CONSTRAINT
PROPAGATION:
INFERENCE IN
CSPS

$$\times = \{ F, T, O, w, U, R \}$$

CRYPTARITHMETIC PUZZLES

$$Df = \int \int$$

$$D_{7} = \{ 8, 6, 7, 8, 9 \}$$

$$X T = 5 = 7 0 = 6 = 7 R = 6$$

$$T = 6 = 7 0 = 2 = 7 R = 4$$

$$W = 3 = 7 (U = 6)$$

$$f=1$$
 $T = 7 = 7$ $0 = 4 = 7$ $R = 8$
 $W = 3 = 7$ $U = 6$

INFERENCE IN CSPS

- It can generate successors by choosing a new variable assignment.
- Constraint propagation: using the constraints to reduce the number of legal values for a variable, which in turn can reduce the legal values for another variable, and so on.
- Local Consistency:
 - Node consistency
 - Arc consistency
 - Path consistency
 - K-consistency

NODE CONSISTENCY

• If all the values in the variable's domain satisfy the variable's unary constraints.

$$D_{SA} = \{Red, Blue, Green\} \rightarrow D_{SA} = \{Red, Blue\}$$

· A graph is node-consistent if every variable in the graph is node-consistent.

ARC CONSISTENCY

- A variable in a CSP is arc-consistent if every value in its domain satisfies the variable's binary constraints.
- X_i is arc-consistent with respect to another variable X_j if for every value in the current domain D_i there is some value in the domain D_j that satisfies the binary constraint on the arc (X_i, X_i) .

ARC CONSISTENCY

• Constraint:
$$Y = X^2$$

•
$$D_X = \{0,1,2,3,4,5,6,7,8,9\}$$

•
$$D_Y = \{0,1,2,3,4,5,6,7,8,9\}$$

1.
$$X \rightarrow Y$$
 $D_X = \{0,1,2,3\}$ $D_Y = \{0,1,2,3,4,5,6,7,8,9\}$

2. Y-> X
$$D_X = \{0,1,2,3\}$$
 $D_Y = \{0,1,4,9\}$

Modified Constraint with domain: $\langle (X,Y), \{(0,0),(1,1),(2,4),(3,9)\} \rangle$

We are given the task of coloring each region either red, green, or blue in such a way that no two neighboring regions have the same color.

Initial Assignment = ϕ

Arc Consistency does not change domain of any Variable

Initial Assignment: {WA = RED}

NT Arc Consistency with WA

- I.V Arc Consistency with NSW?
- 2. NSW Arc Consistency with SA?
- 3.V Arc Consistency with NSW?

AC3 ALGORITHM (ARC CONSISTENCY)


```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  queue \leftarrow a queue of arcs, initially all the arcs in csp
   while queue is not empty do
     (X_i, X_i) \leftarrow Pop(queue)
     if REVISE(csp, X_i, X_j) then
        if size of D_i = 0 then return false
        for each X_k in X_i. NEIGHBORS - \{X_i\} do
          add (X_k, X_i) to queue
   return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
     if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then
        delete x from D_i
        revised \leftarrow true
   return revised
```

LIMITATIONS OF ARC CONSISTENCY

Western
Australia
South
Australia
New
South
Wales
Victoria
Tasmania

Checks Consistency between two Variables only!