https://github.com/multicore-it/n

베이지안 최저화 https://github.com/multicore-https://github.com/multicore-

3. 패키지 활용

https://github.com/multicore-lt/n

패키지 활용 multicore-it/r\ def black box function(laws)

목표함수 정의

```
def black_box_function(layer_num_actor, node_num_actor, epochs_actor,
                      layer_num_critic, node_num_critic, epochs_critic,
                      learning_rate_actor, learning_rate_critic,
                      discount_rate, smooth_rate.
                      penalty, mini_batch_step_size, loss_clipping
   config data = {
        'layer_num_actor':layer_num_actor,
        'node_num_actor':node_num_actor,
        'epochs actor':epochs actor.
        'layer_num_critic':layer_num_critic,
        'node_num_critic':node_num_critic,
                                                  튜닝 파라미터
        'epochs_critic':epochs_critic,
        'learning rate actor' : learning rate actor.
        'learning_rate_critic':learning_rate_critic,
        'discount_rate'
                             :discount_rate,
        'smooth_rate'
                           :smooth_rate,
        'penalty'
                            :penalty,
        'mini_batch_step_size':mini_batch_step_size,
        'loss clipping'
                             :loss clipping
   agent = Agent(config_data)
   agent.train()
                                         반환값 정의
   return np.mean(agent.reward_list)
```

내 보고 하수는 튜닝할 파라미터를 결정하고, 이 파라미터를 기반으로 프로그램을 실행해서 결과를 반환하는 기능을 수행한다

github.com/multicore-it/r/

110-1

패기지 활용 multicore-ith 파라

파라미터 범위 지정

```
pbounds = {
            'layer_num_actor':(1,2),
            'node_num_actor':(12,128),
            'epochs_actor':(3,6),
            'layer_num_critic':(1,2),
            'node_num_critic':(12,128),
            'epochs_critic':(3,6),
            'learning_rate_actor' :(0.0001,0.001),
            'learning_rate_critic':(0.0001,0.001),
            'discount_rate'
                                   :(0.9,0.99),
            'smooth_rate'
                              :(0.9.0.99).
            'penalty'
                                   :(-500,-10),
            'mini_batch_step_size':(4,80),
             'loss_clipping'
                                   :(0.1,0.3)
```

```
투 닝 할 파 라 미 터 를 pbounds 변수에 딕셔너리 형태로 지정한다.
```


패키지 활용에 Agent 클래스 변수 설정

```
def __init__(self, config_data):
    self.env = gym.make('CartPole-v1')
    self.state_size = self.env.observation_space.shape[0]
    self.action_size = self.env.action_space.n
    self.value_size = 1
                                                                          정수로 변환
    self.layer_num_actor = int(round(config_data['layer_num_actor'],0))
    self.node_num_actor = int(round(config_data['node_num_actor'],0))
    self.epochs_actor = int(round(config_data['epochs_actor'],0))
    self.layer_num_critic = int(round(config_data['layer_num_critic'],0))
    self.node_num_critic = int(round(config_data['node_num_critic'],0))
    self.epochs_critic = int(round(config_data['epochs_critic'],0))
    self.learning_rate_actor = config_data['learning_rate_actor']
    self.learning_rate_critic = config_data['learning_rate_critic']
    self.discount_rate = config_data['discount_rate']
    self.smooth rate = config data['smooth rate']
    self.penalty = int(round(config_data['penalty'],0))
    self.mini_batch_step_size = int(round(config_data['mini_batch_step_size'],0))
    self.loss_clipping = config_data['loss_clipping']
```

com/multicore-it/r/

https://w

메네지 할용nmulticore-ith. https://github.com/

프로그램

미리 만들어놓은 목표함수와 튜닝을 위한 딕셔너리를 사용해서 BayesianOptimization 클래스를 생성하고 학습을 위해 maximize 함수를 실행한다.

```
optimizer = BayesianOptimization(
                                   https://github.com/multicore-it/r/
   f=black_box_function,
   pbounds=pbounds,
   random_state=1,
optimizer.maximize(
                      랜덤 5회, 최적화 20회
   init_points=5,
                         총 50회 수행
   n_iter=20
```

메기지 할용nmulticore-ith. https://github.com/

com/multicore-it/r/ 코드 리뷰

https://github.com/multicore-it/r/

									• • • • •
0.000630	0.24	11.78	60.03	92.55	-297.1	0.9045			
6	143.0	0.9626	3.623	3.248	1.306	1.548		0.000779	
0.000576	0.1574	51.44	42.72	87.71	-87.47	0.9575			
7	33.65	0.9424	3.826	5.102	1.779	1.849		0.000585	
0.000741	0.2949	34.85	61.93	28.71	-420.1	0.9347			
8	261.0	0.9561	5.377	4.037	1.091	1.536		0.000949	
0.000489	0.1358	17.45	90.82	122.4	-133.1	0.9446			n multicore-it rl
9	29.04	0.9352	3.343	5.206	1.199	1.062		0.000959	실행로그
0.000135	0.2367	44.62	119.1	51.09	-47.23	0.9792			
10	23.04	0.9682	5.624	4.292	1.77	1.288		0.000258	
0.000582	0.2948	36.58	83.53	23.39	-362.3	0.9589			
11	42.52	0.9226	3.466	5.953	1.183	1.364		0.000418	
0.000281	0.2086	10.69	119.6	18.01	-368.9	0.9539			
12	50.81	0.9216	5.941	4.988	1.431	1.603		0.000164	
0.000936	0.2232	17.56	75.3	126.5	-123.4	0.9677			
13	28.11	0.9274	3.438	5.431	1.271	1.792		0.000169	α_{11}
0.000275	0.2057	17.54	85.69	24.01	-315.8	0.9555			
14	15.64	0.9223	4.879	4.707	1.951	1.056		0.000329	
0.000266	0.2299	61.55	55.41	118.3	-390.9	0.928			
15	17.65	0.9873	4.764	4.072	1.858	1.077		0.000435	
0.000464	0.2783	39.85	55.34	21.24	-484.9	0.9184			
16	20.63	0.9692	3.7	5.935	1.737	1.245	_ 1	0.000185	
0.000744	0.1418	72.77	38.84	66.25	-443.6	0.954			
17	28.45	0.9384	4.063	5.433	1.973	1.702		0.000253	1 -
0.000483	0.2822	20.95	14.45	56.22	-360.9	0.9325			1714:
18	31.68	0.9874	4.124	5.531	1.317	1.099		0.000648	- ////
0.000143	0.1877	64.63	66.42	46.25	-324.1	0.9804			- 10-10
19	112.5	0.9468	5.848	4.31	1.338	1.942		0.000230	1:000
0.000143	0.1504	17.42	119.2	72.16	-343.8	0.9182			141(.0,
20	207.3	0.9015	4.888	4.1	1.926	1.801	, I	0.000619	
0.000111	0.1151	16.53	112.0	74.65	-344.8	0.9123	1	_	
21	334.6	0.9138	4.136	3.069	1.813	1.29	. 1	0.000704	201111
0.000732	0.2671	18.73	119.2	74.68	-347.1	0.9321	Ι,		
22	15.76	0.9723	5.409	3.821	1.124	1.855	. 1	0.000676	1- CU'
0.000359	0.189	50.06	46.28	89.35	-84.37	0.9848	Ι.		
23	90.43	0.9503	4.78	4.383	1.522	1.837	. 1	0.000163	: to I b .
0.000425	0.1385	25.44	123.0	72.82	-348.1	0.9822	Ι,		
24	33.81	0.9737	3.471	4.316	1.198	1.542	. 1	0.000170	
0.000305	0.2157	17.06	121.6	77.53	-353.6	0.9655	Ι,	_	-C-113
25	166.0	0.9869	4.916	5.744	1.673	1.487	. 1	0.000203	
0.000690	0.2577	17.62	88.07	117.1	-135.2	0.9771			9-
								1110	ps://github.com/multicore-it/r/

Penlmulticore-it/r/

```
target_list = []
i=0
for res in optimizer.res:
   target_list.append([res["target"], i])
                                                                                  Imulticore-i
                                 실행 결과 순으로 정렬
target_list.sort(reverse=True)
target_list
[[334.62, 20].
 [260.99, 7].
 [207.33, 19],
 [165.97, 24],
 [142.99, 5],
 [112.53, 18],
 [90.43, 22].
                                                              최적의 파라미터 확인
 [50.81, 11].
 [42.52, 10],
                 print("*result:" , optimizer.res[20]['params'])
 [37.65, 0],
 [34.92, 4],
                 *result: {'discount_rate': 0.9138068228055699, 'epochs_actor': 4.13579
 [33.81, 23],
                 6340297432, 'epochs_critic': 3.068824820615902, 'layer_num_actor': 1.8
 [33.65, 6],
                 127168005702576, 'layer_num_critic': 1.2899196661865222, 'learning_rat
 [32.31, 2],
                 e_actor': 0.0007044665544668867, 'learning_rate_critic': 0.00073253232
 [31.68, 17].
                 36616151, 'loss_clipping': 0.2671282081035625, 'mini_batch_step_size':
 [29.04.8].
                 18.73240705651665, 'node_num_actor': 119.19096504720964, 'node_num_cri
 [28, 45, 16],
                 tic': 74.68079589490598, 'penalty': -347.12015260105, 'smooth_rate':
 [28.11, 12],
                 0.9321116290822046}
 [25.11, 3],
 [23.1, 1],
 [23.04, 9],
 [20.63, 15].
 [17.65, 14].
 [15.76, 21],
```

[15.64, 13]]

최적 파라미터 확인

s:||github.com|multicore-it|rl

패키지 활용 Multicore-itil PPO 알고리즘 개선

```
LOSS CLIPPING = 0.2671282081035625
class Agent(object):
   def init (self):
        self.env = gvm.make('CartPole-v1')
        self.state size = self.env.observation space.shape[0]
        self.action size = self.env.action space.n
        self.value size = 1
        self.layer num actor = int(round(1.8127168005702576,0))
        self.node num actor = int(round(119.19096504720964,0))
        self.epochs actor = int(round(4.135796340297432,0))
        self.layer num critic = int(round(1.2899196661865222,0))
        self.node num critic = int(round(74.68079589490598,0))
        self.epochs critic = int(round(3.068824820615902,0))
        self.learning rate actor = 0.0007044665544668867
        self.learning rate critic = 0.0007325323236616151
        self.discount rate = 0.9138068228055699
        self.smooth rate = 0.9321116290822046
        self.penalty = int(round(-347.12015260105,0))
        self.mini batch step size = int(round(18.73240705651665,0))
        self.episode num = 300
        self.moving_avg_size = 20
        self.model actor = self.build model actor()
        self.model critic = self.build model critic()
```

파라미터 설정

패키지 활용이 알고리즘 개선

