LOGIC AND THEORETICAL FOUNDATION OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

$$L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$$

Consider

$$L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$$

 $\bigcirc\ L$ is not recognisable by a finite automata

$$L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$$

- *L* is not recognisable by a finite automata
- NFA/DFA would have to count the numbers of *a*

$$L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$$

- \bigcirc *L* is not recognisable by a finite automata
- NFA/DFA would have to count the numbers of *a*
- $\, \bigcirc \,$ they only know where they are and where they may go

$$L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$$

- \bigcirc *L* is not recognisable by a finite automata
- NFA/DFA would have to count the numbers of *a*
- $\, \bigcirc \,$ they only know where they are and where they may go
- NFA/DFA **do not** know where they come from

$$L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$$

- \bigcirc *L* is not recognisable by a finite automata
- NFA/DFA would have to count the numbers of *a*
- O they only know where they are and where they may go
- NFA/DFA **do not** know where they come from
- if an NFA/DFA could recognize L it would have infinitely many states (see whiteboard)

Formalisation of Non-Regularity

Theorem (Pumping Lemma for Regular Sets)

 $L \subseteq \Sigma^*$ regular set $\Rightarrow \exists p \in \mathbb{N} \forall w \in L^{\geq p} \exists x, y, z \in \Sigma^*$:

- 1. w = xyz
- 2. $|y| \ge 1$
- 3. $|xy| \leq p$
- 4. $\forall i \in \mathbb{N}_0 : xy^iz \in L$

Explanations: Pumping Lemma

- DO NOT (NEVER EVER) use the Pumping Lemma for proving regularity!
 - Contradiction for proving that a language is NOT REGULAR
- \bigcirc idea: word longer than number of states \Rightarrow loop

Lemma

Lemma

The language $L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}$ is not regular.

Proof with Pumping Lemma \bigcirc Contradiction: Suppose L is regular

Lemma

- Proof with Pumping Lemma \bigcirc Contradiction: Suppose L is regular
 - \bigcirc PL $\Rightarrow \exists p \in \mathbb{N} \forall w \in L^{\geq p} \exists x, y, z \in \Sigma^*$:
 - 1. w = xyz
 - 2. $|y| \ge 1$
 - 3. $|xy| \leq p$
 - 4. $\forall i \in \mathbb{N}_0 : xy^iz \in L$

Lemma

- Proof with Pumping Lemma Contradiction: Suppose *L* is regular
 - \bigcirc PL $\Rightarrow \exists p \in \mathbb{N} \forall w \in L^{\geq p} \exists x, y, z \in \Sigma^*$:
 - 1. w = xyz
 - 2. $|y| \ge 1$
 - 3. $|xy| \leq p$
 - 4. $\forall i \in \mathbb{N}_0 : xy^iz \in L$
 - \bigcirc take $p \in \mathbb{N}$ (existential quantifier)

Lemma

- Proof with Pumping Lemma Contradiction: Suppose *L* is regular
 - \bigcirc PL $\Rightarrow \exists p \in \mathbb{N} \forall w \in L^{\geq p} \exists x, y, z \in \Sigma^*$:
 - 1. w = xyz
 - 2. $|y| \ge 1$
 - 3. $|xy| \leq p$
 - 4. $\forall i \in \mathbb{N}_0 : xy^iz \in L$
 - \bigcirc take $p \in \mathbb{N}$ (existential quantifier)
 - choose $w = a^p b^p$

Lemma

- Proof with Pumping Lemma Contradiction: Suppose *L* is regular
 - \bigcirc PL $\Rightarrow \exists p \in \mathbb{N} \forall w \in L^{\geq p} \exists x, y, z \in \Sigma^*$:
 - 1. w = xyz
 - 2. $|y| \ge 1$
 - 3. $|xy| \leq p$
 - 4. $\forall i \in \mathbb{N}_0 : xy^iz \in L$
 - take $p \in \mathbb{N}$ (existential quantifier)
 - choose $w = a^p b^p$
 - if $w \in L$ and $|w| \ge p$ we can proceed (claim only holds for these ws

Lemma

- Proof with Pumping Lemma Contradiction: Suppose *L* is regular
 - \bigcirc PL $\Rightarrow \exists p \in \mathbb{N} \forall w \in L^{\geq p} \exists x, y, z \in \Sigma^*$:
 - 1. w = xyz
 - 2. $|y| \ge 1$
 - 3. $|xy| \leq p$
 - 4. $\forall i \in \mathbb{N}_0 : xy^iz \in L$
 - take $p \in \mathbb{N}$ (existential quantifier)
 - choose $w = a^p b^p$
 - if $w \in L$ and $|w| \ge p$ we can proceed (claim only holds for these ws
 - $w \in L$ immediately

Lemma

- Proof with Pumping Lemma Contradiction: Suppose *L* is regular
 - \bigcirc PL $\Rightarrow \exists p \in \mathbb{N} \forall w \in L^{\geq p} \exists x, y, z \in \Sigma^*$:
 - 1. w = xyz
 - 2. $|y| \ge 1$
 - 3. $|xy| \leq p$
 - 4. $\forall i \in \mathbb{N}_0 : xy^iz \in L$
 - take $p \in \mathbb{N}$ (existential quantifier)
 - choose $w = a^p b^p$
 - if $w \in L$ and $|w| \ge p$ we can proceed (claim only holds for these ws
 - $w \in L$ immediately
 - |w| = 2p > p since p > 0

○ take x, y, $z \in \Sigma^*$ with

$$w = a^p b^p = xyz, |y| \ge 1, |xy| \le p, \forall i \in \mathbb{N}_0 : xy^i z \in L$$

 $a^p b^p = xyz$ vague \sim how can it be achieved?

 \bigcirc take $x, y, z \in \Sigma^*$ with

$$w = a^p b^p = xyz, |y| \ge 1, |xy| \le p, \forall i \in \mathbb{N}_0 : xy^i z \in L$$

 $a^p b^p = xyz$ vague \rightarrow how can it be achieved?

LaTFoCS

○ take x, y, $z \in \Sigma^*$ with

$$w = a^p b^p = xyz, |y| \ge 1, |xy| \le p, \forall i \in \mathbb{N}_0 : xy^i z \in L$$

 $a^p b^p = xyz$ vague \rightarrow how can it be achieved?

(1)-(3) fulfilled in the two cases \Rightarrow we need contradiction to (4)

LaTFoCS

$$\bigcirc p \in \mathbb{N}, w = a^p b^p = xyz, |y| \ge 1, |xy| \le p, \forall i \in \mathbb{N}_0 : xy^i z \in L$$

$$\bigcirc p \in \mathbb{N}, w = a^p b^p = xyz, |y| \ge 1, |xy| \le p, \forall i \in \mathbb{N}_0 : xy^i z \in L$$

$$\bigcirc p \in \mathbb{N}, w = a^p b^p = xyz, |y| \ge 1, |xy| \le p, \forall i \in \mathbb{N}_0 : xy^i z \in L$$

$$\supset \exists k_1, k_2, k_3$$

$$\bigcirc \ y \neq \varepsilon \Longrightarrow k_2 > 0 \Longrightarrow k_1 + k_3 < p$$

$$\bigcirc p \in \mathbb{N}, w = a^p b^p = xyz, |y| \ge 1, |xy| \le p, \forall i \in \mathbb{N}_0 : xy^i z \in L$$

- $\exists k_1, k_2, k_3$
- $y \neq \varepsilon \Rightarrow k_2 > 0 \Rightarrow k_1 + k_3 < p$
- \bigcirc Choose i = 0

$$\bigcirc p \in \mathbb{N}, w = a^p b^p = xyz, |y| \ge 1, |xy| \le p, \forall i \in \mathbb{N}_0 : xy^i z \in L$$

- $\supset \exists k_1, k_2, k_3$
- $\bigcirc \ y \neq \varepsilon \Longrightarrow k_2 > 0 \Longrightarrow k_1 + k_3 < p$
- \bigcirc Choose i = 0
- $\bigcirc \Rightarrow xy^{i}z = xy^{0}z = a^{k_{1}}a^{k_{3}}b^{p} = a^{k_{1}+k_{3}}b^{p} \notin L$

$$\bigcirc p \in \mathbb{N}, w = a^p b^p = xyz, |y| \ge 1, |xy| \le p, \forall i \in \mathbb{N}_0 : xy^i z \in L$$

- $\supset \exists k_1, k_2, k_3$
- $\bigcirc y \neq \varepsilon \Longrightarrow k_2 > 0 \Longrightarrow k_1 + k_3 < p$
- \bigcirc Choose i = 0
- $\bigcirc \Rightarrow xy^iz = xy^0z = a^{k_1}a^{k_3}b^p = a^{k_1+k_3}b^p \notin L$
- Contradiction to (4)

$$\bigcirc \ p \in \mathbb{N}, w = a^p b^p = xyz, |y| \geq 1, |xy| \leq p, \forall i \in \mathbb{N}_0: xy^iz \in L$$

Case 1: |xy| < p

$$\bigcirc \exists k_1, k_2, k_3$$

$$\bigcirc y \neq \varepsilon \Rightarrow k_2 > 0 \Rightarrow k_1 + k_3 < p$$

$$\bigcirc$$
 Choose $i = 0$

$$\bigcirc \Rightarrow xy^iz = xy^0z = a^{k_1}a^{k_3}b^p = a^{k_1+k_3}b^p \notin L$$

○ Contradiction to (4)

Case 2: |xy| = p analogously

 \bigcirc we are lazy, so start finding the contradiction for i=0 or small i

- \bigcirc we are lazy, so start finding the contradiction for i=0 or small i
- we only know that a $p \in \mathbb{N}$ exists, we do not know which specific number p is \rightsquigarrow do not take a specific one!

- \bigcirc we are lazy, so start finding the contradiction for i=0 or small i
- \bigcirc we only know that a p ∈ \mathbb{N} exists, we do not know which specific number p is \rightsquigarrow do not take a specific one!
- \bigcirc we only know that w can be decomposed in xyz we do not know anything how x,y,z look specifically!

- we are lazy, so start finding the contradiction for i = 0 or small i
- we only know that a $p \in \mathbb{N}$ exists, we do not know which specific number p is \rightsquigarrow do not take a specific one!
- \bigcirc we only know that w can be decomposed in xyz we do not know anything how x,y,z look specifically!
- \bigcirc the difficulty is to find a *nice* w such that the cases for x, y, z are not so horrible

More non-regular languages

Every language in which data have to be stored (e.g. for counting) are not regular, e.g.

$$\bigcirc L_1 = \{a^n b^n + k \subseteq \{a, b\}^* | n \in \mathbb{N}_0\} \text{ for a fixed } k \in \mathbb{N}_0$$

More non-regular languages

Every language in which data have to be stored (e.g. for counting) are not regular, e.g.

$$\bigcirc L_1 = \{a^n b^n + k \subseteq \{a, b\}^* | n \in \mathbb{N}_0\} \text{ for a fixed } k \in \mathbb{N}_0$$

$$\bigcirc L_2 = \{ \mathbf{a}^{n!} | n \in \mathbb{N} \}$$

More non-regular languages

Every language in which data have to be stored (e.g. for counting) are not regular, e.g.

$$\bigcirc L_1 = \{a^n b^n + k \subseteq \{a, b\}^* | n \in \mathbb{N}_0\} \text{ for a fixed } k \in \mathbb{N}_0$$

$$\bigcirc L_2 = \{ \mathbf{a}^{n!} | n \in \mathbb{N} \}$$

$$\bigcirc L_3 = \{ \mathbf{a}^n | n \in \mathbb{P} \}$$

More non-regular languages

Every language in which data have to be stored (e.g. for counting) are not regular, e.g.

$$\bigcirc L_1 = \{a^n b^n + k \subseteq \{a, b\}^* | n \in \mathbb{N}_0\} \text{ for a fixed } k \in \mathbb{N}_0$$

$$\bigcirc L_2 = \{ \mathbf{a}^{n!} | n \in \mathbb{N} \}$$

$$\bigcirc L_3 = \{ \mathbf{a}^n | n \in \mathbb{P} \}$$

$$\bigcirc L_4 = \{a^n | n \text{ is Fibonacci number}\}$$

More non-regular languages

Every language in which data have to be stored (e.g. for counting) are not regular, e.g.

$$\bigcirc L_1 = \{a^n b^n + k \subseteq \{a, b\}^* | n \in \mathbb{N}_0\} \text{ for a fixed } k \in \mathbb{N}_0$$

$$\bigcirc L_2 = \{ \mathbf{a}^{n!} | n \in \mathbb{N} \}$$

$$\bigcirc L_3 = \{a^n | n \in \mathbb{P}\}$$

$$\bigcirc L_4 = \{a^n | n \text{ is Fibonacci number}\}$$

What do the last three languages tell us?

More non-regular languages

Every language in which data have to be stored (e.g. for counting) are not regular, e.g.

- $\bigcirc L_1 = \{a^n b^n + k \subseteq \{a, b\}^* | n \in \mathbb{N}_0\} \text{ for a fixed } k \in \mathbb{N}_0$
- $\bigcirc L_2 = \{ \mathbf{a}^{n!} | n \in \mathbb{N} \}$
- $\bigcirc L_3 = \{a^n | n \in \mathbb{P}\}$
- \bigcirc $L_4 = \{a^n | n \text{ is Fibonacci number}\}$

What do the last three languages tell us? We cannot build automata for calculating the factorial, the prime numbers, or the Fibonacci-numbers.

Disadvantages of the Pumping lemma:

only for proving unregularity (since it is an implication)

Disadvantages of the Pumping lemma:

- only for proving unregularity (since it is an implication)
- \bigcirc we have to find a working w

Disadvantages of the Pumping lemma:

- only for proving unregularity (since it is an implication)
- \bigcirc we have to find a working w
- \bigcirc we have to cover all options for xyz

Disadvantages of the Pumping lemma:

- only for proving unregularity (since it is an implication)
- \bigcirc we have to find a working w
- \bigcirc we have to cover all options for xyz
- \bigcirc we have to find a working i

Disadvantages of the Pumping lemma:

- only for proving unregularity (since it is an implication)
- \bigcirc we have to find a working w
- \bigcirc we have to cover all options for xyz
- \bigcirc we have to find a working *i*

Myhill-Nerode offer another option to prove not only unregularity but also regularity.

Definition

 $A \subseteq \Sigma^*$ regular, $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with $L(\mathcal{A}) = A$: $\equiv_{\mathcal{A}}$ Myhill-Nerode-Relation iff

$$\forall x,y \in \Sigma^*: \, x \equiv_{\mathcal{A}} y : \Leftrightarrow \hat{\delta}(q_0,x) = \hat{\delta}(q_0,y).$$

Definition

 $A \subseteq \Sigma^*$ regular, $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with $L(\mathcal{A}) = A$: $\equiv_{\mathcal{A}}$ Myhill-Nerode-Relation iff

$$\forall x,y \in \Sigma^*: \, x \equiv_{\mathcal{A}} y : \Leftrightarrow \hat{\delta}(q_0,x) = \hat{\delta}(q_0,y).$$

Some Properties:

oreflexive, symmetric, transitive

Definition

 $A \subseteq \Sigma^*$ regular, $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with $L(\mathcal{A}) = A$: $\equiv_{\mathcal{A}}$ Myhill-Nerode-Relation iff

$$\forall x,y \in \Sigma^*: \, x \equiv_{\mathcal{A}} y : \Leftrightarrow \hat{\delta}(q_0,x) = \hat{\delta}(q_0,y).$$

Some Properties:

- oreflexive, symmetric, transitive
- right congruence: $\forall x, y \in \Sigma^* \forall a \in \Sigma : x \equiv_{\mathcal{A}} y \Rightarrow xa \equiv_{\mathcal{A}} ya$

Definition

 $A \subseteq \Sigma^*$ regular, $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with $L(\mathcal{A}) = A$: $\equiv_{\mathcal{A}}$ Myhill-Nerode-Relation iff

$$\forall x,y \in \Sigma^*: \, x \equiv_{\mathcal{A}} y : \Leftrightarrow \hat{\delta}(q_0,x) = \hat{\delta}(q_0,y).$$

Some Properties:

- oreflexive, symmetric, transitive
- right congruence: $\forall x, y \in \Sigma^* \forall a \in \Sigma : x \equiv_{\mathcal{A}} y \Rightarrow xa \equiv_{\mathcal{A}} ya$
- $\bigcirc \ \forall x,y \in \Sigma^*: \ x \equiv_{\mathcal{A}} y \Rightarrow (x \in A \Leftrightarrow y \in A)$

Definition

 $A \subseteq \Sigma^*$ regular, $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with $L(\mathcal{A}) = A$: $\equiv_{\mathcal{A}}$ Myhill-Nerode-Relation iff

$$\forall x,y \in \Sigma^*: \, x \equiv_{\mathcal{A}} y : \Leftrightarrow \hat{\delta}(q_0,x) = \hat{\delta}(q_0,y).$$

Some Properties:

- oreflexive, symmetric, transitive
- right congruence: $\forall x, y \in \Sigma^* \forall a \in \Sigma : x \equiv_{\mathcal{A}} y \Rightarrow xa \equiv_{\mathcal{A}} ya$
- $\bigcirc \ \forall x,y \in \Sigma^* : x \equiv_{\mathcal{A}} y \Rightarrow (x \in A \Leftrightarrow y \in A)$
- $\bigcirc |A/\equiv_{\mathcal{A}}|<\infty$

○ Given \equiv for A with properties, A_{\equiv} is constructible

- Given \equiv for A with properties, \mathcal{A}_{\equiv} is constructible
 - $Q = \{ [x] | x \in \Sigma^* \}$
 - $q_0 = [\varepsilon]$
 - $F = \{ [x] | x \in A \}$
 - $o \delta([x], a) = [xa]$

- Given \equiv for A with properties, A_{\equiv} is constructible
 - $Q = \{ [x] | x \in \Sigma^* \}$
 - $q_0 = [\varepsilon]$
 - $F = \{ [x] | x \in A \}$
 - $o \delta([x], a) = [xa]$
- For given $A \subseteq \Sigma^*$ regular: $\equiv \rightarrow \mathcal{A}$ and $\mathcal{A} \rightarrow \equiv$ are inverse to each other

- Given \equiv for A with properties, \mathcal{A}_{\equiv} is constructible
 - $Q = \{ [x] | x \in \Sigma^* \}$
 - $q_0 = [\varepsilon]$
 - $F = \{ [x] | x \in A \}$
 - $o \delta([x], a) = [xa]$
- \bigcirc For given $A \subseteq \Sigma^*$ regular: $\equiv \rightarrow \mathcal{A}$ and $\mathcal{A} \rightarrow \equiv$ are inverse to each other

Theorem

$$A \subseteq \Sigma^*$$
 regular: $L(A_{\equiv}) = A$

Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

The following statements are equivalent

- 1. A is regular
- **2.** there exists Myhill-Nerode relation for A
- 3. \equiv_A is of finite index

Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

The following statements are equivalent

- 1. A is regular
- 2. there exists Myhill-Nerode relation for A
- 3. \equiv_A is of finite index

(we omit the proof)

○ Theorem: equivalence to regularity

- Theorem: equivalence to regularity
- Can we use this for proving or contradicting regularity of a language?

- Theorem: equivalence to regularity
- Can we use this for proving or contradicting regularity of a language?
- We can!

- Theorem: equivalence to regularity
- Can we use this for proving or contradicting regularity of a language?
- We can!

•
$$L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$$

- O Theorem: equivalence to regularity
- Can we use this for proving or contradicting regularity of a language?
- We can!
 - $L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$
 - $k_1 \neq k_2 \implies a^{k_1} \neq a^{k_2}$

- O Theorem: equivalence to regularity
- Can we use this for proving or contradicting regularity of a language?
- We can!
 - $L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$
 - \bullet $k_1 \neq k_2 \Rightarrow a^{k_1} \neq a^{k_2}$
 - ∘ $\forall k \in \mathbb{N}_0$: $[a^k]$, $[a^{n+k}b^n]$ are different classes
 - ∘ append $a^n b^{n+k}$ for all $n \in \mathbb{N}_0$ resp. b^k

- O Theorem: equivalence to regularity
- Can we use this for proving or contradicting regularity of a language?
- We can!
 - $L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$
 - $k_1 \neq k_2 \Rightarrow a^{k_1} \neq a^{k_2}$
 - ∘ $\forall k \in \mathbb{N}_0$: $[a^k]$, $[a^{n+k}b^n]$ are different classes
 - ∘ append $a^n b^{n+k}$ for all $n \in \mathbb{N}_0$ resp. b^k
 - $\circ \Rightarrow$ infinitely many classes

- O Theorem: equivalence to regularity
- Can we use this for proving or contradicting regularity of a language?
- We can!
 - $L = \{a^n b^n | n \in \mathbb{N}_0\} \subseteq \{a, b\}^*$
 - $k_1 \neq k_2 \Rightarrow a^{k_1} \neq a^{k_2}$
 - ∘ $\forall k \in \mathbb{N}_0$: $[a^k]$, $[a^{n+k}b^n]$ are different classes
 - ∘ append $a^n b^{n+k}$ for all $n \in \mathbb{N}_0$ resp. b^k
 - $\circ \Rightarrow$ infinitely many classes
 - L not regular

Lemma

$$L = \{w \in \{a, b\}^* | |w|_a \equiv_2 0\}$$
 is regular.

Lemma

$$L = \{w \in \{a, b\}^* | |w|_a \equiv_2 0\}$$
 is regular.

Proof:

○ we have to prove that $|L/\equiv_L|$ is finite

Lemma

$$L=\{w\in\{a,b\}^*|\,|w|_a\equiv_2 0\}\ is\ regular.$$

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- \bigcirc consider w with $|w|_a \equiv_2 0$

Lemma

$$L = \{w \in \{a, b\}^* | |w|_a \equiv_2 0\}$$
 is regular.

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- \bigcirc consider w with $|w|_a \equiv_2 0$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are in L

Lemma

$$L = \{w \in \{a, b\}^* | |w|_a \equiv_2 0\}$$
 is regular.

- we have to prove that $|L/\equiv_L|$ is finite
- consider w with $|w|_a \equiv_2 0$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are not in L

Lemma

$$L = \{w \in \{a, b\}^* | |w|_a \equiv_2 0\}$$
 is regular.

- we have to prove that $|L/\equiv_L|$ is finite
- \bigcirc consider w with $|w|_a \equiv_2 0$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are not in L
- \bigcirc this holds for **all** *w* with an even number of *a*

Lemma

$$L = \{w \in \{a, b\}^* | |w|_a \equiv_2 0\}$$
 is regular.

- we have to prove that $|L/\equiv_L|$ is finite
- consider w with $|w|_a \equiv_2 0$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are not in L
- \bigcirc this holds for **all** w with an even number of a
- \bigcirc \Rightarrow they are all equivalent

Lemma

$$L = \{w \in \{a, b\}^* | |w|_a \equiv_2 0\}$$
 is regular.

- we have to prove that $|L/\equiv_L|$ is finite
- consider w with $|w|_a \equiv_2 0$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are not in L
- \bigcirc this holds for **all** w with an even number of a
- \bigcirc \Rightarrow they are all equivalent
- \bigcirc [aa] is a class representing even number of a

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- \bigcirc [aa] is one class representing even number of a

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- \bigcirc [aa] is one class representing even number of a
- \bigcirc consider w with $|w|_a \equiv_2 1$

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- \bigcirc [aa] is one class representing even number of a
- \bigcirc consider w with $|w|_a \equiv_2 1$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are not in L

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- \bigcirc [aa] is one class representing even number of a
- \bigcirc consider w with $|w|_a \equiv_2 1$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are not in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are in L

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- \bigcirc [aa] is one class representing even number of a
- \bigcirc consider w with $|w|_a \equiv_2 1$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are not in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are in L
- \bigcirc this holds for **all** *w* with an odd number of *a*

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- [aa] is one class representing *even number of a*
- \bigcirc consider w with $|w|_a \equiv_2 1$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are not in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are in L
- \bigcirc this holds for **all** w with an odd number of a
- \bigcirc \Rightarrow they are all equivalent

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- [aa] is one class representing *even number of a*
- \bigcirc consider w with $|w|_a \equiv_2 1$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are not in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are in L
- \bigcirc this holds for **all** w with an odd number of a
- \bigcirc \Rightarrow they are all equivalent
- \bigcirc [a] is another class representing odd number of a

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- [aa] is one class representing *even number of a*
- \bigcirc consider w with $|w|_a \equiv_2 1$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are not in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are in L
- \bigcirc this holds for **all** w with an odd number of a
- \bigcirc \Rightarrow they are all equivalent
- \bigcirc [a] is another class representing odd number of a
- \bigcirc there aren't more options than even or odd number of a

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- [aa] is one class representing *even number of a*
- \bigcirc consider w with $|w|_a \equiv_2 1$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are not in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are in L
- \bigcirc this holds for **all** w with an odd number of a
- \bigcirc \Rightarrow they are all equivalent
- \bigcirc [a] is another class representing odd number of a
- \bigcirc there aren't more options than even or odd number of a
- only two classes

- \bigcirc we have to prove that $|L/\equiv_L|$ is finite
- \bigcirc [aa] is one class representing even number of a
- \bigcirc consider w with $|w|_a \equiv_2 1$
- \bigcirc if we append z with $|z|_a \equiv_2 0$ we are not in L
- \bigcirc if we append z with $|z|_a \equiv_2 1$ we are in L
- \bigcirc this holds for **all** *w* with an odd number of *a*
- \bigcirc \Rightarrow they are all equivalent
- \bigcirc [a] is another class representing odd number of a
- \bigcirc there aren't more options than even or odd number of a
- only two classes
- \bigcirc L is regular \square

TWO-WAY FINITE AUTOMATA

○ Status: DFA equivalent to regular expression/sets

- Status: DFA equivalent to regular expression/sets
- O Tries:
 - 1. Non-Determinism

- O Status: DFA equivalent to regular expression/sets
- O Tries:
 - 1. Non-Determinism ©(equivalent to DFA)

- O Status: DFA equivalent to regular expression/sets
- O Tries:
 - 1. Non-Determinism ©(equivalent to DFA)
 - 2. ε -Transitions

- Status: DFA equivalent to regular expression/sets
- O Tries:
 - 1. Non-Determinism ©(equivalent to DFA)
 - 2. ε -Transitions \odot (equivalent to without)

- Status: DFA equivalent to regular expression/sets
- O Tries:
 - 1. Non-Determinism ©(equivalent to DFA)
 - 2. ε -Transitions \odot (equivalent to without)
- What if we don't read the word linearly?

- O Status: DFA equivalent to regular expression/sets
- Tries:
 - 1. Non-Determinism ©(equivalent to DFA)
 - 2. ε -Transitions \odot (equivalent to without)
- What if we don't read the word linearly?
- \bigcirc Idea: We reach in $a^n b^n$ somehow the middle and read afterwards from left and right

Ideas for 2DFA/2NFA

- reading head that moves over the word
- start marker + and end marker +
- automaton can accept or reject (special states)

$$L = \{x \in \{a,b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b b -$$

 q_0

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b b -$$

 q_0

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b b -$$

 q_{1a}

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b b b$$

$$q_{2a}$$

 q_{2a}

 q_{2a}

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b b \vdash$$

 q_{3a}

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b b$$

 q_{3a}

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b b$$

 q_{3a}

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b b -$$

 q_{fa}

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b b - q_{16}$$

 q_{1b}

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b - q_{2b}$$

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b - q_{2b}$$

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b b b$$

$$q_{1a}$$

 q_{1b}

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b b$$

$$q_{1a}$$

 q_{1b}

Example

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

$$\vdash b a a b a b b$$

 q_{fb}

Example

$$L = \{x \in \{a, b\}^* \mid |x|_a \equiv_3 0 \land |x|_b \equiv_2 0\}$$

LaTFoCS

Definition (2DFA)

$$\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_a, q_r)$$
 2DFA with

 \bigcirc Q, Σ , q_0 as usual

Definition (2DFA)

- \bigcirc Q, Σ , q_0 as usual
- \bigcirc +, $\dashv \notin \Sigma$ for start and end of word

Definition (2DFA)

- \bigcirc Q, Σ , q_0 as usual
- \bigcirc +, $\dashv \notin \Sigma$ for start and end of word
- \bigcirc q_a accepting state

Definition (2DFA)

- \bigcirc Q, Σ , q_0 as usual
- \bigcirc +, $\dashv \notin \Sigma$ for start and end of word
- \bigcirc q_a accepting state
- \bigcirc q_r rejecting state

Definition (2DFA)

- \bigcirc Q, Σ , q_0 as usual
- \bigcirc +, $\dashv \notin \Sigma$ for start and end of word
- \bigcirc q_a accepting state
- \bigcirc q_r rejecting state
- \circ $\delta: Q \times (\Sigma \cup \{\vdash, \dashv\}) \rightarrow (Q \times \{L, R\})$ with

Definition (2DFA)

- \bigcirc Q, Σ , q_0 as usual
- \bigcirc +, $\dashv \notin \Sigma$ for start and end of word
- \bigcirc q_a accepting state
- \bigcirc q_r rejecting state
- $0 \delta: Q \times (\Sigma \cup \{\vdash, \dashv\}) \to (Q \times \{L, R\}) \text{ with}$ $0 \delta(q, \vdash) = (q', R), \delta(q, \dashv) = (q', L)$

Definition (2DFA)

- \bigcirc Q, Σ , q_0 as usual
- \bigcirc +, $\dashv \notin \Sigma$ for start and end of word
- \bigcirc q_a accepting state
- \bigcirc q_r rejecting state
- \bigcirc $\delta: Q \times (\Sigma \cup \{\vdash, \dashv\}) \rightarrow (Q \times \{L, R\})$ with
 - $\delta(q, \vdash) = (q', R), \delta(q, \dashv) = (q', L)$
 - $\circ \ \delta(q_a,b) = (q_a,R), \, \delta(q_r,b) = (q_r,R)$

Definition (2DFA)

- \bigcirc Q, Σ , q_0 as usual
- \bigcirc +, $\dashv \notin \Sigma$ for start and end of word
- \bigcirc q_a accepting state
- \bigcirc q_r rejecting state
- \bigcirc $\delta: Q \times (\Sigma \cup \{\vdash, \dashv\}) \rightarrow (Q \times \{L, R\})$ with
 - $\delta(q, \vdash) = (q', R), \delta(q, \dashv) = (q', L)$

 - $\circ \ \delta(q_a, \dashv) = (q_a, L), \, \delta(q_r, \dashv) = (q_r, L)$

Configuration and Acceptance

Input: $a_0 \dots a_{n+1} = \vdash x \dashv$

Definition

○ configuration: $(q, i) \in Q \times [n + 1]_0$ (state, position of read head)

Configuration and Acceptance

Input: $a_0 \dots a_{n+1} = \vdash x \dashv$

- configuration: $(q, i) \in Q \times [n + 1]_0$ (state, position of read head)
- \bigcirc start configuration: $(q_0, 0)$

Configuration and Acceptance

Input: $a_0 \dots a_{n+1} = \vdash x \dashv$

- configuration: $(q, i) \in Q \times [n + 1]_0$ (state, position of read head)
- \bigcirc start configuration: $(q_0, 0)$
- o next configuration:

$$(p,i) \xrightarrow{i} \begin{cases} (q,i-1) & \text{if } \delta(p,a_i) = (q,L), \\ (q,i+1) & \text{if } \delta(p,a_i) = (q,R). \end{cases}$$

- o extension:
 - $\circ (p,i) \xrightarrow{0} (p,i)$

Definition

o extension:

$$o (p,i) \xrightarrow{0} (p,i)$$

$$(p,i) \xrightarrow{n+1}^{\infty} (r,k)$$
 if

$$\exists q \in Q \exists j \in \mathbb{N}_0: \, (p,i) \xrightarrow[r]{1} (q,j) \wedge (q,j) \xrightarrow[r]{n} (r,k)$$

Definition

o extension:

$$\circ (p,i) \xrightarrow{0} (p,i)$$

$$\circ (p,i) \xrightarrow[x]{n+1} (r,k) \text{ if}$$

$$\exists q \in Q \exists j \in \mathbb{N}_0 : (p,i) \xrightarrow{1}_{r} (q,j) \land (q,j) \xrightarrow{n}_{r} (r,k)$$

$$\circ \ (p,i) \xrightarrow{*}_{x} (q,j) \text{ if } \exists n \in \mathbb{N}_{0} : (p,i) \xrightarrow{n}_{x} (q,j)$$

Definition

o extension:

$$(p,i) \xrightarrow{0} (p,i)$$

$$\circ (p,i) \xrightarrow{n+1}^{n+1} (r,k) \text{ if }$$

$$\exists q \in Q \exists j \in \mathbb{N}_0 : (p,i) \xrightarrow{1}_{r} (q,j) \land (q,j) \xrightarrow{n}_{r} (r,k)$$

$$\circ \ (p,i) \xrightarrow{*}_{x} (q,j) \text{ if } \exists n \in \mathbb{N}_{0} : (p,i) \xrightarrow{n}_{x} (q,j)$$

 \bigcirc \mathscr{A} accepts $x: (q_0, 0) \xrightarrow{*}_{x} (q_a, i)$ for some $i \in \mathbb{N}$

- o extension:
 - o $(p,i) \xrightarrow{0} (p,i)$
 - $(p,i) \xrightarrow{r+1} (r,k)$ if

$$\exists q \in Q \exists j \in \mathbb{N}_0 : (p,i) \xrightarrow{1}_{r} (q,j) \land (q,j) \xrightarrow{n}_{r} (r,k)$$

$$\circ \ (p,i) \xrightarrow{*}_{x} (q,j) \text{ if } \exists n \in \mathbb{N}_{0} : (p,i) \xrightarrow{n}_{x} (q,j)$$

- \bigcirc \mathscr{A} accepts $x: (q_0, 0) \xrightarrow{*}_{x} (q_a, i)$ for some $i \in \mathbb{N}$
- \bigcirc \mathcal{A} rejects $x: (q_0, 0) \xrightarrow{*}_{x} (q_r, i)$ for some $i \in \mathbb{N}$

- o extension:
 - $o (p,i) \xrightarrow{0} (p,i)$
 - $(p,i) \xrightarrow{r+1} (r,k)$ if

$$\exists q \in Q \exists j \in \mathbb{N}_0 : (p,i) \xrightarrow{1}_{r} (q,j) \land (q,j) \xrightarrow{n}_{r} (r,k)$$

- $\circ (p,i) \xrightarrow{*}_{x} (q,j) \text{ if } \exists n \in \mathbb{N}_{0} : (p,i) \xrightarrow{n}_{x} (q,j)$
- \bigcirc \mathscr{A} accepts $x: (q_0, 0) \xrightarrow{*}_{x} (q_a, i)$ for some $i \in \mathbb{N}$
- \bigcirc \mathcal{A} rejects $x: (q_0, 0) \xrightarrow{*}_{r} (q_r, i)$ for some $i \in \mathbb{N}$
- $\bigcirc A \text{ loops on } x : \forall i \in \mathbb{N} : (q_0, 0) \xrightarrow{*}_{x} (q, i) \Rightarrow q \notin \{q_a, q_f\}$

2DFAS AND REGULAR SETS

 \bigcirc we shall read a word w

- \bigcirc we shall read a word w
- \bigcirc assume w = xz

- \bigcirc we shall read a word w
- \bigcirc assume w = xz
- how much information can we carry when we pass from *x* to *z*?

- \bigcirc we shall read a word w
- \bigcirc assume w = xz
- how much information can we carry when we pass from *x* to *z*?
- \bigcirc determinism \Rightarrow each pass from x to z moves the automaton in the same state p and from z to x in the same state q

- \bigcirc we shall read a word w
- \bigcirc assume w = xz
- how much information can we carry when we pass from x to z?
- determinism \Rightarrow each pass from x to z moves the automaton in the same state p and from z to x in the same state q
- \bigcirc this following state is independent from z resp. from x!

- $\bigcirc T_x: (Q \cup \{\bullet\}) \rightarrow (Q \cup \{\bot\}) \text{ with }$
 - \circ \perp for undefined

- $\bigcirc T_x : (Q \cup \{\bullet\}) \rightarrow (Q \cup \{\bot\}) \text{ with }$
 - ⊥ for undefined
 - $T_x(\bullet)$ automaton's state on first time passing x

- $\bigcirc T_x : (Q \cup \{\bullet\}) \rightarrow (Q \cup \{\bot\}) \text{ with }$

 - $T_x(\bullet)$ automaton's state on first time passing x
 - *q* state when automaton reaches *x* from the right

- $\bigcirc T_x : (Q \cup \{\bullet\}) \rightarrow (Q \cup \{\bot\}) \text{ with }$

 - $T_x(\bullet)$ automaton's state on first time passing x
 - *q* state when automaton reaches *x* from the right
 - $p =: T_x(q)$ automaton's state when automaton leaves x

- $\bigcirc T_x : (Q \cup \{\bullet\}) \rightarrow (Q \cup \{\bot\}) \text{ with }$
 - | for undefined
 - $T_x(\bullet)$ automaton's state on first time passing x
 - *q* state when automaton reaches *x* from the right
 - $p =: T_x(q)$ automaton's state when automaton leaves x

Notice:

 \bigcirc only finitely many options for $T_x(\bullet)$

- $\bigcirc T_x : (Q \cup \{\bullet\}) \rightarrow (Q \cup \{\bot\}) \text{ with }$
 - | for undefined
 - $T_x(\bullet)$ automaton's state on first time passing x
 - *q* state when automaton reaches *x* from the right
 - $p =: T_x(q)$ automaton's state when automaton leaves x

Notice:

- \bigcirc only finitely many options for $T_x(\bullet)$
- \bigcirc $T_x(\bullet)$ independent of z

- $\bigcirc T_x : (Q \cup \{\bullet\}) \rightarrow (Q \cup \{\bot\}) \text{ with }$
 - | for undefined
 - $T_x(\bullet)$ automaton's state on first time passing x
 - *q* state when automaton reaches *x* from the right
 - $p =: T_x(q)$ automaton's state when automaton leaves x

Notice:

- \bigcirc only finitely many options for $T_x(\bullet)$
- \bigcirc $T_x(\bullet)$ independent of z
- \bigcirc $T_x(q)$ independent of z

 \bigcirc build $T_x(q)$ for all $q \in Q \cup \{\bullet\}$

- \bigcirc build $T_x(q)$ for all $q \in Q \cup \{\bullet\}$
- \bigcirc T_x is finite mapping

- \bigcirc build $T_x(q)$ for all $q \in Q \cup \{\bullet\}$
- \bigcirc T_x is finite mapping
- $\bigcirc T_x = T_y \Rightarrow x, y$ are not distinguishable

- \bigcirc build $T_x(q)$ for all $q \in Q \cup \{\bullet\}$
- \bigcirc T_x is finite mapping
- $\bigcirc T_x = T_y \Rightarrow x, y$ are not distinguishable
- \bigcirc only $(n + 1)^{n+1}$ different possibilities for this mapping

- \bigcirc build $T_x(q)$ for all $q \in Q \cup \{\bullet\}$
- \bigcirc T_x is finite mapping
- $\bigcirc T_x = T_y \Rightarrow x, y$ are not distinguishable
- \bigcirc only $(n + 1)^{n+1}$ different possibilities for this mapping
- \bigcirc infinitely many words \Rightarrow words do have the same mapping

Theorem

For each 2DFA exists equivalent DFA and vice versa.

Theorem

For each 2DFA exists equivalent DFA and vice versa.

Theorem

For each 2DFA exists equivalent DFA and vice versa.

Proof:

 \bigcirc every DFA is a special 2DFA

Theorem

For each 2DFA exists equivalent DFA and vice versa.

- every DFA is a special 2DFA
- \bigcirc \mathscr{A} 2DFA \Rightarrow

Theorem

For each 2DFA exists equivalent DFA and vice versa.

- every DFA is a special 2DFA
- \bigcirc \mathscr{A} 2DFA \Rightarrow
 - $T_x = T_y \Leftrightarrow (\forall z \in \Sigma^* : xz \in L(\mathcal{A}) \Leftrightarrow yz \in L(\mathcal{A}))$ (x, y are indistinguishable)

Theorem

For each 2DFA exists equivalent DFA and vice versa.

- every DFA is a special 2DFA
- \bigcirc \mathscr{A} 2DFA \Rightarrow
 - $T_x = T_y \Leftrightarrow (\forall z \in \Sigma^* : xz \in L(\mathcal{A}) \Leftrightarrow yz \in L(\mathcal{A}))$ (x, y are indistinguishable)
 - define $x \equiv_{L(\mathcal{A})} y$ by $T_x = T_y$

Theorem

For each 2DFA exists equivalent DFA and vice versa.

- every DFA is a special 2DFA
- \bigcirc \mathscr{A} 2DFA \Rightarrow
 - $T_x = T_y \Leftrightarrow (\forall z \in \Sigma^* : xz \in L(\mathcal{A}) \Leftrightarrow yz \in L(\mathcal{A}))$ (x, y are indistinguishable)
 - define $x \equiv_{L(\mathcal{A})} y$ by $T_x = T_y$
 - only finitely many mappings ⇒ index is finite

Theorem

For each 2DFA exists equivalent DFA and vice versa.

- every DFA is a special 2DFA
- \bigcirc \mathscr{A} 2DFA \Rightarrow
 - $T_x = T_y \Leftrightarrow (\forall z \in \Sigma^* : xz \in L(\mathcal{A}) \Leftrightarrow yz \in L(\mathcal{A}))$ (x, y are indistinguishable)
 - define $x \equiv_{L(\mathcal{A})} y$ by $T_x = T_y$
 - only finitely many mappings ⇒ index is finite
 - $L(\mathcal{A})$ is regular

