SIR and mask

Basic idea

- Simple SIR model disease progression with strata for mask-wearing status, resulting in compartments for S-masked, S-no mask, I-masked, I-no mask, R-masked, R-no mask.
- Supposing wearing a mask reduces both susceptibility and infectiousness (depending on who is wearing
 it)
- Assume transitions between masked-not masked based on social influence and fear of disease (noting FD type "infection" structure for fear of disease, when could actually be more about absolute number/density dependence interesting question to explore how structure affects dynamics)
- Work in proportions such that S + I + R = 1
- no demography

State diagram

Parameter description

- λ is the force of infection, assuming a form of FD
- $\frac{1}{\gamma}$ is average rate of recovery
- α is transition rate from wearing a mask to not wearing a mask
- ω is transition rate from not wearing a mask to wearing a mask

Further parameters that will pop up

- β is the transmission rate
- c is the reduction in chance of catching disease if S is wearing a mask # this description is inconsistent with code comment definition and 1-c model structure (I think)
- p is the reduction in chance of spreading disease if I is wearing a mask # this description is inconsistent with code comment definition and 1-p model structure (I think)
- α_1 is the rate of transition to no mask based on social influence of no mask
- α_2 is the rate of transition to no mask based on fear of disease
- ω_1 is the rate of transition to mask based on social influence of mask
- ω_2 is the rate of transition to no mask based on fear of disease

Basic system of ODEs

$$\begin{split} \dot{S}_M &= -\lambda (1-c) S_M - \alpha S_M + \omega S_N \\ \dot{S}_N &= -\lambda S_N + \alpha S_M - \omega S_N \\ \dot{I}_M &= \lambda (1-c) S_M - \alpha I_M + \omega I_N - \gamma I_M \\ \dot{I}_N &= \lambda S_N + \alpha I_M - \omega I_N - \gamma I_N \\ \dot{R}_M &= \gamma I_M - \alpha R_M + \omega R_N \\ \dot{R}_N &= \gamma I_N + \alpha R_M - \omega R_N \,, \end{split}$$

where

$$\lambda(t) = \beta (I_N + (1 - p)I_M)$$

$$\omega(t) = \omega_1(S_M + I_M + R_M) + \omega_2(I_M + I_N)$$

$$\alpha(t) = \alpha_1(S_N + I_N + R_N) + \alpha_2(1 - (I_M + I_N)).$$

Next generation matrix

- The disease states are I_M and I_N
- Cannot ignore S_M and S_N !

The flow in is

$$\mathscr{F} = \begin{bmatrix} \beta(1-c)\left(I_N + (1-p)I_M\right)S_M\\ \beta\left(I_N + (1-p)I_M\right)S_N \end{bmatrix}$$

and flow out is

$$\mathscr{V} = \begin{bmatrix} -\omega I_N + (\alpha + \gamma) I_M \\ (\omega + \gamma) I_N - \alpha I_M \end{bmatrix}.$$

The differential of these with respect to the disease states (remembering that α and ω depend on I_N and I_M) are:

$$\begin{split} F &= \begin{bmatrix} \beta(1-c)(1-p)S_M & \beta(1-c)S_M \\ \beta(1-p)S_N & \beta S_N \end{bmatrix}, \\ V &= \begin{bmatrix} \gamma + \alpha - \alpha_2 I_M - (\omega_1 + \omega_2)I_N & (\alpha_1 - \alpha_2)I_M - \omega - \omega_2 I_N \\ (\omega_1 + \omega_2)I_N - \alpha + \alpha_2 I_M & \gamma - (\alpha_1 - \alpha_2)I_M + \omega + \omega_2 I_N \end{bmatrix}. \end{split}$$

Then $R(t) = \sigma(t)$ where $\sigma(t)$ is the largest (absolute) eigenvalue of $(FV^{-1})(t)$. Defining

- $x = \alpha \alpha_2 I_M (\omega_1 + \omega_2) I_N$, (rate of change in I_M due to mask transitions)
- $y = \omega (\alpha_1 \alpha_2)I_M + \omega_2 I_N$, (rate of change in I_N due to mask transitions)
- $a = (1 p)(\gamma + y) + x$, (total rate of change in I_N accounting for reduced infections due to mask (1 p)?)
- $b = (1-p)y + \gamma + x$, and (total rate of change in I_M accounting for reduced infections due to mask (1-p)?)
- (1-p)?) • $\Gamma = \frac{\beta}{\gamma(\gamma+x+y)}$ (R_0 with no mask effects (p=c=0))

• Can look at $I=I_N+I_M$ and $M=I_M+S_M+R_M$ and maybe work out some equilibriums? First (wrong) solution thinks that

$$S_N = \frac{\gamma(1 + \frac{\omega}{\alpha})}{\beta(1 + (1 - p)\frac{\omega}{\alpha})(1 + (1 - c)\frac{\omega}{\alpha})}$$

Problem is that ω and α depend on the disease states we can succinctly write

$$\sigma(t) = \Gamma\left((1-c)S_M a + S_N b\right).$$