Lesson 15. Geometry and Algebra of "Corner Points"

0 Warm up

Example 1. Consider the system of equations

$$3x_1 + x_2 - 7x_3 = 17$$

$$x_1 + 5x_2 = 1$$

$$-2x_1 + 11x_3 = -24$$
(*)

Let $A = \begin{pmatrix} 3 & 1 & -7 \\ 1 & 5 & 0 \\ -2 & 0 & 11 \end{pmatrix}$. We have that $\det(A) = 84$.

• Does (*) have a unique solution, no solutions, or an infinite number of solutions?

• Are the row vectors of *A* linearly independent? How about the column vectors of *A*?

• What is the rank of *A*? Does *A* have full row rank?

1 Overview

- Due to convexity, local optimal solutions of LPs are global optimal solutions
 - ⇒ Improving search finds global optimal solutions of LPs
- The simplex method: improving search among "corner points" of the feasible region of an LP
- How can we describe "corner points" of the feasible region of an LP?
- For LPs, is there always an optimal solution that is a "corner point"?

2 Polyhedra and extreme points

- A **polyhedron** is a set of vectors **x** that satisfy a finite collection of linear constraints (equalities and inequalities)
 - Also referred to as a polyhedral set
- In particular:

- Recall: the feasible region of an LP a polyhedron is a convex feasible region
- Given a convex feasible region S, a solution $\mathbf{x} \in S$ is an **extreme point** if there does <u>not</u> exist two distinct solutions $\mathbf{y}, \mathbf{z} \in S$ such that \mathbf{x} is on the line segment joining \mathbf{y} and \mathbf{z}
 - ∘ i.e. there does not exist $\lambda \in (0,1)$ such that $\mathbf{x} = \lambda \mathbf{y} + (1 \lambda)\mathbf{z}$

Example 2. Consider the polyhedron *S* and its graph below. What are the extreme points of *S*?

$$S = \begin{cases} x_1 + 3x_2 \le 15 & (1) \\ x_1 + x_2 \le 7 & (2) \\ \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \le 12 & (3) \\ x_1 \ge 0 & (4) \\ x_2 \ge 0 & (5) \end{cases}$$

• "Corner points" of the feasible region of an LP ⇔ extreme points

3 Basic solutions

- In Example 2, the polyhedron is described with 2 decision variables
- Each corner point / extreme point is
- Equivalently, each corner point / extreme point is
- Is there a connection between the number of decision variables and the number of active constraints at a corner point / extreme point?
- Convention: all variables are on the LHS of constraints, all constants are on the RHS
- A collection of constraints defining a polyhedron are **linearly independent** if the LHS coefficient matrix of these constraints has full row rank

2

thedron S with n		es, x is a basic s o	olution if		
ies all equality co n constraints are		are linearly inde	pendent		
easible solution (straints of <i>S</i>	
	,				
asic feasible solut	101101				

	 Example 5. Consider the polyhedron <i>S</i> given in Example 2. a. Compute the basic solution x active at constraints (3) and (5). Is x a BFS? Why? b. In words, how would you find all the basic feasible solutions of <i>S</i>? 						
4	Equivalence of extreme points and basic feasible solutions						
	• From our examples, it appears that for polyhedra, extreme points are the same as basic feasible solutions						
Bi	g Theorem 1. Suppose S is a polyhedron. Then \mathbf{x} is an extreme point of S if and only if \mathbf{x} is a basic feasible solution.						
	• See Rader p. 243 for a proof						
	• We use "extreme point" and "basic feasible solution" interchangeably						
5	Adjacency						
	• An edge of a polyhedron S with n decision variables is the set of solutions in S that are active at $(n-1)$ linearly independent constraints						
	Example 6. Consider the polyhedron <i>S</i> given in Example 2.						
	a. How many linearly independent constraints need to be active for an edge of this polyhedron?b. Describe the edge associated with constraint (2).						

- Edges appear to connect "neighboring" extreme points
- Two extreme points of a polyhedron S with n decision variables are **adjacent** if there are (n-1) common linearly independent constraints at active both extreme points
 - $\circ~$ Equivalently, two extreme points are adjacent if the line segment joining them is an edge of S

Example 7. Consider the polyhedron *S* given in Example 2.

- a. Verify that (3, 4) and (5, 2) are adjacent extreme points.
- b. Verify that (0,5) and (6,0) are not adjacent extreme points.

• We can move between adjacent extreme points by "swapping" active linearly independent constraints

6 Extreme points are good enough: the fundamental theorem of linear programming

Big Theorem 2. Let *S* be a polyhedron with at least 1 extreme point. Consider the LP that maximizes a linear function $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ over $\mathbf{x} \in S$. Then this LP is unbounded, or attains its optimal value at some extreme point of *S*.

"Proof" by picture.

- Assume the LP has finite optimal value
- The optimal value must be attained at the boundary of the polyhedron, otherwise:

⇒ The optimal value is attained at an extreme point or "in the middle of a boundary"

• If the optimal value is attained "in the middle of a boundary", there must be multiple optimal solutions, including an extreme point:

- ⇒ The optimal value is always attained at an extreme point
- For LPs, we only need to consider extreme points as potential optimal solutions
- It is still possible for an optimal solution to an LP to not be an extreme point
- If this is the case, there must be another optimal solution that is an extreme point

7 Food for thought

- Does a polyhedron always have an extreme point?
- We need to be a little careful with these conclusions what if the Big Theorem doesn't apply?
- Next time: we will learn how to convert any LP into an equivalent LP that has at least 1 extreme point, so we don't have to be (so) careful