(O. know your x-ray wavelength)

1. measure scattering ungles 20

2. calculate lutice plane spacing

 $d = \frac{\pi}{2 \sin \theta}$ assume n = 1

3. in this course; assure cubic!

 $d_{hk}(=\frac{\alpha}{\sqrt{t^2+b^2+l^2}}$

 $\frac{a^2}{d^2} = h^2 + k^2 + k^2 = N$

4. look for integer ratios of N and selection rules

Consider the following XRD pattern for Aluminum, which was collected using $CuK\alpha$ radiation.

Pear	20 39.43	$d = \frac{2}{2 \sin \theta}$ $2.3405 = d_a$	da = (h2+h2+l2) = N d2 = (h2+h2+l2) = N integra = int.	$3 \frac{d_a^2}{d^2}$
6 C	44.67 65.02	2.0269 1.4332	1.3333 7.6667	3.999 8.0002
d	78.13	1.2223	3.6666	10.999
e	82. 33	1.1702	4.006	17.0001
F	98.93	1.0135	5.3327	`
8	111.83	0.9301 0.09065	6.3327 6.657	
h	116.70	0.09000	- ,	\bigvee

fcc!