Contrôle continu n°2 en Mathématiques

ESIR, semestre 1, année 2011-2012

(aucun document n'est autorisé)

On rappelle le développement limité en 0 de fonctions usuelles :

$$\exp(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \varepsilon(x)$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + x^{2n+1} \varepsilon(x)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + x^n \varepsilon(x)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n + x^n \varepsilon(x)$$

Etudiez les suites de fonctions définies ci-dessous en termes de convergences simple et uniforme.

1. Soit (f_n) la suite de fonctions définies pour tout n appartenant à $\mathbb N$ par :

$$\forall x \in \mathbb{R}, \quad f_n(x) = e^{n(x^2 - 3x + 2)}$$

uniformé	ement. J	ustifiez v	votre rép	ponse.	•			,- ,	_	simplemen	
• • • • • • • • •										• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • •						• • • • • • •	 • • • • • • •				

2. Soit (g_n) la suite de fonctions définies pour tout n appartenant à \mathbb{N}^* par :

$$\forall x \in \mathbb{R}, \quad g_n(x) = \left(1 + \frac{2x^2}{n}\right)^n$$

Vers quelle fonction g la suite de fonctions (g_n) converge-t-elle simplement sur \mathbb{R} ?
Démontrez l'inégalité $\ln(1+X) \leq X$ pour tout X appartenant à \mathbb{R}^+ (indication : démontrez que $\sup\{k(X)\}=0$ sur \mathbb{R}^+ où $k(X)=\ln(1+X)-X$).
Démontrez l'égalité $ g_n(x) - g(x) = g(x) - g_n(x)$ pour tout x de \mathbb{R} (indication : utilisez l'inégalité démontrée précédemment).

Pourquoi la valeur de $\sup\{ g_n(x) - g(x) \}$ est-elle la même sur \mathbb{R} et \mathbb{R}^+ ?
La suite de fonction (g_n) converge-t-elle uniformément vers g sur \mathbb{R} ? Vous pourrez être amené à exploite
le fait que l'exponentielle d'un nombre négatif est toujours inférieure ou égale à un.
•••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

3.	Soit (h_n) une suite de fonctions définies sur l'intervalle $[a,b]$ de \mathbb{R} . Sous quelles conditions, peut-orécrire :
	$\lim_{n \to +\infty} \left(\int_a^b h_n(x) dx \right) = \int_a^b \lim_{n \to +\infty} \left(h_n(x) \right) dx$
	J_a J_a J_a