MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Designer's Data Sheet

Power Field Effect Transistor

N-Channel Enhancement-Mode Silicon Gate TMOS

These TMOS Power FETs are designed for high voltage, high speed power switching applications such as switching regulators, converters, solenoid and relay drivers.

- Silicon Gate for Fast Switching Speeds Switching Times Specified at 100°C
- Designer's Data IDSS, VDS(on), VGS(th) and SOA Specified at Elevated Temperature
- Rugged SOA is Power Dissipation Limited
- Source-to-Drain Diode Characterized for Use With Inductive Loads

MTH5N95 MTH5N100 MTM5N95 MTM5N100

TMOS POWER FETS 5 AMPERES rDS(on) = 3 OHMS 950 and 1000 VOLTS

MAXIMUM RATINGS

Danie -	Symbol	MTH		
Rating		5N95	5N100	Unit
Drain-Source Voltage	V _{DSS}	950	1000	Vdc
Drain-Gate Voltage (RGS = 1 M Ω)	V _{DGR}	950	1000	Vdc
Gate-Source Voltage — Continuous — Non-repetitive (t _p ≤ 50 μs)	V _{GS} V _{GSM}	± 20 ± 40		Vdc Vpk
Drain Current Continuous Pulsed	IDW ID		5 17	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	150 1.2		Watts W∂C
Operating and Storage Temperature Range	T _J , T _{stg}	- 65	to 150	°C

THERMAL CHARACTERISTICS

THE WINE OF MICHOLICO			
Thermal Resistance — Junction to Case — Junction to Ambient	R _Ø JC R _Ø JA	0.83 30	°C:W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	TL	275	J.

MTM5N95 MTM5N100 CASE 1-06 TO-204AA

MTH5N95 MTH5N100 CASE 340-02 TO-218AC

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

MTH/MTM5N95, 100

ELECTRICAL	CHARACTERISTICS ITA	= 25°C unless otherwise noted)

Charac	teristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					-
Drain-Source Breakdown Voltage (VGS = 0, ID = 0.25 mA)	MTH/MTM5N95 MTH/MTM5N100	V(BR)DSS	950 1000	-	Vdc
Zero Gate Voltage Drain Current (V_{DS} = Rated V_{DSS} , V_{GS} = 0) (V_{DS} = 0.8 Rated V_{DSS} , V_{GS} = 0.	, T _J = 125°C)	DSS	-	0.2	mAdd
Gate-Body Leakage Current, Forward	(V _{GSF} = 20 Vdc, V _{DS} = 0)	GSSF	_	100	nAdc
Gate-Body Leakage Current, Reverse	(VGSR = 20 Vdc, VDS = 0)	1GSSR	-	100	nAdc
ON CHARACTERISTICS*					
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_{D} = 1$ mA) $T_{J} = 100^{\circ}C$		V _{GS(th)}	2 1.5	4.5 4	Vdc
Static Drain-Source On-Resistance (V	GS = 10 Vdc, ID = 2.5 Ade)	rDS(on)	-	3	Ohms
Drain-Source On-Voltage (VGS = 10 V) $(I_D = 5 \text{ Adc})$ $(I_D = 2.5 \text{ Adc}, T_J = 100^{\circ}\text{C})$		V _{DS(on)}	_	15 12.5	Vdc
Forward Transconductance (VDS = 1	15 V, I _D = 2.5 A)	9FS	2		mhos
DYNAMIC CHARACTERISTICS			·1		
Input Capacitance	(V _{DS} = 25 V, V _{GS} = 0,	Ciss		2600	pF
Output Capacitance	f = 1 MHz)	Coss	_	350	
Reverse Transfer Capacitance	See Figure 10	C _{rss}	-	200	
SWITCHING CHARACTERISTICS* (TJ =	- 100°C)				
Turn-On Delay Time		td(on)		70	ns
Rise Time	(V _{DD} = 25 V, I _D = 0.5 Rated I _D	tr	-	250	
Turn-Off Delay Time	R _{gen} = 50 ohms) See Figures 12 and 13	td(off)		500	
Fall Time		tf	-	200	
Total Gate Charge	$(V_{DS} = 0.8 \text{ Rated } V_{DSS},$	Ωg	110 (Typ)	140	nC
Gate-Source Charge	$I_D = Rated I_D, V_{GS} = 10 V_I$	Qgs	60 (Typ)		
Gate-Drain Charge	See Figure 11	Ω _{gd}	50 (Typ)		
SOURCE DRAIN DIODE CHARACTERIS	TICS*	,			
Forward On-Voltage	(Is = Rated ID	VSD	1.1 (Typ)	1.5	Vdc
Forward Turn-On Time	V _{GS} = 0)	ton	Limited	by stray inductance	
Reverse Recovery Time		t _{rr}	1200 (Typ)		п\$
NTERNAL PACKAGE INDUCTANCE (TO	D-204)				
Internal Drain Inductance (Measured from the contact screw to the source pin and the center of		L _d	5 (Typ)	_	nH
Internal Source Inductance (Measured from the source pin, 0.2 to the source bond pad)	25° from the package	L _S	12.5 (Typ)	_	
NTERNAL PACKAGE INDUCTANCE (TO	D-218)				
Internal Drain Inductance (Measured from the contact screw (Measured from the drain lead 0.25		Ld	4 (Typ) 5 (Typ)	_	nН
Internal Source Inductance	25" from package to source bond pad.)	L _s	10 (Typ)		1

^{*}Pulse Test: Pulse Width ≈ 300 µs, Duty Cycle ≤ 2%.

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Gate-Threshold Voltage Variation With Temperature

Figure 3. Transfer Characteristics

Figure 4. Breakdown Voltage Variation With Temperature

Figure 5. On-Resistance versus Drain Current

Figure 6. On-Resistance Variation With Temperature

MTH/MTM5N95, 100

SAFE OPERATING AREA INFORMATION

Figure 7. Maximum Rated Forward Biased Safe Operating Area

Figure 8. Maximum Rated Switching Safe Operating Area

FORWARD BIASED SAFE OPERATING AREA

The FBSOA curves define the maximum drain-to-source voltage and drain current that a device can safely handle when it is forward biased, or when it is on, or being turned on. Because these curves include the limitations of simultaneous high voltage and high current, up to the rating of the device, they are especially useful to designers of linear systems. The curves are based on a case temperature of 25°C and a maximum junction temperature of 150°C. Limitations for repetitive pulses at various case temperatures can be determined by using the thermal response curves. Motorola Application Note, AN569, "Transient Thermal Resistance-General Data and Its Use" provides detailed instructions.

SWITCHING SAFE OPERATING AREA

The switching safe operating area (SOA) of Figure 8 is the boundary that the load line may traverse without incurring damage to the MOSFET. The fundamental limits are the peak current, IDM and the breakdown voltage, V(BR)DSS. The switching SOA shown in Figure 8 is applicable for both turn-on and turn-off of the devices for switching times less than one microsecond.

The power averaged over a complete switching cycle must be less than:

Figure 9. Thermal Response

 $v_{DS} = 500 \text{ V}$ GATE:TO-SOURCE VOLTAGE (VOLTS) 650 V 800 v T_J = 25°C 1D = 3AVGS, 1 40 80 120 160 200 Qg TOTAL GATE CHARGE INC.

Figure 10. Capacitance Variation

Figure 11. Gate Charge versus Gate-To-Source Voltage

RESISTIVE SWITCHING

Figure 12. Switching Test Circuit

Figure 13. Switching Waveforms

OUTLINE DIMENSIONS

