Person Identification:

Face Recognition & Person Re-Identification

Chi Zhang Megvii (Face++) zhangchi@megvii.com Jun 2018

Outline

- Face Recognition
 - Applications
 - Classification
 - Metric Learning
 - Hard Sample Mining
- Person Re-Identification
 - Applications
 - Feature Alignments
 - o ReID with Pose Estimation

Mobile Phone

• City Brain

New Retail

• General Classification in Deep Learning

Softmax

oftmax
$$L_{s} = \frac{1}{N} \sum_{i=1}^{N} -\log p_{i} = \frac{1}{N} \sum_{i=1}^{N} -\log \frac{e^{f_{y_{i}}}}{\sum_{j=1}^{C} e^{f_{j}}}$$

$$f_{j} = W_{j}^{T} x_{i} + b_{j}$$

$$-\log \left(\frac{e^{\|W_{y_{i}}\| \|x_{i}\| \cos(\theta_{y_{i}})}}{\sum_{j} e^{\|W_{j}\| \|x_{i}\| \cos(\theta_{j})}} \right)^{-100}$$

$$-100 -50 0 50 100$$

• L-Softmax $L_{s} = \frac{1}{N} \sum_{i=1}^{N} -\log p_{i} = \frac{1}{N} \sum_{i=1}^{N} -\log \frac{e^{fy_{i}}}{\sum_{j=1}^{C} e^{f_{j}}}$ $\|W_{1}\|\|x\| \cos(\theta_{1}) \geq \|W_{1}\|\|x\| \cos(\theta_{1})$ $> \|W_{2}\|\|x\| \cos(\theta_{2}).$ $-\log \left(\frac{e^{\|W_{y_{i}}\|\|x_{i}\|\psi(\theta_{y_{i}})}}{e^{\|W_{y_{i}}\|\|x_{i}\|\psi(\theta_{y_{i}})} + \sum_{j \neq y_{i}} e^{\|W_{j}\|\|x_{i}\|\cos(\theta_{j})}\right) -200$

200

A-Softmax (SphereFace)

$$L_s = \frac{1}{N} \sum_{i=1}^{N} -\log p_i = \frac{1}{N} \sum_{i=1}^{N} -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^{C} e^{f_j}}$$

Normalize weights

$$e^{\|\boldsymbol{x}_i\|\psi(\theta_{y_i,i})}$$

$$-\log\Big(\frac{e^{\|\boldsymbol{x}_i\|\psi(\boldsymbol{\theta}_{\boldsymbol{y}_i,i})}}{e^{\|\boldsymbol{x}_i\|\psi(\boldsymbol{\theta}_{\boldsymbol{y}_i,i})} + \sum_{j \neq y_i} e^{\|\boldsymbol{x}_i\|\cos(\boldsymbol{\theta}_{j,i})}}\Big)$$

• Large Margin Cosine Loss (CosFace)

$$L_s = \frac{1}{N} \sum_{i=1}^{N} -\log p_i = \frac{1}{N} \sum_{i=1}^{N} -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^{C} e^{f_j}}$$

Normalize weights
Normalize features
Replace angular margin by cosine margin

$$-\log \frac{e^{s(\cos(\theta_{y_i,i})-m)}}{e^{s(\cos(\theta_{y_i,i})-m)} + \sum_{i \neq y_i} e^{s\cos(\theta_{j,i})}}$$

ArcFace

$$L_s = \frac{1}{N} \sum_{i=1}^{N} -\log p_i = \frac{1}{N} \sum_{i=1}^{N} -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^{C} e^{f_j}}$$

Cos₀1

Cos₀₂

Class₂

 θ_2

- Paradox
 - Classification can only discriminate the "seen" objects
- To recognize "unseen" objects
 - The similarity of the features learned in classification
 - Similar Classification Probability to Closer Feature Distance
- Beyond Softmax
 - Large Margin Cosine Loss is effective and easy to train

From Classification to Metric Learning

- Directly train model from Loss of feature distances
 - Learn a function that measures how similar two objects are
 - Compared to classification which works in a closed-word, metric learning deals with an open-world.
 - Metric Learning can be done together with Classification

Metric Learning: Contrastive Loss

- δ is Kronecker Delta
- a is the margin for different identities

Metric Learning: Contrastive Loss

- The distance of images with the same identity (positive pairs) should be smaller
- The distance of images with different identities (negative pairs) should be larger
- a is used to ignore the "naive" negative pairs

Metric Learning: Triplet Loss

Metric Learning: Triplet Loss

- A batch of triplets (A, A', B) are trained in each iteration
 - A and A' share the same identity
 - B has a different identity
- The distance of A and A' should be smaller than that of A and B
- a is the margin between negative and positive pairs.
- Without α, all distance converge to zero.

H. Liu, J. Feng, M. Qi, J. Jiang, and S. Yan. End-to-end comparative attention networks for person re-identification. IEEE Transactions on Image Processing, 2017

Contrastive Loss vs. Triplet Loss

- Contrastive Loss:
 - Margin between all positive pairs and negative pairs
 - Positive & negative pairs are also constrained
 - Positive pairs are always trained
 - Negative pairs are trained until it is greater than the margin
- Triplet Loss
 - Margin between positive paris and negative pairs given the query
 - Stop training positive(negative) pairs that are smaller(larger) than all negative(positive) pairs with a margin
 - Pay more attention to samples that disobey the order
 - Suffers from lack of generality
- Complementary to Triplet Loss
 - Improved Triplet Loss
 - Quadruplet Loss

Metric Learning: Improved Triplet Loss

β-term penalizes distance between features of A and A'

Metric Learning: Improved Triplet Loss

- Triplet Loss with Contrastive Loss
- Only consider image pairs with the same identity

D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng. Person re-identification by multi-channel parts-based cnn with improved triplet loss function. CVPR2016

Metric Learning: Quadruplet Loss

$$L_{quad} = \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{relative distance}}{\|f_A - f_{A'}\|_2 - \|f_A - f_B\|_2 + \alpha} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_{A'}\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A\|_2 - \|f_C - f_B\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A\|_2 - \|f_A - f_A\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A\|_2 - \|f_A - f_A\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A\|_2 - \|f_A - f_A\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A\|_2 - \|f_A - f_A\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A\|_2 + \beta} \right) + \frac{1}{N} \sum_{k=1}^{N} \left(\frac{\text{absolute distance}}{\|f_A - f_A$$

Metric Learning: Quadruplet Loss

- Triplet Loss & Pairwise Loss
- Distance between any identical images should be smaller than that between different images

W. Chen, X. Chen, J. Zhang, and K. Huang. Beyond triplet loss: a deep quadruplet network for person re-identification. arXiv preprint arXiv:1704.01719, 2017.

Improved Triplet Loss & Quadruplet Loss

- Common
 - o Introduce loss to "strengthen" triplet loss
 - Samples are still trained when triplet constraint is satisfied
- Difference
 - Improved Triplet Loss
 - An absolute margin is given for positive pairs
 - Quadruplet Loss
 - A relative margin between all positive pairs and negative pairs
- What if?

$$L_{quad} = \frac{1}{N} \sum_{i=1}^{N} (\|f_A - f_{A'}\|_2 - \|f_A - f_B\|_2 + \alpha)_+$$

$$+ \frac{1}{N} \sum_{i=1}^{N} (\|f_A - f_{A'}\|_2 - \beta)_+$$

$$+ \frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta - \|f_B - f_C\|_2)_+$$

Hard Sample Mining

- The possible number of triplets grows cubically
- Trivial triplets quickly become uninformative
- The fraction of trivial triplets are large

Trivial:

Non-Trivial:

Hard Sample Mining: Triplet Hard Loss

Hard Sample Mining: Triplet Hard Loss

- Each batch contains K identities, each identities contains L images
- Compute the distance between each images in the batch
- Distance matrix
 - Diagonal Blocks are distance between images with the same identity
 - Others are distance between images with different identities

A. Hermans, L. Beyer, and B. Leibe. In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737, 2017

Hard Sample Mining: Triplet Hard Loss

- Generate a triplet from **each line** in the matrix
 - Each image in the batch
- The largest distance in the diagonal block
 - The most unsimilar image with the same identity
- The smallest distance in other places
 - The most similar image with a different identity

Hard Sample Mining: Soft Triplet Hard Loss

- Generate a triplet from **each line** in the matrix
 - Each image in the batch
- The weighted average distance in the diagonal block
 - Softmax(d_ij)
- The weighted average distance in the diagonal block
 - Softmax(-d_ik)
- The harder samples with larger weights

Hard Sample Mining: Margin Sample Mining

- Margin Sample Mining
 - Generate only one triplet from each batch
 - The largest distance in the diagonal block
 - The most unsimilar image pair with the same identity in the batch
 - The smallest distance in other places
 - The most similar image pair with different identities in the batch

Hard Sample Mining: Margin Sample Mining

Margin Sample Mining

$$L_{eml} = \left(\overbrace{\max_{A,A'} (\|f_A - f_{A'}\|_2)}^{ ext{hardest positive pair}} - \overbrace{\min_{C,B} (\|f_C - f_B\|_2)}^{ ext{hardest negative pair}} + lpha
ight)$$

Face Recognition: Conclusion

- Embedding images to feature space
 - Similar instances should be closer in the space
- Classification vs. Metric Learning
 - Triplet Loss (and its improvements) performs better than contrastive loss
 - Advanced classification, such as Large Margin Cosine Loss, comparable to Triplet Loss
 - Combining classification and metric learning always performs better
- Hard Sample Mining
 - Critical to achieve high accuracy

Outlines

- Face Recognition
 - Applications
 - Classification
 - Metric Learning
 - Hard Sample Mining
- Person Re-Identification
 - Applications
 - Feature Alignments
 - o ReID with Skeleton
 - ReID with Attributes

From Face to Person

- Face Recognition
 - Applications
 - 1:1 Verification
 - 1:N Identification
 - N:N Clustering
 - Limits
 - Size: 32*32
 - Horizontal: -30 ~ 30
 - Vertical: -20 ~ 20
 - Little Occlusion

From Face to Person

- Person Re-Identification
 - Applications
 - Tracking in a single camera
 - Tracking across multiple cameras
 - Searching a person in a set of videos
 - Clustering persons in a set of photos
 - Challenges
 - Inaccurate detection
 - Misalignment
 - Illumination difference
 - Occlusion

From Face to Person

Different Directions

Non-rigid Body Deformation

Different Illumination

From Face to Person

Occlusion

Incomplete

• Similar Appearance

• Single Camera Tracking

• Multiple Camera Tracking

• Searching a person

Locating a person

• Train ReID Model as Classification

Train ReID Model by Triplet Loss with Hard Mining

• Combing Triplet Loss and Classification

- Bottleneck is important in Classification
- Hard mining is important in Triplet Loss
- Triplet Loss usually achieves higher accuracy than classification in the same dataset
- However, Classification is more robust among different datasets
- After all, Classification with triplet loss always achieves better performance

- Disadvantage
 - Only global information is obtained
 - Local similarity plays a key role to decide the identity
- Motivations
 - Person is highly structured
 - In different views, the order of horizontal division keeps the same.

Re-Identification: Part-based Model

- Divide Feature Map to obtain local features
- Concat local features to obtain final feature

Re-Identification: Part-based Model

• Triplet Loss for global features

Re-Identification: Part-based Model

- Classification for the local features
 - Triplet Loss is not suitable here
- Triplet Loss with hard mining for the global feature is helpful
- Disadvantage
 - Alignment is rigid
 - o Suffer from misalignment and incompletion
- Motivation
 - Automatic alignment

• Distance matrix of local features

$$d_{i,j} = rac{e^{||f_i - g_j||_2} - 1}{e^{||f_i - g_j||_2} + 1}$$

• The alignment is the one with minimum total distance

 Find the shortest path by dynamic programming

$$S_{i,j} = egin{cases} d_{i,j} & i = 1, j = 1 \ S_{i-1,j} + d_{i,j} & i
eq 1, j = 1 \ S_{i,j-1} + d_{i,j} & i
eq 1, j
eq 1 \ S_{i,j-1} + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
eq 1 \ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i
eq 1, j
e$$

- Robust to inaccurate detection, occlusion
- Discriminative to similar appearance

- Mismatched parts have little contribution during back-propagation
- Local features help to learn a better global feature
- Disadvantage
 - Local features are obtained from small receptive field
 - Channels in the global feature has no relationship with spatial locality
- Motivation
 - Build spatial-channel relationship
 - Benefit for partial person re-identification

Re-Identification: Spatial-Channel Parallelism

- Local features obtained from local spatial part.
- Global feature obtained from the whole feature map.
- Each part of the global feature is related to a local feature.
- The relationship is implemented by adding their L2 distance in the loss function

Re-Identification: Spatial-Channel Parallelism

- The learned global feature shows the relationship of their channels to the corresponding spatial parts.
- Disadvantage
 - Only horizontal mapping
- Motivation
 - Apply Pose Estimation

Re-Identification: ReID with Skeleton

- One branch is extracted reid feature map
- The other branch is extracted pose estimation
- The feature is obtained by the bilinear pooling of these two branches
- Pose estimation branch is pre-trained, then finetune in the reid training process

Re-Identification: ReID with Skeleton

• The reid feature maps show the similarity between color or texture, regardless of parts

• The pose estimation maps show the similarity between body parts, regardless of appearance

similarity

(a) Appearance features

(b) Part features

Re-Identification: ReID with Skeleton

- Similar color shows the similarity in appearance or locality
- Robust to body deformation and inaccurate detection
- Disadvantage
 - Extra training data is needed
 - Bilinear pooling is consuming
 - Accuracy is not high enough
- Motivations
 - Better pose estimation
 - Skeleton keypoints are not necessary
 - Body Segmentation may be better

Summary

- Re-Identification can be considered as a kind of metric learning
 - o Better trained together with classification
 - Triplet Loss, or its improvements, usually works well
 - Hard sample mining is critical
- End-to-end learning with structure prior is more powerful than a "blind" end-to-end learning
 - Local Feature with alignment can significantly improve the accuracy
 - The alignment can be helped by pose estimation
 - However pose estimation is not always dependable
 - The alignment can be learned automatically
- Relationship with Human Attributes
 - ReID provides more discriminative details than human attributes

