<u>הקדמה</u>

אנו יכולים להציג מספרים באמצעות בסיסים שונים. הבסיס המוכר לנו הוא הבסיס העשרוני (2 המשתמש 10 ספרות בלבד). (2 ספרות בלבד).

1. נעביר בסיס בינארי לבסיס עשרוני:

$$10012 = 2^{3} \cdot 1 + 2^{2} \cdot 0 + 2^{1} \cdot 0 + 2^{0} \cdot 1 = 2^{3} + 1 = 9_{10}$$

שברים ⇒נכפיל ב-2

<u>הערה:</u> בשברים, נפעל באופן זהה כאשר החזקה של 2 קטנה בקפיצות של 1 בכל פעם לצד ימין.

2. נעביר בסיס עשרוני לבסיס בינארי:

2-ם מספרים שלמים \Rightarrow נחלק ב

	שלם	מספר*2	שארית _ן		המספר
	0	0	.375		56
החץ כלפי מטה כי	0	0.750	.75		28
כופלים ב-2	1	1.5	.5	החץ כלפי מעלה כי	14
	1	1	.0	מחלקים ב-2	7
					3

$$\Rightarrow$$
 56₁₀ = 111000₂ = 38_{Hex}

1

 \Rightarrow 0.375₁₀ = 0.011₂ = 0.6_{Hex}

3. נעביר בסיס (משולש) טרנארי לבסיס עשרוני:

$$1001_{3} = 3^{3} \cdot 1 + 3^{2} \cdot 0 + 3^{1} \cdot 0 + 3^{0} \cdot 1 = 3^{3} + 1 = 28_{10} = 1C_{Hex}$$

<u>הערה:</u> בשברים, נפעל באופן זהה כאשר החזקה של 3 קטנה בקפיצות של 1 בכל פעם לצד ימין.

4. נעביר בסיס עשרוני לבסיס (משולש) טרנארי:

56 18

6

2

המספר

החץ כלפי

מעלה כי מחלקים

3-מספרים שלמים \Rightarrow נחלק ב

ב קמס.

שארית

2

0	51. 0 1		- -	0	
	3*מספר	[שלב	שארית	
	-		0	.375	
החץ כלפי	1.105		1	.105	
מטה כי כופלים ב-3	0.315		0	.315	
	0.945		0	.945	
	2.835	•	2	.835	
	2.505		2	.505	
	\Rightarrow 0.37	'5 ₁₀	$_{0}=0.$	10022 ₃	

שברים ⇒נכפול ב-3 ונפרד שבר

$$\Rightarrow 56_{10} = 2002_3$$

:Matlab-וב-Maple

<u>Matlab</u>	<u>Maple</u>
>> dec2bin(a)	> convert(a, decimal, 2)
>> bin2dec(b)	> convert(a, binary)

	דוגמה ב-Matlab	רוגמה ב-Maple						
» 12345.7-12345.6	» 12345.7-12345.6 -0.1	> r1:=convert(convert(12345.7, binary),decimal,2); > r2:=convert(convert(12345.6, binary),decimal,2);						
ans =	ans =	> r:=r1-r2;						
0.1000	3.6379e-013	rI := 12336, $r2 := 12336$, $r := 0$.						

אריתמטיקה של נקודה צפה

כיצד נוכל להציג מספרים בזיכרון המחשב?

binary single precision (32 bits) תא של אחסון מספר מסוים במחשב נראה כך:

binary single precision (32 bits) תקנון בפורמת IEEE 754 מקומות ב

 $x = (-1)^s \cdot (mantissa) \cdot 2^{\exp(-127)}$ את המספר x נוכל לפענח באופן הבא:

: המעריך הוא: (s=0) , (mantissa =001) \Leftarrow $36_{10} = 100100_2 = 1.001_2 \cdot 2^{101_2}$: ועז מקבלים הצגת מספר $(\exp = 127_{10} + 5_{10} = 10000100_2)$

+/-				32=	עריך	מ				שבר (אך בלי סיפרה 1 הראשונה)=001																					
0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

כדי להימנע בשגיאות חישובים, המחשב משתמש באלגברה שונה מזו המוכרת לנו. ב-כדי להימנע בשגיאות חישובים, המחשב משתמש באלגברה 1/n הוא מספר השייך לאריתמטיקה של נקודה צפה.

ולכן, במחשב <u>אין שגיאות,</u> מכוון שהוא משתמש באלגברה (FOATING POINT ARITHMETIC) שונה מהסוג המוכר לנו.

Sign Bit	Exponent Field	Significand (Mantissa)					
Single precision (32 bits	s):						
Bit 31	Bits 30 - 23	Bits 22 – 0					
0	10010000	00100000000000000000000					
0: + 1: -	Decimal value of exponent field and exponent 132-127=5	Decimal value of the significand = 36					
Double precision (64 bit	ts):						
Bit 63	Bits 62 - 52	Bits 51 – 0					
0	10010000000	001000000000000000000000000000000000000					
0: + 1: -	Decimal value of exponent field and exponent 1028 -1023=5	Decimal value of the significand = 36					

binary double precision (64 bits) תא של אחסון מספר מסוים במחשב נראה כך:

binary double precision (64 bits) תקנון בפורמת **IEEE 754** מקומות ב

 $x = (-1)^s \cdot (mantissa) \cdot 2^{\exp(-1023)}$:את המספר x נוכל לפענח באופן הבא

MIRIAMA MAIM

 $\delta_a = \frac{\left\|a - \tilde{a}\right\|}{\|a\|} = \frac{\left\|\Delta a\right\|}{\|a\|}$:שגיאה יחסית $\Delta a = \|a - \tilde{a}\|$:שגיאה מוחלטת

יחס שגיאות יחסיות בין פלט וקלט:

$$cond(A) = \frac{\delta_{y}}{\delta_{x}}$$

y = A[x] מספר התנאי של אלגוריתם:

:עם דיוק של שתי ספורות π לדוגמא חישוב

 $\Delta \pi = |\pi - 3.14| \square 10^{-3}$ $\delta_{\pi} = \frac{\left|\pi - 3.14\right|}{2} \sim 0.5 \times 10^{-4}$

> לעיתים, באלגוריתמים עם קלט ופלט עם נקודות צפה (כמו פתרון משוואות לדוגמא) נקבל שהשגיאה בפלט תהיה גדולה הרבה יותר מהשגיאה בקלט.

> לדוגמא חישוב מספר התנאי, ניקח את שתי המשוואות הליניאריות הבאות Ax=b:

$$(1) \begin{cases} x+10y=11 \\ 10x+101y=111 \end{cases} (2) \begin{cases} x+10y=11 \\ 10x+101y=111.1 \end{cases}$$

 $(1) \begin{cases} x+10y=11 \\ 10x+101y=111 \end{cases} (2) \begin{cases} x+10y=11 \\ 10x+101y=111.1 \end{cases}$ $! \begin{pmatrix} x=0 \\ y=1.1 \end{pmatrix}$ במשוואה השנייה הפתרון הוא $\begin{pmatrix} x=1 \\ y=1 \end{pmatrix}$, בעוד במשוואה השנייה הפתרון הוא $\begin{pmatrix} x=1 \\ y=1 \end{pmatrix}$

נחשב את השגיאות של הקלט והפלט:
$$\frac{\Delta_x=1.1}{\delta_x\sim0.8}~~$$
 שגיאה בפלט:
$$\frac{\Delta_b=0.1}{\delta_b\sim10^{-3}}~~$$
 שגיאה בקלט:
$$\frac{\Delta_b=0.1}{\delta_b\sim10^{-3}}$$

אלף! השגיאה היחסית גדלה כמעט פי אלף! ⇒

ל שווה ל $\begin{pmatrix} 1 & 10 \\ 10 & 101 \end{pmatrix}$ שווה ל (Conditional number) שווה מספר התנאי שווה ל $>> A = [1 \ 10; 10 \ 101]; \ cond(A)$ 1.0402e+04

- MATLAB מכאן נווה ששגיא בפלט פי 1000 יותר גדלה משגיא בקלט ואפילו באריתמטיקה ב .המספר התנאי די גדול DOUBLE PRECISION

. $\frac{\Delta_{a+b} \leq \Delta_a + \Delta_b}{\Delta_{a-b} \leq \Delta_a + \Delta_b}$: משפט: עבור שגיאה מוחלטת יתקיים

נניח שנבחר מספרים ברים, כך ש-m-מספר כך כך $a_1,...,a_m$ נניח שנבחר מספרים נניח אחד מן $\Delta_{a_1+\ldots+a_n} \leq m \cdot \varepsilon$: האיברים. אזי

. $\frac{\delta_{a \times b} \leq \delta_a + \delta_b}{\delta_{a + b} \leq \delta_a + \delta_b}$: משפט עבור שגיאה יחסית יתקיים : משפט בור שגיאה יחסית

(ניח שנבחר מספרים =mכך ש- $a_1,...,a_m$ כך אחד מספרים פניח שנבחר מספרים האיברים. כך מ- $a_1,...,a_m$ כך אזיי: $\delta_{a:...a} \leq m \cdot \varepsilon$

סוגי שגיאות

- (כאשר מעגלים את התוצאה). לדוגמא: $ROUNDING\ ERROR$ (כאשר מעגלים את שגיאת t=36.6 אך לא t=36.6 במדחום דיגיטאלי
- , לדוגמא כאשר יש זיכרון מוגבל במחשב, $TRUNCATION\ ERROR$.2 שגיאת צמצום, $\pi=3.145...$ או 0.56=0.1.....
- approx 0, אז אם התנאי, CONDITIONAL ERROR, בפונקציות. כאשר במשוואה approx 0 אם approx 0 אם approx 0 אם approx 0 אם approx 0 אז approx 0 ולכן יש תנאי חולה. approx 0

:דוגמא לעץ פעולות

בהמשך ננסה לברר איך אפשר למדוד שגיאות בחישובים באריתמטיקה של נקודה צפה:

a = 0.1234567...b = 0.1234562...

 $c = b - a = 0.5... \times 10^{-7}$

כלומר איבדנו את הדיוק בספרות המנטיסה! עכשיו השגיאה גדולה מאוד, והמנטיסה כולה תהיה שגויה.

:Matlab:דוגמא נוספת

>>
$$s = rand$$
; $t = rand$;
>> $x = t + s$; $q = (t - x) + s$;
>> q

נקבל לפעמים $10^{-16} \times \pm 1.102 \times \pm 1.102$ כאשר התשובה אמורה להיות תמיד (B,p,e), כאשר (B,p,e), כאשר (B,p,e), כאשר (B,p,e), כאשר (B,p,e), כאשר (B,p,e), כאשר (B,p,e), הוא מספר הספרות המקסימאלי במנטיסה, ו- (B,p,e) הוא מספר הספרות המקסימאלי במנטיסה, ו- (B,p,e) המספר (B,p,e) - הוא השגיאה המקסימאלית האפשרית בפעלה חיבור\חיסור ושווה ליחידה במקום האחרון במנטיסה (B,p,e) בפורמת במקום האחרון במנטיסה (B,p,e) בפורמת (B,p,e) בפורמת (B,p,e) שווה ל

2^(-52)= 2.2204460492503130808472633361816 e-16

דוגמא:ב*Matlab* מספר

 $2.204...\times10^{-16}$

מכאן נווה שאריתמטיקה בDOUBLE PRECISION – MATLAB

niwic eltrin

 $x_1, x_2, ..., x_n$ קלט:

 $f(x_1, x_2, ..., x_n)$:פלט

$$\Delta_f = \left| f\left(\tilde{x}_1, ..., \tilde{x}_n\right) - f\left(x_1, ..., x_n\right) \right| = \frac{\partial f}{\partial x_1} \cdot x^* \left(x_1 - \tilde{x}_1\right) + ... + \frac{\partial f}{\partial x_n} \cdot x^* \left(x_n - \tilde{x}_n\right) + o\left(x - \tilde{x}\right)$$

$$\leq \left| \frac{\partial f\left(x^{*}\right)}{\partial x_{1}} \right| \cdot \left| x_{1} - \tilde{x}_{1} \right| + \ldots + \left| \frac{\partial f\left(x^{*}\right)}{\partial x_{n}} \right| \cdot \left| x_{n} - \tilde{x}_{n} \right| \leq \max_{x_{i} \in I} \left| \frac{\partial f}{\partial x} \right| \cdot \sum_{i=1}^{n} \left| x_{i} - \tilde{x}_{i} \right| = \max_{x_{i} \in I} \left| \frac{\partial f}{\partial x} \right| \cdot \sum_{i=1}^{n} \Delta x_{i}$$

עבור $\Delta_f \leq \Delta_x + \Delta_y$ ולכן, כשהנגזרות גבוהות, עבור לדוגמא, נציב בחסם שמצאנו ונקבל לf = x + y עבור פוענאה מאנד גבוהה

הנגזרת גבוהה מאוד, ולכן גם השגיאה. x=2

$$\delta_{f} = \frac{\Delta f}{|f|} \leq \sum_{i=1}^{n} \frac{\left| \frac{\partial f(x^{*})}{\partial x_{i}} \right|}{|f|} \cdot \Delta x_{i} = \sum_{i=1}^{n} \left| \frac{2\ln|f|}{2x_{i}} \right| \cdot \left| x_{i} \right| \cdot \delta_{x_{i}} \Rightarrow \delta_{f} \leq M \sum_{i=1}^{n} \delta_{x_{i}}$$

$$M = \text{ma}$$

 $M = \max_{1 \le i \le n}$ כאשר

. $f(x,y) = x \cdot y$ גיקח לדוגמא את

$$\Delta_{x \cdot y} = \max \{x, y\} \cdot (\Delta_x + \Delta_y)$$

$$x \cdot \frac{\partial \ln(x \cdot y)}{\partial x} = x \cdot \frac{1}{xy} \cdot y = 1$$

$$y \cdot \frac{\partial \ln(x \cdot y)}{\partial y} = y \cdot \frac{1}{xy} \cdot x = 1$$

$$\Rightarrow \delta_f \le 1 \cdot \sum_{i=1}^n \delta_{x_i}$$

 $\delta_{x} \leq \max\{x\} \cdot \delta_{x}$: למשל

שגיאות באלגוריתמים תלויות בכמות הפעלות

 (a_0, a_1, \dots, a_n) בכמה פעולות אנו צריכים להשתמש ע"מ להעביר פונקציה המוצגת כמערך

: אולם דרך זו לוקחת הרבה פעולות . $p_n(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n$.1 $(n+1)+n+(n-1)+(n-2)+\ldots+1$ כפל:

.חיבורn פעולות

 $N = \frac{(n+2)(n+1)}{2} + n = \frac{n^2 + 5n + 2}{2}$: נסכום את הפעולות

: נציג את הפולינום באופן: Horner scheme .2

$$p_n(x) = a_n + x(a_{n-1} + x(a_{n-2} + \dots + x(a_1 + a_0 x)\dots))$$

:שקול לכתוב

$$\begin{cases} s_0=a_0\\ s_m=a_m+xs_{m-1},\quad m=1,2,...,n \end{cases}$$
ואז מספר הפעולות קטן יותר.

יעילות אלגוריתמים

.(כלומר, ה- $B_1=B_2$ נעדיף את תוכנה A בכל מקרה! $p_1>p_2$ ו- $p_1>p_2$ אם אם $B_1=B_2$ ו-עדיפות מקבל (גם כאן, המעריך מקבל עדיפות עדיף את נעדיף אז מעריך אז נעדיף או א $p_{\scriptscriptstyle 1}=p_{\scriptscriptstyle 2}$ ו- או אם אם אם $P_{\scriptscriptstyle 1}=p_{\scriptscriptstyle 2}$ ירי

 $ulp = B^{-p}$.(unit on last place) הערה: עווע להיות הדיוק של המספר להיות את ulp

(כמות הפעולות לביצוע האלגוריתם, את ה- נגדיר נגדיר כמות הפעולות לביצוע (כמות הפעולות את האלגוריתם) וואיר נגדיר את האלגוריתם וואיר בהמשך וואיר בהמשף בהמשף וואיר בהמשף ב ב. נגדיר Ω להיות γ תחום חשוד γ (היכן שהשגיאה גדולה). דוגמאות: כאשר הנגזרות 2. החלקיות גדולות או לא קימות. במקרים אלו, כדאי לבצע דיוק מרבי או להחליף אריתמטיקה.