Package 'FuzzyR'

October 12, 2022

Type Package
Title Fuzzy Logic Toolkit for R
Version 2.3.2
Depends R (>= 3.6.0)
Imports splines, shiny, plyr, grid, stats, graphics
Description Design and simulate fuzzy logic systems using Type-1 and Interval Type-2 Fuzzy Logic. This toolkit includes with graphical user interface (GUI) and an adaptive neurofuzzy inference system (ANFIS). This toolkit is a continuation from the previous package ('FuzzyToolkitUoN'). Produced by the Intelligent Modelling & Analysis Group (IMA) and Lab for UnCertainty In Data and decision making (LUCID), University of Nottingham. A big thank you to the many people who have contributed to the development/evaluation of the toolbox. Please cite the toolbox and the corresponding paper <doi:10.1109 fuzz48607.2020.9177780=""> when using it. More related papers can be found in the NEWS.</doi:10.1109>
License GPL (>= 2)
<pre>URL https://www.lucidresearch.org/</pre>
RoxygenNote 7.1.1
NeedsCompilation no
Encoding UTF-8
Repository CRAN
Date/Publication 2021-05-19 09:00:05 UTC
Author Chao Chen [aut, cre], Jon Garibaldi [aut], Tajul Razak [aut]
Maintainer Chao Chen <fuzzyr@cs.nott.ac.uk></fuzzyr@cs.nott.ac.uk>
R topics documented:
addmf

addvar	5
anfis.builder	6
anfis.dE.dO1	7
anfis.dE.dO2	
anfis.dE.dO3	
anfis.dE.dO4	. 9
anfis.dE.dO5	10
anfis.dE.dP1	. 10
anfis.dE.dP1.gbellmf	. 11
anfis.dE.dP1.it2gbellmf	
anfis.dE.dP4	
anfis.dMF.dP.gbellmf	
anfis.dO2.dO1	
anfis.dO3.dO2	
anfis.dO4.dO3	
anfis.dO5.dO4	
anfis.eval	
anfis.L1.eval	
anfis.L2.eval	
anfis.L2.which	
anfis.L3.eval	
anfis.L4.eval	
anfis.L4.mf.eval	
anfis.L5.eval	
anfis.LI.eval	
anfis.optimise	
anfis.plotmf	
anfis.tipper	
cmp.firing	
convertfis	
defuzz	
evalfis	
evalmf	
evalmftype	
fis.builder	
fuzzy.firing	
fuzzy.optimise	32
fuzzy.t	33
fuzzy.tconorm	34
fuzzy.tnorm	35
fuzzyr.accuracy	35
fuzzyr.match.fun	36
gbell.fuzzification	37
gbellmf	37
genmf	38
gensurf	40
it2tipper	. 40
km.da	41

addmf 3

addm [.]	f	Insert a membership function.	
Index			53
	x.fuzzification		51
	writefis		51
	tipperGUI2		50
	tipperGUI		5 0
	tipper.tsk		49
	tipper.ns		49
	•		
	•	on	
	readfis		44
	•		
	linearmt		42

Description

Adds a membership function to a variable of a fis object.

Usage

```
addmf(fis, varType, varIndex, mfName, mfType, mfParams)
```

Arguments

fis	A fis structure is to be provided.
varType	Should be either 'input' or 'output', which relates to the type of variable (stored on the existing fis structure) that the membership function will be added to.
varIndex	Should be an integer value representing the index value of the input or output variable that the membership function will be added to (base 1).
mfName	Membership function name to be declared, for example (Poor,Good)
mfType	Membership function type to be declared, for example (trimf, trapmf)
mfParams	The value of membership function.

Value

A fis structure with the new membership function added.

4 addrule

Examples

```
fis <- newfis('tipper')
fis <- addvar(fis, 'input', 'service', c(0, 10))
fis <- addmf(fis, 'input', 1, 'poor', 'gaussmf', c(1.5, 0))</pre>
```

addrule

Inserts a rule

Description

Adds a rule to a fis object.

Usage

```
addrule(fis, ruleList)
```

Arguments

fis

A fis structure is to be provided.

ruleList

A vector of length m + n + 2, where m is the number of input variables of a fis. Each column in 'm' has a number which refers to the membership function of that input variable.

Columns under 'n' refer to an output variable of a fis, where the value refers to the membership function of that output variable.

Finally, the '2' remaining columns refer to the weight to be applied to the rule

Finally, the 2 remaining columns refer to the weight to be applied to the rule (m + n + 1) and the fuzzy operator for the rule's antecedent (1 = AND, 2 = OR).

Details

For example, if one has a fis with 2 input variables, and 1 output variable, each of which have 3 membership functions (the amount of membership functions need not be the same). The following rule: $1\ 3\ 2\ 1\ 2$ will mean m=2 (for 2 input variables), n=1 (for 1 output variable), and the last 2 columns represent weight and fuzzy operator for the rule's antecedent respectively.

The first column refers to the first input variable's membership function at index 1.

The second column refers to the second input variable's membership function at index 3.

The third column refers to the first output variable's membership function at index 2.

The fourth column refers to the weight to be applied to the rule.

The fifth column refers to the fuzzy operator for the rule's antecedent (in this case it represents 'OR').

Value

A fis structure with the new rule added.

addvar 5

Examples

```
fis <- tipper()
ruleList <- rbind(c(1,1,1,1,2), c(2,0,2,1,1), c(3,2,3,1,2))
fis <- addrule(fis, ruleList)</pre>
```

addvar

Insert a variable

Description

Adds an input or output variable to a fis object.

Usage

```
addvar(
    fis,
    varType,
    varName,
    varBounds,
    method = NULL,
    params = NULL,
    firing.method = "tnorm.min.max"
)
```

Arguments

fis A fis must be provided.

varType Should be either 'input' or 'output' which represents the type of variable to be

created and added.

varName A string representing the name of the variable.

varBounds Also known as the 'range', this should be a vector giving a range for the variable,

such as 1:10.

method fuzzification or defuzzification method.

• fuzzification: 'gauss', 'gbell', 'tri', or user-defined.

• defuzzification: 'centroid', 'cos', 'coh', 'csum' or user-defined.

params the required parameters for the corresponding fuzzification or defuzzification

method. For example, the required parameters for gbell.fuzzification are

c(a,b)

firing.method the chosen method for getting the firing strength (for non-singleton fuzzification).

• 'tnorm.min.max' - minimum t-norm with maximum membership grade as the firing strength

• 'tnorm.prod.max' - product t-norm with maximum membership grade as the firing strength

6 anfis.builder

- 'tnorm.min.defuzz.[method]' the firing strength is based on minimum tnorm, and the chosen defuzzification method (e.g. tnorm.min.defuzz.centroid)
- 'tnorm.prod.defuzz.[method] the firing strength is based on product tnorm, and the chosen defuzzification method (e.g. tnorm.prod.defuzz.bisector)
- 'similarity.set' Set-theoretic similarity: the ratio between the intersection and the union of two fuzzy sets

Value

A fis with the new variable added.

Examples

```
fis <- newfis('tipper')
fis <- addvar(fis, 'input', 'service', c(0, 10))
fis <- addvar(fis, 'input', 'service', c(0, 10), 'gauss', 0.5, 'tnorm.min.max')</pre>
```

anfis.builder

ANFIS model builder

Description

To build an ANFIS model from an existing FIS model

Usage

```
anfis.builder(fis)
```

Arguments

fis

A fuzzy inference system model initialised by newfis.

Value

An ANFIS model

Author(s)

Chao Chen

References

[1] C. Chen, R. John, J. Twycross, and J. M. Garibaldi, "An extended ANFIS architecture and its learning properties for type-1 and interval type-2 models," in Proceedings IEEE International Conference on Fuzzy Systems, 2016, pp. 602–609.

doi: 10.1109/FUZZIEEE.2016.7737742

[2] C. Chen, R. John, J. Twycross, and J. M. Garibaldi, "Type-1 and interval type-2 ANFIS: a comparison," in Proceedings IEEE International Conference on Fuzzy Systems, 2017, pp. 1–6. doi: 10.1109/FUZZIEEE.2017.8015555

anfis.dE.dO1

Examples

```
fis <- anfis.tipper()
anfis <- anfis.builder(fis)</pre>
```

anfis.dE.dO1

anfis.dE.dO1

Description

to calculate the derivatives of output error with respect to output.L1.

Usage

```
anfis.dE.dO1(anfis, output.L1, de.do2, do2.do1)
```

Arguments

anfis	The given ANFIS model
output.L1	The output of nodes in Layer 1
de.do2	The derivatives of output error with respect to output.L2
do2.do1	The derivatives of output.L2 with respect to output.L1.

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output error with respect to output.L1.

Author(s)

8 anfis.dE.dO3

anfis.dE.dO2

anfis.dE.dO2

Description

to calculate the derivatives of output error with respect to output.L2.

Usage

```
anfis.dE.d02(de.do3, do3.do2)
```

Arguments

de.do3	The derivatives of output error with respect to output.L3
do3.do2	The derivatives of output.L3 with respect to output.L2.

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output error with respect to output.L2.

Author(s)

Chao Chen

 ${\it anfis.dE.d03}$

anfis.dE.dO3

Description

to calculate the derivatives of output error with respect to output.L3.

Usage

```
anfis.dE.dO3(de.do4, do4.do3, output.L3)
```

Arguments

de.do4	The derivatives of output error with respect to output.L4
do4.do3	The derivatives of output.L4 with respect to output.L3.
output 12	The output of nodes in Lover 3

output.L3 The output of nodes in Layer 3.

anfis.dE.dO4

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output error with respect to output.L3.

Author(s)

Chao Chen

anfis.dE.dO4

anfis.dE.dO4

Description

to calculate the derivatives of output error with respect to output.L4.

Usage

```
anfis.dE.dO4(anfis, de.do5, do5.do4)
```

Arguments

anfis	The given ANFIS model
de.do5	The derivatives of output error with respect to output.L5
do5.do4	The derivatives of output.L5 with respect to output.L4.

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output error with respect to output.L4.

Author(s)

10 anfis.dE.dP1

anfis.dE.dO5

anfis.dE.dO5

Description

To calculate the derivatives of output error with respect to output.L5. NOTE: currently, only single output in L5 is supported

Usage

```
anfis.dE.dO5(output.L5, y)
```

Arguments

output.L5 the model outputs y the target outputs

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output error with respect to output.L5

Author(s)

Chao Chen

anfis.dE.dP1

anfis.dE.dP1

Description

To calculate the derivatives of output error with respect to parameters in Layer 1.

Usage

```
anfis.dE.dP1(anfis, de.do1, input.stack)
```

Arguments

anfis The given ANFIS model

de.do1 The derivatives of output error with respect to output.L1

input.stack The input data pairs.

anfis.dE.dP1.gbellmf

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output error with respect to parameters in Layer 1.

Author(s)

Chao Chen

```
anfis.dE.dP1.gbellmf anfis.dE.dP1.gbellmf
```

Description

To calculate the derivatives of E versus mf.params.L1 for gbellmf: $1/(1 + (((x - c)/a)^2)^b)$ NOTE: only singleton fuzzification is supported

Usage

```
anfis.dE.dP1.gbellmf(de.do1, x, mf.params)
```

Arguments

de.do1 The derivatives of output error with respect to output.L1

x The crisp input

mf.params parameters for membership functions

Details

This function is not recommended for external use, but can be used for debugging or learning.

Author(s)

12 anfis.dE.dP4

Description

to calculate the derivatives of E versus mf.params.L1 for it2gbellmf NOTE: only singleton fuzzification is supported

Usage

```
anfis.dE.dP1.it2gbellmf(de.do1, x, mf.params)
```

Arguments

de.do1 The derivatives of output error with respect to output.L1

x The crisp input

mf.params parameters for membership functions

Details

This function is not recommended for external use, but can be used for debugging or learning.

Author(s)

Chao Chen

Description

To calculate the derivatives of output error with respect to parameters in Layer 4.

Usage

```
anfis.dE.dP4(anfis, de.do4, output.L3, input.stack)
```

Arguments

anfis The given ANI	FIS model
---------------------	-----------

de.do4 The derivatives of output error with respect to output.L4

output.L3 The output of nodes in Layer 3

input.stack The input data pairs.

anfis.dMF.dP.gbellmf

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output error with respect to parameters in Layer 4.

Author(s)

Chao Chen

```
anfis.dMF.dP.gbellmf anfis.dMF.dP.gbellmf
```

Description

to calculate the derivatives of membership grades with respect to its parameters

Usage

```
anfis.dMF.dP.gbellmf(x, mf.params)
```

Arguments

x The crisp input

mf.params parameters for membership functions

Details

This function is not recommended for external use, but can be used for debugging or learning.

Author(s)

14 anfis.dO3.dO2

anfis.dO2.dO1	anfis.dO2.dO1

Description

To calculate the derivatives of output.L2 with respect to output.L1.

Usage

```
anfis.d02.d01(anfis, output.L2, output.L1)
```

Arguments

anfis The given ANFIS model
output.L2 The output of nodes in Layer 2
output.L1 The output of nodes in Layer 1

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output.L2 with respect to output.L1. do2[j].do1[i] <- do2.do1[[i]][[which(fan.out==j)]]

Author(s)

Chao Chen

Description

To calculate the derivatives of output.L3 with respect to output.L2.

Usage

```
anfis.d03.d02(anfis, output.L2, output.L2.which)
```

Arguments

anfis The given ANFIS model output.L2 The output of nodes in Layer 2 output.L2.which

A list of matrix indicating which output (w.lower, w.upper) in layer 2 should be used by the ekm algorithm

anfis.dO4.dO3

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output.L3 with respect to output.L2. do3.left[j].do2[i] <- do3.do2[[i]][[1]][[j]]

Author(s)

Chao Chen

anfis.d04.d03

anfis.dO4.dO3

Description

To calculate the derivatives of output.L4 with respect to output.L3.

Usage

```
anfis.d04.d03(output.L4, output.L4.mf)
```

Arguments

output.L4 The output of nodes in Layer 4

output.L4.mf The membership grades of the membership functions of nodes in Layer 4

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output.L4 with respect to output.L3.

Author(s)

16 anfis.eval

anfis.d05.d04

anfis.dO5.dO4

Description

To calculate the derivatives of output.L5 with respect to output.L4. NOTE: currently, only single output in L5 is supported

Usage

```
anfis.d05.d04(output.L4)
```

Arguments

output.L4

The output of nodes in Layer 4.

Details

This function is not recommended for external use, but can be used for debugging or learning.

Value

The derivatives of output.L5 with respect to output.L4.

Author(s)

Chao Chen

anfis.eval

ANFIS evaluator

Description

To evaluate a ANFIS model with input data

Usage

```
anfis.eval(anfis, input.stack)
```

Arguments

anfis The given ANFIS model

input.stack The input data

Value

The output of the anfis for given input data.

anfis.L1.eval

Author(s)

Chao Chen

Examples

```
fis <- anfis.tipper()
anfis <- anfis.builder(fis)
data.num <- 5
input.num <- length(fis$input)
input.stack <- matrix(rnorm(data.num*input.num), ncol=input.num)
y <- matrix(rnorm(data.num))
data.trn <- cbind(input.stack, y)
anfis.eval(anfis, input.stack)</pre>
```

anfis.L1.eval

The evaluator for nodes in Layer 1

Description

To evaluate the antecedent layer (L1) of anfis

Usage

```
anfis.L1.eval(anfis, output.LI, input.stack)
```

Arguments

anfis The given ANFIS model

output.LI The output of nodes in Layer I

input.stack The input data

Details

This function is not recommended for external use, but can be used for debugging or learning. See the source code of anfis.eval for usage.

Value

The output of nodes in Layer 1

Author(s)

anfis.L2.which

anfis.L2.eval

The evaluator for nodes in Layer 2

Description

To evaluate the nodes in Layer 2 of the given ANFIS model

Usage

```
anfis.L2.eval(anfis, output.L1)
```

Arguments

anfis The given ANFIS model output.L1 The output of nodes in Layer 1

Details

This function is not recommended for external use, but can be used for debugging or learning. See the source code of anfis.eval for usage.

Value

The output of nodes in Layer 2

Author(s)

Chao Chen

anfis.L2.which

L2.which

Description

To determin which output (w.lower, w.upper) to be used by the ekm algorithm

Usage

```
anfis.L2.which(anfis, output.L2, output.L4.mf)
```

Arguments

anfis The given ANFIS model

output.L2 The output of nodes in Layer 2

output.L4.mf The linear membership grades of nodes in Layer 4

anfis.L3.eval

Details

This function is not recommended for external use, but can be used for debugging or learning. See the source code of anfis.eval for usage.

Value

A list of matrix indicating which output (w.lower, w.upper) in layer 2 should be used by the ekm algorithm

Author(s)

Chao Chen

anfis.L3.eval

The evaluator for nodes in Layer 3

Description

To evaluate the nodes in Layer 3 of the given ANFIS model

Usage

```
anfis.L3.eval(anfis, output.L2, output.L2.which)
```

Arguments

anfis The given ANFIS model

output.L2 The output of nodes in Layer 2

output.L2.which

A list of matrix indicating which output (w.lower, w.upper) in layer 2 should be used by the ekm algorithm

Details

This function is not recommended for external use, but can be used for debugging or learning. See the source code of anfis.eval for usage.

Value

The output of nodes in Layer 3

Author(s)

20 anfis.L4.mf.eval

anfis.L4.eval

The evaluator for nodes in Layer 4

Description

To evaluate the nodes in Layer 4

Usage

```
anfis.L4.eval(output.L3, output.L4.mf)
```

Arguments

output.L3 The output of nodes in Layer 3

output.L4.mf The membership grades of the membership functions of nodes in Layer 4

Details

This function is not recommended for external use, but can be used for debugging or learning. See the source code of anfis.eval for usage.

Value

The output of nodes in Layer 4

Author(s)

Chao Chen

anfis.L4.mf.eval

The evaluator for membership functions of nodes in Layer 1

Description

To evaluate the membership functions of nodes in Layer 4

Usage

```
anfis.L4.mf.eval(anfis, input.stack)
```

Arguments

anfis The given ANFIS model

input.stack The input data

anfis.L5.eval

Details

This function is not recommended for external use, but can be used for debugging or learning. See the source code of anfis.eval for usage.

Value

The membership grades of the membership functions of nodes in Layer 4

Author(s)

Chao Chen

anfis.L5.eval

The evaluator for nodes in Layer 5

Description

To evaluate the nodes in Layer 5

Usage

```
anfis.L5.eval(output.L4)
```

Arguments

output.L4 The output of nodes in Layer 4

Details

This function is not recommended for external use, but can be used for debugging or learning. See the source code of anfis.eval for usage.

Value

The output of nodes in Layer 5

Author(s)

22 anfis.optimise

anfis.LI.eval

The evaluator for nodes in Layer I

Description

To evaluate the input Layer (LI) of anfis

Usage

```
anfis.LI.eval(anfis, input.stack)
```

Arguments

```
anfis The given ANFIS model input.stack The input data
```

Details

This function is not recommended for external use, but can be used for debugging or learning. See the source code of anfis.eval for usage.

Value

The output of nodes in Layer I

Author(s)

Chao Chen

anfis.optimise

ANFIS optimiser

Description

To optimise the performance of a given ANFIS model by learning the parameters in L1 and L4.

Usage

```
anfis.optimise(
  anfis,
  data.trn,
  data.chk = NULL,
  epoch.total = 100,
  stepsize = 0.1,
  rate.inc = 1.1,
  rate.dec = 0.9,
```

anfis.optimise 23

```
method = c("gradient", "lse"),
err.log = F,
online = 0,
lambda = 1,
opt.by = "err.opt",
err.trn.fix = T
)
```

Arguments

anfis	The given ANFIS model
data.trn	The input and output data pairs as training data
data.chk	The input and output data pairs as checking (validation) data
epoch.total	The total training epochs.
stepsize	The initial stepsize
rate.inc	increasing rate of the stepsize
rate.dec	decrasing rate of the stepsize
method	The learning algorithms for Layer 1 and Layer 4 respectively. default method=c("gradient", "lse")
err.log	T or F, the flag indicate whether to save the error log.
online	0 – batch; 1 – online; 2 – semi-online
lambda	The forgetting rate for the LSE algorithm
opt.by	To optimise the ANFIS model by: err.opt – optimisation error; err.trn – training error; err.chk – checking (validation) error.
err.trn.fix	T or F. When KM defuzzification is used for IT2 ANFIS, err.trn is not equal to err.opt. Hence, this flag is used for users to choose whether to fix this issue. The default value is set to T for the compatibility with previous built IT2 models. For T1 ANFIS, this flag can be set to F for speed improvement.

Value

The optimised ANFIS model.

Author(s)

Chao Chen

References

[1] C. Chen, R. John, J. Twycross, and J. M. Garibaldi, "An extended ANFIS architecture and its learning properties for type-1 and interval type-2 models," in Proceedings IEEE International Conference on Fuzzy Systems, 2016, pp. 602–609.

doi: 10.1109/FUZZIEEE.2016.7737742

[2] C. Chen, R. John, J. Twycross, and J. M. Garibaldi, "Type-1 and interval type-2 ANFIS: a comparison," in Proceedings IEEE International Conference on Fuzzy Systems, 2017, pp. 1–6. doi: 10.1109/FUZZIEEE.2017.8015555

24 anfis.plotmf

Examples

anfis.plotmf

Plot membership functions for an ANFIS object

Description

Plots a 2D graph of all membership functions from the specified variable which must be part of an anfis object.

Usage

```
anfis.plotmf(
  anfis,
  varType,
  varIndex,
  xx = NULL,
  timelimit = 0,
  xlab = NULL,
  ylab = NULL,
  main = NULL
)
```

Arguments

anfis

varType Can be either 'input' or 'output', representing the type of variable.

varIndex A numerical integer, representing the index of the input or output variable whose membership functions shall be plotted (base 1).

Requires an existing anfis as an argument.

xx primary inputs for extra lines

timelimit for perturbation

xlab X axis label using font, size and color ylab Y axis label, same font attributes as xlab

main The main title (on top)

anfis.tipper 25

Value

A two dimensional graph displaying all the membership functions of a given variable.

Examples

anfis.tipper

Produces an example fis object which can be used for ANFIS.

Description

A function used primarily for example purposes, it creates a fis with two input (service & food), output variables (tip) and their membership functions.

Usage

```
anfis.tipper()
```

Value

A fis is return

Examples

```
fis <- anfis.tipper()</pre>
```

26 cmp.firing

cmp.firing	Plot firing strength with different inference method	

Description

Plots a 2D graph of the firing strength for a antecedent produced by different inference method

Usage

```
cmp.firing(
   IP,
   mfType,
   mfPara,
   fuzMethod,
   fuzPara,
   SFLS = TRUE,
   STD = TRUE,
   CEN = FALSE,
   SIM = FALSE,
   step = 100,
   fisRange = NULL
)
```

Arguments

IP	A matrix representing the input stack, number of inputs (columns) by number of outputs (rows).
mfType	The type of fuzzy membership function
mfPara	The parameters for the given type of membership function
fuzMethod	The type of fuzzy membership function for non-singleton fuzzification
fuzPara	The parameters for the given fuz.type of membership function
SFLS	When TRUE, shows the firing strength produced by SFLS
STD	When TRUE, shows the firing strength produced by std-NSFLS
CEN	When TRUE, shows the firing strength produced by cen-NSFLS
SIM	When TRUE, shows the firing strength produced by sim-NSFLS
step	For discrete fuzzification
fisRange	Field of definition, for example, $c(1,10)$

Value

A two dimensional graph displaying all the firing strength produced by given method.

convertfis 27

Author(s)

Yu Zhao

Examples

```
cmp.firing(1, 'gaussmf', c(1, 2.5, 1), 'gbell', c(0.4, 2), step=100)
```

convertfis

Convert a fis

Description

Convert a fis object from one type to another (e.g. from singleton to non-singleton)

Usage

```
convertfis(fis, option = "s2n", ...)
```

Arguments

fis the fis object to be converted

option the convert option.'s2n': singleton to non-singleton

For 's2n': fuzzification.method, fuzzification.params, firing.method. See details

below for more information.

Details

• fuzzification.method, fuzzification.params, firing.method - see addvar

Usage:

- 1. convertfis(fis, option, mf.params, fuzzification.method, fuzzification.params)
- 2. convertfis(fis, option, mf.params, fuzzification.method, fuzzification.params, firing.method)

Value

Membership grade(s)

Author(s)

Chao Chen

Examples

28 evalfis

defuzz

Defuzzify a set of values.

Description

Defuzzifies a given set of values using a specified range and defuzzification type producing a crisp value.

Usage

```
defuzz(x, mf, type)
```

Arguments

x The range to be applied in the function (numeric vector).

mf The values to be applied in the function (numeric vector).

type The defuzzification method type, which should be either 'centroid', 'bisector',

'mom', 'som' or 'lom'.

Value

Returns a defuzzified crisp value (double).

Examples

```
Crisp_value = defuzz(1:10, c(1.5, 5), "centroid")
```

evalfis

Evaluate a Fuzzy Inference System (fis)

Description

Returns an evaluated crisp value for a given fis structure.

Usage

```
evalfis(input_stack, fis, time = 1, point_n = 101, draw = FALSE)
```

Arguments

input_stack A matrix representing the input stack, number of inputs (columns) by number

of outputs (rows).

fis A fis must be provided.

time default 1

point_n number of discretised points, default 101 draw whether to draw, TRUE or FALSE

evalmf 29

Value

Returns a matrix of evaluated values.

Examples

```
Input_data <- matrix((1:2),1,2)
fis <- tipper()
evalfis(Input_data, fis)</pre>
```

evalmf

Evaluate fuzzy membership function

Description

To obtain the corresponding membership grade(s) for given crsip input(s) x

Usage

```
evalmf(...)
```

Arguments

For singleton fuzzification: x, mf.type, mf.params; x, mf.

Four additional parameters need to be used for non-singleton fuzzification: fuzzification.method, fuzzification.params, firing.method and input.range. See details below for more information.

Details

- x the crisp input(s) on the universe of discourse for corresponding antecedent membership function
- mf.type The type of fuzzy membership function
- mf.params The parameters for the given type of membership function
- mf the membership function generated by genmf
- fuzzification.method, fuzzification.params, firing.method and input.range see addvar

Usage:

- 1. evalmf(x, mf.type, mf.params)
- 2. evalmf(x, mf)
- 3. evalmf(x, mf.type, mf.params, fuzzification.method, fuzzification.params, firing.method, input.range)
- 4. evalmf(x, mf, fuzzification.method, fuzzification.params, firing.method, input.range)

30 evalmftype

Value

Membership grade(s)

Author(s)

Chao Chen

Examples

evalmftype

Evaluate fuzzy membership function with membership function type and parameters

Description

To obtain the corresponding membership grade(s) for crisp input(s) x

Usage

```
evalmftype(x, mf.type, mf.params)
```

Arguments

x A generic element of U, which is the universe of discourse for a fuzzy set

mf . type The member function type

mf.params The parameters for a member function

Value

Membership grade(s)

Author(s)

fis.builder 31

Examples

```
evalmftype(5, mf.type=gbellmf, mf.params=c(1,2,3))
evalmftype(1:10, mf.type=gbellmf, mf.params=c(1,2,3))
```

fis.builder

TSK FIS builder

Description

To build a one-output TSK FIS by automatically generating the input membership functions and the fuzzy rules

Usage

```
fis.builder(
   x.range,
   input.num,
   input.mf.num,
   input.mf.type,
   rule.num = prod(input.mf.num),
   rule.which = NULL,
   defuzzMethod = "default",
   params.ante,
   params.conse
)
```

Arguments

x.range a vector/matrix as the range of input(s) input.num the number of inputs input.mf.num a list of the number of membership functions for all inputs designed for different membershp function types, however, currently, 'T1' for input.mf.type gbellmf, else 'it2gbellmf' rule.num the number of rules rule.which selected rules to be used in the full rule list, for example, c(1,2,3) specify the first three rules defuzzMethod "default" parameter settings for initialising antecedent membership functions params.ante parameter settings for initialising consequent membership functions params.conse

Author(s)

32 fuzzy.optimise

fuzzv	firing.	
I UZZ y	• 1 1 1 1 1 1 1 1	

Fuzzy rule firing

Description

To get the firing strength for the given input fuzzification membership function and the antecedent membership function in the domain of [lower, upper]

Usage

```
fuzzy.firing(operator, x.mf, ante.mf, lower, upper)
```

Arguments

operator t-norm operator

x.mf the fuzzy input membership function ante.mf the antecedent membership function

lower lower bound of the input upper upper bound of the input

Value

the rule firing strenth

Author(s)

Chao Chen

Examples

```
x.mf <- x.fuzzification(gbell.fuzzification, 3, c(1,2))
ante.mf <- genmf(gbellmf, c(1,2,6))
firing.strength <- fuzzy.firing(min, x.mf, ante.mf, lower=0, upper=10)
firing.strength</pre>
```

fuzzy.optimise

Fuzzy optimisation

Description

to get an approximation of the maximum membership grade for a given membership function in the domain of [lower, upper]

Usage

```
fuzzy.optimise(fuzzy.mf, lower, upper)
```

fuzzy.t

Arguments

fuzzy.mf fuzzy member function
lower lower bound of the input
upper upper bound of the input

Value

an approximation of the maximum membership grade in the given domain

Author(s)

Chao Chen

Examples

```
mf <- genmf(gbellmf, c(1,2,3))
x <- seq(4, 5, by=0.01)
max(evalmf(x, mf))
fuzzy.optimise(mf, 4, 5)</pre>
```

fuzzy.t

Fuzzy t-norm/t-conorm operation

Description

To conduct t-norm or t-conorm operation for given fuzzy member functions

Usage

```
fuzzy.t(operator, ...)
```

Arguments

operator The supported t-norm/t-conorm operators are min, prod, max
... fuzzy membership functions

Value

A membership function, which is the t-norm/t-conorm of membership functions

Author(s)

34 fuzzy.tconorm

Examples

```
mf1 <- genmf(gbellmf, c(1,2,3))
mf2 <- genmf(gbellmf, c(4,5,6))
mf3 <- fuzzy.t(max, mf1, mf2)
tmp1 <- evalmf(1:10, mf1)
tmp2 <- evalmf(1:10, mf2)
tmp3 <- evalmf(1:10, mf3)
identical(tmp3, pmax(tmp1, tmp2))
tmp3</pre>
```

fuzzy.tconorm

Fuzzy t-conorm

Description

To conduct t-conorm operation for given fuzzy member functions

Usage

```
fuzzy.tconorm(operator, ...)
```

Arguments

operator The t-conorm operator such as max
... fuzzy membership functions

Value

A membership function, which is the t-conorm of membership functions

Author(s)

Chao Chen

Examples

```
mf1 <- genmf(gbellmf, c(1,2,3))
mf2 <- genmf(gbellmf, c(4,5,6))
mf3 <- fuzzy.tconorm(max, mf1, mf2)
tmp1 <- evalmf(1:10, mf1)
tmp2 <- evalmf(1:10, mf2)
tmp3 <- evalmf(1:10, mf3)
identical(tmp3, pmax(tmp1, tmp2))
tmp3</pre>
```

fuzzy.tnorm 35

fuzzy.tnorm

Fuzzy tnorm

Description

To conduct t-norm operation for given fuzzy member functions

Usage

```
fuzzy.tnorm(operator, ...)
```

Arguments

operator The t-norm operator such as min, prod
... fuzzy membership functions

Value

A membership function, which is the t-norm of membership functions

Author(s)

Chao Chen

Examples

```
mf1 <- genmf(gbellmf, c(1,2,3))
mf2 <- genmf(gbellmf, c(4,5,6))
mf3 <- fuzzy.tnorm(prod, mf1, mf2)
tmp1 <- evalmf(1:10, mf1)
tmp2 <- evalmf(1:10, mf2)
tmp3 <- evalmf(1:10, mf3)
identical(tmp3, tmp1*tmp2)
tmp3</pre>
```

fuzzyr.accuracy

Fuzzy Accuracy

Description

This function is to provide performance indicators by using eight different accuracy measures including a new measure UMBRAE.

Usage

```
fuzzyr.accuracy(f, y, f.ref = 0, scale.mase = NULL)
```

36 fuzzyr.match.fun

Arguments

f A vector of forecasting values produced by a model to be evaluated.

y A vector of observed values.

f.ref A vector of forecasting values produced by a benchmark method to be com-

pared.

scale.mase A single value which is the scaling factor of the measure MASE.

Value

A vector of results by each measure.

Author(s)

Chao Chen

References

```
[1] C. Chen, J. Twycross, and J. M. Garibaldi, "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, vol. 12, no. 3, pp. 1–23, 2017. doi: 10.1371/journal.pone.0174202
```

Examples

```
f <- rnorm(10)
y <- rnorm(10)
fuzzyr.accuracy(f, y)</pre>
```

fuzzyr.match.fun

fuzzyr.match.fun

Description

This is a modification of the original match.fun, where parent.frame(2) is changed to parent.env(environment()).

Usage

```
fuzzyr.match.fun(FUN, descend = TRUE)
```

Arguments

FUN item to match as function: a function, symbol or character string. descend logical; control whether to search past non-function objects.

Details

See match.fun.

gbell.fuzzification 37

gbell.fuzzification Generalised bell fuzzification

Description

To generate a fuzzy membership function based on generalised bell fuzzification for the given crisp input x

Usage

```
gbell.fuzzification(x, mf.params)
```

Arguments

x the crisp input, which will be the parameter c for a generalised bell membership

function

mf.params the parameters c(a, b) or c(a, b, h) for a generalised bell membership function

Value

The gbell MF centred at the crisp point x

Author(s)

Chao Chen

Examples

```
mf <- gbell.fuzzification(3, c(1,2))
# This is the same as:
mf <- genmf('gbellmf', c(1,2,3))
evalmf(1:10, mf)</pre>
```

gbellmf

Generalised bell membership function

Description

To specify a generalised bell membership function with a pair of particular parameters

Usage

```
gbellmf(mf.params)
```

38 genmf

Arguments

mf.params

The parameters c(a, b, c) for a generalised bell membership function

Details

This is not an external function. It should be used through genmf.

Value

The generalised bell membership function of x for a given pair of parameters, where x is a generic element of U, which is the universe of discourse of a fuzzy set X

Author(s)

Chao Chen

Examples

```
mf <- gbellmf(c(1,2,3))
# This is the same as:
mf <- genmf('gbellmf', c(1,2,3))
evalmf(5, mf)</pre>
```

genmf

Fuzzy membership function generator

Description

To generate the corresponding membership function f(x), also called fuzzy set, according to type and parameters

Usage

```
genmf(mf.type, mf.params)
```

Arguments

mf.type The membership function type

mf.params The parameters for a membership function

genmf 39

Details

Built-in membership function types are: 'gbellmf', 'it2gbellmf', 'singletonmf', 'linearmf', 'gaussmf', 'trapmf', 'trimf'.

mf.params for

- 'gbellmf' is c(a, b, c), where a denotes the width, b is usually positive and c locates the center of the curve.
- 'it2gbellmf' is c(a.lower, a.upper, b, c), where a.upper > a.lower when b > 0 and a.upper < a.lower when b < 0
- 'singletonmf' is c(c), where c is the location where the membership grade is 1.
- 'linearmf' is c(...), which are the coefficients of the linear membership function.
- 'gaussmf' is c(sig, c), which are the parameters for $exp(-(x c)^2/(2 * sig^2))$.
- 'trapmf' is c(a, b, c, d), where a and d locate the "feet" of the trapezoid and b and c locate the "shoulders".
- 'trimf' is c(a, b, c), where a and c locate the "feet" of the triangle and b locates the peak.

Note that users are able to define their own membership functions.

Value

The desired type of membership function f(x), where x is a generic element of U, which is the universe of discourse for a fuzzy set

Author(s)

Chao Chen

```
mf <- genmf('gbellmf', c(1,2,3))
evalmf(1:10, mf)</pre>
```

it2tipper

gensurf

Produce a graphical evaluated fuzzy inference system.

Description

Produces a three dimensional graphical view of a specific fis object. This function is only works for FIS structures with 3 variables. It will only work for 2 inputs, and 1 output.

Usage

```
gensurf(fis, ix1 = 1, ix2 = 2, ox1 = 1)
```

Arguments

fis	A fis must be provided.
ix1	Optional input (1)
ix2	Optional input (2)
ox1	Optional output

Value

A three dimensional graphical model generated from the fis and other optional parameters.

Examples

```
fis <- tipper()
gensurf(fis)</pre>
```

it2tipper

Produces an example it2fis object for Waiter-Tipping.

Description

A function used primarily for example purposes, it creates a it2 fis with two input (service & food), output variables (tip) and their membership functions.

Usage

```
it2tipper()
```

Value

A fis object

```
it2fis <- it2tipper()</pre>
```

km.da 41

|--|

Description

A Direct Approach for Determining the Switch Points in the Karnik-Mendel Algorithm.

Usage

```
km.da(wl, wr, f, maximum = F, w.which = F, sorted = F, k.which = F)
```

Arguments

wl	A vector of lower membership grades.
wr	A vector of upper membership grades.
f	A vector of the primary values in the discrete universe of discourse X.
maximum	T, to calculate the maximum centroid; F, to calulate the minimum centroid.
w.which	T, to show which membership grade to be used to calculate maximum/minimum centroid for each primary value.
sorted	T, to indicate that the primary values have already been put in ascending order.
k.which	T, to show the index of the switch point selected by the algorithm.

Value

w.which=T, a two-column matrix indicating which membership grades to be used; w.which=F and k.which=T, a vector of the centroid and the switch point; w.which=F and k.which=F, a single value of the centroid.

Author(s)

Chao Chen

References

[1] C. Chen, R. John, J. Twycross, and J. M. Garibaldi, "A Direct Approach for Determining the Switch Points in the Karnik–Mendel Algorithm," IEEE Transactions on Fuzzy Systems, vol. 26, no. 2, pp. 1079–1085, Apr. 2018.

doi: 10.1109/TFUZZ.2017.2699168

[2] C. Chen, D. Wu, J. M. Garibaldi, R. John, J. Twycross, and J. M. Mendel, "A Comment on 'A Direct Approach for Determining the Switch Points in the Karnik-Mendel Algorithm," IEEE Transactions on Fuzzy Systems, vol. 26, no. 6, pp. 3905–3907, 2018.

doi: 10.1109/TFUZZ.2018.2865134

42 newfis

Examples

```
wr <- runif(100, 0, 1)
wl <- wr * runif(100, 0, 1)
f <- abs(runif(100, 0, 1))
f <- sort(f)
km.da(wl, wr, f)</pre>
```

linearmf

Linear membership function

Description

To specify a 1st order linear membership function with given parameters

Usage

```
linearmf(mf.params)
```

Arguments

mf.params

The linear parameters, which is a vector of the size of input numbers plus 1

Value

A linear membership function

Author(s)

Chao Chen

newfis

Create a fis using newfis function

Description

Creates a fis object.

Usage

```
newfis(
  fisName,
  fisType = "mamdani",
  mfType = "t1",
  andMethod = "min",
  orMethod = "max",
  impMethod = "min",
  aggMethod = "max",
  defuzzMethod = "centroid"
)
```

plotmf 43

Arguments

fisName	String representing the fis name.
fisType	Type of the fis, default is 'mamdani'.
mfType	Type of membership functions, 't1' or 'it2'
andMethod	The AND method for the fis, default is 'min'.
orMethod	The OR method for the fis, default is 'max'.
impMethod	The implication method for the fis, default is 'min'.
aggMethod	The aggregation method for the fis, default is 'max'.
defuzzMethod	The defuzzification method for the fis, default is 'centroid'.

Value

A new fis structure.

Examples

```
fis <- newfis("fisName")</pre>
```

plotmf

Plots a 2D graph of all membership functions in a variable.

Description

Plots a 2D graph of all membership functions from the specified variable which must be part of a fis object.

Usage

```
plotmf(
   fis,
   varType,
   varIndex,
   xx = NULL,
   timelimit = 0,
   xlab = NULL,
   ylab = NULL,
   main = NULL
)
```

44 readfis

Arguments

fis Requires an existing fis as an argument.

varType Can be either 'input' or 'output', representing the type of variable.

varIndex A numerical integer, representing the index of the input or output variable whose

membership functions shall be plotted (base 1).

xx primary inputs for extra lines

timelimit for perturbation

xlab X axis label using font, size and color ylab Y axis label, same font attributes as xlab

main The main title (on top)

Value

A two dimensional graph displaying all the membership functions of a given variable.

Examples

```
fis <- tipper()
plotmf(fis, "input", 1)</pre>
```

readfis

Read a fis object from a .fis file.

Description

Reads a fis object from a file with the .fis extension, and converts it into a data structure to be used within the environment.

Usage

```
readfis(fileName)
```

Arguments

fileName

Should be an absolute path given as a string to the file to be read, with escaped

backslashes.

Value

A fis structure with its values generated from that of the files.

showfis 45

showfis

Show a fis object.

Description

Shows a fis and all its data in an ordered format on the console.

Usage

```
showfis(fis)
```

Arguments

fis

Requires a fis structure to be displayed.

Value

Returned the organised text regarding the fis is output to console.

Examples

```
fis <- tipper()
showfis(fis)</pre>
```

showGUI

Show a Graphic User Interface of fis object

Description

Show a Graphic User Interface to display membership function plots for input and output, rules and evaluate the fis.

Usage

```
showGUI(fis, advancedGUI = FALSE)
```

Arguments

fis Requires a fis structure to display a GUI.

advancedGUI TRUE/FALSE; if TRUE, an advanced GUI with more features is provided (pro-

vided by science@sboldt.com).

46 showrule

Details

This function is purposed to display all the membership plots and rules of fis object in Graphic User Interface (GUI). It also provide a function to evaluate the fis object.

showGUI(fis) will display the GUI of fis object.

Value

Return the GUI to display membership function for input and output together with rules.

Author(s)

Tajul Razak

Examples

```
fis <- tipper()
fis <- showGUI(fis)</pre>
```

showrule

Showing rule from fis object

Description

All the rule is showing from fis object

Usage

```
showrule(fis)
```

Arguments

fis

A fis must be provided.

Value

Show the total of rules inside fis object

```
fis <- tipper() ruleList <- rbind(c(1,1,1,1,2), c(2,0,2,1,1), c(3,2,3,1,2)) fis <- addrule(fis, ruleList) showrule(fis)
```

singleton.fuzzification 47

```
singleton.fuzzification
```

Singleton Fuzzification

Description

To generate a fuzzy membership function based on singleton fuzzification for the given crisp input \boldsymbol{x}

Usage

```
singleton.fuzzification(x, mf.params = NULL)
```

Arguments

```
\begin{array}{ll} x & & \text{the crisp input} \\ \text{mf.params} & & \text{NULL or h} \end{array}
```

Value

The singleton MF at the crisp point x

Author(s)

Chao Chen

Examples

```
mf <- singleton.fuzzification(3)
evalmf(1:10, mf)</pre>
```

singletonmf

Singleton membership function

Description

To specify a singleton membership function at the particular point

Usage

```
singletonmf(mf.params)
```

Arguments

mf.params

the particular singleton point

48 tipper

Details

This is not an external function. It should be used through genmf.

Value

The singleton membership function of x at the particular point, where x is a generic element of U, which is the universe of discourse of a fuzzy set X

Author(s)

Chao Chen

Examples

```
mf <- singletonmf(3)
# This is the same as:
mf <- genmf('singletonmf', 3)
evalmf(1:10, mf)</pre>
```

tipper

Produces an example fis object for Waiter-Tipping.

Description

A function used primarily for example purposes, it creates a fis with two input (service & food), output variables (tip) and their membership functions.

Usage

```
tipper()
```

Value

A fis is return

```
fis <- tipper()</pre>
```

tipper.ns 49

tipper.ns

Produces an example non-singleton fis object for Waiter-Tipping.

Description

A function used primarily for example purposes, it creates a nsfis with two input (service & food), output variables (tip) and their membership functions.

Usage

```
tipper.ns()
```

Value

A non-singleton fis object

Author(s)

Yu Zhao

Examples

```
fis <- tipper.ns()</pre>
```

tipper.tsk

Produces an example fis object (TSK type), which can also be optimised by ANFIS.

Description

A function used primarily for example purposes, it creates a fis with two input (service & food), output variables (tip) and their membership functions.

Usage

```
tipper.tsk()
```

Value

A fis is return

```
fis <- tipper.tsk()</pre>
```

50 tipperGUI2

tipperGUI

Graphic User Interface for Waiter-Tipping

Description

Graphic User Interface for Waiter-Tipping to display the membership function (input & output) and rules.

Usage

```
tipperGUI()
```

Value

Return graphic user interface for Waiter-Tipping

Author(s)

Tajul Razak

Examples

```
fis <- tipperGUI()</pre>
```

tipperGUI2

Graphic User Interface for Waiter-Tipping (another style)

Description

Another style of Graphic User Interface for Waiter-Tipping to display the membership function (input & output) and rules.

Usage

```
tipperGUI2()
```

Value

Return graphic user interface for Waiter-Tipping

Author(s)

Tajul Razak

```
fis <- tipperGUI2()</pre>
```

writefis 51

writefis

Write a fis object to a .fis file.

Description

Write a fis object to a file with the .fis extension.

Usage

```
writefis(fis, fileName = "fuzzy.fis")
```

Arguments

fis The fuzzy inference system data structure to be saved.

fileName filename

x.fuzzification

Fuzzification

Description

To convert the crisp input x to a fuzzy membership function with specified fuzzification method

Usage

```
x.fuzzification(fuzzification.method, x, mf.params)
```

Arguments

fuzzification.method

The fuzzification method

x The required parameters for a fuzzification method

mf.params The parameters for a membership function

Value

The corresponding fuzzy membership function

Author(s)

Chao Chen

52 x.fuzzification

```
x <- 3
mf <- x.fuzzification(gbell.fuzzification, x, c(1,2))
# This is the same as:
mf <- genmf(gbellmf, c(1,2,x))
evalmf(1:10, mf)</pre>
```

Index

addmf, 3	fuzzy.firing, 32
addrule, 4	fuzzy.optimise, 32
addvar, 5, 27, 29	fuzzy.t, 33
anfis.builder, 6	fuzzy.tconorm, 34
anfis.dE.dO1,7	fuzzy.tnorm, 35
anfis.dE.dO2, 8	fuzzyr.accuracy, 35
anfis.dE.dO3,8	fuzzyr.match.fun,36
anfis.dE.dO4,9	
anfis.dE.dO5, 10	gbell.fuzzification, 5, 37
anfis.dE.dP1, 10	gbellmf, 37
anfis.dE.dP1.gbellmf, 11	genmf, 29, 38, 38, 48
anfis.dE.dP1.it2gbellmf, 12	gensurf, 40
anfis.dE.dP4, 12	:121: 10
anfis.dMF.dP.gbellmf, 13	it2tipper, 40
anfis.d02.d01,14	km.da,41
anfis.d03.d02,14	Kiii. da, 41
anfis.d04.d03,15	linearmf, 42
anfis.d05.d04, <u>16</u>	,
anfis.eval, 16, <i>17</i> -22	match.fun,36
anfis.L1.eval, 17	
anfis.L2.eval, 18	newfis, 6 , 42
anfis.L2.which, 18	7
anfis.L3.eval, 19	plotmf, 43
anfis.L4.eval, 20	df:- 44
anfis.L4.mf.eval, 20	readfis,44
anfis.L5.eval, 21	showfis, 45
anfis.LI.eval, 22	showGUI, 45
anfis.optimise, 22	showrule, 46
anfis.plotmf, 24	singleton.fuzzification, 47
anfis.tipper, 25	singletonmf, 47
	Singletoniii, 47
cmp.firing, 26	tipper, 48
convertfis, 27	tipper.ns, 49
d. C	tipper.tsk, 49
defuzz, 28	tipperGUI, 50
evalfis, 28	tipperGUI2, 50
evalnf, 29	61pp61 0012, 50
evalmftype, 30	writefis, 51
576±1117 Cype, 50	
fis.builder, 31	x.fuzzification, 51