/Users/bps/PycharmProjects/hypothesis_tesing/venv/bin/python /Users/bps/PycharmProjects/hypothesis_tesing/main.py

Welcome to the Hypothesis Testing calculator made by ALIAS GEORGE

Select the Calculator (type the no corresponding eg 1 for one mean Large sample)

- 1. One Mean Large sample
- 2. One Mean Small sample
- 3. Two Mean Large sample
- 4. Two Mean Small sample with both normal and $\sigma 1 = \sigma 1$
- 5. Matched Pair t-Test
- 6. One Variance Test
- 7. Two Variance Test
- 8. One Proportion Test
- 9. Multi Proportion Test
- 10. Two Proportion Difference Test
- 11. R and C Analysis Test
- 12. Goodness Fit Test

12

12. Goodness Fit Test

Select the Calculator

Discrete Distribution

- 1. Goodness Fit for Poisson Test
- 2. Goodness Fit for Binomial Test
- 3. Goodness Fit for Geometric Test
- 4. Goodness Fit for Hyper Geometric Test
- 5. Goodness Fit for Uniform Discrete Test

Continuous Distribution

- 6. Goodness Fit for Normal Test
- 7. Goodness Fit for Log Normal Test
- 8. Goodness Fit for Alpha Test
- 9. Goodness Fit for Beta Test
- 10. Goodness Fit for Gamma Test
- 11. Goodness Fit for Weibull Test
- 12. Goodness Fit for Exponential Test
- 13. Goodness Fit for Uniform Continuous Test 6
- 6. Goodness Fit for Normal Test

```
Level of significance: 0.05
Enter the mean \mu: 4
Enter the standard deviation \sigma: 2.5
Enter the no of Categories : 10
Does the interval is a continuous one ? eq: <10 , 10 <20 etc
1. yes
2. no
1
Enter the Enter the Highest of each interval_0: 0
Enter the Observed Frequency for interval_0: 4
Enter the Enter the Highest of each interval_1: 1
Enter the Observed Frequency for interval_1: 5
Enter the Enter the Highest of each interval_2: 2
Enter the Observed Frequency for interval_2: 10
Enter the Enter the Highest of each interval_3: 3
```

Enter the Observed Frequency for interval_3: 13

Enter the Enter the Highest of each interval_4: 4 Enter the Observed Frequency for interval_4: 18

Enter the Enter the Highest of each interval_5: 5 Enter the Observed Frequency for interval_5: 16

Enter the Enter the Highest of each interval_6: 6 Enter the Observed Frequency for interval_6: 9

Enter the Enter the Highest of each interval_7: 7 Enter the Observed Frequency for interval_7: 9

Enter the Enter the Highest of each interval_8: 8 Enter the Observed Frequency for interval_8: 4

Enter the Lowest of Interval of_9: 8
Enter the Observed Frequency for Interval of_9: 2

+		+		-+	
+ X Frequency	<i>,</i>		ities of Interval area	·	cted
· +		•		•	
< 0	4		0.0548	1	4.932
0 < 1	5		0.0603	1	5.427
1 < 2	10	I	0.0968	I	8.712
2 < 3	13	I	0.1327	11.	
943000000	•	I	0.1554	ı	13.986
0 \ 4	10	I	0.1334	I	13.700
4 < 5	16	I	0.1554	I	13.986
5 < 6	9		0.1327	11.	
9430000000001					
6 < 7 	9		0.0968	1	8.712

· +	•	'		ľ	
8 >	l		0.0548	·	
7 < 8	4 	I	0.0603	I	5.427

Combined categories (initial, final) [(0, 1), (8, 9)]

_			
	Observed Frequency	Normal Probabilities of Interval area	Expected Frequency
-	9	0.1151000000000001	10.359
	10	0.0968	8.712
	13	0.1327	11.943000000000001
	18	0.1554	13.986
	16	0.1554	13.986
	9	0.1327	11.943000000000001
	9	0.0968	8.712
	6	0.1151000000000001	10.359
_	L		

Null hypothesis: Random variable has a Normal distribution with μ = 4.0 and standard deviation = 2.5.

Alternative hypothesis: Random variable does not have the Normal distribution with

 μ = 4.0 and standard deviation = 2.5.

Calculations

Total Chi_square: 4.473273161378502

Decision The null must be rejected if $\chi^2 > 14.0671$

Since χ^2 = 4.473273161378502 does not exceed 14.0671, the null hypothesis cannot be rejected; we cannot reject that the Normal distribution with μ = 4.0 and standard deviation = 2.5 provides a good fit at level α = 0.05.

Process finished with exit code 0