Fachbereich Mathematik

Prof. Dr. Thomas Streicher

Dr. Sven Herrmann

Dipl.-Math. Susanne Pape

Wintersemester 2009/2010 02./03. Februar 2010

14. Übungsblatt zur Vorlesung "Mathematik I für Informatik"

Gruppenübung

Aufgabe G1 (Potenzreihen und Konvergenzradius)

- (a) Berechnen Sie die Konvergenzradien der folgenden Potenzreihen für $x \in \mathbb{R}$:

 - $\begin{array}{ll} \text{(i)} & \sum_{n=1}^{\infty} \frac{1}{n} (2x)^n, \\ \text{(ii)} & \sum_{k=1}^{\infty} \frac{2^k}{k^2} (x-1)^{5k}. \end{array}$

Hinweis: Verwenden Sie bei (ii) eine geeignete Substitution.

(b) Berechnen Sie den Konvergenzradius folgender Potenzreihe in Abhängigkeit von $a \in \mathbb{R}$:

$$\sum_{n=0}^{\infty} a^{n^2} x^n, \quad x \in \mathbb{R}.$$

Lösungshinweise:

(a) (i) Zunächst beobachten wir, dass gilt $\sum_{n=1}^{\infty} \frac{1}{n} (2x)^n = \sum_{n=1}^{\infty} \frac{2^n}{n} x^n$. Wir benutzen das Quotientenkriterium für Potenzreihen (Satz VI.2.4):

$$\left| \frac{a_n}{a_{n+1}} \right| = \left| \frac{(n+1)2^n}{n \cdot 2^{n+1}} \right| = \frac{n+1}{n} \cdot \frac{1}{2},$$

und damit

$$\lim_{n\to\infty}\frac{n+1}{n}\cdot\frac{1}{2}=\frac{1}{2}\,.$$

Der Konvergenzradius ist also $\rho = \frac{1}{2}$.

(ii) Mit $z = (x-1)^5$ schreibt sich die gegebene Reihe als $\sum_{k=1}^{\infty} \frac{2^k}{k^2} z^k$.

Wir bestimmen zunächst den Konvergenzradius dieser Reihe: Wegen

$$\lim_{k \to \infty} \sqrt[k]{\left|\frac{2^k}{k^2}\right|} = \lim_{k \to \infty} \frac{2}{\left(\sqrt[k]{k}\right)^2} = \frac{2}{1^2} = 2$$

ist der Konvergenzradius $\frac{1}{2}$ nach dem Wurzelkriterium (Satz VI.2.6). Also konvergiert die ursprüngliche Reihe für alle $x \in \mathbb{R}$ mit

$$|x-1|^5 = |z| < \frac{1}{2},$$
 d.h. $|x-1| < \frac{1}{\sqrt[5]{2}}$.

Der Konvergenzradius ist damit $\frac{1}{\sqrt[5]{2}}$.

(b) Es gilt

$$\limsup_{n \to \infty} \left(a^{n^2}\right)^{\frac{1}{n}} = \limsup_{n \to \infty} a^n = \begin{cases} \infty; & \text{falls } |a| > 1, \\ 1; & \text{falls } |a| = 1, \\ 0; & \text{falls } |a| < 1. \end{cases}$$

Damit gilt für den Konvergenzradius

$$r = \begin{cases} 0, & \text{falls } |a| > 1, \\ 1, & \text{falls } |a| = 1, \\ \infty, & \text{falls } |a| < 1. \end{cases}$$

Aufgabe G2 (Taylorpolynom)

Betrachten Sie die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) := \sin^2(x) \cdot e^x$$
.

- (a) Bestimmen Sie das vierte Taylorpolynom T_4f im Entwicklungspunkt $x_0=0$, indem Sie die ersten 4 Ableitungen bilden.
- (b) Bestimmen Sie das vierte Taylorpolynom T_4f im Entwicklungspunkt $x_0 = 0$, indem Sie bekannte Potenzreihen von sin x und e^x verwenden.

Bemerkung: Zu einer Funktion $f: \mathbb{R} \to \mathbb{R}$ bezeichnen wir das *n*-te Taylorpolynom von f im Entwicklungpunkt $x_0 = 0$ als $T_n f$.

Lösungshinweise:

(a) Wir bilden die ersten vier Ableitungen von f an der Stelle $x_0 = 0$:

$$f'(x) = 2\sin(x)\cos(x)e^{x} + \sin^{2}(x)e^{x} = \sin(2x)e^{x} + f(x) , \qquad f'(0) = 0 ,$$

$$f''(x) = 2\cos(2x)e^{x} + \sin(2x)e^{x} + f'(x) , \qquad f''(0) = 2 ,$$

$$f^{(3)}(x) = 4\cos(2x)e^{x} - 3\sin(2x)e^{x} + f''(x) , \qquad f^{(3)}(0) = 6 .$$

$$f^{(4)}(x) = -2\cos(2x)e^{x} - 11\sin(2x)e^{x} + f^{(3)}(x) , \qquad f^{(4)}(0) = 4 .$$

Das Taylorpolynom ist somit

$$T_4 f(x) = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2!}(x - 0)^2 + \frac{f^{(3)}(0)}{3!}(x - 0)^3 + \frac{f^{(4)}(0)}{4!}(x - 0)^4$$
$$= \frac{2}{2!}x^2 + \frac{6}{3!}x^3 + \frac{4}{4!}x^4 = x^2 + x^3 + \frac{1}{6}x^4.$$

(b) Für alle $x \in \mathbb{R}$ gilt

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{1}{2}x^2 + \dots,$$
 (1)

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{1}{6}x^3 + \dots$$
 (2)

Für die Funktion f erhalten wir also

$$f(x) = (x - \frac{1}{6}x^3 + \dots)^2 \cdot (1 + x + \frac{1}{2}x^2 + \dots)$$

= $(x^2 - \frac{1}{3}x^4 + \dots)(1 + x + \frac{1}{2}x^2 + \dots)$
= $x^2 + x^3 + \frac{1}{2}x^4 - \frac{1}{3}x^4 + \dots = x^2 + x^3 + \frac{1}{6}x^4 + \dots$

Als Taylorpolynom ergibt sich damit wie zuvor $T_4 f(x) = x^2 + x^3 + \frac{1}{6}x^4$.

Aufgabe G3 (Potenzreihen und Integration sowie Differentiation)

Gegeben sei die Potenzreihe

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}} x^n.$$

- (a) Ermitteln Sie den Konvergenzradius ρ und geben Sie für $x \in (-\rho, \rho)$ den Wert f(x) der Potenzreihe an.
- (b) Bestimmen Sie eine Potenzreihe für das Integral

$$\int_{0}^{x} \frac{16}{16+t} dt,$$

wobei $|x| < \rho$.

(c) Bestimmen Sie eine Potenzreihe und deren Wert für die Ableitung f'(x), wobei $|x| < \rho$.

Lösungshinweise:

(a) Gegeben ist die Potenzreihe

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}} x^n.$$

Mit

$$a_n := \frac{(-1)^n}{4^{2n}}$$

für alle $n \in \mathbb{N}_0$ folgt

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} \sqrt[n]{\left|\frac{(-1)^n}{4^{2n}}\right|} = \limsup_{n \to \infty} \sqrt[n]{\left(\frac{1}{16}\right)^n} = \frac{1}{16},$$

womit sich mit dem Wurzelkriterium (Satz VI.2.6) der Konvergenzradius

$$\rho = 16$$

ergibt.

Ist nun $x \in (-16, 16)$ beliebig gewählt, dann gilt

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}} x^n = \sum_{n=0}^{\infty} \left(-\frac{x}{16} \right)^n = \frac{1}{1 - \left(-\frac{x}{16} \right)} = \frac{16}{16 + x},$$

(geometrische Reihe) und somit ist

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}} x^n = \frac{16}{16+x}.$$

(b) Es sei ein beliebiges $x \in \mathbb{R}$ mit |x| < 16 vorgegeben. Mit Satz VI.2.8 folgt

$$\int_{0}^{x} f(t) dt = \int_{0}^{x} \frac{16}{16+t} dt = \sum_{n=0}^{\infty} \int_{0}^{x} \frac{(-1)^{n}}{4^{2n}} t^{n} dt$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{2n}} \cdot \frac{1}{n+1} \cdot x^{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{16^{n-1}} \cdot \frac{1}{n} \cdot x^{n}.$$

(c) Es sei erneut ein $x \in \mathbb{R}$ mit |x| < 16 gewählt. Nach Satz VI.2.8 folgt

$$f'(x) = \frac{-16}{(16+x)^2} = \sum_{n=1}^{\infty} n \, \frac{(-1)^n}{4^{2n}} \, x^{n-1} = \sum_{n=0}^{\infty} (n+1) \, \frac{(-1)^{n+1}}{16^{n+1}} \, x^n \, .$$

Aufgabe G4 (Satz von Taylor)

Beweisen Sie mithilfe des Satzes von Taylor folgende Aussage:

Sei $f:[a,b]\to\mathbb{R}$ eine (n+1)-mal stetig differenzierbare Funktion mit $f^{(n+1)}(x)=0$. Dann ist f ein Polynom mit Grad kleiner gleich n.

Lösungshinweise: Mit dem Satz von Taylor gilt für alle $u, x \in [a, b]$, dass

$$f(x) = f(u) + \sum_{k=1}^{n} \frac{f^{(k)}(u)}{k!} (x - u)^{k} + \frac{1}{n!} \int_{u}^{x} (x - t)^{n} f^{(n+1)}(t) dt$$
$$= f(u) + \sum_{k=1}^{n} \frac{f^{(k)}(u)}{k!} (x - u)^{k},$$

da $f^{(n+1)}(t) = 0$. Also ist f ein Polynom mit Grad kleiner gleich n.