泛函分析 (作业一)

§ 1.1.1 证明完备空间的闭子集是一个完备空间, 而任一度量空间中的完备子空间必是闭子集.

证明: 设 \mathcal{X} 完备, 闭集 $A \subset \mathcal{X}$. 若 $A = \mathcal{X}$, 则 A 必完备; 下设 $A \neq \mathcal{X}$.

设度量空间 (\mathcal{X}, ρ) , $\mathcal{X} \supset A$ 完备. 若 $A = \mathcal{X}$, 则 A 是闭集; 下设 $A \neq \mathcal{X}$.

记 $C = \mathcal{X} - A$, 要证 C 是开集. 若否, 则 $\exists x \in C$, $\forall \varepsilon > 0$, $B(x, \varepsilon) \cap A \neq \emptyset$.

任取 $\varepsilon_1 > 0$, 取 $x_1 \in B(x, \varepsilon_1) \cap A$, 取 $\varepsilon_2 = \frac{1}{2} \rho(x, x_1)$, 取 $x_2 \in B(x, \varepsilon_2) \cap A$, …, 取 $\varepsilon_n = \frac{1}{2} \rho(x, x_{n-1})$, 取 $x_n \in B(x, \varepsilon_n) \cap A$, …, $\{x_n\} \not\in A$ 中的 Cauchy 列, 并且 $x_n \to x$. A 完备, 则 $x \in A$, 矛盾. 因此 A 是闭集.

§ 1.1.2 (Newton 法)设 f 是定义在 [a,b] 上的二次连续可微的实值函数, $\hat{x} \in (a,b)$ 使得 $f(\hat{x}) = 0$, $f'(\hat{x}) \neq 0$. 求证存在 \hat{x} 的邻域 $U(\hat{x})$, 使得 $\forall x_0 \in U(\hat{x})$, 迭代序列

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} (n = 0, 1, 2, \dots)$$

是收敛的,并且

$$\lim_{n\to\infty} x_n = \hat{x}.$$

证明: 设 $Tx = x - \frac{f(x)}{f'(x)}$, 由中值定理有

$$|Tx - Ty| = |T'\xi| |x - y| = \left| \frac{f(\xi)f''(\xi)}{(f'(\xi))^2} \right| |x - y|, (\xi + \xi, y \ge 1)$$
 (1)

 $f \in C^2[a,b] \Longrightarrow f''$ 在 \hat{x} 处连续, $f(\hat{x}) = 0$, $f'(\hat{x}) \neq 0$, 知 $x \to \hat{x}$, $\frac{f(x)f''(x)}{(f'(x))^2} \to 0$. 于是 $\exists U(\hat{x})$, 使得

$$\forall x \in U(\hat{x}), f'(x) \neq 0, \left| \frac{f(x)f''(x)}{(f'(x))^2} \right| \leq \alpha < 1.$$

令 (1) 式的 $x, y \in U(\hat{x})$, 并用 x_n 替换 x, \hat{x} 替换 y, 得到 $|x_{n+1} - \hat{x}| \leq \alpha |x_n - \hat{x}|$, 即正数序列 $\{|x_n - \hat{x}|\}$ 单调递减并收敛到 0, 即 $x_n \to \hat{x}$.

 $\S 1.1.4$ 设T 是度量空间上的压缩映射, 求证T 是连续的.

证明: 设度量空间 (\mathcal{X}, ρ) , $\exists \alpha \in (0,1)$ 使 $\forall x_1, x_2 \in \mathcal{X}$, $\rho(Tx_1, Tx_2) \leqslant \alpha \rho(x_1, x_2)$. 任取 \mathcal{X} 的开子集 Y, 记 Y 的原象集 $X = \{x \mid \forall Tx \in Y\}$, 假设 X 为非开集. 则 $\exists x_0 \in X, \forall \varepsilon > 0$, $B(x_0, \varepsilon) \cap (\mathcal{X} - X) \neq \emptyset$. 取 $y \in B(x_0, \varepsilon) \cap (\mathcal{X} - X)$, 有 $\rho(Tx_0, Ty) \leqslant \alpha \rho(x_0, y) < \varepsilon$, 即 $B(Tx_0, \varepsilon) \cap (\mathcal{X} - Y) \neq \emptyset$, 由 ε 任意性知, Y 为非开集, 矛盾. 即开集 Y 的原象集 X 也是开集, T 连续.

§ 1.1.5 设 T 是压缩映射, 求证 T^n $(n \in \mathbb{N})$ 也是压缩映射, 并说明逆命题不一定成立.

证明: 已知 $T: \mathcal{X} \to \mathcal{X}, \exists \alpha \in (0,1)$ 使 $\forall x, y \in \mathcal{X}, \rho(Tx, Ty) \leqslant \alpha \rho(x, y)$, 于是 $\rho(T^n x, T^n y) \leqslant \alpha \rho(T^{n-1} x, T^{n-1} y) \leqslant \cdots \leqslant \alpha^n \rho(x, y), \forall n \in \mathbb{N}, \alpha^n \in (0,1)$. 即 T^n 是压缩映射.

考虑映射 $T: \mathbb{R} \to \mathbb{R}$:

$$Tx = \begin{cases} \alpha x & x \in \mathbb{Q}, \\ -\alpha x & x \notin \mathbb{Q}, \end{cases}$$

其中 α 是 (0,1) 区间的一个有理数. $T^2x = \alpha^2x$ 是压缩映射, 但 T 不是.

§ 1.2.2 在一个度量空间 (\mathcal{X}, ρ) 上, 求证: 基本列是收敛列, 当且仅当其中存在一串收敛子列.

证明: "⇒": 只需将子列取为基本列自身即可.

" \iff ": 设 $\{x_n\}$ 是基本列,则 $\forall \varepsilon > 0,\exists N_1, \forall m,n > N_1, \rho(x_m,x_n) < \frac{1}{2}\varepsilon$, $\{x_{n_k}\}$ 是 $\{x_n\}$ 的收敛子列,则 $\exists x \in \mathcal{X}, \forall \varepsilon > 0,\exists N_2, \forall n_k > N_2, \rho(x_{n_k},x) < \frac{1}{2}\varepsilon$, 取 $N = \max\{N_1,N_2\}, \forall n,n_k > N, \rho(x_n,x) \leqslant \rho(x_n,x_{n_k}) + \rho(x_{n_k},x) < \varepsilon$,即基本列 $\{x_n\}$ 收敛到 x.

 $\S 1.2.3$ 设F是只有有限项不为0的实数列全体,在F上引进距离

$$\rho(x,y) = \sup_{k \geqslant 1} |\xi_k - \eta_k|,$$

其中 $x = \{\xi_k\} \in F, y = \{\eta_k\} \in F,$ 求证 (F, ρ) 不完备, 并指出它的完备化空间. 证明: 取 $s = \{x_1, x_2, x_3, \dots\} \in S$ 满足无穷多项不为 0, 且 $\forall \varepsilon > 0$, $\exists N$, $\forall n > N$, $|x_n| < \varepsilon$. 取 $s_n = \{x_1, x_2, \dots, x_n, 0, 0, \dots\} \in F$. 于是 $\forall m > n > N, \rho(s_m, s_n) = \sup_{n \le k \le m} |x_k| < \varepsilon$, $s_n \in F$ 中的 Cauchy 列. 假设 (F, ρ) 完备, 按 F 中的距离定义, $s_n \to s$, 但 $s \notin F$, 矛盾. 因此 (F, ρ) 不完备.

猜想: 收敛于 0 的实数列全体 (记为 $\mathscr{F} = F \cup S$, 并有 $F \cap S = \emptyset$) 是 F 的完备

化, 矛上的距离为

$$p(x,y) \triangleq \sup_{k \geqslant 1} |\xi_k - \eta_k|.$$

为此只要证明 F 在 \mathscr{F} 中稠密, 即 $\forall s \in \mathscr{F}, \exists \{s_n\} \subset F, s_n \to s$. 若 $s \in S$, 只需要像上面那样构造 s_n ; 若 $s \in F$, 设 $s = \{x_1, x_2, \cdots, x_\lambda, 0, 0, \cdots\}$, 只需要令

$$s_n = \{x_1 + \frac{1}{n}, x_2 + \frac{1}{n}, \dots, x_{\lambda} + \frac{1}{n}, 0, 0, \dots\}.$$

因此 (\mathcal{F}, p) 是 (F, ρ) 的完备化.