CS598:VISUAL INFORMATION RETRIEVAL

Lecture III: Image Representation:

Invariant Local Image Descriptors

RECAP OF LECTURE II

- Color, texture, descriptors
 - Color histogram
 - Color correlogram
 - LBP descriptors
 - Histogram of oriented gradient
 - Spatial pyramid matching
- Distance & Similarity measure
 - L_p distances
 - Chi-Square distances
 - KL distances
 - EMD distances
 - Histogram intersection

LECTURE III: PART I

Local Feature Detector

OUTLINE

- Blob detection
 - Brief of Gaussian filter
 - Scale selection
 - Lapacian of Gaussian (LoG) detector
 - Difference of Gaussian (DoG) detector
 - Affine co-variant region

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

 	 0.013 0.059	
 	 0.059	
 	 0.059 0.013	

$$5 \times 5$$
, $\sigma = 1$

Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

• Standard deviation σ : determines extent of smoothing

CHOOSING KERNEL WIDTH

• The Gaussian function has infinite support, but discrete filters use finite kernels

CHOOSING KERNEL WIDTH

• Rule of thumb: set filter half-width to about 3σ

Gaussian vs. box filtering

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have $\sigma\sqrt{2}$
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev.
- Separable kernel
 - Factors into product of two 1D Gaussians

SEPARABILITY OF THE GAUSSIAN FILTER

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

SEPARABILITY EXAMPLE

2D convolution (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

The filter factors into a product of 1D filters:

1	2	1		1	Х	1	2	1
2	4	2	=	2	2 13			
1	2	1		1	2			

Perform convolution along rows:

				2	3	3			11	
1	2	1	*	3	5	5	=		18	
				4	4	6): (1)	18	

Followed by convolution along the remaining column:

WHY IS SEPARABILITY USEFUL?

- What is the complexity of filtering an n×n image with an m×m kernel?
 - $O(n^2 m^2)$
- What if the kernel is separable?
 - $O(n^2 m)$

OUTLINE

- Blob detection
 - Brief of Gaussian filter
 - Scale selection
 - Lapacian of Gaussian (LoG) detector
 - Difference of Gaussian (DoG) detector
 - Affine co-variant region

Blob detection in 2D

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Blob detection in 2D

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Scale-normalized:
$$\nabla_{\text{norm}}^{2} g = \sigma^{2} \left(\frac{\partial^{2} g}{\partial x^{2}} + \frac{\partial^{2} g}{\partial y^{2}} \right)$$

SCALE SELECTION

• At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?

imag e

Laplacia n

SCALE SELECTION

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
- To get maximum response, the zeros of the Laplacian have to be aligned with the circle
- The Laplacian is given by:

$$(x^2 + y^2 - 2\sigma^2) e^{-(x^2 + y^2)/2\sigma^2} / 2\pi\sigma^6$$

Therefore, the maximum response occurs at $\sigma = r/\sqrt{2}$.

$$\sigma = r/\sqrt{2}.$$

CHARACTERISTIC SCALE

• We define the characteristic scale of a blob as the scale that produces peak of Laplacian response in the blob center

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> International Journal of Computer Vision **30** (2): pp 77--116.

SCALE-SPACE BLOB DETECTOR

1. Convolve image with scale-normalized Laplacian at several scales

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

SCALE-SPACE BLOB DETECTOR

1. Convolve image with scale-normalized Laplacian at several scales

2. Find maxima of squared Laplacian response in

scale-space

Scale-space blob detector: Example

OUTLINE

- Blob detection
 - Brief of Gaussian filter
 - Scale selection
 - Lapacian of Gaussian (LoG) detector
 - <u>Difference of Gaussian (DoG) detector</u>
 - Affine co-variant region

Efficient implementation

Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Invariance and covariance properties

- Laplacian (blob) response is invariant w.r.t.
 rotation and scaling
- · Blob location and scale is *covariant* w.r.t. rotation and scaling
- What about intensity change?

OUTLINE

- Blob detection
 - Brief of Gaussian filter
 - Scale selection
 - Lapacian of Gaussian (LoG) detector
 - Difference of Gaussian (DoG) detector
 - Affine co-variant region

ACHIEVING AFFINE COVARIANCE

 Affine transformation approximates viewpoint changes for roughly planar objects and roughly orthographic cameras

ACHIEVING AFFINE COVARIANCE

Consider the second moment matrix of the window containing the blob:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Recall:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

This ellipse visualizes the "characteristic shape" of the window

AFFINE ADAPTATION EXAMPLE

Scale-invariant regions (blobs)

AFFINE ADAPTATION EXAMPLE

Affine-adapted blobs

From covariant detection to invariant description

- Geometrically transformed versions of the same neighborhood will give rise to regions that are related by the same transformation
- What to do if we want to compare the appearance of these image regions?
 - Normalization: transform these regions into same-size circles

AFFINE NORMALIZATION

- Problem: There is no unique transformation from an ellipse to a unit circle
 - We can rotate or flip a unit circle, and it still stays a unit circle

ELIMINATING ROTATION AMBIGUITY

- To assign a unique orientation to circular image windows:
 - Create histogram of local gradient directions in the patch
 - Assign canonical orientation at peak of smoothed histogram

From covariant regions to invariant features

Invariance vs. covariance

Invariance:

features(transform(image)) = features(image)

Covariance:

features(transform(image)) = transform(features(image))

Covariant detection => invariant description

David G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110

- 6291 as of 02/28/2010; <u>22481</u> as of 02/03/2014
- Our goal is to design the best local image descriptors in the world.

LECTURE III: PART I

Learning Local Feature Descriptor

Typical matching process

Image 1

Image 2

Interest point/region detection (sparse)

Image 1

Image 2

Dense sampling of image patches

Typical matching process

Image 1

Image 2

Problem to solve

Learning a function of a local image patch descriptor = f() s.t. a nearest neighbor classifier is optimal

- □ To obtain the most *discriminative*, *compact*, and *computationally efficient* local image descriptors.
 - How can we get ground truth data?
 - What is the form of the descriptor function f(.)?
 - What is the measure for optimality?

How can we get ground truth data?

Multiview stereo = Training data

Libert Yosemit

Statue of liberty (New York) – Liberty

- Notre Dame (Paris) Notre Dame
- Half Dome (Yosemite) Yosemite
- http://www.cs.ubc.ca/~mbrown/patchdata/patchdata.html

WHAT IS THE FORM OF THE DESCRIPTOR FUNCTION?

Descriptor Algorithms

Descriptor Algorithms

PAMI'05]

Descriptor algorithms

Descriptor algorithms

Descriptor Algorithms

Our descriptor algorithm

S-Block: Picking the best DAISY

vector

S-Block: DAISY

T-Block

Descript

or

Vector

T-Block:

- T1: Gradient bi-linearly weighted orientation binning
- T2: Rectified gradient $\{ |\nabla_{x}| \nabla_{x}, |\nabla_{x}| + \nabla_{x}, |\nabla_{y}| \nabla_{y}, |\nabla_{y}| + \nabla_{y} \}$
- T3: Steerable filters

N-E-Q Blocks

- N-Block: Uniform v.s. SIFT-like normalization Vector
- E-Block: Principle component analysis (PCA)
- □ Q-block: $q_i = |\beta L v_i| + \alpha$, β is learnt from data, α = 0.5 if L is an odd number and α = 0 otherwise.

WHAT IS THE OPTIMAL CRITERION?

DISCRIMINATIVE LEARNING AND OPTIMAL CRITERION

SIFT-LIKE NORMALIZATION & PCA

- SIFT like normalization has a clear sweet spot.
- □ PCA can usually reduce the dimension to 30~50.

The most discriminative DAISY

- Steerable filters at two spatial scales with PCA
 - T3-2nd-6-2r6s + 2-scale + PCA: 42 dimension, 9.5%
 - $2 \times 6 \times 2 \times 2 \times (2 \times 6 + 1) = 624$ dimensions before PCA

THE MOST COMPACT DAISY

- 2 bits /dimension is sufficient before PCA
- 4 bits /dimension is needed after PCA
- http://www.cs.ubc.ca/~mbrown/patchdata/patchdata.html

Some of the errors made

□ The world is repeating itself....

SUMMARY

- Blob detection
 - Brief of Gaussian filter
 - Scale selection
 - Lapacian of Gaussian (LoG) detector
 - Difference of Gaussian (DoG) detector
 - Affine co-variant region
- Learning local descriptors
 - How can we get ground-truth data?
 - What is the form of the descriptor function?
 - What is the optimal criterion?
 - How do we optimize it?