Sestavování DNA

Bioinformatika

Tomáš Martínek martinto@fit.vutbr.cz

Osnova

- Sangerova metoda
- Sekvenování rozsáhlých genomů
 - BAC by BAC
 - Shotgun
- Sestavování fragmentů
 - Overlap
 - Layout
 - Consensus
- Shrnutí

Sangerova metoda

- Využívá princip replikace DNA
- Nobelova cena 1980
- Postup:
 - Analyzovaný fragment DNA se namnoží a společně s primerem se vloží do 4 oddělených zkumavek s roztokem obsahujícím volné nukleotidy A,C,G,T
 - Do jednotlivých zkumavek se navíc vloží nukleotidy, upravené tak, aby se na ně již nemohly vázat další nukleotidy - deoxynukleotidy ddA, ddC, ddG, ddT
 - Při chemické reakci se v jednotlivých zkumavkách vytvoří všechny možné sekvence končící na daný znak - např. ACGTAAGCTA v roztoku s ddT vytvoří fragmenty ACG a AAGCTAAGC
 - 4. Sekvence se seřadí podle velikosti a přečtou z elektroforézního gelu
- Dnes lze tímto způsobem číst fragmenty DNA dlouhé pouze cca 500-700 bp

Korekce výsledků z Elektroforeogramu

- Výsledky z Elektroforeogramu musí být dále filtrovány a korigovány
- Korekční metoda PHRED [1990s Phil Green]
- Každý znak získané sekvence je ohodnocen skórem, které odpovídá pravděpodobnosti, že daný znak byl správně nasekvenován
- Hodnoty skóre:

Skóre	Pr. chyby	Přesnost
10	1 z 10	90%
20	1 z 100	99%
30	1 z 1000	99.9%
40	1 z 10k	99.99%
50	1 z 100k	99.999%

Sekvenování rozsáhlých genomů

- Jak pomocí 500 bp úseků nasekvenujeme celý genom?
- Postup:
 - Rozdělení původní DNA do překrývajících se fragmentů (cca 200k bp)
 - Namnožení fragmentů skrze hostitelské bakterie (BAC)
 - Vytvoření knihovny fragmentů (BACů) pokrývající celý genom a jejich samostatné sekvenování -BAC-by-BAC metoda
 - 4. Sestavení překrývajících se fragmentů do jedné sekvence celého genomu

Klonování DNA

 Cílem je namnožit daný úsek DNA s použitím hostitelské bakterie

Postup:

- 1. Příprava rekombinantní molekuly DNA a hostitelské buňky s kružnicovou molekulou DNA (např. plazmid bakterie E. coli)
- 2. Přenos rekombinantní DNA do plazmidu hostitelské buňky na přesně známou pozici
- Replikace modifikované molekuly plazmidu uvnitř hostitelské buňky
- Selekce klonů obsahujících rekombinantní DNA a analýza klonované DNA

6

Klonování DNA

Závislost velikosti fragmentu na použitém vektoru

<u>VEKTOR</u>	Velikost fragmentu (bp)	
Plazmid	2,000 - 10,000	
Cosmid	40,000	
BAC (Bacterial Artificial Chromosome)	70,000 - 300,000	
YAC (Yeast Artificial Chromosome)	> 300,000 (používáno zřídka)	

 Jak ale nasekvenovat BACy o velikosti 200k bp, když Sangerova metoda dokáže přečíst pouze fragmenty o velikosti 500 bp?

BIF – Bioinformatika FIT VUT Brno

Shotgun sekvenování

Postup:

- 1. Vstupní sekvence je náhodně rozsekána na mnoho překrývajících se fragmentů o délce cca 2k bp
- 2. Namnožení fragmentů probíhá skrze plazmidy (kratší délka, jednodušší)
- 3. Z každého konce fragmentů je Sangerovou metodou přečteno cca 500 bp (read)
- 4. Na základě překryvů je vestaven původní segment

Poznámky:

- 500 bp z obou konců fragmentu tvoří dvojici s přibližně známou velikostí mezery – výrazně zjednodušuje bod 4. [1997 Weber, Mayers]
- Jak ale poskládám jednotlivé BACy k sobě?

Walking metoda

Postup:

- Vytvoří se rozsáhlá (redundantní) knihovna BACů, kde každý BAC bude mít nasekvenovány oba své konce (cca 500 bp)
- 2. Náhodně vybraný BAC se nasekvenuje metodou shotgun
- Obsah nasekvenovaného BACu se porovná se všemi nasekvenovanými konci BACů v knihovně a nalezne se dvojice BACů, které rozšiřují nasekvenovaný BAC z leva i zprava
- 4. Rozšiřující BACy se nasekvenují a metoda pokračuje od bodu 3.

Walking metoda

Walking metoda

Výsledné schéma:

- Výhody:
 - Nedochází k více-násobnému sekvenování stejných úseků
- Nevýhody:
 - Mnoho sekvenčních cyklů
 - Jeden cyklus trvá cca 1-2 měsíce
 - Pro nasekvenování genomu savců je potřeba cca 15.000 cyklů
- Řešení:
 - Spuštění výpočtu z několika míst paralelně => snížení počtu cyklů
 - Redundance sekvenování stoupne cca na 20%

BAC-by-BAC vs. Shotgun

Gene Myers

BAC-by-BAC vs. Shotgun

BAC-by-BAC

- Vetší odolnost proti chybám
- Pomalejší a drahé z pohledu experimetů
- Jednodušší z pohledu výpočtu

Shotgun

- Je vynechán krok vytváření BAC knihovny
- Vetší náchylnost k chybám ⇒ pokrytí původního genomu musí být výrazně vyšší 10-12x
- Rychlejší z pohledu experimentů
- Vyšší náročnost na výpočetní výkon

GCATTTCGAGTTACCTGGACAACCAGTGGTACTGAGGGCGCAAGAGGGCTTGATTGGCCAATAATAGTATAT

Generate Finished Sequence

Výpočet pokrytí

- Vstupní parametry:
 - G Délka DNA segmentu
 - I Délka readu
 - N Počet readů
- Výpočet pokrytí
 - -C = N.I/G
- Jaké pokrytí C je dostatečné?

- Lander-Waterman model
 - předpokládá uniformní rozložení readů

$$P\{X=i\} = \frac{e^{-C}\lambda^i}{i!}$$

- pravděpodobnost, že jakákoliv báze není sekvenována je P₀=e^{-C}
- celková délka mezer je Ge-C
- počet mezer je Ne^{-C}

Výpočet pokrytí

 Pravděpodobnost, že jakákoliv báze není sekvenována je P₀=e^{-C}

С	$P_0=e^{-C}$	Nesekvenován P ₀	Sekvenován (1-P ₀)
1	0.37	37%	63%
2	0.135	13.5%	87.5%
3	0.05	5%	95%
4	0.018	1.8%	98.2%
5	0.0067	0.6%	99.4%
6	0.0025	0.25%	99.75%
7	0.0009	0.09%	99.91%
8	0.0003	0.03%	99.97%
9	0.0001	0.01%	99.99%
10	0.000045	0.005%	99.995%

BIF – Bioinformatika FIT VUT Brno 15

Sestavování fragmentů

Shortest Superstring Problém (SSP)

- Vstup:
 - Množina řetězců $M = \{s_1, s_2, ..., s_n\}$
- Výstup:
 - Cílem je nalézt takový minimální řetězec S (super string), který obsahuje všechny řetězce z množiny M jako své podřetězce
- Příklad:
 - $-M = \{AAA, AAC, ACA, ACC, CAA, CAC, CCA, CCC\}$
 - -S = AAACCCACAA
- Jak získat nejkratší super string?

- Definice operace překrytí dvou řetězců s_i a s_j
 - $-overlap(s_i, s_j)$ je definována jako délka nejdelšího prefixu s_i , který se shoduje se sufixem s_i
- Příklad:
 - $-s_i$ = aaaggcatcaaatctaaaggcatcaaa
 - $-s_j$ = aaaggcatcaaacctgatggaatcaaa aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaacctgatggaatcaaa

aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaacctgatggaatcaaa

 $- overlap(s_i, s_i) = 12$

Sestavení grafu G kde:

- Vrcholy tvoří jednotlivé řetězce z množiny M
- Hrany propojují každý vrchol s každým (řetězce s_i a s_j) a
 jsou ohodnoceny hodnotou overlap(s_i, s_j)

Příklad:

- M = { ATC, CCA, CAG, TCC, AGT }

- Řešení problému:
 - Nejkratší super string je odpovídá cestě v grafu G, která projde všemi vrcholy právě jednou a současně dosáhne v součtu ohodnocení hran nejvyššího skóre
- Příklad:
 - M = { ATC, CCA, CAG, TCC, AGT }
 - -S = ATCCAGT
- Ekvivalentní problém obchodního cestujícího
- NP-úplný problém

- Existuje heuristika s 2.66-aproximací tj. nejhorší případ je vzdálen 2.66 krát od optimálního řešení [Armen and Stein, 1996]
- Další problémy SPP:
 - neuvažují se chyby sekvenování (1-3%)
 - není známo, z které dvojice vláken fragment je
 - hlavním problémem jsou ale opakování, které se vyskytují velmi často

BIF – Bioinformatika FIT VUT Brno 20

Opakování v DNA

- Low-Complexity DNA
 - např. ATATATATACATA...
- Microsatellite repeats
 - $(a_1...a_k)^N$ kde k ~ 3-6
 - např CAGCAGTAGCAGCACCAG
- Transposons/retrotransposons
 - SINE Short Interspersed Nuclear Elements
 - např., *Alu*: ~300 bp dlouhé, 10⁶ kopií, (5-15% změn)
 - LINE Long Interspersed Nuclear Elements
 - ~500 5,000 bp dlouhé, 200,000 kopií
 - LTR retroposons Long Terminal Repeats (~700 bp) na každém konci
- Gene Families
 - důležité geny jsou několikrát duplikovány
- Segmental duplications
 - velmi dlouhé a velmi podobné segmenty

Více než 50% lidského genomu jsou opakování!!

Opakování

Triazzle puzzle

- vypadá jednoduše, ale obsahuje opakování
- často se stane, že vám zbudou 2 kostky, které není kde vložit, zatímco ostatní sedí perfektně
- www.triazzle.com

Sestavování fragmentů DNA

- Sestavování rozděleno do tří hlavních fází:
 - 1. Hledání překryvů (Overlap)
 - 2. Spojování fragmentů do contigů a superconfigů (Layout)
 - 3. Oprava chyb (Consensus)
- Existující nástroje
 - 1. generace: neuvažovala
 páry readů Phrap, CAP, ...
 - 2. generace: počítá s páry Arachne (free), CA, Euler

Consensus

..ACGATTACAATAGGTT..

Vstupní data:

- Párové ready
- Každý znak v readu je ohodnocen skórem podle metody PHRED
- Skóre vyjadřuje pravděpodobnost, že byl daný znak správně nasekvenován
- Konce readů s velmi nízkým skóre jsou ořezány

Výstup:

 Cílem je nalézt fragmenty s největším překryvem – vyskytující se v původní DNA vyskytují blízko sebe

Poznámky:

- Je nezbytné uvažovat 1-3% chyb, proto se pro hledání často používá dynamické programování
- Problémy způsobují hlavně opakování

- Triviální algoritmus:
 - Porovná všechny dvojice segmentů mezi sebou
 - Časová složitost: O(n²)
- Efektivnější algoritmus:
 - Dostatečně překrývající se segmenty s velkou pravděpodobností sdílejí určité úseky velikosti k bez chyb
 - k je obvykle voleno jako 24
- Postup:
 - 1. Vytvoření seznamu všech k-tic ze všech segmentů společně s číslem segmentu
 - 2. Seřazení seznamu podle k-tic O(n.log(n))
 - Segmenty, které mají výrazný překryv budou v seřazeném seznamu u sebe

BIF – Bioinformatika FIT VUT Brno 25

- Příklad:
 - Vstupní fragmenty:
 - 1. TAATAT
 - 2. GTCTGA
 - 3. TATAAA

Seznam trojic: Seřazený seznam:

```
(TAA,1)
                          (AAA,3)
(AAT,1)
                           (AAT,1)
(ATA,1)
                           (ATA,1)
(TAT,1)
                           (ATA,3)
(GTC,2)
                          (CTG,2)
(TCT,2)
                          (GTC,2)
(CTG,2)
                           (TAA,1)
(TGA,2)
                           (TAA,3)
(TAT,3)
                           (TAT,1)
(ATA,3)
                           (TAT,3)
(TAA,3)
                           (TCT,2)
(AAA,3)
                          (TGA,2)
```

- Identifikace dvojic fragmentů a jejich rozšíření na obě strany
 - jsou brány v úvahu pouze dvojice s podobností >95%
 - pro rozšiřování se používá dynamické programování

- Problém: Opakování generují extrémně mnoho k-tic
 - k-tice, které se vyskytují N-krát vyžadují N² dodatečných porovnání
 - Příklad: ALU sekvence se vyskytují 10⁶ krát a vyžadují 10¹² porovnání
 - Řešení: k-tice s velmi vysokou četností jsou redukovány

- Identifikace dvojic fragmentů (pokračování)
 - Každá dvojice překrývajících se segmentů je ohodnocena skórem
 - Toto skóre závisí jednak na kvalitě jednotlivých znaků, ale také na výskytu chyb
 - Navíc se kontroluje, zda odpovídají druhé páry readů
 - Většinou souhlasí, až na případy dlouhých opakování, kde párované ready neodpovídají a program tyto vazby vyloučí

- Korekce chyb překryvů
 - Vytvoří se vícenásobného lokální zarovnání
 - Možné výskyty chyb se zkorigují podle znaků, které převažují
 - Korekční proces bere v úvahu i skóre jednotlivých znaků

BIF – Bioinformatika FIT VUT Brno 29

- Cílem je spojit překrývající se fragmenty (ready) do větších částí (contigů) a dále ještě větších částí (supercontigů)
 - Velikost contigu je cca 30kb
 - Bez opakování je to přímočarý proces, opakování celý proces výrazně komplikují
- Používané řešení:
 - Fáze: skrýt opakující se sekvence a soustředit se pouze na unikátní úseky - contigy
 - 2. Fáze: propojení více contigů do větších úseků (supercontigů) a doplnění mezer z fragmentů tvořících opakování
- Poznámky:
 - Po první fázi zůstává cca 20% genomu nesestaveno
 - Vyžaduje větší úsilí ve druhé fázi výpočtu je nezbytné využít propracované heuristiky

- Sestavení grafů překrývajících se fragmentů
 - Vrcholy: jednotlivé ready r₁,...,r_n
 - Hrany: spojují ready, které se překrývají overlap(ri, rj, posun, orientace, skóre)

Příklad readů pocházejících z různých částí genomu (modrý a červený) a obsahují opakování

Poznámka: samozřejmě neznáme skutečné zabarvení jednotlivých uzlů

Spojení fragmentů do contigů

- Odstraň tranzitivní překryvy
 - Jestliže read r překrývá ready r_1 , r_2 , a r_1 překrývá r_2 , potom (r, r_2) může být odvozeno z (r, r_1) a (r_1, r_2)

• 1. Fáze: propojují jednotlivé ready až po potencionální hranice opakující se oblasti

- Contigy obsahující opakování jsou obvykle rozpoznány dvěma faktory:
 - Mají výrazně vyšší pokrytí překryvů a současně hustotu readů
 - Obsahují vazby na více contigů, které se nepřekrývají

- Detekce hranic contigů obsahujících opakování
 - x se překrývá s R a R se překrývá s y, ale x a y se nepřekrývají - toto je základní pravidlo pro detekci opakujících se sekcí
 - obecně pokud všichni sousedi napravo od R se navzájem překrývají, potom mohou být spolehlivě spojeny do contigů, v opačném případě se může jednat o opakování

Spojení fragmentů do contigů

 Spojení unikátních úseků do contigů a ošetření možných chyb vzniklých při sekvenování

- Vytvořené contigy tvoří opět graf
 - rozlišujeme dvě skupiny contigů:
 - 1. obsahující unikátní sekvenci
 - 2. obsahující opakování

Graf po sestavení contigů

Spojení contigů do supercontigů

- 2. Fáze: spojování contigů do supercontigů
 - Spojování contigů probíhá na základě párových vazeb
 - Unikátní contigy jsou spojeny pokud obsahují dva a více vazeb
 - Heuristika seřazuje dvojice contigů do prioritní fronty, která preferuje:
 - 1. vetší počet spojů mezi contigy
 - 2. menší mezeru mezi contigy
 - Na základě párových readů se také identifikuje orientace contigů

Spojení contigů do supercontigů

- Vyplňování mezer mezi supercontigy
 - Mezery vznikají ve dvou případech
 - Výskyt opakování
 - 2. Oblasti s malým pokrytím při shotgun sekvenování
 - Mezery jsou vyplňovány především na základě párových vazeb doplněním fragmentů z contigů obsahujících opakování

BIF – Bioinformatika FIT VUT Brno 39

Oprava chyb (Consensus)

 Na základě výsledného vytvoření supercontigů se vytvoří vícenásobné zarovnání spárovaných readů a provedou se opravy podobně jako tomu bylo u hledání překryvů - tentokrát už ve výsledné sekvenci se správným pořadím readů

Historie sekvenování

1976	MS2 (RNA virus) 40 kB
1988	projekt sekvenování lidského genomu (15 roků)
1995	H. influenzae 2 MB, shotgun (TIGR)
1996	S. cerevisiae (pivní kvasinka) 10 MB, bac-by-bac (NIH)
1998	C. elegans (háďátko) 100 MB, bac-by-bac
	(Wellcome Trust)
1998	Celera: lidský genom do tří let!
2000	D. melanogaster (vinná muška) 180 MB, shotgun
	(Celera, Berkeley)
2001-3	2x lidský genom 3 GB (NIH, Celera)
2002-7	Myš, potkan, slepice, šimpanz, pes, makak
2007	Watsonův a Venterův genom (454)

BIF – Bioinformatika FIT VUT Brno 41

Budoucnost sekvenování

- Zrychlení
 - 1. Lidský genom: 15 let
 - Současná rychlost: řádově týdny
- Zlevnění
 - 1. Lidský genom: \$3 miliardy
 - Současná cena: \$10 000
- Personální genomika
 - Každý člověk bude mít svůj genom
 - Široké použití v oblasti medicíny
- Sekvenování nových organizmů
 - Sekvenování velké části žijících organizmů
 - Rekonstrukce genů předků
 - Nalezení všech funkčních elementů genů

\$1000 Genom

- Cílem projektu: získat lidský genom za cenu \$1000 během několika dní
- Začátek projektu: 2006
- Dokončení projektu: konec 2009 (stále pokračuje)
- Nové technologie ve vývoji:
 - Pyrosekvenování
 - SMRT (Single Molecule Real-Time DNA Sequencing)
 - Nanopore sekvenování

Pyrosekvenování

Pricip:

- Základem jsou 4 enzimy: DNA polymeráza, apyráza, luciferáza a ATP sulfuryláza
- Postupně jsou vkládány nukleotidy dATP, dGTP, dCTP a dTTP
- Pokud se nukleotid naváže, potom se uvolní pyrofosfát, který ve spojení s luciférázou vytvoří světelný záblesk
- Intenzita záblesku určuje počet navázaných nukleotidů za sebou
- Rychlost: báze/90s, možnost paralelizace
- Velikost readu: cca 400 bází
- Technologické problémy s dalším zlepšováním metody

SMRT (Single Molecule Real-Time DNA Sequencing)

- Pacific Biosciences
- Princip:
 - Využívá DNA Polymerázu, ktera je schopna replikovat celou molekulu DNA v rámci minut
 - Fluorescenčně obarvené nukleotidy: každý typ nukleotidu jinou barvičkou.
 - Jakmile se nukleotid naváže na vlákno barvivo se uvolní a vytvoří intenzivní záblesk
 - Celý proces probíhá v nádobce o šířce
 70nm, uzavřené sklíčkem a snímané citlivým senzorem
- Výhody:
 - Vytváří velmi dlouhé ready
 - Rychlost: 10 bází za sekundu, paralelizace
 - Doba sekvenování DNA v řádu minut, celý proces sestavování v rámci hodiny
 - Předpokládaná cena: \$100

Nanopore sekvenování

- Oxford Nanopore Technologies
- Princip:
 - Molekula DNA prochází přes úzké místo (nanopore) o velikosti jednotek nanometrů
 - Nanopore měří velikost nápoje, která je pro jednotlivé nukleotidy různá
- Výhody:
 - Není potřeba PCR (Ize sekvenovat i nepatrné množství DNA)
 - Velmi vysoká délka readu (sta-tisíce bází)
 - Velmi nízká cena
- Stále se řeší problémy s:
 - Fyzická realizace nanopore
 - Citlivosti sondy pro měření nápoje

Literatura

- Dan K. Krane, Michael L. Raymer: Fundamental Concepts of Bioinformatics, ISBN: 0-8053-4633-3, Benjamin Cummings 2003.
- Neil C. Jones, Pavel A. Pevzner, An Introduction to Bioinformatics Algorithms, ISBN-10: 0262101068, The MIT Press, 2004

Konec

Děkuji za pozornost