Actividad 1: Corrección Geometría diferencial aplicada

25 de febrero de 2021

Contenidos

- 1 Laboratorio Interpolación
- 2 Ejercicio 1
- 3 Ejercicio 2
- Ejercicio 4

Hallar la expresión del polinomio que pasa por los puntos

$$\{(0,-1),(1,2),(3,0)\}$$

Representarlo gráficamente (Matlab, Mathematica, Python) y compararlo con la función de interpolación.

Hallar la expresión del polinomio que pasa por los puntos

$$\{(0,-1),(1,2),(3,0),(4,1)\}$$

con los métodos de Newton y Lagrange. Representarlo gráficamente (Matlab, Mathematica, Python) y compararlo con la función de interpolación.

Se quiere construir una curva que pase por los puntos

$$\{(0,-1),(1,2),(3,0),(4,1),(7,-1),(8,-3),(10,0),(11,2),(12,4),\\(15,5),(16,3),(18,4)\}$$

 $\dot{\varrho}$ Qué método escogerías y por qué? Utilizar la función correspondiente de (Matlab, Mathematica, ...) y representarlo gráficamente.

Se quiere trazar una curva diferenciable que tenga los siguientes puntos de control:

$$\{(0,-1),(1,2),(3,0),(4,1),(5,0),(6,2),(7,-1)\}$$

Tip: B-splines, curvas de Bézier. Herramientas:

- Matlab: Curve Fitting Toolbox.
- Mathematica: Paquete SymbolicBsplines.
- Python: Paquete numpy.
- Hazlo tú.

Enunciado

Dada la curva $y=\cos^2(x)$, parametrizar la superficie que resulta al girar la curva alrededor del eje x. Hacer lo mismo, pero girándola alrededor del eje y. Demostrar en cada caso que es una parametrización.

Curva regular

Dada la expresión $y=\cos^2(x)$, podemos escribir una parametrización de la curva definida implícitamente en el espacio

$$\alpha: I \mapsto \mathbb{R}^3,$$

$$u \mapsto (u, \cos^2 u, 0).$$

Donde I es un intervalo a determinar.

- El intervalo $(-\pi/2, \pi/2)$ es minimal, es decir, que podemos reconstruir toda la función a partir éste.
- ullet Puntos de la traza de lpha que estén contenidos en el eje de rotación.
- Obtener una parametrización regular.

$$I = (-\pi/2, \pi/2) \setminus \{\{-\pi/2\}, \{0\}, \{\pi/2\}\}.$$

Parametrización superficie S_x

Vamos a aplicar la matrix de rotación canónica con respecto del eje a la curva α . Esto es:

$$S_x(\theta, u) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} u \\ \cos^2 u \\ 0 \end{bmatrix},$$

con $\theta \in (0,2\pi)$ (de momento). Desarrollando la multiplicación, uno obtiene que la parametrización viene dada por la siguiente expresión:

$$S_x(\theta, u) = (u, \cos \theta \cos^2 u, \sin \theta \cos^2 u).$$

Parametrización superficie S_x

Figura: Superficie de revolución obtenida al rotar la curva α alrededor del eje OX.

Inyectividad

Supongamos que existen (θ_1,u_1) y (θ_2,u_2) tales que $S_x(\theta_1,u_1)=S_x(\theta_2,u_2)$. Esto implica que:

$$u_1 = u_2, (1)$$

$$\cos \theta_1 \cos^2 u_1 = \cos \theta_2 \cos^2 u_2,\tag{2}$$

$$\sin \theta_1 \cos^2 u_1 = \sin \theta_2 \cos^2 u_2. \tag{3}$$

La ecuación (1) nos garantiza una de las dos condiciones que queremos comprobar. Recordemos que $\cos^2 u > 0$ para todo $u \in I$, luego podemos dividir las ecuaciones (2) y (3) por $\cos^2 u_1$. Obtenemos

$$\cos \theta_1 = \cos \theta_2,$$

 $\sin \theta_1 = \sin \theta_2.$

Esto no puede suceder si $\theta_1 \neq \theta_2$ ya que si $\cos(\theta_1) = \cos(\theta_2)$ entonces necesariamente $\theta_1 < \pi < \theta_2$ (o $\theta_2 < \pi < \theta_2$). Pero si $\theta_1 < \pi$, entonces $\sin \theta_1 > 0$ y si $\theta_2 > \pi$, entonces $\sin \theta_2 < 0$. Lo cual entra en contradicción con $\sin \theta_1 = \sin \theta_2$. Se desprende $\theta_1 = \theta_2$ y la inyectividad.

Suprayectividad

Supongamos que tenemos $(x,y,z)\in S_x$. Buscamos θ y u tales que u=x, $\cos\theta\cos^2u=y$ y $\sin\theta\cos^2u=z$. Evidentemente, a u no hace falta buscarla. Luego, utilizando otra vez que $\cos^2u>0$, podemos dividir la segunda ecuación por la tercera. Obtenemos

$$\theta = \arctan\left(\frac{y}{z}\right).$$

Esta expresión será problematica para z=0. Tenemos pues que eliminar del intervalo de definición de θ los valores tales que $\sin\theta=0$. Eliminamos $\theta=\pi$. Con lo cual, tenemos que $\theta\in(0,2\pi)\setminus\{\pi\}$. Con estos valores de θ la inversa es diferenciable.

Jacobiana invectiva

Falta ver que la Jacobiana tiene rango 2. Ésta viene dada por:

$$DS_x(\theta, u) = \begin{bmatrix} 1 & 0 \\ -2\cos\theta\cos u\sin u & -\sin\theta\cos^2 u \\ -2\sin\theta\cos u\sin u & \cos\theta\cos^2 u \end{bmatrix}.$$

Para ver que esta matriz tiene rango máximo, hay que encontrar un menor distinto de cero. El menor formado por las dos primeras filas nos sirve:

$$\begin{vmatrix} 1 & 0 \\ -2\cos\theta\cos u\sin u & \sin\theta\cos^2 u. \end{vmatrix} = \sin\theta\cos^2 u.$$

Este determinante es distinto de cero porque ya nos hemos encargado de quitar los valores de θ y u que lo anulan.

Rotación respecto OY

El resto del ejercicio se resuelve de manera similar. Hay ciertos detalles que cambian, podréis encontrar una resolución completa en el campus virtual.

Enunciado

¿Es posible parametrizarla alrededor del eje z? Justifica tu respuesta.

Rotación respecto al eje OZ

Si calculamos la fórmula obtenida al rotar la curva alrededor del eje OZ, obtenemos una superficie conteinda en el plano x-y. Tendremos una expresión de la forma:

$$S_z(\theta, u) = (R_2(\theta)\alpha_2(u), 0),$$

donde $R_2(\theta)$ es la matriz de rotación de ángulo θ en el plano x-y y α_2 son las componentes x,y de la curva α . Supongamos $u_1 < u_2$. Vamos a construir θ tal que $S_z(\theta,u_1)=S_z(\theta,u_2)$. Por el Teorema del Valor Medio de Lagrange, existe $u^*\in (u_1,u_2)$ tal que $g(u_1)-g(u_2)=g'(u^*)(u_1-u_2)$. Entonces

$$S_z(\theta, u_1) - S_z(\theta, u_2) = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 - u_2\\ g(u_1) - g(u_2)\\ 0 \end{bmatrix}$$
$$= (u_1 - u_2) (\cos \theta - g'(u^*) \sin \theta, \sin \theta + g'(u^*) \cos \theta, 0).$$

Si seleccionamos $\theta = \tan \frac{1+g'(u^*)}{g'(u^*)-1}$ entonces $S_z(\theta,u_1) = S_x(\theta,u_2)$ con $u_1 \neq u_2$. Podríamos tener la mala suerte que u^* fuera uno de los puntos que hemos quitado del dominio de definición o que $g'(u^*) = 1$, en tal caso deberíamos elegir otro par $u_1 < u_2$.

Rotación respecto al eje OZ

Una demostración puramente geométrica, y bastante más elegante, es la que ha ofrecido Rocío Díaz en su en entrega. Ella argumenta que si rotamos la curva α alrededor del eje OZ no obtenemos una superficie de revolución. En efecto, si cortamos la superficie con un plano perpendicular al eje OZ, o bien obtenemos el conjunto vacío si el plano es distinto de $\{z=0\}$, o bien recuperamos toda la superficie, si el plano es $\{z=0\}$.

Enunciado

Parametrizar la superficie descita por la ecuación general:

$$z^2 = \frac{x^2}{2} + \frac{y^2}{3}.$$

Demostrar que es una parametrización. ¿Es una superficie de revolución? Justifica tu respuesta.

No es una superficie de revolución

Vamos a ver que no es superficie de revolución. Como no sabemos con respecto a qué eje podría serlo, consideremos un plano general:

$$\tilde{A}x + \tilde{B}y + \tilde{C}z = 0.$$

Supongamos que $\tilde{A} \neq 0$ (en otro caso, usaríamos otra letra). Entonces

$$z^2 = \frac{(By + Cz)^2}{2} + \frac{y^2}{3},$$

donde $B=-\tilde{B}/\tilde{A}$ y $C=-\tilde{C}/\tilde{A}$. Esta última expresión se puede arreglar de la siguiente manera:

$$\left(\frac{C^2}{2} - 1\right)z^2 + \left(\frac{B^2}{2} + \frac{1}{3}\right)y^2 + BCzy = 0.$$

Lo cual no es nunca la forma implícita de un círculo, cosa que pasaría si la superfície fuera de revolución.

Parametrización cono elíptico

