SoC - WnCC

Intelligent Agents TSV

Assignment 2

Create a two-dimensional matrix of the following dimensions containing 15,000 entries with value 0

Name	Length and Breadth	#Initial entry containing 1
Dev, Aum, Divyanshi	100 x 150	(50 , 75)
Tushar, Naman, Madhumitha	50 x 300	(25,150)
Tanay, Prasann, Abishek	120 x 125	(60 , 63)

#Second	#Second	#Second	#Second	#Second
Neighbour	Neighbour	Neighbour	Neighbour	Neighbour
#Second	#First	#First	#First	#Second
Neighbour	Neighbour	Neighbour	Neighbour	Neighbour
#Second	#First	#entry	#First	#Second
Neighbour	Neighbour		Neighbour	Neighbour
#Second	#First	#First	#First	#Second
Neighbour	Neighbour	Neighbour	Neighbour	Neighbour
#Second	#Second	#Second	#Second	#Second
Neighbour	Neighbour	Neighbour	Neighbour	Neighbour

Process:

8 random entries swap with another set of 5
random set of entries

The immediate neighbours of an entry containing ${\bf 1}$ each have a ${\bf 0.25}$ probability of getting converted to ${\bf 1}$

The $second\ immediate\ neighbours$ of an entry containing 1 each have a 0.08 probability of getting converted to 1

Each entry has an **independent probability** of getting converted to $m{1}$ depending upon its relative position to an entry containing $m{1}$

Note that it is **not mandatory** for one of the neighbours to be converted into $\boldsymbol{1}$

Keep repeating the process till every entry becomes 1

Plot the same three graphs from the previous task (given below)

Plot 1: #1s vs #iterations

Plot 2: #iterations vs #runs

Plot 3: dy/dx vs x

Print the average you obtain from plot 2 and the **peak value of the fitted curve** from plot 3 in a .txt file.

Upload your code, the plots and the text file on your GitHub handle with the name as

SoC-Assgn2-Code-name

SoC-Assgn2-Plot-1-name

SoC-Assgn2-Plot-2-name

SoC-Assgn2-Plot-3-name

SoC-Assgn2-Values-name

respectively

Deadline : April 04, 2020 23:59