Linear Filtering and Image Transforms

CSC 249/449 Spring 2019

http://www.cs.rochester.edu/~cxu22/t/249S19/

Instructor: Chenliang Xu chenliang.xu@rochester.edu

Assignments and Python Tutorial

- Homework 1 is uploaded on Blackboard
- Due 1/31 midnight.
- We will have a Python tutorial Thu 1/24 7:30pm in 1400 Wegmans.

Today's Content

- Images as functions
- Point operators
- Neighborhood operators
 - Linear filters
 - Nonlinear filters

Figure 3.3 Visualizing image data: (a) original image; (b) cropped portion and scanline plot using an image inspection tool; (c) grid of numbers; (d) surface plot. For figures (c)–(d), the image was first converted to grayscale.

Images as functions

Adapted from: S. Seitz

Point Operators: Examples

Contrast increased (multiplicative gain, a=1.1) Gamma (partially) linearized (r=1.2)

Point Operators: Examples

Color transforms

RGB primaries

RGB to HSV color table

Color	Color name	Hex	(R,G,B)	(H,S,V)
	Black	#000000	(0,0,0)	(0°,0%,0%)
	White	#FFFFFF	(255,255,255)	(0°,0%,100%)
	Red	#FF0000	(255,0,0)	(0°,100%,100%)
	Lime	#00FF00	(0,255,0)	(120°,100%,100%)
	Blue	#0000FF	(0,0,255)	(240°,100%,100%)
	Yellow	#FFFF00	(255,255,0)	(60°,100%,100%)
	Cyan	#00FFFF	(0,255,255)	(180°,100%,100%)
	Magenta	#FF00FF	(255,0,255)	(300°,100%,100%)
	Silver	#C0C0C0	(192,192,192)	(0°,0%,75%)
	Gray	#808080	(128,128,128)	(0°,0%,50%)
	Maroon	#800000	(128,0,0)	(0°,100%,50%)
	Olive	#808000	(128,128,0)	(60°,100%,50%)
	Green	#008000	(0,128,0)	(120°,100%,50%)
	Purple	#800080	(128,0,128)	(300°,100%,50%)
	Teal	#008080	(0,128,128)	(180°,100%,50%)
	Navy	#000080	(0,0,128)	(240°,100%,50%)

Defining convolution

 Let f be the image and g be the kernel. The output of convolving f with g is denoted f* g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

Convention: kernel is "flipped"

MATLAB functions: conv2, filter2, imfilter

Dealing with edges

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Source: S. Lazebnik

Dealing with edges

- What about missing pixel values?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip black (zero-padding)
 - wrap around
 - copy edge
 - reflect across edge

Dealing with edges

- What about missing pixel values?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):
 - clip black (zero-padding): imfilter(f, g, 0)
 - wrap around: imfilter(f, g, 'circular')
 - copy edge: imfilter(f, g, 'replicate')
 - reflect across edge: imfilter(f, g, 'symmetric')

Original

0	0	0
0	1	0
0	0	0

Original

Filtered (no change)

\sim	•	•	1
O	r1	gin	al
		\sim	

0	0	0
0	0	1
0	0	0

Original

0	0	0
0	0	1
0	0	0

Shifted *right*By 1 pixel

Original

<u>1</u> 9	1	1	1
	1	1	1
	1	1	1

Original

Blur (with a box filter)

Original

(Note that filter sums to 1)

?

	•
Original	L

0	0	0
0	2	0
0	0	0

Sharpening filter

- Accentuates differences with local average

Sharpening

before after

Source: D. Lowe

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Source: D. Forsyth

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

				0.003 0.013
0.022	0.059 0.097 0.059	0.159	0.097	0.022
				0.013

 5×5 , $\sigma = 1$

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Source: C. Rasmussen

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

• Standard deviation σ : determines extent of smoothing

Choosing kernel width

 The Gaussian function has infinite support, but discrete filters use finite kernels

Gaussian vs. box filtering

Source: S. Lazebnik

Gaussian filters

- Remove high-frequency components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small-σ kernel, repeat, and get same result as larger-σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians
 - Discrete example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Non-linear Filters (and denoising)

Noise

Original

Impulse noise

Salt and pepper noise

Gaussian noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

Source: M. Hebert

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing salt-and-pepper noise

What's wrong with the results?

Alternative idea: Median filtering

 A median filter operates over a window by selecting the median intensity in the window

Is median filtering linear?

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

Source: K. Grauman

Median filter

MATLAB: medfilt2(image, [h w])

Source: M. Hebert

Gaussian vs. median filtering

3x3 5x5 7x7 Gaussian Median Source: S. Lazebnik

Sharpening revisited

before after

Source: D. Lowe

Sharpening revisited

What does blurring take away?

+ α

Let's add it back:

Source: S. Lazebnik

Unsharp mask filter

Source: S. Lazebnik

Application: Hybrid Images

 A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

Changing expression

Sad ---- Surprised

Application: Hybrid Images

Gaussian Filter

Laplacian Filter

 A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

Summary

- Images as functions
- Point operators
- Neighborhood operators
 - Linear filters
 - Nonlinear filters
- Optional Reading:
 - Fourier transforms (Images as points), Sec. 3.4.1-2
- Next Lecture:
 - Edges and Corners
 - Sec. 3.2.3, 4.2, 4.1.1 (Up to P. 190)