Licence L2 (S3) 2019-2020

Algèbre et analyse élémentaires III MI3

Examen Partiel

9 Novembre 2019

Durée: 3 heures.

Tous les documents sont interdits, ainsi que les calculatrices et les téléphones portables. Les exercices sont indépendants entre eux. Une attention particulière sera portée à la rédaction.

1. **Exercice 1.** On considère les trois vecteurs de \mathbb{R}^3

$$u_1 = (1, -1, 1)$$
, $u_2 = (1, 0, 1)$ et $u_3 = (0, 1, -1)$.

- (a) Forment-ils un système libre dans \mathbb{R}^3 ?
- (b) Tout vecteur de \mathbb{R}^3 est-il engendré par le système $\{u_1, u_2, u_3\}$?
- (c) Trouver les scalaires λ , μ , ν tels que

$$e_2 = (0, 1, 0) = \lambda u_1 + \mu u_2 + \nu u_3$$
.

2. Exercice 2. Déterminer les limites suivantes :

(a)
$$\lim_{x \to +\infty} \left(\sqrt[3]{x^3 + x^2 + 1} - \sqrt[3]{x^3 - x^2 + 1} \right)$$

(b)
$$\lim_{x\to 0} \frac{\cos(x) - 1}{\sin(x^2)}$$

(c)
$$\lim_{x\to 0} \frac{1-\exp(-x^2)}{x(\exp(x)-\exp(-x))}$$

3. **Exercice 3**. On considère les quatre vecteurs de \mathbb{R}^4 suivant :

$$w_1 = (1,0,1,0)$$
, $w_2 = (1,1,-1,-1)$, $w_3 = (0,1,1,0)$ et $w_4 = (0,-1,2,1)$.

On notera F le sous-espace vectoriel de \mathbb{R}^4 engendré par ces quatre vecteurs. Soit u=(2,1,6,1) .

- (a) Montrer que u est un vecteur de F .
- (b) Le système $\{u,w_1\}$ est-il libre? Même question pour $\{u,w_2\}$, $\{u,w_3\}$ et $\{u,w_4\}$.
- (c) Compléter le vecteur u par un ou plusieurs vecteurs w_i de façon à ce que le système $\{u, w_{j_1}, \ldots\}$ soit à la fois libre et générateur dans F.

4. **Exercice 4**. On souhaite étuder, lorsque x tend vers $+\infty$, la fonction

$$g(x) = \frac{\ln(x^3 + 3x^2 + 1)}{3}.$$

- (a) Donner le développement limité à l'ordre 2 de $\ln{(1+3h+h^3)}$ lorsque h tend vers 0 .
- (b) En déduire le développement limité à l'ordre 2 de la fonction $g(x) \ln(x)$ lorsque x tend vers $+\infty$ [on pourra poser $h = \frac{1}{x}$].
- (c) Montrer que la fonction g(x) est équivalente à la fonction $h(x) = \ln(x)$ lorsque x tend vers $+\infty$. Montrer que le graphe de la fonction $h(x) = \ln(x)$ est asymptote au graphe de y = g(x) (lorsque x tend vers $+\infty$).
- (d) Positionner le graphe de y = g(x) par rapport à celui de y = h(x) (lorsque x tend vers $+\infty$).

Barême indicatif : Exercice 1 (6=2+2+2 points). Exercice 2 (6=2+2+2 points). Exercice 3 (5=1+2+2 points). Exercice 4 (6=2+1+2+1 points).