Business Understanding/Overview

The aviation industry is a vital component of the global economy, enabling the rapid movement of people and goods across the globe.

Aviation companies have been on an expansion spree in order to keep up with an ever increasing demand. Investing in this industry requires immense resources and therefore the need for an indepth analysis on what model of aircraft to invest in.

This analysis will utilize dataset from the National Transportation Safety Board that includes aviation accident data from 1962 to 2023 about civil aviation accidents.

Problem Statement

The company would like to diversify its fleet of aircrafts for commercial and private business and seeks the expertise in assessing the risks associated with different aircraft models, operational conditions, and their suitability for such a venture.

Objectives

The main objective is to identify low-risk aircraft models and operational strategies to guide the expansion in the aviation industry.

Research Questions

- 1. Which aircraft models have the lowest accident and fatality rates?
- 2. Are there differences in risk levels based on the purpose of flight?
- 3. During which phase of flight do most fatal injuries occur?
- 4. Which aircraft engine types have the lowest accident rates?
- 5. Are there specific parts of the world with a higher frequency of fatal injuries?

Methodology

For this analysis, CRISP-DM framework has been used.

Success Criteria

- 1. Total fatalities linked to each aircraft model.
- 2. Number of recorded incidents for each model.
- 3. The proportion of fatalities to total incidents for each model.

Limitations

- 1. Missing and incomplete Data
- 2. Lack of operational hours for each aircraft
- 3. Investment budget for expansion not provided

Data Understanding

Import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

data = pd.read_csv('/content/AviationData.csv', encoding='latin1')
data.head()

→		Event.Id	Investigation.Type	Accident.Number	Event.Date	Location	Country	Latitude	Longitude	Airport.Code	A
	0	20001218X45444	Accident	SEA87LA080	24/10/1948	MOOSE CREEK, ID	United States	NaN	NaN	NaN	
	1	20001218X45447	Accident	LAX94LA336	19/07/1962	BRIDGEPORT, CA	United States	NaN	NaN	NaN	
	2	20061025X01555	Accident	NYC07LA005	30/08/1974	Saltville, VA	United States	36.922223	-81.878056	NaN	
	3	20001218X45448	Accident	LAX96LA321	19/06/1977	EUREKA, CA	United States	NaN	NaN	NaN	
	4	20041105X01764	Accident	CHI79FA064	02/08/1979	Canton, OH	United States	NaN	NaN	NaN	
	5 rc	ows × 31 columns									
	4										•

data.tail()

_		Event.Id	Investigation.Type	Accident.Number	Event.Date	Location	Country	Latitude	Longitude	Airport.Code	Airpo
	88884	2.02212E+13	Accident	ERA23LA093	26/12/2022	Annapolis, MD	United States	NaN	NaN	NaN	
	88885	2.02212E+13	Accident	ERA23LA095	26/12/2022	Hampton, NH	United States	NaN	NaN	NaN	
	88886	2.02212E+13	Accident	WPR23LA075	26/12/2022	Payson, AZ	United States	341525N	1112021W	PAN	
	88887	2.02212E+13	Accident	WPR23LA076	26/12/2022	Morgan, UT	United States	NaN	NaN	NaN	
	88888	2.02212E+13	Accident	ERA23LA097	29/12/2022	Athens, GA	United States	NaN	NaN	NaN	
	5 rows ×	: 31 columns									
	4										•

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 88889 entries, 0 to 88888 Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	Event.Id	88889 non-null	object
1	Investigation.Type	88889 non-null	object
2	Accident.Number	88889 non-null	object
3	Event.Date	88889 non-null	object
4	Location	88837 non-null	object
5	Country	88663 non-null	object
6	Latitude	34382 non-null	object
7	Longitude	34373 non-null	object
8	Airport.Code	50132 non-null	object
9	Airport.Name	52704 non-null	object
10	Injury.Severity	87889 non-null	object
11	Aircraft.damage	85695 non-null	object
12	Aircraft.Category	32287 non-null	object

```
87507 non-null object
      13 Registration.Number
      14 Make
                                 88826 non-null object
      15 Model
                                 88797 non-null object
      16 Amateur.Built
                                 88787 non-null object
      17 Number.of.Engines
                                 82805 non-null float64
                                 81793 non-null object
      18 Engine. Type
      19 FAR.Description
                                 32023 non-null object
      20 Schedule
                                 12582 non-null object
      21 Purpose.of.flight
                                 82697 non-null object
      22 Air.carrier
                                 16648 non-null object
      23 Total.Fatal.Injuries
                                 77488 non-null float64
      24 Total.Serious.Injuries
                                 76379 non-null float64
      25 Total.Minor.Injuries
                                 76956 non-null float64
      26 Total.Uninjured
                                 82977 non-null float64
      27 Weather.Condition
                                 84397 non-null object
      28 Broad.phase.of.flight
                                 61724 non-null object
      29 Report.Status
                                 82505 non-null object
      30 Publication.Date
                                 75118 non-null object
     dtypes: float64(5), object(26)
     memory usage: 21.0+ MB
# Columns
data.columns
     Index(['Event.Id', 'Investigation.Type', 'Accident.Number', 'Event.Date',
            'Location', 'Country', 'Latitude', 'Longitude', 'Airport.Code',
            'Airport.Name', 'Injury.Severity', 'Aircraft.damage',
            'Aircraft.Category', 'Registration.Number', 'Make', 'Model',
            'Amateur.Built', 'Number.of.Engines', 'Engine.Type', 'FAR.Description',
            'Schedule', 'Purpose.of.flight', 'Air.carrier', 'Total.Fatal.Injuries',
            'Total.Serious.Injuries', 'Total.Minor.Injuries', 'Total.Uninjured',
            'Weather.Condition', 'Broad.phase.of.flight', 'Report.Status',
            'Publication.Date'],
          dtype='object')
```

sns.pairplot(data)

Total.Serious.Injuries

Total.Minor.Injuries

Total.Uninjured

Number.of.Engines

Total.Fatal.Injuries

data.describe()

-		_
_	•	÷
_	7	~
-	-	_

	Number.of.Engines	Total.Fatal.Injuries	Total.Serious.Injuries	Total.Minor.Injuries	Total.Uninjured	
count	82805.000000	77488.000000	76379.000000	76956.000000	82977.000000	ıl.
mean	1.146585	0.647855	0.279881	0.357061	5.325440	
std	0.446510	5.485960	1.544084	2.235625	27.913634	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	0.000000	0.000000	0.000000	0.000000	
50%	1.000000	0.000000	0.000000	0.000000	1.000000	
75%	1.000000	0.000000	0.000000	0.000000	2.000000	
max	8.000000	349.000000	161.000000	380.000000	699.000000	

Data Cleaning

Missing Values
data.isna().sum()

	0
Event.ld	0
Investigation.Type	0
Accident.Number	0
Event.Date	0
Location	52
Country	226
Latitude	54507
Longitude	54516
Airport.Code	38757
Airport.Name	36185
Injury.Severity	1000
Aircraft.damage	3194
Aircraft.Category	56602
Registration.Number	1382
Make	63
Model	92
Amateur.Built	102
Number.of.Engines	6084
Engine.Type	7096
FAR.Description	56866
Schedule	76307
Purpose.of.flight	6192

Air.carrier	72241
Total.Fatal.Injuries	11401
Total.Serious.Injuries	12510
Total.Minor.Injuries	11933
Total.Uninjured	5912
Weather.Condition	4492
Broad.phase.of.flight	27165
Report.Status	6384
Publication.Date	13771

dtype: int64

data.isna().mean()

0 **Event.Id** 0.000000 Investigation.Type 0.000000 **Accident.Number** 0.000000 **Event.Date** 0.000000 Location 0.000585 Country 0.002542 Latitude 0.613203 Longitude 0.613304 Airport.Code 0.436016 Airport.Name 0.407081 Injury.Severity 0.011250 Aircraft.damage 0.035932 Aircraft.Category 0.636772 Registration.Number 0.015547 Make 0.000709 Model 0.001035 Amateur.Built 0.001147 Number.of.Engines 0.068445 **Engine.Type** 0.079830 **FAR.Description** 0.639742 Schedule 0.858453

Air.carrier	0.812710
Total.Fatal.Injuries	0.128261
Total.Serious.Injuries	0.140737
Total.Minor.Injuries	0.134246
Total.Uninjured	0.066510
Weather.Condition	0.050535
Broad.phase.of.flight	0.305606
Report.Status	0.071820
Publication.Date	0.154924

dtype: float64

Handling missing values

```
## Drop columns missing values
data.dropna(axis = 1, inplace = True)
data.isna().sum()
```


Event.ld 0
Investigation.Type 0

Accident.Number 0

Event.Date 0

dtype: int64

Handling duplicates

data.duplicated().sum()

→ 26

data.drop_duplicates()

Aviation Industry.ipynb - Colab

11/24/24, 12:46 PM

-		_
-	-	$\overline{}$
	<u> </u>	j

	Event.Id	Investigation.Type	Accident.Number	Event.Date	=
0	20001218X45444	Accident	SEA87LA080	24/10/1948	11.
1	20001218X45447	Accident	LAX94LA336	19/07/1962	
2	20061025X01555	Accident	NYC07LA005	30/08/1974	
3	20001218X45448	Accident	LAX96LA321	19/06/1977	
4	20041105X01764	Accident	CHI79FA064	02/08/1979	
88884	2.02212E+13	Accident	ERA23LA093	26/12/2022	
88885	2.02212E+13	Accident	ERA23LA095	26/12/2022	
88886	2.02212E+13	Accident	WPR23LA075	26/12/2022	
88887	2.02212E+13	Accident	WPR23LA076	26/12/2022	
88888	2.02212E+13	Accident	ERA23LA097	29/12/2022	
88863 rd	ows × 4 columns				

There were 26 duplicates, we proceed with data cleaning

Visualization of data

```
# Import necessary libraries
import pandas as pd
import matplotlib.pyplot as plt

# Reloading the dataset
file_path = '/content/AviationData.csv'
aviation_data = pd.read_csv(file_path, encoding='latin1')
```

```
# Selecting relevant columns for analysis
relevant data = aviation data[
    ['Aircraft.Category', 'Make', 'Model', 'Purpose.of.flight', 'Total.Fatal.Injuries',
     'Total.Serious.Injuries', 'Total.Minor.Injuries', 'Total.Uninjured', 'Weather.Condition',
     'Broad.phase.of.flight']
1
# Converting injury columns to numeric for calculations
for col in ['Total.Fatal.Injuries', 'Total.Serious.Injuries', 'Total.Minor.Injuries', 'Total.Uninjured']:
    relevant data[col] = pd.to numeric(relevant data[col], errors='coerce')
# Grouping data by Make and Model to calculate average incidents and injuries
risk summary avg = relevant data.groupby(['Make', 'Model']).agg({
    'Total.Fatal.Injuries': 'mean',
    'Total.Serious.Injuries': 'mean',
    'Total.Minor.Injuries': 'mean',
    'Total.Uninjured': 'mean'
}).reset index()
# Adding a column for average total incidents
risk summary avg['Avg.Incidents'] = (
    risk summary avg['Total.Fatal.Injuries'] +
   risk summary avg['Total.Serious.Injuries'] +
   risk summary avg['Total.Minor.Injuries'] +
    risk summary avg['Total.Uninjured']
# Sorting by Average Fatal Injuries for the plot
risk summary avg sorted = risk summary avg.sort values(by='Total.Fatal.Injuries', ascending=False)
# Filter the data for aircraft models with recorded average fatal injuries
fatal injuries avg data = risk summary avg sorted[risk summary avg sorted['Total.Fatal.Injuries'] > 0]
# Plot the average number of fatal injuries versus aircraft model
plt.figure(figsize=(12, 6))
```