```
In [ ]:
```

Problem Statement: A Chinese automobile company Geely Auto aspires to enter the US market by setting up their manufact uring unit there and producing cars locally to give competition to their US and European counterparts. They have contracted an automobile consulting company to understand the factors on which the pricing of cars depends. Specifically, they want to understand the factors affecting the pricing of cars in the American market, since those may be very different from the Chinese market. The company wants to know: Which variables are significant in predicting the price of a car How well those variables describe the price of a car ######### Business Goal We are required to model the price of cars with the available independent variables. It will be used by the management to understand how exactly the prices vary with the independent va riables. They can accordingly manipulate the design of the cars, the business strategy etc. to meet certain price levels. Further, the model will be a good way for management to understand the pricing dynamics of a new ma rket. ######## ##### table of content Step 1: Reading and Understanding the Data Step 2: Cleaning the Data Missing Value check Data type check Duplicate check Step 3: Data Visualization Boxplot Pairplot Step 4: Data Preparation Dummy Variable Step 5: Splitting the Data into Training and Testing Sets Rescaling Step 6: Building a Linear Model RFE VIF Step 7: Residual Analysis of the train data Step 8: Making Predictions Using the Final Model Step 9: Model Evaluation RMSE Score ######## In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.ticker as ticker ####### for setting a tick for every integer multiple of a ba
se within the view interval.##
import matplotlib.ticker as plticker
import warnings
warnings.filterwarnings("ignore")
from datetime import datetime, timedelta
```

In [2]:

```
####### importing machine learning libraries #########

from sklearn.model_selection import train_test_split
from sklearn.import preprocessing
from sklearn.base import TransformerMixin ##### Mixin class for all transformers in scikit-
learn.#####\
from sklearn.preprocessing import MinMaxScaler
import statsmodels.api as sm
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.metrics import r2_score
```

```
In [3]:
```

```
car= pd.read_csv("carprice_data.csv")
```

In [4]:

car

Out[4]:

	r_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 enginesia
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	 13
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	 13
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	 15
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	 10
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	 13
200	201	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	front	109.1	 14
201	202	-1	volvo 144ea	gas	turbo	four	sedan	rwd	front	109.1	 14
202	203	-1	volvo 244dl	gas	std	four	sedan	rwd	front	109.1	 17
203	204	-1	volvo 246	diesel	turbo	four	sedan	rwd	front	109.1	 14
204	205	-1	volvo 264gl	gas	turbo	four	sedan	rwd	front	109.1	 14

205 rows × 26 columns

In [5]:

car.head()

Out[5]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 enginesize
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	 130
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	 130
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	 152
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	 109
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	 136

5 rows × 26 columns

In [5]:

car.columns

Out[5]:

```
In [6]:
```

car.shape

Out[6]:

(205, 26)

In [7]:

```
car.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	car_ID	205 non-null	int64
1	symboling	205 non-null	int64
2	CarName	205 non-null	object
3	fueltype	205 non-null	object
4	aspiration	205 non-null	object
5	doornumber	205 non-null	object
6	carbody	205 non-null	object
7	drivewheel	205 non-null	object
8	enginelocation	205 non-null	object
9	wheelbase	205 non-null	float64
10	carlength	205 non-null	float64
11	carwidth	205 non-null	float64
12	carheight	205 non-null	float64
13	curbweight	205 non-null	int64
14	enginetype	205 non-null	object
15	cylindernumber	205 non-null	object
16	enginesize	205 non-null	int64
17	fuelsystem	205 non-null	object
18	boreratio	205 non-null	float64
19	stroke	205 non-null	float64
20	compressionratio	205 non-null	float64
21	horsepower	205 non-null	int64
22	peakrpm	205 non-null	int64
23	citympg	205 non-null	int64
24	highwaympg	205 non-null	int64
25	price	205 non-null	float64
dtyp	es: float64(8), in	t64(8), object(1	0)
memo	ry usage: 41.8+ KB		

In [8]:

car.describe()

Out[8]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio	stroke	com
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	
mean	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	126.907317	3.329756	3.255415	
std	59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	41.642693	0.270844	0.313597	
min	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.000000	2.540000	2.070000	
25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	97.000000	3.150000	3.110000	
50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	120.000000	3.310000	3.290000	
75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	141.000000	3.580000	3.410000	
max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	326.000000	3.940000	4.170000	
4											Þ

In [9]:

car.isnull().sum() #### checking null value #####

```
car ID
                 0
symboling
CarName
fueltype
                 0
                 0
0
0
aspiration
doornumber
carbody
                 0
drivewheel
enginelocation
                 0
wheelbase
carlength
                 0
carwidth
                 0
carheight
curbweight
                0
0
0
enginetype
cylindernumber
enginesize
                 0
fuelsystem
boreratio
                 0
stroke
compressionratio 0
horsepower 0
peakrpm 0
peakrpm
                 Ω
citympg
highwaympg
price
dtype: int64
In [10]:
car.isna().mean() ###### checking missing value#######
Out[10]:
car ID
                  0.0
                 0.0
symboling
CarName
                 0.0
fueltype
                 0.0
                0.0
aspiration
doornumber
carbody
enginelocation 0.0 wheelbase
                 0.0
carlength
carwidth
                 0.0
carheight
                0.0
curbweight
enginetype
                0.0
enginetype 0.0 cylindernumber 0.0
enginesize
                  0.0
                 0.0
fuelsystem
                 0.0
boreratio
stroke
                 0.0
compressionratio 0.0
horsepower
                 0.0
peakrpm
                  0.0
                 0.0
citympg
                 0.0
highwaympg
price
                 0.0
dtype: float64
In [11]:
###### dropping the ID column ######
car = car.drop('car_ID',axis=1)
In [12]:
# Extracting Car Company from the CarName as per direction in Problem
```

car['CarName'] = car['CarName'].str.split(' ',expand=True)

outioj.

```
In [13]:
##### unique car company
car['CarName'].unique()
Out[13]:
array(['alfa-romero', 'audi', 'bmw', 'chevrolet', 'dodge', 'honda',
        'isuzu', 'jaguar', 'maxda', 'mazda', 'buick', 'mercury',
'mitsubishi', 'Nissan', 'nissan', 'peugeot', 'plymouth', 'porsche',
'porcshce', 'renault', 'saab', 'subaru', 'toyota', 'toyouta',
        'vokswagen', 'volkswagen', 'vw', 'volvo'], dtype=object)
In [ ]:
#######A typo is then any bug which is the direct result of mistyping part of the code
#####Typo Error in Car Company name
\#maxda = mazda
\#Nissan = nissan
#porsche = porcshce
#toyota = toyouta
#vokswagen = volkswagen = vw
In [14]:
#### renaming the typo error in car company names #####
car['CarName']=car['CarName'].replace({'maxda':'mazda','nissan':'Nissan','porcshce':'porsche','toyc
uta':'toyota','vokswagen':'volkswagen','vw':'volkswagen'})
In [15]:
# changing the datatype of symboling
car['symboling'] = car['symboling'].astype(str)
In [16]:
car['symboling'].head(10)
Out[16]:
0
1
     3
2
     1
     2
4
     2
     2
5
7
     1
8
     1
9
Name: symboling, dtype: object
In [17]:
car['symboling'].tail(20)
Out[17]:
185
186
         2
187
         2
188
         2
         3
189
190
        3
191
192
         0
```

```
193
          0
194
         -2
         -1
195
         -2
196
197
         -1
198
         -2
         -1
199
200
         -1
        -1
201
202
         -1
203
         -1
204
         -1
Name: symboling, dtype: object
In [18]:
######## checking duplicates #########
car.loc[car.duplicated()]
Out[18]:
   symboling CarName fueltype aspiration doornumber carbody drivewheel enginelocation wheelbase carlength ... enginesize f
0 rows × 25 columns
4
In [19]:
####### segregation of categorical and numerical variable ########
cat_col=car.select_dtypes(include=['object']).columns
num_col=car.select_dtypes(exclude=['object']).columns
df_cat=car[cat_col]
df num=car[num col]
In [20]:
df cat.head(10)
Out[20]:
    symboling CarName fueltype aspiration doornumber
                                                         carbody drivewheel enginelocation enginetype cylindernumber fuelsyst
                   alfa-
 0
            3
                                       std
                                                   two convertible
                                                                        rwd
                                                                                      front
                                                                                                 dohc
                                                                                                                 four
                            gas
                 romero
                   alfa-
 1
            3
                            gas
                                       std
                                                       convertible
                                                                        rwd
                                                                                      front
                                                                                                 dohc
                                                                                                                 four
                 romero
                   alfa-
 2
                                                                                      front
            1
                            gas
                                       std
                                                   two
                                                        hatchback
                                                                        rwd
                                                                                                 ohcv
                                                                                                                  six
                 romero
 3
            2
                   audi
                            gas
                                       std
                                                  four
                                                           sedan
                                                                        fwd
                                                                                      front
                                                                                                  ohc
                                                                                                                 four
            2
                   audi
                                       std
                                                           sedan
                                                                        4wd
                                                                                      front
                                                                                                  ohc
                            gas
                                                   four
                                                                                                                 five
            2
 5
                                                           sedan
                   audi
                            gas
                                       std
                                                   two
                                                                        fwd
                                                                                      front
                                                                                                  ohc
                                                                                                                 five
 6
                   audi
                            gas
                                       std
                                                   four
                                                           sedan
                                                                        fwd
                                                                                      front
                                                                                                  ohc
                                                                                                                 five
 7
            1
                   audi
                            gas
                                       std
                                                   four
                                                           wagon
                                                                        fwd
                                                                                      front
                                                                                                  ohc
                                                                                                                 five
 8
            1
                   audi
                            gas
                                     turbo
                                                   four
                                                           sedan
                                                                        fwd
                                                                                      front
                                                                                                  ohc
                                                                                                                 five
 9
            0
                   audi
                                     turbo
                                                   two
                                                        hatchback
                                                                        4wd
                                                                                      front
                                                                                                  ohc
                                                                                                                 five
4
In [21]:
df num.head(10)
Out[21]:
    wheelbase carlength carwidth carheight curbweight enginesize boreratio stroke compressionratio horsepower peakrpm cityn
 0
         88.6
                  168.8
                            64.1
                                      48.8
                                                 2548
                                                             130
                                                                      3.47
                                                                             2.68
                                                                                               9.0
                                                                                                                  5000
```

1	wheelbase	carlength	carwiidth	carhel ghit	curbweight	enginesiże	borer ati o	stroke	${\it compression} {\it ratio}$	horsepower	peakirpin	cityn
2	94.5	171.2	65.5	52.4	2823	152	2.68	3.47	9.0	154	5000	
3	99.8	176.6	66.2	54.3	2337	109	3.19	3.40	10.0	102	5500	
4	99.4	176.6	66.4	54.3	2824	136	3.19	3.40	8.0	115	5500	
5	99.8	177.3	66.3	53.1	2507	136	3.19	3.40	8.5	110	5500	
6	105.8	192.7	71.4	55.7	2844	136	3.19	3.40	8.5	110	5500	
7	105.8	192.7	71.4	55.7	2954	136	3.19	3.40	8.5	110	5500	
8	105.8	192.7	71.4	55.9	3086	131	3.13	3.40	8.3	140	5500	
9	99.5	178.2	67.9	52.0	3053	131	3.13	3.40	7.0	160	5500	
4												Þ

In [22]:

Out[22]:

toyota 18 Nissan mazda 17 honda mitsubishi 13 volkswagen 12 subaru 12 11 volvo peugeot dodge 8 bmw buick audi plymouth porsche isuzu jaguar alfa-romero chevrolet renault mercury Name: CarName, dtype: int64

In [23]:

```
ax=car['CarName'].value_counts().plot(kind='bar')
ax.title.set_text('CarName')
plt.xlabel('names of the car',fontweight='bold')
plt.ylabel('counts of the car',fontweight='bold')
plt.show()
```


In []:

```
######Insights:
######Toyota seems to be the most favoured cars.
#######Mercury seems to be the least favoured cars.
```

In [24]:

```
ax=car['doornumber'].value_counts().plot(kind='bar')
ax.title.set_text('DoorNumber')
plt.xlabel('door number of the car',fontweight='bold')
plt.ylabel('counts of door number of the car',fontweight='bold')
plt.show()
```


In [25]:

```
ax=car['enginetype'].value_counts().plot(kind='bar')
ax.title.set_text('EngineType')
plt.xlabel('engine type of the car',fontweight='bold')
plt.ylabel('counts of engine type of the car',fontweight='bold')
plt.show()
```


In [26]:

```
######## visualizing the distribution of car prices ########

plt.figure(figsize=(12,10))
plt.title('Car price distribution plot')
sns.distplot(car['price'])
plt.show() ######## The plots seems to be right skewed, the prices of almost all cars looks like
less than 18000-19000.####
```


In [27]:
####### pairplot of all numerical variables ###########

ax= sns.pairplot(car(num_col))

In []:

In [28]:

In [29]:

```
plt.figure(figsize=(15,12))
plt.subplot(3,3,1)
sns.boxplot(x='fueltype',y='price',data=car)
plt.show()
```


In [30]:

```
plt.figure(figsize=(15,12))
plt.subplot(3,3,1)
sns.boxplot(x='aspiration',y='price',data=car)
plt.show()
plt.figure(figsize=(15,12))
plt.subplot(3,3,1)
sns.boxplot(x='carbody',y='price',data=car)
plt.show()
plt.figure(figsize=(15,12))
plt.subplot(3,3,1)
sns.boxplot(x='enginelocation',y='price',data=car)
plt.show()
plt.figure(figsize=(15,12))
plt.subplot(3,3,1)
sns.boxplot(x='drivewheel',y='price',data=car)
plt.show()
plt.figure(figsize=(15,12))
plt.subplot(3,3,1)
sns.boxplot(x='enginetype',y='price',data=car)
plt.show()
plt.figure(figsize=(15,12))
plt.subplot(3,3,1)
sns.boxplot(x='cylindernumber',y='price',data=car)
plt.show()
plt.figure(figsize=(15,12))
plt.subplot(3,3,1)
sns.boxplot(x='fuelsystem',y='price',data=car)
plt.show()
```


In []:

```
######Insights
######The cars with fueltype as diesel are comparatively expensive than the cars with fueltype as g
as.
#####All the types of carbody is relatively cheaper as compared to convertible carbody.
#####The cars with rear enginelocation are way expensive than cars with front enginelocation.
#####The price of car is directly proportional to no. of cylinders in most cases.
##### ohcv comes into higher price range cars.
#####DoorNumber isn't affecting the price much.
```

```
#####HigerEnd cars seems to have rwd drivewheel
```

In [31]:

```
plt.figure(figsize=(18,15))
plt.subplot(5,3,3)
plt1= car['cylindernumber'].value counts().plot(kind='bar')
plt.title('number of cylinders')
plt1.set(xlabel='number of cylinder',ylabel='frequency of number of cylinder')
plt.show()
plt.figure(figsize=(18,15))
plt.subplot(5,3,3)
plt1= car['fueltype'].value_counts().plot(kind='bar')
plt.title('Fuel Type')
plt1.set(xlabel='fuel type',ylabel='frequency of fuel type')
plt.show()
plt.figure(figsize=(18,15))
plt.subplot(5,3,3)
plt1= car['carbody'].value_counts().plot(kind='bar')
plt.title('Car Body')
plt1.set(xlabel='car body',ylabel='frequency of car body')
plt.show()
```


In []:

```
###Insights:
###The number of cylinders used in most cars is four.
""""
```

```
###Number of Gas fueled cars are way more than diesel fueled cars.
###Sedan is the most prefered car type.
```

In [32]:

```
sns.jointplot(x='wheelbase',y='price',data=car)
```

Out[32]:

<seaborn.axisgrid.JointGrid at 0x17e2d639c08>

In [33]:

```
sns.jointplot(x='carwidth',y='price',data=car)
sns.jointplot(x='carheight',y='price',data=car)
sns.jointplot(x='curbweight',y='price',data=car)
sns.jointplot(x='enginesize',y='price',data=car)
sns.jointplot(x='boreratio',y='price',data=car)
sns.jointplot(x='stroke',y='price',data=car)
sns.jointplot(x='compressionratio',y='price',data=car)
sns.jointplot(x='horsepower',y='price',data=car)
sns.jointplot(x='peakrpm',y='price',data=car)
sns.jointplot(x='citympg',y='price',data=car)
sns.jointplot(x='highwaympg',y='price',data=car)
```

Out[33]:

<seaborn.axisgrid.JointGrid at 0x17e2d4550c8>

In [34]:

```
plt.figure(figsize = (10, 6))
sns.boxplot(x = 'fuelsystem', y = 'price', hue = 'fueltype', data = car)
plt.show()
```


In [35]:

```
plt.figure(figsize = (10, 6))
sns.boxplot(x = 'carbody', y = 'price', hue = 'enginelocation', data = car)
plt.show()
```


In [36]:

```
plt.figure(figsize = (10, 6))
sns.boxplot(x = 'cylindernumber', y = 'price', hue = 'fueltype', data = car)
plt.show()
```


In [37]:

```
plt.figure(figsize=(20,15))
car_bar= pd.DataFrame(car.groupby(['CarName'])['price'].mean().sort_values(ascending=False))
car_bar.plot.bar()
plt.title('Car Name vs Avarage Price')
plt.show()
```

<Figure size 1440x1080 with 0 Axes>

In []:

```
#####Insights:
#####Jaguar,Buick and porsche seems to have the highest average price.
```

In [38]:

```
plt.figure(figsize=(20,18))
car_body= pd.DataFrame(car.groupby(['carbody'])['price'].mean().sort_values(ascending=False))
car_body.plot.bar()
plt.title('Car Body Name vs Avarage Price')
plt.show()
```

<Figure size 1440x1296 with 0 Axes>

In []:

```
#####Insights:
#####hardtop and convertible seems to have the highest average price.
```

In [39]:

```
######## finding correlation using heatmap ########
plt.figure(figsize=(15,15))
sns.heatmap(car.corr(),annot=True,cmap="RdYlGn",annot_kws={"size":15})
plt.show()
```

1.00

- 0.75

wheelbase -	1	0.87	0.8	0.59	0.78	0.57	0.49	0.16	0.25	0.35	-0.36	-0.47	-0.54	0.58
carlength -	0.87	1	0.84	0.49	0.88	0.68	0.61	0.13	0.16	0.55	-0.29	-0.67	-0.7	0.68
carwidth -	0.8	0.84	1	0.28	0.87	0.74	0.56	0.18	0.18	0.64	-0.22	-0.64	-0.68	0.76
carheight -	0.59	0.49	0.28	1	0.3	0.067	0.17	-0.055	0.26	-0.11	-0.32	-0.049	-0.11	0.12

In []:

```
####### insights
####### Horsepower,boreratio,enginesize,curbweight,carlength,carweight,carwidth,wheelbase has corr
elation with price
####### Highwaymap,citymap has negative correlation with price
######## peakrpm,stroke,compressionratio,carheight has low correlation with price
```

In [40]:

```
#Binning the Car Companies based on avg prices of each car Company.

car['price'] = car['price'].astype('int')
car_temp = car.copy()
t = car_temp.groupby(['CarName'])['price'].mean()
print(t)
car_temp = car_temp.merge(t.reset_index(), how='left', on='CarName')
bins = [0,10000,20000,40000]
label =['Budget_Friendly','Medium_Range','TopNotch_Cars']
car['Cars_Category'] = pd.cut(car_temp['price_y'], bins, right=False, labels=label)
car.head(20)
```

CarName 10415.666667 Nissan 15498.333333 alfa-romero audi 17859.142857 26118.750000 bmw buick 33647.000000 6007,000000 chevrolet dodge 7875.44444 honda 8184.692308 8916.250000 isuzu 34600.000000 jaquar mazda 10652.882353 mercurv 16503.000000 9239.769231 mitsubishi 15489 090909 neurant

```
7963.428571
31400.400000
peugeor
plymouth
porsche
renault
              9595.000000
             15223.333333
saab
subaru
              8541.250000
toyota
              9885.812500
volkswagen 10077.500000
volvo
             18063.181818
Name: price, dtype: float64
```

Out[40]:

	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	carlength	 fuelsyste
0	3	alfa- romero	gas	std	two	convertible	rwd	front	88.6	168.8	 wt
1	3	alfa- romero	gas	std	two	convertible	rwd	front	88.6	168.8	 wt
2	1	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	171.2	 mt.
3	2	audi	gas	std	four	sedan	fwd	front	99.8	176.6	 mţ
4	2	audi	gas	std	four	sedan	4wd	front	99.4	176.6	 mţ
5	2	audi	gas	std	two	sedan	fwd	front	99.8	177.3	 mţ
6	1	audi	gas	std	four	sedan	fwd	front	105.8	192.7	 mţ
7	1	audi	gas	std	four	wagon	fwd	front	105.8	192.7	 mţ
8	1	audi	gas	turbo	four	sedan	fwd	front	105.8	192.7	 mţ
9	0	audi	gas	turbo	two	hatchback	4wd	front	99.5	178.2	 mţ
10	2	bmw	gas	std	two	sedan	rwd	front	101.2	176.8	 mt
11	0	bmw	gas	std	four	sedan	rwd	front	101.2	176.8	 wt
12	0	bmw	gas	std	two	sedan	rwd	front	101.2	176.8	 mt
13	0	bmw	gas	std	four	sedan	rwd	front	101.2	176.8	 wt
14	1	bmw	gas	std	four	sedan	rwd	front	103.5	189.0	 mt
15	0	bmw	gas	std	four	sedan	rwd	front	103.5	189.0	 mt.
16	0	bmw	gas	std	two	sedan	rwd	front	103.5	193.8	 wt
17	0	bmw	gas	std	four	sedan	rwd	front	110.0	197.0	 mţ
18	2	chevrolet	gas	std	two	hatchback	fwd	front	88.4	141.1	 2b
19	1	chevrolet	gas	std	two	hatchback	fwd	front	94.5	155.9	 2b

In [41]:

4

20 rows × 26 columns

In [42]:

```
car= car[sig_col]
```

In [44]:

```
####### data preparation, dummy variable ########
####The variable carbody has five levels. We need to convert these levels into integer.
####Similarly we need to convert the categorical variables to numeric.

sig_cat_col =
['Cars_Category','fueltype','aspiration','carbody','drivewheel','enginetype','cylindernumber']
```

```
dummies = pd.get_dummies(car[sig_cat_col])
In [46]:
dummies.shape
Out[46]:
(205, 29)
In [47]:
dummies = pd.get_dummies(car[sig_cat_col], drop_first = True)
dummies.shape
Out[47]:
(205, 22)
In [48]:
# Add the results to the original dataframe
car = pd.concat([car, dummies], axis = 1)
In [49]:
# Drop the original cat variables as dummies are already created
car.drop( sig_cat_col, axis = 1, inplace = True)
car.shape
Out[49]:
(205, 32)
In [50]:
Out[50]:
```

	price	wheelbase	curbweight	enginesize	boreratio	horsepower	citympg	highwaympg	carlength	carwidth	•••	enginetype_onc
0	13495	88.6	2548	130	3.47	111	21	27	168.8	64.1		0
1	16500	88.6	2548	130	3.47	111	21	27	168.8	64.1		0
2	16500	94.5	2823	152	2.68	154	19	26	171.2	65.5		0
3	13950	99.8	2337	109	3.19	102	24	30	176.6	66.2		1
4	17450	99.4	2824	136	3.19	115	18	22	176.6	66.4		1
200	16845	109.1	2952	141	3.78	114	23	28	188.8	68.9		1
201	19045	109.1	3049	141	3.78	160	19	25	188.8	68.8		1
202	21485	109.1	3012	173	3.58	134	18	23	188.8	68.9		0
203	22470	109.1	3217	145	3.01	106	26	27	188.8	68.9		1
204	22625	109.1	3062	141	3.78	114	19	25	188.8	68.9		1

205 rows × 32 columns

[4]

In [52]:

####### splitting the data into train and test ##########

```
df train,df test= train test split(car,train size=0.8,test size=0.2,random state=100)
In [54]:
df train.head()
Out[54]:
     price wheelbase curbweight enginesize boreratio horsepower citympg highwaympg carlength carwidth ... enginetype_ohc
  3 13950
                                           3.19
                                                               24
                                                                                176.6
                99.8
                         2337
                                    109
                                                      102
                                                                          30
                                                                                         66.2 ...
 157 7198
                95.7
                         2109
                                    98
                                           3.19
                                                       70
                                                               30
                                                                          37
                                                                                166.3
                                                                                         64.4 ...
                                                                                                           1
  81 8499
                96.3
                         2328
                                    122
                                           3.35
                                                       88
                                                               25
                                                                          32
                                                                                173.0
                                                                                         65.4 ...
  32 5399
                93.7
                         1837
                                    79
                                           2.91
                                                                          42
                                                                                150.0
                                                                                         64.0 ...
                                                       60
                                                               38
                                                                                                           1
  99
    8949
                97.2
                         2324
                                    120
                                           3.33
                                                       97
                                                               27
                                                                          34
                                                                                173.4
                                                                                         65.2 ...
5 rows × 32 columns
4
In [ ]:
#####Rescaling the Features
######For Simple Linear Regression, scaling doesn't impact model. So it is extremely important to
rescale the variables so that they have a comparable scale. If we don't have comparable scales, th
en some of the coefficients as obtained by fitting the regression model might be very large or ver
y small as compared to the other coefficients. There are two common ways of rescaling:
#####Min-Max scaling
#####Standardisation (mean-0, sigma-1)
In [55]:
scaler = preprocessing.StandardScaler()
sig num col = ['wheelbase','carlength','carwidth','curbweight','enginesize','boreratio','horsepower
','citympg','highwaympg','price']
In [56]:
###### applying scaler function to all except the dummy variable ##############
import warnings
warnings.filterwarnings("ignore")
df_train[sig_num_col]=scaler.fit_transform(df_train[sig_num_col])
In [57]:
df train.head()
Out [57]:
```

	price	wheelbase	curbweight	enginesize	boreratio	horsepower	citympg	highwaympg	carlength	carwidth	 enginetype_
3	0.155048	0.256524	-0.343330	-0.372828	0.419206	0.024240	0.254620	-0.183655	0.290980	0.205880	
157	0.725489	-0.460676	-0.781780	-0.652371	0.419206	-0.791203	0.646625	0.825130	-0.558965	0.630100	
81	0.555824	-0.355720	-0.360637	-0.042458	0.205437	-0.332517	0.104413	0.104569	-0.006088	0.165667	
32	0.960099	-0.810530	-1.304842	-1.135218	1.512333	-1.046029	1.848286	1.545690	-1.904025	0.815873	
99	0.497139	-0.198286	-0.368329	-0.093284	0.127357	-0.103173	0.196003	0.392793	0.026919	0.258553	

5 rows × 32 columns

```
# Let's check the correlation coefficients to see which variables are highly correlated
plt.figure(figsize = (25, 25))
 sns.heatmap(df train.corr(),annot=True, cmap="RdYlGn")
 plt.show() ###### we can see
 curbweight, enginesize, horsepower, carlength, carwidth, cars category topnotch cars, driverwheel rwd, cy.
  r number six, wheel base..these are some highly correlated with price##########
                                                                                                                                                                                                                                                                                                                                                    )
                                                                                                                                                                                                                                                                                                                                                                 1.00
                                                    1 0.78 0.56 0.45 0.35 -0.46 -0.52
                                                                                                              087 078 0.17 0.34 0.32 0.26 0.083 0.37 0.3 0.21 0.46 0.49 0.00091 0.4 0.21 0.15 0.11 0.084 0.31 0.36 0.25 0.14 0.05 0.084
                                             085 078 1 086 063 075 <mark>0.74 0.77</mark> 088 086 0094 0.55 <mark>0.22</mark> 0.33 0.0063 0.99 0.14 0.16 0.67 0.67 0.13 0.24 0.42 0.069 0.37 0.032 0.28 0.6 0.46 0.15 0.22 0.032
                                                                            0.57 0.82
                                                                                               064 0.66 069 073 0.074 069 0.085 0.12 0.089 0.22 0.15 0.027 0.53 0.58 0.16 0.034 0.35 0.55 0.5 0.21 0.16 0.62 0.57 0.12 0.4 0.21
                                                                                                                                                                                                                                                                                                                                                                0.75
                                            054 045 063 057 1 055 057 056 06 055 0015 039 0069 019 015 022 0055 0095 053 052 02 021 048 039 008 002 00024 017 015 012 0074 002
                                                   0.35 0.75 0.82 0.55
                                                                                      0.74 0.64 0.57 0.79 1 0.97 0.66 0.63 0.1 0.4 0.28 0.19 0.04 0.12 0.19 0.098 0.56 0.53 0.1 0.001 0.4 0.034 0.31 0.21 0.24 0.57 0.4 0.25 0.15 0.21
                                                                                                                0.69 0.66 0.081 0.39 0.23 0.24 0.018 0.15 0.01 0.13 0.59 0.55 0.037 0.033 0.43 0.06 0.33 0.19 0.27 0.57 0.4 0.25 0.16 0.19
                                             068 067 088 069 06 055 066 069 1 084 026 038 022 023 0028 045 03 022 053 054 0017 025 029 0.08 021 0.053 03 0.44 0.34 0.21 0.12 0.053
                                                                                                                                                                                                                                                                                                                                                                - 0.50
                                             076 078 086 073 055 065 063 063 066 084 1 02 047 024 03 0056 022 019 0058 047 05 024 019 029 0097 03 0.0042 043 055 026 02 018 0.0042
  Cars_Category_TopNotch_Cars - 0.8 0.3 0.5 0.69 0.39 0.57 0.4 0.39 0.8 0.47 0.29 1 0.073-0.038 0.071 0.17 0.14 0.081 0.15 0.10 0.2 0.085 0.13 0.041 0.17 0.056 0.16 0.34 0.41 0.028 0.2 0.056
                        Neltype_gas - 0.12 0.32 0.22 0.085 - 0.069 0.16 0.28 0.23 0.22 0.24 0.21 0.055 - 0.069 0.16 0.28 0.23 0.22 0.24 0.21 0.073 1 0.38 0.054 0.2 0.24 0.016 0.11 0.15 0.02 0.27 0.27 0.034 0.1 0.082 0.054 0.16 0.002 0.066 0.027 0.027 0.054
                                                                                                                                                                                                                                                                                                                                                                0.25
                    aspiration_turbo 02 0.26 0.33 0.12 0.19 0.22 0.19 0.22 0.19 0.22 0.19 0.22 0.19 0.24 0.23 0.3 0.004.0.0030 0.38 1 0.07 0.036 0.012 0.015 0.01 0.036 0.025 0.041.0.013 0.038 0.072 0.022 0.013 0.07 0.036 0.036 0.072
                   carbody_hardtop - 0.062 - 0.083 - 0.063 0.0063 0.089 0.15 0.1 - 0.04 - 0.018 - 0.028 - 0.062 - 0.083 - 0.062 - 0.083 - 0.062 - 0.083 - 0.062 - 0.083 - 0.062 - 0.083 - 0.062 - 0.083 - 0.062 - 0.083 - 0.062 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 - 0.083 -
                Carbody_sedan - 0.16 0.3 0.14 0.15 0.055-0.0099.0019 0.01 0.3 0.19 0.16 0.14 0.24 0.06 0.15 0.68 1 0.37 0.0091.0029-0.074 0.042 0.098 0.05 0.012 0.15 0.12 0.048 0.06 0.074 0.083 0.15
                    carbody_wagon -0.036 021 016 0.027 0.095 0.05 0.098 0.13 0.22 0.0580 0.0040 0.081 0.016 0.012 0.062 0.089 0.013 0.025 0.014 0.012 0.062 0.089 0.014 0.015 0.016 0.012 0.062 0.089 0.014 0.012 0.062 0.089 0.014 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.
                    drivewheel_fwd -0.63 0.46 0.67 0.53 0.53 0.55 0.56 0.59 0.52 0.47 0.028 0.46 0.11 0.15 0.12 0.16 0.0091.006 1 0.9 0.1 0.9 0.1 0.26 0.5 0.05 0.05 0.05 0.05 0.05 0.49 0.41 0.06 0.41 0.05 0.1
                                              66 049 067 058 052 057 <mark>053 055 054 05 062 051 054 05 062 051 015 01 014 0.11 0029 0042 09 1 011 029 0.47 0.11 023 023 0.013 0.5 0.46 0.054 0.11 0.23</mark>
                 enginetype_dohcv - 0.19 0.00091 0.13 0.16 0.2 0.37 0.1 0.037 0.01 0.02 0.37 0.1 0.037 0.017 0.24 0.065 0.22 0.027 0.036 0.012 0.11 0.074 0.031 0.1 0.1 1 0.019 0.13 0.023 0.019 0.012 0.02 0.14 0.029 0.00610.00610.012
                                                                                                                                                                                                                                                                                                                                                                -0.25
                        enginetype_j - 0.051 04 0.24 0.034 0.21 0.034 0.01 0.034 0.01 0.034 0.01 0.034 0.01 0.034 0.01 0.033 0.25 0.19 0.24 0.085 0.27 0.25 0.038 0.12 0.042 0.14 0.050 0.038 0.01 0.050 0.038 0.061 0.072 0.09 0.03 0.019 0.038
                    enginetype_ohcf 900016-0.15 -0.069-0.025 -0.39 0.036 -0.034 -0.06 -0.08 -0.097 -0.24 0.041 -0.1 -0.013 -0.1 -0.12 -0.05 -0.15 -0.054 -0.11 -0.023 -0.071 -0.47 -1 -0.071 -0.046 -0.075 0.058 0.029 -0.023 -0.023 -0.023 -0.046 -0.015 -0.054 -0.11 -0.023 -0.071 -0.47 -1 -0.071 -0.046 -0.075 0.058 0.029 -0.023 -0.023 -0.023 -0.023 -0.046 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.015 -0.054 -0.055 -0.054 -0.015 -0.054 -0.055 -0.054 -0.055 -0.054 -0.055 -0.054 -0.055 -0.054 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.0
                  -0.50
                   enginetype_rotor -0.0053-0.084 0.032 0.21 0.02 0.034 0.21 0.02 0.034 0.21 0.19 0.053-0.0042 0.19 0.056 0.054 0.072 0.025 0.22 0.15 0.062 0.21 0.23 0.012 0.038 0.25 0.046 0.038 1 0.04 0.28 0.059 0.012 0.012
                            mber_five - 027 0.31 0.28 0.16 0.0024 0.14 0.24 0.27 0.3 0.43 0.15 0.16 0.16 0.22 0.04 0.13 0.12 0.049 0.068 0.013 0.02 0.061 0.16 0.075 0.061 0.04
                                            0.71 0.36 0.6 0.62 0.17 0.66 0.57 0.57 0.44 0.55 0.06 0.54 0.002 0.013 0.045 0.04 0.048 0.052 0.49 0.5 0.14 0.072 0.38 0.058
                cylindernumber six - 0.53 0.25 0.46 0.57 0.15 0.55 0.4 0.4 0.37 0.15 0.55 0.4 0.4 0.3 0.26 0.044 0.34 0.26 0.044 0.31 0.066 0.07 0.062 0.072 0.06 0.037 0.41 0.46 0.029 0.09 0.35 0.029 0.4 0.059 0.095 0.67
             cylindernumber three -0.078 -0.14 -0.15 -0.12 -0.12 -0.12 -0.11 -0.25 -0.25 -0.21 -0.2 -0.065 -0.028 -0.027 -0.036 -0.012 -0.11 -0.074 -0.031 -0.06 -0.054 -0.0061 -0.03 -0.13 -0.023 -0.019 -0.012 -0.02 -0.14 -0.029 -1 -0.0061 -0.012
           cylindernumber_twelve - 0.24 0.05 0.22 0.4 0.07 0.32 0.4 0.074 0.32 0.15 0.16 0.12 0.18 0.05 0.22 0.27 0.036 0.012 0.056 0.083 0.031 0.1 0.10 0.010 0.10 0.10 0.001 0.13 0.023 0.33 0.012 0.02 0.14 0.0290 0.061
In [60]:
 ####### dividing into X and y set for model building ##########
X train=df train
 y train=df train.pop('price')
In [61]:
```

######## building a linear model #######

X_train_1=X_train['horsepower']

In [62]:

adding a constant

X_train_1c= sm.add_constant(X_train_1) #### It's because you expect your dependent variable to take a nonzero value when all the otherwise included regressors are set to zero

In [63]:

```
##### create a first fitted model#######
lr_1=sm.OLS(y_train,X_train_1c).fit()
```

In [64]:

lr 1.params

Out[64]:

const 6.938894e-17 horsepower 8.126066e-01

dtype: float64

In [66]:

```
plt.scatter(X_train_1c.iloc[:,1],y_train)
plt.plot(X_train_1c.iloc[:,1],0.8126*X_train_1c.iloc[:,1],'r')
plt.show() ##### the correlation coefficient r measures the strength and direction of a linear rel
ationship between two variables on a scatterplot.
###############The value of r is always between +1 and -1.
```


In [67]:

print(lr_1.summary()) ###### R squared and Adj.R squared value is 0.66 and 0.65###########

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	price OLS Least Squares Fri, 18 Sep 2020 00:36:55 164 162 1 nonrobust	Prob (F-statistic):	0.660 0.658 314.9 7.96e-40 -144.16 292.3 298.5
=======================================	==========		
coe	f std err	t P> t	[0.025 0.975]
const 6.939e-1 horsepower 0.812		2e-15 1.000 7.746 0.000	-0.090 0.090 0.722 0.903
Omnibus: Prob(Omnibus): Skew: Kurtosis:	36.811 0.000 1.126 4.967		1.855 61.090 5.42e-14 1.00

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [68]:
```

```
####### adding another variable ##########
X_train_2 = X_train[['horsepower', 'curbweight']]
```

In [69]:

```
# Add a constant
X_train_2c = sm.add_constant(X_train_2)
# Create a second fitted model
lr_2 = sm.OLS(y_train, X_train_2c).fit()
```

In [70]:

```
lr_2.params
```

Out[70]:

const 6.938894e-17 horsepower 4.066668e-01 curbweight 5.391626e-01

dtype: float64

In [71]:

print(lr 2.summary()) #### R squared and Adjusted.R squared is 0.78, R-squared has been increased.

OLS Regression Results

Dep. Variable:	price	R-squared:	0.786
Model:	OLS	Adj. R-squared:	0.784
Method:	Least Squares	F-statistic:	296.1
Date:	Fri, 18 Sep 2020	Prob (F-statistic):	1.15e-54
Time:	00:39:37	Log-Likelihood:	-106.19
No. Observations:	164	AIC:	218.4
Df Residuals:	161	BIC:	227.7
Df Model:	2		
Covariance Type:	nonrohuet		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const horsepower curbweight	6.939e-17 0.4067 0.5392	0.036 0.055 0.055	1.9e-15 7.345 9.738	1.000 0.000 0.000	-0.072 0.297 0.430	0.072 0.516 0.648
Omnibus:		37	.859 Durb	in-Watson:		1.788
Prob (Omnibua	s):	0	.000 Jarq	ue-Bera (JB):		87.458
Skew:		0	.987 Prob	(JB):		1.02e-19
Kurtosis:		5	.983 Cond	. No.		2.66

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [72]:

```
####### adding another variable######
X_train_3 = X_train[['horsepower', 'curbweight', 'enginesize']]
```

In [73]:

```
# Add a constant
X_train_3c = sm.add_constant(X_train_3)
# Create a third fitted model
```

```
| ir_3 = sm.OLS(y_train, x_train_3c).fit()
1r 3.params
Out[73]:
           6.938894e-17
const
horsepower 2.721143e-01
curbweight 3.484593e-01 enginesize 3.379127e-01
dtype: float64
In [74]:
print(lr 3.summary()) ### R squared and Adjusted R squared has been increased to 0.80#########
                        OLS Regression Results
______
                           price R-squared:
Dep. Variable:
                                                                0.807
                OLS Adj. R-squared:
Least Squares F-statistic:
                                                               0.804
Model:
Method:
                                                                223.5
Date:
                        8 Sep 2020 Prob (F-statistic): 00:41:37 Log-Likelihood:
                                                           5.60e-57
                 Fri, 18 Sep 2020
Time:
                                                               -97.678
                          164 AIC:
No. Observations:
                                                                203.4
Df Residuals:
                             160 BIC:
Df Model:
                               3
Covariance Type:
                        nonrobust.
______
                                          P>|t| [0.025
              coef std err
                                    t
                                                               0.975]
const 6.939e-17 0.035 2e-15 1.000 -0.069 0.069
                                                    0.150
horsepower 0.2721
                      0.062
                                4.406
                                          0.000
                                                                0.394

      curbweight
      0.3485
      0.070
      4.999
      0.000
      0.211

      enginesize
      0.3379
      0.081
      4.183
      0.000
      0.178

                                                            0.486
0.497
______
                          29.472 Durbin-Watson:
Prob(Omnibus):
                           0.000 Jarque-Bera (JB):
                                                               65.487
                            0.778 Prob(JB):
                                                             6.02e-15
Skew:
                            5.676 Cond. No.
______
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [ ]:
##### We have achieved a R-squared of 0.819 by manually picking the highly correlated variables fr
om heatmap
##### Now lets use RFE to select the independent variables which accurately predicts the dependent
variable price.
##### RFE
##### Let's use Recursive feature elimination since we have too many independent variables
In [75]:
\#\#\# Running RFE with the output number of the variable equal to 15 \#\#\#
lm=LinearRegression()
lm.fit(X_train,y_train)
rfe=RFE(lm,15)
rfe= rfe.fit(X_train,y_train)
In [76]:
list(zip(X train.columns, rfe.support , rfe.ranking ))
Out[76]:
[('wheelbase', False, 9),
 ('curbweight', True, 1),
 ('enginesize', False, 12),
 ('boreratio', False, 8),
```

('horsepower', True, 1),
('citympg', False, 5),

```
('highwaympg', False, 10),
 ('carlength', False, 13), ('carwidth', True, 1),
 ('Cars Category Medium Range', False, 2),
 ('Cars_Category_TopNotch_Cars', True, 1),
 ('fueltype gas', False, 14),
 ('aspiration_turbo', False, 15),
 ('carbody_hardtop', True, 1),
 ('carbody_hatchback', True, 1),
 ('carbody_sedan', True, 1),
 ('carbody_wagon', True, 1),
 ('drivewheel_fwd', False, 11),
 ('drivewheel rwd', False, 6),
 ('enginetype_dohcv', True, 1),
 ('enginetype_l', True, 1),
('enginetype_ohc', True, 1),
 ('enginetype_ohcf', True, 1),
 ('enginetype ohcv', True, 1),
 ('enginetype_rotor', False, 17),
 ('cylindernumber_five', True, 1),
 ('cylindernumber_four', True, 1), ('cylindernumber_six', False, 4),
 ('cylindernumber three', False, 7),
 ('cylindernumber_twelve', False, 3),
 ('cylindernumber_two', False, 16)]
In [77]:
# Selecting the variables which are in support
col imp=X train.columns[rfe.support ]
Out[77]:
Index(['curbweight', 'horsepower', 'carwidth', 'Cars_Category_TopNotch_Cars',
        'carbody hardtop', 'carbody hatchback', 'carbody sedan',
        'carbody_wagon', 'enginetype_dohcv', 'enginetype_l', 'enginetype_ohc',
        'enginetype ohcf', 'enginetype ohcv', 'cylindernumber five',
        'cylindernumber_four'],
      dtype='object')
In [78]:
# Creating X train dataframe with RFE selected variables
X train rfe=X train[col imp]
X train rfe
```

Out [78]:

curbweight horsepower carwidth Cars_Category_TopNotch_Cars carbody_hardtop carbody_hatchback carbody_sedan carbody_

	our biroignic	погоорония	oui muuii	ouro_ourogory_ropriotori_ouro	our bouy_nur atop	ourbouy_natoribuok	carboay_codan carboay.
3	-0.343330	0.024240	0.205880	0	0	0	1
157	-0.781780	-0.791203	0.630100	0	0	1	0
81	-0.360637	-0.332517	0.165667	0	0	1	0
32	-1.304842	-1.046029	0.815873	0	0	1	0
99	-0.368329	-0.103173	0.258553	0	0	1	0
87	-0.216411	0.380996	0.165667	0	0	0	1
103	1.047016	1.298369	0.345210	0	0	0	1
67	1.921992	0.559374	2.110055	1	0	0	1
24	-1.054849	-0.842168	0.908759	0	0	1	0
8	1.097015	0.992578	2.620931	0	0	0	1

In []:

After passing the arbitary selected columns by RFE we will manually evaluate each models pvalue and VIF value. Unless we find the acceptable range for p-values and VIF we keep dropping the
variables one at a time based on below criteria.

High p-value High VIF: Drop the variable
High p-value Low VIF or Low p-value High VIF: Drop the variable with high p-value first
Low p-value Low VIF: accept the variable

In [79]:

```
# Adding a constant variable and Build a first fitted model

import statsmodels.api as sm

X_train_rfec=sm.add_constant(X_train_rfe)

lm_rfe= sm.OLS(y_train,X_train_rfec).fit()

#Summary of linear model
print(lm_rfe.summary())
```

OLS Regression Results

============			
Dep. Variable:	price	R-squared:	0.938
Model:	OLS	Adj. R-squared:	0.932
Method:	Least Squares	F-statistic:	149.6
Date:	Fri, 18 Sep 2020	Prob (F-statistic):	2.59e-81
Time:	01:01:17	Log-Likelihood:	-4.5365
No. Observations:	164	AIC:	41.07
Df Residuals:	148	BIC:	90.67
Df Model:	15		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	0.8039	0.150	5.353	0.000	0.507	1.101
curbweight	0.2256	0.062	3.646	0.000	0.103	0.348
horsepower	0.2570	0.045	5.694	0.000	0.168	0.346
carwidth	0.2197	0.048	4.586	0.000	0.125	0.314
Cars Category TopNotch Cars	1.0507	0.101	10.381	0.000	0.851	1.251
carbody hardtop	-0.6596	0.184	-3.581	0.000	-1.024	-0.296
carbody hatchback	-0.8164	0.133	-6.150	0.000	-1.079	-0.554
carbody sedan	-0.7020	0.132	-5.314	0.000	-0.963	-0.441
carbody wagon	-0.8287	0.143	-5.796	0.000	-1.111	-0.546
enginetype dohcv	-0.8684	0.327	-2.652	0.009	-1.515	-0.221
enginetype l	0.2664	0.132	2.015	0.046	0.005	0.528
enginetype ohc	0.3051	0.107	2.860	0.005	0.094	0.516
enginetype ohcf	0.2761	0.125	2.209	0.029	0.029	0.523
enginetype ohcv	-0.1792	0.117	-1.533	0.127	-0.410	0.052
cylindernumber five	-0.3776	0.135	-2.792	0.006	-0.645	-0.110
cylindernumber_four	-0.5267	0.100	-5.271	0.000	-0.724	-0.329

Omnibus:	35.523	Durbin-Watson:	2.154
Prob(Omnibus):	0.000	Jarque-Bera (JB):	84.840
Skew:	0.911	Prob(JB):	3.78e-19
Kurtosis:	6.016	Cond. No.	28.6

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []:

```
In [81]:
```

```
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif=pd.DataFrame()
vif['Features']=X_train_rfe.columns
vif['VIF']=[variance_inflation_factor(X_train_rfe.values,i) for i in range(X_train_rfe.shape[1])]
vif['VIF']=round(vif['VIF'],2)
vif=vif.sort_values(by='VIF',ascending=False)
vif
```

Out[81]:

	Features	VIF
10	enginetype_ohc	19.56
14	cylindernumber_four	14.58
0	curbweight	9.12
6	carbody_sedan	7.20
2	carwidth	5.25
5	carbody_hatchback	4.88
1	horsepower	4.61
7	carbody_wagon	3.14
11	enginetype_ohcf	2.95
3	Cars_Category_TopNotch_Cars	2.49
13	cylindernumber_five	2.43
9	enginetype_I	2.28
12	enginetype_ohcv	1.63
8	enginetype_dohcv	1.56
4	carbody_hardtop	1.45

In []:

```
###### We generally want a VIF that is less than 5. So there are clearly some variables we need to drop.
###### Dropping the variable and updating the model
###### Dropping enginetype_ohcv beacuse its p-value is 0.393 and we want p-value less than 0.05 and hence rebuilding the model
```

In [82]:

```
X_train_rfe1 = X_train_rfe.drop('enginetype_ohcv', 1,)

# Adding a constant variable and Build a second fitted model

X_train_rfe1c = sm.add_constant(X_train_rfe1)
lm_rfe1 = sm.OLS(y_train, X_train_rfe1c).fit()

#Summary of linear model
print(lm_rfe1.summary())
```

OLS Regression Results

```
_____
                   price R-squared:
Dep. Variable:
                                                  0.937
                      OLS Adj. R-squared:
                                                  0.931
Model:
              Least Squares F-statistic:
Method:
                                                  158.7
             Fri, 18 Sep 2020 Prob (F-statistic):
Date:
                                                6.42e-82
                          Log-Likelihood:
AIC:
Time:
                   01:22:01
                                                 -5.8277
No. Observations:
                       164
                                                   41.66
                           BIC:
Df Residuals:
                       149
                                                  88.15
Df Model:
                        14
```

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

const	0.7350	0.144	5.107	0.000	0.451	1.019
curbweight	0.2292	0.062	3.691	0.000	0.107	0.352
horsepower	0.2523	0.045	5.577	0.000	0.163	0.342
carwidth	0.2100	0.048	4.402	0.000	0.116	0.304
Cars_Category_TopNotch_Cars	1.0601	0.101	10.447	0.000	0.860	1.261
carbody_hardtop	-0.6529	0.185	-3.530	0.001	-1.018	-0.287
carbody_hatchback	-0.8131	0.133	-6.099	0.000	-1.077	-0.550
carbody_sedan	-0.7010	0.133	-5.283	0.000	-0.963	-0.439
carbody_wagon	-0.8310	0.144	-5.787	0.000	-1.115	-0.547
enginetype_dohcv	-0.7660	0.322	-2.379	0.019	-1.402	-0.130
enginetype_l	0.3194	0.128	2.492	0.014	0.066	0.573
enginetype_ohc	0.3475	0.103	3.359	0.001	0.143	0.552
enginetype_ohcf	0.3228	0.122	2.651	0.009	0.082	0.563
cylindernumber_five	-0.3396	0.134	-2.543	0.012	-0.603	-0.076
cylindernumber_four	-0.5050	0.099	-5.083	0.000	-0.701	-0.309
Omnibus:	38.750	Durbin-Wats	======= on:	 2	.106	
Prob(Omnibus):	0.000	Jarque-Bera	(JB):	99	.305	
Skew:	0.967	Prob(JB):		2.73	e-22	
Kurtosis:	6.285	Cond. No.			28.1	
		=========			====	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [83]:

```
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train_rfel.columns
vif['VIF'] = [variance_inflation_factor(X_train_rfel.values, i) for i in range(X_train_rfel.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[83]:

	Features	VIF
10	enginetype_ohc	18.21
13	cylindernumber_four	14.58
0	curbweight	9.12
6	carbody_sedan	6.03
2	carwidth	5.22
1	horsepower	4.50
5	carbody_hatchback	4.07
11	enginetype_ohcf	2.79
7	carbody_wagon	2.77
3	Cars_Category_TopNotch_Cars	2.49
12	cylindernumber_five	2.40
9	enginetype_I	2.14
8	enginetype_dohcv	1.48
4	carbody_hardtop	1.42

In [85]:

```
# Dropping highly correlated variables and insignificant variables

X_train_rfe2 = X_train_rfe1.drop('enginetype_ohc', 1,)

# Adding a constant variable and Build a sixth fitted model

X_train_rfe2c = sm.add_constant(X_train_rfe2)

lm_rfe2 = sm.OLS(y_train, X_train_rfe2c).fit()
```

```
#Summary of linear model
print(lm_rfe2.summary())
```

OLS Regression Results

Dep. Variable:	price	R-squared:	0.932
Model:	OLS	Adj. R-squared:	0.927
Method:	Least Squares	F-statistic:	159.1
Date:	Fri, 18 Sep 2020	Prob (F-statistic):	1.11e-80
Time:	01:32:09	Log-Likelihood:	-11.812
No. Observations:	164	AIC:	51.62
Df Residuals:	150	BIC:	95.02
Df Model:	13		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.7112	0.149	4.786	0.000	0.418	1.005
curbweight	0.1863	0.063	2.965	0.004	0.062	0.310
horsepower	0.2396	0.047	5.143	0.000	0.148	0.332
carwidth	0.2138	0.049	4.338	0.000	0.116	0.311
Cars Category TopNotch Cars	1.2196	0.093	13.157	0.000	1.036	1.403
carbody hardtop	-0.4772	0.183	-2.602	0.010	-0.840	-0.115
carbody hatchback	-0.6985	0.133	-5.243	0.000	-0.962	-0.435
carbody_sedan	-0.5673	0.131	-4.336	0.000	-0.826	-0.309
carbody wagon	-0.6923	0.142	-4.869	0.000	-0.973	-0.411
enginetype dohcv	-0.8977	0.330	-2.717	0.007	-1.550	-0.245
enginetype l	0.0663	0.107	0.619	0.537	-0.145	0.278
enginetype ohcf	0.0164	0.083	0.197	0.844	-0.148	0.181
cylindernumber_five	-0.1006	0.117	-0.861	0.391	-0.331	0.130
cylindernumber_four	-0.3004	0.081	-3.702	0.000	-0.461	-0.140

Omnibus: Prob(Omnibus):		Durbin-Watson: Jarque-Bera (JB):	2.113 199.402
Skew:	1.247	Prob(JB):	5.02e-44
Kurtosis:	7.792	Cond. No.	26.0

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [86]

```
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train_rfe2.columns
vif['VIF'] = [variance_inflation_factor(X_train_rfe2.values, i) for i in range(X_train_rfe2.shape[1
])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[86]:

	Features	VIF
0	curbweight	8.72
12	cylindernumber_four	8.31
2	carwidth	5.21
6	carbody_sedan	4.71
1	horsepower	4.46
5	carbody_hatchback	3.40
7	carbody_wagon	2.35
3	Cars_Category_TopNotch_Cars	1.94
11	cylindernumber_five	1.71
8	enginetype_dohcv	1.46
9	enginetype_I	1.39
4	carbody_hardtop	1.29

In [90]:

```
# Dropping highly correlated variables and insignificant variables
X_train_rfe3 = X_train_rfe2.drop('curbweight', 1,)
# Adding a constant variable and Build a sixth fitted model
X_train_rfe3c = sm.add_constant(X_train_rfe3)
lm_rfe3 = sm.OLS(y_train, X_train_rfe3c).fit()
#Summary of linear model
print(lm rfe3.summary())
```

OLS Regression Results

============			===========
Dep. Variable:	price	R-squared:	0.928
Model:	OLS	Adj. R-squared:	0.923
Method:	Least Squares	F-statistic:	163.2
Date:	Fri, 18 Sep 2020	Prob (F-statistic):	5.95e-80
Time:	01:42:01	Log-Likelihood:	-16.481
No. Observations:	164	AIC:	58.96
Df Residuals:	151	BIC:	99.26
Df Model:	12		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.7402	0.152	4.868	0.000	0.440	1.041
horsepower	0.3118	0.041	7.654	0.000	0.231	0.392
carwidth	0.3136	0.037	8.495	0.000	0.241	0.387
Cars Category TopNotch Cars	1.2871	0.092	13.968	0.000	1.105	1.469
carbody hardtop	-0.5184	0.188	-2.764	0.006	-0.889	-0.148
carbody hatchback	-0.7483	0.136	-5.521	0.000	-1.016	-0.481
carbody_sedan	-0.5849	0.134	-4.364	0.000	-0.850	-0.320
carbody_wagon	-0.6392	0.145	-4.420	0.000	-0.925	-0.353
enginetype_dohcv	-1.2870	0.311	-4.140	0.000	-1.901	-0.673
enginetype_l	0.1690	0.104	1.626	0.106	-0.036	0.374
enginetype_ohcf	-0.0252	0.084	-0.299	0.766	-0.192	0.141
cylindernumber_five	-0.1433	0.119	-1.205	0.230	-0.378	0.092
cylindernumber_four	-0.3196	0.083	-3.854	0.000	-0.484	-0.156
					====	

53.158 Durbin-Watson: Omnibus: 2.165 0.000 Jarque-Bera (JB): 173.733 Prob(Omnibus): Skew: 1.241 Prob(JB): 1.88e-38 7.390 Cond. No. Kurtosis: 21.5

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [91]:

```
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train_rfe3.columns
vif['VIF'] = [variance_inflation_factor(X_train_rfe3.values, i) for i in range(X_train_rfe3.shape[1
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[91]:

	Features	VIF
11	cylindernumber_four	8.29
5	carbody_sedan	4.71
4	carbody_hatchback	3.34

0	horsenower Features	3 ,79 4
1	carwidth	2.78
6	carbody_wagon	2.16
2	Cars_Category_TopNotch_Cars	1.79
10	cylindernumber_five	1.69
3	carbody_hardtop	1.28
8	enginetype_I	1.24
7	enginetype_dohcv	1.22
9	enginetype_ohcf	1.19

In [92]:

```
# Dropping highly correlated variables and insignificant variables

X_train_rfe4 = X_train_rfe3.drop('cylindernumber_four', 1,)

# Adding a constant variable and Build a sixth fitted model

X_train_rfe4c = sm.add_constant(X_train_rfe4)

lm_rfe4 = sm.OLS(y_train, X_train_rfe4c).fit()

#Summary of linear model

print(lm_rfe4.summary())
```

OLS Regression Results

Dep. Variable:	price	R-squared:	0.921
Model:	OLS	Adj. R-squared:	0.916
Method:	Least Squares	F-statistic:	161.9
Date:	Fri, 18 Sep 2020	Prob (F-statistic):	5.23e-78
Time:	01:42:52	Log-Likelihood:	-24.174
No. Observations:	164	AIC:	72.35
Df Residuals:	152	BIC:	109.5
Df Model:	11		
Covariance Type:	nonrobust		

=======================================					========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	0.4469	0.137	3.250	0.001	0.175	0.719
horsepower	0.3905	0.037	10.605	0.000	0.318	0.463
carwidth	0.3060	0.039	7.945	0.000	0.230	0.382
Cars Category TopNotch Cars	1.3838	0.093	14.940	0.000	1.201	1.567
carbody hardtop	-0.5369	0.196	-2.742	0.007	-0.924	-0.150
carbody hatchback	-0.7064	0.141	-5.006	0.000	-0.985	-0.428
carbody sedan	-0.5578	0.140	-3.990	0.000	-0.834	-0.282
carbody wagon	-0.6143	0.151	-4.070	0.000	-0.912	-0.316
enginetype dohcv	-1.4839	0.320	-4.633	0.000	-2.117	-0.851
enginetype l	0.1676	0.109	1.543	0.125	-0.047	0.382
enginetype ohcf	-0.0525	0.088	-0.598	0.551	-0.226	0.121
cylindernumber_five	0.0630	0.111	0.568	0.571	-0.156	0.282

Omnibus:	47.405	Durbin-Watson:	2.125			
Prob(Omnibus):	0.000	Jarque-Bera (JB):	144.510			
Skew:	1.121	Prob(JB):	4.17e-32			
Kurtosis:	7.015	Cond. No.	18.8			

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [93]:

```
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train_rfe4.columns
vif['VIF'] = [variance_inflation_factor(X_train_rfe4.values, i) for i in range(X_train_rfe4.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[93]:

	Features	VIF
1	carwidth	2.77
0	horsepower	2.56
2	Cars_Category_TopNotch_Cars	1.75
10	cylindernumber_five	1.44
5	carbody_sedan	1.34
8	enginetype_I	1.24
7	enginetype_dohcv	1.20
6	carbody_wagon	1.18
9	enginetype_ohcf	1.17
4	carbody_hatchback	1.14
3	carbody_hardtop	1.07

In [94]:

```
# Dropping highly correlated variables and insignificant variables

X_train_rfe5 = X_train_rfe4.drop('cylindernumber_five', 1,)

# Adding a constant variable and Build a sixth fitted model

X_train_rfe5c = sm.add_constant(X_train_rfe5)

lm_rfe5 = sm.OLS(y_train, X_train_rfe5c).fit()

#Summary of linear model

print(lm_rfe5.summary())
```

OLS Regression Results

Dep. Variable:	price	R-squared:	0.921			
Model:	OLS	Adj. R-squared:	0.916			
Method:	Least Squares	F-statistic:	178.9			
Date:	Fri, 18 Sep 2020	Prob (F-statistic):	4.47e-79			
Time:	01:52:14	Log-Likelihood:	-24.348			
No. Observations:	164	AIC:	70.70			
Df Residuals:	153	BIC:	104.8			
Df Model:	10					
Covariance Type:	nonrobust.					

	coef	std err	t	P> t	[0.025	0.975]
		0.105			0 101	0.700
const	0.4514	0.137	3.296	0.001	0.181	0.722
horsepower	0.3864	0.036	10.724	0.000	0.315	0.458
carwidth	0.3159	0.034	9.234	0.000	0.248	0.384
Cars_Category_TopNotch_Cars	1.3839	0.092	14.975	0.000	1.201	1.567
carbody_hardtop	-0.5349	0.195	-2.738	0.007	-0.921	-0.149
carbody hatchback	-0.7065	0.141	-5.017	0.000	-0.985	-0.428
carbody sedan	-0.5577	0.140	-3.998	0.000	-0.833	-0.282
carbody wagon	-0.6130	0.151	-4.071	0.000	-0.910	-0.315
enginetype dohcv	-1.4993	0.318	-4.708	0.000	-2.128	-0.870
enginetype l	0.1540	0.106	1.457	0.147	-0.055	0.363
enginetype_ohcf	-0.0538	0.088	-0.615	0.539	-0.227	0.119
Omnibus.	/5 396	Durhin-Wate	======== on•		125	

Omnibus:	45.396	Durbin-Watson:	2.125			
Prob(Omnibus):	0.000	Jarque-Bera (JB):	133.164			
Skew:	1.085	Prob(JB):	1.21e-29			
Kurtosis:	6.845	Cond. No.	18.7			

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [95]:

```
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train_rfe5.columns
vif['VIF'] = [variance_inflation_factor(X_train_rfe5.values, i) for i in range(X_train_rfe5.shape[1
])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[95]:

	Features	VIF
0	horsepower	2.47
1	carwidth	2.20
2	Cars_Category_TopNotch_Cars	1.75
5	carbody_sedan	1.28
7	enginetype_dohcv	1.20
8	enginetype_I	1.18
9	enginetype_ohcf	1.17
6	carbody_wagon	1.15
4	carbody_hatchback	1.10
3	carbody_hardtop	1.07

In [97]:

```
# Dropping highly correlated variables and insignificant variables

X_train_rfe6 = X_train_rfe5.drop('enginetype_ohcf', 1,)

# Adding a constant variable and Build a sixth fitted model

X_train_rfe6c = sm.add_constant(X_train_rfe6)

lm_rfe6 = sm.OLS(y_train, X_train_rfe6c).fit()

#Summary of linear model

print(lm_rfe6.summary())
```

OLS Regression Results

Dep. Variable:	price	R-squared:	0.921
Model:	OLS	Adj. R-squared:	0.916
Method:	Least Squares	F-statistic:	199.5
Date:	Fri, 18 Sep 2020	Prob (F-statistic):	3.71e-80
Time:	01:55:38	Log-Likelihood:	-24.550
No. Observations:	164	AIC:	69.10
Df Residuals:	154	BIC:	100.1
Df Model:	9		
Covariance Type:	nonrobust		

coef	std err	t	P> t	[0.025	0.975]
0.4438	0.136	3.260	0.001	0.175	0.713
0.3841	0.036	10.740	0.000	0.313	0.455
0.3193	0.034	9.477	0.000	0.253	0.386
1.3819	0.092	14.993	0.000	1.200	1.564
-0.5375	0.195	-2.757	0.007	-0.923	-0.152
-0.6999	0.140	-4.995	0.000	-0.977	-0.423
-0.5541	0.139	-3.983	0.000	-0.829	-0.279
-0.6162	0.150	-4.103	0.000	-0.913	-0.320
-1.4954	0.318	-4.706	0.000	-2.123	-0.868
0.1569	0.105	1.489	0.138	-0.051	0.365
	0.4438 0.3841 0.3193 1.3819 -0.5375 -0.6999 -0.5541 -0.6162 -1.4954	0.4438 0.136 0.3841 0.036 0.3193 0.034 1.3819 0.092 -0.5375 0.195 -0.6999 0.140 -0.5541 0.139 -0.6162 0.150 -1.4954 0.318	0.4438 0.136 3.260 0.3841 0.036 10.740 0.3193 0.034 9.477 1.3819 0.092 14.993 -0.5375 0.195 -2.757 -0.6999 0.140 -4.995 -0.5541 0.139 -3.983 -0.6162 0.150 -4.103 -1.4954 0.318 -4.706	0.4438 0.136 3.260 0.001 0.3841 0.036 10.740 0.000 0.3193 0.034 9.477 0.000 1.3819 0.092 14.993 0.000 -0.5375 0.195 -2.757 0.007 -0.6999 0.140 -4.995 0.000 -0.5541 0.139 -3.983 0.000 -0.6162 0.150 -4.103 0.000 -1.4954 0.318 -4.706 0.000	0.4438 0.136 3.260 0.001 0.175 0.3841 0.036 10.740 0.000 0.313 0.3193 0.034 9.477 0.000 0.253 1.3819 0.092 14.993 0.000 1.200 -0.5375 0.195 -2.757 0.007 -0.923 -0.6999 0.140 -4.995 0.000 -0.977 -0.5541 0.139 -3.983 0.000 -0.829 -0.6162 0.150 -4.103 0.000 -0.913 -1.4954 0.318 -4.706 0.000 -2.123

Omnibus:	45.581	Durbin-Watson:	2.123
Prob(Omnibus):	0.000	Jarque-Bera (JB):	133.693
Skew:	1.090	Prob(JB):	9.31e-30
Kurtosis:	6.849	Cond. No.	18.7

Warnings

[1] Standard Bitots assume that the covariance matrix of the effors to correctly specified.

In [98]:

```
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train_rfe6.columns
vif['VIF'] = [variance_inflation_factor(X_train_rfe6.values, i) for i in range(X_train_rfe6.shape[1
])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[98]:

	Features	VIF
0	horsepower	2.44
1	carwidth	2.13
2	Cars_Category_TopNotch_Cars	1.74
5	carbody_sedan	1.25
7	enginetype_dohcv	1.19
8	enginetype_I	1.18
4	carbody_hatchback	1.10
6	carbody_wagon	1.07
3	carbody_hardtop	1.06

In [100]:

```
# Dropping highly correlated variables and insignificant variables

X_train_rfe7 = X_train_rfe6.drop('enginetype_l', 1,)

# Adding a constant variable and Build a sixth fitted model

X_train_rfe7c = sm.add_constant(X_train_rfe7)

lm_rfe7 = sm.OLS(y_train, X_train_rfe7c).fit()

#Summary of linear model

print(lm_rfe7.summary())
```

OT.S	Regression	Regulte

Dep. Variable:	price	R-squared:	0.920
Model:	OLS	Adj. R-squared:	0.916
Method:	Least Squares	F-statistic:	222.4
Date:	Fri, 18 Sep 2020	Prob (F-statistic):	7.19e-81
Time:	01:58:02	Log-Likelihood:	-25.723
No. Observations:	164	AIC:	69.45
Df Residuals:	155	BIC:	97.34
Df Model:	8		
Covariance Type:	nonrobust		

=======================================				=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	0.4581	0.136	3.360	0.001	0.189	0.727
horsepower	0.3770	0.036	10.595	0.000	0.307	0.447
carwidth	0.3330	0.033	10.227	0.000	0.269	0.397
Cars Category TopNotch Cars	1.3642	0.092	14.867	0.000	1.183	1.545
carbody_hardtop	-0.5379	0.196	-2.749	0.007	-0.924	-0.151
carbody hatchback	-0.7072	0.141	-5.030	0.000	-0.985	-0.429
carbody_sedan	-0.5583	0.140	-3.999	0.000	-0.834	-0.282
carbody_wagon	-0.6112	0.151	-4.055	0.000	-0.909	-0.313
enginetype_dohcv	-1.4923	0.319	-4.678	0.000	-2.122	-0.862

Omnibus:	45.459	Prob(JB):	2.106
Prob(Omnibus):	0.000		124.397
Skew:	1.116		9.72e-28
Kurtosis:	6.637	Cond. No.	18.7

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [101]:

```
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train_rfe7.columns
vif['VIF'] = [variance_inflation_factor(X_train_rfe7.values, i) for i in range(X_train_rfe7.shape[1
])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[101]:

	Features	VIF
0	horsepower	2.40
1	carwidth	1.98
2	Cars_Category_TopNotch_Cars	1.72
5	carbody_sedan	1.21
7	enginetype_dohcv	1.19
4	carbody_hatchback	1.09
3	carbody_hardtop	1.05
6	carbody_wagon	1.02

In []:

```
##### Now the VIFs and p-values both are within an acceptable range.  
##### So we can go ahead and make our predictions using model lm_rfe7 with 8 predictor variable ## ####
```

In [102]:

```
######## residual analysis of train data #########
y_train_price=lm_rfe7.predict(X_train_rfe7c)
```

In [103]:

```
###### plot histogram of error terms ########
fig= plt.figure()
sns.distplot((y_train-y_train_price),bins=20)
fig.suptitle('Error Terms Analysis', fontsize = 20)
plt.xlabel('Errors', fontsize = 18)
```

Out[103]:

Text(0.5, 0, 'Errors')

Error Terms Analysis


```
0.00 -1.0 -0.5 0.0 0.5 10 15
Errors
```

In [104]:

```
##### making prediction using final model #########
import warnings
warnings.filterwarnings("ignore")

df_test[sig_num_col] = scaler.transform(df_test[sig_num_col])
df_test.shape
```

Out[104]:

(41, 32)

In [105]:

```
#### Dividing test set into X_test and y_test

y_test = df_test.pop('price')
X_test = df_test
```

In [106]:

```
# Adding constant
X_test_1 = sm.add_constant(X_test)
X_test_new = X_test_1[X_train_rfe7c.columns]
```

In [107]:

```
# Making predictions using the final model
y_pred = lm_rfe7.predict(X_test_new)
```

In [108]:

```
# Plotting y_test and y_pred to understand the spread.
fig = plt.figure()
plt.scatter(y_test,y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20)
plt.xlabel('y_test ', fontsize=18)
plt.ylabel('y_pred', fontsize=16)
```

Out[108]:

Text(0, 0.5, 'y_pred')

In [109]:

```
| ##### RMSE Square #######
r2_score(y_test, y_pred)
Out[109]:
0.9164390304661909
In [ ]:
\#\#\# The R2 score of Training set is 0.912 and Test set is 0.909 which is quite close.
\#\#\# Hence, We can say that our model is good enough to predict the Car prices using below predict
or variables
#### horsepower
#carwidth
\#Cars\_Category\_TopNotch\_Cars
#carbody_sedan
#enginetype_dohcv
#carbody_hatchback
#carbody_hardtop
#carbody_wagon
In [ ]:
### Model I Conclusions:
### R-sqaured and Adjusted R-squared - 0.92 and 0.91 - 90% variance explained.
\#\#\# p-values - p-values for all the coefficients seem to be less than the significance level of 0.
05. - meaning that all the
### predictors are statistically significant.
In [ ]:
```