Experiment-4

Aim:

To implement a common gate amplifier of gain 10 and analyze its transient and ac characteristics.

Tool Used:

LTspice

Theory:

The common-gate (CG) amplifier for MOSFET is the analogue of the common base amplifier for BJT. Its popularity arises from its lower noise and ease of impedance matching.

For a Level 3 NMOS let's assume

$$V_{GS} = 0.6V$$

$$V_{\rm T} = 0.4 V$$

$$V_{DD} = 1.8V$$

$$K_n = 120 \mu A/V^2$$
,

Which gives a value of (W/L) = 416 for 1mA I_D . Also, for these values' g_m is attained as $10m\Omega^{-1}$, therefore for gain 10, R_D is taken as $1K\Omega$. The value of V_{DS} should be maintained above $(V_{GS} - V_T = 0.6 - 0.4 = 0.2V)$ for the transistor to stay in saturation region. As W/L is 416, the width is taken as 416µm and the length is taken as 1µm.

Circuit Schematic:

Output Waveforms:

DC operating Point

Transient characteristics

AC Analysis

Result:

The circuit is designed for a gain of 10 and the output is verified to be correct. The transient and AC characteristics are visualized.

Bandwidth, $F_C = 844KHz$.