Uninformed Search Strategies

School of Electronic and Computer Engineering Peking University

Wang Wenmin

Evaluation of Uninformed Tree-search Strategies

<u>无信息树搜索策略评价</u>

Criterion	Breadth First	Uniform Cost	Depth First	Depth Limited	Iterative Deepening	Bidirectional
Complete Time Space	Yes^a $O(b^d)$ $O(b^d)$	$ Yes^{a,b} \\ O(b^{1+\lfloor C^*/\epsilon\rfloor}) \\ O(b^{1+\lfloor C^*/\epsilon\rfloor}) $	No $O(b^m)$ $O(bm)$	$No \ O(b^\ell) \ O(b\ell)$	Yes^a $O(b^d)$ $O(bd)$	$Yes^{a,d}$ $O(b^{d/2})$ $O(b^{d/2})$
Optimal	Yesc	Yes	No	No a complete if b	Yes ^c	$\operatorname{Yes}^{c,d}$

vvnere

- b -- maximum branching factor of the tree

- d -- depth of the shallowest solution
- *m* -- maximum depth of the tree
- b -- complete if step costs ϵ for positive

l -- the depth limit

- c -- optimal if step costs are all identical
- d -- if both directions use breadth-first search

Artificial Intelligence :: Searching :: Search

Thank you for your affeation!

