이 기흙의 압밀

7.1 개설

- 흙은 구조물하중이나 성토하중을 받으면 체적이 감소하면서 압축이 발생.
- 흙 입자와 물은 하중에 대한 체적의 감소가 극히 작아 비압축성으로 볼 수 있어, 압축은 간극을 차지하고 있는 공기의 압축이나 간극수(pore water)가 빠져나가면서 발생.
- 지표면에 하중을 받아 발생하는 수직변형을 침하(settlement).
- 침하는 세 가지 성분

$$S_t = S_i + S_c + S_s \tag{7.1}$$

 S_t : 전체 침하(total settlement), S_i : 즉시 침하, S_c : 1차압밀침하,

 S_{s} : 2차압밀침하.

- 즉시침하(immediate settlement): 하중을 받은 즉시 발생하는 침하. 투수계수가 큰 사질토 등 조립토에서 발생. 즉시침하는 탄성침하(elastic settlement)라고도 하며, 탄성론으로 부터 유도한 공식을 이용하여 침하량 계산.
- 1차압밀침하(primary consolidation settlement): 포화된 흙에서 간극수가 흘러 나오면서 오랜 시간에 걸쳐 흙이 압축되며 나타나는 침하. 투수계수가 작은 점성토에서 발생하며 시간 의존적인 침하.

• 2차압밀침하(secondary consolidation settlement) : 과잉간극수압 소산 이후 지속작용 하중에 의하여 발생하는 침하.

경년효과(aging) 등으로 인한 흙 구조의 소성변화에 의하여 발생.

해안가에 대단위의 면적을 조성하기 위하여 사용하는 준설토(dredged soil)나 유기질 흙(organic soil)에서 많이 발생.

점토의 경우 즉시침하량은 수mm~수cm, 압밀침하량은 수m 이상으로 발생.

7.2 압밀 개념모델

- 과잉간극수압(excessive pore water pressure) : 포화되어 있는 흙에 하중이 가해져 그 하중에 의해 발생한 간극수압. 흙의 내부에 과잉간극수압이 발생하면 이를 해소하기 위하여 간극수압이 높은 지점으로부터 낮은 지점으로 물이 빠져나가게 되는데 점토의 경우 투수계수가 낮아 오랜 시간이 소요.
- 압밀(consolidation): 포화된 간극으로부터 오랜 시간 동안 물이 흘러나오면서 흙이 천천히 압축되는 현상.
- Terzaghi의 스프링 용기 모델
 - Terzaghi는 얇은 판에 작은 구멍을 뚫고 스프링을 달아 상부에서 하중을 가함.
 - 얇은 판 하부의 스프링이 있는 공간은 물로 포화되어 있으며 스프링은 흙을, 물은 간극수를 모사.
 - 판과 판 사이에는 마노메터를 달아 각 판 사이의 과잉간극수압 측정.

그림 7.2 Terzaghi의 스프링 용기 모델

초기에 판자의 구멍을 모두 막은 상태에서 용기 상단에 하중 $(\Delta \sigma)$ 을 가하면 스프링은 압축되지 않고 물이 모든 하중을 받아 초기과잉간극수압 (u_{σ}) 은 다음과 같다.

$$u_o = \Delta \sigma = \gamma_w h \tag{7.2}$$

h : 초기 마노메터에 나타난 압력수두 높이, γ_w : 물의 단위중량.

■ Kelvin 모델

- 포화된 점토의 시간의존적인 변형은 탄성 스프 링과 완충기(dashpot)를 병렬로 연결한 Kelvin모형 으로도 설명할 수 있다. 여기서 완충기는 포화된 흙속의 물을, 스프링은 흙입자를 나타낸다.

스프링과 완충기의 응력-변형률 관계:

스프링 : $\sigma = k \epsilon$ (7.1)

그림 7-3 Kelvin 모델

완충기 :
$$\sigma=\eta\,\frac{d\epsilon}{dt}$$
 (7.2)
$$\sigma=\, {\rm e}\, {\rm$$

이 모델에 가해진 응력 σ_o 에 대한 점탄성 거동은 다음 식과 같다.

$$\sigma_o = k \; \epsilon + \eta \, \frac{d\epsilon}{dt} \tag{7.3}$$

t=0일 때 σ_o 가 작용하고, 임의의 시간 t에서 미분방정식은

$$\epsilon = \frac{\sigma_o}{k} \left(1 - e^{-(k/\eta)t} \right) \tag{7.5}$$

임의 시간 t에서 스프링과 완충기가 분담하는 응력 :

스프링 :
$$\sigma_s = k \epsilon = \sigma_o (1 - e^{-(k/\eta)t})$$
 (7.6)

완충기 :
$$\sigma_d = \eta \frac{d\epsilon}{dt} = \sigma_o e^{-(k/\eta)t}$$
 (7.7)

- 응력 σ_o 의 시간에 따른 스프링과 완충기가 분담변화

t = 0에서 전응력은 완충기가 모두 부담하지만,

시간이 지나면서 완충기가 부담하는 하중은 감소하고 스프링이 부담하는 하중이 증가하여, 궁극적으로는 모든 하중을 스프링이 부담하게 된다.

그림 7-4 Keivin 모델의 응력-시간 관계

(b) 스프링

7.3 Terzaghi의 1차원압밀

7.3.1 1차원압밀방정식의 유도

Terzaghi(1943)의 압밀이론 가정:

- (1) 흙은 균질(homogeneous)하고 완전히 포화(saturated)되어 있다.
- (2) 흙입자와 물의 압축성은 무시할 만하다.
- (3) 흙입자 사이의 물의 이동은 Darcy 법칙을 만족하며 압밀기간 동안 투수계수는 일정하다.
 - (4) 간극수의 흐름은 1차원의 연직방향으로만 발생한다.
 - (5) 간국비(e)는 유효응력(σ')에 반비례한다. 즉 압밀토층의 유효응력이 증가하면 간국비는 감소한다.

그림 7.3 압밀방정식의 유도를 위한 흙의 미소요소

이 요소에서 물의 유출입은 오직 깊이 z방향으로만 이루어진다. z방향으로 물의 유출 량에서 유입량을 빼면 이는 미소점토 부피 내에서 부피변화.

$$(v_z + \frac{\partial v_z}{\partial z}dz)dxdy - v_z dxdy = \frac{\partial V}{\partial t}$$
(7.3)

식의 $v_z dx dy$ 항을 제거하고 정리하면

$$\frac{\partial v_z}{\partial z} dz dx dy = \frac{\partial V}{\partial t} \tag{7.4}$$

깊이방향으로의 흐름에 대한 Darcy 법칙은 다음과 같이 표현된다.

$$v_z = ki = k \frac{\partial h}{\partial z} = \frac{k}{\gamma_w} \frac{\partial u}{\partial z} \tag{7.5}$$

식 7.5를 식 7.4에 대입하여 정리하면

$$\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{1}{dx dy dz} \frac{\partial V}{\partial t} \tag{7.6}$$

흙입자는 비압축성이므로 흙의 부피변화율은 간극부피변화율과 같다. 따라서

$$\frac{\partial V}{\partial t} = \frac{\partial V_V}{\partial t} = V_s \frac{\partial e}{\partial t}
= \frac{V}{1+e} \frac{\partial e}{\partial t} = \frac{dxdydz}{1+e} \frac{\partial e}{\partial t}$$
(7.7)

식 7.7을 식 7.6에 대입하면 식 7.8과 같다.

$$\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{1}{1+e} \frac{\partial e}{\partial t} \tag{7.8}$$

가정 5로부터 $\partial e=-a_v\partial\sigma'$ 이며 a_v 는 압축계수(coefficient of compressibility)이다(그림 7.9a 참조). 이를 식 7.8에 적용하면

$$\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{-a_v}{1+e} \frac{\partial \sigma'}{\partial t} \tag{7.9}$$

 $\sigma' = \sigma - u($ 유효응력법칙)을 이용하면

$$\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{-a_v}{1+e} \frac{\partial (\sigma - u)}{\partial t}$$
(7.10)

여기서 전응력 σ 은 시간변화의 함수가 아니므로 제거하면

$$\frac{k}{\gamma_{vv}} \frac{\partial^2 u}{\partial z^2} = \frac{a_v}{1+e} \frac{\partial u}{\partial t} = m_v \frac{\partial u}{\partial t} \tag{7.11}$$

 $m_v = rac{a_v}{1+e_o}, \quad m_v$ 는 체적압축계수(coefficient of volumetric compressibility).

상수 k,m_v,γ_w 를 $C_v(=\frac{k}{m_v\gamma_w})$ 로 묶어 재정리하면 1차압밀의 기본 미분방정식 :

$$\frac{\partial u}{\partial t} = \frac{k}{m_v \gamma_w} \frac{\partial^2 u}{\partial z^2} \tag{7.12}$$

$$\frac{\partial u}{\partial t} = C_v \frac{\partial^2 u}{\partial z^2} \tag{7.13}$$

 $C_v(=rac{k}{m_v\gamma_w})$: 압밀계수(coefficient of consolidation). 그 차원은 $[L^2T^{-1}]$

투수계수,
$$k = C_v m_v \gamma_w$$
 (7.14)

그림 2-7 흙입자의 부피 $V_s=1$ 일 때 흙요소의 3가지 성분 , 간극비-압

7.3.2 1차원압밀방정식의 해

$$\frac{\partial u}{\partial t} = C_v \frac{\partial^2 u}{\partial z^2} :$$

간극수압 u: 시간 t의 1차도함수, 깊이 z의 2차도함수 두께가 2H인 얇은 점토층이 모래층 사이에 끼어 있고, 간극수압의 분포는 깊이에 대하여 일정한 경우(그림 7.4a)의 해 :

- H는 점토층의 두께가 아닌 배수거리.
- 점토층 상하 양면에 모래층이 있어서 물이 양쪽으로 배수되는 양면배수의 경우 $(그림 \ 7-17(a))에는 점토층 두께 \ H_o의 \ 1/2이 배수거리이고(즉 \ H=\frac{H_o}{2}),$
- 점토층 한쪽에만 모래층이 있어서 물이 한쪽으로만 배수되는 일면배수의 경우 (그림 7-17(b))에는 점토층 두께가 배수거리가 된다(즉 $H=H_o$).

그림 7-17 배수거리

그림 7.4 압밀되는 점토의 경계조건과 배수거리

$$u = \sum_{m=0}^{\infty} \frac{2u_i}{M} sin(\frac{Mz}{H}) e^{-M^2T}$$
 (7.17)

 $M = \frac{(2m+1)\pi}{2}$ 이며 m은 정수, T는 시간계수(time factor), H = 배수거리(distance of drainage)이며,

z = 점토층 상부면으로부터의 거리.

시간계수 T는 무차워(dimensionless) 계수.

$$T = \frac{C_v t}{H^2} \tag{7.18}$$

t: 압밀소요시간.

압밀소요시간 t는 압밀층 두께의 제곱에 비례.

7.3.3 압밀도

 $u=\sum_{m=0}^{\infty}rac{2\,u_{\,i}}{M}sin(rac{Mz}{H})\,\,e^{-\,M^2T}$: 임의 시간 t에 임의 깊이 z에서의 과잉간극수압의 크기.

— 압밀도(degree of consolidation) : 과잉간극수압이 감소한 비율 또는 그 결과 압밀침하가 일어 난 비율. 임의 시간에 임의 깊이에서의 압밀도 U_z :

$$U_z = \frac{\text{소실된 과잉간극수압}}{\text{초기 과잉간극수압}} = \frac{u_i - u}{u_i} = 1 - \frac{u}{u_i}$$
 (7.19)

여기서, u_i = 초기 과잉간극수압 u = 남아 있는 과잉간극수압

식 (7.17)을 식 (7.19)에 대입하면 압밀도 U_z 는 다음 식과 같이 된다.

$$U_z = 1 - \sum_{m=0}^{m=\infty} \frac{2}{M} \sin \frac{Mz}{H} e^{-M^2T}$$
 (7.20)

- 양면배수 조건의 점토층에서의 압밀도 U_z 를 구하기 위하여 식 (7.20)을 직접 사용하는 것은 매우 복잡하므로, 이 식을 도표화한 그림 7.5 사용.
- 그림에서 z는 점토층 상부로부터의 거리.
- 점토층 상부에만 모래층이 있는 일면배수의 경우에는 그림 7.5의 상반부 사용.
- 점토층 하부에만 모래층이 있는 일면배수의 경우에는 그림 7.5의 하반부 사용.

그림 7.5 깊이에 따른 압밀도, U와 시간계수, T 사이의 관계

예제 7.1

다음 그림에 보인 바와 같은 지표면에 $50kN/m^2$ 의 등분포하중을 받는 지반이 있다. 지표면으로부터 4m 하부에 두께 4m의 점토층이 존재한다고 할 때 다음에 답하시오.

- 1) 하중작용 1년 후 시간계수와 깊이 -5m, -6m, -7m에서의 압밀도를 계산하여라.
- 2) 1) 번과 같은 조건에서 과잉간극수압을 계산하여라.
- 3) 1), 2) 번과 같은 조건에서 유효연직응력을 계산하고 그 분포를 깊이에 대하여 도시하여라.

그림 7.6 예제 7.1

풀 이

1) 그림의 점토층의 압밀배수조건은 양면배수이므로 점토층의 배수거리 H=4/2=2m이다. 하중재하 1년 후의 시간계수는 식 7.18로부터

$$T = \frac{C_v t}{H^2} = \frac{5 \times 10^{-4} \times 3600 \times 24 \times 365}{200^2} = 0.39$$

각 깊이에 대응하는 T=0.39에 대한 압밀도를 그림 7.5에서 찾으면

$$z=4$$
m $z/H=0.0$ $U_z=100\%$
 $z=5$ m $z/H=0.5$ $U_z=64\%$
 $z=6$ m $z/H=1.0$ $U_z=51\%$
 $z=7$ m $z/H=1.5$ $U_z=64\%$ 이다.

2) 과잉간국수압을 계산하기 위한 초기과잉간국수압은 $u_o = 50 \, {\rm kN/m}^2$ 이다. 식 7.16으로부터,

$$U_z = 1 - \frac{u}{u_i}, \ \frac{u}{u_i} = 1 - U_z, \ u = u_i (1 - U_z)$$

 $u_z = u_o (1 - U_z)$ 로 수정하여 각 깊이별 과잉간극수압을 계산한다.

$$\begin{split} z = & 4\text{m}, & z/H = & 0.0 & u_{z=4m} = u_o (1 - U_{z=4m}) = & 50 \times (1 - 1.0) = 0 \text{kN/m}^2 \\ z = & 5\text{m}, & z/H = & 0.5 & u_{z=5m} = u_o (1 - U_{z=5m}) = & 50 \times (1 - 0.64) = 18 \text{kN/m}^2 \\ z = & 6\text{m}, & z/H = & 1.0 & u_{z=6m} = u_o (1 - U_{z=6m}) = & 50 \times (1 - 0.51) = 24.5 \text{kN/m}^2 \\ z = & 7\text{m}, & z/H = & 1.5 & u_{z=7m} = u_o (1 - U_{z=7m}) = & 50 \times (1 - 0.64) = 18 \text{kN/m}^2 \end{split}$$

3) 유효응력은 초기유효응력을 계산한 후 간국수압이 소산되어 추가되는 유효응력을 계산한다. 경계면 z=-4m, -8m에서의 초기유효응력은

$$z = -4\text{m},$$
 $\sigma'_{z=4m} = \gamma'_{sand}z = 8 \times 4 = 32\text{kNm}^2$
 $z = -8\text{m},$ $\sigma'_{z=8m} = \sigma'_{z=4m} + \gamma'_{day}z = 32 + 7 \times 4 = 60\text{kN/m}^2$

히중재하 1년 후의 유효응력 = 초기유효응력+추가유효응력이므로

$$z = 5 \text{m} \qquad z/H = 0.5 \qquad \sigma'_{z=5m} = \underbrace{(32 + 7(=7*1)) + (50 - 18)}_{=39 + 32 = 61 \text{kV/m}^2}$$

$$z = 6 \text{m} \qquad z/H = 1.0 \qquad \sigma'_{z=6m} = \underbrace{(32 + 14(=7*2))}_{=50 + 12} + \underbrace{(50 - 24.5)}_{=53 + 32 = 85 \text{kV/m}^2}$$

$$z = 7 \text{m} \qquad z/H = 1.5 \qquad \sigma'_{z=7m} = \underbrace{(32 + 21(=7*3))}_{=50 + 12} + \underbrace{(50 - 18)}_{=53 + 32 = 85 \text{kV/m}^2}$$

경계면인 z=-4m, -8m에서의 유효응력은

초기유효응력 1), 2)에 추가유효응력이 된 상재하중 50kN/m²을 더하면, 각각 (32+50) = 82kN/m², (60+50) = 110kN/m².

7.3.4 평균압밀도

그림 7.5는 어느 시간 t에서 임의 지층 깊이 z에서 과잉간극수압을 나타냄.

- 점토층 전체에 대한 평균압밀도(average degree of consolidation, \overline{U}) :

$$\overline{U} = \frac{U_i - U}{U_i} = 1 - \frac{U}{U_i} = 1 - \frac{\int_0^{2H} u dz}{\int_0^{2H} u_o dz}$$
(7.21)

U: 점토층 전체 소실된 과잉간국수압의 합, U_i : 점토층 전체 초기과잉간국수압의 합.

$$\overline{U} = 1 - \sum_{m=0}^{\infty} \frac{2}{M} e^{-M^2 T}$$
(7.22)

시간계수와 평균압밀도와의 관계:

그림 7.7 평균압밀도 \overline{U} 와 시간계수 T와의 관계

압밀도 \overline{U} =53%에 해당하는 시간계수는 0.2이므로, 이를 기준으로 두 식의 사용 여부를 결정할 수도 있다.

$$0 < \overline{U} \le 54\% : T = \frac{\pi}{4} \left[\frac{\overline{U}(\%)}{100} \right]^2$$
 (7.23a)

$$54\% < \overline{U} < 100\% : T = 1.781 - 0.933 \{ \log [100 - \overline{U}(\%)] \}$$
 (7.23b)

평균압밀도는 최종침하량을 기준으로 하여 다음 식과 같이 구할 수도 있다.

$$\overline{U} = \frac{S_t}{S_a} \tag{7.24}$$

 S_{t} : 임의 시간에서의 점토층 압밀침하량,

 S_c : 최종시간 $(t=\infty)$ 에서 점토층 압밀침하량(전압밀침하량).

예제 7.2

T=0.6에서의 z/H=0.1, 0.5에서의 압밀도 U와 점토층 전체 평균압밀도 \overline{U} 를 구하여라.

풀 이

T=0.6에서의 z/H=0.1, 0.5에서의 압밀도는 그림 7.5로부터 구하면 다음과 같다.

z/H=0.1 $U_{z=0.1H}$ =0.9 ; z/H= 0.5 $U_{z=0.5H}$ =0.8

T=0.6에서의 점토층 전체 평균압밀도는 그림 7.7로 부터 구하면 \overline{U} =0.82이다.

예제 7.3

두께 4m이고 압밀계수 $C_n = 0.002 \text{cm}^2/\text{sec}$ 인 점토층의 평균압밀도 50%, 90%에 해당하는 압밀소요시간을

다음의 배수조건에 대하여 계산하여라.

- 1) 양면배수 시
- 2) 일면배수 시

풀 이

압밀도 50%, 90%에 해당하는 시간계수는 그림 7.7의 도표에 의하면 각각 T=0.197, 0.848이다.

1) 양면배수 시 : 압밀도 50%
$$t=\frac{T_{50}H^2}{C_v}=\frac{0.197\times 200^2}{0.002}=3,940,000\sec=45.6$$
일 압밀도 90% $t=\frac{T_{90}H^2}{C_v}=\frac{0.848\times 200^2}{0.002}=16,960,000\sec=196$ 일

2) 일면배수 시 : 압밀도 50%
$$t=\frac{T_{50}H^2}{C_v}=\frac{0.197\times 400^2}{0.002}=15,760,000 \mathrm{sec}=182.4$$
일 압밀도 90% $t=\frac{T_{90}H^2}{C_v}=\frac{0.848\times 400^2}{0.002}=67,840,000 \mathrm{sec}=784$ 일

위의 관계로부터 압밀소요시간은 배수거리의 제곱에 비례함을 알 수 있다.

예제 7.4

예제 7.1의 점토층에 대하여 1년 후 평균압밀도를 다음과 같이 계산하여라.

- 1) 평균압밀도 도표 7.6 이용
- 2) 평균압밀도 계산 식 7.21a, 7.21b 이용

풀 이

- 1) 하중재하 1년 후의 시간계수 T=0.39이었으므로 이에 상응한 평균압밀도는 그림 7.7로부터 \overline{U} =0.68이 다
- 2) 시간계수 T=0.39에 대해서는 식 7.23b를 사용

$$T = 1.781 - 0.933\log(100 - \overline{U}) = 0.39$$

 $100 - \overline{U} = 30.96\% \rightarrow \overline{U} = 69\% \text{ or}.$

7.4 압밀시험

7.4.1 시험장치

- 압밀시험은 압밀시험기(consolidometer 또는 oedometer)를 이용.
- 압밀시험장치는 직경 6cm, 높이 2cm의 Oedometer와 하중재하장치, 변위측정장치.
- 표준압밀시험의 순서
- (1) 초기하중 0.05kg/cm²을 24시간 재하하고. 시료의 압축량을 다이얼게이지로 측정.
- (2) 이후 처음 가한 하중의 2배(0.1kg/cm²)를 가하여 시간간격 15, 30초, 1, 2, 4, 8, 15, 30분, 1, 2, 4, 8, 24시간 간격으로 압축량을 기록.
- (3) 하중을 0.2, 0.4, 0.8, 1.6, 3.2, 6.4kg/cm²로 2배씩 늘려가며 각 단계마다 24시

간씩 2) 항의 방법으로 재하하고 압축량을 기록.

- (4) 최종단계의 하중에 의한 압밀이 끝나면 6.4, 3.2, 1.6, 0.8, 0.05kg/cm²로 제하(unloading)하면서 각 변형량을 측정한다. 이후 하중을 다시 재재하(reloading)하면서 압축량을 측정.
- (5) 시험 후 시료의 건조단위중량을 측정.

압밀시험 결과에 의한 가해지는 하중에 대한 점성토의 침하량, 각 하중별 압밀시간자 료로부터 간극비와 하중의 관계, 압밀계수와 하중의 관계, 압축지수 등을 알 수 있다.

그림 7.8 압밀시험장치

7.4.2 간극비-압력곡선

간극비-압력 $(e-\log\sigma')$ 곡선을 정규그래프(regular graph)와 반대수지(semi-log graph)로 작성.

- bc의 직선적으로 변하는 부분 : 과거 받았던 적이 없었던 압력을 처음으로 받을 때의 $e-\log\sigma'$ 곡선으로 처녀압축곡선(virgin compression curve), 직선부분의 기울기를 압축지수(C_c)라고 한다.
- 이후 cd-de(압력제하-재재하) 부분은 과거에 받았던 압력을 다시 받을 때까지의 완만한 경사의 곡선으로 재압축곡선(re-compression curve).
- 재압축곡선의 기울기(C_r)는 압밀시험 초기에 가한 압력에 대한 간극비 곡선(\overline{ab})의 기울기와 매우 유사 함.
- 재압축곡선에 의하면 압밀곡선은 과거에 받았던 압력을 다시 받을 때까지는 곡선의 경사가 완만하게 유지되나 어떤 압력을 넘으면 그 경사가 급격히 변하는 것을 알 수 있는데(그림 7.9의 d, e, f 점) 이 경사변화의 경계가 되는 점 e의 압력을 선행압밀압력 (pre-consolidation pressure, σ_c)이라고 한다.

그림 7.9 간극비-압력곡선

예제 7.5

불교란 점토의 압밀시험 결과 다음과 같은 값을 얻었다. 시험 전의 공시체 두께 H=2cm, 공시체의 노건조중 량 $W_s=37.7g$, 공시체의 단면적 $A=19.62cm^2$, 흙입자의 비중 $G_s=2.65$ 이었다.

재하(loading)		
최대침하량 d (×10 ⁻² mm)		
0		
18		
45		
81		
126		
247		
405		

제하(unloading)		
$\sigma'(\text{kg/cm}^2)$	최대침하량 d(×10 ⁻² mm)	
3.2	400	
1.6	394	
0.8	375	
0.4	366	
0.2	344	
0	292	

- 1) $e \log \sigma$ 곡선을 그리고 압축지수(C_c)와 재압축지수(C_r)를 계산하여라.
- 2) $\sigma=5.0$ kg/cm²에서 6.0kg/cm²으로 유효응력증가를 받을 때 압밀계수 a_v , 체적압축계수 m_v 를 구하여라.

해)

문제의 표에 침하량 d를 넣어가며 작성한 표와 그래프는 다음과 같다.

σ	d	е	σ	d	е
(kg/cm ²)	(cm)		(kg/cm ²)	(cm)	
0	0	1.76	3.2	0.400	1.21
0.2	0.018	1.73	1.6	0.394	1.22
0.4	0.045	1.70	0.8	0.375	1.24
0.8	0.081	1.65	0.4	0.366	1.25
1.6	0.126	1.58	0.2	0.344	1.28
3.2	0.247	1.42			
6.4	0.405	1.20			

그림 7.10 예제 7.5 간극비-압력곡선

재하응력 $1.6~kg/cm^2 \sim 3.2~kg/cm^2$ 구간에서 압축지수(C_c)를 계산하면

$$Cc = -\frac{e_{1}-e_{2}}{\log(\frac{\sigma'_{1}}{\sigma'_{2}})} = -\frac{1.58-1.42}{\log(\frac{1.8}{3.2})} = -0.16/(-0.30) = 0.53$$

제하응력 $3.2~kg/cm^2 \sim 0.8kg/cm^2$ 구간에서 재압축지수(C,)를 계산하면,

$$\operatorname{Cr} = -\frac{e_{1-}e_{2}}{\log(\frac{\sigma_{1}^{'}}{\sigma_{2}^{'}})} = -\frac{1.21 - 1.24}{\log(\frac{3.2}{0.8})} = 0.03/0.602 = 0.05$$

2) σ =5.0kg/cm²에서 e= 1.3 이고, σ =6.0kg/cm²에서 e = 1.22이다. 식 7.8과 식 7.11을 참조하여 압축계수와 체적 압축계수를 계산하면

$$a_v = -\frac{\partial e}{\partial \sigma^{'}} = -(1.22 - 1.3)/1 = 0.08 \, cm^2/kg$$

$$m_v = \frac{a_v}{1+e_0} \, = \, 0.08/(1+1.76) = 0.03 \, cm^2/kg$$

7.4.3 정규압밀점토와 과압밀점토

- 1) 과압밀비와 선행압밀압력의 결정
- 정규압밀점토(normally consolidated clay, N.C. clay) :

점토가 퇴적된 후 지층이나 지하수위의 변화가 없었다면 임의 깊이 흙 요소에서의 유효연직응력 (σ_o') 은 그 깊이에서 채취된 시료의 압밀곡선으로부터 얻어진 선행압밀압력 (σ_o') 과 동일하게 되며, 이와 같은 응력상태 $(\stackrel{\sim}{\neg}, \sigma_o')$ 에 있는 흙 .

- 과압밀점토(overconsolidated clay, O.C. clay):

지표층의 토층이 일부 제거되었거나 또는 지하수위가 저하되었다가 회복된 경우에는 임의 깊이 흙요소는 원래 퇴적된 당시의 압력이나 지하수가 최대로 저하될 당시의 유효 응력이 선행압밀압력이 된다. 이때는 선행압밀압력($\sigma_c^{'}$)이 압밀시험이 수행된 현재의 유효연직응력($\sigma_c^{'}$)보다 크게 되는데 $\sigma_c^{'} > \sigma_o^{'}$ 인 경우 점토를 말 함.

③ 과압밀비(OCR: Over Consolidation Ratio)

$$OCR = \frac{P_c}{P_o}$$

여기서, P_e : 선행압밀하중

P。: 유효상재하중(유효연직응력)

⑦ OCR <1: 압밀이 진행 중인 점토(그림에서 A점)

ሁ OCR = 1 : 정규압밀점토(그림에서 B점)

© OCR >1: 과압밀점토(그림에서 C점)

- 과압밀비(over consolidation ratio, OCR) : 유효연직압력(σ'_o)에 대한 선행압밀압력 (σ'_o) 의 비, 토층의 응력이력(stress history)을 나타내는 토질정수이다.

$$OCR = \frac{\sigma_c'}{\sigma_o'} \tag{7.25}$$

OCR≈ 1이면 정규압밀점토, OCR>1이면 과압밀점토,

OCR<1이면 미압밀점토(underconsolidated clay)로 분류.

- 과압밀점토 : 현재 유효상재압보다 큰 압력으로 과거에 이미 압밀이 일어난 점토.
- 미압밀점토(underconsolidated clay) : 지층의 형성된 연대가 오래되지 않거나 인공 적으로 최근에 조성되어 현재 압밀이 진행 중인 점토.
- 그림 7.9의 ab, cd, de는 과압밀점토, bc는 정규압밀점토 상태. 대부분의 흙은 정규압밀이나 과압밀상태의 특성을 가짐.

- 과압밀이 발생하는 원인 :

표 7.1 과압밀의 원인

원인	ପା
전응력의 변화(지질학적 요인, 인공굴착)	빙하의 퇴거, 토피하중이나 구조물 제거
간극수압의 변화(지하수위 변화)	피압수압, 우물의 양수, 식생에 의한 증발산, 건조에 의한 증발산(desiccation)
흙의 구조변화	2차압밀, 경년효과(aging)
환경의 변화	온도, 염분농도, 흙이나 지하수의 pH 등
화학적 변화	고결물질(cementing agent)의 침전, 이온교환

Casagrande는 $e - \log p$ 곡선으로부터 선행압밀압력을 구하는 작도법 제안.

- 1) 육안으로 곡률이 가장 큰 점 P를 찾는다.
- 2) 수평선 PQ를 그린다.
- 3) P점에서 접선 PR을 그린다.
- 4) ∠QPR을 이등분하는 선 PS를 그린다.
- 5) $e \log p$ 곡선의 직선부를 연장하여 PS선과 만나는 점 T를 그린다.
- 6) 점 T에 해당하는 유효압력이 선행압밀압력 p_c 이다.

그림 7-10 선행압밀압력 작도법

2) 압축지수

그림 7.9b와 같은 압밀곡선에서 선행압밀압력을 초과한 직선부의 기울기인 압축지수(compression index)는 식 7.26과 같이 표시한다.

$$C_c = \frac{e_1 - e_2}{\log \sigma'_2 - \log \sigma'_1} = -\frac{\Delta e}{\log \frac{\sigma'_2}{\sigma'_1}}$$

$$(7.26)$$

여기서 $\Delta e = e_2 - e_1$ 이다.

- 일반 점토의 압축지수 : 0.2~0.9
- 예민점토 : 1을 초과하며, 유기질 점토나 이탄(peat, Pt)은 4 이상.
- 선행압밀 이전의 압밀곡선에 대한 기울기도 결정가능 : 흙이 하중을 받은 후 제거되었다 다시 재하된 경우의 기울기(cd, de와 유사하며, 재압축지수(recompression index, C_r). 재압축지수 $C_r = (0.1 \sim 0.2)$ C_c

표 7.2 자연토의 압축지수와 재압축지수(Das, 2006)

<u>ँठ</u> रा	액성한계	소성한계	압축지수, C_c	재압축지수, C_r
Boston 푸른 점토	41	20	0.35	0.07
Chicago 점토	60	20	0.40	0.07
Ft. Gordon 점토, Georgia	51	26	0.12	_
New Orleans 점토	80	25	0.30	0.05
Montana 점토	60	28	0.21	0.05

- 압밀시험: 하중재하(loading)시험에 1주일 이상소요, 하중제하(unloading) 및 재재하(reloading)를 포함하면 최소 2주일 이상 시험기간 필요.
- 간단한 흙의 기본물성시험만으로 압축지수를 추정할 수 있는 경험식.

표 7.3 압축지수 C에 대한 상관식(Rendon-Herrero, 1980)

식	적용지역	참고문헌
$C_c = 0.007(LL - 7)$	재성형 점토	Skempton(1944)
$C_c = 0.0046(LL - 9)$	브라질 점토	
$C_c = 0.009(LL - 10)$	무기질 흙, 예민비 > 4	
$C_c = 1.15(e_0 - 0.27)$	모든 점토	Nishida(1956)
$C_{\!c} = 0.30 \left(e_0 - 0.27\right)$	무기질 흙 : 실트, 실트질 점토, 점토	Hough(1957)
$C_c = 0.0115 w_N$	유기질 흙 : 토탄, 유기질 실트, 점토	
$C_c = 0.001 w_N$	Chicago 점토	
$C_{\!c} = 0.75(e_0 - 0.5)$	낮은 소성을 가진 점토	
$C_c = 0.208e_0 + 0.0083$	Chicago 점토	
$C_c = 0.156e_0 + 0.0107$	모든 점토	

^{*} e_0 =현장간극비, w_N =현장함수비, LL :액성한계

- 액성한계(LL)를 기준으로 Terzaghi & Peck(1967)이 제안한 압축지수 식 :

교란 시료(disturbed sample) : $C_c = 0.007 (LL - 10)$ (7.27)

불교란 시료(undisturbed sample) : $C_c = 0.009 (LL - 10)$ (7.28)

7.4.4 시료교란의 영향

- 압밀시험은 현장특성을 잘 반영할 수있는 흐트러지지 않은 불교란시료(undisturbed sample)를 사용하는 것이 정확한 시험결과 산출에 좋다.
- 실제시료는 현장에서 채취하는 과정과 운반, 시험을 위해 트리밍(trimming)하는 과정 등 여러 경로에서 교란발생.
- 교란시료는 불교란 시료에 비하여 그래프의 경사가 완만한 곡선을 나타내고, 이 때 얻은 압축지수의 값은 작아진다. 즉 시료가 교란되면 교란될수록 그 기울기는 완만하고, 불교란 시료에 가까울수록 그 기울기는 직선에 가까운 꺾임형태를 나타낸다.

그림 7.12 불교란시료와 교란시료의 압밀곡선의 비교

- 정규압밀점토의 압밀시험 결과는 그림 7-13의 곡선 ①과 같다. 이것을 수정압밀곡 선(원시압축곡선) 또는 처녀압축곡선(virgin compression curve)이라고 한다.
- 실험실에서 정규압밀점토의 교란시료에 대하여 압밀시험을 하면 곡선 ②와 같다.
- 시료를 재성형하여 압밀시험을 하면 하중제거압축곡선(하중제거시의 팽창곡선, 곡선 3)과 같은 형태를 보인다.

(a)정규압밀점토의 수정압밀곡선

그림 7.13 현장압밀곡선의 추정(Schmertmann, 1953)

● Terzaghi와 Peck:

- 정규압밀점토의 원시압축곡선과 실내시험 곡선은 $0.4e_o(e_o=$ 시료의 현장 간극비)에 서 만나며, 그 점을 점 A라고 한다.
- 현재의 유효연직압력 p_o 와 e_o 를 나타내는 점을 B라고 하면, 점 A와 점 B를 연결한 선이 수정압밀곡선(원시압축곡선)이 된다.
- 과압밀점토에 대하여 현장상태에서 압밀시험을 하면, 그림 7-12의 곡선 1과 같다.
- 실험실에서 과압밀점토의 교란시료에 대하여 압밀시험을 하면 곡선 2와 같이 된다.
- 이 경우에는 점 B에서 팽창곡선 AC와 평행하게 직선을 그어,

선행압밀압력 p_c 선과 만나는 점 D점과 A점을 연결한 선 $(\overline{abcd}, \overline{e_0BDA})$ 이 실제 압 밀곡선(원시압축곡선)이 된다.

7.4.5 압밀계수의 산출

- 점토층의 압밀도나 압밀소요시간 구득 : 압밀계수, C_v 압밀계수를 구하는 방법 : logt법과 \sqrt{t} 법.

1) logt법

- 평균압밀도와 시간계수의 이론곡선(\overline{U} $\log T$)의 직선부분과 그 곡선의 점근선과의 교점이 압밀도 100%.
- 실측곡선 중간부분의 직선과 마지막부분의 직선을 연결하여 교차하는 점 : 1차압밀100%, d_{100} .

Casagrande and Fadum (1940)은 logt법의 압밀계수를 결정법.

그림 7.14 logt법에 의한 시간-압축량곡선의 작도

- (1) 압력 대 시료 변형량(다이얼게이지 변형량)을 반대수지에 작도.
- (2) $t_2 = 4t_1$ 되는 두 점 A, B의 변형량의 차이(Δ)를 A의 연직상부로 올려 C점 구함. C점에 대응하는 다이얼 게이지 량이 압축량 0인 점.
- (3) D점은 상하직선부의 교점, 1차압밀이 100% 완료되었을 때 변형량은 d_{100} .
- $(4) \ d_{50} = \frac{d_s + d_{100}}{2} \ \mbox{ol} \ \mbox{해당하는 압밀곡선상의 점을 E라 하면} \ ,$ 대응시간 t_{50} 는 압밀이 50% 완료된 시간.
- (5) \overline{U} =50%일 때 시간계수는 T=0.197이며, 압밀계수는 다음과 같다.

$$C_v = \frac{TH^2}{t} = \frac{0.197H^2}{t_{50}} \tag{7.27}$$

- 압밀도가 0인 점 a_s 는 초기 다이알 게이지 눈금을 나타내는 점 a_0 와 일치하지 않음. 이와 같은 차이는 흙속의 간극이 100% 포화되어 있지 않기 때문.
- 이러한 압축을 초기압축이라고 하며,
 a_s와 a₁₀₀ 사이의 압축을 1차압밀, 그 후의 압축을 2차압밀이라 함.

$2) \sqrt{t} \, \mathrm{d}$

 $-\overline{U}-\sqrt{T}$ 곡선의 $\overline{U}=60\%$ 까지 직선부 기울기의 1/1.15인 기울기. 그은 직선이 이론곡선과 만나는 점의 압밀도가 90%.

그림 7.15 √t 법에 의한 시간-압축량곡선의 작도

- (1) 초기 직선부 AB로부터 기울기 = AB/1.15 가 되게 AC를 작도. AC와 곡선부 교점 D는 d_{90} 이며 이에 상응한 x축은 $\sqrt{t_{90}}$.
- (2) 평균압밀도 $\overline{U} = 90\%$ 에 대한 시간계수 T = 0.848, 이 때 압밀계수는 다음과 같다.

$$C_v = \frac{0.848H^2}{t_{90}} \tag{7.28}$$

- (3) AD의 y축 투영값/0.9으로 d_{100} 결정.
- C_v 는 logt법에 의한 값이 \sqrt{t} 에 의해 구한 값보다 정규압밀범위에서 더 작아, logt법에 의하여 구한 C_v 값이 실제와 더 부합한다.

3) 압밀비

- 전체 침하량은 초기압축량, 1차압밀침하량, 2차압밀침하량을 합한 값. 전체 침하량에 대한 초기압축량, 1차압밀침하량, 2차압밀침하량의 비를 각각 초기압축비, 1차압밀비, 2차압밀비라고 하며, 다음 식과 같다.

초기압축비
$$\eta_0 = \frac{d_0 - d_s}{d_0 - d_f}$$
 (7.31)

1치압밀비(
$$\log t$$
 방법) $\eta_p = \frac{\mathrm{d_s} - \mathrm{d_{100}}}{\mathrm{d_0} - \mathrm{d_f}}$ (7.32)

1차압밀비(
$$\sqrt{t}$$
 방법) $\eta_p = \frac{10}{9} \frac{d_s - d_{90}}{d_0 - d_f}$ (7.33)

2차압밀비
$$\eta_s = 1 - (\eta_0 + \eta_p)$$
 (7.34)

예제 7.6

양면배수 압밀시험을 실시하여 하중증가 2~4kg/cm² 구간에서 다음과 같은 데이터를 얻었다.

시간(min)	누적침하량(mm)	시간(min)	누적침하량(mm)
0	0.0	15	1.25
1/4	0.34	30	1.65
1/2	0.38	60	1.96
1	0.44	120	2.11
2	0.58	240	2.23
4	0.75	480	2.25
8	0.89	1440	2.38

2.0kg/cm²의 하중으로 압밀완료 시 간극비는 1.43이고, 4.0kg/cm² 하중으로 압밀완료 시 간극비는 1.08이며 이때의 시료의 두께는 1.41cm이었다.

- 1) logt법과 √t 법으로 시간-압축량곡선을 구하고 압밀계수를 구하라.
- 2) 압밀시험하중 $2\sim 4 \log/\mathrm{cm}^2$ 구간에서 압축지수(C_c), 압축계수(a_v), 체적압축계수(m_v), 투수계수(k)의 값을 구하시오
- 3) 압밀시험 결과로부터 logt법과 \sqrt{t} 법으로 각각 초기압축비, 1차압밀비, 2차압밀비를 구하시오,

풀 이

1) 압력증가구간에서 시료두께의 평균값은 $1.41 + \frac{0.238}{2} = 1.53$

시료의 배수거리는
$$H=\frac{1.53}{2}=0.76$$
cm

logt법에 의한 시간-압축량곡선은 그림 7.14에 도시하였다.

여기에서
$$d_{50}=\frac{1}{2}(d_{100}-d_s)+d_s=\frac{1}{2}\left(2.02-0.23\right)+0.23=1.13\mathrm{mm},$$

$$d_{50} = \frac{d_s + d_{100}}{2} = \frac{0.23 + 2.02}{2} = 1.125 mm$$

이에 상응한 t_{50} =12min이다. 식 7.27로부터

$$c_v = \frac{TH^2}{t_{50}} = \frac{0.197 \times 0.76^2}{12 \times 60} = 1.58 \times 10^{-4} \text{cm}^2/\text{sec}$$

 \sqrt{t} 법에 의한 시간—압축량곡선은 그림 7.15b에 도시하였다. 그림으로부터 $\sqrt{t_{90}}$ =7.2, t_{90} =51.84min이다. 식 7.28로부터

$$c_v = \frac{TH^2}{t_{90}} = \frac{0.848 \times 0.76^2}{51.84 \times 60} = 1.57 \times 10^{-4} \text{cm}^2/\text{sec}$$

2) 압축지수 : 식 7.26으로부터

$$C_c \ = \frac{e_2 - e_1}{\log \sigma_2 / \log \sigma_1} = \ \frac{1.43 - 1.08}{\log_{10}(4/2)} = \frac{0.35}{0.30} = 1.17$$

압축계수 :
$$a_v = -\frac{\partial e}{\partial \sigma^{'}} = -\frac{1.08 - 1.43}{4 - 2} = 0.175 \mathrm{cm}^2/\mathrm{kg}$$

체적압축계수 : 식 7.11로부터

$$m_v = \frac{a_v}{1 + e_o} = \frac{0.175}{1 + 1.43} = 0.072 \text{cm}^2/\text{kg}$$

투수계수 : 식 7.14로부터

$$k = C_v m_v \gamma_w = 1.58 \times 10^{-4} \times 0.072 \times \frac{1}{1000} \times 1 = 1.14 \times 10^{-8} \text{cm/sec} \text{ ft}.$$

3) logt법과 \sqrt{t} 법으로 각각에 대해 계산하면

① logt법

초기압축비
$$\eta_0 = \frac{\mathsf{d}_0 - \mathsf{d}_\mathrm{s}}{\mathsf{d}_0 - \mathsf{d}_\mathrm{f}} = \frac{0 - 0.223}{0 - 2.4} = 0.096$$

1차압밀비(
$$\log t$$
 방법) $\eta_p = \frac{\mathrm{d_s} - \mathrm{d_{100}}}{\mathrm{d_0} - \mathrm{d_f}} = \frac{0.23 - 2.02}{0 - 2.4} = 0.746$

2차압밀비
$$\eta_s = 1 - (\eta_0 + \eta_p) = 1 - (0.096 + 0.746) = 0.158$$
 이다.

② \sqrt{t} 법

초기압축비
$$\eta_0 = \frac{d_0 - d_s}{d_0 - d_f} = \frac{0 - 0.2}{0 - 2.38} = 0.084$$

1차합밀비(
$$\sqrt{t}$$
 방법) $\eta_p = \frac{10}{9} \frac{\mathrm{d_s} - \mathrm{d_{90}}}{\mathrm{d_0} - \mathrm{d_f}} = \frac{10}{9} \frac{0.2 - 1.84}{0 - 2.38} = 0.69$

2차입밀비
$$\eta_s = 1 - (\eta_0 + \eta_p) = 1 - (0.084 + 0.69) = 0.226$$
 .

예제 7.7

어떤 현장의 점토에 대하여 양면배수조건에서 압밀시험을 실시한 결과 19 mm 두께의 시료에 $\overline{U}=30\%$ 의 1차 압밀에 5분이 소요되었다. 현장에 점토의 두께가 15 m라고 할 때 동일한 압밀이 발생하는 데 걸리는 시간을 다음 조건에 대하여 계산하여라.

- 1) 양면배수
- 2) 일면배수

풀 이

압밀시험에서 배수거리는, $H_{test} = \frac{19}{2}$ = 9.5mm

1) 양면배수조건에서 현장토의 배수거리는 $H_{\rm f}=\frac{15}{2}$ =7.5m : (211p) 식 7.18에 의하여 실험실시료와 현장 시료의 시간계수는 동일하므로

$$\begin{split} T &= \frac{c_v t_{test}}{H_{test}^2} = \frac{c_v t_f}{H_f^2} \\ t_f &= \frac{H_f^2 t_{test}}{H_{test}^2} = \frac{(750)^2 \times 5}{(0.95)^2 \times 60 \times 24 \times 365} = 5.93$$
년

2) 일면배수조건에서 현장토의 배수거리는 H_f =15 m

$$t_f = \frac{(1500)^2 \times 5}{(0.95)^2 \times 60 \times 24 \times 365} = 23.72$$
년

따라서 일면배수조건의 압밀소요시간은 양면배수조건에 비해 4배의 소요시간이 더 필요하다.

7.5 2차압밀

- 2차압밀(secondary compression, secondary consolidation) : 과잉간극수압이 소산되면서 발생하는 1차 압밀의 완료 후 경년 효과(aging)와 점토입자 재배열(rearrangement) 등의 요인에 의하여 장기간에 걸쳐 일어나는 압축현상. 2차압축계수 C_{α} :

$$C_{\alpha} = \frac{\Delta e}{\Delta \log t} = \frac{\Delta e}{\log t_2 - \log t_1} = \frac{\Delta e}{\log \frac{t_2}{t_1}}$$

$$(7.29)$$

$$\Delta e = e_2 - e_1$$

2차압축침하량 S_e:

$$S_s = \frac{\Delta e}{1 + e_p} H = \frac{C_\alpha}{1 + e_p} H \log \frac{t_2}{t_1}$$
 (7.30)

여기서, $e_{\scriptscriptstyle p}$: 1차압밀 종료 후의 간극비, $t_{\scriptscriptstyle 1}$: 1차압밀 또는 시공 종료시간,

 t_2 : 구조물의 수명, H: 압밀층의 두께.

그림 7.16 2차압밀과 2차압밀계수의 결정

- 2차압밀의 산정은 어렵다.

지반침하계측 분석 후 최종침하량을 추정하는 기법사용 예측방법 ⇒ 비교적 신뢰.

- 2차압축량의 크기 : 현장함수비, 압축지수, 소성지수, 유기질 함유량 등에 변화. Mesri(1973)는 자연함수비와 2차압축계수의 관계도시.
- 유기질 점토와 압축성이 큰 점토(예 : 준설점토) : 2차압축침하가 커 구조물 설계 및 시공 시 지반개량, 말뚝 등 깊은기초 사용.

그림 7.17 2차압밀침하와 자연함수비의 관계(Mesri, 1973)

7.6 1차압밀침하량 계산

<압밀침하량 계산의 기본워리>

$$(a) \Delta H = H - H_1$$

$$(b) \Delta H = \frac{\Delta V}{V_0} H$$

(b)
$$\Delta H = \frac{\Delta V}{V_0} H$$
 (c) $\Delta H = \frac{\Delta e}{1 + e_0} H$

(1)
$$\frac{S}{H} = \frac{\Delta e}{1+e}$$
 : $S = \frac{\Delta e}{1+e}H$ (A)

(2) 압축계수

$$a_v = -\frac{\Delta e}{\Delta \sigma'}, \quad \Delta e = -a_v \cdot \Delta \sigma'$$

이를식(1)에 대입하면

$$S = \frac{a_v}{1+e} H \Delta \sigma' \tag{B}$$

(3) 체적변화계수

$$m_v = \frac{a_v}{1+e}$$
이므로 : $S = M_v H \Delta \sigma'$ (C)

(4) 압축지수

$$C_c = \frac{\Delta e}{\Delta \log \sigma'}$$
 of $\Delta e = C_c \Delta \log \sigma'$

$$\begin{cases} C_c = \frac{e_1 - e_2}{\log \sigma_2^{'} - \log \sigma_1^{'}} = \frac{e_1 - e_2}{\log \left(\frac{\sigma_2^{'}}{\sigma_1^{'}}\right)} \\ \Leftrightarrow \text{ind} \ , \ \sigma_2^{'} = \sigma_1^{'} + \Delta \sigma \\ \Delta e = e_1 - e_2 = C_c \log \left(\frac{\sigma_1^{'} + \Delta \sigma}{\sigma_1^{'}}\right) \end{cases}$$

이를 식(A)에 대입

$$S = \frac{C_c}{1+e} H \log(\frac{\sigma_1' + \Delta \sigma}{\sigma_1'})$$
 (D)

- 흙이 수직방향으로만 침하한다고 할 때(1차압밀),
 두께 H인 점토층의 침하량 △H와의 관계는 그림 7.18로부터
 식 7.37와 같이 부피와 간극비의 관계로 유도.

1차압밀비(
$$\sqrt{t}$$
 방법) $r_p = \frac{10}{9} \frac{\mathrm{d_s} - \mathrm{d_{90}}}{\mathrm{d_0} - \mathrm{d_f}}$ (7.50)

그림 7.18 점토층의 침하량과 간극비 관계의 유도

$$\frac{\Delta H}{H} = \frac{\Delta V}{V} = -\frac{\Delta e}{1+e} \tag{7.37}$$

- 식 7.37의 첫 항과 셋째 항을 이용하여 정리하면, 1차압밀침하량 (S_e) 은 다음과 같다. 이 침하량 계산법 ⇒ 초기간극비 (e_0) 법.

$$S_c = \Delta H = -\frac{\Delta e}{1 + e_o} H \tag{7.38}$$

- 식 7.26의 $\Delta e = -C_c \log \frac{\sigma'_2}{\sigma'_1}$ 를 식 7.38에 대입 \Rightarrow

 $\sigma_c' < \sigma_o' + \Delta \sigma'$ 인 정규압밀점토에 대한 1차압밀침하량은 식 7.39와 같다.

이 침하량 계산법 ⇒ 압축지수(C_c)법(그림 7.19a 참조).

$$S_{c} = \frac{C_{c}}{1 + e_{o}} H \log \frac{\sigma'_{2}}{\sigma'_{1}} = \frac{C_{c}}{1 + e_{o}} H \log \frac{\sigma'_{o} + \Delta \sigma'}{\sigma'_{o}}$$
(7.39)

여기서 C_c : 압축지수, e_o : 초기간극비, $\sigma_o^{'}$: 점토층 중앙부 초기유효수직응력, $\Delta\sigma^{'}$: 점토층 중앙부 유효수직응력증가분.

(c) 과입밀점토($\sigma'_{o} < \sigma'_{c} < \sigma'_{o} + \Delta \sigma'$)

그림 7.19 정규압밀점토와 과압밀점토의 하중—침하량곡선 개요 $(\sigma'_o$: 현장유효응력; σ'_c : 선행압밀압력)

- $\Delta e = -a_v \Delta \sigma'$ 의 관계(식 7.8 참조)를 식 7.39에 대입 ⇒ 1차압밀침하량의 식은 식 7.40

$$S_c = \Delta H = \frac{a_v}{1 + e_o} H \ \Delta \sigma' \tag{7.40}$$

- 식 7.40에 체적압축계수 $m_v = \frac{a_v}{1+e_o}$ 의 관계 이용 \Rightarrow

1차압밀침하량은 식 7.41과 같다.

이 침하량 계산법 \Rightarrow 체적압축계수 (m_v) 법.

과압밀 영역에서는 m_v 의 분산 정도가 높아 오차가 많으나,

정규압밀 영역에서는 비교적 정도가 좋다.

$$S_c = \Delta H = m_v \ H \ \Delta \sigma' \tag{7.41}$$

 $-\sigma_o'+\Delta\sigma'<\sigma_c'$ 인 과압밀점토에 대한 1차압밀침하 \Rightarrow 압축지수 C_c 대신 재압축지수 C_r 을 이용하여 다음 식으로 계산(그림 7.19b).

$$S_c = \frac{C_r}{1 + e_0} H \log \frac{\sigma_o + \Delta \sigma'}{\sigma_o'}$$
 (7.42)

- $\sigma_o^{'}<\sigma_c^{'}<\sigma_o^{'}+\Delta\sigma^{'}$ 로 과압밀점토와 정규압밀점토 범위 모두 포함(그림 7.18c) \Rightarrow
- 현장토 유효수직압력 $(\sigma_{\alpha}^{'})$ 이 선행압밀압력 $(\sigma_{\alpha}^{'})$ 보다 작은범위 \Rightarrow 재압축지수 C_{α} 사용.
- 유효수직압력 $(\sigma_{o}^{'})$ 이 선행압밀압력 $(\sigma_{c}^{'})$ 보다 큰 범위 \Rightarrow 압축지수 C_{c} 사용.

$$S_c = \frac{C_r}{1 + e_o} H \log \frac{\sigma'_c}{\sigma'_o} + \frac{C_c}{1 + e_o} H \log \frac{\sigma'_o + \Delta \sigma'}{\sigma'_c}$$

$$(7.43)$$

- 수직압력증가량 $\Delta \sigma'$ 의 계산 :

점토층의 상부, 중앙, 하부에서 유효응력증가분을 Boussinesq 공식이나 도표(5.3.5, 5.3.7절 참조) 활용으로 구한 식 7.44 적용계산.

$$\Delta \sigma' = \frac{1}{6} (\Delta \sigma_u' + 4\Delta \sigma_m' + \Delta \sigma_l') \tag{7.38}$$

여기서 $\Delta \sigma_u'$, $\Delta \sigma_m'$, $\Delta \sigma_l'$ 은 상·중·하부의 유효응력증가분.

- 압밀층을 수개 층(4~6층 정도)으로 나눈 후 각 토층의 중간점(mid-point)에서 e_o , σ_o , σ_c , $\Delta \sigma'$, C_c , C_r 을 구하여 각각의 침하량계산 후 더하는 방법사용.

예제 7.8

다음 그림과 같이 상하 모래층 사이에 5m 두께의 점토층이 있는 지반이 있다. 지표에 상재하중 50keV/m^2 이 작용한다고 할 때 다음에 답하여라. 단 점토층의 간극비 e=1.6, 압축계수 $C_c=0.6$, 압밀계수 $C_v=4\times10^{-3} \text{cm}^2/\text{sec}$ 이다.

- 1) 최종침하량을 계산하여라.
- 2) 90% 압밀에 소요되는 시간은 얼마인가?

그림 7.20 예제 7.7

품 ㅇ

1) 점토층 중심부에서 연직응력 : σ'_0 =9×2+5×2.5=30.5kN/m² 최종침하량은 식 7.33으로 부터

$$S = \frac{C_C}{1+e} H \log_{10} \frac{\sigma' + \Delta \sigma'}{\sigma'} = \frac{0.6}{1+1.6} (5) \log_{10} \frac{30.5+50}{30.5} = 0.48 \text{ m}$$

2) 식 7.28을 변환하면
$$t_{90}=\frac{T_vH^2}{C_v}=\frac{0.848\times250^2}{4.0\times10^{-3}}=13,250,000\sec=153.4$$
 days

예제 7.9

다음 그림과 같이 모래층 사이에 10m의 점토층이 있는 지반이 있다. 지하수면은 원래 지표면에 위치하다가 4m 저하하였다. 점토층의 압축지수는 0.5, 간극비는 0.75, 압밀계수는 c_v = 4.0×10^{-4} cm²/sec이라고 할 때 다음에 답하시오.

- 1) 지하수 저하로 인한 최종침하량을 계산하여라.
- 2) 지하수 저하 후 1년이 경과하였을 때의 침하량을 계산하여라.

그림 7.21 예제 7.8

풀 이

1) 점토층 중심부에서 연직응력 : σ'_0 =19×5+15×5-9.81×10=71.9kWm² 지하수 4m 저하 시 증가하는 유효연직응력은 $\Delta\sigma'$ =- Δu =- $(-\gamma_w h_w)$ =9.81×4=39.2kWm²

$$S_c = \frac{C_C}{1+e} H \log_{10} \frac{{\sigma_o}' + \Delta \sigma'}{{\sigma_o}'} = \frac{0.5}{1+0.75} \times 10 \times \log_{10} \frac{71.9 + 39.2}{71.9} = 0.54 \, \mathrm{m}$$

2)
$$T_v = \frac{c_v t}{H^2} = \frac{4 \times 10^{-4} \times 365 \times 24 \times 60 \times 60}{500^2} = 0.05$$

그림 7.7에서 시간계수 0.05에 대한 평균압밀도는 24.5%이다.

$$S_{\overline{L}=25\%} = S \times 0.25 = 0.56 \times 0.25 = 0.14$$
 m = 14cm이다.

예제 7.10

아래 그림에 나타난 바와 같이 폭 B=10m의 줄기초에 50톤의 하중이 작용하고 있는 경우와 무한등분포하중 $q=5t/m^2$ 이 작용하는 경우의 최종침하량을 계산하여라. 지하수는 지표에 위치한다(기초가 있는 경우의 지중 응력분포는 2:1 분포법(식 5.27a 응용).

그림 7.22 예제 7.9

풀 이

점토층 중심에서의 유효연직응력 : $\sigma'_0 = 8 \times 2 + 4 \times 2.5 = 26$ kN/m²

1) 기초에 작용하는 하중으로 인한 점토층 중심에서의 추가응력:

$$\begin{split} & \Delta \sigma^{'}{}_{z} = \frac{qB}{(B+z)} = \frac{50 \times 10}{(10+4.5)} = 34.5 \text{kN/m}^{2} \\ & S_{c} = \frac{C_{C}}{1+e} \, H \, \log_{10} \frac{\sigma_{o}^{'} + \Delta \sigma^{'}}{\sigma_{o}^{'}} = \frac{0.8}{1+1.5} \times 5 \times \log_{10} \frac{26+34.5}{26} = 0.586 \, \text{m} = 58.6 \, \text{cm} \end{split}$$

2) 무한등분포하중 q=50kN/m²이 작용하는 경우 (점토층 표면에 B= $_\infty$ 로 작용하는 경우로 점토 중앙부에 작용하는 유효응력은 $\Delta\sigma'=50$ kN/m²)

$$S_c = \frac{C_C}{1+e} H \log_{10} \frac{\sigma_o^{\;\prime} + \Delta \sigma^\prime}{\sigma_o^{\;\prime}} = \frac{0.8}{1+1.5} \times 5 \times \log_{10} \frac{26+50}{26} = 0.745 \, \mathrm{m} = 74.5 \, \mathrm{cm}$$

예제 7.11

그림과 같은 4m 두께의 점토층의 지표면에 등분포상재하중 $40kN/m^2$ 이 작용하고 있다. 이 점토층 중앙에서 의 선행압밀응력이 $70kN/m^2$ 이라고 할 때 이 점토층의 압밀침하량을 구하라.

그림 7.23 예제 7.10

풀 6

점토층 중심부에서 연직응력 : σ'_0 =0.8×3.5+0.7×2=4.2t/m²이므로 선행압밀응력이 7t/m²까지는 과압밀영역이었다가 그 이상의 하중에 대해서는 정규압밀영역이다. 최종침하량은 식 7.37로부터 다음과 같이 구한다.

$$\begin{split} S_c &= \frac{C_r}{(1+e_o)} H \log \frac{\sigma^{'}{_c}}{\sigma^{'}{_o}} \; + \; \frac{C_c}{(1+e_o)} H \log \frac{\sigma^{'}{_o} + \Delta \sigma^{'}}{\sigma^{'}{_c}} \\ &= \frac{0.05}{1+1.5} (400) \; \log_{10}(\frac{70}{42}) + \frac{0.35}{1+1.5} (400) \; \log_{10}(\frac{42+40}{70}) = 1.77 + 3.85 = 5.62 \mathrm{cm} \end{split}$$

연|습|문|제

- 7.1 어떤 점토에 압밀실험을 하여 체적압축계수 $m_v = 4.0 \times 10^{-2} {
 m cm}^2/{
 m kg}$, 압밀계수 $C_v = 2.5 \times 10^{-2} {
 m cm}^2/{
 m sec}$ 를 얻었다. 이 점토의 투수계수를 구하여라.
- 7.2 양면배수 8m 두께의 점토층의 압밀계수가 $C_v = 0.008 \text{cm}^2/\text{sec}$ 이다. 압밀 개시 후 4개월 후의 압밀 침하량이 7cm라고 할 때 최종압밀침하량을 계산하여라.

- 7.3 양면배수된 5m 두께의 포화점토에 하중을 재하하여 200일 후에 90% 압밀도에 도달하였다. 점토의 압밀계수 C_n 를 계산하여라.
- 7.4 일면배수인 두께 4m의 점토층이 있다. 이 점토의 압축계수 $C_v = 1.8 \times 10^{-3} \text{cm}^2/\text{sec}$ 이라고 할 때 100일이 경과한 후의 이 점토층의 평균압밀도를 계산하여라.
- 7.5 3m 두께의 포화점토에 하중을 재하하여 나타나는 최종압밀침하량이 30cm라고 할 때 초기 10cm 의 침하가 발생하는 데 걸린 시간이 100일이라면 초기 5cm의 침하가 발생하는 데 소요되는 시간을 계산하여라.
- 7.6 예제 7.5에서 나타난 압밀 특성을 가진 점토층의 두께가 2m이고, 점토층의 중심에서 초기 5.0kg/cm²의 유효응력을 받고 있다고 한다. 상재하중으로 유효응력이 1.0kg/cm²늘면 압밀 침하 량은 얼마가 발생하는가?
- 7.7 압밀시험을 실시하여 하중증가 1~2kg/m² 구간에서 다음과 같은 데이터를 얻었다.

시료의 두께(mm)	누적침하량(mm)	시간(min)
12.20	0.0	0
12.14	0.05	1/4
12.10	0.10	1
12.07	0.13	2 _{1/4}
12.04	0.16	4
11.98	0.72	9
11.92	0.28	16
11.86	0.34	25
11.82	0.38	36
11.80	0.4	49
11.80	0.4	64

- 1) 이 흙의 압밀계수를 √t 법으로 구하라.
- 2) 10m 두께의 점성토가 일면배수조건으로 80% 압밀에 도달하는 시간은?
- 3) 시료의 간극비가 0.90에서 0.79로 변화되었다면 대상 시료의 투수계수는? (단 $a_v = 0.18cm^2/kg$)
- 7.8 점토시험의 압밀을 행하여, 하중강도 $1.6 {\rm kg/cm^2}$ 일 때의 압밀시간과 압밀침하량을 측정한 결과 다음 표의 결과를 얻었다. 이 값으로부터 \sqrt{t} , logt법에 의하여 압밀계수 C_v 를 구하라. 단, 시료의 두께는 $2 {\rm H} = 1.851$ 이다.

압축시간	다이얼게이지
0초	216.1
8초	218.3
15초	219.0
30초	221.4
1분	227.0
2분	240.0
4분	250.9
8분	268.4

압축시간	다이얼게이지
15분	292.1
30분	305.2
1시간	308.9
2시간	310.4
4시간	311.9
8시간	313.8
12시간	314.6
24시간	331.4

7.9 고속도로 건설을 위한 두께 2m의 성토를 점성토 위에 실시하였다. 점성토는 상부는 연약점토와

중간점토로, 하부는 밀한 사질토로 구성되었다. 아래 그림은 초기 및 성토의 흙의 단면도를 보이고 있다. 지하수위가 침하가 발생한 이후 원지반의 지표면에 있다고 가정하고 다음을 계산하여라.

- 그림 7.24 연습문제 7.9
- 1) 연약점토와 중간점토의 가운데 점에서의 $e-\log\sigma_z{'}$ 를 도시하여라. 각 도시한 도표에 $e_o,\,\sigma_{zo}{'},\,\sigma_v{'},\,e_f,\,\sigma_{zf}{'},\,\Delta e$ 를 표시하여라.
- 2) 각 점토단면의 중앙부에서 평균압밀계수를 이용하여 전체 침하량을 계산하여라.
- 3) 상부 점성토를 3등분하여 전체 침하량을 다시 계산하여라.
- $7.10~\Delta\sigma=60$ kN/m²의 균일하중이 다음과 같은 흙의 단면에 놓여 있다. 점토층 중간부의 변형이 점토 전체의 평균변형과 같다고 가정하고 다음을 계산하여라.
 - 1) 6.0kN/m² 하중에 의하여 1차압밀 후 나타나는 최종침하량을 계산하여라.
 - 2) 90% 1차압밀이 발생하는 시간은?
 - 3) 1차압밀 종료 후 30년 이후 발생할 전침하(1차 및 2차압밀의 합)를 계산하여라((1차 압밀 종료시간) $t_c = t_{90}$ 으로 가정).

그림 7.24 연습문제 7.10

7.11 간극수압계가 다음 흙단면 A점에 설치되었다. 200kPa의 균일하중이 작용하여 30일 후 간극수압

계의 간극수압은 u=174.6kPa이었다. 이때 지반의 침하량은 0.44m이었다(양면배수로 가정).

그림 7.26 연습문제 7.11

- 1) 균일하중 200kPa가 가해지기 전 측정된 간극수압은? 이때 과잉간극수압은 얼마인가?
- 2) 200kPa의 하중이 가해진 직후의 과잉간극수압계에 나타난 간극수압은 얼마인가?
- 3) 이 흙의 단면에서 30일에 상응하는 시간계수 T는 얼마인가?
- 4) 이 흙의 압밀계수 C_v 를 계산하여라.
- 5) 90% 압밀에 걸리는 시간을 계산하여라.
- 6) 1차압밀에 의하여 나타난 최종침하량을 계산하여라.

- 7.12 다음 그림에 보인 바와 같은 3m×3m 기초가 놓인 점토지반이 있다. 이 점토층의 포화단위중량이 18.4kN/m^3 이고 지하수면은 지표에 위치한다고 할 때 기초중심의 압밀침하량을 다음과 같이 층을 나누어 계산하여라.
 - 1) 한 층으로 점토층의 중심에서 계산
 - 2) 3개 층으로 나누어 계산
 - 3) 위의 계산으로 알 수 있는 사항을 설명하여라.

그림 7.27 연습문제 7.12

7.13 연습문제 7.12를 연직압력증가량 $\Delta \sigma'$ 의 계산을 점토층의 상부·중앙·하부에서 유효응력증가분을 영향계수도표(그림 5.11)로부터 구한 후 식 7.36을 이용하여 압밀침하량을 계산하여라.

참 고 문 헌

- 1. 권호진, 박준범, 송영우, 이영생(2008), 토질역학, 구미서관.
- 2. 김상규(1991), 토질역학, 동명사.
- 3. 한국지반공학회(2009), 구조물 기초기준해설.
- 4. Casagrande, A.(1936), "Determination of the Preconsolidation Load and its Practical Significance", *Proceedings of First International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Mass.*, Vol.3, pp.60–64.
- 5. Casagrande, A. and Fadum, R.E.(1940), Notes on Soil Testing for Engineering Purposes, Harvard University Graduate Engineering Publication No.8.
- 6. Craig, R.F.(1983) Soil Mechanics 3rd Edition, Van Nostrand Reinhold Co.
- 7. Das, B. M.(1990), Principles of Foundation Engineering, 2nd Ed., *PWS-KENT Publisher Company, Boston*, pp.289–290.
- 8. Das B.M., (2006) Principles of Geotechnical Engineering, 6th Editions, PWS, MA.
- 9. Mesri, G.(1973), Coefficient of Secondary Compression, *Journal of Soil Mechanics and Foundation Division*, ASCE, Vol.99, No.SM1, pp.123–137.
- 10. NAVFAC(1971), Design Manual-Soil Mechanics, Foundations, and Earth Structures, *NAVFAVC DM-7*, US Dapartment of Navy, Washington D.C.
- 11. Rendon-Herrero, O.(1980), "Universal Compression Index Equation", *Journal of the Geotechnical Engineering Division*, ASCE, Vol.106, No.GT11, pp.1179-1200.
- 12. Schmertmann, J.H.(1953), The Undisturbed Consolidation Behavior of Clay, Transactions,

- ASCE, Vol.120, p.1201.
- 13. Taylor, D.W.(1948), Fundamentals of Soil Mechanics, John Wiley and Sons, New York.
- 14. Terzaghi, K.(1943), Theoretical Soil Mechanics, John Wiley and Sons, New York.
- 15. Terzaghi, K, and Peck, R.B.(1948), Soil Mechanics in Engineering Practice, *John Wiley and Sons, New York*.
- 16. Terzaghi and Peck(1967), Soil Mechanics and Engineering Practice, 2nd Ed., *John Wiley and Sons, New York.*