Bayesian image reconstruction

Clayton W. Seitz

February 23, 2022

Outline

References

Bayesian image reconstruction

Say a fluorophore emits photons at a rate λ_n . This is the best we can do according to QM

For a CMOS array with quantum efficiency γ $[e^-/p]$ we have

$$I_n = \gamma g_n P_n(\lambda_n) + G_n(\mu_n; \sigma_n^2) + \beta$$

where μ_n [ADU] is the detector offset and g_n [ADU/ e^-] is the gain.

All we know is λ_n , so both the true signal I_n and the detected signal \hat{I}_n are stochastic processes.

$$P_{\lambda}(I_n, \hat{I}_n) = \frac{1}{Z} \frac{\exp(-\lambda_n) \lambda_n^p}{p!} \exp\left(-\frac{(D - g_n p - \mu_n)^2}{\sigma_n^2}\right)$$

Bayesian image reconstruction

Marginalizing over p gives the noise model as a function of the rate λ_p

$$P_{\lambda}(I_n) = \frac{1}{Z} \sum_{p} \frac{\exp(-\lambda_n) \lambda_n^p}{p!} \exp\left(-\frac{(D - g_n p - \mu_n)^2}{\sigma_n^2}\right)$$

References I