October Math Gems

Problem of the week 20

§1 problems

Problem 1.1. Find all real numbers x, y, z so that

$$x^{2}y + y^{2}z + z^{2} = 0$$
$$z^{3} + z^{2}y + zy^{3} + x^{2}y = \frac{1}{4}(x^{4} + y^{4}).$$

Problem 1.2. If x is a real number satisfying the equation

$$9\log_3 x - 10\log_9 x = 18\log_{27} 45,$$

then the value of x is equal to $m\sqrt{n}$, where m and n are positive integers, and n is not divisible by the square of any prime. Find m+n.

Problem 1.3. Find all primes p, such that there exist positive integers x, y which satisfy

$$\begin{cases} p + 49 = 2x^2 \\ p^2 + 49 = 2y^2 \end{cases}$$

Problem 1.4. Suppose x and y are real numbers satisfying

$$\begin{cases} x^3 - y^3 = 493. \\ x^2y - y^2x = 50. \end{cases}$$

What is the positive difference between x and y?

Problem 1.5. Find all pairs (x, y) of real numbers satisfying the system : $\begin{cases} x + y = 2 \\ x^4 - y^4 = 5x - 3y \end{cases}$

Problem 1.6. Solve the equation in \mathbb{R} , the system $\begin{cases} x+y+xy=4\\ y+z+yz=7\\ x+z+xz=9 \end{cases}$

Problem 1.7. If a dan b are positive numbers and satisfy, ${}^{a}log4 = {}^{b}log10 = {}^{a-b}log25$ What are the value of a and b?

Problem 1.8. Solve

$$\log_x\left(\frac{x^{4x-6}}{2}\right) = 2x - 3.$$

1

Problem 1.9. Let a, b, and c be distinct positive integers such that $\sqrt{a} + \sqrt{b} = \sqrt{c}$ and c is not a perfect square. What is the least possible value of a + b + c?

Problem 1.10. Solve this system of equations

$$\begin{cases} x^2 = y^3 + 1 \\ y^2 = x^3 - 23 \end{cases}$$

Problem 1.11. Starting with a 5×5 grid, choose a 4×4 square in it. Then, choose a 3×3 square in the 4×4 square, and a 2×2 square in the 3×3 square, and a 1×1 square in the 2×2 square. Assuming all squares chosen are made of unit squares inside the grid. In how many ways can the squares be chosen so that the final 1×1 square is the center of the original 5×5 grid?

Problem 1.12. Let ABCD be a rectangle with AB = 10 and AD = 5. Suppose points P and Q are on segments CD and BC, respectively, such that the following conditions hold: $BD \parallel PQ \angle APQ = 90^{\circ}$. What is the area of $\triangle CPQ$?

Problem 1.13. How many real roots does this log equation have?

$$\log_{(x^2 - 3x)^3} 4 = \frac{2}{3}$$

Should I use the fundamental theorem of algebra for this problem?

Problem 1.14. In trapezoid ABCD, leg \overline{BC} is perpendicular to bases \overline{AB} and \overline{CD} , and diagonals \overline{AC} and \overline{BD} are perpendicular. Given that $AB = \sqrt{11}$ and $AD = \sqrt{1001}$, find BC^2 .

Problem 1.15. Find

$$\cos\frac{2\pi}{2013} + \cos\frac{4\pi}{2013} + \dots + \cos\frac{2010\pi}{2013} + \cos\frac{2012\pi}{2013}$$

Problem 1.16. Find all triples (a, b, c) of real numbers such that ab + bc + ca = 1 and

$$a^2b + c = b^2c + a = c^2a + b.$$

Problem 1.17. Solve over \mathbb{R} the equation $4^{(sinx)^2} + 3^{(tanx)^2} = 4^{(cosx)^2} + 3^{(cotanx)^2}$.

Problem 1.18. Two distinct, real, infinite geometric series each have a sum of 1 and have the same second term. The third term of one of the series is 1/8, and the second term of both series can be written in the form $\frac{\sqrt{m}-n}{p}$, where m, n, and p are positive integers and m is not divisible by the square of any prime. Find 100m + 10n + p.

Problem 1.19. Let a, b, c, and d be real numbers that satisfy the system of equations

$$a+b=-3$$

$$ab+bc+ca=-4$$

$$abc+bcd+cda+dab=14$$

$$abcd=30.$$

There exist relatively prime positive integers m and n such that

$$a^2 + b^2 + c^2 + d^2 = \frac{m}{n}$$
.

Find m+n.

Problem 1.20. An infinite geometric series has sum 2005. A new series, obtained by squaring each term of the original series, has 10 times the sum of the original series. The common ratio of the original series is $\frac{m}{n}$ where m and n are relatively prime integers. Find m+n.