Duomenų suspaudimas

Duomenų suspaudimas

Suspaudimo koeficientas

Suspaudimo koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

 $A = \{a_1, ..., a_n\}$ - kodo abėcėlė.

$$\mathcal{F}_1 o \mathcal{F}_2$$
 , čia $\mathcal{F}_1, \mathcal{F}_2 \in A^*$.

Jei, žinant \mathcal{F}_2 , galima atstatyti \mathcal{F}_1 , tai suspaudimas be nuostolių.

Suspaudimo koeficientas

$$\lambda = \frac{|\mathcal{F}_1|}{|\mathcal{F}_2|}.$$

Gali būti aktualu ne tik λ , bet ir greitis bei paslėptos sąnaudos.

Kodų keitinys

Suspaudimo koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

 $S=\{s_1,...,s_m\}\subset A^*$ ir $W=\{w_1,...,w_m\}\subset A^*$. Jei $\mathcal{F}_1=s_{i_1}...s_{i_t}$ ir $s_i\to w_i$, tai $\mathcal{F}_2=w_{i_1}...w_{i_t}$. Tada

$$\lambda = \frac{\sum_{i=1}^{m} m_i |s_i|}{\sum_{i=1}^{m} m_i |w_i|} = \frac{t \cdot L(S)}{t \cdot L(W)} = \frac{L(S)}{L(W)}.$$

Apibrėžimas. S vadinamas vienareikšmiškai skaidančiu (kitaip: pilnuoju) kodu, jei $\forall w \in A^*$ vienareikšmiškai išreiškiamas

$$w = s_{i_1} ... s_{i_t} \nu ,$$

čia joks s_i nėra ν priešdėlis ir $|\nu| < \max |s_i|$.

Pavyzdys.

$$S_1 = \{00, 11, 10\},$$
 $S_2 = \{0, 10, 110, 1110, 1111\}.$

Pilnieji kodai

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Teorema. Kodas $S=\{s_1,...,s_m\}\subset A^*$ yra pilnas $\Leftrightarrow S$ yra p-kodas ir

$$\sum_{j=1}^{m} n^{-|s_j|} = 1,$$

 \check{c} ia n=|A|.

Šenono kodas

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

$$A = \{0, 1\}, S = \{s_1, ..., s_m\}, \quad p_i = P(s_i),$$
 $p_1 \ge p_2 \ge ... \ge p_m > 0.$ Tegul

$$l_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil, \quad F_1 = 0, \quad F_k = \sum_{i=1}^{k-1} p_i, \quad k \ge 2.$$

Pastebėsime, kad $l_i < -\log_2 p_i + 1$.

Šenono kodo

$$W_{Sh} = \{w_1, w_2, ..., w_m\}$$

žodis $w_i \in A^{l_i}$ sudarytas iš l_i pirmųjų bitų F_i dvejetainėje išraiškoje.

 W_{Sh} yra p-kodas.

Šenono teorema

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

$$A = \{0, 1\}, S = \{s_1, ..., s_m\}, p_i = P(s_i),$$

 $H(S) = -\sum_{i=1}^{m} p_i \log_2 p_i.$

Teorema. Šaltinio S Hafmano kodo W_H ir Šenono kodo W_{Sh} vidutiniai kodo žodžio ilgiai tenkina nelygybes

$$H(S) \le L(W_H) \le L(W_{Sh}) < H(S) + 1$$
.

Be to, $H(S) = L(W_H)$ tada ir tik tada, kai $p_i = 2^{-l_i}$.

Įrodymas.

$$L(W_{Sh}) = \sum_{i=1}^{m} p_i l_i < \sum_{i=1}^{m} p_i (-\log_2 p_i + 1) = H(S) + 1.$$

$$H(S) - L(W_H) = \sum_{i=1}^{m} p_i(-\log_2 p_i - l_i) \le$$

$$\log_2 e \sum_{i=1}^m p_i \left(\frac{2^{-l_i}}{p_i} - 1 \right) = \log_2 e \left(\sum_{i=1}^m 2^{-l_i} - 1 \right) \le 0.$$

Šenono rėžis

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

$$\lambda = \frac{L(S)}{L(W)} \le \frac{L(S)}{L(W_H)} \le \frac{L(S)}{H(S)}.$$

Galima nagrinėti šaltinį S^N . Tada

$$H(S^N) \le L(W_H(N)) < H(S^N) + 1$$
.

Todėl

$$\frac{N \cdot L(S)}{H(S^N) + 1} < \lambda = \frac{N \cdot L(S)}{L(W_H(N))} \le \frac{N \cdot L(S)}{H(S^N)}.$$

Fano kodas

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

$$A = \{0, 1\}, S = \{s_1, ..., s_m\}, \quad p_i = P(s_i),$$
 $p_1 \ge p_2 \ge ... \ge p_m > 0.$ k_0 pasirenkame taip, kad

$$\min_{k} \left| \sum_{i=1}^{k} p_i - \sum_{i=k+1}^{m} p_i \right| = \left| \sum_{i=1}^{k_0} p_i - \sum_{i=k_0+1}^{m} p_i \right|.$$

Tada Fano kodo $W_F = \{w_1, w_2, ..., w_m\}$ žodžius $w_1, ..., w_{k_0}$ pradedame 0, o $w_{k_0+1}, ..., w_m$ pradedame 1. Procesą tęsiame kiekvienoje grupėje. Taip randamas antrasis bitas ir t.t., kol lieka visose grupėse po 1 simbolį.

Pastebėsime, kad šaltinis gali turėti ne vieną Fano kodą.

Pavyzdys.

$$p_1 = \frac{4}{9}, \quad p_2 = \dots = p_6 = \frac{1}{9}.$$

Aritmetinis kodas

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

$$S = \{s_1, ..., s_m\}, \quad p_i = P(s_i), p_1 \ge p_2 \ge ... \ge p_m > 0.$$

Tegul $w = s_{i_1}...s_{i_N}$.

$$w \longleftrightarrow A(w) = A(s_{i_1}...s_{i_N}) = A(i_1,...,i_N) = [\alpha_N, \beta_N) \subset [0,1).$$

Čia

$$A(i_1,...,i_N) \subset A(i_1,...,i_{N-1}) \subset ... \subset A(i_1) \subset [0,1).$$

 $r_N \in A(w)$ - mažiausio vardiklio diadinė trupmena.

$$(N, r_N) \longleftrightarrow A(w) \longleftrightarrow w.$$

Jei
$$r_N=(0,\varepsilon)_2,\ \varepsilon\in\{0,1\}^*$$
, tai

$$C_{Aritm}(w) = \varepsilon.$$

Intervalų konstrukcija

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Tegul $A(i_1,...,i_k)=[\alpha,\beta)$ ir $l=\beta-\alpha>0$. Tada

$$A(i_1, ..., i_k, j) = \left[\alpha + l \sum_{i < j} p_i, \alpha + l \sum_{i \le j} p_i\right).$$

Pastebėsime, kad $|A(i_1,...,i_k,j)| = l \cdot p_j$ visiems j = 1,...,m.

Intervalų konstrukcija

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Pavyzdys. Tegul $S = \{a, b, c, d\}, \ P(a) = 0, 4; \ P(b) = 0, 3; \ P(c) = 0, 2; \ P(d) = 0, 1$. Rasime $C_{Aritm}(bacb)$.

raidė	α	l
	0	1
b	0,4	0,3
a	0,4	0,3.0,4=0,12
С	$0,4+0,7\cdot 0,12=0,484$	0,12 · 0,2=0,024
b	0,484+0,4. 0,024=0,4936	0,024 · 0,3=0,0072

Vadinasi

$$A(bacb) = [0, 4936; 0, 5008)$$

$$r = 0, 5 = (0, 1)_2$$

$$C_{Aritm}(bacb) = 1.$$

Analogiškai gautume, kad A(ccda) = [0, 876; 0, 8776).

Kaip rasti r ?

Kodo konstravimas

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

1 metodas.

Tegul $r \in [\alpha, \alpha + l)$,

$$t = \left\lceil \log_2 \frac{1}{l} \right\rceil \,,$$

o skaičius \boldsymbol{x} yra nelygybės

$$\alpha \le \frac{x}{2^t} < \alpha + l$$

sveikasis sprendinys. (Jei yra du sprendiniai, imsime lyginį) Tada

$$r = \frac{x}{2^t}.$$

Pavyzdžiui, intervalo A(ccda) = [0, 876; 0, 8776) atstovas bus

$$r = \frac{898}{1024} = \frac{449}{512} = (0, 111000001)_2$$
.

Kodo konstravimas

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

2 metodas.

Tegul

$$\alpha = (0, a_1...a_{t-1} \ 0 \ a_{t+1}...)_2 \quad \alpha + l = (0, a_1...a_{t-1} \ 1 \ b_{t+1}...)_2.$$

- 1. Jei $\alpha = (0, a_1...a_{t-1})_2$, tai $r = \alpha$.
- 2. Jei $\alpha > (0, a_1...a_{t-1})_2$ ir $\alpha + l = (0, a_1...a_{t-1})_2$, tai r gauname iš α , pakeitę pirmą 0 tarp a_{t+1}, \ldots vienetu ir nupjovę.
- 3. Kitais atvejais

$$r = (0, a_1...a_{t-1} 1)_2$$
.

Modifikuotas kodavimas

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Jei
$$r \in [\alpha, \alpha + l)$$
 ir

$$\alpha = (0, a_1...a_{t-1} \, 0 \, ...)_2,$$

$$\alpha + l = (0, a_1...a_{t-1} 1...)_2,$$

tai

$$r = (0, a_1...a_{t-1}, ...)_2$$
.

Kodo ilgio įvertis

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Teorema. N abėcėlės S simbolių teksto vidutinis aritmetinio kodo ilgis $L_{Aritm}(S^N)$ tenkina nelygybę

$$L_{Aritm}(S^N) < N \cdot H(S) + 1$$
.

Aritmetinio kodo realizacija

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Tegul $1/4 \leq L < 1/2 < H \leq 3/4$. Jei $r \in [L,H)$, tai

$$r = (0,01a_3a_4...)_2$$
 arba $r = (0,10b_3b_4...)_2$.

Tada

$$2r - 1/2 = (0, 0a_3a_4...)_2$$
 arba $2r - 1/2 = (0, 1b_3b_4...)_2$.

Dingsta tik antrasis ("vėluojantis") bitas, priešingas pirmajam. Tai gali ir kartotis.

Algoritmas.

1. Pradinė padėtis: [L,H)=[0,1), vėluojančių bitų skaičius $\Sigma=0$.

Aritmetinio kodo realizacija

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

- 2. Jei $1/4 \leq L < 1/2 < H \leq 3/4$, išplečiame intervalą $[L,H) \longrightarrow [2L-1/2,2H-1/2)$ ir $\Sigma = \Sigma + 1$.
- 3. Jei $[L,H)\subset [0,1/2)$, tai $[L,H)\longrightarrow [2L,2H) \text{ prie kodo prijungiame } 0\underbrace{11...1}_{\Sigma} \text{ ir atstatome } \Sigma=0.$
- 4. Jei $[L,H)\subset [1/2,1)$, tai $[L,H)\longrightarrow [2L-1,2H-1) \text{ prie kodo prijungiame } 1\underbrace{00...0}_{\Sigma} \text{ ir atstatome } \Sigma=0.$
- 5. Jei sąlygos 2-4 netenkinamos, intervalas $\left[L,H\right)$ dalinamas proporcingai tikimybėms.
- 6. Kartojami 2-5 žingsniai, kol nebaigiamas koduoti tekstas ir tenkinamos 2-4 sąlygos.

Aritmetinio kodo realizacija

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Bus tenkinama bent viena iš sąlygų:

$$L < 1/4 < 1/2 < H$$
 arba $L < 1/2 < 3/4 < H$.

Tada kodas papildomas

$$0\underbrace{11...1}_{\Sigma}1$$
 arba $1\underbrace{00...0}_{\Sigma}0$

Pastebėsime, kad abiem atvejais H-L>1/4.

Aritmetinio kodo realizacija sveikaisiais skaičiais

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Vietoje [0,1) naudojamas intervalas $[0,M),\ M=4k\in\mathbb{N}.$ Po išplėtimo einamasis intervalas [L,H) tenkins bent vieną iš sąlygų

$$L < M/4 < M/2 < H$$
 arba $L < M/2 < 3M/4 < H$. Todėl $H-L \ge M/4+2$. Vadinasi $\frac{M}{4}+2 \ge |S| \ \Rightarrow \ M \ge 4|S|-8$. Tegul $C_{|S|}$ yra $p_i=P(s_i)$ bendrasis vardiklis,

$$C_i = C_{|S|} \sum_{j=1}^i p_j$$
, $C_0 = 0$.

Intervalo $\left[L,H\right)$ dalinimo taškai bus

$$L_i = L + \left[\frac{C_i}{C_{|S|}} (H - L) \right], \quad i = 0, 1, ..., |S|.$$

Aritmetinio kodo realizacija sveikaisiais skaičiais

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Pastebėsime, kad $L_i \neq L_{i+1}$, jei $H-L \geq C_{|S|}$. Todėl pakanka pareikalauti, kad $M/4+2 \geq C_{|S|}$, t.y.

$$M \ge 4C_{|S|} - 8.$$

Aukštesnės eilės kodai

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

$$A = \{0,1\}, S = \{s_1,...,s_m\},$$

$$p(i_1,i_2,...,i_k) \text{ - } \check{\text{z}}\text{od}\check{\text{z}}\text{io } s_{i_1}s_{i_2}...s_{i_k} \text{ da}\check{\text{z}}\text{nis.}$$

$$P(s_j|s_{i_1}s_{i_2}...s_{i_k}) = \frac{p(i_1, i_2, ..., i_k, j)}{p(i_1, i_2, ..., i_k)},$$

$$l(i_1, i_2, ..., i_k; j)$$

- raidės s_j tikimybė ir kodo žodžio ilgis, esant kontekstui $s_{i_1}s_{i_2}...s_{i_k}$.

$$L(i_1, i_2, ..., i_k) = \sum_{j=1}^{m} P(s_j | s_{i_1} s_{i_2} ... s_{i_k}) l(i_1, i_2, ..., i_k; j),$$

$$H(i_1, i_2, ..., i_k) = -\sum_{j=1}^{m} P(s_j | s_{i_1} ... s_{i_k}) \log_2 P(s_j | s_{i_1} ... s_{i_k})$$

- vidutinis kodo žodžio ilgis ir šaltinio entropija, esant kontekstui $s_{i_1} s_{i_2} ... s_{i_k}$.

k-tos eilės entropija

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

k-tos eilės kodo vidutinis kodo žodžio ilgis ir k-tos eilės entropija yra

$$L^{(k)}(S) = \sum p(i_1, i_2, ..., i_k) L(i_1, i_2, ..., i_k),$$

$$H^{(k)}(S) = \sum p(i_1, i_2, ..., i_k) H(i_1, i_2, ..., i_k).$$

Pastebėsime, kad $H^{(k)}(S) = H(S^{k+1}) - H(S^k)$. Todėl $H(S^{k+1}) \geq H(S^k)$.

Teorema.
$$H^{(k)}(S) \leq H^{(k-1)}(S), k = 1, 2, ...$$

Išvada.

$$(k+1)H^{(k)}(S) \le H(S^{k+1}) \le \frac{k+1}{k}H(S^k) \le (k+1)H(S)$$
.

Todėl

$$H^{(k)}(S) \le \frac{H(S^{k+1})}{k+1} \le \frac{H(S^k)}{k} \le H(S)$$
.

Šenono teorema k-tos eilės kodams

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Pagal Šenono teoremą nulinės eilės Hafmano kodui

$$H(i_1, i_2, ..., i_k) \le L_H(i_1, i_2, ..., i_k) < H(i_1, i_2, ..., i_k) + 1$$
.

Iš čia nesunkiai gauname analogiškas nelygybes k-tos eilės Hafmano kodams

Teorema.

$$H^{(k)}(S) \le L_H^{(k)}(S) < H^{(k)}(S) + 1$$
.

Intervalinis kodas

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

$$\begin{split} A &= \{0,1\}, S = \{s_1,...,s_m\}, \quad p_i = P(s_i), \\ C &= \{w_0,w_1,...\} \text{ -p-kodas, } w_k \in \{0,1\}^* \text{ ir } |w_0| \leq |w_1| \leq \end{split}$$

Tekste simbolis s_j keičiamas kodo žodžiu w_k , jei tarpas tarp dviejų s_j yra k simbolių.

Vidutinis simbolio s_j kodo ilgis bus

$$L_j = \sum_{k=0}^{\infty} p_j (1 - p_j)^k |w_k|.$$

Todėl vidutinis kodo žodžio ilgis yra

$$L = \sum_{j=1}^{m} p_j L_j = \sum_{j=1}^{m} p_j^2 \sum_{k=0}^{\infty} (1 - p_j)^k |w_k|.$$

C_0

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Tegul

$$C = C_0 = \{0, 10, 110, \ldots\}, \quad \text{t.y. } |w_k| = k + 1.$$

Tada

$$L = \sum_{j=1}^{m} p_j^2 \sum_{k=0}^{\infty} (1 - p_j)^k (k+1) = \sum_{j=1}^{m} p_j^2 \left(\frac{1}{p_j^2}\right) = m.$$

C_1 (P.Elias, 1987)

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos

eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Tegul

$$C = C_1 = \{u_0, u_1, ...\},\$$

čia

$$u_k = \underbrace{00...0}_{[\log_2(k+1)]} (k+1)_2.$$

$$|u_k| = 1 + 2[\log_2(k+1)].$$

Pirmieji 4 kodo žodžiai yra

$$u_0 = 1$$
, $u_1 = 010$, $u_2 = 011$, $u_3 = 00100$.

Tada

$$L \leq 2H(S) + 1$$
.

C_2 (P.Elias, 1987)

Suspaudimo

koeficientas

Kodų keitinys

Pilnieji kodai

Šenono kodas

Šenono teorema

Šenono rėžis

Fano kodas

Aritmetinis kodas

Intervalų konstrukcija

Kodo konstravimas

Modifikuotas kodas

Kodo ilgis

AK realizacija

AK sveikais skaičiais

Aukštesnės eilės kodai

k-tos eilės entropija

Šenono teorema k-tos eilės kodams

Intervalinis kodas

 C_0

 C_1

 C_2

Tegul

$$C = C_2 = \{v_0, v_1, ...\},\$$

čia

$$v_k = u_{[\log_2(k+1)]}(k+1)_2$$
.

$$|v_k| = 2 + [\log_2(k+1)] + 2[\log_2(1 + [\log_2(k+1)])].$$

Pirmieji 4 kodo žodžiai yra

$$v_0 = 11, \ v_1 = 01010, \ v_2 = 01011, \ v_3 = 011100.$$

Tada

$$L \le 2 + H(S) + 2\sum_{j=1}^{m} p_j \log_2 \left(1 + \log_2 \frac{1}{p_j}\right).$$