Owen **Jow**

ohjay

owenjow.xyz

(650) 288-8553

owenjow@berkeley.edu

Interests

Computer Vision

e.g. 3D reconstrution, human pose estimation

Computer Graphics

e.g. sampling and reconstruction for photorealistic rendering

AI/ML

e.g. deep reinforcement learning algorithms

Education

University of California, San Diego MS COMPUTER SCIENCE (4.0), 2020

Relevant courses:

Computer Vision I
Computer Vision II
Advances on 3D Reconstruction
Machine Learning on Geometrical Data
Sampling/Reconstruction of Visual Appearance

University of California, Berkeley BA COMPUTER SCIENCE (3.8), 2018

Relevant courses:

Algorithms Optimization Linear Algebra

Computer Vision

Machine Learning

Computer Graphics

Artificial Intelligence
Deep Neural Networks

Computational Photography

Graduate Computer Graphics

Deep Reinforcement Learning

Skills

Python C/C++ Java JavaScript TensorFlow PyTorch OpenGL

OptiX

ROS Photoshop Animate CC Autodesk Maya

Experience

Research Assistant @ UCSD Visual Computing Lab

01/2019 - Present

• Working with Prof. Ravi Ramamoorthi to push the state of the art for reconstruction from few-sample path tracing.

Research Intern @ Adobe (Emerging Graphics Group)

06/2018 - 09/2018

 Explored methods for monocular, in-the-wild 3D human pose estimation with Duygu Ceylan. Submitted patent application for an approach based on parameterizing using joint rotations instead of positions.

Research Assistant @ UC Berkeley Robot Learning Lab

06/2016 - 05/2018

 Under supervision of Prof. Pieter Abbeel, developed a system for training robots to autonomously perform complex manipulation tasks using deep learning and data from VR teleoperation. Published paper at ICRA 2018.

Publications

Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation (ICRA 2018).

T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, P. Abbeel

Teaching

UC Berkeley

CS 61A: Structure and Interpretation of Computer Programs *Tutor (Fall 2015), TA (Spring 2016, Fall 2016, Spring 2017)*

CS 194-26: Image Manipulation and Computational Photography *Reader (Fall 2017)*

CS 170: Efficient Algorithms and Intractable Problems *TA (Spring 2018)*

UC San Diego

CSE 152: Introduction to Computer Vision *TA (Fall 2018, Spring 2019)*

CSE 21: Mathematics for Algorithms and Systems Analysis *TA (Winter 2019)*

Selected Projects

KPCN Denoising for Monte Carlo Path Tracing

Implemented 2018 KPAL paper by Vogels et al., which as of Fall 2018 is the state of the art method for denoising Monte Carlo renderings.

Occlusion-Aware Multi-Object Viewpoint Prediction

Given a single RGBD view of a multi-object scene and a desired viewpoint, predict the desired RGBD view. By combining depth maps from multiple views, can reconstruct 3D scene geometry.

Lens Simulator

Path tracer with lens refraction and contrast-based autofocus.