1/1

1/1

1/1



+15/1/4+

IPS - S7A - Jean-Matthieu Bourgeot

CC

IPS Contrôle du 20/12/2017



Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. Téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Exercice Alimentation de Capteurs de Courant



Figure 1: Alimentation du capteur de courant

On dispose d'une batterie composée de 3 éléments LiPo connectés en série, chaque éléments LiPo à une tension nominale de 3.7V. On souhaite utiliser cette batterie pour alimenter un capteur de courant. Pour cela on propose d'utiliser un stabilisateur à diode Zener décrit sur la figure 1. Si le capteur est correctement alimenté, il nous fournit une tension de mesure  $V_{mes}$  proportionnelle au courant à mesurer I.

Question 1 • D'aprés la courbe de décharge d'un élément LiPo donnée en annexe, calculer la plage de tension disponible en sortie de la batterie qui est composée de 3 éléments mis en série ?

| $V_{batt} \in [2.5 \text{V}; 4.2 \text{V}]$          | $\square V_{batt} \in$ | [0V;11.1V] | $V_{batt} \in [0V; 3.7V]$ |
|------------------------------------------------------|------------------------|------------|---------------------------|
| $ \overrightarrow{\blacksquare} V_{batt} \in [7.5] $ | V ;12.6V]              |            | .5V ;11.1V]               |

On souhaite concevoir l'alimentation pour le capteur de courant LEM HAIS 50-P (Notice constructeur donnée en annexe).

Question 2 • Quelle est sa tension d'alimentation  $(V_{alim})$  préconisée par le constructeur ?

| . <b>■</b> 5V | ☐ 18V         | ☐ 50A    | 2.5V        | 400A   | 3.3V | ☐ 12V |  |
|---------------|---------------|----------|-------------|--------|------|-------|--|
| Question 3 •  | Quelle est la | consomma | tion du cap | teur ? |      |       |  |

50A

| 100A

Question 4 • Choisir une référence de diode zener qui pourrait convenir dans la serie 1N52XXB donnée en annexe ?

2.5mA

| ☐ 1N5222B | ☐ 1N5242B | ☐ 1N5262B | ☐ 1N5248B | ☐ 1N5226B |
|-----------|-----------|-----------|-----------|-----------|
|           |           | 1N5231B   |           |           |

0/2



Exercice CAN Flash -

4/6

1/1

1/1



Soit le convertisseur Flash 2 bits vu en cours donné à la figure 2. La plage d'entrée est fixée à [0; 10V]



Figure 2: Convertisseur Flash vu en cours

Question  $10 \bullet$ Tracer la caractéristique  $N = f(V_{in})$  du convertisseur flash vu en cours. Les AOP sont parfait.



La réponse de l'étudiant est incorrecte

Question 11 • Comment modifier le réseau de résistances pour avoir une quantification linéaire centrée, sachant que l'on souhaite que le courant i ne change pas.

Votre réponse en valeur numérique :

$$R_1 = 0,5$$
 ks  $R_2 = 1$  ks  $R_3 = 1$  ks  $R_4 = 1,5$  ks.

La réponse de l'étudiant est incorrecte

- Exercice Capteur de Température -

Un pont de mesure est utilisé avec un capteur situé à 100m de distance (voir figure 3). La résistance du câble reliant le capteur au pont est de  $0.45\Omega/m$ . Le pont est équilibré avec  $R_1$ 

2/2

2/2

3400 $\Omega$ ,  $R_2=3445\Omega$  et  $R_3=1560\Omega$ .

2/2

1/1

2/2



Figure 3: Schéma du montage

|   | Question 12 • Quelle est la résistance du capteur ?                                                                                                                                                                                                                                                                                                 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $\square$ 7463.33 $\Omega$ $\square$ 1535.64 $\Omega$ $\blacksquare$ 1490.64 $\Omega$ $\square$ 7508.33 $\Omega$ $\square$ 1580.64 $\Omega$                                                                                                                                                                                                         |
|   | $\square$ 7418.33 $\Omega$                                                                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                                                                                                     |
|   | Exercice Capteur LVDT                                                                                                                                                                                                                                                                                                                               |
|   | Un capteur LVDT associé à son électronique de conditionnement est utilisé pour mesurer des déplacements compris entre -20 et +20cm. Sur cette plage de fonctionnement, le capteur est linéaire, sa sensibilité est de 2.5mV/mm. On souhaite interfacer ce capteur avec un CAN.  Question 13 • Quelle est la plage de sortie en tension du capteur ? |
| , | [-0.5V; 0.5V] [-80mV; 80mV] [-5V; 5V] [0mV; 500mV] [-50mV; 50mV]                                                                                                                                                                                                                                                                                    |
|   | Question 14 • On souhaite avoir une résolution de 0.5mm, combien de bits doit avoir le CAN au minimum?                                                                                                                                                                                                                                              |
|   | . □ 4 □ 12 □ 9 □ 8 □ 16 ■ 10 □ 1                                                                                                                                                                                                                                                                                                                    |