This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

19 BUNDESREPUBLIK DEUTSCHLAND

C 07 C 145/00 C 07 D 309/10

Offenlegungsschrift 26 30 947

2

1

61)

Aktenzeichen:

P 26 30 947.7

Ø 43 Anmeldetag:

9. 7.76

Offenlegungstag:

3. 2.77

30

Unionspriorität:

39 39 39

10. 7.75 Japan 84707-75

11. 7.75 Japan 84946-75

69

Bezeichnung:

Sulfinyl- und Sulfonylverbindungen und Verfahren zu ihrer Herstellung

0

Anmelder:

Kao Soap Co., Ltd., Tokio

(4)

Vertreter:

Hegel, K.Th., Dr.; Dickel, K., Dipl.-Ing.; Pat.-Anwälte,

2000 Hamburg und 8000 München

7

Erfinder:

Miyamoto, Norioki, Sakura, Chiba; Inoue, Shigeo, Saitama (Japan)

DR. KARL TH. HEGEL · DIPL.-ING. KLAUS DICKEL PATENTANWÄLTE

2 HAMBURG 50 GROSSE BERGSTRASSE 223 8 MÜNCHEN 60 JULIUS-KREIS-STRASSE 33 POSTFACH 500662 TELEFON (0 40) 39 62 95 TELEFON (0 89) 88 52 10

٦

┙

2630947

Telegramm-Adresse: Doellnerpatent München

ı.

Г

Ihr Zeichen:

Unser Zeichen:

8000 München, den

H 2604

Kao Soap Co., Ltd.
1,1-chome, Nihonbashi-Kayabacho
Chuo-ku, Tokyo, Japan

Sulfinyl- und Sulfonylverbindungen und Verfahren zu ihrer Herstellung

Die Erfindung bezieht sich auf neue Verbindungen, die eine antibiotische Funktion besitzen. Im besonderen betrifft die Erfindung Derivate von Allylalkohol und Acrylsäure, wobei die Derivate eine Sulfinylgruppe oder eine Sulfonylgruppe in ihrer ß-Position aufweisen.

Bei dem Einsatz herkömmlicher antibiotischer Chemikalien treten viele Probleme auf. Ein Hauptproblem liegt darin,

- 2 -

daß ein jedes der bekannten antibiotischen Chemikalien nur auf eine kleine Gruppe von Systemen oder Spezies von Mikroorganismen anwendbar ist. Unter den gegenwärtigen Umständen ist es dementsprechend erforderlich, eine Anzahl von verfügbaren antibiotischen Chemikalien verschiedenen Tests zu unterwerfen, um das spezifische Chemikal auszuwählen, das für die Anwendung auf ein bestimmtes System oder Spezies von Mikroorganismen geeignet ist. Obwohl antiobiotische Chemikalien des Phenolsystems in großem Rahmen eingesetzt worden sind, besitzt diese Chemikalienart im allgemeinen nur ein schmales Spektrum antibiotischer Aktivität, und es muß in einer hohen Konzentration angewendet werden. Antibiotische Chemikalien von Halogen-substituierten aromatisc*hen Verbindungen, die eine andere Art weithin verwendeter, antibiotischer Chemikalien darstellen, zeigen das Bestreben, daß sie sich in der Natur ohne Zersetzung akkumulieren, was zu einer weiteren Art von Problemen führt. Es ist auch bekannt, daß sog. Invertseifen bemerkenswerte antibiotische Aktivitäten in geringen Konzentrationen besitzen. Es ist jedoch schwierig, Invertseifen auf ein System anzuwenden, in welchem eine Verminderung des Schäumens der Seife erwünscht ist, oder auch auf ein anionisches Emulsionssystem, weil Invertseifen mit derartigen Systemen unlösliche Komplexe bilden.

Intensive Bemühungen zur Lösung der oben erwähnten Problem führten zu der vorliegenden Erfindung.

Gegenstand der Erfindung ist es, Verbindungen zu schaffen, die

eine antibiotische Funktion besitzen und die sich in großem Rahmen für verschiedene Anwendungsbereiche einsetzen lassen.

Verbindungen nach der vorliegenden Erfindung besitzen die folgende Formel (1).

$$RS(0)_n$$
-CH=CHX (1)

In der obigen Formel bedeutet R ein Alkylrest oder ein Alkenylrest mit 1 bis 20 Kohlenstoffatomen, oder Aryl, wie beispielsweise Aryl mit 6 bis 10 Kohlenstoffatomen; n bedeutet 1 oder 2 und X ist (A) -CH2OH oder (B) -COY, wobei Y bedeutet (a) --O(CH₂CH₂O)_mH (hierbei ist M eine ganze Zahl von O bis 12) oder (b) -OM (hierbei ist M ein Alkalimetall, ein Alkalierdmetall oder NH, oder(c) - O(CH, CH, O), R, (hierbei ist m, wie oben definiert, und R₁ ein Alkylrest mit 1 bis 20 Kohlenstoffatomen, oder(d) eine hydroxyl-substituierte Alkoxygruppe die man erhält, indem man ein Wasserstoffatom von einer Hydroxylgruppe eines polyhydrierten aliphatischen Alkohols oder einer zyklischen Gruppe entfernt, die man durch intramolekulare oder intermolekulare Dehydrierung eines mehrwertigen aliphatischen Alkohols, der eine oder mehr Ätherbindungen im Ring besitzt, erhält oder sein (e) -NR'R'', wobei R' Wasserstoff ein Alkylrest mit 1 bis 20 Kohlenstoffatomen oder eine Hydroxyalkylgruppe mit 2 bis 6 Kohlenstoffatomen und R'' aus Wasserstoff, einerAlkylgruppe mit 1 bis 20 Kohlenstoffatomen oder einer substituierten Alkylgruppe mit 2 bis 6 Kohlenstoffatomen besteht, wobei der

Substitutionsbestandteil aus einer Hydroxylgruppe und einer Sulfogruppe in der Form eines Salzes (-SO₃M₁, wobei M₁ ein Alkalimetall darstellt) gebildet wird.

Die Verbindungen gemäß der oben aufgeführten Formel (1) kann man erhalten, indem man Verbindungen der Formel (2) mit einem anorganischen oder organischen Peroxid oxydiert.

RS-CH=CHX (2)

wobei R und X in der Formel (2) die gleiche Bedeutung haben, wie in der Formel (1).

Die Gewinnung der Ausgangsverbindungen für die Formel (2) ist in der Deutschen Patentanmeldung P (H2603), Anmeldetag 1. Juli 1976, mit dem Titel "ß-Sulvenylacrylsäureverbindungen und Verfahren zu ihrer Herstellung", auf die hier ausdrücklich Bezug genommen wird, beschrieben.

Beispiele für anorganische Peroxide, die in dem oben beschriebenen Verfahren eingesetzt werden können, sind unter anderem, Wasserstoffperoxid und Natriummetaperiodat, als geeignete organische Peroxide sind m-Chlorperbenzoesäure, Perbenzoesäure und Peressigsäure zu nennen.

Die Menge des zu der Ausgangszusammensetzung der Formel (2) hinzugegebenen Peroxides richtet sich nach dem gewünschten

Oxydationsgrad des Schwefels in der Endzusammensetzung (1). Vorzugsweise verwendet man etwa 1,1 bis 1,5 Mole des Peroxids pro 1 Mol der Ausgangszusammensetzung nach Formel (2), wenn das Endprodukt die Formel RS(O)₁-CH=CHX besitzt, während man etwa 2 bis 4 Mole Peroxid pro Mol der Ausgangsverbindung nach Formel (2) einsetzt, wenn das Endprodukt der Formel RS(O)₂-CH=CHX entspricht.

Das in der Reaktionsmischung verwendete Lösungsmittel und die Reaktionsdauer werden in Abhängigkeit von der Art des verwendeten Oxydationsmittels bestimmt. Im allgemeinen wird die Oxydationsreaktion gemäß der Erfindung in einem Lösungsmittel, wie beispielsweise hydriertem Alkohol, Essigsäure oder einem chloriertem Kohlenwasserstoff, wie Chloroform oder Methylenchlorid bei einer Temperatur von -10⁰ C bis \$80⁰ C durchgeführt. Im einzelnen wird, wenn Natruimmetaperjodat eingesetzt wird, die Reaktion in einem hydrierten Alkohol bei 00 C bis 250 C, wenn Wasserstoffperoxid verwendet wird, die Reaktion in einem hydrierten Alkohol bei 60^{0} bis 70^{0} C oder in Essigsäure bei 30^{0} – 80^{0} C, wenn m-Chlorbenzoesäure oder Perbenzoesäure verwendet wird, die Reaktion in einem chlorierten Wasserstoff, wie beispielsweise Chloroform oder Methylenchlorid bei 0 - 25 C und wenn Peressigsäure eingesetzt wird, die Reaktion in Essigsäure bei -10^0 - 0^0 C durchgeführt.

Die Verbindungen gemäß der Formel (2), die als Ausgangsmaterialien für die Herstellung der Zusammensetzungen gemäß der Erfindung nach der Formel (1) verwendet werden, können durch ein Verfahren hergestellt werden, indem man Mercaptane der Formel (3)

RS-H (3)

in welcher R der oben angegebenen Definition entspricht, mit Propargylalkohol in der Anwesenheit eines basischen Katalysators reagieren läßt oder durch ein Verfahren, indem man Mercaptane der Formel (3) mit Acetylenmonocarboxylsäure in einer wässrigen Lösung von Alkalimetallhydroxid reagieren läßt, um eine Zusammensetzung zu bilden, die der Formel (4) entspricht

RS-CH=CH-COOM (4)

wobei R der oben angegebenen Definition entspricht und M Wasserstoff oder ein Alkalimetall ist. Die Zusammensetzungen, die
man durch Veresterung oder Amidbildung der Verbindungen gemäß
Formel (4) erhält, können auch als Ausgangsmaterialien zur Herstellung der Verbindung gemäß der Erfindung verwendet werden.
Bei allen oben erwähnten Verbindungen handelt es sich um neue
Zusammensetzungen, die zum erstenmal synthetisiert worden sind
und für welche in der eingangs erwähnten Anmeldung die Erteilung
eines Patentes beantragt wurde.

Unter den Gruppen, die durch -COY für X in den Verbindungen der Formel (2) repräsentiert, und als Ausgangsmaterialien für die erfindungsgemäßen _Verbindungen verwendet werden, bildet man

Hydroxyl-substituierte Alkoxygruppen durch Entfernung eines Wasserstoffatoms aus einer Hydroxylgruppe eines mehrwertigen Alkohols, und zwar im besonderen eines gesättigten aliphatischen oder alizyklischen Alkohols mit 2 bis 10 Kohlenstoffatomen. Diese Gruppe kann eine oder mehrere Ätherbindungen in einem Ringteil besitzen, die durch intramolekulare oder intermolekulare Dehydrierung gebildet werden, aber sie enthält keine Nicht-Kohlenwasserstoffaustauschstoffe mit der Ausnahme von Hydroxylgruppen und Sauerstoff in Äther (Oxa) Funktion. Derartige Alkoxygruppen werden gebildet, indem man ein Wasserstoffatom aus einer Hydroxylgruppe eines mehrwertigen Alkohols entfernt, wie beispielsweise aus Äthylenglycol, Propylenglycol, Glycerin, Erythritol, Pentaerythiritol, Xylitol, Sorbitol, Mannitol, Diglycerin, Dipentaerythritol, Xylitan, Sorbitan, Mannitan und Polyäthylenglycolen.

Die Zusammensetzungen gemäß der Erfindung, die die Formel (1) besitzen, werden außerhalb medizinischer Anwendungsbereiche auch als keimtötende Mittel oder Sterilisationsmittel eingesetzt, wie auch als pilztötende Mittel und Antiseptika. Die Verbindungen gemäß der Erfindung verhindern das Wachstum von Gram-positiven Organismen, wie Staphylococcum Aureus und Bacillus Subtilis, die Mikroorganismen darstellen, die unter normalen Lebensbedingungen verschiedene Krankheiten verursachen, während sie außerdem das Wachstum von Gram-negativen Organismen wie Escherichia Coli, Proteus Vulgaris und Pseudomonas einschließlich Pseudomonas Aeruginosa verhindern, welche als

Fäulnisbakterien bekannt sind. Die erfindungsgemäßen Verbindungen verhindern außerdem das Wachstum verschiedener Pilze, wie Penicillinum, Aspergillus und Sozopus und sind weiterhin wirkungsvoll gegen zum Candida Genus gehörende Gärstoffe, die Moniliase verursachen.

Die physiochemischen Eigenschaften und antibiotischen Aktivitäten der erfindungsgemäßen Verbindungen lassen sich verändern indem man verschiedene Gruppen R und X gemäß Formel (1) einsetzt und/oder die Zahl n in der Formel entsprechend wählt.

Nach der Erfindung ist es dementsprechend möglich, die am besten geeignete Erfindung auszuwählen, die eine spezielle Struktur besitzt und sie auf das spezielle System von Mikroorganismen anzuwenden. Dies führt dazu, daß die Nachteile herkömmlicher, antibiotischer Chemikalien – wie z. B., daß sie infolge ihrer schlechten gegenseitigen Löslichkeit auf manche Systemeunabhängig von den nennenswerten antibiotischen Aktivitäten nicht anwendbar sind – können durch die Erfindung in einer einfachen Weise behoben werden.

Wegen der oben erwähnten Eigenschaften können die erfindungsgemäßen Verbindungen als Zusätze zu verschiedenen Materialien verwendet werden, wie z. B., zu verschiedenen Arten von emulgierten Schneidölen, Reinigungsmitteln, Seifen, Shampoos, Spülmittel, Haarbehandlungsmittel, Lotionen, kosmetischen Gütern, textilen Appreturmitteln, textilen Ölen, sowie Mal- und Druckfarben.

Darstellung 1

Diese Darstellung bezieht sich auf die Synthese von ${\rm C_{12}^{H}_{25}^{S-CH=CH}_{2}^{OH}}$ und ${\rm CH_{2}=C(SC_{12}^{H}_{25})CH_{2}^{OH}}$.

5,0 Gramm-Atome von metallischem Natrium wurden in 4 Litern Äthanol gelöst. 5,0 Mole von Laurylmercaptan wurden der Lösung tropfenweise bei Raumtemperatur beigegeben. 6,5 Mole von Propargylalkohol wurden dann der Lösung zugefügt, während die Lösung durch Eiswasser gekühlt wurde. Die Reaktionsmischung wurde 1 Stunde lang unter Rühren bis 70°C erwärmt, worauf die Mischung in Wasser gegossen und mit Benzol extrahiert wurde. Man erhielt eine Mischung mit einem Gehalt an Alkohol I (3-Lärylmercapto-2-Propenol) und an Alkohol II (2-Lärylmercapto-2-Propenol) bei einer Isolationsausbeute von 84 % bezogen auf das verwendete Mercaptan. Das Mol-Verhältnis des gebildeten Alkohols I oder II betrug 1: 0,86. Der Alkohol I kann von dem Alkohol II unter Einsatz einer Kieselerde-Gelsäule getrennt werden.

Alkohol I (R = Dedecyl)

Schmelzpunkt: 50 bis 510 C (aus Hexan)

Infrarot (KBr): 3300, 1050 cm⁻¹

Kernmagnetische 64,05 (d, 2H, Methylenbindung der Resonanz (Tetra- Allylgruppe) chlorkohlenstoff,

Tetramethylsilan, 5,38 bis 5,95 ppm (m, 2H, Olefin)

60 MHz):

Ergebnis der Elementaranalyse:

	gefunden:	berechnet:
C (%)	69,8	69,7
н (%)	11,7	11,7

Nach den Ergebnissen der obigen Analysen wurde die kristallinisierte Verbindung dahingehend identifiziert, daß sie die Formel $^{\rm C}_{12}{}^{\rm H}_{25}{}^{\rm H-CH=CH-CH}_2{}^{\rm OH}$ besitzt.

Alkohol II (R-Dodecyl)

Cabanalanualata	42 bis 43 ⁰ C (aus Hexan)
Schmelzpunkt:	42 DIS 43 C (aus nexall)
<pre>Infrarot (KBr):</pre>	3300, 1030 cm ⁻¹
Kernmagnetische Resonanz (CCl ₄ , TMS, 60 MHz):	√4,08 (breit s, 2H, Methylen- bindung der Allylgruppe)
	5,38 bis 5,95 ppm (m, 2H, Olefin)

Ergebnis der Elementaranalyse:

	gefunden:	berechnet:
C (%)	69,9	69,7
н (%)	11,6	11,7

Aus den Ergebnissen der obigen Analyse wurde die kristallinisierte Verbindung dahingehend identifiziert, daß sie die folgende Formel besitzt:

Darstellung 2

Diese Darstellung bezieht sich auf die Synthese von ß-Laurylsulfenylacrylsäure.

O,50 Mol Natriumhydroxid wurden in 500 ml Wasser aufgelöst.
O,55 Mol Acetylenmonocarboxylsäure wurden der Lösung tropfenweise beigegeben. O,50 Mol Laurylmercaptan wurde der Lösung
hinzugefügt, die darauf bei Raumtemperatur 3 Stunden lang gerührt wurde. Die Reaktionsmischung wurde dann mit verdünnter
Chlorwasserstoffsäure neutralisiert und das gebildete Produkt
wurde mit Benzol extrahiert. Man erhielt eine kristallisierte
Verbindung bei einer Ausbeute von 93 % (bezogen auf das eingesetzte Mercaptan). Die erhaltene kristallisierte Verbindung
wurde dann einer Infrarotanalyse, einer kernmagnetischen Resonanzanalyse und einer Elementaranalyse unterworfen, worauf
man die folgenden Ergebnisse erhielt:

Infrarot: $1660 (C = 0) cm^{-1}$ Kernmagnetische Resonanz (CCl₄, TMS): t^{\prime} 7,25 (Doppellinie, 1H, = CH-COO-)

5,85 ppm (Doppellinie, 1H, -S-CH=)

Ergebnis der Elementaranalyse:

	gefunden:	berechnet:
C (%)	66,3	66,1
H (%)	10,3	10,4

Nach den Ergebnissen der obigen Analysen wurde die kristallinisierte Verbindung dahingehend identifiziert, daß sie die folgende Strukturformel besitzt:

Darstellung 3

Diese Darstellung bezieht sich auf die Synthese von $\mathfrak B$ -Laurylsulfenylacrylsäuremethylester.

O,3 Mol von β-Laurylsulfenylacrylsäure, die in der Darstellung 2 synthetisiert wurde, 30 Mol Methanol und 5,0 ml konzentrierte Schwefelsäure würden in 400 ml Benzol gelöst und 50 Stunden lang auf 80⁰ erhitzt. Während der Heizperiode wurde das Wasser aus der Mischung unter Einsatz der Benzol-Wasserazeotropie entfernt. Nach der Vollendung der Reaktion wurde die Reaktionsmischung unter einem verminderten Druck konzentriert und man erhielt eine kristallisierte Verbindung mit einer Ausbeute von 76 %.

Die obige kristallisierte Verbindung wurde analysiert und man erhielt die folgenden Ergebnisse:

Schmelzpunkt: 48 bis 50⁰ C (aus Hexan)

Infrarot: 1710 (C = 0) cm⁻¹

Kernmagnetische Resonanz (CCl₄, TMS): 5,80 ppm (Doppellinie, 1H, -S-CH=).

Ergebnis der Elementaranalyse:

	gefunden:	berechnet:
C (%)	67,2	67,1
н (%)	10,4	10,6

Nach den Ergebnissen der obigen Analysen wurde die kristallisierte Verbindung dahingehend identifiziert, daß sie die folgende Strukturformel besitzt:

$$n-C_{12}H_{25}S-CH=CH-COOCH_3$$

Darstellung 4:

Verschiedene Ester der ß-Sulfenylacrylsäure wurden synthetisiert.

Die Bedingungen und Ausbeuten der Reaktionen sind in Tabelle 1,

zusammengestellt, während die Produkteigenschaften in Tabelle 2

aufgeführt sind.

Tabelle 1: Darstellung von Estern der 8-Sulfenylacrylsäure

Ausbeute berechnet auf ß-Sul- fenylacryl- säure	16	89	4. 80	2 630	۳ 947	08
Produkt	C ₁₂ H ₂₅ S-CH=CH-COOCH ₃	он он 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c_{12} H_{25} SCH=CHCOO-CH $_2$ OH OHO	C ₁₂ H ₂₅ SCH=CHCOOCH ₂ -CH CO	<u>~</u> .	сн ₃ scн=снсоосн ₃
Reak- tions- dauer (h)	ru C	ιn ·	.0	/	2 .	S
Reak- tions- tGmp.	80	110	110		. 80	08
e - Lösungs- mittel	Benzol (400m·)	roluol (400m)	Toluol (400m)		Benzol (400m)	Benzol (400m)
Menge des Kata- lysa- tors	5m1	10 g	10 g		5m1	5m1
Kata- lysator	H2SO4	Amber- 1 lit. IR-120	Amber-] lit IR-120		H ₂ SO ₄	H2SO4
Menge von Alkohol in Mol auf O,30 ß-Sul- fenyl- acryl- säure	3.0	2.0	3.0		2.0	3.0
Radikal einer OH-Gruppe	снз	OH OH CH2CH-CH2	он -сн ₂ —(сн-дсн ₂ он		-(CH ₂ CH ₂ O) ₂ CH ₃	Снз
R in B- Sul- fenyl- acryl- säure	C ₁₂ H ₂₅	-		•		CH ₃

			1	- 15	-	•	.c.a.o.o	,,,
9	32	33	89	ம	0		£ 6309	1
92	m	m	9	7	09	4 0	4	82
он он 	$\int_{0}^{\infty} cH_3 cCH = CHCOOCH_2 \int_{0H}^{0}$	CH ₃ SCH=CHCOOCH ₂ -CH CO OH OH OH	сн ₃ scн=снсоо (сн ₂ сн ₂ о) ₂ сн ₃	c ₂₀ H ₄₁ SCH=CHCOOCH ₃	$c_{20}^{\mathrm{H}_{41}}\mathrm{sch=chcooch}_{2}^{\mathrm{ch-ch}_{2}}$	$C_{20}^{H_{41}}$ SCH=CHCOOCH ₂ C_{0}^{O} HO HO OH	$c_{20}H_{41}SCH = CHCOOCH_2 - CH \xrightarrow{OH} OH$	7
ιĊ	īu ,		5	ស	ທ .	<u>ن</u>		2
110	110		80	80	110	110		80.
Toluol (400m)	Toluol (400m)	٠	Benzol (400m)	Benzol (400m)	roluol (400m)	Toluol (400m)		Benzol (400m)
10 g	10 g		5m1	5m1	10 g	10 g		5m1
Amber- lit IR-120	Amber- lit IR-120		H2 SO 4	H2SO4	Amber- lit IR-120	Amber- lit IR-120		H ₂ SO ₄
2.0	3.0		2.0	3.0	2.0	o •	-	2.0
• он он 	он -си ₂ +сн+ ₄ си ₂ он		- (сн ₂ сн ₂ о) ₂ сн ₃	сн ₃	сн ₂ -сн-сн ₂	он -сн ₂ -(сн) 4 сн ₂ он		-(сн ₂ сн ₂ о) ₂ сн ₃
	·			C20H41				

				-16-				•
78	9	3	36	72	80	78	2 9	30
с ₁₈ н ₃₅ scн=снсоосн ₃	он он с ₁₈ н ₃₅ sсн=сисооси ₂ сн-сн ₂	C ₁₈ H ₃₅ SCH=CHCOOCH ₂ OH	C ₁₈ H ₃₅ SCH=CHCOOCH ₂ -CH	2	Phsch=Chcooch ₃	Phsch=chcooch ₂ ch ch ₂	26 HO OH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
īU	ហ	'n		ស	5	ın	v.	
80	110	110		80	80	110	110	
Benzol. (400m)	Toluol (400m)	Toluol (400m)		Benzol (400m)	Benzol (400m)	roluol (400m)	Toluol (400m)	
5ml	10 g	10 g		5m1	5m1	10 g	10 g	
H ₂ SO ₄	Amber- lit IR-120	Amber- lit IR-120	,	H ₂ SO ₄	H ₂ SO ₄	Amber- lit IR-120	Amber- lit IR-120	
3.0	2.0	3.0	-	2.0	3.0	2.0	3.0	
Oleyl CH ₃ (C ₁₈ H ₃₅₎	он он -Сн ₂ Сн-Сн ₂	HO	-cn ₂ tch 74 ch ₂ 0H	- (СН ₂ СН ₂ О) ₂ СН ₃	Phenyl CH ₃	-CH2CH-CH2	он -сн ₂ -(сн ₊₄ сн ₂ он	

Phsch=chcoo($ch_2ch_2o)_2ch_3$ 2 80 Benzol (400m) 5m1 H_2SO_4 2.0 - (CH₂CH₂O)₂CH₃

Tabelle 2:

Verbindung	Elgenschaft	t Infrarot		NMR(CC1 ₄ , TMS, ppm)	MS, ppm)	Ergebnisse der Fle- mentaranalyse gefunden: berechnet:
C12H25S-CH=CH-COOCH2	- 1	1710 (C=0)		(ժութ] թ†	1 = п = н	C(%) H(%) C(%) H(%)
n	48-50°C (aus Hexan)		5.80	(doublet,		67.2 10.4 67.1 10.6
он он 1 1 1 1 1 1 1 1 1 1	flüssig 3	3300 (-OH) · 1715 (C=O)	7.34	(doublet,	1H,=CH-COO-), 1H,-S-CH=)	62.3 10.3 62.4 10.0
C ₁₂ H ₂₅ S-CH=CH-COOCH ₂ OH	mp. 3 43-46°C 1	3300 (-OH) 1710 (C=O)	7.38	(doublet,	ŀ	62.4 9.3 62.7 5.5
	~ °	3300 (-OH) 1713 (C=O)	7.39	(doublet, lH,=CH-CC	1H,=CH-COO-), 1H,-S-CH=)	62.1 9.4 62.7 9.5
Cl2H25S-CH=CH-COO(CH2CH2O)2CH3 flüssig	·	3300 (-OH) 1710 (C=O)	7.40	(doublet,	1H,=CH-COO-),	63.9 10.3 64.1 10.2

сн ₃ scн=снсоосн ₃	flüssig	1712 (C=O)	(0=0)	7.40	(doublet,	1H,=CH-COO-), 1H,-S-CH=)	26 45.3	263 0947 .3 5.9 45.5	6.1
опон сн ₃ scн=снсооси ₂ сиси ₂	flüssig	3300	(OH) (C=O)	7.36	(doublet,	1H,=CH-COO-), 1H,-S-CH=)	44.2	6.3 43.8	6.3
снзси=сисоосн ₂ толонз сна	· flüssig	3300 1710	(OH) (C=0)	7.41	(doublet,	1H,=CH-COO-), 1H,-S-CH=)	45.6	6.0 45.5	6.1
$cH_3 sch = cHcoocH_2 cH < 0 < 0$	flüssig	3300 1714	(OH) (C=O)	7.38	(doublet,	1H, =CH-COO-), 45.3 1H, -S-CH=)	, 45.3	6.0 45.5	6.1
CH ₃ SCH=CHCOO (CH ₂ CH ₂ O) ₂ CH ₃	flüssig	1710	(0=0)	7.63	(doublet, (doublet,	1H, =CH-COO-), 1H, -S-CH=)	, 49.3	7.1 49.1	t.
c ₂₀ H ₄₁ scH=cHCOOCH ₃	mp. 40-41°C (aus Hexan)	1715	(C=O)	7.36	(doublet,	1H, =CH-COO-), 1H, -S-CH=)	1	72.1 11.3 72.3 11.6	11.6
онон , , , , , , , , , , , , , , , , , , ,	mp. 43-44°C (aus Hexan)	3300 1715	(OH) (C=O)	7.40	(doublet,	1H, =CH-COO-), 1H, -S-CH=)		68.4 10.8 68.1	11.0
								•	

C		
•		t
•	7)
(_)
(4)
(C)
C	`	J

E IIO	,50-51°C , (aus	1710	(C=0)	5.36	(doublet,	1H, 1H,	=CH-COO-),	65.4	10.3 65.6	6 10.3
$c_{20}^{H_{41}}$ SCH=CHCOOCH ₂ CH \downarrow m 5 on \downarrow 0	mp. 53-54°C (aus Hexan)	3300	(OH) (C=O)	7.20	(doublet,	1H,	=CH-COO-),	65.3 10.2	10.2 65.6	6 10.3
C ₂₀ H ₄₁ SCH=CHCOO(CH ₂ CH ₂ O) ₂ CH ₃ m	mp. 48-49°C (aus Hexan)	1710	(C=0)	7.38	(doublet,	1H, 1H,	=CH-COO-),	69.4	11.0 69.1	1 11.2
с ₁₈ н ₃₅ scн=снсоосн ₃ 3 3	mp. 38-39°C (aus Hexan)	1710	(C=O)	7.39	(doublet,	1H, 1H,	=CH-COO-), -S-CH=)	71.6	10.8 71.7	20 6 . 01 . 7
онон с ₁₈ н ₃₅ scн=снсоосн ₂ снсн ₂ м (mp. 40-41°C (aus Hexan)	3300	(OH) (C=O)	7.62	(doublet,	1H, 1H,	=CH-COO-),	67.1	10.3 67.2	2 10.3
c ₁₈ H ₃₅ SCH=CHCOOCH ₂	mp. 43-44°C (aus Hexan)	3300 1710	(OH) (C=0)	7.37	(doublet,	1H, 1H,	=CH-COO-) -S-CH=)	64.9	9.7 64.8	8 9.7

	1			\$1.		ı	
6.1	10.6	5.2	5.5	5.6	5.6	6.4	
2630947	10.6 68.4	5.3 61.9	5.5 56.7	5.4 55.2	5.7 55.2	6.4 59.6	
64.9	68.5	62.1	56.8	55.5	55.3	59.7	
=CH-COO-) -S-CH=)	=CH-COO-) -S-CH=)	=CH-COO-) -S-CH=)	=CH-COO-) -S-CH=)	=CH-COO-) -S-CH=)	=CH-COO-) -S-CH=)	=CH-COO-) -S-CH=)	
1H, 1H,	1H, 1H,	1H, 1H,	1H, 1H,	1H, 1H,	1H, 1H,	1H, 1H,	
(doublet,	(doublet,	(doublet,	(doublet,	(doublet,	(doublet,	(doublet,	
7.37	7.62	7.62	7.25	7.38	7.63	5.42	
(OH)	(C=O)	1715 (C=O)	(OH) (C=O)	(OH) (C=O)	(OH) (C=O)	1710 (C=O)	
3300	1710	1715	3300 j712	3300	3300 1715	1710	
mp. 41-42°C (aus Kexan)	mp. 38-39°C (aus Hexan)	flüssig	flüssig	flüssig	flüssig	flüssig	
$c_{18}^{H_{35}}sch=chcooch_{2_{0H}} Ch O O O O O O O O O O O O O O O O O O $	с ₁₈ н ₃₅ scн=сисоо (сн ₂ сн ₂ о) ₂ сн ₃	PhscH=CHCOOCH ₃	OHOH 	PhscH=CHCOOCH ₂ OH OH OH	Phsch=chcooch ₂ ch	Phsch=chcoo(ch ₂ ch ₂ o) ₂ ch ₃	

0,35 Mol Natriummetaperjodat (NaIO₄) wurden in 200 ml eines gemischten Lösungsmittels, das 100 ml H₂O und 100 ml MeOH enthielt, gelöst. Zu der erhaltenen Lösung wurden 0,30 Mol der Mischung der Alkohole hergestellt, in der Darstellung 1 (R=C₁₂, (I): (II) = 1:0,86) bei Raumtemperatur beigegeben. Nachdem die Reaktionsmischung bei 25⁰ C 24 Stunden lang gerührt worden war, wurde das gebildete Natriumjodat (NaIO₃) abgefiltert. Das Filtrat wurde mit Diäthyläther extrahiert und die Mischung, die einen Alkohol (III) (3-Laurylsulfinyl-2-Propenol) und einen Alkohol (IV) (2-Laurylsulfinyl-2-Propenol) enthielt, wurde isoliert. Das Verhältnis der gebildeten Alkohole (III) zu (IV) betrug 1:0,86. Der Alkohol (III) kann von dem Alkohol (IV) mittels einer Kieselsäure-Gelsäule getrennt werden.

Alkohol (III) (R = Lauryl, n = 1) : flüssig

Infrarot:, 3300 (OH), 1045 (S=0) cm⁻¹

5,36 - 5,85 ppm (m, 2H, Olefin).

Ergebnis der Elementaranalyse:

	gefunden:	berechnet:
C (%)	65,3	65,6
н (%)	10,9	 11,0

2630947

Nach den Ergebnissen der obigen Analysen wurde die kristallisierte Verbindung dahingehend identifiziert, daß sie die folgende Strukturformel besitzt:

Alkohol (IV) (R = Lauryl, n = 1): flüssig

Infrarot: 3300 (OH), 1040 (S=0) cm⁻¹

Kernmagnetische Resonanz (CCl $_4$, TMS): $^{f}4,96$ (breit \underline{s} , 2H, Methylenbindung der Allylgruppe)

5,39 bis 5,83 (\underline{m} , 2H, Olefin).

Ergebnis der Elementaranælyse:

	gefunden:	berechnet:
C (%)	65,8	65,6
н (%)	11,3	11,0

Nach den Ergebnissen der obigen Analysen wurde die kristallisierte Verbindung dahingehend identifiziert, daß sie die folgende Strukturformel besitzt:

0,30 Mol einer Mischung von Alkoholen, die gemäß der Darstellung 1 erhalten wurden ($R = C_{12}$, (I): (II) = 1:0,86) wurden in 500 ml Äthanol gelöst. 0,40 Mol Wasserstoffperoxyd in Form einer 30 %-igen Lösung wurden der Lösung beigegeben und die Mischung wurde für eine Dauer von 8 Stunden auf eine Temperatur von 75 0 C gehalten. Die Reaktionsmischung wurde dann in Wasser hineingegossen und die Reaktionsprodukte wurden mit Diäthyläther extrahiert, worauf man eine Mischung von dem Alkohol (III) und dem Alkohol (IV) ($R = C_{12}$, (III): (IV) = 1:0,86) mit einer Ausbeute von 72 % erhielt. Es wurde bestätigt, daß diese Alkohole (III) und (IV) mit denjenigen, die man in Beispiel 1 erhielt, identisch sind.

Beispiel 3

0,30 Mol der Mischung der Alkohole, die man gemäß der Darstellung 1 erhielt, (R = C_{12} , (I): (II) = 1:0,86) wurden in 150 ml Chloroform gelöst. Der erhaltenen Lösung wurde eine Lösung von m-Chlorperbenzoesäure (0,33 Mol) in Chloroform (150 ml) bei Raumtemperatur zugegeben, und die Mischung wurde 1 Stunde lang gerührt. Die Raktionsmischung wurde dann in eine wässrige Lösung von Natriumcarbonat eingegossen und die Raktionsprodukte wurden mit Diäthyläther extrahiert, worauf man eine Mischung des Alkohols (III) und des Alkohols (IV) (R = C_{12} , (III): (IV) = 1:0,86) mit einer Ausbeute fon 90 % erhielt. Es wurde bestätigt, daß diese Alkohole mit den Substanzen identisch sind, die man in Beispiel 1 erhielt.

#SCH=CHCH₂OH und CH₂=C(SR)CH₂OH { R : CH₃, C₂₀H₄₁,

Oleyl (C₁₈H₃₅) oder Phenyl (O) wurde hergestellt. Die Reaktionsbedingungen und die Ausbeuten sind in Tabelle 3 zusammengefaßt, während die Eigenschaften des Produktes in Tabelle 4 aufgeführt sind.

			•	26.	-	M				2	630	947
			85	62		84	80	75	64		53	83
		Gesamtwerte (%)									но	
о =C(SR)СН ₂ ОН	N	Produkt	0	cn ₃ scn-cncn ₂ cn,	0=	$cH_2 = c(scH_3)cH_2OH$		O II SCH=CHCH_OH.	20 41 4	0=	$CH_2 = C(SC_{20}H_{41})CH_2$	-
OH, CH	Reak- tions- dauer	<u>ء</u>	24	œ		H	1	24	ω	.		п .
SCH=CHCH,	Reak- tions- temp.	(၁၂	25	75		. 52	-10	25	75		25	-10
Tabelle 3: Herstellung vonR\$CH=CHCH2OH, CH2=C(\$R)CH2OH Menge an Oxidations— mittel in	s Lösungs-	mittel	н20-меон	ЕСОН		снс13.	Асон	н ₂ о-меон	Етон	-	снсіз	Acon
	dae telt tan tan tan		1.1	1.1		1.1	1.1	1,1	1.1		1.1	1.1
	Men Oxi mit mit Mol Mol Zu gem	Ч	$NaIO_4$	H ₂ O ₂		H00007-	сн зсооон	NaIO ₄	H ₂ O ₂	c1 -	H0000 -{()	снзсооон
	er ohol- chung	_	CH ₃		•			. C ₂₀ H41			·	

93	68		80	63	75	6.0		89	10
0=	С ₁₈ н ₃₅ SCH=СИСН ₂ ОН, +	0=	сн ₂ =с(³ с ₁₈ н ₃₅)сн ₂ он	•	0=	PhSCH=CHCH ₂ OH,	0=	$CH_2 = C(SPh)CH_2OH$	·
24	∞ .		H	1	24	œ	^	H	1
25	75		25	-10	25	75		25	-10
н20-меон	Etoh '		CHC1 ₅	Acon	н ₂ о-меон	Етон	•	CHC13	AcoH
1.1	r		1.1	1.1	1.1	1.1		1.1	1.1
NaIO ₄	H ₂ O ₂	C1	ноооо-	сн ³ сооон	$NaIO_4$	H ₂ O ₂	. C.	ноооо -	сн ³ сооон
-	C18H35				Ph		·		

• •	Tabelle 4:	Tabelle 4: Elgenschaft Von	$\stackrel{\text{O}}{\underset{\text{II}}{\underset{\text{II}}{\text{II}}}} \stackrel{\text{O}}{\underset{\text{II}}{\underset{\text{CH}_{2} = C}{\text{CHCH}_{2}}}} \stackrel{\text{O}}{\underset{\text{CH}_{2} = C}{\text{CH}_{2}}} \stackrel{\text{O}}{\underset{\text{CH}_{2} = C}{\text{CH}_{2}}}$			
		•		Ergebnisse der Elementar analyse	ir Element analyse	entar 150
		Infrarot	Kernmagnetische Resonanz	gefunden:	berechnet	hnet
Verbindung	Eigenschaft	(cm ⁻¹)	(bpm)	C(8) H(8)	C(8)	H(8)
CH ₃ SCH=CHCH ₂ OH	flüssig	3300 (OH), 1645 (S=O)	4.00 (d, 2H Methylenbindung der Allyl -) 4(5.36- $\overline{5}$.85 (\overline{m} , 2H, olefin) ' gruppe -)	40.3 6.6	40.0	6.7
CH ₂ =C-CH ₂ OH 0=SCH ₃	flüssig	3300 (OH), 1040 (S=O)	4.90(breits, 2H, Methylenbindung der Allylgruppe) 5.39-5.85 (m, 2H, olefin)	40.1 6.8	40.0	6.7
о п С ₂₀ н ₄₁ SCH=CHCH ₂ OH	m.p. 1 60 - 61°C (aus Hexan	3300 (OH),	3.98 (d,2H,Methylenbindung der Allyl- 7] gruppe) 5.30-5.88 (m, 2H, olefin)	71.2 12.3	71.4	15.0
$CH_2 = C - CH_2OH$ $O = S - C_{20}H_{41}$	63 - 64°C (aus Hexan	3300 (OH), 1030 (S=O)	4.92 (breit s, 2H, Methylenbindung der Allylgruppe) 5.36-5.80 (m, 2H, olefin)	71.1 12.3	71.4	12.0
с ₁₈ н ₃₅ scн=cнсн ² он	(aus Hexan	3300 (OH),) 1036 (S=O)	4.10 (\underline{d} , 2H, Methylenbindung der Allyl-gruppe) 5.30-5.86 (\underline{m} , 2H, olefin)	70.6 11.2	70.4	11.3
CH ₂ =c -CH ₂ OH 0=S-C ₁₈ H ₃₅	68 - 69°C (aus Hexan	3300 (OH), 1025 (S=O)	4.88 (breit <u>s</u> , 2H, Methylenbindung der Allylgruppe) 5.36-5.80 (<u>m</u> , 2H, olefin)	70.1 11.4	4.07	11.3
• . •				•	630947	

hSCH=CHCH ₂ OH	flüssig	3300	OH),	$(0H)$, $4.05 \left(\frac{d}{d}$, $2H$, Methylenbindung der Allyl- $gruppe$) $gruppe$) 54.7	1y1— 54.7 5.3 54.5 5.1	5.1
$cH_2 = c - cH_2OH$	flüssig	3300 (, (но	ng der Allyl.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ľ
0=S-Ph)	י כשטר	())

0,30 Mol der Mischung der Alkohole, die man in der Darstellung

1 erhielt (R = C₁₂, (I): (II) = 1:0,86) und 0,80 Mol Wasserstoffperoxyd in Form einer 30 %-igen wässrigen Lösung wurden zu

200 ml Essigsäure hinzugegeben, und die Mischung wurde 2 Stunden

lang auf eine Temperatur von 80 °C gehalten. Die Reaktionsmischung wurde dann in Wasser eingegossen und die Produkte wurden
mit Diäthyläther extrahiert, worauf man eine Mischung eines Alkohols (V) (3-Laurylsulfonyl-2-Propenyl) und einem Alkohol (VI)

(2-Laurylsulfonyl-2-Propenol) mit einer Ausbeute von 78 % erhielt.

Das Verhältnis der gebildeten Alkohole (V) zu (VI) betrug 1 zu

0,86. Der Alkohol (V) kann unter Verwendung einer KieselsäureGelsäule von dem Alkohol (VI) getrennt werden.

Alkohol (V) (R = Lauryl, n = 2)

Schmelzpunkt: 88 bis 90⁰ C (aus Hexan)

Infrarot: 3300 (OH), 1320, 1160 cm⁻¹

Kernmagnetische Reson- \mathcal{L}^4 ,01 (d, 2H, Methylenbindung der Allylanz (CCl $_4$, TMS): gruppe),

5,30 bis 5,78 ppm (m, 2H, Olefin).

Ergebnis der Elementaranalyse:

	gefunden:	berechnet
C (%)	61,8	62,0
н (%)	10,4	10,4

Nach den Ergebnissen der obigen Analysen wurde die obige Verbindung dahingehend identifiziert, daß sie die folgende Strukturformel besitzt:

Alkohol (VI) (R = Lauryl, n = 2)

Schmelzpunkt:

95 bis 97^0 C (aus Hexan)

Infrarot/:

3300 (OH), 1310, 1150 cm⁻¹ $-\frac{1}{5}$

Kernmagnetische Resonanz (CCl₄, TMS):

d4,90 (breit s, 2H, Methylenbindung der Allylgruppe), 5.25 bis 5,80 ppm (m,2H, Olefin).

Ergebnis der Elementaranalyse:

	gefunden:	berechent:		
C (%)	62,3	62,0		
н (%)	10,5	10,4		

Aus den Ergebnissen der obigen Analysen wurde die Verbindung dahingehend identifiziert, daß sie diefolgende Strukturformel besitzt:

O,30 Mol der Mischung der Alkohole, die man gemäß der Darstellung 1 erhielt ($R = C_{12}$, (I): (II) = 1:0,86) wurden in 150 ml Chloroform gelöst. Der Lösung wurden O,75 Mol m-Chlorperbenzoesäure in 150 ml Chloroform bei Raumtemperatur zugegeben, und die Mischung wurde 2 Stunden lang gerührt. Die Reaktionsmischung wurde in eine wässrige Lösung von Natriumcarbonat gegossen und die Reaktionsprodukte wurden mit Diäthyläther extrahiert. Man erhielt eine Mischung des Alkohols (V) und des Alkohols (VI) ($R = C_{12}$, (V): (VI) = 1:0,86) (Ausbeute 92 %). Es wurde bestätigt, daß diese Alkohole mit denjenigen, die man in Beispiel 6 erhielt, identisch sind.

Beispiel 8

O,30 Mol der Mischung der Alkohole, die man gemäß der Darstellung 1 erhielt, ($R = C_{12}$, (I): (II) = 1: 0,86) wurden in 150 ml Essigsäure gelöst. O,65 Mol Peressigsäure wurden der Lösung bei -10° C zugegeben, und die Mischung wurde 1 Stunde lang gerührt. Die Reaktionsmischung wurde dann in Wasser gegossen und die Reaktionsprodukte wurden mit Diäthyläther ex*trahiert. Man erhielt eine Mischung des Alkohols (V) und des Alkohols (VI) ($R = C_{12}$, (V): (VI) = 1: 0,86) (Ausbeute: 8I %). Es wurde bestätigt, daß der Alkohol (V) und der Alkohol (VI) jeweils identisch mit dem Alkohol (V) und dem Alkohol (VI), die man im Beispiel 6 erhielt, identisch war.

 $RSCH = CHCH_{2}OH, CH_{2} = C(SR)CH_{2}OH$ $RSCH = CHCH_{2}OH, CH_{2} = C(SR)CH_{2}OH$

Oleyl (C₁₈H₃₅); oder Phenyl (wurde hergestellt. Die Reaktionsbedingungen sind in Tabelle 5 zusammengestellt, und die Eigenschaften der Produkte sind in Tabelle 6 aufgeführt.

	in the		34				
	ausbe	82	63	70	74	62	& 9
	Gesamtausbeute		•			26	30947
R-SCH=CHCH2OH, CH2=C(SR)CH2OH	ő <u>rodukt</u>	сн _{з й} сн=снсн ₂ он,	O= D	$CH_2 = C(SCH_3)CH_2OH$	C ₂₀ H ₄₁ S CH=CHCH ₂ OH,	$c_{H_2} = c \begin{pmatrix} s & c_{20} & c_{41} \end{pmatrix} c_{H_2}$ OH	; o
си=сисн ₂ он	Reak- tions- dauer (h)	7	77	1	2		- г
	Reak- tions- temp.	80	25	-10	80	25	-10
5: Herstellung von	Los gas s-	Асон	CHC13	ACOH	Асон	снсіз	Асон
Tabelle 5:	Menge des Oxi- dations- mittels zugesetzt zu 1 Mol Alkohol- mischung	2.5	1 2.5	2.5	2.5	2.5	ν. Σ
H.	Oxidation mittel	H ₂ O ₂ .	ноооо — (О)	сн ³ сооон	H ₂ O ₂	(O)	1 сн з сооон
•.	die die Alkohol- dischung fon (I) and (II)	CH ₃	•		C20 ^H 41		

				- 35	•
6	62	68	72	ភូ	50
C ₁₈ H ₃₅ CH=CHCH ₂ OH,	CH,=C(SC1,8H3,5)CH,OH		PhSCH=CHCH ₂ OH	o= = o +	$\begin{pmatrix} CH_2 = C \text{ (SPh) } CH_2 \text{ OH} \\ 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots$
R	8	1		7	-
80	. 52	-10	80	25	-10
Acon	снс13	Асон	Асон	CHC13	ACOH
2.5	. 2.5	2.5	2.5	2.5	2.5
H2 ^O 2	с1 (О)- сооон	сн ³ сооон	H ₂ O ₂ .	C1	сн ³ сооон
.ey1	,18 ^H 35)				

Elementara	berechne	رن ق ف	° 3€	11.5	11.5	0.8
Е]ещ	n: be	35.3	35.3	11.5 68.6	11.4 68.6	2630947
is der	en: H(%)	5.8	5.9	11.5	11.4	263 0947
Ergebnis der	gefunden: C(%) H	35.0	35.4	89 89	68.7	67.4
chaften von RSCH=CHCH $_2$ OH, CH $_2$ =C(SR)CH $_2$ OH	Kernmagnetische Resonanz (CCl ₄ , TMS, 6, ppm)	4.01 (d, 2H, Methylenbindung der Ällylgruppe) 5.30-5.78 (<u>m</u> , 2H, plefin)	4.90 (breit <u>s</u> , 2H, Methylenbindung der Allylgruppe) 5.25-5.80 (m, 2H, olefin)	4.03 (<u>d</u> , 2H, Methylenbindung der Allylgruppe) 5.25-5.60 (m, 2H, olefin)	4.85 (breit <u>s</u> , 2H, Methylenbindung der Allylgruppe) 5.28-5.90 (<u>m</u> , 2H, olefin)	4.03 (d. 2H, Methylenbindung der Allylgruppe) 5.26-5.80 (m, 2H, olefin)
Tabelle 6: Eigenschaft	Infrarot Eigenschaft (cm-1)	сн ₃ сн ₃ сн ₃ сн ₃ с 1324, о о 1150(-5-)	flüssig	C ₂₀ H ₄₁ SCH=CHCH ₂ OH 126 - 127°C 1320, Q O (aus Hexan)1150(-S-)	CH ₂ =C(SC ₂₀ H ₄₁)CH ₂ OH m.р. 1330, О 1330, О (All aus Hexan) 1150(-S-)	C ₁₈ H ₃₅ SCH=CHCH ₂ OH 103 - 104°C 1326, Q aus Hexan)1150(-S-)

67,3 10.6 67.0 10.	54.3 5.1 54.5 5.	54,3 5.1 54.5 5.
4.88 (breit s, 2H, Methylenbindung der Allylgruppe.) 5.30-5.90 (m, 2H, olefin)	3.98 (d. 2H, Methylenbindung der Allylgruppe) 5.25-5.68 (m. 2H, olefin)	4.92 (breits, 2H, Methylenbindung der Allylgruppe) 5.30-5.90 (m, 2H, olefin)
3300 (OH), 1300, O 1150(-\$-)	3300 (OH), 1328, O 1150(-5-)	3300 (OH), 1330, O 1154(-S-)
m.p. H 106-107°C (aus Hexan	flüssig	flüssig
$CH_2 = C(SC_18H_{35})CH_2OH 106-107^{\circ}C$	Phsch=chch ₂ oh	$CH_2 = C \text{ (SPh) } CH_2 OH$

- 39 -

Beispiel 10

0,33 Mol Natriummetaperjodat (NaIO₄) wurden in einem gemischten Lösungsmittel aus 200 ml H₂O und 200 ml MeOH gelöst. 0,30 Mol ß-Laurylsulfenylacrylsäure wurde der Lösungbei Raumtemperatur zugegeben. Nachdem die Mischung bei 25⁰ C 24 Stunden lang gerührt worden war, wurde das gebildete Natriumjodat (NaIO₃) abgefiltert. Das Filtrat wurde mit Diäthyläther extrahiert. Man erhielt eine kristallisierte Verbindung mit einer Ausbeute von 88 %. Die Ergebnisse der Analysen der kristallisierten Verbindung sind nachfolgend aufgeführt.

Ergebnis der Elementaranalyse:

	gefunden:	berechnet:
C (%)	62,4	62,7
н (%)	7,3	7, 5

Nach den Ergebnissen der obigen Analysen wurde die obige kristallisierte Verbindung dahingehend identifiziert, daß sie die folgende Strukturformel besitzt:

Beispiel 11

0,30 Mol ß-Laurylsulfenylacrylsäure wurden in 300 ml EtoH gelöst. 0,50 Mol Wasserstoffperoxyd in Form einer 30 %-igen Lösung wurde hinzugegeben, und die Mischung wurde 48 Stunden lang
unter Rühren auf eine Temperatur von 70 C gehalten. Die Reaktionsmischung wurde mit Diäthyläther exxtrahiert und man erhielt eine kristallisierte Verbindung (Ausbeute: 68 %). Die
Ergebnisse der analytischen Untersuchungen bestätigten, daß die
kristallisierte Verbindung, die man in diesem Beispiel erhielt,
die gleich war, wie diejenige in Beispiel 10.

Beispiel 12

0,30 Mol ß-Laurylsulfenylacrylsäure wurden in 200 ml Chloroform gelöst. 0,33 Mol m-Chlorperbenoesäure in 100 ml Chloroform wurden der Lösung bei 25⁰ C beigegeben. Die Mischung wurde 1 Stunde lang gerührt, und das Reaktionsprodukt wurde mit Diäthyläther extrahiert. Man erhielt eine kristallisierte Verbindung (Ausbeute: 90 %). Die Ergebnisse der analytischen Untersuchung bestätigten, daß es sich bei der kristallisierten Verbindung in diesem Beispiel um die gleiche handelte, die man gemäß Beispiel 10 erhielt.

Beispiel 13

0,30 Mol B-Laurylsulfenylacrylsäure wurden in 200 ml AcOH gelöst.
0,30 Mol Peressigsäure wurden der Lösung bei -100 C zugegeben,
und die Mischung wurde 1 Stunde lang gerührt. In die Reaktions-

mischung wurde Wasser eingegossen, und das Reaktionsprodukt wurde mit Diäthyläther extrahiert. Man erhielt eine kristallisierte Verbindung (Ausbeute: 70 %). Die Ergebnisse der analytischen Untersuchungen bestätigten, daß die in diesem Beispiel erhaltene kristallisierte Verbindung die gleiche wie diejenige des Beispiels 10 war.

Beispiel 14

Verschiedene ß-Sulfenylacrylsäuren, sowie deren Ester und Amide wurden synthetisiert. Die Reaktionsbedingungen und die Ausbeuten sind in der folgenden Tabelle 7 zusammengefaßt, während die Eigenschaften der erhaltenen Produkte in Tabelle 8 aufgeführt sind.

Tabelle 7: Herstellung von B-Sulfinylacrylsäuren, deren Estern und Amiden

,	41			ì		^ ^ (a/"	· , l
te h- uf (2) Produkt	S-CH=	CH-COOH			26	-CH	оме си-сооме си-	
Ausbeu (berec net a Verbidung)	8. 8.	89	0 6	7.0	19	52 (92	64
Reak- tions- temp.	. 25	80	25	-10	. 52	80	25	-10
Reak- tions- dauer (h)	2.2	48	н	н	24	48	٦	1
.t	MeOH(200ml)- H ₂ O(200ml)	Етон (300m])	CHC1 ₃ (300ml)	AcOH(200ml)	MeOH(200ml)- H ₂ O(200ml)	EtOH (300ml)	CHC1 ₃ (300ml)	AcOH(200ml)
Menge des Oxi- dations- mittels zugesetzt zu 0,30 Mol der Verbind- Oxidations- (2)	NaIO ₄ 0.33	H2O2 0.50	О −сооон 0.33	0.30	$NaIO_4$ 0.33	H ₂ O ₂ 0.50		сн ₃ сооон
Formel (2) Verbindung (2) X: mi		о но-0-						
 ¤	-C ₁₂ H ₂₅							

C	C ₁₂ H ₂₅ -S-CH=	9 ² но но но 6 3 но но но 7 3 но но 7	0	$c_{12}^{H_{25}} - \frac{1}{8} - c_{H} =$	ocu₂- ∰	c	$c_{12}^{H_{25}} - \frac{1}{8} - c_{H} =$	сн-соо (сн ₂ сн ₂ о)	0	C ₁₂ H ₂₅ S-CH=	сн-соо (сн ₂ сн ₂ о) ₂ ме
	C12H2	сн-сос		C12H2	сн-соосн ₂ -		C12H25	CH-COC		C12H25	сн-сос
82	16		74	89		9'2	59		83	94	-
25	80		25	80	!	25	80	•	25	25	
. 47	48		24	48		24	48		24	7	
MeOH(200ml)- H ₂ O(200ml)	Etoh(300ml)		MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)		MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)	-	MeOH(200ml)- H ₂ O(200ml)	CHC1 ₃ (300ml)	
0.33	0.50	·	0.33	0.50		0.33	0.50	-	0.33	-сооон 0.33	
NaIO ₄	H ₂ O ₂		NaIO ₄	H202		NaIO4	H ₂ O ₂		NaIO ₄	0	
он он он 1			-co-cH ₂ - 0	HO HO	-	0 -co(ch2ch2o)-3H			0 	1 - 1	

		. 4	3- 'à			2	63	947		a t
C ₁₂ H ₂₅ S-CH==	CH-CON CH2CH2OH	C ₁₂ H ₂₅ S-CH==	CH-CNHCH2CH2SO3Na		0:	сн ₃ ксн≔снсоон			O:	сн _з 5сн=снсоооме
. 70	8	92		85	70	. 63	72	76	48	89
25	25	08.		25	80	25	-10	25	80	25
24	H	8 48		24	48	ч	н	24	48	Ħ
MeOH(200ml)- H ₂ O(200ml)	СНС1 ₃ (300ml)	MeOH(200ml)- H ₂ O(200ml)		MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)	CHC1 ₃ (300ml)	AcOH(200ml)	MeOH(200ml)- H ₂ O(200ml)	EtOH (300ml)	СНС1 ₃ (300ml)
0.33	0.33	0.50		0.33	0.50	0.33	0.30	0.33	0.50	0.33
$\frac{\text{NaIO}_4}{\text{Cl}}$	ноооо- (О)	H202		$\mathtt{NaIO}_{f 4}$	ללי	ноооо-	сн ³ сооон	NaIO ₄	H ₂ O ₂	с1
CH ₂ CH ₂ OH CH ₂ CH ₂ OH		o -CNHCH ₂ CH ₂ SO ₃ Na			0	-C-OH		0 0=0 1		
				CH ₃			•			

	2	630	94	7	-					
	0=0	НОН	8	0=1	CHCOOCH ₂ CO	но он Но	0=	$c_{H_3} c_{CH} = c_{H_2} c_{H_2} c_{H_3}$	O ::::::::::::::::::::::::::::::::::::	снсоо (сн ₂ сн ₂ о) ₂ сн ₃
70	75	63		72	63		73	56	80	83
-10	25	80		25	80		25	80	25	25
н	24	48		24	48		24	48	24	
AcOH (200ml)	MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)		MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)		MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)	MeOH(200ml)- H ₂ O(200ml)	CHC1 ₃ (300ml)
0.30	0.33	0.50	•	0.33	0.50	-	0.33	0.50	0.33	0.33
сн ³ сооон	. NaIO4	H ₂ O ₂		\mathtt{NaIO}_4	H ₂ O ₂		NaIO4	H ₂ O ₂	NaIO ₄	СТ.
	о онон р р р р р р р р р р р р р р р р р р р	1		-сосн,	но Сон	НО	-co(ch,ch,o),H	ר א	0 -co(cH ₂ CH ₂ O) ₂ CH ₃	

но но)3Na	, 45	;-		263	30947
$c_{H_3} = \frac{c_{H_2} c_{H_2}}{c_{H_2} c_{H_2} c_{H_2}}$ $c_{H_2} c_{H_2} c_{H_2} c_{H_2}$	о Сн ₃ 8сн= снсоинсн ₂ сн ₂ 80 ₃ Na	0=	$c_{20}^{H_{41}}$ SCH==			
68	73	82	70	63	72	
2 5 2 5 5 5	80	25	80	25	-10	
24	44 8	24	48		н	
0.33 MeOH(200ml)- H ₂ O(200ml) 0.33 CHCl ₃ (300ml)	MeOH(200ml)- H ₂ O(200ml)	MeOH (200ml) - H_2 O (200ml)	EtOH(300ml)	снс1 ₃ (300ml)	AcOH(200m1)	
0.33	0.50	0.33	0.50	0.33	0.30	
$ \begin{array}{c} \operatorname{NaIO_4} \\ \cdot \\ \end{array} $	H ₂ O ₂	NaIO4	H ₂ O ₂ .	ноооо-О	снзсооон	
-систон сн ₂ сн ₂ он	O -CNHCH2CH2SO3Na		о - 2-он			
		C20H41			·	

O H COCH	NaIO4	0.33	MeOH(200ml)- H ₂ O(200ml)	24	25	16		
m N	H202	0.50	EtOH(300ml)	48	80	49	26 ====================================	
	ст	0.33	CHC1 ₃ (300ml)	7	25	70	Сисоосн,	-
	сн ³ сооон	0.30	AcOH(200ml)	г	-10	89	,	
о онон 	NaIO4	0.33	MeOH(200ml)- H ₂ O(200ml)	24	25	75	O=	
	H ₂ O ₂	0.50	EtOH (300ml)	48	80	65	n	
	•	·					он он снесоосна	
о - - -	NaIO4	0.33	MeOH(200ml)- H ₂ O(200ml)	24	25	89	O	
♦	H ₂ O ₂	0.50	EtOH(300ml)	48	80	09	CHCOOCH ₂ /20.	
но но но	er es						HO HO OH	
-со (сн. сн. о) . н	NaIO ₄	0.33	MeOH(200ml)- H ₂ O(200ml)	24	25	72	O= 0	
2 - 2 - 3	н ₂ 0 ₂	0.50	EtOH(300ml)	48	. 08	55	CHCOO (CH ₂ CH ₂ O) ₃ H	

5) 2 СН 3	нс	- 47- SO3.Na	2630947
C ₂₀ H ₄₁ SCH= CHCOO(CH ₂ CH ₂ O) ₂ CH ₃	C ₂₀ H ₄₁ SCH= CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH	$c_{20}^{H_{41}SCH} = \frac{1}{4}$ $C_{10}^{H_{41}SCH} = \frac{1}{4}$ $C_{10}^{H_{41}SCH} = \frac{1}{4}$	С ₁₈ ^Н 35 ^{SCH} ==
89	70	73	80 65 63 70
25 .	2 2 2	80	25 80 25 -10
24	24	48	24 48 1
MeOH(200ml)- H ₂ O(200ml) CHCl ₃ (300ml)	MeOH(200ml)- H ₂ O(200ml) CHCl ₃ (300ml)	MeOH(200ml)- H ₂ O(200ml)	MeOH(200ml)- H ₂ O(200ml) EtOH(300ml) CHCl ₃ (300ml)
0.33	0.33	. 50	0.33
$ \begin{array}{c} \operatorname{NaIO}_{4} \\ \operatorname{C1} \\ \overleftarrow{\bigcirc} -\operatorname{COOOH} \end{array} $	$ \begin{array}{c} \operatorname{NaIO_4} \\ \operatorname{C1} \\ \left\langle \bigodot \right\rangle \text{coooh} \end{array} $	H2 ^O 2	NaIO ₄ H_2O_2 $C1$ CH_3COOOH CH_3COOOH
-со(сн ₂ сн ₂ о) ₂ сн ₃	CH2CH2OH	o L CNHCH2CH2SO3Na	1, H ₃₅) -C-OH

C ₁₈ H ₃₅ SCH==	снсоосн ³	-		C ₁₈ H ₃₅ SCH==	онон Н Ж	C ₁₈ H ₃₅ SCH==	263 HO HO OH OH	47 0 7 7 8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	снсоо (сн ₂ сн ₂ о) ₃ н
83	29	53	63	73	. 48	72		82 C	70
25	80	25	-10	25	08	25	08	25 8	80
24	48	H	, H	24	48	24	4. 8	24	48
MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)	CHC1 ₃ (300ml)	AcOH(200ml)	MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)	MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)	MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)
0.33	0.50	0.33	0.30	0.33	0.50	0.33	. 50	0.33	0.50
NaIO4	H ₂ O ₂	ноооо-(О)	сн ³ сооон	NaIO ₄	H ₂ O ₂	NaIO ₄	H ₂ O ₂	NaIO ₄	H ₂ O ₂
0=- COMe	•			о онон -сосн ₂ снсн ₂		-coch2/co	но но он	о -со (сн ₂ сн ₂ о) ₃ н	

	ж е			- 49 - E	.	2	63 09	947	
о С ₁₈ ^Н 35 ^{SCH} ==	сисоо (сн ₂ сн ₂ о) ₂ ме	о с ₁₈ н ₃₅ 8сн=	CHCON CH2CH2OH	C ₁₈ H ₃₅ SCH=	7 7	o 	Снсоон		
£9.	7.0	72	. 65	43		63	70	82	65
25	25	25	25	08		25	80	25	-10
24	П	24	ન	8 8		24	48	н	-
MeOH(200ml)- H ₂ O(200ml)	снс1 ₃ (300ml)	MeOH(200ml)- H ₂ O(200ml)	CHC1 ₃ (300m1)	меон(200m1)- H ₂ O(200m1)		меон(200ml)- H ₂ O(200ml)	EtOH(300ml)	снс¦ ₃ (300m1)	AcOH(200ml)
0.33	0.33	0.33	0.33	0.50		0.33	0.50	0.33	0.30
NaIO ₄	ст (О) - сооон	NaIO ₄	с1	H2O2 .	-	NaIO ₄	H ₂ O ₂	с1	снзсооон
, o -co(ch ₂ ch ₂ o) ₂ Me		о сн ₂ сн ₂ он -си<сн ₂ сн ₂ он		O -CNHCH2CH2SO3Na			HOD-		
						Ph C			

				1				26309	947
PhSCH=	снсооснз			o PhSch==	OHOH CHCOOCH2 CHCH2	o PhSCH==	CHCOOCH ₂ OH	o PhScH=	снсоо (сн ₂ сн ₂ о) ₃ н
83	62	. 82	70	92	48	89	52	73	61
. 25	80	25	-10	. 25	80	25	80	25	80
24	48	-	н	24	8	24	4 8	24	. 4
MeOH(200ml)- H ₂ O(200ml)	EtOH(300ml)	CHC1 ₃ (300m1)	AcOH (200m1)	MeOH(200ml)- H ₂ O(200ml)	EtOH (300m l)	MeOH(200ml)- H ₂ O(200ml)	EtOH (300m 1)	McOH(200ml)- H2O(200ml)	EtOH (300m l)
0.33	0.50	0.33	0.30	0.33	0.50	0.33	0.50	0.33	0.50
\mathtt{NaIO}_4	H ₂ O ₂	с1	сн ³ сооон	\mathtt{NaIO}_4	H2 ^O 2	NaIO ₄	H ₂ O ₂	\mathtt{NaIO}_4	H2O2
-Come				O OHOH -COCH ₂ -CHCH ₂		-COCH2	но Но он	0 -co(cH ₂ CH ₂ O) ₃ H	

·d·w			4		
33 - 35°C (aus Isopro-	3300 (OH) O	7.60 (doublet, lH, =CH-COO)	57.6	8.3 58.0	8.8
$c_{12}H_{25}$ -S-CH=CH-COCH ₂ \xrightarrow{O} pylalkohol)	1713 (-CO-) O 1035 (-S-)	0 5.30(doublet, lH, -S-CH=)			
	3300 (OH)	7.33 (doublet, lH,=CH=COO-)	59.8	.0.09 8.6	9.6
$c_{12}^{H_{25}}$ -S-ch=ch-co(ch ₂ ch ₂ o) ₃ h flussig	1715 (-00-)	0 			- 5
-	1050(-8-)				53-
	3300 (OH)	6 95(doublet. 1H.=CH-COO-)	0. 0.	8.09.9.6	10.0
$c_{12}^{H_{25}}$ -S-CH=CH-CN (CH ₂ CH ₂ OH) ₂ flüssig	1630 (-CN-)				
	1050(-8-)	5.36 (doublet, lH,-S-CH=)			
	0 - - - - - -	6.80 (doublet, lH, =CH-COO-)	50.3	7.6 50.6	3.0
120 - 123°C . 120 - 123°C . aus Isopro-	1035 (-S-)	5.90 (doublet, lH,-S-CH=			
lkoho	1) 1225, 1060(-so ₃ Na)	a) in ${ m CD}_3$ OD			

-		1300000		5 6	2630947	•
СН ₃ SCH=СНСООН	flüssig	1690 (-CO-) 0 0 0 0 1050 (-S-)	7.25(doublet, lH,=CH=COO-) 0 5.50(doublet, lH,-S-CH=)	35.7	4.4 35.8	4.
сн ₃ всн=снсоосн ₃	flüssig	0 1713 (-CO-) 0 1043 (-S-)	7.30(doublet, lH,=CH-COO-) 0 6.10(doublet, lH,-S-CH=)	40.7	5.4 40.5	5.4
CH ₃ SCH=CHCOCH ₂ CHCH ₂	flüssig	3300 (OH) 0 1710 (-C-O-) 0 1040 (-S-)	7.25(doublet, lH,=CH=COO-) O 5.92(doublet, lH,-S-CH=)	40.7	5.7 40.4	ες. 24-
CH ₃ SCH=CHCOCH ₂ OH	flüssig	3300 (OH) 0 1715 (-C-O-) 0 1030 (-S-)	7.30(doublet, lH,=CH-COO-) 0 6.10(doublet, lH,-S-CH=)	42.6	5.8 42.9	_ເ ນ .
си ₃ scн=снсо (сн ₂ сн ₂ о) ₃ н	flüssig	3300 (OH) 0 1710 (-Co-) 0 1040 (-S-)	7.11(doublet, lH,=CH-COO-) 5.93(doublet, lH,-S-CH=)	45.3	6.7 45.1	g .

					26	2630947	
		3300 (OH)	7.21 (doublet, 1H,=CH=COO-)	1H,=CH=C00-)	43.8	6.7 43.4	6.8
c_{13}^{0} c_{12}^{0} c_{12}^{0} c_{13}^{0}	flüssig	1650(-CN-) 0 1045(-S-)	5.93 (doublet,	O 1H,-S-CH=)			
CH3SCH=CH-CNHCH2CH2SO3Na	m.p. 110-111°C (aus Isopro- pylalkohol .)	1625(-CN-) 0 0 1040(-S-) 1225,1050 (-SO ₃ Na)	7.12 (doublet, 6.20 (doublet, in CD ₃ OD	1H,=CH=COO-) 0 1H,-S-CH=)	28.6	3.8 28.9	0.4
с ₂₀ н ₄₁ Scн=снсоон	m.p. 80 - 81°C (: aus Hexan).	3300 (OH) 0 1685 (-CO-) 0 1050 (-S-)	7.25 (doublet, 5.55 (doublet,), lh,=CH-COO-)	69.1	11.1 69.0	: -25-
C20H41SCH=CHCOOCH3	m.p. 75 - 76°C (1 aus Hexan)	1710(-CO-) 0 0 1045(-S-)	7.11(doublet, lH,=CH=COO-) 0 6.21(doublet, lH,-S-CH=)	1H,=CH=COO-) O IH,-S-CH=)	69.4	11.0 69.5	11.2
C ₂₀ H ₄₁ SCH=CHCOOCH ₂ CHCH ₂	m.p. 60 - 61°C (aus Hexan:)	3300 (OH) 1705 (-COO-) 0 1035 (-S-)	7.01 (doublet, 5.82 (doublet,	1H,=CH-COO-) 0 1H,-S-CH=)	65.7	10.3 65.8	10.6

.d. m		3300 (он)			26	2630947	•
63 - (aus H		710 (-coo-)	1710(-COO-) 7.34(doublet, 1H,=CH-COO-)	1H,=CH-COO-)	63.6	9.8 63.7	10.0
HO I OH HO OH	1	1028(-S-)	6.03 (doublet,	1H, -S-CH=)			
	m	3300 (ОН)	7.52 (doublet,	1H,=CH-COO-)	65.2	10.4 65.4	10.6
$c_{20}H_{41}^{3}$ CH=CHCO (CH ₂ CH ₂ O) ₃ H 70 - 71 (saus Hexal	ָ ט (בֿ	1710(-coo-)	٠	C			
	-	1038(-8-)	5.98 (doublet,	1H, -S-CH=)			
0	m.	3300 (OH) O	7.32 (doublet,	CH-C00-)	66.3	10.8 66.5	10.9
$C_{20}H_{41}^{\text{M}}$ CH2CH2CH2OH) 2 (aus Hexa	· · ·	1645 (-CN)	0 	O 1H,-S-CH=)			.56-
	1	1040(-s-)				;	,
• (7)	•	0 1620(-CN-) 0	7.03(doublet, 1H,=CH=COO-)	1H,=CH=COO-)	58.4	9.3 58.3	S.3
(aus propyl	150-	1035 (-8-)	5.92 (doublet,	1H, -8-CH=)			
TOHONTS	, 1225,1	225,1050(-SO ₃ Na)	in CD ₃ OD				•
ਜ਼ ਹ		о (но) 00££	7.30 (doublet, 1H,=CH-COO-)	İ	68.2	10.3 68.1	10.3
C)	ບົ	1680 (-CO-) O	5.56 (doublet,	0 1H,-S-CH=)			
	. 1	1040(-8-)		-			

10.5	10.0	· -57-	19.0	4.0
10.5 68.7	64.9 10.2 64.8	9.6 67.7	10.1 64.5	4.2 70.3
68.9	64.9	67.8	64.7	70.8
7.12(doublet, lH,=CH-COO-) 0	7.11(doublet, 1H,=CH-COO-) 0 5.75(doublet, 1H,-S-CH=)	7.30 (doublet, lH,=CH=COO-) 0 6.11 (doublet, lH,-S-CH=)	7.25(doublet, lH,=CH-COO-) O 1 5.98(doublet, lH,-S-CH=)	7.21(doublet, lH,=CH=COO-) O
7.12 (double				7.21 (double:
1710 (-C-O-) 1043 (-S-)	3300 (OH)) 1710 (-COO-) 1040 (-S-)	3300 (OH)) 1715 (-COO-) 0 1020 (-\frac{\fir}{\fin}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fint{\frac{\fir}}}}}}}}}}{\frac{\fin}}}}{\frac{\frac{\frac{\fin}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fi	3300 (OH)) 1710 (-COO-) O 1040 (-S-)	3300 (OH) O 1640 (-CN-) O 1030 (-S-)
m.p. 73 – 74°C (: aus Hexan	m.p. 58 - 59°C (aus Hexan	m.p. 55 - 56°C (aus Hexan	m.p. 68 – 69°C (aus Hexan	m.p. 38-39°C (aus Hexan)
с ₁₈ ^н 35 ⁸ сн=снсоосн ₃	о С ₁₈ н ₃₅ 8сн=снсоосн ₂ снсн ₂	с ₁₈ н ₃₅ SCH=CHCOOCH ₂ О но НО НО ОН	с ₁₈ н ₃₅ 8сн=снсоо (сн ₂ сн ₂ о) ₃ н	C ₁₈ H ₃₅ SCH=CHCN (CH ₂ CH ₂ OH) ₂

ບ ຜ	4.1	-2.sg-	5.2	5.30
8.3 56.9	4.2 55.1	4.6 57.1	5.2 53.3	5.30 52.6
56.	55.3	57.3	53,4	59.8
1H,=CH=COO-) 0 0 1H,-S-CH=)	1H,=CH-COO-) 0 0 1H,-S-CH=)	1H,=CH=COO~) 0 1H,-S-CH=)	1H,=CH-COO-) O 1H,-S-CH=)	7.25(doublet, 1H,=CH-COO-) 0 6.01(doublet, 1H,-S-CH=)
1625(-CON-) 7.22(doublet, lH,=CH=COO-) 0 0 0 1038(-S-) 5.93(doublet, lH,-S-CH=) 1225, 1040 in CD ₃ OD	7.30(doublet, lH,=CH-COO-) 0	7.22(doublet, 1H,=CH=COO~) 0 6.34(doublet, 1H,-S-CH=)	7.10 (doublet, 1H,=CH-COO-) 5.65 (doublet, 1H,-S-CH=)	7.25 (doublet, lH,=CH-COC 0 6.01 (doublet, lH,-S-CH=)
1625(-CON-) 0 1038(-S-) 1225, 1040 (-SO ₃ Na)	3300 (OH) 1690 (COO) 0 1035 (-S-)	1710(COO-) O 1040(-S-)	3300 (OH) 1715 (-COO-) 1035 (-S-)	3300 (OH) 1710 (-COO-) 0 1030 (-S-)
m.p. 121 - 122°C (Isopropyl alkohol)	m.p. 88 - 89°C (aus Hexan)	m.p. 80 – 81°C (: aus Hexan)	flüssig	flüssig
C ₁₈ H ₃₅ SCH=CHCNHCH ₂ CH ₂ SO ₃ Na	o hSCH=CHCOOH	o Phsch=chcooch ₃	онон - -	PhSch=chcooch $\frac{0}{2}$ Ho OH
	609	885/12	.28	

PhSCH=CHCOO(CH ₂ CH ₂ O) ₃ H flüssig 1710(-COO-) 1038(-S-)	· O:		3300 (ОН)	7.30 (doublet,	7.30 (doublet, lH,=CH=COO-) 54.6	54.6	6.1 54.9	6.1
flüssig 1635(-CN-) 6.13(doublet, lH,=CH=COO-) 55.0 6.2 55.1 [1038(-S-) 6.13(doublet, lH,-S-CH=) 1630(-CON-) 7.24(doublet, lH,=CH-COO-) 42.3 3.8 42.4 [1038(-S-) 7.24(doublet, lH,-S-CH=) 1225,1040 in CD ₃ OD	рь: Рь≤сн=снсоо (сн ₂ сн ₂ о) ₃ н	flüssig'	1710(-COO-) O O II I038(-S-)	5.88 (doublet,	0 = 1H,-S-CH=)	-		
flüssig 1635(-CN-) 6.13(doublet, 1H,-S-CH=) 1038(-S-) 1630(-CON-) 7.24(doublet, 1H,=CH-COO-) 42.3 3.8 42.4 0 7.24(doublet, 1H,=CH-COO-) 42.3 3.8 42.4 1038(-S-) 6.13(doublet, 1H,-S-CH=) 6.13(doublet, 1H,-S-CH=) 7.24(doublet, 1H,-S-CH=) 7.24(double		·	3300 (ОН)	7.20 (doublet,	1H,=CII=COO-)	55.0	6.2 55.1	6.1
1630(-CON-) O 7.24(doublet, lH,=CH-COO-) 42.3 3.8 42.4 1038(-S-) . 1225,1040 5.84(doublet, lH,-S-CH=) (-SO ₃ Na) in CD ₃ OD	Phsch=chcon (ch ₂ ch ₂ oh) ₂	flüssig	1635 (-CN-) . 0 . 1038 (-S-)	6.13 (doublet,	0 	i		
1038(-5-) 1225,1040 (-SO ₃ Na)			1630 (-CON-)	7.24 (doublet,	lH,=CH-C00-)	42.3	3.8 42.4	3.9
	Phsch-chconnch ₂ ch ₂ so ₃ na	•	1038(-s-) 1225,1040 (-so ₃ Na)	5.84 (doublet, in CD ₃ OD	O 1H,-S-CH=)	•		53

Beispiel 15

0,30 Mol B-Laurylsulfenylacrylsäure wurden in 200 ml Essigsäure aufgelöst. 0,70 Mol Wasserstoffperoxid in der Form einer 70 %-igen wässrigen Lösung wurde beigegeben, un-d die Mischung wurde eine Stunde lang bei einer Temperatur von 80°C gehalten. Die Reaktionsmischung wurde in Wasser gegossen, und das Reaktionsprodukt wurde mit Diäthyläther extrahiert, worauf die Ätherschicht mit Wasser ausgewaschen wurde. Nach der Entfernung des Äthers erhielt man eine kristallisierte Verbindung. Die Ergebnisse der Analysen der kristallisierten Verbindung sind wie folgt:

Kernmagnetische Resonanz
(CCl_A, TMS):

⟨/ (Doppellinie, 1H, =CH-COO-),
6,82 ppm (Doppellinie, 1H, -SO₂-CH=).

Ergebnis der Elementaranalyse:

	gefunden:	berechnet:
C (%)	62,4	62,7
н (%)	7,3	7,5

Nach den Ergebnissen der obigen Analysen wurde die obige kristal-

lisierte Verbindung dahingehend identifiziert, daß sie die folgende Formel besitzt:

Beispiel 16

Verschiedene ß-Sulfonylacrylsäuren, sowie deren Ester und Amide wurden synthetisiert. Die Bedingungen und Ausbeuten der Reaktionen sind in Tabelle 5 dargestellt, während die Eigenschaften der Reaktionsprodukte in Tabelle 6 zusammengefaßt sind.

Herstellung von B-Sulfonylacrylsäuren, deren Estern und Amiden Tabelle 9:

Ausbeute (berech-	dunging dunging (2))	92	88 8	&	64	. 83	2630 _{9w} z	
	Produkt	Ë	C ₁₂ H ₂₅ SCH=CHCOOMe	он он 0 он он С ₁₂ н ₂₅ Scн=снсоосн ₂ сн-сн ₂	C ₁₂ H ₂₅ CH=CHCOOCH ₂ O	-CH=CH-COO (CH2CH)	O 0 -S-CH=CH-COO(CH ₂ CH ₂ O) ₂ Me	C ₁₂ H ₂₅ -S-CH=CH=CON CH ₂ CH ₂ OH
		C ₁₂ H ₂₅	C ₁₂ H ₂₅	C12 ^H 25	C12H25	C12H25	C ₁₂ H ₂₅ -5	C12H25
	Reak- tions- dauer 1 h	1	H	48	8	н	. H	н
	Reak- tions- temp.	8.0	80.	50	20	80	80	80
ιτ.	Lösungs- mittel	АсОН (200m)	. wie oben	wie oben	wie oben	wie oben	wie oben	wie oben
Menge von H ₂ O ₂ zugesétźt	zu 0,30 Mol der Verbin- dung	0.70	0.70	0.70	0.70	0.70	0.70	0.70
	(2) X:	O=0-	о -СОМе	O OH OH -COCH2CH-CH2	СH 2/ HO	он -сн (сн ₂ сн ₂ о) ₃ н	о " со (сн ₂ сн ₂ о) ₂ ме	$-c_{\rm N} < c_{\rm H_2}^{\rm CH_2OH}$ $-c_{\rm N} < c_{\rm H_2}^{\rm CH_2OH}$
·	Verbindung R:	C ₁₂ H ₂₅ -6	- ĭ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			У -ү	J-Y

06	8	64	73	68	8 2	74
снзусн=сисоон	CH ₃ SCH=CHCOOCII ₃	$\begin{array}{ccc} & & & \text{OHOH} \\ & & & & \\ & &$	CH ₃ CH=CHCOOCH ₂ OH	о́н 1 ₂ сн ₂ 0)	CH_3° CH SCH=CHCOO (CH ₂ CH ₂ O) $_2$ CH ₃	$c_{H_3}^{\circ} = c_{HCON} < c_{H_2}^{\circ} c_{H_2}^{\circ} o_{H_2}^{\circ}$
CH	CH	Сн	СН	CH	СН	CH
H	н	48	4 8	н	તં	ч
80	. 80	08	08	08	80	80
ACOH (200m)	wie oben	wie oben	.wie ober	wie oben	wie oben	wie oben
0.70	0.70	0.70	0.70	0.70	0.70	0.70
HOO = -	O 	0 0HOH 1 -COCH2CHCH2	-coch ₂	-co(ch ₂ ch ₂ o) ₃ H	о " -со (сн ₂ сн ₂ о) ₂ сн ₃	$-c_{\rm N} < \frac{c_{\rm H_2}c_{\rm H_2}c_{\rm OH}}{c_{\rm H_2}c_{\rm H_2}c_{\rm H}}$
CH ₃						

			-	-64-		İ
82	63	74	70	89	72	70
о п С ₂₀ Н ₄₁ , SCH=СНСООН	C ₂₀ H ₄₁ S-CH=CHCOOCH ₃	C ₂₀ H ₄₁ , CH=CHCOOCH ₂ CHCH ₂	$c_{20}^{H_{41}}$ CH=CHCOOCH 2 O HO HO	$c_{20}^{0}_{41}^{H_{41}}_{1}^{S-CH=CHCOO}(CH_{2}^{2}CH_{2}^{O})_{3}^{H}$	$c_{20}^{H_{41}}$ CH=CHCOO (CH $_2$ CH $_2$ O) $_2$ CH $_3$	$c_{20^{H_{41}}}^{0}$ CH ₂ CH ₂ OH CH ₂ OH CH ₂ CH ₂ OH
н	ч	4 8	48	H	Н	
80	80	20	50	80	08	80
AcOH (200m)	wie oben	wie oben	wie oben	wie oben	wie oben	wie oben
02.0	0.70	0.70	0.70	0.70	0.70	0.70
ноэ-	о = -СОМе	о онон - -сосн ₂ снсн ₂	-coch ₂ OH	O OH -CO (CH ₂ CH ₂ O) ₃ H	-сн (сн ₂ сн ₂ о) ₂ сн ₃	CH ₂ CH ₂ OH CH ₂ CH ₂ OH
C20 ^H 41				·		

06	53	64	82	93	85	80
о п 13 ^н 35;	C ₁₈ H ₃₅ CH=CIICOOCH ₃	C ₁₈ H ₃₅ CH=CHCOOCH ₂ CHCH ₂	$c_{18}^{H_{35}}$ Sch=ChCooch $_2$ OH	о С ₁₈ н _{35н} сн=снсоо (си ₂ си ₂ о) ₃ н о	с ₁₁₈ н ₃₅ сн=снсоо (сн ₂ си ₂ о) ₂ сн ₃ о	$c_{18}^{\mathrm{H}_{35}}$ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH
ບ	ບັ	ບ້	ບ້	ပ	ຸ ບັ	ပ
러	-	48	. &	ч	H	. 4
			•			
80	. 80	50	50	. 80	80	80
AÇOH (200ml)	wie oben	wie oben	wie oben	wie.oben	wie oben	wie oben
0.70	0.70	0.70	0.70	0.70	0.70	0.70
ноэ-	0 	о онон 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CO (CH ₂ CH ₂ O) 3H (CH ₂ CH ₂ O) 3H	о 1 -со (сн ₂ сн ₂ о) ₂ сн ₃ (о сн ₂ сн ₂ он сн ₂ си ₂ он сн ₂ си ₂ он
0leyl (C ₁₈ H ₃₅)						

83	85	80	- 6 (• • • • • • • • • • • • • • • • • • •	ე6	98	
~	~	_	• •		0 .	_	2630947
PhSCH=CHCOOH	PhSCH=CHCOOCH ₃	PhSCH=CHCOOCH2CHCH2	Phsch=chcooch2 O HO HO	PhSCH=CHCOO (CH_2CH_2O) $_3^H$	Phsch=chcoo(ch ₂ ch ₂ o) ₂ ch ₃	$\frac{0}{0}$ PhSCH=CHCON $< \frac{\text{CH}_2\text{CH}_2\text{OH}}{0}$ $\frac{0}{0}$	
H	-	48	48	н	н	H	
80	. 08	S Ö	20	. 80	80	80	
AcOH (200ml)	wie oben	wie oben	wie oben	wie oben	wie oben	wie oben	
0·10	0.70	0.70	0.70	0.70	0.70	0.70	
O=0H	O = COMe	8	но	о он п -со (сн ₂ сн ₂ о) ₃ н	о -сн (сн ₂ сн ₂ о) ₂ сн ₃	$\frac{0}{-\text{CN}} < \frac{\text{CH}_2\text{CH}_2\text{OH}}{\text{CH}_2\text{CH}_2\text{OH}}$	
.e. (Ô			-			

Tabelle 10: Egenschaften von B-Sulfonylacrylsäuren, deren Estern und Amiden

			•			
	2630947	1	6.93(doublet, lH,-SO ₂ -CH=)	1310,1150 (-SO ₂ -)	, , ,	C12 ⁿ 25 ⁻¹ Cir Cir Cir 2 2 ⁻
9.2	9.0 57.8	59.9	1705(-COO-) 7.20(doublet, lH,=CH=COO-)	1705(-coo-	H flüssig	O H -S-CH=CH-COO(CH,CH,O),H flüssig
8.5	8.2 56.0	56.3	-) 7.10 (doublet, 1H,=CH-COO-) 7.00 (doublet, 1H,-SO ₂ -CH=)	3300 (OH) 1710 (-COO-) 1300,1130 (-SO ₂ -)	flüssig OH	C ₁₂ H ₂₅ -S-CH=CHCOOCH ₂ O
o, 4.	9.3 55.7	ະ ເຄີ ເຄື່ອ	.) 7.25(doublet, lH,=CH-COO-) 7.01(doublet, lH,-SO ₂ -CII=)	3300(OH) 1710(-COO-) 1310,1150 (-SO ₂)	flüssig	C ₁₂ H ₂₅ -S-CII=CHCOOCH ₂ CHCH ₂
g. 67-	9.3 60.4	60.1	1710(-COO-) 7.30(doublet, lH,=CH=COO-) 1320,1150 7.00(doublet, lH,-SO ₂ -CH=) (-SO ₂ -)	1710(-coo- 1320,1150 (-so ₂ -)	mp. 88 - 85°C (aus EtOH)	с ₁₂ ^н 25 ^н о о
6.8	6.6 60.8	61.2	.) 7.20(doublet, lH,=CH-COO-) 6.82(doublet, lH,-SO ₂ -CH=)	3300(-OH) 1690(-COO-) 1320,1160 (-SO ₂ -)	mp. 105 - 108°C (aus EtOH)	с ₁₂ H ₂₅ H ₂₅ H ₀
hnet: H(%)		gefunden:	Kernmagnetische Resonanz (CCl ₄ , TMS, ppm)	Infrarot (cm ⁻¹)	E1genschaft	
entar	se der Elementar	Ergebnisse	<u>រ</u> ុ			

i

С ₁₂ H _{25-µ} -S-CH=CH-COO (CH ₂ CH ₂ O) ₂ Ме	Me flüssig	1710(-COO-) 1320,1150 (-SO ₂ -)	7.23(doublet, lH,=CH-COO-) 6.90(doublet, lH,-SO ₂ -CH=)	58.7	9.0 59.1	6.
C ₁₂ H ₂₅ -S-CH=CH-CON CH ₂ CH ₂ OH	flüssig	3300(OH) 1630(-CN-) 1318,1150 (-SO ₂ -)	7.15(doublet, lH,=CH-COO-) 6.92(doublet, lH,-SO ₂ -CH=)	58.0	9.1 58.3	5.6
СН ₃ : 0 0	mp. 63 - 64°C (aus EtOH)	3300 (-OH) 1693 (-COO-) 1320,1160 (-SO ₂ -)	7.13(doublet, lH,=CH-COO-) 6.92(doublet,lH,-SO ₂ -CH=)	26.3	3.5 26.4	. . 68 -
сн ₃ ; сн ₃ ; сн ₃ ; сн ₁ ; сн ₁ ; сн ₁ ;	m.p. 43 - 44°C (aus. EtOH)	1713(-COO-) 1320,1148 (-SO- ₂)	1713(-C00-) 7.18(doublet, lH,=CH-C00-) 1320,1148 7.06(doublet, lH,-SO ₂ -CH=) (-SO- ₂)	36.6	5.1 36.6	4. 0.
о , онон и 1 сн ₃ SCH=CHCOOCH ₂ CHCH ₂	flüssig	3300 (-OH) 1705 (-COO-) 1310,1148 (SO ₂ -)	7.20(doublet, lH,=CH-COO-) 7.03(doublet, lH,-SO ₂ -CH=)	37.8	5.7 37.5	5.4
$CH_{3} \text{SCH} = CHCOOCH_2 \xrightarrow{O}$ $HO \longrightarrow OH$ OH	flüssig	3300 (-OH) 1705 (-COO-) 1305,1130 (-SO ₂ -)	7.31(doublet, 1H,=CH-COO-) 7.20(doublet, 1H,-SO ₂ -CH=)	40.8	5.5 40.5	4.2

-	1312,1148 (-SO ₂ -)	6.89 (doublet, lH,-SO ₂ -CH=)	(=1		• •
CH _{3H} SCH=CHCOO(CH ₂ CH ₂ O) ₂ CH ₃ flüssig 13: 0 (-:	1710(-COO-) 1330,1148 (-SO ₂ -)	1710(-COO-) 7.11(doublet, 1H,=CH=COO-) 1330,1148 6.92(doublet, 1H,-SO ₂ -CH=) (-SO ₂ -))-) 42.6]=)	6.3 42.9	6.4
CH ₃ SCH=CHCON CH ₂ CH ₂ OH fiussig 16:	3300(-OH) 1628(-CN-) 1318,1150 (-SO ₂ -)	7.03(doublet, lH,=CH-COO-) 6.98(doublet, lH,-SO ₂ -CH=))-) 40.3 i=)	6.4 40.5	6.4
C ₂₀ H ₄₁ SCH=CHCOOH 110 - 111 C 169 (aus EtOH) 133	3300 (OH) 1693 (-COO-) 1320,1150 (-SO ₂ -)	7.20(doublet, lH,=CH-COO-) 6.93(doublet, lH,-SO ₂ -CH=))-) 71.6 i=)	11.5 71.8	11:5
C ₂₀ H ₄₁ SCH=CHCOOCH ₃ mp. 17. (aus EtOH) (-3	1715 (-COO-) 1320,1140 (-SO ₂ -)	1715(-COO-) 7.30(doublet, lH,=CH=COO-) 1320,1140 7.05(doublet, lH,-SO ₂ -CH=) (-SO ₂ -))-) 66.3 1=)	11.3 66.0	11.1
C20H41SCH=CHCOOCH2CHCH2 (aus EtOH) 17.	3300 (OH) 1713 (-COO-) 1312,1148 (-SO ₂ -)	7.11(doublet, 1H,=CH-COO-) 7.02(doublet, 1H,-SO ₂ -CH=)	64.0	10.4 63.6	10.3

6.0	10.3	10.5	10.5	6.5	10.1
.26.30947 9.7 61.9	10.2 63.5	10.3 64.8	10.5 64.4	9.8 65.2	10.2 66.0
61.6	63.4	64.5	64.6	65.1	66.3
et, lH,=CH=COO-) et, lH,-SO ₂ -CH=)	et, lH,=CH-COO-) et, lH,-SO ₂ -CH=)	et, lH,=CH-COO-) et, lH,-SO ₂ -CH=)	et, lH,=CH-COO-) et, lH,-SO ₂ -CH=)	7.25(doublet, 1H,=CH-COO-) 6.90(doublet, 1H,-SO ₂ -CH=)	et, 1H,=CH-COO-) et, 1H,-SO ₂ -CH=)
7.13 (doublet, 7.11 (doublet,	7.08 (doublet, 6.88 (doublet,	7.03 (doublet, 6.92 (doublet,	7.21 (doublet, 6.85 (doublet,	7.25 (doub) 6.90 (doub)	7.31 (doublet, 7.05 (doublet,
3300 (OH) 1710 (-COO-) 1300,1133 (-SO ₂ -)	1703(-COO-) 1310,1150 (-SO ₂ -)	1710(-COO-) 1320,1148 (-SO ₂ -)	3300 (OH) 1625 (-CN-) 1318,1150 (-SO ₂ -)	3300(-OH) 1685(-COO-) 1325,1160 (-SO ₂)	1705(-COO-) 1315,1158 (-SO ₂ -)
m.p. 68 - 69°C (aus EtOH)	flüssig	3 flüssig	flüssig	mp. 95 - 96°C (aus EtOH)	mp. 76 - 77°C (aus EtOH)
С ₂₀ H ₄₁ SCH=СНСООСН ₂ СО но но он он	С ₂₀ ^Н 41 SCH=CHCOO (СН ₂ СН ₂ О) ₃ Н	С ₂₀ H ₄₁ SCH=СНСОО (СН ₂ СН ₂ О) ₂ СН ₃	$c_{20^{H}41^{SCH=CHCON}}$	о С ₁₈ н _{35‼} О	с ₁₈ н ₃₅ сн=снсоосн ₃

5 62.6 9.6	2 60.9 9.1	6 62.5 9.7	9 63.9 9.9	9.8 64.3 9.8	3.8 50.9 3.8
62.4 9.6	60.8 9.2	62.3 9.6	63.6 9.9	64.4 9.	50.6 3.8
4) 7.25(doublet, lH,=CH-COO-) 7.00(doublet, lH,-SO ₂ -CH=)	H) 7.13 (doublet, 1H, =CH=COO-) 00-) 32 7.05 (doublet, 1H, -SO ₂ -CH=)	00-) 7.23(doublet, lH,=CH-COO-) 48 6.83(doublet, lH,-SO ₂ -CH=)	00-) 7.65(doublet, lH,=CH-COO-) 45 6.95(doublet, lH,-SO ₂ -CH-)) 7.10(doublet, lH,=CH-COO-) N-) 6.90(doublet, lH,-SO ₂ -CH=) 55	H) 7.20(doublet, lH,=CH-COO-) OO-) 60 6.85(doublet, lH,-SO ₂ -CH=)
3300(-OH) 1710(-COO-) 1310,1148 (-SO ₂ -)	3300(-OH) 1705(-COO-) 1300,1132 (-SO ₂)	1710(-COO-) 1310,1148 (-SO ₂ -)	1710(-COO-) 1320,1145 (-SO ₂ -)	3300 (OH) O 1630 (-CN-) 1318, 1155 (-SO ₂ -)	3300(-OH) 1) 1320,1160 (-SO ₂ -)
мр. нсн. 44 – 45°С (.aus EtOH)	0 50 - 51°C (aus EtOH) OH	сн ₂ о) ₃ н flüssig	CH ₂ O) ₂ CH ₃ flüssig	CH2CH2OH flüssig	mp. 100 - 101° (ausetOH)
с ₁₈ н ₃₅ снсоосн ₂ снси ₂	C ₁₈ H ₃₅ SCH=CHCOOCH ₂	С ₁₈ ^Н 35 SCH=CHCOO (СН ₂ СН ₂ O) 3 ^Н	с ₁₈ н ₃₅ сн=снсоо (сн ₂ сн ₂ о) ₂ сн ₃	C18H35HCHCON CH	Phsch=CHCOOH

PhSCH=CHCOOCH ₃	. mp. 98 - 99°C (aus EtOH)	1710 (-COO-) 1315,1148 (-SO ₂ -)	7.25 (doublet, 7.05 (doublet,	1H,=CH-COO-) 1H,-SO ₂ -CH=)	53.4	4.5 53.1	4.5
Phsch=chcooch2chch2	flüssig	3300 (OH) 1710 (-COO-) 1315,1148 (-SO ₂ -)	7.30(doublet, 1H,=CH-COO-) 7.10(doublet, 1H,-SO ₂ -CH=)	1H,=CH-COO-) 1H,-SO ₂ -CH=)	50.6	4.8 50.3	4.9
Phsch=chcooch ₂ 0	flüssig	3300 (OH) 1720 (-COO-) 1300,1140 (-SO ₂ -)	7.13 (doublet, 7.03 (doublet,	1H,=CH-COO-) 1H,-SO ₂ -CH=)	50.4	5.0 50.3	° 712.
Phsch=chcoo(ch ₂ ch ₂ o) ₂ H	flüssig	1710(-COO-) 1305,1148 (-SO ₂ -)	7.13(doublet, 6.5(doublet,	1H,=CH-COO-) 1H,-SO ₂ -CH=)	52.5	5.6 52.3	5.9
Phsch=chcoo(ch ₂ ch ₂ o) ₂ ch ₃	flüssig	1710(-COO-) 1320,1150 (-SO ₂ -)	7.25(doublet, lH,=CH-COO-) 6.83(doublet, lH,-SO ₂ -CH=)	1H,=CH-COO-) 1H,-SO ₂ -CH=)	53.4	5.9 53.5	ري 8
Phs-ch=chcoN CH ₂ CH ₂ OH	flüssig	3300(-OH) 1625(-CN-) 1318,1150 (-SO ₂ -)	7.03(doublet, lH,=CH-COO-) 6.87(doublet, lH,-SO ₂ -CH=)	1H,=CH-COO-) 1H,-SO ₂ -CH=)	52.4	5.6 52.2	5.7

Beispiel 17

Dieses Beispiel zeigt die antibiotischen Aktivitäten und die wachstumsverhindernden Wirkungen der Verbindungen gegen Grampositive und Gram-negative Mikroorganismen.

Entsprechend dem Untersuchungsverfahren unter Verwendung der mit den Verbindungen vermischten Agarkultur-Medien wurden die Konzentrationen der erfindungsgemäßen Verbindungen bestimmt, die erforderlich ist, um das Wachstum verschiedener Organismen zu verhindern.

1 ml einer Lösung je einer der Verbindungen mit einer vorbestimmten Konzentration, wie sie in den nachfolgenden Tabellen aufgeführt ist, wurde in eine Petre-Schale eingebracht und 19 ml eines vorher zur Verflüssigung erwärmten Sabouraud-Agarkultur-Mediums wurden der obigen Lösung zugesetzt und mit dieser gleichmäßig vermischt. Dann ließ man die Mischung abkühlen und sich verfestigen. Eine Platinschlinge einer Suspension, die eine Million Zellen eines Organismus pro einen ml enthielt, wurde auf die Oberfläche des Kulturmediums aufgebracht, worauf das Ganze in einer thermostatisch, bei 30°C gehaltenen Kammer 72 Stunden bebrütet wurde. Der Wachstumszustand des Organismus auf jedem Kulturmedium nach der Bebrütung wurde festgestellt, und die Minimalkonzentration der entsprechenden Verbindung, die notwendig ist, um das Wachstum des Organismus in dem Kulturmedium zu verhindern, wurde bestimmt.

Die Bezugssymbole, die in den nachfolgenden Tabellen aufgeführt sind, besitzen die folgende Bedeutung:

- +: Ein Wachstum war zu beobachten; eine wachstumsverhindernde Wirkung ließ sich nicht feststellen-
- t: In einem gewissZen Umfang war ein Wachstum zu beobachten; eine merkliche wachstumsverhindernde Wirkung war festzustellen.
- -: Ein Wachstum war nicht zu beobachten; eine vollständige Wachstumsverhindernde Wirkung war festzustellen.

						75-	•	2630	0947
	subtilis	100	ŧ	+	+1	+	+	+	+
Ver-		500		· +1	1	1	+	+	+1
on zur	Bacillus	1000	1	ı	. 1	8	1	ı	ı
Minimalkonzentration hütung des Wachstums	ureus	100	ı	+		+	+	+	+
malkon ing des	coccus (500	ŧ	1	ı	. 1	+	+	
Minima] hijtung	Staphylococcus aureus	0001	•	I	1	1	1		1
	1	Konzentration der Verbindungen (PPM)	2 ОН	2 он	(сн ₂ сн ₂ он) ₂	. (сн ₂ сн ₂ он) ₂	OH) ₂ dung	punp	ndung
	verbindung geman der Erfindung		n-C ₄ II ₉ -S-CH=CH-CH ₂ OH	n-C ₄ H ₉ -S-CH=CH-CH ₂ OH	n-c ₄ H ₉ -s-ch=chcon(ch ₂ ch ₂ oh)	n-c ₄ H ₉ -s-CH=CHCON (CH ₂ CH ₂ OH) ₂	n-C ₇ H ₁₅ CON(CH ₂ CH ₂ OH) ₂ Vergleichsverbindung	COONa COONA Vergleichsverbindung	но — Со ₂ с ₂ н ₅ Vergleichsverbindung

•					_76.	•	263	0947
-	ilis	20	,	+	•	+	+	4.
iùtung des	Bacillus subtilis	100	t		ł	+	. +	+
VerF	Baci	500	1	ı	1	+1	+	+1
zur	S				_			
tion	aureus	50	•	+ .	. 1		+	+
Minimalkonzentration zur Verhütung Wachstums	coccus	100	4	+		ı	+	+
Minimalko Wachstums	taphy	200	1	ı	ı	ŧ	+	,
M	Art des Organismus	Konzentration der Verbindungen(PPM)				•		
		Verbindung gemais der Erfindung	л-с ₁₂ H ₂₅ -s-сн=сн-соон	n-c ₁₂ H ₂₅ -s-ch=ch-cooh 0	n-c ₁₄ H ₂₉ -S-CH=CH-COOCH ₃	n-c ₁₄ H ₂₉ -S-CH=CH-COOCH ₃	COONA OH Vergle1chsverbindung	но-⟨ co ₂ c ₂ H ₅ verģleichsverbindunģ

					- 77-	1	
! !	nas	50	+	+	+	+	
Wachstums	domo	100	+	+ .	+	+	
	Pseudomonas aeruginosa	500	ı	+	+	+	
		50	,	+	+	+	
	Proteus vulgaris			i	. +	+	
	Pro Vul	500 100	,	t	+	1	
	ıia	50	1		+	+	
	Escherichia coli	100 50	t .	1	+	+	
Wachstums	Esch	500	1	ı	+	+1	
T	Art des Organismus	Konzentration der Verbindungen (PPM)					
	;		•				
-	-	Verbindung gemäß der Erfindung	n-c ₄ H ₉ -s-cH=CH-COOCH ₃	n-C ₄ H ₉ -S-CH=CH-COOCH ₃	COONA	Vergleichsverbingung HO \longrightarrow CO ₂ C ₂ H ₅	vergleichsverbindung

Verbindung gemäß Art des Organismus Escherichia Proteus Pseudomonas der Erflndung Verbindungen (PPM) 1000 500 100 1000 500 100 1000 500 100 1000 500 100 n-C4Hg-S-CH=CH-CH2OH - ± + + + + + + + + + + + + + + + +	•		Minima Wachst	konz	entr	Minimalkonzentration zur Wachstums	nr	Verhütung	1	des
CH ₂ OH CH ₂ OH CH ₂ OH CH ₂ OH CH ₂ OH CH ₂ OH CH ₂ OH Lindung		Art des Organismus	Esche coli	richi		Proteus vulgari	o.	Pseud aerug	lomona inosa	s a
Ho ² H2 Ho ² OH Andunā Andung	erbindung gemaß er Erfindung	Konzentration der Verbindungen (PPM)	1000			000 200	100			00
Hoghing Hoghing Hoghing	n-С ₄ н ₉ -S-СH=СH-СH ₂ ОН		1	+1	+		+	•	+	+
gunpu	n-C ₄ H ₉ -S-CH=CH-CH ₂ OH		i i	+	+	+	+	+	+	+
indung + - + + + + - +	, coona		+	+	+	+	+	+	+	+ 69
+ + + + + +	Vergleichsverbindung				•	•		•		
	но — со ₂ с ₂ н ₅		1	+1	+		+	+1	+	- ` +
	Vergleichsverbindung									

	1.1	1	_	1	ı	1	79- !	ŧ	ļ		1
		nas	100	+	+	+ 1	+	÷	+	+	+
<u>_</u>		Jomo 11no	500	. +	+	. +	+	+	·+	+	+
2630947		Pseudomonas aeruginosa	1000 500	1	+1	+	+	+	+	+	+1
26	. n i	ហ	100	+	+	+	+	+	+	+	+
	g des	Proteus vulgaris	500	1	+	+	+	+	. +	+	•
•	zur Verhütung	Pro vu	1000	ı		+	+	1	+	+1	ı
	Ver	ıia	100	+	+	+	+	+	+	+	+
	znz	rich	500	+1	+	+	+		ı	+	+1
	Minimalkonzentration Wachstums	Escherichia coli	1000	! ·	ı	+1	+	1,	1	+1	
	intre	ខ្ល	100	1	1	+	+	1	t	+	+
	onze	Bacillus subtilis	500	1	I	+1	+	1	. E	+	+1
	Minimalko Wachstums	Bac	1000		I .	ı	1	•	1	1 .	'
	Min	snoo	100	ı		1.	+	1		+	+
		1000	500	1	1		. 1	ı	1	+	•
		Staphylococcus aureus	1000	. 1	ŧ	•	ŧ	•	t	1 .	1
		snus	Verbindung gemäß der Konzentration der Erfindung	n-c4H ₉ -S-CH=CH-CH ₂ OH	о n-С ₆ H ₁₃ -S-СН=СН-СН ₂ ОН	n-C ₈ H ₁₇ -S-CH=CH-CH ₂ OH	о n-с ₁₀ ^H 21-S-СH=СH-СН ₂ ОН	о n-с ₁₂ H ₂₅ -S-СH=СH-СН ₂ ОН	о n-с ₁₄ H ₂₉ -S-СH=СH-СH ₂ ОН	COONA COONA Vergleichsverbindung	HO- CO2C2H5 Vergleichsverbindung
			> 🖫	_							

					T X Xa	Minimalko Wachstums	Minimalkonzentration Wachstums	entra	tion	zuz	zur Verhütung	າມີ tur		2630 <u>94</u>	20 4 p		
÷	Art		Staph	Staphylococcus aureus	ccus	Bac	Bacillus subtilis		Escherichia coli	ichi	a	Pro	Proteus vulgaris		Pseudomonas aeruginosa	domo	nas
r f	Verbinding gemais der Erfindung	Konzentration der Verbindungen PPM)	500	100	50	500	100 5	50 5	500 100	00 20		500 100	1 1		500	100	50
	CH3S-CH=CH-COOCH3	н3	+	+	+	+	+	+	+	+	+	+	+	+	1	ı	+
	n-c ₂ H ₅ -S-cH=CH-COOCH ₃	Эосн ³	+1	+	• +	1+	+	+	+1	. +	+	+1	+	+		+1	+
6	n-C ₃ H ₇ -S-CH=CH-COOCH ₃	осн ³	ı	+	+	ı	+		1	+	+	1	+	+	1	+	+
0988	$\frac{0}{1000}$ CH=CH-COOCH ₃	осн ₃	t	ł	١.	1	1	1			ı	ı	ı	ı	,	+	+
35/1	n-C ₅ H ₁₁ -S-CH=CH-COOCH ₃	соосн ₃	. 1	1	ı	ı		1	·	+	+	ı	1	1	+1	+	30 ⁺
	n-C ₆ H ₁₃ -S-CH=CH-COOCH ₃	200СН ₃	ı	1	ı	•				+	+	ī	t	1	+1	+	+
	n-C ₈ H ₁₇ -S-CH=CH-COOCH ₃	200СН ₃	1	ı	1	ı	ı		+1	+	+	1	+	+	+	+	+
	n-C ₁₀ H ₂₁ -S-CH=CH-COOCH ₃	-соосн ₃	ı	1	ı	1	ı		+1	+	+	•	+	+	+	+	+
	n-C ₁₂ H ₂₅ -S-CH=CH-COOCH ₃	-соосн ₃			ı	,	ı		1	+1	+	+1	+	+	+	+	_
•	n-C ₁₄ H ₂₉ -S-CH=CH-COOCH ₃	-соосн ₃	1	,	- 1			1	+	+	+	+	+	+	+	+	+
	n-c ₁₆ H ₃₃ -s-cH=CH-COOCH ₃	-соосн ₃	ı	1	ı	1	ı	1	+	+		+	+	+	+	· +	+

							263	30947	
+	+	+	+	+ T	-81-	+	+	+	
+	+	+	+	+	+	+	+	+	
+	+	+	+	+	ı	+	+1	+ 1	
+	+	+	+	+	1	+	+	+	
+	+	+	. +	+		1	ı	+1	
+	+	ı	+	+	·		ı	1	
. +	+	+	+	+	ı.	+	+	+	
+	+	+	+	+	1	+	ı	+1	
+	+	+1	+	. +	ı			1	
+	+ .	+	+	+	,	ı	ı	ï	
i	+ -	+	+	+	1	f	ı	1	
1	+	+1	1	1	1	ī	1	ı	
+1	+	+	+	+-	ı	ı	1	ı	
	+	+ .	+	+	i	t	t	1	
1	+		1	ı	٠ ١	ı	1	ı	
n-C, H, 7-S-CH=CH-COOCH3	COONA COONA Vergleichsverbindung	IO C COOC ₂ H ₅	n-С ₄ H ₉ -S-CH=CH-СООН	р n-С ₄ н ₉ -s-сн=сн-соома	$n-c_4H_9-s-cH=cH-coocH_3$	n-с ₄ н ₉ -s-сн=сн соо(сн ₂ сн ₂ о) ₂ сн ₃	$n-c_4H_9-s-cH=cH-coocH_2CHcH_2OH$	n-с ₄ н ₉ -s-сн=сн-соо-сн ₂ то он он	
0 	COONA COONA Vergleic	HO CC	0 1 n-C ₄ H ₉ -S-(0 n-C ₄ H ₉ -S-(0 n-c ₄ H ₉ -s-(n-C4H9-S-(n-C ₄ H ₉ -S-(n-C ₄ H ₉ -S-(

+	.	.	<u>. 2)</u> .	
+	+ +	+		
	ì	·	<u> </u>	
+1	+	+	+	
+	+	+	+	
+1	+	+	+ .	
ı		+		
+	+	+ .	+	
F	+	+	+	
t		+	+1	
. 1	l .	+	+ .	
ŧ	1	+	+	•
ı	•	+	+1	
į	- •	+	+	
ĵ	1	+	+	
		.	ı	
,	· .	•	•	
$n \sim c_4 H_9 - S - CH = CH - COO (CH_2 CH_2 O)_{10} H$	$n-c_4H_9-\frac{0}{s}-cH=cH-coo-cH_2$	COONa Vergleichsverbindung	$HO-C_2C_2H_5$ Vergleichsverbindung	

2630947

609885/1228

						*** **		• • • • • • • • • • • • • • • • • • • •		
-	188 100	1	ı	1	1	83-	,		3.094	
	ona osa 0 l	+	+	+	+	+ ;	+	+	+	+
	domor ginos 500	+	+	+	+	+	+	+	+	+
	Pseudomonas aeruginosa 1000 500 10	1	+	+	+	+1	+	+	+	
	100	+	+	+	+	+	+	+	+	+
des	Proteus vulgaris 00 500 l	•	+	+	+	+	+	+	+	+1
	Pr. vu 1000	ı	1	+1	+	ı	+	. +	+1	
zur Verhütung	0	+	+	+	+	+	+	+	+	+
ır Ve	srich 500	+1	+	+	+	+	+	+	+	+1
nz uo	Escherichia coli 1000 500 10	1	. 1	. 1	+1	1	+	+	+1	
rati	0	ı	+1	+	+	1	+	+	+	1
zent	ms Bacillus subtilis	1.	1	1	+	ı	ı	+	+1	1
Minimalkonzentration	tums Bac suk	1	1.	1	ı	1	1	1	ı	1
4inim	Wachstums occus Ba su 100 1000	ı	1	. 1	1	. 1	+	+	+	1
-	10cc 500	ı	1	1	ı	1	t	+	1	1
	Staphy aureus 1000	1	1	î	j	. ,1	1	1	1	1
	·				2					
•	Verbindungen	n-c ₄ H ₉ -s-cH=CH-CON(CH ₂ CH ₂ OH) ₂	$n-c_6H_{13}-s-ch=chcon(cH_2CH_2OH)_2$	$n-c_8H_{17}$ -S-CH=CHCON (CH ₂ CH ₂ OH) ₂	$n-c_{10}^{0}H_{21}^{-S-CH=CH-CON}(CH_{2}^{CH_{2}^{OH}})_{2}$	n-c ₁₂ H ₂₃ -S-CH=CHCON (CH ₂ CH ₂ OH) ₂	$n-c_{14}H_{20}-S-CH=CHCON (CH_2CH_2OH)_2$	n-c ₁₆ H ₃₂ -S-CH=CHCON(CH ₂ CH ₂ OH) ₂	n-c4H9-S-CH=CH-CONH2	n-c ₄ H ₉ -S-CH=CH-CONH ₂
•				6	8098	85/	1228			

	1	1	1		184	1-		63	3094	7
+	+	+	+	+	+		+ 1	- • •	+	1
+	+	+	+	+	+		+		+	
+1	ı	ı	+	+	+		+		+1	
+	+1	+	+	+	+		. +		+	
+			+	+	+		+		1	
ı			+1	. +	+		+1 .		ı	
+	+	+	+	+	+		+		+	
+ ·	+	+1	+	+	+		+		+1	
t	!	ı		+	+		+1		ı	
, +		1	+	+	+		+		+	
ı	ı	1	ı	ı	+1		+		+1	
ı	1	ı	1	,	ı		. 1		ı	
+	1	1		+	.+		+	İ	+	
	ı		,		+		+		1	
		ı			ι,	ļ	ŧ		1	·
•									•	
$n-C_4H_9-S-CH=CH-CONH_2$	$n-c_4H_9-s-cH=cH-coN < cH_3$	$n-C_4H_9-S-CH=CH-CON (CH_2CH_2OH)_2$	$n-C_6H_1$ -S-CH=CH-CON (CH ₂ CH ₂ OH) ₂	$n-c_4H_9-S-CH=CH-CONHCH_2CH_2SO_3Na$	$n-c_{11}H_{23}coN(cH_2cH_2oH)_2$	(.Vergleichsverbindung)	COONA COONA OH	(.Vergleichsverbindung)	но-{	(Vergleichsverbindung)

Beispiel 18

Dieses Beispiel zeigt die Versuchsergebnisse betreffend die wachstumsverhütenden Wirkungen verschiedener erfindungsgemäßer Verbindungen gegenüber Pilzen und Hefebakterien.

1 ml einer Lösung jeder dieser Verbindungen mit der in der folgenden Tabelle angegebenen Konzentration wurde zusammen mit 19 ml eines durch vorherige Erhitzung flüssiggemachten Agarkultur-Mediums nach Sabouraud in eine Petri-Schale von 9 cm Durchmesser eingefüllt, die in einem Autoklaven sterilisiert war, worauf die Lösungen gleichmäßig miteinander gemischt wurden. Dann ließ man sie sich in Form einer Platte verfestigen.

Nach dem allgemeinen Verfahren zur "Prüfung der Widerstandsfähigkeit gegen Schimmelpilze", das in der Japanischen Technischen Standardvorschrift (JIS) Nr. Z-2911 angegeben ist, wurde
jedes dieser Sabouraud-Kulturmedien jeweils mit einem Gehalt
an der in der nachfolgenden Tabelle angegebenen bestimmten Verbindung mit einer Platinschlinge einer Suspension geimpft, die
Sporen Penicillium Citrinum, Aspergillus Niger oder Trichophytonmentagrophytes oder einer Suspension von Candida Albicans enthielt, wobei es sich um eine repräsentative Hefe handelt. Die
Organsismen auf den Kultivierungsplatten wurden 5 Tage lang in
einer auf 25⁰ C gehaltenen Thermostatikkammer bebrütet. Nach dem
Ende der Bebrütungszeit wurde das Wachstum der Pilze und der
Hefe festgestellt, und die Minimalkonzentrationen der jeweiligen
Verbindungen, die zur Verhütung des Wachstums eines jeden Or-

ganismus erforderlich waren, wurden ermittelt, um die Wirkung der Verbindungen festzustellen

					,	- 27-			263	3094	7	,	
		50	+	+	+	+	+	+	.		1	+1	
	Candida albicans	100	+	+	+1	+	+	+1	.	,	1		
g des	Candida albican	200	+1	1	•	+	+	1		1	1	1	
Minimalkónzentration zur Verhütung Wachstums	Trichophyton mentagrophytes	50	+	+	+	+	+	1	ı	+1	+	· +	
sur 1	hophy	100	+1			1	1	ı	ı	1		+1	İ
tion 2	Trichophyton mentagrophyt	500	ŧ	1	l.	,	ı	ı	1	•	1	•	
nzentra	llus	50	+	+	+	+	+	+	+	+	+	+	
alkó tums	Aspergillus niger	100	+	+	+	+	+	+	+	+	+	+	
Minimalkó Wachstums	Aspe	500	+	+1	1	1	1	1	1	+1	+	+	
	mn 1	50	+	+ .	+	+	+	+	1	+	+	+	
	cill: inum	100	¥	+	+	+	+	ı	i	1	+	+	
	Penicillium citrinum	500	+	1	1	ı	+		1	1	+	+	
	Art des Organismus	4	CH ₃ -S-CH=CH-COOCH ₃	о n-с ₂ н ₅ -s-сн=сн-соосн ₃	n-c ₃ H ₇ -S-cH=CH-COOCH ₃	о n-с ₄ н ₉ -s-сн=сн-соосн ₃	n-c ₅ H ₁₁ -S-CH=CH-COOCH ₃	n-c ₆ H ₁₃ -s-cH=CH-COOCH ₃	n-c ₈ H ₁₇ -s-cH=CH-COOCH ₃	n-c ₁₀ H ₂₁ -s-cH=CH-COOCH ₃	n-c ₁₂ H ₂₅ -S-CH=CH-COOCH ₃	n-C ₁₄ H ₂₉ -S-CH=CH-COOCH ₃	

			i	2630947
+	+	+	+	. 88 -
+	+	+	+	
1	+	+	į.	
			_	
+	+	+	+ .	
+	+	+	+	
1	Į	1	i	
. +	+	+	+	
+	+	+	+	
+	+	+ .	+	·
			•	
+	+	+	+	
+	+	+ .	+	·
+	+	+ .	ı	•
				-
			~	
		tassium sorbate (:Vergleichsverbindung	hydrous sodium acetate (Vergleichsverbindung	
осн	осн	binc	acet bind	
H-CC	11-00	bate	ium Sver	·
CH=C	CH=C	sor	sod	
0= 0	0=-2-	sium ergl	cous rg1	
6 ^H 3	n-C ₁₈ H ₃₇ -S-CH=CII-COOCH ₃	Potassium sorbate (:Vergleichsver	Anhydrous sodium acetate (Vergleichsverbindung	
. , о п-с ₁₆ н ₃₃ -S-сн=сн-соосн ₃	n-C ₁	Pc	Ar	

l	1			1		-	89-		2,6	30	94	7
	S	100	+	+	+		+					
	Candida albicans	500	ı	. +1	+		1					
	Can alb	1000 500 100	1	•	+		1					
ır Verhütung des	Trichophyton mentagrophytes	1000 500 100	1	1	+ 1		+ 1 -					
Minimalkonzentration zur Verhütung des		1000 200 100	1	+ + 1	+ + +ı		+	*	·			
Minima	Wachst Penicillium citrinum	er 1) 1000 500 100	1	+	++++		1					
	Art des Organismus	Verbindung gemäß der Konzentration der Erfindung Verbindungen PPM)	о n-с ₈ н ₁₇ -s-сн=сн-сн ₂ он	$n-c_8H_{17}-S-CH=CH-CH_2OH$	Potassium sorbate	(Vergleichsverbindung)	Anhydrous sodium acetate	(Vergleichsverbindung)				

ı	1	I	i	1		90-	Ί	2630	0947	
-		50	+	1	+	+	+	+	+	
SE	ida cans	100	+1		+1	+	+	+	+1	
Wachstums	Candida albicans	500			,	ı	+	+		
Wac										
<u>ក</u> ខ	n tes							:		
tung	hy to	50	+			1	+	+	+	
zur Verhütung	Trichophyton mentagrophytes	100	+	. 1	,	ı		+	ı	
7	Tri	500		ı	ı	ı	ı	,	ı	
Minimalkonzentration	llus	50	+	+.	+	+	+	+	+	
entr	Aspergillus niger	100	+	+	1	ı	+	+	+	
konz	Asper	500	+	1	,	-1	ı		t	
1mal	_									
Min	Penicillium citrinum	50	+	+	+	+	+	+	+	
	Penicill citrinum	100	. +	+	+	1	+	+	+	
	i	500	+	1 '		ŀ	1	+1	1	
	Art des Organismus	Konzentration der Verbindungen (PPM)							- CH,	7
	gant	ion Jen () 3CH	ОН	OH) 10H	٥-٢	CH ₃
	s Or	trat idunc			CH ₂ 0	CHCH ₂		CH ₂ 0	_\-\	
	de	Konzentration Verbindungen	Na	CH ₃	(CH ₂	CH ₂ C	-CH2	(CH ₂	-сн2-	
	Art	1	00 0	007	00 1	Ö 	-000	000	-000	
		3 de.	н=сн	н=сн	Н=СН	H=CH	H=CH	H=CH	I=CH	
		gemäß der	0 n-C ₄ H ₉ -S-CH=CH-COONa	n-C ₄ H ₉ -S-CH=CH-COOCH ₃	n-C ₄ H ₉ -S-CH=CH-COO (CH ₂ CH ₂ O) ₃ CH	n-Ç ₄ H ₉ -S-CH=CH-COOCH ₂ CHCH ₂ OH	n-с ₄ н ₉ -3-сн=сн-соо-сн ₂ — он	n-C ₄ H ₉ -S-CH=CH-COO(CH ₂ CH ₂ O) ₁₀ H	n-с ₄ н ₉ -s-сп=сн-соо-сн ₂	
†		מ ו	C4H9	C4H9	C4 H9	74H9	24H9.	-4 H 9-	74 H9-	
		indu ndun	-u	Ē	1	ה ה)-u) L	n-(ŀ
		Verbindung Erfindung								
		-								

Potassium sorbate	+	+	+	+	+	+	•	1	+	+	+	+	+	
(Vergleichsverbindung.)	•					-								1
Inhydrous sodium acetate		+	+	+	+	+		ı	+	+	ı	+	+	
(:Vergleichsverbindung)														

2630947

609885/1228

Die erfindungsgemäßen Verbindungen besitzen mikrobentötende Wirkungen gegenüber einem oder mehreren Bakterien, Pilzen und Hefen. Sie können als Schutzmittel und Antiseptika, in kosmetischen Ölen, Lotionen und Cremes sowie in Zusammensetzungen von pharmazeutischen Ölen, Lotionen und Cremes für lokale Anwendungen eingesetzt werden. Sie lassen sich anstelle von Schutzmitteln und Antiseptika einsetzen, die üblicherweise für derartige Zusammensetzungen verwendet werden und zwar etwa in den gleichen Konzentrationen. Im besonderen lassen sie sich anstelle von Natriumsalicylat, Äthylparaben, Kaliumsorbat und wasserfreiem Natriumacetat verwenden, die die üblichen Schutzmittel in herkömmlichen Zusammensetzungen darstellen, in welchen diese Schutzmittel eingesetzt werden.

<u>Patentansprüche</u>

2630947

(1.) Verbindung der Formel:

 $RS(0)_n$ -CH=CHX

inwelcher R Alkyl oder Alkenyl mit 1 bis 20 Kohlenstoffatomen oder eine Arylgruppe, n 1 oder 2, und X -CH₂OH oder -COY bedeutet, wobei Y (a) eine Hydroxylgruppe oder ein Alkalimetall, ein Alkalierdmetall oder dessen NH_4 Salz, (b) eine Alkoxygruppe, eine Alkoxyethoxygruppe oder eine Alkoxypolyäthenoxygruppe mit 1 bis 20 Kohlenstoffatomen in der Alkylgruppe, (c) eine hydroxylsubstituierte Alkoxygruppe gebildet durch die Entfernung eines Wasserstoffatomes aus einer Hydroxylgruppe eines mehrwertigen Alkohols, der eine oder mehrere Ätherbindungen, gebildet durch intramolekulare oder intermolekulare Dehydrierung aufweisen kann, oder (d) -NR'R'' darstellt, wobei R' ein Wasserstoffatom, ein Alkyl mit 1 bis 20 Kohlenstoffatomen oder ein Hydroxyalkyl mit 2 bis 6 Kohlenstoffatomen und R'' Wasserstoffalkyl mit 1 bis 20 Kohlenstoffatomen oder einer substituierten Alkylgruppe mit 2 bis 6 Kohlenstoffatomen darstellt, wobei der Substitutionsbestandteil aus einer Hydroxylgruppe und einer Sulfogruppe in der Form eines Salzes gebildet wird.

- 2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß R eine gradkettige Alkyl- cder Alkenylgruppe mit 3 bis 18 Kohlenstoffatomen ist.
- Verbindung nach Anspruch 2, dadurch gekennzeichnet, daß n gleich 1 ist.

- 94 -

- 4. Verbindung nach Anspruch 2, dadurch gekennzeichnet, daß
 X gleich CH₂OH ist.
- 5. Verbindung nach Anspruch 3, dadurch gekennzeichnet, daß
 X gleich CH₂OH ist.
- 6. Verbindung nach Anspruch 2, dadurch gekennzeichnet, daß
 X gleich -COY ist.
- 7. Eine Verbindung nach Anspruch 3, dadurch gekennzeichnet, daß X gleich -COY ist.
- 8. Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß
 Y eine Hadroxylgruppe oder ein Alkalimetallsalz hiervon
 ist.
- 9. Verbindung nach Anspruch 7, dadurch gekennzeichnet, daß Y eine Hydroxylgruppe oder ein Alkalimetallsalz hiervon ist.
- 10. Eine Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß Y aus einer Alkoxygruppe mit einem bis 3 Kohlenstoffatomen, einer Alkoxyäthoxy mit eins bis 3 Kohlenstoffatomen in dem Alkylbestandteil, einer Alkoxydiäthenoxygruppe mit eins bis 3 Kohlenstoffatomen in dem Alkylbestandteil,

oder

11. Verbindung nach Anspruch 7, dadurch gekennzeichnet, daß Y aus einer Alkoxygruppe mit einem bis 3 Kohlenstoffatomen, einer Alkoxyäthoxy mit eins bis 3 Kohlenstoffatomen in dem Alkylbestandteil, einer Alkoxydiäthenoxygruppe mit eins bis 3 Kohlenstoffatomen in dem Alkylbestandteil,

OH

$$-OCH_2-CH-CH_2OH$$
, $-OCH_2CH$
 $+OCH$
 oder

- 12. Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß Y gleich -NR'R'' ist.
- 13. Verbindung nach Anspruch 7, dadurch gekennzeichnet, daß
 Y gleich -NR'R'' ist.
- 14. Verbindung nach Anspruch 12, dadurch gekennzeichnet, daß R' aus Wasserstoff, Alkyl mit 1 bis 3 Kohlenstoffatomen oder einer Hydroxyalkylgruppe mit 2 bis 3 Kohlenstoffatomen besteht, während R'' aus Wasserstoff, Alkyl mit 1 bis 3 Kohlenstoffatomen, Hydroxyalkyl mit 2 bis 3 Kohlenstoffatomen oder einer substituierten Alkylgruppe mit 2 bis 3 Kohlenstoffatomen besteht, wobei der Substitutionsbestandteil aus -SO₃M gebildet wird, wobei M ein Alkalimetall ist, darstellt.
- 15. Verbindung nach Anspruch 13, dadurch gekennzeichnet, daß
 R¹ aus Wasserstoff, Alkyl mit 1 bis 3 Kohlenstoffatomen
 oder einer Hydroxyalkylgruppe mit 2 bis 3 Kohlenstoffatomen
 besteht, während R¹¹ aus Wasserstoff, Alkyl mit 1 bis 3
 Kohlenstoffatomen, Hydroxyalkyl mit 2 bis 3 Kohlenstoffato
 men oder einer substituierten Alkylgruppe mit 2 bis 3 Kohlenstoffatomen besteht, wobei der Substitutionsbestandteil
 aus -SO₃M gebildet wird, wobei M ein Alkalimetall ist, darstellt.

16. Verfahren zur Herstellung einer Verbindung gemäß Anspruch
1, dadurch gekennzeichnet, daß man eine Ausgangsverbindung
mit der Formel:

RS-CH=CHX

mit einem anorganischen oder organischen Peroxyd oxidiert.

- 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß das anorganische oder organische Peroxyd Wasserstoffperoxys, Natriummetaperjodat, m-Chlorbenzoesäure, Perbenzoesäure oder Peressigsäure ist.
- 18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man 1,1 bis 1,5 Mole des anorganischen oder organischen Peroxyds pro 1 Mol der Ausgangsverbindung verwendet, um eine Verbindung herzustellen, in welcher n gleich 1 ist.
- 19. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man
 2 bis 4 Mole des anorganischen oder organischen Peroxyds pro
 Mol der Ausgangsverbindung verwendet, um eine Verbindung herzustellen, in welcher n gleich 2 ist.