Economics 6400: Econometrics

Lecture 4: Multiple Regression and Inference

CSU, East Bay

October 13, 2016

Last week...

■ We introduced Multiple Regression Analysis:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

■ As before, key assumption that is required to obtain unbiased estimates of $\beta_1, \beta_2, \ldots, \beta_k$ is:

$$\mathrm{E}(u|x_1,x_2,\ldots,x_k)=0$$

which implies that *all* of the independent variables are not correlated with the error term

Omitted variable bias

• Consider a population model with two right-hand side variables x_1 and x_2 that are correlated with linear relationship:

$$x_2 = \delta_0 + \delta_1 x_1 + v$$

■ Inserting the equation for x_2 into the "true model" yields:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

= \beta_0 + \beta_1 x_1 + \beta_2 (\delta_0 + \delta_1 x_1 + v) + u
= (\beta_0 + \beta_2 \delta_0) + (\beta_1 + \beta_2 \delta_1) x_1 + (\beta_2 v + u)

- If y is only regressed on x_1 (i.e. x_2 omitted) then:
 - First term is the estimated intercept: $\tilde{eta}_0 = \hat{eta}_0 + \hat{eta}_2 \hat{\delta}_0$
 - Second term is the estimated slope coefficient on x_1 , and $\hat{\beta}_2\hat{\delta}_1$ is the **omitted variable bias**: $\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2\tilde{\delta}_1$
 - Third term is the error term
- All estimated coefficients will be biased!

When are you <u>not</u> in trouble?

- Key relationships:
 - True model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$
 - Relationship between x_1 and x_2 : $x_2 = \delta_0 + \delta_1 x_1 + v$
 - Incorrect and correct estimates of β_1 : $\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \tilde{\delta}_1$
- **1** If $\beta_2=0$ then x_2 is not part of u so $\tilde{\beta}_1=\hat{\beta}_1$
- **2** If $\delta_1=0$ then x_1 & x_2 are uncorrelated so $\tilde{eta}_1=\hat{eta}_1$

Tracking omitted variable bias

- For simple cases, bias is $\beta_2 \delta_1$
- Tracking the direction of bias:

	$\delta_1 > 0$	$\delta_1 < 0$
	$Corr(x_1,x_2)>0$	$Corr(x_1,x_2)<0$
$\beta_2 > 0$	Positive bias	Negative bias
$\beta_2 < 0$	Negative bias	Positive bias

Omitted variable bias example

Consider the wage equation

wage =
$$\beta_0 + \beta_1$$
educ + β_2 abil + u
$$abil = \delta_0 + \delta_1$$
educ + v

If abil omitted from regression then:

wage =
$$(\beta_0 + \beta_2 \delta_0) + (\beta_1 + \beta_2 \delta_1)$$
educ + $(\beta_2 v + u)$

■ The return to education β_1 will **upward biased** $(\tilde{\beta}_1 > \hat{\beta}_1)$ because $\beta_2 \delta_1 > 0$. It will appear that people with many years of education earn very high wages, but this is partly due to the fact that people with more education tend to have greater ability on average $(\delta_1 > 0)$

Omitted variable bias when k > 2

- Correlation between a single right-hand side variable and the error generally biases all the coefficient estimates.
- Suppose the population model to estimate is:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

but we omit x_3 and obtain model estimates

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2$$

- If $Cov(x_1, x_3) \neq 0$ but $Cov(x_2, x_3) = 0$ then
 - $\tilde{\beta}_1$ is biased
 - $\tilde{\beta}_2$ is also biased unless $Cov(x_1, x_2) = 0$

Roughly approximating direction of the bias when k > 2

- Pairwise correlation between right-hand variables makes detecting the direction of the bias difficult
- However, when we are interested in the relationship between a particular explanatory variable then, as a rough guide only, we can ignore the other variables and focus on that one variable and the key omitted variable
- Wage equation example:

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 abil + u$$

Suppose we omit *abil*. We can focus on the likely bias on $\tilde{\beta}_1$ if we assume that $\text{Cov}(exper, abil}) \approx 0$, and $\text{Cov}(educ, exper}) \approx 0$

• Since $\beta_3 > 0$ and *educ* and *abil* are positively correlated, $\ddot{\beta}_1$ will be upward biased

Other regression issues: Perfect collinearity

- Examples:
 - 1 Relationships between regressors:

$$voteA = \beta_0 + \beta_1 shareA + \beta_2 shareB + u$$

There is a perfect linear relationship between the two explanatory variables: $shareA + shareB = 1 \dots$ so you cannot hold shareB fixed when increasing shareA!

2 Subtle log relationships:

$$\log(cons) = \beta_0 + \beta_1 \log(inc) + \beta_2 \log(inc^2) + u$$

since $\log(inc^2) = 2\log(inc) \Rightarrow x_2 = 2x_1$

In the case of perfect collinearity, one of the collinear variables will need to be dropped

Perfect collinearity example

. reg rd sales_in_millions sales_in_dollars note: sales_in_millions omitted because of collinearity

	Source	SS	df	MS	Number of obs =	32
-					F(1, 30) = 2	75.27
	Model	2945977.47	1	2945977.47	Prob > F = 0	.0000
	Residual	321063.086	30	10702.1029	R-squared = 0	.9017
-					Adj R -squared = 0	. 8985
	Total	3267040.55	31	105388.405	Root MSE = 1	03.45

rd	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>sales_in_millions sales_in_dollars _cons</pre>	0 4.06e-08 5772171	(omitted) 2.45e-09 20.51549	16.59 -0.03	0.000 0.978	3.56e-08 -42.47544	4.56e-08 41.321

Family income and family consumption

Resembles a standard Keynesian consumption curve

Family income and family consumption

Relationship between consumption (cons) and family income (inc):

$$cons = \beta_0 + \beta_1 inc + \beta_2 inc^2 + u$$

- Two explanatory factors: income and income squared
- Correct interpretation of the coefficients:

$$\frac{dcons}{dinc} = \beta_1 + 2\beta_2 inc$$

- · Change in consumption if income rises by one unit
- The change in consumption depends on the current level of family income

Including irrelevant variables in a regression model

- Including irrelevant variables or overspecifying a model will not affect unbiasedness
- Consider the model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

where $\beta_3 = 0$ in the population.

- Since Assumptions 1-4 hold, $E(\hat{\beta}_3) = \beta_3 = 0$
- $\hat{\beta}_3$ may not be zero but if enough samples are taken the average value will be zero
- Including irrelevant variables may increase sampling variance however

Variance of the OLS estimators

As before, we add an assumption of homoskedasticity:

$$Var(u_i|x_{i1}, x_{i2}, ..., x_{ik}) = \sigma^2$$

Short-hand notation using vector notation:

$$Var(u_i|\mathbf{x}_i) = \sigma^2$$
 with $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{ik})$

Example: wage equation

$$Var(u_i|educ_i, exper_i, tenure_i) = \sigma^2$$

Variance of $\hat{\beta}_j$

Under the four earlier assumptions plus homoskedasticity:

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1-R_j^2)}$$

where

- $SST_j = \sum_{i=1}^n (x_{ij} \overline{x}_j)^2$ is the sample variation in right-hand side variable x_i
- R_j^2 is the R^2 from a regression of x_j on the <u>other</u> right-hand side variables (including a constant)

Variance of \hat{eta}_j

■ Deriving the variance of $\hat{\beta}_j$:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \hat{r}_{i1} y_i}{\sum_{i=1}^n \hat{r}_{i1}^2} \Rightarrow \hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n \hat{r}_{i1} u_i}{\sum_{i=1}^n \hat{r}_{i1}^2}$$

where \hat{r}_{i1} are the residuals from a regression of x_1 on x_2, x_3, \dots, x_k

$$Var(\hat{\beta}_1|\mathbf{X}) = \frac{\sum_{i=1}^{n} \hat{r}_{i1}^2 \text{Var}(u_i|\mathbf{X})}{\left(\sum_{i=1}^{n} \hat{r}_{i1}^2\right)^2}$$
$$= \frac{\sigma^2}{SSR_1}$$
$$= \frac{\sigma^2}{SST_1(1 - R_1^2)}$$

An aside: Why does partialing out work?

	x1	x2	r1
1	1	1	2666667
2	3	2	.8
3	3	3	1333333
4	3	4	-1.066667
5	5	5	0
6	7	6	1.066667
7	7	7	.1333333
8	7	8	8
9	9	9	.2666667

- r_1 is the residuals from a regression of x_1 on x_2
- r_1 is larger when x_2 does not predict x_1 well
 - This variation in x₁, represented by r₁, can be used to determine the effect of x₁ on y

Components of the variance of \hat{eta}_j

- 1 The error variance: σ^2
 - A high σ^2 increases the sampling variance because there is more "noise" in the equation
 - A large σ^2 necessarily makes estimates imprecise
 - σ^2 does not decrease with sample size since it is a feature of the population
- 2 The total sample variation in the explanatory variable: $\sum_{n=1}^{\infty} (1-x^2)^n$

$$SST_j = \sum_{i=1}^n (x_{ij} - \overline{x}_j)^2$$

- More sample variation leads to more precise estimates
- Total sample variation automatically increases with the sample size
- Increasing the sample size is therefore a way to get more precise estimates

Components of the variance of \hat{eta}_j

- Inear relationships among the independent variables: R_j^2
 - The R^2 of the regression of x_j on the other independent variables will be higher the better x_j can be (linearly) explained by those other independent variables
 - Sampling variance of $\hat{\beta}_i$ will be higher the larger R^2 is
 - The problem of almost linearly dependent variables is called **multicollinearity** (i.e. $R_j^2 \to 1$ for some j).

Multicollinearity example

Consider a population model of average standardized test scores (avgscore) and expenditures across schools:

$$avgscore = \beta_0 + \beta_1 teachexp + \beta_2 matexp + \beta_3 othexp + \dots$$

where

- teachexp is expenditure on teachers
- matexp is expenditures for instructional materials
- othexp is other expenditures
- Each of the expenditures will be strongly correlated
- It will be difficult to estimate the differential effects of different expenditure categories
 - Sampling variance for the coefficients will be large

Multicollinearity "problem"

- In the above example, it would probably make sense to combine all the expenditure categories together since their effects are difficult to disentangle
- In other cases, dropping some independent variables reduces multicollinearity... but this often leads to omitted variable bias!
 - Common practice across social science research =(
- Only the sampling variance of the variables involved in multicollinearity will be inflated; the estimates of the other effects may be very precise
- Multicollinearity is **not** a violation of any of our assumptions
 - With enough data and variation in right-hand side variables, it should not be a problem

Estimating the error variance

Since we do not observe σ^2 , we must obtain an unbiased estimate of it:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n \hat{u}_i^2}{n-k-1}$$

Basis for the degrees of freedom adjustment can be understood by considering the k + 1 first order conditions for the OLS residuals:

$$\sum_{i=1}^{2} \hat{u}_i = 0, \quad \sum_{i=1}^{n} x_{ij} \hat{u}_i = 0, \quad \text{where } j = 1, 2, \dots, k.$$

Once you know n-(k+1) of the residuals, you can construct the remaining k+1 residuals

Estimating the sampling variance of the OLS estimators

■ The true sampling variation of $\hat{\beta}_j$:

$$sd(\hat{\beta}_j) = \sqrt{Var(\hat{\beta}_j)} = \sqrt{\frac{\sigma^2}{SST_j(1 - R_j^2)}}$$

■ The **estimated** sampling variation of $\hat{\beta}_i$ or **standard error**:

$$se(\hat{\beta}_j) = \sqrt{\widehat{Var}(\hat{\beta}_j)} = \sqrt{\frac{\hat{\sigma}^2}{SST_j(1 - R_j^2)}}$$

Formulae are only valid assuming homoskedasticity

Standard errors in Stata output

. reg lwage educ exper tenure

Source	SS	df		MS		Number of obs		526
Model Residual	46.8741776 101.455574	3 522		3247259 1359337		F(3, 522) Prob > F R-squared	=	80.39 0.0000 0.3160
Total	148.329751	525	.28	3253286		Adj R-squared Root MSE	=	0.3121 .44086
lwage	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
educ exper tenure _cons	.092029 .0041211 .0220672 .2843595	.0073 .0017 .0030 .1041	233 936	12.56 2.39 7.13 2.73	0.000 0.017 0.000 0.007	.0776292 .0007357 .0159897 .0796756		1064288 0075065 0281448 4890435

Gauss-Markov Assumptions

- The four assumptions used to establish unbiasedness and the fifth assumption to derive the variance formulas are known as the Gauss-Markov Assumptions:
 - 1 Linearity: $y = \beta_0 + \beta_1 x + u$
 - **2** We have a **random** sample of size n, $\{(x_i, y_i) : i = 1, 2, ..., n\}$
 - 3 Sample variation of explanatory variable: The sample outcomes on x are not all the same value
 - 4 Zero conditional mean: E(u|x) = 0
 - 5 $Var(u|x_1, x_2 ..., x_k) = \sigma^2$
- Under these assumptions, the OLS estimators are the best linear unbiased estimators (BLUEs) of the regression coefficients
 - Best means smallest variance

Inference

- Having estimated population parameters, we now want to be able to conduct hypothesis tests
 - For example: does gender have no impact on wages (i.e. $\beta_{female} = 0$)?
- To be able to conduct statistical inference we need to make an additional (sixth) assumption:
 - **6** The population of the error u is normaly distributed with zero mean and variance σ^2 : $u \sim \text{Normal}(0, \sigma^2)$.
- These six assumptions are called the classical linear model (CLM) assumptions
 - $y|x \sim \text{Normal}(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k, \sigma^2)$

Simple regression model under homoskedasticity and normally distributed errors

Why the normal assumption?

- Basis: u is the sum of many different unobserved factors affecting y so we can invoke the central limit theorem to conclude u has an approximate normal distribution
- Whether normality holds is ultimately an empirical question
 - If the dependent variable cannot be negative (e.g. wage) then normality cannot hold
 - If the dependent variable is *count data* (i.e. 0, 1, 2, 3... with zero being the modal value) then normality cannot hold

Testing hypotheses for a single population parameter

- Note that β_j is an unknown (but real) population parameter, which we try to infer (hypothesize about) using our estimate of this parameter $\hat{\beta}_i$
- Since we do not know σ^2 (and estimate it with $\hat{\sigma}^2 = \frac{\sum_{i=1}^n \hat{u}^2}{n-k-1}$) we must use the t distribution instead of the normal distribution:

$$\frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)} \sim t_{n-k-1} = t_{df}$$

■ If *n* is large, the *t* distribution is close to the standard normal distribution

t table

Critical Values of the t Distribution

			Significance L	evel		
	Tailed:	.10 .20	.05 .10	.025 .05	.01 .02	.005 .01
	1	3.078	6.314	12.706	31.821	63.657
	2 3	1.886	2.920	4.303	6.965	9.925
		1.638	2.353	3.182	4.541	5.841
	4	1.533	2.132	2.776	3.747	4.604
	5	1.476	2.015	2.571	3.365	4.032
	6	1.440	1.943	2.447	3.143	3.707
	7	1.415	1.895	2.365	2.998	3.499
D	8	1.397	1.860	2.306	2.896	3.355
e	9	1.383	1.833	2.262	2.821	3.250
g	10	1.372	1.812	2.228	2.764	3.169
r	11	1.363	1.796	2.201	2.718	3.106
e	12	1.356	1.782	2.179	2.681	3.055
e	13	1.350	1.771	2.160	2.650	3.012
s	14	1.345	1.761	2.145	2.624	2.977
	15	1.341	1.753	2.131	2.602	2.947
o f	16	1,337	1.746	2.120	2,583	2,921
1	17	1.333	1.740	2.110	2.567	2.898
F	18	1.330	1.734	2.101	2.552	2.878
_	19	1.328	1.729	2.093	2.539	2.861
r e	20	1.325	1.725	2.086	2.528	2.845

Testing the null hypothesis $\beta_j = 0$

• In the majority of applications, we will be testing the null hypothesis:

$$H_0: \beta_j = 0$$

- This means that after controlling for the other right-hand side variables, there is no effect of x_i on y
- **Example:** $Pr(lung\ cancer) = \beta_0 + \beta_1 cigs + \beta_2 drinks + u$
 - $H_0: \beta_2 = 0$
 - After controlling for cigarette consumption (cigs), does the number of drinks affect the probability of lung cancer?

Testing the null hypothesis $\beta_j = 0$

t-statistic used to test this hypothesis is

$$t_{\hat{eta}_j} \equiv rac{\hat{eta}_j}{se(\hat{eta}_j)}$$

- The further away from zero $\hat{\beta}_j$ is (i.e. larger numerator), the less likely the null hypothesis will hold
- To determine how far away is "enough," we divide the estimate by its standard deviation
 - Recall that under a normal distribution, 95% of the population lies two standard deviations either side of the mean
- <u>Goal</u>: Define a rejection rule (large enough *t*-statistic, *c*) such that if $t_{\hat{\beta}_j}$ exceeds *c* then H₀ is rejected only with a small probability (or significance level, usually 5%)

Testing against a one-sided alternative

- Test $H_0: \beta_j = 0$ vs. $H_1: \beta_j > 0$
- \blacksquare If significance level is 5% and df=28 then reject if $t_{\hat{\beta}_i}>c=1.701$

One-sided alternative wage example

- Each year of experience increases wage by 0.4% (not large)
- Test $H_0: \beta_{exper} = 0$ vs. $H_1: \beta_{exper} > 0$

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.092029	.0073299	12.56	0.000	.0776292	.1064288
exper	.0041211	.0017233	2.39	0.017	.0007357	.0075065
tenure	.0220672	.0030936	7.13	0.000	.0159897	.0281448
_cons	.2843595	.1041904	2.73	0.007	.0796756	.4890435

- $t_{exper} = \frac{0.0041}{0.0017} \approx 2.39$
- Critical values: $c_{0.05} = 1.645$, $c_{0.01} = 2.326$... so reject H₀ at 5% and 1% levels

Testing against a one-sided alternative

- Test $H_0: \beta_j = 0$ vs. $H_1: \beta_j < 0$
- \blacksquare If significance level is 5% and df=18 then reject if $t_{\hat{eta}_j} < c = -1.734$

Testing against a two-sided alternative

- Test $H_0: \beta_i = 0$ vs. $H_1: \beta_i \neq 0$
- If significance level is 5% and df=25 then reject if $t_{\hat{\beta}_i} < c=-2.06$ or $t_{\hat{\beta}_i} > c=2.06$

Determinants of college GPA

Model to estimate is:

$$colGPA = \beta_0 + \beta_1 hsGPA + \beta_2 ACT + \beta_3 skipped + u$$

where hsGPA is school GPA, skipped is # of lectures missed

colGPA	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
hsGPA	.4118162	.0936742	4.40	0.000	.2265819	.5970505
ACT	.0147202	.0105649	1.39	0.166	0061711	.0356115
skipped	0831131	.0259985	-3.20	0.002	1345234	0317028
_cons	1.389554	.3315535	4.19	0.000	.7339295	2.045178

- $t_{ACT} = \frac{0.0147}{0.0106} \approx 1.39$, $t_{skipped} = \frac{-0.0831}{0.0260} \approx -3.20$
- Critical values: $c_{0.05} = \pm 1.960$, $c_{0.01} = \pm 2.576$
- So reject H₀ for *skipped* but not for *ACT*

Statistical significance

- If a regression coefficient is different from zero in a two-sided test, the corresponding variable is said to be statistically significant
 - The vast majority of social science research seeks to establish statistically significant relationships between variables
- If the number of degrees of freedom is large so that the normal distribution is a good approximation for the t-distribution then the following rules of thumb apply
 - $|t_{\hat{eta}_i}| > 1.645 \Rightarrow$ "statistically significant at 10% level"
 - $|t_{\hat{\beta}_i}| > 1.96 \Rightarrow$ "statistically significant at 5% level"
 - $|t_{\hat{\beta}_{j}}| > 2.576 \Rightarrow$ "statistically significant at 1% level"

Economic versus statistical significance

- If a variable is statistically significant, consider its magnitude (size) to get an idea if it is large enough to be important
- The mere fact that a coefficient is statistically significant does not mean it is economically significant
- Often coefficients with low t statistics will have the "wrong" sign; these can be ignored

Testing more general hypotheses

■ Supposing we wished to test whether β_j is equal to some non-zero value

$$H_0: \beta_j = a_j$$

 $H_1: \beta_j \neq a_j$

Test statistic is now:

$$t_{\hat{eta}_j} \equiv rac{\hat{eta}_j - \mathsf{a}_j}{\mathsf{se}(\hat{eta}_j)}$$

where we simply subtract the hypothesized value

Computing *p*-value for *t*-tests

- The smallest significance level at which the null hypothesis is still rejected is called the *p*-value of the hypothesis test
- A small p-value (i.e. 0.05, 0.01, 0.001) is evidence against the null hypothesis because you would not reject the null hypothesis at small significance levels
- A large *p*-value is evidence in favor of the null hypothesis
- p-values are more informative than tests at fixed significance levels

Testing against a two-sided alternative

p-value is the probability that the t-distributed variable takes on a larger absolute value than the realized value of the test statistic:

$$P(|T| > 1.85) = 2(.036) = 0.072$$

Determinants of college GPA

colGPA	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hsGPA	.4118162	.0936742	4.40	0.000	.2265819	.5970505
ACT	.0147202	.0105649	1.39	0.166	0061711	.0356115
skipped	0831131	.0259985	-3.20	0.002	1345234	0317028
_cons	1.389554	.3315535	4.19	0.000	.7339295	2.045178

- p-value is 0.166 for ACT and 0.002 for skipped
 - Easy to reject H₀ for ACT at conventional levels but skipped is statistically significant

Confidence intervals

■ For a 95 percent confidence interval:

$$P\Big(\hat{eta}_j - c_{0.05} \cdot se(\hat{eta}_j) \leq eta_j \leq \hat{eta}_j + c_{0.05} \cdot se(\hat{eta}_j)\Big) = 0.95$$

- In repeated samples the interval constructed as above will cover the population regression coefficient in 95% of cases
- Relationship between confidence intervals and hypothesis tests:

$$a_j \not \in \text{ interval} \Rightarrow \text{reject } \mathbf{H}_0: \beta_j = a_j$$

Determinants of college GPA

colGPA	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
hsGPA	.4118162	.0936742	4.40	0.000	.2265819	.5970505
ACT	.0147202	.0105649	1.39	0.166	0061711	.0356115
skipped	0831131	.0259985	-3.20	0.002	1345234	0317028
_cons	1.389554	.3315535	4.19	0.000	.7339295	2.045178

• 95% confidence interval for *skipped* with n - k - 1 = 137 df is

$$\hat{eta}_{skipped} \pm c_{0.05} \cdot se(\hat{eta}_{j}) \ -0.0831 \pm 1.98 \cdot 0.0260 \ -0.0831 \pm 0.0515$$

Next week

■ Inference continued (Chapter 4)