Ime in priimek:	
Šolsko leto:	Datum:

KARAKTERISTIKA VARISTORJA

Za ZnO diskasti varistor S20K11 izmerite in izračunajte:

- a) nazivno napetost U_N pri $I_N = 1$ mA (za obe polariteti)
- b) ΔU_N med absolutnima vrednostima U_N pri nasprotnih polaritetah
- c) diferencialno prevodnost g v podanih točkah
- d) indeks nelinearnosti α (za obe polariteti)
- e) maksimalno dopustno napetost U_C impulza dolžine $t = 20 \mu s$

Slika 1: Meritev statične karakteristike varistorja

Opis meritve:

Varistor je nelinearen rezistiven element s karakteristiko, ki je podobna zaporedni vezavi dveh nasprotno usmerjenih Zenerjevih diod. Do določene napetosti (U_N) predstavlja visoko upornost, od te vrednosti naprej pa nizko upornost. Posledično pri višjih napetostih od U_N steče preko varistorja velik tok, zato ga uporabljamo predvsem kot zaščitni element ali redkeje kot stabilizator napetosti. Napetost na varistorju merimo z digitalnim voltmetrom, tok pa z ampermetrom, kot je prikazano na sliki 1. Tok nastavljamo s pomočjo napajalnega vira na vrednosti, ki so podane v merilni tabeli (glej rezultate) in ob tem odčitavamo napetost na varistorju ter jo vpisujemo v tabelo rezultatov. Nato polariteto vira obrnemo (+ in - vira zamenjamo) in meritve ponovimo.

Odvisnost toka od napetosti varistorja opisujemo z enačbo:

$$I = kU^{\alpha}, \tag{1}$$

kjer sta I in U absolutni vrednosti. Enačba (1) vsebuje snovno-geometrijski parameter k. Namesto parametra k v katalogih srečamo pogosteje nazivno napetost U_N , ki je izmerjena pri nazivnem toku $I_N = 1 \, \text{mA}$. Za merjeni varistor (S20K11) bi v katalogu našli podatek $U_{RMSN} = 11 \, \text{V}$, kar pomeni, da bi nazivni tok I_N tekel, če bi bila na njem sinusna napetost 11V. Ker meritve izvajamo z enosmerno napetostjo (DC), moramo ustrezno enosmerno napetost U_N preračunati preko faktorja oblike sinusne napetosti ($\sqrt{2}$). Pričakovana vrednost znaša $U_N = \sqrt{2} \cdot U_{RMSN} \approx 16V \pm 10\%$. Točno vrednost določite s pomočjo meritve.

$$I_N = kU_N^{\alpha} \tag{2}$$

¹ http://www.alldatasheet.com/datasheet-pdf/pdf/183121/EPCOS/SIOV-S20K11.html

Z deljenjem enačbe (1) z enačbo (2) izločimo parameter k in izrazimo tok v bolj primerni obliki:

$$I = I_N \left(\frac{U}{U_N}\right)^{\alpha} \tag{3}$$

Iz izmerjene napetosti pri nazivnem in desetkratnem nazivnem toku ($I_N=1$ mA in $10I_N=10$ mA) in enačbe (3) izračunamo *indeks nelinearnosti* α :

$$10I_N = I_N \left(\frac{U}{U_N}\right)^{\alpha} \implies \log 10 = 1 = \alpha \log \frac{U}{U_N} \implies \alpha = \frac{1}{\log \frac{U}{U_N}}$$
 (4)

Z odvajanjem enačbe (1) dobimo diferencialno prevodnost g:

$$g = \frac{dI}{dU} = kU^{\alpha - 1}\alpha = kU^{\alpha} \frac{\alpha}{U}$$
$$g = \frac{I}{U}\alpha$$

Iz kataloga² je znano, da merjeni varistor lahko v impulzu absorbira energijo $\Delta W_{MAX} = 10J$. Iz tega podatka določite maksimalno trenutno moč P_C v časovnem intervalu $\Delta t = 20$ μs, nato izračunajte po enačbi (5) maksimalno impulzno napetost U_C . Pri tem izračunu je upoštevana standardna³ oblika toka prikazana na sliki 2, ki jo nadomestimo s pravokotnim tokovnim impulzom trajanja 12 μs.

Slika 2: Impulzna obremenitev varistorja.

Moč varistorja je dana z izrazom:

$$P = IU = I_N \left(\frac{U}{U_N}\right)^{\alpha} U = U_N I_N \left(\frac{U}{U_N}\right)^{\alpha} \frac{U}{U_N} = U_N I_N \left(\frac{U}{U_N}\right)^{\alpha+1}$$

in od tod

$$U_C = U_N \left(\frac{P_C}{U_N I_N}\right)^{\frac{1}{\alpha+1}} \tag{5}$$

 $^{^2\} http:/\underline{/www.epcos.com/web/generator/Web/Sections/ProductCatalog/ProtectionDevices/MonolithicVaristors/Page,locale=en.html}$

³ IEC 60060 standard.

Rezultati:

polariteta	+		-	
I	U[V]	g [mS]	U[V]	g [mS]
0.005 mA				
0.01 mA				
0.05 mA				
0.1 mA				
0.5 mA				
1 mA				
5 mA				
10 mA				

Polariteta	+	-
U_N		
α		
Razlika nazivnih napetosti	ΔU_N	
Maksimalna impulzna napetost	U_c	

