

Model Optimization and Tuning Phase Template

Date	26 June 2025
Team ID	SWTID1750052396
Project Title	Analysis of Medium App Reviews from Google Play Store
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters	
	Embadding Dim = 139: Size of the word embaddings	
	 - Embedding Dim = 128: Size of the word embeddings. - LSTM Units = 64: Number of units in the LSTM layer. 	
	- Dropout = 0.3 : Regularization to prevent overfitting.	
	- Batch Size = 32: Number of samples per batch during training.	
	- Epochs = 10 : Number of training iterations.	
	- Learning Rate = 0.001 (Adam Optimizer).	
Model 1: LSTM	#code snippet	
	from tensorflow.keras.models import Sequential	
	from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout	
	from tensorflow.keras.optimizers import Adam	
	model_lstm = Sequential()	
	model_lstm.add(Embedding(input_dim=5000, output_dim=128, input_length=200))	
	model_lstm.add(LSTM(units=64))	
	model_lstm.add(Dropout(0.3))	

	model_lstm.add(Dense(1, activation='sigmoid'))
	optimizer = Adam(learning_rate=0.001)
	model_lstm.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
	# Training
	history_lstm = model_lstm.fit(X_train, y_train, batch_size=32, epochs=10, validation_split=0.2)
	- Embedding Dim = 128: Same as above, but better captures context.
	- BiLSTM Units = 64: Processes text in both directions.
	- Dropout = 0.4 : Increased to reduce overfitting.
	- Batch Size = 64: Faster convergence with more data per step.
	- Epochs = 12 : Allowed for more learning Learning Rate = 0.0005 (Adam with decay).
	#code snippet
	from tensorflow.keras.models import Sequential
	from tensorflow.keras.layers import Embedding, Bidirectional, LSTM, Dense, Dropout
	from tensorflow.keras.optimizers import Adam
Model 2: BiLSTM	model_bilstm = Sequential()
	model_bilstm.add(Embedding(input_dim=5000, output_dim=128, input_length=200))
	model_bilstm.add(Bidirectional(LSTM(units=64)))
	model_bilstm.add(Dropout(0.4))
	model_bilstm.add(Dense(1, activation='sigmoid'))
	optimizer = Adam(learning_rate=0.0005)
	model_bilstm.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
	# Training
	history_bilstm = model_bilstm.fit(X_train, y_train, batch_size=64, epochs=12, validation_split=0.2)

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Model 2: BiLSTM	Model 2 (BiLSTM) was selected as the final optimized model because it outperformed the baseline LSTM in terms of validation accuracy, F1-score, and generalization. The bidirectional architecture allowed the model to capture both past and future context in user reviews, leading to more accurate sentiment predictions. It also demonstrated better stability across epochs with reduced overfitting due to tuned dropout and learning rate.