Tutorial 8 - Belief Propagation and Sampling COMP9418 - Advanced Topics in Statistical Machine Learning

Lecturer: Gustavo Batista

Lecture: Belief Propagation and Sampling

Topic: Questions from lecture topics

Last revision: Monday 16th November, 2020 at 15:34

Question 1

Consider the following Bayesian network:

Suppose we condition on evidence e: D = true. Suppose that we have run the Parallel Iterative Belief Propagation (IBP) algorithm on the network, where it converges and yields the following set of messages and family marginals:

\overline{A}	$\pi_C(A)$	$\pi_D(A)$	$\lambda_C(A)$	$\lambda_D(A)$
+a		.5	.5	.6
- a		.5	.5	.4

В	$\pi_C(B)$	$\pi_D(B)$	$\lambda_C(B)$	$\lambda_D(B)$
+b	.3	.25	.5	
-b	.7	.75	.5	

\overline{A}	В	C	$\beta(A, B, C)$
+a	+b	+c	.162
+a	+b	-c	.018
+a	-b	+c	
+a	-b	-c	.084
-a	+b	+c	.084
-a	+b	-c	.036
-a	-b	+c	.168
-a	-b	-c	.112

\overline{A}	В	D	$\beta(A,B,D)$
+a	+b	+d	.2
+a	+b	-d	0
+a	-b	+d	
+a	-b	-d	0
-a	+b	+d	.1
-a	+b	-d	0
-a	-b	+d	.3
-a	-b	-d	0

- a. Fill in the missing values for IBP messages.
- b. Fill in the missing values for family marginals.
- c. Compute marginals $\beta(A)$ and $\beta(B)$ using the IBP messages and those computed in (a).
- d. Compute marginals $\beta(A)$ and $\beta(B)$ by summing out the appropriate variables from the family marginals $\beta(ABC)$ as well as $\beta(ABD)$.
- e. Compute joint marginal $\beta(AB)$ by summing out the appropriate variables from family marginals $\beta(ABC)$ as well as $\beta(ABD)$.
- f. Are the marginals computed in (d) consistent? What about those computed in (e)?

Consider the following IBP algorithm:

```
Data: N: Bayesian network
     Data: e: evidence
     Result: Approximate marginals, \beta(X\mathbf{U}) of P(X\mathbf{U}|e) for each family X\mathbf{U} in N
     begin
 1
            t \leftarrow 0;
  \mathbf{2}
            initialize all messages;
  3
            while messages have not converged do
  4
                  t \leftarrow t + 1;
  5
                  for each node X with parents U do
  6
                        for each parent U_i do
  7
                              \lambda_X^t(U_i) = \eta \sum_{X \mathbf{U} \setminus \{U_i\}} \lambda_{\mathbf{e}}(X) \phi_X(X, \mathbf{U}) \prod_{k \neq i} \pi_X^{t-1}(U_k) \prod_j \lambda_{Y_i}^{t-1}(X);
  8
  9
                        \begin{array}{l} \textbf{for } each \ child \ Y_j \ \textbf{do} \\ \mid \ \pi^t_{Y_j}(X) = \eta \sum_{\textbf{U}} \lambda_{\textbf{e}}(X) \phi_X(X,\textbf{U}) \prod_i \pi^{t-1}_X(U_i) \prod_{k \neq j} \lambda^{t-1}_{Y_k}(X); \end{array}
10
11
12
                  end
13
            end
14
      \operatorname{end}
15
      return \beta(X\mathbf{U}) = \eta \lambda_{\mathbf{e}}(X)\phi_X(X,\mathbf{U}) \prod_i \pi_X^t(U_i) \prod_j \lambda_{Y_i}^t(X)
```

Question 2

Consider the following Bayesian network:

and the parameter $\theta_{\bar{a}}$ representing the probability of A = false (i.e., it is not winter). For each of the following values of this parameter, 0.01, 0.4 and 0.99 do the following:

- a. Compute the probability of P(+d, +e): wet grass and slippery road. You can use the code from previous tutorials.
- b. Estimate P(+d, +e) using forward sampling with sample sizes ranging from n = 100 to n = 15,000.
- c. Generate a plot with n on the x-axis and the exact value of P(+d, +e) and the estimate for P(+d, +e) on the y-axis.
- d. Generate a plot with n on the x-axis and the exact variance of the estimate for P(+d, +e) and the sample variance on the y-axis.