

ЭТИКЕТКА

СЛКН.431295.001 ЭТ

Микросхема интегральная 564 ИП6В Функциональное назначение — 9 – разрядный контроллер четности

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Обозначение вывода	Назначение вывода	№ вывода	Обозначение вывода	Назначение вывода
1	D0	Вход информационный	8	INH	Вход «запрет»
2	D1	Вход информационный	9	&0	Выход четности
3	D2	Вход информационный	10	D5	Вход информационный
4	D3	Вход информационный	11	D6	Вход информационный
5	D4	Вход информационный	12	D7	Вход информационный
6	&1	Выход нечетности	13	D8	Вход информационный
7	OV	Общий	14	U_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = (25 ± 10) °C) Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
ттаименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, В, при: $U_{CC}\!=\!5$ В, 10 В; $U_{IL}\!=\!0$ В; $U_{IH}\!=\!U_{CC}$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, 10 B; U_{IL} = 0B; U_{IH} = U_{CC}	U _{OH}	U _{CC} - 0,01	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,~U_{IL}=1,5~B,~U_{IH}=3,5~B$ $U_{CC}=10~B,~U_{IL}=3,0~B,~U_{IH}=7,0~B$	U _{OL max}		0,5 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OH min}	4,5 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 15 \; B$	I_{IL}	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 15 \; B$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{IL}=0\ B;\ U_{IH}=U_{CC};$ $U_{CC}=5\ B,\ U_{O}=0,4\ B$ $U_{CC}=10\ B,\ U_{O}=0,5\ B$ $U_{CC}=15\ B,\ U_{O}=1,5\ B$	I_{OL}	0,51 1,3 3,4	- - -

Продолжение таблицы 1			
1	2	3	4
8. Выходной ток высокого уровня, мА, при:			
$U_{IL} = 0 \text{ B}; U_{IH} = U_{CC};$			
$U_{CC} = 5 \text{ B}, U_{O} = 4.6 \text{ B}$	ĭ	/-0,51/	-
$U_{CC} = 5 \text{ B}, U_0 = 2.5 \text{ B}$	I_{OH}	/-1,6/	-
$U_{CC} = 10 \text{ B}, U_0 = 9.5 \text{ B}$		/-1,3/	-
$U_{CC} = 15 \text{ B}, U_0 = 13,5 \text{ B}$		/-3,4/	-
9. Ток потребления, мкА, при:			
$U_{IL} = 0 \text{ B}; U_{IH} = U_{CC};$			
$U_{CC} = 5 B$	I_{CC}	-	5,0
$U_{CC} = 10 B$		-	10,0
$U_{\rm CC}$ = 15 B		-	20,0
10. Время задержки распространения при включении (выключении) от информационных			
входов к выходам, нС, при:	$t_{\mathtt{PHL}1}$		
$C_L = 50 \text{ m}\Phi$; $U_{IL} = 0 \text{ B}$; $U_{IH} = U_{CC}$;	(t _{PLH1})		
$U_{\rm CC} = 5 \mathrm{B}$	(CPLHI)	-	700
$U_{\rm CC} = 10 \mathrm{B}$		-	300
11. Время задержки распространения при включении (выключении) от входа «запрет» к			
выходам, нС, при:	$t_{\mathrm{PHL}2}$		
$C_L = 50 \text{ n}\Phi$; $U_{IL} = 0 \text{ B}$; $U_{IH} = U_{CC}$;	(t_{PLH2})		
$U_{\rm CC} = 5 \mathrm{B}$	(CPLH2)	-	280
$U_{\rm CC} = 10 \mathrm{B}$		-	140
12. Время перехода при включении (выключении), нС, при:			
$C_L = 50 \text{ m}\Phi;$	t_{THL}		
$U_{\rm CC} = 5 \mathrm{B}$	(t_{TLH})	-	200
$U_{\rm CC} = 10 \text{ B}$		-	100

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИП6В соответствуют техническим условиям бК0.347.064 – 35 TУ /02 и признаны годными для эксплуатации.

Приняты по	ОТ(дата)	
Место для штампа ОТК		Место для штампа ВП
Место для штампа «Перепроверка и	произведена	у (дата)
Приняты по	от(дата)	
Место для штампа ОТК		Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.