Padé Approximations And Continued Fractions

Desmond Blue Manthy

Topics

- ► Theory
- Examples
- ► Applications

Motivation

- ▶ If a power series representation of a function diverges it indicates the presence of singularities
- ► This divergence reflect that a polynomial cannot appropriately approximate the function near the singularities
- Want to find a way to represent the function in question with a convergent expression.
- Want a summation algorithm that only requires a finite number of terms of a divergent series
- An answer is Padé Approximations

⁰Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

4 □ ▶ 4 □

Theory

An asymptotic expansion can be expressed by replacing the power series $\sum c_n z^n$ by a ratio of two similar functions:

$$P_{M}^{N}(z) = \frac{\sum_{n=0}^{N} a_{n} z^{n}}{\sum_{n=0}^{M} b_{n} z^{n}}$$

This sequence of rational functions is a Padé Approximation.

Generalizing Taylor Expansion

$$P_{M}^{N}(z) = \frac{\sum_{n=0}^{N} a_{n} z^{n}}{\sum_{n=0}^{M} b_{n} z^{n}}$$

Generalizes the Taylor expansion with equal degrees of freedom

$$T_{M+N}(z) = \sum_{n=0}^{M+N} c_n z^n$$

Which are equivalent for M=0

Choosing Coefficients

Taking:
$$P_M^N(z) = \frac{\sum_{n=0}^N a_n z^n}{\sum_{n=0}^M b_n z^n}$$

- Normalized by letting $b_0 = 1$ without loss of generality
- Must choose the remaining (M + N + 1) coefficients
- ► Choose $a_0, a_1, ..., a_{N-1}, a_N, b_1, b_2, ..., b_{M-1}, b_M$ such that the first (M + N + 1) terms of the Taylor expansion of $P_M^N(z)$ match the first (M + N + 1) terms of the power series $\sum c_n z^n$

⁰Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

√ ○ ○

Choosing Coefficients In Practice

$$P_M^N(z) = \frac{\sum_{n=0}^N A_n z^n}{\sum_{n=0}^M B_n z^n}, \quad T_{M+N}(z) = \sum_{n=0}^{M+N} c_n z^n$$

Equate the Taylor Expansion

$$\frac{a_0 + a_1 x + a_2 x^2 + \dots}{1 + b_1 x + b_2 x^2 + \dots} = c_0 + c_1 x + c_2 x^2 + \dots$$

Multiply over yields coefficient relations:

$$a_0 = c_0$$

$$a_1 = c_1 + c_0 b_1$$

$$a_2 = c_2 + c_1 b_1 + c_0 b_2$$

$$a_3 = c_3 + c_2 b_1 + c_1 b_2 + c_0 b_3$$

⁰Fornberg, B., Calculation of weights in finite difference formulas, SIAM Rev::40:685:691, 1998. 4 🖹 🕨 📜 🛷 🔾 🖰

Specifying Degree

$$a_0 = c_0$$

 $a_1 = c_1 + c_0 b_1$
 $a_2 = c_2 + c_1 b_1 + c_0 b_2$
...

The above system of equations at first appears underdetermined. However, recall

$$P_{M}^{N}(z) = \frac{\sum_{n=0}^{N} A_{n}z^{n}}{\sum_{n=0}^{M} B_{n}z^{n}}, \quad T_{M+N}(z) = \sum_{n=0}^{M+N} c_{n}z^{n}$$

Take the degree of the numerator and denominator to be N and M respectively, and truncate the Taylor expansion to M+N+1 terms

Example: Coefficients

Given
$$T_5(x)$$
, determine $P_3^2(x)$
 $M + N = 5$, $N = 2$, $M = 3$ Then:

$$a_0 = c_0$$

$$a_1 = c_1 + c_0 b_1$$

$$a_2 = c_2 + c_1 b_1 + c_0 b_2$$
no more a 's available $\Rightarrow 0 = c_3 + c_2 b_1 + c_1 b_2 + c_0 b_3$ no more a 's available $\Rightarrow 0 = c_4 + c_3 b_1 + c_2 b_2 + c_1 b_3$ by a past limit $O(x^{2+3+1})$

Solve for b_1, b_2, b_3 and then a_0, a_1, a_2

⁰Fornberg, B., Calculation of weights in finite difference formulas, SIAM Rev □40:685 = 691, 1998 → 📑 → 👙 🛷 🤉 🤄

The Padé Approximate

- ▶ A key feature of the Padé is not needing to know the full power series representation of a function to construct a Padé approximate. Just the first (M + N + 1) terms
- Padé Approximation often allows approximations to be found outside the radius of convergence of a power series expansion
- Padé Approximation can also accelerate convergence
- ▶ Often if $\sum c_n z^n$ is the power series representation of f(z) then $P_M^N(z) \to f(z)$ as $M, N \to \infty$ EVEN if $\sum c_n z^n$ is a divergent series
- Consider the convergence of Padé sequences $P_0^j, P_1^{1+j}, P_2^{2+j}, P_3^{3+j}, \dots$ with N=M+j, j fixed and $M \to \infty$
- ightharpoonup j = 0 is the diagonal sequence
- Computationally convenient as they only contain algebraic terms. No integration

 $^{^{0}}$ Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978), reprinted by Springer (1999).

⁰Fornberg, B., Calculation of weights in finite difference formulas, SIAM Rev=40:685=691, 1998.

Padé Approximate Example

Consider $\frac{1}{(1+x)}$ with Taylor expansion $f(x) = 1 - x + x^2 - x^3 + ...$ The Padé approximate of f(x) has padé table:

		N - order of numerator					
		0	1	2	3		
	0	1	1 - x	$1 - x + x^2$	$1 - x + x^2 - x^3$		
<i>M</i> -	1	$\frac{1}{1+x}$	$\frac{1}{1+x}$	$\frac{1}{1+x}$			
order of denomi-	2	$\frac{1}{1+x}$	$\frac{1}{1+x}$				
nator	3	$\frac{1}{1+x}$					
		••••					

In a Padé table the main diagonal and the diagonal immediately bellow it commonly give the best result.

⁰Fornberg, B., Calculation of weights in finite difference formulas, SIAM Rev□40:685€691, 1998. ↓ 💆 ト 💆 💨 🔍 🔾

Computational Convenience

- ► The Padé approximate is computationally convenient as it only contain algebraic terms.
- ► Further, the Padé approximate can be expressed in terms of determinants

Computational Convenience Cont.

The Padé approximate $P_M^N(z) = \frac{\sum_{n=0}^N A_n z^n}{\sum_{n=0}^M B_n z^n}$ can be found through simple matrix operations

First the coefficients of the denominator $B_1, B_2, ..., B_{M-1}, B_M$ (recall $B_0 = 1$) can be found by solving the matrix equation:

$$\alpha \begin{bmatrix} B_1 \\ B_2 \\ \dots \\ B_{M-1} \\ B_M \end{bmatrix} = - \begin{bmatrix} a_{N+1} \\ a_{N+2} \\ \dots \\ a_{N+M-1} \\ a_{N+M} \end{bmatrix}$$

▶ Where α is an MxM matrix with entries $\alpha_{ij} = a_{N+i-j}$ $(1 \le i, j \le M)$

⁰Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

✓ ○ ○

Computational Convenience Cont.²

Second the coefficients of the numerator $A_0, A_1, ..., A_{N-1}, A_N$ can be found by solving:

$$A_N = \sum_{j=0}^n a_{n-j} B_j$$
, where $0 \le n \le N$

• where $B_j = 0$ for j > M

⁰Bender, C. M. and Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers, McGraw Hill (1978), reprinted by Springer (1999).

Computational Convenience Cont.³

The two preceding equations are derived by equating coefficients of $1, z, ..., z^{N+M}$ in:

$$\sum_{j=0}^{N+M} a_j z^j \sum_{k=0}^{M} B_k z^k - \sum_{n=0}^{N} A_n z^n = O(z^{N+M+1})$$

Which is a restatement of the definition of a Padé approximate as can be seen here:

$$\sum_{j=0}^{N+M} a_j z^j \sum_{k=0}^{M} B_k z^k - \sum_{n=0}^{N} A_n z^n = O(z^{N+M+1})$$

$$\sum_{j=0}^{N+M} a_j z^j = \frac{\sum_{n=0}^{N} A_n z^n}{\sum_{k=0}^{M} B_k z^k} + O(z^{N+M+1}) \implies P_M^N(z) = \frac{\sum_{n=0}^{N} A_n z^n}{\sum_{n=0}^{M} B_n z^n}$$

⁰Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

**\textstyle \textstyle \text

Application

- Evaluating Taylor expansions outside their radius of convergence
- ▶ Determining weights in FD formulas

Evaluating Taylor Expansions

Evaluating Taylor expansions outside their radius of convergence.

Example 3: Approximate f(2) when we only know the first few terms in the expansion $f(x) = 1 - \frac{1}{2}x + \frac{1}{3}x^2 - \frac{1}{4}x^3 + \frac{1}{5}x^4 - + \dots$ (= $\frac{\ln(1+x)}{x}$, but only if |x| < 1).

The Padé table below is laid out like Table 3, but shows only the numerical values for x = 2 and, in parenthesis, the errors in these compared to $\frac{1}{2} \ln 3 \approx 0.5493$.

TABLE 4
Truncated power series expansion compared to values from main Padé diagonal

		N - order of numerator						
		0	1	2	3	4		
M - order of denominator	0	1 (0.4507)	0 (-0.5493)	1.3333 (0.7840)	-0.6667 (-1.2160)	2.5333 (1.9840)		
	1		0.5714 (0.0221)					
	2			0.5507 (0.0014)				
	3				0.5494 (0.0001)			
	4					0.5493 (0.0000)		

٥

Determining FD Weights

Determining weights in FD formulas

Recall that a Finite Difference Stencil is of the form:

With s (real), d (integer ≥ 0), n(integer > 0), \blacksquare entries for f, \circ entries for $f^{(m)}$.

Determining FD Weights

Given this structure, the optimal weights in the stencil can be calculated with this symbolic code:

$$t = PadeApproximant[x^s * (Log[x]/h)^m, x, 1, n, d];$$

CoefficientList[Denominator[t], Numerator[t], x]

First discovered in 1998, in Fornberg, B., Calculation of weights in finite difference formulas, SIAM Rev. 40:685-691, 1998.

Determining FD Weights

Example 5: The choice s=0, d=2, n=2, m=2 describes a stencil of the shape

for approximating the second derivative (since m = 2). The algorithm produces the output

$$\left\{ \left\{ \frac{h^2}{12}, \frac{5h^2}{6}, \frac{h^2}{12} \right\}, \{1, -2, 1\} \right\},$$

corresponding to the implicit 4th order accurate formula for the second derivative:

$$\frac{1}{12}f''(x-h) + \frac{5}{6}f''(x) + \frac{1}{12}f''(x+h) \approx \frac{1}{h^2} \{ f(x-h) - 2f(x) + f(x+h) \}$$

⁰Fornberg, B., Calculation of weights in finite difference formulas, SIAM Rev □40:685 = 691, 1998 → 📑 → 👙 🛷 🤉 🤄

Continued Fractions

- There are several variations of the Padé Approximation
- Most notably, continued fractions
- Recast the power series into continued-fraction form rather than rational function-form

Continued Fractions Defined

A continued fraction is an infinite sequence of fractions. The $(N+1)^{th}$ member of the sequence, call it $F_N(z)$, has the form:

$$F_{N}(z) = \frac{c_{0}}{1 + \frac{c_{1}z}{1 + \frac{c_{2}z}{1 + \cdots}}}$$

$$\vdots$$

$$\vdots$$

$$\frac{c_{N-1}z}{1 + c_{N}z}$$

The coefficients $c_0, c_1, ..., c_{N-1}, c_N$ can be determined by taking the Taylor expansion of $F_N(z)$ and comparing them to the coefficients of the original power series.

Quick Continued Fraction Example

Representing $\sqrt{2}$ as a continued fraction:

$$\sqrt{2} = 1 + \frac{1}{1 + \sqrt{2}}$$

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{1 + \sqrt{2}}}$$

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{1 + \sqrt{2}}}}$$

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{1 + \sqrt{2}}}}$$

Continued Fractions and Padé

Gaol is to represent a Padé approximate as a continued fraction. To do this, the Padé approximate must meet some conditions:

- ▶ Consider $P_{M+1}^{M}(z)$ and $P_{M}^{M}(z)$, and the Padé sequence $P_{0}^{0}(z), P_{1}^{0}(z), P_{1}^{1}(z), P_{2}^{1}(z), P_{2}^{2}(z), P_{3}^{2}(z), ...$
- ► The sequence is normal if every member of the sequence exists and no two members are equal
- ▶ If the sequence is normal then the $(N+1)^{th}$ term has the continued fraction representation $F_N(z)$ and the coefficients $c_0, c_1, ..., c_{N-1}, c_N$ are the same for each term in the sequence

$$F_{N}(z) = \frac{c_{0}}{1 + \frac{c_{1}z}{1 + \frac{c_{2}z}{1 + \cdots + \frac{c_{N-1}z}{1 + c_{N}z}}}}$$

⁰Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

**Color | Proprinted | Prop

Continued Fractions and Padé Cont.

Given the Padé sequence is normal:

- ▶ $P_{M+1}^{M}(z)$ is obtained by replacing $c_N z$ with $\frac{c_N z}{1+c_{N+1} z}$ in $P_M^{M}(z)$ where N=2M
- ▶ $P_{M+1}^{M+1}(z)$ is obtained by replacing $c_N z$ with $\frac{c_N z}{1+c_{N+1} z}$ in $P_{M+1}^{M}(z)$ where N=2M+1

⁰Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ○

Continued Fractions and Padé Advantage

Resulting Advantage:

- When Padé approximates are written as a ratio of polynomials (rational functions) every coefficient must be recalculated from one member to the next.
- When Padé approximates are written as a single continued fraction only one coefficient must be recalculated from one member to the next.
- ▶ Proof on pg. 397 of Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

⁰Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

√ ○ ○

Evaluating Padé Continued Fractions

Can evaluate $F_N(z)$ directly. Or at a little extra cost $F_0(z), F_1(z), F_2(z), F_3(z)...$ can be evaluated as well leading to $F_N(z)$

Given

$$F_N(z) = \frac{R_N(z)}{S_N(z)}$$

For $N = 1, 2, 3, ..., R_N(z)$ and $S_N(z)$ satisfy the recurrence relations:

$$R_{N+1}(z) = R_N(z) + c_{N+1}zR_{N-1}(z)$$

 $S_{N+1}(z) = S_N(z) + c_{N+1}zS_{N-1}(z)$

For N = 1, 2, 3, ..., where $R_{-1}(z) = 0$, $S_{-1}(z) = 1$ and $R_0(z) = c_0$, $S_0(z) = 1$

⁰Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

√ ○ ○

Convergence

Example 1 Padé approximants may diverge where Taylor approximants converge. Consider the function $y(x) = (x+10)/(1-x^2) = \sum_{n=0}^{\infty} a_n x^n$, where $a_{2n} = 10$ and $a_{2n+1} = 1$. This Taylor series converges for |x| < 1.

The Pade approximant $P_1^N(x)$ for this series is

$$P_1^N(x) = \sum_{n=0}^{N-2} a_n x^n + \frac{a_{N-1} x^{N-1}}{1 - a_N x/a_{N-1}}.$$

Thus, if N is even, $P_1^N(x)$ has a simple pole at $x = \frac{1}{10}$. Consequently, the Pade sequence P_1^0 , P_1^1 , P_1^2 , P_1^3 , ... does not converge to y(x) throughout |x| < 1.

- ► Shows that the zeros of the denominator function can affect the convergence of a Padé approximation
- ▶ To prove that a Padé approximation converges, must show that poles of the Padé approximants not belonging to the function be approximated (extraneous poles) move out of that region as $N \to \infty$

⁰Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

Convergence Cont.

Example 5 Convergence of Padé approximants for e^t . The continued fraction coefficients of e^t are $c_0 = -c_1 = 1$, $c_{2n} = 1/(4n - 2)$, $c_{2n+1} = -1/(4n + 2)$ ($n \ge 1$). For these values of c_n , (8.4.8b) becomes the following system of equations:

$$S_{2M+1} - S_{2M} = -\frac{z}{4M+2} S_{2M-1}, \tag{8.5.10a}$$

$$S_{2M} - S_{2M-1} = \frac{z}{4M-2} S_{2M-2}, \quad M \ge 1.$$
 (8.5.10b)

We transform this system into a single difference equation of higher order by solving (8.5.10b) for S_{2M-1} and substituting the result into (8.5.10a):

$$S_{2M+2} - S_{2M} = \frac{z^2}{16M^2 - 4} S_{2M-2}, \quad M \ge 1.$$
 (8.5.11)

A local asymptotic analysis of this difference equation (see Prob. 8.39) yields

$$S_{2M}(z) = C(z) \left[1 - \frac{z^2}{16M} + O(M^{-2}) \right], \quad M \to \infty,$$
 (8.5.12a)

for some function $C(z) \neq 0$. Combining (8.5.12a) into (8.5.10b) gives

$$S_{2M-1}(z) = C(z) \left[1 - \frac{z}{4M} - \frac{z^2}{16M} + O\left(\frac{1}{M^2}\right) \right], \quad M \to \infty.$$
 (8.5.12b)

Substituting (8.5.12) into (8.5.1) gives

$$F_N - F_{N-1} \sim \frac{\sigma_N z^N \sqrt{N}}{2^N N!} D(z), \qquad N \to \infty,$$
 (8.5.13)

where D(z) is a function of z (but not N) and $\sigma_N = 1, 1, -1, -1, 1, 1, -1, \dots$ when $N = 0, 1, 2, 3, 4, 5, 6, \dots$ By contrast, if $T_N = \sum_{n=0}^{N-1} z^n/n!$ is the sum of the first N terms of the Taylor series for e^z , then

$$T_N - T_{N-1} = \frac{z^N}{N!}. (8.5.14)$$

⁰Bender, C. M. and Orszag, S. A., Advanced MathematicalMethods for Scientists and Engineers, McGraw Hill (1978),reprinted by Springer (1999).

Convergence Cont.²

In the previous example (example 5)

▶ The factor 2^{-N} causes the Padé sequence to converge far more rapidly than the Taylor sequence

References

- ▶ [1] Bender, C. M. and Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers, McGraw Hill (1978), reprinted by Springer (1999).
- ▶ [2] Fornberg, B. and Weideman, J.A.C., A numerical methodology for the Painlevé equations, J. Comp. Phys. 230 (2011), 5957-5973.
- ▶ [3] Fornberg, B., Calculation of weights in finite difference formulas, SIAM Rev. 40:685-691, 1998.