4 Lineare Gleichungssysteme

Diese tauchten verschiedentlich schon im letzten Kapitel auf. Ein allgemeines **lineares Gleichungssystem** über dem Körper K hat die Gestalt

(1)
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$
$$\dots$$
$$a_{m1}x_1 + a_{k2}x_2 + \dots + a_{mn}x_n = b_m.$$

Dabei sind sämtliche Glieder Körperelemente. Die a_{ij} heißen **Koeffizienten**, die b_i **konstante Glieder**, und die x_j sind die **Unbekannten**. In Matrizenschreibweise lautet das Gleichungssystem

$$(2) A\overline{x} = \overline{b}.$$

Falls \overline{a}_j die Spaltenvektoren von $A = \left(a_{ij}\right)$ sind, so können wir auch schreiben

$$(3) x_1 \overline{a}_1 + \ldots + x_n \overline{a}_n = \overline{b}.$$

Lösbarkeitskriterium

Fügen wir zur Matrix A noch die Spalte \bar{b} hinzu, so entsteht die sogenannte **erweiterte** Koeffizientenmatrix $(A\bar{b})$.

4.1 Satz (Lösbarkeitskriterium von Kronecker–Capelli).

Das System (1) besitzt genau dann eine Lösung, wenn Rang $A = \text{Rang } (A\overline{b})$.

Beweis. Wenn (1) eine Lösung (x_1,\ldots,x_n) besitzt, so ist wegen (3) $\overline{b}\in \operatorname{Lin}(\overline{a}_1,\ldots,\overline{a}_n)$ und demnach Rang $(A\overline{b})=\operatorname{Rang} A$. Setzen wir andererseits die letzten Gleichungen voraus und $r:=\operatorname{Rang} A$, so gibt es linear unabhängige Spaltenvektoren $\overline{a}_{j_1},\ldots,\overline{a}_{j_r}$, und das System $\overline{a}_{j_1},\ldots,\overline{a}_{j_r},\overline{b}$ ist linear abhängig. Deshalb muss \overline{b} in der linearen Hülle der $\overline{a}_{j_1},\ldots,\overline{a}_{j_r}$ liegen, d.h. $\sum\limits_{l=1}^r x_{j_l}\overline{a}_{j_l}=\overline{b}$ für gewisse $x_{j_l}\in K$. Wir

setzen zusätzlich $x_j = 0$, falls $j \notin \{j_1, \dots, j_r\}$ und bekommen $\sum_{j=1}^n x_j \overline{a}_j = \overline{b}$, also (3). Folglich genügen die x_1, \dots, x_n dem System (1).

Lösungsstruktur

Um die gesamte Lösungsmenge von (1) zu bestimmen, wollen wir die Vektorraumund Abbildungssprache benutzen. Wie früher deuten wir die Matrix A des Systems in (2) als lineare Abbildung $\mathbf{A}: K^n \to K^m$ mit $\mathbf{A}\overline{v} = A\overline{v}$. Dann ist

$$\mathbf{A}^{-1}(\{\overline{b}\}) = \{\overline{x} \in K^n : A\overline{x} = \overline{b}\}\$$

die Lösungsmenge von (2), kurz LM, und

$$\mathbf{A}^{-1}(\{\overline{0}\}) = \{\overline{x} \in K^n : A\overline{x} = \overline{0}\}\$$

die Lösungsmenge des sogenannten **homogenen Gleichungssystems**, kurz $LM(\overline{0})$.

4.2 Satz.

- (i) $LM(\overline{0})$ ist ein linearer Unterraum von K^n der Dimension n Rang A.
- (ii) Jeder lineare Unterraum U von K^n ist Lösungsmenge eines homogenen linearen Gleichungssystems.

Beweis. (i) $LM(\overline{0})$ ist als Kern der Abbildung A ein Unterraum, und der Dimensionssatz 3.3.4 führt zu

$$\dim LM(\overline{0}) = n - \operatorname{Rang} \mathbf{A} = n - \operatorname{Rang} A.$$

(ii) Wir ergänzen eine beliebige Basis b_1, \ldots, b_k in U zu einer Basis b_1, \ldots, b_n in K^n und benutzen die Darstellung

$$K^n = U \oplus V$$

mit $V = \text{Lin}(b_{k+1}, \dots, b_n)$. Seien $\mathbf{A} := \mathbf{\Pi}_V$ die Projektion auf V entlang U und A die zugehörige Matrix bzgl. der Standardbasis in K^n . Damit ist offenbar $U = \text{Kern } \mathbf{A} = \{\overline{x} \in K^n : A\overline{x} = \overline{0}\}$.

Für die Bestimmung der Lösungsmenge des Ausgangsgleichungssystems benötigen wir folgenden Begriff.

Definition. Die **Verschiebung** eines Unterraums U des Vektorraums V um einen Vektor $v \in V$ ist gegeben durch

$$U+v:=\{u+v:u\in U\}.$$

4.3 Satz.

- (i) $LM = LM(\overline{0}) + \overline{v}$ für jedes $\overline{v} \in LM$.
- (ii) Jede Verschiebung eines Unterraums von K^n ist Lösungsmenge eines linearen Gleichungssystems.

Beweis. (i) Die Beziehungen $\overline{x} \in LM$ und $\overline{v} \in LM$, d.h. $A\overline{x} = \overline{b}$ und $A\overline{v} = \overline{b}$, sind äquivalent zu $A(\overline{x} - \overline{v}) = \overline{0}$ und $A\overline{v} = \overline{b}$, d.h. zu $\overline{u} := \overline{x} - \overline{v} \in LM(\overline{0})$ und $\overline{v} \in LM$. Umgeschrieben lautet dies $\overline{x} = \overline{u} + \overline{v}$ mit $\overline{u} \in LM(\overline{0})$ und $\overline{v} \in LM$, was gleichbedeutend mit $LM = LM(\overline{0}) + \overline{v}$ ist.

(ii) Sei nun $U+\overline{v}$ Verschiebung eines Unterraums. Wegen Satz 4.2 (ii) gibt es eine Matrix A mit $U=\{\overline{x}\in K^n: A\overline{x}=\overline{0}\}$. Wir setzen nun $\overline{b}:=A\overline{v}$ und betrachten die Gleichung $A\overline{x}=\overline{b}$. Jedes $\overline{x}\in U+\overline{v}$ gehört wegen der Darstellung $\overline{x}=\overline{u}+\overline{v}$ mit $\overline{u}\in U$ und $A\overline{x}=A\overline{u}+A\overline{v}=\overline{0}+\overline{b}=\overline{b}$ zur Lösungsmenge. Ist andererseits \overline{x} eine Lösung des Gleichungssystems, so erhalten wir $A(\overline{x}-\overline{v})=\overline{b}-\overline{b}=\overline{0}$, d.h. $\overline{u}:=\overline{x}-\overline{v}\in U$ und damit $\overline{x}\in U+\overline{v}$.

Eindeutige Lösbarkeit

4.4 Satz. Das Gleichungssystem (1) besitzt genau dann eine eindeutig bestimmte Lösung \overline{x} , wenn gilt

Rang
$$(A\overline{b}) = \text{Rang } A = n$$
.

Beweis. Aufgrund der Darstellung $LM = LM(\overline{0}) + \overline{v}$ aus dem Satz 4.3 ist die Lösungsmenge LM genau dann einelementig, wenn $LM(\overline{0}) = \{\overline{0}\}$ gilt und überhaupt eine Lösung \overline{v} existiert. Das Lösbarkeitskriterium und der schon erwähnte Dimensionssatz ergeben die äquivalente Bedingung Rang $(A\overline{b}) = \text{Rang } A = n$.

Lösungsalgorithmus (nach Gauß)

Um die Lösungsmenge rechnerisch bestimmen zu können, betrachten wir zunächst den **Spezialfall**

$$(2') A'\overline{x} = \overline{b'},$$

wo die Matrix A' eine obere Dreiecksgestalt besitzt, d.h.

$$(A',\overline{b'}) = egin{pmatrix} a'_{11} & & & b'_1 \ & \ddots & & & dots \ \mathbf{0} & & a'_{rr} & & b'_r \ & & & b'_{r+1} \ & \mathbf{0} & & \mathbf{0} & dots \ & & b'_m \end{pmatrix} \qquad ext{mit } a'_{ii}
eq 0 \ , \ i = 1,\ldots,r \, .$$

Eine Lösung \overline{x} existiert hier höchstens dann, wenn $b'_{r+1}=\ldots=b'_m=0$. In diesem Fall können wir die Unbekannten $x_{r+1},\ldots,x_n\in K$ beliebig vorgeben und in die r-te Gleichung des Systems einsetzen. x_r lässt sich dort eliminieren:

$$x_r = (a'_{rr})^{-1} (b'_r - \sum_{j=r+1}^n a'_{rj} x_j).$$

Anschließend werden x_r, \ldots, x_n in die (r-1)-te Gleichung eingesetzt, und man stellt nach x_{r-1} um, usw.

Übungsaufgabe

Demzufolge ist die Lösungsmenge gleich der Menge der (x_1, \ldots, x_n) , für die die i-te Koordinate, $i \leq r$ als durch das Verfahren bestimmte Linearkombination der Variablen x_{r+1}, \ldots, x_n und der Konstanten Glieder b'_{i+1}, \ldots, b'_r dargestellt werden kann:

$$x_i = L_i(x_{r+1}, \dots, x_n, b'_i, \dots, b'_r).$$

 $x_i=L_i(x_{r+1},\ldots,x_n,b_i',\ldots,b_r')$. Der Zusammenhang zu Satz 4.3 entsteht folgendermaßen. Eine spezielle Lösung liefert nach Konstruktion z.B. \overline{v} mit $v_{r+1} = \ldots = v_n = 0$ und $v_i = L_i(0,\ldots,0,b'_{i+1},\ldots,b'_r), i \leq r$. Als nächstes wählen wir die Basis $\overline{e}_{r+1},\ldots,\overline{e}_n$ in $LM(\overline{0})$ mit $e_{ij}=\delta_{ij}=\left\{\begin{smallmatrix} 1&i=j\\0&i\neq j\end{smallmatrix}\right\}$ für i>r und $e_{ij}=L_i(0,\ldots,0,1,0\ldots 0)$ mit 1 an (j-r)-ter Stelle für $i\leq r$.

Dann gilt
$$\overline{x} = \sum_{j=r+1}^n x_j \overline{e}_j + \overline{v} \ .$$

Wir kommen nun zum Lösungsverfahren für (1) im Allgemeinfall, wobei Rang $(A\overline{b}) = \text{Rang } A$. Dieses lässt sich auf den obigen Spezialfall zurückführen. Die Lösungsmenge von (1) ist nämlich invariant gegenüber

- Vertauschen von Zeilen von $(A\bar{b})$,
- Vertauschen von Spalten von A, falls die zugehörigen x_i mit vertauscht werden,
- Addition des Vielfachen einer Zeile von $(A\bar{b})$ zu einer anderen.

Andererseits kann (Ab) durch den Gaußschen Algorithmus vermöge solcher Operationen zur Form $(A'\overline{b'})$ von oben gebracht werden (s. Lemma 3.5.4).

Das gesamte Lösungsverfahren heißt dann auch wieder Gaußschen Algorithmus.