

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (национальный исследовательский университет)»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА на тему:

«Исследование характеристик транспортного самолета при выполнении эшелонирования»

Автор квалификационной работы: студент гр.М1О-403Б-18 Москвитин Андрей Семенович Руководитель: к.т.н., доцент кафедры 106 Мальцев Юрий Иванович

Постановка задачи

Задачи

- Расчет основных летно-технических характеристик, взлетно-посадочных характеристик, транспортные возможности, характеристики маневренности, характеристик продольной устойчивости и управляемости
- Синтезировать систему автоматической стабилизации высоты
- Исследовать характеристики самолета при выполнении эшелонированного полета

Объект исследования

Прототип транспортного самолета Ил-76

Объект исследования

Основные параметры

$$m = 140000 \,\mathrm{kr}, \; S = 300 \,\mathrm{m}^2, \; b_a = 6.436$$

Расчет летно-технических характеристик

Диапазон высот и скоростей полета

Расчет летно-технических характеристик

Значения статического и практического потолка

Расчет летно-технических характеристик

Значения километрового и часового расхода для массы 140 т.

Расчет траектории полета

Параметры в наборе высоты:

$m_{T_{\rm Ha6}}$	$L_{\rm Ha6}$	$t_{ m Ha6}$
Кг	Км	Мин
3669.9	175.7	18.3

Параметры крейсерского полета:

$T_{\rm \kappa p}$	$L_{\rm kp}$	$\rho_{H_{ m Kp}}$	$H_{0 \text{ Kp}}$	$H_{\rm KKp}$
мин	км	<u>кг</u> м 3	км	км
285.43	2770.0	0.324	11	11.8

Параметры при снижении высоты:

$m_{T_{\text{ch}}}$	$L_{\rm ch}$	$t_{ m cH}$
Кг	Км	Мин
426.7	197.3	19.7

Расчет траектории полета

Графическое представление:

Транспортные возможности

Зависимость максимальной дальности полета от целевой нагрузки

Взлетно-посадочные характеристики

Основные параметры взлеты и посадки:

$V_{ m orp}$	$L_{ m p}$	L _{вд}	$V_{\rm kac}$	$L_{\rm npo6}$	$L_{\pi_{\mathcal{I}}}$
<u>М</u> С	M	M	<u>М</u> С	M	M
90.0	1830.0	2289.0	65.0	811.0	1418.0

Расчет правильного виража

Зависимость различных параметров виража

Характеристики продольной статической устойчивости и управляемости

Определение $ar{S}_{ ext{ro}}^*$

Характеристики продольной статической устойчивости и управляемости

Балансировочная диаграмма в полетной конфигурации

Характеристики продольной статической устойчивости и управляемости

$$\delta_{\scriptscriptstyle
m B}^{\it n_y}$$
 при $ar x=0.25$

Структурная схема стабилизации высоты в тангажном варианте:

Выбранные коэффициенты обратных для контура стабилизации тангажа:

Для регулятора K_{ϑ}

Выбранные коэффициенты для контура стабилизации высоты:

Частотный анализ ЛАФЧХ для разомкнутого контура стабилизации высоты при: $q_{min} \Rightarrow M = 0.3071, \; q_{max} \Rightarrow M = 0.6119, \; q_{KD} \Rightarrow M = 0.61.$

Различия в переходных процессах линейной и нелинейной модели.

Различия в переходных процессов линейной и нелинейной модели.

Различия в переходных при различных скоростях отклонения привода.

Различия в переходных при различных скоростях отклонения привода.

Рассматриваемые характеристики полета:

- m_{изр} израсходования масса топлива
- $lue{t}_{ ext{kp}}$ время полета
- lacksquare $q_{\scriptscriptstyle
 m KM}$ километровый расход топлива

Рассмотрим такие варианты полета:

- 1 При постоянной высоте и оптимальной скорости полета
- 2 При оптимальном изменении высоты и скорости полета
- 3 Эшелонированный полет с изменением высоты с шагом 300 м.

Таблица параметров крейсерского полета:

т, тонн					Η,	м			
		8000	85 00	9000	95 0 0	10000	10500	11000	11500
100.0	М	0.489	0.5	0.506	0.522	0.538	0.552	0.559	0.5 85
	q_{km}	8.38	8.114	7.881	7.666	7.46	7.225	6.619	6.578
	V	150.663	152.992	153.747	157.486	161.148	164.137	164.991	172.616
110.0	М	0.5	0.516	0.532	0.549	0.562	0.583	0.581	0.6
	q_{km}	8.862	8.61	8.371	8.143	7.929	7.674	7.182	7.161
	V	154.053	157.888	161.647	165.632	168.337	173.355	171.484	177.042
120.0	М	0.524	0.54	0.554	0.573	0.571	0.591	0.6	0.6
	q_{km}	9.348	9.084	8.834	8.598	8.401	8.236	7.784	7.812
	V	161.447	165.231	168.332	172.873	171.033	175.734	177.092	177.042
130.0	М	0.547	0.563	0.56	0.578	0.596	0.6	0.6	0.6
	q_{km}	9.807	9.533	9.293	9.127	8.983	8.825	8.452	8.549
	V	168.534	172.269	170.155	174.381	178.521	178.41	177.092	177.042
140.0	М	0.552	0.5 65	0.582	0.6	0.6	0.6	0.6	0.605
	q_{km}	10.259	10.049	9.863	9.7	9.576	9.472	9.36	9.534
	V	170.074	172.881	176.84	181.018	179.719	178.41	177.092	178.517
150.0	М	0.569	0.586	0.6	0.6	0.6	0.6	0.606	-
	q_{km}	10.818	10.61	10.427	10.292	10.226	10.276	10.379	-
	V	175.312	179.307	182.309	181.018	179.719	178.41	178.863	-
160.0	М	0.588	0.6	0.6	0.6	0.6	0.619	-	-
	q_{km}	11.369	11.165	11.016	10.949	11.026	11.138	-	-
	V	181.166	183.59	182.309	181.018	179.719	184.06	-	-
170.0	М	0.6	0.6	0.6	0.6	0.619	-	-	-
	q_{km}	11.917	11.75	11.678	11.741	11.881	-	-	-
	V	184.863	183.59	182,309	181.018	185.41	-	-	-
180.0	М	0.6	0.6	0.6	0.615	-	-	-	-
	q_{km}	12.495	12.413	12.459	12.587	-	-	-	-
	V	184.863	183.59	182.309	185.544	-	-	-	-
190.0	М	0.6	0.6	0.61	-	-	-	-	-
	q_{km}	13.159	13.181	13.294	-	-	-	-	-
	V	184.863	183.59	185.347	-	-	-	-	-

Изменения характеристик при постоянной высоте и оптимальной скорости полета:

Изменения характеристик при оптимальном изменении высоты и оптимальной скорости полета:

Изменения характеристик при эшелонированном полете:

Разница в расходах топлива по сравнению с оптимальной траекторией

· F · · · F ·						
Режим	<i>т</i> _{изр} , %	T,%				
Полет по оптимальной	100	100				
траектории						
Полет на $H = 8500{ m M}$	100.12	99.69				
Полет эшелонированный	101.87	99.75				
полет $\Delta H = 300{ m M}$						

Выигрыш в топливе на большом горизонте полетов

