Question 1

i. Maximum Clock Frequency:

ii. Percentage Overhead VS Pipeline Stages

Question 2:

The maximum theoretical frequency would be:

Formula:

$$f_{max} = \frac{1}{\mathcal{T}_{slowest\,stage}}$$

Frequency impact of latches Even assuming no internal fragmentation, $f_{max/pipelined} = \frac{1}{(T)_{stage} + \mathcal{T}_{latch}}$. For an infinitely deep pipeline, $f_{max/pipelined} = \frac{1}{\mathcal{T}_{latch}}$. Thus, there are diminishing returns from ever-deeper pipelines, with the limit of the performance improvement determined by the latency of the latch used.

Given

Latency = 80 ps = $80 * 10^{-12}$ seconds

Therefore

$$f_{\text{max}} = \frac{1}{80*10^{-12}}$$

12.5 GHz

The Maximum Theoretical frequency would be 12.5 GHz

Question 3:

i. Maximum Clock Frequency vs Pipeline Stages

ii. CPI vs Pipeline stages

iii. Relative Performance vs Pipeline Stages

Question 4:

i. Maximum clock frequency vs Pipeline stages:

ii. CPI vs Pipeline stages

iii. Relative performance vs Pipeline stages:

Question 5:

i. Maximum clock frequency vs Pipeline stages

ii. CPI vs Pipeline stages

iii. Relative performance vs Pipeline stages

Question 6:

Performance-Optimal Pipeline Length: 194 stages Maximum Relative Performance: 45.12x compared to non-pipelined implementation

Question 7:

i. Maximum clock frequency vs Pipeline stages

ii. CPI vs Pipeline Stages

iii. Relative performance vs Stages

Question 8:

[53]: (np.int64(194), np.float64(34.89024559855355))

Question 9:

i. Dynamic Power Consumption:

Given $P=c \cdot f \cdot V_{dd^2}$

given c = 12.75 nF and V_{dd} = 1.1V

Single-cycle Datapath critical path = 10 ns

Latch Latency: 80 ps.

Cycle Time
$$T = \frac{10 \text{ ns}}{N} + 80 \text{ ps}$$

Max Frequency → Min Latency or Cycle Time

$$f = \frac{1}{\frac{T_{critical\ path}}{k} + T_{lat\ latency}}$$

Minimal Cycle Time: $T_{min} = 80 \ ps$

$$T = \frac{10 * 10^{-9}}{150} + 80 * 10^{-12} = 1.4667 \times 10^{-10} seconds$$

$$f = \frac{1}{1.4667 \times 10^{-10}}$$

$$f = 6.818 \, GHz$$

Substitution in Power equation:

$$P = (12.75 * 10^{-9}) \cdot (6.818 * 10^{9}) \cdot (1.1)^{2}$$

 $P = 12.75 \cdot 6.818 \cdot 1.21$
 $Power P = 105.19 W$

ii. Plot Power consumption and Performance / Watt

iii. Power Consumption and Performance/ Watt

iv. Optimal Power Length for Minimal Power Consumption:

v. Optimal Pipeline Length for Maximum Performance:

vi. Maximum Clock Frequency

$$P_{total} = P_{datapath} + P_{latches}$$

Substitution of values as given:

$$P_{latches} = 0.05 \times f$$

K stage pipeline would have (k-1) latches Power given = 50 W

$$\begin{aligned} P_{total} &= P_{datapath} + \ 0.05 \times f \\ 50 &= P_{datapath} + \ 0.05 \times f \end{aligned}$$

$$50 = (12.75 \times 10^{-9} * f * 1.21) + (k - 1) * 0.05$$

$$f = \frac{50}{(12.75 \times 10^{-9} \times 1.21) + (k - 1) * 0.05}$$

As per given condition; k =150

$$f = \frac{50}{(12.75 \times 10^{-9} \times 1.21) + (149) * 0.05}$$
$$f = 99.21 \, MHz$$

Question 10:

