

COPIE INTERNE 21/08/2025

Dr LEFRANC FLORENCE HOPITAL ERASME SERVICE DE NEUROCHIRURGIE

Prescripteur: Dr LEFRANC FLORENCE

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale

Dr Nicolas de Saint Aubain
Pr Nicky D'Haene
Dr Maria Gomez Galdon
Dr Chirine Khaled
Pr Denis Larsimont
Pr Laetitia Lebrun
Dr Calliope Maris
Pr Jean-Christophe Noël
Dr Anne-Laure Trépant
Dr Marie Van Eycken
Pr Laurine Verset

Consultant (e) s

Dr Sarah Bouri Dr Xavier Catteau Dr Roland de Wind Dr Marie-Lucie Racu Dr Valérie Segers Dr Anne Theunis Dr Marie-Paule Van Craynest

Secrétariat Médical

T. +32 (0)2 541 73 23 +32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction

T. +32 (0)2 555 31 15 Mme Kathia El Yassini Kathia.elyassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : EXAMEN : 25EM01663

Prélevé le 23/04/2025 à 23/04/2025

Reçu le 28/04/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE VARIANTS DANS 39 GENES IMPLIQUES DANS LES GLIOMES ET RECHERCHE DE CODELETION 1p19q

(CLINICAL GLIOMA PANEL V2)

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I. Renseignements anatomopathologiques

N° du prélèvement : 25EH05805-IO 04

Date du prélèvement : 23/04/2025

Origine du prélèvement : Erasme

Type de prélèvement : Tumeur gliale

II. Evaluation de l'échantillon

- % de cellules tumorales : 30%

- Qualité du séquençage : Optimale (coverage moyen > 1000x)

Les exons à considérer comme non contributifs sont détaillés dans le tableau ci-dessous (point III).

- Commentaires : /

III. Méthodologie (effectué par : THMA, MAGU)

- Extraction ADN à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.
- Détection par « Next Generation Sequencing » (sur Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) de variants dans 39 gènes liés aux tumeurs cérébrales :

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
ACVR1	NM_001105	6-11	7
ATRX	NM 00489	1-35 (whole CDS)	9,11,16,28,29
BRAF	NM_004333	7, 10, 11, 12, 15	
CDK4	NM_000075	1-8 (whole CDS)	7
CDK6	NM_001259	2-8 (whole CDS)	
CDKN2A	NM_000077 NM_004936	1-3 (whole CDS)	1
CDKN2B	et NM 078487	1-2 (whole CDS)	
EGFR	NM_005228	1-28 (whole CDS)	
FGFR1	NM_23110	12, 14-16	15
FGFR2	NM_000141	5-7, 9-10, 12, 14	
FGFR3	NM_00142	7, 9, 10, 13-16	
H3F3A (=H3.3)	NM_002107	2	
H3F3B	NM_005324	2-4 (whole CDS)	
HIST1H3B (=H3C2)	NM_003537	1	
HIST1H3C (=H3C3)	NM_003531	1	
HRAS	NM_005343	2-4 (whole CDS)	
IDH1	NM_005896	4	
IDH2	NM 002168	4	
KRAS	NM_033360	2-4 (whole CDS)	
MDM2	NM 002392	1-11 (whole CDS)	1

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
MDM4	NM_002393	2-11 (whole CDS)	2
MYCN	NM 1293228	2-3 (whole CDS)	2
NF1	NM_001042492	1-58 (whole CDS)	7,13,15,33
NF2	NM_00268	1-16 (whole CDS)	
NRAS	NM_002524	2-4 (whole CDS)	
PDGFRA	NM_006206	5-12, 14-15, 18, 21-23	
PIK3CA	NM 006218	1-20 (whole CDS)	
PIK3R1	NM_181523	2-16 (whole CDS)	11
POLD1	NM_001256849	1-27 (whole CDS)	4,22,24
POLE	NM_006231	1-49 (whole CDS)	36
PPM1D	NM_003620	1-6 (whole CDS)	1
PRKCA	NM-002737	1-17 (whole CDS)	
PTEN	NM_00314	1-9 (whole CDS)	
PTPN11	NM_02834	1-15 (whole CDS)	
RB1	NM_00321	1-27 (whole CDS)	1,4,15,16,22
TERT	NM_001193376	Promoteur	
TP53	NM_00546	1-11 (whole CDS)	4,9
TSC1	NM 000368	3-23 (whole CDS)	
TSC2	NM 000548	2-42 (whole CDS)	14,31,34

^{*} Un coverage < 250x induit une perte de sensibilité et de spécificité de la méthode.

- Sensibilité : Seuls les variants avec une fréquence supérieure à 5% et un variant coverage >30x (sauf promoteur de TERT : variant coverage >20x) sont rapportés.
- Détection par « Next Generation Sequencing » (Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) d'une perte d'hétérozygotie (LOH) 1p et 19q, sur base de 30 SNP sur le chromosome 1 et 25 SNP sur le chromosome 19. Sensibilité : la technique utilisée détecte la LOH 1p et 19q si l'échantillon contient > 40% de cellules tumorales.

IV. Résultats

a. Liste des variants détectés :

Variants pathogéniques ou présumés pathogéniques :

Gène	Exon	Variant	Coverage	% d'ADN		
				muté		
Variants avec impact clinique avéré						
IDH2	4	p.R172W	1371	16%		
Variants avec impact clinique potentiel						
TERT	Promoteur	chr5:1295250C>T	219	16%		
		(C250T)				

Variants de significations biologiques et cliniques indéterminées :

Néant

b. Statut 1p19q:

Qualité de l'échantillon : N/A

Résultat : analyse non contributive car la limite de détection est établie à minimum 40% de cellules tumorales pour la détermination du statut 1p19q.

V. Discussion

Les mutations des gènes IDH sont fréquentes dans les gliomes diffus de grade 2 et 3. Le gène IDH2 est muté dans 1.7% des cas de gliomes. Les mutations du gène IDH2 représentent 5 à 10% de toutes les mutations des gènes IDH dans les gliomes et touchent le codon 172, avec les mêmes conséquences fonctionnelles que les mutations touchant le codon R132 du gène IDH1. La FDA a approuvé l'utilisation du vorasidenib pour le traitement des patients de plus de 12 ans avec un astrocytome ou un oligodendrogliome avec une mutation des gènes IDH1/2.

cancer.sanger.ac.uk/cosmic mycancergenome.org Dang, Jin, and Su 2010

https://tumourclassification.iarc.who.int/chaptercontent/45

www.oncokb.org

Les mutations au niveau du promoteur de TERT sont fréquentes dans les oligodendrogliomes et les glioblastomes. Leur impact pronostique est controversé.

VI. Conclusion : (MAGU le 09/05/2025)

Présence de la mutation R172W du gène IDH2. Présence d'une mutation dans le promoteur du gène TERT.

Analyse non contributive pour la détermination du statut 1p19q.

Pour toute information complémentaire, veuillez nous contacter au 02/555.85.08 ou par mail Biomol.AnaPath@erasme.ulb.ac.be

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUB:

https://www.hubruxelles.be/sites/default/files/2024-03-04_demande%20analyse%20anapath%20cytologie%20v3.pdf https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11%20Demande%20de%20biologie%20mol%C3%A9culaire-IPD%20v1.doc

Dr N D'HAENE

Dr SALMON ISABELLE