Zhengdong Zhang

Email: zhengz@uoregon.edu

Course: MATH 636 - Algebraic Topology III

Instructor: Dr.Daniel Dugger

Homework 2

ID: 952091294 Term: Spring 2025

Due Date: 18th April, 2025

Problem 1

Determine all the cohomology groups $H^*(\mathbb{R}P^4\#\mathbb{C}P^2)$.

Solution: We first use the Mayer-Vietoris sequences in cohomology as follows:

Let $X = \mathbb{R}P^4 \# \mathbb{C}P^2$. We have the following long exact sequence in cohomology

$$H^*(X) \qquad H^*(\mathbb{R}P^3) \oplus H^*(\mathbb{C}P^1) \qquad H^*(S^3)$$

$$0 \qquad ? \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z}$$

$$1 \qquad ? \longleftarrow 0 \oplus 0 \longrightarrow 0$$

$$2 \qquad ? \longleftarrow \mathbb{Z}/2 \oplus \mathbb{Z} \longrightarrow 0$$

$$3 \qquad ? \longleftarrow \mathbb{Z} \oplus 0 \longrightarrow \mathbb{Z}$$

$$4 \qquad ? \longleftarrow 0 \longrightarrow 0$$

Note that X is connected, so $H^0(X) = \mathbb{Z}$. By exactness of the above sequence, we have

$$H^2(X) \cong \mathbb{Z} \oplus \mathbb{Z}/2.$$

Now consider collapsing the $\mathbb{C}P^1\subseteq\mathbb{C}P^2$ in X as shown

we have a cofiber sequence

$$\mathbb{C}P^1 \to X \to \mathbb{R}P^4$$

This gives us a long exactness sequence in reduced cohomology

$$\tilde{H}^*(\mathbb{R}P^4) \qquad \tilde{H}^*(X) \qquad \tilde{H}^*(\mathbb{C}P^1)$$

$$0 \qquad 0 \longrightarrow 0 \longrightarrow 0$$

$$1 \qquad 0 \longrightarrow ? \longrightarrow 0$$

$$2 \qquad \mathbb{Z}/2 \longrightarrow \mathbb{Z} \oplus \mathbb{Z}/2 \longrightarrow \mathbb{Z}$$

$$3 \qquad 0 \longrightarrow ? \longrightarrow 0$$

$$4 \qquad \mathbb{Z}/2 \longrightarrow ? \longrightarrow 0$$

By exactness, we know $H^1(X) = H^3(X) = 0$ and $H^4(X) = \mathbb{Z}/2$. We can summarize the cohomology groups as follows.

$$H^{i}(\mathbb{R}P^{4}\#\mathbb{C}P^{2}) = \begin{cases} \mathbb{Z}, & \text{if } i = 0; \\ \mathbb{Z}/2, & \text{if } i = 4; \\ \mathbb{Z} \oplus \mathbb{Z}/2, & \text{if } i = 2; \\ 0, & \text{otherwise.} \end{cases}$$

Problem 2

Let $f: X \to Y$ be a map, and consider the diagram

$$H^{k}(Y;R) \xrightarrow{f^{*}} H^{k}(X;R)$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi} \downarrow$$

$$hom(H_{k}(Y),R) \xrightarrow{hom(f_{*},R)} hom(H_{k}(X),R)$$

where the bottom horizontal map is the one obtained by applying the functor hom(-,R) to $f_*: H_k(X) \to H_k(Y)$. Here the vertical maps ϕ are the adjoints to the Kronecker pairings, namely the maps that send a cohomology class $[\alpha]$ to the homomorphism $[v] \mapsto \alpha(v)$. Verify that the above diagram commutes.

Solution: Let $\alpha: C_k(Y) \to R$ be a cocycle in Y and $[\alpha]$ be the cohomology class represented by α in $H^k(Y; R)$. By definition, we know that $f^*([\alpha]) = [\alpha \circ f_\#]$, where $f_\# : C_k(X) \to C_k(Y)$ is the map on the chain complex induced by f. By definition, ϕ sends $[\alpha \circ f_\#]$ to the homomorphism $[v] \mapsto (\alpha \circ f_\#)(v)$ for any k-cycle $v \in C_k(X)$. On the other hand, ϕ sends $[\alpha]$ to the homomorphism $[w] \mapsto \alpha(w)$ for any k-cycle $w \in C_k(Y)$. Applying $hom(f_*, R)$ to this homomorphism, we obtain a homomorphism sending any $[v] \in H_k(X)$ to $\alpha(f_*([v]))$. Note that by definition, for any k-cycle $v \in C_k(X)$, we have

$$\alpha(f_*([v])) = \alpha([f_\#(v)]) = \alpha(f_\#(v)) = (\alpha \circ f_\#)(v).$$

This proves the commutativity of this diagram.

Problem 3

- (a) Give a Δ -complex structure on $\mathbb{R}P^2$ and use this to write down explicit cocycles $\alpha \in Z^1(\mathbb{R}P^2; \mathbb{Z}/2)$ and $\beta \in Z^2(\mathbb{R}P^2; \mathbb{Z}/2)$ that generates the cohomology groups. Compute $\alpha \cup \alpha$ and decide if it equals β or not in $H^*(\mathbb{R}P^2; \mathbb{Z}/2)$.
- (b) Let K be the Klein bottle. Write down explicit cocycles which represent generators for $H^*(K; \mathbb{Z}/2)$ and use these to compute all the cup products of these generators.
- (c) If R is a ring then we can extend the Kronecker pairing to be maps

$$H^k(X;R)\otimes H_k(X;R)\to R.$$

The adjoint is then a map

$$\phi_R: H^k(X; R) \to \text{hom}(H_k(X), R).$$

When X is the Klein bottle and $\mathbb{R} = \mathbb{Z}/2$ determine bases for each $H^k(X; R)$ and verify by hand that the maps ϕ are isomorphisms for all k.

Solution:

(a) Consider the following Δ -complex structure for $\mathbb{R}P^2$:

We know from last homework that $H^1(\mathbb{R}P^2; \mathbb{Z}/2) = H^2(\mathbb{R}P^2; \mathbb{Z}/2) = \mathbb{Z}/2$. So as long as the cocycle $\alpha, \beta \in Z^*(\mathbb{R}P^2; \mathbb{Z}/2)$ are not zero, they are the generator of the cohomology groups. Consider $\hat{a} + \hat{b} \in C^1(\mathbb{R}P^2; \mathbb{Z}/2)$, we check that this is a cocycle.

$$(\delta(\hat{a}+\hat{b}))(P) = (\hat{a}+\hat{b})(\partial P) = (\hat{a}+\hat{b})(-a+b+c) = 1+1=0;$$

$$(\delta(\hat{a}+\hat{b}))(Q) = (\hat{a}+\hat{b})(\partial Q) = (\hat{a}+\hat{b})(a-b+c) = 1+1=0.$$

This proves $\hat{a} + \hat{b} \in Z^1(\mathbb{R}P^2; \mathbb{Z}/2)$ and since it is not zero, $\alpha = \hat{a} + \hat{b}$ generates the cohomology group $H^1(\mathbb{R}P^2; \mathbb{Z}/2) = \mathbb{Z}/2$. Note that $\mathbb{R}P^2$ does not have 3-simplices, and we know $H^2(\mathbb{R}P^2; \mathbb{Z}/2) = \mathbb{Z}/2$, so $\beta = \hat{P} \in Z^2(\mathbb{R}P^2; \mathbb{Z}/2)$ and it generates $H^2(\mathbb{R}P^2; \mathbb{Z}/2)$. Next, we calculate the cup producy.

$$(\alpha \cup \alpha)(P) = \alpha(c) \cdot \alpha(b) = 0;$$

$$(\alpha \cup \alpha)(Q) = \alpha(c) \cdot \alpha(a) = 0.$$

This proves that $\alpha \cup \alpha = 0$ in the cohomology ring $H^*(\mathbb{R}P^2; \mathbb{Z}/2)$.

(b) Consider the cellular chain complex of the Klein bottle K

$$0 \to \mathbb{Z} \xrightarrow{\begin{pmatrix} 2 \\ 0 \end{pmatrix}} \mathbb{Z}^2 \xrightarrow{0} \mathbb{Z} \to 0$$

Apply $hom(-,\mathbb{Z}/2)$, we obtain the cellular cochain complex

$$0 \leftarrow \mathbb{Z}/2 \xleftarrow{0} (\mathbb{Z}/2)^2 \xleftarrow{0} \mathbb{Z}/2 \leftarrow 0.$$

So we know $H^0(K; \mathbb{Z}/2) = H^2(K; \mathbb{Z}/2) = \mathbb{Z}/2$, each has one generator and $H^1(K; \mathbb{Z}/2) = (\mathbb{Z}/2)^2$ having two generators. Consider the following Δ -complex structure of K

4

K only has one 0-simplex x, so the cocycle \hat{x} generates $H^0(K; \mathbb{Z}/2)$. K has no 3-simplices, so \hat{P} is a cocycle and generates $H^2(K; \mathbb{Z}/2)$. Note that

$$\partial P = a + b - c,$$

$$\partial Q = a - b + c.$$

Consider two cochains $\alpha = \hat{a} + \hat{b}$ and $\beta = \hat{a} + \hat{c}$, they are cocycles because

$$0 = (\delta \alpha)(P) = (\delta \alpha)(Q),$$

$$0 = (\delta \beta)(P) = (\delta \beta)(Q).$$

We need to show that $[\alpha] \neq [\beta]$ in $H^1(K; \mathbb{Z}/2)$. Assume the opposite. This means $\alpha - \beta$ is a coboundary. We only have one 0-simplex, so $\alpha - \beta = \hat{b} + \hat{c} = \delta \hat{x}$. But

$$1 = (\hat{b} + \hat{c})(b) = (\delta \hat{x})(b) = \hat{x}(x - x) = 0$$

A contradiction. This tells us α, β generates $H^1(K; \mathbb{Z}/2)$.

Next, we calculate the cup product. For dimension reasons, we have $[\hat{P}] \cup [\hat{P}] = 0$, and $[\hat{x}]$ is the unity in the cohomology ring. In degree 1,

$$(\alpha \cup \alpha)(P) = \alpha(a) \cdot \alpha(b) = 1 \cdot 1 = 1;$$

$$(\alpha \cup \alpha)(Q) = \alpha(c) \cdot \alpha(a) = 0 \cdot 1 = 0.$$

This tells us $\alpha \cup \alpha = \hat{P}$ on the cochain level. So

$$[\alpha] \cup [\alpha] = [\hat{P}].$$

$$(\beta \cup \beta)(P) = \beta(a) \cdot \beta(b) = 1 \cdot 0 = 0;$$

$$(\beta \cup \beta)(Q) = \beta(c) \cdot \beta(a) = 1 \cdot 1 = 1.$$

This tells us $\beta \cup \beta = \hat{Q}$ on the cochain level, and we know that

$$\delta(\hat{a} + \hat{b} + \hat{c})(P) = (\hat{a} + \hat{b} + \hat{c})(a + b - c) = 1 + 1 + 1 = 1,$$

$$\delta(\hat{a} + \hat{b} + \hat{c})(Q) = (\hat{a} + \hat{b} + \hat{c})(a - b + c) = 1 + 1 + 1 = 1.$$

This implies $\hat{P} + \hat{Q}$ is a coboundary and $[\hat{P}] = [\hat{Q}]$ in $H^2(K; \mathbb{Z}/2)$. So

$$[\beta] \cup [\beta] = [\hat{P}].$$

$$(\alpha \cup \beta)(P) = \alpha(a) \cdot \beta(b) = 1 \cdot 0 = 0;$$

$$(\alpha \cup \beta)(Q) = \alpha(c) \cdot \beta(a) = 0 \cdot 1 = 0.$$

This tells us $\alpha \cup \beta = 0$ on the cochain level, so

$$[\alpha] \cup [\beta] = -([\beta] \cup [\alpha]) = 0.$$

(c) Let K be the Klein bottle. Consider the Δ -complex structure we used in (b)

We have a chain complex with $\mathbb{Z}/2$ -coefficients

$$0 \to (\mathbb{Z}/2)^2 \xrightarrow{d} (\mathbb{Z}/2)^3 \xrightarrow{0} \mathbb{Z}/2 \to 0$$

where the boundary map d is given by the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$. So $H_2(K; \mathbb{Z}/2) = \ker d$ is generated

by the 2-cycle P+Q and $H_1(K;\mathbb{Z}/2)$ is generated by a,b where c=a+b. $H_0(K;\mathbb{Z}/2)$ is generated by x. Note that to check ϕ is an isomorphism, it is the same as checking the Kronecker pairing is a perfect pairing. For k=0 and k=2, it is easy to see because on the only generator, we have

$$([\hat{x}], [x]) = \hat{x}(x) = 1,$$

 $([\hat{P}], P + Q) = \hat{P}(P + Q) = 1.$

For k=1, use $\alpha=\hat{a}+\hat{b}$ and $\beta=\hat{a}+\hat{c}$ as generators of $H^1(K;\mathbb{Z}/2)$ as before, we have

$$([\alpha], [a]) = (\hat{a} + \hat{b})(a) = 1,$$

$$([\alpha], [b]) = (\hat{a} + \hat{b})(b) = 1,$$

$$([\beta], [a]) = (\hat{a} + \hat{c})(a) = 1,$$

$$([\beta], [b]) = (\hat{a} + \hat{c})(b) = 0.$$

This can be written as a matrix

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

which is invertible, so this is also a perfect pairing. Thus, we have proved that $H^k(K; \mathbb{Z}/2) \to \text{hom}(H_k(K; \mathbb{Z}/2), \mathbb{Z}/2)$ is an isomorphism for k = 0, 1, 2.

Problem 4

Prove that there does not exist a map $S^2 \to T$ that induces an isomorphism on H_2 . In fact, prove this in two different ways: give a proof that uses homotopy groups and give a proof that uses cohomology and the cup product.

Solution: In (1) we prove this using homotopy groups and in (2), we prove this using cohomology rings.

(1) We check that the Hurewicz homomorphism is natural.

<u>Claim:</u> $f: X \to Y$ is a map of connected, pointed spaces. For $n \ge 1$, we have a commutative diagram

$$\pi_n(X) \xrightarrow{f_{*,1}} \pi_n(Y)$$

$$\downarrow_{h_X} \qquad \qquad \downarrow_{h_Y}$$

$$H_n(X) \xrightarrow{f_{*,2}} H_n(Y)$$

Both $f_{*,1}, f_{*,2}$ are induced by f and h_X, h_Y are Hurewicz homomorphism in degree n for space X and Y.

Proof:

Suppose there exists a homomorphism $f: S^2 \to T$ such that $f_{*,2}: H_2(S^2) \to H_2(T)$ is an isomorphism. Apply the claim and we have a commutative diagram

$$\pi_2(S^2) \xrightarrow{f_{*,1}} \pi_2(T)$$
 $h_{S^2} \downarrow \qquad \qquad \downarrow h_T$
 $H_2(S^2) \xrightarrow{f_{*,2}} H_2(T)$

Note that S^2 is 1-connected, so h_{S^2} is an isomophism, by our assumption,

$$h_T \circ f_{*,1} = f_{*,2} \circ h_{S^2} : \pi_2(S^2) \to H_2(T)$$

is an isomorphism between $\mathbb Z$ and $\mathbb Z$. Consider the fiber sequence

$$\mathbb{Z}^2 \to \mathbb{R}^2 \to T$$

This gives us a long exact sequence in homotopy groups and we have $\pi_2(T) = \pi_2(\mathbb{R}^2) = 0$. So $h_T \circ f_{*,1} = 0$. A contradiction.

(2) Suppose there exists a homomorphism $f: S^2 \to T$ such that $f_{*,2}: H_2(S^2) \to H_2(T)$ is an isomorphism. Apply $hom(-,\mathbb{Z})$ and we obtain an isomorphism

$$hom(H_2(T), \mathbb{Z}) \to hom(H_2(S^2), \mathbb{Z}).$$

From problem #2, we have a commutative diagram

$$H^{2}(T) \xrightarrow{f^{*}} H^{2}(S^{2})$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi} \downarrow$$

$$hom(H_{2}(T), \mathbb{Z}) \xrightarrow{hom(f_{*}, \mathbb{Z})} hom(H_{2}(S^{2}), \mathbb{Z})$$

We have seen in class that ϕ is an isomorphism for T or S^2 , thus, $f^*: H^2(T) \to H^2(S^2)$ is isomorphism. By definition, $f_*: H^*(T) \to H^*(S^2)$ can be viewed as a map of rings and let $[\hat{a}], [\hat{b}] \in H^1(T)$ be two generators and $[\hat{T}] \in H^2(T)$ be the generator of $H^2(T)$. We have seen

in class that

$$f^*([\hat{T}]) = f^*([\hat{a}] \cup [\hat{b}]) = f^*([\hat{a}]) \cup f^*([\hat{b}]).$$

But $H^1(S^2) = 0$, so $f^*([\hat{a}]) = f^*([\hat{b}]) = 0$. So f^* cannot map $H^2(T)$ isomorphically to $H^2(S^2)$. A contradiction.

Problem 5

Prove that $\mathbb{R}P^2$ is not a retract of the Klein bottle.

Solution: Suppose $\mathbb{R}P^2$ is a retract of the Klein bottle K. There exists maps $i: \mathbb{R}P^2 \to K$ and $r: K \to \mathbb{R}P^2$ such that $r \circ i$ is the identity map of $\mathbb{R}P^2$. This induces a map in cohomology rings with coefficients $\mathbb{Z}/2$.

$$H^*(\mathbb{R}P^2; \mathbb{Z}/2) \xrightarrow{r^*} H^*(K; \mathbb{Z}/2) \xrightarrow{i^*} H^*(\mathbb{R}P^2; \mathbb{Z}/2)$$

Let α be the generator of $H^1(\mathbb{R}P^2; \mathbb{Z}/2)$, β, γ be the two generators of $H^1(K; \mathbb{Z}/2)$ and P be the generator of $H^2(K; \mathbb{Z}/2)$. From our calculation in problem #3, we know that

$$\alpha \cup \alpha = 0, \beta \cup \beta = \gamma \cup \gamma = P.$$

Write $r^*(\alpha) = m\beta + n\gamma$ for m, n = 0, 1. Then we have

$$0 = \alpha \cup \alpha$$

$$= i^* r^* (\alpha \cup \alpha)$$

$$= i^* ((r^* \alpha) \cup (r^* \alpha))$$

$$= i^* ((m\beta + n\gamma) \cup (m\beta + n\gamma))$$

$$= i^* (m^2 P + n^2 P)$$

Either i^* is the zero map or $m^2 + n^2 = 0$, which implies r^* is the zero map. Both is impossible because i^*r^* is the identity map betwenn $\mathbb{Z}/2$ and $\mathbb{Z}/2$. A contradiction.

Problem 6

Let X be obtained by identifying points on the boundaryof a solid hexagon, as indicted in the

following diagram:

(a) Calculate the homology and cohomology groups of X with $\mathbb{Z}/2$ -coefficients.

- (b) Give a Δ -complex structure to X, for example by placing one point in the center of the hexagon, drawing lines to the outer vertices, and orienting the 2-simplices appropriately.
- (c) Using your Δ -complex structure, give a 1-cocycle α with $\mathbb{Z}/2$ -coefficients having the property that $\alpha(a) = 1$ and $\alpha(b) = 0$.
- (d) Compute $\alpha \cup \alpha$ on all the 2-simplices in your picture. Is $\alpha \cup \alpha$ zero or nonzero in $H^2(X; \mathbb{Z}/2)$? Explain.

Solution:

(a) Consider the following celluar structure of X

X has one 0-cell x, two 1-cell a, b and one 2-cell T. We have a cellular chain complex with coefficients $\mathbb{Z}/2$

$$0 \to \mathbb{Z}/2 \xrightarrow{0} (\mathbb{Z}/2)^2 \xrightarrow{0} \mathbb{Z}/2 \to 0$$

Note that all boundary maps are 0, so apply $hom(-,\mathbb{Z}/2)$ will obtain all 0 coboundary maps. This implies

$$H_{i}(X; \mathbb{Z}/2) = \begin{cases} \mathbb{Z}/2, & \text{if } i = 0, 2; \\ (\mathbb{Z}/2)^{2}, & \text{if } i = 1; \\ 0, & \text{otherwise.} \end{cases} \qquad H^{i}(X; \mathbb{Z}/2) = \begin{cases} \mathbb{Z}/2, & \text{if } i = 0, 2; \\ (\mathbb{Z}/2)^{2}, & \text{if } i = 1; \\ 0, & \text{otherwise.} \end{cases}$$

9

(b) The following is a Δ -complex structure on X

(c) Consider the 1-cochain $\alpha = \hat{a} + \hat{d} + \hat{e}$ satisfying $\alpha(a) = 1$ and $\alpha(b) = 0$. Let us check this is a cocycle.

$$\delta(\hat{a} + \hat{d} + \hat{e})(P) = (\hat{a} + \hat{d} + \hat{e})(a + a - c) = 1 + 1 = 0,$$

$$\delta(\hat{a} + \hat{d} + \hat{e})(Q) = (\hat{a} + \hat{d} + \hat{e})(c + e - d) = 1 + 1 = 0,$$

$$\delta(\hat{a} + \hat{d} + \hat{e})(S) = (\hat{a} + \hat{d} + \hat{e})(b + a - e) = 1 + 1 = 0,$$

$$\delta(\hat{a} + \hat{d} + \hat{e})(R) = (\hat{a} + \hat{d} + \hat{e})(a - b - d) = 1 + 1 = 0.$$

This proves $\alpha = \hat{a} + \hat{d} + \hat{e}$ is a 1-cocycle satisfying $\alpha(a) = 1$ and $\alpha(b) = 0$.

(d) We calculate $\alpha \cup \alpha$ on each 2-simplices.

$$(\alpha \cup \alpha)(P) = \alpha(a) \cdot \alpha(a) = 1 \cdot 1 = 1,$$

$$(\alpha \cup \alpha)(Q) = \alpha(c) \cdot \alpha(e) = 0 \cdot 1 = 0,$$

$$(\alpha \cup \alpha)(S) = \alpha(b) \cdot \alpha(a) = 0 \cdot 1 = 0,$$

$$(\alpha \cup \alpha)(R) = \alpha(d) \cdot \alpha(b) = 1 \cdot 0 = 0.$$

This proves that $\alpha \cup \alpha = \hat{P}$ on the chain level. Suppose $\sigma \in C^1(X; \mathbb{Z}/2)$ satisfying $\delta \sigma = \hat{P}$. Then we have

$$(\delta\sigma)(P) = \sigma(c) = 1,$$

$$(\delta\sigma)(Q) = \sigma(c) + \sigma(e) + \sigma(d) = 0,$$

$$(\delta\sigma)(S) = \sigma(b) + \sigma(a) + \sigma(e) = 0,$$

$$(\delta\sigma)(R) = \sigma(a) + \sigma(b) + \sigma(d) = 0.$$

We add the last two equations together and obtain

$$\sigma(e) + \sigma(d) = 0$$

But from the second and first equation, we know that $\sigma(e) + \sigma(d) + 1 = 0$. This leads to a contradiction, so $\alpha \cup \alpha = \hat{P}$ is not a coboundary, thus $[\alpha \cup \alpha] \neq 0$ in $H^*(X; \mathbb{Z}/2)$.

10