

Motion Planning

Alberto Gottardi

27/11/2024

Paradigm: Sense-Model-Act

Motion Planner: Unformal Definition

Motion Planning is the ability for an agent to compute its own motion in order to achieve certain goals. All **automous robots** must have this ability.

Motion Planning: Foundamental Question

« Are two given points connected by a path? » [1]

Motion Planning: Foundamental Question

"Are two given points connected by a path?"

Based on this question, we can define the MP PROBLEM as:

Finding a path from START to GOAL without collisions

Motion Planning: Basic Problem

Statement

Compute a collision-free path for a rigid or articulated object among static obstacles

Inputs:

- Geometry of moving object and obstacles
- Kinematics of moving object (degrees of freedom)
- Initial and goal configurations (placements)

Output:

Continuous **sequence of collision-free** object **configurations** connecting the initial and goal configurations

Definitions: Configuration Space

- Workspace (W): STATIC environment populated by obstacles ($W = R^N$, N = 2 or N = 3). In particular O C W (closet set) is the obstacle region.
- Robot configuration (R): poses of all points that compose a robot in a certain time according to a certain coordinate system
- Configuration Space (C): set of all possible configurations q.
 - A configuration q is a complete specification of the location of every point on the robot geometry.
 - o R(q) C W is the set of points occupied by the robot when at configuration $q \in C$
- Collision Space (C_{obs}): colliding configurations. $C_{obs} = \{q \in C \mid R(q) \cap O \neq \emptyset\}$
- Free Space (C_{free}): collision-free configurations. $C_{free} = C \setminus C_{obs}$

Motion Planning: Piano Mover's Problem

Statement

- Given
 - o A workspace W, where either $W = R^2$ or $W = R^3$
 - An obstacle region O c W
 - A robot defined in W. Either a rigid body R or a collection of m links: A₁, A₂, ..., A_m.
 - The configuration space C (C_{obs} and C_{free} are then defined)
 - An initial configuration q_I ∈ C_{free}
 - A goal configuration $q_G \in C_{free}$. The initial and goal configurations are often called a query (q_I, q_G)

Formal Definition

Compute a (continuous) path $\tau:[0,1]\to C_{free}$, such that $\tau(0)=q_I$ and $\tau(1)=q_G$

Motion Planning: Goal

Compute motion strategies, e.g.:

- geometric paths
- time-parameterized trajectories
- sequence of sensor-based motion commands

To achieve high-level goals, e.g.:

- go to A without colliding with obstacles
- assemble product P
- build map of environment E
- find object O

Path Planning vs. Motion Planning

PATH PLANNING referes to the **purely geometric problem** of computing a collision-free path for a robot among static obstacles.

MOTION PLANNING is used for problems **involving time**, **dynamic constraints**, object coordination, sensory interaction, etc.

Path Planning vs. Motion Planning

PATH PLANNING referes to the **purely geometric problem** of computing a collision-free path for a robot among static obstacles.

MOTION PLANNING is used for problems **involving time**, **dynamic constraints**, object coordination, sensory interaction, etc.

- Path: it is a geometric concept and stands for a line in a certain space (the space of Cartesian
 positions, the space of the orientations, the joint space,..) to be followed by the object whose motion
 has to be planned
- Timing law: it is the time dependence with which we want the robot to travel along the assigned path
- Trajectory: it is a path over which a timing law has been assigned. Actual output of the MP.

Robots have different shapes and kinematics. How can we better define a path?

Classical Planning Approaches

Combinatorial Planning

Sampling-based Planning

Artificial Potential Fields

Classical Planning Approaches

Combinatorial Planning

Sampling-based Planning

Artificial Potential Fields

Combinatorial Planning

Generalized Voronoi Diagram

Visibility Graph

Exact Cell Decomposition

Exact Cell Decomposition

- Idea: decompose C_{free} into cells (typically convex polygons)
- Convexity guarantees that the line segments joining two configurations belonging to the same cell lies entirely in the cell itself, and therefore in C_{free}.

Exact Cell Decomposition

- Idea: decompose C_{free} into cells (typically convex polygons)
- Convexity guarantees that the line segments joining two configurations belonging to the same cell lies entirely in the cell itself, and therefore in C_{free}.
- After the decomposition, build the associated connectivity graph C
- Identify the cells c_s and c_g that contain $\mathbf{q_s}$ and $\mathbf{q_g}$
- Use a graph search algorithm to find a collision-free path quickly
- The algorithm has complexity O(nlogn), where n is the #vertices using the plane-sweep algorithm

Combinatorial Planning

Generalized Voronoi Diagram

Visibility Graph

Exact Cell Decomposition

The combinatorial plannings are elegant and complete, but intractable when C-space dimensionality increases.

Classical Planning Approaches

Combinatorial Planning

Sampling-based Planning

Artificial Potential Fields

Classical Approaches: Sampling-based Planning

- Abandon the concept of explicitly describe and optimally explore C_{free} and C_{obs}, while rely on a sort of blind exploration of C_{free}, based on randomly sampling configuration points from C-space and connecting them to form a road map graph.
- This is realized by choosing at each iteration a sample configuration and checking if it entails a collision between the robot and the workspace obstacles. If the answer is affirmative, the sample is discarded. A configuration that does not cause a collision is instead added to the current roadmap and connected if possible to other already stored configurations.
- Deterministic vs. randomized approach to generate the sample

Probabilistic Roadmap (PRM)

Rapidly-exploring Random Tree (RRT)

Classical Approaches: Sampling-based Planning

Sampling-based planners provide a form of completeness

The probability of a planner finding a free path, if exists, tends to 1 as the execution time increases

Classical Approaches: Sampling-based Planning

PRM* **PRM RRT** RRT* **BITRRT** LazyRRT **TRRT RRTConnect STRIDE KPIECE EST** SBL

1) **LEARNING** → the algorithm expands the roadmap

- **1) LEARNING** → the algorithm expands the roadmap:
 - Sample a random configuration in the free space (uniform probability distribution function)
 - Connect the configuration to the k neighbors with distance < k (expansion strategy)

- 1) **LEARNING** \rightarrow the algorithm expands the roadmap:
 - Sample a random configuration in the free space (uniform probability distribution function)
 - Connect the configuration to the k neighbors with distance < k (expansion strategy)

- **1) LEARNING** → the algorithm expands the roadmap:
 - Sample a random configuration in the free space (uniform probability distribution function)
 - Connect the configuration to the k neighbors with distance < k (expansion strategy)

- 1) **LEARNING** \rightarrow the algorithm expands the roadmap:
 - Sample a random configuration in the free space (uniform probability distribution function)
 - Connect the configuration to the k neighbors with distance < k (expansion strategy)

- 1) **LEARNING** \rightarrow the algorithm expands the roadmap:
 - Sample a random configuration in the free space (uniform probability distribution function)
 - Connect the configuration to the k neighbors with distance < k (expansion strategy)

- **2) SEARCH** \rightarrow the algorithm determines a solution through the roadmap:
 - Connect Start to Goal searching for the shortest path (use A* search or Dijkstra)

NOTE: the planner is probabilistic complete: increasing the number of the points, the probability of not finding the path goes to zero

IDEA: Building a roadmap that connects *Start* and *Goal*.

PHASES

- LEARNING → the algorithm expands the roadmap:
 - A random sample \mathbf{q}_{rand} of the C-space is selected using a uniform probability distribution and tested for collision
 - If \mathbf{q}_{rand} does not cause collisions it is added to a roadmap which is progressively being formed and connected (if possible) through free local paths to sufficiently "near" configurations already in the roadmap
 - The iterations terminate when either a maximum number of iterations has been reached or the number of connected components in the roadmap becomes smaller than a given threshold
- 2) SEARCH → the algorithm determines a solution through the roadmap:
 - Connect start and goal configurations to the roadmap
 - Search for a path using A* or Dijkstra

Rapidly-exploring Random Tree RRT

Rapidly-exploring Random Tree (RRT)

Rapidly-exploring Random Tree (RRT)

Rapidly-exploring Random Tree (RRT)

Expansion strategy towards q_{rand} led by a local planner (e.g., interpolation) starting from the nearest node (q_{near}) .

Expansion strategy towards q_{rand} led by a local planner (e.g., interpolation) starting from the nearest node (q_{near}) .

maximum extension of the new edge (added by the local planner).

- A random sample q_{rand} of the C-space is selected using a uniform probability distribution
- The configuration \mathbf{q}_{near} in the tree \mathbf{T} (which is progressively formed) which is the closed one to \mathbf{q}_{rand} is found
- A new candidate configuration q_{new} is produced on the segment joining q_{near} to q_{rand} at a predefined distance ε from q_{near}
- Check that q_{new} and the segment q_{near} q_{new} belong to C_{free}
- If True => T is expanded by incorporating q_{new} and the segment
- Otherwise, the configuration is discared

- Two trees are built: one from *Start* and one from *Goal*;
- Trees are alternately expanded;
- After the expansion of a tree, we expand the other tree with the aim of creating a single connected component.

Classical Planning Approaches

Combinatorial Planning

Sampling-based Planning

Artificial Potential Fields

Artificial Potential Fields: Attractive Functions

 $K_a > 0$

Artificial Potential Fields: Repulsive Function

Distance:
$$\eta_i(\boldsymbol{q}) = min_{q' \in CO_i} || \boldsymbol{q} - \boldsymbol{q'} ||$$

$$U_{r,i}(\boldsymbol{q}) = \begin{cases} \frac{k_{r,i}}{\gamma} \left(\frac{1}{\eta_i(\boldsymbol{q})} - \frac{1}{\eta_{0,i}} \right), & \eta_i(\boldsymbol{q}) \leq \eta_{0,i} \\ 0, & \eta_i(\boldsymbol{q}) \geq \eta_{0,i} \end{cases}$$

Artificial Potential Fields: Repulsive Function

Forces are orthogonal to

Distance: $\eta_i(\boldsymbol{q}) = min_{q' \in CO_i} \|\boldsymbol{q} - \boldsymbol{q'}\|$

$$U_{r,i}(\boldsymbol{q}) = \begin{cases} \frac{k_{r,i}}{\gamma} \left(\frac{1}{\eta_i(\boldsymbol{q})} - \frac{1}{\eta_{0,i}} \right), & \eta_i(\boldsymbol{q}) \leq \eta_{0,i} \\ 0, & \eta_i(\boldsymbol{q}) \geq \eta_{0,i} \end{cases}$$

Forces increase approaching the boundary of CO_i

Artificial Potential Fields: Total Potential

Total Repulsive: $U_r(q) = \sum_{i=1}^p U_{r,i}(q)$

Total Potential: $U_t(\mathbf{q}) = U_a(\mathbf{q}) + U_r(\mathbf{q})$

Total Force: $\mathbf{f}_{t}(\mathbf{q}) = -\nabla U_{t}(\mathbf{q}) = \mathbf{f}_{a}(\mathbf{q}) + \sum_{i=1}^{p} \mathbf{f}_{r,i}(\mathbf{q})$

Artificial Potential Fields: Planning Techniques

Three techniques to plan the robot motion:

- 1. Consider \mathbf{f}_t as a generalized forces: $\mathbf{\tau} = \mathbf{f}_t(\mathbf{q})$
- 2. Consider \mathbf{f}_t as a generalized accelerations: $\ddot{\mathbf{q}} = \mathbf{f}_t(\mathbf{q})$
- 3. Consider \mathbf{f}_t as a generalized velocities: $\dot{\mathbf{q}} = \mathbf{f}_t(\mathbf{q})$

Artificial Potential Fields: Planning Techniques

Three techniques to plan the robot motion:

- 1. Consider \mathbf{f}_t as a generalized forces: $\mathbf{\tau} = \mathbf{f}_t(\mathbf{q})$
- 2. Consider \mathbf{f}_t as a generalized accelerations: $\ddot{\mathbf{q}} = \mathbf{f}_t(\mathbf{q})$
- 3. Consider \mathbf{f}_t as a generalized velocities: $\dot{\mathbf{q}} = \mathbf{f}_t(\mathbf{q})$

Offline planning

• The path is C are generated by numerical integration (Euler method) $\mathbf{q}_{k+1} = \mathbf{q}_k + T\mathbf{f}_t(\mathbf{q}_k)$

Online Planning

Directly provides control inputs or reference velocities for low-level control

Artificial Potential Fields: Local Minima Problem

Global minimum

Source: Siciliano B., Sciavicco L., Villani L., Oriolo G., Robotics: modelling, planning and control Springer Science & Business Media, 2010

Local minimum

Artificial Potential Fields: Local Minima Problem

Local minima: $f_t(q) = 0$

The Motion Planner based on APF is **not complete**, i.e. the path may not reach \mathbf{q}_{q} even if a solution exists.

Workarounds exists but keep in mind that APF are mainly used for online motion planning, where completeness may not be required

Best-first algorithm

- Discretization of C_{free} using a regular grid and associate to each free cell the value U_t at its centroid
- Build a tree T rooted at q_s and at each iteration: 1) Select the leaf with minimum value of U_t; 2) Add as children its adjacent free cells that are not in T
- Planning stops when q_g is reached (success) or no further cells can be added to T (failure)
- Build a solution path by tracing back from \mathbf{q}_{g} to \mathbf{q}_{s}
- Complexity is esponential in the C-dimension => applicable in low-dimensional spaces

Navigation function

- Build navigation functions, i.e. potentials without local minima
- If the C-obs are star-shaped, you can map CO to a collection of sphere via a diffeomorphism and build a potential in transformed space and map it back to C
- Alternative: define the potential as an harmonic function (solution of Laplace's equation)
- Both techniques require a complete knowledge of the environment. Hence the interest is more in theory than in practice

Numerical navigation function

- Applicable when C-space has low-dimensionality
- Represent C_{free} as a gridmap
- Wavefront expansion: assign potential 0 to the cell that contains the goal, 1 to cell adjacent to the 0-cell, 2 to cell adjacent to the 1-cell, etc.

Open Motion Planning Library OMPL

- OMPL: Open Motion Planning Library [3]
- Motion planning library that implements
 Probabilistic sampling-based Motion
 Planning algorithms
- Developed by Kavraki lab at Rice University (Houston, Texas)
- Link: https://ompl.kavrakilab.org/index.html

OMPL: Structure

Thanks for the attention