1.4 Examples of Proofs

1.4.1 A Tautology

Theorem 9. *The following proposition is a tautology:*

$$(X \Rightarrow Y) \Leftrightarrow (\neg Y \Rightarrow \neg X)$$

1.4 Examples of Proofs

1.4.1 A Tautology

Theorem 9. *The following proposition is a tautology:*

$$(X \Rightarrow Y) \Leftrightarrow (\neg Y \Rightarrow \neg X)$$

"If you are wise, then you attend recitation."

1.4 Examples of Proofs

1.4.1 A Tautology

Theorem 9. *The following proposition is a tautology:*

$$(X \Rightarrow Y) \Leftrightarrow (\neg Y \Rightarrow \neg X)$$

"If you are wise, then you attend recitation."

"If you do not attend recitation, then you are not wise."

1.4 Examples of Proofs

1.4.1 A Tautology

Theorem 9. *The following proposition is a tautology:*

$$(X \Rightarrow Y) \Leftrightarrow (\neg Y \Rightarrow \neg X)$$

Proof. We show that the left side is logically equivalent to the right side for every setting of the variables X and Y.

1.4 Examples of Proofs

1.4.1 A Tautology

Theorem 9. *The following proposition is a tautology:*

$$(X \Rightarrow Y) \Leftrightarrow (\neg Y \Rightarrow \neg X)$$

X	Y	$X \Rightarrow Y$	$\neg Y \Rightarrow \neg X$
T		T	T
T		F	F
F	T	T	T
F	F	T	T

1.4 Examples of Proofs

1.4.1 A Tautology

Theorem 9. *The following proposition is a tautology:*

$$(X \Rightarrow Y) \Leftrightarrow (\neg Y \Rightarrow \neg X)$$

$$\begin{array}{c} P \Rightarrow Q \\ \hline \neg Q \Rightarrow \neg P \end{array} \qquad \begin{array}{c} \neg Q \Rightarrow \neg P \\ \hline P \Rightarrow Q \end{array}$$

1.4 Examples of Proofs

1.4.2 A Proof by Contradiction

In logical terms, indirect proof relies on the following inference rule:

$$\neg P \Rightarrow \text{false}$$
 P

1.4 Examples of Proofs

1.4.2 A Proof by Contradiction

In logical terms, indirect proof relies on the following inference rule:

$$\neg P \Rightarrow \text{false}$$
 P

$$\begin{array}{c|c} P & (\neg P \Rightarrow \mathsf{false}) \Rightarrow P \\ \hline T & T \\ F & T \end{array}$$

1.4 Examples of Proofs

1.4.2 A Proof by Contradiction

Theorem 10. $\sqrt{2}$ is an irrational number.