Igor Bloshanskii

Lomonosov Moscow State University Moscow State Regional University

Equiconvergence of expansions in multiple trigonometric Fourier series and Fourier integral in the case of "lacunary sequence of partial sums"

Abstract. The question under investigation is equiconvergence on $\mathbb{T}^N = [-\pi, \pi)^N$ of expansions in multiple trigonometric Fourier series and in Fourier integral of functions $f \in L_p(\mathbb{T}^N)$ and $g \in L_p(\mathbb{R}^N)$, p > 1, $N \geq 2$, g(x) = f(x) on \mathbb{T}^N . We consider the case when the rectangular "partial sums" of these expansions, i.e. $S_n(x; f)$ and $J_{\alpha}(x; g)$ correspondingly, have "indexes" $n = (n_1, \ldots, n_N) \in \mathbb{Z}^N$ and $\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{R}^N$ with components n_j and α_j satisfying relation: $|\alpha_j - n_j| \leq C$, $j = 1, \ldots, N$, constant C does not depend on n and α . In particular, the case when some of components n_j are elements of lacunary sequences is considered. An "almost" Cauchy property for sequences of rectangular partial sums of multiple Fourier expansions of functions in L_p , p > 1 was found.