

南京宇微电子科技有限公司 Light 补光模块 V1.0

2025年10月12日修订

作者: 付坤

目录

版本修订	
客户须知	2
一、概览	
二、板卡分区介绍	
2.1 LED 灯珠阵列	
2.2 灯光控制电路	
三、应用	
3.1 相机补光	
四、原理图与 PCB 布线	
五、编程指南	3
5.1 装配	
5.2 基于 OpenMV 库编程	9
5.2.1 OpenMV IDE 自带 Example 例程	
5.2.2 演示	
六	15

版本修订

时间	版本号	修订内容
2025年10月12日	V1.0	初版

客户须知

本文档为产品使用参考所编写,文档版本可能随时更新,恕不另行通知。本文中提供的所有使用方法、说明及建议仅供参考,不构成任何承诺或保证。使用本产品及本文档内容所产生的结果,由用户自行承担风险。本公司对因使用本文档或产品而导致的任何直接或间接损失,不承担任何责任。

一、概览

补光灯模块是一款专为摄像头设计的附加板,旨在扩展其在机器人和自动化应用方面的功能。该模块配备高强度 LED,可在弱光环境下提供增强照明,非常适合在昏暗条件下执行基于视觉的任务,例如物体检测、线路跟踪和人脸识别。光强度可以通过 PWM 编程控制,允许根据环境的照明需求进行动态调整。该模块结构紧凑且易于集成,是对机器视觉项目的补充,可为计算机视觉项目提供更好的性能和多功能性支撑。

参数	
<i>></i> ×	
LED 类型	高强度白色 LED/黄色透镜
LED 数量	9个LED
照明角度	约 120°
光强度	阵列最高约 297LM
色温	6000~7000K
输入电压	2.9~5.5V
工作电流	60mA
模块功耗	最高约 2W
控制接口	PWM
尺寸	26mm*36mm
工作温度	-20°C~+85°C
存储温度	-20°C~+85°C

二、板卡分区介绍

2.1 LED 灯珠阵列

这块补光板使用了 9 颗高亮度 LED 组成补光阵列,在 3.7V 电池独立供电情况下,电流为 60mA时,LED 阵列的最高亮度为 297LM。

这块补光板(光源扩展板)是专为机器视觉模块设计的辅助硬件,用于在光线不足环境下提供均匀照明,提升图像捕获质量。亮度相当于手机手电筒,可通过 PWM 信号(连接相机的 P6 引脚)调节 0-100%亮度,支持 MicroPython 脚本控制。适用于室内/夜视场景,如颜色跟踪、人脸检测或物体识别,避免环境光干扰。体积小巧,兼容 OpenMV H7/M7 等主流型号,简化原型开发。

2.2 灯光控制电路

灯光可通过 PWM 进行亮度调整,通过一颗 TI 的 TPS61169DCKR 控制芯片实现,不同的 PWM 的占空比对应不同 LED 亮度,占空比越高屏幕越亮。

TPS61169DCKR 是德州仪器(TI)推出的一款高电流升压白光 LED 驱动器 IC,支持 2.9 至 5.5V 输入电压。采用 SC70-5 小封装,工作温度-40°C至 85°C,内置 40V 耐压、1.8A 开关 FET,最小 1.2A 电流限制,支持驱动单串或并联 LED 串(最大 38V 输出电压)。引脚通过固定电阻(如 3.4Ω)接地时,其内部控制电路会调节输出,使 FB 引脚的反馈电压稳定在 204mV(参考 TPS61169DCKR 数据手册)。根据公式 I_LED = V_FB / RSET,LED 电流由 RSET 决定,例如 3.4Ω 时,I_LED \approx 60mA。效率高达 90%以上,开关频率可调(默认 1.2MHz)。

2.3 标准双排母口

这块补光板预留了公母 2.54mm 杜邦接口,间距和引脚定义兼容 H7 系列 OpenMV 相机。直接将这块补光板接在相机上,可以通过 OpenMV IDE 配置代码,接入电池后,即可点亮 LED 阵列。补光灯电源一般不使用 3.3V 电源,需要通过 VIN 提供大电流供电,或者通过电池接口供电。

三、应用

3.1 相机补光

补光灯主要用于低光环境下的机器视觉,提升图像清晰度和算法准确性。以下是在机器视觉中的几个常规应用:

- 全局增强:在室内或夜间场景下,提供均匀照明,帮助相机准确识别和跟踪彩色物体,如 机器人避障。
- 边缘增强:流水线工业应用中,LED补光突出物体边缘,提升边缘检测算法精度。
- 夜视监控:结合 IR LED,实现黑暗中动物或入侵者检测,用于野生动物相机。

四、原理图与 PCB 布线

五、编程指南

5.1 装配

拆解 STM32H743VIT6 相机后 mini 接口板,更换与 OpenMV 外设兼容的接口板,并插入补光板,装配状态从左图变为右图

Mini 接口板引出的接口数量与 OpenMV 兼容版引出的接口数量和类型完全一致,不同之处在于尺寸和引脚接口的位置。Mini 接口板用于空间紧凑的项目中,OpenMV 兼容板用于接插大量 OpenMV 外设(如 LCD\Light\Motor 中等)的项目中。本项目需要使用红色标记的电池接口接入一块 3.7V 聚合物锂电池供电,两块转接板的比较如下图所示

5.2 基于 OpenMV 库编程

5.2.1 OpenMV IDE 自带 Example 例程

路径 File/Examples/Light Shield/light.py

```
# This work is licensed under the MIT license.
# Copyright (c) 2013-2023 OpenMV LLC. All rights reserved.
# https://github.com/openmv/openmv/blob/master/LICENSE
#
import time
from pyb import Pin, Timer

# 50kHz pin6 timer2 channel1
light = Timer(2, freq=50000).channel(1, Timer.PWM, pin=Pin("P6"))
light.pulse_width_percent(100) # adjust light 0~100

while True:
    time.sleep_ms(1000)
```

代码功能:

- 导入`time`和`pyb`模块的`Pin`与`Timer`,用于时间控制和硬件操作。
- 在引脚`P6`上配置了一个 50kHz 的 PWM 信号 (使用定时器 2, 通道 1)。
- `light.pulse_width_percent(100)`将 PWM 占空比设为 100%,表示输出全开(可调 0~100%)。
- `while True`循环使程序持续运行,每秒暂停一次(`time.sleep_ms(1000)`),但未改变 PWM 输出。

用途:

此代码可控制连接到`P6`引脚的设备(如 LED),以最大强度运行。循环保持程序运行,但未动态调整占空比,可进一步更改。

5.2.2 演示

次演示使用的设备如下图所示,本次实验需要一块转接板,外接显示屏模组。这种兼容设计,在保证小型化的基础上,可以兼容市面上绝大多数 OpenMV 外设。

程序的路径如下,注意事项参见 3.3.1.4 说明。

因为补光灯的功率比较大,最大功耗高达 3W 以上,所以仅用 usb 从电脑取电是没办法满足系统运行要求的。为此,需要外接电池供电,相机转接板提供了 2.0mm 电池接口,本次我们使用线性电源供电以演示。因为默认程序提供的是固定亮度输出,为了更直观的演示对亮度的控制,我们对代码做了一下修改

```
import time
from pyb import Pin, Timer

# 初始化定时器和 PWM 信号
# 50kHz, 定时器 2, 通道 1, 使用引脚 P6
light = Timer(2, freq=50000).channel(1, Timer.PWM, pin=Pin("P6"))

brightness = 0 # 初始亮度
increment = 10 # 每次增加或减少的亮度百分比

while True:
```

```
light.pulse_width_percent(brightness) # 设置当前亮度
print("Brightness:", brightness) # 打印当前亮度值(可选)
time.sleep(1) # 每隔一秒调整一次亮度

# 调整亮度值
brightness += increment
if brightness > 100 or brightness < 0: # 反向调整亮度
increment = -increment # 改变增量方向
brightness += increment # 防止越界
```

以上程序,使用的 $50 \mathrm{KHz}$ 频率输出,占空比从 0 到 100,再从 100 到 1,每隔 1 秒变化一次,循环往 复。

六、联系我们

若需任何帮助,请邮件联系我们: info@fukunlab.com

样品购买: 淘宝店铺-宇微电子