CS 4650/7650 Semi-Supervised Learning¹

Jacob Eisenstein

October 24, 2013

Frameworks for learning

- So far, we have focused on learning a function f from labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell}$.
- What if you don't have labeled data for a domain or task you want to solve?
 - ► You can use labeled data from another domain. This rarely works well.
 - You can label data yourself.
 This is a lot of work.

Phonetic transcription²

- "Switchboard" dataset of telephone conversations
- Annotations from word to phoneme sequence:
 - ightharpoonup film ightharpoonup f IH_N UH_GL_N M
 - ▶ be all \rightarrow BCL B IY IY_TR AO_TR AO L_DL

Phonetic transcription²

- "Switchboard" dataset of telephone conversations
- Annotations from word to phoneme sequence:
 - ightharpoonup film ightharpoonup f IH_N UH_GL_N M
 - ▶ be all \rightarrow BCL B IY IY_TR AO_TR AO L_DL
- ▶ 400 hours annotation time per hour of speech!

Natural language parsing³

- Penn Chinese Treebank
- Annotations from word sequences to parse trees

"The National Track and Field Championship has finished."

³Examples from Xiaojin "Jerry" Zhu

Natural language parsing³

- Penn Chinese Treebank
- Annotations from word sequences to parse trees

"The National Track and Field Championship has finished."

▶ 2 years annotation time for 4000 sentences

³Examples from Xiaojin "Jerry" Zhu

Semisupervised learning

- $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell}$: labeled examples
- $\{(\mathbf{x}_i)\}_{i=\ell+1}^{\ell+u}$: unlabeled examples
- often $u \gg \ell$

Semisupervised learning

- $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell}$: labeled examples
- $\{(\mathbf{x}_i)\}_{i=\ell+1}^{\ell+u}$: unlabeled examples
- ▶ often $u \gg \ell$

Domain adaptation

- $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell_S} \sim \mathcal{D}_S$: labeled examples in *source* domain
- $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell_T} \sim \mathcal{D}_T$: labeled examples in *target* domain
- possibly some unlabeled data in target and possibly source domain
- evaluate in the target domain

Semisupervised learning

- $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell}$: labeled examples
- $\{(\mathbf{x}_i)\}_{i=\ell+1}^{\ell+u}$: unlabeled examples
- ▶ often $u \gg \ell$

Domain adaptation

- $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell_S} \sim \mathcal{D}_S$: labeled examples in *source* domain
- $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell_T} \sim \mathcal{D}_T$: labeled examples in *target* domain
- possibly some unlabeled data in target and possibly source domain
- evaluate in the target domain
- ▶ Active learning: model can query annotator for labels

- ► labeled data
 - ▶ ☺ émouvant avec grâce et style
 - ▶ ② fastidieusement inauthentique et banale

- labeled data
 - ▶ ☺ émouvant avec grâce et style
 - ▶ ☺ fastidieusement inauthentique et banale
- unlabeled data

- labeled data
 - ▶ ☺ émouvant avec grâce et style
 - ▶ ③ fastidieusement inauthentique et banale
- unlabeled data
 - pleine de style et d'intrigue

- labeled data
 - émouvant avec grâce et style
 - ▶ ② fastidieusement inauthentique et banale
- unlabeled data
 - pleine de style et d'intrigue

- labeled data
 - émouvant avec grâce et style
 - ▶ ② fastidieusement inauthentique et banale
- unlabeled data
 - pleine de style et d'intrigue
 - la banalité n'est dépassée que par sa prétention

- labeled data
 - ▶ ☺ émouvant avec grâce et style
 - ▶ ③ fastidieusement inauthentique et banale
- unlabeled data
 - pleine de style et d'intrigue
 - la banalité n'est dépassée que par sa prétention

- labeled data
 - émouvant avec grâce et style
 - ▶ ☺ fastidieusement inauthentique et banale
- unlabeled data
 - pleine de style et d'intrigue
 - la banalité n'est dépassée que par sa prétention
 - prétentieux, de la première minute au rideau final

- labeled data
 - émouvant avec grâce et style
 - ▶ ③ fastidieusement inauthentique et banale
- unlabeled data
 - pleine de style et d'intrigue
 - la banalité n'est dépassée que par sa prétention
 - prétentieux, de la première minute au rideau final

- labeled data
 - ▶ © émouvant avec grâce et style
 - ▶ ☺ fastidieusement inauthentique et banale
- unlabeled data
 - pleine de style et d'intrigue
 - la banalité n'est dépassée que par sa prétention
 - prétentieux, de la première minute au rideau final
 - imprégné d'un air d'intrigue

- labeled data
 - émouvant avec grâce et style
 - ▶ ☺ fastidieusement inauthentique et banale
- unlabeled data
 - pleine de style et d'intrigue
 - la banalité n'est dépassée que par sa prétention
 - prétentieux, de la première minute au rideau final
 - imprégné d'un air d'intrigue

Let's learn to do sentiment analysis in French.

- labeled data
 - ▶ © émouvant avec grâce et style
 - ▶ ☺ fastidieusement inauthentique et banale
- unlabeled data
 - pleine de style et d'intrigue
 - la banalité n'est dépassée que par sa prétention
 - prétentieux, de la première minute au rideau final
 - imprégné d'un air d'intrigue

By propagating training labels to unlabeled data, we learn the sentiment value of many more words.

Propagating 1-Nearest-Neighbor: now it works

(c) Iteration 74 (d) Final labeling of all instances

Propagating 1-Nearest-Neighbor: now it doesn't

But with a single outlier...

	$\mathbf{x}^{(1)}$	$x^{(2)}$	У
1.	Peachtree Street	located on	LOC
2.	Dr. Walker	said	PER
3.	Zanzibar	located in	?
4.	Zanzibar	flew to	?
5.	Dr. Robert	recommended	?
6.	Oprah	recommended	?

	$\mathbf{x}^{(1)}$	$x^{(2)}$	у
1.	Peachtree Street	located on	LOC
2.	Dr. Walker	said	PER
3.	Zanzibar	located in	?
4.	Zanzibar	flew to	?
5.	Dr. Robert	recommended	PER
6.	Oprah	recommended	?

Algorithm

▶ Use classifier 1 to label example 5.

	$\mathbf{x}^{(1)}$	$x^{(2)}$	у
1.	Peachtree Street	located on	LOC
2.	Dr. Walker	said	PER
3.	Zanzibar	located in	LOC
4.	Zanzibar	flew to	?
5.	Dr. Robert	recommended	PER
6.	Oprah	recommended	?

- ▶ Use classifier 1 to label example 5.
- Use classifier 2 to label example 3.

	$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	У
1.	Peachtree Street	located on	LOC
2.	Dr. Walker	said	PER
3.	Zanzibar	located in	LOC
4.	Zanzibar	flew to	?
5.	Dr. Robert	recommended	PER
6.	Oprah	recommended	?

- Use classifier 1 to label example 5.
- Use classifier 2 to label example 3.
- Retrain both classifiers, using newly labeled data.

	$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	У
1.	Peachtree Street	located on	LOC
2.	Dr. Walker	said	PER
3.	Zanzibar	located in	LOC
4.	Zanzibar	flew to	LOC
5.	Dr. Robert	recommended	PER
6.	Oprah	recommended	PER

- Use classifier 1 to label example 5.
- Use classifier 2 to label example 3.
- Retrain both classifiers, using newly labeled data.
- ▶ Use classifier 1 to label example 4.
- Use classifier 2 to label example 6.

Building a graph of related instances

Back to sentiment analysis in French...

- 1. © émouvant avec grâce et style
- 2. © fastidieusement inauthentique et banale
- 3. pleine de style et d'i1-¿intrigue
- 4. la banalité n'est dépassée que par sa prétention
- prétentieux, de la première minute au rideau final
- 6. imprégné d'un air d'intrigue

Building a graph of related instances

Back to sentiment analysis in French...

- 1. © émouvant avec grâce et style
- 2. © fastidieusement inauthentique et banale
- 3. pleine de style et d'i1-¿intrigue
- 4. la banalité n'est dépassée que par sa prétention
- prétentieux, de la première minute au rideau final
- 6. imprégné d'un air d'intrigue

- We can view this data as a graph, with edges between similar instances.
- Unlabeled instances propagate information through the graph.

Minimum cuts

Pang and Lee use **minimum cuts** to assign subjectivity in a proximity graph of sentences.

$$y_i \in \{0,1\}$$
Fix $Y_l = \{y_1, y_2, \dots y_\ell\}$
Solve for $Y_u = \{y_{\ell+1}, \dots, y_{\ell+m}\}$
 $\min_{Y_u} \sum_{i,j} w_{ij} (y_i - y_j)^2$

Minimum cuts

Pang and Lee use **minimum cuts** to assign subjectivity in a proximity graph of sentences.

$$y_i \in \{0,1\}$$
Fix $Y_I = \{y_1, y_2, \dots y_\ell\}$
Solve for $Y_u = \{y_{\ell+1}, \dots, y_{\ell+m}\}$
 $\min_{Y_u} \sum_{i,j} w_{ij} (y_i - y_j)^2$

- ► This looks like a combinatorial problem...
- ▶ But assuming $w_{ij} \ge 0$, it can be solved with maximum-flow.

Minimum cuts for subjectivity analysis

C_1	Individual penalties	Association penalties	Cos
{Y,M}	.2 + .5 + .1	.1 + .2	1.1
(none)	.8 + .5 + .1	0	1.4
$\{Y,M,N\}$.2 + .5 + .9	0	1.6
{Y}	.2 + .5 + .1	1.0 + .1	1.9
{N}	.8 + .5 + .9	.1 + .2	2.5
{M}	.8 + .5 + .1	1.0 + .2	2.6
{Y,N}	.2 + .5 + .9	1.0 + .2	2.8
$\{M,N\}$.8 + .5 + .9	1.0 + .1	3.3

Problems with minimum cuts

- Mincuts may have several possible solutions:

Problems with minimum cuts

- Mincuts may have several possible solutions:

 - Equivalent solutions

Problems with minimum cuts

Mincuts may have several possible solutions:

Equivalent solutions

Another problem is that mincuts doesn't distinguish high confidence predictions.

Problems with minimum cuts

- Mincuts may have several possible solutions:

 - Equivalent solutions

- Another problem is that mincuts doesn't distinguish high confidence predictions.
- ▶ One solution: is randomized mincuts (Blum et al, 2004)
 - Add random noise to adjacency matrix.
 - Rerun mincuts multiple times.
 - Deduce the final classification by voting.

Supervised domain adaptation

In supervised domain adaptation, we have:

Lots of labeled data in a "source" domain, $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell_S} \sim \mathcal{D}_S$ (e.g., reviews of restaurants)

▶ A little labeled data in a "target" domain, $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell_T} \sim \mathcal{D}_T$ (e.g., reviews of chess stores)

Obvious Approach 1: SrcOnly

Training Time Test Time Source Target Target Data Data Data Source Data

Obvious Approach 2: TgtOnly

Training Time Test Time Source Target Target Data Data Data Target Data

Obvious Approach 3: All

Training Time Source Target Data Data Source Target Data Data **Unioned Data**

Test Time

Target Data

Obvious Approach 4: Weighted

Training Time Source **Target** Data Data Source **Target** Data Data **Unioned Data**

Test Time

Target Data

Obvious Approach 5: Pred

Obvious Approach 6: LinInt

Less obvious approaches

- ▶ Priors (Chelba and Acero 2004)
 - ▶ Let $\mathbf{w}^{(S)}$ be the optimal weights in the source domain.
 - ▶ Design a prior distribution $P(\mathbf{w}^{(T)}|\mathbf{w}^{(S)})$
 - Solve $\mathbf{w}^{(T)} = \operatorname{arg\,max}_{\mathbf{w}} \log P(\mathbf{y}^{(T)}|\mathbf{x}^{(T)}) + \log P(\mathbf{w}^{(T)}|\mathbf{w}^{(S)})$

Less obvious approaches

- ▶ Priors (Chelba and Acero 2004)
 - Let $\mathbf{w}^{(S)}$ be the optimal weights in the source domain.
 - ▶ Design a prior distribution $P(\mathbf{w}^{(T)}|\mathbf{w}^{(S)})$
 - Solve $\mathbf{w}^{(T)} = \arg\max_{\mathbf{w}} \log P(\mathbf{y}^{(T)}|\mathbf{x}^{(T)}) + \log P(\mathbf{w}^{(T)}|\mathbf{w}^{(S)})$
- ► Feature augmentation (Daume III 2007)

"MONITOR" versus "THE"

News domain:
"MONITOR" is a **verb**"THE" is a **determiner**

Technical domain:
"MONITOR" is a **noun**"THE" is a **determiner**

Key Idea:

Share some features ("the")
Don't share others ("monitor")

(and let the *learner* decide which are which)

Feature Augmentation

Results – Error Rates

Task	Dom	SrcOnly'	ГgtOnly	Baseline	Prior A	Augment
	bn	4.98	2.37	2.11 (pred)	2.06	1.98
	bc	4.54	4.07	3.53 (weight)	3.47	3.47
ACE-	nw	4.78	3.71	3.56 (pred)	3.68	3.39
NER	wl	2.45	2.45	2.12 (all)	2.41	2.12
	un	3.67	2.46	2.10 (linint)	2.03	1.91
	cts	2.08	0.46	0.40 (all)	0.34	0.32
CoNLL	tgt	2.49	2.95	1.75 (wgt/li)	1.89	1.76
PubMed	tgt	12.02	4.15	3.95 (linint)	3.99	3.61
CNN	tgt	10.29	3.82	3.44 (linint)	3.35	3.37
	wsj	6.63	4.35	4.30 (weight)	4.27	4.11
	swbd3	15.90	4.15	4.09 (linint)	3.60	3.51
	br-cf	5.16	6.27	4.72 (linint)	5.22	5.15
Tree	br-cg	4.32	5.36	4.15 (all)	4.25	4.90
bank-	br-ck	5.05	6.32	5.01 (prd/li)	5.27	5.41
Chunk	br-cl	5.66	6.60	5.39 (wgt/prd)	5.99	5.73
	br-cm	3.57	6.59	3.11 (all)	4.08	4.89
	br-cn	4.60	5.56	4.19 (prd/li)	4.48	4.42
	br-cp	4.82	5.62	4.55 (wgt/prd/li)	4.87	4.78
	br-cr	5.78	9.13	5.15 (linint)	6.71	6.30
Treebank	- brown	6.35	5.75	4.72 (linint)	4.72	4.65

Unsupervised domain adaptation

In unsupervised domain adaptation, we have:

Lots of labeled data in a "source" domain, $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell_S} \sim \mathcal{D}_S$ (e.g., reviews of restaurants)

Lots of unlabeled data in a "target" domain, $\{(\mathbf{x}_i)\}_{i=1}^{\ell_T} \sim \mathcal{D}_T$ (e.g., reviews of chess stores)

Learning Representations: Pivots

Predicting pivot word presence

Predicting pivot word presence

Do **not buy** the Shark portable steamer. The trigger mechanism is **defective**.

An absolutely **great** purchase

A sturdy deep fryer

Predicting pivot word presence

Do **not buy** the Shark portable steamer. The trigger mechanism is **defective**.

An absolutely **great** purchase. . . . This blender is incredibly **sturdy**.

Predict presence of pivot words

 $p_{w(\textit{great})}(\textit{great}(x) \propto \exp\{\langle x, w(\textit{great}) \rangle\}$

A sturdy deep fryer

Finding a shared sentiment subspace

$$W = \left[egin{array}{ccc} \mathbb{I} & & \mathbb{I} & \mathbb{I} \\ w_1 & \dots & w(egin{array}{c} highly \\ recommend \end{array}) & \dots & w_N \\ \mathbb{I} & \mathbb{I} \end{array}
ight]$$

- $p_W(\textit{pivots}|x)$ generates N new features
- $p_{w(\frac{highly}{recommend})}(\frac{highly}{recommend}|x)$: "Did highly recommend appear?"
- Sometimes predictors capture non-sentiment information

Finding a shared sentiment subspace

$$W = \left[egin{array}{ccc} \mathbf{I} & & \mathbf{I} & & \mathbf{I} \\ w_1 & \dots & w(\substack{\textit{highly} \\ \textit{recommend}}) & \dots & w_N \\ \mathbf{I} & & \mathbf{I} \end{array}
ight]$$

- $p_W(pivots|x)$ generates N new features
- $p_{w(\frac{\textit{highly}}{\textit{recommend}})}(\frac{\textit{highly}}{\textit{recommend}}|x)$: "Did highly recommend appear?"
- Sometimes predictors capture non-sentiment information

Finding a shared sentiment subspace

$$W = \left[egin{array}{ccc} \mathbb{I} & & \mathbb{I} & \mathbb{I} \\ w_1 & \dots & w(egin{array}{c} highly \\ recommend \end{array}) & \dots & w_N \\ \mathbb{I} & \mathbb{I} \end{array}
ight]$$

- $p_W(\textit{pivots}|x)$ generates N new features
- $p_{w(\frac{\textit{highly}}{\textit{recommend}})}(\frac{\textit{highly}}{\textit{recommend}}|x)$: "Did highly recommend appear?"
- Sometimes predictors capture non-sentiment information

Finding a shared sentiment subspace §

$$W = \left[\begin{array}{cccc} \mathbf{I} & & & \mathbf{I} & & \mathbf{I} \\ w_1 & \dots & w(\begin{array}{ccc} \mathbf{highly} \\ \mathbf{recommend} \end{array}) & \dots & w_N \\ \mathbf{I} & & \mathbf{I} \end{array} \right] \quad \text{• Let } P \text{ be a basis for the subspace of best fit to } W$$

- $p_W(pivots|x)$ generates N new features
- $p_{w(\frac{highly}{recommend})}(\frac{highly}{recommend}|x)$: "Did highly recommend appear?"
- · Sometimes predictors capture non-sentiment information

Finding a shared sentiment subspace §

$$W = \left[\begin{array}{cccc} \mathbf{I} & & \mathbf{I} & & \mathbf{I} \\ w_1 & \dots & w(\begin{array}{ccc} \mathbf{highly} \\ \mathbf{recommend} \end{array}) & \dots & \begin{array}{c} \mathbf{I} \\ w_N \\ \mathbf{I} \end{array} \right] \quad \text{• Let P be a basis for the subspace of best fit to W}$$

- P captures sentiment variance in W

- $p_W(pivots|x)$ generates N new features
- $p_{w(\frac{highly}{recommend})}(\frac{highly}{recommend}|x)$: "Did highly recommend appear?"
- · Sometimes predictors capture non-sentiment information

P projects onto shared subspace

$$p_{\tilde{\theta}}(0)|x) \propto \exp\left\{\langle \phi(0), Px \rangle, \tilde{\theta} \rangle\right\}$$

P projects onto shared subspace

$$h(x) = \operatorname{sgn}\left(\theta^{\top} P x\right)$$

Target Accuracy: Kitchen Appliances

Target Accuracy: Kitchen Appliances

Target Accuracy: Kitchen Appliances

Adaptation Error Reduction

36% reduction in error due to adaptation

Visualizing P (books & kitchen)

negative vs. positive

Recap

- In application settings,
 - You rarely have all the labeled data you want.
 - You often have lots of unlabeled data.
- Semi-supervised learning learns from unlabeled data too:
 - Bootstrapping (or self-training) works best when you have multiple orthogonal views: for example, string and context.
 - ▶ Probabilistic methods *impute* the labels of unseen data.
 - Graph-based methods encourage similar instances or types to have similar labels.

Semisupervised learning

- ▶ learn from labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell}$ ▶ and unlabeled examples $\{(\mathbf{x}_i)\}_{i=\ell+1}^{\ell+u}$
- often $u \gg \ell$

Semisupervised learning

- ▶ learn from labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell}$
- ▶ and unlabeled examples $\{(\mathbf{x}_i)\}_{i=\ell+1}^{\ell+u}$
- often $u \gg \ell$

Domain adaptation

- ▶ learn from lots of labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell} \sim \mathcal{D}_{\mathcal{S}}$ in a source domain
- ▶ learn from a few (or zero) labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell} \sim \mathcal{D}_T$ in a *target* domain
- evaluate in the target domain

Semisupervised learning

- ▶ learn from labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell}$
- ▶ and unlabeled examples $\{(\mathbf{x}_i)\}_{i=\ell+1}^{\ell+u}$
- often $u \gg \ell$

Domain adaptation

- ▶ learn from lots of labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell} \sim \mathcal{D}_{\mathcal{S}}$ in a source domain
- ▶ learn from a few (or zero) labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell} \sim \mathcal{D}_T$ in a *target* domain
- evaluate in the target domain
- ► Active learning: model can query annotator for labels

Semisupervised learning

- ▶ learn from labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell}$
- ▶ and unlabeled examples $\{(\mathbf{x}_i)\}_{i=\ell+1}^{\ell+u}$
- ▶ often $u \gg \ell$

Domain adaptation

- ▶ learn from lots of labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell} \sim \mathcal{D}_{\mathcal{S}}$ in a source domain
- ▶ learn from a few (or zero) labeled examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{\ell} \sim \mathcal{D}_T$ in a *target* domain
- evaluate in the target domain
- ► Active learning: model can query annotator for labels
- Feature labeling
 - Provide prototypes of each label (Haghighi and Klein 2006)
 - ▶ Give rough probabilistic constraints, e.g. Mr. preceeds a person name at least 90% of the time (Druck et al 2008)