Def. Un tarming t es (delimente)

Def. Un tarming t es (normalizante si existe una

reducción t = to) to) to). It to to esta en F.N.

N > 0

Un termino t es fuertemente normalizante

si no existe una reducción t=to > to > to > to > to infinita.

Obs. Huy terminos que son debilmente normalizantes

paro no fuertemente.

Ej.

(fact 0 = if 0=0

then 1

else 0+fact(0-1)

(Ax.y) \(\Delta \times \times

No es SN

per si es WN.

Idea: Si uno reduce siempre el redex cuya à estal más a la itaviosada, ese proceso siempre alcanza la forma hormal del térmiso. Si es que existe

Obs. Si un término tiene FN, es única.

)°t	Radución (Daralela en simultaneo.	"+ =) (''		
<u> </u>	(-2000 00,000)	ch) man alle	C – 7 3		
		ta	ť	t=>t' 5	=> 5 [']
	$\chi \Rightarrow \chi$	λ _x .t	⇒λ×.t′	ts ⇒t	's '
		t=)t'	s => s '		
		(1x.t)5 =		; · · \	
_ema .	To be te'r	nino se escribe d	le Una de la	as dolfinos	riguientes:
	1) $\lambda \vec{x}$	$(\mathfrak{d})^{\overrightarrow{t}}$	LEAD NORMAL	FORMS (HN	P).
	2) 12.	(λy ρ) q t	A BALLIAV OA		,t = λx ₁ λ× _n = x ₁ , × _h
		HEAD	Λεο ε χ	·	
					$S = (t s_1) s_2 \dots s_n$
>ef.	$t \xrightarrow{h} s$	si t> s		S	= 5 ₁ ,, S _N
		Contrayendo		edex.	
		LOSA CASH	CTION		
	+ i s				
•	7 → S	x: t→s	•	endo Un red	ex que
		REDUCCIÓN INTEMA	hs se	a head.	
				•	

es la de maj a la itquierda.

Idea. Si un térnino t tiene head normal form, la reducción head alcanta alguna head normal form de t. Obs. Un término no necesariamente tiene Snice HNF. $\lambda x. y(1z) \longrightarrow \lambda x. yz$ Idea de Como demostrar esto: $+ \longrightarrow \xrightarrow{R_1} \xrightarrow{R_2} S$ 5 HNF. R₁ h Def. (Roducción puralela interna). · si t=t1,...,t, 3=51,..., 5n notamos t >> s si t; >> si \fi \tau \in 1...n Lena 1) di t n t' ontonces dx.t n dx.t'. 2) Si $t \xrightarrow{h} t'$ y $t \neq \lambda$ ontonces $t s \xrightarrow{h} t's$. 3) Si $t \xrightarrow{h} t'$ entonces $t \{x := s \} \xrightarrow{h} t' \{x := s \}$. Dem. 1) dx. dx. dx. dx. pfy:= g13 $(\lambda_{\mathfrak{I},\rho}) \mathfrak{q} \overrightarrow{S} S \xrightarrow{h} \mathfrak{p}_{\mathfrak{I}, \mathfrak{I}} \mathfrak{q} \mathfrak{I} \overrightarrow{S} S$

スラ·(カット)キャー か スラ·ドイツ:=キイマー

= 12.6/2:=31.

3)

bef. "t⇒s".

Alternativamente: + > s si

$$t=t_0 \xrightarrow{h} t_1 \xrightarrow{h} t_2 \xrightarrow{h} \dots \xrightarrow{h} t_n \xrightarrow{i} S$$

donde $t_i \Rightarrow S \Rightarrow \forall i = 0... n$.

Dem

Entonies dx. to Ax. to B ... B dx. to Ax. t' y dx.ti =) dx.t' ti=o..n

Sea t=to +t1 + ... + tn = t', donde ademós ti = t' Con sideremis dus casus:

2-1) si ninguno de los ti es una abstracción.

Entonces:

$$t_0s \xrightarrow{h} t_1s \xrightarrow{h} \dots \xrightarrow{h} t_ns \xrightarrow{i} t_n's'$$

2.2) si alguno de los ti es una abstración, sea tj el primero que es una abstracción.

```
3) Si t \Rightarrow t' y s \Rightarrow s' entoncer t \nmid x := s \mid \Rightarrow t' \nmid x := s \mid q.

t = t_0 \xrightarrow{n} t_1 \xrightarrow{n} \dots \xrightarrow{n} t_n \xrightarrow{i} t'
                                 ·Veamos primero que si t => t' y 5 => s' entonces
                                          Den. Caso 1. Si t= \righty. Z \rightild \int t' = \righty. Z \rightild donde \rightild \rightild
                                                                                                       - Caso 1.1. Si Z=X:
                                                                                                                                                           λy. s ū{x:=s} ⇒ λy. s' v{x:=s'}
                                                                                                             - <u>cass 1.2</u>. Si t + xi

\( \frac{1}{2}, \frac{1}{2} \did \times = sh \in \frac{1}{2} \did 
                                                                                 Caso 2: & t= \(\hat{y}.(\lambda \cdot \rangle) q \vec{v} \Rightarrow t' = \(\hat{y}.(\lambda \cdot \rangle) q' \vec{v}
                                                                                                                                                                                                                                                              donde p=p', q=q', u=v.
                                                                                                                                               Entinces \lambda \vec{\eta} (hz.p') qu' is \lambda \vec{\eta} (hz.p') q' v'
   3) Si t \Rightarrow t' y s \Rightarrow s' entoncer t \nmid x := s \mid \Rightarrow t' \nmid x := s' \mid \varphi.
                       En el coso general,
                                               t=to h to h ... h (to i) donde ti =) t'
                                                                     to {x;=s}  $\frac{h}{} +1{x;=s} + ...  \frac{h}{} +n 1 x := s 1 => t' {x:=s'}}
                                                                                                                                                                                                                                       donde tilx=54 => t'{x:=5'}
```


"Postponement de pasor internos".

2) si t is s is u enfonces t is r is u.

Veamos Womose heduce t = S.

(Este caso es imposible).

este par no prede

pues estaes una KNF.

$\lambda \vec{x} \cdot (\lambda y \cdot p) q \vec{u} \xrightarrow{h} \lambda \vec{x} \cdot p i y := q \vec{\lambda} \vec{u}$
Lena. Si t = t' y 5 = s'
entonces t(x:=s) => t'(x:=s').
Es decir, t ->> s'
Teorema. Si t tiene head normal form s' MNF.
entonces t h >> s donde s es una head normal form.
Dem
t ->> s' S' KNF
luego t \Longrightarrow \Longrightarrow S'
luego t h is h is s'
luego t - h s = s'
(Se llama le HNF
Afirmación: S er una HNF. <u>principal</u> de t).
Teorema. Si t tiene forma normal, - t ->> 5 5 F.N.
Teorema. Si t tiene forma normal, — t ->> S S F.N. entonces t ->> S donde S es la forma normal de
Dem. Por inducción en el tamaño del tórninos.
Sabenos que t ->> 5 donde 5 está en f.n.
én particular, S es una HNF.
Por lo tanto:
$t \xrightarrow{h} \lambda \vec{x} \cdot y t_1 t_2 t_n \xrightarrow{\longrightarrow} S$
Entonces 5 necesariamente debe ser de la forma:
S= 1x, ys1sn donde t: ->> si.
for HI ti ->> Si.

Por lo tanto:

h, < l

 $t \xrightarrow{h} \lambda \vec{x} \cdot y t_1 t_2 ... t_n$ $\xrightarrow{l} \lambda \vec{x} \cdot y s_1 t_2 ... t_n$ $\xrightarrow{l} \lambda \vec{x} \cdot y s_1 s_2 t_3 ... t_n$ $\xrightarrow{l} \lambda \vec{x} \cdot y s_1 s_2 ... s_n = S$

 $-/\!\!/$