# 第五课

第4讲: 生产与增长(下)

# 本讲要点

- 古典经济增长理论之"马尔萨斯陷阱" (完整模型)
- 新古典经济增长理论之索罗增长模型
- 经济增长的核算
- 经济增长的收敛性
- 内生增长理论

# 马尔萨斯陷阱 (完整模型)

经济在什么情况下无法持续增长?

#### 马尔萨斯模型的生产部门



#### 马尔萨斯模型的生产部门

- $y = \frac{Y}{N}$  的双重含义:
  - 人均产量;
  - 人均收入,即人均生存资料。
- y与N的关系是什么?
  - 体现原点与生产函数上的点的连线的斜率如何随着N变化;
  - y(N)就是(人均)生活水平线。

#### 马尔萨斯模型的生产部门



# 马尔萨斯模型的家庭部门

- 人口增长模型:  $\frac{\Delta N}{N}(y) = b(y) d(y)$ 。
  - b(y)是出生率,d(y)是死亡率(函数)。
  - ▶ 人口增长率取决于y。
  - y在这里更体现人均生存资料的含义。
- 为了简化, 假设出生率不随y变化。
  - 大约在3-4%之间。
  - 马尔萨斯认为b主要取决于两性相悦和文化 习俗,是脱离物质的。

#### 马尔萨斯模型的家庭部门



#### 马尔萨斯模型的家庭部门



#### 马尔萨斯模型的均衡

- 均衡要满足三个条件:
  - 》第一,供求相等。供给就是总产出Y,需求就是总生活水平( $y \times N$ );
  - 第二,人口规模不再自发变化;
  - 第三, 生活水平不再自发变化。
  - 稳定的均衡:
    - 发生偏离(冲击)后,自发回到均衡点。
  - 引入"OS线":  $Y_s = y_s N$ 。
    - 斜率为ys、从原点出发的直线。

#### 马尔萨斯模型的均衡



任课教师: 庄晨, 北京大学经济学院课程: 经济学原理(II), 24-25春季

# 马尔萨斯模型的启示

- 当今我国与"OS线"比较相关的概念是"粮食安全线"或"耕地红线"。
  - 我国要求全国耕地不少于18亿亩。
  - 2025年政府工作报告: "严守耕地红线, 严格占补平衡管理。"
  - 这个均衡水平是收入较低的水平,是个难以自拔的"陷阱"。
    - 摆脱贫困需要外力——这是许多扶贫政策(如大推动策略)的理论基础。

# 如何摆脱马尔萨斯陷阱?

- 在马尔萨斯模型的框架之下,我们考虑 两个可能的**提高经济总量**的处方:
  - 第一,提高生产效率,使得生产函数不断 上移,从而使得均衡点向右上方移动—— 不改变人均收入。
  - 第二,改善公共设施,降低维持人口稳定的最低生活水平 $y_s$ ,使OS线不断变平缓,均衡点向右上方移动——降低维持生存的人均收入。
- 然而,只要制度不变,经济总归是落入 某种"陷阱"。

# 索罗增长模型

经济在什么情况下可以持续增长?

# 索罗的贡献与事迹

- 罗伯特·莫顿·索罗(1924-2023)于1987 年获得诺贝尔经济学奖。
  - 他于1956和1957年发表的两篇论文成为了 经济增长理论的经典参考文献。
  - 1956年,斯旺也发表了类似的模型,因此索罗模型又被称为索罗-斯旺模型。
  - 索罗1940年入学哈佛打算选生物学和植物学专业,但1942-1945年二战期间加入美国军队,服完兵役后决定转到经济学专业。
  - 1947学士, 1949硕士, 1951博士毕业。



# 新古典增长理论的代表

- Solow模型继承了古典增长理论对市场 机制的肯定(讨论市场均衡)。
- 还看到了:
  - 工业经济中资本积累、技术进步对增长的 作用。
  - 将人口增长、储蓄、资本积累和经济增长 同时放在市场机制中考察。
  - 相比马尔萨斯的人口增长停滞、经济维持低水平的市场均衡, Solow提出了N和Y持续增长的均衡。

# 索罗增长模型的生产部门

- 总生产函数:  $Y_t = AK_t^{\alpha}N_t^{1-\alpha}$ 。
  - $0 < \alpha < 1_{\circ}$
  - 这是柯布-道格拉斯函数。
  - 边际产出  $\left(\frac{\partial Y_t}{\partial K_t}, \frac{\partial Y_t}{\partial N_t}\right)$  遊减。
  - 规模报酬不变: F(aK,aN) = aF(K,N)。
- 人均生产函数?
  - 除以 $N_t$ ,得到 $y_t = Ak_t^{\alpha}$ ,其中 $k_t = \frac{K_t}{N_t}$ 就是资本-劳动比率(资本密度)。
  - 边际产出( $\frac{\partial y_t}{\partial k_t}$ )递减。

#### 索罗增长模型的生产部门





#### 索罗增长模型的家庭部门

- 消费占GDP比重: 0 < β < 1。</p>
  - ▶ 人均消费量:  $c_t = \beta y_t$  (没全吃完)。
  - 假设没有政府,那么 $s_t = (1 \beta)y_t$ 是人均新增储蓄量(流量)。
  - 再假设无国际贸易,则人均投资 $i_t = s_t$ 。
- 引理1:如果资本量 $K_t$ 与人口量 $N_t$ 是以相同速度增长的,则资本-劳动比率保持不变。

$$k_{t+1} = \frac{K_{t+1}}{N_{t+1}} = \frac{(1+n)K_t}{(1+n)N_t} = \frac{K_t}{N_t} = k_t$$

#### 索罗增长模型的家庭部门

- **引理2:** 若折旧率 $\delta = 0$ ,且 $I_t = nK_t$ ,则资本-劳动比率保持不变。
  - $I_t = \Delta K_{t+1} = K_{t+1} K_t$  (记 $I_t$  是对t + 1期的投资,假设在t期结束时决定)。
    - $k_{t+1} = \frac{K_t + I_t}{N_{t+1}} = \frac{K_t + nK_t}{(1+n)N_t} = \frac{(1+n)K_t}{(1+n)N_t} = \frac{K_t}{N_t} = k_t \circ k_t$
- 定义:
  - $i_t^* = nk_t$ : 资本水平扩张,  $k_{t+1} = k_t$ 。
  - $i_t > nk_t$ :资本水平深化, $k_{t+1} > k_t$ 。

# 索罗增长模型的均衡



# 索罗增长模型的均衡

#### $k_e$ 是稳态均衡点:

- 人均产出不再自发变化;人均资本密度也不再自发变化;
- 由于某种扰动导致系统偏离均衡点的情况,很快又会被系统调节和修正回来。
- 总产量、总资本、总消费全都按照人口 增长率n增长。
  - 这就是"黄金时期"。
  - $\delta > 0$ 怎么办?
    - 重新定义资本水平扩张(新的OS线)。

- Solow模型的自我修复机制有多快?
- 借助数值模拟回答这个问题:
  - 假设t = 0时(初始状态下)人口规模8亿,资本存量18万亿,初始产出12万亿,人口增长率n = 5%, $\alpha = 0.5$ 、A = 1,消费占GDP比重 $\beta = 0.75$ 。
  - 接下来,我们计算t=1的资本增长率、总产出增长率、人均产出、人均消费.....
  - 以此类推,当计算到t = T时,看这些变量是否趋于稳定。

- 使用统计软件计算(以Excel为例):
  - 先将所有给定参数录入到表格相应位置, 并用红色字体标注。
  - 将要计算的参数逐行(或列)列出,模拟 年份逐列(或行)标明。
  - 为t=0和t=1的各个空格填写计算公式。
  - 通过拖拽的方式,得到t=2,3,...,T的结果
  - 观察结果,推测稳态时的情况。

3=(1-0.75)\*12

| 年份t           | 0     | 1          | 2     | 3     | 4     | 5     | 6     | • • • |
|---------------|-------|------------|-------|-------|-------|-------|-------|-------|
| 人口(亿)         | 8     | 8.4        | 8.82  | 9.26  | 9.72  | 10.21 | 10.72 |       |
| 资本存量(万亿)      | 18    | <u> 21</u> | 24.32 | 27.98 | 32.01 | 36.42 | 41.24 |       |
| 资本增长率         |       | 0.17       | 0.16  | 0.15  | 0.14  | 0.14  | 0.13  | •••   |
| GDP(万亿)       | 12    | 13.28      | 14.65 | 16.10 | 17.64 | 19.28 | 21.03 | •••   |
| GDP增长率        |       | 0.11       | 0.10  | 0.10  | 0.10  | 0.09  | 0.09  | • • • |
| 储蓄或投资         | 3     | 3.32       | 3.66  | 4.02  | 4.41  | 4.82  | 5.26  | •••   |
| 投资水平扩张的投资(万亿) | 0.9   | 1.05       | 1.22  | 1.40  | 1.60  | 1.82  | 2.06  | •••   |
| 资本-劳动比率(万)    | 2.25  | 2.50       | 2.76  | 3.02  | 3.29  | 3.57  | 3.85  | •••   |
| 资本密度增长率       |       | 0.11       | 0.10  | 0.10  | 0.09  | 0.08  | 0.08  | •••   |
| 人均GDP(万)      | 1.5   | 1.58       | 1.66  | 1.74  | 1.81  | 1.89  | 1.96  | •••   |
| 人均产出增长率       |       | 0.05       | 0.05  | 0.05  | 0.04  | 0.04  | 0.04  | •••   |
| 人均消费水平(万)     | 1.125 | 1.19       | 1.25  | 1.30  | 1.36  | 1.42  | 1.47  | •••   |
| 人均消费增长率       |       | 0.05       | 0.05  | 0.05  | 0.04  | 0.04  | 0.04  | •••   |
| 其他参数(固定)      |       |            | \     |       |       |       |       |       |

经济学原理(II), 北京大学经济学 24-25春季

 $=8.4^{0.5}21^{0.5}$ 

|共他奓釵(固疋) 口增长率

=8\*(1+0.05)

0.05 柯布道格拉斯函数alpha

消费占GDP比重

=18+3

0.9 = 0.05 \* 18

2.25 = 18/8

1.125=0.75\*12/8

1.5 = 12/8

均衡

0.05

0.05

25

0

0

3.75

# 索罗增长模型的收敛

| 年份t           | 0     | 1     | • • • | 100      | • • • | 200        |
|---------------|-------|-------|-------|----------|-------|------------|
| 人口(亿)         | 8     | 8.4   | •••   | 1052.01  | • • • | 138340.65  |
| 资本存量(万亿)      | 18    | 21    | • • • | 23053.13 | • • • | 3418976.83 |
| 资本增长率         |       | 0.17  | • • • | 0.05     | • • • | 0.05       |
| GDP(万亿)       | 12    | 13.28 | • • • | 4924.64  | • • • | 687737.93  |
| GDP增长率        |       | 0.11  | • • • | 0.05     | • • • | 0.05       |
| 储蓄或投资         | 3     | 3.32  | • • • | 1231.16  | • • • | 171934.48  |
| 投资水平扩张的投资(万亿) | 0.9   | 1.05  | • • • | 1152.66  | • • • | 170948.84  |
| 资本-劳动比率(万)    | 2.25  | 2.50  | • • • | 21.91    | • • • | 24.71      |
| 资本密度增长率       |       | 0.11  | • • • | 0.00     | • • • | 0.00       |
| 人均GDP(万)      | 1.5   | 1.58  | • • • | 4.68     | • • • | 4.97       |
| 人均产出增长率       |       | 0.05  | • • • | 0.00     | • • • | 0.00       |
| 人均消费水平(万)     | 1.125 | 1.19  | • • • | 3.51     | • • • | 3.73       |
| 人均消费增长率       |       | 0.05  | • • • | 0.00     | • • • | 0.00       |
| 其他参数(固定)      |       |       |       |          |       |            |
| 人口增长率         | 0.05  |       |       |          |       |            |
| 柯布道格拉斯函数alpha | 0.5   |       |       |          |       |            |

0.75

消费占GDP比重

任课教师: 庄晨, 北京大学经济学课程: 经济学原理(II), 24-25春季 北京大学经济学

- 如何根据理论计算均衡水平?
  - 思路:只要解得 $k_e$ ,其余均可迎刃而解。
  - $\diamond s_e = i_e^*, \quad \text{则}(1-\beta)y_e = nk_e \quad (交点);$
  - 进而, $0.25k_e^{0.5} = 0.05k_e$ (生产函数);
  - 从而, $k_e^{-0.5}=0.2$ (代数运算)。
  - 解得:  $k_e = (0.2)^{-2} = 5^2 = 25$ ,
  - $y_e = k_e^{0.5} = 5$ ,
  - $c_e = 0.75 y_e = 3.75$ ,
  - $\frac{\Delta Y}{Y} = \frac{\Delta C}{C} = \frac{\Delta K}{K} = n = 0.05_{\,\circ}$

# 索罗增长模型例题

- $\quad$  在不改变n、 $\alpha$ 、A、 $\beta$ 的情况下,改变K 和N的初始值,均衡会改变吗?
  - 从数值模拟2可以看出,人均不变,但总量有别。
  - 理论均衡:  $(1-\beta)Ak_e^{\alpha}=nk_e$ 不变。

- 储蓄率1-β越高越好吗?
  - s(k)不断接近y(k)时,虽然 $k_e$ 增大,但c(k)可能被压缩。
  - 如何找到最"理想"的β?

# 黄金规则

均衡: 
$$(1 - \beta^*)A(k^*)^{\alpha} = nk^*$$

理想: 最大化c(k)。  $\beta^* = 1 - \frac{n(k^*)^{1-\alpha}}{4}$ 

$$\beta^* = 1 - \frac{n(k^*)^{1-\alpha}}{A}$$

- 因为这体现了生活水平。 =1-α
- 要在消费占GDP比重的下降和GDP总量的 增加之间找到平衡点(权衡取舍)。
- $c(k) = y(k) i^*(k) = Ak^{\alpha} nk$
- 一阶条件:

$$k^* = \left(\frac{n}{\alpha A}\right)^{\frac{1}{\alpha - 1}}$$

$$\frac{dc(k)}{dk}\Big|_{k=k^*} = \alpha A(k^*)^{\alpha-1} - n = 0$$

 $k^*$ 就是满足**黄金规则**的资本密度。

- 如果我们同时有n > 0和 $\delta > 0$ ,OS线是什么呢?
  - 为了维持资本水平扩张(即人均资本水平 不变),应该令 $I_t = (n+\delta)K_t$ 。
  - 注意:  $I_t = \Delta K_{t+1} = K_{t+1} (1 \delta)K_t$ 。
    - $K_{t+1} = (1 \delta)K_t + I_t = ? (1 + n)K_t$
- 新的OS线:  $i_t = (n + \delta)k_t$ 。
- 注意: 依然有 $\frac{\Delta Y}{Y} = \frac{\Delta C}{C} = \frac{\Delta K}{K} = n$ 。



黄金规则:找到最大化稳态人均消费的储蓄水平( $1-\beta^{gold}$ )。



- 根据图像模型,我们需要边际资本产品(MPK)等于OS线的斜率,即
  - $\alpha A (k^{\text{gold}})^{\alpha 1} = n + \delta_{\circ}$
- 根据"一阶条件"的思路:

$$\left. \frac{dc}{dk} \right|_{k=k \text{gold}} = \left( \frac{dy}{dk} - \frac{ds}{dk} \right) \right|_{k=k \text{gold}} = 0_{\circ}$$

- ight
  angle 注意,  $s=i=(n+\delta)k$ 。
- 由此,也能推出最前面的等式。

- 如果 $k < k^{\text{gold}}$ ,根据黄金规则,我们该如何调整储蓄率?  $\beta^* = 1 \frac{n(k^*)^{1-\alpha}}{A}$ 
  - 一说明 $\beta > \beta^{\text{gold}}$ ,需要提高储蓄率。
- 如果储蓄率突然上升,会如何影响人均 消费、人均投资、人均产出、人均产出 增长率、总产出和总产出增长率?
  - 即刻(起点)的变化?
  - 稳态(终点)的变化?
  - 稳态前随着时间(过程)的变化?

如果储蓄率突然上升:



# 如何解释人均产出增长?

- 过去200年,人均GDP持续增长,能否用索罗模型解释呢?
  - ▶前面的讨论中一直把技术进步A固定为一个常数。
  - 然而,只要A持续上升, s(k)和y(k)都持续 抬升,均衡点不断右移。
  - 1957年,索罗在REStat上发表文章讨论技术 进步在经济增长中的贡献。
  - 估算公式:  $\frac{\Delta y_{t+1}}{y_t} = \frac{1}{3} \left( \frac{\Delta k_{t+1}}{k_t} \right) + 索罗余项。$

#### 如何解释人均产出增长?



#### 如何解释人均产出增长?

- 设a和c连线的斜率为r,则可以用a点斜率近似估计:
  - $r \approx \frac{dy_t(k_t)}{dk_t} = \alpha A k_t^{\alpha 1} = \frac{\alpha y_t}{k_t}$
- 由此,资本贡献率 =  $\frac{r\Delta k_{t+1}}{y_t} = \alpha \frac{\Delta k_{t+1}}{k_t}$ 
  - 索罗对美国生产函数估算得出α = 1/3。
  - 事庆旺和贾俊雪(2005)在《经济研究》 指出我国1979-2004年 $\alpha \approx 0.69$ ,技术进步 平均贡献率较低(仅为10%左右)。
  - 陈梦根和侯园园(2024)指出2000-2019年 全要素生产率的增长贡献占比达24.31%。

## 经济增长的分解

如何核算不同要素对经济增长的贡献?

#### GDP总量增长率的核算

- 考虑一国总生产函数:  $Y = AK^{\alpha}L^{1-\alpha}$ ,  $0 < \alpha < 1$ 。
- 斯解 $\frac{\Delta Y}{Y}$ : 利用全微分的思路。
  - $\Delta Y = \Delta A \cdot K^{\alpha} L^{1-\alpha} + \alpha K^{\alpha-1} \Delta K \cdot A L^{1-\alpha} + (1-\alpha)L^{-\alpha} \Delta L \cdot A K^{\alpha}$
  - 然后, 等式两边同时除以Y。
  - $\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \frac{\alpha \Delta K}{K} + \frac{(1-\alpha)\Delta L}{L}$
  - 只要知道A增长率、K增长率、L增长率、 α的值、Y增长率的任意四个,即可用公式 求出第五个。

## GDP总量增长率的核算

- 产在完全竞争情况下,α和1-α是资本和 劳动的**收入份额**。
  - $P_K = MP_K = \frac{\partial Y}{\partial K} = \frac{\alpha Y}{K}; \quad P_L = \frac{(1-\alpha)Y}{L} \circ$
  - 资本收入:  $P_KK = \alpha Y$ 。
  - 劳动收入:  $P_L L = (1 \alpha)Y$ 。
- $\alpha$ 和 $1-\alpha$ 还反映K和L对经济的贡献率。
  - 产出越高,收入也越高,按产出分配或许是一种公平。

#### 人均GDP增长率的核算

$$y = \frac{Y}{N} = Y \cdot N^{-1}$$
的变化率拆解:

- $\Delta y = \Delta Y \cdot N^{-1} N^{-2} \Delta N \cdot Y$
- ▶ 然后, 等式两边同时除以y。

$$\frac{\Delta y}{y} = \frac{\Delta Y}{Y} - \frac{\Delta N}{N} = \frac{\Delta A}{A} + \frac{\alpha \Delta K}{K} + \frac{(1-\alpha)\Delta L}{L} - \frac{\Delta N}{N}$$

假设
$$L=0.8N$$
,则 $\frac{\Delta L}{L}=\frac{0.8\Delta N}{0.8N}=\frac{\Delta N}{N}$ 。

$$\frac{\Delta y}{y} = \frac{\Delta A}{A} + \alpha \left( \frac{\Delta K}{K} - \frac{\Delta N}{N} \right)_{\circ}$$

索罗估算公式: 
$$\frac{\Delta y}{y} = \alpha \frac{\Delta k}{k} + \frac{\Delta A}{A}$$
。

43

在Cobb-Douglas生产函数中,若资本和劳动的贡献率一样,劳动力始终占总人口75%,资本增长率为8%,人口增长率为2%,技术增长率为4%,那么人均GDP的增长率是多少?







任课教师: 庄晨, 北京大学经济学院课程: 经济学原理(II), 24-25春季

## 经济增长的收敛性

经济将走向两极分化还是共同富裕?

## 经济增长会收敛吗?

- 当今世界上同时存在发达国家和发展中国家,那么未来是否会"世界大同"?

  - 但与此同时,各别国家之间的进一步分化 也很明显。
  - 对于世界是否会"大同",经济学家没有 达成共识。

# 任课教师:庄晨,北京大学经济学课程:经济学原理(II),24-25春季

## 中国和印度的比较



**→**China **→**India



数据来源:世界银行。

#### 什么是收敛?

- 相信"收敛"的经济学家提出:
  - 绝对收敛;
  - 条件收敛。
- Solow模型为我们提供了一个演绎。
  - 一给定n、 $\alpha$ 、A、 $\beta$  (或趋同),最终经济都收敛于同一均衡——绝对收敛。
  - 世界经济增长的前景既乐观、又堪忧?
  - 乐观:无论现在有多么贫穷,未来都可以 一片光明。
  - 堪忧:人均GDP最终趋于平缓、零增长。

# 任课教师:庄晨,北京大学经济学课程:经济学原理(II),24-25春季

#### 一个绝对收敛的演绎



## 什么是收敛?

- 条件收敛:各国A、n、α、β不同,且可能不会趋同。
  - 否认人均GDP一定会趋同。
  - 但是人均GDP的差距会趋于稳定。
- 无论是绝对还是条件收敛,都需要借助 **外在的**储蓄率和技术条件。
  - 这些外在条件相同,则绝对收敛。
  - 这些外在条件不同,则条件收敛。
- 储蓄率不影响稳态时的GDP增长率。

#### 巴罗的观点

- 罗伯特·巴罗(1944-)是当今最有影响力、最有希望获得下一个诺贝尔经济学 奖的宏观经济学家之一。
  - 他是条件收敛的代表人物。
- 2025年春季在哈佛大学开设三门课:
  - Economic Growth专题课(Econ 980kk), 要求先修中宏;
  - 宗教的政治经济学(Ec 1450);
  - 宏观经济学系列讲座。



#### 巴罗的观点

- (1) 他研究了18个OECD国家人均GDP 从1960-2000年的变化,发现:
  - 一些起初较穷的国家(如葡萄牙、西班牙、 爱尔兰、希腊)较快地在追赶富国。
  - 这些经济体的起点不同,但较为同质(如储蓄率、人口增长率等差不多),因而会收敛、趋近某一个人均收入水平。
- (2)他认为一国内部不同地区的趋同 也可以用条件收敛解释,因此研究美国 1880-2000年各个州的人均收入情况。



#### 巴罗的观点

- (3) 他考虑收敛速度的问题: 为什么有的国家收敛得快、有的慢?
  - 他发现,储蓄率、科技水平(A)和初始的劳动投入 $L_0$ 对收敛速度没什么影响。
  - 但是,资本平均产出 $\frac{y}{k}$ 递减得慢,则收敛也慢一些。
  - 美国南北战争之后各州收入水平收敛缓慢。
  - 1990年德国统一后东德向西德趋同速度也较慢。



#### 德国各州人均GDP



图片来源: Pew Research Center, 2019。

#### 中美人均GDP缩小的分析

- ▶ 2012-2021年中国在人均GDP上追赶美国的主要贡献因素是资本还是技术?
  - 运用经济增长的核算(拆解)方法。
  - 人均资本加速积累的贡献(记为 $\theta$ ) =

$$\frac{\alpha_{China} \left(\frac{\Delta k}{k}\right)_{China} - \alpha_{US} \left(\frac{\Delta k}{k}\right)_{US}}{\left(\frac{\Delta y}{y}\right)_{China} - \left(\frac{\Delta y}{y}\right)_{US}}$$

- $1-\theta$ 则是技术进步的贡献。
- 这个计算需要估算K。这是一个存量,不好计算,配套Excel表提供了一个参考。

可以自行补充2022-2024年"全社会固定资产投资完成额"和"固定资产投资价格指数"的数据,更新这个分析。

# 任课教师: 圧晨, 北京大学经济学课程: 经济学原理(II), 24-25春季

|      | I            |              |              |              |              |                     |          |
|------|--------------|--------------|--------------|--------------|--------------|---------------------|----------|
|      | 中国           |              | 美国           |              | 中美差距         |                     | 贡献       |
| 年份   | $\Delta y/y$ | $\Delta k/k$ | $\Delta y/y$ | $\Delta k/k$ | $\Delta y/y$ | $\alpha \Delta k/k$ | $\theta$ |
| 2012 | 7.1          | 14.0         | 1.5          | 6.2          | 5.6          | 4.5                 | 81%      |
| 2013 | 7.1          | 14.5         | 1.1          | 2.9          | 6.0          | 6.1                 | 102%     |
| 2014 | 6.8          | 14.0         | 1.5          | 4.4          | 5.3          | 5.2                 | 99%      |
| 2015 | 6.4          | 13.5         | 2.0          | 3.0          | 4.4          | 5.6                 | 126%     |
| 2016 | 6.2          | 12.3         | 0.9          | 1.4          | 5.3          | 5.6                 | 105%     |
| 2017 | 6.3          | 10.4         | 1.6          | 3.8          | 4.7          | 3.7                 | 78%      |
| 2018 | 6.3          | 9.1          | 2.4          | 4.1          | 3.9          | 2.9                 | 75%      |
| 2019 | 5.6          | 8.2          | 1.8          | 2.1          | 3.8          | 3.3                 | 86%      |
| 2020 | 2.0          | 7.3          | -3.7         | -2.2         | 5.7          | 4.5                 | 79%      |
| 2021 | 8.0          | 6.8          | 5.8          | 5.6          | 2.2          | 1.2                 | 53%      |

中美人均GDP缩小的分析

数据来源:世界银行、FRED、国家统计局和教师计算。假设劳动力增长率等于人口增长率,中国折旧率5%, $\alpha_{China}=0.5$ , $\alpha_{US}=0.4$ 。

#### 中美人均GDP缩小的分析

- 这10年大部分年份的人均收入追赶业绩主要由人均资本的加速积累贡献。
  - 中国在人均GDP上与美国靠近的功劳较少 归于全要素生产率的相对提升。
  - 2001-2011年我国资本增长率也较高,人均 资本的加速积累依然主要解释我国在人均 收入上追赶美国的步伐。
  - 以上计算的具体数字难免有误差,但方向基本应是如此(同学们可以尝试使用不同假设进行稳健性检验)。

# 任课教师: 压晨, 北京大学经济学课程: 经济学原理(II), 24-25春季

#### 中国是收敛还是发散的?



2023年,北京 200278,上海 190321。



2023年,甘肃47867元。

数据来源: 国家统计局。

#### 中国是收敛还是发散的?





• 山西

- 浙江

• 湖南

■云南

内蒙

安徽

- 广东

• 西藏

• 辽宁

。福建

。广西

• 陕西

吉林

• 江西

■海南

口甘肃

数据来源: 国家统计局和教师计算。

。 河北

- 江苏

• 湖北

o 贵州

• 新疆

◇天津

■河南

■四川

• 宁夏

△北京

山东

- 重庆

青海

- 黑龙江 • 上海

2022-2023年, 甘肃

 $0.236 \rightarrow 0.239$  °

#### 中国是收敛还是发散的?

- 第一,上图体现某种意义的收敛。
  - ▶ 2003年,中国最富裕的上海人均GDP为 39117元,最贫穷的贵州为3708元。
  - 2023年,中国最富裕的北京人均GDP为200278元,最贫穷的甘肃为47867元。
  - 绝对差距变大了,相对差距变小了——从 10.5倍变为4.2倍。
  - 第二,部分地区出现赶超。比如,北京 赶超上海,江苏、福建赶超天津,贵州 赶超甘肃等。这是另一层面的收敛。

#### 总结

马尔萨斯陷阱为了们提供了一个逻辑上 自洽的经济停滞的解释,对现世有重要 参考意义。

索罗增长模型为现代经济增长理论提供了重要基础。

经济增长的核算有利于我们分析对经济增长贡献较大的决定因素。

#### 内生增长理论(下节课)

如何将储蓄率和技术进步内生化?