Engineering Mathematics

Real Analysis Functions Part 4

1. Neighborhood

Definition 1 – Let $a \in \mathbb{R}$. A neighborhood of a is an open interval $(a - \delta, a + \delta)$ for any $\delta > 0$.

Definition 2 – A deleted neighborhood of a is $(a - \delta, a + \delta) - \{a\}$.

2. Limit of a Function

Let f(x) be a real valued function defined on \mathbb{R} . If the value of f(x) gets closer to the value L, as x gets closer and closer to a, then we say that the limit of f(x) as x approaches a is L.

$$\lim_{x \to a} f(x) = L$$

In mathematics there is a formal definition to the existence of a limit of a function.

Definition of limit

Let f(x) be a real valued function defined on an open interval containing a possibly (but not necessarily) excluding a itself. We say that the limit of f(x) as x approaches a is L if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $|f(x) - L| < \varepsilon \ \forall x \in (a - \delta, a + \delta) - \{a\}$.

Note that an equivalent statement to this would be

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \varepsilon$$

$$\lim_{x \to a} f(x) = L \iff \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \varepsilon$$

There are some theorems related to limits.

Theorem 1

For any $a \in \mathbb{R}$, $\lim_{x \to a} x^n = a^n$ where n is a positive integer.

Theorem 2

Let $\lim_{x\to a} f(x) = L$ and $r \in \mathbb{R}$, then $\lim_{x\to a} rf(x) = rL$

Theorem 3

Let $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ then $\lim_{x\to a} f(x) + g(x) = L + M$

Theorem 4

Let $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ then $\lim_{x\to a} f(x) \cdot g(x) = LM$

Theorem 5

Let $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ then $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{L}{M}$

Theorem 6

Let $\lim_{x\to a} f(x) = L$ and $L \neq 0$, then $\lim_{x\to a} \frac{1}{f(x)} = \frac{1}{L}$

Theorem 7

Let $\lim_{x\to a} f_1(x) = L_1$, $\lim_{x\to a} f_2(x) = L_2$,, $\lim_{x\to a} f_n(x) = L_n$ then $\lim_{x\to a} f_1(x) + f_2(x) + \dots + f_n(x) = L_1 + L_2 + \dots + L_n$

Theorem 8

Let f(x) be a polynomial, then $\lim_{x\to a} f(x) = f(a)$

Exercise

Prove by definition.

1.
$$\lim_{x\to 1} 5 = 5$$

2.
$$\lim_{x\to 1} 3x + 1 = 4$$

3.
$$\lim_{x\to 2} 7x - 2 = 12$$

4.
$$\lim_{x\to 1} x^2 + x + 1 = 3$$

5.
$$\lim_{x \to -1} 2x^2 - x - 2 = 1$$

6.
$$\lim_{x\to 1} \frac{1}{x+1} = \frac{1}{2}$$

7.
$$\lim_{x\to 2} \frac{1}{3x-1} = \frac{1}{5}$$

8.
$$\lim_{x \to 1} \frac{x}{x+3} = \frac{1}{4}$$

9.
$$\lim_{x \to 2} \frac{2x - 1}{x + 1} = 1$$

$$10.\lim_{x\to 1}\frac{1}{2x-1}=1$$

11.
$$\lim_{x\to 2} x^3 = 8$$

$$12.\lim_{x\to 1}\frac{2x+1}{x^2+2x+2}=\frac{3}{5}$$

13.
$$\lim_{x \to -1} \frac{3x+4}{x^2+x+1} = 1$$

----End of the Tutorial----

Dasun Madushan

B.Sc. Eng. (Hons) – 1st Class Electronic & Telecommunication Engineering University of Moratuwa