# **Lecture 27 Compare Two Populations - Proportion**

BIO210 Biostatistics

Xi Chen

Spring, 2022

School of Life Sciences
Southern University of Science and Technology



### Compare two proportions

Whether the proportions of colour blindness are the same in two different populations (e.g. male vs female, Asian vs European)?

Whether chemical A is better than chemical B for culturing cells in petri dishes (can be measured by percentage of cells that express Oct4)?

Whether drug A is more efficient than drug B in terms of curing a certain disease (can be measured by percentage of cured patients)?



### ABO Blood Types And The COVID-19

### Clinical Infectious Diseases

### BRIEF REPORT

# Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility

Jiao Zhao,<sup>1,a</sup> Yan Yang,<sup>2,a</sup> Hanping Huang,<sup>3,a</sup> Dong Li,<sup>4,a</sup> Dongfeng Gu,<sup>1</sup> Xiangfeng Lu,<sup>5</sup> Zheng Zhang,<sup>2</sup> Lei Liu,<sup>2</sup> Ting Liu,<sup>3</sup> Yukun Liu,<sup>6</sup> Yunjiao He,<sup>1</sup> Bin Sun,<sup>1</sup> Meilan Wei,<sup>1</sup> Guangyu Yang,<sup>7,b</sup> Xinghuan Wang,<sup>8,b</sup> Li Zhang,<sup>3,b</sup> Xiaoyang Zhou,<sup>4,b</sup> Mingzhao Xing,<sup>1,b</sup> and Peng George Wang<sup>1,b</sup>

<sup>1</sup>School of Medicine, The Southern University of Science and Technology, Shenzhen,

# Type A blood in normal people and COVID-19 patients



# Strategy 1: Use One-sample Hypothesis Testing ??

#### Two choices:

• 
$$H_0$$
:  $\pi_1 = 0.38$ 

$$H_1: \pi_1 \neq 0.38$$

• 
$$H_0$$
:  $\pi_2 = 0.32$ 

$$H_1: \pi_2 \neq 0.32$$

#### Two anwsers:

• 
$$z = -7.5$$
  
 $p = 6.4 \times 10^{-14}$ 

• 
$$z = 4.4$$
  
 $p = 1.1 \times 10^{-5}$ 

### Strategy 2: Figure Out The Sampling Distribution of The Difference

- Let the random variable  $P_1$  represent the proportion of blood type A in a sample  $(n_1 = 3694)$  drawn from normal people.
- Let the random variable  $P_2$  represnt the proportion of blood type A in a sample  $(n_2 = 1775)$  drawn from COVID-19 patients.

### Sampling Distribution of The Difference of The Sample Proportion

Question: Two r.v.  $P_1$  and  $P_2$  are independent,  $D = P_1 - P_2$ ,  $D \sim ?(?,?)$ 

$$E[D] = E[P_1 - P_2] = E[P_1] - E[P_2] = \pi_1 - \pi_2$$

$$var(D) = var(P_1 - P_2) = var[P_1 + (-1) \cdot P_2]$$

$$= var(P_1) + var[(-1) \cdot P_2]$$

$$= var(P_1) + (-1)^2 \cdot var(P_2)$$

$$= var(P_1) + var(P_2)$$

$$= \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}$$

$$D \sim \mathcal{N}\left(\pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}\right)$$

### **Extra Reading:**

- A linear function of a normal r.v. is still a normal r.v.
- The sum of two independent normal r.v. is also a normal r.v.

# Sampling Distribution of The Difference of The Sample Proportion

• 
$$D \sim \mathcal{N}\left(\pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}\right)$$

•  $D=P_1-P_2$  and  $d=p_1-p_2$  are the point estimator/estimate of  $\delta$ 

• 95% CI: 
$$(p_1 - p_2) \pm 1.96 \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

# Type A blood in normal people and COVID-19 patients



# Two-sample Hypothesis Testing For Proportion

$$H_0: \ \delta = \pi_1 - \pi_2 = 0 \\ H_1: \ \delta = \pi_1 - \pi_2 \neq 0 \\ D \sim \mathcal{N}\left(\pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}\right) \xrightarrow{\text{were true}} D \sim \mathcal{N}\left(0, \left(\frac{1}{n_1} + \frac{1}{n_2}\right)\pi(1 - \pi)\right)$$

- 1. What we observe is:  $d = p_1 p_2$
- 2. What is the probability of observing d or more extreme?

$$z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\pi(1 - \pi)}} = \frac{p_1 - p_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\pi(1 - \pi)}}$$



What is the best estimate for  $\pi$ 

### Two-sample Hypothesis Testing For Proportion

|       | Normal | COVID-19 |
|-------|--------|----------|
| А     | a      | b        |
| Non-A | c      | d        |
| Total | $n_1$  | $n_2$    |

Sample size: bigger is always better:

$$\pi: \frac{a+b}{n_1+n_2} = \frac{n_1p_1+n_2p_2}{n_1+n_2} = {\color{red}p}$$

The test statistic:

$$z = \frac{p_1 - p_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)p(1-p)}}$$

The test statistic:

$$p = \frac{1188 + 670}{3694 + 1775} = 0.34, \ z = \frac{0.32 - 0.38}{\sqrt{\left(\frac{1}{3694} + \frac{1}{1775}\right) \times 0.34 \times 0.66}} = -4.4$$

### **Example: Two-sample Hypothesis Testing For Proportion**

Myopia: Researchers suspect that myopia, or nearsightedness, is becoming more common over time. A study from the year 2000 showed 139 cases of myopia in 420 randomly selected people. A separate study from 2015 showed 228 cases in 600 randomly selected people. Perform a hypothesis testing to see if the researchers' suspicion is true or not.

Sample statistics: 
$$n_1=420,\ p_1=\frac{139}{420}=0.33,\ n_2=600,\ p_2=\frac{228}{600}=0.38$$

Pooled estimate for 
$$\pi$$
:  $p = \frac{139 + 228}{420 + 600} = 0.36$ 

The test statistics: 
$$z = \frac{p_1 - p_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)p(1-p)}} = \frac{0.32 - 0.38}{\sqrt{\left(\frac{1}{420} + \frac{1}{600}\right) \times 0.36 \times 0.64}}$$