

Analytical Geometry and Linear Algebra II, Lab 10

Circulant Matrix

System of linear differential equations

How I spent last weekend

Watched both seasons in 1 day (24 series) of "Mushoku Tensei"

RAGE and VEGs clubs cooking collaboration event

Circulant Matrix

Watch first video on page 11, if you want to look at derivation and the necessity of the matrix.

Circulant matrix (N = 4) is:

$$C_4 = c_0 I + c_1 P + c_2 P^2 + C_3 P^3 = \begin{bmatrix} c_0 & c_1 & c_2 & c_3 \\ c_3 & c_0 & c_1 & c_2 \\ c_2 & c_3 & c_0 & c_1 \\ c_1 & c_2 & c_3 & c_0 \end{bmatrix}, \text{ where } P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Properties:

It has *eigenvectors* in the Fourier Matrix columns $F_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & i^2 & 1 & (-i)^2 \\ 1 & i^3 & -1 & (-i)^3 \end{bmatrix}$

Eigenvalues of C can be found by Fourier trans. $F_4[c_0, c_1, c_2, c_3]^T = [\lambda_0, \lambda_1, \lambda_2, \lambda_3]^T$

Example 2 The same ideas work for a Fourier matrix F and a circulant matrix C of any size. Two by two matrices look trivial but they are very useful. Now eigenvalues of P have $\lambda^2 = 1$ instead of $\lambda^4 = 1$ and the complex number i is not needed: $\lambda = \pm 1$.

Fourier matrix
$$F$$
 from eigenvectors of P and C
$$F = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1} \end{bmatrix} \quad P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \begin{array}{c} \text{Circulant} \\ c_0 I + c_1 P \end{array} \quad C = \begin{bmatrix} c_0 & c_1 \\ c_1 & c_0 \end{bmatrix}.$$

The eigenvalues of C are $c_0 + c_1$ and $c_0 - c_1$. Those are given by the Fourier transform Fc when the vector c is (c_0, c_1) . This transform Fc gives the eigenvalues of C for any size n.

What are the 3 solutions to $\lambda^3=1$? They are complex numbers $\lambda=\cos\theta+i\sin\theta=e^{i\theta}$. Then $\lambda^3=e^{3i\theta}=1$ when the angle 3θ is 0 or 2π or 4π . Write the 3 by 3 Fourier matrix F with columns $(1,\lambda,\lambda^2)$.

Check that any 3 by 3 circulant C has eigenvectors $(1, \lambda, \lambda^2)$ If the diagonals of your matrix C contain c_0, c_1, c_2 then its eigenvalues are in Fc.

Task 1 Answer

$\lambda^3=1$ has 3 roots $\lambda=1$ and $e^{2\pi i/3}$ and $e^{4\pi i/3}$. Those are ${f 1},{m \lambda},{m \lambda^2}$ if we take

 $\lambda = e^{2\pi i/3}$. The Fourier matrix is

$$F_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \lambda & \lambda^2 \\ 1 & \lambda^2 & \lambda^4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & e^{2\pi i/3} & e^{4\pi i/3} \\ 1 & e^{4\pi i/3} & e^{8\pi i/3} \end{bmatrix}.$$

A 3 by 3 circulant matrix has the form on page 425:

$$C = \begin{bmatrix} c_0 & c_1 & c_2 \\ c_2 & c_0 & c_1 \\ c_1 & c_2 & c_0 \end{bmatrix} \text{ with } C \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = (c_0 + c_1 + c_2) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$C \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix} = (c_0 + c_1 \lambda + c_2 \lambda^2) \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix} \quad C \begin{bmatrix} 1 \\ \lambda^2 \\ \lambda^4 \end{bmatrix} = (c_0 + c_1 \lambda^2 + c_2 \lambda^4) \begin{bmatrix} 1 \\ \lambda^2 \\ \lambda^4 \end{bmatrix}.$$

Those 3 eigenvalues of C are exactly the 3 components of $F\mathbf{c}=F\begin{bmatrix}c_0\\c_1\\c_2\end{bmatrix}$,

1st order system of linear differential equations

Algorithm

- 1. Write equation in u' = Au form;
- 2. Find eigenpairs of A
- 3. Subtract λ and x_{λ_i} to $u(t) = c_1 e^{\lambda_1 t} x_1 + ... + c_n e^{\lambda_n t} x_n$
- 4. Find c_i using u(0) which is vector. $u(0) = \underbrace{u(t=0)}_{\text{from above}}$. Solve it.
- 5. Put c_i to u(t).

Example 1 Solve $\frac{d\mathbf{u}}{dt} = A\mathbf{u} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{u}$ starting from $\mathbf{u}(0) = \begin{bmatrix} \mathbf{4} \\ \mathbf{2} \end{bmatrix}$. This is a vector equation for u. It contains two scalar equations for the components y and z. They are "coupled together" because the matrix A is not diagonal:

$$\frac{du}{dt} = Au$$
 $\frac{d}{dt} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix}$ means that $\frac{dy}{dt} = z$ and $\frac{dz}{dt} = y$.

The idea of eigenvectors is to combine those equations in a way that gets back to 1 by 1 problems. The combinations y + z and y - z will do it. Add and subtract equations:

$$\frac{d}{dt}(y+z)=z+y \qquad \text{and} \qquad \frac{d}{dt}(y-z)=-(y-z).$$
 The combination $y+z$ grows like e^t , because it has $\lambda=1$. The combination $y-z$ decays

like e^{-t} , because it has $\lambda = -1$. Here is the point: We don't have to juggle the original equations $d\mathbf{u}/dt = A\mathbf{u}$, looking for these special combinations. The eigenvectors and eigenvalues of A will do it for us.

This matrix A has eigenvalues 1 and -1. The eigenvectors x are (1,1) and (1,-1). The pure exponential solutions u_1 and u_2 take the form $e^{\lambda t}x$ with $\lambda_1 = 1$ and $\lambda_2 = -1$:

$$u_1(t) = e^{\lambda_1 t} x_1 = e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $u_2(t) = e^{\lambda_2 t} x_2 = e^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. (4)

Notice: These u's satisfy $Au_1 = u_1$ and $Au_2 = -u_2$, just like x_1 and x_2 . The factors e^t and e^{-t} change with time. Those factors give $du_1/dt = u_1 = Au_1$ and $du_2/dt = -u_2 =$ Au_2 . We have two solutions to du/dt = Au. To find all other solutions, multiply those

and
$$e^{-t}$$
 change with time. Those factors give $du_1/dt = u_1 = Au_1$ and $du_2/dt = -u_2 = Au_2$. We have two solutions to $du/dt = Au$. To find all other solutions, multiply those special solutions by any numbers C and D and add:

(5)

$u(t) = Ce^{t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + De^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} Ce^{t} + De^{-t} \\ Ce^{t} - De^{-t} \end{bmatrix}.$ **Complete solution**

With these two constants C and D, we can match any starting vector $\mathbf{u}(0) = (u_1(0), u_2(0))$. Set t = 0 and $e^0 = 1$. Example 1 asked for the initial value to be $\mathbf{u}(0) = (4, 2)$:

$$u(0)$$
 decides C, D $C\begin{bmatrix}1\\1\end{bmatrix} + D\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}4\\2\end{bmatrix}$ yields $C = 3$ and $D = 1$.

With C=3 and D=1 in the solution (5), the initial value problem is completely solved. The same three steps that solved $u_{k+1}=Au_k$ now solve du/dt=Au:

- 1. Write u(0) as a combination $c_1x_1 + \cdots + c_nx_n$ of the eigenvectors of A.
- 2. Multiply each eigenvector x_i by its growth factor $e^{\lambda_i t}$.
- **3.** The solution is the same combination of those pure solutions $e^{\lambda t}x$:

$$\frac{du}{dt} = Au \qquad u(t) = c_1 e^{\lambda_1 t} x_1 + \dots + c_n e^{\lambda_n t} x_n.$$
 (6)

Not included: If two λ 's are equal, with only one eigenvector, another solution is needed. (It will be $te^{\lambda t}x$.) Step 1 needs to diagonalize $A = X\Lambda X^{-1}$: a basis of n eigenvectors.

Example 2 Solve $d\mathbf{u}/dt = A\mathbf{u}$ knowing the eigenvalues $\lambda = 1, 2, 3$ of A:

Typical example Equation for
$$u$$

$$\frac{du}{dt} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} u \text{ starting from } u(0) = \begin{bmatrix} 9 \\ 7 \\ 4 \end{bmatrix}.$$
Initial condition $u(0)$

The eigenvectors are $x_1 = (1,0,0)$ and $x_2 = (1,1,0)$ and $x_3 = (1,1,1)$.

Step 1 The vector
$$u(0) = (9,7,4)$$
 is $2x_1 + 3x_2 + 4x_3$. Thus $(c_1, c_2, c_3) = (2,3,4)$.

Step 2 The factors $e^{\lambda t}$ give exponential solutions $e^t x_1$ and $e^{2t} x_2$ and $e^{3t} x_3$.

 $\textbf{Step 3} \quad \text{The combination that starts from } \boldsymbol{u}(0) \text{ is } \boldsymbol{u}(t) = 2e^t\boldsymbol{x}_1 + 3e^{2t}\boldsymbol{x}_2 + 4e^{3t}\boldsymbol{x}_3.$

The coefficients 2, 3, 4 came from solving the linear equation $c_1x_1 + c_2x_2 + c_3x_3 = u(0)$:

$$\frac{d\boldsymbol{u}}{dt} = \begin{bmatrix} 4 & 3 \\ 0 & 1 \end{bmatrix} \boldsymbol{u}.$$

What combination $\mathbf{u} = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2$ starts from $\mathbf{u}(0) = (5, -2)$?

Find two λ 's and x's so that $u = e^{\lambda t}x$ solves

$$\frac{d\boldsymbol{u}}{dt} = \begin{bmatrix} 4 & 3 \\ 0 & 1 \end{bmatrix} \boldsymbol{u}.$$

What combination $\mathbf{u} = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2$ starts from $\mathbf{u}(0) = (5, -2)$?

Answer

Eigenvalues 4 and 1 with eigenvectors
$$(1,0)$$
 and $(1,-1)$ give solutions $\boldsymbol{u}_1 = e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\boldsymbol{u}_2 = e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. If $\boldsymbol{u}(0) = \begin{bmatrix} 5 \\ -2 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then $\boldsymbol{u}(t) = 3e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Suppose P is the projection matrix onto the 45° line y=x in \mathbb{R}^2 . What are its eigenvalues? If $d\mathbf{u}/dt=-P\mathbf{u}$ (notice minus sign) can you find the limit of $\mathbf{u}(t)$ at $t=\infty$ starting from $\mathbf{u}(0)=(3,1)$?

Suppose P is the projection matrix onto the 45° line y=x in \mathbb{R}^2 . What are its eigenvalues? If $d\mathbf{u}/dt=-P\mathbf{u}$ (notice minus sign) can you find the limit of $\mathbf{u}(t)$ at $t=\infty$ starting from $\mathbf{u}(0)=(3,1)$?

Answer

A projection matrix has eigenvalues $\lambda=1$ and $\lambda=0$. Eigenvectors $P\boldsymbol{x}=\boldsymbol{x}$ fill the subspace that P projects onto: here $\boldsymbol{x}=(1,1)$. Eigenvectors with $P\boldsymbol{x}=\boldsymbol{0}$ fill the perpendicular subspace: here $\boldsymbol{x}=(1,-1)$. For the solution to $\boldsymbol{u}'=-P\boldsymbol{u}$,

$$oldsymbol{u}(0) = egin{bmatrix} 3 \\ 1 \end{bmatrix} = egin{bmatrix} 2 \\ 2 \end{bmatrix} + egin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad oldsymbol{u}(t) = e^{-t} \begin{bmatrix} 2 \\ 2 \end{bmatrix} + e^{0t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ approaches } \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Oleg Bulichev AGLA2 7

Higher order differential equation

Idea

$$u'' + Bu' + Cu = 0$$
 is equivalent to $\begin{bmatrix} u \\ u' \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ -C & -B \end{bmatrix} \begin{bmatrix} u \\ u' \end{bmatrix}$

Everything else is the same as in first order system.

Second Order Equations

The most important equation in mechanics is my'' + by' + ky = 0. The first term is the mass m times the acceleration a = y''. This term ma balances the force F (that is $Newton's\ Law$). The force includes the damping -by' and the elastic force -ky, proportional to distance moved. This is a second-order equation because it contains the second derivative $y'' = d^2y/dt^2$. It is still linear with constant coefficients m, b, k.

In a differential equations course, the method of solution is to substitute $y=e^{\lambda t}$. Each derivative of y brings down a factor λ . We want $y=e^{\lambda t}$ to solve the equation:

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0 \quad \text{becomes} \quad (m\lambda^2 + b\lambda + k)e^{\lambda t} = 0.$$
 (8)

Everything depends on $m\lambda^2 + b\lambda + k = 0$. This equation for λ has two roots λ_1 and λ_2 . Then the equation for y has two pure solutions $y_1 = e^{\lambda_1 t}$ and $y_2 = e^{\lambda_2 t}$. Their combinations $c_1 y_1 + c_2 y_2$ give the complete solution unless $\lambda_1 = \lambda_2$.

In a linear algebra course we expect matrices and eigenvalues. Therefore we turn the scalar equation (with y'') into a vector equation for y and y': first derivative only. Suppose the mass is m = 1. Two equations for $\mathbf{u} = (y, y')$ give $d\mathbf{u}/dt = A\mathbf{u}$:

$$\frac{dy/dt = y'}{dy'/dt = -ky - by'} \quad \text{converts to} \quad \frac{d}{dt} \begin{bmatrix} y \\ y' \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -k & -b \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix} = A\mathbf{u}. \quad (9)$$

The first equation dy/dt = y' is trivial (but true). The second is equation (8) connecting y'' to y' and y. Together they connect u' to u. So we solve u' = Au by eigenvalues of A:

$$A - \lambda I = \begin{bmatrix} -\lambda & 1 \\ -k & -b - \lambda \end{bmatrix}$$
 has determinant $\lambda^2 + b\lambda + k = 0$.

The equation for the λ 's is the same as (8)! It is still $\lambda^2 + b\lambda + k = 0$, since m = 1. The roots λ_1 and λ_2 are now *eigenvalues of A*. The eigenvectors and the solution are

$$m{x}_1 = egin{bmatrix} 1 \ \lambda_1 \end{bmatrix} \qquad m{x}_2 = egin{bmatrix} 1 \ \lambda_2 \end{bmatrix} \qquad m{u}(t) = c_1 e^{\lambda_1 t} egin{bmatrix} 1 \ \lambda_1 \end{bmatrix} + c_2 e^{\lambda_2 t} egin{bmatrix} 1 \ \lambda_2 \end{bmatrix}.$$

The first component of u(t) has $y=c_1e^{\lambda_1t}+c_2e^{\lambda_2t}$ —the same solution as before. It can't be anything else. In the second component of u(t) you see the velocity dy/dt. The vector problem is completely consistent with the scalar problem. The 2 by 2 matrix A is called a *companion matrix*—a companion to the second order equation with y''.

Example 3 Motion around a circle with y'' + y = 0 and $y = \cos t$

This is our master equation with mass m=1 and stiffness k=1 and d=0: no damping. Substitute $y=e^{\lambda t}$ into y''+y=0 to reach $\lambda^2+1=0$. The roots are $\lambda=i$ and

 $\lambda = -i$. Then half of $e^{it} + e^{-it}$ gives the solution $y = \cos t$. As a first-order system, the initial values y(0) = 1, y'(0) = 0 go into u(0) = (1, 0):

Use
$$y'' = -y$$

$$\frac{d\mathbf{u}}{dt} = \frac{d}{dt} \begin{bmatrix} y \\ y' \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix} = A\mathbf{u}.$$
 (10)

The eigenvalues of A are again the same $\lambda=i$ and $\lambda=-i$ (no surprise). A is antisymmetric with eigenvectors $\boldsymbol{x}_1=(1,i)$ and $\boldsymbol{x}_2=(1,-i)$. The combination that matches $\boldsymbol{u}(0)=(1,0)$ is $\frac{1}{2}(\boldsymbol{x}_1+\boldsymbol{x}_2)$. Step 2 multiplies the x's by e^{it} and e^{-it} . Step 3 combines the pure oscillations into $\boldsymbol{u}(t)$ to find $y=\cos t$ as expected:

$$\boldsymbol{u}(t) = \frac{1}{2}e^{it}\begin{bmatrix}1\\i\end{bmatrix} + \frac{1}{2}e^{-it}\begin{bmatrix}1\\-i\end{bmatrix} = \begin{bmatrix}\cos t\\-\sin t\end{bmatrix}. \qquad \text{This is } \begin{bmatrix}y(t)\\y'(t)\end{bmatrix}.$$

All good. The vector $\mathbf{u} = (\cos t, -\sin t)$ goes around a circle (Figure 6.3). The radius is 1 because $\cos^2 t + \sin^2 t = 1$.

Solve
$$y'' + 4y' + 3y = 0$$
 by linear algebra.

Solve
$$y'' + 4y' + 3y = 0$$
 by linear algebra.

Answer

To use linear algebra we set u = (y, y'). Then the vector equation is u' = Au:

$$\frac{dy/dt=y'}{dy'/dt=-3y-4y'} \quad \text{converts to} \quad \frac{d\boldsymbol{u}}{dt} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \boldsymbol{u}.$$

This A is a "companion matrix" and its eigenvalues are again -1 and -3:

Same quadratic
$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 1 \\ -3 & -4 - \lambda \end{vmatrix} = \lambda^2 + 4\lambda + 3 = 0.$$

The eigenvectors of A are $(1, \lambda_1)$ and $(1, \lambda_2)$. Either way, the decay in y(t) comes from e^{-t} and e^{-3t} . With constant coefficients, calculus leads to linear algebra $Ax = \lambda x$.

Find solution in general form
$$(c_1e^{\lambda_1t}x_1 + ... + c_ne^{\lambda_nt}x_n)$$
:
$$u''' + 2u'' - u' - 2u = 0, \ u(0) = \begin{bmatrix} 3\\2\\6 \end{bmatrix}$$

$$u''' + 2u'' - u' - 2u = 0, \ u(0) = \begin{vmatrix} 3 \\ 2 \\ 6 \end{vmatrix}$$

Answer
1. Equation:
$$\begin{bmatrix} y \\ y' \\ y'' \end{bmatrix}' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix};$$

$$\begin{bmatrix} y'' \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} y'' \end{bmatrix}$$
2. Eigenpairs: $\lambda_1 = -2$, $\lambda_2 = -1$, $\lambda_3 = 1$; $x_1 = \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$, $x_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $x_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$;
3. $c_1 = 1$, $c_2 = -1$, $c_3 = 3$;

4. General form:
$$u(t) = 1e^{-2t} \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} + (-1)e^{-1t} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + 3e^{1t} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
.

Reference material

- Eigenvectors of Circulant Matrices: Fourier Matrix
- Lecture 23, Differential Equations and exp(At)
- "Introduction to Linear Algebra", pdf pages 436
 Circulant Matrix 8.3
- "Introduction to Linear Algebra", pdf pages 330–348
 Systems of Differential Equations 6.3

