Hardware architecture overview

Dr. Jaap Haartsen

Ericsson Radio Systems jaap.haartsen@erh.ericsson.se

WHAT IS BLUETOOTH?

- a hardware description
- an application framework

OUTLINE

- Air interface
 - Radio
 - Baseband
- Hardware implementation

RADIO PARAMETERS (1)

Frequency hopping

- ISM band at 2.45 GHz
- 2402 + k MHz, k = 0, ..., 78
- device-specific hopping sequence
- nominal rate 1600 hops/s

Modulation

- binary FSK
- Gaussian shaping
- BT = 0.5; 0.28 < *h* < 0.35
- -20dB bandwidth of 1 MHz

RADIO PARAMETERS (2)

- Transmit power
 - nominal 0 dBm
 - up to 20 dBm provided power control
- Receiver sensitivity
 - -70 dBm @ 0.1% BER

2.4 GHz ISM BAND

Restrictions

- Spectrum spreading must be employed
- Channel bandwidth limited to 1 MHz
- Multiple uncoordinated networks may exist and cause interference
- Microwave ovens also use this band
- 2.4 GHz IC electronics must run at high current levels

Bluetooth solution

- Frequency hop spread spectrum
- 1 Mb/s symbol rate exploits maximum channel bandwidth
- Fast frequency hopping and short data packets
- CVSD voice coding enables operation at high bit error rates
- Air interface tailored to minimize current consumption
- Relaxed link budget supports low cost single chip integration

BASEBAND OPERATIONS

CONNECTION ESTABLISHMENT

OPERATIONAL STATES

ADDRESSING

- Bluetooth Device Address (BD_ADDR)
 - 48-bit IEEE 802 address
 - 24-bit lower address part (LAP)
 - 8-bit upper address part (UAP)
- Active Member Address (AM_ADDR)
 - 3-bit active slave address
 - all-zero broadcast address
- Parked Member Address (PM_ADDR)
 - 8-bit parked slave address

BASEBAND OPERATIONS

PICONET CHANNEL

FH/TDD CHANNEL

FREQUENCY HOPPING

PHYSICAL CHANNEL

■ master BD_ADDR → hop sequence

■ master CLOCK → phase

HOP SELECTION

PACKET FORMAT

ACCESS CODE

ACCESS CODE TYPES

- Device access code (DAC)
 - unit identifier
 - derived from unit LAP
- Channel access code (CAC)
 - channel identifier
 - derived from master LAP
- Inquiry access code (IAC)
 - reserved identifier
 - derived from reserved address

PACKET HEADER

parameter	information	
AM_ADDR	slave active member address	
TYPE	payload type	
FLOW	LC flow control	
ARQN	ACK/NAK	
SEQN	retransmit ordering	
HEC	header error check	

PHYSICAL LINK DEFINITION

Purpose: MULTI-MEDIA SUPPORT

Mixing:

- circuit switching
- packet switching

PHYSICAL LINK TYPES

- Synchronous Connection-Oriented (SCO) Link
 - circuit switching
 - symmetric, synchronous services
 - slot reservation at fixed intervals
- Asynchronous Connection-Less (ACL) Link
 - packet switching
 - (a)symmetric, asynchronous services
 - polling access scheme

MIXED LINK EXAMPLE

PACKET TYPES

segment	type	SCO link	ACL link
1	0000	NULL	NULL
	0001	POLL	POLL
	0010	FHS	FHS
	0011	DM1	DM1
2	0100		DH1
	0101	HV1	
	0110	HV2	
	0111	HV3	
	1000	DV	
	1001		AUX1
3	1010		DM3
	1011		DH3
	1100		
	1101		
4	1110		DM5
	1111		DH5

MULTI-SLOT PACKETS

DATA RATES (kb/s)

type	symmetric	asymmetric
DM1	108.8	108.8 108.8
DH1	172.8	172.8 172.8
DM3	258.1	387.2 54.4
DH3	390.4	585.6 86.4
DM5	286.7	477.8 36.3
DH5	433.9	723.2 57.6

LINK CONTROL PACKETS

- ID packet
- NULL packet
- POLL packet
- FHS packet

FHS PACKET

- BD_ADDR
- DAC
- AM_ADDR
- class of device
- paging class
- real-time clock

ERROR CORRECTION

- Forward-Error Correction (FEC)
 - 1/3 rate: bit-repeat code
 - 2/3 rate: (15,10) shortened Hamming code
- Automatic Retransmission Query (ARQ)
 - 1-bit fast ACK/NAK
 - 1-bit sequence number
 - header piggy-backing

ARQ OPERATIONS

AUTOMATIC RETRANSMISSION

CVSD WAVEFORM CODING

BASEBAND OPERATIONS

PICONET MANAGEMENT

OPERATIONAL STATES

- stand-by, scan
- page, inquiry
- connection
 - active
 - hold
 - sniff
 - park

HOLD MODE

SNIFF MODE

PARK MODE

SCATTERNET (1)

BASEBAND OPERATIONS

SECURITY

SECURITY COMPONENTS

- Authentication
- Payload encryption
- Key handling

AUTHENTICATION

- To verify claimed identity
- Challenge-response system
- Algorithm E_1 :
 - Input: RAND (128 bit), Claimant addr. (48 bit), link key (128)
 - Output: SRES (32 bit), ACO (96 bit)
- One-sided or mutual authentication

ACO = Authenticated Ciphering Offset

ENCRYPTION

- To prevent (un)intentional eavesdropping
- Stream ciphering
- Algorithm E_0 :
 - Input: RAND (128 bit), master addr./clock,
 K_c (128 bit)
 - Output: cipher stream
- LFSR restart for every slot
- Encrytion of payload only
- Point-to-point or point-to-multipoint

IMPLEMENTATION

LAYERED CONCEPT

Link Manager

Baseband

Radio

LINK MANAGER

- connection establishment/release
- link handling

BASEBAND CONTROLLER

- coding / ciphering
- packet handling
- frequency hopping

RADIO

- frequency synthesis
- conversion bits into symbols
- filtering

FUNCTIONAL PARTITIONING

"Design a radio to replace the cable and its connectors..."

Design goals

- small implementation size
- low implementation cost
- low power consumption
- secure and robust for open ISM band

Challenges

- fast frequency hopping
- single chip integration

LOW-COST RADIO TECHNOLOGY

- single chip
- few off-chip components
- main-stream technology
- time-division duplex

RADIO MODULE EXAMPLE

- filters and baluns integrated into LTCC substrate
- RF IC flip chip mounted
- laser trimming used to optimize performance
- 100mW optional version with PA and optional gain control (- 30 to +20 dBm)
- small outline BGA type package
 - 1mW: 10.2 x 14 x 1.6 mm
 - 100mW: 10.2 x 16 x 1.6 mm

FIRST COMPLETE MODULE

OTHER HOST INTERFACES

BATTERY LIFE TIME

Low-power consumption

- standby current 0.3 mA
 - > 3 months with 600mAh battery
- voice mode 10 mA (one voice channel)
 - > 60 hours
- data mode average 6 mA (20% utilization)
 - > 100 hours

Low-power architecture

- programmable packet length (else radio sleeps)
- hold and park modes 60 μA
 - devices connected but not participating
 - device can participate within 2 ms

