Anomaly detection example

Aircraft engine features:

 $\rightarrow x_1$ = heat generated

 $\Rightarrow x_2$ = vibration intensity

...

Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

New engine: x_{test}

Andrew Ng

Density estimation

- \rightarrow Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- \rightarrow Is x_{test} anomalous?

Andrew Ng

Anomaly detection example

- → Fraud detection:
 - $\rightarrow x^{(i)}$ = features of user i's activities
 - \rightarrow Model p(x) from data.
 - ightharpoonup Identify unusual users by checking which have $p(x) < \varepsilon$
- Manufacturing
- Monitoring computers in a data center.
 - $\rightarrow x^{(i)}$ = features of machine i
 - x_1 = memory use, x_2 = number of disk accesses/sec,
 - $x_3 = \text{CPU load}$, $x_4 = \text{CPU load/network traffic}$.

 $p(\kappa)$

Gaussian (Normal) distribution

Say $x \in \mathbb{R}$. If x is a distributed Gaussian with mean μ , variance σ^2 .

Gaussian distribution example

Parameter estimation

→ Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $x^{(i)} \in \mathbb{R}$

$$x^{(i)} \in \mathbb{R}$$

Density estimation

 \rightarrow Training set: $\{x^{(1)}, \dots, x^{(m)}\}$ Each example is $\underline{x} \in \mathbb{R}^n$

Each example is
$$\underline{x} \in \mathbb{R}^n$$

$$\begin{array}{c} x_1 & y_1 & y_2 & y_3 \\ y_3 & y_4 & y_4 & y_4 \\ y_5 & y_6 & y_6 & y_6 \\ y_7 & y_7 & y_8 & y_8 \\ y_7 & y_7 & y_8 & y_8 \\ y_7 & y_8 & y_8 & y_8 \\ y_8 & y_8 & y_$$

x, ~ N(m, 6?)

Anomaly detection algorithm

- Choose features x_i that you think might be indicative of (w) (w) anomalous examples.
- \rightarrow 2. Fit parameters $\mu_1, \ldots, \mu_n, \sigma_1^2, \ldots, \sigma_n^2$

Fit parameters
$$\mu_1, \dots, \mu_n, \sigma_1^2, \dots, \sigma_n^2$$

$$\Rightarrow \boxed{\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}} \qquad p(x_j; \mu_j, \epsilon_j^2) \qquad \qquad p(x_j; \mu_j, \epsilon_j$$

$$\Rightarrow \text{ 3. Given new example } x \text{, compute } \underline{p(x)}\text{:}$$

$$\underline{p(x)} = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)$$

Anomaly if $p(x) < \varepsilon$

Anomaly detection example

The importance of real-number evaluation

When developing a learning algorithm (choosing features, etc.), making decisions is much easier if we have a way of evaluating our learning algorithm.

- Assume we have some labeled data, of anomalous and nonanomalous examples. (y = 0 if normal, y = 1 if anomalous).
- \rightarrow Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$ (assume normal examples/not anomalous)
- → Cross validation set: $(x_{cv}^{(1)}, y_{cv}^{(1)}), \dots, (x_{cv}^{(m_{cv})}, y_{cv}^{(m_{cv})})$ → Test set: $(x_{test}^{(1)}, y_{test}^{(1)}), \dots, (x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

Aircraft engines motivating example

- → 10000 good (normal) engines
- → 20 flawed engines (anomalous) 2-50
- Training set: 6000 good engines (y=0) $p(x)=p(x_1)M_1(s^2_1)....p(x_n)M_n(s^2_n)$

CV: 2000 good engines (y=0), 10 anomalous (y=1) \nearrow

Test: 2000 good engines (y=0), 10 anomalous (y=1)

Alternative:

Training set: 6000 good engines

- ightharpoonup CV: 4000 good engines (y=0), 10 anomalous (y=1)
- \rightarrow Test: 4000 good engines (y=0), 10 anomalous (y=1)

Algorithm evaluation

- \rightarrow Fit model $\underline{p(x)}$ on training set $\{\underline{x^{(1)}, \dots, x^{(m)}}\}$ $(x_{\mathsf{test}}^{(i)}, y_{\mathsf{test}}^{(i)})$
- \rightarrow On a cross validation/test example \underline{x} , predict

$$y = \begin{cases} \frac{1}{0} & \text{if } p(x) < \varepsilon \text{ (anomaly)} \\ \frac{1}{0} & \text{if } p(x) \ge \varepsilon \text{ (normal)} \end{cases}$$

Possible evaluation metrics:

- True positive, false positive, false negative, true negative
- Precision/Recall

Can also use cross validation set to choose parameter ε

Anomaly detection

- Nery small number of positive examples (y = 1). (0-20 is common).
- \rightarrow Large number of negative $(\underline{y} = 0)$ examples. $(\underline{y}) \leq$
- Many different "types" of anomalies. Hard for any algorithm to learn from positive examples what the anomalies look like;
- future anomalies may look nothing like any of the anomalous examples we've seen so far.

vs. Supervised learning

Large number of positive and negative examples.

Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

Anomaly detection

- Fraud detection 4=1
- Manufacturing (e.g. aircraft engines)
- Monitoring machines in a data center

vs. Supervised learning

- Email spam classification
- Weather prediction (sunny/rainy/etc).
- Cancer classification <

Error analysis for anomaly detection

Want p(x) large for normal examples x. p(x) small for anomalous examples x.

Most common problem:

p(x) is comparable (say, both large) for normal and anomalous examples

