

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/1/2023	09:30

Fitxa tècnica de l'examen

- No és necessari que escriguis el teu nom. Un cop resolta la prova final, només s'accepten documents en format .doc, .docx (Word) i .pdf.
- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura de què t'has matriculat.
- Temps total: 2 hores Valor de cada pregunta: S'indica en cadascuna d'elles
- Es pot consultar cap material durant l'examen? **NO** Quins materials estan permesos?
- Es pot fer servir calculadora? NO De quin tipus? CAP
- Si hi ha preguntes tipus test, descompten les respostes errònies?
 NO Quant?
- Indicacions específiques per a la realització d'aquest examen:
 - No és necessari que t'identifiquis amb el nom o el número del carnet d'estudiant. L'autoria de la prova és detectada pel propi sistema.
 - A l'hora de lliurar, indiqueu clarament el nombre total de pàgines que esteu lliurant. Per exemple, numereu les pàgines tot indicant el total: (1 de 7, 2 de 7, ..., 7 de 7)
 - La prova es pot resoldre a mà o directament a l'ordinador en un document a part. Referencia clarament la pregunta que estàs responent. Recomanem la resolució a mà de la prova per agilitzar l'escriptura de les fórmules.
 - En cas de respondre la prova a mà:
 - o No cal imprimir l'enunciat, pots resoldre les preguntes en un full en blanc.
 - o Utilitza un bolígraf de tinta blava o negra.
 - o Digitalitza les teves respostes en un únic fitxer en format PDF o Word. Pots fer-ho amb un escàner o amb un dispositiu mòbil. Assegura't que el fitxer que lliures sigui llegible.
 - o Disposes de 10 minuts extres per a la digitalització i lliurament de la prova.
 - Aquesta prova s'ha de resoldre de manera individual. En cas que no sigui així, s'avaluarà amb un zero. Per altra banda, i sempre a criteri dels Estudis, l'incompliment d'aquest compromís, pot suposar l'obertura d'un expedient disciplinari amb possibles sancions.
 - No és obligatori resoldre els exercicis en ordre. Simplement indica clarament quin exercici estàs resolent a cada moment. RECOMANEM QUE ABANS DE POSAR-TE A

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/1/2023	09:30

RESOLDRE LA PROVA LLEGEIXI TOTS ELS ENUNCIATS DE LES ACTIVITATS PER PLANIFICAR EN QUIN ORDRE ET CONVÉ RESOLDRE'LS PER TREURE EL MÀXIM PARTIT AL TEMPS DEL QUE DISPOSES.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/1/2023	09:30

Enunciats

Activitat 1 (1.5 punt + 1.5 punts)

[Criteri de valoració: Les formalitzacions han de ser correctes en tots els aspectes, inclosa la parentització. Cada frase es valora independentment de les altres]

a) Utilitzant els següents àtoms, formalitzeu les frases que hi ha a continuació

P: menjo crispetes

R: estic relaxada

C: m'ennuego

N: llegeixo un llibre

M: miro una sèrie

- 1) Sempre que miro una sèrie, estic relaxada quan menjo crispetes $M \rightarrow (P \rightarrow R)$
- 2) Si menjo crispetes, només m'ennuego quan miro una sèrie i no estic relaxada $P \rightarrow (C \rightarrow M \land \neg R) ||-P \rightarrow (\neg (M \land \neg R) \rightarrow \neg C)$
- 3) Per a estar relaxada em cal llegir un llibre o mirar una sèrie $R \rightarrow N \lor M$ -||- $\neg (N \lor M) \rightarrow \neg R$
- b) Fent ús dels següents predicats i constants, formalitzeu les frases que hi ha a continuació:

P(x): x és un producte

E(x): x és d'estalvi

I(x): x és d'inversió

B(x): x és un banc

O(x, y): x ofereix y

a: CMTrust

b: BlackHole Fund

- 1) Hi ha bancs que no ofereixen cap producte d'inversió $\exists x \{B(x) \land \neg \exists y [P(y) \land I(y) \land O(x,y)]$
- 2) Si CMTrust oferís tots els productes d'estalvi, alguns bancs oferirien tots els productes $\forall x[P(x) \land E(x) \rightarrow O(a,x)] \rightarrow \exists x\{B(x) \land \forall y[P(y) \rightarrow O(x,y)]\}$
- 3) Els bancs que ofereixen el BlackHole Fund també ofereixen productes d'estalvi $\forall x \{B(x) \land O(x,b) \rightarrow \exists y [P(y) \land E(y) \land O(x,y)]\}$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/1/2023	09:30

Activitat 2 (2.5 punts / 1.5 punts)

[Criteri de valoració: serà invàlida (0 punts) qualsevol deducció que contingui l'aplicació incorrecta d'alguna regla]

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Si la deducció és correcta i no utilitzeu regles derivades obtindreu 2.5 punts. Si la deducció és correcta però utilitzeu regles derivades obtindreu 1.5 punts. En cap cas **no** podeu utilitzar equivalents deductius. Si feu més d'una demostració i alguna és incorrecta obtindreu 0 punts.

$$(P {\rightarrow} \neg S) {\vee} (T {\rightarrow} R), \ \neg Q {\rightarrow} R, \ \neg T {\vee} \neg S {\rightarrow} \neg Q, \ \neg T {\rightarrow} \neg P \div P {\rightarrow} R$$

1	$(P \rightarrow \neg S) \lor (T \rightarrow R)$				Р
2	$\neg Q \rightarrow R$				Р
3	$\neg T \lor \neg S \rightarrow \neg Q$				Р
4	$\neg T \rightarrow \neg P$				Р
5		Р			Н
6			P→¬S		Н
7			¬S		E→ 5, 6
8			¬S ¬T∨¬S		Iv 7
9			¬Q		E→ 3, 8
10			R		E→ 2, 9
11			T→R		Н
12				¬T	Н
13				¬P	E→ 4, 12
14				Р	lt 5
15			¬¬T		I¬ 12, 13, 14
16			Т		E¬ 15
17			R		E→ 11, 16
18		R			Ev 1, 10, 17
19	P→R				l→ 5, 18

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/1/2023	09:30

Activitat 3 (1.5 punts)

[Criteri de valoració: La presencia d'errors en les FNCs es penalitzarà amb -0.75 punts. La presència d'errors en l'aplicació de les regles de simplificació i/o en l'aplicació de la regla de resolució es penalitzarà amb -0.75 punts com a mínim]

El raonament següent és vàlid. Utilitzeu el mètode de resolució lineal amb l'estratègia del conjunt de suport per a demostrar-ho. Si podeu aplicar la regla de subsumpció o la regla del literal pur, apliqueu-les i indiqueu-ho.

$$\begin{split} Q \rightarrow & (\neg S \rightarrow T), \\ \neg S \rightarrow \neg P, \\ (Q \lor S) \land (W \lor P), \\ \neg S \land (T \rightarrow \neg W) \\ \therefore \ R \lor P \rightarrow T \end{split}$$

$$\begin{split} &\mathsf{FNC}(\mathsf{Q} \to (\neg \mathsf{S} \to \mathsf{T})) = \neg \mathsf{Q} \vee \mathsf{S} \vee \mathsf{T} \\ &\mathsf{FNC}(\neg \mathsf{S} \to \neg \mathsf{P}) = \mathsf{S} \vee \neg \mathsf{P} \\ &\mathsf{FNC}((\mathsf{Q} \vee \mathsf{S}) \wedge (\mathsf{W} \vee \mathsf{P})) = (\mathsf{Q} \vee \mathsf{S}) \wedge (\mathsf{W} \vee \mathsf{P}) \\ &\mathsf{FNC}(\neg \mathsf{S} \wedge (\mathsf{T} \to \neg \mathsf{W})) = \neg \mathsf{S} \wedge (\neg \mathsf{T} \vee \neg \mathsf{W}) \\ &\mathsf{FNC}(\neg (\mathsf{R} \vee \mathsf{P} \to \mathsf{T})) = (\mathsf{R} \vee \mathsf{P}) \wedge \neg \mathsf{T} \end{split}$$

$$S=\{\neg Q \lor S \lor T, S \lor \neg P, Q \lor S, W \lor P, \neg S, \neg T \lor \neg W, R \lor P, \neg T\}$$

La regla de subsumpció permet d'eliminar la clàusula $\neg T \lor \neg W$ atès que la darrera la subsumeix. La regla del literal pur també permet d'eliminar la clàusula $R \lor P$ per absència de $\neg R$. Amb això, el conjunt s'ha reduït a

$$S'=\{\neg Q \lor S \lor T, S \lor \neg P, Q \lor S, W \lor P, \neg S, \neg T\}$$

Ara l'absència de ¬W permet d'eliminar W∨P en virtut de la regla del literal pur. Això al seu torn fa que l'absència del literal P permeti d'eliminar també S∨¬P. Finalment el conjunt s'ha reduït a

$$S''=\{\neg Q \lor S \lor T, Q \lor S, \neg S, \neg T\}$$

Troncals	Laterals
¬T	$\neg Q \lor S \lor T$
¬Q∨S	¬S
¬Q	QvS
S	¬S

Hem arribat a la clàusula buida de forma que queda demostrat que el raonament és correcte.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/1/2023	09:30

Activitat 4 (1.5 punts)

[Criteri de valoració: La presencia d'errors en les FNSs es penalitzarà amb -0.75 punts. La presència d'errors en l'aplicació de les regles de simplificació i/o en l'aplicació de la regla de resolució es penalitzarà amb -0.75 punts com a mínim]

El següent raonament és vàlid. Demostreu-ho utilitzant el mètode de RESOLUCIÓ. Una vegada hàgiu determinat el conjunt de clàusules, simplifiqueu-lo (literal pur) abans de resoldre.

```
\begin{split} &\exists x \{S(x) \land Q(x)\} \\ &\forall x \exists y \{R(x,y) \rightarrow S(y)\} \\ &\forall x \{Q(x) \rightarrow \exists y R(x,y)\} \\ &\therefore \exists x \exists y R(x,y) \land \exists z Q(z) \\ & FNS \left[\exists x \{S(x) \land Q(x)\}\right] = S(a) \land Q(a) \\ &FNS \left[\forall x \exists y \{R(x,y) \rightarrow S(y)\}\right] = \forall x [\neg R(x,f(x)) \lor S(f(x))] \\ &FNS \left[\forall x \{Q(x) \rightarrow \exists y R(x,y)\}\right] = \forall x [\neg Q(x) \lor R(x,g(x))] \\ &FNS \left[\exists x \exists y R(x,y) \land \exists z Q(x)\right] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(z)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall y \forall z [\neg R(x,y) \lor \neg Q(x)] \\ &FNS \neg [\exists x \exists y R(x,y) \land \exists z Q(x)] = \forall x \forall x \forall x Q(x) \Rightarrow x Q(x)
```

Apliquem la llei del literal pur per simplificar el conjunt de clàusules:

 $S = \{ Q(a), \neg Q(x) \lor R(x, g(x)), \neg R(x,y) \lor \neg Q(z) \}$

Troncals	Laterals	Substitucions	
$\neg R(x,y) \lor \neg Q(z)$	Q(a)	z per a	
$\neg R(x,y) \lor \neg Q(a)$			
$\neg R(x,y)$	$\neg Q(t) \lor R(t, g(t))$	x per t; y per g(t)	
$\neg R(t,g(t))$			
¬Q(t) Q(a)	Q(a)	t per a	
Q(a)			

Hem arribat a la clàusula buida de forma que queda demostrat que el raonament és correcte.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/1/2023	09:30

Activitat 5 (1.5 punts)

[Criteri de valoració: 5 respostes correctes: 1.5 punts; 4 respostes correctes: 1 punt; 3 respostes correctes: 0.75 punts; 2 respostes correctes: 0.5 punts; menys de dues respostes correctes: 0 punts]

- a) [Trieu la resposta correcta. Només una] Un raonament presenta una interpretació que fa falses totes les premisses simultàniament i també fa falsa la conclusió. En aplicar-li el mètode de resolució...
 - a. Segur que s'arriba a trobar
 - b. Segur que mai s'arriba a trobar $\ \square$
 - c. Amb la informació donada no es pot saber si s'arriba o no a trobar
 - d. La situació descrita no es pot donar mai
- b) [Responeu CERT/FALS]. Com a pas previ a l'aplicació del mètode de resolució, un raonament dona lloc al següent conjunt de clàusules: {¬P∨Q, ¬T, ¬T∨¬P, ¬T∨P, P∨¬Q }. Aquest raonament és correcte. FALS
- c) [Responeu SEGUR QUE SÍ / SEGUR QUE NO / NO ES POT SABER] Tenim un conjunt d'enunciats P₁, ..., P_n. Sabem que l'aplicació del mètode de resolució a les clàusules que provenen de P₁, ..., P_n no permet d'obtenir la clàusula buida.

Té contraexemples el raonament P_1 , ..., $P_n :: A \land \neg A$? SEGUR QUE SÍ

- d) Un, i només un, dels següents raonaments és incorrecte. Quin?
 - a. Contradicció A Teorema :: Contradicció
 - b. Teorema ∴ Contradicció ∨ Teorema
 - c. Contradicció ∨ Teorema ∴ Contradicció
- e) [Responeu CERT/FALS] En aplicar la regla E∀ a la fórmula ∀x[P(x)∧∃yR(a,y)] es pot obtenir la fórmula P(a)∧∃yR(a,y). CERT