Chapter 12

Exercise 12A

- **1 a** 18
 - **b** 8
 - **c** 0
 - **d** 13.2
 - **e** 13.3333
 - f -114
- **2 a** 135
 - **b** -28.5
 - **c** -11.25
 - **d** 104
 - **e** 18
- **3 a** 2.667
 - **b** 0.0121528
 - **c** -1.3125
 - **d** 38
 - **e** 4
 - **f** 24.0732
 - **g** 4
 - **h** 968
 - **i** 0.1759
- **4 a** 0.4
 - **b** 121.3333
 - **c** 130
 - **d** -60.6667
 - **e** -12.75
 - **f** 2.375
- **5 a** 2.6667
 - **b** 23.3333
 - **c** 0.06944
 - **d** 12.6667
 - **e** -27.9414
 - **f** 7.5
 - **g** 13.77778

- **h** 0.27006
- i 0.75
- $\int_{8}^{18} \frac{1}{4} \sqrt{x} \, dx$

$$\left[\frac{x^{\frac{3}{2}}}{6}\right]_{8}^{18}$$

$$\left(\frac{18^{\frac{3}{2}}}{6}\right) - \left(\frac{8^{\frac{3}{2}}}{6}\right)$$

$$\left(\frac{\left(2\times9\right)^{\frac{3}{2}}}{6}\right) - \left(\frac{\left(2\times4\right)^{\frac{3}{2}}}{6}\right)$$

$$\left(\frac{27(2)^{\frac{3}{2}}}{6}\right) - \left(\frac{8(2)^{\frac{3}{2}}}{6}\right)$$

$$2\sqrt{2}\left(\frac{27}{6}-\frac{8}{6}\right)$$

$$\frac{19\sqrt{2}}{3}$$

$$7 \quad k = 0.5$$

$$k = 1$$

8 a
$$p^3 - 2p^2 - ((-2)^3 - 2(-2)^2) - 48$$

= $p^3 - 2p^2 - 32$

b i
$$(4)^3 - 2(4)^2 - 32 = 0$$

ii
$$(p-4)(p^2+2p+8)=0$$

Second product has no roots, first product gives p=4.

10
$$t = 2$$

$$t = -7$$

Exercise 12B

- 1 a
 - b
 - C
 - **d** $\frac{3\sqrt{3}}{4}$
 - **e** -

f $\sqrt{3}$ -

2 a
$$\frac{3}{2}$$

b
$$3\sqrt{2}$$

d
$$\frac{3\sqrt{3}}{4}$$

e
$$\frac{1}{3}$$

f
$$\sqrt{3} - 1$$

3 **a**
$$-3\sqrt{2}(1+\sqrt{2})$$

c
$$\sqrt{2}$$

d
$$\frac{-2(2+\sqrt{2})}{3}$$

5
$$t = \frac{\pi}{4}$$

$$t = \frac{3\pi}{4}$$

6
$$p = \frac{\pi}{6}$$

$$p = \frac{5\pi}{6}$$

$$7 \frac{7\pi}{6}$$

$$\cos 2x = \cos(x + x) = (\cos x)^{2} - (\sin x)^{2}$$
$$= 1 - 2(\sin x)^{2}$$
$$\Rightarrow (\sin x)^{2} = \frac{1}{2}(1 - \cos 2x)$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{2} (1 - \cos 2x) dx = \left[\frac{x}{2} - \frac{1}{4} \sin 2x \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$$
$$= \left(\frac{\frac{\pi}{3}}{2} - \frac{1}{4} \sin \left(\frac{2\pi}{3} \right) \right) - \left(\frac{\frac{\pi}{4}}{2} - \frac{1}{4} \sin \left(\frac{2\pi}{4} \right) \right)$$
$$= \frac{1}{24} \left(\pi + 6 - 3\sqrt{3} \right)$$

9 **a**
$$\cos \frac{\pi}{4} \cos \frac{\pi}{6} + \sin \frac{\pi}{4} \sin \frac{\pi}{6} =$$

 $\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{1}{2\sqrt{2}} (\sqrt{3} + 1)$

b
$$\sin \frac{\pi}{4} \cos \frac{\pi}{6} - \cos \frac{\pi}{4} \sin \frac{\pi}{6} =$$

$$\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{1}{2\sqrt{2}} (\sqrt{3} - 1)$$

$$\mathbf{c} \quad \int_{-\frac{\pi}{12}}^{\frac{\pi}{12}} \cos x - \sin x \, dx =$$

$$[\cos x + \sin x]_{-\frac{\pi}{12}}^{\frac{\pi}{12}} =$$

$$\cos\frac{\pi}{12} + \sin\frac{\pi}{12} - \left(\cos\left(-\frac{\pi}{12}\right)\right)$$

$$+\sin\left(-\frac{\pi}{12}\right)$$

$$\frac{1}{\sqrt{2}}\left(\sqrt{3}-1\right) =$$

$$\frac{1}{2}(\sqrt{6}-\sqrt{2})$$

