# ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА ПО КУРСУ «DATA SCIENCE»



## Постановка задачи

**Цель исследования** состоит в прогнозировании ряда конечных свойств получаемых композиционных материалов на основе пула входящих параметров.

### Задачи исследования:

- Изучить теоретические основы и методы решения поставленной задачи;
- Провести разведочный анализ данных;
- Провести предобработку данных;
- Обучить нескольких моделей для прогноза модуля упругости при растяжении и прочности при растяжении;
- Написать нейронную сеть, которая будет рекомендовать соотношение матрица-наполнитель;
- Разработать приложение;
- Оценить точность модели на тренировочном и тестовом датасете;
- Создать удаленный репозиторий и разместить там код исследования. Оформить файл readme.

## Загруженные данные

### Датасет X\_bp.xlsx:

Тип данных: float64

Количество параметров: 10

Количество записей: 1023

### Датасет X\_nup.xlsx:

Тип данных: float64

Количество параметров:

Количество записей: 1040

В датасете X\_bp.xlsx присутствуют целочисленные значения, но загруженные типы данных определены как числа с плавающей запятой двойной точности. Строковых данных нет.

Датасет X\_nup.xlsx имеет на 17 записей больше, чем X\_bp.xlsx.

## Разведочный анализ: Анализ датафреймов

### Датафрейм df\_bp:

| Количество пропущенных значений: | 0 |
|----------------------------------|---|
| Количество NULL значений:        | 0 |

### Количество не уникальных значений:

| Соотношение матрица-наполнитель       | 1014 |
|---------------------------------------|------|
| Плотность, кг/м3:                     | 1013 |
| модуль упругости, ГПа:                | 1020 |
| Количество отвердителя, м.%:          | 1005 |
| Содержание эпоксидных групп,%_2:      | 1004 |
| Температура вспышки, С_2:             | 1003 |
| Поверхностная плотность, г/м2:        | 1004 |
| Модуль упругости при растяжении, Гпа: | 1004 |
| Прочность при растяжении, МПа:        | 1004 |
| Потребление смолы, г/м2:              | 1003 |

### Датафрейм df\_nup:

| Количество пропущенных значений: | 0 |
|----------------------------------|---|
| Количество NULL значений:        | 0 |

### Количество не уникальных значений:

| Угол нашивки, град: | 2    |
|---------------------|------|
| Шаг нашивки:        | 1006 |
| Плотность нашивки:  | 1005 |

Датафреймы имеет не уникальные значения. Угол нашивки представлен как бинарный параметр, но т.к. предоставлен усеченный набор данных, то считаем, что параметр может и иметь другие углы нашивки, не попавшие в исходный датасет.

## Разведочный анализ: Анализ датафреймов

### Датафрейм df\_bp:

| Количество нулевых строк:             | 0  |
|---------------------------------------|----|
| Количество дублирующихся строк:       | 0  |
|                                       |    |
| Количество дублирующихся значений:    |    |
| Соотношение матрица-наполнитель:      | 9  |
| Плотность, кг/м3:                     | 10 |
| модуль упругости, ГПа:                | 3  |
| Количество отвердителя, м.%:          | 18 |
| Содержание эпоксидных групп,%_2:      | 19 |
| Температура вспышки, С_2:             | 20 |
| Поверхностная плотность, г/м2:        | 19 |
| Модуль упругости при растяжении, Гпа: | 19 |
| Прочность при растяжении, МПа:        | 19 |
| Потребление смолы, г/м2:              | 20 |
|                                       |    |

### Датафрейм df\_nup:

| количество нулевых строк:          | 1  |
|------------------------------------|----|
| Количество дублирующихся строк:    | 19 |
| Количество дублирующихся значений: |    |
| Шаг нашивки:                       | 34 |
| Плотность нашивки:                 | 35 |
|                                    |    |

Датафрейм df\_nup имеет нулевые и дублирующиеся строки. Угол нашивки исключен из анализа, т.к. представлен как имеет только значения 0 и 90. Оба датафрейма имеют дублирующиеся значения, что не характерно для чисел с плавающей запятой. Удалим дубли.

## Разведочный анализ: Объединение датафреймов



После удаления нулевых и дублирующихся строк, а так же строк с дублирующимися значениями размеры датафреймов стали равны по количеству записей, что позволило объединить их в один датафрейм.

## Разведочный анализ: Описательная статистика

|                                      | count  | mean        | std        | min         | 25%         | 50%         | 75%         | max         |
|--------------------------------------|--------|-------------|------------|-------------|-------------|-------------|-------------|-------------|
| Соотношение матрица-наполнитель      | 1002.0 | 2.930165    | 0.913871   | 0.389403    | 2.317247    | 2.907832    | 3.552781    | 5.591742    |
| Плотность, кг/м3                     | 1002.0 | 1975.675440 | 73.757180  | 1731.764635 | 1924.370115 | 1977.574305 | 2021.186675 | 2207.773481 |
| модуль упругости, ГПа                | 1002.0 | 740.098060  | 330.030446 | 2.436909    | 498.538615  | 741.148111  | 962.650230  | 1911.536477 |
| Количество отвердителя, м.%          | 1002.0 | 110.479158  | 28.396466  | 17.740275   | 92.054117   | 110.162666  | 130.240418  | 198.953207  |
| Содержание эпоксидных групп,%_2      | 1002.0 | 22.242882   | 2.404798   | 14.254985   | 20.563359   | 22.230761   | 23.981598   | 28.955094   |
| Температура вспышки, <b>С_2</b>      | 1002.0 | 285.739807  | 41.343587  | 100.000000  | 258.469516  | 285.853960  | 313.472775  | 413.273418  |
| Поверхностная плотность, г/м2        | 1002.0 | 482.649366  | 280.682398 | 0.603740    | 267.736782  | 451.944708  | 693.654483  | 1399.542362 |
| Модуль упругости при растяжении, ГПа | 1002.0 | 73.326808   | 3.118688   | 64.054061   | 71.297280   | 73.247594   | 75.365124   | 82.682051   |
| Прочность при растяжении, МПа        | 1002.0 | 2467.050190 | 485.889244 | 1036.856605 | 2141.720311 | 2461.249253 | 2760.983489 | 3848.436732 |
| Потребление смолы, г/м2              | 1002.0 | 218.290295  | 59.840786  | 33.803026   | 179.147494  | 217.277006  | 257.488673  | 414.590628  |
| Угол нашивки, град                   | 1002.0 | 44.910180   | 45.022382  | 0.000000    | 0.000000    | 0.000000    | 90.000000   | 90.000000   |
| Шаг нашивки                          | 1002.0 | 6.907026    | 2.557644   | 0.037639    | 5.132313    | 6.909686    | 8.564373    | 14.440522   |
| Плотность нашивки                    | 1002.0 | 57.234866   | 12.330789  | 11.740126   | 49.922625   | 57.362576   | 65.094083   | 103.988901  |
|                                      |        |             |            |             |             |             |             |             |

При незначительном разбросе значений соотношения матрица-наполнитель достаточно большой разброс по параметрам "Модуль упругости", "Поверхностная плотность", "Прочность при растяжении".

## Разведочный анализ: Парные графики рассеяния точек



По всем параметрам наблюдается наличие выбросов и отсутствие корреляции.

## Разведочный анализ: гистограммы распределения



Гистограммы имеют нормальное распределение, за исключением параметров "Поверхностная плотность" и "Угол нашивки".

## Разведочный анализ: Тепловая карта корреляции

|                                            | Соотношение<br>матрица-<br>наполнитель | Плотность,<br>кг/м3 | модуль<br>упругости,<br>ГПа | Количество<br>отвердителя,<br>м.% | Содержание<br>эпоксидных<br>групп,%_2 | Температура<br>вспышки, С_2 | Поверхностная<br>плотность, г/м2 | Модуль<br>упругости при<br>растяжении, ГПа | Прочность при<br>растяжении,<br>МПа | Потребление<br>смолы, г/м2 | Угол<br>нашивки,<br>град | Шаг<br>нашивки | Плотность<br>нашивки |
|--------------------------------------------|----------------------------------------|---------------------|-----------------------------|-----------------------------------|---------------------------------------|-----------------------------|----------------------------------|--------------------------------------------|-------------------------------------|----------------------------|--------------------------|----------------|----------------------|
| Соотношение<br>матрица-<br>наполнитель     | 1.000000                               | 0.009730            | 0.032527                    | -0.013712                         | 0.027562                              | -0.006074                   | -0.010999                        | -0.015854                                  | 0.033971                            | 0.077503                   | -0.017127                | 0.004688       | 0.046602             |
| Плотность, кг/м3                           | 0.009730                               | 1.000000            | -0.017816                   | -0.034475                         | -0.011411                             | -0.021585                   | 0.037709                         | -0.021791                                  | -0.072360                           | -0.026858                  | -0.063110                | -0.060183      | 0.035423             |
| модуль упругости,<br>ГПа                   | 0.032527                               | -0.017816           | 1.000000                    | 0.023692                          | -0.006371                             | 0.031032                    | -0.017991                        | 0.014716                                   | 0.047515                            | -0.008100                  | -0.037088                | 0.022978       | -0.014466            |
| Количество<br>отвердителя, м.%             | -0.013712                              | -0.034475           | 0.023692                    | 1.000000                          | 0.013128                              | 0.093342                    | 0.050919                         | -0.073184                                  | -0.070399                           | 0.006991                   | 0.029513                 | -0.037946      | -0.001998            |
| Содержание<br>эпоксидных<br>групп,%_2      | 0.027562                               | -0.011411           | -0.006371                   | 0.013128                          | 1.000000                              | -0.008176                   | -0.007539                        | 0.064473                                   | -0.030984                           | 0.015714                   | -0.010078                | -0.005978      | -0.040914            |
| Температура<br>вспышки, С_2                | -0.006074                              | -0.021585           | 0.031032                    | 0.093342                          | -0.008176                             | 1.000000                    | 0.019709                         | 0.027867                                   | -0.031211                           | 0.060217                   | 0.010441                 | 0.018672       | -0.017855            |
| Поверхностная плотность, г/м2              | -0.010999                              | 0.037709            | -0.017991                   | 0.050919                          | -0.007539                             | 0.019709                    | 1.000000                         | 0.015804                                   | 0.012743                            | 0.001643                   | 0.030177                 | -0.009088      | -0.005019            |
| Модуль упругости<br>при растяжении,<br>ГПа | -0.015854                              | -0.021791           | 0.014716                    | -0.073184                         | 0.064473                              | 0.027867                    | 0.015804                         | 1.000000                                   | 0.009559                            | 0.044586                   | 0.013813                 | 0.039314       | 0.015160             |
| Прочность при<br>растяжении, МПа           | 0.033971                               | -0.072360           | 0.047515                    | -0.070399                         | -0.030984                             | -0.031211                   | 0.012743                         | 0.009559                                   | 1.000000                            | 0.028685                   | 0.027367                 | -0.063270      | -0.012882            |
| Потребление<br>смолы, г/м2                 | 0.077503                               | -0.026858           | -0.008100                   | 0.006991                          | 0.015714                              | 0.060217                    | 0.001643                         | 0.044586                                   | 0.028685                            | 1.000000                   | 0.001263                 | 0.017253       | 0.015883             |
| Угол нашивки, град                         | -0.017127                              | -0.063110           | -0.037088                   | 0.029513                          | -0.010078                             | 0.010441                    | 0.030177                         | 0.013813                                   | 0.027367                            | 0.001263                   | 1.000000                 | 0.029419       | 0.115374             |
| Шаг нашивки                                | 0.004688                               | -0.060183           | 0.022978                    | -0.037946                         | -0.005978                             | 0.018672                    | -0.009088                        | 0.039314                                   | -0.063270                           | 0.017253                   | 0.029419                 | 1.000000       | -0.001475            |
| Плотность нашивки                          | 0.046602                               | 0.035423            | -0.014466                   | -0.001998                         | -0.040914                             | -0.017855                   | -0.005019                        | 0.015160                                   | -0.012882                           | 0.015883                   | 0.115374                 | -0.001475      | 1.000000             |

Полученная тепловая карта так же свидетельствует об отсутствии явной корреляции между признаками.

## Разведочный анализ: выбросы



Полученные ящики с усами так же свидетельствуют о наличии выбросов.

## Предобработка данных



На стадии предобработки данных произведено удаление выбросов и нормализация данных.

## Модели прогноза модуля упругости при растяжении

|                    | MAE      | MSE       | R2          |
|--------------------|----------|-----------|-------------|
| Линейная регрессия | 0.159633 | 0.038589  | -0.0259701  |
| Дерево решений     | 0.15958  | 0.0377647 | -0.00405595 |
| Случайный лес      | 0.162879 | 0.0392461 | -0.0434404  |

#### Показатели прогнозирования:

**МАЕ** - измеряет среднюю абсолютную ошибку прогнозов. Для каждой точки вычисляется разница между прогнозами и целью, а затем усредняются эти значения.

**MSE** - измеряет средний квадрат ошибок прогнозов. Для каждой точки вычисляется квадратная разница между прогнозами и целью, а затем усредняются эти значения.

**R**<sup>2</sup> - Коэффициент детерминации, или R-квадрат, является еще одним показателем, который мы можем использовать для оценки модели, и он тесно связан с MSE, но имеет преимущество в том, что не имеет значения, являются ли выходные значения очень большими или очень маленькими.

Отрицательное значение коэффициента детерминации близкого к нулю свидетельствует о низком качестве модели и отсутствии линейных связей. МАЕ и MSE показывает высокие показатели, что так же подтверждает отсутствие линейных связей.

## Модели прогноза прочности при растяжении

|                    | MAE      | MSE       | R2         |
|--------------------|----------|-----------|------------|
| Линейная регрессия | 0.15369  | 0.0385339 | -0.0653631 |
| Дерево решений     | 0.151809 | 0.0377405 | -0.0434284 |
| Случайный лес      | 0.151761 | 0.0377587 | -0.0439306 |

#### Показатели прогнозирования:

**МАЕ** - измеряет среднюю абсолютную ошибку прогнозов. Для каждой точки вычисляется разница между прогнозами и целью, а затем усредняются эти значения.

**MSE** - измеряет средний квадрат ошибок прогнозов. Для каждой точки вычисляется квадратная разница между прогнозами и целью, а затем усредняются эти значения.

**R**<sup>2</sup> - Коэффициент детерминации, или R-квадрат, является еще одним показателем, который мы можем использовать для оценки модели, и он тесно связан с MSE, но имеет преимущество в том, что не имеет значения, являются ли выходные значения очень большими или очень маленькими.

Отрицательное значение коэффициента детерминации близкого к нулю свидетельствует о низком качестве модели и отсутствии линейных связей. МАЕ и MSE показывает высокие показатели, что так же подтверждает отсутствие линейных связей.

## Нейронная сеть: модель



Модель состоит из входного нормализованного слоя и двух скрытых слоев размерностями соответствующими входной модели и активационной функцией ReLu, а также выходной слой размерностью в 1 нейрон. Для компиляции выбираем оптимизатор Adam, а в качестве функции потерь используем среднеквадратичную ошибку.

## Нейронная сеть: Сводка

### Строковая сводка сети

| one, 12) | 3                             |
|----------|-------------------------------|
|          |                               |
| ne, 12)  | 156                           |
| ne, 12)  | 156                           |
| ne, 1)   | 13                            |
|          | ne, 12)<br>ne, 1)<br>======== |

### Графа зависимостей слоев



Тренировочных параметров в модели 325.

## Нейронная сеть: Результаты

Epoch 1/20

. . .

Epoch 20/20

MAE: 0.7529630048280076 MSE: 0.8525619071439539 R2: -0.025004005511227057





Отрицательное значение коэффициента детерминации близкого к нулю свидетельствует о низком качестве рекомендательной модели соотношения матрица-наполнитель и отсутствии линейных связей. МАЕ и МSE показывает высокие показатели, что так же подтверждает отсутствие линейных связей.

## Результаты

Результаты построения и обучения моделей не дали положительного результата. Возможные причины неудовлетворительной работы моделей:



Исследование проводилось на предварительно обработанных (дополненных) датасетах. Возможно, на исходных датасетах можно было бы получить более качественные регрессионные модели;



## Разработанное приложение



### GitHub





Спасибо за внимание!