Epistatic effects among lung adenocarcinoma somatic mutations across oncogenesis

Jorge Alfaro-Murillo, Krishna Dasari & Jeffrey Townsend

Biostatistics Department

Yale school of public health

Motivation

- KRAS and TP53 are considered early drivers of LUAD but which is first?
- Smoking causes LUAD but is it just because of more mutations?
- Why is *EGFR* in so many non-smoker LUAD cases?

Motivation

- KRAS and TP53 are considered early drivers of LUAD but which is first?
- Smoking causes LUAD but is it just because of more mutations?
- Why is *EGFR* in so many non-smoker LUAD cases?

Motivation

- *KRAS* and *TP53* are considered early drivers of LUAD but which is first?
- Smoking causes LUAD but is it just because of more mutations?
- Why is *EGFR* in so many non-smoker LUAD cases?

- There is a constant rate at which mutations occur and are selected to high frequency (flux)
- The flux depends on the gene that will mutate as well as the current somatic genotype (previous mutations)

- Epistasis occurs when $\lambda_{\varnothing \to A} \neq \lambda_{B \to AB}$
- Given the number of tumors in each genotype we can estimate the fluxes

- There is a constant rate at which mutations occur and are selected to high frequency (flux)
- The flux depends on the gene that will mutate as well as the current somatic genotype (previous mutations)

- Epistasis occurs when $\lambda_{\varnothing \to A} \neq \lambda_{B \to AB}$
- Given the number of tumors in each genotype we can estimate the fluxes

- There is a constant rate at which mutations occur and are selected to high frequency (flux)
- The flux depends on the gene that will mutate as well as the current somatic genotype (previous mutations)

- Epistasis occurs when $\lambda_{\varnothing \to A} \neq \lambda_{B \to AB}$
- Given the number of tumors in each genotype we can estimate the fluxes

- There is a constant rate at which mutations occur and are selected to high frequency (flux)
- The flux depends on the gene that will mutate as well as the current somatic genotype (previous mutations)

- Epistasis occurs when $\lambda_{\varnothing \to A} \neq \lambda_{B \to AB}$
- Given the number of tumors in each genotype we can estimate the fluxes

Epistasis in most commonly mutated genes in TCGA

- The flux is deconvolved into the mutation rate of the gene and the strength of selection on mutations of gene
- Mutation rate are obtained for each possible variant of each gene considering:
 - Molecular signatures
 - Gene expression
 - Chromatin marks
 - Replication times

- The flux is deconvolved into the mutation rate of the gene and the strength of selection on mutations of gene
- Mutation rate are obtained for each possible variant of each gene considering:
 - Molecular signatures
 - Gene expression
 - Chromatin marks
 - Replication times

- The flux is deconvolved into the mutation rate of the gene and the strength of selection on mutations of gene
- Mutation rate are obtained for each possible variant of each gene considering:
 - Molecular signatures
 - Gene expression
 - Chromatin marks
 - Replication times

- The flux is deconvolved into the mutation rate of the gene and the strength of selection on mutations of gene
- Mutation rate are obtained for each possible variant of each gene considering:
 - Molecular signatures
 - Gene expression
 - Chromatin marks
 - Replication times

- The flux is deconvolved into the mutation rate of the gene and the strength of selection on mutations of gene
- Mutation rate are obtained for each possible variant of each gene considering:
 - Molecular signatures
 - Gene expression
 - Chromatin marks
 - Replication times

- The flux is deconvolved into the mutation rate of the gene and the strength of selection on mutations of gene
- Mutation rate are obtained for each possible variant of each gene considering:
 - Molecular signatures
 - Gene expression
 - Chromatin marks
 - Replication times

■ How about other genes? What is the effect of smoking?

- Aggregate multiple data
 - 1 The Cancer Genome Atlas (TCGA)
 - 2 AACR Project GENIE
 - 3 Kenfield et al. Tob Control, 2008
 - 4 Chen et al. Nat Genet, 2020
 - 5 Rizvi et al. Science, 2015
 - 6 Hellmann et al. Cancer Cell, 2018
 - 7 Jamal-Hanjani et al. N Engl J Med, 2017
 - 8 Abbosh et al. Nature, 2017
 - 9 Imielinski et al. Cell, 2012
 - 10 Ding et al. Nature, 2008
 - III Jordan et al. Cancer Discov, 2017
- Total: 8,487 non-metastatic LUAD samples
- Classified 1,073 smokers and 447 non-smokers with clinical data and COSMIC SBS4

- How about other genes? What is the effect of smoking?
- Aggregate multiple data
 - The Cancer Genome Atlas (TCGA)
 - 2 AACR Project GENIE
 - 3 Kenfield et al. Tob Control, 2008
 - 4 Chen et al. Nat Genet, 2020
 - 5 Rizvi et al. Science, 2015
 - 6 Hellmann et al. Cancer Cell, 2018
 - 7 Jamal-Hanjani et al. N Engl J Med, 2017
 - 8 Abbosh et al. Nature, 2017
 - 9 Imielinski et al. Cell, 2012
 - 10 Ding et al. Nature, 2008
 - III Jordan et al. Cancer Discov, 2017
- Total: 8,487 non-metastatic LUAD samples
- Classified 1,073 smokers and 447 non-smokers with clinical data and COSMIC SBS4

- How about other genes? What is the effect of smoking?
- Aggregate multiple data
 - The Cancer Genome Atlas (TCGA)
 - 2 AACR Project GENIE
 - 3 Kenfield et al. Tob Control, 2008
 - 4 Chen et al. Nat Genet, 2020
 - 5 Rizvi et al. Science, 2015
 - 6 Hellmann et al. Cancer Cell, 2018
 - 7 Jamal-Hanjani et al. N Engl J Med, 2017
 - 8 Abbosh et al. Nature, 2017
 - 9 Imielinski et al. Cell, 2012
 - 10 Ding et al. Nature, 2008
 - 11 Jordan et al. Cancer Discov, 2017
- Total: 8,487 non-metastatic LUAD samples
- Classified 1,073 smokers and 447 non-smokers with clinical data and COSMIC SBS4

- How about other genes? What is the effect of smoking?
- Aggregate multiple data
 - 1 The Cancer Genome Atlas (TCGA)
 - 2 AACR Project GENIE
 - 3 Kenfield et al. Tob Control, 2008
 - 4 Chen et al. Nat Genet, 2020
 - 5 Rizvi et al. Science, 2015
 - 6 Hellmann et al. Cancer Cell, 2018
 - 7 Jamal-Hanjani et al. N Engl J Med, 2017
 - 8 Abbosh et al. Nature, 2017
 - 9 Imielinski et al. Cell, 2012
 - 10 Ding et al. Nature, 2008
 - III Jordan et al. Cancer Discov, 2017
- Total: 8,487 non-metastatic LUAD samples
- Classified 1,073 smokers and 447 non-smokers with clinical data and COSMIC SBS4

Epistasis of TP53 and KRAS

Epistasis of TP53, KRAS and EGFR

Epistasis other genes with TP53+KRAS

non-smokers

Epistasis other genes with TP53+KRAS

smokers

