Concours commun Mines-Ponts

PREMIERE EPREUVE. FILIERE MP

Première partie

Variations de la fonction φ :

1. Quand t tend vers 0,

$$\phi(t) = \frac{\operatorname{Arctan} t}{e^{\pi t} - 1} \sim \frac{t}{\pi t} = \frac{1}{\pi}.$$

Donc, φ se prolonge par continuité en 0 en posant $\varphi(0) = \frac{1}{\pi}$.

2. φ est dérivable sur D, et pour t > 0,

$$\begin{split} \phi'(t) &= \left(\operatorname{Arctan} t \times \frac{1}{e^{\pi t} - 1} \right)' = \frac{1}{1 + t^2} \frac{1}{e^{\pi t} - 1} + \operatorname{Arctan} t \frac{-\pi e^{\pi t}}{(e^{\pi t} - 1)^2} \\ &= \frac{e^{\pi t}}{(e^{\pi t} - 1)^2} \left(\frac{e^{-\pi t} (e^{\pi t} - 1)}{1 + t^2} - \pi \operatorname{Arctan} t \right) = \frac{e^{\pi t}}{(e^{\pi t} - 1)^2} \psi(t). \end{split}$$

Sur D, ϕ' est du signe de ψ . Or, ψ est dérivable sur $[0, +\infty[$, et pour $t\geqslant 0,$

$$\psi'(t) = \frac{\pi e^{-\pi t}}{1+t^2} + \frac{(1-e^{-\pi t})(-2t)}{(1+t^2)^2} - \frac{\pi}{1+t^2} = (1-e^{-\pi t})\left(-\frac{\pi}{1+t^2} - \frac{2t}{(1+t^2)^2}\right) < 0$$

 ψ est ainsi strictement décroissante sur $[0, +\infty[$, et puisque $\psi(0) = 0$, Ψ est strictement négative sur D. Il en est de même de ϕ' . Donc

 ϕ est donc strictement décroissante sur D.

On en déduit encore que

$$\mathrm{Sup}\{\phi(t),\;t\in D\}=\phi(0^+)=\frac{1}{\pi}.$$

Existence et expressions de l'intégrale I :

- 3. ϕ est continue sur D et donc localement intégrable sur D, prolongeable par continuité en 0 d'après 1., et négligeable en $+\infty$ devant $\frac{1}{t^2}$ d'après un théorème de croissances comparées $(\phi(t) \sim \frac{\pi}{2e^{\pi t}} = o(\frac{1}{t^2}))$. ϕ est donc intégrable sur D et I existe.
- **4.** Pour t>0 et $k\in\mathbb{N}^*$, posons $f_k(t)=e^{-k\pi t}$ Arctan t. Pour t>0, puisque $0< e^{-k\pi t}<1$, on a

$$\begin{split} \phi(t) &= \frac{\operatorname{Arctan} t}{e^{\pi t} - 1} = e^{-\pi t} \operatorname{Arctan} t \frac{1}{1 - e^{-\pi t}} = e^{-\pi t} \operatorname{Arctan} t \sum_{k=0}^{+\infty} e^{-k\pi t} = \sum_{k=0}^{+\infty} e^{-(k+1)\pi t} \operatorname{Arctan} t \\ &= \sum_{k=1}^{+\infty} e^{-k\pi t} \operatorname{Arctan} t = \sum_{k=1}^{+\infty} f_k(t) \end{split}$$

Ainsi.

- chaque fonction f_k , $k \in \mathbb{N}^*$, est continue sur D, clairement intégrable sur D (pour les mêmes raisons que ϕ),
- la série de fonctions de terme général f_k , $k \in \mathbb{N}^*$, converge simplement vers ϕ sur D et ϕ est continue sur D.
- puisque les fonctions f_k sont positives, pour chaque $n \in \mathbb{N}^*$,

$$\left|\sum_{k=1}^n f_k\right| = \sum_{k=1}^n f_k \leqslant \sum_{k=1}^{+\infty} f_k = \phi,$$

 φ étant intégrable sur D d'après 3.

D'après le théorème de convergence dominée, la série de terme général $\int_0^{+\infty} f_k(t) dt$ converge et

$$\sum_{k=1}^{+\infty} \int_0^{+\infty} e^{-k\pi t} \operatorname{Arctan} t \ dt = \int_0^{+\infty} \left(\sum_{k=1}^{+\infty} e^{-k\pi t} \operatorname{Arctan} t \right) \ dt = \int_0^{+\infty} \phi(t) \ dt = I.$$

Soient alors $k \in \mathbb{N}^*$ et $A \in]0, +\infty[$. Les deux fonctions $t \mapsto \frac{e^{-k\pi t}}{-k\pi}$ et $t \mapsto \operatorname{Arctan} t$ sont de classe C^1 sur [0,A]. On peut donc effectuer une intégration par parties qui fournit :

$$\int_0^A e^{-k\pi t} \operatorname{Arctan} t \ dt = \left[\frac{e^{-k\pi t}}{-k\pi} \operatorname{Arctan} t\right]_0^A + \frac{1}{k\pi} \int_0^A \frac{e^{-k\pi t}}{1+t^2} \ dt = -\frac{1}{k\pi} e^{-k\pi A} \operatorname{Arctan} A + \frac{1}{k\pi} \int_0^A \frac{e^{-k\pi t}}{1+t^2} \ dt.$$

La fonction $t\mapsto \frac{e^{-k\pi t}}{1+t^2}$ étant intégrable sur D, quand A tend vers $+\infty$ on obtient

$$\int_0^{+\infty} e^{-k\pi t} \operatorname{Arctan} t \ dt = \frac{1}{k\pi} \int_0^{+\infty} \frac{e^{-k\pi t}}{1+t^2} \ dt,$$

et donc

$$I = \sum_{k=1}^{+\infty} \int_0^{+\infty} e^{-k\pi t} \operatorname{Arctan} t \ dt = \sum_{k=1}^{+\infty} \frac{1}{k\pi} \int_0^{+\infty} \frac{e^{-k\pi t}}{1+t^2} \ dt.$$

Deuxième partie

Propriétés de la fonction f :

 $\textbf{5. Notons F la fonction} \quad F: \quad [0,+\infty[\times[0,+\infty[\quad \to \quad \mathbb{R} \quad \text{. F est définie et continue sur } [0,+\infty[^2. \text{ De plus, pour } (x,t) \in \frac{e^{-xt}}{1+t^2}]$

 $[0,+\infty]^2$

$$|F(x,t)| = \frac{e^{-xt}}{1+t^2} \leqslant \frac{1}{1+t^2} = \phi_0(t).$$

La fonction φ_0 est définie, continue et clairement intégrable sur $[0, +\infty[$. D'après le théorème de continuité des intégrables à paramètres, on peut affirmer que

f est définie et continue sur $[0, +\infty[$.

Pour x > 0, on a

$$0 \leqslant F(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt \leqslant \int_0^{+\infty} e^{-xt} = \left[\frac{e^{-xt}}{-x}\right]_0^{+\infty} = \frac{1}{x}.$$

Comme $\frac{1}{x}$ tend vers 0 quand x tend vers $+\infty$, on en déduit que

$$\lim_{x\to +\infty} F(x) = 0.$$

6. Soit a un réel strictement positif fixé. F admet sur $[a, +\infty[\times[0, +\infty[$ des dérivées partielles première et seconde par rapport à sa première variable x et, pour $(x, t) \in [a, +\infty[\times [0, +\infty[$

$$\left|\frac{\partial F}{\partial x}(x,t)\right| = \left|\frac{-te^{-xt}}{1+t^2}\right| = \frac{te^{-xt}}{1+t^2} \leqslant e^{-\alpha t}\frac{t}{1+t^2} = \phi_1(t),$$

et

$$\left|\frac{\partial^2 F}{\partial^2 x}(x,t)\right| = \frac{t^2 e^{-xt}}{1+t^2} \leqslant e^{-\alpha t} = \phi_2(t).$$

Ainsi,

- $\forall x \in [a, +\infty[$, les fonctions $t \mapsto F(x, t), t \mapsto \frac{\partial F}{\partial x}(x, t)$ et $t \mapsto \frac{\partial^2 F}{\partial x^2}(x, t)$ sont continues sur $[0, +\infty[$, $\bullet \ \forall t \in [0, +\infty[$, les fonctions $x \mapsto F(x, t), x \mapsto \frac{\partial F}{\partial x}(x, t)$ et $x \mapsto \frac{\partial^2 F}{\partial x^2}(x, t)$ sont continues sur $[a, +\infty[$, $\bullet \ il$ existe deux fonctions φ_1 et φ_2 , continues et clairement intégrables sur $[0, +\infty[$ telles que $\forall (x, t) \in [a, +\infty[\times]0, +\infty[$, $[a, +\infty[\times$
- $\left|\frac{\partial F}{\partial x}(x,t)\right|\leqslant \phi_1(t) \,\operatorname{et}\,\left|\frac{\partial^2 F}{\partial x^2}(x,t)\right|\leqslant \phi_2(t).$

D'après le théorème de dérivation des intégrales à paramètres, f est de classe C^2 sur $[a, +\infty[$, et ceci pour tout réel a strictement positif. f est donc de classe C^2 sur $]0,+\infty[$. De plus, les dérivées premières et secondes de f s'obtiennent en dérivant sour le signe somme. Ainsi, pour x > 0,

$$f(x) + f''(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt + \int_0^{+\infty} \frac{t^2 e^{-xt}}{1+t^2} dt = \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}.$$

$$\forall x > 0, \ f(x) + f''(x) = \frac{1}{x}.$$

Deux intégrales :

7. Pour $X \ge a$, une intégration par parties permet d'écrire

$$C(X) + iS(X) = \int_{\alpha}^{X} \frac{\cos t + i \sin t}{t} dt = \int_{\alpha}^{X} \frac{e^{it}}{t} dt$$
$$= \left[\frac{e^{it}}{it}\right]_{\alpha}^{X} + \frac{1}{i} \int_{\alpha}^{X} \frac{e^{it}}{t^{2}} dt = \frac{e^{iX}}{iX} - \frac{e^{ia}}{ia} + \frac{1}{i} \int_{\alpha}^{X} \frac{e^{it}}{t^{2}} dt$$

Ensuite, puisque $\left|\frac{e^{iX}}{iX}\right| = \frac{1}{X}$, $\frac{e^{iX}}{iX}$ tend vers 0 quand X tend vers $+\infty$, et puisque $\left|\frac{e^{it}}{t^2}\right| = \frac{1}{t^2}$, la fonction $t \mapsto \frac{e^{it}}{t^2}$ est

intégrable sur $[a, +\infty[$ de sorte que la fonction $X \mapsto \int_{-\infty}^{X} \frac{e^{it}}{t^2} dt$ a une limite dans $\mathbb C$ quand X tend vers $+\infty$. On en déduit que la fonction C + iS a une limite dans \mathbb{C} quand X tend vers $+\infty$ et donc que les parties réelle et imaginaire de cette fonction, à savoir C et S ont une limite réelle quand X tend vers $+\infty$.

Une expression de la fonction f :

8. D'après 6., f est solution sur D de l'équation différentielle linéaire du second ordre

$$y'' + y = \frac{1}{x} \quad (E).$$

Puisque la fonction $x \mapsto \frac{1}{x}$ est continue sur D, on sait que la solution générale de (E) sur D est somme d'une solution particulière de (E) sur D et de la solution générale sur D de l'équation homogène associée.

Les solutions de l'équation homogène associée sont les fonctions de la forme $x \mapsto \lambda \cos x + \mu \sin x$, $(\lambda, \mu) \in \mathbb{R}^2$. La méthode de variations des constantes permet alors d'affirmer qu'il existe deux fonctions $x \mapsto \lambda(x)$ et $x \mapsto \mu(x)$, deux fois dérivables sur D, telles que la fonction $x \mapsto \lambda(x) \cos x + \mu(x) \sin x$ soit solution de (E) sur D et que de plus, λ et μ sont obtenues par la résolution du système :

$$\left\{ \begin{array}{l} \lambda'(x)\cos x + \mu'(x)\sin x = 0 \\ \lambda'(x)(-\sin x) + \mu'(x)\cos x = \frac{1}{x} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \lambda'(x) = \frac{1}{1} \left| \begin{array}{cc} 0 & \sin x \\ \frac{1}{x} & \cos x \end{array} \right| \\ \mu'(x) = \frac{1}{1} \left| \begin{array}{cc} \cos x & 0 \\ -\sin x & \frac{1}{x} \end{array} \right| \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \lambda'(x) = -\frac{\sin x}{x} \\ \mu'(x) = \frac{\cos x}{x} \end{array} \right. .$$

Maintenant, en écrivant que pour x>0, $g(x)=\int_1^{+\infty}\frac{\sin t}{t}\ dt-\int_1^x\frac{\sin t}{t}\ dt$, il est clair que g est dérivable sur $]0,+\infty[$ et que, pour x>0, $g'(x)=-\frac{\sin x}{x}$. De même, h est dérivable sur $]0,+\infty[$, et pour x>0, $h'(x)=-\frac{\cos x}{x}$. On peut donc prendre $\lambda=g$ et $\mu=-h$.

9. f est l'une des fonctions ci-dessus et de plus, d'après 5., f tend vers 0 quand x tend vers $+\infty$. Or, $\int_{x}^{+\infty} \frac{\cos t}{t} dt = \int_{a}^{+\infty} \frac{\cos t}{t} dt - \int_{a}^{x} \frac{\cos t}{t} dt = \lim_{t \to \infty} C - C(x)$ tend vers 0 quand x tend vers $+\infty$. De même, $\int_{x}^{+\infty} \frac{\sin t}{t} dt$

$$\lim_{x \to +\infty} \cos x \int_{x}^{+\infty} \frac{\sin t}{t} dt - \sin x \int_{x}^{+\infty} \frac{\cos t}{t} dt = 0.$$

D'autre part, $\lambda \cos x + \mu \sin x = \sqrt{\lambda^2 + \mu^2} \cos(x - x_0)$ a une limite réelle en $+\infty$ si et seulement si $\lambda = \mu = 0$. L'équation (E) admet donc une et une seule solution de limite nulle en $+\infty$ à savoir la fonction $x \mapsto \cos x \int_x^{+\infty} \frac{\sin t}{t} dt - \sin x \int_x^{+\infty} \frac{\cos t}{t} dt$. Cette fonction est nécessairement la fonction f.

Ainsi, pour x > 0,

$$\begin{split} f(x) &= \cos x \int_{x}^{+\infty} \frac{\sin t}{t} \ dt - \sin x \int_{x}^{+\infty} \frac{\cos t}{t} \ dt = \int_{x}^{+\infty} \frac{\sin t \cos x - \cos t \sin x}{t} \ dt = \int_{x}^{+\infty} \frac{\sin(t-x)}{t} \ dt \\ &= \int_{0}^{+\infty} \frac{\sin(u)}{u+x} \ du, \end{split}$$

en posant u = t - x. Ensuite, en posant u = xt, on obtient pour x > 0,

$$f(x) = \int_0^{+\infty} \frac{\sin(u)}{u+x} \ du = \int_0^{+\infty} \frac{\sin(xt)}{xt+x} \ xdt = \int_0^{+\infty} \frac{\sin(xt)}{1+t} \ dt.$$

$$\forall x \in]0,+\infty[,\ f(x)=\int_0^{+\infty} \frac{\sin(u)}{u+x}\ du=\int_0^{+\infty} \frac{\sin(xt)}{1+t}\ dt.$$

Troisième partie

Un résultat intermédiaire :

10. D'après 4. et 9.,

$$I = \sum_{k=1}^{+\infty} \frac{1}{k\pi} \int_0^{+\infty} \frac{e^{-k\pi t}}{1+t^2} \ dt = \sum_{k=1}^{+\infty} \frac{1}{k\pi} f(k\pi) = \sum_{k=1}^{+\infty} \frac{1}{k\pi} \int_0^{+\infty} \frac{\sin(k\pi t)}{1+t} \ dt.$$

En posant $u = \pi t$ dans chacune des intégrales ci-dessus, on obtient alors

$$I = \sum_{k=1}^{+\infty} \frac{1}{k\pi} \int_0^{+\infty} \frac{\sin(ku)}{\pi + u} \ du.$$

11. Soit $k \in \mathbb{N}^*$. Soient ϵ et A, deux réels strictement positifs. Une intégration parties fournit

$$\int_{\epsilon}^{A} \frac{\sin(ku)}{\pi + u} du = -\frac{1}{k} \frac{\cos(kA)}{\pi + A} + \frac{1}{k} \frac{\cos(k\epsilon)}{\pi + \epsilon} - \frac{1}{k} \int_{\epsilon}^{A} \frac{\cos(ku)}{(\pi + u)^{2}} du$$

Quand ε tend vers 0 et A tend vers $+\infty$, on obtient

http://www.maths-france.fr

$$\int_0^{+\infty} \frac{\sin(ku)}{\pi+u} = \frac{1}{k\pi} - \frac{1}{k} \int_0^{+\infty} \frac{\cos(ku)}{(\pi+u)^2} \ du.$$

Mais alors

$$I = \sum_{k=1}^{+\infty} \frac{1}{k\pi} \int_0^{+\infty} \frac{\sin(k\pi t)}{1+t} \ dt. = \sum_{k=1}^{+\infty} \frac{1}{k\pi} \left(\frac{1}{k\pi} - \frac{1}{k} \int_0^{+\infty} \frac{\cos(ku)}{(\pi+u)^2} \ du \right) = \frac{1}{\pi^2} \sum_{k=1}^{+\infty} \frac{1}{k^2} - \frac{1}{\pi} \sum_{k=1}^{+\infty} \frac{1}{k^2} \int_0^{+\infty} \frac{\cos(ku)}{(\pi+u)^2} \ du.$$

 $\mathrm{Pour}\ k\in\mathbb{N}^*\ \mathrm{et}\ \mathfrak{u}\in[0,+\infty[,\ \mathrm{posons}\ t_k(\mathfrak{u})=\frac{\cos(k\mathfrak{u})}{k^2(\pi+\mathfrak{u})^2}\ \mathrm{et}\ \mathrm{pour}\ \mathfrak{u}\in[0,+\infty[,\ \mathrm{posons}\ t(\mathfrak{u})=\sum_{n=1}^{+\infty}t_k(\mathfrak{u}).$

- Chaque fonction g_k est continue sur $[0, +\infty[$ et intégrable sur $[0, +\infty[$ car est dominée par $\frac{1}{\mathfrak{u}^2}$ quand \mathfrak{u} tend vers $+\infty$.
- Pour chaque $u \in [0, +\infty[$ et chaque $k \in \mathbb{N}^*$, $|t_k(u)| \le \frac{1}{k^2}$. On en déduit que la série de fonctions de terme général t_k converge normalement sur $[0, +\infty[$. Puisque chaque t_k est continue sur $[0, +\infty[$, la fonction t est définie et continue sur $[0, +\infty[$ et la série de fonction de terme général t_k converge simplement vers t sur $[0, +\infty[$.

$$\sum_{k=1}^{+\infty} \int_0^{+\infty} |t_k(u)| \ du \leqslant \sum_{k=1}^{+\infty} \int_0^{+\infty} \frac{1}{k^2} \frac{1}{(\pi+u)^2} \ du = \frac{1}{\pi} \sum_{k=1}^{+\infty} \frac{1}{k^2} < +\infty.$$

D'après un théorème d'intégration terme à terme, la fonction t est intégrable sur $[0,+\infty[$, la série de terme général $\int_0^{+\infty} t_k(u) \ du \ converge \ et \int_0^{+\infty} t(u) \ du = \sum_{k=1}^{+\infty} \int_0^{+\infty} t_k(u) \ du.$ En tenant compte de la question 10., on a montré que

$$I = \frac{1}{\pi^2} \sum_{k=1}^{+\infty} \frac{1}{k^2} - \frac{1}{\pi} \int_0^{+\infty} \frac{1}{(\pi + u)^2} \left(\sum_{n=1}^{+\infty} \frac{\cos(nu)}{n^2} \right) \ du.$$

Somme de la série de terme général $\cos(nu)/n^2$, $n \in \mathbb{N}^*$:

12. Graphe de la fonction G. Pour $x \in [0, 2\pi]$, $G(x) = \frac{(x-\pi)^2}{4} - \frac{\pi^2}{12}$.

Vérifions que la fonction G est paire. Soit $x \in [0, 2\pi]$.

$$G(-x) = G(-x+2\pi) = \frac{(-x+2\pi-\pi)^2}{4} - \frac{\pi^2}{12} = \frac{(x-\pi)^2}{4} - \frac{\pi^2}{12} = G(x).$$

Soit alors $x \in \mathbb{R}$. $x - 2\pi E\left(\frac{x}{2\pi}\right) \in [0, 2\pi[$ et

$$G(-x) = G\left(-\left(x - 2\pi E\left(\frac{x}{2\pi}\right)\right)\right) = G\left(x - 2\pi E\left(\frac{x}{2\pi}\right)\right) = G(x).$$

Finalement

la fonction G est paire.

La fonction G est continue par morceaux sur \mathbb{R} , 2π -périodique. On peut donc calculer ses coefficients de Fourier. G est paire et donc les coefficients $\mathfrak{b}_n(G)$ sont nuls. Ensuite,

$$a_0(G) = \frac{2}{\pi} \int_0^{\pi} \left(\frac{(x-\pi)^2}{4} - \frac{\pi^2}{12} \right) dx = \frac{2}{\pi} \left(\frac{\pi^3}{12} - \frac{\pi^3}{12} \right) = 0.$$

Enfin, pour $n \in \mathbb{N}^*$, deux intégrations par parties fournissent

$$\begin{split} \alpha_n(G) &= \frac{2}{\pi} \int_0^\pi \left(\frac{(x-\pi)^2}{4} - \frac{\pi^2}{12} \right) \cos(nx) \; dx \\ &= \frac{2}{\pi} \left(\left[\left(\frac{(x-\pi)^2}{4} - \frac{\pi^2}{12} \right) \frac{\sin(nx)}{n} \right]_0^\pi - \frac{1}{n} \int_0^\pi \frac{x-\pi}{2} \sin(nx) \; dx \right) = \frac{1}{n\pi} \int_0^\pi (x-\pi)(-\sin(nx)) \; dx \\ &= \frac{1}{n\pi} \left(\left[(x-\pi) \frac{\cos(nx)}{n} \right]_0^\pi - \frac{1}{n} \int_0^\pi \cos(nx) \; dx \right) = \frac{1}{n^2}. \end{split}$$

La fonction G est continue sur \mathbb{R} , de classe C^1 par morceaux sur \mathbb{R} , 2π -périodique. D'après le théorème de DIRICHLET, la série de FOURIER de G converge simplement vers G sur \mathbb{R} . Donc,

$$\forall x \in \mathbb{R}, \ G(x) = \sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^2}.$$

De plus, puisque G est de classe C^1 par morceaux sur $\mathbb R$, on sait que la série précédente converge normalement sur $\mathbb R$.

13. D'après la question précédente,

$$\forall x \in [0, 2\pi], \ \sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^2} = \frac{x^2}{4} - \frac{\pi x}{2} + \frac{\pi^2}{6}.$$

En particulier, pour x = 0, on obtient

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Valeur de l'intégrale I:

14. Soit $k \in \mathbb{N}$. Puisque G est 2π -périodique, le changement de variables $\mathfrak{u}=\mathfrak{t}+2k\pi$ fournit

$$\begin{split} a_k &= \int_{2k\pi}^{2(k+1)\pi} \frac{1}{(u+\pi)^2} G(u) \ du = \int_0^{2\pi} \frac{1}{(t+2k\pi+\pi)^2} \left(\frac{t^2}{4} - \frac{\pi t}{2} + \frac{\pi^2}{6}\right) \ dt \\ &= \int_0^{2\pi} \frac{1}{(t+(2k+1)\pi)^2} \left(\frac{1}{4} (t+(2k+1)\pi)^2 - (k+1)\pi (t+(2k+1)\pi) + \frac{(2k+1)(2k+3)\pi^2}{4} + \frac{\pi^2}{6}\right) \ dt \\ &= \int_0^{2\pi} \left(\frac{1}{4} - \frac{(k+1)\pi}{t+(2k+1)\pi} + \left(\frac{(2k+1)(2k+3)\pi^2}{4} + \frac{\pi^2}{6}\right) \frac{1}{(t+(2k+1)\pi))^2}\right) \ dt \\ &= \frac{\pi}{2} - (k+1)\pi \left[\ln(t+(2k+1)\pi)\right]_0^{2\pi} + \left(\frac{(2k+1)(2k+3)\pi^2}{4} + \frac{\pi^2}{6}\right) \left[-\frac{1}{t+(2k+1)\pi}\right]_0^{2\pi} \\ &= \frac{\pi}{2} - (k+1)\pi \ln\left(\frac{2k+3}{2k+1}\right) + \left(\frac{(2k+1)(2k+3)\pi^2}{4} + \frac{\pi^2}{6}\right) \left(-\frac{1}{(2k+3)\pi} + \frac{1}{(2k+1)\pi}\right) \\ &= \pi - (k+1)\pi \ln\left(\frac{2k+3}{2k+1}\right) + \frac{\pi}{6}\left(-\frac{1}{2k+3} + \frac{1}{2k+1}\right). \end{split}$$

Finalement

$$\forall k \in \mathbb{N}, \ \alpha_k = \pi - (k+1)\pi \ln\left(\frac{2k+3}{2k+1}\right) + \frac{\pi}{6}\left(-\frac{1}{2k+3} + \frac{1}{2k+1}\right).$$

15. Mais alors

$$\begin{split} -\frac{1}{\pi} \int_0^{+\infty} \frac{1}{(u+\pi)^2} \sum_{n=1}^{+\infty} \frac{\cos(nu)}{n^2} \; du &= -\frac{1}{\pi} \sum_{k=0}^{+\infty} \alpha_k = \lim_{N \to +\infty} \sum_{n=0}^{N-1} \left(-1 + (n+1) \ln \left(\frac{2n+3}{2n+1} \right) - \frac{1}{6} \left(-\frac{1}{2n+3} + \frac{1}{2n+1} \right) \right) \\ &= \lim_{N \to +\infty} \sum_{n=0}^{N-1} \left(-1 + (n+1) \ln \left(\frac{2n+3}{2n+1} \right) \right) - \frac{1}{6} \lim_{N \to +\infty} \left(1 - \frac{1}{2N+1} \right) \\ &= -\frac{1}{6} + \lim_{N \to +\infty} \sum_{n=0}^{N-1} \left(-1 + (n+1) \ln \left(\frac{2n+3}{2n+1} \right) \right), \end{split}$$

et finalement, d'après les questions 11. et 13.,

$$I = \frac{1}{\pi^2} \times \frac{\pi^2}{6} - \frac{1}{6} + \lim_{N \to +\infty} \sum_{n=0}^{N-1} \left(-1 + (n+1) \ln \left(\frac{2n+3}{2n+1} \right) \right) = \lim_{N \to +\infty} \sum_{n=0}^{N-1} \left(-1 + (n+1) \ln \left(\frac{2n+3}{2n+1} \right) \right).$$

$$I = \lim_{N \to +\infty} \sum_{n=0}^{N-1} \left(-1 + (n+1) \ln \left(\frac{2n+3}{2n+1} \right) \right).$$

16. Soit $N \in \mathbb{N}^*$.

$$E_N = e^{-N} \prod_{n=0}^{N-1} \left(\frac{2n+3}{2n+1} \right)^{n+1} = \frac{e^{-N}(2N+1)^N}{1 \times 3 \times \ldots \times (2N-1)} = \frac{e^{-N}(2N+1)^N 2^N N!}{(2N)!}.$$

Quand N tend vers $+\infty$, la formule de STIRLING fournit

$$\begin{split} E_N &= \frac{e^{-N} (2N)^N \left(1 + \frac{1}{2N}\right)^N 2^N N!}{(2N)!} \\ &\sim \frac{e^{-N} 2^N N^N e^{1/2} 2^N N^N e^{-N} \sqrt{2\pi N}}{(2N)^{2N} e^{-2N} \sqrt{2\pi (2N)}} = \sqrt{\frac{e}{2}} \end{split}$$

Enfin, $I = \lim_{N \to +\infty} \ln(E_N) = \frac{1 - \ln 2}{2}$.

$$I = \frac{1 - \ln 2}{2}.$$

Calcul de l'intégrale K:

17. Pour
$$t \in]0, +\infty[$$
, $\frac{1}{e^{2\pi t} - 1} = \frac{1}{(e^{\pi t} - 1)(e^{\pi t} + 1)} = \frac{1}{2} \left(\frac{1}{e^{\pi t} - 1} - \frac{1}{e^{\pi t} + 1} \right)$ et donc $J = \frac{1}{2}(I - K)$ ou encore $K = I - 2J = \frac{1 - \ln 2}{2} - \left(1 - \frac{\ln(2\pi)}{2} \right) = \frac{\ln(\pi) - 1}{2}$.
$$K = \frac{\ln(\pi) - 1}{2}.$$