

FIRST YEAR INTERIM REPORT

The Motional Stark Effect

Diagnostic:

Measurements on MAST-U

Sam Gibson

supervised by

Prof. R. M. Sharples

May 3, 2017

Abstract

The measurement of key plasma parameters and conditions is essential for optimizing the performance of tokamak plasmas, particularly on the road to commercial fusion power plants. In particular, tokamak performance can be severely limited by impurities entering the plasma.

Contents

	Abstract	1
1	Introduction	1
2	MSE Theory	2
3	MSE System on MAST-U	3
4	MSE in Context	4
5	Summary	5
	Bibliography	6
	Appendix	7
\mathbf{A}	Appendix	7

List of Figures

List of Tables

Introduction

MSE Theory

MSE System on MAST-U

MSE in Context

Summary

Bibliography

- [1] J. W. Barrett and J. F. Blowey (1995), An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy, Numerische Mathematics, 72, pp 1–20.
- [2] J. W. Barrett and J. F. Blowey (1997), Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy, Numerische Mathematics, 77, pp 1–34.
- [3] J. W. Barrett and J. F. Blowey (1999a), An improve error bound for finite element approximation of a model for phase separation of a multi-component alloy, IMA J. Numer. Anal. 19, pp 147-168.
- [4] P. G. Ciarlet (1978), The Finite Element Method for Elliptic Problems, North-Holland.
- [5] J. L. Lions (1969), Quelques Móthodes de Résolution des Problémes aux Limites, Dunod.

Appendix A

Appendix