Lecture Summary: Jan. 17, 2020

Two-sided (B.5)

Ho: $\beta = \beta_{10}(\delta = 0)$ • Power of the test

Ho: $\beta \neq \beta_{10}(\delta \neq 0)$ It is the probability of rejecting H_0 when the alternative holds at a given

Sing Table B.5. Example: If $\beta_{10} = 0, \beta_1 = 1$, s.d. $(\hat{\beta}_1) = 0.5$, we have $\delta = 1/0.5 = 2.0$. Let $\alpha = 0.05$. From Table B.5 we find the power is about 0.48. n = 25Derivation (not required for exams):

Example (Toluca). $H_0: \rho_1 = 0, H_1 \cdot \rho_1$ wishes to compute the power at the alternative $\beta_1 = 1$. Under the given

$$t = \frac{\hat{\beta}_{1}}{\operatorname{s.e.}(\hat{\beta}_{1})}$$

$$= \frac{\hat{\beta}_{1} - 1}{\operatorname{s.e.}(\hat{\beta}_{1})} + \frac{1}{\operatorname{s.e.}(\hat{\beta}_{1})}$$

$$= \frac{\hat{\beta}_{1} - \beta_{1}}{\operatorname{s.e.}(\hat{\beta}_{1})} + \frac{1}{\operatorname{s.e.}(\hat{\beta}_{1})}$$

$$= T + \frac{1}{\operatorname{s.e.}(\hat{\beta}_{1})}, \tag{1}$$

where

$$T = \frac{\hat{\beta}_1 - \beta_1}{\text{s.e.}(\hat{\beta}_1)} \sim t_{n-2},\tag{2}$$

as previously derived.

The power is the probability of rejecting the null hypothesis when $\beta_1 = 1$, which is

$$P(t > t_{n-2,\alpha}) = P[T + 1/\text{s.e.}(\hat{\beta}_1) > t_{23,0.05}]$$

=
$$P[T > 1.71 - 1/s.e.(\hat{\beta}_1)]$$

$$= P(t_{23} > 1.71 - 1/0.35)$$

$$= P(t_{23} > -1.15)$$

$$\approx 0.87.$$