PLAN You must start with a balanced equation.

$$6CO_2(g) + 6H_2O(l) \longrightarrow C_6H_{12}O_6(s) + 6O_2(g)$$

Given the amount in mol of H_2O , you need to get the mass of $C_6H_{12}O_6$ in grams. Two conversion factors are needed—the mole ratio of C₆H₁₂O₆ to H₂O and the molar mass of $C_6H_{12}O_6$.

$$\label{eq:mol_equation} \begin{aligned} & \text{mol H}_2\text{O} \times \frac{\underset{\text{mol ratio}}{\text{mol C}_6\text{H}_{12}\text{O}_6}}{\text{mol H}_2\text{O}} \times \frac{\underset{\text{mol ar mass factor}}{\text{g C}_6\text{H}_{12}\text{O}_6}}{\text{mol C}_6\text{H}_{12}\text{O}_6} = \text{g C}_6\text{H}_{12}\text{O}_6 \end{aligned}$$

3 **COMPUTE** Use the periodic table to compute the molar mass of $C_6H_{12}O_6$.

$$C_6H_{12}O_6 = 180.18 \text{ g/mol}$$

$$3.00 \text{ mol H}_2\text{O} \times \frac{1 \text{ mol } C_6\text{H}_{12}\text{O}_6}{6 \text{ mol H}_2\text{O}} \times \frac{180.18 \text{ g } C_6\text{H}_{12}\text{O}_6}{1 \text{ mol } C_6\text{H}_{12}\text{O}_6} = 90.1 \text{ g } C_6\text{H}_{12}\text{O}_6$$

EVALUATE The answer is correctly rounded to three significant figures, to match those in 3.00 mol H_2O . The units cancel in the problem, leaving g $C_6H_{12}O_6$ as the units for the answer, which matches the unknown. The answer is reasonable because it is one-half of 180.

SAMPLE PROBLEM C For more help, go to the Math Tutor at the end of this chapter.

What mass of carbon dioxide, in grams, is needed to react with 3.00 mol H_2O in the photosynthetic reaction described in Sample Problem B?

SOLUTION

ANALYZE Given: amount of $H_2O = 3.00$ mol **Unknown:** mass of CO_2 (g)

The chemical equation from Sample Problem B is

2 **PLAN** $6CO_2(g) + 6H_2O(l) \longrightarrow C_6H_{12}O_6(s) + 6O_2(g)$.

> Two conversion factors are needed—the mole ratio of CO₂ to H₂O and the molar mass factor of CO₂.

 $\text{mol H}_2\text{O} \times \frac{\text{mol CO}_2}{\text{mol H}_2\text{O}} \times \frac{\text{g CO}_2}{\text{mol CO}_2} = \text{g CO}_2$ 3 **COMPUTE**

Use the periodic table to compute the molar mass of CO₂.

$$CO_2 = 44.01 \text{ g/mol}$$

 $3.00 \text{ mol H}_2\Theta \times \frac{6 \text{ mol CO}_2}{6 \text{ mol H}_2\Theta} \times \frac{44.01 \text{ g CO}_2}{1 \text{ mol CO}_2} = 132 \text{ g CO}_2$ **EVALUATE**

The answer is rounded correctly to three significant figures to match those in 3.00 mol H_2O . The units cancel to leave g CO₂, which is the unknown. The answer is close to an estimate of 120, which is 3×40 .