

Name:

KIT-Fakultät für Informatik

Prof. Dr. Mehdi B. Tahoori, Prof. Dr.-Ing. Jörg Henkel

Lösungsblätter zur Klausur

Digitaltechnik und Entwurfsverfahren (TI-1)

und

Rechnerorganisation (TI-2)

am 18. August 2021, 8:00 - 10:00 Uhr

Matrikelnummer:

Vorname:

Digitaltechnik und En	ntwurfsverfahren (TI-1)
Aufgabe 1	von 10 Punkten
Aufgabe 2	von 10 Punkten
Aufgabe 3	von 8 Punkten
Aufgabe 4	von 9 Punkten
Aufgabe 5	von 8 Punkten
Rechnerorganisation (
Aufgabe 6	von 7 Punkten
Aufgabe 7	von 10 Punkten
Aufgabe 8	von 13 Punkten
Aufgabe 9	von 7 Punkten
Aufgabe 10	von 8 Punkten
Gesamtpunktzahl:	
	Note

Aufgabe 1 Schaltfunktionen

1. Konjunktive Normalform (KNF):

2.

 ${\bf Primimplikanten:}$

- 3. Disjunktive Minimalform von f(d, c, b, a):
- 4. Zweistufige disjunktive Form von g(c, b, a):

Aufgabe 2 CMOS-Technologie

 $1. \ \ Umgeform te \ Schaltfunktion \ und \ Transistor-Schaltbild:$

4

3. Unterschied zwischen n-Kanal- und einem p-Kanal-MOSFET:

${\bf Aufgabe~3} \quad \textit{Laufzeiteffekte}$

1. Totzeitmodell:

2. KV-Diagramm:

c

3. Realisierung, die frei von allen statischen Strukturhasards ist:

Begründung:

Matr.-Nr.: 7 Name: Vorname:

A

u	fgabe 4 Schaltwerke
1.	Automatentyp:
	Begründung:
2.	Ansteuerfunktion:
	Zustandsübergangsgleichung:

Ausgabefunktion:

3. Automatengraph des Schaltwerks:

4. Automatengraph mit minimaler Anzahl Zustände:

5. Zustandsübergangsgleichungen:

Aufgabe 5 Rechnerarithmetik

1. Die Basen s und r:

2. Der dezimale Wert der größten Zahl:

•

•

•

3. Ausnahmeregel für die Null im IEEE-754-Standard:

4. Serieller Multiplizierer nach der PPS-Methode:

Aufgabe 6 Die Programmiersprache C

```
1. Implementierung addTwo(int *array, int n):
    int addTwo(int *array, int n)
    {
```

```
}
2. Implementierung calcSum(int *array, int n):
    int calcSum(int *array, int n)
    {
```

```
}
3. Implementierung revArr(int *array, int n):
    int revArr(int *array, int n)
    {
```

Aufgabe 7 MIPS-Assembler

Vorname:

- 1. MIPS steht für:
- 2. Anzahl Bits für ein Befehlswort:
- 3. Unterschied Maschinensprache und Assemblersprache:
- 4. 2 niedrigstwertigen Bits:
- 5. Laden von 0xF03D 0909 ins Register \$s0:

6. Inhalte der Zielregister:

Befehl	Zielregister = Wert	(z.B. \$s6 = 0x0000 F00A)
ori \$s1, \$zero, 0x2021		
sll \$s2, \$s1, 1		
slti \$s3, \$s2, 0x4043		
sub \$s4, \$s3, \$s2		

Aufgabe 8 Pipelining

1. Datenabhängigkeiten:

•

•

•

2. Belegung der Register nach Ablauf des Programms und Zustand der Pipeline:

Takt	IF	DE	OF	EX	WB	\$t0	\$t1	\$t2
1	S1					3	6	8

Anzahl der Takte:

3. Belegung der Register bei sequentieller Bearbeitung des Programms:

\$t0	\$t1	\$t2

4. Behebung der Pipelinekonflikte durch Einfügen von NOP-Befehlen:

Anzahl der Takte:

Aufgabe 9 Speicherbausteine

2. Transistor-Schaltbild einer 1-Bit Speicherzelle eines statischen RAM-Bausteins (SRAM):

3. Zugriffszeit:

Zykluszeit:

4. Magnetische Speicher in einer Speicherhierarchie:

Aufgabe 10 Virtuelle Speicherverwaltung

1. Unterteilung der virtuellen Adresse:

2. Physikalische Adressen:

Virtuelle		Physikalische	
Adresse	Seitennummer	Seitennummer	Adresse
512			
4095			
4097			
4198			
8191			
8192			
8400			
0			

3. Beschleunigung durch TLB:

4. Breite des *Tags*: