CUMC 2021 at UWO

Teaching Math to Computers

Apurva Nakade

apurva.nakade@northwestern.edu

Open the following link in a web browser:

https://leanprover-community.github.io/lean-web-editor/

Open 5-6 tabs with this link to avoid delays later.

Plan

- 1. Overview of Proof Assistants/Theorem Provers
- 2. Introduction to Lean Theorem Prover
- 3. Work on Lean worksheets in breakout rooms
 - You'll be learning a new programming language.

Big Questions: Will computers ever be able to ...

- Verify existing math?
 - eg. Formal proof of Feit-Thompson theorem, Liquid tensor experiment
- Help humans write proofs?
 - Train an AI that can understand existing proofs!
- Understand existing math?
 - Train an AI that can understand existing proofs!
- Create new math?
 - Train an AI that can understand existing proofs!

Progress so far: Lean-gptf (Code, Presentation).

Current goal: Create a database of existing math

- Computers cannot understand *natural language proofs*.
- Need to translate natural language proofs into programs.
- Curry–Howard correspondence (mid 1900's)
- Several competing languages for writing these *programs*:
 - Mizar, HOL, Isabelle, Coq, Lean, PVS, MetaMath, and more
- Formalizing 100 Theorems (https://www.cs.ru.nl/~freek/100/)

Lean Theorem Prover

Lean Theorem Prover

Pros:

- Open source
- Large math library actively maintained by mathematicians
 - https://leanprover-community.github.io/mathlib-overview.html
- Welcoming and friendly community
 - Leanprover Zulipchat
- A LOT of online resources for learning
 - https://leanprover-community.github.io/learn.html
- Somewhat human readable
- Undergraduate students contribute to the Lean math library.

Lean Theorem Prover

Cons:

- Kernel developed and maintained by Microsoft Research
- Relatively new (still being developed)
- Based on *type theory* instead of *set theory*

Sample Lean Code

Theorem: There are infinitely many prime numbers.

Theorem: For every natural number n, there exists a prime p which is greater than or equal to n.

- 1. Let m = n! + 1.
- 2. Let p be the smallest prime factor of m.
- 3. *p* is prime, by construction.
- 4. Remains to show that p is greater than or equal to n.
 - 1. Proof by contradiction:
 - 2. Suppose p < n.
 - 3. Then p divides n!.
 - 4. Hence, p divides m n! which equals 1. Contradiction!

```
theorem infinitude of primes (n : \mathbb{N}) : \exists (p : \mathbb{N}), \text{ prime } p \land n \leq p :=
  begin
     let m := n.factorial + 1,
     let p := min fac m,
     use p,
     have p is prime : prime p := min fac prime (ne of gt (succ lt succ (factorial pos n))),
     split,
10
     begin
11
        exact p is prime,
12
     end,
13
14
     begin
15
        by contradiction h, push neg at h,
       have p dvd n : p | n.factorial := dvd factorial (min fac pos ) (le of lt h),
16
17
        have p dvd one : p | 1 := (nat.dvd add iff right p dvd n).2 (min fac dvd ),
18
        exact p is prime.not dvd one p dvd one,
19
20 end
```

- Download the file shared in the Zoom chat.
- Go to: https://leanprover-community.github.io/lean-web-editor/
- Click on "Choose file" and select the downloaded file (infinitude_of_primes.lean).
- Wait for the bar on the top to change color from orange to green.
- Place your cursor at the end of any line to see the "goal state" at that point.
- Hover your mouse over a command to see more info about it.

Lean jargon

- Every theorem in Lean has some hypotheses (can be empty) and a single target.
- In the previous example,
 - " $(n : \mathbb{N})$ " is a hypothesis, and
 - "∃ (p : \mathbb{N}), prime p \wedge n \leq p" is the target.
- The goal is to construct a proof of the target using the hypotheses (and already proven theorems) and logically valid arguments.
- Lean lets you do this dynamically using "tactics".
- After each valid "tactic" command, the "goal state" is updated and is visible in the "goal window".

Goal window

In the previous example, the initial proof state as shown in the goal window is:

```
n : \mathbb{N} 
 \vdash ∃ (p : \mathbb{N}), prime p \land n \leq p
```

After the tactics

```
let m := n.factorial + 1,
let p := min_fac m,
use p,
```

the new proof state becomes:

```
n : N,
m : N := n.factorial + 1,
p : N := m.min_fac
⊢ prime p ∧ n ≤ p
```

The content after the symbol "⊢" is the current target and the rest are the current hypotheses.

Propositional logic in Lean

Propositional logic in Lean

We'll learn how to prove theorems involving

- Implication
- Negation
- And
- Or

Proofs in Lean

- For a computer, proofs are "more important" than theorems.
 - This is (arguably) the fundamental difference between the way we do math and the way machines "do math".
- Proof checkers like Lean need to keep track of proofs.

We pass proofs as arguments to tactics.

Notation

- P, Q, R will denote propositions.
- h: P stands for "h is a proof of P".

We pass proofs as arguments to tactics.

For today,

exact h,

is a valid tactic but

exact P,

is invalid.

Implication

Implication

- "P implies Q" is denoted by $P \to Q$.
- Three basic tactics:
 - exact
 - intro
 - apply

Cheat Sheet

Tactic	rpose
1 1' 1'	exact Implicati

Negation

Negation

- "Negation of P" is denoted by $\neg P$.
- There is an in-built proposition **false** which is false.
- $\neg P$ is defined as the proposition "P implies **false**".
 - If P is true then "P implies **false**" is false.
 - If *P* is false then "*P* implies **false**" is true.
- Implications are all you need for manipulating negations!

Cheat Sheet

Purpose	Tactic	
Closing goal	exact	

	Hypothesis	Target
Implication	apply	intro
Negation	apply	intro

And, Or

And, Or

- "P and Q" is denoted by $P \wedge Q$ and "P or Q" is denoted by $P \vee Q$.
- Tactics for "And" and "Or" operators:
 - cases
 - split
 - left
 - right

Cheat Sheet

Purpose	Tactic		
Closing goal	exact		

	Hypothesis	Target
Implication	apply	intro
Negation	apply	intro
And	cases	split
Or	cases	left/right

Law of excluded middle

Law of excluded middle

- So far, we've "constructed proofs" from *hypotheses*.
- Constructive proofs cannot be used to prove " $\neg \neg P$ implies P".
- This requires on an extra axiom called the *Law of excluded middle*.
- The Law of excluded middle states that
 - For any proposition P, either P is true or $\neg P$ is true.
- Proof by contradiction relies on the Law of excluded middle.

Proof by Contradiction

- Tactics that use the law of excluded middle:
 - push_neg
 - by_cases
 - by_contradiction

Cheat Sheet

Purpose	Tactic		Hypothesis	Target
Closing goal	exact	Implication	apply	intro
Simplify negations	push_neg	Negation	apply	intro
Proof by contradiction	by_contradiction	And	cases	split
LEM	by_cases	Or	cases	left/right

Learning resources

- https://leanprover-community.github.io/learn.html
- https://leanprover.zulipchat.com/