

1 Valuation fields 1

2 Ultra-metric spaces 2

1 Valuation fields

Definition 1.1. Let **k** be a field. An *absolute value* on **k** is a function $\|\cdot\|$: $\mathbf{k} \to \mathbb{R}_{\geq 0}$ satisfying the following properties for all $x, y \in \mathbf{k}$:

- (a) ||x|| = 0 if and only if x = 0;
- (b) $||xy|| = ||x|| \cdot ||y||$;
- (c) $||x + y|| \le ||x|| + ||y||$.

A field **k** equipped with an absolute value $\|\cdot\|$ is called a *valuation field*.

Remark 1.2. Let **k** be a field. Recall that a valuation on **k** is a function $v: \mathbf{k}^{\times} \to \mathbb{R}$ such that

- $\forall x, y \in \mathbf{k}^{\times}, v(xy) = v(x) + v(y)$;
- $\forall x, y \in \mathbf{k}^{\times}, v(x+y) \ge \min\{v(x), v(y)\}.$

We can extend v to the whole field \mathbf{k} by defining $v(0) = +\infty$. Fix a real number $\varepsilon \in (0, 1)$. Then v induces an absolute value $|\cdot|_v : \mathbf{k} \to \mathbb{R}_+$ defined by $|x|_v = \varepsilon^{v(x)}$ for each $x \in \mathbf{k}$.

In some literature, the valuation v is called an *additive valuation* and the induced absolute value $|\cdot|_v$ is called a *multiplicative valuation*. In this note, the term *valuation* always refers to the additive valuation.

Definition 1.3. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field. We say that \mathbf{k} is *complete* if the metric $d(x, y) := \|x - y\|$ makes \mathbf{k} a complete metric space.

Lemma 1.4. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field. Let $(\hat{\mathbf{k}}, \|\cdot\|)$ be its completion as a metric space. Then the operations of addition and multiplication on \mathbf{k} can be extended to $\hat{\mathbf{k}}$ uniquely, making $(\hat{\mathbf{k}}, \|\cdot\|)$ a complete valuation field containing \mathbf{k} as a dense subfield.

Definition 1.5. A valuation field $(\mathbf{k}, \|\cdot\|)$ is called *spherically complete* if every decreasing sequence of closed balls in \mathbf{k} has a non-empty intersection.

Date: October 30, 2025, Author: Tianle Yang, My Homepage

2 Ultra-metric spaces

Definition 2.1. A metric space (X, d) is called an *ultra-metric space* if its metric d satisfies the strong triangle inequality:

$$d(x, z) \le \max\{d(x, y), d(y, z)\}, \quad \forall x, y, z \in X.$$

Proposition 2.2. Let (X, d) be an ultra-metric space. Then for any $x \in X$ and r > 0, the closed ball $B(x,r) := \{y \in X : d(x,y) \le r\}$ satisfies the following properties:

- (a) For any $y \in B(x,r)$, we have B(x,r) = B(y,r).
- (b) Any two closed balls in X are either disjoint or one is contained in the other.

Yang: To be revised.

We will use B(x,r) to denote the open ball with center x and radius r. We will use E(x,r) to denote the closed ball with center x and radius r.

Proposition 2.3. Let (X, d) be an ultra-metric space. Then X is totally disconnected, i.e., the only connected subsets of X are the singletons. Yang: To be revised.