Assessment Schedule - 2011

Scholarship Statistics and Modelling (93201)

Evidence Statement

General Principles:

- 1. Ignore incorrect answers if alongside correct answers. The exception is contradictory statements.
- 2. Ignore minor copying errors.

QUESTION ONE

Tasks Q1 (a)

Evidence:

- Employment was reasonably steady until mid to late 1998.
- Employment has been increasing from 1998 to 2007 at 40,000 per year on average overall.
- Employment peaked at 2,200,000 in the years 2007 and 2008.
- Full -time employment reached a low at 1,660,000 in the September quarter 2009.
- Part-time employment rose sharply between the December quarter 2006 and the September quarter 2007.
- Part-time employment has been steadily decreasing since the March quarter 2009.
- Full-time employment peaked at 1,700,000 in the September quarter 2008 then again at the same level in the December Quarter 2010. (At least one peak required).
- Seasonal peaks in December with respect to employment overall.
- NZ has significantly more full-time employees than part-time employees.

Note:

- 1. All observations have to be distinct.
- 2. All observations need to have relevant context.
- 3. Maximum of three observations from each graph.
- 4. Comment about peaks and troughs count as one observation per graph maximum of two observations.

Judgement:

S: At least four distinct observations.

P: One, two, or three distinct observations.

Tasks Q1 (b)

Evidence:

The year 2012 implies that t = 17 so $y = 1670 + 40 \times 17 = 2350(000)$

For the September quarter forecast = 2350 + 40 = 2390(000)

For the December quarter forecast = 2350 + 70 = 2420(000)

Reservations:

- 1. The trend line assumes a constant rise in average quarterly employment over the years when the current trend appears to be levelling out. There is a steeper increase in the central part and the trend line appears to reflect that more.
- 2. Forecast is two years beyond the finish of the data so there is doubt that the trend would continue.
- 3. The prediction doesn't take into account factors such as the Canterbury earthquake or the global economic recession which happened since the data was collected. This may influence unemployment figures.

Note:

- 1. Accept answer of t = 16.75 so y = 2340(000) so September quarter forecast = 2380(000) however December quarter forecast = 2420(000).
- 2. Can use t = 16.75 for September and i = 17 for December.
- **3.** Forecast is INCORRECT if no (000) units.

Judgement:

- O: Both forecasts and both reservations correct
- S: One forecast correct and corresponding reservation correct
- P: One forecast correct or one reservation correct

Tasks Q1 (c)

Evidence:

- Unemployment rose from 3.8% to 7.0% in four years.
- The unemployment rate peaked in the December quarter 2009.
- Between December 2009 and December 2010, the unemployment rate fluctuated between 6 and 7%.
- The unemployment rate was often higher for females.
- The gap between the genders was the greatest in the September quarter 2010.
- Both the male and female unemployment rate reached 7% in the December quarter 2009.
- The fluctuations in unemployment between December 2009 and December 2010 were greater for males than females.

Note:

- 1. The increase in unemployment could be described between any two time periods.
- 2. Comment about peaks and troughs count as one observation per graph.

Judgement:

- S: Three distinct observations with at least one from each graph about unemployment.
- P: One or two distinct observations about unemployment.

Tasks Q2 (a)

Evidence:

Point estimate for the employment rate = $2\,182\,000 / 2\,341\,000 = 0.932$, ie 93.2% 99% confidence interval is given by 0.932 + /-0.004

A 99% confidence interval for the true percentage employed in the population is between 92.8% and 93.6%.

Note:

- 1. No penalty if not a percentage.
- 2. Score P if percent given to nearest integer.

Judgement

S: Correct point estimate and confidence interval.

P: Either point estimate or confidence interval correct.

Tasks Q2 (b)

Evidence:

Error in population proportion estimate E = 8000 / 2341000 = 0.0034

Now n = $(1.96 / 0.0034)^2 \times 0.928 \times 0.072 = 22204$

No more people need to be surveyed (22 204 < 29 456).

Note:

- 1. If p = 0.932 get n = 21 061
- 2. If p = 0.633 get n = 165 808
- 3. Carried error from (a) marked correct.
- 4. For O must choose lower end of confidence interval for prior estimate of p.
- 5. For O the prior estimate for p can have the value 0.633 (2 182 000/3 448 000) with E = 8000 / 3448000 = 0.00232 (n more = 136 355) or 0.928 from the confidence interval with E = 0.0034.
- 6. If p = 0.5 as a prior estimate answer is not accepted.
- 7. Score S if subtraction isn't made at the end when appropriate.
- 8. Score S if n = 20 820 when p = 0.932.

Judgement

- **O:** Correct answer with some working.
- S: Correct value for n calculated from either 0.0034 or 0.00232 (8000/3 448 000) for the error in the estimate.
- **P**: Error calculation correctly indicated.

Tasks Q2(c)

Evidence:

- Divide New Zealand into two strata according to rural and urban towns/areas classifications. Split 15 000 into proportion according to total size of the rural and urban populations.
- Randomly select proportionally according to strata size an urban and a rural town/area. (So each town/area has the same chance of being chosen).
- Randomly select the required number from the chosen towns/areas to make up a total sample of 15 000 private households.

Note:

- 1. Answer should be understood by the reader so they could apply the random sampling method.
- 2. Key word random needs to be in answer.
- 3. Keywords that should be in answer are random, proportional allocation and both strata.

Judgement

S: Three key points.

P: One or two key points.

Tasks Q3 (a)

Evidence:

- There are two distinct subgroups.
- One subgroup has a strong positive correlation while the other shows a constant slightly increasing trend.
- After 15 months of experience the service rate stops increasing and both subgroups come together.
- There is a distinct outlier at (15, 5).
- The work experience ranges from 1 to 20 months while (the service rate per hour ranges from 5 to 28 customers served per hour).
- As the work experience increases, the overall range of the service rates decreases from large to small while the data overall shows a weak positive relationship.
- For low values of experience the scatter of service rate values is high. As the length of experience increases the scatter of service rate values gets less.

Note:

1. A rough calculation and interpretation of the gradient of the subgroup having the positive correlation is acceptable.

Judgement

S: Three points.

P: One or two points.

Tasks Q3 (b)

Evidence:

- (i) $S = 0.4234 \times 9 + 14.662 = 18.5$ customers served per hour (Can have 18 or 19).
- (ii) $S = 0.4234 \times 27 + 14.662 = 26.1$ customers served per hour (Can have 26).

Prediction of (i) appears to fit the upward trend of points (on the higher side) of the subgroup that shows a strong positive correlation. The scatter in the service rate values is still high at this point. Although this prediction occurs in a small gap it could be still valid. When E = 27 in (ii), we are seven months outside the data range of the fitted model so it's unlikely the fitted model will apply. In fact we would probably have reached a saturation point where the average service rate has levelled out.

Note:

1. Vague validity comments aren't acceptable.

Judgement

- **O:** Both predictions and validity comments reasonable.
- **S:** One prediction and its corresponding validity comment reasonable.
- **P:** One or both predictions correct.

Tasks Q3 (c)

Evidence:

Part	Direction	Strength	Justification
(i)	positive	weak/moderate	As age increases, service rate increases
(ii)	none	none	Height has no bearing on teller's service rate
(iii)	negative	strong	As the time increases, the service rate decreases

Note:

- 1. A part is correct if all three components are correct.
- 2. Accept other reasonable answers with justification.
- 3. Don't accept negative direction for (i) unless strongly argued.
- 4. For part (ii) a comment of no correlation with justification is counted as a part correct.

Judgement

S +P: Three parts correct.S: Two parts correct.P: One part correct.

Task Q4 (a)

Evidence:

Using a Poisson distribution with mean 1.4 we get the following probabilities for the number sick and whether Chris is chosen:

Number Sick	Probability	Probability Probability Chris Works	
x		Chris Works	with x sick
0	0.2466	0.000	$0.000 \times 0.2466 = 0.000$
1	0.3452	0.333	$0.333 \times 0.3452 = 0.115$
2	0.2417	0.667	$0.667 \times 0.2417 = 0.161$
At least 3	0.1665	1.000	$1.000 \times 0.1665 = 0.167$

Prob (Two "on call" working given that Chris is working) = Prob (Chris is working with two sick) / Prob (Chris is working) =
$$0.161 / (0.115 + 0.161 + 0.167)$$
 = $0.161 / 0.443$ = 0.363

Note:

- 1. Some evidence of correct method would be the use of a probability tree with at least two probabilities calculated correctly.
- 2. If the Poisson probability of x = 3 is calculated instead of "at least 3" then score S with MEI. Answer is 0.414 in this case.

Judgement

S: Answer correct

P: Some evidence of correct method like the use of the Poisson to get the probabilities (at least two) of the number sick.

Task Q4 (b)

Evidence:

Let p = probability that A's weekly earnings exceeds B's weekly earnings in a given week.

So
$${}^{4}C_{2} p^{2} (1-p)^{2} = 0.24$$
 with p between 0 and 1. $p^{2} (1-p^{2}) = 0.04$ so $p^{2} - p + 0.2 = 0$

So
$$p = 0.7236$$
 or 0.2764 .

Now the Normal distribution of the difference in weekly earnings (A – B) has mean x - 1120 and standard deviation $(84^2 + 112^2)^{0.5}$

Now prob ((A - B) > 0) = 0.7236 so using Z scores gives x = \$1,203.02 (\$1200) or when prob ((A - B) > 0) = 0.2764 using Z scores gives \$1,036.98 (\$1040)

Note:

1. If tables are used to get p by interpolation, score S if answer is correct based on that p value. Eg, if p = 0.275 then answer is \$1,014.

Judgement

- **S** + **P**: At least one answer and corresponding p value is correct.
- **S:** A value of *p* is correct **AND** the Normal distribution of differences is correctly described in terms of mean and standard deviation.
- **P**: At least one value of *p* is correct **OR** the Normal distribution of differences is correctly described in terms of mean and standard deviation.

Task Q4(c)

Evidence:

Let customers be denoted by a, b, c, d.....

The following table gives all the possibilities where d will be waiting for less than two minutes:

Cases	Teller 1	Teller 2	d goes to
1	a+c>3	b < 3	Teller 2
2	a+c<3	b > 3	Teller 1
3	a < 3	b+c>3	Teller 1
4	a > 3	b + c < 3	Teller 2
5	a+c<3	b < 3	Either
6	a < 3	b + c < 3	Either

Now the probability that the time taken to serve a customer is at least three minutes

- = 1 prob (Customer is served in less than 3 minutes)
- = 1 prob (z < (3-2)/0.6) = 0.0478.

The probability that the time taken to serve two customers is at least three minutes

- = 1 prob (Two customers are served in less than three minutes)
- = 1 prob $(z < (3-4)/(0.6^2 + 0.6^2)^{0.5}) = 0.8807$.

Method 1:

Given that the probability that initially a chose either Teller 1 or Teller 2 with probability 0.5:

Cases	Probability that d waits for less than two minutes
1	$0.5 \times 0.8807 \times 0.9522 = 0.4193$
2	$0.5 \times 0.1193 \times 0.0478 = 0.0029$
3	$0.5 \times 0.9522 \times 0.8807 = 0.4193$
4	$0.5 \times 0.0478 \times 0.1193 = 0.0029$
5	$0.5 \times 0.1193 \times 0.9522 = 0.0568$
6	$0.5 \times 0.9522 \times 0.1193 = 0.0568$

So the probability that d waits for less than two minutes = 0.4193 + 0.0029 + 0.4193 + 0.0029 + 0.0568 + 0.0568 = 0.958

Method 2:

Prob (d waits for less than two minutes) = 1 - Prob (Both tellers take longer than 3 minutes to serve a, b and c) = $1 - 0.25(4 \times 0.0478 \times 0.8807) = 0.958$

Note:

1. There are 4 combinations for teller 1 and teller 2 respectively which are given in the table below:

Teller 1	a & c	a	b & c	b
Teller 2	b	b & c	a	a & c

- 2. All are equally likely to occur with probability 0.25.
- 3. The probability for each combination is the same at 0.8807×0.0478

Judgement

O: Correct answer.

P: Evidence that various scenarios have been described.

Tasks Q5 (a) (i)

Evidence:

Constraints are:

$$x \le 50$$
, $y \le 70$, $x + y \le 80$ and $70 - y + 50 - x \le 45$ so $x + y \ge 75$ Also $x \ge 0$ and $y \ge 0$.

Overall delivery cost C = 0.5x + 0.6y + 0.4(50 - x) + 0.55(70 - y) = 0.1x + 0.05y + 58.5 From graph optimal point is (5, 70).

Delivery plan will be 5 sheets of plywood from eastern warehouse to customer A, 45 sheets of plywood from the western warehouse to A and 70 sheets of plywood from the eastern warehouse to B.

Judgement

- S: Correct delivery plan.
- **P:** First four constraints are correct or optimal point (5, 70) is correct.

Tasks Q5 (a) (ii)

Evidence:

Cost line becomes parallel to x + y = 75

So C = 0.1x + (K - 0.55)y + 58.5 would be such that K - 0.55 = 0.1 so K = 0.65.

Minimum overall delivery cost = $0.1 \times 75 + 58.5 = \$66$

Judgement

O: Correct K value and minimum cost.

S: Correct K value only.

P: Recognition that cost line is parallel to one of the constraints.

Tasks Q5 (b) (i)

Evidence:

One constraint: $x + y \ge 75$ changes to $70 - y + 50 - x \le 40$ so $x + y \ge 80$.

Feasible region is reduced to a line segment.

Cost is minimised at (10, 70).

Tasks Q5 (b) (ii)

Evidence:

$$C = 0.5x + 0.7y + 0.4(48 - x) + 0.55(70 - y)$$

$$C = 0.1x + 0.15y + 57.7$$

$$x \le 48, y \le 70, x + y \le 80$$
 and $70 - y + 48 - x \le 45$ implies $x + y \ge 73$

Cost is minimised at (48, 25).

Judgement

S: Either (i) or (ii) correct

P: Changed constraint correct in either case.

Scoring for each Question

Each question part within a question is scored as:

N = No meaningful work, insufficient or incorrect answer.

P = partially correct to a predetermined level.

S = totally correct to a scholarship level.

O = totally correct to an outstanding level.

The codes are put together for each question and then converted to a mark out of eight according to the following table:

Mark	Codes
8	O + 2S, O + S + P, O + 2S + P, O + S + 2P
7	O, O + P, O + 2P, O + S, 3S, 3S + P
6	2S, 2S + P, 2S + 2P
5	S+P, $S+2P$, $S+3P$
4	S
3	3P
2	2P
1	P
0	N

The marks for each question are totalled to give an overall mark. Best possible overall mark is 40.