

Matrix ALPS: Accelerated Low Rank and Sparse Matrix Reconstruction

FNSNF

Anastasios Kyrillidis Volkan Cevher

Laboratory for Information and Inference Systems (LIONS), EPFL

{anastasios.kyrillidis, volkan.cevher}@epfl.ch

Problem statement

PROBLEM. Given a linear operator $\mathcal{A}: \mathbb{R}^{m \times n} \to \mathbb{R}^p$ and a set of observations $\mathbf{y} \in \mathbb{R}^p$ ($p \ll m \times n$): $\mathbf{y} = \mathcal{A}(\mathbf{X}^*) + \varepsilon$, where $\mathbf{X}^* := \mathbf{L}^* + \mathbf{M}^* \in \mathbb{R}^{m \times n}$ is the superposition of a rank-k \mathbf{L}^* and a s-sparse \mathbf{M}^* component, find a minimizer such that:

$$\{\widehat{\mathbf{L}}, \widehat{\mathbf{M}}\} = \underset{\mathbf{L}, \mathbf{M}: \, \text{rank}(\mathbf{L}) \leq k, \, \|\mathbf{M}\|_{0} \leq s}{\operatorname{arg \, min}} \|\mathbf{y} - \mathbf{A}(\mathbf{L} + \mathbf{M})\|_{2}.$$

• Assumptions on A:

- 1. Sparse Restricted Isometry Property: $(1 \delta_s) \le \|\mathbf{A}(\mathbf{X})\|_2 / \|\mathbf{X}\|_F \le (1 + \delta_s), \ \forall \mathbf{X} \text{ s.t. } \|\mathbf{X}\|_0 \le s$,
- 2. Rank Restricted Isometry Property: $(1 \delta_k) \le \|\mathbf{A}(\mathbf{X})\|_2 / \|\mathbf{X}\|_F \le (1 + \delta_k), \ \forall \mathbf{X} \text{ s.t. } \text{rank}(\mathbf{X}) \le k.$

• Special problem instances:

- 1. Compressed sensing (CS).
- 2. Affine rank minimization (ARM).
- 3. Matrix Completion (MC).
- 4. Robust PCA (RPCA).

• Paper overview:

1. We provide better RIP guarantees compared to state-of-the-art methods.

 $y_{p \times 1}$

2. We introduce MATRIX ALPS, an accelerated, memory-based algorithm.

Previous work

	Convex-based	
Solution via	Convex relaxation $\ \cdot\ _* + \ \cdot\ _1,$	
Criteria example	$\min_{\ \mathbf{y} - \mathbf{A}(\mathbf{L} + \mathbf{M})\ _{2} \le \sigma} \ \mathbf{L}\ _{*} + \lambda \ \mathbf{M}\ _{1}$	
Algorithms	(S)PCP ^{1,2,3} , CPCP ^{1,2,3,4} , SVT ^{1,3} ,	
	Greedy-based	
Solution via	Non-convex projections,	
Criteria example	$\frac{\min_{rank(L) \leq k, \ \mathbf{M}\ _0 \leq s} \ \mathbf{y} - \mathcal{A}(L + \mathbf{M})\ _2^2}{SpaRCS^{1,2,3,4}, GoDec^{1,2}, SVP^{1,3}, \dots}$	
Algorithms	SpaRCS 1,2,3,4 , GoDec 1,2 , SVP 1,3 ,	
	Manifold-based	
Solution via	Manifold Trust regions, subspace iden-	
	tification,	
Criteria example	$\min_{rank(US) \leq k, \ \mathbf{M}\ _0 \leq s} \ \mathbf{y} - \mathcal{A}(US + M)\ _2^2$	
Algorithms	RTRMC ¹ , GROUSE ¹ , GRASTA ¹ ,	

¹MC, ²RPCA, ³ARM, ⁴handles CS data

- **SpaRCS** [1]: covers MC, ARM, RPCA problem cases, handles CS data and considers general \mathcal{A} satisfying sparse- and rank-RIP.
- [1] A. Waters, A. Sankaranarayanan, and R. Baraniuk, SpaRCS: Recovering low-rank and sparse matrices from CS measurements.

The SpaRCS algorithm

14: until $\|\mathbf{X}_i - \mathbf{X}_{i-1}\|_2 \le \eta \|\mathbf{X}_i\|_2$ or MaxIterations.

Improving SpaRCS THEOREM 1 Accuma A cati

THEOREM 1. Assume \mathcal{A} satisfies the sparse-RIP and rank-RIP for $\delta_{4s}(\mathcal{A}) \leq 0.075$, $\delta_{4k}(\mathcal{A}) \leq 0.04$ and $\delta_{2s+3k}(\mathcal{A}) \leq 0.07$. Then, SpaRCS satisfy:

 $\epsilon_{p \times 1}$

$$\|\mathbf{L}^* - \mathbf{L}_{i+1}\|_F \le \rho_1^{\mathcal{L}} \|\mathbf{L}^* - \mathbf{L}_i\|_F + \rho_1^{\mathcal{M}} \|\mathbf{M}^* - \mathbf{M}_i\|_F + \gamma_1 \|\boldsymbol{\varepsilon}\|_2$$
$$\|\mathbf{M}^* - \mathbf{M}_{i+1}\|_F \le \rho_2^{\mathcal{L}} \|\mathbf{L}^* - \mathbf{L}_i\|_F + \rho_2^{\mathcal{M}} \|\mathbf{M}^* - \mathbf{M}_i\|_F + \gamma_2 \|\boldsymbol{\varepsilon}\|_2$$

where
$$\rho_1^{\mathcal{L}} = 0.16$$
, $\rho_2^{\mathcal{L}} = 0.34$, $\rho_1^{\mathcal{M}} = 0.34$, $\rho_2^{\mathcal{M}} = 0.14$, $\gamma_1 = 4.36$ and, $\gamma_2 = 4.45$.

- SpaRCS: $\rho_1^{\mathcal{L}} = 0.48$, $\rho_2^{\mathcal{L}} = 0.47$, $\rho_1^{\mathcal{M}} = 0.47$, $\rho_2^{\mathcal{M}} = 0.32$, $\gamma_1 = 6.68$ and, $\gamma_2 = 6.88$.
- CAVEAT: holds iff SpaRCS computes a low-rank + sparse decomposition at each iteration.
- But: Under mild conditions, a stationary point to a non-convex problem can always be obtained.

The accelerated MATRIX ALPS algorithm and its guarantees

- 1: **Input:** y, A, A^* , Tolerance η , MaxIterations, τ_i , $\forall i$ 2: Initialize: $\{\mathbf{Q}_0, \mathbf{M}_0, \mathbf{L}_0\} \leftarrow 0, \{\mathcal{L}_0, \mathcal{M}_0\} \leftarrow \{\emptyset\}, i \leftarrow 0$ 3: repeat 4: Low rank matrix estimation: $\mathcal{D}_i^{\mathcal{L}} \leftarrow \text{ortho} \left(\mathcal{P}_k(\nabla f(\mathbf{Q}_i)) \right)$ $\mathcal{S}_i^{\mathcal{L}} \leftarrow \mathcal{D}_i^{\mathcal{L}} \cup \mathcal{L}_i$ 7: $\mathbf{V}_{i}^{\mathcal{L}} \leftarrow \mathbf{Q}_{i}^{\mathcal{L}} - \frac{\mu_{i}^{\mathcal{L}}}{2} \mathcal{P}_{\mathcal{S}_{i}^{\mathcal{L}}} \nabla f(\mathbf{Q}_{i})$ $\mathbf{L}_{i+1} \leftarrow \mathcal{P}_k(\mathbf{V}_i^{\mathcal{L}}) \text{ with } \mathcal{L}_{i+1} \leftarrow \text{ortho } (\mathbf{L}_{i+1})$ $\mathbf{Q}_{i+1}^{\mathcal{L}} \leftarrow \mathbf{L}_{i+1} + \tau_i (\mathbf{L}_{i+1} - \mathbf{L}_i)$ $\mathbf{Q}_{i+1}^{\mathcal{L}} \leftarrow \mathbf{Q}_{i+1}^{\mathcal{L}} + \mathbf{Q}_{i}^{\mathcal{M}}$ **Sparse matrix estimation:** $\mathcal{D}_i^{\mathcal{M}} \leftarrow \text{supp}\left(\mathcal{P}_{\Sigma_s}(\nabla f(\mathbf{Q}_{i+1}))\right)$ $\mathcal{S}_i^{\mathcal{M}} \leftarrow \mathcal{D}_i^{\mathcal{M}} \cup \mathcal{M}_i$ $(\mathbf{V}_i^{\mathcal{M}})_{\mathcal{S}_i^{\mathcal{M}}} \leftarrow (\mathbf{Q}_i^{\mathcal{M}})_{\mathcal{S}_i^{\mathcal{M}}} - \frac{\mu_i^{\mathcal{M}}}{2} (\nabla f(\mathbf{Q}_{i+1}))_{\mathcal{S}_i^{\mathcal{M}}}$ $\mathbf{M}_{i+1} \leftarrow \mathcal{P}_{\Sigma_s}(\mathbf{V}_i^{\mathcal{M}}) \text{ with } \mathcal{M}_{i+1} \leftarrow \text{supp } (\mathbf{M}_{i+1})$ $\mathbf{Q}_{i+1}^{\mathcal{M}} \leftarrow \mathbf{M}_{i+1} + \tau_i (\mathbf{M}_{i+1} - \mathbf{M}_i)$ $\mathbf{Q}_{i+1} \leftarrow \mathbf{Q}_{i+1}^{\mathcal{L}} + \mathbf{Q}_{i+1}^{\mathcal{M}}$ 18: $i \leftarrow i + 1$ 19: until $\|\mathbf{X}_i - \mathbf{X}_{i-1}\|_2 \le \eta \|\mathbf{X}_i\|_2$ or MaxIterations.
- THEOREM 2. Assume:
 - $\mathcal{A}: \mathbb{R}^{m \times n}$ satisfies the rank-RIP and sparse-RIP with constants $\delta_{4k}(\mathcal{A}) \leq 0.09$ and $\delta_{4s}(\mathcal{A}) \leq 0.095$.
 - Noiseless case: $\mathbf{y} = \mathbf{A}(\mathbf{X}^*)$ with constant momentum term $\tau := \tau_i = 1/4, \ \forall i.$

Then, MATRIX ALPS satisfies the following second-order linear system:

. . .

$$\mathbf{x}(i+1) \leq (1+\tau) \Delta \mathbf{x}(i) + \tau \Delta \mathbf{x}(i-1), \text{ where } \mathbf{x}(i) := \begin{bmatrix} \left\| \mathbf{L}_i - \mathbf{L}^* \right\|_F \\ \left\| \mathbf{M}_i - \mathbf{M}^* \right\|_F \end{bmatrix} \text{ and } \Delta := \begin{bmatrix} \Delta_{11} & \Delta_{12} \\ \Delta_{21} & \Delta_{22} \end{bmatrix}$$

depends on $\delta_{4k}(\mathcal{A})$ and $\delta_{4s}(\mathcal{A})$. Furthermore, the following first-order linear system holds:

$$\mathbf{w}(i+1) \le \underbrace{\begin{bmatrix} (1+\tau)\boldsymbol{\Delta} & \tau\boldsymbol{\Delta} \\ I & \mathbf{0} \end{bmatrix}^{i}}_{\widehat{\boldsymbol{\Delta}}} \mathbf{w}(0),$$

for $\mathbf{w}(i) := [\mathbf{x}(i+1) \ \mathbf{x}(i)]^T$. We observe that $\lim_{i \to \infty} \mathbf{w}(i) = \mathbf{0}$ since $|\lambda_j(\widehat{\Delta})| \le 1$, $\forall j$.

Synthetic and real data results

$m \times n$	k	Relative Error (10^{-3})	Time (sec)
200×400	5	0.134/0.18/0.002/0.78/0.04	2.26/0.27/0.95/0.36/ 0.21
200×400	5	0.127/0.164/0.01/0.76/0.05	2.16/0.26/0.96/0.36/ 0.23
200×400	10	6.7/0.5/0.01/1.2/0.1	36.38/0.45/1.13/0.64/ 0.37
200×400	15	150/0.93/340/2.1/0.15	98.12/0.82/1.29/1.08/ 0.68
1000×5000	10	-/0.09/0.008/0.34/0.03	-/10.8/27.6/10.2/ 5.5
1000×5000	50	-/0.2/0.002/0.73/0.11	-/23.4/171.37/35.5/17.2
1000×5000	120	-/0.52/0.07/1.22/0.077	-/139/501/228/ 101

• Comparison table for the Matrix Completion problem. Table depicts median values over 50 Monte-Carlo iterations. The list of algorithms includes: SpaRCS / ALM / GROUSE / SVP / MATRIX ALPS.

• Background subtraction in video sequence. Median execution times over 10 Monte-Carlo iterations. GoDec: 34.8 sec—MATRIX ALPS: 15.8 sec.