Synthetic tabular data

Tabular data

Colour	Age	Income	Car make	Nr. Cards	
Red	65	50000	Ford	5	

Tabular data – categorical variables

Colour	Age	Income	Car make	Nr. Cards
Blue			Ford	
Red			Fiat	
Black			Ford	
Green			VW	
Green			Ford	

Tabular data – numerical variables

Colour	Age	Income	Car make	Nr. Cards	
Blue	65	51000	Ford	5	
Red	63	59000	Fiat	5.2	
Black	60	55000	Ford	5.9	
Green	58	45000	VW	6	
Green	55	47000	Ford	4	

What is vicinity?

What is vicinity?

What is vicinity?

What is vicinity?

→ Kernel width (arbitrary)

Tabular data – alternative sampling

Add noise extracted from N~(0,1)

Colour	Age	Income	Car make	Nr. Cards
Blue	65	51000	Ford	5
Red	63	59000	Fiat	5.2
Black	60	55000	Ford	5.9
Green	58	45000	VW	6
Green	55	47000	Ford	4

Tabular data – alternative sampling

Colour	Age	Income	Car make	Nr. Cards
Red	65	50000	Ford	5

Original implementation > sample at random from variable distribution.

Alternative (better) implementation → Add random noise to the observation we want to explain.

LIME with tabular data

Colour	Age	Income	Car make	Nr. Cards
Blue	65	51000	Ford	5
Red	63	59000	Fiat	5.2
Black	60	55000	Ford	5.9
Green	58	45000	VW	6
Green	55	47000	Ford	4

Predictions
у1
y2
у3
у4
у5

LIME with tabular data

Colour	Age	Income	Car make	Nr. Cards	
Blue	65	51000	Ford	5	
Red	63	59000	Fiat	5.2	
Black	60	55000	Ford	5.9	
Green	58	45000	VW	6	
Green	55	47000	Ford	4	

Predictions
y1
y2
у3
y4
у5

Colour	Age	Income	Car make	Nr. Cards	Predictions
0	65	51000	1	5	y1
1	63	59000	0	5.2	y2
0	60	55000	1	5.9	у3
0	58	45000	0	6	y4
0	55	47000	1	4	y5

Explainable model

Interpretations

LIME with tabular data

Colour	Age	Income	Car make	Nr. Cards	
Blue	65	51000	Ford	5	
Red	63	59000	Fiat	5.2	
Black	60	55000	Ford	5.9	
Green	58	45000	VW	6	
Green	55	47000	Ford	4	

47000

Colour	Age	Income	Car make	Nr. Cards	Predictions		
0	65	51000	1	5	y1		
1	63	59000	0	5.2	y2	Explainable	Interpretatio
0	60	55000	1	5.9	у3	model	inerpretano
0	58	45000	0	6	y4		

y5

0

55

Considerations

 The categorical variables are one hot encoded for the explainable model.

 Numerical variables can be sampled from a Gaussian or lhs distribution. Alternatively, add noise to the observation.

 Option to discretize continuous features and treat them as categorical.

THANK YOU

www.trainindata.com