Drugs Regulating Arterial Blood Pressure

PHC 721

Winter 2022

Agnieszka Z. Balkowiec

Antihypertensive Drug Targets: Overview

RAA-System Inhibitors Sympatholytic Agents Brainstem Vasomotor Center (Pre-Sympathetic) Preganglionic AT₁ Sympathetic Renin NE Diuretics Postganglionic storage Sympathetic Ca²⁺ **Channels Angiotensin-Converting Enzyme** Ca2+ Channel (ACE) **Antagonists Epinephrine** Nor-**Epinephrine** \mathbf{Q} (NE) Ca^{2+} Channels Direct **Angiotensin II** Vasodilators

Sympatholytic Agents

- Selective α2-adrenergic agonist: Clonidine

- Adrenergic neuron inhibitor: Methyldopa

(its metabolite replaces central NE and likely activates α2 receptors)

Brainstem asomotor Center (Pre-Sympathetic) Preganglionic Sympathetic Postganglionic Sympathetic **Epinephrine** Nor-**Epinephrine** (NE)

Centrally and Peripherally Acting:

- NE-depleting agent: Reserpine

- α-adrenergic **antagonists** (alpha-blockers): **Phentolamine**
 - Selective α1-adrenergic antagonists:

 Prazosin
 - β-adrenergic **antagonists** (beta-blockers): *Propranolol, Bisoprolol*
- β-antagonists with α1-antagonist activity:

 Labetalol

Sympatholytic Agents: Centrally Acting

Mechanism of Action:

Activation of alpha-2-adrenergic receptors in the Brainstem Vasomotor Center \Rightarrow inhibition of pre-sympathetic, preganglionic and postganglionic sympathetic neurons \Rightarrow \downarrow norepinephrine release from postganglionic neurons \Rightarrow vasodilation \Rightarrow \downarrow vascular resistance

Indications:

Methyldopa is used for management of Pregnancy-induced Hypertension (WHO Model List of Essential Medicines)

Dental Implications:

Centrally-acting sympatholytic agents cause Xerostomia (dry mouth).

Sympatholytic Agents: a-Adrenergic Receptor Antagonists

Mechanism of Action:

Blockade of alpha-adrenergic receptors in smooth m. of arteriolar resistance vessels and veins

 \Rightarrow vasodilation $\Rightarrow \downarrow$ vascular resistance

Indications:

In conjunction with other antihypertensive agents (e.g., diuretics)

Dental Implications:

Phentolamine (OraVerse) to reverse or shorten the duration of soft-tissue anesthesia by antagonizing the vasoconstricting effect of sympathomimetics (alpha-agonists, e.g., Epinephrine) that are applied with local anesthetics.

Sympatholytic Agents: **B-Adrenergic Receptor Antagonists**

Mechanism of Action:

Blockade of β -adrenergic receptor signaling. The blood pressure-lowering effect of beta-blockers is not completely understood:

↓ Renin secretion,

↓ Cardiac Output (↓ HR/Contractility)

Indications:

- Hypertension, Exertional Angina, Congestive heart failure (
 <u>↓ mortality</u>)
- Arrhythmias (e.g., prevention of arrhythmias triggered by emotional stress)

Side effects / Contraindications:

- Life-threatening bronchoconstriction / Asthma
- Altered sensitivity to Insulin (\(\text{risk of hypoglycemia} \) / Diabetes
- Abrupt discontinuation may cause Sudden Death and exacerbate Angina

Dental Implications:

- NSAIDs can blunt antihypertensive effects of β-blockers
- Epinephrine (in local anesthetics) can severely rise blood pressure (\Rightarrow reflex bradycardia) in patients on non-selective β -antagonists: Epi causes severe systemic vasoconstriction (via a-adrenoceptors), when applied intravascularly in the absence of functional β 2 receptors (blocked by non-selective β -blockers) whose normal action is vasodilatory.

Dangerous Interactions of Epinephrine in Local Anesthetics with Non-Selective Beta-Blockers ($\beta 1/\beta 2$)

Renin-Angiotensin-Aldosterone (RAA)-System Inhibitors

Angiotensin-Converting Enzyme (ACE) Inhibitors: Captopril, Enalapril, Ramipril

Angiotensin II Receptor (AT₁) Antagonists: *Losartan, Valsartan*

<u>Direct Renin Inhibitors</u>: *Aliskiren*

RAA-System Inhibitors: ACE Inhibitors

Mechanism of Action:

Blockade of Angiotensin-Converting Enzyme (ACE):

- \Rightarrow \downarrow conversion of Angiotensin I to Angiotensin II \Rightarrow
 - \downarrow Angiotensin II \Rightarrow
 - \downarrow systemic vascular resistance & \downarrow Aldosterone release
- \Rightarrow \downarrow Blood Pressure & \uparrow Natriuresis (\Rightarrow \uparrow Diuresis)

The blood pressure-lowering effect of ACE inhibitors is potentiated by \downarrow Na⁺ and by diuretics, which \uparrow renin release.

Indications:

- Hypertension (except Primary Aldosteronism)
- Acute Myocardial Infarction, Coronary Artery Disease
- Diabetes Mellitus (renoprotective)

Side effects / Contraindications:

- Fetal pathology (fetal hypotension) / Pregnancy
- Angioedema (swelling in the nose, mouth, throat, larynx, glottis, lips)
- Acute renal failure

Dental Implications:

- NSAIDs blunt the hypotensive effect of ACE inhibitors
- Triple therapy with an NSAID, plus diuretic and an ACE inhibitor (e.g. Enalapril)
 may lead to acute renal failure (nephrotoxicity)

RAA-System Inhibitors: AT₁ Antagonists

Mechanism of Action:

Blockade of the Angiotensin II Receptor Type 1 (AT_1):

- $\Rightarrow \downarrow$ systemic vascular resistance, \downarrow Aldosterone release,
 - ↓ catecholamine release (adrenal medulla & sympathetic nn.)
- $\Rightarrow \downarrow$ Blood Pressure & \uparrow Natriuresis ($\Rightarrow \uparrow$ Diuresis)

 AT_1 antagonists enhance the blood pressure-lowering effect of other antihypertensive drugs.

Indications:

- Hypertension (except resulting from Primary Aldosteronism)
- Heart Failure
- Acute Myocardial Infarction, Coronary Artery Disease

<u>Side effects / Contraindications:</u>

- Fetal pathology (potentially teratogenic) / Pregnancy
- Acute renal failure

Dental Implications:

- NSAIDs blunt the hypotensive effect of AT_1 receptor antagonists
- Triple therapy with an NSAID, plus diuretic and an AT_1 receptor blocker (e.g. Losartan) may lead to acute renal failure (nephrotoxicity)

Ca²⁺ Channel Antagonists

All Ca²⁺ channel antagonists approved for clinical use block <u>L-type voltage-gated calcium channels</u>

- Dihydropyridines: *Nifedipine, Amlodipine*

Verapamil

Diltiazem

Ca²⁺ Channel Antagonists

Mechanism of Action:

Blockade of L-type Ca²⁺ channels:

- \Rightarrow Arterial vasodilation $\Rightarrow \downarrow$ vascular resistance;
- \Rightarrow Coronary vasodilation (\Rightarrow \uparrow coronary blood flow)

Indications:

- Hypertension, Exertional and Variant (vasospastic) Angina
- Arrhythmias

Side effects:

Inhibition of CYP3A4 drug-metabolizing enzyme by Verapamil.

Dental Implications:Gingival Hyperplasia

Direct Vasodilators

"Direct" refers to: 1) direct action on vascular smooth m. leading to relaxation 2) vasodilation rather than inhibition of vasoconstriction

Direct Vasodilators: Hydralazine

Mechanism of Action:

Unknown, leading to:

- Arteriolar smooth muscle relaxation ⇒ Vasodilation ⇒
 - ↓ Peripheral vascular resistance (coronary, cerebral, renal)
- Powerful secondary sympathetic activation (Baroreceptor unloading \Rightarrow \uparrow HR)

Indications:

- Hypertension, severe
- Hypertensive emergencies of pregnancy (Preeclampsia)

Direct Vasodilators: Sodium Nitroprusside (SNP)

Mechanism of Action:

Release of nitric oxide (NO) from Sodium Nitroprusside \Rightarrow Activation of Guanylyl Cyclase \Rightarrow Synthesis of cyclic GMP \Rightarrow Activation of Protein Kinase G and other kinases \Rightarrow Smooth muscle Relaxation *in Arterioles and Venules* \Rightarrow Vasodilation \Rightarrow \downarrow Peripheral vascular resistance

Indications:

- Hypertensive emergencies
- Surgeries
 (short-term reduction in BP to ↓ bleeding)

Direct Vasodilators: Minoxidil

Mechanism of Action:

Minoxidil is not active (Prodrug) until metabolized (Liver)
Opening of the ATP-modulated potassium channel $(K_{ATP}) \Rightarrow K^{+}$ efflux \Rightarrow Hyperpolarization \Rightarrow Arteriolar smooth m. relaxation \Rightarrow Vasodilation \Rightarrow \downarrow Peripheral vascular resistance

Indications:

Hypertension, severe and poorly responding to other medication

Side effects:

Hypertrichosis (excessive hair growth)

