Wstęp Do Informatyki 03. Podstawowe typy danych

Rafał Grot

October 21, 2022

Contents

1	Operacje na liczbach całkowych				
	1.1	Arytm	netyczne	1	
		1.1.1	+	2	
		1.1.2		2	
	1.2	Logicz	ne	2	
		1.2.1	AND	2	
		1.2.2	OR	3	
		1.2.3	NOT	3	
	1.3	Bitowe	9	3	
		1.3.1	AND	3	
		1.3.2	«	4	
		1.3.3	»	4	
		1.3.4	Odczyt bitów (badanie bitów)	5	
		1.3.5	Ustawianie bitów	5	
		1.3.6	Zerowanie bitów	5	
		1.3.7	Negacja bitów	5	

- Liczby całkowite
- liczby rzeczywiste

1 Operacje na liczbach całkowych

1.1 Arytmetyczne

+	-	/	*	%	
ADD	SUB	DIV	POW	MOD	

1.1.2 -

1.2 Logiczne

&&		!	
AND	OR	NOT	
Koniunkcja	Alternatywa		

1.2.1 AND

1.
$$A=1, B=2$$

$$A \&\& B = TRUE$$

Bo

$$A = 1 \rightarrow A = \text{TRUE}$$

$$B=2 \rightarrow B={
m TRUE}$$

TRUE && TRUE = TRUE

2.
$$A = 0, B = 0$$

1.2.2 OR

$$A = 1, B = 2$$

 $A \mid\mid B = \text{TRUE}$

1.2.3 NOT

A = 0 !A = TRUE A = FALSEint a = false;
int b = true;

a=0 $b \neq 0$

1.3 Bitowe

&		~	«	>>	^
AND	OR	NOT	SHL	SHR	XOR

1.3.1 AND

A = 1 B = 2 A & B = 0

Częsty błąd:

int a=1;
int b=2;
if (a && b) {} // dobrze
if (a & b) {} // źle

$$1.3.2$$
 «

$$A = 1$$

$$B=2$$

 $A \ll B = 4$

$$A = a_{N-1}a_{N-2} \dots a_1 a_0$$

$$A \ll B = \underbrace{a_{N-1}a_{N-2} \dots a_1 a_0}_{N-Bbitów} \underbrace{0 \dots 0}_{Bbitów}$$

1.3.3 \gg

$$A \gg B = ?$$

$$A = a_{N-1}a_{N-2}\dots a_1a_{0\text{NKB}}$$

1. NKB

$$A_{\text{NKB}} \gg B = \underbrace{0 \dots 0}_{B \, bit \acute{o}w} \underbrace{a_{N-1} a_{N-2} \dots a_{N+1} a_{N}}_{N-B \, bit \acute{o}w}_{\text{NKB}}$$

1. U2

$$A_{\text{U2}} \gg B = \underbrace{0 \dots 0}_{B \, bit \acute{o}w} \underbrace{a_{N-1} a_{N-2} \dots a_{N+1} a_{N}}_{N-B \, bit \acute{o}w} {}_{\text{U2}}$$

1.3.4 Odczyt bitów (badanie bitów)

char A = 10;

$$A = 00001010_{U2}$$

$$k=3$$
 bit

$$B = 00000100_{U2}$$

$$A \ \& \ B = 00000000_{\mathrm{U2}} = 0_{\mathrm{DEC}} \rightarrow \mathrm{FALSZ}$$

$$A \& 4 = 00000000_{\mathrm{U2}} = 0_{\mathrm{DEC}} \rightarrow \mathrm{FALSZ}$$

1.3.5 Ustawianie bitów

k = 3

$$A = 00001010_{U2} = 10_{DEC}$$

 $B = 00000100_{U2} = -3_{DEC}$
 $A|B = 00001110_{U2} = 14_{DEC}$

1.3.6 Zerowanie bitów

k = 3

$$A = 00001010_{\text{U2}} = 10_{\text{DEC}}$$

 $B = 11111101_{\text{U2}} = -3_{\text{DEC}}$
 $A\&B = 00001000_{\text{U2}} = 8_{\text{DEC}}$

1.3.7 Negacja bitów

k = 3

$$A = 00001010_{U2} = 10_{DEC}$$

 $B = 00000100_{U2} = 4_{DEC}$
 $A \hat{B} = 00001110_{U2}$

int A = 256;

int R = A & 255;

// A & 0xFF

int G = (A >> 8) & 255;

int B = (A >> 16) & 255;

```
int R = 5;
int G = 10;
int B = 20;
int A = (A>>16) | (G<<8) | R;

int a = 2;
int b = a * 2;
int c = a << 1; // 2^k

if(a % 2 != 0) {} // Z automatu nizdany egzamin w tym semestrze
if(a & 1) {}

if(a > 0);
```