7 部分空間の和と直和 の解答例

演習 7.1, 7.2 ともに $\dim W_1$ と $\dim W_2$ を求めた後 1 , 次の 2 通りの解き方があります.

- (A) W の基底を求めて次元を計算する. そして $\dim(W_1\cap W_2)=\dim W_1+\dim W_2-\dim W$ (の右辺) を計算してこれが 0 ならば $W_1\cap W_2=\{\mathbf{0}\}$ であることが分かり、 W_1+W_2 は直和である. 逆に 0 でなければ直和でない.
- (B) $W_1 \cap W_2$ を求めて次元を計算する(このときもし $W_1 \cap W_2 = \{\mathbf{0}\}$ であれば $W_1 + W_2$ は直和で、そうでなければ直和でない).そして W の次元は公式 $\dim W = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2)$ を使って求める.

それぞれの問題について、これら 2 通りの解答例を記しておきます。 もちろん、(A)、(B) をあわせて W と $W_1 \cap W_2$ の両方を具体的に求めても良いです。

演習 7.1
$$(1)$$
 $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ なので、実は $W_1 = \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\rangle$

と書ける。この2つの生成元は線形独立なので、これらが W_1 の基底をなし、従って

$$\dim W_1=2$$
 を得る. また、 $\left(egin{array}{c}0\\0\\1\end{array}
ight),\;\; \left(egin{array}{c}1\\0\\0\end{array}
ight)$ が線形独立なので、これらは W_2 の基底

をなし, $\dim W_2 = 2$ であることが分かる.

(A) $W = W_1 + W_2$ は両方の基底を合わせて

$$W = \left\langle \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\rangle$$

と書ける. しかし,
$$\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = -\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 より, 実は

$$W = \left\langle \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\rangle \quad (=K^3)$$

と書け、この3つの生成元は線形独立なので、W の基底をなし、従って $\dim W=3$ であることが分かる。また、 $\dim(W_1\cap W_2)=\dim W_1+\dim W_2-\dim W=2+2-3=1\neq 0$ だから、 $W_1\cap W_2\neq \{0\}$ であり、従って W_1+W_2 は直和ではない。

(B) $c_1, c_2, d_1, d_2 \in K$ CONT,

$$c_{1}\begin{pmatrix} 1\\1\\0 \end{pmatrix} + c_{2}\begin{pmatrix} 0\\-1\\1 \end{pmatrix} = d_{1}\begin{pmatrix} 0\\0\\1 \end{pmatrix} + d_{2}\begin{pmatrix} 1\\0\\0 \end{pmatrix} \iff \begin{cases} c_{1} = d_{2}, \\ c_{1} - c_{2} = 0, \\ c_{2} = d_{1} \\ \Leftrightarrow c_{1} = c_{2} = d_{1} = d_{2} \end{cases}$$

より、
$$m{x} \in W_1 \cap W_2 \Leftrightarrow m{x} = c \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 ($^\exists c \in K$). すなわち、 $W_1 \cap W_2 = \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\rangle$ とな

ることが分かる. よって, W_1+W_2 は直和でない. また, W の次元は

$$\dim W = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2) = 2 + 2 - 1 = 3$$

と計算できる.

$$(2)$$
 $egin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $egin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ は線形独立なので、これらが W_1 の基底をなし、従って $\dim W_1 =$

2 を得る. また, W_2 は $W_2=\left\langle \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \right\rangle$ と書けるので, $\dim W_2=1$ であることが分かる.

$$(A) \ W_1, W_2$$
 の基底を合わせれば, $W = \left\langle \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\rangle$ と書ける.

この3つの生成元は線形独立なので W の基底をなし、従って $\dim W=3$ であることが分かる. よって、 $\dim(W_1\cap W_2)=\dim W_1+\dim W_2-\dim W=2+1-3=0$ だから、 W_1+W_2 は直和である.

(B)
$$\mathbf{x} = c_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \in W_1$$
とおくと,
$$\mathbf{x} \in W_2 \Leftrightarrow \begin{cases} (2c_1 + c_2) + c_1 = 0, \\ c_2 = 0 \end{cases} \Leftrightarrow c_1 = c_2 = 0$$

となるので, $W_1 \cap W_2 = \{\mathbf{0}\}$ であることが分かる. よって, $W_1 + W_2$ は直和である. また, W の次元は $\dim W = \dim W_1 + \dim W_2 = 2 + 1 = 3$ と計算できる.

(3) 連立方程式を解くと $W_1=\left\langle \left(egin{array}{c} -1 \ 1 \ 2 \end{array}
ight)
ight
angle$ と書けることが分かるので $,\dim W_1=1$

である.また,同様に, $W_2=\left\langle \begin{pmatrix} -1\\0\\2 \end{pmatrix},\;\; \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\rangle$ と書け,この 2 つの生成元が W_2

の基底をなすので, $\dim W_2 = 2$ を得る.

$$(\mathrm{A}) \left(egin{array}{c} -1 \ 1 \ 2 \end{array}
ight) = \left(egin{array}{c} -1 \ 0 \ 2 \end{array}
ight) + \left(egin{array}{c} 0 \ 1 \ 0 \end{array}
ight)$$
 なので、実は $W_1 \subset W_2$ であることが分かる.

よって, $W=W_1+W_2=W_2$ で, $\dim W=\dim W_2=2$ である. $W_1\cap W_2=W_1\neq\{\mathbf{0}\}$ だから, W_1+W_2 は直和でない.

(B) 等式 $x_1-x_2+x_3=0$ の両辺を 2 倍して等式 $2x_2-x_3=0$ を足せば $2x_1+x_3=0$ を得るので、実は $W_1\subset W_2$ であることが分かる.よって $W_1\cap W_2=W_1\neq \{\mathbf{0}\}$ で、 W_1+W_2 は直和でない.また、 $W=W_2$ となるから、 $\dim W=\dim W_2=2$.

演習 7.2 (1) $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 \in \mathbb{R}[x]_4 \ (c_0, c_1, c_2, c_3, c_4 \in \mathbb{R})$ とすると、

$$f''(x) = 0 \Leftrightarrow 2c_2 + 6c_3x + 12c_4x^2 = 0 \Leftrightarrow c_2 = c_3 = c_4 = 0$$

だから, $W_1 = \langle 1, x \rangle$ であることが分かる. 1, x は線形独立だから W_1 の基底をなし, 従って $\dim W_1 = 2$ を得る. また,

$$xf''(x) - 2f'(x) = 0 \Leftrightarrow -2c_1 - 2c_2x + 4c_4x^3 = 0 \Leftrightarrow c_1 = c_2 = c_4 = 0$$

だから, $W_2=\langle 1,\ x^3\rangle$ であることが分かる. $1,x^3$ は線形独立だから W_2 の基底をなし, 従って $\dim W_2=2$ を得る.

- (A) $W=W_1+W_2=\langle 1,\ x,\ x^3\rangle$ で, $1,x,x^3$ は線形独立だから W の基底をなし, 従って $\dim W=3$ である. また, $\dim(W_1\cap W_2)=\dim W_1+\dim W_2-\dim W=2+2-1=1$ より $\dim(W_1\cap W_2)\neq\{\mathbf{0}\}$. よって, W_1+W_2 は直和ではない.
- (B) $W_1 \cap W_2 = \langle 1 \rangle$ となるので、 $\dim(W_1 \cap W_2) = 1$. よって $\dim(W_1 \cap W_2) \neq \{\mathbf{0}\}$ で、 $W_1 + W_2$ は直和ではない。また、W の次元は $\dim W = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2) = 2 + 2 1 = 3$ となる.
- (2) まず、明らかに $\dim W_1=2$. また、 $f(x)=c_0+c_1x+c_2x^2+c_3x^3+c_4x^4\in\mathbb{R}[x]_4$ $(c_0,c_1,c_2,c_3,c_4\in\mathbb{R})$ とすると、

$$\int_{-1}^{1} f(x)dx = 0 \iff \left[c_0 x + \frac{c_1}{2} x^2 + \frac{c_2}{3} x^3 + \frac{c_3}{4} x^4 + \frac{c_4}{5} x^5\right]_{-1}^{1} = 0$$

$$\Leftrightarrow 2c_0 + \frac{2}{3} c_2 + \frac{2}{5} c_4 = 0$$

$$\Leftrightarrow c_0 + \frac{1}{3} c_2 + \frac{1}{5} c_4 = 0$$

- より, $W_2=\langle x,\ x^3,\ 1-5x^4,\ 1-3x^2\rangle$ であることが分かる. これら 4 つの生成元は線形独立なので W_2 の基底をなし, 従って $\dim W_2=4$ を得る.
- (A) W_1, W_2 の基底を合わせると $W=W_1+W_2=\langle 1,\ x^2,\ x,\ x^3,\ 1-5x^4,\ 1-3x^2\rangle$ と書けるが、 $1-3x^2$ は 1 と x^2 との線形結合で書けているので、実は $W=\langle 1,\ x,\ x^2,\ x^3,\ 1-5x^4\rangle$ となる。この 5 つの生成元は線形独立だから、 $\dim W=5$ である。また、 $\dim(W_1\cap W_2)=\dim W_1+\dim W_2-\dim W=2+4-5=1$ だから、 $W_1\cap W_2\neq \{\mathbf{0}\}$ であり、 W_1+W_2 は直和でない。
 - (B) $f(x) = c_0 + c_2 x^2 \in W_1 (c_0, c_2 \in \mathbb{R})$ とすると,

$$\int_{-1}^{1} f(x)dx = 0 \Leftrightarrow c_0 + \frac{1}{3}c_2 = 0$$

だから, $W_1 \cap W_2 = \langle 1 - 3x^2 \rangle \neq \{\mathbf{0}\}$. よって $W_1 + W_2$ は直和ではない. また, W の次元は $\dim W = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2) = 2 + 4 - 1 = 5$ と計算できる.