Introduction to Geometry (20222)

2013

COURSEWORK

This assignment counts for 20% of your marks.

Solutions are due by 19-th April

Write solutions in the provided spaces.

STUDENTS'S NAME:

Academic Advisor (Tutor):

a) Let (x^1, x^2, x^3) be coordinates of the vector **x**, and (y^1, y^2, y^3) be coordinates of the vector **y** in \mathbb{R}^3 .

Does the formula $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^3 + x^3 y^2$ define a scalar product on \mathbf{R}^3 ? Justify your answer.

b) Let \mathbf{x}, \mathbf{y} be two vectors in the Euclidean space \mathbf{E}^2 such that the length of the vector \mathbf{x} is equal to 1, the length of the vector \mathbf{y} is equal to 25 and scalar product of these vectors is equal to 7.

Find a vector \mathbf{e} in \mathbf{E}^2 (express it through the vectors \mathbf{x} and \mathbf{y}) such that the following conditions hold:

- i) an ordered pair $\{e, x\}$ is an orthonormal basis in \mathbf{E}^2 ,
- ii) the vector \mathbf{e} has an acute angle with the vector \mathbf{y} .
 - (c) Consider the matrix $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Calculate the matrix A^2 in the case if $\theta = \frac{\pi}{4}$. Calculate the matrix A^{12} in the case if $\theta = \frac{\pi}{6}$. Calculate the matrix A^{2013} in the case if $\theta = \frac{\pi}{11}$. Find all 2×2 orthogonal matrices A such that

 $(\sqrt{2} 1)$

$$2A^3 = \begin{pmatrix} \sqrt{3} & -1\\ 1 & \sqrt{3} \end{pmatrix}.$$

a) Consider vector $\mathbf{a} = 2\mathbf{e} + 3\mathbf{f} + 6\mathbf{g}$, where $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is an orthonormal basis in \mathbf{E}^3 . Show that the angle θ between vectors \mathbf{a} and \mathbf{g} belongs to the interval $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$.

Find a unit vector **b** such that this vector is orthogonal to vectors **a** and **g**, and the basis $\{a, b, g\}$ has the same orientation as the basis $\{e, f, g\}$.

Calculate the angle between vectors **b** and **e**.

b) In oriented Euclidean space \mathbf{E}^3 consider the following function of three vectors:

$$F(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = (\mathbf{X}, \mathbf{Y} \times \mathbf{Z}),$$

where (,) is the scalar product and $\mathbf{Y} \times \mathbf{Z}$ is the vector product in \mathbf{E}^3 .

Show that $F(\mathbf{X}, \mathbf{X}, \mathbf{Z}) = 0$ for arbitrary vectors \mathbf{X} and \mathbf{Z} .

Deduce that $F(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = -F(\mathbf{Y}, \mathbf{X}, \mathbf{Z})$ for arbitrary vectors $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$.

What is the geometrical meaning of the function F?

- c) Let ABCD be a rhombus (parallelogram with equal sides) such that
- i) vertex A is at the origin
- ii) the diagonal AC belongs to the line y = x.
- iii) vertex B has integer coordinates.

Find the area of this rhombus if the vertex B has coordinates (21, 20). Justify your answer.

Find all the rhombi which obey the conditions above and which have area S=25.

We consider in this question 3-dimensional Euclidean space \mathbf{E}^3 . We suppose that $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is an orthonormal basis in this space.

a) Let P be a linear orthogonal operator acting in \mathbf{E}^3 , such that it preserves the orientation of \mathbf{E}^3 and the following relations hold:

$$P(\mathbf{e}) = \cos \theta \ \mathbf{e} + \sin \theta \ \mathbf{f}, \quad P(\mathbf{g}) = \varepsilon \mathbf{g},$$

where θ is an arbitrary angle and $\varepsilon = \pm 1$.

Write down the matrix of operator P in the basis $\{e, f, g\}$.

(You have to consider separately both cases $\varepsilon = 1$ and $\varepsilon = -1$.)

b) We know that due to the Euler Theorem linear operator P considered above is rotation operator.

Find the axis and an angle of this rotation.

(You have to consider separately both cases $\varepsilon=1$ and $\varepsilon=-1$.)

c) Let P be a linear operator acting in \mathbf{E}^3 , such that $P(\mathbf{e}) = \mathbf{f}$, $P(\mathbf{f}) = \mathbf{g}$ and $P(\mathbf{g}) = \mathbf{e}$. Show that P is a rotation operator.

Find the axis and an angle of the rotation.

a) Given a vector field $\mathbf{G} = ar\frac{\partial}{\partial r} + b\frac{\partial}{\partial \varphi}$ in polar coordinates express it in Cartesian coordinates $(x = r \cos \varphi, y = r \sin \varphi)$.

Consider the function $f = r^2 \cos 2\varphi$ and the vector fields $\mathbf{A} = x\partial_x + y\partial_y$, $\mathbf{B} =$ $x\partial_y - y\partial_x$. Calculate $\partial_{\mathbf{A}}f$, $\partial_{\mathbf{B}}f$. Express the answers in polar and in Cartesian coordinates.

Let F = F(x, y), G = G(x, y) be two functions on \mathbf{E}^2 such that $F + iG = (x + iy)^3$. Calculate the values of 1-forms $\omega = dF$ and $\sigma = dG$ on the vector field $\mathbf{A} = r\partial_r + \partial_{\varphi}$.

b) Consider the circle $\mathbf{r}(t)$: $\begin{cases} x = R \cos t \\ y = R \sin t \end{cases}, \quad 0 \le t < 2\pi.$ Calculate the integral of 1-form $\omega = x^2 dy$ over this circle.

Give an example of another parametersiation of this circle such that the integral changes the sign.

c) Consider the curve in \mathbf{E}^2 defined by the equation $r(2-\cos\varphi)=3$ in polar coordinates.

Show that the sum of the distances between the points $F_1 = (0,0)$ and $F_2 = (2,0)$, and an arbitrary point of this curve is constant, i.e. the curve is an ellipse and points F_1, F_2 are its foci.