

No Double Descent in PCA: Training and Pre-Training in High Dimensions

Daniel Gedon, Antônio H. Ribeiro, Thomas B. Schön

Department of Information Technology, Uppsala University, Sweden

Problem formulation

Data generator

$$\mathbf{z}_i \sim \mathcal{N}(0, \lambda_i^2 \mathbf{I}_d) \text{ with } \lambda_i^2 = \exp(-i\alpha)$$

Model PCA-regression

PCA:
$$\hat{\pmb{z}}_i = \hat{\pmb{V}}^{\top} \pmb{x}_i, \quad \pmb{X} \approx \hat{\pmb{U}} \hat{\pmb{\Sigma}} \hat{\pmb{V}}^{\top}$$
 lin. reg. $\hat{y}_i = \hat{\pmb{\theta}}^{\top} \hat{\pmb{z}}_i.$

Motivation

- ▶ Realistic data on low-dim. manifold.
- ► PCA-regression similar in structure to successful encoder-decoder.

Aim: Understand the model generalization in high dimensions.

Supervised case – Analysis

Analyze risk on new data: $R(\hat{\boldsymbol{\theta}}) = \mathbb{E}_{y_0} \left[(y_0 - \hat{y}_0)^2 \right]$

Lemma Sample covariance $\hat{\mathbf{C}} = \frac{1}{n} \mathbf{X}^{\top} \mathbf{X}$ and the true covariance \mathbf{C} . Orthogonal projectors $\Pi = I_m - \hat{V}\hat{V}^{\top}$. Then,

$$\mathbb{E}_{\epsilon} \left[R(\hat{\boldsymbol{\theta}}) \right] = \boldsymbol{\beta}^{\top} \boldsymbol{\Pi} \boldsymbol{C} \boldsymbol{\Pi} \boldsymbol{\beta} + \frac{\sigma_{\epsilon}^{2}}{n} \operatorname{Tr}(\hat{\boldsymbol{V}}^{\top} \boldsymbol{C} \hat{\boldsymbol{V}} \hat{\boldsymbol{V}}^{\top} \hat{\boldsymbol{C}}^{+} \hat{\boldsymbol{V}}) + \sigma_{\epsilon}^{2}.$$

Compare with Hastie et al. [1] for direct linear regression:

$$\mathbb{E}_{\epsilon} \left[R(\hat{\boldsymbol{\theta}}) \right] = \boldsymbol{\beta}^{\top} \boldsymbol{\Pi} \boldsymbol{C} \boldsymbol{\Pi} \boldsymbol{\beta} + \frac{\sigma_{\epsilon}^{2}}{n} \operatorname{Tr}(\boldsymbol{C} \hat{\boldsymbol{C}}^{+}) + \sigma_{\epsilon}^{2}$$

= bias² + variance + irreducible noise.

Interpretation:

- ► Only variance term differs
- \blacktriangleright Estimated eigenvectors \hat{V} project covariance C into d-dimensional subspace \rightarrow expect no interpolation peak at $\gamma = 1$

Supervised case – Numerical results

Isotropic data 2.2 O null -- dir. reg. \times pca, d=25 \star pca, \hat{d} =50 **x** pca, \hat{d} =100 - analytcial sol. 0.5 10 $\gamma = m/n$

Isotropic setup:

Use n=400 samples, $\mathbf{C}=\mathbf{I}_m\to d=m$.

Interpretation

- 1. Numerical simulation and analytical solution align.
- 2. No interpolation peak at $\gamma = 1$.

Latent variable data with $\alpha = 0$ 10^{-1} ·-- dir. reg. \times pca, d=5 \times pca, d=15 10^{-2} pca, d=20 \times pca, d=4010 0.5 20 $\gamma = m/n$

Latent variable data with $\alpha = 0.25$ 10^{0} 10^{-2} 0.5 10 20

Latent var. setup: d = 20, n = 400. Interpretation

- 1. $d \ge d \to PCA$ -regression=dir. reg. for γ large/small.
- 2. $d < d \rightarrow$ solution is suboptimal.

Genetics data

- ▶ Predict phenotypes from 1.1M genotypes.
- ► Resemblance to the latent variable results.

$\gamma = m/n$ Real world data: Genetics 1.8 --- dir. reg. \times pca, d=51.6 **x** pca, *d*=40 \star pca, \hat{d} =60 1.4 1.2 0.8 0.5 10 20 $\gamma = m/n$

Pre-training the PCA – Setup

Two step training procedure:

- 1. Pre-training data set $\{x_i\}_{i=1}^{n_p} \to \text{unsupervised pre-training of PCA}$.
- 2. Training data set $\{x_i, y_i\}_{i=1}^n \to \text{linear regression on the PCA features } \hat{\mathbf{z}}_i$.
- ⇒ Setting comparable to pre-training of encoder-decoder models. For technical reasons: orthogonalize features and noise $\mathbf{x}_i = \mathbf{D}\mathbf{z}_i + \mathbf{D}_{\perp}\mathbf{e}_i$. Then:

Model: $\hat{\mathbf{z}}_i = \hat{\mathbf{V}}^{\top} \mathbf{x}_i$

Data generator: $\mathbf{z}_i = \mathbf{D}^+(\mathbf{x}_i - \mathbf{D}_\perp \mathbf{e}_i) = \mathbf{D}^+\mathbf{x}_i$.

Interpretation Correct estimation of true eigenvectors D^+ with V crucial.

Pre-training – Analysis

Define projection loss: $\mathcal{L}(\mathbf{D}) = \mathbb{E}\left[\|\mathbf{x}\|_2^2 - \|\mathbf{D}^+\mathbf{x}\|_2^2\right]; \quad \mathcal{L}(\hat{\mathbf{V}}) = \mathbb{E}\left[\|\mathbf{x}\|_2^2 - \|\hat{\mathbf{V}}^\top\mathbf{x}\|_2^2\right]$

Theorem Take t > 0, $k_i^2 = s_j(s_j + \text{Tr}(\mathbf{C}))$, then

$$P\left(\mathcal{L}(\hat{oldsymbol{V}}) - \mathcal{L}(oldsymbol{D}) > t
ight) \leq$$

$$\leq \frac{4}{t \, n_p} \left(\sum_{i=1}^{\min(d,\hat{d})} \sum_{j=i+1}^m \frac{k_j^2}{|s_i - s_j|} + \sum_{i=\hat{d}}^d \sum_{j=1}^m \frac{k_j^2 s_i}{(s_i - s_j)^2} + \sum_{i=d}^{\hat{d}} \sum_{j=1}^m \frac{k_j^2 s_j}{(s_i - s_j)^2} \right)$$

Interpretation Good covariance estimation \hat{V} if:

- 1. Correct latent dimension chosen, i.e. d = d.
- 2. Many pre-training samples n_p .
- 3. Quickly decaying eigenvalues, i.e. $|s_i s_j|$ large.

Connection to risk

- \blacktriangleright Xu and Hsu [2] present results for risk with general but known \hat{V} .
- ▶ Theorem provides missing connection when [2] can be used in practice.

Pre-training – Numerical results

For $\alpha = 0$: more pre-training data n_p does not change risk; horizontal slices equal.

Interpretation

- 1. Risk decreases for increasing γ ; similar to supervised case.
- 2. $\alpha = 0.25$: risk decreases for more pre-training data n_p ; especially for $\gamma > 1$.
- \rightarrow for $\alpha = 0$ eigenvectors perfectly estimated.
- \rightarrow for $\alpha = 0.25$ eigenvector estimation improves with more n_p .

Conclusion

Supervised case:

1. Generalized results from [1] for PCA-regression.

2. Selecting sufficiently large *d* is crucial for low risk.

Pre-training:

- 1. More pre-training data n_p only help to improve eigenvector estimates.
- 2. $\alpha > 0$ is necessary such that more pre-training data are helpful.

References

[2]

Surprises in highdimensional ridgeless least squares interpolation Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani The Annals of Statistics, 50(2):949-986, 2022

Link to paper: