LAPORAN PRAKTIKUM MATA KULIAH

METODE NUMERIK

PRAKTIKUM 10 – INTERPOLASI POLINOMIAL

DISUSUN OLEH:

M0521003 – ADI PRASETYA

PROGRAM STUDI INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SEBELAS MARET

2022

BABI

ANALISIS SOURCE CODE

1. ANALISIS NILAI AWAL

x (m)	y (m)
2,0000	7,2000
4,2500	7,1000
5,2500	6,0000
7,8100	5,0000
9,2000	3,5000
10,6000	5,0000

Pada soal terdapat data dari nilai x (m) dan y (m) seperti tabel di atas.

x (m)	y (m)	selisih
2,0000	7,2000	5,5000
4,2500	7,1000	3,2500
5,2500	6,0000	2,2500
7,8100	5,0000	0,3100
9,2000	3,5000	1,7000
10,6000	5,0000	3,1000

Berdasarkan hasil dari analisis nilai awal untuk pencarian f(7.5) dengan menggunakan fungsi polynomial orde-2 maka akan diperlukan 3 nilai awal dalam perhitungan ini. Untuk menentukan nilai awal dilakukan dengan mencari 3 nilai awal yang memiliki selisih terkecil hingga terbesar dari **nilai x** yang dicari. Nilai awal yang memiliki selisih terkecil dengan $\mathbf{x} = 7.5$ adalah 5.25, 7.81, **dan 9.2**. Dengan demikian, ketiga nilai awal tersebut akan digunakan dalam perhitungan ini karena memiliki selisih terkecil dengan **nilai x** dibandingkan dengan nilai awal yang lainnya.

2. ANALISIS SOURCE CODE LAGRANGE

```
1 % M0521003 - Adi Prasetya
3 pfunction itp=lagrange(xy)
4
     x=xy(:,1);
5
     y=xy(:,2);
     itp="";
6
7 占
     for i=1:length(x) %Menghitung elemen summation
8
9 🛓
       for j=1:length(x) %Menghitung produk Li
10
         if j==i continue endif
         L=strcat(L,"(x-",num2str(x(j)),")./(",num2str(x(i)-x(j)),").*");
11
12
13
       L=strcat(L,num2str(y(i)));
       itp=strcat(itp,"+",L);
14
15
     itp=str2func(strcat("@(x)",itp(2:length(itp))));
16
17 end
18 l
```

Pada *source code* di atas terdapat *function* **lagrange(xy)** yang dimana hasil operasi dalam *function* tersebut akan di-*return* dalam variabel **lagrannge** dengan parameter xy yang berupa matriks. Kemudian pada **line 4** dan **5** dilakukan pemisahan untuk nilai x dan y dimana nilai x akan dimasukkan ke dalam variabel x dan nilai y akan dimasukkan ke dalam variabel y. Pada **line 6** terdapat inisialisasi dari varibel itp dengan *null*. Lalu, pada **line 7** terdapat *for loop* yang dimulai dari i = 1 hingga i = panjang dari x untuk menghitung elemen *summation*. Dalam *for loop* tersebut terdapat inisialisasi dari variabel L dengan *null* dan *for loop* yang dimulai dari j = i hingga i = panjang dari x untuk menghitung produk dari **Li**. Dalam *for loop* tersebut terdapat if condition jika nilai dari i sama dengan nilai dari j maka akan dilakukan *continue* dan men-*skip* source code yang ada di bawahnya serta kembali ke *for loop* yang berada di dalam. Hal ini dikarenakan tidak boleh produk Li yang j sama dengan i. Kemudian jika nilai j tidak sama dengan nilai i maka akan dilakukan operasi untuk pencarian nilai L_i (x) dengan rumus sebagai berikut.

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}$$

Kemudian, jika produk Li sudah ditemukan dan for loop berhenti, maka akan dilakukan pencarian nilai $f_i(x)$ dengan rumus sebagai berikut.

$$f_i(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

Setelah itu, nilai dari variabel **itp** yang sebelumnya diinisialisasi dengan *null* dijumlahkan dengan nilai f_i (x) untuk menghitung *summation*, lalu dilakukan iterasi berikutnya. Setelah *for loop* untuk menghitung *summation* berhenti, selanjutnya akan dilakukan penghilangan nilai dari "+" yang tidak digunakan pada **line 14** dengan itp(2:length(itp)). Kemudian, dilakukan perubahan *string itp* yang memuat string fungsi polinomial hasil interpolasi menjadi fungsi *anonymous* dengan parameter (x) sebagai variabel independen. Lalu, itp akan di-*return* sebagai *anonym function*.

3. ANALISIS SOURCE CODE NEWTON DIVIDED-DIFFERENCE

```
1 % M0521003 - Adi Prasetya
 2
 3 pfunction itp=ndd(xy)
 4
     x=xy(:,1);
 5
     y=xy(:,2);
 6
     for i=2:length(x) %Membuat tabel untuk NDD
 7 🗄
       for j=i:length(x)
 8
         y(j,i)=(y(j,i-1)-y(j-1,i-1))/(x(j)-x(j-(i-1)));
 9
       endfor
10
     endfor
11
     itp=num2str(y(1,1));
12
     temp="";
13 🖨
     for i=1:length(x)-1 %Merumuskan persamaan hasil interpolasi
       temp=strcat(temp,".*(x-",num2str(x(i)),")");
14
15
       itp=strcat(itp,"+",num2str(y(i+1,i+1)),temp);
16
17
     itp=str2func(strcat("@(x)",itp));
18 end
19 l
```

Pada *source code* di atas terdapat *function* **ndd**(**xy**) yang dimana hasil operasi dalam *function* tersebut akan di-*return* dalam variabel **itp** dengan parameter xy yang berupa matriks. Kemudian pada **line 4** dan **5** dilakukan pemisahan untuk nilai x dan y dimana nilai x akan dimasukkan ke dalam variabel x dan nilai y akan dimasukkan ke dalam variabel y. Lalu, pada **line 6** terdapat *for loop* yang dimulai dari i = 2 hingga i = panjang dari x. Dalam *for loop* tersebut terdapat *for loop* yang dimulai dari j = i hingga i = panjang dari x yang berisi rumus sebagai berikut.

$$y_{j,i} = \frac{y_{j,i-1} - y_{j-1,i-1}}{x_j + x_{j-(i-1)}}$$

Kemudian, terdapat variabel **itp** untuk menampung tabel *newton divide different* dimana nilai y(1,1) akan dieksekusi dengan *function* num2str dan hasilnya akan disimpan dalam variabel itp. Nilai (1,1) karena yang digunakan adalah nilai diagonal. Lalu, terdapat *for loop* yang dimulai dari i=1 hingga i=Panjang x dimana di dalamnya terdapat variabel temp yang berisi perkalian oleh $x-x_i$ dan nilai x paling akhir tidak digunakan. Setelah dilakukan penyusunan satu per satu, maka string akan diubah menjadi sebuah *function* dengan *function* **str2funct()**. Kemudian, hasilnya akan disimpan ke dalam variabel itp.

BAB II

ANALISIS PRAKTIKUM (COMMAND WINDOW)

1. ANALISIS PRAKTIKUM LAGRANGE

```
Command Window

>> xy = [5.25 6.0;7.81 5.0;9.2 3.5]

xy =

5.2500 6.0000

7.8100 5.0000

9.2000 3.5000
```

Dilakukan penginisialisasian matriks xy dengan nilai awal \mathbf{x} dan \mathbf{y} yang sudah ditentukan sebelumnya.

Pada *command window* di atas, terdapat matriks xy yang berisi nilai nilai dari x dan y yang berjumlah 3 buah titik. Kemudian, nilai dari xy tersebut dimasukkan ke dalam parameter *function* **lagrange** yang hasilnya dimasukkan ke dalam f dimana f akan menghasilkan fungsi *anonymous* akan digunakan dalam perhitungan dengan rumus sebagai berikut.

$$y(x) = \left(\frac{x - x_1}{x_0 - x_1}\right) \left(\frac{x - x_2}{x_0 - x_2}\right) y(x_0) + \left(\frac{x - x_0}{x_1 - x_0}\right) \left(\frac{x - x_2}{x_1 - x_2}\right) y(x_1) + \left(\frac{x - x_0}{x_2 - x_0}\right) \left(\frac{x - x_1}{x_2 - x_1}\right) y(x_2)$$

Setelah itu, nilai x = 7.5 yang dicari dimasukkan ke dalam f(x) dan **didapatkan** hasilnya sebesar 5.2427

2. ANALISIS PRAKTIKUM NEWTON DIVIDED-DIFFERENCE

```
Command Window
>> xy = [5.25 6.0;7.81 5.0;9.2 3.5]
xy =

5.2500 6.0000
7.8100 5.0000
9.2000 3.5000
```

Dilakukan penginisialisasian matriks xy dengan nilai awal \mathbf{x} dan \mathbf{y} yang sudah ditentukan sebelumnya.

```
Command Window

>> f = ndd(xy)
f =

@(x) 6 + -0.39063 .* (x - 5.25) + -0.17431 .* (x - 5.25) .* (x - 7.81)

>> f(7.5)
ans = 5.2427
>>
```

Pada *command window* di atas, terdapat matriks xy yang berisi nilai nilai dari x dan y yang berjumlah 3 buah titik. Kemudian, nilai dari xy tersebut dimasukkan ke dalam parameter *function* **ndd** yang hasilnya dimasukkan ke dalam f dimana f akan menghasilkan fungsi *anonymous* akan digunakan dalam perhitungan dengan rumus sebagai berikut.

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

Setelah itu, nilai x = 7.5 yang dicari dimasukkan ke dalam f(x) dan **didapatkan** hasilnya sebesar 5.2427