Лабораторная работа №5 Кластеризация (k-средних, иерархическая)

Цель:

Ознакомиться с методами кластеризации модуля <u>Sklearn</u>

Теоретические сведения

- Кластерный анализ Вводный курс
- Кластеризуем лучше, чем «метод локтя» / Хабр
- Метод локтя (Elbow method)
- Mini Batch K-Means

Выполнение:

1. Загрузка данных:

- 1.1. Загрузить датасет по ссылке: https://archive.ics.uci.edu/dataset/109/wine.
 - Данные представлены в виде data файла. Данные представляют собой информацию о трех классах вина.
- 1.2. Создать Python скрипт. Загрузить данные в датафрейм
- **1.3.** При необходимости, произвести стандартизацию данных с использованием <u>preprocessing.StandardScaler()</u> из [sklearn]
- 1.4. Подготовить данные для дальнейшего анализа:
 - Понизить размерность пространства данных до размерности n, при которой компоненты объясняют не менее 85% дисперсии данных. Понижение размерности пространства осуществляется с помощью метода главных компонент (<u>PCA.fit_transform</u>)
- Восстановить данные для полученного количества компонент (PCA.inverse_transform).

2. K-Mean

- **2.1.** Провести кластеризацию методом k-средних. Вывести на экран значения центров кластеров и количество наблюдений, которое попало в каждый кластер
- Использовать: KMeans из sklearn.cluster
- Справочные ссылки:
 - KMeans()
 - KMeans.fit()
 - KMean.cluster_centers
 - pairwise_distances_argmin()
- **2.2.** Построить (графически) результаты классификации для признаков попарно (1 и 2, 2 и 3, ..., n-1 и n), отобразить центры кластеров
- Пример: <u>Comparison of the K-Means and MiniBatchKMeans clustering</u> <u>algorithms — scikit-learn 1.5.2 documentation</u>

- Требуется: matplotlib.pyplot
- Дать пояснения:
 - 1. На что влияет параметр n_init?
 - 2. Чему равно оптимальное значение для [n_init]? Почему это оптимальное значение?
 - 3. Что происходит при увеличении и уменьшении параметра [n_init] от оптимального?
 - 4. По каким признакам произошло наилучшее разделение?
 - 5. Как изменятся результаты, если в качестве метода инициализации выбрать random?
- **2.3.** Уменьшить размерность данных до n=2 используя метод главных компонент и нарисовать карту для всей области значений, на которой

каждый кластер занимает определенную область со своим цветом

• Пример: <u>A demo of K-Means clustering on the handwritten digits data — scikit-learn 1.5.2 documentation</u>

2.4. Исследуйте работу алгоритма k-средних при различных параметрах init.

Сначала надо выполнить два раза с параметром random, затем выполнить для вручную выбранных точек

• Пример результата:

- Может понадобиться:
 - random_state
 - параметр (init) в <u>KMeans</u>
 - параметр max_iter в <u>KMeans</u>
- Дать пояснения:
 - 1. Как повлиял выбор параметра [random] на результат кластеризации?
 - 2. Какой из вариантов оказался самым удачным и почему?
 - 3. Влияет ли параметр max_iter на результат кластеризации?
- 2.5. Определите наилучшее количество кластеров методом локтя
 - Дать пояснения:
 - 1. Что означает результат WCSS?
 - 2. Почему найденное количество кластеров является наилучшим?
 - Пример простейшего использования "Метода локтя"

```
Metog "Локтя"

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

for k in range(1, 11):
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(data)
    sse.append(kmeans.inertia_)
```

```
plt.figure(figsize=(10, 6))
plt.plot(range(1, 11), sse, marker='o')
plt.title('Метод "Локтя"')
plt.xlabel('Количество кластеров')
plt.ylabel('Сумма квадратов расстояний')
plt.show()
```

2.6. Проведите кластеризацию используя <u>пакетную кластеризацию ксредних.</u>

Постройте <u>диаграмму рассеяния</u>, на которой будут выделено точки, которые для разных методов попали в разные кластеры

- Дать пояснения:
 - 1. В чем отличие результата пакетной кластеризации k-средних от обычного метода k-средних?
 - 2. Чем отличаются построенное графическое представление?

3. Иерархическая кластеризация

- **3.1.** Провести и отобразить иерархическую кластеризацию на тех же данных (см. $\underline{п.1.3.}$ и $\underline{n.2.2}$) с параметром [average]
- Использовать: (AgglomerativeClustering) из (sklearn.cluster
- Справочные ссылки:
 - AgglomerativeClustering
 - AgglomerativeClustering.fit()
 - Comparing different hierarchical linkage methods on toy datasets
- Дать пояснения:
 - 1. Чем отличаются результаты (графическое изображение), полученные по методу [KMeans] и [AgglomerativeClustering]?
 - 2. Кокай из методов дал более точные результаты для заданных исходных данных и почему?
- **3.2.** Проведите исследование для различного размера кластеров (от 2 до 5). Приведите полученные результаты
 - Использовать параметр n_clusters из AgglomerativeClustering
 - Дать пояснения:
 - 1. Какой из значений параметра [n_clusters] дал наилучшие результаты и почему?

3.3. Постройте дендограмму до уровня 6

• Пример:

3.4. Сгенерируйте случайные данные (x,y) в виде двух квадратных контуров

• Замечание

- Общее количество точек 750: внешний квадратный контур 500; внутренний квадратный контур 250.
- Проведите их иерархическую кластеризацию со всеми возможными параметрами linkage.
- Отобразите полученные результаты.

• Дать пояснения:

1. Какой тип связи работает лучше всего и почему?