Section 1 Lecture 4 – Modular Arithmetic 2 - Solutions

Q1)

(i)
$$-14 = (-3) \times 6 + 4$$
 so the remainder is 4, so $-14 \pmod{6} = 4$

(ii)
$$-14 = (-3) \times 5 + 3$$
 so the remainder is 3, so $-12 \pmod{5} = 3$

(iii)
$$-27 = (-4) \times 7 + 1$$
 so the remainder is 1, so $-27 \pmod{7} = 1$

(iv)
$$-24 = (-5) \times 5 + 1$$
 so the remainder is 1, so $-24 \pmod{5} = 1$

(v)
$$-101 = (-11) \times 10 + 9$$
 so the remainder is 9, so $-101 \pmod{10} = 9$

(vi)
$$-6 = (-2) \times 3 + 0$$
 so the remainder is 0, so -6 (mod 3) = 0

(vii)
$$-6 = (-1) \times 6 + 0$$
 so the remainder is 0, so -6 (mod 6) = 0

(viii)
$$-99 = (-11) \times 9 + 0$$
 so the remainder is 0, so $-99 \pmod{9} = 0$

(ix)
$$-3 = (-1) \times 5 + 2$$
 so the remainder is 2, so -3 (mod 5) = 2

- Q2) In most cases, you can either use the table supplied or calculate directly
- (i) This gives 21 which corresponds to V
- (ii) This gives 0 which corresponds to A
- (iii) This gives 1 which corresponds to B
- (iv) A little more thought here since = $48 = (-2) \times 26 + 4$ this gives 4 which corresponds to E
- (v) This gives 0 which corresponds to A
- *Q3*) *Optional further question:*

You can define it, (e.g. $2.6 \pmod{-1.2} = 0.2$ since $2.6 = (-2) \times (-1.2) + 0.2$) but it's not really of much practical use as far as I know – if you do find practical applications let me know!