FGI-1 – Formale Grundlagen der Informatik I

Logik, Automaten und Formale Sprachen Aufgabenblatt 1: Formale Sprachen

Präsenzaufgabe 1.1:

1. Geben Sie eine surjektive Abbildung von \mathbb{N} nach \mathbb{N} an, die nicht injektiv ist. (Mit Erläuterung!)

Lösung: Um nicht injektiv zu sein, müssen zwei Elemente $x, y \in \mathbb{N}$ das gleiche Bild haben. Gleichzeitig muss man mit den noch verbleibenden Elementen alle weiteren in \mathbb{N} "erwischen". Dies gelingt bspw. mit der Funktion $f: \mathbb{N} \to \mathbb{N}$ mit f(0) = f(1) = 0 und f(n) = n - 1 für alle $n \ge 2$. Wegen f(0) = f(1) = 0 ist f nicht injektiv. Jedoch ist f surjektiv, denn sei $x \in \mathbb{N}$ beliebig, dann ist f(x+1) = (x+1) - 1 = x (auch im Falle x = 0 ist f(x+1) = f(1) = 0) und $x+1 \in \mathbb{N}$ damit ein Urbild von x.

2. Geben Sie eine injektive Abbildung von \mathbb{N} nach \mathbb{N} an, die nicht surjektiv ist. (Mit Erläuterung!)

Lösung: Hier müssen nun alle Bilder paarweise verschieden sein und dennoch dürfen nicht alle Elemente der Bildmenge auftreten. Dies ist bspw. mit $f: \mathbb{N} \to \mathbb{N}$ mit f(n) = n+1 für alle $n \in \mathbb{N}$ möglich. Diese Funktion ist injektiv, da aus $x \neq y$ stets auch $f(x) = x+1 \neq y+1 = f(y)$ folgt. Ferner ist f nicht surjektiv, da 0 kein Urbild hat.

Präsenzaufgabe 1.2: Wir betrachten den Monoid $(\Sigma^*, \cdot, \lambda)$ aller Wörter des Alphabets $\Sigma = \{a, b, c\}$ mit der Konkatenation \cdot und dem leeren Wort λ .

Betrachten Sie die Teilmengen $X, Y \subseteq \Sigma^*$ mit $X = \{a, ab, \lambda\}$ und $Y = \{c, bc, ac\}$.

1. Bestimmen Sie Σ^2 .

Lösung: Die Notation ist nicht ganz eindeutig, da wir sie sowohl für das kartesische Produkt $\Sigma \times \Sigma$ als auch für das Komplexprodukt $\Sigma \cdot \Sigma$ verwenden.

Im Kontext eines Alphabetes Σ ist typischerweise das Komplexprodukt $\Sigma \cdot \Sigma$ gemeint.

$$\Sigma \cdot \Sigma = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$$

Das kartesische Produkt ergibt sich zu

$$\Sigma \times \Sigma = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$$

Wir erkennen, dass beide Produktmengen isomorph sind. Das dies nicht mehr gilt, wenn wir von Alphabeten zu beliebigen Mengen übergehen, zeigen die beiden folgenden Teilaufgaben.

2. Bestimmen Sie $X \times Y$ und $|X \times Y|$.

Lösung:
$$X \times Y = \{(a, c), (a, bc), (a, ac), (ab, c), (ab, bc), (ab, ac), (\lambda, c), (\lambda, bc), (\lambda, ac)\}$$

 $|X \times Y| = |X| \cdot |Y| = 3 \cdot 3 = 9.$

3. Bestimmen Sie $X \cdot Y$ und $|X \cdot Y|$.

Lösung: $X \cdot Y = \{ac, abc, aac, \underline{abc}, abbc, abac, c, bc, \underline{ac}\} = \{ac, abc, aac, abbc, abac, c, bc\}$ Doppelte Einträge sind unterstrichen.

$$|X \cdot Y| = 7$$

4. Bestimmen Sie X^+ und X^* .

Lösung:
$$X^+ = \{w \mid w = a...a(ab)a...a(ab)a...a \cdot \cdots a...a(ab)a...a\} = (\{a\}^*\{ab\})^*\{a\}^* = \{a^+b\}^*\{a\}^*$$

Anders ausgedrückt: In X^+ sind (neben dem leeren Wort λ) alle Wörter aus as und bs, die mit a beginnen und bei denen nie zwei b direkt aufeinander folgen.

Wegen
$$\lambda \in X^+$$
 ergibt sich ferner $X^+ = X^+ \cup \{\lambda\} = X^*$.

Präsenzaufgabe 1.3: Sei Σ ein Alphabet und $U, V, W \subseteq \Sigma^*$ beliebige Sprachen.

Beweisen oder widerlegen Sie folgende Gleichungen, indem Sie zwei Inklusionsbeziehungen beweisen oder ein Gegenbeispiel angeben.

1.
$$(U \cup V)^* = U^* \cup V^*$$

Lösung: Gilt nicht. Wähle $U = \{x\}$ und $V = \{y\}$. Dann ist:

$$(U \cup V)^* = \{x, y\}^* = \{\lambda, x, y, xx, xy, yx, yy, xxx, \ldots\}$$

$$\supseteq U^* \cup V^* = \{x\}^* \cup \{y\}^* = \{\lambda, x, xx, \ldots\} \cup \{\lambda, y, yy, \ldots\}$$

Insbesondere ist z.B. $xy \in (U \cup V)^*$, aber $xy \notin U^* \cup V^*$.

2.
$$(U \cup V) \cdot W = (U \cdot W) \cup (V \cdot W)$$

Lösung: Wir zeigen zwei Inklusionen:

- Es gilt $(U \cup V) \cdot W \subseteq (U \cdot W) \cup (V \cdot W)$, denn wenn $w \in (U \cup V) \cdot W$, dann lässt sich w in xy zerlegen mit $x \in (U \cup V)$ und $y \in W$.
 - Angenommen $x \in U$, dann ist $w = xy \in (U \cdot W)$; gilt dagegen $x \in V$, dann ist $w = xy \in (V \cdot W)$. Insgesamt also $w \in (U \cdot W) \cup (V \cdot W)$, was die Inklusion zeigt.
- Es gilt $(U \cdot W) \cup (V \cdot W) \subseteq (U \cup V) \cdot W$, denn wenn $w \in (U \cdot W) \cup (V \cdot W)$, dann ist $w \in (U \cdot W)$ oder $w \in (V \cdot W)$.

Im ersten Fall lässt sich w in xy mit $x \in U$ und $y \in W$ zerlegen. Dann ist aber erst recht $x \in U \cup V$ und damit $w = xy \in (U \cup V) \cdot W$. Analog für $x \in V$. Dies zeigt die Inklusion.

Übungsaufgabe 1.4: Die Abbildung $f: \mathbb{N}_4 \to \mathbb{N}_4$ mit $\mathbb{N}_4 = \{0, 1, 2, 3, 4\}$ sei gegeben durch:

von
3

- 1. Ist f injektiv? Ist f surjektiv? (Jeweils mit Begründung.)
- 2. Geben Sie $(f \circ f) : \mathbb{N}_4 \to \mathbb{N}_4$ an:
- 3. Wie viele bijektive Abbildungen $g: \mathbb{N}_4 \to \mathbb{N}_4$ existieren? (Mit Erläuterung.)

Übungsaufgabe 1.5: Wir betrachten den Monoid $(\Sigma^*, \cdot, \lambda)$ aller Wörter des Alphabets Σ mit der Konkatenation · und dem leeren Wort λ . (Hinweis: Beachten Sie, dass $\lambda \notin \Sigma$ gilt!)

- 1. Bestimmen Sie $\Sigma^0 \cup \Sigma^1 \cup \Sigma^2$ für $\Sigma = \{a, b\}$.
- 2. Wie viele Wörter enthält Σ^m für festes m, wenn $|\Sigma| = n$ gilt? (Mit Erläuterungen.)
- 3. Wenn abermals $|\Sigma| = n$ gilt, wie viele Wörter enthält $\bigcup_{i=0}^{m} \Sigma^{i}$? (Mit Erläuterungen.)

Übungsaufgabe 1.6: Gegeben die formalen Sprachen $L_1 = \{0^i \mid i \in \mathbb{N}\}$ und $L_2 = \{1^i \mid i \in \mathbb{N}\}$ über dem Alphabet $\Sigma = \{0, 1\}$. Berechnen Sie:

- 1. $L_1 \cap \Sigma^*$
- 2. $(L_1 \cup L_2) \cap \Sigma^3$
- 3. $L_1 \cap L_2$
- 4. $L_1 \cup L_2$
- 5. $L_1 \cdot L_2$
- 6. $(L_1 \cdot \Sigma^*) \cup L_2$

Übungsaufgabe 1.7: Sei Σ ein Alphabet und $U, V, W \subseteq \Sigma^*$ beliebige Sprachen.

von 3

Beweisen oder widerlegen Sie folgende Gleichungen, indem Sie zwei Inklusionsbeziehungen beweisen oder ein Gegenbeispiel angeben.

- 1. $(U \cdot V) \cup W = (U \cup W) \cdot (V \cup W)$
- 2. $(U^*)^* = U^*$
- 3. $(U \cdot V)^* \cdot U = U \cdot (V \cdot U)^*$

Informationen und Unterlagen zur Veranstaltung unter:

http://www.informatik.uni-hamburg.de/WSV/teaching/vorlesungen/FGI1_SoSe13.shtml