SST-VAM Translation

Omar Iskandarani*

August 25, 2025

Abstract

This note provides a rigorous nomenclature concordance between the legacy VAM presentation and the Swirl–String Theory (SST) house style. It establishes a one-to-one mapping of symbols and terminology while preserving the underlying kinematics, operators, and calibrated constants. In particular, it fixes the canonical SST equalities

$$\rho_E = \frac{1}{2} \rho_f \|\mathbf{v}_{\circlearrowleft}\|^2, \quad \rho_m = \rho_E / c^2, \quad K = \frac{\rho_{\text{core}} r_c}{\mathbf{v}_{\circlearrowleft}}, \quad \rho_f = K \Omega,$$

and records that all published numerical values for \mathbf{v}_{\circ} , r_{c} , ρ_{core} , the background density, and the sectoral force bounds carry over unchanged. The document includes compact translation tables (fields/kinematics/operators; densities/velocities/coarse–graining; global scales) and a minimal macro layer (\rhoF, \rhoE, \rhoM, \rhoC, \vswirl, \vnorm) to prevent notation drift in large projects. Legacy wording is restricted to historical citations; narrative prose adopts the neutral SST vocabulary (e.g., foliation, swirl string) without altering the mathematics. Compatibility is ensured both for standalone use (title page + metadata) and for modular inclusion (\providecommand guards and no additional package requirements). The result is a drop-in "translation guide" that guarantees dimensional consistency, unambiguous symbol usage, and reproducible cross-referencing across manuscripts that span the VAM \rightarrow SST transition.

Email: info@omariskandarani.com ORCID: 0009-0006-1686-3961 DOI: 10.5281/zenodo.xxxxxxxx License: CC-BY-NC 4.0 International

^{*} Independent Researcher, Groningen, The Netherlands

1 SST-VAM Translation and Constant Overlaps (Extended)

Canonical equalities (SST form)

$$\rho_E = \frac{1}{2} \rho_f \|\mathbf{v}_0\|^2, \qquad \rho_m = \rho_E/c^2,$$

$$K = \frac{\rho_{\text{core}} r_c}{v_s}, \qquad \rho_f = K \Omega.$$

Dimensional check

$$\begin{aligned} [\rho_f] &= & \text{kg m}^{-3} \\ [\|\mathbf{v}_{\circ}\|] &= & \text{m s}^{-1} \\ [v_s] &= & \text{m s}^{-1} \\ [\rho_E] &= & \text{J m}^{-3} \\ [\rho_m] &= & \text{kg m}^{-3} \\ [K] &= & \text{kg m}^{-3} \text{ s} \end{aligned}$$

Temporal Ontology in SST

We distinguish absolute parameter time \mathcal{N} (preferred foliation label), external observer time τ , and internal clocks carried by swirl strings: a phase accumulator S(t) and a loop "proper time" T_s . These appear in the field equations and separate global synchronization from local rotational dynamics.

Fields,	kinematics,	operators	(mapping)
1 10140,	itiiioiiiatioo,	000.410.0	\appg/

VAM (legacy)	SST (house)	Meaning	Units	Overlap
"æther time"	absolute time parametrization	foliation time label	_	Yes
T(x)	T(x)	scalar clock field	_	Yes
u_{μ} (unit "æther" vector)	u_{μ} (unit time-like field)	$u_{\mu} = \partial_{\mu} T / \sqrt{-g^{\alpha\beta} \partial_{\alpha} T \partial_{\beta} T}$	_	Yes
"vortex line(s)"	swirl string(s)	object name only	_	Yes
$B_{\mu\nu}$, $H_{\mu\nu\rho}$	same	Kalb–Ramond 2-form; $H = \partial_{[\mu} B_{\nu\rho]}$	_	Yes
W_{μ}	W_{μ}	coarse-grained frame connection	_	Yes
$C(K)$, $L(K)$, $\mathcal{H}(K)$	same	crossing #, ropelength, hyperbolic proxy	_	Yes

Densities, velocities, coarse-graining (mapping)

VAM (legacy)	SST (macro)	Meaning	Units	Overlap
ρ_0 , $\rho_{\infty}^{(\text{fluid})}$, $\rho_{\infty}^{(\text{vacuum})}$	$ ho_f$, $ ho_f^{ m bg}$ or $ ho_f^{(0)}$	effective fluid density	${\rm kg}{\rm m}^{-3}$	Yes
$ ho_{lpha}^{ ext{(core)}}$, $ ho_{lpha}^{ ext{(mass)}}$	$ ho_{ m core}$	core/material density	${\rm kg}{\rm m}^{-3}$	Yes
$ ho_{lpha}^{(ext{energy})}$	$\rho_{\rm E}$ (or $\rho_{\rm core}c^2$)	energy density	$\mathrm{J}\mathrm{m}^{-3}$	Yes
$ ho_E$	$ ho_{\!E}$	$rac{1}{2} ho_f \ \mathbf{v}_{\scriptscriptstyle \circlearrowleft}\ ^2$	$\mathrm{J}\mathrm{m}^{-3}$	Yes
$ ho_m$	$ ho_m$	$\rho_{\rm E}/c^2$	${\rm kg}{\rm m}^{-3}$	Yes
C_e (tangential)	v_s	characteristic swirl speed (= $\ \mathbf{v}_{\circ}\ $ at $r = r_c$)	$\mathrm{m}\mathrm{s}^{-1}$	Yes
r_c	r_c	core radius	m	Yes
$K = \frac{\rho^{(\text{mass})} r_c}{C_e}$	$K = \frac{\rho_{\rm core} r_c}{v_s}$	coarse–graining coefficient	$kg m^{-3} s$	Yes
Ω	Ω	leaf angular rate	s^{-1}	Yes
		0		

Global	scales	and	bounds
--------	--------	-----	--------

VAM (legacy)	SST (house)	Meaning	Units	Overlap
F ^{max} (Coulomb)	F _{EM} ^{max}	Coulomb-sector bound	N	Yes
$F_{\rm gr}^{\rm max}$ (Universal)		gravitational/universal bound	N	Yes
Γ	Γ	loop circulation	${ m m}^2{ m s}^{-1}$	Yes
Ω_R , Ω_c	same	outer rigid vs. core spin	s^{-1}	Yes

Numeric overlaps (published values)

Quantity	Symbol (SST)	Value	Units
Characteristic swirl speed	v_s	1,093,845.63	$\mathrm{m}\mathrm{s}^{-1}$
Core radius	r_c	$1.40897017 \times 10^{-15}$	m
Core density	$ ho_{ m core}$	$3.8934358266918687 \times 10^{18}$	${\rm kg}{\rm m}^{-3}$
Background density	$ ho_f^{ m bg}$	7.0×10^{-7}	${\rm kg}{\rm m}^{-3}$
Max Coulomb force	$F_{ m EM}^{ m max}$	29.053507	N
Max universal force	$F_{\rm G}^{ m max}$	3.02563×10^{43}	N

Macro glossary (house style)

Use the macros to avoid drift:

 ρ_f (effective density), ρ_E (energy density), ρ_m (mass-equivalent), ρ_{core} (core density), \mathbf{v}_{core} (swirl speed)

Prose quardrails (rebrand policy)

Use *foliation* and *swirl string(s)* in narrative text. Reserve legacy words ("æther", "vortex") strictly for quoting historical titles or citations. Retain *vorticity* as standard.

Sentence rewrites (examples)

Legacy: "The æther sector fixes the vortex core density."

SST: "The *foliation* sector fixes the *core density* ρ_{core} of the swirl string."

Legacy: "Kelvin's vortex theorem implies conserved $R^2\omega$."

SST: "Kelvin's *circulation* theorem implies $\frac{D}{Dt}(R^2\omega) = 0$ under incompressible, inviscid, barotropic flow."

Effective Scale-dependent **Densities** in SST

Effective densities (house style).

 $\rho_E \equiv \frac{1}{2} \rho_f \|\mathbf{v}_{\odot}\|^2$ (swirl energy density), $\rho_m \equiv \rho_E/c^2$ (mass-equivalent of $\rho_f \equiv$ effective fluid density,

Background value: $ho_f^{
m bg} \approx 7.0 \times 10^{-7}~{
m kg}~{
m m}^{-3}$. Core (material) density: $ho_{
m core} \approx 3.8934358267 \times 10^{18}~{
m kg}~{
m m}^{-3}$. Hence core energy density

$$\rho_E^{\text{core}} = \rho_{\text{core}} c^2 \approx 3.499 \times 10^{35} \,\text{J m}^{-3}.$$

Radial profile (phenomenology). It is convenient to model the near-core energy density with an exponential relaxation to the background:

$$\rho_E(r) = \rho_E^{\text{bg}} + \left(\rho_E^{\text{core}} - \rho_E^{\text{bg}}\right) e^{-r/r_*},$$

with a microscopic decay scale r_* (fit parameter). This empirical profile does not replace the exact tube energetics below.

String energetics (Rankine core + irrotational envelope). For a core of radius r_c and length ℓ with solid-body rotation $v_{\phi}(r) = \Omega r$ for $r \leq r_c$,

$$E_{\rm core} = \int_0^{r_c} \frac{1}{2} \, \rho_f \, (\Omega r)^2 \, (2\pi r \, \ell) \, dr = \frac{\pi}{4} \, \rho_f \, \Omega^2 \, r_c^4 \, \ell.$$

Outside the core, $v_{\phi}(r) = \Gamma/(2\pi r)$ with $\Gamma = 2\pi\Omega r_c^2$, giving the slender-tube envelope term

$$E_{
m env} \simeq rac{
ho_f \, \Gamma^2}{4\pi} \, \ell \, \ln rac{R}{r_c},$$

where *R* is an outer cutoff set by the nearest boundary or neighboring strings. Both contributions are standard in vortex-tube energetics (core + Biot–Savart envelope).

Coarse-graining. At macroscales, we use the canonical identity

$$K = \frac{\rho_{\mathrm{core}} \, r_c}{v_{\mathrm{s}}}, \qquad \rho_f = K \, \Omega_{\mathrm{leaf}}.$$

where Ω_{leaf} is a coarse-grained (leaf-averaged) angular rate. Numerically, $\Omega_{leaf} \sim 10^{-4} \, s^{-1}$ in the Canon fit; it must not be confused with the microscopic core rate below.

2 Layered Time Scaling from Swirl Dynamics

Adopt the SR-like local rule

$$\frac{d\tau}{dt} = \sqrt{1 - \frac{v_{\phi}^2(r)}{c^2}}.$$

With a Rankine profile,

$$v_{\phi}(r) = egin{cases} \Omega_{
m core} \, r, & r \leq r_c, \ rac{\Gamma}{2\pi r'}, & r \geq r_c, \end{cases} \qquad \Gamma = 2\pi \Omega_{
m core} \, r_c^2.$$

Continuity at $r = r_c$ gives $v_{\phi}(r_c) = \Omega_{\text{core}} r_c \equiv \mathbf{v}_{\circ}$, hence

$$\Omega_{\text{core}} = \frac{v_s}{r_c} \approx \frac{1.09384563 \times 10^6}{1.40897017 \times 10^{-15}} \approx 7.763 \times 10^{20} \text{ s}^{-1}.$$

Thus

$$\frac{d\tau}{dt} = \begin{cases} \sqrt{1 - \frac{\Omega_{\text{core}}^2 r^2}{c^2}}, & r \leq r_c, \\ \sqrt{1 - \frac{\Gamma^2}{4\pi^2 c^2 r^2}}, & r \geq r_c. \end{cases}$$

The earlier ansatz $d\tau/d\bar{t} = e^{-r/r_c}$ can be used only as a phenomenological fit; it does not follow from the SR-like form unless one imposes a special $v_{\phi}(r)$ inconsistent with Rankine.

References