TEMA 6. PANTALLAS LCD

DESCRIPCIÓN DEL PRODUCTO

El LCD(Liquid Crystal Dysplay) o pantalla de cristal líquido es un dispositivo empleado para la visualización de contenidos o información de una forma gráfica, mediante caracteres, símbolos o pequeños dibujos dependiendo del modelo. El LCD 1602 posee 2 filas y 16 columnas de dígitos alfanuméricos, funciona con el controlador interno HD44780, que es un integrado muy utilizado y para el cual existe amplia documentación.

CARACTERÍSTICAS TÉCNICAS

- El módulo LCD de 16x02 caracteres está diseñado para mostrar letras, números, símbolos, matriz de puntos.
- Voltaje de Operación: 5V
- Interface de comunicación: Paralelo 4 u 8 bits
- Color Texto: Blanco
- Backlight: Azul
- Filas: 2
- Columnas: 16
- No incluye pines/headers
- Dimensiones Pantalla: 64.5*14.5 mm
- Dimensiones externas: 80.0*36.0 mm

Pines de la Pantalla LCD

Pin	Nombre	Descripción
1	VSS	Tierra (GND)
2	VDD	Alimentación (5V)
3	V0	Control de contraste (ajustado con potenciómetro)
4	RS (Register Select)	Selección de registro (comando o datos)
5	RW	Lectura/Escritura (generalmente conectado a GND)
6	EN (Enable)	Habilita la escritura de datos
7-14	D0-D7	Pines de datos (para modo de 4 u 8 bits)
15	Anodo (A)	Alimentación de la retroiluminación (+)
16	Cátodo (K)	Tierra de la retroiluminación (-)

Modos de Comunicación

4.1 Modo de 8 Bits

- Utiliza los 8 pines de datos (D0-D7) para enviar comandos y datos.
- Permite mayor velocidad pero requiere más pines en Arduino.

4.2 Modo de 4 Bits

- Usa solo 4 pines de datos (D4-D7), ahorrando pines en Arduino.
- Comandos y datos se envían en dos partes (nibble alto y bajo).

El modo de 4 bits es el más común en proyectos con Arduino.

5. Conexión Básica con Arduino (Modo de 4 Bits)

Componentes:

- 1. Pantalla LCD 16x2.
- 2. Resistencia de 220 Ω (para la retroiluminación).
- 3. Potenciómetro de 10 k Ω (para el contraste).
- 4. Arduino UNO o similar.

Circuito:

LCD Pin	Conexión
1 (VSS)	GND
2 (VDD)	5V
3 (V0)	Salida central del potenciómetro (control de contraste)
4 (RS)	Pin digital de Arduino (ej. D7)
5 (RW)	GND (solo escritura)
6 (EN)	Pin digital de Arduino (ej. D6)
11 (D4)	Pin digital de Arduino (ej. D5)
12 (D5)	Pin digital de Arduino (ej. D4)
13 (D6)	Pin digital de Arduino (ej. D3)
14 (D7)	Pin digital de Arduino (ej. D2)
15 (A)	5V (retroiluminación)
16 (K)	GND (retroiluminación)

Biblioteca LiquidCrystal

La biblioteca **LiquidCrystal** de Arduino facilita la comunicación con pantallas LCD basadas en HD44780.

Instalación

Viene preinstalada con el IDE de Arduino.

Funciones Principales

Función	Descripción
LiquidCrystal(rs, en, d4, d5, d6, d7)	Configura los pines de la LCD
begin(cols, rows)	Inicializa la LCD con el número de columnas y filas
<pre>print("texto")</pre>	Muestra texto en la LCD
<pre>setCursor(col, row)</pre>	Posiciona el cursor en una columna y fila específicas
clear()	Limpia la pantalla
cursor()	Muestra el cursor
noCursor()	Oculta el cursor
blink()	Activa el parpadeo del cursor
noBlink()	Desactiva el parpadeo del cursor

Ejemplo de Código

Problemas Comunes

- 1. Pantalla en blanco:
 - Verifica las conexiones de alimentación (VSS, VDD).
 - o Ajusta el potenciómetro para controlar el contraste.
- 2. Texto ilegible:
 - o Asegúrate de inicializar correctamente la LCD con lcd.begin(16, 2).
- 3. Falta de retroiluminación:
 - Verifica las conexiones del pin 15 (A) y 16 (K).

EJEMPLOS EN ARDUINO

6.1 MOSTRAR DATOS EN UNA PANTALLA LCD 16X2

Materiales necesarios

- 1. Arduino Uno (o cualquier otra placa Arduino).
- 2. Pantalla LCD 16x2 (compatible con controlador HD44780).
- 3. Módulo I2C para LCD (opcional, para simplificar las conexiones).
- 4. Protoboard (opcional).
- 5. Cables de conexión.

Método 1: Conexión directa sin módulo I2C

Conexiones

La pantalla LCD tiene 16 pines. Conéctalos de la siguiente manera:

- 1. Pin 1 (VSS): GND de Arduino.
- 2. Pin 2 (VDD): 5V de Arduino.
- 3. Pin 3 (VO): Cursor del potenciómetro (para ajustar el contraste).

- 4. Pin 4 (RS): Pin digital 12 de Arduino.
- 5. Pin 5 (RW): GND de Arduino.
- 6. Pin 6 (E): Pin digital 11 de Arduino.
- 7. Pin 7 a 10 (D0 a D3): Dejar desconectados (modo de 4 bits).
- 8. Pin 11 a 14 (D4 a D7): Pines digitales 5, 4, 3 y 2 de Arduino.
- 9. Pin 15 (LED+): 5V (con una resistencia de 220 ohmios para el brillo del backlight).
- 10. Pin 16 (LED-): GND.

Programa

```
#include <LiquidCrystal.h>

// Definir los pines conectados al LCD
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {

// Configurar el LCD (16 columnas, 2 filas)
lcd.begin(16, 2);

// Mostrar "Hola Mundo" en la primera fila
lcd.print("Hola Mundo");
}

void loop() {

// No hay acciones adicionales en este ejemplo
}
```


6.2.sensor temperatura LM35 y pantalla LCD 16X2

Materiales necesarios

- 1. Arduino Uno (o cualquier otra placa Arduino).
- 2. Sensor LM35.
- 3. Pantalla LCD 16x2 (con o sin módulo I2C).
- 4. Módulo I2C para LCD (opcional, para reducir las conexiones).
- 5. Cables de conexión.
- 6. Protoboard (opcional).

Conexiones

- 1. Sensor LM35
- VCC (Pin 1): Conéctalo al pin de 5V de Arduino.
- Salida (Pin 2): Conéctalo al pin analógico A0 de Arduino.
- GND (Pin 3): Conéctalo al pin GND de Arduino.
- 2. Pantalla LCD

Sin módulo I2C:

1. Pin 1 (VSS): GND de Arduino.

- 2. Pin 2 (VDD): 5V de Arduino.
- 3. Pin 3 (VO): Potenciómetro para ajustar el contraste.
- 4. Pin 4 (RS): Pin digital 12 de Arduino.
- 5. Pin 5 (RW): GND de Arduino.
- 6. Pin 6 (E): Pin digital 11 de Arduino.
- 7. Pin 7-10 (D0-D3): Dejar sin conexión (modo de 4 bits).
- 8. Pin 11-14 (D4-D7): Pines digitales 5, 4, 3, 2 de Arduino.
- 9. Pin 15 (LED+): Conéctalo a 5V (con resistencia de 220 Ω).
- 10. Pin 16 (LED-): Conéctalo a GND.

Con módulo I2C:

- 1. VCC: Conéctalo al pin de 5V de Arduino.
- 2. GND: Conéctalo al pin de GND de Arduino.
- 3. SDA: Conéctalo al pin A4 (Arduino Uno).
- 4. SCL: Conéctalo al pin A5 (Arduino Uno).

PROGRAMA

```
#include <LiquidCrystal.h>
```

```
// Configuración del LCD
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int sensorPin = A0; // Pin del LM35

void setup() {
    lcd.begin(16, 2); // Inicializar el LCD
    lcd.print("Temperatura:"); // Texto inicial en la primera fila
}
```


void loop() {

TECH LAB ACADEMY ELECTRONIKA

```
int lectura = analogRead(sensorPin); // Leer el LM35

float voltaje = lectura * (5.0 / 1023.0); // Convertir a voltaje

float temperatura = voltaje * 100.0; // Convertir a grados Celsius

lcd.setCursor(0, 1); // Mover a la segunda fila

lcd.print(temperatura); // Mostrar la temperatura

lcd.print(" C"); // Agregar el símbolo de grados

delay(1000); // Actualizar cada segundo
```

6.3. sensor temperatura DHT22 pantalla LCD16X2


```
Programa:
#include <LiquidCrystal.h>
#include <DHT.h>
#define DHTPIN 2 // Pin donde está conectado el DHT22
#define DHTTYPE DHT22 // Tipo de sensor
DHT dht(DHTPIN, DHTTYPE);
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Pines del LCD (ajustar según tu conexión)
void setup() {
 lcd.begin(16, 2);
                     // Inicializar LCD 16x2
 lcd.setCursor(0, 0);
 lcd.print("Iniciando...");
                   // Inicializar DHT
 dht.begin();
 delay(2000);
                  // Esperar 2 segundos
}
void loop() {
 float humedad = dht.readHumidity(); // Leer la humedad
 float temperatura = dht.readTemperature(); // Leer la temperatura en Celsius
 // Validar si las lecturas son correctas
 if (isnan(humedad) || isnan(temperatura)) {
  lcd.setCursor(0, 0);
  lcd.print("Error de lectura");
  return; }
```



```
// Mostrar los datos en la pantalla LCD
lcd.setCursor(0, 0);
lcd.print("Temp: ");
lcd.print(temperatura);
lcd.print(" C");
lcd.setCursor(0, 1);
lcd.print("Hum: ");
lcd.print(humedad);
lcd.print(humedad);
lcd.print(" %");
delay(2000); // Actualizar cada 2 segundos
}
```

