Package 'wearables'

October 12, 2022

Type Package
Date 2021-12-20
Title Tools to Read and Convert Wearables Data
Version 0.8.1
Imports xts, lubridate, dplyr, RHRV, magrittr, signal, waveslim, futile.logger, kernlab, padr, varian, ggplot2, R.utils
Maintainer Peter de Looff <pre><pre>peterdelooff@gmail.com></pre></pre>
Description Package to read Empatica E4 data, perform several transformations, perform signal processing and analyses, including batch analyses.
License GPL-2
Encoding UTF-8
LazyData true
Depends R (>= 3.6)
RoxygenNote 7.1.2
Suggests testthat
NeedsCompilation no
Author Peter de Looff [aut, cre], Remko Duursma [aut], Saskia Koldijk [aut], Kees de Schepper [aut], Matthijs Noordzij [ctb], Natasha Jaques [ctb], Sara Taylor [ctb]
Repository CRAN
Date/Publication 2021-12-20 15:20:02 UTC
R topics documented: add_chunk_group
aggregate_e4_data

3

as_time	4
as_timeseries	4
oatch_analysis	5
oinary_classifier_config	5
calculate_RMSSD	6
char_clock_systime	6
choose_between_classes	6
compute_amplitude_features	
compute_derivative_features	7
compute_features2	8
compute_wavelet_coefficients	
compute_wavelet_decomposition	
reate_e4_output_folder	9
4_filecut_intervals	
``llter_createdir_zip . . .	
ilter_e4data_datetime	
ind_peaks	
 get_amp	
get_apex	
get_decay_time	
get_derivative	
get_eda_deriv	
get_half_amp	
get_half_rise	
get_i_apex_with_decay	
get_kernel	
get_max_deriv	
get_peak_end	
get_peak_end_times	
get_peak_start	
get_peak_start_times	
get_rise_time	
get_stoc_unite	
get_second derivative	
bi_analysis	
nax_per_n	
nulticlass_classifier_config	
nuticlass_classifier_comig	
plot_artifacts	
oredict_binary_classifier	
predict_multiclass_classifier	
prepend_time_column	
print.e4data	
process_eda	
bind_e4	
read_and_process_e4	
ead_e4	
emove small neaks	25

Description

partition data into chunks of a fixed number of rows in order to calculate aggregated features per chunk

Usage

```
add_chunk_group(data, rows_per_chunk)
```

Arguments

data df to partition into chunks rows_per_chunk size of a chunk

aggregate_e4_data

Aggregate E4 data into 1min timesteps

Description

Aggregate E4 data into 1min timesteps

Usage

```
aggregate_e4_data(x)
```

Arguments

An object read by read_e4.

4 as_timeseries

 as_time

 as_time

Description

Converts Unix time to as.POSIXct

Usage

```
as_time(x, tz = "UTC")
```

Arguments

x takes a unixtime and converts to as.POSIXct

tz timezone is set to UTC

as_timeseries

Convert an E4 data stream to a timeseries

Description

Creates an xts object indexed by time

Usage

```
as_timeseries(data, index = 2, name_col = "V1")
```

Arguments

data A dataframe, subelements of list as output by read_e4 function

index Which column (integer) to use as the data in the timeseries. Default: 2.

name_col Column name to give to the timeseries data.

batch_analysis 5

batch_analysis

Batch analysis

Description

Read and process all ZIP files in a directory

Usage

```
batch_analysis(path_in = NULL, path_out = ".")
```

Arguments

path_in input path
path_out output path

binary_classifier_config

Configuration of the SVM algorithm for binary classification

Description

Configuration of the SVM algorithm for binary classification

Usage

```
binary_classifier_config
```

Format

An object of class list of length 4.

Author(s)

Sara Taylor <sataylor@mit.edu>

References

```
https://eda-explorer.media.mit.edu/
```

calculate_RMSSD

RMSSD calculation

Description

Calculation of RMSSD over 1 minute time periods for plotting

Usage

```
calculate_RMSSD(IBIdata)
```

Arguments

IBIdata

Uses the IBI data frame as created by read_e4

char_clock_systime

Force character datetime variable ("yyyy-mm-dd hh:mm:ss") to system timezone

Description

Force character datetime variable ("yyyy-mm-dd hh:mm:ss") to system timezone

Usage

```
char_clock_systime(time)
```

Arguments

time

Datetime variable ("yyyy-mm-dd hh:mm:ss")

choose_between_classes

Choice between two classes

Description

Make choice between two classes based on kernel values

Usage

```
choose_between_classes(class_a, class_b, kernels)
```

Arguments

class_a	Number by which class a is indicated
class_b	Number by which class b is indicated

kernels Kernel values from SVM

 ${\tt compute_amplitude_features}$

Amplitude features

Description

Compute amplitude features.

Usage

```
compute_amplitude_features(data)
```

Arguments

data vector of amplitude values

compute_derivative_features

Derivative features

Description

Compute derivative features.

Usage

```
compute_derivative_features(derivative, feature_name)
```

Arguments

derivative vector of derivatives feature_name name of feature

compute_features2

Features computation

Description

Compute features for SVM

Usage

```
compute_features2(data)
```

Arguments

data

df with eda, filtered eda and timestamp columns

compute_wavelet_coefficients

Wavelet coefficients

Description

Compute wavelet coefficients.

Usage

```
compute_wavelet_coefficients(data)
```

Arguments

data

data with an EDA element

 ${\tt compute_wavelet_decomposition}$

Wavelet decomposition

Description

Compute wavelet decomposition.

Usage

```
{\tt compute\_wavelet\_decomposition(data)}
```

Arguments

data

vector of values

create_e4_output_folder

Output folder

Description

Create output folder for E4 analysis results

Usage

```
create_e4_output_folder(obj, out_path = ".")
```

Arguments

obj e4 analysis object out_path output folder

e4_filecut_intervals Filter datasets for a Datetime start + end

Description

A function to determine how many intervals should be created. The question is at what time do you want the filecut to start, what should be the period that you want separate files for, and what should the interval be?

Usage

```
e4_filecut_intervals(time_start, time_end, interval)
```

Arguments

time_start User input start time in the character format "yyyy-mm-dd hh:mm:ss" / e.g.,

"2019-11-27 08:32:00". Where do you want the file cut to start?

time_end User input end time (same format as time_start)

interval #Interval: User input interval (in minutes/e.g., 5) What is the duration of the in-

terval you want to divide the period into? For example, the paper by de Looff et al. (2019) uses 5 minute intervals over a 30 minute period preceding aggressive behavior. The 5 minute interval is chosen as for the calculation of some of the heart rate variability parameters one needs at least 5 minutes of data, but shorter intervals are possible as well, see for instance: Shaffer, Fred, en J. P. Ginsberg. 'An Overview of Heart Rate Variability Metrics and Norms'. Frontiers in Public Health 5 (28 september 2017). https://doi.org/10.3389/fpubh.2017.00258.

10 filter_createdir_zip

filter_createdir_zip

Function to filter the data object based on the time period and intervals that are needed for the files to be cut. The function also creates identical Empatica E4 zipfiles in the same directory as where the original zipfile is located.

Description

Function to filter the data object based on the time period and intervals that are needed for the files to be cut. The function also creates identical Empatica E4 zipfiles in the same directory as where the original zipfile is located.

Usage

```
filter_createdir_zip(
  data,
  time_start,
  time_end,
  interval,
  out_path = NULL,
  fn_name = NULL
)
```

Arguments

d	ata	Object read with read_e4
t	ime_start	User input start time in the character format "yyyy-mm-dd hh:mm:ss" / e.g., "2019-11-27 08:32:00". Where do you want the file cut to start?
t	ime_end	User input end time (same format as time_start)
i	nterval	# Interval: User input interval (in minutes/ e.g., 5) What is the duration of the interval you want to divide the period into? For example, the paper by de Looff et al. (2019) uses 5 minute intervals over a 30 minute period preceding aggressive behavior. The 5 minute interval is chosen as for the calculation of some of the heart rate variability parameters one needs at least 5 minutes of data.
0	ut_path	The directory where to write the cut files; defaults to the input folder.
f	n_name	The directory where to write the cut files without the extension.

Value

```
out_path fn_name
```

filter_e4data_datetime 11

```
filter_e4data_datetime
```

Filter all four datasets for a Datetime start + end

Description

Filter all four datasets for a Datetime start + end

Usage

```
filter_e4data_datetime(data, start, end)
```

Arguments

data	Object read with read_e4
start	Start Datetime (posixct)
end	End Datetime (posixct)

find_peaks

Function to find peaks of an EDA datafile

Description

This function finds the peaks of an EDA signal and adds basic properties to the datafile.

Usage

```
find_peaks(
  data,
  offset = 1,
  start_WT = 4,
  end_WT = 4,
  thres = 0.005,
  sample_rate = getOption("SAMPLE_RATE", 8)
)
```

Arguments

data	DataFrame with EDA as one of the columns and indexed by a datetimeIndex
offset	the number of rising seconds and falling seconds after a peak needed to be counted as a peak
start_WT	maximum number of seconds before the apex of a peak that is the "start" of the peak

12 get_apex

end_WT maximum number of seconds after the apex of a peak that is the "end" of the

peak 50 percent of amp

thres the minimum microsecond change required to register as a peak, defaults as .005

sample_rate number of samples per second, default=8

Details

Also, peak_end is assumed to be no later than the start of the next peak. Is that OK?

Value

data frame with several columns peaks 1 if apex peak_start 1 if start of peak peak_end 1 if end of preak peak_start_times if apex then corresponding start timestamp peak_end_times if apex then corresponding end timestamp half_rise if sharp decaying apex then time to halfway point in rise amp if apex then value of EDA at apex - value of EDA at start max_deriv if apex then max derivative within 1 second of apex rise_time if apex then time from start to apex decay_time if sharp decaying apex then time from apex to end SCR_width if sharp decaying apex then time from half rise to end

get_amp

Peak amplitude

Description

Get the amplitude of the peaks

Usage

```
get_amp(data)
```

Arguments

data

df with peak info

get_apex

Get the eda apex of the signal

Description

finds the apex of electrodermal activity eda signal within an optional time window

Usage

```
get_apex(eda_deriv, offset = 1)
```

get_decay_time 13

Arguments

eda_deriv uses the eda derivative to find the apex

offset minimum number of downward measurements after the apex, in order to be

considered a peak (default 1 means no restrictions)

Description

Get the time (in seconds) it takes to decay for each peak

Usage

```
get_decay_time(data, i_apex_with_decay)
```

Arguments

data df with peak info

 $i_apex_with_decay$

indexes of relevant peaks

get_derivative First derivative

Description

Get the first derivative.

Usage

```
get_derivative(values)
```

Arguments

values vector of numbers

14 get_half_rise

get_eda_deriv

Electrodermal activity signal derivative

Description

Finds the first derivatives of the eda signal

Usage

```
get_eda_deriv(eda)
```

Arguments

eda

eda vector

get_half_amp

Half peak amp

Description

Get the amplitude value halfway between peak start and apex

Usage

```
get_half_amp(data, i)
```

Arguments

data df with peak info i apex index

get_half_rise

Half rise time

Description

Get the time (in seconds) it takes to get to halfway the rise in a peak

Usage

```
get_half_rise(data, i_apex_with_decay)
```

Arguments

```
data df with peak info i_apex_with_decay relevant apices
```

get_i_apex_with_decay 15

```
{\tt get\_i\_apex\_with\_decay} {\tt \it Decaying\ peaks}
```

Description

Identify peaks with a decent decay (at least half the amplitude of rise)

Usage

```
get_i_apex_with_decay(data)
```

Arguments

data df with peak info

Description

Generate kernel needed for SVM

Usage

```
get_kernel(kernel_transformation, sigma, columns)
```

Arguments

kernel_transformation

Data matrix used to transform EDA features into kernel values

sigma The inverse kernel width used by the kernel

columns Features computed from EDA signal

get_peak_end_times

get_max_deriv

Maximum derivative

Description

Get the largest slope before apex, interpolated to seconds

Usage

```
get_max_deriv(data, eda_deriv, sample_rate)
```

Arguments

data df with info on the peaks
eda_deriv derivative of the signal
sample_rate sample rate of the signal

get_peak_end

Peak end

Description

Find the end of the peaks, with some restrictions on the search

Usage

```
get_peak_end(data, max_lookahead)
```

Arguments

data df with peak info

max_lookahead max distance from apex to search for end

get_peak_end_times

Peak end times

Description

Get the end timstamp of the peaks

Usage

```
get_peak_end_times(data)
```

Arguments

data

df with peak info

get_peak_start 17

get_peak_start

Start of peaks

Description

Provide info for each measurement whether it is the start of a peak (0 or 1)

Usage

```
get_peak_start(data, sample_rate)
```

Arguments

data

df with peak info

sample_rate

sample rate of the signal

Description

Get the start times of the peaks

Usage

```
get_peak_start_times(data)
```

Arguments

data

df with peak info

get_rise_time

Rise time of peaks

Description

Calculates the rise time of all peaks

Usage

```
get_rise_time(eda_deriv, apices, sample_rate, start_WT)
```

get_second_derivative

Arguments

eda_deriv first derivative of signal

apices apex status per measurement (0 or 1)

sample_rate sample rate of the signal

start_WT window within which to look for rise time (in seconds)

Description

Get the width of the peak (in seconds, from halfway the rise until the end)

Usage

```
get_SCR_width(data, i_apex_with_decay)
```

Arguments

data df with peak info i_apex_with_decay relevant apices

get_second_derivative

Description

Get the second derivative.

Usage

```
get_second_derivative(values)
```

Arguments

values vector of numbers

ibi_analysis 19

ibi_analysis

IBI analysis

Description

Analysis of interbeat interval (IBI)

Usage

```
ibi_analysis(IBI)
```

Arguments

IBI

IBI data, component of object (the number of seconds since the start of the recording) read with read_e4

max_per_n

Max value per segment of length n

Description

Give the maximum value of a vector of values per segment of length n.

Usage

```
max_per_n(values, n, output_length)
```

Arguments

values array of numbers

n length of each segment

output_length argument to adjust for final segment not being full

20 pad_e4

```
multiclass_classifier_config
```

Configuration of the SVM algorithm for ternary classification

Description

Configuration of the SVM algorithm for ternary classification

Usage

```
multiclass_classifier_config
```

Format

An object of class list of length 4.

Author(s)

```
Sara Taylor <sataylor@mit.edu>
```

References

```
https://eda-explorer.media.mit.edu/
```

pad_e4

pad_e4

Description

function to combine several e4 files, and sets the length of the x-axis

Usage

```
pad_e4(x)
```

Arguments

Χ

index of dataframe

plot_artifacts 21

plot_artifacts

Artifact plots

Description

Plot artifacts after eda_data is classified

Usage

```
plot_artifacts(labels, eda_data)
```

Arguments

labels labels with artifact classification eda_data data upon which the labels are plotted

predict_binary_classifier

Binary classifiers

Description

Generate classifiers (artifact, no artifact)

Usage

```
predict_binary_classifier(data)
```

Arguments

data

features from EDA signal

predict_multiclass_classifier

Ternary classifiers

Description

Generate classifiers (artifact, unclear, no artifact)

Usage

```
predict_multiclass_classifier(data)
```

Arguments

data

features from EDA signal

22 print.e4data

prepend_time_column

Description

Column binds a time_column to the dataframe

Usage

```
prepend_time_column(data, timestart, hertz, tz = Sys.timezone())
```

Arguments

data dataframe

timestart the start of the recording

hertz hertz in which the E4 data was recorded tz The timezone, defaults to user timezone

print.e4data Show class of object

Description

Returns 'object of class'

Usage

```
## S3 method for class 'e4data' print(x, ...)
```

Arguments

x An e4 data list

... Further arguments currently ignored.

process_eda 23

process_eda

Process EDA data

Description

Process EDA data

Usage

```
process_eda(eda_data)
```

Arguments

eda_data

Data read with read_e4

rbind_e4

Row-bind E4 datasets

Description

Row-bind E4 datasets

Usage

```
rbind_e4(data)
```

Arguments

data

An object read in by read_e4

 $read_and_process_e4$

Read, process and feature extraction of E4 data

Description

Reads the raw ZIP file using 'read_e4', performs analyses with 'ibi_analysis' and 'eda_analysis'.

Usage

```
read_and_process_e4(zipfile, tz = Sys.timezone())
process_e4(data)
```

24 read_e4

Arguments

zipfile zip file with e4 data to be read

tz timezone where data were recorded (default system timezone)

data object from read_e4 function

Value

An object with processed data and analyses, object of class 'e4_analysis'.

read_e4	Read E4 data
---------	--------------

Description

Reads in E4 data as a list (with EDA, HR, Temp, ACC, BVP, IBI as dataframes), and prepends timecolumns

Usage

```
read_e4(zipfile = NULL, tz = Sys.timezone())
```

Arguments

zipfile A zip file as exported by the instrument

tz The timezone used by the instrument (defaults to user timezone).

Details

This function reads in a zipfile as exported by Empatica Connect. Then it extracts the zipfiles in a temporary folder and unzips the csv files in the temporary folder.

The EDA, HR, BVP, and TEMP csv files have a similar structure in which the starting time of the recording is read from the first row of the file (in unix time). The frequency of the measurements is read from the second row of the recording (in Hz). Subsequently, the raw data is read from row three onward.

The ACC csv file contain the acceleration of the Empatica E4 on the three axes x,y and z. The first row contains the starting time of the recording in unix time. The second row contains the frequency of the measurements in Hz. Subsequently, the raw x, y, and z data is read from row three onward.

The IBI file has a different structure, the starting time in unix is in the first row, first column. The firs column contins the number of seconds past since the start of the recording. The number of seconds past since the start of the recording represent a heartbeat as derived from the algorithms from the photo plethysmogrophy sensor. The second column contains the duration of the interval from one heartbeat to the next heartbeat.

```
ACC.csv = 32 Hz BVP.csv = 64 Hz EDA.csv = 4 HZ HR.csv = 1 HZ TEMP.csv = 4 Hz
```

Please also see the info.txt file provided in the zip file for additional information.

The function returns an object of class "e4_data" with a prepended datetime columns that defaults to user timezone. The object contains a list with dataframes from the physiological signals.

remove_small_peaks 25

Examples

```
library(wearables)
#read_e4()
```

remove_small_peaks

Small peaks removal

Description

Remove peaks with a small rise from start to apex are removed

Usage

```
remove_small_peaks(data, thres = 0)
```

Arguments

data df with info on peaks

thres threshold of amplitude difference in order to be removed (default 0 means no

removals)

 $\verb"upsample_data_to_8Hz" Upsample EDA data to 8 Hz$

Description

Upsample EDA data to 8 Hz

Usage

```
upsample_data_to_8Hz(eda_data)
```

Arguments

eda_data

Data read with read_e4

26 write_processed_e4

write_processed_e4 Write CSV files of the output

Description

Slow!

Usage

```
write_processed_e4(obj, out_path = ".")
```

Arguments

obj e4 analysis object out_path output folder

Index

* datasets	<pre>get_peak_start_times, 17</pre>
<pre>binary_classifier_config, 5</pre>	<pre>get_rise_time, 17</pre>
multiclass_classifier_config, 20	get_SCR_width, 18
	<pre>get_second_derivative, 18</pre>
add_chunk_group, 3	
aggregate_e4_data, 3	ibi_analysis, 19
as_time, 4	
as_timeseries, 4	max_per_n, 19
	multiclass_classifier_config, 20
batch_analysis, 5	nad a4 20
binary_classifier_config,5	pad_e4, 20
coloulate DMCCD 6	plot_artifacts, 21
calculate_RMSSD, 6	predict_binary_classifier, 21
char_clock_systime, 6	predict_multiclass_classifier, 21
choose_between_classes, 6	prepend_time_column, 22
compute_amplitude_features, 7	print.e4data, 22
compute_derivative_features, 7	process_e4 (read_and_process_e4), 23
compute_features2, 8	process_eda, 23
compute_wavelet_coefficients, 8	1. 1. 4.22
<pre>compute_wavelet_decomposition, 8</pre>	rbind_e4, 23
create_e4_output_folder,9	read_and_process_e4, 23
	read_e4, 3, 6, 10, 11, 19, 23, 24, 25
e4_filecut_intervals,9	remove_small_peaks, 25
filter_createdir_zip, 10	upsample_data_to_8Hz, 25
filter_e4data_datetime, 11	
find_peaks, 11	write_processed_e4,26
get_amp, 12	
get_apex, 12	
get_decay_time, 13	
get_derivative, 13	
get_eda_deriv, 14	
get_half_amp, 14	
get_half_rise, 14	
get_i_apex_with_decay, 15	
get_kernel, 15	
get_max_deriv, 16	
get_max_uer 1v, 10 get_peak_end, 16	
get_peak_end_times, 16	
get_peak_end_times, 10 get_peak_start, 17	
get_peak_start, 1/	