M622, HW ω , due Feb. 7.

1. Number 4, page 306, (a), (b), (c) only. Write on other side of paper if you need room.

- 2. (Due diligence on the very basics of vector spaces): Let F be a field. Suppose $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for V over F.
 - (a) That $\mathcal{B} = \{v_1, \ldots, v_n\}$ is a basis implies it is linearly-independent and it spans V. Give a **short**, **clear** proof that shows that **each** element $v \in V$ is **uniquely represented** as a linear combination $v = \alpha_1 v_1 + \ldots + \alpha_n v_n$ (where $\alpha_1, \ldots, \alpha_n$ are elements of F). (You'll use both that \mathcal{B} is a spanning set and is linearly independent in your proof.)

(b) Consider the F-vector space $F^n = \{(\alpha_1, \ldots, \alpha_n) : \alpha_i \in F, i = 1, \ldots, n\}$. Show that V above (having basis $\mathcal{B} = \{v_1, \ldots, v_n\}$) is isomorphic to F^n by **providing** a specific isomorphism $\phi: V \to F^n$. Verify that ϕ is indeed a F-module homomorphism, and that ϕ is a bijection.

3. Let V be the $\mathbb Q$ vector space given by $V=\{c_0+c_1\sqrt{2}:\{c_0,c_1\}\subseteq\mathbb Q\}$. Show that $\{1,\sqrt{2}\}$ is a basis for V over $\mathbb Q$.