PCT/EP 03/12626

BUNDES EPUBLIK DEUTSCOL

REC'D 16 FEB 2004

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 13 979.6

Anmeldetag:

27. März 2003

Anmelder/Inhaber:

Merck Patent GmbH,

Darmstadt/DE

Bezeichnung:

Elektrooptisches Lichtsteuerelement,

elektrooptische Anzeige und Steuermedium

IPC:

G 02 F, H 04 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 04. Dezember 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Los

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

A 9161

Merck Patent Gesellschaft mit beschränkter Haftung 64271 Darmstadt

Elektrooptisches Lichtsteuerelement, elektrooptische Anzeige und Steuermedium

Elektrooptisches Lichtsteuerelement, Anzeige und Steuermedium

Gebiet der Erfindung

Die vorliegende Erfindung betrifft Lichtsteuerelemente, diese enthaltende Anzeigen, sowie Lichtsteuermedien. Die Lichtsteuerelemente verwenden bevorzugt Steuermedien die bei bestimmten Temperaturen anisotrope Eigenschaften aufweisen, wie z. B. Flüssigkristalle. Die Lichtsteuerelemente werden bei einer Temperatur betrieben, bei der die Steuermedien in der Blauen Phase vorliegen. Ähnliche Anzeigen, die Steuermedien verwenden, die in der isotropen Phase vorliegen sind DE 102 17 273.0 und in der bislang unveröffentlichten Patentanmeldungen DE 102 41 301.0 vom 04.09.2002, zwei weiteren Anmeldungen der Anmelderin der vorliegenden Anmeldung, beschrieben.

15

20

Die vorliegende Erfindung betrifft ein elektrooptisches Lichtsteuerelement sowie solche Elemente enthaltende elektrooptische Anzeigen und Anzeigesysteme wie beispielsweise Fernsehbildschirme und Computermonitore, sowie die in den Lichtsteuerelementen verwendeten Steuermedien. Die erfindungsgemäßen Lichtsteuerelemente enthalten ein mesogenes Steuermedium, das beim Betrieb der Lichtsteuerelemente in der Blauen Phase vorliegt. Sie sind neben einem guten Kontrast und einer geringen Blickwinkelabhängigkeit des Kontrasts, kurzen Schaltzeiten und relativ niedriger Betriebsspannung besonders durch eine geringe Temperaturabhängigkeit der Betriebsspannung ausgezeichnet.

Insbesondere betrifft die vorliegende Erfindung auch mesogene Medien und deren Verwendung als Steuermedien in derartigen Lichtsteuerelementen.

30

35

Aufgabe und Stand der Technik

Konventionelle elektrooptischen Flüssigkristallanzeigen sind allgemein bekannt. Sie werden bei einer Temperatur betrieben, bei der sich das Steuermedium in einer optisch anisotropen Mesophase befindet. Bei den meisten Anzeigetypen werden die Steuermedien in der nematischen

10

15

20

30

35

Phase verwendet. In der Mesophase haben die Steuermedien bereits anisotrope Eigenschaften, wie zum Beispiel eine Doppelbrechung (Δn). Diese wird nicht erst durch ein elektrisches Feld induziert. Am weitesten verbreitet sind TN- (Englisch: "twisted nematic") und STN- (Englisch: "super twisted nematic") Anzeigen. Die Flüssigkristallzellen dieser Anzeigen haben Elektroden auf den Substraten auf den beiden einander gegenüberliegenden Seiten des Flüssigkristallmediums. Somit ist das elektrische Feld im wesentlichen vertikal zur Flüssigkristallschicht. Insbesondere die zuerst genannten Anzeigen werden in Kombination mit einer TFT (Englisch: "thin film transistor") Ansteuerung für Anzeigen mit großem Informationsgehalt und großer Auflösung verwendet. So zum Beispiel in "lap-top" und "note-book" Computern. Insbesondere bei "desktop" Computermonitoren werden in neuerer Zeit zunehmend Flüssigkristallanzeigen des IPS-Typs (Englisch: "in-plane switching", z. B. DE 40 00 451 und EP 0 588 568) oder alternativ des VAN-Typs (Englisch: "vertically aligned nematic") verwendet. VAN-Anzeigen sind eine moderne Variante der ECB-Anzeigen (Englisch: electrically controlled birefringence"). In einer weiteren, modernen Variante, den MVA-Anzeigen (Englisch: "multi domain vertically aligned") werden pro angesteuerter Elektrode mehrere Domänen stabilisiert und zusätzlich wird eine spezielle optische Kompensationsschicht verwendet. Diese Anzeigen verwenden, wie die bereits erwähnten TN-Anzeigen, ein zur Flüssigkristallschicht vertikales elektrisches Feld. Im Gegensatz hierzu verwenden IPS-Anzeigen in der Regel Elektroden auf nur einem Substrat, also an einer Seite der Flüssigkristallschicht, sind also durch eine wesentliche Komponente des elektrischen Felds parallel zur Flüssigkristallschicht gekennzeichnet.

Alle konventionellen Anzeigen haben relativ lange Schaltzeiten, insbesondere sind die Schaltzeiten für TV- und Multi-Media-Anwendungen, die immer stärkere Verbreitung findenden, oft nicht ausreichend kurz. Dieses fällt insbesondere im Vergleich mit den bislang nahezu ubiquitären Kathodenstrahlröhren auf. Ein weiterer Nachteil der bekannten, in Flüssigkristallanzeigen eingesetzten elektro-optischen Effekte ist die bei den meisten Typen deutlich ausgeprägte Blickwinkelabhängigkeit des erzielten Kontrasts. Diese ist in den meisten Fällen so groß, dass für

20

30

35

Anzeigen im Direktsichtbetrieb in der Regel Kompensationsschichten, typischerweise anisotrope Filme, mit zum Teil kompliziertem Aufbau, verwendet werden müssen.

In DE 102 17 273.0 werden Lichtsteuerelemente beschrieben, bei denen das mesogene Steuermedium bei der Betriebstemperatur in der isotropen Phase vorliegt. Diese Lichtsteuerelemente schalten besonders schnell und haben eine gute Blickwinkelabhängigkeit des Kontrasts. Allerdings sind die Ansteuerspannungen für viele Anwendungen zu hoch. Somit besteht der Bedarf nach verbesserten Lichtsteuerelementen insbesondere mit verringerter Ansteuerspannung.

In der ebenfalls unveröffentlichten Anmeldung DE 102 41 301.0 werden spezielle Elektrodenstrukturen vorgeschlagen, die zur einer signifikanten Verringerung der Betriebsspannungen führen. Allerdings bedingen diese Elektrodenstrukturen einen deutlich größeren Aufwand bei der Herstellung der Lichtsteuerelemente.

Die in DE 102 17 273.0 und DE 102 41 301.0 vorgeschlagenen Lichtsteuerelemente weisen außerdem eine ausgeprägte Temperaturabhängigkeit auf. Der durch das elektrische Feld in den Steuermedien in der isotropen Phase induzierte elektrooptische Effekt ist bei Temperaturen nahe des Klärpunkts der Steuermedien am stärksten ausgeprägt. Hier haben die Lichtsteuerelemente die niedrigsten charakteristischen Spannungen, also werden hier die geringsten Betriebsspannungen benötigt. Mit steigender Temperatur steigen die charakteristischen Spannungen und damit die Betriebsspannung deutlich an. Typische Temperaturabhängigkeiten der Schwellenspannung liegen im Bereich von einigen Volt pro Grad bis zu Zehn und mehr Volt pro Grad. In erster Näherung kann die relative Temperaturabhängigkeit der charakteristischen Spannungen der verschiedenen Lichtsteuerelemente mit isotropem Steuermedium nach DE 102 17 273.0 und DE 102 41 301.0 als vom eingesetzten Medium und als von der Elektrodenstruktur unabhängig angesehen werden. In DE 102 17 273.0 werden isotrope Medien mit einigen deutlich variierenden Zusammensetzungen beschrieben, die in eingesetzt werden können, wohingegen in

DE 102 41 301.0 verschiedene Elektrodenstrukturen offenbart werden. Die relative Temperaturabhängigkeit der Schwellenspannung liegt bei einer Temperatur von 1° oberhalb des Klärpunkts in der Größenordnung von 50%/Grad. Mit steigender Temperatur nimmt sie ab. Bei einer Temperatur von 5° oberhalb des Klärpunkts liegt sie in der Größenordnung von einigen 10%/Grad.

Für die in praktischen Anzeigen verwendete Lichtsteuerelemente, ist diese Temperaturabhängigkeit des elektrooptischen Effekts meist zu groß. In der Regel sind Effekte erwünscht, deren Betriebsspannungen über einen Temperaturbereich von mindestens einigen Grad, bevorzugt über 5° oder mehr, besonders bevorzugt über 10° oder mehr und ganz besonders bevorzugt über 20° oder mehr nahezu unabhängig von der Betriebstemperatur sind.

Die alternative Realisierung einer elektronischen Nachführung der Ansteuerspannung ist relativ aufwendig. Einerseits führt sie in der Regel zum Verlust eines Teils der verfügbaren Ansteuerspannung, da diese ja auch bei der höchsten Betriebstemperatur noch ausreichend groß sein muß. Andererseits ist sie mit einigem Meß- und Regelaufwand verbunden. So muß die aktuelle Temperatur des Lichtsteuerelements bestimmt werden. Bei Anzeigen mit einer größeren Fläche kann eventuell sogar die Bestimmung eines Temperaturgradienten bzw. der Temperaturen an mehreren Stellen der Anzeige erforderlich sein.

Die weitere Alternative, die Temperatur der Lichtsteuerelemente konstant zu halten, ist ebenfalls nicht leicht zu realisieren. Aus offensichtlichen praktischen Gründen muß hierzu die Anzeige geheizt werden. Diese Alternative erfordert ebenfalls die Bestimmung der Temperatur der Lichtsteuerelemente.

Dadurch lässt sich der Vorteil eines besonders guten Kontrasts der in DE 102 17 273.0 beschriebenen Anzeigen, die ein isotropes Steuermedium verwenden, praktisch nicht leicht ausnutzen.

10

5

15

20

35

Somit ist ersichtlich, dass ein großer Bedarf an Lichtsteuerelementen, die ein Steuermedium in einer optisch isotropen Phase verwenden, besteht, die eine geringe Temperaturabhängigkeit der charakteristischen Spannungen zeigen.

5

Flüssigkristalle mit entsprechend starker chiraler Verdrillung können eine oder mehrere optisch isotrope Phasen aufweisen. Diese Phasen erscheinen bei entsprechendem cholesterischen Pitch, in einer ausreichend großen Schichtdicke leicht bläulich. Aus diesem Grund werden sie als Blaue Phasen bezeichnet (Gray and Goodby, "Smectic Liquid Crystals, Textures and Structures", Leonhard Hill, USA, Canada (1984)).

10

15

20

Die Effekte elektrischer Felder auf Flüssigkristalle, die in einer Blauen Phase vorliegen, werden beispielsweise in H.S. Kitzerow, "The Effect of Electric Fields on Blue Phases", Mol. Cryst. Liq. Cryst, (1991), Bd. 202, S. 51-83 beschrieben. Dort werden auch die bislang identifizierten drei Arten Blauer Phasen (BP I bis BP III) erwähnt, die in feldfreien Flüssigkristallen beobachtet werden können. Es werden jedoch keine elektrooptischen Anzeigen, die eine feldinduzierte Doppelbrechung ausnutzen, vorgeschlagen.

25

Der vorliegenden Erfindung lag somit die Aufgabe zugrunde, besonders schnell schaltende Lichtsteuerelemente die ein Steuermedium verwenden, das im feldfreien Zustand in einer optisch isotropen Phase vorliegt, mit gutem Kontrast, guter Blickwinkelabhängigkeit, niedrigen Ansteuerspannungen und insbesondere mit einer geringen Temperaturabhängigkeit der Ansteuerspannung zu realisieren und die dafür nötigen Steuermedien bereitzustellen. Diese Lichtsteuerelemente sollen eine möglichst geringe Schichtdicke der Steuermedien aufweisen um als Elemente von FPDs (Englisch: flat panel displays, also flachen Anzeigen), wie zum Beispiel Flachbildschirmen für Computer, eingesetzt werden zu können. Ferner sollen sie mittels einer möglichst einfachen Elektrodenkonfiguration ansteuerbar sein.

35

Überraschender Weise wurde gefunden, dass, wie im Folgenden beschrieben, Lichtsteuerelemente die, wie die in der unveröffentlichten Anmeldung DE 10217273.0 beschriebenen Lichtsteuerelemente, Steuermedien in einer optisch isotropen Phase verwenden, deutlich verbessert werden können, wenn Steuermedien verwendet werden, die in der Blauen Phase vorliegen. Insbesondere können so Lichtsteuerelemente mit deutlich verringerter Temperaturabhängigkeit der charakteristischen Spannungen und damit der Betriebsspannung realisiert werden.

10

5

Die elektrooptischen Lichtsteuerelemente gemäß der vorliegenden Erfindung umfassen

- ein oder mehrere, bevorzugt ein oder zwei, besonders bevorzugt zwei Substrate,
- eine Elektrodenanordnung,
- ein oder mehrere Element zur Polarisation des Lichts und
- ein Steuermedium,

und sind dadurch gekennzeichnet, dass

- das Lichtsteuerelement bei einer Temperatur betrieben wird, bei der das Steuermedium im nicht angesteuerten Zustand in einer optisch isotropen Phase vorliegt und dass
 - das Steuermedium eine Blauen Phase aufweist und / oder
 - das mesogene Steuermedium eine chirale Komponente, Komponente (A), die aus einer oder mehreren chiralen Verbindungen besteht und bevorzugt und
 - optional eine achirale Komponente, Komponente (B), die aus einer oder mehreren achiralen Verbindungen besteht, enhält und dass
 - die Elektrodenanordnung optional ein elektrisches Feld mit einer signifikanten Komponente parallel zur Fläche des mesogenen Steuermediums erzeugen kann.

30

Bevorzugt wird eine Elektrodenanordnung verwendet, die ein elektrisches Feld mit einer signifikanten Komponente parallel zur Fläche des mesogenen Steuermediums erzeugen kann.

15

20

•

10

20

Im Folgenden wird die vorliegende Erfindung näher erläutert.

Bevorzugt wird als Steuermedium des Lichtsteuerelements ein mesogenes Medium verwendet. Als mesogene Medien werden in der vorliegenden Anmeldung Medien bezeichnet, die eine Mesophase aufweisen, die in einer Mesophase löslich sind oder die eine Mesophase induzieren. Die Mesophase ist eine smektische, eine nematische oder eine Blaue Phase. Hierbei sind die smektische Phase bzw. die nematische Phase bevorzugt chiral. In der vorliegenden Anmeldung werden die Begriffe "chirale nematische Phase" und "cholesterische Phase" synonym verwendet, wenn nicht ausdrücklich anders angegeben. Der Begriff "Blaue Phase" steht für jede der bekannten Blauen Phasen und umfasst auch mehrere dieser Phasen gleichzeitig, wenn nicht ausdrücklich anders angegeben.

Bevorzugt weisen die Steuermedien eine Blaue Phase auf, besonders bevorzugt eine Blaue Phase und eine weitere Mesophase, bevorzugt eine cholesterische Phase.

Als bevorzugtes Medium zur Untersuchung der mesogenen Eigenschaften der Materialien die keine Mesophase aufweisen wird die nematische Mischung ZLI-4792 der Merck KGaA, Darmstadt, Deutschland verwendet. Bevorzugt haben die mesogenen Materialien einen aus 10%-iger Lösung in dieser Mischung extrapolierten Klärpunkt von –50°C oder mehr, besonders bevorzugt von –20°C oder mehr und ganz besonders bevorzugt von 0°C oder mehr.

Das Steuermedium enthält eine chirale Dotierkomponente, Komponente (A), und optional eine achirale Komponente, Komponente (B).

Die chirale Komponente (A) enthält eine oder mehrere chiralen Verbindungen, bevorzugt besteht sie aus diesen Verbindungen. Diese chiralen Verbindungen haben eine mesogene Struktur und weisen bevorzugt selbst eine oder mehrere Mesophasen, bevorzugt mindestens eine cholesterische Phase auf.

10

15

20

In einer ersten Ausführungsform der vorliegenden Erfindung besteht das mesogene Steuermedium nur aus der chiralen Komponente (A). In diesem Fall enthält das Steuermedium eine oder mehrere, bevorzugt zwei oder mehr, besonders bevorzugt drei, vier oder mehr chirale Verbindungen. Bevorzugt enthält das Steuermedium eine oder mehrere Verbindungen, die eine cholesterische Phase aufweisen.

In einer weiteren, bevorzugten, Ausführungsform der vorliegenden Erfindung besteht das mesogene Steuermedium aus einer chiralen Komponente (A) und einer achiralen Komponente (B). In diesem Fall enthält die chirale Komponente eine oder mehrere, bevorzugt zwei oder mehr chirale Verbindungen und die achirale Komponente (B) eine oder mehrere, bevorzugt zwei oder mehr, besonders bevorzugt drei, vier oder mehr achirale Verbindungen.

In einer bevorzugten Ausführungsform weist eine chirale Verbindung oder weisen mehrere der chiralen Verbindungen der Komponente (A) eine Mesophase, bevorzugt eine cholesterische Phase auf. In dieser Ausführungsform beeinflussen die chiralen Verbindungen die Eigenschaften der mesogemen achiralen Komponente (B) relativ wenig und es können auch entsprchend große Konzentrationen der chiralen Komponente (A) eingesetzt werden, die die Verwendung von Verbindungen mit relativ kleiner HTP ermöglichen.

In einer anderen bevorzugten Ausführungsform weist die chirale Verbindung, bzw. weisen die chiralen Verbindungen der Komponente A) keine Mesophase auf. Diese Ausführungsform ist besonders dann bevorzugt, wenn die chirale Komponente (A) eine große HTP in der achiralen Komponente (B) besitzt, da dann der gewünschte niedrige cholesterische Pitch mit einer kleinen Konzentration der chiralen Komponente (A) erhalten werden kann, was dazu führt, dass die physikalischen Eigenschaften des Steuermediums nur wenig gegenüber denen der achiralen Komponente (B) verändert werden.

10

15

20

30

35

Bevorzugt weisen eine oder mehrere der achiralen Verbindungen der Komponente (B) eine Mesophase, bevorzugt eine smektische und/oder nematische, bevorzugt eine nematische Phase auf.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung macht die achirale Komponente (B) den überwiegende Teil des Sterermediuns aus. In diesem Fall wird das mesogene Verhalten des Steuermediums meist überwiegend von der achiralen Komponente (B) bestimmt. In dieser Ausführungsform beträgt die Konzentration der chiralen Komponente im Steuermedium bevorzugt 0,5% bis 45%, besonders bevorzugt 1% bis 35% und ganz besonders bevorzugt 3% bis 25%.

In dieser Ausführungsform kann der cholesterische Pitch des Steuermediums in der cholesterischen, auch chiral nematisch genannten, Phase in erster Näherung durch Gleichung (1) wiedergegeben werden.

$$P = (HTP \cdot c)^{-1}$$
 (1)

worin P den cholesterischen Pitch,

c die Konzentration der chiralen Komponete (A) und HTP (Englisch "helical twisting power") eine Konstante, die das Verdrillungsvermögen der chiralen Substanz charakterisiert und von der chiralen Substanz (Komponente (A)) und von der achiralen Komponente (B) abhängt

darstellt.

Soll die Bestimmung des Pitchs genauer erfolgen, kann die Gleichung (1) entsprechend abgewandelt werden. Meist wird hierzu die Entwicklung des cholesterischen Pitchs in Form eines Polynoms (2) verwendet.

$$P = (HTP \cdot c)^{-1} + (\alpha_1 \cdot c)^{-2} + (\alpha_2 \cdot c)^{-3} + ...$$
 (2)

worin die Parameter die oben bei Gleichung (1) gegebene Bedeutung haben und

α_1 und α_2 Konstanten die von der chiralen Komponente (A) und von der achiralen Komponente (B) abhängen

darstellen.

5

Das Polynom kann bis zu dem Grad fortgeführt werden, der die gewünschte Genauigkeit ermöglicht.

Besteht die chirale Komponente (A) aus zwei oder mehreren
Verbindungen wird Gleichung (1) abgewandelt zu Gleichung (3).

$$P = \Sigma_i \left(HTP(i) \cdot c_i \right)^{-1}$$
(3)

15

P den cholesterischen Pitch,

c_i die Konzentration der i-ten Verbindung der chiralen Komponente (A) und

HTP(i) die HTP der i-ten Verbindung der chiralen Komponente (A) in der achiralen Komponente (B)

darstellt.

worin

20

Die Temperaturabhängigkeit der HTP wird üblicherweise auch in einer Polynomentwicklung (4) dargestellt, wobei oft bereits nach dem linearen Glied abgebrochen werden kann.

$$HTP(T) = HTP(T_0) + \beta_1 \cdot (T - T_0) + \beta_2 \cdot (T - T_0)^2 + \dots$$
 (4)

worin die Parameter die oben bei Gleichung (1) gegebene Bedeutung haben und

T die Temperatur,

30

T₀ die Bezugstemperatur,

HTP(T) die HTP bei der Temperatur T,

 $\mathsf{HTP}(\mathsf{T}_0)$ die HTP bei der Temperatur T_0 und

β₁ und β₂ Konstanten die von der chiralen Komponete
 (A) und von der achiralen Komponete (B)

abhängen darstellen.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält die chirale Komponente (A) eine oder mehrere chirale Verbindungen mit einer HTP (Englisch "helical twisting power") in der kommerziellen, nematischen Wirtsmischung MLC-6260 der Fa. Merck KGaA, Darmstadt von 10 µm⁻¹ oder mehr, bevorzugt von 30 µm⁻¹ oder mehr, besonders bevorzugt von 50 µm⁻¹ oder mehr und ganz besonders bevorzugt von 90 µm⁻¹ oder mehr.

- In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält die chirale Komponente (A) zwei oder mehr chirale Verbindungen.

 Bevorzugt haben die chiralen Verbindungen alle das selbe Vorzeichen der HTP.
- Bevorzugt hat das Steuermedium eine charakteristische Temperatur, bevorzugt einen Klärpunkt, im Bereich von –30°C bis 80°C, bevorzugt bis 55°C.
- Die erfindungsgemäßen Lichtsteuerelemente enthalten bevorzugt ein mesogenes Medium, das bei Betriebstemperatur in der Blauen Phase vorliegt. Dieses Medium befindet sich zweckmäßiger Weise auf bzw. unter einem Substrat.
- In der Regel befindet sich das Steuermedium zwischen zwei Substraten.

 Diese Ausführungsform ist bevorzugt. Wenn sich das Steuermedium zwischen zwei Substraten befindet ist mindestens eines dieser Substrate lichtdurchlässig. Das lichtdurchlässige Substrat, bzw. die lichtdurchlässigen Substrate können z. B. aus Glas, Quarz oder Kunststoff bestehen. Wird ein Substrat verwendet, das nicht lichtdurchlässig ist, so kann dies unter anderem aus einem Metall oder einem Halbleiter bestehen. Diese Medien können als solche verwendet werden oder auf einem Träger, z.B. einer Keramik, vorliegen. Ist das Steuermedium ein polymeres Medium so kann gegebenenfalls auf die Verwendung eines zweiten Substrats verzichtet werden. Polymere Steuermedien können sogar selbsttragend ausgeführt werden. In diesem Fall wird gar kein Substrat benötigt.

Die Betriebstemperatur des Lichtsteuerelements liegt bevorzugt oberhalb der Übergangstemperatur des Steuermediums in die Blaue Phase, in der Regel im Bereich von 0,1° bis 50° oberhalb dieser Übergangstemperatur, bevorzugt im Bereich von 0,1° bis 10° oberhalb dieser Übergangstemperatur und besonders bevorzugt im Bereich von 0,1° bis 5° oberhalb dieser Übergangstemperatur. Bevorzugt liegt die Betriebstemperatur im Bereich der von der Übergangstemperatur des Steuermediums in die Blaue Phase bis zur Übergangstemperatur des Steuermediums in die isotrope Phase, dem Klärpunkt, reicht. Die Lichtsteuerelemente können jedoch, wie in DE 101 17 273.0 beschrieben, auch noch bei Temperaturen betrieben werden, bei denen das Steuermedium in der isotropen Phase vorliegt. Dann nimmt jedoch die Temperaturabhängigkeit der Betriebsspannung zu, was in der Regel unerwünscht ist.

Bei Anlegen einer Spannung wird in dem mesogenen Medium in der isotropen Phase eine Orientierung induziert welche zu einer optischen Verzögerung führt, die auf bekannte Weise visualisiert werden kann. Bevorzugt wird ein inhomogenes elektrisches Feld angewendet.

Die erfindungsgemäßen Lichtsteuerelemente enthalten mindestens ein Element zur Polarisierung des Lichts. Zusätzlich enthalten sie bevorzugt ein weiteres optisches Element. Dieses weitere optische Element ist entweder ein zweites Element zur Polarisaton des Lichts, ein Reflektor oder ein Transflektor.

Die optischen Elemente sind so angeordnet, dass das Licht beim Durchgang durch das mesogene Medium des Lichtsteuerelements sowohl vor dem Eintritt in das mesogene Medium, als auch nach dem Austritt aus dem mesogenen Medium mindestens einmal mindestens ein polarisierendes Element durchläuft.

In einer bevorzugten Ausführungsform des Lichtsteuerelements gemäß der vorliegenden Erfindung befindet sich das mesogene Medium zwischen zwei Polarisatoren, also einem Polarisator und einem Analysator. Bevorzugt werden zwei Linearpolarisatoren verwendet. In dieser Aus-

10

5

15

20

95

30

10

15

20

führungsform sind die Absorptionsachsen der Polarisatoren bevorzugt gekreuzt und bilden bevorzugt einen Winkel von 90°.

Optional enthält das erfindungsgemäße Lichtsteuerelement eine oder mehrere doppelbrechende Schichten. Bevorzugt enthält es eine $\lambda/4$ -Schicht oder mehrere $\lambda/4$ -Schichten, bevorzugt eine $\lambda/4$ -Schicht. Die optische Verzögerung der $\lambda/4$ -Schicht beträgt bevorzugt ca. 140 nm.

Die Schichtdicke (d) des mesogenen Steuermediums beträgt bevorzugt 0,1 μ m bis 5.000 μ m (i.e. 5 mm), besonders bevorzugt 0,5 μ m bis 1.000 μ m (i.e. 1 mm), besonders bevorzugt 1,0 μ m bis 100 μ m und ganz besonders bevorzugt 3,0 μ m bis 30 μ m und insbesondere 3,5 μ m bis 20 μ m. In einer bevorzugten Ausführungsform beträgt die Schichtdicke des mesogenen Steuermediums bevorzugt 0,5 μ m bis 50 μ m, besonders bevorzugt 1,0 μ m bis 20 μ m und ganz besonders bevorzugt 1,0 μ m bis 8,0 μ m.

Gegenstand der vorliegenden Erfindung sind auch elektrooptische Anzeigen, die ein oder mehrere erfindungsgemäße Lichtsteuerelemente enthalten. Bevorzugt werden diese elektrooptischen Anzeigen mittels einer aktiven Matrix angesteuert.

Gegenstand der vorliegenden Erfindung sind des weiteren elektrooptische Anzeigesysteme enthaltend eine oder mehrere erfindungsgemäße elektrooptische Anzeigen. Diese elektrooptische Anzeigesysteme werden bevorzugt zur Darstellung von Information, unter anderem, bevorzugt als Fernsehbildschirm oder als Computermonitor verwendet. Bei der darzustellenden Information handelt es sich bevorzugt um digitale Signale oder um Videosignale.

Das erfindungsgemäße Lichtsteuerelement kann zusätzlich ein oder mehrere weitere übliche optische Elemente wie doppelbrechende Schichten (z.B. Kompensationsschichten), Diffusorschichten, und Elemente zur Erhöhung der Helligkeit und/oder der Lichtausbeute und/oder der Blickwinkelabhängigkeit enthalten, wobei diese Aufzählung nicht abschließend ist.

30

Die erfindungsgemäßen Lichtsteuerelemente sind durch einen guten Kontrast gekennzeichnet, der stark und nahezu überwiegend von den Eigenschaften der verwendeten Polarisatoren abhängt. Zum Vergleich mit herkömmlichen TN-Zellen werden hier TN-Zellen mit einer optischen Verzögerung von 0,50 µm, positivem Kontrast und der Absorptionsachse der Polarisatoren senkrecht zu der Vorzugsorientierung der nematischen Flüssigkristalle am benachbarten Substrat, die nicht chirale Flüssigkristalle enthalten, herangezogen. Werden bei den erfindungsgemäßen Lichtsteuerelementen und bei diesen herkömmlichen TN-Zellen die gleichen Polarisatoren verwendet, ist der Kontrast der erfindungsgemäßen Lichtsteuerelemente in der Regel um 20% oder mehr, teilweise, besonders bei Beobachtungswinkeln, die von der Normalen der Displayoberfläche stark abweichen, um 40% oder mehr größer als der Kontrast der TN-Zellen.

15

20

10

5

Die Blickwinkelabhängigkeit des Kontrasts der erfindungsgemäßen Lichtsteuerelemente ist sehr gut. Sie ist deutlich besser als die der bekannten ECB-Zellen. Sie ist eher vergleichbar mit der bei den kommerziell verfügbaren IPS-Anzeigen (z.B. von Hitachi und NEC, beide Japan) und MVA-Anzeigen (z.B. von Fujitsu, Japan) beobachteten Blickwinkelabhängigkeit. Sie ist viel geringer als die der konventionellen TN-Anzeigen. So schließt eine Isokontrastkurve eines gegebenen Kontrastverhältnisses bei den erfindungsgemäßen Lichtsteuerelementen in der Regel einen Winkelbereich ein, die mehr als doppelt so groß, oft sogar mehr als dreimal so groß ist wie die entsprechende Isokontrastkurve für das gleiche Kontrastverhältnis bei der TN-Anzeige.

30

Die Schaltzeiten der erfindungsgemäßen Lichtsteuerelemente sind sehr klein. Sie liegen in der Regel bei Werten von 5 ms oder weniger, bevorzugt bei 1 ms oder weniger, besonders bevorzugt bei 0,5 ms oder weniger und ganz besonders bevorzugt bei 0,1 ms oder weniger.

35

Besonders vorteilhaft ist die Tatsache , dass beim Schalten zwischen verschiedenen Graustufen die Schaltzeit insbesondere für das Einschalten nahezu unabhängig von der verwendeten Ansteuerspannung sind. Dies

stellt einen wesentliche Vorteil gegenüber herkömmlichen Lichtsteuerelementen wie Flüssigkristallzellen, z.B. TN-Zellen, dar.

Die elektrooptische Kennlinie wurde durch charakteristische Spannungen charakterisiert. Hierzu wurden insbesondere die Spannungen verwendet, bei denen 10%, 50% bzw. 90% relativer Kontrast erreicht wird. Diese Spannungen (kurz V_{10} , V_{50} und V_{90}) werden auch als Schwellen-, Mittgraubzw. Sättigungsspannung bezeichnet. Zusätzlich wurde in der Regel die Spannung bei der 70% relativer Kontrast erreicht wird (V_{70}), bestimmt.

10

5

Elektrooptische Anzeigen gemäß der vorliegenden Erfindung enthalten ein oder mehrere erfindungsgemäße Lichtsteuerelemente. Diese werden in einer bevorzugten Ausführungsform mittels einer aktiven Matrix angesteuert.

15

20

In einer anderen bevorzugten Ausführungsform werden die erfindungsgemäßen Lichtsteuerelemente im sogenannten "field sequential mode" angesteuert. Hierbei werden die Schaltelemente synchron zur Ansteuerung nacheinander mit verschieden farbigem Licht beleuchtet. Zur Erzeugung des gepulsten farbigen Lichts können beispielsweise ein Farbrad ("color wheel"), Stroboskoplampen oder Blitzlampen eingesetzt werden.

25

Elektrooptische Anzeigen gemäß der vorliegenden Erfindung können, insbesondere wenn sie für Fernsehbildschirme, Computermonitore oder ähnliches verwendet werden, zur Darstellung farbiger Bilder einen Farbfilter enthalten. Dieser Farbfilter besteht zweckmäßiger Weise aus einem Mosaik von Filterelementen verschiedener Farben. Hierbei ist typischer Weise jedem elektro-optischen Schaltelement ein Element des Farbfiltermosaiks einer Farbe zugeordnet.

30

Die erfindungsgemäßen Lichtsteuerelemente enthalten eine Elektrodenstruktur die ein elektrisches Feld mit einer signifikanten Komponente parallel zur Schicht des mesogenen Mediums erzeugt. Diese Elektrodenstruktur kann in der Form von interdigitalen Elektroden ausgeführt sein. Sie kann in Form von Kämmen oder Leitern ausgeführt sein. Auch Aus-

10

15

20

30

35

führungen in Form von überlagerten "H"s und doppel-"T"s bzw. "I"s sind vorteilhaft. Die Elektrodenstruktur befindet sich vorteilhaft auf nur einer Seite des mesogenen Mediums, bei Verwendung mindestens eines Substrats bevorzugt zwischen diesem und dem mesogenen Medium. Bevorzugt liegt die Elektrodenstruktur in mindestens zwei unterschiedlichen Ebenen vor, die sich beide auf einer Seite des mesogenen Steuermediums befinden. Dies gilt insbesondere wenn die Elektrodenstruktur überlappende Teilstrukturen enthält. Diese Teilstrukturen werden vorteilhafter Weise durch eine dielektrische Schicht voneinander getrennt. Wenn sich die Teilstrukturen auf den gegenüberliegenden Seiten einer Isolationsschicht befinden kann ein "lay out" gewählt werden, das die Realisierung von Kondensatoren erlaubt. Dies ist insbesondere bei der Ansteuerung von Anzeigen mittels einer aktiven Matrix vorteilhaft. Derartige Aktiv Matrix Anzeigen verwenden eine Matrix von den einzelnen Lichtsteuerelementen zugeordneten Ansteuerelementen mit einer nichtlinearen Strom-Spannungs-Kennlinie, wie z. B. TFTs oder MIM- (Englisch: "metal insulator metal") Dioden.

Der Aufbau von Lichtsteuerelementen mit einem mesogenen Steuermaterial in einer optisch isotropen Phase ist im Prinzip in DE 102 172 73.0 beschrieben. Hier wird der Aufbau der erfindungsgemäßen Lichtsteuerelemente kurz beschrieben. Das Schaltelement enthält den zwischen den inneren Oberflächen der Substrate das Steuermedium. Auf der inneren Oberfläche des einen Substrats befindet sich die der Elektrodenstruktur mit mindestens zwei Elektroden, die mit voneinander verschiedenen Potentialen beaufschlagt werden können.

Die Elektroden können aus durchsichtigem Material bestehen, wie z. B. Indiumzinnoxid (ITO). In diesem Fall kann es vorteilhaft und gegebenenfalls nötig sein einen Teil oder Teile des Lichtsteuerelements mittels einer schwarzen Maske abzudecken. Dies erlaubt Bereiche in denen das elektrische Feld nicht effektiv ist abzuschirmen und so den Kontrast zu verbessern. Die Elektroden können aber auch aus undurchsichtigem Material bestehen, üblicherweise aus Metall, z.B. aus Chrom, Aluminium, Kupfer, Silber oder Gold, bevorzugt aus Chrom. In diesem Fall kann der Einsatz einer separaten schwarzen Maske gegebenenfalls entfallen.

10

15

20

30

35

Das verwendete elektrische Feld ist bevorzugt ein inhomogenes Feld.

Es wurde gefunden, dass der seitliche Abstand der Elektroden, die mit verschiedenem Potential beaufschlagt werden können, voneinander einen starken Einfluß auf die charakteristischen Spannungen der Lichtsteuerelemente hat. Mit abnehmendem Abstand nimmt die benötigte Ansteuerspannung ab. Wenn der Abstand jedoch kleiner wird, wird auch das Öffnungsverhältnis des Lichtsteuerelements kleiner und die Helligkeit nimmt ab. Bevorzugt haben die Elektroden einen Abstand voneinander der im Bereich von 0,5 μm bis 100 μm, bevorzugt im Bereich von 1 μm bis 20 μm, besonders bevorzugt im Bereich von 1 μm bis 15 μm, ganz besonders bevorzugt im Bereich von 2 μm bis 12 μm und am meisten bevorzugt im Bereich von 3 μm bis 11 μm liegt.

Mit abnehmendem Elektrodenabstand verringert sich die Ansteuerspannung . Gleichzeitig nimmt aber das Öffnungsverhältnis und damit die Transmission und bei gegebener Beleuchtung auch die Helligkeit der Anzeige ab. Soll die Helligkeit der elektrooptischen Anzeige optimiert werden, wird bevorzugt ein Elektrodenabstand verwendet, der 8 µm oder mehr, besonders bevorzugt 10 µm oder mehr und ganz besonders bevorzugt 12 µm oder mehr beträgt. Steht jedoch die Ansteuerspannung im Vordergrund der Optimierung, beträgt der Abstand der Elektroden zueinander bevorzugt 19 µm oder weniger, besonders bevorzugt 15 µm oder weniger, ganz besonders bevorzugt 10 µm oder weniger und insbesondere bevorzugt 9 µm oder weniger.

Die Breite der Elektroden in der Richtung zu den Nachbarelektroden, die mit verschiedenem Potential beaufschlagt werden können, ist weniger kritisch als der Abstand der Elektroden in dieser Richtung. Er hat nahezu keinen Einfluß auf die charakteristischen Spannungen der Lichtsteuerelemente. Mit zunehmender Breite der Elektroden wird jedoch das Öffnungsverhältnis des Lichtsteuerelements kleiner und die Helligkeit nimmt ab, insbesondere wenn die Elektroden aus lichtundurchlässigem Material bestehen. Mit abnehmender Breite der Elektroden nimmt dagegen ihr elektrischer (Ohm'scher) Widerstand zu. Bevorzugt haben die

Elektroden eine Breite die im Bereich von 0,5 μ m bis 30 μ m, bevorzugt im Bereich von 0,5 μ m bis 20 μ m, besonders bevorzugt im Bereich von 0,7 μ m bis 19 μ m, ganz besonders bevorzugt im Bereich von 1 μ m bis 9 μ m und am ganz bevorzugt im Bereich von 1,5 μ m bis 6 μ m liegt.

5

Die mesogenen Medien gemäß der vorliegenden Erfindung weisen bevorzugt eine Blaue Phase auf. Es können jedoch auch Medien verwendet werden, bei denen der Temperaturbereich der Blauen Phase so schmal ist, dass praktisch ein Übergang von der kristallinen Phase, von der smektischen Phase oder von der nematischen Phase in die isotrope Phase erfolgt.

10

15

Der Klärpunkt der bevorzugt eine Blaue Phase aufweisenden mesogenen Medien liegt bevorzugt im Bereich von –20°C bis 80°C, bevorzugt von –30°C bis 80°C, bevorzugt ist der Klärpunkt 60°C oder weniger, besonders bevorzugt liegt er im Bereich von 0°C bis 60°C, bevorzugt im Bereich von 0°C bis 55°C und ganz besonders bevorzugt im Bereich von 20°C bis 60°C, bevorzugt bis 50°C. Bei Anzeigen mit Hintergrundbeleuchtung liegt der Klärpunkt bevorzugt im Bereich von 10°C bis 70°C und besonders bevorzugt im Bereich von 30°C bis 60°C.

20

Die Blaue Phase ist bevorzugt stabil bis –10°C, besonders bevorzugt bis –30°C und ganz besonders bevorzugt bis –40°C.

Die optische Anisotropie des Mediums / der achiralen Komponente (B) des Mediums bei einer Temperatur von 4° unterhalb des Klärpunkts des Mediums beträgt bevorzugt 0,080 oder mehr, besonders bevorzugt 0,090 oder mehr und ganz besonders bevorzugt 0,100 oder mehr.

30

35

In einer bevorzugten Ausführungsform weist die achirale Komponente (B) der erfindungsgemäßen, mesogenen Medien in der nematischen Phase bei einer Temperatur von 4 Grad unterhalb des dem Klärpunkts bevorzugt eine Doppelbrechung (Δn) von 0,100 oder mehr, besonders bevorzugt von 0,150 oder mehr und ganz besonders bevorzugt von 0,200 oder mehr auf. In dieser bevorzugten Ausführungsform beträgt die Konzentration der chiralen Komponente (A) 20% oder weniger, bevorzugt 10% oder weniger

und ganz besonders bevorzugt 7% oder weniger des mesogenen Mediums.

Der Wert der Doppelbrechung der Komponente (B) ist für die erfindungsgemäße Anwendung so gut wie unbegrenzt. Praktisch ist er jedoch in der Regel 0,500 oder kleiner und meist 0,450 oder kleiner. Der Wert der Doppelbrechung der erfindungsgemäßen Medien wird hier in der nematischen Phase bei einer Temperatur von 4° unterhalb des Klärpunkts gemessen.

10

15

20

5

lst die achirale Komponente des Steuermediums (Komponente (B)) bei dieser Temperatur nicht stabil nematisch oder zumindest bis zu dieser Temperatur in der nematischen Phase unterkühlbar, so wird, ebenso wie bei Einzelsubstanzen und Vormischungen, die Doppelbrechung einer Mischung aus dem Medium und der nematischen Mischung ZLI-4792 der Merck KGaA bei 20°C bestimmt und aus der Änderung gegenüber der Mischung ZLI-4792 auf den Wert des reinen Mediums extrapoliert. Es werden 10% des Mediums und 90% der Mischung ZLI-4792 verwendet. Wenn die Löslichkeit des Mediums nicht ausreicht wird auf eine Konzentration von 5% ausgewichen und falls die Löslichkeit dann immer noch nicht ausreicht wird als Wirtsmischung die nematische Mischung MLC-6828 der Fa. Merck KGaA verwendet, wie unten weiter beschrieben, und nötigenfalls auch hier die Konzentration von 10% auf 5% verringert. Das Verfahren der Extrapolation der Werte aus der Wirtsmischung wird für alle entsprechenden Eigenschaften der Medien verwendet, sofern diese bei der entsprechenden Temperatur nicht in der nematischen Phase untersucht werden können.

30

Die Komponente (B) der mesogenen Medien gemäß der vorliegenden Erfindung weist bevorzugt ein Dipolmoment von 4 Debye oder mehr, besonders bevorzugt von 6 Debye oder mehr und besonders bevorzugt von 8 Debye oder mehr auf.

35

Für die Lichtsteuerelemente gemäß der vorliegenden Erfindung können sowohl mesogene Steuermedien verwendet werden, deren Komponente (B) in der Mesophase eine positive dielektrische Anisotropie ($\Delta\epsilon$)

aufweisen, als auch solche deren Komponente (B) in der Mesophase eine negative dielektrische Anisotropie aufweisen. Bevorzugt werden mesogene Steuermedien verwendet, deren Komponente (B) in der Mesophase eine positive dielektrische Anisotropie ($\Delta \epsilon$) aufweisen.

5

10

Wenn die Komponente (B) der mesogenen Steuermedien eine positive dielektrische Anisotropie haben, hat diese bei 1 kHz und einer Temperatur von 4° unterhalb des Klärpunkts, bevorzugt in der nematischen Phase, einen Wert von bevorzugt 15 oder mehr, besonders bevorzugt 30 oder mehr und ganz besonders bevorzugt 45 oder mehr. Hat die Komponente (B) des Mediums keine nematische Phase oder liegt sie bei einer Temperatur von 4° unterhalb des Klärpunkts nicht in der nematischen Phase vor, so wird ihre dielektrische Anisotropie, wie die Doppelbrechung, durch Extrapolation der Werte einer entsprechenden Wirtsmischung ermittelt.

15

20

Wenn Komponente (B) des mesogenen Steuermediens eine negative dielektrische Anisotropie hat, beträgt diese bevorzugt –5 oder weniger, besonders bevorzugt –7 oder weniger und ganz besonders bevorzugt –10 oder weniger. Für dielektrisch negative Komponenten (B), bzw. die dielektrisch negativen Bestandteile der Komponenten (B) der Steuermedien, wird, sofern nötig, die nematische Mischung ZLI-3086 der Merck KGaA als Wirtsmischung verwendet.

Besonders bevorzugt sind Steuermedien mit einer Komponente (B) einer positiven dielektrischen Anisotropie.

30

Bevorzugt weisen die erfindungsgemäßen Steuermedien in den erfindungsgemäßen Lichtsteuerelementen bei einer Temperatur von 2 Grad oberhalb der charakteristischen Temperatur eine charakteristische Spannung V $_{10}$ im Bereich von 5 V bis 150 V, bevorzugt von 15 V bis 110 V, besonders bevorzugt von 20 V bis 90 V und ganz besonders bevorzugt von 30 V bis 80 V auf. Die charakteristischen Spannungen werden in dieser Anmeldungen für Zellen mit einer Breite der Elektroden von 10 µm und einem Elektrodenabstand von 10 µm angegeben, sofern nicht ausdrücklich etwas anderes angegeben ist. Besonders bevorzugt

haben die erfindungsgemäßen Steuermedien in den erfindungsgemäßen Lichtsteuerelementen bei einer Temperatur von 2 Grad oberhalb der charakteristischen Temperatur eine charakteristische Spannung V₁₀ von 105 V oder weniger, bevorzugt von 95 V oder weniger, besonders bevorzugt von 75 V oder weniger und ganz besonders bevorzugt von 50 V oder weniger.

In dieser Anmeldung wird eine charakteristische Temperatur (T_{char.})wie folgt definiert:

10

5

wenn die charakteristische Spannung als Funktion der Temperatur ein Minimum durchläuft, wird die Temperatur dieses Minimumms als charakteristische Temperatur bezeichnet,

15

wenn die charakteristische Spannung als Funktion der Temperatur kein Minimum aufweist, das Steuermedium aber eine oder mehrere Blaue Phasen aufweist, wird die Temperatur des Übergangs in die Blaue Phase, beim Auftreten mehrerer Blauer Phasen die Temperatur des Übergangs in die mit steigender Temperatur zuerst auftretende Blaue Phase, als charakteristische Temperatur bezeichnet,

20

wenn die charakteristische Spannung als Funktion der Temperatur kein Minimum aufweist und das Steuermedium auch keine Blaue Phase aufweist, wird die Temperatur des Übergangs in die isotrope Phase als charakteristische Temperatur bezeichnet.

30

Bevorzugt weisen die erfindungsgemäßen Steuermedien in den erfindungsgemäßen Lichtsteuerelementen eine geringe Temperaturabhängigkeit der charakteristischen Spannungen (V_X), beispielsweise V₁₀, $V_{50},\,V_{70}\,und\,V_{90}$ auf. Die Temperaturabhängigkeit (d V_X/dT) der charakteristischen Spannungen (V_X) wird bevorzugt durch ihre relativen Werte (dV*x/dT) beschrieben. Hierzu wird sie auf die Jeweilige charakteristische Spannung bei einer Referenztemperaturbezogen. Die Referenztemperatur (Tref.) ist die Temperatur von 2 Grad oberhalb der charakteristischen Temperatur des jeweiligen Steuermediums.

$$dV^*_X/dT = dV_X(T_{ref.})/dT / V_X(T_{ref.})$$
(5)

worin

5

V_X: die Spannung bei der X% relativem Kontrast erreicht wird.

die Temperatur,

 $T_{ref.}$ die Bezugstemperatur $T_{ref.} = T_{char.} + 2^{\circ}$ (siehe Text) und

10

15

20

35

temperaturen.

T_{char.} charakteristische Temperatur

bedeuten.

Bevorzugt wird die relative Temperaturabhängigkeit der charakteristischen Spannungen, bevorzugt von V₇₀, über einen bestimmten Temperaturbereich beginnend unterhalb bis oberhalb der gewünschten Betriebstemperatur angegeben. Bevorzugt liegt die Betriebstemperatur in einem Bereich von 0,5° bis 60°, besonders bevorzugt von 1° bis 50° und ganz besonders bevorzugt von 1° bis 30° oberhalb der charakteristischen Temperatur des Steuermediums in der Zelle. Zum Vergleich der Temperaturabhängigkeiten der charakteristischen Spannungen, wird in dieser Anmeldung der Bereich von einem Grad unterhalb bis einem Grad oberhalb einer Temperatur von 2 Grad oberhalb der charakteristischen Temperatur des Steuermediums angegeben, sofern nicht explizit anders angegeben.

Der Betrag und bevorzugt der Wert der Temperaturabhängigkeit der charakteristischen Spannungen, bevorzugt von V₇₀, in diesem Temperaturbereich liegt bevorzugt im Bereich von 0%/Grad bis 30%/Grad, bevorzugt im Bereich von 0%/Grad bis 23%/Grad, bevorzugt bis 22%/Grad, 30 bevorzugt bis 20%/Grad, besonders bevorzugt im Bereich von 0%/Grad

bis 15 %/Grad, bevorzugt bis 12%/Grad und ganz besonders bevorzugt von 0 %/Grad bis 7%/Grad.

Die erfindungsgemäßen Lichtsteuerelemente haben bevorzugt eine geringe Temperaturabhängigkeit über einen weiten Bereich von Betriebs-

10

15

20

30

35 .

Besonders bevorzugt gelten die genannten Grenzen für die Temperaturabhängigkeit über einen Temperaturbereich von +/-1° oder mehr um die Betriebstemperatur im Bereich der Betriebstemperaturen ausgewählt aus dem Bereich von 2° oberhalb der charakteristischen Temperatur des Steuermediums bis 10° oberhalb charakteristischen Temperatur, besonders bevorzugt über einen Temperaturbereich von +/-4° um die Temperatur von 5° oberhalb der charakteristischen Temperatur, insbesondere bevorzugt über einen Temperaturbereich von +/-1° oder mehr um die Betriebstemperatur im Bereich der Betriebstemperaturen ausgewählt aus dem Bereich von 2° oberhalb der charakteristischen Temperatur, ganz besonders bevorzugt über einen Temperaturbereich von +/-4°, bevorzugt +/-9° um die Temperatur von 10° oberhalb der charakteristischen Temperatur.

Die in den erfindungsgemäßen Lichtsteuerelementen verwendeten Steuermedien haben bevorzugt eine Blaue Phase, die sich über einen Temperaturbereich mit einer Breite von 15 Grad oder mehr, besonders bevorzugt von 30 Grad oder mehr und ganz besonders bevorzugt von 40 Grad oder mehr erstreckt.

Bevorzugt weisen die Steuermedien einen Betriebstemperaturbereich, bevorzugt eine Blaue Phase im Temperaturbereich von 20°C bis 35°C, besonders bevorzugt im Temperaturbereich von 10°C bis 50°C, insbesondere bevorzugt im Temperaturbereich von 0°C bis 60°C, und ganz besonders bevorzugt im Temperaturbereich von -30°C bis 80°C auf.

Die Breite des Temperaturbereichs der Blaue Phase wird wie folgt bestimmt, sofern nicht ausdrücklich anders angegeben.

Zunächst wird die HTP der einzelnen Verbindungen der chiralen Komponente (A), bzw. der gesamten chiralen Komponente (A) in der kommerziell erhältlichen Flüssigkristallmischung MLC-6828 der Fa. Merck KGaA bestimmt.

10

15

20

25

30

35

Dann wird eine Mischung aus der chiralen Komponente (A) in der speziell für diesen Zweck entwickelten, achiralen Flüssigkristallmischung AM-3 hergestellt. Zusammensetzung und Eigenschaften dieser Mischung sind bei Beispiel 4 angeben. Dabei wird die Konzentration der Komponente (A) in der achiralen Mischung so gewählt, dass der cholesterische Pitch der resultierenden Mischung im Bereich von 180 nm bis 800 nm, bevorzugt im Bereich von 400 nm bis 600 nm und besonders bevorzugt bei 550 nm liegt. Ein Tropfen der so erhaltenen Mischung wird auf einem Objektträger mit einem Glasplättchen abgedeckt und unter dem Mikroskop untersucht. Bei einer Schichtdicke von ca. 100 µm oder mehr ist die Blaue Phase direkt zu beobachten (siehe hierzu auch Gray und Goodby).

Als nächstes wird die Mischung des zu untersuchenden Steuermediums hergesellt. Hierzu wird die chirale Komponente (A) in der gewünschten Konzentration in der achiralen Komponente (B) gelöst. Diese Mischung wird in eine Zelle mit einer Schichtdicke von 20 µm oder weniger, bevorzugt ca. 10 µm gefüllt und bezüglich ihrer elektrooptischen Eigenschaften untersucht.

Dann wird die Temperaturabhängigkeit der charakteristischen Spannungen, bevorzugt von V₁₀, des Steuermediums in der Referenzzelle gemäß der vorliegenden Erfindung untersucht. Das Auftreten der Blauen Phase ist an dem Einsetzen des elektrooptischen Effekts bei steigender Temperatur zu erkennen. Der elektrooptische Effekt tritt bei der Umwandlungstemperatur auf, bei der die Umwandlung in eine optisch isotrope Phase stattfindet, ähnlich wie in DE 102 17 273.0 beschrieben. Allerdings liegen die Medien gemäß der vorliegenden Erfindung dann in der Blauen Phase vor und nicht in der isotropen Phase, wie die in DE 102 17 273.0 beschriebenen Medien. Mit weiter steigender Temperatur nehmen die charakteristischen Spannungen in der Regel mit steigender Temperatur leicht zu. Diese ist über den gesamten Bereich der Blauen Phase zu beobachten. Auch nach Überschreiten der Umwandlungstemperatur von der Blauen Phase in die isotrope Phase kann der elektrooptische Effekt beobachtet werden. Somit ist der Betriebstemperaturbereich der erfindungsgemäßen Lichtsteuerelemente in der Regel größer als der Bereich, in dem beiden Steuermedien die Blaue Phase auftritt. Bei

10

15

20

25

Temperaturen oberhalb des Phasenübergangs von der Blauen Phase in die isotrope Phase ist jedoch der Gradient des Anstiegs der charakteristischen Spannungen mit der Temperatur deutlich größer als in der Blauen Phase. Durch Interpolation aus den jeweiligen nahezu linearen Verläufen der charakteristischen Spannungen mit der Temperatur unterhalb bzw. oberhalb dieser Übergangstemperatur kann die Übergangstemperatur von der Blauen in die isotrope Phase erhalten werden.

Der Temperaturbereich über den bei dem Steuermedium die Blaue Phase auftritt, kann außerdem mittels DSC (Englisch "differential scannning calorimetry") bestätigt werden.

Bei Steuermedien bei denen die charakteristische Spannung des elektrooptischen Effekts in den erfindungsgemäßen Zellen ein Minimum durchläuft, ist in der Regel keine Unterscheidung von zwei Bereichen mit unterschiedlicher Steigung des Temperaturverlaufs (zunächst flach, dann steiler) zu beobachten. In diesen Fällen wird in der vorliegenden Anmeldung die Breite der Blauen Phase wie folgt definiert. Als Temperatur des oberen Endes des Phasenbereichs wird die Temperatur definiert, bei der die charakteristische Spannung den doppelten Wert des Minimums der charakteristischen Spannung annimmt. Als Temperatur des unteren Endes des Phasenbereichs wird die Temperatur definiert, bei der die charakteristische Spannung ebenfalls den doppelten Wert des Minimums der charakteristischen Spannung annimmt. Sofern jedoch dieser Wert bei Temperaturen unterhalb der Temperatur des Minimums nicht erreicht wird, wird die Temperatur, bei der der elektrooptische Effekt mit steigender Temperatur zuerst auftritt, als Temperatur des unteren Endes des Phasenbereichs definiert.

Wenn sich der Klärpunkt des Steuermediums in der Zelle von dem im Bulk unterscheidet, werden die charakteristischen Spannungen bei den Steuermedien die keine Blaue Phase aufweisen und bei denen die charakteristischen Spannungen mit steigender Temperatur auch kein Minimum durchlaufen, wird die Temperatur auf den Klärpunkt in der Zelle bezogen.

In dem Fall, dass das mesogene Steuermedium bei der Bestimmung in einer Kapillare im Klärpunktsmeßgerät (Fa. Mettler) keinen scharfen Klärpunkt aufweist, sondern einen relativ breiten Klärbereich, der typischer Weise einige Grad breit ist, wird hier, abweichend von der üblichen Definition, nicht der Beginn des Klärens, sondern das Ende des Klärbereichs als Klärpunkt bezeichnet.

Die mesogenen Medien gemäß der vorliegenden Erfindung bestehen bevorzugt aus zwei bis 40 Verbindungen, besonders bevorzugt aus fünf bis 30 Verbindungen und ganz besonders bevorzugt aus sieben bis 25 Verbindungen.

Die chiralen Verbindungen der chiralen Komponete (A) weisen vorzugsweise eine hohe HTP auf. Sie werden auch chirale Dotierstoffe genannt, da sie in der Regel in relativ geringen Konzentrationen zu mesogenen Basismischungen zugegeben werden. Bevorzugt weisen sie eine gute Löslichkeit in der achiralen Komponente (B) auf und beeinträchtigen die mesogenen, bzw. flüssigkristallinen Eigenschaften des mesogene Mediums nicht oder nur in geringem Maße. Werden zwei oder mehr chirale Verbindungen eingesetzt, können sie den gleichen oder den entgegengesetzten Drehsinn und gleiche oder entgegengesetzte Temperaturabhängigkeit der Verdrillung aufweisen.

Besonders bevorzugt sind chirale Verbindungen mit einer HTP in der kommerziellem Flüssigkristallmischung MLC-6828 der Fa. Merck KGaA von 20 μm^{-1} oder mehr, insbesondere von 40 μm^{-1} oder mehr, besonders bevorzugt von 70 μm^{-1} oder mehr.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung besteht die chirale Komponente (A) aus zwei oder mehr chiralen Verbindungen, die alle des gleiche Vorzeichen der HTP haben.

Die Temperaturabhängigkeit der HTP der einzelnen Verbindungen kann groß oder klein sein. Die Temperaturabhängigkeit des Pitchs des Mediums kann kompensiert werden indem Verbindungen mit unterschiedlicher

10

15

5

20

30

10

25

30

35

Temperaturabhängigkeit der HTP in entsprechenden Verhältnissen gemischt werden.

Für die optisch aktive Komponente stehen dem Fachmann eine Vielzahl zum Teil kommerziell erhältlicher chiraler Dotierstoffe zur Verfügung, wie z.B. Cholesterylnonanoat, R/S-811, R/S-1011, R/S-2011, R/S-3011, R/S-4011, B(OC)2C*H-C-3 oder CB15 (alle Merck KGaA, Darmstadt).

Besonders geeignete Dotierstoffe sind Verbindungen, die einen oder mehrere chirale Reste und eine oder mehrere mesogene Gruppen, oder eine oder mehrere aromatische oder alicyclische Gruppen, die mit dem chiralen Rest eine mesogene Gruppe bilden, aufweisen.

Geeignete chirale Reste sind beispielsweise chirale verzweigte

Kohlenwasserstoffreste, chirale Ethandiole, Binaphthole oder Dioxolane, ferner ein- oder mehrbindige chirale Reste ausgewählt aus der Gruppe enthaltend Zuckerderivate, Zuckeralkohole, Zuckersäuren, Milchsäuren, chirale substituierte Glykole, Steroidderivate, Terpenderivate, Aminosäuren oder Sequenzen von wenigen, vorzugsweise 1-5,

Aminosäuren.

Bevorzugte chirale Reste sind Zuckerderivate wie Glucose, Mannose, Galactose, Fructose, Arabinose, Dextrose; Zuckeralkohole wie beispielsweise Sorbitol, Mannitol, Iditol, Galactitol oder deren Anhydroderivate, insbesondere Dianhydrohexite wie Dianhydrosorbid (1,4:3,6-Dianhydro-D-sorbid, Isosorbid), Dianhydromannit (Isosorbit) oder Dianhydroidit (Isoidit); Zuckersäuren wie beispielsweise Gluconsäure, Gulonsäure, Ketogulonsäure; chirale substituierte Glykolreste wie beispielsweise Mono- oder Oligoethylen- oder propylenglykole, worin eine oder mehrere CH₂-Gruppen durch Alkyl oder Alkoxy substituiert sind; Aminosäuren wie beispielsweise Alanin, Valin, Phenylglycin oder Phenylalanin, oder Sequenzen von 1 bis 5 dieser Aminosäuren; Steroidderivate wie beispielsweise Cholesteryl- oder Cholsäurereste; Terpenderivate wie beispielsweise Menthyl, Neomenthyl, Campheyl, Pineyl, Terpineyl, Isolongifolyl, Fenchyl, Carreyl, Myrthenyl, Nopyl, Geraniyl, Linaloyl, Neryl, Citronellyl oder Dihydrocitronellyl.

Geeignete chirale Reste und mesogene chirale Verbindungen sind beispielsweise in DE 34 25 503, DE 35 34 777, DE 35 34 778, DE 35 34 779 und DE 35 34 780, DE 43 42 280, EP 01 038 941 und DE 195 41 820 beschrieben.

Besonders bevorzugt sind Dotierstoffe ausgewählt aus der Gruppe enthaltend Verbindungen der folgende Formeln A-I bis A-III.

10

5

15

20

$$R^{a31}$$
 H
 H
 O
 F
 CH_3
 CH

25

worin

R^{a11} und R^{a12}

, voneinander unabhängig, Alkyl, Oxaalkyl oder Alkenyl mit 2 bis 9, bevorzugt bis 7 C-Atomen und R^{a11} auch Methyl oder Alkoxy mit 1bis 9 C-Atomen, bevorzugt beide Alkyl, bevorzugt n-Alkyl,

30

R^{a21} und R^{a22}, voneinander unabhängig, Alkyl oder Alkoxy mit 1 bis 9, bevorzugt bis 7 C-Atomen Oxaalkyl, Alkenyl oder Alkenyloxy mit 2 bis 9, bevorzugt bis 7 C-Atomen, bevorzugt R^{a21} R^{a22}, bevorzugt Alkyl, bevorzugt n-Alkyl,

R^{a31} und R^{a32}, voneinander unabhängig, Alkyl, Oxaalkyl oder Alkenyl mit 2 bis 9, bevorzugt bis 7 C-Atomen und R^{a11} auch Methyl oder Alkoxy mit 1bis 9 C-Atomen, bevorzugt beide Alkyl, bevorzugt n-Alkyl,

5

Besonders bevorzugt sind Dotierstoffe ausgewählt aus der Gruppe enthaltend Verbindungen der folgende Formeln.

10

$$C_6H_{13}$$
 $-COO-COO-CH-C_2H_5$ A-I-1

15

20

$$C_3H_7$$

H

H

O

F

 C_1H_3

O

F

 C_1H_3

A-III-1

25

Weitere bevorzugte Dotierstoffe sind Derivate des Isosorbid, Isomannit oder Isoidit der folgenden Formel A-IV

30

(Dianhydrosorbitol),

5

(Dianhydromannitol), oder

10

(Dianhydroiditol),

vorzugsweise Dianhydrosorbitol, bedeutet,

15

sowie chirale Ethandiole wie z.B. Diphenylethandiol (Hydrobenzoin), insbesondere mesogene Hydrobenzoinderivate der folgenden Formel A-V

20

25

einschließlich der jeweils nicht gezeigten (R,S), (S,R), (R,R) und (S,S) Enantiomere,

worin

30

jeweils unabhängig voneinander 1,4-Phenylen, welches auch B und C durch L mono-, di- oder trisubstituiert sein kann, oder 1,4-Cyclohexylen,

H, F, Cl, CN oder optional halogeniertes Alkyl, Alkoxy, L 35 Alkylcarbonyl, Alkoxycarbonyl oder Alkoxycarbonyloxy mit 1-7 C-Atomen,

10

20

25

35

c 0 oder 1.

Z⁰ -COO-, -OCO-, -CH₂CH₂- oder eine Einfachbindung, und

R⁰ Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl oder Alkylcarbonyloxy mit 1-12 C-Atomen

bedeuten.

Die Verbindungen der Formel A-IV sind in WO 98/00 428 beschrieben. Die Verbindungen der Formel A-V sind in GB-A-2 328 207 beschrieben.

Ganz besonders bevorzugte Dotierstoffe sind chirale Binaphthylderivate wie in EP 01 111 954.2 beschrieben, chirale Binaphthol-Acetalderivate wie in WO 02/34 739 beschrieben, chirale TADDOL-Derivate wie in WO 02/06 265 beschrieben, sowie chirale Dotierstoffe mit mindestens einer fluorierten Brückengruppe und einer endständigen oder zentralen chiralen Gruppe wie in WO 02/06 196 und WO 02/06 195 beschrieben.

Besonders bevorzugt sind chirale Verbindungen der Formel A-VI

$$(Y^1)_{y_1}$$
 B^1
 U^1
 V^1
 W^1
 $(Y^2)_{y_2}$
 $(X^2)_{x_2}$
 $(X^2)_{x_2}$

30 worin

X¹, X², Y¹ und Y², jeweils unabhängig voneinander, F, Cl, Br, I, CN, SCN, SF₅, geradkettiges oder verzweigtes Alkyl mit 1 bis 25 C-Atomen, weiches einfach oder mehrfach durch F, Cl, Br, I oder CN substituiert sein kann, worin auch eine oder mehrere nicht

10

20

30

35

benachbarte CH₂-Gruppen, jeweils unabhängig voneinander, durch -O-, -S-, -NH-, NR⁰-, -CO-, -COO-, -OCO-, -OCOO-, -S-CO-, -CO-S-, -CH=CH- oder -C=C- so ersetzt sein können, dass O und/ oder S-Atome nicht direkt miteinander verbunden sind, eine polymerisierbare Gruppe oder Cycloalkyl oder Aryl mit bis zu 20 C-Atomen die optional einfach oder mehrfach durch Halogen, bevorzugt F oder durch eine polymerisierbare Gruppe substituiert sein kann,

R⁰ H oder Alkyl mit 1 bis 4 C-Atomen,

 x^1 und x^2 , jeweils unabhängig voneinander, 0, 1, oder 2,

y¹ und y², jeweils unabhängig voneinander, 0, 1, 2, 3, oder 4,

15 B¹ und B², jeweils unabhängig voneinander, einen aromatischen oder einen teilweise oder ganz gesättigten aliphatischen sechsgliedrigen Ring, worin eine oder mehrere CH-Gruppen durch N-Atome und eine oder mehrere, nicht benachbarte CH₂-Gruppen durch O und/oder S,

 W^1 und W^2 , jeweils unabhängig voneinander, $-Z^1-A^1-(Z^2-A^2)_m-R$, einer von beiden alternativ auch R^1 oder A^3 , jedoch nicht beide gleichzeitig H, oder

$$W^{1}$$
 $Z^{1}-A^{1}-(Z^{2}-A^{2})_{m}-R$
oder
$$Z^{1}-A^{1}-(Z^{2}-A^{2})_{m}-R$$

U¹ und U², jeweils unabhängig voneinander, CH₂, O, S, CO, oder CS,

V¹ und V², jeweils unabhängig voneinander, (CH₂)_n, worin eine bis vier nicht benachbarte CH₂-Gruppen durch O und/oder S ersetzt sein können, und eine von V¹ und V², und im Falle, dass

15

20

30

35

$$W^1$$
 $Z^1-A^1-(Z^2-A^2)_m-R$ bedeutet, beide

eine oder Einfachbindung,

Z¹ und Z², jeweils unabhängig voneinander, -O-, -S-, -CO-,

-COO-, -OCO-, -O-COO-, -CO-NR⁰-, -NR⁰-CO-,

-O-CH₂-, -CH₂-O-, -S-CH₂-, -CH₂-S-, -CF₂-O-, -O-CF₂-,

-CF₂-S-, -S-CF₂-, -CH₂-CH₂-, -CF₂-CH₂-, -CH₂-CF₂-,

-CF₂-CF₂-, -CH=N-, -N=CH-, -N=N-, -CH=CH-, -CF=CH-,

-CH=CF-, -CF=CF-, -C=C-, eine Kombination von zwei dieser Gruppen, wobei keine zwei O und/oder S und/oder N-Atome direkt aneinander gebunden sind, bevorzugt -CH=CH-COO-, oder -COO-CH=CH-, oder eine Einfachbindung,

A¹, A² und A³, jeweils unabhängig voneinander, 1,4-Phenylen, worin eine oder zwei nicht benachbarte CH-Gruppen durch N ersetzt sein können, 1,4-Cyclohexylen, worin eine oder zwei nicht benachbarte CH₂-Gruppen durch O und/oder S ersetzt sein können, 1,§-Dioxolan-4,5-diyl, 1,\$-Cyclohexenylen, 1,4-Bicyclo-(2,2,2)-oktylen, Piperidin-1,4-diyl, Haphthalin-2,6-diyl, Dekahydronaphthalin-2,6-diyl oder 1,2,3,4-Tetrahydronaphthalin-2,6-diyl, wobei jede dieser Gruppen ein oder mehrfach durch L substituiert sein kann, und außerdem A¹ eine Einfachbindung,

ein Halogenatom, bevorzugt F, CN, NO₂, Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl oder Alkoxycarbonyloxy mit 1-7 C-Atomen, worin ein oder mehrere H-Atome durch F oder Cl ersetzt sein können,

m in jedem Fall unabhängig 0, 1, 2 oder 3 und

R und R¹, jeweils unabhängig voneinander, H, F, Cl, Br, I, CN, SCN, SF₅, geradkettiges oder verzweigtes Alkyl mit 1 bzw. 3 bis 25 C-Atomen, welches optional einfach oder mehrfach durch F, Cl,

Br, I oder CN substituiert sein kann, uns worin eine oder mehrere nichtbenachbarte CH₂-Gruppen durch -O-, -S-, -NH-, -NR⁰-, -CO-, -COO-, -O-COO-, -S-CO-, -CO-S-, -CH=CH- oder -C=C- ersetzt sein können, wobei keine zwei O und/oder S Atome direkt miteinander verbunden sind oder eine polymerisierbare Gruppe

bedeuten.

5

15

20

10 Besonders bevorzugt sind chirale Binaphthylderivate der Formel A-VI-1

$$Z^0 - B = R^0$$
A-VI-1

insbesondere solche ausgewählt aus folgenden Formeln A-VI-1a bis A-VI-1c

10

$$Z^0$$
 A-VI-1c

worin B, R^0 und Z^0 die bei Formel A-IV angegebene Bedeutung haben und b 0, 1 oder 2 ist, und Z^0 insbesondere -OCO- oder eine Einfachbindung bedeutet.

Besonders bevorzugt sind ferner chirale Binaphthylderivate der Formel A-VI-2

15
$$Z^0 - B \rightarrow R^0$$
 A-VI-2

insbesondere solche ausgewählt aus folgenden Formeln A-VI-2a bis A-VI-2f

30

35

worin R⁰ die bei Formel A-IV angegebene Bedeutung hat, X H, F CI, CN oder R⁰, bevorzugt F bedeutet.

Insbesondere die Dotierstoffe der oben genannten Formeln A-IVI, A-V, A-VI und A-VII zeigen eine gute Löslichkeit in der achiralen Komponente, und induzieren eine cholesterische Struktur mit hoher Verdrillung und geringer Temperaturabhängigkeit der Helixganghöhe. Dadurch können selbst bei Verwendung nur eines dieser Dotierstoffe in geringen Mengen erfindungsgemäße Medien mit günstigen Eigenschaften erhalten werden, die sich vor allem für den Einsatz in Lichtsteuerelementen, bei denen das Steuermedium in der isotropen Phase angesteuert wird, eignen.

15

20

25

30

35

Die achirale Komponente (B) der erfindungsgemäßen mesogenen Medien mit positiver dielektrischer Anisotropie gemäß der vorliegenden Erfindung enthält bevorzugt

 eine Komponente (B-A) bestehend aus einer oder mehreren Verbindungen mit einer sehr stark positiven dielektrischen Anisotropie von 30

oder mehr.

- optional eine Komponente (B-B) bestehend aus einer oder mehreren Verbindungen mit einer stark positiven dielektrischen Anisotropie von 10 bis < 30.
- optional eine Komponente (B-C) bestehend aus einer oder mehreren Verbindungen mit einer moderat positiven dielektrischen Anisotropie von > 1,5 bis < 10,
 - optional eine Komponente (B-D) bestehend aus einer oder mehreren dielektrisch neutralen V(erbindungen mit einer dielektrischen Anisotropie im Bereich von –1,5 bis +1,5 und
 - gegebenenfalls optional eine Komponente (B-E)bestehend aus einer oder mehreren Verbindungen mit einer negativen dielektrischen Anisotropie von weniger als –1,5.

Die Komponente (B-A) der Komponente (B) dieser Medien enthält bevorzugt eine oder mehrere Verbindungen der Formel I und besteht besonders bevorzugt überwiegend und ganz besonders bevorzugt nahezu vollständig aus einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln I und II,

$$R^{1}-C \equiv C + \left(\begin{array}{c} A^{1} \\ \end{array}\right) - Z^{11} + \left(\begin{array}{c} Y^{13} \\ \end{array}\right) - Z^{12} + \left(\begin{array}{c} Y^{11} \\ \end{array}\right) - \left(\begin{array}{c} Y^{1$$

worin

 R^1

Alkyl mit 1 bis 7 C-Atomen oder Oxaalkyl mit 2 bis 7 C-Atomen, jeweils bevorzugt mit 2 bis 5 C-Atomen, bevorzugt Alkyl,

5

10

$$- \underbrace{\hspace{1cm} \stackrel{\mathsf{F}}{\longleftarrow} , - \underbrace{\hspace{1cm} \stackrel{\mathsf{o}}{\longleftarrow}}_{\mathsf{F}} , - \underbrace{\hspace{1cm} \stackrel{\mathsf{o}}{\longleftarrow}}_{\mathsf{N}}$$

15

 Z^{11} und Z^{12}

jeweils voneinander unabhängig, eine Einfachbindung, -CO-O-, trans -CH=CH-, -CH=CF-, -CF=CH-, -CF=CF-, -CH=CH-CO-O-, -CF=CF-CO-O-, -CF=CH-CO-O-, -CH=CF-CO-O-, -CF₂-O-, -O-CF₂- oder -C\(\equiv C\) oder eine Kombination von zwei oder mehreren dieser Gruppen. bevorzugt mindestens eine dieser Gruppen -COO- oder -CF₂-O-,

20

25

 X^1

F, $-OCF_3$, $-CF_3$, $-OCF_2H$, CI, CN, $-C\equiv C-CN$ oder NCS, bevorzugt CN, -CF₃, -C≡C-CN oder NCS, besonders bevorzugt CN oder -CF₃,

30

Y¹¹, Y¹², Y¹³ und Y¹⁴ H oder F und

n¹

0 oder 1, bevorzugt 0 bedeuten,

35

wobei die Verbindungen der Formel I bevorzugt drei oder mehr, besonders bevorzugt vier oder mehr Fluoratome an den Phenylringen tragen,

bevorzugt jedoch je Phenylring nicht mehr als zwei F-atome, besonders bevorzugt bedeuten Y¹¹, Y¹² und Y¹³ F und bevorzugt bedeutet Z¹² -COO-

5 II

worin 10

15

20

25

 R^2 Alkyl oder Alkoxy mit 1 bis 7 C-Atomen, Alkenyl, Alkenyloxy oder Oxaalkyl mit 2 bis 7 C-Atomen, bevorzugt Alkyl oder Alkoxy mit 1 bis 5 C-Atomen oder Alkenyl mit 2 bis 5 C-Atomen, bevorzugt Alkyl oder

Alkoxy,

 Z^{21} und Z^{22}

jeweils voneinander unabhängig, eine Einfachbindung, -CO-O-, trans -CH=CH-, -CH=CF-, -CF=CH-, -CF=CF-,

-CH=CH-CO-O-, -CF=CF-CO-O-, -CF=CH-CO-O-,

-CH=CF-CO-O-, -CF₂-O-, -O-CF₂- oder -C≡C- oder eine Kombination von zwei oder mehreren dieser Gruppen, bevorzugt mindestens eine dieser Gruppen -COO- oder

-CF₂-O-,

35

25

30

 X^2 F, -OCF₃, -CF₃, -OCF₂H, Cl, CN, -C=C-CN oder NCS, bevorzugt CN, -CF₃, -C=C-CN oder NCS, besonders

bevorzugt CN,

5 Y² Hoder F und

n² 0 oder 1 bedeuten.

- In einer bevorzugten Ausführungsform der vorliegenden Anmeldung enthält die Komponente (B) der Medien eine oder mehrere Verbindungen der Formel I und bestehen bevorzugt überwiegend und besonders bevorzugt nahezu vollständig aus einer oder mehreren Verbindungen der Formel I
- Bevorzugt werden die Verbindungen der Formel I ausgewählt aus der Gruppe der Verbindungen I-1 und I-2

$$R^1$$
— $C\equiv C$ — Z^{12} — X^1

$$R^1$$
— $C \equiv C$ — Z^{12} — X^1

worin die Parameter die oben unter Formel I gegebene Bedeutung haben und bevorzugt

R¹ Alkyl mit 1 bis 7, bevorzugt mit 1 bis 5, bevorzugt bis 3 C-Atomen,

Z¹² -COO- oder -CF₂-O- und

X¹ CN, -CF₃ oder NCS, bevorzugt CN oder -CF₃

bedeuten.

Besonders bevorzugt enthalten die erfindungsgemäßen Medien eine oder mehrere Verbindungen der Formel I, bevorzugt der Formel I-1 und/oder der Formel I-2, worin X¹ CF₃ bedeutet.

Bevorzugt werden die Verbindungen der Formel II ausgewählt aus der Gruppe der Verbindungen II-1 bis II-7

15

20

25

$$R^2$$
 Z^{22} Z^{22} Z^{22} Z^{22}

$$R^2$$
 Z^{22} Z^2 X^2

$$R^2$$
 Z^{22} Z^2 II-5

$$R^2$$
 Z^{22}
 F
 $C \equiv C - CN$
II-6

5

worin die Parameter die oben unter Formel II gegebene Bedeutung haben und bevorzugt

15

20

25

R² Alkyl oder Alkoxy mit 1 bis 7 C-Atomen, Alkenyl,

Alkenyloxy oder Oxaalkyl mit 2 bis 7 C-Atomen, bevorzugt Alkyl oder Alkoxy mit 1 bis 5 C-Atomen,

 Z^{22}

eine Einfachbindung, -CO-O- oder -CF2-O- bevorzugt

-COO- oder -CF₂-O-,

bei Formel II-6 auch, besonders bevorzugt, -C≡C- und

 X^2

CN, oder CF₃, bevorzugt CF₃,

bei Formel II-6 besonders bevorzugt CN, oder CF₃,

bevorzugt CN

bedeuten.

30

Bevorzugt enthalten die erfindungsgemäßen Medien eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln II1 bis II-5, bevorzugt Verbindungen worin Z²² -CO-O- oder -CF₂-O-bedeutet.

35

In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält die Komponente (B-A) der Komponente (B) der erfindungsgemäßen Medien bevorzugt eine oder mehrere Verbindungen der Formel II und besteht besonders bevorzugt überwiegend und ganz besonders bevorzugt nahezu vollständig aus einer oder mehreren Verbindungen der Formel II.

Für die Lichtsteuerelemente gemäß der vorliegenden Erfindung können sowohl mesogene Steuermedien verwendet werden, die in der Mesophase eine positive dielektrische Anisotropie ($\Delta\epsilon$) aufweisen, als auch solche die eine negative dielektrische Anisotropie aufweisen. Bevorzugt werden mesogene Steuermedien verwendet, die in der Mesophase eine positive dielektrische Anisotropie ($\Delta\epsilon$) aufweisen. Wenn die mesogenen Steuermedien eine positive dielektrische Anisotropie haben, hat die achirale Komponente (B) dieser Medien bei 1 kHz und einer Temperatur von 4° unterhalb des Klärpunkts, bevorzugt in der nematischen Phase, bevorzugt einen Wert von $\Delta\epsilon$ von 40 oder mehr, besonders bevorzugt von 50 oder mehr und ganz besonders von 60 oder mehr.

Die Komponente (B) der mesogenen Medien gemäß der vorliegenden Erfindung mit positiver dielektrischer Anisotropie bestehen besonders bevorzugt überwiegend und ganz besonders bevorzugt nahezu vollständig aus der Komponente (B-A).

In einer bevorzugten Ausführungsform enthält die Komponente (B) der mesogenen Medien gemäß der vorliegenden Erfindung mit positiver dielektrischer Anisotropie eine oder mehrere Komponenten ausgewählt aus der Gruppe der Komponenten (B-B) bis (B-D), bevorzugt ausgewählt aus der Gruppe der Komponenten (B-B) und (B-D), besonders bevorzugt der Komponente (B-B).

Die Komponente (B) der mesogenen Medien gemäß der vorliegenden Erfindung mit positiver dielektrischer Anisotropie enthält bevorzugt

- 5% bis 80%, bevorzugt 10% bis 60%, besonders bevorzugt 18% bis 43% einer oder mehrerer Verbindungen der Formel I,
- 5% bis 95%, bevorzugt 15% bis 80%, besonders bevorzugt 40% bis 70% einer oder mehrerer Verbindungen der Formel II und
- 0% bis 30% bevorzugt 0% bis 15%, besonders bevorzugt 0% bis 10% einer oder mehrerer weiterer Verbindungen.

10

5

15

20

25

30

Die Komponente (B) der mesogenen Medien gemäß der vorliegenden Erfindung mit positiver dielektrischer Anisotropie enthält bevorzugt

5

- 3% bis 45%, bevorzugt 5% bis 40%, besonders bevorzugt 10% bis 35% einer oder mehrerer Verbindungen der Formel I-1 und/oder

. .

2% bis 35%, bevorzugt 4% bis 30%, besonders bevorzugt 5% bis 30% einer oder mehrerer Verbindungen der Formel I-1 und/oder

10

 0 bis 30%, bevorzugt 2% bis 25%, besonders bevorzugt 5% bis 20% einer oder mehrerer Verbindungen der Formel II-1 und/oder

15

 0 bis 30%, bevorzugt 2% bis 25%, besonders bevorzugt 5% bis 20% einer oder mehrerer Verbindungen der Formel II-2 und/oder

5% bis 70%, bevorzugt 15% bis 65%, besonders bevorzugt 20%
 bis 60% einer oder mehrerer Verbindungen der Formel II-3
 und/oder II-4, bevorzugt II-4 und/oder

20

0% bis 20% bevorzugt 0% bis 15%, besonders bevorzugt 3% bis 12% einer oder mehrerer Verbindungen der Formel II-5 und/oder

- 0% bis 30% bevorzugt 0% bis 20%, besonders bevorzugt 3% bis 15% einer oder mehrerer Verbindungen der Formel II-6 und/oder

25

- 0% bis 35% bevorzugt 0% bis 30%, besonders bevorzugt 3% bis 12% einer oder mehrerer Verbindungen der Formel II-7.

30

Die Komponente (B) der mesogenen Medien gemäß der vorliegenden Erfindung mit negativer dielektrischer Anisotropie bestehen besonders bevorzugt überwiegend und ganz besonders bevorzugt nahezu vollständig aus der Komponente (B-E).

35

Die Komponente (B-E) dieser Medien enthält bevorzugt eine oder mehrere Verbindungen.

15

30

35

Die mesogenen Medien mit negativer dielektrischer Anisotropie gemäß der vorliegenden Erfindung enthalten bevorzugt

- eine Komponente (B-A') bestehend aus einer oder mehreren
 Verbindungen mit einer stark negativen dielektrischen Anisotropie von –5 oder weniger,
 - optional eine Komponente (B-B') bestehend aus einer oder mehreren Verbindungen mit einer moderat negativen dielektrischen Anisotropie von –1,5 bis < –5.
 - optional eine Komponente (B-C') bestehend aus einer oder mehreren dielektrisch neutralen Verbindungen mit einer dielektrischen Anisotropie von –1,5 bis +1,5 und
 - gegebenenfalls eine Komponente (B-D') bestehend aus einer oder mehreren Verbindungen mit einer positiven dielektrischen Anisotropie von mehr als 1,5.
- Die mesogenen Medien gemäß der vorliegenden Anmeldung enthalten bevorzugt
 - vier oder mehr, bevorzugt sechs oder mehr Verbindungen ausgewählt aus der Gruppe der Verbindungen der Komponenten (A) und (B) und/oder
 - fünf oder mehr Verbindungen der Verbindungen der Komponente (B) und/oder
 - eine, zwei oder mehr Verbindungen der Verbindungen der Komponente (A).

Das mesogene Medium gemäß der vorliegenden Erfindung kann weitere Additive, z.B. Stabilisatoren oder dichroitische Farbstoffe, in üblichen Konzentrationen enthalten. Die Gesamtkonzentration dieser weiteren Bestandteile liegt im Bereich von 0% bis 10%, bevorzugt im Bereich von 0,1% bis 6%, bezogen auf die Gesamtmischung. Die Konzentrationen der einzelnen dieser Verbindungen liegen bevorzugt im Bereich von 0,1 bis

3%. Die Konzentration dieser Verbindungen und ähnlicher Bestandteile der Mischung werden bei der Angabe der Konzentrationsbereiche der übrigen Mischungsbestandteile nicht berücksichtigt, sofern nicht ausdrücklich anders angegeben.

5

10

Die Medien werden auf übliche Weise aus den Verbindungen erhalten. Zweckmäßiger Weise werden die Verbindungen die in geringerer Menge eingesetzt werden in den in größerer Menge eingesetzten Verbindungen gelöst. Wird die Temperatur während des Mischvorgangs über den Klärpunkt der überwiegenden Komponente erhöht, kann die Vollständigkeit der Auflösung leicht beobachtet werden. Die erfindungsgemäßen Medien können jedoch auch auf andere Weisen hergestellt werden. So durch den Einsatz von Vormischungen. Als Vormischungen können unter anderem Homologenmischungen und/oder eutektische Mischungen eingesetzt werden. Die Vormischungen können aber auch bereits selbst einsatzfähige Medien sein. Dies ist bei sogenannten Zwei- oder Mehr-Flaschen-Systemen (Englisch: "two-bottle systems" oder "multi-bottle systems") der Fall.

20

15

In der vorliegenden Anmeldung gilt, soweit nicht explizit anders angegeben, das Folgende.

25

Die angegebenen Bereiche von Werten schließen bevorzugt die Grenzwerte ein.

30

Die Konzentrationen sind in Massen-% gegeben und beziehen sich auf die vollständige Mischung. Temperaturen sind in Grad Celsius und Temperaturdifferenzen in Differenzgrad Celsius angegeben. Alle physikalischen Eigenschaften wurden bestimmt wie in "Merck Liquid Crystals, Physical Properties of Liquid Crystals", Stand Nov. 1997, Merck KGaA, Deutschland und sind für eine Temperatur von 20 °C gegeben, sofern nicht explizit anders angegeben. Die optische Anisotropie (Δn), auch Doppelbrechung genannt, wird bei einer Wellenlänge von 589,3 nm bestimmt. Die dielektrischen Eigenschaften werden bei einer Frequenz von 1 kHz bestimmt. Die Eigenschaften der mesogenen Steuermedien und

10

15

20

30

35

insbesondere die ihrer achiralen Komponenten (B) werden bei einer Temperatur von 4° unterhalb ihres jeweiligen Klärpunks bestimmt.

Der cholesterische Pitch cholesterischer Medien bzw. chiraler nematischer Medien wird in Abhängigkeit von seiner Größe nach bekannten Methoden bestimmt.

Bei relativ großen Werten wird er nach der Methode nach Grandjean-Cano bestimmt. Hierzu wird das Material in eine thermostatisierte, keilförmige Zelle mit homogener Orientierung an den Substraten gefüllt. Die Abstände der beobachteten Disklinationslinien werden bestimmt und über den Keilwinkel wird der Pitch berechnet. Der verwendete Keilwinkel richtet sich nach dem zu bestimmenden Pitch. Typischer weise werden Zellen mit einem Keilwinkel von ca. 0,5° bis 4° verwendet. Die Abstände der Disklinationslinien werden bevorzugt unter dem Mikroskop ausgemessen. Orientierungsstörungen werden durch entsprechende Mittelung der Werte berücksichtigt. Alternativ kann der Mittelwert der Abstände durch Beugung eins Laserstrahl (z.B. eines He-Ne- Lasers) am Gitter der Disklinationslinien bestimmt werden. Hierbei erfolgt die Bestimmung der Beugungsmaxima zweckmäßigerweise mittels eines Diodenarrays oder eines CCDs. Der Winkel der Keilzelle wird bevorzugt durch Mehrfachreflektion eines Laserstrahls bestimmt. Alternativ kann er aus der Geometrie der Zelle erhalten oder durch eine Eichmessung mit einem Material mit bekanntem Pitch erhalten werden. Die Meßgenauigkeit für den Pitch beträgt ca. +/- 1%.

Sind die Werte des Pitchs zu groß, wird die Linsen-Methode verwendet. Hierbei wird das Material zwischen einer ebenen Platte und einer konvexen Linse orientiert. Dann werden die Abstände der kreisförmigen Disklinationslinien ausgemessen. Dies kann mit einem Bildverarbeitungssystem geschehen, dadurch wird die Mittelung der Daten vereinfacht. Aus dem Radius der Linse und dem Abstand der Disklinationslinie vom Kontaktpunkt wird der Abstand der Linsenfläche zur planen Unterlage am Ort der Disklinationlinien erhalten. Die Meßgenauigkeit dieser Methode ist etwas geringer als bei der mit den Keilzellen aber es kann ein großer Bereich an Pitch-Werten abgedeckt werden.

10

15

20

30

35

Sehr kleine Werte des Pitches werden mit der Methode der Selektivreflexion bestimmt. Hierzu wird die Transmission durch eine orientierte
Probe des Materials bestimmt. Aus der Wellenlänge des Maximums der
Selektivreflexion wird über den Brechungsindex des Materials der Pitch
erhalten. Bei dieser Methode beträgt die Meßgenauigkeit für den Pitch
beträgt ebenfalls ca. +/- 1%.

Die HTP der chiralen Materialien, insbesondere der chiralen Einzelverbindungen, wird nach der vorliegenden Anmeldung bei einer Temperatur von 20°C in der kommerziellen, nematischen Wirtsmischung MLC-6828 der Fa. Merck KGaA, Darmstadt nach der Grandjean-Cano Methode bestimmt. Die Temperaturabhängigkeit der HTP wird im Bereich von 0°C bis 50°C untersucht und typischerweise bei 20°C angegeben. In der Regel wird auch die HTP in der in der kommerziellen, nematischen Wirtsmischung MLC-6260, ebenfalls der Fa. Merck KGaA, bestimmt.

Im Zusammenhang mit Angaben zur Zusammensetzung der Medien, bzw. ihrer Komponenten, bedeutet

- "e

 "enthalten", dass die Konzentration des jeweiligen genannten Materials, also der Komponente oder der Verbindung, in der Bezugseinheit, also dem Medium bzw. der Komponente, bevorzugt 10% oder mehr, besonders bevorzugt 20 % oder mehr und ganz besonders bevorzugt 30% oder mehr beträgt,

 "überwiegend bestehen aus", dass die Konzentration des genannten Materials in der Bezugseinheit bevorzugt 50% oder mehr, besonders bevorzugt 60 % oder mehr und ganz besonders bevorzugt 70% oder mehr beträgt und

- "nahezu vollständig bestehen aus", dass die Konzentration des genannten Materials in der Bezugseinheit bevorzugt 80% oder mehr, besonders bevorzugt 90 % oder mehr und ganz besonders bevorzugt 95% oder mehr beträgt.

10

15

20

30

35

Dielektrisch positive Verbindungen haben ein $\Delta\epsilon$ > 1,5, dielektrisch neutrale Verbindungen haben ein $\Delta\epsilon$ im Bereich –1,5 \leq $\Delta\epsilon$ \leq 1,5 und dielektrisch negative Verbindungen haben ein $\Delta\epsilon$ < –1,5. Die selben Definitionen gelten auch für Komponenten von Mischungen und für Mischungen.

Die dielektrischen Eigenschaften, elektrooptischen Eigenschaften (z.B. die Schwellenspannungen) und die Schaltzeiten wurden in bei der Merck KGaA, Darmstadt, Deutschland hergestellten Testzellen, bestimmt. Die Testzellen zur Bestimmung von Δε hatten eine Schichtdicke von 22 μm und eine kreisförmige Elektrode aus Indiumzinnoxid (ITO) mit einer Fläche von 1,13 cm² und einem Schutzring. Für homeotrope Orientierung zu Bestimmung von $\epsilon_{||}$ wurden Zellen mit einer homeotrop orientierenden Polyimid-Orientierungsschicht verwendet. Alternativ kann Lezithin (Merck KGaA) als Orientierungsmittel verwendet. Die Zellen zur Bestimmung von ϵ_{\perp} hatten Orientierungsschichten aus dem Polyimid AL-1054 der Firma Japan Synthetic Rubber, Japan. Die Kapazitäten wurden in der Regel mit einem Frequenzanalysator Solatron 1260 mit einer Rechteckwelle mit einer Effektivspannung von 0.3 V_{rms} gemessen. Die elektooptischen Untersuchungen wurden mit weißem Licht durchgeführt. Die charakteristischen Spannungen wurden unter senkrechter Beobachtung bestimmt.

Die dielektrischen Eigenschaften der Materialien werden bevorzugt bei einer Frequenz von 1 kHz und, wenn möglich, bei 20°C, sowie bei einer Temperatur von 4° unterhalb der Übergangstemperatur in die optisch isotrope Phase (Blaue Phase oder isotrope Phase), die mit steigender Temperatur zuerst auftritt, sowie bei einer Temperatur von 4° oberhalb des Klärpunkts, bzw. der charakteristischen Temperatur des jeweiligen Materials bestimmt.

Die dielektrische Anisotropie ($\Delta \epsilon$) der Verbindungen wird durch Extrapolation der Werte einer 10%-igen Lösung der jeweiligen Verbindung in einer Wirtsmischung bei 20°C auf einen Anteil der jeweiligen Verbindung von 100% bestimmt. Die Kapazitäten der Testmischungen werden sowohl in einer Zelle mit homeotroper, als auch in einer Zelle mit

10

15

20

25

30

35

homogener Randorientierung bestimmt. Die Schichtdicke beider Zellentypen beträgt ca. 20 µm. Zur Messung wird eine Rechteckwelle mit einer Frequenz von 1 kHz und einer effektiven Spannung (rms, Englisch: "root mean square") von typischer Weise 0.2 V bis 1.0 V verwendet. In jedem Fall ist die verwendete Spannung niedriger als die kapazitive Schwelle der jeweils untersuchten Mischung.

Für dielektrisch positive Verbindungen wird die Mischung ZLI-4792 und für dielektrisch neutrale, sowie für dielektrisch negative Verbindungen, die Mischung ZLI-3086, beide von Merck KGaA, Deutschland, als Wirtsmischung verwendet. Diese Wirtsmischungen werden auch für Komponenten und Medien verwendet, die selbst bei der betreffenden Temperatur keine nematische Phase aufweisen, bzw. die nicht bis zu der betreffenden Temperatur in der nematischen Phase unterkühlt werden können. Ist die Löslichkeit der Verbindungen, Komponenten oder Medien in der jeweiligen Wirtsmischung geringer als 10%, wird ausnahmsweise die Konzentration der untersuchten Substanz auf 5% erniedrigt. Ist die Löslichkeit einer dielektrisch positiven Substanz (einer Verbindung, einer Komponente eines Mediums oder eines Mediums) in der Wirtsmischung ZLI-4792 geringer als 5%, so wird die nematische Mischung MLC-6828, Merck KGaA, Deutschland als Wirtsmischung verwendet. Auch hier wird nötigenfalls die Konzentration der zu untersuchenden Substanz von 10% auf 5% halbiert. Aus der Änderung der Werte gegenüber denen der Wirtsmischung wird auf den Wert der reinen Substanz extrapoliert.

Die erfindungsgemäßen Medien enthalten bevorzugt 0% bis 10% an Verbindungen deren Löslichkeit in der entsprechenden Wirtsmischung (ZLI-3086 bzw. MLC-6828) geringer als 5% ist. Bevorzugt ist die Konzentration dieser Verbindungen 8% oder weniger, besonders bevorzugt 5% oder weniger und ganz besonders bevorzugt 4% oder weniger.

Die dielektrische Anisotropie der Verbindungen, Komponenten oder Medien, die bei 20°C oder bei einer Temperatur von 4° unterhalb ihres Klärpunkts nicht in der nematischen Phase vorliegen, bzw. die nicht bis zu

10

15

20

25

30

35

dieser Temperatur in dieser Phase unterkühlbar sind, werden aus einer Wirtsmischung bestimmt, wie oben bei den Verbindungen beschrieben.

Die Dielektrizitätskonstanten $\epsilon_{||}$ und ϵ_{\perp} werden mit einer absoluten Genauigkeit von ca. +/-0,1 bis +/-0,2 bestimmt, wodurch sich für die dielektrische Anisotropie ($\Delta\epsilon$) eine absoluten Genauigkeit von ca. +/-0,2 bis +/-0,4, typischerweise von +/-0,3 ergibt.

Die dielektrische Suszeptibilität der Medien wird bei einer Temperatur von 4° oberhalb ihrer charakteristischen Temperatur bestimmt. Sie wird mittlere dielektrische Suszeptibilität ($\epsilon_{av.}$) genannt, da sie auch, in erster Näherung, aus der Extrapolation der mittleren dielektrischen Suszeptibilität des nematischen Mediums über dessen Klärpunkt hinaus erhalten werden kann. Die dielektrische Suszeptibilität der Medien wird mit einer absoluten Genauigkeit von ca. +/-0,1 bis +/-0,2 bestimmt.

Der Wert der Doppelbrechung der Komponenten (B) der erfindungsgemäßen Medien wird hier in der nematischen Phase bei 20°C und bei einer Temperatur von 4° unterhalb des Klärpunkts gemessen. Ist das Medium bei einer dieser beiden Temperaturen oder bei diesen beiden Temperaturen nicht stabil nematisch oder zumindest bis zu dieser Temperatur in der nematischen Phase unterkühlbar, so wird die Doppelbrechung einer Mischung aus der entsprechenden nematischen Wirtsmischung extrapoliert, wie oben bei der Bestimmung der dielektrischen Anisotropie beschrieben.

Der Begriff Schwellenspannung bedeutet in der vorliegenden Anmeldung die optische Schwelle und wird für einen relativen Kontrast von 10 % (V_{10}) angegeben. Die Mittgrauspannung und die Sättigungsspannung werden ebenfalls optisch bestimmt und für einen relativen Kontrast von 50%, bzw. von 90 % angegeben. Als Bezugsgröße und charakteristischer Wert der elektrooptischen Kennlinie der verschiedenen Medien wird in der vorliegenden Anmeldung in der Regel die Spannung (V_{10}) , in Ausnahmefällen auch die Spannung (V_{70}) , angegeben bei der die Kennlinie zum ersten Mal den Wert von 70% relativem Kontrast erreicht. Wird die kapazitive Schwellenspannung (V_{0}) , auch Freedericksz-Schwelle

10

15

20

genannt, oder die Spannung bei der 100% relativer Kontrast erreicht wird (V_{100}) angegeben, so ist dies explizit angegeben.

Die Medien wurden in Testzellen mit interdigitalen Elektroden gefüllt. Die Schichtdicke der Testzellen betrug in der Regel ca. 10 µm. Die Breite der Elektroden betrug 10 µm und der Abstand zwischen den benachbarten Elektroden betrug ebenfalls 10 µm. Die elektrooptische Kennlinie wurde bei einer Temperatur von 2 Grad oberhalb der charakteristischen Temperatur des jeweiligen Mediums bestimmt. Beim Einfüllen der Medien in eine Zelle wurde in einigen Fällen eine leichte Erhöhung des Klärpunkts beobachtet. Dieser Effekt ist möglicherweise mit einer gewissen Stabilisierung der nematischen Phase in dünnen Schichten zu erklären. Die Erhöhung des Klärpunkts betrug in einigen Fällen 0,5 Grad und bis zu ca. 0,7 Grad. Bei Medien bei denen der Klärpunkt die charakteristische Temperatur ist wird hier der Klärpunkt in der Zelle verwendet.

In der vorliegenden Anmeldung, besonders in den im folgenden beschriebenen Beispielen werden die Strukturen der chemischen Verbindungen mittels Abkürzungen angegeben. Die Bedeutung der jeweiligen Abkürzungen ist in den folgenden Tabellen A und B zusammengestellt. Alle Gruppen C_nH_{2n+1} und C_mH_{2m+1} sind geradkettige Alkylgruppen mit n bzw. m C-Atomen. Tabelle B ist aus sich selbst heraus verständlich, da sie jeweils die vollständige Abkürzung für eine Formel homologer Verbindungen angibt. In Tabelle A sind nur die Abkürzungen für die Kernstrukturen der Verbindungstypen zusammengestellt. Die Abkürzungen für die jeweiligen einzelnen Verbindungen setzen sich aus der jeweils zutreffenden dieser Abkürzungen für den Kern der Verbindung und der mittels einem Bindestrich angehängten Abkürzung für die Gruppen \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{L}^1 und \mathbb{L}^2 gemäß folgender Tabelle zusammen.

30

	Abkürzung für R1, R2, L1, L2	R ¹	R²	L1	<u>L</u> 2
5	nm	C _n H _{2n+1}	C _m H _{2m+1}	Н	Н
	nOm	C_nH_{2n+1}	OC _m H _{2m+1}	Н	Н
	nO.m	OC_nH_{2n+1}	C_mH_{2m+1}	Н	Н
10	n	C_nH_{2n+1}	CN	Н	Н
	nN.F	C_nH_{2n+1}	CN	Н	F
	nN.F.F	C_nH_{2n+1}	CN	F	F
	nON.F.F	$OC_{n}H_{2n+1}$	CN	F	F
	nOF	OC_nH_{2n+1}	F	Н	Н
15	nCl	C_nH_{2n+1}	CI	Н	Н
	nCl.F	C_nH_{2n+1}	CI	Н	F
	nCl.F.F	C_nH_{2n+1}	CI	F	F
	nF	C_nH_{2n+1}	F	Н	Н
20	nF.F	C_nH_{2n+1}	F	Н	F
	nF.F.F	C_nH_{2n+1}	F	F	F
	nmF	C_nH_{2n+1}	C_mH_{2m+1}	F	Н
	nCF ₃	C_nH_{2n+1}	CF ₃	Н	Н
	nOCF₃	C_nH_{2n+1}	OCF ₃	Н	Н
25	nOCF ₃ .F	C_nH_{2n+1}	OCF ₃	Н	F
	nOCF ₃ .F.F	C_nH_{2n+1}	OCF ₃	F	F
	nOCF ₂	C_nH_{2n+1}	OCHF ₂	Н	Н
30	nOCF ₂ .F	C_nH_{2n+1}	OCHF ₂	Н	F
	nOCF ₂ .F.F	C_nH_{2n+1}	OCHF ₂	F	F
	nS	C_nH_{2n+1}	NCS	Н	Н
	nS.F	C_nH_{2n+1}	NCS	Н	F
	nS.F.F	C_nH_{2n+1}	NCS	F	F
	rVsN	C _r H _{2r+1} -CH=CH-C _s H _{2s} -	CN	Н	Н
	rOsN	C _r H _{2r+1} -O-C _s H _{2s} -	CN	Н	Н
35	nEm	C_nH_{2n+1}	COOC _m H _{2m+1}	Н	Н

15

Tabelle A:

$$R^1 \longrightarrow O \longrightarrow R^2$$

PYP

PYRP

$$R^1 - O - O - R^2$$

PPYRP

$$R^1$$
 O Q R^2

$$R^1$$
 O R^2

BCH

CCP

$$20 \qquad R^1 - \bigcirc O - C \equiv C - \bigcirc \bigcirc \bigcap_{1^2}^{L^1} R^2$$

CPTP

CEPTP

30
$$R^{1} - COO - O - R$$

$$L^{2}$$

$$D$$

35

$$R^1$$
 C_2H_4 C_2 C_2 C_2 C_3 C_4 C_4 C_5 C_5 C_6 C_7 C_8

5 EPCH

10 HP

$$R^1$$
 O R^2

15 **PCH**

$$R^1 \longrightarrow C \equiv C \longrightarrow C \longrightarrow L^1$$

PTP

$$R^1$$
 O C_2H_4 O C^2

EBCH

$$R^1$$
 CH₂CH₂ O COO O R^2

EHP

ME

PDX

$$R^1$$
 C_2H_4 O C_2 C_2

BECH

35

20

25

20

25

30

$$R^1$$
 O O CH_2CH_2 O R^2

Tabelle B:

PCH-n(O)mFF

PY-n(O)-Om

15
$$F F F F$$

 C_nH_{2n+1} -(O) $O O O - O - C_mH_{2m+1}$

YY-n(O)-Om

 $CH_2=CH-C_nH_{2n}-(O)$ O $O-C_mH_{2m}-CH=CH_2$

YY-Vn(O)-OmV

$$C_nH_{2n+1}$$
 O C_mH_{2m+1}

CCP-n(O)mFF

CYY-n-(O)m

C

CCYY-n-(O)m

10

15

20

1

$$C_nH_{2n+1}$$
 O O X

25

(X = besonders F, CI, CN = "N", NCS = "S" und CF₃ = "T")

$$C_nH_{2n+1}$$
 O F O X

30

(X = besonders F, CI, CN = "N", NCS = "S" und CF₃ = "T")

25

30

$$C_nH_{2n+1}$$
 O F X

CGU-n-X

(X = besonders F, Cl, CN = "N", NCS = S und CF₃ = "T")

$$C_nH_{2n+1}$$
 C_2H_4 O C_mH_{2m+1}

10 Inm

$$C_nH_{2n+1}$$
 O O C_mH_{2m+1} $CBC-nm$

 $C_{n}H_{2n+1} - C_{m}H_{2m+1}$

CBC-nmF

 C_2H_5 COO CO CO

CHE

$$C_nH_{2n+1}$$
 C_2H_4 O O C_mH_{2m+1}

ECBC-nm

$$C_nH_{2n+1}O$$
 O O CN

GP-nO-N

$$H_2C = CH$$
 O CN

CP-V-N

$$C_nH_{2n+1}$$

5 CPP-nV2-m

$$H_2C = CH$$

CPP-V-m

$$C_{n}H_{2n+1}$$

15 CPP-nV-m

$$H_2C$$

20 **CPP-V2-m**

$$H_2C = CH$$

CCP-V-m

CCP-nV-m

30

$$C_nH_{2n+1}$$
 CH_2CH_2 O CN

K3∙n

M3·n

10

15

T3∙n

$$C_nH_{2n+1}$$
 O O COO O CO

20

BB3∙n

$$C_nH_{\overline{2n+1}}$$
 O O CN

25

PGIP-n-N

$$C_nH_{2n+1}$$
 O — CH=CH — O — NCS

30

PVG-n-S

15

. 25

$$C_nH_{2n+1}O$$
 O CH=CH O NCS

5 PVG-nO-S

$$C_nH_{2n+1}$$
 O O O O O O O

UPP-n-S

$$C_nH_{2n+1}$$
 O O $C \equiv C$ C_mH_{2m+1}

PPTUI-n-m

$$C_nH_{\overline{2n+1}}$$
O
O
NCS

CPU-n-S

CGU-n-S

35

20

25

30

35

$$C_nH_{\overline{2n+1}}$$
 O O NCS

PGU-n-S

$$10 \qquad C_n H_{2n+1} \bigcirc O \bigcirc -C \equiv C \bigcirc O \bigcirc -NCS$$

PTG-n-S

$$C_nH_{2n+1} O - C = C - O - NCS$$

PTU-n-S

$$C_nH_{2n+1}$$
 O CH=CH O NCS

PPVP-n-S

$$C_nH_{2n+1}$$
 O CH=CH O NCS

PPVG-n-S

$$C_nH_{2n+1}$$
 O CH=CH O NCS

PPVU-n-S

$$_{5}$$
 $C_{n}H_{2n+1}$ -(0)— O — $C \equiv C$ — O — CN

PTG-n(O)-N

PTU-n(O)-N

15 C_nH_{2n+1} O O $C\equiv C-CN$

20 PU-n-AN

$$C_nH_{2n+1}$$
-(O) O CO O CN

GZU-n(O)-N

$$C_{n}H_{2n+1}-(O) \longrightarrow CO \longrightarrow CO \longrightarrow CN$$

UZU-n(O)-N

15

20

25

$$C_nH_{2n+1}$$
-(O) O CO O CO O CO O CO

GZU-n(O)-NO2

$$C_nH_{2n+1}-(O)$$
 O C_0 C_0

UZG-n(O)-NO2

$$C_nH_{2n+1}$$
-(O) O C_0 C_0

UZU-n(O)-NO2

$$C_nH_{2n+1}-C\equiv C-CO-O-CO-CO$$

GZU-nA-N

$$C_nH_{2n+1}-C\equiv C-O$$

$$C_0$$

$$C_0$$

$$CO-O$$

$$CO$$

$$CO$$

UZU-nA-N

15

20

GZU-nA-NO2

$$C_nH_{2n+1}-C\equiv C$$

$$C = C$$

UZU-nA-NO2

$$C_nH_{2n+1}$$
 O F H C CO CO CO CO

UVZG-n-N

PWZU-3-N

CUZU-n-N

20

25

$$C_nH_{2n+1}$$
 $CO-O$ O F

CCZU-n-F

$$C_nH_{2n+1} \longrightarrow O \longrightarrow O \longrightarrow F$$

PGU-n-F

$$C_nH_{2n+1} \longrightarrow O \longrightarrow O \longrightarrow CN$$

UM-n-N

$$C_nH_{2n+1}$$
 O O CN

DU-n-N

$$C_nH_{2n+1}$$
 — $CH = CH_2$

30 CC-n-V

$$C_nH_{2n+1}$$
 C_mH_{2m+1}

35 CC-n-Vm

15

25

$$C_nH_{2n+1}$$

B(OC)2C*H-C-n

BO2C*H-n

$$C_nH_{2n+1}$$

20 BO2C*H-C-n

$$C_nH_{2n+1}$$

BO2C*H-CC-n

BO2C*F-CC-n

BO2C*F-n

$$C_nH_{2n+1}$$

BO2C*F-C-n

30

$$C_nH_{2n+1}-O$$
 C_0
 C_0

(nOPZ)2X*

$$C_{n}H_{2n+1}-O- \bigcirc -COO- \bigcirc -COO- \bigcirc -COO- \bigcirc -O-C_{n}H_{2n+1}$$

15 (n0PZPZ)2X*

SS-(nCPZ)2BE

$$C_nH_{2n+1}$$
 C_nH_{2n+1}
 C_nH_{2n+1}
 C_nH_{2n+1}

RR-(nCPZ)2BE

$$C_2H_5$$
- CH - CH_2 - O - O - CN

CB 15

5

10

R/S-811

15

R S-1011/S-1011

20

$$C_3H_7$$
 H H O C_6H_{13} C_6H_{13}

R-2011/S-2011

25

R S-3011/S-3011

30

$$\mathsf{H_7C_3} \underbrace{\hspace{1.5cm}}^{\mathsf{F}} \underbrace{\hspace{1.5cm}}^{\mathsf{CH_3}}_{\mathsf{DCH-C_6H_{13}}}$$

R-4011/S-4011

$$C_3H_7$$
 H O CH_2 CH_5 CH_3

CM 44

5

10

15

20

Die mesogenen Medien gemäß der vorliegenden Anmeldung enthalten bevorzugt

- vier oder mehr, bevorzugt sechs oder mehr Verbindungen ausgewählt aus der Gruppe der Verbindungen der Tabellen A und B und/oder
- fünf oder mehr Verbindungen ausgewählt aus der Gruppe der Verbindungen der Tabelle B und/oder
- zwei oder mehr Verbindungen ausgewählt aus der Gruppe der Verbindungen der Tabelle A.

25

Die erfindungsgemäßen Medien nach der vorliegenden Anmeldung könne bei Bedarf eine oder mehrere weitere Verbindungen in geringen Mengen als Stabilisatoren oder zur Einstellung des spezifischen Widerstands. Sie enthalten bevorzugt einen oder mehrere Stabilisatoren, bevorzugt ausgewählt aus der Liste der folgenden Verbindungen der Tabelle C.

Tabelle C

$$C_nH_{2n+1}$$
 H O OH

Eine typische Verbindung, die zur Einstellung des spezifischen Widerstands eingesetzt werden kann, hat die folgende Formel

$$C_3H_7$$
 H
 O
 C_3H_7
 O
 C
 O

10

15

20

35

<u>Beispiele</u>

Die im Folgenden beschriebenen Beispiele illustrieren die vorliegende Erfindung ohne sie in irgend einer Art zu beschränken. Ferner zeigen sie dem Fachmann welche Eigenschaften und insbesondere welche Eigenschaftskombinationen mit der vorliegenden Erfindung erreicht werden können.

Beispiel 1 und Vergleichsbeispiele 1a bis 1d

Vergleichsbeispiel 1a

Die achirale Flüssigkristallmischung AM-1 mit der folgenden Zusammensetzung wurde hergestellt und untersucht.

Zus	ammensetzunç	}	Physikalische Eiger	nschaf	ten	
Ver	bindung	Konz.	T(N,I)	=	5,7	°C
#	Abkürzung	/Massen-%	Δε(20°C, 1 kHz)	>	0	
1	UZU-3A-N	7,5				
2	GZU-3A-N	15,0	ε _{av.} (T(N,I)+4°)	==	55,0	
3	GZU-4A-N	15,0			•	
4	GZU-40-N	15,0	V ₇₀ (T(N,I)+2°)	=	45,0	V
5	PU-3-AN	10,0	dV ₇₀ (T(N,I)+2°)/dT	=	•	V/Grad
6	PTU-40-N	15,0	dV* ₇₀ (/V ₇₀)/dT			%/Grad
6	CUZU-2-N	15,0				
7	CUZU-3-N	<u>7,50</u>				
Σ	····	100,0				

Diese Flüssigkristallmischung wurde in eine Testzelle gefüllt und bei einer Temperatur von 7,7°C, sowie über einen Temperaturbereich von 6,2°C bis bei 10,7°C (5° oberhalb des Klärpunkts) bezüglich ihrer elektrooptischen Eigenschaften untersucht.

Die verwendete Testzelle wies interdigitale Elektroden auf nur einem der beiden Substrate auf. Eine elektrooptische Testzelle mit einem Lichtschaltelement enthaltend die Flüssigkristallmischung wurde hergestellt. Die . 5

Substrate bestanden aus Glas. Es wurden Substrate ohne Orientierungsschicht und ohne Passivierungsschicht verwendet. Die Elektrodenstruktur bestand aus ineinander verzahnten kammförmigen Elektroden. Der Abstand der Elektroden betrug 10 μ m und die Breite der Elektroden voneinander betrug 10 μ m. Die Schichtdicke der Elektroden betrug ca. 100 nm. Die Elektroden befanden sich alle in einer gemeinsamen Ebene. Die Schichtdicke des Steuermediums betrug ca. 10 μ m.

Polarisator hinter der Zelle benutzt. Die Absorptionsachsen der beiden Polarisatoren bildeten einen Winkel von 90° zueinander. Der Winkel zwischen der Achse der maximalen Absorption der Polarisatoren und der Komponente des elektrischen Felds in der Ebene der Anzeige betrug jeweils 45°. Die Spannungs-Transmissions-Kennlinie wurde mit einem elektrooptischen Meßplatz DMS 703 der Firma Autronic-Melchers, Karlsruhe, Deutschland bestimmt. Bei senkrechter Beobachtung wurde eine Kurve erhalten wie sie für eine Zelle mit elektrisch kontrollierter Doppelbrechung (z.B. ECB) typisch ist.

Mit steigender Temperatur oberhalb des Klärpunkts des Mediums nehmen die charakteristischen Spannungen monoton zu. Bei 7,7°C beträgt V₇₀
 45 V. Die Ergebnisse sind in der folgenden Tabelle zusammengestellt.

25

10

15

20

Tabelle 1: Charakteristische Spannungen verschiedener Beispiele

Beispiel	V. 1a	1	2c	2d	3b
Komponente (B)	. AN	<u>1-1</u>	AM	-2	AM-3
Komponente (A)	keine	BC*HC	DM-2	PPX*	BC*HC
Konz. (A) / %	0	3	15	10	5
T(N,I) / °C	5,7				
T _{char.} / °C		11,5	-8,2	9	36,3
Elektrodenabstand	d 10 μm, Ele	ktrodenbrei	te 10 µm		
		eristische S			
T-T(N,I) / °			V ₇₀ /V	· · · · · · · · · · · · · · · · · · ·	
0,5	22	27	31	n.b.	31
1,0	31	33	38	36,5	34
1,5	39	38	43	38,5	36
2,0	45	42	. 49	40,5	37
2,5	n.b.	n.b.	n.b.	42,5	38
3,0	55	51	59	44,5	39
4,0	63	58	67	49	42
5,0	71	65	73	52	46
	Tem	peraturabhä	ngigkeit		
V ₇₀ (T(N,I)+2°) / V	45	42	49	40,5	37
dV ₇₀ /dT / V/Grad	11,5	8	10,5	4	2,5
dV* ₇₀ /dT / %/Grad.	26	19	21	9.9	6.8

Bemerkungen:

BC*HC: B(OC)2C*H-C-3

PPX*:

(10PZPZ)2X*

n.b.:

nicht bestimmt.

 $dV_{70}/dT \colon \ \ [V_{70}(T(N,l)+3^\circ) - V_{70}(T(N,l)+1^\circ) \ / \ (2^\circ)]$

 dV^{*}_{70}/dT :

 $[V_{70}(T(N,I)+3^\circ) - V_{70}(T(N,I)+1^\circ) \, / \, (V_{70}(T(N,I)+2^\circ) \cdot 2^\circ)]$

Beispiel 1

Es wird eine Mischung aus 97% der achiralen Flüssigkristallmischung AM-1 des Vergleichsbeispiels 1a und 3% der chiralen Verbindung B(OC)2C*H-C-3 hergestellt und untersucht. Die chirale Verbindung hat in der verwendeten Form bei 20°c eine HTP von +137 μ m⁻¹ (in MLC-6828) und in MLC-6260 von +104 μ m⁻¹.

4	^
7	"
	.,
	•

5

15

20

Zus	ammensetzung		Physikalische Eigen	scha	ıften	
Ver	bindung	Konz.	T _{char} .	=	11,5	°C
#	Abkürzung	/Massen-%			, -	
1	B(OC)2C*H-C-3	3,0	ε _{av.} (T(N,I)+4°)	=	69,9	
2	UZU-3A-N	7,28			, .	
3	GZU-3A-N	14,55	V ₇₀ (T(N,I)+2°)	=	42	V .
4	GZU-4A-N	14,55	DV ₇₀ /dT(T(N,I)+2°)	=	8	V/Grad
5	GZU-4O-N	14,55	dV* ₇₀ (/V ₇₀)/dT		19	%/Grad
6	PU-3-AN	9,7	,			
7	PTU-4O-N	14,55				
8	CUZU-2-N	14,55				
9	CUZU-3-N	<u>7,28</u>				
Σ		100,0				_

Die Mischung weist eine Blaue Phase über eine Bereich von ca. 2 Grad mit der folgenden Phasensequenz auf: N* 11,5°C BP 13,5°C I.

Die Mischung wird, wie bei Vergleichsbeispiel 1a beschrieben, in eine Testzelle gefüllt und beschrieben untersucht. Insbesondere werden ihre elektrooptischen Eigenschaften bei Temperatur bis zu einigen Grad oberhalb ihrer charakteristischen Temperatur untersucht. Die Ergebnisse sind zum Vergleich mit denen des Vergleichsbeispiels 1 in Tabelle 1 enthalten.

30

Wie man aus dieser Tabelle ersehen kann, ist die charakteristische Spannung V_{70} der Flüssigkristallschaltelemente des Beispiels 1 bei Temperaturen nahe oberhalb der charakteristischen Temperatur etwas größer als die des Vergleichsbeispiels 1a. Sie nimmt wie diese mit steigender Temperatur monoton ab. Jedoch ist die Steigung der Abnahme

10

deutlich geringer als beim Vergleichsbeispiel 1, so dass die beiden Schaltelemente bereits bei einer Temperatur von 1,5° oberhalb ihrer Referenztemperatur, der Übergangstemperatur in die Blaue Phase, nahezu die selbe Spannung V_{70} zeigen. Die Temperaturabhängigkeit bei einer Temperatur von 2° oberhalb der jeweiligen charakteristischen Temperatur wird von über 25% auf unter 20% verringert.

Bei den Mischungen des Beispiels 1 und des Vergleichsbeispiels 1a wurden zusätzlich Zellen mit einem Elektrodenabstand von 15 µm und einer Elektrodenbreite von 10 µm untersucht. Die Ergebnisse sind in Tabelle 2 zusammengestellt.

Tabelle 5: Charakteristische Spannungen

15	Beispiel:

Beispiel:	V. 1a	V. 1b	V. 1c	V. 1d	
Komponente (A)	1			IV. IU	1
	 	<u>^</u>	eine		BC*HC
Konz. (A) /%			0		3
Komponente (B)	AM-1	s. Text	s. Text	s. Text	AM-1
	Physil	kalische Pa	rameter		
T(N,I)+2° / °C ???	7,7	25,8	25,7	16,3	13,5
$\varepsilon_{av.}(T(N,I)+4^{\circ})$	55,0	24,0	58,5	62,2	69,9
Elektrodenabstand	15 µm, E	lektrodenb	reite 10 µr	n	
	Temp	eraturabhä	ngigkeit		
V ₇₀ (T(N,I)+2°) / V	67	134	71	70	63
dV ₇₀ /dT / V/Grad	17	38	18	17	12
dV* ₇₀ /dT / %/Grad	25	28	25	24	19

20

Bemerkungen:

siehe Tabelle 1

30

Der Abstand Elektroden der verwendeten Zellen betrug

hier, in Tabelle 2, ausnahmsweise 15 µm.

10

15

20

Vergleichsbeispiele 1b bis 1d

Bei den Vergleichsbeispielen 1b bis 1d wurden, wie bei Vergleichsbeispiel 1a und Beispiel 1, achirale Steuermedien verwendet. Hier wurden jedoch die verschiedene Steuermedien verwendet.

Vergleichsbeispiel 1b

Es wurde eine Mischung mit der folgenden Zusammensetzung und mit den folgenden Eigenschaften hergestellt und untersucht.

Zus	sammensetzur	ng	Physikalische Eigen	scha	aften	
Ver	bindung	Konz.	T(N,I)	=	23,8	°C
#	Abkürzung	/Massen-%			•	
1	ME2N.F	3,0	Δn(20°C, 589,3 nm)	=	0,1444	
2	ME3N.F	3,0				
3	ME4N.F	8,0	Δε(20°C, 1 kHz)	=	27,3	
4	ME5N.F	8,0			•	
5	UM-3-N	4,0	ε _{av.} (T(N,I)+4°)	=	24,0	
6	PTG-3-N	8,0			•	
7	PTG-5-N	8,0	V ₇₀ (T(N,I)+2°)	=	89 '	v
8	PTU-40-N	8,0	dV ₇₀ /dT(T(N,I)+2°)	=	25 \	V/Grad
9	PU-3-AN	8,0				
10	PU-5-AN	8,0				
11	PGU-2-F	10,0				
12	PGU-3-F	10,0				
13	PGU-5-F	10,0				
14	HP-3N.F	4,0				
Σ		100,0				,

Die Ergebnisse sind in Tabelle 2 zusammengefasst.

Vergleichsbeispiel 1c

Zusammensetzung

Abkürzung

UZU-3A-N

UZU-5A-N

GZU-3A-N

GZU-4A-N

GZU-4O-N

UVZG-3-N

CUZU-2-N

CUZU-3-N

CUZU-4-N

HP-5N.F

Verbindung

#

1

2

3

4

5

6

7

8

9

10

Σ

Es wurde eine Mischung mit der folgenden Zusammensetzung und mit den folgenden Eigenschaften hergestellt und untersucht.

T(N,I)

 $\Delta H(N,I)$

Physikalische Eigenschaften

 $\Delta n(20^{\circ}C, 589,3 \text{ nm}) =$

Δε(20°C, 1 kHz)

 $\varepsilon_{av.}(T(N,l)+4^{\circ})$

 $V_{70}(T(N,I)+2^{\circ})$

 $dV_{70}/dT(T(N,I)+2^{\circ})$

23,7 °C

0,80 J/g

47 V

10 V/Grad

0,0925

=

64,1

58,5

1	1	

٠	1	0

15

1	O

20

Die Ergebnisse sind in Tabelle 2 zusammengefas
--

Konz.

12,0

12,0

12,0

11,0

10,0

10,0

10,0

10,0

10,0

3,0

100,0

/Massen-%

25

30

Vergleichsbeispiel 1d

Es wurde eine Mischung mit der folgenden Zusammensetzung und mit den folgenden Eigenschaften hergestellt und untersucht.

1	Λ	

10

1	5

20

					•
Zus	ammensetzung		Physikalische Eiger	nschafte	n
Ver	bindung	Konz.	T(N,I)	=	14,3 °C
#	Abkürzung	/Massen-%			
1	UZG-5A-NO2	10,0	Δε(20°C, 1 kHz)	· >	0
2	UZU-3A-N	10,8			•
3	UZU-5A-N	10,8	$\varepsilon_{av.}(T(N,I)+4^{\circ})$	=	62,2
4	GZU-3A-N	10,8			
5	GZU-4A-N	9,9	V ₇₀ (T(N,I)+2°)	=	47 V
6	GZU-4O-N	9,0	$dV_{70}/dT(T(N,I)+2^{\circ})$	=	11 V/Grad
7	UVZG-3-N	9,0			
8	CUZU-2-N	9,0			
9	CUZU-3-N	9,0			
10	CUZU-4-N	9,0			
11	HP-5N.F	2.7			
Σ		100,0			

Die Ergebnisse sind in Tabelle 5 zusammengefasst.

25

Die Medien der Vergleichsbeispiele 1b bis 1d wurden, wie bei Beispiel 1 und Vergleichsbeispiel 1a, in Zellen mit einem Elektrodenabstand von 15 µm und einer Elektrodenbreite von 10 µm untersucht. Die Ergebnisse sind in Tabelle 2 dargestellt.

30

Wie man aus Tabelle 2 ersehen kann, ist die Temperaturabhängigkeit der relativen charakteristischen Spannung V_{70} für alle vier Vergleichsbeispiele mit ca. 25% nahezu gleich groß, wohingegen sie bei Beispiel 1a nur 19% beträgt.

15

20

25

Beispiele 2a bis 2d und Vergleichsbeispiel 2

Vergleichsbeispiel 2

Zunächst wird die achirale Mischung AM-2 der folgenden Zusammensetzung hergestellt und untersucht.

Zus	sammensetzun	g	Physikalische Eiger	nscha	ften	
Ver	bindung	Konz.	T(N,I)	=	22,5	°C
#	Abkürzung	/Massen-%				
1	UZU-3A-N	15,0	ε _{av.} (Τ(N,I)+4°)	=	60.89	
2	UZU-5A-N	5,6			,	
3	GZU-3A-N	15,0	V ₇₀ (T(N,I)+2°)	=	59	V
4	GZU-4A-N	15,0	dV ₇₀ /dT(T(N,I)+2°)	=		V/Grad
5	GZU-4O-N	12,0	dV* ₇₀ (/V ₇₀)/dT		17	%/Grad
6	CUZU-2-N	11,0				
7	CUZU-3-N	11,0				
8	CUZU-4-N	11,0				
9	HP-3N.F	4,4				
Σ	·	100,0				

Beispiel 2a

Es wird eine Mischung aus 90% der achiralen Flüssigkristallmischung AM-2 des Vergleichsbeispiels 2 und 10% der chiralen Verbindung B(OC)2C*H-C-3 hergestellt und untersucht. Die Temperaturabhängigkeit der Spannung V₇₀ ist in der folgenden Tabelle (Tabelle 3) dargestellt.

Tabelle 3: Temperaturabhängigkeit der charakteristischen Spannungen des Beispiels 2a

#	T/°C	V ₇₀ /V	
11	- 19,3	156	
2	-17,3	116	
3	-15,5	93	
4	-13,5	82	
5	-11,6	80	
6	-9,6	82	
7	-7,7	88	
8	-5,6	94	
.9	-3,7	102	
10	-1,9	108	
11	. 2,0	125	
12	5,9	143	
13	9,7	164	

Wie man aus dieser Tabelle (Tabelle 3) ersehen kann, nimmt die charakteristische Spannung V_{70} der Zelle mit dieser dotierten Mischung, nicht wie bei dem Vergleichsbeispiel und bei Beispiel 1a mit steigender Temperatur zu, vielmehr nimmt sie zunächst mit steigender Temperatur ab, durchläuft dann bei ca. –11,6° C ein Minimum und steigt erst dann mit weiter steigender Temperatur wieder an. Die Temperatur von –11,6° C wird, nach der Vorliegenden Anmeldung, als charakteristische Temperatur bezeichnet, da die charakteristische Spannung ein Minimum durchläuft. In einem Temperaturbereich von ca. +/-3° um diese Temperatur (also $T_{Char...} = -11,6$ °C) verschwindet die Temperaturabhängigkeit (dV* $_{70}$ /dT) nahezu, beträgt also ca. 0V/Grad.

Hier wird als Phasenbereich der Blauen Phase der Bereich von einer Temperatur von –19,3°C bis 13°C angegeben. Die Spannung erreicht bei tiefen Temperaturen nur 156 V, also weniger als das Doppelte des Werts der minimalen Spannung von 80 V. Also ist die Untergrenze des Temperaturbereichs die Temperatur bei der der elektrooptische Effekt zuerst auftritt. Dies ist bei –19,3°C der Fall. Bei einer Temperatur von 13°C

10

5

15

20

25

30

wird mit 164 V etwas mehr als das Doppelte des Werts der minimalen Spannung erreicht. Bei der Angebe dieser oberen Grenze wird, wie im entsprechenden Fall auch bei der unteren Grenze, auf eine Interpolation auf Werte mit einer Genauigkeit von unter einem Grad verzichtet.

5

Beispiel 2b

85% der achiralen Flüssigkristallmischung AM-2 des Beispiels 1 wurde mit 15% der Dotierstoffmischung DM-1 mit der folgenden Zusammensetzung.

10

15

20

Zusa	Zusammensetzung DM-1					
Verbi	ņdung	Konz.	HTP(MLC-6828)	HTP(MLC-6260)		
#	Abkürzung	/Massen-%	/µm ⁻¹	/µm ⁻¹		
1	B(OC)2C*H-C-3	28,6	+137	+104		
2	(60PZ) ₂ X*	14,2	+58	n.b.		
3	(10PZPZ) ₂ X*	14,3	+80	n.b.		
4	SS-(5CPZ)2BE	14,2	-56	n.b.		
5	RR-(5CPZ)2BE	14,3	+56	n.b.		
6	R-1011	14,4	n.b.	+27		
Σ		100,0	·			

Die in der Dotierstoffmischung DM-1 verwendeten chiralen Verbindungen haben alle einen hohen, positiven Wert der HTP in der Referenzmischung mit der im Folgenden angegebenen Zusammensetzung.

20

Für das resultierende Steuermedium konnte unter dem Mikroskop bei Temperaturen bis –20°C kein Klärpunkt und kein Übergang in die Blaue Phase bestimmt werden. Die Mischung aus 85% AM-1 und 15% DM-1 wird mit 0,1% des Phenols der Formel

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{OH} \\ \text{CH}_3 \\ \text$$

versetzt, in eine Testzelle gefüllt und, wie im Vergleichsbeispiel 1a beschrieben, untersucht. Insbesondere werden ihre elektrooptischen Eigenschaften bei verschiedenen Temperaturen oberhalb ihrer charakteristischen Temperatur bestimmt. Die Ergebnisse sind in Tabelle 4 zusammengestellt und zum Vergleich mit denen des Beispiels 2a, in Tabelle 5 enthalten.

Tabelle 4: Temperaturabhängigkeit der charakteristischen Spannungen des Beispiels 2b

#	T./°C	V ₇₀ /V	
1	-11,4	71	
2	-10,5	67	
3	-9,5	65	
4	-8,5	64	
5	-7,5	65	
6	-6,6	68	
7	-5,6	71	
8	-3,6	81	
9	-2,7	85	
10	-1,8	90	
11	-0,9	94	

0,1

1,2

2,2

4,0.

15

12

13

14

15

10

5

20

:0

Wie man aus dieser Tabelle (Tabelle 4) ersehen kann, ist die charakteristische Spannung V_{70} der Zelle mit dieser dotierten Mischung über eine Temperaturbereich von $-11,4^{\circ}$ C bis $-5,6^{\circ}$ C nahezu unabhängig von der Temperatur.

100

106

111

121

25

Wie bei Beispiel 2a nimmt auch hier V_{70} mit steigender Temperatur zunächst ab und steigt erst dann mit weiter steigender Temperatur wieder an. Das Minimum von V_{70} liegt bei ca. -8.5° C In einem Temperaturbereich von ca. $+/-2^{\circ}$ um diese Referenztemperatur verschwindet auch hier die Temperaturabhängigkeit der charakteristischen Spannung (dV_{70}/dT) nahezu vollständig (vergleiche Tabelle 3).

Tabelle 5: Temperaturabhängigkeit der charakteristischen Spannungen der Beispiele 2a und 2b

Beispiel	2a			
	Za		2b	
Komp. (B)		<i>F</i>	\M-2	
Komp. (A)	B(OC)2C*H	-C-3	DM-1	
Konz. (A)/%	10		15	
T _{Char.} /°C	-11,6		-8,5	
	Te	mperaturabhäng	gigkeit	
T - T _{Char.}	$\Delta V_{70}/\Delta T$	ΔV* ₇₀ /ΔT	$\Delta V_{70}/\Delta T$	ΔV* ₇₀ /ΔT
/Grad	/ V/Grad	/ %/Grad	/ V/Grad	/ %/Grad
+/-1	2	2	2	3
+/-2	3	4	5	7
+/-3	n.b.	n.b.	n.b.	n.b.
+/-4	0,6	-0,8	n.b.	n.b.
+/-6	3,6	-4,5	n.b.	n.b.
+/-8	3,4	-4.2	n.b	n h

15

5

10

Bemerkungen:

siehe Tabelle 1

 $\Delta V_{70}/\Delta T$ (T): $[V_{70}(T+1^{\circ}) - V_{70}(T-1^{\circ}) / (2^{\circ})]$

 $\Delta V^*_{70}/\Delta T$ (T): $[V_{70}(T.+1) - V_{70}(T-1^\circ) / (V_{70}(T) \cdot 2^\circ)]$

Beispiel 2c

Die Flüssigkristallmischung AM-2 des Vergleichsbeispiels 2 wurde zu 85% wie bei Beispiel 2 wieder mit 15% der einer Dotierstoffmischung gemischt. Hier wurde jedoch die Dotierstoffmischung DM-2 mit der folgenden Zusammensetzung verwendet.

10

15

20

25

Zusa	ammensetzung DM	-2		
Verbindung		indung Konz. I		HTP(MLC-6260)
#	Abkürzung	/Massen-%	/µm ⁻¹	/µm ⁻¹
1	BO2C*F-CC-3	18,3	n.b.	-71
2	BO2C*F-5	35,8	+59	n.b.
3_	RR-(5CPZ)2BE	18,2	-56	n.b.
4	(10PZPZ) ₂ X*	9,3	+80	· n.b.
5	R-1011	18,4	n.b.	+27
Σ		100,0		

Die in der Dotierstoffmischung DM-2 verwendeten chiralen Verbindungen haben in der Referenzmischung Werte der HTP, die mit steigender Temperatur zunehmen. Die resultierende Mischung hat eine charakteristische Temperatur.

Die Mischung aus 85% AM-1 und 15% DM-2 wird mit 0,1% des in Beispiel 2b verwendeten Phenols versetzt, in eine Testzelle gefüllt und untersucht, wie im Vergleichsbeispiel 1 beschrieben. Insbesondere werden ihre elektrooptischen Eigenschaften bei verschiedenen Temperaturen oberhalb ihrer charakteristischen Temperatur bestimmt. Diese Ergebnisse sind, zum Vergleich mit denen des Vergleichsbeispiels 1a und des Beispiels 1, ebenfalls in Tabelle 1 enthalten.

Beispiel 2d

Zu der Mischung AM-2 des Vergleichsbeispiels 4 wurden 10% der chiralen Verbindung (10PZPZ)2X* gegeben.

Die resultierende Mischung wies keinen scharfen Phasenübergang in die Blaue Phase, sondern eine Phasenübergangsbereich von –5°C bis 9°C auf. Als charakteristische Temperatur wurde hier ausnahmsweise 9°C angenommen. Die Ergebnisse sind in der folgenden Tabelle, Tabelle 6 dargestellt und, zum Vergleich, ebenfalls in Tabelle 1 aufgenommen.

10

15

20

Tabelle 6: Charakteristische Spannungen des Beispiels 2d

	· · · · · · · · · · · · · · · · · · ·			
Beispiel:	V. 2	2d		
Komponente (A)	A	M-2		
Komponente (B)	keine	(10PZPZ)2X*		
Konzentration (B) / %	0	10		
Physikalische Parameter				
T _{Char.} / °C	24,4	9		
Elektrodenabstand 10 µn	n, Elektrodenbreite	e 10 μm		
Charakteristische Spannungen				
T-T(N,I) / °		o /V		
1,0	n.b.	36,5		
1,5	n.b.	38,5		
2,0	59	40,5		
2,5	n.b.	42,5		
3,0	n.b.	44,5		
4,0	n.b.	49		
5,0	n.b.	52		
Temper	aturabhängigkeit			
V ₇₀ (T(N,I)+2°) / V	59	40,5		
dV ₇₀ /dT / V/Grad	10	4		
dV* ₇₀ /dT / %/Grad	17	10		

Bemerkungen:

siehe Tabelle 1.

Beispiele 3a bis 3f und Vergleichsbeispiel 3

Vergleichsbeispiel 3

Als achirale Ausgangsmischung wurde die Mischung AM-3 mit der folgenden Zusammensetzung hergestellt.

		<u> </u>			
	Zus	ammensetzung		Physikalische Eigenschaften	
	Ver	bindung	Konz.	T(N,I) = 56.8 °C	
	#	Abkürzung	/Massen-%		
	1	GZU-3A-N	15,0		
	2	GZU-4A-N	15,0		
	3	GZU-40-N	15,0		
	4	UZU-3A-N	8,0		
1	5	CUZU-2-N	9,0		ļ
	6	CUZU-3-N	9,0		
1	7	CUZU-4-N	9,0	·	1
	8	HP-3N.F	6,0		
	9	HP-4N.F	6,0	•	ı
	10	HP-5N.F	8,0		
	Σ		100.0		

Diese Mischung wurde als solche untersucht. Die charakteristische Temperatur T(N,I) betrug 60 °C. Die Ergebnisse sind in Tabelle 7 gezeigt.

Beispiele 3a bis 3c

Zu der Mischung AM-3 des Vergleichsbeispiels 3 wurden alternativ 3%, 5%, bzw. 7% der in Beispiel 1 verwendeten chiralen Verbindung B(OC)2C*H-C-3 gegeben (Beispiele 3a, 3b bzw. 3c). Die resultierenden Mischungen wiesen Phasenübergang in die Blaue Phase bei ca. 24°C, 36°C, bzw. 46°C auf. Als charakteristische Temperaturen wurden hier 24,3°C, 36,3°C bzw. 45,9°C angenommen. Die Ergebnisse sind in Tabelle 7 zusammengestellt und die des Beispiels 3d ebenfalls in Tabelle 1 aufgenommen.

10

15

20

25

30

10

15

20

Tabelle 7: Charakteristische Spannungen der Beispiele 3a bis 3c

Beispiel:	V. 3	3a	3b	3c		
Komponente (B)		AM-3				
Komponente (A)	keine	B(OC)2C*H-C-3				
Konzentration (A) / %	0	3,0	5,0	7,0		
Physikalische Parameter						
T(N,I) / °C	56,8	n.b.	n.b.	n.b.		
T _{Char.} / °C	60	45,9	36,3	24,3		
Elektrodenabstand 10 µm, Elektrodenbreite 10 µm						
Charakteristische Spannungen						
T-T(N,I) / °	V ₇₀ /V					
0,5	n.b.	23	31	35		
1,0	76	23,5	34	37		
1,5	84	24,5	36	39		
2,0	92	25	37	41		
2,5	100	28	38	43		
3,0	107	n.b.	39	45		
4,0	121	n.b.	42	48		
5,0	135 ⁻	n.b.	46	50		
Temperaturabhängigkeit						
V ₇₀ (T _{Char.} +2°) / V	92	25	37	41		
dV ₇₀ /dT / V/Grad	15.	3,5 [§]	2,5	4		
dV* ₇₀ /dT / %/Grad	17	14 [§]	6,8	9,6		

Bemerkungen: siehe Tabelle 1.

 V_{70}/dT : $V_{70}(T_{char.} +2,5^{\circ}) - V_{70}(T_{char.} +1,5^{\circ}) / (1^{\circ})$

dV*₇₀/dT:

 $[V_{70}(T_{char.} + 2.5^{\circ}) - V_{70}(T_{char.} + 1.5^{\circ}) \, / \, (V_{70}(T_{char.} + 1^{\circ}) \cdot 1^{\circ})]$

Beispiele 3d bis 3f

Als achirale Ausgangsmischung wurde wieder die Mischung AM-3 der Beispiele 3a bis 3c verwendet.

5

Zu dieser Mischung (AM-3) wurden 10%, 13%, bzw. 16% der (in Beispiel 1 verwendeten) chiralen Verbindung B(OC)2C*H-C-3 gegeben. Die resultierenden Mischungen (Beispiele 3d, 3e bzw. 3f) wiesen einen Phasenübergang von der cholesterischen in die Blaue Phase bei einer Temperatur von 23°C (Beispiel 3d) bzw. ein Minimum der Kennlinie der charakteristischen Spannungen bei Temperaturen von 1°C (Beispiel 3e) bzw. 0,3°C (Beispiel 3f) auf. Die Ergebnisse sind in der folgenden Tabelle, Tabelle 8 zusammengestellt.

3d

10.0

23

17

25

33

1

3

Physikalische Parameter

Charakteristische Spannungen bzw. Temperaturabhängigkeit

3e

B(OC)2C*H-C-3

13,0

1

33

3

50

1

2

AM-3

3f

16,0

0,3

2,3

1.

1,2

79

35

15

10

Tabelle 8: Charakteristische Spannungen

V. 3

keine

60 ???

0

0

62

60 °

10

17

20

25	
,	

30

Bemerkungen:

Beispiel:

T_{Char.} / °C

ΔT(BP) /Grad

T_{Char} +2° / Grad

DV₁₀/dT / V/Grad

dV*₁₀/dT / %/Grad

V₁₀(T+2°) / V

Komponente (B)

Komponente (A)

Konzentration (A) / %

siehe Tabelle 1.

Elektrodenabstand 10 µm, Elektrodenbreite 10 µm

Patentansprüche

		·
5	1.	Elektrooptisches Lichtsteuerelement umfassend - ein Substrat oder mehrere Substrate,
Ū		 eine Elektrodenanordnung, ein Element oder mehrere Elemente zur Polarisation des Lichts und
		- ein Steuermedium, dadurch gekennzeichnet, dass
10		- das Lichtsteuerelement bei einer Temperatur betrieben wird, bei
		der sich das Steuermedium im nicht angesteuerten Zustand in einer optisch isotropen Phase befindet und, dass
•		 das mesogene Steuermedium eine Blaue Phase aufweist und/oder
15		- das mesogene Steuermedium eine chirale Komponente,
		Komponente (A), die aus einer oder mehreren chiralen
		Verbindungen besteht, und
		- optional eine achirale Komponente, Komponente (B), die aus
20		einer oder mehreren achiralen Verbindungen besteht, enhält.
	2.	Elektrooptisches Lichtsteuerelement nach Anspruch 1, dadurch gekennzeichnet, dass
		 die Elektrodenanordnung ein elektrisches Feld mit einer
25 25		signifikanten Komponente parallel zur Fläche des mesogenen Steuermediums erzeugen kann.
	3.	Elektrooptisches Lichtsteuerelement nach mindestens einem der
		Ansprüche 1 und 2, dadurch gekennzeichnet, dass
30		- das mesogene Steuermedium eine Blaue Phase aufweist.
	4.	Elektrooptisches Lichtsteuerelement nach mindestens einem der
		Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
		- das mesogene Steuermedium eine chirale Komponente,
		Komponente (A) die aus einer oder mehreren ehirelen

Verbindungen besteht, und

10

15

30

- optional eine achirale Komponente, Komponente (B), die aus einer oder mehreren achiralen Verbindungen besteht, enhält.
- 5. Elektrooptisches Lichtsteuerelement nach Anspruch 4, dadurch gekennzeichnet, dass
 - das mesogene Steuermedium eine chirale Komponente, Komponente (A), die aus einer oder mehreren chiralen Verbindungen besteht, und
 - eine achirale Komponente, Komponente (B), die aus einer oder mehreren achiralen Verbindungen besteht, enhält.
- 6. Elektrooptisches Lichtsteuerelement nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass
 - die relative Temperaturabhängigkeit (dV*₁₀/dT) der charakteristischen Spannung für 10% relativen Kontrast (V₁₀) des Steuermediums bei einer Temperatur von 2° oberhalb der charakteristischen Temperatur (T_{Char.}) im Bereich von +/-1° um diese Temperatur 30%/Grad oder weniger beträgt. ???
- 7. Lichtsteuerelement nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
 - die relative Temperaturabhängigkeit (dV*₁₀/dT) 23%/Grad oder weniger beträgt.
 - 8. Lichtsteuerelement nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass
 - die charakteristischen Spannung für 10% relativen Kontrast (V₁₀) bei einer Temperatur von 2° oberhalb der charakteristischen Temperatur (T_{Char.}) des Steuermediums in Zellen 80 V, bevorzugt 60 V oder weniger beträgt.
 - 9. Lichtsteuerelement nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass
 - das mesogene Steuermedium eine chirale Komponente, Komponente (A), die aus zwei oder mehr chiralen Verbindungen besteht, enthält.

10

15

20

30.

- 10. Lichtsteuerelement nach Anspruch 9, dadurch gekennzeichnet, dass
 - das alle chiralen Verbindungen der Komponente (A) das selbe Vorzeichen der HTP bei 20°C in der Referenzmischung haben.
- 11. Lichtsteuerelement nach mindestens einem der Ansprüche 9 und 10, dadurch gekennzeichnet, dass
 - der Betrag der HTP einer oder mehrerer der chiralen Verbindungen der Komponente (A) bei 20°C in der Referenzmischung 10 µm⁻¹ oder mehr beträgt.
- 12. Lichtsteuerelement nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass
 - das mesogene Steuermedium eine achirale Komponente, Komponente (B), die aus einer oder mehreren achiralen Verbindungen besteht, enthält.
- 13. Lichtsteuerelement nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass
 - die dielektrische Suszeptibilität (ε_{av.}) des Steuermediums bei einer Temperatur von 4 Grad oberhalb der Umwandlungstemperatur von der Blauen Phase, bzw. von der cholesterischen Phase in die Isotrope Phase 55 oder mehr beträgt.
- 14. Lichtsteuerelement mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass
 - die optische Anisotropie bei einer Temperatur von 4 Grad unterhalb der Übergangstemperatur von der cholesterischen in die Blaue Phase bzw.die isotrope Phase 0,080 oder mehr beträgt.
- 15. Elektrooptische Anzeige enthaltend ein oder mehrere Lichtsteuerelemente nach mindestens einem der Ansprüche 1 bis 14.

10

- 16. Elektrooptische Anzeige nach Anspruch 15, dadurch gekennzeichnet, dass die Anzeige mittels einer aktiven Matrix angesteuert wird.
- Elektrooptisches Anzeigesystem enthaltend eine oder mehrere elektrooptische Anzeigen nach mindestens einem der Ansprüche 15 und 16.
 - 18. Elektrooptisches Anzeigesystem nach Anspruch 17, dadurch gekennzeichnet, dass es als Fernsehbildschirm, als Computermonitor oder als beides verwendet werden kann.
 - Verwendung eines Lichtsteuerelements nach mindestens einem der Ansprüche 1 bis 14 zur Darstellung von Information.
- 15 20. Verwendung einer elektrooptischen Anzeige nach mindestens einem der Ansprüche 17 und 18, in einem elektrooptischen Anzeigesystem.
 - 21. Verwendung eines elektrooptischen Anzeigesystems nach mindestens einem der Ansprüche 17 und 18, zur Darstellung von Videosignalen oder von digitalen Signalen.
 - 22. Mesogenes Steuermedium zur Verwendung in einem elektrooptischen Lichtsteuerelement, dadurch gekennzeichnet, dass
 - es eine Blaue Phase und einen Klärpunkt im Bereich von 0°C bis 80°C aufweist.
 - 23. Mesogenes Steuermedium nach Anspruch 22, dadurch gekennzeichnet, dass es
 - eine chirale Komponente, Komponente (A), die aus einer oder mehreren chiralen Verbindungen besteht und
 - optional eine achirale Komponente, Komponente (B), die aus einer oder mehreren chiralen und / oder achiralen Verbindungen besteht, enhält.
- 35 24. Mesogenes Steuermedium nach Anspruch 23, dadurch gekennzeichnet, dass es

25

20

- eine achirale Komponente, Komponente (B), die aus einer oder mehreren chiralen und / oder achiralen Verbindungen besteht, enhält.
- 5 25. Mesogenes Steuermedium nach Anspruch 24, dadurch gekennzeichnet, dass es
 - die Komponente (B) aus einer oder mehreren achiralen Verbindungen besteht.
- 10 26. Medium nach Anspruch 24, dadurch gekennzeichnet, dass
 - die Komponente (B) aus einer oder mehreren chiralen Verbindungen besteht.
 - 27. Medium nach mindestens einem der Ansprüche 22 bis 26, dadurch gekennzeichnet, dass
 - es einen Klärpunkt im Bereich von 0°C bis 60°C aufweist.
 - 28. Medium nach mindestens einem der Ansprüche 22 bis 27, dadurch gekennzeichnet, dass
 - die Blaue Phase einen Temperaturbereich von 5 Grad oder mehr als 5 Grad aufweist.
 - 29. Medium nach Anspruch 28, dadurch gekennzeichnet, dass
 - die Blaue Phase einen Temperaturbereich von 10 Grad oder mehr als 10 Grad aufweist.

Zusammenfassung

Die vorliegende Erfindung betrifft elektrooptische Lichtsteuerelemente solche Elemente enthaltende elektrooptische Anzeigen und
Anzeigesysteme wie beispielsweise Fernsehbildschirme und
Computermonitore, sowie die darin verwendeten Steuermedien. Die
erfindungsgemäßen Lichtsteuerelemente enthalten ein mesogenes
Steuermedium, das beim Betrieb der Lichtsteuerelemente in einer
optisch isotropen Phase vorliegt und sind neben einem guten
Kontrast, einer geringen Blickwinkelabhängigkeit und sehr kurzen
Schaltzeiten, besonders durch relativ niedrige Ansteuerspannungen
mit einer sehr geringen Temperaturabhängigkeit ausgezeichnet. Die
erfindungsgemäßen Steuermedien zeichnen sich dadurch aus, dass
sie eine chirale Komponente enthalten. Bevorzugt enthalten sie auch
eine achirale Komponente. Besonders bevorzugt weisen die
Steuermedien eine Blaue Phase auf.

