Reading and understanding the data

```
In [1]: import pandas as pd
        import matplotlib.pyplot as plt
        import folium
        import os, re
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import normalize
        from IPython.display import IFrame
        from sklearn.cluster import AgglomerativeClustering
        import scipy.cluster.hierarchy as shc
        %matplotlib inline
        import warnings
        warnings.filterwarnings('ignore')
In [2]: path to data = './crime'
        cd = os.path.dirname(os.path.abspath(path to data))
        i = 0
        columns = range(1,100)
        dfList = []
        for root, dirs, files in os.walk(cd):
            for fname in files:
                if re.match("^.*.csv$", fname):
                    frame = pd.read csv(os.path.join(root, fname))
                    frame['key'] = "file{}".format(i)
                    dfList.append(frame)
                    i += 1
        dataset = pd.concat(dfList)
```

In [3]: dataset.head()

Out[3]:

	Crime ID	Month	Reported by	Falls within	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	
0	NaN	2021- 06	Essex Police	Essex Police	0.864094	51.971811	On or near Bear Street	E01029906	Babergh 009D	Anti- social behaviour	_
1	NaN	2021- 06	Essex Police	Essex Police	0.436057	51.639952	On or near Coach Mews	E01021237	Basildon 001A	Anti- social behaviour	
2	d91fddaaae8b0664cf330fc1a85bfdcddc57256d0bd2b3	2021- 06	Essex Police	Essex Police	0.437217	51.642455	On or near Bridleway	E01021238	Basildon 001B	Vehicle crime	I
3	f5104dc9cd4aaa31f162b0bed7b7f7714f0bdf266fa388	2021- 06	Essex Police	Essex Police	0.435880	51.643391	On or near Penwood Close	E01021238	Basildon 001B	Violence and sexual offences	
4	faa6b0a7146e1e2816512d2f2505d98c384451518f3935	2021- 06	Essex Police	Essex Police	0.435880	51.643391	On or near Penwood Close	E01021238	Basildon 001B	Violence and sexual offences	
4										•	

In [4]: print(dataset.shape)

(4019944, 13)

```
In [6]: data = pd.read csv(name number)
In [7]: data['Crime type'].value_counts()
Out[7]: Violence and sexual offences
                                         1642341
        Anti-social behaviour
                                          581039
        Public order
                                          373768
        Criminal damage and arson
                                          315248
                                          249128
        Other theft
        Vehicle crime
                                          243219
        Shoplifting
                                          180652
                                         138510
        Burglary
        Drugs
                                          106552
        Other crime
                                           70927
        Bicycle theft
                                           32775
        Possession of weapons
                                           29659
        Robbery
                                           29241
        Theft from the person
                                           26885
        Name: Crime type, dtype: int64
In [8]: data['Month'].value counts()
Out[8]: 2021-07
                   349353
        2021-06
                   345914
        2022-03
                   324881
        2022-05
                   321613
        2021-08
                   318269
        2021-09
                   315571
        2021-10
                   310156
        2022-06
                   306299
        2021-11
                   299060
        2022-04
                   295070
        2022-01
                   287375
        2021-12
                   281485
        2022-02
                   264898
        Name: Month, dtype: int64
```

```
In [9]: data['town'] = data['LSOA name'].str.split(' ').str[0]
In [10]: data.head()
```

Out[10]:

	Crime ID	Month	Reported by	Falls within	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	
0	NaN	2021- 06	Essex Police	Essex Police	0.864094	51.971811	On or near Bear Street	E01029906	Babergh 009D	Anti- social behaviour	_
1	NaN	2021- 06	Essex Police	Essex Police	0.436057	51.639952	On or near Coach Mews	E01021237	Basildon 001A	Anti- social behaviour	
2	d91fddaaae8b0664cf330fc1a85bfdcddc57256d0bd2b3	2021- 06	Essex Police	Essex Police	0.437217	51.642455	On or near Bridleway	E01021238	Basildon 001B	Vehicle crime	I
3	f5104dc9cd4aaa31f162b0bed7b7f7714f0bdf266fa388	2021- 06	Essex Police	Essex Police	0.435880	51.643391	On or near Penwood Close	E01021238	Basildon 001B	Violence and sexual offences	
4	faa6b0a7146e1e2816512d2f2505d98c384451518f3935	2021- 06	Essex Police	Essex Police	0.435880	51.643391	On or near Penwood Close	E01021238	Basildon 001B	Violence and sexual offences	
4										•	

```
In [11]: towns = ['Chelmsford']
    filtered_data = data[data.town.str.contains('|'.join(towns), na=False)]
    filtered_data.head()
```

Out[11]:

	Crime ID	Month	Reported by	Falls within	Longitude	Latitude	Location	LSOA code	LSOA name	1
4807	NaN	2021- 06	Essex Police	Essex Police	0.497521	51.818432	On or near The Crescent	E01021538	Chelmsford 001A	
4808	NaN	2021- 06	Essex Police	Essex Police	0.508854	51.832013	On or near Shimbrooks	E01021538	Chelmsford 001A	
4809	NaN	2021- 06	Essex Police	Essex Police	0.509951	51.824076	On or near Catherines Close	E01021538	Chelmsford 001A	
4810	NaN	2021- 06	Essex Police	Essex Police	0.509951	51.824076	On or near Catherines Close	E01021538	Chelmsford 001A	beh
4811	4595f85a0c9b5060cddc75414a58e6345b77b6a9b260f1	2021- 06	Essex Police	Essex Police	0.504922	51.828374	On or near Old Moors	E01021538	Chelmsford 001A	

Q2 answer

In [12]: filtered data['Crime type'].value counts() Out[12]: Violence and sexual offences 150100 Anti-social behaviour 49666 Public order 32927 Criminal damage and arson 26144 Other theft 25992 Vehicle crime 21071 19817 Shoplifting Burglary 16074 Drugs 9291 Other crime 7809 Bicycle theft 7676 Theft from the person 4560 Possession of weapons 2299 Robbery 2147 Name: Crime type, dtype: int64

Q3 answer

The most common type of crime committed in Chelmsford is violence and sexual offences, this shows a count of 7900. The most committed crime in the Essex area is the same and it shows a count of 86439

```
In [13]: filtered_data['LSOA code'].value_counts().nlargest(10)
Out[13]: E01033141
                      41097
                      31768
         E01033140
         E01021574
                      14744
         E01021542
                      10336
                       7904
         E01033138
                       7429
         E01021540
         E01021573
                       6650
         E01033144
                       6384
         E01021613
                        6118
         E01021631
                       6023
         Name: LSOA code, dtype: int64
```

Q4 answer

The first code selected is E01033141, which is the code that clo tains the areas with the most crime rates. When the map is observed for this code, it has been seen that the active areas are Burgess Sprinngs, Park Road, and Victoria Rd S. The second LS0A code that has been chosen is E01021631, when looking at the map there are only active areas (shown in green), those are Exmoor Close and Sheerwood Dr

Preparing the data for clustering

Columns selection

```
In [14]: | filtered important data = filtered data[['LSOA code', 'Crime type']]
         filtered important data = pd.get dummies(filtered important data, columns=['Crime type'])
         clustering data = filtered important data.groupby(['LSOA code']).agg(
          {'Crime type Anti-social behaviour':'sum',
           'Crime type Bicycle theft': 'sum',
           'Crime type Burglary': 'sum',
           'Crime type Criminal damage and arson': 'sum',
           'Crime type Drugs':'sum',
           'Crime type Other crime': 'sum',
           'Crime type Other theft': 'sum',
           'Crime type Possession of weapons': 'sum',
           'Crime type Public order': 'sum',
           'Crime type Robbery': 'sum',
           'Crime type Shoplifting':'sum',
           'Crime type Theft from the person': 'sum',
          'Crime type Vehicle crime': 'sum',
           'Crime type Violence and sexual offences':'sum'
          ).reset index()
```

In [15]: clustering_data[:5]

Out[15]:

	LSOA code	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary	Crime type_Criminal damage and arson	Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	type_Ro
0	E01021533	228.0	0.0	152.0	133.0	0.0	19.0	76.0	0	171.0	_
1	E01021535	247.0	0.0	171.0	190.0	57.0	19.0	133.0	0	133.0	
2	E01021536	76.0	0.0	57.0	285.0	38.0	19.0	133.0	38	152.0	
3	E01021537	855.0	19.0	228.0	266.0	190.0	114.0	361.0	0	513.0	
4	E01021538	646.0	0.0	114.0	323.0	19.0	38.0	285.0	38	418.0	
4											•

Out[16]:

	LSOA code	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary		Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	type_Ro
0	E01021533	228.0	0.0	152.0	133.0	0.0	19.0	76.0	0	171.0	
1	E01021535	247.0	0.0	171.0	190.0	57.0	19.0	133.0	0	133.0	
2	E01021536	76.0	0.0	57.0	285.0	38.0	19.0	133.0	38	152.0	
3	E01021537	855.0	19.0	228.0	266.0	190.0	114.0	361.0	0	513.0	
4	E01021538	646.0	0.0	114.0	323.0	19.0	38.0	285.0	38	418.0	
4											•

```
In [17]: clustering_data.drop(['LSOA code'], axis = 1, inplace = True, errors = 'ignore')
    clustering_data.head()
```

Out[17]:

	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary	Crime type_Criminal damage and arson	Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	Crime type_Robbery	type_
0	228.0	0.0	152.0	133.0	0.0	19.0	76.0	0	171.0	0.0	
1	247.0	0.0	171.0	190.0	57.0	19.0	133.0	0	133.0	38.0	
2	76.0	0.0	57.0	285.0	38.0	19.0	133.0	38	152.0	0.0	
3	855.0	19.0	228.0	266.0	190.0	114.0	361.0	0	513.0	0.0	
4	646.0	0.0	114.0	323.0	19.0	38.0	285.0	38	418.0	0.0	
4											•

Normalization

```
In [18]: data_scaled = normalize(clustering_data)
    data_scaled = pd.DataFrame(data_scaled, columns=clustering_data.columns)
    data_scaled.head()
```

Out[18]:

	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary	Crime type_Criminal damage and arson	Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	Crime type_Robbery	type_
0	0.160071	0.000000	0.106714	0.093375	0.000000	0.013339	0.053357	0.000000	0.120053	0.000000	
1	0.230350	0.000000	0.159473	0.177192	0.053158	0.017719	0.124035	0.000000	0.124035	0.035438	
2	0.052559	0.000000	0.039419	0.197096	0.026279	0.013140	0.091978	0.026279	0.105118	0.000000	
3	0.349721	0.007772	0.093259	0.108802	0.077716	0.046629	0.147660	0.000000	0.209833	0.000000	
4	0.278876	0.000000	0.049213	0.139438	0.008202	0.016404	0.123034	0.016404	0.180449	0.000000	
4											

Determining number of clusters using dendograms

```
In [19]: plt.figure(figsize=(10, 7))
    plt.title("Dendrograms")
    dend = shc.dendrogram(shc.linkage(data_scaled, method='ward'))
```

Dendrograms


```
In [20]: plt.figure(figsize=(10, 7))
    plt.title("Dendrograms")
    dend = shc.dendrogram(shc.linkage(data_scaled, method='ward'))
    plt.axhline(y=1.40, color='r', linestyle='--')

Out[20]: <matplotlib.lines.Line2D at 0x22f61715dc0>
```

Dendrograms

Q5 answer

When the dendogram is being cut in a different level, the number of k(klusters) will change, changing then the outcome of the dataset

Agglomerative clustering

```
In [21]: cluster = AgglomerativeClustering(n_clusters=3, affinity='euclidean', linkage='ward')
    cluster_ids = cluster.fit_predict(data_scaled)
```

In [22]: clustering_data['cluster'] = cluster_ids
 clustering_data.head()

Out[22]:

	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary	Crime type_Criminal damage and arson	Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	Crime type_Robbery	type_
0	228.0	0.0	152.0	133.0	0.0	19.0	76.0	0	171.0	0.0	
1	247.0	0.0	171.0	190.0	57.0	19.0	133.0	0	133.0	38.0	
2	76.0	0.0	57.0	285.0	38.0	19.0	133.0	38	152.0	0.0	
3	855.0	19.0	228.0	266.0	190.0	114.0	361.0	0	513.0	0.0	
4	646.0	0.0	114.0	323.0	19.0	38.0	285.0	38	418.0	0.0	
4											•

```
In [23]: hierarchical_cluster = pd.DataFrame(round(clustering_data.groupby('cluster').mean(),1))
hierarchical_cluster
```

Out[23]:

Crime rglary	Crime type_Criminal damage and arson		Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	Crime type_Robbery	Crime type_Shoplifting	Crime type_Theft from the person	Crime type_Vehicle crime
176.1	216.3	68.7	51.9	344.2	13.2	229.5	10.2	104.5	45.3	271.1
144.2	263.6	97.1	85.1	208.5	23.8	345.5	22.5	155.2	46.6	177.2
125.4	180.5	60.8	41.8	224.2	26.6	243.2	28.5	608.0	7.6	144.4
4)

Q6 Answer

Based on my dataset a set of conlcusions can be figured out. Cluster ID 1, contains the LSOA codes with the highest crimes, therefore the post codes of those areas are of high risk. Therefore it is not adviced to live in such locations. Cluster ID2 is the one that contains the LSOA codes with the lowest number of crimes. So there are low risk areas. Where as cluster ID 0 is the one that contains LSOSA codes that show moderate risk areas.

Visualising clusters

Α

```
In [24]: clustering_data_original['cluster'] = cluster_ids
    clusters = clustering_data_original[['LSOA code', 'cluster']]
```

In [25]: clusters.head()

Out[25]:

	LSOA code	cluster
0	E01021533	1
1	E01021535	1
2	E01021536	1
3	E01021537	0
4	E01021538	1

```
In [26]: clusters.shape
```

Out[26]: (107, 2)

```
In [27]: clustered_full = pd.merge(filtered_data, clusters, on='LSOA code')
clustered_full.head()
```

Out[27]:

	Crime ID	Month	Reported by	Falls within	Longitude	Latitude	Location	LSOA code	LSOA name	Crir ty
0	NaN	2021- 06	Essex Police	Essex Police	0.497521	51.818432	On or near The Crescent	E01021538	Chelmsford 001A	Ar soc behavic
1	NaN	2021- 06	Essex Police	Essex Police	0.508854	51.832013	On or near Shimbrooks	E01021538	Chelmsford 001A	Ar soc behavic
2	NaN	2021- 06	Essex Police	Essex Police	0.509951	51.824076	On or near Catherines Close	E01021538	Chelmsford 001A	Ar soc behavic
3	NaN	2021- 06	Essex Police	Essex Police	0.509951	51.824076	On or near Catherines Close	E01021538	Chelmsford 001A	Ar soc behavic
4	4595f85a0c9b5060cddc75414a58e6345b77b6a9b260f1	2021- 06	Essex Police	Essex Police	0.504922	51.828374	On or near Old Moors	E01021538	Chelmsford 001A	Oth th

```
In [28]: def get_color(cluster_id):
    if cluster_id == 1:
        return 'darkred'
    if cluster_id == 2:
        return 'green'
    if cluster_id == 0:
        return 'amber'
```

```
In [29]: #create a map
         this_map = folium.Map(location =[clustered_full["Latitude"].mean(), clustered_full["Longitude"].mean()], zoom start=5
         def plot dot(point):
             '''input: series that contains a numeric named latitude and a numeric named longitude
             this function creates a CircleMarker and adds it to your this map'''
             folium.CircleMarker(location=[point.Latitude, point.Longitude],
                                 radius=2,
                                 color=point.color,
                                 weight=1).add to(this map)
         clustered full["color"] = clustered full["cluster"].apply(lambda x: get color(x))
         #use df.apply(,axis=1) to iterate through every row in your dataframe
         clustered full.apply(plot dot, axis = 1)
         #Set the zoom to the maximum possible
         this map.fit bounds(this map.get bounds())
         #Save the map to an HTML file
         this map.save(os.path.join('Crime map.html'))
         #IFrame(src='Crime map.html', width=1000, height=600)
In [ ]:
```

This website below is used for proof of crime rates in Chelmsford

https://crimerate.co.uk/essex/chelmsford#:~:text=The%20most%20common%20crimes%20in,2021's%20crime%20rate%20of%2046 (https://crimerate.co.uk/essex/chelmsford#:~:text=The%20most%20common%20crimes%20in,2021's%20crime%20rate%20of%2046).

In this first part of the workshop the first map file is labelled as Crime_map.html, where as for the the map file for question 9 it will be named Crime map2.html for clarification purposes

Q7 answer

The aim of this workshop is to investigate crime rates in a specific location with the use of LSOA codes and types per each code loaction. Therefore the hierarchila clustering algorith was appied for this dataset after the step of normalization. For Hierarchical clustering the duration that was considered is June 2021 to June 2022 and precisely Essex police was used to investigate crime rates and assign LSOA codes to each cluster.

Based on the clustering technique it was possible to find the areas that are of very high risk of crimes and areas that are of low risk of crimes. Therefore it is posiible to predict high risk areas and low risk areas. An example is that ClusterID1 contains areas of high risk whrere crime rates are very high.

When it comes to pre processing steps the data (with all the locations) was converted using pandas into a data frame then a aspecific location or town which in this case is Chelmsord was analysed. The Data was prepared for clustering using only crime types and LSOA codes and clusters were created for just that particular town.

Based on the results and the concept of hierarchical clustering it can be seen that even though there are sub clusters therefore many codes belonging to multiple clusters there are locations within the clusters that might not have a high crime rate even though the clustelD in itself might represent LSOA codes where crimes are committed the most.

Q8 answer

In []:

The answer to question 9 is found in the next notebook in this same folder and it is named named Q9 answer