Классические и продвинутые темы теории вероятностей и математической статистики

Подвойский А.О.

Здесь приводятся заметки по некоторым вопросам, касающимся машинного обучения, анализа данных, программирования на языках Python, R и прочим сопряженным вопросам так или иначе, затрагивающим работу с данными.

Краткое содержание

1 Эмпирическая и теоретическая функции распр	ределения 1
2 Доверительные интервалы	2
3 Центральная предельная теорема	3
Список литературы	3
Содержание	
1 Эмпирическая и теоретическая функции распр	ределения 1
2 Доверительные интервалы	2
3 Центральная предельная теорема	3
Список литературы	3

1. Эмпирическая и теоретическая функции распределения

Построим по выборке X_1, X_2, \ldots, X_n случайную ступенчатую функцию $\hat{F}_n(x)$, возрастающую скачками величины 1/n в точках $X_{(i)}$ (i-ая порядковая статистика). Эта функция называется эмпирической функцией распределения. Чтобы задать значения в точках разрывов, формально определим ее так, чтобы она была непрерывна справа

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I_{\{X_{(i)} \le x\}} = \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le x\}}.$$

В отличие от эмпирической функции распределения выборки, интегральную функцию F(x) распределения генеральной совокупности называют теоретической функцией распределения.

Различие между эмпирической и теоретической функциями распределения F(x) состоит в том, что теоретическая функция определяет вероятность события $X_i \leq x$, а эмпирическая функция $\hat{F}_n(x)$ определяет относительную частоту этого события. Из теоремы Бернулли следует,

что относительная частота события $X_i \leqslant x$, т.е. $\hat{F}_n(x)$ стремится по вероятности к вероятности F(x) этого события. Другими словами числа $\hat{F}_n(x)$ и F(x) мало отличаются одно от другого [1, 191].

2. Доверительные интервалы

Доверительный интервал – интервал, покрывающий неизвестный скалярный параметр θ с заданной доверительной вероятностью $(1-\alpha)$

$$P(\hat{\theta}_1(X_1, X_2, \dots, X_n) < \theta < \hat{\theta}_2(X_1, X_2, \dots, X_n)) \ge 1 - \alpha,$$

где $\hat{\theta}_{1,2}$ – нижняя и верхняя граница доверительного интервала (*случайные величины*), α – уровень значимости (она же вероятность ошибки первого рода).

Наиболее часто уровень значимости принимают равным 0.05 или 0.01. Если, например, принят уровень значимости равный 0.05, то означает, что в пяти случаях из ста мы рискуем допустить ошибку первого рода (отвергнуть правильную гипотезу) [1, 284].

Границы доверительного интервала являются случайными величинами – функциями от выборки (или другими словами границы доверительного интервала являются статистиками) – поэтому правильнее говорить не о вероятности попадания θ в доверительный интервал, а о вероятности того, что доверительный интервал покроет неизвестный параметр θ [1, 216].

Интервалы в нормальной модели Допустим, что элементы выборки X_i распределены по закону $\mathcal{N}(\theta, \sigma^2)$, причем параметр масштаба σ известен, а параметр сдвига θ – нет. Эту модель часто применяют к данным, полученным при независимых измерениях некоторой величины θ с помощью прибора (или метода), имеющего известную среднюю погрешность (стандартную ошибку) σ .

Если случайная величина X распределена нормально $\mathcal{N}(\theta,\sigma)$, то выборочная средняя \bar{X} , найденная по независимым наблюдениям, также распределена нормально. Параметры распределения таковы

$$\mathbf{E}(\bar{X}) = \theta, \sqrt{\mathbf{D}(\bar{X})} = \frac{\sigma}{\sqrt{n}} \rightarrow \bar{X} \sim \mathcal{N}(\theta, \sigma^2/n).$$

Для центрированной и нормированной случайной величины $\sqrt{n}(\bar{X}-\theta)/\sigma \sim \mathcal{N}(0,1)$ в качестве границ интервала с доверительной вероятности $1-\alpha$ можно взять

$$\hat{\theta}_1 = \bar{X} - \sigma / \sqrt{n} \, x_{1-\alpha/2}, \quad \hat{\theta}_2 = \bar{X} + \sigma / \sqrt{n} \, x_{1-\alpha/2}.$$

Таким образом, с вероятностью 0.95 истинное значение параметра сдвига θ находится в интервале $\bar{X} \pm 1.96 \, \sigma/\sqrt{n} \approx \bar{X} \pm 2 \, \sigma/\sqrt{n}$ (правило двух сигм) [2, 147].

На практике, если значение σ неизвестно, то его заменяют на состоятельную оценку $\hat{\sigma}=S,$ где $S^2=\frac{1}{2}\sum (X_i-\hat{X})^2.$

Оценка $\hat{\theta}$ параметра θ называется состоятельной, если для всех $\theta \in \Theta$ последовательность

$$\hat{\theta}_n = \hat{\theta}(X_1, \dots, X_n) \xrightarrow{\mathbf{P}} \theta, \quad n \to \infty.$$

Здесь $\xrightarrow{\mathbf{P}}$ обозначает *сходимость по вероятности*

$$\forall \varepsilon > 0, \ \mathbf{P}(|\hat{\theta} - \theta| > \varepsilon) \to 0, \quad n \to \infty.$$

Состоятельность оценки (а точнее – последовательности оценок $\{\hat{\theta}_n\}$) означает концентрацию вероятностной массы около истинного значения параметра θ с ростом размера выборки n [2, 75].

3. Центральная предельная теорема

Пусть X_1, \dots, X_n – независимые одинаково распределенные случайные величины. Положим $S_n = X_1 + X_2 + \dots + X_n$.

Если $0 < \sigma^2 = \mathbf{D}X_1 < \infty$, то

$$S_n^* = \frac{S_n - \mathbf{E}S_n}{\sqrt{\mathbf{D}S_n}} = \frac{S_n - \mu n}{\sigma\sqrt{n}} \xrightarrow{d} Z, \quad n \to \infty,$$

где Z – стандартная нормальная случайная величина, $Z \sim \mathcal{N}(0,1)$.

Пример Пусть случайные величины Z_1, \ldots, Z_k распределены по закону $\mathcal{N}(0,1)$ и независимы. Тогда распределение случайной величины $R_k^2 = Z_1^2 + \cdots + Z_k^2$ называют распределением χ^2 с k степенями свободы (кратко $R_k^2 \sim \chi_k^2$).

Отметим, что каждое слагаемое имеет гамма-распределение с параметрами $\alpha = \lambda = 1/2$, т.е. $Z_i^2 \sim \Gamma(1/2, 1/2)$.

Поскольку R_k^2 – это сумма независимых и одинакового распределенных случайных величин Z_i^2 , то согласно *центральной предельной теореме* имеет место *сходимость по распределению*

$$(R_k^2 - \mathbf{E}R_k^2)/\sqrt{\mathbf{D}R_k^2} = (R_k^2 - k)/\sqrt{2k} \xrightarrow{d} Z \sim \mathcal{N}(0, 1), \quad k \to \infty.$$

Нормальное приближение является довольно точным уже при k > 30.

Список литературы

- 1. Γ мурман B.E. Теория вероятностей и математическая статистика. М.: Высшая школа, 1972. 368 с.
- 2. Лагутин М.Б. Наглядная математическая статистика. М.: БИНОМ, 2009. 472 с.