What's next?

- (1) Frequency characteristics; Resonance
- (2) Magnetically coupled circuits; Transformers
- (3) Three-Phase circuits;
- (4) Periodic, nonsinusoidal excitations

Electric Circuits 2020.05

Fundamentals of

Chapter13 Magnetically **Coupled Circuits**

Chapter13 Magnetically Coupled Circuits

- 13.1 Mutual Inductance and Mutual **Inductance Voltage**
- 13.2 The Voltage-current relationship of the Mutual inductance
- 13.3 The Decoupling Equivalent Circuit of the Mutual inductance
- **13.4** The Linear Transformer
- 13.5 The Ideal Transformer

级30匝,如图所示。

在环形磁芯上用漆包线绕一个耦合电感,初级60匝,次

参考方向的正极都在同名端时,它们的相位相同。

Measure the dot convention by a simple test

$$R = \frac{R}{1}$$

Close the switch, i increases,

 $\frac{di}{dt} > 0$, $u_{22'} = M \frac{di}{dt} > 0$ $V > 0$

| Parallel-aiding Connection(同例并联) |
$$\dot{U} = (R_1 + j\omega L_1)\dot{I}_1 + j\omega M\dot{I}_2$$
 | $\dot{U} = j\omega M\dot{I}_1 + (R_2 + j\omega L_2)\dot{I}_2$ | $\dot{U} = j\omega M\dot{I}_1 + (R_2 + j\omega L_2)\dot{I}_2$ | $\dot{I} = \dot{I}_1 + \dot{I}_2$ | $\dot{U} = Z_1\dot{I}_1 + Z_M\dot{I}_2$ | $\dot{U} = Z_M\dot{I}_1 + Z_2\dot{I}_2$ | $\dot{U} = Z_1\dot{I}_2 + Z_2\dot{I}_2$ | $\dot{U} = Z_1\dot{I}_2 + Z_2\dot{I}_2$ | $\dot{U} = Z_1\dot{I}_1 + Z_1\dot{I}_2$ | $\dot{U} = Z_1\dot{I}_1 + Z_1\dot{I}_1$

