ANÁLISIS DE FUNCIONES DE VARIABLE COMPLEJA CURSO 2020-2021

HOJA 3

1	Ualla	todog	100	**** long	4.
1.	папа	todos	IOS	valores	ae

a) $\log 2e^{\frac{\pi}{3}i}$

b) $\log 2$ c) $\log(\sqrt{3}-i)$

d) $\log(1+i)$

e) 1^{i}

f) $(1+i)^{\pi}$

2. Demuestra que si b es un número real $\left|a^{b}\right|=|a|^{b}$.

3. Demuestra que:

a)
$$2 \cosh z \cosh w = \cosh(z+w) + \cosh(z-w)$$

b)
$$2 \operatorname{senh} z \operatorname{cosh} z = \operatorname{senh}(z + w) + \operatorname{senh}(z - w)$$

c)
$$2 \operatorname{senh} z \operatorname{senh} w = \cosh(z+w) - \cosh(z-w)$$

4. Resuelve la ecuaciones:

a) $4\cos z = 3 + i$

b) $\sin z = 2$

c) $\cos z = 10$.

5. Demuestra que, si z = x + iy,

 $\operatorname{sen} z = \operatorname{sen} x \cosh y + i \operatorname{senh} y \cos x.$

Deduce que $| \operatorname{senh} y | \leq | \operatorname{sen} z | \leq | \cosh y |$.

6. Resuelve las ecuaciones:

a) $\sin z + \cos z = 2$

b) $\operatorname{sen} z - \cos z = 3$ c) $\operatorname{senh} z - \cosh z = 2i$

d) $2\cosh z + \sinh z = i$ e) $\sec z = i \sinh z$ f) $\cos z = i \sinh 2z$

7. Halla el máximo de $|\cos z|$ en el cuadrado

$$0 \le \operatorname{Re} z \le 2\pi$$
, $0 \le \operatorname{Im} z \le 2\pi$.

- **8.** a) Halla las partes real e imaginaria de th z.
 - b) Resuelve la ecuación th z = i.
- **9.** Demuestra que si r es un número real y |r| < 1 entonces:

$$\operatorname{sen} \theta + r \operatorname{sen} 3\theta + r^2 \operatorname{sen} 5\theta + \dots = \frac{(1+r)\operatorname{sen} \theta}{1 - 2r\cos 2\theta + r^2}.$$

Deduce que si θ no es un múltiplo entero de $\frac{\pi}{2}$ entonces:

$$\operatorname{sen} \theta + \cos 2\theta \operatorname{sen} 3\theta + (\cos 2\theta)^2 \operatorname{sen} 5\theta + \dots = \frac{1}{2} \operatorname{cosec} \theta.$$

- **10.** Halla la imagen mediante la aplicación sen z de la banda $-\pi/2 < \operatorname{Re} z < \pi/2$.
- 11. Halla las imágenes de las rectas x = c, y = c mediante las funciones:

a)
$$f(z) = z^2 + z$$
 b) $f(z) = e^{z^2}$ c) $f(z) = \coth z$

b)
$$f(z) = e^{z^2}$$

c)
$$f(z) = \coth z$$

12. Halla las razones dobles:

a)
$$(7 + i, 1, 0, \infty)$$

b)
$$(2 \ 1 - i \ 1 \ 1 + i)$$

c)
$$(0,1,i,-1)$$

a)
$$(7+i,1,0,\infty)$$
 b) $(2,1-i,1,1+i)$ c) $(0,1,i,-1)$ d) $(1-i,\infty,1+i,0)$

13. Halla una transformación de Möbius que transforme el semiplano que queda por debajo de la recta $\operatorname{Re} z + \operatorname{Im} z = -1$ en el disco de centro i y radio 1.

- **14.** Halla una transformación de Möbius que aplique $\mathbb{C}_{\infty} \setminus \overline{D}(2i,1)$ sobre $\{w \in \mathbb{C} : \operatorname{Re} z > 2\}$.
- 15. Halla la transformación de Möbius que satisface que $f(z_k) = w_k$ para k = 1, 2, 3 si
 - a) $z_1 = -1, z_2 = 1, z_3 = 2; w_1 = 0, w_2 = -1, w_3 = -3,$
 - b) $z_1 = -1, z_2 = 1, z_3 = 2; w_1 = -3, w_2 = -1, w_3 = -0,$
 - c) $z_1 = i, z_2 = 0, z_3 = -1; w_1 = 0, w_2 = -i, w_3 = \infty,$
 - d) $z_1 = i, z_2 = 0, z_3 = -1; w_1 = -i, w_2 = 0, w_3 = \infty.$
- **16.** Encuentra una transformación de Möbius T que transforme el dominio abierto no acotado del plano complejo de frontera los círculos C(5,4) y C(-5,4) sobre un anillo $\{w: 1 < |w| < R\}$. Calcula R.
- **17.** Demuestra que la inversión $T(z) = \frac{1}{z}$ transforma el círculo C(a, r) en el círculo de radio $\frac{r}{||a|^2 r^2|}$ si $|a| \neq r$. Halla la imagen en el caso en que |a| = r.
- **18.** Halla los puntos simétricos al punto 2+i respecto de la circunferencias |z|=1 y |z-i|=3.
- 19. Halla el simétrico respecto de la circunferencia unidad de los conjuntos siguientes:
 - a) la circunferencia |z-1|=1,
 - b) la circunferencia |z a| = |a|
 - c) la hipérbola $x^2 y^2 = 1$.
- ${\bf 20.}$ Halla la imagen de los siguientes dominios del plano complejo mediante la transformación T dada:

a)
$$\{z: 0 < \arg z < \frac{1}{4}\pi\},$$
 $T(z) = \frac{z}{z-1},$

b)
$$\{z: 0 < \text{Re } z < 1\},$$
 $T(z) = \frac{z-1}{z-2},$

c)
$$\{z: 1 < |z| < 2\},$$
 $T(z) = \frac{z}{z-1}.$

- **21.** Halla la transformada de Möbius que transforma el círculo C(0;1) en una recta paralela al eje imaginario, el punto z=4 en el punto w=0 y deja el círculo C(0,2) invariante.
- **22.** Sea $\Omega = D(-1,2) \cap D(1,2)$. Halla una función holomorfa e inyectiva que aplique el conjunto Ω sobre el semiplano superior $\{w \in \mathbb{C} : \operatorname{Im} w > 0\}$
- 23. Halla una transformación de Möbius que transforme de manera biyectiva el conjunto

$$A = \{ z \in \mathbb{C} : |z - 1| < \sqrt{2}, |z + 1| < \sqrt{2} \}$$

en el interior del primer cuadrante.

