Feature Engineering 101

Handling Mixed Data in Machine Learning

```
In [2]:
          df = pd.read csv('titanic.csv')
In [3]:
          df.head()
Out[3]:
            Cabin
                             Ticket number Survived
                                                  0
                                         5
         0
             NaN
                         A/5 21171
         1
              C85
                          PC 17599
                                         3
             NaN STON/O2. 3101282
```

```
In [4]: df['number'].unique()
Out[4]: array(['5', '3', '6', 'A', '2', '1', '4'], dtype=object)

In [5]: import matplotlib.pylab as plt
    fig = df['number'].value_counts().plot.bar()
    fig.set title('Passengers travelling with')
```

0

C123

NaN

plt.show()

3

113803

373450

Extract numerical part and Catagorical part

```
In [6]: df['number_numerical'] = pd.to_numeric(df["number"],errors='coerce',downcast='integer')
    df['number_categorical'] = np.where(df['number_numerical'].isnull(),df['number'],np.nan)
    df.head()
```

Out[6]:	[6]: Cabin		Ticket	number	Survived	number_numerical	number_categorical	
	0	NaN	A/5 21171	5	0	5.0	NaN	
	1	C85	PC 17599	3	1	3.0	NaN	
	2	NaN	STON/O2. 3101282	6	1	6.0	NaN	

```
        Cabin
        Ticket
        number
        Survived
        number_numerical
        number_categorical

        3
        C123
        113803
        3
        1
        3.0
        NaN

        4
        NaN
        373450
        A
        0
        NaN
        A
```

```
In [7]: df['Cabin'].unique()
```

array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6', 'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33', 'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101', 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4', 'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35', 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19', 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54', 'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40', 'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44', 'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14', 'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38', 'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68', 'B41', 'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48', 'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63', 'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30', 'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36', 'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42', 'C148'], dtype=object)

```
In [8]: df['Ticket'].unique()
```

array(['A/5 21171', 'PC 17599', 'STON/O2. 3101282', '113803', '373450', '330877', '17463', '349909', '347742', '237736', 'PP 9549', '113783', 'A/5. 2151', '347082', '350406', '248706', '382652', '244373', '345763', '2649', '239865', '248698', '330923', '113788', '347077', '2631', '19950', '330959', '349216', 'PC 17601', 'PC 17569', '335677', 'C.A. 24579', 'PC 17604', '113789', '2677', 'A./5. 2152', '345764', '2651', '7546', '11668', '349253', 'SC/Paris 2123', '330958', 'S.C./A.4. 23567', '370371', '14311', '2662', '349237', '3101295', 'A/4. 39886', 'PC 17572', '2926', '113509', '19947', 'C.A. 31026', '2697', 'C.A. 34651', 'CA 2144', '2669', '113572', '36973', '347088', 'PC 17605', '2661', 'C.A. 29395', 'S.P. 3464', '3101281', '315151', 'C.A. 33111', 'S.O.C. 14879', '2680', '1601', '348123', '349208', '374746', '248738', '364516', '345767', '345779', '330932', '113059', 'SO/C 14885', '3101278', 'W./C. 6608', 'SOTON/OQ 392086', '343275', '343276', '347466', 'W.E.P. 5734', 'C.A. 2315', '364500', '374910', 'PC 17754', 'PC 17759', '231919', '244367', '349245', '349215', '35281', '7540', '3101276', '349207', '343120', '312991', '349249', '371110', '110465', '2665', '324669', '4136', '2627', 'STON/O 2. 3101294', '370369', 'PC 17558', 'A4. 54510', '27267', '370372', 'C 17369', '2668', '347061', '349241', 'SOTON/O.Q. 3101307', 'A/5. 3337', '228414', 'C.A. 29178', 'SC/PARIS 2133', '11752', '7534', 'PC 17593', '2678', '347081', 'STON/O2. 3101279', '365222', '231945', 'C.A. 33112', '350043', '230080', '244310', 'S.O.P. 1166', '113776', 'A.5. 11206', 'A/5. 851', 'Fa 265302', 'PC 17597', '35851', 'SOTON/OQ 392090', '315037', 'CA. 2343', '371362', 'C.A. 33595', '347068', '315093', '363291', '113505', 'PC 17318', '111240', 'STON/O 2. 3101280', '17764', '350404', '4133', 'PC 17595', '250653', 'LINE', 'SC/PARIS 2131', '230136', '315153', '113767', '370365', '111428', '364849', '349247', '234604', '28424', '350046', 'PC 17610', '368703', '4579', '370370', '248747', '345770', '3101264', '2628', 'A/5 3540', '347054', '2699', '367231', '112277', 'SOTON/O.Q. 3101311', 'F.C.C. 13528', 'A/5 21174', '250646',

```
'367229', '35273', 'STON/O2. 3101283', '243847', '11813',
'W/C 14208', 'SOTON/OQ 392089', '220367', '21440', '349234',
'19943', 'PP 4348', 'SW/PP 751', 'A/5 21173', '236171', '347067',
'237442', 'C.A. 29566', 'W./C. 6609', '26707', 'C.A. 31921',
'28665', 'SCO/W 1585', '367230', 'W./C. 14263',
'STON/O 2. 3101275', '2694', '19928', '347071', '250649', '11751',
'244252', '362316', '113514', 'A/5. 3336', '370129', '2650',
'PC 17585', '110152', 'PC 17755', '230433', '384461', '110413',
'112059', '382649', 'C.A. 17248', '347083', 'PC 17582', 'PC 17760',
'113798', '250644', 'PC 17596', '370375', '13502', '347073',
'239853', 'C.A. 2673', '336439', '347464', '345778', 'A/5. 10482',
'113056', '349239', '345774', '349206', '237798', '370373',
'19877', '11967', 'SC/Paris 2163', '349236', '349233', 'PC 17612',
'2693', '113781', '19988', '9234', '367226', '226593', 'A/5 2466',
'17421', 'PC 17758', 'P/PP 3381', 'PC 17485', '11767', 'PC 17608',
'250651', '349243', 'F.C.C. 13529', '347470', '29011', '36928',
'16966', 'A/5 21172', '349219', '234818', '345364', '28551',
'111361', '113043', 'PC 17611', '349225', '7598', '113784',
'248740', '244361', '229236', '248733', '31418', '386525',
'C.A. 37671', '315088', '7267', '113510', '2695', '2647', '345783',
'237671', '330931', '330980', 'SC/PARIS 2167', '2691',
'SOTON/O.Q. 3101310', 'C 7076', '110813', '2626', '14313',
'PC 17477', '11765', '3101267', '323951', 'C 7077', '113503',
'2648', '347069', 'PC 17757', '2653', 'STON/O 2. 3101293',
'349227', '27849', '367655', 'SC 1748', '113760', '350034',
'3101277', '350052', '350407', '28403', '244278', '240929',
'STON/O 2. 3101289', '341826', '4137', '315096', '28664', '347064',
'29106', '312992', '349222', '394140', 'STON/O 2. 3101269',
'343095', '28220', '250652', '28228', '345773', '349254',
'A/5. 13032', '315082', '347080', 'A/4. 34244', '2003', '250655',
'364851', 'SOTON/O.Q. 392078', '110564', '376564', 'SC/AH 3085',
'STON/O 2. 3101274', '13507', 'C.A. 18723', '345769', '347076',
'230434', '65306', '33638', '113794', '2666', '113786', '65303',
'113051', '17453', 'A/5 2817', '349240', '13509', '17464',
'F.C.C. 13531', '371060', '19952', '364506', '111320', '234360',
'A/S 2816', 'SOTON/O.Q. 3101306', '113792', '36209', '323592',
'315089', 'SC/AH Basle 541', '7553', '31027', '3460', '350060',
'3101298', '239854', 'A/5 3594', '4134', '11771', 'A.5. 18509',
'65304', 'SOTON/OQ 3101317', '113787', 'PC 17609', 'A/4 45380',
'36947', 'C.A. 6212', '350035', '315086', '364846', '330909',
'4135', '26360', '111427', 'C 4001', '382651', 'SOTON/OQ 3101316',
'PC 17473', 'PC 17603', '349209', '36967', 'C.A. 34260', '226875',
'349242', '12749', '349252', '2624', '2700', '367232',
'W./c. 14258', 'PC 17483', '3101296', '29104', '2641', '2690',
'315084', '113050', 'PC 17761', '364498', '13568', 'WE/P 5735',
'2908', '693', 'SC/PARIS 2146', '244358', '330979', '2620',
'347085', '113807', '11755', '345572', '372622', '349251',
'218629', 'SOTON/OQ 392082', 'SOTON/O.Q. 392087', 'A/4 48871',
'349205', '2686', '350417', 'S.W./PP 752', '11769', 'PC 17474',
'14312', 'A/4. 20589', '358585', '243880', '2689',
'STON/O 2. 3101286', '237789', '13049', '3411', '237565', '13567',
'14973', 'A./5. 3235', 'STON/O 2. 3101273', 'A/5 3902', '364848',
'SC/AH 29037', '248727', '2664', '349214', '113796', '364511',
'111426', '349910', '349246', '113804', 'SOTON/O.Q. 3101305',
'370377', '364512', '220845', '31028', '2659', '11753', '350029',
'54636', '36963', '219533', '349224', '334912', '27042', '347743',
'13214', '112052', '237668', 'STON/O 2. 3101292', '350050',
'349231', '13213', 'S.O./P.P. 751', 'CA. 2314', '349221', '8475',
'330919', '365226', '349223', '29751', '2623', '5727', '349210', 'STON/O 2. 3101285', '234686', '312993', 'A/5 3536', '19996',
'29750', 'F.C. 12750', 'C.A. 24580', '244270', '239856', '349912',
'342826', '4138', '330935', '6563', '349228', '350036', '24160',
'17474', '349256', '2672', '113800', '248731', '363592', '35852',
'348121', 'PC 17475', '36864', '350025', '223596', 'PC 17476',
'PC 17482', '113028', '7545', '250647', '348124', '34218', '36568',
'347062', '350048', '12233', '250643', '113806', '315094', '36866',
```

```
'236853', 'STON/O2. 3101271', '239855', '28425', '233639',
'349201', '349218', '16988', '376566', 'STON/O 2. 3101288',
'250648', '113773', '335097', '29103', '392096', '345780',
'349204', '350042', '29108', '363294', 'SOTON/O2 3101272', '2663', '347074', '112379', '364850', '8471', '345781', '350047',
'S.O./P.P. 3', '2674', '29105', '347078', '383121', '36865',
'2687', '113501', 'W./C. 6607', 'SOTON/O.Q. 3101312', '374887',
'3101265', '12460', 'PC 17600', '349203', '28213', '17465',
'349244', '2685', '2625', '347089', '347063', '112050', '347087',
'248723', '3474', '28206', '364499', '112058', 'STON/O2. 3101290',
'S.C./PARIS 2079', 'C 7075', '315098', '19972', '368323', '367228',
'2671', '347468', '2223', 'PC 17756', '315097', '392092', '11774',
'SOTON/O2 3101287', '2683', '315090', 'C.A. 5547', '349213',
'347060', 'PC 17592', '392091', '113055', '2629', '350026',
'28134', '17466', '233866', '236852', 'SC/PARIS 2149', 'PC 17590',
'345777', '349248', '695', '345765', '2667', '349212', '349217',
'349257', '7552', 'C.A./SOTON 34068', 'SOTON/OQ 392076', '211536',
'112053', '111369', '370376'], dtype=object)
```

```
In [9]:
    df['cabin_num'] = df['Cabin'].str.extract('(\d+)') # captures numerical part
    df['cabin_cat'] = df['Cabin'].str[0] # captures the first letter
    df.head()
```

Out[9]:		Cabin	Ticket	number	Survived	number_numerical	number_categorical	cabin_num	cabin_cat
	0	NaN	A/5 21171	5	0	5.0	NaN	NaN	NaN
	1	C85	PC 17599	3	1	3.0	NaN	85	С
	2	NaN	STON/O2. 3101282	6	1	6.0	NaN	NaN	NaN
	3	C123	113803	3	1	3.0	NaN	123	С
	4	NaN	373450	Α	0	NaN	А	NaN	NaN

```
In [10]: df['cabin_cat'].value_counts().plot(kind='bar')
```

Out[10]: <AxesSubplot:>

Out[11]:		Cabin	Ticket	number	Survived	number_numerical	number_categorical	cabin_num	cabin_cat	ticket_num		
	0	NaN	A/5 21171	5	0	5.0	NaN	NaN	NaN	21171.0		
	1	C85	PC 17599	3	1	3.0	NaN	85	С	17599.0		
	2	NaN	STON/O2. 3101282	6	1	6.0	NaN	NaN	NaN	3101282.0		
	3	C123	113803	3	1	3.0	NaN	123	С	113803.0		
	4	NaN	373450	А	0	NaN	А	NaN	NaN	373450.0		
	5	NaN	330877	2	0	2.0	NaN	NaN	NaN	330877.0		
	6	E46	17463	2	0	2.0	NaN	46	E	17463.0		
	7	NaN	349909	5	0	5.0	NaN	NaN	NaN	349909.0		
	8	NaN	347742	1	1	1.0	NaN	NaN	NaN	347742.0		
	9	NaN	237736	А	1	NaN	А	NaN	NaN	237736.0		
	10	G6	PP 9549	1	1	1.0	NaN	6	G	9549.0		
	11	C103	113783	1	1	1.0	NaN	103	С	113783.0		
	12	NaN	A/5. 2151	3	0	3.0	NaN	NaN	NaN	2151.0		
	13	NaN	347082	3	0	3.0	NaN	NaN	NaN	347082.0		
	14	NaN	350406	5	0	5.0	NaN	NaN	NaN	350406.0		
	15	NaN	248706	3	1	3.0	NaN	NaN	NaN	248706.0		
	16	NaN	382652	3	0	3.0	NaN	NaN	NaN	382652.0		
	17	NaN	244373	2	1	2.0	NaN	NaN	NaN	244373.0		
	18	NaN	345763	5	0	5.0	NaN	NaN	NaN	345763.0		
	19	NaN	2649	4	1	4.0	NaN	NaN	NaN	2649.0		
In [12]:	df	['tick	ket_cat']	.unique	()							
Out[12]:	arr	array(['A/5', 'PC', 'STON/02.', nan, 'PP', 'A/5.', 'C.A.', 'A./5.', 'SC/Paris', 'S.C./A.4.', 'A/4.', 'CA', 'S.P.', 'S.O.C.', 'SO/C', 'W./C.', 'SOTON/OQ', 'W.E.P.', 'STON/O', 'A4.', 'C', 'SOTON/O.Q.', 'SC/PARIS', 'S.O.P.', 'A.5.', 'Fa', 'CA.', 'LINE', 'F.C.C.', 'W/C', 'SW/PP', 'SCO/W', 'P/PP', 'SC', 'SC/AH', 'A/S', 'A/4', 'WE/P', 'S.W./PP', 'S.O./P.P.', 'F.C.', 'SOTON/O2', 'S.C./PARIS', 'C.A./SOTON'], dtype=object)										
In [13]:	df	<pre>df['ticket_num'].unique()</pre>										
Out[13]:	array([2.117100e+04, 1.759900e+04, 3.101282e+06, 1.138030e+05, 3.734500e+05, 3.308770e+05, 1.746300e+04, 3.499090e+05, 3.477420e+05, 2.377360e+05, 9.549000e+03, 1.137830e+05, 2.151000e+03, 3.470820e+05, 3.504060e+05, 2.487060e+05,											

3.826520e+05, 2.443730e+05, 3.457630e+05, 2.649000e+03,

```
2.398650e+05, 2.486980e+05, 3.309230e+05, 1.137880e+05,
3.470770e+05, 2.631000e+03, 1.995000e+04, 3.309590e+05,
3.492160e+05, 1.760100e+04, 1.756900e+04, 3.356770e+05,
2.457900e+04, 1.760400e+04, 1.137890e+05, 2.677000e+03,
2.152000e+03, 3.457640e+05, 2.651000e+03, 7.546000e+03,
1.166800e+04, 3.492530e+05, 2.123000e+03, 3.309580e+05,
2.356700e+04, 3.703710e+05, 1.431100e+04, 2.662000e+03,
3.492370e+05, 3.101295e+06, 3.988600e+04, 1.757200e+04,
2.926000e+03, 1.135090e+05, 1.994700e+04, 3.102600e+04,
2.697000e+03, 3.465100e+04, 2.144000e+03, 2.669000e+03,
1.135720e+05, 3.697300e+04, 3.470880e+05, 1.760500e+04,
2.661000e+03, 2.939500e+04, 3.464000e+03, 3.101281e+06,
3.151510e+05, 3.311100e+04, 1.487900e+04, 2.680000e+03,
1.601000e+03, 3.481230e+05, 3.492080e+05, 3.747460e+05,
2.487380e+05, 3.645160e+05, 3.457670e+05, 3.457790e+05,
3.309320e+05, 1.130590e+05, 1.488500e+04, 3.101278e+06,
6.608000e+03, 3.920860e+05, 3.432750e+05, 3.432760e+05,
3.474660e+05, 5.734000e+03, 2.315000e+03, 3.645000e+05,
3.749100e+05, 1.775400e+04, 1.775900e+04, 2.319190e+05,
2.443670e+05, 3.492450e+05, 3.492150e+05, 3.528100e+04,
7.540000e+03, 3.101276e+06, 3.492070e+05, 3.431200e+05,
3.129910e+05, 3.492490e+05, 3.711100e+05, 1.104650e+05,
2.665000e+03, 3.246690e+05, 4.136000e+03, 2.627000e+03,
3.101294e+06, 3.703690e+05, 1.755800e+04, 5.451000e+04,
2.726700e+04, 3.703720e+05, 1.736900e+04, 2.668000e+03,
3.470610e+05, 3.492410e+05, 3.101307e+06, 3.337000e+03,
2.284140e+05, 2.917800e+04, 2.133000e+03, 1.175200e+04,
7.534000e+03, 1.759300e+04, 2.678000e+03, 3.470810e+05,
3.101279e+06, 3.652220e+05, 2.319450e+05, 3.311200e+04,
3.500430e+05, 2.300800e+05, 2.443100e+05, 1.166000e+03,
1.137760e+05, 1.120600e+04, 8.510000e+02, 2.653020e+05,
1.759700e+04, 3.585100e+04, 3.920900e+05, 3.150370e+05,
2.343000e+03, 3.713620e+05, 3.359500e+04, 3.470680e+05,
3.150930e+05, 3.632910e+05, 1.135050e+05, 1.731800e+04,
1.112400e+05, 3.101280e+06, 1.776400e+04, 3.504040e+05,
4.133000e+03, 1.759500e+04, 2.506530e+05,
2.131000e+03, 2.301360e+05, 3.151530e+05, 1.137670e+05,
3.703650e+05, 1.114280e+05, 3.648490e+05, 3.492470e+05,
2.346040e+05, 2.842400e+04, 3.500460e+05, 1.761000e+04,
3.687030e+05, 4.579000e+03, 3.703700e+05, 2.487470e+05,
3.457700e+05, 3.101264e+06, 2.628000e+03, 3.540000e+03,
3.470540e+05, 2.699000e+03, 3.672310e+05, 1.122770e+05,
3.101311e+06, 1.352800e+04, 2.117400e+04, 2.506460e+05,
3.672290e+05, 3.527300e+04, 3.101283e+06, 2.438470e+05,
1.181300e+04, 1.420800e+04, 3.920890e+05, 2.203670e+05,
2.144000e+04, 3.492340e+05, 1.994300e+04, 4.348000e+03,
7.510000e+02, 2.117300e+04, 2.361710e+05, 3.470670e+05,
2.374420e+05, 2.956600e+04, 6.609000e+03, 2.670700e+04,
3.192100e+04, 2.866500e+04, 1.585000e+03, 3.672300e+05,
1.426300e+04, 3.101275e+06, 2.694000e+03, 1.992800e+04,
3.470710e+05, 2.506490e+05, 1.175100e+04, 2.442520e+05,
3.623160e+05, 1.135140e+05, 3.336000e+03, 3.701290e+05,
2.650000e+03, 1.758500e+04, 1.101520e+05, 1.775500e+04,
2.304330e+05, 3.844610e+05, 1.104130e+05, 1.120590e+05,
3.826490e+05, 1.724800e+04, 3.470830e+05, 1.758200e+04,
1.776000e+04, 1.137980e+05, 2.506440e+05, 1.759600e+04,
3.703750e+05, 1.350200e+04, 3.470730e+05, 2.398530e+05,
2.673000e+03, 3.364390e+05, 3.474640e+05, 3.457780e+05,
1.048200e+04, 1.130560e+05, 3.492390e+05, 3.457740e+05,
3.492060e+05, 2.377980e+05, 3.703730e+05, 1.987700e+04,
1.196700e+04, 2.163000e+03, 3.492360e+05, 3.492330e+05,
1.761200e+04, 2.693000e+03, 1.137810e+05, 1.998800e+04,
9.234000e+03, 3.672260e+05, 2.265930e+05, 2.466000e+03,
1.742100e+04, 1.775800e+04, 3.381000e+03, 1.748500e+04,
1.176700e+04, 1.760800e+04, 2.506510e+05, 3.492430e+05,
1.352900e+04, 3.474700e+05, 2.901100e+04, 3.692800e+04,
```

```
1.696600e+04, 2.117200e+04, 3.492190e+05, 2.348180e+05,
3.453640e+05, 2.855100e+04, 1.113610e+05, 1.130430e+05,
1.761100e+04, 3.492250e+05, 7.598000e+03, 1.137840e+05,
2.487400e+05, 2.443610e+05, 2.292360e+05, 2.487330e+05,
3.141800e+04, 3.865250e+05, 3.767100e+04, 3.150880e+05,
7.267000e+03, 1.135100e+05, 2.695000e+03, 2.647000e+03,
3.457830e+05, 2.376710e+05, 3.309310e+05, 3.309800e+05,
2.167000e+03, 2.691000e+03, 3.101310e+06, 7.076000e+03,
1.108130e+05, 2.626000e+03, 1.431300e+04, 1.747700e+04,
1.176500e+04, 3.101267e+06, 3.239510e+05, 7.077000e+03,
1.135030e+05, 2.648000e+03, 3.470690e+05, 1.775700e+04,
2.653000e+03, 3.101293e+06, 3.492270e+05, 2.784900e+04,
3.676550e+05, 1.748000e+03, 1.137600e+05, 3.500340e+05,
3.101277e+06, 3.500520e+05, 3.504070e+05, 2.840300e+04,
2.442780e+05, 2.409290e+05, 3.101289e+06, 3.418260e+05,
4.137000e+03, 3.150960e+05, 2.866400e+04, 3.470640e+05,
2.910600e+04, 3.129920e+05, 3.492220e+05, 3.941400e+05,
3.101269e+06, 3.430950e+05, 2.822000e+04, 2.506520e+05,
2.822800e+04, 3.457730e+05, 3.492540e+05, 1.303200e+04,
3.150820e+05, 3.470800e+05, 3.424400e+04, 2.003000e+03,
2.506550e+05, 3.648510e+05, 3.920780e+05, 1.105640e+05,
3.765640e+05, 3.085000e+03, 3.101274e+06, 1.350700e+04,
1.872300e+04, 3.457690e+05, 3.470760e+05, 2.304340e+05,
6.530600e+04, 3.363800e+04, 1.137940e+05, 2.666000e+03,
1.137860e+05, 6.530300e+04, 1.130510e+05, 1.745300e+04,
2.817000e+03, 3.492400e+05, 1.350900e+04, 1.746400e+04,
1.353100e+04, 3.710600e+05, 1.995200e+04, 3.645060e+05,
1.113200e+05, 2.343600e+05, 2.816000e+03, 3.101306e+06,
1.137920e+05, 3.620900e+04, 3.235920e+05, 3.150890e+05,
5.410000e+02, 7.553000e+03, 3.102700e+04, 3.460000e+03,
3.500600e+05, 3.101298e+06, 2.398540e+05, 3.594000e+03,
4.134000e+03, 1.177100e+04, 1.850900e+04, 6.530400e+04,
3.101317e+06, 1.137870e+05, 1.760900e+04, 4.538000e+04,
3.694700e+04, 6.212000e+03, 3.500350e+05, 3.150860e+05,
3.648460e+05, 3.309090e+05, 4.135000e+03, 2.636000e+04,
1.114270e+05, 4.001000e+03, 3.826510e+05, 3.101316e+06,
1.747300e+04, 1.760300e+04, 3.492090e+05, 3.696700e+04,
3.426000e+04, 2.268750e+05, 3.492420e+05, 1.274900e+04,
3.492520e+05, 2.624000e+03, 2.700000e+03, 3.672320e+05,
1.425800e+04, 1.748300e+04, 3.101296e+06, 2.910400e+04,
2.641000e+03, 2.690000e+03, 3.150840e+05, 1.130500e+05,
1.776100e+04, 3.644980e+05, 1.356800e+04, 5.735000e+03,
2.908000e+03, 6.930000e+02, 2.146000e+03, 2.443580e+05,
3.309790e+05, 2.620000e+03, 3.470850e+05, 1.138070e+05,
1.175500e+04, 3.455720e+05, 3.726220e+05, 3.492510e+05,
2.186290e+05, 3.920820e+05, 3.920870e+05, 4.887100e+04,
3.492050e+05, 2.686000e+03, 3.504170e+05, 7.520000e+02,
1.176900e+04, 1.747400e+04, 1.431200e+04, 2.058900e+04,
3.585850e+05, 2.438800e+05, 2.689000e+03, 3.101286e+06,
2.377890e+05, 1.304900e+04, 3.411000e+03, 2.375650e+05,
1.356700e+04, 1.497300e+04, 3.235000e+03, 3.101273e+06,
3.902000e+03, 3.648480e+05, 2.903700e+04, 2.487270e+05,
2.664000e+03, 3.492140e+05, 1.137960e+05, 3.645110e+05,
1.114260e+05, 3.499100e+05, 3.492460e+05, 1.138040e+05,
3.101305e+06, 3.703770e+05, 3.645120e+05, 2.208450e+05,
3.102800e+04, 2.659000e+03, 1.175300e+04, 3.500290e+05,
5.463600e+04, 3.696300e+04, 2.195330e+05, 3.492240e+05,
3.349120e+05, 2.704200e+04, 3.477430e+05, 1.321400e+04,
1.120520e+05, 2.376680e+05, 3.101292e+06, 3.500500e+05,
3.492310e+05, 1.321300e+04, 2.314000e+03, 3.492210e+05,
8.475000e+03, 3.309190e+05, 3.652260e+05, 3.492230e+05,
2.975100e+04, 2.623000e+03, 5.727000e+03, 3.492100e+05,
3.101285e+06, 2.346860e+05, 3.129930e+05, 3.536000e+03,
1.999600e+04, 2.975000e+04, 1.275000e+04, 2.458000e+04,
2.442700e+05, 2.398560e+05, 3.499120e+05, 3.428260e+05,
4.138000e+03, 3.309350e+05, 6.563000e+03, 3.492280e+05,
```

```
3.500360e+05, 2.416000e+04, 3.492560e+05, 2.672000e+03,
1.138000e+05, 2.487310e+05, 3.635920e+05, 3.585200e+04,
3.481210e+05, 1.747500e+04, 3.686400e+04, 3.500250e+05,
2.235960e+05, 1.747600e+04, 1.748200e+04, 1.130280e+05,
7.545000e+03, 2.506470e+05, 3.481240e+05, 3.421800e+04,
3.656800e+04, 3.470620e+05, 3.500480e+05, 1.223300e+04,
2.506430e+05, 1.138060e+05, 3.150940e+05, 3.686600e+04,
2.368530e+05, 3.101271e+06, 2.398550e+05, 2.842500e+04,
2.336390e+05, 3.492010e+05, 3.492180e+05, 1.698800e+04,
3.765660e+05, 3.101288e+06, 2.506480e+05, 1.137730e+05,
3.350970e+05, 2.910300e+04, 3.920960e+05, 3.457800e+05,
3.492040e+05, 3.500420e+05, 2.910800e+04, 3.632940e+05,
3.101272e+06, 2.663000e+03, 3.470740e+05, 1.123790e+05,
3.648500e+05, 8.471000e+03, 3.457810e+05, 3.500470e+05,
3.000000e+00, 2.674000e+03, 2.910500e+04, 3.470780e+05,
3.831210e+05, 3.686500e+04, 2.687000e+03, 1.135010e+05,
6.607000e+03, 3.101312e+06, 3.748870e+05, 3.101265e+06,
1.246000e+04, 1.760000e+04, 3.492030e+05, 2.821300e+04,
1.746500e+04, 3.492440e+05, 2.685000e+03, 2.625000e+03,
3.470890e+05, 3.470630e+05, 1.120500e+05, 3.470870e+05,
2.487230e+05, 3.474000e+03, 2.820600e+04, 3.644990e+05,
1.120580e+05, 3.101290e+06, 2.079000e+03, 7.075000e+03,
3.150980e+05, 1.997200e+04, 3.683230e+05, 3.672280e+05,
2.671000e+03, 3.474680e+05, 2.223000e+03, 1.775600e+04,
3.150970e+05, 3.920920e+05, 1.177400e+04, 3.101287e+06,
2.683000e+03, 3.150900e+05, 5.547000e+03, 3.492130e+05,
3.470600e+05, 1.759200e+04, 3.920910e+05, 1.130550e+05,
2.629000e+03, 3.500260e+05, 2.813400e+04, 1.746600e+04,
2.338660e+05, 2.368520e+05, 2.149000e+03, 1.759000e+04,
3.457770e+05, 3.492480e+05, 6.950000e+02, 3.457650e+05,
2.667000e+03, 3.492120e+05, 3.492170e+05, 3.492570e+05,
7.552000e+03, 3.406800e+04, 3.920760e+05, 2.115360e+05,
1.120530e+05, 1.113690e+05, 3.703760e+05])
```

```
<><><><><><><><><><><><><><><>
```

Handling Date and Time variable in Machine Learning

```
In [14]: import numpy as np
import pandas as pd

In [15]: date = pd.read_csv('orders.csv')
    time = pd.read_csv('messages.csv')

In [16]: date.head()
```

Out[16]:		date	product_id	city_id	orders
	0	2019-12-10	5628	25	3
	1	2018-08-15	3646	14	157
	2	2018-10-23	1859	25	1
	3	2019-08-17	7292	25	1

```
4 2019-01-06
                         4344
                                 25
In [17]:
         time.head()
Out[17]:
                      date
                                                                  msg
        0 2013-12-15 00:50:00
                                                  ищу на сегодня мужика 37
        1 2014-04-29 23:40:00 ПАРЕНЬ БИ ИЩЕТ ДРУГА СЕЙЧАС!! СМС ММС 0955532826
        2 2012-12-30 00:21:00
                                        Днепр.м 43 позн.с д/ж *.о 067.16.34.576
        3 2014-11-28 00:31:00
                            КИЕВ ИЩУ Д/Ж ДО 45 МНЕ СЕЙЧАС СКУЧНО 093 629 9...
        4 2013-10-26 23:11:00
                                  Зая я тебя никогда не обижу люблю тебя!) Даше
In [18]:
         print(date.info())
         print(time.info())
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 4 columns):
         # Column Non-Null Count Dtype
                         _____
         ___ ___
         0 date 1000 non-null object
            product id 1000 non-null int64
         2 city_id 1000 non-null int64
3 orders 1000 non-null int64
         3 orders
                        1000 non-null int64
        dtypes: int64(3), object(1)
        memory usage: 31.4+ KB
        None
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 2 columns):
         # Column Non-Null Count Dtype
         --- ----- ------
            date 1000 non-null object
         1 msq
                  1000 non-null object
        dtypes: object(2)
        memory usage: 15.8+ KB
        None
        Working with dates
In [19]:
         # Converting to datetime datatype
         date['date'] = pd.to datetime(date['date'])
In [20]:
         date.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 4 columns):
         # Column Non-Null Count Dtype
                        1000 non-null datetime64[ns]
```

date product_id city_id orders

1 product_id 1000 non-null int64 2 city_id 1000 non-null int64

```
3
              orders
                          1000 non-null
         dtypes: datetime64[ns](1), int64(3)
         memory usage: 31.4 KB
In [21]:
          #Extract year----
         date['date year'] = date['date'].dt.year
          #Extract month----
         date['date month no'] = date['date'].dt.month
          #Extract month name----
         date['date month name'] = date['date'].dt.month name()
          #Extract day----
         date['date day'] = date['date'].dt.day
          #Extract day of week----
         date['date dow'] = date['date'].dt.dayofweek
          #Extract day name----
         date['date dow name'] = date['date'].dt.day name()
          #Extract date is weekend?----
         date['date is weekend'] = np.where(date['date dow name'].isin(['Sunday', 'Saturday']), 1,(
          #Extract date week----
         date['date week'] = date['date'].dt.week
          #Extract quarter---
         date['quarter'] = date['date'].dt.quarter
          #Extract semester----
         date['semester'] = np.where(date['quarter'].isin([1,2]), 1, 2)
         C:\Users\HP\AppData\Local\Temp/ipykernel 75188/3985301858.py:23: FutureWarning: Series.dt.
         weekofyear and Series.dt.week have been deprecated. Please use Series.dt.isocalendar().we
         ek instead.
           date['date week'] = date['date'].dt.week
In [22]:
         date.drop(columns=['product_id','city_id','orders']).head()
Out[22]:
            date date_year date_month_no date_month_name date_day date_dow date_dow_name date_is_weekend
           2019-
                                    12
                                                                                                  0
                     2019
                                              December
                                                            10
                                                                      1
                                                                               Tuesday
           12-10
           2018-
                     2018
                                     8
                                                August
                                                            15
                                                                      2
                                                                            Wednesday
                                                                                                  0
           08-15
```

Working with Times

2018

2019

2019

10

8

1

2018-

10-23

2019-

08-17

2019-

01-06

In [23]: import datetime

October

August

January

23

17

6

1

5

6

Tuesday

Saturday

Sunday

0

1

1

```
today = datetime.datetime.today()
         today
        datetime.datetime(2023, 1, 29, 23, 41, 23, 626953)
Out[23]:
In [24]:
         today - date['date']
             1146 days 23:41:23.626953
Out[24]:
             1628 days 23:41:23.626953
        2
              1559 days 23:41:23.626953
        3
              1261 days 23:41:23.626953
              1484 days 23:41:23.626953
             1574 days 23:41:23.626953
        995
             1515 days 23:41:23.626953
        996
        997
             1363 days 23:41:23.626953
        998
             1428 days 23:41:23.626953
        999
             1202 days 23:41:23.626953
        Name: date, Length: 1000, dtype: timedelta64[ns]
In [25]:
         (today - date['date']).dt.days
               1146
Out[25]:
        1
               1628
        2
               1559
        3
               1261
               1484
               . . .
        995
              1574
               1515
        996
        997
               1363
        998
               1428
        999
               1202
        Name: date, Length: 1000, dtype: int64
In [26]:
         # Months passed
         np.round((today -date['date']) / np.timedelta64(1, 'M'),0)
               38.0
Out[26]:
        1
               54.0
        2
               51.0
        3
               41.0
         4
               49.0
               . . .
               52.0
        995
        996
               50.0
        997
               45.0
        998
               47.0
               40.0
        999
        Name: date, Length: 1000, dtype: float64
In [27]:
         time.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 2 columns):
            Column Non-Null Count Dtype
         --- ----- ------
```

date 1000 non-null object

0

```
1
                        1000 non-null
               msg
                                          object
         dtypes: object(2)
         memory usage: 15.8+ KB
In [28]:
           # Converting to datetime datatype
          time['date'] = pd.to datetime(time['date'])
In [29]:
          time['hour'] = time['date'].dt.hour
          time['min'] = time['date'].dt.minute
          time['sec'] = time['date'].dt.second
          time.head()
Out[29]:
                        date
                                                                          msg hour min sec
          0 2013-12-15 00:50:00
                                                        ищу на сегодня мужика 37
                                                                                      50
                                                                                           0
          1 2014-04-29 23:40:00 ПАРЕНЬ БИ ИЩЕТ ДРУГА СЕЙЧАС!! CMC MMC 0955532826
                                                                                      40
                                                                                           0
          2 2012-12-30 00:21:00
                                             Днепр.м 43 позн.с д/ж *.о 067.16.34.576
                                                                                      21
                                                                                           0
          3 2014-11-28 00:31:00
                               КИЕВ ИЩУ Д/Ж ДО 45 МНЕ СЕЙЧАС СКУЧНО 093 629 9...
                                                                                      31
                                                                                           0
          4 2013-10-26 23:11:00
                                      Зая я тебя никогда не обижу люблю тебя!) Даше
                                                                                      11
                                                                                           0
In [30]:
          #Extract time part
          time['time'] = time['date'].dt.time
          time.head()
Out[30]:
                         date
                                                                                                 time
                                                                          msg hour min sec
         0 2013-12-15 00:50:00
                                                                                           0 00:50:00
                                                        ищу на сегодня мужика 37
                                                                                      50
          1 2014-04-29 23:40:00 ПАРЕНЬ БИ ИЩЕТ ДРУГА СЕЙЧАС!! CMC MMC 0955532826
                                                                                           0 23:40:00
                                                                                 23
                                                                                      40
          2 2012-12-30 00:21:00
                                             Днепр.м 43 позн.с д/ж *.о 067.16.34.576
                                                                                      21
                                                                                           0 00:21:00
          3 2014-11-28 00:31:00
                               КИЕВ ИЩУ Д/Ж ДО 45 МНЕ СЕЙЧАС СКУЧНО 093 629 9...
                                                                                  0
                                                                                      31
                                                                                           0 00:31:00
          4 2013-10-26 23:11:00
                                      Зая я тебя никогда не обижу люблю тебя!) Даше
                                                                                 23
                                                                                           0 23:11:00
                                                                                      11
In [31]:
          #Time diff.
          today - time['date']
              3332 days 22:51:23.626953
Out[31]:
         1
                3197 days 00:01:23.626953
         2
                3682 days 23:20:23.626953
                2984 days 23:10:23.626953
          3
                3382 days 00:30:23.626953
                             . . .
         995
               3971 days 22:51:23.626953
          996
               3293 days 00:27:23.626953
                3758 days 00:04:23.626953
         997
         998
                3874 days 00:07:23.626953
                3146 days 00:16:23.626953
         Name: date, Length: 1000, dtype: timedelta64[ns]
In [32]:
           # in seconds
           (today - time['date'])/np.timedelta64(1,'s')
```

```
Out[32]: 0
               2.879671e+08
               2.762209e+08
        2
              3.182088e+08
        3
               2.579010e+08
               2.922066e+08
                   . . .
        995
              3.431767e+08
        996
             2.845168e+08
        997
              3.246915e+08
              3.347140e+08
        998
        999 2.718154e+08
        Name: date, Length: 1000, dtype: float64
In [33]:
         # in hours
         (today - time['date'])/np.timedelta64(1,'h')
Out[33]: 0
            79990.856563
               76728.023230
        2
               88391.339896
        3
               71639.173230
               81168.506563
        995
             95326.856563
        996
             79032.456563
        997
              90192.073230
        998
             92976.123230
        999
              75504.273230
        Name: date, Length: 1000, dtype: float64
In [ ]:
```