Corso di Laurea Ingegneria Informatica

Fondamenti di Informatica

Dispensa 08
Linguaggi –
Sintassi e Semantica

Alfonso Miola Ottobre 2011

Contenuti

- **□** Definizione di un linguaggio
- **□**Sintassi e semantica
- Linguaggi di programmazione e grammatiche
- **□** Meta-linguaggio BNF
- ☐Sintassi dei linguaggi di programmazione
- ☐ Sintassi del linguaggio Java
- ☐ Semantica del linguaggio Java
- ☐ Sintassi, semantica ed errori

Prerequisiti

- Questo capitolo presuppone la conoscenza degli argomenti già trattati nelle precedenti lezioni di questo corso, con riferimento al capitolo 4 del libro di testo e in particolare alla
 - Compilazione di programmi
- ☐Si presuppone anche la conoscenza degli argomenti già trattati nel corso di Geometria e Combinatoria

Linguaggi naturali . . .

- ☐Per definire un linguaggio naturale si parte dalla definizione di un alfabeto
 - in italiano ci sono 21 lettere, in inglese 26, . . .
- □ Con i caratteri dell'alfabeto possiamo formare un insieme di sequenze, dette parole
- □ Non tutte le sequenze sono parole del linguaggio naturale
- La grammatica del linguaggio fornisce le regole per decidere quali sequenze sono parole del linguaggio
 - parole corrette grammaticalmente

. . . Linguaggi naturali . . .

- ☐ Con le lettere dell'alfabeto italiano possiamo costruire alcune sequenze
 - ad esempio abcdef, ghil, rst che non sono parole della lingua italiano
 - ad esempio andare, aula, corso, acqua, soqquadro, - che sono parole della lingua italiana, cioè sono parole corrette grammaticalmente

. . . Linguaggi naturali . . .

- □ Con le parole, corrette, possiamo formare sequenze di parole, dette frasi
- □ Non tutte le sequenze di parole sono frasi del linguaggio naturale
- La sintassi del linguaggio fornisce le regole per decidere quali sequenze sono frasi del linguaggio
 - frasi corrette sintatticamente, o sintatticamente ben formate

. . . Linguaggi naturali . . .

- ☐ In italiano la regola base della sintassi dice che le frasi sono costruire con sequenze di parole che seguono la struttura
 - soggetto verbo complemento
 - soggetto, verbo e complemento non sono altro che dei nomi, cioè denotano, alcuni particolari e ben precisi sottoinsiemi dell'insieme di tutte le parole del linguaggio
 - ad esempio la sequenza di parole il lo la non è quindi una frase della lingua italiana
 - ad esempio la sequenza di parole gatto mangia topo è una frase della lingua italiana, ovvero è sintatticamente ben formata

. . . Linguaggi naturali

- □ Solo alcune delle frasi del linguaggio, cioè di quelle ben formate sono anche valide, cioè hanno un significato
- La semantica del linguaggio stabilisce quali tra le frasi ben formate sono anche valide e quindi si occupa dell'interpretazione (del significato) delle frasi
 - ad esempio la frase il gatto mangia il topo è una frase ben formata che è anche valida, cioè ha un significato

Sintassi

- La sintassi di un linguaggio si occupa della forma delle frasi del linguaggio, ovvero delle regole che permettono di costruire frasi ben formate del linguaggio
- Esempio di frase in italiano

il gatto mangia il topo

Frammento della sintassi della lingua italiana

frase → soggetto verbo complemento

soggetto → articolo nome

verbo → mangia, beve

complemento → articolo nome

articolo → il, lo, la

nome → gatto, monte, topo, carne

Semantica

- La semantica di un linguaggio si occupa dell'interpretazione del linguaggio, ovvero del significato delle frasi corrette sintatticamente
- ☐ Esempio di frasi corrette sintatticamente in italiano, ma non tutte valide in rosso le frasi valide
 - il gatto mangia il topo
 - il topo mangia il monte
 - il cane mangia la carne
 - il monte beve il cane

Regole sintattiche . . .

- Le regole della sintassi sono chiamate regole di produzione, per produrre o derivare una frase, come nell'esempio precedente
- ☐ Nelle regole di produzione compaiono
 - elementi (simboli) terminali
 - * come mangia, beve, il, lo, la, gatto, monte, topo, carne
 - elementi (simboli) non-terminali
 - come frase, soggetto, verbo,
 - che sono "categorie sintattiche" cioè nomi che denotano sottoinsiemi dell'insieme dei simboli terminali

... Regole sintattiche

```
frase → soggetto verbo complemento
soggetto → articolo nome
verbo → mangia, beve
complemento → articolo nome
articolo → il, lo, la
nome → gatto, monte, topo, carne
```

- Una fissata categoria sintattica, detta assioma, è quella dalla quale deve partire il processo di produzione o di derivazione di una frase
- □Nel caso della lingua italiana l'assioma è *frase*

Linguaggi artificiali e grammatiche

- ☐ Un linguaggio di programmazione è un linguaggio artificiale e, per poterlo definire in modo rigoroso, introduciamo di seguito alcuni strumenti necessari, con le relative definizioni
 - Alfabeto, o vocabolario
 - Universo linguistico
 - Grammatica, o sintassi
 - Generazione di un linguaggio da una grammatica

Universo linguistico

- Definizione: Dato un insieme finito non vuoto V, si definisce Universo linguistico su V, e si indica con V*, l'insieme delle sequenze finite di lunghezza arbitraria di elementi di V
 - L'insieme V viene di solito chiamato alfabeto, oppure vocabolario o lessico. Gli elementi di V sono chiamati simboli terminali.
 - Si noti che talvolta i simboli di V possono essere più complessi di una singola lettera dell'alfabeto della lingua italiana; per esempio 'main', 'class', 'void', ecc. sono simboli dell'alfabeto di Java. Gli elementi di V* vengono detti stringhe costruite su V, o frasi su V

Linguaggio

- □ <u>Definizione</u>: Un linguaggio L sull'alfabeto V è un sottoinsieme di V*.
 - Sebbene V sia finito, V* non lo è; esso è numerabile, ed i sottoinsiemi di V* sono in quantità non numerabile
 - Nel considerare i linguaggi di programmazione, non siamo interessati a tutti i sottoinsiemi di V*, ma solo a quelli che sono descrivibili in maniera finita
 - Questa descrizione può essere per esempio fornita attraverso una grammatica, nel modo che verrà precisato dalle seguenti definizioni

Grammatica . . .

- □ <u>Definizione</u>: Una *grammatica* o *sintassi* G è definita da:
 - V, un alfabeto di simboli terminali
 - N, un alfabeto di simboli non terminali (detti anche categorie sintattiche), tale che $V \cap N = \emptyset$
 - S ∈ N, detto assioma, o simbolo iniziale, o anche simbolo distinto
 - P, un insieme finito di regole sintattiche (o produzioni o regole di produzione) del tipo

$$X \rightarrow \alpha$$
dove $X \in N$ ed $\alpha \in (N \cup V)^*$
e si legge X produce α

... Grammatica ...

- Le produzioni sono talora scritte nella forma
 - $X := \alpha$ invece che $X \rightarrow \alpha$
- ☐ Se in una grammatica esistono più regole aventi la stessa parte sinistra, ad esempio

$$X \rightarrow \alpha_1$$
 $X \rightarrow \alpha_2$, $X \rightarrow \alpha_n$

esse sono raggruppate, usando la convenzione notazionale

$$X \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$$

e in tal caso si dice che $\alpha_1, \alpha_2, \ldots, \alpha_n$ sono parti destre alternative derivabili da X

... Grammatica

- □Come visto gli insiemi dei simboli terminali e dei simboli non terminali sono disgiunti
- Per distinguere i simboli di questi due insiemi spesso si usa una delle due seguenti convenzioni:
 - nella prima i simboli non terminali sono distinti dai terminali perché racchiusi tra parentesi angolate come ad esempio <frase>, <cifra>
 - nella seconda i simboli non terminali sono scritti in corsivo - come ad esempio frase, cifra - e a volte i terminali sono scritti tra apici

Derivazione diretta

- □ <u>Definizione</u>: Data una grammatica **G** e due stringhe
- $\square \beta$, $\gamma \in (N \cup V)^*$, si dice che " γ deriva direttamente da β in G" e si scrive

$$\beta \rightarrow \gamma$$

se le stringhe si possono decomporre come

$$\square$$
β=ηAδ, y=ηαδ con A ∈ N; α, η, δ ∈ (N ∪ V)* ed esiste la produzione A → α ∈ P

• Si noti che le stringhe α , η e δ nella definizione precedente possono anche essere stringhe vuote

Derivazione

☐ In modo semplice si può definire una catena di derivazioni dirette

$$\beta_0 \rightarrow \beta_1 \rightarrow \beta_2 \dots \rightarrow \beta_n$$
 o anche $\beta_0 \rightarrow \beta_n$

Definizione. Data una grammatica G e due stringhe β, γ ε (N \lor V)*, si dice che "γ deriva da β in G" e si scrive

$$\beta \rightarrow \gamma$$

se esiste un n > 0 tale che

$$\beta_0 \rightarrow \beta_0 = \beta$$
, $\beta_0 = \gamma$

Linguaggi generati . . .

- Le regole di produzione consentono quindi, a partire dall'assioma che è un simbolo non terminale, di derivare via via gli altri simboli non terminali, o loro combinazioni, fino ad arrivare a derivare simboli terminali, o loro combinazioni, da simboli non terminali
 - In questo modo posso derivare anche un insieme infinito di frasi costituite da tutti e soli simboli terminali
 - Si riesce quindi a generare un insieme infinito di frasi a partire da una loro descrizione finita che è fornita dalla grammatica
 - In analogia, ad esempio, con quanto succede per la descrizione intensionale (che è finita) dell'insieme infinito dei numeri interi

. . . Linguaggi generati

□ <u>Definizione</u>:

Data una grammatica G, dicesi linguaggio generato da G, e si indica con L_G , l'insieme delle frasi di V^* (che ovviamente sono costituite da tutti e soli simboli terminali) derivabili a partire dall'assioma S della grammatica G

Linguaggio di programmazione

- □ <u>Definizione</u>: Un linguaggio di programmazione
 L su un alfabeto V è un sottoinsieme di V* per cui esiste una grammatica G, tale che L=L_G, cioè
 L è un linguaggio generato da G
- ☐ Per definire un linguaggio di programmazione c'è quindi bisogno di avere un alfabeto e una grammatica
- ☐ Le stringhe o frasi di un linguaggio di programmazione vengono dette programmi (di tale linguaggio)

Backus-Naur-Form - BNF

- ☐ Il formalismo appena introdotto per descrivere la grammatica di un linguaggio di programmazione è un metalinguaggio formale che prende il nome di BNF (Backus-Naur-Form, forma di Backus e Naur, dai nomi dei due studiosi che per primi l'hanno introdotta negli anni '50)
- ☐ Un metalinguaggio è un linguaggio usato per parlare di un altro linguaggio
 - per esempio, se diciamo "l'articolo determinativo in inglese è 'the' ", od anche "il pronome personale di terza persona singolare è 'he', oppure 'she' oppure 'it'", stiamo usando l'italiano come metalinguaggio per descrivere l'inglese

Extended - BNF ...

- ☐ II formalismo BNF viene spesso usato non nella forma originale, ma utilizzando alcune estensioni che permettono una scrittura più concisa delle grammatiche; si parla in questi casi di EBNF (Extended BNF)
 - Se nella parte destra di una produzione un simbolo (o sequenza di simboli, o alternativa di simboli) è racchiuso tra parentesi quadre, questo significa che esso è opzionale, che cioè può comparire zero oppure una volta, per esempio

 $X \rightarrow [\alpha] \beta$ equivale a $X \rightarrow \beta [\alpha \beta]$

... Extended - BNF

☐ Se invece esso è racchiuso tra parentesi graffe, con un numero intero ad apice, questo significa zero, una o più occorrenze del simbolo stesso, fino ad un massimo di n; per esempio

$$X \rightarrow \{\alpha\}^n\beta$$

significa che da X si può derivare:

con un massimo di n occorrenze di a

 \Box Se invece un simbolo α è racchiuso tra parentesi graffe (senza apice), come in

$$X \rightarrow \{\alpha\}\beta$$

questo significa zero, una o più (in numero finito, ma arbitrario) occorrenze del simbolo stesso

Albero sintattico

- ☐ Il processo di derivazione di una frase mediante un grammatica può essere convenientemente illustrato mediante un albero, detto albero di derivazione sintattica, o più semplicemente albero sintattico
- Piuttosto che definire formalmente la nozione di albero sintattico, la introduciamo attraverso due esempi di derivazione per
 - la frase (già vista) 'il gatto mangia il topo', della lingua italiana
 - i numeri interi senza segno di una o due cifre

Frammento della grammatica italiana

```
V = { il, lo, gatto, topo, monte, mangia, beve }
N = { <frase>, <soggetto>, <verbo>, <complemento>,
  <articolo>, <nome> }
S = <frase>
P consiste di:
  <frase> ::= <soggetto><verbo><complemento>
  <soggetto> ::= <articolo><nome>
  <articolo> ::= il | lo | la
  <nome> ::= gatto | topo | monte | carne
  <verbo> ::= mangia | beve
  <complemento> ::= <articolo><nome>
```

N.B. In nero i meta-simboli

Esempio di albero sintattico

Deriviamo la frase 'il gatto mangia il topo'

Questi ultimi sono simboli terminali del linguaggio

Grammatica per interi senza segno di una o due cifre

```
V = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
N = {<intero-senza-segno>, <cifra-non-nulla>,
           <cifra>}
S = <intero-senza-segno>
P consiste di:
<intero-senza-segno> ::=
                 [<cifra-non-nulla>]<cifra>
<cifra> ::= <cifra-non-nulla> | 0
<cifra-non-nulla> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

Esempio di albero sintattico

Deriviamo il numero intero senza segno 59

Questi ultimi sono simboli terminali del linguaggio

Sintassi dei linguaggi di programmazione

- La definizione della sintassi di un linguaggio di programmazione viene data definendo la grammatica da cui viene generato
 - il lessico (cioè un insieme di simboli terminali, che è il vocabolario) del linguaggio
 - un insieme di simboli non terminali, tra cui ne viene scelto uno come simbolo iniziale, cioè l'assioma
 - un insieme di regole di produzione, in genere espresse in una qualche variante della notazione BNF

Il lessico

□II lessico è costituito da

- Un alfabeto di caratteri e cifre che servono a costruire identificatori (ad esempio i nomi di classi, oggetti, metodi, variabili, . . .)
- Un insieme di simboli speciali corrispondenti ad operatori e simboli di interpunzione
- Un insieme finito di parole chiave, cioè sequenze di caratteri dell'alfabeto che sono riservate in quanto assumono, a livello semantico, significati particolari nel linguaggio

Introduzione alla sintassi di Java

- La sintassi di Java si occupa della formazione di frasi valide in Java, mediante la formalizzazione delle "regole sintattiche"
 - la definizione di una classe è formata dalla parola class, seguita dal nome della classe e dal corpo della classe
 - il nome di una classe è un identificatore
 - un identificatore è una sequenza non vuota di caratteri alfanumerici, iniziante per un carattere alfabetico
 - il corpo di una classe è formato da un elenco di dichiarazioni della classe, racchiuso tra parentesi graffe { e }
 - possibili dichiarazioni di una classe sono: la definizione di un metodo, la dichiarazione di una variabile
 - la definizione di un metodo è formata dall'intestazione del metodo seguita dal corpo del metodo
 - il corpo di un metodo è un blocco
 - un blocco è una sequenza di istruzioni e dichiarazioni racchiusa tra parentesi graffe { e }

Sintassi di Java

- La sintassi di Java è descritta da una grammatica composta da
 - elementi terminali lessico o vocabolario cioè le parole e i simboli che possono comparire nei programmi class public . , ; { } a b c d ... 0 1 2 ...
 - elementi non terminali le categorie sintattiche utilizzate per la descrizione dei programmi - ma che non compaiono nei programmi
 - definizione-classe identificatore corpo-classe definizione-metodo blocco sequenza-istruzioni-blocco istruzione ...
 - assioma l'elemento non terminale unità-di-compilazione che guida la scrittura di un intero programma o classe
 - produzioni (o regole sintattiche) le regole che specificano come sia possibile derivare frasi da ciascun non terminale

Esempi di produzioni . . .

```
definizione-classe ::=
    class identificatore-classe corpo-classe
corpo-classe ::=
    { dichiarazione-corpo-classe} }
```

N.B. Le parentesi { e } sono simboli terminali del linguaggio, mentre le parentesi { e } sono simboli del metalinguaggio EBNF

```
dichiarazione-corpo-classe ::=

definizione-metodo | definizione-costruttore |

dichiarazione-variabile
```

... Esempi di produzioni ...

definizione-classe ::=

class identificatore-classe corpo-classe

- la prima riga di una produzione contiene un simbolo non- terminale
 - la produzione ha lo scopo di descrivere le possibili forme per questo simbolo non terminale
- nelle righe successive alla prima vengono descritti i possibili modi per espandere il non terminale
 - questa produzione afferma che una definizione-classe è formata dal simbolo terminale class, seguito da un identificatore-classe e da un corpo-classe
 - le forme per *identificatore-classe* e *corpo-classe* sono descritte dalle rispettive produzioni

... Esempi di produzioni...

```
Una possibile definizione alternativa è
definizione-classe ::=
  class identificatore-classe corpo-classe
corpo-classe ::=
            { dichiarazioni-corpo-classe }
dichiarazioni-corpo-classe ::=
  dichiarazione-corpo-classe
  dichiarazione-corpo-classe dichiarazioni-corpo-classe
dichiarazione-corpo-classe ::=
  definizione-metodo | definizione-costruttore |
      dichiarazione-variabile
```

. . . Esempi di produzioni

```
corpo-metodo ::=
            { istruzioni-dichiarazioni-corpo-metodo }
istruzioni-dichiarazioni-corpo-metodo ::=
  istruzione-dichiarazione-corpo-metodo
  istruzione-dichiarazione-corpo-metodo
                   istruzioni-dichiarazioni-corpo-metodo
istruzione-dichiarazione-corpo-metodo ::=
  dichiarazione-variabile | istruzione
istruzione ::=
  istruzione-semplice | istruzione-strutturata
```

Albero delle istruzioni di Java

Esempio — identificatori . . .

- ☐ I nomi delle classi, dei metodi e delle variabili appartengono alla categoria grammaticale degli identificatori
 - alcuni esempi di identificatori sono
 - Math, println, frase, sqrt, RadiceQuadrata
 - System.out non è un identificatore

... Esempio — identificatori

- La regola (informale) per la formazione degli identificatori è
 - un identificatore è una sequenza non vuota di caratteri alfanumerici (alfabetici e numerici), iniziante con un carattere alfabetico
 - in realtà, sono ammessi anche alcuni caratteri speciali, come il carattere "underscore"
 - alcune sequenze di caratteri sono riservate come ad esempio class e public — non sono identificatori ma parole chiave
 - l'uso dei caratteri minuscoli e maiuscoli è significativo
 - ad esempio, alfa e Alfa sono identificatori diversi

Sintassi per gli identificatori

```
identificatore ::=
  carattere-alfabetico
  carattere-alfabetico {carattere-alfanumerico}
carattere-alfanumerico ::=
  carattere-alfabetico | cifra
carattere-alfabetico ::=
  uno di a à b c ... x y z A À B C ... X Y Z ... _ ...
cifra ::=
  uno di 012...89
parola-chiave ::=
   una di abstract boolean char class continue do
  double else final float for if import instanceof int
  interface long new package private protected public
  return short static this void while e altre ancora...
```

Semantica di Java

☐ In questo corso la semantica di Java viene descritta in modo informale

- Una istruzione valida
 - System.out.println("ciao a tutti");
- Una istruzione ben formata ma non valida
 - System.out.stampa("ciao a tutti");
 - ... Non esiste il metodo stampa
- Una istruzione che è non ben formata
 - System.out.println("ciao a tutti";
 - ... Manca una parentesi tonda chiusa

Semantica di una frase

- ☐ I tipi rivestono un ruolo importante nel discriminare tra frasi valide e no
- La semantica di una frase dipende anche dal tipo della frase
 - la semantica di una espressione viene data in termini di un tipo e di un valore
 - la semantica di una istruzione viene data in termini dell'effetto dell'esecuzione dell'istruzione
 - in modo diverso per istruzioni semplici e istruzioni strutturate (composte)

Sintassi, semantica ed errori

Possibili errori di programmazione

- la frase non è ben formata
 - errori sintattici o grammaticali
- la frase è ben formata ma non è valida
 - errori semantici
 - errori di semantica statica ed errori di semantica dinamica
- la frase è valida ma il suo significato è diverso da quello voluto
 - errori logici

Esempi di errori

```
□Errori sintattici
   System.out.println("Ciao a tutti"];
   System.outbprintln("Ciao a tutti");
□Errori semantici
   System.out.stampa("Ciao a tutti");
   system.out.println("Ciao a tutti");
  Questi sono errori di semantica statica
□Errori logici
   System.out.println("Ciao a totti");
```

Cosa abbiamo visto finora

- ☐ Come si definisce un linguaggio
- Cosa sono la sintassi e la semantica
- Come si definiscono i linguaggi di programmazione
- Come si definiscono le grammatiche
- ☐ Cosa è il meta-linguaggio BNF
- Come si definisce la sintassi dei linguaggi di programmazione
- ☐ Quali sono la sintassi e la semantica del linguaggio Java
- Che relazione c'è tra sintassi, semantica ed errori

Riferimenti al libro di testo

- □ Per lo studio della sintassi e della semantica del linguaggio Java si fa riferimento al libro di testo, e in particolare al capitolo
 - 6 Le basi del linguaggio Java