This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

Preventive effects of an antiallergic drug, pemirolast potassium, on restenosis after percutaneous transluminal coronary angioplasty

Hidefumi Ohsawa, MD, Hirofumi Noike, MD, Masahito Kanai, MD, Masaki Yoshinuma, MD, Kazuhito Mineoka, MD, Takashi Hitsumoto, MD. Kaneyuki Aoyagi, MD, Takeshi Sakurai, MD, Shin Sato, MD, Takashi Uchi, MD, Kohei Kawamura, MD, Keiichi Tokuhiro, MD, Yasumi Uchida, MD, and Hisao Tomioka, MD Sakura, Japan

Background We recently confirmed that pemirolast potassium, an antiollergic agent, morkedly inhibits migration and proliferation of vascular smooth muscle cells. It has also been reported that pemirolast inhibits intimal hyperplasia in animal experiments.

Methods and Results To elucidate the preventive effects of pemirolast on restenosis after percutaneous transluminal coronary angioplasty (PTCA), 227 patients were enrolled in this prospective, randomized trial. A total of 205 patients who were compatible with the protocol were analyzed (pemirolast group, 104 patients with 140 lesions; control group, 101 patients with 133 lesions). Patients in the pemirolast group received 20 mg/d of pemirolast from 1 week before PTCA until the time of follow-up angiography (4 months after PTCA). Angiographic restenosis was defined as diameter stenosis \geq 50% at follow-up. Restenosis rates were significantly lower in the pemirolast group than in the control group (24.0% vs 46.5% of patients, 18.6% vs 35.3% of lesions, P < .01, respectively). During 8 months of follow-up, there were no coronary events (death, myocardial infarction, coronary artery bypass surgery; or repeated PTCA) in 81.7% of the pemirolast group and in 63.4% of the control group (P = .013).

Conclusions This study suggested that pemirolast would be useful in the clinical setting to prevent restenosis after PTCA. (Am Heart J 1998;136:1081-7.)

Restenosis after percutaneous transluminal coronary angioplasty (PTCA) remains an important unsolved problem. Stenting has contributed to reduction of restenosis by preventing pathologic vascular remodeling, 1,2 but the proliferation of vascular smooth muscle cells (VSMC), one of the causes of restenosis, is observed even after stent placement. 3 Pharmacologic strategies that prevent the proliferation of VSMC in animals have been ineffective in human beings. Recently, the antiallergic and antikeloid drug tranilast was reported to be effective in preventing restenosis after PTCA4.5 in Japan. Experimental studies have shown that tranilast particularly inhibits collagen synthesis through the suppression of transforming growth factor (TGF)-

β1,7 which suggests that tranilast may prevent restenosis. On the other hand, we recently confirmed that pernirolast potassium, ⁸⁻¹² an antiallergic agent widely used in Japan, markedly inhibits migration and proliferation of VSMC, mainly by inhibition of inositol phospholipid turnover, which is the initial stage of the intracellular signal transduction system. ¹³ The inhibitory effects of pemirolast on VSMC proliferation are found to be higher than those of tranilast (unpublished data).

Furthermore, it has been reported that pemirolast, inhibits intimal hyperplasia in animal experiments. ¹⁴ On the basis of these results, we conducted a clinical prospective, randomized study to investigate the preventive effects of pemirolast on restenosis after PTCA.

From the Cardiovascular Center and the Department of Internal Medicine, Sakura Hospital, Toha University School of Medicine

Submitted October 2, 1997; accepted April 10, 1998

Reprint requests: Hidelumi Ohsawa, MD. Cardiovascular Center, Sakura Hospital, Toho University, School of Medicine, 354-1 Shimasinzu, Sakura City, Chiba, 285, Japan.

Copyright © 1998 by Morby, Inc. 0002-8703/98/\$5.00 + 0 4/1/90930

Methods

Patient selection

The study population consisted of patients with symptomatic ischemic hear disease caused by de novo lesions of the native coronary artery. The specific angiographic criterion for enrollment was \$75% stenosis to be dilated (classification of

American Heart Journal December 1998

1082 Ohsowa et al

percentage of stenosis by the American Heart Association Committee Report¹5). The criteria for exclusion were acute myocardial infarction, left ventricular ejection fraction of ≤40%, and renal failure treated with hemodialysis. The angiographic criteria for exclusion were the presence of type C lesions¹6 such as chronic total occlusion (≥3 months old), ostial lesions, diffuse lesions, and left main trunk lesions.

After the patients were interviewed to determine their eligibility and had been given informed consent, they were randomly and prospectively assigned to one of two groups: a group given permirolast (permirolast group) to a group not given permirolast (control group).

Drug treatments

The pemirolast group was given 20 mg/d pemirolast, its standard dose as an antiallergic drug, from 1 week before PTCA until follow-up angiography 4 months later. All subjects in both groups were given aspirin (81 mg/d), nitrate, calcium antagonists, and/or β-blockers (selected at the discretion of attending physicians) from at least 1 week before the procedure to follow-up angiography 4 months later. Drugs for treating complications such as hypertension, hyperlipidemia, and diabetes mellitus were used at the discretion of attending physicians, but the use of other antiallergic drugs was prohibited.

Angioplasty protocol

Angioplasty was performed with the conventional techniques. Immediately before the procedure, patients received an initial bolus injection of heparir. (8000 to 10,000 units) and intracoronary administration of 200 µg nitroglycerin. Evusing balloon angioplasty, investigators attended to achieve an optimal result, which was defined as residual stenosis of <30% of the luminal diameter according to a visual estimate, without any complications (death, myocardial infarction coronary aftery bypass surgery [CABG], or ball-out stenting). Heparin and nitroglycerin infusions were continued for 24 hours after the procedure.

Follow-up

All treated patients were monitored for at least 8 months. Adverse effects attributable to periirolast were monitored at the fixed periods (before administration and 1 day, 2 weeks, and 4 months after PTCA) by interview as well as by laboratory examinations. Coronary angiography was repeated 4 months after PTCA. If ischemic symptoms recurred within a months after PTCA, coronary angiography was performed earlier. If no definite restenosis was found a subsequent angiography was repeated 4 months later.

Angiographic analysis

Coronary angiograms obtained before, immediately after, and 4 months after PTCA were reviewed by an unbiased

angiographer without knowledge of group randomization. All views were recorded after intracoronary administration of nitroglycerin (200 µg). Lesions were visualized in multiple views and scored according to the presence of eccentricity, irregularity, calcification, thrombus, ulceration, and so on.

For quantitative analysis, end-diastolic cineframes were selected from the angiographic views demonstrating the maximal degree of stenosis and were matched before, immediately after, and at follow-up. The selected cineframes were digitalized with a cinevideo converter, and a computer edgedetection algorithm was applied to the anerial and catheter contours (Coronary analyzer system; PADL Co, Osaka, Japan). With the guiding and diagnostic catheters as the calibration standard, reference diameter, minimal lumen diameter, and percentage of diameter stenosis were calculated. Acute gain was defined as the increase in minimal lumen diameter immediately after PTCA, late loss as the decrease in minimal lumen diameter at follow-up (postprocedure minus follow-up minimal lumen diameter), and net gain as the difference between acute gain and late loss. Successful angioplasty was defined as the reduction of diameter stenosis to <50%. Angiographic restenosis was defined as a diameter stenosis ≥50% at the end of follow-up.

End points

The primary end point of the trial was angiographic evidence of restenosis at follow-up. Secondary end points were clinical: occurrence of acute closure, acute myocardial infarction, repeated PTCA, and CABG within the first 8 months after the initial PTCA. Event-free survival was defined as absence of death, myocardial infarction, or repeated revascularization by PTCA or CABG.

Statistical analysis

For the analysis of continuous variables, the Student's t test was used to assess differences between the pemirolast group and the control group. The results are expressed as mean \pm SD. Categorical variables, which are presented as rates, were compared by chi-square test, except for the composite clinical end point and revascularization of the target lesion, which were analyzed by means of Kaplan-Meier survival curves, with differences between the 2 groups compared by Wilcoxon test. Statistical significance was defined as P < .05.

Results

Between January 1994 and June 1996, 227 patients were enrolled in this study. Twenty-two of them were excluded from evaluation because of the failure or subuptimal results of PTCA (17 patients), deviation from the protocol (2 patients), or lack of follow-up angiography (3 patients). Thus the final study group comprised 205 patients, with 104 patients (140 lesions)

KOW BIOMEDICAL INFORMATION SERVICE

Cumulative frequency distribution curves.

in the pemirolast group and 101 patients (133 lesions) in the control group.

Baseline characteristics

Baseline clinical characteristics are shown in Table 1, and baseline angiographic and procedure-related characteristics are shown in Table II. There were no significant differences in baseline characteristics between the 2 groups except for a higher incidence of chronic occluded lesions (<3 months old) in the pemirolast group than in the control group.

Angiographic results

The average time to follow-up angiography was 4.2 \pm 0.7 months (pemirolast group; 4.0 \pm 0.4 months; control group: 4.4 ± 0.8 months, not significant [NS]). Luminal dimensions at baseline, immediately after PTCA, and at follow-up are shown in Table III. At

Kaplan-Meier survival curves for major cardiac events (death, myocardial infarction, coronary artery bypass surgery, and repeated angioplasty).

baseline, there were no differences between the 2 groups in reference diameter, minimal lumen diameter, or severity of stenosis. Immediately after PTCA, there were no differences in minimal lumen diameter. severity of stenosis, or acute gain between the 2 groups, whereas at follow-up the pemirolast group had a smaller mean reduction in minimal lumen diameter (late loss: 0.20 ± 0.61 vs 0.46 ± 0.57 mm, P < .001) and larger net gain (1.23 \pm 0.68 vs 0.91 \pm 0.62 mm, P < .001), resulting in a larger minimal lumen diameter (1.87 \pm 0.70 vs 1.62 \pm 0.68 mm, P < .001) and a lower severity of stenosis (33.6% ± 20.9% vs $43.6\% \pm 19.5\%$, P < .001). The cumulative distribution of the minimal lumen diameter is shown in Fig 1. Restenosis rates both per lesion and per patient in the pemirolast group were lower than those in the control group (18.6% vs 35.3% and 24.0% vs 46.5%, P = .002, respectively).

Clinical outcomes

The numbers of various types of clinical events at 8 months among all 205 patients are shown in Table IV. During follow-up no patient died in either group, but I patient in the control group had a non-Q-wave myocardial infarction caused by restenosis and received elective CABG. The incidence of recurrent angina was significantly lower in the pemirolast group than in the control group (6.7% vs 19.8%, P =.012). There was no significant difference in the incidence of a positive treadmill test between the pemirolast group and the control group (11.5% vs 16:8%). A repeated angioplasty was performed on

1084 Ohsowa et al

American Heart Journal December 1908

	Pemirolast. $(n = 104)$.	Control (n = 101)	Pyalue
Male sex	78.8		·
Age (mean ± SD years)	62 ±: 10	75.2	. NS
Unstable angina		61 ± 10	NS
History of myocardial infarction	38.5	26.7	. NS
Typerlipidemia	. 41.3	39.6	NS
Typertension	51.9*	46.5	NS
Current smoker	52.9	40.6	NS
Obesity (body mass index ≥26)	41.3	35.6	NS
Diabetes mellitus	29.8	30.7	NS
Typeruricemia	28.8	26.7	NS
Concomitant drugs	12.5	13.9	N5
Nitrates			113
	88.5	85.1	NC
Antiplatelet agent (aspirin, 81 mg)	94.2	97.0	NS
Calcium channel blockers	76.0	72.3	, NS
β-Blockers	. 46.2	50.5	NS
ACE inhibitors	20.2	15.8	N5
Antilipemic drugs (pravastatin or simvasiatin)	. 269	20.8	NS
lo. of target lesions per patient	,	20.8	NS
	62.5	63.4	· NS
2	. 22.1		•,
3	15 4	29.7 6.9	

Values are % of patients

those patients who showed such ischemic signs. The incidence of repeat angioplasty was lower in the pemirolast group than in the control group (18.3% vs 36.6%, P = .005). In addition, 6 patients (5.8%) in the pemirolast group and 9 control patients (8.9%) in whom ischemic signs were not recognized were followed up medically. The results demonstrated that the event-free survival rate was significantly higher in the pemirolast group than in the control group (81.7% vs 63.4%, P = .013) (Fig 2).

A slight elevation of glutamic-pyruvic transaminase was observed in 1.9% (2 of 104) of patients 1 to 2 weeks after starting administration of penuirolast, but this returned to the baseline level after 2 weeks without interruption of administration. One of the 2 patients was positive for hepatitis C virus antibody. Neither symptoms nor significant aggravation of laboratory findings attributable to permisolast were observed in the other 102 patients.

Discussion

Before our study, Kato et al⁵ noted the similarity of reparative processes of vascular wall injury, VSMC proliferation, and extracellular matrix synthesis to the process of keloid formation and conducted multicenter, placebo-controlled, double-blind studies to elucidate the preventive effects of the antiallergic and

antikeloid drug tranilast on restenosis after PTCA.45
They reported that tranilast reduced clinical restenosis at 3 months after PTCA.4

In the current randomized comparative study, the antiallergic agent pemirolast was found to reduce not only the angiographic restenosis rate but also late cardiac events. Pemirolast is known to result in minor and infrequent adverse events in 3.6% of 112 patients (nausea: 0.9%, headache: 0.9%, exanthema: 0.9%, slight increase in number of platelets: 0.9%) in comparison with tranilast (12.4% of 113 patients). A low incidence of adverse effects (1.9%) was confirmed in the current study. These results suggest that pemirolast has pharmacologic properties useful in preventing restenosis after PTCA.

However, the exact mechanisms are not known. The results of preclinical studies both in vitro¹³ and in vivo¹⁴ suggest that pernirolast reduces restenosis by preventing neointimal hyperplasia. In recent years, serial (after angioplasty and follow-up) intravascular ultrasound (IVUS) studies^{17,18} have been performed to examine the restenosis process after PTCA, and it has been determined that 2 basic underlying mechanisms, namely neointimal proliferation and vascular remodeling, participate in restenosis. Further, it has been considered that neointimal hyperplasia is solely responsible for in-stent restenosis. ^{3,18} Our serial IVUS study in

... Am Yol

To

W Inf Ty

L€ Bı

ln

,,,

__

F tl E

> F² C F

> F I.

1 (T

(((

t t

1 1

Anierican Heari Journal Volume 136, Number 6

Ohsawa et al 1085

inable II Angiographic and procedure related characteristics

		% of Lesions			
		pemirolasi (n = 140)	control $(n = 133)$		P value
Target vessel		,			
Left anterior descending		. 44.3	45.9		NS
Left circumflex	•	28.5	27.8		NS
Right coronary artery		27.9	26.3		
With collaterals		18.6	17.3		NS
Infarct-related lesion	•	25.7			- NS
Type of lesion		23.7	23.3	. 9	NS
Type A		26.4	20.35		· NS
Type B		73.6	30.1		
Lesion morphology		, /3.6 .	69.9	•	
Concentric	•	26.4			
Eccentric		28.6	. 32.3		NS
. Major branch involved		37.1	38.3		.NS
Irregular contout		10.0	11.3		NS
Calcified	, `	15.7	12.8		NS
Occluded (<3 months old)	•	10.0	9.8		NS
Thrombus		11.4	4.5		.04
Ulceration		4.3	2.3		N5
Dissection		5.7	4.5		1715
		2.1	1.5		NS .
esion length (mm)		6.9 ± 3.4	6.5 ± 3.3		NS
Balloon/artery ratio	•	1.14 ± 0.18 .	1.14 ± 0.15		NS
nflation of the largest balloon			•	•	•
Frequency		31 ± 1.3	3.0 ± 1.2		NS
Maximal pressure (aim).	• -	9.5 ± 2.1	9.5 ± 2.5	•	NS
Total Inflation time (s)	•	213 ±.128	200 ± 86		NS

patients treated with balloon angioplasty documented that pemirolast does not prevent vascular remodeling but does prevent neointimal hyperplasia. Furthermore, a similar study in patients with stent placements supponed the view that the inhibitory action of pemirolast on neointimal hyperplasia is responsible for restenosis prevention (unpublished data). Consequently, it is considered that concomitant therapy by stenting and with pemirolast is more useful for preventing restenosis.

VSMC proliferation and the production of extracellular matrix are the result of complex processes 19-21 involving cytokines such as growth factors, arachidonic acid metabolites, and endothelium-derived contraction factors. Consequently, inhibition of the intracellular signal transduction systems common to many cytokines is likely to result in the effective inhibition of VSMC proliferation. Up to now 2 pathways for these intracellular signal transduction proliferation systems are known, 22 one of which involves membrane inositol phospholipid turnover 25 starting from the activation of receptor tyrosine kinase. We confirmed through molecular biologic testing that pemirolast markedly inhibits VSMC proliferation induced by

platelet-derived growth factor, angiotensin II, or endothelin I. In addition, we found that pemirolast suppresses membrane inositol phospholipid turnover at an early stage of the intracellular signal transduction system, which suggests that this is one of the mechanisms by which the agent inhibits VSMC proliferation. 13 It has been reported that translast prevents VSMC proliferation and collagen synthesis through the suppression of TGF- β 1.6,7 However, it remains to be elucidated whether pemirolast also acts through the suppression of TGF- β 1.

The first steps have just been taken toward elucidating the mechanisms by which translast and pemirolast inhibit restenosis and clarifying the exact mechanisms of their actions. The common pharmacologic characteristics of translast and pemirolast as antiallergic agents is that both compounds have activity in targeting mast cells. It is well known that mast cells exist abundantly in the vascular wall, especially in the adventitia, and that they secrete chymase, an angiotensin II-forming enzyme.²⁴⁻²⁶

Experimental studies have shown that angiotensin Ilpromotes the proliferation of VSMC and extracellular 1086 Ohsawa et al

American Heart Journal

Toble III The log month comission			
	Pemirolast (n = 140)	Control (n = 133)	Pyalue
Before the procedure	•		
Reference diameter (mm) Minimal lumen diameter (mm) Stenasis (%)	2.70 ± 0.56 0.63 ± 0.35 76.4 ± 11.9	2.70 ± 0.53 0.71 ± 0.34 74.7 ± 10.6	NS NS
After the procedure	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	74.7 ± 10.6	NS
Minimal lumen diameter (mm) Stenasis (%)	2.07 ± 0.46 21.4 ± 8.9	2.07 ± 0.42 22.1 ± 8.9	NS
At follow-up		22.1 2 0.7	: N5
Minimal lumen diameter (mm) Stenosis (%) Change in minimal lumen diameter	1.87 ± 0.70 33.6 ± 20.9	1.62 ± 0.68 43.6 ± 19:5	.003 <.001
Acute gain (mm)	1.44 ± 0.52	1.37 ± 0.43	. NS
Late loss (mm) Net pain (mm)	0.20 ± 0.61	0.46 ± 0.57	<.001
Restenosis	1.23 ± 0.68	0.91 ± 0.62	<.001
Lesions (%) Palients (%)	26/140 (18.6) 25/104 (24.0)	47/133 (35.3) 47/101 (46.5)	.002

	Pemirolast (n = 104)	Control (n = 101)	P value
Cardiac death	0		
Myocardial infarction	0) (1.0 %)	
Recurrent angina	7 (6.7%)	20 (19.8%)	:012
lectrocardiographic changes during exercise	12 (11.5%)	17 (16.8%)	:012
Veither angina nor electrocardiographic changes	6 (5.8%)	9 (8.9%)	
Repeated angioplasty	19 (18.3%)	36 (35.6%)	.005
Elective CABG	· · · · · · · · · · · · · · · · · · ·	1 (1.0%)	

matrix by activating platelet-derived growth factor, TGF- β , basic fibroblast growth factor, and endothelin 1.27,28 Injury to the intima of the carotid antery in dogs has been shown to lead to an increase in the number of mast cells in the adventitia and fibrotic outgrowth as well as intimal hyperplasia. Moreover, an increase in angiotensin II levels and a chymase level exceeding the angiotensin-converting enzyme (ACE) level were demonstrated in the injured vascular wall 26

Given these reports, it is important to examine the effects of pemirolast on the chymase-dependent angiotensin II—forming pathway, and we will perform further studies to elucidate the mechanisms by which pemirolast prevents restenosis

Limitations

Because this study was not a double-blind but an open study, a double-blind study must still be done. The most appropriate time to begin administration is

an important issue to be determined. If VSMC proliferation begins in the first 24 hours after PTCA, as has been reported, ²⁹ preprocedural administration is likely to be more effective. In this study, therefore, administration was started 1 week before PTCA. If efficacy is not affected, however, it would be sensible and desirable to begin administration after the procedure. Further studies are required to determine the ideal dosage, appropriate time to begin administration, and duration of administration to bring permirolast into clinical use as a new preventive modality of restenosis.

References

- Serruys PW, De Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrikx G, et al. A comparison of balloon-expandable stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994;331:489.95.
- 2. Fischman DL, Lean MB, Baim DS, Schatz RA, Savage MP, Penn I, et

Ameria Volum

5

٠.

8

9

10

1

1:

1

. 1

American Heart Journal Volume 136, Number 6

Ohsawa et al 1087

- al. A randomized comparison of coronary-stem placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 1994;331:496-501.
- Hoffmann R, Mintz GS, Dussaillant GR, Popmo JJ, Pichard AD,
 Satler LF, et al. Patterns and mechanisms of in-stent restenosis: 6 serial intravascular ultrasound study. Circulation 1996;54:1247-54.
- 4. The TREAT Study Investigators. The impact of translast on restensis following coronary angioplasty: the Translast Restensis Following Angioplasty Trial [TREAT] [abstract]. Circulation 1994:90:1-652.
- Kato K, Tamai H, Hayakawo H, Yamaguchi T, Kanmatsuse K, Haze K, et al. Clinical evaluation of translast on restenosis: after percutoneous transluminal coronary angioplasty(PTCA): a double-blind placebo-controlled comparative study. J Clin Therap Med 1996;12:65-85.
- Tanako K, Honda M, Kuramochi T, Morioke S. Prominent inhibitory effects of translast on migration and proliferation of and collagen synthesis by vascular smooth muscle cells. Atherosclerosis 1994;107:179-85.
- Suzowa H, Kikuchi S, Arai N, Koda A. The mechanism involved in the inhibitory action of translast on collagen biosynthesis of keloid fibroblast. Jpn J Pharmacol 1992;60:91-6.
- 8. Yanagihara Y, Kasai H, Shida T. Immunapharmocological studies on TBX, a new antiallergic drug, II: inhibitory effects on histomine release from peritoneal mast cells and lung fragments of rats. Jpn J Pharmocol 1988;48:103-12.
- Fujimiyo H, Nakoshima S, Miyata H, Nizowo Y. Effect of a novel antiallergic drug, pemirolast, an activation of rai perinoneal mast cells: inhibition of exocytotic response and membrane phospholipid turnover. Int Arch Allergy Appl Immunol 1991;96:62-7.
- Kowashimo T, Sato Y, Alba T. Omuro S, Kasai H. Inhibitory effect of pemirolast potassium (TBX) on release of histomine and leukotriene. D4 and B4 and on production of platelat-activating factor. Pharmacometrics 1993;46:265-71.
- Fujimiya H, Nakashima S, Kumada T, Nakamura Y, Miyata H, Nizawa Y. An antiallergic drug, pemirolast potassium, inhibits inosital 1,4,5-trisphosphate production and Co2+ mobilization in antigen-stimulated rat basophilic leukemia(RBI-2H3) cells Jpn J Allergol 1994;43:142-51.
- Yoshido S, Tomioko H, Takishima T, Kobayoshi S. Makino S, Miyamoto T, et al. Clinical evaluation of an orally antiallergic agent, TBX, in adult branchial asthma; Multi-center double-blind study in comparison with translast. Jpn Pharmacol Ther 1989;17:933-81.
- Kanoi M. Effects of a novel antiallergic arug, pemirolissi potassium, on the proliferation and migration of cultured smooth muscle cells from rat porta. J Jpn Atheroscler Soc 1996;23:707-13.
- 14. Miyazawa N, Uemuro K, Mizuno A, Kondo K, Nakoshimo M.

- Inhibitory effect of pemirolast, anti-allergic drug, on neointimal thickening after arterial injury in the rat Jpn J Pharmacol 1996;71 (suppl 1).233
- AHA Committee Report. A reporting system on patients evaluated for coronary aftery disease. Circulation 1975;51:5.
- Ryon TJ, Bauman WB, Kennedy JW, Kereiokes DJ, King SB III, McCallister BD, et al. Guidelines for percutaneous transluminal coronary angioplasty: a report of the American College of Cardiology/American Heart Association Task Force on assessment of diagnostic and therapeutic cardiovascular procedures (Committee on percutaneous transluminal caranary angioplasty). J Am Coll Cardiol 1993;22:2033-54.
- Mintz GS, Popma JJ, Pichard AD, Kent KS, Satler LF, Wong SC, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 1996;94:35-43.
- Mintz GS, Popma JJ, Hong MK, Pichard AD, Kenl KS, Satler LF, et al. Intravascular ultrasound to discern device-specific effects and mechanisms of restenosis. Am J Cardial 1996;78(suppl 3A): 18-22.
- Ross R. Pathogenesis of atherosclerosis: a prospective for the 1990s. Nature 1993;362:801-9.
- Mattsson E, Clowes AW. Current concepts in restenosis following balloon angioplasty. Tr Cardiovasc Med 1995;5:200-4.
- Schwartz SM, deBiois D, O'Brien ERM. The intima: soil for atherosclerosis and restenosis. Circ Res 1995;77:445-65.
- Ludwig S, Rapp UR. Cascading towards voscular disorder gene therapy. Nat Med 1995;1:513-5.
- Ullrich A, Schlessinger J. Signal transduction by receptor with tyrosine kinose activity. Cell 1990;61:203-12.
- Uraia H, Kinoshita A, Misono KS, Bumpus FM, Husain A. Identification of a highly specific chymase as the major angiotensin Ilforming enzyme in the human heart. J Biol Chem 1990;265:22348-57.
- Kinoshiro A, Urata H, Bumpus FM, Husain A. Multiple determinants for the high substrate specificity of an angiotensin Il-forming chymase from human heart. J Biol Chem 1991;266:19192-7.
- . 26. Shioto N. Okunishi H, Fukamizu A, Sakanjo H, Kikumori M, Nishimura T, et al. Activation of two angiotensin-generating system in the balloon-injured artery. FEBS Lett 1993;323:239-46.
- 27. Jason EK, Garrison JC. Renin and angiotensin. In: Limbird LE, Gilman AG, editors. Goodman & Gilman's the phamocological basis of therapeutics. New York: MacGraw-Hill; 1996. p 733.
- Dzau VI. Local expression and pathophysiological role of reninongiotensin in the blood vessels and heart. In: Grobecker H, editor. Angiotensin and heart. New York: Springer Velag; 1993.
- Miono JM, Vlasic N, Tota RR, Stemerman MB. Smooth muscle cell immediate-early gene and growth factor activation follows vascular injury. Arterioscler Thromb. 1993;13:211-9.

American Heart Journal

is online of www.mosby.com/ohj

Univ. of Minn. Bio-Medical Library

December 1998 Volume 136, Number 6

Saltorials, page 931

Myocardial infarction, ventricular remodeling, and ACE inhibition

The Maze operation: Another view

When neoangiogenesis ricochets

Which is the best measure of valvular ASS

is challenge of introctable angina

Importance of failed stent delivery

davestigations, page 948

ectrophysiology

rin Lafter radiofrequency ablation

apolibrinolysis in atrial fibrillation

nacious sedation during cardioversion

protein(a) and LA thrombus in chronic Af

gostive Heart Failure

ocordial blood flow and LV dysfunction in HCM

atrial function in HCM

abolic and atrial factors in β-tholossemia major

cyle dysfunction in heart failure

and Rehabilitation system in syndrome X

lmaging/Diagnostic Testing

Aortic stenosis

IVUS imaging guide wire

Stress echo in myocardial infarction

Aortic regurgitation by Doppler echo

Three-dimensional echocardiography in aortic stenosis

Aartic dissection

Diagnostic value of 12-lead ECG during DSE

Valvular strands course in strake patients

Surgery

Maze operation and atrial mechanical function

Postoperative diastolic dysfunction in neonates

Inferventional Cardiology

Preventive effects of pemirolast on restenosis

Failed coronary stent deployment

Acute Ischemic Heart Disease

Carotid rupture and intraplaque hemorrhage

Unstable angina, clotting activation, and heparin

Spinal cord stimulation in angina pectaris

Founded in 1925

Editor in Chief: Robert M. Califf, MD Editor: Daniel B. Mark, MD, MPH

ISSN: 0002-8703