Sravani Kirla - skirla Matthew Heil - heilx069 Terrence Hanrahan - hanra028

1.

Rod length (i)	1	2	3	4	5	6	7	8	9	10
Price per inch P _i	1	5	8	9	10	17	17	20	24	30
Densit y (p _i /i)	1	2.5	2.67	2.25	2	2.83	2.43	2.5	2.67	3

^{*} Length and Price values are based on figure 15.1 of text book.

Example:

If we consider a rod length of 4 (n=4) and apply greedy strategy, we will get below values.

Maximum density of first cut piece for a given rod length can be considered as 2.67 from above table.

 $n = 4 \Rightarrow i + (n-i) \Rightarrow 3 + 1 = 4 \Rightarrow revenue = 8+1 = 9$ (which is the same revenue as uncut rod).

Clearly it is not the optimal solution as cut pieces 2+2 yields more revenue for a rod length of 4 revenue(cut piece length 2) + revenue (cut piece length 2) => 5+5=10.

2.

$$A_1 = 5 \times 20$$
, $A_2 = 20 \times 1$, $A_3 = 1 \times 2$, $A_4 = 2 \times 10$

i							
j	Split	1	2	3			
	4	2	2	3			
	3	2	2				
	2	1					

WA5 - Assignment Group 16

			i		
j	Mult	1	2	3	4
	4	170	220	20	0
	3	110	40	0	
	2	100	0		
	1	0			

Optimal parenthesization of a matrix-chain product for A_1, A_2, A_3 and A_4 is $((A_1A_2)(A_3A_4))$ whose sequence dimensions are (5, 20, 1, 2, 10).

3. Maximum number class can be scheduled as shown in below order using the greedy algorithm.

```
1. CSCI 3937 \rightarrow 8:30am - 9:30 am
```

2. CSCI 4932
$$\rightarrow$$
 10 - 11:30 am

3. CSCI 5394
$$\rightarrow$$
 11:30am - 1:30pm

4. CSCI 9135
$$\rightarrow$$
 2 - 3:30pm