Topologie

STEP, MINES ParisTech

8 octobre 2020 (#bd0f014)

Question 1 Soit $C = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\}$ le cercle unité de \mathbb{R}^2 et d la distance sur C dérivée de la norme euclidienne sur \mathbb{R}^2 . Dans ce contexte, la distance entre les points $(-1,0)$ et $(1,0)$ de C vaut
$\Box A: 2.$ $\Box B: \pi.$ $\Box C: 2\pi.$
Question 2 L'ensemble \mathbb{R}^2 étant muni de la norme euclidienne, la norme d'opérateur $\ A\ $ de la matrice
$A = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \in \mathbb{R}^{2 \times 2}$
est égale à
$\begin{array}{c} \square \ \mathrm{A} : 0. \\ \square \ \mathrm{B} : 1. \\ \square \ \mathrm{C} : \sqrt{2}. \end{array}$
Question 3 (réponse multiple) Dans \mathbb{R} , muni de la norme $\ \cdot\ = \cdot $,
□ A : l'ensemble $[0,1]$ est fermé. □ B : l'ensemble $\{2^{-n} \mid n \in \mathbb{N}\}$ est fermé. □ C : l'ensemble $[0, +\infty[$ est fermé.
Question 4 (réponse multiple) Dans un espace métrique X , un ensemble A est ouvert si et seulement si
□ A : le complémentaire A^c de A dans X est fermé. □ B : sa frontière ∂A est vide. □ C : l'ensemble A n'est pas fermé.

sembles qui sont des voisinages de l'origine
$ \Box \text{ A: } \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 1 \text{ et } x_2 \ge 1\} \Box \text{ B: } \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 0 \text{ et } x_2 \ge 0\} \Box \text{ C: } \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge -1 \text{ et } x_2 \ge -1\} $
Question 6 (réponse multiple) Dans un espace métrique, si $A \subset B$, alors :
$\Box A : \overline{A} \subset \overline{B}$ $\Box B : \partial A \subset \partial B$ $\Box C : A^{\circ} \subset B^{\circ}$
Question 7 Si $f: \mathbb{R}^2 \to \mathbb{R}$ est une fonction continue et $a \in \mathbb{R}$, que peut-on dire de l'ensemble de niveau $A = \{(x_1, x_2) \in \mathbb{R}^2 \mid f(x_1, x_2) = a\}$?
Réponse : l'ensemble A est
Question 8 Si une suite de vecteurs x_k de \mathbb{R}^n vérifie
$ x_{k+2} - x_{k+1} \le 0.5 \times x_{k+1} - x_k ,$
est-ce qu'elle converge nécessairement ?
□ A : oui.□ B : non.
Question 9 Dans le plan euclidien, l'ensemble $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \geq 0 \text{ et } x_2 \geq 0\}$ est-il complet ?
\square A : oui. \square B : non.