Models on the Peer Models Network

Amin Adibi, Stephanie Harvard, Mohsen Sadatsafavi

2020 - 06 - 28

Contents

1	Introduction	5
2	ACCEPT	7
3	BODE	9
4	CFMortality	11
5	CHDWilson	13
6	CODEXCOPD	15
7	COVIDSEIR	17
8	CVDAnderson	19
9	EPIC	21
10	FEV1	23
11	MMRCEA	25
12	QRISK3	27
13	API Users' Guide	29
	13.1 ACCEPT API	29
	13.2 BODE API	30
	13.3 EPIC API	30

4	CONTENTS

13.4 FEV1 API		 	 31
13.5 CVDAnderson API		 	 31
13.6 CHDWilson API		 	 32
13.7 CFMortality API		 	 32
13.8 QRISK3 API		 	 33
13.9 CODEXCOPD API		 	 33
13.10MMRCEA API		 	 34
13.11COVIDSEIR API (experimental))	 	 34

Introduction

Peer Models Network is an initiative to make models for healthcare decision-making accessible, transparent and interpretable to all British Columbians. With support from the Canada Foundation for Innovation, BC SUPPORT Unit and BC Academic Health Science Network, the Peer Models Network (PMN) aims to increase engagement between the modelling community and policymakers, interdisciplinary scholars, patients, journalists, and other members of the public.

The PMN centres around a software infrastructure called the Programmable Interface for Statistical and Simulation Models (PRISM). PRISM hosts models on the cloud and provides standard Application Programming Interfaces (APIs) that allows users of different levels of technical backgrounds to interact with models hosted on a cloud. Users can submit queries to cloud-hosted models through a multitude of software platforms, including Microsoft Excel, R, Python, bash scripts, Javascript and custom web apps. This enables direct access to users who lack either the software or hardware infrastructure or the technical expertise to set up models on their own devices. It also enables more technical users to integrate modes with other pieces of softwar

In its current implementation, PRISM can hosts models that are developed in R, including those that use Cpp and STAN.

Synchronous APIs calls are currently implemented and support for asynchronous calls that are required by extra long processing times is under active development.

ACCEPT

Field	Value
Model Name	Acute COPD Exacerbation Prediction Tool (ACCEPT)
Modelling Team	RESP
Publication	doi:10.1016/S2213-2600(19)30397-2
Purpose	Predict probability, rate, and severity of COPD exacerbations
Video	The ACCEPT Model in 90 Seconds
Interviews	Amin Adibi on the ACCEPT Model for COPD: Why and How
Media	COPD exacerbations: finally, a more than ACCEPTable risk score
Web App	ACCEPT web App
R Package	accept
Excel Sheet	PC Version
API User Guide	Link

BODE

Field	Value
Model Name	The Body-Mass Index, Airflow
	Obstruction, Dyspnea, and Exercise
	Capacity Index
Modelling Team	Celli et al.
Publication	$10.1056/{ m NEJMoa}021322$
Outcome	Mortality Risk
R Package	bode
API User Guide	Link

CFMortality

Field	Value
Model Name	Mortality prediction models in cystic fibrosis
Modelling Team	Stanojevic et al.
Publication	10.1183/13993003.00224-2019
Outcome	Mortality Risk
Video	·
R Package	cfmortality
API User Guide	Link

CHDWilson

Field	Value
Model Name	Prediction of Coronary Heart Disease
	Using Risk Factor Categories
Modelling Team	Wilson et al.
Publication	10.1161/01.CIR.97.18.1837
Outcome	Coronary Heart Disease
Excel Sheet	PC Version
R Package	chdwilson
API User Guide	Link

CODEXCOPD

Field	Value
Model Name	The CODEX (comorbidity, obstruction, dyspnea, and previous
	severe exacerbations) Index
Modelling Team	Almagro et al.
Publication	10.1378/chest.13-1328
Outcome	Survival and readmission at both 3 months and 1 year after hospital
	discharge for a COPD exacerbation
R Package	codexcopd
API User Guide	Link

COVIDSEIR

Field	Value
Model Name	Bayesian SEIR model to estimate physical-distancing effects
Modelling Team	Anderson et al.
Publication	10.1101/2020.04.17.20070086
Outcome	COVID-19 Cases
R Package	covidseir
API User Guide	Link

CVDAnderson

Field	Value
Model Name	Prediction of Coronary Heart Disease Using Risk Factor Categories
Modelling Team	Anderson et al.
Publication	10.1016/0002-8703(91)90861-B
Outcome	CHD, MI, CHD Mortality, Stroke,
	CVD, CVD Mortalitye
R Package	cvdanderson
API User Guide	Link

EPIC

Field	Value
Model Name	Evaluation Platform in COPD (EPIC)
Modelling Team	RESP
Publication	doi:10.1177%2F0272989X18824098
Outcome	Patient-level outcomes, as well as mortality, prevalence, QALYs, costs, etc.
Video	The EPIC Model in 2 Minutes
Interviews	Mohsen Sadatsafavi on the EPIC
	Model
R Package	m epic R
Excel Sheet	PC Version
API User Guide	Link

FEV1

Field	Value
Model Name	Individualized prediction of lung-function decline in COPD
Modelling Team	RESP
Publication	doi:10.1503/cmaj.151483
Outcome	Lung function over next 11 years
Web App	FEV1 web App
Excel Sheet	PC Version
R Package	fev1
API User Guide	Link

MMRCEA

Field	Value
Model Name	Cost-effectiveness evaluation of
	province-wide universal mismatch
	repair (MMR) reflex testing for lynch
	syndrome (LS) in British Columbia
Modelling Team	Centre for Clinical Epidemiology &
	Evaluation (C2E2)
Outcome	Costs, QALYs and life-years for the
	prevention and management of
	colorectal and endometrial cancers
	patients and their families
Excel Sheet	Pending
API User Guide	Link

QRISK3

Field	Value
Model Name	10-Year Cardiovascular Disease Risk Calculator
Modelling Team	Hippisley-Cox et al.
Publication	10.1136/bmj.j2099
Outcome	10-yr risk of heart attack/stroke
R Package	QRISK3
API User Guide	Link

API Users' Guide

13.1 ACCEPT API

Cloud Access through R

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example patients provided in the accept package:

```
remotes::install_github (resplab/peermodels)
library(peermodels)
connect_to_model("accept", api_key = YOUR_API_KEY)
input <- get_default_input()
results <- model_run(input)</pre>
```

Cloud Access through Python

```
import json
import requests
url = 'https://prism.peermodelsnetwork.com/route/accept/run'
headers = {'x-prism-auth-user': YOUR_API_KEY}
model_run = requests.post(url, headers=headers,
json = {"func":["prism_model_run"],"model_input":[{"ID": "10001","male": 1,"age": 57,"smoker": 0,
print(model_run)
results = json.loads(model_run.text)
print(results)
```

Cloud Access through Linux Bash

In Ubuntu, you can call the API with curl:

```
curl \
-X POST \
-H "x-prism-auth-user: REPLACE_WITH_API_KEY" \
-H "Content-Type: application/json" \
-d '{"func":["prism_model_run"],"model_input":[{"ID": "10001","male": 1,"age": 57,"smo.
https://prism.peermodelsnetwork.com/route/accept/run
```

13.2 BODE API

Cloud Access through R

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example patient provided in the bode package:

```
remotes::install_github (resplab/peermodels)
library(peermodels)
connect_to_model("bode", api_key = YOUR_API_KEY)
input <- get_default_input()
results <- model_run(input)</pre>
```

Cloud Access through Linux Bash

In Ubuntu, you can call the API with curl:

```
curl \
-X POST \
-H "x-prism-auth-user: REPLACE_WITH_API_KEY" \
-H "Content-Type: application/json" \
-d '{"func":["prism_model_run"],"model_input":[{"FEV1": 40,"mMRC": 3,"BMI": 22,"walk":
https://prism.peermodelsnetwork.com/route/bode/run
```

13.3 EPIC API

Cloud Access through R

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example patient provided in the epicR package:

```
remotes::install_github (resplab/peermodels)
library(peermodels)
connect_to_model("epic", api_key = YOUR_API_KEY)
input <- get_default_input()
results <- model_run(input)</pre>
```

13.4. FEV1 API 31

13.4 FEV1 API

Cloud Access through R

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example patient provided in the fev1 package:

```
remotes::install_github (resplab/peermodels)
library(peermodels)
connect_to_model("fev1", api_key = YOUR_API_KEY)
input <- get_default_input()
results <- model_run(input)</pre>
```

Cloud Access through Linux Bash

In Ubuntu, you can call the API with curl:

```
curl \
-X POST \
-H "x-prism-auth-user: REPLACE_WITH_API_KEY" \
-H "Content-Type: application/json" \
-d '{"func":["prism_model_run"],"model_input":[{"male":1,"age":70,"smoker":1,"FEV1":2.5,"height":
https://prism.peermodelsnetwork.com/route/fev1/run
```

13.5 CVDAnderson API

Cloud Access through R

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example patient provided in the cvdanderson package:

```
remotes::install_github (resplab/peermodels)
library(peermodels)
connect_to_model("cvdanderson", api_key = YOUR_API_KEY)
input <- get_default_input()
results <- model_run(input)</pre>
```

Cloud Access through Linux Bash

In Ubuntu, you can call the API with curl:

```
curl \
-X POST \
-H "x-prism-auth-user: REPLACE_WITH_API_KEY" \
-H "Content-Type: application/json" \
-d '{"func":["prism_model_run"],"model_input":[{"age": 33,"gender": 1,"Tchol": 230,"EChttps://prism.peermodelsnetwork.com/route/cvdanderson/run
```

13.6 CHDWilson API

Cloud Access through R

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example patient provided in the chdwilson package:

```
remotes::install_github (resplab/peermodels)
library(peermodels)
connect_to_model("chdwilson", api_key = YOUR_API_KEY)
input <- get_default_input()
results <- model_run(input)</pre>
```

Cloud Access through Linux Bash

In Ubuntu, you can call the API with curl:

```
curl \
-X POST \
-H "x-prism-auth-user: REPLACE_WITH_API_KEY" \
-H "Content-Type: application/json" \
-d '{"func":["prism_model_run"],"model_input":[{"age": 55,"gender": 1,"TChol": 250,"LD:
https://prism.peermodelsnetwork.com/route/chdwilson/run
```

13.7 CFMortality API

Cloud Access through R

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example patient provided in the chdwilson package:

```
remotes::install_github (resplab/peermodels)
library(peermodels)
connect_to_model("cfmortality", api_key = YOUR_API_KEY)
input <- get_default_input()
results <- model_run(input)</pre>
```

Cloud Access through Linux Bash

In Ubuntu, you can call the API with curl:

```
curl \
-X POST \
-H "x-prism-auth-user: REPLACE_WITH_API_KEY" \
-H "Content-Type: application/json" \
-d '{"func":["prism_model_run"],"model_input":[{"male": 0,"age": 57,"fvc": 66.7,"fev1": 47.4,"fevhttps://prism.peermodelsnetwork.com/route/cfmortality/run
```

13.8 QRISK3 API

Cloud Access through R

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example patient provided in the QRISK3 package:

```
remotes::install_github (resplab/peermodels)
library(peermodels)
connect_to_model("qrisk3", api_key = YOUR_API_KEY)
input <- get_default_input()
results <- model_run(input)</pre>
```

13.9 CODEXCOPD API

Cloud Access through R

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example patient provided in the codexcopd package:

```
remotes::install_github (resplab/peermodels)
library(peermodels)
connect_to_model("codexcopd", api_key = YOUR_API_KEY)
input <- get_default_input()
results <- model_run(input)</pre>
```

Cloud Access through Linux Bash

In Ubuntu, you can call the API with curl:

```
curl \
-X POST \
-H "x-prism-auth-user: REPLACE_WITH_API_KEY" \
-H "Content-Type: application/json" \
-d '{"func":["prism_model_run"],"model_input":[{"age":40,"charlson":8,"FEV1":40,"mMRC"
https://prism.peermodelsnetwork.com/route/codexcopd/run
```

13.10 MMRCEA API

Cloud Access through R

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example inputs provided by the modelling team:

```
library(peermodels)
connect_to_model("mmrcea", api_key = YOUR_API_KEY)
input <- get_default_input()</pre>
input$timeHorizon
                                                       <- 5
input$discountRate
                                                       <- 0.015
                                                       <- 2
input$averageFamilyReferred
input$familyReferredHCP
                                                       <- 1
                                                       <- 0.9
input$adherenceIntensiveScreening
input$crcmmrDefReferredHCPIntArm
                                                      <- 0.3
                                                       <-0.3
input$crcmmrDefReferredHCPmmrbrafCompArmVCHA
input$crcmmrDefReferredHCPmmrCompArmVCHA
                                                      <- 0.08
                                                       <- 0.08
input$crcmmrDefReferredHCPmmrbrafCompArmVIHA
input$crcmmrDefReferredHCPmmrCompArmOtherHA
                                                       <- 0.08
input$ecmmrDefReferredHCPIntArm
                                                       <- 0.8
model_run(input)
```

13.11 COVIDSEIR API (experimental)

We have recently deployed the Bayesian SEIR model to estimate physical-distancing effects developed by Anderson et al to our cloud infrastructure. The current version of the R package deployed to the PRISM server is covidseir v0.0.0.9006.

The current implementation of the covidseir package is experimental and has some limitations, given the computational intensity of the model. Depending on

the number of chains and iterations, the html connection might be dropped for calls that more than a dozen minutes. Currently, fitting the model with default parameters takes about 5 minutes. We are actively working to implement asynchronous support which would email the results back to the user when hours long model runs are requested.

Cloud Access through R

input <- get_default_input()</pre>

first <- length(bcCases\$numtoday)-42+1</pre>

Users can access models on the Peer Models Network using the peermodels R package, available on GitHub. The following code snippet illustrates how you can run the model for example patient provided in the covidseir package:

```
library(peermodels)
connect_to_model("covidseir", api_key = YOUR_API_KEY, bypass_router = T)
input <- get_default_input()
names(input)
input$daily_cases
results <- model_run(input)
names(results)
draw_plots()</pre>
```

The same workflow can be used to fit and run the model based on custom data. For example, the code snippet below, automatically downloads latest COVID-19 case numbers for British Columbia, and reruns the simulation using different assumptions.

```
library(stringr)
library(dplyr)
library(tidyr)
library(readr)
library(peermodels)

url <- "https://docs.google.com/spreadsheets/d/1ad7-09_Jn6AxsdkVPE33T-iLfGpPRmd3piXQqFiVeas/export
CanadaCases <- read_csv(url)

covidCases <- CanadaCases %>% rename (name = "prname") %>% rename (Cases = "numconf") %>% mutate filter (name!="Canada") %>% filter (date!=today())

bcCases <- covidCases %>% filter (name == "British Columbia")

connect_to_model("covidseir", api_key = "YDbxcnNHmf4XoteSmCFHKx", bypass_router = T)
```

```
last <- length(bcCases$numtoday)
input$daily_cases <- bcCases$numtoday[first:last]

# Example assumed sampling fractions of positive cases:
s1 <- c(rep(0.1, 13), rep(0.2, length(input$daily_cases) - 13))

samp_frac_seg <- c(rep(1, 13), rep(2, length(input$daily_cases) - 13))
s2 <- rep(0.07, length(input$daily_cases)) # Assuming 7\% of positive individuals are input$samp_frac_fixed <- rep(0.1, length(input$daily_cases))

input$fit_iter <- 100
input$fit_iter <- 100
input$fit_iter <- rep(0.1, 90)
results <- model_run(input)

draw_plots()</pre>
```

Cloud Access through Python

Users can use Python to access covidseir model on the cloud. The simple code snippet below runs the model with default inputs.

```
import json
import requests
url = 'http://model-covidseir.cp.prism-ubc.linaralabs.com/ocpu/library/covidseirPrism/!
headers = {'x-prism-auth-user': 'YOUR_API_KEY'}
default_input = requests.post(url, headers=headers,json = {"func":["get_default_input"]
# json_default_input = json.loads(default_input.json()[0]) # OR:
json_default_input = json.loads(json.loads(default_input.text)[0])
response = requests.post(url, headers=headers,json = {"func":["prism_model_run"], "modersults = json.loads(response.text)
```

Cloud Access through Linux Bash

In Ubuntu, you can call the API with curl:

```
curl \
-X POST \
-H "x-prism-auth-user: YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{"func":["prism_model_run"],"model_input":{"daily_cases":[0,0,1,3,1,8,0,6,5,0,7,7,}
} ' \
http://model-covidseir.cp.prism-ubc.linaralabs.com/ocpu/library/covidseirPrism/R/gateway
```