Hurtownie danych - Spr. 2.

PWr. WIZ, Data: 17-19.03.2021

Student		Ocena
Indeks	<u>251526</u>	
Imię	Volodymyr	
Nazwisko	Zakhovaiko	

Zestaw składa się z 4 zadań. Jeżeli nie potrafisz rozwiązać zadania, to próbuj podać, chociaż częściowe rozwiązanie lub uzasadnienie przyczyny braku rozwiązania. Pamiętaj o podaniu nr. indeksu oraz imienia i nazwiska.

Baza danych: AdventureWorks2019

Zad. 1.

Źródło danych: SalesOrderHeader Zdefiniować następujące zapytania:

- 1.1 Wyznaczyć lata, w których zostały zarejestrowane zamówienia w bazie danych
- 1.2 Utworzyć wykaz zamówień złożonych w pierwszym roku rejestracji zamówień (Identyfikator, Rok, Kwota zamówienia)
- 1.3 Utworzyć wykaz zamówień złożonych w maju w poszczególnych latach (Rok, mc, Identyfikator, Kwota zamówienia)

Rozwiązanie:

1.1. Zapytanie SQL + fragment wyniku (4 rekordy z ?)

SELECT DISTINCT YEAR(OrderDate) FROM Sales.SalesOrderHeader;

Rek.: 4/4

1.2. Zapytanie SQL + fragment wyniku (4 rekordy z ?)

SalesOrderID	Year	TotalDue
43659	2011	23153,2339
43660	2011	1457,3288
43661	2011	36865,8012
43662	2011	32474,9324

Rek.: 4/1607

1.3. Zapytanie SQL + fragment wyniku (4 rekordy z ?)

SELECT YEAR(OrderDate) as , MONTH(OrderDate), SalesOrderID, TotalDue FROM
Sales.SalesOrderHeader WHERE MONTH(OrderDate) = 5;

Year	Month	SalesOrderID	TotalDue
2011	5	43659	23153,2339
2011	5	43660	1457,3288
2011	5	43661	36865,8012
2011	5	43662	32474,9324

Rek.: 4/3175

Zad 2.

2.1. Utworzyć wykaz klientów, którzy mają więcej niż 25 zamówień (wykorzystać CTE). Przykładowy wynik zapytania przedstawiony jest poniżej w tabeli 2.1.:

Tabela 1. Fragment wyników zapytania zad. 2.1

klientId	Nazwisko, imię	Liczba zamówień
11091	Perez, Dalton	28
11176	Roberts, Mason	28
11185	Henderson, Ashley	27
11200	Griffin, Jason	27
	•••	

Rozwiązanie:

2.1. Ustalić, jakie czynniki mają wpływ na robienie zakupów. Przykładowy wynik zapytania przedstawiony jest poniżej w tabeli 2.2.

Źródło danych: SalesOrderHeaderSalesReason, ?

Tabela 1. Fragment wyników zapytania zad. 2.2

Nazwa	Powód
Price	17473
On Promotion	3515
Manufacturer	1746

Rek.: 3/?

Rozwiązanie:

2.1 Zapytanie SQL + fragment wyniku (4 rekordy z ?)

```
WITH clientsCTE (klientId, "Nazwisko, imie", "Liczba zamowien")
AS (
    SELECT S.CustomerID AS "klientId", P.LastName + ', ' + P.FirstName as "Nazwisko, imie",
    COUNT(S.SalesOrderID) AS "Liczba zamowien"
    FROM Sales.SalesOrderHeader AS S
    JOIN Person.Person P ON S.CustomerID = P.BusinessEntityID
    GROUP BY S.CustomerID, P.LastName, P.FirstName
    HAVING COUNT(S.SalesOrderID) > 25
)
```

SELECT klientId, "Nazwisko, imie", "Liczba zamowien" FROM clientsCTE ORDER BY 3 DESC;

klientId	Nazwisko, imie	Liczba zamowien
11176	Miller, Morgan	28
11091	Taylor, Jennifer	28
11277	Vazquez, Ruben	27
11262	Wilson, Natalie	27

Rek.: 4/13

2.2 Tableau – ten sam rezultat w formie graficznej

```
SELECT SR.[Name] as "Nazwa", COUNT(SR.[Name]) as "Powod"
FROM Sales.SalesOrderHeaderSalesReason as OSR
JOIN Sales.SalesReason as SR
ON OSR.SalesReasonID = SR.SalesReasonID
GROUP BY SR.[Name]
ORDER BY COUNT(SR.[Name]) DESC;
```

Nazwa	Powod
Price	17473
On Promotion	3515
Manufacturer	1746
Quality	1551
Other	1395
Review	1245
Television Advertisement	722

Rek.: 7/7

Lub w takiej reprezentacji.

Zad. 3.

Zdefiniować zapytanie wyznaczające kwotę sprzedaży poszczególnym klientom przez pracowników w zarejestrowanych latach. Przykładowy wynik zapytania przedstawiony jest poniżej w tabeli 3.:

Tabela 3. Fragment wyników zapytania zad. 3.

SalesPersonID	CustomerID	2011	2012	2013	2014
279	29484	4049,988	65177,168	61875,8263	NULL
276	29485	NULL	NULL	57546,8984	55341,768
275	29486	NULL	NULL	151107,235	53531,9226

Rozwiązanie:

1.1 Zapytanie SQL + fragment wyniku (4 rekordy z ?)

SalesPersonId	CustomerID	2011	2012	2013	2014
279	29484	4560,2864	73584,0378	69660,5966	NULL
276	29485	NULL	NULL	65096,2177	62283,5742

275	29486	NULL	NULL	170175,5215	60267,2427
277	29486	94633,3601	259873,0065	NULL	NULL

Rek.: 4/860

1.2 Tableau – ten sam rezultat w formie graficznej

Rek.: 860

Zad. 4.

Należy utworzyć tabelę przestawną prezentującą:

- Średnią roczną kwotę zakupów dokonanych przez klientów w latach 2013-2014 wykorzystując operator PIVOT
- 2. Średnią roczną kwotę zakupów dokonanych przez klientów w latach 2013-2014 bez operatora PIVOT

Tabela 4. Fragment wyników zapytania zad. 4.

CustomerID	2011	2012	2013	2014
29484	4049.99	16294.29	30937.91	NULL
29485	NULL	NULL	28773.45	27670.88
29486	42018.26	57683.92	37776.81	26765.96

Rozwiązanie:

4.1 Zapytanie SQL + fragment wyniku (4 rekordy z ?)

CustomerID	2011	2012	2013	2014
29484	4560,2864	18396,0094	34830,2983	NULL
29485	NULL	NULL	32548,1088	31141,7871
29486	47316,68	64968,2516	42543,8803	30133,6213
29487	21180,4474	6464,8178	2771,9326	524,6153

Rek.: 4/635

4.2. Zapytanie SQL + fragment wyniku (4 rekordy z ?)

```
SELECT CustomerID,

AVG(CASE WHEN YEAR(OrderDate) = 2011 THEN [TotalDue] END) "2011",

AVG(CASE WHEN YEAR(OrderDate) = 2012 THEN [TotalDue] END) "2012",

AVG(CASE WHEN YEAR(OrderDate) = 2013 THEN [TotalDue] END) "2013",

AVG(CASE WHEN YEAR(OrderDate) = 2014 THEN [TotalDue] END) "2014"

FROM Sales.SalesOrderHeader

GROUP BY CustomerID

ORDER BY CustomerID;
```

CustomerID	2011	2012	2013	2014
11000	3756,989	NULL	2679,0725	NULL
11001	3729,364	NULL	2674,0227	650,8008
11002	3756,989	NULL	2604,5126	NULL
11003	3756,989	NULL	2618,4632	NULL

Rek.: 4/19119

Wnioski:

- CTE (common table expression) to jest wspólne wyrażenia tablicowe, zostały dodane do SQL Serwera odnośnie niedawno. One upraszczają i poprawiają przejrzystość kodu SQL. W tym zakresie, ich stosowanie nie ma wpływu na wydajność zapytań, tylko na jego czytelność. Oprócz tego, że wygląda to estetycznej, one posiadają jeszcze jedną właściwość – ich struktura pozwala na realizowanie rekurencji.
- 2. SQL Serwer umożliwia prezentację danych w formie tabel przestawnych. Za pomocą niestandardowych operatorów PIVOT i UNPIVOT możemy przekształcać kolumny

- w wiersze i odwrotnie. Operator PIVOT grupuje dane i wywołuje dla każdej grupy wskazaną funkcję agregującą (grupującą).
- 3. Dla lepszego rozumienia i wygodniejszej analizy danych służy program dla wizualizacji graficznej danych Tableau. Wykorzystując ten program można szybko utworzyć niezbędne diagramy dla analizy, przepowiadać dane w przyszłości i wielu innych rzezy. Jest to jedno z najwygodniejszych narzędzi dla takich rzeczy. Ze strony użytkownika mogę powiedzieć na pewno, że wykorzystując ten program skrócę czas napisania żądań SQL w kilku razy.

Uwaga:

 Sprawozdanie bez wniosków końcowych nie będzie sprawdzane i tym samym ocena jest negatywna!