

### **B.TECH SECOND YEAR**

ACADEMIC YEAR: 2022-2023



## **COURSE NAME: ENGINEERING MATHEMATICS-III**

COURSE CODE : MA 2101

**LECTURE SERIES NO:** 

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. BHOOPENDRA PACHAURI

EMAIL-ID : Bhoopendra.pachauri@jaipur.manipal.edu

PROPOSED DATE OF DELIVERY:



#### VISION

Global Leadership in Higher Education and Human Development

#### MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

#### VATTIES

Integrity, Transparency, Quality,
Team Work, Execution with Passion, Humane Touch



# SESSION OUTCOME

"DEGREE OF A VERTEX IN A GRAPH, ADJACENCY AND INCIDENCE."



### **ASSIGNMENT**

#### OUIZ

MID TERM EXAMINATION -I & II

**END TERM EXAMINATION** 

# **ASSESSMENT CRITERIA'S**





## Terminology — Undirected graphs

- u and v are adjacent if {u, v} is an edge, e is called incident with u and v. u and v are called endpoints of {u, v}
- Degree of Vertex (deg (v)): the number of edges incident on a vertex. A loop contributes twice to the degree (why?).
- Pendant Vertex: deg (v) =1
- Isolated Vertex: deg (v) = 0
- Representation Example: For V = {u, v, w}, E = { {u, w}, {u, w}, (u, v) }, deg (u) = 2, deg (v) = 1, deg (w) = 1, deg (k) = 0, w and v are pendant, k is isolated





## Terminology — Directed graphs

- For the edge (u, v), u is adjacent to v OR v is adjacent from u, u Initial vertex, v – Terminal vertex
- In-degree (deg-(u)): number of edges for which u is terminal vertex
- Out-degree (deg+(u)): number of edges for which u is initial vertex

Note: A loop contributes 1 to both in-degree and out-degree (why?)

**Representation Example:** For  $V = \{u, v, w\}$ ,  $E = \{(u, w), (v, w), (u, v)\}$ ,  $deg^{-}(u) = 0$ ,  $deg^{+}(u) = 2$ ,  $deg^{-}(v) = 1$ ,  $deg^{+}(v) = 1$ , and  $deg^{-}(w) = 2$ ,  $deg^{+}(u) = 0$ 





# **Theorems: Undirected Graphs**

## Theorem 1

The Handshaking theorem:

$$2 e = \sum_{v \in V} v$$

(why?) Every edge connects 2 vertices



# Theorems: Undirected Graphs

### Theorem 2:

# An undirected graph has even number of vertices with odd degree

Proof V1 is the set of even degree vertices and V2 refers to odd degree vertices

$$2e = \sum_{v \in V} deg(v) = \sum_{u \in V_1} deg(u) + \sum_{v \in V_2} deg(v)$$

- $\Rightarrow$  deg (v) is even for  $v \in V_1$ ,
- ⇒ The first term in the right hand side of the last inequality is even.
- ⇒ The sum of the last two terms on the right hand side of the last inequality is even since sum is 2e.

Hence second term is also even

$$\Rightarrow$$
 second term  $\sum_{v \in V_2} deg(v) = even$ 



# **Definitions – Graph Type**

| Туре                   | Edges           | Multiple Edges<br>Allowed ? | Loops Allowed ? |
|------------------------|-----------------|-----------------------------|-----------------|
| Simple Graph           | undirected      | No                          | No              |
| Multigraph             | undirected<br>I | Yes                         | No              |
| Pseudograph            | undirected      | Yes                         | Yes             |
| Directed Graph         | directed        | No                          | Yes             |
| Directed<br>Multigraph | directed        | Yes                         | Yes             |