

A Recommendation System...

- Is a way to filter information
- Deals with choice overload
- Is focused on customer preference, interest, and observed behavior

All sorts of websites use recommendation systems

- Facebook
- Netflix
- Linkedin
- Amazon
- Youtube
- Pinterest

COLLABORATIVE FILTERING

Read by both users Similar users

Read by her, recommended to him!

CONTENT-BASED FILTERING

COLLABORATIVE FILTERING Read by both users Similar users Read by her, recommended to him!

CONTENT-BASED FILTERING

Types of Collaborative Filtering

- User-based
 - Try to search for lookalike customers and offer products based on what they have chosen
- Item-based
 - Look for similar items based on user preferences
- "Ratings" can be implicit or explicit
 - Real-valued matrix: The interaction is well quantified, such as ratings, number of visits...
 - Binary matrix: The interaction is a binary preference, such as like/dislike.
 - One-class matrix: The case of implicit feedback–only positive reactions are recorded.

User-based vs Item-based

The procedure of memory-based collaborative filtering RS https://medium.com/analytics-vidhya/matrix-factorization-made-easy-recommender-systems-7e4f50504477

$$\min_{q^*,p^*} \sum_{(u,i)\in\kappa} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$

$$\min_{q^*, p^*} \sum_{(u, i) \in v} (r_u - q_i p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$

Item W Ζ W X Υ X Ζ Α 1.2 0.8 1.5 1.2 1.0 4.5 2.0 0.8 В В 1.4 0.9 1.7 0.6 1.1 3.5 0.4 4.0 User 1.5 1.0 5.0 2.0 D D 1.2 0.8 3.5 4.0 1.0 User Item Rating Matrix Matrix Matrix

$$\min_{q^*,p^*} \sum_{(u,i)\in\kappa} (r_{ui} - q_i^T p_u)^2 + \lambda ||q_i||^2 + ||p_u||^2)$$

Item

		W	Χ	Υ	Z
User	Α		4.5	2.0	
	В	4.0		3.5	
	С		5.0		2.0
	D		3.5	4.0	1.0

$$\min_{p^*,q^*,b^*} \sum_{(u,i)\in\kappa} (r_{ui} - \mu - b_u - b_i - p_u^T q_i)^2 + \lambda$$

$$(||p_u||^2 + ||q_i||^2 + b_u^2 + b_i^2)$$

Example

from scipy.sparse import csr_matrix
adj_matrix = csr_matrix((ratings, (user_data, item_data)))

Users

from sklearn.utils.extmath import randomized_svd import numpy as np

U, S, VT = randomized_svd(adj_matrix, n_components=5,n_iter=5, random_state=None)

predicted_rating(u, i) = U[u,:] dot (S * VT[:,i])

Example

import implicit # initialize a model model = implicit.als.AlternatingLeastSquares(factors=50) # train the model on a sparse matrix of item/user/confidence weights model.fit(item_user_data) # recommend items for a user user_items = item_user_data.T.tocsr() recommendations = model.recommend(userid, user_items) # find related items related = model.similar_items(itemid)

Options for similarities for users or content

- K-Nearest Neighbors
 - KNN is a machine learning algorithm to find clusters of similar users based on common ratings
 - We find the k items that have the most similar user engagement vector

Pearson Correlation

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Movie 6
User 1	4	5	-	-	4	-
User 2	-	-	4	5	-	-
User 3	-	3	-	4	5	4
User 4	3	-	5	-	-	-
User 5	-	4	-	-	-	5

Correlation Coefficient Formula

$$\mathbf{r} = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\left[n\Sigma x^2 - (\Sigma x)^2\right] \left[n\Sigma y^2 - (\Sigma y)^2\right]}$$

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Movie 6
Movie 1	1	0.41	0.41	-0.98	-0.05	0.87
Movie 2	0.41	1	-0.42	0.44	0.56	-0.05
Movie 3	0.41	-0.42	1	0.56	0.87	-0.05
Movie 4	-0.98	0.44	0.56	1	0.05	-0.87
Movie 5	-0.05	0.56	0.87	0.05	1	0.41
Movie 6	0.87	-0.05	-0.05	-0.87	0.41	1

If User 1 has liked Movie 1 and Movie 5, we can recommend Movie 6, which has a high similarity score with both of those movies.

Types of Similarity between Embeddings

- Euclidean
- Cosine
- Manhattan
- etc.

$$similarity(A,B) = \frac{A \cdot B}{\|A\| \times \|B\|} = \frac{\sum_{i=1}^{n} A_{i} \times B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \times \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}$$

Drawbacks

- Data sparsity
- Nearest neighbours doesn't scale well
- May end up defaulting to popular items
- New user cold start problems
- New item cold start problems

Drawback for us?

Usually do not require NLP-based solutions

COLLABORATIVE FILTERING

Read by her, recommended to him!

Book Recommender Example

 https://github.com/practical-nlp/practical-nlpcode/blob/master/Ch7/04 RecommenderSystems.ipynb

Figure 3-13. Doc2vec architectures: (a) DM and (b) DBOW

Advantages

- Particularly useful when there is a large number of items and limited user data available.
 - Remove cold start and data about other users
 - If user has unique taste this method will work
 - Can recommend new and unpopular items
- Can provide personalized recommendations based on specific user preferences, as it focuses on the features that the user has previously liked.
 - Doesn't need evaluations from other users

Disadvantages

- Can result in recommendations that are too similar to items that the user has already seen or interacted with
- May not capture the complexity of user preferences
 - Focused on specific item attributes rather than overall user behavior or patterns

Hybrid Solutions

 Make recommendations by comparing the ratings, watching, and searching habits of similar users (i.e. collaborative filtering) as well as items that share characteristics with other items a user has rated highly (content-based filtering).

Neural collaborative filtering (NCF) model

- Hybrid model that combines matrix factorization techniques with neural networks
 - User and item embeddings, which are learned through a combination of matrix factorization and neural network training

Activity

- Building a Recommendation System
- Pick one of the following recommendation systems to finish implementing in the exercise notebook
 - One option is to make a recommendation system based on what songs users have in their playlists
 - The other option is to finish making the recommendation system based on song lyrics similarity

Final questions:

- Given that a hypothetical user has a playlist of 10 songs, recommend 10 other songs that the user has not listened to before that they might want to add to their playlist.
- 2) Brainstorm weaknesses with the current set up or dataset being used.

Next time

Text generation