Problem Set 3 Math 350, Fall 2018

• **Read:** §7 and the beginning of §8, up to the middle of page 70. Note that we are skipping §6 for now.

- **Suggestion:** Work (or think about) the following problems. Problems marked with a * have answers given at the back of the book.
 - $\S7:1^*,4^*,8^*$
- 1. Suppose x is an element of a group G.
 - (a) Prove that if o(x) is finite, then every negative power of x is equal to some nonnegative power of x (this is why, for finite groups, one can find $\langle x \rangle$ by finding $\{e, x, x^2, \dots\}$ and not worrying about negative powers at all).
 - (b) Prove, on the other hand, that if $o(x) = \infty$, then no negative power of x is equal to a positive power of x.
- 2. The following statement is false, but it is true if it is revised slightly. Correct the statement and prove it: "If G is a cyclic group of order p, where p is prime, then every element of G is a generator of G."
- 3. Suppose that G is a finite group, and that the only subgroups of G are $\{e\}$ and G itself. Prove that the order of G is either 1 or a prime number.
- 4. Suppose that $G = \langle g \rangle$ is a cyclic group of order n. Prove that g^m is a generator of G if and only if (m, n) = 1.
- 5. Suppose that g is an element of a group G. Define the centralizer Z(g) of g to be the set of all $x \in G$ that commute with g. In other words,

$$Z(g)=\{x\in G:\ xg=gx\}.$$

Prove that Z(g) is a subgroup of G.

6. Fix an element a of a group G. Define a function $f: G \to G$ by

$$f(x) = axa^{-1}$$

(this function is called "conjugation by a"). Is f injective (one-to-one)? Is f surjective (onto)? Comment: You may recognize this function from linear algebra, where it arises as the way to convert a matrix representation of a linear operator from one basis to another.

- 7. For each statement, either prove it or provide a counterexample.
 - (a) If $f: S \to T$ and $g: T \to U$ are functions such that $g \circ f$ is injective (one-to-one) then both f and g are injective.
 - (b) If $f: S \to T$ and $g: T \to U$ are functions such that $g \circ f$ is surjective (onto), then both f and g are surjective.
- 8. Carry out the indicated multiplications in S_6 .

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 4 & 2 & 5 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix}$$

Problem Set 3 Math 350, Fall 2018

(b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 4 & 1 & 6 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 3 & 5 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 4 & 1 & 2 \end{pmatrix}$$

Note: this is exercise 8.1 in Saracino. Check your answer to (b) in the back of the book.

- 9. Write each permutation as a product of disjoint cycles, and then as a product of transpositions. Determine whether each permutation is even or odd.
 - (a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 4 & 2 & 5 \end{pmatrix}$
 - (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 3 & 5 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 4 & 1 & 2 \end{pmatrix}$
 - (d) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix}$

Note: this is exercise 8.2 in Saracino. Check your answers to (a) and (c) at the back of the book.