Tutorial 7-9: Vector Algebra

- 1. Find the values of x, y and z so that the vectors $\overline{a} = xi + 2j + zk$ and $\overline{b} = 2i + yj + k$ are equal.
- 2. Let $\overline{a} = i + 2j$ and $\overline{b} = 2i + j$. Is $|\overline{a}| = |\overline{b}|$? Are the vectors \overline{a} and \overline{b} equal?
- 3. Find unit vector in the direction of vector $\bar{a} = 2i + 3j + k$.
- 4. Find the unit vector in the direction of the sum of the vectors, $\bar{a} = 2i + 2j 5k$ and $\bar{b} = 2i + j + 3k$.
- 5. Find the vector joining the points P(2, 3, 0) and Q(-1, -2, -4) directed from P to Q.
- 6. Find a vector in the direction of vector $\vec{a} = \hat{\imath} 2\hat{\jmath}$ that has magnitude 7 units.
- 7. Show that the points A (2, -1, 1), B(1, -3, -5) C(3, -4, -4) are the vertices of a right angled triangle.
- 8. Find the unit vector parallel to the vector $2\vec{a} \vec{b} + 3\vec{c}$ where $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{b} = 2\hat{\imath} \hat{\jmath} + 3\hat{k}$ and $\vec{c} = \hat{\imath} 2\hat{\jmath} + \hat{k}$.
- 9. Show that the points with position vectors $5\vec{a} + 6\vec{b}$, $7\vec{a} 8\vec{b}$ and $3\vec{a} + 20\vec{b}$ are collinear.
- 10. Find the value of x for which $x(\hat{\imath} + \hat{\jmath} + \hat{k})$ is a unit vector.
- 11. Find the position vector of the midpoint of the vector joining the points P(2, 3, 4) and Q(4, 1, -2).
- 12. Write the direction ratios of the vector $(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ and find its direction cosines.
- 13. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when $\vec{a} \cdot \vec{b} = 1$.
- 14. If \vec{a} is a unit vector and $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 8$, then find $|\vec{x}|$.
- 15. Find the angle between the vectors, $\vec{a} = \hat{\imath} 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = 3\hat{\imath} 2\hat{\jmath} + \hat{k}$.
- 16. Find the projection of the vector on the vector $\hat{i} \hat{j}$ on $\hat{i} + \hat{j}$.
- 17. Evaluate the product $(3\vec{a} 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$.
- 18. If $\vec{a} = 2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = -\hat{\imath} + 2\hat{\jmath} + \hat{k}$ and $\vec{c} = 3\hat{\imath} + \hat{\jmath}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then find the value of λ .
- 19. If \vec{a} is a nonzero vector of magnitude 'a', and λ is a nonzero scalar such that $\lambda \vec{a}$ is a unit vector, then find the value of λ .

- 20. Show that the points A, B and C with position vectors, $\vec{a} = 3\hat{\imath} 4\hat{\jmath} 4\hat{k}$, $\vec{b} = 2\hat{\imath} \hat{\jmath} + \hat{k}$ and $\vec{c} = \hat{\imath} 3\hat{\jmath} 5\hat{k}$. respectively form the vertices of a right angled triangle.
- 21. Find $|\vec{a} \times \vec{b}|$, if $\vec{a} = \hat{\imath} 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = 3\hat{\imath} 2\hat{\jmath} + \hat{k}$.
- 22. Find the unit vector perpendicular to each of the vector if $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = 3\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$, $\vec{b} = \hat{\imath} + 2\hat{\jmath} 2\hat{k}$.
- 23. Find λ and μ if $(2\hat{\imath} + 6\hat{\jmath} + 2\widehat{7k}) \times (\hat{\imath} + \lambda\hat{\jmath} + \mu \widehat{k}) = 0$.
- 24. Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
- 25. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{i} \hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} 7\hat{j} + \hat{k}$.
- 26. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, then what is the angle between \vec{a} and \vec{b} ?
- 27. Find sine of the angle between the vectors $\vec{a} = 3\hat{\imath} \hat{\jmath} + 4\hat{k}$, $\vec{b} = \hat{\imath} \hat{\jmath} + \hat{k}$.