

2.1 COMBINATIONAL CIRCUITS

Jean-Pierre Deschamps

University Rovira i Virgili, Tarragona, Spain

1. Combinational circuits

UAB
Universitat Autònome
de Barcelona

Digital circuits that implement one or several **switching functions**, in such a way that, at any time, the output signal values only depend on the input signal values at the same time.

$$x_i \in \{0,1\}$$

$$y_i \in \{0,1\}$$

	temp	onoff	
This is NOT the definition of a	0	ON	UMB
combinational circuit	1	ON	Universitat Autònoma de Barcelona
	18	ON	
	19	ON	
	20	DON'T CHANGE	
	21	OFF	
	22	OFF	
	•••		
	49	OFF	
	50	OFF	
			3

1. Combinational circuits

Adder of two 4-bit numbers (4-bit adder)

$$X = x_3 x_2 x_1 x_0,$$

$$Y = y_3 y_2 y_1 y_0$$

$$Z = X + Y + carry_{IN} = z_4 z_3 z_2 z_1 z_0$$

$$z_4 \equiv carry_{OUT}$$

```
s <= X + Y + carry<sub>IN</sub>;

if s > 1111 then Z(3 downto 0) <= s - 10000; carry<sub>OUT</sub> <= 1;

else Z(3 downto 0) <= s; carry<sub>OUT</sub> <= 0;

end if;
```

de Barcelona

2.1 Synthesis from a table: ROM

Adder of two 4-bit numbers (4-bit adder)

Universitat Autònoma de Barcelona

 z_3 z_2

2.1 Synthesis from a table: ROM

CC with *n* inputs and *m* outputs \rightarrow ROM with 2ⁿ words, *m* bits per word

$$y_0 = f_0(x_0, x_1, ... x_{n-1})$$

$$y_1 = f_1(x_0, x_1, ... x_{n-1})$$

$$y_{m-1} = f_{m-1}(x_0, x_1, ... x_{n-1})$$

BUT generally inefficient!

(quizz)

Minimum size (number of words, number of bits per word of a ROM that implements an 8-input, 16-output combinational circuit?

- 1. 8 16-bit words
- 2. 2³ 16-bit words
- 3. 28 16-bit words
- 4. 16 8-bit words
- 5. 2^4 8-bit words
- 6. 2¹⁶ 8-bit words

Х	у	C_i	C_{O}	z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Х	у	Z		
0	0			
0	1			
1	0			
 1	1			
AND				

$$\begin{bmatrix} x \\ y \end{bmatrix}$$

X	У	Z		
0	0			
0	1			
1	0			
1	1			
OR				

2.2 Synthesis from a table: logic Gates

Х	у	C_i	C_o	Z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$c_0 = 1$$
 iff (x y $c_i = 011$) OR (x y $c_i = 101$) OR (x y $c_i = 110$) OR (x y $c_i = 111$)

$$x y c_i = 011 iff$$

(x = 0) AND (y = 1) AND (c_i = 1)

$$x = 0$$
 iff $INV(x) = 1$

2.2 Synthesis from a table: logic Gates

$$c_0 = 1$$
 iff (x y $c_i = 011$) OR (x y $c_i = 101$) OR (x y $c_i = 110$) OR (x y $c_i = 111$)

$$x y c_i = 011 iff$$

(x = 0) AND (y = 1) AND (c_i = 1)

$$x = 0$$
 iff $INV(x) = 1$

х	у	C_i	Co	z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

12

de Barcelona

2.2 Synthesis from a table: logic Gates

$$c_0$$
 = 1 iff (x y c_i = 011) OR (x y c_i = 101) OR (x y c_i = 110) OR (x y c_i = 111) equivalent to

$$c_0 = 1$$
 iff
(x y $c_i = 011$) OR (x y $c_i = 101$) OR (x y = 11)

Х	у	C_i	C_o	Z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

UAB
Universitat Autònoma
de Barcelona

We need a tool that helps us to minimize the number of gates:

BOOLEAN ALGEBRA

Synthesize the function z with logic gates.

х	у	C_i	Co	Z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(solution)

Х	у	C_i	C_o	z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Synthesize the function \boldsymbol{z} with logic gates.

$$z = 1$$
 iff
(x y c_i = 001) OR (x y c_i = 010) OR (x y c_i = 100) OR (x y c_i = 111)

Universitat Autònoma

de Barcelona

SUMMARY

- Combinational circuits.
- ROM (table) implementation.
- A first approach to logic gate implementation.

2.1 UAB Universitat Autònoma de Barcelona 18

2.2 BOOLEAN ALGEBRA

Jean-Pierre Deschamps

University Rovira i Virgili, Tarragona, Spain

1. Boolean algebra

A **Boolean algebra** B is a finite set over which two binary operations + (sum) and · (product) and satisfy five postulates.

1. Boolean algebra

- P 1 Operations + and · are internal: $\forall a,b \in B$, $a+b \in B$ $y \ a \cdot b \in B$
- P 2 To each operation corresponds a **neutral element:** $\forall a \in B$, a+0=a, $a\cdot 1=a$
- P 3 To each element corresponds an **inverse element**: $\forall a \in B, \exists \ a \in B \mid a + a = 1, \quad a \cdot a = 0$
- P 4 Operations + and · are **conmutative**: a+b=b+a, $a \cdot b=b \cdot a$
- P 5 –Operations + and · are distributive: $a \cdot (b+c) = a \cdot b + a \cdot c$, $a+b \cdot c = (a+b) \cdot (a+c)$

UAB Universitat Autònoma de Barcelona

1. Boolean algebra

The set {0, 1} is a Boolean algebra if the operations are defined as follows:

a b	a∙b	a + b	a
0 0	0	0	1
01	0	1	1
10	0	1	0
11	1	1	0

$$a \longrightarrow b \longrightarrow a+b$$

Example: check that $a \cdot (b+c) = a \cdot b + a \cdot c$

a b	a∙b	a + b	a
0 0	0	0	1
01	0	1	1
10	0	1	0
11	1	1	0

	1		1	1	
a b c	b+c	$a \cdot (b+c)$	a∙b	а·с	a∙b+ a∙c
000	0	0	0	0	0
001	1	0	0	0	0
010	1	0	0	0	0
011	1	0	0	0	0
100	0	0	0	0	0
101	1	1	0	1	1
110	1	1	1	0	1
111	1	1	1	1	1

1. Boolean algebra

Comment:

$$a \cdot (b+c) = a \cdot b + a \cdot c =>$$

The set of *n*-variable switching functions

$$F: \{0, 1\}^n \rightarrow \{0, 1\}$$

is also a Boolean algebra. Given two switching functions f and g, then f+g, $f\cdot g$ and \overline{f} are defined as follows:

$$(f+g)(x_0,x_1,\cdots,x_{n-1})=f(x_0,x_1,\cdots,x_{n-1})+g(x_0,x_1,\cdots,x_{n-1}),$$

$$(f\cdot g)(x_0,x_1,\cdots,x_{n-1})=f(x_0,x_1,\cdots,x_{n-1})\cdot g(x_0,x_1,\cdots,x_{n-1}),$$

$$\overline{f}(x_0,x_1,\cdots,x_{n-1})=\overline{f(x_0,x_1,\cdots,x_{n-1})}$$

The neutral elements are the constant functions 0 and 1.

UAB Universitat Autònoma de Barcelona

2. Some useful properties

1 – Neutral element properties: $\overline{0} = 1$, $\overline{1} = 0$

2 – Idempotence: a + a = a, $a \cdot a = a$

$$a = a + 0 = a + (a \cdot \overline{a}) = (a + a) \cdot (a + \overline{a}) =$$

 $(a + a) \cdot 1 = a + a$

P1 -
$$\forall a,b \in B$$
, $a+b \in B$ $\forall a \cdot b \in B$

$$P2 - \forall a \in B, \quad a+0=a, \quad a\cdot 1=a$$

$$P3 - \forall a \in B, \exists \overline{a} \in B \mid a + \overline{a} = 1, \quad a \cdot \overline{a} = 0$$

$$P4 - a+b=b+a$$
, $a \cdot b=b \cdot a$

$$p_5$$
 - $a \cdot (b+c) = a \cdot b + a \cdot c$, $a+b \cdot c = (a+b) \cdot (a+c)$

1

de Barcelona

(Exercise)

Demonstrate that $a \cdot a = a$

Hint: Use the second part of P2, P3 and P5.

$$P1 - \forall a, b \in B, \quad a+b \in B \ y \ a \cdot b \in B$$

$$P2 - \forall a \in B, \quad a+0=a, \quad a \cdot 1=a$$

$$P3 - \forall a \in B, \exists \overline{a} \in B \mid a + \overline{a} = 1, \quad a \cdot \overline{a} = 0$$

$$P4 - a+b=b+a$$
, $a \cdot b=b \cdot a$

$$p_5$$
 $a \cdot (b+c) = a \cdot b + a \cdot c, \quad a+b \cdot c = (a+b) \cdot (a+c)$

UAB Universitat Autònoma de Barcelona

(Solution)

Demonstrate that $a \cdot a = a$

Hint: Use the second part of P2, P3 and P5.

$$a = a \cdot 1 = a \cdot (a + \overline{a}) = (a \cdot a) + (a \cdot \overline{a}) = (a \cdot a) + 0 = a \cdot a$$

$$a = a + 0 = a + (a \cdot \overline{a}) = (a + a) \cdot (a + \overline{a}) = (a + a) \cdot 1 = a + a$$

$$P1 - \forall a, b \in B, \quad a+b \in B \ y \ a \cdot b \in B$$

$$P2 - \forall a \in B, \quad a+0=a, \quad a\cdot 1=a$$

$$P3 - \forall a \in B, \exists \overline{a} \in B \mid a + \overline{a} = 1, \quad a \cdot \overline{a} = 0$$

$$P4 - a+b=b+a$$
, $a \cdot b=b \cdot a$

$$p_5$$
 - $a \cdot (b+c) = a \cdot b + a \cdot c$, $a+b \cdot c = (a+b) \cdot (a+c)$

UAB Universitat Autònoma de Barcelona

2. Some useful properties

- 1 Neutral element properties: $\overline{0} = 1$, $\overline{1} = 0$
- 2 Idempotence: a + a = a, $a \cdot a = a$
- 3 Involution: $\bar{a} = a$
- 4 Asociativity: a+(b+c)=(a+b)+c, $a\cdot(b\cdot c)=(a\cdot b)\cdot c$
- 5 Absortion law: $a + a \cdot b = a$, $a \cdot (a + b) = a$
- 6 (nameless): $a + \overline{a \cdot b} = a + b$, $a \cdot (\overline{a} + b) = a \cdot b$
- 7 de Morgan law: $(\overline{a+b}) = \overline{a} \cdot \overline{b}, \quad \overline{a \cdot b} = \overline{a} + \overline{b}$
- 8 generalized de Morgan law: $(\overline{a_1 + a_2 + ... + a_n}) = \overline{a_1} \cdot \overline{a_2} \cdot ... \cdot \overline{a_n}, \quad \overline{a_1 \cdot a_2 \cdot ... \cdot a_n} = \overline{a_1} + \overline{a_2} + ... + \overline{a_n}$

(quizz)

UAB
Universitat Autònoma
de Barcelona

What Boolean expression is equivalent to the following : $a \cdot (\overline{b} + cd) + \overline{a}b$?

Hint: Use postulates and properties

1.
$$\overline{a}.b + b.\overline{c} + \overline{d}$$

2.
$$\overline{a}.b$$

3.
$$a.\overline{b} + b.\overline{c} + \overline{d}$$

4.
$$\overline{a}.b + b.\overline{c} + b.\overline{d}$$

UAB Universitat Autònoma de Barcelona

3. Boolean functions and truth tables

a) Any Boolean function can be explicitely defined by a truth table

$$f(a,b,c) = b.\overline{c} + \overline{a}.b$$

a b c	C	$b \cdot \overline{c}$	a	a · b	f
000	1	0	1	0	0
001	0	0	1	0	0
010	1	1	1	1	1
011	0	0	1	1	1
100	1	0	0	0	0
101	0	0	0	0	0
110	1	1	0	0	1
111	0	0	0	0	0

de Barcelona

3. Boolean functions and truth tables

b) Given a truth table can we find an equivalent Boolean function?...

Answer is YES

LITERAL

A variable or an inverted variable : $a, \bar{a}, b, \bar{b}, c, \bar{c}, ...$

n-variable **MINTERM**

A product of n literals such that each variable appears only once. Example: if n=3, there are eight minterms.

$$a.b.c, a.b.\overline{c}, a.\overline{b}.c, a.\overline{b}.\overline{c}, \overline{a}.b.c, \overline{a}.b.\overline{c}, \overline{a}.\overline{b}.\overline{c}, \overline{a}.\overline{b}.\overline{c}$$

3. Boolean functions and truth tables

UAB
Universitat Autònoma
de Barcelona

Given a **MINTERM** m, there is one, an only one, set of variable values such that m = 1. With n = 3:

(quiz)

What expression corresponds to minterm-5 (m_5) of n = 4 variables?

- 1. $a.\overline{b}.c.\overline{d}$
- a.b.c
 a.b.c.d
 a.b.c.d

MINTERMS of an *n*-variable Boolean function *f*?

= minterms that correspond to the 1s of f.

а	b	С	f(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

3. Boolean functions and truth tables

UAB
Universitat Autònoma
de Barcelona

Canonical sum of products **representation** of an *n*-variable Boolean function.

Any Boolean function can be represented by the sum of its *minterm*.

$$f(a,b,c) = \Sigma(m_2, m_3, m_6)$$

 $f(a,b,c) = \bar{a}.\bar{b}.\bar{c} + \bar{a}.\bar{b}.c + a.b.\bar{c}$

a	b	С	f(a,b,c)	
0	0	0	0	
0	0	1	0	
0	1	0	1	$\rightarrow m_2 = \bar{a}.b.\bar{c}$
0	1	1	1	$\rightarrow m_3 = a.b.c$
1	0	0	0	
1	0	1	0	
1	1	0	1	$\rightarrow m_6 = a.b.\overline{c}$
1	1	1	0	

3. Boolean functions and truth tables

UAB
Universitat Autònoma
de Barcelona

 $\begin{tabular}{ll} \begin{tabular}{ll} if ((a=1 \ and \ b=1) \ and \ c=0) \ or \ (a=0 \ and \ b=1)) \ then \ f=1; \\ & else \ f=0; \\ end \ if; \end \ then \ f=1; \\ \end \ then \ then \ f=1; \\ \end \ then \ then \ then \ then \ f=1; \\ \end \ then \ the$

а	b	С	f(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$f(a,b,c) = \overline{a.b.c} + \overline{a.b.c} + a.b.\overline{c} =$$

= $\overline{a.b(c+c)} + \overline{b.c.(a+a)} = \overline{a.b+b.c}$

$$f(a,b,c) = \sum (m_2, m_3, m_6)$$

$$f(a,b,c) = \overline{a.b.c} + \overline{a.b.c} + a.b.\overline{c}$$

4. Example: 4 bit-adder

Х	у	C_i	C_{o}	Z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

4. Example: 4 bit-adder

$$c_o = y. c_i + x. c_i + x. y$$

$$z = \overline{x}. \overline{y}. c_i + \overline{x}. y. \overline{c_i} + x. \overline{y}. \overline{c_i} + x. y. c_i$$

SUMMARY

- Boolean algebra. Postulates and properties.
- Tabular representation of Boolean functions.
- Minterms and canonical sum of products expression.
- Circuit generation from a functional description:

(functional description \rightarrow truth table \rightarrow Boolean function(s) \rightarrow circuit)

2.3 NAND, NOR, XOR, XNOR, TRI-STATE

Jean-Pierre Deschamps

University Rovira i Virgili, Tarragona, Spain

$$a \rightarrow b \rightarrow NOR(a, b) \equiv a \rightarrow b \rightarrow NOR(a, b)$$

a b	NAND(a,b)	NOR(a,b)
0 0	1	1
01	1	0
10	1	0
11	0	0

Algebraic symbols:

$$NAND(a, b) = a \uparrow b,$$

$$NOR(a, b) = a \downarrow b$$
.

2.3

UAB
Universitat Autònoma
de Barcelona

NAND and NOR gates are universal modules. For example, with NAND gates:

Exercise: the same for NOR gates

2.3

UAB
Universitat Autònoma
de Barcelona

3-input, 4-input, ··· NAND and NOR gates can be defined:

NAND(
$$a, b, c$$
) = 0 iff $a = b = c = 1$

NAND(
$$a$$
, b , c , d) = 0 iff $a = b = c = d = 1$

$$NOR(a, b, c) = 0 \text{ iff } (a = 1) OR (b = 1) OR (c = 1)$$

$$NOR(a, b, c, d) = 0 \text{ iff } (a = 1) OR (b = 1) OR (c = 1) OR (d = 1)$$

2.3

UAB
Universitat Autònoma
de Barcelona

BUT NAND and NOR are not associative operations. In particular:

a b —

> NAND(NAND(a, b), c)

NAND(1, 1, 1) = 0

NAND(NAND(1, 1), 1) = NAND(0, 1) = 1

NOR(0, 0, 0) = 1

NOR(NOR(0, 0), 0) = NOR(1, 0) = 0

(quiz)

Which of the following circuits implements the AND function $z = a \cdot b$?

Universitat Autònoma de Barcelona

UAB Universitat Autònoma de Barcelona

(Exercise)

Implement the same function with NAND gates.

(solution)

Implement the same function with NAND gates.

50

UMB

Universitat Autònoma de Barcelona

Why do we use NAND gates (or NOR gates) instead of AND and OR gates?

- If we use "of the shelf" components (laboratory) we only need one type of gate.
- In CMOS technology
 - an AND gate is implemented with a NAND and an INV,

- an OR gate is implemented with a NOR and an INV.

=> Within an IC (Integrated Circuit) NAND and NOR are "cheaper" than AND and OR.

2. XOR, XNOR

7/ 2	
$a \rightarrow \uparrow \uparrow$	VNIODIA 6
h 11	\rightarrow XNOR(a, b)
<i>D</i> ———	

a b	XOR(a,b)	XNOR(a,b)
0 0	0	1
01	1	0
10	1	0
11	0	1

XOR (= eXclusive OR): XOR(a, b) = 1 if $a \neq b$;

XNOR (= eXclusive NOR): XNOR(a, b) = 1 if a = b.

Algebraic symbols:

$$XOR(a, b) = a \oplus b$$
,

$$(XNOR(a, b) = a \equiv b)$$

de Barcelona

UAB Universitat Autònoma de Barcelona

2. XOR, XNOR

Equivalent definition:

$$XOR(a, b) = (a + b) \mod 2 = a \oplus b$$
,

$$XNOR(a, b) = INV(a \oplus b).$$

=> 3-input, 4-input, ··· XOR and XNOR gates can be defined:

$$XOR(a, b, c) = (a + b + c) \mod 2 = a \oplus b \oplus c$$
, $XNOR(a, b, c) = INV(a \oplus b \oplus c)$,

$$XOR(a, b, c, d) = (a + b + c + d) \mod 2 = a \oplus b \oplus c \oplus d$$
, $XNOR(a, b, c, d) = INV(a \oplus b \oplus c \oplus d)$,

...

XOR is an associative operation =>

UAB Universitat Autònoma de Barcelona

2. XOR, XNOR

- XOR y NXOR are not universal modules,
- useful functions.

First example: magnitud comparator. Given two 4-input vectors $a = a_3 a_2 a_1 a_0$ and $b = b_3 b_2 b_1 b_0$, generate comp = 1 iff a = b.

Algorithm

if
$$(a_3 \neq b_3)$$
 or $(a_2 \neq b_2)$ or $(a_1 \neq b_1)$ or $(a_0 \neq b_0)$
then $comp <= 0$;
else $comp <= 1$;
end if;

2. XOR, XNOR

Second example: parity bit generation. Given an *n*-input vector

$$a = a_{n-1} a_{n-2} \cdots a_1 a_0$$

its **parity bit** is and additional bit a_n such that the extended vector

$$a_{ext} = a_n \, a_{n-1} \, a_{n-2} \cdots \, a_1 \, a_0$$

has an even number of 1's. It is used for **error detection** purpose:

Observation:

• a vector $a_{k-1}a_{k-2}\cdots a_0$ has an even number of 1's iff

$$(a_{k-1} + a_{k-2} + \dots + a_0) \mod 2 = 0,$$

and

$$a_{k-1} \oplus a_{k-2} \oplus \cdots \oplus a_0 = 0.$$

Algorithm – Parity bit generation

 $a(n) \le a(n-1) xor a(n-2) xor \cdots xor a(0);$

Algorithm – Parity check

error <=

$$a(n) xor a(n-1) xor a(n-2) xor \cdots xor a(0);$$

2. XOR, XNOR

The main application of XOR gates is **Arithmetic**:

1-bit adder is the basic component of practically all arithmetic circuits;

It computes two functions:

- $carry_{OUT} = 1 \text{ iff } x + y + carry_{IN} \ge 2;$
- $s = (x + y + carry_{IN}) \mod 2 = x \oplus y \oplus carry_{IN}$.

de Barcelona

2. XOR, XNOR

$$((x = 1) \text{ and } (y = 1))$$

or $((carry_{IN} = 1) \text{ and } (x \neq y));$

Thus

$$carry_{OUT} = x \cdot y + carry_{IN} \cdot (x \oplus y),$$

$$s = x \oplus y \oplus carry_{IN}$$
.

58

de Barcelona

2. XOR, XNOR

2 .3 UAB

4-bit adder (new version):

Universitat Autònoma de Barcelona

UAB Universitat Autònoma de Barcelona

3. BUFFER TRI-STATE, INVERSOR TRI-STATE

C X	у
0 0	High impedance (Z)
0 1	High impedance (Z)
10	0
11	1

C X	у
0 0	High impedance (Z)
0 1	High impedance (<i>Z</i>)
10	1
11	0

3. BUFFER TRI-STATE, INVERSOR TRI-STATE

3. BUFFER TRI-STATE, INVERSOR TRI-STATE

UAB
Universitat Autònoma
de Barcelona

Main application: **BUS**

Example: 4-bit bus

 $c_{\rm A}$ = 1 and $c_{\rm B}$ = 0: circuit A \rightarrow circuit C;

 $c_{\rm A}$ = 0 and $c_{\rm B}$ = 1: circuit B \rightarrow circuit C;

UAB
Universitat Autònoma
de Barcelona

SUMMARY

2 3
UAB
Universitat Autònoma
de Barcelona

- NAND, NOR. Universal module concept.
- XOR, XNOR
- Tri-state buffers. Bus.