Change-point detection in a Poisson process

S. Robin

joint ongoing work with E. Lebarbier, C. Dion-Blanc

Sorbonne université

Stats au sommet, Rochebrune, Mar. 2022

Example

Bat cries (night of the 17 jul. 2019)

Example

Point process on $t \in [0, 1]$.

Event times:

$$0 < T_1 < \dots T_i < \dots T_n < 1$$

Counting process:

$$N(t) = \sum_{i=1}^{n} \mathbb{I}\{T_i \leqslant t\}$$

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

Example

Point process on $t \in [0, 1]$.

Event times:

$$0 < T_1 < \dots T_i < \dots T_n < 1$$

Counting process:

$$N(t) = \sum_{i=1}^{n} \mathbb{I}\{T_i \leqslant t\}$$

Poisson Process.

$$\{N(t)\}_{0 \leqslant t \leqslant 1} \sim PP(\lambda(t))$$

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

Intensity function $\lambda(t)$:

$$\lambda(t) = \lim_{\Delta t \to 0} \frac{\mathbb{P}\{N(t + \Delta t) - N(t) = 1\}}{\Delta t},$$

$$\mathbb{E}N(s) - \mathbb{E}N(t) = \int_{t}^{s} \lambda(u) \, du$$

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) 0 < \tau_1 \cdots < \tau_{K-1} < 1 (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

ightarrow Continuous piece-wise linear cumulated intensity function

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) 0 < \tau_1 \cdots < \tau_{K-1} < 1 (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

→ Continuous piece-wise linear cumulated intensity function

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

- Segmentation: estimate (τ, λ) reasonnably fast
- ▶ Model selection: choose *K*

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) 0 < \tau_1 \cdots < \tau_{K-1} < 1 (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

→ Continuous piece-wise linear cumulated intensity function

Kilauea eruptions

- Segmentation: estimate (τ, λ) reasonnably fast
- Model selection: choose K

Kilauea eruptions (from 1750 to 1984)^a

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) 0 < \tau_1 \cdots < \tau_{K-1} < 1 (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

→ Continuous piece-wise linear cumulated intensity function

asource: [HB17]

- Segmentation: estimate (τ, λ) reasonnably fast
- Model selection: choose K

Kilauea eruptions (from 1750 to 1984)^a

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) 0 < \tau_1 \cdots < \tau_{K-1} < 1 (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

→ Continuous piece-wise linear cumulated intensity function

asource: [HB17]

- Segmentation: estimate (τ, λ) reasonnably fast
- Model selection: choose K

Outline

Estimation

Model selection

Extensions

Property 1: Independence of disjoint intervals.

Property 1: Independence of disjoint intervals.

Neg-log-likelihood. Denoting $\Delta N_k = N(\tau_k) - N(\tau_{k-1}), \ \Delta \tau_k = \tau_k - \tau_{k-1}$,

$$-\log p_{\tau,\lambda}(N) = \sum_{k=1}^K \lambda_k \Delta \tau_k - \Delta N_k \log \lambda_k,$$

Property 1: Independence of disjoint intervals.

Neg-log-likelihood. Denoting $\Delta N_k = N(\tau_k) - N(\tau_{k-1}), \ \Delta \tau_k = \tau_k - \tau_{k-1}$,

$$-\log p_{\tau,\lambda}(N) = \sum_{k=1}^K \lambda_k \Delta \tau_k - \Delta N_k \log \lambda_k,$$

Additive contrast. Sum over the segments

$$\gamma(\tau, \lambda) = \sum_{k=1}^{K} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

Property 1: Independence of disjoint intervals.

Neg-log-likelihood. Denoting $\Delta N_k = N(\tau_k) - N(\tau_{k-1})$, $\Delta \tau_k = \tau_k - \tau_{k-1}$,

$$-\log p_{\tau,\lambda}(N) = \sum_{k=1}^K \lambda_k \Delta \tau_k - \Delta N_k \log \lambda_k,$$

Additive contrast. Sum over the segments

$$\gamma(\tau, \lambda) = \sum_{k=1}^{K} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

Optimization problem.

$$(\widehat{\tau}, \widehat{\lambda}) = \underset{\tau \in \mathcal{T}^K}{\arg \min} \ \underset{\lambda}{\min} \ \gamma(\tau, \lambda)$$

where \mathcal{T}^{K} is a continuous set and $\gamma(\tau,\lambda)$ is not convex nor even continuous.

Optimization wrt λ :

$$\hat{\gamma}(\tau) = \sum_{k=1}^{K} \underbrace{C(\Delta N_k, \Delta \tau_k, \widehat{\lambda}_k)}_{\widehat{C}(\Delta N_k, \Delta \tau_k)}$$

e.g.: $\hat{\lambda}_k = \Delta N_k/\Delta \tau_k$

Optimization wrt λ :

$$\hat{\gamma}(\tau) = \sum_{k=1}^{K} \underbrace{C(\Delta N_k, \Delta \tau_k, \widehat{\lambda}_k)}_{\widehat{C}(\Delta N_k, \Delta \tau_k)}$$

e.g.: $\hat{\lambda}_k = \Delta N_k/\Delta \tau_k$

Optimization wrt τ :

$$\widehat{\tau} = \operatorname*{arg\,min}_{\tau} \widehat{\gamma}(\tau) = \sum_{k} \widehat{C}(\Delta N_{k}, \Delta \tau_{k})$$

Optimization wrt λ :

$$\hat{\gamma}(\tau) = \sum_{k=1}^{K} \underbrace{C(\Delta N_k, \Delta \tau_k, \widehat{\lambda}_k)}_{\widehat{C}(\Delta N_k, \Delta \tau_k)}$$

e.g.:
$$\hat{\lambda}_k = \Delta N_k/\Delta \tau_k$$

Optimization wrt τ :

$$\hat{\tau} = \operatorname*{arg\,min}_{\tau} \hat{\gamma}(\tau) = \sum_{k} \hat{C}(\Delta N_{k}, \Delta \tau_{k})$$

Example: n = 10, K = 3.

Each block corresponds to a specific vector

$$\Delta N = (\Delta N_1, \Delta N_2, \Delta N_3)$$

Optimization wrt λ :

$$\hat{\gamma}(\tau) = \sum_{k=1}^{K} \underbrace{C(\Delta N_k, \Delta \tau_k, \widehat{\lambda}_k)}_{\widehat{C}(\Delta N_k, \Delta \tau_k)}$$

e.g.:
$$\hat{\lambda}_k = \Delta N_k/\Delta \tau_k$$

Optimization wrt τ :

$$\hat{\tau} = \operatorname*{arg\,min}_{\tau} \hat{\gamma}(\tau) = \sum_{k} \hat{C}(\Delta N_{k}, \Delta \tau_{k})$$

Example: n = 10, K = 3.

Each block corresponds to a specific vector

$$\Delta N = (\Delta N_1, \Delta N_2, \Delta N_3)$$

Partitioning the number of events. Define $\mathcal{N}^K = \left\{ \nu \in \mathbb{N}^K : \sum_{k=1}^K \nu_k = n \right\}$.

Partitioning the number of events. Define $\mathcal{N}^K = \left\{ \nu \in \mathbb{N}^K : \sum_{k=1}^K \nu_k = n \right\}$.

Partitioning the segmentation space. For $\nu \in \mathcal{N}_K$, define $\mathcal{T}_{\nu}^K = \left\{ \tau \in \mathcal{T}^K : \Delta N = \nu \right\}$ so that

$$\min_{\tau \in \mathcal{T}^K} \hat{\gamma}(\tau) = \min_{\nu \in \mathcal{N}^K} \min_{\tau \in \mathcal{T}^K_\nu} \hat{\gamma}(\tau,).$$

Partitioning the number of events. Define $\mathcal{N}^K = \left\{ \nu \in \mathbb{N}^K : \sum_{k=1}^K \nu_k = n \right\}$.

Partitioning the segmentation space. For $\nu \in \mathcal{N}_K$, define $\mathcal{T}_{\nu}^K = \left\{ \tau \in \mathcal{T}^K : \Delta N = \nu \right\}$ so that

$$\min_{\tau \in \mathcal{T}^K} \widehat{\gamma}(\tau) = \min_{\nu \in \mathcal{N}^K} \min_{\tau \in \mathcal{T}^K_\nu} \widehat{\gamma}(\tau,).$$

Property. If $K \leq n$ and, for each $\nu \in \mathcal{N}^K$, $\widehat{\gamma}(\tau)$ is strictly concave wrt $\tau \in \mathcal{T}_{\nu}^K$, then

$$\widehat{\tau} = \arg\min_{\tau \in \mathcal{T}_{n}^{K}} \widehat{\gamma}(\tau) \subset \{T_{1}^{-}, T_{1}, T_{2}^{-}, T_{2}^{-}, \dots T_{n}^{-}, T_{n}\}.$$

Partitioning the number of events. Define $\mathcal{N}^K = \left\{ \nu \in \mathbb{N}^K : \sum_{k=1}^K \nu_k = n \right\}$.

Partitioning the segmentation space. For $\nu \in \mathcal{N}_K$, define $\mathcal{T}_{\nu}^K = \left\{ \tau \in \mathcal{T}^K : \Delta N = \nu \right\}$ so that

$$\min_{\tau \in \mathcal{T}^K} \widehat{\gamma}(\tau) = \min_{\nu \in \mathcal{N}^K} \min_{\tau \in \mathcal{T}^K_\nu} \widehat{\gamma}(\tau,).$$

Property. If $K \leq n$ and, for each $\nu \in \mathcal{N}^K$, $\widehat{\gamma}(\tau)$ is strictly concave wrt $\tau \in \mathcal{T}_{\nu}^K$, then

$$\widehat{\tau} = \arg\min_{\tau \in \mathcal{T}^K} \widehat{\gamma}(\tau) \subset \{T_1^-, T_1, T_2^-, T_2^-, \dots T_n^-, T_n\}.$$

Consequence. $\hat{\tau}$ can be obtained by dynamic programming over the 2n+2 possible change-points

$$S = \{0, T_1^-, T_1, T_2^-, T_2, \dots, T_n^-, T_n, 1\}.$$

Alternative constrast

Remark.

- ▶ S includes segments with length 0 (e.g.: $I =]T_k^-, T_k], \Delta N_k = 1$),
- ... which are optimal for the log-likelihood contrast: $\hat{C}(1,0)=-\infty$

Alternative constrast

Remark.

- ▶ S includes segments with length 0 (e.g.: $I =]T_k^-, T_k], \Delta N_k = 1$),
- ... which are optimal for the log-likelihood contrast: $\hat{\textit{C}}(1,0) = -\infty$

Poisson-Gamma model. For each segment $1 \le k \le K$:

$$\Lambda_k \sim \mathcal{G}am(a, b),$$
 $\{N(t)\}_{t \in I_k} \mid \Lambda_k \sim PP(\Lambda_k),$

which gives:

$$\begin{split} C(\Delta N_k, \Delta \tau_k) &= -\log p_{a,b}(\{N(t)\}_{t \in I_k}) \\ &= \operatorname{cst} - \log \Gamma(a + \Delta N_k) + (a + \Delta N_k) \log(b + \Delta \tau_k) \end{split}$$

→ Enjoys the concavity property, but avoids segments with null length.

Outline

Estimation

Model selection

Extensions

Property 2: Thining.

- $\{N(t)\} \sim PP(\lambda(t))$
- ► Sample the event times (prob. v)

Property 2: Thining.

- $\{N(t)\} \sim PP(\lambda(t))$
- ► Sample the event times (prob. v)

$$\{N^L(t)\} \sim PP(v\lambda(t)), \qquad \{N^T(t)\} \sim PP((1-v)\lambda(t)), \qquad \{N^L(t)\} \perp \{N^T(t)\}$$

Property 2: Thining.

- $\{N(t)\} \sim PP(\lambda(t))$
- ► Sample the event times (prob. v)

$$\{ \textbf{N}^L(t) \} \sim PP(v\lambda(t)), \qquad \{ \textbf{N}^T(t) \} \sim PP((1-v)\lambda(t)), \qquad \{ \textbf{N}^L(t) \} \perp \{ \textbf{N}^T(t) \}$$

Consequence. If $\lambda(t)$ is piece-wise constant with parms $\tau=(\tau_k)$ and $\lambda=(\lambda_k)$, then

Property 2: Thining.

- $\{N(t)\} \sim PP(\lambda(t))$
- ► Sample the event times (prob. v)

$$\{ \textit{N}^{\textit{L}}(t) \} \sim \textit{PP}(\textit{v}\lambda(t)), \qquad \{ \textit{N}^{\textit{T}}(t) \} \sim \textit{PP}((1-\textit{v})\lambda(t)), \qquad \{ \textit{N}^{\textit{L}}(t) \} \perp \{ \textit{N}^{\textit{T}}(t) \}$$

Consequence. If $\lambda(t)$ is piece-wise constant with parms $\tau=(\tau_k)$ and $\lambda=(\lambda_k)$, then

- $\lambda^{L}(t)$ piece-wise constant with change points (τ_{k}) and intensities $(v\lambda_{k})$,
- $\lambda^T(t)$ piece-wise constant with change points (τ_k) and intensities $((1-\nu)\lambda_k)$,
- ▶ $\{N^{L}(t)\} \perp \{N^{T}(t)\}.$

Sampling event times provides two independent Poisson processes with same change points.

Sampling event times provides two independent Poisson processes with same change points.

Cross-validation. For $1 \leq K \leq K_{\text{max}}$,

- Repeat for $1 \leqslant m \leqslant M$:
 - 1 Sample the event times to form $\{N^{L,m}(t)\}$ (learn) and $\{N^{T,m}(t)\}$ (test),
 - 2 Estimate $\hat{\tau}^{L,m}$ and $\hat{\lambda}^{L,m}$ from $\{N^{L,m}(t)\}$,
 - $\text{3 Compute the contrast } \gamma_K^{T,m} = \gamma\left(\{\textit{N}^T(t)\}; \hat{\tau}^{\textit{L},m}, \frac{1-\textit{v}}{\textit{v}}\hat{\lambda}^{\textit{L},m}\right).$

Sampling event times provides two independent Poisson processes with same change points.

Cross-validation. For $1 \leq K \leq K_{\text{max}}$,

- ▶ Repeat for $1 \le m \le M$:
 - 1 Sample the event times to form $\{N^{L,m}(t)\}$ (learn) and $\{N^{T,m}(t)\}$ (test),
 - 2 Estimate $\hat{\tau}^{L,m}$ and $\hat{\lambda}^{L,m}$ from $\{N^{L,m}(t)\}$,
 - $\text{3 Compute the contrast } \gamma_K^{T,m} = \gamma\left(\{\textit{N}^T(t)\}; \hat{\tau}^{\textit{L},m}, \frac{1-\textit{v}}{\textit{v}}\hat{\lambda}^{\textit{L},m}\right).$
- Compute

$$\overline{\gamma}_K = \frac{1}{M} \sum_{m=1}^M \gamma_K^{T,m}$$

Sampling event times provides two independent Poisson processes with same change points.

Cross-validation. For $1 \leq K \leq K_{\text{max}}$,

- ▶ Repeat for $1 \le m \le M$:
 - 1 Sample the event times to form $\{N^{L,m}(t)\}$ (learn) and $\{N^{T,m}(t)\}$ (test),
 - 2 Estimate $\hat{\tau}^{L,m}$ and $\hat{\lambda}^{L,m}$ from $\{N^{L,m}(t)\}$,
 - $\text{3 Compute the contrast } \gamma_K^{T,m} = \gamma\left(\{\textit{N}^T(t)\}; \hat{\tau}^{\textit{L},m}, \frac{1-\textit{v}}{\textit{v}}\hat{\lambda}^{\textit{L},m}\right).$
- Compute

$$\overline{\gamma}_K = \frac{1}{M} \sum_{m=1}^{M} \gamma_K^{T,m}$$

► Select

$$\widehat{K} = \operatorname*{arg\,min}_{K} \overline{\gamma}_{K}$$

Illustration

Poisson-Gamma contrast. Set $a^L = a^T = 1$, $b^L = 1/n_L$, $b^T = 1/n_T$, and compute

$$\begin{split} -\log p(\{N^T(t)\} \mid \hat{\tau}^L) &= \sum_{k=1}^K (a + \Delta N_k^T) \log(a + \Delta \tau_k) - \log \Gamma(a + \Delta N_k^L) \\ &- K \left(a^T \log b^T - \log \Gamma(a^T) \right) \end{split}$$

Illustration

Poisson-Gamma contrast. Set $a^L = a^T = 1$, $b^L = 1/n_L$, $b^T = 1/n_T$, and compute

$$\begin{split} -\log p(\{N^T(t)\} \mid \hat{\tau}^L) &= \sum_{k=1}^K (a + \Delta N_k^T) \log(a + \Delta \tau_k) - \log \Gamma(a + \Delta N_k^L) \\ &- \mathcal{K} \left(a^T \log b^T - \log \Gamma(a^T) \right) \end{split}$$

Kilauea eruptions

Model selection via CV

Resulting segmentation

Outline

Estimation

Model selection

Extensions

Extensions

Marked Poisson Process.

• $\{Y(t)\}_{0 \le t \le 1} \sim MPP(\lambda(t), \mu(t))$:

$$\{N(t)\}_{0 \leqslant t \leqslant 1} \sim PP(\lambda(t)),$$
 at each T_i : $X_i \sim \mathcal{F}(\mu(T_i))$

- Works the same way, provided that concavity holds.
- ▶ Bat cries: X = bat species or cry duration.

Extensions

Marked Poisson Process.

• $\{Y(t)\}_{0 \leqslant t \leqslant 1} \sim MPP(\lambda(t), \mu(t))$:

$$\{N(t)\}_{0 \le t \le 1} \sim PP(\lambda(t)),$$
 at each T_i : $X_i \sim \mathcal{F}(\mu(T_i))$

- Works the same way, provided that concavity holds.
- ▶ Bat cries: *X* = bat species or cry duration.

Segmentation-clustering.

- ▶ Each segment belongs to a class $1 \leqslant q \leqslant Q$ (with probability π_q and intensity $\lambda_k = \ell_q$),
- ► Combination of EM and DP algorithms [PRLD07],
- ► Class = animal behaviour (hunt, transit, ...)

Extensions

Marked Poisson Process.

• $\{Y(t)\}_{0 \leqslant t \leqslant 1} \sim MPP(\lambda(t), \mu(t))$:

$$\{N(t)\}_{0 \le t \le 1} \sim PP(\lambda(t)),$$
 at each T_i : $X_i \sim \mathcal{F}(\mu(T_i))$

- Works the same way, provided that concavity holds.
- ▶ Bat cries: *X* = bat species or cry duration.

Segmentation-clustering.

- ▶ Each segment belongs to a class $1 \leqslant q \leqslant Q$ (with probability π_q and intensity $\lambda_k = \ell_q$),
- Combination of EM and DP algorithms [PRLD07],
- ▶ Class = animal behaviour (hunt, transit, ...)

And also.

- ► Theoretically grounded model selection criterion,
- Other desirable contrasts. ...

References I

Facard, S. Robin, E Lebarbier, and J-J Daudin. A segmentation/clustering model for the analysis of array CGH data. Biometrics, 63(3):758–766, 2007.

Appendix

$$|\mathcal{N}_K| = \sum_{h=\lfloor (K-1)/2 \rfloor}^K {n-1 \choose h-1} {h+1 \choose K-h}$$