Student Name:	

GENERAL MATHEMATICS 2024

Unit 4 Key Topic Test 4 – Leslie Matrices

Recommended writing time*: 45 minutes
Total number of marks available: 25 marks

QUESTION BOOK

© TSSM 2024 Page 1 of 9

^{*} The recommended writing time is a guide to the time students should take to complete this test. Teachers may wish to alter this time and can do so at their own discretion.

Conditions and restrictions

- Students are permitted to bring into the room for this test: pens, pencils, highlighters, erasers, sharpeners and rulers, approved CAS calculator and one bound reference book.
- Students are NOT permitted to bring into the room for this test: blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 9 pages.

Instructions

- Print your name in the space provided on the top of the front page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the room for this test.

© TSSM 2024 Page 2 of 9

SECTION A – Multiple-choice questions

Instructions for Section A

- All questions are worth one mark.
- Answer all questions by circling the correct response.
- Marks are not deducted for incorrect answers.
- No marks will be awarded if more than one answer is completed for any question

Use the following information to answer Questions 1 and 2

 $S_0 = \begin{bmatrix} 100 \\ 50 \\ 10 \end{bmatrix}$

Consider the Leslie matrix L and initial state matrix S_0 below.

From age group

$$L = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1.4 & 2.0 \\ 0.8 & 0 & 0 \\ 0 & 0.6 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2, & \text{To age group} \\ 3 \end{bmatrix}$$

Question 1

The survival rate of age group 2 is:

- **A.** 1.4
- **B.** 2.0
- **C.** 0.8
- **D.** 0.6
- **E.** 0

Question 2

The population of age group 1 after 2 cycles is:

- **A.** 172
- **B.** 48
- **C.** 72
- **D.** 90
- **E.** 80

Use the following information to answer Questions 3 and 4

Details of the female population of a snake species in the Australian outback are shown below:

Age	0-1	1-2	2-3
Initial Population	100	100	100
Birth rate	0.6	0.3	0.1
Survival rate	0.5	0.8	0

Question 3

The Leslie matrix that describes this information is:

From age group

$$L = \begin{bmatrix} 1 & 2 & 3 \\ 0.6 & a & b \\ c & 0 & 0 \\ 0 & d & 0 \end{bmatrix} \begin{matrix} 1 \\ 2, & \text{To age group} \\ 3 \end{matrix}$$

The values of a, b, c and d respectively are:

- A. 0, 0, 0, 0
- **B.** 0.5, 0.8, 0.3, 0.1
- **C.** 0.3, 0.1, 0, 0.5
- **D.** 0.3, 0.1, 0.5, 0.8
- **E.** 0.5, 0.3, 0.8, 0.1

Question 4

The population of age group 1 after 3 cycles is closest to:

- **A.** 100
- **B.** 68
- **C.** 42
- **D.** 40
- **E.** 69

Question 5

Consider the following Leslie matrix L and population state matrix S_1 .

$$L = \begin{bmatrix} 0 & 0.5 & 0.4 \\ 0.7 & 0 & 0 \\ 0 & 0.8 & 0 \end{bmatrix} S_{1} = \begin{bmatrix} 14 \\ 35 \\ 16 \end{bmatrix}$$

If $S_{n+1} = LS_n$, S_0 is equal to:

- **A.** $\begin{bmatrix} 23.9 \\ 9.8 \\ 28 \end{bmatrix}$
- **B.** $\begin{bmatrix} 50 \\ 50 \\ 50 \end{bmatrix}$
- C. $\begin{bmatrix} 50 \\ 20 \\ 10 \end{bmatrix}$
- **D.** $\begin{bmatrix} 10 \\ 40 \\ 50 \end{bmatrix}$
- **E.** $\begin{bmatrix} 25 \\ 50 \\ 30 \end{bmatrix}$

SECTION B - Short-answer questions

Instructions for Section B

- Answer each question in the space provided.
- Please provide appropriate workings and use exact answers unless otherwise specified.

Question 1 (9 marks)

Details of the female population of an endangered bird species with a maximum life span of 6 years are shown below:

Age	0-2 years	2-4 years	4-6 years
Initial Population	50	220	30
Birth rate	0	0.6	0.4
Survival rate	0.3	0.7	0

a. Present this information as a transition diagram by filling in the boxes below:

2 marks

b. State the initial state matrix, S_0

1 mark

© TSSM 2024 Page 6 of 9

The breeding pattern	of the female	bird population	can be	modelled by	y the recurrence	e relation
		$S_{n+1} =$	$= LS_n$			

oula	ation was tracked.
c.	Find the number of birds aged 2-4 are there after 3 2-year periods.
	2 mark
d.	Find the percentage of birds in the 0-2 age category after 3 2-year periods. Round your answer to the nearest percent.
	2 mark
e.	Using populations rounded to the nearest whole number, find the number of years until the female population of this bird species will be extinct.

2 marks

© TSSM 2024 Page 7 of 9

Question 2 (7 marks)

A population of female Rabbits is modelled by a Leslie matrix L. Where S_n is the population of female rabbits after n cycles. The population follows the model:

$$S_{n+1} = L \times S_n$$

From Age Group

Where
$$L = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0.5 & 0.4 \\ 0.8 & 0 & 0 \\ 0 & 0.6 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 To Age Group

a. State the birth rate of age group 2.

	1 mark

b. State the survival rate of rabbits in age group 1.

		1 mark

 S_0 shows the population of female rabbits that was initially recorded.

$$S_0 = \begin{bmatrix} 250 \\ 208 \\ 110 \end{bmatrix}$$

c.	Use a matrix multiplication method to show that the initial population of female rabbits is
	568.

1 mark

2 marks

Page 8 of 9

© TSSM 2024

e. Find the population of rabbits in age group 2 after 5 cycles.
2 mark
Question 3
The Leslie matrix, L and initial state matrix S_0 for the population of a species on the planet Zorg is given by: From Age Group
Where $L = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 3 \\ 0.4 & 0 & 0 \\ 0 & 0.6 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ To Age Group, $S_0 = \begin{bmatrix} 80 \\ 40 \\ 50 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
The population follows the model $S_{n+1} = L \times S_n$.
a. Find S_{54} and S_{55} , rounding values to the nearest whole number.
2 mark
b. If $S_{55} = k \times S_{54}$, find the value of k, rounding your answer to 1 decimal place.
c. By referring to long term population, comment on the findings from b.

END OF KEY TOPIC TEST

Page 9 of 9

© TSSM 2024