HEURISTIC ANALYSIS

For an Adversarial Game Playing Agent for Isolation

Submitted by
Govardhan Padmanabhan
(17069496/1 | WID170715)

as part of WID3009: Artificial Intelligence Game Programming

TABLE OF CONTENTS

Synopsis	2
Custom Heuristics	3
Performance	4
Conclusion	7
Appendices	8

SYNOPSIS

Isolation is a two-player game in which alternate players move a single piece from one cell to another on a board. Whenever a piece occupies a cell, the said cell becomes unavailable to use for the rest of the game. The goal of the game is to leave the opponent with no remaining legal moves. The first player with no remaining cells loses, and the opponent wins.

In this project, each piece is similar to a knight in chess, i.e., restricted to L-shape movement, can jump over blocked or occupied cells, and can only move to open cells that are 2-rows & 1-column away or 2-columns &1-row away from their current cell.

Additionally, the agents will have a fixed time limit for searching the move and responding for each turn. If the time limit is expired, the player forfeits and the opponent wins the match.

The aim of this project is to develop an adversarial search agent to play the game "Isolation". This project report focuses on the heuristics to be used in A* Search for minimax and alpha-beta pruning.

The code in the `game_agent.py` file, specifically the `custom_score()` function is modified, and the agent is evaluated by modifying and running the `tournament.py` file

CUSTOM HEURISTICS

A basic analysis of the agent implementation is that it returns the difference between the total moves in the second game state of the current player and that of the opponent. Additionally, an "aggressiveness" factor is assumed, in the form of a 1:2 ratio (player: opponent)

The pseudocode for the heuristics is as follows:

```
For each legal moves in the current state of player do:
Get the next game state
For each legal moves in the next game state of player do:
Get the next, next game state
Add length of all legal moves to player score
End for

For each legal moves in the current state of opponent do:
Get the next game state
For each legal moves in the next game state of opponent do:
Get the next, next game state
Add length of all legal moves to opponent score
End for

End for

Return player score - 2 * opponent score
```

This custom heuristic implementation is run under the agent name of "WID170715 Implementation"

PERFORMANCE

The `tournament.py` script is used to evaluate the effectiveness of heuristic. The script measures the relative performance of players in a round-robin tournament against several other predefined agents.

Note that the performance also depends on the hardware, as faster hardware can search deeper in a short amount of time. So, when run another time, run a different time, or run on different hardware, the evaluation score can change.

Three sets of experiments have been conducted: standalone, against standard opponents, and against the custom heuristics from the rest of my teammates

Standalone

Here, we just run the custom heuristics to get a good picture of the performance.

To get more samples, the number of matches were increased to 500. The time limit remains the same at 150ms.

The resulting evaluation score of the implementation is 70.15%

The raw evaluation results can be found in Appendix A: Standalone Evaluation.

Against Standard Opponents

Here, we run the custom heuristics along with other heuristic components already provided in the project.

For faster evaluation (due to hardware constraints), the number of trials is set 10. The time limit remains the same, at 150 ms.

The heuristics and agent names used in this evaluation are:

Agent Name	Heuristic Function
ID_Improved	improved_score()
Student1	aggressive_heuristic()
Student2	defensive_heuristic()

Student3	maximizing_win_chances_heuristic()
Student4	minimizing_losing_chances_heuristic()
Student5	chances_heuristic()
Student6	weighted_chances_heuristic()
Student7	weighted_chances_heuristic_2
WID170715_Implementation	custom_score()

The evaluation comparison between the aforementioned agents and the custom heuristic discussed in this report is shown in this chart:

The raw evaluation results can be found in Appendix B: Evaluation Against Standard Opponents

Against Teammates

Here, we run the custom heuristic implementation against my teammates' heuristic implementations.

To minimize the number of variables affecting the performance, the heuristics are run on a single machine (WID170715, Govardhan's system). The number of trials are 20, and the time limit is 150 ms.

The teammates and agent names are:

Matric Number	Name	Agent Name
17195727 WID170017	Jasherr Ravindran	WID170017_Implementation
17107141 WID170021	Kuganeswaran Letshimanan	WID170021_Implementation
17129042 WID170711	Azraf Kabir	WID170711_Implementation
17069496 WID170715	Govardhan Padmanabhan	WID170715_Implementation

The evaluation comparisons between the heuristics are shown in this chart:

The raw evaluation results can be found in Appendix C: Evaluation Against Teammates.

CONCLUSION

In this report, the custom heuristic implementation is explained. Discussed is the brief description of the method and the pseudocode. The custom implementation is a two-ply lookahead score, where it returns the difference between the total number of moves in the second ply of the current player, and that of the opponent. Additionally, an aggressive factor is included, with a 2:1 ratio applied to the opponent's moves.

To evaluate the custom implementation, three sets of experiments were conducted. When run alone with 500 matches, it got a result of 70%. When run along with the included standard opponent agents, at 10 matches, the custom implementation got a final score of 76.43%. When run along with the implementations of teammates, at 20 matches, the custom implementation got a score of 76.61%.

Since the custom heuristic implementation scored high and better in all scenarios, this method is highly recommended. Additionally, these experiments were conducted on a moderately powerful system. However, if run on a more powerful hardware platform, the results could possibly easily reach high 70s or even low to mid 80s.

APPENDICES

APPENDIX A

Standalone Evaluation

This script evaluates the performance of the custom heuristic function by comparing the strength of an agent using iterative deepening (ID) search with alpha-beta pruning against the strength rating of agents using other heuristic functions. The `ID_Improved` agent provides a baseline by measuring the performance of a basic agent using Iterative Deepening and the "improved" heuristic (from lecture) on your hardware. The `Student` agent then measures the performance of Iterative Deepening and the custom heuristic against the same opponents.

Evaluating: WID170715_Implementation

Playing Matches:

Match 1:	WID170715_Implementation vs	Random	Result: 1824 to 176
Match 2:	WID170715_Implementation vs	MM_Null	Result: 1752 to 248
Match 3:	WID170715_Implementation vs	MM_Open	Result: 1029 to 971
Match 4:	WID170715_Implementation vs	MM_Improved	Result: 964 to 1036
Match 5:	WID170715_Implementation vs	AB_Null	Result: 1595 to 405
Match 6:	WID170715_Implementation vs	AB_Open	Result: 1452 to 548
Match 7:	WID170715_Implementation vs	AB_Improved	Result: 1205 to 795

Results:

WID170715_Implementation 70.15%

APPENDIX B

Evaluation Against Standard Opponents

This script evaluates the performance of the custom heuristic function by comparing the strength of an agent using iterative deepening (ID) search with alpha-beta pruning against the strength rating of agents using other heuristic functions. The `ID_Improved` agent provides a baseline by measuring the performance of a basic agent using Iterative Deepening and the "improved" heuristic (from lecture) on your hardware. The `Student` agent then measures the performance of Iterative Deepening and the custom heuristic against the same opponents.

Playing Matches:

Match 1:	ID_Improved vs	Random	Result: 35 to 5
Match 2:	ID_Improved vs	MM_Null	Result: 28 to 12
Match 3:	ID_Improved vs	MM_Open	Result: 22 to 18
Match 4:	ID_Improved vs	MM_Improved	Result: 20 to 20
Match 5:	ID_Improved vs	AB_Null	Result: 22 to 18
Match 6:	ID_Improved vs	AB_Open	Result: 24 to 16
Match 7:	ID_Improved vs	AB_Improved	Result: 21 to 19

Results:

ID_Improved 61.43%

Evaluating: Student1

Playing Matches:

Match 1:	Student1 vs Rando	om Result: 35 to 5
Match 2:	Student1 vs MM_N	Null Result: 32 to 8
Match 3:	Student1 vs MM_0	Open Result: 21 to 19
Match 4:	Student1 vs MM_lm ₁	proved Result: 20 to 20
Match 5:	Student1 vs AB_Nu	ull Result: 31 to 9
Match 6:	Student1 vs AB_Op	pen Result: 24 to 16
Match 7:	Student1 vs AB_Impr	roved Result: 22 to 18

Results:

Student1 66.07% ******** Evaluating: Student2 ******** Playing Matches: -----Match 1: Student2 vs Random Result: 38 to 2 Match 2: Student2 vs MM_Null Result: 33 to 7 Match 3: Student2 vs MM_Open Result: 18 to 22 Match 4: Student2 vs MM_Improved Result: 19 to 21 Match 5: AB_Null Student2 vs Result: 26 to 14 Match 6: Student2 vs Result: 22 to 18 AB_Open Match 7: Student2 vs AB_Improved Result: 27 to 13 Results: -----Student2 65.36% ******** **Evaluating: Student3** ******** Playing Matches: Match 1: Random Result: 33 to 7 Student3 vs Match 2: MM_Null Result: 25 to 15 Student3 vs Match 3: MM_Open Result: 21 to 19 Student3 vs Match 4: Student3 vs MM_Improved Result: 24 to 16 Match 5: Student3 vs AB_Null Result: 29 to 11 Match 6: Result: 24 to 16 Student3 vs AB_Open Match 7: Student3 vs AB_Improved Result: 23 to 17 Results: -----Student3 63.93% ******** Evaluating: Student4

Playing Matches:

Match 1:	Student4 vs Random	Result: 35 to 5
Match 2:	Student4 vs MM_Null	Result: 26 to 14
Match 3:	Student4 vs MM_Open	Result: 21 to 19
Match 4:	Student4 vs MM_Improved	Result: 19 to 21
Match 5:	Student4 vs AB_Null	Result: 26 to 14
Match 6:	Student4 vs AB_Open	Result: 24 to 16
Match 7:	Student4 vs AB_Improved	Result: 21 to 19

Results:

Student4 61.43%

Evaluating: Student5

Playing Matches:

Match 1:	Student5 vs	Random	Result: 36 to 4
Match 2:	Student5 vs	MM_Null	Result: 27 to 13
Match 3:	Student5 vs	MM_Open	Result: 26 to 14
Match 4:	Student5 vs N	MM_Improved	Result: 19 to 21
Match 5:	Student5 vs	AB_Null	Result: 27 to 13
Match 6:	Student5 vs	AB_Open	Result: 21 to 19
Match 7:	Student5 vs A	AB_Improved	Result: 24 to 16

Results:

Student5 64.29%

Evaluating: Student6

Playing Matches:

Match 1:	Student6 vs Random	Result: 38 to 2
Match 2:	Student6 vs MM_Null	Result: 29 to 11
Match 3:	Student6 vs MM_Open	Result: 21 to 19
Match 4:	Student6 vs MM_Improved	Result: 21 to 19
Match 5:	Student6 vs AB_Null	Result: 28 to 12
Match 6:	Student6 vs AB_Open	Result: 29 to 11

Match 7: Student6 vs AB_Improved Result: 22 to 18 Results: Student6 67.14% ********* Evaluating: Student7 Playing Matches: -----Match 1: Student7 vs Random Result: 36 to 4 Match 2: Student7 vs MM Null Result: 32 to 8 Match 3: Student7 vs Result: 27 to 13 MM_Open Match 4: Student7 vs MM_Improved Result: 23 to 17 Match 5: Student7 vs AB_Null Result: 31 to 9 Match 6: Student7 vs AB Open Result: 24 to 16 Match 7: Student7 vs AB Improved Result: 24 to 16 Results: Student7 70.36% ********* Evaluating: WID170715_Implementation ******** Playing Matches: Result: 38 to 2 Match 1: WID170715_Implementation vs Random Match 2: WID170715_Implementation vs MM_Null Result: 37 to 3 Match 3: WID170715_Implementation vs MM_Open Result: 25 to 15 Match 4: WID170715_Implementation vs MM_Improved Result: 26 to 14 Match 5: WID170715_Implementation vs AB_Null Result: 32 to 8 Match 6: WID170715_Implementation vs AB Open Result: 28 to 12 Match 7: WID170715_Implementation vs AB_Improved Result: 28 to 12 Results:

WID170715_Implementation

76.43%

APPENDIX C

Evaluation Against Teammates

This script evaluates the performance of the custom heuristic function by comparing the strength of an agent using iterative deepening (ID) search with alpha-beta pruning against the strength rating of agents using other heuristic functions. The `ID_Improved` agent provides a baseline by measuring the performance of a basic agent using Iterative Deepening and the "improved" heuristic (from lecture) on your hardware. The `Student` agent then measures the performance of Iterative Deepening and the custom heuristic against the same opponents.

Evaluating: WID170017_Implementation

Playing Matches:

Match 1:	WID170017_Implementation \	rs Random	Result: 65 to 15
Match 2:	WID170017_Implementation \	s MM_Null	Result: 59 to 21
Match 3:	WID170017_Implementation \	/s MM_Open	Result: 42 to 38
Match 4:	WID170017_Implementation v	vs MM_Improved	Result: 34 to 46
Match 5:	WID170017_Implementation \	/s AB_Null	Result: 50 to 30
Match 6:	WID170017_Implementation \	/s AB_Open	Result: 46 to 34
Match 7:	WID170017_Implementation \	s AB_Improved	Result: 37 to 43

Results:

WID170017_Implementation 59.46%

Evaluating: WID170021 Implementation

Playing Matches:

Match 1:	WID170021_Implementation vs Random	Result: 68 to 12
Match 2:	WID170021_Implementation vs MM_Null	Result: 63 to 17
Match 3:	WID170021_Implementation vs MM_Open	Result: 49 to 31
Match 4:	WID170021_Implementation vs MM_Improved	Result: 43 to 37
Match 5:	WID170021_Implementation vs AB_Null	Result: 54 to 26
Match 6:	WID170021_Implementation vs AB_Open	Result: 50 to 30
Match 7:	WID170021_Implementation vs AB_Improved	Result: 49 to 31

Results:

WID170021_Implementation 67.14% ******** Evaluating: WID170711 Implementation ******** Playing Matches: -----Match 1: WID170711_Implementation vs Random Result: 69 to 11 Match 2: WID170711_Implementation vs MM_Null Result: 60 to 20 Match 3: WID170711_Implementation vs MM_Open Result: 43 to 37 Match 4: WID170711_Implementation vs MM_Improved Result: 45 to 35 Match 5: WID170711_Implementation vs AB Null Result: 56 to 24 Match 6: WID170711 Implementation vs Result: 60 to 20 AB Open Match 7: WID170711 Implementation vs AB Improved Result: 54 to 26 Results: WID170711 Implementation 69.11% ******** Evaluating: WID170715 Implementation ******** Playing Matches: Match 1: WID170715_Implementation vs Result: 76 to 4 Random Match 2: WID170715_Implementation vs Result: 73 to 7 MM_Null Match 3: WID170715_Implementation vs MM_Open Result: 50 to 30 Match 4: WID170715_Implementation vs MM_Improved Result: 43 to 37

Results:

Match 5:

Match 6:

Match 7:

WID170715 Implementation 76.61%

WID170715_Implementation vs

WID170715_Implementation vs

WID170715 Implementation vs AB Improved

AB_Null

AB_Open

Result: 70 to 10

Result: 61 to 19

Result: 56 to 24