

Learning Exceptional Subgroups by End-to-End Maximizing KL-divergence

Sacha Xu*, Nils Philipp Walter*, Janis Kalofolias, Jilles Vreeken

*Equal contribution

Exploratory vs. Predictive ML

Exploratory ML

Exploratory + Predictive ML

Best of both worlds

Predictive ML

Examples

Breast Cancer

Malware Analysis

Materials Science

Census Data

Motivation - SyFLow

Census Data

Sex	Height	Race	Education	Age	Income
9	168	White	12	72	17k
ď	163	White	11	55	23k
Ş	160	White	5	62	1k
ď	188	White	16	38	63k
Ş	165	White	9	45	4k
ď	172	White	12	78	71k
Ş	180	White	8	74	1k

"Female & Low Education"

"Male & White & Age > 38"

"Male & Educated & Age > 30"

50k 100k 150k 200k 250k 300k

Y: Wages in \$1000

Task – Subgroup Discovery:

- 1. Find **exceptional** subgroups
- 2. With an **interpretable** description

Subgroup Discovery till now

Prototypical Subgroup Discovery

- 1. Generate boolean predicates
 - i. Categorical: Sex=♀
 - ii. Continuous: 170 < height < 180 ..
- 2. Use a (parametric) exceptionality measure
- 3. Combinatorially search the best subgroup

Sex	Height	Race	Education	Age	Income
ç	168	White	12	72	17k
o*	163	White	11	55	23k
P	160	White	5	62	1k
♂	188	White	16	38	63k
P	165	White	14	45	4k
♂	172	White	12	78	71k
ç	180	White	8	74	1k

Three major problems

 Highly dependents on discretization

2. Only works for assumed distribution

Does not scale to large dimensions

SyFLow - In a nutshell

Subgroup Discovery

- 1. Dependent on Pre-Discretization
- 2. Strong assumptions on the target distribution
- 3. Combinatorial optimization

- 1. Learn predicates end-to-end→ Accurate Discretization
- 2. Use Normalizing Flows (NFs)

 → No assumptions
- 3. Continous optimization
 → **Highly scalable**

SYFLOW - Neural Rule Layer I

Goal: Find an crisp interpretable description

$$\sigma(x) = \neg Smoker \land 44 < Age < 64$$

Ingredients:

- 1. Differentiable binning predicate
- 2. $\hat{\pi}(x_i; \alpha_i, \beta_i, \mathbf{t}) = \frac{e^{\frac{1}{\mathbf{t}}(2x_i \alpha_i)}}{e^{\frac{1}{\mathbf{t}}x_i} + e^{\frac{1}{\mathbf{t}}(2x_i \alpha_i)} + e^{\frac{1}{\mathbf{t}}(3x_i \alpha_i \beta_i)}}$
 - Differentiable analog of:

$$\pi(x_i; \alpha_i, \beta_i) = \begin{cases} 1 & \text{if } \alpha_i < x_i < \beta_i \\ 0 & \text{otherwise} \end{cases}$$

• Temperature *t* controls crispness

Theorem 1 Given its lower and upper bounds $\alpha_i, \beta_i \in \mathbb{R}$, the soft predicate of Eq. (1) applied on $x \in R$ converges to the crisp predicate that decides whether $x \in (\alpha, \beta)$,

$$\lim_{t \to 0} \hat{\pi}(x_i; \alpha_i, \beta_i, t) = \begin{cases} 1 & \text{if } \alpha_i < x_i < \beta_i \\ 0.5 & \text{if } x_i = \alpha_i \lor x_i = \beta_i \\ 0 & \text{otherwise} \end{cases}.$$

SYFLOW – Neural Rule Layer II

Ingredients:

1. Differentiable binning predicate

$$\hat{\pi}(x_i; \alpha_i, \beta_i, t) = \frac{e^{\frac{1}{t}(2x_i - \alpha_i)}}{e^{\frac{1}{t}x_i} + e^{\frac{1}{t}(2x_i - \alpha_i)} + e^{\frac{1}{t}(3x_i - \alpha_i - \beta_i)}}$$

2. Differentiable logical *AND*

$$\mathcal{M}(x) = \frac{m}{\sum_{i=1}^{m} \hat{\pi}(x_i; \alpha_i, \beta_i, t)^{-1}}$$

- Harmonic means behaves like an AND
 - 1. If one $\hat{\pi}(x_i; \alpha_i, \beta_i, t) = 0 \Rightarrow \mathcal{M}(x) = 0$

2. If all
$$\hat{\pi}(x_i; \alpha_i, \beta_i, t) = 1 \Rightarrow \mathcal{M}(x) = 1$$

How to turn off useless predicates?

$$s(x; \alpha, \beta, a, t) = \frac{\sum_{i=1}^{m} a_i}{\sum_{i=1}^{m} a_i \hat{\pi}(x_i; \alpha_i, \beta_i, t)^{-1}}$$

Fully differentiable!

SYFLOW – Finding general & diverse subgroups

Our objective

$$D_{\text{WKL}}(P_{Y|S=1}||P_{Y}) = \left(\frac{n_{s}}{n}\right)^{\gamma} \hat{D}_{\text{KL}}(P_{Y|S=1}||P_{Y})$$

Optimization

- 1. Learn the overall distribution P_Y
- 2. Learn the subgroup distribution $P_{Y|S=1}$
- 3. Optimize classifier weights and bins
- 4. Output: Subgroup

Experiments – Synthetic

Target distributions

Syflow is robust to various target distributions.

Scalability in m

SYFLOW finds a good balance between accuracy and runtime.

Experiments – Real World

	D_{KL}					BC					AMD					
	ours	SD-KL	SD- μ	Rsd	Вн	ours	SD-KL	SD- μ	RsD	Вн	ours	SD-KL	SD- μ	Rsd	Вн	
Abalone	0.14	0.02	0.12	0	0.05	0.66	0.99	0.93	1	0.87	0.73	0.25	0.84	0	0.16	
Airquality	0.22	0.22	0.24	0	0.0	0.62	0.86	0.79	1	1.0	0.37	0.53	0.49	0	0.0	
Automobile	0.22	0.24	0.23	0.26	0.21	0.64	0.85	0.79	0.64	0.6	1838	2807	2683	2218	2475	
Bike	0.17	0.1	0.15	0.17	0.13	0.64	0.95	0.9	0.67	0.73	584	570	630	431	622	
California	0.13	0.06	0.11	0	0.0	0.72	0.97	0.93	1	1.0	0.25	0.3	0.32	0	0.0	
Insurance	0.27	0.13	0.26	0	0.19	0.55	0.93	0.52	1	0.84	3845	3973	3845	0	1518	
Mpg	0.27	0.26	0.24	0.21	0.24	0.57	0.76	0.8	0.47	0.61	2.99	2.85	2.96	1.66	2.79	
Student	0.08	0.03	0.08	0.09	0.04	0.86	0.99	0.94	0.71	0.97	0.46	0.52	0.69	0.47	0.45	
Wages	0.1	0.02	0.1	0	0.03	0.81	0.99	0.9	1	0.99	6043	2994	5916	0	5149	
Wine	0.08	0.0	0.06	0	0.01	0.89	1.0	0.97	1	0.97	0.17	0.04	0.19	0	0.04	
Avg. rank	1.5	3.5	2.1	3.5	3.6	1.4	4.0	2.8	3.3	2.9	2.6	2.4	1.5	4.5	3.6	

Experiments – Insurance Dataset

Experiments – Materials Sciences

Gold Nanoclusters

- Number of Atoms
- Even #Atoms
- 3-D Planarity

Target: HOMO-LUMO gap ~ stability and conductivity

Odd #Atoms \land #Atoms > 8 Odd #Atoms \land % 4-bonds < 0.6 \land % 2-bonds < 0.9 Even #Atoms \land 3-D Planarity \land Gyration < 1.00 Even #Atoms \land % 0-bonds < 0.01 \land 2-bonds > 0.43 \land Gyration < 1.00 \land % 1 bond < 0.3

Conclusion

Census Data

Sex	Height	Race	Edu.	Age	Income
Q	168	White	12	72	17k
o"	163	White	11 55		23k
Q	160	White	5	62	1k
o"	188	White	16	38	63k
Q	165	White	9	45	4k
o"	172	White	12	78	71k
Q	180	White	8	74	1k

SYFLOW

References

- [1] https://en.wikipedia.org/wiki/BRCA_mutation
- [2] Walter, N. P., Fischer, J., & Vreeken, J. (2023). Finding Interpretable Class-Specific Patterns through Efficient Neural Search. arXiv preprint arXiv:2312.04311.
- [3] Breiman, L. 1984. Classification and regression trees. Routledge
- [4] Proenca, H. M.; and van Leeuwen, M. 2020. Interpretable multiclass classification by MDL-based rule lists. *Information Sciences*.
- [5] Pellegrina, L.; Riondato, M.; and Vandin, F. 2019. SPuManTE: Significant pattern mining with unconditional testing. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD).
- [6] Hedderich, M. A.; Fischer, J.; Klakow, D.; and Vreeken, J. 2022. Label-descriptive patterns and their application to characterizing classification errors. *In Proceedings of the International Conference on Machine Learning (ICML)*.
- [7] Wang, Z.; Zhang, W.; Liu, N.; and Wang, J. 2021. Scalable rule-based representation learning for interpretable classification. In Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS).
- [8] Ulianova, S. 2017. Cardiovascular Disease dataset. https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset.
- [9] Patil, P.; and Rathod, P. 2020. Disease Symptom Prediction. https://www.kaggle.com/datasets/itachi9604/disease-symptom-description-dataset
- [10] The Cancer Genome Atlas (TCGA). https://www.cancer.gov/tcga.
- [11] The 1000 Genomes Project Consortium. 2015. A global reference for human genetic variation. *Nature*.
- [12] Rezende, D., & Mohamed, S. 2015. Variational inference with normalizing flows. In Proceedings of the International Conference on Machine Learning (ICML).

References

Images on slide 10

- 1. https://en.wikipedia.org/wiki/BRCA_mutation
- 2. https://benchmarks.elsa-ai.eu/
- 3. Kenzler, S., & Schnepf, A. (2021). Metalloid gold clusters-past, current and future aspects. Chemical Science.
- 4. https://www.destatis.de/DE/Presse/Pressemitteilungen/2020/03/PD20_097_621.html

Images on slide 11

- 1. Böhle, M., Fritz, M., & Schiele, B. (2022). B-cos networks: Alignment is all we need for interpretability. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*.
- 2. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.A. (2013). Playing Atari with Deep Reinforcement Learning. *ArXiv*, *abs/1312.5602*.

SyFLow – Objective

Approximating KL-Divergence

$$D_{\text{KL}}(P_{Y|S=1}||P_{Y}) = \int_{y \in \mathcal{Y}} p_{Y|S=1}(y) \log \left(\frac{p_{Y|S=1}(y)}{p_{Y}(y)}\right) dy$$

Objective for general & diverse subgroups

$$D_{\text{WKL}}\left(P_{Y|S=1} \| P_Y\right) = \hat{D}_{\text{KL}}\left(P_{Y|S}\right)$$

 $D_{\mathrm{WKL}}\left(P_{Y|S=1}\|P_{Y}\right) = \hat{D}_{\mathrm{KL}}\left(P_{Y|S=1}\|P_{Y}\right) \rightarrow \mathsf{Trade}\text{-off size and exceptionality}$

→ Diverse subgroups

SYFLOW

Key contributions

- 1. Continuous optimization to maximize KL-divergence
- 2. Normalizing Flows to accurately learn target distributions

3. Neuro-symbolic rule layer to learn interpretable subgroup descriptions

Fully differentiable!

Traditional subgroup discovery

Male \(Age > 30 \) \(\text{Height} > 1.6 \) Male \(\text{Age} > 27 \) \(\text{Height} > 1.6 \) Male \(\text{Age} > 27 \) \(\text{Height} > 1.6 \)

50k 100k 150k 200k 250k 300k Y: Wages in \$1000

- Highly redundant
- Depends on pre-discretization
- Slow for large #features

SYFLOW

Female \(\triangle Low Education \)
Male \(\triangle White \(\triangle Age > 38 \)
Male \(\triangle Educated \(\triangle Age > 30 \)

50k 100k 150k 200k 250k 300k Y: Wages in \$1000

- Diverse set of subgroups
- Learns best discretization
- Highly scalable

Distribution 0: $P_{Y|S_0=1}$

Distribution 1: $P_{Y|S_1=1}$

0 1

Rule 0: $s_0(X)$ Rule 1: $s_1(X)$

SYFLOW - Table with bold numbers

$$D_{KL}(P_{Y|S=1}, P_Y) = \sum_{y \in \mathcal{Y}} p_{Y|S=1}(y) \log(\frac{p_{Y|S=1}(y)}{p_Y(y)}) \qquad BC(P_{Y|S=1}, P_Y) = \sum_{y \in \mathcal{Y}} \sqrt{p_{Y|S=1}(y)p_Y(y)}$$

$$AMD(\mathcal{Y}_s, \mathcal{Y}) = \left| \left(\frac{1}{|\mathcal{Y}_s|} \sum_{y \in \mathcal{Y}_s} y \right) - \left(\frac{1}{|\mathcal{Y}|} \sum_{y \in \mathcal{Y}} y \right) \right|$$

	D_{KL}					BC					AMD				
	ours	SD-KL	SD- μ	Rsd	Вн	ours	SD-KL	SD- μ	RsD	Вн	ours	SD-KL	SD- μ	Rsd	Вн
Abalone	0.14	0.02	0.12	0	0.05	0.66	0.99	0.93	1	0.87	0.73	0.25	0.84	0	0.16
Airquality	0.22	0.22	0.24	0	0.0	0.62	0.86	0.79	1	1.0	0.37	0.53	0.49	0	0.0
Automobile	0.22	0.24	0.23	0.26	0.21	0.64	0.85	0.79	0.64	0.6	1838	2807	2683	2218	2475
Bike	0.17	0.1	0.15	0.17	0.13	0.64	0.95	0.9	0.67	0.73	584	570	630	431	622
California	0.13	0.06	0.11	0	0.0	0.72	0.97	0.93	1	1.0	0.25	0.3	0.32	0	0.0
Insurance	0.27	0.13	0.26	0	0.19	0.55	0.93	0.52	1	0.84	3845	3973	3845	0	1518
Mpg	0.27	0.26	0.24	0.21	0.24	0.57	0.76	0.8	0.47	0.61	2.99	2.85	2.96	1.66	2.79
Student	0.08	0.03	0.08	0.09	0.04	0.86	0.99	0.94	0.71	0.97	0.46	0.52	0.69	0.47	0.45
Wages	0.1	0.02	0.1	0	0.03	0.81	0.99	0.9	1	0.99	6043	2994	5916	0	5149
Wine	0.08	0.0	0.06	0	0.01	0.89	1.0	0.97	1	0.97	0.17	0.04	0.19	0	0.04
Avg. rank	1.5	3.5	2.1	3.5	3.6	1.4	4.0	2.8	3.3	2.9	2.6	2.4	1.5	4.5	3.6

SYFLOW – Different Target distributions

