Technical Report

Xunhui Zhang, Ayushi Rastogi, Yue Yu
March 11, 2020

This is the technical report for MSR 2020 data show case paper "On the Shoulders of Giants: A New Dataset for Pull-based Development Research".

1 Data Distribution

1.1 Categorical Metrics

1.1.1 Binary Metrics

Figure 1 shows the data distribution of dichotomous metrics, and Table 1 presents the proportion of each level.

Table 1: Proportion of each binary categorical feature

Feature	Proportion	Feature	Proportion
same_country	True(81.7%); False(18.3%)	same_affiliation	True(90.4%); False(9.6%)
contrib_gender	Male(90.2%); Female(9.8%)	test_inclusion	True(19.5%); False(80.5%)
contrib_follow_integrator	True(7.1%); False(92.9%)	first_pr	True(14.3%); False(85.7%)
comment_conflict	True(1.2%); False(98.8%)	core_member	True(67.9%); False(32.1%)
ci_test_passed	True(69%); False(31%)	ci_exists	True(74.7%); False(25.3%)
ci_first_build_status	Success(75.5%); Failure(24.5%)	bug_fix	True(61.5%); False(38.5%)
ci_last_build_status	Success(87.9%); Failure(12.1%)	hash_tag	True(21.6%); False(78.4%)
at_tag	True(20.5%); False(79.5%)		

1.1.2 Multi-level Metrics

Figure 2 shows the data distribution of each multi-level categorical metrics. For *contrib_country*, *inte_country*, *contrib_affiliation* and *inte_affiliation*, we show the top 6 factors, and treat other factors as others. Table 2 shows the proportion of each level.

1.2 Continuous Metrics

Figure 3, 4, 5, 6 show the data distribution of continuous metrics with square root scale.

Figure 1: The distribution of dichotomous metrics

Table 2: Proportion of each multi-level categorical feature

Feature	Proportion
contrib_country	US(44.7%); UK(10.6%); France(5.3%); China(3.7%); Japan(3.0%); Switzer-
	land(2.6%); others(30.1%)
inte_country	US(49.4%); UK(11.1%); France(5.5%); China(2.9%); Switzerland(2.7%);
	Japan (2.4%) ; others (26.0%)
contrib_affiliation	red $hat(13.2\%)$; $Google(5.5\%)$; $Microsoft(3.7\%)$; $Mozilla(3.0\%)$; $SUSE(1.6\%)$;
	IBM(1.6%); others(71.4%)
inte_affiliation	red hat (12.8%) ; Google (5.6%) ; Microsoft (4.1%) ; Mozilla (3.8%) ; Facebook (1.8%) ;
	SaltStack (1.7%) ; others (70.2%)
contrib_first_emo	negative(8.5%); positive(15.4%); neutral(76.1%)
inte_first_emo	negative(5.5%); positive(26.8%); neutral(67.7%)
language	JavaScript(29.7%); Python(27.6%); Java(19.5%); Ruby(11.1%); Go(8.4%);
	Scala(3.7%)

Figure 2: The distribution of multi-level categorical metrics

Figure 3: The distribution of continuous metrics

Figure 4: The distribution of continuous metrics

Figure 5: The distribution of continuous metrics

Figure 6: The distribution of continuous metrics