JHD12864A

CHARACTERISTICS

Display Content: 128*64 dots

Driving Mode: 1/64D Available Types:

STN (Yellow Green, Grey, B/W) Reflective with El or Led

EI/100VAC,400HZ

LED/4.2VDC

APPLICATION CIRCUIT

Display Content

LIMIT PARAMETER

PARAMETER	Symbol	Testing	Standard	UINT		
PARAWETER	Symbol	Criteria	MIN	MAX	UINI	
Supply Voltage	V _{DD} -V _{SS}		0	6.5	V	
LCD Voltage	V _{DD} - V ₀	Ta=25	0	18.0	V	
Input Voltage	V ₁		0	V_{DD}	V	

ELECTRIC PARAMETER

PARAMETER			Symbol	Testing	Sta	UNIT		
			Symbol	Criteia	MIN Typical		MAX	ONTI
	LOG	IC	V_{DD} - V_{SS}	-	4.75	5.0	5.25	V
Voltage	LCI	D	V_{DD} - V_{0}	-	4.5	5.5	6.5	V
Current	LOG	IC	I _{DD}	-	-	2.5	-	mA
		LCD	I _{EE}	-	-	2.0	-	mA
1 OD D:	\/_1	4		0 ° C	-	6.2	•	V
LCD Dri	ve voi commen	•		25 ° C	-	5.5	-	V
(10	COMMEN	iu)		40 ° C	-	4.8	-	V
Input		'H' Level	V _{IH}	High		-	$V_{\scriptscriptstyle DD}$	V
Voltage		' L ' Leve I	V _{IL}	Low		-	0.3V _{DD}	V

PIN CONFIGURATION

PIN	SYMBOL	LEVEL	INSTRUCTION
1	VSS	0V	Ground contact (GND)
2	VDD	5.0V	Power Supply Voltage
3	V0	LCD Drive Voltage	Adjust Contrast
4	D/I	H/L	H:DATA; L:COMMAND
5	R/W	H/L	H:READ; L:WRITE
6	E	H,H L	IC select signal
7	DB0	H/L	DATA O
8	DB1	Н	DATA 1
9	DB2	Ĺ	DATA 2

10	DB3	H/L	DATA 3
11	DB4	H/L	DATA 4
12	DB5	H/L	DATA 5
13	DB6	H/L	DATA 6
14	DB7	H/L	DATA 7
15	CS1	H/L	Select signal 1, High effective
16	CS2	H/L	Select signal 2, High effective
17	RES	H/L	Reset signal, low effective
18	V _{EE}	-10.0V	LCD Drive negative voltage
19	LED+		Back LED Anode
20	LED-		Back LED Negative

AC Characteristics $(V_{dd}=5V \pm 10\%, Vss=0V Ta=25)$

MPU Interface

Characteristic	Symbol	Min	TYPE	Max	Unit
E cycle	Tcyc	1000			ns
E high level width	TwhE	450			ns
E low level width	TwIE	450			ns
E rise time	Tr			25	ns
E fail time	Tf			25	ns
Address set-up time	Tas	140			ns
Address hold time	Tah	10			ns
Data set-up time	Tdsw	200			ns
Data delay time	Tddr			320	ns
Data hold time(write)	Tdhw	10			ns
Data hold time(read)	Tdhr	20			ns

MPU Write Timing

MPU Read Timing

OPERATING PRINCIPLES & METHODS

I/O Buffer

Input buffer controls the status between the enable and disable of chip. Unless the CS1 or

CS2 is in active mode, input or out of data and instruction do not execute. Therefore internal state is not changed But RSTB can operate regardless of CS1 and CS2.

Input Register

Input register is provided to interface with MPU which is different operating frequency. Input register stores the data temporarily before writing it into display data RAM.

When CS1 or CS2 is in the active mode, R/W and RS select the input register. The data from MPU is written into input register and then write it into display data RAM. Data is latched when falling of the E signal and written automatically into the display data RAM by internal operation. Output Register

Output register stores the data temporarily from display data RAM when CS1 or CS2 is in active mode and

R/W and RS=H. Stored data in display data RAM is latched in output register. When CS1 or CS2 is in active mode and R/W=H, RS=L, status data(busy check) can be read out.

To read the contents of display data RAM, twice access of read instruction is needed. In first access, data in display data RAM is latched into output register. In second access, MPU can read data which is latched. That is to read the data in display data RAM, it needs dummy read. But status read does not need dummy read.

RS	R/W	Funct i on
0	0	Instruction
	1	Status read (busy check)

1	0	Data write (from input register to display data RAM)
	1	Data read (from to display data RAM to
		output register)

Reset

System reset can be initialized by setting RSTB terminal at low level when turning power on, receiving

instruction from MPU. When RSTB becomes low, following procedure is occurred.

-Display off

-Display start line register become set by 0. (Z-address 0)

While RSTB is low level, no instruction except status read can be accepted. Reset status appears ad DB4. After DB4 is low, any instruction can be accepted.

The conditions of power supply at initial power up are shown in table 1.

Table 1. Power Supply Initial Conditions

Table 1. Foliar capping initial conditions									
Item	Symbol	Min	Type	Max	Unit				
Reset	tRST	1.0			us				
time									
Rise time	tr			200	ns				

Busy Flag

Busy flag indicates that KS0108B is operating or not operating. When busy flag is high, KS0108B is in

internal operating. When busy flag is low, KS0108B can accept the data or instruction.DB7 indicates busy flag of the KS0108B.

Display ON/OFF Flip-Flop

The display on/off flip-flop makes on/off the liquid crystal display. When flop-flop is reset(logical low).

selective voltage or non selective voltage appears on segment output terminals. When flip-flop is set (logical high). non selective voltage appears on segment output terminals regardless of display RAM data.

The display on/off flip-flop can change status by instruction. The display data at all segment disappear while

RSTB is low. The status of the flop-flop is output to DB5 by read instruction.

X page Register

X page register designates page of the internal display data RAM. It has not count function. An

address is set by instruction.

Y Address Counter

Y address counter designates address of the internal display data RAM. An address is set by

instruction and is increased by 1 automatically by read or write operations of display data.

Display Data Ram

Display data RAM stores a display data for liquid crystal display. To express on state of dot matrix of liquid

crystal display. write data 1. The other way. off state writes 0.

Display Start Line Register

The display start line register indicates address of display data RAM to display top line of liquid crystal

display. Bit data (DBO:5) of the display start line set instructions is latched in display start line register. It is used

for scrolling of the liquid crystal display screen.

Display Control Instruction

The display control instructions control the internal state of the KS0108B. Instruction is received from MPU

to KS0108B for the display control. The following table shows various instructions.

Instructio	R	R/	DB	DB	DB	DB	DB	DB	DB	DB	Function
n	S	W	7	6	5	4	3	2	1	0	
Display	0	0	0	0	1	1	1	1	1	0/	Controls the
ON/OFF										1	display on or
											off.
											Internal
											status and
											display RAM
											data are not
											affected.
											0:0FF, 1:0N
Set	0	0	0	1		Υa	ddres	ss(0-	63)		Sets the Y
Address											address in
											the Y address
											counter.
Set Page	0	0	1	0	1	1	1		Page		Sets the X

/V									(0.7)		address at
(X address)					(0~7)					address at the X address	
addiess)											register.
Display	0	0	1	1		Disp	lav s	tart	line		Indicates the
Start Line			'	'		БТОР	-	63)	11110		display data
							(•	,			RAM displayed
											at the top of
											the screen
Status	0	1	В	0	0	R	0	0	0	0	Read status.
Read			U		N	Е					Busy
			S		/	S					0 :Ready
			Υ		0	Е					
					F	Т					1 :In
					F						operation
											ON/OF
											0 :Display ON
											ON
											1 :Display
											OFF
											RESET
											0 :Normal
											1 :Reset
Write	1	0			1	Nrite	Data	a			Writes
Display											data(DB0:7)
Data											into display
											data RAM.
											After writing
											instruction, Y address is
											increased by
											1
											automaticall
										у.	
Read	1	1	Read Data						Reads		
Display											data(DB0:7)
Data											from display
											data RAM to
											the data bus.

9

RESET

 $\overline{\text{RD}}$

Give a Example (Only Reference)

*Different model have different with LCD negative and back light. Different model may change connect order.

11 30

29

Program Example (Only Reference)

RXD

TXD

ALE/P

PSEN

```
#include <reg51.h>
#include <intrins.h>
typedef unsigned char uchar;
typedef unsigned int
                     uint;
sbit L_DI
           = P2^0;
sbit L_RW
           = P2^1;
sbit L E = P2^4;
sbit L_CS1 = P2^6;
sbit L_CS2 = P2^7;
sbit L SET = P2^3;
sbit TEST
           = P3^5;
float abc:
uchar code X1[] = {
   0x30,0x50,0xd0,0x90,0xf0,0x30,0x80,0x60,0x3c,0xe8,0x20,0xa0,0xe0,
0x70,0x00,0x00,
   0x04,0x06,0x03,0x11,0x13,0x12,0x18,0x0c,0x07,0x01,0x03,0x06,0x0c,
0x1c, 0x18, 0x18
       }; /*欢*/
uchar code X2[] = {
   0x40,0x58,0x58,0xd0,0x10,0xf8,0x98,0x08,0x88,0xf8,0xf0,0x10,0xf8,
```

```
0x70,0x00,0x00,
   0x0c,0x04,0x04,0x07,0x04,0x05,0x0d,0x0d,0x08,0x1f,0x1b,0x19,0x38,
0x38,0x18,0x18
       }: /*迎*/
uchar code X3[] = {
   0x30,0x30,0xf8,0xf8,0x08,0x10,0xd0,0x50,0x50,0xfc,0xfc,0x50,0xd0,
0xf0,0x10,0x00,
   0x00,0x00,0x1f,0x1f,0x1f,0x10,0x10,0x13,0x1b,0x0f,0x07,0x05,0x0d,0x09,
0x19,0x38,0x18
       }; /*使*/
uchar code X4[] = {
   0x00,0x00,0x00,0x00,0xfc,0xf8,0x48,0x48,0x48,0xf8,0xf8,0x48,0x48,
0x48,0xfc,0xf8,
   0x10,0x10,0x18,0x1e,0x0f,0x01,0x01,0x01,0x01,0x3f,0x1f,0x01,0x01,
0x01,0x3f,0x3f
       }; /*用*/
uchar code X5[] = {
   0x18,0xfc,0x08,0x48,0x48,0xb8,0xd8,0x58,0xe8,0xb8,0xb8,0x08,0x08,
0xf8, 0xf8, 0x00,
   0x00,0x1f,0x11,0x11,0x11,0x14,0x15,0x16,0x16,0x10,0x11,0x11,0x11,
0x3f,0x1f,0x00
      }; /*图*/
uchar code X6[] = {
   0xc0,0xc8,0xc8,0xf8,0xf8,0xc8,0xf8,0xf8,0xc8,0xc8,0xc8,0x00,0x10,0x90,
0xd8,0x48,0x48,
   0x18, 0x18, 0x0c, 0x0f, 0x03, 0x00, 0x1f, 0x1f, 0x10, 0x10, 0x11, 0x19, 0x18,
0x0c, 0x04, 0x06
       }; /*形*/
uchar code X7[] = {
   0x00,0x00,0x00,0xe0,0xe0,0x40,0x40,0x7c,0x7c,0x58,0x58,0x58,0x58,0xd0,
0xd0,0x00,0x00,
   0x10,0x18,0x08,0x0d,0x03,0x19,0x0d,0x01,0x01,0x0d,0x19,0x01,0x07,
0x0c, 0x18, 0x38
      }; /*点*/
uchar code X8[] = {
   0x08,0xf8,0xf8,0x48,0xe8,0x98,0x90,0xd8,0xf0,0xbc,0xfc,0xd0,0x90,
0x90.0x90.0x10.
   0x00,0x3f,0x1f,0x02,0x03,0x05,0x06,0x07,0x07,0x06,0x3f,0x3f,0x06,
0x06,0x04,0x04
      }: /*阵*/
uchar code X9[] = {
   0x10,0x08,0x1c,0xfe,0x00,0x00,0x00,0x00,0x00,0x30,0x08,0x04,0x04,
0x98,0xf0,0x00,
```

```
0x83,0xc1,0x00
                          }; /*12*/
uchar code X10[] = {
            0x00,0x78,0xc8,0x84,0x04,0x84,0xf8,0x00,0x00,0x80,0x80,0x00,0x00
0x00,0x80,0x80,
            0x00,0x78,0x84,0x83,0x88,0x8e,0xfc,0x40,0x00,0x80,0x63,0x17,0x1c,
0xf2,0xc1,0x80
                         }; /*8x*/
uchar code X11[] = {
            0x00,0x80,0xe0,0x10,0x08,0x04,0x04,0x00,0x00,0x00,0x80,0x60,0x10,
0xf8.0x00.0x00.
            0x00,0x7f,0xc2,0x81,0x81,0x81,0x7f,0x18,0x00,0x0e,0x09,0x08,0x08,
0xff,0x08,0x08
                         }; /*64*/
uchar code X12[] = {
            0x55,0xaa,0x55,0xaa,0x55,0xaa,0x55,0xaa,0x55,0xaa,0x55,0xaa,0x55,
0xaa, 0x55, 0xaa,
            0xaa, 0x55, 0xaa
                         }; /*....*/
uchar code X13[] = {
            Oxff, 
Oxff, Oxff, Oxff,
            Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 
0xff,0xff,0xff
                         }; /*全黑*/
uchar code X14[] = {
            0x00,0x00,0x00,
            0x00,0x00,0x00
                         }; /*全白*/
uchar code X15[]={
            0x01,0x01,0x01,
            0x00.0x00.0x00
                          }; /*上边*/
uchar code X16[]={
            0x00,0x00,0x00,
             0x80,0x80,0x80
                         }; /*下边*/
```

```
uchar code X17[]={
                0x00,0x00,0x00,
                0x00,0x00,0x00
                                  }; /*左边*/
uchar code X18[]={
                0x00,0x00,0xff
                0x00,0x00,0xff
                                  }; /*右边*/
uchar code X19[]={
                0xff, 0x01, 0x01
0x01,0x01,0x01,
                0x00,0x00,0x00
                                  }; /*左上*/
uchar code X20[]={
                 0x01, 0x01
0x01,0x01,0xff,
                0x00,0x00,0xff
                                 }; /*右上*/
uchar code X21[]={
                0x00,0x00,0x00
                0x80,0x80,0x80
                                  }; /*左下*/
uchar code X22[]={
                0x00,0x00,0xff,
                0x80, 0x80
0x80,0x80,0xff
                                  }; /*右下*/
uchar code X23[]={
                 0x00,0x00,0x00,
                0x00,0x00,0x00
                                 }; /*空白*/
#pragma REGISTERBANK(0)
void initcomm(void)
```

```
{
    PCON = 0x80; TMOD = 0X21; SCON = 0X50;
    TH1 = 0XFa; TL1 = 0XFa; TR1 = 1; ES = 1;
    THO = 0; TLO = 0; TRO = 1; ETO = 1;
    EA = 0;
}
void delay(void)
    uchar i, j;
    abc = 0.1*5;
    for (i = 0; i != 0xff; i++)
        for (j = 0; j != 0xff; j++);
}
void LCD_C_D(bit flag,uchar Idata) /*flag=1 con flag=0 data*/
{
    uchar data i;
    L_DI = !flag;
                  L_E = 0; L_RW = 0; P0 = Idata;
    _nop_();
    L_E = 1;
    _nop_(); _nop_();
    L_E = 0; L_RW = 1; L_DI = 1;
    for (i = 0; i < 10; i++);
}
void dis_one_zi(uchar x_add,uchar y_add,uchar code *po)
{
    uchar i, j, w;
    j = x_add^2+0xb8;
    w = (y_add < 4 ? y_add : y_add-4)*16+0x40;
    L_CS1 = (y_add < 4);
    L_CS2 = !(y_add < 4);
    LCD_C_D(1, j);
    LCD_C_D(1,w);
    for (i = 0; i < 32; i++)
    {
       if (i == 16)
        {
            LCD_C_D(1, j+1);
            LCD_C_D(1,w);
        LCD_C_D(0, *po++);
    L_CS1 = L_CS2 = 0;
}
```

```
void CLRLCD(uchar number)
{
    uchar data i,j;
    L_CS1 = L_CS2 = 1;
    for (i = 0xb8; i < 0xc0; i++)
    {
        LCD_C_D(1, i);
        LCD_C_D(1,0X40);
        for (j = 0; j < 0x40; j++)
            LCD_C_D(0, number);
    }
    L_CS1 = L_CS2 = 0;
}
void main(void) using 0
{
    uchar data i,j,number;
    uchar code *p;
    initcomm();
    L_SET = 0;
    for (j = 0; j != 0xff; j++);
    L_SET = 1;
    for (j = 0; j != 0xff; j++);
    LCD_C_D(1,0X3E); /**/
    LCD_C_D(1,0XC0); /**/
    LCD_C_D(1,0X3F); /**/
    CLRLCD(0);
    while(1)
    {
        CLRLCD(0);
   LCD_C_D(1,0X3E);
   p=X15;/*上下左右*/
       for (number=1;number<7;number++)</pre>
           dis_one_zi(0,number,p);
                                            }
   p = X16;
       for (number=1;number<7;number++)</pre>
           dis_one_zi(3,number,p);
                                            }
   p = X17;
       for (number=1;number<3;number++)</pre>
           dis_one_zi(number,0,p);
                                            }
   p = X18;
       for (number=1;number<3;number++)</pre>
       { dis_one_zi(number,7,p);
                                            }
   /*四个角*/
```

```
p=X19; dis_one_zi(0,0,p);
p=X20; dis_one_zi(0,7,p);
p=X21; dis_one_zi(3,0,p);
p=X22; dis_one_zi(3,7,p);
/*欢迎使用*/
    p=X1; dis_one_zi(1,1,p);
p=X2; dis_one_zi(1,2,p);
p=X3; dis_one_zi(1,3,p);
p=X4; dis_one_zi(1,4,p);
/*图形点阵*/
p=X5; dis_one_zi(2,5,p);
p=X6; dis_one_zi(2,6,p);
p=X7; dis_one_zi(1,5,p);
p=X8; dis_one_zi(1,6,p);
/*128X64*/
p=X9; dis_one_zi(2,1,p);
p=X10; dis_one_zi(2,2,p);
p=X11; dis_one_zi(2,3,p);
p=X23; dis_one_zi(2,4,p);
LCD_C_D(1,0X3F);
    delay();
                    delay();
CLRLCD(0);
LCD_C_D(1,0X3E);
p = X12;
   for (number=0;number<4;number++)</pre>
      for (i = 0; i < 8; i++)
          dis_one_zi(number,i,p); }
LCD_C_D(1,0X3F);
delay();
                delay();
CLRLCD(0);
LCD_C_D(1,0X3E);
p = X13;
   for (number=0;number<4;number++)</pre>
      for (i = 0; i < 8; i++)
          dis_one_zi(number,i,p); }
LCD_C_D(1,0X3F);
delay();
                delay();
CLRLCD(0);
}
```

www.agelectronica.com www.agelectronica.com www.agelectronica.com www.agelectronica.com

}