TBD: Both In-Kernel and Bypass are needed - A Practical Approach to Low-Latency Virtualized Network Functions

Zuo Xiang*, Frank Gabriel*, Giang T. Nguyen* †, Zhongyi Fan*, and Frank H. P. Fitzek*

*Deutsche Telekom Chair of Communication Networks

†SFB-912 HAEC, Technische Universität Dresden, Germany

Email: {firstname.lastname}@tu-dresden.de

I. SKETCH

MARK: Blue is used for hint and comments. [Red is used for issues, problems.]

Storyline: ← we keep the sketch of the storyline currently here only to have a overall view for the draft. This part will be deleted later on

Introduction

- 3-4 paragraphs (Broad topic, problem, solution and contributions)
- Motivation
 - * Latency is critical in the next generation of communication networks (e.g. for Tactile Internet)
 - * To be solved Problem How to implement low latency VNFs in Virtual Machine(Containers are not considered in this work)?
 - 1) In kernel space or in user space? Pros and cons?
 - 2) Which frameworks should be used? Pros and Cons should be analyzed in a separate section.
 - 3) How to enable low latency without decreasing other features and performance parameters too much? e.g. Flexibility, Scalability for multiple VNFs. Bandwidth, hardware resource usage(related to energy consumption). The chain-based approach proposed in this paper can better meet these requirements.

· Related Work

- Packet IO frameworks related papers
 - * User space: High performance Packet IO
 - * Kernel space: XDP and eBPF in practice(2 papers are found).
- Virtualed Network Functions Approaches
 - * Vitualized Network Coding on the Internet. This paper implement NC with DPDK KNI for flexibility.
 - * TODO: Find other approaches to achieve low latency VNFs
- Low latency VNF

- Compare different frameworks and explain why XDP and DPDK are finally chosen for further implementation.
- Compare chain-based approach and KNI-based approach. Describe OVS-DPDK is the tech which reduce the latency overhead introduced by the chain-based approach, the context switching between userand kernel space is the main issue that increase the latency with KNI approach

Fig. 1: KNI Approach

Fig. 2: Chain Approach

- Describe how to enable our approach on the Open-Stack cloud platform. Use SFC, enable multi-queue feature of the Nova.
- Measurement Results
 - End-to-End latency of KNI and XDP+DPDK (1. 1 core for all; 2 cores to make them fair)

- Bandwidth of KNI and XDP+DPDK. (Different burst size can be a variable here.)
- CPU usage of KNI and XDP+DPDK on the physical node. Nova compute node

Approach	User	System	IO-Wait	Guest	Total
DPDK KNI 1 vCPU	25.21	23.35	0.04	1.70	50.3
DPDK KNI 2 vCPU	25.23	47.18	0.04	2.88	75.33
XDP + DPDK	25.24	22.97	0.04	2.18	50.43

TABLE I: CPU usage of the compute node (in percent)

- Conclusion
 - If latency counts, our approach is better.
- Future Work
 - Extend SFC-extension to support fully chain-based approach on OpenStack.

ACKNOWLEDGMENT

This work is supported in part by the German Research Foundation (DFG) within the Collaborative Research Center SFB 912 (HAEC).

REFERENCES