RELATÓRIO DO PROJETO FINAL

ESCOPO:

1. Apresentação do projeto

O projeto SideSense tem como objetivo auxiliar pessoas a diferenciar os lados esquerdo e direito. Para isso, será desenvolvido um sistema que oferece duas funcionalidades principais:

Consulta: para identificação do lado pressionado pelo usuário.

Jogo interativo: para reforçar a memorização da direção correta.

2. Título do projeto

SideSense

3. Objetivos do projeto

Objetivo geral: Desenvolver uma ferramenta interativa e educativa para auxiliar pessoas a diferenciar o lado esquerdo do lado direito, promovendo o aprendizado dessa habilidade de maneira intuitiva e divertida, por meio de feedback visual e jogos interativos.

Objetivos específicos:

- Criar um sistema com botões de entrada para que o usuário possa indicar a direção (esquerda ou direita), recebendo feedback imediato através de um painel oled.
- Desenvolver um jogo interativo que auxilie na memorização das direções.
- Fornecer feedback imediato sobre acertos e erros.
- Facilitar a distinção entre os lados esquerdo e direito.
- Testar a eficácia da ferramenta com diferentes faixas etárias e pessoas com dificuldades de orientação espacial, para validar o impacto positivo do sistema.
- Utilizar a BitDogLab de forma otimizada, aproveitando os recursos da plataforma para garantir um sistema de baixo custo, robusto e fácil de ser replicado por outros desenvolvedores.

4. Principais requisitos

Requisitos funcionais:

- O sistema deve ser capaz de ler as entradas dos botões de direção (esquerda/direita) pressionados pelo usuário.
- Após a pressão de um botão, o sistema deve fornecer um feedback imediato visual indicando se a direção escolhida está correta ou não.

- O sistema deve proporcionar ao usuário uma experiência de treinamento interativa por meio de um jogo dinâmico e intuitivo
- O sistema deve ser capaz de armazenar a pontuação do usuário de acordo com a quantidade de acertos durante a interação, para mostrar o desempenho ao final do jogo.
- O sistema deve utilizar a BitDogLab para integrar hardware e software, com display oled e botões.

Requisitos não funcionais:

- O sistema deve ser fácil de usar, permitindo que qualquer usuário, mesmo sem conhecimento técnico, consiga interagir sem dificuldades.
- O sistema deve garantir uma resposta rápida ao pressionar os botões, com um tempo de latência baixo (menos de 1 segundo) entre a ação do usuário e o feedback.
- O sistema deve ser acessível para pessoas com dificuldades de orientação espacial, proporcionando uma interface clara e feedbacks visuais.
- O sistema deve ser eficiente no consumo de energia, utilizando a **BitDogLab** de forma otimizada para garantir baixo consumo.
- O sistema deve ser facilmente escalável, permitindo a inclusão de novos jogos ou funcionalidades no futuro sem comprometer a estrutura existente.

5. Descrição do funcionamento

O funcionamento do projeto pode ser descrito pelas seguintes funcionalidades principais:

1- O sistema inicia com uma tela que permite escolher entre as funcionalidades de consulta e jogo, o usuário deve apertar qualquer botão até que a funcionalidade que ele deseja esteja indicada com letras maiúsculas, depois de 5 segundos, a funcionalidade é escolhida.

Funcionalidade de consulta:

- 1- A Funcionalidade conta com dois botões físicos, um para cada direção (esquerda e direita). O usuário deve pressionar o botão correspondente à direção que deseja identificar.
- 2- Após a pressão de um botão, o sistema fornece um feedback imediato por meio do display oled disponível na placa, indicando o lado que o usuário apertou.

Funcionalidade de jogo:

- 1- A funcionalidade permite que uma direção aleatória seja exibida no display, então o usuário deve apertar o botão correspondente a direção correta.
 - 2- O jogo continua por 30 segundos se o usuário não errar.
- 3- O sistema registra o desempenho do usuário durante os jogos, exibindo uma pontuação final ao término de cada partida.
- 4- Se o usuário aperta o botão errado, o jogo é encerrado e exibe a pontuação atingida até o momento.

6. Justificativa

Muitas pessoas, especialmente aquelas com dificuldades de orientação espacial, como dislexia, enfrentam desafios ao tentar distinguir esquerda de direita. Esse projeto visa

proporcionar uma ferramenta simples e eficaz para o desenvolvimento dessa habilidade de forma prática e divertida.

Com ele, será possível superar limitações e proporcionar uma vida mais independente às pessoas que o utilizam, ajudando principalmente no desenvolvimento cognitivo de crianças, no aprendizado de pessoas com dificuldades cognitivas, e auxiliando em tarefas que exigem rapidez e precisão, como dirigir, além de ajudar na prevenção da perda de memória e dificuldades de orientação em idosos.

7. Originalidade

Embora existam diversas ferramentas educacionais para auxiliar no aprendizado de direções, o SideSense se destaca pela interatividade e pelo uso de jogos, o que torna o processo de aprendizado mais dinâmico e atraente, consolidando a capacidade de distinguir esquerda e direita de maneira mais eficaz.

HARDWARE:

1. Diagrama em blocos

2. Função de cada bloco

Microcontrolador: Controla o sistema, processa os dados e gerencia os periféricos.

Display OLED: Exibe mensagens e orientações para o usuário.

Botões: Captam a entrada do usuário para interagir com o sistema.

Interface I2C: Comunicação entre o microcontrolador e o display OLED.

3. Configuração de cada bloco

Microcontrolador: Gerencia entradas e saída de dados via I2C.

Botões: Configurados como entradas com pull-up interno ativado.

Display OLED: Configurado para comunicação I2C.

4. Especificações

O Raspberry Pi RP2040 foi escolhido como microcontrolador devido à sua alta performance e capacidade de gerenciar entradas e saídas digitais, atendendo aos requisitos

do jogo e ao feedback do display. O display OLED SSD1306 exibe as direções e a pontuação de forma clara e eficiente, enquanto os botões push-button permitem que o usuário interaja com o sistema de maneira simples e precisa. A comunicação entre os componentes é feita via I2C e GPIO, garantindo uma integração eficiente e de baixo custo. Esses componentes atendem tanto aos requisitos funcionais (como leitura de entradas e exibição de resultados) quanto aos não funcionais (baixo custo, consumo de energia otimizado e fácil implementação).

5. Lista de materiais

Raspberry Pi Pico (1 unidade): Microcontrolador que gerencia os componentes do sistema, realizando o processamento e controle do hardware.

Display OLED SSD1306 (1 unidade): Display de 128x64 pixels utilizado para exibir as direções, pontuação e mensagens de feedback.

Botões push-button (2 unidades): Botões de pressão para captar a entrada do usuário, um para a direção esquerda e outro para a direção direita.

Resistores pull-up internos (2 unidades): Usados para garantir que os botões estejam corretamente configurados com resistores de pull-up.

Jumpers para conexão (1 conjunto): Fios de conexão para ligar os componentes do circuito, como os botões e o display, ao microcontrolador.

6. Descrição da pinagem usada

Botão Esquerdo: GPIO 5

Função: Entrada para detectar o pressionamento do botão de direção esquerda.

Botão Direito: GPIO 6

Função: Entrada para detectar o pressionamento do botão de direção direita.

I2C SDA: GPIO 14

Função: Pino de dados para comunicação I2C com o display OLED.

I2C SCL: GPIO 15

Função: Pino de clock para comunicação I2C com o display OLED.

UART TX: GPIO 0

Função: Pino de transmissão de dados para comunicação serial (não utilizado diretamente no projeto, mas reservado para possíveis expansões).

UART RX: GPIO 1

Função: Pino de recepção de dados para comunicação serial (também reservado para futuras expansões, se necessário).

7. Circuito completo do hardware

SOFTWARE:

1. Blocos funcionais

2. Descrição das funcionalidades

Interface de Controle: Permite ao usuário escolher entre o modo "consulta" e o "jogo" ao pressionar os botões associados.

Consulta: Exibe uma mensagem indicando "O BOTÃO CORRESPONDE À DIREÇÃO", seguida por "ESQUERDA" ou "DIREITA", conforme a ação do botão pressionado pelo usuário.

Jogo: Exibe aleatoriamente as palavras "ESQUERDA" ou "DIREITA" e espera que o usuário pressione o botão correto. O objetivo é acumular pontos respondendo corretamente durante um tempo de 30 segundos.

3. Definição das variáveis

BTN_E_PIN, BTN_D_PIN: Define os pinos dos botões de controle (Esquerda e Direita).

UART_ID, UART_TX, UART_RX: Configurações da UART para comunicação serial. I2C_PORT, I2C_SDA, I2C_SCL: Configurações da interface I2C para controle do display OLED.

endereco: Endereço do display OLED (0x3C).

input string: Armazena a string exibida no display durante a consulta.

contador: Variável que mantém a contagem de pontos no jogo.

tempo_inicio: Marca o tempo de início de uma partida de jogo para controlar o tempo de duração.

4. Fluxograma

5. Inicialização

A inicialização do sistema é realizada na função main():

- Inicialização dos pinos GPIO para os botões.
- Configuração da UART e I2C para comunicação.
- Inicialização e configuração do display OLED.

6. Configurações dos registros

GPIO: Configuração dos pinos dos botões para entrada com resistores pull-up ativados.

UART: Configuração do baud rate de comunicação com a UART.

I2C: Inicializa o barramento I2C para comunicação com o display OLED.

SSD1306: Configuração do display para exibir texto.

7. Estrutura e formato dos dados

As strings exibidas no display OLED são definidas como arrays de caracteres (como input_string e pontuacao).

As pontuações são armazenadas como inteiros e formatadas como strings para exibição no display.

- 8. Organização da memória
- Endereço da memória EEPROM do Display: 0x3C (endereço do SSD1306)
- Pinos GPIO utilizados:
 - o GPIO5 (entrada): Botão Esquerda
 - o GPIO6 (entrada): Botão Direita
 - o GPIO14 (SDA) e GPIO15 (SCL): Comunicação I2C
 - o GPIO0 (TX) e GPIO1 (RX): Comunicação UART
- Áreas de memória alocadas dinamicamente:
 - Buffer de strings para exibição no display (char input string[20];)
 - Variáveis de controle do jogo (int contador, int direcao)

9. Protocolo de comunicação

A comunicação entre o microcontrolador e o display OLED é realizada via I2C utilizando o protocolo para envio de dados gráficos e texto.

10. Formato do pacote de dados

Para o protocolo I2C, os dados enviados ao display são compostos por:

- Comandos de controle (por exemplo, para limpar o display).
- Dados de texto (strings como "ESQUERDA", "DIREITA", "VOCE ERROU", etc.).

O pacote de dados é enviado ao display com os comandos e dados a serem exibidos. Cada comando ou dado é seguido de uma sequência de bytes conforme o formato do display OLED.

EXECUÇÃO DO PROJETO:

1. Metodologia

O projeto foi desenvolvido utilizando a plataforma Raspberry Pi Pico com a linguagem de programação C, juntamente com as bibliotecas Pico SDK, para controlar um display OLED (SSD1306) via comunicação I2C e processar entradas de dois botões conectados aos pinos GPIO. A metodologia de desenvolvimento adotada para o projeto seguiu as etapas abaixo:

1. Planejamento e Definição de Funcionalidades:

O projeto foi dividido em duas funcionalidades principais: consulta e jogo.

Na funcionalidade de consulta, o sistema exibe uma mensagem indicando qual botão (esquerda ou direita) deve ser pressionado.

No modo de jogo, a exibição alterna entre "ESQUERDA" e "DIREITA", e o jogador deve pressionar o botão correto para acumular pontos.

2. Desenvolvimento e Implementação:

As bibliotecas necessárias (Pico SDK, SSD1306) foram integradas ao código.

A comunicação I2C foi configurada para controle do display OLED.

A entrada dos botões foi configurada utilizando GPIO, e o sistema foi projetado para detectar a pressão de botões específicos e gerar respostas no display.

3. Integração e Testes:

Após o desenvolvimento das funcionalidades, a integração das funções de entrada e saída foi testada. O display OLED foi configurado para exibir texto e gráficos conforme o comportamento do sistema.

A lógica do jogo foi ajustada para garantir a pontuação correta e feedback visual imediato.

4. Validação e Ajustes Finais:

Os testes foram realizados em condições de uso real, com simulação de pressionamento de botões para garantir que o sistema respondesse corretamente às ações do usuário.

2. Testes de validação

Foram realizados testes de validação para garantir o funcionamento correto de cada funcionalidade do sistema. Os testes cobriram as seguintes áreas:

Testes de Entrada (Botões):

Verificação da resposta do sistema aos pressionamentos dos botões de "esquerda" e "direita".

Teste de debouncing para garantir que o sistema não registrasse múltiplos pressionamentos de um botão devido a ruídos elétricos.

2. Testes de Exibição (Display OLED):

Verificação se as mensagens "ESQUERDA", "DIREITA", "VOCE ERROU", e "VOCE CONSEGUIU" eram corretamente exibidas no display OLED.

Teste da atualização correta do display durante a execução do jogo, sem falhas de sincronização.

3. Testes de Lógica de Jogo:

O jogo foi testado para garantir que o tempo fosse contado corretamente, e que a pontuação fosse atualizada conforme o pressionamento correto ou incorreto dos botões.

Verificação de que o sistema exibia a pontuação final após o término do tempo e que o jogo era reiniciado automaticamente.

4. Testes de Comunicação I2C:

A comunicação entre o microcontrolador e o display foi testada para garantir que os dados (texto e comandos de controle) fossem transmitidos corretamente pela interface I2C.

5. Testes com o público alvo:

Teste com pessoas reais com dificuldade de orientação espacial e com pessoas de idade avançada.

3. Discussão dos resultados

Os testes de validação confirmaram que o sistema funciona conforme o esperado, com algumas observações:

1. Desempenho e Estabilidade:

O sistema se mostrou estável, com a comunicação I2C funcionando de maneira eficiente. O display OLED exibiu as informações sem falhas de sincronização ou problemas de atualização.

A detecção de botões foi precisa, com a lógica de debouncing funcionando corretamente, evitando múltiplos registros de pressões rápidas.

2. Precisão no Jogo:

A funcionalidade de jogo funcionou bem, com o contador de pontos sendo atualizado corretamente. No entanto, o tempo de resposta de 30 segundos do jogo poderia ser ajustado para um valor maior, dependendo da preferência do usuário, para dar mais tempo ao jogador para acumular pontos.

3. Usabilidade:

O modo "consulta" foi simples, mas eficaz, fornecendo ao usuário um feedback claro sobre qual botão pressionar.

O modo "jogo" é funcional e desafiador, mas poderia incluir um ajuste de nível de dificuldade (por exemplo, aumentando a velocidade do jogo conforme o progresso).

4. Oportunidades de Melhoria:

Para aprimorar a experiência do usuário, seria interessante adicionar sons ou efeitos visuais adicionais ao jogo para aumentar a imersão.

O projeto poderia ser expandido para incluir um sistema de pontuação de longo prazo, onde os usuários poderiam comparar suas pontuações.

O projeto poderia também ter ajuda visual para pessoas que não conseguem ler, incluindo figuras como setas para orientar o usuário.

Em resumo, o projeto alcançou os objetivos iniciais de desenvolver um sistema interativo simples utilizando o Raspberry Pi Pico, botões e um display OLED, com um funcionamento estável e interatividade eficiente.

VÍDEO DO PROJETO:

Link para o vídeo no YouTube

https://youtube.com/shorts/YpuCiZEI4aA?feature=share

REFERÊNCIAS:

Raspberry Pi Foundation. (2021). Raspberry Pi Pico: Datasheet. Recuperado de: https://www.raspberrypi.org/documentation/pico/datasheets/rp2040_datasheet.pdf Raspberry Pi Foundation. (2021). Pico SDK Documentation. Recuperado de: https://www.pico-sdk.io/

Adafruit. (2021). *Adafruit SSD1306 OLED Driver for Arduino*. Recuperado de: https://learn.adafruit.com/adafruit-ssd1306-oled-display/overview

Arduino. (2021). Debouncing a Button in Arduino. Recuperado de:

https://www.arduino.cc/en/Tutorial/Debouncing

Pico SDK Examples. (2021). *Using I2C with the Raspberry Pi Pico*. Recuperado de: https://github.com/raspberrypi/pico-examples/tree/master/i2c

Chun, W. (2020). Programming Raspberry Pi Pico: Getting Started with the Raspberry Pi Pico using C/C++. 1st Edition. O'Reilly Media.

Pico SDK Documentation (2021). *gpio.h* - Raspberry Pi Pico GPIO Interface. Recuperado de: https://pico-sdk.readthedocs.io/en/latest/

Julius, G. (2019). *C Programming for Raspberry Pi: C Programming for Beginners*. 2nd Edition. Apress.