DM 2 : Analyse de Fourier et géométrie

À rendre lors du cours du 23 mars.

Voici trois exercices types pour vous entraîner en en vue de l'examen.

Exercice 1.1.— (CONVERGENCE DE SÉRIES) Pour $\alpha \in \mathbb{R}$, on définit la suite $u_n = \sin\left(\frac{1}{n^{\alpha}}\right)$ pour tout $n \in \mathbb{N}^*$.

a) Calculer $\lim_{n\to+\infty} u_n$. Indication: On distinguera $\alpha \leq 0$ et $\alpha > 0$.

En déduire la divergence de $\sum_{n \in \mathbb{N}^*} u_n$ pour $\alpha \leq 0$.

- b) Établir que pour tout $x \in [0,1]$, $\frac{x}{2} \leq \sin(x) \leq x$. En déduire que pour tout $n \in \mathbb{N}$, on a $u_n \geq 0$.

 Indications: On pourra étudier les fonctions $x \mapsto \sin(x) x$ et $x \mapsto \sin(x) \frac{x}{2}$. Enfin, on pourra penser à utiliser $x = \frac{1}{n^{\alpha}}$.
- c) Déduire de l'inégalité de droite de la question b) la convergence de $\sum_{n \in \mathbb{N}^*} u_n$ pour $\alpha > 1$.

 Indication: On pourra penser à utiliser $x = \frac{1}{n^{\alpha}}$ pour tout $n \in \mathbb{N}^*$.
- d) Déduire de même de l'inégalité de gauche de la question b) la divergence de $\sum_{n\in\mathbb{N}^*} u_n$ pour $0<\alpha\leqslant 1$.

Exercice 1.2.— (SÉRIES DE FOURIER) On considère la fonction 2π -périodique $f: \mathbb{R} \to \mathbb{R}$, dont la restriction à $[0, 2\pi[$ est définie par

$$\forall t \in [0, 2\pi[, \quad f(t) = e^t.$$

- a) Dessiner le graphe de f, d'abord sur $[0, 2\pi[$ puis sur tout \mathbb{R} . La fonction f est-elle continue? \mathcal{C}^1 par morceaux?
- b) Calculer les coefficients de Fourier complexes de f.
- c) En déduire les coefficients de Fourier réels de f.
- d) Montrer que pour tout $t \neq 2k\pi$ pour $k \in \mathbb{Z}$, on a

$$f(t) = \frac{e^{2\pi} - 1}{2\pi} \sum_{n = -\infty}^{+\infty} \frac{e^{int}}{1 - in} = \frac{e^{2\pi} - 1}{2\pi} \left(1 + \sum_{n = 1}^{+\infty} \frac{2\cos(nt) - 2n\sin(nt)}{1 + n^2} \right)$$

avec convergence des séries en jeu.

- e) Justifier de la convergence des séries $\sum_{n\geqslant 1} \frac{1}{1+n^2}$ et $\sum_{n\geqslant 1} \frac{(-1)^n}{1+n^2}$ et donner la valeur de leur somme.
- f) (**Bonus**) Que fournit l'égalité de Parseval?

Exercice 1.3.— (GÉOMÉTRIE) On considère l'application

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x, y, z) & \longmapsto & \frac{1}{3}(2x - y + 2z, 2x + 2y - z, -x + 2y + 2z)). \end{array} \right.$$

- a) Montrer que f est une application linéaire et donner sa matrice M dans la base canonique de \mathbb{R}^3 .
- b) Calculer tMM et $\det(M)$.
- c) Déterminer

$$F = \left\{ (x, y, z) \in \mathbb{R}^3 : M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right\}.$$

Justifier qu'il s'agit d'un espace vectoriel, le décrire géométriquement et en donner sa dimension. Montrer que $f_1=(1,1,1)$ en constitue une base. En déduire une base orthonormée e_1 .

- d) Déterminer F^{\perp} , le décrire géométriquement et en donner sa dimension. Montrer que $e_2 = \frac{1}{\sqrt{2}}(1,-1,0), e_3 = \frac{1}{\sqrt{6}}(1,1,-2)$ sont deux vecteurs orthogonaux de F^{\perp} et que (e_1,e_2,e_3) constitue une base orthonormée de \mathbb{R}^3 .
- e) Justifier que la matrice de f dans la base (e_1, e_2, e_3) est donnée par

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

f) On considère la matrice

$$\tilde{M} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Déterminer un angle $\theta \in [0, 2\pi[$ tel que

$$\tilde{M} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

g) En déduire la nature géométrique de f.