Prototype networks for few-shot learning

Fabian Greavu, Machine Learning exam @ unifi

Summary

- ❖ Introduction
 - Challenge
 - Few-shot learning
- Project workflow
 - Datasets
 - Prototypical Networks
 - Centroids
 - NC, NS, NQ
 - Loss, Optimizer, scheduler
 - Training skeleton
 - Code
- Experiments
 - Omniglot
 - Mini Imagenet
 - ➤ Flowers102
 - Comparison
- Conclusion

Intro

Challenge

'classic' Classification Task

(Specialized into X classes)

Deploy

Our Challenge Classification Task

Few-shot learning

- A meta-learning technique to 'learn to learn'
- Uses **small amount** of occurrences
- Can perform with **high accurancies**

Dataset

Meta-learning definition

Fig. 1. Overview of the meta-learning landscape including algorithm design (meta-optimizer, meta-representation, meta-objective), and applications.

Project workflow

Datasets

- Omniglot: 1623 handwritten characters
 - 80 images per class
 - classes: (1032 train, 172 val, 464 test)
- Mini Imagenet: 100 objects
 - 600 images per class
 - classes: (64 train, 16 val, 20 test)
- Flowers 102: 102 flowers
 - 40-120 images per class
 - classes: (64 train, 16 val, 22 test)

ないかれた しなるめのろからならいのロコトかぶんさんしょしゅん Pm はりとはおまるもに大 ナレフピンンショネリのとす 3 m 8 m V HHHIINOS SAY CONTO CO CO FUNNO BORRE 1. 安立贫行均 写为 医马氏开干什么 1. 心心也出了与光主 4 2 3 4 5 7 6 8 6 8 8 8 [モル目句のかずめかマドエニエックがいひとと とどくて ゲスイスヒリ K. L. APX TYNOZ EBY = = om = TOVP L CUVET TO

Prototypical Networks

- Extracts features with a neural network
 - 4 CNN blocks: Conv out=64, ks=3 / BatchNorm2D / ReLu / MaxPool2D
- Learning: embeddings learning
 - Trained 100 episodes/iterations per epochs (200 ep) to learn embeddings

Prototypical Networks - centroids

- Use a small part of output as support, other as query
- Centroids are mean(support)
- Calculate distances between guery and centroids
- Calculate loss as mean of log_softmax of negative distances

Prototypical networks compute an M-dimensional representation $\mathbf{c}_k \in \mathbb{R}^M$, or prototype, of each class through an embedding function $f_{\phi} : \mathbb{R}^D \to \mathbb{R}^M$ with learnable parameters ϕ . Each prototype is the mean vector of the embedded support points belonging to its class:

$$\mathbf{c}_k = \frac{1}{|S_k|} \sum_{(\mathbf{x}_i, y_i) \in S_k} f_{\phi}(\mathbf{x}_i) \tag{1}$$

Given a distance function $d: \mathbb{R}^M \times \mathbb{R}^M \to [0, +\infty)$, prototypical networks produce a distribution over classes for a query point \mathbf{x} based on a softmax over distances to the prototypes in the embedding space:

$$p_{\phi}(y = k \mid \mathbf{x}) = \frac{\exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_k))}{\sum_{k'} \exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_{k'}))}$$
(2)

Learning proceeds by minimizing the negative log-probability $J(\phi) = -\log p_{\phi}(y=k\,|\,\mathbf{x})$ of the true class k via SGD. Training episodes are formed by randomly selecting a subset of classes from the training set, then choosing a subset of examples within each class to act as the support set and a subset of the remainder to serve as query points. Pseudocode to compute the loss $J(\phi)$ for a training episode is provided in Algorithm \square

Prototypical Networks - NC, NS, NQ

- NC: how many classes to use per each iteration on batch (or 'ways')
- NS: how many examples to use as support for centroids calculus (or 'shots')
- NQ: how many examples to use as queries for centroids calculus ('query')
 - 1 shots -> One-Shot Learning
 - 5 shots -> Few-Shot Learning ____ \mathbf{c}_1

Loss, optimizer, scheduler

- Loss: mean(log_softmax(-distances(query, centroids), targets)
- Optimizer: Adam with Ir=0.001 (faster and similar results to SGD)
- Scheduler: StepLr with step_size=20, gamma = 0.5

One batch

Training skeleton

```
model = PrototypicalNet()
loss = loss_function(x, y, NC, NS, NQ)
optim = StepLr()
for epoch in epochs:
for it in iterations:
 x, y = GetSample(NC, NS, NQ)
 out = model(x)
  ... loss
  backward()
for it in iterations:
 .... eval ....
```


Code

All code is available at github

- Full hyperparams control
- 3 available datasets
- results and plots
- simple train.py and test.py scripts

```
python train.py --dataset mini_imagenet \
       --epochs 200 \
       --gpu∖
       --train-num-class 30 \
       --test-num-class 5 \
       --number-support 5 \
       --train-num-query 15\
       --episodes-per-epoch 100 \
       --adam-lr 0.001 \
       --opt-step-size 20 \
       --opt-gamma 0.5 \
       --distance-function "euclidean" \
       --save-each 5
```

Experiments

Omniglot

5-shot

Mini Imagenet

5-shot

Flowers 102

5-shot

Comparison - distance metric

Dataset	Cosine (acc)	Euclidean (acc)
mini_imagenet	22.36	63.62
omniglot	23.48	97.77
flowers102	82.89	84.48

Comparison: 5-shot

Dataset	Paper res 5-way 5-shot (Acc)	Our res 5-way 5-shot (Acc)	Paper res 5-way 1-shot (Acc)	Our res 5-way 1-shot (Acc)
mini_imagenet	68.20	63.62	49.42	46.13
omniglot	98.80	97.77	98.8	91.93
flowers102	1	84.48	1	56.08

Comparison: 1-shot

Dataset	Paper res 5-way 5-shot (Acc)	Our res 5-way 5-shot (Acc)	Paper res 5-way 1-shot (Acc)	Our res 5-way 1-shot (Acc)
mini_imagenet	68.20	63.62	49.42	46.13
omniglot	98.80	97.77	98.8	91.93
flowers102	1	84.48	1	56.08

Conclusions

Conclusion

- Euclidean distance performs better than cosine similarity
- Paper results were correctly replicated

Future studies

- Add custom dataset option for training
- Implement proper torch.nn.Dataset and torch.nn.Sampler + torch.nn.DataLoader
- Try different fields than CV