

Exercice 14 p 218

MW		kW	hW	daW	W	dW	cW	mW		μW

 $1.7 \text{ kW} = 1700 \text{ W} = 1.7 \times 10^3 \text{ W}$

 $150 \text{ W} = 0.15 \text{ kW} = 150 \times 10^{-3} \text{ kW}$

 $850 \text{ mW} = 0.85 \text{ W} = 850 \times 10^{-3} \text{ W}$

 $0.1 \text{ MW} = 100 \text{ kW} = 0.1 \times 10^{-3} \text{ kW}$

Sujet DNB: Energie et vie quotidienne

Energie et vie quotidienne

QUESTION 1:

La puissance vaut 240 W car W signifie Watt et que le Watt est l'unité d'une puissance (230 V est la valeur de la tension électrique délivrée par une prise de courant et 50 Hz est une fréquence).

OUESTION 2:

Pour calculer l'énergie, j'applique la formule : $E = P \times t$. L'énergie E est en Joule si la puissance P est en Watt et si t est en seconde. Je convertis la durée en s: $2min = 2 \times 60s = 120s$ Je calcule l'énergie: $E = P \times t =$ $240W \times 120s = 28\,800J$. Donc, l'énergie électrique consommée par le thermoplongeur est de 28 800 J.

QUESTION 3:

Le schéma de conversion du thermoplongeur est :

QUESTION 4:

Il faut : a, c, e et g. Remarque : La durée du chauffage est à prendre en compte, même si cette durée n'est pas mesurée avec un appareil mais seulement déterminée à l'œil.

QUESTION 5:

On prend 2 récipients identiques (ex : deux casseroles de même taille et de même matière) dans lesquels on verse la même quantité d'eau (ex : 1 L). L'eau doit avoir la même température dans les 2 récipients (ex : 20 °C).

On allume les 2 appareils de chauffage en même temps. L'appareil dont l'eau bout en 1et est le plus efficace.

Exercice 25 p 220

Calculons l'énergie consommée par l'appareil

535,55 - 534,5 = 1,05 kWh

Calculons sa puissance sachant que 90 min = 1,5 h

P = E/t = 1.05 / 1.5 = 0.7 kW = 700 W