Curs 7

Teza Church-Turing.

Orice functie efectiv/intutiv calculabila este recursiva/Turing calculabila. Modele echivalente:

- Functii recursive
- Programe standard
- \bullet λ -calcul (Alonzo Church)
- Algoritm Markov (Andrey Markov, Jr.)
- Automate coada
- Sistem tag (Emil Post)
- Masini cu registri (Marvin Minsky)
- Automatul celular (Stanislaw Ulam si John von Neumann)
- Sisteme de rescriere (include gramatica generativa Chomsky)
- Etc.

Se poate depasi bariera Turing? Hipercalcul (Hypercomputation):accelerare, invatare inductiva, etc.

2/22

Codificarea programelor standard.

Etichete: $\{E, A_1, A_2, \dots\}$; codificam o eticheta #(L) cu pozitia ei (numaratoarea incepe cu 1).

Variabile: $\{Y, X_1, Z_1, X_2, Z_2, \dots\}$; codificam o variabila #(V) cu pozitia sa (numaratoarea incepe cu 1).

Codificarea unei instructiuni I va fi $\#(I) = \langle a, \langle b, c \rangle$, unde

- daca I nu este etichetata, atunci a=0 altfel a=#(L), unde L este eticheta ei.
- c = #(V) 1, unde V este variabila care apare in I.
- b = 0, 1, 2 daca $I = V \leftarrow V, V \leftarrow V + 1, V \leftarrow V \dot{-}1$.
- b = #(L) + 2 daca I este $IF \ V \neq 0$ $GOTO \ L$.

Exemplu:
$$I$$
 este $A_1: Z_2 \leftarrow Z_2 + 1$
 $\#(I) = <2, <1, 4>> = <2, 2\cdot9-1> = <2, 17> = 4(2\cdot17+1)-1=139.$
Codificarea unui program P cu instructiunile I_1, I_2, \ldots, I_k este
 $\#(P) = [\#(I_1), \#(I_2), \ldots, \#(I_k)] - 1.$

3/22

rs 7 November 24, 2021

Codificarea programelor.

Exemplu: Ce numar are programul:

E:
$$X_1 \leftarrow X_1 + 1$$

IF $X_1 \neq 0$ GOTO E
 $\#(I_1) = <1, <1, 1>> = <1, 5> = 21$
 $\#(I_2) = <0, <3, 1>> = <0, 23> = 46.$
 $\#(P) = 2^{21} \cdot 3^46 - 1.$

Exemplu: Care este programul cu numarul 14999.

4 / 22

Codificarea programelor.

Exemplu: Ce numar are programul:

E:
$$X_1 \leftarrow X_1 + 1$$

IF $X_1 \neq 0$ GOTO E
 $\#(I_1) = <1, <1, 1>> = <1, 5> = 21$
 $\#(I_2) = <0, <3, 1>> = <0, 23> = 46.$
 $\#(P) = 2^{21} \cdot 3^46 - 1.$

Exemplu: Care este programul cu numarul 14999.

$$14999 + 1 = 15000 = 2^{3} \cdot 3 \cdot 5^{4}$$

Deci programul are 3 instructiuni $l_1, l_{2,3}$ cu $\#(l_1) = 3, \#(l_2) = 0$, $\#(I_3) = 4.$

- \bullet < a, < b, c >>= 3 \Rightarrow 2^a(2 < b, c > +1) 1 = 3 \Rightarrow a = 2, 2 < $b, c > +1 = 1 \Rightarrow a = 2, b = 0, c = 0$ Deci $I_1 \equiv A_2 : Y \leftarrow Y$.
- $< a, < b, c >> = 0 \rightarrow a = b = c = 0$. Deci $l_2 \equiv Y \leftarrow Y$.
- $< a, < b, c >> = 4 \rightarrow a = 0, b = 0, c = 1$. Deci Deci $I_3 \equiv X_1 \leftarrow X_1$.

4 / 22

Problema opririi.

Definim predicatul:

 $HALT(x,t) \equiv \text{programul codificat cu numarul } t \text{ se opreste pe intrarea } x.$

Teorema. Predicatul HALT nu este calculabil cu programe standard.

Dem. Pp *HALT* calculabil si construim programul *P*:

 $A: IF\ HALT(X,X)\ GOTO\ A$

Functia calculata de P este

5/22

Problema opririi.

Definim predicatul:

 $HALT(x,t) \equiv$ programul codificat cu numarul t se opreste pe intrarea x. **Teorema.** Predicatul HALT nu este calculabil cu programe standard. **Dem.** Pp HALT calculabil si construim programul P:

$$A: IF\ HALT(X,X)\ GOTO\ A$$

Functia calculata de P este $\psi_P(x) = \left\{ \begin{array}{l} 0, \; \mathrm{daca} \; \overline{HALT(x,x)} \\ \mathrm{nedefinit, \; altfel} \end{array} \right.$ Fie $\#(P) = t, \; \mathrm{deci} \; \underbrace{HALT(x,t)} \equiv \overline{HALT(x,x)}$. Luam x = t si obtinem $HALT(t,t) \equiv \overline{HALT(t,t)}$, contradictie.

5 / 22

Pentru fiecare $n \ge 1$, definim functia universala de n variabile:

$$\Phi^{(n)}(x_1, x_2, \dots, x_n, t) = \varphi_P^{(n)}(x_1, x_2, \dots, x_n), \#(P) = t.$$

TEOREMA. Pentru orice n, functia universala de n variabile este (partial) calculabila cu programe standard.

DEM. Vom construi un program U_n care va fi programul universal pentru calculul functiei universale de n variabile.

Vom nota cu:

K: numarul instructiunii curente din programul cu numarul t ce urmeaza a fi simulate

S: "starea" curenta a programului cu numarul t (va memora valorile tuturor variabilelor la un moment dat).

6/22

Pentru fiecare $n \ge 1$, definim functia universala de n variabile:

$$\Phi^{(n)}(x_1, x_2, \dots, x_n, t) = \varphi_P^{(n)}(x_1, x_2, \dots, x_n), \#(P) = t.$$

TEOREMA. Pentru orice n, functia universala de n variabile este (partial) calculabila cu programe standard.

DEM. Vom construi un program U_n care va fi programul universal pentru calculul functiei universale de n variabile.

Vom nota cu:

K: numarul instructiunii curente din programul cu numarul t ce urmeaza a fi simulate

S: "starea" curenta a programului cu numarul t (va memora valorile tuturor variabilelor la un moment dat).

$$Z \leftarrow T + 1(X_{n+1} + 1) //Z = [\#(I_1, I_2, \dots, I_m)]//$$

$$K \leftarrow 1$$

$$S \leftarrow \prod_{i=1}^{n} p_{2i}^{X_i}$$

< ロ ト < 個 ト ∢ 差 ト ∢ 差 ト (差) 夕 ()

6/22

s 7 November 24, 2021

$$C: IF (K > Lt(Z)) \lor (K = 0) GOTO F$$

7 / 22

C: IF
$$(K > Lt(Z)) \lor (K = 0)$$
 GOTO F
 $U \leftarrow r((Z)_K) //codul < b, c > al instructiunii K//$

Curs 7

```
C: IF (K > Lt(Z)) \lor (K = 0) GOTO F

U \leftarrow r((Z)_K) //codul < b, c > al instructiunii K//

V \leftarrow p_{r(U)} + 1 //codul variabilei de apare in instructiunea K//
```

Curs 7

```
 \begin{array}{l} C: \; \mathit{IF} \; (K > \mathit{Lt}(Z)) \lor (K = 0) \; \mathit{GOTO} \; \mathit{F} \\ U \leftarrow \mathit{r}((Z)_K) \; / / \mathit{codul} \; < b, c > \; \mathit{al} \; \mathit{instructiunii} \; \mathit{K} / / \\ V \leftarrow \mathit{p}_{\mathit{r}(U)} + 1 \; / / \mathit{codul} \; \mathit{variabilei} \; \mathit{de} \; \mathit{apare} \; \mathit{in} \; \mathit{instructiunea} \; \mathit{K} / / \\ \mathit{IF} \; \mathit{I}(U) = 0 \; \mathit{GOTO} \; \mathit{N} \; / / \mathit{nu} \; \mathit{facem} \; \mathit{nimic} / / \\ \mathit{IF} \; \mathit{I}(U) = 1 \; \mathit{GOTO} \; \mathit{I} \; / / \mathit{incrementam} \; \mathit{variabila} / / \\ \mathit{IF} \; \mathit{p}_{\mathit{V}} | \mathit{S} \; \mathit{GOTO} \; \mathit{N} \; / / \mathit{nu} \; \mathit{facem} \; \mathit{nimic} / / \\ \mathit{IF} \; \mathit{I}(U) = 2 \; \mathit{GOTO} \; \mathit{D} \; / / \mathit{decrementam} \; \mathit{variabila} / / \\ \end{array}
```

```
C: IF (K > Lt(Z)) \lor (K = 0) GOTO F
U \leftarrow r((Z)_K) //codul < b, c > al instructiunii K//
V \leftarrow p_{r(U)} + 1 //codul variabilei de apare in instructiunea K//
IF I(U) = 0 GOTO N //nu facem nimic//
IF I(U) = 1 GOTO I //incrementam variabila//
IF \overline{p_V|S} GOTO N //nu facem nimic//
IF I(U) = 2 GOTO D //decrementam variabila//
K \leftarrow \begin{cases} \min_i [I((Z)_i) + 2 = I(U)], \text{ daca un astfel de } i \text{ exista}, \\ 0, \text{ altfel} \end{cases}
GOTOC
```

7 / 22

```
C: IF (K > Lt(Z)) \lor (K = 0) GOTO F
U \leftarrow r((Z)_K) //codul < b, c > al instructiunii K//
V \leftarrow p_{r(U)} + 1 //codul variabilei de apare in instructiunea K//
IF I(U) = 0 GOTO N //nu facem nimic//
IF I(U) = 1 GOTO I //incrementam variabila//
IF \overline{p_V|S} GOTO N //nu facem nimic//
IF I(U) = 2 GOTO D //decrementam variabila//
K \leftarrow \begin{cases} \min_i [I((Z)_i) + 2 = I(U)], \text{ daca un astfel de } i \text{ exista}, \\ 0, \text{ altfel} \end{cases}
GOTOC
I: S \leftarrow S * p_V
GOTON
```

```
C: IF (K > Lt(Z)) \lor (K = 0) GOTO F
U \leftarrow r((Z)_K) //codul < b, c > al instructiunii K//
V \leftarrow p_{r(U)} + 1 //codul variabilei de apare in instructiunea K//
IF I(U) = 0 GOTO N //nu facem nimic//
IF I(U) = 1 GOTO I //incrementam variabila//
IF \overline{p_V|S} GOTO N //nu facem nimic//
IF I(U) = 2 GOTO D //decrementam variabila//
K \leftarrow \begin{cases} \min_i [I((Z)_i) + 2 = I(U)], \text{ daca un astfel de } i \text{ exista}, \\ 0, \text{ altfel} \end{cases}
GOTOC
I: S \leftarrow S * p_V
GOTON
D: S \leftarrow S/p_v
```

7 / 22

```
C: IF (K > Lt(Z)) \lor (K = 0) GOTO F
U \leftarrow r((Z)_K) //codul < b, c > al instructiunii K//
V \leftarrow p_{r(U)} + 1 //codul variabilei de apare in instructiunea K//
IF I(U) = 0 GOTO N //nu facem nimic//
IF I(U) = 1 GOTO I //incrementam variabila//
IF p_V | S GOTO N / nu facem nimic / /
IF I(U) = 2 GOTO D //decrementam variabila//
K \leftarrow \begin{cases} \min_i [I((Z)_i) + 2 = I(U)], \text{ daca un astfel de } i \text{ exista}, \\ 0, \text{ altfel} \end{cases}
GOTOC
I: S \leftarrow S * p_V
GOTON
D: S \leftarrow S/p_v
N \cdot K \leftarrow K + 1
GOTOC
```

```
C: IF (K > Lt(Z)) \lor (K = 0) GOTO F
U \leftarrow r((Z)_K) //codul < b, c > al instructiunii K//
V \leftarrow p_{r(U)} + 1 //codul variabilei de apare in instructiunea K//
IF I(U) = 0 GOTO N //nu facem nimic//
IF I(U) = 1 GOTO I //incrementam variabila//
IF p_V | S GOTO N / nu facem nimic / /
IF I(U) = 2 GOTO D //decrementam variabila//
K \leftarrow \begin{cases} \min_i [I((Z)_i) + 2 = I(U)], \text{ daca un astfel de } i \text{ exista}, \\ 0, \text{ altfel} \end{cases}
GOTOC
I: S \leftarrow S * p_V
GOTO N
D: S \leftarrow S/p_v
N \cdot K \leftarrow K + 1
GOTOC
F: Y \leftarrow (S)_1
```

Codificarea masinilor Turing.

$$M = (Q, V, U, \delta, q_0, B, F)$$

- $\{q_0, q_1, q_2, ...\}$ enumerare a tuturor starilor. Codificam q_i fie cu $qbin_i$ sau $q0^i$
- $\{s_0, s_1, s_2, ...\}$ enumerare a tuturor simbolurilor. Codificam s_i fie cu $sbin_i$ sau $s0^i$. Convenim $s_0 = B$.
- Codificarea masinii Turing M va fi

$$< M >= w_1 w_2 w_3 w_4 q_0 s_0 w_5,$$

unde

- w_1 este un string format din toate codificarile starilor din Q,
- w_2 este un string format din toate codificarile simbolurilor din V,
- w_3 este un string format din toate codificarile simbolurilor din $U \setminus V$,
- w_4 este un string ce codifica functia δ ; este o secventa de substringuri de forma $(qbin_{i_1}sbin_{j_1}qbin_{k_1}sbin_{j_1}L/R)$,
- w_5 este un string format din toate codificarile starilor din F.

Deci $< M > \in \{(,), 0, 1, q, s, L, R, \$\}^*$. Se poate chiar $< M > \in \{0, 1\}^*$?

Codificarea binara a masinilor Turing.

- q_i se codifica cu 0^i ,
- s_i se codifica cu 0^i ,
- 1 se va folosi ca
- L si R se codifica cu 11 si, respectiv, 111,
- \$ se codifica cu 1111,
- (si) se codifica cu 11111 si, respectiv, 111111.

Orice cuvant se poate codifica printr-un sir binar care incepe cu 1. Limbajul universal:

$$L_u = \{<< M>, < w>> |$$
 sirul codificat cu $< w>$ este acceptat de masina codificata cu $< M> \}$. Exista o masina Turing care accepta L_u , numita masina Turing universala. Afirmatia rezulta si din constructia programului universal.

9/22

Codificarea masinilor Turing.

Specific, construim o masina Turing U cu 4 benzi astfel:

- Prima banda contine << M >< w >>.
- A doua banda contine < w >.
- A treia banda memoreaza starea curenta a masinii M.
- A patra banda este auxiliara. Se foloseste pentru calcule de decodificare si codificare.
- U cauta o tranzitie codificata in < M > in care starea este cea pastrata pe banda 3 iar simbolul citit este cel de pe banda 2. Atentie: codificarile lor! Pentru aceasta identificare foloseste banda 4.
- Schimba banda 3 pentru a memora noua stare.
- Schimba banda 2 pentru a schimba simbolul citit cu cel scris.
- Muta capul de citire/scriere pe banda 2.
- ullet U se opreste daca starea memorata pe banda 3 este finala in M.

Masini Turing cu (15,2), (9,3), (6,4), (5,5), (4,6), (3,9), (2,18) stari/simboluri. Depinde numarul de instructiuni.

Algoritm: masina Turing determinista care se opreste pe fiecare intrare. Definitie

- Un limbaj L (multime A) este recursiv enumerabil (enumerabila) daca exista o masina Turing M a.i. L(M) = L (χ_A este Turing calculabila.)
- Un limbaj L (multime A) este recursiv (recursiva) daca exista o masina Turing M, care se opreste pe fiecare intrare, a.i. L(M) = L (χ_A este Turing calculabila.)

Echivalenta problema de decizie-limbaj: Fie P un predicat de n variabile. Construim limbajul $L_P = \{ \langle P(x_1, x_2, \dots, x_n) \rangle | P(x_1, x_2, \dots, x_n) = 1 \}.$

Algoritm: masina Turing determinista care se opreste pe fiecare intrare. Definitie

- Un limbaj L (multime A) este recursiv enumerabil (enumerabila) daca exista o masina Turing M a.i. L(M) = L (χ_A este Turing calculabila.)
- Un limbaj L (multime A) este recursiv (recursiva) daca exista o masina Turing M, care se opreste pe fiecare intrare, a.i. L(M) = L (χ_A este Turing calculabila.)

Echivalenta problema de decizie-limbaj: Fie P un predicat de n variabile. Construim limbajul $L_P = \{ < P(x_1, x_2, \ldots, x_n) > | P(x_1, x_2, \ldots, x_n) = 1 \}$. P este decidabila ddaca L_P este recursiv.

TEOREMA.

- 1. Limbajul universal este recursiv enumerabil.
- 2. Limbajul $L_h = \{ \langle \langle M \rangle, \langle w \rangle \rangle | M$ se opreste pe intrarea $w \}$ este recursiv enumerabil.

Sunt ele recursive?

Fie M_1, M_2, \ldots , o enumerare a masinilor Turing a.i. $< M_1 >, < M_2 >, \ldots$ este o enumerare a codificarilor lor in ordine lexicografica. Analog, fie w_1, w_2, \ldots o enumerare a cuvintelor binare.

TEOREMA. Limbajul (diagonal) $L_d = \{w_i \mid w_i \notin L(M_i)\}$ nu este recursiv enumerabil.

Fie M_1, M_2, \ldots , o enumerare a masinilor Turing a.i. $< M_1 >, < M_2 >, \ldots$ este o enumerare a codificarilor lor in ordine lexicografica. Analog, fie w_1, w_2, \ldots o enumerare a cuvintelor binare.

TEOREMA. Limbajul (diagonal) $L_d = \{w_i \mid w_i \notin L(M_i)\}$ nu este recursiv enumerabil.

DEM. Pp. $L_d = L(M_j)$. Atunci $w_j \in L_d = L(M_j)$ ddaca $w_j \notin L(M_j) = L_d$. **TEOREMA.** Limbajele L_u si L_h nu sunt recursive.

DEM. 1. Pp L_u este recursiv, $L_u = L(M)$ a.i. M se opreste pe fiecare intrare. Construim M' care lucreaza astfel pe un cuvant binar w primit la intrare:

- Determina j a.i. $w = w_j$.
- Din j determina M^* a.i. $M^* = M_j$.
- Simuleaza M pe intrarea $<< M_j>,< w_j>>$. Daca M accepta, atunci M' respinge si vice versa.
- $L(M') = L_d$, contradictie.

Demonstratie pentru 2?

TEOREMA.

- 1. X este recursiva ddaca X si $\mathcal{C}X$ sunt recursiv enumerabile.
- 2. Daca X si Y sunt recursive/recursiv enumerabile, atunci $X \cup Y$, $X \cap Y$ sunt recursive/recursiv enumerable.

DEM. Simplu exercitiu.

O proprietate a unei clase de limbaje $\mathcal C$ este o sumbultime $\mathcal S$ a lui $\mathcal C$.

Proprietatea se numeste *triviala* daca $S = \mathcal{C}$ sau $S = \emptyset$. Altfel, se numeste netriviala. Alegem \mathcal{C} ca fiind clasa limbajelor recursiv enumerabile RE.

Pentru o proprietate S a clasei RE definim $L_S = \{ \langle M \rangle | L(M) \in S \}$.

13 / 22

s 7 November 24, 2021

Teorema Rice.

TEOREMA. Orice proprietate netriviala pe RE este nedecidabila. **DEM.** Fie S o proprietate netriviala pe RE, si $\emptyset \notin S$. Aratam ca L_S nu este recursiv. Pp ca $L_S = L(M_S)$, M_S se opreste pe fiecare intrare. Fie $L \in S$ a.i. $L = L(M_L)$. Alegem si fixam << M >, w > si construim M' a.i. $L(M') = \begin{cases} L, & \text{daca } w \in L(M), \\ \emptyset, & \text{altfel} \end{cases}$ Cum calculeaza M':

- Initial M' ignora intrarea sa x si simuleaza M pe w.
- Daca M accepta, atunci simuleaza M_L pe x.
- Accepta ddaca M_L accepta.

Construim M_u astfel:

- Pe intrarea $\langle M \rangle, \langle w \rangle$ determina $\langle M' \rangle$.
- Simuleaza M_S pe < M' >.
- Accepta ddaca M_S accepta. (M_S se opreste pe fiecare intrare.)

Observatie: M_u se opreste pe fiecare intrare!!!

$$L \in S \Leftrightarrow < M' > \in L(M_S) \Longrightarrow << M >, < w >> \in L(M_u)$$
, contradictie.

Cazul ∅ ∉ S?

Curs 7

November 24, 2021 14/22

Teorema Rice.

TEOREMA. Orice proprietate netriviala pe RE este nedecidabila. **DEM.** Fie S o proprietate netriviala pe RE, si $\emptyset \notin S$. Aratam ca L_S nu este recursiv. Pp ca $L_S = L(M_S)$, M_S se opreste pe fiecare intrare. Fie $L \in S$ a.i. $L = L(M_L)$. Alegem si fixam << M >, w > si construim M' a.i. $L(M') = \begin{cases} L, & \text{daca } w \in L(M), \\ \emptyset, & \text{altfel} \end{cases}$ Cum calculeaza M':

- Initial M' ignora intrarea sa x si simuleaza M pe w.
- Daca M accepta, atunci simuleaza M_L pe x.
- Accepta ddaca M_L accepta.

Construim M_{ij} astfel:

- Pe intrarea $\langle M \rangle, \langle w \rangle \rangle$ determina $\langle M' \rangle$.
- Simuleaza M_S pe < M' >.
- Accepta ddaca M_S accepta. (M_S se opreste pe fiecare intrare.)

Observatie: M_u se opreste pe fiecare intrare!!!

$$L \in S \Leftrightarrow < M' > \in L(M_S) \Longrightarrow << M >, < w >> \in L(M_u)$$
, contradictie.

Cazul $\emptyset \notin S$? $\emptyset \notin \mathbb{C}S$

14 / 22

Problema PCP(x, y)

Input: un alphabet V cu cel putin doua simboluri, $n \geq 2$ si doua liste Post

$$x=(x_1,x_2,\ldots,x_n),$$

$$y=(y_1,y_2,\ldots,y_n),$$

cu
$$x_i, y_i \in V^*, 1 \leq i \leq n$$
.

Output: Exista $k \ge 1$ si $1 \le i_1, i_2, \dots, i_k \le n$ a.i.

$$x_{i_1}x_{i_2}\ldots x_{i_k}=y_{i_1}y_{i_2}\ldots y_{i_k}$$
?

PCP modificata (MPCP): Input: un alphabet V cu cel putin doua simboluri, $n \ge 2$ si doua liste Post x, y.

Output: Exista $k \geq 1$ si $1 \leq i_1, i_2, \dots, i_k \leq n$ a.i.

$$x_1x_{i_1}x_{i_2}\ldots x_{i_k}=y_1y_{i_1}y_{i_2}\ldots y_{i_k}$$
?

Propozitie. Daca PCP este decidabila, atunci MPCP este decidabila.

Dem. Fie $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$, si $\beta = (\beta_1, \beta_2, \dots, \beta_n)$, doua liste Post peste alphabetul V. Vom folosi algoritmul pentru PCP pentru a arata ca $MPCP(\alpha, \beta)$ este decidabila.

Construim doua liste Post x, y peste alphabetul $V \cup \{\#,\$\}$ astfel:

$$x = (x_0, x_1, x_2, \dots, x_n, x_{n+1}), y = (y_0, y_1, y_2, \dots, y_n, y_{n+1}),$$

$$x_0 = \#x_1, x_i = h_1(\alpha_i), 1 \le i \le n, x_{n+1} = \$,$$

 $y_0 = y_1, y_i = h_2(\beta_i), 1 \le i \le n, y_{n+1} = \#\$,$
 $h_1(a) = a\#, h_2(a) = \#a, a \in V.$

Exemplu: $\alpha = (b, a, aba, bb)$, atunci x = (#b#, b#, a#, a#b#a#, b#b#, \$).

16 / 22

Afirmatie. $MPCP(\alpha, \beta)$ are solutie ddaca PCP(x, y) are solutie. Fie $1, i_1, \ldots, i_k$ o solutie pentru $MPCP(\alpha, \beta)$, deci:

$$\alpha_1\alpha_{i_1}\ldots\alpha_{i_k}=\beta_1\beta_{i_1}\ldots\beta_{i_k}.$$

Atunci: $x_0 x_{i_1} x_{i_2} \dots x_{i_k} x_{n+1} = y_0 y_{i_1} y_{i_2} \dots y_{i_k} y_{n+1}$, deci PCP(x, y) are solutie.

Reciproc, PCP(x, y) are solutie. Atunci primul indice este 0 iar ultimul este n+1. Prin stergerea simbolului # se obtine o solutie pentru $MPCP(\alpha, \beta)$.

TEOREMA. Problema MPCP nu este decidabila.

DEM. PpA MPCP este decidabila. Vom construi doua liste Post α, β a.i. $MPCP(\alpha, \beta)$ are solutie ddaca o masina Turing data se opreste pe o intrare oarecare a sa.

Fie $M = (Q, V, U, \delta, q_0, B, F)$ o masina Turing determinista si $w \in V^*$ o intrare a sa.

◆ロト ◆個ト ◆差ト ◆差ト 差 める(*)

17 / 22

s 7 November 24, 2021

Lista α	Lista eta	Conditie	Grup
#	$\#q_0w\#$	Fara conditii	0
a	а	pentru orice $a \in U \setminus \{B\}$	
\$	\$		
#	#		1
Pentru orice	$q,p\in Q$, a,b	$c,c\in U\setminus\{B\}$:	
qa	bр	daca $\delta(q,a)=(p,b,B)$	7)
cqa	pcb	daca $\delta(q,a)=(p,b,b)$	_)
q#	bp#	daca $\delta(q, B) = (p, b,$	R)
cq#	pcb#	daca $\delta(q, B) = (p, B,$	L) 2

Pentru orice
$$q \in Q$$
 si $a \in U \setminus \{B\}$:

daca $\delta(q,a)$ nedefinita qa daca $\delta(q, B)$ nedefinita q#

Lista α	Lista eta	Conditie (Grup
a\$b \$b	\$ \$	pentru orice $a, b \in U \setminus \{B\}$ pentru orice $b \in U \setminus \{B\}$	}
a\$ 	\$	pentru orice $a \in U \setminus \{B\}$	4
\$##	#	fara conditii	5

Afirmatie. $MPCP(\alpha, \beta)$ are solutie ddaca M se opreste pe intrarea w. **Dem.** Fie $C_0, C_1, \ldots, C_n, \ldots$ secventa de configuratii pe intrarea w. Atunci, pentru orice $j \geq 0$, listele partiale α si β vor arata astfel:

$$\alpha : \#C_0\#C_1\#\ldots\#C_{j-1}\#$$

$$\beta : \#C_0\#C_1\#\ldots\#C_{j-1}\#C_j\#.$$

Inductie dupa $j: j \to j+1$. Fie $C_j: xqay$ si $\delta(q,a) = (p,b,R)$. Atunci $C_{j+1}: xbpy$ (celelalte cazuri se trateaza similar).

$$\alpha : \#C_0\#C_1\#\ldots\#C_{j-1}\#$$

$$\beta : \#C_0 \#C_1 \# \dots \#C_{j-1} \# xqay \#$$

Inductie dupa $j: j \to j+1$. Fie $C_j: xqay$ si $\delta(q,a) = (p,b,R)$. Atunci $C_{j+1}: xbpy$ (celelalte cazuri se trateaza similar).

$$\alpha : \#C_0\#C_1\#\ldots\#C_{j-1}\#$$

$$\beta : \#C_0\#C_1\#\dots\#C_{j-1}\#xqay\#$$

$$\alpha : \#C_0 \#C_1 \# \dots \#C_{j-1} \# x$$

$$\beta : \#C_0\#C_1\#\dots\#C_{j-1}\#xqay\#x$$

Inductie dupa $j: j \to j+1$. Fie $C_j: xqay$ si $\delta(q,a) = (p,b,R)$. Atunci $C_{j+1}: xbpy$ (celelalte cazuri se trateaza similar).

$$\alpha : \#C_0\#C_1\#\ldots\#C_{j-1}\#$$

$$\beta : \#C_0 \#C_1 \# \dots \#C_{j-1} \# xqay \#$$

$$\alpha : \#C_0 \#C_1 \# \dots \#C_{j-1} \# x$$

$$\beta : \#C_0\#C_1\#\dots\#C_{j-1}\#xqay\#x$$

$$\alpha : \#C_0\#C_1\#\dots\#C_{j-1}\#xqa$$

$$\beta : \#C_0\#C_1\#\dots\#C_{j-1}\#xqay\#xbp$$

Inductie dupa $j: j \to j + 1$. Fie $C_j: xqay$ si $\delta(q, a) = (p, b, R)$. Atunci C_{i+1} : xbpy (celelalte cazuri se trateaza similar).

$$\alpha : \#C_0\#C_1\#\ldots\#C_{j-1}\#$$

$$\beta : \#C_0\#C_1\#\dots\#C_{j-1}\#xqay\#$$

$$\alpha : \#C_0\#C_1\#\ldots\#C_{j-1}\#x$$

$$\beta : \#C_0\#C_1\#\dots\#C_{j-1}\#xqay\#x$$

$$\alpha : \#C_0\#C_1\#\ldots\#C_{j-1}\#xqa$$

$$\beta : \#C_0\#C_1\#...\#C_{j-1}\#xqay\#xbp$$

$$\alpha : \#C_0\#C_1\#...\#C_{i-1}\#xqay\#$$

$$\beta : \#C_0\#C_1\#...\#C_{j-1}\#xqay\#xbpy\#.$$

Deci, M nu se opreste pe w implica $MPCP(\alpha, \beta)$ nu are solutie. Pp. ca M se opreste la pasul j+1.

$$\alpha : \#C_0 \#C_1 \# \dots \#C_{j-1} \# xqa$$

$$\beta : \#C_0\#C_1\#\dots\#C_{j-1}\#xqay\#x$$
\$

Deci, M nu se opreste pe w implica $MPCP(\alpha, \beta)$ nu are solutie. Pp. ca M se opreste la pasul j+1.

$$\alpha : \#C_0\#C_1\#\ldots\#C_{j-1}\#xqa$$

$$\beta : \#C_0\#C_1\#\dots\#C_{j-1}\#xqay\#x$$
\$

$$\alpha : \#C_0\#C_1\#\ldots\#C_{j-1}\#xqay\#$$

$$\beta : \#C_0\#C_1\#\ldots\#C_{j-1}\#xqay\#x\$y\#.$$

Folosim valorile listelor lpha, eta din grupul 4 pana cand ajungem in situatia

$$\alpha : \#C_0 \#C_1 \# \dots \#C_{j-1} \# xqay \# \dots \#$$

$$\beta : \#C_0\#C_1\#\ldots\#C_{j-1}\#xqay\#x\$y\ldots\#\$\#.$$

Folosim valorile din grupul 5:

$$\alpha : \#C_0\#C_1\#\ldots\#C_{i-1}\#xqay\#\ldots\#\$\#\#$$

$$\beta : \#C_0\#C_1\#\ldots\#C_{j-1}\#xqay\#x\$y\ldots\#\$\#\#.$$

Particularizari

Alfabetul are o singura litera.

- Alfabetul are o singura litera.(Decidabila)
- 2 Lungimea listelor este cel mult 2.

- Alfabetul are o singura litera. (Decidabila)
- 2 Lungimea listelor este cel mult 2.(Decidabila)
- Ungimea listelor este cel putin 7.

- Alfabetul are o singura litera. (Decidabila)
- 2 Lungimea listelor este cel mult 2.(Decidabila)
- Lungimea listelor este cel putin 7. (Nedecidabila)
- 4 Lungimea listelor intre 3 si 6.

- Alfabetul are o singura litera. (Decidabila)
- 2 Lungimea listelor este cel mult 2.(Decidabila)
- Lungimea listelor este cel putin 7. (Nedecidabila)
- Lungimea listelor intre 3 si 6. (Nu se stie)
- PCP marginita.

- Alfabetul are o singura litera. (Decidabila)
- Lungimea listelor este cel mult 2.(Decidabila)
- Lungimea listelor este cel putin 7. (Nedecidabila)
- Lungimea listelor intre 3 si 6. (Nu se stie)
- PCP marginita. (NP-completa)
- Fiecare lista are toate elementele distincte.

- Alfabetul are o singura litera. (Decidabila)
- Lungimea listelor este cel mult 2.(Decidabila)
- Lungimea listelor este cel putin 7. (Nedecidabila)
- Lungimea listelor intre 3 si 6. (Nu se stie)
- PCP marginita.(NP-completa)
- Fiecare lista are toate elementele distincte. (Nedecidabila)
- PCP 1-marcata (nu exista 2 elemente care incep cu aceeasi litera)

- Alfabetul are o singura litera. (Decidabila)
- 2 Lungimea listelor este cel mult 2.(Decidabila)
- Lungimea listelor este cel putin 7.(Nedecidabila)
- Lungimea listelor intre 3 si 6. (Nu se stie)
- PCP marginita. (NP-completa)
- Fiecare lista are toate elementele distincte. (Nedecidabila)
- PCP 1-marcata (nu exista 2 elemente care incep cu aceeasi litera)(Decidabila, PSPACE)
- PCP 2-marcata.

- Alfabetul are o singura litera. (Decidabila)
- Lungimea listelor este cel mult 2.(Decidabila)
- Lungimea listelor este cel putin 7. (Nedecidabila)
- Lungimea listelor intre 3 si 6. (Nu se stie)
- PCP marginita.(NP-completa)
- Fiecare lista are toate elementele distincte. (Nedecidabila)
- PCP 1-marcata (nu exista 2 elemente care incep cu aceeasi litera)(Decidabila, PSPACE)
- PCP 2-marcata.(Nedecidabila).