Matteo GUARRERA, PhD student @ Berkeley AI Research

J +1 (341) 766 8219

in Linkedin

Google Scholar

matteoguarrera.github.io

☐ matteogu@berkeley.edu

As a PhD student at UC Berkeley, my research focus is Physics-Inspired Machine Learning for Dynamical Systems. In particular I am working at the boundary of Modeling, Differential Equations, Solvers and Neural Networks. I am part of the Berkeley AI Research (BAIR) group, where I collaborate with some of the world's leading experts in machine learning and robotics. Committed to continuous learning, I am now deepening expertise in the Deep Unsupervised Learning, Generative Models and LLMs finetune for long context understanding. I am fluent in Italian, English, learning French. **Graduation Date: Summer 2027.** Proficient in **Python, PyTorch, C, MATLAB, Git**

Education

2022 CS PhD Student @ Berkeley AI Research (BAIR)

EUC, Berkeley

GPA: 4.0, classes: Physics-Inspired Machine Learning, Deep Learning, Deep Unsupervised Learning, Statistical Learning, Natural Language Processing, Deep Reinforcement Learning, Convex Optimization.

Advised by Alberto Sangiovanni-Vincentelli

2020-2021 Visiting Student Researcher

C, Berkeley

Master Thesis: Out-of-Distribution Detection for Supervised Image Classification

2018–2021 **Double MSc Electronic Engineering** Top 5%, Score: 110/110 cum laude (max)

Politecnico di Torino - EURECOM - Télécom Paris

Work Experience

2024 **Graduate Student Instructor** @UC Berkeley, content and discussion TA for a 400+ student class

2022 EURECOM Research Fellow, designed a medical image segmentation algorithm using generative modeling.

2017–2019 **MathWorks Ambassador**, created the biggest community of students in Italy (1500+), conducted **seminars** about control, learning, and linear algebra.

HKN-IEEE Honor Society, organized workshops and events, and tutored undergrads.

2019 National Automobile Museum Guide, held classes and workshops with groups of students

2014–2016 FIV Sailing Instructor @ Circolo Velico Gela, Taught sailing classes to people of different ages

Projects

Discrepancy Modeling and Neural ODEs, current research project in discrepancy modeling

Diffusion Models for Motion Planning, designing latent state based policy to enhance speed of planning

2023 Long sequence Q&A, funded by Meta-AI, developing LLMs algorithm for Q&A on books.

2022 Knowledge Distillation: Properties Transfer, benchmarked distillation techniques for autonomous driving

2020 Electromagnetic Noise Exploitation, control smartphones noise to appear like a legitimate radio signal

Telemetry system Demonstrator, designed and manufactured for National Automobile Museum, Turin to enable the gamification of science. Sold for [~1k €]

2017 Scientific Laboratory DroneLAB, managed 15 students and built semi autonomous drones

Awards

2023	Meta AI - BAIR Commons, by Meta AI and UC Berkeley	[15k \$]
2022	Young Researcher Grant, by Fondazione CEUR	[15k \$]
2021	Design Automation of Out-of-Distribution Image Data Detectors proposal, for Berkeley DeepDrive	[100k \$]
2015-2021	Young Talent Award, by Politecnico di Torino, Fondazione CRT, Camplus College	[~24k €]
2015	Italian National Register of Outstanding Students. by Ministry of Public Education	[450€]

Publications

Cohen, J. P., Viviano, J. D., Bertin, P., Morrison, P., Torabian, P., **Guarrera**, **M.**, ... Hashir, M. et al. (2022). Torchxrayvision: A library of chest x-ray datasets and models. International Conference on Medical Imaging with Deep Learning.

Guarrera, M., Jin, B., Lin, T.-W., Zuluaga, M. A., Chen, Y., & Sangiovanni-Vincentelli, A. (2022). Class-wise thresholding for robust out-of-distribution detection. FADETRCV 2022, IEEE CVPR 2nd Workshop on Fair, Data-efficient, and Trusted Computer Vision.