assignment_6

May 14, 2025

1 STA-6543 Assignment 6

Jason Gillette

1.1 Question 6

In this exercise, you will further analyze the Wage data set considered throughout this chapter.

```
[3]: import pandas as pd
from ISLP import load_data

# Load the Wage dataset
Wage = load_data('Wage')

# Show the first few rows
Wage.head()
```

```
[3]:
        year
              age
                              maritl
                                          race
                                                       education
                                                                              region \
        2006
               18
                   1. Never Married
                                     1. White
                                                   1. < HS Grad
                                                                 2. Middle Atlantic
     1
        2004
               24
                   1. Never Married
                                      1. White
                                                4. College Grad
                                                                  2. Middle Atlantic
     2
        2003
               45
                         2. Married
                                     1. White
                                                3. Some College
                                                                  2. Middle Atlantic
     3 2003
               43
                         2. Married
                                      3. Asian
                                                4. College Grad
                                                                  2. Middle Atlantic
     4 2005
               50
                        4. Divorced
                                     1. White
                                                      2. HS Grad
                                                                  2. Middle Atlantic
              jobclass
                                 health health_ins
                                                      logwage
                                                                     wage
```

```
4.318063
    1. Industrial
                         1. <=Good
                                         2. No
                                                            75.043154
1
   2. Information
                   2. >=Very Good
                                         2. No
                                                4.255273
                                                            70.476020
2
    1. Industrial
                         1. <=Good
                                        1. Yes
                                                4.875061
                                                           130.982177
3
   2. Information
                    2. >=Very Good
                                        1. Yes
                                                5.041393
                                                           154.685293
  2. Information
                         1. <=Good
                                        1. Yes
                                                4.318063
                                                            75.043154
```

1.2 Question 6a.

Perform polynomial regression to predict wage using age. Use cross-validation to select the optimal degree d for the polynomial. What degree was chosen, and how does this compare to the results of hypothesis testing using ANOVA? Make a plot of the resulting polynomial fit to the data.

```
[4]: import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.preprocessing import PolynomialFeatures
     from sklearn.linear_model import LinearRegression
     from sklearn.model_selection import cross_val_score
     # Define variables
     X = Wage[['age']].values
     y = Wage['wage'].values
     # Try polynomial degrees from 1 to 10
     degrees = range(1, 11)
     cv_errors = []
     for d in degrees:
         poly = PolynomialFeatures(degree=d, include_bias=False)
         X_poly = poly.fit_transform(X)
         model = LinearRegression()
         mse = -cross_val_score(model, X_poly, y, scoring='neg_mean_squared_error',_
      \hookrightarrow cv=10).mean()
         cv_errors.append(mse)
     # Show Degrees
     d_errors = list(zip(degrees, cv_errors))
     print(f"cv_errors: {d_errors}")
     # Find optimal degree
     best_degree = degrees[np.argmin(cv_errors)]
     print(f"Best degree by cross-validation: {best_degree}")
    cv_errors: [(1, 1675.6742498921044), (2, 1600.326984342545), (3,
    1595.3115754261844), (4, 1593.9356555748932), (5, 1594.4795519650995), (6,
    1594.0782857404324), (7, 1592.997234853729), (8, 1592.824347496564), (9,
    1595.9062628845313), (10, 1603.793938030312)]
    Best degree by cross-validation: 8
[5]: # plot results
     plt.figure(figsize=(8, 4))
     plt.plot(degrees, cv_errors, marker='o')
     plt.xlabel('Polynomial Degree')
     plt.ylabel('10-fold CV Error (MSE)')
     plt.title('CV Error for Polynomial Degrees')
     plt.grid(True)
     plt.show()
```

CV Error for Polynomial Degrees


```
import statsmodels.api as sm
from ISLP.models import (summarize, poly, ModelSpec as MS)
from statsmodels.stats.anova import anova_lm

# Build nested models: poly(age, degree=d) for d = 1 to 11
models = [MS([poly('age', degree=d)]) for d in range(1, 12)]
X_designs = [model.fit_transform(Wage) for model in models]
fits = [sm.OLS(y, X_).fit() for X_ in X_designs]

# Compare with ANOVA
anova_results = anova_lm(*fits)
print(anova_results)
```

	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)
0	2998.0	5.022216e+06	0.0	NaN	NaN	NaN
1	2997.0	4.793430e+06	1.0	228786.010128	143.718829	2.225306e-32
2	2996.0	4.777674e+06	1.0	15755.693664	9.897414	1.671346e-03
3	2995.0	4.771604e+06	1.0	6070.152124	3.813149	5.094478e-02
4	2994.0	4.770322e+06	1.0	1282.563017	0.805681	3.694725e-01
5	2993.0	4.766389e+06	1.0	3932.257665	2.470166	1.161314e-01
6	2992.0	4.763834e+06	1.0	2555.281281	1.605177	2.052697e-01
7	2991.0	4.763707e+06	1.0	126.668985	0.079571	7.778992e-01
8	2990.0	4.756703e+06	1.0	7004.317139	4.399973	3.602325e-02
9	2989.0	4.756701e+06	1.0	2.637537	0.001657	9.675343e-01
10	2988.0	4.756597e+06	1.0	103.201509	0.064829	7.990375e-01

```
[13]: import numpy as np
      import matplotlib.pyplot as plt
      from ISLP.models import ModelSpec as MS, poly
      # Define degrees
      degree_cv = 8
      degree_anova = 3
      # Create ModelSpecs
      ms_cv = MS([poly('age', degree=degree_cv)])
      ms_anova = MS([poly('age', degree=degree_anova)])
      # Fit design matrices
      X_cv = ms_cv.fit_transform(Wage)
      X_anova = ms_anova.fit_transform(Wage)
      y = Wage['wage']
      # Fit models
      fit_cv = sm.OLS(y, X_cv).fit()
      fit_anova = sm.OLS(y, X_anova).fit()
      # Generate grid of age values
      age_grid = np.linspace(Wage['age'].min(), Wage['age'].max(), 100)
      grid_df = pd.DataFrame({'age': age_grid})
      # Predict using each model
      X_grid_cv = ms_cv.transform(grid_df)
      X_grid_anova = ms_anova.transform(grid_df)
      pred_cv = fit_cv.predict(X_grid_cv)
      pred_anova = fit_anova.predict(X_grid_anova)
      # Plot
      fig, ax = plt.subplots(figsize=(10, 6))
      ax.scatter(Wage['age'], y, color='lightgray', edgecolor='k', alpha=0.6, u
       ⇔label='Observed Data')
      ax.plot(age_grid, pred_anova, label=f'ANOVA Fit (Degree {degree_anova})', __
       ⇔color='green', linewidth=2)
      ax.plot(age grid, pred_cv, label=f'CV Fit (Degree {degree cv})', color='blue', __
      ⇒linewidth=2, linestyle='--')
      ax.set xlabel('Age')
      ax.set ylabel('Wage')
      ax.set_title('Polynomial Regression Fits: CV vs ANOVA')
      ax.legend()
      ax.grid(True)
      plt.show()
```


1.3 Question 6b.

Fit a step function to predict wage using age, and perform cross-validation to choose the optimal number of cuts. Make a plot of the fit obtained.

```
[15]: import numpy as np
      import pandas as pd
      import statsmodels.api as sm
      from sklearn.model_selection import cross_val_score, KFold
      from sklearn.linear_model import LinearRegression
      from matplotlib.pyplot import subplots
      from ISLP import load_data
      # Load data again
      Wage = load_data('Wage')
      X_age = Wage['age']
      y = Wage['wage']
      # Try step functions with 2 to 10 bins
      cv_errors = []
      cuts_range = range(2, 11)
      for k in cuts_range:
          # Bin ages into k intervals
```

```
Wage['age_bin'] = pd.cut(X_age, bins=k)
          # One-hot encode the age bins (drop first to avoid collinearity)
          X_dummies = pd.get_dummies(Wage['age_bin'], drop_first=True)
          # Cross-validation using sklearn
          model = LinearRegression()
          scores = cross_val_score(model, X_dummies, y, cv=10,__
       ⇔scoring='neg_mean_squared_error')
          cv_errors.append(-scores.mean())
      # Find best number of bins
      best_k = cuts_range[np.argmin(cv_errors)]
      print(f"cv_errors:{cv_errors}")
      print(f"Best number of age bins (cuts): {best_k}")
     cv errors: [1733.6247654372023, 1682.924818990572, 1635.2904177897497,
     1631.8552686011149, 1623.656547415575, 1611.4169308778028, 1600.0110941892897,
     1611.1198831331985, 1605.6087735908577]
     Best number of age bins (cuts): 8
[16]: import matplotlib.pyplot as plt
      plt.figure(figsize=(8, 5))
      plt.plot(cuts_range, cv_errors, marker='o')
      plt.xlabel('Number of Age Cuts (Bins)')
      plt.ylabel('10-fold CV Error (MSE)')
      plt.title('Step Function CV Error vs. Number of Cuts')
      plt.grid(True)
      plt.show()
```



```
[17]: # Recreate best step function
      Wage['age_bin'] = pd.cut(X_age, bins=best_k)
      X_best = pd.get_dummies(Wage['age_bin'], drop_first=True)
      model = LinearRegression().fit(X_best, y)
      # Predict over age grid using bin mapping
      age_grid = np.linspace(X_age.min(), X_age.max(), 1000)
      age_df = pd.DataFrame({'age': age_grid})
      age_df['age_bin'] = pd.cut(age_df['age'], bins=best_k)
      X_grid = pd.get_dummies(age_df['age_bin'], drop_first=True)
      # Align dummy columns in case of mismatch
      X_grid = X_grid.reindex(columns=X_best.columns, fill_value=0)
      # Predict wages
      wage_pred = model.predict(X_grid)
      # Plot
      fig, ax = subplots(figsize=(10, 6))
      ax.scatter(X_age, y, color='lightgray', edgecolor='k', alpha=0.5,_
       ⇔label='Observed Data')
      ax.plot(age_grid, wage_pred, color='red', linewidth=2, label=f'Step Function_
       \hookrightarrow (k={best k})')
```

```
ax.set_xlabel('Age')
ax.set_ylabel('Wage')
ax.set_title('Step Function Fit for Wage vs. Age')
ax.legend()
ax.grid(True)
plt.show()
```


1.4 Question 10.

This question relates to the College data set.

```
[24]: from ISLP import load_data

College = load_data('College')
College.head()
```

```
[24]:
                                  Enroll
                                           Top10perc
                                                       Top25perc
                                                                   F.Undergrad \
        Private
                  Apps
                         Accept
             Yes
                  1660
                           1232
                                     721
                                                   23
                                                               52
                                                                           2885
      1
             Yes
                  2186
                           1924
                                     512
                                                   16
                                                               29
                                                                           2683
      2
             Yes
                  1428
                           1097
                                     336
                                                   22
                                                               50
                                                                           1036
      3
             Yes
                            349
                                                   60
                                                               89
                                                                            510
                    417
                                     137
             Yes
                                                                            249
                    193
                            146
                                      55
                                                   16
                                                               44
```

P.Undergrad Outstate Room.Board Books Personal PhD Terminal \

0	53	7 7440	33	00	450	2200	70	78
1	122	7 12280	12280 64		750	1500	29	30
2	9	9 11250	37	50	400	1165	53	66
3	6	3 12960	5450		450	875	92	97
4	86	9 7560	41	20	800	1500	76	72
	S.F.Ratio	perc.alumni	Expend	Gra	d.Rate			
0	18.1	12	7041		60			
1	12.2	16	10527		56			
2	12.9	30	8735		54			
3	7.7	37	19016		59			
4	11.9	2	10922		15			

1.5 Question 10a.

Split the data into a training set and a test set. Using out-of-state tuition as the response and the other variables as the predictors perform forward stepwise selection on the training set in order to identify a satisfactory model that uses just a subset of the predictors.

```
[]: import numpy as np
     import pandas as pd
     from sklearn.model_selection import train_test_split
     import statsmodels.api as sm
     from ISLP import load_data
     # 1) Load the College data
     College = load_data('College')
     # 2) Separate response and predictors
     y = College['Outstate'].astype(float)
                                                    # ensure numeric
     X = College.drop(columns='Outstate')
     # 3) One-hot encode any categoricals, then cast ALL columns to float
     X = pd.get_dummies(X, drop_first=True).astype(float)
     # 4) Split into training and test sets
     X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.3, random_state=0
     )
     # 5) Forward stepwise selection (AIC-based)
     def forward_selection(X, y):
         remaining = set(X.columns)
         selected = []
         current_aic = np.inf
         while remaining:
```

```
best_candidate = None
        best_aic = current_aic
        for cand in remaining:
            Xc = sm.add_constant(X[selected + [cand]], has_constant='add')
            model = sm.OLS(y, Xc).fit()
            if model.aic < best_aic:</pre>
                best_aic = model.aic
                best_candidate = cand
        # If we found an improvement, keep it
        if best_candidate is not None:
            remaining.remove(best_candidate)
            selected.append(best_candidate)
            current_aic = best_aic
        else:
            break
    return selected, current_aic
# 6) Run forward selection on the training set
selected_vars, final_aic = forward_selection(X_train, y_train)
# 7) Report the result
print("Forward stepwise selected predictors:")
for v in selected_vars:
    print(" -", v)
print(f"Final training-set AIC: {final_aic:.2f}")
### I VIBE CODED THIS... THE BOOKS EXAMPLE SUCKS! HOURS OF MY LIFE WASTED!!!
```

Forward stepwise selected predictors:

```
- Expend
- Private_Yes
- Room.Board
- perc.alumni
- Terminal
- Grad.Rate
- Top10perc
- Personal
- Accept
- F.Undergrad
- Enroll
- Apps
- Top25perc
Final training-set AIC: 9765.02
```

1.6 Question 10b.

Fit a GAM on the training data, using out-of-state tuition as the response and the features selected in the previous step as the predictors. Plot the results, and explain your findings.

```
[45]: import numpy as np
      import pandas as pd
      from sklearn.model_selection import train_test_split
      from pygam import LinearGAM, s as s_gam
      from matplotlib.pyplot import subplots
      # 1) Load & preprocess (as in 10a):
      X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
      # 2) The forward-stepwise selected predictors:
      selected vars = [
          'Expend', 'Private_Yes', 'Room.Board', 'perc.alumni', 'Terminal',
          'Grad.Rate', 'Top1Operc', 'Personal', 'Accept',
          'F.Undergrad', 'Enroll', 'Apps', 'Top25perc'
      Xg_train = X_train[selected_vars].values
      # 3) Build the GAM term list correctly:
      terms = s_gam(0)
      for i in range(1, Xg_train.shape[1]):
          terms = terms + s_gam(i)
      # 4) Fit the GAM:
      gam = LinearGAM(terms)
      gam.gridsearch(Xg_train, y_train.values)
      # 5) Plot each smooth effect (no CIs)
      fig, axes = subplots(len(selected_vars), 1,
                           figsize=(8, 4 * len(selected_vars)))
      for i, var in enumerate(selected_vars):
          # grid for partial dependence
          XX = gam.generate_X_grid(term=i)
          pdep = gam.partial_dependence(term=i, X=XX)
          ax = axes[i]
          ax.plot(XX[:, i], pdep, linewidth=2)
          ax.scatter(Xg_train[:, i], y_train,
                     facecolor='lightgray', alpha=0.3, s=20)
          ax.set_xlabel(var)
          ax.set_ylabel(f'f({var})')
          ax.set_title(f'Smooth effect of {var}')
          ax.grid(True)
```

fig.tight_layout()

```
0% (0 of 11) |
                                  | Elapsed Time: 0:00:00 ETA:
 9% (1 of 11) |##
                                  | Elapsed Time: 0:00:00 ETA:
                                                           0:00:02
18% (2 of 11) |####
                                  | Elapsed Time: 0:00:00 ETA:
                                                           0:00:02
27% (3 of 11) |#####
                                  | Elapsed Time: 0:00:00 ETA:
                                                           0:00:01
36% (4 of 11) |########
                                  | Elapsed Time: 0:00:01 ETA:
                                                           0:00:01
45% (5 of 11) | ###########
                                  | Elapsed Time: 0:00:01 ETA:
                                                           0:00:01
54% (6 of 11) |############
                                  | Elapsed Time: 0:00:01 ETA:
                                                           0:00:01
| Elapsed Time: 0:00:02 ETA:
                                                           0:00:01
| Elapsed Time: 0:00:02 ETA:
                                                           0:00:01
                                  | Elapsed Time: 0:00:03 ETA:
0:00:00
| Elapsed Time: 0:00:03 ETA:
                                                           0:00:00
100% (11 of 11) | ################### Elapsed Time: 0:00:04 Time:
                                                           0:00:04
```


1.7 Question 10c.

Evaluate the model obtained on the test set, and explain the results obtained.

```
[46]: from sklearn.metrics import mean_squared_error, r2_score

# Prepare the test-set matrix
Xg_test = X_test[selected_vars].values

# Predict out-of-state tuition on the test set
y_pred = gam.predict(Xg_test)

# Compute test-set MSE and R^2
mse_test = mean_squared_error(y_test, y_pred)
r2_test = r2_score(y_test, y_pred)

print(f"Test MSE: {mse_test:.2f}")
print(f"Test R² : {r2_test:.3f}")
```

Test MSE: 3378526.25Test R^2 : 0.800

Results suggest the model explains 80% of variance in out-of-state tuition. That being said the code is so screwed up in creating the model, it could be different.

1.8 Question 10d.

For which variables, if any, is there evidence of a non-linear relationship with the response?

Many of the variables show a non-linear relationship as demonstrated in the plots above....