



## À propos du LMA

Le LMA est une unité mixte de recherche AMU-CNRS-Centrale Méditerranée.

Domaines de recherches : Mécanique du solide (structures, matériaux), Acoustique (propagation d'ondes dans des milieux complexes)

Infrastructures : Chambres anéchoïques et réverbérantes, banc d'essai, plateformes de calculs



## À propos du LMA



Matériaux et Structures

Son

Ondes et Imagerie







### **Mon Sujet**

Thème: simulation numérique de propagation d'ondes, dans des géométries à des degrés de raffinements différents, tels que la simulation de tremblement de terre appliqué à la résistance de barrages.

Logiciels utilisés: GMSH, SEM3D





#### Mon sujet

Objectifs Principaux:

1- Produire un maillage de barrages hexaédrique respectant la topologie local (barrage de tsankov)

2- Effectuer les calculs grâce à l'algorithme SEM3D

3- Implémentation et étude (stabilités, complexité) d'autres méthodes numérique notamment SEM avec approche modifié dans un cas simple 1D pour conclure sur la stabilité dans des cas 3D

#### Déroulement

Aprentissage de GMSH

Déformer le maillage pour inclure les données topographiques



Maillage héxaédrique

Lancement des calculs

Conclusion sur la stabilité en fct de l'ordre

Apprendre à utiliser le mésocentre

Maillage "générique"

Avoir le maillage



Générer

Comparaison SEM ordre supérieur en temps

Lecture



Implémentation d'algos 1D



#### Création du mailage "générique" héxaédrique





Déformation des éléments pour inclure les données topographique local

Barrages déformés



PML déformés





## **Mon Sujet**

$$\frac{\partial^2 U}{\partial t^2} - c^2 \Delta U = F$$

$$M \ddot{X} + KX = F$$

$$M \ddot{X} = F - KX$$

**Matrice M** 

Pas diagonale FEM

**Produit KX** 

O(n<sup>2</sup>) pour FEM

O(nlog(n)) pour SEM

**Diagonale pour SEM** 







Simulation
231 843 Degrès de liberté
Dans un vrai calcul ≈10^12



Connexion



#### Résolution d'un problème 1D avec différentes méthodes

$$F = \delta(x - \frac{L}{2})A\sin(\omega t)H(T - t)$$
, avec  $T = \frac{2\pi}{\omega}$ 

FEM: Schéma d'ordre 2 en espace et en temps (saute-mouton)

$$\frac{u_{1}^{n+1}-2 u_{1}^{n}-u_{1}^{n-1}}{\Delta t^{2}}-c^{2}(u_{1+1}^{n}-2 u_{1}^{n}+u_{1-1}^{n})=f_{1}^{n}$$

SEM: Polyynôme d'aproximation d'ordre 2 schéma en temps d'odre 2k

$$\frac{u_{1}^{n+1}-2 u_{1}^{n}-u_{1}^{n-1}}{\Delta t^{2}}-c^{2} N U^{n} \underbrace{-2 \sum_{j=2}^{k} (-1)^{j} \frac{c^{2j} \Delta t^{2j-2}}{(2 j)!} N}_{j=F^{n}} = F^{n}$$
avec  $N = M^{-1} K$ 

Coef approche modiffié

 $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = F$  $\frac{u(x,0=0)}{\frac{\partial u}{t}(x,0)=0}$ u(0,t)=0u(L,t)=0



Solution en un point

### Travail Réalisé









#### CFL=c\*dt/dx=alpha







# Corriger SEM et FEM

Refaire les calculs pour une étude de stabilité

Corriger le maillage avec la bonne topographie

## Étape future