

Probability and Stochastic Processes

Lecture 06: σ -Algebras (contd.), Construction of $\mathscr{B}[0,1]$ and $\mathscr{B}(\mathbb{R})$, Generating Classes for $\mathscr{B}(\mathbb{R})$

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

13 August 2025

Construction of $\mathscr{B}(\{0,1\}^{\mathbb{N}})$

- $\bullet \ \ \text{Consider the "cylinder" base collection } \mathscr{C} = \bigg\{ [\mathbf{b}] : \mathbf{b} \in \mathscr{D} \bigg\}.$
- Let $\mathscr{A} = \alpha(\mathscr{C})$ denote the smallest algebra constructed starting from \mathscr{C}
- Let A* denote the set

$$A^* = \{\omega \in \{0,1\}^\mathbb{N}: \quad \omega_i = 1 ext{ for all } i \in \{2,4,6,8,\ldots\}\}$$

- Clearly, $A^* \notin \mathcal{A}$, as its occurrence/non-occurrence cannot be determined from only observing the first finitely many bits of any infinite binary string
- This shows that \mathscr{A} is **not a** σ **-algebra**
- Let $\sigma(\mathscr{A})$ denote the smallest σ -algebra constructed starting from \mathscr{A}

The Borel σ -Algebra

The σ -algebra $\sigma(\mathscr{A})$ so constructed is called the Borel σ -algebra of subsets of $\{0,1\}^{\mathbb{N}}$. Henceforth, we shall denote the same by $\mathscr{B}(\{0,1\}^{\mathbb{N}})$.

Construction of $\mathcal{B}(0,1)$

Consider the collection

$$\mathscr{P}=igg\{(a,b):\quad a,b\in\mathbb{R},\ 0\leq a\leq b\leq 1igg\}.$$

- Is \mathscr{P} a σ -algebra? No!
- Let $\sigma(\mathscr{P})$ denote the smallest σ -algebra constructed starting from \mathscr{P}

The Borel σ -Algebra

The σ -algebra $\sigma(\mathscr{P})$ so constructed is called the Borel σ -algebra of subsets of (0,1). Henceforth, we shall denote the same by $\mathscr{B}(0,1)$.

• Let $\Omega = \{1, \dots, 6\}$. Consider the collection

$$\mathscr{C} = \left\{ \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\} \right\}$$

What is $\mathscr{F} = \sigma(\mathscr{C})$?

• Let $\Omega = \{1, \dots, 6\}$. Consider the collection

$$\mathscr{C} = \left\{ \{1, 2\}, \{3, 4\}, \{5, 6\} \right\}$$

What is $\mathscr{F} = \sigma(\mathscr{C})$?

• What if
$$\mathscr{C} = \left\{ \{1,2\}, \{3,4\} \right\}$$
?

• Let $\Omega = \{1, \dots, 6\}$. Consider the collections

$$\mathscr{C}_1 = \bigg\{\{1,2\},\{3,4\}\bigg\}, \qquad \mathscr{C}_2 = \bigg\{\{1,3\}\bigg\}.$$

Let
$$\mathscr{F}_1 = \sigma(\mathscr{C}_1)$$
 and $\mathscr{F}_2 = \sigma(\mathscr{C}_2)$.

- 1. What is $\mathscr{F}_1 \cap \mathscr{F}_2$? Is it also a σ -algebra?
- 2. What is $\mathscr{F}_1 \cup \mathscr{F}_2$? Is it also a σ -algebra?

• Let $\Omega = \{1, \dots, 6\}$. Construct a σ -algebra $\mathscr F$ containing 16 events in it.

• Let $\Omega = \mathbb{N}$. Consider the collection

$$\mathscr{C} = \bigg\{\{n\}: n \in \mathbb{N}\bigg\}$$

What is $\mathscr{F} = \sigma(\mathscr{C})$?

• Let $\Omega = \mathbb{N}$. Construct a σ -algebra with 512 sets in it.

• Let $\Omega = (0, 1)$. Construct a σ -algebra with 512 sets in it.

• Let $\Omega = (0, 1)$. For each $n \in \mathbb{N}$, let

$$A_n \coloneqq \left(rac{1}{5}, \ rac{1}{3} + rac{1}{n}
ight), \qquad B_n \coloneqq \left(rac{1}{5} - rac{1}{n}, \ rac{1}{3}
ight).$$

- 1. Evaluate $\bigcap_{n\in\mathbb{N}} A_n$.
- 2. Evaluate $\bigcup_{n\in\mathbb{N}} A_n$
- 3. Evaluate $\bigcap_{n \in \mathbb{N}} B_n$.
- 4. Evaluate $\bigcup_{n\in\mathbb{N}} B_n$.
- 5. Show that $\left[\frac{1}{5}, \frac{1}{3}\right] \in \mathcal{B}(0, 1)$.

- Let $\Omega = (0, 1)$.
 - 1. Show that $\{x\} \in \mathcal{B}(0,1)$ for every $x \in (0,1)$.
 - 2. Given 0 < a < b < 1, show that $(a, b] \in \mathcal{B}(0, 1)$.
 - 3. Given 0 < a < b < 1, show that $[a,b) \in \mathscr{B}(0,1)$.
 - 4. Given 0 < a < b < 1, show that $[a, b] \in \mathcal{B}(0, 1)$.

Construction of $\mathscr{B}[0,1]$

Question

Now that we know how to construct $\mathcal{B}(0,1)$, how do we construct $\mathcal{B}[0,1]$?

Observe that

$$[0,1] = \{0\} \quad \cup \quad (0,1) \quad \cup \quad \{1\}$$

We then have

$$\mathscr{B}[0,1] = \sigma\left(\left\{\{0\},\{1\}\right\} \ \bigcup \ \mathscr{B}(0,1)\right).$$

Construction of $\mathscr{B}(\mathbb{R})$

• Experiment: measure the noise level at the receiver of a communication system

• Each outcome: $\omega \in \mathbb{R}$

• Sample space: $\Omega = \mathbb{R} = (-\infty, +\infty)$

Consider the collection

$$\mathscr{P}_1 \coloneqq \Big\{(a,b): \; a,b \in \mathbb{R}, \; a \leq b\Big\}.$$

Borel σ -Algebra $\mathscr{B}(\mathbb{R})$

The smallest σ -algebra that can be constructed from \mathscr{P}_1 is called the Borel σ -algebra of subsets of \mathbb{R} . Henceforth, we shall denote the same by $\mathscr{B}(\mathbb{R})$.

Demystifying $\mathscr{B}(\mathbb{R})$

Recall:

$$\mathscr{P}_1=igg\{(a,b):\ a,b\in\mathbb{R},\ a\leq bigg\}.$$

- Given $x \in \mathbb{R}$, show that $\{x\}$ can be expressed in terms of sets from \mathscr{P}_1 .
- Given $x \in \mathbb{R}$, show that $(-\infty, x)$ can be expressed in terms of sets from \mathscr{P}_1 .
- Given $x \in \mathbb{R}$, show that $(-\infty, x]$ can be expressed in terms of sets from \mathscr{P}_1 .
- Given $x \in \mathbb{R}$, show that $(x, +\infty)$ can be expressed in terms of sets from \mathscr{P}_1 .
- Given $x \in \mathbb{R}$, show that $[x, +\infty)$ can be expressed in terms of sets from \mathscr{P}_1 .
- Given $x, y \in \mathbb{R}$ with x < y, show that (x, y] can be expressed in terms of sets from \mathscr{P}_1 .
- Given $x, y \in \mathbb{R}$ with x < y, show that [x, y] can be expressed in terms of sets from \mathscr{P}_1 .
- Given $x, y \in \mathbb{R}$ with x < y, show that [x, y) can be expressed in terms of sets from \mathscr{P}_1 .

\mathscr{P}_1 is a Generating Class for $\mathscr{B}(\mathbb{R})$!

\mathscr{P}_1 is a Generating Class

Any set in $\mathscr{B}(\mathbb{R})$ may be expressed via complements and/or countable unions and/or countable intersections of sets in \mathscr{P}_1 , i.e., $\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{P}_1)$.

Demystifying $\mathscr{B}(\mathbb{R})$

Consider the collection

$$\mathscr{P}_2 \coloneqq \Big\{ [a,b]: \; a,b \in \mathbb{R}, \; a \leq b \Big\}.$$

- Given $x \in \mathbb{R}$, show that $\{x\}$ can be expressed in terms of sets from \mathscr{P}_2 .
- Given $x \in \mathbb{R}$, show that $(-\infty, x)$ can be expressed in terms of sets from \mathscr{P}_2 .
- Given $x \in \mathbb{R}$, show that $(-\infty, x]$ can be expressed in terms of sets from \mathscr{P}_2 .
- Given $x \in \mathbb{R}$, show that $(x, +\infty)$ can be expressed in terms of sets from \mathscr{P}_2 .
- Given $x \in \mathbb{R}$, show that $[x, +\infty)$ can be expressed in terms of sets from \mathscr{P}_2 .
- Given $x, y \in \mathbb{R}$ with x < y, show that (x, y] can be expressed in terms of sets from \mathcal{P}_2 .
- Given $x, y \in \mathbb{R}$ with x < y, show that (x, y) can be expressed in terms of sets from \mathscr{P}_2 .
- Given $x, y \in \mathbb{R}$ with x < y, show that [x, y) can be expressed in terms of sets from \mathscr{P}_2 .

\mathscr{P}_2 is a Generating Class for $\mathscr{B}(\mathbb{R})$!

$\mathscr{B}(\mathbb{R})$

$$\mathscr{P}_1 = \Big\{ (a,b): \;\; a,b \in \mathbb{R}, \;\; a \leq b \Big\}$$

$$\mathscr{P}_2 = \Big\{[a,b]: \;\; a,b \in \mathbb{R}, \;\; a \leq b\Big\}$$

\mathscr{P}_2 is a Generating Class

Any set in $\mathscr{B}(\mathbb{R})$ may be expressed via complements and/or countable unions and/or countable intersections of sets in \mathscr{P}_2 , i.e., $\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{P}_2)$.

Generating Classes for $\mathscr{B}(\mathbb{R})$

• We already saw

$$\mathscr{P}_1=\Big\{(a,b):\ a,b\in\mathbb{R},\ a\leq b\Big\},\qquad \mathscr{P}_2=\Big\{[a,b]:\ a,b\in\mathbb{R},\ a\leq b\Big\},$$

- are generating classes for $\mathscr{B}(\mathbb{R})$
- In simple words, $\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{P}_1)$, $\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{P}_2)$
- Consider the collections

$$\begin{split} \mathscr{P}_3 &= \Big\{ [a,b): \ a,b \in \mathbb{R}, \ a \leq b \Big\}, \qquad \mathscr{P}_4 &= \Big\{ (a,b]: \ a,b \in \mathbb{R}, \ a \leq b \Big\}, \\ \mathscr{P}_5 &= \Big\{ (-\infty,x): \ x \in \mathbb{R} \Big\}, \qquad \mathscr{P}_6 &= \Big\{ (-\infty,x]: \ x \in \mathbb{R} \Big\}, \\ \mathscr{P}_7 &= \Big\{ (x,+\infty): \ x \in \mathbb{R} \Big\}, \qquad \mathscr{P}_8 &= \Big\{ [x,+\infty): \ x \in \mathbb{R} \Big\}. \end{split}$$

• It is easy to show that $\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{P}_i)$ for all $i \in \{3, \dots, 8\}$

Generating Classes for $\mathscr{B}(\mathbb{R})$

Figure: Various generating classes for $\mathscr{B}(\mathbb{R})$.