Lamma Tommaso 0000881007 Turno IV

Misura della caratteristica di due diodi a giunzione p-n

Lo scopo della prova era la misura della caratteristica di un diodo al Silicio ed uno al Germanio per ricavare il parametro ηV_T della legge di Schottky, preceduta dalla calibrazione di oscilloscopio e multimetro digitale. Il circuito utilizzato per la prova è il seguente :

Gli strumenti utilizzati nella prova sono:

- (i) Potenziometro da $1k\Omega$
- (ii) Diodi a giunzione p-n: AAZ15/OA47 Germanio, 1N914A/1N4446/1N4148 Silicio
- (iii) Breadboard generica
- (iv) Oscilloscopio ISR 622 ISO-TECH
- (v) Multimetro digitale FLUKE 75
- (vi) Generatore di tensione continua IPS 3303 ISO-TECH

I dati misurati per la calibrazione di multimetro ed oscilloscopio, per la caratteristica del diodo al Silicio e di quello al Germanio sono rispettivamente, utilizzando un fondoscala fisso per i diodi di 0.1V:

Calibrazione					
$V_{mul}[V]$	$\delta V_{mul}[V]$	$V_{osc}[V]$	$\delta V_{osc}[V]$	fondoscala[V]	
0.099	0.0003	0.1	0.002	0.02	
0.151	0.0004	0.15	0.005	0.05	
0.199	0.0005	0.2	0.005	0.05	
0.294	0.0006	0.3	0.01	0.1	
0.394	0.0008	0.4	0.01	0.1	
0.491	0.0009	0.5	0.01	0.1	
0.591	0.001	0.6	0.01	0.1	
0.691	0.003	0.7	0.02	0.2	
0.791	0.003	0.8	0.02	0.2	

Silicio					
$\mathbf{V}[V]$	$\delta V[V]$	I[mA]	$\delta I[mA]$		
0.07	0.01	0.01	0.0004		
0.08	0.01	0.01	0.0004		
0.1	0.01	0.02	0.0005		
0.12	0.01	0.04	0.0007		
0.14	0.01	0.07	0.001		
0.16	0.01	0.10	0.004		
0.18	0.01	0.16	0.005		
0.20	0.01	0.24	0.005		
0.24	0.01	0.53	0.008		
0.26	0.01	0.73	0.01		
0.28	0.01	1.07	0.04		
0.29	0.01	1.26	0.04		
0.30	0.01	1.48	0.04		
0.31	0.01	1.74	0.05		
0.32	0.01	2.03	0.05		

- ·					
	Germanio				
$\mathbf{V}[V]$	$\delta V[V]$	I[mA]	$\delta I[mA]$		
0.4	0.01	0.01	0.0004		
0.5	0.01	0.06	0.0009		
0.54	0.01	0.12	0.003		
0.56	0.01	0.2	0.005		
0.58	0.01	0.25	0.006		
0.59	0.01	0.33	0.006		
0.6	0.01	0.42	0.007		
0.61	0.01	0.5	0.008		
0.62	0.01	0.6	0.009		
0.64	0.01	0.92	0.01		
0.65	0.01	1.06	0.03		
0.66	0.01	1.27	0.03		
0.67	0.01	1.55	0.05		
0.68	0.01	1.88	0.05		
0.7	0.01	2.65	0.06		

1

I loro rispettivi grafici sono:

Calibrazione Oscilloscopio-Multimetro

Caratteristica I-V del diodo al Silicio

10⁻⁰

Tensione [mV]

Caratteristica I-V del diodo al Germanio

I risultati finali sono:

Calibrazione	slope	1.02 ± 0.02
Silicio	ηV_T	$(53 \pm 4)mV$
Sincio	I_0	$0.0053\pm$
Germanio	ηV_T	$(53\pm3)mV$
Germanio	I_0	$\dot{5} \cdot 10^{-6} \pm$

Le stime dei parametri riportati nella precedente tabella e delle relative incertezze sono state ricavate da fit lineari pesati considerando soltanto gli errori sulla tensione misurata con l'oscilloscopioin quanto relativamente maggiori a quelli sulla corrente o sulla tensione misurate dal multimetro, per le caratteristiche dei diodi il fit lineare è stato fatto utilizzando il logaritmo delle correnti. Per la corrente I_0 nel caso dei diodi si sono propagate le incertezze rispetto ai parametri di pendenza ed intercetta restituiti dal fit. Nel caso del diodo al Silicio si è scelto di fittare solo per tensioni superiori ai 150mV.