Toroidal Magnetic Geometry: a Hamiltonian System

Haotian Chen

¹Institute of Space Science and Technology, Nanchang University

Nov. 19-20, 2018 Sichuan University

Outline

- A Brief Review of Hamiltonian Mechanics
 - Euler-Lagrange Equation
 - Hamilton's Equations
- Toroidal Magnetic Geometry
 - Hamiltonian Form of the Magnetic-Field-Line Equation
 - Evaluation of the Magnetic Coordinates
- Guiding-center Motion
 - Guiding-center Phase Space Lagrangian
 - Guiding-center Motion

A Brief Review of Hamiltonian Mechanics

Euler-Lagrange Equation

A Classical Variational Problem

Given a function $F(t,\vec{z},\dot{\vec{z}})$ with twice continuous derivatives with respect to all of its arguments, we look for a twice continuously differentiable function $\vec{z}(t)$ on the interval $[t_0,t_1]$ with the specified boundary $\vec{z}(t_0)=const.$ and $\vec{z}(t_1)=const.$, so that the functional defined by

$$J[\vec{z}] = \int_{t_0}^{t_1} F(t, \vec{z}, \dot{\vec{z}}) dt$$
 (1)

is extremized.

A functional is a function on a space of functions, i.e., it is a mapping which assigns a definite number to each function in the space.

Euler-Lagrange Equation

A Classical Variational Problem

To solve this problem, we consider a family of twice continuously differentiable functions on $[t_0,t_1]$ given by $\vec{z}(t)+\epsilon\vec{h}(t)$, with ϵ being a small number and $\vec{h}(t_0)=\vec{h}(t_1)=0$.

If the functional J has a local extremum at the function \vec{z} , then, as a necessary condition, we must have

$$\delta J[\epsilon \vec{h}] = \int_{t_0}^{t_1} [F(t, \vec{z} + \epsilon \vec{h}, \dot{\vec{z}} + \epsilon \dot{\vec{h}}) - F(t, \vec{z}, \dot{\vec{z}})] dt$$

$$= \epsilon (\frac{\partial F}{\partial \dot{\vec{z}}} \cdot \vec{h})_{t_0}^{t_1} + \epsilon \int_{t_0}^{t_1} [\frac{\partial F}{\partial \vec{z}} - \frac{d}{dt} (\frac{\partial F}{\partial \dot{\vec{z}}})] \cdot \vec{h} dt$$

$$= 0$$
(2)

for every $\vec{h}(t)$.

Euler-Lagrange Equation

A Classical Variational Problem

The fundamental lemma of calculus of variations

If $\int_{t_0}^{t_1} f(t)h(t)dt=0$ for all h with twice continuous derivatives, then f(t)=0 on $[t_0,t_1].$

Euler-Lagrange Equation

The function $\vec{z}(t)$ that extremizes the functional J of Eq.(1) necessarily satisfies:

$$\frac{\partial F}{\partial \vec{z}} - \frac{d}{dt} \left(\frac{\partial F}{\partial \dot{z}} \right) = 0. \tag{3}$$

Remarks:

- In general, the Euler-Lagrange equation is a nonlinear second order differential equation.
- ② The extremal solution \vec{z} does not depend on the choice of coordinate system^a, since Eq.(1) is a scalar equation.

^aV. I. Arnold, Mathematical methods of classical mechanics, 2nd ed. (Springer-Verlag), p. 59.

The Hamilton Principle

In Hamiltonian theory, the dynamical system is described by N generalized coordinates $\vec{q}=(q_1,q_2,\cdots,q_N)$ and their conjugate momenta $\vec{p}=(p_1,p_2,\cdots,p_N)$. The state of the system is a point in the phase space with coordinates $\vec{z}=(\vec{q},\vec{p})$.

Then, for the dynamical system with holonomic constraints and external forces derivable from a generalized scalar potential, the Hamilton principle requires the path of the system from t_0 to t_1 is such that the action functional¹

$$J[\vec{z}] = \int_{t_0}^{t_1} L(t, \vec{z}, \dot{\vec{z}}) dt \tag{4}$$

is extremized, where $L=\vec{p}\cdot\dot{\vec{q}}-H(\vec{q},\vec{p},t)$ is the Lagrangian.

Holonomic constraints

The constraints that depend only on the configuration coordinates and time, i.e., $f(\vec{r},t)=0.$

¹In fact, the Hamilton principle refers to no coordinates, all the information is in the action integral.

Hamilton's Equations

Using the Euler-Lagrange equation, Eq.(3), we find the Hamilton's canonical equations:

$$\dot{q}_i = \frac{\partial H}{\partial p_i},\tag{5}$$

$$\dot{p}_i = -\frac{\partial H}{\partial q_i}. ag{6}$$

E: Repeat the derivation step by step.

E: Demonstrate the Lagrangian gauge invariant, i.e., the same equations of motion will be obtained if we take a new Lagrangian $L' = L + d_t g(\vec{z}, t)$.

Phase space flow

A dynamical system can be represented by the family of solution curves of its equations of motion, these curves fill the phase space and define a phase flow:

$$\vec{q} = \vec{q}(t, \vec{q}_0, \vec{p}_0, t_0), \quad \vec{p} = \vec{p}(t, \vec{q}_0, \vec{p}_0, t_0).$$
 (7)

At each point of phase space, a velocity \vec{V} can be defined as $\vec{V}=\dot{\vec{z}}=(\dot{\vec{q}},\dot{\vec{p}})$, the phase flow in Hamiltonian theory is thus incompressible:

$$\nabla_z \cdot \vec{V} = \frac{\partial}{\partial \vec{q}} (\frac{\partial H}{\partial \vec{p}}) - \frac{\partial}{\partial \vec{p}} (\frac{\partial H}{\partial \vec{q}}) = 0.$$
 (8)

In the case of $H=H(\vec{q},\vec{p})$, the phase flow is a steady flow:

$$\vec{q} = \vec{q}(t - t_0, \vec{q}_0, \vec{p}_0), \quad \vec{p} = \vec{p}(t - t_0, \vec{q}_0, \vec{p}_0).$$
 (9)

Example: the pendulum

The Hamiltonian is $H = p^2/2 - \omega_0^2 \cos(q)$.

Figure 1: The phase flow for the pendulum 2 , the O and X points are noticeable.

E: Solve the pendulum in terms of elliptic functions.

²K. J. Whiteman, Rep. Prog. Phys. 40, 1033, 1977.

Example: two uncoupled harmonic oscillators

The Hamiltonian is $H = \sum_{i=1}^{2} (p_i^2 + \omega_i^2 q_i^2)/2$. The general solution is

$$q_i = A_i \sin(\omega_i t + \phi_i), \quad p_i = A_i \omega_i \cos(\omega_i t + \phi_i),$$
 (10)

where A_i and ϕ_i are invariants.

Figure 2: An orbit spiralling on the surface of an invariant torus³.

The orbits lie on a 2D invariant torus. If ω_1/ω_2 is rational, the orbits are closed but, if ω_1/ω_2 is irrational, the orbits will cover the torus ergodically.

³K. J. Whiteman, Rep. Prog. Phys. 40, 1033, 1977.

Example: two uncoupled harmonic oscillators

E: Can any of the invariants be used to restrict the orbit in phase space?

The frequencies ω_i are constant on invariant tori for the uncoupled harmonics, however, the frequencies can vary from torus to torus for more complex systems. For example, consider a completely integrable periodic system $H(\vec{I}, \vec{\theta}) = H_0(\vec{I})$, where \vec{I} and $\vec{\theta}$ are N-dimensional vectors of actions and angles, respectively. The Hamilton's equations are then written as

$$\dot{\vec{I}} = 0, \quad \dot{\vec{\theta}} = \nabla_I H_0 = \vec{\omega}_0(\vec{I}) \tag{11}$$

with $\vec{\omega}_0$ being the frequency vector.

The orbits lie on N-dimensional invariant tori $T_0(\vec{\omega}_0)$ in the 2N-dimensional phase space.

E: Read about action-angle variables in your favorite book.

Kolmogorov-Arnold-Moser (KAM) Theorem

Let us assume that the integrable Hamiltonian H_0 is perturbed by a small term ϵH_1 such that $H=H_0(\vec{I})+\epsilon H_1(\vec{I},\vec{\theta})$ where H_1 is periodic in the angle variables. The Hamilton's equations are thus

$$\dot{\vec{I}} = -\epsilon \nabla_{\theta} H_1, \quad \dot{\vec{\theta}} = \vec{\omega}_0(\vec{I}) + \epsilon \nabla_I H_1. \tag{12}$$

Suppose the unperturbed motion is nondegenerate $(\det |\partial_{I_i}\partial_{I_j}H_0| \neq 0)$, the total Hamiltonian H is analytic in the phase space, and ϵ is small enough, then for almost all incommensurate frequency vector $\vec{\omega}_0$ $(\vec{\omega}_0 \cdot \vec{m} \neq 0$ for all integers m_i), there exists an invariant torus $T(\vec{\omega}_0)$ of the perturbed system such that $T(\vec{\omega}_0)$ is close to $T_0(\vec{\omega}_0)$.

Remarks

- If $\vec{\omega}_0$ is sufficiently irrational, the original invariant torus T_0 is modified in shape by the perturbation but not destroyed.
- ullet The incommensurate frequency vectors that fail to satisfy the KAM theorem are a set of measure of order ϵ .

Toroidal Magnetic Geometry

Magnetic-Field-Line Equation

A magnetic field line is a curve whose tangent vector at any point is parallel to the magnetic field \vec{B} , i.e.,

$$\frac{d\vec{R}}{\vec{B}} = dt. {13}$$

Given coorinates (u^1, u^2, u^3) , the differential vector can be expressed as

$$d\vec{R} = \frac{\partial \vec{R}}{\partial u^1} du^1 + \frac{\partial \vec{R}}{\partial u^2} du^2 + \frac{\partial \vec{R}}{\partial u^3} du^3,$$
 (14)

therefore, the magnetic-field-line equation is

$$\frac{du^1}{\vec{B} \cdot \nabla u^1} = \frac{du^2}{\vec{B} \cdot \nabla u^2} = \frac{du^3}{\vec{B} \cdot \nabla u^3}.$$
 (15)

Canonical Representation

A divergence-free vector can be derived from a vector potential $\vec{A}(\vec{x})$. If we write \vec{A} in terms of the coordinates (ρ, θ, ζ) , where ρ is a radius-like variable, but not a flux-surface label, θ and ζ are, respectively, arbitrary poloidal and toroidal angles,

$$\vec{A} = A_{\rho} \nabla \rho + A_{\theta} \nabla \theta + A_{\zeta} \nabla \zeta. \tag{16}$$

Note that $\nabla \times \vec{A} = \nabla \times (\vec{A} + \nabla G)$, we can introduce a function G with $\partial_{\rho}G = A_{\rho}$, such that $\nabla G = A_{\rho}\nabla \rho + \partial_{\theta}G\nabla \theta + \partial_{\zeta}G\nabla \zeta$. We have⁴

$$\vec{A} = \nabla G + (A_{\theta} - \partial_{\theta} G) \nabla \theta + (A_{\zeta} - \partial_{\zeta} G) \nabla \zeta, \tag{17}$$

and thus \vec{B} can be represented in the canonical form⁵⁶

$$\vec{B} = \nabla \psi \times \nabla \theta + \nabla \zeta \times \nabla \psi_p, \tag{18}$$

where $\psi_p = \psi_p(\psi, \theta, \zeta)$, so that Eq.(18) is not a flux-coordinate representation.

⁴R. B. White, The theory of toroidally confined plasmas, 3rd ed., (Imperial College Press), p.10.

⁵A. H. Boozer, Phys. Fluids, 26, 1288, (1983).

⁶Z. Yoshida, Phys. Plasmas, 1, 208, (1994)

Canonical Representation

Using Eq.(15) and assuming $J^{-1}=\nabla\psi\cdot(\nabla\theta\times\nabla\zeta)\neq0$, we obtain the equation of magnetic-field-line,

$$\frac{d\psi}{d\zeta} = \frac{\vec{B} \cdot \nabla \psi}{\vec{B} \cdot \nabla \zeta}, \quad \frac{d\theta}{d\zeta} = \frac{\vec{B} \cdot \nabla \theta}{\vec{B} \cdot \nabla \zeta}, \tag{19}$$

i.e.,

$$\frac{d\psi}{d\zeta} = -\frac{\partial\psi_p}{\partial\theta}, \quad \frac{d\theta}{d\zeta} = \frac{\partial\psi_p}{\partial\psi}.$$
 (20)

which is of Hamiltonian form, with $\psi_p(\psi, \theta, \zeta)$ the field-line Hamiltonian, ψ and θ the canonical variables, and ζ the time.

Remarks

- ullet The magnetic configuration in toroidal geometry is a Hamiltonian system with 1 degree of freedom.
- The magnetic-field-line flow is incompressible, due to $\nabla \cdot \vec{B} = 0$ or Liouville's theorem.

Remarks

- The topological structure of the magnetic field is determined by the field-line Hamiltonian $\psi_p(\psi,\theta,\zeta)$ alone.
- In general, the system is not integrable due to $\psi_p = \psi_p(\psi,\theta,\zeta)$. However, if there exists a nontrivial constant of motion (e.g., the axisymmetric field in tokamak), the magnetic field will have perfect magnetic surfaces, and we can choose flux, or action-angle, coordinates (ψ,θ,ϕ) so that $\psi_p = \psi_p(\psi)$. In this case, the equation of magnetic-field-line becomes

$$\frac{d\psi}{d\zeta} = 0, \quad \frac{d\theta}{d\zeta} = \frac{\partial \psi_p}{\partial \psi} = \frac{1}{q(\psi)},$$
 (21)

where the flux function q is the safety factor, it plays the role of a frequency in the action-angle picture, and the magnetic field can be written as $\vec{B} = \nabla \psi \times \nabla (\theta - \zeta/q)$. Continuing further the analogy with the action-angle picture, one can define the rational and irrational surfaces according to q.

Remarks

If the field with perfect surfaces is slightly perturbed so that

$$\psi_p(\psi, \theta, \phi) = \psi_{p0}(\psi) + \epsilon \psi_{p1}(\psi, \theta, \zeta), \tag{22}$$

where ψ_{p1} is periodic in θ and ζ . Eq.(22) is often called a 3/2 degrees of freedom Hamiltonian system. Then, by the KAM theorem, the magnetic-field-line has three different types of trajectories in toroiday geometry^a:

- A field line can close on itself on the rational surface, this type of possibility is topologically unstable, an arbitraily small resonant perturbation can destroy it.
- A field line covers the irrational surface ergodically, this type of possibility is topologically stable for sufficiently small perturbations.
- A stochastic field line fills in a nonzero volume of space ergodically, implies the absence of magnetic confinement in that region.

The magnetic confinement depends on the formation of magnetic surface.

^aA. H. Boozer, Rev. Mod. Phys., 76, 1071, (2005).

- Note that, the behaviour of plasmas is not involved so far, the obtained results apply to any divergence-free vector field in toroidal geometry.
- However, the specific structure of equilirium magnetic field does require the solution of static equilibrium of a magnetoplasma, such as the Grad-Shafranov equation for axisymmetric toroidal plasmas.

E: Discuss the reason that q is called safety factor.

E: Read about the Grad-Shafranov equation in your favorite book.

E: Can you comment the importance of low-dimensional Hamiltonian systems for the magnetic confinement?

Evaluation of the Magnetic Coordinates

Evaluation of the Transformation⁷

Formulating the magnetic coordinates $(\psi(\vec{R}), \theta(\vec{R}), \zeta(\vec{R}))$ of a given integrable field $\vec{B}(\vec{R})$ is a difficult task in toroidal geometry.

① The field line trajectory $\vec{R}(\zeta)$ is evaluated by Eq.(15)

$$\frac{d\vec{R}}{d\zeta} = \frac{\vec{B}(\vec{R})}{\vec{B} \cdot \nabla \zeta},\tag{23}$$

with a definite choice of toroidal angle $\zeta(\vec{R})$, often the minus azimuthal angle of cylindrical coordinates.

③ Knowing $\vec{R}(\zeta)$ along the field lines, one can obtain the transformation $\vec{R}(\psi,\theta,\zeta)$ and $q(\psi)$ in Fourier form

$$\vec{R}(\zeta) = \vec{R}(\psi(\zeta), \theta(\zeta), \zeta) = \sum_{n,m} \vec{R}_{n,m}(\psi) e^{i(n\zeta - m\theta)} = \sum_{n,m} \vec{R}_{n,m}(\psi) e^{i(n-m/q)\zeta}. \tag{24}$$

A Fourier decomposition of $\vec{R}(\zeta)$ then gives the $\vec{R}_{n,m}$ and q on a magnetic surface.

③ The toroidal magnetic flux $2\pi\psi$ associated with the surface can be determined by an area integral $\iint \vec{B} \cdot d\vec{a}_t$.

⁷G. Kuo-Petrravis and A. H. Boozer, J. Comput. Phys., 73, 107, (1987).

Lagrangian in Phase Space

The phase space Lagrangian for a charged particle in an electromagnetic field:

$$L(\vec{x}, \vec{v}, \dot{\vec{x}}, t) = (m\vec{v} + \frac{e}{c}\vec{A}) \cdot \dot{\vec{x}} - H(\vec{v}, \vec{x}, t)$$
 (25)

with the Hamiltonian

$$H = \frac{1}{2}mv^2 + e\phi(\vec{x}, t).$$
 (26)

From Eq.(25), we recognize the canonical momentum for a charged particle in a electromagnetic field to be

$$\vec{p} = m\vec{v} + \frac{e}{c}\vec{A}.\tag{27}$$

Phase Space Coordinate Transformation

Now separate the perpendicular and parallel velocity components as

$$\vec{v} = v_{\parallel} \hat{b} + v_{\perp} \hat{c} \tag{28}$$

where unit vectors $\hat{b}=\vec{B}/B$ and $\hat{c}=-\sin\xi\hat{e}_1-\cos\xi\hat{e}_2$ with $\hat{e}_1\cdot\hat{e}_2=0$ and $\hat{e}_1\times\hat{e}_2=\hat{b}$. ξ the gyrophase. Note that, \hat{b} , \hat{e}_1 and \hat{e}_2 are functions of (\vec{x},t) . Then the guiding center can be defined by

$$\vec{x} = \vec{X} + \frac{v_{\perp}\hat{a}}{\Omega_c} \tag{29}$$

with $\hat{a} = \hat{b} \times \hat{c}$.

The Lagrangian becomes

$$L(\vec{X}, \vec{v}, \dot{\vec{X}}, t) = [mv_{\parallel}\hat{b} + mv_{\perp}\hat{c} + \frac{e}{c}\vec{A}(\vec{x}, t)] \cdot [\dot{\vec{X}} + \frac{d}{dt}(\frac{v_{\perp}\hat{a}}{\Omega_c})] - H(\vec{v}, \vec{x}, t) \quad (30)$$

All quantities on the right are evaluated at the guiding center \vec{X} .

Scale Separation

We here follow Littlejohn's work⁸ and assume that the magnetic field \vec{B} is so large that

$$\epsilon \sim \frac{\rho}{L} \sim \frac{\omega}{\Omega_c} \ll 1$$
 (31)

is well satisfied. Here ρ and Ω_c are the particle's gyroradius and gyrofrequency, respectively, while L and ω^{-1} are, respectively, the characteristic spatial and time scale of varations in the ambient electromagnetic fields.

Then ϵ is used as an ordering parameter for the perturbation expansion, the Lagrangian can be written as

$$L(\vec{X}, v_{\parallel}, v_{\perp}, \xi, \dot{\vec{X}}, t) = [mv_{\parallel}\hat{b} + mv_{\perp}\hat{c} + \frac{e}{c}\vec{A}(\vec{x}, t)] \cdot [\dot{\vec{X}} + \frac{d}{dt}(\frac{v_{\perp}\hat{a}}{\Omega_c})] - H(\vec{v}, \vec{x}, t), (32)$$

where

$$\vec{x} = \vec{X} + \frac{v_{\perp}\hat{a}}{\Omega_c}.$$
 (33)

We now regard the variables $(\vec{X}, v_{\parallel}, v_{\perp}, \xi)$ as the new six phase space coordinates.

⁸R. G. Littlejohn, J. Plasma Physics, 29, part 1, 111, (1983).

Phase Space Lagrangian to the Order $\mathcal{O}(\epsilon)$

The Lagrangian can be Taylor expanded up to the order $\mathcal{O}(\epsilon)$:

$$L = \frac{e}{c}\vec{A}\cdot\dot{\vec{X}} + (mv_{\parallel}\hat{b} + mv_{\perp}\hat{c})\cdot\dot{\vec{X}} + \frac{e}{c}\vec{A}\cdot\frac{d}{dt}(\frac{v_{\perp}\hat{a}}{\Omega_{c}}) + \frac{v_{\perp}\hat{a}}{\Omega_{c}}\cdot\nabla(\frac{e}{c}\vec{A})\cdot\dot{\vec{X}}$$

$$+ \frac{e}{c}\frac{1}{2}[(\frac{v_{\perp}\hat{a}}{\Omega_{c}}\cdot\nabla)^{2}\vec{A}]\cdot\dot{\vec{X}} + (mv_{\parallel}\hat{b} + mv_{\perp}\hat{c} + \frac{e}{c}\frac{v_{\perp}\hat{a}}{\Omega_{c}}\cdot\nabla\vec{A})\cdot\frac{d}{dt}(\frac{v_{\perp}\hat{a}}{\Omega_{c}})$$

$$- \frac{1}{2}mv^{2} - e\phi - (\frac{ev_{\perp}\hat{a}}{\Omega_{c}})\cdot\nabla\phi. \tag{34}$$

Before proceeding with this compicated Lagrangian, we recall the Lagrangian gauge invariant $L \to L + d_t S$ in phase space to simplify the phase space Lagrangian.

Phase Space Lagrangian to the Order $\mathcal{O}(\epsilon)$

In particular, by taking

$$S(\vec{X}, v_{\parallel}, v_{\perp}, \xi, t) = -\frac{v_{\perp}\hat{a}}{\Omega_c} \cdot (\frac{e}{c}\vec{A}), \tag{35}$$

the new phase space Lagrangian up to order $\mathcal{O}(\epsilon)$ becomes

$$L = \left(\frac{e}{c}\vec{A} + mv_{\parallel}\hat{b} + mv_{\perp}\hat{c}\right) \cdot \dot{\vec{X}} - \frac{1}{2}mv^{2} - e\phi - \frac{ev_{\perp}\hat{a}}{\Omega_{c}} \cdot \left[\frac{\partial \vec{A}}{\partial c} + \nabla\phi\right]$$

$$+ \frac{e}{c}\frac{1}{2}\left[\left(\frac{v_{\perp}\hat{a}}{\Omega_{c}} \cdot \nabla\right)^{2}\vec{A}\right] \cdot \dot{\vec{X}} + \left(\frac{mv_{\perp}^{2}}{\Omega_{c}} + \frac{ev_{\perp}^{2}}{c\Omega_{c}^{2}}\hat{a} \cdot \nabla\vec{A} \cdot \hat{c}\right)\dot{\xi} + \frac{ev_{\perp}\dot{v}_{\perp}}{c\Omega_{c}^{2}}\hat{a} \cdot \nabla\vec{A} \cdot \hat{a}.$$
(36)

Now again add a perfect derivative to ${\cal L}$ with

$$S = -\frac{ev_{\perp}^2}{2c\Omega_c^2}\hat{a} \cdot \nabla \vec{A} \cdot \hat{a},\tag{37}$$

we finally have the Lagrangian in phase space to the order $\mathcal{O}(\epsilon)$

$$L \quad = \quad (\frac{e}{c}\vec{A} + mv_{\parallel}\hat{b} + mv_{\perp}\hat{c}) \cdot \dot{\vec{X}} + \frac{mv_{\perp}^2}{2\Omega_c}\dot{\xi} - \frac{1}{2}mv^2 - e\phi - \frac{ev_{\perp}\hat{a}}{\Omega_c} \cdot [\frac{\partial\vec{A}}{c\partial t} + \nabla\phi].$$

38)

Phase Space Lagrangian to the Order $\mathcal{O}(\epsilon)$

E: Are Eqs. (34), (36) and (38) invariant under the electromagnetic gauge transformation?

Now average over the fast gyromotion time scale, we have the phase space Lagrangian in guiding-center phase space coordinates:

$$L(\vec{X}, \mu, U, \xi, t) = (\frac{e}{c}\vec{A} + mU\hat{b}) \cdot \dot{\vec{X}} + \frac{mc}{e}\mu\dot{\xi} - \frac{1}{2}mU^2 - \mu B - e\phi,$$
 (39)

where U is the parallel velocity of guiding center and μ is the magnetic momentum.

Remarks

- No assumptions were made about the topological structure of the magnetic field, this expression is valid independent of the existence of magnetic surfaces, equilibrium.
- The derivation of the guiding center Lagrangian from the particle Lagrangian can be extended to arbitrarily high order, with the help of Lie transformation.

Euler-Lagrange Equation

The Euler-lagrange equation of μ , ξ and U yields $\dot{\xi} = \Omega_c$, $\dot{\mu} = 0$ and $U = \hat{b} \cdot \vec{X}$, respectively.

The Euler-Lagrange equation of the coordinate \vec{X} gives

$$\dot{U} = -\frac{\vec{B}^*}{mB_{\parallel}^*} \cdot (\mu \nabla B - e\vec{E}^*), \tag{40}$$

$$\dot{\vec{X}} = \frac{1}{B_{\parallel}^*} [U\vec{B}^* + c\hat{b} \times (\frac{\mu}{e} \nabla B - \vec{E}^*)], \tag{41}$$

where $\vec{\kappa} = \hat{b} \cdot \nabla \hat{b}$ is the curvature.

$$\vec{B}^* = B(\hat{b} + \underbrace{\frac{U}{\Omega_c} \nabla \times \hat{b}}_{\text{Banos correction}}), \quad \vec{E}^* = \vec{E} - \frac{m}{e} U \partial_t \hat{b}. \tag{42}$$

E: Derive the above results step by step.

E: Derive the expression of the evolution of the guiding center energy.

E: Where is the curvature drift term?

E: Without the electric field, Eq.(40) indicates that $\dot{U} \neq 0$, comment about the physical meaning of this fact.

Generalized Toroidal Angular Momentum

In an azimuthally symmetric system such as tokamak, the components of \vec{B} are independent of the azimuthal angle ζ with respect to the cylindrical coordinates (R,ζ,Z) . The generalized momentum conjugating to ζ is thus defined by

$$P_{\zeta} = \frac{\partial L}{\partial \dot{\zeta}} = (\frac{e}{c}\vec{A} + mU\hat{b}) \cdot \frac{\partial \dot{\vec{X}}}{\partial \dot{\zeta}}.$$
 (43)

Noting that $\vec{X} = R\hat{e}_R + Z\hat{e}_Z$ and

$$\dot{\vec{X}}(R,\zeta,Z) = \frac{\partial \vec{X}}{\partial R}\dot{R} + \frac{\partial \vec{X}}{\partial Z}\dot{Z} + \frac{\partial \vec{X}}{\partial \zeta}\dot{\zeta},\tag{44}$$

we have

$$\frac{\partial \vec{X}}{\partial \dot{\zeta}} = \frac{\partial \vec{X}}{\partial \zeta} = R\hat{e}_{\zeta},\tag{45}$$

30 / 33

therefore, P_{ζ} can be expressed as

$$P_{\zeta} = \frac{e}{c} A_{\zeta} R + mU \frac{RB_{\zeta}}{B} = \frac{e}{c} \psi_p + mU \frac{RB_{\zeta}}{B}, \tag{46}$$

where we have introduced the poloidal flux $\psi_p = A_{\zeta} R$.

Generalized Toroidal Angular Momentum

The total time derivative of P_{ζ} can be given by the Euler-Lagrange equation of ζ ,

$$\dot{P}_{\zeta} = \frac{\partial L}{\partial \zeta}.\tag{47}$$

In order to calculate the partial derivative of L with respect to ζ , we represent the vectors \vec{A} and \vec{b} in covariant form, and thus obtain

$$\frac{\partial L}{\partial \zeta} = \left[\frac{e}{c} \frac{\partial A_i}{\partial \zeta} + mU \frac{\partial b_i}{\partial \zeta} \right] \dot{X}^i - \mu \frac{\partial B}{\partial \zeta} - e \frac{\partial \phi}{\partial \zeta}. \tag{48}$$

Therefore, $\dot{P}_{\zeta}=0$ for the axisymmetrical electromagnetic fields.

Remarks

- **(a)** The conservation of P_{ζ} implies that the deviation of the guiding-center trajectory from the flux surface depends on the sign of U.
- The broken of axisymmetry corresponds to the guiding center moves to different flux surfaces, i.e., transport phenomena.

Particle Orbits

Figure 3: Guiding-center orbit of a circulating particle.

Particle Orbits

Figure 4: Guiding-center orbit of a trapped particle.