2017年全国统一高考化学试卷 (新课标III)

- 一、选择题:本题共7个小题,每小题6分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.
- 1. (6分) 化学与生活密切相关。下列说法错误的是()
 - A. PM2.5 是指粒径不大于 2.5μm 的可吸入悬浮颗粒物
 - B. 绿色化学要求从源头上消除或减少生产活动对环境的污染
 - C. 燃煤中加入 CaO 可以减少酸雨的形成及温室气体的排放
 - D. 天然气和液化石油气是我国目前推广使用的清洁燃料
- 2. (6分)下列说法正确的是()
 - A. 植物油氢化过程中发生了加成反应
 - B. 淀粉和纤维素互为同分异构体
 - C. 环己烷与苯可用酸性 KMnO₄ 溶液鉴别
 - D. 水可以用来分离溴苯和苯的混合物
- 3. (6分)下列实验操作规范且能达到目的是()

	目的	操作		
Α.	取 20.00 mL 盐酸	在 50 mL 酸式滴定管中装入盐酸,调整初始读		
		数为 30.00mL 后,将剩余盐酸放入锥形瓶		
В.	清洗碘升华实验所用试管	先用酒精清洗,再用水清洗		
C.	测定醋酸钠溶液 pH	用玻璃棒蘸取溶液,点在湿润的 pH 试纸上		
D.	配制浓度为 0.010 mol/L	称取 KMnO₄固体 0.158 g, 放入 100 mL 容量瓶		
	的 KMnO₄溶液	中,加水溶解并稀释至刻度		

- A. A
- B. B
- C. C
- D. D
- 4. $(6 分) N_A$ 为阿伏加德罗常数的值. 下列说法正确的是 ()
 - A. 0.1 mol 的 ¹¹B 中, 含有 0.6N_A 个中子
 - B. pH=1 的 H₃PO₄溶液中,含有 0.1N_A 个 H⁺
 - C. 2.24L(标准状况)苯在 O_2 中完全燃烧,得到 $0.6N_A$ 个 CO_2 分子
 - D. 密闭容器中 1 mol PCl₃与 1 mol Cl₂反应制备 PCl₅(g),增加 2N_A个 P□Cl 键

5. (6分)全固态锂硫电池能量密度高、成本低,其工作原理如图所示,其中电极 a 常用掺有石墨烯的 S_8 材料,电池反应为:16 $Li+xS_8=8Li_2S_x$ (2 $\leq x\leq 8$)。下列说法错误的是(

- A. 电池工作时,正极可发生反应: 2Li₂S₆+2Li⁺+2e[□]=3Li₂S₄
- B. 电池工作时,外电路中流过 0.02 mol 电子,负极材料减重 0.14 g
- C. 石墨烯的作用主要是提高电极 a 的导电性
- D. 电池充电时间越长,电池中的 Li_2S_2 量越多
- 6. (6分)短周期元素 W、X、Y和 Z在周期表中的相对位置如表所示,这四种元素原子的最外电子数之和为 21. 下列关系正确的是()

	W	х	
Υ			Z

- A. 氢化物沸点: W<Z
- B. 氧化物对应水化物的酸性: Y>W
- C. 化合物熔点: Y₂X₃<YZ₃
- D. 简单离子的半径: Y<X
- 7. (6分) 在湿法炼锌的电解循环溶液中,较高浓度的 Cl□会腐蚀阳极板而增大电解能耗。可向溶液中同时加入 Cu 和 CuSO₄,生成 CuCl 沉淀从而除去 Cl□. 根据溶液中平衡时相关离子浓度的关系图,下列说法错误的是()

- A. K_{sp} (CuCl) 的数量级为 10^{□7}
- B. 除 Cl[□]反应为 Cu+Cu²⁺+2Cl[□]=2CuCl
- C. 加入 Cu 越多, Cu⁺浓度越高, 除 Cl□效果越好
- D. 2Cu+=Cu2++Cu 平衡常数很大, 反应趋于完全

二、解答题(共3小题,满分43分)

- 8. (14分)绿矾是含有一定量结晶水的硫酸亚铁,在工农业生产中具有重要的用途。某化学兴趣小组对绿矾的一些性质进行探究。回答下列问题:
- (1) 在试管中加入少量绿矾样品,加水溶解,滴加 KSCN 溶液,溶液颜色无明显变化。再向试管中通入空气,溶液逐渐变红。由此可知:____、___。
- (2)为测定绿矾中结晶水含量,将石英玻璃管(带两端开关 K_1 和 K_2)(设为装置 A)称重,记为 m_1 g. 将样品装入石英玻璃管中,再次将装置 A 称重,记为 m_2 g. 按下图连接好装置进行实验。

- ①仪器 B 的名称是 。
- ②将下列实验操作步骤正确排序_____(填标号);重复上述操作步骤,直至 A 恒重,记为 m_3 g。
- a. 点燃酒精灯,加热 b。熄灭酒精灯 c。关闭 K_1 和 K_2
- d. 打开 K_1 和 K_2 ,缓缓通入 N_2 e. 称量 A f. 冷却至室温
- ③根据实验记录,计算绿矾化学式中结晶水数目 x=______(列式表示)。若实验时按 $a \times d$ 次序操作,则使 x (填"偏大""偏小"或"无影响")。
- (3) 为探究硫酸亚铁的分解产物,将(2)中已恒重的装置 A 接入下图所示的装置中,打开 K_1 和 K_2 ,缓缓通入 N_2 ,加热。实验后反应管中残留固体为红色粉末。

- ①C、D中的溶液依次为_____(填标号)。C、D中有气泡冒出,并可观察到的现象分别为____。
- a. 品红 b. NaOH c. BaCl2d. Ba (NO3) 2e. 浓H2SO4
- ②写出硫酸亚铁高温分解反应的化学方程式。
- 9. (15分) 重铬酸钾是一种重要的化工原料,一般由铬铁矿制备,铬铁矿的主要成分为 FeO•Cr₂O₃,还含有硅、铝等杂质.制备流程如图所示:

回答下列问题:

(1) 步骤①的主要反应为:

FeO•Cr₂O₃+Na₂CO₃+NaNO₃ 高温 Na₂CrO₄+Fe₂O₃+CO₂+NaNO₂

上述反应配平后 FeO•Cr₂O₃与 NaNO₃的系数比为_____. 该步骤不能使用陶瓷容器,原因是_____.

- (2)滤渣1中含量最多的金属元素是_____,滤渣2的主要成分是_____及含硅杂质.
- (3) 步骤④调滤液 2 的 pH 使之变_____(填"大"或"小"),原因是_____(用离子方程式表示).
- (4) 有关物质的溶解度如图所示. 向"滤液 3"中加入适量 KCl,蒸发浓缩,冷却结晶,过滤得到 $K_2Cr_2O_7$ 固体. 冷却到______(填标号)得到的 $K_2Cr_2O_7$ 固体产品最多.

a.80°Cb.60°Cc.40°Cd.10°C

步骤⑤的反应类型是_____

(5) 某工厂用 m_1 kg 铬铁矿粉(含 Cr_2O_3 40%)制备 $K_2Cr_2O_7$,最终得到产品 m_2 kg,产率为_____.

- 10. (14 分) 砷 (As) 是第四周期VA 族元素,可以形成 As₂S₃、As₂O₅、H₃AsO₃、H₃AsO₄等化 合物,有着广泛的用途. 回答下列问题:
- (1) 画出砷的原子结构示意图_____.
- (2) 工业上常将含砷废渣(主要成分为 As_2S_3)制成浆状,通入 O_2 氧化,生成 H_3AsO_4 和单质 硫. 写出发生反应的化学方程式______. 该反应需要在加压下进行,原因是______.
- (3) 己知: As (s) $+\frac{3}{2}$ H₂ (g) +2O₂ (g) =H₃AsO₄ (s) \triangle H₁

 $H_2(g) + \frac{1}{2}O_2(g) = H_2O(1) \triangle H_2$

 $2As (s) + \frac{5}{9}O_2 (g) = As_2O_5 (s) \triangle H_3$

则反应 As_2O_5 (s) +3 H_2O (1) =2 H_3AsO_4 (s) 的 $\triangle H$ =_____.

(4) 298K 时,将 20mL $3x \text{ mol} \cdot L^{\Box 1} \text{ Na}_3 \text{AsO}_3$ 、20mL $3x \text{ mol} \cdot L^{\Box 1} \text{ I}_2$ 和 20mL NaOH 溶液混合,发生反应: $\text{AsO}_3^{3\Box}$ (aq) $+\text{I}_2$ (aq) $+2\text{OH}^{\Box} \rightleftharpoons \text{AsO}_4^{3\Box}$ (aq) $+2\text{I}^{\Box}$ (aq) $+\text{H}_2\text{O}$ (1). 溶液中 c($\text{AsO}_4^{3\Box}$)与反应时间(t)的关系如图所示.

- ①下列可判断反应达到平衡的是____(填标号).
- a. 溶液的 pH 不再变化
- b. $v (I^{\Box}) = 2v (AsO_3^{3\Box})$
- c. c (AsO₄³□)/c (AsO₃³□)不再变化
- d. c (I^{\square}) =y mol• $L^{\square 1}$
- ②t_m时, v_正 (填"大于""小于"或"等于").
- ③t_m时 v ^逆 t_n时 v ^逆 (填"大于""小于"或"等于"), 理由是 .
- ④若平衡时溶液的 pH=14,则该反应的平衡常数 K 为_____.

[化学--选修3: 物质结构与性质]

- 11. (15 分)研究发现,在 CO_2 低压合成甲醇反应($CO_2+3H_2=CH_3OH+H_2O$)中,Co 氧化物负载的 Mn 氧化物纳米粒子催化剂具有高活性,显示出良好的应用前景. 回答下列问题:
- (1) Co 基态原子核外电子排布式为_____. 元素 Mn 与 O 中,第一电离能较大的是_____, 基态原子核外未成对电子数较多的是_____.
- (2) CO₂和 CH₃OH 分子中 C 原子的杂化形式分别为_____和____和____
- (3)在 CO₂低压合成甲醇反应所涉及的 4 种物质中,沸点从高到低的顺序为_____,原因是_____.
- (4) 硝酸锰是制备上述反应催化剂的原料,Mn(NO_3) $_2$ 中的化学键除了 σ 键外,还存在_____.
- (5) MgO 具有 NaCl 型结构(如图),其中阴离子采用面心立方最密堆积方式,X 射线衍射实验 测得 MgO 的晶胞参数为 a=0.420nm,则 r (O^2) 为____nm. MnO 也属于 NaCl 型结构,晶胞参数为 a'=0.448nm,则 r (Mn^{2+}) 为____nm.

[化学--选修 5: 有机化学基础]

12. 氟他胺 G 是一种可用于治疗肿瘤的药物。实验室由芳香烃 A 制备 G 的合成路线如下:

回答下列问题:

- (1) A 的结构简式为____。C 的化学名称是____。
- (2)③的反应试剂和反应条件分别是_____,该反应的类型是____。
- (3)⑤的反应方程式为____。吡啶是一种有机碱,其作用是____。
- (4) G 的分子式为____。
- (5) H 是 G 的同分异构体,其苯环上的取代基与 G 的相同但位置不同,则 H 可能的结构有___ 种。
- (6) 4□甲氧基乙酰苯胺(H₃CO—NHCOCH₃)是重要的精细化工中间体,写出由苯甲醚(H₃CO—)制备 4□甲氧基乙酰苯胺的合成路线______(其他试剂任选)。