

METAHEURÍSTICA GRASP COM REFINAMENTO POR BUSCA LOCAL PARA O FLOWSHOP PERMUTACIONAL

Alberto F. K. Neto

Otimização Combinatória — INF05010 — 2019/2

- 1. Introdução
- 2. Definição do Problema
- 3. Método heurístico de resolução
- 4. Experimentos computacionais
- Conclusões

Flowshop permutacional

- Tópico de pesquisa recorrente em Otimização Combinatória
- Grande interesse acadêmico e aplicado
- Fácil obter soluções factíveis
- Difícil de provar uma solução ótima

Sobre o trabalho desenvolvido

- Formulação inteira mista de Tseng et al. (2004)
- Solução construtiva com GRASP
- Melhoramento por Busca Local
- Comparação de desempenho

Dados do problema

- N tarefas
- M máquinas
- $T_{ri} \geqslant 0$ tempo de processamento $(1 \leqslant i \leqslant N ; 1 \leqslant r \leqslant M)$

Objetivo: Minimizar tempo de processamento final da máquina ${\cal M}$

Solução: Ordem de execução das tarefas

Restrições

- Mesma ordem em todas as máquinas
- Processamento completo na máquina anterior antes de prosseguir

Exemplo de instância

- \bullet N=5
- M = 4
- Solução de custo z=35

Variáveis de decisão

- $D_{ik} \in \{0,1\}$: Indica se a tarefa i é processada antes da tarefa k, para $1 \le i < k \le N$
- $C_{ri} \geqslant 0$: Tempo em que a tarefa i termina de ser processada na máquina r, para $1 \leqslant i \leqslant N$ e $1 \leqslant r \leqslant M$
- C_{max} : Tempo de processamento final da última máquina

Parâmetros

- $T_{ri} \geqslant 0$: Tempos de processamento
- P: Valor suficientemente grande

Minimize C_{max} (1)

Sujeito a:

$$C_{1i} \geqslant T_{1i} \qquad 1 \leqslant i \leqslant N \qquad (2)$$

$$C_{ri} - C_{r-1,i} \geqslant T_{ri} \qquad 2 \leqslant r \leqslant M, 1 \leqslant i \leqslant N \qquad (3)$$

$$C_{ri} - C_{rk} + PD_{ik} \geqslant T_{ri} \qquad 1 \leqslant r \leqslant M, 1 \leqslant i < k \leqslant N \qquad (4)$$

$$C_{ri} - C_{rk} + PD_{ik} \leqslant P - T_{rk} \qquad 1 \leqslant r \leqslant M, 1 \leqslant i < k \leqslant N \qquad (5)$$

$$C_{\max} \geqslant C_{Mi} \qquad 1 \leqslant i \leqslant N \qquad (6)$$

$$C_{ri} \geqslant 0 \qquad 1 \leqslant r \leqslant M, 1 \leqslant i \leqslant N \qquad (7)$$

$$D_{ik} \in \{0, 1\} \qquad 1 \leqslant i < k \leqslant N \qquad (8)$$

Sobre o GRASP

- Proposto por Feo et al. (1994)
- Método construtivo guloso randomizado
- Parâmetro de randomização $\alpha \in [0,1]$

Detalhes de implementação

- Lista com ordem de execução
- Tempos em estrutura de dados 2D
- Randomização controlada com sementes

Algorithm 1: Construção de solução inicial com GRASP.

```
Procedure GRASP (N, M, T, \alpha)
        pend \leftarrow \text{lista com valores } 1, 2, \dots, N
        s \leftarrow \text{lista vazia}; z \leftarrow 0
 3
        while pend não está vazia do
              RCL \leftarrow lista vazia
 5
              for j \in pend do
 6
                   \bar{z}_i \leftarrow custo da solução parcial s com adição da tarefa j
 7
                   adicione a tupla (j, \bar{z}_i) em RCL
 8
              ordene RCL em ordem não crescente de \bar{z}
 9
              tam \leftarrow tamanho da lista RCL
10
              tp \leftarrow \text{escolhe aleatoriamente um índice de } [1, \max\{1, \alpha \cdot tam\}]
11
              atualize a solução s e custo z com os dados da tupla RCL_{tp}
12
              remova a tarefa referente a tp de pend
13
```

14 return s

Estratégia randomizada

- Troca de duas tarefas aleatórias
- Sempre aceita uma melhora
- Busca local rápida e iterada

Algorithm 2: Algoritmo de Busca Local.

Algorithm 3: Heurística GRASP com Busca Local.

```
1 Procedure GRASP_LS(N, M, T, \alpha)

2 s \leftarrow \text{GRASP}(N, M, T, \alpha)

3 for iter \leftarrow 1 até MAX\_ITER do

4 Swap2LS(s, \lceil N/100 \rceil)

5 Swap2LS(s, \lceil iter/1000 \rceil)

6 Swap2LS(s, randomInt(1,N))
```

r return s

Hardware e software

- Intel 3612QM @ 2.10GHz, RAM 8GB
- GLPK 4.65
- Heurística em Python 3.7.4
- Arch Linux (kernel linux-5.3.8)

Experimentos realizados

- Solver por até 1h
- Heurística por até 2140 iterações
- $\alpha \in \{0, 0.2, 0.4, 0.6, 0.8, 1.0\}$
- 10 replicações por (instância, α)

Instância	BKS	Valor relaxação	Obj. solução inteira	GAP_{BKS} (%)
VFR10_15_1	1307	880,0	1307 ¹	0,0
VFR10_10_3	1592	687,0	1873	56,9
VFR_20_20_1	2270	1391,0	2573	42,6
VFR60_5_10	3663	382,0	3878	89,3
VFR100_60_1	9395	TL	_	∞
VFR500_40_1	28548	TL	_	∞
VFR500_60_3	31125	TL	_	∞
VFR600_20_1	31433	TL	_	∞
VFR700_20_10	36417	TL	-	∞

Figura: Resultado obtido por meio do GLPK.

¹Após 1244,7 segundos de processamento.

Instância	DIC	Sol. GRASP		Sol. GRASP+BL		
	BKS -	F.O.	Desvio (%)	F.O.	Desvio (%)	Tempo (seg.)
VFR10_15_1	1307	1424 ± 0	8,95	$1339, 6 \pm 18, 319$	2,49	1, 5
VFR20_10_3	1592	2017 ± 0	26,70	$1687, 5 \pm 29, 304$	6	2, 1
VFR20_20_1	2270	2715 ± 0	19,60	$2360, 1 \pm 33, 478$	3,97	3, 9
VFR60_5_10	3663	3849 ± 0	5,08	$3668, 4 \pm 7, 291$	0,15	3, 2
VFR60_10_3	3423	4357 ± 0	27,29	$3632, 6 \pm 62, 45$	6,12	6, 0
VFR100_60_1	9395	11247 ± 0	19,71	$10008, 8 \pm 47, 123$	6,53	57,7
VFR500_40_1	28548	33119 ± 0	16,01	$30640, 6 \pm 67, 832$	7,33	200, 4
VFR500_60_3	31125	36930 ± 0	18,65	$33539,6 \pm 106,966$	7,76	298, 5
VFR600_20_1	31433	35473 ± 0	12,85	$32904, 4 \pm 69, 306$	4,68	118, 4
VFR700_20_10	36417	40916 ± 0	12,35	$37857,4\pm114,996$	3,96	140, 6

Figura: Resultados médios da heurística para $\alpha = 0$.

Figura: Boxplot relacionando valor médio da função objetivo para as diversas instâncias de testes, com vários valores α e 10 replicações por caso de teste.

Figura: Boxplot relacionando valor médio da função objetivo para as diversas instâncias de testes, com vários valores α e 10 replicações por caso de teste.

Figura: Boxplot relacionando valor médio da função objetivo para as diversas instâncias de testes, com vários valores α e 10 replicações por caso de teste.

Figura: Boxplot relacionando valor médio da função objetivo para as diversas instâncias de testes, com vários valores α e 10 replicações por caso de teste.

Figura: Boxplot relacionando valor médio da função objetivo para as diversas instâncias de testes, com vários valores α e 10 replicações por caso de teste.

PFSP é um problema relevante

- Abordagem exata é ineficiente
- GRASP obtém soluções iniciais rapidamente
- Randomização pouco efetiva
- Busca Local fez diferença
- Heurística foi eficaz e eficiente

Trabalhos futuros

- Cálculo mais eficiente de custo da vizinhança com Swap2LS
- Calibração dos parâmetros

Thomas A Feo, Mauricio GC Resende, and Stuart H Smith. A greedy randomized adaptive search procedure for maximum independent set. *Operations Research*, 42(5):860–878, 1994.

Fan T Tseng, Edward F Stafford Jr, and Jatinder ND Gupta. An empirical analysis of integer programming formulations for the permutation flowshop. *Omega*, 32(4):285–293, 2004.

Obrigado!

Alberto F. K. Neto

Institute of Informatics (II)
Federal University of Rio Grande do Sul (UFRGS)
afkneto@inf.ufrgs.br

