# Data Mining

#### Pre-Test

- 1. Jelaskan perbedaan antara data, informasi dan pengetahuan!
- Jelaskan apa yang anda ketahui tentang data mining!
- 3. Sebutkan peran utama data mining!
- 4. Sebutkan pemanfaatan dari data mining di berbagai bidang!
- 5. Pengetahuan atau pola apa yang bisa kita dapatkan dari data di bawah?

| NIM   | Gender | Nilai<br>UN | Asal<br>Sekolah | IPS1 | IPS2 | IPS3 | IPS 4 | <br>Lulus Tepat<br>Waktu |
|-------|--------|-------------|-----------------|------|------|------|-------|--------------------------|
| 10001 | L      | 28          | SMAN 2          | 3.3  | 3.6  | 2.89 | 2.9   | Ya                       |
| 10002 | Р      | 27          | SMAN 7          | 4.0  | 3.2  | 3.8  | 3.7   | Tidak                    |
| 10003 | Р      | 24          | SMAN 1          | 2.7  | 3.4  | 4.0  | 3.5   | Tidak                    |
| 10004 | L      | 26.4        | SMAN 3          | 3.2  | 2.7  | 3.6  | 3.4   | Ya                       |
|       |        |             |                 |      |      |      |       |                          |
| 11000 | L      | 23.4        | SMAN 5          | 3.3  | 2.8  | 3.1  | 3.2   | Ya                       |

#### Course Outline

#### 1. Pengantar Data Mining

- 2. Proses Data Mining
  - 3. Persiapan Data
- 4. Algoritma Klasifikasi
- 5. Algoritma Klastering
  - 6. Algoritma Asosiasi
- 7. Algoritma Estimasi dan Forecasting
  - 8. Text Mining

# 1. Pengantar Data Mining

- 1.1 Apa itu Data Mining?
- 1.2 Peran Utama dan Metode Data Mining
- 1.3 Sejarah dan Penerapan Data Mining

# 1.1 Apa itu Data Mining?

## Manusia Memproduksi Data

Manusia memproduksi beragam data yang jumlah dan ukurannya sangat besar

- Astronomi
- Bisnis
- Kedokteran
- Ekonomi
- Olahraga
- Cuaca
- Financial
- ...



#### Pertumbuhan Data

#### **Astronomi**

- Sloan Digital Sky Survey
  - New Mexico, 2000
  - 140TB over 10 years
- Large Synoptic Survey Telescope
  - Chile, 2016
  - Will acquire 140TB every five days

| kilobyte ( <b>kB</b> )  | <b>10</b> <sup>3</sup> |
|-------------------------|------------------------|
| megabyte (MB)           | <b>10</b> <sup>6</sup> |
| gigabyte ( <b>GB</b> )  | <b>10</b> <sup>9</sup> |
| terabyte ( <b>TB</b> )  | 10 <sup>12</sup>       |
| petabyte (PB)           | 10 <sup>15</sup>       |
| exabyte (EB)            | 10 <sup>18</sup>       |
| zettabyte ( <b>ZB</b> ) | 10 <sup>21</sup>       |
| yottabyte (YB)          | 10 <sup>24</sup>       |

#### Biologi dan Kedokteran

- European Bioinformatics Institute (EBI)
  - 20PB of data (genomic data doubles in size each year)
  - A single sequenced human genome can be around 140GB in size

#### Perubahan Kultur dan Perilaku



g Data Trends dia, 2015)

#### Datangnya Tsunami Data

#### Mobile Electronics market

- 5B mobile phones in use in 2010
- 150M tablets was sold in 2012 (IDC)
- 200M is global notebooks shipments in 2012 (Digitimes R

## Web and Social Networks generate amount of data

- Google processes 100 PB per day, 3 million servers
- Facebook has 300 PB of user data per day
- Youtube has 1000PB video storage
- 235 TBs data collected by the US Library of Congress
- 15 out of 17 sectors in the US have more data stored per company than the US Library of Congress

| kilobyte ( <b>kB</b> )  | 10 <sup>3</sup>         |
|-------------------------|-------------------------|
| megabyte (MB)           | 10 <sup>6</sup>         |
| gigabyte ( <b>GB</b> )  | 10 <sup>9</sup>         |
| terabyte ( <b>TB</b> )  | 10 <sup>12</sup>        |
| petabyte ( <b>PB</b> )  | 10 <sup>15</sup>        |
| exabyte ( <b>EB</b> )   | 10 <sup>18</sup>        |
| zettabyte ( <b>ZB</b> ) | 10 <sup>21</sup>        |
| yottabyte ( <b>YB</b> ) | <b>10</b> <sup>24</sup> |

Mengapa Data Mining?

# We are drowning in data, but starving for knowledge!

## Apa itu Data Mining?



## Apa itu Data Mining?

- Disiplin ilmu yang mempelajari metode untuk mengekstrak pengetahuan atau menemukan pola dari suatu data yang besar
- Ekstraksi dari data ke pengetahuan:
  - 1. Data: fakta yang terekam dan tidak membawa arti
  - 2. Pengetahuan: pola, rumus, aturan atau model yang muncul dari data
- Nama lain data mining:
  - Knowledge Discovery in Database (KDD)
  - Knowledge extraction
  - Pattern analysis
  - Information harvesting
  - Business intelligence

## Apa Itu Data Mining?



## Definisi Data Mining

- Melakukan ekstraksi untuk mendapatkan informasi penting yang sifatnya implisit dan sebelumnya tidak diketahui, dari suatu data (Witten et al., 2011)
- Kegiatan yang meliputi pengumpulan, pemakaian data historis untuk menemukan keteraturan, pola dan hubungan dalam set data berukuran besar (Santosa, 2007)
- Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data (Han et al., 2011)

## Data - Informasi – Pengetahuan

| NIP  | TGL        | DATANG | PULANG |
|------|------------|--------|--------|
| 1103 | 02/12/2004 | 07:20  | 15:40  |
| 1142 | 02/12/2004 | 07:45  | 15:33  |
| 1156 | 02/12/2004 | 07:51  | 16:00  |
| 1173 | 02/12/2004 | 08:00  | 15:15  |
| 1180 | 02/12/2004 | 07:01  | 16:31  |
| 1183 | 02/12/2004 | 07:49  | 17:00  |

Data Kehadiran Pegawai

## Data - Informasi - Pengetahuan

| NIP  | Masuk | Alpa | Cuti | Sakit | Telat |
|------|-------|------|------|-------|-------|
| 1103 | 22    |      |      |       |       |
| 1142 | 18    | 2    |      | 2     |       |
| 1156 | 10    | 1    | 11   |       |       |
| 1173 | 12    | 5    |      |       | 5     |
| 1180 | 10    |      |      | 12    |       |

Informasi Akumulasi Bulanan Kehadiran Pegawai

## Data - Informasi – Pengetahuan

|                 | Senin | Selasa | Rabu | Kamis | Jumat |
|-----------------|-------|--------|------|-------|-------|
| Terlambat       | 7     | 0      | 1    | 0     | 5     |
| Pulang<br>Cepat | 0     | 1      | 1    | 1     | 8     |
| Izin            | 3     | 0      | 0    | 1     | 4     |
| Alpa            | 1     | 0      | 2    | 0     | 2     |
|                 |       |        | ,    |       |       |

Pola Kebiasaan Kehadiran Mingguan Pegawai

## Data - Informasi – Pengetahuan - Kebijakan

 Kebijakan penataan jam kerja karyawan khusus untuk hari senin dan jumat

- Peraturan jam kerja:
  - Hari Senin dimulai jam 10:00
  - Hari Jumat diakhiri jam 14:00
  - Sisa jam kerja dikompensasi ke hari lain

## Data Mining pada Business Intelligence



## Hubungan dengan Berbagai Bidang



## Masalah-Masalah di Data Mining

#### Tremendous amount of data

• Algorithms must be highly scalable to handle such as tera-bytes of data

#### High-dimensionality of data

Micro-array may have tens of thousands of dimensions

#### High complexity of data

- Data streams and sensor data
- Time-series data, temporal data, sequence data
- Structure data, graphs, social networks and multi-linked data
- Heterogeneous databases and legacy databases
- Spatial, spatiotemporal, multimedia, text and Web data
- Software programs, scientific simulations

#### New and sophisticated applications

#### Latihan

1. Jelaskan dengan kalimat sendiri apa yang dimaksud dengan data mining?

2. Sebutkan sudut pandang multidimensi dari data mining!

# 1.2 Peran Utama Data Mining

## Peran Utama Data Mining



## Dataset (Himpunan Data)



#### Jenis Atribut



| Jenis<br>Atribut       | Deskripsi                                                                                                                                                                         | Contoh                                                                                       | Operasi                                                            |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Ratio<br>(Mutlak)      | <ul> <li>Data yang diperoleh dengan cara pengukuran, dimana jarak dua titik pada skala sudah diketahui</li> <li>Mempunyai titik nol yang absolut         (*, /)</li> </ul>        | <ul><li>Umur</li><li>Berat badan</li><li>Tinggi badan</li><li>Jumlah uang</li></ul>          | geometric mean,<br>harmonic mean,<br>percent variation             |
| Interval<br>(Jarak)    | <ul> <li>Data yang diperoleh dengan cara pengukuran, dimana jarak dua titik pada skala sudah diketahui</li> <li>Tidak mempunyai titik nol yang absolut         (+, - )</li> </ul> | <ul><li>Suhu 0°c-100°c,</li><li>Umur 20-30 tahun</li></ul>                                   | mean, standard deviation, Pearson's correlation, t and F tests     |
| Ordinal<br>(Peringkat) | <ul> <li>Data yang diperoleh dengan cara kategorisasi atau klasifikasi</li> <li>Tetapi diantara data tersebut terdapat hubungan atau berurutan</li></ul>                          | Tingkat kepuasan     pelanggan (puas, sedang,     tidak puas)                                | median, percentiles,<br>rank correlation, run<br>tests, sign tests |
| Nominal<br>(Label)     | <ul> <li>Data yang diperoleh dengan cara kategorisasi atau klasifikasi</li> <li>Menunjukkan beberapa object yang berbeda         (=, ≠)</li> </ul>                                | <ul><li>Kode pos</li><li>Jenis kelamin</li><li>Nomer id karyawan</li><li>Nama kota</li></ul> | mode, entropy, contingency correlation, $\chi^2$ test              |

## Peran Utama Data Mining



## 1. Estimasi Waktu Pengiriman Pizza

| Customer | Jumlah Pesanan (P) | Jumlah Traffic Light (TL) | Jarak (J) | Waktu Tempuh (T) |      |
|----------|--------------------|---------------------------|-----------|------------------|------|
| 1        | 3                  | 3                         | 3         | 16               |      |
| 2        | 1                  | 7                         | 4         | 20               |      |
| 3        | 2                  | 4                         | 6         | 18               |      |
| 4        | 4                  | 6                         | 8         | 36               | Labe |
| •••      |                    |                           |           |                  |      |
| 1000     | 2                  | 4                         | 2         | 12               |      |

Pembelajaran dengan Metode Estimasi (*Regresi Linier*)

Waktu Tempuh (T) = 0.48P + 0.23TL + 0.5JPengetahuan

#### Contoh: Estimasi Performansi CPU

• Example: 209 different computer configurations

|     | Cycle time (ns) |      | nemory<br>(b) | Cache<br>(Kb) | Channels |       | Performance |
|-----|-----------------|------|---------------|---------------|----------|-------|-------------|
|     | MYCT            | MMIN | MMAX          | CACH          | CHMIN    | CHMAX | PRP         |
| 1   | 125             | 256  | 6000          | 256           | 16       | 128   | 198         |
| 2   | 29              | 8000 | 32000         | 32            | 8        | 32    | 269         |
|     |                 |      |               |               |          |       |             |
| 208 | 480             | 512  | 8000          | 32            | 0        | 0     | 67          |
| 209 | 480             | 1000 | 4000          | 0             | 0        | 0     | 45          |

Linear regression function

## Output/Pola/Model/Knowledge

- 1. Formula/Function (Rumus atau Fungsi Regresi)
  - WAKTU TEMPUH = 0.48 + 0.6 JARAK + 0.34 LAMPU + 0.2 PESANAN
- 2. Decision Tree (Pohon Keputusan)
- 3. Korelasi dan Asosiasi
- 4. Rule (Aturan)
  - IF ips3=2.8 THEN lulustepatwaktu
- 5. Cluster (Klaster)



## 2. Prediksi Harga Saham

|         | Label    |              |          |          |          |            |
|---------|----------|--------------|----------|----------|----------|------------|
| Row No. | Close    | Date         | Open     | High     | Low      | Volume     |
| 1       | 1286.570 | Apr 11, 2006 | 1296.600 | 1300.710 | 1282.960 | 2232880000 |
| 2       | 1288.120 | Apr 12, 2006 | 1286.570 | 1290.930 | 1286.450 | 1938100000 |
| 3       | 1289.120 | Apr 13, 2006 | 1288.120 | 1292.090 | 1283.370 | 1891940000 |
| 4       | 1285.330 | Apr 17, 2006 | 1289.120 | 1292.450 | 1280.740 | 1794650000 |
| 5       | 1307.280 | Apr 18, 2006 | 1285.330 | 1309.020 | 1285.330 | 2595440000 |
| 6       | 1309.930 | Apr 19, 2006 | 1307.650 | 1310.390 | 1302.790 | 2447310000 |
| 7       | 1311.460 | Apr 20, 2006 | 1309.930 | 1318.160 | 1306.380 | 2512920000 |
| 8       | 1311.280 | Apr 21, 2006 | 1311.460 | 1317.670 | 1306.590 | 2392630000 |
| 9       | 1308.110 | Apr 24, 2006 | 1311.280 | 1311.280 | 1303.790 | 2117330000 |
| 10      | 1301.740 | Apr 25, 2006 | 1308.110 | 1310.790 | 1299.170 | 2366380000 |
| 11      | 1305.410 | Apr 26, 2006 | 1301.740 | 1310.970 | 1301.740 | 2502690000 |
| 12      | 1309.720 | Apr 27, 2006 | 1305.410 | 1315     | 1295.570 | 2772010000 |
| 13      | 1310.610 | Apr 28, 2006 | 1309.720 | 1316.040 | 1306.160 | 2419920000 |

Dataset harga saham dalam bentuk time series (rentet waktu)

Pembelajaran dengan Metode Prediksi (*Neural Network*)



#### Pengetahuan berupa Rumus Neural Network





# Prediction Plot

#### 3. Klasifikasi Kelulusan Mahasiswa

| Label    |
|----------|
|          |
|          |
| <b>U</b> |

| NIM   | Gender | Nilai<br>UN | Asal Sekolah | IPS1 | IPS2 | IPS3 | IPS 4 | <br>Lulus Tepat<br>Waktu |
|-------|--------|-------------|--------------|------|------|------|-------|--------------------------|
| 10001 | L      | 28          | SMAN 2       | 3.3  | 3.6  | 2.89 | 2.9   | Ya                       |
| 10002 | Р      | 27          | SMA DK       | 4.0  | 3.2  | 3.8  | 3.7   | Tidak                    |
| 10003 | Р      | 24          | SMAN 1       | 2.7  | 3.4  | 4.0  | 3.5   | Tidak                    |
| 10004 | L      | 26.4        | SMAN 3       | 3.2  | 2.7  | 3.6  | 3.4   | Ya                       |
|       |        |             |              |      |      |      |       |                          |
|       |        |             |              |      |      |      |       |                          |
| 11000 | L      | 23.4        | SMAN 5       | 3.3  | 2.8  | 3.1  | 3.2   | Ya                       |

Pembelajaran dengan Metode Klasifikasi (*C4.5*)

#### Pengetahuan Berupa Pohon Keputusan



#### Contoh: Rekomendasi Main Golf

#### • Input:

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | hot         | high     | false | no   |
| Sunny    | hot         | high     | true  | no   |
| Overcast | hot         | high     | false | yes  |
| Rainy    | mild        | high     | false | yes  |
| Rainy    | cool        | normal   | false | yes  |
| Rainy    | cool        | normal   | true  | no   |
| Overcast | cool        | normal   | true  | yes  |
| Sunny    | mild        | high     | false | no   |
| Sunny    | cool        | normal   | false | yes  |
| Rainy    | mild        | normal   | false | yes  |
| Sunny    | mild        | normal   | true  | yes  |
| Overcast | mild        | high     | true  | yes  |
| Overcast | hot         | normal   | false | yes  |
| Rainy    | mild        | high     | true  | no   |

#### Output ( □

```
If outlook = sunny and humidity = high then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity = normal then play = yes
If none of the above then play = yes
```

### Contoh: Rekomendasi Main Golf



### Contoh: Rekomendasi Contact Lens

#### • Input:

| Age            | Spectacle<br>Prescription | Astigmatism | Tear Production<br>Rate | Recommended<br>Lenses |
|----------------|---------------------------|-------------|-------------------------|-----------------------|
| young          | myope                     | no          | reduced                 | none                  |
| young          | myope                     | no          | normal                  | soft                  |
| young          | myope                     | yes         | reduced                 | none                  |
| young          | myope                     | yes         | normal                  | hard                  |
| young          | hypermetrope              | no          | reduced                 | none                  |
| young          | hypermetrope              | no          | normal                  | soft                  |
| young          | hypermetrope              | yes         | reduced                 | none                  |
| young          | hypermetrope              | yes         | normal                  | hard                  |
| pre-presbyopic | myope                     | no          | reduced                 | none                  |
| pre-presbyopic | myope                     | no          | normal                  | soft                  |
| pre-presbyopic | myope                     | yes         | reduced                 | none                  |
| pre-presbyopic | myope                     | yes         | normal                  | hard                  |
| pre-presbyopic | hypermetrope              | no          | reduced                 | none                  |
| pre-presbyopic | hypermetrope              | no          | normal                  | soft                  |

### Contoh: Rekomendasi Contact Lens

Output/Model (Tree):



# 4. Klastering Bunga Iris

#### Dataset Tanpa Label

| Row No. | id    | a1    | a2    | a3    | a4    |
|---------|-------|-------|-------|-------|-------|
| 1       | id_1  | 5.100 | 3.500 | 1.400 | 0.200 |
| 2       | id_2  | 4.900 | 3     | 1.400 | 0.200 |
| 3       | id_3  | 4.700 | 3.200 | 1.300 | 0.200 |
| 4       | id_4  | 4.600 | 3.100 | 1.500 | 0.200 |
| 5       | id_5  | 5     | 3.600 | 1.400 | 0.200 |
| 6       | id_6  | 5.400 | 3.900 | 1.700 | 0.400 |
| 7       | id_7  | 4.600 | 3.400 | 1.400 | 0.300 |
| 8       | id_8  | 5     | 3.400 | 1.500 | 0.200 |
| 9       | id_9  | 4.400 | 2.900 | 1.400 | 0.200 |
| 10      | id_10 | 4.900 | 3.100 | 1.500 | 0.100 |
| 11      | id_11 | 5.400 | 3.700 | 1.500 | 0.200 |

Pembelajaran dengan Metode Klastering (*K-Means*)

# Pengetahuan Berupa Klaster

cluster• cluster\_0 • cluster\_1 • cluster\_2



# 5. Aturan Asosiasi Pembelian Barang

| ExampleSet (12 examples, 0 special attributes, 10 regular attributes) |      |      |      |       |       |       |       |        |        |        |
|-----------------------------------------------------------------------|------|------|------|-------|-------|-------|-------|--------|--------|--------|
| Row No.                                                               | Gula | Kopi | Aqua | Popok | Sprei | Sabun | Sampo | Kemeja | Celana | Boneka |
| 1                                                                     | 1.0  | 1.0  | 0.0  | 0.0   | 0.0   | 1.0   | 1.0   | 0.0    | 0.0    | 0.0    |
| 2                                                                     | 0.0  | 1.0  | 0.0  | 1.0   | 1.0   | 0.0   | 0.0   | 1.0    | 1.0    | 1.0    |
| 3                                                                     | 0.0  | 0.0  | 0.0  | 1.0   | 1.0   | 0.0   | 0.0   | 0.0    | 0.0    | 1.0    |
| 4                                                                     | 1.0  | 0.0  | 1.0  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    |
| 5                                                                     | 0.0  | 0.0  | 1.0  | 1.0   | 0.0   | 0.0   | 1.0   | 0.0    | 0.0    | 0.0    |
| 6                                                                     | 1.0  | 0.0  | 0.0  | 0.0   | 0.0   | 1.0   | 0.0   | 0.0    | 0.0    | 0.0    |
| 7                                                                     | 0.0  | 0.0  | 0.0  | 0.0   | 1.0   | 0.0   | 0.0   | 0.0    | 1.0    | 1.0    |
| 8                                                                     | 0.0  | 0.0  | 1.0  | 1.0   | 1.0   | 1.0   | 1.0   | 1.0    | 0.0    | 0.0    |
| 9                                                                     | 1.0  | 1.0  | 0.0  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 1.0    | 0.0    |
| 10                                                                    | 0.0  | 0.0  | 1.0  | 0.0   | 0.0   | 0.0   | 1.0   | 0.0    | 0.0    | 0.0    |
| 11                                                                    | 1.0  | 1.0  | 1.0  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    |
| 12                                                                    | 0.0  | 0.0  | 0.0  | 0.0   | 1.0   | 1.0   | 1.0   | 0.0    | 0.0    | 0.0    |

Pembelajaran dengan Metode Asosiasi (*FP-Growth*)

# Pengetahuan Berupa Aturan Asosiasi



#### Contoh Aturan Asosiasi

- Algoritma association rule (aturan asosiasi) adalah algoritma yang menemukan atribut yang "muncul bersamaan"
- Contoh, pada hari kamis malam, 1000 pelanggan telah melakukan belanja di supermaket ABC, dimana:
  - 200 orang membeli Sabun Mandi
  - dari 200 orang yang membeli sabun mandi, 50 orangnya membeli Fanta
- Jadi, association rule menjadi, "Jika membeli sabun mandi, maka membeli Fanta", dengan nilai support = 200/1000 = 20% dan nilai confidence = 50/200 = 25%
- Algoritma association rule diantaranya adalah: A priori algorithm, FP-Growth algorithm, GRI algorithm

# Metode Learning Pada Algoritma DM



# 1. Supervised Learning

- Pembelajaran dengan guru, data set memiliki target/label/class
- Sebagian besar algoritma data mining (estimation, prediction/forecasting, classification) adalah supervised learning
- Algoritma melakukan proses belajar berdasarkan nilai dari variabel target yang terasosiasi dengan nilai dari variable prediktor

# Dataset dengan Class



# 2. Unsupervised Learning

- Algoritma data mining mencari pola dari semua variable (atribut)
- Variable (atribut) yang menjadi target/label/class tidak ditentukan (tidak ada)
- Algoritma clustering adalah algoritma unsupervised learning

# Dataset tanpa Class

### Attribute/Feature

|     | Sepal 4-<br>Length (cm) | Sepal Width (cm) | Petala<br>Length (cm) | Petal<br>Width (cm) |  |  |  |  |
|-----|-------------------------|------------------|-----------------------|---------------------|--|--|--|--|
| 1   | 5.1                     | 3.5              | 1.4                   | 0.2                 |  |  |  |  |
| 2   | 4.9                     | 3.0              | 1.4                   | 0.2                 |  |  |  |  |
| 3   | 4.7                     | 3.2              | 1.3                   | 0.2                 |  |  |  |  |
| 4   | 4.6                     | 3.1              | 1.5                   | 0.2                 |  |  |  |  |
| 5   | 5.0                     | 3.6              | 1.4                   | 0.2                 |  |  |  |  |
|     |                         |                  |                       |                     |  |  |  |  |
| 51  | 7.0                     | 3.2              | 4.7                   | 1.4                 |  |  |  |  |
| 52  | 6.4                     | 3.2              | 4.5                   | 1.5                 |  |  |  |  |
| 53  | 6.9                     | 3.1              | 4.9                   | 1.5                 |  |  |  |  |
| 54  | 5.5                     | 2.3              | 4.0                   | 1.3                 |  |  |  |  |
| 55  | 6.5                     | 2.8              | 4.6                   | 1.5                 |  |  |  |  |
|     |                         |                  |                       |                     |  |  |  |  |
| 101 | 6.3                     | 3.3              | 6.0                   | 2.5                 |  |  |  |  |
| 102 | 5.8                     | 2.7              | 5.1                   | 1.9                 |  |  |  |  |
| 103 | 7.1                     | 3.0              | 5.9                   | 2.1                 |  |  |  |  |

### 3. Semi-Supervised Learning

- Semi-supervised learning adalah metode data mining yang menggunakan data dengan label dan tidak berlabel sekaligus dalam proses pembelajarannya
- Data yang memiliki kelas digunakan untuk membentuk model (pengetahuan), data tanpa label digunakan untuk membuat batasan antara kelas

# 3. Semi-Supervised Learning

- If we consider the labeled examples, the dashed line is the decision boundary that best partitions the positive examples from the negative examples
- Using the unlabeled examples, we can refine the decision boundary to the solid line
- Moreover, we can detect that the two positive examples at the top right corner, though labeled, are likely noise or outliers



Positive example

Negative example

( ) Unlabeled example

Decision boundary without unlabeled examples

Decision boundary with unlabeled examples

# Algoritma Data Mining (DM)

### 1. Estimation (Estimasi):

Linear Regression, Neural Network, Support Vector Machine, etc.

### 2. Prediction/Forecasting (Prediksi/Peramalan):

Linear Regression, Neural Network, Support Vector Machine, etc

### 3. Classification (Klasifikasi):

• Naive Bayes, K-Nearest Neighbor, C4.5, ID3, CART, Linear Discriminant Analysis, Logistic Regression, etc

### 4. Clustering (Klastering):

K-Means, K-Medoids, Self-Organizing Map (SOM), Fuzzy C-Means, etc

### 5. Association (Asosiasi):

FP-Growth, A Priori, Coefficient of Correlation, Chi Square, etc.

# Output/Pola/Model/Knowledge

- 1. Formula/Function (Rumus atau Fungsi Regresi)
  - WAKTU TEMPUH = 0.48 + 0.6 JARAK + 0.34 LAMPU + 0.2 PESANAN
- 2. Decision Tree (Pohon Keputusan)
- 3. Tingkat Korelasi
- 4. Rule (Aturan)
  - IF ips3=2.8 THEN lulustepatwaktu
- 5. Cluster (Klaster)



Outlook

#### Latihan

- 1. Sebutkan 5 peran utama data mining!
- 2. Jelaskan perbedaan estimasi dan prediksi!
- 3. Jelaskan perbedaan prediksi dan klasifikasi!
- 4. Jelaskan perbedaan klasifikasi dan klastering!
- 5. Jelaskan perbedaan klastering dan association!
- 6. Jelaskan perbedaan estimasi dan klasifikasi!
- 7. Jelaskan perbedaan estimasi dan klastering!
- 8. Jelaskan perbedaan supervised dan unsupervised learning!
- 9. Sebutkan tahapan utama proses data mining!

# 1.3 Sejarah dan Penerapan Data Mining

#### **Evolution of Sciences**

- Before 1600: Empirical science
- 1600-1950s: Theoretical science
  - Each discipline has grown a *theoretical* component
  - Theoretical models motivate experiments and generalize understanding
- 1950s-1990s: Computational science
  - Most disciplines have grown a third, *computational* branch (e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.)
  - Computational Science traditionally meant simulation. It grew out of our inability to find closed-form solutions for complex mathematical models
- 1990-now: Data science
  - The flood of data from new scientific instruments and simulations
  - The ability to economically store and manage petabytes of data online
  - The Internet makes all these archives universally accessible
  - Data mining is a major new challenge!

# Contoh Penerapan Data Mining

- Penentuan kelayakan aplikasi peminjaman uang di bank
- Penentuan pasokan listrik PLN untuk wilayah Jakarta
- Prediksi profile tersangka koruptor dari data pengadilan
- Perkiraan harga saham dan tingkat inflasi
- Analisis pola belanja pelanggan
- Memisahkan minyak mentah dan gas alam
- Menentukan kelayakan seseorang dalam kredit KPR
- Penentuan pola pelanggan yang loyal pada perusahaan operator telepon
- Deteksi pencucian uang dari transaksi perbankan
- Deteksi serangan (intrusion) pada suatu jaringan