Programmazione e Algoritmi 1

A.A. 2023/24 — Soluzioni esercizi 1 e 2 del compito del 20 giugno 2024

prof. Gianluca Amato

Versione Python

Esercizio 1 (5 punti)

Un tipo di dato si chiama *immutabile* quando non è possibile modificare un oggetto di quel tipo una volta creato. Tipici esempi di dati immutabili sono interi (int), booleani (bool), stringhe (str), numeri in virgola mobile (float) e tuple. Se invece è possibile modificare il dato dopo la creazione, si parla di tipo di dato *mutabile*. Un esempio tipico di dato mutabile è la lista.

Bisogna stare a attenti a non confondere la modifica di un oggetto di un certo tipo dalla modifica di una variabile. Ricordiamo infatti che una variabile è solo un puntatore ad un oggetto. Una istruzione come a = a + 2 non modifica il numero puntato a ma crea un nuovo numero e modifica la variabile a in modo che punti ad esso. Di contro, se 1 è una lista, l'istruzione 1. append(2) non crea una nuova lista, ma modifica la lista puntata da 1 aggiungendo un elemento. La variabile 1 continua a puntare allo steso oggetto a cui puntava prima, solo che ora questo oggetto è cambiato.

Esercizio 2 (8 punti)

	riga j	programma	valore variabili	note
9			x=[1, 2, 3, 4]	
10			x=[1,2,3,4] y=[50, 60, 70, 80]	
11			x=[1,2,3,4] y=[50,60,70,80]	call mistero
	1		$11 = [1,2,3,4] \ 12 = [50,60,70,80]$	
	2		11=[1,2,3,4] $12=[50,60,70,80]$ $i=0$	
	3		11=[51,2,3,4] $12=[50,60,70,80]$ $i=0$	
	2		11 = [51,2,3,4] 12 = [50,60,70,80] i=1	
	3		$11 = [51,62,3,4] \ 12 = [50,60,70,80] \ i=1$	
	2		11=[51,62,3,4] $12=[50,60,70,80]$ $i=2$	
	3		$11 = [51,62,73,4] \ 12 = [50,60,70,80] \ i=2$	
	2		$11 = [51,62,73,4] \ 12 = [50,60,70,80] \ i=3$	
	3		11 = [51,62,73,84] 12 = [50,60,70,80] i=3	
	2		11 = [51,62,73,84] 12 = [50,60,70,80] i=3	return
11			x=[51,62,73,84] y=[50,60,70,80]	x è un alias di l1
12			x=[51,62,73,84] y=[50,60,70,80]	call mistero2
	5		l = [51,62,73,84]	
	6		l=[51,62,73,84] x=51	
	7		l=[51,62,73,84] x=51	print 51
	6		l=[51,62,73,84] x=62	
	7		l=[51,62,73,84] x=62	print 62
	6		l=[51,62,73,84] x=73	
	7		l=[51,62,73,84] x=73	print 73
	6		l=[51,62,73,84] x=84	
	7		l=[51,62,73,84] x=84	print 84
	5		l=[51,62,73,84] x=84	return
12			x=[51,62,73,84] y=[50,60,70,80]	

Notare che quando la funzione $\mathtt{mistero}$ termina, le modifiche apportate ad $\mathtt{11}$ sono visibili anche su \mathtt{x} . Questo perché, dopo la chiamata di funzione, \mathtt{x} è un alias di $\mathtt{11}$: le due variabili identificano esattamente la stessa lista.

Versione Java

Esercizio 1 (5 punti)

Lo svolgimento dell'esercizio è identico a quello della versione Python. L'unica differenza potrebbe essere negli esempi, visto che in Java non esistono le tuple e che il tipo lista è rimpiazzato dal tipo array.

Esercizio 2 (8 punti)

L'esercizio è molto simile a quello in Python, cambiano quasi esclusivamente i numeri di riga

	riga p	orogramma	valore variabili	note
15			$x=\{1, 2, 3, 4\}$	
16			$x = \{1,2,3,4\}$ $y = \{50, 60, 70, 80\}$	
17			$x = \{1,2,3,4\} y = \{50,60,70,80\}$	call mistero
	2		$11 = \{1,2,3,4\}$ $12 = \{50,60,70,80\}$	
	3		$11 = \{1,2,3,4\}$ $12 = \{50,60,70,80\}$ $i=0$	
	4		$11 = \{51,2,3,4\}$ $12 = \{50,60,70,80\}$ $i=0$	
	3		$11 = \{51,2,3,4\}$ $12 = \{50,60,70,80\}$ $i=1$	
	4		$11 = \{51,62,3,4\}$ $12 = \{50,60,70,80\}$ $i=1$	
	3		$11 = \{51,62,3,4\}$ $12 = \{50,60,70,80\}$ $i=2$	
	4		$11 = \{51,62,73,4\}$ $12 = \{50,60,70,80\}$ $i=2$	
	3		$11 = \{51,62,73,4\}$ $12 = \{50,60,70,80\}$ $i=3$	
	4		$11 = \{51,62,73,84\}$ $12 = \{50,60,70,80\}$ $i=3$	
	3		$11 = \{51,62,73,84\}$ $12 = \{50,60,70,80\}$ $i=4$	
	5		$11 = \{51,62,73,84\} \ 12 = \{50,60,70,80\}$	return
17			$x = \{51,62,73,84\} y = \{50,60,70,80\}$	x è un alias di l1
18			$x = \{51,62,73,84\} y = \{50,60,70,80\}$	call mistero2
	8		$l = \{51,62,73,84\}$	
	9		$l = \{51,62,73,84\} \text{ x} = 51$	
	10		$l = \{51,62,73,84\} \text{ x} = 51$	print 51
	9		$l = \{51,62,73,84\} $ $x = 62$	
	10		$l = \{51,62,73,84\} $ $x = 62$	print 62
	9		$l = \{51,62,73,84\} x = 73$	
	10		$l = \{51,62,73,84\} x = 73$	print 73
	9		$l = \{51,62,73,84\} $ $x = 84$	
	10		$l = \{51,62,73,84\} $ $x = 84$	print 84
	11		$l = \{51,62,73,84\}$	return
18			$x = \{51,62,73,84\}$ $y = \{50,60,70,80\}$	

Notare che quando il metodo mistero termina, le modifiche apportate ad 11 sono visibili anche su x. Questo perché, dopo la chiamata di funzione, x è un alias di 11: le due variabili identificano esattamente lo stesso array.