Tutorial 2: A Review of Power Conditioning Circuits and Control Systems

Problem 1 A balanced three-phase source is supplying an unbalanced load via a three-phase three-winding transformer as shown in Figure 1. The turns ratio of the windings of all phases are equal. The ground impedance Z_q is indicated.

If the leakage in the windings is assumed to be negligible, then show that the ground current (i_g) is zero and also indicate the *current* distributions on all the windings.

Hint: consider MMF balance for each phase.

Figure 1: Diagram for Problem 1

Problem 2 A Thyristor Controlled Reactor (TCR) is connected to a sinusoidal voltage source (230 V rms) as shown in Figure 2. If the fundamental component of the current is 1 A (rms), then compute the firing angle α . The inductance L is 500 mH. Assume thyristors to be ideal.

Hint: First compute the expression for the fundamental component of the *current* as a function of α and then solve the equation thereafter numerically.

Figure 2: Diagram for Problem 2

Problem 3 The dual of a circuit has the same equations with the voltages replaced by currents, inductors replaced by capacitors, resistances replaced by conductances and loops replaced by nodes. For example, a particular circuit and its dual circuit are shown in Figure 3a. Draw the dual of the circuit shown in Figure 3b where T_1 and T_2 are switched complementarily.

Figure 3: Circuits for Problem 3

Problem 4 The dual circuit of a TCR is shown in Figure 4.

Obtain an expression of the fundamental component of the voltage, as a function of σ .

For the switches (T1 and T2), can thyristors be used or do we require switches with turn-off capability? Assume the switches to be ideal.

Note: the source here is an alternating *current* source.

Figure 4: Diagram for Problem 4

Problem 5 Figure 5 shows the schematic of a line-commutated thyristor bridge based HVdc link with power being transferred from 1 to 2. If the active power flow direction is to be reversed without change of the connections, indicate the polarities/directions of the voltages, currents and reactive power flows on the Figure 6.

Note: The variables considered here are positive.

Figure 5: Diagram for Problem 5

Figure 6: Diagram for Problem 5

Problem 6 Consider a 12 pulse bipolar HVdc system as shown in Figure 7. For a converter transformer what is the approximate turns ratio between the primary (ac grid side) star winding and the corresponding star winding on the converter side?

Figure 7: Diagram for Problem 6

Problem 7 A series R-L-C circuit is used as a shunt-connected filter as shown below. It is tuned at the 12^{th} harmonic ($R = 0.75 \ \Omega$, $L = 15.2 \ \text{mH}$, $C = 4.2 \ \mu\text{F}$).

The filter will

- (a) generate reactive power at the fundamental frequency
- (b) absorb reactive power at the fundamental frequency
- (c) not exchange reactive power with the system at fundamental frequency
- (d) behave like a pure resistor at fundamental frequency.

Problem 8 A high frequency square wave (1 kHz) voltage is applied to an R-L circuit (R = 1 Ω) as shown in Figure 8. Sketch the steady-state waveform of the current i(t) if the time constant of the circuit is (a) 1 s, (b) 1 μ s.

Figure 8: Diagram for Problem 8

Problem 9 In the circuit shown in Figure 9, the output of a single phase inverter is connected to an R-L load. The inverter switches are switched such that the inverter output voltage $v_{AB}(t)$ is as shown in Figure 10. Find the rms value of the fundamental component of the load current i(t) in steady-state. **Note:** A square wave v(t) of zero mean and amplitude $\pm V$ with a period of $T = \frac{2\pi}{\omega}$, can be represented as

$$v(t) = \sum_{k=1,3.5...}^{\infty} \frac{4V}{k\pi} \sin(k\omega t)$$

Figure 10: Waveform for Problem 9

Problem 10 A waveform is given as shown in Figure 11. Determine the magnitude of the 3rd harmonic component present in the waveform.

Note: the waveform shown is periodic with period T.

Figure 11: Waveform for Problem 10

Problem 11 If the control system shown in the Figure 12, and $K_p \neq 0$, $K_i \neq 0$, then the steady state value of y_1 is:

(a) 500 (b) Zero (c)
$$\frac{500}{K_p}$$
 (d) $500K_i$

Figure 12: Schematic for Problem 11

Problem 12 Which of the plots of Figure 13 depicts the unit step response of the following transfer function:

$$G(s) = 5 \frac{(1 + 0.136s)}{(1 + 0.1s)(1 + 0.01s)}$$

Figure 13: Options for Problem 12

Problem 13 In a synchronous generator, the rms value of the open circuit voltage, denoted by V is related to its field voltage E_{fd} as follows

$$\frac{V(s)}{E_{fd}(s)} = \frac{1}{1 + s T'_{do}}$$

where $T'_{do}=\frac{L_{ff}}{R_f}$, and L_{ff} and R_f are the self inductance and resistance of the field winding. If $T'_{do}=5$ s,

- (a) sketch and appropriately label the open-circuit voltage V of the synchronous machine if a step input of 0.5 pu is applied to the field winding (E_{fd}) ,
- (b) if the field voltage is regulated as shown in Figure 14, then evaluate the value of K_E such that the closed loop poles are complex conjugate with a damping ratio of 10%. The regulator time constant $T_E=0.04~\rm s$. For a step change in the reference voltage V_{ref} , sketch and appropriately label the open-circuit voltage V.

Note: For a complex conjugate pair of poles $s = \sigma + j\omega$, the damping ratio (ζ) is defined as

$$\zeta = -\frac{\sigma}{\sqrt{\sigma^2 + \omega^2}} \times 100\%$$

.

Figure 14: Schematic for Problem 13

Problem 14 The response (options are provided in Table 1) of the system $(T_1 < T_2)$ shown below for a unit step input is

Table 1: Options for Problem 14

