CM A – Test 2022 Resolution

Felipe B. Pinto 61387 – MIEQB

12 de dezembro de 2023

3 Ouestão 21

Conteúdo

Ouestão 1

Questão 2	4	Questão 22					24
C		C					
Questão 3	5	Questão 23					25
Questão 4	6	Questão 24					26
Questão 5	7	Questão 25					27
Questão 6	8	Questão 26					28
Questão 7	9	Questão 27					29
Questão 8	10	Questão 28					30
Questão 9	11	Questão 29					31
Questão 10	12	Questão 30					32
Questão 11	13	Questão 31					33
Questão 12	14	Questão 32					34
Questão 13	15	Questão 33					35
Questão 14	16	Questão 34					36
Questão 15	17	Questão 35					37
Questão 16	18	Questão 36					38
Questão 17	19	Questão 37					39
Questão 18	20	Questão 38					40
Questão 19	21	Questão 39					41
Questão 20	22	Questão 40					42

Resposta

Um polímero é um plástico, mas nem todos os plásticos são polímeros.

False, All plastics are polymers

Resposta

Um polímero é um conjunto de unidades moleculares ligadas covalentemente entre si.

True, Literalmente definição de polímeros

Resposta

A vulcanização da borracha corresponde à reticulação das suas cadeias com enxofre.

True, Descoberta por charles Goodyear 1830

Um polímero do tipo AABAABAB é um copolímero aleatório.

Resposta True

O grupo funcional característico de do polipropileno é um anel benzénico.

Resposta

False, Propileno o grupo funcional é CH₃

Um polímero sintético termoendurecível não pode ser reciclado.

Resposta

True, Polímeros fortemente reticulados, sem temperatura de fusão definida, porque a essa temperatura se degradam por quebra da reticulação.

O nosso cabelo, unhas e músculos não são constituídos por polímeros de origem natural.

Resposta

False, Constituidos por Queratina

O polietileno, policloreto de vinilo e poliestireno são exemplos de materiais termoplásticos.

Resposta
True

O preço e a disponibilidade dos materiais termoplásticos está directamente relacionada com o preço do petróleo.

Resposta

True, A marioria dos plásticos são derivados do petróleo

O teste de fio de cobre permite identificar materiais que contenham chumbo.

Resposta

False, Identifica materias que contém cloro

Os testes físico-químicos permitem identificar rigorosamente materiais poliméricos.

Resposta

False, Identificação rigorosa feita por:

- Espectrometria de infravermelho (FTIR)
- · Ressonância magnética nuclear (RMN)

A massa molecular de um polímero pode ser definida pelo produto da massa molecular do monómero com o número de monómeros da cadeia.

Resposta

True, Polimeros são sequencias de monomeros

A reação de polimerização é um fenómeno aleatório sendo esta a razão pela qual não se definem massas moleculares médias.

Resposta False,

As propriedades dos polímeros dependem do seu peso molecular.

Resposta True

Quanto mais perto de 1 for o índice de polidispersividade de um polímero mais homogéneo será o material.

Resposta

True, A razão entre M_w e M_n é então uma medida da largura de distribuição, ou seja quanto mais afastado de 1 mais larga é a distribuição de peso molecular ou mais heterogéneo é o polímero.

$$lpha = rac{M_w}{M_n};$$

$$M_n = M_0 \, x_n = rac{\sum M_0 \, x_i \, N_i}{\sum N_i} = rac{\sum M_i \, N_i}{\sum N_i};$$

$$egin{aligned} M_w &= M_0 \, x_w = \sum M_0 \, x_i \, rac{w_i}{\sum w_i} = \sum M_i \, rac{w_i}{\sum w_i} = \ &= \sum M_i \, rac{M_i \, N_i}{\sum M_i \, N_i} = \sum rac{M_i^2 \, N_i}{\sum M_i \, N_i} \end{aligned}$$

- α Indice de polidispersividade
- M_0 massa molecular do monómero
- N número de cadeias moleculares
- M_W Massa molecular média ponderal

A técnica de cromatografica líquida de exclusão molecular para determinação da massa molecular baseia-se no tamanho das cadeias poliméricas.

Resposta

True, Durante o fluxo de um determinado solvente, cadeias de tamanhos diferentes percorrem caminhos diferetens ao longo da coluna de GPC

Principio: separação fisíca das cadeias constituintes do polímero nos seus diferentes tamanhos

Resposta

A temperatura não altera a forma espacial das cadeias poliméricas.

False,

O escoamento dos materiais ocorre quando as forças intermoleculares enfraquecem pelo aumento da temperatura.

Resposta

True, Forças intermoleculares "seguram" as cadeias impedindo o seu deslocamento, sensiveis a temperatura

O movimento das cadeias de polímeros cristalinos no estado fundido é semelhante ao que ocorre num líquido de baixo peso molecular.

Resposta

False,

O tempo de Kuhn está associado à passagem pela temperatura de transição vítrea do material.

Resposta

True, Tempo de Kuhn: tempo de relaxação nos polímeros no estado fundido, compresendido entre $\left[1\ E^{-12}, 1\ E^{-8}\right]$.

O tempo de relaxação mais curto curto envolve cerca de 10 segmentos da cadeia (ligações C-C, segmento de Kuhn), aproximadamente cinco unidades repetitivas.

O tempo de Kuhn é o tempo que cada cadeia leva a percorrer uma distância comparável ao seu comprimento.

Resposta True

Um termoplástico amorfo é caracterizado por uma temperatura de transição vítrea.

Resposta True,

- · Amorfo: Transição vitrea, vidro→borracha
- · Cristalino: Ponto de fusão, T definida
- Semi-crist: Tg e Tm
 A fusão dá-se num intervalo de temperaturas, Tmi e Tmf, porque as cristalites têm grande variedade de tamanhos e são menos perfeitas que os cristais dos pol. cristalinos.

Um termoplástico semi-cristalino apresenta um ponto de fusão definido. False

Um termoplástico cristalino é caracterizado por uma temperatura de fusão e uma temperatura de transição vítrea.

A temperatura de fusão não depende da história térmica do polímero.

Resposta

False,

- A temperatura de fusão depende da história térmica do polímero
- Tg e Tm são fundamentais na definição da temperatura de utilização de um polímero semicristalino como material rígido
- É definida e determinada experimentalmente uma temperatura real de utilização - TEMPERATURA de AMOLECIMENTO, não determinável por métodos calorimétricos

A temperatura de transição vítrea é uma transição de fase de 2ª ordem.

True

Copolímeros apresentam duas Tg's. True

Não podemos determinar a temperatura de amolecimento através de técnicas de calorimetria. True

O processo de cristalização de um polímero é caracterizado por duas fases. True

O modelo das micelas explica o comportamento mecânico dos materiais.

True

O modelo das esferulites não explica o padrão de simetria radial em cruz de malta.

False

O grau de cristalidade de um polímero semicristalino não pode ser aumentado através de um recozimento.

Maior simetria, maior peso molecular e mais ramificações dão origem a polímeros mais cristalinos.

False

Segundo a Lei de Newton a tensão depende de deformação. False

Um fluido Newtoniano tem uma viscosidade que depende da velocidade de deformação.

False

Segundo a Lei de Hooke a tensão é independente da velocidade de deformação. True

A Lei de Hooke descreve a proporcionalidade entre a tensão e a deformação do material.

True

Os polímeros têm normalmente um comportamento viscoelástico, caracterizado pelos modelos de Newton e Voight-Kelvin. False

Num ensaio de relaxação de tensão aplica- se uma tensão constante medindo-se a deformação resultante em função do tempo.

False

Um elastómero é caracterizado por um módulo de Young baixo e dependente da temperatura. True