- **21.1.** Опишите (задайте явными формулами) непрерывные исчисления для следующих операторов:
- 1) двусторонний сдвиг в $\ell^2(\mathbb{Z})$;
- **2-b)** сдвиг в $L^2(\mathbb{T})$;
- **3-b)** сдвиг в $L^2(\mathbb{R})$.

Определение 21.1. Пусть A - *-алгебра. Элемент $a \in A$ называется *положительным* (в этом случае пишут $a \ge 0$), если он самосопряжен и $\sigma_A(a) \subseteq [0, +\infty)$.

- **21.2** (квадратный корень). Пусть H гильбертово пространство и T положительный оператор в H. Докажите, что существует единственный положительный оператор S в H такой, что $S^2 = T$. Этот оператор называется квадратным корнем из T и обозначается \sqrt{T} или $T^{1/2}$.
- **21.3.** Докажите, что следующие свойства оператора $T \in \mathcal{B}(H)$ эквивалентны:
 - 1) $T \ge 0$;
 - 2) $T = S^2$ для некоторого положительного $S \in \mathcal{B}(H)$;
 - 3) $T = S^2$ для некоторого самосопряженного $S \in \mathcal{B}(H)$;
 - 4) $T = S^*S$ для некоторого $S \in \mathscr{B}(H)$;
 - 5) $\langle Tx, x \rangle \geqslant 0$ для всех $x \in H$.

Указание. Чтобы вывести (1) из (5), докажите, что $T + \lambda \mathbf{1}$ топологически инъективен при $\lambda > 0$.

Определение 21.2. Если $S,T\in \mathscr{B}(H)$ — самосопряженные операторы, то пишут $S\leqslant T,$ если $T-S\geqslant 0.$

- **21.4** (*отношение порядка для проекторов*). Пусть P_1, P_2 ортогональные проекторы в H. Докажите эквивалентность следующих утверждений:
 - 1) $P_1 \leqslant P_2$;
 - 2) $||P_1x|| \leq ||P_2x||$ для всех $x \in H$;
 - 3) $P_1P_2 = P_1$;
 - 4) $P_2P_1 = P_1$;
 - 5) $P_1P_2 = P_2P_1 = P_1$;
 - 6) $P_2 P_1$ ортогональный проектор;
 - 7) $\operatorname{Im} P_1 \subseteq \operatorname{Im} P_2$.
- **21.5** (монотонность непрерывного исчисления). Пусть $T \in \mathcal{B}(H)$ самосопряженный оператор, f,g непрерывные действительные функции на его спектре. Докажите, что если $f \leqslant g$, то и $f(T) \leqslant g(T)$.
- **21.6.** Пусть H_1, H_2 гильбертовы пространства и $T \in \mathcal{B}(H_1, H_2)$. Докажите, что
- 1) $\operatorname{Ker} T = \operatorname{Ker} T^*T = \operatorname{Ker} (T^*T)^{1/2};$ 2) $\overline{\operatorname{Im} T} = \overline{\operatorname{Im} TT^*} = \overline{\operatorname{Im} (TT^*)^{1/2}}.$
- **21.7.** Пусть H_1, H_2 гильбертовы пространства и $T \in \mathcal{B}(H_1, H_2)$. Положим $S_1 = (T^*T)^{1/2}$ и $S_2 = (TT^*)^{1/2}$.
- 1) (полярное разложение). Докажите, что существует такая частичная изометрия (см. листок 18) $V\colon H_1\to H_2$, что

$$T = VS_1 = S_2V,$$

$$(\operatorname{Ker} V)^{\perp} = \overline{\operatorname{Im} S_1} = (\operatorname{Ker} S_1)^{\perp} = (\operatorname{Ker} T)^{\perp},$$

$$\operatorname{Im} V = (\operatorname{Ker} S_2)^{\perp} = \overline{\operatorname{Im} S_2} = \overline{\operatorname{Im} T}.$$

- **2)** (единственность полярного разложения). Пусть $T = WR_1$, где $W: H_1 \to H_2$ частичная изометрия, $R_1 \in \mathcal{B}(H_1), R_1 \geqslant 0$ и (Ker W) $^{\perp} = \overline{\operatorname{Im} R_1}$. Докажите, что W = V и $R_1 = S_1$.
- **3)** (единственность полярного разложения). Пусть $T = R_2 W$, где $W \colon H_1 \to H_2$ частичная изометрия, $R_2 \in \mathcal{B}(H_2)$, $R_2 \geqslant 0$ и Im $W = (\operatorname{Ker} R_2)^{\perp}$. Докажите, что W = V и $R_2 = S_2$.

- 21.8. Опишите полярные разложения следующих операторов:
- **1)** диагональный оператор в ℓ^2 ;
- **2)** оператор умножения на ограниченную измеримую функцию в $L^2(X,\mu)$;
- **3)** оператор правого сдвига в ℓ^2 ;
- **4**) оператор левого сдвига в ℓ^2 .
- **21.9.** Пусть H гильбертово пространство, $T \in \mathcal{B}(H)$. Обязательно ли существуют *унитарный* оператор U и положительный оператор S такие, что T = US?
- **21.10-b.** Пусть X компактное хаусдорфово топологическое пространство, B(X) алгебра ограниченных борелевских функций на X. Снабдим B(X) слабо-мерной топологией (см. лекцию). Докажите следующие утверждения:
- 1) Последовательность в B(X) сходится в слабо-мерной топологии тогда и только тогда когда она равномерно ограничена и сходится поточечно.
- **2)** Умножение в B(X) секвенциально непрерывно относительно слабо-мерной топологии.
- 3) Если X бесконечно, то умножение в B(X) не является непрерывным относительно слабомерной топологии.
- **21.11-b.** Пусть H бесконечномерное гильбертово пространство. Снабдим алгебру $\mathcal{B}(H)$ слабой операторной топологией. Является ли умножение в $\mathcal{B}(H)$ 1) непрерывным? 2) секвенциально непрерывным?