Metody obliczeniowe w nauce i technice - laboratorium 3 - ćwiczenie 1

Kacper Klimas

Treść zadania

Dla zadanej funkcji f(x) wyznaczyć interpolacyjną funkcję sklejaną trzeciego stopnia oraz drugiego stopnia.

Dla obu rodzajów funkcji (2-go i 3-go stopnia) należy wykonać obliczenia dla co najmniej dwóch różnych warunków brzegowych.

Podobnie jak poprzednio określić dokładność interpolacji – dla różnej liczby przedziałów i dla różnych warunków brzegowych.

Porównać interpolację funkcjami sklejanymi drugiego i trzeciego stopnia.

Graficznie zilustrować interesujące przypadki. Opisać dokładnie przyjęte warunki brzegowe.

Opis zadania

Funkcje sklejane

Funkcja sklejana, splajn – rzeczywista funkcja gładka, która składa się z rodziny wielomianów jednego stopnia (zadanego). Każdy z wielomianów określa główną funkcję na kolejnych przedziałach pomiędzy odpowiednimi węzłami interpolacyjnymi.

$$f(x) = f_i(x) \quad dla \, x \in < x_i \,, \, x_{i+1}), \ gdzie \, i = 1, \, 2, \, \dots \,, \, n \, - \, 1$$
n - liczba zadanych węzłów

 x_i - wartość x węzła i

(w implementacjach przyjęte jest, że ostatni punkt należący do dziedziny z prawej strony jest wliczany do ostatniego wielomianu)

Zadana funkcja, wartości oraz przedział

$$f(x) = x * sin(\frac{k * \pi}{x})$$

$$x \in < 0.5, 4 >$$

$$k = 4$$

Wykresy zależności rzeczywistych wartości funkcji od przybliżonych wartościami wielomianów interpolujących zostały narysowane przy udziale 1000 punktów.

Interpolacyjna funkcja sklejana drugiego stopnia

Wyznaczanie wielomianów

Każdy z wielomianów, których potrzebujemy do określenia funkcji f(x) jest stopnia drugiego, więc jest on postaci:

$$f_i(x) = a_i * x^2 + b_i * x + c_i$$

$$gdzie i = 1, 2, ..., n - 1$$

W takim razie potrzebujemy znaleźć 3 * (n-1) współczynników wielomianów aby jasno mieć określony wzór głównej funkcji.

Aby znaleźć równania, z których obliczymy odpowiednie współczynniki dodajemy warunki dla wielomianów, tak aby funkcja była poprawnie określona:

Równość wielomianów oraz ich pochodnych w kolejnych węzłach

1.
$$f_i(x_i) = y_i$$
; $gdzie i = 1, 2, ..., n - 1$ (n - 1 równań)

2.
$$f_i(x_{i+1}) = y_{i+1}$$
; $gdzie i = 1, 2, ..., n - 1$ (n-1)

3.
$$f'_{i}(x_{i+1}) = f'_{i+1}(x_{i+1})$$
; $gdzie i = 1, 2, ..., n - 2 (n-2)$

Równanie te sprowadzają się do postaci:

1.
$$a_i * x_i^2 + b_i * x_i + c_i = y_i$$

2.
$$a_i * x_{i+1}^2 + b_i * x_{i+1} + c_i = y_{i+1}$$

3.
$$2a_i * x_{i+1} + b_i - 2a_{i+1} * x_{i+1} - b_{i+1} = 0$$

Wprowadzając dane do macierzy otrzymujemy:

$$B = \begin{bmatrix} \alpha_1 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{m-1} \\ \alpha_{m-1} \end{bmatrix}$$

$$C = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \\ 0 \\ 0 \end{bmatrix}$$

Warunki graniczne

Wyraźnie widać, że brakuje nam jednego równania aby móc obliczyć równanie. Aby je znaleźć (ostatni wiersz macierzy A) należy dodać jeden z kilku warunków granicznych.

W tym przypadku skorzystamy z dwóch warunków:

- warunek naturalny (natural quadratic spline)
- warunek stosowany do funkcji periodycznych (period quadratic spline)

Warunek naturalny

Zakłada on równość drugiej pochodnej wielomianu granicznego z zerem, tj.:

$$f''_{1}(x_{1}) = f''_{n-1}(x_{n}) = 0$$

W naszym przypadku jest to równoznaczne z:

$$f''_{n-1}(x_n) = 2 * a_{n-1} = 0$$

Ostatni wiersz macierzy A przyjmuje więc postać:

Warunek stosowany do funkcji periodycznych

Zakłada on równość wielomianów granicznych, ich pierwszych oraz drugich pochodnych tj.:

$$f_{1}(x_{1}) = f_{n-1}(x_{n})$$

$$f'_{1}(x_{1}) = f'_{n-1}(x_{n})$$

$$f''_{1}(x_{1}) = f''_{n-1}(x_{n})$$

Korzystając z drugiej zależności otrzymujemy:

$$f'_{1}(x_{1}) = f'_{n-1}(x_{n}) <=> 2a_{1}x_{1} + b_{1} = 2a_{n-1}x_{n} + b_{n-1}$$

$$2a_{1}x_{1} + b_{1} - 2a_{n-1}x_{n} - b_{n-1} = 0$$

Ostatni wiersz macierzy A przyjmuje więc postać:

W obu warunkach macierz B pozostaje bez zmian, w macierzy C w ostatnim wierszu umieszczamy zero.

Porównanie warunków

Wykresy wielomianów dla warunku periodycznego przy swoich krawędziach przedziału, w których są określone (w moim przypadku od 0.5 do 4), są łagodniejsze (bardziej dopasowywują się do funkcji oryginalnej). Wynika to z faktu, że pierwszy warunek jest oparty na równości drugiej pochodnej z zerem. Powoduje to, że ostatni wielomian staje się liniowy. Wszystko to widać na poniższych rysunkach.

Interpolacyjna funkcja sklejana trzeciego stopnia

Wyznaczanie wielomianów

Każdy z wielomianów, których potrzebujemy do określenia funkcji f(x) jest stopnia trzeciego, więc jest on postaci:

$$f_i(x) = a_i * x^3 + b_i * x^2 + c_i * x + d_i$$

$$gdzie i = 1, 2, ..., n - 1$$

W takim razie potrzebujemy znaleźć 4 * (n-1) współczynników wielomianów aby jasno mieć określony wzór głównej funkcji.

Aby znaleźć równania, z których obliczymy odpowiednie współczynniki dodajemy warunki dla wielomianów, tak aby funkcja była poprawnie określona:

Równość wielomianów oraz ich pierwszych i drugich pochodnych w kolejnych węzłach:

1.
$$f_i(x_i) = y_i \quad gdzie i = 1, 2, ..., n - 1 \quad (n-1 równań)$$

2.
$$f_i(x_{i+1}) = y_{i+1}$$
 $gdzie i = 1, 2, ..., n - 1$ (n-1)

3.
$$f'_{i}(x_{i+1}) = f'_{i+1}(x_{i+1})$$
 $gdzie i = 1, 2, ..., n - 2 (n-2)$

4.
$$f''_{i}(x_{i+1}) = f''_{i+1}(x_{i+1})$$
 $gdzie i = 1, 2, ..., n - 2 (n-2)$

Równania te sprowadzają się do postaci:

1.
$$a_i * x_i^3 + b_i * x_i^2 + c_i * x_i + d_i = y_i$$

2.
$$a_i * x_{i+1}^3 + b_i * x_{i+1}^2 + c_i * x_{i+1} + d_i = y_{i+1}$$

3.
$$3a_i * x_{i+1}^2 + 2b_i * x_{i+1} + c_i - 3a_{i+1} * x_{i+1}^2 + 2b_{i+1} * x_{i+1} + c_{i+1} = 0$$

4.
$$6a_i * x_{i+1} + 2b_i - 6a_{i+1} * x_{i+1} - 2b_{i+1} = 0$$

Wprowadzając dane do macierzy A otrzymujemy:

Warunki graniczne

Aby znaleźć dodatkowe dwa równanie, których brakuje (ostatnie dwa wiersze macierzy A) należy dodać jeden z kilku warunków granicznych.

W tym przypadku tak jak poprzednio skorzystamy z dwóch warunków:

- warunek naturalny (natural quadratic spline)
- warunek stosowany do funkcji periodycznych (period quadratic spline)

Warunek naturalny

Zakłada on równość drugich pochodnych wielomianów granicznych z zerem, tj.:

$$f''_1(x_1) = f''_{n-1}(x_n) = 0$$

W naszym przypadku jest to równoznaczne z:

$$6 a_1 x_1 + 2b_1 = 0$$

$$6 a_{n-1} x_n + 2b_{n-1} = 0$$

Ostatnie dwa wiersze macierzy A przyjmują więc postać:

$$\begin{bmatrix} 6x_1 & 2 & 0 & 0 & --- & --- & 0 & 6x_m & 2 & 0 & 0 \end{bmatrix}$$

Warunek stosowany do funkcji periodycznych

Zakłada on równość wielomianów granicznych, ich pierwszych oraz drugich pochodnych tj.:

$$f_{1}(x_{1}) = f_{n-1}(x_{n})$$

$$f'_{1}(x_{1}) = f'_{n-1}(x_{n})$$

$$f''_{1}(x_{1}) = f''_{n-1}(x_{n})$$

Korzystając z drugiej oraz trzeciej zależności otrzymujemy:

$$3a_1x_1^2 + 2b_1x_1 + c_1 - 3a_{n-1}x_n^2 + 2b_{n-1}x_n + c_{n-1} = 0$$

$$6a_1x_1 + 2b_1 - 6a_{n-1}x_n - 2b_{n-1} = 0$$

Ostatnie dwa wiersze macierzy A przyjmują więc postać:

$$\begin{bmatrix}
 6x_1 & 2 & 0 & 0 & \dots & -6x_m - 2 & 0 & 0 \\
 3x_1^2 & 2x_1 & 1 & 0 & \dots & -3x_m^2 - 2x_m - 10
 \end{bmatrix}$$

W obu warunkach macierz B pozostaje bez zmian, w macierzy C w ostatnich dwóch wierszach umieszczamy zera.

Porównanie warunków

Wykresy wielomianów dla warunku pierwszego są łagodniejsze (mają mniej wybrzuszeń). Wynika to z faktu, że pierwszy warunek jest oparty na równości drugiej pochodnej z zerem. Powoduje to, że współczynnik przy x^2 dla wielomianów granicznych jest równy 0. Dla drugiego warunku uwzględniamy równość pierwszych i drugich pochodnych krańców, przez co funkcja zachowuje się jak gdyby w tych miejscach były jej punkty przegięcia. Wszystko to można zauważyć na poniższych rysunkach.

Porównanie funkcji sklejanych

Warunek naturalny

Wykresy

Dla kolejnych wartości węzłów wykresy są bardzo podobne i z coraz większą dokładnością przypominają funkcję oryginalną. Wraz ze wzrostem ilości węzłów wykresy nie "psują się". Możliwości są ograniczone jedynie sprzętem. W moim przypadku w okolicach 350 węzłów pojawia się RuntimeError.

Dokładności

Dla każdego z węzłów w przedziale <10, 200> (iterując o 5) zostały policzone wartości lambda 1 oraz lambda 2, które odpowiednio są równe:

$$\lambda_1 = max(|f(x_i) - w(x_i)|) \quad dla \ i = 1, 2, \dots, N$$

$$\lambda_2 = \sum_{i=1}^{N} (f(x_i) - w(x_i))^2$$
 Dla N = 1000

Zależność węzłów od wartości $\lambda_1^{}$ dla wielomianu interpolującego sześciennego oraz kwadratowego.

Liczba węzłów	Kwadratowy	Sześcienny
10	3.473	1.620
30	2.002	0.946
50	0.174	0.442
70	0.146	0.127
90	0.063	0.042
110	0.029	0.016
130	0.015	0.007
150	0.009	0.004
170	0.005	0.002
200	0.003	0.001

Tabela nr 1

Zależność węzłów od wartości $\lambda_2^{}$ dla wielomianu interpolującego sześciennego oraz kwadratowego.

Liczba węzłów	Kwadratowy	Sześcienny
10	581.137	146.304
30	77.414	13.367
50	0.677	2.774
70	0.218	0.137
90	0.028	0.010
110	0.005	0.001
130	0.0004	0.0002
150	0.0002	5.963 * 10 ⁻⁵
170	7.844 * 10 ⁻⁵	1.795 * 10 ⁻⁵
200	5.411 * 10 ⁻⁵	3.934 * 10 ⁻⁶

Tabela nr 2

Warunek periodyczny

Wykresy

Podobnie jak dla warunku naturalnego kolejne wykresy są bardzo podobne i z coraz większą dokładnością przypominają funkcję oryginalną.

Dokładności

Wartości lambda 1 dla naturalnego warunku 3.5 -Wielomian kwadratowy Wielomian sześcienny 3.0 2.5 Lambda 1 1.5 1.0 0.5 0.0 25 50 75 100 150 175 125 200 Ilość węzłów

Wykres nr 8

Zależność węzłów od wartości $\lambda_1^{}$ dla wielomianu interpolującego sześciennego oraz kwadratowego.

Liczba węzłów	Kwadratowy	Sześcienny
10	3.407	1.378
30	1.990	0.716
50	0.171	0.483
70	0.144	0.267
90	0.062	0.182
110	0.029	0.141
130	0.015	0.118
150	0.009	0.099
170	0.003	0.088
200	0.003	0.075

Tabela nr 3

Wykres nr 9

Zależność węzłów od wartości $\lambda_2^{}$ dla wielomianu interpolującego sześciennego oraz kwadratowego.

Liczba węzłów	Kwadratowy	Sześcienny
10	550.836	131.248
30	76.257	7.818
50	0.660	3.236
70	0.215	0.580
90	0.028	0.201
110	0.005	0.098
130	0.001	0.057
150	0.0004	0.036
170	0.0001	0.024
200	6.083 * 10 ⁻⁵	0.015

Tabela nr 4

Wielomian interpolujący Lagrange'a

Wnioski

- Oba wielomiany są niewrażliwe na efekt Rungego, dzięki specyfice swojej budowy (wielomiany niskich stopni).
- Tabele dokładności (nr 1,2,3,4) pokazują, że wielomian sześcienny jest dokładniejszy od kwadratowego (wyższy stopień wielomianu).
- Zależnie od zadanych warunków granicznych, wykresy funkcji zachowują się inaczej (natomiast jest do przewidzenia w jaki sposób).
 Każdy z nich będzie działał lepiej dla innych funkcji.
- W porównaniu z wielomianem interpolującym Lagrange'a interpolacja spline'ami jest mniej dokładna dla małej ilości węzłów. Mimo to, ciężko znaleźć górną granicę, dla której dokładność tych wielomianów zaczyna się psuć (górna granica zależy od sprzętu). Podsumowując, "sklejki" potrafią osiągać lepsze dokładności, natomiast potrzebują do tego większej ilości węzłów.