In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
1 df=pd.read_csv(r"C:\Users\91955\Downloads\loan1.csv")
2 df
```

Out[2]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [3]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Home Owner	10 non-null	object
1	Marital Status	10 non-null	object
2	Annual Income	10 non-null	int64
3	Defaulted Borrower	10 non-null	object

dtypes: int64(1), object(3)
memory usage: 448.0+ bytes

```
In [4]:
```

```
1 df['Marital Status'].value_counts()
```

Out[4]:

Marital Status Single 4 Married 4 Divorced 2

Name: count, dtype: int64

In [5]:

```
1 df['Annual Income'].value_counts()
```

Out[5]:

```
Annual Income
125
       1
100
       1
70
       1
120
       1
95
       1
60
220
       1
85
       1
75
       1
90
```

Name: count, dtype: int64

In [6]:

```
convert={'Marital Status':{"Single":1,"Married":2,"Divorced":3}}
df=df.replace(convert)
df
```

Out[6]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	1	125	No
1	No	2	100	No
2	No	1	70	No
3	Yes	2	120	No
4	No	3	95	Yes
5	No	2	60	No
6	Yes	3	220	No
7	No	1	85	Yes
8	No	2	75	No
9	No	1	90	Yes

```
In [7]:
```

```
convert={'Home Owner':{"Yes":1,"No":2}}
df=df.replace(convert)
df
```

Out[7]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	No
1	2	2	100	No
2	2	1	70	No
3	1	2	120	No
4	2	3	95	Yes
5	2	2	60	No
6	1	3	220	No
7	2	1	85	Yes
8	2	2	75	No
9	2	1	90	Yes

In [11]:

```
1 x=["Home Owner","Marital Status","Annual Income"]
2 y=["Yes","No"]
3 all_inputs=df[x]
4 all_classes=df["Defaulted Borrower"]
```

In [18]:

```
1 (x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.
```

In [19]:

```
1 clf=DecisionTreeClassifier(random_state=0)
```

In [20]:

```
1 clf.fit(x_train,y_train)
```

Out[20]:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
```

In [17]:

```
1 score=clf.score(x_test,y_test)
2 print(score)
```

0.625