# Modelos Lineares Regressão Linear Simples

Susana Faria

## Notas Iniciais

- O uso destas notas como único material de estudo é fortemente desaconselhado.
- Neste capítulo estuda-se o modelo de regressão linear simples.

## Modelo Regressão Linear Simples (MRLS)

Considere a relação linear entre a variável resposta Y e a variável explicativa X, representada por:

$$Y = \beta_0 + \beta_1 x + \epsilon$$

onde  $\beta_0$  e  $\beta_1$  são designados por parâmetros ou coeficientes de regressão desconhecidos do modelo.

Ao termo  $\epsilon$  designamos por erro aleatório e assumimos que tem distribuição normal com média nula e variância  $\sigma^2$ .

A este modelo designamos por Modelo de Regressão Linear Simples (MRLS).

### Exemplo:

 Estudar a relação entre o peso ao nascer e o número de semanas de gestação;

### Exemplo:

Pretende-se estudar a relação entre a pressão sistólica e a idade em indivíduos adultos.

Antes de qualquer tentativa de construção de um modelo é preciso explorar os dados. Nomeadamente:

- Conhecer o tipo de variáveis de que dispomos;
- Descrever os dados relativos a cada uma das variáveis através de representações gráficas e estatísticas sumárias;
- avaliar o comportamento conjunto das variáveis, calculando medidas de associação e através de representações gráficas.

Dada uma amostra bivariada  $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$  de n observações independentes onde  $x_i$  e  $y_i$  são, respectivamente, os valores da variável X e Y para o individuo i, tem-se:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, \dots, n$$

em que:

Y<sub>i</sub> – resposta aleatória do indivíduo i (variável dependente aleatória)

 $x_i$  – i – ésima observação da variável independente

 $\beta_0$  – ordenada na origem (parâmetro desconhecido do modelo)

 $\beta_1$  declive (parâmetro desconhecido do modelo)

 $\epsilon_i$  – erro aleatório associado à observação da resposta do indivíduo i.

**Nota:** Os valores  $x_i$  são considerados determinísticos (pré-determinados à partida). Os valores  $Y_i$  representam a variàvel dependente e estes sim são considerados variáveis aleatórias.

### Pressupostos usuais do modelo RLS:

•  $E[\epsilon_i] = 0$ , o que implica que, dado um valor de x,

$$E[Y|x] = \beta_0 + \beta_1 x$$

conhecida por equação ou recta de regressão do modelo.

- $Var[\epsilon_i] = \sigma^2 \ \forall i$  (variância constante desconhecida).
- ullet  $\epsilon_i$ 's são variáveis aleatórias independentes.
- $\epsilon_i$  segue uma distribuição Normal.

## Interpretação dos coeficientes:

 $eta_0-$  ordenada na origem. Representa o valor esperado de Y para um valor nulo da variável explicativa.

 $\beta_1-$  declive. Representa a variação do valor esperado de Y por cada incremento unitário na variável explicativa.



## Estimação dos Parâmetros de um MRLS

- Estamos interessados em determinar estimadores  $\hat{\beta}_0$  de  $\beta_0$  e  $\hat{\beta}_1$  de  $\beta_1$  de forma a obter a variável resposta estimada  $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \ x_i$  para cada valor observado de  $x_i$ .
- Um método de estimação dos coeficientes de regressão é o Método de Mínimos Quadrados que consiste em minimizar a soma de quadrados dos erros aleatórios. Ou seja, o valor que minimiza a função:

$$Q(\beta_0, \beta_1) = \sum_{i=1}^n \epsilon_i^2 = \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 x_i)]^2$$

• Para a determinação da estimativa associada a  $\hat{\beta}_0$  e  $\hat{\beta}_1$ , deve-se encontrar as derivadas parciais da função  $Q(\beta_0,\beta_1)$  avaliada em  $(y_i,x_i)$  em relação aos parâmetros  $\beta_0$  e  $\beta_1$ .

$$\left\{ \begin{array}{l} \frac{\partial \mathcal{Q}(\beta_0,\beta_1)}{\partial \beta_0} = 0 \\ \frac{\partial \mathcal{Q}(\beta_0,\beta_1)}{\partial \beta_1} = 0 \end{array} \right. \Leftrightarrow \cdots \Leftrightarrow \left\{ \begin{array}{l} \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x} \\ \hat{\beta}_1 = \frac{\sum_{i=1}^n x_i \ Y_i - n \overline{x} \ \overline{Y}}{\sum_{i=1}^n x_i^2 - n \overline{x}^2} \end{array} \right.$$

Nota: Pode-se provar que este é ponto de mínimo, visto que a matriz hessiana avaliada neste ponto é definida positiva.

## Estimação dos Parâmetros de um MRLS

A equação ou recta de regressão é estimada por:

$$\hat{Y} = \hat{E}[Y|x] = \hat{\beta}_0 + \hat{\beta}_1 x$$

• A estimação pontual de E(Y|X) deve restringir-se ao domínio dos valores observados na amostra da variável explicativa X.



- Os valores  $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$  designam-se por valores estimados ou valores preditosde  $Y_i$ , em inglês, "fitted values" ou "predicted values".
- As quantidades  $e_i = Y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i)$  são designados por resíduos.

Nota: O ponto  $(\overline{x}, \overline{y})$  pertence à recta de regressão.

## Propriedades dos Estimadores

$$\bullet \ E[\hat{\beta}_1] = \beta_1 \qquad VAR[\hat{\beta}_1] = \frac{\sigma^2}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}$$

$$\bullet \ E[\hat{\beta}_0] = \beta_0 \qquad VAR[\hat{\beta}_0] = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}\right)$$

Os estimadores dos Mínimos Quadrados dos parâmetros :

- são combinações lineares de Y<sub>i</sub>.
- são centrados ou não enviesados.
- têm variância mínima.
- são, de entre os centrados, os de menor variância. ( BLUES)

## Estimador centrado de $\sigma^2$ :

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2} = \frac{SSE}{n-2}$$

onde SSE é a soma dos quadrados dos resíduos.

Notação alternativa: 
$$\hat{\sigma}^2 = \frac{1}{n-2} \left( S_{YY} - \frac{S_{XY}^2}{S_{XX}} \right)$$

**Nota:** 
$$\frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2$$

### Inferências sobre $\beta_1$

• Pretende-se testar a hipótese:

$$H_0: \beta_1 = b_1$$
 vs  $H_1: \beta_1 \neq b_1$ 

A estatística-teste é:

$$T = rac{\hat{eta}_1 - b_1}{\sqrt{\sum_{i=1}^{\hat{\sigma}^2} x_i^2 - n \overline{x}^2}} \quad \sim \quad t_{n-2}$$

A região de rejeição é:

 $RC = \{t : |t| > t_{\frac{\alpha}{2};n-2}\}$  em que  $\alpha$  é o nível de significância.

• Pretende-se calcular o intervalo de confiança para  $\beta_1$ :

$$\left(\hat{\beta}_{1}-t_{\frac{\alpha}{2};n-2}\sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n}x_{i}^{2}-n\overline{x}^{2}}},\ \hat{\beta}_{1}+t_{\frac{\alpha}{2};n-2}\sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n}x_{i}^{2}-n\overline{x}^{2}}}\right)$$

### Inferências sobre $\beta_0$

• Pretende-se testar a hipótese:

$$H_0: \beta_0 = b_0$$
 vs  $H_1: \beta_0 \neq b_0$ 

A estatística-teste é:

$$T = \frac{\hat{\beta}_0 - b_0}{\sqrt{\hat{\sigma}^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}\right)}} \quad \sim \quad t_{n-2}$$

A região de rejeição é:

 $RC = \{t : |t| > t_{\frac{\alpha}{2};n-2}\}$  em que  $\alpha$  é o nível de significância.

• Pretende-se calcular o intervalo de confiança para  $\beta_0$ :

$$\left(\hat{\beta}_0 - t_{\frac{\alpha}{2};n-2}\sqrt{\hat{\sigma}^2\left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}\right)}; \hat{\beta}_0 + t_{\frac{\alpha}{2};n-2}\sqrt{\hat{\sigma}^2\left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}\right)}\right)$$

Estimação do valor esperado de Y quando a variável explicativa toma o valor  $x_0$ :  $E[Y_0] = E[Y|x = x_0] = \beta_0 + \beta_1 x_0$ 

Estimador pontual:

$$\hat{E}[Y_0] = \hat{\beta_0} + \hat{\beta_1} x_0$$

• Intervalo de confiança a  $100(1-\alpha)\%$  para  $E[Y_0]$ :

$$\left(\hat{E}[Y_0] - t_{\frac{\alpha}{2};n-2}\sqrt{\hat{\sigma}^2\left(\frac{1}{n} + \frac{(\overline{x} - x_0)^2}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}\right)};\right)$$

$$\hat{\mathcal{E}}[Y_0] + t_{\frac{\alpha}{2};n-2} \sqrt{\hat{\sigma}^2 \left(\frac{1}{n} + \frac{(\overline{x} - x_0)^2}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}\right)}\right)$$

**Nota:** As inferências podem não ser válidas fora do intervalo de valores de x considerado.

## Previsão do valor de Y quando a variável explicativa toma o valor $x_0$ :

$$Y_0 = Y | x = x_0 = \beta_0 + \beta_1 x_0$$

Estimador pontual:

$$\hat{Y}_0 = \hat{\beta_0} + \hat{\beta_1} x_0$$

• Intervalo de confiança a  $100(1-\alpha)\%$  para  $Y_0$ :

$$\left(\hat{Y}_0 - t_{\frac{\alpha}{2};n-2}\sqrt{\hat{\sigma}^2\left(1 + \frac{1}{n} + \frac{(\overline{x} - x_0)^2}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}\right)};\right)$$

$$\hat{Y}_0 + t_{rac{lpha}{2};n-2}\sqrt{\hat{\sigma}^2\left(1+rac{1}{n}+rac{(\overline{x}-x_0)^2}{\sum_{i=1}^n x_i^2-n\overline{x}^2}
ight)}
ight)$$

**Nota:** As inferências podem não ser válidas fora do intervalo de valores de x considerado.

Para a observação  $y_i$ , tem-se:

$$(y_i - \overline{y}) = (\widehat{y}_i - \overline{y}) + (y_i - \widehat{y}_i)$$

Considerando todas as observações:

$$\underbrace{\sum_{i=1}^{n} (y_i - \overline{y})^2}_{\text{Variação Total}} = \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2}_{\text{Variação explicado}} + \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{\text{Variação explicado}}$$

$$SST = SSR + SSE$$

em que:

SST: soma de quadrados total

• SSE: soma de quadrados dos resíduos

• SSR: soma de quadrados de regressão

Para testar:

$$H_0: \beta_1 = 0$$
 vs  $H_1: \beta_1 \neq 0$ 

A tabela da ANOVA correspondente é:

| Fonte de Variação | SS  | gl  | MS  | <b>F</b> <sub>0</sub> | p — value |
|-------------------|-----|-----|-----|-----------------------|-----------|
| Regressão         | SSR | 1   | MSR | MSR<br>MSE            |           |
| Erros             | SSE | n-2 | MSE | 02                    |           |
| Total             | SST | n-1 |     |                       |           |

Rejeita-se a hipótese  $H_0$  ao nível de significância  $\alpha$  se o valor da estatística de teste,  $F_0$  for maior do que o valor de F com (1,n-2) graus de liberdade.

## Avaliação da qualidade e significado da regressão

Para avaliar a qualidade e significado da regressão vamos considerar vários métodos.

- Métodos Gráficos
- Teste ao Declive
- Coeficiente de Determinação

#### Métodos Gráficos

- O método mais intuitivo para avaliar a qualidade e signicado de uma regressão baseia-se na observação do gráfico de dispersão quando traçado com a recta de regressão sobreposta.
- Uma alternativa gráfica que pode detectar eventuais desvios à linearidade não detectàveis no gráfico de dispersão dos dados é um outro gráfico de dispersão que apresente os valores observados Y<sub>i</sub> versus os valores preditos Ŷ<sub>i</sub>.

#### Teste ao declive

Será que Y depende mesmo de x? Podemos responder a esta questão através do teste:

## Coeficiente de Determinação

### Definição

O coeficiente de determinação é uma medida relativa da qualidade de ajustamento do modelo de regressão linear, dada por:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = \left(\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}}\right)^{2} = \frac{S_{XY}^{2}}{S_{XX}S_{YY}}$$

 $\acute{\rm E}$  interpretada como a percentagem da variabilidade de Y que  $\acute{\rm e}$  explicada pelo modelo de regressão linear.

O coeficiente de determinação é tal que  $0 \le R^2 \le 1$  onde:

- $R^2 \simeq 1$  indica bom ajustamento do modelo;
- $R^2 \simeq 0$  indica mau ajustamento do modelo.

**Nota:**  $1 - R^2$ : proporção da variação de Y não explicada pela variável X, resultante de factores não incluídos no modelo.



## Coeficiente de Determinação

 O coeficiente de determinação R<sup>2</sup> apresenta um viés positivo em relação ao seu valor na população, o que pode induzir em erro na análise dos dados. Uma forma de compensar este viés consiste em considerar um coeficiente de determinação ajustado definido a partir de R<sup>2</sup> e ajustado com base na dimensão da amostra.

$$R_a^2 = 1 - \frac{\frac{SSE}{(n-2)}}{\frac{SST}{(n-1)}}$$

### Relação entre o Coeficiente de Correlação e o Coeficiente de Determinação

• No caso do modelo RLS, o coeficiente de determinação  $(R^2)$  é o quadrado do coeficiente de correlação entre x e y,  $(r_{xy})$ .

### Relação entre o Coeficiente de Correlação e Análise de Regressão

• O sinal da correlação indica a direcção da relação.



### Análise dos Resíduos

Relembremos que de acordo com o modelo de regressão linear simples os erros das observações satisfazem os seguintes pressupostos:

- seguem uma distribuição normal;
- têm media zero:
- têm variância constante (homocedasticidade);
- são independentes.
- A verificação das hipóteses é fundamental, visto que toda a inferência estatística no modelo de regressão linear (testes de hipóteses) se baseia nesses pressupostos.
- Nesse sentido, se houver violação dos mesmos, a utilização do modelo deve ser posta em causa.
- A Análise dos Resíduos é uma ferramenta usada para detectar violações dos pressupostos.

### Análise dos resíduos

Recorde-se que **resíduo** é:

$$e_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \quad i = 1, ..., n$$

Os resíduos padronizados são:

$$e_i^s = \frac{e_i}{\hat{\sigma}}$$

#### Normalidade dos erros

- O pressuposto da normalidade pode ser testado traçando um Normal QQ-plot ou um Normal PP-plot para os resíduos. Se os erros possuírem distribuição Normal, todos os pontos dos gráficos devem posicionarem-se mais ou menos sobre uma recta.
- Também se pode proceder a testes de ajustamento dos resíduos a uma distribuição Normal: Teste Kolmogorov- Smirnov e Teste de Shapiro.

### Análise dos Resíduos

## Média Nula, Variância constante e indepêndencia dos erros

- Estes pressupostos podem ser verificados graficamente representando os resíduos versus valores estimados da variável dependente  $\hat{Y}_i$  (ou versus valores da variável independente).
- Os pontos do gráfico devem distribuir-se de forma aleatória em torno da recta que corresponde ao resíduo zero, formando uma mancha de largura uniforme. Dessa forma será de esperar que os erros sejam independentes, de média nula e de variância constante.
- Se a dispersão dos resíduos aumentar ou diminuir com os valores da variável independentes xi, ou com os valores estimados da variável dependente Ŷi, deve ser posta em causa a hipótese de variâncias constante dos erros.

### Independência dos erros

- Para verificar o pressuposto da independência dos erros, representam-se os resíduos padronizados versus a ordem pela qual os dados foram recolhidos.
   É de esperar que a nuvem de pontos não apresente padrão, o que significará que as observações foram recolhidas de forma independente.
- A verificação da independência pode ser feita através do teste de Durbin-Watson à correlação entre resíduos sucessivos.

### Análise dos Resíduos

### Variáveis explicativas - adequabilidade

- É importante analisar a relação existente entre os resíduos do modelo estimado e as variáveis explicativas. O que se espera, de acordo com os pressupostos do modelo, é que tal relação seja inexistente. Isto é, quando os resíduos são representados versus os valores de cada uma das variáveis explicativas, a nuvem de pontos não deverá apresentar qualquer padrão.
- Quando as variáveis explicativas são de natureza quantitativa contínua, representam-se os pontos  $(x_i, e_i)$ . Na presença de variáveis categóricas, a representação  $(x_i, e_i)$  não faz sentido. Como alternativa, poderemos optar por qualquer representação que permita averiguar se os valores dos resíduos para cada classe apresentam distribuição semelhante por exemplo, box-plot paralelos.

## Transformações

O uso de transformações da variável resposta ou das variáveis explicativas é frequentemente suficiente para garantir os pressupostos do modelo de regressão quando aplicado a dados transformados.

- Transformações de X podem ser úteis para linearizar a relação de regressão não linear sem afetar a distribuição de Y;
- Transformações  $\sqrt(Y)$  e log(Y) são recomendadas quando a variÂncia dos erros aleatórios cresce proporcionalmente a  $x_i$  e a  $x_i^2$ , respetivamente, i = 1, ..., n;
- Transformações de Box-Cox.

# Exemplos

#### Example:

 $X_i = \text{amount of water/week}$ 

 $Y_i = plant growth in first 2 months$ 

#### Example:

 $X_i = salary$ 

 $Y_i =$  money spent on entertainment









Points on a straight line: Errors are normal (left) Points on a curve: Errors are not normal (right)

