

Краткосрочное прогнозирование и наукастинг макроэкономических временных рядов на основе векторных моделей авторегрессии по смешанным данным

Бовт Тимофей Анатольевич

Научный руководитель: В.И. Малюгин

Основные понятия ВР

- временные ряды;
- стационарность временных рядов;
- TS-ряды, понятие тренда;
- DS-ряды, единичный корень;
- тесты стационарности: DF, ADF;
- сезонность;
- сезонная корректировка: TRAMO SEAT.

Исходные данные

Для проведения исследований нам даны следующие экономические показатели

- GDP ВВП Беларуси по источникам использования доходов в среднегодовых ценах 2018 г. на квартальной частоте;
- IPV объём промышленного производства в среднегодовых ценах 2018 г. на месячной частоте;
- RTV объём розничного товарооборота в среднегодовых ценах 1995 г. на месячной частоте;
- BIV базисный индекс объёма строительно монтажных работ на месячной частоте;
- ICV объём инвестиций в основной капитал в среднегодовых ценах 2018 г. на месячной частоте;
- BIVMP базисный индекс объёма денежных доходов населения на месячной частоте;
- APV объём продукции сельского хозяйства в среднегодовых ценах 2018 г. на месячной частоте [5].

Период наблюдения данных следующий

- для квартальных: 1 квартал 2009 года 2 квартал 2024 года;
- для месячных: 1 месяц 2009 года 6 месяц 2024 года.

Сезонная корректировка данных

Puc. 2.2: — Исходные ряды и сезонно скорректированные:
a) IPV и IPV_SA; 6) RTV и RTV_SA; в) BIV и BIV_SA;
r) ICV и ICV SA; л) BIVMP и BIVMP SA; e) APV и APV SA

Исключение тренда

Рис. 2.3: Темпы роста ВВП ($GGDP_SA$) квартал к кварталу

Рис. 2.4: — Темпы роста месяц к месяцу: а) *GIPV_SA*; 6) *GRTV_SA*; в) *GBIV_SA*; г) *GICV_SA*; д) *GBIVMP_SA*; е) *GAPV_SA*

ADF тест

Временной	Значение	Пороговые	Тип мо-
ряд	ADF-	значения,	дели
	статистики	$\varepsilon = 0.05$	
$GGDP_SA_t$	-6,796	-2,911	TS
IPV_SAG_t	-16,478	-2,877	TS
RTV_SAG_t	-16,678	-2,877	TS
ICV_SAG_t	-22,472	-2,877	TS
BIV_SAG_t	-14,380	-2,877	TS
$BIVMP_SAG_t$	-20,402	-2,877	TS
APV_SAG_t	-15,410	-2,877	TS

MFVAR

Оценки

Прогнозный период: 2021q1 – 2023q4 (ретроспективные прогнозы)							
Модель	Число наблюдений	RMSE	MAE	MAPE, %	Lag		
MFVAR_3P	12	0.007958	0.006491	0.647089	4		
MFVAR_4P	12	0.004152	0.003195	0.320232	4		
MFVAR_5P	12	0.004336	0.003847	0.385297	3		
MFVAR_6P	12	0.007863	0.006145	0.613890	2		
Прогнозный период: 2024q1 – 2024q2 (краткосрочный прогноз)							
MFVAR_3P	2	0.010541	0.008671	0.866359	4		
MFVAR_4P	2	0.018522	0.013152	1.265229	4		
MFVAR_5P	2	0.010820	0.007860	0.787171	3		
MFVAR_6P	2	0.006649	0.006215	0.616806	2		

Заключение

В данной работе была рассмотрена задача прогнозирования компонент ВВП на основе регрессионных моделей MFVAR. В ходе исследования

- было дано теоретическое описание всех используемых для решения данной задачи моделей;
- были рассмотрены свойства и особенности, которые возникают в ходе работы с исследуемыми моделями;
- был проведен полный цикл исследования и преобразования моделей временных рядов для приведения к стационарному виду;
- были построены модели MFVAR для прогнозирования и оценки темпов роста ВВП Беларуси по его компонентам, такиим как объем промышленности, объем товарооборота, сельского хозяйства, объем строительства, объем инвестиций, объем доходов населения;
- был проведен сравнительный анализ точности прогнозных значений и ретроспективных прогнозов моделей MFVAR в зависимости от переменных.

Используемые источники

- Foroni, C. A survey of econometric methods for mixed frequency data / C. Foroni, M. Marcellino // Working Paper 2013/06, Norges Bank.
- Ghysels, E., Santa-Clara P., Valkanov R. 2002. The MIDAS touch: Mixed data sampling regression models, Working paper, UNC and UCLA.
- Макеева, Н.М., Наукастинг элементов использования ВВП России / Н.М. Макеева, И.П. Станкевич // Статья 2022/10, Экономический журнал ВШЭ.
- Foroni, C. Unrestricted Mixed Data Sampling (U-MIDAS): MIDAS
 Regressions With Unrestricted Lag Polynomials / C. Foroni, M. Marcellino,
 C. Schumacher // Discussion paper 2015, Deutsche Bundesbank.
- Отанкевич И.П. Сравнение методов наукастинга макроэкономических индикаторов на примере российского ВВП // Прикладная эконометрика 2020. С. 113−127.
- Харин, Ю. С. Теория вероятностей, математическая и прикладная статистика / Ю. С. Харин, Н. М. Зуев, Е. Е. Жук // Минск: БГУ, 2011.