5. Übung Maß- und Wahrscheinlichkeitstheorie 2 WS2019

- 1. Zeigen Sie: eine Treppenfunktion f liegt genau dann in \mathcal{L}_p , wenn $\mu([f \neq 0]) < \infty$, und die Menge \mathcal{T} dieser Funktionen liegt dicht in L_p $(0 (d.h., für jedes <math>f \in \mathcal{L}_p$ gibt es eine Folge $f_n \in \mathcal{T}$ mit $f_n \to_p f$).
- 2. Wenn μ endlich ist und $0 \le p \le q \le \infty$, dann gilt $L_q \subseteq L_p$. Ist insbesonders μ ein Wahrscheinlichkeitsmaß, dann gilt $||f||_p \le ||f||_q$.
- 3. Im allgemeinen gilt für $p \leq q \leq r$, dass $L_p \cap L_r \subseteq L_q$ (und liegt dicht).
- 4. (Vgl. 1. Übung, Bsp. 1). a_1, \ldots, a_n seien reelle Zahlen, X_1, \ldots, X_n unabhängige Zufallsvariable mit $\mathcal{P}(X_i=1)=\mathcal{P}(X_i=-1)=1/2$ und

$$S = \sum_{i=1}^{n} a_i X_i.$$

Zeigen Sie für $x \ge 0$

$$\mathbb{P}(|S_n| \ge x) \le 2e^{-\frac{x^2}{2\sum_{i=1}^n a_i^2}}.$$

(Bestimmen Sie $\mathbb{E}(e^{tS_n})$, verwenden Sie die Abschätzung $\cosh(x) \leq e^{x^2/2}$ und die Markov-Ungleichung).

5. (Fortsetzung) Die Khinchine-Ungleichung: für $0 gibt es Konstanten <math>C_p < \infty$, sodass

$$||S_n||_p \le C_p (\sum_{i=1}^n a_i^2)^{1/2}.$$

 $(\|S_n\|_2$ sollte nicht allzu schwer zu bestimmen sein, und damit C_p für $p \leq 2$; für p > 2 hilft die Formel

$$\mathbb{E}(|S_n|^p) = \int_0^\infty py^{p-1} \mathbb{P}(|S_n| > y) dy,$$

die mit unserer Definition des Integrals nicht allzu schwer zu beweisen ist, was Sie auch — als freiwillige Zusatzaufgabe — tun dürfen).

6. (Fortsetzung) Die Khinchine-Ungleichung 2: für $0 gibt es Konstanten <math>c_p > 0$, sodass

$$c_p(\sum_{i=1}^n a_i^2)^{1/2} \le ||S||_p.$$

(für p < 2: $|S|^2 = |S|^{p/2}|S|^{2-p/2}$ und die Ungleichung von Cauchy-Schwarz-Bunjakowski (=Hölder mit p = q = 2)).

7. Gleichmäßige Integrierbarkeit: man kann dafür im Internet (mindestens) vier Definitionen finden:

Die Menge ${\mathcal F}$ von integrierbaren Funktionen heißt gleichmäßig integrierbar,

- UI (unsere Definition) wenn für jedes $\epsilon > 0$ eine integrierbare Funktion g_{ϵ} existiert, sodass $\int |f|[|f| > g_{\epsilon}] < \epsilon$ für alle $f \in \mathcal{F}$.
- UI1 (https://terrytao.wordpress.com/tag/uniform-integrability/) wenn $\sup\{\|f\|_1: f \in \mathcal{F}\} < \infty$ und

$$\lim_{M\to\infty}\sup_{f\in\mathcal{F}}\int_{[|f|>M]\cup[|f|\leq 1/M]}|f|=0.$$

UI2 (Wikipedia) wenn

$$\lim_{M \to \infty} \sup_{f \in \mathcal{F}} \int_{[|f| > M]} |f| = 0.$$

- UI3 (auch Wikipedia) wenn zu jedem $\epsilon>0$ ein $\delta>0$ existiert, sodass aus $\mu(A)<\delta$ $\int_A|f|<\epsilon$ folgt. Zeigen Sie:
- (a) $UI \Rightarrow UI1 \Rightarrow UI2 \Rightarrow UI3$.
- (b) Wenn μ endlich ist, sind die ersten drei Definitionen äquivalent.
- (c) Nimmt man zusätzlich an, dass $\sup\{\|f\|_1: f\in \mathcal{F}\}<\infty$ gilt, dann gilt **UI3** \Rightarrow **UI2**.
- (d) Aus $f_n \to f$ im Maß und (f_n) **UI1** folgt $\int f_n \to \int f$. Beweisen Sie das für den Sonderfall f = 0, der allgemeine Fall hat seine Tücken; er folgt aus dem Sonderfall, wenn man zusätzlich zeigt, dass auch $f_n f$ **UI1** ist, aber auch das ist ein wenig kompliziert.
- (e) Wenn eine Folge f_n **UI1** ist und fast überall gegen f konvergiert, dann muss nicht $\int f_n \to \int f$ gelten.
- (f) Wenn eine Folge f_n **UI2** ist und im Maß gegen f konvergiert, dann muss nicht $\int f_n \to \int f$ gelten.