CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 26 GENNAIO 2015

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. (i) Dare la definizione di divisore (in \mathbb{Z}) di un numero intero.

- (ii) Per ogni $m \in \mathbb{Z}$ definire la relazione \equiv_m di congruenza modulo m in \mathbb{Z} .
- (iii) Per ogni $m, a \in \mathbb{Z}$ descrivere $[a]_{\equiv_m}$.
- (iv) Determinare gli $m \in \mathbb{N}$ tali che $[27]_m = [-17]_m$.

Esercizio 2. Siano $\mathcal{P} = \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}$ e \mathbb{P} l'insieme dei numeri primi positivi. Per ogni $X \in \mathcal{P}$, sia $\pi(X) = \{p \in \mathbb{P} \mid (\exists n \in X)(p|n)\}$. Consideriamo l'applicazione $f \colon X \in \mathcal{P} \mapsto \pi(X) \in \mathcal{P}(\mathbb{P})$ ed il suo nucleo di equivalenza \mathcal{R}_f .

- (i) f è suriettiva? f è iniettiva?
- (ii) Trovare un $\bar{Y} \in \mathcal{P}$ tale che $|[\bar{Y}]_{\mathcal{R}_f}| = 1$.
- (iii) Verificare: $(\forall X \in \mathcal{P} \setminus \{\bar{Y}\})([X]_{\mathcal{R}_f})$ è infinito).
- (iv) Caratterizzare gli $X \in \mathcal{P}$ tali che $|\pi(X)| = 1$.
- (v) Dire, di ciascuna delle seguenti formule, se è vera o falsa (e perché):
 - (a) $(\forall X \in \mathcal{P})(X \text{ infinito}) \Rightarrow \pi(X) \text{ infinito});$
 - (b) $(\forall X \in \mathcal{P})(\pi(X) \text{ infinito}) \Rightarrow X \text{ infinito});$
 - (c) $(\forall X, Y \in \mathcal{P})(\pi(X) \cap \pi(Y) \neq \emptyset \Rightarrow X \cap Y \neq \emptyset);$
 - (d) $(\forall X, Y \in \mathcal{P})(\pi(X) \cap \pi(Y) = \emptyset \Rightarrow X \cap Y = \emptyset);$

Esercizio 3. Si definisca in \mathbb{N} la relazione d'ordine Σ ponendo, per ogni $a, b \in \mathbb{N}$:

$$a \Sigma b \iff ((a = b) \vee (\operatorname{rest}(a, 10) < \operatorname{rest}(b, 10) \wedge \operatorname{rest}(a, 5) < \operatorname{rest}(b, 5))).$$

- (i) Stabilire se Σ è totale.
- (ii) Determinare, se esistono (o spiegare perché non esistono), gli elementi minimali, massimali, minimo, massimo in (\mathbb{N}, Σ) .
- (iii) Determinare l'insieme dei minoranti di $\{3,7\}$ in (\mathbb{N},Σ) . Esiste, in (\mathbb{N},Σ) , inf $\{3,7\}$?
- (iv) Posto $X = \{0, 1, 3, 6, 7, 9, 17\}$, si stabilisca se (X, Σ) è un reticolo.
- (v) Di ciascuna delle seguenti parti di X di dica se, ordinata sempre da Σ , è un reticolo, un reticolo distributivo, un reticolo complementato: $X \setminus \{6\}, X \setminus \{7\}, X \setminus \{3\}.$

Esercizio 4. (i) Determinare gli $a \in \mathbb{Z}_7$ tali che il polinomio $x^2 - a$ sia irriducibile in $\mathbb{Z}_7[x]$.

- (ii) Determinare il numero dei polinomi della forma $(x^2 a)(x^2 b) \in \mathbb{Z}_7[x]$, con $a, b \in \mathbb{Z}_7$, che siano:
 - (α) il prodotto di due polinomi irriducibili;
 - (β) il prodotto di tre polinomi irriducibili;
 - (γ) il prodotto di quattro polinomi irriducibili.

Esercizio 5. Sia $S = \{n \in \mathbb{N} \mid 1 \le n \le 10\}$. Sia * l'operazione binaria definita in $\mathcal{P}(S)$ da:

$$(\forall X, Y \in \mathcal{P}(S))(X * Y = X \triangle Y \triangle \{1\}).$$

- (i) *è commutativa? *è associativa?
- (ii) determinare (se esiste) l'elemento neutro di $(\mathcal{P}(S), *)$. Nel caso, stabilire quali sono gli elementi simmetrizzabili, descrivendone i corrispondenti simmetrici.
- (iii) Che tipo di struttura è $(\mathcal{P}(S), *)$?
- (iv) Per ciascuna di $A := \{X \in \mathcal{P}(S) \mid 1 \in X\}$ e $B := \{X \in \mathcal{P}(S) \mid 1 \notin X\}$, si stabilisca se è una parte chiusa e, nel caso, se, munita dell'operazione indotta da *, è un gruppo.