DISJOINT SET

Tanjina Helaly

DISJOINT SET

- A data structure to keep track of set of elements partitioned into different disjoint (non overlapping) subset
- Each set is represent by a representative
 - In some applications, it doesn't matter which member is used as the representative
 - Other applications may require a pre-specified rule for choosing the representative, such as choosing the smallest member in the set (assuming, of course, that the elements can be ordered)

DISJOINT SET

HOW TO REPRESENT

- Can be represented by Linked list.
- But usually implemented as **tree like structure**.

HOW TO REPRESENT

Linked Link

Representative (The element head points to)

Tree

Representative

- the node that is its own parent
- root node

3 OPERATIONS

- Make-Set(X)
 - Create a set with just one node x
 - condition x can't be in any other set (as the sets are disjoint)
- Find-Set(X)
 - Find the representative of the set X belong to.
- \circ Union(X,Y)
 - Combine the 2 sets x and y belongs to.

CREATE-SET

- Create a set with just one node x
 - condition x can't be in any other set (as the sets are disjoint)
 - Complexity: O(1)

function *MakeSet(x)*

```
if x is not already present:
  add x to the disjoint-set tree
  x.parent := x
  x.rank := 0
```

FIND-SET

```
int find(int x)
{
   if (x.parent == x)
     return x;
   return find(x.parent);
}
```


UNION

- Combines the dynamic sets that contain x and y into a new set that is the union of these two sets.
- We assume that the two sets are disjoint prior to the operation.
- Choose representative from any set.
- Reduce the number of set by 1.

UNION

```
Union(x,y)
x-set = Find-Set(x)
y-set = Find-Set(y)
if(x-set !=y-set)
x-set.Parent = y-set;
```

Union using tree structure

Figure 21.4 A disjoint-set forest. (a) Two trees representing the two sets of Figure 21.2. The tree on the left represents the set $\{b, c, e, h\}$, with c as the representative, and the tree on the right represents the set $\{d, f, g\}$, with f as the representative. (b) The result of UNION(e, g).

21.2 Linked-list representation of disjoint sets

Figure 21.2 (a) Linked-list representations of two sets. Set S_1 contains members d, f, and g, with representative f, and set S_2 contains members b, c, e, and h, with representative c. Each object in the list contains a set member, a pointer to the next object in the list, and a pointer back to the set object. Each set object has pointers *head* and *tail* to the first and last objects, respectively. (b) The result of UNION(g, e), which appends the linked list containing e to the linked list containing g. The representative of the resulting set is f. The set object for e's list, S_2 , is destroyed.

565

Union Problem

• For linked list

- Need at most n-1 union operation
- Each union will cause all members of the newly appended list to be updated with the new representative and also need to update the tail pointer.
 - \circ O(n²)

• For tree structure

- Tree could get unbalance if we keep adding the tree with more depth as a leaf of smaller depth tree. Worst case would be creating a linear tree with one child at every level.
- Operation for unbalanced tree is really slow.

How to solve

- Use heuristics
 - Union-by-rank
 - Add the lower rank set at the end of higher rank set so that minimum updates are required.
 - For linked list, rank is the length
 - For tree, rank is the depth of the tree.
 - Path compression
 - Flattening the structure of the tree.

PATH COMPRESSION

- Set every visited node to be connected to the root node directly
- This is modified version of the Find method Find(x):

• Once the tree is flattened, all nodes will be directly connected to root/representative. And Find(any node) will take constant time complexity.

PATH COMPRESSION - EXAMPLE

Find(C) – with path compression

Find(D) – with path compression

APPLICATIONS

APPLICATIONS

- Main application is creating connected component.
 - Involve manipulating objects from wide range e.g.
 - Pixels in digital image
 - Computers in network
 - Friends in social network
 - Transistors in computer chip
 - o
- Reachability checking
- Cycle checking
- Connected component counting
- Connected component size calculation,
- Component labeling for vertices,
- Minimum Spanning Tree

CONNECTED COMPONENT

Edge processed			Coll	ection	of disjoi	nt set	S			
initial sets	{a}	{ <i>b</i> }	{ <i>c</i> }	{ <i>d</i> }	{ <i>e</i> }	{ <i>f</i> }	{g}	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }
(<i>b</i> , <i>d</i>)	{ <i>a</i> }	{ <i>b</i> , <i>d</i> }	$\{c\}$		{ <i>e</i> }	{ <i>f</i> }	$\{g\}$	{ <i>h</i> }	$\{i\}$	{ <i>j</i> }
(e,g)	{ <i>a</i> }	{ <i>b</i> , <i>d</i> }	$\{c\}$		$\{e,g\}$	{ <i>f</i> }		{ <i>h</i> }	$\{i\}$	{ <i>j</i> }
(a,c)	{ <i>a</i> , <i>c</i> }	{ <i>b</i> , <i>d</i> }			$\{e,g\}$	{ <i>f</i> }		{ <i>h</i> }	$\{i\}$	{ <i>j</i> }
(h,i)	{ <i>a</i> , <i>c</i> }	{ <i>b</i> , <i>d</i> }			$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		{ <i>j</i> }
(a,b)	$\{a,b,c,d\}$				$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		{ <i>j</i> }
(e,f)	$\{a,b,c,d\}$				$\{e,f,g\}$			$\{h,i\}$		{ <i>j</i> }
(<i>b</i> , <i>c</i>)	$\{a,b,c,d\}$				$\{e,f,g\}$			$\{h,i\}$		$\{j\}$
				(b)						

CONNECTED-COMPONENTS (G)

for each vertex *ν* ∈ *G.V* MAKE-SET(*ν*)
 for each edge (*u*, *ν*) ∈ *G.E* if FIND-SET(*u*) ≠ FIND-SET(*ν*)

UNION(u, v)

- SAME-COMPONENT (u, v)
- 1 **if** FIND-SET(u) == FIND-SET(v)
- return TRUE
- 3 else return FALSE

Figure 21.1 (a) A graph with four connected components: $\{a, b, c, d\}$, $\{e, f, g\}$, $\{h, i\}$, and $\{j\}$. (b) The collection of disjoint sets after processing each edge.

CYCLE DETECTION

• During the union process if 2 vertices belong to the same disjoint set -> there is a cycle

Union(X,Y)	Union(X,Y) – for cycle checking
<pre>x-root = Find-Set(x) y-root = Find-Set(y) if(x-root !=y-root) x-root.Parent = y-root;</pre>	<pre>x-root = Find-Set(x) y-root = Find-Set(y) if(x-root==y-root) there is a cycle else x-root.Parent = y-root;</pre>

REACHABILITY/CONNECTIVITY CHECKING

- If 2 vertices belong to the same set then they are connected to each other.
- Pre-processing
 - Need to create the connected component before calling this method.

IsConnected(X,Y)

```
x-root = Find-Set(x)
y-root = Find-Set(y)
if(x-root==y-root)
y is reachable from x or vice versa.
```

REFERENCE

• Chapter 21 (Cormen) -> 21.1, 21.3