1. Build a truth table to prove the claim I made earlier that $\phi \Leftrightarrow \psi$ if ϕ and ψ are both true or both false, and ϕ and ψ is false if exactly one of ϕ , ψ is true and the other false.

ϕ	ψ	$\phi \Rightarrow \psi$	$\psi \Rightarrow \phi$	$\psi \Leftrightarrow \phi$
T	Τ	T	T	T
\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{T}	${f T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${f T}$

2. Build a truth table to show that

$$(\phi \Rightarrow \psi) \Leftrightarrow (\neg \phi \lor \psi)$$

is true for all truth values of ϕ and ψ . A statement whose truth values are all T is called a *logical* validity, or sometimes a tautology

ϕ	ψ	$\phi \Rightarrow \psi$	$\neg \phi$	$\neg \phi \lor \psi$	$(\phi \Rightarrow \psi) \Rightarrow (\neg \phi \lor \psi)$	$(\neg \phi \lor \psi) \Rightarrow (\phi \Rightarrow \psi)$
T	Τ	${f T}$	F	T	T	${f T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$
\mathbf{F}	\mathbf{T}	${f T}$	${ m T}$	${f T}$	${f T}$	${f T}$
\mathbf{F}	\mathbf{F}	T	\mathbf{T}	${f T}$	${f T}$	${f T}$

3. Build a truth table to show that

$$(\phi \implies \psi) \Leftrightarrow (\neg \phi \lor \psi)$$

is a tautology.

ϕ	ψ	$\phi \Rightarrow \psi$	$(\phi \implies \psi)$	$\neg \phi \lor \psi$	$(\phi \implies \psi) \Rightarrow (\neg \phi \lor \psi)$	$(\neg \phi \lor \psi) \Rightarrow (\phi \implies \psi)$	$(\phi \implies \psi) \Leftrightarrow (\neg \phi \lor \psi)$
T	Τ	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	${f T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${f T}$	${f T}$	${f T}$
F	\mathbf{T}	${f T}$	\mathbf{F}	${ m T}$	${f F}$	${f F}$	${f T}$
\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${f T}$	${f F}$	${f F}$	${f T}$

- 4. The ancient Greeks formulated a basic rule of reasoning for proving mathematical statements. Called modus ponens, it says that if you know ϕ and you know $\phi \Rightarrow \psi$, then you can conclude ψ .
 - (a) Construct a truth table for the logical statement

- (b) Explain how the truth table you obtain demonstrates that *modus ponens* is a valid rule of inference. This is a valid rule of inference because it is a tautology. In other words, $[\phi \land (\phi \Rightarrow \psi)] \Rightarrow \psi$ is true for every value of ϕ and $\phi \Rightarrow \psi$. Another way of looking at this is that the reasoning is valid regardless of whether the statements are true.
- 5. One way to prove that

$$\neg(\phi \land \psi)$$
 and $(\neg \phi) \lor (\neg \psi)$

are equivalent is to show they have the same truth table:

			*	*		
ϕ	ψ	$\phi \wedge \psi$	$\neg(\phi \land \psi)$	$\neg \phi$	ψ	$(\neg \phi) \lor (\neg \psi)$
Т	Τ	Τ	F	F	F	F
\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{T}	${ m T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$	Τ	\mathbf{F}	${ m T}$
F	\mathbf{F}	F	Т	Т	Т	Т

Since the two columns marked * are identical, we know that the two expressions are equivalent.

Thus, negation has the affect that it changes \vee into \wedge and changes \wedge into \vee . An alternative approach way to prove this is to argue directly with the meaning of the first statement:

- 1. $\phi \wedge \psi$ means both ϕ and ψ are true.
- 2. Thus $\neg(\phi \land \psi)$ means it is not the case that ϕ and ψ are true.
- 3. If they are not both true, then at least one of ϕ , ψ must be false.
- 4. This is clearly the same as saying that at least one of $\neg \phi$ and $\neg \psi$ is true. (By the definition of negation).
- 5. By the meaning of or, this can be expressed as $(\neg \phi)$ or $(\neg \psi)$.

Provide an analogous logical argument to show that $\neg(\phi \lor \psi)$ and $(\neg \phi) \land (\neg \psi)$ are equivalent.

- 1. $\neg(\phi \lor \psi)$ means both ϕ and ψ are false.
- 2. If they are both false then neither ϕ or ψ are true
- 3. This is the same as saying that both $\neg \phi$ and $\neg \psi$ are true
- 4. By the meaning of the conjunction and, this can be expressed as $(\neg \phi)$ and $(\neg \psi)$.
- 6. By a denial of a statement ϕ we mean any statement equivalent to $\neg \phi$. Give a useful (and hence natural sounding) denial of each of the following statements.
 - (a) 34,159 is a prime number. 34,159 is not a prime number.
 - (b) Roses are red and violets are blue. It's not the case that roses are red and violets are blue.
 - (c) If there are no hamburgers, I'll have a hot dog. If there are no hamburgers, I may not have a hot dog.
 - (d) Fred will go but he will not play. Fred will not go or he will play.
 - (e) The number x is either negative or greater than 10. x is positive and less than or equal to 10.
 - (f) We will win the first game or the second. We will lose both games.
- 7. Show that $\phi \Leftrightarrow \psi$ is equivalent to $(\neg \phi) \Leftrightarrow (\neg \psi)$

ϕ	ψ	$\phi \Rightarrow \psi$	$\psi \Rightarrow \phi$	$\psi \Leftrightarrow \phi$	$\neg \phi$	$\neg \psi$	$(\neg \phi) \Rightarrow (\neg \psi)$	$(\neg \psi) \Rightarrow (\neg \phi)$	$(\neg \phi) \Leftrightarrow (\neg \psi)$
$\overline{\mathrm{T}}$	T	T	T	T	F	\mathbf{F}	T	${f T}$	T
\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{T}	${ m T}$	\mathbf{F}	\mathbf{F}
F	\mathbf{T}	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{F}
\mathbf{F}	F	Т	${f T}$	Т	Т	Т	Т	Т	T

- 8. Construct truth tables to illustrate the following:
 - (a) $\psi \Leftrightarrow \phi$
 - (b) $\phi \Rightarrow (\psi \lor \theta)$

ϕ	ψ	θ	$\phi \Rightarrow \psi$	$\psi \Rightarrow \phi$	$\psi \Leftrightarrow \phi$	$\psi \lor \theta$	$\phi \Rightarrow (\psi \lor \theta)$
Т	T	T	T	T	T	T	T
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$
\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	${f T}$	\mathbf{F}	${f T}$

9. Use truth tables to prove that the following are equivalent: $\phi \Rightarrow (\psi \land \theta)$ and $(\phi \Rightarrow \psi) \land (\phi \Rightarrow \theta)$

ϕ	ψ	θ	$\psi \wedge \theta$	$\phi \Rightarrow (\psi \land \theta)$	$\phi \Rightarrow \psi$	$\phi \Rightarrow \theta$	$(\phi \Rightarrow \psi) \land (\phi \Rightarrow \theta)$
\overline{T}	T	T	T	T	T	T	T
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	${f T}$	${f T}$	${f T}$	${ m T}$	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	${ m T}$	${f T}$
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$	${f T}$	${ m T}$	${f T}$
F	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	Т	T	Т

- 10. Verify the equivalence in the previous question by means of a logical argument.
 - 1. $\phi \Rightarrow (\psi \land \theta)$ means that if ϕ is true then $\psi \land \theta$ is also true.
 - 2. This means that if ϕ is true then ψ is true and θ is true.
 - 3. It follows that $\phi \Rightarrow \psi$ is the case and $\phi \Rightarrow \theta$ is the case.
 - 3. By the definition of conjunction, this is the same as $(\phi \Rightarrow \psi) \land (\phi \Rightarrow \theta)$.
- 11. Use truth tables to prove the equivalence of $\phi \Rightarrow \psi$ and $(\neg \psi) \Rightarrow (\neg \phi)$.

ϕ	ψ	$\phi \Rightarrow \psi$	$\neg \phi$	$\neg \psi$	$(\neg \psi) \Rightarrow (\neg \phi)$
T	Т	T	F	F	T
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	${f T}$	\mathbf{T}	\mathbf{F}	${f T}$
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{T}	${f T}$

- 12. Write down the contrapositives of the following statements:
 - (a) If two rectangles are congruent, they have the same area If two rectangles do not have the same area, they are not congruent
 - (b) If a triangle with sides a, b, c (c largest) is right-angled then $a^2 + b^2 = c^2$. If a triangle has sides a, b, c (c largest) and it is not the case that $a^2 + b^2 = c^2$, then the triangle is not right-angled.
 - (c) If $2^n 1$ is prime, then n is prime. If n is not prime, then $2^n 1$ is not prime.
 - (d) If the Yuan rises, the Dollar will fall. If the Dollar does not fall, then the Yuan will not rise.
- 13. It is important not to confuse the contrapositive of a conditional $\phi \Rightarrow \psi$ with its *converse* $\psi \Rightarrow \phi$. Use truth tables to show that the contrapositive and the converse of $\phi \Rightarrow \psi$ are not equivalent.

ϕ	ψ	$\phi \Rightarrow \psi$	$\neg \phi$	$\neg \psi$	$(\neg \psi) \Rightarrow (\neg \phi)$	$\psi \Rightarrow \phi$
\mathbf{T}	Τ	${ m T}$	\mathbf{F}	\mathbf{F}	${f T}$	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{T}	${f T}$	\mathbf{T}	\mathbf{F}	${f T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{T}	${f T}$	${f T}$	${f T}$

14. Write down the converses of the four statements in question 12.

- (a) If two rectangles are congruent, they have the same area If two rectangles have the same area, they are congruent.
- (b) If a triangle with sides a, b, c (c largest) is right-angled then $a^2 + b^2 = c^2$. If a triangle has sides a, b, c (c largest) and $a^2 + b^2 = c^2$, then the triangle is right-angled.
- (c) If $2^n 1$ is prime, then n is prime. If n is prime, then $2^n 1$ is prime.
- (d) If the Yuan rises, the Dollar will fall. If the Dollar falls, then the Yuan will rise.