Cvičení 6: Parametry a aplikace diod

C6.1: Aplikace diody v jednopulzním usměrňovači

Princip činnosti, význam jednotlivých obvodových prvků Příklady **CP6.1** a **CP6.2**

C6.2: Voltampérové charakteristiky diod

Měření propustných charakteristik různých typů polovodičových diod M6.1

C6.3: Dynamické vlastnosti diody

Měření a simulace doby závěrného zotavení **M6.2** a **S6.1** Měření a simulace průběhů proudu a napětí v jednopulzním usměrňovači využívajícím diodu s PN přechodem a Schottkyho diodu **M6.3** a **S6.2** a **S6.3**

Příklad CP6.1:

Vypočtěte hodnotu kapacity filtru pro jednocestný usměrňovač tak, aby zvlnění výstupního napětí ΔU_1 nepřesáhlo +/- 5mV. U_1 =5V, I_2 =1A, f=50Hz.

Řešení spočívá v nalezení hodnoty kapacity, na které nedoj ϕ e k poklesu napětí většímu než $U_{1\check{s}\check{s}}$ při vybíjení proudem I_Z po dobu blížící se jedné periodě T. Vyjdeme ze vztahu mezi napětím a nábojem $Q=C\cdot U$.

Mezi nábojem na dané kapacitě a proudem platí vztah:

$$I = \frac{dQ}{dt} \implies I = C \cdot \frac{dU}{dt}$$

Příklad CP6.1:

Vypočtěte hodnotu kapacity filtru pro jednocestný usměrňovač tak, aby zvlnění výstupního napětí ΔU₁ nepřesáhlo +/- 5mV. U_1 =5V, I_z =1A, f=50Hz.

Řešení:

$$I = \frac{dQ}{dt} \implies I = C \cdot \frac{dU}{dt}$$

$$C \approx \frac{I_Z \cdot T}{U_{1\check{s}\check{s}}} = \frac{I_Z}{U_{1\check{s}\check{s}} \cdot f} = \frac{U_1}{R_Z \cdot U_{1\check{s}\check{s}} \cdot f} \qquad C \approx \frac{I_Z}{U_{1\check{s}\check{s}} \cdot f} = \frac{1}{0,01 \cdot 50} = 2 \text{ F}$$

$$C \approx \frac{I_Z}{U_{1\S\S} \cdot f} = \frac{1}{0,01 \cdot 50} = 2 \text{ F}$$

NEPŘIJATELNÉ!!!

Příklad CP6.2:

Vypočtěte hodnoty kapacit filtrů C₁ a C₂ tak, aby zvlnění napětí

 ΔU_1 nepřesáhlo +/- 50V při I_1 =30mA

 ΔU_2 nepřesáhlo +/- 5mV při I_2 =1A

Určete hodnoty klíčových parametrů diod a kondenzátorů.

Řešení:

Jedná se o zjednodušené zapojení flyback měniče.

C₁ je filtr můstkového usměrňovače, kde doba vybíjení se blíží T/2

C₂ je filtr jednocestného usměrňovače (obdobně jako v CP6.1)

Příklad CP6.2:

Vypočtěte hodnoty kapacit filtrů C₁ a C₂ tak, aby zvlnění napětí

 ΔU_1 nepřesáhlo +/- 50V při I_1 =30mA

 ΔU_2 nepřesáhlo +/- 5mV při I_2 =1A

Určete hodnoty klíčových parametrů diod a kondenzátorů.

Řešení:

$$C_1 \approx \frac{I_1}{U_{1\S\S} \cdot 2f} = \frac{0,03}{100 \cdot 2 \cdot 50} = 3 \text{ uF}$$

$$C_2 \approx \frac{I_2}{U_{2\S\S} \cdot f} = \frac{1}{10m \cdot 100k} = 1 \text{ mF}$$

Příklad CP6.2:

(pokračování)

Určete hodnoty klíčových parametrů diod a kondenzátorů.

Řešení:

Diody $D_1...D_4$:

Max. opakovatelné závěrné napětí $U_{RRM} > U_{NMAX}$

Max. střední hodnota propustného proudu I_{FAV}

$$U_{RRM} > 230 * \sqrt{2} = 325 V$$

$$I_{FAV} > \frac{I_1}{2} = \frac{0.03}{2} = 15 \ mA$$

$$f = 50Hz \implies T = 20ms \implies trr \text{ (max. 20us)} \implies "General Purpose Diode"$$

Příklad CP6.2:

(pokračování)

Určete hodnoty klíčových parametrů diod a kondenzátorů.

Řešení:

Dioda D₅:

Max. opakovatelné závěrné napětí $U_{RRM} > 2*U_2$

 $U_{RRM} > 2 * 5 = 10 V$

Max. střední hodnota propustného proudu I_{FAV}

 $I_{FAV} > I_2 = 1 A$

 $f = 100kHz \implies T = 10us \implies trr \text{ (max. 10ns)} \implies "Fast Recovery" nebo Schottky Diode$

Příklad CP6.2:

(pokračování)

Určete hodnoty klíčových parametrů diod a kondenzátorů.

Řešení:

Kondenzátory:

 C_1 - jmenovité napětí $U_R > U_{NMAX}$

 C_2 - jmenovité napětí $U_R > U_2$

$$U_R > 230 * \sqrt{2} = 325 V$$

$$U_R > 5 V$$

Zvolíme například C_1 - 4,7uF/400V a C_2 - 2,2mF/10V

Měřící přípravek pro měření propustných VA charakteristik diod

M6.1: Měření propustných VA charakteristik diod

Cíl: Změřit propustné VA charakteristiky různých typů polovodičových diod a vykreslit grafy jejich charakteristik v Excelu (list UF)

MEZNÍ PARAMETRY						
TYP	I _{FAV} (mA)	I _{FSM} (A)	U _{RRM} (V)	U _{RSM} (V)	Poznámka	
1N4007	1000	40	1000		Křemíková usměrňovací dioda s pn přechodem.	
10BQ040	1000	430	40	40	Schottkyho usměrňovací dioda	
ZD 3V3					Zenerova dioda 3.3 V	
LED -IR	65		5		Infračervená GaAlAs svítivka	
LED – RED	30	0.185	5		Červená InGaAIP svítivka	
LED – YELLOW	30	0.175	5		Žlutá InGaAIP svítivka	
LED - BLUE	30	0.150	5		Modrá svítívka GaN na SiC	

M6.1: Měření propustných VA charakteristik diod

M6.1: Měření propustných VA charakteristik diod

Doba závěrného zotavení t_{RR} diody - definice

Doba závěrného zotavení t_{RR} udává rychlost s jakou je dioda schopna přepnout z propustného do závěrného směru. Závisí na tom, jak je dioda resp. vnějšího obvod schopna odčerpat z přechodu minoritní nositele injekované při propustné polarizaci.

M6.2: Měření doby závěrného zotavení t_{RR} diody

Vyhodnocení M6.2 – t_{RR} diody

EXCEL – karta TRR:

Doplňte změřené hodnoty z osciloskopu

S6.1: Simulace t_{RR} diody

S6.1: Simulace t_{RR} diody <u>File View Plot Settings Simulation Tools Window Help</u> - E X .param TRR=6u TRR jako nastavitelný parametr step param TRR list 6u 1d GP .LIB ELP diode.lib 1N4007/TRR R1 1k SINE(0 5 100k 0) .tran 20u TRR.raw 1us (upravený parametr) 6us (originál pro 1N4007)

Vyhodnocení S6.1 – t_{RR} diody

EXCEL – karta TRR:

Vložte graf nasimulovaných průběhů

M6.3: Měření usměrňovače

Pro Si PN a Schottky diody změřte

- stejnosměrnou složku výstupního napětí U_{výst}
- střídavou složku výstupního napětí (zvlnění) uvýstšš
- hodnotu nabíjecího proudu i_D a dobu otevření Δt

Meřte při kmitočtu u_{vst} 50Hz a 100kHz a zadanou kombinaci R_Z , C:

u _{vst}	С	R _z
50Hz	100μF	1kΩ
100kHz	0,1μF	1kΩ

Porovnejte hodnotu změřeného zvlnění s výpočtem podle vzorce:

$$u_{v \circ st \check{s} \check{s}} \approx \frac{U_{v \circ st}}{R_Z \cdot C \cdot f}$$

M6.3: Měření usměrňovače

M6.3: Měření usměrňovače

Vyhodnocení M6.3 – usměrňovač

EXCEL – karta Usměrňovač:

S6.2: Simulace usměrňovače – 50Hz

S6.2: Simulace usměrňovače – 50Hz

S6.3: Simulace usměrňovače – 100kHz

S6.3: Simulace usměrňovače – 100kHz

Vyhodnocení S6.2 a S6.3 – usměrňovač

EXCEL – karta Usměrňovač: Doplňte hodnoty ze simulací

R_Z [Ω] 1000 1000 C_F [μF] 0.1 0.1 u_{wistis} [V] 0.30 0.45

Schottky