Основы информационных технологий

Глава 7 (продолжение). Проектирование реляционных баз данных

§ 5. Этапы проектирования БД

А.Е. Анисимов

§ 5. Этапы проектирования БД

В целях формирования эффективной структуры реляционной БД проводят следующие этапы процедуры проектирования:

- 1. Инфологическое моделирование: формализованное описание предметной области, выполненное в терминах выбранной семантической модели, например **ER-диаграммы**.
- 2. Даталогическое проектирование описание логической структуры (схемы) БД в выбранной модели данных.
- 3. Физическое проектирование создание схемы базы данных для конкретной СУБД.

Физическое проектирование

Инфологическая модель (ИлМ) -

формализованное описание предметной области: объектов, сущностей, процессов, взаимосвязей. Используются разные методики и стандарты, но в основе большинства лежит методика «Сущность - связь» (ЕR-диаграммы).

Строится на основе изучения и анализа предметной области.

Другие подходы:

- •Язык Uniform Modeling Language (UML)
- •Методология IDEF1x

Даталогическая модель (ДлМ)

отражает логические взаимосвязи между элементами данных безотносительно их содержания и физической организации.

Разрабатывается на основе ИлМ.

§ 5. Этапы проектирования БД

Физическая модель (ФМ)

описание структуры БД, выполненное с учетом специфики конкретной СУБД.

Модель «Сущность –связь» была разработана Питером Ченом в 1976 году. Лежит в основе большинства современных методологий семантического (концептуального) моделирования сложных систем.

Сущность — Entity Связь — Relationship

ER model

<u>Опр</u>. Сущность – абстрактное представление о совокупности однотипных объектов предметной

области.

Студента
КодСтудента
Фамилия
ДатаРождения
Дом. адрес
Телефон

Предмет
КодПредмета
Название
Кол. часов
Вид отчетности

<u>Опр</u>. Экземпляр сущности — это конкретный представитель данной сущности.

<u>Опр</u>. <u>Атрибут сущности (свойство)</u> – это именованная характеристика, присущая всем экземплярам сущности.

Пример. Сущность – «Студент». Экземпляры сущности – Иванов, Петров, Сидорова. Атрибуты сущности – Фамилия, ДатаРождения, Пол, Домашний Адрес.

Условное обозначение сущности:

Примеры

Типы свойств:

- 1. **Единичные** принимающие одно значение в каждый момент времени
- **2. Множественные** могут принимать несколько значений одновременно.

Типы свойств:

- 3. Простые имеют неделимое значение
- 4. **Составные** значение может состоять из составных частей.

Вернемся к примерам

<u>Опр</u>. Связь – некоторая ассоциация между объектами сущностей.

Условное обозначение для связи:

Типы связей:

1. Один-к-одному (1:1)

2. Один-ко-многим (1:М)

3. Много-ко-многим (М:М)

Связь Один-к-одному

- каждому экземпляру сущности E1 соответствует один экземпляр сущности E2 и наоборот.

Связь Один-ко-многим

- каждому экземпляру сущности E1 может соответствовать много экземпляров сущности E2, но каждому экземпляру E2 – только один экземпляр E1.

Связь Много-ко-многим

- каждому экземпляру сущности E1 может соответствовать много экземпляров сущности E2 и наоборот

Примеры

1. В группе учатся много студентов, каждый студент учится в одной группе

2. Работник работает в одном отделе, в отделе много работников. Работник может быть начальником одного отдела.

3. Каждый автор может написать много книг, каждая книга может быть написана несколькими авторами.

Другая характеристика связи -

Модальность, означающая обязательность участия каждого экземпляра сущности в связи:

- **обязательная** модальность («должен») если каждый экземпляр сущности участвует в связи
- **необязательная** модальность («может») если могут существовать экземпляры сущности, не участвующие в связи.

Вернемся к нашим Примерам

1. В каждой группе учатся студенты, каждый студент учится в группе

2. Работник может работать в отделе, в отделе должны работать работники. В отделе должен быть начальник. Работник может быть начальником.

3. Каждый автор должен написать книги, каждая книга может быть написана автором.

Проверочная фраза для связи

Каждый
$$E1 \frac{\partial o n x e h}{\partial h o x e m} R \frac{\partial d u h}{\partial h o r o} E2$$

- Связь «читается» слева направо и справа налево
- Необходимо подобрать нужные формы русских слов и предлоги

Проверим связи:

В каждой группе должны учиться много студентов.

Каждый студент должен учиться в одной группе.

В каждом отделе работают много работников.

Каждый работник может работать в одном отделе.

В каждом отделе должен быть начальником один работник.

Каждый работник может быть начальником одного отдела.

Таким образом, последовательность построения инфологической модели состоит из:

- 1. Выделение сущностей
- 2. Выделение свойств сущностей и определение их типов (единичное/множественное, простое/составное)
- 3. Выделение связей между сущностями, определение их типа (1:1, 1:M, M:M) и модальности (обязат./необязат.)

<u>Задача 1.</u>

По словесному описанию предметной области построить ее инфологическую модель (ER-диаграмму):

Рыбные хозяйства. Имеется некоторое количество рыбоводческих хозяйств (Название, ИНН, Кол-во Работников, Нас. пункты). За каждым из них закреплены от одного до нескольких прудов (НазваниеП, Площадь), причем каждый пруд закреплен за одним рыбхозом. В прудах разводят различные виды рыбы (НазваниеВР, МаксВес). Вид рыбы может разводиться в разных прудах, в каждом пруду разводят один или более видов рыбы.

Инфологическая модель «Рыбные хозяйства»

- <u>Опр</u>. <u>Обобщенная сущность</u> отражает наличие связи «род-вид» между объектами предметной области.
- Родовая (обобщенная) сущность обладает общими для всех видов свойствами, называемыми «родовыми». Кроме этого, каждый вид может добавлять собственные «видовые» свойства.

Пример.

- 1. Сущности Ученик, Студент, Аспирант можно объединить в обобщенную сущность Обучающийся.
- 2. Сущность Автомобиль, Самолет, Корабль, Поезд в сущность Транспортное Средство.

Условное обозначение

Задача 2.

По словесному описанию предметной области построить ее инфологическую модель (ER-диаграмму):

ВУЗ. В некотором вузе имеются факультеты (Название Φ , КраткоеНазвание, НомераКорпусов). Имеются кафедры (НазваниеК, Кол-во Преподавателей). В состав каждого факультета входят кафедры, кафедра может входить в состав не более одного факультета. В вузе есть личности (ФИО, Пол, ДатаРожд) двух категорий – преподаватели (УченаяСтепень, Должности) и студенты (Курс, Группа). Каждый студент учится на одном из факультетов. Каждый преподаватель может работать на одной или нескольких кафедрах. Каждый факультет возглавляет декан из числа преподавателей.

Решение задачи:

1. Выделяем сущности:

- Факультет
- Кафедра
- Личность (Личности бывают Студентами или Преподавателями).
- 2. Определяем свойства сущностей.
- 3. Определяем связи между сущностями:
 - Кафедра входит в состав Факультета
 - Студент учится на Факультете
 - Преподаватель работает на Кафедре
 - Преподаватель является деканом Факультета

§ 7. Даталогическое проектирование базы данных

• Цель даталогического проектирования реляционной базы данных — построение описания логической структуры БД (концептуальной схемы) в виде совокупности схем реляционных таблиц.

- Схемой реляционной таблицы называется описание ее имени и перечень полей
- ИмяТаблицы (<u>Код</u>, Поле1, Поле2, Поле3...)
- Поля, входящие в первичный ключ подчеркиваются

ИмяТаблицы								
<u>Код</u> Поле1 Поле2 Поле3								

Опр. Внешним ключом реляционной таблицы называется такое его неключевое поле (набор полей), которое является первичным ключом другой таблицы и используется для связывания записей этих таблиц.

Опр. Миграцией первичного ключа называется включение в таблицу внешнего ключа, который является первичным ключом другой таблицы.

§ 7. Даталогическое проектирование базы данных

Пример.

- Для построения даталогической модели (ДлМ) реляционной базы данных по инфологической модели (ИлМ) предметной области, построенной в виде схемы «Сущность-связь» (ЕR-модели), можно использовать следующий алгоритм:
- Каждая сущность, каждый атрибут (свойство) сущности и каждая связь ER-модели преобразуются в элементы ДлМ в соответствии со следующими правилами (см. таблицу).

Правила преобразования ИлМ в ДлМ РБД

	Правила преобразования ИлМ в ДлМ (1 стр)						
Nº	Сущ./свойство	ДлМ					
A	Простая сущность с единичными свойствами	C1 C2	R(<u>K</u> , C1, C2)				
В	Сущность с множествен ным свойством		R(<u>K</u> , C1) C2(<u>K</u> , <u>C2</u>)				

	Правила преобразования ИлМ в ДлМ (2 стр)						
Nº	Сущ./свойство	ИлМ	ДлМ				
С	Сущность с составным свойством	R C1 C3 C4	R(<u>K</u> , C1, C3, C4)				

	Правила преобразования ИлМ в ДлМ (5 стр)						
Nº	№ Связь ИлМ Д						
3	Связь 1:1 Необ:Необ	$R1$ $\stackrel{S}{\longleftrightarrow}$ $R2$	R1(<u>K1</u> , C1, C2) R2(<u>K2</u> , C3, C4) S(<u>K1, K2</u>)				

	Правила преобразования ИлМ в ДлМ (6 стр)						
Nº	Связь	ДлМ					
4	Связь 1:М :Об	R1 R2	R1(<u>K1</u> , C1, C2) R2(<u>K2</u> , C3, C4, K1)				
5	Связь 1:М :Необ	R1 R2	R1(<u>K1</u> , C1, C2) R2(<u>K2</u> , C3, C4) S (<u>K1</u> , <u>K2</u>)				

	Правила преобразования ИлМ в ДлМ (7 стр)					
Nº	Связь	ИлМ	ДлМ			
6	Связь М:М :	R1 R2	R1(<u>K1</u> , C1, C2) R2(<u>K2</u> , C3, C4) S(<u>K1</u> , <u>K2</u>)			

Вернемся к нашим примерам.

Задание: построить даталогическую модель (ДлМ) реляционной базы данных (РБД) по инфологической модели (ИлМ) предметной области:

- Рыбные хозяйства
- By3

Инфологическая модель «Рыбные хозяйства»

Даталогическая модель РБД «Рыбные хозяйства»

Реляционные таблицы:	Правило:
РыбныеХозяйства (КодРХ, Название, ИНН, Кол-воРаботников)	A
НаселПункты (<u>КодРХ</u> , <u>НаселПункт</u>)	Б
Пруды (<u>КодП</u> , НазваниеП, Площадь, КодРХ)	A, 4
ВидыРыбы (КодВР, НазваниеВР, МаксВес)	A
Водятся (КодП, КодВР)	6

Примечание. Имена таблиц обозначены **полужирным** шрифтом, первичные ключи <u>подчеркнуты</u>

Схема данных РБД «Рыбные хозяйства» в MS Access: физическая модель

Пример заполнения таблиц РБД «Рыбные хозяйства»

ſ.	В РыбХозяйства								
	4		КодРХ	Ŧ	Название	Ŧ	ИНН	Ŧ	Кол-воРабс →
		+		1	Восточный		1833454567		250
		+		2	Бабинский		1848123456		185

] [Пруды				
	КодП →	НазваниеП →	Площадь 🕶	КодРХ	¥
+	1	Молдаванский	5000		2
+	2	Ижевский	25000		1
+	3	Мартьяновски	4500		2

⊞ ВидыРыбы						
	КодВР →	НазваниеВF →	МаксВес -			
+	1	Карп	1500			
+	2	Стерлядь	1000			
+	3	Осетр	3000			

ДлМ РБД «Вуз»

Реляционные таблицы:	Правило:
Факультеты (<u>КодФ</u> , НазваниеФ, КрНазвание, КодП)	A, 2
НомераКорпусов (КодФ, НомерКорпуса)	В
Кафедры (<u>КодК</u> , НазваниеК, Кол-воПрепод)	A
Преподаватели (<u>КодП</u> , Ф, И, О, Пол, ДатаРож, УчСтепень)	D, C
Студенты (КодС, Ф, И, О, Пол, ДатаРож, Курс, Группа, КодФ)	D, C, 4
Должности (<u>КодП, Должность</u>)	В
ВходятВСостав (КодФ, КодК)	5
Работаю т (<u>КодП, КодК</u>)	6

Решение задач

Задача 3.

По словесному описанию предметной области построить ее инфологическую модель (ER-диаграмму) и даталогическую модель базы данных:

Библиотека. В библиотеке работают сотрудники (ФИО, Таб№, ДатаР) двух категорий – библиотекари (Абонемент, Образование) и библиографы (Стаж, Иностр. языки). Есть фонд книг (Название, Автор, ГодИзд, Изд-во) . Каждую книгу могут написать несколько авторов. Каждая книга может быть представлена одним или более экземплярами (Инв№, Цена). Библиотеку посещают читатели (ФИО, ДатаР, ДомАдрес). Ведется выдача книг читателям (ДатаВыдачи, Срок), в каждой выдаче участвует один читатель, один библиотекарь, одна или несколько экземпляров выдаваемых книг.

§ 6. Инфологическое моделирование. Сущность-связь

Задача 4.

По словесному описанию предметной области построить ее инфологическую модель (ER-диаграмму) и даталогическую модель базы данных:

В Интернет-форуме общаются пользователи (Имя, пароль, дата регистрации, e-mail) двух категорий — администраторы (уровень прав) и обычные (кол-во сообщений). В форуме имеется много тем (название темы, дата создания), каждую тему создал один из пользователей. Каждый пользователь может создавать в любой теме сообщение (дата сообщения, номер, текст). Каждое сообщение находится в одной из тем.

§ 6. Инфологическое моделирование. Сущность-связь

По словесному описанию предметной области построить ее инфологическую модель (ER-диаграмму) и даталогическую модель базы данных:

Социальная сеть. Пользователи социальной сети HelloWorld при регистрации вводят о себе следующие данные: фамилия, имя, дата рождения, e-mail, логин, пароль. Пароль может со временем изменяться, но нужно хранить все ранее заданные пароли. У каждого пользователя ровно одна страница (URL, стиль). Любой пользователь может дружить с любым другим пользователем, при этом фиксируется дата начала дружбы и степень дружбы (знакомый, родственник, одноклассник, коллега, мимо шёл). Дружба может также содержать факт подписки на новости, а может и не содержать. Каждый пользователь может создавать страницы обсуждения различных тем (название темы, URLстраницы). Каждый пользователь может подписываться на страницы обсуждения тем (дата подписки, степень участия (создатель/ модератор/участник)). Темы содержат черный список пользователей, которые не имеют права на них подписываться.

Задача 4а.

Задача 5.

Как будет реализован (какими таблицами) в даталогической модели реляционной БД следующий фрагмент инфологической модели предметной области:

§ 6. Инфологическое моделирование. Сущность-связь

Задача 6.

Каким будет результат применения к таблице

	СдачаГТО						
КодС	Фамилия	Школа	Подтягиван ие	Прыжок	Граната		
1	Петрыкин	29	6	180	30		
2	Зайцев	50	12	190	36		
3	Семенов	29	30	160	40		
4	Петрович	50	8	200	20		
5	Балакин	50	4	120	16		

запроса 1

SELECT Фамилия, Школа, Подтягивание, Граната

FROM СдачаГТО

WHERE ((Школа=29) AND (Подтягивание<=10) AND (Граната<35)) OR ((Школа=50) AND (Граната>=30));

запроса 2

SELECT Школа, AVG(Прыжок)

FROM СдачаГТО

WHERE Граната >= 20

GROUP ВУ Школа;

§ 6. Инфологическое моделирование. Сущность-связь

Задача 7.

Дана таблица следующей структуры

Рейтинги					
КодС	ФИО	Группа	Предмет	Баллы	Оценка
01	Аверина	604-11	Высшая математика	72	4
01	Аверина	604-11	Информатика	64	3
01	Аверина	604-11	Экономика	69	3
02	Богатырев	611-11	Информатика	89	5
02	Богатырев	611-11	Высшая математика	61	3
03	Вершинин	604-11	Информатика	43	2

Составить запрос на языке SQL по следующему заданию:

- а) Список студентов, отсортированный по группам, у которых есть предметы, количество баллов по которым более 60, но оценка не больше 3
- б) Среднее количество баллов по каждой группе.
- в)Количество студентов в каждой группе, у которых по высшей математике баллов не более 65.