

Report No.: EED32K00127803 Page 1 of 64

TEST REPORT

Product : Yanshee
Trade mark : UBTECH
Model/Type reference : Yanshee

Serial Number : N/A

Report Number : EED32K00127803 **FCC ID** : 2AHJX-YANSHEE

Date of Issue : Jul. 19, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

UBTECH ROBOTICS CORP 16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by

Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Date:

Kevin yang (Reviewer)

Jul. 19, 2018

Max liang

Max Liang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:3096333402

Page 2 of 64

2 Version

Version No.	Date	(6)	Description	9
00	Jul. 19, 2018		Original	
	100	12	793	/05
((c5)	(6,42)	(6,7)

Report No. : EED32K00127803 Page 3 of 64

3 Test Summary

3 Test Sullillary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Report No.: EED32K00127803 Page 4 of 64

4 Content

1 COVER PAGE				1
2 VERSION	•••••	•••••	•••••	2
3 TEST SUMMARY		•••••		3
4 CONTENT				4
5 TEST REQUIREMENT				
5.1.1 For Conducted 5.1.2 For Radiated E 5.1.3 For Conducted 5.2 TEST ENVIRONMENT.	test setup missions test setup Emissions test setup			
6 GENERAL INFORMATI	ON			8
6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATION 6.4 DESCRIPTION OF SUFFICE TO SUFFICE	ON OF EUT TION SUBJECTIVE TO THIS S' PPORT UNITS ANDARDS M STANDARD CONDITIONS REQUESTED BY THE CUSTO	TANDARDOMERE LEVELS, K=2)		
7 EQUIPMENT LIST				10
		CATION		
Appendix B): 6dB Oc Appendix C): Band-e Appendix D): RF Cor Appendix E): Power S Appendix F): Antenna Appendix G): AC Pov Appendix H): Restrict	ccupied Bandwidthdge for RF Conducted Emanducted Spurious Emission Spectral Densitya Requirementver Line Conducted Emissited bands around fundament.	nissionsnssionsionental frequency (Radiated)		
	·			
PHOTOGRAPHS OF EUT	CONSTRUCTIONAL DE	TAILS		64

Report No.: EED32K00127803 Page 5 of 64

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

Page 6 of 64

5.2 Test Environment

Operating Environment:		(4)
Temperature:	24.8 °C	
Humidity:	55 % RH	 -11
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tv/Dv	RF Channel				
rest Mode	Tx/Rx	Low(L)	Middle(M)	High(H)		
902 11b/a/a/LIT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11		
802.11b/g/n(HT20)	24 12WINZ ~2402 WINZ	2412MHz	2437MHz	2462MHz		
802.11n(HT40)	04000411- 0450 0411-	Channel 1	Channel 4	Channel7		
	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz		
Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).					

Report No. : EED32K00127803 Page 7 of 64

Test mode:

Pre-scan under all rate at lowest channel 1

Mode				802.11b					
Data Rate	1M	bps	2Mbp	s 5.5Mbp	s 11Mbp	s			
Power(dBm)	11	.25	11.84	12.00	12.99		-10%		
Mode	(10)	1		(2)	80	2.11g			- 6
Data Rate	6M	bps	9Mbp	s 12Mbps	18Mbps	24Mbp	s 36Mbp	s 48Mbps	54Mbps
Power(dBm) 17	'.80	17.4	5 17.01	16.84	16.45	16.21	15.84	15.32
Mode					802.11n	(HT20)	·		
Data Rate	6.5Mbp	s 1	3Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	17.68		17.25	17.07	16.84	16.54	16.12	15.85	15.21

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);

6 General Information

6.1 Client Information

Applicant:	UBTECH ROBOTICS CORP
Address of Applicant:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA
Manufacturer:	UBTECH ROBOTICS CORP
Address of Manufacturer:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA
Factory:	UBTECH ROBOTICS CORP BAOAN BRANCH
Address of Factory:	1-2 Floor, B Block, Huilongda Industry Park, Shilongzai, Shiyan Street, Baoan District, Shenzhen City, P.R.CHINA

6.2 General Description of EUT

Product Name:	Yanshee	
Model No.(EUT):	Yanshee	
Trade Mark:	UBTECH	
EUT Supports Radios application:		ual mode, 2402MHz to 2480MHz 2.11b/g/n(HT20): 2412MHz to 2462MHz
Power Supply:	Adapter	Model: HKA03609640-8A Input: 100-240V~50/60Hz, 1.5A Output: 9.6V—4.0A
0.	Battery	Rechargable Li-ion Battery 7.24V, 2750mAh, 19.91Wh
Sample Received Date:	May 24, 2018	
Sample tested Date:	May 24, 2018	to Jul. 19, 2018

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz			
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels			
Channel Separation: 5MHz				
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)			
Antenna Type and Gain:	Type: Ceramic antenna Gain: 1.8dBi			
Test Voltage:	AC 120V, 60Hz			

Operation	Frequency ea	ch of channe	el(802.11b/g/n	HT20))	(6))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		(0,

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nower conducted	0.31dB (30MHz-1GHz)	
2	RF power, conducted	0.57dB (1GHz-18GHz)	
3	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
4	Conduction emission	3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	

7 Equipment List

	_quiptillatic =100								
	Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	05-26-2017 05-25-2018	05-25-2018 05-24-2019				
Temperature/ Humidity Indicator	Belida	TT-512	A19	01-24-2018	01-23-2019				
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019				

	200		20%			
RF Conducted test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019	
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019	
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019	
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019	

	3M	l Semi/full-anechoid	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	/	06-04-2016	06-03-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-617	03-29-2018	03-28-2019
Preamplifier	JS Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019
Horn Antenna	ETS-LINDGREN	3117	00057407	07-10-2018	07-08-2021
Double Ridge Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-07-2015 06-05-2018	06-05-2018 06-03-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-26-2017 05-25-2018	05-25-2018 05-24-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Communication test set	Agilent	E5515C	GB47050534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019
High-pass filter	Sinoscite	FL3CX03WG18NM1 2-0398-002	- (ES)	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001	(i)_	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002	- (01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001	'	01-10-2018	01-09-2019

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	No. Identity Document Title	
1	FCC Part 15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Report No. : EED32K00127803 Page 13 of 64

Appendix A): Conducted Peak Output Power

Result Table

Mode Channel			
		Conducted Peak Output Power [dBm]	Verdict
11B	LCH	12.99	PASS
11B	MCH	13.49	PASS
11B	HCH	14.34	PASS
11G	LCH	17.8	PASS
11G	MCH	18.19	PASS
11G	HCH	19.1	PASS
11N20SISO	LCH	17.68	PASS
11N20SISO	MCH	18.13	PASS
11N20SISO	HCH	18.85	PASS

Page 15 of 64

Page 16 of 64

Report No.: EED32K00127803 Page 17 of 64

Appendix B): 6dB Occupied Bandwidth

Result Table

5,500		3.302		2.70	
Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	9.523	14.025	PASS	
11B	MCH	9.013	14.026	PASS	(1)
11B	HCH	9.565	14.064	PASS	(6)
11G	LCH	15.07	16.282	PASS	
11G	MCH	15.11	16.286	PASS	Peak
11G	HCH	15.08	16.299	PASS	detector
11N20SISO	LCH	15.08	17.444	PASS	
11N20SISO	MCH	15.06	17.448	PASS	
11N20SISO	HCH	15.10	17.449	PASS	

Page 18 of 64

Page 19 of 64

Page 20 of 64

Report No.: EED32K00127803 Page 21 of 64

Appendix C): Band-edge for RF Conducted Emissions

Result Table

114,41411111111111111111111111111111111		1.702			
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	2.002	-49.999	-28	PASS
11B	НСН	3.144	-46.723	-26.86	PASS
11G	LCH	-1.184	-46.559	-31.18	PASS
11G	НСН	0.764	-40.084	-29.24	PASS
11N20SISO	LCH	0.179	-44.653	-29.82	PASS
11N20SISO	нсн	0.814	-38.887	-29.19	PASS

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Page 22 of 64

Test Graph

Page 23 of 64

Report No. : EED32K00127803 Page 24 of 64

Appendix D): RF Conducted Spurious Emissions

Result Table

7,710			3.36	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	2.093	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	2.338	<limit< td=""><td>PASS</td></limit<>	PASS
11B	нсн	2.972	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-0.818	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	0.036	<limit< td=""><td>PASS</td></limit<>	PASS
11G	нсн	-0.019	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-0.422	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	0.133	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	0.894	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32K00127803 Page 25 of 64

Test Graph

Report No. : EED32K00127803 Page 27 of 64

Report No.: EED32K00127803 Page 31 of 64

Appendix E): Power Spectral Density

Result Table

Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-13.006	8	PASS
11B	MCH	-11.274	8	PASS
11B	HCH	-10.762	8	PASS
11G	LCH	-14.172	8	PASS
11G	MCH	-13.892	8	PASS
11G	HCH	-13.377	8	PASS
11N20SISO	LCH	-14.543	8	PASS
11N20SISO	MCH	-14.256	8	PASS
11N20SISO	HCH	-13.621	8	PASS

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 32 of 64

Page 33 of 64

Page 34 of 64

Report No.: EED32K00127803 Page 35 of 64

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is ceramic antenna and no consideration of replacement. The best case gain of the antenna is 1.8dBi.

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz
	1)The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground

- reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fraguency range (MUz)	Limit (d	dΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

NOTE: The lower limit is applicable at the transition frequency

Page 37 of 64

No.	Freq.		ding_Le dBuV)	evel	Correct Factor	M	leasurem (dBuV)		Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	49.67	47.11	30.47	9.80	59.47	56.91	40.27	65.99	55.99	-9.08	-15.72	Р	
2	0.1780	43.84	41.23	25.22	9.76	53.60	50.99	34.98	64.57	54.57	-13.58	-19.59	Р	
3	0.2060	41.68	39.52	22.58	9.73	51.41	49.25	32.31	63.36	53.36	-14.11	-21.05	Р	
4	0.3100	32.23	30.06	18.35	9.60	41.83	39.66	27.95	59.97	49.97	-20.31	-22.02	Р	
5	2.8140	26.07	23.15	12.37	9.77	35.84	32.92	22.14	56.00	46.00	-23.08	-23.86	Р	
6	7.5300	26.26	23.53	12.79	9.50	35.76	33.03	22.29	60.00	50.00	-26.97	-27.71	Р	

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	49.02	46.31	30.05	9.79	58.81	56.10	39.84	65.78	55.78	-9.68	-15.94	Р	
2	0.1780	45.23	42.58	26.68	9.76	54.99	52.34	36.44	64.57	54.57	-12.23	-18.13	Р	
3	0.2060	41.54	38.49	17.94	9.73	51.27	48.22	27.67	63.36	53.36	-15.14	-25.69	Р	
4	0.3100	31.26	28.73	18.80	9.60	40.86	38.33	28.40	59.97	49.97	-21.64	-21.57	Р	
5	2.9260	25.77	22.86	10.06	9.79	35.56	32.65	19.85	56.00	46.00	-23.35	-26.15	Р	
6	8.0780	23.84	20.94	9.53	9.48	33.32	30.42	19.01	60.00	50.00	-29.58	-30.99	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 2112 40115	Peak	1MHz	3MHz	Peak	105
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedure a. The EUT was placed of at a 3 meter semi-aneous determine the position b. The EUT was set 3 me was mounted on the too c. The antenna height is determine the maximular polarizations of the antenna was tuned was turned from 0 degular test-receiver systems.	re as below: In the top of a rote choic camber. The of the highest race ters away from the pof a variable-he waried from one removalue of the fied enna are set to mission, the EUT to heights from rees to 360 degreem was set to Pear	ating table e table wa diation. he interfere eight antermeter to foold strength make the mwas arran 1 meter to ees to find	e 0.8 meters rotated 3 ence-receinna tower. ur meters n. Both horneasurement ged to its value of the maxim	rs above the gas above the grant and vent. worst case are and the rotate and reading.	to , which ound t ertical and the
	f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest	end of the restrict opliance. Also me rum analyzer plot	easure any	emissions	s in the restri	
	f. Place a marker at the of frequency to show conbands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an	end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table west channel, the ments are perford found the X axi	easure any t. Repeat f change fr table 0.8 e is 1.5 me e Highest med in X, is positioni	or each portion of each portion Semi- meter to 1 eter). channel Y, Z axis p	Anechoic Ch .5 meter(Abo	ambe ove
imit:	f. Place a marker at the of frequency to show conbands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an j. Repeat above procedure.	end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table west channel, the ments are perford found the X axines until all frequents	easure any t. Repeat f change fr table 0.8 e is 1.5 me e Highest med in X, is positioni	remissions for each por com Semi- meter to 1 eter). channel Y, Z axis p ng which in	Anechoic Ch. 5 meter(About is worse cases complete.	ambe ove
imit:	f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedure. Frequency	end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table west channel, the ments are perform found the X axi res until all frequent (dBµV/r	easure any t. Repeat f , change fr table 0.8 e is 1.5 me e Highest med in X, is positioni encies me	r emissions for each portion Semi-meter to 1 eter). channel Y, Z axis programmed water to the channel of the ch	Anechoic Ch .5 meter(Abo positioning for it is worse cas as complete.	ambe ove
imit:	f. Place a marker at the of frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the loi. The radiation measure Transmitting mode, an j. Repeat above procedure Sommer Somm	end of the restrict apliance. Also me rum analyzer plot channel ure as below: ye is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axis res until all frequence. Limit (dBµV/r 40.0)	easure any t. Repeat f change fr table 0.8 e is 1.5 me e Highest med in X, is positioni encies me m @3m)	remissions for each portion Semi-meter to 1 eter). channel Y, Z axis programmed was red was Rer Quasi-pe	Anechoic Ch. 5 meter (About 15	ambe ove
imit:	f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedure. Some state of the second to fully Anechoic Chamman 18GHz the distance is how to fully Anechoic Chamman 18GHz the EUT in the low it. The radiation measure that Transmitting mode, and journal second in the second seco	end of the restrict apliance. Also me rum analyzer plot channel wre as below: The is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axion res until all frequences. Limit (dBµV/r 40.0 43.5	change from table 0.8 e is 1.5 med in X, is positioning encies med m @3m)	remissions for each portion Semi-meter to 1 eter). channel Y, Z axis programmed was red was re	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete. mark eak Value	ambe ove
imit:	f. Place a marker at the of frequency to show conbands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedured Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	end of the restrict apliance. Also me rum analyzer plot channel wre as below: If it is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axion resuntil all frequest channel (dBµV/r) 40.0 43.5 46.0	easure any t. Repeat f change from table 0.8 e is 1.5 me e Highest med in X, is positioni iencies me m @3m)	remissions for each por each each each each each each each each	Anechoic Ch. 5 meter (Abordoning for tis worse cases complete. mark eak Value eak Value eak Value	ambe ove
Limit:	f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedure. Some state of the second to fully Anechoic Chamman 18GHz the distance is how to fully Anechoic Chamman 18GHz the EUT in the low it. The radiation measure that Transmitting mode, and journal second in the second seco	end of the restrict apliance. Also me rum analyzer plot channel wre as below: The is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axion res until all frequences. Limit (dBµV/r 40.0 43.5	easure any t. Repeat f change fr table 0.8 e is 1.5 me e Highest med in X, is positioni encies me m @3m)	remissions for each por each p	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete. mark eak Value	ambe ove

Page 40 of 64

Test plot as follows:

Worse case mode:	802.11b (11Mbps)		(20)
Frequency: 2412MHz	Test channel: Lowest P	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

	Freq		Cable Loss					Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 2 pp								Horizontal Horizontal	

Page	41	of 64
· ugc		0.0.

Worse case mode:	802.11b (11Mbps)	(2)	(55)
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

60.63 74.00 -13.37 Vertical

99.41 74.00 25.41 Vertical

Worse case mode:	802.11b (11Mbps)		
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

25.03

63.75

3.07

3.08

2390,000

2 pp 2413.072

32.53

32.58

Page	42	of	64

Worse case mode:	802.11b (11Mbps)	(41)	(20)
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:		802.11b (11Mbps)		
	Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Page	13	٥f	61
raye	40	ΟI	U -1

Worse case mode:	802.11b (11Mbps)	(6,2)	(62)
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Worse case mode:	802.11g (6Mbps)	(41)	(25)
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

	Freq		Cable Loss					Pol/Phase	Remark	
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1 2 pp								Horizontal Horizontal	_	

Worse case mode:	802.11g (6Mbps)	(52)				
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak			

Worse case mode:	802.11g (6Mbps)			
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average	

Page	46	of 64	

Worse case mode:	802.11g (6Mbps)	s)				
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak			

Worse case mode:	802.11g (6Mbps)			
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average	

Freq					Limit Line		Pol/Phase	Remark
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
							Horizontal Horizontal	

Page	47	of	64

Worse case mode:	802.11g (6Mbps)	(8.5)	(25)
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11g (6Mbps)				
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Average		

Page 48 of 64

Worse case mode:	802.11n(HT20) (6.5Mbps)				
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak		

Worse case mode:	802.11n(HT20) (6.5Mbps)				
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average		

Page 49 of 64

Worse case mode:	802.11n(HT20) (6.5Mbp	s)	(25)
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

	Freq					Limit Line		Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
_								Vertical Vertical	

Worse case mode:	802.11n(HT20) (6.5Mbps)			
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average	

	Freq					Limit Line		Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 2 pp								Vertical Vertical	Average Average

Page 50 of 64

Worse case mode:	802.11n(HT20) (6.5Mbps)				
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak		

Worse case mode:	802.11n(HT20) (6.5Mbps)			
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark:Average	

Page 51 of 64

Worse case mode:	ps)	(653)	
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

	Worse case mode:	802.11n(HT20) (6.5Mb)	os)	
1	Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Page 52 of 64

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:

	1.07					
Frequency	Detector	RBW	VBW	Remark		
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak		
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average		
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak		
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average		
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak		
Above 1CUz	Peak	1MHz	3MHz	Peak		
Above 1GHz	Peak	1MHz	10Hz	Average		

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

ı	im	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)			
Test mode:	Transmitting	Vertical	

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	43.202	14.08	0.07	15.97	30.12	40.00	-9.88	Vertical	QP
2	62.871	12.28	0.22	19.69	32.19	40.00	-7.81	Vertical	QP
3 рр	193.773	11.20	1.05	26.95	39.20	43.50	-4.30	Vertical	QP
4	242.525	12.45	1.31	21.45	35.21	46.00	-10.79	Vertical	QP
5	541.373	17.65	1.54	15.43	34.62	46.00	-11.38	Vertical	QP
6	962.162	21.95	2.14	15.34	39.43	54.00	-14.57	Vertical	QP

18.83

33.07 46.00 -12.93 Horizontal QP

9.44 33.62 46.00 -12.38 Horizontal QP

277.094 13.05

21.71

875.247

Page 56 of 64

Transmitter Emission above 1GHz

Test mode:	802.11b(11	Mbps)	Test F	requency:	2412MHz	Remark: Po	eak	(23)	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1267.104	30.38	1.96	44.29	48.55	36.60	74.00	-37.40	Pass	Horizontal
1533.648	30.93	2.33	43.96	48.73	38.03	74.00	-35.97	Pass	Horizontal
4824.000	34.73	6.02	44.60	47.21	43.36	74.00	-30.64	Pass	Horizontal
5880.782	35.81	7.32	44.51	50.26	48.88	74.00	-25.12	Pass	Horizontal
7236.000	36.42	6.94	44.80	46.15	44.71	74.00	-29.29	Pass	Horizontal
9648.000	37.93	7.01	45.57	46.32	45.69	74.00	-28.31	Pass	Horizontal
1232.117	30.30	1.91	44.34	48.21	36.08	74.00	-37.92	Pass	Vertical
1617.862	31.09	2.43	43.87	47.91	37.56	74.00	-36.44	Pass	Vertical
4824.000	34.73	6.02	44.60	48.60	44.75	74.00	-29.25	Pass	Vertical
6094.137	35.95	7.41	44.51	48.65	47.50	74.00	-26.50	Pass	Vertical
7236.000	36.42	6.94	44.80	46.40	44.96	74.00	-29.04	Pass	Vertical
9648.000	37.93	7.01	45.57	46.47	45.84	74.00	-28.16	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1127.091	30.05	1.74	44.49	48.77	36.07	74.00	-37.93	Pass	Horizontal
1573.189	31.01	2.38	43.92	47.90	37.37	74.00	-36.63	Pass	Horizontal
4874.000	34.84	6.12	44.60	47.63	43.99	74.00	-30.01	Pass	Horizontal
6267.190	36.04	7.37	44.53	48.48	47.36	74.00	-26.64	Pass	Horizontal
7311.000	36.43	6.86	44.86	48.20	46.63	74.00	-27.37	Pass	Horizontal
9748.000	38.03	7.10	45.55	46.65	46.23	74.00	-27.77	Pass	Horizontal
1263.883	30.38	1.96	44.29	48.54	36.59	74.00	-37.41	Pass	Vertical
1585.248	31.03	2.39	43.90	48.32	37.84	74.00	-36.16	Pass	Vertical
4874.000	34.84	6.12	44.60	47.38	43.74	74.00	-30.26	Pass	Vertical
6428.771	36.12	7.33	44.54	48.68	47.59	74.00	-26.41	Pass	Vertical
7311.000	36.43	6.86	44.86	48.01	46.44	74.00	-27.56	Pass	Vertical
9748.000	38.03	7.10	45.55	45.84	45.42	74.00	-28.58	Pass	Vertical

								/	
Test mode:	802.11b(11	Mbps)	Test Freq	Test Frequency: 2462MHz			eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1251.079	30.35	1.94	44.31	48.05	36.03	74.00	-37.97	Pass	Horizontal
1613.749	31.08	2.43	43.87	47.60	37.24	74.00	-36.76	Pass	Horizontal
4924.000	34.94	6.22	44.60	47.22	43.78	74.00	-30.22	Pass	Horizontal
5821.207	35.77	7.26	44.52	48.97	47.48	74.00	-26.52	Pass	Horizontal
7386.000	36.44	6.78	44.92	47.74	46.04	74.00	-27.96	Pass	Horizontal
9848.000	38.14	7.19	45.53	46.23	46.03	74.00	-27.97	Pass	Horizontal
1296.469	30.45	2.01	44.25	48.51	36.72	74.00	-37.28	Pass	Vertical
1537.557	30.94	2.34	43.96	47.84	37.16	74.00	-36.84	Pass	Vertical
4924.000	34.94	6.22	44.60	47.74	44.30	74.00	-29.70	Pass	Vertical
6094.137	35.95	7.41	44.51	48.75	47.60	74.00	-26.40	Pass	Vertical
7386.000	36.44	6.78	44.92	46.87	45.17	74.00	-28.83	Pass	Vertical
9848.000	38.14	7.19	45.53	47.06	46.86	74.00	-27.14	Pass	Vertical

Test mode:	802.11g(6N	1bps)	Test Freq	Test Frequency: 2412MHz			Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1316.422	30.49	2.04	44.22	48.08	36.39	74.00	-37.61	Pass	Horizontal	
1621.985	31.10	2.44	43.86	47.74	37.42	74.00	-36.58	Pass	Horizontal	
4824.000	34.73	6.02	44.60	48.03	44.18	74.00	-29.82	Pass	Horizontal	
6094.137	35.95	7.41	44.51	48.76	47.61	74.00	-26.39	Pass	Horizontal	
7236.000	36.42	6.94	44.80	47.12	45.68	74.00	-28.32	Pass	Horizontal	
9648.000	37.93	7.01	45.57	46.38	45.75	74.00	-28.25	Pass	Horizontal	
1340.089	30.54	2.07	44.19	47.43	35.85	74.00	-38.15	Pass	Vertical	
1537.557	30.94	2.34	43.96	47.47	36.79	74.00	-37.21	Pass	Vertical	
4824.000	34.73	6.02	44.60	47.51	43.66	74.00	-30.34	Pass	Vertical	
6445.156	36.13	7.32	44.55	48.64	47.54	74.00	-26.46	Pass	Vertical	
7236.000	36.42	6.94	44.80	47.04	45.60	74.00	-28.40	Pass	Vertical	
9648.000	37.93	7.01	45.57	46.49	45.86	74.00	-28.14	Pass	Vertical	

			1 2						
Test mode:	802.11g(6N	1bps)	Test Fred	Test Frequency: 2437MHz			eak	(35)	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1286.606	30.43	1.99	44.26	48.64	36.80	74.00	-37.20	Pass	Horizontal
1518.111	30.90	2.31	43.98	47.59	36.82	74.00	-37.18	Pass	Horizontal
4874.000	34.84	6.12	44.60	47.32	43.68	74.00	-30.32	Pass	Horizontal
6094.137	35.95	7.41	44.51	48.60	47.45	74.00	-26.55	Pass	Horizontal
7311.000	36.43	6.86	44.86	46.92	45.35	74.00	-28.65	Pass	Horizontal
9748.000	38.03	7.10	45.55	46.07	45.65	74.00	-28.35	Pass	Horizontal
1267.104	30.38	1.96	44.29	48.15	36.20	74.00	-37.80	Pass	Vertical
1634.419	31.12	2.45	43.85	47.84	37.56	74.00	-36.44	Pass	Vertical
4874.000	34.84	6.12	44.60	48.11	44.47	74.00	-29.53	Pass	Vertical
5836.044	35.78	7.28	44.52	49.07	47.61	74.00	-26.39	Pass	Vertical
7311.000	36.43	6.86	44.86	47.38	45.81	74.00	-28.19	Pass	Vertical
9748.000	38.03	7.10	45.55	46.23	45.81	74.00	-28.19	Pass	Vertical

Test mode:	802.11g(6N	1bps)	Test Freq	Test Frequency: 2462MHz			Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1273.572	30.40	1.97	44.28	47.78	35.87	74.00	-38.13	Pass	Horizontal
1545.405	30.96	2.35	43.95	48.42	37.78	74.00	-36.22	Pass	Horizontal
4924.000	34.94	6.22	44.60	47.50	44.06	74.00	-29.94	Pass	Horizontal
6363.645	36.09	7.34	44.54	48.76	47.65	74.00	-26.35	Pass	Horizontal
7386.000	36.44	6.78	44.92	47.44	45.74	74.00	-28.26	Pass	Horizontal
9848.000	38.14	7.19	45.53	46.67	46.47	74.00	-27.53	Pass	Horizontal
1388.708	30.65	2.14	44.13	48.11	36.77	74.00	-37.23	Pass	Vertical
1800.416	31.40	2.64	43.68	47.69	38.05	74.00	-35.95	Pass	Vertical
4924.000	34.94	6.22	44.60	47.07	43.63	74.00	-30.37	Pass	Vertical
6235.364	36.02	7.38	44.52	48.31	47.19	74.00	-26.81	Pass	Vertical
7386.000	36.44	6.78	44.92	47.35	45.65	74.00	-28.35	Pass	Vertical
9848.000	38.14	7.19	45.53	46.53	46.33	74.00	-27.67	Pass	Vertical

Test mode: 802.11n(H		T20)(6.5Mbps) Test Fre			juency: 2412MHz Re		Rema	ark: Peak	(12)	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1238.405	30.32	1.92	44.33	48.19	36.10	74.00		-37.90	Pass	Horizontal
1549.344	30.96	2.35	43.94	48.39	37.76	74.00		-36.24	Pass	Horizontal
4824.000	34.73	6.02	44.60	47.94	44.09	74.00		-29.91	Pass	Horizontal
5865.832	35.80	7.31	44.51	49.49	48.09	74.00		-25.91	Pass	Horizontal
7236.000	36.42	6.94	44.80	46.49	45.05	74.00		-28.95	Pass	Horizontal
9648.000	37.93	7.01	45.57	46.30	45.67	74.00		-28.33	Pass	Horizontal
1299.773	30.46	2.01	44.25	49.01	37.23	74.00		-36.77	Pass	Vertical
1597.401	31.05	2.41	43.89	48.03	37.60	74.00		-36.40	Pass	Vertical
4824.000	34.73	6.02	44.60	48.20	44.35	74.00		-29.65	Pass	Vertical
5490.177	35.51	6.92	44.55	49.68	47.56	74.00		-26.44	Pass	Vertical
7236.000	36.42	6.94	44.80	46.98	45.54	74.00		-28.46	Pass	Vertical
9648.000	37.93	7.01	45.57	46.41	45.78	74.00		-28.22	Pass	Vertical

Test mode: 802.11n(HT20)(6.5Mbps) Test Frequency: 2437MHz Remark: Peak									
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1392.247	30.65	2.14	44.13	47.80	36.46	74.00	-37.54	Pass	Horizontal
1828.125	31.44	2.67	43.66	48.15	38.60	74.00	-35.40	Pass	Horizontal
4874.000	34.84	6.12	44.60	48.62	44.98	74.00	-29.02	Pass	Horizontal
6094.137	35.95	7.41	44.51	48.58	47.43	74.00	-26.57	Pass	Horizontal
7311.000	36.43	6.86	44.86	47.70	46.13	74.00	-27.87	Pass	Horizontal
9748.000	38.03	7.10	45.55	45.87	45.45	74.00	-28.55	Pass	Horizontal
1293.173	30.44	2.00	44.25	48.53	36.72	74.00	-37.28	Pass	Vertical
1764.123	31.34	2.60	43.72	48.23	38.45	74.00	-35.55	Pass	Vertical
4874.000	34.84	6.12	44.60	47.64	44.00	74.00	-30.00	Pass	Vertical
6047.776	35.93	7.43	44.51	49.14	47.99	74.00	-26.01	Pass	Vertical
7311.000	36.43	6.86	44.86	47.41	45.84	74.00	-28.16	Pass	Vertical
9748.000	38.03	7.10	45.55	46.48	46.06	74.00	-27.94	Pass	Vertical

Test mode: 802.11n(HT20)(6.5Mbps) Test Frequency: 2462MHz Remark: Peak										
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1138.626	30.07	1.76	44.48	48.20	35.55	74.00		-38.45	Pass	Horizontal
1541.476	30.95	2.34	43.95	48.51	37.85	74.00		-36.15	Pass	Horizontal
4924.000	34.94	6.22	44.60	47.74	44.30	74.00		-29.70	Pass	Horizontal
6078.644	35.94	7.42	44.51	49.40	48.25	74.00		-25.75	Pass	Horizontal
7386.000	36.44	6.78	44.92	46.74	45.04	74.00		-28.96	Pass	Horizontal
9848.000	38.14	7.19	45.53	46.71	46.51	74.00		-27.49	Pass	Horizontal
1303.086	30.46	2.02	44.24	48.62	36.86	74.00		-37.14	Pass	Vertical
1795.839	31.39	2.63	43.69	47.78	38.11	74.00		-35.89	Pass	Vertical
4924.000	34.94	6.22	44.60	47.45	44.01	74.00		-29.99	Pass	Vertical
6109.670	35.96	7.41	44.51	48.83	47.69	74.00		-26.31	Pass	Vertical
7386.000	36.44	6.78	44.92	47.59	45.89	74.00		-28.11	Pass	Vertical
9848.000	38.14	7.19	45.53	46.86	46.66	74.	00	-27.34	Pass	Vertical

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: Yanshee

Radiated spurious emission Test Setup-1(9K-30M)

Radiated spurious emission Test Setup-2(30M-1G)

Report No.: EED32K00127803 Page 62 of 64

Radiated spurious emission Test Setup-3(1G-18G)

Radiated spurious emission Test Setup-4(18G-40G)

Page 63 of 64

Page 64 of 64

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32K00127801 for EUT external and internal photos.6

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

