是不是所有的电路设计出来都要验证自启动?

1. 分析函数 F = AB + ABC 所组成的电路存在何种险象。

2. 图示电路中触发器:

建立时间 t_{su} = 20ns, 保持时间 t_h = 5ns, 传输迟延时间 $t_{pdcp-Q/Q}$ = 30ns, 门G迟延 t_{pdG} = 10ns, 时钟脉冲 F_{max} = ?

7. F=B+B=&1, 存在偏130.

8.
$$T_{man} = \frac{1}{t_{Su} + t_{A} + t_{pq \to Q}} = \frac{1}{45} G_{HB}$$

游谷林准:每小题5分,答错1处批2分。

7、(本小题 3 分) 逻辑函数 $F = \overline{AB} + \overline{BC} + AC$, 它的与非表达式为 $F = \overline{AB} + \overline{BC} + \overline{AC}$, 与或非表达式为 F=_____; 或非一或非表达式为 F=____。

- 8、(本小题 2 分) 用 555 设计的多谐振荡器,要求振荡周期 T=1~10s,电容 C=100μF。则电 阻R的范围是。
 - 6、(本小题 3 分) 该电路实现的是 七 进制计数器。
 - 7、(本小题 3 分) 与非表达式为 F= AB BC AC ; 与或非表达式为 F= ABC + ABC 或非_{/0}+或非表达式为 F= A+B+C + A+B+C
- 1、十进制数 126,对应 8421BCD 码_____ **8421BCD** 码_____000loolo 011Q
- 五、由移位寄存器 74LS194 和 3-8 译码器组成的时序电路如图所示,分析该电路。(1) 画 出 74LS194 的状态转换图; (2) 说出 Z 的输出序列。(本题 13 分)

74194(双向移位寄存器)的功能表

СР	C_{r}	S_1	S_0	S_{R}	S_{L}	Q_{A}	$Q_{\rm B}$	$Q_{\rm C}$	Q_{D}
φ	0	ø	ø	φ	ф	0	0	0	0
φ	1	0	0	ф	ф	保 持			
†	1	0	1	X	ф	X	Q_{A}	Q_{B}	$Q_{\mathbb{C}}$
↑	1	1	0	ф	X	Q_{B}	$Q_{\rm C}$	$Q_{ m D}$	X
↑	1	1	1	ф	ф	Α	В	С	D

五、

74LS194 状态图为: Q₁Q₂Q₃ (不写Q₀吗?)

画出 194 状态图得 10 分。

Z输出的序列为: 010011, 010011 得 3 分

3. 图 1 中电路为 TTL 门电路,若用高内阻电压表各图 M 点的电压,估算一下量测出 M 点的电压为多少伏,并说明理由。(5 分)

不应该是 0V 么?

- 4. 由 555 定时器构成的施密特触发器如图 2 (a) 所示, 试求:
 - 1、在图(b)中画出该电路的电压传输特性曲线;
 - 2、如果输入 U_i 为图 (c) 的波形, 画出对应输出 U₀ 的波形。(8 分)

555 组成的施密特不应该是反相的吗?

五、图 6 是由集成异步计数器 74LS290 构成的电路, 试分别说明它是多少进制的计数器, 并列出状态转换表。(10 分)

0111 应该也存在吧, 290 是同步清零

- 3. 图 1 中, G_1 为TTL三态门, G_2 为TTL与非门。当C=0 和C=1 时,试分别说明在下列情况下,万用表的读数?输出电压 u_0 各为多少伏?(5 分)
 - (1) 波段开关 S 接到①端。
 - (2) 段开关 S 接到②端。

答案	C=0		<i>C</i> =1		
,,,,,	万用表的读数/v	$u_{\rm o}/V$	万用表的读数/V	u_{o} V	
1.波段开关 S 接到①端	0.3	3.6	1.4	0.3	
2.波段开关 S 接到②端	1.4 (3.6?)	0.3	1.4	0.3	

顺便问一下 TTL 的输出到底是 3.6 还是 3.4

四、单稳态电路如图 5 所示,计算电路的单稳态时间 t_w 。根据计算的 t_w 值确定哪一个输入触发信号是合理的。? (8分)

四、此电路是555定时器构成的单稳态触发器。根据图示参数

 $t_{\rm w} \approx 1.1RC = 1.1 \times 330 \times 0.1 \times 10^{-6} = 36.3 \,\mu \text{s}$

当达到 70μs 时刻,触发输入变为高电平,输出才变为低电平。输出相当触发输入的反相。对第二个触发输入,为单稳态工作状态,输出脉冲宽度 36.3μs,合理。

(计算单稳态时间得6分,第二个合理的2分)

五、图 6 是由两片同步十进制计数器 74LS160 组成的计数器, 试分析两片分别是几进制? 两片串联起来是多少进制? (10分)

(1) 片时 10 进制, (2) 片<mark>是 3 进制</mark>, 串联起来是 30 进制。 (答对 1 片时 10 进制的 4 分, 2 片是 3 进制的 4 分, 都对得 10 分)

七、图 7 所示为一个可变进制计数器。其中 74LS138 为 3 线/8 线译码器,当 S_1 =1 且 $\bar{S}_2 = \bar{S}_3 = 0$ 时,它进行译码操作,即当 $A_2A_1A_0$ 从 000 到 111 变化时, $\bar{r}_1 \sim \bar{r}_7$ 依次被选中而输出低电平。T1153 为四选一数据选择器。(1)试问当MN为 00 时,由集成 74LS290 构成计数器是几进制?此时显示数码管BS201A显示的最大数字是什么?(2)当MN为 10 时,由集成 74LS290 构成计数器是几进制?(10 分)

七、MN=00 时,是 5 进制(能启动吗?),显示最大数字为 4,MN=01 时,是 6 进制。(290 是二一五进制计数器)

七、(15 分)观察 [图 7-1]给出的由 555 定时器组成的电路,电路参数如图所注,555 内部的结构如[图 7-2]所示,试分析:

- (1) 说明电路的功能,判断未触发时vo的输出电平;
- (2) 根据[图 7-3]给出的输入信号的波形,绘出节点 ν_{II} 处的电压波形,以及输出信号 ν_{O} 的波形;
- (3) 计算输出的脉冲宽度。

七、(15分)

- (1) 电路功能判断:
 - 单稳态触发器;
 - 未触发时, vo输出为低电平
- (2) 绘制波形(见本页下方) 说明:

$$v_{12} = \frac{150}{220 + 150} \times V_{CC} \approx 0.4 V_{CC} > \frac{V_{CC}}{3}$$

(3) 定时参数计算

$$T_W = \tau \ln \frac{v(\infty) - v(0)}{v(\infty) - v(t)} = \tau \ln \frac{V_{CC} - 0}{V_{CC} - \frac{2}{3}V_{CC}}$$

= $\ln 3 \cdot \tau \approx 1.1 \cdot RC = 1.1 \times 91 \times 10^{3} \times 0.05 \times 10^{-6} \approx 5 (ms)$

(波形看不明白 C_d 起到充放电的作用了没? V_I 加上之后,是不是就不用管直流偏置了?)

第七题 评分标准

第(1)小题(5分)

- 正确判断功能 3 分;
- 判断未触发时电平 2 分。

第(2)小题(6分): 用扣分法,针对考察的知识点:

- 输出脉冲的触发位置;
- 触发时 ν_{II} 的电平变化;
- 输出脉冲的宽度(由于此宽度与第 (3)小题的计算有关,所以如果第(3) 小题的计算虽然是错误的,但按照 该计算结果绘制脉冲宽度,此处并 不扣分)。

第(2)小题的波形中共有 3 次触发,每次触发时考察上述 3 种知识点,共 9 处一一错 1 处扣 1 分,扣完为止。

● 这里还考察 TTL 门电路的输出电平,如果电平绘制不正确(离 3.4V 标称值过远),扣 1 分。

第(3)小题(4分):

如果仅仅是计算错误,而计算式的概念 是正确的,可得 2 分。

