Matematica

Massimiliano Ferrulli

03.05.2022

Coniche

Studio di coniche, ellissi, paraboliche e iperboli

Indice

1	Le (Coniche
	1.1	Sezioni coniche
	1.2	Definizione
	1.3	Caso 1
	1.4	Caso 2
	1.5	Caso 3
		1.5.1 Luogo geometrico Iperbole
		1.5.2 Ragionamento sulle caratterizzazioni delle coniche
	1.6	Equazione cartesiana dell'ellisse
	1.7	Eccentricità dell'ellisse
	1 Q	Costruzione con il metado del giardiniero

1 Le Coniche

1.1 Sezioni coniche

Nello spazio consideriamo due rette g e a incidenti nel punto V, con ω che è l'angolo generato dall'intersezione delle due rette. La rotazione della retta g attorno ad a genera una superficie illimitata detta cono di rotazione a due falde.

1.2 Definizione

Una curva ottenuta come intersezione di un cono di rotazione con un piano α , che non passi per il vertice, è detta conica non degenere si distinguono 3 casi a dipendenza dell'angolo di incidenta S del piano α rispetto all'asse a.

Queste curve ottenute come sezioni di un cono, possono essere caratterizzate come luoghi geometrici, cioè come insieme di punti di un piano che soddisfano una condizione geometrica.

1.3 Caso 1

se il piano interseca una sola falda e taglia tutte le generatrici, cioè se $\delta > \omega$ si ottiene una curva chiusa detta ellisse. In particolare se $\alpha \perp a$ oppure $\vec{\eta}_{\alpha} \setminus \vec{v}_{a}$ ($\delta = \frac{\pi}{2}$) si ottiene una circonferenza

Luogo geometrico Ellisse un'ellisse è l'insieme di punti per i quali la somma delle distanze da due punti F_1eF_2 (detti fuochi) è costante.

1.4 Caso 2

se il piano α interseca una sola falda ed è parallelo ad una generatrice ($\delta=\omega$) si ottiene una curva aperta detta parabola

Parabola

Luogo geometrico Parabola è l'insieme dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa D detta direttrice

1.5 Caso 3

 $\delta < \omega$

1.5.1 Luogo geometrico Iperbole

È l'insieme dei punti del piano α per i quali il valore assoluto della differenza delle distanze dai due punti fissi F_1eF_2 (fuochi) è costante.

1.5.2 Ragionamento sulle caratterizzazioni delle coniche

Queste caratterizzazioni delle con
iche come luoghi geometrici del piano sono conseguenze delle loro definizioni come sezioni del cono. Esaminiamo il caso dell'ellisse, dato dall'intersezioni del piano α con il cono

Figura 1: $\|\vec{PF_1}\| = \|\vec{PA_1}\|$

Figura 2: Visualizzazione 2D punti di tangenza

 \boldsymbol{P} : punto generico della conica

F: fuoco

d: direttrice

 π : piano della conica

 π' : piano della circonferenza di contatto sfera-cono

 α : angolo di semiapertura del cono

 β : angolo dei piani π e π'

e: eccentricità definita da $e = \frac{\sin(\beta)}{\cos(\alpha)}$

p: parametro focale

Si considerino 2 Sfere di Dandelin tangenti sia al cono (lungo due circonferenze parallele C_1eC_2) che al piano α (nei punti F_1eF_2) (i 2 fuochi).

Sia P un punto qualsiasi dell'ellisse, vogliamo dimostrare che $|PF_1| + |PF_2|$ è costante cioè dipende dalla scelta di P. La generatrice passante per P interseca le 2 circonferenze nei punti A_1eA_2 . Essendo c_1 parallela a c_2 la distanza A_1A_2 è costante e indipendente dalla scelta di P.

1.6 Equazione cartesiana dell'ellisse

scegliendo un sistema di riferimento appropriato, a partire dalla caratterizzazione dell'ellisse come luogo geoemtrico, è possibile scrivere la sua eq.cartesiana in forma canonica.

Un'ellisse ha due assi di simmetria: l'asse maggiore (o focale) e l'asse minore. Il punto d'intersezione 0 degli assi È il centro di simmetria. I punti di intersezione tra l'ellisse e gli assi cartesiani sono i vertici di esso.

Consideriamo un ellisse ξ con fuochi F_1eF_2 e indichiamo con 2c la loro distanza. scegliamo gli

assi cartesiani in modo che coincidano con gli assi di simmetria.

$$P(x,y) \in \xi \iff |PF_1| + |PF_2| = 2a \ a > c$$

$$|F_2c| + |F_2A| = 2a$$

$$|CA| = 2a$$

dove A e B sono i due vertici lungo il semiasse maggiore

$$P(x,y) = \xi(F_1, F_2, a) \iff |PF_1| + |PF_2| = 2a$$

$$\sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2a$$

$$\sqrt{(x-c)^2 + y^2} = 2a - \sqrt{(x+c)^2 + y^2}$$

$$(x-c)^2 + y^2 = 4a^2 + (x+c)^2 + y^2 - 4a\sqrt{(x+c)^2 + y^2}$$

$$(x-c)^2 - (x+c)^2 = 4a^2 - 4a\sqrt{(x+c)^2 + y^2}$$

$$-4xc = 4a^2 - 4a\sqrt{(x+c)^2 + y^2}$$

$$xc + a^2 = a\sqrt{(x+c)^2 + y^2}$$

$$a^2(x-c)^2 + a^2y^2 = a^4 - 2a^2xc + x^2c^2$$

$$a^2x^2 - x^2c^2 + a^2y^2 = a^4 - a^2c^2$$

$$x^2(a^2 - c^2) + a^2y^2 = a^2(a^2 - c^2)$$

$$b^2 = a^2 - c^2$$

$$x^2b^2 + a^2y^2 = a^2b^2$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

L'equazione dell'ellisse sarà: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Osservazione 1 se si impostano i calcoli ponendo i fuochi sull'asse delle y $(F_1(0,c) e F_2(0,-c))$ si ottiene l'equazione: $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$

sono verticali se il numero al denominatore delle y $\frac{y^2}{b^2}$ è maggiore rispetto a quello delle x

Osservazione 2 se l'ellisse è centrato in $M(x_0, y_0)$ la sua equazione sarà $\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$

Osservazione 3 se a=b=r, si ottiene un'equazione centrata in (0,0) e di raggio r. la sua equazione sarà:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$$
$$x^2 + y^2 = r^2$$

in questo caso c=0e i due fuochi coincidono con l'origine

1.7 Eccentricità dell'ellisse

a fisso e c variabile

 $0 \le c \le a$ fuochi si spostano sul semiasse maggiore

circ
conferneza se c = 0 — ellisse si appiattisce sempre di più quando c
 aumenta fino a c = ae l'ellisse degenera nel segmento F_1F_2 .

Il rapporto $\xi=\frac{c}{a}$ è detto eccentricità e varia da [0;1] , esso ci indica quanto l'ellisse discosta dalla circolarità.

1.8 Costruzione con il metodo del giardiniere

Metodo Giardiniere interattivo