Coeficientes Binomiais e Identidades em Combinatória Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

17 de maio de 2014

Coeficientes Binomiais

O Teorema Binomial

Alguns Resultados

Coeficientes Binomiais

O Teorema Binomial

Alguns Resultados

Coeficientes Binomiais

- O número de r-combinações de n elementos pode ser denotado como (ⁿ_r).
- Chamamos-lhes de coeficientes binomiais, pois ocorrem como coeficientes em expansões de binômios $(a + b)^n$.

Exemplo

•
$$(a+b)^1 = (a+b) = 1.a + 1.b = \binom{1}{0}.a + \binom{1}{1}.b$$

•
$$(a+b)^2 = 1.a^2 + 2.a.b + 1.b^2 = \binom{2}{0}.a^2 + \binom{2}{1}.a.b + \binom{2}{2}.b^2$$

•
$$(a+b)^3 = 1.a^3 + 3.a^2.b + 3.a.b^2 + 1.b^3 = {3 \choose 0}.a^3 + {3 \choose 1}.a^2.b + {3 \choose 2}.a.b^2 + {3 \choose 3}.b^3.$$

...

Coeficientes Binomiais

O Teorema Binomial

Alguns Resultados

O Teorema Binomial

Teorema

Sejam x, y variáveis e n um inteiro não negativo. Então

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j = \binom{n}{0} x^n y^0 + \binom{n}{1} x^{n-1} y^1 + \dots + \binom{n}{n} x^0 y^n$$

Prova

Usamos uma prova por combinatória. Os termos do produto (x+y).(x+y).....(x+y) são da forma $x^{n-j}y^j$. Observe que para obter um termo desses, devemos escolher n-j vezes o termo x entre as n ocorrências da soma x+y. Portanto, o coeficiente de $x^{n-j}y^j$ será $\binom{n}{n-j}$, que é o mesmo $\binom{n}{j}$.

O Teorema Binomial

Dessa forma, não precisamos fazer muitas contas para saber alguns coeficientes.

PERGUNTA:

Quanto é o coeficiente de $x^{12}y^{13}$ na expansão de $(x + y)^{25}$?

Constatação:

Pelo teorema binomial, o coeficiente será $\binom{25}{12} = \frac{25!}{13! \cdot 12!}$.

O Teorema Binomial

Dessa forma, não precisamos fazer muitas contas para saber alguns coeficientes.

PERGUNTA:

Quanto é o coeficiente de $x^{12}y^{13}$ na expansão de $(2x - 3y)^{25}$?

Constatação:

Observe que, pelo teorema binomial, temos

$$(x+y)^{25} = \sum_{j=0}^{25} {25 \choose j} (2x)^{25-j} (-3y)^j$$
. Portanto, o coeficiente de $x^{12}y^{13}$ nessa expansão será ${25 \choose 13}.2^{12}.(-3)^{13}$.

$$x^{12}y^{13}$$
 nessa expansão será $\binom{25}{13}.2^{12}.(-3)^{13}$

Coeficientes Binomiais

O Teorema Binomial

Alguns Resultados

Alguns Resultados

O terema binomial nos permite provar alguns resultados úteis com simplicidade.

Corolário

Seja n não negativo, então

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Prova

Utilizando o teorema binomial com x = y = 1, temos:

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} \binom{n}{k} . 1^{n-k} . 1^{k} = \sum_{k=0}^{n} \binom{n}{k} .$$

Alguns Resultados

O terema binomial nos permite provar alguns resultados úteis com simplicidade.

Corolário

Seja n positivo, então

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

Prova

Utilizando o teorema binomial com x = 1 e y = -1, temos:

$$0^{n} = (1 + (-1))^{n} = \sum_{k=0}^{n} {n \choose k} . 1^{n-k} . (-1)^{k} = \sum_{k=0}^{n} (-1)^{k} {n \choose k}.$$
 Isso

conclui a prova do corolario.

Alguns Resultados

O terema binomial nos permite provar alguns resultados úteis com simplicidade.

Corolário

Seja n não negativo, então

$$\sum_{k=0}^{n} (2)^k \binom{n}{k} = 3^n.$$

Prova

Observe que o lado esquerdo da expressão corresponde à expansão do binômio $(1+2)^n$, temos:

$$(1+2)^n = \sum_{k=0}^n \binom{n}{k} . 1^{n-k} . 2^k = \sum_{k=0}^n 2^k \binom{n}{k}$$
. Portanto,

$$\sum_{k=1}^{n} 2^{k} \binom{n}{k} = 3^{r}$$

Coeficientes Binomiais

O Teorema Binomial

Alguns Resultados

Identidade de Pascal

O terema binomial nos permite provar alguns resultados úteis com simplicidade.

Teorema

Sejam k, n inteiros positivos e $n \ge k$, então $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4$$

Triângulo de Pascal

• O triângulo de Pascal junto às condições $\binom{n}{0} = \binom{n}{n} = 1$.

Exercícios

- 1. A linha do triângulo de Pascal contendo os coeficientes binomiais $\binom{10}{k}$, onde $0 \le k \le 10$, é: 1 10 45 120 210 252 210 120 45 10 1. Utilize a identidade de Pascal para encontrar a linha seguinte do triângulo.
- **2.** Mostre que se n, k são inteiros com $1 \le k \le n$, então $k \binom{n}{k} = n \binom{n-1}{k-1}$. Você pode usar uma prova combinatória ou manipulação algébrica da fórmula do binômio $\binom{n}{r}$.