Homework: Particle Physics #2

Yingsheng Huang

November 16, 2016

1.

Isospin transformation: transform one particle into its conjugated charge state composed of different numbers of u and d quarks. It's built in an abstract space, the group space of SU(2) group. The eigenstates of isospin transformation are u and d and commonly written as $|II_3\rangle$. (In early understanding, the three charge states of π meson are also considered the eigenstates of isospin transformation.) Isospin is conserved in strong interaction.

C transformation (charge conjugation transformation): transform a particle into its antiparticle. The eigenstates of it are neutral particles. C parity is conserved in strong and electromagnetic interactions.

G transformation: change the signs of all internal additive quantum numbers but I_3 . The eigenstates are all common mesons. G parity is only conserved in strong interaction.

P transformation: transform the spatial coordinate of particles, or, the parity of particles. The eigenstates are the eigenstates of orbital angular momentum. P parity is conserved in strong and electromagnetic interactions.

CP transformation: transform both the spatial coordinate and the charge state of a particle. The eigenstates are neutral particles (with the states of angular momentum). CP is conserved in strong and electromagnetic interactions.

2. In LAB frame, the reaction is $pp \to \bar{p}X$ where X is of charge +3 and mass m_X . Accually X = ppp so $pp \to \bar{p}ppp$. And for the lowest energy we can assume the products are at rest.

The initial state

$$E^{2} = E_{\mathbf{p}} + m_{p}, \mathbf{p} = \mathbf{p}_{p} + 0 = \mathbf{p}_{p}, m = 2m_{p}, m_{p} = 1GeV$$

The final state

$$k = k_{\bar{p}} + 3k_p,$$

So

$$p^{2} = (E_{\mathbf{p}} + m_{p})^{2} - \mathbf{p}_{p}^{2} = (p_{1} + p_{2})^{2} = 2m_{p}^{2} + 2E_{\mathbf{p}}m_{p}$$
$$k^{2} = 16m_{p}^{2}$$
$$2m_{p}^{2} + 2E_{\mathbf{p}}m_{p} = 16m_{p}^{2}$$
$$E_{\mathbf{p}} = 7m_{p}$$

The minimum momentum required is

$$\mathbf{p} = \sqrt{E_{\mathbf{p}}^2 - m_p^2} = \sqrt{48}m_p = 4\sqrt{3}m_p \approx 6.928GeV$$

3. For $\phi(1020)$ meson: $I^G(J^{PC}) = 0^-(1^{--}), \ \Gamma = (4.458) MeV.$

1) $K_L{}^0K_S{}^0$ 33.8%

The partial width of it is $\Gamma = 4.458 \times 33.8\% \approx 1.5 MeV$ so it's strong interaction.

2) K^+K^- 49.2%

Same as the first.

3) $\pi^+\pi^-\pi^0$ 15.5%

The isospin of the final state: $\begin{array}{ccc} \pi^+ & \pi^- & \pi^0 \\ |11\rangle & |1-1\rangle & |10\rangle \end{array}$

and all possible I of the final state are: 0,1, $I_3=0$. From the branching ratio, we know that $\Gamma=4.458\times15.5\%\approx0.691MeV$ and it's about the order of strong interaction.

4) $\eta \gamma = 1.3\%$

 γ is involved so it's EM interaction.

5) $\pi^0 \gamma$ 1.26 × 10⁻³

 γ is involved so it's EM interaction.

6) $\mu^+\mu^-$ 2.9 × 10⁻⁴

 $\Gamma = 4.458 \times 2.9 \times 10^{-4} \approx 10^3 eV$, so it's EM interaction.

7) $\omega \pi^0$ 5.2 × 10⁻⁵

The isospin of the final state: $\begin{array}{ccc} \omega & \pi^0 \\ |00\rangle & |10\rangle \end{array}$. But $\Gamma=4.458\times5.2\times10^{-5}\approx232eV$ so it's EM interaction. G parity is not conserved as well.

8) $\pi^+\pi^-$ 7.3 × 10⁻⁵

The isospin of the final state: $\begin{array}{cc} \pi^+ & \pi^- \\ |11\rangle & |1-1\rangle \end{array}$. But $\Gamma=4.458\times5.2\times10^{-5}\approx10^3eV$ so it's EM interaction. G parity is not conserved as well.

4. Neutral system composed of two π .

 $\pi^+\pi^-$: C number is $(-)^{L+S}$, G number is $C(-)^I$ and P number is $(-)^L$. For general identical particle, L+S+I-2i=even, and here $I=0,1,2,\ i=1,\ S=0$.

We have
$$\begin{cases} I = 0, 2, L + S = even, C = +, P = +, G = + \\ I = 1, L + S = odd, C = -, P = -, G = + \end{cases}.$$

 $\pi^0\pi^0$: Similarly, for π^0 we have C=+, P=-, G=-. And for this system we have L+S=even, S=0, so C=+, P=-, C=+, C=

5. Neutral system composed of K^+K^- (S=0).

We have
$$\begin{cases} I=1, C=(-)^L, P=(-)^L, G=(-)^{L+1} \\ I=0, C=(-)^L, P=(-)^L, G=(-)^L \end{cases}$$

6. It's hard to identify K^0 and \bar{K}^0 meson via decay type. It's because their differences are only in strangeness and I_3 . And in weak interaction these are not conserved. In the process decaying to π mesons, if we view it in the eigenstates of CP transformation, we'll find one eigenstate have much longer lifetime than the other.

2

PS:
$$\begin{cases} K^{0}: S = 1, I_{3} = \frac{1}{2} \\ \bar{K}^{0}: S = -1, I_{3} = -\frac{1}{2} \end{cases}$$
, and the eigenstates of CP are
$$\begin{cases} K_{L} = \frac{1}{\sqrt{2}}(|K^{0}\rangle + |\bar{K}^{0}\rangle) \\ K_{S} = \frac{1}{\sqrt{2}}(|K^{0}\rangle - |\bar{K}^{0}\rangle) \end{cases}$$

7

- 1) $\pi^- p \to K^+ \Sigma^-$ Strangeness is conserved. So it's strong interaction.
- 2) $pp \to n\pi^+\Sigma^-$ Charge not conserved. It can't happen.
- 3) $\pi^0 \to e^+e^-e^+e^-$ The final states involves leptons, so it's EM interaction. G is not conserved.
- 4) $\rho^0 \to \eta \pi^0$ If it can happen, CP must be conserved. So $(+) = (-)(-)(-)^L \Longrightarrow L = even$. And the angular momentum must be conserved, so $1 = 0 + 0 + L \Longrightarrow L = odd$. So it can't happen.
- 5) $J/\Psi \to \pi^+\pi^-$ Charm's conserved. CP is conserved. If C is conserved, L+S=odd. If P is conserved, L=odd. And we know L+S+I-2i=even. If G is conserved, L+S+I=odd, so G isn't conserved, it can't be strong interaction. It's EM or weak interaction.
- 6) $J/\Psi \to \pi \rho$ Charm's conserved. C is conserved. If P is conserved, L = odd. The angular momentum $1 \le 0 + 1 + L$. G is conserved. It's strong interaction.
- 7) $p\bar{n} \to K^+ K^0 \pi^0$ Strangeness's not conserved. Baryon number is conserved. It can happen via weak interaction.
- 8) $K^+ \to \pi^+ \pi^0$ Isospin and strangeness are not conserved. It's weak interaction.
- 9) $\rho \to \pi^0 \pi^0$ C parity not conserved. CP is conserved. We know that L + S = even, but for conserved angular momentum L = 1. so it can't happen.
- 10) $K^0 \to \pi^+\pi^-\pi^0$ Strangeness is not conserved. K^0 is the linear combination of K^L and K_S , so its decay products should contain both two pion system and three pion system. It can happen via weak decay in the form of K_L .
- 11) $\eta \to \pi\pi$ CP is not conserved. It can't happen.
- 12) $\eta \to \pi^+ \pi^- \pi^0$ CP is conserved. G is not conserved (for n pion system $G = (-1)^n$ but $G(\eta) = -$). It's EM or weak interaction.
- 13) $\phi \to K^S K^S C(K_S) = -, C(K_L) = +, L + S = even, S = 0, P(K_S K_S) = (-)^L = +, CP(\phi) = +, CP(K_S K_S) = -$, so it can't happen.
- 14) $\eta \to \pi^+\pi^-\gamma$ Photon is involved, C and P are conserved, it's EM interaction.
- 15) $\omega \to \pi^+\pi^-$ G is not conserved. C and P are conserved. It's EM or weak interaction.