Математична теорія класичних мереж Петрі

Базові публікації

Murata T. Petri Nets: Properties, Analysis and Applications. // Proceedings of IEEE. — 1989. - Vol.77, No.4. - P.541-580.

Матричний опис базової мережі Петрі

© І.В.Стеценко НТУУ "КПІ ім. Ігоря Сікорського"

Матричний опис базової мережі Петрі

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{T_1} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{T_2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{T_3} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{T_4} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{T_4} \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{T_2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{T_4} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{T_4} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{T_4} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{T_4} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{T_4} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} \xrightarrow{T_5} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} \xrightarrow{T_6} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} \xrightarrow{T_8} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} \xrightarrow{T_8} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} \xrightarrow{T_8} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} \xrightarrow{T_8} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} \xrightarrow{T_8} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} \xrightarrow{T_8} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 3 \end{pmatrix}$$
© I.B. CTEULEHK ROPS TON 10 COUNTY STATE IN LIGHT A STATE IN LIGHT A

Матричний опис базової мережі Петрі

Вектор запуску переходу

$$v = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Запуск переходу T_3

Умова запуску переходу

$$\forall i \; \mathbf{M}_i \geq (\mathbf{a}^- \cdot \mathbf{v})_i$$

Результат запуску переходу

$$M' = M - a^- \cdot v + a^+ \cdot v$$

$$M' = M + (a^+ - a^-) \cdot v$$

Матриця змінювань

$$a = a^+ - a^-$$

Результат запуску послідовності $T_1 - T_2 - T_1$

$$M' = M + a \cdot v^{(1)}$$

$$M^{\prime\prime} = M^{\prime} + a \cdot v^{(2)}$$

$$M^{\prime\prime\prime} = M^{\prime\prime} + a \cdot v^{(3)}$$

$$M''' = M + a \cdot (v^{(1)} + v^{(2)} + v^{(3)})$$

$$M^{\prime\prime\prime}=M+a\cdot v$$

Вектор запуску переходів

ря

$$=\begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Кількість запусків переходу T_1

© І.В.Стеценко НТУУ "КПІ ім. Ігоря Сікорського"

Матричне рівняння станів базової мережі Петрі

Змінювання маркірування
$$\Delta \pmb{M} = \pmb{a} \cdot \pmb{v}$$

Аналітичне дослідження властивостей мереж Петрі

- *k*-обмеженість,
- досяжність,
- збереження,
- активність.

Аналітичне дослідження властивостей мереж Петрі

Властивість	Визначення
k – обмеженість	Якщо кількість маркерів в будь-якій позиції мережі Петрі не перевищує k маркерів, то мережа являється k— обмеженою.
досяжність	Досяжністю мережі Петрі називається множина досяжних маркірувань.
збереження	Якщо в мережі Петрі неможливе виникнення і знищення ресурсів, то мережа володіє властивістю збереження.
активність	Якщо з будь-якого досяжного початкового стану можливий перехід в будь-який інший досяжний стан, то мережа Петрі володіє властивістю активності.

Збереження (консервативність)

Означення. Якщо існує вектор w, компоненти якого <u>цілі додатні числа</u>, такий що $w^T \cdot M = w^T \cdot M'$ для будь — якого досяжного з початкового маркірування, то мережа Петрі володіє властивістю збереження

$$oldsymbol{w}^{\mathrm{T}} \cdot oldsymbol{M} = oldsymbol{w}^{\mathrm{T}} \cdot oldsymbol{M}' \cdot oldsymbol{W}' \cdot oldsymbol{W}' \cdot oldsymbol{v} \quad old$$

<u>Твердження.</u> Мережа Петрі володіє властивістю зберігання <u>тоді</u> і <u>тільки</u> <u>тоді</u>, коли існує вектор w, компоненти якого <u>цілі додатні числа</u>, такий, що $a^{\mathrm{T}} \cdot w = \mathbf{0}, w_i \in Z_+$

S – інваріант мережі Петрі

Розв'язки рівняння

$$\boldsymbol{a}^{\mathrm{T}}\cdot\boldsymbol{w}=\mathbf{0}$$
,

де w — невідомий вектор розміру $|P| \times 1$, називають S — інваріантом мережі Петрі.

S-інваріант, або інваріант стану, дозволяє досліджувати консервативність системи.

Консервативність означає, що існує зважена сума маркірувань позицій мережі Петрі, яка для будь-якого досяжного маркірування залишається незмінною.

Рівняння, які формулюються і розв'язуються в термінах цілих чисел, називають *діофантовими*.

Циклічність

<u>Означення.</u> Якщо існує послідовність запусків переходів, така що мережа повертається в початкове маркірування, то функціонування мережі Петрі є циклічним

$$M' = M$$
 $M + a \cdot v = M, \exists v$
 $0 = a \cdot v, \exists v$

<u>Твердження.</u> Функціонування мережі Петрі є циклічним <u>тоді і тільки</u> <u>тоді</u>, коли існує вектор v, компоненти якого <u>цілі невід'ємні числа</u>, такий, що $a\cdot v=0$, $v_i\in Z_+$

Т – інваріант мережі Петрі

Розв'язки рівняння

$$a \cdot v = 0$$
,

де v — невідомий вектор розміру $|T| \times 1$, називають T— інваріантом мережі Петрі.

T-інваріант, або інваріант функціонування, означає досяжність початкового маркірування.

Цей інваріант є важливим для дослідження циклічності процесів функціонування.

Циклічність означає існування такої послідовності запусків переходів, що мережа Петрі повертається в початкове маркірування. Наявність *T*-інваріантів гарантує циклічність функціонування системи.

Досяжність

Існування невід'ємного цілого вектора запуску переходів, що задовольняє рівнянню $M' = M + a \cdot v$, є тільки <u>необхідною</u>, але не достатньою умовою

Проте запуск переходів неможливий оскільки умова запуску не виконана.

Активність

Рівень активності	Перехід Т має рівень активності А, якщо	
0	він ніколи не може бути запущений	
1	існує маркірування (досяжне з початкового) , яке дозволяє запуск цього переходу Т	
2	для довільного цілого числа n існує послідовність запусків переходів, в якій перехід T присутній принаймні n раз	
3	існує нескінченна послідовність запусків переходів, в якій перехід Т присутній необмежено багато разів	
4	якщо для довільного маркірування М, що є досяжним з початкового маркірування, існує послідовність запусків переходів, яка призводить до маркірування, що дозволяє запуск переходу Т	

Приклад визначення активності

Приклад визначення активності

Рівень активності	Перехід
0	T_4
1	T_1
2	T_3
3	T_2

Приклад дослідження Т-інваріантів

$$a = \begin{pmatrix} -10 & 0 & -1 \\ 0 & 1 - 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$

Приклад дослідження Т-інваріантів

$$\boldsymbol{a} \cdot \boldsymbol{v} = \mathbf{0} \Longrightarrow \begin{pmatrix} -10 & 0 & -1 \\ 0 & 1 - 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} -v_1 - v_4 \\ v_2 - v_3 \\ v_4 \\ v_1 - v_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow$$

$$\Rightarrow \begin{cases} v_1 = 0 \\ v_2 = k \\ v_3 = k \end{cases} \Rightarrow T - \text{інварінтів не існує. Отже, циклічність не гарантується.}$$

Приклад дослідження S-інваріантів

$$a = \begin{pmatrix} -10 & 0 & -1 \\ 0 & 1 - 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$

Приклад дослідження S-інваріантів

$$\boldsymbol{a}^{\mathrm{T}} \cdot \boldsymbol{w} = \mathbf{0} \Longrightarrow \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & -10 & 0 \\ -1 & 0 & 1 - 1 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} -w_1 + w_4 \\ w_2 \\ -w_3 \\ -w_1 + w_3 - w_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow$$

$$\Rightarrow egin{cases} w_1 &= 0 \ w_2 &= 0 \ w_3 &= 0 \end{cases} \Rightarrow S$$
 — інварінтів не існує. Отже, консерватівність відсутня. $w_4 &= 0$

Дерево досяжності

Дерево досяжності представляє множину досяжних маркірувань мережі Петрі. Дерево досяжності розпочинається з початкового маркірування, а закінчується термінальним або дублюючим маркіруванням.

Термінальним маркіруванням називається маркірування, в якому жоден з переходів мережі Петрі не запускається.

Дублюючим маркіруванням називається маркірування, що раніше зустрічалося в дереві досяжності

Символ ω в позиції M_i маркірування Mз'являється тоді, коли на шляху маркірування Μ спостерігається маркірування M', в якому всі значення, крім *i*-ого, перевищують не значення маркірування M, α j-е значення ϵ меншим. Одного разу з'явившись, символ ω уже не змінюється і не зникає в дереві досяжності: додавання або віднімання від нескінченності є нескінченність.

$$a = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

$$a = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

$$a^{T} \cdot \mathbf{w} = \mathbf{0} \Rightarrow \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ w_{3} \\ w_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -w_{1} + w_{2} \\ w_{3} - w_{4} \\ w_{1} - w_{2} - w_{3} + w_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} w_{1} = 1 \\ w_{2} = 1 \\ w_{3} = 1 \\ w_{4} = 1 \end{cases}$$

 \implies S — інварінт існує. Отже, консерватівність присутня.

$$a = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

$$a^{T} \cdot \mathbf{w} = \mathbf{0} \Rightarrow \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ w_{3} \\ w_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -w_{1} + w_{2} \\ w_{3} - w_{4} \\ w_{1} - w_{2} - w_{3} + w_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} w_{1} = 1 \\ w_{2} = 1 \\ w_{3} = 1 \\ w_{3} = 1 \end{cases}$$

 \implies S — інварінт існує. Отже, консерватівність присутня.

$$\boldsymbol{a} \cdot \boldsymbol{v} = \mathbf{0} \Longrightarrow \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} -v_1 + v_3 \\ v_1 - v_3 \\ v_2 - v_3 \\ -v_2 + v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} v_1 = 1 \\ v_2 = 1 \\ v_3 = 1 \end{pmatrix}$$

 \Rightarrow T — інварінт існує. Отже, цикличність гарантується.

Порівняння способів аналітичного дослідження властивостей мережі Петрі

Pasetupieti	Спосіб дослідження		
Властивість	Матричний підхід	Дерево досяжності	
k-обмеженість	не досліджується	необхідна і достатня	
		умова	
зберігання	необхідна і	необхідна і достатня	
	достатня умова	умова	
досяжність	тільки необхідна	послідовність переходів	
	умова	залишається невідомою	
активність	не досліджується	не досліджується	