Prog & Alg I (COMS10002) Week 6 - Intro to Program Correctness

Dr. Oliver Ray
Department of Computer Science
University of Bristol

Wednesday 5th November, 2014

Reasoning about Loops

- Reasoning about programs with loops is complicated by the fact that variables change value during a loop
- We can use the notation x_i to denote the value of variable x on the i'th iteration of the loop
- We could do proof by induction on the number of loop iterations, but it is usually easier to use *invariants*
- Informally, an invariant is a logical property that is
 - set-up by the code preceding the loop
 - re-established on any iteration of the loop
 - ensures correctness of the code following the loop (these correspond to the initialisation, maintenance and termination properties from Kerstin's slides)

Pre, Post and Mid conditions

- To reason about a function, we first need to specify its
 - pre-conditions: the logical properties we assume to be given when the function is called
 - post-conditions: the logical properties we require to hold of the returned value
- If the program is correct then we should be able to prove the pre-conditions logically entail the post-conditions
- Typically this is done by annotating the program with
 - mid-conditions: the logical properties we know to be true at that point in program execution
- We must show each mid-condition implies the next by a combination of *forward* and *backward* reasoning

Example: Exponentiation

```
r(x,n) {
                                                 PRE
   // given n>=0 & \neg (x=0 & n=0)
                                              CONDITION
   int a=1;
   // ???
                                                  MID
   while (n!=0) \{n--; a*=x; \}
                                               CONDITIONS
   // 333
   return a;
                                                 POST
   // return x^n
                                               CONDITION
```

Reasoning Forward

reasoning
forwards:
easy step

```
r(x,n) {
                                                 PRE
   // given n>=0 & \neg (x=0 & n=0)
                                              CONDITION
   int a=1;
   // a=1 & n>=0 & \neg (x=0 & n=0)
                                                  MID
   while (n!=0) \{n--; a*=x; \}
                                              CONDITIONS
   // 333
   return a;
                                                 POST
   // return x^n
                                              CONDITION
```

Reasoning Backward

```
r(x,n) {
                                                                  PRE
                  // given n>=0 & \neg (x=0 & n=0)
                                                              CONDITION
reasoning
                  int a=1;
forwards:
easy step
                  // a=1 \& n>=0 \& \neg (x=0 \& n=0)
                                                                  MID
                  while (n!=0) \{n--; a*=x; \}
                                                               CONDITIONS
                  // a=x^n
reasoning
                  return a;
backwards:
easy step
                                                                 POST
                  // return x^n
                                                              CONDITION
```

Linking the proof up

```
r(x,n) {
                                                                   PRE
                  // given n >= 0 & \neg (x=0 & n=0)
                                                                CONDITION
reasoning
                  int a=1;
forwards:
easy step
                  // a=1 \& n>=0 \& \neg (x=0 \& n=0)
                                                                   MID
                  while (n!=0) \{n--; a*=x; \}
   333
                                                                CONDITIONS
                   // a=x^n
reasoning
                  return a;
backwards:
easy step
                                                                  POST
                   // return x^n
                                                                CONDITION
```

Can we find an invariant to complete the proof?

But, there is a Problem!

```
s(x,n) {
                                                                     PRE
                     // given n >= 0 & \neg (x=0 & n=0)
                                                                  CONDITION
                     int a=1;
                     // a=1 \& n>=0 \& \neg (x=0 \& n=0)
this spec is
   trivially
                                                                     MID
 satisfied by
                     x=n=1;
                                                                  CONDITIONS
code that does
 NOT perform
                     // a=x^n
exponentiation!
                     return a;
                                                                    POST
                        return x^n
                                                                  CONDITION
```

We really need to remember the initial variable values!

Example: Corrected

```
r(x,n) {
                    // given n \ge 0 \& \neg (x=0 \& n=0) \& x=x_0 \& n=n_0
reasoning
                    int a=1;
forwards:
easy step
                    // a=1 \& n>=0 \& \neg (x=0 \& n=0) \& x=x_0 \& n=n_0
                    while (n!=0) \{n--; a*=x; \}
    333
reasoning
                    return a;
backwards:
easy step
                    // return x<sub>0</sub>^n<sub>0</sub>
```

So, now can we find an invariant to complete the proof?

General Properties of Loop Invariants

```
// Pre
while (b) {
   // Inv & b
   Inv & ¬b
```

<u>Initialisation</u> f Preconditions are

if Preconditions are
 true initially then
Invariant must be set-up
 before the loop runs

Maintenance

if Invariant and loop
Condition are both true
then Invariant must be
re-established after the
loop Body runs

Termination

on exiting the loop the Invariant and negation of the loop Condition are both true and these are sufficient to prove the post-condition

Requirements for our Loop Invariant

```
// a=1 & n>=0 & \neg ( x=0 & n=0 ) & x=x_0 & n=x_0
while (n!=0) {
       Inv & n! = 0
```

We need an Inv that allows us to prove the above properties

Guessing our Loop Invariant

 It is always sensible to choose some example inputs and consider the variable values on each iteration


```
x=x_0
n>=0
n<=n_0
a=x_0^{(n_0-n)}
...

intuitively these seem to be the most useful
```

 An invariant should refer to the current and initial values only and it should be true on all iterations

Proving our Loop Invariant

```
// \text{ given } n \ge 0 \& \neg (x=0 \& n=0) \& x=x_0 \& n=n_0
reasoning
                     int a=1;
forwards
                     INIT
                     // |a=x_0^{(n_0-n)} \& x=x_0|
                     while (n!=0) {
                         // |a=x_0^{(n_0-n)}| & x=x_0^{(k_0-n)}|
 MATNT
                         // (a*x)=x<sub>0</sub>^ (n<sub>0</sub>-(n-1)) & x=x<sub>0</sub>
n->(n-1)
                         n--;
                         // (a*x)=x<sub>0</sub>^ (n<sub>0</sub>-n) & x=x<sub>0</sub>
a \rightarrow (a*x)
                         a*=x;
                         // |a=x_0^{(n_0-n)}|  & x=x_0^{(n_0-n)}
                     // |a=x_0^{(n_0-n)}| \leq x=x_0 \leq -(n!=0)
  TERM
                     // a=x_0^n
reasoning
                     return a;
backwards
                     // return x_0^n
```

Can we show INIT, MAINT and TERM?

INIT

```
a=1 & n>=0 & ¬( x=0 & n=0 ) & x=x_0 & n=x_0 logically entails (|=) a=x_0^(n0-n) & x=x_0 because from n=x_0 we have n-x_0=0 (subtracting n0 from both sides) from n-x_0=0 we have x0^(n0-n)=1 (by defn. of exponents) from a=1 we have a=x_0^(n0-n) (by transitivity of equality) and from x=x_0 we have x=x_0 (trivially)
```

MAINT

```
a=x_0^{(n_0-n)} & x=x_0 & n!=0
logically entails (|=)
(a*x)=x_0^{(n-1)} & x=x_0
because
from a=x_0^{n}(n_0-n)
we have (a*x)=x*x_0^(n_0-n) (multiplying both sides by x)
so (a*x)=x_0*x_0^{(n_0-n)} (using the fact x=x_0)
so (a*x)=x_0^{(1+(n_0-n))} (by properties of exponents)
so (a*x)=x_0^{(n-1)} (by simple algebra)
and from x=x_0 we trivially have x=x_0
```

Note that we need to use the fact $x=x_0$ in this proof!

TERM

```
a=x_0^{(n_0-n)} & x=x_0 & \neg (n!=0)
logically entails (|=)
a=x_0^n
because
from \neg (n!=0)
we have n=0 (by double negation elimination)
so -n=-0 (by negating both sides)
so -n=0 (by properties of 0)
so n_0 - n = n_0 (by adding n_0 to both sides)
so x_0^{(n_0-n)} = x_0^{n_0} (by simple algebra)
and a=x_0^n (using the fact a=x_0^n(n_0-n))
```

So the proof is complete!

- Hooray! But there a couple of points to note:
- Strictly these proofs assume we take $0^0=1$ (since expressions like $x_0^(n_0-n)$ reduce to 0^0 even if x and n are not both initially zero)
- This is not a problem but it would be easier to just drop the precondition $\neg (x=0 \& n=0)$ which is not actually required for correctness or used in the proof
- Alternatively we could change the invariant to $(n=n_0 \rightarrow a=1) \& (n\neq n_0 \rightarrow a=x_0 \land (n_0-n)) \& (x=x_0)$
- Exercise: Rework the proof using the above invariant.