Transport in Plants	-
Chapter 32	
	1
Redwoods	
	J
Plant Material Transport	·
Material transport	
 Short distances between cells Long distances between roots and and shoot parts, such as leaves (xylem and phloem) 	
 The plant cell wall does not prevent solutes from moving into plant cells 	
• Plasmodesmata	

Water Movement in Plants

- Movement of water into and through plant cells and tissues is a very important aspect of plant physiology
- Osmosis
 - Passive movement of water across a selectively permeable cell membrane
 - Driven by <u>water potential</u> (Ψ; MPa)
- Bulk flow of water due to pressure differences
 - Example: Xylem sap, a dilute solution of water and ions from roots to leaves

Water Potential (Ψ)

- Water potential (Ψ) is the total of its components
 - Rule of thumb: Water moves from high to low water potential
 - Ψ of pure water is 0 MPa
 - $\Psi = \Psi_s + \Psi_p$
- Presence of solutes <u>lowers</u> solute potential (Ψ_s)
- Pressure potential (Ψ_p)
 - Increased pressure <u>increases</u> the water potential

Plant Cells and Water Potential

- Central vacuole
 - Tonoplast membrane
 - Contains a dilute solution of sugars, proteins, or other organic molecules, and salts
 - Vacuole maintains turgor pressure
- Aquaporin proteins allow rapid movement of water through hydrophobic membrane core
- Wilting occurs when plants lose more water than they gain (plasmolysis)
 - Low Ψ of dry soil

Transport in Roots

- Water and minerals that enter roots must first travel laterally through the root cortex to the root xylem
- Roots take up ions by active transport
- Water and ions travels to the root xylem by three pathways

Water in Roots

- Apoplastic pathway: water moves through "nonliving" regions
- 2) Symplastic pathway: water passes into and through living cells via plasmodesmata
- Transmembrane pathway: water that enters the cytoplasm moves between living cells by diffusing across cell membranes

Casparian Strip Casparian strip in root endodermis forces apoplastic water to symplast Route water takes into the stele, through the endodermal cell plasma membrane (symplastic pathway) Route water takes into the stele, through the endodermal cell plasma membrane (symplastic pathway)

Mineral Active Transport

- Most minerals for growth are more concentrated in root than in soil
 - · Active transport into symplast
 - Active transport at Casparian strip across membrane
- Minerals loaded into dead xylem in root stele
 - Transported long distance to other tissues

Transport of Water and Minerals in the Xylem

- How does xylem sap move from roots to stems, and into leaves?
- Transpiration drives the ascent of sap
- Cohesion-tension mechanism of water transport
 - Involves two very important properties of water - cohesion and adhesion
 - Tension, negative pressure gradient, maintained by narrow xylem walls (wilting is excess tension)

Leaf Anatomy

- Leaves facilitate transpiration
 - · Large volume of air
 - ~ 2/3 of leaf volume consists of air spaces
 - Thousands to millions of stomata, through which water vapor can escape
 - · Contains thousands of tiny xylem veins
 - · Short cell distances to xylem

Cohesion-Tension in Tallest Trees

- Transpiration follows atmospheric evaporation
 - Driving forces: Dryness and radiation
 - Tallest trees (>110m) near physical limit of cohesion
- Root pressure can also occur in moist to wet soils
 - Moves water up short distances
- Guttation
 - Water movement under pressure out leaves

Guttation

Stomata

- Transpirational losses of water must be regulated to prevent rapid dessication
 - Cuticle limits H₂O loss but also prevents CO₂ uptake
 - Water is always lost when stomata open for CO₂ (photosynthesis)
- Stomatal opening controlled by symport of H+/K+
 - Water follows K+ by osmosis
 - · Turgid stomata open, flaccid closed

Guard Cells and Stomatal Action Guard cell Guard cell Stoma Chloroplast (guard cells are the only epidermal cells that have these organelles)

Potassium Accumulation in Stomatal Guard Cells a. Open stomata, with potassium mostly in guard cells b. Closed stomata, with potassium mostly in epidermal cells

Physiology of Stomata

- Stomata must balance H₂O loss and CO₂ uptake by responding to many signals, biological clock
- Stomata open to increase photosynthesis
 - Increasing light (stimulate blue-light receptors)
 - · Decreasing CO2 concentration in leaf
- Stomata close under water stress
 - Abscisic acid is hormonal signal for closure, synthesized by roots and leaves

a. Stoma is open; water has moved in. ABA signal

Arid Adaptations

- Xerophytes have adaptations to aridity
 - Thickened cuticle, sunken stomata, water storage in stems
- Crassulacean acid metabolism (CAM) plants have stomata that open at night
 - Include cacti, orchids, and most succulents
 - Stomata are fewer in number and follow a reversed schedule
 - CO₂ fixed at night (low evaporation) into malate
 - CO₂ released from malate during day when stomata closed

Surviving Water Stres	SS
. Clearders	Consider leaf
Spines (modified leaves) on a cactus stem	c. CAM plant

Transport of Organic Substances in the Phloem

- Translocation
 - Long-distance transport of substances via phloem
 - Phloem flows under pressure, moves any direction
- Macromolecules broken down into constituents for transport across cell membranes
 - Sucrose is the main form in which sugars are transported through the phloem of most plants
- Phloem sap composed of water and organic compounds that move through sieve tubes

Source and Sinks

- Source: Any region of plant where organic substance is loaded into phloem
 - · Companion and transfer cells
- Sink: Any region of plant where organic substance is unloaded from phloem and used or stored
- Pressure flow mechanism (next slide) moves substance by bulk flow under pressure from sources to sinks
 - · Based on water potential gradients

