Projet Data Lakes & Data Integration

Membres du groupe

Adham ELBAHRAWY Anne-Lou CHARTIER Florian LEGRAND Thomas TISSERON

Database N°5 sur le server

Objectif

Le sujet du projet est de déterminer quel état est le plus dangeruex en Inde, pour ce faire nous allons nous baser sur 5 metriques :

- Le nombre de cas de viols
- Le vol de propriété
- Les cas de meurtres
- Le vol de véhicules
- Les violations du droit de l'Homme par la police

Import des packages

```
In [ ]:
        import pandas as pd
        import numpy as np
        import geopandas as gpd
        import matplotlib.pyplot as plt
        %matplotlib inline
        import warnings
        warnings.filterwarnings('ignore')
        from plotly.offline import download_plotlyjs, init_notebook_mode, plot, i
        import plotly.express as px
        import plotly.graph objects as go
        import plotly.figure factory as ff
        from plotly.colors import n colors
        from plotly.subplots import make_subplots
        init_notebook_mode(connected=True)
        import cufflinks as cf
        import seaborn as sns
        cf.go offline()
```

Source de Donnée :

https://www.kaggle.com/datasets/rajanand/cin-india/data

https://www.kaggle.com/datasets/nehaprables-data?rvi=1

Année 2001-2014 Libre d'accès

Viol

Import CSV

```
In [ ]: victims = pd.read_csv('Files/20_Victims_of_rape.csv')
```

Analyse au cours des années

```
In []: inc_victims = victims[victims['Subgroup']=='Victims of Incest Rape']

g = pd.DataFrame(victims.groupby(['Year'])['Rape_Cases_Reported'].sum().r
g.columns = ['Year', 'Cases Reported']

fig = px.bar(g,x='Year',y='Cases Reported',color_discrete_sequence=['blue fig.show()
```


On remarque que l'année la plus difficile est en 2005

Analyse au cours de l'année 2005 par état

On focus sur l'année 2005 pour voir que c'est **Madhya Pradesh** qui est l'état le plus victime des viols (5 842)

Analyse entre 2001 et 2010 par état

Madhya Pradesh est l'état ou il y a le plus de viol (58 512 viols)

Analyse par tranche d'âge

```
In []: above_50 = victims['Victims_Above_50_Yrs'].sum()
    ten_to_14 = victims['Victims_Between_10-14_Yrs'].sum()
    fourteen_to_18 = victims['Victims_Between_14-18_Yrs'].sum()
    eighteen_to_30 = victims['Victims_Between_18-30_Yrs'].sum()
    thirty_to_50 = victims['Victims_Between_30-50_Yrs'].sum()
    upto_10 = victims['Victims_Upto_10_Yrs'].sum()

age_grp = ['Jusqu à 10','10 a 14','14 a 18','18 a 30','30 a 50','au dessu age_group_vals = [upto_10,ten_to_14,fourteen_to_18,eighteen_to_30,thirty_

fig = go.Figure(data=[go.Pie(labels=age_grp, values=age_group_vals,sort=F marker=dict(colors=px.colors.qualitative.G10)

fig.show()
```


Analyse macro

On peut voir que les femmes entre 18 et 30 sont les plus affecté et celles qui ont plus de 50 ans les moins affecté

```
In []: g3_sorted = g1.sort_values(by='Cases Reported', ascending=False)

top_5_states = g3_sorted.head(5)

plt.figure(figsize=(10, 6))
plt.bar(top_5_states['State/UT'], top_5_states['Cases Reported'])
plt.xlabel('État')
plt.ylabel('Nombre de cas de viol')
plt.title('Top 5 des États avec le plus grand nombre de cas de viol')
plt.xticks(rotation=45) # Rotation des étiquettes d'État pour une meille
plt.show()
```


On peut voir ici à quel point Madhya Pradesh à des statistique élevé de viol

Analyse par ville

```
In [ ]: top_10_cities = g3_sorted.head(10)

fig = px.pie(top_10_cities, names='State/UT', values='Cases Reported', ti
fig.show()
```

Top 10 des état avec le plus de Cas de Viol

Sur un top 10 des Etats les plus touchés **Madhya Pradesh** est victime de 20 % des viols

Vol de propriété

Import CSV

In []: prop_theft = pd.read_csv('Files/10_Property_stolen_and_recovered.csv')

Évolution au cours des années

On peut observer sur le graphe ci-dessus que le vol a engendré des endomagements de plus en plus importants entre 2001 et 2010, c'est donc un critère essentiel a prendre en considérartion en parlant d'un cadre de vie serein.

Valeur des propriétés volées au cours des années

Ratio entre les properiétés récupérées vs non récupérés

D'après le diagramme en camembert ci-dessus on constate que dans les 3/4 des cas environ, les victimes de vols ne retrouvent pas leurs propriétés; ce qui prouve ncore que le vol pose un constitue une vraie problématique.

```
In [ ]: prop_theft_recovered = prop_theft['Cases_Property_Recovered'].sum()
    prop_theft_stolen = prop_theft['Cases_Property_Stolen'].sum()

prop_vals = [prop_theft_stolen,prop_theft_recovered]

fig = go.Figure(data=[go.Pie(title="Propriétés volées vs récupérées", lab
fig.show()
```


Comparaison par État

On passe à une analyse géopolitique du territoire indien pour déterminer l'État concerné par le plsu de vols.

In []: prop_theft_state.sort_values("Cases Reported", ascending=False).head(5)

[]:		State/UT	Cases Reported
	20	Maharashtra	1376814
	19	Madhya Pradesh	733524
	1	Andhra Pradesh	642822
	32	Uttar Pradesh	559970
	11	Gujarat	534060

En récupérant l'État le plus touché par les vols en Inde, on peut constater que celuici est le **Maharashtra** suivi directement par le **Madhya Pradesh**

Meurtre

Out

Import CSV

```
In [ ]: Meurtre = pd.read_csv('Files/32_Murder_victim_age_sex.csv')
```

Division des dataframes

```
In []: gm = Meurtre[Meurtre['Group_Name']=='Murder - Total Victims']
gmfemme = Meurtre[Meurtre['Group_Name']=='Murder - Female Victims']
gmhomme = Meurtre[Meurtre['Group_Name']=='Murder - Male Victims']
```

Analyse cartographique

```
In []: fig, axes = plt.subplots(1, 3, figsize=(15, 5))
         shp qdf = qpd.read file('Files/India states/Indian states.shp')
         merged1 = shp_gdf.set_index('st_nm').join(gm.set_index('Area_Name'))
         gm1 ax = axes[0]
         gml_ax.axis('off')
         gml_ax.set_title('Meurtre par état entre 2001 et 2010')
         merged1.plot(column='Victims Total', cmap='Reds', legend=True, ax=gm1 ax)
         merged2 = shp_gdf.set_index('st_nm').join(gmfemme.set_index('Area_Name'))
         gmfemme1 ax = axes[1]
         gmfemme1_ax.axis('off')
         gmfemmel_ax.set_title('Meurtre de femmes par état entre 2001 et 2010')
         merged2.plot(column='Victims_Total', cmap='Reds', legend=True, ax=gmfemme
         merged3 = shp_gdf.set_index('st_nm').join(gmhomme.set_index('Area_Name'))
         gmhomme1_ax = axes[2]
         gmhomme1 ax.axis('off')
         gmhommel ax.set title('Meurtre d hommes par état entre 2001 et 2010')
         merged3.plot(column='Victims Total', cmap='Reds', legend=True, ax=gmhomme
         plt.tight layout()
         plt.show()
                                                           Meurtre d hommes par état entre 2001 et 2010
          Meurtre par état entre 2001 et 2010
                                8000 Meurtre de femmes par état entre 2001 et 2010
                                7000
                                                           1200
                                                           800
```


Sur 347 854 meurtres entre 2001 et 2010

- 81 580 étais des femmes
- 266 274 étais des hommes

La région la plus dangereuse pour les hommes **et** pour les femmes est **Uttar Pradesh** avec respectivement 47 800 et 11 010 meurtres

On note également que l'État où les femmes sont le plus souvent victimes de meurtres est le **Maharashtra**

Vol de véhicules

Import CSV

```
In [ ]: auto_theft = pd.read_csv('Files/30_Auto_theft.csv')
```

Explorartion du dataframe

```
In []:
         auto theft.head(2)
Out[]:
            Area_Name Year Group_Name Sub_Group_Name Auto_Theft_Coordinated/Traced
             Andaman &
                                AT1-Motor
                                            1. Motor Cycles/
         0
                Nicobar 2001
                                  Cycles/
                                                                                   NaN
                                                  Scooters
                Islands
                                 Scooters
                                AT1-Motor
                Andhra
                                            1. Motor Cycles/
                        2001
         1
                                  Cycles/
                                                                                  136.0
               Pradesh
                                                  Scooters
                                 Scooters
In [ ]:
         auto theft.columns
         Index(['Area_Name', 'Year', 'Group_Name', 'Sub Group Name',
Out[ ]:
                 'Auto_Theft_Coordinated/Traced', 'Auto_Theft_Recovered',
                 'Auto Theft Stolen',
               dtype='object')
In [ ]:
         auto_theft['Year'].unique()
         array([2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010])
Out[ ]:
```

Analyse des vols de véhicule au cours des années

Valeur des véhicules volées au cours des années

Carte thermique par zone et année (pas de concentration précise à certains endroits)

```
In []: pivot_data = auto_theft.pivot_table(index='Area_Name', columns='Year', va
    plt.figure(figsize=(12, 8))
    sns.heatmap(pivot_data, cmap='coolwarm', annot=True, fmt="g")
    plt.title("Carte Thermique de Catégorie par Zone et Année")
    plt.show()
```


On remarque que Madhya Pradesh et le Maharashtra sont encore une fois une des zones les plus touchées, même si en 2010 la situation a l'air de s'améliorer pour ce premier

Véhicules récupérées vs jamais retrouvées

```
In [ ]: Auto_Theft_CT = auto_theft.groupby('Year')["Auto_Theft_Coordinated/Traced
        #Auto_Theft_Recovered = auto_theft.groupby('Year')["Auto_Theft_Recovered"
        Auto Theft Stolen = auto theft.groupby('Year')["Auto Theft Stolen"].sum()
        sns.lineplot(x = Auto_Theft_CT.index, y = Auto_Theft_CT)
        sns.lineplot(x = Auto_Theft_CT.index, y=Auto_Theft_Stolen).set(xlabel ="Y
        plt.legend(labels = ["Auto theft Coordinated/Traced", "Auto theft Stolen"
        <matplotlib.legend.Legend at 0x1391c7d50>
```

Out[]:

Auto theft Coordinated/Traced vs Stolen

Violation des droits humains par la police

Import CSV

```
In [ ]: police_crimes = pd.read_csv("Files/35_Human_rights_violation_by_police.cs
```

Nombre d'atteintes au droits de l'homme par années

Distribution des violations aux droits de l'homme par catégorie de délit

Nombre de poursuites judiciaires envers la police pour violation des droits humains (par années)

Nombre de condamnations envers la police pour violation des droits humains (par années)

Régions où les délits / crimes ont été commis

On en déduit que l'état le plus touché globalement est le Chhattisgarh

Conclusion

Après toutes les analyses précedentes, on peut déduire que les deux états où il serait plus ou moins également dangereux de vivre en Inde sont :

- Madhya Pradesh
- Maharashtra