CHAPTER 2 Solutions of ODES

I Inhaduchoù

. Any system of ours (any order) can be written as a system of first order about

$$\frac{dy}{dx} = f(x, y)$$
 where f is a vector

$$\frac{dY^{\epsilon}}{dx} = f(x, Y)$$
For $i=1...N$

Note: even an eigenvalue problem come be constinto this form by setting $A = V_j$ $\frac{dV_k}{dx} = 0$

. There are typically two kinds of pordaems

- + initial value problems (by suitable change of variable, the system are at one point can be cost into a firm where $Y_i(0) = y_i$ are known $Y_i(0)$
 - + two point boundary value problems

 -) given an interval [a, b], there is at least one boundary condition are each boundary.
- o In the first case, the appointment be able to predict qualitatively the behavior of Y as x > 00 and alternot to minimize the error between two 2 numerical solution
- . In the second case the algorithm must be able to find solutions that approximately satisfy both sets of boundary conditions and attempt to numerical solution.

Initial value problems

II Inhodution
The basis for the numerical solution of all ODES is the Taylor expansion:

$$Y(x_0+h) = Y(x_0) + h \frac{dy}{dx} \Big|_{x_0} + \frac{h^2}{a} \frac{d^2y}{dx^2} \Big|_{x_0} + \dots$$

$$= Y(x_0) + h \frac{dy}{dx} \Big|_{x_0} + o(h^2)$$

is to advance a solution known a point xo to a point x+h it suffices to know the derivative at x

This is the idea behind Euler's explicit alpointhm:

Given a mesh x_n Given a set of ones $\frac{dy}{dx} = f(x,y)$ with iv y(x) = y,

 $\begin{cases} y(x_i) = y_i \\ do n = 1, nmax \\ y(x_n) = y(x_n) + (x_{n+1} - x_n)f(x_n, y(x_n)) \end{cases}$ then

Note: . the increment to Y (xn) depends only on the value of Y at Xn

- . the algorithm would be exact if Ya) was Linear
- The error comitted between the live and agroximate solution is, for one step, o(h2)
 - => the error over it steps (for a change ou) in Δx) is o(h). = Globally, Euler's method is 1st order accorde

I. a A better algorithm

- . Euler's explicit method has poor accuracy properties
- . To improve it, we may consider calculating instad

$$\frac{dV}{dx} \cong \frac{Y(x_{n+1}) - Y(x_n)}{(x_{n+1} - x_n)} \simeq \frac{1}{2} \left[f(x_n, Y(x_n)) + f(x_{n+1}, Y(x_{n+1})) + f(x_{n+1}, Y$$

approximation over the two endpoints of $\frac{dy}{dx}$, actually of the iteration.

exact somewherbetween xn and xn+1

it can be shown that the local ener thus committed is O(N3) so the accumulation of 1 steps yields a global error o(h2) - much better.

Problem: this is now an implicit formula for Y(XnH) (appears both on LHS or RHS)

either f is a linear function, in which come it is actually possible to solve for the Unear system

repuires a matrix

$$Y(x_{n+1}) - \frac{\Delta x}{\delta} f(x_{n+1}, Y(x_{n+1}))$$

$$= Y(x_n) + \frac{\Delta x}{\delta} f(x_n, Y(x_n))$$

$$= Trapicul formula.$$

or, f is a nonlinear function, in which case thus cannot be done

However, we may cheat by evaluating an approximation to Y(xn+1) using Fuler's explicit method, then retining the before industry and worked alpruthm

Euler's modified Algorithm

•
$$Y(x_i) = y_i$$

. do n = 1, nmax

 $Y(x_n)+k_1$ approximates $Y(x_{n+1})$

$$k_1 = (x_{n+1} - x_n) f(x_n, Y(x_n))$$

$$k_z = (x_{n+1} - x_n) f(x_{n+1}, y(x_n) + k_i)$$

to (xn+1-xn) f(xn+1, Y(xn+1))

Note: . Euler's modefied algorithm is a special case of a and -order Runga Kutta Method.

Runge Kutta methods are based on the idea that the the denuctive can be approximated by a weighted average of the function f(x, y) at selected points in the interval $(x_n, x_{n+1}]$

(of Mean blue Thesen)

II-3 Raupe Kutta algorithms

1) let's my to generalize the method to consider alporthims of the kind

where
$$S_{k_1} = S_{k_1} + C_{k_1} + C_{k_2}$$
 (here $S_{k_1} = S_{k_1} + C_{k_2}$)
$$S_{k_2} = S_{k_3} + C_{k_1} + C_{k_2} + C_{k_3} + C_{k_4}$$

$$S_{k_2} = S_{k_3} + C_{k_4} + C_{k_4} + C_{k_4} + C_{k_5}$$

$$S_{k_4} = S_{k_4} + C_{k_4} + C_{k_4} + C_{k_5} + C_{k_5}$$

$$S_{k_4} = S_{k_5} + C_{k_5} + C_{k_5} + C_{k_5} + C_{k_5}$$

$$S_{k_6} = S_{k_6} + C_{k_6} + C_{k_5} + C$$

first step is always the Euter explicit 810

C seumal stop is a dervative taken somewhere en interval [Xn, Xn,]

- how do we choose the coefficients a, b, x, B to minimize the error?

iet's write, un general:

$$y_{nH} = y_n + \Delta x \frac{\partial y}{\partial x} + \frac{\Delta x^2}{3} \frac{\partial^2 y}{\partial x^2} + o(\Delta x^3)$$

$$= y_n + \Delta x f(x_n, y_n) + \frac{\Delta x^2}{3} \frac{\partial}{\partial x} (f(x_n, y_n))$$

$$= y_n + \Delta x f(x_n, y_n) + \frac{\Delta x^2}{3} (\frac{\partial f}{\partial x} + f(x_n, y_n)) \frac{\partial f}{\partial y})_{(x_n, y_n)}$$

$$= y_n + \Delta x f(x_n, y_n) + \Delta x f(x_n + a\Delta x, y_n + \beta \Delta x f(x_n, y_n))$$

$$= y_n + \Delta x f(x_n, y_n) + \Delta x f(x_n, y_n)$$

$$= y_n + \Delta x f(x_n, y_n) + \Delta x f(x_n, y_n)$$

$$+ \Delta x \int a\Delta x \frac{\partial f}{\partial x} + \beta x f(x_n, y_n) \frac{\partial f}{\partial y}$$

$$= y_n + (\alpha + b) \Delta x f(x_n, y_n)$$

$$+ b\alpha \Delta x^2 \frac{\partial f}{\partial x} + b\beta \Delta x^2 f(x_n, y_n) \frac{\partial f}{\partial y}$$

=) these two are epuivalent and the order of the algorithm is $o(\Delta x^3)$ powerded

$$0+b=1 \qquad bx=\frac{1}{2} \qquad bp=\frac{1}{2}$$

 \Rightarrow 3 equations for 4 unknown \Rightarrow there is a which family of RK methods which have local error $o(\Delta x^2)$;

• $a = \frac{1}{a}$ $b = \frac{1}{a}$ a = 1 b = 1 is a possibility $a = \frac{1}{a}$ Euler's modified algorithm

= the midpoint alprithm

 $a = \frac{1}{4}$ $b = \frac{3}{4}$ $\alpha = \frac{2}{3}$ $\beta = \frac{2}{3}$

=> Heun's algorithm

If we generalize this to 4 steps, we olden the fourth-order RK mothers families.

The most famous is given by

Scaleulated from averaging stopes near all 4 points (0)

Note: This method repuires four evaluations of four step. However its convergence (accuracy) properties are far better than four single-step the method taken in \$\frac{\Delta}{4}\$ intervals

. The global error is now $o(4x^4)$. (wally $o(4x^5)$)

I.4 Stepsize control

. . Adaptative stepsizes are desirad if we want to optimize colculation -> put lots of "steps" when function varies quickly, v.few steps if it doesn't

. To do thus we must doorgen an automated way of chosing spasse

1 A " slow 2 derty way"

Idea: At each step, perform 2 calculations

— I long step $\Delta \times$ — a half steps $\Delta \times$

- usupare the results; is err < 6 mm then at next step, double Δx , is err > ϵ_{max} there at next step half sx

Problem: this advally repuires 11 evaluations of the function of per "step" Dx. is con intensive!

@ A "quick & nifty way"

Idea (From Fehlberg): (see Handout).

Compute a fifth order RK algorithm that takes 6 steps for which a recombination of the tems also gields a fouth order RK solution.

-> then an estimate of the error is given by

E(Ax) = | (4) (5) | = difference between 4th order estimate & pfth order commate

If $E(\Delta x)$ is too large than choose another, smaller Δx and repeat.

Note: Cash & Karp have referred the Fehlberg coefficients (see Numercal Reapes)