1

PRODUCT OVERVIEW

SAM88RCRI PRODUCT FAMILY

Samsung's SAM88RCRI family of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various mask-programmable ROM sizes.

A address/data bus architecture and a large number of bit-configurable I/O ports provide a flexible programming environment for applications with varied memory and I/O requirements. Timer/counters with selectable operating modes are included to support real-time operations.

S3C9442/C9444/C9452/C9454 MICROCONTROLLER

The S3C9442/C9454/C9452/C9454 single-chip 8-bit microcontroller is designed for useful A/D converter , SIO application field. The S3C9442/C9444/C9452/C9454 uses powerful SAM88RCRI CPU and S3C9442/C9454/C9452/C9454 architecture. The internal register file is logically expanded to increase the on-chip register space.

The S3C9442/C9444/C9452/C9454 has 2K/4K bytes of on-chip program ROM and 208 bytes of RAM. The S3C9442/C9444/C9452/C9454 is a versatile general-purpose microcontroller that is ideal for use in a wide range of electronics applications requiring simple timer/counter, PWM. In addition, the S3C9442/C9444/C9452/C9454's advanced CMOS technology provides for low power consumption and wide operating voltage range.

Using the SAM88RCRI design approach, the following peripherals were integrated with the SAM88RCRI core:

- Three configurable I/O ports (18 pins)
- Four interrupt sources with one vector and one interrupt level
- One 8-bit timer/counter with time interval mode
- Analog to digital converter with nine input channels and 10-bit resolution
- One 8-bit PWM output

The S3C9442/C9444/C9452/C9454 microcontroller is ideal for use in a wide range of electronic applications requiring simple timer/counter, PWM, ADC. S3C9452/C9454 is available in a 20/16-pin DIP and a 20-pin SOP package. S3C9452/C9454 is available in a 8-pin and a 8-pin SOP package.

MTP

The S3F9444/F9454 is an MTP (Multi Time Programmable) version of the S3C9442/C9444/C9452/C9454 microcontroller. The S3F9444/F9454 has on-chip 4-Kbyte multi-time programmable flash ROM instead of masked ROM. The S3F9444/F9454 is fully compatible with the S3C9442/C9444/C9452/C9454, in function, in D.C. electrical characteristics and in pin configuration.

1-1

FEATURES

CPU

- SAM88RCRI CPU core
- The SAM88RCRI core is low-end version of the current SAM87 core.

Memory

- 2/4-Kbyte internal program memory
- 208-byte general purpose register area

Instruction Set

- 41 instructions
- The SAM88RCRI core provides all the SAM87 core instruction except the word-oriented instruction, multiplication, division, and some one-byte instruction.

Instruction Execution Time

400 ns at 10 MHz f_{OSC} (minimum)

Interrupts

- · 4 interrupt sources with one vector
- One interrupt level

General I/O

- Three I/O ports (Max 18 pins)
- · Bit programmable ports

8-bit High-speed PWM

- 8-bit PWM 1-ch (Max: 156 kHz)
- 6-bit base + 2-bit extension

Built-in reset Circuit

Low voltage detector for safe reset

Timer/Counters

- One 8-bit basic timer for watchdog function
- One 8-bit timer/counter with time interval modes

A/D Converter

- Nine analog input pins
- 10-bit conversion resolution

Oscillation Frequency

- 1 MHz to 10 MHz external crystal oscillator
- Maximum 10 MHz CPU clock
- Internal RC: 3.2 MHz (typ.), 0.5 MHz (typ.) in V_{DD} = 5 V

Operating Temperature Range

• -40° C to $+85^{\circ}$ C

Operating Voltage Range

• 2.0 V (LVR Level) to 5.5 V

Smart Option

Package Types

- S3C9452/C9454:
 - 20-DIP-300A
 - 20-SOP-375
 - 16-DIP-300A
- S3C9442/C9444
 - 8-DIP-300
 - 8-SOP-225

BLOCK DIAGRAM

Figure 1-1. Block Diagram

PIN ASSIGNMENTS

Figure 1-2. Pin Assignment Diagram (20-Pin DIP/SOP Package)

Figure 1-3. Pin Assignment Diagram (16-Pin DIP Package)

Figure 1-4. Pin Assignment Diagram (8-Pin DIP/SOP Package)

PIN DESCRIPTIONS

Table 1-1. S3C9452/C9454 Pin Descriptions

Pin Name	In/Out	Pin Description	Pin Type	Share Pins
P0.0–P0.7	I/O	Bit-programmable I/O port for Schmitt trigger input or push-pull output. Pull-up resistors are assignable by software. Port0 pins can also be used as A/D converter input, PWM output or external interrupt input.	E-1	ADC0-ADC7 INT0/INT1 PWM
P1.0-P1.1	I/O	Bit-programmable I/O port for Schmitt trigger input or push-pull, open-drain output. Pull-up resistors or pull-down resistors are assignable by software.	E-2	X _{IN,} X _{OUT}
P1.2	I	Schmitt trigger input port	В	RESET
P2.0-P2.6	I/O	Bit-programmable I/O port for Schmitt trigger input or push-pull, open-drain output. Pull-up resistors are assignable by software.	E E-1	ADC8/CLO T0
X _{IN,} X _{OUT}	_	Crystal/Ceramic, or RC oscillator signal for system clock.		P1.0-P1.1
RESET	ı	Internal LVR or External RESET	В	P1.2
V _{DD,} V _{SS}	_	Voltage input pin and ground		_
CLO	0	System clock output port	E-1	P2.6
INT0-INT1	I	External interrupt input port	E-1	P0.0, P0.1
PWM	0	8-Bit high speed PWM output	E-1	P0.6
T0	0	Timer0 match output	E-1	P2.0
ADC0-ADC8	I	A/D converter input	E-1 E	P0.0–P0.7 P2.6

PIN CIRCUITS

Figure 1-5. Pin Circuit Type A

Figure 1-6. Pin Circuit Type B

Figure 1-7. Pin Circuit Type C

Figure 1-8. Pin Circuit Type D

Figure 1-9. Pin Circuit Type E

Figure 1-10. Pin Circuit Type E-1

Figure 1-11. Pin Circuit Type E-2

13 ELECTRICAL DATA

OVERVIEW

In this section, the following S3C9442/C9444/C9452/C9454 electrical characteristics are presented in tables and graphs:

- Absolute maximum ratings
- D.C. electrical characteristics
- A.C. electrical characteristics
- Input Timing Measurement Points
- Oscillator characteristics
- Oscillation stabilization time
- Operating Voltage Range
- Schmitt trigger input characteristics
- Data retention supply voltage in Stop mode
- Stop mode release timing when initiated by a RESET
- A/D converter electrical characteristics
- LVR circuit characteristics
- LVR reset Timing

Table 13-1. Absolute Maximum Ratings

 $(T_A = 25 \,^{\circ}C)$

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{DD}	_	-0.3 to + 6.5	V
Input voltage	V _I	All ports	-0.3 to $V_{DD} + 0.3$	V
Output voltage	Vo	All output ports	-0.3 to $V_{DD} + 0.3$	V
Output current high	I _{OH}	One I/O pin active	– 25	mA
		All I/O pins active	- 80	
Output current low	I _{OL}	One I/O pin active	+ 30	mA
		All I/O pins active	+ 150	
Operating temperature	T _A	-	-40 to +85	°C
Storage temperature	T _{STG}	-	- 65 to + 150	°C

Table 13-2. DC Electrical Characteristics

 $(T_A = -40\,^{\circ}C \text{ to } +85\,^{\circ}C, V_{DD} = 2.0\,\text{V} \text{ to } 5.5\,\text{V})$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input high voltage	V _{IH1}	Ports 0, 1, 2 and RESET	V _{DD} = 2.0 to 5.5 V	0.8 V _{DD}	_	V _{DD}	V
	V _{IH2}	X _{IN} and X _{OUT}		V _{DD} - 0.1			
Input low voltage	V _{IL1}	Ports 0, 1, 2 and RESET	V _{DD} = 2.0 to 5.5 V	_	_	0.2 V _{DD}	V
	V _{IL2}	X _{IN} and X _{OUT}				0.1	
Output high voltage	V _{OH}	$I_{OH} = -10 \text{ mA}$ ports 0, 1, 2	V _{DD} = 4.5 to 5.5 V	V _{DD} -1.5	V _{DD} - 0.4	-	V
Output low voltage	V _{OL}	I _{OL} = 25 mA port 0, 1, and 2	V _{DD} = 4.5 to 5.5 V	_	0.4	2.0	V
Input high leakage current	I _{LIH1}	All input except I _{LIH2}	$V_{IN} = V_{DD}$	-	_	1	uA
	I _{LIH2}	X _{IN} , X _{OUT}	$V_{IN} = V_{DD}$			20	
Input low leakage current	I _{LIL1}	All input except I _{LIL2} and RESET	V _{IN} = 0 V	-	_	-1	uA
	I _{LIL2}	X _{IN} , X _{OUT}	V _{IN} = 0 V			-20	
Output high leakage current	I _{LOH}	All output pins	$V_{OUT} = V_{DD}$	_	_	2	uA
Output low leakage current	I _{LOL}	All output pins	V _{OUT} = 0 V	-	_	-2	uA
Pull-up resistors	R _P	V _{IN} = 0 V Ports 0, 1, 2	V _{DD} = 5 V	25	50	100	kΩ
Pull-down resistors	R _P	V _{IN} = 0 V Ports 1	V _{DD} = 5 V	25	50	100	
Supply current	I _{DD1}	Run mode 10 MHz CPU clock	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	_	5	10	mA
		3 MHz CPU clock	V _{DD} = 2.0 V		2	5	
	I _{DD2}	Idle mode 10 MHz CPU clock	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	_	2	4	
		3 MHz CPU clock	V _{DD} = 2.0 V		0.5	1.5	
	I _{DD3}	Stop mode	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$ (LVR disable)	_	0.1	5	uA
			$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$ (LVR enable)		100	200	
			V _{DD} = 2.6 V (LVR enable)		30	60	

 $\textbf{NOTE:} \quad \text{In STOP (I}_{\text{DD3}}\text{), IDLE (I}_{\text{DD2}}\text{) current, current by ADC module is not included.}$

Table 13-3. AC Electrical Characteristics

$$(T_A = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}, V_{DD} = 2.0 \,^{\circ}\text{V} \text{ to } 5.5 \,^{\circ}\text{V})$$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Interrupt input low width	t _{INTL}	INT0, INT1 V _{DD} = 5 V ± 10 %	-	200	-	ns
RESET input low width	t _{RSL}	Input V _{DD} = 5 V ± 10 %	-	1	-	us

Figure 13-1. Input Timing Measurement Points

Table 13-4. Oscillator Characteristics

$$(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$$

Oscillator	Clock Circuit	Test Condition	Min	Тур	Max	Unit
Main crystal or ceramic	C1 XIN C2 XOUT	V _{DD} = 4.5 to 5.5 V	1	-	10	MHz
		V _{DD} = 2.7 to 4.5 V	1	-	6	MHz
		V _{DD} = 2.0 to 2.7 V	1	_	3	MHz
External clock (Main System)	Xout	V _{DD} = 4.5 to 5.5 V	1	-	10	MHz
		V _{DD} = 2.7 to 4.5 V	1	_	6	MHz
		$V_{DD} = 2.0 \text{ to } 2.7 \text{ V}$	1	_	3	MHz
External RC oscillator	_	V _{DD} = 4.75 to 5.25 V Tolerance:10 %	_	4	_	MHz
Internal RC		$V_{DD} = 4.75$ to 5.25 V		3.2		
Oscillator				0.5		

Table 13-5. Oscillation Stabilization Time

(T_A = -40
$$^{\circ}$$
C to +85 $^{\circ}$ C, V_{DD} = 3.0 V to 5.5 V)

Oscillator	Test Condition	Min	Тур	Max	Unit
Main crystal	f _{OSC} > 1.0 MHz	_	_	20	ms
Main ceramic	Oscillation stabilization occurs when $V_{\rm DD}$ is equal to the minimum oscillator voltage range.	_	_	10	ms
External clock (main system)	X_{IN} input high and low width (t_{XH}, t_{XL})	25	_	500	ns
Oscillator stabilization	t _{WAIT} when released by a reset ⁽¹⁾	_	2 ¹⁶ /f _{OSC}	1	ms
wait time	t _{WAIT} when released by an interrupt (2)	_	_	_	ms

NOTES:

- 1. f_{OSC} is the oscillator frequency.
- 2. The duration of the oscillator stabilization wait time, t_{WAIT}, when it is released by an interrupt is determined by the settings in the basic timer control register, BTCON.

Figure 13-2. Operating Voltage Range

Figure 13-3. Schmitt Trigger Input Characteristics Diagram

Table 13-6. Data Retention Supply Voltage in Stop Mode

$$(T_A = -40 \,^{\circ}C \text{ to } + 85 \,^{\circ}C, V_{DD} = 2.0 \,^{\circ}V \text{ to } 5.5 \,^{\circ}V)$$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data retention supply voltage	V _{DDDR}	Stop mode	2.0	-	5.5	V
Data retention supply current	I _{DDDR}	Stop mode; $V_{DDDR} = 2.0 \text{ V}$	-	0.1	5	uA

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.

Figure 13-4. Stop Mode Release Timing When Initiated by a RESET

ELECTRICAL DATA

Table 13-7. A/D Converter Electrical Characteristics

(TA =
$$-40\,^{\circ}\text{C}$$
 to $+85\,^{\circ}\text{C}$, V_{DD} = 2.7 V to 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Total accuracy	I	V_{DD} = 5.12 V CPU clock = 10 MHz V_{SS} = 0 V	_	I	± 3	LSB
Integral linearity error	ILE	"	_	I	± 2	
Differential linearity error	DLE	"	_	1	± 1	
Offset error of top	EOT	"	_	± 1	± 3	
Offset error of bottom	EOB	"	_	± 1	± 2	
Conversion time ⁽¹⁾	t _{CON}	f _{OSC} = 10 MHz	_	20	_	μs
Analog input voltage	V_{IAN}	-	V _{SS}	-	V _{DD}	V
Analog input impedance	R _{AN}	-	2	_	_	MΩ
Analog input current	I _{ADIN}	$V_{DD} = 5 V$	_	1	10	μΑ
Analog block current (2)	I _{ADC}	$V_{DD} = 5 V$	_	1	3	mA
		V _{DD} = 3 V		0.5	1.5	
		V _{DD} = 5 V power down mode	_	100	500	nA

NOTES:

 [&]quot;Conversion time" is the time required from the moment a conversion operation starts until it ends.
I_{ADC} is operating current during A/D conversion.

Table 13-8. LVR Circuit Characteristics

$$(T_A = 25 \,^{\circ}C, V_{DD} = 2.0 \,^{\circ}V \text{ to } 5.5 \,^{\circ}V)$$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Low voltage reset	V _{LVR}	_	_	2.3 3.0 3.9		V
LVR hysteresis voltage	V _{HYS}		_	0.3	_	V
Power supply voltage rise time	t _R		10		(note)	us
Power supply voltage off time	t _{OFF}		0.5			S

NOTE: $2^{16}/fx$ (= 6.55 ms at fx = 10 MHz)

Figure 13-5. LVR Reset Timing

14

MECHANICAL DATA

OVERVIEW

The S3C9452/C9454 is available in a 20-pin DIP package (Samsung: 20-DIP-300A), a 20-pin SOP package (Samsung: 20-SOP-375), a 16-pin DIP package (Samsung: 16-DIP-300A). Package dimensions are shown in Figure 15-1, 15-2, and 15-3.

The S3C9442/C9444 is available in a 8-pin DIP package (SAMSUNG 8-DIP-300A), a 8-pin SOP package (SAMSUNG 8-SOP-225).

Package dimensions are shown in figure 14-4 and 14-5.

Figure 14-1. 20-DIP-300A Package Dimensions

Figure 14-2. 20-SOP-375 Package Dimensions

Figure 14-3. 16-DIP-300A Package Dimensions

Figure 14-4. 8-DIP-300 Package Dimensions

Figure 14-5. 8-SOP-225 Package Dimensions

15

S3F9444/F9454 MTP

OVERVIEW

The S3F9444/F9454 single-chip CMOS microcontroller is the MTP (Multi Time Programmable) version of the S3C9442/C9444/C9452/C9454 microcontroller. It has an on-chip Flash ROM instead of masked ROM. The Flash ROM is accessed by serial data format.

The S3F9444/F9454 is fully compatible with the S3C9442/C9444/C9452/C9454, in function, in D.C. electrical characteristics, and in pin configuration. Because of its simple programming requirements, the S3F9444/F9454 is ideal for use as an evaluation chip for the S3C9442/C9444/C9452/C9454.

Figure 15-1. Pin Assignment Diagram (20-Pin Package)

15-1

Figure 15-2. Pin Assignment Diagram (16-Pin Package)

Figure 15-3. Pin Assignment Diagram (8-Pin Package)

Table 15-1. Descriptions of Pins Used to Read/Write the Flash ROM

Main Chip		During Programming						
Pin Name	Pin Name	Pin No.	I/O	Function				
P0.1	SDA	18 (20-pin) 14 (16-pin)	I/O	Serial data pin (output when reading, Input when writing) Input and push-pull output port can be assigned				
P0.0	SCL	19 (20-pin) 15 (16-pin)	I	Serial clock pin (input only pin)				
RESET, P1.2	V _{PP}	4	I	Power supply pin for flash ROM cell writing (indicates that MTP enters into the writing mode). When 12.5 V is applied, MTP is in writing mode and when 5 V is applied, MTP is in reading mode. (Option)				
V _{DD} /V _{SS}	V _{DD} /V _{SS}	20 (20-pin), 16 (16-pin) 1 (20-pin), 1 (16-pin)	I	Logic power supply pin.				

Table 15-2. Comparison of S3F9444/F9454 and S3C9442/C9444/C9452/C9454 Features

Characteristic	S3F9444/F9454	S3C9442/C9444/C9452/C9454
Program Memory	4 Kbyte Flash ROM	2K/4K byte mask ROM
Operating Voltage (V _{DD})	2.0 V to 5.5 V	2.0 V to 5.5 V
OTP Programming Mode	V _{DD} = 5 V, V _{PP} = 12.5 V	
Pin Configuration	20 DIP/20 SOP/16 DIP	9/8 DIP/8 SOP
EPROM Programmability	User Program multi time	Programmed at the factory

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the V_{PP} pin of the S3F9444/F9454 Flash ROM programming mode is entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table 15-3 below.

Table 15-3. Operating Mode Selection Criteria

V _{DD}	V _{PP}	REG/MEM	Address (A15–A0)	R/W	Mode
5 V	5 V	0	0000H	1	Flash ROM read
	12.5 V	0	0000H	0	Flash ROM program
	12.5 V	0	0000H	1	Flash ROM verify
	12.5 V	1	0E3FH	0	Flash ROM read protection

NOTE: "0" means Low level; "1" means High level.

15-3