Electrostatics

Course- PHY 2105 / PHY 105 Lecture 18

Md Shafqat Amin Inan

Coulomb's Law

The electrostatic force between two charged object is directly proportional to the product of the amount of charges and inversely proportional to the square of the distance between them

$$k = \frac{1}{4\pi\varepsilon_0}$$

- Experimental law
- Valid for point charges only
- ❖ Obeys Inverse Square Law
- ❖ Valid for only charges at rest

Electrostatic constant,
$$k = 9 \times 10^9 \frac{Nm^2}{C^2}$$

Permittivity constant,
$$\varepsilon_0 = 8.854 \times 10^{-12} \ \frac{C^2}{Nm^2}$$

Electric Field

A charge has an effect on its surroundings. The area where it has an effect is generally called an *Electric field*. If any other charge enters that area, it feels an electrostatic Coulomb force.

The electric force on a charged body is exerted by the electric field created by other charged bodies.

$$F = q_0 E$$

$$\overrightarrow{E} = rac{1}{4\piarepsilon_0}rac{q}{r^2}\;\widehat{r}$$

for point test charges only

Electric Potential

Relationship between work and potential energy:

$$W_{a\to b} = U_a - U_b = -(U_b - U_a) = -\Delta U$$

The electric potential *V* at a point *P* in the electric field of a charged object is

$$V = \frac{-W_{\infty}}{q_0} = \frac{U}{q_0}$$

where is the work that would be done by the electric force on a positive test charge q0 were it brought from an infinite distance to P, and U is the electric potential energy that would then be stored in the test charge—object system

Electric Potential Energy

Change in electric potential: $\Delta V = V_f - V_i$

Change in system potential energy: $\Delta U = q \Delta V = q(V_f - V_i)$

Electron-volts. In atomic and subatomic physics, energy measures in the SI unit of joules often require awkward powers of ten. A more convenient (but non-SI unit) is the electron-volt (eV)

$$1 \, eV = 1.602 \times 10^{-19} J$$

Equipotential Surfaces

An **equipotential surface is** an imaginary surface or a real, physical surface where no net work *W* is done on a charged particle by an electric field when the particle moves between two points *i* and *f* on the same equipotential surface

Calculating potential from field

$$dW = \vec{F} \cdot d\vec{s}. \tag{24-15}$$

For the situation of Fig. 24-6, $\vec{F} = q_0 \vec{E}$ and Eq. 24-15 becomes

$$dW = q_0 \vec{E} \cdot d\vec{s}. \tag{24-16}$$

To find the total work W done on the particle by the field as the particle moves from point i to point f, we sum—via integration—the differential works done on the charge as it moves through all the displacements $d\vec{s}$ along the path:

$$W = q_0 \int_i^f \vec{E} \cdot d\vec{s}.$$

If we substitute the total work W from Eq. 24-17 into Eq. 24-6, we find

$$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}.$$

Path

Field line -

Potential Due to a Charged Particle

To find the potential of the charged particle, we move this test charge out to infinity.

$$V_f - V_i = -\int_R^\infty E \, dr.$$
 (24-23)

Next, we set $V_f = 0$ (at ∞) and $V_i = V$ (at R). Then, for the magnitude of the electric field at the site of the test charge, we substitute from Eq. 22-3:

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}. (24-24)$$

With these changes, Eq. 24-23 then gives us

$$0 - V = -\frac{q}{4\pi\varepsilon_0} \int_R^{\infty} \frac{1}{r^2} dr = \frac{q}{4\pi\varepsilon_0} \left[\frac{1}{r} \right]_R^{\infty}$$
$$= -\frac{1}{4\pi\varepsilon_0} \frac{q}{R}. \tag{24-25}$$

$$V = rac{1}{4\pi\epsilon_0} rac{q}{r}$$

Potential at points of finite distances

Potential Due to a Group of Charged Particles

We can find the net electric potential at a point due to a group of charged particles with the help of the superposition principle

$$V = \sum_{i=1}^{n} V_i = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{q_i}{r_i}$$
 (*n* charged particles).

The sum in this equation is an *algebraic sum*, not a vector sum. It is a lot easier to sum several scalar quantities than to sum several vector quantities

Potential Due to an electric dipole

$$V = \sum_{i=1}^{2} V_i = V_{(+)} + V_{(-)} = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_{(+)}} + \frac{-q}{r_{(-)}} \right)$$

$$=\frac{q}{4\pi\varepsilon_0}\frac{r_{(-)}-r_{(+)}}{r_{(-)}r_{(+)}}.$$

Figure 24-13 (a) Point P is a distance r from the midpoint O of a dipole. The line OP makes an angle θ with the dipole axis. (b) If P is far from the dipole, the lines of lengths $r_{(+)}$ and $r_{(-)}$ are approximately parallel to the line of length r, and the dashed black line is approximately perpendicular to the line of length $r_{(-)}$.

$$r_{(-)} - r_{(+)} \approx d \cos \theta$$
 and $r_{(-)}r_{(+)} \approx r^2$.

$$V = \frac{q}{4\pi\varepsilon_0} \frac{d\cos\theta}{r^2}$$

