Medical Dead-ends and Learning to Identify High-risk States and Treatments

Mehdi Fatemi, Taylor W. Killian, Jayakumar Subramanian, Marzyeh Ghassemi 2021 NeurIPS

Presenter: Wei-Chun Tsai

National Cheng Kung University

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

Introduction - Off-policy Reinforcement Learning (RL)

- Off-policy Reinforcement Learning (RL)
 - Isolate behavioural policies from the target policy
 - Important in safety-critical domains
 - Significant advances made possible by off-policy RL combined with DNNs

Pitfalls

- The performance degrade drastically in fully offline settings
- Significantly overfit to data-collection artifacts
- RL estimates of optimal policies are largely unreliable in healthcare due to legal and ethical implications

Introduction - Dead-end Discovery (DeD)

- Dead-end Discovery (DeD)
 - Paradigm Shift: identify treatments to avoid as opposed to what treatment to select
 - o Goal: avoid future **dead-ends**, which negative outcomes are inevitable
- Validation DeD in a carefully constructed toy domain
- Evaluation Septic
 - Septic: highly prevalent, physiologically severe, costly, poorly understood.
 - DeD confirms the existence of dead-ends, and demonstrate that 12% of treatments administered to terminally ill patients reduce their chances of survival

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - o Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

Related Work

- RL in Health
 - Recent work: seeking to develop optimal treatment recommendation policies
 - An optimal policy that maximizes a patient's chance of recovery is both
 computationally and experimentally infeasible
- Safety in RL
 - Recent work: evaluated in online settings, where data can be acquired or models can be tested against new cases
- Dead-ends
 - Proposed by Fatemi et al. in the context of exploration
 - Adapting this approach and expanding the theoretical results to an offline RL setting

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

Methods - Math Framework

- Markov Decision Processes (MDP)
 - \circ 2 independent MDPs: M_D and M_R
 - \circ Optimal State-treatment Value Function: Q_D^* and Q_R^*
 - Optimal State Value Function: V_D^* and V_R^*
 - Reward Function
 - \blacksquare M_D returns -1 with any transition to a negative terminal state (0 otherwise)
 - \blacksquare M_R returns +1 with any transition to a positive terminal state (0 otherwise)
 - $O = Q_D^*(s,a) \in [-1,0], \ Q_R^*(s,a) \in [0,1]$

Methods - Math Framework

Special States

- \circ Terminal States S_T : the final observation of any recorded trajectory
- Dead-end S_D: negative outcomes are unavoidable (happening w.p.1)
- \circ Rescue S_R : positive outcome is reachable (with probability 1)

Dead-end states

Rescue states

Methods - Math Framework

- Mathematical Proof Conclusion
 - \circ V^{*}_D of all dead-end states will be precisely -1.
 - \circ $Q_{D}^{*}(s, a) = -1$ for all treatments a at state s if and only if s is a dead-end.
- Summary
 - Treatment Security: abiding by the maximum hope of a positive outcome
 - Connecting the RL concept of value functions to dead-end discovery
 - V*_D enables detecting dead-end states
 - Q*_D enables further treatment avoidance

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

Methods - Neural Network Based State Construction and Identification

- State Construction (SC-Network)
 - Constructing states of patients
 - Transforming a single or possible sequence of observations into a fixed embedding
- Identification (D-Network and R-Network)
 - Trained using Double DQN algorithm
 - \circ Computing Q_D and Q_R for all treatment of given state

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

Methods - Toy Problem Validation: Life-Gate

- Provide a tabular toy-example (Life-Gate)
- Set up
 - White: Agent

- Yellow: Dead-ends
- o Blue Life gate

• Gray: Obstacle (neutral)

o Black

- Red Death gate
- Actions: moving up, down, left, right, and doing nothing (no-up)

Methods - Toy Problem Validation: Life-Gate

- Black Area
 - \circ DEATH-DRIFT = 40%
- Yellow Area (dead-end states)
 - o Right: 70%
 - No actions: 30%
- Adjacent states to dead-ends are possibly the most critical to alert

Methods - Toy Problem Validation: Life-Gate

Conclusion

- \circ $\delta_{\rm D} = -0.7$ and $\delta_{\rm R} = 0.7$ seem to clearly set the boundary for most states
- \circ Only for all yellow area (aside from the few erroneous states), $V_D = -1$
- \circ No dead-end state can be a rescue, as seen by $V_R = 0$ for the yellow area

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

Empirical Setup for Dead-end Analysis

- Data
 - MIMIC (Medical Information Mart for Intensive Care) III dataset
- Training
 - o training the SC-, D-, and R- networks in an offline manner using retrospective data
 - o Train: 75%, Validation: 5%, Test: 20%
 - Imbalance of Data: additional data buffer
 - Store the last transition of nonsurvivors trajectories
 - Minibatch (size 64): main data (size 62) + data buffer (size 2)

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

Empirical Results - Septic Dead-End State Prediction

Experiment

- To flag potentially non-secure treatments
- Examine if Q_D and Q_R of each treatment at a given state pass certain thresholds δ_D and δ_R
- \circ Red flag: $\delta_D = -0.25$ and $\delta_R = 0.75$, minimize both false positives and false negatives
- Yellow flag: $\delta_D = -0.15$ and $\delta_R = 0.85$ for higher sensitivity and early indication

Empirical Results - Septic Dead-End State Prediction

Results

- As nonsurvivors approach death, DeD identifies increasing percentages of patients raising fatal flags
- > Flag emergence for ICU patients
 - A clear worsing trend of state
 values for non-surviving patients
 as they approach their terminal
 state

Empirical Results - Septic Dead-End State Prediction

Results

- Distinctive difference between the trend of values in survivors and nonsurvivors
 - survivors: raise nearly no red flag
 - non-survivors: a steep reduction in no-flag zone with increasing numbers of patients flagged in the Red zone
- red-flag membership for long periods
 strongly correlates with mortality

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

Experiment

- To further support our hypothesis that dead-end states exist among septic patients and may be preventable
- Patient alignment: point select all trajectories in the test data with at least 24 hours (6 steps) prior to the first flag and at least 16 hours (4 steps) afterwards
- Excluding patients with flags that occur either too early or too late

Result

Trend of measures around the first raised flag

- Result
 - Prior to the first flag: V and Q values have similar behavior in survivors and nonsurvivors
 - After the flag is raised: a similar diverging trend among various clinical measures
 - Slight improvement in all value estimates
 - Values of non-surviving patient trajectories quickly collapse
 - Survivors continue to improve

- Main Points
 - DeD identifies a clear **critical point** in the care timeline where non-surviving patients

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

Individual Trajectories

Experiment

- Extracting relevant information from the electronic health record data (EHR)
- Projecting the state representations of the patient's trajectory using t-SNE

Result

- Certain areas in the t-SNE projection of observed patient states appear to correspond with dead-end states
- Clinically established measures (SOFA, GCS) closely follow the decrease in
 DeD estimated values
- Oualitative analysis suggests that the estimates of Q_D and Q_R are reliable and informative

Individual Trajectories

• Result

- Introduction
- Related Work
- Methods
 - Math Framework
 - Neural Network Based State Construction and Identification
 - Toy Problem Validation: Life-Gate
- Empirical Setup for Dead-end Analysis
- Empirical Results
 - Septic Dead-End State Prediction
 - First Flag Analysis
 - Individual Trajectories
- Discussion

Discussion

• Key Contributions

- Introduced an RL-based method to avoid harmful treatments
- Targeted **dead-ends**, where negative outcomes are inevitable
- Applied to **sepsis**, a major cause of death, aiming to improve outcomes

Impact and Novelty

- First RL approach to **flag bad treatments**, not just optimal ones
- Generic algorithm with **security guarantees**
- Provides **insights for ICU** interventions, focusing on risky treatments

Discussion

- Applications
 - **DeD** is suited for **safety-critical settings** with limited data
 - Relevant to fields like robotics and industrial control
- Limitations
 - Extrapolation risk despite median value use
 - Lack of analysis on **demographic sensitivity**
 - No **external validation** from other hospitals or clinicians

Discussion

- Applications
 - **DeD** is suited for **safety-critical settings** with limited data
 - Relevant to fields like robotics and industrial control
- Limitations
 - Extrapolation risk despite median value use
 - Lack of analysis on **demographic sensitivity**
 - No **external validation** from other hospitals or clinicians