V	Application No.	Applicant(s)	
	09/788,300	VAHALA ET AL.	
Notice of Allowability	Examiner	Art Unit	
•	Michael P. Mooney	2877	and and
The MAILING DATE of this communication of claims being allowable, PROSECUTION ON THE MERIT erewith (or previously mailed), a Notice of Allowance (PTOLOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENTHE Office or upon petition by the applicant. See 37 CFR	-85) or other appropriate commu TRIGHTS. This application is si	nication will be mailed in due	e course. THIS
This communication is responsive to <u>5/4/04 Amdt.</u> .			
The allowed claim(s) is/are <u>9 and 15-46</u> .			
☑ The drawings filed on 16 February 2001 are accepted	by the Examiner.		
 . ☐ Acknowledgment is made of a claim for foreign prior a) ☐ All b) ☐ Some* c) ☐ None of the: 1. ☐ Certified copies of the priority documents 		or (f).	
2. Cortified copies of the priority documents	have been received in Applicatio	n No	
Copies of the certified copies of the priori	ty documents have been received	d in this national stage applic	cation from the
International Bureau (PCT Rule 17.2(a)).			•
* Certified copies not received:			
Applicant has THREE MONTHS FROM THE "MAILING DANGED BY THE THE MAILING DANGED BY THE THE THE MAILING DANGED BY THE	ATE" of this communication to file DONMENT of this application.	a reply complying with the i	requirements
. A SUBSTITUTE OATH OR DECLARATION must be INFORMAL PATENT APPLICATION (PTO-152) which	submitted. Note the attached EXA th gives reason(s) why the oath o	AMINER'S AMENDMENT or r declaration is deficient.	NOTICE OF
. CORRECTED DRAWINGS (as "replacement sheets"	") must be submitted.		
(a) ☐ including changes required by the Notice of Draf	tsperson's Patent Drawing Revie	w (PTO-948) attached	
1) Thereto or 2) To Paper No./Mail Date	•		
(b) ☐ including changes required by the attached Example Paper No./Mail Date			
Identifying Indicia such as the application number (see 37 each sheet. Replacement sheet(s) should be labeled as su	CFR 1.84(c)) should be written on t ch in the header according to 37 Cl	the drawings in the front (not FR 1.121(d).	the back) of
DEPOSIT OF and/or INFORMATION about the attached Examiner's comment regarding REQUIREN	denosit of BIOLOGICAL MAT	ERIAL must be submitted	. Note the
Associated (c)			
Attachment(s) 1. ☐ Notice of References Cited (PTO-892)	 -	nformal Patent Application (PTO-152)
2. ☐ Notice of Draftperson's Patent Drawing Review (PTO	-948) 6. ☐ Interview S	Summary (PTO-413), ./Mail Date	
B. Information Disclosure Statements (PTO-1449 or PT	_ 1 apoi 110	s Amendment/Comment	
Paner No./Mail Date 5/14/04		s Statement of Reasons for	Allowance
4. Examiner's Comment Regarding Requirement for De	posit 8. ⊠ Examiner 9. ☐ Other		
of Biological Material			

Art Unit: 2877

REASONS FOR ALLOWANCE

The following is an examiner's statement of reasons for allowance:

The prior art, either alone or in combination, does not disclose or render obvious that the resonator fiber further includes a taper positioner for engaging the fiber-optic-taper segment of at least one of the first and second transmission fiber optic waveguides so as to reproducibly establish and stably maintain an evanescent optical coupling of the fiber-ring resonator and at least one of the transmission fiber optic waveguides; at least one of the fiber optic taper segments of the first and second transmission fiber optic waveguides is partially wrapped around a portion of an outer circumference of at least one fiber-ring resonator segment; the resonator fiber includes a delocalized-optical-mode suppresor; and the resonant frequencies of the fiber-ring resonator segment have been modified by beam processing in combination with the rest of claim 9.

It is noted that the claim 9 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious a plurality of optical resonators forming a coupled-optical-resonator system and including at least one fiber-ring optical resonator, the coupled-optical-resonator system being evanescently optically coupled to each of the first transmission optical waveguide and the second transmission optical waveguide at the respective evanescent optical coupling segment thereof for transferring a resonant optical signal between the first

Art Unit: 2877

transmission optical waveguide and the second transmission optical waveguide, each fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator, the resonant optical signal being substantially resonant with at least one of the resonant optical modes in combination with the rest of claims 15-18, respectively.

It is noted that claims 15-18 are allowable because the unique combination of each and every specific element stated in the respective claim.

The prior art, either alone or in combination, does not disclose or render obvious a plurality of optical resonators forming a coupled-optical-resonator system and including at least one fiber-ring optical resonator, the coupled-optical-resonator system being evanescently optically coupled to each of the first transmission optical waveguide and the second transmission optical Waveguide at the respective evanescent optical coupling segment thereof for transferring a resonant optical signal between the first transmission optical waveguide and the second transmission optical waveguide, each fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber

Art Unit: 2877

and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator, the resonant optical signal being substantially resonant with at least one of the resonant optical modes, a spectral width of at least one resonance band of the coupled-optical-resonator system being smaller than an optical channel spacing of the optical WDM system in combination with the rest of claims 19-22, respectively.

It is noted that claims 19-22 are allowable because the unique combination of each and every specific element stated in the respective claim.

The prior art, either alone or in combination, does not disclose or render obvious a single fiber-ring optical resonator, the fiber-ring optical resonator being evanescently optically coupled to each of the first transmission optical waveguide and the second transmission optical waveguide at the respective evanescent optical coupling segment thereof for transferring a resonant optical signal between the first transmission optical waveguide and the second transmission optical waveguide, the fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to

Art Unit: 2877

support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator, the resonant optical signal being substantially resonant with at least one of the resonant optical modes in combination with the rest of claims 23-24, respectively.

It is noted that claims 23-24 are allowable because the unique combination of each and every specific element stated in the respective claim.

The prior art, either alone or in combination, does not disclose or render obvious a single fiber-ring optical resonator, the fiber-ring optical resonator being evanescently optically coupled to each of the first transmission optical waveguide and the second transmission optical waveguide at the respective evanescent optical coupling segment thereof for transferring a resonant optical signal between the first transmission optical waveguide and the second transmission optical waveguide, the fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator, the resonant optical signal being substantially resonant with at least one of the resonant optical modes optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical

Art Unit: 2877

mode near an outer circumferential surface of the fiber-ring optical resonator, the resonant optical signal being substantially resonant with at least one of the resonant optical modes, a spectral width of at least one resonance of the fiber-ring optical resonator being smaller than an optical channel spacing of the optical WDM system in combination with the rest of claim 25.

It is noted that the claim 25 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious a single fiber-ring optical resonator, the fiber-ring optical resonator being evanescently optically coupled to each of the first transmission optical waveguide and the second transmission optical waveguide at the respective evanescent optical coupling segment thereof for transferring a resonant optical signal between the first transmission optical waveguide and the second transmission optical waveguide, the fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an

Application/Control Number: 09/788,300 Page 7

Art Unit: 2877

outer circumferential surface of the fiber-ring optical resonator, the resonant optical kgnal being substantially resonant with at least one of the resonant optical modes, a spectral width of at least one resonance of the fiber-ring optical resonator being substantially equal to an optical channel spacing of the optical WDM system in combination with the rest of claim 26.

It is noted that the claim 26 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious a single fiber-ring optical resonator, the fiber-ring optical resonator being evanescently optically coupled to each of the first transmission optical waveguide and the second transmission optical waveguide at the respective evanescent optical coupling segment thereof for transferring a resonant optical signal between the first transmission optical waveguide and the second transmission optical waveguide, the fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator, the resonant

Art Unit: 2877

optical signal being substantially resonant with at least one of the resonant optical modes, at least one spacing between spectrally-adjacent resonances of the fiber-ring optical resonator being greater than an optical channel spacing of the optical WDM system in combination with the rest of claim 27.

It is noted that the claim 27 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious a single fiber-ring optical resonator, the fiber-ring optical resonator being evanescently optically coupled to each of the first transmission optical waveguide and the second transmission optical waveguide at the respective evanescent optical coupling segment thereof for transferring a resonant optical signal between the first transmission optical waveguide and the second transmission optical waveguide, the fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator, the resonant optical signal being substantially resonant with at least one of the resonant

Art Unit: 2877

optical modes, spectrally-adjacent resonances of the fiber-ring optical resonator being spaced by about an integer times an optical channel spacing of the optical WDM system in combination with the rest of claim 28.

It is noted that the claim 28 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious a resonant optical component including at least one fiber-ring optical resonator, the resonant optical component being evanesæntly optically coupled to each of the first transmission optical waveguide and the second transmission optical waveguide at the respective evanescent optical coupling segment thereof for transferring a resonant optical signal between the first transmission optical waveguide and the second transmission optical waveguide, each fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator, the resonant optical signal being substantially resonant with at least

Art Unit: 2877

one of the resonant optical modes, at least one of the first transmission optical waveguide and the second transmission optical waveguide being a polarization-preserving optical fiber and the evanescent optical coupling segment thereof being a fiber-optic taper segment in combination with the rest of claim 29.

It is noted that the claim 29 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious a resonant optical component including at least one fiber-ring optical resonator, the resonant optical component being evanescently optically coupled to each of the first transmission optical waveguide and the second transmission optical waveguide at the respective evanescent optical coupling segment thereof for transferring a resonant optical signal between the first transmission optical waveguide and the second transmission optical waveguide, each fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator. the resonant optical signal being substantially resonant with at least one of the resonant

Art Unit: 2877

optical modes, the resonator optical fiber including at least one delocalized opticalmode suppressor in combination with the rest of claim 31.

It is noted that the claim 31 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious the elements delineated in the respective claims paragraph ending with "...the resonant optical signal being substantially resonant with at least one of the optical modes..." and the accompanying variations in the remainder of the respective claim in combination with the rest of respective claims 30, 32-40.

It is noted that the claims 30, 32-40 are allowable because the unique combination of each and every specific element stated in the respective claim.

The prior art, either alone or in combination, does not disclose or render obvious routing a resonant subset of the received optical signals from the first transmission optical waveguide through the resonant optical component and into a second transmission optical waveguide, the second transmission optical waveguide being evanescently optically coupled to the resonant optical component, each of the resonant subset of the received optical signals being substantially resonant with at least one corresponding resonant optical mode of the resonant optical component, thereby dividing the non-resonant and resonant subsets of the received optical signals into the first and second transmission optical waveguides, respectively, the resonant optical component including at least one fiber-ring optical resonator, each fiber-ring optical

Art Unit: 2877

resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator in combination with the rest of claim 41.

It is noted that the claim 41 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious routing routing the resonant subset of the received optical signals from the second transmission optical waveguide through the resonant optical component and into the first transmission optical waveguide, each of the resonant subset of the received optical signals being substantially resonant with at least one corresponding resonant optical mode of the resonant optical component, thereby combining the resonant and non-resonant subsets of the received optical signals into the first transmission optical waveguide, the resonant optical component including at least one fiber-ring optical resonator, each fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of

Art Unit: 2877

at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator in combination with the rest of claim 42.

It is noted that the claim 42 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious routing a resonant one of the received optical signals from the first transmission optical waveguide through the resonant optical component and into a second transmission optical waveguide, the second transmission optical waveguide being evanescently optically coupled to the resonant optical component, the resonant one of the received optical signals being substantially resonant with at least one corresponding resonant optical mode of the resonant optical component, thereby dropping the resonant one of the received optical signals from the first transmission optical waveguide into the second transmission optical waveguide, the resonant optical component including at least one fiber-ring optical resonator, each fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of 'the resonator optical fiber so as to enable the resonator segment to support at least one resonant

Art Unit: 2877

optical mode near an outer circumferential surface of the fiber-ring optical resonator in combination with the rest of claim 43.

It is noted that the claim 43 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious routing the resonant one of the received optical signals from the second transmission optical waveguide through the resonant optical component and into the first transmission optical waveguide, the resonant one of the received optical signals being substantially resonant with at least one corresponding resonant optical mode of the resonant optical component, thereby adding the resonant one of the received optical signals to the non-resonant subset of the received optical signals in the first transmission optical waveguide, the resonant optical component including at least one fiber-ring optical resonator, each fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator in combination with the rest of claim 44.

Art Unit: 2877

It is noted that the claim 44 is allowable because the unique combination of each and every specific element stated in the claim.

The prior art, either alone or in combination, does not disclose or render obvious routing a resonant subset of the received optical signals from the first transmission optical waveguide through the resonant optical component and into a second transmission optical waveguide, the second transmission optical waveguide being evanescently optically coupled to the resonant optical component, each of the resonant subset of the received optical signals being substantially resonant with at least one corresponding resonant optical mode of the resonant optical component, thereby dividing the non-resonant and resonant subsets of the received optical signals into the first and second transmission optical waveguides, respectively, the resonant optical component including at least one fiber-ring optical resonator, each fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator in combination with the rest of claim 45.

It is noted that the claim 45 is allowable because the unique combination of each and every specific element stated in the claim.

Page 16

Application/Control Number: 09/788,300

Art Unit: 2877

The prior art, either alone or in combination, does not disclose or render obvious routing a resonant one of the received optical signals from the first transmission optical waveguide through the resonant optical component and into a second transmission optical waveguide, the second transmission optical waveguide being evanescently optically coupled to the resonant optical component, the resonant one of the received optical signals being substantially resonant with at least one corresponding resonant optical mode of the resonant optical component, thereby dropping the resonant one of the received optical signals from the first transmission optical waveguide into the second transmission optical waveguide, the resonant optical component including at least one fiber-ring optical resonator, each fiber-ring optical resonator including a transverse resonator segment integral with a resonator optical fiber between first and second segments of the resonator optical fiber and having a circumferential optical path length sufficiently different from a circumferential optical path length of an immediately adjacent portion of at least one of the first and second segments of the resonator optical fiber so as to enable the resonator segment to support at least one resonant optical mode near an outer circumferential surface of the fiber-ring optical resonator in combination with the rest of claim 46.

It is noted that the claim 46 is allowable because the unique combination of each and every specific element stated in the claim.

Art Unit: 2877

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Michael P. Mooney whose telephone number is 571-272-2422. The examiner can normally be reached during weekdays, M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Frank G. Font can be reached on 571-272-2415. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is 571-272-

1562.

Michael P. Mooney

Examiner

Art Unit 2877

Frank & Fort

Frank G. Font
Supervisory Patent Examiner

Art Unit 2877

FGF/mpm 7/10/04