

CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

VII. Országos Magyar Matematikaolimpia

XXXIV. EMMV

megyei szakasz, 2025. február 1.

X. osztály

- 1. feladat (10 pont). a) Igazold, hogy ha az $az^2 + bz + c = 0$ egyenlet $a, b, c \in \mathbb{C}^*$ együtthatóira fennál a $|b| \geq 2|c|$ egyenlőtlenség, akkor az egyenletnek létezik legalább egy olyan gyöke, amelynek a modulusa kisebb vagy egyenlő mint 1!
- b) Határozd meg a $z \in \mathbb{C}$ lehetséges értékeit úgy, hogy teljesüljön a

$$\max\{|z-1|, |z-\varepsilon|, |z-\varepsilon^2|\} \le 1$$

egyenlőtlenség, ha $1, \varepsilon, \varepsilon^2$ harmadrendű egységgyökök!

Matlap 2024/8,L3776

Megoldás. Hivatalból

(1 pont)

a) Legyen $z_1,z_2\in\mathbb{C}$ az egyenlet két gyöke. A Viète összefüggések alapján

$$z_1 + z_2 = -\frac{b}{a}$$
 és $z_1 z_2 = \frac{c}{a}$. (1 pont)

Mivel $c\neq 0$ ezért $z_1,z_2\neq 0.$ Tovább
á $\frac{|b|}{|c|}\geq 2.$ A felírt egyenletek alapján

$$2 \le \frac{|b|}{|c|} = \frac{|-a(z_1 + z_2)|}{|az_1 z_2|} = \left| \frac{z_1 + z_2}{z_1 z_2} \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} \right|. \tag{1 pont}$$

Alkalmazva a háromszögegyenlőtlenséget kapjuk, hogy

$$\left|\frac{1}{z_1} + \frac{1}{z_2}\right| \le \left|\frac{1}{z_1}\right| + \left|\frac{1}{z_2}\right|. \tag{1 pont}$$

A fenti két egyenlőtlenség alapján

$$2 \le \left| \frac{1}{z_1} \right| + \left| \frac{1}{z_2} \right|. \tag{1 pont}$$

Ha $|z_1| > 1$ és $|z_2| > 1$, akkor

$$\left| \frac{1}{z_1} \right| + \left| \frac{1}{z_2} \right| < 1 + 1 = 2,$$

ami ellentmondás. Tehát $|z_1| \le 1$ vagy $|z_2| \le 1$.

(1 pont)

b) Legyen A,B,C,D pontok a síkban, melyek affixumai rendre $1,\varepsilon,\varepsilon^2,z$; ahol $z\in\mathbb{C}$ tetszőleges. A $\max\{|z-1|,|z-\varepsilon|,|z-\varepsilon^2|\}\leq 1$ egyenlőtlenség pontosan akkor teljesül ha $|z-1|\leq 1$ és $|z-\varepsilon|\leq 1$ és $|z-\varepsilon^2|\leq 1$.

Írhatjuk a következő ekvivalenciákat

$$\begin{aligned} |z-1| &\leq 1 \iff D \in \operatorname{int} \mathcal{C}(A,1) \cup \mathcal{C}(A,1), \\ |z-\varepsilon| &\leq 1 \iff D \in \operatorname{int} \mathcal{C}(B,1) \cup \mathcal{C}(B,1), \\ |z-\varepsilon^2| &\leq 1 \iff D \in \operatorname{int} \mathcal{C}(C,1) \cup \mathcal{C}(C,1). \end{aligned}$$

A három körlap metszete csak az origó lehet, figyelembe véve, hogy a középpontjaik az egység sugarú origó középpontú körön vannak. Tehát D = O vagyis z = 0. (1 pont)

- 2. feladat (10 pont). Adottak az 1 < a < b valós számok.
- a) Igazold, hogy $(a+b)x ab \ge x^2$, minden $x \in [a,b]$ esetén.
- b) Adottak az $x_1, x_2, \ldots, x_n \in [a, b]$ valós számok, ahol $n \geq 2$. Igazold a következő egyenlőtlenséget:

$$\log_{x_1}((a+b)x_2 - ab) + \log_{x_2}((a+b)x_3 - ab) + \dots + \log_{x_{n-1}}((a+b)x_n - ab) + \log_{x_n}((a+b)x_1 - ab) \ge 2n.$$

Megoldás. Hivatalból

(1 pont)

a)
$$x \in [a, b]$$
 pontosan akkor ha $(x - a)(x - b) \le 0$.

(1 pont)

A szorzást elvégezve átírható $x^2-(a+b)x+ab\leq 0$ alakba, ami egyenértékű az $x^2\leq (a+b)x-ab$ egyenlőtlenséggel. (1 pont)

b) Az írásmód egyszerűsítése érdekében legyen $x_{n+1} = x_1$ és az egyenlőtlenség bal oldalát jelöljük S-sel. Mivel $x_k \in [a,b]$ minden $k = \overline{1,n}$ esetén, ezért az előző alpont alapján teljesül, hogy $(a+b)x_k - ab \ge x_k^2$. (2 pont)

Továbbá a
$$\log_{x_k} \colon (0, \infty) \to \mathbb{R}$$
 egy növekvő függvény mert $x_k \ge a > 1$. (1 pont)

Tehát
$$\log_{x_k}((a+b)x_{k+1}-ab) \ge \log_{x_{k+1}}x_k^2$$
, minden $k=\overline{1,n}$ esetén. (1 pont)

Összegezve ezt az n darab egyenlőtlenséget kapjuk, hogy

$$S \ge \log_{x_1} x_2^2 + \log_{x_2} x_3^2 + \ldots + \log_{x_{n-1}} x_n^2 + \log_{x_n} x_1^2,$$

$$S \ge 2(\log_{x_1} x_2 + \log_{x_2} x_3 + \ldots + \log_{x_{n-1}} x_n + \log_{x_n} x_1).$$

(1 pont)

A jobb oldalon az összeg minden tagja pozitív mert $x_k > 1$. Így alkalmazható a számtani és mértani közepek közti egyenlőtlenség és írhatjuk, hogy

$$S \ge 2n \sqrt[n]{\log_{x_1} x_2 \log_{x_2} x_3 \cdot \ldots \cdot \log_{x_{n-1}} x_n \log_{x_n} x_1},$$

$$S \ge 2n \sqrt[n]{\frac{\lg x_2}{\lg x_1} \frac{\lg x_3}{\lg x_2} \cdot \ldots \cdot \frac{\lg x_n}{\lg x_{n-1}} \frac{\lg x_1}{\lg x_n}} = 2n.$$
(1 pont)

3. feladat (10 pont). Tanulmányozd az $f: \mathbb{R} \to \mathbb{R}$ függvény injektívitását, amely teljesíti a

$$2f(x)^{2} + 5f(x) + 2 = f(2x^{2} - 10x + 5)$$

összefüggést minden $x \in \mathbb{R}$ esetén!

Megoldás. Hivatalból

(1 pont)

Megvizsgáljuk milyen x értékekre lesz $2x^2 - 10x + 5$ egyenlő x-el.

$$2x^{2} - 10x + 5 = x,$$

$$2x^{2} - 11x + 5 = 0,$$

$$(2x - 1)(x - 5) = 0.$$

Vagyis $x \in \left\{\frac{1}{2}, 5\right\}$ esetén $2x^2 - 10x + 5 = x$. (4 pont) Ha $x \in \left\{\frac{1}{2}, 5\right\}$, akkor $2f(x)^2 + 5f(x) + 2 = f(x)$, vagyis $2(f(x) + 1)^2 = 0$. Tehát f(x) = -1.(3 pont) Következésképpen $f\left(\frac{1}{2}\right) = f(5) = -1$, ahonnan f nem injektív. (2 pont)

4. feladat (10 pont). Bizonyítsd be, hogy 10 különböző rácspont közül mindig kiválasztható kettő úgy, hogy az általuk meghatározott szakasz harmadolópontjai is rácspontok legyenek! (Rácspontnak nevezzük azokat a pontokat, amelyeknek mindkét koordinátája egész szám.)

Megoldás. Hivatalból

(1 pont)

Ha $z_1 = x_1 + iy_1$ és $z_2 = x_2 + iy_2$ két rácspontnak az affixuma, akkor a harmadolópontok affixuma $h_1 = \frac{1}{3}(2z_1 + z_2)$, illetve $h_1 = \frac{1}{3}(z_1 + 2z_2)$. Emiatt pontosan akkor lesznek a harmadolópontok is rácspontok, ha x_1 és x_2 , illetve y_1 és y_2 azonos maradékot ad a 3-mal való osztásnál. (4 pont) Hozzuk létre az $D_{u,v} = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | (x-u) \text{ és } (y-v) \text{ osztható 3-mal} \}$ halmazokat minden $u,v \in \{0,1,2\}$ esetén. Ez a 9 halmaz valójában azt jelenti, hogy két pont pontosan akkor van ugyanabban a halmazban, ha a megfelelő koordinátáiknak a 3-mal való osztási maradéka azonos.

(**4 pont**)

Mivel tíz szám van és 9 halmaz, ezért a skatulyaelv alapján valamelyik halmazban van két pont a tízből és így az előbbi tulajdonság alapján az ezek által meghatározott szakasz harmadolópontjai is rácspontok.

(1 pont)