Package 'BayesChange'

February 15, 2025

Title Bayesian Methods for Change Points Analysis

Version 1.1.1

Description

Perform change points detection on univariate and multivariate time series according to the methods presented by Asael Fabian Martínez and Ramsés H. Mena (2014) <doi:10.1214/14-BA878> and Corradin, Danese and Ongaro (2022) <doi:10.1016/j.ijar.2021.12.019>. It also clusters different types of time dependent data with common change points, see ``Model-based clustering of time-dependent observations with common structural changes" (Corradin, Danese, KhudaBukhsh and Ongaro, 2024) <doi:10.48550/arXiv.2410.09552> for details.

```
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.2
LinkingTo Rcpp, RcppArmadillo, RcppGSL
Imports Rcpp
Depends R (>= 3.5.0)
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
URL https://github.com/lucadanese/BayesChange
BugReports https://github.com/lucadanese/BayesChange/issues
NeedsCompilation yes
Author Luca Danese [aut, cre, cph] (<a href="https://orcid.org/0000-0001-8444-8563">https://orcid.org/0000-0001-8444-8563</a>),
     Riccardo Corradin [aut],
     Andrea Ongaro [aut]
Maintainer Luca Danese < 1.danese 1@campus.unimib.it>
Repository CRAN
Date/Publication 2025-02-14 23:00:15 UTC
```

2 clust_cp_epi

Contents

clus	t_cp_epi	uste time	g I	Epi	de	mi	ole	ogi	ca	l s	ur	viv	al	fu	ıno	cti	on	s ı	vii	th	co	 on	ım	01	ι	he	ın	ge:	s
Index																													12
	sim_epi_data																												
	get_clust_VI psm																												
	detect_cp_uni																												
	detect_cp_multi .	 																											7
	clust_cp_uni	 																											6
	clust_cp_multi																												
	clust_cp_epi	 																											2

Description

Clustering Epidemiological survival functions with common changes in time

Usage

```
clust_cp_epi(
  data,
 n_iterations,
 Μ,
 В,
 L,
  gamma = 1/8,
 alpha = 1,
 q = 0.1,
 dt = 0.1,
 a0 = 4,
 b0 = 10,
  c0 = 1,
 d0 = 1,
 MH_var = 0.01,
 S0 = 1,
 R0 = 0,
 p = 0.003,
  coars = 1,
 print_progress = TRUE,
  user\_seed = 1234L
)
```

clust_cp_epi 3

Arguments

data	a matrix where each entry is the number of infected for a population (row) at a specific discrete time (column).
n_iterations	Second value
М	number of Monte Carlo iterations when computing the likelihood of the survival function.
В	number of orders for the normalisation constant.
L	number of split-merge steps for the proposal step.
gamma	recovery rate fixed constant for each population at each time.
alpha	α for the acceptance ration in the split-merge procedure.
q	probability of performing a split when updating the single order for the proposal procedure.
dt, a0, b0, c0, d0	parameters for the computation of the integrated likelihood of the survival functions.
MH_var	variance for the Metropolis-Hastings estimation of the proportion of infected at time 0.
S0, R0	parameters for the SDE solver.
р	prior average number of change points for each order.
coars	coarsening parameter.
print_progress	If TRUE (default) print the progress bar.
user_seed	seed for random distribution generation.

Value

Function clust_cp_epi returns a list containing the following components:

- \$clust a matrix where each row corresponds to the output cluster of the corresponding iteration
- \$orders a multidimensional matrix where each slice is a matrix with the orders associated to the output cluster of that iteration.
- time computational time in seconds.
- \$11ik a matrix containing the log-likelihood of each population at each iteration.
- \$rho traceplot for the proportion of infected individuals at time 0.

Examples

clust_cp_multi

```
inf_times <- list()

for(i in 1:5){
    inf_times[[i]] <- sim_epi_data(10000, 10, 50, betas[[i]], 1/8)

    vec <- rep(0,50)
    names(vec) <- as.character(1:50)

    for(j in 1:50){
        if(as.character(j) %in% names(table(floor(inf_times[[i]])))){
        vec[j] = table(floor(inf_times[[i]]))[which(names(table(floor(inf_times[[i]]))) == j)]
        }
        data_mat[i,] <- vec
}

out <- clust_cp_epi(data = data_mat, n_iterations = 3000, M = 250, B = 1000, L = 1)

get_clust_VI(out$clust[1000:3000,])</pre>
```

clust_cp_multi

Clustering multivariate times series with common changes in time

Description

Clustering multivariate times series with common changes in time

Usage

```
clust_cp_multi(
  data,
  n_iterations,
 В,
  L,
  gamma,
  k_0,
  nu_0,
  phi_0,
 m_0,
  q = 0.5,
  alpha_SM = 0.1,
  coars = 1,
 print_progress = TRUE,
  user\_seed = 1234L
)
```

clust_cp_multi 5

Arguments

data a multidimensional matrix where each element is a matrix whose rows are the observations and columns the dimensions. number of MCMC iterations. n_iterations number of orders for the normalisation constant. number of split-merge steps for the proposal step. gamma, k_0, nu_0, phi_0, m_0 parameters of the integrated likelihood. probability of a split in the split-merge proposal and acceleration step. alpha_SM α for the split-merge proposal and acceleration step. coars coarsening coefficient, must be in (0,1]. print_progress If TRUE (default) print the progress bar. user seed seed for random distribution generation.

Value

Function clust_cp_multi returns a list containing the following components:

- \$clust a matrix where each row corresponds to the output cluster of the corresponding iteration.
- \$orders a multidimensional array where each slice is a matrix and represent an iteration. The row of each matrix correspond the order associated to the corresponding cluster.
- time computational time in seconds.
- \$norm_vec a vector containing the normalisation constant computed at the beginning of the algorithm.

Examples

```
data_array <- array(data = NA, dim = c(3,100,5))

data_array[1,,1] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_array[2,,1] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_array[3,,1] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))

data_array[1,,2] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_array[2,,2] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_array[3,,2] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))

data_array[1,,3] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280)))
data_array[2,,3] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280)))
data_array[1,,4] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225)))
data_array[2,,4] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225)))
data_array[3,,4] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225)))
data_array[1,,5] <- as.numeric(c(rnorm(25,0,0.155), rnorm(75,1,0.225)))</pre>
```

6 clust_cp_uni

clust_cp_uni

Clustering univariate times series with common changes in time

Description

Clustering univariate times series with common changes in time

Usage

```
clust_cp_uni(
    data,
    n_iterations,
    B,
    L,
    gamma,
    a = 1,
    b = 1,
    c = 1,
    q = 0.5,
    alpha_SM = 0.1,
    coars = 1,
    print_progress = TRUE,
    user_seed = 1234L
)
```

Arguments

data a matrix where each row is an observation and each column corresponds to a discrete time. number of MCMC iterations. n_iterations В number of orders for the normalisation constant. number of split-merge steps for the proposal step. parameters γ of the integrated likelihood. gamma, a, b, c probability of a split in the split-merge proposal and acceleration step. alpha_SM α for the split-merge proposal and acceleration step. coars coarsening coefficient, must be in (0,1]. print_progress If TRUE (default) print the progress bar. seed for random distribution generation. user_seed

detect_cp_multi 7

Value

Function clust_cp_uni returns a list containing the following components:

• \$clust a matrix where each row corresponds to the output cluster of the corresponding iteration.

- \$orders a multidimensional array where each slice is a matrix and represent an iteration. The row of each matrix correspond the order associated to the corresponding cluster.
- time computational time in seconds.
- \$norm_vec a vector containing the normalisation constant computed at the beginning of the algorithm.

Examples

```
data_mat <- matrix(NA, nrow = 5, ncol = 100)

data_mat[1,] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_mat[2,] <- as.numeric(c(rnorm(50,0,0.125), rnorm(50,1,0.225)))
data_mat[3,] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280)))
data_mat[4,] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225)))
data_mat[5,] <- as.numeric(c(rnorm(25,0,0.155), rnorm(75,1,0.280)))

out <- clust_cp_uni(data = data_mat, n_iterations = 5000, B = 1000, L = 1, gamma = 0.5)
get_clust_VI(out$clust[2500:5000,])</pre>
```

detect_cp_multi

Detect Change Points on multivariate time series

Description

Detect Change Points on multivariate time series

Usage

```
detect_cp_multi(
  data,
  n_iterations,
  q,
  k_0,
  nu_0,
  phi_0,
  m_0,
  par_theta_c = 1,
  par_theta_d = 1,
  prior_var_gamma = 0.1,
  print_progress = TRUE,
  user_seed = 1234L
)
```

8 detect_cp_multi

Arguments

Value

Function detect_cp_multi returns a list containing the following components:

- \$orders a matrix where each row corresponds to the output order of the corresponding iteration.
- time computational time in seconds.
- $gamma_MCMC$ traceplot for γ .
- \$gamma_MCMC_01 a 0/1 vector, the n-th element is equal to 1 if the proposed γ was accepted, 0 otherwise.
- $sigma_MCMC$ traceplot for σ .
- $sigma_MCMC_01$ a 0/1 vector, the n-th element is equal to 1 if the proposed σ was accepted, 0 otherwise.
- $theta_MCMC$ traceplot for θ .

Examples

detect_cp_uni 9

detect_cp_uni

Detect Change Points on an univariate time series.

Description

Detect Change Points on an univariate time series.

Usage

```
detect_cp_uni(
  data,
  n_iterations,
  q,
  phi,
  a,
  b,
  c,
  par_theta_c = 1,
  par_theta_d = 1,
  print_progress = TRUE,
  user_seed = 1234L
)
```

Arguments

Value

Function detect_cp_uni returns a list containing the following components:

- \$orders a matrix where each row corresponds to the output order of the corresponding iteration.
- time computational time in seconds.
- $sigma_MCMC$ traceplot for σ .
- $sigma_MCMC_01$ a 0/1 vector, the n-th element is equal to 1 if the proposed σ was accepted, 0 otherwise.
- $theta_MCMC$ traceplot for θ .

10 psm

Examples

get_clust_VI

Estimate order

Description

Estimate order

Usage

```
get_clust_VI(orders_mat)
```

Arguments

orders_mat

A matrix where each row corresponds to the output cluster of the corresponding iteration.

Value

Function get_clust_VI returns a point estimate for the clustering of the data.

psm

Compute the posterior similarity matrix

Description

Compute the posterior similarity matrix

Usage

psm(M)

Arguments

Μ

A matrix where each row corresponds to the output cluster of the corresponding iteration.

sim_epi_data 11

Value

Function psm returns an $n \times n$ posterior similarity matrix.

sim_epi_data	Simulate epidemiological data

Description

Simulate epidemiological data

Usage

```
sim_epi_data(S0, I0, max_time, beta_vec, gamma_0, user_seed = 1234L)
```

Arguments

10 number of infected individuals at time 0.	
max_time maximum observed time.	
beta_vec vector with the infection rate for each discrete time.	
gamma_0 the recovery rate. for the population, must be in $(0,1)$.	

Value

user_seed

Function sim_epi_data returns a vector with the simulated infection times.

seed for random distribution generation.

Index

```
clust_cp_epi, 2
clust_cp_multi, 4
clust_cp_uni, 6

detect_cp_multi, 7
detect_cp_uni, 9

get_clust_VI, 10

psm, 10

sim_epi_data, 11
```