SLAMWARE

模块化自主定位导航解决方案

数据手册

目录	1
简介	3
功能特性	3
工作原理	4
内部模块框图和使用方法	4
特性	5
最大额定值	5
电气特性	5
时间特性	5
接口	6
引脚定义	6
时序	7
典型电路	8
机械设计	9
联系我们	12
修订历史	13
图 韦 安引	14

SLAMWARE 模块化自主定位导航解决方案为 SLAMTEC 公司研发的可进行自主定位导航的核心控制模块。它可提供基于 RPLIDAR 的实时定位和自主导航功能,并支持串口和以太网总线交互导航信息。

SLAMWARE 模块化自主定位导航解决方案能直接完成地图建立、路径自主规划以及运动行走控制,无需额外计算,因而可以使用户更方便地在系统中集成此模块。

功能特性

○ 超小型:只有 30x51mm2 大小,外形基于标准 MINI PCIE 机械外形。

○ 自主:地图建立,定位导航一体化完成。

工作原理

SLAMWARE 模块化自主定位导航解决方案的核心控制模块通过 LBUS 总线控制和读取 RPLIDAR 的实时平面图,并实时计算自己的位置坐标,之后通过 CBUS (串口)和 HBUS (以太网)输出导航信息。

内部模块框图和使用方法

下图描述了 SLAMWARE 模块化自主定位导航解决方案的模块内部结构示意图。 此模块只需要单一的 5V 直流供电即可工作。模块内部其余部件所需要的供电均 可由模块内部的电源网络产生。

Slamware 核心模块

图表 1-1 SLAMWARE 模块内部结构示意图

主要运行接口:

- o LBUS RPLIDAR 通信接口(串口)
- o CBUS 低速控制总线接口(串口)
- o HBUS 高速控制总线接口(以太网)

特性

最大额定值

项目	范围
供电电压	-0.5V ~+6.0V
针脚电压	$-0.3V \sim V_{sc} + 0.3V$
工作温度以及保存温度 (TA)	-20°C ~+65°C

图表 2-1 SLAMWARE 最大额定值

电气特性

TA=20°C

符号	参数	最小值.	典型值.	最大值.	单位
V_{DD}	系统额定工作电压	4.75	5	5.25	V
I_{DD}	系统电流消耗	-	TBD	TBD	mA
V_{DD_IO}	数字接口电压范围	2.9	3.3	3.8	V
I_{DD_IO}	数字接口电流消耗	-	-	TBD	mA
V_{DIL}	数字输入低电平	-	-	$0.2*V_{DD_IO}$	V
V_{DIH}	数字输入高电平	$0.8*V_{\text{DD_IO}}$	-	-	V
V_{DOL}	数字输出低电平	-	-	$0.2*V_{DD_IO}$	V
V_{DOH}	数字输出高电平	$0.8*V_{\text{DD_IO}}$	-	-	V
I _{STANDBY}	电流消耗@关机模式	-	-	TBD	mA

图表 2-2 SLAMWARE 电气特性

时间特性

TA=20°C

符号	参数	最小值.	典型值.	最大值.	单位	备注
T _{STARTUP}	通电启动时间	-	-	TBD	S	
-	地图解析分辨率	-	5	-	cm	
f_{UART}	UART 串口波特率	-	115200	-	bps	
f_{ETH}	以太网工作频率	-	100	-	Mhz	
-	建图面积	-		90000	m ²	

图表 2-3 SLAMWARE 时间特性

SLAMWARE 模块化自主定位导航解决方案的核心控制模块使用标准 MINI PCIE 的 52 针脚连接。

引脚定义

编号	名字	描述
1	NC	悬空引脚。请做悬空处理,不要接任何信号。
3	GND	系统供电地线。
5	NC	悬空引脚。请做悬空处理,不要接任何信号。
7	NC	悬空引脚。请做悬空处理,不要接任何信号。
9	GND	系统供电地线。
11	NC	悬空引脚。请做悬空处理,不要接任何信号。
13	NC	悬空引脚。请做悬空处理,不要接任何信号。
15	GND	系统供电地线。
17	NC	悬空引脚。请做悬空处理,不要接任何信号。
19	NC	悬空引脚。请做悬空处理,不要接任何信号。
21	GND	系统供电地线。
23	ETH_RX-	HBUS 以太网接收负极。
25	ETH_RX+	HBUS 以太网接收正极。
27	ETH_RREF	HBUS 以太网接收端接电压。
29	GND	系统供电地线。
31	ETH_TX-	HBUS 以太网发送负极。
33	ETH_TX+	HBUS 以太网发送正极。
35	ETH_TREF	HBUS 以太网发送端接电压。
37	GND	系统供电地线。
39	NC	悬空引脚。请做悬空处理,不要接任何信号。
41	NC	悬空引脚。请做悬空处理,不要接任何信号。
43	GND	系统供电地线。
45	LPWM	LBUS RPLIDAR 电机调速 PWM。高脉宽占空比正比电机转速。
47	LTX	LBUS RPLIDAR 数据发送端口。需接至 RPLIDAR RX。
49	LRX	LBUS RPLIDAR 数据接收端口。需接至 RPLIDAR TX。
51	nL5VEN	LBUS RPLIDAR 核心供电控制引脚。
_		
2	5V	系统电源 +5V。
4	GND	系统供电地线。

6	NC	悬空引脚。请做悬空处理,不要接任何信号。
8	CBUSY	CBUS 忙指示信号。OD 门输出,高有效。
10	CRX	CBUS 数据接收端口。
12	CTX	CBUS 数据发送端口。
14	GND	系统供电地线。
16	nCCMD	CBUS 数据中断指示信号。下降沿有效。需使用 OD 控制。
18	GND	系统供电地线。
20	NC	悬空引脚。请做悬空处理,不要接任何信号。
22	NC	悬空引脚。请做悬空处理,不要接任何信号。
24	MLED	系统正常工作指示信号。低有效。
26	GND	系统供电地线。
28	5V	系统电源 +5V。
30	NC	悬空引脚。请做悬空处理,不要接任何信号。
32	NC	悬空引脚。请做悬空处理,不要接任何信号。
34	GND	系统供电地线。
36	NC	悬空引脚。请做悬空处理,不要接任何信号。
38	NC	悬空引脚。请做悬空处理,不要接任何信号。
40	GND	系统供电地线。
42	NC	悬空引脚。请做悬空处理,不要接任何信号。
44	NC	悬空引脚。请做悬空处理,不要接任何信号。
46	NC	悬空引脚。请做悬空处理,不要接任何信号。
48	5V	系统电源 +5V。
50	GND	系统供电地线。
52	5V	系统电源 +5V。

图表 3-1 SLAMWARE 针脚定义

时序

SLAMWARE 模块化自主定位导航解决方案的核心控制模块的所有通讯接口如 LBUS、CBUS、HBUS 等均使用遵循国际标准的 UART, ETH 规范。

典型电路

图表 3-2 SLAMWARE 典型电路

SLAMWARE 模块化自主定位导航解决方案的核心模块的机械外形结构符合标准 MINI PCIE 的机械尺寸。其厚度为上下各 4mm,请在机械设计时保证空间余量,并做好散热通道。

该核心模块对应的 MINI PCIE 卡座推荐使用 MOLEX Edge Card Connector, PN:67910-9000, (0.80mm Pitch, 9.00mm Height, PCI Express* Mini Card, 52 Circuit, Right Angle, Surface Mount, 0.25μm Gold (Au) Plating, Tape on Reel, Lead-Free)。

Component and routing (all layers)(贯穿所有层)
keep out area for hold down solutions (该处区域预留用于固定PCB板)

2x 5.80

图表 4-1 SLAMWARE 核心模块的机械外观

Pin numbering reference (Pin号说明):

Odd pins - Top Side

(下图所示顶部视图中Pin号均为奇数,

且Pin号从左往右依次递增)

Even pins - Bottom Side

(下图所示底部视图中Pin号均为偶数,

且Pin号从左往右由Pin52至Pin2依次递减)

图表 4-2 SLAMWARE 核心模块的设计参数

11 / 14

联系我们

本产品由 SLAMTEC 公司设计和生产, 我们的主页是:

http://www.slamtec.com

如果您有任何问题和建议,请通过以下邮件地址和我们联系:

support@slamtec.com

修订历史 <u>SL</u>\<u>MTEC</u>

日期	版本	描述
2015-1-5	0.1	最初版本
2015-9-9	0.2	添加典型电路架构图
2015-10-9	0.3	删除无用章节,更新目录
2015-10-15	0.4	增加推荐 MINI PCIE 座的型号
2015-12-30	0.5	润色文字,去掉 RoboPeak 的 logo
2016-01-24	0.6	添加关闭 RPLIDAR core 的 5V 电源控制引脚
2016-05-09	1.8	更新文档模板

附录

图表索引

图表 1-1 SLAMWARE 模块内部结构示意图	4
图表 2-1 SLAMWARE 最大额定值	5
图表 2-2 SLAMWARE 电气特性	5
图表 2-3 SLAMWARE 时间特性	
图表 3-1 SLAMWARE 针脚定义	
图表 3-2 SLAMWARE 典型电路	
图表 4-1 SLAMWARE 核心模块的机械外观	
图表 4-2 SLAMWARF 核心模块的设计参数	11