Report Submission Guidelines: Handwritten

- 1. Plot the percentage biased differential characteristics for the two data sets provided in two graph sheets. (Write your roll number and name at the top of the sheets)
- 2. Plot the reference characteristic for the mentioned setting for each graph plotted.
- 3. Write on your assessment for each experimental data set compared to reference graph.
- 4. Write your suggestions how the performance of the relay can be improved further.
- 5. A transformer differential relay observes the presence of 2nd, 3rd, 4th and 5th harmonic components as (9%, 0.02%, 4% and 41%) respectively of the fundamental component in the differential current. Such a situation indicates which of the following situation?
 - a) High loading
- b) Inrush

c) Overexcitation

- d) CT saturation
- 6. For the three data sets provided in the table write the fault situation (internal/ external) in the column provided with justification.

Transformer rating: 37.5 MVA, 220 kV/11 kV. Relay setting: $I_{pu} = 0.2$, $m_1 = 0.5$, and $m_2 = 0.9$

	I ₁ (A)	I ₂ (A)	Fault (internal/ external)	Justification
Case 1	76.84∠ – 17.92°	420.02∠145.5°		
Case 2	48.30∠ — 20.66°	955.78∠160.1°		
Case 3	49.51∠ — 17.99°	426.12∠148.5°		

6. A Simulink model is attached where a 37.5 MVA, 220 kV/ 11 kV transformer is protected by percentage bias differential protection. Create phase-A-to-ground faults at F1, F2 and F3 with a fault resistance of (last digit of roll number) Ω . Write your analysis for the fault situations.

(Note: Those who have '0' as the last digit of roll number should take the fault resistance as 0.01 Ω)

Fault Resistance	Current (in Per Unit)	F ₁	F ₂	F ₃
	l ₁			
	l ₂			
$R_f (in\ \Omega\)$	operating			
	 restraining			
	Remarks			