

SZKOŁA GŁÓWNA HANDLOWA W WARSZAWIE WARSAW SCHOOL OF ECONOMICS

Master's Studies

Authors: Aleksandra Romanowicz,

Ireneusz L

Binary logistic regression

Final paper in "Logistic Regression with SAS"

Table of contents

Introduction	3
Variable binning	4
Model I - two categories	4
Model II - three categories	4
Model III - five categories	4
Collinearity investigation	7
Model I	7
Model II and III	8
Modelling	9
Model I - results	9
Model II - results	10
Model III - results	11
Conclusion	12
Summary	13
Bibliography	14
Attachments	15
Code	15
Outputs for Model I	15
Outputs for Model II	16
Outputs for Model III	17

Introduction

The objective of the project was to prepare binary logistic regression model on the data chosen from the ESS (European Social Survey) carried out in 2016. As the objective the following problem was chosen – to check the propensity of person to vote in national elections basing on interest in political situation, trust in government institutions and basic demographic statistics. Study was prepared on the data from Poland.

The methodology of the study is as follows.

Basing on the own knowledge and general studies on the willingness to vote the explanatory variables where chosen:

- trstprl Trust in country's parliament
- trstlgl Trust in the legal system
- trstplt Trust in politicians
- trstprt Trust in political parties
- trstep Trust in the European Parliament
- polintr How interested in politics
- agea Age of respondent, calculated
- badge Worn or displayed campaign badge/sticker last 12 months
- pbldmn Taken part in lawful public demonstration last 12 months

The "trust variables" are discrete and based on the 11-point scale (from no trust to complete trust) and required transformation to achieve better results and improve readability of the model results. Polintr was represented on smaller number of dimensions (4) but also has been transformed. The binning process is detailed in the forthcoming sections. Yes/No variables are just encoded as 1 for "yes" and 0 for "no". It affects vote and badge variables. The responses such as "refusal", "don't know", "not eligible" etc. were not taken into consideration.

The intermediary step between variable selection and modelling was to check collinearity and investigate if there are any variables to be removed from the set.

As binning can be achieved in many ways to choose the most effective way, different bin approaches (2, 3, and 5) were prepared with subsequent models created with the same parameters. Models were tuned to achieve best combination of hyper parameters such as: elimination method, confidence level with following assessment of model fit, relevancy of variables and coefficients and number of concordant pairs.

Basing on the research results the model with the most optimal connecting method and parameters was chosen.

Variable binning

Model I - two categories

The following binning methodology was applied to receive transformed variables for the first model:

- "Trust answers" are highly detailed where 11 "non-missing" options are available. It was split in a half, where sixth (numbered as 5 in data) is associated with the first group
- Interest in politics (polintr) is the exception as due to very good results in both models when it is split in three. Split is carried out by generating separate groups for the most radical answers (Very Interested and Not at all interested) and less confident answers (Quite interested, Hardly interested) which are closely related are blended together into one group
- Age, according to the analysis has the most influence if person is below 30, set is splitted
 regarding that findings. In group of 30 year old people, only half of them went voting while in
 other groups around or more than 70% took part, it can be said that participation rate
 increases with the age, that conclusion is used in second model.
- The rule behind encoding variables as 1 or 0 is that 1 is presumably considered as positively influencing vote probability whereas 0 shall work in opposite direction

Model II - three categories

Depending on the source different binning methods are applied:

- "Trust answers" are highly detailed where 11 "non-missing" options are available. They are split in a one thirds, where fourth value (3) is associated with the first group
- Split for polintr is carried out by generating separate groups for the most radical answers (Very Interested and Not at all interested) and less confident answers (Quite interested, Hardly interested) which are closely related are blended together into one group
- Age, according to the analysis has the most influence if person is below 30, set is splitted
 regarding that findings. In group of 30 year old people, only half of them went voting while in
 other groups around or more than 70% took part, it can be said that participation rate
 increases with the age. That made the base for the third split for the most frequent voters that
 are aged above 60 years old.
- The rule behind encoding variables as 1 or 0 is that 1 is presumably considered as positively influencing vote probability whereas 0 shall work in opposite direction

Model III - five categories

In this section split into categories is done on the basis of visual and statistical analysis. We take into consideration frequency of answers and their significance for the research and divide them into five logical groups. In the first step we observe number of answers for dependent variable - vote in last national election.

Table 1. Frequencies for dependent variable - vote

Voted last national election									
vote	Frequency	Percent		Cumulative Percent					
Yes	1178	69.54	1178	69.54					
No	406	23.97	1584	93.51					
Not eligible for vote	92	5.43	1676	98.94					
Refusal	12	0.71	1688	99.65					
Don't know	4	0.24	1692	99.88					
No answer	2	0.12	1694	100.00					

We see that the total percent of those who refused the answer or did not know is less than 1% in each group and share of people who are not eligible to vote (which in our case has the same meaning as those who refused the answer) is less than 6%. We will remove those records from our research. Moving further, basing on the distribution, we want to group the results of explanatory variables in less categories (there is over 10 of them in the source data).

Chart 1. Frequencies among explanatory variables

First observation is a significant peak for the value 5 in each group. 5, as a completely neutral value, is probably chosen by those who have no thought about the topic. For the research purpose it can be important if somebody chose 4 instead of 6 (we can say that even though he or she is not strongly on the one side, he or she is not completely neutral). As a result, we decide to split the results in at least 3 categories "<5", '5' and ">5". However, we cannot underestimate radical answers such as 1 and 2 instead of more neutral 4 hence it is justified to split "<5" and ">5" categories into two.

Moreover, we can also see that responses of those who refused/did not answer and did not know are not important for our research (we want to examine the influence on voting), so we remove those observations from our dataset.

Chart 2. Frequencies for explanatory variables after aggregation.

Now it is clear that for each variable there is a decreasing dependence between the number of observations and trust - the highest number of people has low trust in authorities.

Final set of variables that will be taken into modelling consists of variables related to trust splitted into five categories presented above, interest in politics, badge and age binned as in the second model.

Collinearity investigation

Model I

Using simple Pearson statistic for correlation we can examine whether variables used in the model are correlated with each other.

Table 2 . Assessment of correlation coefficients

Table 2 . Assessment of correlation coefficients									
		relation C		its					
	Prob > r under H0: Rho=0 Number of Observations								
trstpri trstlgi trstprt trstep polintr agea badge pbldmn									
trstprl		0.34616					0.05277		-0.05381
Trust in country's parliament		<.0001	<.0001	<.0001	<.0001	<.0001	0.0323	0.7678	0.0293
	1645	1606	1629	1621	1541	1642	1645	1641	1641
trstlgl	0.34616	1.00000	0.23455	0.26364	0.26313	0.07231	-0.12894	0.03151	0.06150
Trust in the legal system	<.0001		<.0001	<.0001	<.0001	0.0035	<.0001	0.2038	0.0131
	1606	1632	1615	1606	1533	1630	1632	1628	1628
trstplt	0.50424	0.23455	1.00000	0.67202	0.17985	0.08120	0.01421	0.03209	-0.03472
Trust in politicians	<.0001	<.0001		<.0001	<.0001	0.0009	0.5630	0.1919	0.1579
	1629	1615	1660	1641	1551	1658	1660	1656	1656
trstprt	0.45629	0.26364	0.67202	1.00000	0.15762	0.10476	0.01639	0.01212	-0.01878
Trust in political parties	<.0001	<.0001	<.0001		<.0001	<.0001	0.5056	0.6232	0.4463
	1621	1606	1641	1651	1543	1648	1651	1647	1647
trstep	0.11486	0.26313	0.17985	0.15762	1.00000	0.08808	-0.03879	0.05981	0.08473
Trust in the European Parliament	<.0001	<.0001	<.0001	<.0001		0.0005	0.1258	0.0183	0.0008
	1541	1533	1551	1543	1559	1557	1559	1556	1556
polintr	0.09797	0.07231	0.08120	0.10476	0.08808	1.00000	0.11409	0.13361	0.17428
How interested in politics	<.0001	0.0035	0.0009	<.0001	0.0005		<.0001	<.0001	<.0001
	1642	1630	1658	1648	1557	1689	1689	1685	1685
agea	0.05277	-0.12894	0.01421	0.01639	-0.03879	0.11409	1.00000	-0.04559	-0.06130
Age of respondent, calculated	0.0323	<.0001	0.5630	0.5056	0.1258	<.0001		0.0610	0.0117
	1645	1632	1660	1651	1559	1689	1694	1690	1690
badge	0.00729	0.03151	0.03209	0.01212	0.05981	0.13361	-0.04559	1.00000	0.42356
Worn or displayed campaign badge/sticker last 12 months	0.7678	0.2038	0.1919	0.6232	0.0183	<.0001	0.0610		<.0001
	1641	1628	1656	1647	1556	1685	1690	1690	1689
pbldmn	-0.05381	0.06150	-0.03472	-0.01878	0.08473	0.17428	-0.06130	0.42356	1.00000
Taken part in lawful public demonstration last 12 months	0.0293	0.0131	0.1579	0.4463	0.0008	<.0001	0.0117	<.0001	
	1641	1628	1656	1647	1556	1685	1690	1689	1690

Absolute value of Pearson statistic above 0.8 means that correlation between variables is high. In our model none of the variables meets this condition.

We can examine multicollinearity through the Variance Inflation Factor and Tolerance. This can be done by specifying the "vif", "tol", and "collin" options after the model statement.

Table 3 Assessment of VIF and Toleration for the two bins model

	Parameter Estimates									
Variable	Label	DF	Parameter Estimate		t Value	Pr > t	Tolerance	Variance Inflation		
Intercept	Intercept	1	0.50427	0.03242	15.55	<.0001		0		
trstprl	Trust in country's parliament	1	0.02278	0.03668	0.62	0.5347	0.64871	1.54151		
trstlgl	Trust in the legal system	1	0.06343	0.02969	2.14	0.0328	0.78913	1.26721		
trstplt	Trust in politicians	1	0.05281	0.06078	0.87	0.3851	0.45677	2.18929		
trstprt	Trust in political parties	1	0.03943	0.06264	0.63	0.5292	0.48676	2.05440		
trstep	Trust in the European Parliament	1	0.06664	0.02761	2.41	0.0159	0.90068	1.11027		
polintr	How interested in politics	1	0.15910	0.02394	6.65	<.0001	0.93437	1.07023		
agea	Age of respondent, calculated	1	0.06777	0.02842	2.38	0.0172	0.96332	1.03808		
badge	Worn or displayed campaign badge/sticker last 12 months	1	0.02564	0.04930	0.52	0.6032	0.81714	1.22378		
pbldmn	Taken part in lawful public demonstration last 12 months	1	0.12121	0.04995	2.43	0.0154	0.78810	1.26887		

Accessing collinearity by reviewing tolerance, we want to make sure that no values fall below 0.1. In the example above, if we split variables into 2 categories, multicollinearity does not occur.

As for variance inflation, the number to look out for is anything above the value of 10. The results are the same as in the case of tolerance - none of the variables needs to be removed from the model.

Table 4 . Collinearity diagnostic for the two bins model

	Collinearity Diagnostics											
		Condition					Proportion	of Variation				
Number	Eigenvalue	Index	Intercept	trstprl	trstlgl	trstplt	trstprt	trstep	polintr	agea	badge	pbldmn
1	4.32632	1.00000	0.00468	0.01268	0.01471	0.00766	0.00774	0.01444	0.00776	0.00676	0.00506	0.00468
2	1.68326	1.60318	0.00346	0.03744	0.00330	0.05876	0.06121	0.00168	0.00622	0.00457	0.05114	0.06639
3	1.15373	1.93646	0.00792	0.00075573	0.00002197	0.01913	0.02293	0.00110	0.00728	0.01679	0.23562	0.19590
4	0.75629	2.39174	0.00455	0.00408	0.23900	0.01118	0.01829	0.43696	0.00951	0.01819	0.02700	0.00265
5	0.60721	2.66926	0.00007953	0.18661	0.34693	0.04660	0.04684	0.34575	0.00025552	0.00106	0.00483	0.00020084
6	0.53922	2.83254	0.00002178	0.00908	0.00107	0.00004896	0.01927	0.04309	0.00145	0.00003034	0.64923	0.64128
7	0.41022	3.24752	0.00176	0.69218	0.33426	0.00259	0.12742	0.12770	0.00224	0.00013237	0.01933	0.05709
8	0.26826	4.01586	0.00123	0.05199	0.01800	0.85152	0.68740	0.02570	3.889979E-9	0.00004257	0.00425	0.00447
9	0.17640	4.95233	0.00109	0.00162	0.01260	0.00002828	0.00063267	0.00037953	0.64940	0.44862	0.00309	0.02593
10	0.07910	7.39574	0.97521	0.00356	0.03011	0.00248	0.00827	0.00320	0.31589	0.50380	0.00045545	0.00141

In review of Collinearity Diagnostics results, our focus is going to be on the relationship of the eigenvalue column to the condition index column. If one or more of the eigenvalues are small (close to zero) and the corresponding condition number large, then we have an indication of multicollinearity¹. As we can see from the above results, our eigenvalues and condition index associations rather do not match mentioned description.²

Model II and III

Taking into consideration models with three and five categories we get the same results - none of the variables meets the conditions neither of Pearson correlation nor tolerance, variance inflation and eigenvalue for multicollinearity. Outputs are provided in the attachment.

¹ Multicollinearity: What Is It, Why Should We Care, and How Can It Be Controlled?, Deanna Naomi Schreiber-Gregory, Henry M, Jackson Foundation / National University, 2017

²https://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_reg_sect038 .htm (access: 2019-05-06)

Modelling

Model I - results

The research below compare different binning methods and its effect on model quality and prediction of response variable - vote in last election. For each dataset there were used 9 variables: trstprl, trstlgl, trstplt, trstprt, trstep, polintr, agea, badge and pbldmn. We used backward selection to choose proper variables in the final model (with the required level of significance of 0.05) and used ROC curve to asses fit of the model.

For the first model, backward selection have led to the model consisting of 5 variables (four of them was removed):

$$ln(vote) = \beta_0 + \beta_1 * trstprl + \beta_2 * trstprt + \beta_3 * polintr + \beta_4 * agea + \beta_5 * pbldmn$$

Fit statistics for first model that will be taken into account while comparing the models are presented below.

Table 5 . Assessment of model fit statistics

Model Fit Statistics							
Criterion	Intercept Only	Intercept and Covariates					
AIC	1117.129	1060.249					
SC	1121.964	1089.260					
-2 Log L	1115.129	1048.249					

Moving further, basing on the R-square statistic, fit of the model is 6.94%. All three provided statistics for testing global null hypothesis that all parameters in the model are equal to zero are less than the level of significance. As a result, we reject the null hypothesis.

Table 6. Beta=0 test and R-square

R-Square	0.0694	Max-rescaled	R-S	quare	0.099		
Testing Global Null Hypothesis: BETA=0							
Test		Chi-Square	DF	Pr > 0	hiSq		
Likeliho	od Ratio	66.8800	5	<	.0001		
Score		54.5321	5	<	.0001		
Wald		45.7435	5	<	.0001		

Table 7. Concordance statistics

Association of Predicted Probabilities and Observed Responses								
Percent Concordant 48.8 Somers' D 0.285								
Percent Discordant	20.4	Gamma	0.411					
Percent Tied	30.8	Tau-a	0.117					
Pairs	177021	C	0.642					

In analysis of concordance presented above, value c represents the concordance index and is the percent concordant adjusted for ties. The concordance index also happens to be equivalent to the AUC. The Somers' D statistic is similar to the concordance index, except it resides on a -1 to 1 scale (rather than a 0 to 1 scale) and is equal to 2(c - 0.5). If Sommers' D statistic is closer to 1, the model is better. The values for Gamma and Tau-a also indicate how much better the model is compared to

random chance, but they handle ties differently and Tau-a ranges from 0 to 0.5 for the range of concordance values for which the concordance index ranges from 0.5 to 1.³ In our example results are rather good - there are 48.8% of concordant pairs and Sommers' D statistic is above 0 (equals to 0.285). AUC, main model evaluator, equals to 0.642.

Model II - results

Second model, also after backward variable selection, consists of five different variables splitted into categories (there are nine binary variables in the final model). Variables related to trust are splitted into three categories where medium level is a reference value.

$$\ln(vote) = \beta_0 + \beta_1 * trstprl_high + \beta_2 * trstprl_low + \beta_3 * trstlgl_high + \beta_4 * trstlgl_low + \beta_5 * polintr_high + \beta_6 * polintr_low + \beta_7 * agea0 + \beta_8 * agea1 + \beta_9 * pbldmn_low$$

Model fit statistics are worse for three variable categories. In the previous model neither of values below exceeded 1100.

Table 8. Assessment of model fit statistics

Model Fit Statistics						
Criterion	Intercept Only	Intercept and Covariates				
AIC	1561.532	1463.228				
SC	1566.777	1515.677				
-2 Log L	1559.532	1443.228				

Basing on the R-square statistic, fit of the model is 7.97% (1.03 pp more than the first one). All three provided statistics for testing global null hypothesis, saying that all parameters in the model are equal to zero, are less than the level of significance. As a result, we reject the null hypothesis.

Table 9. Beta=0 test and R-square

Results for discriminatory performance of the model are similar for the first and second model. We also get Sommers' D statistic above 0 and share of concordant pairs equals to 65.9% which are good results. AUC equals to 0.681.

³ The Logic and Logistics of Logistic Regression, Lawrence Rasouliyan and Dave P. Miller Ovation Research Group

Table 10. Concordance statistics

Association of Predicted Probabilities and Observed Responses								
Percent Concordant 65.9 Somers' D 0.362								
Percent Discordant	29.7	Gamma	0.379					
Percent Tied	4.5	Tau-a	0.134					
Pairs	362894	С	0.681					

Model III - results

Third model, with variables splitted into five categories, has four different variables just like the second one. All variables related to trust has been removed from the model as not meeting the criterion of significance of 0.05.

$$ln(vote) = \beta_0 + \beta_1 * pbldmn_no + \beta_2 * polintr_high + \beta_3 * polintr_low + \beta_4 * agea0 + \beta_5 * agea1$$

Table 11. Assessment of model fit statistics

Model Fit Statistics							
Criterion	Intercept Only	Intercept and Covariates					
AIC	1201.424	1133.050					
SC	1206.358	1162.657					
-2 Log L	1199.424	1121.050					

Fit statistics are much lower than for the second model (for example, AIC has decreased from 1463 to 1133) which means better fitness.

Table 12. Beta=0 test and R-square

R-Square 0.0735 M	lax-rescaled	R-S	quare	0.1066				
Testing Global Null Hypothesis: BETA=0								
Test	Chi-Square	DF	Pr > 0	hiSq				
Likelihood Ratio	78.3734	5	<	.0001				
Score	74.6204	5	<	.0001				
Wald	65.3542	5	<	.0001				

The R-square statistic provide worse results - its value decreased by 0.62 pp. from 7.97% to 7.35% compared to the second model. As in previous models, we reject the null hypothesis that all estimates are equal to zero.

Table 13. Concordance statistics

Association of Predicted Probabilities and Observed Responses											
Percent Concordant 56.5 Somers' D 0.332											
Percent Discordant	23.3	Gamma	0.416								
Percent Tied 20.3 Tau-a 0.131											
Pairs	208222	С	0.666								

Percent of concordant pairs has decreased from 65.9 to 56.5 as well as AUC value - to 0.67.

Conclusion

Researched effect is how "High values" (encoded with the logic explained in binning part) affect the vote participation in comparison to "Low values". Confidence level is assumed to be 0.05, there is no high differences in model quality when using different selection methods. The base for assessment is ROC and AUC which verges on the edges of 0.66-0.69 depending on minor model changes. Models have passed each test when taken into account Hosmer-Lemeshow test, global 0-Beta test and comparing to only intercept.

There are no significant changes in the final model quality when interchanging between two, three and five bins but the best results measured by AUC was achieved by second model (with three variable categories). The final form of the model is presented as follows:

Table 14. Estimates for the best performing model (with three bins)

Odds Ratio	Estimates						
	95% Wald						
Effect	Point Estimate	Confidenc	e Limits				
trstprl High value vs Medium value	0.799	0.487	1.313				
trstprl Low value vs Medium value	0.567	0.416	0.773				
trstlgl High value vs Medium value	1.941	1.204	3.130				
trstlgl Low value vs Medium value	1.020	0.766	1.359				
polintr High value vs Medium value	2.824	1.335	5.972				
polintr Low value vs Medium value	0.410	0.302	0.558				
agea 0 vs 2	0.561	0.383	0.822				
agea 1 vs 2	0.787	0.575	1.078				
pbldmn Low value vs Medium value	0.232	0.098	0.545				

Interpretation of odds ratio estimates is quite surprising. Basing on the outputs above, people that has both high and low trust in country's parliament has less chance of voting compared to the medium trust what does not seem intuitive (by 21.1% and 43.3% respectively). High trust in the legal system increases chance of voting by 94.1% comparing to medium trust and low trust in the legal system increases this chance by 2%. High interest in politics increases chance of voting by 182.4% and low interest - decreases it by 59%, which is in line with expectations and intuition.

Summary

There is observed correlation between trust in government institutions, simple demographic statistics and interests in political situation that can improve evaluates if someone is eager to vote in elections or not. Less important is binning method which was assessed on small differences in AUC values between models that had the same parameters but different transformation of explanatory variables.

Eventually, the model with three bins has turned to out to be the top performing with AUC verging on the edge of 0.67. The highest influence on the model had interest in politics followed by trust in government and trust in parliament and age. Displaying a badge, contrary to initial assumptions, there is no high correlation here. Rest of the variables were removed during the elimination process as they did not meet the 0.05 confidence criteria. Common conclusion from the models is that interest in politics and trust in legal system increases chance to vote.

Indifferently on the criteria and inputs each model passed the Hosmer-Lemeshow test, global O-Beta test and comparing to only intercept.

The further research can be carried out to check distortion of sample data in comparison to population data as in dataset the group of no voting people is underrepresented. Elections is the process where population data are widely accessible and from the last decade local government, government and presidential election participation rate is varying from the 40%-50% to 55% in extreme cases. Whilst in examined ESS set in total 70% went voting with range of 50% to almost 80% depending on the age group. There is a possibility that in survey took part people that are engaged and like to express their views what led to distorted results on the dependent variable.

Bibliography

- Multicollinearity: What Is It, Why Should We Care, and How Can It Be Controlled?, Deanna Naomi Schreiber-Gregory, Henry M, Jackson Foundation / National University, 2017
- The Logic and Logistics of Logistic Regression, Lawrence Rasouliyan and Dave P. Miller Ovation Research Group
- Logistic Regression, A Self-Learning Text, Second Edition, David G. Kleinbaum, Mitchel Klein, Atlanta, 2002
- ESS Data Documentation, http://nesstar.ess.nsd.uib.no/webview/ (access: 2019-04-15)
- SAS Documentation on Logistic Procedure: https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#st atug_logistic_sect011.htm (access: 2019-05-11)
- https://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#st atug_reg_sect038.htm (access: 2019-05-06)

Attachments

Code

Code that generated model with the best results basing on the main evaluation statistics.

```
ods graphics on;
proc logistic data=work.pasted 3 all plots = (ROC EFFECT) simple;
     class trstprl trstlgl trstplt trstprt trstep polintr agea badge
pbldmn vote / param=reference ref=LAST;
     model vote(event='Yes') = trstprl trstlgl trstplt trstprt trstep
polintr agea badge pbldmn /
     outroc=work.roc
     details
     lackfit rsquare
     corrb covb
     expb
     selection=backward slstay=0.05
     ctable pprob=0.3;
     format vote vote binned three. trstprl trstlgl trstplt trstprt
trstep polintr badge pbldmn trust binned three.;
     output out=trebles predprobs=(cumulative) predicted=p;
     ods output parameterestimates=est covb=cov;
run;
ods graphics off;
```

Outputs for Model I

Table 15. Maximum likelihood estimates for the model with two bins

	Analysis of Maximum Likelihood Estimates												
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Exp(Est)						
Intercept		1	0.6874	0.0936	53.9792	<.0001	1.988						
trstprl	High value	1	0.5587	0.2648	4.4517	0.0349	1.748						
trstlgl	High value	1	0.5774	0.2147	7.2346	0.0072	1.781						
polintr	High value	1	1.3837	0.3840	12.9832	0.0003	3.990						
agea	0	1	-0.4871	0.1796	7.3538	0.0067	0.614						
pbldmn	High value	1	1.8071	0.7464	5.8613	0.0155	6.093						

Outputs for Model II

Table 16. Correlation assessment for the model with three bins

P	son Corr rob > r u Number o	ınder H0	: Rho=0	nts					
	trstpri		trstplt	trstprt	trstep	polintr	agea	badge	pbldmn
trstprl							-0.00905		•
Trust in country's parliament		<.0001	<.0001	<.0001	<.0001	0.0078	0.7136	0.2087	0.0009
	1645	1606	1629	1621	1541	1642	1645	1641	1641
trstlgl	0.42545	1.00000	0.35089	0.36154	0.31549	0.03041	-0.11188	0.01884	0.01370
Trust in the legal system	<.0001		<.0001	<.0001	<.0001	0.2199	<.0001	0.4474	0.5806
	1606	1632	1615	1606	1533	1630	1632	1628	1628
trstplt	0.53799	0.35089	1.00000	0.77561	0.28196	0.08949	0.02510	0.01579	0.00488
Trust in politicians	<.0001	<.0001		<.0001	<.0001	0.0003	0.3067	0.5207	0.8426
	1629	1615	1660	1641	1551	1658	1660	1656	1656
trstprt	0.52298	0.36154	0.77561	1.00000	0.30351	0.08480	-0.00892	0.00832	-0.00967
Trust in political parties	<.0001	<.0001	<.0001		<.0001	0.0006	0.7172	0.7359	0.6949
	1621	1606	1641	1651	1543	1648	1651	1647	1647
trstep	0.21131	0.31549	0.28196	0.30351	1.00000	0.04861	-0.02773	0.02433	0.04573
Trust in the European Parliament	<.0001	<.0001	<.0001	<.0001		0.0552	0.2739	0.3376	0.0713
	1541	1533	1551	1543	1559	1557	1559	1556	1556
polintr	0.06561	0.03041	0.08949	0.08480	0.04861	1.00000	0.11457	0.13361	0.17428
How interested in politics	0.0078	0.2199	0.0003	0.0006	0.0552		<.0001	<.0001	<.0001
	1642	1630	1658	1648	1557	1689	1689	1685	1685
agea	-0.00905	-0.11188	0.02510	-0.00892	-0.02773	0.11457	1.00000	-0.05329	-0.07384
Age of respondent, calculated	0.7136	<.0001	0.3067	0.7172	0.2739	<.0001		0.0285	0.0024
	1645	1632	1660	1651	1559	1689	1694	1690	1690
badge	-0.03105	0.01884	0.01579	0.00832	0.02433	0.13361	-0.05329	1.00000	0.42356
Worn or displayed campaign badge/sticker last 12 months	0.2087	0.4474	0.5207	0.7359	0.3376	<.0001	0.0285		<.0001
	1641	1628	1656	1647	1556	1685	1690	1690	1689
pbldmn	-0.08226	0.01370	0.00488	-0.00967	0.04573	0.17428	-0.07384	0.42356	1.00000
Taken part in lawful public demonstration last 12 months	0.0009	0.5806	0.8426	0.6949	0.0713	<.0001	0.0024	<.0001	
	1641	1628	1656	1647	1556	1685	1690	1689	1690

Table 17. Parameter estimates for the model with three bins

	Parameter E	stim	ates					
Variable	Label	DF	Parameter Estimate		t Value	Pr > t	Tolerance	Variance Inflation
Intercept	Intercept	1	0.48107	0.03275	14.69	<.0001		0
trstprl	Trust in country's parliament	1	0.09538	0.02796	3.41	0.0007	0.63534	1.57396
trstlgl	Trust in the legal system	1	0.00682	0.02580	0.26	0.7916	0.75682	1.32132
trstplt	Trust in politicians	1	0.01903	0.03986	0.48	0.6331	0.36821	2.71587
trstprt	Trust in political parties	1	-0.01190	0.03979	-0.30	0.7649	0.37621	2.65808
trstep	Trust in the European Parliament	1	0.02968	0.02400	1.24	0.2164	0.86706	1.15332
polintr	How interested in politics	1	0.16228	0.02387	6.80	<.0001	0.93999	1.06384
agea	Age of respondent, calculated	1	0.04390	0.01653	2.66	0.0080	0.96512	1.03614
badge	Worn or displayed campaign badge/sticker last 12 months	1	0.03398	0.04926	0.69	0.4904	0.81853	1.22171
pbldmn	Taken part in lawful public demonstration last 12 months	1	0.14611	0.04990	2.93	0.0035	0.78990	1.26598

Table 18. Collinearity assessment for model with three bins

	Collinearity Diagnostics												
		Condition		Proportion of Variation									
Number	Eigenvalue	Index	Intercept	trstprl	trstlgl	trstplt	trstprt	trstep	polintr	agea	badge	pbldmn	
1	5.68677	1.00000	0.00294	0.00722	0.00722	0.00476	0.00481	0.00805	0.00467	0.00562	0.00230	0.00217	
2	1.39182	2.02135	0.00030269	0.01053	0.00082558	0.00995	0.01100	0.00000274	0.00231	0.00015724	0.21923	0.22408	
3	0.92240	2.48298	0.01340	0.00836	0.00030426	0.06276	0.06810	0.00554	0.02048	0.05118	0.06683	0.03999	
4	0.54312	3.23581	0.00010855	0.00429	0.00001094	0.00067909	0.00099307	0.00384	0.00008623	0.00170	0.70308	0.65203	
5	0.40297	3.75661	0.00182	0.00649	0.23573	0.04146	0.02637	0.30130	0.02569	0.14776	0.00118	0.00254	
6	0.35552	3.99945	0.00019155	0.37015	0.10870	0.01989	0.03555	0.42631	0.00222	0.00848	0.00326	0.02594	
7	0.25179	4.75239	0.00209	0.57474	0.47279	0.00690	0.03790	0.20812	0.01601	0.00397	0.00026505	0.01555	
8	0.20486	5.26868	0.00816	0.00008283	0.09797	0.00122	0.00562	0.00074321	0.49437	0.54726	0.00352	0.03485	
9	0.15609	6.03604	0.00057440	0.00953	0.00367	0.84234	0.80963	0.00108	0.00482	0.00580	0.00014368	0.00139	
10	0.08465	8.19646	0.97042	0.00862	0.07279	0.01004	0.00001693	0.04501	0.42936	0.22808	0.00019351	0.00146	

Table 19. Maximum likelihood estimates for the model with three bins

	Anal	ysis	of Maxim	um Likelih	nood Estimat	tes	
				Standard	Wald		
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Exp(Est)
Intercept		1	3.1640	0.4721	44.9090	<.0001	23.666
trstprl	High value	1	-0.2238	0.2533	0.7807	0.3769	0.799
trstprl	Low value	1	-0.5671	0.1577	12.9318	0.0003	0.567
trstlgl	High value	1	0.6632	0.2438	7.4035	0.0065	1.941
trstlgl	Low value	1	0.0201	0.1463	0.0188	0.8909	1.020
polintr	High value	1	1.0380	0.3822	7.3781	0.0066	2.824
polintr	Low value	1	-0.8909	0.1570	32.2172	<.0001	0.410
agea	0	1	-0.5782	0.1948	8.8057	0.0030	0.561
agea	1	1	-0.2392	0.1604	2.2234	0.1359	0.787
pbldmn	Low value	1	-1.4626	0.4364	11.2326	0.0008	0.232

Outputs for Model III

Table 20. Correlation assessment for the model with five bins

	Correlati Prob > r			I = 1407					
	trstprl			trstprt	trstep	polintr	agea	badge	pbldmn
trstprl	1.00000	0.54673	0.70360	0.67016	0.18330	-0.10686	0.04894	-0.00254	0.01801
Trust in country's parliament		<.0001	<.0001	<.0001	<.0001	<.0001	0.0665	0.9242	0.4996
trstlgl	0.54673	1.00000	0.52302	0.51272	0.37743	-0.06638	-0.06152	-0.04178	-0.06872
Trust in the legal system	<.0001		<.0001	<.0001	<.0001	0.0128	0.0210	0.1172	0.0099
trstplt	0.70360	0.52302	1.00000	0.87502	0.32720	-0.13191	0.03269	-0.01897	-0.00891
Trust in politicians	<.0001	<.0001		<.0001	<.0001	<.0001	0.2204	0.4771	0.7385
trstprt	0.67016	0.51272	0.87502	1.00000	0.34854	-0.16106	0.02167	-0.02685	0.00584
Trust in political parties	<.0001	<.0001	<.0001		<.0001	<.0001	0.4167	0.3143	0.8269
trstep	0.18330	0.37743	0.32720	0.34854	1.00000	-0.06479	0.00318	-0.04451	-0.02551
Trust in the European Parliament	<.0001	<.0001	<.0001	<.0001		0.0151	0.9052	0.0951	0.3390
polintr	-0.10686	-0.06638	-0.13191	-0.16106	-0.06479	1.00000	-0.06313	0.06403	0.08137
How interested in politics	<.0001	0.0128	<.0001	<.0001	0.0151		0.0179	0.0163	0.0023
agea	0.04894	-0.06152	0.03269	0.02167	0.00318	-0.06313	1.00000	0.02203	0.02880
Age of respondent, calculated	0.0665	0.0210	0.2204	0.4167	0.9052	0.0179		0.4089	0.2804
badge	-0.00254	-0.04178	-0.01897	-0.02685	-0.04451	0.06403	0.02203	1.00000	0.61148
Worn or displayed campaign badge/sticker last 12 months	0.9242	0.1172	0.4771	0.3143	0.0951	0.0163	0.4089		<.0001
pbldmn	0.01801	-0.06872	-0.00891	0.00584	-0.02551	0.08137	0.02880	0.61148	1.00000
Taken part in lawful public demonstration last 12 months	0.4996	0.0099	0.7385	0.8269	0.3390	0.0023	0.2804	<.0001	

Table 21. Parameter estimates for the model with five bins

	Parameter	Esti	mates					
Variable	Label	DF	Parameter Estimate			Pr > t	Tolerance	Variance Inflation
Intercept	Intercept	1	0.95471	0.07606	12.55	<.0001		0
trstprl	Trust in country's parliament	1	-0.00582	0.00644	-0.90	0.3669	0.43647	2.29110
trstlgl	Trust in the legal system	1	-0.00839	0.00606	-1.38	0.1664	0.59315	1.68591
trstplt	Trust in politicians	1	0.00230	0.01103	0.21	0.8348	0.20670	4.83793
trstprt	Trust in political parties	1	-0.01452	0.01102	-1.32	0.1879	0.22006	4.54412
trstep	Trust in the European Parliament	1	-0.00705	0.00512	-1.38	0.1687	0.79846	1.25241
polintr	How interested in politics	1	0.10410	0.01312	7.93	<.0001	0.96219	1.03929
agea	Age of respondent, calculated	1	-0.00062339	0.00036556	-1.71	0.0884	0.98099	1.01938
badge	Worn or displayed campaign badge/sticker last 12 months	1	0.04317	0.03603	1.20	0.2311	0.62343	1.60402
pbldmn	Taken part in lawful public demonstration last 12 months	1	0.03539	0.03425	1.03	0.3016	0.61691	1.62099

Table 22. Collinearity assessment for model with five bins

	Collinearity Diagnostics												
		Condition				Pro	portion of V	ariation					
Number	Eigenvalue	Index	Intercept	trstprl	trstlgl	trstplt	trstprt	trstep	polintr	agea	badge	pbldmi	
1	8.27593	1.00000	0.00028755	0.00186	0.00193	0.00099722	0.00105	0.00259	0.00111	0.00292	0.00031673	0.0003481	
2	0.77844	3.26058	0.00160	0.02470	0.00443	0.02750	0.02837	0.00003570	0.01148	0.03094	0.00218	0.0023	
3	0.28154	5.42171	0.00017233	0.02488	0.04563	0.00524	0.00287	0.24840	0.00445	0.50966	0.00013854	0.0001182	
4	0.22932	6.00742	0.00164	0.07179	0.00245	0.00020293	0.00223	0.44542	0.03248	0.30531	0.00410	0.0044	
5	0.16670	7.04591	0.00092331	0.16822	0.42487	0.05413	0.08533	0.00020793	0.01264	0.06369	0.00319	0.00478	
6	0.10716	8.78813	0.00004108	0.68597	0.48193	0.01808	0.04038	0.27531	0.00174	0.02340	0.00003360	0.0005130	
7	0.07587	10.44424	0.00326	0.00239	0.00486	0.02680	0.01071	0.00609	0.74218	0.01885	0.04905	0.0562	
8	0.05264	12.53919	0.00001494	0.01839	0.00012941	0.86263	0.82222	0.00101	0.02970	0.00139	0.00493	0.0012	
9	0.01746	21.77353	0.71888	0.0008800	0.03353	0.00008328	0.00003517	0.01176	0.11797	0.03415	0.01263	0.5499	
10	0.01495	23.53024	0.27319	0.00171	0.00022976	0.00434	0.00680	0.00917	0.04624	0.00969	0.92344	0.37996	

Table 23. Maximum likelihood estimates for the model with five bins

	Analysis of Maximum Likelihood Estimates												
				Standard	Wald								
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Exp(Est)						
Intercept		1	1.7667	0.2508	49.6344	<.0001	5.852						
agea	0	1	-0.3223	0.1186	7.3804	0.0066	0.724						
agea	1	1	-0.0252	0.0978	0.0665	0.7965	0.975						
polintr	High value	1	1.0168	0.2941	11.9505	0.0005	2.764						
polintr	Low value	1	-1.0145	0.1790	32.1305	<.0001	0.363						
pbldmn	No	1	-0.6847	0.2198	9.7002	0.0018	0.504						