Елементи на комбинаториката. Основни методи за пресмятане.

Правило за събиране

Ако елементът а може да бъде избран по т начина, а елементът b по п различни начина, изборът на "а или b" може да се извърши по т + п начина.

Правило за умножение

Ако елементът а може да бъде избран по т начина и при всеки избор на а елементът b може да бъде избран по п начина, то изборът на наредената двойка (a,b) може да стане по т.п начина.

Извадка

Нека M={1,2,3,...,n}. Подмножеството { i_1 , i_2 ,..., i_k }, съставено от кои да е k елемента на M ще наричаме извадка с обем k. Можем да образуваме следните 4 различни множества от извадки с обем k: {ненаредени извадки с обем k без повтаряне на елементи}, k=0,1,2,...,n; {ненаредени извадки с обем k с възможно повтаряне на елементи}, k=0,1,2,...,n; {наредени извадки с обем k без повтаряне на елементи}, k=0,1,2,...,n; {наредени извадки с обем k с възможно повтаряне на елементи}, k=0,1,2,...,n;

1.1 Студентски стол предлага само комплексни менюта, съдържащи задължително супа, основно ядене и десерт. Възможният избор е даден в

таблицата

Вид	Избор
Супа	Пилешка супа или
	таратор
Основно	Печено пиле или
ядене	кюфтета
Десерт	Паста или баклава

- а) Колко различни комплексни менюта могат да се предложат? Меню=супа И ядене И десерт=> 2*2*2=8
- б) Ако студент иска непременно в менюто му да има баклава, то измежду колко възможни менюта той може да избира?

в) Ако студент иска непременно в менюто му да има печено пиле, то измежду колко възможни менюта той може да избира?

$$2*1*2=4$$

г) Ако студент иска непременно в менюто му да има и печено пиле и баклава, то измежду колко възможни менюта той може да избира? 2*1*1=2

1.2. Аранжьор на витрина разполага с три манекена и с пет различни рокли, от които само една е черна.

По колко различни начина може да изложи роклите на витрината (местоположението на роклите на витрината е без значение)?

Избира 3 от 5 без наредба без повторение 5*4*3/3!

А ако черната рокля трябва задължително да е на витрината?

Черна И други две= 1*(две от 4)=> 4*3/2! =6

- 1.4. Разглеждаме множеството на четирицифрените цели числа, които могат да се запишат с помощта на цифрите от 1 до 9.
- а) определете броя на тези числа;
- Избира 4 от 9 с наредба с повторение 9*9*9*9
- б/ определете броя на тези числа, ако цифрите не се повтарят Избира 4 от 9 с наредба без повторение 9*8*7*6
- в) определете броя на числата, за които цифрата на хилядите е 1, ако цифрите не се повтарят 1*8*7*6
- г) определете броя на числата, за които цифрата на единиците е 3, а цифрата на хилядите е 7, ако цифрите не се повтарят д) определете броя на числата, които съдържат в десетичния си запис последователно една до друга цифрите 6 и 7 и то в посочения ред, ако цифрите не се повтарят.

3* 1* 7*6

Модификация на1.4. Разглеждаме множеството на четирицифрените цели числа, които могат да се запишат с помощта на цифрите от 1 до 9.

а)) определете броя на числата, за които цифрата на хилядите е 8, ако цифрите не се повтарят

1*8*7*6

б/определете броя на числата, които съдържат цифрата 1, ако цифрите не се повтарят

5*1*8*7*6

в) определете броя на числата, които съдържат в десетичния си запис последователно една до друга цифрите 6 и 7, ако цифрите не се повтарят . 2*3* 1* 7*6

г) определете броя на числата, които съдържат в десетичния си запис цифрите 6 и 7, като 6 е преди 7 и ако чисата са с различни цифри.

126+84+42=252

д) определете броя на числата, които съдържат в десетичния си запис цифрите 6 и 7, ако чисата са с различни цифри.

2*252=504

МОДИФИКАЦИЯ на 1.4 Разглеждаме множеството на четирицифрените цели числа, които могат да се запишат с помощта на цифрите от **0** до 8.

- а) определете броя на тези числа; 8*9*9
- б/ определете броя на тези числа, ако цифрите не се повтарят 8*8*7*1
- в) определете броя на числата, за които цифрата на хилядите е 1, ако цифрите не се повтарят 1*8*7*6
- г) определете броя на числата, които съдържат цифрата 1, ако цифрите не се повтарят

1*8*7*6+3*7*7*6*1

- **1.10.** Четири символен код се състои от цифрите 0,1, 2, 3, 4, 5 като всяка от тях се използва не повече от един път?
- а) Колко са всички възможни кодове?
- 6*5*4*3
- б) Колко са всички възможни кодове, формиращи НЕчетно число?
- 5*5*4*3
- в) Колко са всички възможни кодове, които завършват на четна цифра? 5*4*3*3
- г) Колко са всички възможни кодове, формиращи четно число? 5*4*3*1+4*4*3*2

- **1.23.** От колода, състояща се от 24 карти произволно се изтеглят 3 карти едновремено.
- а) По колко начина може да се направи това? 24*23*22/3!
- б) По колко начина могат да се изтеглят 3 карти, точно една от които е "дама"? 4*(20*19/2!)
- в) По колко начина могат да се изтеглят 3 карти с поне една "дама" между тях? 4*(23*22/2!)
- г) По колко начина могат да се изтеглят 3 карти с най-много една "дама" между тях? 20*19*18/3!+4*20*19/2!

модификация Ани, Борис и 6 техни приятели отиват на кино и сядат на последния ред, който има 8 свободни стола.

а/По колко различни начина могат да седнат? 8!

б/ А ако Ани е в левия край, а Борис в десния? 1*1*6!

в/ А ако Ани и Борис са в края, в различни краища? 2*1*1*6!

г/По колко различни начина могат да седнат, ако Ани е отляво до Борис?

7!

д/По колко различни начина могат да седнат, ако Ани сяда до Борис?

2*7!

модификация Ани, Борис и 6 техни приятели отиват на кино и сядат на последния ред, който има 4 свободни стола.

```
а/По колко различни начина могат да седнат?
8*7*6*5
```

б/ А ако Ани е в левия край, а Борис в десния?1*1*(6*5)

в/ А ако Ани и Борис са в края, в различни краища? 2*1*1*(6*5)

г/По колко различни начина могат да седнат, ако Ани е отляво до Борис?

3*6*5

д/По колко различни начина могат да седнат, ако Ани сяда до Борис?

2*3*6*5

Колко различни пароли може да се напишат като се използват всички символи в думата a/ BULGARI б/ MISSISSIPPI 11!/(2!*4!*4!)

1.28. По колко начина колода от 24 карти може да се раздели на две равни на брой части? 24*23*22*21*20*19*18*17*16*15*14*13/12! *1 А на четири равни части? (24*23*22*21*20*19/6!)*(18*17*16*15*14*13/6!).....=24!/(6!)^4

Основни понятия в теорията на вероятностите. Алгебра на събитията.

Елементарно събитие се нарича всеки изход на даден случаен опит.

Пространство от елементарни събития **S** е съвкупността от всички елементарни събития.

Събитие е всяка съвкупност от елементарни събития (т.е. всяко подмножество на **S**).

Един изход а е благоприятен за събитието А, ако е елемент на А

Достоверното събитие Ω се състои се от всички елементарни събития. Невъзможното събитие \varnothing няма благоприятни изходи (т.е. \varnothing е празното множество).

2.1. Монета се хвърля 3 пъти. Опишете множеството от елементарни събития S.

 $S=\{\Lambda\Lambda\Lambda,\Lambda\Gamma\Lambda,\Gamma\Lambda\Lambda,\Lambda\Lambda\Gamma,\Gamma\Gamma\Lambda,\Gamma\Lambda\Gamma,\Gamma\Gamma\Gamma\}$

- **2.2.** Монета се хвърля, докато се падне "лице". Опишете множеството от елементарни събития S S={Л,ГЛ,ГГГЛ,.......} Изборимо безброй много
- **2.4.** Зар се хвърля 3 пъти. Опишете множеството от елементарни събития S. Колко са всички елементарни изходи?

S={111,112,113,...} 6*6*6= 216

Класическа вероятност. Свойства. Основни формули за вероятност. Формули за сума на две и повече събития.

3.1. Каква е вероятността при хвърляне на зар да падне четно число?

А просто число? Прости числа=2,3,5

$$P=1/2$$

3.2. Монета се хвърля 3 пъти. Каква е вероятността броят на "лицата" да е повече от броя на "гербовете"?

3Л ИЛИ 2Ли 1Г

А вероятността броят на "лицата" да е = на броя на "гербовете"?

МОДИФИКАЦИЯ НА 1.1 Студентски стол предлага само комплексни менюта, съдържащи задължително супа, основно ядене и десерт. Възможният избор е даден в таблицата

Вид	Избор
Супа	Пилешка супа или таратор
Основно	Печено пиле или
ядене	кюфтета
Десерт	Паста или баклава

Каква е вероятността ако Иванчо взема на Марийка по случаен начин меню, тя да получи любимото й печено пиле.

$$n=8$$
 $k=4$ $P=1/2$

МОДИФИКАЦИЯ НА 1.2. Аранжьор на витрина разполага с три манекена и с пет различни рокли, от които само една е черна.

Ако роклите се поставят по случаен начин на витрината (местоположението на роклите на витрината е без значение), то каква е вероятността черната рокля да е на витрината? n=5*4*3/3! =10

МОДИФИКАЦИЯ на 1.4. По случаен начин се избира едно число измежду всички четирицифрените цели числа, които се запишат с помощта на цифрите от 1 до 9.

а/Каква е вероятността числото да е четно?

n= 9*9*9*9

K=9*9*9*4

P = 4/9

б/ Каква е вероятността избраното число да е четно, ако цифрите му са различни?

n= 9*8*7*6

k= 4*8*7*6

P = 4/9

в) Каква е вероятността избраното число да съдържа в десетичния си запис последователно една до друга цифрите 6 и 7 и то в посочения ред, ако цифрите не се повтарят.

n= 9*8*7*6

K=3* 1* 7*6

P=3/72=1/24

Условна вероятност. Формула за умножение на вероятности: P(A.B)=P(A|B) P(B)

- **5.5.** В кутия има 10 бели и 10 черни топчета. Иванчо вади по едно топче и ако то е бяло, го връща в кутията, като добавя и още едно бяло.
- а) Каква е вероятността при 2 такива опита, Иванчо да извади две черни топчета?
- A= 1ви път е черно P(A)=10/20=1/2 B=2ри път е черно $P(A \cup B)=P(B \mid A)P(A)=9/19*1/2$
- б) Каква е вероятността при 2 такива опита, Иванчо да извади две бели топчета?
- А= 1ви път е бяло P(A)=10/20=1/2 В=2ри път е бяло $P(A \cup B)=P(B \mid A)P(A)=11/21*1/2=11/42$
- МОДИФИКАЦИЯ. В кутия има 10 бели и 5 черни топчета. Иванчо вади по едно топче и ако то е бяло, го връща в кутията, като добавя и още едно бяло.
- а) Каква е вероятността при 2 такива опита, Иванчо да извади две черни топчета?

Независимост на случайни събития P(A.B)=P(A)P(B)

5.7. Избираме случайно число измежду всички естествени числа до 100 включително. Разглеждаме събитията А={избраното число се дели на 2}; В={избраното число се дели на 3}; С={избраното число се дели на 5}. Коя от следните двойки събития (А, В), (А, С) и (В, С) са независими? 3a (A, B): P(A)=1/2 P(B)=33/100АВ= Числото се дели на 6 Р(АВ)=16/100 => зависими 3a (A, C): P(A)=1/2 P(C)=20/100=1/5AC- Числото се дели на 10 P(AC)=10/100=1/10 => НЕзависими 3a (B, C): P(B)=33/100 P(C)=20/100=1/5ВС- Числото се дели на 15 Р(ВС)=6/100 => зависими

Формула за пълната вероятност.

$$P(A) = P(A | B_1)P(B_1) + P(A | B_2)P(B_2) + P(A | B_3)P(B_3)$$

Формула на Бейс.

$$P(B_2 \mid A) = \frac{P(B_2)P(A \mid B_2)}{P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + P(B_3)P(A \mid B_3)}$$

6.3. Дадена марка телевизори се произвеждат в 3 завода. В първия 2% от телевизорите имат скрит дефект, във втория 1% от телевизорите имат скрит дефект, а в третия 3% от телевизорите имат скрит дефект. Магазин е зареден със 100 телевизора от първия завод, 200 телевизора от втория завод и 300 телевизора от третия завод. Каква е вероятността ако си купим телевизор от този магазин, той да се окаже изправен?

А= телевизора е без дефект Търсим Р(А)=?

B1- произведен от 1ви завод P(B1)=100/600=1/6 P(A|B1)=1-0.02 B2- произведен от 2ри завод P(B2)=200/600=1/3 P(A|B2)=1-0.01

B3- произведен от 3ти завод P(B3)=300/600=1/2 P(A|B3)=1-0.03

6.3. (продължение) Дадена марка телевизори се произвеждат в 3 завода. В първия 2% от телевизорите имат скрит дефект, във втория 1% от телевизорите имат скрит дефект, а в третия 3% от телевизорите имат скрит дефект. Магазин е зареден със 100 телевизора от първия завод, 200 телевизора от втория завод и 300 телевизора от третия завод.

Ако купеният от нас телевизор е дефектен, каква е вероятността той да е бил произведен във втория завод?

Р(В2 | А) А= дефектен телевизор

$$P(A|B1)=0.02$$

$$P(A | B2) = 0.01$$

$$P(A|B3)=0.03$$

$$P(B_2 \mid A) = \frac{P(B_2)P(A \mid B_2)}{P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + P(B_3)P(A \mid B_3)}$$

P(B2|A)=(0.01*1/3)/(0.02*1/6+0.01*1/3+0.03*1/2)