

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

3A D Varianta036

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $z = \sqrt{7} + i\sqrt{2}$.
- (4p) b) Să se calculeze distanța de la punctul D(1,3,5) la planul x+3y+5z+7=0.
- (4p) c) Să se determine ecuația tangentei la elipsa $x^2 + 5y^2 = 6$ în punctul P(1,1).
- (4p) d) Să se calculeze produsul scalar al vectorilor $\vec{v} = 2\vec{i} 3\vec{j}$ și $\vec{w} = 3\vec{i} + \vec{j}$
- (2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele A(-2,1), B(1,-2), și C(4,4).
- (2p) | f) Să se determine $a,b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe

$$\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^3 = a + bi .$$

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze $\sqrt{0.999}$ cu două zecimale exacte.
- (3p) b) Să se calculeze probabilitatea ca un număr $n \in \{0,1,2,3,4\}$ să verifice relația $3^n + 4^n > 5^n$.
- (3p) c) Să se calculeze suma $C_{10}^0 + C_{10}^1 + ... + C_{10}^{10}$
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $\log_2(x^2+3) = \log_2(2x^2+x+1)$.
- (3p) e) Să se calculeze suma rădăcinilor polinomului $f = X^3 X^2 + 1$.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 2x \cos x$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x)dx$.
- (3p) c) Să se arate că funcția f este strict crescătoare pe \mathbf{R} .
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
- (3p) e) Să se calculeze $\int_{0}^{1} \frac{f'(x)}{2 + f(x)} dx.$

1

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

În mulțimea $M_2(\mathbf{Z_3})$ se consideră submulțimea $G = \left\{ \begin{pmatrix} \hat{x} & \hat{y} \\ \hat{2}\hat{y} & \hat{x} \end{pmatrix} | \hat{x}, \hat{y} \in \mathbf{Z_3} \right\}$.

(4p) a) Să se verifice că
$$I_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix} \in G$$
 și $O_2 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix} \in G$

(4p) b) Să se arate că dacă
$$\hat{x}, \hat{y} \in \mathbf{Z}_3$$
 și $\hat{x}^2 - \hat{2}\hat{y}^2 = \hat{0}$, atunci $\hat{x} = \hat{y} = \hat{0}$.

(4p) c) Să se arate că dacă
$$A, B \in G$$
, atunci $A + B \in G$ și $A \cdot B \in G$

(2p)
$$| \mathbf{d} |$$
 Să se determine numărul elementelor mulțimii G .

(2p) e) Să se arate că dacă
$$A \in G$$
 și $A \neq O_2$, atunci există $B \in G$ astfel încât $A \cdot B = I_2$.

(2p) g) Să se dea un exemplu de structură de corp cu 25 de elemente.

SUBIECTUL IV (20p)

Se consideră funcțiile $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 1 + x + x^2 + ... + x^{2006}$ și

$$F: \mathbf{R} \to \mathbf{R}$$
, $F(x) = \int_{0}^{x} f(t)dt$, $\forall x \in \mathbf{R}$.

(4p) a) Să se calculeze
$$f(1)$$
.

(4p) b) Să se verifice că
$$(x-1)f(x) = x^{2007} - 1$$
, $\forall x \in \mathbb{R}$

(4p) c) Să se arate că
$$f(x) > 0$$
, $\forall x \in \mathbf{R}$.

(2p) d) Să se arate că
$$F'(x) > 0$$
, $\forall x \in \mathbf{R}$

Notăm cu $g : \mathbf{R} \to \mathbf{R}$ inversa funcției F și cu $a = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{2007}$.

(2p) **f**) Să se arate că
$$\int_{0}^{a} g(x) dx = a - \frac{2007}{2008}$$

(4p) g) Să se calculeze
$$\lim_{x\to\infty} \frac{g(x)}{x}$$
.