Fa17 Instructor: Mihir Bellare January 17, 2017

Problem Set 1

Due: Tuesday January 24, 2017, in class.

By a||b we denote the concatenation of strings $a, b \in \{0,1\}^*$. (For example 010||01 = 01001.) The time to compute a blockcipher E, denoted T_E , is the time to compute E or E^{-1} . All times are worst case.

Problem 1 [60 points] Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a blockcipher. Define $F: \{0,1\}^{k+n} \times \{0,1\}^n \to \{0,1\}^n$ as follows:

$$\frac{\mathbf{Alg}\ F(K_1 || K_2, M)}{C \leftarrow E(K_1, M \oplus K_2)}$$
Return C

Above, $K_1 \in \{0,1\}^k$ and $K_2, M \in \{0,1\}^n$.

- (a) [8 points] Is F a blockcipher? Answer YES or NO and prove your answer correct.
- (b) [8 points] How much time is taken by a 3-query exhaustive key search attack on F? Your answer should be a function of T_E, k, n .
- (c) [18 points] Present in pseudocode a 1-query adversary A_1 that has advantage $\mathbf{Adv}_F^{\mathrm{kr}}(A_1) = 1$ and running time $\mathcal{O}(T_E + k + n)$.
- (d) [26 points] Present in pseudocode a 3-query adversary A_3 that has advantage $\mathbf{Adv}_F^{\mathrm{kr}}(A_3) = 1$ and running time $\mathcal{O}(2^k \cdot (T_E + k + n))$.

Problem 2 [40 points] Let E_1 : $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ and E_2 : $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be blockciphers. Define E: $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ by

$$\frac{\textbf{Alg }E(K,M)}{C_1 \leftarrow E_1(K,M) \; ; \; C_2 \leftarrow E_2(K,C_1)} \\ \text{Return } C_2$$

Above, $K \in \{0,1\}^k$ and $M \in \{0,1\}^n$.

- (a) [10 points] Prove that E is a blockcipher.
- (b) [30 points] Let blockcipher E_1 : $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be given. Specify in pseudocode the following:
 - A blockcipher E_2 : $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ —of your choice, allowed to depend on E_1 and its inverse E_2^{-1} : $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ such that the time to compute E_2 is $\mathcal{O}(T_{E_1}+k+n)$.
 - A 1-query adversary A having running time $\mathcal{O}(T_{E_1} + k + n)$ and achieving advantage $\mathbf{Adv}_E^{\mathrm{kr}}(A) = 1$ against E, where E is defined as above based on the given E_1 and your E_2 .