3. Сортировка Шелла

Сортировка Шелла — это алгоритм сортировки, основанный на сравнении элементов, находящихся на определённом расстоянии друг от друга. Этот метод является обобщением сортировки вставками, где элементы перемещаются не по одному, а группами, что ускоряет процесс для больших массивов.

Описание работы

1. Выбирается шаг gap, который первоначально равен половине длины массива. 2. Выполняется сортировка вставками для подмассивов, сформированных элементами с шагом gap. 3. После завершения итерации шаг уменьшается (обычно делением на 2). 4. Процесс повторяется до тех пор, пока шаг не станет равным 1.

Анализ сложности

Сложность сортировки Шелла зависит от выбора последовательности шагов и анализа вложенных операций. Рассмотрим основные случаи.

1. Худший случай: $O(n^2)$

Если использовать последовательность шагов вида $n/2, n/4, \ldots, 1$, то на каждом шаге элементы переставляются по правилу сортировки вставками. Если массив изначально расположен в порядке, близком к обратному, то каждая перестановка может потребовать $O(n^2)$ операций.

2. Средний случай: $O(n^{3/2})$

При использовании последовательности Шелла (например, $n/2, n/4, \ldots, 1$) или других последовательностей, учитывающих свойства делимости, сложность может быть уменьшена:

- На шаге gap = n/2 массив делится на две группы, каждая из которых сортируется за O(n).
- На следующем шаге gap = n/4 возникает 4 группы, каждая сортируется за O(n/2).
- Суммируя затраты для всех шагов, сложность оценивается как:

$$T(n) = n\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{n}\right),$$

что даёт $O(n^{3/2})$ для хорошей последовательности шагов.

3. Лучший случай: $O(n \log n)$

Некоторые оптимальные последовательности, например, последовательности Кнута или Хиббарда, могут приводить к сложности $O(n\log n)$ за счёт равномерного распределения элементов по группам и уменьшения числа перестановок.