Embedded Inference Serving Benchmarks

Board	MCU / ASIC	Clock	Memory	Sensors	Radio
Himax WE-I Plus EVB	HX6537-A 32-bit EM9D DSP	400 MHz	2MB flash 2MB RAM	Accelerometer, Mic, Camera	None
Arduino Nano 33 BLE Sense	32-bit nRF52840	64 MHz	1MB flash 256kB RAM	Mic, IMU, Temp, Humidity, Gesture, Pressure, Proximity, Brightness, Color	BLE
SparkFun Edge 2	32-bit ArtemisV1	48 MHz	1MB flash 384kB RAM	Accelerometer, Mic, Camera	BLE
Espressif EYE	32-bit ESP32-DOWD	240 MHz	4MB flash 520kB RAM	Mic, Camera	WiFi, BLE

Board	MCU / ASIC	Clock	Memory	Sensors	Radio
Himax WE-I Plus EVB	HX6537-A 32-bit EM9D DSP	400 MHz	2MB flash 2MB RAM	Accelerometer, Mic, Camera	None
Arduino Nano 33 BLE Sense	32-bit nRF52840	64 MHz	1MB flash 256kB RAM	Mic, IMU, Temp, Humidity, Gesture, Pressure, Proximity, Brightness, Color	BLE
SparkFun Edge 2	32-bit ArtemisV1	48 MHz	1MB flash 384kB RAM	Accelerometer, Mic, Camera	BLE
Espressif EYE	32-bit ESP32-DOWD	240 MHz	4MB flash 520kB RAM	Mic, Camera	WiFi, BLE

TinyML System Stack is Complicated

- Machine learning system stack is complicated
- Many different models, datasets, models, frameworks, formats, compilers, libraries, operating systems, targets
- The cross-product makes it challenging to decipher system performance

Apples-to-apples comparison

What task?
What model?
What dataset?
What batch size?
What quantization?
What software
libraries?

...

Use to

• Compare solutions

Use to

- Compare solutions
- Inform selection

Use to

- Compare solutions
- Inform selection
- **Measure** and track progress

Use to

- Compare solutions
- Inform selection
- Measure and track progress
- Raise the bar, advance the field

Use to

- Compare solutions
- Inform selection
- Measure and track progress
- Raise the bar, advance the field

Requires

 Methodology that is both fair and rigorous

Use to

- Compare solutions
- Inform selection
- Measure and track progress
- Raise the bar, advance the field

Requires

- Methodology that is both fair and rigorous
- Community support and consensus

Use to

- Compare solutions
- Inform selection
- **Measure** and track progress
- Raise the bar, advance the field

Requires

- Methodology that is both fair and rigorous
- Community support and consensus

Provides

• **Standardization** of use cases and workloads

Use to

- Compare solutions
- Inform selection
- Measure and track progress
- Raise the bar, advance the field

Requires

- Methodology that is both fair and rigorous
- Community support and consensus

- Standardization of use cases and workloads
- Comparability across heterogeneous HW/SW systems

Use to

- Compare solutions
- Inform selection
- Measure and track progress
- Raise the bar, advance the field

Requires

- Methodology that is both fair and rigorous
- Community support and consensus

- Standardization of use cases and workloads
- Comparability across heterogeneous HW/SW systems
- Complex characterization of system compromises

Use to

- Compare solutions
- Inform selection
- Measure and track progress
- Raise the bar, advance the field

Requires

- Methodology that is both fair and rigorous
- Community support and consensus

- Standardization of use cases and workloads
- Comparability across heterogeneous HW/SW systems
- Complex characterization of system compromises
- Verifiable and Reproducible results

Use to

- Compare solutions
- Inform selection
- **Measure** and track progress
- Raise the bar, advance the field

Requires

- Methodology that is both fair and rigorous
- Community support and consensus

- Standardization of use cases and workloads
- Comparability across heterogeneous HW/SW systems
- Complex characterization of system compromises
- Verifiable and Reproducible results

Enforce performance result replicability to ensure reliable results

Use representative workloads, reflecting production use-cases

Use representative workloads, reflecting production use-cases

Encourage innovation to improve the state-of-the-art of ML

Enforce performance result replicability to ensure reliable results

Use representative workloads, reflecting production use-cases

to improve the state-of-the-art of ML

Accelerate progress in ML via fair and useful measurement

Enforce performance result replicability to ensure reliable results

Use representative workloads, reflecting production use-cases

to improve the state-of-the-art of ML

Accelerate progress in ML via fair and useful measurement

Serve both the commercial and research communities

Enforce performance result replicability to ensure reliable results

Use representative workloads, reflecting production use-cases

to improve the state-of-the-art of ML

Accelerate progress in ML via fair and useful measurement

Serve both the commercial and research communities

Keep benchmarking affordable so that all can participate

Wide Array of ML Tasks

Task Category	Use Case
Audio	Audio Wake Words Context Recognition Control Words Keyword Detection
lmage	Visual Wake Words Object Detection Gesture Recognition Object Counting Text Recognition
Physiological / Behavioral Metrics	Segmentation Anomaly Detection Forecasting Activity Detection
Industry Telemetry	Sensing Predictive Maintenance Motor Control

Wide Array of ML Tasks

Task Category	Use Case	Model Type
Audio	Audio Wake Words Context Recognition Control Words Keyword Detection	DNN CNN RNN LSTM
lmage	Visual Wake Words Object Detection Gesture Recognition Object Counting Text Recognition	DNN CNN SVM Decision Tree KNN Linear
Physiological / Behavioral Metrics	Segmentation Anomaly Detection Forecasting Activity Detection	DNN Decision Tree SVM Linear
Industry Telemetry	Sensing Predictive Maintenance Motor Control	DNN Decision Tree SVM Linear Naive Bayes

Wide Array of ML Tasks

Task Category	Use Case	Model Type	Datasets
Audio	Audio Wake Words Context Recognition Control Words Keyword Detection	DNN CNN RNN LSTM	Speech Commands Audioset ExtraSensory Freesound DCASE
lmage	Visual Wake Words Object Detection Gesture Recognition Object Counting Text Recognition	DNN CNN SVM Decision Tree KNN Linear	Visual Wake Words CIFAR10 MNIST ImageNet DVS128 Gesture
Physiological / Behavioral Metrics	Segmentation Anomaly Detection Forecasting Activity Detection	DNN Decision Tree SVM Linear	Physionet HAR DSA Opportunity
Industry Telemetry	Sensing Predictive Maintenance Motor Control	DNN Decision Tree SVM Linear Naive Bayes	UCI Air Quality UCI Gas UCI EMG NASA's PCoE

Big Questions	Inference
1. Benchmark definition	What is the definition of a benchmark task?

Big Questions	Inference
1. Benchmark definition	What is the definition of a benchmark task?
2. Benchmark selection	Which benchmark task to select?

Big Questions	Inference
1. Benchmark definition	What is the definition of a benchmark task?
2. Benchmark selection	Which benchmark task to select?
3. Metric definition	What is the measure of "performance" in ML systems?

Big Questions	Inference
1. Benchmark definition	What is the definition of a benchmark task?
2. Benchmark selection	Which benchmark task to select?
3. Metric definition	What is the measure of "performance" in ML systems?
4. Implementation equivalence	How do submitters run on different hardware/software systems?

A Principled Approach to Subsetting

Big Questions	Inference
1. Benchmark definition	What is the definition of a benchmark task?
2. Benchmark selection	Which benchmark task to select?
3. Metric definition	What is the measure of "performance" in ML systems?
4. Implementation equivalence	How do submitters run on different hardware/software systems?
5. Issues with optimizations	Quantization, calibration, and/or retraining?

A Principled Approach to Subsetting

Big Questions	Inference
1. Benchmark definition	What is the definition of a benchmark task?
2. Benchmark selection	Which benchmark task to select?
3. Metric definition	What is the measure of "performance" in ML systems?
4. Implementation equivalence	How do submitters run on different hardware/software systems?
5. Issues with optimizations	Quantization, calibration, and/or retraining?
6. Results	Do we normalize and/or summarize results?

MLPerf "Tiny" Tasks

Problem definition

Dataset selection (public domain)

Model selection

Model training code

Derive "Tiny" version: Quantization

Embedded implementation

Benchmarking harness integration

Deploy on device

Example benchmark run

Problem definition

Dataset selection (public domain)

Model selection

Model training code

Derive "Tiny" version: Quantization

Embedded implementation

Benchmarking harness integration

Deploy on device

Example benchmark run

Problem definition

Dataset selection (public domain)

Model selection

Model training code

Derive "Tiny" version: Quantization

Embedded implementation

Benchmarking harness integration

Deploy on device

Example benchmark run

Derive "Tiny" Dataset Benchmarking Deploy on device Example benchmark run Model training Problem Embedded selection (public domain) Model selection version: harness definition code implementation Quantization integration

Derive "Tiny" Dataset Benchmarking Deploy on device Example benchmark run Problem Model training Embedded selection (public domain) Model selection version: harness definition code implementation Quantization integration

Metrics

Latency Small fast dataset Loop of inferences USB Hub No data-dependent execution Runtime requirements have been met. DUT Performance results for window 10: # Inferences : 1000 10.524 sec. Runtime Throughput : 95.020 inf./sec. Runtime requirements have been met. Median throughput is 95.019 inf./sec.

Metrics

Accuracy

Evaluate on larger dataset

Top-1 accuracy & AUC

CLOSED: meet threshold

V.

OPEN: part of the metrics

Metrics

Latency Small fast dataset Loop of inferences USB Hub No data-dependent execution Runtime requirements have been met. DUT Performance results for window 10: # Inferences : 1000 Runtime 10.524 sec. Throughput : 95.020 inf./sec. Runtime requirements have been met. Median throughput is 95,019 inf./sec.

Accuracy

Evaluate on larger dataset

Top-1 accuracy & AUC

CLOSED: meet threshold

V.

OPEN: part of the metrics

Emerging TinyML Use Cases

Example: Smart shoes

- Kicking
- Penalty kicking
- Passing
- Dribbling
- ..

Emerging TinyML Use Cases

Example: Augmented Reality

- Eye tracking
- Hand tracking
- Computer vision
- Superresolution
- ...

Toward Emerging Multi-DNN Models

Keyword Spotting Speech Processing

- Back-to-back execution
- Execution dependency

Toward Emerging Multi-DNN Models

Pipelined DNNs

Keyword Spotting Speech Processing

- Back-to-back execution
- Execution dependency

Concurrent DNNs

Obstacle Detection Video Processing

- Concurrent execution
- Execution deadline

Toward Emerging Multi-DNN Models

Pipelined . DNNs

Keyword Spotting

Processing

- Back-to-back execution
- **Execution dependency**

Concurrent **DNNs**

- Concurrent execution
- **Execution deadline**

Concurrent & **Pipelined DNNs**

Challenges from both pipelined and concurrent

Use representative workloads, reflecting production use-cases

to improve the state-of-the-art of ML

Accelerate progress in ML via fair and useful measurement

Serve both the commercial and research communities

Keep benchmarking affordable so that all can participate

