Continuum Mechanics

Lecture 7 - Stress

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

15 September, 2020

schedule

- 15 Sep Stress
- 17 Sep Linear Elasticity
- 22 Sep Equations of Motion, HW 4 Due
- 24 Sep Elastic Problems

outline

- traction vector and stress tensor
- linear momentum and static equilibrium
- piola kirchoff stress tensors

some words on notation

- This text uses a different notation from what is generally taught in elasticity, but the concepts are identical
- "stress vector" is equivalent to a "traction vector"
- The symbol T used for the stress tensor is equivalent to σ used for the stress tensor in Elasticity

Figure 1: image

traction

- The traction vector is defined as

$$\hat{t}^n(x,\hat{n}) = \lim_{\Delta A \to 0} \frac{\Delta \hat{f}}{\Delta A}$$

- By Newton's third law (action-reaction principle)

$$\hat{t}^n(x,\hat{n}) = -\hat{t}^n(x,-\hat{n})$$

Figure 2: traction vector

traction

- If we consider the special case where the normal vectors, \hat{n} , align with the coordinate system $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$
- On the 1-face:

$$\hat{n} = \hat{e}_1:$$
 $\hat{t}^n = t_i^{(\hat{e}_1)} \hat{e}_i = t_1^{(\hat{e}_1)} \hat{e}_1 + t_2^{(\hat{e}_1)} \hat{e}_2 + t_3^{(\hat{e}_1)} \hat{e}_3$

- On the 2-face:

$$\hat{n} = \hat{e}_2: \qquad \hat{t}^n = t_i^{(\hat{e}_2)} \hat{e}_i = t_1^{(\hat{e}_2)} \hat{e}_1 + t_2^{(\hat{e}_2)} \hat{e}_2 + t_3^{(\hat{e}_2)} \hat{e}_3$$

- And on the 3-face:

$$\hat{n} = \hat{e}_3$$
: $\hat{t}^n = t_i^{(\hat{e}_3)} \hat{e}_i = t_1^{(\hat{e}_3)} \hat{e}_1 + t_2^{(\hat{e}_3)} \hat{e}_2 + t_3^{(\hat{e}_3)} \hat{e}_3$

stress tensor

To simplify the notation, we introduce the stress tensor

$$\sigma_{ij} = t_i^{(\hat{e}_i)}$$

traction

– We can find some interesting information about the traction vector by considering an arbitrary tetrahedron with some traction $\hat{t}^{(n)}$ applied to the surface

. .

 If we consider the balance of forces in the x₁-direction

$$t_1 dA - \sigma_{11} dA_1 - \sigma_{21} dA_2 - \sigma_{31} dA_3 + b_1 \rho dV = 0$$

- The area components are:

$$dA_1 = n_1 dA$$

$$dA_2 = n_2 dA$$

$$dA_3 = n_3 dA$$

- And $dV = \frac{1}{3}hdA$.

traction

$$t_1 dA - \sigma_{11} n_1 dA - \sigma_{21} n_2 dA - \sigma_{31} n_3 dA + b_1 \rho_{\frac{1}{2}}^{\frac{1}{2}} h dA = 0$$

- If we let $h \rightarrow 0$ and divide by dA

$$t_1 = \sigma_{11}n_1 + \sigma_{21}n_2 + \sigma_{31}n_3$$

- We can write this in index notation as

$$t_1 = \sigma_{i1} n_i$$

- We find, similarly

$$t_2 = \sigma_{i2} n_i$$

$$t_3 = \sigma_{i3} n_i$$

We can further combine these results in index notation as

$$t_i = \sigma_{ij} n_i$$

– This means with knowledge of the nine components of σ_{ij} , we can find the traction vector at any point on any surface

13

example

 Consider a block of material with a uniformly distributed force acting on the 1-face. Find the tractions on an arbitrary interior plane

.

example

- First we consider a vertical cut on the interior 1-face $(n_i = \langle 1, 0, 0 \rangle)$
- Next we represent the force *P* as a vector, $p_i = \langle P, 0, 0 \rangle$
- Balancing forces yields

$$t_i A - p_i = 0$$

- We find $t_1=\frac{P}{A}=\sigma_{11}$, $t_2=0=\sigma_{12}$ and $t_3=0=\sigma_{13}$
- No force is applied in the other directions, so it is trivial to find the rest of the stress tensor

$$\sigma_{ij} = \begin{bmatrix} P/A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

example

- We can now consider any arbitrary angle of interior cut.
- The normal for a cut as shown in the diagram will be $n_i = \langle \cos \theta, \sin \theta, 0 \rangle$.
- We can again use $t_i = \sigma_{ij} n_i$ to find t_i for any angle θ .

$$t_1 = \frac{P}{A}\cos\theta$$
$$t_2 = 0$$
$$t_3 = 0$$

- From the principle of linear momentum, we know that F = ma
- If we consider some internal body force, B, and use the knowledge that tractions on opposing faces must be equal, we find (in Cartesian coordinates)

$$T_{ii,i} + \rho B_i = \rho a_i$$

- These are known as Cauchy's equations of motion
- For a body to be in static equilibrium $a_i = 0$

static equilibrium

 Most of the time, we will deal with bodies which are not in motion, and can use the condition of static equilibrium

$$T_{ij,j} + \rho B_i = 0$$

- In some cases, the body forces (usually gravity) are negligible compared with other forces acting on a body
- In invariant form, we can write this as

$$\operatorname{div} T_{ij} + \rho B_i = \rho a_i$$

which is valid in any coordinate system

 Is the following stress distribution in static equilibrium?

$$T_{ij} = \begin{bmatrix} X_2^2 + \nu(X_1^2 - X_2^2) & -2\nu X_1 X_2 & 0\\ -2\nu X_1 X_2 & X_1^2 + \nu(X_2^2 - X_1^2) & 0\\ 0 & 0 & \nu(X_1^2 + X_2^2) \end{bmatrix}$$

10

boundary conditions

- In most problems, we don't know anything about the internal stress state, but we do know what is applied on the surface
- We apply these as traction boundary conditions,
 which can be used to find the internal stress tensor
- If a surface is "free" with no boundary or force constraints, it is a traction-free boundary condition

example

- Suppose a cylinder has a variable density given by $\rho=r^2$
- Find the state of stress from gravity in these

conditions

example

- There is no traction along the outer surfaces
- Using Cauchy's stress theorem with the normal $n=\langle 1,0,0\rangle$ we can find

$$t_{j} = \sigma_{ij} n_{i}$$

$$= \langle \sigma_{rr} n_{r} + \sigma_{r\theta} n_{\theta} + \sigma_{rz} n_{z}, \sigma_{\theta r} n_{r} + \sigma_{\theta \theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{r} + \sigma_{z\theta} n_{\theta} + \sigma_{\theta z} n_{z}, \sigma_{zr} n_{z} \rangle$$

- And choosing another normal, we find
- $\sigma_r = \sigma_{r\theta} = \sigma_{\theta} = \sigma_{rz} = \sigma_{\theta_z} = 0$
- We can also find that $\sigma_z = 0$ at the free surface

example

- Since gravity only acts in the z-direction, we make the assumption that all stress functions be functions of z only
- To find the stress in the z direction, we use the third equilibrium equation

$$\frac{\partial \tau_{rz}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta z}}{\partial \theta} + \frac{\partial \sigma_{z}}{\partial z} + \frac{1}{r} \tau_{rz} + \rho B_{z} = 0$$

- We can substitute known values to find that

$$\frac{\partial \sigma_z}{\partial z} + r^2 g = 0$$

example

 Since we desire to find the stress at any point, we introduce a variable to indicate the coordinate of our free body diagram cut - We integrate over this free body to find

$$\sigma_{z} = -\int_{L}^{z} r^{2} g dz$$
$$= r^{2} g(L - z)$$

 In this case, the stress is a function of radial distance (just like the body force was)

2

piola kirchoff stress tensors

- The Cauchy stress tensor is based on the differential area at the current position (deformed state)
- The first and second Piola Kirchoff stress tensors are based on the undeformed area
- Equations of motion can be formulated in either the deformed or un-deformed configuration, based on which is more convenient for a given problem
- For large deformation problems, whether the rate of deformation tensor D_{ij}, DF_{ij}/Dt, or DE_{ij}*/Dt is used facilitates the use of Cauchy or one of the Piola Kirchoff Stress tensors

first piola kirchoff stress tensor

 For the first Piola Kirchoff stress tensor (also known as the Lagrangian stress tensor), we let

$$df_i = t_i^0 dA^0$$

- Note that t_i⁰ is a pseudo traction vector, and does not describe the actual intensity of df_i, which is acting on the deformed area
- Also note that since df_i is the acting on the deformed area, t⁰_i acts in the same direction as t_i
- We can now formulate the stress tensor in the same way as the Cauchy stress tensor

$$t_i^0 = T_{ij}^0 n_j^0$$

first piola kirchoff stress tensor

 We can also relate the first Piola-Kirchoff stress tensor to the Cauchy stress tensor

$$T_{ij}^0 = JT_{im}F_{jm}^{-1}$$

- And the inverse relationship is

$$T_{ij} = \frac{1}{J} T_{im}^0 F_{jm}$$

 In general, the first Piola-Kirchoff stress tensor is not symmetric

second piola kirchoff stress tensor

 If instead we consider a pseudo-differential force acting on the un-deformed area

$$d\tilde{f}_i = \tilde{t}_i dA^0$$

where

$$df_i = F_{ij}d\tilde{f}_j$$

- In general, the traction vector \tilde{t}_i is in a different direction that t_i and t_i^0
- Once again, we can formulate the second Piola-Kirchoff stress tensor as the others

$$\tilde{t}_i = \tilde{T}_{ij} n_j^0$$

second piola kirchoff stress tensor

 We can easily relate the Second and First Piola Kirchoff stress tensors

$$\tilde{T}_{ij} = F_{im}^{-1} T_{mj}^0$$

 We can now substitute to relate the Second Piola Kirchoff stress tensor to the Cauchy stress tensor

$$\tilde{T}_{ij} = J F_{im}^{-1} T_{mn} F_{jn}^{-1}$$

 For a symmetric stress tensor, T_{ij}, the Second Piola Kirchoff stress tensor is symmetric