Power Distribution System

Fall 2021-Session 2019

Final Term

		Final Term	Time= 105 min.
Marl	k=40		
Quest	ion #1:		11/
		CLO3(5+0+1)	12/18).
			se and Two-Phase Plus Neutral
11/	Compare Voltage drop an	id power losses among three phas	ge and Two
4-	Hinen- With Laterais (2)	,	
	(Open	ication of capacitor installment in	given domains:(6)
VII-	Describe Economic justification	cation of capacitor instantion	
	a. Benefits due to releb. Benefits due to Re		
Sui	several load flows run na table. (7) g the relevant additional info mmary of Load Flows		At 90% PF At 99%.
12 300		citors applied to substation buses,	KW
Ada	ditional loss reduction due to	o capacitors applied to feeders, kW	yes 21,824 19,743
Tota	al demand reduction due to c	enpactions applied to	
Tot	nd feeders, kVA al required capacitor addition	ns at buses and feeders, kvar	9,512 2,783
			,

I-Briefly answer questions

- a. Compare H-Type and SL-Type underground Cables? (3)
- b. Is charging current high in cables? If yes, justify your answer? (2)
- c. List down advantages of External Pressure Cables? (3)
- d. Derive expression for capacitance Grading? (4)

NPC Company wants to upgrade overhead distribution system with underground cables and have provided some specifications for designing of 5 km log underground distribution system cables, provided some specifications for designing of 5 km log and resistivity is 6x10¹⁴ insulation of a single core cable is 950M-ohm/Km. If core diameter is 3cm and resistivity is 6x10¹⁴ ohm-cm. Voltage of single-phase system is 33Kv, 50Hz and relative permittivity is asphalt is 3-5* with maximum gradient dielectric stress is 44 KV/cm

- a. Find insulation thickness
- b. Find capacitance of cable per meter
- c. Charging Current
- e. Find most economical core diameter of cable which is working on 33KV but possible dielectric stress must not exceed 44KV/cm in design. f. Power factor of circuit 0.09 and supply voltages are 33KV, Find cable power factor

responsibility factors of 1.0 and 0.9 for capacitors installed on the substation buses and on feeders, respectively. Determine the following:

- 2. The resulting additional savings in kilowatt losses at the 98% power factor when all capaci-
- tors are applied to substation buses. 1. The resulting additional savings in kilowatt losses at the 98% power factor when some capacitors are applied to feeders.
- The total additional savings in kilowatt losses.
- The additional savings in the system kilovoltampere capacity.
- The additional capacitors required, kvars.
- The total annual savings in demand reduction due to additional capacitors applied to substation buses and feeders, \$/year.
- g. The annual savings due to the additional released transmission capacity, \$/year.
- h. The total annual savings due to the energy loss reduction, \$/year.
- i. The total annual cost of the additional capacitors, \$/year.
- j. The total net annual savings, \$/year.
- k. Is the 98% power factor the economic power factor?

^{*}Choose relative permittivity as average value of range.