Série 1:Les Nombres Complexes

Exercice 1:

Déterminer dans chacun des cas suivants la partie réelle et la partie imaginaire du nombre complexe Z:

1)
$$Z = 1 + 3i$$

2)
$$Z = 5$$

2)
$$Z = 5$$
 3) $Z = 2 - \sqrt{4}i$

4)
$$Z = -2i$$

$$5)Z = \frac{1}{4} - i$$

Exercice 2:

Ecrire sous la forme algébrique les nombres complexes suivants :

$$Z_1 = \frac{2 - 3i}{1 + i}$$

$$Z_2 = (3+2i) \times (-1+3i)$$

$$Z_3 = \frac{1}{\left(-1 + 3i\right)}$$

$$Z_4 = \left(6 - 3i\right)^3$$

$$Z_5 = \frac{4}{3+i} + \frac{2i}{3-i}$$

$$Z_6 = \left(\frac{1+i}{1-i}\right)^{2019}$$

Exercice 3:

Résoudre dans $\mathbb C$ chacune des équations suivantes :

1)
$$iz - 1 + 2i = 0$$

2)
$$z^2 + 1 = 0$$

3)
$$z^2 = -3$$

4)
$$(z+2i)^2 = -4$$

$$5) z^2 + 2z + 2 = 0$$

6)
$$\frac{-1}{iz + \sqrt{3}} = \frac{iz + \sqrt{3}}{3}$$

Exercice 4:

On pose: z = x + iy avec $(x, y) \in \mathbb{R}^2$ et $f(z) = z^2 - z$ et $g(z) = \frac{z + i}{z - i}$ tel que $z \ne 1$

- 1) Exprimer la partie réelle et la partie imaginaire de f(z) en fonction de x et y
- 2) Déterminer Re(g(z)) et Im(g(z)) en fonction de x et y
- 3) Démontrer que : $f(z) \in \mathbb{R}$ $f(z) \in \mathbb{R} \iff y = 0$ et $x = \frac{1}{2}$
- 4) Démontrer que : $g(z) \in \mathbb{R} \Leftrightarrow y = x 1$ et $(x, y) \neq (1, 0)$