Topic Models 1

Internet Analytics (COM-308)

Prof. Matthias Grossglauser School of Computer and Communication Sciences

Overview

Previously: Given a query, how to find best matches?
"internet analytics"

Today: Without a query, how to describe a corpus?

Topic models

- Document classification
- Supervised: training set with known classes
 - Generalization of binary classification (spam/not spam)
- Unsupervised: need to identify sensible topic classes by comparing documents
- Assumptions:
 - Number of words per document >> 1
 - Number of topics << number of documents
- Examples:
 - News articles: topics = {countries, business, politics, celebrity, ...}
 - Scientific literature: {physics, mathematics, engineering, chemistry, life sciences,...}

Synonymy and polysemy

meaning

- Synonymy:
 - Different words with the same meaning
 - "car" and "automobile"
- Polysemy/homonymy:
 - One word with different meanings
 - "jaguar": animal, brand of car
- Topic models:
 - We see the words of docs, but we want to classify the meanings of docs
 - Ambiguity of individual words but many words per doc helps!

Approach 1: Latent Semantic Indexing (LSI)

- Synonymous: Latent Semantic Analysis (LSA)
- Starting point: TF-IDF matrix of corpus

 Remember: high TF-IDF means "term that is rare overall, but prominent in this doc"

SVD of TF-IDF matrix

- Latent factors: "topics"
- Typically 100-300
- Should bunch together synonyms
- Should separate homonyms
- Critique:
 - Heuristic, no clean statistical foundation
 - Sometimes difficult to interpret results
 - Modern approaches based on probabilistic models:
 - better performance
 - better interpretability
 - generative

Gentle introduction to graphical models

- Modeling a multivariate distribution
- Example: insights from an expert:
 - "Drinking too much beer can result in headaches"
 - "Studying too much can cause headaches as well"
 - "To get a good grade, one must study"
 - "Wearing sunglasses tempers the pain of a headache"
- How to translate this into a probabilistic model?
 - Random variables
 - Dependencies?
 - Option: define/learn full joint distribution → many parameters, memory-intensive, hard to learn
 - Option: encode «causal structure» into model

Bayesian Network

Edges = "direct" influence

Bayesian Network

One conditional distribution per node → full joint distribution

9

Joint distribution from CPDs

- Joint distribution from chain rule
- P(B, C, H, G, S) =
- = P(C, H, G, S|B)P(B) =
- = P(H,G,S|B,C)P(C)P(B) =
- = P(H, S|B, C)P(G|B, C)P(C)P(B) =
- = P(S|B,C,H)P(H|B,C)P(G|C)P(C)P(B) =
- = P(S|H)P(H|B,C)P(G|C)P(C)P(B)
- Joint distribution = product of all individual pernode factors
 - With the joint distribution, everything else follows: all marginal and conditional distributions we could want

Types of reasoning

Causal reasoning / prediction: downstream flow of influence

Types of reasoning

Evidential reasoning / explanation: upstream flow of influence

Types of reasoning

 Intercausal reasoning: combination of upstream/downstream

$$P(B = 1|H = 1) > P(B = 1|H = 1, G = 1)$$

Explaining away: the "good grade" explains the "headache", making the possible cause "beer" less likely

Basic independencies in BNs

- Example: "the wearing of sunglasses depends only on the presence and strength of a headache"
 - Formally: $(S \perp B, C, G | H)$
- Also:
 - $(G \perp B, H, S \mid C)$
 - $(B \perp C)$
 - $(H \perp G|B,C)$
 - $(B \perp C, G)$
- How about $(H \perp S, G | B, C)$?
 - No! Intuition: suppose we know B=0 and C=1; then the guess for H changes according to S=0.1

Basic conditional independencies in BNs

- Bayesian Network: directed acyclic graph (DAG) G
- Def: $Pa(X_i)$ =parents of X_i in G
- Def: $ND(X_i)$ =non-descendents of X_i in G
- Property: G has the following local independence properties:
 - For each X_i:

$$(X_i \perp ND(X_i) \mid Pa(X_i))$$

Bayesian Networks: recap

- Defines a multivariate probability distribution
- Models direct causal influences
 - This comes from expert knowledge, underlying mechanisms, data about the problem,...
- In practice: as sparse as possible
- Conditional independence properties as graph (path) properties
- Inference:
 - Observe some variables (observables)
 - Obtain conditional distribution of some other variables of interest → estimate
 - Some variables we do not care (latent)

Example: gene network

Computational challenge in large models

- Suppose G large; a few variables $Y \subset X$ are observed, $Z = X \setminus Y$ are not observed
- Want to estimate $P(Z_{573}|Y)$, where Z_{573} is e.g. one of many diseases in a medical diagnostic system
- Need to compute $P(Z_{573}|Y) =$

$$\sum_{Z_1, Z_2, \dots, Z_{572}, Z_{574}, \dots} P(Z_1, Z_2, \dots, Z_{572}, Z_{573}, Z_{573}, Z_{574}, \dots | Y)$$

- Very costly to marginalize out all other latent variables
- Inference methods:
 - Exact
 - Markov Chain Monte Carlo (MCMC)
 - Variational inference

Inference: MCMC

- Probabilistic model:
 - Joint distribution P(x) over $X = (X_1, X_2, ..., X_n) = (Z, Y)$
 - $Y = (Y_1, ..., Y_a)$: observed variables
 - $Z = (Z_1, ..., Z_b)$: unobserved/latent variables
- Goal:
 - Obtain samples from P(Z|Y=y)

Gibbs sampling

- Markov chain Q:
 - State of Q is a variable assignment Z
 - Pick K uniformly from {1, ..., b} (or cycle through)
 - Sample Z_K from $P(Z_K|Z_1,Z_2,...,Z_{K-1},Z_{K+1},...,Z_b,Y=y)$
 - Repeat
- Possible transition in Q:
 - Def: $z'\sim_k z$ if $z'=(z_1,z_2,\ldots,z_{K-1},*,z_{K+1},\ldots,z_b)$, i.e., equal to z except at position k
 - Transition $z \to z'$ only possible for $z' \sim_k z$ for some k
- Transition matrix of Q(z,z') =

$$= \begin{cases} \frac{P(Z = z'|Y = y)}{b \sum_{z'' \sim k^{Z}} P(Z = z''|Y = y)} & z' \sim_{k} Z \\ 0 & otherwise \end{cases}$$

Gibbs sampling: illustration

0_	1	2	3	4	
Y_1	Y_1	Y_1	Y_1	<i>Y</i> ₁	
Y_2	Y_2	Y_2	Y_2	<i>Y</i> ₂	
Z_1	Z_1	Z_1	Z_1	Z_1	
Z_2	Z_2	Z_2	Z_2	Z_2	•••
Z_3	Z_3	Z_3	Z_3	Z_3	
Z_4	Z_4	Z_4	Z_4	Z_4	
Z_5	Z_5	Z_5	Z_5	Z_5	
	$Z(1) \sim_2 Z(0)$	$Z(2) \sim_{5} Z(1)$			

Gibbs sampling for BNs: example

- Resampling variable H conditional on S
- P(H|B,C,G,S) =

$$= \frac{P(H,B,C,G,S)}{P(B,C,G,S)} =$$

$$= \frac{P(H,B,C,G,S)}{\sum_{H} P(H,B,C,G,S)} =$$

$$= \frac{P(B)P(C)P(H|B,C)P(G|C)P(S|H)}{\sum_{H'} P(B)P(C)P(H'|B,C)P(G|C)P(G|C)P(S|H')} =$$

$$= \frac{P(H|B,C)P(S|H)}{\sum_{H'} P(H'|B,C)P(S|H')}$$

Sampling from a variable only involves factors (CPDs) "touched" by this variable!

Gibbs sampling

Claim:

- Q is a reversible MC with stationary distribution $\pi(z) = P(Z = z | Y = y)$
- Interpretation: run the MC Q and collect large # of samples of Z|Y=y, then compute whatever statistic needed: mean, moments, confidence intervals, etc.
- But: samples are correlated!

Reminder:

- An ergodic MC (irreducible, aperiodic, pos-recurrent) MC has a single stationary distribution π
- Ergodic theorem: temporal averages → ensemble expectations
- Reversible MC: if Q is ergodic and we can find a $\pi(.)$ such that for all $z, z', \pi(z)Q(z, z') = \pi(z')Q(z', z)$, then $\pi(.)$ is the stationary distribution

Gibbs sampling: proof

Proof:

$$\bullet \ \pi(z)Q(z,z') =$$

$$= P(Z = z|y)Q(z,z') =$$

$$= \frac{P(Z=z|y)P(Z=z'|y)}{b\sum_{z''\sim k^{Z}}P(Z=z''|y)} =$$

$$= \frac{P(Z = z'|y)P(Z=z|y)}{b \sum_{z''\sim k^{z'}} P(Z = z''|y)} =$$

$$= P(Z = z'|y)Q(z',z) =$$

$$\bullet = \pi(z')Q(z',z)$$

Note: z and z' only differ at position k; therefore, $z'' \sim_k z \iff z'' \sim_k z'$

Detailed balance equations \rightarrow global balance equations $\rightarrow \pi(z)$ is stationary distrib. of MC Q

Bayesian Network: key ideas

- Two functions:
 - Compact representation for a set of conditional independence assumptions among RVs
 - A data structure to encode a joint distribution compactly through its factors
- Flexibility: model does not specify observables
- Example: 100 binary RVs
 - Full joint distribution: $2^{100} 1 \sim 10^{30}$ values
 - All independent: 100 values, but very limiting
 - In practice, much closer to «everything independent» than to «full joint distribution»
 - Tradeoff: compact representation & efficient inference, but still capture main dependencies
- Next week: topic models using graphical models

References

- [D. Koller, N. Friedman: Probabilistic Graphical Models, MIT Press, 2009]
- [Ch. D. Manning, P. Raghavan, H. Schütze: Introduction to Information Retrieval, Cambridge, 2008]
- [C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006]