Løsningsforslag MAT1100 10/12-2008

DEL 1

I del I gir vi her også en begrunnelse for det riktige svar-alternativet (som selvfølgelig ikke forlanges til eksamen i denne flervalgsdelen).

1. (3 poeng) Hva er den partiellderiverte $\frac{\partial f}{\partial y}$ til $f(x,y) = \arcsin(xy)$?

Svar c) : $\frac{x}{\sqrt{1-x^2y^2}}$. Begrunnelse deriver m.h.p y og bruk kjerneregel.

2. (3 poeng) I hvilken retning vokser funksjonen $f(x,y,z) = \frac{1}{2}x^2y + \frac{1}{2}yz^2$ raskest i punktet (1, 2, 1)?

- \square (1,2,1)
- \Box (2, 1, 2)
- \Box (1, 1, 1)
- \Box (2, -1, 2)
- \Box (1, -2, 1)

Svar b): (2,1,2). f vokser raskest i retning av gradienten i punktet, og vi har $\nabla f(x, y, z) = (xy, \frac{1}{2}x^2 + \frac{1}{2}z^2, yz)$. $\nabla f(1, 2, 1) = (2, 1, 2)$.

3. (3 poeng) Hvis a = (2, -1, 1) og b = (-1, 1, 1) så er $a \times b$ lik:

- \Box (2, 3, -3)
- \Box (2, 3, -1)
- $\begin{array}{ccc} \square & (-2, -3, 1) \\ \square & \frac{1}{\sqrt{14}} (-2, -3, 1) \\ \square & \frac{1}{\sqrt{14}} (2, 3, -1) \end{array}$

Svar c): (-2, -3, 1). Vi har $\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 1 \\ -1 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & -1 \\ -1 & 1 \end{vmatrix} \mathbf{k} = -2\mathbf{i} - 3\mathbf{j} + \mathbf{k} = (-2, -3, 1)$.

4. (3 poeng) Hva er den dobbelt deriverte $\frac{\partial^2 f}{\partial x \partial y}$ til $f(x,y) = \ln(1+x^2y^2)$ $\square \quad \frac{4xy}{(1+x^2y^2)^2}$ $\square \quad \frac{4x^2y}{(1+x^2y^2)^2}$

Svar a) $\frac{4xy}{(1+x^2y^2)^2}$. Vi har $\frac{\partial f}{\partial y} = \frac{2x^2y}{1+x^2y^2}$ og derfor $\frac{\partial^2 f}{\partial x \partial y} = \frac{4xy(1+x^2y^2)-2x^2y2xy^2}{(1+x^2y^2)^2} = \frac{4xy(1+x^2y^2)-2x^2y2xy^2}{(1+x^2y^2)^2}$

- 5. (3 poeng) Arealet til parallellogrammet utspent av vektorene (2,1) og (1, -4) er:
- $\square \frac{9}{2}$
- \Box -9
- □ 11
- \square 9
- 0

Svar d) 9. Arealet blir: $\begin{vmatrix} 2 & 1 \\ 1 & -4 \end{vmatrix} = |-9| = 9$.

- 6. (3 poeng) Når vi substituerer $u = \arcsin x$ i integralet $\int \sqrt{1-x^2} \arcsin x \, dx$ får vi:
- $\Box \int u \, du$
- \Box $\int \cos^2 u \, du$
- $\Box \int u \cos^2 u \, du$
- $\Box \int \sin^2 u \, du$
- $\Box \int u \sin^2 u \, du$

Svar c) $\int u \cos^2 u du$. Vi har $x = \sin u$, $dx = \cos u du$, $\sqrt{1-x^2} = \cos u du$ $\sqrt{1-\sin^2 u} = \cos u$, som tilsammen gir $\int \sqrt{1-x^2} \arcsin x dx = \int u \cos^2 u \, du$.

- 7. (3 poeng) Bruker vi delvis integrasjon på integralet $\int \frac{x^2}{\sqrt{1-x^2}} dx$ får vi:

Svar a) $-x\sqrt{1-x^2} + \int \sqrt{1-x^2} dx$. Setter vi u = x, $v' = \frac{x}{\sqrt{1-x^2}}$, $v = -\sqrt{1-x^2}$, har vi $\int \frac{x^2}{\sqrt{1-x^2}} dx = \int uv' dx = uv - \int u'v dx = -x\sqrt{1-x^2} + \frac{x^2}{\sqrt{1-x^2}} dx$ $\int \sqrt{1-x^2}dx$.

8. (3 poeng) Volumet til parallellepipedet utspent av vektorene (1,1,2), (1,-1,0), (2,0,1) er:

- \Box -4
- \Box 0

Svar c) 2. Volumet er lik : $\begin{vmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ 2 & 0 & 1 \end{vmatrix} = \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} - \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} +$ $2 \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} | = |-1 - 1 + 4| = 2.$

9 (3 poeng) Det uegentlige integralet $\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}$ har verdi:

- \Box $\frac{\pi}{2}$
- \Box π
- \square 2π

Svar d) π . Vi har $\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}} = \int_{-1}^{0} \frac{dx}{\sqrt{1-x^2}} + \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \lim_{b \to -1^+} \int_{b}^{0} \frac{dx}{\sqrt{1-x^2}} + \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} + \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} + \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} + \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} + \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} + \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} + \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \lim_{b \to -1^+} \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} + \lim_{b \to -1^+$ $\lim_{a \to 1^{-}} \int_{0}^{a} \frac{dx}{\sqrt{1-x^{2}}} = \lim_{b \to -1^{+}} -\arcsin b + \lim_{a \to 1^{-}} \arcsin a = -\arcsin(-1) + \arcsin 1 = -(-\frac{\pi}{2}) + \frac{\pi}{2} = \pi.$

10. (3 poeng) Den inverse matrisen til $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$ er:

- $\Box \quad \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$
- $\Box \quad \frac{1}{5} \left(\begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array} \right)$ $\Box \quad \frac{1}{5} \left(\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array} \right)$
- $\Box \quad \left(\begin{array}{cc} \frac{2}{5} & -1 \\ \frac{1}{5} & 2 \end{array} \right)$
- $\Box \quad \frac{1}{5} \left(\begin{array}{cc} -2 & 1 \\ -1 & -2 \end{array} \right)$

Svar b) $\frac{1}{5}\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$. Vi har $\frac{1}{5}\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} = \frac{1}{5}\begin{pmatrix} 4+1 & 2-2 \\ 2-2 & 1+4 \end{pmatrix} =$ $\frac{1}{5}\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Dette viser at A^{-1} er matrisen oppgitt i svaral-

DEL 2

HUSK AT I DENNE DELEN MÅ DU BEGRUNNE ALLE SVARENE DINE!

Oppgave 1

a) (10 poeng) Finn konstanter A, B og C slik at

$$\frac{2x^2 + 10x + 13}{(x+1)(x^2 + 6x + 10)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 + 6x + 10}.$$

Vi må ha

$$2x^{3} + 10x + 13 = A(x^{2} + 6x + 10) + (Bx + C)(x + 1) = (A + B)x^{2} + (6A + B + C)x + 10A + C.$$

Så (A,B,C) er løsningen til likningssystemet A+B=2,6A+B+C=10,10A+C=13. Trekker vi første likning fra den andre får vi 5A+C=8. Trekker vi dette fra siste likning får vi $5A=5,\ A=1$ som gir B=1 og C=8-5=3.

b) (10 poeng) Finn arealet under kurven $y = \frac{2x^2 + 10x + 13}{(x+1)(x^2 + 6x + 10)}$, over x-aksen og begrenset av linjene x = 0 og x = 1.

Arealet A er gitt ved

$$A = \int_0^1 \frac{2x^2 + 10x + 13}{(x+1)(x^2 + 6x + 10)} dx = \int_0^1 \frac{1}{x+1} dx + \int_0^1 \frac{x+3}{x^2 + 6x + 10} dx$$
$$= [\ln|x+1|]_0^1 + \frac{1}{2} [\ln(x^2 + 6x + 10)]_0^1 = \ln 2 + \frac{1}{2} \ln 17 - \frac{1}{2} \ln 10 = \frac{1}{2} \ln \frac{34}{5}.$$

c) (10 poeng) La $f(x) = \frac{\sqrt{x}}{(1+x^2)^{\frac{1}{4}}}$. Finn volumet av det omdreiningslegemet vi får når grafen $y = f(x), x \in [0,1]$ dreies om x-aksen.

Volumet V av omdreiningslegemet er gitt ved:

$$V = \pi \int_0^1 (f(x))^2 dx = \pi \int_0^1 \frac{x}{\sqrt{1+x^2}} dx = \pi \left[\sqrt{1+x^2}\right]_0^1 = \pi(\sqrt{2}-1).$$

Oppgave 2 La
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
. Vis at $A^{-1} = \begin{pmatrix} 1 & -1 & \frac{1}{3} \\ 0 & \frac{1}{2} & -\frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$. Finn en 3×3 matrise B slik at $AB = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Vi har

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 & \frac{1}{3} \\ 0 & \frac{1}{2} & -\frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & -1+1 & \frac{1}{3} - \frac{2}{3} + \frac{1}{3} \\ 0 & 1 & -\frac{2}{3} + \frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3.$$

Vi vet da at vi også må ha
$$\begin{pmatrix} 1 & -1 & \frac{1}{3} \\ 0 & \frac{1}{2} & -\frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} = I_3$$
. Så $A^{-1} = I_3$

$$\begin{pmatrix} 1 & -1 & \frac{1}{3} \\ 0 & \frac{1}{2} & -\frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix}. \text{ Sett } C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}. \text{ Hvis } AB = C \text{ så er } B = A^{-1}AB = A^{-1}C. \text{ Dvs}$$

$$B = \begin{pmatrix} 1 & -1 & \frac{1}{3} \\ 0 & \frac{1}{2} & -\frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{6} \\ 0 & 0 & \frac{1}{3} \end{pmatrix}.$$

Oppgave 3 La $f(x) = \arctan x + \ln(1 + x^2)$.

a) (10 poeng) Regn ut f'(x) og f''(x). Finn hvor f(x) er konveks og hvor f(x) er konkav?

$$f'(x) = \frac{1}{1+x^2} + \frac{2x}{1+x^2} = \frac{1+2x}{1+x^2}$$
$$f''(x) = \frac{2(1+x^2) - 2x(1+2x)}{(1+x^2)^2} = -2\frac{x^2+x-1}{(1+x^2)^2}.$$

Vi har $x^2+x-1=0 \Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}$. Vi ser da at f''(x)<0 når $x<\frac{-1-\sqrt{5}}{2}$. Så f er konkav på $(-\infty,\frac{-1-\sqrt{5}}{2}]$. f'(x)>0 når $\frac{-1-\sqrt{5}}{2}< x<\frac{-1+\sqrt{5}}{2}$ så f er konveks på $[\frac{-1-\sqrt{5}}{2},\frac{-1+\sqrt{5}}{2}]$. Videre er også f''(x)<0 når $x>\frac{-1+\sqrt{5}}{2}$. Så f er konkav på $[\frac{-1+\sqrt{5}}{2},\infty)$.

b) (10 poeng) Vis at f(x) har nøyaktig 2 nullpunkter.

Av utrykket for f'(x) i a) fremgår at $f'(x) > 0 \Leftrightarrow x > -\frac{1}{2}$ og vi får at f(x) er strengt avtagende i $(-\infty, -\frac{1}{2}]$ og strengt voksende i $[-\frac{1}{2}, \infty)$. f kan da ha høyst et nullpunkt i $[-\frac{1}{2}, \infty)$, og siden $f(0) = \arctan 0 + \ln 1 = 0$ har f nøyaktig ett nullpunkt i dette intervallet (nemlig for x = 0). Vi har da at $f(-\frac{1}{2}) < f(0) = 0$. Når $x \to -\infty$, vil $(1+x^2) \to \infty$ og $\ln(1+x^2) \to \infty$. Videre vil $\arctan x \to -\frac{\pi}{2}$ når $x \to -\infty$. Tilsammen får vi at $f(x) \to \infty$ når $x \to -\infty$. Siden f er kontinuerlig følger fra skjæringssetningen at f(x) må ha nullpunkter i $(-\infty, -\frac{1}{2})$, men siden f er strengt avtagende i dette intervallet har det bare ett nullpunkt her. Tilsammen får vi da nøyaktig to nullpunkter i hele \mathbb{R} .

Oppgave 4 (10 poeng) Hva er det største volumet en sylinder kan ha om det er innskrevet i en regulær, sirkulær kjegle med radius $10~{\rm cm}$ og høyde $20~{\rm cm}$.

Lar vi sylinderen ha høyde h og radius r må vi ha h=2(10-r) (se tegning nedenfor). Volumet av sylinderen blir da $V(r)=2\pi r^2(10-r)$. Her vil $r\in [0,10]$. V(r) er en kontinuerlig funksjon på det lukkete begrensete intervallet [0,10] og må da ha minst et absolutt maksimums punkt. Siden V(0)=V(10)=0 må et maks.punkt være et indre punkt i intervallet og derfor et indre punkt der V'(r)=0. Vi har $V'(r)=4\pi r(10-r)-2\pi r^2=2\pi r(20-3r)$. Så vi må ha $r=\frac{20}{3}$. Dette gir oss volumet $V(\frac{20}{3})=\frac{8000}{27}\pi(\mathrm{cm}^3)$.

$$\tan \alpha = \frac{20}{10} = \frac{h}{10-r} \Rightarrow h = 2(10-r).$$