ASSIGNMENT 6

JONAS TREPIAKAS

Exercise 0.1. Assume $A \in \text{End}(F^2)$ is diagonalizable with distinct non-zero eigenvalues λ and μ . Express A^{-1} as a polynomial of A.

Solution. Firstly, by corollary 6.18, since dim $F^2=2$, $\sigma(A)=\{\lambda,\mu\}$. Now, since A is diagonalizable, we have $F^2=V_\lambda\oplus V_\mu$. So choosing some non-zero $x_\lambda\in V_\lambda$ and $x_\mu\in V_\mu$, we have that with respect to the basis $\{x_\lambda,x_\mu\}$, the matrix for A is

$$[A] = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

The inverse of this matrix is

$$[A]^{-1} = \begin{pmatrix} \lambda^{-1} & 0\\ 0 & \mu^{-1} \end{pmatrix}.$$

That is $A^{-1} = \lambda^{-1} E_{\lambda} + \mu^{-1} E_{\mu}$. But $E_{\lambda} = p_{\lambda}(A) = \frac{A-\mu}{\lambda-\mu}$ and $E_{\mu} = p_{\mu}(A) = \frac{A-\lambda}{\mu-\lambda}$, so

$$\begin{split} A^{-1} &= \lambda^{-1} \frac{A-\mu}{\lambda-\mu} + \mu^{-1} \frac{A-\lambda}{\mu-\lambda} \\ &= \frac{\lambda^{-1}-\mu^{-1}}{\lambda-\mu} A - \frac{\lambda^{-1}\mu-\mu^{-1}\lambda}{\lambda-\mu}. \end{split}$$