ASSIGNMENT 1

- 1. State Dirichlet's conditions for convergence of Fourier series and check whether the function $f(x) = \frac{1}{3-x}$, $0 < x < 2\pi$ satisfy Dirichlet's conditions or not?
- 2. Find a Fourier series to represent $x x^2$ from $-\pi$ to π . Hence show that

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$

- 3. Express f(x) = |x|, $-\pi < x < \pi$ as Fourier series.
- 4. Express $f(x) = x^2$ as a half-range cosine series for 0 < x < 2.
- 5. Obtain the Fourier sine series for f(x) containing three non-zero terms where f(x) is given in the following table:

х	0	1	2	3	4	5
f(x)	0	10	15	8	5	3

- 7. Find the Fourier transform of $f(x) = e^{-|x|}$
- 8. Find the Fourier cosine transform of $f(x) = \frac{1}{a^2 + x^2}$. Hence derive Fourier sine transform of $\phi(x) = \frac{x}{a^2 + x^2}$.
- 9. Find the inverse Fourier transform of the function $\frac{1}{(4+\omega^2)}$.
- 10. The temperature u in the semi-infinite rod $0 \le x < \infty$ is determined by the differential equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ subject to the conditions

(i)
$$u = 0$$
 when $t = 0$, $x \ge 0$ (ii) $\frac{\partial u}{\partial x} = -\mu$ (a constant) when $x = 0$, $t > 0$.

Show that
$$u(x,t) = \frac{2\mu}{\pi} \int_0^\infty \frac{(1-e^{k\omega^2 t})}{\omega^2} \cos \omega x \, d\omega$$
.

ASSIGNMENT 1 (ANSWERS)

1. No

2.
$$f(x) \sim \frac{-\pi^2}{3} + 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} (2\cos nx + n\sin nx)$$

3.
$$f(x) \sim \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}$$

4.
$$f(x) \sim \frac{4}{3} - \frac{16}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos \frac{n\pi x}{2}$$

5.
$$f(x) \sim 10.607 \sin \frac{\pi x}{6} + 4.907 \sin \frac{2\pi x}{6} + 1.667 \sin \frac{3\pi x}{6}$$

6.
$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{(2\sin\omega - \sin 2\omega)\sin\omega x}{\omega^2} d\omega$$

7.
$$\frac{2}{1+\omega^2}$$

8.
$$\frac{\pi}{2a}e^{-a\omega}$$
, $\frac{\pi}{2}e^{-a\omega}$

9.
$$\frac{1}{4}e^{-2t}$$
 if $t > 0$; $\frac{1}{4}e^{2t}$ if $t < 0$; $\frac{1}{2}$ if $t = 0$.