HW3

- □ Due on 11/30, pm 11:59
- □ Rectify the image of omnidirectional camera to a panoramic image

(r, θ) coordinate

- Input image size: 1024*768
 - \Box (x_c,y_c) = (512,384)
- Output image size: 720*384
 - \square 1 pixel of $\theta = 2\pi/720$ rad.

forward warping $r = \sqrt{(x - x_c)^2 + (y - y_c)^2}$ $(x,y) \text{ to (r, \theta)}$ $\theta = \tan^{-1} \left(\frac{y - y_c}{x - x_c}\right)$

inverse warping $x = r \cos \theta + x_c$ (r, θ) to (x,y) $y = r \sin \theta + y_c$

Advanced Computer Vision

Page 1

HW3

- Image stitching with the projective transform
 - Refer to "Projective mappings for image warping,pdf"
 - \square Create an image with size 900*480 (0,0)
 - □ Paste the left image at [80:449, 0:509] □
 - □ Evaluate the transformation matrix M by Eq.(3) or Eq.(4)

- Use inverse warping $(P_s=P_dM_{ds})$ to transfer the original (u,v) coordinate to the desired (x,y) coordinate
 - Hint: i=1, w=1, (u,v)=(u'/q,v'/q)

illiage light

HW3

■ Bonus

- Image stitching by OpenCV
 - Extract feature points
 - ☐ Find corresponding pairs
 - Compute transformations
 - Warp image
 - □ Blend color within overlap

right image

Advanced Computer Vision

Page 3

HW3

- Requirements
 - Programs
 - ☐ C or C++ source code with .exe file (You are NOT allowed to use any library, such as OpenCV)
 - □ VC++ project by using OpenCV (Bonus)
 - Report
 - □ Describe the employed source code editor and how to execute your program (input/interface/output)
 - ☐ Introduce your work, method, and discussions
 - ☐ With all of the images or results
 - Upload to NTUT Elearning
 - You are NOT allowed to use any library, such as OpenCV
 - □ Except the R/W image and the Bonus
 - ☐ You can also use .raw to complete your work

Advanced Computer Vision

Page 4