Relatório - Simulador de Circuitos Elétricos

Alice Fontes Camyla Tsukuda Romão Paulo Oliveira Lenzi Valente

Dezembro/2016

Conteúdo

Introdução			3
1	Fun	cionamento básico do simulador	3
2	For	mato do Netlist	4
3	Ent	endimento detalhado do programa	5
4	Exemplos		7
	4.1	Circuito RC em série	7
	4.2	Circuito RL em série	8
	4.3	Transformador com fonte senoidal	9
	4.4	Fonte retificada com filtro capacitivo (tap central simulado por	
		duas fontes)	10
	4.5	Integrador não inversor com amplificadores operacionais	11

Introdução

Este trabalho visa a construção de um programa que analisa circuitos no domínio do tempo, utilizando análise nodal modificada e o método dos trapézios junto com o método de Newton-Raphson.

O programa analisa circuitos compostos pelos seguintes elementos: resistores, capacitores, indutores, fontes de corrente e de tensão independentes, os quatro tipos de fontes controladas, amplificadores operacionais ideais de 4 terminais, transformadores ideais, diodos ideais e chaves ideais controladas por tensão.

1 Funcionamento básico do simulador

Para utilizar o simulador, pode-se executar o programa diretamente. Nesse caso, o programa pedirá um arquivo de netlist no formato SPICE. Além disso, em ambiente Windows, pode-se executar o programa "arrastando" um arquivo de netlist "para cima" do executável. Nesse caso, o programa analisa o arquivo dado. Do mesmo modo, aceita um argumento de linha de comando, que será utilizado como nome de arquivo para analisar.

Primeiramente, o programa faz a leitura do netlist, separando os componentes em três categorias: componentes fixos, componentes variantes e componentes não-lineares. A cada categoria corresponde uma lista de objetos que guardam a informação necessária para a simulação.

Após a leitura do netlist, começam a ser criadas as variáveis correspondentes aos componentes fixos, como é o caso de resistores, transformadores e amp-ops. Então, programa executa uma análise de ponto de operação, também utilizada para simulação DC.

Feito isso, caso tenha sido escolhido o método de simulação TRAP, na linha .TRAN do netlist, descrita na seção seguinte, é feita a análise no tempo através do método dos trapézios. Por fim, os resultados são escritos em um arquivo de texto, no qual a primeira linha especifica a variável correspondente a cada coluna e as demais linhas, os valores. As colunas são separadas por espaços.

2 Formato do Netlist

O netlist do circuito a ser analisado contém uma linha de título, além dos seguintes elementos:

- Especificação de análise transiente: .TRAN <tempo final> <passo> <método> <passos por ponto>
- Comentários: * < comentário>
- Indutor: L<nome> <valor>
- Resistor: R<nome> <valor>
- Capacitor: C<nome> <valor>
- Fontes controladas: <Tipo da fonte><nome> <saída+ > <saída- > <entrada+ > <entrada- >
 - Fonte de tensão controlada a tensão: E
 - Fonte de corrente controlada a corrente: F
 - Fonte de corrente controlada a tensão: G
 - Fonte de tensão controlada a corrente: H
- ullet Fonte de corrente: I<nome> <nó a> <nó b> <valor>
- Fonte de tensão: V<nome> <nó a> <nó b> <valor>
- \bullet Amplificador operacional ideal: O<nome> <saída+ > <saída- > <entrada+ > <entrada- >
- Diodo ideal: D < nome > <
- Chave ideal: \$<nome> <nó a> <nó b> <nó controle+ > <nó controle- >
 Vlimite>

3 Entendimento detalhado do programa

Para o funcionamento do programa, utilizamos as funções citadas abaixo, seguidas da explicação de seu funcionamento:

resolverSistema

Função para a resolução de sistema de equações lineares. Utiliza o método de Gauss-Jordan com condensação pivotal.

numero

Rotina que conta os nós do sistema a ser resolvido e atribui números a eles.

leituraNetlist

Realiza a leitura da netlist entregue e organiza as informações para a posterior resolução do sistema.

adicionar Variaveis

Define variáveis adicionais relativas às correntes que precisam ser calculadas no sistema.

listar Variaveis

Expõe as variáveis, relacionando seus nomes aos seus números no sistema.

mostrarNetlist

Organiza a netlist com os dados e as variáveis do sistema.

montarSistemaDC

Nesta função, identificamos os tipos dos elementos e montamos as estampas para cada elemento linear do sistema que não varia com o tempo, combinando-as.

mostrarSistema

Função opcional: Mostra o sistema resolvido.

adicionarEstampasComponentesVariantes

Adiciona as estampas para cada um dos componentes com estampas que variam no tempo presentes no sistema.

resolverNewtonRaphson

Função que executa o algoritmo de Newton Raphson para resolução do circuito, adicionando as estampas dos componentes não lineares antes de resolver o sistema.

simulacaoTrapezios

Esta função monta o sistema DC. A cada iteração, adiciona estampas dos componentes variantes no tempo, resolve o sistema através do método de Newton Raphson e guarda a solução da iteração na linha de uma matriz.

resolver Ponto Operacao

Calcula o ponto de operação do sistema a ser resolvido de acordo com os componentes presentes.

converterExtensao

Adiciona a extensão correta ao arquivo produto.

escreverResultadosNoArquivo

Função que grava os resultados em um arquivo de texto com nome definido de acordo com a função converterExtensao. Ex: netlist: circuit.net, arquivo: circuit.res.

4 Exemplos

4.1 Circuito RC em série

Circuito RC V0100 1 0 PULSE 0 10 0.01 0 0 20 30 1 R0102 1 2 5 C0200 2 0 0.2 .TRAN 10 0.01 TRAP 1

4.2 Circuito RL em série

Circuito RL V0100 1 0 PULSE 0 10 0.1 0 0 2 3 2 R0102 2 0 1 L0102 1 2 1 .TRAN 10 0.01 TRAP 1

4.3 Transformador com fonte senoidal

TRANSFORMADOR IDEAL V 1 0 SIN 0.5 10 1 0 1 0 4 K 1 0 3 0 2 R1 3 0 1 .TRAN 5 0.1 TRAP 4

4.4 Fonte retificada com filtro capacitivo (tap central simulado por duas fontes)

Fonte regulada com filtro capacitivo

V1 1 0 SIN 0 12 60 0 0 0 100000

 $V2\ 0\ 2\ SIN\ 0\ 12\ 60\ 0\ 0\ 0\ 100000$

D1 1 3

D2 2 3

 $C1\ 3\ 0\ 0.2$

RL 3 0 1

.TRAN 2 0.00001 TRAP 1

4.5 Integrador não inversor com amplificadores operacionais

CIRCUITO COM AMPOPS INTERCONECTADOS

R1 1 2 1 C1 2 3 1 O1 3 0 0 2 O2 4 0 4 3 R2 4 5 1 O3 6 0 0 5 R3 5 6 1 V1 1 0 PULSE 0 10 0.01 0 0 100 101 1 .TRAN 10 0.01 TRAP 1

