THERMAL CONDUCTIVITY STANDARD REFERENCE MATERIALS FROM 6 TO 280K: VI. NBS SINTERED TUNGSTEN

J.G. Hust

Cryogenics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302

January 1974

Prepared for:
Office of Standard Reference Materials
National Bureau of Standards
Washington, D.C. 20234
and
Air Force Materials Laboratory
Dayton, Ohio

THERMAL CONDUCTIVITY STANDARD REFERENCE MATERIALS FROM 6 TO 280K: VI. NBS SINTERED TUNGSTEN

J.G. Hust

Cryogenics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302

January 1974

Prepared for:
Office of Standard Reference Materials
National Bureau of Standards
Washington, D.C. 20234
and
Air Force Materials Laboratory
Dayton, Ohio

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

NATIONAL BUREAU OF STANDARDS Richard W Roberts Director

ABSTRACT

Thermal conductivity, electrical resistivity, Lorenz ratio, and thermopower data are reported for two specimens of NBS sintered tungsten for temperatures from 6 to 280 K. Variability of this tungsten was studied by means of electrical resistivity and residual resistivity measurements on 39 specimens. These data indicate a material variability of about $\pm 10\%$ in thermal conductivity at helium temperatures. Above 90 K variation in thermal conductivity is only about $\pm 1\%$. To reduce the uncertainty caused by specimen variation at low temperatures, characterization by residual electrical resistivity data is described. By this procedure the low temperature uncertainty is reduced to about $\pm 3\%$.

Key words: Cryogenics, electrical resisitivity, Lorenz ratio, Seebeck effect, standard reference material, thermal conductivity, transport properties, tungsten.

This work was carried out at the National Bureau of Standards under the joint sponsorship of the Office of Standard Reference Materials, NBS, Washington, and the Air Force Materials Laboratory, Dayton, Ohio.

Contents

		Page
1.	Introduction	1
2.	Apparatus and Data Analysis	2
3.	Specimen Characterization	2
4.	Results	3
5.	Discussion	5
6.	Acknowledgements	7
7.	References	8

LIST OF TABLES

			Page
Table	1.	Residual resistivity ratio (pags /pak) of NBS	
		sintered tungsten	9
Table	2.	Basic semi-processed temperature gradient data for	
		NBS sintered tungsten (unannealed)	13
Table	3.	Basic semi-processed temperature gradient data for	
		NBS sintered tungsten (annealed)	18
Table	4.	Basic semi-processed isothermal electrical resis-	
		tivity data for NBS sintered tungsten (unan-	
		nealed)	21
Table	5.	Parameters in equations 1, 2, and 3 for NBS	
		sintered tungsten	22
Table	6.	Thermal conductivity deviations for NBS sintered	
		tungsten (unannealed)	23
Table	7.	Thermal conductivity deviations for NBS sintered	
		tungsten (annealed)	29
Table	8.	Electrical resistivity deviations for NBS sintered	
		tungsten (unannealed)	32
Table	9.	Electrical resistivity deviations for NBS sintered	
		tungsten (annealed)	33
Table	10.	Thermovoltage deviations for NBS sintered	
		tungsten (unannealed)	34
Table	11.	Thermovoltage deviations for NBS sintered	
		tungsten (annealed)	35
Table	12.	Transport properties of NBS sintered tungsten	
		(unannealed)	36

LIST OF TABLES (cont.)

		Page
Table 13.	Transport properties of NBS sintered tungsten	
	(annealed)	37
Table 14.	Intrinsic resistivity and Lorenz ratio of annealed	
	NBS sintered tungsten	38

LIST OF FIGURES

			Page
Figure	1.	Thermal conductivity deviations for NBS	
		sintered tungsten (unannealed)	39
Figure	2.	Thermal conductivity deviations for NBS	
		sintered tungsten (annealed)	40
Figure	3.	Electrical resistivity deviations for NBS	
		sintered tungsten (unannealed)	41
Figure	4.	Electrical resistivity deviations for NBS	
		sintered tungsten (annealed)	42
Figure	5.	Thermovoltage deviations for NBS sintered	
		tung sten (unannealed)	43
Figure	6.	Thermovoltage deviations for NBS sintered	
		tungsten (annealed)	44
Figure	7.	Thermal conductivity of NBS sintered tungsten	45
Figure	8.	Electrical resistivity of NBS sintered tungsten	46
Figure	9.	Lorenz ratio of NBS sintered tungsten	47
Figure	10.	Thermopower of NBS sintered tungsten	48
Figure	11.	Thermal conductivity differences between annealed	
		and unannealed specimens	49
Figure	12.	Lorenz ratio difference between annealed and	
		unannealed specimens	50
Figure	13.	Deviations of intrinsic resistivities (Matthiessen's	
		rule deviations) as computed from data for annealed	
		and unannealed tungsten specimens	51

1. Introduction

Design and development engineers in the aerospace industry continue to have urgent need for thermal and mechanical property data for new materials. For most materials, especially new or uncommon alloys, measured values of thermal conductivity are not available and predictions cannot be made with adequate confidence. To help satisfy these needs, we have constructed an apparatus for the simultaneous measurement of thermal conductivity, electrical resistivity and thermopower. Measurements have been conducted on several aerospace alloys, Hust, et al. [1] and several standard reference materials, Hust, et al. [2-4]. We intend to measure several other materials which appear to be useful as standards. For some, material variability may be so great that only standard reference specimens (not standard reference materials) can be used. Standard reference specimens or materials are useful for intercomparison of existing apparatus, for debugging new apparatus, and for calibration of comparative apparatus. The apparent large differences between the results of various investigators for a given material (50% is not unheard of) is evidence of the need for intercomparisons, calibrations, and standardization. The availability of standard reference materials, SRM's, will result in more accurate transport property data for technically important solids.

This paper contains the results of our measurements on the transport properties of a NBS sintered tungsten material obtained from the Office of Standard Reference Materials, National Bureau of Standards. This tungsten has been investigated because of its potential as an extended temperature range SRM. Other tungsten materials have been extensively investigated for use as high temperature thermal conductivity standards by the Advisory Group for Aerospace Research and Development (AGARD), NATO. A sizeable portion of this earlier research was done by the Air Force Materials Laboratory at Dayton, Ohio.

2. Apparatus and Data Analysis

The apparatus is based on the axial one-dimensional heat flow method. The specimen is a cylindrical rod 3.1 mm in diameter and 23 cm long with an electric heater at one end and a temperature-controlled sink at the other. The specimen is surrounded by glass fiber and a temperature-controlled shield. Eight thermocouples are mounted at equally spaced points along the length of the specimen to determine temperature gradients in the range 4 to 300K.

The experimental data are represented by arbitrary functions over the entire range and tables are generated from these functions. The number of terms used to represent each of the data sets is optimized, through the use of orthonormal functions, so that none of the precision of the data is lost by underfitting nor are any unnecessary oscillations introduced by overfitting. A detailed description of this apparatus and the methods of data analysis are given by Hust, et al. [2].

3. Specimen Characterization

Density of the NBS sintered tungsten material is 19.23 g/cm 3 \pm 0.05 g/cm 3 and the DPH hardness using a 1 kilogram load is 405 for an annealed specimen and 514 for an unannealed specimen.

A resistivity variability study was conducted on this tungsten to determine if the material variability was small enough for use as a SRM. The results of this study are shown as residual resistivity ratios in table 1. The ratio given is resistivity at 273.15K to resistivity at 4K. A discussion of the connection between electrical resistivity and thermal conductivity variability is given by Hust, et al. [3]. Based on

39 residual resistivity ratio measurements made on these specimens in various states of anneal, it is concluded that the thermal conductivity variability from specimen to specimen in these lots is about 60% at liquid helium temperatures. If one restricts the analysis to the data for the specimens annealed at the highest temperature, 2020°C, the variation is significantly less, ± 10%. This variation is still large for a good low temperature standard. Because of the adjudged value of this material at high temperatures where variability does not pose a problem, we feel that a greater than normally acceptable variability at low temperatures is tolerable. The thermal conductivity variability will be comparable to the electrical resistivity variability. However, the thermal conductivity uncertainty for each specimen need not be this large if one characterizes each specimen by measuring its residual electrical resistivity. The method to obtain corrected thermal conductivities from such an electrical measurement is further explained in the discussion. The method essentially assumes that the Lorenz ratios of the specimens are more nearly identical than the thermal conductivities. This has been shown to be true for many pure metals. See, for example, Hust et al. [5].

4. Results

The transport properties of NBS sintered tungsten specimens in the unannealed and annealed (2020°C) conditions were measured in the thermal conductivity apparatus. These data are presented in tables 2 through 4.

The experimental data were functionally represented with the following equations:

$$\ell n \lambda = \sum_{i=1}^{n} a_{i} \left[\ell n T \right]^{i+1}$$
 (1)

$$\rho = \sum_{i=1}^{m} b_i \left[\ln T \right]^{i-1}$$
 (2)

$$S = \sum_{i=1}^{\ell} c_i \left[\ell n T' \right]^i / T'; \quad T' = \frac{T}{10} + 1$$
 (3)

where λ = thermal conductivity, ρ = electrical resistivity, S = thermopower, and T = temperature. Temperatures are based on the IPTS-68 scale above 20K and the NBS P2-20 (1965) scale below 20K. The parameters, a_i , b_i , and c_i determined by least squares, are presented in table 5. Further details of this procedure are described by Hust, et al. [1]. The deviations of the experimental data from these equations are given in tables 6 through 11 and in figures 1 through 6. The horizontal bars in figures 2, 3, 5, and 6 indicate the temperature span across the specimen for each run. The "observed" thermal conductivities are computed from the mean temperature gradients indicated by adjacent thermocouples. Calculated values of λ , ρ , S, and $L = \rho \lambda/T$ (Lorenz ratio) for both specimens are presented in tables 12 and 13 and figures 7 through 10.

A detailed error analysis for this system has been presented previously by Hust, et al. [1]. Based on this analysis of systematic and random errors, the uncertainty estimates (with 95% confidence) are as follows:

thermal conductivity: 2.5% at 300K, decreasing as T⁴ to 0.70% at 200K, 0.70% from 200K to 50K, increasing inversely with temperature to 1.5% at 4K.

electrical resistivity: 0.5%

thermopower: 0.2 µV.

The thermopower values given here are absolute values although our measurements were carried out with respect to normal silver wire. The absolute thermopowers of normal silver reported by Borelius, et. al. [6] were used to convert the experimental data to the absolute scale.

5. Discussion

The research to establish this tungsten as an SRM is continuing. Because of the time required to complete this program, it is considered desirable to make the current results available for interim use. As pointed out earlier, the variability of this tungsten is greater at low temperatures (below about 90K) than desired. The electrical residual resistivity ratio measurements suggest a variation in thermal conductivity from specimen-to-specimen of as much as $\pm 10\%$ if the specimens are annealed at 2020°C for 1 hour. Other electrical measurements as well as the thermal conductivity measurements show an appreciably larger variation for lower temperature anneals. At the time, 2020°C was the maximum temperature attainable with the existing furnace. It is almost certain that an anneal of 2500°C or above will further reduce the material variability at low temperatures.

Figure 11 shows the thermal conductivity difference between the unnanealed and annealed specimens up to a temperature of 90K. Above this temperature, the thermal conductivity differences become progressively smaller. Inadvertently, the unannealed specimen was measured over the total temperature range; the intent was to measure the annealed specimen. This discrepancy is troublesome but not crucial in the analyses of these data.

The intent of the following analysis is to show that the uncertainty $(\pm 10\%)$ in low temperature thermal conductivity of the proposed annealed SRM can be considerably reduced on the basis of a simple residual resistivity measurement for each specimen. Consider, first, the definition of

Lorenz ratio, $L = \rho \lambda/T$, and the inverse equation for the computation of thermal conductivity, $\lambda = LT/\rho$. It is clear that the uncertainty in λ now becomes the combined uncertainties of L and ρ at a given temperature. From figure 12 we see that the maximum difference in L for the unannealed and annealed specimens is less than 12% and appears at about 30K. At this temperature, the λ difference is about 35%. Thus, Lorenz ratio variability is about one-third that of thermal conductivity variability for this material.

To determine the uncertainty caused by p in the calculation of λ for a particular specimen, we examine the validity of Matthiessen's rule which states that $\rho = \rho_0 + \rho_i$ where ρ_0 is the residual resistivity of the specimen and ρ_i is the intrinsic temperature dependent resistivity of the pure material. It is known that this rule is not satisfied exactly and that a generally small correction term, $\Delta(\rho_0 + \rho_i)$, exists. If this term is sufficiently small, one can reconstruct an adequately accurate p vs T curve for a given specimen from knowledge of $\rho_{\mathbf{i}}$ and a measurement of ρ_0 (only one simple measurement). To investigate this possibility, we compute $\rho_{\mathbf{i}}$ from the data for the annealed specimen, neglecting the Δ term. Then we compute Δ from this ρ_i and the data for the unannealed specimen. Figure 13 illustrates the magnitude of Δ with respect to ρ annealed. We see that the variability in ρ_i is one-tenth that in λ , i.e., we can compute ρ for a particular specimen with one tenth the uncertainty which exists in λ due to material variability. It is concluded that the combined uncertainty in L and p is at most one third as large as the measured variability in λ . Thus, the $\pm 10\%$ variability in λ can be effectively reduced to about $\pm 3\%$ simply on the basis of a ρ_0 measurement for each specimen. The thermal conductivity, λ , of a standard reference specimen of annealed tungsten can be computed from

$$L = \frac{LT}{\rho} = \frac{LT}{\rho_i + \rho_0}$$

where L and ρ_i are given in table 14 and ρ_0 is determined by a liquid helium resistivity measurement. The values of L and ρ_i listed are for tungsten annealed at 2020°C. Smoothing in the vicinity of 90K was necessary because the annealed specimen was only measured up to 90K.

Data and theory supporting the validity of the above method has been summarized by Hust and Sparks [5]. Further improvement in the calculated values of λ by the above method can be obtained through interpolation of the deviations shown in figures 12 and 13. This interpolation would be performed on the basis of the measured ρ_0 . The resulting corrections in L and ρ as a function of temperature would probably produce values of λ for each standard reference specimen accurate to better than 1%. Because of the additional complexity of this latter refinement, it is not described in detail. Further information can be obtained from the author.

6. Acknowledgments

I wish to acknowledge the assistance of R. E. Michaelis of OSRM, NBS. He supplied the specimens, performed the 2020°C anneal, and made many helpful suggestions. I also acknowledge the discussions I have had with M. Minges of the Air Force Materials Laboratory and A. Cezairliyan of NBS.

7. References

- 1. J. G. Hust, D. H. Weitzel, and R. L. Powell, "Thermal Conductivity; Electrical Resistivity; and Thermopower of Aerospace Alloys from 4 to 300K", J. Res. NBS 75A No. 4, 269-277 (1971); and several NBS Reports available from the author.
- J. G. Hust, R. L. Powell, and D. H. Weitzel, "Thermal Conductivity Standard Reference Materials from 4 to 300K, I. Armco Iron: Including Apparatus Description and Error Analysis", J. Res. NBS 74A, 673-690 (1970).
- 3. J. G. Hust and L. L. Sparks, "Thermal Conductivity of Electrolytic Iron, SRM 734, from 4 to 300K", NBS Special Publication 260-31 (1971).
- 4. J. G. Hust, and L. L. Sparks, "Standard Reference Materials: Thermal Conductivity of Austenitic Stainless Steel, SRM 735, from 5 to 280K", NBS Special Publication 260-35 (1972).
- J. G. Hust and L. L. Sparks, "Lorenz Ratios of Technically Important Metals and Alloys", NBS Tech. Note 634 (February 1973).
- 6. G. Borelius, W. H. Keesom, C. H. Johansson, and J. O. Linde, "Establishment of an Absolute Scale for the Thermoelectric Force", Proc. Kon. Akad. Amsterdam 35, 10 (1932).

Table 1. Residual resistivity ratio $(\rho_{273\,\text{K}}/\rho_{4\,\text{K}})$ of NBS sintered tungsten.

Specimen	Heat Treatment	Diameter	RRR
1-1	1200°C, 60 hr	0.625 cm	66.2
1 - 2	1200°C, 60 hr	0.625 cm	48.8
3 - 1	1200°C, 60 hr	0.625 cm	69.5
2-2	1200°C, 60 hr	0.625 cm	63.9
6-1	1200°C, 60 hr	0.625.cm	44.2
3 - 2	1200°C, 60 hr	0.625 cm	65.4
			RRR = 59.6
			$\sigma = 9.2$
10-2	1200°C, 60 hr	0.312 cm	56.6
10-7	1200°C, 60 hr	0.312 cm	46.6
14-2	1200°C, 60 hr	0.312 cm	43.5
14-7	1200°C, 60 hr	0.312 cm	45.2
18-2	1200°C, 60 hr	0.312 cm	61.9
18-7	1200°C, 60 hr	0.312 cm	62.5
			RRR = 52.7
			$\sigma = 8.6$
1 - 1	2020°C, 1 hr	0.636 cm	78.0
2-2	2020°C, 1 hr	0.636 cm	76.1
3 - 1	2020°C, 1 hr	0.636 cm	83.2
4 - 2	2020°C, 1 hr	0.636 cm	93.5
5 - 1	2020°C, 1 hr	0.636 cm	82.8
6 - 1	2020°C, 1 hr	0.636 cm	79.0
6-2 (1)	2020°C, 1 hr	0.636 cm	79.9
6-2 (2)	2020°C, lhr	0.636 cm	83.1
6-2 (3)	2020°C, 1 hr	0.636 cm	80.8
6-2 (4)	2020°C, 1 hr	0.636 cm	82.3
6-2 (5)	2020°C, 1 hr	0.636 cm	83.1
			RRR = 82.0
			$\sigma = 4.5$

Table 1. Residual resistivity ratio ($\rho_{273\,\text{K}}/\rho_{4\,\text{K}}$) of NBS sintered tungsten (continued).

Specimen	Heat Treatment	Diameter	RRR
10-2	2020°C, 1 hr	0.318 cm	73.6
11-2	2020°C, 1 hr	0.318 cm	79.0
12-6	2020°C, 1 hr	0.318 cm	80.1
13-1	2020°C, 1 hr	0.318 cm	75.5
14-7	2020°C, 1 hr	0.318 cm	74.9
15-7	2020°C, 1 hr	0.318 cm	81.3
16-4	2020°C, 1 hr	0.318 cm	79.4
17-5 (1)	2020°C, 1 hr	0.318 cm	69.8
17-5 (2)	2020°C, 1 hr	0.318 cm	71.2
17-5 (3)	2020°C, 1 hr	0.318 cm	69.8
17-5 (4)	2020°C, 1 hr	0.318 cm	70.4
17-5 (5)	2020°C, 1 hr	0.318 cm	70.8
17-8	2020°C, 1 hr	0.318 cm	71.5
18-6 (1)	2020°C, 1 hr	0.318 cm	76.8
18-6 (2)	2020°C, 1 hr	0.318 cm	75.1
			RRR = 74.6
			$\sigma = 4.0$
14-7	as fabricated	0.318 cm	39.8

Notes Relating to Tables

Tables 2 and 3

The data listed are, in part, card images of experimental data as read into the computer for data processing. These data are not clearly labelled. The following is a line by line explanation of these tables:

1st line - Data identification.

2nd line - Thermocouple emfs (uV).

3rd line - Seebeck emf (µV), specimen current (mA), specimen voltage drop (µV).

4th line - Sample heater voltage (µV), current (mA), platinum resistance thermometer voltage (µV), platinum resistance thermometer current (mA), cryogenic bath pressure (mm of Hg), room temperature (°C), code indicating type of cryogenic bath (1 = liquid helium, 2 = liquid hydrogen, 3 = liquid nitrogen, 4 = dry ice-alcohol, 5 = ice-water).

5th line - Thermocouple temperatures (K).

6th line - Heater power (W), reference temperature (K), specimen resistance (Ω).

Table 4

The data listed are, in part, card images of experimental data as read into the computer for data processing. These data are not labelled clearly. The following is a line by line explanation of these tables:

1st line - Data identification.

2nd line - Platinum resistance thermometer voltage (µV) cryogenic bath pressure (mm of Hg), room temperature (°C), platinum resistance thermometer current (mA), code indicating type of cryogenic bath (1 = liquid helium, 2 = liquid hydrogen, 3 = liquid nitrogen, 4 = dry ice-alcohol, 5 = ice-water), specimen current (mA), specimen voltage (µV), mean emf of eight thermocouples (µV).

3rd line - Reference temperature (K), specimen resistance (Ω), specimen temperature (K).

Tables 6 through 11

These data are semi-processed computer output. Temperature is Kelvin, thermal conductivity is in Wm^{-1} K^{-1} , electrical resistance is in ohms, and thermovoltage is in μV .

1HAV73 1530 8 1577,80 2.0 108.915	1MAY73 1745 BA 1064.00 2.0 81.744	2MAY73 1200 9 40.05	6.927 6.927 PMAY74 1440 10	
THERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN 380.50 501.10 640.80 799.30 976.20 1164.60 1367.00 1577.80 -273.59 200.00 29.59 8.0 654.0 22.0 2.0 140.775 84.200 234.55 2.0 654.0 22.0 2.0 THERMOCOUPLE TEMPERATURES 42.773 49.948 58.089 67.116 76.967 87.199 97.941 108.915 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 6.8259-001	THERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN \$26.56	17 0	6. 742 FANCE	45.82 52.01 58.28 64.39 69.83 75.52 81.05 38.87 1.79 30.00 8.35 -0.00 -0.0 655.0 22.0 THERMOCOUPLE TEMPERATURES 8.882 9.238 9.577 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 2.0055-002 4.056 2.7833-005

=	51	50 14	40 15
2MAY73 1445 11 182.05 1.0 15.631	2MAY73 1600 371.47 1.0 26.667	4HAY73 2150 14 474.14 4.0 214.629	SHAY73 1340 15 960.27 4.0 236.854
HERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN 99.06 112.40 125.50 138.00 149.35 160.73 171.74 -4.09 300.00 8.41 233650 22.0 2336500 24.3300 -0.00 -0.0 655.0 22.0 THERMOCOUPLE TEMPERATURES 10.686 11.509 12.293 13.030 13.714 14.379 15.016 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 5.6847-002	CONDUCTIVITY DATA FOR NDS SINTERED TUNGSTEN 0 235.35 260.27 284.20 306.35 328.47 350.27 96 300.00 8.81 -0.0 655.0 22.0 00 40.5000 -0.00 -0.0 655.0 OUPLE TEMPERATURES 7 18.721 20.164 21.547 22.850 24.138 25.407 POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE -001	1EN 61.34 417.71 0 22.0 9.431 212.031 PRESISTANCE 5-004	THERMAL CONDUCTIVITY DATA FOR NDS SINTERED TUNGSTEN 168.79 279.38 391.39 503.56 616.85 730.12 844.95 960.27 -75.31 200.00 169.32 503.56 616.85 730.12 844.95 960.27 531000 55.0700 34399.00 2.0 -0.0 -0.0 THERMOCOUPLE TEMPERATURES 200.524 205.652 210.826 215.990 221.189 226.370 231.608 236.854 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 2.9242-001 192.662

Table 2 (continued)

5HAY73 2000 16 57 1713.57 4.0	93 272.844	6HAY73 0040 17 83 2374,98	4.0	18 303.663	9MAY73 1800 18 52 619.72	4.0	16 287.029	
1549.67	265. 4 STANCE	7 2185.83	0.0-	3 295. 2 STANCE 5	0 545.52	-0.0	2 283. 7 STANCE 5	
THERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN 593.64 748.96 907.25 1065.89 1225.99 1386.59 -70.49 100.00 99.09 6220000 64.4500 34837.00 2.0 -0.0	THERMOCOUPLE TEMPERATURES 222.187 229.284 236.490 243.686 250.925 258.163 265.493 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 4.0088-001 194.762 9.9090-004	THERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN 6MAY73 1082.97 1261.63 1444.53 1627.65 1812.20 1997.47 2185.83 2374.98	659100 68.300 35113.50 2.0 -0.0	245,748 253.817 262.049 270.268 278.537 286.808 295.218 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 4.5017-001 196.090 1.1281-003	THERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN 107.86 179.43 252.30 325.09 398.24 471.50	4149550 43.0000 48122.00 2.0 -0.0	264.116 267.329 270.598 273.861 277.141 280.412 283.716 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.7843-001 259.269 1.1327-003	

Basic semi-processed temperature gradient data for NBS sintered tungsten (annealed) Table 3.

27.27.71		~	ю	
ANNEAL 15,23949 17. 0,31750	ANNEAL 16MAY73 1115 120.18 129.41 23.5 2.0	26.919 27.476 NCE ANNEAL 16MAY73 1300 235.07 256.32 23.5 2.0	33.793 35.078 NCE AMMEAL 16HAY73 1430 452.94 510.80	
MGSTEN 12.70000 0.31750	ANNEAL 120.18 23.5	26.919 ANCE ANNEAL 235.07	33.793 ANCE ANNEAL 452.94	46.891
**C OF GRADIERT AND ISCTMERMAL RUNS NBS SINTERED TUNGSTEN 9 COCCOUPLE POSITIONS AND AVERAGE DIAMETERS (CM) C CCCC 2.54076 5.08000 7.61924 10.16025 12.700 C ST750 0.31750 0.31750 0.31750 0.31750	THERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN 64.26 73.34 82.77 92.30 101.29 110.67 -2.44 300.00 5.26 32.80 101.29 110.67 321830 33.500 223.10 2.0 653.7 THERMOCOUPLE TEMPERATURES	23.636 24.178 24.726 25.279 25.818 26.367 26.919 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.0781-001 1.0781	26.886 27.962 29.064 30.211 31.358 32.557 33.793 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 2.0845-001 THERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN ANNEAL 191.32 226.74 265.31 306.76 351.14 399.50 452.94 -32.95 200.00 6.21 5962150 62.0000 227.10	THERMOCOUPLE TEMPERATURES 31.239 33.363 35.668 38.148 40.824 43.717 46.891 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 3.6965-001

4		5		٥			I ~		
ANNEAL 16MAY73 1600 931.17 1073.20 24.0 2.0	w	ANNEAL 16MAY73 1705 1188.90 1375.18 24.0 2.0	98.530	ANNEAL 18HAY73 1500 42.49 44.55	1.0	7.233	ANNEAL 18MAY73 1540 86.23 90.57	1.0	10. 18.0
ANNEAL 931.17 24.0	74. 386 ANCE	ANNEAL 1188.90 24.0	88. 442 ANCE	ANNE AL 42.49	24.5	7. 077 ANCE	ANNEAL 86.23	24.5	9. 899 ANCE
THEPMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN 322.12 593.60 475.99 571.16 679.39 798.60 -144.72 200.00 15.50 7352200 76.4000 231.00 2.0 654.7	THERMOCOUPLE TEMPERATURES 59.175 43.472 48.368 53.951 60.221 66.994 74.386 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 5.6171-001	THERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN 366.40 460,16 571,74 701.60 850.40 1011,54 -209.28 200.00 22.00 8019150 83,3000 232.35 2.0 654.7 THERMOCNIP! F. TEMPERATURES	41.869 47.470 54.027 61.517 69.938 78.848 88.442 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 6.6800-001 20.166 1.1000-004	THERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN 28.33 30.55 33.15 35.67 37.64 40.16 -1.23 400.00 5.81	11.8000 PLE TEMPERATUR	6.094 6.265 6.444 6.610 6.761 6.929 7.077 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.3377-002 1.3377-002	** HERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN 57.03 61.99 67.17 72.29 76.65 81.60 -3.06 400.00 5.84	18.6000	8.039 8.374 8.705 9.023 9.313 9.620 9.899 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 3.3226-002 4.056 1.4600-005

Table 3 (continued)

00			Ø		
			710		
18MAY73 1 180, 16	1.0	15.521	18MAY73 1	1.0	27.022
ANNE AL 171.42	24.5	14. 997 ANCE	ANNE AL 357.10	24.5	25. 808 ANCE
THERMAL CONDUCTIVITY DATA FOR HBS SINTERED TUNGSTEN ANNEAL 18MAY73 1625 112.51 122.86 133.31 143.52 152.65 162.23 171.42 180.16	2881270 30.000 -0.00 -0.0 655.0	HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 8.6438-002 4.056 1.4850-005	THERMAL CONDUCTIVITY DATA FOR NBS SINTERED TUNGSTEN ANNEAL 18MAY73 1710 232 39 253.61 275.04 296.19 316.02 336.55 357.10 377.50 -8 78 400.00 6.59	4775870 49,7000 -0.00 -0.0 655.0 THERMOCOUPLE TEMPERATURES	18.537 19.780 21.022 22.245 23.414 24.611 25.808 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 2.3736-301 4.056 1.6475-005

al resistivity	
Table 4. Basic semi-processed isothermal electrical resistivity	data for NBS sintered tungsten (unannealed)

117			
1 02/			
2MAY 73 1720 13	5.06	JRE	
	8, 33	TEMPERAT	4 222
TUNGSTEN	35.07 655.00 22.00 2.00 1.00 300.00	SPECIMEN	
SINTERED	1.00	SISTANCE	005
FOR NBS	2.00	CIMEN RE:	2 7767-005
ITY DATA	22.00	R SPE	
RESISTIV	655,00	TEMPERATUR	720
ISOTHERMAL RESISTIVITY DATA FOR NBS SINTERED TUNGSTEN	35.07	REFERENCE TEMPERATURE SPECIMEN RESISTANCE SPECIMEN TEMPERATURE	A 056

Table 5. Parameters in equations 1, 2, and 3 for NBS sintered tungsten.

Unannealed Specimen

	,	
THERMAL	ELECTRICAL	
CONDUCTIVITY	RESISTIVITY	THERMOPOWER
1.23083187+002	2. 32248252-007	-4.77902140+003
-3.58896755+002	-6. 9 0059760-007	3. 74959331+004
4.76863807+002	8.74523656-007	-1.22859131+005
-3.71460419+002	-6. 1 3855 629-007	2. 21 164325+005
1.86515932+002	2.60856484-007	-2.43908435+005
-6.29083223+001	-6.86620382-008	1.73778224+005
1.44225570+001	1.09229515-008	-8.17454896+004
-2.21990545+000	-9.59844355-010	2. 52569176+004
2.19723698-001	3.57364089-011	-4. 93402176+003
-1.26431486-002		5.52827982+002
3.21572593-004		-2.70746565+001

Annealed Specimen

THERMAL	ELECTRICAL	
CONDUCTIVITY	RESISTIVITY	THERMOPOWER
7. 82605854+001	-2.30392836-008	5. 55599828+002
-1.96102930+002	4.89385144-008	-2. 24304536+003
2.24227329+002	-4.00878173-008	2.86171709+003
-1.47464497+002	1.62832450-008	-1.46600982+003
6.02616459+001	-3.28337817-009	2.54315461+002
-1.55810593+001	2.63473568-010	1.73778224+005
2.48203550+000	1.09229515-008	-8.17454896+004
-2.22430802-001	-9.59844355-010	2.52569176+004
8.58323382-003	3.57364089-011	-4.93402176+003
-1.26431486-002		5.52827982+002
3.21572593-004		-2.70746565+001

Thermal conductivity deviations for NBS sintered tungsten (unannealed) Table 6.

26APR73 1050 1 PERCENT DEVIATION 0.2 -0.5 -0.0 -0.1 -0.2 -0.2	26 APR73 1720 2 PERCENT DEVIATION 0.3 -0.3 -0.4 0.3 -0.6	26APR73 2140 3 PERCENT DEVIATION 0.2 -0.5 -0.4 0.5 -0.2
TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 2. 09+002 2. 07+002 2. 05+002 2. 05+002 2. 05+002 2. 01+002 2. 01+002 2. 01+002	TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 2. 06.002 2. 03.002 1. 98.002 1. 98.002 1. 95.002 1. 95.002	TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 1. 99+002 1. 96+002 1. 96+002 1. 99+002 1. 89+002 1. 89+002 1. 88+002
FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 2.09+002 2.06+002 2.05+002 2.05+002 2.05+002 2.01+002 2.00+002 2	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 2.07+002 2.02+002 1.98+002 1.94+002 1.94+002 1.94+002	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 2.00+002 1.95+002 1.95+002 1.90+002 1.90+002 1.86+002 1.86+002
CONDUCTIVITY DATA LEMPERATURE UPE DIFFERENCE 2.584 2.584 2.584 2.593 5.615 6.625 6.647	THERMAL CONDUCTIVITY DATA HEAN TEMPERATURE 88.552 5.734 94.348 5.915 100.234 5.915 106.191 5.999 12.193 6.004 118.243 6.124	THERMAL CONDUCTIVITY DATA HEAM TEMPERATURE TEMPERATURE 11.087 14.562 11.541 11.655 15.65 1
THERMAL CONDINE TEMPERATURE 84.998 87.562 90.150 95.370 98.002 100.655	HERMAL CONDI MEAN TEMPERATURE 88.552 94.348 106.234 106.191 112.193 118.243 124.354	THEMAL CONDU- PEAN TEMPERATURE 103.148 14.362 155.758 157.292 148.913 160.634 172.482

26APR73 2330 4 PERCENT DEVIATION 0.3 0.3 0.7 -0.3 -0.1	DEVIATION -1.5 0.8 -1.0 0.1 0.2	IMAY73 1200 6 DEVIATION -0.3 0.8 -0.3 0.9 1.4 0.4
TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 1. 89+002 1. 86+002 1. 86+002 1. 83+002 1. 83+002 1. 83+002 1. 83+002 1. 81+002	TUNGSTEN CALCULAED THERMAL CONDUCTIVITY 3. 97+002 5. 99+002 4. 01+002 4. 02+002 4. 02+002 4. 02+002 4. 02+002	TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 4. 02+002 4. 01+002 5. 99+002 5. 95+002 5. 96+002 5. 94+002 5. 77+002 5. 77+002
FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 1.90+002 1.86+002 1.86+002 1.86+002 1.86+002 1.81+002 1.81+002 1.81+002 1.81+002	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 3.91+002 4.02+002 4.05+002 4.05+002 4.05+002 4.05+002 4.05+002 4.05+002 4.01+002	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 4.01+002 3.97+002 3.98+002 3.98+002 3.98+002 3.98+002 3.79+002 3.79+002 3.79+002
CONDUCTIVITY DATA TEMPERATURE URE DIFFERENCE 6 10.851 7 11.052 3 11.041 8 11.127 5 11.356 5 11.356	THERMAL CONDUCTIVITY DATA FEAN TEMPERATURE 24.355 24.355 25.363 25.866 26.363 26.363 27.358 0.495 26.363 0.495 27.358 0.495	THERMAL CONDUCTIVITY DATA HEAN TEMPERATURE TEMPERATURE 27.269 1.201 29.665 1.208 29.665 1.208 32.088 1.218 33.521 1.208 33.521 1.208 33.521 1.218 33.521
THERMAL COND MEAN TEMPERATURE 151.846 162.787 173.823 173.823 173.823 173.823 173.823 173.823	THERMAL CONDU MEAN TEMPERATURE 24.355 24.861 25.866 26.363 26.363 27.358	THERMAL CONDU- HEAN TEMPERATURE 27.269 28.464 29.665 30.875 32.088 33.721 34.581

1MAY73 1330 7 PERCENT DEVIATION 0.6 0.2 -0.1 -0.5 0.6 -0.6	IMAY73 1530 8 PERCENT DEVIATION -0.3 -0.4 1.4 -0.0	1MAY73 1745 8A PERCENT DEVIATION -0.2 -1.1 -0.4 -0.9 1.2 -0.2
CALCULATED THERMAL CONDUCTIVITY 3. 90+002 5. 77+002 5. 61+002 5. 44+002 5. 26+002 5. 91+002 5. 91+002	TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 3. 06+302 2. 70+002 2. 23+002 2. 11+002 2. 04+002 1. 99+002	CALCULATED THERMAL CONDUCTIVITY 3. 32+0.02 3. 04+0.02 2. 78+0.02 2. 56+0.02 2. 56+0.02 2. 56+0.02 2. 56+0.02 2. 56+0.02 2. 56+0.02 2. 56+0.02 2. 56+0.02
FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 3.92+002 5.78+002 5.42+002 5.28+002 5.06+002 5.06+002 2.91+002	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 3.05+002 2.45+002 2.25+002 2.14+002 2.04+002 2.00+002	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 3. 32+002 3.01+002 2.75+002 2.55+002 2.44+002 2.24+002 2.17+002 2.17+002
CONDUCTIVITY DATA TEMPERATURE URE DIFFERENCE 77 2.607 5 2.731 2 882 6 3.007 6 5 5.220 5 5.220	THERMAL CONDUCTIVITY DATA HEAN TEMPERATURE 46.360 54.019 62.602 72.041 82.083 10.232 92.570 10.3428	THERMAL CONDUCTIVITY DATA PEAN TEMPERATURE 11.860 4.638 46.737 5.177 52.198 5.625 58.086 6.150 64.392 6.462 71.091 6.934 78.151 7.186
THERMAL COND HEAN TEMPERATURE 31.987 34.547 37.215 40.022 42.966 46.079	THERMAL CONDITE MEAN TEMPERATURE 46. 360 54. 019 62. 602 72. 041 82. 083 92.570 103.428	THERMAL CONDU- PEAN TEAN 41.860 46.797 52.198 58.086 64.392 71.091

o	0	=
1200	1330	1445
ZHAY73 1200 PERCENT DEVIATION -0.6 -1.4 0.6 5.6 -1.8 1.8 -0.9	2HAY73 PERCENT DEVIATION -0.2 -1.6 -1.2 -0.9 0.6	2HAY73 1445 PERCENT DEVIATION 0.7 -0.9 -0.4 2.0 0.5 0.5
TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 1. 13 + 002 1. 22 + 002 1. 26 + 002 1. 34 + 002 1. 34 + 002 1. 34 + 002	CALCULATED THERMAL CONDUCTIVITY 1. 52+002 1. 68+002 1. 68+002 1. 68+002 1. 82+002 1. 92+002 1. 92+002 1. 92+002	CALCULATED THERMAL CONDUCTIVITY 2. 20+002 2. 35+002 2. 49+002 2. 61+002 2. 61+002 2. 65+002 2. 65+002 2. 95+002
FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 1.15+002 1.25+002 1.36+002 1.36+002 1.36+002 1.36+002 1.36+002 1.36+002 1.36+002 1.36+002	NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 1.51+002 1.58+002 1.58+002 1.58+002 1.91+002 1.90+002 1.95+002 1.95+002 1.95+002 1.95+002	NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 2. 22+002 2. 33+002 2. 48+002 2. 74+002 2. 86+002 2. 86+002 2. 96+002 2. 96+002 2. 96+002 2. 96+002 2. 96+002 2. 96+002 2. 96+002 2. 96+002 2. 96+002 2. 96+002 2. 96+002 2.
CONDUCTIVITY DATA FO TEMPERATURE URE DIFFERENCE 0.224 0.218 0.206 0.194 0.198 0.198	HERMAL CONDUCTIVITY DATA FOR HEAN TEMPERATURE DIFFERENCE 7.927 0.408 8.701 0.353 9.060 0.356 9.407 0.330	HERMAL CONDUCTIVITY DATA FOR HEAN TEMPERATURE DIFFERENCE 11.098 0.823 11.901 0.737 12.562 0.684 14.047 0.665 14.097 0.616
THERMAL CONDU- HEAN TEMPERATURE 5.849 6.062 6.457 6.457 6.834	HERMAL CONDUC MEAN TEMPERATURE 7.927 7.927 8.701 9.060 9.407 9.742	HERMAL CONDUC HEAN TEMPERATURE 11. 098 11. 901 12. 562 13. 372 14. 047 14. 697 15. 523

2MAY73 1600 12 PERCENT DEVIATION 0.3 -2.0 -2.0 1.0 -0.1	AMAY73 2150 14 PERCENT DEVIATION 0.2 -0.4 0.3 -0.4 -0.1	SHAY73 1340 15 PERCENT DEVIATION 0.4 -0.3 -0.2 -0.5 -0.5
CALCULATED THERMAL CONDUCTIVITY 3. 38+002 3. 57+002 3. 57+002 3. 57+002 5. 95+002 5. 95+002 4. 01+002	TUNG STEN CAL CULATED THERMAL CONDUCTIVITY 1. 83 + 0.02 1. 82 + 0.02 1. 81 + 0.02	TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 1. 82 + 0.02 1. 81 + 0.02 1. 81 + 0.02 1. 80 + 0.02 1. 80 + 0.02 1. 79 + 0.02
OR NDS SINTERED OBSERVED THERMAL CONDUCTIVITY 3. 59+002 3. 66+002 3. 68+002 3. 98+002 3. 98+002 4. 02+002	FOR NDS SINTERED OBSERVED THERMAL CONDUCTIVITY 1.85+002 1.82+002 1.83+002 1.83+002 1.83+002 1.81+002 1.81+002	FOR NDS SINTERED OBSERVED THERMAL CONDUCTIVITY 1.85+002 1.81+002 1.81+002 1.81+002 1.79+002 1.79+002 1.79+002 1.79+002 1.79+002
HERMAL CONDUCTIVITY DATA FOR HEAN TEMPERATURE 17.974 1.443 1.443 1.20.856 1.383 22.199 1.208 24.772 1.269 26.037 1.269	THERMAL CONDUCTIVITY DATA HEAN TEMPERATURE 197.809 200.388 205.972 205.558 205.558 208.142 210.731 2.598	THERMAL CONDUCTIVITY DATA HEAN TEMPERATURE 203.088 203.088 5.127 208.239 5.175 218.590 5.182 228.779 5.288 5.388 5.388 5.388 5.388 5.388 5.388 5.388 5.388 5.388 5.388 5.388 5.388
HERMAL CONDUM HEAN TEMPERATURE 17.974 19.443 20.856 22.199 23.494 24.772 24.772	THERMAL CONDITEMPERATURE 197.809 200.388 202.972 205.558 208.142 210.731 213.330	THERMAL CONDU- HEAN TEMPERATURE 203. 088 208. 239 213. 408 223. 779 228. 389 234. 231

9	5.	œ
2000	0 4 0 0	000
SMAY 73 2000 PERCENT DEVIATION 0.6 -0.1 -0.2 -0.2	PERCENT DEVIATION 0.7 -0.9 -0.1 -0.1	9HAV73 PERCENT DEVIATION 1.3 -0.2 0.0 0.5 -0.3
CALCULATED THERMAL CONDUCTIVITY 1. 80 +002 1. 79 +002 1. 78 +002 1. 75 +002 1. 75 +002 1. 75 +002 1. 75 +002	TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 1. 78+002 1. 77+002 1. 75+002 1. 75+002 1. 74+002 1. 74+002 1. 74+002 1. 74+002	CALCULATED THERMAL CONDUCTIVITY 1. 76+002 1. 75+002 1. 75+002 1. 75+002 1. 74+002 1. 74+002 1. 75+002
FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 1.81.002 1.78.002 1.78.002 1.78.002 1.78.002 1.78.002 1.75.002 1.75.002 1.75.002	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 1.79+002 1.75+002 1	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 1.78+002 1.75+002 1
CONDUCTIVITY DATA TEMPERATURE URE DIFFERENCE 7.097 7.206 8 7.239 4 7.238 4 7.238	THERMAL CONDUCTIVITY DATA FEAN TEMPERATURE DIFFERENCE 249.783 8.069 257.933 8.280 256.159 8.280 274.403 8.268 282.672 8.272 291.411 8.445	THERMAL CONDUCTIVITY DATA FEAN TEMPERATURE DIFFERENCE 265.723 3.213 272.229 3.263 272.229 3.263 273.501 5.280 278.76 3.271 282.064 3.305 285.373 3.313
THERMAL CONDI MEAN TEMPERATURE 225.735 232.887 240.088 247.306 254.544 261.828 269.169	THERMAL CONDUMENTE HEAN TEMPERATURE 249.783 256.159 274.403 282.672 291.013 299.441	THERMAL CONDU- HEAN TEMPERATURE 268.723 272.229 275.501 276.289 285.064 285.373

Thermal conductivity deviations for NBS sintered tungsten (annealed) Table 7.

	~	m
1115	1300	4. 0.
ANNEAL 16MAY73 1115 PERCENT DEVIATION -0.1 -1.1 -1.6 -1.5 0.3 0.3	ANNEAL 16MAY73 DEVIATION 0.7 0.2 -1.4 -0.1 0.3	ANNEAL 16MAY73 PERCENT DEVIATION 1.0 -0.8 -0.5
CALCULATED THERMAL CONDUCTIVITY 6. 39+002 6. 37+002 6. 35+002 6. 35+002 6. 35+002 6. 29+002 6. 29+002 6. 29+002 6. 29+002	TUNGSTEN CALCULATED THERNAL CONDUCTIVITY 6. 17+002 6. 05+002 5. 91+002 5. 91+002 5. 58+002 5. 58+002 5. 58+002 5. 58+002 5. 58+002 5. 58+002	TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 5. 53 + 002 5. 19 + 002 4. 82 + 002 4. 45 + 002 4. 09 + 002 5. 75 + 002 7. 75 + 002
FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 6.38+002 6.36+002 6.42+002 6.42+002 6.26+002 6.26+002 6.26+002 6.26+002 6.26+002 6.26+002 6.21+002	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 6.21+002 6.07+002 5.83+002 5.83+002 5.57+002 5.21+002 5.21+002	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 5.58+002 4.78+002 4.78+002 4.10+002 5.74+002 5.74+002 5.74+002 5.45+002
CONDUCTIVITY DATA TEMPERATURE URE DIFFERENCE 2 0.548 3 0.553 9 0.558 5 0.558 7 0.558		CONDUCTIVITY DATA TEMPERATURE TURE DIFFERENCE 2: 124 2: 304 3: 435 3: 435
THERMAL CONDU- HEAN TEMPERATURE 23.907 24.452 25.003 25.549 26.092 26.092 26.092 26.092 26.197	THERMAL CONDUCTIVITY DATA MEAN TEMPERATURE 1.077 28.513 1.102 29.638 1.146 50.784 1.147 51.958 1.200 53.175 1.285 34.435 1.285	HERMAL CONDU- HEAN 52.301 54.515 56.908 59.486 42.270 45.304 48.607

4	ιο -	v
1600	1705	1500
ANNEAL 16MAY73 1600 PERCENT DEVIATION -0.3 -0.4 -0.4 -0.5 -0.5	ANNEAL 16MAY73 PERCENT DEVIATION 0.4 -0.0 -0.9 -1.1 -0.6	ANNEAL 18MAY73 1500 PERCENT DEVIATION 1.6 -5.3 -0.3 -5.3 -1.6
CALCULATED THERHAL CONDUCTIVITY 4. 21+002 3. 68+002 5. 24+002 2. 63+002 2. 63+002 2. 45+002 2. 45+002 2. 45+002 2. 45+002	CAL CULATED THERMAL CONDUCTIVITY 3. 81 + 002 2. 95 + 002 2. 55 + 002 2. 55 + 002 2. 25 + 002 2. 25 + 002 2. 16 + 002 2. 16 + 002 2. 16 + 002 2.	CAL CULATED THERMAL CONDUCTIVITY 2. 47+002 2. 53+002 2. 53+002 2. 59+002 2. 64+002 2. 76+002 2. 76+002 2. 81+002 2.
FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 4.20.002 3.68.002 2.66.002 2.66.002 2.44.002 2.44.002 2.31.002	FOR NBS SINIERED OBSERVED THERMAL CONDUCTIVITY \$.85.002 2.85.002 2.55.002 2.41.002 2.23.002 2.23.002 2.17.002 2.17.002	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 2.51+002 2.40+002 2.58+002 2.56+002 2.56+002 2.56+002 2.56+002 2.77+002 2.77+002
CONDUCTIVITY DATA URE DIFFERENCE 4 4.297 6 6.270 6 6.772 8 6.772 9 7.735	THERMAL CONDUCTIVITY DATA PEAN TEMPERATURE TEMPERATURE 01FFRENCE 44.670 5.601 57.772 7.490 65.728 8.421 74.393 8.910 83.645 93.386 9.888	CONDUCTIVITY DATA TEMPERATURE TURE DIFFERENCE 79 0.171 54 0.179 67 0.166 86 0.151 15 0.167 93 0.155
THERMAL CONDI HEAN TEMPERATURE 41.324 45.920 51.160 57.086 63.608 70.690 78.283	THERMAL CONDU- HEAN TEMPERATURE 44.670 50.748 57.772 65.728 74.393 83.645 93.386	THERMAL CONDU- MEAN TEMPERATURE 6.354 6.686 6.885 7.003

P-	6 0	σ
1540	1625	1710
ANNEAL 18MAY73 1540 PERCENT -0.2 -2.3 -1.9 -4.5 -3.6 -2.8	ANNEAL 18MAY73 PERCENT DEVIATION 0.6 -1.4 -1.5 5.2 -1.1	ANNEAL 18MAY73 PERCENT DEVIATION 0.7 -1.9 -1.9 -0.3 0.3
CALCULATED THERMAL CONDUCTIVITY 3. 18+002 3. 50+002 3. 41+002 3. 51+002 3. 51+002 3. 51+002 3. 51+002 3. 51+002 3. 51+002 3. 51+002 3. 51+002 3. 51+002	TUNGSTEN CALCULATED THERMAL CONDUCTIVITY 4. 53+002 4. 53+002 4. 70+002 4. 70+002 5. 02+002 5. 16+002 5. 16+002 5. 16+002	CALCULATED THERMAL CONDUCTIVITY 6. 09+002 6. 24+002 6. 34+002 6. 39+002 6. 39+002 6. 39+002 6. 34+002 6. 34+002
FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 3. 18+002 3.22+002 3.55+002 3.48+002 5.48+002 5.76+002 5.76+002	FOR NBS SINTERED SOBSERVED THERMAL CONDUCTIVITY 4.37+002 4.47+002 4.96+002 5.23+002 5.23+002 5.23+002 5.23+002	FOR NBS SINTERED OBSERVED THERMAL CONDUCTIVITY 6.13+002 6.25+002 6.51+002 6.56+002 6.36+002 6.36+002 6.36+002 6.36+002 6.36+002 6.36+002 6.36+002 6.36+002 6.36+002 6.36+002 6.30+002 6
CONDUCTIVITY DATA TEMPERATURE URE DIFFERENCE 6 0.336 0.319 8 0.290 6 0.290 6 0.284	THERMAL CONDUCTIVITY DATA MEAN TEMPERATURE 11.820 0.635 12.448 0.621 13.057 0.598 13.057 0.598 14.188 0.552 14.732 0.550 15.259 1.525	CONDUCTIVITY DATA TEMPERATURE URE DIFFERENCE 11 243 11 170 12 1 196 19 1 197 15 1 5 1
THERMAL COND MEAN TEMPERATURE 8.206 8.540 8.864 9.168 9.466 9.759	TERRAL CONDI FEMAL FEMAL TEMPERATURE 11.820 12.448 13.057 14.188 14.732 14.732 15.259	THERMAL CONDU PEAN TEMPERATURE 19.158 20.401 21.633 22.830 24.012 25.209 26.415

Electrical resistivity deviations for NBS sintered tungsten (unannealed) Table 8.

												,									
PERCENT	DEVIATION	0.30	0.50	-0.10	0.03	-0.33	0.78	0.47	-0.33	-0.52	0. 18	-0.49	5.	-0.88	-0.12	-0.05	0.16	-0.05	-0.05	-0.05	
CALCULATED	RESISTANCE	2.262-004	2, 919-004	4. 469-004	6.823-004	3, 055-005	3, 309-005	4, 444-005	1, 484-004	9, 263-005	2, 775-005	2, 797-005	2, 782-005	2, 962-005	7, 829-004	8.467-004	9.894-004	1, 129-003	133-	2, 777-005	
OBSERVED	RESIST ANCE		2.925-004					4,465-005	1.479-004	9.215-005	2.780-005	2, 783-005	2.803-005	2.937-005	7.820-004	8.466-004	9.909-004	1.128-003	1.133-003	2.777-005	
TEMPERATURE	RANGE	18.257	41.731	80.817	77.905	3.509	8.547	20.350	66.142	42.233	1.411	5.609	4.945	9.440	18, 105	36.330	50.658	57.915	22.913	0.000	
MFAN	EMPERATURE	92.784	106.302	137,512	185.045	25.861	30,895	40.314	73.300	58.939	6.249	8.667	13, 300	22.111	205.561	218.617	247, 365	274,485	275.518	4.222	

Electrical resistivity deviations for NBS sintered tungsten (annealed) Table 9.

PERCENT DEVIATION	-0.11	-0.63	-0.34	-0.08	0.30	-0.43	-0.29
CAL CULATED RESISTANCE	1, 734-005	3, 124-005	1.104-004	1, 454-005	1,456-005	1, 491-005	1, 652-005
OBSERVED RESISTANCE	1,753-005	3,105-005	1,100-004	1,452-005	1.460-005	1.485-005	1.647-005
TEMPERATURE RANGE	5.840	19.085	56.461	1, 139	2.144	4.018	8.485
MEAN TEMPERATURE	25.549	39.913 58.295	67.192	6.678	9, 149	13.591	22.808

Table 10. Thermovoltage deviations for NBS sintered tungsten (unannealed)

					*														
DEVIATION		-0.06	0.27	-0.09	90.0	-0.13	-0.52	0.20	-0.17	0.12	0.11	0.21	-0.23	0.29	-0.13	-0.05	0.04	0.11	-0.33
-	THE RMOVOL TAGE	-81.03	-179.45	- 303.81	-217.50	-1.40	-9.35	-51, 05	-273.42	-162.03	-0.60	-2.00	-3.86	-1.25	-42.81	-75. 29	-70.53	-41.81	-15,95
\sim	THERMOVOL TAGE	-81.03	-179, 18	- 303, 90	-217.44	-1.53	-10.47	-50.85	-273, 59	161.91	-0.71	-1.79	-4.09	-0.96	-42.94	-75.31	-70.49	-41.70	-16.28
LOWER	TEMPERATURE	85.727	85.685	97.604	146.420	24.099	56, 669	30, 731	42.773	39.511	5.516	7.297	10.686	17.227	196.523	200.524	222.187	245.748	264.116
UPPER	TEMPERATURE	101.984	127.416	178.421	224.325	27.608	35.216	51.081	108.915	81.744	6.927	9.6.6	15.631	26.667	214.629	236.854	272.844	303.663	287, 029

Table 11. Thermovoltage deviations for NBS sintered tungsten (annealed)

UPPER LOWER OBSERVED CALCULATED DEVIATION 1EMPERATURE THERMOVOLTAGE THERMOVOLTAGE 0.17 27.476 25.636 -2.44 -2.61 0.17 55.078 26.886 -2.41 -6.47 4.06 50.324 31.239 -32.95 -145.25 0.53 82.181 39.175 -144.72 -145.25 0.53 98.330 41.869 -209.28 -209.08 -0.20 7 233 6.094 -1.23 -0.74 -0.49 10.183 8.039 -3.06 -3.60 0.54 15.521 11.507 -7.02 -7.31 0.29											
LOWER OBSERVED 23.636 -2.44 26.886 -2.41 31.239 -32.95 39.175 -144.72 41.869 -209.28 6.094 -1.23 8.039 -3.06	DEVIATION		0.17	4.06	-1.72	0.53	-0.20	-0.49	0.54	0 29	
LOWER TEMPERATURE 26.886 31.239 39.175 41.869 6.094 8.039	CALCULATED	THE RMOVOL TAGE	-2.61	-6.47	-31.23	-145, 25	-209, 08	-0.74	-3.60	-7.31	20.7
	OBSERVED	THERMOVOL TAGE	-2.44	-2.41	-32.95	-144, 72	-209. 28	-1.23	-3.06	-7.02	-8 78
UPPER 27.476 27.476 35.078 50.324 82.181 98.330 7.233 10.183											
	UPPER	TEMPERATURE	27.476	35.078	50.324	82.181	98.330	7.233	10.183	15.521	27 022

Table 12. Transport properties of NBS sintered tungsten (unannealed)

Temp (K)	Thermal Conductivity (Wm ⁻¹ K ⁻¹)	Electrical Resistivity (n Ω m)	Lorenz Ratio (V²/K²)10 ⁸	Thermo- power (µV/K)
6	120	1.229	2.47	-0.41
7	141	1.253	2.52	-0.41
8	162	1.252	2.53	-0.63
9	181	1.242	2.50	-0.85
10	200	1.233	2.47	-0.97
12	237	1.229	2.42	-0.88
14	273	1.241	2.42	-0.52
16	307	1.260	2. 42	-0.13
18	338	1.280	2.40	0.17
20	364	1.298	2.36	0.31
25	399	1.347	2.15	0.09
30	398	1.439	1. 91	-0.59
35	374	1.610	1.72	-1.35
40	344	1.884	1.62	-2.02
45	314	2.268	1.58	-2.56
50	288	2.759	1.59	-2.98
55	266	3.352	1.62	-3.29
60	250	4.036	1.68	- 3.52
65	237	4.800	1. 75	-3.69
70	227	5.635	1.82	-3.81
75	219	6.528	1. 91	-3.89
80	213	7. 472	1.99	-3.94
85	209	8.456	2. 08	-3.96
90	205	9.475	2. 16	-3. 96
95	203	10.52	2. 24	-3.93
100	200	11.59	2.32	-3.89
110	197	13.77	2. 47	-3.76
120	195	15.99	2.60	-3.57
130	193	18.22	2.70	-3.35
140	191	20.46	2. 79	-3.12
150	189	22.68	2.86	-2.87
160	188	24. 90	2. 92	-2.62
170	186	27. 10	2. 97	-2.37
180	185	29. 29	3.01	-2.12
190	184	31.47	3.04	-1.87
200	183	33.64	3.07	-1.61
220 240	181	37. 99	3.12 3.16	-1.09 -0.53
260	179	42.38 46.85		0.05
	177		3.18	
280	174	51.47	3.20	0.65

Table 13. Transport properties of NBS sintered tungsten (annealed)

Temp (K)	Thermal Conductivity (Wm ⁻¹ K ⁻¹)	Electrical Resistivity (n \Omega m)	Lorenz Ratio (V ² /K ²)10 ⁸	Thermo- power (u V/K)
7	275	0.6493	2.56	-0.85
8	311	0.6488	2.52	-1.34
9	345	0.6478	2.49	-1.66
10	378	0.6487	2.45	-1.83
12	440	0.6559	2.40	-1.85
14	497	0.6662	2.36	-1.64
16	548	0.6773	2.32	-1.32
18	590	0.6892	2.26	-1.00
20	620	0.7033	2.18	-0.72
25	635	0.7614	1.93	-0.31
30	586	0.8749	1.71	-0.30
35	511	1.065	1.55	-0.58
40	438	1.342	1.47	-1.04
45	378	1.713	1.44	-1.59
50	332	2.178	1.45	-2.14
55	300	2.738	1.49	-2.66
60	276	3.389	1.56	-3.10
65	259	4.127	1.64	-3.45
70	246	4.950	1.74	-3.71
75	237	5.854	1.85	-3.87
80	229	6.833	1. 96	-3.92
85	223	7.885	2.07	-3.89
90	218	9.005	2.19	-3.76

Table 14. Intrinsic resistivity and Lorenz ratio of annealed NBS sintered tungsten.

Electrical Resistivity (n \(\Omega\))	6.21	8.24	9.28	10,35	12.53	14.75	16.98	19.22	21.44	23.66	25.86	28.05	30.23	32.40		36.75	41.14	45.61	50.23	
Lorenz Ratio $(\mathrm{V}^2/\mathrm{K}^2)~10^8$	1.96	2, 18	2.28	2.37	2.51	2.61	2.70	2.79	2.86	2.92	2.97	3,01	3.04	3.07		3.12	3,16	3, 18	3.20	
Tempera- ture (K)	80 80 80 81	06	95	100	110	120	130	140	150	160	170	180	190	200		220	240	260	280	
Electrical Resistivity (n Ω m)	00	00.	00.	00.	00.	.01	. 02	. 04	90°	. 11	.21	. 39	. 67	1.05	1.52	2.10	_	3,52	4,35	5.25
Lorenz Ratio $(\mathrm{V}^2/\mathrm{K}^2)$ 10^8	2, 56		4.	2,45	4	2.36		2.26	2.18	1.93	1.71	1,55	1.47	1.44	1.45	1.49	1.56	1,64	1.74	1.85
Tempera- ture (K)	7	· &	6	10	12	14	16	18	20	25	30	35	40	45	50	55	09	92	20	22

Thermal conductivity deviations for NBS sintered tungsten (unannealed) Figure 1.

Thermal conductivity deviations for NBS sintered tungsten (annealed) Figure 2.

Electrical resistivity deviations for NBS sintered tungsten (unannealed) Figure 3.

Electrical resistivity deviations for NBS sintered tungsten (annealed) Figure 4.

Thermovoltage deviations for NBS sintered tungsten (unannealed) Figure 5.

Figure 6. Thermovoltage deviations for NBS sintered tungsten (annealed)

Thermal conductivity of NBS sintered tungsten. Figure 7.

46

47

Figure 10. Thermopower of NBS sintered tungsten.

Thermal conductivity differences between annealed and unannealed specimens Figure 11.

Lorenz ratio difference between annealed and unannealed specimens Figure 12.

Deviations of intrinsic resistivities (Matthiessen's rule deviations) as computed from data for annealed and unannealed tungsten specimens. Figure 13.

FORM	KRS.	134A i	1-711

FORM KBS-114A (1-71)							
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. N BSIR 73-351	2. Gov't Accession No.	3. Recipient'	s Accession No.			
4. TITLE AND SUBTITLE	ty Standard Reference Mate	rials from	5. Publication	y 1974			
6 to 280 K: VI NBS			6. Performing	Organization Code			
7. AUTHOR(S) J. C	G. Hust		8. Performing	g Organization			
9. PERFORMING ORGANIZAT	ION NAME AND ADDRESS		10. Project/Task/Work Unit No.				
DEP AR TMEN	ureau of standards, Boulder l r of Commerce Colorado 80302	Labs	2 75 02				
12. Sponsoring Organization Na	me and Address		13. Type of F	Report & Period			
NBS-Office of	Standard Reference Materi	als	Covered				
Washington, D and Air Force Mai	D. C. terials Laboratory, Dayton,	Ohio	14, Sponsorin	g Agency Code			
15. SUPPLEMENTARY NOTES	certais Laboratory, Dayton,	Onio					
Thermal conductare reported for two 6 to 280K. Variable and residual resisti material variability Above 90K variation tainty caused by specifical resistivit certainty is reduced.	tivity, electrical resistivity of specimens of NBS sintere lity of this tungsten was sturity measurements on 39 specific of about ±10% in thermal conductivity is ecimen variation at low temporate to about ±3%.	t, Lorenz ratio d tungsten for to died by means pecimens. The onductivity at honly about ±1% peratures, chas procedure the	, and ther temperature of electric ese data in telium temperature. To reduracterizate low temperature temperature.	mopower data res from cal resistivity dicate a aperatures. ce the uncer- ion by residual perature un-			
Cryogenics; electri	cal resistivity;Lorenz ratio			l reference			
material; thermal c	onductivity; transport propert	erties; tungsten		21. NO. OF PAGES			
AVAILADILITI STATEMEL	N.L	(THIS RE		NO. OF PAGES			
X UNLIMITED.		UNCLAS	ASSIFIED				
FOR OFFICIAL D	ISTRIBUTION. DO NOT RELEASE	20. SE CURIT		22. Price			
		UNCLAS	SIFIED				