

فصل اول: مفاهیم پایه

- الگوريتم چيست؟
- الگوريتم صحيح و غير صحيح
 - برخی کاربردهای الگوریتم
- الگوریتم بعنوان یک فناوری

الگوريتم چيست؟

An algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.

مثال: مسئله مرتبسازی رشته اعداد

Input: A sequence of *n* numbers $\langle a_1, a_2, \dots, a_n \rangle$.

Output: A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$.

Ex. Input: sequence 31, 41, 59, 26, 41, 58

Output: sequence 26, 31, 41, 41, 58, 59

الگوریتم صحیح و الگوریتم غیر صحیح

- An algorithm is said to be correct if, for every input instance, it halts with the correct output. We say that a correct algorithm solves the given computational problem.
- An incorrect algorithm might not halt at all on some input instances, or it might halt with an answer other than the desired one.

• Incorrect algorithms can sometimes be useful, if their error rate can be controlled. (An example of this when we study algorithms for finding large prime numbers.)

الگوریتم بعنوان یک فناوری

- فرض: کامپیوترها بینهایت سریع و حافظه رایگان باشد
 - آیا باز نیاز است درس طراحی الگوریتم بخوانیم؟
 - جواب: بله!!!

• باید مطمئن شویم که الگوریتم طراحی شده در همه حالت جواب درست را تولید می کند

• و اما واقعیت: کامپیوترها سریع هستند ولی نه بینهایت!

حافظه ارزان است ولی رایگان نیست!

منابع محدود و مشخص

فصل دوم: شروع به کار!

- مرتبسازی درجی
 - تحليل الگوريتم
 - طراحي الگوريتم

مرتبسازی درجی | Insertion Sort

Efficient algorithm for sorting a small number of elements:

- We start with an empty left hand and the cards face down on the table.
- We then remove one card at a time from the table and insert it into the correct position in the left hand. To find the correct position for a card, we compare it with each of the cards already in the hand, from right to left.

```
INSERTION-SORT (A)

1 for j = 2 to A. length

2  key = A[j]

3  // Insert A[j] into the sorted sequence A[1 ... j - 1].

4  i = j - 1

5  while i > 0 and A[i] > key

6  A[i + 1] = A[i]

7  i = i - 1

8  A[i + 1] = key
```


درس طراحی الگوریتم (ترم اول ۱ ۱۴۰) INTRODUCTION TO ALGORITHM

مثال مرتبسازی درجی

	_1	2	3	4	5	6
(c)	2	4	5	6	1	3

INSERTION-SORT (A)

```
1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1...j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```


اثبات صحت الگوريتم مرتبسازي درجي


```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1...j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```


مشابه استقراء ریاضی

Loop Invariant

At the start of each iteration of the **for** loop of lines 1–8, the subarray A[1...j-1] consists of the elements originally in A[1...j-1], but in sorted order.

اثبات صحت الگوریتم با استفاده از مستقل از حلقه

دانشگاه صنعتی امیر کبیر (بلی تکنیک نبراز)

At the start of each iteration of the **for** loop of lines 1–8, the subarray A[1..j-1] consists of the elements originally in A[1..j-1], but in sorted order.

loop invariants: understand why an algorithm is correct

We must show three things about a loop invariant:

- Initialization: It is true prior to the first iteration of the loop
- Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration
- Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

قوائد استفاده از شبه کد


```
for j = 2 to A. length

key = A[j]

// Insert A[j] into the sorted sequence A[1...j-1].

i = j-1

while i > 0 and A[i] > key

A[i+1] = A[i]

i = i-1

A[i+1] = key
```

تحليل الگوريتمها

- Analyzing an algorithm: for an input size,
 - measure memory (space)
 - measure computational time (running time).
- Input size: depends on the problem:
 - Sorting: number of items in the input; array size,... O(n)
 - Big integer (multiplying, ...): number of bits to represent the input in binary notation O(log n)
 - Two numbers: input of a graph can be O(n,m), number of vertices and number of edges.

Running time:

- A constant amount of time is required to execute each line
- each execution of the ith line takes time ci, where ci is a constant.

تحلیل زمانی مرتبسازی درجی

IN	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	C_4	n-1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C_8	n-1

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

تحلیل زمانی مرتبسازی درجی

IN	SERTION-SORT(A)	cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j-1]$.	0	n - 1
4	i = j - 1	C_4	n-1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C_8	n-1

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

مثال مرتبسازی

Ex. Input: sequence 31, 41, 59, 26, 41, 58

Output: sequence 26, 31, 41, 41, 58, 59

درس طراحی الگوریتم (ترم اول ۱۴۰۱ (۱۴۰۱) INTRODUCTION TO ALGORITHM |

تحليل بهترين حالت

Best case | The array is already sorted

1	2	3	4	5	6
1	2	3	4	5	6

INS	SERTION- $SORT(A)$	cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

تحليل بدترين حالت

دانشگاه صنعتی امیر کبیر

Worst case

The array is in reverse sorted order

1	2	3	4	5	6
6	5	4	3	2	1

```
INSERTION-SORT(A)
                                                     times
                                             cost
   for j = 2 to A. length
      key = A[i]
                                                     n-1
      // Insert A[j] into the sorted
           sequence A[1...j-1].
                                                     n-1
                                                     n-1
     i = i - 1
                                                     \sum_{j=2}^{n} t_j
      while i > 0 and A[i] > key
                                             c_6 \sum_{j=2}^{n} (t_j - 1) c_7 \sum_{j=2}^{n} (t_j - 1)
    A[i+1] = A[i]
      i = i - 1
     A[i+1] = key
```

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$
and
$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right).$$

بدترین زمان اجرا و زمان اجرای متوسط

- Worst-case running time:
 - the longest running time for any input of size n:
 - Upper bound on the running time for any input
 - For some algorithms, the worst case occurs fairly often
 - The "average case" is often roughly as bad as the worst case
- Average-case or expected running time:
 - Technique of probabilistic analysis
 - · Assume that all inputs of a given size are equally likely
 - Difficult to analyze

متوسط زمان اجرای مرتب سازی درجی؟

تحلیل زمانی مرتبسازی درجی

IN	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n - 1
4	i = j - 1	c_4	n - 1
5	while $i > 0$ and $A[i] > key$	C ₅	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = kev	C_{\aleph}	n-1

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

مثال مرتبسازی

Ex. Input: sequence 31, 41, 59, 26, 41, 58

Output: sequence 26, 31, 41, 41, 58, 59

درس طراحی الگوریتم (ترم اول ۱۴۰۱ (۱۴۰۱) INTRODUCTION TO ALGORITHM |

تحليل بهترين حالت

Best case | The array is already sorted

1	2	_3	4	5	6
1	2	3	4	5	6

Inse	$ERTION ext{-}SORT(A)$	cost	times
1 f	For $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n - 1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

تحليل بدترين حالت

دانشگاه صنعتی امورکیر

Worst case

The array is in reverse sorted order

1	2	3	4	5	6
6	5	4	3	2	1

```
INSERTION-SORT(A)
                                                      times
                                             cost
   for j = 2 to A. length
      key = A[i]
                                                     n-1
      // Insert A[j] into the sorted
           sequence A[1...j-1].
                                                     n-1
                                                     n-1
     i = i - 1
                                                     \sum_{j=2}^{n} t_j
      while i > 0 and A[i] > key
                                             c_6 \sum_{j=2}^{n} (t_j - 1) c_7 \sum_{j=2}^{n} (t_j - 1)
     A[i+1] = A[i]
      i = i - 1
      A[i+1] = key
```

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$
and
$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right).$$

بدترین زمان اجرا و زمان اجرای متوسط

Worst-case running time:

- the longest running time for any input of size n:
 - · Upper bound on the running time for any input
 - For some algorithms, the worst case occurs fairly often
 - The "average case" is often roughly as bad as the worst case

Average-case or expected running time:

- Technique of probabilistic analysis
- · Assume that all inputs of a given size are equally likely
- Difficult to analyze

متوسط زمان اجرای مرتب سازی درجی؟

تكنيكهاي طراحي الگوريتم و الگوريتمهاي تقسيم و حل

- Insertion sort: Incremental approach A[1..j-1] $A[j] \rightarrow A[1..j]$
- The divide-and-conquer approach:
 - Divide the problem into a number of subproblems (similar to original problem).
 - **Conquer** the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
 - **Combine** the solutions to the subproblems into the solution for the original problem.
- Recursive structure: to solve a given problem, they call themselves recursively one or more times to deal with closely related subproblems.

مثال تقسیم و حل: Merge Sort

Conquer

Combine

مثال تقسیم و حل: Merge Sort

Divide

Conquer

Combine

الگوریتم مرتبسازی ادغامی | Merge Sort

• **Divide:** Divide the n-elements sequence to

be sorted into two subsequences of

n/2 elements each

• Conquer: Sort the two subsequences recursi -vely using merge sort

• **Combine:** Merge the two sorted subsequences to produce the sorted answer.

M	$ERGE ext{-}SORT(A,p,r)$
1	if $p < r$
2	$q = \lfloor (p+r)/2 \rfloor$
3	Merge-Sort(A, p, q)
4	Merge-Sort(A, q + 1, r)
5	MERGE(A, p, q, r)

الگوریتم مرتبسازی ادغامی | Merge Sort

```
MERGE(A, p, q, r)
 1 \quad n_1 = q - p + 1
 2 \quad n_2 = r - q
   let L[1...n_1 + 1] and R[1...n_2 + 1] be new arrays
   for i = 1 to n_1
    L[i] = A[p+i-1]
    for j = 1 to n_2
    R[j] = A[q+j]
   L[n_1+1]=\infty
    R[n_2+1]=\infty
    i = 1
    for k = p to r
13
        if L[i] \leq R[j]
14
            A[k] = L[i]
15
           i = i + 1
     else A[k] = R[j]
16
            j = j + 1
```


س طراحی الگوریتم (ترم اول ۱ ه۱۰۰) NTRODUCTION TO ALGORITHM ا

الگوریتم مرتبسازی ادغامی | Merge Sort

```
MERGE(A, p, q, r)
 1 \quad n_1 = q - p + 1
2 n_2 = r - q
 3 let L[1...n_1 + 1] and R[1...n_2 + 1] be new arrays
 4 for i = 1 to n_1
   L[i] = A[p+i-1]
   for j = 1 to n_2
    R[j] = A[q+j]
   L[n_1+1]=\infty
   R[n_2+1]=\infty
10 i = 1
    i = 1
    for k = p to r
                                           L[1..n_1+1]
                             A[p .. k-1]
        if L[i] \leq R[j]
                                           R[1..n_2+1]
            A[k] = L[i]
                                 L[i]
            i = i + 1
      else A[k] = R[j]
                                 R[j]
            j = j + 1
```


مثال مرتبسازی ادغامی

تحلیل زمانی الگوریتمهای تقسیم و حل

- **Divide:** $D(n) = \Theta(1)$.
- **Conquer:** solve two subproblems, each of size n/2, which contributes 2T (n/2) to the running time.
- **Combine:** the MERGE procedure on \square an n-element subarray takes time $\Theta(n)$, so $C(n) = \Theta(n)$.

$$T(n) = \begin{cases} \theta(1) & \text{if } n = 1 \\ 2 T(n/2) + \theta(n) & \text{if } n > 1 \end{cases}$$

if $L[i] \leq R[j]$

 $\Theta(n)$

MERGE-SORT(A,p,r)

```
 \begin{array}{c|c} \textbf{if } p < r \\ q = \lfloor (p+r)/2 \rfloor \\ \textbf{T(n/2)} \\ \textbf{T(n/2)} \\ \textbf{MERGE-SORT}(A,p,q) \\ \textbf{MERGE-SORT}(A,q+1,r) \\ \textbf{MERGE}(A,p,q,r) \end{array}
```

تحلیل زمانی با درخت بازگشتی

$$T(n) = \begin{cases} \theta(1) & \text{if } n = 1 \\ 2 T(n/2) + \theta(n) & \text{if } n > 1 \end{cases}$$

$$f n = 1$$

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2 T(n/2) + cn & \text{if } n > 1 \end{cases}$$

تحلیل زمانی با درخت بازگشتی

تمرین: تحلیل زمانی روش تقسیم و حل

Use mathematical induction to show that when *n* is an exact power of 2, the solution of the recurrence

$$T(n) = \begin{cases} 2 & \text{if } n = 2, \\ 2T(n/2) + n & \text{if } n = 2^k, \text{ for } k > 1 \end{cases}$$

is $T(n) = n \lg n.$

راه حل تمرین

$$T(n) = \begin{cases} 2 & \text{if } n = 2, \\ 2T(n/2) + n & \text{if } n = 2^k, \text{ for } k > 1 \end{cases} \longrightarrow T(n) = n \lg n$$

The base case is when n = 2, and we have $n \lg n = 2 \lg 2 = 2 \cdot 1 = 2$.

For the inductive step, our inductive hypothesis is that $T(n/2) = (n/2) \lg(n/2)$. Then

$$T(n) = 2T(n/2) + n$$

= $2(n/2) \lg(n/2) + n$
= $n(\lg n - 1) + n$
= $n \lg n - n + n$
= $n \lg n$,

which completes the inductive proof for exact powers of 2.