

Scalable approach for Learning Word Representations

Name: Zhang, Zijian Matrikelnummer: 3184680

First Examiner: Prof.Dr. Avishek Anand Second Examiner: Prof. Dr. techn. Dipl.-Ing. Wolfgang Nejdl Advisor: Prof. Dr. Avishek Anand

Agenda

Motivation

Problem Statement

Related Work

Our Contribution

Divide, Train and Merge

- Distribution Preserving Sampling
- Merging Approaches
- -Experiments Setup
- -Performance and Timing
- -Conclusion and Works on Going

1. Hannover – Berlin + Hamburg = ?

Hannover – Berlin + Hamburg = Neubrandenburg!

According to the map:

Then what is

A map (the one on a paper or in an App):

maps (mathematical jargon) the city in an area of the surface of the Earth to a point in E^2 .

If we change "cities" to "words" and the "surface of Earth" to "Language"

King – Man + Woman

seems solvable!

Word Vector Representation

Advantages of Word2Vec

(Mikolov2013)

 $cos(\theta) \sim similarity$

categories \Rightarrow clusters

analogy ⇒ parallelization

Dimension reduction

Problem Statement

Current Challenges:

larger corpus: more expressive, longer time

On 14GB English Wikidump: \approx 36 hours!

(dim: 500 Vocabulary: 300k)

Vanilla Word2Vec isn't **scalable**

Related Work

Word2Vec uses SGD to optimize its objective

One solution: make SGD faster:

Optimizing SGD schema (online, synchronized):

HogWild!(Recht2011), BLAS-3 SGNS(Ji2016), cache optimized Hierachical Softmax(Eickhoff2016), column-wise distribution (Ordentlich2016)

Adaptive SGD learning rate:

SGD-Momentum(Rumelhart1986), AdaGrad, RMSProp

Heterogeneous combination:

Combine vectors from Word2Vec, WordNet, GloVe, ConceptNet etc.

Our Contribution

Find a

- scalable
- hardware independent
- asynchronous
- distributional paradigm,
 for training word vector representation that is comparable with the baseline

Time of all approaches (the lower the better)

Divide, Train and Merge

Divide, Train and Merge

Research Questions:

sub-corpora sub-models

- 1) How do we divide the original corpus?
- 2) How do we combine sub-models?

Distribution Preservation Sampling

Distribution Preservation Sampling

Criterion of division: approach to the original term distribution

The local optimum^(Levy2014):

$$\vec{w} \cdot \vec{c} \propto \log \frac{p(w,c)}{p(w)p(c)}$$
 Point-wise Mutual Information

depends on distribution of words/skip-grams only!

Distribution Preserving Sampling

Distribution preservation through uniform reservoir sampling

1/50

Merging Approaches

Problem so-far:

combine the correlation, canceling noise by merging

16

Merging Approaches

1st Approach: Concatenation + Principle Component Analysis

Merging Approaches

2nd Approach: Manifold Alignment (Boucher2015) + Vector Averaging

(Ham2005)

Low-rank reconstruction of X

$$X_{final}$$
, $Y_{final} = (1-\mu)$ (reconstructions) + μ (correlation)

$$M_{\text{merged}} = (X_{\text{final}} + Y_{\text{final}})/2$$

Low-rank reconstruction of Y

Experiments Setup

Data Set:

- *Original corpus*: English Wikipedia dump file 2016 (14G)

Word2Vec implementation: gensim[1]

Cleaner: Wikipedia LineSentences cleaner in Gensim

Sample/Partition size: 1%, 10% of the original corpus

Baseline Model(Levy2015):

Vocabulary: 300k words

Dimension (size of hidden layer): 500

Training time: 36 hours

Benchmarks(Jastrzebski):

- Word Similarity: MEN, RW, RG65, WS353, SimLex999, MTurk

Analogy: Google, SemEval 2012 #2, MSR

- Categorization: AP, BLESS, Battig

Effect of Dividing (sampling/partitioning):

Approach	AP	Battig	MEN	RG65	RW	WS353	Google	SemEval2012_2
Partition(1/10,10)	0.582	0.420	0.719	0.725	0.232	0.596	0.615	0.162
Random(1/10,10)	0.604	0.435	0.740	0.757	0.209	0.637	0.654	0.188
Partition(1/100,100)	0.505	0.358	0.622	0.723	0.203	0.516	0.467	0.129
Random(1/100,100)	0.517	0.381	0.644	0.746	0.257	0.542	0.487	0.138
Baseline	0.595	0.434	0.736	0.757	0.299	0.611	0.661	0.181

Table 2: Comparison between Random(.,.) and Partition sampling approaches at different granularities. PCA is used as the merging method.

Conclusions:

Sampling performs overall better than partitioning Larger division size makes the performance better, but less scalability Surprisingly, some of our approaches even outperform the **baseline**!

Effect of Merging (concatenation/PCA/LRA):

Approach	AP	Battig	MEN	RG65	RW	WS353	Google	SemEval2012_2
Random(1/10,10) + Concat	0.595	0.429	0.742	0.765	0.268	0.611	0.645	0.187
Random(1/10,10) + LRA	0.560	0.327	0.685	0.785	0.264	0.606	0.661	0.158
Random(1/10,10) + PCA	0.604	0.435	0.740	0.757	0.209	0.637	0.654	0.188
Random(1/100,100) + Concat	0.525	0.377	0.643	0.746	0.257	0.542	0.487	0.138
Random(1/100,100) + LRA	_	_	_	_	_	_	_	_
Random(1/100,100) + PCA	0.517	0.381	0.644	0.746	0.257	0.542	0.487	0.138
Baseline	0.595	0.434	0.736	0.757	0.299	0.611	0.661	0.181

Table 3: Evaluation results for merging

Conclusions:

PCA performs overall the best LRA and Vector average is the slowest

To see the information loss in the PCA, we added the concatenation as a single line, it performs surprisingly robust, despite its higher dimensionality

Effect of sample count (10% of original corpus):

Conclusion:

Larger count of sub-models doesn't help. 8~10 for 10% approach, 20~30 for 1% approach is enough. After that it goes into flat road.

Effect of sample count (1% of original corpus):

Conclusion:

Larger count of sub-models doesn't help. 8~10 for 10% approach, 20~30 for 1% approach is enough. After that it goes into flat road.

Timing:

Time of all approaches (the lower the better)

Conclusion and on Going Works

Conclusions:

- Sentence-wise sampling to divide, PCA to merge
- M-times speed up by M-fold dividing, sometimes even outperform the baseline.

Ongoing work:

dealing with missing-word problem between sub-models

Thank you for your attention

Questions and comments are highly appreciated

Zhang, Zijian Hannover 08. 03. 2018 References: Mikolov2013:

Mikolov T, Yih W, Zweig G.

Linguistic regularities in continuous space word representations

Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2013: 746-751.

Recht 2011: Recht B, Re C, Wright S, et al.

Hogwild: A lock-free approach to parallelizing stochastic gradient descent Advances in neural information processing systems. 2011: 693-701.

Ji2016: Ji, Shihao, et al.

Parallelizing word2vec in shared and distributed memory arXiv preprint arXiv:1604.04661 (2016).

Eickhoff2016: Vuurens, Jeroen BP, Carsten Eickhoff, and Arjen P. de Vries Efficient Parallel Learning of Word2Vec

arXiv preprint arXiv:1606.07822 (2016).

Ordentlich2016: Ordentlich, Erik, et al.

Network-efficient distributed Word2vec training system for large vocabularies Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM, 2016.

Rumelhart1986: Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams Learning representations by back-propagating errors nature 323.6088 (1986): 533. References:

Levy2014:

Ham2005:

Levy O, Goldberg Y.

Neural word embedding as implicit matrix factorization

Advances in neural information processing systems. 2014: 2177-2185.

Korenius 2007: Korenius T, Laurikkala J, Juhola M.

On principal component analysis, cosine and Euclidean measures in information retrieval Information Sciences, 2007, 177(22): 4893-4905.

Boucher2015: Boucher, Thomas et al.

Aligning Mixed Manifolds

AAAI. 2015

Levy2015: Levy, Omer, Yoav Goldberg, and Ido Dagan

Improving distributional similarity with lessons learned from word embeddings Transactions of the Association for Computational Linguistics 3 (2015): 211-225.

Jastrzebski2017: Jastrzebski, Stanisław, Damian Leśniak, and Wojciech Marian Czarnecki

How to evaluate word embeddings? On importance of data efficiency and simple supervised tasks
arXiv preprint arXiv:1702.02170 (2017).

Ham J. Lee D D. Sau L K

Semisupervised alignment of manifolds

AISTATS. 2006: 120-127

(Appendix) Other reasons why W2V is popular

Other reasons why Word2Vec is popular:

```
Word representations:
```

used to be processed in computer:

One-hot / hash tokenizing (-lose of semantic information)

LSA: directly SVD on word-doc matrix (-linear model)

Bag-of-Word: meaning defined by set of labels (-low semantic accuracy, supervised)

Words co-occurrence matrix: count of word appears together (-sparse)

```
Therefore Word2Vec: a predictive model preserves semantic information dense representations for larger corpus non-linear dimension reduction, relationship-preserving and robust unsupervised way a neural approach popular in downstream applications
```

(Appendix) Some Comments on PCA (Korenius2007)

Some Comments on PCA

