7.9 - De Groot
2) Suponla X, X u Chy (0,0) onde o volor de parametro de desconlegido (0,0) e deve ser estemado. Suponla que pur qualquer estimados S(X, Xm), o MSE. R(0,S) = EolS(X)-h(0)? Eplque por que o estimador S, (X, Xm) = 2Xm é inadministral
Dé desconlegido (O) O) e deve ser estemado. Suponha que pur
gualques estimados S(X, Xn), O MSE R(O,S) = Eo(S(X)-h(O)) Eplque
porque a estimador S, (X, Xn) = 2xn é indominent
Da rela, que emos montros que existe So talque B(O, BS) L RO, S.). Já vimos que a estatestua TE = max (Xi) i suficiente, en pois
- Har for
$f_{m}(X \theta) = \frac{1}{\theta^{m}} + \{X_{1}, X_{n} \leq \theta\} = \frac{1}{\theta^{n}} + \{(max(\theta X_{n}) \leq \theta) \text{ if torond}\}$
Par Roo-Blackwell, sola S(X) = F [DXn +]. Verse and come
2 Xm + g(t) a sito en mo é uma função de T, e R(O, 2Xm)
Por Roo-Blockwell, sefa So(X):= Fo[2Xn +]. Neve ano, como 2Xn ≠ 9(+) a, into e, não i uma função de T, e R(O, 2Xn) = Fo[(2Xn-O) ²) Loo, volo que a derigued fole
R(0,50) L R(0,2Xm)
Entre In i modnissisel
Filipan

				The same of	
3) Consider o a	xerchio a	terson e o	estimola	S. rep del	nedo con
no mesmo.	Determene	PRIA.	S.) Rual) >0	sprende self
	1 1 1 2 2 2 2	200 m / V	W VN		contract.
RAS	S := F [(s)]	$\frac{(x)-\theta^2}{(x-\theta)^2}$	5.1V.	naturation.	0 440 4
10010	-F. [(25	(
C2 4/4 2 (2 \$ C)	=4E[G	Tm-0/27	arter o	n_spinsalas	a day I
and the state of		Var	at the	N 000 A	James 17
,		Xan)	1 /	1	
Marin Harry	= 4 2 Va	(V)) =x	Lfx	(40)	0 1
1	na i	9		. 9	
Palsa Claration	- y Van (X) 1/2	2.16	11. 4.16	R. R.
(XC A) H	To a sent me	d'anistis	The sta	- (1):	A IN G
	$=\frac{4}{n}$	$1 \cdot \theta^2 = 0$	2	12/10-10	
	n	12 37	2		
		(, V c	119512	918	
		, A			
		_	Lan Mary	a bout i m	Entes V
		,			
-					
tilibra					

tilibra

