Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

по курсу кафедры квантовой радиофизики на тему: «Генерация второй гармоники в нелинейном кристалле»

Работу выполнил: Баринов Леонид (группа Б02-827)

1. Аннотация

В работе будут определен углы синхронизма в кристалле ниобата лития. Будет проведено исследование зависимости генерации второй гармоники от поляризации падающего излучения и получена экспериментальная зависимость интенсивности генерации второй гармоники в исследуемом кристалле от угла $\Delta\theta=\theta-\theta_0$ между направлениями излучения 0 и направлением синхронизма $\theta_{\rm c}$.

2. Теоретические сведения

2.1. Нелинейная оптика

В рамках классического подхода линейность материальных уравнений и уравнений Максвелла означала, что световые волны с разными характеристиками распространяются в среде независимо друг от друга, т.е. выполняется принцип суперпозиции световых волн.

При распространении мощного светового пучка через среду оптические характеристики среды становятся зависимыми от напряженности поля световой волны и материальное уравнение для связи поляризации среды \vec{P} с напряженностью электрического поля световой волны \vec{E} следует рассматривать в виде

$$P_i = \sum_k \alpha_{ik}(\vec{E}) E_k \tag{1}$$

где $\alpha_{ik}(\vec{E})$ — компоненты тензора восприимчивости.

Тензор восприимчивости $\alpha_{ik}(\bar{E})$ в первом приближении можно представить в виде

$$\alpha_{ik}(\vec{E}) \approx \alpha_{ik} + \sum_{j} \alpha_{ikj} E_j$$
 (2)

Здесь α_{ik} — компоненты тензора линейной восприимчивости, α_{ijk} — компоненты тензора нелинейной восприимчивости.

Тогда материальное уравнение (1) примет вид:

$$P_i = \sum_{k} \alpha_{ik} E_k + \sum_{k} \sum_{j} \alpha_{ikj} E_k E_j \tag{3}$$

2.2. Генерация второй гармоники ($\Gamma B \Gamma$)

Пусть на среду в направлении оси z падает плоская монохроматическая волна вида

$$\vec{E}(z,t) = \vec{E}^{\omega} \cos(\omega t - k_1 z), \tag{4}$$

где \vec{k}_1 — волновой вектор, $k_1=n\frac{\omega}{c}$ его компонента вдоль оси $z,n(\omega)$ — показатель преломления среды вдоль оси z на частоте ω .

Под действием световой волны в среде возникает волна поляризации с компонентами

$$P_{i}(z,t) = \sum_{k} \alpha_{ik} E_{k}^{\omega} \cos(\omega t - k_{1}z) + \sum_{k} \sum_{j} \alpha_{ikj} E_{j}^{\omega} E_{k}^{\omega} \cos^{2}(\omega t - k_{1}z) =$$

$$= \underbrace{\sum_{k} \alpha_{ik} E_{k}^{\omega} \cos(\omega t - k_{1}z)}_{\text{лин. поляризация}} + \underbrace{\frac{1}{2} \sum_{k} \sum_{j} \alpha_{ikj} E_{j}^{\omega} E_{k}^{\omega}}_{\text{стат. поляризация}} + \underbrace{\frac{1}{2} \sum_{k} \sum_{j} \alpha_{ikj} E_{j}^{\omega} E_{k}^{\omega}}_{\text{недин. поляризация}}$$

$$(5)$$

Нелинейная волна поляризации

$$P'(z,t) = P^{2\omega}\cos(2\omega t - 2k_1 z) \tag{6}$$

где $P^{2\omega}=1/2\sum_k\sum_j \alpha_{ikj}E_j^\omega E_k^\omega$, вызывает появление вторичной световой волны с частотой 2ω , интенсивность которой равна

$$I^{2\omega} = \frac{2}{3c^3} |\overline{\dot{P}}|^2 \tag{7}$$

Представим переизлученную волну в виде:

$$E_1(z,t) = E_1^{2\omega} \cos(2\omega t - k_2 z) \tag{8}$$

Условие фазового синхронизма:

$$n(\omega) = n(2\omega) \tag{9}$$

В случае изотропной среды условие синхронизма можно выполнить только в случае аномальное дисперсии на одной из частот, но тогда эта волна будет интенсивно поглощаться средой, и эффективного пространственного накопления ГВГ не будет.

В случае анизотропных кристаллов величина показателя преломления n зависит не только от частоты ω , но и от поляризации волны.

Если двупреломление $|n_e-n_o|$ достаточно велико, то возможно пересечение эллипсоида $n_e(2\omega)$ и сферы $n_o(\omega)$ (рис. 1). Если известны значения n_o и n_e для частот ω и 2ω угол синхронизма легко рассчитать, пользуясь зависимостью показателей преломления от угла распространения луча.

$$n_o(\theta) = const$$

$$n_e(\theta) = n_o \left[1 + \left(\frac{n_o^2}{n_e^2} - 1 \right) \sin^2 \theta \right]^{-1/2}$$
 (10)

Рис. 1. Сечения поверхностей показателя преломления: сферы для обыкновенной волны (n_e) и эллипсоида для необыкновенной волны (n_e) в одноосном отрицательном кристалле

3. Оборудование

Экспериментальная установка предназначена для исследования зависимости интенсивности второй гармоники от ориентации нелинейного кристалла.

Экспериментальная установка собрана на оптической скамье (puc. 2).

Рис. 2. Экспериментальная установка для изучения генерации второй гармоники. a - общий вид: 1 — приемный блок; 2 — окно для наблюдения; 3 — двухкружный гониометр; 4 — прибор ночного видения; 5 — соединительный блок; 6 — поляризатор; 7 — лазер.

6 — оптическая схема: 8 — фотодиод; 9 — блок светофильтров; 10 — экран; 11 — нелинейный кристалл; 12 — поворотное зеркало; 13 — затвор; 14 — объектив; 15 — электронно-оптический преобразователь; 16 — окуляр; 17 — диафрагма; 18 — поляризатор; 19 — лазер.

4. Результаты измерений и обработка результатов

Рассчитаем угол синхронизма для кристалла $LiNbO_3$ по формуле (10). $n_o(\omega)=2,2336,~n_e(\omega)=2,1540,~n_o(2\omega)=2,3225~n_e(2\omega)=2,2289.$

$$\sin \theta = \sqrt{\frac{n_o^2(\omega) - n_o^2(2\omega)}{n_e^2(2\omega) - n_o^2(2\omega)}}$$
$$\theta_1 \approx 77.2^{\circ}$$

Угол, полученный экспериментально:

$$\theta_2\approx (73\pm 1)^\circ$$

Генерация второй гармоники наблюдается только в положении поляризатора, при котором на кристалл падает обыкновенная волна.

Исследуем зависимость интенсивности ГВГ в исследуемом кристалле от угла $\Delta \theta = \theta - \theta_0.$

$\Delta \theta$, '	0	10	20	30	40	50	60
$I^{2\omega}$, усл. ед.	100	85	65	60	55	55	55
$\Delta\theta$, '	40	0	-10	-20	-30	-40	
$I^{2\omega}$, усл. ед.	50	105	105	70	50	50	

Таблица 1. Зависимость интенсивности $I^{2\omega}$ от угла $\Delta \theta$

Рис. 3. Зависимость интенсивности $I^{2\omega}$ от угла $\Delta\theta$

5. Обсуждение результатов и выводы

В работе определен угол синхронизма в кристалле ниобата лития:

$$\theta_2 = (73 \pm 1)^{\circ}$$

Теоретическая оценка дает результат:

$$\theta_1 = 77.2^{\circ}$$

Расхождения могут быть связаны с зависимостью показателя преломления $LiNbO_3$ от температуры.

Проведено исследование зависимости генерации второй гармоники от поляризации падающего излучения. Наблюдать генерацию второй гармоники можно только при обыкновенной волне, так как кристалл ниобата лития допускает синхронную генерацию типа $oo \to e$ и не допускает генерацию двух необыкновенных волн.

Получена экспериментальная зависимость интенсивности генерации второй гармоники в исследуемом кристалле от угла $\Delta\theta=\theta-\theta_0$ между направлениями излучения 0 и направлением синхронизма θ_c (puc. 3).

Полученный график согласуется с теоретической зависимостью:

$$\begin{split} I^{2\omega} &\propto \mathrm{sinc}\left(\frac{\Delta k l}{2\pi}\right) \\ \Delta k &= 2\frac{2\pi}{\lambda_0} |n(\theta, 2\omega) - n_o(\omega)| \end{split}$$