Matemáticas/ Ingeniería Informática-Matemáticas

Estructuras Algebraicas

Primer examen parcial. Martes, 5 de octubre de 2021

Apellidos:			
Nombre:	DNI/NIE:	Grupo:	

Ejercicio 1. (5 puntos) Sean A y B grupos, considera $G = A \times B$. Dado un homomorfismo de grupos

$$\varphi \colon A \to B$$

definimos $D_{\varphi} = \{(a, \varphi(a)) \mid a \in A\} \subseteq G.$

- a) (1,5 puntos) Demuestra que $D_{\varphi} \leq G$.
- b) (1,5 puntos) Si A es abeliano y $\varphi(A) \subseteq \mathbf{Z}(B) = \{x \in B \mid xy = yx \text{ para todo } y \in B\}$, prueba que $D_{\varphi} \triangleleft G$.
 - c) (2 puntos) Escogiendo $A = B = \mathbb{Z}$ y $\varphi = id_{\mathbb{Z}}$, demuestra que $(\mathbb{Z} \times \mathbb{Z})/D_{\varphi} \cong \mathbb{Z}$.

Solución.

a) Por la caracterización de subgrupos bastará comprobar que D_{φ} es no vacío y que para cada $(a, \varphi(a)), (b, \varphi(b)) \in D_{\varphi}$ se tiene que $(a, \varphi(a))(b, \varphi(b))^{-1} \in D_{\varphi}$.

Empezamos notando que el elemento $(1_A, \varphi(1_A)) = (1_A, 1_B) \in D_{\varphi} \neq \emptyset$. Como $(b, \varphi(b)) \in A \times B$ y φ es un homomorfismo tenemos que $(b, \varphi(b))^{-1} = (b^{-1}, \varphi(b)^{-1}) = (b^{-1}, \varphi(b^{-1}))$ de modo que

$$(a,\varphi(a))(b,\varphi(b))^{-1}=a,\varphi(a))b^{-1},\varphi(b^{-1}))=(ab^{-1},\varphi(a)\varphi(b^{-1}))=(ab^{-1},\varphi(ab^{-1}))\in D_{\varphi}(ab^{-1})$$

usando de nuevo que φ es un homomorfismo y que $ab^{-1} \in A$.

b) Queremos probar que para cada $(a,b) \in G$ y para cada $(x,\varphi(x)) \in D_{\varphi}$ se tiene que $(a,b)^{-1}(x,\varphi(x))(a,b) \in D_{\varphi}$. Esto implica que $D_{\varphi}(a,b) = (a,b)D_{\varphi}$ para todo $(a,b) \in G$ y, por tanto, que $D_{\varphi} \triangleleft G$.

$$(a,b)^{-1}(x,\varphi(x))(a,b) = (a^{-1}xa,b^{-1}\varphi(x)b) = (x,\varphi(x))$$

usando que $a^{-1}xa = x$ por ser A abeliano y que $\varphi(x)$ conmuta con todo elemento de B por ser $\varphi(A) \subseteq \mathbf{Z}(B)$. De hecho, hemos probado que $D_{\varphi} \subseteq \mathbf{Z}(G)$.

c) Por el (primer) Teorema de Isomorfía bastará con definir un homomorfismo $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ de modo que $\operatorname{Ker}(f) = D_{\varphi}$. Como $\varphi = \operatorname{id}_{\mathbb{Z}}$ tenemos que $D_{\varphi} = \{(z,z) \mid z \in \mathbb{Z}\}$. Definimos $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ como f((a,b)) = a - b. Tenemos que f es un homomorfismo ya que f((a,b) + (c,d)) = a + c - (b+d) = f((a,b) + f(c,d)) para todo $(a,b), (c,d) \in \mathbb{Z} \times \mathbb{Z}$; f es un epimorfismo, pues para cada $x \in \mathbb{Z}$ tenemos que f((x,0)) = x y $\operatorname{Ker}(f) = D_{\varphi}$.

Alternativamente, analizando el cociente $(\mathbb{Z} \times \mathbb{Z})/D_{\varphi}$ vemos que $(a,b)+D_{\varphi}=(c,d)+D_{\varphi}$ si, y solo si, a-c=b-d si, y solo si, 0=a-c-(b-d)=a-b-(c-d) si, y solo si, a-b=c-d. De modo que $(a,b)+D_{\varphi}=(a-b,0)+D_{\varphi}$ y $\{(x,0)+D_{\varphi}:x\in\mathbb{Z}\}$ forma un sistema completo de representantes de las clases módulo D_{φ} . Podemos definir, por tanto, un isomorfismo $g\colon\mathbb{Z}\times\mathbb{Z}/D_{\varphi}\to\mathbb{Z}$ como $g((a,b)+D_{\varphi})=a-b$. El análisis previo prueba que g está bien definido. Se trata de probar rutinariamente que es un homomorfismo biyectivo.