

Paolo Camurati
Dip. Automatica e Informatica
Politecnico di Torino

Binary Trees

- Recursive definition
 - Empty set of nodes
 - Root, left subtree, right subtree

Binary Trees

Node


```
typedef struct node *link;
struct node {
   Item item;
   link l;
   link r;
};
```


Binary Trees

Tree

- Access through pointer to root
- Dummy sentinel node z or NULL pointer

Visits

- A tree traversal or a tree visit lists the nodes according to a strategy
 - Pre-order
 - Root, Left child (I), Right child (r)
 - In-order
 - Left child (I), Root, Right child (r)
 - Post-order
 - Left child (I), Right child (r), Root

Pre-order

Pre-order

In-order

Post-order

Post-order

Complexity analysis: Case 1

Divide and conquer a = 2 b = 2

- Complete tree
 - $D(n) = \Theta(1), C(n) = \Theta(1)$
 - a = 2, b = 2 (two sub-problems of overall size n-1, conservatively approximated to n, i.e., n/2 and n/2)
- Recurrence equation

•
$$T(n) = 1 + 2T(n/2)$$
 $n > 1$

- T(1) = 1
- T(n) = O(n)

Complexity analysis: Case 2

Divide and conquer a = 2 b = 2

- Totally unbalanced tree (degenerated into a list)
 - $D(n) = \Theta(1), C(n) = \Theta(1)$
 - $a = 1, k_i = 1$
- Recurrence equation

•
$$T(n) = 1 + T(n-1)$$

•
$$T(1) = 1$$

$$T(n) = O(n)$$


```
int count(link root, link z) {
  int u, v;

  if (root == z)
    return 0;

  u = count(root->1, z);
  v = count(root->r, z);

  return (u+v+1);
}
```

Number of nodes


```
Height
```

```
int height(link root, link z) {
  int u, v;

if (root == z)
    return -1;

u = height(root->l, z);
v = height(root->r, z);

if (u>v)
    return u+1;
  else
    return v+1;
}
```


A Binary Tree Application: Expressions

 Given an algebraic expression (brackets to change operator priority), it is possibile to build the corresponding tree according to the simplified grammar

```
• <exp> = <operand> | <exp> <op> <exp>
```

- operand> = A .. Z
- < op> = + | * | | /

Recursion

Termination condition

An example <exp> = <operand> | <exp> <op> <exp> <operand> = A .. Z [(A+B) * (C-D)] * E<op> = + | * | - | / <exp><op> <exp> <exp> * <exp <exp

An example <exp> = <operand> | <exp> <op> <exp> <operand> = A .. Z [(A+B) * (C-D)] * E<op> = + | * | - | / <exp><op> <exp> <exp> * <exp> В <exp

An example <exp> = <operand> | <exp> <op> <exp> <operand> = A .. Z [(A+B)*(C-D)]*E <op> = + |*|-|/<operand> * <exp>

An example <exp> = <operand> | <exp> <op> <exp> <operand> = A .. Z [(A+B) * (C-D)] * E<op> = + | * | - | / <operand> * <exp>

4

An example

A post-order visits returns the expression in postfix form (Reverse Polish Notation)

An example

A pre-order visits returns the expression in the seldom used prefix form (Polish Notation)

