Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №10 "Исследование математической модели электромеханического объекта управления" Вариант - 5

Выполнил		(подпись)
	(фамилия, и.о.)	
Проверил	(фамилия, и.о.)	(подпись)
"" 20r.	Санкт-Петербург,	20 <u> </u> r.
Работа выполнена с оценкой		
Дата защиты ""	20 <u></u> г.	

Цель работы. Изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.

Исходные данные: Представлены в таблице 1

Таблица 1 – Исходные данные

U_H , B	n_0 , об/мин	I_H , A	M_H , Нм	R, Om	$T_{\rm ff}$, MC	J_{I} , кг \cdot м 2	T_y , MC	i_p	$J_{\scriptscriptstyle m M}$, кг \cdot м 2
120	6000	21	4	0.53	8	$1.9 \cdot 10^{-3}$	8	40	5.75

Рассчет необходимых параметров модели:

$$J_{\rm p} = 0.2 \cdot J_{\rm g} = 3.8 \cdot 10^{-4} \tag{1}$$

$$w_0 = n_0 \cdot \frac{2\pi}{60} = 628 \tag{2}$$

$$k_e = \frac{U_H}{w_0} = 0.191 \tag{3}$$

$$k_{\rm M} = \frac{M_H}{I_H} = 0.1905 \tag{4}$$

$$J_{\sum} = J_{\text{A}} + J_{\text{p}} + \frac{J_{\text{M}}}{i_{p}^{2}} = 0.0059$$
 (5)

$$K_y = \frac{U_H}{U_m} = 12 \tag{6}$$

$$K = \frac{K_y}{k_e \cdot i_p} = 1.57 \tag{7}$$

$$K_f = \frac{R}{k_m \cdot k_e \cdot i_p^2} = 0.0091 \tag{8}$$

$$T_M = \frac{R \cdot J_{\sum}}{k_m \cdot k_e} = 0.085 \tag{9}$$

Коэффициенты передачи измерительных устройств:

$$K_u = 0.1667 (10)$$

$$K_i = 0.1119 (11)$$

$$K_w = 0.0318 (12)$$

$$K_{\alpha} = 1.4047 \tag{13}$$

1 Исследование полной математической модели ЭМО

Схема моделирования представлена на рисунке 1

Рисунок 1 - Схема моделирования

Графики переходных процессов при U=5 и $M_{\scriptscriptstyle{\mathsf{CM}}}=0$ представлены на рисунке 2

Рисунок 2 - Переходные процессы

1.1 Исследование влияния момента сопротивления $M_{\rm cm}$ на вид переходных процессов

Графики переходных процессов при различных $M_{\rm cm}$ для каждого из исследуемых значений представлены на рисунке 3

Рисунок 3 – Переходные процессы: а) угол поворота, b) скорость вращения, c) напряжение, d) сила тока

Рассчитаем значения времени переходного процесса $t_{\rm n}$ и установившееся значение при различных $M_{\rm cm}$ для w и I. Результаты представлены в таблице 2

Таблица 2 – Данные моделирования

$M_{ m cm}$	t	п	Установившееся значение		
	w	I	w	I	
0	0.25	0.5	9.98	0.03	
53	0.25	0.43	9.36	0.8	
106	0.25	0.39	8.75	1.6	
160	0.25	0.36	8.13	2.37	

1.2 Исследование влияния момента инерции механизма $J_{\rm M}$ на вид переходных процессов

Графики переходных процессов при различных $J_{\scriptscriptstyle \rm M}$ для каждого из исследуемых значений представлены на рисунке 4

Рисунок 4 – Переходные процессы: а) угол поворота, b) скорость вращения, c) напряжение, d) сила тока

Рассчитаем значения времени переходного процесса $t_{\rm n}$ и установившееся значение при различных $J_{\rm m}$ для w и I. Результаты представлены в таблице 3

Таблица 3 – Данные моделирования

$J_{\scriptscriptstyle m M}$	t	п	Установившееся значение		
	w	I	w	I	
2.875	0.17	0.49	9.99	0	
4.6	0.22	0.49	9.99	0	
6.9	0.27	0.49	9.96	0.06	
8.625	0.31	0.49	9.13	0.12	

1.3 Исследование влияния передаточного числа i_p на вид переходных процессов при $M_{{\bf cm}}=0$ и $M_{{\bf cm}}=80$

При $M_{\mathbf{c}\mathbf{m}}=0$

Графики переходных процессов при различных i_p для каждого из исследуемых значений представлены на рисунке 5

Рисунок 5 – Переходные процессы: a) угол поворота, b) скорость вращения, c) напряжение, d) сила тока

Рассчитаем значения времени переходного процесса $t_{\rm n}$ и установившееся значение при различных i_p для w и I. Результаты представлены в таблице 4

Таблица 4 – Данные моделирования

i_p	t	п	Установившееся значение	
	w	I	w	I
10	2.58	5.95	10	0
32	0.34	3.45	10	0
48	0.2	2	10	0
70	0.14	1.37	10	0

При $M_{\mathrm{cm}}=80$

Графики переходных процессов при различных i_p для каждого из исследуемых значений представлены на рисунках 6, 7 и 8

Рисунок 6 – Переходные процессы: а) угол поворота, b) напряжение

Рисунок 7 - Переходной процесс скорости

Рисунок 8 – Переходной процесс тока

Рассчитаем значения времени переходного процесса $t_{\scriptscriptstyle \Pi}$ и установившееся значение при различных i_p для w и I. Результаты представлены в таблице 5

Таблица 5 – Данные моделирования

i_p	t	п	Установившееся значение	
	w	I	w	I
10	2.59	3	6.28	4.71
32	0.34	0.56	8.84	1.47
48	0.2	0.36	9.23	0.98
70	0.14	0.27	9.47	0.67

2 Исследование упрощенной математической модели ЭМО

Схема моделирования представлена на рисунке 9

Рисунок 9 - Схема моделирования

Графики переходных процессов для w и α при U=5 и $M_{\rm cm}=0$ для упрошенной модели и полной при различных значениях $T_{\rm s}$ и T_y представлены на рисунках 10 и 11 соответственно.

Рисунок 10 – Переходные процессы w

Рисунок 11 – Переходные процессы α

3 Вывод математических моделей вход-состояние-выход

Полная модель

Полная модель данного ЭМО может быть описана следующей системой:

$$\begin{cases} \dot{X} = A \cdot X + B \cdot u \\ y = C \cdot X + D \cdot u \end{cases} \tag{14}$$

Возьмем в качестве вектора состояния $X = \begin{bmatrix} U_y \\ I \\ w \\ \alpha \end{bmatrix}$, а за вектор возмущающих воздей-

ствий
$$u = \begin{bmatrix} U \\ M_{\text{cm}} \end{bmatrix}$$

Выходная величина $y=\alpha \ \Rightarrow \ C=\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \quad D=0$

Матрицы A и B найдем, используя схему модели. Получаем:

$$A = \begin{bmatrix} -\frac{1}{T_y} & 0 & 0 & 0\\ \frac{K_{\Pi}}{T_{\eta}} & -\frac{1}{T_{\eta}} & -\frac{K_e \cdot K_{\Pi}}{T_{\eta}} & 0\\ 0 & \frac{K_M}{J_{\Sigma}} & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 (15)

$$B = \begin{bmatrix} -\frac{K_y}{T_y} & 0\\ 0 & 0\\ 0 & -\frac{1}{i_p \cdot J_{\Sigma}}\\ 0 & 0 \end{bmatrix}$$
 (16)

Упрощенная модель

Упрощенная модель данного ЭМО может быть описана следующей системой:

$$\begin{cases} \dot{X} = A \cdot X + B \cdot u \\ y = C \cdot X + D \cdot u \end{cases}$$
 (17)

Возьмем в качестве вектора состояния $X=\begin{bmatrix} w \\ \alpha \end{bmatrix}$, а за вектор возмущающих воздействий $u=\begin{bmatrix} U \\ M_{ord} \end{bmatrix}$

Выходная величина $y=\alpha \ \Rightarrow \ C=\begin{bmatrix} 0 & 1 \end{bmatrix} \quad D=0$

Матрицы A и B найдем, используя схему упрощенной модели. Получаем:

$$A = \begin{bmatrix} -\frac{1}{T_M} & 0\\ 1 & 0 \end{bmatrix} \tag{18}$$

$$B = \begin{bmatrix} \frac{K}{T_M} & -\frac{K_f}{T_M} \\ 0 & 0 \end{bmatrix} \tag{19}$$

Вывод

В данной работе была исследована математическая модель электромеханического объекта управления. Были выявлены зависимости переходных процессов от различных параметров. Так, при увеличении момента сопротивления установившееся значение тока якоря увеличивается, а скорости - уменьшается. При увеличении момента инерции механизма время переходного процесса скорости вращения двигателя и среднее значение тока за время своего переходного процесса увеличиваются. При уменьшении передаточного числа редуктора при нулевом моменте сопротивления увеличивается время переходных процессов. А при ненулевом моменте сопротивления увеличивается значение установившегося тока и уменьшается значение скорости.

Также было произведено сравнение упрощенной и полной модели ЭМО. Было показано при моделировании, что если электрические постоянные времени малы по сравнению с механическими, то ими можно пренебречь и перейти от полной к упрощенной модели ЭМО. Также был произведен расчет математических моделей вход-состояние-выход полной и упрощенной модели ЭМО.