

PATENT COOPERATION TREATY

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION
(PCT Rule 61.2)

To:

Assistant Commissioner for Patents
 United States Patent and Trademark
 Office
 Box PCT
 Washington, D.C.20231
 ETATS-UNIS D'AMERIQUE

in its capacity as elected Office

Date of mailing (day/month/year) 21 July 2000 (21.07.00)	To: Assistant Commissioner for Patents United States Patent and Trademark Office Box PCT Washington, D.C.20231 ETATS-UNIS D'AMERIQUE
International application No. PCT/EP99/09744	Applicant's or agent's file reference P75199PC-Zie
International filing date (day/month/year) 15 November 1999 (15.11.99)	Priority date (day/month/year) 17 November 1998 (17.11.98)
Applicant PANZNER, Steffen	

1. The designated Office is hereby notified of its election made:

 in the demand filed with the International Preliminary Examining Authority on:

13 June 2000 (13.06.00)

 in a notice effecting later election filed with the International Bureau on:

2. The election was was not

made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer Manu Berrod
Facsimile No.: (41-22) 740.14.35	Telephone No.: (41-22) 338.83.38

VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS

PCT

RECD	18 OCT 2001
RECD	
WIPO	
PCT	
FOT	

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

(Artikel 36 und Regel 70 PCT)

Aktenzeichen des Anmelders oder Anwalts P75199PC-Zie	WEITERES VORGEHEN	siehe Mitteilung über die Übersendung des internationalen vorläufigen Prüfungsberichts (Formblatt PCT/IPEA/416)
Internationales Aktenzeichen PCT/EP99/09744	Internationales Anmeldedatum (Tag/Monat/Jahr) 15/11/1999	Prioritätsdatum (Tag/Monat/Tag) 17/11/1998
Internationale Patentklassifikation (IPK) oder nationale Klassifikation und IPK A61K9/127		
Anmelder NOVOSOM GMBH et al.		

<ol style="list-style-type: none"> 1. Dieser internationale vorläufige Prüfungsbericht wurde von der mit der internationalen vorläufigen Prüfung beauftragten Behörde erstellt und wird dem Anmelder gemäß Artikel 36 übermittelt. 2. Dieser BERICHT umfaßt insgesamt 6 Blätter einschließlich dieses Deckblatts. <ul style="list-style-type: none"> <input type="checkbox"/> Außerdem liegen dem Bericht ANLAGEN bei; dabei handelt es sich um Blätter mit Beschreibungen, Ansprüchen und/oder Zeichnungen, die geändert wurden und diesem Bericht zugrunde liegen, und/oder Blätter mit vor dieser Behörde vorgenommenen Berichtigungen (siehe Regel 70.16 und Abschnitt 607 der Verwaltungsrichtlinien zum PCT). <p style="margin-left: 20px;">Diese Anlagen umfassen insgesamt 4 Blätter.</p>

<ol style="list-style-type: none"> 3. Dieser Bericht enthält Angaben zu folgenden Punkten: <ul style="list-style-type: none"> I <input checked="" type="checkbox"/> Grundlage des Berichts II <input type="checkbox"/> Priorität III <input type="checkbox"/> Keine Erstellung eines Gutachtens über Neuheit, erforderliche Tätigkeit und gewerbliche Anwendbarkeit IV <input type="checkbox"/> Mangelnde Einheitlichkeit der Erfindung V <input checked="" type="checkbox"/> Begründete Feststellung nach Artikel 35(2) hinsichtlich der Neuheit, der erforderlichen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung VI <input type="checkbox"/> Bestimmte angeführte Unterlagen VII <input type="checkbox"/> Bestimmte Mängel der internationalen Anmeldung VIII <input checked="" type="checkbox"/> Bestimmte Bemerkungen zur internationalen Anmeldung
--

Datum der Einreichung des Antrags 13/06/2000	Datum der Fertigstellung dieses Berichts 12.02.2001
Name und Postanschrift der mit der internationalen vorläufigen Prüfung beauftragten Behörde: Europäisches Patentamt D-80298 München Tel. +49 89 2399 - 0 Tx: 523656 epmu d Fax: +49 89 2399 - 4465	Bevollmächtigter Bediensteter ESTANOL, I Tel. Nr. +49 89 2399 8647

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

Internationales Aktenzeichen PCT/EP99/09744

I. Grundlage des Berichts

1. Dieser Bericht wurde erstellt auf der Grundlage (*Ersatzblätter, die dem Anmeldeamt auf eine Aufforderung nach Artikel 14 hin vorgelegt wurden, gelten im Rahmen dieses Berichts als "ursprünglich eingereicht" und sind ihm nicht beigefügt, weil sie keine Änderungen enthalten.*):

Beschreibung, Seiten:

1-38 ursprüngliche Fassung

Patentansprüche, Nr.:

1-15 eingegangen am 26/01/2001 mit Schreiben vom 26/01/2001

Zeichnungen, Blätter:

1/1 ursprüngliche Fassung

2. Hinsichtlich der Sprache: Alle vorstehend genannten Bestandteile standen der Behörde in der Sprache, in der die internationale Anmeldung eingereicht worden ist, zur Verfügung oder wurden in dieser eingereicht, sofern unter diesem Punkt nichts anderes angegeben ist.

Die Bestandteile standen der Behörde in der Sprache: zur Verfügung bzw. wurden in dieser Sprache eingereicht; dabei handelt es sich um

- die Sprache der Übersetzung, die für die Zwecke der internationalen Recherche eingereicht worden ist (nach Regel 23.1(b)).
- die Veröffentlichungssprache der internationalen Anmeldung (nach Regel 48.3(b)).
- die Sprache der Übersetzung, die für die Zwecke der internationalen vorläufigen Prüfung eingereicht worden ist (nach Regel 55.2 und/oder 55.3).

3. Hinsichtlich der in der internationalen Anmeldung offenbarten Nucleotid- und/oder Aminosäuresequenz ist die internationale vorläufige Prüfung auf der Grundlage des Sequenzprotokolls durchgeführt worden, das:

- in der internationalen Anmeldung in schriftlicher Form enthalten ist.
- zusammen mit der internationalen Anmeldung in computerlesbarer Form eingereicht worden ist.
- bei der Behörde nachträglich in schriftlicher Form eingereicht worden ist.
- bei der Behörde nachträglich in computerlesbarer Form eingereicht worden ist.
- Die Erklärung, daß das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den Offenbarungsgehalt der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.
- Die Erklärung, daß die in computerlesbarer Form erfassten Informationen dem schriftlichen Sequenzprotokoll entsprechen, wurde vorgelegt.

4. Aufgrund der Änderungen sind folgende Unterlagen fortgefallen:

**INTERNATIONALER VORLÄUFIGER
PRÜFUNGSBERICHT**

Internationales Aktenzeichen PCT/EP99/09744

- Beschreibung, Seiten:
 Ansprüche, Nr.:
 Zeichnungen, Blatt:

5. Dieser Bericht ist ohne Berücksichtigung (von einigen) der Änderungen erstellt worden, da diese aus den angegebenen Gründen nach Auffassung der Behörde über den Offenbarungsgehalt in der ursprünglich eingereichten Fassung hinausgehen (Regel 70.2(c)).

(Auf Ersatzblätter, die solche Änderungen enthalten, ist unter Punkt 1 hinzuweisen; sie sind diesem Bericht beizufügen).

6. Etwaige zusätzliche Bemerkungen:

V. Begründete Feststellung nach Artikel 35(2) hinsichtlich der Neuheit, der erfinderischen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung

1. Feststellung

Neuheit (N)	Ja: Ansprüche 1-11, 15 Nein: Ansprüche 12-14
Erfinderische Tätigkeit (ET)	Ja: Ansprüche 2,15 Nein: Ansprüche 1, 3-14
Gewerbliche Anwendbarkeit (GA)	Ja: Ansprüche 1-15 Nein: Ansprüche

2. Unterlagen und Erklärungen
siehe Beiblatt

VIII. Bestimmte Bemerkungen zur internationalen Anmeldung

Zur Klarheit der Patentansprüche, der Beschreibung und der Zeichnungen oder zu der Frage, ob die Ansprüche in vollem Umfang durch die Beschreibung gestützt werden, ist folgendes zu bemerken:
siehe Beiblatt

Zu Punkt V

Es wird auf die folgenden Dokumente verwiesen:

D1: US-A-5 834 556 (NEIL P. DESAI, ET AL.) 10. November 1998 (1998-11-10)

Das Dokument D1 wird als nächstliegender Stand der Technik gegenüber dem Gegenstand der Ansprüche 1, 12, 13, 14 oder 15 angesehen und beschreibt ein Verfahren zur Herstellung von Nanokapseln mit einem Durchmesser von 500 nm bis 560 nm. Das Verfahren von D1 enthält die Beschichtung der Liposomen mit einem Graftkolymere.

a) Anspruch 1:

Das Verfahren des vorliegenden Anspruchs 1 unterscheidet sich von dem Verfahren des Dokuments D1 dadurch, daß die Liposomen der vorliegenden Erfindung mit einem Polymer P1 in wäßriger Lösung beschichtet werden und dann das aufgebrachte P1 mit einem zweiten Polymer P2 in wäßriger Lösung kovalent vernetzt wird. Das Verfahren von D1 herstellt zuerst ein Co-Polymer und dann werden die Liposomen mit dem Graftkopolymer beschichtet. Deshalb ist der Gegenstand der vorliegenden Ansprüche 1 neu gegenüber D1 oder D2 (Artikel 33(2) PCT).

Es ist aus Anspruch 1 nicht ausgeschlossen, daß das anmeldungsgemäße Verfahren weitere Schritte enthält. Die Gründe dafür sind:

- P1 und/oder P2 können aktiviert werden um die funktionelle Gruppen von Anspruch 4 aufzuweisen,
- P1 kann mit dem Liposomen oder P1 kann mit P2 durch Hilfsstoffe vernetzt werden (siehe Anspruch 5 der vorliegenden Anmeldung) und
- die Liposomen können weitere Polymerschichten durch Vernetzung auftragen oder an ihrer Oberfläche modifizierte werden (siehe Anspruch 1 und 11 der vorliegenden Anmeldung).

Unerwartete Wirkungen oder Eigenschaften des vorliegenden Verfahrens gegenüber des Verfahrens von D1 dank einer Beschichtung mit Polymeren, welche die Polymere nacheinander auf der Oberfläche der Liposomen kovalent vernetzt werden, sind in der Anmeldung nicht angegeben. Dem Gegenstand des Anspruchs 1 liegt daher keine erforderliche Tätigkeit zugrunde.

b) Ansprüche 12 und 13:

- D1 offenbart Liposomen mit einer Hüllschicht aus zwei verschiedenen, miteinander vernetzten Polymeren Poly-L-Lysin und Polyethylenglycol (siehe Spalte 6, Zeile 35-40 und Beispiele I, VIII und X). Auch wenn das Verfahren zur Herstellung der Nanokapseln der vorliegenden Erfindung neu gegenüber dem Verfahren von D1 ist, können die resultierende Nanokapseln des Anspruchs 12 von den Nanokapseln des Dokuments D1 sich nicht unterscheiden. Außerdem können die Nanokapseln der vorliegenden Ansprüche 12 oder 3 unter der Hüllschicht noch eine Lipidschicht vorhanden (siehe Seite 1, Zeile 12-14 und Seite 24, Zeile 6-9 der vorliegenden Beschreibung). Der Gegenstand der Ansprüche 12 oder 13 ist deshalb nicht neu gegenüber D1 (Artikel 33(2) PCT).
- Nanokapseln, die mit dem Verfahren gemäß Anspruch 1 und zusätzlich mit einem Detergenz ausgewaschen sind (Anspruch 2), sind Membranfrei und werden weder in D1 noch in D2 offenbart. Solche Membranfreie Nanokapseln sind aber weder in Anspruch 12 noch in Anspruch 13 der vorliegenden Anmeldung beansprucht.

c) Anspruch 14:

Die Liposomen vom D1 werden als pharmazeutischen Zubereitungen zur Applikation von Wirkstoffen verwendet. Da die Nanokapseln des Anspruchs 12 oder 13 nicht neu gegenüber die Liposomen von D1 sind, ist der Gegenstand des Anspruchs 14 vorliegenden Erfindung nicht neu gegenüber D1 (Artikel 33(2) EPÜ).

d) Anspruch 15:

Die Verwendung zur biochemischen Diagnostik von den Nanokapseln der vorliegenden Erfindung ist aus dem Stand der Technik nicht ableitbar. Deshalb ist der Gegenstand des Anspruchs 15 neu und erfinderisch gegenüber D1 oder D2 (Artikeln 33(2)(3) EPÜ).

e) Abhängige Ansprüche 2-11:

Die Ansprüche 2-11 sind vom Anspruch 1 abhängig und erfüllen damit ebenfalls die Erfordernisse des PCT in bezug auf Neuheit.

Die mit der vorliegenden Erfindung zu lösende Aufgabe kann somit darin gesehen werden, alternative in-vivo stabilen Nanokapseln mit einem Durchmesser von 50 nm bis 10 µm herzustellen, welche eine höhere Permeabilität der Hüllschicht zeigen und

keine Detergenzenfindlichkeit aufweisen.

D1 löst das Problem von in-vivo Liposomenunstabilität gegenüber Makrophagen (Spalte 15, Zeile 11-17) aber löst nicht das Problem der Empfindlichkeit gegenüber Detergenzien.

Membranfreie Nanokapseln hergestellt mit dem Verfahren gemäß Ansprüche 1 und 2 lösen die Aufgabe und sind aus dem Stand der Technik nicht ableitbar. Der abhängigen Anspruch 2 enthält Merkmale, die in Kombination mit den Merkmalen Anspruchs 1, die Erfordernisse des PCT in bezug auf Neuheit und erfinderische Tätigkeit erfüllen.

Zu Punkt VIII

Die Merkmale des Anspruchs 2 schienen für die Definition der Erfindung wesentlich zu sein (Artikel 6 PCT in Verbindung mit Regel 6.3 b) PCT).

Im Widerspruch zu den Erfordernissen der Regel 5.1 a) ii) PCT werden in der Beschreibung weder der in den Dokumenten D1 und D2 offenbare einschlägigen Stand der Technik noch diese Dokumente angegeben.

Patentansprüche

1. Verfahren zur Herstellung von Nanokapseln mit einem Durchmesser von 50 nm bis 10 µm,
dadurch gekennzeichnet, daß

Liposomen hergestellt werden, diese mit einem Polymer P1 beschichtet werden, indem das Polymer P1 in wäßriger Lösung an die Liposomenoberfläche gebunden wird und dann das aufgebrachte Polymer P1 mit einem von P1 verschiedenen Polymer P2 in wäßriger Lösung kovalent vernetzt wird und gegebenenfalls noch weitere Polymerschichten durch Vernetzung aufgebracht werden.

- 15 2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß

die Liposomen nach Vernetzung der Polymere aufgelöst werden, vorzugsweise durch Auswaschen mit einem Detergenz.

- 20 3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß

von Liposomen ausgegangen wird, die biologisch aktive Verbindungen oder Verbindungen eines Detektionssystems tragen, welche bei der Durchführung des Verfahrens in den Nanokapseln verbleiben.

4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß
als wasserlösliche Polymere P1 und P2 solche
eingesetzt werden, die als funktionelle Gruppen
Amino-, Carboxyl-, Thiol-, Hydrazo-, Hydroxy-,
Azidwasserstoff-, Aldehyd- und/oder Aktivester-
gruppen oder Kombinationen dieser Gruppen aufweisen
und nicht selbst micellare oder vesikuläre
Strukturen bilden.

10

5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß
das Polymer P1 mit den Liposomen oder das Polymer
P1 mit dem Polymer P2 durch Hilfsstoffe vernetzt
15 wird.

15

6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet, daß
als Hilfsstoffe Isothiocyanat, Isocyanate,
20 Acylazide, N-Hydroxysuccinimidester, Sulfonylchide,
Aldehyde, Epoxide, Carbonate, Imidoester,
Carbodiimide, Anhydride, Haloacetyle, Alkylhalide,
Maleimide, Aziridine, Pyridyldisulfide, Diazoalkane,
25 Diazoacetyle, Carboylidiimidazole, N-Hydroxy-
succinimidylchloroformate oder Verbindungen, die
diese funktionellen Gruppen in geeigneten Kombi-
nationen enthalten, eingesetzt werden.

25

7. Verfahren nach einem der Ansprüche 1 bis 3,
30 dadurch gekennzeichnet, daß

die wasserlöslichen Polymere P1 oder P2 chelatisierende oder chelatbindende Eigenschaften aufweisen.

- 5 8. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß
die Polymere P1 und/oder P2 Proteine sind.
- 10 9. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß
die Polymere P1 und/oder P2 Kohlenhydrate sind.
- 15 10. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß
die wasserlöslichen Polymere P1 und/oder P2
synthetische Polymere sind.
- 20 11. Verfahren nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, daß
die erhaltenen Nanokapseln an ihrer Oberfläche
modifiziert werden, vorzugsweise durch Polyethylen-
glycol, Proteine, Peptide oder Hormone, besonders
bevorzugt durch Polyethylenglycol.
- 25 12. Nanokapseln hergestellt gemäß einem oder mehreren
der Ansprüche 1 bis 11.

13. Nanokapseln mit einem Durchmesser von 50 nm bis 10 μ m,
dadurch gekennzeichnet, daß
ihre Hüllschicht aus mindestens zwei verschiedenen,
miteinander vernetzten Polymeren P1 und P2 besteht.
14. Verwendung von Nanokapseln, hergestellt nach einem
oder mehreren der Ansprüche 1 bis 11 zur
Herstellung von pharmazeutischen Zubereitungen zur
Applikation von Wirkstoffen.
15. Verwendung von Nanokapseln, hergestellt nach einem
oder mehreren der Ansprüche 1 bis 11 zur
biochemischen Diagnostik.

07/831975
Translation

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference P75199PC-Zie	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)
International application No. PCT/EP99/09744	International filing date (day/month/year) 15 November 1999 (15.11.99)	Priority date (day/month/year) 17 November 1998 (17.11.98)
International Patent Classification (IPC) or national classification and IPC A61K 9/127		
Applicant	NOVOSOM GMBH	

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.

2. This REPORT consists of a total of 6 sheets, including this cover sheet.

This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of 4 sheets.

3. This report contains indications relating to the following items:

- I Basis of the report
- II Priority
- III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
- IV Lack of unity of invention
- V Reasoned statement under Article 35(2) with regard to novelty, inventive step and industrial applicability; citations and explanations supporting such statement
- VI Certain documents cited
- VII Certain defects in the international application
- VIII Certain observations on the international application

RECEIVED

TC 1700

Date of submission of the demand 13 June 2000 (13.06.00)	Date of completion of this report 12 February 2001 (12.02.2001)
Name and mailing address of the IPEA/EP	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/EP99/09744

I. Basis of the report

1. With regard to the elements of the international application:*

- the international application as originally filed
 the description:

pages _____ 1-38 _____, as originally filed
 pages _____ , filed with the demand
 pages _____ , filed with the letter of _____

- the claims:

pages _____ , as originally filed
 pages _____ , as amended (together with any statement under Article 19)
 pages _____ , filed with the demand
 pages _____ 1-15 _____, filed with the letter of 26 January 2001 (26.01.2001)

- the drawings:

pages _____ 1/1 _____, as originally filed
 pages _____ , filed with the demand
 pages _____ , filed with the letter of _____

- the sequence listing part of the description:

pages _____ , as originally filed
 pages _____ , filed with the demand
 pages _____ , filed with the letter of _____

2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.

These elements were available or furnished to this Authority in the following language _____ which is:

- the language of a translation furnished for the purposes of international search (under Rule 23.1(b)).
 the language of publication of the international application (under Rule 48.3(b)).
 the language of the translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).

3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:

- contained in the international application in written form.
 filed together with the international application in computer readable form.
 furnished subsequently to this Authority in written form.
 furnished subsequently to this Authority in computer readable form.
 The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.
 The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.

4. The amendments have resulted in the cancellation of:

- the description, pages _____
 the claims, Nos. _____
 the drawings, sheets/fig _____

5. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**

* Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to this report since they do not contain amendments (Rule 70.16 and 70.17).

** Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/EP 99/09744

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement**1. Statement**

Novelty (N)	Claims	1 - 11, 15	YES
	Claims	12 - 14	NO
Inventive step (IS)	Claims	2, 15	YES
	Claims	1, 3 - 14	NO
Industrial applicability (IA)	Claims	1 - 15	YES
	Claims		NO

2. Citations and explanations

Reference is made to the following document:

D1: US-A-5 834 556 (NEIL P. DESAI, ET AL.)

10 November 1998 (1998-11-10)

D1 is considered the prior art closest to the subject matter of Claims 1, 12, 13, 14 and 15 and describes a method of producing nanocapsules having a diameter of 500 nm to 560 nm. The D1 method involves the coating of liposomes with a graft copolymer.

a) Claim 1:

The method of the current Claim 1 differs from the D1 method in that the liposomes of the present invention are coated with a polymer P1 in aqueous solution and the applied polymer P1 is then covalently crosslinked with a second polymer P2 in aqueous solution. The D1 method first produces a copolymer and then the liposomes are coated with the graft copolymer. Therefore the subject matter of the current Claim 1 is novel over D1 or D2 (PCT Article 33(2)).

Claim 1 does not exclude the possibility of the method according to the invention involving further steps. The

reasons for this are as follows:

- P1 and/or P2 can be activated in order to display the functional groups of Claim 4;
- P1 can be crosslinked with the liposomes or P1 can be crosslinked with P2 by auxiliary substances (see Claim 5 of the present application); and
- the liposomes can have further polymer layers as a result of crosslinking or be modified on their surface (see Claims 1 and 11 of the present application).

The application does not indicate unexpected effects or properties of the present method over the D1 method as a result of polymer coating which covalently crosslinks the polymers successively on the liposome surface. Therefore the subject matter of Claim 1 does not involve an inventive step.

b) Claims 12 and 13:

- D1 discloses liposomes with an envelope layer of two different mutually crosslinked polymers, poly-L-lysine and polyethylene glycol (see column 6, lines 35 to 40, and Examples I, VIII and X). Even if the method for producing the nanocapsules of the present invention is novel over the D1 method, the resultant nanocapsules of Claim 12 do not differ from the D1 nanocapsules. Moreover, the nanocapsules of the current Claims 12 and 13 may also have a lipid layer below the envelope layer (see page 1, lines 12 to 14, and page 24, lines 6 to 9, of the present description). The subject matter of Claims 12 and 13 is therefore not novel over D1 (PCT Article 33(2)).

- Nanocapsules which are produced by the method as per Claim 1 and are additionally rinsed with a detergent (Claim 2) are membrane-free and are disclosed neither in D1 nor in D2; however, membrane-free nanocapsules of this type are claimed neither in Claim 12 nor Claim 13 of the present application.

c) Claim 14:

The liposomes of D1 are used as pharmaceutical preparations for applying active substances. Since the nanocapsules in Claim 12 or 13 are not novel over the D1 liposomes, the subject matter of Claim 14 of the present invention is not novel over D1 (PCT Article 33(2)).

d) Claim 15:

The use of the nanocapsules according to the present invention for biochemical diagnosis cannot be derived from the prior art. Therefore the subject matter of Claim 15 is novel and inventive with respect to D1 or D2 (PCT Article 33(2) and (3)).

e) Dependent Claims 2 to 11:

Claims 2 to 11 are dependent on Claim 1 and hence likewise meet the PCT novelty requirements.

The object of the present invention can be considered the production of alternative *in vivo* stable nanocapsules that have a diameter of 50 nm to 10 µm, display greater permeability of the envelope layer and are insensitive to detergent.

D1 solves the problem of *in vivo* liposome instability with respect to macrophages (column 15, lines 11 to 17) but not that of sensitivity to detergents.

Membrane-free nanocapsules produced by the method according to Claims 1 and 2 achieve the stated object and cannot be derived from the prior art. Dependent Claim 2 contains features which, combined with the features of Claim 1, meet the PCT novelty and inventive step requirements.

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

The features of Claim 2 appear to be essential to the definition of the invention (PCT Article 6 in conjunction with PCT Rule 6.3(b)).

Contrary to the requirements of PCT Rule 5.1(a)(ii), the description did not cite D1 and D2 and it did not briefly outline the relevant prior art contained therein.

INTERNATIONAL SEARCH REPORT

In. national Application No
PCT/EP 99/09744

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61K9/127 A61K9/50		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61K		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, EPO-Internal, CHEM ABS Data		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 834 556 A (NEIL P. DESAI, ET AL.) 10 November 1998 (1998-11-10) column 1, line 1 - line 14 column 13; example 8 column 14; example 10 -----	1, 4, 10, 12, 14, 15
A	EP 0 199 362 A (MASSACHUSETTS INSTITUTE OF TECHNOLOGY) 29 October 1986 (1986-10-29) the whole document -----	1-16
<input type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art *&* document member of the same patent family		
Date of the actual completion of the international search 16 October 2000		Date of mailing of the international search report 20/10/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patenttaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016		Authorized officer Ventura Amat, A

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 99/09744

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5834556 A	10-11-1998	US 5578442 A		26-11-1996
		AU 3816393 A		21-10-1993
		WO 9318649 A		30-09-1993
EP 199362 A	29-10-1986	US 4921757 A		01-05-1990

**VERTRAG FÜR DIE INTERNATIONALE ZUSAMMENARBEIT
AUF DEM GEBIET DES PATENTWESES**

PCT

INTERNATIONALER RECHERCHENBERICHT

(Artikel 18 sowie Regeln 43 und 44 PCT)

Aktenzeichen des Anmelders oder Anwalts P75199PC-Zie	WEITERES VORGEHEN	siehe Mitteilung über die Übermittlung des internationalen Recherchenberichts (Formblatt PCT/ISA/220) sowie, soweit zutreffend, nachstehender Punkt 5
Internationales Aktenzeichen PCT/EP 99/09744	Internationales Anmeldedatum (Tag/Monat/Jahr) 15/11/1999	(Frühestes) Prioritätsdatum (Tag/Monat/Jahr) 17/11/1998
Anmelder NOVOSOM GMBH et al.		

Dieser internationale Recherchenbericht wurde von der Internationalen Recherchenbehörde erstellt und wird dem Anmelder gemäß Artikel 18 übermittelt. Eine Kopie wird dem Internationalen Büro übermittelt.

Dieser internationale Recherchenbericht umfaßt insgesamt 2 Blätter.

Darüber hinaus liegt ihm jeweils eine Kopie der in diesem Bericht genannten Unterlagen zum Stand der Technik bei.

1. Grundlage des Berichts

- a. Hinsichtlich der Sprache ist die internationale Recherche auf der Grundlage der internationalen Anmeldung in der Sprache durchgeführt worden, in der sie eingereicht wurde, sofern unter diesem Punkt nichts anderes angegeben ist.
- Die internationale Recherche ist auf der Grundlage einer bei der Behörde eingereichten Übersetzung der internationalen Anmeldung (Regel 23.1 b)) durchgeführt worden.
- b. Hinsichtlich der in der internationalen Anmeldung offenbarten Nucleotid- und/oder Aminosäuresequenz ist die internationale Recherche auf der Grundlage des Sequenzprotokolls durchgeführt worden, das
- in der internationalen Anmeldung in schriftlicher Form enthalten ist.
 - zusammen mit der internationalen Anmeldung in computerlesbarer Form eingereicht worden ist.
 - bei der Behörde nachträglich in schriftlicher Form eingereicht worden ist.
 - bei der Behörde nachträglich in computerlesbarer Form eingereicht worden ist.
 - Die Erklärung, daß das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den Offenbarungsgehalt der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.
 - Die Erklärung, daß die in computerlesbarer Form erfaßten Informationen dem schriftlichen Sequenzprotokoll entsprechend, wurde vorgelegt.

2. Bestimmte Ansprüche haben sich als nicht recherchierbar erwiesen (siehe Feld I).

3. Mangelnde Einheitlichkeit der Erfindung (siehe Feld II).

4. Hinsichtlich der Bezeichnung der Erfindung

- wird der vom Anmelder eingereichte Wortlaut genehmigt.
- wurde der Wortlaut von der Behörde wie folgt festgesetzt:

5. Hinsichtlich der Zusammenfassung

- wird der vom Anmelder eingereichte Wortlaut genehmigt.
- wurde der Wortlaut nach Regel 38.2b) in der in Feld III angegebenen Fassung von der Behörde festgesetzt. Der Anmelder kann der Behörde innerhalb eines Monats nach dem Datum der Absendung dieses internationalen Recherchenberichts eine Stellungnahme vorlegen.

6. Folgende Abbildung der Zeichnung ist mit der Zusammenfassung zu veröffentlichen: Abb. Nr. _____

- wie vom Anmelder vorgeschlagen
- weil der Anmelder selbst keine Abbildung vorgeschlagen hat.
- weil diese Abbildung die Erfindung besser kennzeichnet.

k in der Abb.

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 99/09744

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 A61K9/127 A61K9/50

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
IPK 7 A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

WPI Data, EPO-Internal, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 834 556 A (NEIL P. DESAI, ET AL.) 10. November 1998 (1998-11-10) Spalte 1, Zeile 1 – Zeile 14 Spalte 13; Beispiel 8 Spalte 14; Beispiel 10 -----	1, 4, 10, 12, 14, 15
A	EP 0 199 362 A (MASSACHUSETTS INSTITUTE OF TECHNOLOGY) 29. Oktober 1986 (1986-10-29) das ganze Dokument -----	1-16

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- ° Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
16. Oktober 2000	20/10/2000
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Ventura Amat, A

INTERNATIONAL SEARCH REPORT

Info

on patent family members

International Application No

PCT/EP 99/09744

Patent document cited in search report	Publication date	Patent family member(s)			Publication dat
US 5834556 A	10-11-1998	US 5578442 A	AU 3816393 A	WO 9318649 A	26-11-1996 21-10-1993 30-09-1993
EP 199362 A	29-10-1986	US 4921757 A			01-05-1990

(12) NACH DEM VERTRAG UBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
25. Mai 2000 (25.05.2000)

PCT

(10) Internationale Veröffentlichungsnummer
WO 00/28972 A3

- (51) Internationale Patentklassifikation⁷: A61K 9/127, 9/50 (81) Bestimmungsstaaten (*national*): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (21) Internationales Aktenzeichen: PCT/EP99/09744 (84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
- (22) Internationales Anmeldedatum:
15. November 1999 (15.11.1999)
- (25) Einreichungssprache: Deutsch (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
198 52 928.7 17. November 1998 (17.11.1998) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): NOVOSOM GMBH [DE/DE]; Weinbergweg 22, D-06120 Halle (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): PANZNER, Steffen [DE/DE]; Unter dem Nussberg 8, D-06198 Kloschwitz (DE).
- (74) Anwalt: ZIEBIG, Marlene, K.; Gulde Hengelhaupt Ziebig, Schützenstrasse 15-17, D-10117 Berlin (DE).

Veröffentlicht:

- Mit internationalem Recherchenbericht.
— Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen.

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 21. Dezember 2000

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: NANOCAPSULES AND METHOD OF PRODUCTION THEREOF

(54) Bezeichnung: NANOKAPSELN UND VERFAHREN ZUR HERSTELLUNG DIESER

WO 00/28972 A3

(57) Abstract: The invention relates to nanocapsules with a size ranging between 50 nm and 10 µm diameter whose envelope layer consists of at least two different, cross-linked polymers P1 and P2. Optionally, a lipid layer may be present underneath said envelope layer. The inventive nanocapsules are produced by covalently cross-linking at least two different water-soluble polymers P1 and P2 on the surface of liposomes. Optionally, said liposomes are dissolved once the polymers are cross-linked. The inventive nanocapsules can carry biologically active compounds.

(57) Zusammenfassung: Die Erfindung betrifft Nanokapseln mit einer Grösse zwischen 50 nm und 10 µm Durchmesser, deren Hüllschicht aus mindestens zwei verschiedenen, miteinander vernetzten Polymeren P1 und P2 besteht, wobei gegebenenfalls unter dieser Hüllschicht noch eine Lipidschicht vorhanden ist. Die erfindungsgemässen Nanokapseln werden durch kovalente Vernetzung von mindestens zwei verschiedenen wasserlöslichen Polymeren P1 und P2 auf der Oberfläche von Liposomen hergestellt, wobei die Liposomen nach der Vernetzung gegebenenfalls aufgelöst werden. Die erfindungsgemässen Nanokapseln können biologisch aktive Verbindungen tragen.

In. ational Application No

PCT/EP 99/09744

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 A61K9/127 A61K9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, EPO-Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 834 556 A (NEIL P. DESAI, ET AL.) 10 November 1998 (1998-11-10) column 1, line 1 - line 14 column 13; example 8 column 14; example 10 -----	1,4,10, 12,14,15
A	EP 0 199 362 A (MASSACHUSETTS INSTITUTE OF TECHNOLOGY) 29 October 1986 (1986-10-29) the whole document -----	1-16

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

16 October 2000

20/10/2000

Name and mailing address of the ISA

 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Ventura Amat, A

INTERNATIO

SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 99/09744

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 5834556	A 10-11-1998	US	5578442	A 26-11-1996	
		AU	3816393	A 21-10-1993	
		WO	9318649	A 30-09-1993	
EP 199362	A 29-10-1986	US	4921757	A 01-05-1990	

INTERNATIONALER RECHERCHENBERICHT

In. nationales Aktenzeichen

PCT/EP 99/09744

A. Klassifizierung des Anmeldungsgegenstandes
IPK 7 A61K9/127 A61K9/50

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

WPI Data, EPO-Internal, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 834 556 A (NEIL P. DESAI, ET AL.) 10. November 1998 (1998-11-10) Spalte 1, Zeile 1 – Zeile 14 Spalte 13; Beispiel 8 Spalte 14; Beispiel 10 ----	1, 4, 10, 12, 14, 15
A	EP 0 199 362 A (MASSACHUSETTS INSTITUTE OF TECHNOLOGY) 29. Oktober 1986 (1986-10-29) das ganze Dokument -----	1-16

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindenscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
16. Oktober 2000	20/10/2000
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Ventura Amat, A

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 99/09744

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung
US 5834556 A	10-11-1998	US	5578442 A		26-11-1996
		AU	3816393 A		21-10-1993
		WO	9318649 A		30-09-1993
EP 199362 A	29-10-1986	US	4921757 A		01-05-1990

PCT

ORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁷ : A61K 9/127, 9/50		A2	(11) Internationale Veröffentlichungsnummer: WO 00/28972 (43) Internationales Veröffentlichungsdatum: 25. Mai 2000 (25.05.00)
(21) Internationales Aktenzeichen: PCT/EP99/09744		(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) Internationales Anmeldedatum: 15. November 1999 (15.11.99)			
(30) Prioritätsdaten: 198 52 928.7 17. November 1998 (17.11.98) DE			
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): NOVOSOM GMBH [DE/DE]; Weinbergweg 22, D-06120 Halle (DE).			
(72) Erfinder; und		Veröffentlicht	
(75) Erfinder/Anmelder (<i>nur für US</i>): PANZNER, Steffen [DE/DE]; Unter dem Nussberg 8, D-06198 Kloschwitz (DE).		<i>Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.</i>	
(74) Anwalt: ZIEBIG, Marlene, K.; Gulde Hengelhaupt Ziebig, Schützenstrasse 15-17, D-10117 Berlin (DE).			

(54) Title: NANOCAPSULES AND METHOD OF PRODUCTION THEREOF

(54) Bezeichnung: NANOKAPSELN UND VERFAHREN ZUR HERSTELLUNG DIESER

(57) Abstract

The invention relates to nanocapsules with a size ranging between 50 nm and 10 µm diameter whose envelope layer consists of at least two different, cross-linked polymers P1 and P2. Optionally, a lipid layer may be present underneath said envelope layer. The inventive nanocapsules are produced by covalently cross-linking at least two different water-soluble polymers P1 and P2 on the surface of liposomes. Optionally, said liposomes are dissolved once the polymers are cross-linked. The inventive nanocapsules can carry biologically active compounds.

(57) Zusammenfassung

Die Erfindung betrifft Nanokapseln mit einer Grösse zwischen 50 nm und 10 µm Durchmesser, deren Hüllschicht aus mindestens zwei verschiedenen, miteinander vernetzten Polymeren P1 und P2 besteht, wobei gegebenenfalls unter dieser Hüllschicht noch eine Lipidschicht vorhanden ist. Die erfindungsgemässen Nanokapseln werden durch kovalente Vernetzung von mindestens zwei verschiedenen wasserlöslichen Polymeren P1 und P2 auf der Oberfläche von Liposomen hergestellt, wobei die Liposomen nach der Vernetzung gegebenenfalls aufgelöst werden. Die erfindungsgemässen Nanokapseln können biologisch aktive Verbindungen tragen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauritanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Nanokapseln und Verfahren zur Herstellung dieser

5

Beschreibung

Die Erfindung betrifft Nanokapseln mit einer Größe zwischen 50 nm und 10 µm Durchmesser, deren Hüllschicht aus mindestens zwei verschiedenen, miteinander vernetzten Polymeren P1 und P2 besteht, wobei gegebenenfalls unter dieser Hüllschicht noch eine Lipidschicht vorhanden ist. Die erfindungsgemäßen Nanokapseln werden durch kovalente Vernetzung von mindestens zwei verschiedenen wasserlöslichen Polymeren P1 und P2 auf der Oberfläche von Liposomen hergestellt, wobei die Liposomen nach der Vernetzung gegebenenfalls aufgelöst werden. Die erfindungsgemäßen Nanokapseln können biologisch aktive Verbindungen tragen.

Nanokapseln oder Nanokugeln sind partikuläre Strukturen im Größenbereich zwischen 50 nm und 10 µm, bei denen eine Hüllschicht einen Binnenraum vom Außenmedium abgrenzt. Diese Eigenschaft unterscheidet Nanokapseln von Nanosphären; die letzteren besitzen einen einheitlichen Querschnitt. Strukturen mit gleichem Aufbau sind auch in größeren Dimensionen bekannt und werden dann als Mikrokapseln bezeichnet. Liposomen und Viruskapside sind weitere verwandte Strukturen der Nanokapseln.

Zur Herstellung von Nanokapseln lassen sich vorteilhaft Verfahren einsetzen, bei denen Vernetzungsreaktionen an Phasengrenzflächen ausgeführt werden. Der mögliche Nutzen solcher Partikel ist maßgeblich von der verwendeten Hüllschicht und dem Herstellungsverfahren abhängig. Bekannte Hüllschichten nach dem Stand der Technik sind solche aus vernetzten Proteinen oder Grenzflächenpolymerisate, insbesondere aus Derivaten der Acrylsäure.

10

Hüllschichten, die ganz oder teilweise aus Proteinen bestehen sind von besonderem Interesse, da sie biokompatibel und abbaubar ausgeführt werden können. Die zum Aufbau verwendeten Proteine sind strukturbildend, können aber auch aktivitätstragend sein. Solche Partikel sind zum Einschluß von Fremdstoffen sowie zur Bindung von anderen Komponenten an die Oberfläche geeignet. Aufgrund der natürlichen Vielfalt der einsetzbaren Proteine sind die Oberflächeneigenschaften in hohem Maße variabel und können unterschiedlichen Anforderungen angepaßt werden.

20

Membranen aus Surface-layer (S-layer)-Proteinen wurden (im EP 0154 620) beschrieben. Diese Membranen entstehen durch Rekristallisation der S-layer-Proteine in freier Lösung oder an der Oberfläche von Liposomen.

25

Im letzteren Fall ist der vorherige Einschluß von Makromolekülen möglich, die Liposomen werden durch das Aufbringen der Membran wesentlich stabilisiert (Kupcu, S., Sara, M. und Sleytr, U.B., Biochem. Biophys. Acta, 1235 (2): 263-269 (1995)). Bei flächig-kristallinem

30

Aufbau der Membranen ergeben sich Strukturen mit einer regelmäßigen Anordnung von gleichartigen Poren, die vorteilhaft bei der Ultrafiltration verwendet werden können.

Die ebenfalls regelmäßige Anordnung chemischer Gruppen auf der Oberfläche führt bei der Bindung von anderen Makromolekülen zu einer sehr homogenen Verteilung, die vorteilhaft bei der Anwendung in Detektionssystemen ist. Limitierend für den Einsatz in biologischen Systemen kann sich bei den Membranen der S-layer-Proteinen deren Immunogenität auswirken. S-layer-Proteine erzeugen eine starke Immunantwort und werden daher als Adjuvans verwendet (US 5 043 158). Zudem sind die S-layer-Proteine nicht selbst aktivitätstragend.

Die US-Patente US 5,498,421; US 5,635,207; US 5,650,156; US 5,665,383; US 5,639,473 sowie US 5,512,268 beschreiben die Herstellung und Nutzung von Hohlkugeln im Größenbereich bis 10µm, bei denen an der Phasengrenze zu einem nicht wassermischbaren Kern eine Hüllschicht ausgebildet wird. Diese Hüllschicht wird durch Disulfidbrücken stabilisiert und kann aus Proteinen, insbesondere Hämoglobin oder Albumin oder anderen thiolhaltigen Polymeren gebildet werden. Die Emulgierung der nichtmischbaren Phase wird durch starken Ultraschall bewirkt. Bei diesem Vorgang bildet sich unter anderem Wasserstoffperoxid, dass zu einer oxidativen Vernetzung der Hüllkomponenten führt.

Aus Hämoglobin hergestellte Partikel sind zur Aufnahme und Abgabe von Sauerstoff fähig, allerdings mit anderem

Hill-Koeffizienten als natürliches Hämoglobin. Sie lassen sich als Blutersatz verwenden.

In anderen Verwendungen werden Gase oder Kontrastmittel in die Partikel eingeschlossen und bei bildgebenden Verfahren in der Medizin eingesetzt. In wieder anderen Verwendungen wird die Verpackung biologisch wirksamer Substanzen beschrieben, insofern diese ohne Verlust ihrer Aktivität in der inneren Phase gelöst oder emulgiert werden können. Für eine Verpackung von hydrophilen Makromolekülen wie Proteinen oder Nukleinsäuren ist das Verfahren daher nur bedingt geeignet.

Weitere Hohlkugeln im Nanometerbereich lassen sich durch wiederholte Abscheidung von Polyelektrylyten auf kolloidal gelösten Partikeln darstellen (Caruso, F.; Caruso, R.A. und Möhwald, H. (1998) Science 282:1111-1113). Im Beispiel werden sehr kleine Silicapartikel im Wechsel mit Poly(diallyldimethylammoniumchlorid) auf einer Polystyrenmatrix abgeschieden. Diese Matrix kann anschließend durch Kalzinierung oder Lösungsmittel entfernt werden, so dass die Hohlkugeln zurückbleiben.

Es ist bekannt, Liposomen und Nanokapseln zum Einschluß von biologisch aktiven Verbindungen einzusetzen, etwa bei pharmazeutischen Formulierungen. Sie können ihr Cargo an einen Wirkort bringen oder dieses über einen längeren Zeitraum freisetzen. Die umgebende Membran kann den eingeschlossenen Wirkstoff vor Abbau oder Inaktivierung schützen.

Die Natur des eingeschlossenen Wirkstoffes, insbesondere seine Löslichkeit und sein Molekulargewicht sind in weiten Grenzen variierbar. Liposomen sind darüberhinaus wegen ihrer immunologischen Verträglichkeit besonders geeignete Systeme für die Verpackung pharmazeutischer Wirkstoffe.

Besonders gestaltete Liposomen können zur Einbringung von Nukleinsäuren in Säugetierzellen benutzt werden. In einer vorteilhaften Variante dieser Technik werden 10 Lipid-Nukleinsäure-Komplexe unter der Verwendung kationischer Lipide erzeugt und die zu behandelnden Zellen damit transfiziert. Die Transfektion ist einfach, aber wenig effektiv un unspezifisch.

In einer andern Ausgestaltung werden pH-sensitive 15 Liposomen auf dem endozytotischen Weg von den Zielzellen aufgenommen. Im sauren Kompartiment der Endosomen fusionieren diese mit der umgebenden Membran und bringen auf diesem Wege ihr Cargo in das Zellinnere. Mit diesem Verfahren lassen sich auch 20 Proteine und andere Wirkstoffe in das Zellinnere transportieren.

Liposomen können auch als Detektionssysteme mit hoher 25 Signalverstärkung verwendet werden (US 4 622 294). Die Signalverstärkung wird in diesem Fall durch die hohe Anzahl von eingeschlossenen Enzymmolekülen im Verhältnis zur detektierten Spezies erreicht. Nachteilig bei der Verwendung von konventionellen Liposomen ist deren 30 Empfindlichkeit gegenüber Detergenzien, die bei veränderten Anwendungen zur Unterdrückung unspezifischer Wechselwirkungen eingesetzt werden.

Die bekannten Hohlkugeln haben folgende Nachteile:

5 Die Hohlkugeln, die auf der Verwendung von S-layern beruhen, weisen einen wäßrigen Binnenraum und eine definierte Permeabilität der Hüllschicht auf. Die Möglichkeit zur Verpackung hydrophiler Makromoleküle ist gegeben. Nachteilig ist aber die Beschränkung der nutzbaren Verbindungen auf die S-layer-Proteine. Diese sind nicht aktivitätstragend und zeigen antigene Wirkung.

10 15 Beim Verfahren nach US 5 498 421 und den anderen genannten US-Schriften entsteht eine funktionelle Hüllschicht aus Proteinen in einer Phasengrenze. Das System ist nur bedingt für den Einschluß von hydrophilen Makromolekülen geeignet. Die Komponenten der Hüllschicht sind sehr starr miteinander vernetzt, daraus resultiert eine Veränderung der Eigenschaften 20 beim verwendeten Hämoglobin. Die nutzbaren Komponenten zum Aufbau der Hülle sind auf solche Polymere beschränkt, die eine Vielzahl von Thiolfunktionen besitzen und sich an den verwendeten Phasengrenzflächen anlagern.

25 Nachteilig bei konventionellen liposomalen Systemen ist ihre geringe mechanische und in-vivo Stabilität. Die Partikel werden innerhalb kurzer Zeit von Makrophagen des retikuloendothelialen Systems aufgenommen und somit aus der Zirkulation entfernt.

Aufgabe der Erfindung war es deshalb, Nanokapseln bereitzustellen, die die genannten Nachteile nicht aufweisen.

Erfindungsgemäß gelingt dies durch Nanokapseln mit einer Größe zwischen 50 nm und 10 µm im Durchmesser, die durch kovalente Vernetzung von zwei verschiedenen wasserlöslichen Polymeren P1 und P2, die eine größere Anzahl funktioneller Gruppen aufweisen, auf der Oberfläche von Liposomen hergestellt wurden. Das Verfahren zur Herstellung der erfindungsgemäßen Nanokapseln ist dadurch gekennzeichnet, daß zunächst Liposomen hergestellt werden, diese mit einem Polymer P1 beschichtet werden, indem das Polymer P1 in wäßriger Lösung an die Liposomenoberfläche gebunden wird und dann das aufgebrachte Polymer P1 mit einem von P1 verschiedenen Polymer P2 in wäßriger Lösung kovalent vernetzt wird und gegebenenfalls noch weitere Polymerschichten durch Vernetzung aufgebracht werden.

Als Ausgangsmaterial werden Liposomen verwendet, deren Größe die der entstehenden Nanokapseln bestimmt. Geeignete Methoden zur Herstellung solcher Liposomen sind an sich bekannt.

Eine vorteilhafte Variante der Herstellung von Liposomen umfaßt die Auflösung der Membranbestandteile in Ethanol und die Mischung der Lösung mit Wasser oder wäßrigen Pufferlösungen. Aus den so gewonnenen multilamellaren Liposomen werden durch Behandlung im Hochdruckhomogenisator (French Press) kleinere uni-

oder oligolamellare Vesikel mit enger Größenverteilung hergestellt.

Eine Variation dieser Technik ist die Passage der multilamellaren Ausgangsliposomen durch isopore Membranen, die ebenfalls zur Entstehung von uni- und oligolamellaren Liposomen mit enger Größenverteilung führt.

Nach einem andern Verfahren werden uni- und oligolamellare Liposomen aus einer Detergens-Lipid Phase durch Entfernung des Detergens hergestellt. Das kann durch Gelfiltration oder Dialyse erreicht werden.

Erfindungsgemäß müssen die verwendeten Liposomen die Bindung des wasserlöslichen Polymers P1 ermöglichen. Methoden für die kovalente Kopplung in wässrigen Medien sind dem Fachmann bekannt (G.Hermanson, Bioconjugate Techniques, Academic Press 1996) und beinhalten die heterofunktionelle oder homofunktionelle Verknüpfung von Amino-, Thiol-, Hydrazo-, Hydroxy-, Azidwasserstoff-, Aldehyd-, Carboxylgruppen oder von deren aktivierten Estern in geeigneten Kombinationen.

Liposomen können solche funktionellen Gruppen enthalten. Alternativ können durch chemische Modifikation der Lipidbestandteile solche Gruppen auf der Oberfläche von Liposomen erzeugt werden.

Zu den geeigneten membranbildenden oder membranständigen Verbindungen mit solchen Gruppen gehören unter anderem: Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerol, Phosphatidylinositol und die Derivate dieser Verbindungen, insbesondere solche mit

freier Thiol-, Amino-, Carboxyl-, Aktivester- oder Aldehydfunktion. Weitere geeignete Verbindungen sind amphiphile Moleküle mit den genannten funktionellen Gruppen, die sich in die Lipidschicht einlagern, ohne diese dabei zu zerstören. Dazu gehören unter anderem: Alkylamine, Alkylthiole und Fettsäuren sowie die aktivierte Ester solcher Fettsäuren. Weitere geeignete Verbindungen sind Sterolderivate, wie z. B. Cholsäuren, Deoxycholsäuren, Thiocholesterol und ähnliche Verbindungen.

Die Oberfläche von Liposomen kann durch Einführung reaktiver Gruppen chemisch modifiziert werden. Dazu gehören die Aktivester von membranständigen Carboxylfunktionen, etwa deren N-Hydroxysuccinimidster. Dazu gehören weiterhin Aldehydfunktionen, die sich etwa durch Behandlung von membranständigen Aminfunktionen mit Glutaraldehyd oder durch Oxidation glykosylierte Lipide erzeugen lassen. Dazu gehören weiterhin Thiolfunktionen, die sich etwa durch Reaktion membranständiger Aminofunktionen mit 2-Iminothiolan erzeugen lassen. Dazu gehören weiterhin membranständige 2-Pyridyldithionate oder Maleimide oder Haloacetylene, die sich durch geeignete heterobifunktionelle Reagenzien erzeugen lassen.

Die Erzeugung solcher reaktiver Gruppen wird vorteilhaft nach der Herstellung der Liposomen durchgeführt, um diese Gruppen auf die Außenseite der Liposomen zu beschränken. Werden solche reaktiven Gruppen an membranbildenden oder membranständigen Komponenten bereits zur Bildung der Liposomen verwendet, so ist eine im

Einzelfall nachteilige Reaktion mit eingeschlossenen Cargomolekülen möglich.

Homo- oder heterofunktionelle Verknüpfungen zwischen Amino-, Thiol-, Hydrazo-, Aldehyd-, Carboxyl-, Aktivester-, Hydroxyl- oder Azidwasserstoffgruppen werden vorteilhaft unter Zuhilfenahme von Hilfsstoffen ausgeführt. Dazu sind die in der Proteinchemie gebräuchlichen bifunktionellen Quervernetzer geeignet, wie z. B. Isothiocyanat, Isocyanate, Acylazide, N-Hydroxysuccinimidester, Sulfonylchide, Aldehyde, Epoxide, Carbonate, Imidoester, Carbodiimide, Anhydride, Haloacetylene, Alkylhalide, Maleimide, Aziridine, Pyridiyldisulfide, Diazoalkane, Diazoacetylene, Carboyl-diimidazole, N-Hydroxysuccinimidylchloroformate oder Verbindungen, die diese funktionellen Gruppen in geeigneten Kombinationen enthalten. Eine gebräuchliche Variante der Kopplung zwischen Amino- und Carboxylgruppen beinhaltet die Derivatisierung des Carboxyls in einem reaktiven Ester, etwa unter Verwendung von N-Hydroxysuccinimid. Diese Derivatisierung kann am Polymer oder am Liposom erfolgen.

Für eine nicht kovalente Kopplung insbesondere von Proteinen sind Chelatkomplexe geeignet. Proteine für eine solche Kopplung können solche sein, die natürlicherweise Chelatkomplexe bilden, etwa die DNA bindenden Zn-Fingerproteine. Mit Hilfe rekombinanter DNA-Techniken lassen sich aber auch chelatisierende Sequenzen in Proteine einfügen. Ein allgemein bekanntes Beispiel sind die als His-tag bekannten Hexahistidin-extensionen an den N- oder C-Termini von Proteinen.

Solche Proteine können in Anwesenheit von Ionen der Übergangsmetalle an chelatisierende Lipidschichten binden. Diese Lipidschichten können durch den Einbau solcher amphiphiler Verbindungen erzeugt werden, die in ihrem polaren Teil die Trinitriloessigsäure oder die Diiminoessigsäure enthalten.

Ist das Polymer P1 ein Polymer mit hinreichender Affinität zur Lipidschicht, so ist kein distinkter
10 Kopplungsschritt notwendig.

Zu den geeigneten Polymeren P1 gehören daher integrale und periphere Membranproteine, aber auch solche Polymere, deren Affinität zur Membran durch eine nachträgliche Modifizierung erhöht wurde. Methoden zu
15 einer solchen Modifizierung beinhalten die Dotierung von Polymeren mit funktionalisierten Alkylresten, etwa die Behandlung mit N-Hydroxysuccinimidestern langketten-er Fettsäuren oder auch die kovalente Kopplung von Phospholipiden. Eine solche Kopplung kann über
20 vorhandene Amino-, Thiol- oder Carboxylgruppen unter Zuhilfenahme von homo- oder heterobifunktionellen Vernetzern erreicht werden, wobei das Phospholipid durch Detergenzien in Lösung gehalten wird. An
glykosylierten Proteine lassen sich durch Oxidation
25 Aldehydfunktionen erzeugen, die zur Kopplung an lipidständige Aminofunktionen genutzt werden können. Hierbei ist kein Hilfsstoff notwendig.

Analoge Modifizierungen sind auch an anderen natürlichen und synthetischen Polymeren möglich.

Synthetische Polymere können eine erhöhte Affinität zur Membran besitzen, wenn bei ihrer Herstellung amphiphile Komonomere zugemischt werden.

Proteine können auch durch molekularbiologische Verfahren in ihren Eigenschaften so verändert werden, daß sie zu integralen oder peripheren Membranproteinen werden.

Eine elektrostatische Aufkonzentrierung von P1 an der Lipidschicht ist vorteilhaft für die Ausführung des Kopplungsschritts. Dazu kann die Lipidschicht mit geeigneten ionischen Komponenten dotiert werden. Zu den geeigneten Komponenten gehören Alkylcarbonsäuren, Alkylsulfonsäuren, Alkylamine, Alkylammoniumsalze, Phosphorsäureester mit langkettigen Alkoholen, aber auch natürliche oder synthetische geladene Lipide, wie etwa Phosphatidylglycerol, Phosphatidylserin, geladene Derivate des Phosphatidylethanolamins oder Cholesteols, Phosphatidylinositol, Cardiolipin oder Sphingolipide.

Zur erfindungsgemäßen Ausbildung von Nanokapseln sollte eine hohe Beladung der Liposomen mit dem Polymer erreicht werden. Andererseits gilt es, die Bildung von Aggregaten möglichst zu unterdrücken. Wo möglich, sollten Lipidschicht und Polymer daher unterschiedliche funktionelle Gruppen besitzen. So können thiolhaltige Lipidschichten mit einer Vielzahl von thiolfreien Polymeren beschichtet werden, unter anderem auch mit Proteinen, die keine freie Thiolfunktion besitzen. Gerade bei der Verwendung von Proteinen als Polymer P1 läßt sich dies nicht immer bewerkstelligen. Unter

diesen Umständen können vorteilhaft solche heterobifunktionellen Reagenzien als Hilfsstoffe eingesetzt werden, bei denen sich stabile Intermediate isolieren lassen, die dann eine gerichtete Reaktion ermöglichen.

5

Ein nach der Bindung eventuell vorhandener Überschuß an Polymer P1 kann durch geeignete Maßnahmen wie etwa Dialyse, Tangentialdialyse, Flotation, Gelfiltration oder Ultrafiltration entfernt werden.

10

In einem folgenden Schritt wird das Polymer P1 durch ein davon verschiedenes Polymer P2 kovalent vernetzt. Die dafür eingesetzten Hilfsstoffe und Verfahren entsprechen denen für die kovalente Fixierung von P1. Die Verwendung von Hilfsstoffen entfällt, wenn P1 und P2 von sich aus kovalente Verbindungen eingehen können. Das ist beispielsweise der Fall, wenn P1 oder P2 ein polyfunktionelles Aldehyd und der andere Partner ein polyfunktionelles Amin oder Hydrazin sind.

15

Sowohl P1 als auch P2 sind wasserlösliche Polymere, die eine größere Anzahl funktioneller Gruppen wie Amino-, Carboxyl-, Thiol, Hydrazo-, Hydroxyl-, Azidwasserstoff-, Aldehyd- oder Aktivestergruppen besitzen.

20

Dazu gehören insbesondere Polysaccharide wie Alginsäure, Chitosan, Pektin, Hyaluronsäure, Polymannuronsäure, Heparin, Gummi Arabicum, Karajagummi, Xanthangummi, Karragenan, Locus Bean Gum und die Salze dieser Verbindungen sowie carboxylierte, aminierte,

25

thionylierte hydrazylierte oder oxidierte Dextrane, Stärken, Levane, Inuline oder Agarosen.

Dazu gehören auch das Polymerisationsprodukt des Glutaraldehyds und andere polyfunktionelle Aldehyde.

5 Dazu gehören weiterhin natürliche oder synthetische Proteine oder Peptide oder Homo- oder Heteropolymere aus Aminosäuren, die über mehrere freie Amino-, Carboxyl- oder Thiolgruppen verfügen.

10 Dazu gehören Polyacrylsäuren, Polyacrylamide, Poly-methacrylsäure, Polymethacrylamide, Polyvinylpyrrolidone, Polyhydroxyethylacrylate, Polyhydroxymethylacrylate, Polyethylenimine und verzweigte Polyethylenglykole, die über mehrere freie Amino-, Carboxyl- oder Thiolgruppen verfügen. Diese funktionellen Gruppen 15 können durch Copolymerisation oder durch nachträgliche Modifizierung eingefügt werden.

Vorteilhafte Varianten der Erzeugung solcher Copolymere sind in Hansen (Analytical Biochemistry 76:37 (1976)) 20 oder in O'Connell und Brady (Analytical Biochemistry 76: 63 (1976)) beschrieben. Dabei wird Polyacrylamid in Gegenwart von spaltbaren Biacrylen polymerisiert. Hansen verwendet dazu N,N'-bis(Acryloyl)-Cystamin und spaltet das entstandene Gel reduktiv. Es entsteht ein 25 Polythiol auf Acrylbasis, dass sich hervorragend zur Vernetzung im Sinne dieser Erfindung eignet. O'Connell und Brady setzen ein bifunktionelles Acrylamid mit zwei vicinalen Hydroxyfunktionen ein, die anschließend oxidativ gespalten werden. Es entsteht ein multi-valenter Aldehyd, mit dem sich vernetzte Hüllschichten 30 aufbauen lassen.

Es gehören weiterhin dazu Mischformen der aufgeführten Verbindungen wie glykosillierte Proteine, posttranslational modifizierte Proteine, Proteinkomplexe mit anderen Naturstoffen, Kopolymere aus Zuckern und Acrylaten und verwandte Verbindungen, insofern als alle diese Verbindungen wasserlöslich sein müssen und nicht selbst micellare oder vesikuläre Strukturen bilden.

Es gehören weiterhin dazu modifizierte Polymere P1 oder P2, die zur Ausbildung von Chelatkomplexen befähigt sind oder die eine Affinität zu Lipidschichten haben. Dazu gehören auf chemischem Wege erzeugte Derivate der bis hierher genannten Polymere. Dazu gehören auch solche synthetische Polymere, die ein amphiphiles oder ein chelatisierendes Comonomer enthalten. Dazu gehören auch gentechnisch veränderte Proteine mit chelatisierenden Eigenschaften.

Ein wichtiger Anwendungsfall besteht darin, daß eines der Polymere P1 oder P2 ein Protein ist.

Vorzugsvarianten sind solche, bei denen dieses Protein ein Albumin, ein Hämoglobin, ein Myoglobin, ein Antikörper, α_2 -Makroglobulin, Fibrinogen, Fibronectin, Collagen, Vitronectin, Protein A, Protein G, Avidin, Streptavidin, Concanavalin A, Wheat Germ Agglutinin oder ein Selektin ist.

Vorteilhaft ist es, wenn eines der Polymere P1 oder P2 eine fädige Struktur aufweist. Das ist bei vielen

Kohlenhydraten der Fall oder bei Polymeren der Acrylsäure oder ihrer Derivate.

Das Polymer kann auch fluoreszierende Eigenschaften haben oder diese durch Modifizierungen erhalten. Ein geeigneter Stoff mit solchen Eigenschaften ist das Green Fluorescent Protein. Andere Proteine oder Kohlenhydrate lassen sich mit fluoreszierenden Stoffen modifizieren. Geeignete Methoden dazu sind dem Fachmann an sich bekannt und beinhalten die kovalente Bindung des aktivierten Fluorophors an entsprechende Gruppen des Polymers oder die Komplexbildung von fluoreszierenden Metallionen mit chelatisierenden Gruppen des Polymers. Nanokapseln lassen sich auch nachträglich mit fluoreszierenden Stoffen modifizieren.

Freie Nukleinsäuren gehören nicht zu den geeigneten Polymeren.

Da das Polymer P1 an der Oberfläche der Liposomen eine lokal weit höhere Konzentration als in freier Lösung aufweist, geht die Vernetzung vorzugsweise an der Oberfläche vonstatten. Reste von P1 in freier Lösung können mit dem Polymer P2 ebenfalls vernetzt werden und Partikel bilden. Freies P2 und freie P1-P2-Partikel lassen sich von den beschichteten Liposomen durch Dialyse, Tangentialdialyse, Flotation, Gelfiltration oder Ultrafiltration abtrennen.

Nach Beschichtung und Vernetzung erhält man Hohlkugeln, bei denen eine innere Lipidmembran mit einer äußeren

polymeren Hülle umgeben ist. Diese Hülle verändert die Oberflächeneigenschaften der Liposomen und erhöht deren Stabilität.

5 In einer bevorzugten Variante der Erfindung werden Nanokapseln hergestellt, bei denen die Liposomen nach der Vernetzung aufgelöst wurden. Dies kann vorzugsweise durch Auswaschen mit einem Detergenz erfolgen.

10 Dabei kommt es auch zur Freisetzung von solchen Polymeren P1 oder P2, die lediglich an der Lipidschicht, nicht aber untereinander gebunden sind, sowie zum Zerfall nicht hinreichend vernetzter Strukturen. Die Nanokapseln lassen sich von diesen 15 Zerfallsprodukten durch Sedimentation, Gelfiltration oder Ultrafiltration abtrennen. Geeignete Detergenzien sind alkylierte Zucker wie etwa Octylglucosid, Salze der Cholsäure und ihrer Derivate, Alkylsulfonsäuren oder Polyoxyethylensorbitole.

20 Hohlkugeln im Nanometerbereich im Sinne dieser Erfindung bestehen aus den beiden Polymeren P1 und P2. Die formgebenden Liposomen können erhalten bleiben oder entfernt werden. Die Größe der entstandenen Hohlkugeln 25 wird durch die der eingangs verwendeten Liposomen bestimmt.

Die in der vorliegenden Erfindung beschriebenen Nanokapseln sind zum Einschluß von biologisch aktiven Verbindungen, beispielsweise von pharmazeutischen Wirk-

stoffen oder von Proteinen oder Nukleinsäuren, geeignet.

In diesem Fall werden Liposomen verwendet, welche die einzuschließenden Stoffe bereits enthalten. Methoden zur Herstellung solcher Liposomen sind dem Fachmann bekannt. Die einzuschließenden Verbindungen sind lediglich insofern eingeschränkt als sie die Integrität der Liposomen nicht nachteilig beeinflussen dürfen, wie etwa Detergenzien. Die eingeschlossenen Verbindungen verbleiben bei den weiteren Reaktionsschritten des Aufbringens von P1 und P2 in den Liposomen.

In die erfindungsgemäßen Nanokapseln können synthetisch chemische Verbindungen, Proteine, Peptide, Vitamine, Hormone, Kohlenhydrate oder Nukleinsäuren sowie Gemische derselben eingeschlossen werden, die beispielsweise als Antibiotika, Fungizide und antivirale Agenzien, Antikörper, Zytostatika und Immunsuppressiva, Analgetika, Anästhetika, Antidepressiva, Antidiabetika, Antihypertensika, Antikoagulationen, antiinflammatorische, angstlösende, sedative, antiarrhythmische, antiarthritische Wirkstoffe, Bronchodilatoren, hypoglykämische und hypolipidämische Wirkstoffe sowie Wirkstoffe zur Stimulierung der Erythropoese dienen können.

Die Permeabilität der Hüllschicht der Nanokapseln wird durch das Auswaschen der Liposomen wesentlich erhöht. Dieser Prozeß beinhaltet die Passage von Detergensmolekülen und Mischmicellen durch die äußere

Hüllschicht. In gleicher Weise können Substrate und Produkte einer im Innern der Nanokapsel stattfindenden Reaktion ausgetauscht werden. Eine Anordnung zur Durchführung solcher Reaktionen besteht vorzugsweise aus Nanokapseln mit im Inneren befindlichen enzymatisch aktiven Stoffen mit hohem Molekulargewicht, deren Liposomen durch Detergenzien ausgewaschen wurden. Geeignete Stoffe für einen solchen Einschluß sind insbesondere Enzyme oder Ribozyme.

In einer anderen Variante dieser Ausgestaltung der Erfindung bleibt die Lipidschicht erhalten. In dieser Ausgestaltung können nur solche Stoffe ausgetauscht werden, die durch die Lipidschicht diffundieren.

In einer vorteilhaften Ausgestaltung der Erfindung werden solche Polymere zum Aufbau der Hüllschicht verwendet, die nicht nur strukturbildend, sondern auch aktivitätstragend sind. Solche Hullen können zum Beispiel Bindungseigenschaften für andere Moleküle oder katalytische Eigenschaften besitzen. Unter den Proteinen finden sich solche Polymere mit strukturbildenden und aktivitätstragenden Eigenschaften.

In einer Variante dieser erfinderischen Ausgestaltung wird Hämoglobin zum Aufbau der Hüllstruktur benutzt. Die entstehenden Nanokapseln können als Blutersatz verwendet werden.

In einer andern Variante dieser Ausgestaltung wird die Hüllschicht unter Verwendung von solchen Proteinen hergestellt, die häufig vorkommende Merkmale anderer Proteine erkennen und binden können. Geeignete Proteine

für diesen Zweck sind Lektine, biotinbindende oder antikörperbindende Proteine. Mit dieser Variante der Erfindung werden Nanokapseln erzeugt, die Glykosylierungen, antigene Epitope oder Biotingruppen auf Proteinen erkennen können und diese Proteine hochspezifisch binden. Solche Nanokapseln sind von Interesse für die biochemische Diagnostik. Nanokapseln mit einem solchen Aufbau können aber auch für eine zielgesteuerte Applikation von Arzneistoffen benutzt werden.

Zu den hochspezifischen Molekülen gehören daher insbesondere solche, die mit der Oberfläche von Zellen interagieren können. Komplementäre Paare in diesem Sinne sind Antikörper und membranständige Antigene, Lektine oder Selektine und membranständige Glykosylierungen, Hormone und deren Rezeptoren und andere mehr.

Vorteilhaft ist der modulare Aufbau der Strukturen, der zum einen die Erzeugung einer offenen Anzahl von Spezifitäten auf einigen wenigen Hüllschichten erlaubt, zum anderen einen sehr ökonomischen Einsatz der letztlich spezifitätsbestimmenden Komponenten gestattet.

Darüber hinaus kommen diese Komponenten nicht mit den zur Vernetzung verwendeten Chemikalien in Kontakt, die Gefahr einer Inaktivierung ist daher nicht gegeben. Die Valenz der erhaltenen Struktur, das heißt die Anzahl der oberflächlich gebundenen spezifischen Komponenten lässt sich leicht durch Titration verändern. Eine hohe Dichte dieser Komponenten ist gleichbedeutend mit einer hohen Avidität und ermöglicht stabile Interaktionen

auch bei ungünstigen Bindungskonstanten der einzelnen Wechselwirkung, wie sie etwa zwischen MHC-Komplexen und T-Zell-Rezeptoren gegeben ist.

5 In einer weiteren vorteilhaften Ausgestaltung der Erfindung werden Nanokapseln nach ihrer Entstehung mit weiteren Stoffen modifiziert. Eine wichtige Variante dieser Ausgestaltung ist die Modifizierung der Oberfläche der Nanokapseln mit Polyethylenglykol. Eine
10 solche Beschichtung führt zu Partikeln mit einer verbesserten Verträglichkeit bei pharmazeutischen Anwendungen.

15 Figur 1 zeigt ein Schema zur Herstellung der erfindungsgemäßen Nanokapseln:

20 Liposomen (1) werden zunächst mit dem Polymer P1 beschichtet (2). Anschließend wird diese Schicht durch eine anderes Polymer P2 vernetzt (3). Die formgebenden Liposomen können durch Detergenzien entfernt werden (4).

25 Die Verwendung der erfindungsgemäßen Nanokapseln erfolgt vor allem als Container und Transporter für biologisch wirksame Stoffe.

30 In einer bevorzugten Verwendung kommen insbesondere solche Stoffe mit enzymatischer Aktivität zum Einsatz, deren Substrate und Produkte durch die Hüllschicht ausgetauscht werden können.

Nanokapseln im Sinne der vorliegenden Erfindung besitzen eine diffusionsoffene Struktur, die den Austausch von Molekülen mit signifikanter Größe, etwa beim Herauslösen der Lipidschicht, zuläßt. Große Moleküle wie etwa Enzyme werden jedoch von der Hüllschicht zurückgehalten. In weiteren erfindungsgemäßen Verwendungen der Nanokapseln sind diese mit solchen Enzymen gefüllt, die Reaktionen katalysieren, deren Substrate und Produkte die Hüllschicht passieren können. Diese Art der Verpackung eines biologischen Makromoleküls in Nanokapseln hat gegenüber dem Stand der Technik den Vorteil extrem geringer Diffusionswege und einer damit verbundenen Erhöhung der spezifischen Aktivität des eingeschlossenen Enzyms. Darüber hinaus kann die Einwirkung von vernetzenden Agenzien, wie sie bei der chemischen Fixierung auftritt, vermieden werden.

In einer weiteren erfindungsgemäßen Verwendung werden signalgebende Systeme, wie etwa Meerrettich-Peroxidase oder alkalische Phosphatase oder fluoreszensmarkierte Makromoleküle, in solche Nanokapseln eingeschlossen, die spezifische Bindungseigenschaften gegenüber anderen Stoffen aufweisen. Solche Systeme sind zur Detektion dieser anderen Stoffe geeignet, insbesondere in der medizinischen oder biochemischen Diagnostik. Vorteilhaft gegenüber den Liposomen ist die Tatsache, daß Nanokapseln stabil gegenüber Detergenzien sind, insbesondere auch gegenüber solchen Detergenzien, die zur Unterdrückung unspezifischer Bindungen in solchen

Verfahren eingesetzt werden, wie etwa Tween 20 oder Triton X-100.

In einer Variante dieser erfindungsgemäßen Verwendung sind die Nanokapseln selbst Träger des signalgebenden Systems. Vorteilhaft werden Nanokapseln präpariert, deren Polymere fluoreszierende Eigenschaften besitzen. Dabei werden fluoreszierende Derivate von P1 und/oder P2 zum Aufbau der Nanokapseln verwendet oder die Nanokapseln nach ihrer Herstellung mit fluoreszierenden Stoffen kovalent verbunden.

Die hier beschriebenen Strukturen sind als Träger für pharmazeutische Wirkstoffe im Sinne des drug delivery, im Sinne eines Transfervektors, im Sinne eines Depotsystems oder bei einer Enzymersatztherapie geeignet. Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäß hergestellten Nanokapseln zur Herstellung von pharmazeutischen Zubereitungen, die der Applikation von Wirkstoffen - wie oben beschrieben - dienen. Bei einer anderen Verwendung in Detektionssystemen, also in der biochemischen Diagnostik, ist die Stabilität der Struktur gegenüber Detergenzien von wesentlichem Vorteil, da solche Stoffe üblicherweise zur Unterdrückung unspezifischer Interaktionen eingesetzt werden.

In einer erfindungsgemäßen Verwendung der Nanokapseln sind diese so beschaffen, daß sie spezifisch an Zielzellen von Säugetieren binden. Nanokapseln im Sinne

dieser Verwendung besitzen eine oder mehrere Klassen von Liganden auf ihrer Oberfläche, deren komplementäre Bindungspartner sich auf der Oberfläche der Zielzellen befinden. Nanokapseln mit solchen Eigenschaften sind 5 Träger für Therapeutika, die diese an eine definierten Wirkort dirigieren. Die innere Lipidschicht der Hohlkugeln kann bei dieser Verwendung erhalten bleiben, wenn es dem Einschluß der zu transportierenden Substanz dienlich ist.

10 In einer Variante dieser erfindungsgemäßen Verwendung enthalten die Nanokapseln Stoffe, gegen die eine Immunantwort ausgelöst werden soll.

In einer weiteren vorteilhaften Variante dieser Ausgestaltung der Erfindung werden die Nanokapseln zum 15 Transfer von Wirkstoffen in das Cytosol von Säugetierzellen benutzt. Diese Nanokapseln sind so beschaffen, dass sie von Säugetierzellen endozytiert werden. Nanokapseln für diese Ausgestaltung der Erfindung bestehen aus einer Hüllschicht, die von den 20 Hydrolasen des Endosoms abgebaut werden kann. Sie werden darüberhinaus aus solchen Liposomen hergestellt, deren Membran mit der des endozytotischen Vesikels fusionieren kann. Vorteilhaft bei dieser Ausgestaltung der erfinderischen Lehre ist die Tatsache, dass eine 25 solche Fusion nicht zu einer Freisetzung lytischer endosomaler Aktivitäten in das Zellinnere führen kann. Nanokapseln für diesen Verwendungszweck können mit unterschiedlichen Wirkstoffen beladen werden. Der beschriebene Transportweg ist jedoch von besonderem 30 Vorteil beim Transport nicht membrangängiger biologischer Makromoleküle, wie etwa Proteine, Peptide,

Antikörper, Enzyme, Oligonukleotide, DNA, RNA, Hormone, aber auch von Antibiotika, Fungiziden und antivirale Agenzien sowie von Zytostatika.

5 Nanokapseln gemäß der hier vorliegenden Erfindung sind hydrophile, permeable und detergensstabile Strukturen aus vernetzten Polymeren, die sich aufgrund der Vielzahl von verwendbaren Komponenten für eine große Zahl von Anwendungen spezifizieren lassen. Die
10 vorliegende Erfindung erweitert erheblich das Spektrum solcher Stoffe, die sich als Trägermaterialien im Sinne eines drug targeting, eines Transfervektors, einer Depotform oder für eine Enzymersatztherapie verwenden lassen. Dabei können die verwendeten Komponenten sowohl
15 strukturbildend als auch aktivitätstragend sein. Die beschriebenen Hohlkugeln lassen sich aus Stoffen mit einer antigenen Wirkung herstellen oder aus solchen, die keine Immunantwort hervorrufen.

20 Benutzt man die hier beschriebene Struktur zum Einschluß von Enzymen, so ist durch die diffusions-
offene Architektur eine hohe Verfügbarkeit der eingeschlossenen Aktivität gewährleistet. Bei der gewählten Größe im Mikrometer- und Submikrometer-
25 bereich sind die Diffusionswege zudem extrem kurz. Während der Präparation der Hüllen sind die eingeschlossenen Stoffe vor der Aktion chemischer Quervernetzer geschützt, es kann damit nicht zu einer Inaktivierung durch diese Chemikalien kommen. Der hier
30 formulierte Einschluß von Makromolekülen ist daher der denkbar schonendste.

Beispiele

Verwendete Abkürzungen

5	PC	Phosphatidylcholin
	PS	Phosphatidylserin
	HEPES	N-[2-Hydroxyethyl]piperazin-N'-(2-ethansulfonsäure)]
10	MES	2-(N-Morpholino)-ethansulfonsäure
	Sulfo-SMCC	Sulfosuccinimidyl-4-[N-maleimidomethyl]-cyclohexan-1-carboxylat
	BSA	Rinderserumalbumin
15	EDC	1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimid
	CHAPS	3-[(Cholamidopropyl)-dimethylammonio]-2-hydroxypropansulfonsäure
	DeoxyBigCHAP	N,N'-bis(3-Gluconamidopropyl)-deoxycholamid
	EDTA	Ethylenediamintetraessigsäure

20
Beispiel 1 Herstellung von BSA-Alginat-Nanokapseln

Herstellung der Liposomen

Die als Matrix verwendeten Liposomen werden durch Dialyse eines wässrigen Gemisches aus PC (47,5 mol%), PS (2,5 mol%) und Natriumdeoxycholat (50 mol%) hergestellt. Das Gemisch wird gegen 150mM Natriumchlorid in Wasser dialysiert.

30
Beschichtung mit P1

Zur Beschichtung mit BSA stellt man folgende Endkonzentrationen ein: Liposomen 4mg/ml, BSA 10mg/ml, EDC 10mg/ml und MES 50mM pH5,1. Die Fixierung des BSA auf der Oberfläche der Liposomen erfolgt für mindestens eine Stunde bei 37°C, anschließend beendet man die Reaktion durch Zugabe von 200mM Kaliumacetat. Der Überschuß des eingesetzten BSA und EDC wird durch Flotation abgetrennt.

Beschichtung mit P2

Zur Vernetzung der P1-Schicht werden den beschichteten Liposomen 200 μ g/ml Natriumalginat und 50mM MES-Puffer pH5.1 zugesetzt. Die Vernetzung wird durch Zugabe von 10mg/ml EDC gestartet und für zwei Stunden bei 37°C durchgeführt. Die Reaktion wird anschließend wie oben durch Zugabe von 200mM Kaliumacetat gestoppt.

Auswaschen der Liposomen

Zur Entfernung der Liposomen wurden die beschichteten Liposomen mit 1% CHAPS behandelt. Die so erhaltenen detergensstabilen Strukturen entsprechen in ihrer Größe dem Ausgangsmaterial. Die Effizienz der Kapselbildung wird durch Messung der Lichtstreuung vor und nach der Detergensgabe bestimmt und liegt zwischen 30 und 60%.

Beispiel 2**Herstellung von Kapseln aus einem Lektin und Alginat****Herstellung der Liposomen**

820mg PC werden in 1ml Ethanol gelöst; 42mg PS und 490mg Natriumdeoxycholat werden in 2.5ml Wasser gelöst. Beide Lösungen werden vereinigt und mit 150mM NaCl auf 40ml aufgefüllt. Liposomen werden daraus durch Gelfiltration an Sephadex® G-25 in 150mM NaCl hergestellt. Die gewonnenen Liposomen werden durch Flotation in einer Ultrazentrifuge aufkonzentriert, kurz mit Ultraschall behandelt und durch ein Filter der Porenweite 0,22 μ m steril filtriert.

Beschichtung mit P1

5 5ml der Liposomen werden mit 1ml MES-Puffer (500mM pH5) und 0,3ml NaCl-Lösung (5M) versetzt, anschließend werden 35mg Concanavalin A (SIGMA, type VI) und 75mg EDC zugesetzt und die Mischung für 3h bei 37°C inkubiert. Die Reaktion wird durch Zugabe von 2ml HEPES (1M pH8) und 0,2ml Kaliumacetatlösung (5M) gestoppt. Die mit P1 beschichteten Liposomen werden durch Flotation in der Ultrazentrifuge isoliert und anschließend in 5ml MES-Puffer (100mM pH5) aufgenommen.

10

Vernetzung mit P2

15 2,5ml der mit Concanavalin A beschichteten Liposomen werden 0,1ml Natriumalginat (10mg/ml) und 50mg EDC gemischt. Die Lösung wird mit 100mM MES-Puffer pH5 und 200mM NaCl auf 4ml aufgefüllt und über Nacht inkubiert. Zum Abschluß der Reaktion werden 1ml HEPES (1M pH8) und 0,2ml Kaliumacetat (5M) sowie je 5µl CaCl₂ und MnCl₂ (je 1M) zugesetzt.

20

Auswaschen der Liposomen und Isolierung der Nanokapseln
Der Ansatz wie oben wird mit 2,5mg DeoxyBigCHAP behandelt. Die Isolierung der Hüllstrukturen gelingt durch Sedimentation in der Ultrazentrifuge unter Nutzung eines Sucrosegradienten. Nanokapseln sedimentieren durch eine 0,5M Sucroseschicht und werden an der Grenzfläche zu einer 2M Sucroselösung zurückgehalten. Die so erhaltenen Proben enthalten kein nachweisbares Lipid und 1mg/ml Protein. Das verwendete Concanavalin A ist nach dem Einbau in die Hüllschicht noch bindungsfähig und kann glykosylierte Proteine binden.

25

30

Beispiel 3**Bindung glykosylierter Proteine an Nanokapseln aus Concanavalin A - Alginat**

5 Sec-Komplex aus *Saccharomyces cerevisiae* wird wie in Panzner et al., Cell 1995, May 19; 81(4):561-70 beschrieben aufgereinigt. 2...20 μ l der Nanosphären aus Beispiel 2 und 20 μ l des Sec-Komplexes werden mit 80 μ l Puffer (50mM HEPES pH 7.5, 0.5%DeoxyBigCHAP) vereinigt und für 12h bei 4°C inkubiert. Die enthaltenen 10 Nanosphären werden sedimentiert (Rotor Beckman 100.3, 75.000rpm für 30min) und die Verteilung des Sec-Komplexes wird mittels SDS-PAGE analysiert. 5 μ l der präparierten Nanospheren führen zu einer Bindung von mehr als der Hälfte des angebotenen Sec-Komplexes.

15

Beispiel 4**Einschluß von Peroxidase in Nanokapseln**

20 Liposomen werden wie unter 2. durch Gelfiltration hergestellt, wobei der Ausgangslösung 1mg/ml Meerrettich-Peroxidase (POD) zugesetzt werden. Nicht eingeschlossene POD wird bei der Flotation abgetrennt. 1.3% der anfänglichen Enzymmenge und 25% des eingesetzten Lipids finden sich in der flotierten Phase. Die Beschichtung wird wie unter 2. mit 25 ConcanavalinA und Alginat vorgenommen.

100 μ l der liposomalen Nanokapseln und 100 μ l unbeschichtete Liposomen wurden zur Analyse des Einschlusses verwendet. Dazu wurden beide Proben mit je 30 100 μ l Detergenslösung (2% DeoxyBIGChap, 100mM HEPES pH7.5 und 150mM Kaliumacetat) gemischt und in einem Ultrazentrifugationsröhrchen (0.8ml für Beckman SW55)

mit 350 μ l einer Sucroselösung mittlerer Dichte (0.8M Sucrose, 50mM HEPES pH7.5, 150mM Kaliumacetat und 0.2% DeoxyBIGChap) und 100 μ l einer Sucroselösung hoher Dichte (2M Sucrose, 50mM HEPES pH7.5, 150mM Kaliumacetat und 0.2% DeoxyBIGChap) unterschichtet und für 1h bei 55.000rpm zentrifugiert.

Von der Phasengrenze zwischen 2M und 0.8M Sucrose wurden die Nanokapseln gesammelt, freigesetzte Proteine und zerfallene Hüllschichten wurden aus der obersten, Probenauftragsschicht entnommen. Die Verteilung von Protein, Lipid und POD ist für unbeschichtete Liposomen und Nanokapseln in der untenstehenden Tabelle wiedergegeben.

Nur nach Beschichtung der Liposomen mit ConcanavalinA und Alginat findet sich ein signifikanter Anteil (etwa 25%) der POD gemeinsam mit etwa 15% des Proteins in der sedimentierten Phase.

	Liposomen, obere Phase	Liposomen, untere Grenzschicht	Nanokapseln, obere Phase	Nanokapseln, untere Grenzschicht
Lipidverteilung	100%	0%	100%	0%
Proteinverteilung	97%	3%	87.5%	12.5%
POD-Verteilung	100%	0%	73%	27%

Beispiel 5**Herstellung von BSA-Alginat-Nanokapseln unter Verwendung thiolhaltiger Liposomen****Herstellung der Liposomen**

5 400mg PC und 7.5mg Octadecylmercaptan werden in 1ml Ethanol gelöst und anschließend unter Rühren in 40ml Puffer (10mM HEPES, 150mM NaCl, 5mM EDTA, pH7.5) gegeben. Die erhaltene liposomale Suspension wird bei 800bar mit einem Hochdruckhomogenisator behandelt und anschließend durch ein 0,45µm-Filter gedrückt.

Beschichtung mit P1

15 Liposomen wie oben werden mit dem angegebenen Puffer auf 5mg/ml Lipid verdünnt. Anschließend werden BSA (2mg/ml) und sulfo-SMCC (2mM) zugesetzt. Die Mischung wird über Nacht bei Raumtemperatur inkubiert.

Vernetzung mit P2

20 0.9ml der beschriebenen Reaktionsmischung werden mit folgenden Lösungen vermischt:

0.1ml MES-Puffer, 500mM pH5

0.08ml NaCl-Lösung, 5M

0.1ml Natriumalginat, 4mg/ml

0.1ml EDC, 100mg/ml

25 Die Vernetzung wird für zwei Stunden bei Raumtemperatur durchgeführt.

Auflösung der inneren Liposomen

30 Die Auflösung der inneren Liposomen gelingt wie in den vorherigen Beispielen ausgeführt durch Zugabe von Detergenzien. Anhand der Änderung in der Intensität des

Streulichts vor und nach der Zugabe des Detergens kann auf die Ausbildung eigenstabiler HÜllen geschlossen werden. Vorzugsweise wird 1%Natriumcholat zur Auflösung der Liposomen eingesetzt.

5

Beispiel 6

Verwendung ionisch geladener Liposomen zur Herstellung der Nanokapseln

10 Herstellung der Liposomen

400mg PC, 7.5mg Octadecylmercaptan und 9.7mg Cetyltrimethylammoniumbromid werden in 1ml Ethanol gelöst und anschließend unter Rühren in 40ml Puffer (10mM HEPES, 150mM NaCl, 5mM EDTA, pH7.5) gegeben. Die erhaltene liposomale Suspension wird bei 800bar mit einem Hochdruckhomogenisator behandelt und dann durch ein 0,45µm-Filter gedrückt.

20 Beschichtung und Vernetzung und Auflösung der Liposomen können wie in Beispiel 5 ausgeführt werden. Durch die Aufkonzentrierung des (negativ geladenen) BSA an den positiv geladenen Liposomen wird eine schnellere Reaktion möglich, die Reaktionszeit kann auf zwei Stunden gesenkt werden.

25

Beispiel 7

Nanokapseln aus Hämoglobin und Alginat

Herstellung der Liposomen

30 400mg PC und 7.5mg Octadecylmercaptan werden in 1ml Ethanol gelöst und anschließend unter Rühren in 40ml Puffer (10mM HEPES, 150mM NaCl, 5mM EDTA, pH7.5)

gegeben. Die erhaltene liposomale Suspension wird bei 800bar mit einem Hochdruckhomogenisator behandelt und anschließend durch ein 0,45 μ m-Filter gedrückt.

5 Beschichtung mit P1

Liposomen wie oben werden mit dem angegebenen Puffer auf 5mg/ml Lipid verdünnt. Anschließend werden Hämoglobin (2mg/ml) und sulfo-SMCC (2mM) zugesetzt. Die Mischung wird über Nacht bei Raumtemperatur inkubiert.

10

Vernetzung mit P2

0.9ml der beschriebenen Reaktionsmischung werden mit folgenden Lösungen vermischt:

0.1ml MES-Puffer, 500mM pH5

15 0.08ml NaCl-Lösung, 5M

0.1ml Natriumalginat, 4mg/ml

0.1ml EDC, 100mg/ml

Die Vernetzung wird für zwei Stunden bei Raumtemperatur durchgeführt.

20

Die eigenständige Stabilität der entstandenen Hüllschicht kann wie im Beispiel 5 durch Zugabe eines Detergens und Messung der Lichtstreuung erfolgen.

25 Beispiel 8

Nanokapseln aus Hämoglobin und Chitosan

Liposomen werden wie in Beispiel 7 hergestellt und mit Hämoglobin beschichtet.

Nach Abschluß der Beschichtung mit Hämoglobin werden zu 30 0.9ml der beschriebenen Reaktionsmischung die folgenden Lösungen gegeben:

0.1ml MES-Puffer, 500mM pH5

0.08ml NaCl-Lösung, 5M

0.08ml Chitosan aus Krabben, 85% deacyliert, 5mg/ml

0.1ml EDC, 100mg/ml

5 Die Vernetzung wird für zwei Stunden bei Raumtemperatur durchgeführt.

10 Die eigenständige Stabilität der entstandenen Hüllschicht kann wie im Beispiel 5 durch Zugabe eines Detergens und Messung der Lichtstreuung erfolgen.

Beispiel 9

Nanokapseln aus anderen Proteinen und Chitosan

15 Die Vorschrift aus Beispiel 8 ist unter den gleichen Bedingungen mit Concanavalin A oder Collagen oder Albumin durchführbar.

Beispiel 10

Nanokapseln unter Verwendung eines Acrylats

20 Liposomen werden wie in Beispiel 5 hergestellt und mit BSA beschichtet.

Herstellung eines thiolreaktiven Acrylats

Acrylate mit freien Thiolfunktionen lassen sich durch reduktive Zersetzung von disulfidvernetzten 25 Polyacrylamidgelen erzeugen. Eine Arbeitsvorschrift zur Herstellung und Zersetzung solcher Gele ist bei Hansen (Analytical Biochemistry 76: 37-44 (1976)) gegeben. Nach dieser Vorschrift werden thiolhaltige Polyacrylamide mit einem Substitutionsgrad von mindestens 5% hergestellt.

Vernetzung mit thiolreaktiven Acrylaten

Thiolreaktive Acrylate wie oben werden zu Liposomen gegeben, die wie in Beispiel 5 oder 7 oder 9 mit Proteinen beschichtet wurden. Die Endkonzentration des Polymers beträgt dabei 400 μ g/ml. Die Mischung wird für einige Stunden bei Raumtemperatur inkubiert, anschließend kann die eigenständige Stabilität der Hüllschicht durch Auswaschen der Liposomen wie in Beispiel 5 nachgewiesen werden.

10

Beispiel 11

Nanokapseln ohne Verwendung von Proteinen

Liposomen werden wie in Beispiel 5 hergestellt.

15

Beschichtung mit P1

Liposomen werden mit dem in Beispiel 5 verwendeten Puffer auf 5mg/ml Lipid verdünnt. Anschließend werden Chitosan (0,25mg/ml) und sulfo-SMCC (2mM) zugesetzt. Die Mischung wird über Nacht bei Raumtemperatur inkubiert.

20

Vernetzung mit P2

Zur Reaktionsmischung werden 400 μ g/ml des thiolhaltigen Polyacrylamids aus Beispiel 10 gegeben. Die Mischung wird für einige Stunden bei Raumtemperatur inkubiert, anschließend kann die eigenständige Stabilität der Hüllschicht durch Auswaschen der Liposomen wie in Beispiel 5 nachgewiesen werden.

30

Beschichtung mit einem Protein

Beispiel 12**Nanokapseln unter Verwendung membranständiger Proteine****Modifizierung von BSA**

5 50mg BSA werden in 2,5 ml Puffer (20mM Natriumphosphat, 150 mM NaCl, 40mM Natriumdeoxycholat, pH 7.5) gelöst, anschließend werden 1,25mg Palmitinsäure-N-Hydroxysuccinimidester zugesetzt. Die Mischung wird für 2 Stunden bei Raumtemperatur inkubiert, anschließend werden nicht gebundener Palmitinsäure-N-Hydroxysucci-
10 nimidester und seine Hydrolyseprodukte durch Gelfiltration an Sephadex G25 abgetrennt. Hierbei wird ein Puffer wie oben verwendet, der aber nur 4mM Natriumdeoxycholat enthält.

15 Herstellung der Liposomen

400mg PC werden in 1ml Ethanol gelöst und rasch in 40ml Puffer (20mM Natriumphosphat, 150 mM NaCl, pH 7,5) verdünnt. Die erhaltene liposomale Suspension wird bei 800bar mit einem Hochdruckhomogenisator behandelt und anschließend durch ein 0,45µm-Filter gedrückt.

Beschichtung mit modifiziertem BSA

Die Liposomen werden mit dem modifizierten Protein gemischt und mit Puffer (20mM Natriumphosphat, 150mM NaCl, pH7.5) auf 50ml aufgefüllt. Dann wird soviel Natriumdeoxycholat zugesetzt, dass die Endkonzentration 10mM beträgt. Die Lösung wird unter leichter Bewegung für zwei Stunden bei Raumtemperatur inkubiert, anschließend wird das Detergens durch Dialyse gegen 30 20mM Phosphat, 150mM NaCl, pH7.5 entfernt.

Vernetzung mit Alginat

Zur Vernetzung der BSA-Schicht werden den beschichteten Liposomen 200 μ g/ml Natriumalginat und 50mM MES-Puffer pH5.1 zugesetzt. Die Vernetzung wird durch Zugabe von 10mg/ml EDC gestartet und für zwei Stunden bei 37°C durchgeführt. Die Reaktion wird anschließend durch Zugabe von 200mM Kaliumacetat gestoppt.

Die eigenständige Stabilität der Hüllschicht kann durch Auflösung der inneren Lipidschicht mit einem Detergens und Vergleich der Intensität des Streulichts bestimmt werden.

Beispiel 13**15 PEG-modifizierte Nanokapseln**

Nanokapseln werden wie im Beispiel 10 unter Verwendung eines thiolhaltigen Acrylats hergestellt. Nicht eingebaute Polymere werden durch Flotation entfernt, der verwendete Puffer enthält 10mM HEPES, 150mM NaCl, 5mM EDTA, pH7.5. Zu den flotierten Nanokapseln wird soviel Puffer gegeben, dass deren Lipidkonzentration 5mg/ml beträgt. Zu dieser Lösung werden 0,5mg/ml α -Methoxy- ω -Maleimidoo-Polyethylenglykol gegeben und für zwei Stunden bei Raumtemperatur inkubiert.

25

Beispiel 14**Fluoreszierende Nanokapseln****Herstellung der Liposomen**

Alle Handlungen sind in abgedunkelten Räumen vorzunehmen. 400mg PC und 7.5mg Octadecylmercaptan werden in 1ml Ethanol gelöst und anschließend unter

Rühren in 40ml Puffer (10mM HEPES, 150mM NaCl, 5mM EDTA, 20mM Calcein, pH7.5) gegeben. Die erhaltene liposomale Suspension wird bei 800bar mit einem Hochdruckhomogenisator behandelt und anschließend durch ein 0,45µm-Filter gedrückt. Nicht in die Liposomen eingeschlossenes Calcein wird durch Gelfiltration an Sephadex G25 abgetrennt. Dazu wird ein Puffer verwendet, der 10mM HEPES, 150mM NaCl, 5mM EDTA, pH7.5 enthält.

Die Beschichtung der Liposomen kann wie in Beispiel 5 ausgeführt werden. Calcein wurde in diesem Beispiel in einer Konzentration eingeschlossen, die zur Selbstquenchung des ausgesendeten Fluoreszenzlichts führt. Dieser Quencheffekt wird bei einem Austritt des Calceins in das umgebende Medium aufgehoben. Solche Nanokapseln können zur Bestimmung von Stabilitäten in verschiedenen Medien, insbesondere in biologischen Systemen wie Mageninhalt, Darminhalt, Serum, Lymphe verwendet werden.

20

Patentansprüche

1. Verfahren zur Herstellung von Nanokapseln mit einem Durchmesser von 50 nm bis 10 µm,

dadurch gekennzeichnet, daß

Liposomen hergestellt werden, diese mit einem Polymer P1 beschichtet werden, indem das Polymer P1 in wäßriger Lösung an die Liposomenoberfläche gebunden wird und dann das aufgebrachte Polymer P1 mit einem von P1 verschiedenen Polymer P2 in wäßriger Lösung kovalent vernetzt wird und gegebenenfalls noch weitere Polymerschichten durch Vernetzung aufgebracht werden.

15

2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet, daß

die Liposomen nach Vernetzung der Polymere aufgelöst werden, vorzugsweise durch Auswaschen mit einem Detergenz.

20

3. Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet, daß

von Liposomen ausgegangen wird, die biologisch aktive Verbindungen oder Verbindungen eines Detektionssystems tragen, welche bei der Durchführung des Verfahrens in den Nanokapseln verbleiben.

25
30

4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß
als wasserlösliche Polymere P1 und P2 solche
eingesetzt werden, die als funktionelle Gruppen
5 Amino-, Carboxyl-, Thiol-, Hydrazo-, Hydroxy-,
Azidwasserstoff-, Aldehyd- und/oder Aktivester-
gruppen oder Kombinationen dieser Gruppen aufweisen
und nicht selbst micellare oder vesikuläre
Strukturen bilden.

10

5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß
das Polymer P1 mit den Liposomen oder das Polymer
P1 mit dem Polymer P2 durch Hilfsstoffe vernetzt
15 wird.

15

6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet, daß
als Hilfsstoffe Isothiocyanat, Isocyanate,
20 Acylazide, N-Hydroxysuccinimidester, Sulfonylchide,
Aldehyde, Epoxide, Carbonate, Imidoester,
Carbodiimide, Anhydride, Haloacetylene, Alkylhalide,
Maleimide, Aziridine, Pyridyldisulfide, Diazoalkane,
25 Diazoacetylene, Carboylidiimidazole, N-Hydroxy-
succinimidylchloroformate oder Verbindungen, die
diese funktionellen Gruppen in geeigneten Kombinationen
enthalten, eingesetzt werden.

25

7. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß

30

die wasserlöslichen Polymere P1 oder P2 chelatisierende oder chelatbindende Eigenschaften aufweisen.

- 5 8. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß
die Polymere P1 und/oder P2 Proteine sind.
- 10 9. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß
die Polymere P1 und/oder P2 Kohlenhydrate sind.
- 15 10. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß
die wasserlöslichen Polymere P1 und/oder P2
synthetische Polymere sind.
- 20 11. Verfahren nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, daß
die erhaltenen Nanokapseln an ihrer Oberfläche
modifiziert werden, vorzugsweise durch Polyethylenglycol, Proteine, Peptide oder Hormone, besonders
bevorzugt durch Polyethylenglycol.
- 25 12. Nanokapseln mit einem Durchmesser von 50 nm bis
10µm,
dadurch gekennzeichnet, daß
ihre Hüllschicht aus mindestens zwei verschiedenen,
miteinander vernetzten Polymeren P1 und P2 besteht.

13. Nanokapseln nach Anspruch 12,
dadurch gekennzeichnet, daß
zusätzlich eine Lipidschicht vorhanden ist, auf der
sich die Polymerschichten befinden.
5
14. Nanokapseln hergestellt gemäß einem oder mehreren
der Ansprüche 1 bis 11.
10
15. Verwendung von Nanokapseln nach einem der Ansprüche
12 bis 14 zur Herstellung von pharmazeutischen
Zubereitungen zur Applikation von Wirkstoffen.
15
16. Verwendung von Nanokapseln nach einem der Ansprüche
12 bis 14 zur biochemischen Diagnostik.

FIGUR 1 - Schema zur Herstellung von Strukturen in Form von Hohlkugeln

