BÔ MÔN	MÔN	: Thiết kế IC, IT4251	LẦN:cuối kì			
•	LỚP			ĐỀ		
KTMT	HỌ VÀ TÊN	·	STT:			
	Thời gian làm bài: 60 phút Ngày thi: 25/12/2014					
	Được phép sử dụng tài liệu					
	Mỗi câu hỏi có duy nhất một đáp án đúng. Không trừ điểm khi trả lời sai.					
	Đáp án phải được ghi vào phần trả lời mới hợp lệ, và nộp lại đề thi.					

PHẦN TRẢ LỜI TRẮC NGHIỆM

Câu hỏi	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Trả lời															

PHẦN CÂU HỎI TRẮC NGHIỆM (7.5 điểm)

Câu 1: Cho sơ đồ mạch như hình vẽ với V_{01} là điện áp đầu ra của bộ đảo 1, V_{12} là điện áp đầu vào của bộ đảo 2.

Cả 2 bộ đảo đều có đặc tính giống nhau với V_{DD} =5V; V_{IL} =1.85V; V_{IH} =3.1V; V_{OL} =0.43V; V_{OH} =3.92V. Hãy cho biết biên chống nhiễu mức cao NM_H bằng bao nhiêu?

1) 1.9 V

2) 1.08 V

3) 1.42 V

V **4)** 0.82 V

Câu 2: Một cổng **NAND** có 4 đầu vào được thiết kế từ mấy transistor? Biết rằng thiết kế có sử dụng Psedo-nMOS **1)** 5 **2)** 6 **3)** 8 **4)** 10

Câu 3: Cho 4 thiết kế từ bộ ghép kênh 2x1. Cho biết thiết kế nào tương ứng với mạch AND.

Câu 4: Hãy xác định thiết kế không tương đương với các sơ đồ còn lai?

Câu 5: Sử dụng bảng LUT với K=2 để thực hiện mạch sau. 2 giá trị X, Y còn thiếu trong bảng bằng bao nhiêu

1) X=01, Y=10

2) X=10, Y=01

3) X=11, Y=01

4) X=00, Y=10

Câu 6: Trong số các mạch sau đây, mạch nào là mạch tổ hợp? (Trong các hình dưới, [©] là một mạch tổ hợp)

1) mạch 1

2) mạch 2 và 3

3) mạch 1 và 2 **4)** mạch 2 và 4

Câu 7: Thiết kế hàm Y bằng bộ mux 4x1 như hình vẽ. Hãy cho biết biểu thức của Y theo 3 đầu vào A, B, C?

Câu 8: Sơ đồ thiết kế mức transistor sau đây là của cổng logic nào?

Câu 9: Một mạch có 4 đầu vào A3:0 tương ứng với các số nguyên từ 0 tới 15. Đầu ra Q sẽ chỉ bằng 1 khi số nguyên đầu vào chia 9 dư 4. Cho biết biểu thức logic của Q?

1) $\overline{A3}$. $\overline{A2}$. $\overline{A1}$. A0 + A3. $\overline{A2}$. A1. $\overline{A0}$

2) $\overline{A3}$. $\overline{A2}$. A1. A0 + A3. A2. $\overline{A1}$. $\overline{A0}$

3) $\overline{A3}$. A2. $\overline{A1}$. $\overline{A0}$ + A3. A2. $\overline{A1}$. A0

4) $\overline{A3}$. $\overline{A2}$. A1. $\overline{A0}$ + A3. $\overline{A2}$. A1. A0

Câu 10: Cho sơ đồ ALU thực hiện phép cộng Acc = [R1] + [R2] trong đó R1, R2 là giá trị lấy từ các thanh ghi tương

ứng A, B, C tương ứng. Hãy cho biết nếu R2="10", R1='1' thì phép toán nào sẽ được thực hiện?

Câu 11: Cho sơ đồ FSM

Cho giản đồ sóng tín hiệu của tín hiệu vào CLK và A như hình dưới. CLK tích cực sườn lên. Biết tại chu kì CLK thứ 1, FSM ở trạng thái S1.

Vậy ở chu kì CLK thứ 5, FSM ở trạng thái nào? 1) S2 2) S3 3) S4 4) S

Câu 12: Với mạch tổ hợp dưới, người ta đặt thêm một thanh ghi pipeline để tăng tốc độ xử lý của mạch lên gấp đôi. Hãy **vẽ một nét đậm** cắt ngang mạch để thể hiện vị trí đặt thanh ghi pipeline. Bỏ qua trễ trên dây dẫn.

Câu 13: Thiết kế nào là mạch FlipFlop có 3 trạng thái?

Caa III Tillet he had la mige	ii i lipi lop co 5 digilig diali.					
1)	2)					
architecture arch of	architecture arch of					
ent is	ent is					
begin	begin					
process (CP, X)	process (CP, X)					
begin	begin					
if (X = '0') then	if (X = '0') then					

```
O <= 'Z';
      0 <= '0';
                              elsif CP='0' then
    elsif
(rising_edge(CP) then
                               Q <= D;
                              end if;
      O <= D;
    end if:
                            end process
  end process
                          end architecture;
end architecture;
architecture arch of
                          architecture arch of
ent is
                          ent is
begin
                          begin
                            process (CP, X)
 process (CP, X)
  begin
                            begin
    if (X = '1') then
                              if (X = '1') then
                                Q <= '0';
     Q <= 'Z';
    elsif
                              elsif CP='1' then
(rising edge(CP) then
                                Q <= D;
                              end if;
      O <= D:
    end if:
                            end process
  end process
                          end architecture;
end architecture;
```

Câu 14: Đoạn mã VHDL sau mô tả RAM dua-port.

```
entity dualportram is
    clk1:in STD LOGIC;
    clk2:in STD LOGIC;
    wr_en:in STD_LOGIC;
    addrA:in std logic vector(9 downto 0);
    addrB:in std logic vector(9 downto 0);
    data_in:in std_logic_vector(7 downto 0);
data_outA:out STD_LOGIC_VECTOR(15 downto 0);
    data outB:out STD LOGIC VECTOR(15 downto 0)
end dualportram;
architecture dualportram of dualportram is
type ram_t is array(0 to 1023) of
std logic vector(15 downto 0);
shared variable ram : ram t;
begin
process (clk1)
begin
  if clk1'event and clk1 = '1' then
  if wr en = '0' then
      ram(conv integer(addrA)):= data in;
    end if;
    data outA <= ram(conv integer(addrA));</pre>
  end if;
end process;
process (clk2)
begin
  if clk2'event and clk2 = '1' then
    data outB <= ram(conv integer(addrB));</pre>
  end if;
end process;
end dualportram;
```

Với thiết kế trên nhận xét nào sau đây đúng

- 1) có thể xuất dữ liệu của cùng một ngăn nhớ tới 2 đầu ra data_outA và data_outB đồng thời
- 2) có thể ghi dữ liệu đồng thời lên 2 ngăn nhớ khác nhau
- **3)** nếu địa chỉ data_outB thay đổi thì dữ liệu ra data_outB sẽ thay đổi tương ứng ngay lập tức.
- 4) tín hiệu wr_en là đồng bộ mức cao

Câu 15: Dung lượng của thanh RAM trên là bao nhiêu?

- **1)** 2¹⁰ x 8 bit
- **2)** 2²⁰ x 8 bit
- **3)** 2¹¹ x 16 bit
- **4)** 2¹⁰ x 16 bit

PHẦN CÂU HỎI TỰ LUẬN (2.5 điểm)

Với một bộ đếm 3 bit đồng bộ, có thể đếm từ 0 tới 7. Hãy cải tiến thiết kế bộ đếm đó, để có thể thực hiện được phép đếm tăng như sau: 0, 2, 4, 5, 7, 0, 2, 4, 5, 7...

Sơ đồ thiết kế như sau:

Hãy điền **các lệnh còn thiếu (1.5đ)** vào ô trống trong đoạn chương trình VHDL bên dưới Và hãy **vẽ chi tiết module còn thiếu trong khung nét đứt (1đ),** chỉ sử dụng các phần tử logic cơ bản, mux, thanh ghi, bộ cộng nếu có

```
{\bf architecture} \ {\tt arch} \ {\bf of} \ {\tt StepCounter} \ {\bf is}
signal jmp : STD LOGIC VECTOR(2 downto 0);
begin
     Thực hiện quá trình đếm
  	exttt{process} (CLK)
  begin
    if rising edge(CLK) then
        if (Reset = '1') then
          R <= '0';
        else
                                                   ;
        end if;
    end if;
  end process;
    - Bước nhảy của bộ đếm
  process(R)
  begin
    if
                                                 then
        jmp = "001";
    end if;
  end process;
end arch;
```

Điểm thưởng (1đ):

Hãy thiết kế lại "Bộ xác định bước nhảy" để trở thành bộ đếm ngược 0, 7, 5, 4, 2, 0, 7, 5, 4, 2...