Interpolation & Approximation polynômiales

Philippe BERGER

15 Novembre 2005

Table des matières

1	Inte	Interpolation polynômiale			
	1.1		on du problème	3	
	1.2		olation de Lagrange	3	
		1.2.1	Théorème de Lagrange	3	
		1.2.2	Expression du polynôme de Lagrange	4	
		1.2.3	Expression de l'erreur d'interpolation	5	
		1.2.4	Choix optimal des abscisses d'interpolation	5	
	1.3	Interp	olation d'Hermite	6	
		1.3.1	Théorème d'Hermite	6	
		1.3.2	Expression de l'erreur d'interpolation	7	
	1.4	Interp	olation d'Hermite généralisée	8	
	1.5	Interp	olation de Lagrange : Expression à partir des différences		
		divisé	es	9	
		1.5.1	Différences divisées	9	
		1.5.2	Construction de la suite de polynômes P_n en utilisant les		
			différences divisées : formule de Newton	10	
		1.5.3	Expression de l'erreur à l'aide des différences divisées	11	
		1.5.4	Généralisation pouvant conduire à une heuristique de calcul	11	
2	\mathbf{App}	oroxim	ation polynômiale	13	
	2.1	Meille	eure approximation dans un espace vectoriel	13	
		2.1.1	Meilleure approximation dans un espace vectoriel normé .	10	
		4.1.1	memetre approximation dans an espace vectories norme.	13	
		2.1.1	Meilleure approximation dans un espace vectorier norme. Meilleure approximation dans un espace préhilbertien	13 14	
		2.1.2	Meilleure approximation dans un espace préhilbertien		
	2.2	2.1.2 2.1.3	Meilleure approximation dans un espace préhilbertien Calcul du meilleur approximant dans un espace préhilber-	14	
	2.2	2.1.2 2.1.3 Meille	Meilleure approximation dans un espace préhilbertien Calcul du meilleur approximant dans un espace préhilbertien	14	
	2.2	2.1.2 2.1.3 Meille	Meilleure approximation dans un espace préhilbertien . Calcul du meilleur approximant dans un espace préhilbertien	14 15	
	2.2	2.1.2 2.1.3 Meille de dor	Meilleure approximation dans un espace préhilbertien Calcul du meilleur approximant dans un espace préhilbertien	141515	
	2.2	2.1.2 2.1.3 Meille de dor 2.2.1	Meilleure approximation dans un espace préhilbertien . Calcul du meilleur approximant dans un espace préhilbertien	14 15 15 15	
	2.2	2.1.2 2.1.3 Meille de dor 2.2.1 2.2.2	Meilleure approximation dans un espace préhilbertien . Calcul du meilleur approximant dans un espace préhilbertien	14 15 15 16	
	2.2	2.1.2 2.1.3 Meille de dor 2.2.1 2.2.2 2.2.3 2.2.4	Meilleure approximation dans un espace préhilbertien . Calcul du meilleur approximant dans un espace préhilbertien	14 15 15 16 16	
		2.1.2 2.1.3 Meille de dor 2.2.1 2.2.2 2.2.3 2.2.4 Meille	Meilleure approximation dans un espace préhilbertien . Calcul du meilleur approximant dans un espace préhilbertien	14 15 15 16 16	
		2.1.2 2.1.3 Meille de dor 2.2.1 2.2.2 2.2.3 2.2.4 Meille	Meilleure approximation dans un espace préhilbertien . Calcul du meilleur approximant dans un espace préhilbertien	14 15 15 16 16 16	
		2.1.2 2.1.3 Meille de dor 2.2.1 2.2.2 2.2.3 2.2.4 Meille d'une	Meilleure approximation dans un espace préhilbertien . Calcul du meilleur approximant dans un espace préhilbertien	14 15 15 16 16 16 17	
		2.1.2 2.1.3 Meille de dor 2.2.1 2.2.2 2.2.3 2.2.4 Meille d'une 2.3.1	Meilleure approximation dans un espace préhilbertien . Calcul du meilleur approximant dans un espace préhilbertien	14 15 15 16 16 16 17	
		2.1.2 2.1.3 Meille de dor 2.2.1 2.2.2 2.2.3 2.2.4 Meille d'une 2.3.1 2.3.2	Meilleure approximation dans un espace préhilbertien . Calcul du meilleur approximant dans un espace préhilbertien	14 15 15 16 16 16 17 17	

	2.4.1	Position du problème	18	
	2.4.2	Existence et unicité : Théorème 8	19	
	2.4.3	Calcul de p_m dans le cas où $m = n - 1 \dots \dots$	19	
	2.4.4	Calcul de p_m dans le cas où $m < n-1$: algorithme		
		d'échange	21	
2.5	Meilleure approximation polynômiale uniforme d'une fonction $f \in$			
	C[a,b]		22	
	2.5.1	Position du problème	22	
		Existence et unicité · Théorème 9		

Chapitre 1

Interpolation polynômiale

1.1 Position du problème

formulation 1 : Soit f une fonction d'un intervalle I de \mathbb{R} dans \mathbb{R} . Soient (n+1) abscisses dans $I: x_i \ i=0,\ldots,n$ Comment déterminer un polynôme réel passant exactement par tous les points

$$(x_i, f(x_i)) \quad i = 0, \dots, n ?$$

OU

formulation 2: Soient (n+1) points de \mathbb{R}^2 : (x_i, y_i) $i = 0, \ldots, n$ Comment déterminer un polynôme réel passant exactement par tous ces points?

1.2 Interpolation de Lagrange

1.2.1 Théorème de Lagrange

Il existe un polynôme et un seul P_n , de degré inférieur ou égal à n ($\in \mathcal{P}_n$) tel que:

$$P_n(x_i) = f(x_i)$$
 $i = 0, \ldots, n$

démonstration : Soit $P_n(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$

Les coefficients
$$a_i$$
 $i=0,\ldots,n$ sont donc solutions du système linéaire de $(n+1)$ équations à $(n+1)$ inconnues :
$$\sum_{j=0}^{n} a_j x_i^j = f(x_i) \quad i=0,\ldots,n$$

Le déterminant D de ce système s'écrit :

$$D = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix}$$

D, déterminant de VanderMonde, est non nul car tous les x_i sont distincts. Le système est donc de rang (n+1) et admet une solution unique P_n .

Expression du polynôme de Lagrange

$$P_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

avec
$$L_i(x) = \prod_{j=0, j\neq i}^n \frac{x - x_j}{x_i - x_j}$$

en effet : $\forall i \in \{0, \dots, n\}$

- $-L_i$ est un polynôme de degré n

– $L_i(x_j)=\delta_{ij}$ $j=0,\ldots,n$ δ représentant ici le symbole de Krönecker $\delta_{ij}=1$ si $i=j,\,\delta_{ij}=0$ si $i\neq j$

-
$$P_n$$
 est un polynôme de degré inférieur ou égal à n
- $j = 0, ..., n$ $P_n(x_j) = \sum_{i=0}^n L_i(x_j) f(x_i) = \sum_{i=0}^n \delta_{ij} f(x_i) = f(x_j)$

 P_n peut également s'écrire sous forme matricielle :

$$P_n(x) = [1 \quad x \quad x^2 \quad \dots \quad x^n]].L.^t[f(x_0) \quad f(x_1) \quad \dots \quad f(x_n)]$$

L: matrice $(n+1) \times (n+1)$ dont les termes de la $(i+1)^{\grave{e}me}$ colonne sont les coefficients du développement de $L_i(x)$ suivant les puissances croissantes de x. C'est la matrice de Lagrange associée aux abscisses x_i i = 0, ..., n.

L est indépendante de f et, en particulier, pour $x_i = i$ i = 0, ..., n, L est appelée matrice de Lagrange régulière d'ordre(n+1).

Exercice 1

On considère la matrice de Lagrange régulière $L = [l_{ij}]$ d'ordre n.

- 1) Montrer que : $\sum_{i=1}^{n} l_{ij} = 1 \ si \ j = 2, = 0 \ si \ j \neq 2$
- **2)** Montrer que : $\sum_{i=1}^{n} l_{ij} = 1$ si i = 1, = 0 si $i \neq 1$

Exercice 2

Soit f une fonction continue sur [a,b]. Soient (n+1) abscisses distinctes

de
$$[a,b]$$
: $\{x_0, x_1, ..., x_n\}$
On note $L_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}$

Démontrer les relations de Cauchy:

$$\forall x \in \mathbb{R} \quad \sum_{i=0}^{n} L_i(x)(x_i - x)^j = 1 \quad si \ j = 0$$
$$= 0 \quad si \ j = 1, \dots, n$$

Expression de l'erreur d'interpolation

f étant supposée (n+1) fois dérivable sur le plus petit intervalle J contenant les abscisses x_i i = 0, ..., n et x:

$$f(x) - P_n(x) = L(x) \frac{f^{(n+1)}(\beta(x))}{(n+1)!}$$

où
$$L(x) = \prod_{i=0}^{n} (x - x_i)$$
 et $\beta(x) \in J$

démonstration : Soit la fonction F de la variable t définie par :

$$F(t) = f(t) - P_n(t) - \frac{(f(x) - P_n(x))L(t)}{L(x)}$$

F admet au moins dans J les (n+2) zéros distincts x_i $i=0,\ldots,n$ et x.

Application du théorème de Rolle : F' admet au moins (n+1) zéros distincts dans J, F" admet n zéros distincts ... $F^{(n+1)}$ admet au moins un zéro dans

Soit $\beta(x)$ ce zéro (qui dépend de x):

$$F^{(n+1)}(t) = f^{(n+1)}(t) - \frac{(f(x) - P_n(x))(n+1)!}{L(x)}$$

$$F^{(n+1)}(\beta(x)) = 0 \Rightarrow$$
 d'où le résultat

1.2.4 Choix optimal des abscisses d'interpolation

Polynômes de Tchebycheff

Le polynôme de Tchebycheff de degré n s'écrit : $T_n(x) = \cos(n \arccos x)$ Il s'agit d'un polynôme de degré n

démonstration (par récurrence) :

$$T_0(x) = 1$$
 $T_1(x) = x$

Supposons que $T_{n-1}(x)$ et $T_n(x)$ soient respectivement des polynômes de degrés (n-1) et n:

$$\cos((n+1)\arccos x) + \cos((n-1)\arccos x) = 2x\cos(n\arccos x)$$

d'où $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ donc $T_{n+1}(x)$ est bien un polynôme de $\operatorname{degr\'e}(n+1).$

Propriétés des polynômes de Tchebycheff:

- La même récurrence montre que le coefficient de x^n dans $T_n(x)$ est 2^{n-1} .
- Les zéros de $T_n(x)$ sont les abscisses : $x_k = \cos\frac{(2k+1)\pi}{2n}$ $k = 0, \dots, n-1$ Les minima et maxima de $T_n(x)$ sont obtenus aux abscisses $x_p = \cos\frac{p\pi}{n}$ $p = 0, \dots, n$ et valent $(-1)^p$.

 $\it Th\'eor\`eme$: Soit Q_n l'ensemble des polynômes de degré n à coefficient principal réduit (coef. multiplicatif de $x^n=1)$ alors :

$$\forall p \in Q_n \quad \max_{x \in [-1,1]} |p(x)| \ge \max_{x \in [-1,1]} |t_n(x)| = \frac{1}{2^{n-1}}$$

 t_n désignant le polynôme déduit de T_n en réduisant le coefficient principal. démonstration :

i)
$$t_n(x) = \frac{T_n(x)}{2^{n-1}}$$
 et les extrema de $T_n(x)$ valent $(-1)^k \Rightarrow \max_{x \in [-1,1]} |t_n(x)| = \frac{1}{2^{n-1}}$

ii) Supposons $\exists p \in Q_n$ t.q. $\max_{x \in [-1,1]} |p(x)| < \max_{x \in [-1,1]} |t_n(x)|$ alors le polynôme $D = t_n - p$ est de degré n-1 et possède aux (n+1) abscisses u_k (extrema de $T_n(x)$) le même signe que t_n .

Plus exactement : $D(u_k) > 0$ pour k pair, < 0 pour k impair donc D est nul en n abscisses distinctes (séparant les (n+1) abscisses $u_k) \Rightarrow D = 0$ et $p = t_n$ ce qui est incompatible avec l'hypothèse.

Choix optimal des abscisses sur I = [-1, 1]

Pour une fonction f donnée, le seul terme de l'erreur (en valeur absolue) qui peut être raisonnablement minimisé, par un choix convenable des abscisses d'interpolation, est |L(x)|.

Or $L \in Q_{n+1}$ donc, si l'on veut minimiser $\max_{x \in [-1,1]} |L(x)|$, il faut choisir x_i $i = 0, \ldots, n$ comme les zéros de $T_{n+1} : x_i = \cos \frac{(2i+1)\pi}{2n+2}$

Choix optimal des abscisses sur I = [a, b]

Soit
$$x_i = \cos \frac{(2i+1)\pi}{2n+2}$$
 $i = 0, ..., n$

Les abscisses optimales z_i $i=0,\ldots,n$ sur [a,b] sont obtenues en effectuant les changements de variables : $z_i=h(x_i)$ $i=0,\ldots,n$ avec

$$h: [-1,1] \longrightarrow [a,b]$$
 $x \longrightarrow h(x) = \frac{x(b-a)+(b+a)}{2}$

1.3 Interpolation d'Hermite

1.3.1 Théorème d'Hermite

Il existe un polynôme et un seul H_{2n+1} , de degré inférieur ou égal à 2n+1 tel que :

$$H_{2n+1}(x_i) = f(x_i)$$
 $i = 0, ..., n$
 $H'_{2n+1}(x_i) = f'(x_i)$

les x_i i = 0, ..., n désignant des abscisses distinctes de I.

 $d\'{e}monstration:$

Cherchons H_{2n+1} sous la forme : $H_{2n+1}(x) = \sum_{j=0}^{n} U_j(x) f(x_j) + \sum_{j=0}^{n} V_j(x) f'(x_j)$ avec $U_j(x)$ et $V_j(x)$ appartenant à \mathcal{P}_{2n+1} qui vérifient les conditions : $i, j = 0, \ldots, n$

(1)
$$U_j(x_i) = \delta_{ij}$$
 (3) $V_j(x_i) = 0$

(2)
$$U_j'(x_i) = 0$$
 (4) $V_j'(x_i) = \delta_{ij}$

- Posons $U_i(x) = L_i^2(x)(a_ix + b_i)$

$$(1) \Rightarrow a_j x_j + b_j = 1$$
 $(2) \Rightarrow 2L'_j(x_j)(a_j x_j + b_j) + a_j = 0$

$$a_j = -2L'_j(x_j)$$
 $b_j = 1 + 2x_jL'_j(x_j)$

- Posons $V_j(x) = L_j^2(x)(c_jx + d_j)$

(3)
$$\Rightarrow c_j x_j + d_j = 0$$
 (4) $\Rightarrow 2L'_j(x_j)(c_j x_j + d_j) + c_j = 1$
 $c_j = 1$ $d_j = -x_j$

$$H_{2n+1}(x) = \sum_{j=0}^{n} L_j^2(x)[1 - 2(x - x_j)L_j'(x_j)]f(x_j) + \sum_{j=0}^{n} L_j^2(x)(x - x_j)f'(x_j)$$

Il reste à montrer l'unicité : soient P et Q deux polynômes de degré inférieur ou égal à (2n+1) vérifiant les relations d'Hermite. Soit D=P-Q.

D admet (n+1) racines doubles x_i $i=0,\ldots,n$ car $D(x_i)=D'(x_i)=0$ $i=0,\ldots,n$. D étant de degré $\leq (2n+1)$, D est le polynôme nul.

1.3.2 Expression de l'erreur d'interpolation

fétant supposée (2n+2) fois dérivable sur le plus petit intervalle J contenant $x_i \ i=0,\dots,n$ et x :

$$f(x) - H_{2n+1}(x) = \frac{L(x)^2 f(\beta(x))^{(2n+2)}}{(2n+2)!}$$

où $\beta(x) \in J$

démonstration : Soit
$$F(t) = f(t) - H_{2n+1}(t) - \frac{(f(x) - H_{2n+1}(x))L(t)^2}{L(x)^2}$$

F admet, dans J, au moins (n+2) zéros : x_i $i=0,\ldots,n$ et x.

F' admet, dans J, au moins (n+1) zéros séparant les précédents (théorème de Rolle) ainsi que x_i $i = 0, \ldots, n$ donc, au total, au moins (2n+2) zéros distincts.

 $F^{(2n+2)}$ admet au moins un zéro $\beta(x) \in J$ d'où l'expression.

1.4 Interpolation d'Hermite généralisée

Recherche d'un polynôme H, de degré $\leq (n+1)$ relativement à (p+1) abscisses d'interpolation x_i $i=0,\ldots,p$. (n+2) renseignements doivent être disponibles : à l'abscisse x_i , toutes les dérivées de H sont connues jusqu'à l'ordre m_i et $n+2=\sum_{i=0}^p (m_i+1)$

Exemple: Trouver le polynôme H, de degré ≤ 7 t.q.

$$H(0) = 1$$
 $H(1) = 2$ $H(2) = 129$
 $H'(0) = 0$ $H'(1) = 7$ $H'(2) = 448$
 $H''(0) = 0$ $H''(2) = 1344$

$$n = 6, p = 2, m_0 = 2, m_1 = 1, m_2 = 2$$

Ce polynôme est unique : soient P et Q, deux polynômes de degré inférieur ou égal à (n+1) vérifiant les (n+2) conditions. Soit D=P-Q. D est de degré $\leq (n+1)$. D possède (p+1) racines x_i d'ordre de multiplicité (m_i+1) . C'est donc le polynôme nul.

Soit la division euclidienne de H par $\prod_{i=0}^{p}(x-x_i)$: $H(x)=S(x)\prod_{i=0}^{p}(x-x_i)+R(x)$ Sur l'exemple : H(x)=x(x-1)(x-2)S(x)+R(x), R de degré ≤ 2 , S de degré ≤ 4 .

Connaissant les valeurs $(x_i, H(x_i))$ i = 0, ..., p, calcul du polynôme R par résolution d'un problème de Lagrange en x_i i = 0, ..., p.

 $Sur\ l$ 'exemple:

$$H(0) = R(0) = 1$$
 $H(1) = R(1) = 2$ $H(2) = R(2) = 129$
 $\Rightarrow R(x) = 63x^2 - 62x + 1$

Les (n+2)-(p+1) autres renseignements se traduisent pour le polynôme S par :

- soit un problème de Lagrange
- soit un problème d'Hermite
- soit un nouveau problème d'Hermite généralisé : recommencer alors la même procédure.

 $Sur\ l'exemple$:

$$H'(x) = x(x-1)(x-2)S'(x) + (3x^2 - 6x + 2)S(x) + 126x - 62$$

$$H''(x) = x(x-1)(x-2)S''(x) + 2(3x^2 - 6x + 2)S'(x) + 6(x-1)S(x) + 126$$

$$H'(0) = 0 \implies S(0) = 31$$

$$H'(1) = 7 \implies S(1) = 57$$

$$H'(2) = 448 \implies S(2) = 129$$

$$H''(0) = 0 \implies S'(0) = 15$$

$$H"(2) = 1344 \implies S'(2) = 111$$

C'est un nouveau problème d'Hermite généralisé.

Division euclidienne de S par x(x-1)(x-2) : S(x) = x(x-1)(x-2)U(x) + V(x) U de degré ≤ 1 , V de degré ≤ 2

$$S(0) = V(0) = 31$$
 $S(1) = V(1) = 57$ $S(2) = V(2) = 129$

Problème de Lagrange : $V(x) = 23x^2 + 3x + 31$

$$S'(x) = (3x^2 - 6x + 2)U(x) + x(x - 1)(x - 2)U'(x) + 46x + 3$$
$$S'(0) = 15 \implies U(0) = 6$$
$$S'(2) = 11 \implies U(2) = 8$$

Problème de Lagrange : U(x) = x + 6

Résultat final:

$$H(x) = x^{2}(x-1)^{2}(x-2)^{2}(x+6) + x(x-1)(x-2)(23x^{2}+3x+32) + 63x^{2}-62x+1$$

Exercice 3

- a) Un raccordement entre 2 voies ferrées parallèles, d'équations y=0 et y=2, est un polynôme joignant les gares de coordonnées (0,0) et (4,2) et tangent aux voies en ces gares. Déterminer ce polynôme.
- b) Pour améliorer encore les raccordements, on impose de plus, sur ce polynôme, des conditions de dérivées secondes nulles en (0,0) et (4,2). Déterminer le polynôme qui répond à ces spécifications.

Exercice 4

On considère le problème d'Hermite généralisé traité en cours qui consiste à rechercher un polynôme $H \in P_7$. A partir des raisonnements conduisant à une expression de l'erreur pour les interpolations de Lagrange et d'Hermite, déterminer, en la démontrant, une expression de f(x) - H(x).

1.5 Interpolation de Lagrange : Expression à partir des différences divisées

 $\{x_k\}$, k entier, une suite quelconque d'abscisses $S_k = \{x_0, x_1, \dots, x_k\}$ $f_k = f(x_k)$ P_k polynôme de Lagrange sur S_k

1.5.1 Différences divisées

différence divisée première entre deux abscisses x_i et x_j : $(x_i, x_j) = \frac{f_j - f_i}{x_j - x_i}$ différence divisée seconde : $(x_i, x_j, x_k) = \frac{(x_k, x_j) - (x_i, x_j)}{x_k - x_i}$

différence divisée d'ordre n:

$$(x_0, x_1, \dots, x_n) = \frac{(x_1, x_2, \dots, x_n) - (x_0, x_1, \dots, x_{n-1})}{x_n - x_0}$$

Propriétés des différences divisées : (démonstration par récurrence)

$$(x_0, x_1, \dots, x_n) = \sum_{i=0}^n \frac{f_i}{\prod_{j=0, j \neq i}^n (x_i - x_j)}$$

Les différences divisées sont invariantes par toute permutation des arguments (corollaire) :

 $i_0,\ i_1,\dots,i_n$ et $j_0,\ j_1,\dots,j_n$ désignant 2 permutations distinctes de $\{0,1,\dots,n\}$:

$$(x_0, x_1, \dots, x_n) = \frac{(x_{i_0}, \dots, x_{i_{n-1}}) - (x_{j_0}, \dots, x_{j_{n-1}})}{x_{j_n} - x_{i_n}}$$

1.5.2 Construction de la suite de polynômes P_n en utilisant les différences divisées : formule de Newton

On peut construire P_n , à partir de P_{n-1} , par la récurrence :

$$P_n(x) = P_{n-1}(x) + (x_0, x_1, \dots, x_n)(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

démonstration : $P_n(x) = P_{n-1}(x) + (P_n(x) - P_{n-1}(x))$

or
$$j = 0, ..., n - 1$$
 $P_n(x_j) - P_{n-1}(x_j) = f(x_j) - f(x_j) = 0$
$$\Rightarrow P_n(x) - P_{n-1}(x) = A \prod_{j=0}^{n-1} (x - x_j)$$

 $A \in \mathbb{R}$ est une constante (car $P_n - P_{n-1} \in \mathcal{P}_n$), déterminée par l'évaluation de l'équation en x_n :

$$A = \frac{f_n - P_{n-1}(x_n)}{\prod_{j=0}^{n-1} (x_n - x_j)} = \frac{f_n}{\prod_{j=0, j \neq n}^n (x_n - x_j)} - \sum_{i=0}^{n-1} \frac{f_i \prod_{j=0, j \neq i}^{n-1} \frac{x_n - x_j}{x_i - x_j}}{\prod_{j=0}^{n-1} (x_n - x_j)}$$

$$A = \frac{f_n}{\prod_{j=0, j \neq n}^{n} (x_n - x_j)} - \sum_{i=0}^{n-1} \frac{f_i \prod_{j=0, j \neq i}^{n-1} \frac{1}{x_i - x_j}}{x_n - x_i}$$
$$= \frac{f_n}{\prod_{j=0, j \neq n}^{n} (x_n - x_j)} - \sum_{i=0}^{n-1} f_i \prod_{j=0, j \neq i}^{n} \frac{1}{x_i - x_j}$$

$$A = \sum_{i=0}^{n} \frac{f_i}{\prod_{j=0, j \neq i}^{n} (x_i - x_j)} = (x_0, x_1, \dots, x_n)$$

d'où :
$$P_n(x) = P_{n-1}(x) + (x_0, x_1, \dots, x_n)(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

comme $P_0 = f_0$, on en déduit une nouvelle expression, à partir des différences divisées, du polynôme d'interpolation de Lagrange dite formule de Newton :

$$P_n(x) = f_0 + (x_0, x_1)(x - x_0) + (x_0, x_1, x_2)(x - x_0)(x - x_1) + \dots + (x_0, x_1, \dots, x_n)(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

1.5.3 Expression de l'erreur à l'aide des différences divisées

Propriété des différences divisées :

$$(x, x_0, x_1, \dots, x_n) = \frac{f(x)}{\prod_{j=0}^{n} (x - x_j)} + \sum_{i=0}^{n} \frac{f_i}{(x - x_i) \prod_{j=0, j \neq i}^{n} (x_i - x_j)}$$

$$f(x) = (x, x_0, x_1, \dots, x_n) \prod_{j=0}^{n} (x - x_j) + \sum_{i=0}^{n} f_i \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$
$$= (x, x_0, x_1, \dots, x_n) L(x) + P_n(x)$$

d'où l'expression de l'erreur : $f(x) - P_n(x) = (x, x_0, x_1, \dots, x_n)L(x)$

On obtient donc également une relation entre dérivées et différences divisées :

$$(x, x_0, x_1, \dots, x_n) = \frac{f(\beta(x))^{(n+1)}}{(n+1)!}$$
 avec $\beta(x) \in J$

1.5.4 Généralisation pouvant conduire à une heuristique de calcul

 $Notations: S_k = \{x_{m_k}, x_{m_k} + 1, \dots, x_{m_k} + k\}, \, P_k$ le polynôme de Lagrange sur $S_k.$

La suite $\{m_k\}$ étant une suite non croissante d'entiers telle que $m_{k+1} = m_k$ ou $m_{k+1} = m_k - 1$ i.e. pour passer de S_k à S_{k+1} , on ajoute une nouvelle abscisse vers la gauche ou vers la droite de l'ensemble des abscisses ordonnées de S_k .

Exemple:

$$m_0 = 0$$
 $S_0 = \{x_0\}$
 $m_1 = m_0 = 0$ $S_1 = \{x_0, x_1\}$
 $m_2 = m_1 = 0$ $S_2 = \{x_0, x_1, x_2\}$
 $m_3 = m_2 - 1 = -1$ $S_3 = \{x_{-1}, x_0, x_1, x_2\}$

 S_k est formé de (k+1) abscisses consécutives et, plus précisément :

$$S_{k+1} = S_k \cup \{x_{m_k+k+1}\}$$
 si $m_{k+1} = m_k$

$$S_{k+1} = S_k \cup \{x_{m_k-1}\}$$
 si $m_{k+1} = m_k - 1$

La formule de Newton précédente peut alors se réécrire, avec cette nouvelle notation :

$$P_n(x) = f_{m_0} + (x_{m_1}, x_{m_1+1})(x - x_{m_0}) + (x_{m_2}, x_{m_2+1}, x_{m_2+2})(x - x_{m_1})(x - x_{m_1+1}) + \dots$$
$$+ (x_{m_n}, \dots, x_{m_n+n})(x - x_{m_{n-1}}) \dots (x - x_{m_{n-1}+n-1})$$

Chapitre 2

Approximation polynômiale

- 2.1 Meilleure approximation dans un espace vectoriel
- 2.1.1 Meilleure approximation dans un espace vectoriel normé

Théorème 1

E espace vectoriel normé (e.v.n.) de norme $\|.\|$. G, sous-espace vectoriel de E, de dimension finie,

 $y \in E$ donné, yn'appartenant pas à G (sinon le problème n'a pas lieu d'être)

alors
$$\exists g^* \in G$$
 t.q. $||y - g^*|| = \min_{g \in G} ||y - g||$
 g^* est appelé meilleur approximant (m.a.) de y dans G pour la norme $||.||$.

Théorème 2

L'ensemble A des meilleurs approximants de y dans G est convexe i.e.

$$\forall (g_1^{\star}, g_2^{\star}) \in A^2, \ \forall \alpha \in [0, 1], \ \alpha g_1^{\star} + (1 - \alpha)g_2^{\star} \in A$$

démonstration :

$$||y - (\alpha g_1^{\star} + (1 - \alpha)g_2^{\star})|| \ge \min_{g \in G} ||y - g|| = r \operatorname{car} \alpha g_1^{\star} + (1 - \alpha)g_2^{\star} \in G$$

$$||y - (\alpha g_1^{\star} + (1 - \alpha)g_2^{\star})|| = ||\alpha(y - g_1^{\star}) + (1 - \alpha)(y - g_2^{\star})||$$

$$\leq \alpha||y - g_1^{\star}|| + (1 - \alpha)||y - g_2^{\star}|| = \alpha r + (1 - \alpha)r = r$$

Théorème 3

Si la norme est stricte (si ||u+v|| = ||u|| + ||v|| alors u et v sont colinéaires) alors q^* est unique.

 $d\'{e}monstration$:

Si g_1^{\star} et g_2^{\star} sont deux m.a. de y dans G, application du Théorème 2 avec $\alpha = \frac{1}{2}$: $\frac{g_1^{\star} + g_2^{\star}}{2}$ est aussi m.a. donc $\|y - \frac{g_1^{\star} + g_2^{\star}}{2}\| = r = \frac{r}{2} + \frac{r}{2}$ or $\|\frac{y - g_1^{\star}}{2}\| = \|\frac{y - g_2^{\star}}{2}\| = \frac{r}{2}$ (car g_1^{\star} et g_2^{\star} m.a.) donc $\|y - \frac{g_1^{\star} + g_2^{\star}}{2}\| = \|\frac{y - g_1^{\star}}{2} + \frac{y - g_2^{\star}}{2}\| = \|\frac{y - g_1^{\star}}{2}\| + \|\frac{y - g_2^{\star}}{2}\|$

La norme étant stricte, $(y-g_1^*)$ et $(y-g_2^*)$ sont donc colinéaires. y n'appartenant pas à G, ces deux vecteurs sont non nuls $\Rightarrow \exists \lambda \in \mathbb{R}$ t.q. $y-g_1^* = \lambda(y-g_2^*)$

En prenant la norme des deux membres : $r=|\lambda|r \Rightarrow \lambda=\pm 1$ Si $\lambda=-1$ alors $y=\frac{g_1^\star+g_2^\star}{2}$ ce qui est impossible car y n'appartient pas à G d'où $\lambda=1$ et $g_1^\star=g_2^\star$

2.1.2 Meilleure approximation dans un espace préhilbertien

Théorème 4

E espace vectoriel préhilbertien, muni d'un produit scalaire (.|.), normé par $\|.\|$ associée au produit scalaire ($\|u\| = (u|u)^{\frac{1}{2}}$). G, sous-espace vectoriel de E, de dimension finie.

 $y \in E$ donné, y n'appartient pas à G.

alors
$$\exists ! g^* \in G \ t.q. \ \|y - g^*\| = \min_{g \in G} \ \|y - g\|$$

démonstration : L'existence de g^* est assurée par le Théorème 1.

L'unicité résulte du fait que la norme associée au produit scalaire est stricte. En effet :

$$||u+v|| = ||u|| + ||v|| \iff (u+v|u+v) = (||u|| + ||v||)^2 \iff (u|v) = ||u||.||v|| \quad (*)$$

Or si u et v ne sont pas colinéaires : $\forall \lambda \in \mathbb{R} \quad u + \lambda v \neq 0$

$$\Rightarrow \forall \lambda \in \mathbb{R} \quad (u + \lambda v | u + \lambda v) > 0 \quad \Rightarrow \quad \forall \lambda \in \mathbb{R} \quad \lambda^2 ||v||^2 + 2\lambda (u|v) + ||u||^2 > 0$$
$$\Rightarrow \forall \lambda \in \mathbb{R} \quad \Delta' = (u|v)^2 - ||u||^2 \cdot ||v||^2 < 0$$

ce qui contredit (*)

Théorème 5 : (Caractérisation du m.a.)

 g^* m.a. de y dans $G \Leftrightarrow \forall g \in G \ (y - g^*|g) = 0$ (g^* est la projection orthogonale de y sur G) $d\'{e}monstration$:

i)
$$g^*$$
 m.a. de y sur G . Supposons : $\exists g_1 \in G \ (y-g^*|g_1) = \alpha \neq 0$ Soit $g_2 = g^* + \frac{\alpha g_1}{\|g_1\|^2}$

$$||y - g_2||^2 = (y - g^* - \frac{\alpha g_1}{||g_1||^2} | y - g^* - \frac{\alpha g_1}{||g_1||^2})$$

$$= ||y - g^*||^2 + (\frac{\alpha}{||g_1||})^2 - 2(\frac{\alpha}{||g_1||})^2 = ||y - g^*||^2 - (\frac{\alpha}{||g_1||})^2$$

 $\Rightarrow \|y-g_2\|^2 < \|y-g^*\|^2$ et g^* ne serait pas m.a. de y dans G.

ii) Soit
$$g^* \in G$$
 t.q. $\forall g \in G$ $(y - g^*|g) = 0$

$$\forall g \in G ||y - g||^2 = (y - g^* - g + g^* | y - g^* - g + g^*)$$
$$= ||y - g^*||^2 + ||g - g^*||^2 - 2(y - g^* | g - g^*)$$

or
$$g - g^* \in G \implies (y - g^*|g - g^*) = 0$$

donc $\|y-g\|^2 = \|y-g^\star\|^2 + \|g-g^\star\|^2$ qui prend une valeur minimale pour $g=g^\star$

2.1.3 Calcul du meilleur approximant dans un espace préhilbertien

Soit $\dim G = p$. Soit $\{e_i\}$ $j = 1, \ldots, p$ une base quelconque de G.

$$\forall g \in G \quad (y - g^*|g) = 0 \Leftrightarrow j = 1, \dots, p \quad (y - g^*|e_j) = 0$$

$$\Leftrightarrow \quad j = 1, \dots, p \quad (g^*|e_j) = (y|e_j)$$

Recherchons g^* par ses composantes dans la base : $g^* = \sum_{i=1}^p \alpha_i^* e_i$

On obtient un système linéaire d'ordre p dont la solution (l'existence a déjà été établie) donne α_i^{\star} $i=1,\ldots,p: j=1,\ldots,p$ $\sum_{i=1}^p \alpha_i^{\star}(e_i|e_j) = (y|e_j)$

Si $\{e_j\}$ $j=1,\ldots,p$ est une base orthonormée : $j=1,\ldots,p$ $\alpha_j^{\star}=(y|e_j)$

2.2 Meilleure approximation polynômiale au sens des moindres carrés de données discrètes

2.2.1 Position du problème

Soient $(x_i, y_i) \in \mathbb{R}^2$ i = 0, ..., n fixés. Existence, unicité et calcul de $p_m \in \mathcal{P}_m$ $(m \le n)$ vérifiant :

$$(R)$$
: $\sum_{i=0}^{n} (y_i - p_m(x_i))^2 = \min_{p \in \mathcal{P}_m} \sum_{i=0}^{n} (y_i - p(x_i))^2$

2.2.2 Existence et unicité : Théorème 6

 $\exists ! p_m \in \mathcal{P}_m \text{ v\'erifiant } (R).$

 $d\acute{e}monstration$: Existence et unicité de p_m assurées par le Théorème 5, appliqué avec :

 $E = \mathcal{P}_n$ préhilbertien muni du produit scalaire :

$$\forall (P,Q) \in E^2 \ (P|Q) = \sum_{i=0}^n P(x_i)Q(x_i)$$

 $G = \mathcal{P}_m$

 $y = W_n \in \mathcal{P}_n$ unique polynôme (de Lagrange) vérifiant : $W_n(x_i) = y_i \ i = 0, \dots, n$

Conclusion du Théorème $5: \exists ! p_m \in \mathcal{P}_m \quad ||W_n - p_m|| = \min_{p \in \mathcal{P}_m} ||W_n - p||$ On obtient (R) en élevant au carré.

Remarque: Si m = n, il s'agit d'un problème d'interpolation de Lagrange.

2.2.3 Calcul de p_m dans la base canonique

$$e_j: x \longrightarrow x^j \quad j = 0, \dots, m$$
 base canonique de \mathcal{P}_m . Soit $p_m = \sum_{i=0}^m \alpha_i^* x^i$

Les composantes α_i^{\star} $i=0,\ldots,m$ sont solutions du système linéaire :

$$j = 0, \dots, m$$

$$\sum_{i=0}^{m} \alpha_i^{\star}(e_i|e_j) = (W_n|e_j) \Leftrightarrow \sum_{i=0}^{m} m_{ij}\alpha_i^{\star} = w_j$$

avec:

$$m_{ij} = (x^i|x^j) = \sum_{k=0}^n x_k^{i+j}$$
 $w_j = (W_n|x^j) = \sum_{k=0}^n y_k x_k^j$

Propriété: La matrice $M = [m_{ij}]$, d'ordre m, est symétrique définie positive.

2.2.4 Calcul de p_m dans une base orthonormée

 p_m s'exprime directement dans une base orthonormée $\{e_j\}$ $j=0,\ldots,m$:

$$p_m = \sum_{i=0}^m (W_n|e_i) e_i$$

Base obtenue (par exemple) par le procédé d'orthonormalisation de Schmidt. Soient :

$$e_0 = k_0$$

$$e_1 = k_1(x - \lambda_{10}e_0)$$

$$\dots$$

$$e_j = k_j(x^j - \lambda_{j0}e_0 - \dots - \lambda_{jp}e_p - \dots - \lambda_{jj-1}e_{j-1})$$

$$\dots$$

$$e_m = k_m(x^m - \lambda_{m0}e_0 - \dots - \lambda_{mm-1}e_{m-1})$$

Par construction les $\{e_j\}$ $j=0,\ldots,m$ forment une base de \mathcal{P}_m .

Supposons déjà déterminés e_0, \ldots, e_{j-1} formant une base orthonormée de \mathcal{P}_{j-1} et calculons e_j afin de former une base orthonormée de \mathcal{P}_j .

$$p = 0, ..., j - 1$$
 $(e_j|e_p) = 0 \Rightarrow \lambda_{jp} = (x^j|e_p)$
 $||e_j|| = 1 \Rightarrow |k_j| = \frac{1}{\|x^j - \sum_{p=0}^{j-1} \lambda_{jp}e_p\|}$

(le choix du signe de k_j est sans importance)

2.3 Meilleure approximation polynômiale au sens des moindres carrés d'une fonction $f \in C[a, b]$

2.3.1 Position du problème

Soit $f \in C[a, b]$. Existence, unicité et calcul de $p_m \in \mathcal{P}_m$ vérifiant :

$$(R'): \int_{a}^{b} \omega(x)(f(x) - p_m(x))^2 dx = \min_{p \in \mathcal{P}_m} \int_{a}^{b} \omega(x)(f(x) - p(x))^2 dx$$

 $\omega(x)$ désigne une fonction donnée positive sur [a,b] (fonction poids)

2.3.2 Existence et unicité : Théorème 7

 $\exists ! p_m \in \mathcal{P}_m \text{ v\'erifiant } (R')$

 $d\acute{e}monstration$: Existence et unicité assurées par application du Théorème 5 avec :

E = C[a, b] muni du produit scalaire :

$$\forall (f,g) \in C[a,b]^2 \quad (f|g) = \int_a^b \omega(x) f(x) g(x) dx$$

$$G = \mathcal{P}_m, \ y = f \text{ (supposée ne pas appartenir à } \mathcal{P}_m \text{ sinon } p_m = f)$$

Conclusion du Théorème 5 : $\exists ! p_m \in \mathcal{P}_m \quad \|f - p_m\| = \min_{p \in \mathcal{P}_m} \|f - p\|$ On obtient (R') en élevant au carré.

2.3.3 Calcul de p_m dans la base canonique

$$e_j: x \longrightarrow x^j \quad j = 0, \dots, m$$
 base canonique de \mathcal{P}_m . Soit $p_m = \sum_{i=0}^m \alpha_i^* x^i$

Les composantes $\alpha_i^{\star} \quad i=0,\dots,m$ sont solutions du système linéaire :

$$j = 0, \dots, m$$

$$\sum_{i=0}^{m} \alpha_i^{\star}(e_i|e_j) = (f|e_j) \Leftrightarrow \sum_{i=0}^{m} m_{ij}\alpha_i^{\star} = w_j$$

avec:
$$m_{ij} = (x^i | x^j) = \int_a^b \omega(x) x^{i+j} dx$$
 $w_j = (f | x^j) = \int_a^b \omega(x) f(x) x^j dx$

2.3.4 Calcul de p_m dans une base orthonormée

 p_m s'exprime directement dans une base orthonormée $\{e_j\}$ $j=0,\ldots,m$:

$$p_m = \sum_{i=0}^m (f|e_i) e_i$$

Obtention de la base par le procédé d'orthonormalisation de Schmidt.

Les composantes $(f|e_i)$ $i=0,\ldots,m$ sont les coefficients de Fourier de f.

Propriété: Soit $\{Q_j\}$ une suite de polynômes telle que le degré de (Q_j) est égal à j et les polynômes sont orthogonaux deux à deux par rapport au produit scalaire:

$$\forall (f,g) \in C[a,b]^2$$
 $(f|g) = \int_a^b \omega(x)f(x)g(x)dx$

alors les zéros de Q_j $j=1,2,\ldots$ sont réels, distincts et appartiennent à [a,b].

Exercice 5

On considère la suite $\{Q_j\}$ de polynômes à coefficient principal réduit (degré de $Q_j=j$) et orthogonaux par rapport au produit scalaire :

$$\forall (f,g) \in C[a,b]^2$$
 $(f|g) = \int_a^b \omega(x)f(x)g(x) dx$

avec $\omega(x)$ fonction continue et positive sur [a,b].

- 1) Soit E l'ensemble des abscisses de [a,b] en lesquelles Q_n change de signe.
- a) Montrer que $\int_a^b \omega(x)Q_n(x)dx = 0$ et que $card\ E \neq 0$
- b) Montrer que $\forall p \in P_m$ (avec m < n) $(p|Q_n) = 0$
- c) Montrer que l'hypothèse card E = m (avec m < n) conduit à une contradiction avec le résultat de la question b).
- 2) Montrer que ces polynômes satisfont à la relation de récurrence :

$$xQ_n(x) - Q_{n+1}(x) = \alpha Q_n(x) + \beta Q_{n-1}(x)$$

$$\mathbf{avec}\ \beta\ =\ \frac{\left(xQ_n|Q_{n-1}\right)}{\left(Q_{n-1}|Q_{n-1}\right)}\ \mathbf{et}\ \ \alpha\ =\ \frac{\left(xQ_n|Q_n\right)}{\left(Q_n|Q_n\right)}$$

2.4 Meilleure approximation polynômiale uniforme de données discrètes

2.4.1 Position du problème

Soient $(x_i, y_i) \in \mathbb{R}^2$ i = 0, ..., n fixés (on supposera désormais que, si i < j, alors $x_i < x_j$). Existence, unicité et calcul de $p_m \in \mathcal{P}_m$ $(m \le n$ et en général $m \ll n$) vérifiant :

$$(R"): \max_{i=0,\dots,n} |y_i - p_m(x_i)| = \min_{p \in \mathcal{P}_m} \max_{i=0,\dots,n} |y_i - p(x_i)|$$

2.4.2 Existence et unicité : Théorème 8

i) $\exists ! p_m \in \mathcal{P}_m$ vérifiant (R"). p_m est appelé polynôme de m.a. uniforme (ou au sens de Tchebycheff ou de minimax) des données (x_i, y_i) $i = 0, \ldots, n$. On notera $E_m = \max_{i=0,\ldots,n} |y_i - p_m(x_i)|$

L'existence est assurée par le Théorème 1 avec $E=\mathcal{P}_n$ muni de la norme :

$$\forall p \in P_n \quad ||p|| = \max_{i=0,\dots,n} |p(x_i)|$$

$$G = \mathcal{P}_m \quad y = W_n$$

L'unicité découle de la propriété suivante :

ii) p_m vérifie la propriété d'équioscillation :

 $\exists (m+2)$ abscisses au moins $\{x_{i_j}\}$ $j=0,\ldots,m+1$ $(\{i_0,\ldots,i_{m+1}\}$ inclus dans $\{0,\ldots,n\}$), avec $x_{i_j} < x_{i_{j+1}}$, telles que $y_{i_j} - p_m(x_{i_j}) = \pm E_m$ avec alternance de signe :

$$(y_{i_j} - p_m(x_{i_j}))(y_{i_{j+1}} - p_m(x_{i_{j+1}})) = -E_m^2$$

Les points (x_{i_j}, y_{i_j}) $j = 0, \dots, m$ sont appelés points extrémaux.

iii) Réciproquement, si $p \in \mathcal{P}_m$ et si \exists au moins (m+2) abscisses x_{i_j} $j=0,\ldots,m+1$ prises parmi x_0,\ldots,x_n (avec $x_{i_j} < x_{i_{j+1}}$), telles que $y_{i_j} - p(x_{i_j}) = \pm \max_{i=0,\ldots,n} |y_i - p(x_i)|$ avec alternance de signe alors $p_m = p$.

2.4.3 Calcul de p_m dans le cas où m = n-1

 $(Rappel : si \ m = n, c'est un problème d'interpolation de Lagrange et E_m = 0)$

Les (m+2) = (n+1) points extrémaux correspondent à la totalité des abscisses x_i i = 0, ..., n.

Calcul par résolution d'un système linéaire

Le polynôme de minimax $p_{n-1}(x) = \sum_{j=0}^{n-1} a_j x^j$ vérifie donc les (n+1) équations

traduisant la propriété d'équioscillation : $i=0,\dots,n$ $\sum_{j=0}^{n-1}a_jx_i^j-y_i=(-1)^ih$ avec $|h|=E_{n-1}$

 (a_0,\ldots,a_{n-1},h) solution unique du système d'ordre n (existence et unicité assurées par la démonstration du Théorème 8) :

$$i = 0, \dots, n$$

$$\sum_{i=0}^{n-1} a_j x_i^j - (-1)^i h = y_i$$

Calcul par formule explicite

Soit $p^{[h]} \in \mathcal{P}_n$ vérifiant les conditions :

$$i = 0, ..., n$$
 $p^{[h]}(x_i) - y_i = (-1)^i h \implies i = 0, ..., n$ $p^{[h]}(x_i) = y_i + (-1)^i h$

C'est l'expression d'un polynôme de Lagrange : $p^{[h]}(x) = \sum_{i=0}^{n} L_i(x)(y_i + (-1)^i h)$

 $p_{n-1} \in \mathcal{P}_{n-1}$ est le polynôme $p^{[h]}$ correspondant à une valeur du paramètre h choisie telle que le coefficient de x^n dans $p^{[h]}$ soit nul :

$$\sum_{i=0}^{n} \frac{y_i + (-1)^i h}{\prod_{j=0, j \neq i}^{n} (x_i - x_j)} = 0$$

Soit
$$\lambda_i = \frac{1}{\prod_{j=0, j \neq i}^{n} (x_i - x_j)} \sum_{i=0}^{n} \lambda_i (y_i + (-1)^i h) = 0$$

Or λ_i et λ_{i+1} sont de signes contraires (évident en développant), par suite, $(-1)^i \lambda_i$ est de signe constant i.e. $\sum_{i=0}^n (-1)^i \lambda_i > 0$ si n pair, < 0 si n impair.

$$h = (-1)^{n-1} \frac{\sum_{i=0}^{n} \lambda_i y_i}{\sum_{i=0}^{n} |\lambda_i|} \qquad E_{n-1} = \frac{|\sum_{i=0}^{n} \lambda_i y_i|}{\sum_{i=0}^{n} |\lambda_i|}$$

$$p_{n-1}(x) = \sum_{i=0}^{n} L_i(x) \left(y_i + (-1)^{i+n-1} \frac{\sum_{j=0}^{n} \lambda_j y_j}{\sum_{j=0}^{n} |\lambda_j|} \right)$$

Proposition

Soit $Q \in \mathcal{P}_{n-1}$ avec des valeurs $(y_i - Q(x_i))$ i = 0, ..., n qui alternent en signe et qui ne sont pas toutes égales en valeur absolue alors :

$$\min_{i=0,\dots,n} |y_i - Q(x_i)| < E_{n-1} < \max_{i=0,\dots,n} |y_i - Q(x_i)| = ||W_n - Q||$$

 $d\'{e}monstration$:

Soit Z_{n-1} le polynôme de minimax, dans \mathcal{P}_{n-1} , associé aux valeurs $(x_i, y_i - Q(x_i))$ $i = 0, \ldots, n$

$$\|(W_n - Q) - Z_{n-1}\| = \frac{\left|\sum_{i=0}^n \lambda_i (y_i - Q(x_i))\right|}{\sum_{i=0}^n |\lambda_i|}$$

Mais d'autre part :

 $\begin{aligned} \|(W_n - Q) - Z_{n-1}\| &= \min_{p \in \mathcal{P}_{n-1}} \|(W_n - Q) - p\| = \min_{p \in \mathcal{P}_{n-1}} \|W_n - (p + Q)\| \\ &\operatorname{car} \{Q + p / Q \text{ fix\'e dans } \mathcal{P}_{n-1}, \ p \in \mathcal{P}_{n-1}\} \ = \ \mathcal{P}_{n-1} \text{ donc} \end{aligned}$

$$E_{n-1} = \frac{\left| \sum_{i=0}^{n} \lambda_i (y_i - Q(x_i)) \right|}{\sum_{i=0}^{n} |\lambda_i|}$$

Or $(y_i - Q(x_i))$ i = 0, ..., n alternent en signe et il en est de même pour λ_i i = 0, ..., n donc les $\lambda_i(y_i - Q(x_i))$ i = 0, ..., n sont de signe constant.

$$E_{n-1} = \frac{\sum_{i=0}^{n} |\lambda_i| |y_i - Q(x_i)|}{\sum_{i=0}^{n} |\lambda_i|}$$

$$E_{n-1} > \frac{\sum_{i=0}^{n} |\lambda_i| \min_{i=0,\dots,n} |y_i - Q(x_i)|}{\sum_{i=0}^{n} |\lambda_i|} \qquad E_{n-1} < \frac{\sum_{i=0}^{n} |\lambda_i| \max_{i=0,\dots,n} |y_i - Q(x_i)|}{\sum_{i=0}^{n} |\lambda_i|}$$

d'où le résultat.

2.4.4 Calcul de p_m dans le cas où m < n-1: algorithme d'échange

Notations

Si T est un (m+2) – uplet de $\{x_0, \ldots, x_n\}$, p_m^T désigne le polynôme de minimax dans \mathcal{P}_m associé aux points (x_i, y_i) $x_i \in T$ et $E_m^T = \min_{p \in \mathcal{P}_m} \max_{x_i \in T} |y_i - p(x_i)|$

(Rappel : pour T fixé, le paragraphe précédent permet de calculer \boldsymbol{p}_m^T et $\boldsymbol{E}_m^T)$

Proposition

Soit T un (m+2)-uplet de $\{x_0, \ldots, x_n\}$ t.q. $\forall T'$ (m+2)-uplet de $\{x_0, \ldots, x_n\}$, $E_m^T \geq E_m^{T'}$ alors $p_m^T = p_m$ et $E_m^T = E_m$

démonstration

i) Montrons par l'absurde que $\forall x_i \in \{x_0, \dots, x_n\} - T$ $|y_i - p_m^T(x_i)| \leq E_m^T$ Supposons donc que $\exists x_i \in \{x_0, \dots, x_n\} - T$ $|y_i - p_m^T(x_i)| > E_m^T$

Soit $T = \{x_{i_0} < \ldots < x_{i_{m+1}}\}$ et supposons que $x_{i_k} < x_j < x_{i_{k+1}}$, (raisonnement analogue si $x_j < x_{i_0}$ ou $x_{i_{m+1}} < x_j$)

Soit p_m^T le polynôme de minimax associé aux points (x_{i_k}, y_{i_k}) $k = 0, \dots, m+1$.

Propriété d'équioscillation : $(y_{i_k} - p_m^T(x_{i_k}))$ et $(y_{i_{k+1}} - p_m^T(x_{i_{k+1}}))$, égaux en valeur absolue à E_m^T , sont de signes opposés.

Par exemple, $(y_{i_k} - p_m^T(x_{i_k}))$ est de même signe que $(y_j - p_m^T(x_j))$ (raisonnement analogue dans le cas de $(y_{i_{k+1}} - p_m^T(x_{i_{k+1}}))$).

Soit T' le (m+2) – uplet déduit de T en échangeant x_{i_k} et x_j :

$$T' = \{x_{i_0} < \ldots < x_{i_{k-1}} < x_j < x_{i_{k+1}} < \ldots < x_{i_{m+1}}\}$$

Lorsque x_r parcourt T', les valeurs $(y_r - p_m^T(x_r))$ alternent en signe et ne sont pas toutes égales en valeur absolue.

D'aprés la proposition du paragraphe précédent :

$$\min_{x_r \in T'} |y_r - p_m^T(x_r)| < E_m^{T'} \Rightarrow E_m^T < E_m^{T'}$$

ce qui contredit l'hypothèse.

ii)
$$\max_{i=0,...,n} |y_i - p_m^T(x_i)| = \max_{x_i \in T} |y_i - p_m^T(x_i)|$$

Plus exactement, aux (m+2) abscisses x_i de $T: y_i - p_m^T(x_i) \pm \max_{i=0,\dots,n} |y_i - p_m^T(x_i)|$ D'aprés la réciproque de la propriété d'équioscillation : $p_m^T = p_m$ et $E_m^T = E_m$.

Algorithme d'échange

Son principe est directement suggéré par la démonstration précédente :

Construction d'une suite $\{T^{(k)}\}$ de (m+2) – uplets de $\{x_0,\ldots,x_n\}$ t.q. $E_m^{T^{(k+1)}} > E_m^{T^{(k)}}$. On assure ainsi une progression vers le (ou l'un des) (m+2) – uplets T t.q. $\forall T'$ $E_m^T \geq E_m^{T'}$.

Soit $T^{(0)}=\{x_0,\ldots,x_{m+1}\}$ choisi arbitrairement. Calcul de $p_m^{T^{(0)}}$ et $E_m^{T^{(0)}}$ (cf. 4.4.2)

Cas 1 :
$$\forall x_i \in \{x_0, \dots, x_n\} - T^{(0)} \quad |y_i - p_m^{T^{(0)}}(x_i)| \leq E_m^{T^{(0)}}$$
 fin de l'algorithme : $p_m^{T^{(0)}} = p_m$ et $E_m^{T^{(0)}} = E_m$

Cas 2 : Il existe au moins une abscisse $x_j \in \{x_0, \dots, x_n\} - T^{(0)}$ t.q. $|y_j - p_m^{T^{(0)}}(x_j)| > E_m^{T^{(0)}}$ alors construction d'un nouveau (m+2) – $uplet T^{(1)}$.

Il faut sélectionner une des abscisses vérifiant l'inégalité ci-dessus. choix standard : $x_j^\star \in \{x_0,\dots,x_n\} - T^{(0)}$ t.q. $E_m^{T^{(0)}} < |y_j^\star - p_m^{T^{(0)}}(x_j^\star)| = \max_{x_k \in \{x_0,\dots,x_n\} - T^{(0)}} |y_k - p_m^{T^{(0)}}(x_k)|$

On supprime alors une abscisse dans $T^{(0)}$ (qui sera remplacée par x_j^*) t.q., aprés remplacement, les valeurs $(y_i - p_m^{T^{(0)}}(x_i))$ $x_i \in T^{(1)}$ alternent toujours en signe.

D'aprés la proposition précédente $E_m^{T^{(1)}} > E_m^{T^{(0)}}$. On calcule alors $p_m^{T(1)}$ et $E_m^{T(1)} \dots$

2.5 Meilleure approximation polynômiale uniforme d'une fonction $f \in C[a, b]$

2.5.1 Position du problème

Soit une fonction $f \in C[a,b]$. Existence, unicité et calcul de $p_m \in \mathcal{P}_m$ vérifiant :

$$(R''')$$
: $\max_{x \in [a,b]} |f(x) - p_m(x)| = \min_{p \in \mathcal{P}_m} \max_{x \in [a,b]} |f(x) - p(x)|$

2.5.2 Existence et unicité : Théorème 9

i) $\exists ! p_m \in \mathcal{P}_m$ vérifiant (R'''). p_m est appelé polynôme de m.a. uniforme (ou au sens de Tchebycheff ou de minimax) de la fonction f.

On notera
$$E_m = \max_{x \in [a,b]} |f(x) - p_m(x_i)|$$

Existence assurée par le Théorème 1 avec E=C[a,b] muni de la norme :

$$\forall g \in C[a, b] \quad \|g\| = \max_{x \in [a, b]} |g(x)|$$

 $G = \mathcal{P}_m, y f.$

ii) p_m vérifie la propriété d'équioscillation : $\exists (m+2)$ abscisses au moins $\{x_j\}$ $j=0,\ldots,m+1$ de [a,b], avec $x_j < x_{j+1}$, telles que $f(x_j) - p_m(x_j) = \pm E_m$ avec alternance de signe i.e. :

$$(f(x_i) - p_m(x_i))(f(x_{i+1}) - p_m(x_{i+1})) = -E_m^2$$

iii) Réciproquement, si $p \in \mathcal{P}_m$, si $\exists (m+2)$ abscisses x_j $j = 0, \ldots, m+1$ de [a,b] (avec $x_j < x_{j+1}$) telles que : $y_j - p(x_j) = \pm \max_{x \in [a,b]} |f(x) - p(x)|$ avec alternance de signe alors $p_m = p$.

Mais une procédure de calcul?

Exercice 6

- 1) Trouver la droite de minimax sur [a,b] d'une fonction f à dérivée seconde strictement positive sur [a,b] (on pourra se contenter, pour les points x_i vérifiant la propriété d'équioscillation d'une caractérisation implicite de la forme $f(x_i) = valeur$).
- 2) Quel est le polynôme de degré 1 réalisant l'approximation minimax de $x-\sin(x)$ sur $[\frac{\pi}{4},\frac{3\pi}{4}]$?

Exercice 7

Déterminer le polynôme de degré inférieur ou égal à n qui réalise la meilleure approximation polynômiale uniforme de la fonction $f(x) = x^{n+1}$ sur [-1,1].

Exercice 8

On définit sur l'ensemble des fonctions continues sur un intervalle [a,b] le produit scalaire :

$$\forall (f,g) \in C[a,b]^2$$
 $(f|g) = \int_a^b \omega(x)f(x)g(x) dx$

avec ω fonction poids continue et positive sur [a,b].

Soit $\{Q_j\}$ $j=0,1,2,\ldots$ une suite de polynômes orthogonaux par rapport à ce produit scalaire i.e.

$$- \mathbf{Degr\acute{e}}(Q_j) = j$$
$$-i \neq j \qquad (Q_i|Q_j) = 0$$

On note, d'une part, x_i $i=0,\ldots,n-1$ les racines de Q_n et, d'autre part, $L_i(x)$ $i=0,\ldots,n-1$ les polynômes intervenant dans une interpolation de Lagrange aux abscisses x_i i = 0, ..., n-1.

- 1) Montrer que : $i \neq j$ $(L_i|L_j) = 0$ 2) En déduire que : $\sum_{k=0}^{n-1} (L_k|L_k) = \int_a^b \omega(x)dx$ Rappel : $\sum_{k=0}^{n-1} L_k(x) = 1$

Rappel:
$$\sum_{k=0}^{n-1} L_k(x) = 1$$