Dilation Rays in Teichmuller Space Master's Thesis Project

Manvendra Somvanshi

¹Indian Institute of Science Education Research, Mohali

²Max Planck Institute for Mathematics in Sciences

18th December 2024

Table of Contents

- Introduction
- Teichmuller Spaces and Thurston's metric
- Construction of Orthogeodesic foliation and Dilation Rays
- Original Results

Introduction

• Most well known examples of geodesics in Thurston's metric are the Stretch maps in [Thu98].

Introduction

- Most well known examples of geodesics in Thurston's metric are the Stretch maps in [Thu98].
- The goal of my master's thesis is to prove that Dilation rays, which generalizes the Stretch maps to arbitrary laminations, are geodesics as well.

Introduction

- Most well known examples of geodesics in Thurston's metric are the Stretch maps in [Thu98].
- The goal of my master's thesis is to prove that Dilation rays, which generalizes the Stretch maps to arbitrary laminations, are geodesics as well.
- I will introduce the concepts of orthogeodesic foliation, dual arcs, and, filling arc complex in order to define the Dilation rays.

Teichmuller Space of Hyperbolic Structures

Let S be a closed surface of genus $g \geq 2$ then the Teichmuller space of S is

$$\mathcal{T}(S) = \{(X, f: S \to X) \mid X \text{ is a hyperbolic surface and}$$
 $f \text{ is an o.p. homeomorphism}\}/\sim (1)$

where the quotient is by the equivalence relation $(X, f) \sim (Y, g)$ if there is an isometry $I: X \to Y$ such that $I \circ f \simeq g$ (isotopic).

On $\mathcal{T}(S)$, Thurston's metric is defined as

$$d_{Th}([(X,f)],[(Y,g)]) = \inf_{\substack{\phi:X \to Y,\\ \phi \circ f \simeq g}} \log(Lip(\phi))$$
 (2)

This is a metric as shown in [Thu98].

On $\mathcal{T}(S)$, Thurston's metric is defined as

$$d_{Th}([(X,f)],[(Y,g)]) = \inf_{\substack{\phi:X \to Y,\\ \phi \circ f \simeq g}} \log(Lip(\phi))$$
 (2)

This is a metric as shown in [Thu98]. More over Thurston showed in [Thu98] that this metric is the same as:

$$d_{Th}([(X,f)],[(Y,g)]) = \sup_{\alpha \in \text{s.c.c.}} \log \left(\frac{\ell_Y(g(\alpha))}{\ell_X(f(\alpha))} \right)$$
(3)

Spine of a Surface

Let Y be a compact hyperbolic surface with geodesic boundary and Σ be the underlying topological space.

• The valency of a point $y \in Y$ is $val(y) = \#\{p \in \partial Y \mid d(y,p) = d(y,\partial Y)\}.$

Spine of a Surface

Let Y be a compact hyperbolic surface with geodesic boundary and Σ be the underlying topological space.

- The valency of a point $y \in Y$ is $val(y) = \#\{p \in \partial Y \mid d(y,p) = d(y,\partial Y)\}.$
- Define the spine of a surface $Sp(Y) = \{y \in Y \mid val(y) \geq 2\}$. Let $Sp^k(Y) \subset Sp(Y)$ be the subset which only contains the points with valency exactly k.

Figure: Spine of a Pair of Pants in three different metric structures.

Orthogeodesic Foliation

From each point $y \in Sp^k(Y)$ there are k-geodesics from the point which are perpendicular to the boundary. These arcs give a foliation with k-pronged singularities where $k \geq 3$ on the surface Y, called the orthogeodesic foliation. We denote this by $\mathcal{O}_{\partial Y}(Y)$.

Orthogeodesic Foliation

From each point $y \in Sp^k(Y)$ there are k-geodesics from the point which are perpendicular to the boundary. These arcs give a foliation with k-pronged singularities where $k \geq 3$ on the surface Y, called the orthogeodesic foliation. We denote this by $\mathcal{O}_{\partial Y}(Y)$. Define a transverse measure on this as follows:

• Let γ be a curve that intersects the foliation transeversely such that it can be transversely isotoped into a segment of the boundary with end points staying on the same leaves of the foliation. We define $\mu(\gamma)$ as the length of γ at the boundary.

Orthogeodesic Foliation

From each point $y \in Sp^k(Y)$ there are k-geodesics from the point which are perpendicular to the boundary. These arcs give a foliation with k-pronged singularities where $k \geq 3$ on the surface Y, called the orthogeodesic foliation. We denote this by $\mathcal{O}_{\partial Y}(Y)$. Define a transverse measure on this as follows:

- Let γ be a curve that intersects the foliation transeversely such that it can be transversely isotoped into a segment of the boundary with end points staying on the same leaves of the foliation. We define $\mu(\gamma)$ as the length of γ at the boundary.
- For an arbitrary transveres arc, cut it such that each component is transversely isotopic to the boundary.

Let $r: Y \to Sp(Y)$ be the natural deformation retract collapsing Y to the spine along the orthogeodesic leaves.

Let $r: Y \to Sp(Y)$ be the natural deformation retract collapsing Y to the spine along the orthogeodesic leaves.

Remark

Given any two points $x, y \in e \subset Sp(Y)$ where e is an edge of Sp(Y), then the leaves $r^{-1}(x)$ and $r^{-1}(y)$ are isotopic with end points staying on the same boundary component of Y.

Let $r: Y \to Sp(Y)$ be the natural deformation retract collapsing Y to the spine along the orthogeodesic leaves.

Remark

Given any two points $x, y \in e \subset Sp(Y)$ where e is an edge of Sp(Y), then the leaves $r^{-1}(x)$ and $r^{-1}(y)$ are isotopic with end points staying on the same boundary component of Y.

We represent by α_e both the unique leaf of $\mathcal{O}_{\partial Y}(Y)$ which is perpendicular to the edge e and the homotopy class of $r^{-1}(x)$ with the end-points staying on the same boundary component. We call α_e the dual arc to e.

Let $r: Y \to Sp(Y)$ be the natural deformation retract collapsing Y to the spine along the orthogeodesic leaves.

Remark

Given any two points $x, y \in e \subset Sp(Y)$ where e is an edge of Sp(Y), then the leaves $r^{-1}(x)$ and $r^{-1}(y)$ are isotopic with end points staying on the same boundary component of Y.

We represent by α_e both the unique leaf of $\mathcal{O}_{\partial Y}(Y)$ which is perpendicular to the edge e and the homotopy class of $r^{-1}(x)$ with the end-points staying on the same boundary component. We call α_e the dual arc to e.

Figure: Dual arc systems of a Pair of Pants in three different metric structures.

Filling Arc Systems

A filling arc system on a surface is a disjoint collection of (isotopy classes of) arcs whose compliment is a union of contractible surfaces. Note that when the surface itself is contractible, then the empty arc system is a filling arc system.

Filling Arc Systems

A filling arc system on a surface is a disjoint collection of (isotopy classes of) arcs whose compliment is a union of contractible surfaces. Note that when the surface itself is contractible, then the empty arc system is a filling arc system.

Lemma [CF24]

The dual arc system $\underline{\alpha}(Y) = \bigcup_{e \in Sp(Y)} \alpha_e$ is filling.

Filling Arc Systems

A filling arc system on a surface is a disjoint collection of (isotopy classes of) arcs whose compliment is a union of contractible surfaces. Note that when the surface itself is contractible, then the empty arc system is a filling arc system.

Lemma [CF24]

The dual arc system $\underline{\alpha}(Y) = \bigcup_{e \in Sp(Y)} \alpha_e$ is filling.

proof

This just follows from the fact that each component of $Y - \underline{\alpha}(Y)$ deformation retracts to a contractible subset of Sp(Y).

A simple arc is said to be essential if it cannot be isotoped to a boundary of Σ .

A simple arc is said to be essential if it cannot be isotoped to a boundary of Σ .

• Let $\mathscr{A}(\Sigma, \partial \Sigma)$ be the complex where the vertices are $\underline{A} = \sum c_i \alpha_i$ with $c_i \in \mathbb{R}_{>0}$ and α_i being isotopy classes of simple essential arcs.

A simple arc is said to be essential if it cannot be isotoped to a boundary of Σ .

- Let $\mathscr{A}(\Sigma, \partial \Sigma)$ be the complex where the vertices are $\underline{A} = \sum c_i \alpha_i$ with $c_i \in \mathbb{R}_{>0}$ and α_i being isotopy classes of simple essential arcs.
- These vertices $\underline{A}_1, \dots, \underline{A}_n$ span a simplex if there exists representatives of the isotopy classes of the arcs in \underline{A}_k for all k, such that no two arcs intersect.

A simple arc is said to be essential if it cannot be isotoped to a boundary of Σ .

- Let $\mathscr{A}(\Sigma, \partial \Sigma)$ be the complex where the vertices are $\underline{A} = \sum c_i \alpha_i$ with $c_i \in \mathbb{R}_{>0}$ and α_i being isotopy classes of simple essential arcs.
- These vertices $\underline{A}_1, \dots, \underline{A}_n$ span a simplex if there exists representatives of the isotopy classes of the arcs in \underline{A}_k for all k, such that no two arcs intersect.
- Let $|\mathscr{A}(\Sigma,\partial\Sigma)|_{\mathbb{R}}$ be the geometric realization of the complex in Euclidean space, and $|\mathscr{A}_{\text{fill}}(\Sigma,\partial\Sigma)|_{\mathbb{R}}$ be the subspace where each point corresponds to a filling arc system.

Dilation Rays

Given a hyperbolic structure [(Y,f)] on Σ we have a weighted arc system $\underline{A}(Y) = \sum_{e \in Sp(Y)} \mu(e) \alpha_e \in |\mathscr{A}_{\mathsf{fill}}(\Sigma,\partial \Sigma)|_{\mathbb{R}}.$

Dilation Rays

Given a hyperbolic structure [(Y,f)] on Σ we have a weighted arc system $\underline{A}(Y) = \sum_{e \in Sp(Y)} \mu(e) \alpha_e \in |\mathscr{A}_{\mathsf{fill}}(\Sigma,\partial \Sigma)|_{\mathbb{R}}.$

Theorem [CF24]

The map $\underline{A}: \mathcal{T}(\Sigma) \to |\mathscr{A}_{\text{fill}}(\Sigma, \partial \Sigma)|_{\mathbb{R}}$ which associates to each element Y the weighted dual arc system is a homeomorphism.

Dilation Rays

Given a hyperbolic structure [(Y,f)] on Σ we have a weighted arc system $\underline{A}(Y) = \sum_{e \in Sp(Y)} \mu(e) \alpha_e \in |\mathscr{A}_{\mathsf{fill}}(\Sigma,\partial \Sigma)|_{\mathbb{R}}.$

Theorem [CF24]

The map $\underline{A}: \mathcal{T}(\Sigma) \to |\mathscr{A}_{\text{fill}}(\Sigma, \partial \Sigma)|_{\mathbb{R}}$ which associates to each element Y the weighted dual arc system is a homeomorphism.

Dilation Rays

Let $X \in \mathcal{T}(S)$ with a lamination λ , $Y \in \mathcal{T}(\Sigma)$ be the metric completion of some component of $X - \lambda$, and $\underline{A}(Y) = \sum c_e \alpha_e$. Let Y_t based at Y is the pullback of the ray $\sum e^t c_e \alpha_e \in |\mathscr{A}_{\text{fill}}(\Sigma, \partial \Sigma)|_{\mathbb{R}}$ by \underline{A} . For each t we can glue up the components without twisting, to get the closed surface X_t , and a foliation $\mathcal{O}_{\lambda}(X)$. The ray X_t is called Dilation ray.

Original Results

Prof. Farre at MPI-MIS and I have proved the following two results.

Theorem A

Let Σ be a pair of pants. If $[(Y,f)] \in \mathcal{T}(\Sigma)$ and $\underline{A}(Y) = \sum_{i=1}^n c_i \alpha_i$. If $Y_t = \underline{A}^{-1}(e^t\underline{A}(Y))$ then there is a e^t -Lipschitz map $f_t : Y \to Y_t$ such that the dual arcs of Y map to the dual arcs of Y_t and is identity on the boundary.

Original Results

Prof. Farre at MPI-MIS and I have proved the following two results.

Theorem A

Let Σ be a pair of pants. If $[(Y,f)] \in \mathcal{T}(\Sigma)$ and $\underline{A}(Y) = \sum_{i=1}^n c_i \alpha_i$. If $Y_t = \underline{A}^{-1}(e^t\underline{A}(Y))$ then there is a e^t -Lipschitz map $f_t : Y \to Y_t$ such that the dual arcs of Y map to the dual arcs of Y_t and is identity on the boundary.

Theorem B

If X is a hyperbolic surface and λ is a geodesic lamination which is a limit of a sequence of pants decomposition of X. Then the dilation ray w.r.t. λ based at X is a Thurston geodesic.

Further, the goal is to show that this is true for all λ which are limits of simple closed geodesics.

References

William P. Thurston, *Minimal stretch maps between hyperbolic surfaces*, 1998.