Mas,

$$\frac{\partial}{\partial x}(x) = 1$$
 e $\frac{\partial}{\partial x}(y) = 0$

portanto, essa equação se torna

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0$$

Se $\partial F/\partial z \neq 0$, resolvemos para $\partial z/\partial x$ e obtemos a primeira fórmula das Equações 7. A fórmula para $\partial z/\partial y$ é obtida de uma maneira semelhante.

7

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \qquad \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$$

Novamente, uma versão do **Teorema da Função Implícita** estipula condições sob as quais nossa suposição é válida: se F é definida dentro de uma esfera contendo (a, b, c), onde F(a, b, c) = 0, $F_z(a, b, c) \neq 0$ e F_x , F_y e F_z são contínuas dentro da esfera, então a equação F(x, y, z) = 0 define z como uma função de x e y perto do ponto (a, b, c), e as derivadas parciais dessa função são dadas por $\boxed{7}$.

EXEMPLO 9 Determine $\frac{\partial z}{\partial x} e^{\frac{\partial z}{\partial y}} se^{-\frac{\partial z}{\partial y}} se^{-\frac{z^3}{2}} + z^3 + 6xyz = 1.$

SOLUÇÃO Seja $F(x, y, z) = x^3 + y^3 + z^3 + 6xyz - 1$. Então, das Equações 7, temos

 $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{3x^2 + 6yz}{3z^2 + 6xy} = -\frac{x^2 + 2yz}{z^2 + 2xy}$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{3y^2 + 6xz}{3z^2 + 6xy} = -\frac{y^2 + 2xz}{z^2 + 2xy}$$

A solução do Exemplo 9 deve ser comparada com a do Exemplo 4 na Seção 14.3.

14.5 Exercícios

1-6 Use a Regra da Cadeia para achar dz/dt ou dw/dt.

1.
$$z = x^2 + y^2 + xy$$
, $x = \text{sen } t$, $y = e^t$

2.
$$z = \cos(x + 4y)$$
, $x = 5t^4$, $y = 1/t$

3.
$$z = \sqrt{1 + x^2 + y^2}$$
, $x = \ln t$, $y = \cos t$

4.
$$z = tg^{-1}(y/x), \quad x = e^t, \quad y = 1 - e^{-t}$$

5.
$$w = xe^{y/z}$$
, $x = t^2$, $y = 1 - t$, $z = 1 + 2t$

6.
$$w = \ln \sqrt{x^2 + y^2 + z^2}$$
, $x = \text{sen } t$, $y = \cos t$, $z = \text{tg } t$

7–12 Use a Regra da Cadeia para achar $\partial z/\partial s$ e $\partial z/\partial t$.

7.
$$z = x^2y^3$$
, $x = s\cos t$, $y = s\sin t$

8.
$$z = \arcsin(x - y), \quad x = s^2 + t^2, \quad y = 1 - 2st$$

9.
$$z = \sin \theta \cos \phi$$
, $\theta = st^2$, $\phi = s^2t$

10.
$$z = e^{x+2y}$$
, $x = s/t$, $y = t/s$

11.
$$z = e^r \cos \theta$$
, $r = st$, $\theta = \sqrt{s^2 + t^2}$

12.
$$z = tg(u/v), \quad u = 2s + 3t, \quad v = 3s - 2t$$

13. Se
$$z = f(x, y)$$
, onde f é diferenciável, e

$$x = g(t)$$
 $y = h(t)$
 $g(3) = 2$ $h(3) = 7$
 $g'(3) = 5$ $h'(3) = -4$
 $f_x(2,7) = 6$ $f_y(2,7) = -8$

determine dz/dt quando t = 3.

14. Seja W(s, t) = F(u(s, t), v(s, t)), onde $F, u \in v$ são diferenciáveis, e

$$u(1, 0) = 2$$
 $v(1, 0) = 3$
 $u_s(1, 0) = -2$ $v_s(1, 0) = 5$
 $u_t(1, 0) = 6$ $v_t(1, 0) = 4$
 $F_u(2, 3) = -1$ $F_v(2, 3) = 10$

Encontre $W_s(1, 0)$ e $W_t(1, 0)$.

15. Suponha que f seja uma função diferenciável de x e y, e $g(u, v) = f(e^u + \text{sen } v, e^u + \cos v)$. Use a tabela de valores para calcular $g_u(0, 0)$ e $g_v(0, 0)$.

	f	g	f_x	f_{y}
(0,0)	3	6	4	8
(1, 2)	6	3	2	5

16. Suponha que f seja uma função diferenciável de x e y, e $g(r, s) = f(2r - s, s^2 - 4r)$. Use a tabela de valores do Exercício 15 para calcular $g_r(1, 2)$ e $g_s(1, 2)$.

17–20 Utilize um diagrama em árvore para escrever a Regra da Cadeia para o caso dado. Suponha que todas as funções sejam diferenciáveis.

- **17.** u = f(x, y), onde x = x(r, s, t), y = y(r, s, t)
- **18.** R = f(x, y, z, t), onde x = x(u, v, w), y = y(u, v, w), z = z(u, v, w), t = t(u, v, w)
- **19.** w = f(r, s, t), onde r = r(x, y), s = s(x, y), t = t(x, y)
- **20.** t = f(u, v, w), onde u = u(p, q, r, s), v = v(p, q, r, s), w = w(p, q, r, s)

21–26 Utilize a Regra da Cadeia para determinar as derivadas parciais indicadas.

- **21.** $z = x^2 + xy^3$, $x = uv^2 + w^3$, $y = u + ve^w$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$, $\frac{\partial z}{\partial w}$ quando u = 2, v = 1, w = 0
- **22.** $u = \sqrt{r^2 + s^2}$, $r = y + x \cos t$, $s = x + y \sin t$; $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial t}$ quando x = 1, y = 2, t = 0
- **23.** w = xy + yz + zx, $x = r \cos \theta$, $y = r \sin \theta$, $z = r\theta$; $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial \theta}$ quando r = 2, $\theta = \pi/2$
- **24.** $P = \sqrt{u^2 + v^2 + w^2}$, $u = xe^y$, $v = ye^x$, $w = e^{xy}$; $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$ quando x = 0, y = 2
- **25.** $N = \frac{p+q}{p+r}$, p = u + vw, q = v + uw, r = w + uv;
 - $\frac{\partial N}{\partial u}$, $\frac{\partial N}{\partial v}$, $\frac{\partial N}{\partial w}$ quando u = 2, v = 3, w = 4
- **26.** $u = xe^{t\gamma}$, $x = \alpha^2\beta$, $y = \beta^2\gamma$, $t = \gamma^2\alpha$; $\frac{\partial u}{\partial \alpha}$, $\frac{\partial u}{\partial \beta}$, $\frac{\partial u}{\partial \gamma}$ quando $\alpha = -1$, $\beta = 2$, $\gamma = 1$

27–30 Utilize a Equação 6 para determinar dy/dx.

- **27.** $y \cos x = x^2 + y^2$
- **28.** $\cos(xy) = 1 + \sin y$
- **29.** $tg^{-1}(x^2y) = x + xy^2$
- **30.** $e^y \sin x = x + xy$

31–34 Utilize as Equações 7 para determinar $\partial z/\partial x$ e $\partial z/\partial y$.

- **31.** $x^2 + 2y^2 + 3z^2 = 1$
- **32.** $x^2 y^2 + z^2 2z = 4$
- **33.** $e^z = xyz$
- **34.** $yz + x \ln y = z^2$

- **35.** A temperatura em um ponto (x, y) é T(x, y), medida em graus Celsius. Um inseto rasteja, de modo que sua posição após t segundos é dada por $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, onde x e y são medidos em centímetros. A função da temperatura satisfaz $T_x(2, 3) = 4$ e $T_y(2, 3) = 3$. Quão rápido a temperatura aumenta no caminho do inseto depois de três segundos?
- **36.** A produção de trigo W em um determinado ano depende da temperatura média T e do volume anual das chuvas R. Cientistas estimam que a temperatura média anual está crescendo à taxa de 0,15 °C/ano e a quantidade anual de chuva está decrescendo à taxa de 0,1 cm/ano. Eles também estimam que, no atual nível de produção, $\partial W/\partial T = -2$ e $\partial W/\partial R = 8$.
 - (a) Qual é o significado do sinal dessas derivadas parciais?
 - (b) Estime a taxa de variação corrente da produção de trigo dW/dt.
- **37.** A velocidade da propagação do som através do oceano com salinidade de 35 partes por milhar foi modelada pela equação

$$C = 1449.2 + 4.6T - 0.055T^2 + 0.00029T^3 + 0.016D$$

onde C é a velocidade do som (em metros por segundo), T é a temperatura (em graus Celsius) e D é a profundidade abaixo do nível do mar (em metros). Um mergulhador começa um mergulho tranquilo nas águas oceânicas, e a profundidade do mergulho e a temperatura da água ao redor são registradas nos gráficos a seguir. Estime a taxa de variação (em relação ao tempo) da velocidade do som através do oceano experimentada pelo mergulhador 20 minutos depois do início do mergulho. Quais são as unidades?

- **38.** O raio de um cone circular reto está aumentando em uma taxa de 4,6 cm/s enquanto sua altura está decrescendo em uma taxa de 6,5 cm/s. Em qual taxa o volume do cone está variando quando o raio é 300 cm e a altura é 350 cm?
- **39.** O comprimento ℓ , a largura w e a altura h de uma caixa variam com o tempo. Em um determinado momento, as dimensões são $\ell = 1$ m e w = h = 2 m, ℓ e w estão aumentando em uma taxa de 2 m/s enquanto h está decrescendo em uma taxa de 3 m/s. Nesse instante, encontre as taxas em que as seguintes quantidades estão variando.
 - (a) O volume
 - (b) A área da superfície
 - (c) O comprimento da diagonal
- **40.** A voltagem V em um circuito elétrico simples decresce lentamente à medida que a pilha se descarrega. A resistência R aumenta lentamente com o aumento de calor do resistor. Use a Lei de Ohm, V = IR, para achar como a corrente I está variando no momento em que $R = 400 \ \Omega$, $I = 0.08 \ A$, $dV/dt = -0.01 \ V/s$ e $dR/dt = 0.03 \ \Omega/s$.
- **41.** A pressão de 1 mol de um gás ideal está aumentando em uma taxa de 0,05 kPa/s e a temperatura está aumentando em uma taxa de 0,15 K/s. Use a equação no Exemplo 2 para determinar a taxa de variação do volume quando a pressão for 20 kPa e a temperatura for 320 K.

42. Um fabricante modelou sua função *P* da produção anual (o valor de toda essa produção em milhões de dólares) como uma função Cobb-Douglas

$$P(L, K) = 1,47 L^{0.65} K^{0.35}$$

onde L é o número de horas trabalhadas (em milhares) e K é o capital investido (em milhões de dólares). Suponha que quando L=30 e K=8, a força de trabalho esteja decrescendo em uma taxa de 2.000 horas trabalhadas por ano e o capital esteja aumentando em uma taxa de \$500.000 por ano. Encontre a taxa de variação da produção.

- 43. Um lado de um triângulo está aumentando em uma taxa de 3cm/s e um segundo lado está decrescendo em uma taxa de 2 cm/s. Se a área do triângulo permanece constante, a que taxa varia o ângulo entre os lados quando o primeiro lado tem 20 cm de comprimento, o segundo lado tem 30 cm de comprimento e o ângulo é π/6?
- **44.** Se um som com frequência f_s for produzido por uma fonte se movendo ao longo de uma reta com velocidade v_s e um observador estiver se movendo com velocidade v_o ao longo da mesma reta a partir da direção oposta, em direção à fonte, então a frequência do som ouvido pelo observador é

$$f_o = \left(\frac{c + v_o}{c - v_s}\right) f_s$$

onde c é a velocidade do som, cerca de 332m/s. (Este é o **efeito Doppler**.) Suponha que, em um dado momento, você esteja em um trem que se move a 34 m/s e acelera a 1,2 m/s². Um trem se aproxima de você da direção oposta no outro trilho a 40 m/s, acelerando a 1,4 m/s², e toca seu apito, com frequência de 460 Hz. Neste instante, qual é a frequência aparente que você ouve e quão rapidamente ela está variando?

- 45–48 Suponha que todas as funções dadas sejam diferenciáveis.
- **45.** Se z = f(x, y), onde $x = r \cos \theta$ e $y = r \sin \theta$, (a) determine $\partial z/\partial r$ e $\partial z/\partial \theta$ e (b) mostre que

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$

46. Se u = f(x, y), onde $x = e^s \cos t$ e $y = e^s \sin t$, mostre que

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = e^{-2s} \left[\left(\frac{\partial u}{\partial s}\right)^2 + \left(\frac{\partial u}{\partial t}\right)^2 \right]$$

- **47.** Se z = f(x y), mostre que $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.
- **48.** Se z = f(x, y), onde x = s + t e y = s t, mostre que

$$\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = \frac{\partial z}{\partial s} \frac{\partial z}{\partial t}$$

- 49–54 Suponha que todas as funções dadas tenham derivadas parciais de segunda ordem contínuas.
- **49.** Mostre que qualquer função da forma

$$z = f(x + at) + g(x - at)$$

é uma solução da equação de onda

$$\frac{\partial^2 z}{\partial t^2} = a^2 \frac{\partial^2 z}{\partial x^2}$$

[Dica: Seja u = x + at, v = x - at.]

50. Se u = f(x, y), onde $x = e^s \cos t$ e $y = e^s \sin t$, mostre que

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = e^{-2s} \left[\frac{\partial^2 u}{\partial s^2} + \frac{\partial^2 u}{\partial t^2} \right]$$

- **51.** Se z = f(x, y), onde $x = r^2 + s^2$, y = 2rs, determine $\frac{\partial^2 z}{\partial r} \frac{\partial s}{\partial s}$. (Compare com o Exemplo 7.)
- **52.** Se z = f(x, y), onde $x = r \cos \theta$, e $y = r \sin \theta$, determine (a) $\partial z/\partial r$, (b) $\partial z/\partial \theta$ e (c) $\partial^2 z/\partial r \partial \theta$.
- **53.** Se z = f(x, y), onde $x = r \cos \theta$, e $y = r \sin \theta$, mostre que

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} + \frac{1}{r} \frac{\partial z}{\partial r}$$

- **54.** Suponha que z = f(x, y), onde x = g(s, t) e y = h(s, t).
 - (a) Mostre que

$$\frac{\partial^2 z}{\partial t^2} = \frac{\partial^2 z}{\partial x^2} \left(\frac{\partial x}{\partial t}\right)^2 + 2 \frac{\partial^2 z}{\partial x \partial y} \frac{\partial x}{\partial t} \frac{\partial y}{\partial t} + \frac{\partial^2 z}{\partial y^2} \left(\frac{\partial y}{\partial t}\right)^2 + \frac{\partial z}{\partial x} \frac{\partial^2 x}{\partial t^2} + \frac{\partial z}{\partial y} \frac{\partial^2 y}{\partial t^2}$$

- (b) Determine uma fórmula semelhante para $\partial^2 z/\partial s \partial t$.
- **55.** Uma função f é chamada **homogênea de** n-ésimo grau se satisfaz a equação $f(tx, ty) = t^n f(x, y)$ para todo t, onde n é um inteiro positivo e f tem derivadas parciais de segunda ordem contínuas.
 - (a) Verifique se $f(x, y) = x^2y + 2xy^2 + 5y^3$ é homogênea de grau
 - (b) Mostre que, se f é homogênea de grau n, então

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf(x, y)$$

[Dica: Utilize a Regra da Cadeia para derivar f(tx, ty) com relação a t.]

56. Se f é homogênea de grau n, mostre que

$$x^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2xy \frac{\partial^{2} f}{\partial x \partial y} + y^{2} \frac{\partial^{2} f}{\partial y^{2}} = n(n-1)f(x, y)$$

57. Se f é homogênea de grau n, mostre que

$$f_x(tx, ty) = t^{n-1}f_x(x, y)$$

58. Suponha que a equação F(x, y, z) = 0 defina implicitamente cada uma das três variáveis x, y e z como funções das outras duas: z = f(x, y), y = g(x, z), x = h(y, z). Se F for diferenciável e F_x , F_y e F_z forem todas não nulas, mostre que

$$\frac{\partial z}{\partial x} \frac{\partial x}{\partial y} \frac{\partial y}{\partial z} = -1$$

59. A Equação 6 é uma fórmula para a derivada dy/dx de uma função definida implicitamente por uma equação F(x, y) = 0, sendo que F é diferenciável e $F_y \neq 0$. Comprove que se F tem derivadas contínuas de segunda ordem, então uma fórmula para a segunda derivada de y é

$$\frac{d^2y}{dx^2} = -\frac{F_{xx}F_y^2 - 2F_{xy}F_xF_y + F_{yy}F_x^2}{F_y^3}$$