APPLICATION NOTE for TCM8230MD

Ver. 1.1

CONTENTS

1 Controllable	Functions	3
2 Explanation	of each address	6
3 Selection of	input clock (External clock)	27
	nat	
	uency	appr Note Note to the Note of
	equence	
	on	
	equence	
	7400.00	
	Jence	
	equence	
	e pin status	
•	le register status	
7 I/F for param	neter setting	29
	ess	
8 Explanation	of each function	20
	mat	
	e control	
	nance control	
	posure control	
	incement	
•	rol	
	balance control	
	nite balance control	
	tion	
	ding compensation	
	compensation	
	ing function	
	e	

UPDATE INFORMATION

Ver 1.0 December 2nd, 2003 Ver 1.1 January 27, 2004

04/01/27 2/39

1 Controllable Functions

The setting registers are shown in Table1. Gray character parameters are for test .(Don't change these parameters.) Black character parameters are for user.

Table 1. Setting register table

	ADDRESS		fast							last
DEC	BIN	HEX	BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	00000000	00	BITT (MOB)	B.1.0	Billo	B11-7	B.10	DITE		BITO(LOB)
1	00000000	01	TESTMODE							
-	00000001	01								
			FPS	ACF					DCLKP	ACFDET
2	00000010	02	0:30fps 1:15fps	0:50Hz 1:60Hz					0 : normal 1: reverse	0 : AUTO 1: MANUAL
			1.151ps	1.6002					1. Teverse	I. MANUAL
					PICSIZ[3:0]					
2	00000011	02	DOUTSW	DATAHZ		1h:QVGA(f) 4h:QQVGA(z)	2h:QVGA(z)	\blacksquare	PICFMT 0:YUV422	TECTMODE
3	00000011	03	0:ON 1:0FF	0:OUT 1:Hi-Z		7h:QCIF(z)	5h:CIF(f) 8h:subQCIF(f)		1:RGB565	TESTMODE
			1.011		9h:subQCIF(z)		omeda den (i)		I.i.(ebece	
			V_INV	H INV	ESRLSW[1:0]					•
4	00000100	04	0:normal	0:normal	0h : Short		V_LENGTH[3:	0]	•	
			1:invert	1:invert	1h : Long 2h & 3h : Extra	long				
			ALCSW		ZII Q SII . EXIIE	I				
5	00000101	05	0:AUTO	ESRLIM[1:0]		ESRSPD[12:8]		4		
			1:MANUAL							
6	00000110	06	ESRSPD[7:0]							
7	00000111	07	AG [7:0]		IN ONO DELL					
					Oh: Center We					
8	00001000	08			1h: Average	igin	ALCH[3:0]			
					2h: Center only					
	22224224				3h: Backlight		ļ			
9	00001001	09	ALCL[7:0]							
			AWBSW							
10	00001010	0A	0:AUTO							
			1:MANUAL							
11	00001011	0B	MRG[7:0]							
12	00001100	0C	MBG[7:0]		*					
			GAMSW							
13	00001101	0D	0:ON							
			1:OFF							
14	00001110	0E	HDTG[7:0]							
15	00001111	0F	VDTG [7:0]							
16	00010000	10	HDTCORE[3:0	1			VDTCORE[3:0]		
17	00010001	11	CONT[7:0]							
18	00010010	12	BRIGHT[7:0]							
19	00010011	13		VHUE[6:0]						
20	00010100	14		UHUE [6:0]						
21	00010101	15			VGAIN[5:0]					
22	00010110	16			UGAIN[5:0]					
23	00010111	17					UVCORE[3:0]			
24	00011000	18		SATU[6:0]			•			
			MHMODE	MHLPFSEL						
25	00011001	19	0:	0:	YMODE[1:0]			MIXHG[2:0]		
			1:	1:						
26	00011010	1A			LENS [5:0]					
27	00011011	1B	AGLIM [2:0]			LENSRPOL	LENSRGAIN[3	8·∩1		
21	00011011	IB	AGLIW[Z.U]			0:Gain up 1:Gain down	LENSKGAIN	uj		
28	00011100	1C	ES100S [7:0]			,				
29	00011101	1D	ES120S[7:0]							
			1						PICSEL[1:0]	
		. –			CODESW	CODESEL	HSYNCSEL	TESPIC	0h:Colorbar	
30	00011110	1E	D_MASK [1:0]		0:OFF	0 : original	0 : normal	0:Not out	1h:Ramp1	
					1:OUT	1 : ITU656	1 : h_blanking	r:Out	2h :Ramp2 3h: Not suppor	ted
			SLEEPSW	SRST					John 115t Guppor	
31	00011111	1F	0:ACTIVE	0:OFF						
			1:SLEEP	1:reset						

04/01/27 3/39

	ADDRESS		fast							last
DEC	BIN	HEX	BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
32	00100000	20	HNUM[7:0]	ı						1 /
33	00100001	21	TESTMODE							
34	00100010	22	TESTMODE							
35	00100011	23	TESTMODE							
36	00100100	24	TESTMODE							
37	00100101	25	TESTMODE							
38	00100110	26	TESTMODE							
39	00100111	27	HOUTPH [7:0]	_						
40	00101000	28	HOUTPH[8]	VOUTPH [6:0]						
41	00101001	29	FSSTBSW 0 : NOT OUT 1 : OUT	FSSTBPOL 0 : normal 1 : invert			FSSTBPH[3:0]			
42	00101010	2A					FSSTBW[3:0]			
43	00101011	2B					TESTMODE			_
44	00101100	2C	TESTMODE							
45	00101101	2D	TESTMODE							
46	00101110	2E	TESTMODE					♠ №		
47	00101111	2F	TESTMODE							
48	00110000	30		TESTMODE			TESTMODE			
49	00110001	31	TESTMODE				47		W-	
50	00110010	32		ESROUT[14:8] *					
51	00110011	33	ESROUT[7:0]	*						
52	00110100	34	AGOUT[7:0] *	•		Allen				
53	00110101	35			DGOUT [5:0] *					
54	00110110	36	ALCDATA[7:0]	*				>		
55	00110111	37	AWBRYDA[7:0)] *						
56	00111000	38	AWBBYDA[7:0)] *						
57	00111001	39	AGSLOW1[1:0]	FLLSMODE[1:0	0]	FLLSLIM[3:0]			
58	00111010	3A	DETSEL[3:0]			1	ACDETNC[3:0]			
59	00111011	3B	AGSLOW2[1:0]	DG [5:0]					
60	00111100	3C	REJHLEV[7:0]							<u> </u>
61	00111101	3D	ALCLOCK 0: 1:	FPSLNKSW 0: 1:	ALCSPD[1:0]		ALCSTEP[1:0]		REJH [1:0]	
62	00111110	3E	SHESRSW 0:Disable 1:Enable	ESLIMSEL 0: 1:	SHESRSPD[1:0)]	ELSTEP[1:0]		ELSTART[1:0]
63	00111111	3F	AGMIN[7:0]		<u>-</u>	-				

04/01/27 4/39

	ADDRESS		fast							last
DEC	BIN	HEX	BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
64	01000000	40	TESTMODE							TESTMODE
65	01000001	41	JAMP 0: 1:	JAMG [6:0]						1
66	01000010	42			PREGRG[5:0]					
67	01000011	43			PREGBG[5:0]					
68	01000100	44			PRERG[5:0]					
69	01000101	45			PREBG[5:0]					
70	01000110	46								
71	01000111	47		MSKBR[6:0]						
72	01001000	48		MSKGR[6:0]						
73	01001001	49		MSKRB[6:0]					<u> </u>	
74	01001010	4A		MSKGB[6:0]						
75	01001011	4B		MSKRG[6:0]						
76	01001100	4C		MSKBG[6:0]						
77	01001101	4D	HDTCSW 0: 1:	VDTCSW 0: 1:	DTCYLV [5:0]			, *		
78	01001110	4E	HDTPSW 0: 1:	VDTPSW 0: 1:	DTCGAIN[5:0]					
79	01001111	4F	TESTMODE			DTLLIMSW 0: 1:	DŤLYLIM [3:0			
80	01010000	50	YLCUTLMSK 0: 1:		YLCUTL[5:0]					
81	01010001	51	YLCUTHMSK 0: 1:		YLCUTH[5:0]					
82	01010010	52		UVSKNC[6:0]	4					
83	01010011	53		UVLJ[6:0]						
84	01010100	54	WBGMIN[7:0]							
85	01010101	55	WBGMAX[7:0]	4		# A				
86	01010110	56	AWBCSPOLE 0: 1:	WBDIVCLP 0: 1:	WBNOLJ[1:0]		WBNOLJSC 0: 1:	WB2IM1 0: 1:	WBSPDUP[1	:0]
87	01010111	57						WBDIVSC[2:	0]	
88	01011000	58			ALLAREA 0: 1:	WBLOCK 0: 1:	WB2SP [3:0]			
89	01011001	59			0:OFF 1:ON	PBRDSW			ABCSW[1:0]	
90	01011010	5A	PBDLV[7:0]							
91	01011011	5B	PBC1LV[7:0]							
92	01011100	5C	PBC2LV[7:0]							
93	01011101	5D	PBC3LV[7:0]			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
94	01011110	5E	PBC4LV[7:0]							
95	01011111	5F	PBC5LV[7:0]					·		

04/01/27 5/39

Explanation of each address

Note: <V> means the command affects in vertical synchronize timing.

> < N >means the command affects right away.

Read only register < R only > < R / W >Read / Write register

1/0: Default value is 1 0/1: Default value is 0

: Read Only 0 : Fixed 0 (Can't change)

1 : Fixed 1 (Can't change) < Test Mode > : Absolutely don't change these parameters in any situation.

: Can't be changed

ADDRESS 00h DEF:70h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	0	0	0	0	0	0

There's no parameter in this address..

ADDRESS (01h < R on	ly >					
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
*	*	*	*	0	0	0	0

BIT7-4: Internal test mode

ADDRESS (02h < R / W	l >					DEF:40h
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
1/0	1/0					0/1	0/1

BIT7 : FPS <V> is the frame rate setting

1h: 15fps

This fps is based on normal input of external clock. In detail please refer to table ***** .

BIT6: ACF <V> is the AC frequency setting. This address is for flickerless operation.

0h: AC50Hz , 1h : AC60Hz

BIT1 : DCLKP <V> is the polarity switch of DCLK. Oh: normal polarity 1h: inverted polarity

BITO: ACFDET <V> is the automatic flicker detection switch

0h: ON 1h: OFF

ADDRESS 03h < R/W >

			n

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
1/0	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT7: DOUTSW <N> is digital output switch (for Dout, HD, VD and Dclk)

0h : Output enable 1h : Output disable (Fixed to low level)

BIT6: DATAHZ <N> is the selection of the output (for Dout, HD, VD, Dclk and FSSTB)

04/01/27 6/39

^{*} Each default setting is tentative.

0h : Output is enabled. 1h : Output pins are High-Impedance

BIT5-2: PICSIZ <V> is the image format selection. See the table 3.

Table 3

Data (Dec)	Mode
0	VGA full
1	QVGA full
2	QVGA zooming
3	QQVGA full
4	QQVGA zooming
5	CIF full
6	QCIF full
7	QCIF zooming
8	subQCIF full
9	subQCIF zooming

BIT1 : PICFMT <N> is the output format switch

0h: YUV422 1h: RGB565

BITO: CM <Test mode> <N> is the sensor selection switch

0h : Color sensor 1h : B/W sensor

ADDRESS 04h < R/W >

DEF:0Fh

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	1/0	1/0	1/0	1/0

BIT7: V_INV <V> is the vertical flip selection

0h : Normal 1h : Vertical flip

BIT6: H_INV <V> is the horizontal flip selection

Oh: Normal 1h: Horizontal flip

BIT5-4: ESRLSW <V> is selection of output frame rate to adjust the maximum exposure time.

Oh: Normal mode (every one frame output, 15 fps or 30 fps)

1h: Long exposure mode (intermittent output every 4 frames, = 3.75 fps)

2h & 3h: Extra long exposure mode (intermittent output: up to V LENGTH setting (1frame-15V frames))

BIT3-0 : V_LENGTH <V> is the interval setting in the intermittent output operation. This command is only for the extra long exposure mode. (ESRLSW = 2 or 3)

0h & 1h: one frame interval

2h: 2 frame intervals

1 1

Fh: 15 frame intervals (The image data is output once every 15 frames. Namely 1 fps)

ADDRESS 05h < R / W >

DEF:02h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	0/1	1/0	0/1

BIT7: ALCSW <V> is the ALC (Automatic Luminance Control) ON / OFF switch

Oh: ALC ON (for automatic control)
1h: ALC OFF (for manual control)

BIT6-5: ESRLIM <V> is the maximum exposure time setting.

0h : up to 1/30 sec (in FPS=0h) / up to 1/15 sec (in FPS=1h)

1h: up to 1/15 sec (in FPS=0h) / up to 1/7.5 sec (in FPS=1h)

2h: up to 1/7.5 sec (in FPS=0h) / up to 1/3.75 sec (in FPS=1h)

3h: up to 1/3.75 sec (in FPS=0h) / up to 1/3.75 sec (in FPS=1h)

04/01/27 7/39

BIT4-0: ESRSPD[12:8] <V> is the manual setting of electronic shutter speed (upper 5 bit) for manual

luminance control (in ALCSW = 1h).

In combination with these bits and ADDRESS 06h, totally 13 bits are used as ESRSPD[12:0]

0001h : 1H(minimum) | 1H step 1EC3-1FFFh : 7875H(maximum)

ADDRESS 06h < R / W >

DEF:0Dh

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	1/0	1/0	0/1	1/0

BIT7-0: ESRSPD[7:0] <V> is the manual setting of electronic shutter speed (lower 8 bit) Refer to ESRSPD[12:8] description.

ADDRESS 07h < R / W >

DFF:C0h

ADDITEGO	7/11 - 11/1					40.4400	DEI JOOH
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
1/0	1/0	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-0 : AG <V>is the manual setting of sensor analog gain in ALCSW = 1h.

ADDRESS 08h < R / W >

DEF:38h

BIT7(MSB)	BIT6	BIT5 BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	1/0 1/0	1/0	0/1	0/1	0/1

BIT5-4: ALCMODE <V> is the light metering mode selection for ALC.

Oh: Center-weighted & full area averaging

1h : Full area averaging
2h : Center area only

3h: Backlight

BIT3-0: ALCH <V> ALCH is the convergence range of luminance level in ALC.

0h: 0 level in range

Fh: 16 level in 255 level

ADDRESS 09h < R / W >

DEF:40h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	1/0	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-0: ALCL <V> is the lower limit for luminance level converging in ALC

10h : black level

88h: 100% white level as a reference

FFh: peak white level

04/01/27 8/39

The upper limit for converging luminance level in ALC is ALCL+ALCH.

ADDRESS 0Ah < R/W >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0	0	0	0	0	0	0

BIT7: AWBSW <V> is the auto white balance control (AWB) ON / OFF switch

0h: AWB on 1h: AWB off

ADDRESS 0Bh < R / W >

DEF:40h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	1/0	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-0: MRG <V> is the setting of R gain in manual white balance (in AWBSW = 1).

00h: x0 | | | 40h: x1 | |

FFh: x3.984375

ADDRESS 0Ch < R / W >

DEF:40h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	1/0	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-0: MBG <V> Setting of B gain for manual white balance (in AWBSW = 1).

00h: x0 | | | 40h: x1 | |

FFh: x3.984375

ADDRESS 0Dh < R / W >

DFF:00h

ADDITECT	7 N 7 N	The state of the s	A TOTAL AND A TOTA				DEI .0011
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0	0	0	0	0	0	0

BIT7: GAMSW <N> is the gamma correction ON/OFF switch <Gamma=0.55>

0h : gamma ON

1h: gamma OFF

ADDRESS 0Eh < R / W >

DEF:2Fh

	1010A VIIIA						
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	1/0	0/1	1/0	1/0	1/0	1/0

BIT7-0: HDTG <N> is the horizontal edge enhancement gain (emphasis of the contour (edge) of the shape).

00h: x0 | | 20h: x1 | |

FFh: x7.96875

ADDRESS 0Fh < R / W >

DEF:04h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	1/0	0/1	0/1

BIT7-0: VDTG <N> is the vertical edge enhancement gain

04/01/27 9/39

00h: x0 | | | 20h: x1

FFh: x7.96875

ADDRESS 10h < R / W >

DEF:22h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	1/0	0/1	0/1	0/1	1/0	0/1

BIT7-4: HDTCORE <N> is the coring of horizontal edge enhancement

0h: Coring OFF

1h: Coring up to 1LSB

Fh: Coring up to 15LSB

BIT3-0: VDTCORE <N> is the coring of vertical detail enhancement

0h: Coring OFF

1h: Coring up to 1LSB

Fh : Coring up to 15LSB

ADDRESS 11h < R / W >

DEF:9Ah

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
1/0	0/1	0/1	1/0	1/0	0/1	1/0	0/1

BIT7-0: CONT <N> is the contrast setting

FFh: x1.9921875

ADDRESS 12h < R / W >

DEF:0Ch

		AND					
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	1/0	1/0	0/1	0/1

BIT7-0: BRIGHT <N> is brightness setting (black level setting) (This data to be set by 2's)

00h: Black level 0

7Fh: Black level 127 FFh: Black level -1

80h: Black level -128

ADDRESS 13h < R / W >

DEF:0Ah

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0/1	0/1	0/1	1/0	0/1	1/0	0/1

BIT6-0: VHUE <N> is the hue adjustment (V value is added to U)

BIT6 is the polarity. When BIT6=0, the sign P = + and when BIT6=1, the sign P = --,

BIT5- 0 is the gain factor.

00h : x0

3Fh: x1.96875

The formula is $U' = U + P \times VHUE$

ADDRESS 14h < R / W >

DEF:08h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0/1	0/1	0/1	1/0	0/1	0/1	0/1

BIT6-0: UHUE <N> is the hue adjustment (U value is added to V).

BIT6 is the polarity. When BIT6=0, the sign P = + and when BIT6=1, the sign P = --,

BIT5-0: is the gain factor.

00h: x0

3Fh: x1.96875

The formula is $V' = V + P \times UHUE$

ADDRESS 15h < R / W >

DEF:38h

					Allahar	Violen Villa	
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	1/0	1/0	1/0	0/1	0/1	0/1

BIT5-0: VGAIN <N> is the gain setting of V component.

00h: x0 | | | 20h: x1

3Fh: x1.96875

ADDRESS 16h < R / W >

DEF:38h

			Almay Amil	Th. AUST			
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	1/0	1/0	1/0	0/1	0/1	0/1

BIT5-0: UGAIN <N> is the gain setting of U component.

00h: x0 | | 20h: x1 | |

3Fh: x1.96875

ADDRESS 17h < R / W >

DEF:01h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	0	0	0/1	0/1	0/1	1/0

BIT3-0: UVCORE <N> is coring level of UV in case of low color level.

0h: Coring OFF

1h : Suppression under +/-1LSB

1

Fh: Suppression under +/-15LSB

ADDRESS 18h < R / W >

DEF:27h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0/1	1/0	0/1	0/1	1/0	1/0	1/0

BIT6-0: SATU <N> is the color saturation control (UV gain control).

00h: x0 (B/W)

04/01/27 11/39

20h: x1

3Fh: x1.96875

ADDRESS 19h < R / W >

DEF:04h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0	1/0	1/0	1/0

BIT7: MHMODE <N> is selection of the generating method of Y (Y means luminance signal)

0h : Y=(YL-YHL)*MIXHG + YH 1h : Y=(YH-YHL)*MIXHG + YL

BIT6: MHLPFSEL <N> is the selection of boosting center frequency for YHL in Mixed highs

0h : Normal (up to 1/2 nyquist frequency)

1h: Lower frequency (up to 1/4 nyquist frequency)

BIT5-4: YMODE <N> is the selection of Y signal generation method 0h: Mixed Highs 1h: YH only 2h: YL only 3h: YHL only

BIT2-0: MIXHG <N> is the setting of the Mixed Highs ratio

In the case of MHMODE=0 (Normal)

0h: 0% 1h: 25%2h: 50%3h: 75%4h-7h: 100%

In the case of MHMODE=1 (Boost Middle-High frequency)

Y=(YH-YHL) * m+YL m=MIXHG[2:0] (x0 to x3.5)

0h: 0% 1h: 50% 2h: 100% 3h: 150% 4h: 200% 5h: 250% 6h: 300% 7h: 350%

ADDRESS 1Ah < R / W >

DEF:20h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	1/0	0/1	0/1	0/1	0/1	0/1

BIT5-0: LENS <N> is the compensation level of lens shading

00h: Compensation OFF

35h: x2 (at diagonal corner of VGA image)

3Fh: x2.3 (at diagonal corner of VGA image)

ADDRESS 1Bh < R/W >

DEF:46h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	1/0	0/1	0/1	0/1	1/0	1/0	0/1

BIT7-5: AGLIM <V> is the upper limit setting of sensor gain-up for ALC operation

6h : up to +36dB 7h : up to +42dB

BIT4: LENSRPOL <N> is the polarity of LENSRGAIN

0h: R Gain up 1h: R Gain down

BIT3-0: LENSRGAIN <N> Gain setting of R shading compensation.

When LENS, LENSRPOL and LENSRGAIN are set to certain values, each color level is changed according to following equation.

R' = "LENS" x "LENSRGAIN" x R

G' ="LENS" x G

04/01/27

B' ="LENS" x B

This command is used to compensate the color shading more precisely because the R level is likely to change differently in the corner of picture.

ADDRESS 1Ch < R / W >

DEF:9Eh

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
1/0	0/1	0/1	1/0	1/0	1/0	1/0	0/1

BIT7-0: ES100S <V> Setting the number of horizontal lines corresponding to 1/100 sec.

This command is for flickerless ALC.

ADDRESS 1Dh < R / W >

DEF:83h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1 BIT0(LSB)
1/0	0/1	0/1	0/1	0/1	0/1	1/0 1/0

BIT7-0: ES120S <V> Setting the number of horizontal lines corresponding to 1/120 sec.

This command is for flickerless ALC.

ADDRESS 1Eh < R / W >

DEF:68h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	1/0	1/0	0/1	1/0	0/1	0/1	0/1

BIT7-6: D_MASK <V> set masking periods. This function affects only sensor mode switching.

0h : Don't mask

1h: 1V (one- frame interval) mask

3h: 3V(three-frame interval) mask

BIT5: CODESW <V> is addition of synchronization code for output data.

0h : Output data without synchronization code , 1h : Output data with synchronization code

BIT4: CODESEL <V> is selection of synchronization code.

Oh: FS,FE,LS,LE (FS: Frame Start FE: Frame End LS: Line Start LE: Line End)

1h: Based on ITU656

BIT3: HSYNCSEL <V> is the selection of H sync format

0h: Normal HD signal

1h: H blanking type (High level during image data outputting)

BIT2: TESPIC <V> is the switch of test pattern output

Oh: OFF(Normal picture output) 1h: ON (Test pattern output)

BIT1-0: PICSEL <V> is the selection of test pattern

Oh: Color bar 1h: Ramp wave after gamma 2h: Ramp wave before gamma 3h: Normal picture

ADDRESS 1Fh < R / W >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0	0	0	0	0	0

BIT7 : SLEEPSW <N> is the operation mode switch

Oh: active (operating) mode

1h: sleep mode

In entering sleep mode, the register values are restored.

BIT6: SRST <N> is software reset

Oh: Active 1h: Reset

When set "1", all register values are initialized to the default values in the internal ROM.

04/01/27 13/39

This register value is reset to "0" by automatically after the soft reset is finished.

ADDRESS 20h < R/W >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-0: HNUM <V> can adjust clock numbers of horizontal period from 780 to 1290...

00h: 780 clock

2 clock step

1Fh: 1290 clock

CAUTION: In case of use this parameter (in case set this parameter except 00h), address 3E bit7

SHESRSW must be set to 0h (Disable). This is mandatory setting.

ADDRESS 21h < R/W >

DEF:01h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	0/1	0/1	1/0

BIT7-0: HPPH[7:0] <Test mode> <V> is the phase offset of HP (internal horizontal sync pulse) timing (lower 8bit) in the sensor portion. The phase is shifted with 1 pixel clock step.

ADDRESS 22h < R / W >

DEF:26h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	1/0	0/1	0/1	1/0	1/0	0/1

BIT7 : HPPH[8] <Test mode> <V> is the phase offset of HP (internal horizontal sync pulse) timing (MSB) in the sensor portion

BIT6-0: VRRPH <V> is the phase offset of VRR (internal vertical sync pulse) timing in the sensor portion. The phase is shifted with single H(horizontal) period step.

ADDRESS 23h < R / W >

DEF:40h

	1117	100					
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	1/0	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-0: HDSPPH[7:0] <Test mode> <V> is the phase offset of HDDSP (internal horizontal sync pulse) timing (lower 8bit) in the camera DSP. The phase is shifted with 1 pixel clock step.

ADDRESS 24h < R / W >

DEF:27h

ADDICESS	2411 517						DEI .Z/II
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	1/0	0/1	0/1	1/0	1/0	1/0

BIT7: HDSPPH[8] <Test mode> <V> is the phase offset of HDDSP (internal horizontal sync pulse) timing (MSB) in the camera DSP.

BIT6-0: VDSPPH <V> is the phase offset of VDDSP (internal vertical sync pulse) timing in the camera DSP. The phase is shifted with single H(horizontal) period step.

ADDRESS 25h < R/W >

DEF:5Fh

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	1/0	0/1	1/0	1/0	1/0	1/0	1/0

BIT7-0: HAPRPH[7:0] <Test mode> <V> is the phase offset of HAPR (internal horizontal sync pulse) timing (lower 8bit) in the camera DSP. The phase is shifted with 1 pixel clock step.

04/01/27 14/39

TOSHIBA Dunastron

TCM8230MD Application Note Ver 1.1

ADDRESS 2	RESS 26h < R / W >									
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)			
0/1	0	0	0	0	0	0	0			

BIT7: HAPRPH[8] <Test mode> <V> is the phase offset of HAPR (internal horizontal sync pulse) timing (MSB) in the camera DSP.

ADDRESS 27h < R / W >

DEF:16h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	1/0	0/1	1/0	1/0	0/1

BIT7-0: HOUTPH[7:0] <V> is the phase offset of HD (@ output terminal) timing (lower 8bit) The phase is shifted with 1 pixel clock step.

ADDRESS 28h < R / W >

DEF:23h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	1/0	1/0	1/0	1/0	0/1

BIT7: HOUTPH[8] <V> is the phase offset of HD (@ output terminal) timing (MSB)

BIT6-0: VOUTPH <V> is the phase offset of VD (@ output terminal) timing The phase is shifted with single H(horizontal) period step.

ADDRESS 29h < R / W >

DEF:08h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0	0	1/0	0/1	0/1	0/1

BIT7: FSSTBSW <V> is output selection of flash strobe pulse.

0h : Output disable ("L" by Positive)1h : Output enable

BIT6: FSSTBPOL <V> is the setting of flash strobe pulse polarity

Oh: Positive 1h: Negative

BIT3-0: FSSTBPH <V> is the phase offset of FSSTB (@ output terminal) timing

The phase is shifted with single H(horizontal) period step.

ADDRESS 2Ah < R/W >

DEF:08h

7 TO DIKE		AND AND					2 2 1 1 0 0 1 1
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	0	0	1/0	0/1	0/1	0/1

BIT3-0: FSSTBW <V> is able to change pulse width of FSSTB (@ output terminal). The width is changed by one H(horizontal) period.

ADDRESS 2Bh < R / W >

DEF:00h

712211200	1117						
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	0	0	0/1	0/1	0/1	0/1

BIT3-0 : SCMD <Test mode> <N> TEST mode of sensor block

ADDRESS 2Ch < R / W >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-0: SCMD <Test mode> <N> TEST mode of sensor block

04/01/27 15/39

TOSHIBA Dynastron

TCM8230MD Application Note Ver 1.1

ADDRESS 2Dh < R / W >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-4: SCMD <Test mode> <N> TEST mode of sensor block

BIT2-0: SCMD <Test mode> <N> TEST mode of sensor block

ADDRESS 2Eh < R / W >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT7: TCSB1L <Test mode> <N>

BIT6-4: TCPEROSW <Test mode> <N>

BIT3: TCSBIN <Test mode> <N>
BIT2: TCRAM <Test mode> <N>
BIT1-0: TCROM <Test mode> <N>

ADDRESS 2Fh < R / W >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT7: TCRAMS <Test mode> <N>
BIT6: TSPCHK <Test mode> <N>
BIT5: TCPERAGC <Test mode> <V>

BIT4: TALCRST <V> is non-effect switch of ALC counter reset when FPS or ESRLSW have changed.

Oh: reset 1h: non-reset

BIT3: TWBS <Test mode> <V>
BIT2: TWBG <Test mode> <V>
BIT1-0: TACDET <Test mode> <V>

ADDRESS 30h < R / W >

DEF:00h

		Total color color color	TOD. V				
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)

ADDRESS 31h < R/W >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT7: TALCDISP < Test mode> <N>

BIT6-4: TALCOSW[2:0] <Test mode> <V>

BIT3-2: PBDISP <Test mode> <N>
BIT1-0: TDISP <Test mode> <N>

ADDRESS 32h < R only >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	*	*	*	*	*	*	*

BIT6-0: ESROUT is the current internal electrical shutter speed of ALC operation

04/01/27 16/39

TOSHIBA Dynastron

TCM8230MD Application Note Ver 1.1

ADDRESS 33h < R only >									
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)		
*	*	*	*	*	*	*	*		

BIT7-0: ESROUT is the current internal electrical shutter speed of ALC operation

ADDRESS 34h < R only >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
*	*	*	*	*	*	*	*

BIT7-0: AGOUT is the current internal analog gain up data for ALC operation

ADDRESS 35h < R only >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	*	*	*	*	*	*

BIT7-0: DGOUT is the current internal digital gain up data for ALC operation

ADDRESS 36h < R only >

DEF:00h

		<i>y</i> .			Action Visita	Alteria	
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
*	*	*	*	*	*	*	*

BIT7-0: ALCDATA is the current accumulated luminance data.

ADDRESS 37h < R only >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
*	*	*	*	* 1	*	*	*

BIT7-0: AWBRYDA is the current accumulated R-Y data.

ADDRESS 38h < R only >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
*	*	*	*	*	*	*	*

BIT7-0: AWBBYDA is the current accumulated B-Y data.

ADDRESS 39h < R / W :

DFF-8Ch

ADDRESS .	ADDRESS SSIL < K/ W >							
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)	
1/0	0/1	0/1	0/1	1/0	1/0	0/1	0/1	

BIT7-6: AGSLOW1 <V> is the function to improve ALC operation in dark light condition. From this gain level sensor shifts ALCSPD 1 step down.

0h: OFF

1h: +21.5dB

2h: +15.5dB

3h: +9.5dB

BIT5-4: FLLSMODE <V> is additional function for flickerless operation .

Oh: Normal mode (normal ALC operation without special treatment)

1h: Procedure1: This mode never go faster exposure time than 10 msec (in case of 50 Hz flickerless mode) or 8.3 msec (in case of 60 Hz flickerless mode).

2h : Procedure 2 : Until luminance exceeds the value of FLLSLIM stay on the fastest flickerless electrical shutter speed.

3h: In addition to procedure 2, a hysteresis characteristics is implemented.

BIT3-0: FLLSLIM <V> is the brightness limiter of FLLSMODE 2h or 3h.

FLLSLIM is the value of luminance level divided by 16.

For example, when the average converging luminance level is 150 in ALC operation, if the brightness

04/01/27 17/39

limit is assumed 192, "Ch" is loaded in FLLSLIM register under the calculation of 192 /16 = 12.

ADDRESS 3Ah < R/W >

DEF:CFh

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
1/0	1/0	0/1	0/1	1/0	1/0	1/0	1/0

BIT7-4: DETSEL <V> is the setting of flicker detection time (The unit is V (frame interval))

0h: 15V (slowest)

| | Bh: 4V | |

Ch: 3V (fastest)

The camera DSP detects appearance of drifting flicker during the detection time stipulated by DETSEL. When the drifting flicker is detected, the 60Hz or 50 Hz setting is automatically changed to the other.

BIT3-0: ACDETNC <V> is the flicker detection sensitivity in flicker detection mode

0h: highest sensitivity (luminance level difference is more than 1/16LSB)

1

Fh: lowest sensitivity (luminance level difference is more than 1LSB)

ADDRESS 3Bh < R / W >

DEF:80h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
1/0	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-6: AGSLOW2 <V> is the function to improve ALC operation in dark light condition. From this gain level sensor shifts ALCSPD 2 step down.

0h: OFF

1h: +18dB

2h: +12dB

3h: +6dB

BIT5-0: DG <N> is Manual setting of digital gain.

This command is effective in ALCSW="1".

00h: x1

3Fh: x1.984375

ADDRESS 3Ch < R / W >

DEF:00h

/ LD DIX LOO 6	311711	Almy					
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-0: REJHLEV <V> is threshold level of bright block rejection. If those blocks are brighter than this level, they are rejected up to the numbers of REJH. This mode affects only in ALC back light mode (in case of ALCMODE = '3h').

00h : Minimum level (In this case the maximum blocks determined by REJH are automatically rejected.)

FFh: Maximum level (In this case no blocks are excluded.)

ADDRESS 3Dh < R / W >

DEF:17h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	1/0	0/1	1/0	1/0	1/0

BIT7 : ALCLOCK <V> is freezing function of ALC operation. Shutter speed and gain setting are kept in freezing. Oh : ALC operation 1h : Operation freeze

BIT6: FPSLNKSW <V> is link switch of maximum exposure time to FPS

0h: Link to FPS 1h: Not link to FPS

BIT5-4: ALCSPD <V> is the setting of ALC response speed. The actual speed is depend on frame rate.

04/01/27 18/39

TOSHIBA Dynastron

TCM8230MD Application Note Ver 1.1

0h: Slow 1h: Normal 2h: Fast

BIT3-2: ALCSTEP <Test mode> <V> is the setting of ALC control step

Oh: Logarithmic step for the range of >32 H electrical shutter control with flickerless operation.

Linear step for other range.

1h: Linear step in all range

2h-3h: Linear step for the range of >32 H electrical shutter control with flickerless operation.

Logarithmic step for other range.

BIT1-0: REJH <V> is selection of reject block numbers in back light mode.

0h: 0 block 1h: 1 block 2h: 2 blocks 3h: 4 blocks (out of 16 blocks)

ADDRESS 3Eh < R / W >

DEF:85h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
1/0	0/1	0/1	0/1	0/1	1/0	0/1	1/0

BIT7: SHESRSW <V> is the Enable/Disable switch of super high speed ESR. It realize less than

1H operation in ALC.

0h : Disable 1h : Enable

BIT6: ESLIMSEL <V> is link switch of maximum exposure time to ESRLSW

0h : Link to ESRLSW 1h : Not link to ESRLSW

BIT5-4 : SHESRSPD <V> is the manual setting of super high speed ESR 0h : OFF (more than 1H) 1h : 1/2H 2h : 1/4H 3h : 1/8H

BIT3-2: ELSTEP <V> is the response speed in extra long ESR mode

0h: x1 (slow) 1h: x2 2h: x4 3h: x8 (fast)

BIT1-0: ELSTART <V> is the setting of an initial ESR value in extra long ESR mode

0h : 1/4 of maximum ESR 2h : 3/4 of maximum ESR 3h : maximum ESR

ADDRESS 3Fh < R / W >

DEF:C0h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
1/0	1/0	0/1	0/1	0/1	0/1	0/1	0/1

BIT7-0: AGMIN[7:0] < Test mode> < V> is the setting of reference voltage for AD converter level (higher 8bit).

ADDRESS 40h < R / W >

DEF:00h

	2007	APPENDED IN THE STREET					
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0	0	0	0/1

BIT7: LI1POL <Test mode> <N>
BIT6: CS1POL <Test mode> <N>
BIT5: LI3POL <Test mode> <N>
BIT4: CS3POL <Test mode> <N>
BIT0: DINCKSW <Test mode> <N>

ADDRESS 41h < R/W >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT7 : JAMP <Test mode> <N> is the polarity switch for color jam correction 1h : to subtract R to G on GR line

04/01/27 19/39

BIT6-0: JAMG <Test mode> <N> Value of color jam correction

00h:0%

7Fh: 24.8% of original R

ADDRESS 42h < R / W >

DEF:00h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	0/1	0/1	0/1	0/1	0/1	0/1

BIT5-0: PREGRG <N> is the preset of RGB gain setting (G on GR line)

00h: x1

3Fh: x2.96875

ADDRESS 43h < R / W >

DEF:00h

	1117					AND ANDREAS	County Addition
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	0/1	0/1	0/1	0/1	0/1	0/1

BIT5-0: PREGBG <N> is the preset of RGB gain setting (G on BG line)

00h: x1

3Fh: x2.96875

ADDRESS 44h < R / W >

DEF:15h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	0/1	1/0	0/1	1/0	0/1	1/0

BIT5-0: PRERG <N> is the preset RGB gain setting (R)

00h: x1

3Fh: x2.96875

ADDRESS 45h < R/W >

DEF:1Fh

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	0/1	1/0	1/0	1/0	1/0	1/0

BIT5-0: PREBG <N> is the preset RGB gain setting (B)

00h: x1

3Fh: x2.96875

DFF:00h

ADDRESS 4	ADDRESS 46h									
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)			
0	0	0	0	0	0	0	0			

There are no parameter in this address.

ADDRESS 47h < R/W >

DEF:44h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	1/0	0/1	0/1	0/1	1/0	0/1	0/1

BIT6-0: MSKBR <N> is the masking level setting (R value to B) in the color correction matrix

BIT6:

0h: Addition 1h: Subtraction

BIT5-0:

04/01/27 20/39 00h: 0%

3Fh: 49.21876%

ADDRESS 48h < R/W >

DEF:44h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	1/0	0/1	0/1	0/1	1/0	0/1	0/1

BIT6-0: MSKGR <N> is the masking level setting (R value to G) in the color correction matrix

BIT6:

Oh: Addition 1h: Subtraction

BIT5-0: 00h: 0%

3Fh: 49.21876%

ADDRESS 49h < R/W >

DEF:20h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0/1	1/0	0/1	0/1	0/1	0/1	0/1

BIT6-0: MSKRB <N> is the masking level setting (B value to R) in the color correction matrix

BIT6

Oh: Addition 1h: Subtraction

BIT5-0: 00h: 0%

3Fh: 49.21876%

ADDRESS 4Ah < R/W >

DEF:45h

			VICES VICES	A 2000			
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	1/0	0/1	0/1	0/1	1/0	0/1	1/0

BIT6-0: MSKGB <N> is the masking level setting (B value to G) in the color correction matrix

BIT6:

Oh: Addition 1h: Subtraction

BIT5-0: 00h: 0%

3Fh: 49.21876%

ADDRESS 4Bh < R/W >

DEF:66h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	1/0	1/0	0/1	0/1	1/0	1/0	0/1

BIT6-0: MSKRG <N> is the masking level setting (G value to R) in the color correction matrix

BIT6:

Oh: Addition 1h: Subtraction

BIT5-0: 00h: 0%

3Fh: 49.21876%

04/01/27 21/39

TOSHIBA Dynastron

TCM8230MD Application Note Ver 1.1

ADDRESS 4Ch < R / W >

DEF:30h

ADDITECT	1011 × 11.7 11						DEI .0011
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0/1	1/0	1/0	0/1	0/1	0/1	0/1

BIT6-0: MSKBG <N> is the masking level setting (G value to B) in the color correction matrix

BIT6:

Oh: Addition 1h: Subtraction

BIT5-0: 00h: 0%

3Fh: 49.21876%

ADDRESS 4Dh < R/W >

DEF:E0h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
1/0	1/0	1/0	0/1	0/1	0/1	0/1	0/1

BIT7: HDTCSW <N> is the Enable/Disable switch for enlarging coring level of horizontal detail in dark

light condition.

0h : Disable 1h : Enable

BIT6: VDTCSW <N> is the large coring of vertical detail in dark light condition.

0h : Disable 1h : Enable

BIT5-0: DTCYLV is the luminance level setting for enlargement of coring in dark light condition.

Enlargement of coring is enabled in the case of Luminance level < DTCYLV.

ADDRESS 4Eh < R / W >

DEF:20h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	1/0	0/1	0/1	0/1	0/1	0/1

BIT7: HDTPSW <N> is the switch for extra enhancement of horizontal detail

Oh: Normal 1h: 4 times enhancement

BIT6: VDTPSW <N> is the switch for extra enhancement of vertical detail

0h : Normal 1h : 4 times enhancement

BIT5-0: DTCGAIN <N> is the gain setting for enlargement of coring in dark light condition.

00h: (DTCYLV-YH)x0

3Fh: (DTCYLV-YH)x1.96875

ADDRESS 4Fh < R/W >

DEF:09h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0	0/1	1/0	0/1	0/1	1/0

BIT7: LI12POL <Test mode> <N>
BIT6: CS12POL <Test mode> <N>

BIT4: DTLLIMSW <N> is vertical detail suppression in bright light condition...

0h : OFF 1h : Suppression is active

BIT3-0: DTLYLIM <N> is suppression level of vertical detail in bright light condition.

00h: maximum suppression

3Fh: minimum suppression

04/01/27 22/39

TOSHIBA Dunastron

TCM8230MD Application Note Ver 1.1

ADDRESS 50h < R / W >

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0	0/1	0/1	0/1	1/0	1/0	1/0

BIT7: YLCUTLMSK <N> is ON / OFF of Y lower limit for white pixel detection in AWB.

Oh: Y lower limit ON 1h: Y lower limit OFF

BIT5-0: YLCUTL <N> Y lower limit level for white pixel detection in AWB.

0h : If Y level of the pixel is more than 0LSB, the pixel is considered as white pixel

1h: If Y level of the pixel is more than 4LSB, the pixel is considered as white pixel

3Fh: If Y level of the pixel is more than 255LSB, the pixel is considered as white pixel

ADDRESS 51h < R/W >

DEF:2Fh

DEF:07h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0	1/0	0/1	1/0	1/0	1/0	1/0

BIT7: YLCUTHMSK <N> is ON / OFF of Y upper limit setting for detection of white pixels in AWB

0h : Y upper limit ON 1h : Y upper limit OFF

BIT5-0: YLCUTH <N> is the Y upper limit level for detection of white pixel in AWB

Oh: If Y level of the pixel is less than 3LSB, the pixel is considered as white pixel

1h: If Y level of the pixel is less than 7LSB, the pixel is considered as white pixel

3Fh: If Y level of the pixel is less than 255LSB, the pixel is considered as white pixel

ADDRESS 52h < R / W >

DEF:02h

/ IDDITEOU C			495	YORA			D = 1.02.11
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0/1	0/1	0/1	0/1	0/1	1/0	0/1

BIT6-0: UVSKNC <V> is the setting for AWB. If B-R value have changed beyond this setting range, AWB will be activated.

1h : Suppression is minimum

7Fh: Suppression is maximum

ADDRESS 53h < R/W >

DEF:00h

	The second second	1000					
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0/1	0/1	0/1	0/1	0/1	0/1	0/1

BIT6-0: UVLJ <V> is gain setting to set the range AWB converge slowly.

When integrated value of B or R gain is not over UVLJ during 5V, convergence speed for AWB will be slow.

ADDRESS 54h < R / W >

DEF:2Bh

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	1/0	0/1	1/0	0/1	1/0	1/0

BIT7-0: WBGMIN <V> is the minimum setting of R gain and B gain

00h : x0 | | 20h : x0.25

FFh: x4

04/01/27 23/39

TOSHIBA Dynastron

TCM8230MD Application Note Ver 1.1

ADDRESS 55h < R / W > DEF:60h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	1/0	1/0	0/1	0/1	0/1	0/1	0/1

BIT7-0: WBGMAX <V> is maximum setting of R gain and B gain

ADDRESS 56h < R / W >

DEF:40h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	1/0	0/1	0/1	0/1	0/1	0/1	0/1

BIT7: AWBCSPOL <Test mode> <N> is phase adjustment for AWB calculation

Oh: Normal 1h: Inverted

BIT6: WBDIVCLP <Test mode> <V> is selection of clipping way in divide calculation

Oh: Normal 1h: 2 times sensitivity

BIT5-4: WBNOLJ <Test mode> <V> is switch for UVLJ non-effect detection level

0h: OFF 1h: 4/16 2h: 8/16 3h: 12/16

BIT3: WBNOLJSC <Test mode> <V> is source selection of UVLJ non-effect detection

Oh: Result of division 1h: Multiplied value

BIT2: WB2IM1 < Test mode> < V> is AWB mode it acts like 1 axis AWB.

0h : 2 axis AWB 1h : Acts like 1 axis AWB

BIT1-0: WBSPDUP <V> is base source of speed up AWB convergence.

0h: Off

1h: by multiplied value 2h: by divided value

3h: by multiplied pixel number

ADDRESS 57h < R / W >

DEF:06h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	0	0	0	1/0	1/0	0/1

BIT2-0: WBDIVSC < Test mode > < V > is the division way selection of AWB.

0h : Divided by the integral value.

7h : Divided by the pixel number

ADDRESS 58h < R / W >

DEF:22h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	1/0	0/1	0/1	0/1	1/0	0/1

BIT5: ALLAREA <N> is the ON/OFF switch of white area detection

Oh: White area detection is ON 1h: White area detection is OFF

When white area detection is ON, the gain adjustment of RGB is adjusted by the value of pixels that are regarded as white according to the setting of YLCUTLMSK, YLCUTL, YLCUTHMSK and YLCUTH.

BIT4: WBLOCK <V> is for freeze AWB operation.

Oh: Normal mode 1h: White balance AWB operation freeze

BIT3-0: WB2SP <V> is the converging speed of AWB

0h: Slow

04/01/27 24/39

| | Fh : Fast

ADDRESS 59h < R / W >

DEF:23h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0	0	1/0	0/1	0	0	1/0	1/0

BIT5: KIZUSW <N> is the ON/OFF switch for automatic blemish detection and correction.

0h : Blemish detection OFF 1h : Blemish detection ON

BIT4: PBRDSW<N> is the blemish correction mode switch (the way of correction)

Oh: Interpolation with the surrounding 8 pixels with the same color 1h: Interpolation with the surrounding 4 pixels with the same color

BIT1-0: ABCSW <N> is the blemish detection mode switch (the way of detection)

1h When the level difference between the pixel checking and the surrounding pixels of the same color is larger than PBDLV described in ADDRESS 37h, the pixel is regarded as a blemish pixel.

2h: When the level of the pixel checking is the maximum or minimum compared with the surrounding 8 pixels with the same color. the pixel is regarded as a blemish pixel.

0h : OR of the above 1h and 2h 3h : AND of the above 1h and 2h

ADDRESS 5Ah < R / W >

DEF:08h

712211200	7 1				America		
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	1/0	0/1	0/1	0/1

BIT7-0: PBDLV <N> is the threshold level setting for blemish detection

00h: Maximal capability of detection

FFh: Minimal capability of detection

ADDRESS 5Bh < R / W >

	г.	^	1	L
 _	_		4	n

BIT7(MSB)	BIT6	BIT5 BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1 0/1	0/1	1/0	0/1	0/1

BIT7-0: PBC1LV <N> is the exclusion level setting to avoid misdetection of the stars as blemish

00h: Maximum exclusion

FFh: Minimum exclusion

ADDRESS 5Ch < R / W >

DEF:08h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	1/0	0/1	0/1	0/1

BIT7-0: PBC2LV <N> is the exclusion level setting to avoid misdetection of the vertical or horizontal stripe.

00h: Minimum exclusion

FFh: Maximum exclusion

ADDRESS 5Dh < R / W >

DEF:08h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	1/0	0/1	0/1	0/1

BIT7-0: PBC3LV <N> is the exclusion level setting to avoid misdetection of tilt line.

04/01/27 25/39

(the tilt line with 45 degree) 00h : Minimum exclusion

FFh: Maximum exclusion

ADDRESS 5Eh < R / W >

DEF:08h

BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	1/0	0/1	0/1	0/1

BIT7-0: PBC4LV <N> is the exclusion level setting to avoid misdetection of the acute angle.

00h : Minimum exclusion

FFh: Maximum exclusion

ADDRESS 5Fh < R / W >

DEF:08h

712211200	1111					AREA ARRESTOR	Section Addition
BIT7(MSB)	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0(LSB)
0/1	0/1	0/1	0/1	1/0	0/1	0/1	0/1

BIT7-0: PBC5LV <N> is the exclusion level setting to avoid misdetection of the type two of tilt line. (the tilt line (flip of PBC3LV))

00h : Minimum exclusion

FFh: Maximum exclusion

04/01/27 26/39

3 Selection of input clock (External clock)

3.1 Clock format

Please use clock format that are defined in Technical data.

3.2 Clock frequency

No PLL circuit is provided. Data rate is proportional to external clock input. In case of 24.57MHz as external clock, 30fps is available.

4 Power on sequence

4.1 Power on

TCM8230MD cannot output pictures after power on immediately. You should be sent some I²C commands after power on as below.

Address=03h, Data=00h (Default Data=80h)

4.2 Initialization

Be sure to set following command in initialization. These address need to be fixed to those settings. This is mandatory.

Address = Data0x22 = 0x28

Other settings except for above are need to decide according to the system condition. Please define initialize setting suitable for your opportunity. And set only different settings compared with default.

04/01/27 27/39

5 Power off sequence

6 Sleep mode

6.1 Sleep sequence

(1) Sleep mode command ON: 0x1F=0x80

Note: All VDD is need to keep supplying in Sleep mode, and Extclk should be off. But it doesn't matter External clock ON and OFF.

6.2 Wake-up sequence

(1) Sleep mode command OFF: 0x1F=0x00

* ((VOUTPH + 3) - VRRPH) + 4 In default case: VOUTPH=35dec, VRRPH=38dec, ((35 + 3) - 38) + 4 = 4H

D_MASK=1

04/01/27 28/39

6.3 Sleep mode pin status

DOUT0-7 HD,VD: Keep final status before sleep.

6.4 Sleep mode register status

Keep final status before sleep.

Note: All parameters cannot be read and written in sleep mode except for SLEEPSW.

7 I/F for parameter setting

This module use IICBUS fast mode for parameter setting.

7.1 Slave address

0x78: Write data to this module by controller operation. 0x79: Read data from this module by controller operation.

Note: Please refer to technical data in detail.

Explanation of each function

8.1 Output format

8.1.1 Registers for this function

0x02 FPS, DCLKP

0x03

 $\begin{array}{l} \mathsf{DOUTSW} \;,\; \mathsf{DATAHZ} \;,\; \mathsf{PICSIZ} \;,\; \mathsf{PICFMT} \\ \mathsf{V_INV} \;,\; \mathsf{H_INV} \;,\; \mathsf{ESRLSW} \;,\; \mathsf{V_LENGTH} \end{array}$ 0x04

0x1E D_MASK, CODESW, CODESEL, HSYNCSEL, TESPIC, PICSEL

HNUM 0x20

0x27 HOUTPH

0x28 HOUTPH, VOUTPH

0x29 **FSSTBSW**

0x2F TALCRST

8.1.2 Frame rate

Frame rate can be decide by the FPS, ESRLSW, V_LENGTH, HNUM If external clock input is standard for this module.

Note:

HNUM need to be used with SHESRSW [0x3E bit7]=0h. | This is mandatory.

If you want to use SHESRSW [0x3E bit7]=1h, HNUM must be set to 00h.

Other frame rate can be adjusted little bit by HNUM.

Frame rate = $PCK / (780 + HNUM \times 2) \times 525$

Output data status (DCLK, DOUT, HD, VD, FSSTB) 8.1.3

By using following registers, output data status can be changed.

Registers			Output pins		
DATAHZ DOUTSW FSSTBSW		DOUT,DCLK,HD,VD	FSSTB		
0	0 -		Normal output	1	
U	1	-	Low fixed	-	
1	Don't care	Don't care	Hiz	Hiz	
-	-	0	-	Low fixed	
-	-	1	-	FSSTB output	

04/01/27 29/39 By using DCLKP, DCLK polarity can be changed.

- 0: Data can be captured by rising edge of DCLK.
- 1: Data can be captured by falling edge of DCLK.

8.1.4 Output Image

<SIZE>

Output image size can be changed by PICSIZ

<ASPECT>

Output image aspect can be changed by H_INV and V_INV.

H_INV is for horizontal flip and V_INV is for vertical flip.

<FORMAT>

RGB and YUV can be select by PICFMT

<MASKING>

Out put picture can be masked by D_MASK.

When you set D_MASK, output pictures are fixed to black in following case.

- 1. After Power on
- 2. After FPS and PICSIZE have been changed.

<TEST PICTURE>

Following test picture can be available by TESPIC and PICSEL

- 1. Color bar
- 2. Ramp

8.1.5 Vertical and Horizontal synchronization

Synchronization code and pulse are available.

<In case of synchronization code>

By setting CODESW it can be selected if codes are embedded in DOUT or not.

2 mode can be selected by CODESEL

<In case of synchronization pulse>

Those pulses are output from VD and HD pin.

By setting HSYNCSEL, horizontal pulse can be selected from HD or H blanking.

8.2 Luminance control

8.2.1 Registers for this function

0x0D GAMSW

0x11 CONT

0x12 BRIGHT

0x19 MHMODE, MHLPFSEL, YMODE, MIXHG

0x32 ESROUT

0x33 ESROUT

0x34 AGOUT

0x35 DGOUT

0x36 ALCDATA

8.2.2 Basic luminance adjustment

< Gamma>

Gamma can be set ON/OFF by GAMSW.

< Brightness>

Black level can be adjust by BRIGHT. Each brightness can be sift by this register.

04/01/27 30/39

< Contrast>

Contrast can be change by CONT.

8.2.3 Y calculation setting

Y is made from composition of YH,YHL and YL

YH ----- Luminance signal with high frequency component

YL ----- Basic Luminance signal with middle frequency component

YHL ----- Luminance signal with middle frequency component (half of high frequency) of YH. .

< YMODE >

Combination of Y components can be select by YMODE.

- 0: Mixed Highs
- 1: YH only
- 2: YL only
- 3: YHL only

< MIXED HIGHS >

Mixed Highs means the way of composition YH YL and YHL.

The way of mixing can be select by MHMODE.

Percentage of mixing can be set by MIXHG.

MHMODE

0: Y = (YL-YHL)*MIXHG + YH

This setting uses YH In high frequency area and mix of YHL*[1-MIXHG)%, YL *[MIXHG]% in middle-low frequency area.

1 : Y

= (YH-YHL)*MIXHG + YL

This setting uses YL In middle-low frequency area and high frequency area of YH*[MIXHG]%

04/01/27 31/39

in high frequency area.

< Setting of YHL >

YHL frequency area can be changed by MHLPFSEL.

MHLPFSEL

0: YHL = Low-middle frequency area, YH-YHL = High frequency area 1: YHL = Low frequency area, YH-YHL = Middle-high frequency area

8.2.4 Readout internal status

Internal status can be read for external brightness control

ESROUT ----- Electrical shutter status AGOUT ----- Sensor gain up status DGOUT ----- DSP digital gain up status ALCDATA----- Reference data of brightness

8.3 Auto luminance control

8.3.1 Registers for this function

0x02

FPS , ACF , ACFDET ESRLSW , V_LENGTH 0x04

ALCSW, ESRLIM 0x05

ALCMODE, ALCH 80x0

0x09 ALCL

0x1B **AGLIM**

0x1C ES100S

0x1D ES120S

0x39 AGSLOW1, FLLSMODE, FLLSLIM

DETSEL, ACDTNC 0x3A

0x3B AGSLOW2

0x3C **REJHLEV**

0x3D ALCLOCK, FPSLNKSW, ALCSPD, REJH

SHESRSW, ESLIMSEL, SHESRSPD, ELSTEP, ELSTART 0x3E

8.3.2 ALC (automatic luminance control)

<Selection of ALC or manual exposure>

Auto exposure or manual exposure can be selected by ALCSW.

<ALC OPERATION>

04/01/27 32/39 ALC mode can be change by ESRLSW.

Normal mode (0h) and Long exposure mode (1h) is Flickerless ALC.

Extra long exposure mode is not Flickerless ALC.

<Basic Flickerless settings>

ES100S is need to be set for AC=50Hz flicker.

ES120S is need to be set for AC=60Hz flicker.

Both of them need to set as follows.

PCK/{(780+2*HNUM)*2*(AC frequency)}

*Note: In regarding as the PCK, please refer to 9.1.2.

Ex. In the condition of PCK=12,285MHz, HNUM=0, AC=50Hz and 60Hz

 $12.285M/{(780+2*0)*2*(50)}=158[dec]=9E[hex]$

12.285M/{(780+2*0)*2*(60)}=131[dec]=83[hex]

<Auto detection of 50Hz / 60Hz flicker>

Auto detection can be available by ACFDET.

Initial mode of auto detection can be set by ACF

If flicker is drift as follow figure, this function switch mode to the other.

The case of "drifting flicker"

Drift condition can be checked as follows.

2*(AC frequency)/frame rate

If this result is almost an integer, flicker detection is not work.

If this result is not an integer (it's better if it close to *.5), flicker detection will work.

Ex1. In the condition AC=50Hz, 60Hz frame rate =15 2*50/15=6.7 2*60/15=8

So in AC=50Hz condition it will work but in the AC=60Hz condition it won't.

So in this condition ACF (Start mode setting) need to be set as 60Hz mode.

04/01/27 33/39

Ex2. In the condition AC=50Hz, 60Hz frame rate =20 2*50/20=5 2*60/20=6

So in both of AC=50Hz and AC=60Hz condition it won't work.

So flickerlss auto detection cannot be used in this framerate.

Speed of detection can be set by DETSEL

Sensitivity of detection can be set by ACDETNC.

Note: If you want to change these parameter from default, you have to check carefully if it cause miss-detection or not. Basically DETSEL Is better to use by default.

<Manual 50Hz / 60Hz frickerless mode>

If you set ACFDET as manual, 50Hz or 60Hz mode can be select in ACF.

<Maximum exposure time setting in ALC>

In case of ESRLSW=Normal(0h) or Long(1h)

It can be set by the combination of ESRLIM, FPSLINKSW and ESLIMSEL

Note: Please set this by faster time than one frame speed. If you set this slower than one frame speed flickerless operation will cause some trouble. In case of no PLL operation, Extclk of 24.57MHz realize 30fps operation.

					AUPUL	VIIIIA VIIII
FPS	May avpacure time			Regist		
FFS	Max exposure time	FPS	ESRLSW	ESRLIM	FPSLINKSW	ESLIMSEL
30 fps	1/30 s	0	0	0	0	0
15 fps	1/30 s	1	0		1	0
15 168	1/15 s	I	U		0	U
	1/30 s			0		
7.5 fps	1/15 s	0	1	1	0	1
	1/7.5 s	A		2		
	1/30 s				1	
3.75 fps	1/15 s	- A	1	O		1
3.73 lps	1/7.5 s			1	0	
	1/3.75s			0		0

<Maximum gain-up setting in ALC>
Maximum gain can be set by AGLIM.

<ALC convergence range >

ALC convergence range can be set by ALCL and ALCH.

<ALC reference average calculation >

ALC reference average can be select by ALCMODE.

For each mode luminance average is calculated from following area.

04/01/27 34/39

x1 x2

?	?	?	?
?	?	?	?
?	?	?	?
?	?	?	?

Backlight

In Back
light mode
luminance
average will
be calculated
by following
settings

Rejection

block numbers in calculation can be set by REJH.

Thresh level of rejection can be set by REJHLEV.

The blocks which brightness level is over REJHLEV are removed from calculation up to the numbers of REJH.

<Super High speed shutter>

Super High speed shutter can be used by SHESRSW.

If you use super high, electrical shutter will go 1/4 H at the fastest. (Basic mode 1H is the fastest.)

<Convergence speed>

Speed can be selected by ALCSPD.

In Extra long exposure mode, ELSTEP can be used for speed control.

And for gain-up AGSLOW1 and AGSLOW2 can be used.

8.4 Manual exposure control

8.4.1 Registers for this function

0x05 ALCSW, ESRSPD

0x06 ESRSPD

0x07 AG

0x3B DG

0x3E SHESRSPD

8.4.2 Manual exposure setting

If you set ALCSW as manual, manual exposure can be used.

Exposure time can be set by ESRSPD. And Gain up can be set by AG and DG.

If you set SHESRSPD 1/2H,1/4H and 1/8H can be used.

8.5 Edge enhancement

8.5.1 Registers for this function

0x0E HDTG

0x0F VDTG

0x10 HDTCORE, VDTCORE

0x4D HDTCSW, VDTCSW, DTCYLV

0x4E HDTPSW, VDTPSW, DTCGAIN

0x4F DTLLIMSW, DTLYLIM

8.5.2 Edge enhancement setting

<Basic edge enhancement>

HDTG and VDTG is the basic edge enhancement setting.

If you use HDTPSW and VDTPSW those enhancement boost x4.

Edge enhancement coring>

04/01/27 35/39

HDTGCORE and VDTGCORE is the coring of edge enhancement.

If you set this parameter, following coring range turn to 0 level. By this parameter low noise can be neglected.

In dark portion coring can be enhanced by the setting of HDTCSW , VDTCSW , DTCYLV and DTCGAIN. HDTCSW and VDTCSW is ON/OFF of coring enhancement.

DTCYLV is thresh level of dark pixel.

DTCGAIN is enhancement level.

In bright light pixel edge enhancement suppression can be suppressed by DTLLIMSW and DTLYLIM. DTLLIMSW is ON/OFF switch of suppression in bright light pixel. DTLYLIM is suppression level setting.

8.6 Color control

8.6.1 Registers for this function

0x13 VHUE

0x14 UHUE

0x15 VGAIN

0x16 UGAIN

0x17 UVCORE

0x18 SATU

0x37 AWBRYDA

0x38 AWBBYDA

8.6.2 Color correction

Hue can be adjust by VHUE, UHUE, VGAIN and UGAIN

Saturation can be set by SATU.

Color coring can be set by UVCORE. Please refer to figure of HDTGCORE.

8.6.3 Readout internal status

Internal status can be read for external white balance control

AWBRYDA ----- R-Y reference data for white balance (2's) AWBBYDA ----- B-Y reference data for white balance (2's)

8.7 Auto white balance control

8.7.1 Registers for this function

0x0A AWBSW

0x42 PREGRG

0x43 PREGBG

0x44 PRERG

04/01/27 36/39

```
0x45
      PREBG
0x47
      MSKBR
0x48
      MSKRG
0x49
      MSKRB
0x4A
      MSKGB
0x4B
      MSKRG
0x4C
      MSKBG
      YLCUTLMSK, YLCUTL
0x50
      YLCUTHMSK, YLCUTH
0x51
      UVSKNC
0x52
0x53
      UVLJ
0x54
      WBGMIN
      WBGMAX
0x55
      WBSPDUP
0x56
0x58
      ALLAREA, WBLOCK, WB2SP
```

8.7.2 Basic parameters

AWB or manual white balance can be select by AWBSW. White balance starting position can be set by PRE***. White balance convergence range can be set by WBGMIN and WBGMAX Cross color correction can be set by MSK***.

8.7.3 Gate setting

Luminance gate can be set by ALLAREA, YLCUTL, YLCUTLMSK, YLCUTH and YLCUTHMSK. If the pixel is not in the range which determined by above setting, it is not calculated in AWB.

In the condition of ALLAREA=0, gate is available.

And if you set YLCUTLMSK or YLCUTHMSK, one side of the gate is disabled.

8.7.4 Hysterisis setting

Hysterisis can be set by UVSKNC.

8.7.5 Speed setting

Basic speed can be set by WB2SP.

Additionally speed control can be change by WBSPDUP.

Slow down range can be set by UVLJ.

8.7.6 Other setting

WB freeze can be set by WBLOCK.

8.8 Manual white balance control

8.8.1 Registers for this function

04/01/27 37/39

0x0A AWBSW 0x0B MRG 0x0C MBG

8.8.2 Settings

Manual white balance can be select by AWBSW. White balance gain can be set by MRG and MBG.

8.9 Other function

8.9.1 Registers for this function

0x1F SLEEPSW, SRST

0x2D SCMD3

8.9.2 Sleep mode

Sleep mode can be used by SLEEPSW.

8.9.2 Reset

Software reset can be used by SRST.

8.10 Lens shading compensation

8.10.1 Registers for this function

0x1A LENS

0x1B LENSRPOL, LENSRGAIN

8.10.2 Basic lens shading compensation

Basic lens shading compensation can be used by LENS.

8.10.3 Corner colored shading compensation

Corner colored shading compensation can be used by LENSPOL and LENSRGAIN.

By this function red color in the corner area can be added or reduced. .

8.11 Dot noise compensation

8.11.1 Registers for this function

0x59 KIZUSW, PBRDSW, ABCSW

0x5A PBDLV

0x5B PBC1LV

0x5C PBC2LV

0x5D PBC3LV

0x5E PBC4LV

0x5F PBC5LV

8.11.2 Basic function

Dot noise compensation can be enabled by KIZUSW.

The way of dot noise detection can be selected by ABCSW.

Thresh level of detection can be set by PBDLV.

The way of dot noise correction can be selected by PBRDSW.

8.11.3 Cancellation of detection

Dot noise detection can be cancelled by PBC****.

8.12 Flash timing function

8.12.1 Registers for this function

04/01/27 38/39

FSSTBSW, FSSTBPOL, FSSTBPH 0x29 0x2A **FSSTBW**

8.12.2 Setting for FSSTB

FSSTB pulse can be output by FSSTBSW. Polarity can be changed by FSSTBPOL. Phase can be changed by FSSTBPH. Width can be changed by FSSTBW.

This pulse can be used for recognition of the flash timing.

8.13 Test mode < Absolutely don't change these parameters in any situation. >

Registers for this function

VNUM 0x01 0x03 CM **HPPH** 0x21 0x22 HPPH, VRRPH 0x23 **HDSPPH** 0x24 HDSPPH, VDSPPH 0x25 **HAPRPH HAPRPH** 0x26 SCMD19-16 0x2B 0x2C SCMD15-8 0x2D SCMD7-4, SCMD2-0 TCSB1L, TCPEROSW, TCSBIN, TCRAM, TROM 0x2E TCRAMS, TSPCHK, TCPERAGC, TWBS, TWBG, TACDET 0x2F 0x30 0x31 TALCDISP, TALCOSW, PBDISP, TDISP

PCMODE, TGAMROM, TCSB

0x3F **AGMIN**

LI1POL, CS1POL, LI3POL, CS3POL, DINCKSW 0x40

0x41 JAMP, JAMG

LI12POL, CS12POL 0x4F

AWBCSPOL, WBDIVCLP, WBNOLJ, WBNOLJSC, WB2IM1 0x56

0x57 **WBDIVSC**

Index

PCK: Pixel clock (clock for sensor portion). This is half speed of output clock.

04/01/27 39/39