕ in β , then we can't have $\phi < \pi$.

Proof:

- Suppose we have: $\frac{\pi}{1-\frac{\pi}{2}}$
- Consider cases based on the types of π and ϕ .
- Most interesting case: π is a WRITE, ϕ is a READ.
- Suppose WRITE π is done by WRITER i, writes tag t.
- Must show we can't have $\phi < \pi$.
- That is, we must show that READ ϕ must return either the result written by WRITE π or one by some other WRITE ψ with $\pi < \psi$.

Proof of Condition 2, cont'd

$$\pi$$
 ϕ WRITE by i, tag t

- Show ϕ must return either the result written by π or one by some other WRITE ψ with $\pi < \psi$.
- When READ ϕ is invoked, x(i).tag \geq t, by monotonicity.
- At that point, x(2-i).tag $\geq t 1$, by invariant.

- What might φ see for x(i).tag on its initial read of x(i)?
- 2 possibilities:
 - $\phi sees x(i).tag = t.$
 - Then it would reread x(i), contradiction.
 - $\phi sees x(i).tag > t.$
 - Then by the time it sees this, x(2-i).tag is already > t-1.
 - So ϕ couldn't see x(2-i).tag = t-1 on the third read, contradiction.

Where are we?

- Integer version of Bloom algorithm (IB) implements a 2-writer multireader atomic object from 1-writer multi-reader registers.
- Now show that the original Boolean Bloom algorithm (BB) implements the integer version.
- Use a simulation relation from BB to IB.

Q: What is the simulation relation?

Simulation relation from BB to IB

- If s is a state of Boolean Bloom system, u a state of IntegerBloom system, then define (s,u) in R exactly if:
 - Each occurrence of a tag in BB is exactly the second low-order bit of the corresponding tag occurrence in IB.
 - All other state components are identical in the two systems.
- Note this is multivalued: Each state of BB corresponds to many states of IB.
- Example:

R is a simulation relation

Proof:

- Start states related:
 - Second low-order bit of 0000 is 0
 - Second low-order bit of 0001 is 0

– Step condition:

- For any step (s, π , s') in BB, and any state u of IB such that (s,u) in R, the corresponding step of IB is almost the same:
 - Same kind of action, same process, same register...
- Must show:
 - The IB step is enabled, and
 - The state correspondence is preserved.
- Key points:
 - The write step of a WRITE preserves the state correspondence.
 - The third read of a READ is enabled in IB (for the same register).

First key point

- The write step of a WRITE operation preserves the state correspondence.
- Proof:
 - E.g., a WRITE by process 1.
 - Writes to x(1).tag:
 - 1-b, where b is the value read from x(2).tag, in BB.
 - t+1, where t is the value read from x(2).tag, in IB.
 - By relation R on the pre-states, b is the second low-order bit of t.
 - We need to show that 1-b is the second low-order bit of t+1.
 - Follows because:
 - t is odd (by the invariant, process 2's tag is always odd), and
 - Incrementing an odd number always flips the second low-order bit.
 - Example:
 - t = 101, b = 0
 - t + 1 = 110, 1-b = 1
 - Argument for process 2 is similar.

Second key point

- IB allows reading the same third register as BB.
- Proof:
 - Choice of register is based on the tags read in the first two reads.
 - In BB: Read x(1).tag = b_1 , x(2).tag = b_2 .
 - In IB: Read x(1).tag = t_1 , x(2).tag = t_2 .
 - By state correspondence, b₁ and b₂ are the second low-order bits
 of t₁ and t₂, respectively.
 - Consider cases:
 - $t_1 = t_2 + 1$
 - Then IB reads from x(1) on third read.
 - Since t₁ is even and t₂ is odd, second low-order bits are unequal.
 - Thus, $b_1 \neq b_2$, and so BB also reads from x(1) on third read.
 - $t_2 = t_1 + 1$
 - Symmetric, both read from x(2) on the third read.
 - Neither of these holds.
 - Then IB allows either to be read (nondeterministic).

Now where are we?

- Argued simulation reln. from BB to IB.
- Implies every trace of BB is a trace of IB.
- Showed that IB satisfies atomicity.
- Trace inclusion implies that BB also satisfies atomicity.
- Theorem: The Bloom algorithm implements a 2-writer multi-reader atomic object from 1-writer multi-reader registers.
- Unfortunately...
- This algorithm doesn't immediately extend to three or more writers.
- Algorithms exist for this, but they (and their proofs) are much more complicated.

More Atomic Objects

- Important in both shared-memory and distributed settings.
- Multiprocessor memories (next time)
- Lamport's state machines
 - Implemented using replicated state machine (RSM) approach, based on logical time.
- Fault-tolerant data servers
 - Replication-based approaches (later this term)
 - Coding-based approaches
- Sometimes settle for weaker consistency conditions.

Next time...

- Wait-free computability
- The wait-free consensus hierarchy
- Reading:
 - [Herlihy, Wait-free synchronization],
 - [Attiya, Welch, Chapter 15]