Unit 8: Equalization

EL-GY 6013: DIGITAL COMMUNICATIONS

PROF. SUNDEEP RANGAN

Learning Objectives

- □ Determine when equalization is necessary
 - Describe physical mechanisms for multi-path and ISI
- ☐ Describe and implement a simple OFDM TX and RX
- □ Select parameters for an OFDM system (CP, FFT size, ...)
- ☐ Describe the parameters for commonly used commercial OFDM systems
 - Wireless LAN, LTE, 5G NR, ...
- ☐ Write the OFDM channel gain given a discrete-time multipath channel
- ☐ Describe the synchronization and channel estimation process for OFDM
- Compute the bias and variance for simple channel estimators

This Unit

Outline

What is Equalization?

- ☐ Time-Domain Equalization for Single Carrier Systems
- □OFDM TX and RX
- □OFDM Channel
- □OFDM Synchronization and Channel Estimation

Multi-Path and ISI

☐ Effective discrete-time channels often have many taps

$$r[n] = \sum_{k} h[k]u[n-k] + w[n]$$

- ☐Two causes:
 - Multi-path: Physical channel has many paths (Reflections, scattering, ...)
 - Pulse shaping (TX and RX filter spread samples over time)
- □ Causes inter-symbol interference (ISI):
 - Each TX symbol received over many symbols

Multi-path indoor channel measured at UC Berkeley

Equalization

- ☐ Equalization: Any method to overcome ISI
- ☐ This lecture we look at two main methods
- ☐Time-domain equalization
 - Used in single carrier systems
- ☐ Frequency-domain equalization
 - Used in OFDM systems

Linear Equalization

☐ Discrete-time ISI channel:

$$r[n] = \sum_{k} h[k]u[n-k] + w[n]$$

Linear equalizers: Find a filter g[k] to approximately invert the channel: $z[n] = \sum_{k} g[k] r[n-k] \approx u[n]$

$$z[n] = \sum_{k} g[k]r[n-k] \approx u[n]$$

 \square In frequency-domain: $G(\Omega) \approx \frac{1}{H(\Omega)}$

Training Symbols

- □All linear equalizers require training or reference signals
- \square TX sends a known reference sequence u[n]
- \square RX sees r[n] = h[n] * u[n] + w[n]
- \square Estimates channel and/or equalizer for r[n]

Outline

- ■What is Equalization?
- Time-Domain Equalization for Single Carrier Systems
 - □OFDM TX and RX
 - □ OFDM Channel
 - □OFDM Synchronization and Channel Estimation

802.11 ad Preamble for 60 GHz WiFi

802.11ad Preamble Details

Control packets

Longer STF.

Need to be decoded by all stations. No directional gain

Data packets

Shorter STF

- \square Based on complementary Golay codes [Ga, Gb]
- ☐ Have low auto-correlation

$$\Box \frac{1}{T_c} = 1.76 \, \text{Gsamp/S}$$

 \square For data packets: STF = 1.23 μ s, CE= 0.654 μ s

STF Detection

Short Training Field (STF) 2176 T_c SC Channel Estimation Field (CEF) 1152 T_c -Gb₁₂₈ -Ga₁₂₈ -Ga₁₂₈ -Gb₁₂₈ -Ga₁₂₈ -Gb₁₂₈ Ga₁₂₈ Ga₁₂₈ Ga₁₂₈ Ga₁₂₈ Ga₁₂₈ -Gb₁₂₈ -Ga₁₂₈ Gb₁₂₈

- ☐MF detector: Correlate with STF
 - Gives good performance but expensive
- ☐ Simpler delay detector

Estimation from the CEF

Short Training Field (STF) 2176 T_c SC Channel Estimation Field (CEF) 1152 T_c -Gb₁₂₈ -Ga₁₂₈ -Gb₁₂₈ -Ga₁₂₈ -Gb₁₂₈ Ga₁₂₈ Ga₁₂₈ Ga₁₂₈ -Ga₁₂₈ Ga₁₂₈ Ga₁₂₈ -Gb₁₂₈ Gb₁₂₈ -Ga₁₂₈

- ☐ Known sequence
- ☐ Linear estimation problem

Linear Estimation

- ☐ Discussed on board in class
- ☐ Linear estimation
- Matrix form
- ☐ Least squares solution
- ☐ This is not on the exam

Outline

- ☐What is Equalization?
- ☐ Time-Domain Equalization for Single Carrier Systems
- OFDM TX and RX
 - □ OFDM Channel
 - □ OFDM Synchronization and Channel Estimation

OFDM

- ☐ Basic problem: How do we make equalization easy?
- □ Recall from earlier lectures:
 - For narrowband channels, the channel response in frequency-domain is approximately flat
 - In time-domain, the channel is a single tap
 - No equalization necessary, once we have good synchronization
- ☐ The OFDM concept:
 - Divide a wideband channel into a set of narrowband channels
 - Each narrowband channel is modulated onto a sub-carrier
 - The frequency of the subcarriers are uniformly spaced

History of OFDM

- ☐ First proposed by Chang, Bell Labs, 1966
- Many applications:
 - Early digital TV, LER, Paris 1988
 - ETSI Digital Audio Broadcast, 1995
 - ETSI Digital Video Broadcast, DVB-T, 1997
 - o DSL, 1998
- ■Wireless LANs:
 - 802.11a, 1999 and 802.11g, 2002
 - ° 802.11n, 2004
- ☐ Fourth Generation Cellular standards
 - Flash-OFDM, 2001
 - WiMax, LTE
- ☐ 5G New Radio
 - Also based on OFDM for now.

OFDM Symbol Structure in Time-Domain

☐ Time is divided into OFDM symbols

- Each symbol divided into samples
- $\circ \frac{1}{T}$ = sample rate

☐ Each symbol has:

- \circ FFT period, N_{FFT} samples
- \circ CP period, N_{CP} samples
- \circ N_{FFT} = number samples in FFT period
- N_{CP} = number samples in cyclic prefix
- $N_{Sym} = N_{FFT} + N_{CP} =$ samples per symbol
- $T_{sym} = TN_{sym} = \text{symbol period}$

OFDM in Frequency Domain

☐ Frequency is divided into subcarriers

- \circ N_{FFT} subcarriers
- Spaced at $\Delta f = \frac{1}{TN_{FFT}}$

■ Subcarriers are divided into:

- N_{SC} occupied subcarriers
- $\circ N_{FFT} N_{SC}$ null subcarriers

■ Subcarrier frequencies:

- \circ Digital frequency: $\Omega_n = \frac{2\pi n}{N_{FFT}}$,
- Analog frequency $f_n = \frac{\Omega}{2\pi T} = n\Delta f$

OFDM Time-Frequency Grid

Frequency

- Data to be transmitted is an array: X[n, k]
 - $\cdot \ k =$ OFDM symbol index
 - \circ *n* = subcarrier index
- Resource element:
 One time-frequency point
- \square TX data X[n, k]
 - One complex value per RE
 - Called a modulation symbol

OFDM TX Modulation

Modulation of L OFDM symbols

- \square Input: x[j]: Sequences of modulation symbols

- $\Box \text{IFFT:} \quad U[\ell, k] = \frac{1}{\sqrt{N}} \sum_{n} X_0[n, k] e^{i\Omega_n \ell}$
- ☐ Serialize with CP insertion:

• CP:
$$u[kN_{sym} + \ell] = U[k, N_{FFT} - N_{CP} + \ell], \ell = 0, ..., N_{CP} - 1$$

• FFT:
$$u[kN_{sym} + N_{FFT} + \ell] = U[k, \ell], \ell = 0, ..., N_{FFT} - 1$$

OFDM TX Modulation in MATLAB

Manually performing the operations

```
% Parallelize
X = reshape(x,nsc,ns);

% Zero pad and insert X around DC
nl = round(nsc/2);
X0 = zeros(nfft,ns);
X0(l:nl,:) = X(l:nl,:);
X0(nfft-nl+l:nfft,:) = X(nl+l:nsc,:);

% IFFT
U0 = ifft(X0);

% Add CP and serialize
U = [U0(nfft-ncp+l:nfft,:); U0];
u = U(:);
```

Using MATLAB's built-in function

☐ This is preferable and easier

Multipath Channel

TX OFDM symbol u[j]

Multipath channel

RX OFDM symbol r[j]

- \square Now consider a multi-path channel: $r[j] = u[j] * h[j + i_0]$
 - i_0 = Sample of first path
 - Assume h[j] = 0 for j < 0 and $j \ge N_{CP}$
 - ∘ That is, $h[j] \neq 0$ only for $j \in \{0,1,...,N_{CP}-1\}$
- ☐ Implicitly we have made two key assumptions
 - \circ Delay spread is less than N_{CP} samples = $N_{CP}T$ total length
 - RX is aligned such that first path arrives at j=0

OFDM Receiver

- \square Find i_0 arrival of first sample of symbol 0
 - Use synchronization signal for example
- ☐ Start FFT window after first path + CP period

$$R[\ell, k] = r[kN_{sym} + i_0 + N_{CP} + \ell], \ell = 0, 1, ..., N_{FFT}$$

- Start time=symbol time + first path + CP period
- \circ Window of length N_{FFT}
- □Assume delay spread $\le N_{CP}$
- ☐ Then, there is no ISI
 - \circ RX window for symbol k sees only TX symbol k
- ☐ Also, channels acts as a circular convolution:

$$R[\ell, k] = \sum_{j} h[j]U[\ell - j, k]$$

 N_{FFT}

OFDM Receiver FFT

- \square From previous slide RX symbol is: $R[\ell, k] = \sum_{j} h[j]U[\ell j, k]$
- \square Also, TX used an IFFT: $U[\ell,k] = \frac{1}{\sqrt{N}} \sum_{n} X_0[n,k] e^{i\Omega_n \ell}$
- ☐At RX use an FFT:

$$Y_0[\ell, k] = \frac{1}{\sqrt{N}} \sum_{n} R[n, k] e^{-i\Omega_n \ell}$$

- Use subscript 0 to indicate that X_0 and Y_0 contain null subcarriers
- ☐ Since channel is equivalent to a circular convolution:

$$Y_0[n,k] = H(\Omega_n)X_0[n,k]$$

Channel acts as scalar multiplication in each sub-carrier

OFDM RX Summary

Demod of *L* OFDM symbols

- \square Find i_0 arrival of first sample of symbol 0
- □ Take FFT window: $R[\ell, k] = r[i_0 + kN_{sym} + N_{CP} + \ell]$
 - Note the offsetting
- $\square \text{FFT:} \ Y_0[n,k] = \frac{1}{\sqrt{N}} \sum_{\ell} R[\ell,k] e^{-i\Omega_n \ell}$
- \square Remove null-carriers: $Y[n, k] = Y_0[n, k]$,
 - \circ *n* is an occupied subcarriers
- ■Serialize:

$$y[kN_{SC} + n] = Y[n, k], \qquad n = 0, ..., N_{SC} - 1$$

Summary

- □ Key relation: $Y[n, k] = H(\Omega_n)X[n, k]$
- \square On each subcarrier n, channel is a single complex gain
- No interference between OFDM symbols or sub-carriers
- ☐ Equalization made easy!

Degrees of Freedom, Overhead

- \square Each OFDM symbol has N_{SC} DoF
- □Degrees of freedom per second is:

$$R = \frac{DoF \ per \ OFDM \ symbol}{Secs \ per \ OFDM \ symbol} = \frac{DoF}{sec} = \frac{N_{sc}}{N_{sym}T}$$

- Occupied bandwidth: $N_{SC} = max \frac{DoF}{SeC}$
- Fraction Overhead: $\alpha = 1 \frac{R}{B} = 1 \frac{N_{FFT}}{N_{sym}} = \frac{N_{CP}}{N_{sym}}$
- Conclusion: The CP is the overhead
 The price for orthogonality between subcarriers

Designing the OFDM Parameters

- \square Select CP period, T_{CP}
 - Must be sufficiently large for maximum delay spread + timing error
 - But no larger since that results in excess overhead
- \square Select FFT period T_{FFT}
 - \circ Select subcarrier spacing Δf sufficiently large to prevent inter-carrier interference from Doppler
 - Not discussed in this class (see the wireless class)
 - Then take $T_{FFT} = \frac{1}{\Delta f}$
- \square Select number of sub-carriers based on available bandwidth $N_{SC} = \frac{B}{\Delta f}$
- □ Take N_{FFT} to be smallest power of 2 $\geq N_{SC}$
 - Allows easy FFT implementation
- $\square \text{Sample rate} = \frac{1}{T} = N_{FFT} \Delta f$
- \square Number of samples in CP: $N_{CP} = \frac{T_{CP}}{T}$

Ex: 802.11a/g OFDM

- □STF: For detection, AGC
- □ 2 OFDM symbols for initial channel estimate
- □ 4 pilots in remainder of symbols for tracking

Parameter	Value			
Total subcarriers NST	52			
Data subcarriers N _{SD}	48			
Pilot subcarriers N _{SP}	4 (subcarriers -21, 7, 7, 21)			
Subcarrier Frequency Spacing FSP	312.5 KHz (20MHz/64)			
Symbol Interval Time TSYM	4 us (T _{GI} +T _{FFT})			
Data Interval Time T _{DATA}	3.2 us (1/F _S p)			
Guard Interval (GI) Time T _{GI}	0.8 us (T _{FFT} /4)			
IFFT/FFT Period T _{FFT}	3.2 us (1/F _S p)			
SIGNAL Symbol TIme TSIGNAL	4 us (T _{GI} +T _{FFT}			
Preamble TPREAMBLE	16 us (T _{SHORT} +T _{LONG})			
Short Training Sequence TSHORT	8 us (10xT _{FFT} /4)			
Long Training Sequence T _{LONG}	8 us (T _{GI2} + 2xT _{FFT})			
Training symbol GI T _{GI2}	1.6 us (T _{FFT} /2)			
FFT sample size	64 point			

High Throughput 802.11n and 802.11ac

- □ Increase bandwidth by using more subcarriers
- ■Subcarrier spacing and CP length are identical

4G LTE

Channel Bandwidth (MHz)	1.4	3	5	10	15	20
Transmission Bandwidth Config. (RB)	6	15	25	50	75	100
Number of Subcarriers	72	180	300	600	900	1200
Occupied Bandwidth (MHz)	1.08	2.7	4.5	9.0	13.5	18.0

- Bandwidth allocated in resource blocks
 - 1 RB = 12 subcarriers
- $\Box \Delta f = 15 \text{ kHz}$
- \square FFT size up to: $N_{FFT} = 2048$
- □Sample rate = $N_{FFT}\Delta f$ = 30.72 MHz

5G NR OFDM

Subcarrier spacing	15kHz	30kHz (2 x 15kHz)	60kHz (4 x 15kHz)	15 x 2 ⁿ kHz, (n = 3, 4,)	
OFDM symbol duration	66.67 µs	33.33 µs	16.67 µs	66.67/2" µs	
Cyclic prefix duration	4.69 µs	2.34 μs	1.17 µs	4.69/2" μs	
OFDM symbol including CP	71.35 µs	35.68 µs	17.84 µs	71.35/2" µs	
Number of OFDM symbols per slot	7 or 14	7 or 14	7 or 14	14	
Slot duration	500 μs or 1,000 μs	250 μs or 500 μs	125 μs or 250 μs	1,000/2 ⁿ µs	

- ☐ Flexible numerology
- □ Supports different cell sizes and latency / granularity

5G NR OFDM Details

- \square Configurable with parameter $\mu = 0,1,2,...,4$.
- □Subcarrier spacing: $Δf = (15)2^μ$ kHz
- \square FFT size: Typically $N_{FFT} = 1024, 2048, 4096$
- \square Occupied subcarriers: $12N_{RB} + 1$ DC
 - N_{RB} = number of "resource blocks"
 - One RB is a group of 12 subcarriers. Basic unit of multiplexing

Parameter / Numerlogy (u)	0	1	2	3	4
Subcarrier Spacing (Khz)	15	30	60	120	240
OFDM Symbol Duration (us)	66.67	33.33	16.67	8.33	4.17
Cyclic Prefix Duration (us)	4.69	2.34	1.17	0.57	0.29
OFDM Symbol including CP (us)	71.35	35.68	17.84	8.92	4.46

Outline

- ■What is Equalization?
- ☐ Time-Domain Equalization for Single Carrier Systems
- □OFDM TX and RX
- OFDM Channel
 - □OFDM Synchronization and Channel Estimation

OFDM Channel

☐ Key input-output equation:

$$Y[n,k] = H[n,k]X[n,k]$$

- $\square H[n,k] = OFDM$ channel gain
 - One complex gain at each time-frequency point
- \square The channel H[n, k] varies:
 - In time: Due to multi-path fading and mobility
 - In frequency: Due to delay spread
- ☐ Topic is discussed more in the wireless class
- ☐ This class: Look at only variations in frequency

Frequency Subcarrier *n*

36

OFDM Multi-Path Channel

□Consider a time-varying multi-path channel:

$$h(t) = \sum_{\ell=1}^{L} g_{\ell}(t)\delta(t - \tau_{\ell})$$

- $\circ~g_{\ell}(t)$: Path gain. Varies to multi-path fading
- \circ τ_{ℓ} : Delay of path. Assume it is constant
- Note: See wireless class for more about multi-path fading

☐ Assumptions:

- Ideal low-pass filtering
- $g_{\ell}(t)$ is approximately constant in each OFDM symbol: $g_{\ell}[k] = g(kT_{sym})$
- RX FFT window is aligned
- \square Then, discrete-time effective channel in symbol k will be approximately:

$$h[j,k] = \sum_{\ell=1}^{L} g_{\ell}[k] \operatorname{sinc}\left(j - \frac{\tau_{\ell}}{T}\right)$$

Multipath channel

Variation in Frequency

□ Discrete-time time-varying impulse response is:

$$h[j,k] = \sum_{\ell=1}^{L} g_{\ell}[k] \operatorname{sinc}\left(j - \frac{\tau_{\ell}}{T}\right)$$

 \square Frequency-response in symbol k is:

$$H_k(\Omega) = \sum_{\ell=1}^{L} g_{\ell}[k] e^{-\frac{i\Omega\tau_{\ell}}{T}}$$

☐Time-varying frequency response in :

$$H[n,k] = H_k(\Omega_n) = \sum_{\ell=1}^{L} g_{\ell}[k] e^{-\frac{i\Omega_n \tau_{\ell}}{T}} = \sum_{\ell=1}^{L} g_{\ell}[k] e^{-\frac{i2\pi n \tau_{\ell}}{TN_{FFT}}}$$

lacktriangle Each path causes a linear phase rotation by: $\frac{ au_\ell}{TN_{FFT}}$ per sub-carrier

Frequency Variation: Single Path

$$lue{}$$
 Constant single path with delay au

$$H(\Omega) = e^{-\frac{i\Omega\tau}{T}}$$

☐ Plotted: Real part of

 \circ $H(\Omega)$: Blue line

• Sample $H[n] = H(\Omega_n)$: Green dots

☐Parameters:

$$au = 0.5 \mu s$$

= 10T $au = \frac{1}{T} = 20 \text{ MHz}$

$$N_{FFT} = 64, N_{SC} = 48$$

 \square Greater delays \Rightarrow More phase rotation

Freq Variation: Two Path Example

- \square Plotted is the real of H[n]
- □OFDM LTE parameters
 - \circ $\Delta f = 15 \text{ kHz}$
 - $N_{SC} = 1200$
 - $B = N_{sc}\Delta f$ =18 MHz occupied BW
- ☐ Channel parameters
 - Two path channel
 - \circ Path 1: Delay=0.25 μ s, gain=1
 - \circ Path 2: Delay=0.36 μ s, gain=0.8

Outline

- ■What is Equalization?
- ☐ Time-Domain Equalization for Single Carrier Systems
- □OFDM TX and RX
- □OFDM Channel
- OFDM Synchronization and Channel Estimation

OFDM Channel Estimation

- ■Two key tasks in OFDM
- ■Synchronization:
 - RX sets position for FFT window
 - Ensure there is no ISI
- □ Channel estimation:
 - OFDM channel is: Y[n, k] = H[n, k]X[n, k]
 - Must estimate channel H[n, k]

Frequency Subcarrier *n*

OFDM Synchronization

- ☐ Generally use two part synchronization
- ☐ Detect time of arrival of some known sync signal
 - \circ Call this time t_{sync}
 - E.g. Long training field in 802.11g
 - Or Primary/Secondary sync signal in LTE
 - Use matched filter or technique from prev lecture
- \square OFDM symbol start at some known time offset $t_{OFDM} = t_{sync} + \Delta_{sync}$
- $lue{}$ Start FFT window shortly after t_{OFDM}
 - Some time within one CP
 - \circ Symbol k starts at $t_k = t_{OFDM} + N_{FFT}k + \delta$
 - $\delta \in [0, N_{CP} 1]$

OFDM Window Alignment with Multi-Path

- ■Suppose there is multi-path
- ☐ Pre-amble detection will generally find one path
- ☐ Typically align RX FFT window in the middle of the CP
- ☐ Then, other paths will also be in CP
- ☐Getting this alignment correct takes some effort
- ☐ In the lab, you will:
 - Detect preamble from LTF in an 802.11g packet
 - Align the RX window for the remaining symbols

OFDM Channel Estimation

□Once RX window is properly aligned, the channel will be of the form

$$Y[n,k] = H[n,k]X[n,k]$$

- H[n, k] = OFDM channel gain
- \square Channel estimation problem: Estimate H[n, k]
- ☐ Pilots or reference signals:
 - Transmit known H[k, n] time-frequency positions (k, n)
 - Determine H[k, n] at those locations
 - Interpolate to remainder of (k, n) plane
- ☐ Pilots must be spaced based on rate of variation
 - Called coherence time and bandwidth in wireless

Frequency Subcarrier *n*

Time OFDM symbol k

Ex: LTE Pilots

☐ Can average in time or frequency

Pilots (Cell Reference signals) in one RB

Ex: 802.11a/g

- □ Initial estimate from channel estimation sequence
 - Reference signals on all sub-carriers
- ☐ Then tracked over time with pilots
 - Pilots on 4 of 52 sub-carriers

802.11a OFDM Physical Parameters

Estimation Basics

- \square Problem: We want to estimate a parameter θ from data Y
- ☐ In OFDM channel estimation:
 - θ = true channel at some time and frequency h[n, k]
 - \circ Y = observed noisy channel responses at reference signals
- \square An estimator is a function $\hat{\theta} = g(Y)$
 - \circ Input is the observed data, output is the estimate of heta
- \square Assume *Y* is some random function of θ
 - There is a pdf: $p(y|\theta)$
- ☐ Mean squared error:

$$MSE = E\left(\left(\hat{\theta} - \theta\right)^2 | \theta\right)$$

- \circ This is a function of θ , the estimator $g(\cdot)$ and the data Y
- \circ Can also take an average over θ if θ is random

Bias and Variance

- \square Fix an unknown parameter θ , data distribution $Y \sim p(y|\theta)$ and an estimator $\hat{\theta} = g(Y)$
- $\Box \text{Bias: } Bias(\hat{\theta}|\theta) = E[\hat{\theta}|\theta] \theta$
 - Represents how the estimator is off, on average
- □ Variance: Var(θ̂|θ) = E [(θ̂ − E[θ̂|θ])²|θ]
 - Represents variation from average
- \square Both expectations are over Y
- Theorem (Bias-Variance): For any estimator, $MSE(\hat{\theta}|\theta) = Bias^2(\hat{\theta}|\theta) + Var(\hat{\theta}|\theta)$
 - Proof in class
- ☐ As we will see below, there is a tradeoff in bias and variance

Raw Channel Estimate

- □ Consider estimation over frequency
 - Ignore time for now
- \square We have y[n] = h[n]x[n] + w[n]
 - h[n] =unknown channel gain
 - Say we know x[n] for all n (e.g. like CE field in 802.11g)
 - Assume $w[n] \sim CN(0, N_0)$, $|x[n]|^2 = E_x$ for all n
- Consider raw channel estimate: $\hat{h}_0[n] = \frac{y[n]}{x[n]}$
- □ Plotted to the right:
 - Two path channel from before
 - OFDM system with 1200 subcarriers (LTE 20 MHz channel)
 - SNR = 10 dB

Bias and Variance of Raw Channel Estimate

- \square We have y[n] = h[n]x[n] + w[n]
 - $w[n] \sim CN(0, N_0)$, $|x[n]|^2 = E_x$ for all n
- \square Raw channel estimate: $\hat{h}_0[n] = \frac{y[n]}{x[n]}$
- $\Box E(\hat{h}_0[n]) = h[n] + E\left(\frac{w[n]}{x[n]}\right) = h[n]$
- $\square Bias(\hat{h}_0[n]) = E(\hat{h}_0[n]) h[n] = 0$
 - Estimate is unbiased
- $\square Var(\hat{h}_0[n]) = \frac{1}{|x[n]|^2} var(w[n]) = \frac{N_0}{E_X}$
 - Inverse of the SNR

$$\square MSE(\hat{h}_0[n]) = Bias^2 + Var = \frac{N_0}{E_x}$$

Adding Averaging

- ☐ Can we reduce the noise in the raw channel estimate
- ☐ Simple idea: Use averaging!

$$\hat{h}[n] = \frac{1}{2L+1} \sum_{\ell=-L}^{\ell=L} \hat{h}_0[n+\ell]$$

- \circ Average over window of length 2L + 1
- □Does this help?
- ☐ Compute the bias and variance
- ☐ To compute bias and variance: $\hat{h}_0[n] = h[n] + v[n]$, $v[n] = \frac{w[n]}{x[n]}$
 - Since w[n]~CN(0, N₀), we have v[n]~ $CN(0, \gamma^{-1})$, $\gamma = E_x/N_0$
- ☐Bias:

$$Bias(\hat{h}[n]) = E(\hat{h}[n]) - h[n] = \frac{1}{2L+1} \sum_{\ell=-L}^{\ell=L} E(\hat{h}_0[n+\ell]) - h[n] = \frac{1}{2L+$$

Variance of the Averaged Estimate

- \square Average estimate: $\hat{h}[n] = \frac{1}{2L+1} \sum_{\ell=-L}^{\ell=L} \hat{h}_0[n+\ell]$
- \square Raw estimate: $\hat{h}_0[n] = h[n] + v[n], v[n] \sim CN(0, \gamma^{-1}), \ \gamma = E_x/N_0$
- **□**Variance:
 - The noise terms v[n] are independent
 - \circ The terms h[n] are considered fixed.
 - Hence,

$$\operatorname{Var}(\hat{h}[n]) = \frac{1}{(2L+1)^2} \sum_{\substack{\ell=-L \\ \ell=L}}^{\ell=L} var(\hat{h}_0[n+\ell])$$

$$= \frac{1}{(2L+1)^2} \sum_{\ell=-L}^{\ell=-L} var(v[n+\ell]) = \frac{(2L+1)\gamma^{-1}}{(2L+1)^2} = \frac{\gamma^{-1}}{2L+1}$$

- □ Conclusion: Variance decreases with window length
 - Enables more averaging

Bias of the Averaged Estimate

- \square Average estimate: $\hat{h}[n] = \frac{1}{2L+1} \sum_{\ell=-L}^{\ell=L} \hat{h}_0[n+\ell]$
- \square Raw estimate: $\hat{h}_0[n] = h[n] + v[n], v[n] \sim CN(0, \gamma^{-1}), \ \gamma = E_x/N_0$
- ☐Bias:
 - $\circ \ Bias(\hat{h}[n]) = E(\hat{h}[n]) h[n] = \frac{1}{2L+1} \sum_{\ell=-L}^{\ell=L} E(\hat{h}_0[n+\ell]) h[n] = \frac{1}{2L+1} \sum_{\ell=-L}^{\ell=L} (h[n+\ell] h[n])$
 - \circ Bias depends on terms $h[n+\ell]-h[n]$
- \square Bias increases as window length L increases
 - \circ On average, $h[n+\ell]-h[n]$ increases with $|\ell|$
 - Difference in two frequencies
 - Averaging over larger frequency windows averages over more distant frequencies $h[n+\ell]$
 - These may not be related to h[n]

Bias-Variance Illustrated

High variance

Not enough averaging

High bias

Over-smoothed

- ☐ Two path channel as before
- □ Different window lengths

Optimizing Bias-Variance Tradeoff

Window length

25

30

35

40

- ☐ Plotted: The MSE vs. window length
- Normalized MSE:

$$\circ 10 \log_{10} \frac{E|h[n] - \hat{h}[n]|^2}{E|h[n]|^2}$$

- ☐ In reality, we would:
 - Average performance over ensemble of channels
 - Consider more complex estimators

-24

5

10

15

