# Classificação do comportamento do gado leiteiro usando dados de sensores de movimentos com redes Multilayer Perceptron

Aluno: Anderson Santos

Professor: Valmir Marcario Filho

Disciplina: Redes Neurais

#### **Ementa**

Introdução

Base de dados

Visualização dos dados

Arquitetura

Resultados

Trabalhos futuros

# Introdução

Pecuária de precisão

Análise dos comportamentos

Sensores

#### Base de dados





#### Base de dados

2 períodos: o primeiro de 25/03/15 a 30/03/15. O segundo de 06/04/15 a 09/04/15.

Foram utilizadas 4 coleiras (A, B, C e D). Entretanto, houve algumas falhas durante o experimento e, no final, ficaram as seguintes bases:

- A2 e A3
- B2 e B3
- C3 e C4
- D1, D2, D3 e D4

Sensores: acelerômetro, giroscópio e magnetômetro.

As coletas foram feitas na frequência de 1 Hz.

#### Base de dados

Os dados foram armazenados em um cartão SD para posteriormente serem carregados e processados.

Classes dos comportamentos: pastando, andando, em pé e deitado.

**Pastando**: caracterizado pelo animal sobre as quatros patas, com a cabeça baixa procurando ou mastigando o capim. O animal pode ou não estar em movimento, já que ele pode estar se deslocando à procura de capim;

**Andando**: o animal também está sobre as quatros patas, porém com o pescoço reto (apontando o focinho para frente) e se deslocando pela área de pasto;

Em Pé: o animal está sobre as quatro patas, com a cabeça erguida e não há deslocamento;

**Deitado**: o animal está com as patas abaixadas e com a barriga tocando o solo.

# Visualização dos Dados

# Histograma das classes



#### Histogramas dos sensores por coleira



### Histogramas dos sensores por coleira



## Histogramas dos sensores por coleira



#### Séries Temporais dos sensores por coleira



#### Séries Temporais dos sensores por coleira



# Séries Temporais dos sensores por coleira



#### **Arquitetura**



- I. Função de ativação: regressão logística (sigmóide)
- II. Algoritmo de otimização: gradiente descendente
- III. Termo de regularização L2: 0.0001
- IV. Atualização dos pesos em lotes com tamanho de24 amostras
- V. Taxa de aprendizagem: 0.3
- VI. Número de épocas: 200
- VII. Randomização das amostras para cada iteração
- VIII. Momentum: 0.9

# Validação



#### Resultados

| 1° nível         | 2° nível | Acurácia (%)   |
|------------------|----------|----------------|
| 9                | 6        | 41.66 (0.0674) |
| 18               | 8        | 40.89 (0.0676) |
| 27               | 10       | 44.22 (0.0149) |
| 36               | 12       | 44.55 (0.0642) |
| Sem normalização |          |                |

| 1º nível         | 2º nível | Acurácia (%)   |
|------------------|----------|----------------|
| 9                | 6        | 76.32 (0.0707) |
| 18               | 8        | 76.25 (0.0728) |
| 27               | 10       | 77.82 (0.0531) |
| 36               | 12       | 78.03 (0.0597) |
| Com normalização |          |                |

#### **Trabalhos Futuros**

- Aumentar a quantidade de neurônios na camada intermediária e verificar a resposta da rede em relação à acurácia e a presença de overfitting;
- Aplicar um pré-processamento nos dados;
- Aumentar a quantidade de épocas no treinamento;
- Utilizar uma abordagem evolucionária para obter os melhores parâmetros da rede;
- Testar outros algoritmos além do gradiente descendente como o LBFGS e ADAM;
- Utilizar outras funções de ativação como por exemplo a tangente hiperbólica, Relu, Elu e entre outras

# FIM