

Mathématiques

Classe: BAC INFORMATIQUE

Session Principale 2022

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

(\$\) 45' min

5 pt

- a) Vérifier que $(2+i)^2 = 3+4i$.
- b) Résoudre (E).

Exercice 1

2) Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . On considère les points A, B et C d'affixes respectives $z_A = 3 - i$, $z_B = 1 - 2i$ et $z_C = 1 + 3i$.

On désigne par (C) le cercle de diamètre [BC].

- a) Calculer $(z_A z_B)(\overline{z_A z_C})$.
- b) En déduire que A appartient à (C).

 Dans la suite de l'exercice, M désigne un point du cercle (C) différent de B et C.

3) On pose $z_M = x + iy$ avec x et y deux réels.

On note Ω le centre de (C).

- a) Vérifier que : $z_{\Omega} = 1 + \frac{1}{2}i$ et calculer ΩA .
- b) Montrer que $(x-1)^2 + (y-\frac{1}{2})^2 = \frac{25}{4}$.
- 4) Soit H le projeté orthogonal du point M sur la droite (BC) et on désigne par S l'aire du triangle MBC.
 - a) Justifier que : $z_h = 1 + iy$
 - b) Montrer que : $S = \frac{5}{2} |x 1|$.
 - c) Déterminer les affixes des points M pour lesquels S = 5.

Exercice 2

(5) 45' min

5 pt

- 1) On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E'): 3x 4y = 7.
 - a) Vérifier que (1,-1) est une solution de (E').

- b) Déterminer les couples (x, y) de $\mathbb{Z} \times \mathbb{Z}$ solution de (E').
- 2) Pour tout $n \in \mathbb{N}$, on considère les nombres $a_n = 4n^2 + 8n 3$ et $b_n = 3n^2 + 6n 4$. On pose : $d_n = PGCD(a_n, b_n)$.
 - a) Vérifier que pour tout $n \in \mathbb{N}$, $a_n = 4(n^2+2n-1)+1$ et $b_n = 3(n^2+2n-1)-1$ et montrer que pour tout $n \in \mathbb{N}$, (a_n, b_n) est une solution de (E').
 - b) Montrer que $d_n = 1$ ou $d_n = 7$.

3)

- a) Vérifier que pour tout $n \in \mathbb{N}$,
- b) Recopier et compéter le tableau suivant :

Reste de la division euclidienne de <i>n</i> par 7	0	1	2	3	4	5	6
Reste de la division euclidienne de $(n+1)^2$ par 7							

4)

- a) Montrer que si $d_n = 7$ alors n = 6[7].
- b) Montrer que si $n \equiv 6[7]$ alors a_n et b_n sont divisibles par 7.

Exercice 3

On considère la suite $\left(U_{n}\right)$ définie sur $\mathbb N$ par : $\begin{cases} U_{0}=1\\ U_{n+1}=e^{-n}U_{n} \text{ ; } n\in\mathbb N \end{cases}$

1)

- a) Calculer U_1 et U_2 .
- b) Montrer par récurrence, que pour tout $n \in \mathbb{N}$, $U_n > 0$.
- c) Justifier que pour tout $n \in \mathbb{N}$, $e^{-n} \le 1$ et montrer que $\left(U_n\right)$ est décroissante.
- d) Montrer que la suite (U_n) est convergente.
- 2) Soit (V_n) la suite définie sur \mathbb{N} par $V_n = \ln(U_n)$.
 - a) Montrer que pour tout $n \in \mathbb{N}$, $V_{n+1} V_n = -n$.
 - Montrer que pour tout $n \in \mathbb{N}$, $V_n = \frac{-n(n-1)}{2}$.

3)

- a) Donner l'expression de U_n en fonction de n.
- Déterminer $\lim_{n\to +\infty} U_n$.

Exercice 4

(5) 55' min

6 pt

On donne ci-dessous la courbe (C) dans un repère orthonormé (O, \vec{i}, \vec{j}) de la fonction g définie sur \mathbb{R} par : $g(x) = 2e^x - 1$.

- 1) En utilisant le graphique, déterminer $g(-\ln 2)$ et donner le signe de g sur \mathbb{R} .
- 2) On donne la fonction f définie sur \mathbb{R} par $f(x) = 2e^x(e^x 1)$ et on note (Γ) sa courbe représentative dans le repère (O, \vec{i}, \vec{j}) .
 - a) Déterminer $\lim_{x\to\infty} f(x)$ et interpréter graphiquement ce résultat.
 - b) Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement ce résultat.

3)

- a) Montrer que $f'(x) = 2e^x g(x)$ pour tout réel x.
- b) Vérifier que $f(-\ln 2) = -\frac{1}{2}$ et donner le tableau de variation de f.

4)

- a) Montrer que $f(x) g(x) = 2\left[\left(e^x 1\right)^2 \frac{1}{2}\right]$ pour tout réel x et en déduire que (C) et (Γ) se coupent aux points : $A\left(\ln\frac{2-\sqrt{2}}{2},1-\sqrt{2}\right)$ et $B\left(\ln\frac{2+\sqrt{2}}{2},1+\sqrt{2}\right)$.
- b) Déterminer f(0) et donner le signe de f sur \mathbb{R} .
- c) Tracer la courbe (Γ) .
- 5) Soit I l'aire du domaine D du plan limité par la courbe (Γ) , l'axe (O, \vec{i}) et les droites d'équations $x = -\ln 2$ et x = 0.
 - a) Montrer que $f(x) = \frac{1}{2} (f'(x) g'(x))$ pour tout réel x.
 - b) Montrer que : $I = \frac{1}{4}$.
 - c) Pour tout réel $\alpha < -\ln 2$, on note I_{α} l'aire du domaine D_{α} du plan limité par la courbe $\left(\Gamma\right)$, l'axe $\left(O,\vec{i}\right)$ et les droites d'équation $x=\alpha$ et $x=-\ln 2$.

 $\text{Montrer que}: I_{\alpha} = \frac{1}{2} \Big(f \left(\alpha \right) - g \left(\alpha \right) \Big) + \frac{1}{4}.$

- d) En déduire que $I_{\alpha}=I$ si et seulement si $\alpha=\ln\frac{2-\sqrt{2}}{2}$.
- e) Hachurer les domaines D et D_{α} pour $\alpha = \ln \frac{2 \sqrt{2}}{2}$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000