Persistent Stiefel-Whitney classes

Raphaël Tinarrage

Applied Algebraic Topology Research Network seminar, 09/12/2020

We observe a point cloud X, that we suppose close to a submanifold \mathcal{M} .

Let X^t denote the t-thickening of X. We consider the Čech filtration of X, denoted $V[X] = (X^t)_{t \geq 0}$.

3/25 (1/7)

Persistent homology allows to estimate the homology of a space. However, over $\mathbb{Z}/2\mathbb{Z}$, homology may not be fine enough to distinguish between | non-homeomorphic spaces. non-homotopy equivalent spaces.

Klein bottle

Persistent homology allows to estimate the *homology* of a space. However, over $\mathbb{Z}/2\mathbb{Z}$, homology may not be fine enough to distinguish between non-homomorphic spaces. non-homotopy equivalent spaces.

	Torus	Klein bottle
$H_i(\mathcal{M}, \mathbb{Z}/2\mathbb{Z}), i \ge 0$	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0 ,	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0 ,
$H_i(\mathcal{M}, \mathbb{Z}/p\mathbb{Z}), i \ge 0$	$\mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$, $\mathbb{Z}/p\mathbb{Z}$, 0 ,	$\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$, 0, 0,
$H_i(\mathcal{M}, \mathbb{Z}), i \ge 0$	\mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z} , 0 ,	\mathbb{Z} , $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, 0 , 0 ,
$H^*(\mathcal{M},\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^2,y^2\rangle$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^3,y^2,x^2y\rangle$
$w_1(au)$	0	x

3/25 (3/7)

Persistent homology allows to estimate the *homology* of a space. However, over $\mathbb{Z}/2\mathbb{Z}$, homology may not be fine enough to distinguish between non-homomorphic spaces. non-homotopy equivalent spaces.

homology groups over $\mathbb{Z}/p\mathbb{Z}$	Torus	Klein bottle
$H_i(\mathcal{M}, \mathbb{Z}/2\mathbb{Z}), i \ge 0$	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0 ,	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0 ,
$H_i(\mathcal{M}, \mathbb{Z}/p\mathbb{Z}), i \ge 0$	$\mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$, $\mathbb{Z}/p\mathbb{Z}$, 0 ,	$\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$, 0, 0,
$H_i(\mathcal{M}, \mathbb{Z}), i \ge 0$	\mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z} , 0 ,	\mathbb{Z} , $\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, 0 , 0 ,
$H^*(\mathcal{M},\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^2,y^2\rangle$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^3,y^2,x^2y\rangle$
$w_1(au)$	0	x

3/25 (4/7)

Persistent homology allows to estimate the *homology* of a space. However, over $\mathbb{Z}/2\mathbb{Z}$, homology may not be fine enough to distinguish between non-homotopy equivalent spaces.

homology groups over $\mathbb Z$	Torus	Klein bottle
$H_i(\mathcal{M}, \mathbb{Z}/2\mathbb{Z}), i \ge 0$	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0 ,	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0 ,
$H_i(\mathcal{M}, \mathbb{Z}/p\mathbb{Z}), i \ge 0$	$\mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$, $\mathbb{Z}/p\mathbb{Z}$, 0 ,	$\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$, 0, 0,
$H_i(\mathcal{M}, \mathbb{Z}), i \ge 0$	\mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z} , 0 ,	\mathbb{Z} , $\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, 0 , 0 ,
$H^*(\mathcal{M},\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^2,y^2\rangle$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^3,y^2,x^2y\rangle$
$w_1(au)$	0	x

3/25 (5/7)

Persistent homology allows to estimate the *homology* of a space. However, over $\mathbb{Z}/2\mathbb{Z}$, homology may not be fine enough to distinguish between non-homotopy equivalent spaces.

	cohomology algebra over $\mathbb{Z}/2\mathbb{Z}$	Torus	Klein bottle
	$H_i(\mathcal{M}, \mathbb{Z}/2\mathbb{Z}), i \ge 0$	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0 ,	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0 ,
	$H_i(\mathcal{M}, \mathbb{Z}/p\mathbb{Z}), i \ge 0$	$\mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$, $\mathbb{Z}/p\mathbb{Z}$, 0 ,	$\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$, 0, 0,
	$H_i(\mathcal{M}, \mathbb{Z}), i \ge 0$	\mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z} , 0 ,	\mathbb{Z} , $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, 0 , 0 ,
	$H^*(\mathcal{M},\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^2,y^2\rangle$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^3,y^2,x^2y\rangle$
	$w_1(au)$	0	x

Persistent homology allows to estimate the *homology* of a space. However, over $\mathbb{Z}/2\mathbb{Z}$, homology may not be fine enough to distinguish between non-homomorphic spaces. non-homotopy equivalent spaces.

	first Stiefel-Whitney class of tangent bundle	Torus	Klein bottle
	$H_i(\mathcal{M}, \mathbb{Z}/2\mathbb{Z}), i \ge 0$	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0 ,	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0 ,
	$H_i(\mathcal{M}, \mathbb{Z}/p\mathbb{Z}), i \ge 0$	$\mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$, $\mathbb{Z}/p\mathbb{Z}$, 0 ,	$\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$, 0, 0,
	$H_i(\mathcal{M}, \mathbb{Z}), i \ge 0$	\mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z} , 0,	\mathbb{Z} , $\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, 0 , 0 ,
	$H^*(\mathcal{M},\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^2,y^2\rangle$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^3,y^2,x^2y\rangle$
1	$w_1(au)$	0	x

3/25 (7/7)

Persistent homology allows to estimate the *homology* of a space. However, over $\mathbb{Z}/2\mathbb{Z}$, homology may not be fine enough to distinguish between non-homotopy equivalent spaces.

first Stiefel-Whitney class of tangent bundle

Aim of this talk:

To build a persistent framework for Stiefel-Whitney classes.

I - Stiefel-Whitney classes

II - Persistent Stiefel-Whitney classes

III - Algorithmic considerations

Definition:

A vector bundle (of dimension d) over X is a surjection $\pi: E \to X$, with E a topological space, such that:

- the fibers $\pi^{-1}(\{x\}), x \in X$, are vector spaces of dimension d,
- \bullet π satisfies a local triviality condition.

Local triviality condition: for all $x \in X$, there exists a neigborhood $U \subset X$ and a homeomorphism $h \colon U \times \mathbb{R}^d \to \pi^{-1}(U)$ such that for all $y \in U$, $h(y,\cdot)$ is an isomorphism of vector spaces.

Normal bundle of the circle

Möbius strip (universal bundle)

Definition:

A vector bundle (of dimension d) over X is a surjection $\pi: E \to X$, with E a topological space, such that:

- the fibers $\pi^{-1}(\{x\}), x \in X$, are vector spaces of dimension d,
- \bullet π satisfies a local triviality condition.

Local triviality condition: for all $x \in X$, there exists a neigborhood $U \subset X$ and a homeomorphism $h \colon U \times \mathbb{R}^d \to \pi^{-1}(U)$ such that for all $y \in U$, $h(y,\cdot)$ is an isomorphism of vector spaces.

For every vector bundle $\pi\colon E\to X$, there exists a sequence of cohomology classes

$$w_0(\pi) \in H^0(X, \mathbb{Z}/2\mathbb{Z}),$$

$$w_1(\pi) \in H^1(X, \mathbb{Z}/2\mathbb{Z}),$$

$$w_2(\pi) \in H^2(X, \mathbb{Z}/2\mathbb{Z}),$$

$$w_3(\pi) \in H^3(X, \mathbb{Z}/2\mathbb{Z}),$$

...

that satisfy the following axioms:

- **Axiom 1:** $w_0(\pi)$ is equal to $1 \in H^0(X, \mathbb{Z}/2\mathbb{Z})$, and if π is of dimension d then $w_i(\pi) = 0$ for i > d.
- **Axiom 2:** if $f: \pi \to \rho$ is a bundle map, then $w_i(\pi) = f^*(w_i(\rho))$, where $f^*: H^*(X) \leftarrow H^*(Y)$ is the map induced in cohomology by f.
- **Axiom 3:** if π, ρ are vector bundles over the same base space X, then for all $k \in \mathbb{N}$, $w_k(\pi \oplus \rho) = \sum_{i=0}^k w_i(\pi) \smile w_{k-i}(\rho)$ (cup product).
- **Axiom 4:** $w_1(\gamma_1^1) \neq 0$, where γ_1^1 denotes the Möbius strip bundle over the circle.

For every vector bundle $\pi\colon E\to X$, there exists a sequence of cohomology classes

$$w_0(\pi) \in H^0(X, \mathbb{Z}/2\mathbb{Z}),$$

 $w_1(\pi) \in H^1(X, \mathbb{Z}/2\mathbb{Z}),$
 $w_2(\pi) \in H^2(X, \mathbb{Z}/2\mathbb{Z}),$
 $w_3(\pi) \in H^3(X, \mathbb{Z}/2\mathbb{Z}),$

...

Basic properties:

- If two bundles are isomorphic, then their Stiefel-Whitney classes are equal.
- If π admits a (nowhere vanishing) section, then $w_d(\pi) = 0$.
- If π admits k independent (nowhere vanishing) sections, then $w_d(\pi) = ... w_{d-k+1}(\pi) = 0$.

Topological information:

- If τ is the tangent bundle of a manifold \mathcal{M} , then \mathcal{M} is orientable if and only if $w_1(\tau) = 0$.
- \bullet \mathcal{M} admits a spin structure if and only if $w_1(\tau)=0$ and $w_2(\tau)=0$.

Let $d, n \geq 1$.

The Grassmannian $\mathcal{G}_d(\mathbb{R}^n)$ is the set of d-dimensional linear subspaces of \mathbb{R}^n . It can be endowed with a manifold structure, of dimension d(n-d).

$$\mathcal{G}_1(\mathbb{R}^3) \simeq \mathcal{G}_2(\mathbb{R}^3)$$

A construction of $\mathcal{G}_1(\mathbb{R}^2)$:

Let $d, n \geq 1$.

The Grassmannian $\mathcal{G}_d(\mathbb{R}^n)$ is the set of d-dimensional linear subspaces of \mathbb{R}^n . It can be endowed with a manifold structure, of dimension d(n-d).

Let \mathbb{R}^{∞} denotes the space of sequences of real numbers that are zero from some point. We can also define the *infinite Grassmannian* $\mathcal{G}_d(\mathbb{R}^{\infty})$.

The infinite Grassmannian has $\mathbb{Z}/2\mathbb{Z}$ -cohomology

$$H^*(\mathcal{G}_d(\mathbb{R}^\infty)) = \mathbb{Z}/2\mathbb{Z}[w_1, ..., w_d]$$

where w_i has degree i.

In particular, $H^*(\mathcal{G}_1(\mathbb{R}^\infty)) = \mathbb{Z}/2\mathbb{Z}[w_1]$.

Let $d, n \geq 1$.

The Grassmannian $\mathcal{G}_d(\mathbb{R}^n)$ is the set of d-dimensional linear subspaces of \mathbb{R}^n . It can be endowed with a manifold structure, of dimension d(n-d).

$$\mathcal{G}_1(\mathbb{R}^3) \simeq \mathcal{G}_2(\mathbb{R}^3)$$

Let $M(\mathbb{R}^n)$ be the space of $n \times n$ matrices.

For every linear subspace $T \subset \mathbb{R}^n$, let p_T denotes the orthogonal projection matrix on T.

The application $T \in \mathcal{G}_d(\mathbb{R}^n) \longmapsto p_T \in \mathrm{M}(\mathbb{R}^n)$ is an embedding.

Hence $\mathcal{G}_d(\mathbb{R}^n)$ can be seen as a submanifold of $\mathrm{M}(\mathbb{R}^n)$.

Correspondence vector bundles / classifying maps:

Let X is a topological space. From any continuous map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^n)$, we can build a d-dimensional vector bundle structure on X.

Conversely, for any vector bundle $\pi \colon E \to X$, there exists a corresponding map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^{\infty})$, called a *classifying map*.

Moreover, if X is compact, we can choose $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$ for m large enough.

(Second) Definition:

A vector bundle over X is a continuous map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^\infty)$ or $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$.

Stiefel-Whitney classes (construction) $_{9/25}$ (1/2)

Let $\xi: X \to \mathcal{G}_d(\mathbb{R}^{\infty})$ be a vector bundle, and $\xi^*: H^*(X, \mathbb{Z}/2\mathbb{Z}) \leftarrow H^*(\mathcal{G}_d(\mathbb{R}^{\infty}), \mathbb{Z}/2\mathbb{Z})$ the map induced in cohomology.

Recall that $H^*(\mathcal{G}_d(\mathbb{R}^\infty)) = \mathbb{Z}/2\mathbb{Z}[w_1,...,w_d]$.

The Stiefel-Whitney classes of the vector bundle $\xi\colon X\to\mathcal{G}_d(\mathbb{R}^\infty)$ can be defined as

$$w_0(\xi) = \xi^*(\omega_0)$$

$$w_1(\xi) = \xi^*(\omega_1)$$

$$w_2(\xi) = \xi^*(\omega_2)$$

. . .

Normal bundle of the circle

Stiefel-Whitney classes (construction) _{9/25 (2/2)}

Let $\xi: X \to \mathcal{G}_d(\mathbb{R}^{\infty})$ be a vector bundle, and $\xi^*: H^*(X, \mathbb{Z}/2\mathbb{Z}) \leftarrow H^*(\mathcal{G}_d(\mathbb{R}^{\infty}), \mathbb{Z}/2\mathbb{Z})$ the map induced in cohomology.

Recall that $H^*(\mathcal{G}_d(\mathbb{R}^\infty)) = \mathbb{Z}/2\mathbb{Z}[w_1,...,w_d]$.

The Stiefel-Whitney classes of the vector bundle $\xi\colon X\to\mathcal{G}_d(\mathbb{R}^\infty)$ can be defined as

$$w_0(\xi) = \xi^*(\omega_0)$$

$$w_1(\xi) = \xi^*(\omega_1)$$

$$w_2(\xi) = \xi^*(\omega_2)$$

. .

I - Stiefel-Whitney classes

II - Persistent Stiefel-Whitney classes

III - Algorithmic considerations

Sampling model for vector bundles:

Let n, m, d > 0. We observe \mid a point cloud $X \subset \mathbb{R}^n$ and a map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$.

Sampling model for vector bundles:

Let n, m, d > 0. We observe \mid a point cloud $X \subset \mathbb{R}^n$ and a map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$.

Defining a vector bundle filtration:

Let $(X^t)_{t\geq 0}$ be the Čech filtration of X. We want to define maps $\xi^t\colon X^t\to \mathcal{G}_d(\mathbb{R}^m)$.

Sampling model for vector bundles:

Let
$$n, m, d > 0$$
.
We observe \mid a point cloud $X \subset \mathbb{R}^n$ and a map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$.

Defining a vector bundle filtration:

Let $(X^t)_{t\geq 0}$ be the Čech filtration of X. We want to define maps $\xi^t\colon X^t\to \mathcal{G}_d(\mathbb{R}^m)$.

A persistent viewpoint (2^{nd} attempt) $_{12/25}$ (1/3)

Sampling model for vector bundles:

Let n, m, d > 0. We observe a point cloud $X \subset \mathbb{R}^n$ a point cloud $\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$.

$$\check{X} = \{(x, \xi(x)), x \in X\}$$

A persistent viewpoint (2^{nd} attempt) $_{12/25}$ ($_{2/3}$)

Sampling model for vector bundles:

Let n, m, d > 0. We observe a point cloud $X \subset \mathbb{R}^n$ a point cloud $\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$.

$$\check{X} = \{(x, \xi(x)), x \in X\}$$

- By embedding $\mathcal{G}_d(\mathbb{R}^m) \hookrightarrow \mathrm{M}(\mathbb{R}^m)$, we can see \check{X} as a subset of $\mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$.
- Let $(\check{X}^t)_{t\geq 0}$ be the Čech filtration of \check{X} in the ambient space $\mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$, endowed with the metric $\|(x,A)\| = \sqrt{\|x\|_2^2 + \|A\|_{\mathrm{F}}^2}$.
- ullet We can define extended maps ξ^t as follows:

$$\xi^t \colon \check{X}^t \longrightarrow \mathcal{G}_d(\mathbb{R}^m)$$

 $(x, A) \longmapsto \operatorname{proj}(A, \mathcal{G}_d(\mathbb{R}^m))$

A persistent viewpoint (2^{nd} attempt) $_{12/25}$ ($_{3/3}$)

Sampling model for vector bundles:

Let n, m, d > 0. We observe a point cloud $X \subset \mathbb{R}^n$ a point cloud $\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$.

$$\check{X} = \{(x, \xi(x)), x \in X\}$$

- ullet By embedding $\mathcal{G}_d(\mathbb{R}^m)\hookrightarrow \mathrm{M}(\mathbb{R}^m)$, we can see \check{X} as a subset of $\mathbb{R}^n imes \mathrm{M}(\mathbb{R}^m)$.
- Let $(\check{X}^t)_{t\geq 0}$ be the Čech filtration of \check{X} in the ambient space $\mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$, endowed with the metric $\|(x,A)\| = \sqrt{\|x\|_2^2 + \|A\|_{\mathrm{F}}^2}$.
- We can define extended maps ξ^t as follows:

$$\xi^t : \check{X}^t \longrightarrow \mathcal{G}_d(\mathbb{R}^m)$$

 $(x, A) \longmapsto \operatorname{proj}(A, \mathcal{G}_d(\mathbb{R}^m))$

Definition:

The data of $(\check{X}^t)_{t\geq 0}$ and $(\xi^t\colon \check{X}^t\to \mathcal{G}_d(\mathbb{R}^m))_{t\geq 0}$ is called the $\check{C}ech$ bundle filtration of \check{X} .

Let
$$|\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$$
, $(\check{X}^t)_t, (\xi^t)_t$ its Čech bundle filtration, $i \geq 0$.

For every $t \geq 0$, (\check{X}^t, ξ^t) is a vector bundle. Its i^{th} Stiefel-Whitney class can be defined as

$$w_i(\xi^t) = (\xi^t)^*(w_i),$$

where $(\xi^t)^* : H^*(\check{X}^t) \leftarrow H^*(\mathcal{G}_d(\mathbb{R}^m))$.

Definition:

The i^{th} persistent Stiefel-Whitney class of \check{X} is the collection $w_i(\check{X}) = (w_i(\xi^t))_{t>0}$.

Let
$$|\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$$
, $(\check{X}^t)_t, (\xi^t)_t$ its Čech bundle filtration, $i \geq 0$.

For every $t \geq 0$, (\check{X}^t, ξ^t) is a vector bundle. Its i^{th} Stiefel-Whitney class can be defined as

$$w_i(\xi^t) = (\xi^t)^*(w_i),$$

where $(\xi^t)^* : H^*(\check{X}^t) \leftarrow H^*(\mathcal{G}_d(\mathbb{R}^m))$.

Definition:

The i^{th} persistent Stiefel-Whitney class of \check{X} is the collection $w_i(\check{X}) = (w_i(\xi^t))_{t \geq 0}$.

Issue: ξ^t is not well-defined for every $t \geq 0...$

The extended maps ξ^t are defined as

$$\xi^t : \check{X}^t \longrightarrow \mathcal{G}_d(\mathbb{R}^m)$$

 $(x, A) \longmapsto \operatorname{proj}(A, \mathcal{G}_d(\mathbb{R}^m))$

But $\operatorname{proj}(A, \mathcal{G}_d(\mathbb{R}^m))$ does not make sense if A lies in the medial axis of $\mathcal{G}_d(\mathbb{R}^m)$.

There exists a maximal value t^{\max} such that for all $t \in [0, t^{\max})$, the maps ξ^t are well-defined.

The extended maps ξ^t are defined as

$$\xi^t : \check{X}^t \longrightarrow \mathcal{G}_d(\mathbb{R}^m)$$

 $(x, A) \longmapsto \operatorname{proj}(A, \mathcal{G}_d(\mathbb{R}^m))$

But $\operatorname{proj}(A, \mathcal{G}_d(\mathbb{R}^m))$ does not make sense if A lies in the medial axis of $\mathcal{G}_d(\mathbb{R}^m)$.

There exists a maximal value t^{\max} such that for all $t \in [0, t^{\max})$, the maps ξ^t are well-defined.

Lemma

For any $A \in \mathcal{M}(\mathbb{R}^m)$, let A^s denote the matrix $A^s = \frac{1}{2}(A + {}^tA)$, and let $\lambda_1(A^s), ..., \lambda_n(A^s)$ be the eigenvalues of A^s in decreasing order.

The distance from A to $\operatorname{med} (\mathcal{G}_d(\mathbb{R}^m))$ is $\frac{\sqrt{2}}{2} |\lambda_d(A^s) - \lambda_{d+1}(A^s)|$.

The persistent Stiefel-Whitney class $(w_i(\xi^t))_t$ is defined for every $t \in [0, t^{\text{max}})$.

Let $\check{X} \subset \mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$, and $w_i(\check{X})$ its i^{th} persistent Stiefel-Whitney class.

Definition

The *lifebar* of the persistent Stiefel-Whitney class $w_i(\check{X}) = (w_i(\xi^t))_{t < t^{\text{max}}}$ is the set

$$\{t \in [0, t^{\max}), w_i(\xi^t) \neq 0\}.$$

the lifebar is an interval!

Let $\check{X} \subset \mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$, and $w_i(\check{X})$ its i^{th} persistent Stiefel-Whitney class.

Definition

The *lifebar* of the persistent Stiefel-Whitney class $w_i(\check{X}) = (w_i(\xi^t))_{t < t^{\text{max}}}$ is the set

$$\{t \in [0, t^{\max}), w_i(\xi^t) \neq 0\}$$
.

the lifebar is an interval!

Example: lifebars of first persistent Stiefel-Whitney classes

Theorem

If two subsets $\check{X}, \check{Y} \subset \mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$ satisfies $\mathrm{d}_{\mathrm{H}}\left(\check{X}, \check{Y}\right) \leq \epsilon$, then for all $i \geq 0$, the lifebars of their i^{th} Stiefel-Whitney classes are ϵ -close.

If $u: \mathcal{M}_0 \to \mathcal{M} \subset \mathbb{R}^n$ is an immersion and $\xi: \mathcal{M}_0 \to \mathcal{G}_d(\mathbb{R}^m)$ a vector bundle, consider the set

$$\check{\mathcal{M}} = \{(u(x_0), \xi(x_0)), x_0 \in \mathcal{M}_0\} \subset \mathbb{R}^n \times \mathcal{M}(\mathbb{R}^m).$$

Theorem

Let $X \subset \mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$ be any subset such that $\mathrm{d}_\mathrm{H}\left(X,\check{\mathcal{M}}\right) \leq \epsilon$. Then for every $t \in [4\epsilon, \mathrm{reach}\left(\check{\mathcal{M}}\right) - 3\epsilon)$, the composition of inclusions $\mathcal{M}_0 \hookrightarrow \check{\mathcal{M}} \hookrightarrow X^t$ induces an isomorphism $H^*(\mathcal{M}_0) \leftarrow H^*(X^t)$ which sends the i^{th} persistent Stiefel-Whitney class $w_i^t(X)$ of the Čech bundle filtration of X to the i^{th} Stiefel-Whitney class of (\mathcal{M}_0, p) .

Normal bundle of the torus

Normal bundle of the Klein bottle

If $u: \mathcal{M}_0 \to \mathcal{M} \subset \mathbb{R}^n$ is an immersion and $\xi: \mathcal{M}_0 \to \mathcal{G}_d(\mathbb{R}^m)$ a vector bundle, consider the set

$$\check{\mathcal{M}} = \{(u(x_0), \xi(x_0)), x_0 \in \mathcal{M}_0\} \subset \mathbb{R}^n \times \mathcal{M}(\mathbb{R}^m).$$

Theorem

Let $X \subset \mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$ be any subset such that $\mathrm{d}_\mathrm{H}\left(X,\check{\mathcal{M}}\right) \leq \epsilon$. Then for every $t \in [4\epsilon, \mathrm{reach}\left(\check{\mathcal{M}}\right) - 3\epsilon)$, the composition of inclusions $\mathcal{M}_0 \hookrightarrow \check{\mathcal{M}} \hookrightarrow X^t$ induces an isomorphism $H^*(\mathcal{M}_0) \leftarrow H^*(X^t)$ which sends the i^{th} persistent Stiefel-Whitney class $w_i^t(X)$ of the Čech bundle filtration of X to the i^{th} Stiefel-Whitney class of (\mathcal{M}_0, p) .

I - Stiefel-Whitney classes

II - Persistent Stiefel-Whitney classes

III - Algorithmic considerations

Simplicial approximation

Let
$$|\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$$
 or $\check{X} \subset \mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$, $(\check{X}^t)_t, (\xi^t)_t$ its Čech bundle filtration, $(w_i(\xi^t))_t$ its i^{th} persistent Stiefel-Whitney class.

$$\xi^{t} : \check{X}^{t} \longrightarrow \mathcal{G}_{d}(\mathbb{R}^{m})$$

$$(\xi^{t})^{*} : H^{*}(\check{X}^{t}) \longleftarrow H^{*}(\mathcal{G}_{d}(\mathbb{R}^{m}))$$

$$w_{i}(\xi^{t}) \longleftarrow w_{i}$$

Problem:

Compute $w_i(\xi^t)$ on a computer.

Let
$$|\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$$
 or $\check{X} \subset \mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$, $(\check{X}^t)_t, (\xi^t)_t$ its Čech bundle filtration, $(w_i(\xi^t))_t$ its i^{th} persistent Stiefel-Whitney class.

$$\xi^{t} : \check{X}^{t} \longrightarrow \mathcal{G}_{d}(\mathbb{R}^{m})$$

$$(\xi^{t})^{*} : H^{*}(\check{X}^{t}) \longleftarrow H^{*}(\mathcal{G}_{d}(\mathbb{R}^{m}))$$

$$w_{i}(\xi^{t}) \longleftarrow w_{i}$$

Problem:

Compute $w_i(\xi^t)$ on a computer.

Suppose that we have triangulations S^t of \check{X}^t and G of $\mathcal{G}_d(\mathbb{R}^m)$.

nerve of the union of balls

see later

Simplicial approximation

Let
$$|\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$$
 or $\check{X} \subset \mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$, $(\check{X}^t)_t, (\xi^t)_t$ its Čech bundle filtration, $(w_i(\xi^t))_t$ its i^{th} persistent Stiefel-Whitney class.

$$\xi^{t} : \check{X}^{t} \longrightarrow \mathcal{G}_{d}(\mathbb{R}^{m})$$

$$(\xi^{t})^{*} : H^{*}(\check{X}^{t}) \longleftarrow H^{*}(\mathcal{G}_{d}(\mathbb{R}^{m}))$$

$$w_{i}(\xi^{t}) \longleftarrow w_{i}$$

Problem:

Compute $w_i(\xi^t)$ on a computer.

Suppose that we have triangulations S^t of \check{X}^t and G of $\mathcal{G}_d(\mathbb{R}^m)$. Denote their topological realizations $|S^t|$ and |G|.

We look for a simplicial map $p^t \colon S^t \to G$ that 'corresponds to' ξ^t .

The map g satisfies the star condition if:

for every vertex $\mathbf{v} \in S^t$, there exists a vertex $\mathbf{w} \in G$ such that $g(|\overline{\mathrm{St}}(\mathbf{v})|) \subseteq |\mathrm{St}(\mathbf{w})|$.

The map g satisfies the star condition if:

for every vertex $\mathbf{v} \in S^t$, there exists a vertex $\mathbf{w} \in G$ such that $g(|\overline{\mathrm{St}}(\mathbf{v})|) \subseteq |\mathrm{St}(\mathbf{w})|$.

If this is the case, let $f: S^t \to G$ be any map between vertex sets such that:

for every vertex $\mathbf{v} \in S^t$, we have $g(|\overline{\mathrm{St}}(\mathbf{v})|) \subseteq |\mathrm{St}(f(\mathbf{v}))|$.

Such a map f is called a *simplicial approximation* to g. It is a simplicial map. Its topological realization |f| is homotopic to g.

The map g satisfies the star condition if:

for every vertex $\mathbf{v} \in S^t$, there exists a vertex $\mathbf{w} \in G$ such that $g(|\overline{\mathrm{St}}(\mathbf{v})|) \subseteq |\mathrm{St}(\mathbf{w})|$.

If this is the case, let $f \colon S^t \to G$ be any map between vertex sets such that:

for every vertex $\mathbf{v} \in S^t$, we have $g(|\overline{\mathrm{St}}(\mathbf{v})|) \subseteq |\mathrm{St}(f(\mathbf{v}))|$.

Such a map f is called a *simplicial approximation* to g. It is a simplicial map. Its topological realization |f| is homotopic to g.

Remark:

If g does not satisfy the star condition, we can apply barycentric subdivisions to S^t .

In practice, we cannot check whether g satisfies the star condition...

The map g satisfies the weak star condition if:

for every vertex $v \in S^t$, there exists a vertex $w \in G$ such that $g\left(\left|\operatorname{vertices}(\operatorname{\overline{St}}(v))\right|\right) \subseteq \left|\operatorname{St}(w)\right|$.

In practice, we cannot check whether g satisfies the star condition...

The map g satisfies the weak star condition if:

for every vertex $v \in S^t$, there exists a vertex $w \in G$ such that $g\left(\left|\operatorname{vertices}(\operatorname{\overline{St}}(v))\right|\right) \subseteq \left|\operatorname{St}(w)\right|$.

If this is the case, let $f \colon S^t \to G$ be any map between vertex sets such that:

for every vertex $v \in S^t$, we have $g(|\text{vertices}(\overline{\operatorname{St}}(v))|) \subseteq |\text{St}(f(v))|$.

Such a map f is called a weak simplicial approximation to g. It is a simplicial map.

Proposition:

If S^t is subdivised enough, then any weak simplicial approximation is a simplicial approximation.

The Grassmaniann $\mathcal{G}_d(\mathbb{R}^n)$ has a well-known CW-complex structure.

However, I had some troubles finding explicit triangulations of $\mathcal{G}_d(\mathbb{R}^n)$.

What is known: triangulations of $\mathcal{G}_1(\mathbb{R}^n)$, the *projective spaces*.

The Grassmaniann $\mathcal{G}_d(\mathbb{R}^n)$ has a well-known CW-complex structure.

However, I had some troubles finding explicit triangulations of $\mathcal{G}_d(\mathbb{R}^n)$.

What is known: triangulations of $\mathcal{G}_1(\mathbb{R}^n)$, the *projective spaces*.

In practice, we will only consider the case d=1.

Consider the map $\xi^t \colon \check{X}^t \to \mathcal{G}_1(\mathbb{R}^m)$. We want to compute $w_1(\xi^t) = (\xi^t)^*(w_1)$.

Reminder: $H^1(\mathcal{G}_1(\mathbb{R}^m)) = \langle w_1 \rangle \simeq \mathbb{Z}/2\mathbb{Z}$.

We have to find the image of $(\xi^t)^* : H^1(X^t) \leftarrow H^1(\mathcal{G}_1(\mathbb{R}^m))$

- ullet Compute a triangulation S^t of \check{X}^t
- ullet Compute a triangulation G of $\mathcal{G}_1(\mathbb{R}^m)$
- ightharpoonup Check whether ξ^t satisfies the weak star condition
 - If not, subdivise barycentric
 - ullet Compute a weak simplicial approximation f to ξ^t
 - ullet Compute the induced map in simplicial cohomology $f^*\colon H^1(S^t) \leftarrow H^1(G)$

The image of f^* is $w_1(\xi^t)$ (seen in simplicial cohomology)

Let
$$|\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$$
, $(\check{X}^t)_t, (\xi^t)_t$ its Čech bundle filtration, $(w_i(\xi^t))_t$ its i^{th} persistent Stiefel-Whitney class.

We have seen how to compute $w_1(\xi^t)$, t fixed.

Recall that the lifebar of $w_1(X)$ is the set

$$\{t < t_{\mathsf{max}}, w_1(\xi^t) \neq 0\}$$
.

Three possibilities for computing the lifebar:

- Compute $w_1(\xi^t)$ for several values of t, and check whether $w_1(\xi^t) = 0$ (dichotomic search)
 - Use the persistent image algorithm of [Cohen-Steiner, Edelsbrunner, Harer, Morozov]
 - Use the formula on the next page

Reminder: $H^1(\mathcal{G}_1(\mathbb{R}^m)) = \mathbb{Z}/2\mathbb{Z}$.

We have to find the image of $(\xi^t)^* : H^1(\check{X}^t) \leftarrow H^1(\mathcal{G}_1(\mathbb{R}^m))$

Let $C(\xi^t)$ be the mapping cone of $\xi^t \colon \check{X}^t \to \mathcal{G}_1(\mathbb{R}^m)$.

We have a long exact sequence

...
$$\longrightarrow H^k(\check{X}^t) \longrightarrow H^{k+1}(C(\xi^t)) \longrightarrow H^{k+1}(\mathcal{G}_1(\mathbb{R}^m)) \longrightarrow H^{k+1}(\check{X}^t) \longrightarrow ...$$

We deduce that

$$\operatorname{rank}((\xi^t)^*) = \sum_{k=1}^{+\infty} (-1)^k \left(\dim H^k(\check{X}^t) - \dim H^{k+1}(C(\xi^t)) + \dim H^{k+1}(\mathcal{G}_1(\mathbb{R}^m)) \right)$$

Reminder: $H^1(\mathcal{G}_1(\mathbb{R}^m)) = \mathbb{Z}/2\mathbb{Z}$.

We have to find the image of $(\xi^t)^* : H^1(\check{X}^t) \leftarrow H^1(\mathcal{G}_1(\mathbb{R}^m))$

Let $C(\xi^t)$ be the mapping cone of $\xi^t : \check{X}^t \to \mathcal{G}_1(\mathbb{R}^m)$.

We have a long exact sequence

...
$$\longrightarrow H^k(\check{X}^t) \longrightarrow H^{k+1}(C(\xi^t)) \longrightarrow H^{k+1}(\mathcal{G}_1(\mathbb{R}^m)) \longrightarrow H^{k+1}(\check{X}^t) \longrightarrow ...$$

We deduce that

$$\operatorname{rank}((\xi^t)^*) = \sum_{k=1}^{+\infty} (-1)^k \left(\dim H^k(\check{X}^t) - \dim H^{k+1}(C(\xi^t)) + \dim H^{k+1}(\mathcal{G}_1(\mathbb{R}^m)) \right)$$

Can be computed with the persistence algorithm

Conclusion

- We defined persistent Stiefel-Whitney classes,
- Proved stability and consistency results,
- Proposed an algorithm when d=1. All of this is implemented in the package https://github.com/raphaeltinarrage/velour

Perspectives:

- Ideas could be extended to other characteristic classes (Euler, Chern, Pontrjagin).
- Need for a triangulation of $\mathcal{G}_d(\mathbb{R}^m)$.

Conclusion

- We defined persistent Stiefel-Whitney classes,
- Proved stability and consistency results,
- Proposed an algorithm when d=1. All of this is implemented in the package https://github.com/raphaeltinarrage/velour

Perspectives:

- Ideas could be extended to other characteristic classes (Euler, Chern, Pontrjagin).
- Need for a triangulation of $\mathcal{G}_d(\mathbb{R}^m)$.

Thank you!