PRÁCTICA 1

Correlación

1. El conjunto de datos bdims del paquete openintro que se habilita en el workspace del R con los comandos library(openintro)

data(bdims, package = ''openintro'')

El archivo consiste en medidas del diámetro y circunferencia de distintas partes del cuerpo (21 variables), así como edad, peso, altura y género de 507 personas físicamente activas. Para más detalle, tipear

help(bdims, package = ''openintro'')

- a) Calcular las correlaciones muestrales entre las 21 variables que miden el diámetro o circunferencia de las distintas partes del cuerpo. ¿Cuántas correlaciones debe calcular? ¿Cuál sería la mejor manera de exhibir esta información? ¿Están positiva o negativamente correlacionadas estas variables?
- b) Encontrar las dos variables con mayor correlación entre sí. Realizar un scatter plot. ¿Le parece que este número resume adecuadamente el vínculo entre ambas variables?
- c) Repetir con las de menor correlación.
- d) Hacer un scatter plot de peso en el eje y y altura en el eje x y calcular la correlación muestral o de Pearson. ¿Le parece que este número resume adecuadamente el vínculo entre ambas variables?
- e) Hacer scatter plots de la variable bia_di, que es la distancia biacromial (informalmente, la distancia emtre los hombros) con las siguientes cuatro variables y calcular las correlaciones de a pares para ambas. Observar cómo se comportan los scatterplots para distintos valores de la correlación.
 - age, la edad
 - bii_di, el ancho de la pelvis
 - che_de, la profundidad del pecho
 - wri_di, la circunferencia de la muñeca
- 2. Sean $(X_i, Y_i)_{1 \le i \le n}$ observaciones bivariadas, la covarianza muestral entre X e Y basada en las observaciones se define por

$$\widehat{\operatorname{cov}}\left((X_1, Y_1), \dots, (X_n, Y_n)\right) = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X}\right) \left(Y_i - \overline{Y}\right)$$

Por simplicidad, en vez de escribir $\widehat{\text{cov}}((X_1, Y_1), \dots, (X_n, Y_n))$ a veces escribiremos $\widehat{\text{cov}}(X_i, Y_i)$

- a) Sean $a, b \in \mathbb{R}$ constantes.
 - i. Definimos $X_i^* = X_i + a$, i = 1, ..., n. Probar que $\widehat{\text{cov}}(X_i^*, Y_i) = \widehat{\text{cov}}(X_i, Y_i)$.
 - ii. Definimos $X_i^* = bX_i + a$, $i = 1, \dots, n$. Probar que $\widehat{\operatorname{cov}}(X_i^*, Y_i) = b \widehat{\operatorname{cov}}(X_i, Y_i)$.
- b) Sean $X_i^* = X_i \overline{X}$ y $Y_i^* = Y_i \overline{Y}$ $i = 1, \dots, n$. Probar que $\widehat{\text{cov}}(X_i^*, Y_i^*) = \widehat{\text{cov}}(X_i^*, Y_i) = \widehat{\text{cov}}(X_i, Y_i)$.
- c) Probar que vale lo siguiente:

$$\widehat{\operatorname{cov}}\left((X_1, Y_1), \dots, (X_n, Y_n)\right) = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}\right) Y_i$$

d) Probar que la covarianza muestral puede escribirse de la siguiente forma

$$\widehat{\operatorname{cov}}(X_i, Y_i) = \frac{1}{n-1} \left[\sum_{i=1}^n X_i Y_i - n \overline{XY} \right]$$

e) Probar que

$$\widehat{\operatorname{cov}}\left(X_{i}, X_{i}\right) = S_{X}^{2}$$

donde $S_X^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$ es la varianza muestral de las X's.

3. Sean $(X_i, Y_i)_{1 \le i \le n}$ observaciones bivariadas, el coeficiente de corelación muestral o coeficiente de correlación de Pearson entre X e Y basado en las observaciones se define por

$$\widehat{\rho}((X_1, Y_1), \dots, (X_n, Y_n)) = \frac{\widehat{\text{cov}}(X_i, Y_i)}{S_X S_Y} = \frac{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}) (Y_i - \overline{Y})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2} \sqrt{\frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2}}$$

y el denominador es el producto de los desvíos muestrales de cada muestra.

- a) Sean $a, b \in \mathbb{R}$ constantes.
 - i. Definimos $X_i^* = X_i + a, i = 1, \dots, n$. Probar que $\widehat{\rho}(X_i^*, Y_i) = \widehat{\rho}(X_i, Y_i)$.
 - ii. Definimos $X_i^* = bX_i + a$, i = 1, ..., n. Probar que $\widehat{\rho}(X_i^*, Y_i) = \widehat{\rho}(X_i, Y_i)$ si b > 0 y $\widehat{\rho}(X_i^*, Y_i) = \widehat{\rho}(X_i, Y_i)$ si b < 0.
- b) Si tomamos $X_i^* = \frac{X_i \overline{X}}{S_X}$, i = 1, ..., n, probar que $\widehat{\rho}(X_i^*, Y_i) = \widehat{\rho}(X_i, Y_i)$.
- 4. El conjunto de datos datasaurus_dozen del paquete datasauRus tiene 13 conjuntos de observaciones bivariadas (X_i, Y_i) distintos. El data set al que pertencen está codficado en la variable categórica "dataset". El conjunto de datos se carga al R con las instrucciones

library(datasauRus)

data(package="datasauRus")

a) Realizar el scatter plot de las x e y cuyo dataset es ''dino''. Calcular las medias muestrales y los desvíos estándares muestrales de dichas x e y, y la correlación entre ambas. Las siguientes instrucciones pueden ser útiles.

- b) Repetir (a) para las x e y cuyo dataset es "star".
- c) Repetir (a) para las x e y cuyo dataset es "circle".
- d) Repetir (a) para las x e y cuyo dataset es "slant_up".
- e) Repetir (a) para las x e y cuyo dataset es "x_shape".
- f) Consultar el help de datasaurus_dozen para ver instrucciones de cómo plotearlos todos. Concluir. La moraleja de este ejercicio es que siempre que podamos, debemos hacer scatterplots de nuestros conjuntos de datos, previamente a resumirlos con medidas de resumen numéricas.
- 5. El conjunto de datos anscombe que está en el R base, corresponde a cuatro conjuntos de datos generados y publicados en 1973 por Francis Anscombe. Se los conoce con el nombre del cuarteto de Anscombe. Corresponde a 4 conjuntos de 11 datos bivariados cada uno.
 - a) Cargar los datos al R. Hacer cuatro scatterplots, graficando la y versus la x de cada uno.
 - b) Calcular las medias muestrales y los desvíos estándares muestrales de dichas x e y separadas por grupo, y la correlación entre ambas.

Regresión lineal simple

6. Sean $(X_i, Y_i)_{1 \leq i \leq n}$ observaciones que siguen el modelo lineal

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, 2, \dots, n, \tag{1}$$

donde $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)^T$, es el vector que tiene los errores. Asumimos que $E(\boldsymbol{\varepsilon}) = \mathbf{0}$.

a) Transformamos las X_i en $X_i^* = X_i - \overline{X}$, i = 1, ..., n, es decir, las centramos. Indicar cómo cambia esto los parámetros del nuevo modelo lineal para (X_i^*, Y_i) ,

$$Y_i = \beta_0^* + \beta_1^* X_i^* + \varepsilon_i^*, \quad i = 1, 2, \dots, n,$$
(2)

Es decir, escribir a β_0^* y a β_1^* en términos de β_0 y a β_1 .

<u>Sugerencia</u>: A partir de (1) sumar y restar términos adecuados hasta obtener (2). ¿Cambian ambos parámetros, o alguno queda igual?

- b) ¡Cómo cambian sus estimadores? ¿Cambian ambos estimadores, o alguno queda igual?
- c) Ahora centremos también a las Y_i . Sean $Y_i^* = Y_i \overline{Y}$, i = 1, ..., n. Responder (a) y (b) para las (X_i^*, Y_i^*) ,

7. Problema de simulación 1.

a) Generar n=40 datos de la siguiente manera. Tomar $X_i \sim \mathcal{E}(1)$ y definir

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, i = 1, \dots, n$$

donde $\beta_0 = 5$, $\beta_1 = -2$ y $\varepsilon_i \sim N(0, \sigma^2 = 3)$. ¿Cuánto vale la media y la varianza de los errores? Graficar los datos. Repetir varias veces y observar la forma de los scatterplots. ¿Es razonable ajustar estos datos con un modelo lineal?

- b) Repetir (a) pero ahora tomar los errores con distribución U(-3,3). ¿Cuánto vale la media y la varianza de los errores?
- c) Repetir (a) pero ahora tomar los errores con distribución: $\varepsilon_i + 3 \sim \Gamma(\alpha = 3, \lambda = 1)$. ¿Cuánto vale la media y la varianza de los errores? Hacer un gráfico de la densidad (la función curve de R puede ser útil). Observar que para generar una gamma en R con un valor λ_0 prefijado, debemos setear el argumento rate = λ_0 y el valor de α se setea con el argumento shape de la función rgamma. ¿Es razonable pensar que un modelo lineal simple ajustará bien a estos datos?
- d) Repetir (c) pero con $\beta_1 = -400$. ¿Qué cambia en el gráfico? ¿Es razonable pensar que un modelo lineal simple ajustará bien a estos datos?
- e) Repetir (a) pero ahora tomar los errores con distribución $N(0, \sigma^2 = 25)$. ¿Es razonable pensar que un modelo lineal simple ajustará bien a estos datos?

8. Problema de simulación 2.

Generar n=20 datos de la siguiente manera. Tomar $X_i \sim U(0,1)$ y dejarlos fijos y definir

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, i = 1, \dots, n$$

donde $\beta_0 = 5$, $\beta_1 = 3$ y $\varepsilon_i \sim N(0,1)$. Graficar los datos. Ajustar un modelo lineal y agregar al gráfico la recta de regresión estimada, los valores ajustados y el punto $(\overline{x}, \overline{y})$.

- a) Repetir el experimento N=1000 veces y guardar los valores de $\widehat{\beta}_1$ que se obtienen cada vez, $\widehat{\beta}_1^{(1)}, \widehat{\beta}_1^{(2)}, \ldots, \widehat{\beta}_1^{(N)}$. ¿Cuál es la media (muestral) de estos valores? ¿Cuál su varianza muestral? Realizar un histograma de $\widehat{\beta}_1^{(1)}, \widehat{\beta}_1^{(2)}, \ldots, \widehat{\beta}_1^{(N)}$. Grafique un estimador de la densidad a los $\{\widehat{\beta}_1^{(j)}\}_{1 \leq j \leq 1000}$. ¿Qué distribución parecen tener?
- b) Repetir (a) con n = 5.
- c) Repetir (a) con n=20 y los errores con distribución $\epsilon_i-1\sim\mathcal{E}(\lambda=1)$.
- d) Repetir (a) con n = 5 y los errores con distribución $\epsilon_i 1 \sim \mathcal{E}(\lambda = 1)$.