ENGINEERING CHEMISTRY

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 -2018) SEMESTER - I/II

SEMESTER - 1/11							
Subject Code	17CHE12/17CHE22	IA Marks	40				
Number of Lecture Hours/Week	04	Exam Marks	60				
Total Number of Lecture Hours	50	Exam Hours	03				

CREDITS - 04

Course objectives:

To provide students with knowledge of engineering chemistry for building technical competence in industries, research and development in the following fields

- Electrochemistry & Battery Technology.
- Corrosion & Metal Finishing.
- Fuels & Solar energy.
- Polymers.
- Water Technology & Nano Materials.

Module -1	Teaching	
	Hours	
Electrochemistry and Battery Technology		
Electrochemistry : Introduction, Derivation of Nernst equation for		
electrode potential. Reference electrodes: Introduction,		
construction, working and applications of calomel and Ag / AgCl		
electrodes. Measurement of electrode potential using calomel		
electrode. Ion selective electrode: Introduction; Construction and		
working of glass electrode, determination of pH using glass		
electrode. Concentration cells: Electrolyte concentration cells,		
numerical problems.		
Battery Technology: Introduction, classification - primary,		
secondary and reserve batteries. Characteristics - cell potential,		
current, capacity, electricity storage density, energy efficiency, cycle		

life and shelf life. Construction, working and applications of Zinc-Air, Nickel- metal hydride batteries. Lithium batteries: Introduction, construction, working and applications of Li-MnO₂ and Li-ion batteries.

Fuel Cells: Introduction, difference between conventional cell and fuel cell, limitations & advantages. Construction, working & applications of methanol-oxygen fuel cell with H₂SO₄ electrolyte.

Module -2

Corrosion and Metal Finishing:

10hours

Corrosion: Introduction, electrochemical theory of corrosion, galvanic series. Factors affecting the rate of corrosion: ratio of anodic to cathodic areas, nature of metal, nature of corrosion product, nature of medium – pH, conductivity, and temperature. Types of corrosion- Differential metal, differential aeration (Pitting and water line) and stress. Corrosion control: Inorganic coatings-Anodizing of Al and phosphating; Metal coatings-Galvanization and Tinning. Cathodic protection (sacrificial anodic and impressed current methods).

Metal Finishing: Introduction, Technological importance. Electroplating: Introduction, principles governing-Polarization, decomposition potential and overvoltage. Factors influencing the nature of electro deposit-current density, concentration of metal ion & electrolyte; pH, temperature & throwing power of plating bath; additives- brighteners, levellers, structure modifiers & wetting agents. Electroplating of Nickel (Watt's Bath) Chromium(decorative and hard). Electro less plating: Introduction, distinction between electroplating and electro less plating, electro less plating of copper & manufacture of double sided Printed Circuit Board with copper.

Module - 3

Fuels and Solar Energy:

Fuels: Introduction, classification, calorific value- gross and net calorific values, determination of calorific value of fuel using bomb calorimeter, numerical problems. Cracking: Introduction, fluidized catalytic cracking, synthesis of petrol by Fishcher-Tropsch process, reformation of petrol, octane and cetane numbers. Gasoline and diesel knocking and their mechanism, anti knocking agents, power alcohol & biodiesel.

Solar Energy: Introduction, utilization and conversion, photovoltaic cells- construction and working. Design of PV cells: modules, panels & arrays. Advantages & disadvantages of PV cells. Production of solar grade silicon: Union carbide process, purification of silicon (zone refining), doping of silicon-diffusion technique (n&p types).

Module - 4

Polymers:

Introduction, types of polymerization: addition and condensation, mechanism of polymerization- free radical mechanism taking vinyl chloride as an example. Molecular weight of polymers: number average and weight average, numerical problems. Glass transition temperature (Tg): Factors influencing Tg-Flexibility, inter molecular forces, molecular mass, branching & cross linking and stereo regularity. Significance of T_g. Structure property relationship: crystallinity, tensile strength, elasticity & chemical resistivity. Synthesis, properties and applications of PMMA (plexi glass), Polyurethane and polycarbonate. Elastomers: Introduction, synthesis, properties and applications of Silicone rubber. Adhesives: Introduction, synthesis, properties and applications of epoxy resin. Polymer Composites: Introduction, synthesis. properties and applications of Kevlar. Conducting polymers: Introduction, mechanism of conduction in Poly aniline and applications of conducting poly aniline.

10 hours

-		•	•		
M	റ	a	11 I	Δ.	. –
TAT	u	ч	4		

Water Technology and Nanomaterials:

10 hours

Water Technology: Introduction, boiler troubles with disadvantages & prevention methods-scale and sludge formation, priming and foaming, boiler corrosion(due to dissolved O₂, CO₂ and MgCl₂). Determination of DO, BOD and COD, numerical problems on COD. Sewage treatment: Primary, secondary (activated sludge method) and tertiary methods. Softening of water by ion exchange process. Desalination of sea water by reverse osmosis & electro dialysis (ion selective)..

Nano Materials: Introduction, properties (size dependent). Synthesis-bottom up approach (sol-gel, precipitation, gas condensation & chemical vapour condensation processes). Nano scale materials- carbon nano tubes, nano wires, fullerenes, dendrimers, nano rods, & nano composites.

Course outcomes:

On completion of this course, students will have knowledge in:

- Electrochemical and concentration cells. Classical & modern batteries and fuel cells.
- Causes & effects of corrosion of metals and control of corrosion.
 Modification of surface properties of metals to develop resistance to corrosion, wear, tear, impact etc. by electroplating and electro less plating.
- Production & consumption of energy for industrialization of country and living standards of people. Utilization of solar energy for different useful forms of energy.
- Replacement of conventional materials by polymers for various applications.
- Boiler troubles; sewage treatment and desalination of sea water, and
- Over viewing of synthesis, properties and applications of nanomaterials.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be **2** full questions(with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

Text Books:

- B.S.Jai Prakash, R.Venugopal, Sivakumaraiah & Pushpa Iyengar.,
 "Chemistry for Engineering Students", Subhash Publications,
 Bangalore.
- 2. R.V.Gadag & A.Nityananda Shetty., **"Engineering Chemistry"**, I K International Publishing House Private Ltd. New Delhi.
- 3. P.C.Jain & Monica Jain., "Engineering Chemistry", Dhanpat Rai Publications, New Delhi.

Reference Books:

- O.G.Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt.
 Ltd. New Delhi, Fourth Reprint.
- 2. G.A.Ozin & A.C. Arsenault, "Nanochemistry A Chemical Approach to Nanomaterials", RSC publishing, 2005.
- 3. **"Wiley Engineering Chemistry"**, Wiley India Pvt. Ltd. New Delhi. Second Edition.
- 4. V.R.Gowariker, N.V.Viswanathan & J.Sreedhar., **"Polymer Science"**, Wiley-Eastern Ltd.
- 5. M.G.Fontana., "Corrosion Engineering", Tata McGraw Hill Publishing Pvt. Ltd. New Delhi.