

上海瓴控科技 电机 CAN 总线通讯协议

V2.36

目录

上海瓴控科技	
电机 CAN 总线通讯协议	
免责声明	4
CAN 总线参数	5
单电机命令	5
1. 读取电机状态 1 和错误标志命令	5
2. 清除电机错误标志命令	6
3. 读取电机状态 2 命令	6
4. 读取电机状态 3 命令	7
5. 电机关闭命令	8
6. 电机运行命令	8
7. 电机停止命令	8
8. 抱闸器控制和状态读取命令	8
9. 开环控制命令(该命令仅在 MS 电机上实现,其他电机无效)	9
10. 转矩闭环控制命令(该命令仅在 MF、MH、MG 电机上实现)	9
11. 速度闭环控制命令 1	错误!未定义书签。
12. 速度闭环控制命令 2	10
13. 多圈位置闭环控制命令 1	10
14. 多圈位置闭环控制命令 2	11
15. 单圈位置闭环控制命令 1	11
16. 单圈位置闭环控制命令 2	12
17. 增量位置闭环控制命令 1	12
18. 增量位置闭环控制命令 2	13
19. 读取控制参数命令	13
20. 写入控制参数命令	14
21. 读取电机编码器数据命令	14
22. 设置当前位置到 ROM 作为电机零点命令	
23. 读取多圈角度命令	15
24. 读取单圈角度命令	
25. 设置当前位置为任意角度(写入 RAM)	16
附录一: 电机控制参数表	17

免责声明

感谢您购买上海瓴控科技有限公司电机驱动一体控制系统。在使用之前,请仔细阅读本声明,一旦使用,即被视为对本声明全部内容的认可和接受。请严格遵守产品手册、控制协议和相关的法律法规、政策、准则安装和使用该产品。在使用产品过程中,用户承诺对自己的行为及因此而产生的所有后果负责。因用户不当使用、安装、改装造成的任何损失,瓴控科技将不承担法律责任。

瓴控科技是上海瓴控科技有限公司及其关联公司的商标。本文出现的产品名称、品牌等,均为其所属公司的商标或注册商标。

本产品及手册为上海瓴控科技有限公司版权所有。未经许可,不得以任何形式复制翻印。关于免责声明的最终解释权,归本公司所有。

CAN 总线参数

```
总线接口: CAN
波特率(常规模式,单电机命令):
1Mbps(默认)
500kbps
250kbps
125kbps
100kbps
波特率(广播模式,多电机命令):
1Mbps
```

单电机命令

同一总线上共可以挂载多达 32(视总线负载情况而定)个驱动,为了防止总线冲突,每个驱动需要设置不同的 ID。

主控向总线发送单电机命令,对应 ID 的电机在收到命令后执行,并在一段时间后(0.25ms 内)向主控发送回复。命令报文和回复报文格式如下:

命令报文标识符: 0x140 + ID(1~32) 回复报文标识符: 0x180 + ID(1~32)

帧格式:数据帧 帧类型:标准帧 DLC:8 字节

500kbps

1. 读取电机状态 1 和错误标志命令

该命令读取当前电机的温度、电压和错误状态标志

数据域	说明	数据
DATA[0]	命令字节	0x9A
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复

电机在收到命令后回复主机,该帧数据包含了以下参数:

- 1. 电机温度 temperature(int8_t 类型,单位 1℃/LSB)。
- 2. 母线电压 voltage(int16 t 类型,单位 0.01V/LSB)。
- 3. 母线电流 current (int16 t 类型,单位 0.01A/LSB)。
- 4. 电机状态 motorState (为 uint8_t 类型,各个位代表不同的电机状态)
- 5. 错误标志 errorState (为 uint8_t 类型,各个位代表不同的电机错误状态)

数据域	说明	数据
DATA[0]	命令字节	0x9A
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	母线电压低字节	DATA[2] = *(uint8_t *)(&voltage)

DATA[3]	母线电压高字节	DATA[3] *((uint8_t *)(&voltage)+1)
DATA[4]	母线电流低字节	DATA[4] = *(uint8_t *)(¤t)
DATA[5]	母线电流高字节	DATA[5] = *((uint8_t *)(¤t)+1)
DATA[6]	电机状态字节	DATA[6] = motorState
DATA[7]	错误状态字节	DATA[7] = errorState

备注:

- 1. motorState = 0x00 电机处于开启状态; motorState = 0x10 电机处于关闭状态。
- 2. errorState 各个位具体状态表如下

errorState 位	状态说明	0	1
0	低电压状态	正常	低压保护
1	高电压状态	正常	高压保护
2	驱动温度状态	正常	驱动过温
3	电机温度状态	正常	电机过温
4	电机电流状态	正常	电机过流
5	电机短路状态	正常	电机短路
6	堵转状态	正常	电机堵转
7	输入信号状态	正常	输入信号丢失超时

2. 清除电机错误标志命令

该命令清除当前电机的错误状态, 电机收到后返回

数据域	说明	数据
DATA[0]	命令字节	0x9B
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复

电机在收到命令后回复主机。回复数据和读取电机状态 1 和错误标志命令相同(仅命令字节 DATA[0] 不同,这里为 0x9B)

备注:

1. 电机状态没有恢复正常时,错误标志无法清除。

3. 读取电机状态 2 命令

该命令读取当前电机的温度、电机转矩电流(MF、MG)/电机输出功率(MS)、转速、编码器位置。

数据域	说明	数据
DATA[0]	命令字节	0x9C
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复

电机在收到命令后回复主机, 该帧数据中包含了以下参数。

- 1. 电机温度 temperature(int8_t 类型,1℃/LSB)。
- 2. MF、MG 电机的转矩电流值 iq 或 MS 电机的输出功率值 power,int16_t 类型。MG 电机 iq 分辨率为(66/4096 A) / LSB;MF 电机 iq 分辨率为(33/4096 A) / LSB。MS 电机 power 范围-1000~1000。
- 3. 电机转速 speed(int16_t 类型,1dps/LSB)。
- 4. 编码器值 encoder(uint16_t 类型,14bit 编码器的数值范围 0~16383,15bit 编码器的数值范围 0~32767,16bit 编码器的数值范围 0~65535)。

数据域	说明	数据
DATA[0]	命令字节	0x9C
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	转矩电流低字节	DATA[2] = *(uint8_t *)(&iq)
	输出功率低字节(MS 系列)	DATA[2] = *(uint8_t *)(&power)
DATA[3]	转矩电流高字节	DATA[3] = *((uint8_t *)(&iq)+1)
	输出功率高字节(MS 系列)	DATA[3] = *((uint8_t *)(&power)+1)
DATA[4]	电机速度低字节	DATA[4] = *(uint8_t *)(&speed)
DATA[5]	电机速度高字节	DATA[5] = *((uint8_t *)(&speed)+1)
DATA[6]	编码器位置低字节	DATA[6] = *(uint8_t *)(&encoder)
DATA[7]	编码器位置高字节	DATA[7] = *((uint8_t *)(&encoder)+1)

4. 读取电机状态 3 命令

由于 MS 电机没有相电流采样,该命令在 MS 电机上无作用。

该命令读取当前电机的温度和 3 相电流数据

数据域	说明	数据
DATA[0]	命令字节	0x9D
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复

电机在收到命令后回复主机,该帧数据包含了以下数据:

- 1. 电机温度 temperature(int8_t 类型,1℃/LSB)
- 2. 相电流数据 iA、iB、iC,数据类型为 int16_t 类型,MG 电机相电流分辨率为(66/4096 A) / LSB;MF 电机相电流分辨率为(33/4096 A) / LSB。

数据域	说明	数据
DATA[0]	命令字节	0x9D
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	A 相电流低字节	DATA[2] = *(uint8_t *)(&iA)
DATA[3]	A 相电流高字节	DATA[3] = *((uint8_t *)(& iA)+1)
DATA[4]	B 相电流低字节	DATA[4] = *(uint8_t *)(&iB)
DATA[5]	B 相电流高字节	DATA[5] = *((uint8_t *)(& iB)+1)
DATA[6]	C 相电流低字节	DATA[6] = *(uint8_t *)(&iC)
DATA[7]	C 相电流高字节	DATA[7] = *((uint8_t *)(& iC)+1)

5. 电机关闭命令

将电机从开启状态(上电后默认状态)切换到关闭状态,清除电机转动圈数及之前接收的控制指令, LED 由常亮转为慢闪。此时电机仍然可以回复控制命令,但不会执行动作。

数据域	说明	数据
DATA[0]	命令字节	0x80
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复

和主机发送相同。

6. 电机运行命令

将电机从关闭状态切换到开启状态,LED由慢闪转为常亮。此时再发送控制指令即可控制电机动作。

数据域	说明	数据
DATA[0]	命令字节	0x88
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复

和主机发送相同。

7. 电机停止命令

停止电机,但不清除电机运行状态。再次发送控制指令即可控制电机动作。

数据域	说明	数据
DATA[0]	命令字节	0x81
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

和主机发送相同。

8. 抱闸器控制和状态读取命令

控制抱闸器的开合,或者读取当前抱闸器的状态。

数据域	说明	数据
DATA[0]	命令字节	0x8C

DATA[1]	抱闸器状态控制和读取字节	0x00: 抱闸器断电,刹车启动
		0x01: 抱闸器通电,刹车释放
		0x10: 读取抱闸器状态
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

数据域	说明	数据
DATA[0]	命令字节	0x8C
DATA[1]	抱闸器状态字节	0x00: 抱闸器处于断电状态,刹车启动
		0x01: 抱闸器处于通电状态,刹车释放
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

9. 开环控制命令(该命令仅在 MS 电机上实现,其他电机无效)

主机发送该命令以控制输出到电机的开环电压,控制值 powerControl 为 int16_t 类型,数值范围-850~850, (电机电流和扭矩因电机而异)。

数据域	说明	数据
DATA[0]	命令字节	0xA0
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	开环控制值低字节	DATA[4] = *(uint8_t *)(&powerControl)
DATA[5]	开环控制值高字节	DATA[5] = *((uint8_t *)(&powerControl)+1)
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

备注:

1. 该命令中的控制值 powerControl 不受上位机中的 Max Power 值限制。

驱动回复(1帧)

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 DATA[0]不同,这里为 DATA[0] 。

10. 转矩闭环控制命令(该命令仅在 MF、MH、MG 电机上实现)

主机发送该命令以控制电机的转矩电流输出,控制值 iqControl 为 int16_t 类型,数值范围-2048~2048,对应 MF 电机实际转矩电流范围-16.5A~16.5A,对应 MG 电机实际转矩电流范围-33A~33A,母线电流和电机的实际扭矩因不同电机而异。

数据域	说明	数据
DATA[0]	命令字节	0xA1
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00

DATA[3]	NULL	0x00
DATA[4]	转矩电流控制值低字节	DATA[4] = *(uint8_t *)(&iqControl)
DATA[5]	转矩电流控制值高字节	DATA[5] = *((uint8_t *)(&iqControl)+1)
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

备注:

1. 该命令中的控制值 iqControl 不受上位机中的 Max Torque Current 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 DATA[0]不同,这里为 0xA1)。

11. 速度闭环控制命令

主机发送该命令以控制电机的速度,同时带有力矩限制。控制值 speedControl 为 int32_t 类型,对应实际转速为 0.01dps/LSB;控制值 iqControl 为 int16_t 类型,数值范围-2048~ 2048,对应 MF 电机实际转矩电流范围-16.5A~16.5A,对应 MG 电机实际转矩电流范围-33A~33A,母线电流和电机的实际扭矩因不同电机而异。

数据域	说明	数据
DATA[0]	命令字节	0xA2
DATA[1]	NULL	0x00
DATA[2]	转矩电流控制值低字节	DATA[2] = *(uint8_t *)(&iqControl)
DATA[3]	转矩电流控制值高字节	DATA[3] = *((uint8_t *)(&iqControl)+1)
DATA[4]	速度控制低字节	DATA[4] = *(uint8_t *)(&speedControl)
DATA[5]	速度控制	DATA[5] = *((uint8_t *)(&speedControl)+1)
DATA[6]	速度控制	DATA[6] = *((uint8_t *)(&speedControl)+2)
DATA[7]	速度控制高字节	DATA[7] = *((uint8_t *)(&speedControl)+3)

备注:

- 1. 该命令下电机的 speedControl 由上位机中的 Max Speed 值限制。
- 2. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 DATA[0]不同,这里为 0xA2)。

12. 多圈位置闭环控制命令1

主机发送该命令以控制电机的位置(多圈角度)。控制值 angleControl 为 int32_t 类型,对应实际位置 为 0.01degree/LSB,即 36000 代表 360°,电机转动方向由目标位置和当前位置的差值决定。

数据域	说明	数据
DATA[0]	命令字节	0xA3
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	位置控制低字节	DATA[4] = *(uint8_t *)(&angleControl)
DATA[5]	位置控制	DATA[5] = *((uint8_t *)(&angleControl)+1)
DATA[6]	位置控制	DATA[6] = *((uint8_t *)(&angleControl)+2)
DATA[7]	位置控制高字节	DATA[7] = *((uint8_t *)(&angleControl)+3)

备注:

- 1. 该命令下的控制值 angleControl 受上位机中的 Max Angle 值限制。
- 2. 该命令下电机的最大速度由上位机中的 Max Speed 值限制。

- 3. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 4. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 DATA[0]不同,这里为 0xA3)。

13. 多圈位置闭环控制命令 2

主机发送该命令以控制电机的位置(多圈角度)

- 1. 控制值 angleControl 为 int32_t 类型,对应实际位置为 0.01degree/LSB,即 36000 代表 360°,电机 转动方向由目标位置和当前位置的差值决定。
- 2. 控制值 maxSpeed 限制了电机转动的最大速度,为 uint16_t 类型,对应实际转速 1dps/LSB,即 360 代表 360dps。

数据域	说明	数据
DATA[0]	命令字节	0xA4
DATA[1]	NULL	0x00
DATA[2]	速度限制低字节	DATA[2] = *(uint8_t *)(&maxSpeed)
DATA[3]	速度限制高字节	DATA[3] = *((uint8_t *)(&maxSpeed)+1)
DATA[4]	位置控制低字节	DATA[4] = *(uint8_t *)(&angleControl)
DATA[5]	位置控制	DATA[5] = *((uint8_t *)(&angleControl)+1)
DATA[6]	位置控制	DATA[6] = *((uint8_t *)(&angleControl)+2)
DATA[7]	位置控制高字节	DATA[7] = *((uint8_t *)(&angleControl)+3)

备注:

- 1. 该命令下的控制值 angleControl 受上位机中的 Max Angle 值限制。
- 2. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 3. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复(1帧)

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 DATA[0]不同,这里为 0xA4)。

14. 单圈位置闭环控制命令1

主机发送该命令以控制电机的位置(单圈角度)。

- 1. 控制值 spinDirection 设置电机转动的方向,为 uint8 t 类型,0x00 代表顺时针,0x01 代表逆时针
- 2. 控制值 angleControl 为 uint32_t 类型,对应实际位置为 0.01degree/LSB,即 36000 代表 360°。

数据域	说明	数据
DATA[0]	命令字节	0xA5
DATA[1]	转动方向字节	DATA[1] = spinDirection
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	位置控制字节 1 (bit0 : bit7)	DATA[4] = *(uint8_t *)(&angleControl)
DATA[5]	位置控制字节 2 (bit8 : bit15)	DATA[5] = *((uint8_t *)(&angleControl)+1)
DATA[6]	位置控制字节 3 (bit16: bit23)	DATA[6] = *((uint8_t *)(&angleControl)+2)
DATA[7]	位置控制字节 4 (bit24: bit31)	DATA[7] = *((uint8_t *)(&angleControl)+3)

备注:

- 1. 该命令下电机的最大速度由上位机中的 Max Speed 值限制。
- 2. 该控制模式下, 电机的最大加速度由上位机中的 Max Acceleration 值限制。

3. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 DATA[0]不同,这里为 0xA5)。

15. 单圈位置闭环控制命令 2

主机发送该命令以控制电机的位置(单圈角度)。

- 1. 控制值 spinDirection 设置电机转动的方向,为 uint8_t 类型,0x00 代表顺时针,0x01 代表逆时针
- 2. angleControl 为 uint32_t 类型,对应实际位置为 0.01degree/LSB,即 36000 代表 360°。
- 3. 速度控制值 maxSpeed 限制了电机转动的最大速度,为 uint16_t 类型,对应实际转速 1dps/LSB,即 360 代表 360dps。

数据域	说明	数据
DATA[0]	命令字节	0xA6
DATA[1]	转动方向字节	DATA[1] = spinDirection
DATA[2]	速度限制字节 1 (bit0 : bit7)	DATA[2] = *(uint8_t *)(&maxSpeed)
DATA[3]	速度限制字节 2 (bit8 : bit15)	DATA[3] = *((uint8_t *)(&maxSpeed)+1)
DATA[4]	位置控制字节 1 (bit0 : bit7)	DATA[4] = *(uint8_t *)(&angleControl)
DATA[5]	位置控制字节 2 (bit8 : bit15)	DATA[5] = *((uint8_t *)(&angleControl)+1)
DATA[6]	位置控制字节 3 (bit16: bit23)	DATA[6] = *((uint8_t *)(&angleControl)+2)
DATA[7]	位置控制字节 4 (bit24: bit31)	DATA[7] = *((uint8_t *)(&angleControl)+3)

备注:

- 1. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 2. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复(1帧)

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 DATA[0]不同,这里为 0xA6)。

16. 增量位置闭环控制命令1

主机发送该命令以控制电机的位置增量。

控制值 angleIncrement 为 int32_t 类型,对应实际位置为 0.01degree/LSB,即 36000 代表 360° ,电机的转动方向由该参数的符号决定。

数据域	说明	数据
DATA[0]	命令字节	0xA7
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	位置控制低字节	DATA[4] = *(uint8_t *)(& angleIncrement)
DATA[5]	位置控制	DATA[5] = *((uint8_t *)(& angleIncrement)+1)
DATA[6]	位置控制	DATA[6] = *((uint8_t *)(& angleIncrement)+2)
DATA[7]	位置控制高字节	DATA[7] = *((uint8_t *)(& angleIncrement)+3)

备注:

- 1. 该命令下电机的最大速度由上位机中的 Max Speed 值限制。
- 2. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 3. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 DATA[0]不同,这里为 0xA7)。

17. 增量位置闭环控制命令 2

主机发送该命令以控制电机的位置增量.

- 1. 控制值 angleIncrement 为 int32_t 类型,对应实际位置为 0.01degree/LSB,即 36000 代表 360° ,电机转动方向由该参数的符号决定。
- 2. 控制值 maxSpeed 限制了电机转动的最大速度,为 uint32_t 类型,对应实际转速 1dps/LSB,即 360代表 360dps。

数据域	说明	数据
DATA[0]	命令字节	0xA8
DATA[1]	NULL	0x00
DATA[2]	速度限制低字节	DATA[2] = *(uint8_t *)(&maxSpeed)
DATA[3]	速度限制高字节	DATA[3] = *((uint8_t *)(&maxSpeed)+1)
DATA[4]	位置控制低字节	DATA[4] = *(uint8_t *)(& angleIncrement)
DATA[5]	位置控制	DATA[5] = *((uint8_t *)(& angleIncrement)+1)
DATA[6]	位置控制	DATA[6] = *((uint8_t *)(& angleIncrement)+2)
DATA[7]	位置控制高字节	DATA[7] = *((uint8_t *)(& angleIncrement)+3)

备注:

- 1. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 2. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 DATA[0]不同,这里为 0xA8)。

18. 读取控制参数命令

主机发送该命令读取当前电机的控制参数,读取的参数由序号 controlParamID 确定,见<mark>电机控制参数</mark>

<u>表</u>

数据域	说明	数据
DATA[0]	命令字节	0xC0
DATA[1]	控制参数序号	DATA[1] = controlParamID
DATA[2]	NULL	DATA[2] = 0x00
DATA[3]	NULL	DATA[3] = 0x00
DATA[4]	NULL	DATA[4] = 0x00
DATA[5]	NULL	DATA[5] = 0x00
DATA[6]	NULL	DATA[6] = 0x00
DATA[7]	NULL	DATA[7] = 0x00

驱动回复

驱动回复的数据中包含了读取的参数值,具体参数见电机控制参数表

数据域	说明	数据
DATA[0]	命令字节	0xC0
DATA[1]	控制参数序号	DATA[1] = controlParamID
DATA[2]	控制参数字节1	DATA[2] = controlParamByte1
DATA[3]	控制参数字节 2	DATA[3] = controlParamByte2
DATA[4]	控制参数字节3	DATA[4] = controlParamByte3

DATA[5]	控制参数字节 4	DATA[5] = controlParamByte4
DATA[6]	控制参数字节 5	DATA[6] = controlParamByte5
DATA[7]	控制参数字节 6	DATA[7] = controlParamByte6

19. 写入控制参数命令

主机发送该命令写入控制参数到 RAM 中,即时生效,断电后失效。写入的参数和序号 controlParamID 见电机控制参数表

数据域	说明	数据
DATA[0]	命令字节	0xC1
DATA[1]	控制参数序号	DATA[1] = controlParamID
DATA[2]	控制参数字节1	DATA[2] = controlParamByte1
DATA[3]	控制参数字节 2	DATA[3] = controlParamByte2
DATA[4]	控制参数字节3	DATA[4] = controlParamByte3
DATA[5]	控制参数字节 4	DATA[5] = controlParamByte4
DATA[6]	控制参数字节 5	DATA[6] = controlParamByte5
DATA[7]	控制参数字节 6	DATA[7] = controlParamByte6

驱动回复

驱动回复的数据中包含了写入后的参数值,具体的参数见电机控制参数表

数据域	说明	数据
DATA[0]	命令字节	0xC1
DATA[1]	控制参数序号	DATA[1] = controlParamID
DATA[2]	控制参数字节1	DATA[2] = controlParamByte1
DATA[3]	控制参数字节 2	DATA[3] = controlParamByte2
DATA[4]	控制参数字节3	DATA[4] = controlParamByte3
DATA[5]	控制参数字节 4	DATA[5] = controlParamByte4
DATA[6]	控制参数字节 5	DATA[6] = controlParamByte5
DATA[7]	控制参数字节 6	DATA[7] = controlParamByte6

备注:控制参数及其序号说明见读取控制参数命令备注

20. 读取电机编码器数据命令

主机发送该命令以读取编码器的当前位置

数据域	说明	数据
DATA[0]	命令字节	0x90
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复

电机在收到命令后回复主机, 该帧数据中包含了以下参数。

- 1. 编码器位置 encoder(uint16_t 类型,14bit 编码器的数值范围 0~16383),为编码器原始位置减去编码器零偏后的值。
- 2. 编码器原始位置 encoderRaw(uint16_t 类型, 14bit 编码器的数值范围 0~16383)。
- 3. 编码器零偏 encoderOffset (uint16_t 类型, 14bit 编码器的数值范围 0~16383), 该点作为电机角 度的 0 点。

数据域	说明	数据
DATA[0]	命令字节	0x90
DATA[1]	NULL	0x00
DATA[2]	编码器位置低字节	DATA[2] = *(uint8_t *)(&encoder)
DATA[3]	编码器位置高字节	DATA[3] = *((uint8_t *)(&encoder)+1)
DATA[4]	编码器原始位置低字节	DATA[4] = *(uint8_t *)(&encoderRaw)
DATA[5]	编码器原始位置高字节	DATA[5] = *((uint8_t *)(&encoderRaw)+1)
DATA[6]	编码器零偏低字节	DATA[6] = *(uint8_t *)(&encoderOffset)
DATA[7]	编码器零偏高字节	DATA[7] = *((uint8_t *)(&encoderOffset)+1)

21. 设置当前位置到 ROM 作为电机零点命令

设置电机当前位置的编码器原始值作为电机上电后的初始零点注意:

- 1. 该命令需要重新上电后才能生效
- 2. 该命令会将零点写入驱动的 ROM,多次写入将会影响芯片寿命,不建议频繁使用

数据域	说明	数据
DATA[0]	命令字节	0x19
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复

电机在收到命令后回复主机,数据中 encoderOffset 为设置的 0 偏值

数据域	说明	数据
DATA[0]	命令字节	0x19
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	编码器零偏低字节	DATA[6] = *(uint8_t *)(&encoderOffset)
DATA[7]	编码器零偏高字节	DATA[7] = *((uint8_t *)(&encoderOffset)+1)

22. 读取多圈角度命令

主机发送该命令以读取当前电机的多圈绝对角度值

数据域	说明	数据
DATA[0]	命令字节	0x92
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00

DATA[7] NULL	0x00
--------------	------

电机在收到命令后回复主机,该帧数据中包含了以下参数。

1. 电机角度 motorAngle,为 int64_t 类型数据,正值表示顺时针累计角度,负值表示逆时针累计角度,单位 0.01° /LSB。

数据域	说明	数据
DATA[0]	命令字节	0x92
DATA[1]	角度低字节1	DATA[1] = *(uint8_t *)(&motorAngle)
DATA[2]	角度字节 2	DATA[2] = *((uint8_t *)(& motorAngle)+1)
DATA[3]	角度字节3	DATA[3] = *((uint8_t *)(& motorAngle)+2)
DATA[4]	角度字节 4	DATA[4] = *((uint8_t *)(& motorAngle)+3)
DATA[5]	角度字节 5	DATA[5] = *((uint8_t *)(& motorAngle)+4)
DATA[6]	角度字节 6	DATA[6] = *((uint8_t *)(& motorAngle)+5)
DATA[7]	角度字节7	DATA[7] = *((uint8_t *)(& motorAngle)+6)

23. 读取单圈角度命令

主机发送该命令以读取当前电机的单圈角度

数据域	说明	数据
DATA[0]	命令字节	0x94
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复

电机在收到命令后回复主机,该帧数据中包含了以下参数。

1. 电机单圈角度 circleAngle,为 uint32_t 类型数据,以编码器零点为起始点,顺时针增加,再次到达零点时数值回 0,单位 0.01°/LSB,数值范围 0~36000*减速比-1。

数据域	说明	数据
DATA[0]	命令字节	0x94
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	单圈角度低字节1	DATA[4] = *(uint8_t *)(& circleAngle)
DATA[5]	单圈角度字节 2	DATA[5] = *((uint8_t *)(& circleAngle)+1)
DATA[6]	单圈角度字节3	DATA[6] = *((uint8_t *)(& circleAngle)+2)
DATA[7]	单圈角度高字节 4	DATA[7] = *((uint8_t *)(& circleAngle)+3)

24. 设置当前位置为任意角度(写入 RAM)

主机发送该命令以设置电机的当前位置作为任意角度,多圈角度值 motorAngle 为 int32_t 类型数据,数据单位 0.01°/LSB。

数据域	说明	数据
DATA[0]	命令字节	0x95
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00

DATA[3]	NULL	0x00
DATA[4]	多圈角度低字节1	DATA[4] = *(uint8_t *)(&motorAngle)
DATA[5]	多圈角度字节 2	DATA[5] = *((uint8_t *)(& motorAngle)+1)
DATA[6]	多圈角度字节3	DATA[6] = *((uint8_t *)(& motorAngle)+2)
DATA[7]	多圈角度高字节 4	DATA[7] = *((uint8_t *)(& motorAngle)+3)

电机在收到命令后回复主机, 帧数据和主机发送相同

附录一: 电机控制参数表

电机控制参数表		
参数序号 ParamID	控制参数说明	
	角度环 pid,包含三个参数	
	anglePidKp(角度环 kp,uint16_t 类型)	
	controlParamByte1 = *(uint8_t *)(& anglePidKp)	
	controlParamByte2 = *((uint8_t *)(& anglePidKp)+1)	
10 (0,04)	anglePidKi(角度环 ki,uint16_t 类型)	
10 (0x0A)	controlParamByte3 = *(uint8_t *)(& anglePidKi)	
	controlParamByte4 = *((uint8_t *)(& anglePidKi)+1)	
	anglePidKd(角度环 kd,uint16_t 类型)	
	controlParamByte5 = *(uint8_t *)(& anglePidKd)	
	controlParamByte6 = *((uint8_t *)(& anglePidKd)+1)	
	速度环 pid,包含三个参数	
	speedPidKp(速度环 kp,uint16_t 类型)	
	controlParamByte1 = *(uint8_t *)(& speedPidKp)	
	controlParamByte2 = *((uint8_t *)(& speedPidKp)+1)	
11 (0x0B)	speedPidKi(速度环 ki,uint16_t 类型)	
11 (0,00)	controlParamByte3 = *(uint8_t *)(& speedPidKi)	
	controlParamByte4 = *((uint8_t *)(& speedPidKi)+1)	
	speedPidKd(速度环 kd,uint16_t 类型)	
	controlParamByte5 = *(uint8_t *)(& speedPidKd)	
	controlParamByte6 = *((uint8_t *)(& speedPidKd)+1)	
	电流环 pid,包含三个参数	
	currentPidKp(电流环 kp,uint16_t 类型)	
	controlParamByte1 = *(uint8_t *)(& currentPidKp)	
	controlParamByte2 = *((uint8_t *)(& currentPidKp)+1)	
12 (0x0C)	currentPidKi(电流环 ki,uint16_t 类型)	
12 (0.00)	controlParamByte3 = *(uint8_t *)(& currentPidKi)	
	controlParamByte4 = *((uint8_t *)(& currentPidKi)+1)	
	currentPidKd(电流环 kd,uint16_t 类型)	
	controlParamByte5 = *(uint8_t *)(& currentPidKd)	
	controlParamByte6 = *((uint8_t *)(& currentPidKd)+1)	
30(0x1E)	inputTorqueLimit(最大力矩电流,int16_t 类型)	
	controlParamByte3 = *(uint8_t *)(& inputTorqueLimit)	
	controlParamByte4 = *((uint8_t *)(& inputTorqueLimit)+1)	
	inputSpeedLimit(最大速度,int32_t 类型)	
32 (0x20)	controlParamByte3 = *(uint8_t *)(& inputSpeedLimit)	
	controlParamByte4 = *((uint8_t *)(& inputSpeedLimit)+1)	

	controlParamByte5 = *((uint8_t *)(& inputSpeedLimit)+2)
	controlParamByte6 = *((uint8_t *)(& inputSpeedLimit)+3)
	inputAngleLimit(角度限制,int32_t 类型)
	controlParamByte3 = *(uint8_t *)(& inputAngleLimit)
34 (0x22)	controlParamByte4 = *((uint8_t *)(& inputAngleLimit)+1)
	controlParamByte5 = *((uint8_t *)(& inputAngleLimit)+2)
	controlParamByte6 = *((uint8_t *)(& inputAngleLimit)+3)
	inputCurrentRamp(电流斜率,int32_t 类型)
	controlParamByte3 = *(uint8_t *)(& inputCurrentRamp)
36 (0x24)	controlParamByte4 = *((uint8_t *)(& inputCurrentRamp)+1)
	controlParamByte5 = *((uint8_t *)(& inputCurrentRamp)+2)
	controlParamByte6 = *((uint8_t *)(& inputCurrentRamp)+3)
	inputSpeedRamp(速度斜率,int32_t 类型)
	controlParamByte3 = *(uint8_t *)(& inputSpeedRamp)
38 (0x26)	controlParamByte4 = *((uint8_t *)(& inputSpeedRamp)+1)
	controlParamByte5 = *((uint8_t *)(& inputSpeedRamp)+2)
	controlParamByte6 = *((uint8_t *)(& inputSpeedRamp)+3)