Rapport - Double Descente - Emett Haddad

Emett Haddad, Encadrants: Nicolas Vayatis, Samuel Gruffaz21/06/2024

Contents

1	Introduction	2					
2	Présentation du problème						
3	Régimes et Double Descente						
4	Modèles4.1 Modèle par MLP: (Multilayer Perceptron)4.2 Modèles linéaires4.3 Modèle linéaire pénalisé (Ridge Regression)	3 3 4					
5	Etat de l'art						
6	Focus techniques 6.1 Théorèmes de Belkin et al	5 5 6					
7	7.2.4 Descente de gradient stochastique	13 15 16 16					
8	Résultats expérimentaux 8.1 Régression polynomial	18 18 22					
9	Conclusion	22					
10	Détails numériques	22					
11	Appendices 11.1 Pseudo-code						

1 Introduction

Le concept de double descente est un concept introduit en 2019 par Belkin [4] pour décrire un phénomène rencontré en machine learning: l'erreur tend à augmenter puis à diminuer de nouveau lorsque la complexité du modèle augmente.

Ce phénomène a été observé expérimentalement [9] dans le contexte de divers méthode d'optimisations, et divers modèles. Cependant il reste encore aujourd'hui difficile à prouver analytiquement. L'enjeu étant de le comprendre, d'en comprendre l'origine et de parvenir à trouver des conditions d'apparitions à ce phénomène.

En effet il est utile de parvenir à le contrôler afin de pouvoir l'éliminer ou au contraire le faire survenir. En fonction de si l'on veut avoir une descente monotone ou un meilleur minimum.

Nous allons donc premièrement présenter le contexte et le modèle mathématique ainsi qu'une définition de la double descente. Puis nous allons présenter un état de l'art et un focus portant sur quelques théorèmes intéressants.

Enfin, nous apporterons des éléments de réponses concernant le modèle linéaire par pseudo-inverse, et puis par descente de gradient.

2 Présentation du problème

Définition: Fonction cible

On pose $\mathcal{X} = \mathbb{R}^D$ espace de départ et $\mathcal{Y} = \mathbb{R}$ espace d'arrivée.

On souhaite approximer une fonction y^* avec \mathbf{X} et \mathbf{Y} des variables aléatoires.

$$y^*: x \in \mathcal{X} \to \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim \mathcal{P}}(\mathbf{Y} | \mathbf{X} = x) \in \mathcal{Y}$$

Ici, y^* représente la fonction que l'on cherche à estimer, mais nous ne disposons pour cela que d'un échantillon de donnée, définit ci-dessous.

Définition: Échantillons

On se base sur un **échantillons d'apprentissage** $\mathcal{D} := \{(x_n, y_n) \in \mathcal{X} \times \mathcal{Y}\}_{n=1}^N$ où $y_n := y^*(x_n) + \epsilon_n$. On modélise ici : $\mathbf{Y} = y^*(\mathbf{X}) + \epsilon$ où ϵ représente le bruit tel que $\mathbb{E}(\epsilon | \mathbf{X}) = 0$, et $\mathbb{V}(\epsilon) = \sigma^2$.

Définition: Estimateur

- On veut trouver déterminer un **estimateur** $\hat{y}: \mathcal{X} \to \mathcal{Y}$ tel que $\hat{y}(\mathbf{X}) \approx \mathbf{Y}$ (au sens du risque ci-dessous).
- $\hat{y} \in \mathcal{H}$ un espace de fonctions.

La **complexité** de \mathcal{H} est représentée ici par P le nombre de paramètres, bien que la meilleur notion actuelle de complexité est la complexité de Rademacher[10] qui est la capacité d'une classe de fonctions à s'adapter à du bruit.

Définition: Vrai risque, risque empirique et excès de risque

Vrai risque et risque empirique: $\forall \hat{y} \in \mathcal{H}$

$$\mathcal{R}(\hat{y}) = \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim \mathcal{P}}((\mathbf{Y} - \hat{y}(\mathbf{X}))^2), \quad \hat{\mathcal{R}}_{\mathcal{D}}(\hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}(x_i))^2$$
(1)

Excès de risque: $\forall \hat{y} \in \mathcal{H}$

$$\mathcal{E}(\hat{y}) = \mathcal{R}(\hat{y}) - \mathcal{R}(y^*) \tag{2}$$

3 Régimes et Double Descente

Notions de régimes:

• Régime sous-paramétré: P < N et régime sur-paramétré: P > N

• Seuil d'interpolation: P = N

Définition: Notion de Double Descente:

On dit qu'il y a **double descente** quand l'erreur global minimal dans le régime sur-paramétré est inférieur à celle dans le régime sous-paramétré et qu'on observe un maximum au seuil d'interpolation.

En réalité, la double descente est ce même phénomène mais relativement à la complexité de la classe de fonctions[4].

4 Modèles

4.1 Modèle par MLP: (Multilayer Perceptron)

Définition: Modèle MLP

- $\hat{y}_{\hat{\beta}}(x) = W_L \circ \sigma \circ \cdots \sigma \circ W_1(x)$, $W_l(x_l) = A_l x_l + b_l$ où $A_l \in \mathcal{M}_{S_l, E_l}(\mathbb{R})$ et $b_l \in \mathbb{R}^{S_l}$ tel que $S_l = E_{l+1}$
- $\sigma(x) = max(0, x)$ function ReLU.
- On optimise $\hat{\mathcal{R}}_{\mathcal{D}}$ par descente de gradient (stochastique) selon les paramètres A_l , b_l .

En pratique, on utilise ce type de modèle, mais leur analyse étant assez compliqué, on préfère étudier le modèle suivant plus simple.

3

4.2 Modèles linéaires

Définition: Pseudo-inverse

Soit $Z \in \mathcal{M}_{N,P}(\mathbb{R})$, on définit Z^{\dagger} le pseudo-inverse de Z comme étant:

Avec $Z = U \begin{bmatrix} \Sigma_R & 0 \\ 0 & 0 \end{bmatrix} V^T$ la décomposition en valeur singulière de Z, alors $Z^{\dagger} = V \begin{bmatrix} \Sigma_R^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^T$.

Définition: Modèle linéaire

- $\mathcal{F} = \{f_i : \mathcal{X} \to \mathbb{R}, i \in \mathbb{N}\}$ ensemble de features.
- $X = [x_1, \cdots, x_N]^T \in \mathcal{M}_{N,D}(\mathbb{R}), Y = [y_1, \cdots, y_N]^T$
- $\forall x \in \mathcal{X}, \ \Phi_P(x) = [f_1(x), \cdots, f_P(x)]^T \text{ et } Z = [\Phi_P(x_1), \cdots, \Phi_P(x_N)]^T = [f_j(x_i)] \in \mathcal{M}_{N,P}(\mathbb{R})$
- Risque empirique $\hat{\mathcal{R}}_{\mathcal{D}}(\hat{y}_{\beta}) = \frac{1}{N}||Y Z\beta||_2^2$
- $\forall x \in \mathcal{X}, \ \hat{y}_{\hat{\beta}}(x) = \Phi_P^T(x)\hat{\beta}, \text{ pour } \hat{\beta} = Z^{\dagger}Y \text{ qui minimise le risque empirique.}$
- Modèle simple $f_i(x) = e_i(x)$ et X = Z

4.3 Modèle linéaire pénalisé (Ridge Regression)

Définition: Modèle linéaire pénalisé

- Risque empirique pénalisé $\overset{\circ}{\mathcal{R}}_{\mathcal{D},\lambda}(\hat{y}_{\beta}) = ||Y Z\beta||_2^2 + \lambda ||\beta||_2^2$ où $\lambda > 0$.
- $\forall x \in \mathcal{X}, \ \hat{y}_{\hat{\beta}_{\lambda}}(x) = \Phi_P^T(x)\hat{\beta}_{\lambda}, \text{ pour } \hat{\beta}_{\lambda} = (Z^TZ + \lambda I_P)^{-1}Z^TY.$

qui minimise le risque empirique pénalisé.

Remarque:

Le terme après λ dans le risque empirique pénalisé est le terme de pénalisation, qui permet de minimiser aussi $||\beta||_2^2$. Ce terme peut aussi d'une certaine façon modéliser la complexité de l'estimateur associé. Ainsi, on cherche notre solution parmi des solutions de moindre norme, i.e. en un certain sens de moindre complexité.

Pour $\lambda \to 0$, on retrouve le pseudo-inverse et pour $\lambda \to +\infty$ on obtient la solution nulle.

5 Etat de l'art

	Features/Modèle	Résultats	Méthodes	Graphe	Méthode d'optimisation
Belkin et al. [3]	$f_p(x) = e_{i_p}(x),$ coordonnées aléatoires	Expression du vrai risque, non-asymptotique	Inverse de Wishart	1	Pseudo-inverse
Belkin et al. [3]	$f_p(\omega) = \omega^{i_p}$ sur le cercle complexe Racine de l'unité aléatoires pour l'échantillon \mathcal{D} .	Équivalent du vrai risque, asymptotique	Transformée de Stieltjes		Pseudo-inverse
Francis Bach [1]	$\hat{y}(x) = (S^T x)^T \hat{\beta}$ et $Z = XS$ où S matrice de vecteurs sub-Gaussien.	Équivalent du risque d'excès, asymptotique	Transformée de Stieltjes	Temporal security and a second second security and a second se	Pseudo-inverse
Kuzborskij et al. [7]	$f_p(x) = e_p(x)$	Majoration du vrai risque non-asymptotique	Inégalité de con- centration	10 In the state of	Descente de gradient
Zhenyu et al. [8]	$f_p(x) = cos(v_p^T x)$ et $f_p(x) = sin(v_p^T x)$	Limite MSE, asymptotique	Étude de la résolvente	$\begin{bmatrix} 1 & & & & & \\ & 1 & & & & \\ & 2 & & & & \\ & 2 & & & & \\ & 2 & & & &$	Pseudo-inverse

6 Focus techniques

6.1 Théorèmes de Belkin et al.

Théorème: Belkin et al.- base canonique [3]

Dans le cas où l'on sélectionne de manière uniforme P coordonnées parmi les E = D coordonnées de la base canonique comme features et que x suit une loi normal standard. Si l'on suppose $y^*(x) = x^T \beta^*$, avec un bruit gaussien.

• Si
$$P < N - 1$$
:

$$\mathbb{E}_{\mathbf{X}}(\mathcal{R}(\hat{y}_{\hat{\beta}})) = [(1 - \frac{P}{E})||\beta^{\star}||^{2} + \sigma^{2}](1 + \frac{P}{N - P - 1})$$

• Si P > N + 1:

$$\mathbb{E}_{\mathbf{X}}(\mathcal{R}(\hat{y}_{\hat{\beta}})) = ||\beta^{\star}||^{2} \left[1 - \frac{N}{E} \left(2 - \frac{E - N - 1}{P - N - 1}\right)\right] + \sigma^{2} \left(1 + \frac{N}{P - N - 1}\right)$$

• Sinon:

$$\mathbb{E}_{\mathbf{X}}(\mathcal{R}(\hat{y}_{\hat{\beta}})) = +\infty$$

Éléments de preuve:

La preuve se déroule en plusieurs étapes: On note en indice une extraction sur les lignes. On commence par poser $T \in |[1,D]|^P$ variable aléatoire uniforme et $\hat{\beta}_T = X_T^{\dagger}Y$, $\hat{\beta}_{T^C} = 0$. On montre ces égalités dans l'ordre suivant: On pose $n = Y - X_T \beta_T^*$

pose
$$\eta = Y - X_T \beta_T^*$$
 $\mathcal{R}(\hat{y}) = \sigma^2 + ||\beta_T^* - \hat{\beta}_T||_2^2 + ||\beta_{TC}^*||_2^2$ et $||\beta_T^* - \hat{\beta}_T||_2^2 = ||\beta_T^*||_2^2 - ||X_T^T(X_T X_T^T)^{\dagger} X_T \beta_T^*||_2^2 + ||X_T^T(X_T X_T^T)^{\dagger} \eta||_2^2$ # Par Pythagore et propriété de projecteur de $X_T^T(X_T X_T^T)^{\dagger} X_T$

 $\mathbb{E}(||X_T^T(X_TX_T^T)^{\dagger}\eta||_2^2) = (||\beta_{T^C}||_2^2 + \sigma^2) \text{tr}[\mathbb{E}((X_TX_T)^{\dagger})] \# \text{ On reconnaît l'inverse de Wishart Enfin on passe à l'espérance sur T. Et on a le résultat attendu.}$

Ainsi, ce théorème permet de montrer par une égalité sur le risque moyennné sur l'échantillon, le phénomène de double descente.

6.2 Théorème de Kuzborskij et al.

Théorème: Kuzborskij et al[7] en régime sur-paramétré

On pose $\hat{\beta}_t$ le vecteur obtenu au bout de t itérations de descente de gradient de pas α . On se place ici dans le cadre du modèle linéaire simple, en se plaçant dans l'hypothèse isotropique et sub-gaussien.

$$\mathcal{E}(\hat{y}_{\hat{\beta}_t}) \lesssim \left[\left(1 - \frac{2\alpha}{N} \sigma_{min}(X^T X) \right)^{2t} + \frac{1}{\sqrt{N}} \right] ||\beta^*||^2 \tag{3}$$

Remarque:

Hypothèse isotropique: $\mathbb{E}(XX^T) = I_N$

Hypothèse sub-gaussien: X est sub-gaussien si et seulement si $\forall Y \in \mathbb{R}^N, X^TY$ est sub-gaussien i.e. $\exists C, \forall t \geq 0, \mathbb{P}(|X^TY| \geq t) \leq 2e^{-t^2} \setminus C^2$.

L'intérêt de ce théorème est qu'il permet d'observer les éléments responsable d'une double descente dans le cas de la descente de gradient.

6.3 Théorème de Francis Bach

Théorème: Francis Bach[1]

On pose $df_i(\lambda) = tr(\Sigma^i(\Sigma + \lambda I_D)^{-i})$, $df_1(K_P) \sim P$, $df_1(K_N) \sim N$. On suppose ici $y^*(x) = x^T S \beta^*$. Ici, $S \in \mathcal{M}_{D,P}(\mathbb{R})$ est une projection aléatoire. Et $\Sigma := \mathbb{E}(X^T X)$. On pose $\hat{\mathcal{R}}_{\Sigma}(\hat{y}_{\hat{\beta}}) := ||\hat{\beta} - \beta^*||_{\Sigma}^2 = (\hat{\beta} - \beta^*)^T \Sigma(\hat{\beta} - \beta^*)$. Alors avec $\hat{\mathcal{R}}_{\Sigma}^{(var)}$ pour $\beta^* = 0$ et $\hat{\mathcal{R}}_{\Sigma}^{(biais)}$ pour $\epsilon = 0$, et sous certaines hypothèses (vecteurs sub-Gaussiens iid) tel que $N \to +\infty$, $\frac{P}{N} \to \gamma$ et $\frac{D}{N} \to \delta$.

• Si $\gamma < 1$:

$$\mathbb{E}_{\epsilon}(\mathcal{R}_{\Sigma}^{(var)}(\hat{y}_{\hat{\beta}})) \sim \frac{\sigma^{2} \gamma}{1 - \gamma}$$

$$\mathcal{R}_{\Sigma}^{(biais)}(\hat{\beta}) \sim \frac{K_{P}}{1 - \gamma} ||\beta^{\star}||_{\Sigma(\Sigma + K_{P}I)^{-1}}^{2}$$

• Si $\gamma > 1$:

$$\mathbb{E}_{\epsilon}(\mathcal{R}_{\Sigma}^{(var)}(\hat{y}_{\hat{\beta}})) \sim \frac{\sigma^{2}}{\gamma - 1} + \frac{\sigma^{2}df_{2}(K_{N})}{df_{1}(K_{N}) - df_{2}(K_{N})}$$

$$\mathcal{R}_{\Sigma}^{(biais)}(\hat{y}_{\hat{\beta}}) \sim K_{N}^{2} \frac{df_{1}(K_{N})}{df_{1}(K_{N}) - df_{2}(K_{N})} ||\beta^{\star}||_{\Sigma(\Sigma + K_{N}I)^{-2}}^{2} + \frac{K_{N}}{\gamma - 1} ||\beta^{\star}||_{\Sigma(\Sigma + K_{N}I)^{-1}}^{2}$$

Éléments de preuve:

On utilise la transformée de Stiejes $\forall z \in \mathbb{C}\backslash\mathbb{R}_+$, $\hat{\Phi}(z) = \text{tr}[(XX^T + NzI_N)^{-1}]$. On passe par la limite $\lambda \to 0$ de la solution du problème pénalisé. Pour cela on pose $\hat{\Sigma} = \frac{1}{N}X^TX$ et on remarque que $\hat{\beta} = (\hat{\Sigma} + \lambda I_D)^{-1}\hat{\Sigma}S\beta_{\star} + \frac{1}{N}(\hat{\Sigma} + \lambda I_D)^{-1}X^T\epsilon$. Ensuite on passe de $\hat{\Sigma}$ à Σ par des propriétés de la transformée de Stiejes.

Remarque:

Application au modèle isotrope: Dans le cadre de $\Sigma = I_D$, $(\Sigma = \sigma_{\Sigma}^2 I_D$? à faire) on trouve:

$$\overline{\mathcal{E}}(\gamma, \delta) := \mathcal{R}_{I_D}^{(biais)}(\hat{y}_{\hat{\beta}}) \sim \frac{1}{|1 - \gamma|} \Big[max(1, \gamma) - \frac{\gamma}{\delta} \Big] \cdot ||\beta^\star||_2^2$$

Ainsi, ce théorème de Francis Bach est très intéressant car il permet de donner un équivalent asymptotique de parties de l'erreur dans divers modèles pour la distribution de \mathbf{x} . De plus, il permet bien de justifier d'un phénomène de double descente. Enfin il décorrèle de manière intéressante le nombre de paramètres de la dimension du problème à l'aide d'un projecteur.

7 Résultats théoriques

Régression linéaire

On peut remarquer qu'utiliser une base orthonormée permet de faciliter les calculs, et fait apparaître expérimentalement un phénomène de double descente. Ce qui n'est pas toujours le cas avec la base canonique, si l'on expérimente dans le cas de la régression polynomial. D'où le cadre de notre étude ici.

On considère:
$$\Phi_P(x) = [f_1(x), \cdots, f_P(x)]^T$$
 où $f_p : \mathbb{R}^D \to \mathbb{R}$ et $\hat{y}(x) = \Phi_P^T(x)\hat{\beta}$.
Avec $(f,g)_X = \sum_{n=1}^N f(x_n)g(x_n)$, $\{f,g\} = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta})\overline{g(e^{i\theta})}$ et $\forall z \in \mathbb{C}, G_p^x(z) = \sum_{p=1}^P f_p(x)z^p$.

Définition: Base de features orthonormées

On dit ici que $\mathcal{F} = \{f_0, f_1, \dots f_P\}$ est orthonormée par rapport à \mathbf{X} si et seulement si:

- $\forall p, q \in |[0, P]|, \mathbb{E}_{\mathbf{X}}(f_p(\mathbf{X})f_q(\mathbf{X})) = \sigma_{\Phi}^2 \delta_{p,q}$

Remarque:

On considère ici des fonctions de "moyenne" nulle i.e. $\forall p \geq 1, \mathbb{E}_{\mathbf{X}}(f_p(\mathbf{X})) = 0.$ En effet on a $\forall p \geq 1$, $\mathbb{E}_{\mathbf{X}}(f_p(\mathbf{X})) = \mathbb{E}_{\mathbf{X}}(f_0(\mathbf{X})f_p(\mathbf{X})) = 0$.

Théorème: Expressions de l'estimateur

Dans le cas linéaire càd tel que $\hat{y}(x) = \Phi_P^T(x)\hat{\beta}$ nous avons:

$$\forall x \in \mathcal{X}, \ \hat{y}(x) = [f_1(x), \cdots, f_P(x)][(f_i, f_j)_X]^{\dagger} \begin{bmatrix} (f_1, y)_X \\ \vdots \\ (f_P, y)_X \end{bmatrix}$$

$$(4)$$

$$\forall x \in \mathcal{X}, \ \hat{y}(x) = ([\{G_P^{x_i}, G_P^{x_j}\}]^{\dagger} [\{G_P^x, G_P^{x_j}\}])^T Y$$
 (5)

Démonstration:

On a de manière général, $X^{\dagger} = (X^T X)^{\dagger} X^T = X^T (X X^T)^{\dagger}$. On applique donc cela à l'égalité $\hat{\beta} = Z^{\dagger} Y$, puis à $\hat{y}(x) = \Phi_P^T(x)\hat{\beta}$. Enfin, on remarque :

$$\{G_P^{x_i},G_P^{x_j}\} = \frac{1}{2\pi} \int_0^{2\pi} G_P^{x_i}(e^{i\theta}) \overline{G_P^{x_j}(e^{i\theta})} = \frac{1}{2\pi} \int_0^{2\pi} (\sum_{p=1}^P f_p(x_i)e^{ip\theta}) (\sum_{p=1}^P f_p(x_j)e^{-ip\theta}) = \sum_{p=1}^P f_p(x_i)f_p(x_j) = \sum_{p=1}^P f_p(x_i)f_p(x_j) = \sum_{p=1}^P f_p(x_j)e^{-ip\theta}$$

Remarque:

Ces expressions permettent de visualiser la forme de l'estimateur. En effet la première expression s'approche de celle du projeté orthogonal dans \mathcal{L}_2 lorsque $N \to +\infty$.

Et la deuxième expression permet de constater que le risque empirique s'annule bien dans le cas du rang maximale, rq(Z) = N.

Théorème: Décroissance du paramètre $\hat{\beta}$

Dans le régime sur-paramétré, $||\beta_P||_2$ est décroissante à partir du moment où le rang de la matrice Z_P devient maximale i.e $rg(Z_P) = N$.

Démonstration:

En effet, en supposant $rg(Z_P) = N$, nous avons ce résultat par l'étude du Lagrangien [9]. On note ici Z_P la matrice Z avec P features. Le vecteur $\hat{\beta}_P$ est un minimum global pour la norme euclidienne dans l'espace affine $\hat{\beta}_P + Ker(Z_P) = \{\beta, Y = Z_P \beta\}$ car avec:

$$\forall \beta \in \mathbb{R}^P, \forall \gamma \in \mathbb{R}^N \mathcal{L}_P(\beta, \gamma) = ||\beta||_2^2 + \gamma^T (Y - Z_P \beta)$$
(6)

L'unique solution de $\nabla \mathcal{L}_P(\beta, \gamma) = 0$ i.e. $\nabla_{\beta} \mathcal{L}_P(\beta, \gamma) = 2\beta - Z_P^T \gamma = 0$ et $\nabla_{\gamma} \mathcal{L}_P(\beta, \gamma) = Y - Z_P \beta = 0$ est $\hat{\beta}_P$ car $rg(Z_P) = N$ et donc $Z_P Z_P^T$ est inversible. C'est donc l'unique solution de $Y = Z_P \beta$ de norme minimale. Et on a $\hat{\beta'}_{P+1} := \begin{vmatrix} \beta_P \\ 0 \end{vmatrix}$ est aussi solution de $Y = Z_{P+1}\beta$ donc $||\hat{\beta}_{P+1}||_2 \le ||\hat{\beta}'_{P+1}||_2 = ||\hat{\beta}_P||_2$.

Remarque:

Ce phénomène $(rq(Z_P) = N)$ survient APCR P si par exemple une seule des coordonnées dans une base est différente 2 à 2 sur l'échantillon, dans le cas de la régression polynomial à D variables. Car il suffit de pouvoir extraire une matrice de Vandermonde (quitte à changer de base).

On pose E paramètres pour l'espace global, et on note les P premiers paramètres par P et P^C les E-P derniers paramètres parmi ces E paramètres. Ainsi: $\mathcal{F} := \{f_1, \dots, f_P, \dots, f_E\}$. On rappelle $Z_P = \Phi_P^T(X), Z_{P^C} = \Phi_{P^C}^T(X), Z_E = \left[Z_P, Z_{P^C}\right] = \Phi_E^T(X)$.

Théorème: Expression de l'excès de risque renormalisé

On pose $\Phi_E(x) = \begin{bmatrix} \Phi_P(x) \\ \Phi_{P^C}(x) \end{bmatrix}$ et $\mathcal{E}(\hat{y}, \beta^*) := \mathcal{R}(\hat{y}) - \mathcal{R}(y^*)$, où l'on suppose $y^*(x) = \Phi_E(x)^T \beta^*$ avec $E \in \mathbb{N}$ features. On suppose ici $\mathbb{E}(\Phi_E(\mathbf{X})\Phi_E(\mathbf{X})^T) = \sigma_\Phi^2 I_E$.

On a alors:

$$\sigma_{\Phi}^{-2} \mathcal{E}(\hat{y}_{\hat{\beta}}, \beta^{\star}) = ||\hat{\beta} - \beta^{\star}||^{2} = ||\beta^{\star}||^{2} + ||Z_{P}^{\dagger} Z_{P^{C}} \beta_{P^{C}}^{\star}||^{2} - \text{tr}[(Z_{P}^{\dagger} Z_{P}) \beta_{P}^{\star} \beta_{P}^{\star T}]$$
(7)

Démonstration:

On s'inspire de la preuve de Belkin et al [3]. On note de même β_P pour parler de P composante de β , de même pour les vecteurs colonnes des matrices. On note β_{PC} pour les autres composantes.

 $\mathcal{R}(\hat{y}) = \mathbb{E}_{\mathcal{P}}((\mathbf{Y} - \hat{y}(\mathbf{X}))^2) = \mathbb{E}_{\mathcal{P}}((\mathbf{Y} - y^*(\mathbf{X}) + y^*(\mathbf{X}) - \hat{y}(\mathbf{X}))^2) = \mathcal{R}(y^*) + \mathbb{E}_{\mathcal{P}}((y^*(\mathbf{X}) - \hat{y}(\mathbf{X}))^2)$ car $\mathbb{E}_{\mathcal{P}}(\mathbf{Y} - y^{\star}(\mathbf{X})|\mathbf{X}) = 0$ par hypothèse sur le bruit dans notre modèle.

Ainsi, on a $\mathcal{R}(\hat{y}_{\hat{\beta}}) - \mathcal{R}(y^*) = \operatorname{tr}[\mathbb{E}_{\mathbf{X}}(\Phi_{\mathbf{E}}(\mathbf{X})\Phi_{\mathbf{E}}(\mathbf{X})^{\mathrm{T}})(\hat{\beta} - \beta^*)(\hat{\beta} - \beta^*)^{\mathrm{T}}] = \sigma_{\mathbf{\Phi}}^2 ||\hat{\beta} - \beta^*||^2.$

On a $Y=Z_E\beta^\star$ et $Z_E=\left[Z_P,Z_{P^C}\right]$. D'où $Y=Z_P\beta_P^\star+Z_{P^C}\beta_{P^C}^\star$. On pose $\Pi_{Z_P}:=Z_P^\dagger Z_P$ le projecteur orthogonale sur $Im(Z_P^\dagger)$. De plus on a $\hat{\beta}_P=Z_P^\dagger Y=Z_P^\dagger (Z_P\beta_P^\star+Z_{P^C}\beta_{P^C}^\star)$ et $\hat{\beta}_{P^C}=0$. On a alors: $||\hat{\beta}-\beta^\star||^2=||\hat{\beta}_P-\beta_P^\star||^2+||\beta_{P^C}^\star||^2=||(\Pi_{Z_P}-I_P)\beta_P^\star||^2+||Z_P^\dagger Z_{P^C}\beta_{P^C}^\star||^2+||\beta_{P^C}^\star||^2$, par les propriétés

de projecteur.

De plus on a de même: $||(\Pi_{Z_P} - I_P)\beta_P^{\star}||^2 = \text{tr}[\beta_P^{\star T}(\Pi_{Z_P} - I_P)^T(\Pi_{Z_P} - I_P)\beta_P^{\star}] = ||\beta_P^{\star}||^2 - \text{tr}[\Pi_{Z_P}\beta_P^{\star}\beta_P^{\star T}].$ D'où $\mathcal{E}(\hat{y}_{\hat{\beta}}, \beta^{\star}) = \sigma_{\Phi}^2 \cdot (||\beta^{\star}||^2 + ||Z_P^T Z_{P^C}\beta_{P^C}^{\star}||^2 - \text{tr}[\Pi_{Z_P}\beta_P^{\star}\beta_P^{\star T}]).$

Remarque:

Dans le cas d'une base de polynômes orthonormée sur un cube $I = \prod_{d=1}^{D} [a_d, b_d]$ par processus de Gram-Schmidt, on a si $\mathbf{X} \hookrightarrow \mathcal{U}(I)$ càd suit une loi uniforme du cube: alors cette base est orthonormée par rapport à X au sens de notre définition.

Dans le cas d'une base orthonormée on a $\mathbb{E}_{\mathbf{X}}(f_i(\mathbf{X})f_j(\mathbf{X})) = \sigma_{\Phi}^2 \delta_{i,j}$. Ainsi on a bien: $\mathbb{E}_{\mathbf{X}}(\Phi_E(\mathbf{X})\Phi_E(\mathbf{X})^T) = \sigma_{\Phi}^2 \delta_{i,j}$ $\sigma_{\Phi}^2 I_E$.

De plus on a $\forall p \geq 1$, $\mathbb{E}_{\mathbf{X}}(f_p(\mathbf{X})) = 0$. On a alors $\mathbb{E}(\Phi_P(\mathbf{X})) = 0$. Ainsi, en posant $z_i = \mathbb{E}(\Phi_P(x_i)) \in \mathbb{R}^P$ on a les z_i sont indépendants par lemme de coalition, et de moyenne nulle, et même variance, on est donc dans le contexte de "Marchenko-Pastur distribution" [5]. Cette distribution donne comme résultats théoriques la distribution de probabilité et la transformée de Stiejes de la matrice $\frac{1}{N}Z_PZ_P^T$ asymptotiquement.

Corollaire: Expression de l'excès de risque

On modélise ici β^* par une variable aléatoire tel que $\mathbb{E}(\beta^*\beta^{*T}) = \sigma_{\beta^*}^2 I_E$. On pose $\mathcal{E}_{moyen}(\hat{y}) := \mathbb{E}_{\beta^*}(\mathcal{E}(\hat{y}, \beta^*))$, ce qui revient à moyenner un ensemble de modèles.

$$(\sigma_{\Phi}\sigma_{\beta^{\star}})^{-2}\mathcal{E}_{moyen}(\hat{y}_{\hat{\beta}}) = E - 2rg(Z_P) + \text{tr}[Z_E Z_E^T(Z_P Z_P^T)^{\dagger}]$$
(8)

Démonstration:

On a $||Z_P^{\dagger}Z_{P^C}\beta_{P^C}^{\star}||^2 = \operatorname{tr}[Z_{P^C}^{\mathsf{T}}(Z_PZ_P^{\mathsf{T}})^{\dagger}Z_{P^C}\beta_{P^C}^{\star}\beta_{P^C}^{\star}]$ d'où:

$$\sigma_{\Phi}^{-2} \mathcal{E}(\hat{y}_{\hat{\beta}}, \beta^{\star}) = ||\beta^{\star}||^2 - \operatorname{tr}[(Z_P^{\dagger} Z_P) \beta_P^{\star} \beta_P^{\star^{\mathrm{T}}}] + \operatorname{tr}[Z_{P^{\mathrm{C}}}^{\mathrm{T}} (Z_P Z_P^{\mathrm{T}})^{\dagger} Z_{P^{\mathrm{C}}} \beta_{P^{\mathrm{C}}}^{\star} \beta_{P^{\mathrm{C}}}^{\star^{\mathrm{T}}}]$$

On a supposé que $\mathbb{E}(\beta^{\star}\beta^{\star T}) = \sigma_{\beta^{\star}}^2 I_E$.

On a suppose que $\mathbb{E}(\beta, \beta^{-}) = \delta_{\beta^{\star}} I_{E}$. On a $\sigma_{\Phi}^{-2} \mathcal{E}_{moyen}(\hat{y}_{\hat{\beta}}) = \mathbb{E}(||\beta^{\star}||^{2}) - \text{tr}[Z_{P}^{\dagger} Z_{P} \mathbb{E}(\beta_{P}^{\star} \beta_{P}^{\star^{T}})] + \text{tr}[Z_{P^{C}} Z_{P^{C}}^{T} (Z_{P} Z_{P}^{T})^{\dagger} \mathbb{E}(\beta_{P^{C}}^{\star} \beta_{P^{C}}^{\star^{T}})].$ D'où $(\sigma_{\Phi} \sigma_{\beta^{\star}})^{-2} \mathcal{E}_{moyen}(\hat{y}_{\hat{\beta}}) = E - \text{tr}(Z_{P}^{\dagger} Z_{P}) + \text{tr}[(Z_{P^{C}} Z_{P^{C}}^{T})(Z_{P} Z_{P}^{T})^{\dagger}].$

Or $Z_E Z_E^T = Z_P Z_P^T + Z_{PC} Z_{PC}^T$, d'où:

$$\mathrm{tr}[(Z_{\mathrm{P}^{\mathrm{C}}}Z_{\mathrm{P}^{\mathrm{C}}}^{\mathrm{T}})(Z_{\mathrm{P}}Z_{\mathrm{P}}^{\mathrm{T}})^{\bigstar}] = \mathrm{tr}[(Z_{\mathrm{E}}Z_{\mathrm{E}}^{\mathrm{T}})(Z_{\mathrm{P}}Z_{\mathrm{P}}^{\mathrm{T}})^{\bigstar}] - \mathrm{tr}[Z_{\mathrm{P}}Z_{\mathrm{P}}^{\mathrm{T}}(Z_{\mathrm{P}}Z_{\mathrm{P}}^{\mathrm{T}})^{\bigstar}] = \mathrm{tr}[(Z_{\mathrm{E}}Z_{\mathrm{E}}^{\mathrm{T}})(Z_{\mathrm{P}}Z_{\mathrm{P}}^{\mathrm{T}})^{\bigstar}] - \mathrm{rg}(Z_{\mathrm{P}})$$

En effet la trace d'un projecteur est son rang, et $rg(XX^T) = rg(X)$. Donc de même $\operatorname{tr}(\Pi_{Z_P}) = \operatorname{rg}(Z_P)$. Ainsi $(\sigma_{\Phi}\sigma_{\beta^*})^{-2}\mathcal{E}_{moyen}(\hat{y}_{\hat{\beta}}) = E - 2rg(Z_P) + \operatorname{tr}[(Z_EZ_E^T)(Z_PZ_P^T)^T]$.

Conjecture. Limite du quotient de matrices aléatoires suivant une distribution de Marchenko-Pastur

$$\lim_{N \to +\infty, \frac{P}{N} \to \gamma, \frac{E}{N} \to \delta} \frac{1}{\min(P,N)} \mathrm{tr}[\mathbf{Z}_{\mathrm{E}}\mathbf{Z}_{\mathrm{E}}^{\mathrm{T}}(\mathbf{Z}_{\mathrm{P}}\mathbf{Z}_{\mathrm{P}}^{\mathrm{T}})^{\frac{1}{4}}]\Big] = |\frac{1-\delta}{1-\gamma}|$$

Remarque:

Pour tenter de prouver la conjecture, on pourrait tenter d'utiliser:

Le lemme de Francis Bach page 8 dans[1].

Et on peut aussi tenter d'utiliser la "distribution de Marchenko-Pastur" sur $\frac{1}{N}Z_PZ_P^T$. Remarque, le quotient normalise la variance, on peut considérer $\sigma_{\Phi} = 1$.

Remarque:

Justification expérimentale de la conjoncture: (avec loi normale tel que $\sigma = 1$, pour N = 500)

Théorème: Expression de l'excès de risque asymptotique, cas du rang maximal

En prenant pour hypothèse la conjecture précédente.

En supposant : $\mathbb{E}(\beta^{\star}\beta^{\star T}) = \frac{||\beta^{\star}||^2}{E}I_E$, $rg(Z_P) = min(P, N)$, et \mathcal{F} features orthonormées par rapport à \mathbf{X} .

$$\overline{\mathcal{E}}(\gamma, \delta) := \lim_{N \to +\infty, \frac{P}{N} \to \gamma, \frac{E}{N} \to \delta} \mathcal{E}_{moyen}(\hat{y}_{\hat{\beta}}) = \sigma_{\Phi}^2 \left[1 - 2 \frac{\min(\gamma, 1)}{\delta} + \frac{\min(\gamma, 1)}{\delta} \left| \frac{1 - \delta}{1 - \gamma} \right| \right] \cdot ||\beta^{\star}||^2$$
(9)

Preuve:

On a supposé que $\frac{1}{\min(P,N)} \mathrm{tr}[Z_E Z_E^T (Z_P Z_P^T)^{\mbox{\dag}}]\Big] \sim |\frac{1-\delta}{1-\gamma}|.$

• Régime sous-paramétré: (i.e. $\gamma < 1$)

$$\begin{split} \sigma_{\Phi}^{-2} \mathcal{E}_{moyen}(\hat{y}_{\hat{\beta}}) = & \left[1 - \frac{2P}{E} + \frac{P}{E} \frac{1}{P} tr[Z_E Z_E^T (Z_P Z_P^T)^{\dagger}] \right] \cdot ||\beta^{\star}||^2 \\ & \overline{\mathcal{E}}(\gamma, \delta) = \sigma_{\Phi}^2 \left[1 - 2\frac{\gamma}{\delta} + \frac{\gamma}{\delta} |\frac{1 - \delta}{1 - \gamma}| \right] \cdot ||\beta^{\star}||^2 \end{split}$$

• Régime sur-paramétré: (i.e. $\gamma > 1$)

$$\begin{split} \sigma_{\Phi}^{-2} \mathcal{E}_{moyen}(\hat{y}_{\hat{\beta}}) = & \left[1 - \frac{2N}{E} + \frac{N}{E} \frac{1}{N} tr[Z_E Z_E^T(Z_P Z_P^T)^{\frac{1}{4}}]\right] \cdot ||\beta^{\star}||^2 \\ & \overline{\mathcal{E}}(\gamma, \delta) = \sigma_{\Phi}^2 \left[1 - 2\frac{1}{\delta} + \frac{1}{\delta} |\frac{1 - \delta}{1 - \gamma}|\right] \cdot ||\beta^{\star}||^2 \end{split}$$

Remarque:

On se place dans le cadre $||\beta^{\star}||^2 = tr(\beta^{\star}\beta^{\star T}) = \sigma_{\beta^{\star}}^2 E = \text{constante}$. Ce choix vient du fait que l'on imagine que l'erreur aléatoire sur les termes du développement en série de nos fonctions cibles diminue lorsque l'on prend plus de termes. Cela revient à écrire sur l'ensemble des fonctions à approximer que que $\mathbb{E}(\beta^{\star}) = 0$ et $\mathbb{V}(\beta^{\star}) = \frac{||\beta^{\star}||^2}{E} I_E$.

On a donc avec sous hypothèse de cette conjecture un risque asymptotique moyen qui présente cette forme:

$$\frac{\overline{\varepsilon}(\gamma,\delta)}{\sigma_{\Phi}^{2}||\beta^{*}||^{2}} = \left[1 - 2\frac{\min(\gamma,1)}{\delta} + \frac{\min(\gamma,1)}{\delta}\left|\frac{1-\delta}{1-\gamma}\right|\right]$$

Remarque:

Pour E=P on trouve alors $\overline{\mathcal{E}}(\gamma,\delta)=\sigma_\Phi^2 max(0,(1-\frac{1}{\gamma}))\cdot||\beta^\star||^2$ et on n'a pas de double descente. Mais pour $\delta>1$ on en a une.

7.2 Minimisation par descente de gradient

Remarque:

On a avec $\hat{\beta}_t$ paramètre issu d'une descente de gradient à t étapes:

$$\sigma_{\Phi}^{-2} \mathcal{E}(\hat{y}_{\hat{\beta}_t}, \beta^{\star}) = ||\hat{\beta}_t - \beta^{\star}||^2 = ||\hat{\beta}_t - \hat{\beta}||^2 + 2\mathrm{tr}[(\hat{\beta}_t - \hat{\beta})^{\mathrm{T}}(\hat{\beta} - \beta^{\star})] + ||\hat{\beta} - \beta^{\star}||^2$$

Nous allons donc dans cette partie nous intéresser au terme d'erreur apporté par la descente de gradient, par rapport à la solution du pseudo-inverse.

Définition: Optimisation par descente de gradient

• Descente de gradient simple:

$$\hat{\beta}_{t+1} = \hat{\beta}_t - \alpha_t \nabla \hat{\mathcal{R}}_{\mathcal{D}}(\hat{y}_{\hat{\beta}_t}) \ et \ \hat{\beta}_0 \in \mathbb{R}^P$$

• Descente de gradient stochastique:

$$\hat{\beta}_{t+1} = \hat{\beta}_t - \alpha_t J_t \nabla \hat{\mathcal{R}}_{\mathcal{D}_t}(\hat{y}_{\hat{\beta}_t}) \ et \ \hat{\beta}_0 \in \mathbb{R}^P$$

où $J_t = Diag(\delta_{1,t} \cdots \delta_{P,t})$ et $\mathcal{D}_t \in \mathcal{D}^B$. Ici $\delta_{1,t}$ est une variable aléatoire à valeur dans 0, 1 et \mathcal{D}_t un sous-ensemble aléatoire de \mathcal{D} .

Remarque:

 J_t représente le fait qu'on ne calcule qu'une partie du gradient, et \mathcal{D}_t représente les batchs de taille B, on ne calcule le gradient que sur un sous-ensemble de l'échantillon.

7.2.1 Descente de gradient simple

La descente de gradient a pas constant est donnée par:

$$\hat{\beta}_{t+1} = \hat{\beta}_t - \alpha \nabla \hat{\mathcal{R}}_{\mathcal{D}}(\hat{y}_{\hat{\beta}_t})$$

On a $\hat{\mathcal{R}}_{\mathcal{D}}(\hat{y}) = \frac{1}{N}||Y - Z\hat{\beta}||_2^2$ et $\nabla\hat{\mathcal{R}}_{\mathcal{D}}(\hat{y}) = \frac{2}{N}Z^T[Z\hat{\beta} - Y]$ ainsi $\hat{\beta}_{t+1} = [I_p - \frac{2\alpha}{N}Z^TZ]\hat{\beta}_t + \frac{2\alpha}{N}Z^TY$. On sait qu'avec des suites du type $x_{n+1} = ax_n + b$ on a $x_n = [\sum_{k=0}^{n-1} a^k]b + a^nx_0$.

D'où en posant $\alpha' = \frac{2\alpha}{N}$, on a:

$$\hat{\beta}_t = \left[\sum_{k=0}^{t-1} (I_p - \alpha' Z^T Z)^k\right] \alpha' Z^T Y + \left[I_p - \alpha' Z^T Z\right]^t \hat{\beta}_0$$

Théorème: Approximation par descente de gradient simple

Avec $\hat{\beta}_t$ le résultat de t descente de gradient de pas α tel que $\alpha' < \sigma_{max}^{-2}$ et $\hat{\beta}_0 = 0$. Avec $\sigma_{min} > 0$ la plus petite valeur singulière non-nulle de $Z = U \Sigma V^T$, et σ_{max} sa plus grande valeur singulière, on a:

$${\sigma_{max}}^{-1}(1-\alpha'\sigma_{max}^2)^t||Y||_2 \leq ||\hat{\beta}_t - \hat{\beta}||_2 \leq {\sigma_{min}}^{-1}(1-\alpha'\sigma_{min}^2)^t||Y||_2$$

On a:

$$\hat{\beta}_t - \hat{\beta} = V \begin{bmatrix} (I_R - \alpha' \Sigma_R^2)^t & 0\\ 0 & I_{P-R} \end{bmatrix} V^T [\hat{\beta}_0 - \hat{\beta}]$$
(10)

Si $\hat{\beta}_0 = 0$ on a:

$$\hat{\beta}_t - \hat{\beta} = -V \begin{bmatrix} \Sigma_R^{-1} (I_R - \alpha' \Sigma_R^2)^t & 0\\ 0 & 0 \end{bmatrix} U^T Y$$
(11)

Démonstration:

On s'attend classiquement a une convergence géométrique de la descente de gradient.

Avec
$$R:=rg(Z)$$
 et $Z=U\Sigma V^T$ décomposition SVD tel que $\Sigma=\begin{bmatrix}\Sigma_R&0\\0&0\end{bmatrix}$. On a $Z^TZ=V\Sigma^T\Sigma V^T=V\begin{bmatrix}\Sigma_R^2&0\\0&0\end{bmatrix}V^T$.

On note
$$\alpha' = \frac{2\alpha}{N}$$
. D'où $\hat{\beta}_t = V\begin{bmatrix} (\alpha'\Sigma_R^2)^{-1}[I_R - (I_R - \alpha'\Sigma_R^2)^t] & 0 \\ 0 & tI_{P-R} \end{bmatrix} \alpha' \begin{bmatrix} \Sigma_R & 0 \\ 0 & 0 \end{bmatrix} U^T Y + V\begin{bmatrix} (I_R - \alpha'\Sigma_R^2)^t & 0 \\ 0 & I_{P-R} \end{bmatrix} V^T \hat{\beta}_0.$

$$\hat{\beta}_t = V\begin{bmatrix} \Sigma_R^{-1} - \Sigma_R^{-2}(I_R - \alpha'\Sigma_R^2)^t \Sigma_R & 0 \\ 0 & 0 \end{bmatrix} U^T Y + V\begin{bmatrix} (I_R - \alpha'\Sigma_R^2)^t & 0 \\ 0 & I_{P-R} \end{bmatrix} V^T \hat{\beta}_0$$
Si $\hat{\beta}_0 = 0$ on a:
$$\hat{\beta}_t - \hat{\beta} = -V\begin{bmatrix} \Sigma_R^{-1}(I_R - \alpha'\Sigma_R^2)^t & 0 \\ 0 & 0 \end{bmatrix} U^T Y$$

En notant
$$V = [v_1, \dots, v_P]$$
 on a alors $||\hat{\beta}_t - \hat{\beta}||_2^2 = \sum_{i=1}^R |\sigma_i^{-1} (1 - \alpha' \sigma_i^2)^t < v_i, Y > |^2$

On utilise alors le lemme : $\sigma(A)_{min}||X||_2 \le ||AX||_2 \le \sigma(A)_{max}||X||_2$. On peut étudier la fonction $f(\sigma) = \sigma^{-1}(1 - \alpha'\sigma^2)^t$ pour être plus précis, et on a alors deux annulations de la dérivée en $\sigma = \pm \alpha'^{-\frac{1}{2}}$. On se place donc dans la zone de décroissance de f et de positivité des valeurs propres de $\begin{bmatrix} \Sigma_R^{-1} (I_R - \alpha' \Sigma_R^2)^t & 0 \\ 0 & 0 \end{bmatrix}, \text{ i.e. les } f(\sigma_r), \text{ lorsque } \alpha' < \sigma_{max}^{-2}.$

On a finalement le résultat attendu.

Remarque:

On retrouve ici un résultat proche de celui de la descente de gradient classique, ici $\hat{\mathcal{R}}$ étant $\mu = \frac{2}{N}$ fortement convexe.

Corollaire: Résultat de la descente de gradient simple, cas du rang maximale

On suppose que $\hat{\beta}_0 = 0$ et que α le pas de la descente est constant .

• Si
$$P \le N$$
 et $\operatorname{rg}(Z) = P$:

$$\hat{\beta} - \hat{\beta}_t = (Z^T Z)^{-1} (I_P - \alpha' Z^T Z)^t Z^T Y \tag{12}$$

• Si P > N et rg(Z) = N:

$$\hat{\beta} - \hat{\beta}_t = Z^T (I_N - \alpha' Z Z^T)^t (Z Z^T)^{-1} Y \tag{13}$$

Démonstration:

On s'attend à avoir une forme simple dans le cas du rang maximal.

- Dans le régime sous-paramétré: (cas du rang maximale) On a $\hat{\beta}_t = (\sum_{k=0}^{t-1} [I_p - \alpha' Z^T Z]^k) \alpha' Z^T Y = (Z^T Z)^{-1} [I_P - (I_p - \alpha' Z^T Z)^t] Z^T Y = Z^{\dagger} Y - (Z^T Z)^{-1} (I_P - \alpha' Z^T Z)^t Z^T Y$.
- Dans le régime sur-paramétré: (cas du rang maximale)

On a ici
$$ZZ^T=U\Sigma_N^2U^T$$
 et $Z^{\dagger}Y-\hat{\beta}_t=V\begin{bmatrix}\Sigma_N^{-1}(I_N-\alpha'\Sigma_N^2)^t\\0\end{bmatrix}U^TY=V\begin{bmatrix}\Sigma_N\\0\end{bmatrix}(U^TU)(I_N-\alpha'\Sigma_N^2)^t(U^TU)\Sigma_N^{-2}U^TY=(V\Sigma_N^TU^T)(I_N-\alpha'U\Sigma_N^2U^T)^t(U\Sigma_N^2U^T)^{-1}Y.$ D'où: $\hat{\beta}_t=Z^{\dagger}Y-Z^T(I_N-\alpha'ZZ^T)^t(ZZ^T)^{-1}Y$

Remarque:

Dans le régime sur-paramétré, on a pour la descente de gradient à pas constant: $\hat{\beta}_P = Z_P^{\dagger} Z_E \beta^{\star}$, $\mathbb{E}_{\beta^{\star}}(\mathrm{tr}[(\hat{\beta}_{t} - \hat{\beta})^{\mathrm{T}}(\hat{\beta} - \beta^{\star})]) = \sigma_{\beta^{\star}}^{2} \mathrm{tr}[(Z_{\mathrm{E}}Z_{\mathrm{E}}^{\mathrm{T}})(Z_{\mathrm{P}}Z_{\mathrm{P}}^{\mathrm{T}})^{-1}(I_{\mathrm{N}} - \alpha Z_{\mathrm{P}}Z_{\mathrm{P}}^{\mathrm{T}})^{t}] \text{ qui présente d'après la section précèdente$ une comportement de double descente.

7.2.2 Descente de gradient à pas variable

La descente de gradient a pas variable est donnée par:

$$\hat{\beta}_{t+1} = \hat{\beta}_t - \alpha_t \nabla \hat{\mathcal{R}}_{\mathcal{D}}(\hat{y}_{\hat{\beta}_t})$$

Et donc : $\hat{\beta}_{t+1} = [I_P - \frac{2\alpha_t}{N}Z^TZ]\hat{\beta}_t + \frac{2\alpha_t}{N}Z^TY$, on est dans le cas $u_{n+1} = a_nu_n + b_n$. Dans ce cas on a $u_n = [\prod_{k=0}^{n-1} a_k]u_0 + \sum_{k=0}^{n-1} [\prod_{i=k+1}^{n-1} a_i]b_k$. D'où:

$$\hat{\beta}_t = \left[\prod_{k=0}^{t-1} (I_P - \frac{2\alpha_k}{N} Z^T Z) \right] \hat{\beta}_0 + \sum_{k=0}^{t-1} \left[\prod_{i=k+1}^{t-1} (I_P - \frac{2\alpha_i}{N} Z^T Z) \right] \frac{2\alpha_k}{N} Z^T Y$$

On suppose $\hat{\beta}_0 = 0$ et on pose $Z = U\Sigma V^T$ où $R = rg(Z), \Sigma = \begin{bmatrix} \Sigma_R & 0 \\ 0 & 0 \end{bmatrix}$.

Dans ce contexte en notant
$$\alpha_i' = \frac{2\alpha_i}{N}$$
, avec la décomposition en valeurs singulières (SVD) de $Z = U\Sigma V^T$ on a:
$$\hat{\beta}_t = \sum_{k=0}^{t-1} (\prod_{i=k+1}^{t-1} [I_P - \frac{2\alpha_i}{N} Z^T Z]) \frac{2\alpha_k}{N} Z^T Y = V[\sum_{k=0}^{t-1} (\prod_{i=k+1}^{t-1} [I_P - \alpha_i' \Sigma^T \Sigma]) \alpha_k'] \Sigma^T U^T Y$$

$$\hat{\beta}_t = V \begin{bmatrix} \sum_{k=0}^{t-1} (\prod_{i=k+1}^{t-1} I_R - \alpha_i' \Sigma_R^2) \alpha_k' & 0 \\ 0 & (\sum_{k=0}^{t-1} \alpha_k') I_{P-R} \end{bmatrix} \begin{bmatrix} \Sigma_R & 0 \\ 0 & 0 \end{bmatrix}^T U^T Y = V \begin{bmatrix} \Sigma_R \sum_{k=0}^{t-1} (\prod_{i=k+1}^{t-1} I_R - \alpha_i' \Sigma_R^2) \alpha_k' & 0 \\ 0 & 0 \end{bmatrix} U^T Y$$

$$\hat{\beta}_t = \hat{\beta} + V \begin{bmatrix} \Sigma_R \sum_{k=0}^{t-1} (\prod_{i=k+1}^{t-1} I_R - \alpha_i' \Sigma_R^2) \alpha_k' - \Sigma_R^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^T Y$$

On va tenter de simplifier le problème en considérant un pas α_t constant par morceaux et cela permettra d'obtenir une forme explicite de l'erreur.

Théorème: Descente de gradient à pas constant par morceaux

On suppose que $\hat{\beta}_0 = 0$ et avec t_1, \dots, t_r changements de pas de descente de gradient. Alors, avec $t_{r+1} :=$

$$\hat{\beta} - \hat{\beta}_t = V \begin{bmatrix} \Sigma_R^{-1} \prod_{j=0}^r (I_R - \alpha_j' \Sigma_R^2)^{t_{j+1} - t_j} & 0\\ 0 & 0 \end{bmatrix} U^T Y$$
(14)

Démonstration:

On suppose maintenant t_1, \dots, t_r changements de pas de descente de gradient. On a alors avec $t_0 = 0$ et $t_{r+1} = t-1$: $\forall j \le r, \ \forall t \in |[t_j, t_{j+1}][, \ \alpha'_t = \alpha'_i.$

Par récurrence à l'aide du théorème sur la descente de gradient simple, initialisation non-nulle.

Corollaire: Approximation par descente de gradient à pas variable

Dans le cas où $\hat{\beta}_0 = 0$ et $\max(\alpha_j) < \sigma_{\max}^{-2}$, en notant $t_{r+1} := t > t_r$ on a:

$$\sigma_{max}^{-1} \prod_{j=0}^{r} (1 - \underline{\alpha_j}' \sigma_{max}^2)^{t_{j+1} - t_j} ||Y||_2 \le ||\hat{\beta}_t - \hat{\beta}||_2 \le \sigma_{min}^{-1} \prod_{j=0}^{r} (1 - \underline{\alpha_j}' \sigma_{min}^2)^{t_{j+1} - t_j} ||Y||_2$$

Démonstration:

On prouve cette expression à l'aide des variations de la fonction $f(\sigma) = \sigma^{-1}\Pi_{j=0}^r(1-\gamma_j\sigma^2)^{\Delta t_j} = \sigma^{-1}g(\sigma)$, tel que $f(\sigma) \underset{\sigma \to 0}{\sim} 1 \backslash \sigma$, et tel que $f'(\sigma) = \frac{-g(\sigma)}{\sigma^2} [2\sum_{j=0}^r \frac{\Delta t_j \gamma_j \sigma^2}{1-\gamma_j \sigma^2} + 1] \underset{\sigma \to 0}{\sim} -1 \backslash \sigma^2$ et dont les points critiques sont les solutions de $\sum_{j=0}^r \gamma_j \sigma^2 \Delta t_j (1-\gamma_j \sigma^2)^{-1} = -1 \backslash 2$ et les points $\sigma = \pm \gamma_j^{-1/2}$. Sous la condition $\max(\gamma_j) \leq \sigma_{\max}^{-2}$, la première équation n'a pas de solution et l'on se place dans la zone de décroissance de f, on peut donc se ramener à la plus petite et la plus grande des valeurs singulière de Z en utilisant le théorème précèdent et le lemme: $\sigma(A)_{\min}||X||_2 \leq ||AX||_2 \leq \sigma(A)_{\max}||X||_2$

Ainsi, on a une erreur décroissante par rapport à t et σ . Donc σ_{min} ayant une courbe en U (voir section suivante) on a bien une courbe en U inversée pour l'erreur en fonction du quotient $P \setminus N$. Ainsi l'erreur apporté par la descente de gradient présente bien un apport au phénomène de double descente.

Remarque:

L'inégalité obtenue est optimal au sens que la seule inégalité utilisée dans la preuve est $\sigma(A)_{min}||X||_2 \le ||AX||_2 \le \sigma(A)_{max}||X||_2$.

Ici, la condition sur le pas est compatible avec un cadre appliqué mais ne permet pas de réaliser une descente de gradient à pas optimal.

7.2.3 Analyse de la plus petite et plus grande valeur singulière

"On the limit of the largest eigenvalue" [11] et "Marchenko–Pastur distribution" [7] pour $N \to +\infty$ et $P \setminus N \to \gamma$. Dans le cadre de notre base de features orthonormés,en notant $\mathbb{V}(\Phi_P(x)) = \sigma_\Phi^2$, on a alors $\sigma_{min} \simeq \sigma_\Phi | \sqrt{P} - \sqrt{N} |$ qui présente bien une courbe en U, et $\sigma_{max} \simeq \sigma_\Phi | \sqrt{P} + \sqrt{N} |$.

7.2.4 Descente de gradient stochastique

La descente de gradient stochastique sur les coordonnées du gradient est donnée par:

$$\hat{\beta}_{t+1} = \hat{\beta}_t - \alpha_t D_t \nabla \hat{\mathcal{R}}_{\mathcal{D}_t}(\hat{y}_{\hat{\beta}_t})$$

où $J_t = Diag(\delta_{1,t} \cdots \delta_{P,t})$ et \mathcal{D}_t subset \mathcal{D} . Ce sont des variables aléatoires. J_t permet de sélectionner des composantes du gradient à calculer et \mathcal{D}_t permet de calculer le gradient sur une partie de l'échantillon (batch). Or $\mathcal{D}_t \subset \mathcal{D}$, $\mathcal{D}_t = \{(x_{n_t(b)}, y_{n_t(b)}) \in \mathcal{X} \times \mathcal{Y}, b \in |[1, B]|)\}$. Et $n_t : |[1, B]| \to |[1, N]|$ une injection. On peut alors poser $D_t := [\delta_{n_t(i),j}] \in \mathcal{M}_{B,N}(\mathbb{R})$.

On trouve alors $\hat{\beta}_{t+1} = [I_P - \alpha_t' J_t Z^T D_t^T D_t Z] \hat{\beta}_t + \alpha_t' J_t Z^T D_t^T D_t Y$.

On pose: $P_t := D_t^T D_t = Diag(\delta_{i \in Im(n_t)}).$

Théorème: Expression pour la descente de gradient stochastique

$$\hat{\beta}_t = \left[\prod_{k=0}^{t-1} (I_P - \alpha_k' J_k Z^T P_k Z) \right] \hat{\beta}_0 + \sum_{k=0}^{t-1} \left[\prod_{i=k+1}^{t-1} (I_P - \alpha_i' J_i Z^T P_i Z) \right] \alpha_k' J_k Z^T P_k Y$$

Ainsi en prenant $J \hookrightarrow Diag(\mathcal{U}(|[1,P]|))$ et $\mathcal{D}_t \hookrightarrow \mathcal{U}(\mathcal{D}^B)$, indépendantes deux à deux on a alors: On a donc les mêmes résultats que précédemment, mais avec un facteur $\frac{1}{P}$ et $\frac{B}{N}$ et cette fois sur $||\mathbb{E}_J(\hat{\beta}_t) - \hat{\beta}||_2$.

$$\mathbb{E}_{\mathcal{D},J}(\hat{\beta}_t) = \left[\prod_{k=0}^{t-1} (I_P - \alpha_k' \frac{B}{NP} Z^T Z) \right] \hat{\beta}_0 + \sum_{k=0}^{t-1} \left[\prod_{i=k+1}^{t-1} (I_P - \alpha_i' \frac{B}{NP} Z^T Z) \right] \alpha_k' \frac{B}{NP} Z^T Y$$

7.3 Expressions théorique sur les MLP

Avec $\hat{y}_{\beta}(x) = W_L \circ \sigma \circ \cdots \sigma \circ W_1(x)$, tel que $W_l(x_l) = A_l x_l + b_l$ et $\sigma(x) = max(0, x)$ fonction ReLU tq $\sigma'(x) = \mathbf{1}_{x \geq 0}$.

Cas particulier: Dans le cas suivant, $\hat{y}_{\beta}(x) = W_2 \circ \sigma \circ W_1(x) = A_2 \sigma(A_1 x + b_1) + b_2$, $\hat{y}_{\beta} : \mathbb{R}^D \to \mathbb{R}$. On a ici : $A_1 \in \mathcal{M}_{P,D}(\mathbb{R})$ et $A_2 \in \mathcal{M}_{1,P}(\mathbb{R})$ D'où avec : $\hat{\mathcal{R}}_{\mathcal{D}}(\hat{y}_{\hat{\beta}}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{\hat{\beta}}(x_i) - y_i)^2$ on a :

Avec
$$\beta = \begin{bmatrix} A_1 \\ b_1 \\ A_2 \\ b_2 \end{bmatrix}$$
 on a $\nabla_{\beta} \hat{\mathcal{R}}(\hat{y}_{\hat{\beta}}) = \begin{bmatrix} \nabla_{A_1} \hat{\mathcal{R}}(\hat{y}_{\hat{\beta}}) \\ \nabla_{b_1} \hat{\mathcal{R}}(\hat{y}_{\hat{\beta}}) \\ \nabla_{A_2} \hat{\mathcal{R}}(\hat{y}_{\hat{\beta}}) \\ \nabla_{b_2} \hat{\mathcal{R}}(\hat{y}_{\hat{\beta}}) \end{bmatrix} = \frac{2}{N} \begin{bmatrix} \sum_{i=1}^{N} x_i (\hat{A}_2 \odot \sigma' (\hat{A}_1 x_i + \hat{b}_1)^T) (\hat{y}_{\hat{\beta}}(x_i) - y_i) \\ \sum_{i=1}^{N} (\hat{A}_2 \odot \sigma' (\hat{A}_1 x_i + \hat{b}_1)^T) (\hat{y}_{\hat{\beta}}(x_i) - y_i) \\ \sum_{i=1}^{N} \sigma (\hat{A}_1 x_i + \hat{b}_1) (\hat{y}_{\hat{\beta}}(x_i) - y_i) \\ \sum_{i=1}^{N} (\hat{y}_{\hat{\beta}}(x_i) - y_i) \end{bmatrix}$

Avec ⊙ le produit d'Hadamard.

Et on a : $\hat{\beta}_{t+1} = \hat{\beta}_t - \alpha \nabla_{\beta} \hat{\mathcal{R}}(\hat{y}_{\hat{\beta}_t})$. On comprend donc qu'il n'est pas aisé d'obtenir une expression manipulable théoriquement.

8 Résultats expérimentaux

8.1 Régression polynomial

a, nexample = 1, 1, typepolynome = 2, D, Deg= 2,13, n = 20,M = 40 ,r = 0.2, Lambda = 0

Résultats exhibant un phénomène de double descente en dimension 1, 2 et 3 pour des features polynomiales.

Résultats exhibant l'influence d'un facteur de régulation sur l'apparition du phénomène de double descente.

On remarque que la régulation permet d'empêcher totalement la venue d'un phénomène de double descente par rapport au nombre de paramètre. En effet, on peut considérer que la réelle complexité réside dans la norme du paramètre β . Or, on a une descente simple par rapport à ce paramètre. D'où le résultat.

Résultats exhibant l'influence d'une base orthonormalisée sur la double descente. Première ligne: Base orthonormalisée sur l'espace, Deuxième ligne: Base canonique

On remarque qu'orthonormaliser l'espace permet s'accélérer l'avenue du phénomène de double descente en faible dimension.

8.2 Multilayer Perceptron (MLP)

Graphe de la MSE d'un algorithme Multilayer Perceptron. Pour N=9 puis N=24.

9 Conclusion

Ainsi, sous-notre conjecture, nous avons abouti dans le cadre d'un modèle linéaire dont les features sont orthonormés et dans le cadre du pseudo-inverse comme de la descente de gradient à montrer des éléments de double descente.

Il reste encore de nombreuses perspectives envisageables, comme tenter de prouver notre conjecture, étudier en détails la descente de gradient stochastique en étudiant l'espérance du risque et non le risque de l'espérance, explorer d'autres modèles comme le MLP .

Afin d'aller plus loin sur ce problème, ces cours peuvent être intéressant [10], [2].

10 Détails numériques

References

[1] Francis Bach. "High-dimensional analysis of double descent for linear regression with random projections". In: SIAM Journal on Mathematics of Data Science 6.1 (2024), pp. 26–50.

- [2] Francis Bach. Learning Theory from First Principles. https://www.di.ens.fr/~fbach/ltfp_book.pdf. [Online]. 2024.
- [3] Mikhail Belkin, Daniel Hsu, and Ji Xu. "Two models of double descent for weak features". In: SIAM Journal on Mathematics of Data Science 2.4 (2020), pp. 1167–1180.
- [4] Mikhail Belkin et al. "Reconciling modern machine-learning practice and the classical bias-variance trade-off". In: Proceedings of the National Academy of Sciences 116.32 (2019), pp. 15849–15854.
- [5] Friedrich Götze and Alexander Tikhomirov. "Rate of convergence in probability to the Marchenko-Pastur law". In: *Bernoulli* 10.3 (2004), pp. 503–548.
- [7] Ilja Kuzborskij et al. "On the role of optimization in double descent: A least squares study". In: Advances in Neural Information Processing Systems 34 (2021), pp. 29567–29577.
- [8] Zhenyu Liao, Romain Couillet, and Michael W Mahoney. "A random matrix analysis of random fourier features: beyond the gaussian kernel, a precise phase transition, and the corresponding double descent". In: Advances in Neural Information Processing Systems 33 (2020), pp. 13939–13950.
- [9] Rylan Schaeffer et al. "Double descent demystified: Identifying, interpreting & ablating the sources of a deep learning puzzle". In: arXiv preprint arXiv:2303.14151 (2023).
- [10] MM Wolf. Mathematical foundations of supervised learning (growing lecture notes). https://mediatum.ub.tum.de/doc/1723378/1723378.pdf. 2018.
- [11] Yong-Qua Yin, Zhi-Dong Bai, and Pathak R Krishnaiah. "On the limit of the largest eigenvalue of the large dimensional sample covariance matrix". In: *Probability theory and related fields* 78 (1988), pp. 509–521.

11 Appendices

11.1 Pseudo-code

11.1.1 Modèle linéaire et pénalisé

Cf: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000515

Algorithm 1: Generation of the orthonormal polynomial basis (Gram-Schmidt)

```
1 function generate_orthonormal_basis(D, D', C)

| Input D, D', C: D \in \mathbb{N}^*, D' \in \mathbb{N}^*, C \subset \mathbb{R}^D

2 | Basis<sub>D'</sub> = [\Pi_{d=1}^D X_d^{\alpha_d}, \sum \alpha_d \leq D']

3 | P = \text{LENGHT}(\text{Basis}_{D'})

4 | for 1 \leq p \leq P do

5 | f'_p = \text{Basis}_{D'}[p] - \sum_{i=1}^{p-1} [\int_C \text{Basis\_ortho}_{D'}[i] \cdot \text{Basis\_ortho}_{D'}[i]

6 | Basis_ortho_{D'}[p] = \frac{f'_p}{\|f'_p\|_2}

7 | return Basis_ortho_{D'}
```

Algorithm 2: Dataset initialisation

```
1 function dataset initialisation (f, C, M, ratio\_data)

| Input y, C, M, ratio\_data: y : \mathbb{R}^D \to \mathbb{R}, C = [[a_d, b_d], 1 \le d \le D], ratio_data \in [0, 1]

2 U = \mathcal{U}([0, 1]^{(M,D)})

3 X = Diag(a_d) + UDiag(b_d - a_d) \# X \hookrightarrow \mathcal{U}(C^M)

4 Y = y(X)

5 X_{train}, X_{test}, Y_{train}, Y_{test} = \text{test\_split}(X, Y, \text{ratio\_data})

6 | return X_{\text{train}}, X_{\text{test}}, Y_{\text{train}}, Y_{\text{test}}|
```

Algorithm 3: Ridge Regression

```
1 function ridge_regression(P_{\min}, P_{\max}, Features, \lambda, Data, Data\_global)
            X_{\mathrm{train}}, X_{\mathrm{test}}, Y_{\mathrm{train}}, Y_{\mathrm{test}} = \mathrm{Data}
            X_{global}, Y_{global} = Data\_global
 3
            for P_{min} \leq p \leq P_{max} do
 4
                  \Phi_{p} = [f_{p}, 1 \leq p \leq P]^{T} \# (f_{p}) \text{ an orthonormal basis for p.s. on C}
Z_{p} = \Phi_{p}^{T}(X_{train}) \# Z_{p} \in \mathcal{M}_{N,P}(\mathbb{R})
\hat{\beta}_{p} = \begin{bmatrix} Z_{p} \\ \sqrt{N\lambda}I_{p} \end{bmatrix}^{T} \begin{bmatrix} Y_{train} \\ O_{p} \end{bmatrix}
  5
  6
  7
                   Train\_error[p] = log(1 + MSE(Y_{train}, Z_p \hat{\beta}_p))
 8
                   Test\_error[p] = log(1 + MSE(Y_{test}, \Phi_p^T(X_{test}) \hat{\beta}_p))
  9
                   Global\_error[p] = log(1 + MSE(Y_{global}, \Phi_p^T(X_{global})\hat{\beta}_p))
10
                  Beta_norm[p] = \log(1 + ||\hat{\beta}_{p}||_{2}^{2})
11
            \hat{y} = \Phi_p \cdot \hat{\beta}_{P_{max}}
12
            return Train_error, Test_error, Beta_norm, Global_error, ŷ
13
```

Examples: (random seed: 23334)

11.1.2 Modèle MLP

Cf: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000527

Algorithm 4: MLP Gradient Descent

```
1 function MLP_Gradient_Descent (P_{min}, P_{max}, Epochs, \alpha, Data, Data_global)
         X_{\mathrm{train}}, X_{\mathrm{test}}, Y_{\mathrm{train}}, Y_{\mathrm{test}} = \mathrm{Data}
 3
         X_{global}, Y_{global} = Data\_global
         for P_{min} \leq p \leq P_{max} do
 4
              MLP = Affine(1,P) \circ \sigma \circ Affine(P,D) \ \# \ \text{Creation of the MLP structure}
 5
              MLP.fit(X_{train}, Y_{train}, Epochs, \alpha)
 6
              Train\_error[p] = log(1 + MSE(Y_{train}, MLP(X_{train})))
 7
              Test\_error[p] = log(1 + MSE(Y_{test}, MLP(X_{test})))
 8
              Global\_error[p] = log(1 + MSE(Y_{test}, MLP(X_{global})))
 9
10
         \hat{y} = MLP(P_{max})
         \textbf{return} \ \operatorname{Train\_error}, \operatorname{Test\_error}, \operatorname{Global\_error}, \hat{y}
11
```

Algorithm 5: MLP Gradient Descent FIT

```
1 function MLP.fit (X_{train}, Y_{train}, Epochs, \alpha)
2 | for 1 \le epoch \le Epochs do
3 | for (x_{train}, y_{train}) \in \mathcal{D} do
4 | score\_gradient = MLP(x_{train}) - y_{train} \# gradient of MSE
5 | backpropagation(score\_gradient)
6 | update(\alpha) \# udpate weights
```

