# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-252421

(43)Date of publication of application: 06.09.2002

(51)Int.CI.

H01S 5/323 H01L 21/205

(21)Application number: 2001-051348

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

27.02.2001

(72)Inventor: HATA MASAYUKI

KUNISATO TATSUYA HAYASHI NOBUHIKO

# (54) NITRIDE-BASE SEMICONDUCTOR DEVICE AND METHOD OF FORMING NITRIDE-BASE SEMICONDUCTOR

#### (57)Abstract:

PROBLEM TO BE SOLVED: To provide a nitride-base semiconductor device that is excellent in mass production and has excellent device characteristics.

SOLUTION: The nitride-base semiconductor device has a sapphire substrate 1 having a surface of bumps and dips, a mask layer 2 formed so as to contact only the tops of bumps of the sapphire substrate 1, an undoped GaN layer 4 formed on the dips of the sapphire substrate 1 and the mask layer 2, and layers 5 to 13 that are formed on the undoped GaN layer 4 and constitute a nitride-base semiconductor device layer having a device region.



## **LEGAL STATUS**

[Date of request for examination]

28.02.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

# (19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-252421 (P2002-252421A)

(43)公開日 平成14年9月6日(2002.9.6)

(51) Int.Cl.<sup>7</sup>

識別記号

FΙ

テーマコート\*(参考)

H01S 5/323 HO1L 21/205

H01S 5/323 H01L 21/205

5F045 5F073

審查請求 有 請求項の数11 OL (全 15 頁)

(21)出願番号

特願2001-51348(P2001-51348)

(22)出顧日

平成13年2月27日(2001.2.27)

(71)出選人 000001889

三洋電機株式会社

大阪府守口市京阪本通2丁目5番5号

(72)発明者 畑 雅幸

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 國里 竜也

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(74)代理人 100104433

弁理士 宮園 博一

最終頁に続く

# (54) 【発明の名称】 窒化物系半導体素子および窒化物系半導体の形成方法

#### (57)【要約】

【課題】量産性に優れ、かつ、良好な素子特性を有する 窒化物系半導体素子を提供する。

【解決手段】凹凸形状の表面を有するサファイア基板 1 と、サファイア基板1の凹凸形状の凸部上のみに接触す るように形成されたマスク層2と、サファイア基板1の 凹部上およびマスク層 2上に形成されたアンドープGa N層4と、アンドープGaN層4上に形成され、素子領 域を有する窒化物系半導体素子層を構成する各層5~1 3とを備える。



#### 【特許請求の範囲】

【請求項1】 凹凸形状の表面を有する基板と、

前記基板の凹凸形状の凸部上のみに接触するように形成 されたマスク層と、

前記基板の凹部上および前記マスク層上に形成された第 1 窒化物系半導体層と、

前記第1窒化物系半導体層上に形成され、素子領域を有 する窒化物系半導体素子層とを備えた、窒化物系半導体 素子。

【請求項2】 前記基板は、サファイア基板、スピネル 10 基板、Si基板、SiC基板、GaN基板、GaAs基 板、GaP基板、InP基板および水晶基板からなるグ ループより選択される1つの基板を含む、請求項1に記 載の窒化物系半導体素子。

【請求項3】 前記基板の凹部と前記第1窒化物系半導 体層との界面に形成されたバッファ層をさらに備える、 請求項1または2に記載の窒化物系半導体素子。

【請求項4】 基板上に形成され、凹凸形状の表面を有 する窒化物系半導体からなる下地層と、

前記下地層の凹凸形状の凸部上のみに接触するように形 20 成されたマスク層と、

前記下地層の凹部上および前記マスク層上に形成された 第1室化物系半導体層と、

前記第1窒化物系半導体層上に形成され、素子領域を有 する窒化物系半導体素子層とを備えた、窒化物系半導体 素子。

【請求項5】 前記基板と前記下地層との間に形成され たバッファ層をさらに備える、請求項4に記載の窒化物 系半導体案子。

【請求項6】 前記基板は、サファイア基板、スピネル 30 基板、Si基板、SiC基板、GaAs基板、GaP基 板、InP基板および水晶基板からなるグループより選 択される1つの基板を含む、請求項4または5に記載の 窒化物系半導体素子。

【請求項7】 基板の表面に凹凸形状を形成する工程

前記基板の凹凸形状の凸部上のみに接触するように、マ スク層を形成する工程と、

前記マスク層をマスクとして、前記基板の凹部上および 前記マスク層上に第1窒化物系半導体層を成長させる工 40 程とを備えた、窒化物系半導体の形成方法。

【請求項8】 前記第1窒化物系半導体層を成長させる 工程に先立って、前記基板の凹部上にバッファ層を形成 する工程をさらに備える、請求項7に記載の窒化物系半 導体の形成方法。

【請求項9】 基板上に窒化物系半導体からなる下地層 を形成する工程と、

前記下地層の表面に凹凸形状を形成する工程と、

前記下地層の凹凸形状の凸部上のみに接触するように、 マスク層を形成する工程と、

前記マスク層をマスクとして、前記下地層の凹部上およ び前記マスク層上に第1窒化物系半導体層を成長させる。 工程とを備えた、窒化物系半導体の形成方法。

【請求項10】 前記窒化物系半導体からなる下地層を 形成する工程に先だって、前記基板上にバッファ層を形 成する工程をさらに備える、請求項9に記載の窒化物系 半導体の形成方法。

【請求項11】 前記第1窒化物系半導体層上に、素子 領域を有する窒化物系半導体素子層を成長させる工程を さらに備える、請求項7~10のいずれか1項に記載の 窒化物系半導体の形成方法。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】この発明は、窒化物系半導体 素子および窒化物系半導体の形成方法に関し、より特定 的には、選択横方向成長を用いて形成した窒化物系半導 体層を含む窒化物系半導体素子および窒化物系半導体の 形成方法に関する。

#### [0002]

【従来の技術】近年、発光ダイオード素子および半導体 レーザ素子などの半導体発光素子やトランジスタなどの 電子素子に用いられる半導体素子として、III族窒化物 系半導体を利用した窒化物系半導体素子の開発が盛んに 行われている。このような窒化物系半導体素子の製造の 際には、サファイアなどからなる基板上に、窒化物系半 導体層をエピタキシャル成長させている。

【0003】この場合、サファイアなどの基板と窒化物 系半導体層とでは、格子定数が異なるため、サファイア などの基板上に成長させた窒化物系半導体層では、基板 から上下方向に延びる転位(格子欠陥)が存在してい る。このような窒化物系半導体層における転位は、半導 体素子の素子特性の劣化および信頼性の低下を招く。

【0004】そこで、上記のような窒化物系半導体層に おける転位を低減する方法として、従来、選択横方向成 長が提案されている。この選択横方向成長については、 たとえば、International Worksh op on NitrideSemiconducto rs-IWN2000-, Nagoya, Japan, 2000, p. 79などに開示されている。

【0005】図29~図33は、従来の選択横方向成長 を用いた窒化物系半導体の形成方法を説明するための断 面図である。次に、図29~図33を参照して、従来の 選択横方向成長を用いた窒化物系半導体の形成方法につ いて説明する。

【0006】まず、図29に示すように、サファイアま たはSiCなどからなる基板101上に、下地となるG aN層102を形成する。次に、GaN層102上の所 定領域に、マスク層103を形成する。

【0007】次に、マスク層103をマスクとして、マ 50 スク層 1 0 3 が形成されていない領域下の部分のGaN

1

30

層102をエッチングにより除去するとともに、基板1 01を基板101の底面に達しない範囲の厚み分だけエ ッチングする。これにより、図30に示すように、基板 101を凹凸形状に形成するとともに、基板101の凸 部の上面のほぼ全面に接触するようにパターニングされ たGaN層102を形成する。

【0008】次に、図31に示すように、GaN層10 2の露出した側面を種結晶として、アンドープGaN層 104の再成長を行う。初期段階では、アンドープGa N層104は、横方向に成長する。図31に示す状態か 10 らさらに成長が進むと、図32に示すように、アンドー プGaN層104は、上方に成長するとともに、マスク 層103上を横方向に成長する。このとき、アンドープ GaN層104と、基板101の凹部の底面との間に は、空洞部105が形成されている。そして、マスク層 103上を横方向成長したアンドープGaN層104が 合体して、連続的なアンドープGaN層104が形成さ れる。これにより、図33に示すように、表面が平坦化 されたアンドープGaN層104が形成される。

【0009】上記のように、従来の窒化物系半導体の形 20 成方法では、GaN層102の露出した側面を種結晶と して、アンドープGaN層104を選択横方向成長によ って形成することにより、GaN層102の格子欠陥 は、アンドープGaN層104の表面付近には伝搬され ない。これにより、転位密度の低減されたアンドープG aN層104が得られる。このような転位密度が低減さ れたアンドープGaN層104上に、素子領域を有する 窒化物系半導体素子層 (図示せず) を形成すれば、良好 な結晶性を有する窒化物系半導体素子を形成することが できる。

### [0010]

【発明が解決しようとする課題】しかしながら、上記し た従来の選択横方向成長を用いる窒化物系半導体の形成 方法では、マスク層103が形成されていない領域下の 部分のGaN層102を、エッチングにより除去した 後、さらに、基板101をエッチングすることにより、 基板101に凹凸形状を形成していた。このため、従来 では、エッチングされにくい窒化物系半導体層であるG a N層102をその厚み全体にわたってエッチングする とともに、基板101の表面もエッチングする必要があ 40 った。それによって、基板101に凹凸形状を形成する 際のエッチング時間が長くなるという不都合が生じる。 その結果、窒化物系半導体の量産性が低下するという問 題点があった。

【0011】また、上記した従来の選択横方向成長を用 いる窒化物系半導体の形成方法では、基板101上に、 下地となるGaN層102を成長させた後に、GaN層 102を選択横方向成長させることによって、アンドー プGaN層104を形成していた。このため、従来で は、GaN層102およびアンドープGaN層104の 50 2回の結晶成長工程が必要であった。従来では、この点 でも、窒化物系半導体の量産性が低下するという問題点

【0012】この発明の1つの目的は、量産性に優れ、 かつ、良好な素子特性を有する窒化物系半導体素子を提 供することである。

【0013】この発明のもう1つの目的は、量産性に優 れ、かつ、低転位密度の窒化物系半導体層を得ることが 可能な窒化物系半導体の形成方法を提供することであ る。

#### [0014]

【課題を解決するための手段】この発明の第1の局面に よる窒化物系半導体素子は、凹凸形状の表面を有する基 板と、基板の凹凸形状の凸部上のみに接触するように形 成されたマスク層と、基板の凹部上およびマスク層上に 形成された第1窒化物系半導体層と、第1窒化物系半導 体層上に形成され、素子領域を有する窒化物系半導体素 子層とを備えている。

【0015】この第1の局面による窒化物系半導体素子 では、上記のように、凹凸形状の表面を有する基板と、 基板の凹凸形状の凸部上のみに接触するように形成され たマスク層とを設けることによって、マスク層をマスク として、基板の凹部上およびマスク層上に容易に低転位 密度の第1窒化物系半導体層を形成することができる。 そして、その低転位密度の第1窒化物系半導体層上に、 素子領域を有する窒化物系半導体素子層を成長させれ ば、容易に良好な素子特性を有する窒化物系半導体素子 を得ることができる。また、基板の表面を凹凸形状に形 成することによって、凹凸形状を形成するために基板の 表面のみをエッチングするだけでよい。これにより、凹 凸形状を形成するためのエッチング時間を減少させるこ とができる。さらに、この第1の局面では、基板上の1 回の成長で第1窒化物系半導体層を形成することができ る。その結果、量産性に優れた窒化物系半導体素子を得 ることができる。

【0016】上記第1の局面による窒化物系半導体素子 において、好ましくは、基板は、サファイア基板、スピ ネル基板、Si基板、SiC基板、GaN基板、GaA s 基板、G a P 基板、In P 基板および水晶基板からな るグループより選択される1つの基板を含む。また、上 記の場合、基板の凹部と第1窒化物系半導体層との界面 に形成されたバッファ層をさらに備えるのが好ましい。 このように構成すれば、バッファ層上により低転位密度 の第1窒化物系半導体層を形成することができる。

【0017】この発明の第2の局面による窒化物系半導 体素子は、基板上に形成され、凹凸形状の表面を有する 窒化物系半導体からなる下地層と、下地層の凹凸形状の 凸部上のみに接触するように形成されたマスク層と、下 地層の凹部上およびマスク層上に形成された第1窒化物 系半導体層と、第1窒化物系半導体層上に形成され、素

;

子領域を有する窒化物系半導体素子層とを備えている。 【0018】この第2の局面による窒化物系半導体素子 では、上記のように、凹凸形状の表面を有する下地層 と、下地層の凹凸形状の凸部上のみに接触するように形 成されたマスク層とを設けることによって、マスク層を マスクとして、下地層の凹部上およびマスク層上に容易 に低転位密度の第1窒化物系半導体層を形成することが できる。そして、その低転位密度の第1窒化物系半導体。 層上に、素子領域を有する窒化物系半導体素子層を成長 させれば、容易に良好な素子特性を有する窒化物系半導 10 体素子を得ることができる。また、窒化物系半導体から なる下地層の表面を凹凸形状に形成することによって、 凹凸形状を形成するために窒化物系半導体からなる下地 層の表面のみをエッチングするだけでよい。これによ り、凹凸形状を形成するためのエッチング時間を減少さ せることができ、その結果、量産性に優れた窒化物系半 導体素子を得ることができる。

【0019】上記第2の局面による窒化物系半導体素子において、好ましくは、基板と下地層との間に形成されたバッファ層をさらに備える。このように構成すれば、バッファ層上に容易に低転位密度の窒化物系半導体からなる下地層を形成することができる。上記の場合、好ましくは、基板は、サファイア基板、スピネル基板、Si基板、SiC基板、GaA基板、GaP基板、InP基板および水晶基板からなるグループより選択される1つの基板を含む。

【0020】この発明の第3の局面による窒化物系半導体の形成方法は、基板の表面に凹凸形状を形成する工程と、基板の凹凸形状の凸部上のみに接触するように、マスク層を形成する工程と、マスク層をマスクとして、基 30板の凹部上およびマスク層上に第1窒化物系半導体層を成長させる工程とを備えている。

【0021】この第3の局面による窒化物系半導体の形成方法では、上記のように、基板の表面に凹凸形状を形成するとともに、基板の凹凸形状の凸部上のみに接触するようにマスク層を形成することによって、マスク層をマスクとして、第1窒化物系半導体層を成長させれば、基板の凹部上およびマスク層上に容易に低転位密度の第1窒化物系半導体層を形成することができる。また、基板の表面に凹凸形状を形成することができる。また、基板の表面に凹凸形状を形成することができる。さらに、この第3の局面では、基板上の1回の成長で第1窒化物系半導体層を形成することができる。その結果、量産性に優れた窒化物系半導体の製造方法を得ることができる。

【0022】上記第3の局面による窒化物系半導体の形成方法において、好ましくは、第1窒化物系半導体層を成長させる工程に先立って、基板の凹部上にバッファ層を形成する工程をさらに備える。このように構成すれ

ば、バッファ層上により低転位密度の第1窒化物系半導 体層を形成することができる。

【0023】この発明の第4の局面による窒化物系半導体の形成方法は、基板上に窒化物系半導体からなる下地層を形成する工程と、下地層の表面に凹凸形状を形成する工程と、下地層の凹凸形状の凸部上のみに接触するように、マスク層を形成する工程と、マスク層をマスクとして、下地層の凹部上およびマスク層上に第1窒化物系半導体層を成長させる工程とを備えている。

【0024】この第4の局面による窒化物系半導体の形成方法では、上記のように、基板上の窒化物系半導体からなる下地層の表面に凹凸形状を形成するとともに、下地層の凹凸形状の凸部上のみに接触するようにマスク層を形成することによって、マスク層をマスクとして、第1窒化物系半導体層を成長させれば、下地層の凹部上およびマスク層上に容易に低転位密度の第1窒化物系半導体層を形成することができる。また、窒化物系半導体からなる下地層の表面に凹凸形状を形成することによって、凹凸形状を形成するために下地層の表面のみをエッチングするだけでよい。これにより、凹凸形状を形成するためのエッチング時間を減少させることができ、その結果、量産性に優れた窒化物系半導体の製造方法を提供することができる。

【0025】上記第4の局面による窒化物系半導体の形成方法において、好ましくは、窒化物系半導体からなる下地層を形成する工程に先だって、基板上にバッファ層を形成する工程をさらに備える。このように構成すれば、バッファ層上に容易に低転位密度の窒化物系半導体からなる下地層を形成することができる。

【0026】上記の場合、好ましくは、第1窒化物系半導体層上に、素子領域を有する窒化物系半導体素子層を成長させる工程をさらに備える。このように構成すれば、低転位密度の第1窒化物系半導体層上に、素子領域を有する窒化物系半導体素子層を成長させることができるので、容易に良好な素子特性を有する窒化物系半導体素子を形成することができる。

#### [0027]

【発明の実施形態】以下、本発明を具体化した実施形態 を図面に基づいて説明する。

【0028】(第1実施形態)図1~図6は、本発明の第1実施形態による窒化物系半導体の形成方法を説明するための断面図である。図1~図6を参照して、第1実施形態による窒化物系半導体の形成方法について説明する。

【0029】まず、図1に示すように、サファイア (0001) 面基板1 (以下、「サファイア基板1」という)上に、約0.5μmの膜厚を有するストライプ状のSiO:からなるマスク層2を形成する。マスク層2のストライプパターンは、マスク層2の幅が約5μmで、隣接するマスク層2間の間隔(マスク開口部の幅)が約

の時間もナーファンパー・

2 μ m となるように、約7 μ m の周期で形成する。また、ストライプ状のマスク層 2 は、サファイア基板 1 の [1-100] 方向と平行な方向に形成する。なお、サファイア基板 1 が、本発明の「基板」の一例である。

【0031】次に、図3に示すように、MOVPE法(Metal Organic Vapor Phas 20 e Epitaxy:有機金属気相成長法)などの結晶成長法を用いて、サファイア基板1の凹部の底面のほぼ全面と接触するように、約15nmの膜厚を有するGaNからなる低温バッファ層3を成長させる。この場合、SiOからなるマスク層2上には、低温バッファ層3は形成されにくい。あるいは、この場合、凹部の底面だけでなく、凹部の側面に低温バッファ層3が形成されていてもよい。また、凹部の底部の全面に低温バッファ層3が形成されていてもよい。また、凹部の底部の全面に低温バッファ層3が形成されている必要はなく、凹部の底部の一部に低温バッファ層3が形成されていてもよい。なお、この低30温バッファ層3が、本発明の「バッファ層」の一例である。

【0032】次に、GaNからなる低温バッファ層3に、アンドープGaN層4を成長させる。この場合、低温バッファ層3およびアンドープGaN層4の成長は、連続的に行われる。初期段階では、アンドープGaN層4は、低温バッファ層3上に、縦方向(上方向)に成長する。加えて、凹部の側面に低温バッファ層3が形成されている場合には、側面の低温バッファ層3から横方向にアンドープGaN層4が成長する。さらに、アンドー40プGaN層4の成長を続けると、図4に示すように、側面にファセットを有するアンドープGaN層4が、凹部の上部に形成される。なお、このアンドープGaN層4が、本発明の「第1窒化物系半導体層」の一例である。

【0033】そして、図4に示す状態からさらにアンドープGaN層4の成長が進むと、アンドープGaN層4は、図5に示すように、マスク層2上を横方向に成長する。そして、マスク層2上を横方向成長したアンドープGaN層4が形成される。これにより、図6に示すように、表面が50

平坦化された約  $5 \mu$  mの膜厚を有するアンドープ GaN 層 4 が形成される。

【0034】第1実施形態による窒化物系半導体の形成方法では、上記のように、サファイア基板1の凹部からアンドープGaN層4を成長させることによって、凹部の側面の低温バッファ層3から横方向に成長する際や、マスク層2上を横方向に成長する際に、アンドープGaN層4の転位は、アンドープGaN層4の(0001)面内方向に折れ曲がる。これにより、表面付近の転位が低減された低転位のアンドープGaN層4を形成することができる。

【0035】また、第1実施形態による窒化物系半導体の形成方法では、上記のように、サファイア基板1の表面に凹凸形状を形成することによって、マスク層2をマスクとして、サファイア基板1の表面のみをエッチングするだけでよい。これにより、図30に示した従来の凹凸形状を形成するためのプロセスに比べて、サファイア基板1に凹凸形状を形成するためのエッチング時間を減少させることができる。その結果、量産性に優れた窒化物系半導体の形成方法を得ることができる。

【0036】また、第1実施形態による窒化物系半導体の形成方法では、上記のように、サファイア基板1の凹部に形成されたGaNからなる低温バッファ層3の成長と、アンドープGaN層4の選択成長とは、連続的に行われる。これにより、1回の成長工程で、低転位のアンドープGaN層4を形成することができる。この点でも、量産性に優れた窒化物系半導体の形成方法を得ることができる。

【0037】また、第1実施形態による窒化物系半導体の形成方法では、サファイア基板1上に設けた低温バッファ層3上に、アンドープGaN層4を成長させることによって、サファイア基板1上に直接アンドープGaN層4を成長させる場合に比べて、より低転位のアンドープGaN層4を成長させることができる。

【0038】図7は、上記した第1実施形態の窒化物系 半導体の形成方法を用いて製造した半導体レーザ素子を 示した斜視図である。次に、図7を参照して、第1実施 形態による窒化物系半導体の形成方法を用いて製造した 半導体レーザ素子の構造について説明する。

【0039】第1実施形態の半導体レーザ素子の構造としては、図6に示した第1実施形態のアンドープGaN層4上に、図7に示すように、約4μmの膜厚を有する n型GaNからなるn型コンタクト層5が形成されている。 n型コンタクト層5上には、約0.1μmの膜厚を有するn型AlGaInNからなるクラック防止層6、約0.45μmの膜厚を有するn型AlGaNからなる n型第2クラッド層7、約50nm(約0.05μm)の膜厚を有するn型GaNからなるn型第1クラッド層8、および、GaInNからなる多重量子井戸(MQW)発光層9が順次形成されている。このMQW発光層

40

9は、約4nmの厚みを有する5つのアンドープGaN障壁層と、約4nmの厚みを有する4つの圧縮歪みのアンドープGaInN井戸層とが交互に積層された構造を有する。

【0041】また、p型コンタクト層13からn型コン 20 タクト層5までの一部領域が除去されている。そのn型コンタクト層5の露出した表面の一部と、クラック防止層6、n型第2クラッド層7、n型第1クラッド層8、MQW発光層9、p型第1クラッド層10、電流阻止層12およびp型コンタクト層13の露出した側面とを覆うように、SiOiまたはSiNなどの絶縁膜からなる保護膜14が形成されている。

【0042】また、p型コンタクト層13の上面上には、p型電極15が形成されるとともに、一部領域が除去されて露出されたn型コンタクト層5の表面には、n 30型電極16が形成されている。

【0043】なお、n型コンタクト層5、クラック防止層6、n型第2クラッド層7、n型第1クラッド層8、MQW発光層9、p型第1クラッド層10、p型第2クラッド層11、電流阻止層12およびp型コンタクト層13は、本発明の「素子領域を有する窒化物系半導体素子層」の一例である。

【0044】第1実施形態の半導体レーザ素子では、上記のように、図1~図6に示した第1実施形態の窒化物系半導体の形成方法を用いて形成された、量産性に優れ、かつ、低転位のアンドープGaN層4を下地として、その上に各層5~13を形成することによって、各層5~13において良好な結晶性を実現することができる。その結果、第1実施形態では、量産性に優れ、かつ、良好な素子特性を有する半導体レーザ素子を得ることができる。

【0045】(第2実施形態)図8~図13は、本発明の第2実施形態による窒化物系半導体の形成方法を説明するための断面図である。この第2実施形態では、第1 実施形態の絶縁性のサファイア基板1の代わりに、導電50 性を有するn型のSi (1111) 面基板21 (以下、「Si基板21」という)を用いている。図8~図13を参照して、第2実施形態による窒化物系半導体の形成方法について説明する。

【0046】まず、この第2実施形態では、図8に示すように、n型のSi基板21上に、約0.5  $\mu$ mの膜厚を有するストライプ状のSiOからなるマスク層22を形成する。マスク層22のストライプパターンは、マスク層22の幅が約5  $\mu$ mで、隣接するマスク層22間の間隔(マスク開口部の幅)が約2  $\mu$ mとなるように、約7  $\mu$ mの周期で形成する。また、ストライプ状のマスク層22は、Si基板21の [1-10] 方向と平行な方向に形成する。なお、Si基板21が、本発明の「基板」の一例である。

【0047】このマスク層22をマスクとして、ウェットエッチング法などを用いて、Si基板21の表面を約 $1\mu$ mの厚み分だけエッチングする。これにより、図9に示すように、Si基板21の表面に凹凸形状を形成する。凹凸の形状はエッチング条件により異なり、凹部の上部の幅より凹部の底部の幅の方が広くなることもあれば、狭くなることもある。以下では、Si基板21のエッチングにより形成された凸部がメサ形状(台形状)になる場合を示す。また、Si基板21の凹凸形状は、約 $1\mu$ mの高さを有するとともに、Si基板21の[1-10]方向と平行な方向に形成される。

【0048】次に、図10に示すように、MOVPE法 などの結晶成長法を用いて、Si基板21の凹部の底面 のほぼ全面と接触するように、約15nmの膜厚を有す るSiドープAIGaNからなるバッファ層23を成長 させる。この場合、SiOからなるマスク層22上に は、バッファ層23は形成されにくい。あるいは、この 場合、凹部の底面だけでなく、凹部の側面にバッファ層 23が形成されていてもよい。また、凹部の底部の全面 にバッファ層23が形成されている必要はなく、凹部の 底部の一部にバッファ層23が形成されていてもよい。 【0049】次に、SiドープAlGaNからなるバッ ファ層23に、SiドープGaN層24を成長させる。 この場合、バッファ層23およびSiドープGaN層2 4の成長は、連続的に行われる。初期段階では、Siド ープGaN層24は、バッファ層23上を縦方向(上方 向)に成長する。加えて、凹部の側面にバッファ層23 が形成されている場合には、側面のバッファ層23から 横方向にSiドープGaN層24が成長する。さらに、 SiドープGaN層24の成長を続けると、図11に示 すように、側面にファセットを有するSiドープGaN 層24が、凹部の上部に形成される。なお、このSiド ープGaN層24が、本発明の「第1窒化物系半導体 層」の一例である。

【0050】そして、図11に示す状態からさらにSi ドープGaN層24の成長が進むと、SiドープGaN 層24は、図12に示すように、マスク層22上を横方向に成長する。そして、マスク層22上を横方向成長したSiドープGaN層24が合体して、連続的なSiドープGaN層24が形成される。これにより、図13に示すように、表面が平坦化された約 $5\mu$ mの膜厚を有するSiドープGaN層24が形成される。

【0051】第2実施形態による窒化物系半導体の形成方法では、Si基板21の凹部からSiドープGaN層24を成長させることによって、凹部の側面のバッファ層23から横方向に成長する際や、マスク層22上を横10方向に成長する際に、SiドープGaN層24の転位は、SiドープGaN層24の(0001)面内方向に折れ曲がる。これにより、表面付近の転位が低減された低転位のSiドープGaN層24を形成することができる。

【0052】また、第2実施形態による窒化物系半導体の形成方法では、第1実施形態と同様、Si基板21の表面に凹凸形状を形成することによって、マスク層22をマスクとして、Si基板21の表面のみをエッチングするだけでよい。これにより、図30に示した従来の凹20凸形状を形成するためのプロセスに比べて、Si基板21に凹凸形状を形成するためのエッチング時間を減少させることができる。その結果、量産性に優れた窒化物系半導体の形成方法を得ることができる。

【0053】また、第2実施形態による窒化物系半導体の形成方法では、第1実施形態と同様、Si基板21に形成されたSiドープAlGaNからなるバッファ層23の成長と、SiドープGaN層24の選択成長とは、連続的に行われる。これにより、1回の成長工程で、低転位のSiドープGaN層24を形成することができる。この点でも、量産性に優れた窒化物系半導体の形成方法を得ることができる。

【0054】また、第2実施形態による窒化物系半導体の形成方法では、Si基板21上に設けたバッファ層23上に、SiドープGaN層24を成長させることによって、Si基板21上に直接SiドープGaN層24を成長させる場合に比べて、より低転位のSiドープGaN層24を成長させることができる。

【0055】図14は、上記した第2実施形態の窒化物 系半導体の形成方法を用いて製造した半導体レーザ素子 40 を示した斜視図である。次に、図14を参照して、第2 実施形態による窒化物系半導体の形成方法を用いて製造 した半導体レーザ素子の構造について説明する。

【0056】第2実施形態の半導体レーザ素子の構造としては、図13に示した第2実施形態のSiドープGaN層24上に、図14に示すように、約0.1μmの膜厚を有するn型AlGaInNからなるクラック防止層25、約0.45μmの膜厚を有するn型AlGaNからなるn型第2クラッド層26、約50nm(約0.05)μmの膜厚を有するn型GaNからなるn型第1ク50

ラッド層27、および、GaInNからなる多重量子井戸(MQW)発光層28が順次形成されている。このMQW発光層28は、約4nmの厚みを有する5つのアンドープGaN障壁層と、約4nmの厚みを有する4つの圧縮歪みのアンドープGaInN井戸層とが交互に積層された構造を有する。

【0057】MQW発光層28上には、約40nm(約0.04 $\mu$ m)の膜厚を有するp型GaNからなるp型第1クラッド層29が形成されている。p型第1クラッド層29上には、約0.45 $\mu$ mの高さを有するメサ形状(台形状)のp型A1GaNからなるp型第2クラッド層30が形成されている。また、p型第1クラッド層29上の、p型第2クラッド層30が形成されている領域以外の領域と、メサ形状のp型第2クラッド層30の側面とを覆うとともに、p型第2クラッド層30の上面を露出させるように、約0.2 $\mu$ mの膜厚を有するn型GaNからなる電流阻止層31が形成されている。電流阻止層31上には、露出されたp型第2クラッド層30の上面と接触するように、約3 $\mu$ m~約5 $\mu$ mの膜厚を有するp型GaNからなるp型コンタクト層32が形成されている。

【0058】また、p型第2クラッド層30のメサ形状を反映したp型コンタクト層32の凸部上には、p型電極33が形成されている。また、この第2実施形態では、第1実施形態のサファイア基板1と異なり、Si基板21が導電性を有するので、Si基板21の裏面に、n型電極34が形成されている。

【0059】なお、クラック防止層25、n型第2クラッド層26、n型第1クラッド層27、MQW発光層28、p型第1クラッド層29、p型第2クラッド層30、電流阻止層31およびp型コンタクト層32は、本発明の「素子領域を有する窒化物系半導体素子層」の一例である。

【0060】第2実施形態の半導体レーザ素子では、上記のように、図8~図13に示した第2実施形態の窒化物系半導体の形成方法を用いて形成された、量産性に優れ、かつ、低転位のSiドープGaN層24を下地として、その上に各層25~32を形成することによって、各層25~32において良好な結晶性を実現することができる。その結果、量産性に優れ、かつ、良好な素子特性を有する半導体レーザ素子を得ることができる。

【0061】たとえば、上記第1および第2実施形態では、基板として、サファイア基板1およびSi基板21を用いたが、本発明はこれに限らず、スピネル基板、SiC基板、GaP基板、InP基板または水晶基板を用いてもよい。

【0062】加えて、上記第1および第2実施形態では、基板として、GaN基板を用いてもよい。この場合、必ずしも低温バッファ層3を形成する必要はなく、あるいはバッファ層23を形成する必要はない。

【0063】(第3実施形態)図15〜図20は、本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。この第3実施形態では、サファイア(0001)面基板41(以下、「サファイア基板41」という)上に形成した凹凸形状を有する下地層43を用いて選択横方向成長を行う例を示している。以下、図15〜図20を参照して、第3実施形態による窒化物系半導体の形成方法について詳細に説明する。

【0064】まず、この第3実施形態では、図15に示すように、MOVPE法などの結晶成長法を用いて、サ 10ファイア基板41上に、約15nmの膜厚を有するA1GaNからなる低温バッファ層42、および、約2μmの膜厚を有するアンドープGaNからなる下地層43を形成する。なお、サファイア基板41が、本発明の「基板」の一例である。また、この低温バッファ層42が、本発明の「バッファ層」の一例である。

【0065】下地層43上には、約0.5 $\mu$ mの膜厚を有するストライプ状のSiOからなるマスク層44を形成する。マスク層44のストライプパターンは、マスク層44の幅が約5 $\mu$ mで、隣接するマスク層44間の 20間隔(マスク開口部の幅)が約1 $\mu$ mとなるように、約6 $\mu$ mの周期で形成する。また、ストライプ状のマスク層44は、GaNからなる下地層43の[11-20]方向と平行な方向に形成する。

【0066】このマスク層44をマスクとして、RIE 法などを用いて、下地層43の表面を約1μmの厚み分だけエッチングする。これにより、図16に示すように、下地層43の表面に凹凸形状を形成する。凹凸の形状はエッチング条件により異なり、凹部の上部の幅より凹部の底部の幅の方が広くなることもあれば、狭くなる 30こともある。以下では、下地層43のエッチングにより形成された凸部がメサ形状(台形状)になる場合を示す。また、下地層43の凹凸形状は、約1μmの高さを有するとともに、アンドープGaNからなる下地層43の[11-20]方向と平行な方向に形成される。

【0067】次に、図17に示すように、アンドープG a Nからなる下地層43の露出された凹部の底面および側面を種結晶として、アンドープG a N層45を再成長させる。初期段階では、アンドープG a N層45は、図17および図18に示すように、下地層43の凹部の底40面から縦方向(上方向)に成長するとともに、下地層43の側面から横方向にも成長する。なお、このアンドープG a N層45が、本発明の「第1室化物系半導体層」の一例である。

【0068】そして、図18に示す状態からさらにアンドープGaN層45の成長が進むと、アンドープGaN層45は、図19に示すように、マスク層44上を横方向に成長する。そして、マスク層44上を横方向成長したアンドープGaN層45が合体して、連続的なアンドープGaN層45が形成される。これにより、図20に 50

【0069】第3実施形態による窒化物系半導体の形成方法では、上記のように、アンドープGaNからなる下地層43の凹部の底面および側面を種結晶として、アンドープGaN層45を成長させることによって、側面の下地層43から横方向に成長する際や、マスク層44上を横方向に成長する際に、アンドープGaN層45の転位は、アンドープGaN層45の(0001)面内方向に折れ曲がる。これにより、表面付近の転位が低減された低転位のアンドープGaN層45を形成することができる。

【0070】また、第3実施形態による窒化物系半導体の形成方法では、上記のように、下地層43の表面に凹凸形状を形成することによって、下地層43の表面のみをエッチングするだけでよい。これにより、図30に示した従来の凹凸形状を形成するためのプロセスに比べて、下地層43に凹凸形状を形成するためのエッチング時間を減少させることができる。その結果、第1および第2実施形態と同様、量産性に優れた窒化物系半導体の形成方法を得ることができる。

【0071】また、第3実施形態による窒化物系半導体の形成方法では、サファイア基板41上に、低温バッファ層42を形成した後、アンドープGaNからなる下地層43を成長させるので、容易の低転位の下地層43を形成することができる。

【0072】図21は、上記した第3実施形態の窒化物系半導体の形成方法を用いて製造した半導体レーザ素子を示した斜視図である。次に、図21を参照して、第3実施形態による窒化物系半導体の形成方法を用いて製造した半導体レーザ素子の構造について説明する。

【0073】第3実施形態の半導体レーザ素子の構造としては、図20に示したアンドープGaN層45上に、第1実施形態と同様、n型コンタクト層5、クラック防止層6、n型第2クラッド層7、n型第1クラッド層8、MQW発光層9、p型第1クラッド層10、p型第2クラッド層11、電流阻止層12、p型コンタクト層13および保護膜14が形成されている。なお、各層5~13および保護膜14の組成および膜厚は、第1実施形態と同様である。

【0074】また、p型コンタクト層130上面上には、p型電極15が形成されるとともに、一部領域が除去されて露出されたn型コンタクト層5の表面には、n型電極16が形成されている。

【0075】第3実施形態の半導体レーザ素子では、上記のように、図15~図20に示した第3実施形態の窒化物系半導体の形成方法を用いて形成された量産性に優れ、かつ、低転位のアンドープGaN層45を下地として、その上に各層5~13を形成することによって、各層5~13において良好な結晶性を実現することができ

る。その結果、量産性に優れ、かつ、良好な素子特性を 有する半導体レーザ素子を得ることができる。

【0076】(第4実施形態)図22〜図27は、本発明の第4実施形態による窒化物系半導体の形成方法を説明するための断面図である。この第4実施形態では、第3実施形態の絶縁性のサファイア基板41の代わりに、導電性を有するn型のSiC(0001)面基板51(以下、「SiC基板51」という)を用いている。図22〜図27を参照して、第4実施形態による窒化物系半導体の形成方法について説明する。

【0077】まず、この第4実施形態では、図22に示すように、MOVPE法などの結晶成長法を用いて、n型のSiC基板51上に、約15nmの膜厚を有するSiドープAlGaNからなるバッファ層52、および、約2μmの膜厚を有するSiドープGaNからなる下地層53を形成する。なお、SiC基板51が、本発明の「基板」の一例である。

【0078】下地層53上には、約 $0.5\mu$ mの膜厚を有するストライプ状のSiOからなるマスク層54を形成する。マスク層54のストライプパターンは、マス 20 ク層54の幅が約 $5\mu$ mで、隣接するマスク層54間の間隔(マスク開口部の幅)が約 $1\mu$ mとなるように、約 $6\mu$ mの周期で形成する。また、ストライプ状のマスク層54は、SiドープGaNからなる下地層53の [11-20]方向と平行な方向に形成する。

【0079】このマスク層54をマスクとして、RIE 法などを用いて、下地層53の表面を約1μmの厚み分だけエッチングする。これにより、図23に示すように、下地層53の表面に凹凸形状を形成する。凹凸の形状はエッチング条件により異なり、凹部の上部の幅より 30凹部の底部の幅の方が広くなることもあれば、狭くなることもある。以下では、下地層53のエッチング条件により形成された凸部がメサ形状(台形状)になる場合を示す。また、下地層53の凹凸形状は、約1μmの高さを有するとともに、SiドープGaNからなる下地層53の[11-20]方向と平行な方向に形成される。

【0080】次に、図24に示すように、SiドープGaN的らなる下地層53の露出された凹部の底面および側面を種結晶として、SiドープGaN層55を再成長させる。初期段階では、SiドープGaN層55は、図4024および図25に示すように、下地層53の凹部の底面から縦方向(上方向)に成長するとともに、下地層53の側面からも横方向に成長する。なお、このSiドープGaN層55が、本発明の「第1窒化物系半導体層」の一例である。

【0081】そして、図25に示す状態からさらにSiドープGaN層55の成長が進むと、SiドープGaN層55は、図26に示すように、マスク層54上を横方向に成長する。そして、マスク層54上を横方向成長したSiドープGaN層55が合体して、連続的なSiド 50

ープGaN層55が形成される。これにより、図27に示すように、表面が平坦化された約5 $\mu$ mの膜厚を有するSiFープGaN層55が形成される。

【0082】第4実施形態による窒化物系半導体の形成方法では、上記のように、SiドープGaNからなる下地層53の凹部の底面および側面を種結晶として、SiドープGaN層55を成長させることによって、側面の下地層53から横方向に成長する際や、マスク層54上を横方向に成長する際に、SiドープGaN層55の転位は、SiドープGaN層55の(0001)面内方向に折れ曲がる。これにより、表面付近の転位が低減された低転位のSiドープGaN層55を形成することができる。

【0083】また、第4実施形態による窒化物系半導体の形成方法では、上記のように、下地層53の表面に凹凸形状を形成することによって、下地層53の表面のみをエッチングするだけでよい。これにより、図30に示した従来の凹凸形状を形成するためのプロセスに比べて、下地層53に凹凸形状を形成するためのエッチング時間を減少させることができる。その結果、第1~第3実施形態と同様、量産性に優れた窒化物系半導体の形成方法を得ることができる。

【0084】また、第4実施形態による窒化物系半導体の形成方法では、SiC基板51上に、バッファ層52を形成した後、SiドープGaNからなる下地層53を成長させるので、容易の低転位の下地層53を形成することができる。

【0085】図28は、上記した第4実施形態の窒化物 系半導体の形成方法を用いて製造した半導体レーザ素子 を示した斜視図である。次に、図28を参照して、第4 実施形態による窒化物系半導体の形成方法を用いて製造 した半導体レーザ素子の構造について説明する。

【0086】第4実施形態の半導体レーザ素子の構造としては、図27に示したSiドープGaN層55上に、第2実施形態と同様、クラック防止層25、n型第2クラッド層26、n型第1クラッド層27、MQW発光層28、p型第1クラッド層29、p型第2クラッド層30、電流阻止層31およびp型コンタクト層32が形成されている。なお、各層25~32の組成および膜厚は、第2実施形態と同様である。

【0087】また、p型第2クラッド層30のメサ形状を反映したp型コンタクト層32の凸部上には、p型電極33が形成されている。また、SiC基板51が導電性を有するので、SiC基板51の裏面に、n型電極34が形成されている。

【0088】第4実施形態の半導体レーザ素子では、上記のように、図22~図27に示した第4実施形態の窒化物系半導体の形成方法を用いて形成された、量産性に優れ、かつ、低転位のSiドープGaN層55を下地として、その上に各層25~32を形成することによっ

18

て、各層25~32において良好な結晶性を実現することができる。その結果、量産性に優れ、かつ、良好な素子特性を有する窒化物系半導体素子を得ることができる。

【0089】たとえば、上記第3および第4実施形態では、基板として、サファイア基板41およびSiC基板51を用いたが、本発明はこれに限らず、スピネル基板、GaN基板、GaAs基板、GaP基板、InP基板および水晶基板などを用いてもよい。

【0090】なお、今回開示された実施形態は、すべて 10 の点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。

【0091】また、上記第1~第4実施形態では、サファイア基板1、Si基板21、下地層43および53に、エッチングにより凹凸形状を形成する際に、凹部の高さを約1 $\mu$ mに形成したが、本発明はこれに限らず、サファイア基板1、Si基板21、下地層43および5203の底面に達しない範囲で、凹部の高さを数 $\pi$ mの範囲で形成するのが好ましい。

【0092】また、上記第1~第4実施形態では、ストライプ状のマスク層を、サファイア基板1の[1-10]方向、または、下地層43および53のGaNの[11-20]方向に平行に形成したが、本発明はこれに限らず、上記した方向と異なる方向にストライプ状のマスク層を形成してもよい。たとえば、第3および第4実施形態のマスク層44および54を、下地層43および53のGaNの[1 30-100]方向に平行に形成してもよい。

【0093】また、上記第1~第4実施形態では、サファイア基板1、Si基板21、下地層43および53の表面の凹凸形状を、サファイア基板1の[1-100]方向、Si基板21の[1-10]方向、または、下地層43および53のGaNの[11-20]方向に平行に形成したが、本発明はこれに限らず、上記した方向と異なる方向に凹凸形状を形成してもよい。たとえば、第3および第4実施形態の下地層43および53の凹凸形状を、下地層43および53のGaNの[1-100]方向に平行に形成してもよい。

【0094】また、上記第1~第4実施形態では、マスク層およびマスク層の開口部を、ストライプ状に形成したが、本発明はこれに限らず、マスク層を、円形、六角形または三角形などの形状で形成してもよく、また、マスク層の開口部を、円形、六角形または三角形などの形状で形成してもよい。マスク層およびマスク層の開口部を、六角形または三角形に形成する場合、六角形または三角形の各辺の方向は、どの結晶方位と一致するように形成してもよい。

【0095】また、上記第1~第4実施形態では、サファイア基板1、Si基板21、下地層43および53の表面の凹部および凸部をストライプ状に形成したが、本発明はこれに限らず、サファイア基板1、Si基板21、下地層43および53の表面の凹部の形状を、円形、六角形または三角形などの形状で形成してもよく、また、凸部の形状を、円形、六角形または三角形などの形状で形成してもよい。凹部または凸部の形状を、六角形または三角形に形成する場合、六角形または三角形の各辺の方向は、どの結晶方位と一致するように形成してもよい。

【0096】また、上記第1~第4実施形態では、窒化物系半導体を用いて半導体レーザ素子を作製したが、本発明はこれに限らず、発光ダイオード素子またはトランジスタなどの窒化物系半導体を用いる他の素子にも適用可能である。

【0097】また、上記第1~第4実施形態において、 窒化物系半導体の結晶構造は、ウルツ鉱型構造であって もよいし、関亜鉛鉱型構造であってもよい。

【0098】また、上記第1~第4実施形態では、窒化物系半導体各層の結晶成長を、MOVPE法を用いて行ったが、本発明はこれに限らず、HVPE法、または、TMAI、TMGa、TMIn、NH、SiHはよびCp.Mgなどを原料ガスとして用いるガスソースMBE法などを用いて結晶成長を行ってもよい。

【0099】また、第1~第4実施形態において、サファイア基板1、Si基板21、下地層43および53に形成された凹凸形状の凹部の底面の幅を、数百nm~数十 $\mu$ mの範囲で形成するのが好ましい。

#### [0100]

【発明の効果】以上のように、本発明によれば、量産性に優れ、かつ、良好な素子特性を有する窒化物系半導体素子を提供することができる。また、量産性に優れ、かつ、低転位密度の窒化物系半導体層を得ることが可能な窒化物系半導体の形成方法を提供することができる。

#### 【図面の簡単な説明】

【図1】本発明の第1実施形態による窒化物系半導体の 形成方法を説明するための断面図である。

【図2】本発明の第1実施形態による窒化物系半導体の 形成方法を説明するための断面図である。

【図3】本発明の第1実施形態による窒化物系半導体の 形成方法を説明するための断面図である。

【図4】本発明の第1実施形態による窒化物系半導体の 形成方法を説明するための断面図である。

【図5】本発明の第1実施形態による窒化物系半導体の 形成方法を説明するための断面図である。

【図6】本発明の第1実施形態による窒化物系半導体の 形成方法を説明するための断面図である。

【図7】本発明の第1実施形態による窒化物系半導体の 50 形成方法を用いて製造した半導体レーザ素子を示した斜 視図である。

【図8】本発明の第2実施形態による窒化物系半導体の 形成方法を説明するための断面図である。

19

【図9】本発明の第2実施形態による窒化物系半導体の 形成方法を説明するための断面図である。

【図10】本発明の第2実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図11】本発明の第2実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図12】本発明の第2実施形態による窒化物系半導体 10 の形成方法を説明するための断面図である。

【図13】本発明の第2実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図14】本発明の第2実施形態による窒化物系半導体の形成方法を用いて製造した半導体レーザ素子を示した 斜視図である。

【図15】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図16】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図17】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図18】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図19】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図20】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図21】本発明の第3実施形態による窒化物系半導体の形成方法を用いて製造した半導体レーザ素子を示した 30 斜視図である。

【図22】本発明の第4実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図23】本発明の第4実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図24】本発明の第4実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図25】本発明の第4実施形態による窒化物系半導体の形成方法を説明するための断面図である。

【図26】本発明の第4実施形態による窒化物系半導体 40 の形成方法を説明するための断面図である。 \*

\*【図27】本発明の第4実施形態による窒化物系半導体 の形成方法を説明するための断面図である。

【図28】本発明の第4実施形態による窒化物系半導体の形成方法を用いて製造した半導体レーザ素子を示した 斜視図である。

【図29】従来の窒化物系半導体の形成方法を説明する ための断面図である。

【図30】従来の窒化物系半導体の形成方法を説明する ための断面図である。

0 【図31】従来の窒化物系半導体の形成方法を説明する ための断面図である。

【図32】従来の窒化物系半導体の形成方法を説明する ための断面図である。

【図33】従来の窒化物系半導体の形成方法を説明する ための断面図である。

#### 【符号の説明】

1、41 サファイア基板 (基板)

3、42 低温バッファ層 (バッファ層)

2、22、44、54 マスク層

4、45 アンドープGaN層(第1窒化物系半導体層)

5 n型コンタクト層 (窒化物系半導体素子層)

6、25 クラック防止層 (窒化物系半導体素子層)

7、26 n型第2クラッド層 (窒化物系半導体素子層)

8、27 n型第1クラッド層 (窒化物系半導体素子層)

9、28 MQW発光層 (窒化物系半導体素子層)

10、29 p型第1クラッド層(窒化物系半導体素子

層)

11、30 p型第2クラッド層(窒化物系半導体素子層)

12、31 電流阻止層 (窒化物系半導体素子層)

13、32 p型コンタクト層 (窒化物系半導体素子層)

21 Si基板 (基板)

23、52 バッファ層

24、55 SiドープGaN層 (第1窒化物系半導体層)

43、53 下地層

51 SiC基板 (基板)

【図4】



【図6】



【図5】



【図7】



[図8]



【図10】



【図9】



【図11】



【図12】



【図13】



【図14】



【図15】



【図16】



【図17】



【図18】



【図19】



【図20】



[図22]



【図24】



【図26】



【図21】



[図23]



【図25】



【図27】



【図28】



【図29】



【図30】



【図31】



【図32】



【図33】



フロントページの続き

(72)発明者 林 伸彦

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

F ターム(参考) 5F045 AA04 AB09 AB14 AB17 AF02 AF03 AF04 AF09 AF12 AF20 CA10 CA12 DA53 DA55 DB02 5F073 AA74 CA07 CB05 CB07 DA05

DA25 EA29