An Introduction to Radio Interferometry

3-3 Complex Visibility (1D)

Sine correlation: $\langle [E_A + E_B]^2 \rangle_{sin} \sim \tilde{P}(\theta)[1 + \sin(2\pi u\theta)]$

When there is one target source

Sine correlation: $\langle [E_A + E_B]^2 \rangle_{sin} \sim \tilde{P}(\theta)[1 + \sin(2\pi u\theta)]$

When there are two <u>incoherent</u> sources

Light source 1

Light source 2

Similarl E_A . Elect E_B E_A . Elect E_B E_A E_A E_B E_A E_B E_A E_A E_B E_A E_A

direction of incident (normal incident)

 E_A : electric field received at antenna A = $E_A^{(1)}$ + $E_A^{(2)}$, Similarly, $E_B = E_B^{(1)} + E_B^{(2)}$

$$<[E_A + E_B]^2> = + + <2E_A^{(1)}E_B^{(1)}> + + + <2E_A^{(2)}E_B^{(2)}> + <2E_A^{(1)}E_B^{(2)}> + <2E_A^{(1)}E_B^{(2)}> + <2E_A^{(1)}E_B^{(2)}> + <2E_B^{(1)}E_A^{(2)}> + <2E_B^{(1)}E_B^{(2)}> + <2E_B^{(1)}E_B^{(2$$

Sine correlation: $\langle [E_A + E_B]^2 \rangle_{sin} \sim \tilde{P}(\theta)[1 + \sin(2\pi u\theta)]$

When there are two <u>incoherent</u> sources

Light source 1

Light source 2

Light source 2 E_A : electric field received at antenna $A = E_A^{(1)} + E_A^{(2)}$, Similarly, $E_B = E_B^{(1)} + E_B^{(2)}$

$$<[E_A + E_B]^2> = + + <2E_A^{(1)}E_B^{(1)}> + + + <2E_A^{(2)}E_B^{(2)}> + <2E_A^{(1)}E_A^{(2)}> + <2E_A^{(1)}E_B^{(2)}> + <2E_B^{(1)}E_A^{(2)}> + <2E_B^{(1)}E_B^{(2)}> + <2E_B^{(1)}E_B^{(2$$

Sine correlation: $\langle [E_A + E_B]^2 \rangle_{sin} \sim \tilde{P}(\theta) [1 + \sin(2\pi u\theta)]$

D(slit width)

When there are two <u>incoherent</u> sources

Light source 1

Light source 2

Similarl $E_A^{(1)}$ $E_A^{(1)}$ $E_A^{(2)}$ path length difference $\sim B \sin \theta \equiv \Delta x$

direction of incident (normal incident)

 E_A : electric field received at antenna A = $E_A^{(1)}$ + $E_A^{(2)}$, Similarly, $E_B = E_B^{(1)} + E_B^{(2)}$

$$<[E_A + E_B]^2> = + + <2E_A^{(1)}E_B^{(1)}> + + + <2E_A^{(2)}E_B^{(2)}> + <2E_A^{(1)}E_B^{(2)}> + <2E_A^{(1)}E_B^{(2)}> + <2E_A^{(1)}E_B^{(2)}> + <2E_B^{(1)}E_A^{(2)}> + <2E_B^{(1)}E_B^{(2)}> + <2E_B^{(1)}E_B^{(2$$

Sine correlation: $\langle [E_A + E_B]^2 \rangle_{sin} \sim \tilde{P}(\theta)[1 + \sin(2\pi u\theta)]$

When there are two <u>incoherent</u> sources

Light source 1

Light source 2 E_A : electric field received at antenna $A = E_A^{(1)} + E_A^{(2)}$,

Similarly, $E_B = E_B^{(1)} + E_B^{(2)}$ $< [E_A + E_B]^2 > = < E_A^{(1)}^2 > + < E_B^{(1)}^2 > + < 2E_A^{(1)}^2 > +$

 $+ \langle E_{A}^{(2)} \rangle^{2} + \langle E_{B}^{(2)} \rangle^{2} + \langle 2E_{A}^{(2)} E_{B}^{(2)} \rangle + \langle 2E_{A}^{(1)} E_{B}^{(2)} \rangle + \langle 2E_{B}^{(1)} E_{B}^{(2)} \rangle + \langle 2E_{B}^{(1)}$

Definition of incoherent sources

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇),
Department of Physics

Sine correlation: $\langle [E_A + E_B]^2 \rangle_{sin} \sim \tilde{P}(\theta)[1 + \sin(2\pi u\theta)]$

When there are two <u>incoherent</u> sources

Light source 1
Light source 2

 E_A : electric field received at antenna A = $E_A^{(1)}$ + $E_A^{(2)}$, Similarly, E_B = $E_B^{(1)}$ + $E_B^{(2)}$

$$<[E_A + E_B]^2> = + + <2E_A^{(1)}E_B^{(1)}> + + <2E_A^{(2)^2}> + <2E_A^{(2)}E_B^{(2)}>$$

Correlation of multiple incoherent sources can be evaluated by summing over the contribution of individual sources.

Sine correlation: $\langle [E_A + E_B]^2 \rangle_{sin} \sim \tilde{P}(\theta)[1 + \sin(2\pi u\theta)]$

When there are more <u>incoherent</u> sources

$$<[E_A + E_B]^2 > {}_{cos}{}^{cross} \propto \sum_{i=0}^{N-1} \widetilde{P(\theta_i')} \left[A_i \cos(2\pi u \theta_i')\right]$$

A coefficient to describe how bright is source *i*

Dimension: flux density

Looking at cross correlations at this moment (i.e., neglecting auto-correlation terms)

Sine correlation: $\langle [E_A + E_B]^2 \rangle_{sin} \sim \tilde{P}(\theta)[1 + \sin(2\pi u\theta)]$

When there is a continuous distribution of incoherent sources

 $<[E_A + E_B]^2 > {}_{cos}{}^{cross} \propto \int \tilde{P}(\theta) A(\theta) \cos(2\pi u\theta) d\theta$

A coefficient to describe the intensity of the target source at incident angle θ Dimension: intensity

Sine correlation: $\langle [E_A + E_B]^2 \rangle_{sin} \sim \tilde{P}(\theta)[1 + \sin(2\pi u\theta)]$

When there is a continuous distribution of <u>incoherent</u> sources

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇), Department of Physics

Sine correlation: $\langle [E_A + E_B]^2 \rangle_{sin} \sim \tilde{P}(\theta) [1 + \sin(2\pi u\theta)]$

When there is a continuous distribution of incoherent sources

$$<[E_A + E_B]^2 > {}_{cos}{}^{cross} \propto \int \tilde{P}(\theta) A(\theta) \cos(2\pi u\theta) d\theta$$

A coefficient to describe the intensity of the target source at incident angle θ

$$<[E_A + E_B]^2 > \sin^{cross} \propto \int \tilde{P}(\theta) A(\theta) \sin(2\pi u\theta) d\theta$$

Complex visibility
$$V_{AB} = \langle [E_A + E_B]^2 \rangle_{cos}^{cross} + i \langle [E_A + E_B]^2 \rangle_{sin}^{cross}$$

Cosine correlation:
$$\langle [E_A + E_B]^2 \rangle_{cos} \sim \tilde{P}(\theta)[1 + \cos(2\pi u\theta)]$$

Complex visibility $V_{AB} = \langle [E_A + E_B]^2 \rangle_{cos}^{cross} + i \langle [E_A + E_B]^2 \rangle_{sin}^{cross}$

Sine correlation:

$$<[E_A + E_B]^2>_{sin} \sim \tilde{P}(\theta)[1 + \sin(2\pi u\theta)]$$

Intensity distribution of a point-like source: $A(\theta) = \delta(\theta - \theta')$

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇), Department of Physics

1. Complex visibility:
$$V_{AB} = \langle [E_A + E_B]^2 \rangle_{cos}^{cross} + i \langle [E_A + E_B]^2 \rangle_{sin}^{cross}$$

2. For a point-like source:
$$V_{AB} = g\tilde{P}(\theta')\cos(2\pi u\theta') + ig\tilde{P}(\theta')\sin(2\pi u\theta')$$

$$= \underbrace{g\tilde{P}(\theta')}_{\text{Visibility phase}} e^{i2\pi u\theta'}_{\text{Visibility phase}}$$