

Fig / Proposed architecture for Consumer Video Organization.

Fig & Flow chart for the video segment merging algorithm.

Fig. 3

Fig / Scattering plot for training inter-segment feature vectors.

Fig 5 Displaying the Binary Video Segment Tree.Rylan_2 video clip. The leaves of the binary tree show a random frame from each shot (numbered 0-5, from left to right). Each parent node corresponds to a merging of a pair of segments.