1. Assume that T is a linear transformation. Find the standard matrix of T.

T:
$$\mathbb{R}^2 \to \mathbb{R}^4$$
, $T(\mathbf{e}_1) = (8, 1, 8, 1)$, and $T(\mathbf{e}_2) = (-5, 9, 0, 0)$, where $\mathbf{e}_1 = (1,0)$ and $\mathbf{e}_2 = (0,1)$.

$$A = \begin{bmatrix} 8 & -5 \\ 1 & 9 \\ 8 & 0 \\ 1 & 0 \end{bmatrix}$$
 (Type an integer or decimal for each matrix element.)

2. Assume that T is a linear transformation. Find the standard matrix of T.

T: $\mathbb{R}^3 \to \mathbb{R}^2$, $T(\mathbf{e}_1) = (1,3)$, and $T(\mathbf{e}_2) = (-5,7)$, and $T(\mathbf{e}_3) = (3,-8)$, where \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 are the columns of the 3×3 identity matrix.

$$A = \begin{bmatrix} 1 & -5 & 3 \\ 3 & 7 & -8 \end{bmatrix}$$
 (Type an integer or decimal for each matrix element.)

3. Assume that T is a linear transformation. Find the standard matrix of T.

T: $\mathbb{R}^2 \to \mathbb{R}^2$, rotates points (about the origin) through $\frac{5\pi}{3}$ radians.

$$A = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

(Type an integer or simplified fraction for each matrix element. Type exact answers, using radicals as needed.)

4. Assume that T is a linear transformation. Find the standard matrix of T.

T: $\mathbb{R}^2 \to \mathbb{R}^2$, first performs a horizontal shear that transforms \mathbf{e}_2 into $\mathbf{e}_2 + 15\mathbf{e}_1$ (leaving \mathbf{e}_1 unchanged) and then reflects points through the line $\mathbf{x}_2 = -\mathbf{x}_1$.

$$A = \begin{bmatrix} 0 & -1 \\ -1 & -15 \end{bmatrix}$$

(Type an integer or simplified fraction for each matrix element.)

5. Show that the transformation T: $\mathbb{R}^2 \to \mathbb{R}^2$ that reflects points through the horizontal x_1 -axis and then reflects points through the line $x_2 = x_1$ is merely a rotation about the origin. What is the angle of rotation?

If T: $\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then there exists a unique matrix A such that the following equation is true.

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

In fact, A is the m×n matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbb{R}^n , as shown in the following equation.

$$A = \left[T(\mathbf{e}_1) \dots T(\mathbf{e}_n) \right]$$

Find A by transforming the columns of the identity matrix, \mathbf{e}_1 and \mathbf{e}_2 .

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Reflect \mathbf{e}_1 through the horizontal \mathbf{x}_1 -axis and then through the line $\mathbf{x}_2 = \mathbf{x}_1$.

Use this plotted point to construct $T(e_1)$.

$$T(\mathbf{e}_1) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 (Type an integer or simplified fraction for each matrix element.)

Reflect \mathbf{e}_2 through the horizontal \mathbf{x}_1 -axis and then through the line $\mathbf{x}_2 = \mathbf{x}_1$.

Use this plotted point to construct $T(\mathbf{e}_2)$.

$$T(\mathbf{e}_2) = \begin{bmatrix} -1\\0 \end{bmatrix}$$
 (Type an integer or simplified fraction for each matrix element.)

Use the transformed columns to construct A.

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 (Type an integer or simplified fraction for each matrix element.)

Compare this matrix to the $\mathbb{R}^2 \to \mathbb{R}^2$ rotation matrix, $\begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$, to determine the angle of roation, ϕ .

$$\varphi = \frac{\pi}{2}$$

(Simplify your answer. Type your answer in radians. Use angle measures greater than or equal to 0 and less than 2π .)

YOU ANSWERED:

6. Fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4x_1 - 2x_2 \\ 4x_1 - x_3 \\ -x_2 + 4x_3 \end{bmatrix}$$

Fill in the missing entries of the matrix below.

$$\begin{bmatrix} 4 & -2 & 0 \\ 4 & 0 & -1 \\ 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4x_1 - 2x_2 \\ 4x_1 - x_3 \\ -x_2 + 4x_3 \end{bmatrix}$$

7. Show that T is a linear transformation by finding a matrix that implements the mapping. Note that $x_1, x_2, ...$ are not vectors but are entries in vectors.

$$T(x_1,x_2,x_3,x_4) = (x_1 + 9x_2, 0, 7x_2 + x_4, x_2 - x_4)$$

$$A = \begin{bmatrix} 1 & 9 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 7 & 0 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$
 (Type an integer or decimal for each matrix element.)

8. Show that T is a linear transformation by finding a matrix that implements the mapping. Note that $x_1, x_2, ...$ are not vectors but are entries in vectors.

$$\mathsf{T}\left(\mathsf{x}_{1},\!\mathsf{x}_{2},\!\mathsf{x}_{3}\right) = \left(\mathsf{x}_{1} - 8\mathsf{x}_{2} + 3\mathsf{x}_{3},\,\mathsf{x}_{2} - 6\mathsf{x}_{3}\right)$$

$$A = \begin{bmatrix} 1 & -8 & 3 \\ 0 & 1 & -6 \end{bmatrix}$$
 (Type an integer or decimal for each matrix element.)

9. Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T(x_1, x_2) = (x_1 + x_2, 4x_1 + 2x_2)$. Find \mathbf{x} such that $T(\mathbf{x}) = (1, 14)$.

$$\mathbf{x} = \begin{bmatrix} & 6 & \\ & -5 & \end{bmatrix}$$

a. If A is a 4×3 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^3 onto \mathbb{R}^4 . Choose the correct answer below.						
○ A. False. The columns of A are not linearly independent.						
${}^{igstyle B}oldsymbol{^{\circ}}$ False. The columns of A do not span \mathbb{R}^4 .						
C. True. The the columns of A are linearly independent.						
\bigcirc D. True. The columns of A span \mathbb{R}^4 .						
b. Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation. Choose the correct answer below.						
\bigcirc A. False. Not every vector x in \mathbb{R}^n can be assigned to a vector $T(x)$ in \mathbb{R}^m .						
B. True. Every matrix transformation spans \mathbb{R}^n .						
$^{\circ}$ C. True. There exists a unique matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n .						
○ D. False. Not every image T(x) is of the form Ax.						
c. The columns of the standard matrix for a linear transformation from \mathbb{R}^n to \mathbb{R}^m are the images of the columns of the n×n identity matrix under T. Choose the correct answer below.						
○ A. False. The standard matrix only has the trivial solution.						
\bigcirc B. True. The standard matrix is the identity matrix in \mathbb{R}^n .						
\bigcirc C. False. The standard matrix is the m×n matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column wh						
$^{\circ}$ D. True. The standard matrix is the m×n matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the						
d. A mapping T: $\mathbb{R}^n \mapsto \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unique vector in \mathbb{R}^m . Choose the correct answer below.						
\bigcirc A. False. A mapping T is said to be one-to-one if each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n .						
B. True. A mapping T is said to be one-to-one if each x in \mathbb{R}^n has at least one image for b in \mathbb{R}^m .						
$^{\circ}$ C. False. A mapping T is said to be one-to-one if each b in \mathbb{R}^m is the image of at most one x in \mathbb{R}^n .						
\bigcirc D. True. A mapping T is said to be one-to-one if each b in \mathbb{R}^m is the image of exactly one x in \mathbb{R}^n .						
e. The standard matrix of a horizontal shear transformation from \mathbb{R}^2 to \mathbb{R}^2 has the form $\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$. Choose the correct answer below.						
\bigcirc A. False. The standard matrix has the form $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.						
B. False. The standard matrix has the form $\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$. C. False. The standard matrix has the form $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$.						
$\stackrel{\bullet}{\mathbf{C}}$ C. False. The standard matrix has the form $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$.						
D. True.						

10. Mark each statement True or False and justify each answer for parts **a** through **e**.

11	Datarmina if the	enacified linear	transformation is	: (a) one-to-one :	and (h) onto	Justify each answer.
11.			u an sionnauon is	S (a) OHE-LO-OHE (and (b) onto.	Justily Cacil aliswel.

$$T(x_1,x_2,x_3) = (x_1 - 3x_2 + 4x_3, x_2 - 9x_3)$$

- (a) Is the linear transformation one-to-one?
- A. T is not one-to-one because the columns of the standard matrix A are linearly independent.
- \bigcirc **C.** T is one-to-one because T(x) = 0 has only the trivial solution.
- D. T is one-to-one because the column vectors are not scalar multiples of each other.
- (b) Is the linear transformation onto?
- A. T is not onto because the standard matrix A does not have a pivot position for every row.
- **B.** T is onto because the columns of the standard matrix A span \mathbb{R}^2 .
- \bigcirc C. T is not onto because the columns of the standard matrix A span \mathbb{R}^2 .
- D. T is onto because the standard matrix A does not have a pivot position for every row.
- 12. Describe the possible echelon forms of the standard matrix for a linear transformation T where T: $\mathbb{R}^4 \to \mathbb{R}^3$ is onto.

Give some examples of the echelon forms. The leading entries, denoted ■, may have any nonzero value; the starred entries, denoted *, may have any value (including zero). Select all that apply.