Тема 4. Центральная предельная теорема

Вспомогательная теория

Напомним формулировку центральной предельной теоремы.

Теорема 1. Пусть X_i - н.о.р. случайные величины, $\mathbf{E}X_i = \mu,\ 0 < \mathbf{D}X_i = \sigma^2 < \infty$. Тогда

$$\frac{X_1 + \ldots + X_n - \mu n}{\sigma \sqrt{n}} \xrightarrow{d} Z \sim \mathcal{N}(0, 1).$$

То есть

$$\mathbf{P}\left(\frac{X_1 + \ldots + X_n - \mu n}{\sigma \sqrt{n}} \le x\right) \to \Phi(x), \, n \to \infty, \, \forall x,$$

где $\Phi(x)$ – функция распределения $\mathcal{N}(0,1)$.

Обратите внимание, что, вообще говоря, сходимость по распределению не гарантирует сходимости плотностей, однако, справедлив следующий замечательный результат с которым вы познакомитесь в курсе дополнительных глав теории вероятностей.

Теорема 2. Пусть X_i - н.о.р. случайные величины, причем $\int_{\mathbb{R}} |\psi_X(t)|^a dt < +\infty$ при некотором a > 0, где ψ - характеристическая функция. При этом $\mathbf{E} X_i = \mu$, $0 < \mathbf{D} X_i = \sigma^2 < \infty$. Тогда

$$f_{(S_n-\mu n)/(\sigma\sqrt{n})}(x) \stackrel{d}{\to} \phi(x),$$

где ф – плотность стандартной нормальной величины.

Помимо самого факта сходимости функций распределений центрированных нормированных сумм известны также следующие результаты.

Теорема 3 (Неравенство Берри–Эссеена.). Пусть выполнены условия ЦПТ и дополнительно $\mathbf{E}|X|^3 < \infty$. Тогда

$$\left| \mathbf{P} \left(\frac{X_1 + \dots + X_n - \mu n}{\sigma \sqrt{n}} \le x \right) - \Phi(x) \right| \le C \frac{\mathbf{E}|X_1 - \mathbf{E}X_1|^3}{(\mathbf{D}X_1)^{3/2} \sqrt{n}},$$

где C – некоторая константа, не зависящая от распределения X_i . По последним данным $C \leqslant 0.4784$.

Теорема 4. Пусть X_1, \dots, X_n н.о.р. $\mathbf{E}X = \mu, \mathbf{D}X = \sigma^2, \mathbf{E}(X - \mu)^3 = \rho_3.$

Справедливо также следующее асимптотическое разложение.

Пусть $\mathbf{E}(X-\mu)^3=\rho_3,\ a_3:=\rho_3/\sigma^3$ – коэффициент асимметрии. Тогда

$$\mathbf{P}\left(\frac{X_1 + \ldots + X_n - \mu n}{\sigma \sqrt{n}} \le x\right) - \Phi(x) = \frac{a_3}{6\sqrt{2\pi n}} (1 - x^2) \exp\left(-\frac{x^2}{2}\right) + o\left(\frac{1}{\sqrt{n}}\right)$$

 $npu \ n \to \infty$.

Теорема 4 дает более точные приближения чем теорема 3, зато теорема 3 не предельная, а верна при всех n.

Задачи

1. Моделировать выборки $X_{i,j}$, $i \leq 1000$, $j \leq n$, где i) n=20 ii) n=100 величин из распределений а) $\operatorname{Bern}(1/2)$, б) R[0,1], в) $\exp(1)$, г) Коши. Найти $S_{i,n} = \sum_{j=1}^n X_{i,j}$ и построить на одном графике ЭФР $S_{n,i}$ и ф.р. $\mathcal{N}(n\overline{X}, nS^2)$, где \overline{X} , S^2 – выборочное среднее и выборочная дисперсия всех имеющихся наблюдений. Похожи ли визуально полученные графики?

- 2. Пусть $X \sim Gamma(n,4)$ Построить на одном графике графики плотности распределения с.в. $(X \mathbf{E}X)/\sqrt{\mathbf{D}X}$ и плотности $\mathcal{N}(0,1)$ для различных n.
- 3. Построить гистограмму по набору значений с.в. $S_n = X_1 + \ldots + X_n \mu n$ (генерируем k выборок X_1, \ldots, X_n , по каждой находим одно значение суммы). На том же графике построить плотность распределения с.в. S_n (для дискретных дискретное распределение) и плотность $\mathcal{N}(0, \sigma^2 n)$.

Здесь распределения X_i рассматриваются следующие:

- 1 вариант: $Poiss(\lambda)$, 2 вариант: Geom(p),
- 1 вариант: $exp(\lambda)$, 2 вариант: Gamma(a, b).
- * Для всех вариантов R[0,1] (для поиска плотности распределения суммы можно использовать sympy.stats.UniformSum() или написать формулу самостоятельно, см. распределение Ирвина—Холла),
- 4. Обозначим $Y = (S_n n\mu)/(\sigma\sqrt{n})$. Построить на одном графике: $F_Y(x) \Phi(x)$, правую часть неравенства Берри–Эссеена, ее же, умноженную на -1, правую часть асимптотического разложения. Рассмотреть n = 5, 10, 20, 50, 100, 500. Соотнести полученные результаты с теоремами 3 и 4. Рассмотрите следующие распределения X_i : Bern(p), $exp(\lambda)$.

_