

UMD DATA605 - Big Data Systems

Lesson 2.2: Data Pipelines

Instructor: Dr. GP Saggese, gsaggese@umd.edu

Data Pipelines: Resources

- Concepts in the slides
- Class project
- Mastery
 - Data Pipelines Pocket Reference

Data as a Product

- Many services today "sell" data
 - Services are typically powered by data and machine learning, e.g.,
 - Personalized search engine (Google)
 - Sentiment analysis on user-generated data (Facebook)
 - E-commerce + recommendation engine (Amazon)
 - Streaming data (Netflix, Spotify)
- Several steps are required to generate data products
 - Data ingestion
 - Data pre-processing
 - Cleaning, tokenization, feature computation
 - Model training
 - Model deployment
 - MLOps
 - Model monitoring
 - Is model working?
 - Is model getting slower?
 - Are model performance getting worse?
 - Collect feedback from deployment
 - E.g., recommendations vs what users bought
 - Ingest data from production for future versions of the model

Data Pipelines

- "Data is the new oil" ... but oil needs to be refined
- Data pipelines
 - Processes that move and transform data
 - Goal: derive new value from data through analytics, reporting, machine learning

Data needs to be:

- Collected
- Pre-processed / cleaned
- Validated
- Processed
- Combined
- Data ingestion
 - Simplest data pipeline
 - Extract data (e.g., from REST API)
 - Load data into DB (e.g., SQL table)

Roles in Building Data Pipelines

Data engineers

- Build and maintain data pipelines
- Tools:
 - Python / Java / Go / No-code
 - SQL / NoSQL stores
 - Hadoop / MapReduce / Spark
 - Cloud computing

Data scientists

- Build predictive models
- Tools:
 - Python / R / Julia
 - Hadoop / MapReduce / Spark
 - Cloud computing

• Data analysts

- E.g., marketing, MBAs, sales, . . .
- Build metrics and dashboards
- Tools:
 - Excel spreadsheets
 - GUI tools (e.g., Tableaux)
 - Desktop

Practical problems in Data Pipeline Organization

- Who is responsible for the data?
- Issues with scaling
 - Performance
 - Memory
 - Disk
- Build-vs-buy
 - Which tools?
 - Open-source vs proprietary?
- Architecture
 - Who is in charge of it?
 - Conventions
 - Documentation
- Service level agreement (SLA)
- Talk to stakeholders on a regular basis

Data Ingestion

Data ingestion

- extract data from one source and load it into another store
- Data sources / sinks
 - DBs
 - E.g., Postgres, MongoDB
 - REST API
 - Abstraction layer on top of DBs
 - Network file system / cloud
 - E.g., CSV files, Parquet files
 - Data warehouses
 - Data lakes
- Source ownership
 - An organization can use 10-1000s of data sources
 - Internal
 - E.g., DB storing shopping carts for a e-commerce site
 - 3rd-parties
 - E.g., Google analytics tracking website usage

Data Pipeline Paradigms

- There are several styles of building data pipelines
- Multiple phases
 - Extract
 - Load
 - Transform
- Phases arranged in different ways depending on philosophy about data / roles
 - ETL
 - ELT
 - EtLT

ETL Paradigm: Phases

Extract

- Gather data from various data sources, e.g.,
 - Internal / external data warehouse
 - REST API
 - Data downloading from API
 - Web scraping

Transform

Raw data is combined and formatted to become useful for analysis step

Load

- Move data into the final destination, e.g.,
 - Data warehouse
 - Data lake

Data ingestion pipeline = E + L

- Move data from one point to another
- Format the data
- Make a copy
- Have different tools to operate on the data

ETL Paradigm: Example

- Extract
 - Buy-vs-build data ingestion tools
 - Vendor lock-in
- Transform
 - Data conversion (e.g., parsing timestamp)
 - Create new columns from multiple source columns
 - E.g., year, month, day \rightarrow yyyy/mm/dd
 - Aggregate / filter through business logic
 - Try not to filter, better to add tags / mark data
 - Anonymize data
- Load
 - Organize data in a format optimized for data analysis
 E.g., load data in relational DB
 - Finally data modeling

Workflow Orchestration

- Companies have many data pipelines (10-1000s)
- Orchestration tools, e.g.,
 - Apache Airflow (from AirBnB)
 - Luigi (from Spotify)
 - AWS Glue
 - Kubeflow
- Schedule and manage flow of tasks according to their dependencies
 - Pipeline and jobs are represented through DAGs
- Monitor, retry, and send alarms

ELT Paradigm

- ETL has been the standard approach for long time
 - Extract \rightarrow Transform \rightarrow Load
 - Cons
 - · Need to understand the data at ingestion time
 - Need to know how the data will be used
- Today ELT is becoming the pattern of choice
 - Extract \rightarrow Load \rightarrow Transform
 - Pro:
 - No need to know how the data will be used
 - Separate data engineers and data scientists / analysts
 - Data engineers focus on data ingestion (E + L)
 - Data scientists focus on transform (T)
- ETL → ELT enabled by new technologies
 - Large storage to save all the raw data (cloud computing)
 - Distributed data storage and querying (e.g., HDFS)

Row-based vs Columnar DBs

Row-based DBs

- E.g., MySQL, Postgres
- Optimized for reading / writing rows
- Read / write small amounts of data frequently

Columnar DBs

- E.g., Amazon Redshift, Snowflake
- Read / write large amounts of data infrequently
- Analytics requires a few columns
- Better data compression

OrderId	CustomerId	ShippingCountry	OrderTotal
1	1258	US	55.25
2	5698	AUS	125.36
3	2265	US	776.95
4	8954	CA	32.16

Block 1	1, 1258, US, 55.25	
Block 2	2, 5698, AUS, 125.36	
Block 3	3, 2265, US, 776.95	
Block 4	4, 8954, CA, 32.16	

EtLT

- ETL
 - Extract \rightarrow Transform \rightarrow Load
- ELT
 - Extract \rightarrow Load \rightarrow Transform
 - Transformation / data modeling ("T") according to business logic
- EtLT
 - Sometimes transformations with limited scope ("t") are needed
 - De-duplicate records
 - Parse URLs into individual components
 - Obfuscate sensitive data (for legal or security reasons)
 - Then implement rest of "LT" pipeline

Structure in Data (or Lack Thereof)

- Structured data: there is a schema
 - Relational DB
 - CSV
 - DataFrame
 - Parquet
- Semi-structured: subsets of data have different schema
 - Logs
 - HTML pages
 - XML
 - Nested JSON
 - NoSQL data
- Unstructured: no schema
 - Text
 - Pictures
 - Movies
 - Blobs of data

Data Cleaning

Data cleanliness

- Quality of source data varies greatly
- Data is typically messy
 - Duplicated records
 - Incomplete or missing records (nans)
 - Inconsistent formats (e.g., phone with / without dashes)
 - Mislabeled or unlabeled data

- As soon as possible!
- As late as possible!
- In different stages
- \rightarrow Pipeline style: ETL vs ELT vs EtLT

· Heuristics when dealing with data

- Hope for the best, assume the worst
- Validate data early and often
- Don't trust anything
- Be defensive

OLAP vs **OLTP** Workloads

- There are two classes of data workloads
- OLTP
 - On-Line Transactional Processing
 - Execute large numbers of transactions by a large number of processes in real-time
 - Lots of concurrent small read / write transactions
 - E.g., online banking, e-commerce, travel reservations

OLAP

- On-Line Analytical Processing
- Perform multi-dimensional analysis on large volumes of data
- Few large read or write transactions
- E.g., data mining, business intelligence

OLAP

Challenges with Data Pipelines

- High-volume vs low-volume
 - Lots of small reads / writes
 - A few large reads / writes
- Batch vs streaming
 - Real-time constraints
- API rate limits / throttling
- Connection time-outs
- Slow downloads
- Incremental mode vs catch-up

Data Warehouse vs Data Lake

Data warehouse

- = DB storing data from different systems in a structured way
- Corresponds to ETL data pipeline style
- E.g., a large Postgres instance with many DBs and tables
- E.g.,
 - AWS Athena, RDS
 - Google BigQuery

Data lake

- Data stored semi-structured or unstructured
- Corresponds to ELT data pipeline style
- E.g., AWS S3 bucket storing blog posts, flat files, JSON objects, images

Data Lake: Pros and Cons

- Data lake
 - Stores semi-structured or unstructured data
- Pros
 - Cheaper cloud storage
 - Easier changes to types or properties
 - E.g., JSON documents
 - Data scientists
 - · Initially unsure how to access and use data
 - Want to explore raw data
- Cons
 - Not optimized for querying like structured data warehouse
 - Tools query data lake similar to SQL
 - E.g., AWS Athena, Redshift Spectrum

Advantages of Cloud Computing

- Ease of building and deploying:
 - Data pipelines
 - Data warehouses
 - Data lakes
- Managed services
 - No need for admin and deploy
 - Highly scalable DBs
 - E.g., Amazon Redshift, Google BigQuery, Snowflake
- Rent-vs-buy
 - Easy to scale up and out
 - Easy to upgrade
 - Better cash-flow
- Cost of storage and compute is continuously dropping
 - Economies of scale
- Cons
 - The flexibility has a cost (2x-3x more expensive than owning)
 - Vendor lock-in

