Halmazalgebra

1. Igazoljuk, hogy bármely A, B, C halmazra $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. $(\cap, \cup, \subseteq, = definíciója, esetszétválasztás.)$

gy.
$$A \cup (B \cap C) \supseteq (A \cup B) \cap (A \cup C)$$
.

hf. a)
$$A \cup (B \cap A) = A$$
 b) $A \cap (B \cup A) = A$

2. Igazoljuk, hogy bármely A,B halmazra $A \cup B = B \iff A \subseteq B$. (Feltételes állítások.)

gy.
$$A \cup (B \cap C) = (A \cup B) \cap C \Leftrightarrow A \subseteq C$$
.

hf.
$$A \subseteq C \Rightarrow A \cap (B \cup C) = A$$
.

3. Igazoljuk az ismert azonosságok felhasználásával, hogy tetszőleges A,B,C halmazra $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$. $(A \setminus B = A \cap \overline{B}$, disztributív szabályok, de Morgan szabályok.)

gy.
$$K \setminus (K \setminus L) = L \setminus (L \setminus K)$$
.

hf.
$$(K \setminus L) \setminus M = (K \setminus M) \setminus (L \setminus M)$$
.

4. (Ellenpélda keresés.) Legyen A,B,C tetszőleges halmazok és

$$K = (A \setminus (B \setminus C)) \setminus C$$

$$L = (A \setminus B) \cup (A \cap C).$$

Vizsgáljuk meg, hogy melyik tartalmazás áll fenn a) $K \subseteq L$, b) $L \subseteq K$, c) L = K; d) egyik se.

gy. Ha lehet, adjunk meg olyan A, B, C halmazt, amire igaz $(A \setminus C) \cup B = C$ és olyat is, amire nem igaz.

hf. Mi
$$X$$
, ha $A \setminus X = X \setminus A$?

5*. Igazoljuk, hogy tetszőleges A,B halmazra $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$. (Alaphalmazra vonatkozó komplementer, De Morgan, indirekt bizonyítás.)

$$\mathbf{gy.} \quad \overline{A} \cap \overline{B} \supseteq \overline{A \cup B} \qquad (\overline{A}, \overline{B} \supseteq \overline{A \cup B}).$$

hf.
$$\overline{A} \cup \overline{B} = \overline{A \cap B}$$
.

6*. Igazoljuk, hogy tetszőleges A halmazra $\emptyset \subseteq A$. (Üres halmaz, univerzum.)

οv.

- 1. Legyen $A,B\subseteq U\neq\varnothing\quad (\overline{A}$ az U-ra vonatkozik). Igazoljuk, hogy ha $A\cap\overline{B}=U,$ akkor $A\not\subset B.$
- 2. Mikor oldható meg az $(A \smallsetminus X) \cup B = X$ halmazegyenlet és ha megoldható, mi a megoldása?

hf.
$$A \cap \overline{B} = \emptyset \iff A \subseteq B$$
.

 $X \subseteq Y \stackrel{\text{def}}{\Leftrightarrow}$ minden x-re, ha $x \in X$, akkor $x \in Y$ is teljesül.

 $X=Y \overset{\text{def}}{\Leftrightarrow}$ minden x-re, ha $x\in X$, akkor $x\in Y$ is teljesül és ha $x\in Y$, akkor $x\in X$ is teljesül.

 $X \cap Y \stackrel{\text{def}}{=} \{x \mid x \in X \land x \in Y\} \text{ (mindketőnek eleme)},$

 $X \cup Y \stackrel{\text{def}}{=} \{x \mid x \in X \lor x \in Y\}$ (legalább az egyiknek eleme).

Hogyan következtetünk, ha unióval és metszettel van dolgunk?

$$\frac{x \in A}{x \in A \cup B} \text{ (bal)} \qquad \frac{x \in B}{x \in A \cup B} \text{ (jobb)}$$

$$\begin{array}{ccc} 1. & \text{eset} & 2. & \text{eset} \\ & [x \in A] & [x \in B] \\ & \vdots & \vdots \\ \hline x \in A \cup B & x \in C & x \in C \\ \hline \hline x \in C & & x \in C \\ \hline \hline x \in A & x \in B \\ \hline x \in A \cap B & & x \in A_1 \cap A_2 \\ \hline \end{array} \text{ (esetszétválasztás)}$$

- 1. MO. Tfh. $x \in A \cup (B \cap C)$. A külső művelet az \cup , azaz "vagy". "Vagy"-ból esetszétválasztással következtetünk tovább (az egyik eset $x \in A$, a másik $x \in B \cap C$). 1. eset: $x \in A$. Ekkor $x \in A \cup B$, az unió definíciója (vagy) miatt. Hasonlóképpen $x \in A \cup C$, és ebből a kettőből a \cap definíciója (és) miatt $x \in (A \cup B) \cap (A \cup C)$.
- 2. eset: $x \in B \cap C$, ahonnan az metszet definíciója, illetve az és miatt: $x \in B$ és $x \in C$. Most a "vagy" miatt ezekből rendre: $x \in A \cup B$, $x \in A \cup C$, így a \cap definíciója miatt $x \in (A \cup B) \cap (A \cup C)$.
- 2. MO. \Rightarrow . Amit tudunk: $A \cup B = B$, amit be kell bizonyítanunk: $A \subseteq B$. Ez utóbbit definíció szerint: legyen $x \in A \subseteq A \cup B = B$.
- \Leftarrow Amit tudunk: $A \subseteq B$, amit be kell bizonyítanunk: $A \cup B = B$. Ez egy egyenlőség, azaz sajnos mindkét irányt kezelni kell. Balról jobbra: ha $x \in A \cup B$, akkor vagy $x \in A$ és akkor $A \subseteq B$ miatt $x \in B$ vagy $x \in B$ és akkor kész. Jobbról balra: ha $x \in B$, akkor világos, hogy $x \in A \cup B$.
- **gy.** $(A \cup (B \cap C) = (A \cup B) \cap C \Leftrightarrow A \subseteq C)$. \Rightarrow Amit felhasználunk: $A \cup (B \cap C) = (A \cup B) \cap C$, amit igazolni kell: $A \subseteq C$. Legyen $x \in A$. Ekkor az unió definíciója miatt $x \in A \cup (B \cap C) = (A \cup B) \cap C$, figyelve a jobb oldalt, ez azt is jelenti, hogy $x \in C$.
- \Leftarrow Amit tudunk: $A \subseteq C$, amit be kell bizonyítanunk: $A \cup (B \cap C) = (A \cup B) \cap C$. Balról: tfh.: $x \in A \cup (B \cap C)$. Esetszétválasztással: ha $x \in A$, akkor $x \in A \cup B$, de $A \subseteq C$, így $x \in C$, azaz $x \in (A \cup B) \cap C$. Fordítva: $x \in (A \cup B) \cap C$, akkor $x \in C$ és $x \in A \cup B$. Ez utóbbiból esetszétválasztással: ha $x \in A$, akkor készen vagyunk mert akkor $x \in A \cup (B \cap C)$. Ha $x \in B$, akkor $x \in C$ -vel együtt $x \in B \cap C$, így $x \in A \cup (B \cap C)$.
- 3. 4. könnyű.
- 5. Tudjuk: $x \in \overline{A} \cap \overline{B}$, kell: $x \in \overline{A \cup B}$. Mivel a cél "negatív", ezért *indirekten*. Tegyük fel, hogy $x \in A \cup B$. Ebből esetszétválasztással. Ha $x \in A$, akkor persze ez ellentmond $x \in \overline{A} \cap \overline{B}$ -nek, mert ebből $x \in \overline{A}$. $x \in B$ esetén ugyanez pepitában. Mindkét esetben ellentmondásra jutunk.