Quasicentral Approximate Units and Voiculescu's Theorem

Michael Francesco Ala

April 14th, 2022

1 Quasicentral Units

The results in this section are primarily from [1]. The original proof of Voiculescu's theorem, as given in [3], doesn't require quasicentral approximate identities, but Arveson in [1] presented a simplified proof using this abstract framework. The proof we present is the one found in Davidson [2].

Definition 1.0.1. Let A be a C*-algebra and $K \subseteq A$ a two-sided ideal (not necessarily norm-closed or self-adjoint). An **approximate unit** (or **approximate identity**) in K is an increasing net $(e_{\lambda})_{\lambda} \subseteq K$ of positive operators of norm ≤ 1 such that $\lim_{\lambda} \|e_{\lambda}k - e_{\lambda}\| = 0$ for all $k \in K$ (notice that since $\|x\| = \|x^*\|$ for all $x \in A$, $\lim_{\lambda} \|ke_{\lambda} - e_{\lambda}\| = 0$ automatically).

Definition 1.0.2. Let A be a C*-algebra and $K \subseteq A$ a two-sided ideal (not necessarily norm-closed or self-adjoint). A **quasicentral approximate unit** is an approximate unit $(e_{\lambda})_{\lambda} \subseteq K$ such that for all $a \in A$, $\lim_{\lambda} ||ae_{\lambda} - e_{\lambda}a|| = 0$.

Of course, every approximate unit $(e_{\lambda})_{\lambda} \subseteq K$ is quasicentral on K, since $||ke_{\lambda} - e_{\lambda}k|| \leq ||ke_{\lambda} - k|| + ||k - e_{\lambda}k||$, with both terms converging to zero. What is crucial to our definition is that the quasicentral approximate unit is quasicentral on all of the ambient algebra A.

Lemma 1.0.3. If $K \subseteq A$ are as in definition 1.0.2 and $(e_{\lambda})_{\lambda} \subseteq K$ is an approximate unit, then for all $f \in A^*$ and $a \in A$, $\lim_{\lambda} f(ae_{\lambda} - e_{\lambda}a) = 0$ (so every approximate unit is "weakly quasicentral").

Proof. By the Jordan Decomposition, we can assume without loss of generality that $f \in S(A)$. Consider the GNS representation $(\pi_f, \mathcal{H}_f, \xi_f)$ corresponding to f. Since e_{λ} is an approximate unit, $\lim_{\lambda} \pi_f(e_{\lambda}) \pi_f(k) \xi_f = \pi_f(k) \xi_f$ for all $k \in K$, so $\pi_f(e_{\lambda})$ converges strongly to the identity on $\overline{\pi_f(K)\xi_f}$. Of course since $(e_{\lambda})_{\lambda} \subseteq K$, we can be sure that $\xi_f = \lim_{\lambda} \pi_f(e_{\lambda}) \xi_f \in \overline{\pi_f(K)\xi_f}$, and moreover $\overline{\pi_f(K)\xi_f}$ is clearly $\pi_f(A)$ -invariant, so $\pi_f(a)\xi_f \in \overline{\pi_f(K)\xi_f}$. Thus

$$\lim_{\lambda} \pi_f(e_{\lambda} a) \xi_f = \pi_f(a) \xi_f, \qquad \lim_{\lambda} \pi_f(a e_{\lambda}) \xi_f = \pi(a) \xi_f$$

whence $\lim_{\lambda} \langle \pi_f(ae_{\lambda} - e_{\lambda}a)\xi_f, \xi_f \rangle = 0.$

Proposition 1.0.4. If $(e_{\lambda})_{\lambda} \subseteq K$ is an approximate unit, then $\operatorname{conv}\{e_{\lambda} : \lambda\}$ can be viewed as an approximate unit for K as well.

Proof. We can view $\operatorname{conv}\{e_{\lambda}:\lambda\}$ as a net, indexed "by itself", and with a preorder given by the standard order on a C*-algebra. To be explicit, we let $M:=\operatorname{conv}\{e_{\lambda}:\lambda\}$ be our index set, and for $\mu,\nu\in M$, we define $\mu\leq\nu$ if and only if $\nu-\mu$ is positive in A. As $0\leq e_{\lambda}\leq 1$ for each λ , and since A_{+} is a real cone, we also clearly have $0\leq\mu\leq 1$ for all $\mu\in M$. Moreover, given $\mu=\sum_{i}t_{i}e_{\lambda_{i}}$ and $nu=\sum_{j}t'_{j}e_{\lambda'_{j}}$ both in M, there exists some λ such that $e_{\lambda_{i}},e_{\lambda'_{j}}\leq e_{\lambda}$ for all i and j, whence $\mu,\nu\leq e_{\lambda}\in M$, which implies M is upwards directed. We then define a new net $(f_{\mu})_{\mu\in M}$ be letting $f_{\mu}=\mu$ (yes its quite redundant, but this is

the pedantic formalism). What remains to be shown is that $f_{\mu}k \to k$ for all $k \in K$. Notice that for a fixed λ and any $\mu \in M$, $\mu \ge e_{\lambda}$, and $k \in K$, that

$$k^*(1-\mu)^2k \le k^*(1-\mu)k \le k^*(1-e_{\lambda})k$$

whence

$$||k - \mu k||^2 = ||k^*(1 - \mu)^2 k|| \le ||k^*(1 - e_\lambda)k|| \le ||k|| ||k - e_\lambda k||$$

and of course, since λ can be chosen large enough such that the final quantity is arbitrarily small. So $(f_{\mu})_{\mu \in \mathcal{M}}$ is indeed an approximate unit.

Lemma 1.0.5. If $(e_{\lambda})_{\lambda} \subseteq K$ is a convex approximate unit (which is to say that the set $\{e_{\lambda} : \lambda\}$ is convex), then $\inf_{\lambda} ||ae_{\lambda} - e_{\lambda}a|| = 0$ for all $a \in A$.

<u>Proof.</u> We argue by contradiction. The statement we'd like to prove is equivalent to showing that $0 \in \{ae_{\lambda} - e_{\lambda}a : \lambda\} =: C$ for all $\in A$, so assume that there exists a for which 0 is separated from this closed set. Since $(e_{\lambda})_{\lambda}$ is convex, so too is this set C, and so the geometric Hahn-Banach theorem allows us to choose a functional $f \in A^*$ for which $|f(ae_{\lambda} - e_{\lambda}a)| > 0$ for all λ , which contradicts lemma 1.0.3.

Theorem 1.0.6. Let A be a C*-algebra. Then every (norm-closed, two-sided) ideal $K \leq A$ contains a quasicentral approximate unit.

Proof. We'll use a familiar trick from class (which is now, by definition, a "technique": a trick used more than once). Suppose for any finite subset $F := \{a_1, ..., a_n\} \subseteq A$ and $\epsilon > 0$, we can find some $\lambda := \lambda_{(F,\epsilon)}$ for which $||e_{\lambda}a - ae_{\lambda}|| < \epsilon$ for all $a \in F$. Then we can let $M := \{(F,\epsilon) : F \subset A \text{ finite}, \epsilon > 0\}$ be a new index set, ordered by letting $(F,\epsilon) \leq (F',\epsilon')$ if and only if $F \subseteq F'$ and $\epsilon \geq \epsilon'$, and extract a subnet $(e_{\lambda_{(F,\epsilon)}})_{(F,\epsilon)\in M}$ which remains an approximate unit, but is now clearly quasicentral as well.

Consider the algebra $A^n := A \oplus \cdots \oplus A$, with n copies of A, with operations defined termwise and norm equal to the sup-norm. Then clearly $K^n := K \oplus \cdots \oplus K$ is also a norm-closed two-sided ideal in A^n , and $f_{\lambda} := (e_{\lambda}, ..., e_{\lambda})_{\lambda}$ is an approximate identity in K^n , which is moreover still convex. Thus by lemma 1.0.5, letting $a := (a_1, ..., a_n) \in A^n$, we see that $\inf_{\lambda} \|f_{\lambda}a - af_{\lambda}\| = 0$, and so there exists λ such that

$$\epsilon > \|f_{\lambda}a - af_{\lambda}\| = \|(e_{\lambda}, ..., e_{\lambda})(a_{1}, ..., a_{n}) - (a_{1}, ..., a_{n})(e_{\lambda}, ..., e_{\lambda})\|$$
$$= \sup_{i} \|e_{\lambda}a_{i} - a_{i}e_{\lambda}\|$$

and so we've achieved our task in finding λ .

Corollary 1.0.7. If A is a separable C*-algebra and $K \subseteq A$ a (norm-closed, two-sided) ideal, then K admits a quasicentral approximate unit $(e_n)_{n\in\mathbb{N}}$ which is also a sequence. We can do the same if $J\subseteq A$ is a self-adjoint, but not necessarily closed, ideal.

Proof. Straightforward, left as an exercise for the reader.

2 Voiculescu's Theorem

Recall the traditional Weyl-von Neumann-Berg theorem.

Theorem 2.0.1 (Weyl-von Neumann-Berg). Let \mathcal{H} be a separable Hilbert space and $N \in \mathcal{B}(\mathcal{H})$ a normal operator. Then for all $\epsilon > 0$ there exists a diagonalizable operator D and a compact operator K such that N = D + K, with $||K|| < \epsilon$. Moreover, we can choose D such that $\sigma(N) = \sigma(D)$ and $\sigma(\pi(N)) = \sigma(\pi(D))$.

Voiculescu's theorem is a "non-commutative generalization" of this theorem. In particular, we'd like to prove the following:

Theorem 2.0.2. Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a separable, unital C*-algebra on a separable Hilbert space, $\pi : \mathcal{B}(\mathcal{H}) \to \mathcal{Q}(\mathcal{H})$ the canonical projection into the Calkin algebra, and $\rho : \pi(A) \to \mathcal{B}(\mathcal{K})$ a representation. Then id_A and $\mathrm{id}_A \oplus \rho$ are approximately unitarily equivalent modulo the compacts, which is to say there exist unitary operators $U_k : \mathcal{H} \oplus \mathcal{K} \to \mathcal{H}$ such that for all $a \in A$,

$$a \oplus \rho(a) - U_k^* a U_k$$
 is compact, $\lim_k ||a \oplus \rho(a) - U_k^* a U_k|| = 0$

It's not entirely straightforward

Theorem 2.0.3 (Glimm's Lemma). Let A be a separable C*-subalgebra of $\mathcal{B}(\mathcal{H})$ on a separable C*-algebra \mathcal{H} , and $\varphi \in S(A)$ a state such that $\varphi(A \cap \mathcal{K}(\mathcal{H})) = 0$. Then there exists a sequence of unit vectors $\xi_n \in \mathcal{H}$, converging weakly to zero, such that the vector states $\omega_{\xi_n} \stackrel{w*}{\to} \varphi$.

Remark. Elsewhere in the literature, states φ satisfying the property that $\varphi(A \cap \mathcal{K}(\mathcal{H})) = 0$ are called **singular** states. Singular states are those states which are constant along cosets in the Calkin algebra $\mathcal{Q}(\mathcal{H})$ $(:=\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H}))$: if $a,b\in A$ differ by a compact operator then $a-b\in A\cap\mathcal{K}(\mathcal{H})$, whence $\varphi(a-b)=0$. This tells us that there is a one-to-one correspondence between singular states on A and states on $\pi(A)$ where $\pi:\mathcal{B}(\mathcal{H})\to\mathcal{Q}(\mathcal{H})$.

Proof. Let $S_s(A)$ denote the singular states in A, and $\Omega \subseteq S_s(A)$ those states which are weak-* limits of ω_{ξ_n} for some sequence of unit vectors ξ_n converging weakly to zero. We're going to start by showing that Ω is non-empty, convex, and weak-* closed.

Step 1 - Ω is non-empty: We'll use a pretty standard diagonal argument. First, let $\{a_i\}_{i\in\mathbb{N}}$ be a dense subset of A. Let ξ_n be any sequence of unit vectors converging weakly to zero in \mathcal{H} . For a_1 we have

$$|\langle a_1 \xi_n, \xi_n \rangle| \le ||a_1||, \quad \forall n \in \mathbb{N}$$

and so by compactness of $\|a_1\|\mathbb{D}$ we can choose a subsequence $\xi_{n_k^{(1)}}$ such that $\lim_k \left\langle a_1 \xi_{n_k^{(1)}}, \xi_{n_k^{(1)}} \right\rangle$ exists. Now we do the same thing for a_2 : choose a subsequence $n_k^{(2)}$ of $n_k^{(1)}$ such that $\lim_k \left\langle a_2 \xi_{n_k^{(2)}}, \xi_{n_k^{(2)}} \right\rangle$ exists (and of course, since $n_k^{(2)}$ is a subsequence of $n_k^{(1)}$, the limit $\lim_k \left\langle a_1 \xi_{n_k^{(2)}}, \xi_{n_k^{(2)}} \right\rangle$ also exists). Continue inductively, obtaining monotonically increasing sequences of integers $(n_k^{(j)})_{k \in \mathbb{N}}$ such that

$$\lim_{k} \left\langle a_{i} \xi_{n_{k}^{(j)}}, \xi_{n_{k}^{(j)}} \right\rangle \text{ exists } \forall 1 \leq i \leq j$$

Then let $n_k := n_k^{(k)}$. By definition, $\lim_k \langle a_i \xi_{n_k}, \xi_{n_k} \rangle$ exists for all $i \in \mathbb{N}$. Thus, extending by linearity and density, we have a well-defined state $\psi := w^* - \lim_k \omega_{\xi_{n_k}} \in \Omega$.

Step 2 - Ω is weak-* closed: This is another diagonal argument. Normally, we would have to consider all nets $(\psi_{\lambda})_{\lambda} \in \Omega$ converging to $\psi \in S(A)$, which would be problematic for our diagonal argument (not all directed sets are countably cofinal, so we can't always take a subsequence of a net!). However, separability of A comes in handy here: recall that if X is a separable Banach space, then the unit ball of X^* is weak-* metrizable. Thus, in being metrizable, the weak-* topology on S(A) is sequential, meaning sequences entirely characterize the topology, and so we need only consider sequences $\psi_n \in \Omega$ converging to $\psi \in S(A)$.

Here we also need to assume without loss of generality that \mathcal{H} is separable. This is not an issue: so long as A is separable it can be represented faithfully on a separable hilbert space \mathcal{H}_A , which can always be made a direct summand of \mathcal{H} , and the compact operators on \mathcal{H} clearly contain the compact operators on \mathcal{H}_A .

Follows from a tedious double diagonalization argument.

Step 3 - Ω **is convex:** First, since Ω is closed, it suffices to how that Ω is *midpoint-convex*: for all $\varphi, \psi \in \Omega$, $\frac{1}{2}(\varphi + \psi) \in \Omega$ as well. Let ξ_n and η_n be sequences of unit vectors weakly converging to zero which

represent φ and ψ respectively. We're going to inductively construct new vectors η'_k , but first we have to inductively define P_n to be the projection onto the space

$$\operatorname{span} (\{\xi_n\} \cup \{a_i \xi_k, \ a_i^* \xi_k : 1 \le i \le n\} \cup \{\eta_j' : 1 \le j < n\})$$

Seeing as P_n is finite rank, for any $k \in \mathbb{N}$ we can choose n_k large enough that $\|P_n\eta_{n_k}\| < \frac{1}{k+1}$. Let $\eta'_k := \frac{P_n^\perp \eta_{n_k}}{\|P_n^\perp \eta_{n_k}\|}$. It's not hard to check that $\|\eta'_k - \eta_{n_k}\| < \frac{1}{k(k+1)}$, $\|\eta'_k\| = 1$, and by definition $\eta'_k \perp \operatorname{ran} P_n$.

Let $\theta_n := \frac{1}{\sqrt{2}}(\xi_n + \eta'_n)$. Then θ_n converges weakly to zero, and

$$\langle a_i \theta_n, \theta_n \rangle = \frac{1}{2} \left(\langle a_i \xi_n, \xi_n \rangle + \langle a_i \xi_n, \eta'_n \rangle + \langle a_i \eta'_n, \xi_n \rangle + \langle a_i \eta'_n, \eta'_n \rangle \right)$$

but for fixed $i, \eta'_n \perp \{a_i \xi_n, a_i^* \xi_n\}$ for n large enough, so eventually these terms fall off, leaving behind

$$\langle a_i \theta_n, \theta_n \rangle = \frac{1}{2} \left(\langle a_i \xi_n, \xi_n \rangle + \langle a_i \eta'_n, \eta'_n \rangle \right) \qquad n > i$$

and of course, the η'_n 's are asymptotic to the original sequence η_n , so that

$$\lim_{n} \langle a_i \theta_n, \theta_n \rangle = \frac{1}{2} \left(\varphi(a_i) + \psi(a_i) \right)$$

from which it follows by density that $\frac{1}{2}(\varphi + \psi) \in \Omega$.

Step 4 - $\Omega = S_s(A)$: Now suppose we had a state $\varphi \in S_s(A) \setminus \Omega$. Since Ω is weak-* closed and convex, we can choose an element $a \in A$ such that $\varphi(a) = 1 \notin \widehat{a}(\Omega)$. We can assume a is self-adjoint by replacing a by $\frac{1}{2}(a + a^*)$, so that $\widehat{a}(\Omega) \subset \mathbb{R}$.

Let conv $\sigma(\pi(a)) = [r_1, r_2]$ (π the quotient map into the Calkin algebra). Consider the function f given by

$$f(x) = \max(r_1, \min(r_2, x))$$

which, visually, is just the constant function r_1 for $x < r_1$, the constant function r_2 for $x > r_2$, and the function x on $[r_1, r_2]$. Since f is the identity when restricted to $\sigma(\pi(a))$, we have $f(\pi(a)) = \pi(a)$, but since π is a *-homomorphism $f(\pi(a)) = \pi(f(a))$, so $\pi(f(a) - a) = 0$, or rather f(a) - a is compact. Thus $\varphi(f(a)) = \varphi(a) = 1 \notin \widehat{f(a)}(\Omega) = \widehat{a}(\Omega)$. By the spectral mapping theorem $\sigma(f(a)) = f(\sigma(a)) \subseteq [r_1, r_2]$, and so $r_1 I \le f(a) \le r_2 I$, and $r_1 \le \langle f(a)\xi, \xi \rangle \le r_2$ for $\|\xi\| = 1$. Thus $\widehat{f(a)}(\Omega) \subseteq [r_1, r_2]$. Let b = f(a).

Now, recall the L^{∞} functional calculus for normal elements of a von Neumann algebra. If $N \in \mathcal{B}(\mathcal{H})$ is normal, then there is a positive regular Borel measure supported on $\sigma(N)$ and a *-isomorphism Γ_N between $W^*(N)$ and $L^{\infty}(\sigma(N),\mu)$. We can use this to define the *spectral projections* $\chi_B(N) := \Gamma_N^{-1}(\chi_B)$ for any Borel set $B \subseteq \sigma(N)$ (where χ_B is the indicator function on B). These are of course projections since Γ_N is a *-isomorphism, and $\chi_B = \chi_B^* = \chi_B^2$.

For each $n \in \mathbb{N}$, the projection $\chi_{(r_2-1/n,r_2]}(b)$ is infinite rank. Indeed if it were finite rank, then $b = \chi_{[-\infty,r_2]}(b)b = (\chi_{[-\infty,r_2-1/n)}(b) + \chi_{[r_2-1/n,r_2]}(b))b$, and so $\pi(b) = \pi(\chi_{[-\infty,r_2-1/n)}(b)b)$, hence

$$\sigma(\pi(b)) = \sigma(\pi(\chi_{[-\infty, r_2 - 1/n)}(b)b)) \subseteq \sigma(\Gamma_b^{-1}(\chi_{[-\infty, r_2 - 1/n)} \cdot \mathrm{id}_{\sigma(b)})) \subseteq [-\infty, r_2 - 1/n)$$

contradicting the fact that conv $\sigma(\pi(b)) = [r_1, r_2].$

Let $\mathcal{H}_n := \chi_{[-\infty,r_2]}(b)\mathcal{H}$, and choose orthonormal sequences $\{\xi_k^{(n)}\}_{k\in\mathbb{N}}\subseteq H_n$. For fixed n, each $\xi_k^{(n)}$ converges weakly to zero, and for each fixed k,

$$r_2 - 1/n < \langle b\xi_k^{(n)}, \xi_k^{(n)} \rangle < r_2$$

so that $\lim_n \langle b \xi_k^{(n)}, \xi_k^{(n)} \rangle = r_2$ for all k. Let $\{h_i\}_{i \in \mathbb{N}}$ be a dense subset of \mathcal{H} . For all $n \in \mathbb{N}$, we can choose $k_n^{(1)}$ such that $|\langle \xi_{k_n^{(1)}}^{(n)}, h_1 \rangle| < \frac{1}{n}$. Then choose a subsequence $k_n^{(2)}$ of $k_n^{(1)}$ such that $|\langle \xi_{k_n^{(2)}}^{(n)}, h_2 \rangle| < \frac{1}{n}$. Continue inductively. Let $\eta_n = \xi_{k_n^{(n)}}^{(n)}$. Then

$$\lim_{n} \langle \eta_n, h_i \rangle = 0, \quad \forall i \in \mathbb{N} \qquad \lim_{n} \langle b \eta_n, \eta_n \rangle = r_2$$

Performing a second diagonalization argument on η_n yields a sequence η'_n which converges weakly to zero and which defines an element $\psi \in \Omega$, for which $\psi(b) = r_2$. Similarly, we can obtain a state $\psi' \in \Omega$ such that $\psi'(b) = r_1$. Thus, as $\hat{b}(\Omega)$ is compact and convex, $[r_1, r_2] \subseteq \hat{b}(\Omega)$. Yet $\varphi(b) \in [r_1, r_2]$, but we explicitly chose b such that $\varphi(b) \notin \hat{b}(\Omega)$. This must have induced a contradiction. In conclusion, $\Omega = S_s(A)$.

Theorem 2.0.4. Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a separable, unital C*-algebra on a separable Hilbert space \mathcal{H} , and $\varphi: A \to \mathbb{M}_n(\mathbb{C})$ a unital, completely positive map such that $\varphi(A \cap \mathcal{K}(\mathcal{H})) = 0$. Then there exists a sequence of isometries $V_k: \mathbb{C}^n \to \mathcal{H}$ such that $V_k \to 0$ in the weak operator topology, and $\|\varphi(a) - V_k^* a V_k\| \to 0$ for all $a \in A$.

Remark. Let's think about the structure of φ , which can be conceptualized as simply an $n \times n$ matrix of functionals on A. Since φ is unital, positive, and vanishes on the compacts, the diagonal entries of φ are singular states, and so we can extract sequences of unit vectors $(\xi_i^{(j)})_i$ for which $\omega_{\xi_i^{(j)}}$ converges weak-* to φ_{jj} . This is almost what we want, but we haven't thought about the off-diagonal entries yet. Fortunately we've only used positivity of φ up to this point, and have yet to exploit complete positivity.

Proof. As φ is completely positive, the n^{th} ampliation is positive. Consider the map

$$\Phi : \mathbb{M}_n(A) \subseteq \mathcal{B}(\mathcal{H}^n) \to \mathbb{C}$$
$$[a_{ij}] \mapsto \frac{1}{n} \sum_{ij} \varphi_{ij}(a_{ij})$$

We can view $\varphi^{(n)}$ as a map from $\mathbb{M}_n(A) \to \mathbb{M}_n(\mathbb{C}) \otimes \mathbb{M}_n(\mathbb{C})$, taking $[a_{ij}] \to \sum_{ij} \varphi(a_{ij}) \otimes e_{ij}$, and we can regard $\mathbb{M}_n(\mathbb{C}) \otimes \mathbb{M}_n(\mathbb{C})$ as the operators on $\mathbb{C}^n \otimes \mathbb{C}^n$. For any $\sum_k x_k \otimes y_k \in \mathbb{C}^n \otimes \mathbb{C}^n$ we have

$$\left\langle \left(\sum_{ij} \varphi(a_{ij}) \otimes e_{ij} \right) \left(\sum_{k} x_k \otimes y_k \right), \sum_{\ell} x_{\ell} \otimes y_{\ell} \right\rangle = \sum_{ijk\ell} \langle \varphi(a_{ij}) x_k, x_{\ell} \rangle \langle e_{ij} y_k, y_{\ell} \rangle$$

which, to anyone acclimated to these tensorial proofs, is strikingly similar to our functional Φ . All we have to do is take $x_k = y_k = e_k$, the standard basis for \mathbb{C}^n , for which $\langle e_{ij}y_k, y_\ell \rangle = \delta_{i\ell}\delta_{jk}$ and $\langle \varphi(a_{ij})x_k, x_\ell \rangle = \varphi_{ij}(a_{ij})$. Thus, denoting $e = \sum_k e_k \otimes e_k$, we have

$$\Phi([a_{ij}]) = \frac{1}{n} \langle \varphi^{(n)}([a_{ij}])e, e \rangle$$

from which we glean that Φ is in fact a positive linear functional. The factor of $\frac{1}{n}$ is there to ensure Φ is actually a state.

We leave it as an easy exercise for the reader to check that $\mathcal{K}(\mathcal{H}^n) = \mathbb{M}_n(\mathcal{K}(\mathcal{H}))$, so that $\Phi(\mathbb{M}_n(A) \cap \mathcal{K}(\mathcal{H}^n)) = \Phi(\mathbb{M}_n(A \cap \mathcal{K}(\mathcal{H})) = 0$, so Φ is a *singular* state. Thus we can extract unit vectors $(x_k^1, ..., x_k^n) \in \mathcal{H}^n$ converging weakly to zero (equivalently each component converges weakly to zero) such that $\Phi([a_{ij}]) = \lim_k \langle [a_{ij}](x_k^1, ...x_k^n), (x_k^1, ...x_k^n) \rangle = \lim_k \sum_{ij} \langle a_{ij}x_k^j, x_k^i \rangle$, and so in particular $\varphi_{ij}(a) = \lim_k \langle a_{ij}x_k^j, x_k^i \rangle$.

Consider the operators

$$U_k := \begin{bmatrix} x_k^1 & \cdots & x_k^n \end{bmatrix} : \mathbb{C}^n \to \mathcal{H}$$
$$(\alpha_1, \dots, \alpha_n)^T \mapsto \sum_i \alpha_i x_k^i$$

It's not hard to see that since the x_k^i 's tend weakly to zero, $U_k \stackrel{wot}{\to} 0$. A straightforward calculation shows that $U_k^* a U_k = [\langle a x_k^j, x_k^i \rangle]$, and so $\varphi(a) = \lim_k U_k^* a U_k$. The problem is these operators U_k aren't exactly isometries, but a quick modification will do the trick. Notice that

$$\lim_{k} \langle x_k^i, x_k^j \rangle = n\Phi(1_A \otimes E_{ji}) = \varphi_{ij}(1_A) = \delta_{ij}$$

and so the vectors $\{x_k^1, ..., x_k^j\}$ are approximately orthogonal, implying $U_k^* U_k = [\langle x_k^j, x_k^i \rangle]$ converges entrywise (and hence in norm) to I. Let $U_k := V_k |U_k|$ be the polar decomposition of U_k , for some partial isometry

 $V_k: \mathbb{C}^n \to \mathcal{H}$. Of course, since $U_k^*U_k \to I$, for k large enough each $U_k^*U_k$ is invertible, whence $V_k^*V_k = ((U_k^*U_k)^{-1/2}U_k^*)(U_k(U_k^*U_k)^{-1/2}) = I$, so each V_k is an *isometry*. Moreover,

$$\lim_{k} |\langle V_k x, y \rangle| \le \lim_{k} (|\langle (V_k - U_k) x, y \rangle| + \langle U_k x, y \rangle) \le \lim_{k} ||U_k - V_k|| ||x|| ||y||$$

$$= \lim_{k} ||V_k ((U_k^* U_k)^{1/2} - I)|| \le \lim_{k} ||(U_k^* U_k)^{1/2} - I|| = 0$$

so that $V_k \stackrel{wot}{\to} 0$ as well.¹

Corollary 2.0.5. Given $\varphi: A \subseteq \mathcal{B}(\mathcal{H}) \to \mathbb{M}_n(\mathbb{C})$ as above, $\mathcal{F} \subset A$ a finite subset, $\mathcal{N} \subseteq \mathcal{H}$ a finite-dimensional subspace, and $\epsilon > 0$. Then there exists an isometry $V: \mathbb{C}^n \to \mathcal{H}$ such that ran $V \subseteq \mathcal{N}^\perp$, and $\|\varphi(a) - V^*aV\| < \epsilon$ for all $a \in \mathcal{F}$.

Proof. We first choose isometries V_k as in the prior theorem, and k_0 large enough such that $k \geq k_0$ implies

$$\|\varphi(a) - V_k^* a V_k\| < \epsilon, \ \forall a \in \mathcal{F} \qquad \|P_{\mathcal{N}} V_k\| < \epsilon$$

To obtain this latter bound, notice that $P_{\mathcal{N}}V_k$ is a sequence of operators between finite dimensional Hilbert spaces which converges in the weak operator topology to zero, but this topology coincides with the norm topology on finite-dimensional spaces.

To obtain an isometry whose range is entirely contained in \mathcal{N}^{\perp} , consider the partial isometry V obtained from the polar decomposition: $P_{\mathcal{N}^{\perp}}V_k = V|P_{\mathcal{N}^{\perp}}V_k|$. Two applications of the triangle inequality yields

$$\|\varphi(a) - V_k^* a V_k\| \le \|\varphi(a) - V^* a V\| + 2\|a\| \|V - V_k\|$$

and

$$||V - V_k|| = ||V - P_{\mathcal{N}^{\perp}} V_k - P_{\mathcal{N}^{\perp}} V_k|| \le ||V - P_{\mathcal{N}^{\perp}} V_k|| + \epsilon$$

$$= ||V(I - |P_{\mathcal{N}^{\perp}} V_k|)|| + \epsilon \le ||I - |P_{\mathcal{N}^{\perp}} V_k||| + \epsilon = |||V_k| - |P_{\mathcal{N}^{\perp}} V_k||| + \epsilon$$

Two applications of the triangle inequality gives us

$$|||V_k|^2 - |P_{\mathcal{N}^{\perp}}V_k||^2 \le (||V_k|| + ||P_{\mathcal{N}^{\perp}}V_k||)||V_k - P_{\mathcal{N}^{\perp}}V_k|| \le 2||P_{\mathcal{N}}V_k|| < 2\epsilon$$

which, for "reasons beyond our comprehension" implies

$$||V_k| - |P_{\mathcal{N}^{\perp}}V_k||$$
 is also small

whence the result. \Box

Now let's start thinking about the general case: $\varphi: A \to B$ a completely positive, unital map between \mathbb{C}^* -subalgebras of $\mathcal{B}(\mathcal{H})$ and $\mathcal{B}(\mathcal{K})$ respectively, for which $\varphi(A \cap \mathcal{K}(\mathcal{H})) = 0$. Suppose we have an increasing sequence of finite rank projections $P_n \in \mathcal{B}(\mathcal{K})$ tending strongly to the identity (i.e. an approximate unit). Each $P_n\varphi(\cdot)P_n$ is (up to *-isomorphism of the range space) a completely positive unital map into $\mathbb{M}_{d_n}(\mathbb{C})$ (where $d_n = \operatorname{rank} P_n$), which we know can be point-norm approximated by isometries. We're heading in the right direction, but we're missing a few pieces to the puzzle.

Theorem 2.0.6 (Non-commutative Weyl-von Neumann-Berg Theorem). Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a separable unital C*-algebra and $\varphi: A \to \mathcal{B}(\mathcal{K})$ a unital, completely positive map such that $\varphi(A \cap \mathcal{B}(\mathcal{K})) = 0$. Then there exists a sequence of isometries $V_k: \mathcal{K} \to \mathcal{H}$ such that $\varphi(a) - V_k^* a V_k$ is compact for all $a \in A, k \in \mathbb{N}$, and $\varphi(a) = \lim_k V_k^* a V_k$ for all $a \in A$.

$$||I - X_n^{1/2}|| \le ||I - p(I)|| + ||p(I) - p(X_n)|| + ||p(X_n) - X_n^{1/2}||$$

$$\le (1 + M)||f - p|| + ||p(I) - p(X_n)||$$

which can be made arbitrarily small.

If $X_n \to I$ and X_n is uniformly bounded by M, choose a polynomial p arbitrarily close to $f(x) = \sqrt{x}$ on [0, M], so that

Proof. We're going to start by just finding one isometry V such that $\varphi(a) - V^*aV$ is compact for all $a \in A$. Once we know we can do this, the trick is to do the same to $\varphi^{(\infty)}: A \to \mathcal{B}(\mathcal{K}^{(\infty)})$ taking $a \mapsto \bigoplus_{\mathbb{N}} \varphi(a)$, which remains a unital, completely positive map which vanishes on compacts. Let V be the isometry in $\mathcal{B}(K^{(\infty)}, \mathcal{H})$ which accomplishes our task, and write $V(\xi_i)_i = \sum_i V_i \xi_i$ for operators $V_i \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, which we observe are also necessarily isometries. Let $P_k: \mathcal{K}^{(\infty)} \to \mathcal{K}$ take $\bigoplus_i \xi_i \mapsto \xi_k$ so that $P_k^* \xi = 0 \oplus \cdots \oplus \xi \oplus \cdots$ (ξ placed in the kth position). Then

$$\varphi(a) - V_k^* a V_k = P_k \left(\varphi^{(\infty)}(a) - V^* a V \right) P_k^*$$

whence

$$\|\varphi(a) - V_k^* a V_k\| \le \|P_k(\varphi^{(\infty)}(a) - V^* a V)\| \underbrace{\|P_k^*\|}_{=1}$$

However, P_k converges strongly to zero, and so for any compact T, P_kT converges to zero uniformly. Thus since $\varphi^{(\infty)}(a) - V^*aV$ is compact

$$\lim_{k} \|\varphi(a) - V_k^* a V_k\| = 0$$

So let's see how to construct such a V.

Consider the C*-algebra $B := C^*(\varphi(A)) + \mathcal{K}(\mathcal{K})$, and the ideal of finite rank operators $\mathcal{F}(\mathcal{K}) \subseteq B$. We can extract a sequential, quasicentral approximate unit $(e_n)_{n \in \mathbb{N}} \subseteq \mathcal{F}(\mathcal{K})$ relative to B. The construction of B is just so we can obtain a sequence of positive, finite rank operators converging strongly to the identity, such that

$$||e_n k - k|| \to 0$$
, $\forall k \in \mathcal{K}(\mathcal{K})$, $||\varphi(a)e_n - e_n \varphi(a)|| \to 0$, $\forall a \in A$

Let $\{a_n\}_{n\in\mathbb{N}}$ be a dense subset of A. Choose a decreasing sequence $\delta_n > 0$ tending to zero such that for all $e \geq 0$ and $||a|| \leq 1$ in A, $||ea - ae|| < \delta_n$ implies $||e^{1/2}a - ae^{1/2}|| < 2^{-n}$. By dropping to a subsequence, we can assume without loss of generality that our quasicentral approximate unit $(e_n)_{n\in\mathbb{N}}$ is such that

$$||e_n \varphi(a_i) - \varphi(a_i)e_n|| < \frac{1}{2}\delta_{n+1}, \quad \forall i = 1, ..., n+1$$

from which $||(e_n - e_{n-1})\varphi(a_i) - (e_n - e_{n-1})\varphi(a_i)|| < \delta_n$ for all i = 1, ..., n (by the triangle inequality), whence

$$||(e_n - e_{n-1})^{1/2} \varphi(a_i) - \varphi(a_i)(e_n - e_{n-1})^{1/2}|| < 2^{-n}, \quad \forall i = 1, ..., n$$

We'll let $f_n := (e_n - e_{n-1})^{1/2}$ (with $e_0 = 0$), which we remark are also finite rank operators.² The bound we've obtained on $||f_n\varphi(a_i) - \varphi(a_i)f_n||$ tells us that $\sum_n ||f_n\varphi(a_i) - \varphi(a_i)f_n|| < \infty$ for all $i \in \mathbb{N}$, and so the operator $\sum_n (f_n\varphi(a_i) - \varphi(a_i)f_n)$ converges in norm. Of course each $f_n\varphi(a_i) - \varphi(a_i)f_n$ is finite rank, so the sum of the series is compact. We'll need this in our construction of V.

Now let P_n denote the (finite rank) orthogonal projection onto the range of f_n . Since the map $a \mapsto P_n \varphi(a) P_n$ is unital, completely positive, and maps into a finite matrix algebra, by the corollary above, we can inductively define isometries $L_n : P_n \mathcal{K} \to \mathcal{H}$ such that

$$||P_n\varphi(a_i)P_n - L_n^*a_iL_n|| < 2^{-n}, \quad \forall i = 1,...,n$$

and additionally

$$\operatorname{ran} L_n \perp \mathcal{N}_n := \operatorname{span} \{ \operatorname{ran}(L_i), a_j \operatorname{ran}(L_i) : 1 \leq i < n, 1 \leq j \leq n \}$$

First off, we see that $\sum_n \|P_n \varphi(a_i) P_n - L_n^* a_i L_n\| < \infty$ for all i, and so $\sum_n (P_n \varphi(a_i) P_n - L_n^* a_i L_n)$ converges in norm. Again, each term is finite rank, so the resulting operator is compact. We've also constructed the finite-dimensional space \mathcal{N}_n in such a way that $\operatorname{ran} L_n \perp \operatorname{ran} L_m$ (so the isometries are mutually orthogonal) whenever $m \neq n$, and $\operatorname{ran} L_n \perp a_i \operatorname{ran} L_m$ whenever $1 \leq i \leq \max\{m,n\}$. These conditions can also be expressed

$$L_m^* L_n = \delta_{mn} I, \qquad L_m^* a_i L_n = 0, \qquad 1 \le i \le \max\{m, n\}$$

²If F is a finite rank operator, then $Fx = \sum_{i=1}^{n} \langle x, y_i \rangle e_i$ for some vectors y_i and some linearly independent vectors e_i , from which we see that codim ker $F \leq n$, and so $F|_{(\ker F)^{\perp}}$ is a positive map between finite dimensional Hilbert spaces, i.e. a positive semidefinite matrix, which admits a unique positive semidefinite square root matrix $F^{1/2}$. Extending $F^{1/2}$ back to all of dom F gives us a finite rank square root.

Now, consider the operator $V := sot - \sum_n L_n f_n$. We must first check that this is even well-defined. Let $V^{(N)} := \sum_{n=1}^{N} L_n f_n$. Notice that since the L_n 's are mutually orthogonal isometries, we have

$$(V^{(N)})^*(V^{(N)}) = \sum_{n=1}^{N} f_n^2 = e_N$$

and so $(V^{(N)})^*V^{(N)} \to I$ strongly. Additionally, for M < N we can calculate

$$(V^{(N)} - V^{(M)})^* (V^{(N)} - V^{(M)}) = e_N - e_M$$

whence

$$\|(V^{(N)} - V^{(M)})x\|^2 = \langle (e_N - e_M)x, x \rangle \le \|(e_N - e_M)x\| \|x\|$$

which can be made arbitrarily small for M, N large enough, so $V^{(N)}x$ is Cauchy, whence convergent, and the strong operator limit of the partial sums exists.

However, we can't quite conclude that $V^*V = sot - \lim_N (V^{(N)})^*(V^{(N)})$. Typically, multiplication of operators is not *jointly* continuous with respect to the strong operator topologies, however when restricted to the unit ball of $\mathcal{B}(\mathcal{H})$ (or any bounded set of operators) it is jointly continuous. Since $||V^{(N)}|| \leq 1$, we thus get $V^*V = sot - \lim_N (V^{(N)})^*(V^{(N)}) = I$, so V is an isometry.

We also have $V^*a_iV = sot - \lim_N (V^{(N)})^*a_iV^{(N)}$ (again by uniform boundedness of our sequence). We simulatneously calculate

$$\varphi(a_{i}) - (V^{(N)})^{*}a_{i}V^{(N)} = \varphi(a_{i}) - \sum_{m,n=1}^{N} f_{m}L_{m}^{*}a_{i}L_{n}f_{n}$$

$$= sot - \sum_{n\geq 1} \varphi(a_{i})f_{n}^{2} - \sum_{m,n=1}^{N} f_{m}L_{m}^{*}a_{i}L_{n}f_{n}$$

$$= sot - \sum_{n>N} \varphi(a_{i})f_{n}^{2} + \sum_{n=1}^{N} (\varphi(a_{i})f_{n} - f_{n}\varphi(a_{i}) + f_{n}\varphi(a_{i}))f_{n} - \sum_{m,n=1}^{N} f_{m}L_{m}^{*}a_{i}L_{n}f_{n}$$

$$= \left(I - (V^{(N)})^{*}V^{(N)}\right)\varphi(a_{i}) + \sum_{n=1}^{N} (\varphi(a_{i})f_{n} - f_{n}\varphi(a_{i}))f_{n}$$

$$+ \sum_{n=1}^{N} f_{n}(P_{n}\varphi(a_{i})P_{n} - L_{n}^{*}a_{i}L_{n})f_{n} - \sum_{\substack{m,n=1\\m\neq n}}^{N} f_{m}L_{m}^{*}a_{i}L_{n}f_{n}$$

where we have used the fact that $f_n = P_n f_n$ (and of course both P_n and f_n are self-adjoint, so $f_n = f_n P_n$).

The first term above tends strongly to zero (as $N \to \infty$). The next two terms, as we saw above, are norm-convergent series of finite rank operators, and whence strongly continuous with strong limit compact. Finally, notice that for a fixed i, for m, n large enough $L_m^* a_i L_n = 0$, and so the third sum is always a finite sum of finite rank operators, with the number of terms being fixed as $N \to \infty$. Thus, $\varphi(a_i) - V^* a_i V$ is compact. Of course the a_i 's were dense in A, so if $a_{n_i} \to a \in A$, then $\varphi(a) - V^* a V = \lim_i (\varphi(a_{n_i}) - V^* a_{n_i} V)$ is the norm-limit of compact operators, whence compact.

Corollary 2.0.7. If ρ is a (non-degenerate) *-representation of a separable unital C*-algebra $A \subseteq \mathcal{B}(\mathcal{H})$ into $\mathcal{B}(\mathcal{K})$, which vanishes on $A \cap \mathcal{K}(\mathcal{H})$, then there are a sequence of isometries $V_k : \mathcal{K} \to \mathcal{H}$ such that $V_k \rho(a) - aV_k$ is compact, and $\lim_k \|V_k \rho(a) - aV_k\| = 0$.

This is strikingly close to what we want from Voiculescu's theorem: approximate *unitary* equivalence modulo the compacts. You might think we're almost done, since we have isometries, and isometries can be dilated to unitaries. Unfortunately this line of thought turns out to be a little naive. The path forward is not nearly so simple.

Theorem 2.0.8 (Voiculescu's Theorem). Let $\rho: A \to \mathcal{B}(\mathcal{K})$ be a unital *-representation of a separable unital C*-algebra $A \subseteq \mathcal{B}(\mathcal{H})$, which vanishes on $A \cap \mathcal{K}(\mathcal{H})$. Then there is a sequence of unitaries $U_k: \mathcal{H} \oplus \mathcal{K} \to \mathcal{H}$ such that $U_k(a \oplus \rho(a)) - aU_k$ is compact for all $a \in A, k \in \mathbb{N}$, and $\lim_k \|U_k(a \oplus \rho(a)) - aU_k\| = 0$. In other words, $\mathrm{id}_A \oplus \rho \sim_{\mathcal{K}(\mathcal{H})} \mathrm{id}_A$.

Proof. First, let $V \in \mathcal{B}(\mathcal{K}^{(\infty)}, \mathcal{H})$ be an isometry such that for all $a \in A$, $V\rho^{(\infty)}(a) - aV$ is compact. Recall we can write $V = \sum_i V_i J_i$, where $J_i : \mathcal{K} \to \mathcal{K}^{(\infty)}$ are the canonical injection maps (onto the *i*th copy of \mathcal{K}), and $V_i \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ are isometries. Note that J_i^* is the canonical projection (which extracts the *i*th coordinate). Consider the shift-operator

$$\begin{array}{rcl} S_n & = & \sum_{i=1}^{n-1} J_i J_i^* + sot - \sum_{i \geq n} J_{i+1} J_i^* \\ & : & (\xi_1, \xi_2, \ldots) & \mapsto & (\xi_1, \ldots, \xi_{n-1}, 0, \xi_{n+1}, \ldots) \end{array}$$

Notice that S_n is an isometry. An explicit calculation yields

$$S_n^*(\xi_1, \xi_2, ...) = (\xi_1, ..., \xi_{n-1}, \xi_{n+1}, \xi_{n+2}, ...)$$

so that

$$S_n^* S_n = I$$
 (as expected), $S_n S_n^* = I_{\mathcal{K}^{(\infty)}} - J_n J_n^*$

Now we'll begin defining our unitaries. Suppose that $U_n: \mathcal{H} \oplus \mathcal{K} \to \mathcal{H}$ are unitaries such that $U_n(a \oplus \rho(a)) - aU_n$ is compact and tends to zero. How might we define our U_n ? Well, we already have a sequence of isometries $V_n: \mathcal{K} \to \mathcal{H}$ which approximately commute with ρ relative to the compacts, so we might expect U_n to look something like

$$U_n(h \oplus k) = W_n h + V_n k$$

for some aptly chosen operator $W_n \in \mathcal{B}(\mathcal{H})$. If we want U_n to be unitary, then in particular we need

$$W_n^* W_n = I,$$
 $W_n^* V_n = 0,$ $W_n W_n^* + V_n V_n^* = I$

Looking at this last equation, we might suppose

$$W_n W_n^* = I - V_n V_n^* = I - VV^* + VV^* - V_n V_n^*$$

= $(I - VV^*)(I - VV^*)^* + VV^* - V_n V_n^*$

which looks close to

$$(I - VV^* + X)(I - VV^* + X)^*$$

for some operator X. If we expand this, we're left with $I - VV^* + a$ bunch of awkward terms involving X and X^* . If we choose $X = VYV^*$ for some operator Y, then a lot of these terms disappear, and we have

$$(I - VV^* + X)(I - VV^* + X)^* = I - VV^* + VYY^*V^*$$

Another reason this is a smart choice is because $(I - VV^* + X)^*(I - VV^* + X) = I - VV^* + VY^*YV^*$, which is equal to I if we can choose Y to be an isometry. In order for $I - VV^* + VYY^*V^*$ to equal $I - V_nV_n^*$, we merely need

$$VYY^*V = VV^* - V_nV_n^* = V(I - J_nJ_n^*)V^*$$

or even more simply $YY^* = I - J_n J_n^*$. Above we observed that $Y = S_n$ accomplishes this task. What remains to check is that if we plug in $Y = S_n$, we *indeed* obtain a unitary.

Define the operators $U_n: \mathcal{H} \oplus \mathcal{K} \to \mathcal{H}$ via

$$U_n(h \oplus k) := (I - VV^* + VS_nV^*)h + VJ_nk$$

Then one readily checks that each U_n is in fact a unitary. We have

$$U_n^* U_n = \begin{bmatrix} (I - VV^* + VS_n^*V^*)(I - VV^* + VS_nV^*) & (I - VV^* + VS_n^*V^*)VJ_n \\ J_n^*V^*(I - VV^* + VS_nV^*) & J_n^*V^*VJ_n \end{bmatrix}$$

Clearly $J_n^*V^*VJ_n=I$, and

$$(I - VV^* + VS_n^*V^*)VJ_n = VJ_n - VJ_n + VS_n^*J_n = VS_n^*J_n$$

but $J_n k$ has zeros everywhere except the *n*th-slot, and $S_n^*(k_i)_i$ takes everything *except* the *n*th-slot, so $S_n^* J_n = 0$. Thus the off-diagonal elements are zero. Finally, expanding and simplifying the top term (a straightforward procedure with no tricks) gives that it is equal to I. Additionally

$$U_n U_n^* = (I - VV^* + VS_n V^*)(I - VV^* + VS_n^* V^*) + VJ_n J_n^* V^*$$

$$= I - VV^* + VS_n S_n^* V^* + VJ_n J_n^* V^*$$

$$= I - VV^* + V(S_n S_n^* + J_n J_n^*) V^*$$

$$= I$$

Now, we calculate

$$U_n(a \oplus \rho(a)) - aU_n = [(I - VV^* + VS_nV^*)a \quad VJ_n\rho(a)] - [a(I - VV^* + VS_nV^*) \quad aVJ_n]$$

= $[(aVV^* - VV^*a) - (aVS_nV^* - VS_nV^*a) \quad VJ_n\rho(a) - aVJ_n]$

Here is where we can use the fact that $V\rho^{(\infty)}(a) - aV$ is compact. Observe that

$$aVV^* - VV^*a = aVV^* - V\rho^{(\infty)}(a)V^* + V\rho^{(\infty)}(a)V^* - VV^*a$$
$$= (aV - V\rho^{(\infty)}(a))V^* + V(a^*V - V\rho^{(\infty)}(a^*))^*$$

which is the sum of compact operators, whence compact. The other commutator in the (1,1)-entry above can be handled similarly, but we need to remark that $S_n\rho(a)^{(\infty)}=\rho(a)^{(\infty)}S_n$ (easy to check), from which we calculate

$$aVS_nV^* - VS_nV^*a = aVS_nV^* - V\rho(a)^{(\infty)}S_nV^* + VS_n\rho(a)S_nV^* - VS_nV^*a$$
$$= (aV - V\rho^{(\infty)}(a))S_nV^* + VS_n(a^*V - V\rho^{(\infty)}(a^*))^*$$

which, again, is compact. Finally, we also remark $J_n\rho(a)=\rho(a)^{(\infty)}J_n$ (another easy calculation), so that $VJ_n\rho(a)-aVJ_n=V\rho^{(\infty)}(a)J_n-aVJ_n=(V\rho^{(\infty)}(a)-aV)J_n$ is also compact.

To finish up, simply notice that S_n converges strongly to the identity, and so for any compact operator K, both KS_n and S_nK converge to K in *norm*. Thus,

$$aVS_{n}V^{*} - VS_{n}V^{*}a = (aV - V\rho^{(\infty)}(a))S_{n}V^{*} + VS_{n}(a^{*}V - V\rho^{(\infty)}(a^{*}))^{*}$$

$$\to (aV - V\rho^{(\infty)}(a))V^{*} + V(a^{*}V - V\rho^{(\infty)}(a^{*}))^{*} \quad \text{in norm}$$

$$= aVV^{*} - VV^{*}a$$

As for the (1,2)-entry, observe that $(V\rho^{(\infty)}(a) - aV)J_n = V_n\rho(a) - aV_n$, and as we know compactness of $V\rho^{(\infty)}(a) - aV$ guarantees that $||V_n\rho(a) - aV_n|| \to 0$, concluding the argument that

$$||U_n(a \oplus \rho(a)) - aU_n|| \to 0$$

We can easily rephrase this in the language of Voiculescu's original paper:

Theorem 2.0.9. Let A be a separable unital C*-algebra, $\rho: A \to \mathcal{B}(\mathcal{H})$ a unital *-representation of A, and $\sigma: \pi(\rho(A)) \to \mathcal{B}(\mathcal{K})$ a unital *-representation (where $\pi: \mathcal{B}(\mathcal{H}) \to \mathcal{Q}(\mathcal{H})$ is the canonical quotient map). Then

$$\rho \sim_{\mathcal{K}} \rho \oplus \sigma \circ \pi \circ \rho$$

Proof. Consider the C*-algebra $\rho(A)$ (recalling the range of *-representations is automatically closed). The representation σ lifts to a representation $\widetilde{\sigma} = \sigma \circ \pi$, which vanishes on the compacts in $\rho(A)$. Thus

$$\rho = \mathrm{id}_{\rho(A)} \circ \rho \sim_{\mathcal{K}} (\mathrm{id}_{\rho(A)} \oplus \widetilde{\sigma}) \circ \rho = \rho \oplus \sigma \circ \pi \circ \rho$$

Definition 2.0.10. A *-representation $\pi: A \to \mathcal{B}(\mathcal{H})$ of a C*-algebra A is said to be *essential* if $\pi(A)$ contains no compact operators.

Remark. Essential representations are surprisingly plentiful: given any *-representation π , the infinite ampliation $\pi^{(\infty)}: A \to \mathcal{B}(\mathcal{H}^{(\infty)})$ taking $a \mapsto \bigoplus_{\mathbb{N}} \pi(a)$ is essential. Indeed if $\bigoplus_{\mathbb{N}} a_i \in \mathcal{B}(\mathcal{H}^{(\infty)})$ were compact, then necessarily $||a_i|| \to 0$ (via the same argument used in the proof of theorem 2.0.6).

Corollary 2.0.11. Let A be a separable unital C*-algebra, $\rho: A \to \mathcal{B}(\mathcal{H})$ and $\sigma: A \to \mathcal{B}(\mathcal{K})$ unital, essential *-representations, such that $\ker \rho = \ker \sigma$. Then $\rho \sim_{\mathcal{K}} \sigma$.

Remark. This is sometimes phrased as $\ker \rho = \ker \pi \rho = \ker \pi \sigma = \ker \pi \sigma$ with π the canonical projection onto the Calkin algebra (the $\ker \pi \rho = \ker \rho$ and $\ker \pi \sigma = \ker \sigma$ conditions being the definition of "essential").

Remark. Since $\ker \rho = \ker \sigma$, we have $\rho(A) \cong A/\ker \rho = A/\ker \sigma \cong \sigma(A)$, so there exists a *-isomorphism $\psi : \rho(A) \to \sigma(A)$, with $\psi \circ \rho = \sigma$. Then

$$\rho = \mathrm{id}_{\rho(A)} \circ \rho \ \sim_{\mathcal{K}} \ (\mathrm{id}_{\rho(A)} \oplus \psi) \circ \rho = \rho \oplus \sigma = (\psi^{-1} \oplus \mathrm{id}_{\sigma(A)}) \circ \sigma \ \sim_{\mathcal{K}} \ \mathrm{id}_{\sigma(A)} \circ \sigma = \sigma$$

3 Applications

Theorem 3.0.1.

Definition 3.0.2. Let $\mathcal{Q}(\mathcal{H})$ denote the Calkin algebra, and suppose $A \subseteq \mathcal{Q}(\mathcal{H})$ is a norm-closed, unital algebra (not necessarily self-adjoint). We let

$$Lat(A) := \{ p \in \mathcal{Q}(\mathcal{H}) \mid p \text{ is a projection}, (1-p)Ap = 0 \}$$

and for a subset $P \subseteq \mathcal{Q}(\mathcal{H})$ of projections, we let

$$Alg(P) := \{ b \in \mathcal{Q}(\mathcal{H}) \mid (1 - p)bp = 0 \quad \forall p \in P \}$$

Remark. These notions are obviously borrowed from their non-Calkin counterparts in the theory of nest algebras, so we might expect them to behave analogously. While it is true that every projection $e \in \mathcal{Q}(\mathcal{H})$ lifts to a projection in $\mathcal{B}(\mathcal{H})$ (see [lifting-projections-choi] and the cited paper [cited-paper]), in general the set of projections in $\mathcal{Q}(\mathcal{H})$ is not a lattice (in particular you can furnish two projections on a separable \mathcal{H} which lack a meet in the Calkin algebra).

Theorem 3.0.3. Let $A \subseteq \mathcal{Q}(\mathcal{H})$ be a separable, norm-closed, unital algebra. Then Alg(Lat(A)) = A.

First we'll need a quick lemma.

Lemma 3.0.4. Let A be a norm-closed (not necessarily self-adjoint) proper subalgebra of a C*-algebra B, and $x \in B/A$. Then there exists a state $\varphi \in S(B)$ with corresponding GNS representation $(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi})$ and r > 0 such that $\|\pi_{\varphi}(x - a)\| \ge r$ for all $a \in A$, and so as a consequence $\pi_{\varphi}(x)\xi_{\varphi} \notin \overline{\pi_{\varphi}(A)\xi_{\varphi}}$.

Proof. Choose a linear functional $f \in B^*$ such that f(x) = 1 and f(A) = 0 (geometric Hahn-Banach). By the Jordan decomposition, we can write $f = f_1 - f_2 + i(f_3 - f_4)$ for some positive functionals $f_i \in B^*$. Let $\psi := f_1 + f_2 + f_3 + f_4$. Recall that for a unital, 2-positive ma $\phi : A \to B$ between unital C*-algebras, $\phi(a)^*\phi(a) \le \phi(a^*a)$ for all $a \in A$, and so

$$f_i((x-a)^*(x-a)) \ge \frac{1}{\|f_i\|} |f_i(x-a)|^2, \quad \forall a \in A$$

So

$$\psi((x-a)^*(x-a)) \ge \frac{1}{\max_i ||f_i||} \sum_{i=1}^4 |f_i(x-a)|^2$$

Let $\varphi = \psi/\|\psi\| \in S(B)$, with GNS representation $(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi})$. Then the above inequality simply reads $\|\pi_{\varphi}(x-a)\| \geq r$ with $r = \frac{1}{4\|\psi\| \max_j \|f_j\|}$, for all $a \in A$.

Proof of 3.0.3. We can phrase the problem as follows: for any operator $T \in \mathcal{B}(\mathcal{H})$ such that $\pi(T) \notin A$, we have to find a projection $P \in \mathcal{B}(\mathcal{H})$ such that (I - P)SP is compact whenever $\pi(S) \in A$ (so that $\pi(P) \in \text{Lat}(A)$), but (1 - P)TP is not compact (so $(1 - \pi(P))T\pi(P) \neq 0$, implying $T \notin \text{Alg}(\text{Lat}(A))$).

Consider the C*-algebra $B:=C^*(\pi^{-1}(\underline{A}),T)$. Since $\pi(T)\not\in A\subsetneq\pi(B)$, by the lemma above there is a state $\varphi\in S(\pi(B))$ such that $\pi_{\varphi}(\pi(T))\xi_{\varphi}\not\in\pi_{\varphi}(A)\xi_{\varphi}$.

Let $E \in \mathcal{B}(\mathcal{H}_{\varphi})$ denote the projection onto $\overline{\pi_{\varphi}(A)\xi_{\varphi}}$, and $Q := 0 \oplus E \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}_{\varphi})$ the projection onto $0 \oplus \overline{\pi_{\varphi}(A)\xi_{\varphi}}$. For $S \in \pi^{-1}(A)$ we calculate

$$(I-Q)(S \oplus \pi_{\varphi}(\pi(S)))Q(h_1 \oplus h_2) = (I-Q)(0 \oplus \underbrace{\pi_{\varphi}(\pi(S))Eh_2}_{\in \overline{\pi_{\varphi}(A)E_{\varphi}}}) = 0 \quad \forall h_1 \oplus h_2 \in \mathcal{H} \oplus \mathcal{H}_{\varphi}$$

and yet

$$(I-Q)(T \oplus \pi_{\varphi}(\pi(T)))Q(0 \oplus \xi_{\varphi}) = (I-E)\pi_{\varphi}(\pi(T))\xi_{\varphi} \neq 0$$

which is nonzero since $\pi_{\varphi}(\pi(T))\xi_{\varphi} \notin \operatorname{ran} E$. Now let $\sigma = \pi_{\varphi}^{(\infty)}$, and $\widetilde{Q} := 0 \oplus E^{(\infty)} \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}_{\varphi}^{(\infty)})$. Then

$$(I - \widetilde{Q})(S \oplus \sigma(\pi(S)))\widetilde{Q} = 0 \quad \forall S \in \pi^{-1}(A)$$

whereas

$$(I-\widetilde{Q})(T\oplus\sigma(\pi(T)))\widetilde{Q}$$
 is not just non-zero, it's non-compact

Of course, Voiculescu's theorem tells us that id_B and $id_B \oplus \sigma$ are approximately unitarily equivalent modulo the compacts, so there is a unitary operator $U \in \mathcal{B}(\mathcal{H}, \mathcal{H} \oplus \mathcal{H}_{\varphi}^{(\infty)})$ such that

$$b - U^*(b \oplus \sigma(\pi(b)))U$$
 is compact $\forall b \in B$

We check that $P := U^*\widetilde{Q}U$ is the desired projection. For any $b \in B$ we calculate

$$\begin{split} (I-P)bP &= (I-U^*\widetilde{Q}U)bU^*\widetilde{Q}U = U^*(I-\widetilde{Q})UbU^*\widetilde{Q}U \\ &= U^*(1-\widetilde{Q})(b\oplus\sigma(\pi(b)) + \mathrm{compact})\widetilde{Q}U \\ &= U^*(I-\widetilde{Q})(b\oplus\sigma(\pi(b)))\widetilde{Q}U + \mathrm{compact} \end{split}$$

Thus (I - P)SP is compact for any $S \in \pi^{-1}(A)$, and (1 - P)TP is non-compact.

Corollary 3.0.5 (Voiculescu's Double Commutant Theorem). If $A \subseteq \mathcal{Q}(\mathcal{H})$ is a separable, unital C*-algebra, then A'' = A, where $A' := \{b \in \mathcal{Q}(\mathcal{H}) \mid ab = ba \quad \forall a \in \mathcal{A}\}$ is the *relative commutant*.

Proof. First, notice that if $p \in \text{Lat}(A)$, then (1-p)ap = 0 for all $a \in A$, and so $(1-p)a^*p = 0$, whence pa(1-p) = 0, which altogether gives pa = ap = pap for all $a \in A$. In other words, $\text{Lat}(A) \subseteq A'$, whence $A'' \subseteq \text{Lat}(A)' \subseteq \text{Alg}(\text{Lat}(A)) = A$.

4 Further Applications

Theorem 4.0.1. Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a separable infinite dimensional C*-algebra in $\mathcal{B}(\mathcal{H})$. Then $H^1(A, \mathcal{K}(\mathcal{H})) \neq 0$.

Theorem 4.0.2. Let A be a separable C*-algebra. Then $H^1(A, B) = 0$ for all C*-algebras B containing A if and only if A is finite-dimensional.

³If $b \in (\text{Lat } A)'$, then bp = (bp)p = pbp for all $p \in \text{Lat } A$, so $b \in \text{Alg}(\text{Lat}(A))$.

Definition 4.0.3. A set $S \in \mathcal{B}(\mathcal{H})$ is **quasidiagonal** if for all $\epsilon > 0$, finite $F \subseteq S$ and finite $\Xi \subseteq \mathcal{H}$, there is a finite rank projection $P \in \mathcal{B}(\mathcal{H})$ such that $||PT - TP|| < \epsilon$ for all $T \in \mathcal{F}$, and $||P^{\perp}\xi|| < \epsilon$ for all $\xi \in \Xi$.

A C*-algebra A is **quasidiagonal** if there is a faithful *-representation $\rho: A \to \mathcal{B}(\mathcal{H})$ such that $\rho(A)$ is a quasidiagonal set.

Theorem 4.0.4. A unital C*-algebra A is quasidiagonal if and only if $\forall \epsilon > 0$ $\mathcal{F} \subseteq A$ finite, there exists a *-representation $\rho : A \to \mathcal{B}(\mathcal{H})$ and a finite rank projection $P \in \mathcal{B}(\mathcal{H})$ such that $\|P\rho(a)P\| \ge \|a\| - \epsilon$ and $\|P\rho(a) - \rho(a)P\| < \epsilon$ for all $a \in \mathcal{F}$.

Theorem 4.0.5. Let A, B be C*-algebras, $\varphi_0, \varphi_1 : A \to B$ homotopic *-homomorphisms such that φ_0 is injective and $\varphi_1(A)$ is quasidiagonal. Then A is quasidiagonal.

Definition 4.0.6. Let A, B be C*-algebras. Then A is said to homotopically dominate B if there are *-homomorphisms $\pi: B \to A$ and $\sigma: A \to B$ such that $\sigma \circ \pi$ is homotopic to id_B . A and B are homotopically equivalent if there are *-homomorphisms $\pi: B \to A$ and $\sigma: A \to B$ such that $\sigma \circ \pi$ is homotopic to id_B and $\pi \circ \sigma$ is homotopic to id_A (this is a stronger notion than saying A homotopically dominates B homotopically dominates A).

Theorem 4.0.7. Suppose A homotopically dominates B, and A is quasidiagonal. Then B is quasidiagonal. Thus, quasidiagonality is invariant under homotopy-equivalence.

References

- [1] W. Arveson. "Notes on extensions of C^* -algebras". In: Duke Mathematical Journal 44.2 (1977), pp. 329–355.
- [2] K. R. Davidson. C^* -Algebras by Example. American Mathematical Society, 1996.
- [3] D. Voiculescu. "A Non-Commutative Weyl-Von Neumann Theorem". In: Romanian Journal of Pure and Applied Mathematics 21.1 (1976), pp. 97–113.