Lale: Type-Driven Auto-ML with Scikit-Learn

Talk at ICML 2020 Expo

Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar

```
In [1]: 🗎
```

- 1 import pandas as pd
- 2 import lale.datasets
- 3 (train_X, train_y), (test_X, test_y) = lale.datasets.california_housing_df()
- 4 pd.concat([train X.head(), train y.head()], axis=1)

Out[1]:

	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	target
0	3.2596	33.0	5.017657	1.006421	2300.0	3.691814	32.71	-117.03	1.030
1	3.8125	49.0	4.473545	1.041005	1314.0	1.738095	33.77	-118.16	3.821
2	4.1563	4.0	5.645833	0.985119	915.0	2.723214	34.66	-120.48	1.726
3	1.9425	36.0	4.002817	1.033803	1418.0	3.994366	32.69	- <mark>117.11</mark>	0.934
4	3.5542	43.0	6.268421	1.134211	874.0	2.300000	36.78	-119.80	0.965

Example Dataset

- sklearn California housing
- pandas dataframe
- · schema for error-checking
- numeric features
 - → no cleaning / encoding
- numeric target
 - → use regression model

```
import pandas as pd
In [1]:
                 import lale.datasets
              3 (train X, train y), (test X, test y) = lale.datasets.california housing df()
              4 pd.concat([train X.head(), train y.head()], axis=1)
   Out[1]:
                MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude target
               3.2596
                           33.0
                                 5.017657
                                           1.006421
                                                       2300.0
                                                              3.691814
                                                                        32.71
                                                                                -117.03 1.030
                3.8125
                           49.0
                                 4.473545
                                           1.041005
                                                       1314.0
                                                              1.738095
                                                                        33.77
                                                                                -118.16 3.821
             2 4.1563
                                 5.645833
                                                                        34.66
                            4.0
                                           0.985119
                                                       915.0
                                                              2.723214
                                                                                -120.48 1.726
                1.9425
                           36.0
                                 4.002817
                                           1.033803
                                                       1418.0
                                                              3.994366
                                                                        32.69
                                                                                -117.11 0.934
               3.5542
                           43.0
                                 6.268421
                                                       874.0
                                                              2.300000
                                                                        36.78
                                                                                -119.80 0.965
                                                                                                       Importing Operators
                                           1.134211
In [2]:
                 from sklearn.preprocessing import StandardScaler as Scale
                 from sklearn.preprocessing import Normalizer as Norm

    most directly from sklearn,

                 from lale.lib.lale import NoOp
                                                                                                          also lale, xgboost
              4 from sklearn.decomposition import PCA
                                                                                                       wrap_imported_operators
              5 from sklearn.tree import DecisionTreeRegressor as Tree
              6 from sklearn.linear model import LinearRegression as Linear
                                                                                                          attaches schemas
                 from xqboost import XGBRegressor as XGB
                                                                                                          for type-driven Auto-ML
              8 lale.wrap imported operators()
```


- for ML pipeline
- or combinator | for auto algorithm selection
- elided init args PCA () for hyperparameter tuning


```
In [4]:
                from lale.lib.lale import Hyperopt
                import sklearn.metrics
             3 r2 = sklearn.metrics.make scorer(sklearn.metrics.r2 score)
             4 trained pipeline = planned pipeline.auto configure(
                    train X, train y, optimizer=Hyperopt,
                    scoring=r2, max opt time=10*60, max eval time=60, cv=3)
             6
                         50/50 [10:02<00:00, 12.05s/trial, best loss: -0.8107292214446913]
                print(f'R2 score: {r2(trained pipeline, test X, test y):.2f}')
In [5]:
               trained pipeline.visualize()
           R2 score: 0.83
                             No-
                                           XGB
               Scale
                                                                                                pretty print
                trained pipeline.pretty print(ipython display=True)
In [6]:
           from lale.lib.sklearn.standard scaler import Scale

    consistent syntax for input

           from lale.lib.lale import NoOp
                                                                                                   and output or Auto-ML
           from lale.lib.xgboost.xgb regressor import XGB
           import lale

    consistent syntax for

           lale.wrap imported operators ()
                                                                                                   manual ML and Auto-ML
           xgb = XGB(colsample bylevel=0.8539909881709349, colsample bytree=0.9733482608060157, learning rate=0.33190877144882
           86, max depth=10, min child weight=14, n estimators=819, reg alpha=0.07519396924044132, reg lambda=0.08746289842357
           71, subsample=0.9433039199868445)
           pipeline = Scale() >> NoOp() >> xgb
```

	Learn more
"Lale: Consistent Automated Machine Learning", Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar. KDD Workshop on Automation in Machine Learning (AutoML@KDD), August 2020.	search space generationerror checkinghigher-order operatorspipeline grammars
"Mining Documentation to Extract Hyperparameter Schemas", Guillaume Baudart, Peter Kirchner, Martin Hirzel, and Kiran Kate. ICML Workshop on Automated Machine Learning (AutoML@ICML), July 2020.	input: Python docstringoutput: JSON schema
	8

github.com/ibm/lale

