Math 260 Extra Credit

Mario L Gutierrez Abed

<u>Definition</u>: Let S be a subset of the dual space V^* of a finite dimensional vector space V. Define $S^o = \{v \in V \mid f(v) = 0 \ \forall \ f \in S\}$. S^o is called the <u>annihilator</u> of S in V.

Prove any two of the following:

(1) Prove that S^o is a subspace of V.

Proof:

If we take any $x, y \in S^{o}$ and any scalar $\alpha \in \mathbb{F}$, we have

- 0 = f(x + y) = f(x) + f(y) (by the linearity of the linear functionals f)
 - = 0 + 0 = 0 (closed under addition)
- $0 = f(\alpha \cdot x) = \alpha f(x)$ (also by linearity) = $\alpha \cdot 0 = 0$ \checkmark (closed under scalar multiplication)

Since S^o is closed under addition and scalar multiplication, and therefore contains the zero vector of V, we conclude that S^o is a subspace of V. Moreover, this subspace turns out to be the null space of all linear maps (functionals) f in S.

(3) Prove that $S^{o} = (\operatorname{span} S)^{o}$ for any $S \subset V^{*}$. In other words, prove that the annihilator of a subset and the subspace spanned by that same subset are equal.

Proof:

Let S be any subset in V^* , $S = \{v_1, ..., v_n\} \subset V^*$, with scalars $\alpha_i \in \mathbb{F}$ and let f be a linear functional in S. We have that span $S = \alpha_1 v_1 + ... + \alpha_n v_n$. Then the annihilator of the subspace spanned by S is given by $(\operatorname{span} S)^o = (\alpha_1 v_1 + ... + \alpha_n v_n)^o$. Now if we apply f to this subspace spanned by S we have $f(\alpha_1 v_1 + ... + \alpha_n v_n) = f(\alpha_1 v_1) + ... + f(\alpha_n v_n)$ (by linearity of the functional f) $= \alpha_1 f(v_1) + ... + \alpha_n f(v_n) \quad \text{(also by linearity)}$ $= \alpha_1(0) + ... + \alpha_n(0) = 0 \quad \checkmark$

Obviously S^o is by definition the set all elements in V that are mapped to zero via any linear functional f in V. Thus we have proven that $S^o = (\operatorname{span} S)^o$ for any $S \subset V^*$.