

Tarallo: An End-to-End Framework for Malware Behavior Obfuscation

Authors: Gabriele Digregorio, Salvatore Maccarrone

Advisor: Prof. Michele Carminati

Co-advisor: Mario D'Onghia Academic Year: 2021-22

Evade API call sequence-based machine learning malware classifiers.

Next generation anti-malware are based on these classifiers

Improve defense mechanisms

Adversarial Machine Learning

Adversarial machine learning techniques in the malware domain

From feature representation to executable domain

Functionality preservation

Approach

Evading Detection

Change dynamic apparent behavior

Evading Detection

Feature Space Mapping

Adversarial Machine Learning Strategy

Jacobian Discrete Approximation

Input API Call Sequence Heatmap

API M
API B
API C

0.32

0.57

0.45

0.63

Prediction score:

Modifying Dynamic Apparent Behavior

Patching PE Files

Hijacking Logic Location

Hijack Logic

Jump Table Entry 1 Jump Table Entry 2 Jump Table Entry 3 .added Hijacking Logic Code

Experiments

Experiments - Goals

Evasion effectiveness

Overhead Comparison

Functionality preservation

Experiments - Evasion Effectiveness

• Feature level attack

• End-to-end attack

Experiments - Functionality Preservation

Feature Level Attack Results

Overhead limit	20%	50%	90%
Our Approach	0.9742	0.9841	0.9904
Rosenberg et al.	0.267	0.3674	0.9535

End-To-End Attack Results

Injectable APIs	1%	10%	20%
Available samples	1611	670	198
Evading samples	1016	498	150
Ratio	0.64	0.74	0.76

Malware samples with preserved functionalities: **89**%

Conclusions

Evade API call sequence-based machine learning malware classifiers.

Novel machine learning attack

Novel patching strategy

Black-Box Adversarial ML Attack

New Countermeasures

Thank You For Your Attention

PE Dynamic Linking

