Ecole Nationale Supérieure de Techniques Avancées ParisTech MAP-PRB2 - Martingales et Algorithmes Stochastiques Corrigé de la PC3 - 14 décembre 2017

1. Soit $(M_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale de carré intégrable et à accroissements indépendants. On pose $\sigma_0^2 = \text{Var}(M_0)$ et, pour tout $k \ge 1$, $\sigma_k^2 = \text{Var}(M_k - M_{k-1})$.

(a) On remarque que pour tout $n \geq 1$,

$$M_n = M_0 + \sum_{k=1}^{n} (M_k - M_{k-1}).$$
(1)

Rappel:

 $\overline{\text{Soit }(\Omega,\mathcal{F},\mathbb{P})}$ un espace de probabilité.

- Une variable aléatoire X à valeurs dans \mathbb{R}^d , $d \in \mathbb{N}^*$ est indépendante d'une sous-tribu \mathcal{G} de \mathcal{F} si et seulement si $\sigma(X)$ est indépendante de \mathcal{G} .
- \bullet Si $\mathcal G$ et $\mathcal H$ sont deux sous-tribus de $\mathcal F$ indépendantes, X et Y deux variables aléatoires respectivement \mathcal{G} -mesurable et \mathcal{H} -mesurable, alors les v.a. X et Y sont indépendantes.

D'après l'énoncé, quel que soit $k \geq 2$, la variable aléatoire $M_k - M_{k-1}$ est indépendante de la tribu $\mathcal{F}_{k-1} = \sigma(M_0, \cdots, M_{k-1})$, soit $\sigma(M_k - M_{k-1})$ est indépendante de $\sigma(M_0, \cdots, M_{k-1})$, d'après le premier point du rappel précédent.

Aussi, $M_k - M_{k-1}$ est indépendante des v.a. $M_0, \dots, M_{k-1}, k \geq 2$, puisque $M_k - M_{k-1}$ est $\sigma(M_k-M_{k-1})$ - mesurable et M_0,\cdots,M_{k-1} sont des variables aléatoires $\sigma(M_0,\cdots,M_{k-1})$ - mesurables. Utilisant le lemme de regroupement (cf corrigé question 2., Exercice 2 de la PC2), $M_k - M_{k-1}$ est indépendante de $f_j(M_0, \dots, M_{k-1})$ avec $f_j: \mathbb{R}^k \to \mathbb{R}$ définie par : $f_j(x_0, \dots, x_{k-1}) = x_j - x_{j-1}$, pour $x = (x_0, \dots, x_{j-1}, x_j, \dots, x_{k-1}) \in \mathbb{R}^k$, $1 \le j \le k-1$. $M_k - M_{k-1}$ est alors indépendante de $M_j - M_{j-1}$, pour tout $1 \le j \le k-1$.

Par ailleurs, $M_1 - M_0$ est indépendante de la tribu $\mathcal{F}_0 = \sigma(M_0)$, de sorte que $M_1 - M_0$ est indépendante $de M_0$.

Rappel : Si Y_1, \dots, Y_n sont n variables aléatoires indépendantes de carré intégrable, alors :

$$\operatorname{Var}(Y_1 + \dots + Y_n) = \operatorname{Var}(Y_1) + \dots + \operatorname{Var}(Y_n)$$
.

Tenant compte de la relation (1), il apparaît alors que pour tout $n \geq 1$, M_n s'écrit comme la somme de variables aléatoires indépendantes; on en déduit la relation cherchée, soit quel que soit $n \in \mathbb{N}$,

> $Var(M_n) = Var(M_0) + \sum_{k=1}^{n} Var(M_k - M_{k-1}) = \sum_{k=0}^{n} \sigma_k^2.$ (2)

(b) Rappel : Théorème de décomposition de Doob et crochet d'une martingale de carré intégrable

• Soit $(X_n)_{n\in\mathbb{N}}$ une sous-martingale relativement à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. Il existe une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale $(M_n)_{n \in \mathbb{N}}$ et un processus croissant $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - prévisible $(A_n)_{n\in\mathbb{N}}$ nul en 0 tels que, pour tout $n\in\mathbb{N}$,

$$X_n = M_n + A_n .$$

La décomposition précédente est unique au sens où si $(M_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale et $(A_n)_{n\in\mathbb{N}}$ un processus croissant $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - prévisible nul en 0 tels que, quel que soit $n\in\mathbb{N}$,

$$X_{n}=M_{n}^{'}+A_{n}^{'}\,,$$

alors, pour tout $n \in \mathbb{N}$,

$$M_n = M'_n$$
 et $A_n = A'_n$, \mathbb{P} – p.s..

Le processus $(A_n)_{n\in\mathbb{N}}$ est appelé le **compensateur** de la sous-martingale $(X_n)_{n\in\mathbb{N}}$. De plus, on a, quel que soit $n \in \mathbb{N}$,

$$A_0 = 0 \text{ et } \forall n \ge 1, A_n = \sum_{k=1}^n \mathbb{E}[X_k - X_{k-1} | \mathcal{F}_{k-1}],$$

$$M_0 = X_0 \text{ et } \forall n \ge 1, M_n = X_n - A_n = X_n - \sum_{k=1}^n \mathbb{E}[X_k - X_{k-1} | \mathcal{F}_{k-1}].$$

• Soit $(M_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale de carré intégrable, c'est-à-dire telle que $\mathbb{E}[M_n^2] < +\infty$, pour tout $n \in \mathbb{N}$. Il résulte de l'inégalité de Jensen conditionnelle que $(M_n^2)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -sous-martingale.

Le crochet noté $(\langle M \rangle_n)_{n \in \mathbb{N}}$ de la martingale de carré intégrable $(M_n)_{n \in \mathbb{N}}$ est le compensateur de la sous-martingale $(M_n^2)_{n \in \mathbb{N}}$.

 $(M_n^2 - \langle M \rangle_n)_{n \in \mathbb{N}}$ est alors une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale et $(\langle M \rangle_n)_{n \in \mathbb{N}}$ est un processus croissant $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - prévisible tel que $\langle M \rangle_0 = 0$ et vérifiant d'après le cours, pour tout $n \geq 1$:

$$< M>_n = \sum_{k=0}^{n-1} \mathbb{E}[(M_{k+1} - M_k)^2 | \mathcal{F}_k].$$

 $(M_n)_{n\in\mathbb{N}}$ étant une martingale de carré intégrable, son crochet noté $(< M>_n)_{n\in\mathbb{N}}$ est défini comme l'unique processus croissant prévisible nul en 0 tel que $(M_n^2-< M>_n)_{n\in\mathbb{N}}$ soit une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.

Par ailleurs, il est caractérisé par $< M >_0 = 0$ et pour tout $n \ge 1$:

$$\langle M \rangle_n = \sum_{k=0}^{n-1} \mathbb{E}[(M_{k+1} - M_k)^2 | \mathcal{F}_k].$$
 (3)

Par hypothèse, $M_{k+1}-M_k$ est indépendante de la tribu \mathcal{F}_k , pour tout $k \in \{0, \dots, n-1\}$, il vient :

$$\mathbb{E}[(M_{k+1} - M_k)^2 | \mathcal{F}_k] = \mathbb{E}[(M_{k+1} - M_k)^2], 0 \le k \le n - 1.$$
(4)

Utilisant la propriété de martingale du processus $(M_n)_{n\in\mathbb{N}}$, les variables aléatoires $M_{k+1}-M_k$ sont centrées puisque quel que soit $k\in\{0,\cdots,n-1\}$, $\mathbb{E}[M_{k+1}]=\mathbb{E}[M_k]$. On en déduit que :

$$\mathbb{E}[(M_{k+1} - M_k)^2] = \text{Var}(M_{k+1} - M_k) = \sigma_{k+1}^2, 0 \le k \le n - 1.$$
 (5)

Combinant les égalités (3), (4) et (5), nous trouvons $\langle M \rangle_0 = 0$ et pour tout $n \geq 1$,

$$\langle M \rangle_n = \sum_{k=0}^{n-1} \sigma_{k+1}^2 = \sum_{k=1}^n \sigma_k^2.$$
 (6)

2. Soit $(M_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale gaussienne, c'est-à-dire telle que pour tout $n\in\mathbb{N}$, le vecteur (M_0,\cdots,M_n) soit gaussien.

Rappel: Vecteurs gaussiens

- Un vecteur aléatoire (X_0, \dots, X_n) est dit **gaussien**, si pour tout $(u_0, \dots, u_n) \in \mathbb{R}^{n+1}$, $\sum_{k=0}^n u_k X_k$ est une variable aléatoire gaussienne. Choisissant $u_k = 1$, quel que soit $k \in \{0, \dots, n\}$ et $u_j = 0$, pour tout $j \in \{0, \dots, n\}$ tel que $j \neq k$, X_k est alors une variable aléatoire gausienne.
- Si X est un vecteur aléatoire à valeurs dans \mathbb{R}^d , $d \ge 1$ et Y = a + M X, où $a \in \mathbb{R}^n$, $n \ge 1$ et M est une matrice à coefficients réels de taille $n \times d$, alors toute combinaison linéaire des coordonnées de X est une combinaison linéaire des coordonnées de Y à une constante près. Ainsi, si X est gaussien, Y l'est aussi et on obtient la stabilité du caractère gaussien d'un vecteur aléatoire par transformation linéaire.
- Si deux variables aléatoires X et Y à valeurs respectivement dans \mathbb{R}^m et \mathbb{R}^d forment un couple (X,Y) gaussien, elles sont indépendantes si et seulement si $\text{Cov}(X_i,Y_j) = \mathbb{E}[X_iY_j] \mathbb{E}[X_i]\mathbb{E}[Y_j] = 0$, pour tout $(i,j) \in \{1,\cdots,m\} \times \{1,\cdots,d\}$.
- (a) Il s'agit de démontrer que pour tout $n \in \mathbb{N}$, la variable aléatoire $M_{n+1} M_n$ est indépendante de la tribu \mathcal{F}_n . Comme $\mathcal{F}_n = \sigma(M_0, \dots, M_n)$, il suffit de montrer que $M_{n+1} M_n$ est indépendante du vecteur aléatoire (M_0, \dots, M_n) .

$$\text{Quel que soit } n \in \mathbb{N} \,, \, \text{on a} : \begin{pmatrix} M_0 \\ M_1 \\ \vdots \\ M_n \\ M_{n+1} - M_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} M_0 \\ M_1 \\ \vdots \\ M_n \\ M_{n+1} \end{pmatrix}$$

Par hypothèse, $(M_0, \dots, M_n, M_{n+1})$ est un vecteur gaussien, pour tout $n \in \mathbb{N}$. Il en est de même alors du vecteur $(M_0, \dots, M_n, M_{n+1} - M_n)$ puisqu'il est obtenu à partir d'une transformation linéaire du vecteur $(M_0, \dots, M_n, M_{n+1})$.

Compte tenu du rappel précédent du cours de probabilités de 1ère année, $M_{n+1}-M_n$ sera indépendante de (M_0, \dots, M_n) si et seulement si $Cov(M_k, M_{n+1}-M_n)=0$, pour tout $k \in \{0, \dots, n\}$.

Or, la variable aléatoire $M_{n+1} - M_n$ étant centrée d'après la propriété de martingale vérifiée par le processus $(M_n)_{n \in \mathbb{N}}$, il vient : $\forall k \in \{0, \dots, n\}$,

$$Cov(M_k, M_{n+1} - M_n) = \mathbb{E}[M_k(M_{n+1} - M_n)] - \mathbb{E}[M_k] \mathbb{E}[M_{n+1} - M_n] = \mathbb{E}[M_k(M_{n+1} - M_n)].$$

Il suffit donc de montrer que, quel que soit $k \in \{0, \dots, n\}$,

$$\mathbb{E}[M_k(M_{n+1}-M_n)]=0.$$

Mais, en utilisant une propriété des espérances conditionnelles, on obtient alors, pour tout $k \in \{0, \dots, n\}$:

$$\mathbb{E}[M_k(M_{n+1} - M_n)] = \mathbb{E}[\mathbb{E}[M_k(M_{n+1} - M_n)]|\mathcal{F}_n],$$

$$= \mathbb{E}[M_k\mathbb{E}[(M_{n+1} - M_n)|\mathcal{F}_n]], \text{ car } M_k \text{ est } \mathcal{F}_k \text{ - donc } \mathcal{F}_n \text{ - mesurable},$$

$$= 0, \text{ puisque } (M_n)_{n \in \mathbb{N}} \text{ est une } (\mathcal{F}_n)_{n \in \mathbb{N}} \text{ - martingale}.$$

On en déduit que pour tout $n \in \mathbb{N}$, la variable aléatoire $M_{n+1} - M_n$ est indépendante de (M_0, \dots, M_n) et la martingale $(M_n)_{n \in \mathbb{N}}$ est alors à accroissements indépendants.

(b) $(M_n)_{n\in\mathbb{N}}$ étant une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale, M_n est \mathcal{F}_n -mesurable pour tout $n\in\mathbb{N}$ et par définition, $< M>_n$ est \mathcal{F}_{n-1} donc \mathcal{F}_n -mesurable; ainsi Z_n^λ est \mathcal{F}_n -mesurable, pour tout $n\in\mathbb{N}$, puisque la fonction $(x,y)\mapsto e^{\lambda x-\frac{\lambda^2y}{2}}, (x,y)\in\mathbb{R}\times\mathbb{R}^+$, est continue donc borélienne.

Rappel : Transformée de Laplace d'une variable aléatoire gaussienne.

$$Si X \hookrightarrow \mathcal{N}(m, \sigma^2)$$
, alors : $\forall t \in \mathbb{R}$, $\mathbb{E}[e^{tX}] = e^{t m + \frac{\sigma^2 t^2}{2}}$.

Par ailleurs, comme $< M >_n \ge 0$, quel que soit $n \in \mathbb{N}$, $e^{-\frac{\lambda^2 < M >_n}{2}} \le 1$ et :

$$\mathbb{E}[Z_n^{\lambda}] \leq \mathbb{E}[e^{\lambda M_n}] < +\infty \,,$$

car M_n est une variable aléatoire gaussienne. On en déduit que Z_n^{λ} , $n \in \mathbb{N}$ est une variable aléatoire intégrable.

De plus, pour tout $n \in \mathbb{N}$, on a :

$$\mathbb{E}[e^{\lambda M_{n+1} - \frac{\lambda^2 < M >_{n+1}}{2}} | \mathcal{F}_n] = e^{\lambda M_n - \frac{\lambda^2 < M >_{n+1}}{2}} \mathbb{E}[e^{\lambda (M_{n+1} - M_n)} | \mathcal{F}_n], \tag{7}$$

car M_n et $< M >_{n+1}$ sont \mathcal{F}_n - mesurables.

Mais, utilisant que $M_{n+1}-M_n$ est indépendante de la tribu \mathcal{F}_n , il vient :

$$\mathbb{E}[e^{\lambda(M_{n+1}-M_n)}|\mathcal{F}_n] = \mathbb{E}[e^{\lambda(M_{n+1}-M_n)}]. \tag{8}$$

Le vecteur $(M_0, \ldots, M_n, M_{n+1})$ est gaussien, ainsi pour tout $(u_0, \ldots, u_n, u_{n+1}) \in \mathbb{R}^{n+2}$, $\sum_{k=0}^{n+2} u_k M_k$ est

une gaussienne. Choisissant $u_n = -1$, $u_{n+1} = 1$ et $u_k = 0$, pour tout $k \in \{0, \dots, n-1\}$, $M_{n+1} - M_n$ est donc une variable aléatoire gausienne; elle est, de plus, centrée et de variance σ_{n+1}^2 , sa transformée de Laplace est alors donnée par :

$$\mathbb{E}[e^{\lambda(M_{n+1}-M_n)}] = e^{\frac{\lambda^2 \sigma_{n+1}^2}{2}}, n \in \mathbb{N}.$$
(9)

 $(M_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale gaussienne, elle est donc en particulier de carré intégrable. D'après la question $\mathbf{1}$. (b) et l'expression trouvée en (6) pour le crochet $< M >_n$, on a alors, pour tout $n \in \mathbb{N}$:

$$< M>_{n+1} - < M>_n = \sigma_{n+1}^2$$
 (10)

Combinant (7), (8), (9) et (10), on obtient, quel que soit $n \in \mathbb{N}$:

$$\mathbb{E}[e^{\lambda M_{n+1} - \frac{\lambda^2 < M >_{n+1}}{2}} | \mathcal{F}_n] = e^{\lambda M_n - \frac{\lambda^2 < M >_n}{2}}.$$

Ainsi, pour tout $\lambda \in \mathbb{R}$ fixé, le processus $(Z_n^{\lambda} = e^{\lambda M_n - \frac{\lambda^2 < M > n}{2}})_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale.

Exercice 2: La fonction "signe" est défini pour tout $x \in \mathbb{R}$ comme suit :

$$sgn(x) = \begin{cases} 1, & \text{si } x > 0 \\ 0, & \text{si } x = 0 \\ -1, & \text{si } x < 0 \end{cases}$$

1. On a $\mathbb{E}[X_1] = 1 \times \mathbb{P}(X_1 = 1) + (-1) \times \mathbb{P}(X_1 = -1) = 0$.

Par ailleurs, $\mathbb{E}[X_1^2] = 1^2 \times \mathbb{P}(X_1 = 1) + (-1)^2 \times \mathbb{P}(X_1 = -1) = 1 < +\infty$.

 $S_0 = 0$ et pour tout $n \ge 1$, S_n est \mathcal{F}_n -mesurable, d'après la question 1. de l'Exercice 1 de la PC2. Par ailleurs, $(S_n)_{n \in \mathbb{N}}$ est un processus intégrable.

De plus, quel que soit $n \in \mathbb{N}$, $S_{n+1} = S_n + X_{n+1}$ et :

$$\begin{split} \mathbb{E}[S_{n+1}|\mathcal{F}_n] &= \mathbb{E}[S_n|\mathcal{F}_n] + \mathbb{E}[X_{n+1}|\mathcal{F}_n] \,, \text{ en utilisant la linéarité de l'espérance conditionnelle,} \\ &= S_n + \mathbb{E}[X_{n+1}|\mathcal{F}_n] \,, \text{ car } S_n \text{ est } \mathcal{F}_n \text{ -mesurable,} \\ &= S_n + \mathbb{E}[X_{n+1}] \,, \text{ vu que } X_{n+1} \text{ est indépendante de } \mathcal{F}_n \,, \\ &= S_n \,. \end{split}$$

puisque $\mathbb{E}[X_{n+1}] = \mathbb{E}[X_1] = 0$.

Ainsi $(S_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.

Par ailleurs, en utilisant l'inégalité vectorielle :

$$|x_1 + \ldots + x_l|^2 \le l^2(|x_1|^2 + \ldots + |x_l|^2)$$
,

valide quel que soit $l \ge 1$ et $(x_1, \ldots, x_l) \in \mathbb{R}^l$, on obtient, pour tout $n \ge 1$:

$$\mathbb{E}[|S_n|^2] \le n^2 \sum_{k=1}^n \mathbb{E}[X_k^2] < +\infty,$$

puisque quel que soit $k \in \{1, ..., n\}$, $\mathbb{E}[X_k^2] = \mathbb{E}[X_1^2] = 1$.

On en déduit que $(S_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale de carré intégrable.

Son crochet noté $(\langle S \rangle_n)_{n \in \mathbb{N}}$ est défini comme l'unique processus croissant prévisible nul en 0 tel que $(S_n^2 - \langle S \rangle_n)_{n \in \mathbb{N}}$ soit une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale.

Il est, de plus, caractérisé par $\langle S \rangle_0 = 0$ et pour tout $n \geq 1$:

$$\langle S \rangle_n = \sum_{k=0}^{n-1} \mathbb{E}[(S_{k+1} - S_k)^2 | \mathcal{F}_k].$$
 (11)

Or, quel que soit $k \in \{0, \dots, n-1\}$, $S_{k+1} - S_k = X_{k+1}$ et X_{k+1} donc X_{k+1}^2 est indépendante de la tribu \mathcal{F}_k .

Ainsi $\mathbb{E}[(S_{k+1} - S_k)^2 | \mathcal{F}_k] = \mathbb{E}[X_{k+1}^2 | \mathcal{F}_k] = \mathbb{E}[X_{k+1}^2] = 1$, pour tout $k \in \{0, \dots, n-1\}$.

On en déduit que $\langle S \rangle_0 = 0$ et quel que soit $n \geq 1$, $\langle S \rangle_n = n$.

Nous retrouvons alors que $(S_n^2 - n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale, ce qui a été établi à la question 2. de l'exercice 1 de la PC2.

2. Pour tout $n \in \mathbb{N}$, M_n est \mathcal{F}_n -mesurable comme étant la somme de n variables aléatoires \mathcal{F}_n -mesurables. Par ailleurs, quel que soit $n \in \mathbb{N}$, M_n est intégrable comme somme de variables aléatoires intégrables puisque pour tout $k \in \{1, \dots, n\}$, $|\operatorname{sgn}(S_{k-1})X_k| \leq |X_k|$ et les variables aléatoires X_k sont intégrables (de moyenne nulle).

De plus, pour tout $n \in \mathbb{N}$,

$$\mathbb{E}[M_{n+1} - M_n | \mathcal{F}_n] = \mathbb{E}[\operatorname{sgn}(S_n) X_{n+1} | \mathcal{F}_n] = \operatorname{sgn}(S_n) \mathbb{E}[X_{n+1} | \mathcal{F}_n] = \mathbb{E}[X_{n+1}] = 0,$$

car $\operatorname{sgn}(S_n)$ est \mathcal{F}_n -mesurable et X_{n+1} est indépendante de la tribu \mathcal{F}_n et est centrée.

On en déduit que pour tout $n \in \mathbb{N}$, $\mathbb{E}[M_{n+1}|\mathcal{F}_n] = M_n$ et $(M_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale.

Elle est de plus de carré intégrable car quel que soit $k \in \{1, \dots, n\}$,

$$\mathbb{E}[|\operatorname{sgn}(S_{k-1})X_k|^2] = \mathbb{E}[\operatorname{sgn}(S_{k-1})^2] \,\mathbb{E}[X_k^2] = \mathbb{E}[\mathbf{1}_{\{S_{k-1}\neq 0\}}] < +\infty.$$

Le crochet $(< M>_n)_{n\in\mathbb{N}}$ est caractérisé par $< M>_0=0$ et pour tout $n\geq 1$:

$$< M>_n = \sum_{k=0}^{n-1} \mathbb{E}[(M_{k+1} - M_k)^2 | \mathcal{F}_k].$$

Mais, quel que soit $k \in \{0, \dots, n-1\}$, $M_{k+1} - M_k = \operatorname{sgn}(S_k) X_{k+1}$ de sorte que :

$$\mathbb{E}[(M_{k+1} - M_k)^2 | \mathcal{F}_k] = \operatorname{sgn}(S_k)^2 \mathbb{E}[X_{k+1}^2 | \mathcal{F}_k]$$
$$= \operatorname{sgn}(S_k)^2 \mathbb{E}[X_{k+1}^2],$$

car X_{k+1}^2 est indépendante de la tribu \mathcal{F}_k .

Comme pour tout $k \in \{0, \dots, n-1\}$, $\mathbb{E}[X_{k+1}^2] = 1$ et compte tenu de la définition de la fonction "signe",

$$\operatorname{sgn}(S_k)^2 = \mathbf{1}_{\{S_k \neq 0\}}$$
, on en déduit que $M >_0 = 0$ et pour tout $n \geq 1$, $M >_n = \sum_{k=0}^{n-1} \mathbf{1}_{\{S_k \neq 0\}}$.

3. Rappel : Si $(M_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale et $\phi:\mathbb{R}\to\mathbb{R}$ une fonction convexe, alors $(\phi(M_n))_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - sous-martingale.

La fonction $x \mapsto |x|$ étant convexe sur \mathbb{R} , comme $(S_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale, $(|S_n|)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - sous-martingale.

D'après le théorème de décomposition de Doob, il existe alors une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale $(N_n)_{n\in\mathbb{N}}$ et un processus croissant prévisible $(A_n)_{n\in\mathbb{N}}$ nul en 0 tel que, pour tout $n\in\mathbb{N}$:

$$|S_n| = N_n + A_n. (12)$$

Ainsi, quel que soit $n \ge 1$,

$$A_{n+1} - A_n = (N_n - N_{n+1}) + (|S_{n+1}| - |S_n|),$$

et en conditionnant par rapport à la tribu \mathcal{F}_n l'égalité précédente, il vient :

$$A_{n+1} - A_n = \mathbb{E}[|S_{n+1}| - |S_n||\mathcal{F}_n], n \ge 1, \tag{13}$$

puisque $A_{n+1} - A_n$ est \mathcal{F}_n -mesurable et $(N_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale.

Par ailleurs, pour tout $n \ge 1$, on remarque que :

$$\mathbb{E}[|S_{n+1}| - |S_n||\mathcal{F}_n] = \mathbb{E}[(|S_{n+1}| - |S_n|)\mathbf{1}_{\{S_n > 0\}}|\mathcal{F}_n] + \mathbb{E}[(|S_{n+1}| - |S_n|)\mathbf{1}_{\{S_n = 0\}}|\mathcal{F}_n] + \mathbb{E}[(|S_{n+1}| - |S_n|)\mathbf{1}_{\{S_n < 0\}}|\mathcal{F}_n].$$
(14)

Or, sur l'évènement $\{S_n>0\}$, $S_{n+1}\geq 0$, ainsi $|S_{n+1}|-|S_n|=S_{n+1}-S_n=X_{n+1}$, et :

$$\mathbb{E}[(|S_{n+1}| - |S_n|)\mathbf{1}_{\{S_n > 0\}}|\mathcal{F}_n] = \mathbf{1}_{\{S_n > 0\}}\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbf{1}_{\{S_n > 0\}}\mathbb{E}[X_{n+1}] = 0, \tag{15}$$

car $\mathbf{1}_{\{S_n>0\}}$ est \mathcal{F}_n -mesurable, X_{n+1} est indépendante de la tribu \mathcal{F}_n et est centrée.

De même, sur $\{S_n < 0\}$, $S_{n+1} \le 0$, de sorte que $|S_{n+1}| - |S_n| = S_n - S_{n+1} = -X_{n+1}$. Ainsi :

$$\mathbb{E}[(|S_{n+1}| - |S_n|)\mathbf{1}_{\{S_n < 0\}}|\mathcal{F}_n] = 0. \tag{16}$$

Combinant (13), (14), (15) et (16), on obtient alors pour tout $n \geq 1$,

$$\begin{split} A_{n+1} - A_n &= \mathbb{E}[(|S_{n+1}| - |S_n|) \mathbf{1}_{\{S_n = 0\}} | \mathcal{F}_n] \\ &= \mathbb{E}[|X_{n+1}| \mathbf{1}_{\{S_n = 0\}} | \mathcal{F}_n] \\ &= \mathbf{1}_{\{S_n = 0\}} \mathbb{E}[|X_{n+1}| | \mathcal{F}_n] \\ &= \mathbf{1}_{\{S_n = 0\}} \mathbb{E}[|X_{n+1}|] \\ &= \mathbf{1}_{\{S_n = 0\}}, \end{split}$$

car $\mathbf{1}_{\{S_n=0\}}$ est \mathcal{F}_n -mesurable, X_{n+1} donc $|X_{n+1}|$ est indépendante de la tribu \mathcal{F}_n et $\mathbb{E}[|X_{n+1}|] = |1| \times \mathbb{P}(X_1 = 1) + |-1| \times \mathbb{P}(X_1 = -1) = 1$.

On déduit de l'égalité précédente que quel que soit $n \ge 1$,

$$A_n = \sum_{k=0}^{n-1} (A_{k+1} - A_k) = \sum_{k=0}^{n-1} \mathbf{1}_{\{S_k = 0\}}.$$
 (17)

Revenant à l'égalité (12) et utilisant l'expression trouvée pour le compensateur $(A_n)_{n\in\mathbb{N}}$ en (17), il vient, pour tout $n\geq 1$,

$$\begin{split} N_{n+1} - N_n &= (|S_{n+1}| - |S_n|) - \mathbf{1}_{\{S_n = 0\}} \\ &= (|S_{n+1}| - |S_n|) \mathbf{1}_{\{S_n > 0\}} + (|S_{n+1}| - |S_n|) \mathbf{1}_{\{S_n < 0\}} + (|S_{n+1}| - |S_n|) \mathbf{1}_{\{S_n = 0\}} - \mathbf{1}_{\{S_n = 0\}} \\ &= X_{n+1} \mathbf{1}_{\{S_n > 0\}} - X_{n+1} \mathbf{1}_{\{S_n < 0\}} + (|X_{n+1}| - 1) \mathbf{1}_{\{S_n = 0\}} \\ &= X_{n+1} \mathbf{1}_{\{S_n > 0\}} - X_{n+1} \mathbf{1}_{\{S_n < 0\}} \\ &= X_{n+1} (\mathbf{1}_{\{S_n > 0\}} - \mathbf{1}_{\{S_n < 0\}}) \\ &= \operatorname{sgn}(S_n) X_{n+1} \,. \end{split}$$

On conclut alors que pour tout $n \ge 1$, $N_n = \sum_{k=0}^{n-1} (N_{k+1} - N_k) = \sum_{k=0}^{n-1} \operatorname{sgn}(S_k) X_{k+1} = M_n$, puisque $N_0 = |S_0| - A_0 = 0 - 0 = 0$.

4. Utilisant à nouveau l'égalité (12), on a quel que soit $n \ge 1$,

$$\begin{split} M_n &= |S_n| - \sum_{k=0}^{n-1} \mathbf{1}_{\{S_k = 0\}} \\ &= |S_n| - \sum_{k=0}^{n-1} \mathbf{1}_{\{|S_k| = 0\}} \\ &= |S_n| - 1 - \sum_{k=1}^{n-1} \mathbf{1}_{\{|S_k| = 0\}} \,, \end{split}$$

et M_n est bien mesurable par rapport à la tribu $\sigma(|S_1|, \dots, |S_n|)$, puisqu'elle s'écrit comme une fonction borélienne de $|S_1|, \dots, |S_n|$, $n \ge 1$.

5. Posons $Y_k = \frac{1}{2}(X_k + 1)$, pour tout $k \in \mathbb{N}$. Y_k , $k \in \mathbb{N}$, prend alors les valeurs 0 et 1, avec une probabilité égale à $\frac{1}{2}$. Les variables aléatoires Y_k , $k \in \mathbb{N}$, suivent donc une loi de Bernoulli de paramètre $\frac{1}{2}$.

Or, quel que soit $n \in \mathbb{N}$, $T_n = \frac{1}{2}(S_n + n) = \sum_{k=1}^n Y_k$; ainsi, T_n , $n \ge 1$, apparaît comme la somme de n variables aléatoires indépendantes de Bernoulli de paramètre $\frac{1}{2}$.

On conclut que, pour tout $n \ge 1$, T_n suit une variable aléatoire binomiale de paramètres n et $\frac{1}{2}$.

6. On a donc: $\forall k \in \mathbb{N}$, $\mathbb{P}(T_n = k) = \binom{n}{k} (\frac{1}{2})^k (\frac{1}{2})^{n-k} = \binom{n}{k} 2^{-n}$, où $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, lorsque $(n,k) \in \mathbb{N}^2$, $0 \le k \le n$.

Ainsi, quel que soit $j \in \mathbb{N}$, $\mathbb{P}(S_{2j+1} = 0) = 0$ et $\mathbb{P}(S_{2j} = 0) = \mathbb{P}(T_{2j} = j) = {2j \choose i} 4^{-j}$.

7. D'après l'égalité (12), pour tout $n \in \mathbb{N}$, $\mathbb{E}[|S_n|] = \mathbb{E}[M_n] + \mathbb{E}[A_n]$. Comme $(M_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale, $\mathbb{E}[M_n] = \mathbb{E}[M_0] = 0$.

On obtient alors, utilisant (17), que, quel que soit $n \ge 1$, $\mathbb{E}[|S_n|] = \mathbb{E}\left[\sum_{k=0}^{n-1} \mathbf{1}_{\{S_k=0\}}\right]$.

Compte-tenu des résultats obtenus à la question précédente, il vient : pour tout $n \in \mathbb{N}$, $\mathbb{E}[|S_n|] = \sum_{j=1}^{\lfloor \frac{n-1}{2} \rfloor} \binom{2j}{j} 4^{-j}$.

Exercice 3: 1. $Y_0 = y_0 \in \mathbb{Z}$ et pour tout $n \ge 1$, les accroissements $Y_n - Y_{n-1}$ ne peuvent prendre que les valeurs +1 et -1; ainsi, $(Y_n)_{n \in \mathbb{N}}$ est un processus à valeurs dans \mathbb{Z} , l'ensemble des entiers relatifs, muni de la tribu de ses parties $\mathcal{P}(\mathbb{Z})$.

Comme $(Y_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale, Y_n est $(\mathcal{F}_n,\mathcal{P}(\mathbb{Z}))$ - mesurable, quel que soit $n\in\mathbb{N}$.

D'après l'énoncé, $f: \mathbb{Z} \to \mathbb{R}$ est une fonction $(\mathcal{P}(\mathbb{Z}), \mathcal{B}(\mathbb{R}))$ - mesurable.

On en déduit que pour tout $n \in \mathbb{N}$, $f(Y_n)$ est une variable aléatoire $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ - mesurable comme étant la composée de deux fonctions $(\mathcal{F}_n, \mathcal{P}(\mathbb{Z}))$ - et $(\mathcal{P}(\mathbb{Z}), \mathcal{B}(\mathbb{R}))$ - mesurables.

Par ailleurs, quel que soit $n \in \mathbb{N}$, $|f(Y_n)| \le \max_{x \in \{y_0 - n, \cdots, y_0 + n\}} |f(x)|$.

Ainsi, le processus $(f(Y_n))_{n\in\mathbb{N}}$ est $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -adapté et intégrable.

2. En calculant séparément les cas $Y_k = Y_{k-1} - 1$ et $Y_k = Y_{k-1} + 1$, pour tout $k \ge 1$, il vient :

$$\begin{split} f(Y_k) - f(Y_{k-1}) &= \frac{f(Y_{k-1} + 1) - f(Y_{k-1} - 1)}{2} \left(Y_k - Y_{k-1} \right) + \frac{1}{2} f(Y_{k-1} - 1) + \frac{1}{2} f(Y_{k-1} + 1) - f(Y_{k-1}) \,, \\ &= f'(Y_{k-1}) \left(Y_k - Y_{k-1} \right) + \frac{1}{2} f''(Y_{k-1}) \,, \\ &= F_k^{'}(Y_k - Y_{k-1}) + \frac{1}{2} F_k^{''} \,. \end{split}$$

3. On somme les égalités précédentes de k=1 à k=n, $n\geq 1$ pour obtenir quel que soit $n\geq 1$:

$$\sum_{k=1}^{n} (f(Y_k) - f(Y_{k-1})) = \sum_{k=1}^{n} F_k'(Y_k - Y_{k-1}) + \frac{1}{2} \sum_{k=1}^{n} F_k'',$$

$$f(Y_n) = f(y_0) + \sum_{k=1}^{n} F_k'(Y_k - Y_{k-1}) + \frac{1}{2} \sum_{k=1}^{n} F_k''.$$

Rappel:

• Soit un processus $(X_n)_{n\in\mathbb{N}}$ adapté à la filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ et $(H_n)_{n\geq 1}$ un processus $(\mathcal{F}_n)_{n\geq 1}$ - prévisible. On définit le processus $((H \bullet X)_n)_{n\geq 1}$ par, pour tout $n\geq 1$,

$$(H \bullet X)_n = \sum_{k=1}^n H_k(X_k - X_{k-1}).$$

 $((H \bullet X)_n)_{n \geq 1}$ est appelé l'intégrale stochastique discrète du processus $(H_n)_{n \geq 1}$ par rapport à $(X_n)_{n \in \mathbb{N}}$.

• Si $(H_n)_{n\geq 1}$ est à valeurs localement bornées, alors $((H \bullet M)_n)_{n\geq 1}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.

 $(F_n^{'})_{n\geq 1}$ est $(\mathcal{F}_n)_{n\geq 1}$ -prévisible, puisque pour tout $n\geq 1$, $F_n^{'}=f^{'}(Y_{n-1})$ est $(\mathcal{F}_{n-1},\mathcal{B}(\mathbb{R}))$ -mesurable comme étant la composée de la variable aléatoire Y_{n-1} qui est $(\mathcal{F}_{n-1},\mathcal{P}(\mathbb{Z}))$ -mesurable par la fonction $f^{'}$, $(\mathcal{P}(\mathbb{Z}),\mathcal{B}(\mathbb{R}))$ - mesurable.

On en déduit que pour tout n > 1,

$$f(Y_n) = f(y_0) + (F' \bullet Y)_n + \frac{1}{2} \sum_{k=1}^n F_k''.$$
(18)

4. Comme $(Y_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale et f est convexe, $(f(Y_n))_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - sous-martingale. Par ailleurs, quel que soit $n\geq 1$, $|F_n^{'}|\leq \max_{x\in\{y_0-n,\cdots,y_0+n\}}(|f(x+1)|+|f(x-1)|)$.

Ainsi, $(F_n^{'})_{n\geq 1}$ est à valeurs localement bornées et $((F^{'}\bullet Y)_n)_{n\geq 1}$ est une $(\mathcal{F}_n)_{n\geq 1}$ - martingale.

Considérons le processus $(M_n)_{n\in\mathbb{N}}$ défini par $M_0=f(y_0)$ et $M_n=f(y_0)+(F^{'}\bullet Y)_n$, quel que soit $n\geq 1$. $(M_n)_{n\in\mathbb{N}}$ est alors une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.

Par ailleurs, le processus $(A_n)_{n\in\mathbb{N}}$ donné par $A_0=0$ et pour tout $n\geq 1$, $A_n=\sum_{k=1}^n\frac{1}{2}F_k^{''}$, est $(\mathcal{F}_n)_{n\geq 1}$ -prévisible ; en effet, $F_n^{''}=f^{''}(Y_{n-1})$ est $(\mathcal{F}_{n-1},\mathcal{B}(\mathbb{R}))$ -mesurable comme étant la composée de la variable aléatoire Y_{n-1} qui est $(\mathcal{F}_{n-1},\mathcal{P}(\mathbb{Z}))$ -mesurable par la fonction $f^{''}$, $(\mathcal{P}(\mathbb{Z}),\mathcal{B}(\mathbb{R}))$ -mesurable.

De plus, $(A_n)_{n\in\mathbb{N}}$ est croissant : pour tout $n\in\mathbb{N}$, $A_n-A_{n-1}=\frac{1}{2}F_n''=\frac{1}{2}f''(Y_{n-1})\geq 0$, car $f''(x)\geq 0$, pour tout $x\in\mathbb{Z}$.

Ainsi, d'après l'égalité (18), il vient, quel que soit $n \in \mathbb{N}$, $f(Y_n) = M_n + A_n$, où $(M_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ martingale et $(A_n)_{n \in \mathbb{N}}$ un processus croissant $(\mathcal{F}_n)_{n \geq 1}$ - prévisible.

La décomposition de Doob d'une sous-martingale étant unique, l'égalité (18) constitue exactement la décomposition de Doob de la $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - sous-martingale $(f(Y_n))_{n\in\mathbb{N}}$.

5. Dans cette question, $(Y_n)_{n\in\mathbb{N}}$ est de plus une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale de carré intégrable et $f(x)=x^2$, pour tout $x\in\mathbb{Z}$.

Quel que soit $x \in \mathbb{Z}$, $f^{'}(x) = \frac{(x+1)^2 - (x-1)^2}{2} = 2x$ et $f^{''}(x) = (x-1)^2 + (x+1)^2 - 2x^2 = 2 \ge 0$. $(\langle Y \rangle_n)_{n \in \mathbb{N}}$ est le compensateur $(A_n)_{n \in \mathbb{N}}$ de la $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - sous-martingale $(Y_n^2)_{n \in \mathbb{N}}$; de plus, $A_0 = 0$ et pour tout $n \ge 1$, $A_n = \sum_{k=1}^n \frac{1}{2} F_k^{''} = \sum_{k=1}^n \frac{1}{2} \cdot 2 = n$.

Par ailleurs, la décomposition de Doob de la sous-martingale $(Y_n^2)_{n\in\mathbb{N}}$ est, quel que soit $n\geq 1$:

$$Y_n^2 = y_0^2 + 2 \sum_{k=1}^n Y_{k-1}(Y_k - Y_{k-1}) + n.$$

6. On définit $Y_n = S_n$, pour tout $n \in \mathbb{N}$ où $(S_n)_{n \in \mathbb{N}}$ est la $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale décrite dans l'Exercice 2. Pour tout $x \in \mathbb{Z}$, $f'(x) = \frac{|x+1|-|x-1|}{2} = \operatorname{sgn}(x)$ et f''(x) = |x-1|+|x+1|-2|x| = 2. $\mathbf{1}_{\{x=0\}} \ge 0$. Ainsi, la décomposition de Doob de la $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -sous-martingale $(|S_n|)_{n \in \mathbb{N}}$ donnée par la formule d'Itô discrète (18) s'écrit, quel que soit $n \ge 1$:

$$|S_n| = \sum_{k=1}^n \operatorname{sgn}(S_{k-1})(S_k - S_{k-1}) + \sum_{k=1}^n \frac{1}{2} \cdot 2 \cdot \mathbf{1}_{\{S_{k-1} = 0\}},$$

= $\sum_{k=1}^n \operatorname{sgn}(S_{k-1})X_k + \sum_{k=0}^{n-1} \mathbf{1}_{\{S_{k-1} = 0\}},$

ce qui correspond très exactement à (12) avec $N_n = M_n = \sum_{k=1}^n \operatorname{sgn}(S_{k-1}) X_k$ et $A_n = \sum_{k=0}^{n-1} \mathbf{1}_{\{S_{k-1}=0\}}$, pour tout $n \ge 1$.

Exercice 4: 1. Soit $n \in \mathbb{N}$, un entier naturel fixé.

Comme $(M_p)_{p\in\mathbb{N}}$ est une $(\mathcal{F}_p)_{p\in\mathbb{N}}$ -martingale, M_{n+m} est $(\mathcal{F}_{n+m},\mathcal{B}(\mathbb{R}))$ -mesurable, pour tout $m\in\mathbb{N}$, où $\mathcal{B}(\mathbb{R})$ désigne la tribu borélienne de \mathbb{R} .

La fonction $x \mapsto \max(x,0) = (x)^+$ est convexe sur \mathbb{R} donc $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}^+))$ - mesurable, avec $\mathcal{B}(\mathbb{R}^+)$ la tribu borélienne de \mathbb{R}^+ . M_{n+m} est alors $(\mathcal{F}_{n+m}, \mathcal{B}(\mathbb{R}^+))$ - mesurable, quel que soit $m \in \mathbb{N}$ comme étant la composée de deux fonctions $(\mathcal{F}_{n+m}, \mathcal{B}(\mathbb{R}))$ et $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}^+))$ - mesurables.

Posons $C = \sup_{n \in \mathbb{N}} \mathbb{E}[|M_n|] < +\infty$.

On remarque que, pour tout $m \in \mathbb{N}$, $X_{n,m} = \max(M_{n+m}, 0) = (M_{n+m})^+ \ge 0$.

 $(M_p)_{p\in\mathbb{N}}$ étant une $(\mathcal{F}_p)_{p\in\mathbb{N}}$ -martingale, M_{n+m} est une variable aléatoire intégrable, quel que soit $m\in\mathbb{N}$. Puisque, $X_{n,m}\leq |M_{n+m}|$, pour tout $m\in\mathbb{N}$, on en déduit que $X_{n,m}$ est également une variable aléatoire intégrable.

De plus, quel que soit $m \in \mathbb{N}$,

$$\sup_{m \in \mathbb{N}} \mathbb{E}[X_{n,m}] \le \sup_{m \in \mathbb{N}} \mathbb{E}[|M_{n+m}|] \le C, \tag{19}$$

de sorte que $(X_{n,m})_{m\in\mathbb{N}}$ est une suite de variables aléatoires bornées dans $\mathbb{L}^1(\Omega,\mathcal{F},\mathbb{P})$.

Par ailleurs, pour tout $m \in \mathbb{N}$,

$$\begin{split} \mathbb{E}[X_{n,m+1}|\mathcal{F}_{n+m}] &= \mathbb{E}[(M_{n+m+1})^+|\mathcal{F}_{n+m}]\,,\\ &\geq (\mathbb{E}[M_{n+m+1}|\mathcal{F}_{n+m}])^+\,, \text{ d'après l'inégalité de Jensen conditionnelle,}\\ &= (M_{n+m})^+\,, \text{ car } (M_p)_{p\in\mathbb{N}} \text{ est une } (\mathcal{F}_p)_{p\in\mathbb{N}}\text{-martingale,}\\ &= X_{n,m}\,. \end{split}$$

Ainsi, $(X_{n,m})_{m\in\mathbb{N}}$ est une $(\mathcal{F}_{n+m})_{m\in\mathbb{N}}$ -sous-martingale bornée dans $\mathbb{L}^1(\Omega,\mathcal{F},\mathbb{P})$.

2. Il a déjà été noté à la question **1.** que, pour tout $(n,m) \in \mathbb{N}^2$, $X_{n,m} \geq 0$, de sorte que $\mathbb{E}[X_{n,m}|\mathcal{F}_n] \geq 0$. Par ailleurs, comme $\mathcal{F}_n \subset \mathcal{F}_{n+m}$, quel que soit $(n,m) \in \mathbb{N}^2$, il vient :

$$\mathbb{E}[X_{n,m+1}|\mathcal{F}_n] = \mathbb{E}[\mathbb{E}[X_{n,m+1}|\mathcal{F}_{n+m}]|\mathcal{F}_n], \text{ d'après la règle des espérances conditionnelles emboîtées,} \\ \geq \mathbb{E}[X_{n,m}|\mathcal{F}_n], \text{ car } (X_{n,m})_{m\in\mathbb{N}} \text{ est une } (\mathcal{F}_{n+m})_{m\in\mathbb{N}} \text{ - sous-martingale.}$$

Pour tout $n \in \mathbb{N}$, $(\mathbb{E}[X_{n,m}|\mathcal{F}_n])_{m \in \mathbb{N}}$ est alors une suite croissante de variables aléatoires à valeurs positives; on en déduit qu'elle converge \mathbb{P} - presque-sûrement vers une variable aléatoire notée $Y_n = \lim_{m \to +\infty} \mathbb{E}[X_{n,m}|\mathcal{F}_n]$, quel que soit $n \in \mathbb{N}$.

3. Puisque $\mathbb{E}[X_{n,m}|\mathcal{F}_n] \geq 0$, quel que soit $(n,m) \in \mathbb{N}^2$, il est clair que $Y_n \geq 0$, pour tout $n \in \mathbb{N}$. De plus $(\mathbb{E}[X_{n,m}|\mathcal{F}_n])_{m \in \mathbb{N}}$ étant une suite croissante de variables aléatoires à valeurs positives, utilisant le théorème de convergence monotone, on obtient, quel que soit $n \in \mathbb{N}$:

$$\begin{split} \mathbb{E}[Y_n] &= \mathbb{E}[\lim_{m \to +\infty} \mathbb{E}[X_{n,m} | \mathcal{F}_n]] \,, \\ &= \lim_{m \to +\infty} \mathbb{E}[\mathbb{E}[X_{n,m} | \mathcal{F}_n]] \,, \\ &= \lim_{m \to +\infty} \mathbb{E}[X_{n,m}] \,, \end{split}$$

soit, compte tenu de l'inégalité (19),

$$\mathbb{E}[Y_n] \leq C.$$

Ainsi, pour tout $n \in \mathbb{N}$, Y_n est intégrable et $\sup_{n \in \mathbb{N}} \mathbb{E}[Y_n] \leq C < +\infty$.

4. Comme Y_n est la limite au sens \mathbb{P} -presque-sûr lorsque $m \to +\infty$ des variables aléatoires \mathcal{F}_n -mesurables $\mathbb{E}[X_{n,m}|\mathcal{F}_n]$, Y_n est également \mathcal{F}_n -mesurable, pour tout $n \in \mathbb{N}$. Par ailleurs, quel que soit $n \in \mathbb{N}$,

$$\begin{split} \mathbb{E}[Y_{n+1}|\mathcal{F}_n] &= \mathbb{E}[\lim_{m \to +\infty} \mathbb{E}[X_{n+1,m}|\mathcal{F}_{n+1}]|\mathcal{F}_n] \,, \\ &= \lim_{m \to +\infty} \mathbb{E}[\mathbb{E}[X_{n+1,m}|\mathcal{F}_{n+1}]|\mathcal{F}_n] \,, \text{ d'après le théorème de convergence monotone conditionnel,} \\ &= \lim_{m \to +\infty} \mathbb{E}[X_{n+1,m}|\mathcal{F}_n] \,, \text{ d'après la règle des espérances conditionnelles emboîtées,} \\ &= \lim_{m \to +\infty} \mathbb{E}[X_{n,m+1}|\mathcal{F}_n] \,, \\ &= Y_n \,, \end{split}$$

où on a utilisé à l'avant-dernière ligne que : $X_{n+1,m}=(M_{n+1+m})^+=(M_{n+m+1})^+=X_{n,m+1}$, pour tout $(n,m)\in\mathbb{N}^2$.

On déduit du développement précédent que $(Y_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale positive et bornée dans $\mathbb{L}^1(\Omega,\mathcal{F},\mathbb{P})$.

5. Posons $Z_n = Y_n - M_n$, pour tout $n \in \mathbb{N}$.

Comme $(Z_n)_{n\in\mathbb{N}}$ est la différence de deux $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingales, elle est aussi une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale. De plus, quel que soit $n\in\mathbb{N}$, $\mathbb{E}[|Z_n|]\leq \mathbb{E}[Y_n]+\mathbb{E}[|M_n|]\leq 2$ C, de sorte que $\sup_{n\in\mathbb{N}}\mathbb{E}[|Z_n|]<+\infty$ et $(Z_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires bornées dans $\mathbb{L}^1(\Omega,\mathcal{F},\mathbb{P})$.

6. Quel que soit $n \in \mathbb{N}$, on a :

$$\begin{split} Y_n &= \lim_{m \to +\infty} \mathbb{E}[X_{n,m}|\mathcal{F}_n] \,, \\ &= \lim_{m \to +\infty} \mathbb{E}[(M_{n+m})^+|\mathcal{F}_n] \,, \\ &\geq \lim_{m \to +\infty} (\mathbb{E}[M_{n+m}|\mathcal{F}_n])^+ \,, \text{ d'après l'inégalité de Jensen conditionnelle,} \\ &= \lim_{m \to +\infty} (M_n)^+ \,, \text{ car } (M_p)_{p \in \mathbb{N}} \text{ est une } (\mathcal{F}_p)_{p \in \mathbb{N}} \text{ - martingale,} \\ &= (M_n)^+ \,. \end{split}$$

Il en résulte que, pour tout $n \in \mathbb{N}$,

$$Z_n = Y_n - M_n,$$

$$\geq (M_n)^+ - M_n,$$

$$\geq 0.$$

7. $(Z_n)_{n\in\mathbb{N}}$ est alors une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale positive et bornée dans $\mathbb{L}^1(\Omega,\mathcal{F},\mathbb{P})$ et il en est de même pour $(Y_n)_{n\in\mathbb{N}}$ d'après la question **4.** .

On conclut que $(M_n)_{n\in\mathbb{N}}$ peut s'écrire comme la différence de deux $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingales positives et bornées dans $\mathbb{L}^1(\Omega,\mathcal{F},\mathbb{P})$.