Семинар 2 — 17.01 0 - oyerva 0 Chourmbo Kau npo bepans $E[\hat{\Theta}(Z_n)] = \Theta$ Hecuera Enno conc $\lim_{n \to \infty} E[\hat{\theta}(z_n)] = \theta$ +cuenniomuz. $\hat{\Theta}(Z_n) \xrightarrow{P} \theta$ upu $n \to \infty$: $\lim_{n \to \infty} f[|\hat{\theta} - \theta| \le E] = 1 = > D[|\hat{\theta}|]$ Co chog mere to ome no rep-by 4 educiba: $P\{|X_n-Ex|>E\} \leq \frac{Dx}{s^2}$ P { | Xn-{x | < 2} а значим lim P { lê-01> 2} = 0 => D[ê] -0 $P\{\omega: \lim_{n \to \infty} x_n(\omega) = x(\omega)\} = 1$ $(Z_n) \xrightarrow{n.H.} \Theta$ ROYALD comos mell to comb $\mathbb{D}[\hat{\theta}^*(Z_n)] \leq \mathbb{D}[\hat{\theta}(Z_n)]$ Happerenubrocomo (kyzuka Hechecyénnocme) $\mathcal{L}(X_1, \theta) = f_{X_1}(x_1)$ (319 Hempepubliux) memog Pao-Rpamepa: О проверии неспецённость 1. empouse θ -uro mangonogosus $\mathcal{L}(x_1, \theta) = P\{x_1 = x_1\}$ 2. Haxogun vorapugun que npabgonogosus: $ln L(x_1, \Theta)$ 3. Hexogun rpouzhogryso no napau. Θ om $ln L(x_1, \theta) : \underline{\partial ln} L(x_1, \theta)$ 4. находии информацию Римера: $I_1(\theta) = E\left[\frac{\partial \ln L(x, \theta)}{\partial x}\right]^2$ 5. $I_n(\Theta) = n \cdot I_1(\Theta)$ 6. Haxogeen $DE\hat{\Theta}$] = $\frac{1}{I_n(\Theta)}$, no $\hat{\Theta}$ approximation npalgonogoδus $d(X_1,...,X_n,\Theta) = \prod_{j=1}^n P\{x_j = x_i\}$ (οδωματ c...) Выборка $X_1, ..., X_n$ соответствует распределению $R(0; \theta)$. Доказать, что $\theta = X_{(n)}$

1. Выборка
$$X_1, ..., X_n$$
есответствует распределению $R(0; \theta)$. Доказать, что $\theta = X_{(0)}$ является асимптотически несмещённой и состоятельной оценкой неизвестного параметра θ .

1. Выборка $X_1, ..., X_n$ есответствует распределению $R(0; \theta)$. Доказать, что $\theta = X_{(0)}$ является асимптотически несмещённой и состоятельной оценкой неизвестного параметра θ .

2. $Y_1 \sim P_1(0, \theta)$ $Y_2 \sim P_2(0, \theta)$ $Y_3 \sim P_3(0, \theta)$ $Y_4 \sim P_3(0, \theta)$ Y_4

 $F_{\times_{(n)}}(x) = f_{\times_{(n)}}(x) = ((F_{\times}(x))) =$

lim $E[\hat{\Theta}] = \lim_{n \to \infty} \frac{n \cdot \Theta}{n + 1} = \Theta \implies \text{acutummonumental Hecutewith the state of the superior of the$

Hero lim $P\{|X_{(n)}-\theta|\geq E\}=1$ - mpes. cocmos m.

 $P(|x-Ex|>\varepsilon) \le \frac{Dx}{\varepsilon^2} - \mu ep. Ue Sonwieba$

Samemun, rmo $P(|X_{(n)} - E_{\times}|> E) \leq \frac{D \times_{(n)}}{E^2}$ $= F \times_{(n)}^2 - (E_{\times_{(n)}})^2 = \frac{n \cdot \theta^2}{n+2} - \frac{n^2 \cdot \theta^2}{(n+1)^2} = \theta^2 \cdot n \left(\frac{(n+1)^2 - n(n+2)}{(n+1)^2(n+2)}\right) = \frac{\theta^2}{(n+1)^2}$

 $\sum_{X(n)} \left(\frac{1}{n!} + \sum_{x(n)}^{2} \frac{1}{n!} - \left(\frac{1}{n!} + \sum_{x(n)}^{2} \frac{1}{n!} - \frac{1}{n!} + \sum_{x(n)}^{2} \frac{1}{n!} + \sum_{$