

IRFP250

N-CHANNEL 200V - 0.073Ω - 33A TO-247 PowerMesh™II MOSFET

TYPE	PE V _{DSS} R _{DS(}		I _D
IRFP250	200V	< 0.085Ω	33 A

- TYPICAL $R_{DS}(on) = 0.073\Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- NEW HIGH VOLTAGE BENCHMARK
- GATE CHARGE MINIMIZED

DESCRIPTION

The PowerMESHTMII is the evolution of the first generation of MESH OVERLAYTM. The layout refinements introduced greatly improve the Ron*area figure of merit while keeping the device at the leading edge for what concerns swithing speed, gate charge and ruggedness.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- UNINTERRUPTIBLE POWER SUPPLIES (UPS)
- DC-AC CONVERTERS FOR TELECOM, INDUSTRIAL, AND LIGHTING EQUIPMENT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	200	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	200	V
V _{GS}	Gate- source Voltage	±20	V
I _D	Drain Current (continuos) at T _C = 25°C	33	А
I _D	Drain Current (continuos) at T _C = 100°C	20	А
I _{DM} (●)	Drain Current (pulsed)	132	А
Ртот	Total Dissipation at T _C = 25°C	180	W
	Derating Factor	1.44	W/°C
dv/dt(1)	Peak Diode Recovery voltage slope	5	V/ns
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•)Pulse width limited by safe operating area

 $(1)I_{SD} \leq \! 33A, \; di/dt \leq \! 300A/\mu s, \; V_{DD} \leq V_{(BR)DSS}, \; T_j \leq T_{JMAX}.$

Sep 2000 1/8

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	0.66	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	30	°C/W
Rthc-sink	Thermal Resistance Case-sink Typ	0.1	°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter Max Value		Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	33	А
Eas	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	600	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	200			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating, T_C = 125 °C$			50	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ±30V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 16A		0.073	0.085	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $V_{GS} = 10V$	33			Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_D = 16A$	10	25		S
C _{iss}	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		2850		pF
Coss	Output Capacitance			420		pF
C _{rss}	Reverse Transfer Capacitance			120		pF

2/8

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 100V, I _D =16 A		25		ns
t _r	Rise Time	$^{\prime}$ R _G = 4.7 Ω , V _{GS} = 10V (see test circuit, Figure 3)		50		ns
Qg	Total Gate Charge	$V_{DD} = 160V, I_D = 33 A,$		117	158	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 10V$, $R_G = 4.7\Omega$		15		nC
Q_{gd}	Gate-Drain Charge			50		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	V _{DD} = 160V, I _D = 16 A,		60		ns
t _f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10V$ (see test circuit, Figure 5)		40		ns
t _c	Cross-over Time	(occ test should, 1 igure o)		100		ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				33	Α
I _{SDM} (2)	Source-drain Current (pulsed)				132	Α
V _{SD} (1)	Forward On Voltage	I _{SD} = 33 A, V _{GS} = 0			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 33 \text{ A}, \text{ di/dt} = 100 \text{A/} \mu \text{s},$		370		ns
Q _{rr}	Reverse Recovery Charge	$V_{DD} = 100V$, $T_j = 150$ °C (see test circuit, Figure 5)		5.4		μC
I _{RRM}	Reverse Recovery Current	(300 tost offourt, 1 igure 3)		29		Α

Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
2. Pulse width limited by safe operating area.

Safe Operating Area

Thermal Impedance

Output Characteristics

Tranfer Characteristics

Tranconductance

Static Drain-Source On Resistance

Gate Charge vs Gate-source Voltage

Capacitance Variations

4/8

Normalized Gate Thereshold Voltage vs Temp.

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

A7/.

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

6/8

TO-247 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.7		5.3	0.185		0.209
D	2.2		2.6	0.087		0.102
Е	0.4		0.8	0.016		0.031
F	1		1.4	0.039		0.055
F3	2		2.4	0.079		0.094
F4	3		3.4	0.118		0.134
G		10.9			0.429	
Н	15.3		15.9	0.602		0.626
L	19.7		20.3	0.776		0.779
L3	14.2		14.8	0.559		0.582
L4		34.6			1.362	
L5		5.5			0.217	
М	2		3	0.079		0.118

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

A7/.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.