Math 4317 (Prof. Swiech, S'18): HW #3

Peter Williams 3/20/2018

Section 14

A. Let $b \in \mathbb{R}$, show $\lim \frac{b}{n} = 0$.

Take $\varepsilon > 0$, if $|\frac{b}{n} - 0| < \varepsilon$, there exists natural number $K(\varepsilon)$ such that $\frac{b}{n} < \frac{n}{K(\varepsilon)} < \varepsilon$. If $n \ge K(\varepsilon)$, and we choose $K(\varepsilon)$ such that $K(\varepsilon) > \frac{b}{\varepsilon} \implies \frac{b}{n} < \varepsilon \implies \lim \frac{b}{n} = 0$.

B. Show that $\lim(\frac{1}{n} - \frac{1}{n+1}) = 0$.

Take $\varepsilon > 0$, note that for $n \in \mathbb{N}, \frac{1}{n} - \frac{1}{n+1} = \frac{n+1-n}{n(n+1)} = \frac{1}{n(n+1)} < \frac{1}{n}$. So we choose natural number $K(\varepsilon)$ such that $\frac{1}{K(\varepsilon)} < \varepsilon$. Therefore if $n \geq K(\varepsilon) \implies \frac{1}{n} < \varepsilon$. Therefore $|\frac{1}{n} - \frac{1}{n+1} - 0| = \frac{1}{n} - \frac{1}{n+1} < \frac{1}{n} < \varepsilon \implies \lim(\frac{1}{n} - \frac{1}{n+1}) = 0$.

D. Let $X = (x_n)$ be a sequence in \mathbb{R}^p which is convergent to x. Show that $\lim ||x_n|| = ||x||$. (Hint: use the Triangle Inequality.)

Let $||x|| = \lim(||x_n||)$, $\varepsilon > 0$, which implies there exists natural number $K(\varepsilon)$ such that for $n \ge K(\varepsilon)$, $||x_n - x|| < \varepsilon$. If $n \ge K(\varepsilon)$, $||x_n|| = ||x_n - x + x|| \le ||x_n - x|| + ||x|| < \varepsilon + ||x|| \implies ||x_n|| - ||x|| \le ||x_n - x|| < \varepsilon \implies \lim ||x_n|| = ||x||$.

G. Let $d \in \mathbb{R}$ satisfy d > 1. Use Bernoulli's Inequality to show that the sequence (d_n) is not bounded in \mathbb{R} . Hence it is not convergent.\$

We have the sequence $D=(d_n)$, where $d_n=d^n$. Let d=1+a for some $a>0 \implies d^n=(1+a)^n>1+na$ by Bernoulli's inequality. For any a>b>0, $(1+a)^n>(1+b)^n$ which implies the sequence d_n is increasing. Take M>0, we have $d^n>1+na>M>0$, if $n>\frac{M}{a}\implies 1+na>M$. Thus (d_n) is not bounded and its limit tends to ∞ .

H. Let $b \in \mathbb{R}$ satisfy 0 < b < 1; show that $\lim(nb^n) = 0$. (Hint: use the Binomial Theorem as in Example 14.8(e).)

I. Let $X = (x_n)$ be a sequence of strictly positive real numbers such that $\lim(\frac{x_{n+1}}{x_n}) < 1$. Show that for some r with 0 < r < 1 and some C > 0, then we have $0 < x_n < Cr^n$ for all sufficiently large $n \in \mathbb{N}$. Use this to show that $\lim(x_n) = 0$

J. Let $X = (x_n)$ be a sequence of strictly positive real numbers such that $\lim(\frac{x_{n+1}}{x_n}) > 1$. Show that X is not a bounded sequence and hence is not convergent.

K. Give and example of a convergent sequence (x_n) of strictly positive real numbers such that $\lim_{x_n \to \infty} (\frac{x_n+1}{x_n}) = 1$. Give an example of a divergent sequence with this property.

L. Apply the results of Exercises 14.I and 14.J to the following sequences. (Here 0 < a < 1, 1 < b, c > 0)

- (a) (a^n)
- (b) (na^n)
- (c) (b^n)
- (d) $\left(\frac{b^n}{n}\right)$
- (e) $\left(\frac{c^n}{n!}\right)$

 $\left(\mathbf{f}\right) \ \left(\frac{2^{3n}}{3^{2n}}\right)$

Section 15

C(a-e),E,F,L,N

Section 16

A,B,E,G,J,M(a)(c)(d),N

Section 17

A,B,D,E,L,M

Section 18

A(a-c),D,F,I