《计算理论导引》期末试卷

南京大学计算机科学与技术系

2018年6月

本试卷满分100分,共七题。考试时间2小时。开卷。

姓名	学号	成绩			

一. (30分)

- (1) 什么是 Turing 机?
- (2) 什么是 Church-Turing Thesis? 你拥护吗?
- (3) 什么是 Turing 机的通用性 (universality)?
- (4) 什么是一般递归函数?
- (5) 什么是 $\lambda\beta$ 系统的 CR 性质?

- 二. $(20 \, \mathcal{G})$ 设 A 表示 \mathcal{EF} , B 表示 $\mathcal{PRF} \mathcal{EF}$, C 表示 $\mathcal{GRF} \mathcal{PRF}$, D 表示 $\mathcal{RF} \mathcal{GRF}$, E 表示不可计算的数论函数类。判定下列数论函数所属的函数类,选择 A、B、C、D、E 之一,填在题后的表格中。
 - (1) $f: \mathbb{N} \to \mathbb{N}$ 为处处无定义的函数。
 - (2) Ackermann 函数。
 - (3) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若 } n \text{ 为奇数} \\ \text{无定义,} & \text{否则} \end{cases}$$

(4) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(m) = \begin{cases} 0, & \text{若存在 } M \in \Lambda \text{ 使得 } m = \lceil M \rceil \text{ 且 } M \text{ 呈形 } x_1 x_2 \cdots x_n, \text{ 这里 } x_i \text{ 为变元} \\ 1, & \text{否则} \end{cases}$$

(5) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(m,n) = \begin{cases} 1, & \text{若存在 } M, N \in \Lambda \text{ 使得 } m = \lceil M \rceil, n = \lceil N \rceil \text{ 且 } M =_{\beta} N \\ 2, & \text{否则} \end{cases}$$

- (6) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = |n! \cdot \cos(1)|$,这里 |x|为对 x 向下取整。
- (7) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若存在 Turing 机 } M \text{ 使得 } n = \sharp M \text{ 且 } M \text{ 对于一切输入皆停机} \\ 1, & \text{否则} \end{cases}$$

(8)
$$f: \mathbb{N}^2 \to \mathbb{N}$$
 定义为 $f(n,m) = 3^3$. $\overset{\cdot \cdot \cdot 3^n}{\longrightarrow}$ 共 $m+1 \uparrow 3$ 。

(9) Gödel 的 *β*-函数。

(10)
$$f: \mathbb{N} \to \mathbb{N}$$
 定义为 $f(n) = \left\lfloor \left(n + 1 + \frac{1}{n+1}\right)^{n+1} \right\rfloor$, 这里 $\lfloor x \rfloor$ 为对 x 向下取整。

对于上述各函数,判定其所属函数类,选择 $A \times B \times C \times D \times E$ 之一,填在下面的表格中。

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

三. (10 分) 设 $f: \mathbb{N} \to \mathbb{N}$ 为一元函数, 其定义如下:

$$f(0) = 0,$$

 $f(1) = 1,$
 $f(n+2) = (n+2) (f(n+1) + f(n)).$

证明:

1.
$$f(n) \le (n+1)!$$

2.
$$f(0) = 0$$
, $f(n+1) = (n+2)f(n) + (-1)^n$

3.
$$f(n) = (n+1)! \sum_{i=0}^{n+1} \frac{(-1)^i}{i!}$$

4.
$$f \in \mathcal{EF}$$

$$= \frac{(4)i8:}{f(n) = (n+1)!} \sum_{i=0}^{n+1} \frac{(i)i}{i!}$$

$$= \sum_{i=0}^{n+1} \frac{(n+1)!}{i!} \sqrt{rs(i,2)}$$

$$= \sqrt{s(i,2)}$$

四. (10 分) 若在系统 $\lambda\beta$ 中加入

$$(\star) \qquad \lambda x. \, x = \lambda x. \, xxx$$

作为额外公理,则对任何的 $M,N\in\Lambda$, $\lambda\beta+(\star)$ \vdash M=N。

五. (10分) 构造机器 M 使得其满足

输入 $s:01^n01^m0\cdots$ 时,输出 $t:0\cdots01^{2m}01^{2n}0\cdots$

(注: 构造时可利用已有机器)

六. (10 分) (谨以此题向 Alan Turing 先生致敬!)

设 \mathcal{L} 为某个给定的程序设计语言。对于每一个 \mathcal{L} -程序 P,假设我们已经构造了程序 P 的 Gödel 编码 $\sharp P$,且由 $\sharp P$ 可能行地重构 P。证明: 若定义数论谓词 H(x,y) 为 "编码为 y 的程序 P 对于输入 x 停机",则 H(x,y) 不可判定;即不存在一般递归函数 h 使得

$$h(x,y) = \begin{cases} 0, & \text{若 } H(x,y) \text{ 真} \\ 1, & \text{否则} \end{cases}$$

七. $(10\, \mathcal{G})$ Let f(n) be the n-th digit in the decimal expansion of the real number $\sinh(1)$, where $\sinh(x)=(e^x-e^{-x})/2$ is the hyperbolic sine function. For example, suppose that $\sinh(1)=a_0.a_1a_2\cdots$, then $f(0)=a_0,\,f(1)=a_1,\,f(2)=a_2,\cdots$. Prove that function f is Turing-computable. Furthermore, prove that it is elementary. 令 f(n) 为实数 $\sinh(1)$ 的十进制展开式中的第 n 位数字,其中 $\sinh(x)$ 为双曲正弦函数。例如,假设 $\sinh(1)=a_0.a_1a_2\cdots$,那么 $f(0)=a_0$, $f(1)=a_1$, $f(2)=a_2$,…。证明函数 f 是 Turing 可计算的。进而,证明 f 是初等函数。