一. 填空题 (每空 1 分, 共 22 分)
1. 通过对矩阵进行高斯消元来对矩阵进行 $A=LU$ 分解,假设原矩阵为 $\begin{bmatrix} -2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$,则
L=
2. 假设函数 $F_1(x,y) = \frac{1}{4}x^4 + x^2y + y^2$, $F_2(x,y) = x^3 + xy - x$,分别计算其二阶 Hessian 矩
阵 $H_1 =$, $H_2 =$ 。
$3.m \times n$ 的矩阵,假设其行空间维数为 r ,零空间维数为 s ,则 $r + s =$
4. 矩阵特征值中, 当几何重数 GM代数重数 AM 时, 矩阵不能对角化。
5. 逆时针旋转角度 θ 的 2×2 单位旋转矩阵为:。
6. δ (t) 与构成一对傅里叶变换对。
7. 对于强噪信道的输入输出分别为 X, Y, 则 I(X;Y)=, 对于一般的信道,则
I(X;Y)=。(用 X,Y 的熵和联合熵的表达式表示)
8. 回归问题 $\min_{W} J = \frac{1}{2} \ DW - y\ ^2$ 的解析解 W=,其梯度下降法的迭代公式为:
0
9. 对 $f_1(t)$ 和 $f_2(t)$ 分别进行傅里叶变换可得 $F_1(t)$ 和 $F_2(t)$,则对 $F_1(t)*F_2(t)$ 进行傅里叶逆变换
可得:。
10. 设 $f_1(x)$, $f_2(x)$, $f_3(x)$,, $f_m(x)$ 均为凸函数,请问凸函数的交集(是/不是)凸
函数。
11. 最优化问题 $minf(x) = x_1 - x_2 + 2x_1^2 + 2x_1x_2$,取 $x_0 = (2,3)$,则该点处的梯度方向为,最快下降方向为。
12. 线性规划问题 $minc^Tx$, $s.t.$ $Ax = (B \ N) {x_B \choose x_N} = b$, $x \ge 0$, 设基本解为 x_{bs} ,则其基本形式
为(或者用文字描述要满足的条件也可以)。
13. 最优化方法中,最小化可微目标函数 $f(x)$,在点 x_0 处的梯度表示为 $\nabla f(x_0)$,该点处的方
向向量表示为 p_0 ,则方向 p_0 称为点 x_0 处的下降方向,如果梯度向量 $\nabla f(x_0)$ 与方向向量满足如
下关系:。
14. 优化问题 $minf(x) = \frac{1}{3}x_1^3 + \frac{1}{3}x_2^3 - x_2^2 - x_1$ 的严格局部极小值为。
15. 函数 $y = x , x ∈ R$ 在 $x=0$ 点的次微分为。

16. $x,y \in R^n$,则点 y 到集合 $\{x|Ax=b\}$ (A为 $m \times n$ 的矩阵,且 $rank(A)=m < n,b \in R^m$)的投

影为	
兄シ ノソ	0

二. 判断题(每个括号1分, 共14分)
17. 矩阵的行空间与零空间正交,矩阵的列空间与其转置矩阵的零空间正交()
18. 矩阵 A 的特征值是 2, 2, 5,则矩阵必定可逆 ()
19. 矩阵 A 的唯一特征向量是 (1,4) ^{T} 的倍数,则必定不可逆();有重复的特征值();
不能对角化为 <i>X</i> / <i>X</i> ⁻¹ ()
20. 离散信源熵的最大值是当信源符号相互独立,概率分布均匀的时候获得()
21. 如果某个系统算子为 $g(n)=af(n)+b$,则该系统是线性系统()
22. 图像的 2 维傅里叶变换后,可得幅度谱和相位谱,其中相位谱更重要()
23. 求解方程中,系数矩阵的条件数越大越好()
24. Sherman-Morrison 公式的主要作用是将 n×n 矩阵求逆问题转化为一个低阶 k×k 矩阵
的求逆问题,从而降低求逆的复杂度()
25. 相对熵 $D(p q) = \sum p(x) \log \left(\frac{p(x)}{q(x)}\right)$ 非负()
26. 线性规划问题的最优解必定是其基本可行解 ()
27. 可以采用混合同余法生成均匀分布的随机数 ()
28. 常用的随机变量模拟方法有逆变换法、拒绝抽样法等方法()
三. 简答题 (每题 4 分, 共 28 分)
29. 简述奈奎斯特(Nyquist)采样定理的基本内容并解释混叠产生的原因。

30. 高斯消元法和 LU 分解的复杂性一样,为何还需要做 LU 分解,请举例说明。

31. 请结合课程内容解释逼近思想。
32. 请介绍 PCA 基本原理。
33. 请形式化描述 K-means 算法用于矢量量化的稀疏表示问题。
34. 请描述贝叶斯准则、最大后验概率准则、最大似然准则的基本假设及其表达方式。
35. 请介绍有约束优化问题及其对偶问题的形式化表达方式,并介绍弱对偶与强对偶定理的基本内容。

- 四. 计算和证明题 (第 36 题 8 分, 第 37 题 10 分, 第 38 题 8 分, 共 26 分)
- 36. 请判断函数 $g(x) = \sum_{i=1}^n x_i (x_i)$, $x \in R^n$, $x_i > 0$, $\sum_{i=1}^n x_i = 1$ 的凹凸性,并给出证明。

- 37. 给定线性规划问题 $\max z = x_1 + 4x_2, s.t.$ $\begin{cases} x_1 + 2x_2 \le 8 \\ x_2 \le 2 , \ \text{请:} \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$
 - a). 将其转化为标准形式。
 - b). 给出基本可行解,并计算其最优值。

38. 给出函数 $f: \mathbb{R}^n \to \mathbb{R}$ 的共轭函数 $f^*(y)$ 的定义,并计算 $f(x) = e^x, x \in \mathbb{R}$ 的共轭函数。

五. 论述题 (每题 5 分, 共 10 分)

39. 通过对实际问题进行形式化建模,表达为优化问题,然后获取数据并进行标注,进一步根据数据采用有监督机器学习算法来拟合数据的分布,请根据本课程内容,谈谈你对人工智能应用的基本理解(如基本流程、存在的问题与挑战、以后的发展趋势等都可以)。

40. 请谈谈对课程内容的建议。