

Code sujet: 287

Conception: ESSEC

MATHÉMATIQUES 2 APPLIQUÉES

FILIÈRE ÉCONOMIQUE ET COMMERCIALE VOIE GÉNÉRALE

Jeudi 25 avril 2024, de 14 h. à 18 h.

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Aucun document n'est autorisé. L'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il la signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il sera amené à prendre.

On s'intéresse dans ce problème à l'énergie d'un graphe qui est définie à partir de l'énergie de sa matrice d'adjacence.

L'énergie d'un graphe a été introduite en 1978 par Ivan Gutman. Ce n'est qu'à partir des années 2000 que des recherches approfondies sur cette notion ont été entreprises.

Aujourd'hui plus de deux articles par semaine sont publiés sur l'énergie des graphes avec de nombreuses applications dans divers domaines scientifiques.

Les parties 2 et 3 sont indépendantes et un bref aide-mémoire Python se trouve en page 6.

Dans tout le problème n est un entier supérieur ou égal à 2.

On rappelle que la notation $\sum_{1\leqslant i,j\leqslant n}$ est analogue à la notation $\sum_{(i,j)\in [\![1,n]\!]^2}$.

Partie 1 - Énergie et trace d'une matrice

- 1. Soit A une matrice carrée symétrique appartenant à $\mathcal{M}_n(\mathbb{R})$. Justifier l'existence d'une matrice carrée inversible P appartenant à $\mathcal{M}_n(\mathbb{R})$ telle que $P^{-1}AP$ soit une matrice diagonale. Que peut-on dire des éléments diagonaux de $P^{-1}AP$?
- ▶ En notant $\lambda_1, ..., \lambda_n$ les éléments diagonaux de $P^{-1}AP$, on pose alors $\mathcal{E}(A) = \sum_{k=1}^n |\lambda_k|$, on nomme ce réel positif l'énergie de A.

 On admet que cette somme ne dépend pas du choix de P.
- 2. Montrer que $\mathcal{E}(A) = 3$ si $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$.
- 3. Ecrire une fonction Python energie(A) qui renvoie l'énergie de la matrice symétrique représentée par le tableau numpy A.
- ▶ Si $A = (a_{i,j})_{1 \leq i,j \leq n}$ est une matrice carrée appartenant à $\mathcal{M}_n(\mathbb{R})$, on définit la trace de A, notée $\operatorname{tr}(A)$ par :

 $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{i,i}$

- 4. Notons $A = (a_{i,j})_{1 \le i,j \le n}$ et $B = (b_{i,j})_{1 \le i,j \le n}$.
 - a) Montrer que : $\operatorname{tr}(AB) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{i,j} b_{j,i} \right) = \sum_{1 \leqslant i,j \leqslant n} a_{i,j} b_{j,i}$.
 - b) En déduire que : $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ et $\operatorname{tr}({}^tAA) = \sum_{1 \leq i,j \leq n} a_{j,i}^2$. Que peut-on dire de A si $\operatorname{tr}({}^tAA) = 0$?
 - c) Si A et B sont semblables, montrer que tr(A) = tr(B).
- 5. Dans cette question $A = (a_{i,j})_{1 \leq i,j \leq n}$ est symétrique et on utilise les notations de la question 1.
 - a) Montrer que $|\operatorname{tr}(A)| \leq \mathcal{E}(A)$.
 - b) Justifier que $\operatorname{tr}(A^2) = \sum_{k=1}^n \lambda_k^2$.
- 6. Dans la console Python, on obtient :

>>> energie(3*np.eye(3)-np.ones([3,3]))
6.0

- a) Déterminer quelle est la matrice A associée au tableau 3*np.eye(3,3)-np.ones([3,3]).
- b) En calculant tr(A), $tr(A^2)$ et en déterminant une valeur propre évidente de A, expliciter son spectre et retrouver son énergie.

Partie 2 - Produit de Kronecker $2 \times n$ de matrices symétriques

• Soit $U = \begin{pmatrix} u & v \\ v & w \end{pmatrix}$ une matrice carrée appartenant à $\mathcal{M}_2(\mathbb{R})$ symétrique et A une matrice carrée appartenant à $\mathcal{M}_n(\mathbb{R})$ symétrique. On définit U * A la matrice carrée appartenant à $\mathcal{M}_{2n}(\mathbb{R})$ que l'on peut naturellement

représenter ainsi $\begin{pmatrix} uA & vA \\ vA & wA \end{pmatrix}$ (écriture par blocs).

• Par exemple, si
$$U=\begin{pmatrix}2&1\\1&0\end{pmatrix}$$
 et $A=\begin{pmatrix}0&1&1\\1&0&0\\1&0&0\end{pmatrix}$, alors $U*A=\begin{pmatrix}2A&A\\A&0_3\end{pmatrix}$ par blocs,

$$\text{d'où } U*A = \begin{pmatrix} 0 & 2 & 2 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} (0_3 \text{ désigne la matrice nulle de } \mathcal{M}_3(\mathbb{R})).$$

• Si
$$X$$
 est une matrice colonne appartenant à $\mathcal{M}_{2n,1}(\mathbb{R}), X = \begin{pmatrix} x_1 \\ \vdots \\ x_{2n} \end{pmatrix}$, on écrira $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$

avec
$$X_1 = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $X_2 = \begin{pmatrix} x_{n+1} \\ \vdots \\ x_{2n} \end{pmatrix}$.

On admet qu'alors la matrice colonne (U*A)X de $\mathcal{M}_{2n,1}(\mathbb{R})$ est égale à $\begin{pmatrix} uAX_1 + vAX_2 \\ vAX_1 + wAX_2 \end{pmatrix}$.

- 7. a) Écrire une fonction Python prod2K(u,v,w,A) qui étant donné $U = \begin{pmatrix} u & v \\ v & w \end{pmatrix}$ et A, représentée par un tableau numpy, renvoie U * A sous la forme d'un tableau numpy.
 - b) Compléter le code suivant s'affichant dans la console Python :

- 8. Soit $\binom{a}{b}$ un vecteur propre de U pour la valeur propre λ et X un vecteur propre de A pour μ . On pose $Y = \binom{aX}{bX}$.
 - a) Établir l'égalité : $(U*A)Y = \mu \begin{pmatrix} (ua+vb)X\\ (va+wb)X \end{pmatrix}$.
 - b) Montrer que Y est un vecteur propre de U*A et préciser pour quelle valeur propre.
- 9. a) Justifier l'existence d'une base $\binom{a}{b}$, $\binom{c}{d}$ de $\mathcal{M}_{2,1}(\mathbb{R})$ et de $(X_1, ..., X_n)$ une base de $\mathcal{M}_{n,1}(\mathbb{R})$, formée de vecteurs propres de U et A respectivement.
 - ▶ On note γ_1 et γ_2 les valeurs propres associées à $\begin{pmatrix} a \\ b \end{pmatrix}$ et $\begin{pmatrix} c \\ d \end{pmatrix}$ respectivement et $\mu_1, ..., \mu_n$ celles associées à $X_1, ..., X_n$ respectivement.

 On pose, pour tout $i \in [\![1, n]\!]$, $Y_i = \begin{pmatrix} aX_i \\ bX_i \end{pmatrix}$ et $Z_i = \begin{pmatrix} cX_i \\ dX_i \end{pmatrix}$.
 - b) Montrer que la famille $(Y_1, Z_1, ..., Y_n, Z_n)$ est libre.
 - c) En déduire que U*A est semblable à la matrice diagonale dont les éléments diagonaux sont $\gamma_1\mu_1, \gamma_2\mu_1, ..., \gamma_1\mu_n, \gamma_2\mu_n$.

- d) En conclure que $\mathcal{E}(U * A) = \mathcal{E}(U) \times \mathcal{E}(A)$.
- 10. Un exemple On considère un graphe G_n , non orienté et sans boucle, dont les sommets sont 1, ..., n et l'ensemble des arêtes est noté A_n . On définit le graphe G_{2n} dont les sommets sont 1, ..., 2n et les arêtes sont celles de G_n , ainsi que, pour toute arête $\{i, j\} \in A_n$, les arêtes $\{i + n, j\}$ et $\{i, j + n\}$.

Voici un exemple de représentation de G_4 et G_8 :

On note A_n et A_{2n} les matrices d'adjacence de G_n et G_{2n} .

- a) Déterminer U telle que $A_{2n} = U * A_n$.
- b) En déduire que $\mathcal{E}(A_{2n}) = \sqrt{5}\mathcal{E}(A_n)$.

Partie 3 - Encadrement de l'énergie d'une matrice d'adjacence

Soit m, n et p des entiers tels que $m \ge 1$, $n \ge p \ge 2$.

On suppose dans cette partie que $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ est la matrice d'adjacence d'un graphe G(A), non orienté sans boucle, à n sommets 1,...,n, m arêtes et n-p sommets isolés, c'est-à-dire de degré 0.

On note $(E_1, ..., E_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$ et I l'ensemble des sommets non isolés de G(A).

- 11. a) Montrer que $\sum_{1\leqslant i,j\leqslant n}a_{i,j}=\sum_{(i,j)\in I^2}a_{i,j}=2m.$
 - b) Établir que : $1 \leqslant \frac{2m}{p} \leqslant p 1$.
- 12. a) Justifier qu'il existe une matrice carrée inversible P appartenant à $\mathcal{M}_n(\mathbb{R})$ telle que $P^{-1}AP$ soit une matrice diagonale différente de la matrice nulle.
 - $\blacktriangleright\,$ Dans la suite on note D cette matrice diagonale.
 - b) En déduire que $\operatorname{tr}(D)=0,\,\operatorname{tr}(D^2)=\sum\limits_{1\leqslant i,j\leqslant n}a_{i,j}^2=2m.$
- ▶ On suppose dans la suite que P est telle que les éléments diagonaux de D, $\lambda_1, ..., \lambda_n$ vérifient $|\lambda_1| \ge ... \ge |\lambda_n|$. On pose $\theta = \max_{1 \le k \le n} \lambda_k$.
- 13. a) Soit k un sommet isolé. Montrer que $E_k \in \ker(A)$. En déduire que $\dim(\ker(A)) \geqslant n-p$ puis que, si $p < n, \lambda_{p+1} = \ldots = \lambda_n = 0$.
 - b) Montrer que $\sum_{k=1}^{p} \lambda_k^2 = 2m$ puis que $0 < \theta \leqslant \sqrt{2m}$.

- c) Soit $r \in \mathbb{N}^*$ et $x_1, ..., x_r$ des réels. Montrer que : $\sum_{1 \leqslant i,j \leqslant r} 2x_i x_j \leqslant \sum_{1 \leqslant i,j \leqslant r} (x_i^2 + x_j^2).$ En déduire que $\left(\sum_{i=1}^r x_i\right)^2 \leqslant r\left(\sum_{i=1}^r x_i^2\right).$
- d) En conclure que $\mathcal{E}(A) \leq \theta + \sqrt{(p-1)(2m-\theta^2)}$.
- 14. On admet qu'on peut choisir la matrice P de la question 12.a) de sorte que $P^{-1} = {}^tP$. On pose alors $Q = {}^tP$.

Soit
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 une matrice colonne appartenant à $\mathcal{M}_{n,1}(\mathbb{R})$ et $Y = QX = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

- ▶ On admet que si M est une matrice carrée appartenant à $\mathcal{M}_n(\mathbb{R})$ et Z une matrice colonne appartenant à $\mathcal{M}_{n,1}(\mathbb{R})$ alors ${}^t(MZ) = {}^tZ^tM$.
- ▶ Si U et V sont deux matrices colonnes appartenant à $\mathcal{M}_{n,1}(\mathbb{R})$, tUV est une matrice carrée appartenant à $\mathcal{M}_{1,1}(\mathbb{R})$, on l'identifie à son unique coefficient. Donc ${}^tUV \in \mathbb{R}$.
 - a) Montrer que $Q^{-1} = {}^tQ$ puis que $A = {}^tQDQ$ et ${}^tYY = {}^tXX$.
 - b) Montrer que ${}^{t}XAX = {}^{t}YDY = \sum_{k=1}^{n} \lambda_{k}y_{k}^{2}$.
 - c) En remarquant que $\sum_{k=1}^{n} y_k^2 = {}^tYY$, en déduire que ${}^tXAX \leqslant \theta\,{}^tXX$.
- 15. Soit U la matrice colonne appartenant à $\mathcal{M}_{n,1}(\mathbb{R})$ dont le *i*ème coefficient vaut 1 si i n'est pas isolé et 0 sinon.
 - a) Montrer que ${}^tUAU = \sum\limits_{(i,j)\in I^2} a_{i,j} = 2m.$ En déduire que $\frac{2m}{p} \leqslant \theta.$
 - b) Établir que : $\frac{1}{\sqrt{p}} \leqslant \frac{\sqrt{2m}}{p} \leqslant \frac{\theta}{\sqrt{2m}} \leqslant 1$.
- 16. a) Étudier la fonction $F: x \mapsto x + \sqrt{(p-1)(1-x^2)}$ sur [0,1].
 - b) En déduire que $\mathcal{E}(A) \leqslant \sqrt{2m} F\left(\frac{\sqrt{2m}}{p}\right)$, c'est-à-dire que :

$$\mathcal{E}(A) \leqslant \frac{2m}{p} + \frac{1}{p}\sqrt{(p-1)2m(p^2 - 2m)} \quad (1)$$

- 17. On suppose dans cette question que A est la matrice d'adjacence d'un graphe complet de sommets 1,...,n donc $m=\frac{n(n-1)}{2}$ et p=n.
 - a) Représenter la matrice A.
 - b) Montrer -1 est une valeur propre de A et que le sous-espace propre associé est de dimension n-1.
 - c) Établir aussi que n-1 est une valeur propre de A. En déduire que $\mathcal{E}(A)=2(n-1)$ et que l'inégalité (1) est alors une égalité.
- ▶ On note $\alpha = \min_{1 \leq k \leq p} |\lambda_k|$ et $\beta = \max_{1 \leq k \leq p} |\lambda_k|$. On note aussi d le degré maximal des sommets du graphe G(A).

- 18. Écrire une fonction Python degMax(A) qui renvoie le maximum des degrés des sommets du graphe G(A), celui-ci étant donné par sa matrice d'adjacence sous la forme du tableau numpy A.
- 19. a) Montrer que pour tout $j \in \{1,...,p\}$, $|\lambda_j|(\alpha + \beta) \ge \lambda_j^2 + \alpha\beta$.
 - b) En déduire que $(\alpha + \beta)\mathcal{E}(A) \geqslant \operatorname{tr}(A^2) + p\alpha\beta$, puis que $\mathcal{E}(A) \geqslant \frac{2m + p\alpha\beta}{\alpha + \beta}$.
 - c) Soit a et b deux réels strictement positifs tels que $a\leqslant b^2$. Étudier les variations de $\varphi:t\mapsto \frac{a+bt}{b+t}$ sur \mathbb{R}^+ .
 - d) Montrer que $2m\leqslant p\beta^2$. En déduire que $\mathcal{E}(A)\geqslant \frac{2m}{\beta}$.
- 20. Soit $X=\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}$ un vecteur propre pour une valeur propre λ de A telle que $|\lambda|=\beta$.
 - a) Montrer que pour tout $i \in \{1, ..., n\}, \beta |x_i| \leq d \max_{1 \leq i \leq n} |x_j|$.
 - b) En conclure que $\mathcal{E}(A) \geqslant \frac{2m}{d} \geqslant \frac{2m}{p-1}$ (2).
 - c) Montrer que l'égalité dans (2) est réalisée pour la matrice A carrée appartenant à $\mathcal{M}_n(\mathbb{R})$ associée au graphe dont l'unique arête est $\{1,2\}$.

Aide-mémoire Python

On suppose que l'on a exécuté import numpy as np, numpy.linalg as al en début de session.

- Si T est un tableau numpy, np.shape(T) renvoie le nombre de lignes et le nombre de colonnes de T, dans cet ordre, sous la forme d'un couple.
- np.zeros([p,q]) crée un tableau numpy à p lignes et q colonnes ne contenant que des 0.
- np.ones([p,q]) crée un tableau numpy à p lignes et q colonnes ne contenant que des 1.
- np.eye(p) crée un tableau numpy à p lignes et p colonnes ne contenant que des 1 sur sa diagonale et des 0 ailleurs.
- La fonction al.eigvals, appliquée à un tableau numpy représentant une matrice symétrique A, renvoie le tableau des coefficients d'une matrice diagonale semblable à A.

FIN