Sampling: Surveys and How to Ask Questions

Confidence interval

Use the terms in the word bank to complete the text below:

Simple random sample

way by the interviewer.

Descripti	ve statistics	Response	e bias	Sample size	Margin of error
Sample	Inferential	statistics	Nonr	response bias	Census
In this	class, we utilize	two major c	ategories	s of statistics when	n it comes to analyzing data. The first is
	,	in which we	use grap	hical and numerica	al summaries to characterize a data set and
look for patt	erns. The secon	d is		, in whi	ch we use sample data to make predictions
about the ov	erall behavior o	f a larger ran	ge of inc	lividuals.	
In infer	ential statistics,	, we use a _			, measurements from a smaller group of
individuals,	to make predic	tions about a	ı		(the larger group). If we are able to
measure ever	ry single individ	lual in the po	pulation	, we have obtaine	d a If this is
not possible.	, we often use a	a		to ensure	e that our sample is representative of the
larger popula	ation. The num	ber of individ	uals or u	ınits in our sample	e is called the
Often, v	we are intereste	d in measuri	ng a sar	nple proportion o	r percentage within a group, such as the
proportion of	of people who s	support a pa	rticular	candidate runnin	g for office, or the percentage of people
who have bl	ue eyes. We ca	n obtain a n	neasure	of the accuracy of	f our sample proportion or percentage by
constructing	a		, whic	h is comprised of	the sample proportion plus or minus the
		This gives	us a rai	nge of values, wit	hin which we expect the true population
proportion n	nost likely sits.				
One of	the major draw	backs of using	g survey	s to infer somethin	ng about a population is the possibility of
bias. There a	are three commo	on types of bia	s that m	ight occur in surve	eys. The first,,
occurs when	the method of	sampling res	ults in a	sample that is no	ot representative of the true population of
interest		is a	a type of	f bias that occurs	when certain selected individuals opt out

of the survey, either because they cannot be contacted, or because they choose not to respond. Finally,

confusion over a question, embarrassment at answering truthfully, or being purposely led to respond in a certain

_ occurs when respondents provide incorrect information. This may be a result of

Population

Selection bias

Confidence Intervals: A conservative margin of error for a poll is computed as $1/\sqrt{n}$, where n is the sample size. To compute a confidence interval for a particular proportion p, we use

Confidence Interval =
$$\left(p - \frac{1}{\sqrt{n}}, p + \frac{1}{\sqrt{n}}\right)$$
.

We can be reasonably confident that 95% of the time, a confidence interval computed for a sample in this way will contain the true population proportion.

Suppose that in a random sample of 90 students at a university, 72 of them say that they own a laptop computer.

- (a) What is the sample proportion of students who own a laptop computer?
- (b) Compute the conservative margin of error for this sample.
- (c) Use your answer from (b) to construct a conservative 95% confidence interval for the proportion of students at the university who own a laptop.
- (d) Restate your interval from (c) in terms of a percentage of students at the university who own a laptop.
- (e) If you wished to estimate the true percentage to within 5%, how many students would you need to sample? Within 3%? Within 1%? What do you notice about the dependency of the margin of error on the sample size?

Bias: Using the sample example as above (laptop ownership at a university), give an example of how you could conduct that survey that would result in each of the following types of bias:

- Selection bias:
- Nonresponse bias:
- Response bias:

Survey Techniques: There are a number of different techniques for obtaining a sample from a population. We discuss just a few of the more common ones below. For each sample type, jot down a benefit to using this technique, a possible drawback to using this technique, and then describe how you might use this technique to obtain a sample of 100 students on a university campus.

•	• Simple Random Survey: Eve	ery conceivable group of	units of the requ	uired size from th	e population
	has the same chance to be the se	elected sample.			

- a) Benefit:
- b) Drawback:
- c) Method:

•	Stratified Random	Sampling:	The	population	is first	divided	into	subgroups,	or	strata,	and	then	a
	simple random sample	e is taken fro	m ea	ch.									

- a) Benefit:
- b) Drawback:
- c) Method:

• Cluster Sampling: The population is first divided into subgroups, or *clusters*, and a random sample of clusters is chosen. Individuals within the selected clusters are surveyed.

- a) Benefit:
- b) Drawback:
- c) Method:

• Systematic Sampling: Individuals or units are numbered, and every *n*th individual is chosen for the survey.

- a) Benefit:
- b) Drawback:
- c) Method:

• Convenience Sampling: Individuals or units for surveying are chosen based on convenience.

- a) Benefit:
- b) Drawback:
- c) Method: