

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 October 2003 (30.10.2003)

PCT

(10) International Publication Number
WO 03/088967 A1

(51) International Patent Classification⁷: **A61K 31/4545**, C07D 471/04, 401/14, A61K 31/4184, A61P 37/08

DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NI, NO, NZ, PH, PL, PT, RO, RU, SC, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UZ, VC, VN, YU, ZA, ZM.

(21) International Application Number: PCT/US03/11672

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 16 April 2003 (16.04.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/373,731 18 April 2002 (18.04.2002) US

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(i)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NI, NO, NZ, PH, PL, PT, RO, RU, SC, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UZ, VC, VN, YU, ZA, ZM, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/088967 A1 (54) Title: (1-4-PIPERIDINYL) BENZIMIDAZOLE DERIVATIVES USEFUL AS HISTAMINE H3 ANTAGONISTS

various diseases or conditions, such as allergy, allergy-induced airway responses, and congestion (e.g., nasal congestion) using the compounds of formula I. Also disclosed are methods of treating said diseases or conditions using the compounds of formula I in combination with an H₁ receptor antagonist.

(57) Abstract: Disclosed are histamine H₃ antagonists of the formula (I) wherein R¹ is optionally substituted benzimidazolyl or a derivative thereof; R² is optionally substituted aryl or heteroaryl; M₁ and M₂ are C(R³) or N; Q is -N(R⁶)-, -S- or -O-; and the remaining variables are as defined in the specification. Also disclosed are pharmaceutical compositions comprising the compounds of formula I and methods of treating

5

(1-4-PIPERIDINYL) BENZIMIDAZOLE DERIVATIVES USEFUL AS HISTAMINE H₃ ANTAGONISTS

10

FIELD OF THE INVENTION

The present invention relates to novel substituted benzimidazoles and aza- and diaza-derivatives thereof useful as histamine H₃ antagonists. The invention also relates to pharmaceutical compositions comprising said compounds and their use in treating inflammatory diseases, allergic conditions and central nervous system disorders. The invention also relates to the use of a combination of novel histamine H₃ antagonists of this invention with histamine H₁ compounds for the treatment of inflammatory diseases and allergic conditions, as well as pharmaceutical compositions comprising a combination of one or more novel histamine H₃ antagonist compounds of the invention with one or more histamine H₁ compounds.

BACKGROUND OF THE INVENTION

The histamine receptors, H₁, H₂ and H₃ are well-identified forms. The H₁ receptors are those that mediate the response antagonized by conventional antihistamines. H₁ receptors are present, for example, in the ileum, the skin, and the bronchial smooth muscle of humans and other mammals. Through H₂ receptor-mediated responses, histamine stimulates gastric acid secretion in mammals and the chronotropic effect in isolated mammalian atria.

H₃ receptor sites are found on sympathetic nerves, where they modulate sympathetic neurotransmission and attenuate a variety of end organ responses under control of the sympathetic nervous system. Specifically, H₃ receptor activation by histamine attenuates norepinephrine outflow to resistance and capacitance vessels, causing vasodilation.

Imidazole H₃ receptor antagonists are well known in the art. More recently, non-imidazole H₃ receptor antagonists have been disclosed in PCT US01/32151, filed October 15, 2001, and US Provisional Application 60/275,417, filed March 13, 2001.

- US 5,869,479 discloses compositions for the treatment of the symptoms of allergic rhinitis using a combination of at least one histamine H₁ receptor antagonist and at least one histamine H₃ receptor antagonist.

SUMMARY OF THE INVENTION

The present invention provides novel compounds of formula I:

- or a pharmaceutically acceptable salt or solvate thereof, wherein:
- the dotted line represents an optional double bond;
 - a is 0 to 2;
 - b is 0 to 2;
 - n is 1, 2 or 3;
 - p is 1, 2 or 3;
 - r is 0, 1, 2, or 3;
 - with the provisos that when M² is N, p is not 1; and that when r is 0, M² is C(R³); and that the sum of p and r is 1 to 4;
 - M¹ is C(R³) or N;
 - M² is C(R³) or N;
 - X is a bond or C₁-C₆ alkylene;
 - Y is -C(O)-, -C(S)-, -(CH₂)_q-, -NR⁴C(O)-, -C(O)NR⁴-, -C(O)CH₂-, -SO₂-, -N(R⁴)-, -NH-C(=N-CN)- or -C(=N-CN)-NH-; with the provisos that when M¹ is N, Y is not -NR⁴C(O)- or -NH-C(=N-CN)-; when M² is N, Y is not -C(O)NR⁴- or -C(=N-CN)-NH-; and when Y is -N(R⁴)-, M¹ is CH and M² is C(R³);
 - q is 1 to 5, provided that when both M¹ and M² are N, q is 2 to 5;
 - Z is a bond, C₁-C₆ alkylene, C₁-C₆ alkenylene, -C(O)-, -CH(CN)-, -SO₂- or -CH₂C(O)NR⁴-;

R¹ is

- 5 Q is $-N(R^8)-$, $-S-$ or $-O-$;
 k is 0, 1, 2, 3 or 4;
 k1 is 0, 1, 2 or 3;
 k2 is 0, 1 or 2;
 R is H, C₁-C₆ alkyl, halo(C₁-C₆)alkyl-, C₁-C₆ alkoxy, (C₁-C₆)alkoxy-
 10 (C₁-C₆)alkyl-, (C₁-C₆)-alkoxy-(C₁-C₆)alkoxy, (C₁-C₆)alkoxy-(C₁-C₆)alkyl-SO₀₋₂,
 R³²-aryl(C₁-C₆)alkoxy-, R³²-aryl(C₁-C₆)alkyl-, R³²-aryl, R³²-aryloxy, R³²-heteroaryl,
 (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkyl-(C₁-C₆)alkyl, (C₃-C₆)cycloalkyl-(C₁-C₆)alkoxy,
 (C₃-C₆)cycloalkyl-oxy-, R³⁷-heterocycloalkyl, R³⁷-heterocycloalkyl-oxy-,
 R³⁷-heterocycloalkyl-(C₁-C₆)alkoxy, N(R³⁰)(R³¹)-(C₁-C₆)alkyl-, -N(R³⁰)(R³¹),
 15 -NH-(C₁-C₆)alkyl-O-(C₁-C₆)alkyl, -NHC(O)NH(R²⁹); R²⁹-S(O)₀₋₂₋,
 halo(C₁-C₆)alkyl-S(O)₀₋₂₋, N(R³⁰)(R³¹)-(C₁-C₆)alkyl-S(O)₀₋₂₋ or benzoyl;
 R⁸ is H, C₁-C₆ alkyl, halo(C₁-C₆)alkyl-, (C₁-C₆)alkoxy-(C₁-C₆)alkyl-, R³²-aryl(C₁-
 C₆)alkyl-, R³²-aryl, R³²-heteroaryl, (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkyl-(C₁-C₆)alkyl,
 R³⁷-heterocycloalkyl, N(R³⁰)(R³¹)-(C₁-C₆)alkyl-, R²⁹-S(O)₂₋, halo(C₁-C₆)alkyl-S(O)₂₋,
 20 R²⁹-S(O)₀₋₁-(C₂-C₆)alkyl-, halo(C₁-C₆)alkyl-S(O)₀₋₁-(C₂-C₆)alkyl-;
 R² is a six-membered heteroaryl ring having 1 or 2 heteroatoms independently
 selected from N or N-O, with the remaining ring atoms being carbon; a five-membered

heteroaryl ring having 1, 2, 3 or 4 heteroatoms independently selected from N, O or S, with the remaining ring atoms being carbon; R³²-quinolyl; R³²-aryl; heterocycloalkyl; (C₃-C₆)cycloalkyl; C₁-C₆ alkyl; hydrogen; thianaphthenyl;

- 5 wherein said six-membered heteroaryl ring or said five-membered heteroaryl ring is optionally substituted by R⁶;

R³ is H, halogen, C₁-C₆ alkyl, -OH, (C₁-C₆)alkoxy or -NHSO₂-(C₁-C₆)alkyl;

R⁴ is independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, (C₃-C₆)cycloalkyl(C₁-C₆)alkyl, R³³-aryl, R³³-aryl(C₁-C₆)alkyl, and R³²-heteroaryl;

R⁵ is hydrogen, C₁-C₆ alkyl, -C(O)R²⁰, -C(O)₂R²⁰, -C(O)N(R²⁰)₂, (C₁-C₆)alkyl-SO₂-, or (C₁-C₆)alkyl-SO₂-NH-;

or R⁴ and R⁵, together with the nitrogen to which they are attached, form an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl ring;

15 R⁶ is 1 to 3 substituents independently selected from the group consisting of -OH, halogen, C₁-C₆ alkyl-, C₁-C₆ alkoxy, C₁-C₆ alkylthio, -CF₃, -NR⁴R⁵, -CH₂-NR⁴R⁵, -NHSO₂R²², -N(SO₂R²²)₂, phenyl, R³³-phenyl, NO₂, -CO₂R⁴, -CON(R⁴)₂,

 and

 $\text{--NH-CH}_2\text{--}\text{C}_6\text{H}_3\text{OCH}_3$

R⁷ is -N(R²⁹)-, -O- or -S(O)₀₋₂-;

20 R¹² is independently selected from the group consisting of C₁-C₆ alkyl, hydroxyl, C₁-C₆ alkoxy, or fluoro, provided that when R¹² is hydroxy or fluoro, then R¹² is not bound to a carbon adjacent to a nitrogen; or two R¹² substituents form a C₁ to C₂ alkyl bridge from one ring carbon to another non-adjacent ring carbon; or R¹² is =O;

R¹³ is independently selected from the group consisting of C₁-C₆ alkyl, hydroxyl, C₁-C₆ alkoxy, or fluoro, provided that when R¹³ is hydroxy or fluoro then R¹³ is not bound to a carbon adjacent to a nitrogen; or two R¹³ substituents form a C₁ to C₂ alkyl bridge from one ring carbon to another non-adjacent ring carbon; or R¹³ is =O;

25 R²⁰ is independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, or aryl, wherein said aryl group is optionally substituted with from 1 to 3 groups independently selected from halogen, -CF₃, -OCF₃, hydroxyl, or methoxy; or when two

R^{20} groups are present, said two R^{20} groups taken together with the nitrogen to which they are bound can form a five or six membered heterocyclic ring;

R^{22} is $C_1\text{-}C_6$ alkyl, $R^{34}\text{-aryl}$ or heterocycloalkyl;

R^{24} is H, $C_1\text{-}C_6$ alkyl, $-SO_2R^{22}$ or $R^{34}\text{-aryl}$;

5 R^{25} is independently selected from the group consisting of $C_1\text{-}C_6$ alkyl, halogen, $-CN$, $-NO_2$, $-CF_3$, $-OH$, $C_1\text{-}C_6$ alkoxy, $(C_1\text{-}C_6)\text{alkyl-C(O)-}$, aryl-C(O)- , $-C(O)OR^{29}$, $-N(R^4)(R^5)$, $N(R^4)(R^5)\text{-C(O)-}$, $N(R^4)(R^5)\text{-S(O)}_{1\cdot 2\cdot}$, $R^{22}\text{-S(O)}_{0\cdot 2\cdot}$, halo- $(C_1\text{-}C_6)\text{alkyl-}$ or halo- $(C_1\text{-}C_6)\text{alkoxy-(C}_1\text{-}C_6\text{)alkyl-}$;

R^{29} is H, $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_6$ cycloalkyl, $R^{35}\text{-aryl}$ or $R^{35}\text{-aryl}(C_1\text{-}C_6)\text{alkyl-}$;

10 R^{30} is H, $C_1\text{-}C_6$ alkyl-, $R^{35}\text{-aryl}$ or $R^{35}\text{-aryl}(C_1\text{-}C_6)\text{alkyl-}$;

R^{31} is H, $C_1\text{-}C_6$ alkyl-, $R^{35}\text{-aryl}$, $R^{35}\text{-aryl}(C_1\text{-}C_6)\text{alkyl-}$, $R^{35}\text{-heteroaryl}$, $(C_1\text{-}C_6)\text{alkyl-C(O)-}$, $R^{35}\text{-aryl-C(O)-}$, $N(R^4)(R^5)\text{-C(O)-}$, $(C_1\text{-}C_6)\text{alkyl-S(O)}_{2\cdot}$ or $R^{35}\text{-aryl-S(O)}_{2\cdot}$; or R^{30} and R^{31} together are $-(CH_2)_{4\cdot 5\cdot}$, $-(CH_2)_2\text{-O-}(CH_2)_2\text{-}$ or $-(CH_2)_2\text{-N(R}^{38}\text{)-(CH}_2\text{)}_2\text{-}$ and form a ring with the nitrogen to which they are attached;

15 R^{32} is 1 to 3 substituents independently selected from the group consisting of H, $-OH$, halogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, $R^{35}\text{-aryl-O-}$, $-SR^{22}$, $-CF_3$, $-OCF_3$, $-OCHF_2$, $-NR^{39}R^{40}$, phenyl, $R^{33}\text{-phenyl}$, NO_2 , $-CO_2R^{39}$, $-CON(R^{39})_2$, $-S(O)_2R^{22}$, $-S(O)_2N(R^{20})_2$, $-N(R^{24})S(O)_2R^{22}$, $-CN$, hydroxy- $(C_1\text{-}C_6)\text{alkyl-}$, $-OCH_2CH_2OR^{22}$, and $R^{35}\text{-aryl}(C_1\text{-}C_6)\text{alkyl-O-}$, or two R^{32} groups on adjacent carbon atoms together form a

20 $-OCH_2O-$ or $-O(CH_2)_2O-$ group;

R^{33} is 1 to 3 substituents independently selected from the group consisting of $C_1\text{-}C_6$ alkyl, halogen, $-CN$, $-NO_2$, $-CF_3$, $-OCF_3$, $-OCHF_2$ and $-O-(C_1\text{-}C_6)\text{alkyl}$;

R^{34} is 1 to 3 substituents independently selected from the group consisting of H, halogen, $-CF_3$, $-OCF_3$, $-OH$ and $-OCH_3$;

25 R^{35} is 1 to 3 substituents independently selected from hydrogen, halo, $C_1\text{-}C_6$ alkyl, hydroxy, $C_1\text{-}C_6$ alkoxy, phenoxy, $-CF_3$, $-N(R^{36})_2$, $-COOR^{20}$ and $-NO_2$;

R^{36} is independently selected from the group consisting of H and $C_1\text{-}C_6$ alkyl;

R^{37} is 1 to 3 substituents independently selected from hydrogen, halo, $C_1\text{-}C_6$ alkyl, hydroxy, $C_1\text{-}C_6$ alkoxy, phenoxy, $-CF_3$, $-N(R^{36})_2$, $-COOR^{20}$, $-C(O)N(R^{29})_2$ and

30 $-NO_2$, or R^{37} is one or two $=O$ groups;

R^{38} is H, $C_1\text{-}C_6$ alkyl, $R^{35}\text{-aryl}$, $R^{35}\text{-aryl}(C_1\text{-}C_6)\text{alkyl-}$, $(C_1\text{-}C_6)\text{alkyl-SO}_2$ or halo- $(C_1\text{-}C_6)\text{alkyl-SO}_2\text{-}$;

R³⁹ is independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, (C₃-C₆)cycloalkyl(C₁-C₆)alkyl, R³³-aryl, R³³-aryl(C₁-C₆)alkyl, and R³²-heteroaryl; and

- R⁴⁰ is hydrogen, C₁-C₆ alkyl, -C(O)R²⁰, -C(O)₂R²⁰, -C(O)N(R²⁰)₂, (C₁-C₆)alkyl-SO₂-, or (C₁-C₆)alkyl-SO₂-NH-;
- 5 or R³⁹ and R⁴⁰, together with the nitrogen to which they are attached, form an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl ring;

This invention also provides a pharmaceutical composition comprising an effective amount of compound of at least one compound of formula I and a pharmaceutically acceptable carrier.

This invention further provides a method of treating: allergy, allergy-induced airway (e.g., upper airway) responses, congestion (e.g., nasal congestion), hypotension, cardiovascular disease, diseases of the GI tract, hyper and hypo motility, 15 and acidic secretion of the gastro-intestinal tract, obesity, sleeping disorders (e.g., hypersomnia, somnolence, and narcolepsy), disturbances of the central nervous system, attention deficit hyperactivity disorder (ADHD), hypo and hyperactivity of the central nervous system (for example, agitation and depression), and/or other CNS disorders (such as Alzheimer's, schizophrenia, and migraine) comprising administering to a patient in need of such treatment (e.g., a mammal, such as a 20 human being) an effective amount of at least one compound of formula I.

Compounds of this invention are particularly useful for treating allergy, allergy-induced airway responses and/or congestion.

This invention further provides a pharmaceutical composition comprising an effective amount of a combination of at least one compound of formula I and at least one H₁ receptor antagonist in combination with a pharmaceutically acceptable carrier.

This invention further provides a method of treating allergy, allergy-induced airway (e.g., upper airway) responses, and/or congestion (e.g., nasal congestion) comprising administering to a patient in need of such treatment (e.g., a mammal, such as a human being) an effective amount of a combination of at least one compound of formula I and at least one H₁ receptor antagonist.

Kits comprising a compound of formula I in a pharmaceutical composition, and a separate H₁ receptor antagonist in a pharmaceutical compositions in a single package are also contemplated.

DETAILED DESCRIPTION OF THE INVENTION

Preferred definitions of the variables in the structure of formula I are as follows:

R¹ is preferably optionally substituted benzimidazolyl or 7-azabenzimidazolyl, wherein R is preferably alkyl, alkoxy, alkoxyalkoxy, alkylthio, heteroaryl or R³²-aryl.

- 5 More preferably, R is -CH₃, -CH₂CH₃, -OCH₃, -OCH₂CH₃, -OCH₂CH₂CH₃, -OCH((CH₃)₂, -SCH₃, -SCH₂CH₃, pyridyl (especially 2-pyridyl), pyrimidyl, pyrazinyl, furanyl, oxazolyl or R³²-phenyl.

R²⁵ is preferably halogen or -CF₃ and k is 0 or 1.

- 10 R² is preferably a six-membered heteroaryl ring, optionally substituted with one substituent. More preferably, R² is pyrimidyl, R⁶-pyrimidyl, pyridyl, R⁶-pyridyl or pyridazinyl, wherein R⁶ is -NR⁴R⁵, wherein R⁴ and R⁵ are independently selected from the group consisting of H and (C₁-C₆)alkyl, or R⁴ and R⁵ together with the nitrogen to which they are attached form a pyrrolidinyl, piperidinyl or morpholinyl ring. More preferably, R⁶ is -NH₂.

- 15 X is preferably a bond.

Y is preferably -C(O)-.

Z is preferably straight or branched C₁-C₃ alkyl.

M¹ is preferably N; a is preferably 0; and n is preferably 2; the optional double bond is preferably not present (i.e., a single bond is present).

- 20 M² is preferably C(R³) wherein R³ is hydrogen or fluorine; b is preferably 0; r is preferably 1; and p is preferably 2.

As used herein, the following terms have the following meanings, unless indicated otherwise:

alkyl (including, for example, the alkyl portions of arylalkyl and alkoxy)

- 25 represents straight and branched carbon chains and contains from one to six carbon atoms;

alkylene represents a divalent straight or branched alkyl chain, e.g., ethylene (-CH₂CH₂-) or propylene (-CH₂CH₂CH₂-);

- 30 Haloalkyl and haloalkoxy represent alkyl or alkoxy chains wherein one or more hydrogen atoms are replaced by halogen atoms, e.g., -CF₃, CF₃CH₂CH₂-, CF₃CF₂- or CF₃S;

aryl (including the aryl portion of arylalkyl) represents a carbocyclic group containing from 6 to 14 carbon atoms and having at least one aromatic ring (e.g., aryl

is a phenyl or naphthyl ring), with all available substitutable carbon atoms of the carbocyclic group being intended as possible points of attachment;

arylalkyl represents an aryl group, as defined above, bound to an alkyl group, as defined above, wherein said alkyl group is bound to the compound;

5 cycloalkyl represents saturated carbocyclic rings of from 3 to 6 carbon atoms;

halogen (halo) represents fluoro, chloro, bromo and iodo;

heteroaryl represents cyclic groups, having 1 to 4 heteroatoms selected from O, S or N, said heteroatom interrupting a carbocyclic ring structure and having a sufficient number of delocalized pi electrons to provide aromatic character, with the

10 aromatic heterocyclic groups preferably containing from 2 to 14 carbon atoms;

examples include but are not limited to isothiazolyl, isoxazolyl, oxazolyl, furazanyl, triazolyl, tetrazolyl, thiazolyl, thiadiazolyl, isothiadiazolyl, thienyl, furanyl (furyl), pyrrolyl, pyrazolyl, pyranyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyridyl (e.g., 2-, 3-, or 4-pyridyl), pyridyl N-oxide (e.g., 2-, 3-, or 4-pyridyl N-oxide), triazinyl, pteridinyl, indolyl

15 (benzopyrrolyl), pyridopyrazinyl, isoquinolinyl, quinolinyl, naphthyridinyl; the 5- and 6-membered heteroaryl groups included in the definition of R² are exemplified by the heteroaryl groups listed above; all available substitutable carbon and nitrogen atoms can be substituted as defined;

heterocycloalkyl represents a saturated, carbocyclic ring containing from 3 to

20 15 carbon atoms, preferably from 4 to 6 carbon atoms; examples include but are not limited to 2- or 3-tetrahydrofuranyl, 2- or 3- tetrahydrothienyl, 2-, 3- or 4-piperidinyl, 2- or 3-pyrrolidinyl, 2- or 3-piperazinyl, 2- or 4-dioxanyl, 1,3-dioxolanyl, 1,3,5-trithianyl, pentamethylene sulfide, perhydroisoquinolinyl, decahydroquinolinyl, trimethylene oxide, azetidinyl, 1-azacycloheptanyl, 1,3-dithianyl, 1,3,5-trioxanyl, morpholinyl, 25 thiomorpholinyl, 1,4-thioxanyl, and 1,3,5-hexahydrotriazinyl, thiazolidinyl, tetrahydropyranyl.

In the definition of R³², when two R³² groups on adjacent carbon atoms of an aryl or heteroaryl ring are said to be taken together form a -OCH₂O- or -O(CH₂)₂O-group, this means that the two R³² groups form a methylenedioxy or ethylenedioxy

30 ring fused to the aryl or heteroaryl ring. When R¹², R¹³ or R³⁷ is said to be one or two =O groups, this means that two hydrogen atoms on the same carbon atom of the ring can be replaced by =O; two such groups can be present on a ring.

(N) , for example in the structure

represents a nitrogen atom that is located at one of the 4 non-fused positions of the ring, i.e., positions 4, 5, 6 or 7 indicated below:

- 5 Similarly, means that two nitrogens are located at any two of the 4 non-fused positions of the ring, e.g., the 4 and 6 positions, the 4 and 7 positions, or the 5 and 6 positions.

Also, as used herein, "upper airway" usually means the upper respiratory system--i.e., the nose, throat, and associated structures.

- 10 Also, as used herein, "effective amount" generally means a therapeutically effective amount.

"Patient" means a mammal, typically a human, although veterinary use is also contemplated.

- 15 Lines drawn into the rings indicate that the indicated bond may be attached to any of the substitutable ring carbon atoms.

Certain compounds of the invention may exist in different isomeric (e.g., enantiomeric, diastereoisomeric and geometric) forms. The invention contemplates all such isomers both in pure form and in admixture, including racemic mixtures. Enol forms and tautomers are also included.

- 20 The compounds of this invention are ligands for the histamine H₃ receptor. The compounds of this invention can also be described as antagonists of the H₃ receptor, or as H₃ antagonists.

The compounds of the invention are basic and form pharmaceutically acceptable salts with organic and inorganic acids. Examples of suitable acids for such salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral

and carboxylic acids well known to those skilled in the art. The salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous sodium hydroxide, potassium carbonate, ammonia and sodium bicarbonate. The free base forms differ from their corresponding salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the salts are otherwise equivalent to their corresponding free base forms for purposes of this invention.

Depending upon the substituents on the inventive compounds, one may be able to form salts with bases. Thus, for example, if there are carboxylic acid substituents in the molecule, salts may be formed with inorganic as well as organic bases such as, for example, NaOH, KOH, NH₄OH, tetraalkylammonium hydroxide, and the like.

The compounds of formula I can exist in unsolvated as well as solvated forms, including hydrated forms, e.g., hemi-hydrate. In general, the solvated forms, with pharmaceutically acceptable solvents such as water, ethanol and the like are equivalent to the unsolvated forms for purposes of the invention.

The compounds of this invention can be combined with an H₁ receptor antagonist (i.e., the compounds of this invention can be combined with an H₁ receptor antagonist in a pharmaceutical composition, or the compounds of this invention can be administered with H₁ receptor antagonist).

Numerous chemical substances are known to have histamine H₁ receptor antagonist activity and can therefore be used in the methods of this invention. Many H₁ receptor antagonists useful in the methods of this invention can be classified as ethanolamines, ethylenediamines, alkylamines, phenothiazines or piperidines. Representative H₁ receptor antagonists include, without limitation: astemizole, azatadine, azelastine, acrivastine, brompheniramine, cetirizine, chlorpheniramine, clemastine, cyclizine, carebastine, cyproheptadine, carbinoxamine, descarboethoxyloratadine, diphenhydramine, doxylamine, dimethindene, ebastine, epinastine, efletirizine, fexofenadine, hydroxyzine, ketotifen, loratadine, levocabastine, meclizine, mizolastine, mequitazine, mianserin, noberastine, norastemizole, picumast, pyrilamine, promethazine, terfenadine, tripeleannamine, temelastine, trimeprazine and triprolidine. Other compounds can readily be evaluated to determine activity at H₁ receptors by known methods, including specific blockade of the contractile response

to histamine of isolated guinea pig ileum. See for example, WO98/06394 published February 19, 1998.

Those skilled in the art will appreciate that the H₁ receptor antagonist is used at its known therapeutically effective dose, or the H₁ receptor antagonist is used at its normally prescribed dosage.

Preferably, said H₁ receptor antagonist is selected from: astemizole, azatadine, azelastine, acrivastine, brompheniramine, cetirizine, chlorpheniramine, clemastine, cyclizine, carebastine, cyproheptadine, carbinoxamine, descarboethoxyloratadine, diphenhydramine, doxylamine, dimethindene, ebastine, epinastine, eflétirizine, fexofenadine, hydroxyzine, ketotifen, loratadine, levocabastine, meclizine, mizolastine, mequitazine, mianserin, noberastine, norastemizole, picumast, pyrilamine, promethazine, terfenadine, tripelennamine, temelastine, trimeprazine or triprolidine.

More preferably, said H₁ receptor antagonist is selected from: astemizole, azatadine, azelastine, brompheniramine, cetirizine, chlorpheniramine, clemastine, carebastine, descarboethoxyloratadine, diphenhydramine, doxylamine, ebastine, fexofenadine, loratadine, levocabastine, mizolastine, norastemizole, or terfenadine.

Most preferably, said H₁ receptor antagonist is selected from: azatadine, brompheniramine, cetirizine, chlorpheniramine, carebastine, descarboethoxy-loratadine, diphenhydramine, ebastine, fexofenadine, loratadine, or norastemizole.

Even more preferably, said H₁ antagonist is selected from loratadine, descarboethoxyloratadine, fexofenadine or cetirizine. Still even more preferably, said H₁ antagonist is loratadine or descarboethoxyloratadine.

In one preferred embodiment, said H₁ receptor antagonist is loratadine.

In another preferred embodiment, said H₁ receptor antagonist is descarboethoxyloratadine.

In still another preferred embodiment, said H₁ receptor antagonist is fexofenadine.

In yet another preferred embodiment, said H₁ receptor antagonist is cetirizine.

Preferably, in the above methods, allergy-induced airway responses are treated.

Also, preferably, in the above methods, allergy is treated.

Also, preferably, in the above methods, nasal congestion is treated.

In the methods of this invention wherein a combination of an H₃ antagonist of this invention (compound of formula I) is administered with a H₁ antagonist, the

antagonists can be administered simultaneously or sequentially (first one and then the other over a period of time). In general, when the antagonists are administered sequentially, the H₃ antagonist of this invention (compound of formula I) is administered first.

- 5 Compounds of the present invention can be prepared by a number of ways evident to one skilled in the art. Preferred methods include, but are not limited to, the general synthetic procedures described herein. One skilled in the art will recognize that one route will be optimal depending on the choice of appendage substituents. Additionally, one skilled in the art will recognize that in some cases the order of steps
10 has to be controlled to avoid functional group incompatibilities.

The starting material and reagents used in preparing compounds described are either available from commercial suppliers such as Aldrich Chemical Co. (Wisconsin, USA) and Acros Organics Co. (New Jersey, USA) or were prepared by literature methods known to those skilled in the art.

- 15 One skilled in the art will recognize that the synthesis of compounds of formula I may require the construction of carbon-nitrogen bond. Methods include but are not limited to the use of a substituted aromatic compound or heteroaromatic compound and amine at 0 °C to 200 °C. The reaction may be carried out neat or in a solvent. Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents,
20 toluene, dimethylformamide and the like.

- One skilled in the art will recognize that the synthesis of compounds of formula I may require the construction of heterocycle. Methods include but are not limited to the use of a diamino compound and a carbonyl equivalent at 0 °C to 200 °C. The reaction may be carried out in acidic, basic or neutral conditions. Suitable solvents for
25 the reaction are water, halogenated hydrocarbons, ethereal solvents, alcoholic solvents, toluene, ketones, dimethylformamide and the like.

- One skilled in the art will recognize that the synthesis of compounds of formula I may require the need for the protection of certain functional groups (i.e. derivatization for the purpose of chemical compatibility with a particular reaction condition). See, for
30 example, Green et al, *Protective Groups in Organic Synthesis*. A suitable protecting group for an amine is methyl, benzyl, ethoxyethyl, t-butoxycarbonyl, phthaloyl and the like which can appended to and removed by literature methods known to those skilled in the art.

One skilled in the art will recognize that the synthesis of compounds of formula I may require the construction of an amide bond. Methods include but are not limited to the use of a reactive carboxy derivative (e.g. acid halide) or the use of an acid with a coupling reagent (e.g. EDCI, DCC, HATU) with an amine at 0 °C to 100 °C. Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, dimethylformamide and alike.

One skilled in the art will recognize that the synthesis of compounds of formula I may require the reduction of a functional group. Suitable reducing reagents for the reaction include NaBH₄, lithium aluminum hydride, diborane and the like at -20 °C to 100 °C. Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, and the like.

The starting materials and the intermediates of the reaction may be isolated and purified if desired using conventional techniques, including but not limited to filtration, distillation, crystallization, chromatography and alike. Such materials can be characterized using conventional means, including physical constants and spectral data.

One method shown in Scheme 1, below, is for the preparation of compounds of formula IA wherein R¹ is 1-benzimidazolyl or 2-benzamidazolyl and X is a bond or alkyl. Similar procedures can be used to prepare compounds wherein the benzene ring of the benzimidazolyl group is substituted, as well as the aza-benzimidazoles compounds (i.e., compounds wherein R¹ is other than benzimidazolyl as defined above) and the benzoxazolyl and benzothiazolyl derivatives.

SCHEME 1.

Step a: A suitably monoprotected diamine of formula X, wherein X is a bond or alkyl, Prot is a protecting group, and the remaining variables are as defined above is alkylated or arylated with a halide. The intermediate diamine is then cyclized with an appropriate carbonyl or formyl equivalent to form a compound of formula XI. Suitable

protecting groups are methyl, benzyl, butoxycarbonyl, or ethoxycarbonyl. A suitable halide for alkylation is a substituted aromatic compound or a substituted heteroaromatic compound as described by Henning et al, *J. Med. Chem.* 30, (1987), 814-819.

- 5 Step b: The protected amine of formula XI is deprotected using methods known to those skilled in the art. A suitable method for methyl deprotection is reaction with a haloformate or the like. A suitable method for benzyl deprotection is cleavage with hydrogen at or above atmospheric pressure and a catalyst such as palladium. Suitable methods for carbamate deprotection are treatment with an acid, base or
10 trimethylsilyl iodide.

Step c: An amine of formula XII is reacted with an activated functional group Y of formula XIII to form the bond between the nitrogen and functional group Y in formula IA. When Y is a carbonyl group and M² is carbon, activation can be via a halide (i.e. acid chloride intermediate) or other coupling reagents (EDCI, DCC, HATU, or like).

- 15 Suitable reaction conditions may require a base such as triethylamine or N,N-diisopropylethylamine.

Another method for the preparation of compounds of formula IA wherein R¹ is 1-benzimidazolyl or 2-benzimidazolyl and X is a bond or alkyl is shown in Scheme 2, below. Similar procedures can be used to prepare compounds wherein the benzene ring of the benzimidazolyl group is substituted, as well as the aza-benzimidazoles compounds (i.e., compounds wherein R¹ is other than benzimidazolyl as defined above).

Scheme 2.

- 25 Step d: A suitably monoprotected diamine of formula X, wherein X is a bond or alkyl, Prot is a protecting group, and the remaining variables are as defined above, is alkylated or arylated with a halide to form a compound of formula XIV. Suitable protecting groups are methyl, benzyl, butoxycarbonyl, and ethoxycarbonyl. A suitable

halide for alkylation is a substituted aromatic compound or a substituted heteroaromatic compound as described by Henning et al.

Step e:

(1) The protected amine of formula **XIV** is deprotected using methods known to those skilled in the art. A suitable method for methyl deprotection is reaction with a haloformate or the like. A suitable method for benzyl deprotection is cleavage with hydrogen at or above atmospheric pressure and a catalyst such as palladium.

Suitable methods for carbamate deprotection are treatment with an acid, base or trimethylsilyl iodide.

(2) The resulting amine from Step e(1) is reacted with an activated functional group Y of formula **XIII** to form the bond between the nitrogen and functional group Y to obtain the compound of formula **XV**. When Y is a carbonyl group and M² is carbon, activation can be via a halide (i.e. acid chloride intermediate) or other coupling reagents (EDCI, DCC, HATU, or the like). Suitable reaction conditions may require a base such as triethylamine, N,N-diisopropylethylamine, pyridine, or the like.

Step f: After reduction of formula **XV**, the resulting compound is reacted with a carbonyl equivalent to give the cyclized compound of formula **IA**. The reduction conditions can be hydrogen in the presence of catalyst, metal in the presence of an acid or a base, or other reduction reagent. The cyclization can be performed in acidic or basic conditions.

More detailed methods for synthesis of compounds are shown in **Scheme 3** below. The preparation of compounds of formula **IB** wherein R¹ is 1-benzimidazolyl (Methods A, B, C and F), Y is -C(O)- and R² is substituted pyridyl, and compounds of formulas **IC** and **IC'** wherein R¹ is 2-benzimidazolyl (Methods D and E), Y is -C(O)- and R² is substituted pyridyl are shown, but those skilled in the art will recognize that similar procedures can be used to prepare compounds wherein the benzene ring of the benzimidazolyl group is substituted, R² is other than pyridyl, and aza-benzimidazoles compounds (i.e., compounds wherein R¹ is other than benzimidazolyl as defined above).

Scheme 3.**Method A:****Method B:**

Method C:Method D:Method E:Method F:

Specifically exemplified compounds were prepared as described in the examples below, from starting materials known in the art or prepared as described below. These examples are being provided to further illustrate the present invention. They are for illustrative purposes only; the scope of the invention is not to be 5 considered limited in any way thereby.

Unless otherwise stated, the following abbreviations have the stated meanings in the Examples below:

Me=methyl; Et=ethyl; Bu=butyl; Pr=propyl; Ph=phenyl; t-BOC=tert-butyloxycarbonyl; CBZ=carbobenzyloxy; and Ac=acetyl

10 DCC=dicyclohexylcarbodiimide

DMAP=4-dimethylaminopyridine

DMF=dimethylformamide

EDCI= 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide

ESMS=Electron spray mass spectroscopy

15 FAB=Fast atom bombardment mass spectroscopy

HATU=O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyl uronium hexafluorophosphate

HOBT= 1-hydroxybenzotriazole

LAH=lithium aluminum hydride

LDA=lithium diisopropylamide

20 NaBH(OAc)₃= sodium triacetoxyborohydride

NBS=N-bromosuccinimide

PPA=polyphosphoric acid

RT=room temperature

TBAF=tetrabutylammonium fluoride

25 TBDMS=t-butyldimethylsilyl

TMEDA=N,N,N',N'-tetramethylethylenediamine

TEMPO=2,2,6,6-tetramethyl-1-piperidinyloxy, free radical

TLC=thin layer chromatography

HRMS= High Resolution Mass Spectrometry

30 LRMS= Low Resolution Mass Spectrometry

nM= nanomolar

K_i= Dissociation Constant for substrate/receptor complex

pA₂= -logEC₅₀, as defined by J. Hey, *Eur. J. Pharmacol.*, (1995), Vol. 294, 329-335.

Ci/mmol= Curie/mmol (a measure of specific activity)

Preparation 1Step 1:

5 To a solution of 2-amino-4-methylpyridine (10.81 g, 100 mmol) in tert-butanol (250 ml) was added t-BOC anhydride (26.19 g, 120 mmol). The reaction mixture was stirred at 23 °C overnight, and then concentrated to an oil. The crude product was dry loaded onto a silica gel column and flash chromatographed (eluant: 30% hexanes-CH₂Cl₂ to 0-2% acetone-CH₂Cl₂) to produce 15.25 g (73.32 mmol; 73%) of the desired product as a white solid.

Step 2:

10 To a solution of the product of Step 1 (35.96 g, 173 mmol) in THF (1.4 l) at -78 °C was added a n-BuLi solution (1.4 M, 272 ml, 381 mmol) in hexanes portionwise over 30 min. The reaction mixture was then allowed to warm slowly and was stirred for 2 h at 23 °C, which resulted in the formation of an orange precipitate. The mixture was then cooled back to -78 °C, and pre-dried oxygen (passed through a Drierite column) was bubbled through the suspension for 6 h while the temperature was maintained at -78 °C. The color of the reaction mixture changed from orange to yellow during this time. The reaction was quenched at -78 °C with (CH₃)₂S (51.4 ml, 700 mmol) followed by AcOH (22 ml, 384 mmol) and allowed to warm with stirring to 23 °C. After 48 h, water was added and the product extracted into EtOAc. Purification by silica gel flash chromatography (eluant: 0-15% acetone/ CH₂Cl₂) provided 20.15 g (90 mmol; 52%) of the alcohol as a pale yellow solid.

Step 3:

15 To a solution of the product of Step 2 (19.15 g, 85.5 mmol) in CH₂Cl₂ (640 ml) was added a saturated aqueous solution of NaHCO₃ (8.62 g, 103 mmol) and

NaBr (444 mg, 4.3 mmol). The reaction mixture was cooled to 0 °C, and TEMPO (140 mg, 0.90 mmol) was introduced. Upon vigorous stirring, commercial bleach solution (122 ml, 0.7 M, 85.4 mmol) (5.25% in NaOCl) was added portionwise over 40 min. After an additional 20 min at 0 °C, the reaction mixture was quenched with saturated aqueous Na₂S₂O₃ and allowed to warm to 23 °C. Dilution with water and extraction with CH₂Cl₂, followed by concentration and flash chromatography (eluant: 30% hexanes-CH₂Cl₂ to 0-2% acetone-CH₂Cl₂) afforded 15.97 g (71.9 mmol; 84% yield) of the aldehyde as an off-white solid.

Step 4:

To a solution of the product of Step 3 (11.87 g, 53.5 mmol) in CH₂Cl₂ (370 ml) was added ethyl isonipecotate (9.07 ml, 58.8 mmol) followed by four drops of AcOH. The reaction mixture was then stirred for 40 min at 23 °C, after which NaB(OAc)₃H (22.68 g, 107 mmol) was added. The reaction mixture was stirred overnight at 23 °C, neutralized with saturated aqueous NaHCO₃, diluted with water and extracted with CH₂Cl₂. Concentration of the organic extracts, followed by silica gel flash chromatography (eluant: 0–4% sat. NH₃ in CH₃OH-CH₂Cl₂) provided 19.09 g (52.6 mmol; 98%) of the ester as an off-white solid.

Step 5:

To a solution of the product of Step 4 (1.57 g, 4.33 mmol) in THF-water-CH₃OH (10 ml of a 3:1:1 mixture) was added LiOH monohydrate (0.125 g, 5.21 mmol). The reaction mixture was stirred overnight at 23 °C, concentrated and exposed to high vacuum to obtain 1.59 g of crude title compound as a yellowish solid which was used without purification.

25

Preparation 2

Step 1:

5 well-stirred solution was added triphosgene (14.2 g, 47.3 mmol) cautiously (exotherm!) and portionwise over a period of 30 min. When addition was complete, stirring was continued at 0 °C for 1 h, then at RT for 16 h. The mixture was washed with 0.5N NaOH (200 ml), the organic layer was dried over anhydrous MgSO₄ and concentrated under vacuum. Hot EtOAc (200 ml) was added to the semi-solid residue, and the resultant mixture was cooled to RT. Filtration yielded compound **P2-1** as a white solid (16.5g); and silica gel flash chromatography [CH₂Cl₂/CH₃OH (2N NH₃) = 40:1] of the filtrate provided additional product as a white solid (2.7 g) [combined yield: 88%]. FABMS: 308 (MH⁺; 100%).

10

15

Step 2:

20

25

Varying amounts of compound **P2-10** may be formed in this process and can be converted to desired product **P2-2** by careful in situ treatment in CH₂Cl₂ solution at 0 °C with one equivalent each of EtOH and NaH, followed by workup with ice-water and CH₂Cl₂. Low temperature is maintained in order to minimize reaction at the 2-position of the benzimidazole nucleus.

Step 3:

Sodium thiomethoxide (1.05 g; 15.0 mmol) was added to DMF (15 ml) in a round-bottomed flask flushed with N₂. After stirring at RT for 30 min, solid chloride P2-

- 5 2 (3.25 g, 10 mmol) was added, and the resultant mixture was kept stirring at RT for 16 h. EtOAc (100 ml) and water (50 ml) were added to the reaction mixture. The aqueous layer was separated and further extracted with EtOAc (50 ml). The combined extracts were dried over anhydrous MgSO₄ and concentrated under vacuum. The residue was purified via flash chromatography on silica gel, eluting with
 10 EtOAc-hexanes (3:4), to obtain compound P2-3 as a white solid (2.12 g; 63%).
 FABMS: 338.3 (MH⁺; 100%).

Step 4.:

- To a stirred solution of P2-3 (300 mg, 12.5 mmol) in EtOH (40 ml)-isopropyl alcohol (40 ml) was added 25% (w/w) aqueous NaOH solution (20 ml). The resultant mixture was stirred at 85 °C for 24 h, then at 100 °C for an additional 4 h. Alcohols were removed under vacuum, and the aqueous residue was extracted sequentially with CH₂Cl₂ (2 x 40 ml), then EtOAc (30 ml). Combined extracts were dried over anhydrous MgSO₄. Drying agent was removed by filtration, and the filtrate was concentrated under vacuum. The residue was purified by silica gel flash chromatography (CH₂Cl₂/2N methanolic ammonia = 12:1) to obtain Preparation 2 as an off-white solid (2.85 g, 70%). ES-MS: 266 (MH⁺; 100%).

Preparation 3Step 1:

NaH (60 mg of a 60% dispersion; 1.48 mmol) was added to CH₃OH (4 ml) in a flask charged with N₂. After stirring at RT for 30 min, chloride P2-2 (400 mg, 1.23 mmol) was added, and the resultant mixture was stirred at RT for 16 h. CH₃OH was removed in vacuo, and to the residue were added CH₂Cl₂ (30 ml) and water (10 ml).

- 5 The organic layer was dried over anhydrous MgSO₄, filtered, and the filtrate concentrated under vacuum. The residue was purified via flash chromatography on silica gel, eluting with EtOAc-hexanes (3:2) to obtain P3-1 as a white foam (0.232g; 59%). ES-MS: 322.1 (MH⁺; 100%).

Step 2:

- 10 1N aqueous KOH (4.82 mL; 4.82 mmol) was added to a solution of P3-1 in EtOH (15 ml), and the resultant mixture was stirred at 80 °C for 48 h. The mixture was concentrated under vacuum. Water (3 ml) and CH₂Cl₂ (15 ml) were added to the residue, and the organic layer was separated and dried over anhydrous MgSO₄. Drying agent was filtered, and the filtrate was concentrated in vacuo to obtain
15 Preparation 3 as a colorless glass (160mg; 95%). FABMS: 250.2 (MH⁺; 100%).

Preparation 4

Step 1:

- 20 P2-2 (300 mg; 0.923 mmol) and morpholine (3 ml) were mixed in a round-bottomed flask under N₂, and the resultant mixture was heated to 80 °C for 16 h. Morpholine was removed under vacuum, and the residue was dissolved in CH₂Cl₂ (20 ml). An insoluble white precipitate was filtered off, and the filtrate was concentrated and purified by means of flash chromatography on silica gel, eluting with CH₂Cl₂/2N methanolic ammonia (45:1), to obtain P4-1 as a colorless glass (0.325g; 94%). ES-MS: 377.1 (MH⁺; 100%).

Step 2:

Trimethylsilyl iodide (240 microliters; 1.64mmol) was added to a solution of **P4-1** (316 mg; 0.843 mmol) in CHCl₃ (2 ml) under N₂, and the resultant solution was stirred at 55 °C for 7 h. The reaction was quenched with EtOH (2 ml), and the mixture was concentrated to dryness under vacuum. The residue was basified with a 1:1 (v/v) mixture of concentrated NH₄OH and water to pH ~10 and extracted with CH₂Cl₂ (2 x 5 ml). The combined extracts were dried over anhydrous MgSO₄. Drying agent was filtered, and the filtrate was concentrated under vacuum. The residue was purified via flash chromatography on silica gel, eluting with CH₂Cl₂-2N methanolic ammonia (13:1), to obtain compound Preparation 4 as a colorless glass. (181 mg; 70%). ES-MS: 305.1 (M⁺; 100%).

Preparation 5Step 1:

A solution of **P5-1** (3.5 g, 21 mmol) and **P5-2** (6.5 g, 38 mmol) in CH₂Cl₂ (3 ml) was heated to 110° C for 24 h and RT for 24 h. The reaction was diluted with CH₂Cl₂, washed with water and brine, and dried (Na₂SO₄). Purification on a flash column (SiO₂, 40% to 60% EtOAc in hexanes) gave **P5-3** (1.3 g, 21%; M+H = 295).

Step 2:

To a solution of **P5-3** (1.3 g, 4.4 mmol) in CH₃OH (30 ml) was added Ra-Ni (0.5 g) and the mixture was hydrogenated under a H₂ atmosphere (50 psi) for 18 h.

Filtration through a pad of celite gave **P5-4** as a grey solid that was used without further purification (1.05 g, 90%; M+H = 265).

Step 3:

5 A solution of **P5-4** (1.05 g, 3.97 mmol), **P5-5** (0.49 g, 3.97 mmol), DEC (1.14 g, 5.96 mmol) and HOBT (0.8 g, 5.96 mmol) in CH₂Cl₂ (10 ml) were stirred for 18 h at RT. The crude reaction mixture was diluted with additional CH₂Cl₂ and washed with 5% aqueous NaOH and brine and dried (Na₂SO₄). Purification using flash chromatography (SiO, 8% EtOAc in hexane to 10% CH₃OH in EtOAc) gave **P5-6** (0.35 g, 24%; M+H = 370).

Step 4:

10 Compound **P5-6** (0.7 g, 1.89 mmol) was dissolved in HOAc (10 ml) and heated to 120° C for 3.5 h. The reaction was cooled to RT, concentrated in vacuo, neutralized by the addition of 10% aqueous NaOH and extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄) and concentrated to give **P5-7** (0.58 g, 87%; M+H = 352) which was used in the next step without further purification.

Step 5:

15 A solution of **P5-7** (0.58 g, 1.65 mmol) and NaOH (0.43 g, 13.2 mmol) in EtOH/H₂O (9/1, 10 ml) was heated to 100° C for 18 h. The reaction was cooled and concentrated and the residue purified on a flash column (SiO₂, 10% CH₃OH saturated with ammonia in CH₂Cl₂) to give Preparation 5 (0.42 g, 91%; M+H = 280).

Preparation 6Step 1:

5 A solution of compound P6-1 (prepared by procedures analogous to P2-1) (10.5 g, 36.2 mmol) and 2,6-di-*tert*-butylpyridine (12.2 ml, 54.4 mmol) in CH₂Cl₂ (400 ml) was treated with 1M sol. of Et₃O⁺BF₄⁻ (in CH₂Cl₂, 55 ml, 55 mmol). The reaction mixture was stirred at RT for 2h, quenched with 1N NaOH (100 ml), extracted with CH₂Cl₂ (3x), dried with Na₂SO₄ and concentrated. Purification by silica gel chromatography (eluant: 5-10% acetone/ CH₂Cl₂) to give 6.37 g of P6-2 (20.0 mmol, 55%).

Step 2:

In a manner similar to that described in Preparation 3, Step 2, P6-2 was converted to Preparation 6.

15

Preparation 7Step 1:

20 A mixture of P7-1 (40g, 150 mmol), trimethyl orthoformate (66 ml, 64.0 g, 600 mmol) and a catalytic amount of *p*-toluenesulfonic acid monohydrate (300 mg, 1.58 mmol) was stirred under N₂ at 120 °C for 3 h. Excess orthoformate was removed under vacuum. The residue was partitioned between EtOAc (200 ml) and 1N NaOH (100 ml). The organic layer was washed with brine (100 ml) and dried over anhydrous MgSO₄. Drying agent was removed by filtration, and the filtrate was concentrated

under vacuum. The residue was purified by silica gel flash chromatography ($\text{CH}_2\text{Cl}_2/\text{CH}_3\text{OH}$ (2N NH_3) = 45:1) to obtain **P7-2** as a dark purple syrup (27.2 g, 66%), which solidified upon standing. ES-MS: 275 (MH^+ ; 100%).

Step 2:

NBS was added portionwise (exotherm) to a solution of **P7-2** (27 g, 100 mmol) in CHCl_3 (300 ml), and the resultant solution was stirred at 60 °C for 16 h. Solvent was then removed under vacuum, and the residue was partitioned between EtOAc (200 ml) and 0.7N $\text{Na}_2\text{S}_2\text{O}_4$ (250 ml). The organic layer was washed with brine (150 ml) and dried over anhydrous MgSO_4 . Drying agent was removed by filtration, and the filtrate was concentrated under vacuum. The residue was purified by silica gel flash chromatography [$\text{CH}_2\text{Cl}_2/\text{acetone}$ = 45:1] to obtain **P7-3** as a yellow solid (24.2 g, 69%). ES-MS: 353 (MH^+ ; 100%).

Step 3:

15 NaH (544 mg of a 60% dispersion, 13.6 mmol) was added to a solution of CH_3OH (0.551 ml, 436 mg, 13.6 mmol) in DMF (5 ml). The resultant mixture was stirred at RT for 30 min before adding solid bromide **P7-3** (3.99 g, 11.3 mmol). The reaction suspension was stirred at RT for 16 h. The mixture was then partitioned between EtOAc (800 ml) and water (40 ml). The aqueous layer was extracted with 20 EtOAc (40 ml). Combined extracts were washed with brine (30 ml) and dried over anhydrous MgSO_4 . Drying agent was removed by filtration, and the filtrate was concentrated under vacuum to obtain Preparation 7 as a white syrup (2.81 g, 81%), which was used without further purification. ES-MS: 305 (MH^+ ; 100%).

Preparation 8

Step 1:

A solution of **1B** (15 g, 52.8 mmol) and 1,1'-thiocarbonyldiimidazole (25 g, 140 mmol) in THF (300 ml) was stirred at 72 °C under N₂ for 16 h, during which time a

- 5 precipitate formed. THF was removed under vacuum, and the residue was purified by silica gel flash chromatography (CH₂Cl₂/acetone = 20:1) to obtain **P8-1** as a light yellow solid (16.7 g, >95%). ES-MS: 324 (MH⁺; 100%).

Step 2:

- To a stirred mixture of **P8-1** (4.00 g, 12.5 mmol) and K₂CO₃ (2.05 g, 13.6 mmol) 10 in DMF (40 ml) under a N₂ atmosphere was added CH₃I (0.85 ml, 1.94 g, 13.6 mmol). The resultant mixture was stirred at RT for 16 h before partitioning between EtOAc (100 ml) and water (40 ml). The aqueous layer was extracted with EtOAc (40 ml). Combined extracts were washed with brine (30 ml) and dried over anhydrous MgSO₄. Drying agent was removed by filtration, and the filtrate was concentrated under 15 vacuum to obtain Preparation 8 as a foamy white solid (4.20 g, >95%; contained a small amount of DMF), which was used without further purification. ES-MS: 338 (MH⁺; 100%).

Preparation 9

- 20 Step 1:

(Modified published procedure: G. Heinisch, E. Luszczak, and M. Pailer:

Monatshefte für Chemie, 1973 (104), 1372.

- 25 **P9-1** (4.5 g, 47.8 mmoles), **P9-2** (8.12 g, 76.5 mmoles), and anhydrous ZnCl₂ were heated, under N₂, in a dry apparatus, at a bath temperature of 160 °C for 5 h.

The resulting oil was purified by flash chromatography on silica gel using 30% Hexanes/EtOAc, yielding 5.92 grams (67%) of the product.

Step 2:

- OsO₄ (5.0 ml in t-butanol, 2.5% w/w) was added to **P9-3** (5.9 g, 32.38 mmoles) dissolved in p-dioxane (87 ml) and water (29 ml). NaIO₄ (14.1 g, 65.92 mmoles) was added, with good stirring, in small portions, over a period of 6 h. The mixture was then diluted with p-dioxane and filtered. After removing most of the solvent under reduced pressure, the residue was taken in CH₂Cl₂ (600 ml) and dried over anhydrous Na₂SO₄. After removal of the solvent, the mixture was purified by flash chromatography on silica gel using 5% CH₃OH/CH₂Cl₂ as eluent to obtain Preparation 9. Yield: 2.89 g (82%).

Preparation 10

Step 1:

A solution of **P10-1** (2 g, 15 mmol) in CH₂Cl₂ (50 ml) was treated with Et₃N (3 g, 30 mmol) and triphenylmethyl chloride (TrCl, 4.25 g, 15.3 mmol) and stirred at RT overnight. The solvent was removed in vacuo and the residue purified via flash column chromatography (SiO₂, 20% EtOAc in hexane) to give **P10-2** (5.2 g, 46%).

Step 2:

A solution of **P10-2** (5.2 g, 14.6 mmol) in CCl₄ (80 ml) was treated with NBS (7.8 g, 43 mmol) and the reaction heated to 80° C overnight. The reaction was cooled, filtered and concentrated, and the residue was purified via flash column chromatography (SiO₂, 20% to 30% EtOAc in hexane) to give Preparation 10 (2.8 g, 42%, M+H = 453, 455)

Preparation 11Step 1:

5 To a stirred solution of **P8-1** (6.5 g, 20.1 mmol) in EtOH (80 ml) was added 25% (w/w) aqueous NaOH solution (20 ml). The resultant mixture was stirred at 90 °C for 16 h. EtOH was removed under vacuum, and the residue was adsorbed directly onto silica gel and subjected to flash chromatography (CH₂Cl₂/2N methanolic ammonia = 9:1) to obtain **P11-1** as a white solid (4.46 g, 70%). ES-MS: 252 (MH⁺; 100%).

Step 2:

15 A mixture of **P11-1** (3.95 g; 15.7 mmol), BOC-isonipecotic acid (3.60 g; 15.7 mmol), HOBT (3.19 g; 23.6 mmol), DIPEA (3ml; 2.23g; 17.2 mmol) and EDCI (4.50 g; 23.6 mmol) in DMF (30 ml) was stirred under N₂ at RT for 16 h. The reaction mixture was partitioned between EtOAc (60 ml) and water (40 ml). The aqueous phase was extracted with EtOAc (40 ml), and the combined extracts were washed with brine (40 ml) and dried over anhydrous MgSO₄. Drying agent was removed by filtration, and the filtrate was concentrated under vacuum. The residue was purified by silica gel 20 flash chromatography (CH₂Cl₂/CH₃OH (2N NH₃) = 40:1) to obtain **P11-2** as a white solid (~7.3 g, ~100%), containing a small amount of DMF, used without further purification in Step 3 below. ES-MS: 463 (MH⁺; 70%); 407 (100%).

Step 3:

To a stirred mixture of **P11-2** (460 mg; 1 mmol) and K_2CO_3 (165 mg; 1.20 mmol) in DMF (4 ml) under a N_2 atmosphere was added EtI (92 microliters; 179 mg; 1.15 mmol). The resultant mixture was stirred at RT for 16 h and was then partitioned between EtOAc (20 ml) and water (10 ml). The aqueous phase was extracted with 5 EtOAc (10 ml), and the combined extracts were washed with brine (20 ml) and dried over anhydrous $MgSO_4$. Drying agent was removed by filtration, and the filtrate was concentrated under vacuum to obtain **P11-3** as a pale yellow foam (471 mg, 96%), containing a small amount of DMF, used without further purification in Step 4 below. ES-MS: 463 (MH^+ ; 85%); 435 (100%).

10 **Step 4:**

To a solution of **P11-3** (465 mg; 0.949 mmol) in CH_2Cl_2 (4 ml) was added TFA (1 ml; 1.54 g; 13.5 mmol). The resultant solution was stirred for 2 h at RT and was then partitioned between CH_2Cl_2 (20 ml) and 1:1 (v/v) concentrated NH_4OH :water (5 ml). The aqueous phase was extracted successively with 95:5 CH_2Cl_2 :EtOH (5 ml) 15 and EtOAc (5 ml). The combined extracts were dried over anhydrous $MgSO_4$. Drying agent was removed by filtration, and the filtrate was concentrated under vacuum to obtain Preparation 11 as a pale white foam (353 mg, 95%), used without further purification. ES-MS: 391 (MH^+ ; 100%).

Example 1

20

Method A

Step 1:

25

A mixture of **a** (25 g, 0.16 mol), **b** (27 g, 0.16 mol), K_2CO_3 (26 g, 0.19 mol), and NaI (2.4 g, 0.016 mol) in dimethylacetamide (50 ml) was heated at 140 °C for 3.5 h.

The reaction mixture was concentrated to one-third volume, poured onto saturated aqueous NaHCO₃, and extracted with EtOAc (4×). The combined organic layers were washed with water (2×) and brine, dried over Na₂SO₄, and concentrated. Recrystallization with EtOH provided **1A** (48 g, 98%).

5 A suspension of **1A** (20.00 g, 64.2 mmol.) and Raney® 2800 Nickel (5.0 g) in ethanol (70 ml) and THF (140 ml) was shaken under H₂ (40 psi) for 2 h. The mixture was filtered through a short pad of celite. The filtrate was concentrated and dried on vacuum to deliver a tan solid (18.20 g, ~100%).

Step 2:

A solution of **1B** (5.00 g, 17.77 mmol) and picolinoyl chloride hydrochloride (3.16g, 17.75 mmol) in CH₂Cl₂ (400 ml) and Et₃N (15 ml) was stirred at RT. After 15 h, the reaction was diluted with CH₂Cl₂, washed with water, dried over Na₂SO₄, concentrated, and dried on vacuum to provide a brown foam (6.47g, 94%).

15 **Step 3:**

A solution of **1C** (1.77g, 4.58 mmol) in ethanol (50 ml) and concentrated H₂SO₄ (5.0 ml) was refluxed for 3 h, cooled to RT, and neutralized with 1.0 M NaOH until pH = 10. The resulting mixture was extracted with CH₂Cl₂. The combined organic solutions were dried over Na₂SO₄ and concentrated on reduced pressure. The residue was purified by flash chromatography (silica gel, 5% CH₃OH in CH₂Cl₂ as eluent) to provide a tan foam (1.58g, 94%).

Step 4:

Iodotrimethylsilane (6.30g, 31.48 mmol) was added to a solution of **1D** (3.88g, 10.53 mmol) in anhydrous 1,2-dichloroethane (40 ml). The resulting solution was stirred at 75 °C for 4 hours, cooled to RT, and treated with 1.0 M NaOH solution. The mixture was then extracted with CH₂Cl₂. The combined extracts were washed with water, dried over Na₂SO₄, and the solvent evaporated. Purification of the residue by flash chromatography (silica gel, 10% CH₃OH in CH₂Cl₂ as eluent) delivered an off-white foam (2.10g, 67%).

Step 5:

Amine **1E** (5.80g, 19.6 mmol) and Preparation 1 (5.32g, 23.4 mmol) were dissolved in DMF (60 ml) and CH₂Cl₂ (60 ml). To the resulting solution, EDCI hydrochloride (5.70g, 24.50 mmol), HOBT (1.30g, 24.50 mmol), and diisopropylethylamine (5.08g, 39.6 mmol) were added successively. The resulting reaction mixture was stirred at 70°C for 4 hours, cooled to RT, diluted with CH₂Cl₂, washed with water, dried over Na₂SO₄, and concentrated. Flash chromatography (SiO₂, 5% CH₃OH in CH₂Cl₂ → 90:10:0.5 CH₂Cl₂:CH₃OH:NH₄OH) of the residue provided a tan foam (7.89g, 65%).

Step 6:

A solution of **1F** (7.89g, 12.88 mmol) and TFA (29g, 257 mmol) in CH₂Cl₂ (65 ml) was stirred at RT for 12 h, neutralized with 1.0 M NaOH, and extracted with CH₂Cl₂. The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated. Purification of the crude product by flash chromatography (SiO₂, 5% CH₃OH in CH₂Cl₂ to 90:10:0.5 CH₂Cl₂:CH₃OH:NH₄OH) provided the title compound as a white solid (5.80g, 88%). MS: 514 (MH⁺).

25

Example 2

Method BStep 1:

TFA (200 ml, 2.596 mol) was added to a solution of **2A** (20g, 51.36 mmol) in CH₂Cl₂ (100 ml). The resulting reaction mixture was stirred at RT for 6 h, neutralized with 1.0 M NaOH, and extracted. The combined extracts were washed with water, dried over Na₂SO₄, and concentrated. Flash chromatography gave an orange solid (13.50g, 91%).

Step 2:

Amine **2B** (1.50g, 5.19 mmol) and Preparation 1 (1.75g, 5.13 mmol) were dissolved in DMF (10 ml) and CH₂Cl₂ (10 ml). To the resulting solution, EDCI hydrochloride (1.50g, 7.83 mmol), HOBT (1.05g, 7.82 mmol), and diisopropylethylamine (3.71g, 28.70 mmol) were added successively. The resulting reaction mixture was stirred at 70°C for 18 h, cooled to RT, diluted with CH₂Cl₂, washed with water, dried over Na₂SO₄, and concentrated. Flash chromatography of the residue provided an orange gel (2.31g, 74%).

Step 3:

A suspension of **2C** (2.10 g, 3.46 mmol,) and Raney® 2800 Nickel (1.0 g) in CH₃OH (100 ml) was shaken under H₂ (30 psi) for 6 h. The mixture was filtered through a short pad packed with celite. The filtrate was concentrated and dried on vacuum to deliver an orange solid (1.80 g, 90%).

Step 4:

Amine **2D** (200 mg, 0.347 mmol) and picolinoyl chloride hydrochloride (62 mg, 0.348 mmol) were dissolved in CH₂Cl₂. Et₃N was then introduced via a syringe. The resulting solution was stirred at RT for 6 h, treated with 1.0 M NaOH solution, and extracted. The extracts were washed with water, dried over Na₂SO₄, and concentrated. Purification of the residue by flash chromatography gave a white foam (167 mg, 71% yield).

Step 5:

A solution of **2E** (160 mg, 0.235 mmol) and H₂SO₄ (concentrated, 0.50 ml) in ethanol (10 ml) was refluxed for 2.5 h, cooled to RT, and neutralized with 1.0 M NaOH. After extraction of the mixture, the combined organic layers were washed with water, dried over Na₂SO₄, and concentrated. Purification of the crude product using prep TLC (10% CH₃OH in CH₂Cl₂) provided the title compound as a white solid (88 mg, 66%). MS: 564 (MH⁺)

Example 3

Method D

Step 1:

Diamine **3A** (1.43 g, 10 mmol) and isonipecotic acid **3B** (1.29 g, 10 mmol) were mixed, and PPA (20 g) was added. The resulting mixture was heated at 180 °C for 3.5 h, cooled to RT and diluted with water to 100 ml. The solution was then basified with solid NaOH to pH 14. The resultant copious precipitate was filtered off. The precipitate was washed repeatedly with CH₃OH, and combined CH₃OH extracts were concentrated-dry loaded on silica gel and flash chromatographed (25–40% 5N NH₃ in CH₃OH/CH₂Cl₂) to provide **3C** as a dark solid (1.90 g, 81%).

Step 2:

To the mixture of acid **3D** (181mg, 0.54 mmol), HATU (247 mg, 0.65 mmol) and Et₃N (84 µl, 0.6 mmol) in DMF (12 ml) was added amine **3C** (126 mg, 0.54 mmol). The resulting mixture was stirred at RT for 24 h, concentrated, redissolved in CH₃OH, concentrated-dry loaded on silica gel and flash chromatographed (5-10% 5N NH₃ in CH₃OH/ CH₂Cl₂) to provide **3E** as a yellow oil (210mg, 70%).

Step 3:

A solution of **3E** (96 mg, 0.174 mmol) in 15 ml of 1M HCl in 25% CH₃OH/dioxane was stirred at RT for 48 h. The mixture was concentrated, exposed to high vacuum, redissolved in CH₃OH, concentrated-dry loaded on silica gel and flash chromatographed (10-15% 5N NH₃ in CH₃OH/ CH₂Cl₂) to provide the title compound as a colorless oil (48 mg, 61%). MS: 453 (MH⁺)

Example 4

Method E

Step 1:

A mixture of neat **4A** (1.75g, 6.66 mmol) and **4B** (2.93g, 15.07 mmol) was stirred at 120 °C for 2 days, cooled to RT, treated with 1.0 M NaOH solution (30 ml), and extracted with EtOAc. The combined organic layers were washed with water and dried over Na₂SO₄. After evaporation to dryness, the crude residue was flash chromatographed (silica gel, 50% EtOAc in hexanes as eluent) to give 510 mg of **4C** (18%).

Step 2:

To a 500 ml pressure bottle was added **4C** (490 mg, 1.18 mmol) in CH₃OH (20 ml). Under N₂ stream, palladium hydroxide (300 mg, 20 wt.% on carbon) solid was added. The reaction mixture was shaken under 55 psi of hydrogen for 40 h and

filtered. The filtrate was concentrated and dried on vacuum to deliver a yellow solid (340 mg, 88%).

Step 3:

- 5 To a 50 ml round-bottomed flask were successively added **4D** (287 mg, 0.88 mmol), Preparation 1 (300 mg, 0.88 mmol), EDCI hydrochloride (210 mg, 1.10 mmol), HOBT (149 mg, 1.10 mmol), and diisopropylethylamine (228 mg, 1.76 mmol). DMF (3 ml) and CH₂Cl₂ (3 ml) were introduced via a syringe. The resulting reaction mixture was stirred at 70 °C for 15 h and cooled to RT. After addition of 1 N NaHCO₃ solution,
- 10 the resulting mixture was extracted with CH₂Cl₂. The combined organic solutions were dried over Na₂SO₄ and concentrated. Purification of the crude product by flash chromatography on silica gel with 10% CH₃OH in CH₂Cl₂ as the eluent provided **4E** as a solid (231 mg, 41%).

Step 4:

- 15 To a 25 ml round-bottomed flask was added **4E** (200 mg, 0.31 mmol) in CH₂Cl₂ (2.5 ml). TFA was then introduced via a syringe. The resulting solution was stirred at RT for 15 h, diluted with CH₂Cl₂, neutralized with 1.0 M NaOH solution, and separated. The organic solution was washed with water and dried over Na₂SO₄. After evaporation of the solvent, the crude product was purified on a preparative TLC plate
- 20 with 10% CH₃OH in CH₂Cl₂ as the eluent to provide the title compound as a white solid (85 mg, 50%). MS: 544 (MH⁺).

Example 5

Step 1:

A solution of compound **5A** (100g, 0.389 mol) in THF (400 ml) was added dropwise over 1.0 h to a solution of LDA (233 mL, 2.0 M in THF/heptane/ethyl-

benzene, 0.466 mol) in THF (300ml) at 0 °C. The red-orange solution was stirred at 0 °C for 30 min, and then transferred by cannula to a pre-cooled (0 °C) solution of N-fluorobenzenesulfonimide (153 g, 0.485 mol) in dry THF (600 ml). The reaction mixture was stirred at 0 °C for 30 min, and then at 20 °C for 18 h. The total solvent volume was reduced to approximately one third, and EtOAc (1l) was added. The solution was washed successively with water, 0.1 N aq. HCl, saturated aq. NaHCO₃, and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure to yield a crude liquid. Separation by flash chromatography (6:1 hexanes-EtOAc) gave compound **5B** (93.5 g, 87%).

10 Step 2:

A solution of **5B** (50g, 0.181 mol) in THF (300 ml) and CH₃OH (200 ml) was treated with a solution of LiOH-H₂O (9.2 g, 0.218 mol) in water (100 ml) and then heated to 45 °C for 6 h. The mixture was then concentrated and dried in vacuo to provide **5C** (45 g, 100%).

Step 3:

Compound **5C** (20.4 g, 0.081 mol) was added slowly to a stirred flask of CH₂Cl₂ (250 ml) at 20 °C. The resulting white slurry was cooled to 0 °C and treated slowly with oxalyl chloride (6.7 ml, 0.075 mol) and a drop of DMF. After stirring at 20 °C for 0.5 h, the mixture was concentrated and dried in vacuo to provide **5D**.

Step 4A:

A mixture of **c** (64 g, 0.40 mol), **d** (84 ml, 0.52 mol), and K₂CO₃ (66 g, 0.48 mol) in anhydrous toluene (350 ml) was heated at reflux overnight. The reaction mixture was diluted with CH₂Cl₂, washed three times with 5% aqueous NaOH, dried over Na₂SO₄, and concentrated. Recrystallization with MeOH provided **e** (121 g, ~100%) as a yellow solid.

A suspension of **e** (121 g, 0.41 mol) and Raney Nickel (10 g) in EtOH (400 ml) was shaken under H₂ (40 psi) for 4 h. The mixture was filtered through a short pad of Celite (washing with CH₃OH). The filtrate was concentrated and dried in vacuo to provide **f** (109 g, ~100%) as a dark brown solid.

A solution of **f** (109 g, 0.41 mol) in CH₂Cl₂-DMF (1:1, 500 ml) was treated with picolinic acid (61 g, 0.50 mol), EDCI (119 g, 0.62 mol), HOEt (84 g, 0.62 mol) and iPr₂NEt (141 ml, 1.03 mol). The mixture was stirred at 70 °C for 6 h and then overnight at 20 °C. The reaction mixture was diluted with EtOAc, washed 3 times with 5% aqueous NaOH, dried over Na₂SO₄, and concentrated. Flash chromatography (0–100% EtOAc/hexane) provided **g** (131 g, 86%).

A solution of **g** (131 g, 0.36 mol) in AcOH (200 ml) was heated at 120 °C overnight. The reaction mixture was cooled, carefully basified with 5% aqueous NaOH and extracted with CH₂Cl₂. The combined organic extracts were dried over Na₂SO₄ and concentrated. Flash chromatography (0–80% EtOAc/hexane) provided **h** (95 g, 76%) as a yellow solid.

A solution of **h** (95 g, 0.27 mol) in anhydrous CHCl₃ (300 ml) was treated with iodotrimethylsilane (272 g, 1.36 mol) and heated at 70 °C for 5 h. The reaction mixture was cooled, quenched with cold 10% aqueous NaOH, and extracted with CH₂Cl₂. The combined organic extracts were dried over Na₂SO₄ and concentrated. Flash chromatography (2N NH₃-CH₃OH/EtOAc) provided **5E** (43 g, 57%) as a pale yellow solid.

Step 4B:

A mixture of **5D** (0.075 mol) in CH₂Cl₂ (250 ml) was treated with **5E** (15 g, 0.054 mol) and iPr₂NEt (25 ml, 0.135 mol) while maintaining a temperature of 20 °C.

- 5 After 1 h, the mixture was concentrated and then stirred in CH₃OH (200 ml)/CH₂Cl₂ (200 ml)/H₂O (1 ml) for 1 h at 20 °C. The solvent was then evaporated. Treatment with TFA (200 ml) in CH₂Cl₂ (250 ml) at 20 °C followed by flash chromatography (0–7% 7N NH₃-CH₃OH/CH₂Cl₂) provided **5F** (80–90% from **5C**).

Step 5:

- 10 Method A:

A solution of **5F** (0.41 g, 1.0 mmol) in CH₂Cl₂ (20 ml) was treated with **5G** (0.31 g, 2.5 mmol, JP Patent 63227573, 1988), NaBH(OAc)₃ (0.53 g, 2.5 mmol) and few drops of AcOH and then stirred overnight at 20 °C. The mixture was partitioned between 10% NaOH and CH₂Cl₂. The organic layer was dried with Na₂SO₄ and concentrated. Flash chromatography (0–5% 7N NH₃-CH₃OH/CH₂Cl₂) provided the title compound (0.45g, 87%). MS: 516 (M+H).

Method B:

- 20 A solution of **5G** (50 g, 0.41 mol) in CH₃OH (300 ml) was cooled to 0 °C and carefully treated with NaBH₄ (20g, 0.53 mol in 6 batches) over 20 min. The reaction was then allowed to warm to 20 °C and was stirred for 4 h. The mixture was again cooled to 0 °C, carefully quenched with saturated aqueous NH₄Cl, and concentrated. Flash chromatography (5–10% 7N NH₃-CH₃OH/CH₂Cl₂) provided **5H** (31g, 62%) as a light yellow solid.

A slurry of **5H** (31 g, 0.25 mol) in CH₂Cl₂ (500 ml) was cooled to 0 °C and slowly treated with SOCl₂ (55ml, 0.74 mol over 30 min). The reaction was then stirred overnight at 20 °C. The material was concentrated, slurried in acetone, and then filtered. The resulting beige solid **5I** was dried overnight in vacuo (38.4g, 52%, HCl salt).

A homogeneous solution of **5F** (16.4 g, 40 mmol) in anhydrous DMF (200 ml) was cooled to 0 °C, carefully treated with NaH (8g, 200 mmol), and stirred at 20 °C for 20 min. The reaction mixture was then cooled to 0 °C, treated with NaI (6g, 40 mmol) and **5I** (14.5g, 80 mmol), and then stirred overnight at 20 °C. The reaction was diluted 5 with CH₂Cl₂ (500 ml), washed with 1N aqueous NaOH, washed with brine, filtered through Celite, and concentrated. Flash chromatography (0–4% 7N NH₃-CH₃OH/CH₂Cl₂) provided Ex. 5 (16.9g, 82%) as a beige solid.

Example 6

10 Step 1:

To a stirred solution of diamine **1B** (1.0g, 3.55 mmol) in C₂H₅OH (25 ml), at RT was added portionwise solid CNBr (564 mg; 5.33 mmol). The resultant solution was allowed to stir at RT for 5 days before removing solvent under vacuum. The residual 15 oil was partitioned between EtOAc (30 ml) and 2M Na₂CO₃ (10 ml). The aqueous layer was adjusted to pH ~10 by addition of a few drops of 6N NaOH and was then re-extracted with EtOAc (2 x 10 ml). Combined extracts were washed with brine (5 ml) and filtered through anhydrous MgSO₄. The filtrate was stripped in vacuo to obtain compound **6A** as brown powder (1.03 g; 94%) sufficiently pure for use without 20 purification. FABMS: 307 (MH⁺; 100%).

Step 2:

In a dry flask, under an inert atmosphere, a mixture of compound **6A** (369 mg; 1.20 mmol) and CH₂Cl₂ (11 ml) was stirred and sonicated until the formation of a

clear, amber solution to which was added via syringe 4-fluorophenyl isocyanate (158 microliters; 190 mg; 1.38 mmol). After 30.5 h at RT, a few drops of CH₃OH were added to the reaction solution, and solvent was removed under vacuum. The residual solid was dissolved in boiling Et₂O (~30 ml). Insoluble matter was filtered, and the

5 filtrate was diluted to a volume of ~60 ml with hot hexanes. The solution was concentrated on a steam bath to a volume of ~30 ml, by which point precipitation had begun. The mixture was allowed to stand at RT for ~3 h. Filtration and washing with Et₂O-hexanes (1:1 v/v) yielded compound **6B** as a reddish-brown powder (394 mg; 74%). FABMS: 444 (MH⁺; 100%). Although TLC and NMR indicated the presence of
10 minor impurities, the product was sufficiently pure for use in Step 3 below.

Step 3:

To a stirred suspension of compound **6B** (333 mg; 0.751 mmol) in CHCl₃ (2 ml), contained in a flask equipped for reflux under an inert atmosphere, was added via
15 syringe (CH₃)₃Sil (214 microliters; 301 mg; 1.51 mmol). Solids dissolved rapidly to produce a dark reddish-brown solution. Stirring was continued at RT for 20 min before placing the reaction mixture in an oil bath preheated to 50 °C. After 5 h at
20 50 °C, a second portion of (CH₃)₃Sil (54 microliters; 75 mg; 0.378 mmol) was added and heating continued at 50 °C for another 2.5 h. The reaction mixture (consisting of solid and solution phases) was removed from the heating bath and was treated with CH₃OH (2.5 ml) added in two portions. The reaction mixture was stirred and warmed to 50 °C for a few minutes, allowed to cool and was then filtered. Collected solids
25 were washed with 1:1 (v/v) CH₃OH-EtOAc to obtain the hydriodide salt form of **6C** as a pale reddish-brown powder (356 mg) which was used in the next step without further purification. FABMS: 372 (MH⁺; 100%).

Step 4:

To a stirred suspension of **6C** (340 mg; 0.681 mmol), Prep. 1 (228 mg; 0.681 mmol), HOBT (9.2 mg; 0.0681 mmol) and NEt₃ (379 microliters; 275 mg; 2.72 mmol)

in DMF (13 ml) was added solid EDCI (163 mg; 0.851 mmol). The cloudy reaction mixture was placed in a preheated oil bath and was stirred at 50 °C for 30 min, after which the resultant clear, amber solution was stirred for 23.5 h at RT. A few drops of water were added, and the reaction mixture was concentrated at 60 °C under vacuum.

- 5 The concentrate was partitioned between EtOAc (20 ml) and water (5 ml)-brine (2.5 ml). The aqueous phase was extracted with EtOAc (2 x 5 ml). Combined extracts were washed with brine (2.5 ml) and filtered through anhydrous MgSO₄. The filtrate was evaporated under vacuum, and the residue was purified by flash chromatography on silica gel, eluting with a gradient of CH₂Cl₂-CH₃OH-NH₄OH (97:3:0.5 -> 96:4:0.5).
- 10 Product **6D** (222 mg; 47%) was obtained as pale yellow powder. FABMS: 689 (MH⁺; ~93%); 578 (~58%); 478 (100%).

Step 5:

- To a solution of **6D** (208 mg; 0.302 mmol) in CH₂Cl₂ (3 ml) was added TFA (928 microliters; 1.37 g; 12.1 mmol) with swirling of the flask, which was then flushed with dry N₂, sealed and allowed to stand at RT for 6 h. The reaction solution was evaporated under vacuum, and the residue was partitioned between EtOAc (20 ml) and 2M Na₂CO₃ (3 ml) plus sufficient water to produce two clear phases. The aqueous phase was extracted with EtOAc (3 x 5 ml). Combined extracts were washed with brine (3 ml) and filtered through anhydrous MgSO₄. The filtrate was stripped of solvent in vacuo, and the residue was subjected to flash chromatography on silica gel, eluting with CH₂Cl₂-CH₃OH-NH₄OH (97:3:0.5). The title compound (130 mg; 72%) was obtained as pale yellow powder. FABMS: 589 (MH⁺; ~64%); 478 (100%).

Using procedures similar to those described above, employing the appropriate starting materials, compounds in the following tables are prepared:

No.	R	R ²⁵	R ³	R ¹³	Z	R ⁶	Physical Data MS (MH ⁺)
7	-CH ₃	5-OCH ₃	H	H	-CH ₂ -	2-NH ₂	463
8	-CH ₃	6-Cl	H	H	-CH ₂ -	2-NH ₂	467
9	-CH ₃	5-Cl	H	H	-CH ₂ -	2-NH ₂	467

10	-CH ₃	5-Br	H	H	-CH ₂ -	2-NH ₂	512
11		5-Cl	H	H	-CH ₂ -	2-NH ₂	535
12	benzyl	5-F	H	H	-CH ₂ -	2-NH ₂	527
13	-CH(CH ₃) ₂	5-Br	H	H	-CH ₂ -	2-NH ₂	540
14	-CH ₂ NH ₂	H	H	H	-CH ₂ -	2-NH ₂	488
15	-CH ₂ NHSO ₂ CH ₃	H	H	H	-CH ₂ -	2-NH ₂	526
16	-CH ₂ NHC(O)CH ₃	5-Cl	H	H	-CH ₂ -	2-NH ₂	524
17	-CH ₂ OCH ₃	5-F	H	H	-CH ₂ -	2-NH ₂	481
18	-CH ₂ NH ₂	5-Cl	H	H	-CH ₂ -	2-NH ₂	482
19	-CH ₂ OCH ₃	6,7-di-F	H	H	-CH ₂ -	2-NH ₂	499
20		6-F	H	H	-CH ₂ -	2-NH ₂	521
21		5-F	H	H	-CH ₂ -	2-NH ₂	521
22		6-F	H	H	-CH ₂ -	2-NH ₂	507
23		5-F	H	H	-CH ₂ -	2-NH ₂	520
24		5-F	H	H	-CH ₂ -	2-NH ₂	521
25		5-Br	H	H	-CH ₂ -	2-NH ₂	568
26		5-F	H	H	-CH ₂ -	2-NH ₂	507
27		5-F	H	H	-CH ₂ -	2-NH ₂	507
28		H	H	H	-CH ₂ -	2-NH ₂	531
29		5-F	H	H	-CH ₂ -	2-NH ₂	549
30		6-F	H	H	-CH ₂ -	2-NH ₂	531
31		6,7-di-F	H	H	-CH ₂ -	2-NH ₂	567
32		6-Cl	H	H	-CH ₂ -	2-NH ₂	547
33		5-F	H	H	-CH ₂ -	2-NH ₂	531
34		5-Cl	H	H	-CH ₂ -	2-NH ₂	565

35		H	H	H	-CH ₂ -	2-NH ₂	531
36		5-Cl	H	H	-CH ₂ -	2-NH ₂	547
37		5-Cl	H	H	-CH ₂ -	2-NH ₂	529
38		6-F	H	H	-CH ₂ -	2-NH ₂	557
39		5-Br	H	H	-CH ₂ -	2-NH ₂	592
40		5-Br	H	H	-CH ₂ -	2-NH ₂	610
41		5-F	H	H	-CH ₂ -	2-NH ₂	547
42		5-F	H	H	-CH ₂ -	2-NH ₂	529
43		6-F	H	H	-CH ₂ -	2-NH ₂	553
44		6-F	H	H	-CH ₂ -	2-NH ₂	564
45		H	H	H	-CH ₂ -	2-NH ₂	529
46		5-F	H	H	-CH ₂ -	2-NH ₂	581
47		5-Cl	H	H	-CH ₂ -	2-NH ₂	563
48		6-Cl	H	H	-CH ₂ -	2-NH ₂	563
49		5-F	H	H	-CH ₂ -	2-NH ₂	543
50		5-F	H	H	-CH ₂ -	2-NH ₂	581
51		5-Cl	H	H	-CH ₂ -	2-NH ₂	597
52		5-F	H	H	-CH ₂ -	2-NH ₂	597
53		5-Br	H	H	-CH ₂ -	2-NH ₂	604

54		6-Cl	H	H	-CH ₂ -	2-NH ₂	597
55		5-CH ₃	H	H	-CH ₂ -	2-NH ₂	571
56		5-Cl	H	H	-CH ₂ -	2-NH ₂	665
57		5-Br	H	H	-CH ₂ -	2-NH ₂	710
58		6-ethoxy	H	H	-CH ₂ -	2-NH ₂	540
59		5-Cl	H	H	-CH ₂ -	2-NH ₂	546
60		H	H	H	-CH ₂ -	2-NH ₂	511
61		5-F	H	H	-CH ₂ -	H	499
62		6-Cl	H	H	-CH ₂ -	2-NH ₂	530
63		5-F	H	H	-CH ₂ -	2-NH ₂	515
64		6-F	H	H	-CH ₂ -	2-NH ₂	514
65		6-F	H	H	-CH ₂ -	2-NH ₂	515
66		7-Cl	H	H	-CH ₂ -	2-NH ₂	531
67		H	H	H	-CH ₂ -	2-NH ₂	496
68		5-F	H	H	-CH ₂ -	2-NH ₂	515
69		5-Cl	H	H	-CH ₂ -	2-NH ₂	531
70		5-Cl	H	H	-CH ₂ -	2-NH ₂	531
71		5,6-di-F	H	H	-CH ₂ -	2-NH ₂	532
72		5-Br	H	H	-CH ₂ -	2-NH ₂	575
73		6-ethoxy	H	H	-CH ₂ -	2-NH ₂	541

74		5-F	H	H	-CH ₂ -	2-NH ₂	528
75		6-F	H	H	-CH ₂ -	2-NH ₂	515
76		5-Br	H	H	-CH ₂ -	2-NH ₂	591
77		5-Cl	H	H	-CH ₂ -	2-NH ₂	530
78		5-Cl	H	H	-CH ₂ -	2-NH ₂	530
79		5-F	H	H	-CH ₂ -	2-NH ₂	548
80		5-CF ₃	H	H	-CH ₂ -	2-NH ₂	565
81		H	H	H	-CH ₂ -	2-NH ₂	497
82		6,7-di-F	H	H	-CH ₂ -	2-NH ₂	567
83		6,7-di-F	H	H	-CH ₂ -	2-NH ₂	532
84		5-F	H	H	-CH ₂ -	2-NH ₂	530
85		5-CF ₃ ,7-F	H	H	-CH ₂ -	2-NH ₂	617
86		5-F	H	H	-CH ₂ -	2-NH ₂	529
87		H	H	H	-CH ₂ -	2-NH ₂	500
88		H	H	H	-CH ₂ -	2-NH ₂	485
89		H	H	H	-CH ₂ -	2-NH ₂	489
90		6-F	H	H	-CH ₂ -	2-NH ₂	514
91		6-F	H	H	-CH ₂ -	2-NH ₂	503

92		5-F	H	H	-CH ₂ -	2-NH ₂	503
93		H	H	H	-CH ₂ -	2-NH ₂	501
94		5-F	H	H	-CH ₂ -	2-NH ₂	518
95		5-Cl	H	H	-CH ₂ -	2-NH ₂	534
96		5-F	H	H	-CH ₂ -	2-NH ₂	519
97		6,7-di-F	H	H	-CH ₂ -	2-NH ₂	536
98		5-Br	H	H	-CH ₂ -	2-NH ₂	579
99		6-ethoxy	H	H	-CH ₂ -	2-NH ₂	544
100		5-F	H	H	-CH ₂ -	2-NH ₂	503
101		5-Br	H	H	-CH ₂ -	2-NH ₂	563
102		5-F	H	H	-CH ₂ -	2-NH ₂	502
103		5-CF ₃	H	H	-CH ₂ -	2-NH ₂	568
104		5-CF ₃ ,7-F	H	H	-CH ₂ -	2-NH ₂	586
105		5-F	H	H	-CH ₂ -	2-NH ₂	598

106		5-F	H	H	-CH ₂ -	2-NH ₂	517
107		5-F	H	H	-CH ₂ -	2-NH ₂	573
108		5-F	H	H	-CH ₂ -	2-NH ₂	517
109	CH ₃ -S-	5-F	H	H	-CH ₂ -	2-NH ₂	483
110	CH ₃ -CH ₂ -S-	5-F	H	H	-CH ₂ -	2-NH ₂	497
111	CH ₃ -SO ₂ -	5-F	H	H	-CH ₂ -	2-NH ₂	515
112		5-F	H	H	-CH ₂ -	2-NH ₂	545
113		5-F	H	H	-CH ₂ -	2-NH ₂	511
114		5-F	H	H	-CH ₂ -	2-NH ₂	551
115		5-F	H	H	-CH ₂ -	2-NH ₂	540
116	HS-	5-F	H	H	-CH ₂ -	2-NH ₂	469
117	CH ₃ -S-	5-F	H	2-CH ₃	-CH ₂ -	2-NH ₂	497
118	CH ₃ -S-	5-F	F	H	-CH ₂ -	2-NH ₂	501
119		5-F	H	H	-CH ₂ -	2-NH ₂	529
120		5-F	H	H	-CH ₂ -	2-NH ₂	522
121		5-F	H	H	-CH ₂ -	2-NH ₂	599
123		5-F	H	H	-CH ₂ -	2-NH ₂	528
124		5-F	H	H	-CH ₂ -	2-NH ₂	564
125		5-F	H	H	-CH ₂ -	2-NH ₂	578
126		5-F	H	H	-CH ₂ -	2-NH ₂	624
127		5-F	H	H	-CH ₂ -	2-NH ₂	546

128	<chem>F3CO2S-N1CCN(C)CC1</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	653
129	<chem>CH3-O-(CH2)2-NH-</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	510
130	<chem>CC(=O)C1CCN(C)CC1</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	563
131	<chem>C(C)(C)N(C)C</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	480
132	<chem>CH3-O-</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	467
133	<chem>CH3-CH2-O-</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	481
134	<chem>CH3-O-(CH2)2-O-</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	511
135	<chem>(CH3)2-CH-O-</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	495
136	<chem>c1ccccc1O-</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	529
137	<chem>N#Cc1ccncc1</chem>	H	H	H	-CH ₂ -	2-NH ₂	511
138	<chem>c1ccncc1</chem>	5-CF ₃ ,7-F	H	H	-CH ₂ -	2-NH ₂	582
139	<chem>c1ccncc1</chem>	5-F	H	H	$\begin{matrix} \text{CH}_3 \\ \\ -\text{CH}- \end{matrix}$	2-NH ₂	528
140	<chem>c1ccncc1</chem>	5-F	F	H	-CH ₂ -	2-NH ₂	532
141	<chem>c1ccncc1</chem>	5-F	OH	H	-CH ₂ -	2-NH ₂	530
142	<chem>N#Cc1ccncc1</chem>	5-F	H	H	$\begin{matrix} \text{CH}_3 \\ \\ -\text{CH}- \end{matrix}$	2-NH ₂	529
143	<chem>N#Cc1ccncc1</chem>	5-F	H	H	$\begin{matrix} \text{CH}_3 \\ \\ -\text{CH}- \end{matrix}$	2-NH ₂	529
144	<chem>c1ccncc1</chem>	5-F	-CH ₃	H	-CH ₂ -	2-NH ₂	528
145	<chem>c1ccncc1</chem>	6-F	H	H	$\begin{matrix} \text{CH}_3 \\ \\ -\text{CH}- \end{matrix}$	2-NH ₂	528
146	H	5-F	H	H	-CH ₂ -	2-NH ₂	437
147	<chem>CC1=C(O)C=C1</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	531
148	<chem>CC1=C(O)C=C1</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	531
149	<chem>CC1=C(O)C(F)(F)C1</chem>	5-F	H	H	-CH ₂ -	2-NH ₂	585

150		5-F	H	H	-CH ₂ -	2-NH ₂	549
151		5-F	H	H	-CH ₂ -	2-NH ₂	571
152		H	F	H	-CH ₂ -	2-NH ₂	514
153	(CH ₃) ₂ N-(CH ₂) ₂ -NH-	5-F	H	H	-CH ₂ -	2-NH ₂	523
154	CH ₃ -S-	5-F	H	H	$\begin{matrix} \text{CH}_3 \\ \\ -\text{CH}- \end{matrix}$	2-NH ₂	497
155		5-F	H	2-CH ₃	-CH ₂ -	2-NH ₂	528
156		5-F	H	H	-CH ₂ -	2-NH ₂	514
157		5-F	H	H	-CH ₂ -	3-NH ₂	514
158		5-F	H	H	-CH ₂ -	2-NH ₂	589
159		5-F	H	H	-CH ₂ -	2-NH ₂	520
160	CH ₃ CH ₂ O-	5-F	F	H	-CH ₂ -	2-NH ₂	499
161		5-F	H	H	-CH ₂ -	2-NH ₂	537
162		5-F	H	H	-CH ₂ -	2-NH ₂	535
163		5-F	H	5-OH	-CH ₂ -	2-NH ₂	530
164		5-F	F	H	-CH ₂ -	3-NH ₂	532
165		5-F	F	H	-CH ₂ -	2-NH ₂	540
166		5-F	H	H	-CH ₂ -	3-NH ₂	515

No.	R	R ³	Z	R ⁶	Physical Data MS (MH ⁺)
167		H	-CH ₂ -	2-NH ₂	502
168	-CH ₂ OCH ₃	H	-CH ₂ -	2-NH ₂	464
169		H	-CH ₂ -	2-NH ₂	504
170		H	-CH ₂ -	2-NH ₂	460
171	(CH ₃) ₂ -CH-	H	-CH ₂ -	2-NH ₂	462
172		H	-CH ₂ -	2-NH ₂	477
173		H	-CH ₂ -	2-NH ₂	514
174		H	-CH ₂ -	2-NH ₂	532
175		H	-CH ₂ -	2-NH ₂	530
176		H	-CH ₂ -	2-NH ₂	532
177		H	-CH ₂ -	2-NH ₂	540
178		H	-CH ₂ -	2-NH ₂	564
179		H	-CH ₂ -	2-NH ₂	526
180		H	-CH ₂ -	2-NH ₂	558
181		H	-CH ₂ -	2-NH ₂	497
182		H	-CH ₂ -	2-NH ₂	512
183		H	-CH ₂ -	2-NH ₂	531

184		H	-CH ₂ -	2-NH ₂	498
185		H	-CH ₂ -	2-NH ₂	497
186		H	-CH ₂ -	2-NH ₂	511
187		H	-CH ₂ -	3-NH ₂	501
188		H	-CH ₂ -	2-NH ₂	486
189		H	-CH ₂ -	2-NH ₂	486
190		H	-CH ₂ -	2-NH ₂	501
191		H	-CH ₂ -	2-NH ₂	536
192		H	-CH ₂ -	2-NH ₂	547
193		H	-CH ₂ -	2-NH ₂	547
194		H	-CH ₂ -	2-NH ₂	543
195		H	-CH ₂ -	2-NH ₂	581
196		F	-CH ₂ -	2-NH ₂	519
197		H	^{CH₃} -CH-	2-NH ₂	515
198		OH	-CH ₂ -	2-NH ₂	517
199			-CH ₂ -	2-NH ₂	577
200		F	-CH ₂ -	2-NH ₂	515

201		F	-CH ₂ -	2-NH ₂	504
202		H	-CH ₂ -	3-NH ₂	497
203		H	-CH ₂ -	3-NH ₂	532
204		F	-CH ₂ -	3-NH ₂	515
205		F	-CH ₂ -	3-NH ₂	550

No.	R	Physical Data MS (MH ⁺)
206	-CH ₃	434
207		497
208		514
209		530

No.	R	R ²⁵	A	R ³	R ²	Physical Data MS (MH ⁺)
210		5-Cl	C	H		532
211		5-F	C	H		515
212		5-Cl	C	H		532

213		5-F	C	H		516
214		H	N	H		503
215		H	N	H		503
216	(CH ₃) ₂ CH-	H	N	H		463
217		5-F	C	H		550
218		5-F	C	H		515
219		5-Cl	C	H		532
220		6-Cl	C	H		548
221		5-F	C	H		516
222		6-Cl	C	H		600
223		5-Cl	C	H		532
224		6-F	C	H		515
225		H	N	H		499
226		H	N	H		502
227		H	N	H		487

228		H	N	H		548
229		H	N	H		548
230		H	N	H		499
231		H	N	H		502
232		H	N	H		537
233		H	N	H		548
234		H	N	H		541
235		H	N	H		559
236		H	N	H		498
237		5-F	C	F		533
238		5-F	C	H		550
239		5-F	C	H		550
240		5-F	C	H		515
241		5-F	C	H		516
242		H	C	H		497
243	(CH ₃) ₂ N-CH ₂ -	H	N	H		478

244		5-F	C	H		519
245		H	C	H		501
246		5,6-di-F	C	H		537
247		5-F	C	H		500
248		5,6-di-F	C	H		534
249		5-F	C	F		537
250		5-F	C	F		534
251		5-F	C	F		534
252		5-F	C	F		533
253		5-F	C	F		568
254		5-F	C	F		568
255		H	N	H		487
256		H	C	F		515
257		H	C	F		519
258		H	N	F		516
259		H	N	H		505
260		H	N	F		516

261		H	N	F		520
262		5-F	C	H		504
263		5-F	C	H		522
264		5-F	C	H		504
265		H	N	H		537
266	(CH ₃) ₂ N-CH ₂ -	H	N	F		496
267		H	N	F		505
268	CH ₃ CH ₂ -O-	5-F	C	H		482
269	CH ₃ -S-	5-F	C	H		484
270	CH ₃ CH ₂ -O-	5-F	C	F		500
271		H	N	F		555
272		H	N	F		566
273		H	N	H		498
274		5,6-di-F	C	F		551
275		5-F	C	F		541
276		5-F	C	H		523
277		5-F	C	H		514

278		5-F	C	H		539
279		H	N	H		515
280		H	N	H		501
281		H	N	F		505
282		H	N	H		536
283		H	N	F		523
284		5-F	C	F		532
285		H	N	H		501
286		H	N	H		533
287		H	N	F		517
288		H	N	H		548
289		H	N	H		533
290	CH ₃ S-	5-F	C	F		502
291		H	N	F		515
292		5-F	C	F		532
293		5-F	C	H		514
294		H	N	H		497

295	(CH ₃) ₂ N-	5-F	C	F		499
296	CH ₃ CH ₂ -S-	5-F	C	F		516
297	CH ₃ -O-	5-F	C	F		486
298		H	N	H		512
299		H	N	F		530
300		5-F	C	F		547
301		5-F	C	H		529
302		5-F	C	H		517
303		5-F	C	F		535
304		H	N	H		551
305		H	N	F		551
306		5-F	C	H		500
307		5-F	C	H		500
308		5-F	C	F		547
309	(CH ₃ CH ₂) ₂ N-	5-F	C	F		527
310		H	N	H		498
311		H	N	F		516
312		5-F	C	H		515

313		5-F	C	F		533
314		5-F	C	F		569
315	CH ₃ -S-	H	N	F		485
316	CH ₃ CH ₂ -O-	H	N	F		483
317		H	N	F		566
318		H	N	F		489
319		H	N	F		489
320		H	N	F		505
321		H	N	F		505
322		5-F	C	F		533
323		H	N	F		516
325		H	N	F		540
325		H	N	F		524
326	(CH ₃) ₂ CH-O-	5-F	C	F		514
327		H	N	F		506
328		H	N	F		488
329		H	N	F		489
330		H	N	F		507
331		H	N	F		551

332		H	N	F		506
333		H	N	F		518
334		H	N	F		504
335	CH ₃ -O-	H	N	F		464
336		H	N	F		491
337		H	N	F		563
338		5-F	C	H		545
339		5-F	C	F		533
340		H	N	F		518
341		5-F	C	H		535
342		H	N	F		520
343		6-Cl	C	H		548
345		H	N	H		503
346	(CH ₃) ₂ -CH-	H	N	H		463

No.	R ³	R ²	Physical Data MS (MH ⁺)
347	H		489
348	F		506
349	F		488
350	F		507
351	F		506

No.	R ¹ -X-	Z	R ³	R ²	Physical Data MS (MH ⁺)
352		-CH ₂ -	H		509
353		-CH ₂ -	H		510
354		-CH ₂ -	H		523

355		-CH ₂ -	H		532
356		-CH ₂ -	H		496
357		-CH ₂ -	H		506
358		-CH ₂ -	H		542
359		-CH ₂ -	H		451
360		-CH ₂ -	H		537
361		-CH ₂ -	H		495
362		-CH ₂ -	H		501
363		-CH ₂ -	H		510
364		-CH ₂ -	H		533
365		-CH ₂ -	H		420

366		-CH ₂ -	H		449
367		-CH ₂ -	H		497
368		-CH ₂ -	H		533
369		-CH ₂ -	H		487
370		-CH ₂ -	H		509
371		-CH ₂ -	H		433
372		-CH ₂ -	H		504
373		-CH ₂ -	H		436
374		-CH ₂ -	H		472
375		-(CH ₂) ₃ -	H		464
376		-CH ₂ -	H		544
377		-CH ₂ -	F		562

No.	R	M ¹	Y	R ²	Physical Data MS (MH ⁺)
378		CH	-CH ₂ -		500
379		N	-NH-		502
380		N	-NH-		490
381		N	-NH-		494
382		N	-NH-		501
383		N	-NH-		500

384:

MS: 528 (MH⁺)

385:

MS 385 (MH⁺)

5

386:

MS 529 (MH⁺)

387:

MS 583 (MH^+)Example 388

5

Step 1:

A solution of P7-1 (2.3 g, 8.9 mmol) in CH_2Cl_2 -DMF (1:1, 50 ml) was treated with picolinic acid N-oxide (1.5 g, 10.6 mmol), EDCI (2.6 g, 13.3 mmol) and HOBT (1.8 g, 13.3 mmol). The mixture was stirred at 70 °C overnight. The reaction mixture was concentrated, diluted with EtOAc, washed three times with 5% aqueous NaOH, dried over Na_2SO_4 , and concentrated. Flash chromatography (50% EtOAc/hexane) provided 388A (2.5 g, 74%).

Step 2:

15

In a manner similar to that described in Preparation 5, Step 4, compound 388A was converted to compound 388B.

Step 3:

A solution of **388B** (0.66 g, 2.2 mmol) in DMF (15 ml) was treated with **5C** (0.62 g, 2.5 mmol), 1-propanephosphonic acid cyclic anhydride (3.3 ml, 11.2 mmol, 50 wt. % in EtOAc) and N-ethylmorpholine (1.4 ml, 10.7 mmol). The mixture was stirred at 50 °C for 3h. The reaction mixture was concentrated and diluted with EtOAc. The 5 solution was washed three times with 5% aqueous NaOH, dried over Na₂SO₄, concentrated and subjected to flash chromatography (10% 2N NH₃-CH₃OH/EtOAc). The material was then taken up in CH₂Cl₂ (20 ml) and treated with 4 M HCl-dioxane (4 ml). After stirring overnight at 20 °C, the reaction was carefully basified with 10% aqueous NaOH and extracted with CH₂Cl₂. The combined organic layers were dried 10 over Na₂SO₄, concentrated and subjected to flash chromatography (30% 2N NH₃-CH₃OH/EtOAc) to provide **388C** as a white solid (0.08g, 10%).

Step 4:

In a manner similar to that described in Example 5, Step 5, compound **388C** was converted to Example 388.

15

Example 389

Step 1:

To a stirred, cloudy solution of **389A** (300 mg, 1.14 mmol) in THF (15 ml) were 20 added a solution of **389B** (292 mg, 1.37 mmol) in THF (1 ml), followed by NaBH(OAc)₃ (483 mg, 2.28 mmol). After stirring at RT for 39 h, TLC revealed the presence of unchanged starting materials in the cloudy white reaction suspension. Therefore, another quantity of NaBH(OAc)₃ (242 mg, 1.14 mmol) was added and stirring at RT continued for a total of 113 h. The reaction mixture was then filtered and collected 25 solids washed thoroughly with CH₂Cl₂. The combined filtrate and washings were stripped of solvent under vacuum, and the residue was partitioned between EtOAc (60 ml) and a solution consisting of water (2.5 ml), 2M Na₂CO₃ (6.5 ml) and 6N NaOH (5 ml).

ml). The aqueous layer was further extracted with EtOAc (3 x 15 ml). The combined extracts were washed with brine (5 ml) and dried over anhydrous MgSO₄. Drying agent was removed by filtration, and the filtrate was concentrated under vacuum. The residue was purified by silica gel flash chromatography (EtOAc/hexanes = 1:1) to obtain 389C as a mixture of colorless gum and white foam (368 mg, 70%), homogeneous to TLC, which solidified upon standing. ES-MS: 461 (MH⁺; 100%).

5 Step 2:

To a stirred, ice-cold solution of 389C (358 mg, 0.777 ml) in CH₂Cl₂ (7 ml) was added via syringe cold, neat TFA (576 microliters, 886 mg, 7.77 mmol). The resultant solution was stirred in an ice-water bath for 30 min, then at RT for 29.5 h. Volatiles were removed under vacuum, and the gummy residue was triturated (magnetic stirrer) with Et₂O (35 ml) for 16 h. Filtration and washing with Et₂O yielded the bis-trifluoroacetate salt of 389D as a white powder (449 mg, 98%).

15 Step 3:

To a stirred suspension of 389D (100 mg, 0.170 mmol) in CH₂Cl₂ (5 ml) was added Et₃N (47.4 microliters, 34.4 mg, 0.340 mmol), whereupon all solids dissolved. To the stirred solution were then added 5G (25.1 mg, 0.204 mmol), followed by NaBH(OAc)₃ (72.1 mg, 0.340 mmol). After stirring at RT for 66 h, TLC revealed the presence of unchanged starting materials in the light yellow reaction suspension. Therefore, another quantity of NaBH(OAc)₃ (72.1 mg, 0.340 mmol) was added and stirring at RT continued for a total of 90 h. The reaction mixture was then filtered and collected solids washed thoroughly with CH₂Cl₂. The combined filtrate and washings were stripped of solvent under vacuum, and the residue was partitioned between EtOAc (20 ml) and a solution consisting of water (0.6 ml), 2M Na₂CO₃ (1.5 ml) and 6N NaOH (1.2 ml). The aqueous layer was further extracted with EtOAc (3 x 5 ml). The combined extracts were washed with brine (2 ml) and dried over anhydrous MgSO₄. Drying agent was removed by filtration, and the filtrate was concentrated under vacuum. The residue was purified by preparative TLC (silica gel; CH₂Cl₂/CH₃OH/conc. NH₄OH = 90:9:1) to obtain the title compound as a light beige foam (36 mg, 45%). FABMS: 468 (MH⁺; 100%).

Using procedures similar to those described above in Examples 1-6 and 388-389, the following compounds were prepared:

Ex.	Structure	Mass Spec (M+H)
390		533 (ESMS)
391		518 (ESMS)
392		535 (ESMS)
393		520 (ESMS)
394		592 (FAB)
395		670 (FAB)

396		528 (ESMS)
397		491 (ESMS)
398		470 (ESMS)
399		488 (ESMS)
400		487 (ESMS)
401		471 (ESMS)
402		487 (ESMS)

403		471 (ESMS)
404		489 (ESMS)
405		506 (ESMS)
406		505 (ESMS)
407		522 (ESMS)
408		522 (ESMS)
409		506 (ESMS)

410		523 (ESMS)
411		524 (ESMS)
412		501 (ESMS)
413		490 (ESMS)
414		473 (ESMS)
415		488 (ESMS)
416		487 (ESMS)

417		504 (ESMS)
418		504 (ESMS)
419		488 (ESMS)
420		505 (ESMS)
421		506 (ESMS)
422		526 (FAB)

423		518 (ESMS)
424		585 (FAB)
425		591 (ESMS)
426		499 (ESMS)
427		516 (ESMS)
428		546 (ESMS)

429		498 (ESMS)
430		514 (ESMS)
431		571 (ESMS)
432		589 (ESMS)
433		573 (ESMS)
434		591 (ESMS)
435		512 (ESMS)

436		530 (ESMS)
437		483 (ESMS)
438		484 (ESMS)
439		502 (ESMS)
440		499 (FAB)
441		471 (ESMS)
442		488 (ESMS)

443		506 (ESMS)
444		470 (ESMS)
445		488 (ESMS)
446		531 (FAB)
447		497 (FAB)
448		513 (FAB)
449		548 (FAB)

450		563 (ESMS)
451		514(ESM S)
452		532 (ESMS)
453		502 (ESMS)
454		550 (ESMS)
455		520 (ESMS)
456		451 (ESMA)

457		545 (ESMS)
458		513 (ESMS)
459		514 (FAB)
460		496 (FAB)
461		442 (ESMS)
462		458 (ESMS)

463		503 (ESMS)
464		407 (ESMS)
465		534 (ESMS)
466		516 (ESMS)
467		514 (ESMS)
468		484 (ESMS)
469		458 (ESMS)

470		474 (ESMS)
471		467 (ESMA)
472		440 (ESMS)
473		465 (ESMS)
474		487 (ESMS)
475		472 (ESMS)
476		466 (ESMS)

477		505 (ESMS)
478		456 (ESMS)
479		456 (ESMS)
480		504 (ESMS)
481		514 (ESMS)
482		531 (FAB)
483		472 (ESMS)

484		438 (ESMS)
485		438 (ESMS)
486		454 (ESMS)
487		470 (ESMS)
488		502 (ESMS)
489		554 (FAB)
490		556 (FAB)

491		470 (ESMS)
492		487 (ESMS)
493		469 (ESMS)
44		555 (ESMS)
495		452 (ESMS)
496		487 (ESMS)
497		440 (ESMS)

498		424 (ESMS)
499		470 (ESMS)
500		486 (ESMS)
501		556 (ESMS)
502		500 (ESMS)
503		566 (ESMS)
504		577 (ESMS)

505		550 (ESMS)
506		506 (ESMS)
507		522 (ESMS)
508		533 (ESMS)
509		504 (ESMS)
510		520 (ESMS)
511		456 (ESMS)

512		467 (ESMS)
513		482 (ESMS)
514		482 (ESMS)
515		500 (ESMS)
516		500 (ESMS)
517		500 (ESMS)
518		482 (ESMS)

519		498 (ESMS)
520		481 (ESMS)
521		516 (ESMS)
522		512 (FAB)
523		495 (FAB)
524		499 (FAB)
525		499 (ESMS)

526		560 (ESMS)
527		499 (ESMS)
528		501(ESM S)
529		483 (ESMS)
530		526 (ESMS)
531		509 (ESMS)

532		449 (ESMS)
533		500 (ESMS)
534		512 (ESMS)
535		495 (ESMS)
536		546 (ESMS)
537		530 (ESMS)

538		531 (ESMS)
539		545 (ESMS)
540		468 (ESMS)
541		540 (ESMS)
542		481 (ESMS)
543		482 (ESMS)

544		515 (ESMS)
545		517 (ESMS)
546		526 (ESMS)
547		5560 (ESMS)
548		526 (ESMS)
549		550 (ESMS)

550		517 (ESMS)
551		532 (ESMS)
552		464 (ESMS)
553		516 (ESMS)
554		486 (ESMS)
555		502 (ESMS)

556		526 (ESMS)
557		516 (ESMS)
558		487 (ESMS)
559		496 (ESMS)
560		481 (FAB)
561		534 (ESMS)

562		501 (ESMS)
563		517 (ESMS)
564		517 (ESMS)
565		517 (ESMS)
566		577 (ESMS)
567		592 (ESMS)

568		519 (ESMS)
569		552 (ESMS)
570		537 (ESMS)
571		453 (ESMS)
572		505 (ESMS)
573		504 (ESMS)

574		519 (ESMS)
575		533 (ESMS)
576		549 (ESMS)
577		548 (ESMS)
578		533 (ESMS)
579		566 (ESMS)

580		551 (ESMS)
581		559 (ESMS)
582		560 (ESMS)
583		592 (ESMS)
584		579 (ESMS)
585		466 (ESMS)

586		479 (FAB)
587		505 (ESMS)
588		480 (ESMS)
589		535 (ESMS)
590		536 (ESMS)
591		498 (ESMS)

592		483 (ESMS)
593		575 (ESMS)
594		550 (ESMS)
595		529 (ESMS)
596		517 (ESMS)

597		533 (ESMS)
598		466 (ESMS)
599		438 (ESMS)
600		421 (ESMS)
601		423 (ESMS)
602		406 (ESMS)

603		456 (ESMS)
604		441 (ESMS)
605		439 (ESMS)
606		516 (ESMS)
607		498 (ESMS)
608		525 (ESMS)
609		516 (ESMS)

610		501 (ESMS)
611		547 (ESMS)
612		531 (ESMS)
613		543 (ESMS)
614		558 (ESMS)
615		544 (ESMS)

616		452 (FAB)
617		424 (ESMS)
618		480 (ESMS)
619		465 (ESMS)
620		560 (ESMS)
621		511 (ESMS)
622		496 (ESMS)

623		510 (ESMS)
624		503 (ESMS)
625		518 (ESMS)
626		505 (ESMS)
627		498 (ESMS)
628		485 (ESMS)
629		481 (ESMS)

630		499 (ESMS)
631		499 (ESMS)
632		514 (ESMS)
633		517 (ESMS)
634		532 (ESMS)
635		488 (ESMS)
636		518 (ESMS)

637		451 (ESMS)
638		537 (MH+)
639		472 (MH+)
640		519 (MH+)
641		487 (MH+)
642		516 (MH+)
643		503 (MH+)

644		484 (ESMS)
645		503 (ESMS)
646		498 (ESMS)
647		516 (ESMS)
648		468 (ESMS)
649		486 (ESMS)
650		469 (ESMS)
651		487 (ESMS)

652		483 (ESMS)
653		501 (ESMS)
654		453 (ESMS)
655		471 (ESMS)
656		468 (ESMS)
657		450 (ESMS)
658		530 (ESMS)
659		

660		453 (FAB)
661		470 (FAB)
662		455 (FAB)
663		497 (ESMS)
664		481 (FAB)
664A		499 (FAB)

Example 665

4-[[4-[2-(5-methyl-3-isoxazolyl)-3H-imidazo[4,5-b]pyridine-3-yl]-1-(4-piperidinylcarbonyl)piperidine (0.99 g, 2.51 mmoles) and pyridazine 4-carboxaldehyde (0.35 g, 3.26 mmoles) were stirred at RT in dry CH₂Cl₂ (25 ml) containing activated 3Å molecular sieves (6.5 g). After 5 h, triacetoxy borohydride (3.2 g, 15 mmoles) was added and the mixture was stirred for 70 h. The mixture was diluted with CH₂Cl₂ and the solid filtered through a pad of Celite. The filtrate was stirred for 20 min. with saturated aqueous NaHCO₃, then separated, washed with brine, and dried over anhydrous Na₂SO₄. The reaction mixture was purified by preparative TLC. The plates were eluted with EtOAc:Hexanes:CH₃OH(NH₃) (75:20:5). Extraction of the bands with 13% CH₃OH(NH₃)/EtOAc gave a mixture of Example 665 and Example 496. Example 658: MS (M+H): 423.

In a similar manner, using 4-[[4-[2-(methylthio)-3H-imidazo[4,5-b]pyridine-3-yl]-1-(4-piperidinylcarbonyl)piperidine (0.88 gr.; 2.44 mmoles), pyridazine 4-carboxaldehyde (0.34 g, 3.18 mmoles), and triacetoxy borohydride, a mixture of Example 666 and Example 495 was prepared:

Example 666: MS (M+H): 388

20 General Procedure for H₃-Receptor Binding Assay

The source of the H₃ receptors in this experiment was guinea pig brain. The animals weighed 400-600 g. The brain tissue was homogenized with a solution of 50 mM Tris, pH 7.5. The final concentration of tissue in the homogenization buffer was 10% w/v. The homogenates were centrifuged at 1,000 x g for 10 min. in order to remove clumps of tissue and debris. The resulting supernatants were then centrifuged at 50,000 x g for 20 min. in order to sediment the membranes, which were next

washed three times in homogenization buffer (50,000 x g for 20 min. each). The membranes were frozen and stored at -70°C until needed.

All compounds to be tested were dissolved in DMSO and then diluted into the binding buffer (50 mM Tris, pH 7.5) such that the final concentration was 2 µg/ml with 5 0.1% DMSO. Membranes were then added (400 µg of protein) to the reaction tubes.

The reaction was started by the addition of 3 nM [³H]R- α -methyl histamine (8.8 Ci/mmol) or 3 nM [³H]N α -methyl histamine (80 Ci/mmol) and continued under incubation at 30°C for 30 min. Bound ligand was separated from unbound ligand by filtration, and the amount of radioactive ligand bound to the membranes was

10 quantitated by liquid scintillation spectrometry. All incubations were performed in duplicate and the standard error was always less than 10%. Compounds that inhibited more than 70% of the specific binding of radioactive ligand to the receptor were serially diluted to determine a K_i (nM).

General Procedure for rHu H₃ Binding Assay

15 [³H]N α -methylhistamine (82 Ci/mmol) was obtained from Dupont NEN. Thioperamide was obtained from the Chemical Research Department, Schering-Plough Research Institute.

HEK-293 human embryonic kidney cells stably expressing the human histamine H₃ receptor were cultured in Dulbecco's modified Eagle's medium/10% fetal 20 calf serum/penicillin (100 U/ml)/streptomycin (100 µg/ml)/Geneticin (0.5 mg/ml) at 37° C in a humidified 5% CO₂ atmosphere. Cells were harvested between passages five and twenty at 37° C in 5 mM EDTA/Hank's balanced salt solution and processed for membrane preparation. After low-speed centrifugation, ten min at 1000 xg, they were put into ten volumes of ice-cold buffer and disrupted with a Polytron (PTA 35/2 tip, 30 25 sec at setting 6). After subsequent low-speed centrifugation, supernatant was centrifuged ten min at 50,000 xg. The high-speed pellet was resuspended in the original volume of buffer, a sample was taken for protein assay (bicinchoninic acid, Pierce) and the suspension was centrifuged again at 50,000 xg. Membranes were resuspended at 1 mg of protein/ml of buffer and frozen at -80° C until use.

30 Membrane (15 µg of protein) was incubated with 1.2 nM [³H]N α -methyl-histamine, without or with inhibitor compounds, in a total volume of 200 µl of buffer. Nonspecific binding was determined in the presence of 10⁻⁵ M thioperamide. Assay mixtures were incubated for 30 min at 30° C in polypropylene, 96-well, deep-well

plates, then filtered through 0.3% polyethylenimine-soaked GF/B filters. These were washed three times with 1.2 ml of 4° C buffer, dried in a microwave oven, impregnated with Meltilex wax scintillant and counted at 40% efficiency in a Betaplate scintillation counter (Wallac).

5 IC₅₀ values were interpolated from the data or were determined from curves fit to the data with Prism nonlinear least squares curve-fitting program (GraphPad Software, San Diego, CA). K_i values were determined from IC₅₀ values according to the Cheng and Prusoff equation.

10 In these assays, compounds of formula I have a K_i within the range of about 0.1 to about 600 nM. Preferred compounds of formula I have a K_i within the range of about 0.1 to about 100 nM. More preferred compounds of formula I have a K_i within the range of about 0.1 to about 20 nM.

Representative compounds of the present invention tested according to the above procedures have the following K_i values:

Ex.	Receptor Source	K _i
1	rHu	1
3	Guinea pig	13
5	rHu	9
13	Guinea Pig	27
54	Guinea Pig	30
71	Guinea Pig	1
94	Guinea Pig	1
109	rHu	1
120	Guinea Pig	0.3
165	rHu	2
170	Guinea Pig	0.5
173	Guinea Pig	0.4
195	Guinea Pig	10
211	Guinea Pig	7
254	Guinea Pig	13
269	rHu	4
270	rHu	4
281	rHu	4
290	rHu	3
290	rHu	3
297	rHu	4
297	rHu	4
315	rHu	5
316	rHu	5
316	rHu	5
326	rHu	2

Ex.	Receptor Source	K _i
335	rHu	12
388	rHu	30
423	rHu	5
442	rHu	1
449	rHu	1
459	rHu	4
460	rHu	4
468	rHu	10
493	rHu	1
502	rHu	7
512	rHu	2
547	rHu	14
552	rHu	4
557	rHu	19
571	rHu	2
574	rHu	2
577	rHu	44
588	rHu	6
592	rHu	9
595	rHu	41
598	rHu	17
608	rHu	1
618	rHu	9
619	rHu	2
625	rHu	10
628	rHu	4

In this specification, the term "at least one compound of formula I" means that one to three different compounds of formula I may be used in a pharmaceutical composition or method of treatment. Preferably one compound of formula I is used. Similarly, "at least one H₁ receptor antagonist" means that one to three different H₁ antagonists may be used in a pharmaceutical composition or method of treatment. Preferably, one H₁ antagonist is used.

For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, 10 cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 95 percent active ingredient. Suitable solid carriers are known in the art, e.g. magnesium carbonate, magnesium stearate, talc, sugar or lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. Examples of pharmaceutically acceptable carriers and methods of 15 manufacture for various compositions may be found in A. Gennaro (ed.), *The Science and Practice of Pharmacy*, 20th Edition, (2000), Lippincott Williams & Wilkins, Baltimore, MD.

Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral 20 injection or addition of sweeteners and opacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.

Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, 25 such as an inert compressed gas, e.g. nitrogen.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.

The compounds of the invention may also be deliverable transdermally. The 30 transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.

Preferably the compound is administered orally.

Preferably, the pharmaceutical preparation is in a unit dosage form. In such form, the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.

5 The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1 mg to about 350 mg, preferably from about 1 mg to about 150 mg, more preferably from about 1 mg to about 50 mg, according to the particular application.

10 The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage regimen for a particular situation is within the skill of the art. For convenience, the total daily dosage may be divided and administered in portions during the day as required.

15 The amount and frequency of administration of the compounds of the invention and/or the pharmaceutically acceptable salts thereof will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. A typical recommended daily dosage regimen for oral administration can range from about 1 mg/day to about 300 mg/day, preferably 1 mg/day to 75 mg/day, in two to four divided doses.

20 When the invention comprises a combination of H₃ antagonist and H₁ antagonist compounds, the two active components may be co-administered simultaneously or sequentially, or a single pharmaceutical composition comprising a H₃ antagonist and an H₁ antagonist in a pharmaceutically acceptable carrier can be administered. The components of the combination can be administered individually or together in any conventional dosage form such as capsule, tablet, powder, cachet, suspension, solution, suppository, nasal spray, etc. The dosage of the H₁ antagonist can be determined from published material, and may range from 1 to 1000 mg per dose.

25 When separate H₃ and H₁ antagonist pharmaceutical compositions are to be administered, they can be provided in a kit comprising in a single package, one container comprising an H₃ antagonist in a pharmaceutically acceptable carrier, and a separate container comprising an H₁ antagonist in a pharmaceutically acceptable carrier, with the H₃ and H₁ antagonists being present in amounts such that the

combination is therapeutically effective. A kit is advantageous for administering a combination when, for example, the components must be administered at different time intervals or when they are in different dosage forms.

While the present invention has been described in conjunction with the specific
5 embodiments set forth above, many alternatives, modifications and variations thereof
will be apparent to those of ordinary skill in the art. All such alternatives, modifications
and variations are intended to fall within the spirit and scope of the present invention.

WHAT IS CLAIMED IS:

1. A compound represented by the structural formula

5 or a pharmaceutically acceptable salt or solvate thereof, wherein:

the dotted line represents an optional double bond;

a is 0 to 2;

b is 0 to 2;

n is 1, 2 or 3;

10 p is 1, 2 or 3;

r is 0, 1, 2, or 3;

with the provisos that when M^2 is N, p is not 1; and that when r is 0, M^2 is $C(R^3)$; and that the sum of p and r is 1 to 4;

M^1 is $C(R^3)$ or N;

15 M^2 is $C(R^3)$ or N;

X is a bond or C_1-C_6 alkylene;

Y is $-C(O)-$, $-C(S)-$, $-(CH_2)_q-$, $-NR^4C(O)-$, $-C(O)NR^4-$, $-C(O)CH_2-$, $-SO_2-$, $-N(R^4)-$, $-NH-C(=N-CN)-$ or $-C(=N-CN)-NH-$; with the provisos that when M^1 is N, Y is not $-NR^4C(O)-$ or $-NH-C(=N-CN)-$; when M^2 is N, Y is not $-C(O)NR^4-$ or $-C(=N-CN)-NH-$; and when Y is $-N(R^4)-$, M^1 is CH and M^2 is $C(R^3)$;

20 q is 1 to 5, provided that when both M^1 and M^2 are N, q is 2 to 5;

Z is a bond, C_1-C_6 alkylene, C_1-C_6 alkenylene, $-C(O)-$, $-CH(CN)-$, $-SO_2-$ or $-CH_2C(O)NR^4-$;

R^1 is

25

Q is $-N(R^8)$, $-S-$ or $-O-$;

k is 0, 1, 2, 3 or 4;

5 k1 is 0, 1, 2 or 3;

k2 is 0, 1 or 2;

R is H, C₁-C₆ alkyl, halo(C₁-C₆)alkyl-, C₁-C₆ alkoxy, (C₁-C₆)alkoxy-

(C₁-C₆)alkyl-, (C₁-C₆)-alkoxy-(C₁-C₆)alkoxy, (C₁-C₆)alkoxy-(C₁-C₆)alkyl-SO₀₋₂,

R³²-aryl(C₁-C₆)alkoxy-, R³²-aryl(C₁-C₆)alkyl-, R³²-aryl, R³²-aryloxy, R³²-heteroaryl,

10 (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkyl-(C₁-C₆)alkyl, (C₃-C₆)cycloalkyl-(C₁-C₆)alkoxy,

(C₃-C₆)cycloalkyl-oxy-, R³⁷-heterocycloalkyl, R³⁷-heterocycloalkyl-oxy-,

R³⁷-heterocycloalkyl-(C₁-C₆)alkoxy, N(R³⁰)(R³¹)-(C₁-C₆)alkyl-, -N(R³⁰)(R³¹),

-NH-(C₁-C₆)alkyl-O-(C₁-C₆)alkyl, -NHC(O)NH(R²⁹); R²⁹-S(O)₀₋₂-,

halo(C₁-C₆)alkyl-S(O)₀₋₂-, N(R³⁰)(R³¹)-(C₁-C₆)alkyl-S(O)₀₋₂- or benzoyl;

15 R⁸ is H, C₁-C₆ alkyl, halo(C₁-C₆)alkyl-, (C₁-C₆)alkoxy-(C₁-C₆)alkyl-, R³²-aryl(C₁-C₆)alkyl-, R³²-aryl, R³²-heteroaryl, (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkyl-(C₁-C₆)alkyl, R³⁷-heterocycloalkyl, N(R³⁰)(R³¹)-(C₁-C₆)alkyl-, R²⁹-S(O)₂-, halo(C₁-C₆)alkyl-S(O)₂-, R²⁹-S(O)₀₋₁-(C₂-C₆)alkyl-, halo(C₁-C₆)alkyl-S(O)₀₋₁-(C₂-C₆)alkyl-;

20 R² is a six-membered heteroaryl ring having 1 or 2 heteroatoms independently selected from N or N-O, with the remaining ring atoms being carbon; a five-membered heteroaryl ring having 1, 2, 3 or 4 heteroatoms independently selected from N, O or S, with the remaining ring atoms being carbon; R³²-quinolyl; R³²-aryl; heterocycloalkyl; (C₃-C₆)cycloalkyl; C₁-C₆ alkyl; hydrogen; thianaphthenyl;

wherein said six-membered heteroaryl ring or said five-membered heteroaryl ring is optionally substituted by R⁶;

R³ is H, halogen, C₁-C₆ alkyl, -OH, (C₁-C₆)alkoxy or -NHSO₂-(C₁-C₆)alkyl;

5 R⁴ is independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, (C₃-C₆)cycloalkyl(C₁-C₆)alkyl, R³³-aryl, R³³-aryl(C₁-C₆)alkyl, and R³²-heteroaryl;

R⁵ is hydrogen, C₁-C₆ alkyl, -C(O)R²⁰, -C(O)₂R²⁰, -C(O)N(R²⁰)₂, (C₁-C₆)alkyl-SO₂⁻, or (C₁-C₆)alkyl-SO₂-NH-;

10 or R⁴ and R⁵, together with the nitrogen to which they are attached, form an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl ring;

R⁶ is 1 to 3 substituents independently selected from the group consisting of -OH, halogen, C₁-C₆ alkyl-, C₁-C₆ alkoxy, C₁-C₆ alkylthio, -CF₃, -NR⁴R⁵, -CH₂-NR⁴R⁵, -NHSO₂R²², -N(SO₂R²²)₂, phenyl, R³³-phenyl, NO₂, -CO₂R⁴, -CON(R⁴)₂,

15 R⁷ is -N(R²⁹)-, -O- or -S(O)₀₋₂⁻;

R¹² is independently selected from the group consisting of C₁-C₆ alkyl, hydroxyl, C₁-C₆ alkoxy, or fluoro, provided that when R¹² is hydroxy or fluoro, then R¹² is not bound to a carbon adjacent to a nitrogen; or two R¹² substituents form a C₁ to C₂ alkyl bridge from one ring carbon to another non-adjacent ring carbon; or R¹² is =O;

20 R¹³ is independently selected from the group consisting of C₁-C₆ alkyl, hydroxyl, C₁-C₆ alkoxy, or fluoro, provided that when R¹³ is hydroxy or fluoro then R¹³ is not bound to a carbon adjacent to a nitrogen; or two R¹³ substituents form a C₁ to C₂ alkyl bridge from one ring carbon to another non-adjacent ring carbon; or R¹³ is =O;

25 R²⁰ is independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, or aryl, wherein said aryl group is optionally substituted with from 1 to 3 groups independently selected from halogen, -CF₃, -OCF₃, hydroxyl, or methoxy; or when two R²⁰ groups are present, said two R²⁰ groups taken together with the nitrogen to which they are bound can form a five or six membered heterocyclic ring;

R²² is C₁-C₆ alkyl, R³⁴-aryl or heterocycloalkyl;

30 R²⁴ is H, C₁-C₆ alkyl, -SO₂R²² or R³⁴-aryl;

R²⁵ is independently selected from the group consisting of C₁-C₆ alkyl, halogen, -CN, -NO₂, -CF₃, -OH, C₁-C₆ alkoxy, (C₁-C₆)alkyl-C(O)-, aryl-C(O)-, -C(O)OR²⁹,

-N(R⁴)(R⁵), N(R⁴)(R⁵)-C(O)-, N(R⁴)(R⁵)-S(O)₁₋₂₋, R²²-S(O)₀₋₂₋, halo-(C₁-C₆)alkyl- or halo-(C₁-C₆)alkoxy-(C₁-C₆)alkyl-;

R²⁹ is H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, R³⁵-aryl or R³⁵-aryl(C₁-C₆)alkyl-;

R³⁰ is H, C₁-C₆ alkyl-, R³⁵-aryl or R³⁵-aryl(C₁-C₆)alkyl-;

5 R³¹ is H, C₁-C₆ alkyl-, R³⁵-aryl, R³⁵-aryl(C₁-C₆)alkyl-, R³⁵-heteroaryl, (C₁-C₆)alkyl-C(O)-, R³⁵-aryl-C(O)-, N(R⁴)(R⁵)-C(O)-, (C₁-C₆)alkyl-S(O)₂₋ or R³⁵-aryl-S(O)₂₋;

or R³⁰ and R³¹ together are -(CH₂)₄₋₅₋, -(CH₂)₂-O-(CH₂)₂₋ or

-(CH₂)₂-N(R³⁸)-(CH₂)₂₋ and form a ring with the nitrogen to which they are attached;

R³² is 1 to 3 substituents independently selected from the group consisting of

10 H, -OH, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, R³⁵-aryl-O-, -SR²², -CF₃, -OCF₃, -OCHF₂, -NR³⁹R⁴⁰, phenyl, R³³-phenyl, NO₂, -CO₂R³⁹, -CON(R³⁹)₂, -S(O)₂R²², -S(O)₂N(R²⁰)₂, -N(R²⁴)S(O)₂R²², -CN, hydroxy-(C₁-C₆)alkyl-, -OCH₂CH₂OR²², and R³⁵-aryl(C₁-C₆)alkyl-O-, or two R³² groups on adjacent carbon atoms together form a -OCH₂O- or -O(CH₂)₂O- group;

15 R³³ is 1 to 3 substituents independently selected from the group consisting of C₁-C₆ alkyl, halogen, -CN, -NO₂, -CF₃, -OCF₃, -OCHF₂ and -O-(C₁-C₆)alkyl;

R³⁴ is 1 to 3 substituents independently selected from the group consisting of H, halogen, -CF₃, -OCF₃, -OH and -OCH₃;

R³⁵ is 1 to 3 substituents independently selected from hydrogen, halo, C₁-C₆

20 alkyl, hydroxy, C₁-C₆ alkoxy, phenoxy, -CF₃, -N(R³⁶)₂, -COOR²⁰ and -NO₂;

R³⁶ is independently selected from the group consisting of H and C₁-C₆ alkyl;

R³⁷ is 1 to 3 substituents independently selected from hydrogen, halo, C₁-C₆ alkyl, hydroxy, C₁-C₆ alkoxy, phenoxy, -CF₃, -N(R³⁶)₂, -COOR²⁰, -C(O)N(R²⁹)₂ and -NO₂, or R³⁷ is one or two =O groups;

25 R³⁸ is H, C₁-C₆ alkyl, R³⁵-aryl, R³⁵-aryl(C₁-C₆)alkyl-, (C₁-C₆)alkyl-SO₂ or halo(C₁-C₆)alkyl-SO₂₋;

R³⁹ is independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, (C₃-C₆)cycloalkyl(C₁-C₆)alkyl, R³³-aryl, R³³-aryl(C₁-C₆)alkyl, and R³²-heteroaryl; and

30 R⁴⁰ is hydrogen, C₁-C₆ alkyl, -C(O)R²⁰, -C(O)₂R²⁰, -C(O)N(R²⁰)₂, (C₁-C₆)alkyl-SO₂₋, or (C₁-C₆)alkyl-SO₂-NH-;

or R³⁹ and R⁴⁰, together with the nitrogen to which they are attached, form an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl ring.

2. A compound of claim 1 wherein M¹ is N, a is 0, and n is 2, and the optional double bond is not present.
3. A compound of claim 2 wherein M² is C(R³) wherein R³ is hydrogen or fluorine,
5 b is 0, r is 1, and p is 2.
4. A compound of claim 3 wherein X is a bond.
5. A compound of claim 4 wherein Y is -C(O)-.
- 10 6. A compound of claim 5 wherein Z is straight or branched C₁-C₃ alkyl.
7. A compound of claim 6 wherein R² is a six-membered heteroaryl ring, optionally substituted with one R⁶ substituent.
- 15 8. A compound of claim 7 wherein R² is pyrimidy, R⁶-pyrimidyl, pyridyl, R⁶-pyridyl or pyridazinyl and R⁶ is -NH₂.
9. A compound of claim 8 wherein R² is

20

10. A compound of claim 2 wherein R¹ is

25

11. A compound of claim 10 wherein R is (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkoxy(C₁-C₆)alkoxy, (C₁-C₆)alkylthio, heteroaryl or R³²-aryl; R²⁵ is halogen or -CF₃; and k and k₁ are 0 or 1.

30

12. A compound of claim 11 wherein R is -CH₃, -CH₂CH₃, -OCH₃, -OCH₂CH₃, -OCH₂CH₂CH₃, -OCH((CH₃)₂, -CH₂CH₃, -SCH₃, -SCH₂CH₃, pyridyl, pyrimidyl, pyrazinyl, furanyl, oxazolyl or R³²-phenyl.

13. A compound of claim 12 wherein R² is

14. A compound of claim 1 selected from the group consisting of

5

10

5

15. A pharmaceutical composition comprising an effective amount of a compound of claim 1 and a pharmaceutically effective carrier.

16. The use of a compound of claim 1 for the preparation of a medicament for
5 treating allergy, allergy-induced airway responses, congestion, hypotension, cardiovascular disease, diseases of the GI tract, hyper and hypo motility and acidic secretion of the gastro-intestinal tract, obesity, sleeping disorders, disturbances of the central nervous system, attention deficit hyperactivity disorder, hypo and hyperactivity of the central nervous system, Alzheimer's disease, schizophrenia, and migraine.

10 17. A pharmaceutical composition comprising an effective amount of a compound of claim 1, and an effective amount of H₁ receptor antagonist, and a pharmaceutically effective carrier.

15 18. The use of a compound of claim 1 for the preparation of a medicament for use in combination with an H₁ receptor antagonist for treating allergy, allergy-induced airway responses, and congestion.

19. The use of claim 19 wherein said H₁ receptor antagonist is selected from:
20 astemizole, azatadine, azelastine, acrivastine, brompheniramine, cetirizine, chlorpheniramine, clemastine, cyclizine, carebastine, cyproheptadine, carboxamine, descarboethoxyloratadine, diphenhydramine, doxylamine, dimethindene, ebastine, epinastine, efletirizine, fexofenadine, hydroxyzine, ketotifen, loratadine, levocabastine, meclizine, mizolastine, mequitazine, mianserin, noberastine, norastemizole, picumast,
25 pyrilamine, promethazine, terfenadine, tripelennamine, temelastine, trimeprazine or triprolidine.

INTERNATIONAL SEARCH REPORT

Internet Application No
PCT/US 03/11672

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K31/4545 C07D471/04 C07D401/14 A61K31/4184 A61P37/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 6 211 199 B1 (KUDLACZ ELIZABETH M ET AL) 3 April 2001 (2001-04-03) claims; examples ----	1-19
Y	EP 0 580 541 A (ESPAÑOLA PROD QUIMICOS) 26 January 1994 (1994-01-26) the whole document ----	1-19 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

8 document member of the same patent family

Date of the actual completion of the International search

1 August 2003

Date of mailing of the International search report

18/08/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Gavriliu, D

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 03/11672

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JANSSENS F ET AL: "NEW ANTIHISTAMINIC N-HETEROCYCLIC 4-PIPERIDINAMINES. 3. SYNTHESIS AND ANTIHISTAMINIC ACTIVITY OF N-(4-PIPERIDINYL)-3H-IMIDAZO4,5-BPYRIDIN-2-AMINES" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US, vol. 28, no. 12, 1985, pages 1943-1947, XP001084054 ISSN: 0022-2623 table II ---	1-19
A	WO 02 24659 A (SCHERING CORP) 28 March 2002 (2002-03-28) claims 1,5,14-23 ---	1-19
A	EP 0 626 373 A (SUMITOMO PHARMA) 30 November 1994 (1994-11-30) page 20, line 1 -page 31, line 10; claims; examples 15,17-19,23-25,28,46-48 page 55, line 25 -page 58, line 55 -----	1-19

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-4(partially); 15-19(partially)

Present claims 1-3, 15-19 relate to an extremely large number of possible compounds, compositions and uses. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds, compositions and uses claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds of Formula I, in which X is a bond or C1 alkyl; Y is C(0), C(S), CH2, SO2, N(R4); M1 is N, a=0, n=2, the optional double bond is not present, r=1 and p=2. The search is complete for all the examples of the description.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 03/11672

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 1-4(partially); 15-19(partially)
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this International application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 03/11672

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 6211199	B1	03-04-2001	AT AU AU CA CN DE DK EP ES HU IL JP NO NZ TW WO	232858 T 703701 B2 1050897 A 2237971 A1 1202894 A , B 69626321 D1 920425 T3 0920425 A1 2188801 T3 9900927 A2 124396 A 11513991 T 982238 A 323543 A 394771 B 9719074 A1		15-03-2003 01-04-1999 11-06-1997 29-05-1997 23-12-1998 27-03-2003 26-05-2003 09-06-1999 01-07-2003 28-03-2000 19-03-2001 30-11-1999 01-07-1998 29-06-1999 21-06-2000 29-05-1997
EP 0580541	A	26-01-1994	ES AT AU CA DE DE EP FI JP MX NO US ZA	2048109 A1 185344 T 4194693 A 2100503 A1 69326650 D1 69326650 T2 0580541 A1 933213 A 7291964 A 9304215 A1 932607 A 5322850 A 9305195 A		01-03-1994 15-10-1999 27-01-1994 21-01-1994 11-11-1999 08-06-2000 26-01-1994 21-01-1994 07-11-1995 28-02-1994 21-01-1994 21-06-1994 19-09-1994
WO 0224659	A	28-03-2002	AU CA EP WO US	9273001 A 2421826 A1 1318994 A2 0224659 A2 2002086859 A1		02-04-2002 28-03-2002 18-06-2003 28-03-2002 04-07-2002
EP 0626373	A	30-11-1994	AT CA DE DE EP JP US	174908 T 2124306 A1 69415391 D1 69415391 T2 0626373 A1 7041465 A 5556860 A		15-01-1999 27-11-1994 04-02-1999 26-08-1999 30-11-1994 10-02-1995 17-09-1996