Matematica del Continuo Informatica per la Comunicazione Digitale

Modelli di esercizi per la Parte 1

La **Parte 1** del compito scritto, o delle prove intermedie, potrebbe includere esercizi simili a quelli seguenti. Notare che la lista **non** è esaustiva!

Insiemistica

1. Si considerino gli insiemi

 $A:=\{\text{numeri naturali divisibili per 5}\}$

 $B := \{ \text{numeri naturali pari} \}$

 $C := \{5, 10, 9, 20\}$

Determinare l'insieme

 $(A \cap B) \cap C$.

RISULTATO: {10, 20}

2. Si considerino i seguenti insiemi

 $A := \{\sqrt{2}, \, \pi, \, 42\}$

 $B := \{ \text{numeri naturali multipli di 2} \}$

 $C := \{99\}$

Determinare l'insieme

 $(A \cap B) \cup C$.

RISULTATO: {42, 99}

3. Si considerino i seguenti insiemi

 $A := \{\sqrt{2}, \pi, 33\}$

 $B := \{ \text{numeri naturali multipli di } 3 \}$

 $C := \{99\}$

Determinare l'insieme

 $(A \cup C) \cap B$.

RISULTATO: {33, 99}

4. Si considerino i seguenti insiemi

 $A := \{\sqrt{2}, \pi, 77\}$

 $B := \{ \text{numeri naturali multipli di 7} \}$

 $C := \{77\}$

Determinare l'insieme

 $(A \cap B) \cap C$.

RISULTATO: $\{77\}$

5. Si considerino i seguenti insiemi:

$$\begin{split} A &:= \{\sqrt{2},\,\pi,\,77,\,21\}\\ B &:= \{\text{numeri naturali multipli di }7\}\\ C &:= \{77\} \end{split}$$

Determinare l'insieme

$$(A \cap B) \backslash C$$
.

RISULTATO: $\{21\}$

6. Si considerino i seguenti insiemi:

$$A := \{\sqrt{11}, \pi, 55\}$$

$$B := \{\text{numeri naturali multipli di 5}\}$$

$$C := \{99\}$$

Determinare l'insieme

$$(A \cup C) \cap B$$
.

RISULTATO: $\{55\}$

7. Si considerino i seguenti intervalli:

$$A := (-\infty, 7)$$

 $B := [-2, 9)$
 $C := [7, 10)$

Determinare l'insieme

$$(A \cap B) \cup C$$
.

RISULTATO: [-2, 10)

Proprietà delle funzioni

1. La funzione $f(x) = e^{3(x+\pi)} - 1$ è iniettiva?

RISULTATO: SI

2. La funzione $f(x) = \log(x^2 + 1)$ è iniettiva?

RISULTATO: NO

3. Quali sono le preimmagini di 1 tramite la funzione $f(x) = e^{x^2-1}$ (ovvero gli $x_0 \in \mathbb{R}$ tali che $f(x_0) = 1$)?

RISULTATO: $\{1, -1\}$

4. Determinare il dominio di definizione della funzione $f(x) = \log(x^4)$.

RISULTATO: $x \neq 0$ cioè $\mathbb{R} \setminus \{0\}$ ovvero $(-\infty, 0) \cup (0, \infty)$

5. Sia A la preimmagine di 1 tramite la funzione $f(x)=2^x$, ovvero

$$A := \{x_0 \in \mathbb{R} \text{ tali che } f(x_0) = 1\}.$$

Sia $B := [0, \pi)$. Determinare l'insieme $A \cap B$.

RISULTATO: {0}

6. Sia $f:(0,+\infty)\to\mathbb{R}$ la funzione tale che $f(x)=\log(x^3)$ per ogni x>0. Calcolare la funzione inversa di f.

RISULTATO: $f^{-1}(x) = \sqrt[3]{e^x}, x \in \mathbb{R}$

7. Siano $f(x) = \log(x)$ e $g(x) = 3x^2 + 2$. Calcolare $g \circ f$ e stabilire il suo dominio di definizione.

RISULTATO: $(g \circ f)(x) = 3(\log(x))^2 + 2, x > 0$

8. Siano $f(x) = \log(x)$ e $g(x) = 3x^2 + 2$. Calcolare $f \circ g$ e stabilire il suo dominio di definizione.

RISULTATO: $(f \circ g)(x) = \log(3x^2 + 2), x \in \mathbb{R}$

Equazioni e disequazioni elementari

1. Determinare tutti i valori di $x \in \mathbb{R}$ che soddisfano la seguente disequazione

$$\frac{(x^2+\pi)(x^4+1)(7-x)}{x-1}<0.$$

RISULTATO: x < 1 o x > 7 cioè $\{x < 1\} \cup \{x > 7\}$ ovvero $(-\infty, 1) \cup (7, \infty)$

2. Determinare tutti i valori di $x \in \mathbb{R}$ che soddisfano la seguente disequazione

$$\frac{e^{x-1}(x^2+5)(3-x)}{x-2} < 0.$$

RISULTATO: x < 2 o x > 3 cioè $\{x < 2\} \cup \{x > 3\}$ ovvero $(-\infty, 2) \cup (3, \infty)$

3. Determinare tutti i valori di $x \in \mathbb{R}$ che soddisfano la seguente disequazione

$$\frac{x-3}{x+3} > \frac{x+3}{x-3}.$$

RISULTATO: x < -3 o 0 < x < 3 cioè $\{x < -3\} \cup \{0 < x < 3\}$ ovvero $(-\infty, -3) \cup (0, 3)$

4. Determinare tutte le soluzioni di

$$\sqrt{x-1} > -2$$
.

RISULTATO: $x \ge 1$ cioè $\{x \ge 1\}$ ovvero $[1, +\infty)$

5. Determinare tutte le soluzioni di

$$|x - 2| \ge x + 3.$$

RISULTATO: $x \le -1/2$ cioè $\{x \le -1/2\}$ ovvero $(-\infty, -1/2]$

6. Determinare tutti i valori di $x \in \mathbb{R}$ che soddisfano la seguente disequazione

3

$$\frac{\log(x)}{x^3 - 1} < 0.$$

RISULTATO: nessun $x \in \mathbb{R}$ cioè \emptyset

7. Determinare tutti i valori di $x \in \mathbb{R}$ che soddisfano la seguente disequazione

$$\frac{\log(1+x^2)}{\cos(x)-2} \le 0.$$

RISULTATO: ogni $x \in \mathbb{R}$ cioè \mathbb{R}

8. Determinare tutti i valori di $x \in \mathbb{R}$ tali che

$$\frac{(x-\pi)(25+x^2)}{15-x} \ge 0.$$

RISULTATO: $\pi \le x < 15$ cioè $\{\pi \le x < 15\}$ ovvero $[\pi, 15)$

Numeri complessi

1. Determinare tutti i numeri complessi che soddisfano l'equazione

$$z^2 = 2i$$

Scrivere le soluzioni in forma cartesiana.

RISULTATO: $z_1 = 1 + i e z_2 = -1 - i$

2. Determinare la parte immaginaria del numero complesso

$$z = \frac{\sqrt{2}}{1+i}.$$

RISULTATO: $\Im(z) = -\frac{\sqrt{2}}{2}$

3. Sia $z = 3 + \sqrt{3}i$. Scrivere z in forma trigonometrica.

RISULTATO: $z = 2\sqrt{3}(\cos(\pi/6) + \sin(\pi/6)i)$

4. Sia z=1+i. Calcolare z^5 , scrivendo il risultato nella forma trigonometrica.

RISULTATO: $z^5 = 2^{5/2}(\cos(5\pi/4) + \sin(5\pi/4)i)$

5. Sia z il numero complesso scritto in forma trigonometrica

$$z = 2(\cos(5\pi/6) + \sin(5\pi/6)i).$$

Scrivere z in forma cartesiana.

RISULTATO: $z = -\sqrt{3} + i$

6. Sia z un numero complesso che soddisfa la seguente relazione

$$iz = \frac{1}{i}$$
.

Determinare la parte reale di z (oppure determinare il modulo di z, oppure scrivere z in forma cartesiana).

4

RISULTATO: $\Re(z) = -1 \ (|z| = 1, z = -1 + 0i = -1)$

7. Calcolare la parte reale del numero complesso $z = \frac{\pi + 3i}{i}$.

RISULTATO: $\Re(z) = 3$

8. Determinare tutti i numeri complessi che soddisfano la seguente relazione

$$(1+i)z = i.$$

Scrivere le soluzioni in forma cartesiana.

RISULTATO: z = 1/2 + i/2

9. Consideriamo i seguenti numeri complessi:

$$a = 2 + i$$
, $b = 1 - 2i$, $c = \sqrt{3}$.

Calcolare

$$\frac{|a|^2 \, |b|^2}{5} - |c|.$$

RISULTATO: $5 - \sqrt{3}$

10. Consideriamo i seguenti numeri complessi:

$$a = 1 + 2i,$$
 $b = 3 - i.$

Calcolare $a\bar{b}$. Scrivere la soluzione in forma cartesiana.

RISULTATO: 1 + 7i

Calcolo combinatorio

1. Quanti sono i numeri naturali di 3 cifre tutte distinte?

RISULTATO: $9 \cdot 9 \cdot 8 = 648$

2. Quanti sono i numeri naturali di 3 cifre tutte distinte la cui prima cifra risulta essere un numero pari?

RISULTATO: $4 \cdot 9 \cdot 8 = 288$

3. Determinare il numero degli anagrammi della parola PIPPO.

RISULTATO: 5!/3!

4. Quante sono le parole di 5 lettere che si possono scrivere usando solo le lettere A, B, C e D?

RISULTATO: 4^5

5. Quante sono le parole con 4 lettere tutte distinte che si possono scrivere usando solo le lettere A, B, C, D ed E?

RISULTATO: $5 \cdot 4 \cdot 3 \cdot 2 = 120$

6. Quanti sono i sottoinsiemi con 5 elementi dell'insieme $\{1, 2, 3, 4, 5, 6, 7\}$?

RISULTATO: $\binom{7}{5} = 21$

7. Sia $A=\{1,2,3,4\}$. Quanti sono gli elementi $(a,b)\in A\times A$ tali che $a\neq b$? **RISULTATO:** 12

Funzioni elementari

- 1. Calcolare $\log_2(1/8)$.
 - RISULTATO: -3
- 2. Calcolare $\sqrt[3]{1/8}$.
 - RISULTATO: 1/2
- 3. Calcolare $tan(-\pi/3)$.
 - RISULTATO: $-\sqrt{3}$
- 4. Calcolare $\log(e^5)$.
 - RISULTATO: 5
- 5. Calcolare $e^{-\log 10}$.
 - RISULTATO: 1/10