Knowledge-aware Commonsense Question Answering 知识注意的常识问答

——刘平生

Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering

```
Yanlin Feng** Xinyue Chen** Bill Yuchen Lin* Peifeng Wang* Jun Yan* Xiang Ren*
fengyanlin@pku.edu.cn, xinyuech@andrew.cmu.edu,
{yuchen.lin, peifengw, yanjun, xiangren}@usc.edu
*University of Southern California
*Peking University *Carnegie Mellon University
```

问题描述

Where does a child likely sit at a desk?

A. Schoolroom * B. Furniture store C. Patio

D. Office building E. Library

Q: In what geological feature will you find fungus growing?

A: shower stall B: toenails C: basement D: forest E: cave

常识: "a child is likely to appear in a schoolroom"

常识: "cave has the geological feature"

"cave is usually moist"

"fungus grows in moist place"

问题描述

Where does a child likely sit at a desk?

A. Schoolroom * B. Furniture store C. Patio

D. Office building E. Library

Q和A中的实体: {Child, Sit, Desk, Schoolroom }

关系路径: (Child → AtLocation → Classroom → Synonym →

Schoolroom)

如何处理这个关系图?

Overview of the knowledge-aware QA framework

Graph Encoding with Path-Based Models

- Relation Network (RN)
- KagNet

直接从图中抽取关系路径,并用序列模型编码的方法

RN:
$$RN(\mathcal{G}) = Pool(\{MLP(\boldsymbol{h}_j \oplus \boldsymbol{e}_r \oplus \boldsymbol{h}_i) \mid j \in \mathcal{Q}, i \in \mathcal{A}, (j, r, i) \in \mathcal{E}\}).$$

KagNet: KagNet(
$$G$$
) = Pool({LSTM($j, r_1, j_1, ..., r_k, i$) | $(j, r_1, j_1), ..., (j_{k-1}, r_k, i) \in \mathcal{E}, 1 \le k \le K$ }).

Graph Encoding with Path-Based Models

- Relation Network (RN)
- KagNet 直接从图中抽取关系路径,并用序列模型编码的方法

特点:具有可解释性,但扩展性不够好

扩展性不够好的原因:

- 1) Polynomial (考虑结点数量,图中路径数量的变化呈多项式)
- 2) Exponential (考虑跳数,图中路径数量的变化呈指数式)

因此,也有一些模型也仅仅使用 One-hop 路径(三元组)来平衡 scalability

Graph Encoding with GNNs

- GNN: $\{h_1, h_2, \dots, h_n\}$ a set of node features as input $\{h'_1, h'_2, \dots, h'_n\}$ node embeddings via message passing $\text{GNN}(\mathcal{G}) = \text{Pool}(\{h'_1, h'_2, \dots, h'_n\}).$ representation for G
- GCN: 为每个结点融合它邻结点的信息
- RGCN: GCN的变体,为每种边的类型定义了特定的权重矩阵 W_r

$$\boldsymbol{h}_{i}' = \sigma \left(\left(\sum_{r \in \mathcal{R}} |\mathcal{N}_{i}^{r}| \right)^{-1} \sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_{i}^{r}} \boldsymbol{W}_{r} \boldsymbol{h}_{j} \right),$$

N(i, r) 表示与结点i相连的关系为r的所有邻结点

Graph Encoding with GNNs

• GCNs

■■● 图神经网络

• RGCNs

特点:具有可扩展性,但可解释性不够好,缺乏推理的透明度

这些模型都没有区分不同邻结点和关系类型的重要性,无法为模型行为解释提供明确的关系路径。

Multi-hop Graph Relation Network (MHGRN)

- ✓ 结合了 Path-based models + GNNs 两者的优点
- ✓ 兼具可解释性+可扩展性

	GCN	RGCN	KagNet	MHGRN
Multi-Relational Encoding	Х	✓	✓	✓
Interpretable	X	X	✓	✓
Scalable w.r.t. #node	✓	✓	X	✓
Scalable w.r.t. #hop	✓	✓	X	✓

Table 1: **Properties** of our MHGRN and other representative models for graph encoding.

Key Motivation: each node directly **attends** to its multi-hop neighbors

MHGRN: Model Architecture

1. 区分结点类型,做个转换

$$\boldsymbol{x}_i = \boldsymbol{U}_{\phi(i)}\boldsymbol{h}_i + \boldsymbol{b}_{\phi(i)},$$

$$\Phi_k = \{ (j, r_1, \dots, r_k, i) \mid (j, r_1, j_1), \dots, (j_{k-1}, r_k, i) \in \mathcal{E} \} \quad (1 \le k \le K).$$

$$\boldsymbol{z}_{i}^{k} = \sum_{(j,r_{1},\dots,r_{k},i)\in\Phi_{k}} \alpha(j,r_{1},\dots,r_{k},i)/d_{i}^{k} \cdot \boldsymbol{W}_{0}^{K}$$
$$\cdots \boldsymbol{W}_{0}^{k+1} \boldsymbol{W}_{r_{k}}^{k} \cdots \boldsymbol{W}_{r_{1}}^{1} \boldsymbol{x}_{j} \quad (1 \leq k \leq K), \quad (7)$$

$$z_i = \sum_{k=1}^K \text{softmax}(\text{bilinear}(s, z_i^k)) \cdot z_i^k.$$

$$h'_i = \sigma (V h_i + V' z_i),$$

3. 非线性激活 函数

MHGRN: Model Architecture

得到G中每个结点的特征表示 h_i' 后,再对所有来自A中的结点 $\{h_i' \mid i \in A\}$ 进行一个pool操作,最终得到图G的表示 g

$$\rho(q,a) = \text{MLP}(s \oplus g)$$

• Datasets

	Train	Dev	Test
CommonsenseQA (OF)	9,741	1,221	1,140
CommonsenseQA (IH)	8,500	1,221	1,241
OpenbookQA	4,957	500	500

Methods	BERT-Base		BERT-Large		RoBERTa-Large	
Without	IHdev-Acc.(%)	IHtest-Acc.(%)	IHdev-Acc.(%)	IHtest-Acc.(%)	IHdev-Acc.(%)	IHtest-Acc.(%)
w/o KG	57.31 (±1.07)	53.47 (±0.87)	61.06 (±0.85)	55.39 (±0.40)	73.07 (±0.45)	68.69(±0.56)
RGCN (Schlichtkrull et al., 2018)	56.94 (±0.38)	54.50 (±0.56)	62.98 (±0.82)	57.13 (±0.36)	72.69 (±0.19)	68.41 (±0.66)
GconAttn (Wang et al., 2019)	$57.27 (\pm 0.70)$	$54.84 (\pm 0.88)$	$63.17 (\pm 0.18)$	$57.36 (\pm 0.90)$	$72.61(\pm 0.39)$	$68.59 (\pm 0.96)$
KagNet [†] (Lin et al., 2019)	55.57	56.19	62.35	57.16	-	-
RN (1-hop)	$58.27 (\pm 0.22)$	$56.20 (\pm 0.45)$	$63.04 (\pm 0.58)$	$58.46 (\pm 0.71)$	$74.57 (\pm 0.91)$	$69.08 (\pm 0.21)$
RN (2-hop)	59.81 (±0.76)	$56.61 (\pm 0.68)$	$63.36 (\pm 0.26)$	$58.92 (\pm 0.14)$	$73.65 (\pm 3.09)$	69.59 (±3.80)
MHGRN	60.36 (±0.23)	57.23 (±0.82)	63.29(±0.51)	60.59 (±0.58)	74.45 (±0.10)	71.11 (±0.81)

Performance comparison on CommonsenseQA (IH)

Methods	Single	Ensemble
UnifiedQA [†] (Khashabi et al., 2020)	79.1	-
RoBERTa [†]	72.1	72.5
RoBERTa + KEDGN [†]	72.5	74.4
RoBERTa + KE [†]	73.3	-
RoBERTa + HyKAS 2.0^{\dagger} (Ma et al., 2019)	73.2	-
RoBERTa + FreeLB [†] (Zhu et al., 2020)	72.2	73.1
XLNet + DREAM [†]	66.9	73.3
XLNet + GR^{\dagger} (Lv et al., 2019)	75.3	-
ALBERT [†] (Lan et al., 2019)	-	76.5
Roberta + MHGRN ($K = 2$)	75.4	76.5

Performance comparison on CommonsenseQA (OF)

Methods	Dev (%)	Test (%)
T5-3B [†] (Raffel et al., 2019)	-	83.20
UnifiedQA [†] (Khashabi et al., 2020)	-	87.20
RoBERTa-Large (w/o KG)	66.76 (±1.14)	64.80 (±2.37)
+ RGCN	64.65 (±1.96)	62.45 (±1.57)
+ GconAttn	$64.30 (\pm 0.99)$	61.90 (±2.44)
+ RN (1-hop)	$64.85 (\pm 1.11)$	63.65 (±2.31)
+ RN (2-hop)	$67.00 (\pm 0.71)$	65.20 (±1.18)
+ MHGRN (K = 3)	$68.10 (\pm 1.02)$	66.85 (±1.19)
AristoRoBERTaV7 [†]	79.2	77.8
+ MHGRN ($K = 3$)	78.6	80.6

Performance comparison on OpenbookQA

Impact of the Amount of Training Data

Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

```
Peifeng Wang<sup>1,3</sup>, Nanyun Peng<sup>1,2,3</sup>, Filip Ilievski<sup>3</sup>, Pedro Szekely<sup>1,3</sup>, Xiang Ren<sup>1,3</sup>

<sup>1</sup>Department of Computer Science, University of Southern California

<sup>2</sup>Department of Computer Science, University of California, Los Angeles

<sup>3</sup>Information Sciences Institute, University of Southern California

{peifengw, xiangren}@usc.edu, violetpeng@cs.ucla.edu

{ilievski,pszekely}@isi.edu
```

问题描述

Q: In what geological feature will you find fungus growing?

A: shower stall B: toenails C: basement D: forest E: cave

The missing link:

(cave, IsA, geological feature)

问题背景

- ✓ Existing systems retrieve knowledge from a KG, the challenges:
- 1) Sparsity
- 2) Noisy

KG-augmented QA Framework

关系图,本文不从静态知识图谱(eg. ConceptNet)中抽取得到,改用GPT-2动态生成

Model Architecture

怎么生成和任务相关的 知识路径呢?

Knowledge Path Sampling (知识路径采样)

从已有的静态图谱(KG)中进行路径采样,用来微调GPT-2

为了保证采样路径的质量,制定了两种策略

✓ Relevance (相关性)

Define useful relation types, filter out the remaining ones

✓ Informativeness (信息性)

All relation types in a path to be distinct

Knowledge Path Sampling (知识路径采样)

使用了两种采样方法

✓ Local sampling (局部采样)

Path的起始结点是任务训练集中Q和A中的实体,并从它们开始进行随机游走,得到的路径

✓ Global sampling (全局采样)

Path的起始结点是随机采样的一些实体,并从它们开始进行随机游走,得到一些局部 KG以外的路径,用于生成器的泛化

基于GPT-2的路径生成器的构建

用采样的路径上对GPT-2进行微调,之后便可以用来生成我们任务数据集相关的知识路径

Reasoning Module

Q和A的匹配得分:
$$f(q,a) = \mathbf{W}_{cls} \cdot [\mathbf{c}; \mathbf{k}] + \mathbf{b}_{cls}$$
,

• Datasets

	Train	Dev	Test
CommonsenseQA (OF)	9,741	1,221	1,140
CommonsenseQA (IH)	8,500	1,221	1,241
OpenbookQA	4,957	500	500

Methods	BERT-large		RoBERTa-large			
	20% Train	60% Train	100% Train	20% Train	60% Train	100% Train
Fine-tuned LM (w/o KG)	46.25 (±0.63)	52.30 (±0.16)	55.39 (±0.40)	55.28 (±0.35)	65.56 (±0.76)	68.69 (±0.56)
+ RN + RGCN + GconAttn + Link Prediction	45.12 (±0.69) 48.67 (±0.28) 47.95 (±0.11) 47.10 (±0.79)	54.23 (±0.28) 54.71 (±0.37) 54.96 (±0.69) 53.96 (±0.56)	58.92 (±0.14) 57.13 (±0.36) 56.94 (±0.77) 56.02 (±0.55)	61.32 (±0.68) 58.58 (±0.17) 57.53 (±0.31) 60.84 (±1.36)	66.16 (±0.28) 68.33 (±0.85) 68.09 (±0.63) 66.29 (±0.29)	69.59 (±3.80) 68.41 (±0.66) 69.88 (±0.47) 69.33 (±0.98)
+ PG-Local + PG-Global + PG-Full	$\frac{50.20}{49.89} (\pm 0.31)$ 51.97 (±0.26)	$\frac{55.68}{55.47} (\pm 0.07)$ $\frac{55.47}{57.53} (\pm 0.19)$	$56.81 (\pm 0.73)$ $57.21 (\pm 0.45)$ $59.07 (\pm 0.30)$	$61.56 (\pm 0.72)$ $62.93 (\pm 0.82)$ $63.72 (\pm 0.77)$	$67.77 (\pm 0.83)$ $68.65 (\pm 0.02)$ $69.46 (\pm 0.23)$	$70.43 (\pm 0.65)$ $71.55 (\pm 0.99)$ $72.68 (\pm 0.42)$

Test accuracy with varying proportions of CommonsenseQA (IH)

Methods	Single	Ensemble
RoBERTa (Liu et al., 2019)	72.1	72.5
RoBERTa+FreeLB (Zhu et al., 2019)	-	73.1
RoBERTa+HyKAS (Ma et al., 2019)	73.2	-
XLNet+DREAM	73.3	-
RoBERTa+KE	-	73.3
RoBERTa+KEDGN	-	74.4
XLNet+GraphReason (Lv et al., 2019)	75.3	-
Albert (Lan et al., 2019)	-	76.5
UnifiedQA* (Khashabi et al., 2020)	$\boldsymbol{79.1}$	
Albert+PG-Full	75.6	<u>78.2</u>

Test accuracy on CommonsenseQA (OF)

Methods	RoBERTa-large	AristoRoBERTa
Fine-tuned LMs (w/o KG)	64.80 (±2.37)	78.40 (±1.64)
+ RN	65.20 (±1.18)	75.35 (±1.39)
+ RGCN	62.45 (±1.57)	74.60 (±2.53)
+ GconAtten	64.75 (±1.48)	71.80 (±1.21)
+ Link Prediction	66.30 (±0.48)	77.25 (±1.11)
+ PG-Local	$\frac{70.05}{68.40}$ (±1.33)	$\frac{79.80}{80.05}$ (±1.45)
+ PG-Global	68.40 (±0.31)	80.05 (±0.68)
+ PG-Full	71.20 (±0.96)	79.15 (±0.78)

Test accuracy on OpenBookQA

THE END

2020.12.03