Aspectos Históricos relevantes Conceitos Básicos Natureza e Estimativas Estudo de caso Bibliografia

Interação GxA

PPGM-UFPI

17/10/2018

Sumário

- Aspectos Históricos relevantes
- Conceitos Básicos
- Natureza e Estimativas
 - Natureza da Interação GxA
 - Quantificação da Interação GxA
- Estudo de caso
- Bibliografia

Sumário

- Aspectos Históricos relevantes
- Conceitos Básicos
- Natureza e Estimativas
 - Natureza da Interação GxA
 - Quantificação da Interação GxA
- 4 Estudo de caso
- Bibliografia

Fisher e Wright

• Ronald Fisher: 1918

Sewall Wright: 1930 ⇒ Pressão ambiental

Pressão ambiental

Quando atua dentro de um único local, é considerada como um fator de homogeneidade, eliminando genótipos extremos e proporcionando uma redução da variabilidade

Gause

• Gause: 1942 ⇒ "The relation of adaptability to adaptation"

Gause

Quando uma população qualquer é submetida à variação ambiental, sua adaptação é influenciada por dois processos.

Gause

• Gause: $1942 \Rightarrow$ "The relation of adaptability to adaptation"

Gause

Quando uma população qualquer é submetida à variação ambiental, sua adaptação é influenciada por dois processos.

Diferença inicial inerente à constituição de cada população

Gause

• Gause: 1942 ⇒ "The relation of adaptability to adaptation"

Gause

Quando uma população qualquer é submetida à variação ambiental, sua adaptação é influenciada por dois processos.

- Diferença inicial inerente à constituição de cada população
- Adaptabilidade diferenciada em cada uma dessas populações

Haldane

• Haldane: 1946 \Rightarrow "The interaction of nature and nurture"

Norma de Reação

Combinando-se n Genótipos em m ambientes = (mn)!/n!m!

Bibliografia

Haldane

Sumário

- Aspectos Históricos relevantes
- 2 Conceitos Básicos
- Natureza e Estimativas
 - Natureza da Interação GxA
 - Quantificação da Interação GxA
- 4 Estudo de caso
- Bibliografia

Ramalho et al.(2012)

O fenótipo é influenciado pelo genótipo, que é a constituição genética de um individuo, e pelo ambiente que pode ser definido como o conjunto das condições que afetam o crescimento e desenvolvimento do organismo

Ramalho et al.(2012)

O fenótipo é influenciado pelo genótipo, que é a constituição genética de um individuo, e pelo ambiente que pode ser definido como o conjunto das condições que afetam o crescimento e desenvolvimento do organismo

1 ambiente, 1 caráter:

...

$$F = G + A$$

Allard e Bradshaw

1964: A pode ser previsível ou imprevisível

- <u>Previsível</u>: Clima, solo, comprimento do dia, etc
- 2 Imprevisível: Pluviosidade, temperatura, etc

Allard e Bradshaw

1964: A pode ser previsível ou imprevisível

- Previsível: Clima, solo, comprimento do dia, etc
- Imprevisível: Pluviosidade, temperatura, etc

Vários ambientes?

Interação

Quando se considera uma serie de ambientes, detecta-se, além de G e A, um efeito adicional que corresponde à interação destes: GxA.

Interação

Quando se considera uma serie de ambientes, detecta-se, além de G e A, um efeito adicional que corresponde à interação destes: GxA.

Interação GxA

$$F = G + A + GxA$$

Em termos fisiológicos:

- Ambiente influencia a expressão gênica (regulação)
- Ambiente influencia a contribuição dos genes

Para o Melhoramento:

Fenótipo não se repete em todos os ambientes

É necessário que realize avaliações em um número grande de ambientes: confiabilidade.

Para o Melhoramento:

Fenótipo não se repete em todos os ambientes

É necessário que realize avaliações em um número grande de ambientes: confiabilidade.

"A interação GxA deve ser encarada não como um problema, cujos efeitos devem ser minimizados, mas sim como um efeito biológico natural, devendo-se aproveita-lo dentro do processo de seleção" (chaves, 2001)

Importância = ?

Fonte:Lima (2013)

Sumário

- Aspectos Históricos relevantes
- Conceitos Básicos
- Natureza e Estimativas
 - Natureza da Interação GxA
 - Quantificação da Interação GxA
- 4 Estudo de caso
- 6 Bibliografia

Tabela de dupla entrada

• Pelo menos 2 genótipos avaliados em 2 ambientes

Natureza da Interação GxA Quantificação da Interação GxA Praticando

Para um número maior de ambientes: Interação complexa revela adaptações específicas e amplas

Para um número maior de ambientes: Interação complexa revela adaptações específicas e amplas

Consequências:

- Impede a recomendação generalizada
- Exige medidas de controle/atenuantes da interação

Exigências:

- Avaliar a magnitude e significância da interação
- Quantificar seus efeitos na seleção

O que é ambiente?

Melhoramento...

• Localidades (regiões, campos experimentais, biomas, etc).

O que é ambiente?

Melhoramento...

- Localidades (regiões, campos experimentais, biomas, etc).
- Níveis tecnológicos.

O que é ambiente?

Melhoramento...

- Localidades (regiões, campos experimentais, biomas, etc).
- Níveis tecnológicos.
- Safras.
- Anos.

Análises individuais

Etapa 1: ANAVA em cada ambiente

Análises individuais

Etapa 1: ANAVA em cada ambiente

Modelo

Blocos casualizados: g cultivares e b repetições

$$Y_{ik} = \mu + G_i + B_k + \epsilon_{ik}$$

Em que:

- μ : média geral;
- G_i: efeito do i-ésimo genótipo;
- \bullet ϵ_{ik} : erro aleatório.

ANAVA individual

Genótipos: aleatórios

FV	GL	QM	E(QM)
Blocos	r-1	QMB	_
Genótipos	g-1	QMG	$\sigma^2 + r\sigma_g^2$
Resíduo	(r-1)(g-1)	QMR	σ^2

Caso rotineiro: Interação Dupla

Etapa 2: Avaliação da interação

Caso rotineiro: Interação Dupla

Etapa 2: Avaliação da interação

O componente de variação da interação GxA: $\underline{\sigma_{ga}^2}$

Caso rotineiro: Interação Dupla

Etapa 2: Avaliação da interação

O componente de variação da interação GxA: $\sigma_{\it ga}^2$

Blocos casualizados: g genótipos, b repetições e a ambientes

$$Y_{ijk} = \mu + G_i + A_j + GA_{ij} + B/A_{jk} + \epsilon_{ijk}$$

Em que:

- μ : média geral;
- Gi: efeito do i-ésimo genótipo;
- A_i: efeito do j-ésimo ambiente;
- GA_{ij}: efeito da interação GxA do i-ésimo genótipo x j-ésimo ambiente;
- \bullet ϵ_{iik} : erro aleatório.

ANAVA conjunta

• Genótipos e ambientes: aleatórios

ANAVA conjunta

• Genótipos e ambientes: aleatórios

FV	GL	QM	E(QM)
Blocos/Ambientes	a(r-1)	QMB	_
Genótipos	g-1	QMG	$\sigma^2 + r\sigma_{ga}^2 + ra\sigma_g^2$
Ambientes	a-1	QMA	_
Interação GxA	(a-1)(g-1)	QMGA	$\sigma^2 + r\sigma_{ga}^2$
Resíduo	a(r-1)(g-1)	QMR	σ^2

• Sabendo-se que:

- Sabendo-se que:

Então:

$$\hat{\sigma}_{ga}^2 = \frac{QMGA - QMR}{r}$$

Interação tripla

 Os efeitos de ambientes podem ser decompostos em: locais e anos

Interação tripla

 Os efeitos de ambientes podem ser decompostos em: locais e anos

Blocos casualizados: g genótipos, b repetições, l locais e a anos

$$Y_{ijkm} = \mu + G_i + L_j + A_m + GLA_{ijm} + (B/L)/A_{jkm} + \epsilon_{ijkm}$$

Em que:

- \bullet μ : média geral;
- Gi: efeito do i-ésimo genótipo;
- L_i: efeito do j-ésimo local;
- A_m: efeito do m-ésimo ano;
- GLA_{ijm}: efeito da interação tripla GxLxA;
- \bullet ϵ_{ijkm} : erro aleatório.

Dados: Comp.variância individuais e conjuntas da produtividade de grãos em linhagens de feijão-comum em 3 épocas de plantio (Ramalho et al., 2012).

	Época 1	Época 2	Época 3	Conjunta
Var.Linhagens	41992,223	94965,208	150956,083	13465,614
Var.Interação LxE	_	_	-	82470,828

Dados: Comp.variância individuais e conjuntas da produtividade de grãos em linhagens de feijão-comum em 3 épocas de plantio (Ramalho et al., 2012).

	Época 1	Época 2	Época 3	Conjunta
Var.Linhagens	41992,223	94965,208	150956,083	13465,614
Var.Interação LxE	-	-	-	82470,828

Var.Linhagens dentro de Épocas > Var.Linhagens Conjunta;

Dados: Comp.variância individuais e conjuntas da produtividade de grãos em linhagens de feijão-comum em 3 épocas de plantio (Ramalho et al., 2012).

	Época 1	Época 2	Época 3	Conjunta
Var.Linhagens	41992,223	94965,208	150956,083	13465,614
Var Interação LxE	-	-	-	82470,828

- Var.Linhagens dentro de Épocas > Var.Linhagens Conjunta;
- Para as 3 épocas: $\frac{(VL_{(epoca1)}+VL_{(epoca2)}+VL_{(epoca3)})}{3}=?$

Entendendo a complexidade

• GxA: Simples x Complexa

Considerando 2 ambientes:

$$\underline{ \text{Correlação genética: } rg_{1,2} = \frac{\textit{VarG}_{1,2}}{\sqrt{\textit{VarG}_1 \textit{VarG}_2}} \text{ ... } \textit{VarG}_{1,2} = rg_{1,2} \sqrt{\textit{VarG}_1 \textit{VarG}_2}$$

Considerando 2 ambientes:

Substituindo em
$$\frac{VarG_{(ambiente1)}+VarG_{(ambiente2)}}{2}=VarG_{1,2}+Var_{LxE}$$
:

$$Var_{LxE} = \overbrace{rac{1}{2}(\sqrt{VarG_1} - \sqrt{VarG_2})^2}^{Parte\ simples} + \underbrace{(1 - rg_{1,2})\sqrt{VarG_1VarG_2}}_{Parte\ complexa}$$

• Decomposição do componente *Var_{LxE}* para as épocas 1 e 2:

• Decomposição do componente $Var_{L\times E}$ para as épocas 1 e 2:

$$VarG_1 = 41992,233$$
; $VarG_2 = 94965,208$; $VarG_{1,2} = 58783,463$; $rg_{1,2} = 0,154$

• Decomposição do componente $Var_{L\times E}$ para as épocas 1 e 2:

$$VarG_1 = 41992,233$$
; $VarG_2 = 94965,208$; $VarG_{1,2} = 58783,463$; $rg_{1,2} = 0,154$

$$Var_{L \times E} = \frac{1}{2} (\sqrt{41992} - \sqrt{94965})^2 + (1 - 0, 154)\sqrt{41992x94965}$$

• Decomposição do componente Var_{LxE} para as épocas 1 e 2:

$$VarG_1 = 41992,233$$
; $VarG_2 = 94965,208$; $VarG_{1,2} = 58783,463$; $rg_{1,2} = 0,154$
$$Var_{L\times E} = \frac{1}{2}(\sqrt{41992} - \sqrt{94965})^2 + (1 - 0,154)\sqrt{41992\times94965}$$

$$Var_{L\times E} = \underbrace{5329,68}_{Simples} + \underbrace{53424,08}_{Simples}$$

Complexa

• Decomposição do componente Var_{LxE} para as épocas 1 e 2:

$$VarG_1 = 41992,233$$
; $VarG_2 = 94965,208$; $VarG_{1,2} = 58783,463$; $rg_{1,2} = 0,154$

$$Var_{L\times E} = \frac{1}{2}(\sqrt{41992} - \sqrt{94965})^2 + (1 - 0,154)\sqrt{41992x94965}$$

$$Var_{L\times E} = \overbrace{5329,68}^{Simples} + \underbrace{53424,08}_{Complexa}$$

Parte Complexa: 90%

Para vários ambientes

• Inclui-se:
$$\frac{1}{n(n-1)}$$
 e $\sum_{n < n'}$:

Para vários ambientes

• Inclui-se:
$$\frac{1}{n(n-1)}$$
 e $\sum_{n < n'}$:

Assim:

$$Var_{G \times A} = \frac{1}{n(n-1)} \sum_{n < n'} (\sqrt{VarG_n} - \sqrt{VarG_{n'}})^2 + 2(1 - rg_{nn'}) \sqrt{VarG_n VarG_{n'}}$$

Cruz e Castoldi (1991)

- A importância das partes simples e complexa \Rightarrow função de r_G quando este assume valores extremos
- 2 Em níveis intermediários de r_G a diferença na variância genotípica assume importância maior

Cruz e Castoldi (1991)

- A importância das partes simples e complexa \Rightarrow função de r_G quando este assume valores extremos
- 2 Em níveis intermediários de r_G a diferença na variância genotípica assume importância maior

$$\frac{Var_{G\times A}}{\frac{1}{n(n-1)}\sum_{n< n'}\left(\sqrt{VarG_n}-\sqrt{VarG_{n'}}\right)^2+2(1-rg_{nn'})\sqrt{VarG_nVarG_{n'}}}$$

Sumário

- Aspectos Históricos relevantes
- Conceitos Básicos
- Natureza e Estimativas
 - Natureza da Interação GxA
 - Quantificação da Interação GxA
- Estudo de caso
- 5 Bibliografia

Dados de Feijão-caupi (Vigna unguiculata)

Dados de Feijão-caupi (Vigna unguiculata)

- Ensaios VCU: 20 genótipos (4 cultivares);
- 10 estações experimentais ⇒ 10 ambientes;
- DBC: 4 repetições
- Produtividade de grãos(Kg.ha¹)

Balsas e Bom Jesus

Ī	BAL			_	
	Response:	PROD			
		Df	Sum Sq	Mean Sq	F value
	REP	3	2591025	863675	4.0245 **
	TRAT	19	6118882	322046	1.5006
	Residuals	217	46569482	214606	
	BJP				
	Response:	PROD			
		Df	Sum Sq	Mean Sq	F value
	REP	3	1376017	458672	8.8182 ***
	TRAT	19	2533366	133335	2.5634 ***
	Residuals	137	7125953	52014	
-					

• Variância genotípica em cada ambiente:

$$Vg = (QM_g - QM_r)/r$$

• Variância genotípica em cada ambiente:

$$Vg = (QM_g - QM_r)/r$$

- Local 1(Balsas): 26860
- Local 2(Bom Jesus): 20330.25

ANAVA Conjunta entre os dois ambientes

Response:	PROD			
	Df	Sum Sq	Mean Sq	F value
TRAT	19	7327350	385650	2.1949**
REP	3	2615563	871854	4.9621**
LOCAL	1	57382683	57382683	326.5914***
TRAT:LOCAL	19	1865251	98171	0.5587
Residuals	277	48669389	175702	

Variâncias

•
$$\hat{\sigma}_{gxa}^2$$

 $V_{gxa} = (QM_{gxa} - QM_r)/r$
 $V_{gxa} = 19382.75$

$$oldsymbol{\hat{\sigma}_g^2}$$
 $V_g = QM_g - (QM_r + rxV_{gxa})/rxa$ $V_g = 3310.425$

$$r_{g1,2} = V_g / \sqrt{(V_{g1} \times V_{g2})}$$

$$r_{g1,2} = V_g / \sqrt{(V_{g1} x V_{g2})}$$

Decomposição:

$$r_{g1,2} = V_g / \sqrt{(V_{g1} \times V_{g2})}$$

Decomposição:

• Simples =
$$\frac{1}{2}(\sqrt{VarG_1} - \sqrt{VarG_2})^2$$

$$r_{g1,2} = V_g / \sqrt{(V_{g1} \times V_{g2})}$$

Decomposição:

- Simples = $\frac{1}{2}(\sqrt{VarG_1} \sqrt{VarG_2})^2$
- Complexa = $(1 rg_{1,2})\sqrt{VarG_1VarG_2}$

Atenuando os efeitos da interação

- Identificar cultivares com adaptação específica
- ② Estratificação de Ambientes
- 3 Identificar cultivares com maior estabilidade

Sumário

- Aspectos Históricos relevantes
- Conceitos Básicos
- Natureza e Estimativas
 - Natureza da Interação GxA
 - Quantificação da Interação GxA
- 4 Estudo de caso
- 6 Bibliografia

Referências Indicadas

Aplicações da genética quantitativa no melhoramento de plantas autógamas, 2012, Ramalho et al.

Modelos Biométricos aplicados ao melhoramento genético: Vol I, 2012, Cruz et al.