THE UNIVERSITY OF SYDNEY MATH1901/06 DIFFERENTIAL CALCULUS (ADVANCED)

Semester 1 Short answers to exam questions

2008

- 1. (a) Annulus between two concentric circles, including the circles themselves, radii 1 and 2, centre i on imaginary axis, inner circle passing through the origin.
 - (b) Roots: z = 1, -i, $(i \pm \sqrt{3})/2$, or z = 1, $e^{-\pi i/2}$, $e^{\pi i/6}$, $e^{5\pi i/6}$.
 - (c) $g: \mathbf{C} \to \mathbf{C}$ is not injective because nonzero complex numbers have two square roots and infinitely many logarithms. It is enough to give one failure of the horizontal line test: g(0) = g(2) or g(z) = g(2-z).
 - (d) $x^2 2x$ is increasing on $[1, \infty)$, and so also is $f(x) = e^{x^2 2x}$. So f is injective. Its range is the interval $[e^{-1}, \infty)$.
- **2**. (a) (i). Limit is 2. (Use the squeeze law on $x^2 \cos(1/x)$.) (ii). Limit is 3. (Rationalise numerator or use binomial series.)
 - (b) Let $f(x) = x \sinh x \cosh x$, continuous on [1,2]. According to IVT, f(1) < 0 and f(2) > 0 imply that f(x) has at least one root in (1,2). But f(x) is increasing for x > 0 (because $f'(x) = x \cosh x > 0$), and so f(x) has exactly one root in (1,2).
 - (c) Given $\epsilon > 0$, there exists $\delta > 0$ such that $\ell \epsilon < f(x) < \ell + \epsilon$ whenever $0 < |x-a| < \delta$. If $\ell < 0$, we may choose $\epsilon = -\ell/2$. This forces $f(x) < \ell/2 < 0$ on the intervals $(a, a + \delta)$ and $(a \delta, a)$, contradicting the statement that $f(x) \geq 0$ for all x. This proves $\ell \geq 0$.
- 3. (a) (i). Limit is 0. (Apply ∞/∞ version of l'Hôpital's rule to $(\ln x)/(x^{-1})$.) (ii). For n > 1, $x^n \ln x = x^{n-1} \cdot x \ln x$. Both factors tend to zero.
 - (b) $\sinh x/\cosh x = (x + x^3/3! + \dots)/(1 + x^2/2! + \dots) = x x^3/3 + \dots,$ so $T_3(x)$ for $\tanh x$ is $x x^3/3$.
 - (c) (i). $T_n(x) = 1 + x + x^2/2! + x^3/3! + \dots + x^n/n!$. $R_n(x) = e^x T_n(x) = e^c x^{n+1}/(n+1)!$, for some c between 0 and x.
 - (ii). $R_n(1) = e T_n(1) = e^c / (n+1)!$, 0 < c < 1. So $1/(n+1)! < e - T_n(1) < 3/(n+1)!$. 6! = 720 implies n = 5.
- 4. (a) (i). Level curves $c=\pm 1$ rectangular hyperbolae, c=0 pair of straight lines.
 - (ii). Tangent plane: z = 2x 4y + 3.
 - (iii). $\nabla f = 2x \, \mathbf{i} 2y \, \mathbf{j}$. Greatest slope $2\sqrt{5}$, direction $(\mathbf{i} 2\mathbf{j})/\sqrt{5}$ (or $\mathbf{i} 2\mathbf{j}$).
 - (b) (i). $\left|(r\cos\theta)/(r^{2p})\right| \le r^{1-2p} \to 0$ as $r \to 0^+$ (on all paths) whenever p < 1/2.
 - (ii). Different limits on different paths (for example, the axes).