HM50256 Series

262144-word × 1-bit Dynamic Random Access Memory

FEATURES

- Industry Standard 16-Pin DIP, 18-Pin PLCC, 16-Pin ZIP
- Single 5V (±10%)
- On chip substrate bias generator
- Low Power: 350mW active, 20mW standby
- High speed: Access Time 120ns/150ns/200ns(max.)
- Common I/O capability using early write operation
- Page mode capability
- TTL compatible
- 256 refresh cycles · · · (4ms)
- 3 variations of refresh · · · RAS only refresh, CAS before RAS refresh, Hidden refresh

■ ORDERING INFORMATION

	Type No.	Access Time	Package
_	HM50256P-12	120ns	200 mil 16 min Blastin
	HM50256P-15	150ns	300 mil 16 pin Plastic
	HM50256P-20	200ns	DIP
_	HM50256ZP-12	120ns	
	HM50256ZP-15	150ns	16 pin Plastic ZIP
	HM50256ZP-20	200ns	
_	HM50256CP-12	120ns	
	HM50256CP-15	150ns	18 pin PLCC
	HM50256CP-20	200ns	_

PIN ARRANGEMENT

HM50256P Series

HM50256P Series

(DP-16B)

HM50256CP Series

(CP-18)

HM50256ZP Series

■ PIN DESCRIPTION

A.~A.	Address Inputs Column Address Strobe					
CAS						
Din	Data In					
Dout	Data Out					
RAS	Row Address Strobe					
WE	Read/Write Input					
Vcc	Power (+5V)					
Vss	Ground					
A.~A,	Refresh Address Inputs					

■BLOCK DIAGRAM

■ABSOLUTE MAXIMUM RATINGS

■ RECOMMENDED DC OPERATING CONDITIONS (Ta=0 to +70°C)

Parameter	Symbol	min	typ	max	Unit	Note
Supply Voltage	V _{cc}	4.5	5.0	5.5	V	1
Input High Voltage	Vin	2.4	_	6.5	v	1
Input Low Voltage	V _{IL}	-1.0	_	0.8	v	1

Note) 1. All voltages referenced to V_{ss}

EDC ELECTRICAL CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5V\pm10\%$, $V_{ss}=0V$)

Parameter	Symbol	HM50256-12		HM50256-15		HM50256-20			Ι
i elemeret		min	max	min	max	min	max	Unit	Notes
Operating Current(RAS, CAS = Cycling: trc = min)	Icci	_	83	_	70	_	55	mA.	1
Standby Current(RAS - VIN, Dout - High Impedance)	Icc:		4.5	-	4.5		4.5	mA	
Refresh Current(RAS only Refresh, tac-min)	I _{cc} ,	_	62	_	53	_	42	m.A	
Standby Current(RAS - VIN, Dout = Enable)	Ices	_	10	_	10	_	10	mA	1
Refresh Current(CAS before RAS Refresh, tac-min)	Icc.	_	69	<u> </u>	58	_	45	mA	—
Page Mode Supply Current ($\overline{RAS} = V_{IL}$, $\overline{CAS} = \text{Cycling}$, $t_{PC} = \text{min}$)	leer	-	57	-	48	_	37	mA	1
Input leakage(0 <v<7v)< td=""><td>Iu</td><td>-10</td><td>10</td><td>-10</td><td>10</td><td>-10</td><td>10</td><td>μA</td><td></td></v<7v)<>	Iu	-10	10	-10	10	-10	10	μA	
Output leakage(0 < Vot < 7V, Dout = Disable)	ILO	-10	10	-10	10	-10	10	μA	
Output levels High(Imi = -5mA)	Vow	2.4	Vcc	2.4	Vcc	2.4	Vcc	V	-
Output levels Low(Int-4.2mA)	VoL	0	0.4	0	0.4	0	0.4	v	†

Notes) 1. Icc depends on output loading condition when the device is selected. Icc max is specified at the output open condition.

ECAPACITANCE (V_{cc} -5V±10%, Ta-25°C)

	Symbol	typ	max	Unit	Notes	
	Address, Data-in	Cn	_	5		1
Input Capacitance	Clocks	Ca	_	7	рF	1, 2
Output Capacitance	Data-out	C ₀		7		1, 2

Notes) 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

BELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(Ta=0 \text{ to } +70^{\circ}\text{C}, V_{cc}=5\text{V}\pm10\%, V_{ss}=0\text{V})^{-1), -10), -11)}$

D .		HM50256-12		HM50256-15		HM50256-20		Lisia	Notes
Parameter	Symbol	min	max	min	max	min	max	Unit	Notes
Random Read or Write Cycle Time	trc	220		260		330		ns	
Read-Write Cycle Time	trw c	265		310		390		ns	
RAS to CAS Delay Time	trcn	25	60	25	75	30	100	ns	7
Access Time from RAS	trac	-	120	-	150		200	ns	2, 3
Access Time from CAS	tcac		60		75		100	ns	3, 4
Output Buffer Turn-off Delay	toff		30		40		50	ns	5
Transition Time (Rise and Fall)	tr	3	50	3	50	3	50	ns	б
RAS Precharge Time	trp	90		100		120		ns	
RAS Pulse Width	tras	120	10000	150	10000	200	10000	ns	
RAS Hold Time	trsn	60		75		100		ns	Ī
CAS Hold Time	tсsн	120		150		200		ns	
CAS Pulse Width	tcas	60	10000	75	10000	100	10000	ns	
CAS to RAS Precharge Time	tcrp	10		10		10		ns	
Row Address Set-up Time	tasr	0	1	0	-	0	-	ns	
Row Address Hold Time	tr a h	15		15		20	-	ns	
Column Address Set-up Time	tasc	0	1	0		0	-	ns	
Column Address Hold Time	tc ah	20		25	1	30		ns	
Column Address Hold Time referenced to RAS	tar	80	<u> </u>	100		130		ns	1
Read Command Set-up Time	trcs	0		0		0		ns	
Read Command Hold Time referenced to CAS	trcн	0		0		0	-	ns	
Write Command Set-up Time	twcs	0	-	0		0		ns	8
Write Command Hold Time	twcн	40		45		55		ns	
Write Command Hold Time referenced to RAS	twcr	100		120		155		ns	
Write Command Pulse Width	ħw P	40		45		55		ns	
Write Command to RAS Lead Time	t _{RWL}	40		45		55		ns	
Write Command to CAS Lead Time	tcwL	40	-	45		55	-	ns	
Data-in Set-up Time	tos	0	-	0		0	1	ns	9
Data-in Hold Time	toн	40		45		55	1	ns	8,9
Data-in Hold Time referenced to RAS	tohr	100		120		155		ns	
RAS to WE Delay	trw D	120		150		200		ns	Ī
CAS to WE Delay	tcwn	60		75		100		ns	8
Page Mode Read or Write Cycle	tec	120		145		190		ns	
Page Mode Read Modify Write Cycle	tрсм	165		195		250		ns	
CAS Precharge Time, Page Cycle	tc _P	50	1	60	-	80		ns	
Read Command Hold Time referenced to RAS	trrh	10		10		10		ns	
Refresh Period	tref	1	4	T	4		4	ms	T
CAS Set-up Time	tcsr	10	1	10		10		ns	T
CAS Hold Time (CAS before RAS Refresh)	tchr	120		150	-	200		ns	
RAS Precharge to CAS Hold Time	trpc	0	T	0	T	0		ns	T

^{2.} CAS - Vin to disable Dout.

Notes

- 1. AC measurements assume $t_T = 5 \text{ ns.}$
- 2. Assumes that $t_{RCD} \leq t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 3. Measured with a load circuit equivalent to 2TTL loads and 100pF.
- 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max). 5. t_{OFF} (max) is defined as the time at which the output achieves the open circuit condition and output voltage levels are not referred.
- 6. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- 7. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, access time is controlled exclusively by tCAC.

- 8. twcs, tcwp and trwp are not restrictive operating parameters.
 - They are included in the data sheet as electrical characteristics only; if $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data output pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{CWD} \ge t_{CWD}$ (min) and $t_{RWD} \ge$ IRWD (min), the cycle is a read-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
- These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in delayed write or read-modify-write cycles.
- 10. An initial pause of 100 µs is required after power-up then execute at least 8 initialization cycles.
- 11. At least, 8 CAS before RAS refesh cycles are required before using internal refresh counter.

TIMING WAVEFORMS

READ CYCLE

• WRITE CYCLE

• READ MODIFY WRITE CYCLE

● RAS ONLY REFRESH CYCLE

● HIDDEN REFRESH CYCLE

● CAS BEFORE RAS REFRESH CYCLE

COUNTER TEST

● PAGE MODE READ CYCLE

● PAGE MODE WRITE CYCLE

● PAGE MODE READ MODIFY WRITE CYCLE

