CS4102 Algorithms

Nate Brunelle

Spring 2018

Warm up

In Season 9 Episode 7 "The Slicer" of the hit 90s TV show *Seinfeld*, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the ocean. How did George make this discovery?

https://www.youtube.com/watch?v=pSB3HdmLcY4

Today's Keywords

- Dynamic Programming
- Longest Common Subsequence
- Seam Carving
- Seinfeld

CLRS Readings

• Chapter 15

Homeworks

- Hw5 due 11pm Monday April 2
 - Programming
 - Dynamic Programming

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example:

X = ATCTGAT

Y = TGCATA

LCS = TCTA

Brute force: Compare every subsequence of X with Y $\Omega(2^n)$

Dynamic Programming

- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first
 - "Bottom up"

1. Identify Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y

```
Find LCS(i,j):

Case 1: X[i] = Y[j]
X = ATCTGCGT
Y = TGCATAT
LCS(i,j) = LCS(i-1,j-1) + 1

Case 2: X[i] \neq Y[j]
X = ATCTGCGA
Y = TGCATAT
Y = TGCATAC
LCS(i,j) = LCS(i,j-1)
LCS(i,j) = LCS(i-1,j)
```

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

Dynamic Programming

- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first
 - "Bottom up"

2. Solve in a Good Order

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 \\ A & 6 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \end{cases}$$

To fill in cell (i,j) we need cells (i-1,j-1), (i-1,j), (i,j-1) Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

if
$$i = 0$$
 or $j = 0$
if $X[i] = Y[j]$
otherwise

X =			\boldsymbol{A}	T	$\boldsymbol{\mathcal{C}}$	T	G	\boldsymbol{A}	T
P.		0	1	2	3	4	5	6	7
1	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
С	3	0	0	1	2	2	2	2	2
\boldsymbol{A}	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
\boldsymbol{A}	6	0	1	2	2	3	3	4	4

Run Time: $\Theta(n \cdot m)$ (for |X| = n, |Y| = m)

Reconstructing the LCS

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G \\ 0 & 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 7 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{cases}$$

Start from bottom right,

if symbols matched, then go diagonally and print that symbol else go to largest adjacent

Reconstructing the LCS

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G \\ 0 & 1 & 2 & 3 & 4 & 5 \end{cases} \begin{cases} A & T \\ 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{cases}$$

Start from bottom right,

if symbols matched, then go diagonally and print that symbol else go to largest adjacent

Reconstructing the LCS

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{cases}$$

$$A & 6 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 4 \end{cases}$$

Start from bottom right,

if symbols matched, then go diagonally and print that symbol else go to largest adjacent

Seam Carving

 Method for image resizing that doesn't scale/crop the image

Cropped

Scaled

Carved

Cropping

• Removes a "block" of pixels

Scaling

• Removes "stripes" of pixels

Seam Carving

Removes "least energy seam" of pixels

http://rsizr.com/

Seattle Skyline

Energy of a Seam

- Sum of the energies of each pixel
 - -e(p) = energy of pixel p
- Many choices
 - E.g.: change of gradient (how much the color of this pixel differs from its neighbors)
 - Particular choice doesn't matter, we use it as a "black box"

Identify Recursive Structure

Let S(i,j) = least energy seam from the bottom of the image up to pixel $p_{i,j}$

Finding the Least Energy Seam

Want the least energy seam going from bottom to top, so delete:

$$\min_{k=1}^{m} (S(n,k))$$

Computing S(n, k)

Assume we know the least energy seams for all of row n-1

(i.e. we know $S(n-1,\ell)$ for all ℓ)

Computing S(n, k)

Assume we know the least energy seams for all of row n-1 (i.e. we know $S(n-1,\ell)$ for all ℓ)

$$S(n,k) = min \begin{cases} S(n-1,k-1) + e(p_{n,k}) \\ S(n-1,k) + e(p_{n,k}) \\ S(n-1,k+1) + e(p_{n,k}) \end{cases}$$

$$S(n-1,k-1) \qquad S(n-1,k+1)$$

Bring It All Together

Start from bottom of image (row 1), solve up to top Initialize $S(1,k)=e(p_{1,k})$ for each pixel in row 1

Energy of the seam initialized to the energy of that pixel

Bring It All Together

Start from bottom of image (row 1), solve up to top

Initialize $S(1,k) = e(p_{1,k})$ for each pixel $p_{1,k}$

For
$$i > 2$$
 find $S(i, k) = \min - \frac{S(n-1, k-1) + e(p_{n,k})}{S(n-1, k) + e(p_{n,k})}$
 $S(n-1, k) + e(p_{n,k})$

$$S(n-1,k-1) + e(p_{n,k})$$

$$S(n-1,k) + e(p_{n,k})$$

$$S(n-1,k+1) + e(p_{n,k})$$

Energy of the seam initialized to the energy of that pixel

Bring It All Together

Start from bottom of image (row 1), solve up to top

Initialize $S(1,k) = e(p_{1,k})$ for each pixel $p_{1,k}$

For
$$i > 2$$
 find $S(i, k) = \min$

For
$$i > 2$$
 find $S(i, k) = \min - \frac{S(n-1, k-1) + e(p_{n,k})}{S(n-1, k) + e(p_{n,k})}$
 $\frac{S(n-1, k) + e(p_{n,k})}{S(n-1, k+1) + e(p_{n,k})}$

$$S(n-1, k+1) + e(p_{n,k})$$

Pick smallest from top row, backtrack, removing those pixels

Energy of the seam initialized to the energy of that pixel

Run Time?

Start from bottom of image (row 1), solve up to top

Initialize
$$S(1,k) = e(p_{1,k})$$
 for each pixel $p_{1,k}$ $\Theta(m)$

$$S(n-1,k-1) + e(p_{n,k})$$

$$S(n-1,k) + e(p_{n,k}) \Theta(n \cdot m)$$

$$S(n-1,k+1) + e(p_{n,k})$$

$$\Theta(n+m)$$

Pick smallest from top row, backtrack, removing those pixels

m

29

Repeated Seam Removal

Only need to update pixels dependent on the removed seam

2n pixels change

 $\Theta(2n)$ time to update pixels

 $\Theta(n+m)$ time to find min+backtrack

