Robotic folding with CURL in simulation

Vicent Roig Server

Francis wyffels, Andreas Verleysen, Victor-Louis De Gusseme

Table of contents

Introduction

Task problem

Task problem: Cloth folding

Infinite types of cloth.

With visual observations the robot has to recognise and fold the cloth.

Cloth simulation

- 2.1 Model
- 2.2 Timeline

Cloth simulation: Mass-Spring model

Structural

$$[i,j]$$
— $[i,j+1]$; $[i,j]$ — $[i+1,j]$

Shear

$$[i, j]$$
— $[i + 1, j + 1]; [i + 1, j]$ — $[i, j + 1]$

[i, j]—[i, j + 2]; [i, j]—[i + 2, j]

Bend

Cloth simulation in four steps

CURL

Contrastive Unsupervised Representation for Reinforcement Learning

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Problem

Reinforcement learning from high dimensional observations such as raw pixels is inefficient. Solution

CURL: Extract information from the images to help the RL algorithm.

CURL

Original

No crop, original image

Query observation Central crop of the original image

NN encode: q

Contrastive Learning

q W k-

q W K+

Positive observation

Random crop of the original image

Negative observation

MN encode: K+

Mencole: *

Random crop of other image

Reinforcement Learning Algorithm

Reinforcement learning algorithm will receive as a input the **q** representation extracted

- 4.1 Simulation environment
- 4.2 Folding task
- 4.3 Reward function
- 4.4 Experimental framework

Robot simulation: Simulation environment

Cloth Arms Robot model Agent detection control **URDF** Magnetic 2 Hands 1 Agent Inverse behaviour **Kinematics** Visual Action type: representation Continuous Cloth attached to FABRIK the gripper when is Kinematic and Action space: Vector close enough dynamic Fast and realistic size 6 representation Camera Collision Collision model

Folding task

First step

Second step

Reward function

Experimental setup

Action

Type: Continuous

Size: 6

Observation
Reward
Goal succeed?

Results

5.1 Results

Results

Conclusions

Conclusions

Cloth simulation problems

$$\vec{F_{ij}} = k_{ij} (||\vec{r_{ij}}|| - l_{ij}) \frac{\vec{r_{ij}}}{||\vec{r_{ij}}||}$$

$$\vec{F_{ij}}^d = d_{ij}(\vec{v_i} - \vec{v_j})$$

Conclusions

