## P1.4.1

The magnetic field  $\overline{H}$  and electric field  $\overline{E}$  of a Hertzian dipole at very large distances  $(kr \gg 1)$  are

$$\overline{H} = -\hat{\phi} \frac{\omega k q \ell}{4\pi r} \sin \theta \cos(kr - \omega t)$$

$$\overline{E} = -\hat{\theta} \frac{k^2 q \ell}{4\pi \epsilon_0 r} \sin \theta \cos(kr - \omega t)$$

- (a) Find the Poynting's power density vector  $\overline{S}$  as a function of time. What is the time-averaged power density vector  $\langle \overline{S} \rangle$ ?
- (b) By integrating the Poynting vector over the surface of a sphere of radius r, find the time-averaged power P radiated by the Hertzian dipole.
- (c) The amplitude of the current in the Hertzian dipole is  $I_o = \omega q$ . By using  $P = \frac{1}{2} I_o^2 R_{rad}$ , find the radiation resistance  $R_{rad}$  of the Hertzian dipole.
- (d) A radio station is 15 km away from a city. The transmitting antenna tower may be modeled as a Hertzian dipole antenna of dipole moment  $q\ell$ . To maintain the FCC standard of 25 mV/m field strength in the city, how much radiation power P must be provided?

## P5.4.1

(a) Consider an array of two out-of-phase but equal amplitude  $\hat{z}$ -directed Hertzian dipoles as shown in Fig. P5.4.1.1.



Figure P5.4.1.1

Show that the array factor  $|F(\phi)|$  may be expressed as

$$|F(\phi)| = \left| 2\cos\left[\frac{kd}{2}\sin\phi - \frac{\psi}{2}\right] \right|$$

- (b) A broadcast array of two vertical towers with equal current amplitude is to have a horizontal plane pattern such that
  - (i) maximum field intensity is to the north  $(\phi = 90^{\circ})$
  - (ii) the only nulls are at  $\phi = 225^{\circ}$  and  $\phi = 315^{\circ}$ .

Specify the arrangement of the towers, their spacing and phasing.