- 1. Let $R = \{(a, b) \in \mathbb{R} \times \mathbb{R} : 7 \text{ divides } a b\}$. State five elements of R, with proper notation.
 - $(15,8) \in \mathbb{R}$, since 7 divides (15-8).
 - $(1.25, 8.25) \in \mathbb{R}$, since 7 divides (1.25 8.25).
 - $(14, -7) \in \mathbb{R}$, since 7 divides (14 (-7)).
 - $(56,7) \in \mathbb{R}$, since 7 divides (56-7).
 - $(-13.15, 0.85) \in \mathbb{R}$, since 7 divides (-13.15 0.85).

2. Let $R = \{(a, b) \in \mathbb{R} \times \mathbb{R} : 7 \text{ divides } a - b\}$. Note that R is a binary relation on \mathbb{R} . Prove R is reflexive.

Proof. Want to show that for all $a \in \mathbb{R}$, $(a, a) \in R$. Let $a \in \mathbb{R}$ be arbitrary. Since 7 divides (a - a), we have 7 divides 0. Since 7 divides 0, we have $0 = 7 \cdot 0$, which is true. Therefore, $(a, a) \in R$. Since $a \in \mathbb{R}$ was arbitrary, we have shown that for all $a \in \mathbb{R}$, $(a, a) \in R$. Therefore, R is reflexive.

3. Let $R = \{(a, b) \in \mathbb{R} \times \mathbb{R} : 7 \text{ divides } a - b\}$. Note that R is a binary relation on \mathbb{R} . Prove R is symmetric.

Proof. Want to show that for all $a, b \in \mathbb{R}$, if $(a, b) \in R$, then $(b, a) \in R$. Let $a, b \in \mathbb{R}$ be arbitrary. Suppose $(a, b) \in R$. Then 7 divides (a - b). Since 7 divides (a - b), we have a - b = 7k for some $k \in \mathbb{Z}$. Multiplying both sides by -1 gives b - a = -7k. Since $-7k \in \mathbb{Z}$, we have 7 divides (b - a). Therefore, $(b, a) \in R$. Since $a, b \in \mathbb{R}$ were arbitrary, we have shown that for all $a, b \in \mathbb{R}$, if $(a, b) \in R$, then $(b, a) \in R$. Therefore, R is symmetric.

4. Let $R = \{(a, b) \in \mathbb{R} \times \mathbb{R} : 7 \text{ divides } a - b\}$. Note that R is a binary relation on \mathbb{R} . Prove R is transitive.

Proof. Want to show that for all $a,b,c\in\mathbb{R}$, if $(a,b)\in R$ and $(b,c)\in R$, then $(a,c)\in R$. Let $a,b,c\in\mathbb{R}$ be arbitrary. Suppose $(a,b)\in R$ and $(b,c)\in R$. Then 7 divides (a-b) and 7 divides (b-c). Since 7 divides (a-b) and 7 divides (b-c), we have a-b=7k and b-c=7m for some $k,m\in\mathbb{Z}$. Adding these equations gives a-c=7(k+m). Since $k+m\in\mathbb{Z}$, we have 7 divides (a-c). Therefore, $(a,c)\in R$. Since $a,b,c\in\mathbb{R}$ were arbitrary, we have shown that for all $a,b,c\in\mathbb{R}$, if $(a,b)\in R$ and $(b,c)\in R$, then $(a,c)\in R$. Therefore, R is transitive.

- 5. Based on the following set definitions:
 - $B = \{j \text{'s cat} : j \in T\}$
 - $L = \{z \in V \mid z \text{ scratches furniture}\}\$
 - $S = \{m \in T : m \text{ plays hockey}\}\$

and hypotheses

- H1: $B \subseteq L$.
- H2: For all $c \in T$, if c is a baker and c's cat scratches furniture, then c wins GBBO.
- H3: For all $a \in T$, if a does not wear a helmet, then a does not skateboard.
- H4: For all $d \in J$, if d scratches furniture, then d does not wear a helmet.
- H5: $J \subseteq V$.

prove: for all $x \in S$, for all $y \in T$, if x is a baker and y skateboards, then x wins GBBO and y wears a helmet.

Proof. Let $x \in S$ and $y \in T$ be arbitrary. Suppose x is a baker and y skateboards. Since $x \in S$, we know x plays hockey. Since x plays hockey, $x \in T$. Since $x \in T$, x's cat scratches furniture. Since x's cat scratches furniture, x wins GBBO by hypothesis H2. Since y skateboards, y must wear a helmet by hypothesis H3. Therefore, for all $x \in S$, for all $y \in T$, if x is a baker and y skateboards, then x wins GBBO and y wears a helmet.