

ECN option mathématiques Parcours S2D

Statistique Bayésienne.

Anne Philippe Université de Nantes, LMJL

Fiche 3. Modèle Bayésien

EXERCICE 1. FACTEUR DE BAYES

Soit X_1, \ldots, X_n des variables aléatoires iid suivant la loi gaussienne $N(\theta, 1)$. On suppose que la loi a priori de θ est la loi gaussienne $N(0, \tau^{-2})$. On veut tester $\theta > 0$ contre $\theta < 0$.

- 1) Proposer une formulation bayésienne du test à l'aide des facteurs de Bayes.
- 2) Calculer le facteur de Bayes. Quelle est la règle de décision bayésienne associée?
- 3) Etudier le comportement du facteur de Bayes quand $\tau \to 0$

Exercice 2.

Soit X_1, \ldots, X_n des variables aléatoires iid suivant la loi gaussienne $N(\theta, 1)$, où $\theta \in \mathbb{R}$. Le paramètre θ est inconnu. On dispose de l'information a priori suivante

 θ est proche de 1

On considère deux modèles a priori

- modèle 1 : θ suit une loi normale $N(1, \tau^2)$
- modèle 2 : conditionnellement à λ , le paramètre θ suit une loi normale $N(\lambda, \tau^2)$ et λ suit une loi normale $\mathbb{N}(1, s^2)$
- 1) Comparer les deux lois a priori en terme d'espérance et de variance pour le paramètre θ .
- 2) Calculer les deux lois a posteriori pour le paramètre θ ?

EXERCICE 3. RÉGRESSION GÉNÉRALISÉE

On observe le nombre de pannes $X_1,...,X_n$ et le temps de fonctionnement $T_1,...,T_n$ de n machines. On suppose que, pour tout $i=1,...,n,\ X_i$ suit une loi de Poisson de paramètre θT_i . Conditionnellement à θ , les variables aléatoires X_i sont indépendantes.

- 1) Trouver une famille de lois conjuguées pour le paramètre θ
- 2) Calculer la loi de Jeffreys. Appartient-elle à la famille conjuguée?
- 3) Quelle est la loi prédictive du nombre de pannes pour une machine qui fonctionne un temps τ ? Calculer un prédicteur bayésien ponctuel.
- 4) Ecrire la forme de la loi $(X_1,...,X_n,\theta_1,...,\theta_n,\theta)$ associée au DAG ci dessous

- 5) On suppose que
 - θ suis une loi exponentielle de paramètre b > 0,
 - conditionnellement à θ_i , la loi de X_i est la loi de Poisson de paramètre $\theta_i T_i$
 - conditionnellement à θ , la loi de θ_i est la loi exponentielle de paramètre θ Quelle est la loi a posteriori des paramètres $(\theta_1,...,\theta_n,\theta)$ (à une constante multiplicative près).
- 6) A partir des données historiques suivantes :

nombre de pannes	2	10	20
temps de fonctionnement	1	4	15

proposer un choix de b

- 7) Quelle est la loi a posteriori de θ (à une constante multiplicative près].
- 8) Proposer une méthode pour simuler des nombres aléatoires suivant la loi a posteriori de θ