CÁLCULO I

IV. Ejercicios (Series de números reales. Temas 10 y 11.)

- 1. Da un ejemplo de dos series divergentes $\sum x_n$ y $\sum y_n$ tales que $\sum x_n y_n$ sea convergente.
- 2. Supongamos que la serie $\sum_{n\geq 1}(x_n+y_n)$ es convergente. ¿Qué se puede afirmar sobre la convergencia de las series $\sum_{n\geq 1}x_n$ y $\sum_{n\geq 1}y_n$?
- 3. Si $a_n \ge 0 \ \forall n \ \text{y} \ \sum a_n$ converge, ¿puede afirmarse algo sobre la serie $\sum \sqrt{a_n}$? ¿Y sobre $\sum a_n^2$?
- 4. Prueba que la sucesión $\left\{\frac{(-1)^n n^2}{n^2 + 3n + 2} \sum_{k=n+1}^{\infty} \frac{2^{k+1}}{3^{k-1}}\right\}$ es convergente y calcula su límite.
- 5. Supongamos que $\sum a_n$ es una serie convergente. Prueba que $\left\{\sum_{k=n}^{\infty} a_k\right\}$ converge a cero.
- 6. Prueba que las siguientes series convergen y calcula sus sumas:

(a)
$$\sum_{n\geq 1} \frac{1}{n^3 + 3n^2 + 2n}$$
 (b) $\sum_{n\geq 0} \frac{3n+1}{n!}$

- 7. Dados $\alpha, \beta \in \mathbb{R}$ y $x \in \mathbb{R}^*$, estudiar la convergencia de la serie $\sum_{n \geq 0} \frac{\alpha x^{2n} + \beta}{x^n}$.
- 8. Dado $a \in \mathbb{R}^+$, estudiar la convergencia de la serie $\sum_{n \ge 1} \left(a + \frac{1}{n} \right)^n$
- 9. Sea $\sum_{n\geq 1} a_n$ una serie convergente de términos no negativos. Probar que la serie $\sum_{n\geq 1} \frac{a_n}{1+a_n}$ también es convergente.
- 10. Sean $\{a_n\}$ y $\{b_n\}$ sucesiones de números reales no negativos. Supongamos que las series $\sum_{n\geq 1}a_n^2$ y $\sum_{n\geq 1}b_n^2$ son convergentes. Probar que la serie $\sum_{n\geq 1}a_nb_n$ también es convergente.
- 11. Sea $a_n \ge 0$ para todo $n \in \mathbb{N}$ y supongamos que $\lim_{n \to \infty} n^q a_n = 1$, donde $q \in \mathbb{N}$ y q > 1. Probar que la serie $\sum_{n \ge 1} a_n$ es convergente.

1

12. Estudiar la convergencia y la convergencia absoluta de las siguientes series

(a)
$$\sum_{n\geq 1} \frac{(n!)^2}{(2n)!}$$

(b)
$$\sum_{n\geq 1} \frac{2^n(n^2+1)}{n^n}$$

(c)
$$\sum_{n \ge 1} \frac{1}{n \sqrt[n]{n}}$$

(d)
$$\sum_{n>1} \frac{n^n}{2^n n}$$

(e)
$$\sum_{n\geq 1} \frac{n^n}{3^n \, n!}$$

(f)
$$\sum_{n>1}^{n \ge 1} \frac{(-1)^n n}{n^2 + 1}$$

(a)
$$\sum_{n\geq 1} \frac{(n!)^2}{(2n)!}$$
 (b) $\sum_{n\geq 1} \frac{2^n (n^2+1)}{n^n}$ (c) $\sum_{n\geq 1} \frac{1}{n\sqrt[n]{n}}$ (d) $\sum_{n\geq 1} \frac{n^n}{2^n n!}$ (e) $\sum_{n\geq 1} \frac{n^n}{3^n n!}$ (f) $\sum_{n\geq 1} \frac{(-1)^n n}{n^2+1}$ (g) $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} \left(1 + \frac{1}{n}\right)^n$ (h) $\sum_{n\geq 1} (-1)^n \frac{2 + (-1)^n}{n}$ (i) $\sum_{n\geq 1} \frac{x^n}{n}, x \in \mathbb{R}$

(h)
$$\sum_{n>1}^{-} (-1)^n \frac{2+(-1)^n}{n}$$

(i)
$$\sum_{n>1} \frac{x^n}{n}$$
, $x \in \mathbb{R}$

(j)
$$\sum_{n>1} (-1)^n \frac{1}{\left(1+\frac{1}{n}\right)^n}$$

(k)
$$\sum_{n>1}^{\infty} (-1)^n \frac{n-10}{n^4+1}$$

- 13. Prueba que si $\sum a_n$ converge absolutamente, entonces $\sum a_n^2$ también converge absolutamente. ¿Se verifica el mismo resultado si la primera serie converge, pero no converge absolutamente?
- 14. Prueba que si la serie $\sum a_n$ converge absolutamente y $\{b_n\}$ es una sucesión acotada, entonces la serie $\sum a_n b_n$ converge absolutamente. ¿Es cierta la afirmación análoga para series convergentes en lugar de absolutamente convergentes?
- 15. Sea $\sum_{n\geq 1} x_n$ una serie absolutamente convergente y $\{x_{\sigma(n)}\}$ una subsucesión de $\{x_n\}$. Prueba que la serie $\sum_{n\geq 1} x_{\sigma(n)}$ es convergente. Suponiendo sólo que $\sum_{n\geq 1} x_n$ es convergente, ¿se puede asegurar que $\sum_{n \geq 1} x_{\sigma(n)}$ también converge?
- 16. Dado $x \in \mathbb{R}$, estudiar la convergencia de la serie $\sum_{n \ge 1} \frac{x^n}{x^n + n^2}$