PART I – Background and Properties

Four Parts of Cassandra Tutorial

- History and Background
- Installation
- Speed Contest Vs MongoDB
- Generate A Speed Layer

History and Background

- Apache Cassandra An open source, distributed /decentralized database, provides highly available service with no single point of failure.
- Notable Features:
 - Elastic scalability Cassandra is highly scalable; it allows to add more hardware to accommodate more customers and more data as per requirement.
 - Always on architecture Cassandra has no single point of failure and it is continuously available for business-critical applications that cannot afford a failure
 - Fast linear-scale performance Cassandra is linearly scalable. Therefore, it maintains a quick response time.
 - Flexible data storage Dynamically accommodate structured, semi-structured, and unstructured according to need.
 - **Easy data distribution** Cassandra provides the flexibility to distribute data where you need by replicating data across multiple data centers.
 - o **Transaction support** Cassandra supports properties like Atomicity, Consistency, Isolation, and Durability (ACID).
 - Fast writes run on cheap commodity hardware. It performs blazingly fast writes and can store hundreds of terabytes of data, without sacrificing the read efficiency.

Pros:

- It is scalable, fault-tolerant, and consistent.
- It is a column-oriented database.
- Its distribution design is based on Amazon's Dynamo and its data model on Google's Bigtable.
- Created at Facebook, it differs sharply from relational database management systems.
- Cassandra implements a Dynamo-style replication model with no single point of failure, but adds a more powerful "column family" data model.
- Cassandra is being used by some of the biggest companies such as Facebook, Twitter, Cisco, Rackspace, ebay, Twitter, Netflix, and more.

PART II – Installation

Cassandra Cloud Set Up Steps

Create google account

- Open https://cloud.google.com
- Sign up for free trial
- Create a project on the google cloud console
- Open "https://google.bitnami.com" and sign in with Google
- Create a virtual machine
- 1. Go to the URL https://bitnami.com/sign_in and login with your own google account:

- 2. a). Type in the name you want to name your Cassandra vm (Step 1)
 - b). Select Cassandra from the list of virtual machine instances (Step 2)
 - c). Select the google cloud project (project we just created) (Step 3)
 - d) Select create to create the project (Step 4)

3. The Cloud will give a default test cluster, you can also create your own clusters and name it as your personal need:

New Project

4. Enable APIs and Services as following steps:

5. Once logged in accept the license agreement. Follow the image step below:

- 6. Multiple node cluster:
 - 1). Go to the bitnami console using "https://google.bitnami.com

- 2). Sign in and select virtual machines from the top right of the screen
- 3). Select the cassandra virtual machine you have setup and the screen below will show up\

- 6. In the online console, follow these steps:
 - 1). Download the personal key from Bitnami.
 - 2). Open local terminal, change permission to public by type in: chmod 600 bitnami-google-cassandra-speed-layer.pem.
 - 3). Run: ssh -i bitnami-google-cassandra-speed-layer.pem
 - 4). Connect to cluster:

cqlsh -u cassandra 23.251.158.183 -p N4pKBV8AjKiU

5). You can change password to yours:

cqlsh> ALTER USER cassandra with PASSWORD 'NEWPASSWORD';

6). Restart, all set!

Get connected to the FileZilla (To upload local files to the server with SFTP.)

- Download and install FileZilla, link: https://filezilla-project.org/
- Launch FileZilla and use the "Edit -> Settings" command to bring up FileZilla's configuration settings.

• Use the "Add keyfile" command to select the private key file for the server:

- Use the "File -> Site Manager -> New Site" command to bring up the FileZilla Site Manager.
- Enter your server host name and specify *bitnami* as the user name.
- Select "SFTP" as the protocol and "Ask for password" as the logon type.
- Use the "Connect" button to connect to the server and begin an SFTP session. You might need to accept the server key, by clicking "Yes" or "OK" to proceed.

Generate Speed Views

Nodes and Clusters

- Every node is a peer
- Ring structure (not master/slave)
- Tokens and hashing

• Elastic scaling (remove or add node from (to) runnung cluster, upgrade when it's running, ...)

Writes (what happens within each node)

- Data is first written to a commit log for durability. Your data is safe in Cassandra
- Then written to a memtable in memory
- Once the memtable becomes full, it is flushed to an SSTable (sorted strings table)
- Writes are atomic at the row level; all columns are written or updated, or none are. RDBMS-styled transactions are not supported

Cassandra is known for being the fastest database in the industry where write operations are concerned.

Consistency

- Every node acts as a coordinator
- Tunable consistency levels
- Strong consistence (R + W > N)
- Eventually consistence (R + W < N)

Cassandra Data Model

- Query language (CQL) looks like SQL
- Data model is tabular (like relational database)
 - o Tall, but narrow (6-10 columns)
 - \circ Scalable \rightarrow can keep millions or billions of rows
- Differences:
 - o Cassandra do not do JOIN tables
 - O Denormalize a lot (at scale we do not JOIN, it slows the read down)
 - o Keyspace is namespace (container) for tables

Cassandra Keys

- Record ID:
 - o Primary key:
 - o Uuid:
 - surrogate primary key
 - > why not just integer?
- Keys:

- o Primary keys uniquely identify rows (like RB)
- o Each key has 2 parts:
 - ➤ Partition key: group of rows in the table is guaranteed is located in the same node
 - > Clustering key: provide ordering to the rows in the table
- You need to put a column in a key so that it can participate in the query

Connected to Clusters:

```
auth provider = PlainTextAuthProvider(username='cassandra',
                                                              password='R7vCBagL84yB')
contact points = ['35.227.48.63', '35.227.96.7', '35.196.169.200']
cluster = Cluster(
    contact_points=contact_points , auth_provider=auth_provider,
     load_balancing_policy= TokenAwarePolicy(DCAwareRoundRobinPolicy(local_dc='us-eastl')),
     default retry policy = RetryPolicy()
# connect to the cluster
session = cluster.connect()
cassandraprojectbigdata@bitnami-cassandra-dm-6397:~$ /opt/bitnami/cassandra/bin/nodetool status
Datacenter: us-east1
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens
UN 35.227.96.7 335.85 KiB 256
UN 35.227.48.63 337.57 KiB 256
UN 35.196.169.200 351.14 KiB 256
                                       Owns
                                             Host ID
                                                                                 Rack
                                               68b11949-7590-42f9-ab71-3cc831c25ce0
                                                                                  b
                                               d72d7f76-6707-4598-b917-47af85156910
                                               47b9fd66-98c5-45e9-9aac-b389a5f4accf
Note: Non-system keyspaces don't have the same replication settings, effective ownership information is meaningles
```

To Create Tables:

cassandra@cqlsh> select * from demo.movies_by_actor;				
actor	release_year	movie_id	genres	rating title
Tom Hanks	2016	d69fba92-3546-40cb-b7b2-8493017053ca	{'biography', 'drama'}	7.5 Sully
Tom Hanks		09e25d48-6a87-4df8-979f-9f5dda016d45		7.6 Bridge of Spies
Tom Hanks		f235b199-0880-448f-9015-5a25ea7671f7		8.8 Forrest Gump
Emma Stone	2016	7e12c85b-e57d-4f77-96fc-9fb1e0277aba	{'drama', 'romance'}	8.1 La La Land

Speed Test: Cassandra vs MongoDB

- According to the Cassandra website (Apache, 2016): "Cassandra consistently outperforms popular NoSQL alternatives in benchmarks and real applications"
- Datastax (Datastax, 2017): "For mixed operational and analytic workloads typical to modern Web, Mobile and IOT applications, Cassandra performed six times faster than HBase and 195 times faster than MongoDB."

Test: Cassandra vs MongoDB - Procedure

- Cassandra and MongoDB node (one each) set up on Google Cloud Platform
- Three trials: In each, create 1000 pretend movies (fictitious films that have the same fields as that from the movie database) and insert them into the respective database.
- Trials differ in the amount of times we repeat the process (1, 100, 1000).
- Statistics collected displaying the time (in seconds)
 - Total time for # of inserts
 - Average time for # of inserts

Speed Test: Cassandra vs MongoDB – Procedure

- Cassandra and MongoDB node (one each) set up on Google Cloud Platform
- Two trials: Create and insert 100 or 1000 movies.
- Statistics collected displaying the time (in seconds)
- Each also had some specific tests (1 movie insert for MongoDB, adding movies by actor for Cassandra; see GitHub for full results)

References:

- 1. Apache, 2016. http://cassandra.apache.org/
- 2. Datastax, 2017. https://www.datastax.com/apache-cassandra-leads-nosql-benchmark
- 3. Arunkumar U, June 2017. https://medium.com/@arun_74827/what-is-apache-cassandra-what-are-the-features-of-it-a4b26b860d07
- 4. Bitnami Docs, https://docs.bitnami.com/google/infrastructure/cassandra/#description