

Model Optimization and Tuning Phase Template

Date	16 JULY 2024
Team ID	SWTID1720075199
Project Title	Early Prediction Of Chronic Kidney Disease Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision Trees	<pre>from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridsearchCV # Create a decision tree classifier dt = DecisionTreeClassifier() # Define the parameter grid param_grid = {</pre>	If the reference of the control of t

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
Decision Tree	Training Accuracy of Decision Tree Classifier is 1.0 Test Accuracy of Decision Tree Classifier is 0.975 Confusion Matrix :- [[72 0] [3 45]] Classification Report :-
Random Forest	Training Accuracy of Random Forest Classifier is 0.9964285714285714 Test Accuracy of Random Forest Classifier is 0.975 Confusion Matrix :- [[72 0] [3 45]] Classification Report :-

XGBoost	Training Accur Test Accuracy Confusion Matr [[72 0] [2 46]] Classification	of XgBoost i	s 0.98333	33333333333		
	0 1		1.00	0.99	72 48	
	accuracy			0.98		
	macro avg			0.98		
	weighted avg	0.98	0.98	0.98	120	

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Vallaget	XgBoost was chosen as final model because it has highest accuracy and
XgBoost	to minimise overfitting during hyperparameter training.