# 4. Импульс. Закон сохранения импульса.

#### План лекции

- Силы в механике
- Универсальные законы природы законы сохранения
- Импульс материальной точки
- Закон сохранения импульса
- Центр масс. Ц-система

### Силы в механике. Сила гравитационного взаимодействия

Все силы в механике относятся к гравитационным и электромагниным фундаментальным воздействиям. Это можно заметить на примере законов всемирного тяготения и Кулона:

$$\vec{F} = G \frac{m_1 m_2}{r_{12}^3} \vec{r}_{12}$$

Закон всемирного тяготения

$$ec{F} = k rac{q_1 q_2}{r_{12}^3} ec{r}_{12}$$
  
Закон Кулона

Запишем закон всемирного тяготения для тела m на расстоянии r от Земли (радиуса R и массы  $M_3$ ):

$$|\vec{F}| = G \frac{mM_3}{(R+r)^2}$$

С другой стороны, любое тело вблизи поверхности Земли движется с ускорением свободного падения  $\vec{g}$ , следовательно, сила, действующая на тело, равна:

$$F = G \frac{mM_3}{R^2} = mg$$

Одинаково ли ускорение свободного падения на поверхности Земли?

Пусть k - ИСО, k' - НИСО (неинерциальная СО), а  $\vec{a}', \vec{v}'$  - ускорение и скорость в системе k', а сама система k' движется с ускорением  $\vec{a}_0$  и вокруг оси с угловой скоростью  $|\vec{\omega}| = const$ 

Тогда получаем ускорение в НИСО:  $\vec{a}' = \vec{a} + \omega^2 \vec{\rho} + 2[\vec{v}'\vec{\omega}] - \vec{a}_0$ 

 $\vec{a}$  - ускорение тела в системе k'  $\omega^2 \vec{\rho}$  - центробежное ускорение

 $2[\vec{v}'\vec{\omega}]$  - ускорение Кориолиса

 $\vec{a}_0$  - поступательное ускорение (системы отсчета k'для k)

 $m\vec{a}' = \underbrace{m\vec{a}}_{\Sigma\vec{F}} + \underbrace{m\omega^2\vec{\rho} + 2m[\vec{v}'\vec{\omega}] - m\vec{a}_0}_{\Sigma\vec{L}}$  - основное уравнение динамики в НИСО



 $m\omega^2 \vec{
ho}$  - центробежная сила

 $2m[\vec{v}'\vec{\omega}]$  - сила Кориолиса

 $m\vec{a}_0$  - поступательная сила инерции

В НИСО возникают так называемые силы инерции (фиктивные), центробежная и Кориолиса связаны с вращением

Сила Кориолиса будет действовать только на те тела, которые движутся

Из закона всемирного тяготения можно вывести ускорение свободного падения гравитационное:

$$g_{\text{грав}} = G \frac{M_3}{R^2} = 9.81 \dots 9.83 \frac{M}{c^2}$$

Из этого получить ускорение эффективное:  $g_{9 ф φ} = g_{\text{грав}} + a_{\text{цб}} = 9.78 \dots 9.83$  (ускорение свободного падения уменьшается на 3 сотых из-за вращения)

### Вес тела

**Def.** Вес тела - сила, с которой тело действует на неподвижную относительно него опору В случае опоры |P| = |N| (N - сила реакции опоры)

Рассмотрим случай, когда тело находится в неподвижном состоянии на поверхности:

$$m\vec{q} + \vec{N} = 0$$
  $N - mq = 0$   $P = mq$ 

Вес тела равен силе тяжести только при  $\vec{a} = 0$  системы отсчета

### Силы трения

Силы трения появляются при перемещении соприкасающихся тел или их частей относительно друг друга. Различают сухое и вязкое трение. К сухому трению относится трение покоя, трение скольжения и трение качения

**Сила трения покоя** применима не телам, которые покоятся; она не может превышать некоторого максимального значения:  $0 \le F_{\text{тр.}} \le \mu_0 N$  (где  $\mu_0$  - коэффициент трения покоя)

**Сила трения скольжения** возникает при движении соприкасающихся тел. В общем случае сила трения скольжения зависит от скорости движения, но для широкого класса тел равна максимальной силе трения покоя и подчиняется закону Амонтона-Кулона:  $F_{\rm Tp} = \mu N$ 

В задачах принимается, что  $\mu_0 = \mu$ , тогда во время покоя сила трения растет линейно, пока не достигнет  $\mu N$ , тогда тело начинает движение, и применяется сила трения скольжения

## Как можно измерить массу тел?

Для измерения массы необходимо сравнить ее с другой, принятой за эталон. Сравним массы  $m_1$  и  $m_2$ 

Опыт показывает, что в замкнутой системе - системе, в которой можно пренебречь взаимодействием с другими телами, выполняется соотношение:

$$\begin{split} \frac{\Delta \vec{v}_1}{\Delta \vec{v}_2} &= \frac{m_2}{m_1} \\ \Delta \vec{v}_1 &\uparrow \downarrow \Delta \vec{v}_2 \end{split} \qquad v \ll c \end{split}$$

$$m_1 \Delta \vec{v}_1 = -m_2 \Delta \vec{v}_2$$
или  $m_1 \Delta \vec{v}_1 + m_2 \Delta \vec{v}_2 = 0$ 

Импульс (количество движения) - векторная величина, равная произведению массы тела на его скорость:  $\vec{p} = m\vec{v}$   $[p] = \mathrm{Kr} \cdot \mathrm{M/c}$ 

Определение справедливо для материальной точки и для поступательного движения твердого тела

Импульс системы материальных точек:  $\vec{P} = \sum_{i=1}^{N} \vec{p}_{i}$ 

Для системы N материальных точек  $(\vec{F}_i$  - внешние силы)

$$\frac{d\vec{P}}{dt} = \sum \vec{F}_i \qquad \vec{P} = const$$

Закон сохранения импульса - импульс замкнутой системы остается постоянным

При изменении состояния системы всегда существуют такие величины, которые сохраняются с течением времени. Среди этих величин наиболее важное значение имеют импульс, энергия и момент импульса.

Эти величины обладают свойством аддитивности – значение величин для системы, состоящей из частей, равно сумме значений для каждой из частей в отдельности.

Законы сохранения – универсальные законы природы, связаны с фундаментальными свойствами пространства и времени.

Закон сохранения импульса – однородность пространства
Закон сохранения энергии – однородность времени
Закон сохранения момента импульса – изотропность пространства