

Surface Area and volume of A Right Circular cone Ex 20.2 Q5 Answer:

It is given that the ratio between the radius 'r' and the height 'h' of the cone is 5: 12.

Since only the ratio is given, to use them in an equation we introduce a constant 'k'.

So, r = 5k

h = 12k

The formula of the volume of a cone with base radius r and vertical height h is given as

Volume = $\frac{1}{3}\pi r^2 h$

The volume of the cone is given as 2512 cm³

Substituting the values of r = 5k and h = 12k and using $\pi = 3.14$ in the formula for the volume of a

Volume = $\frac{1}{3}\pi r^2 h$

 $2512 = \frac{(3.14)(5k)(5k)(12k)}{3}$

 $k^3 = 8$

k = 2

Therefore the actual value of the base radius is r = 10 cm and h = 24 cm.

Hence the radius of the cone is 10 cm

We are given that r = 10 cm and h = 24 cm. We find l using the relation

 $l^2 = r^2 + h^2$

 $l = \sqrt{r^2 + h^2}$

 $=\sqrt{10^2+24^2}$

 $=\sqrt{100+576}$

 $=\sqrt{676}$

= 26

Therefore the slant height of the given cone is 26 cm

Hence the radius and slant height of the cone are 10 cm and 26 cm respectively

Surface Area and volume of A Right Circular cone Ex 20.2 Q6

The formula of the volume of a cone with base radius 'r' and vertical height 'h' is given as

Volume = $\frac{1}{3}\pi r^2 h$

Let the volume, base radius and the height of the two cones be V_1, r_1, h_1 and V_2, r_2, h_2 respectively.

It is given that the ratio between the volumes of the two cones is 4: 5.

Since only the ratio is given, to use them in our equation we introduce a constant 'k'

So, $V_1 = 4k$

 $V_2 = 5k$

It is also given that the ratio between the base radiuses of the two cones is 2: 3.

Again, since only the ratio is given, to use them in our equation we introduce another constant 'p'

So, $r_1 = 2p$

 $r_2 = 3p$

Substituting these values in the formula for volume of cone we get,

 $\frac{\text{Volume of cone}_{1}}{\text{Volume of cone}_{2}} = \frac{(\pi)(2p)(2p)(h_{1})(3)}{(3)(\pi)(3p)(3p)(h_{2})}$

$$\frac{V_1}{V_2} = \frac{4h_1}{9h_2}$$

$$\frac{4k}{5k} = \frac{4h_1}{9h_2}$$

$$\frac{h_1}{h_2} = \frac{9}{5}$$

Therefore the ratio between the heights of the two cones is 9:5

******* END ********