Question Number	Scheme	Marks
8(a)	$AB^2 = 4^2 + 2^2$, $BC^2 = 2^2 + 6^2$, $AC^2 = 2^2 + 4^2$	M1 (any one)
	(i) $AB = \sqrt{20}$ (ii) $BC = \sqrt{40}$ (iii) $AC = \sqrt{20}$ or equivalents (4.47) (6.32)	A1A1A1 (4)
(b)	Any complete method for finding one of the angles: eg $AB^2 + AC^2 = BC^2 \Rightarrow \angle A = 90^\circ$ or use trigonometry	M1
	$\angle A = 90^{\circ}, \ \angle B = \angle C = 45^{\circ}$	A1, A1 (3)
I	(centre at midpoint of BC) $(5,5)$	M1A1 (2)
(d)	Radius = $\frac{1}{2}BC = \frac{1}{2}\sqrt{40} = \sqrt{10}$	M1A1 (2)
	(Working for (d) may be seen in a previous part)	[11]
(a) M1 A1A1A1 SC: (b) M1 A1 A1 (c) M1	Use Pythagoras with a plus sign to obtain AC^2 , BC^2 or AC^2 . If the answer is incorrect it must be clear that the correct coordinates have been used correctly. Award A1 for each correct length. Ignore labels (i), (ii) and (iii). Award M1A1A1A1 / M1A1A1A0 / M1A1A0A0 as appropriate. If there is no working shown but at least one length is correct, award M1 and deduct one A mark for each incorrect length. (no length correct and no working \Rightarrow M0) If all 3 lengths are correct to at least 3 sf, award M1A1A1A0 If 2 are correct to at least 3 sf, award M1A1A0A0 Attempt to obtain any of the required angles. Method must be complete (ie reach a value for one angle) and formula used must be correct and values must be substituted into a correct formula. $\angle A = 90^\circ$ Any labelling given can be ignored. $\angle B = \angle C = 45^\circ$ All 3 correct w/o working scores M1A1A1 For indicating that the centre is at the midpoint of BC . This can be stated explicitly or used by attempting to find the midpoint. OR: Find equations for perpendicular bisectors of 2 of the sides and find the point of	
A1 (d) M1	intersection Both coordinates correct. Correct answer written down w/o working scores M1A1 For indicating that the radius is half the length of <i>BC</i> . This can be stated explicitly or used by attempting to find half of their <i>BC</i> (not nec in the required form).	
A1 NB	Correct length of the radius, in the required form. If half the length of <i>BC</i> has been found earlier the marks for (d) can only be awarded if the length of the radius has been written in (d).	