	15.01.23
	Proof (Ad.)
	We now show that there is a leavible update sequence R with I round for update flow network to
	If there is a leavible update sequence \$\tilde{X}\$ with I rounds for update flow network \$\tilde{G}\$.
	Let R=(r,,r,) be a Laime update sequence for b.
	We set $\widetilde{\mathcal{R}}(v,\widetilde{F};l)=R(v,F;l)$ for every $v\in V$, $\mathcal{R}_{i}:=\{b\}$ $F_{i}\in\mathcal{F}$ \mathcal{L}_{i} - $\{F,\overline{F}\}$,
	$\widetilde{\mathcal{R}}(\widetilde{u}_{F^o},\widetilde{F}_i) := \mathcal{R}(u_{F^o},F_i),$
	$\mathcal{Z}(v,\widetilde{F}) := \left\{ \begin{array}{l} \widetilde{\chi}(v,\widetilde{F}) \not = V(F^{\circ} \cup F^{\circ}) \\ \widetilde{\chi}(v,\widetilde{F}) \not= V(F^{\circ} \cup F^{\circ}) \end{array} \right\}$
	(Ž(v, F) Am.
•	$\tilde{\mathbb{Z}}(w,\tilde{F}):=\mathbb{Z}(s,\bar{F})$
Industron?	We show that $\widetilde{\mathcal{R}} = (\widetilde{r}_1,, \widetilde{r}_c)$ is a leavible update sequence for $\widetilde{\mathcal{G}}$. Suppose not. Then let $: \in [1]$
	be minimum and S & F; be minimal nuch that there is no brannint larvely look U.
	Tax J= {Tout resid.
	Then let e E (x (U. , E) & mah that c(c) < 2 per: e E(P) 4
	4 S= {3, then i=1 (Am. i would not be minimum as Uin).
0	
BRUNNEN FL	

