MATH 8510, Abstract Algebra I

Fall 2016

Exercises 4-1

Due date Thu 15 Sep 4:00PM

Shuai Wei

Exercise 1. Let G be a group. The *commutator subgroup* of G is the subgroup [G,G] of G generated by the set of all elements of the form $xyx^{-1}y^{-1}$:

$$[G,G] := \langle xyx^{-1}y^{-1} \mid x,y \in G \rangle.$$

Let $f: G \to H$ be a group homomorphism.

(a) Prove that $A \subseteq G \implies f(\langle A \rangle) = \langle f(A) \rangle$.

Proof.

First we show $f(\langle A \rangle)$ is a subgroup of H.

 $e_G \in \langle A \rangle$ since $\langle A \rangle$ is a subgroup of G.

Then $f(e_G) = e_H \in f(\langle A \rangle)$ since f is a homomorphism.

So $f(\langle A \rangle) \neq \emptyset$.

Let $y_1, y_2 \in f(\langle A \rangle)$.

Then $\exists x_1, x_2 \in \langle A \rangle$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$.

 $\langle A \rangle$ is a subgroup of G, so $x_2^{-1} \in \langle A \rangle$.

So $x_1x_2^{-1} \in \langle A \rangle$ and then $f(x_1x_2^{-1}) \in f(\langle A \rangle)$.

Since
$$f$$
 is a homomorphism,
 $f(x_1x_2^{-1}) = f(x_1)f(x_2^{-1}) = y_1f(x_2)^{-1} = y_1y_2^{-1} \in f(\langle A \rangle).$

Besides, $f(\langle A \rangle) \subset H$.

Thus, $f(\langle A \rangle)$ is a subgroup of H.

It is obvious that $f(A) \subseteq f(\langle A \rangle)$,

$$\langle f(A) \rangle \subseteq f(\langle A \rangle).$$

Let $x \in \langle A \rangle$, then $x = a_1^{\epsilon_1} a_2^{\epsilon_2} ... a_n^{\epsilon_n}$ for some $n \in \mathbb{N}$ and $a_1, a_2, a_n \in A$ and $\epsilon_1, \epsilon_2, ... \epsilon_n \in \mathbb{Z}$.

Then

$$f(x) = f(a_1^{\epsilon_1} a_2^{\epsilon_2} \dots a_n^{\epsilon_n})$$

$$= f(a_1)^{\epsilon_1} f(a_2)^{\epsilon_2} \dots f(a_n)^{\epsilon_n}$$

$$\in f(A) \subseteq \langle f(A) \rangle$$

since f is a homomorphism and $f(a_1)^{\epsilon_1}, f(a_2)^{\epsilon_2}, ..., f(a_n)^{\epsilon_n} \in f(A)$.

$$f(\langle A \rangle) \subseteq \langle f(A) \rangle.$$

Since both of $f(\langle A \rangle)$ and $\langle f(A) \rangle$ are subgroups of H, $f(\langle A \rangle) = \langle f(A) \rangle$

(b) Prove that $B \subseteq C \subseteq H \implies \langle B \rangle \subseteq \langle C \rangle$.

Proof.

$$B \subseteq C \subseteq H$$
, so $B \subseteq C \subseteq \langle C \rangle \subseteq H$.

So $B \subseteq \langle C \rangle$.

So we have

Thus,
$$\langle B \rangle \subseteq \langle C \rangle$$
 since $\langle C \rangle$ is a subgroup of H .

(c) Prove that G is abelian if and only if $[G, G] = \{e\}$.

Proof.

(a) Assume G is abelian. Then

$$\begin{split} [G,G] &= \langle xyx^{-1}y^{-1}|x,y \in G \rangle \\ &= \langle (xx^{-1})(yy^{-1})|x,y \in G \rangle \\ &= \langle e|x,y \in G \rangle \\ &= \{e\} \end{split}$$

(b) Assume $[G, G] = \{e\}$. By the definition of [G, G], we have $\forall x, y \in G$,

$$xyx^{-1}y^{-1} = e \iff xyx^{-1} = y.$$

 $\iff xy = yx.$

So G is abelian.

(d) Prove that $f([G,G]) \subseteq [H,H]$.

Proof. $\forall x,y \in G, xyx^{-1}y^{-1} \in [G,G], \\ f(xyx^{-1}y^{-1}) = f(x)f(y)f(x^{-1})f(y^{-1}) = f(x)f(y)f(x)^{-1}f(y)^{-1}. \\ \text{since } f \text{ is a homomorphism.} \\ \text{Moreover, } f(x), f(y) \in H, \text{ so } f(x)f(y)f(x)^{-1}f(y)^{-1} \in [H,H]. \\ \text{Thus, } f([G,G]) \subset [H,H].$

(e) Prove that if H is abelian, then $[G, G] \subseteq \text{Ker}(f)$.

Proof. $\forall x,y \in G, xyx^{-1}y^{-1} \in [G,G], \\ f(xyx^{-1}y^{-1}) = f(x)f(y)f(x^{-1})f(y^{-1}) = f(x)f(y)f(x)^{-1}f(y)^{-1}. \\ \text{since } f \text{ is a homomorphism.} \\ \text{Moreover, } f(x), f(y) \in H \text{ and } H \text{ is abelian.} \\ \text{Then } f(xyx^{-1}y^{-1}) = \Big(f(x)f(x)^{-1}\Big)\Big(f(y)f(y)^{-1}\Big) = e_He_H = e_H. \\ \text{Thus, } [G,G] \subseteq \text{Ker}(f).$

Exercise 2 (2.4.14). See the text for a hint for this exercise.

(a) Prove that every finitely generated subgroup of $(\mathbb{Q}, +)$ is cyclic.

Proof.

Assume H is finitely generated subgroup of $\mathbb Q$ Since $\forall q \in \mathbb Q, q = \frac{m}{n}$ for some $m,n \in \mathbb N$ and $n \neq 0$, H can be written as

$$H = \left\langle \frac{a_1}{b_1}, \frac{a_2}{b_2}, ..., \frac{a_n}{b_n} \right\rangle,$$

where $n \in \mathbb{N}$ and $a_i, b_i \in \mathbb{N}$ for i = 1, 2, ..., n. Since $(\mathbb{Q}, +)$ is abelian and $\frac{a_i}{b_i} \in \mathbb{Q}$ for i = 1, 2, ..., n,

$$(2,+)$$
 is abelian and $\frac{1}{b_i} \in \mathbb{Q}$ for $i=1,2,...,n$, $(1,2,...,n)$

$$\begin{split} H &= \left\langle \frac{a_1}{b_1}, \frac{a_2}{b_2}, ..., \frac{a_n}{b_n} \right\rangle \\ &= \left\{ \epsilon_1 \left(\frac{a_1}{b_1} \right) + \epsilon_2 \left(\frac{a_2}{b_2} \right) + ... + \epsilon_n \left(\frac{a_n}{b_n} \right) | \epsilon_1, \epsilon_2, ..., \epsilon_n \in \mathbb{Z} \right\}. \end{split}$$

Let $k = b_1 b_2 ... b_n \neq 0$ since $b_i \neq 0$ for i = 1, 2, ..., n.

We claim $H \leq \langle \frac{1}{k} \rangle$.

Let $h \in H$, then

$$h=z_1(\frac{a_1}{b_1})+z_2(\frac{a_2}{b_2})+...+z_n(\frac{a_n}{b_n}) \text{ for some } z_1,z_2,...,z_n \in \mathbb{Z}.$$

So

$$h = \frac{z_1 a_1 b_2 ... b_n + z_2 a_2 b_1 b_3 ... b_n + z_n a_n b_1 b_2 ... b_{n-1}}{b_1 b_2 ... b_n} = \frac{z}{k},$$
 where $z = z_1 a_1 b_2 ... b_n + z_2 a_2 b_1 b_3 ... b_n + z_n a_n b_1 b_2 ... b_{n-1} \in \mathbb{Z}$ since $z_i, a_i, b_i \in \mathbb{Z}$

for i = 1, 2, ..., n.

Thus $h \in \langle \frac{1}{k} \rangle$.

Therefore $H \subseteq \langle \frac{1}{k} \rangle$.

As a result, our claim $H \leq \langle \frac{1}{k} \rangle$ holds since $H, \langle \frac{1}{k} \rangle$ are both groups.

It is obvious $\langle \frac{1}{k} \rangle$ is cyclic.

So H is also cyclic.

(b) Prove that $(\mathbb{Q}, +)$ is not cyclic. Conclude that $(\mathbb{Q}, +)$ is not finitely generated.

Proof.

Assume $(\mathbb{Q}, +)$ is cyclic

Then $\exists a, b \in \mathbb{Z}$ and $b \neq 0$ such that $\mathbb{Q} = \langle \frac{a}{b} \rangle$.

Since $\frac{a}{2b} \in (\mathbb{Q}, +)$, $\frac{a}{2b} = n \frac{a}{b}$ for some $n \in \mathbb{Z}$. Then we have $n = \frac{1}{2}$, which is contradicted by $n \in \mathbb{Z}$.

Thus, $(\mathbb{Q}, +)$ is not cyclic.

Hence, we conclude that $(\mathbb{Q},+)$ is not finitely generated. Otherwise, by part (a), we have $(\mathbb{Q},+)$ is cyclic, which is a contradiction since we have shown $(\mathbb{Q},+)$ is not cyclic.