

IN THE CLAIMS

The status of each claim in the present application is listed below.

Claims 1-49: (Canceled).

50. (New) A process for preparing a 1,3,5-triazine carbamate of the formula (I):

wherein

Z¹ is hydrogen or a group of formula -(CO)-O-R¹,

Z² is hydrogen or a group of formula -(CO)-O-R²,

X³ is oxygen, and

R¹ is the radical of an alcohol represented by the formula R¹OH,

R² is the radical of the alcohol represented by the formula R²OH,

R³ is the radical of an alcohol represented by the formula R³OH,

from an 1,3,5-triazine carbamate of the formula (II):

wherein

Y¹ is hydrogen or a group of formula -(CO)-O-R⁴,

Y² is hydrogen or a group of formula -(CO)-O-R⁵ and,

R⁴ is the radical of the alcohol represented by the formula R⁴OH,

R^5 is the radical of the alcohol represented by the formula R^5OH ,

R^6 is the radical of the alcohol represented by the formula R^6OH ,

wherein R^4 , R^5 and R^6 are, independently, C_{1-4} alkyl,

wherein

(1) if Z^1 is hydrogen then Y^1 is hydrogen,

(2) if Z^1 is a group of formula $-(CO)-O-R^1$ then Y^1 is a group of formula $-(CO)-O-R^4$,

(3) if Z^2 is hydrogen then Y^2 is hydrogen, and

(4) if Z^2 is a group of formula $-(CO)-O-R^2$ then Y^2 is a group of formula $-(CO)-O-R^5$,

comprising:

reacting the 1,3,5-triazine carbamate of formula (II) at a temperature of 40 to 120°C with an alcohol of the formula R^3-OH and, optionally, with an alcohol of the formula R^2-OH and/or R^1OH to produce the 1,3,5-triazine carbamate of the formula (I) and an alcohol of the formula R^3OH and optionally an alcohol of the formula R^4OH if Y^1 is a group of formula $-(CO)-O-R^4$ and/or an alcohol of the formula R^5OH if Y^2 is a group of formula $-(CO)-O-R^5$,

in the presence of at least one catalyst selected from the group consisting of tin compounds, cesium salts, alkali metal (hydrogen)carbonates and tertiary amines,

wherein the alcohols R^1OH , R^2OH and R^3OH are, independently, selected from the group consisting of n-butanol, sec-butanol, iso-butanol, tert-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-decanol, 2-ethylhexanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1,3-propanediol monomethyl ether, lauryl alcohol (1-dodecanol), myristyl alcohol (1-tetradecanol), cetyl alcohol (1-hexadecanol), stearyl alcohol (1-octadecanol), 9-cis-octadecen-1-ol (oleyl alcohol), 9-trans-octadecen-1-ol, 9-cis-octadecene-1,12-diol (ricinoleyl alcohol), all-cis-9,12-octadecadien-1-ol (linoleyl alcohol), all-cis-9,12,15-octadecatrien-1-ol (linolenyl alcohol), 1-eicosanol (arachidyl alcohol), 9-cis-eicosen-1-ol (gadoleyl alcohol), 1-docosanol (behenyl alcohol), 1,3-cis-docosen-1-ol, 1,3-

trans-docosen-1-ol (brassidyl alcohol), cyclopent-2-en-1-ol, cyclopent-3-en-1-ol, cyclohex-2-en-1-ol and allyl alcohol.

51. (New) The process of Claim 50, wherein Z¹ and Y¹ are hydrogen.

52. (New) The process of Claim 50, wherein Z¹ is a group of formula -(CO)-O-R¹ and Y¹ is a group of formula -(CO)-O-R⁴.

53. (New) The process of Claim 50, wherein Z² and Y² are hydrogen.

54. (New) The process of Claim 50, wherein Z² is a group of formula -(CO)-O-R² and Y² is a group of formula -(CO)-O-R⁵.

55. (New) The process of Claim 50, wherein

Y¹ is a group of formula -(CO)-O-R⁴ and

Y² is a group of formula -(CO)-O-R⁵.

56. (New) The process of Claim 50, wherein the lowest boiling point of the alcohols R¹OH, R²OH and R³OH has a different of at least 20°C from the highest boiling point of the alcohols R⁴OH, R⁵OH, and R⁶OH.

57. (New) The process of Claim 50, wherein the alcohol R³OH is an alkoxylated monool of formula:

wherein

R⁸ is C₁ - C₁₈ alkyl,

n is a positive integer between 1 and 50 and

each X_i for i = 1 to n can be selected independently of the others from the group consisting of -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl.

58. (New) The process of Claim 50, wherein the alcohol R³OH is a monool which carries at least one polymerizable group and one hydroxyl group.

59. (New) The process according to Claim 50, wherein the alcohol R³OH is a monool represented by the formula:

wherein

R⁹ is hydrogen or methyl,

R¹⁰ is a divalent linear or branched C₂-C₁₈ alkylene radical,

X_i is -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl, and

k is a positive integer from 1 to 20.

60. (New) The process of Claim 50, wherein the alcohol is a polyetherol or polyesterol containing at least one polymerizable group and one hydroxyl group.

61. (New) The process of Claim 50, wherein R³ is C₁ - C₁₈ alkyl, C₂ - C₁₈ alkyl, optionally interrupted by one or more oxygen and/or sulfur atoms and/or by one or more substituted or unsubstituted imino groups, or are C₂ - C₁₈ alkenyl, C₆ - C₁₂ aryl, C₅ - C₁₂ cycloalkyl or a five- or six-membered heterocycle containing oxygen, nitrogen and/or sulfur atoms, wherein said radicals are optionally substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, or else are radicals

-(CO)-R⁷, -(CO)-O-R⁷ or -(CO)-(NH)-R⁷,

in which

R⁷ is C₁ - C₁₈ alkyl, C₂ - C₁₈ alkyl, optionally interrupted by one or more oxygen and/or sulfur atoms and/or by one or more substituted or unsubstituted imino groups, or can be C₂ - C₁₈ alkenyl, C₆ - C₁₂ aryl, C₅ - C₁₂ cycloalkyl or a five- or six-membered heterocycle containing oxygen, nitrogen and/or sulfur atoms, said radicals optionally substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles.

62. (New) The process of Claim 50, wherein the alcohols R³OH and optionally R⁴OH and/or R⁵OH are separated by distillation from the reaction mixture.

63. (New) The process of Claim 50, wherein the catalyst comprises a tin compound.

64. (New) The process of Claim 50, wherein the catalyst comprises a cesium salt.

65. (New) The process of Claim 50, wherein the catalyst comprises an alkali metal (hydrogen)carbonate.

66. (New) The process according to Claim 50, wherein the catalyst comprises a tertiary amine,

wherein the alcohol R³OH is alkoxylated monoool of formula:

whercin

R⁸ can be C₁ - C₁₈ alkyl,

n is a positive integer between 1 and 50 and

each X_i for i = 1 to n can be selected independently of the others from the group consisting of -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl,

or wherein the alcohol is a monoool and represented by the formula:

wherein

R⁹ is hydrogen or methyl,

R¹⁰ is a divalent linear or branched C₂-C₁₈ alkylene radical,

X_i is -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl, and

k is a positive integer from 1 to 20.