Instituto Tecnológico de Costa Rica	
Escuela de Ingeniería Electrónica EL-2207 Elementos Activos	Total de Puntos: 48
Profesores: DrIng. Juan José Montero Rodríguez	Puntos obtenidos:
Ing. Mauricio Segura Quiros Ing. Anibal Ruiz Barquero	Porcentaje:
I Semestre 2019	Nota:
Segundo Examen Parcial	
04 de mayo de 2019	
Nombre:	Carné:

Instrucciones Generales:

- Resuelva el examen en forma ordenada y clara.
- No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.
- Si trabaja con lápiz, debe encerrar en recuadro su respuesta final con lapicero.
- El uso de lapicero rojo **no** está permitido.
- El uso del teléfono celular no es permitido. Este tipo de dispositivos debe permanecer **total**mente apagado durante el examen.
- No se permite el uso de calculadora programable.
- Únicamente se atenderán dudas de forma.
- El instructivo de examen debe ser devuelto junto con su solución.
- El examen es una prueba individual.
- El no cumplimiento de los puntos anteriores equivale a una nota igual a cero en el ejercicio correspondiente o en el examen.
- Esta prueba tiene una duración de 3 horas, a partir de su hora de inicio.

Firma: .			

Escogencia múltiple	de 10
Problema 1	de 14
Problema 2	de 14
Problema 3	de 10

Escogencia múltiple

10 Pts

Escriba F o V, según corresponda a Falso o Verdadero en todas las opciones. Cada pregunta vale 1 punto. Si necesita corregir, escriba una X sobre la letra incorrecta y escriba F o V a la izquierda de la línea. La ponderación será: cinco opciones buenas es 1 punto; cuatro opciones buenas es 0.8 puntos; 3 opciones buenas es 0.6 puntos; 2 opciones buenas es 0.4 puntos y 1 buena es 0.2 puntos. No es necesario que justifique su respuesta.

1. De las regiones de operación de un transistor bipolar se puede asegurar que:	1 Pt
Para la región activa de un transistor NPN el $V_{BE}>0$ y $V_{CE}\geq V_{BE}$.	
Para la región de saturación de un transistor PNP $V_{EB} > 0$ y $V_{EC} < V_{EB}$.	
Para la región de corte de un transistor PNP $V_{EB} \leq 0$ y $V_{EC} \geq V_{EB}$.	
Para la región de reversa activa de un transistor PNP el $V_{BE} \leq 0$ y $V_{CE} < V_{BE}$.	
Todas las afirmaciones anteriores son correctas.	
2. Con respecto a la estructura del BJT se afirma correctamente que:	1 Pt
La capa semiconductora con mayor dopado es el emisor.	
El emisor y el colector tienen dimensiones distintas y no son intercambiables.	
Al aumentar el área del emisor se disminuye I_S .	
El BJT se puede sustituir por 2 diodos en serie.	
La capa semiconductora más angosta de todas corresponde a la Base.	
3. De las regiones de operación de un transistor se puede asegurar que:	1 Pt
— En la región activa $I_C \neq 0$ y el transistor se utiliza como amplificador lineal.	
En la región de saturación $I_C \neq 0$ y el transistor se comporta como interruptor cerra	ado.
En la región de corte $I_C \approx 0, I_E \approx 0$ y el transistor se comporta como interruptor al	oierto
——— Para la región de reversa activa $I_C \neq 0, I_E \neq 0.$	
Todas las afirmaciones anteriores son correctas.	
4. Con respecto a la estructura del BJT se afirma correctamente que:	1 Pt
El BJT consiste en tres capas semiconductoras, dos del mismo tipo de dopado.	
De las tres capas semiconductoras, la capa central es de dopado complementario.	
El BJT contiene tres uniones PN.	
El BJT es un dispositivo de tres terminales.	

Todas las afirmaciones anteriores son correctas.	
5. Cuando un transistor se encuentra en saturación se puede asegurar que:	1 Pt
Ambas uniones están polarizadas en directa.	
Beta no es constante.	
Corrientes de electrones tienden a cancelarse.	
La corriente de base aumenta.	
V_{CE} es bajo, $V_{CE} \approx 0.2$ - 0.3 V.	
6. Sobre la estructura del transistor BJT se afirma correctamente que:	1 Pt
El colector tiene menor concentración de dopado que el emisor $(N_C < N_E)$.	
El dopado de la base es el más fuerte de los tres $(N_B > N_E, N_B > N_C)$.	
Si el área del emisor se duplica, la corriente I_C se reduce a la mitad.	
Dos transistores BJT distintos en paralelo con $V_{BE1} = V_{BE2}$ pueden tener $I_{C1} \neq I_{C2}$.	
Dos transistores BJT idénticos en serie siempre tienen $V_{BE1} = V_{BE2}$.	
7. Sobre el principio de funcionamiento del transistor BJT se afirma correctamente que:	1 Pt
En un transistor NPN (en modo activo) los electrones pasan de la base al colector.	
En un transistor NPN (en modo activo) los huecos pasan del colector a la base.	
La longitud de la región de agotamiento en la base se controla con la corriente I_B .	
Si la longitud de la zona de agotamiento aumenta, la corriente de colector aumenta.	
En la zona de corte, la base está completamente agotada de portadores de carga.	
8. Sobre las regiones de operación del transistor BJT se afirma correctamente que:	1 Pt
En activa directa, un incremento en V_{CE} aumenta la corriente I_C .	
En saturación fuerte, un incremento en V_{CE} aumenta la corriente I_C .	
En saturación fuerte, un incremento en I_B reduce la resistencia entre C-E.	
En activa inversa, el diodo B-C está polarizado en directa.	
En la zona de corte, la corriente I_C es exactamente cero sin importar V_{CE} .	
9. Sobre los elementos parásitos del transistor BJT se afirma correctamente que:	1 Pt
En activa directa, la capacitancia B-C es mayor que la capacitancia B-E.	
Con efecto Early, la corriente de colector depende de V_{CE} en activa directa.	

El efecto Early incrementa la resistencia de salida del transistor.	
La resistencia de entrada r_{π} es independiente de la temperatura (asumiendo I_{C} constante de la temperatura (a	nte).
Un transistor BJT ideal tiene una resistencia de entrada $r_{\pi} = 0$.	
10. Sobre el modelo de Ebers-Moll se afirma correctamente que:	1 Pt
La suma de las corrientes I_C , I_B e I_E es igual a cero.	
La corriente I_F es igual a I_C en magnitud.	
Los dos diodos deben conducir para que el transistor esté en modo activo.	
En la región activa inversa se puede sustituir el diodo B-E por un cortocircuito.	
El modelo Ebers-Moll simplificado se utiliza sólo para la región activa directa.	

Problemas

Nombre:	Carné:	
Problema 1 Polarización	14 Pts	

Considere el circuito de la figura 1.1. Los valores de β para los transistores 1 y 2 son $\beta_1 = 100$, $\beta_2 = 100$, respectivamente, asuma que la tensión base emisor es de 0.7 V y la tensión emisor base es de 0.7 V. Considere que las corrientes de base I_B no son despreciables.

Figura 1.1: Configuración de transistores para análisis de polarización

1.1. Complete la tabla 1.1 con lo que se le solicita.

10 Pts

	Transistor 1	Transistor 2
V_{BC}		
V_{CE}		
I_C		
I_E		
I_B		

Tabla 1.1: Valores de operación de los transistores 1 y 2

1.2. Determine la región de operación del transistor 1, justifique su repuesta.

2 Pts

1.3. Determine la región de operación del transistor 2, justifique su repuesta (Asuma que el transistor 1 se encuentra en zona activa).

Problema 2 Modelo de Pequeña Señal

14 Pts

Utilizando el analizador de parámetros de semiconductores de Hewlett-Packard 4145B, se ha determinado la característica de salida y la característica de entrada de emisor común de un transistor bipolar y los resultados se muestran en las figuras 2.1 y 2.2. Considere que el punto Quiescent de operación está en $I_B = 5\mu \text{A}$ y $V_{EC} = 10\text{V}$.

Figura 2.1: Característica de salida

Figura 2.2: Característica de entrada

A partir de las gráficas proporcionadas, responda lo siguiente:

- 2.1. Indique el tipo de transistor descrito, en términos constructivos (tipos de dopado).
- 2.2. Señale la ubicación del punto Quiescent en ambas gráficas (utilice lapicero).
- 2.3. Determine el valor de la ganancia de corriente (β) .
- 2.4. Determine el valor de la corriente de subumbral (I_S) .
- 2.5. Determine el valor de V_{EB} que se utilizaría en el modelo lineal incremental.
- 2.6. Calcule los valores de g_m y r_π .
- 2.7. Dibuje el equivalente de pequeña señal del transistor descrito en su modelo π .
- 2.8. Si se invirtiese el tipo de material de todas la partes del transistor bipolar, es decir: la base, el colector y el emisor. ¿Cómo se vería el modelo de pequeña señal? Dibújelo si es necesario.
- 2.9. Proponga un método gráfico para obtener V_A a partir de las gráficas que se muestran. 2 Pts

Problema 3 Modelo de Ebers-Moll

10 Pts

A un transistor bipolar NPN desconocido se le aplican las siguientes pruebas, de las cuales se obtienen los resultados mostrados.

$$V_{BE} = 0.72 \text{ V}$$
 $I_C = 10.6864 \text{ mA}$
 $I_B = 55.3370 \text{ uA}$
 $I_E = 10.7418 \text{ mA}$

$$V_{BC} = 0.66 \text{ V}$$
 $I_C = 1.3792 \text{ mA}$
 $I_B = \text{Sin datos}$
 $I_E = \text{Sin datos}$

A) A partir de los resultados obtenidos en la prueba 1, determine los siguientes parámetros del modelo de Ebers-Moll:

3.1. La ganancia C-E de directa (α_F)

1 Pt

3.2. La ganancia C-B de directa (β_F)

1 Pt

3.3. La corriente de subumbral del diodo B-E (I_{ES})

2 Pts

B) A partir de los resultados obtenidos en la prueba 2, determine los siguientes parámetros del modelo de Ebers-Moll:

3.4. La corriente de subumbral del diodo B-C $\left(I_{CS}\right)$

2 Pts

3.5. La ganancia C-E de reversa (α_R)

1 Pt

3.6. La ganancia C-B de reversa (β_R)

1 Pt

- C) Calcule los valores desconocidos restantes de la prueba 2:
- 3.7. La corriente de base de la prueba 2 (I_B)

1 Pt

3.8. La corriente de emisor de la prueba 2 (I_E)

1 Pt