Day 1: Understanding Data Engineering - Complete Guide

What You'll Learn Today

- Role and Responsibilities of a Data Engineer
- Data Pipeline Concepts and Architecture
- Career Path and Opportunities in Data Engineering
- Tools and Technologies Overview
- Real-world Examples and Use Cases

© Learning Objectives

By the end of Day 1, you will:

- 1. Understand what a data engineer does and why it's crucial
- 2. Know the key components of data pipelines
- 3. Identify the skills needed for a data engineering career
- 4. Set up your learning environment and GitHub repository

What is a Data Engineer?

A data engineer develops, builds, maintains, and manages data pipelines. This requires working with large datasets, databases, and the software used to analyze them – including cloud systems like AWS or Azure.

Core Responsibilities:

- 1. **Data Pipeline Development**: A data pipeline architecture moves data from source systems to target destinations through stages like extraction, transformation, and loading (ETL).
- 2. **Data Infrastructure Management**: Designing and maintaining scalable data systems
- 3. Data Quality Assurance: Ensuring data accuracy, completeness, and consistency
- 4. **Performance Optimization**: They spend their days coding, optimizing queries, monitoring workflows, and troubleshooting issues to keep data systems running smoothly.
- 5. **Collaboration**: Working with data scientists, analysts, and business stakeholders

Data Pipeline Architecture Fundamentals

What is a Data Pipeline?

A data pipeline is a method where raw data is ingested from data sources, transformed, and then stored in a data lake or data warehouse for analysis.

Key Components:

Real-World Example: E-commerce Data Pipeline

Scenario: An e-commerce company needs to analyze customer behavior and sales performance.

Data Sources:

- Website clickstream data
- Transaction database
- Customer support tickets
- Social media mentions
- Inventory management system

Pipeline Flow:

- 1. **Ingestion**: Collect data from multiple sources every hour
- 2. **Transformation**: Clean, validate, and standardize data formats
- 3. **Storage**: Store in data warehouse for analytics
- 4. Output: Power dashboards showing sales trends, customer insights

Role	Primary Focus	Key Skills	Tools
Data Engineer	Building data infrastructure	Python, SQL, Cloud platforms	Apache Spark, Airflow, AWS
Data Scientist	Extracting insights from data	Statistics, ML, Python/R	Jupyter, scikit-learn, TensorFlow
Data Analyst	Reporting and visualization	SQL, Excel, Business domain	Tableau, Power BI, SQL
Software Engineer	Application development	Programming, System design	Various languages, frameworks

X Essential Tools and Technologies

Programming Languages

• Python (Primary): Data manipulation, automation, scripting

• **SQL** (Critical): Database queries, data transformation

Java/Scala: Big data processing with Spark

Bash/Shell: System automation and scripting

Big Data Technologies

• Apache Spark: Distributed data processing

• Apache Kafka: Stream processing and messaging

• Apache Airflow: Workflow orchestration

• Hadoop: Distributed storage and processing

Cloud Platforms

• **AWS**: S3, Glue, Redshift, EMR

• Google Cloud: BigQuery, Dataflow, Cloud Storage

• Azure: Data Factory, Synapse, Blob Storage

Databases

Relational: PostgreSQL, MySQL, SQL Server

• NoSQL: MongoDB, Cassandra, DynamoDB

Data Warehouses: Snowflake, Redshift, BigQuery

Career Path and Opportunities

Entry Level (0-2 years)

• Junior Data Engineer: \$70,000 - \$90,000

• ETL Developer: \$65,000 - \$85,000

· Focus: Learn SQL, Python, basic cloud services

Mid Level (2-5 years)

• Data Engineer: \$90,000 - \$130,000

• Senior ETL Developer: \$85,000 - \$120,000

• Focus: Master big data tools, cloud architecture

Senior Level (5+ years)

• Senior Data Engineer: \$130,000 - \$180,000

• Lead Data Engineer: \$150,000 - \$200,000

• Data Engineering Manager: \$160,000 - \$220,000

Focus: Architecture design, team leadership

Specialized Roles

Cloud Data Engineer: Focus on specific cloud platforms

• ML Engineer: Bridge between data engineering and ML

• Data Architect: Design enterprise data strategies

Day 1 Practical Tasks

Task 1: Set Up Your GitHub Repository (30 minutes)

1. Create GitHub Account:

- Go to github.com
- Sign up with professional username (e.g., yourname-dataeng)

2. Create Repository:

```
bash
```

```
Repository Name: data-engineering-50-days
Description: My journey to becoming a data engineer in 50 days
Make it Public
Add README.md
Add Python .gitignore
```

3. Repository Structure:

Task 2: Create Your Learning Plan (20 minutes)

Create a <a>learning-plan.md file with:

My Data Engineering Learning Plan

Goals

- [] Complete 50-day data engineering course
- [] Build 5 portfolio projects
- [] Get AWS Cloud Practitioner certification
- [] Apply for junior data engineer positions

Weekly Targets

- Week 1: Foundations (Python, SQL, Git)
- Week 2: Core Tools (Docker, Airflow, Spark)
- Week 3: Cloud Platforms (AWS basics)
- Week 4: Advanced Topics (Streaming, NoSQL)
- Week 5-7: Projects and Portfolio

Success Metrics

- Daily commits to GitHub
- Complete weekly projects
- Document learning progress
- Build network on LinkedIn

Task 3: Read and Research (45 minutes)

Required Reading:

- 1. "Fundamentals of Data Engineering" Chapter 1
 - Author: Joe Reis & Matt Housley
 - Available: O'Reilly, Amazon
 - Focus: Understanding the data engineering landscape
- 2. Watch Video: "What is Data Engineering?" by Seattle Data Guy
 - Platform: YouTube
 - Duration: ~15 minutes
 - Link: Search "Seattle Data Guy data engineering explained"
- 3. Article: Browse current data engineering job postings
 - Websites: LinkedIn, Indeed, Glassdoor
 - Goal: Understand required skills and salary ranges
 - Take notes on common requirements

Task 4: Environment Setup Preparation (15 minutes)

Download and Install:

- 1. Python 3.9+: Download from python.org
- 2. **Git**: Download from git-scm.com
- 3. **VS Code**: Download from code.visualstudio.com
- 4. **GitHub Desktop** (optional): Download from <u>desktop.github.com</u>

Create Accounts:

- ☑ GitHub (already done)
- AWS Free Tier (prepare for later)
- ☐ LinkedIn Learning (if available)
- Kaggle (for datasets)

1. GitHub Repository Setup V

- Created repository with proper structure
- Added README with project description
- · Committed initial files

2. Learning Notes Document

Create day-01/notes.md with:

Day 1: Understanding Data Engineering

Key Learnings

- Data engineers build and maintain data pipelines
- ETL/ELT processes are core to data engineering
- Cloud platforms are essential in modern data engineering
- Python and SQL are fundamental skills

Important Concepts

- **Data Pipeline**: Automated flow of data from source to destination
- **ETL**: Extract, Transform, Load traditional approach
- **ELT**: Extract, Load, Transform modern cloud approach
- **Data Lake**: Storage for raw data in various formats
- **Data Warehouse**: Structured storage optimized for analytics

Questions for Tomorrow

- How do I choose between ETL and ELT?
- What makes a good data pipeline?
- Which cloud platform should I focus on first?

Resources Used

[List books, videos, articles you consumed today]

3. Skills Assessment

Rate yourself (1-10) on:

Python Programming: ____/10SQL Knowledge: ___/10

Cloud Platforms: ____/10

Data Concepts: ___/10

Linux/Command Line: ____/10

© Essential Resources for Day 1

Books

- 1. "Fundamentals of Data Engineering" by Joe Reis & Matt Housley
 - Source: O'Reilly Media, Amazon
 - Why: Comprehensive overview of modern data engineering

2. "Designing Data-Intensive Applications" by Martin Kleppmann

- Source: O'Reilly Media
- Why: Deep dive into data system design

👺 Videos

- 1. "Data Engineering Explained" Seattle Data Guy (YouTube)
- 2. "What is a Data Engineer?" Coursera (Free)
- 3. "Data Pipeline Architecture" AWS re:Invent talks

Websites & Documentation

- 1. Data Engineering Wiki: dataengineering.wiki
- 2. AWS Data Engineering: aws.amazon.com/big-data
- 3. **Apache Foundation**: <u>apache.org</u> (Spark, Kafka, Airflow)

Job Boards for Research

- **LinkedIn Jobs**: Search "Data Engineer" + your location
- Indeed: Filter by experience level
- Glassdoor: Research salaries and company reviews
- AngelList: Startup opportunities

Communities to Join

- Reddit: r/dataengineering, r/bigdata
- Discord: Data Engineering Community
- **LinkedIn**: Data Engineering groups
- Slack: Local tech communities

Day 1 Checklist

- Read about data engineering role and responsibilities

 Understand basic data pipeline concepts

 Set up GitHub repository with proper structure

 Install required software (Python, Git, VS Code)

 Create learning plan and goals

 Research current job market and requirements
- ✓ Write Day 1 learning notes

Tomorrow's Preview: Day 2 - Python Fundamentals

What to expect:

- Python installation and environment setup
- Core Python concepts for data engineering
- Working with files and data structures
- Your first data manipulation script
- Introduction to pandas library

Preparation:

- · Ensure Python is properly installed
- Download sample CSV files from Kaggle
- Review basic programming concepts if needed

Pro Tips for Success

- 1. **Document Everything**: Keep detailed notes of your learning journey
- 2. **Practice Daily**: Even 30 minutes of coding daily makes a difference
- 3. Build in Public: Share your progress on LinkedIn
- 4. Ask Questions: Join communities and don't hesitate to ask
- 5. Focus on Fundamentals: Master the basics before moving to advanced topics

Congratulations on completing Day 1! You've taken the first crucial step toward becoming a data engineer. Tomorrow, we'll dive into Python programming fundamentals.

Remember: Consistency beats perfection. Focus on daily progress, not perfection.

Day 1 Complete ✓ | **Next**: Day 2 - Python Fundamentals | **Progress**: 2% (1/50 days)