

a: Run Logistic Regression in JASP

Logistic Regression ▼

Model Summary - Damaged

Model	Deviance	AIC	BIC	df	ΔX²	р	McFadden R²	Nagelkerke R ²	Tjur R²	Cox & Snell R ²
Mo	26.402	28.402	29.538	22			0.000		0.000	
M ₁	14.426	18.426	20.697	21	11.977	< .001	0.454	0.595	0.500	0.406

Note. M₁ includes Temperature

Coefficients

						Wald Test			95% Confidence interval	
Model		Estimate	Standard Error	Odds Ratio	Z	Wald Statistic	df	р	Lower bound	Upper bound
Mo	(Intercept)	-1.041	0.475	0.353	-2.193	4.810	1	0.028	-1.972	-0.111
M ₁	(Intercept)	23.775	11.820	2.115×10 ⁺¹⁰	2.011	4.046	1	0.044	0.607	46.942
	Temperature	-0.367	0.175	0.693	-2.093	4.382	1	0.036	-0.710	-0.023

Note. Damaged level '1' coded as class 1.

b. Logistic Regression Equation

3

From the output:

- Intercept $(\beta_0) = 23.775$
- Temperature coefficient $(\beta_1) = -0.367$

Equation:

$$p^{\wedge} = 1 / (1 + e^{\wedge} (-(23.775 - 0.367 \cdot Temperature)))$$

c. Statistical Significance of β₁

• p-value for Temperature = 0.036

Since 0.036 < 0.05, the coefficient is statistically significant at the 5% level.

Interpretation: Temperature has a significant effect on the probability of O-ring damage.

d. Is Temperature a Justified Cause?

Yes. The model with Temperature (M₁) significantly improves fit over the model without it (p < 0.001 for ΔX^2).

Also, Temperature is statistically significant (p = 0.036), and model fit metrics (e.g., Nagelkerke $R^2 = 0.595$) show decent explanatory power.

Interpretation: There is sufficient statistical evidence to justify that temperature contributed to O-ring damage.

e. Estimated Probabilities

Using:

$$\label{eq:p} \widehat{\ }\{p\} = \{ frac\{1\} \big\{ 1 \ + \ e^{\{-(23.775 \, - \, 0.367 \, \cdot \, \setminus text\{Temperature\})\}} \big\}$$

Let's calculate:

1. **T** = **51**

2. $T = 53^{\circ}F$:

3. $T = 55^{\circ}F$:

4. $T = 57^{\circ}F$:

Temperature (°F)	p̂ (Estimated Probability)
51	0.9827
53	0.9644
55	0.9289
57	0.8626

These calculations show that as temperature decreases, the probability of O-ring damage increases, which aligns with engineering expectations for material behavior at lower temperatures.