TEMA G

3 HOTAS ENTARGADA.

Escriba su nombre EN CADA HOJA y numere cada hoja de la forma n/N donde n es el número de la hoja y N el número al de hojas que entrega (sin contar esta) total de hojas que entrega (sin contar esta).

1. La siguiente matriz representa el costo de asignar los trabajadores A, B, \dots a los trabajos I, II, \dots , etc.

	I	II	III	IV	V	VI	VII	VIII
A	3	8	9	7	9	1	5	8
B	5	7	7	6	7	1	5	7
C	3	4	5	5	5	3	4	8
D	9	7	9	5	7	8	4	5
E	5	2	4	8	3	2	7	8
F	2	9	2	3	7	2	5	8
G	2	3	9	9	8	7	5	7
H	7	9	5	4	4	3	8	5

Hallar un matching que minimize el costo total, i.e., la suma de los costos.

2. Sea C el código con matriz de chequeo H = [A|I], donde I es la identidad 6x6 y A es la matriz:

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ a & b & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ c & d & 0 & 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

donde a=1 si la cifra de las unidades de su DNI es impar, y 0 si es par, b=1 si la cifra de las decenas de su DNI es impar, y 0 si es par, c = 1 si la cifra de las centenas de su DNI es impar, y 0 si es par, y d = 1 si la cifra de los miles de su DNI es impar y 0 si es par.

- a) Decir cuantas palabras tiene en total C, justificando.
- b) Escribir dos palabras no nulas que esten en C.
- c) Calcular $\delta(C)$, justificando.
- d) Si se recibe la palabra 110000000010100, y se asume que se produjo a lo sumo un error de transmisión, determinar la palabra enviada si esto es posible o indicar porqué no si no se puede.
- 3. Sea C el código ciclico de longitud n=23 con polinomio generador $g(x)=1+x+x^5+x^6+x^7+x^9+x^{11}$;
 - a) Decir cuantas palabras tiene C, justificando.
 - b) Dar una palabra del código cuyos últimos (mas a la derecha) 10 bits sean 1100000000. (ayuda: usar inteligentemente el metodo 2 de codificacion)
 - c) Este código corrige 3 errores.

Si se recibe la palabra $w = 1 + x^2 + x^3 + x^5 + x^8 + x^{10} + x^{14}$, hallar la palabra que sea mas probable que haya sido

(ayuda: el primer j parà el cual el peso de s_j es menor o igual que 3 cumple que $4 \le j \le 9$ asi que si ud obtiene un jmenor o mayor que esos numeros, tiene un error).