

# Niels Henrik Abels matematikkonkurranse 2015–2016. *Løsninger*

Finale 1. mars 2016

#### Oppgave 1.

Fargelegg et  $2016 \times 1010$ -rutenett som et sjakkbrett, med rute (i, j) hvit når i + j er et partall og svart når i + j er et oddetall, der i = 1, 2, ..., 2016 og j = 1, 2, ..., 1010. For en vandrende følge  $a_1, a_2, ..., a_{2016}$  vil alle rutene med koordinater  $(i, a_i)$  ha samme farge. Man ser lett at to vandrende følger på samme farge aldri kan krysse hverandre uten å møtes. Det vil si, om  $a_i$  og  $a'_i$  er to slike følger med  $a_i \neq a'_i$  for alle i, så er enten  $a_i < a'_i$  for alle i, eller så er  $a_i > a'_i$  for alle i.

La nå  $b_1 = 2$ ,  $b_2 = 3$ , ...,  $b_{1008} = b_{1009} = 1009$ ,  $b_{1010} = 1008$ ,  $b_{1011} = 1007$ , ...,  $b_{2016} = 2$ . Merk at rute  $(i, b_i)$  er svart for i = 1, 2, ..., 1008, og hvit for i = 1009, 1010, ..., 2016. Og ikke bare det – de to delfølgene  $b_1, ..., b_{1008}$  og  $b_{1009}, ..., b_{2016}$  er begge vandrende.

Dersom  $a_1, \ldots, a_{2016}$  er en vandrende følge som går på svarte ruter med  $a_i \neq b_i$  for alle i, må for det første  $a_1 > 2$ , siden (1,1) er en hvit rute. Det følger at  $a_i > b_i$  for  $i = 1, \ldots, 1008$ . Spesielt må  $a_{1008} = 1010$ , men det er umulig fordi (1008, 1010) er en hvit rute.

Tilsvarende, om  $a_{1009}, \ldots, a_{2016}$  er en vandrende følge på hvite ruter med  $a_i \neq b_i$  for alle i, må for det første  $a_{1009} < 1009$ , og det føler at  $a_i < b_i$  for  $i = 1009, \ldots, 2016$ . Igjen får vi en motsigelse, denne gangen fordi rute (2016, 1) er svart.

#### Oppgave 2.

a. Anta først at  $a \geq 2$  og  $c \geq 2$ . Da er

$$a + b = cd > 2d > c + d = ab > 2b > a + b$$
,

så alle ulikhetene vi brukte må være likheter. Dette gir løsningen (a,b,c,d)=(2,2,2,2).

Ellers må enten a = 1 eller c = 1. Anta derfor a = 1. Da blir

$$1 + b = cd, \quad c + d = b,$$

som gir cd = c + d + 1. Det kan omformes til (c - 1)(d - 1) = 2. Siden  $1 \le c \le d$ , må derfor c = 2 og d = 3, og da blir b = c + d = 5. Dette gir løsningen (a, b, c, d) = (1, 5, 2, 3).



Tilfellet c = 1 blir likt tilfellet a = 1 om vi bytter om (a, b) og (c, d), og det gir løsningen (a, b, c, d) = (2, 3, 1, 5).

En enkel kontroll viser at alle løsningene er korrekte.

Alternativ løsning. Legger vi sammen likningene og omformer, får vi

$$(a-1)(b-1) + (c-1)(d-1) = 2$$

Siden parentesene ikke er negative, har vi opp til symmetri to muligheter, 0+2 og 1+1. Summen 1+1 krever umiddelbart at alle parenteser er lik 1, så (a,b,c,d)=(2,2,2,2). Om summen er 0+2, må a=1, c=2 og d=3. Det følger at b=5, så (a,b,c,d)=(1,5,2,3). Ved symmetri er også (a,b,c,d)=(2,3,1,5) en mulighet (med sum 2+0). Innsetting bekrefter at alle tre er løsninger.

b. Vi faktoriserer først høyresiden:

$$x^{3} + 2y^{3} + 4z^{3} = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 = 2^{7} \cdot 3^{4} \cdot 5 \cdot 7$$

Ved regning modulo 2 får vi at x må være et partall, og vi skriver  $x = 2x_1$ . Setter vi inn dette og deler på 2 får vi en likning som likner veldig på den opprinnelige likningen:

$$4x_1^3 + y^3 + 2z^3 = 2^6 \cdot 3^4 \cdot 5 \cdot 7$$

Vi gjentar argumentasjonen seks ganger til, og substituerer i tur og orden  $y = 2y_1$ ,  $z = 2z_1$ ,  $x_1 = 2x_2$ ,  $y_1 = 2y_2$ ,  $z_1 = 2z_2$  og  $x_2 = 2x_3$ , og får likningen

$$4x_3^3 + y_2^3 + 2z_2^3 = 3^4 \cdot 5 \cdot 7$$

Hvis vi regner modulo 9 ser vi at  $n^3$  kun kan ha verdiene 0, 1 og -1 (fordi  $(3m+k)^3=(3m)^3+3\cdot(3m)^2\cdot k+3\cdot(3m)\cdot k^2+k^3\equiv k^3$  mod 9 med k=0 eller  $k=\pm 1$ ). Derfor kan venstresiden kun ha verdien 0 modulo 9 hvis alle leddene er 0, og dette skjer kun når alle tre er delelig på 3. Vi skriver  $y_2=3a$ ,  $z_2=3b$  og  $x_3=3c$ . Innsetting gir  $4(3c)^3+(3a)^3+2(3b)^3=3^4\cdot 5\cdot 7$ , som forkortes til

$$a^3 + 2b^3 + 4c^3 = 3 \cdot 5 \cdot 7 = 105.$$

Siden vi bare godtar positiv heltall som løsninger, er hvert av leddene på venstresiden mindre enn 105. Når vi i tillegg tar i betraktning at a må være et oddetall, gir det kun mulighetene

$$a^3 \in \{1,27\}, \quad 2b^3 \in \{2,16,54\}, \quad 4c^3 \in \{4,32\}.$$

Det er videre klart at om  $a^3 = 1$  eller  $4c^3 = 4$ , blir summen for liten, så  $a^3 = 27$  og  $4c^3 = 32$  er eneste mulighet. Men det gir ikke rett sum for noen mulige verder av  $2b^3$ . Likningen har derfor ingen løsninger.



## Oppgave 3.

a. Merk først at det at  $S_A$ ,  $S_B$ ,  $S_C$  tangerer i A', B', C' er ekvivalent med at A', B', C' er tangeringspunktene mellom  $\triangle ABC$  og trekantens innsirkel. Fordi X er skjæringspunktet mellom normalen til AC gjennom B' og BC gjennom A', medfører dette at X er innsenteret i  $\triangle ABC$ , og at AX, BX er vinkelhalveringslinjene. Derfor er også Y sentrum i utsirkelen  $\Gamma_C$ .



Siden innsirkelen og  $\Gamma_C$  begge tangerer AB, ligger X, C' og Y på linje hvis og bare hvis de to tangeringspunktene faller sammen (noe de ikke gjør i figuren).

Avstanden fra A til tangeringspunktet mellom innsirkelen og linjestykket AB er s-a, der  $s=\frac{1}{2}(a+b+c)$ , a=BC, b=CA og c=AB. Likeledes er avstanden fra A til tangeringspunktet mellom  $\Gamma_C$  og AB lik s-b, så de to tangeringspunktene faller sammen hvis og bare hvis s-a=s-b, som er ekvivalent med a=b. Vi er derfor ferdige.



**b.** Siden  $AA_1$  og  $AA_2$  er vinkelhalveringslinjene i A, er  $\angle A_2AA_1 = 90^\circ$ . Så  $\angle A_2AQ = \angle AQA_3$ , og derfor  $A_3Q \parallel A_2A$ . For å vise at  $QC \parallel AB$  er det nok å vise at  $\angle CQA = \angle QAB$ . Ettersom  $\angle QAB = \angle QAC$  er det nok å vise at  $\triangle CQA$  er likebent. La P være speilingen av A gjennom C. Siden  $A_3$  er speilingen av  $A_2$ , vil  $A_3P \parallel A_2A$ . Så P ligger på  $A_3Q$ , og siden  $\angle PQA = 90^\circ$ , vil sirkelen med C som sentrum og AP som diameter også gå gjennom Q. Dette viser at |CQ| = |CA|, og vi er i mål.





### Oppgave 4.

Åpenbart vil f(x) = 0 for alle  $x \in \mathbb{R}$  være en løsning.

Legg først merke til at

$$\frac{xy+1}{x-y} = z$$
 hvis og bare hvis  $xy + zy - xz + 1 = 0$ .

(Om høyresiden holder, er  $x \neq y$ , for ellers måtte  $x^2 + 1 = 0$ .) Den gitte funksjonallikningen kan altså skrives som

$$f(x)f(y) = |x - y|f(z)$$
 når  $xy + zy - xz + 1 = 0$ .

Dersom det finnes en  $z \in \mathbb{R}$  med  $f(z) \neq 0$ , kan vi for enhver  $y \neq z$  løse xy + zy - xz + 1 = 0 med hensyn på x, og da følger at  $f(y) \neq 0$ . Så  $f(x) \neq 0$  for alle  $x \in \mathbb{R}$ . For hver  $y \in \mathbb{R}$  løser vi xy + zy - xz + 1 = 0 med kravet x = z. Det gir  $2xy - x^2 + 1$ , med to løsninger. Vi nøyer oss med den ene:  $x = z = y + \sqrt{y^2 + 1}$ . For denne x-verdien blir da f(x)f(y) = |x - y|f(x), og fordi  $f(x) \neq 0$ , blir

$$f(y) = |x - y| = \sqrt{y^2 + 1}.$$

Innsetting bekrefter at også  $f(x) = \sqrt{x^2 + 1}$  for alle  $x \in \mathbb{R}$  er en løsning.

Alternativ løsning. To anvendelser av funksjonallikningen gir

$$f(0)f(x) = |x|f\left(-\frac{1}{x}\right), \quad f(x)f\left(-\frac{1}{x}\right) = \left|x + \frac{1}{x}\right|f(0).$$

Den første av disse gir umiddelbart at dersom f(0) = 0, så er f(x) = 0 for alle  $x \in \mathbb{R}$ .

Så vi antar at  $f(0) \neq 0$ , og kombinerer de to likningene over til

$$f(0)f(x)^{2} = |x|f(x)f\left(-\frac{1}{x}\right) = (x^{2} + 1)f(0),$$

og derfor  $f(x) = \pm \sqrt{x^2 + 1}$  for alle x.

Dersom vi bytter om x og y i funksjonallikningen, får vi umiddelbart at

$$f(-z) = f(z)$$
 der  $z = \frac{xy+1}{x-y}$ .

Men her kan z ta alle reelle verdier, så f(-x) = f(x) for alle x. Dette sammen med funksjonallikningen med y = -x gir

$$0 \le f(x)f(-x) = |2x|f(z)$$
 der  $z = \frac{-x^2 + 1}{2x}$ ,

men her kan z ta alle reelle verdier, så det følger at  $f(z) \ge 0$  for alle  $z \in \mathbb{R}$ . Vi må altså velge plusstegnet i  $f(x) = \pm \sqrt{x^2 + 1}$ .