# COMS 4771 Project Exam Help ia Probabilistic Reasoning via https://poxyoder.com/s

Add WeChat powcoder

#### Last time...

- Dimensionality Reduction
   Linear vs non-linear Dimensionality Reduction
- Principal Composignment Project Exam Help
- Non-linear methods for doing dimensionality reduction
   Add WeChat powcoder

# **Graphical Models**

A probabilistic model where a graph represents the conditional dependence structure among the variables.

Provides a compact representation of the joint distribution!

Example:

Assignment Project Exam Help

Four variables of interest – cloudiness, raining, sprinkler, grass\_wet

https://powcoder.com



# Graphical Models: Representation

There are two kinds of Graphical Models



Undirected models – Markov Random Fields (MRFs) Edge connection typically denotes potential co-occurrence



## Bayesian Networks

What is the joint probability for these variables?

$$P(C, S, R, G)$$

$$= P(C)P(A|S)ig(spreat)Project ExamHelp$$

$$= P(C)P(A|\mathbf{S}) \text{ ignifical Project Example of } \\ = P(C)P(R|C)P(S|C)P(G|S,R) \\ \text{by the parent-child relationships}$$

Add WeChat powcoder

*In general:* 

$$P(X_1, \dots, X_d) = \prod_{i=1}^d P(X_i \mid parent(X_i))$$

That is: a variable is independent of its ancestors given the parents.

## Bayesian Networks: Inference

$$P(C, S, R, G) = P(C)P(R|C)P(S|C)P(G|S, R)$$

P(C=1)

Assignment Project Exam Help

| С | P(S=1 C) |
|---|----------|
| 0 | 0.5      |
| 1 | 0.1      |



| S | R | P(G=1 S,R) |
|---|---|------------|
| 0 | 0 | 0.0        |
| 0 | 1 | 0.9        |
| 1 | 0 | 0.9        |
| 1 | 1 | 0.99       |

These conditional probability tables (CPT) are enough to **completely** specify the joint distribution!

# Bayesian Networks: Inference

$$P(C, S, R, G) = P(C)P(R|C)P(S|C)P(G|S, R)$$

Q: What is the probability of sprinkler being on given the grass is wet? Assignment Project Exam Help

$$P(S = 1|G = 1)$$
  $\frac{P(S = 1, G = 1)}{\text{https://powcode}} \frac{0.2781}{\text{com}_{71}} = 0.430$ 



#### Add WeChat powcoder

$$P(G = 1) = \sum_{c,s,r} P(C = c, S = s, R = r, G = 1)$$

$$= \sum_{c,s,r} P(C = c)P(R = r|C = c)P(S = s|C = c)P(G = 1|S = s, R = r)$$

$$= 0.6471$$

$$P(S=1,G=1) = \sum_{c,r} P(C=c,S=1,R=r,G=1) = \cdots = 0.2781$$

# Bayesian Networks: Learning Parameters

$$P(C, S, R, G) = P(C)P(R|C)P(S|C)P(G|S, R)$$

Learning the parameters knowing the structure

ie, estimate Abes i griffnents Protject Exam Help



Simply do the likelihood estimates (ie, coder) com

$$\hat{P}_{\mathrm{ML}}(G=g|S=s,R=r) = \frac{\mathbf{Add} \ \mathbf{We} \ \mathbf{Chat} \ \mathbf{powcoder} \ r)}{\#(S=s,R=r)}$$

etc ...

Issue: assigns zero prob. for unseen combinations in data.

How to fix that?

# Bayesian Networks: Learning Structure

$$P(C, S, R, G) = P(C)P(R|C)P(S|R, C)P(G|S, R, C)$$

Learning the unknown structure between the variables

Assignment Project Exam Help

#### General

- Test of conditional three pences en capacitation and three pence
- Grow-Shrink Markov Blanket algorithm coder

#### Assumed structure:

- Tree structure: Chow-Liu algorithm
- Small cliques: variations on Chow-Liu



# Markov Random Fields (MRFs)

Graphical models with undirected connections

normalizer (so things,

the partition function

$$P(X_1, \dots, X_d) = \prod_{\substack{Z \ Assignment^{\text{li}} \text{Project-Exam Help}}} \phi_C(X_C)$$

normalizer (so things Clique potentials, typically the integrate to https://powcoder.com/feative frequency of variable co-occurrence in a clique

Add WeChat powcoder

Example: five variable graph



$$P(X_1,\ldots,X_5) \propto \phi_1((X_1,X_2,X_3)) \phi_2((X_2,X_3,X_4)) \phi_3((X_3,X_5))$$

# A Closer Look at (In)dependencies in GMs

What are the (conditional) independencies asserted by the following graphical models?

(directed)  $X_1$   $X_2$   $X_3$   $X_1$   $X_2$   $X_3$   $X_3$   $X_1$   $X_2$   $X_3$   $X_3$   $X_4$   $X_$ 

(undirected)



## Relation Between Directed & Undirected GM

What are the (conditional) independencies asserted by the following

directed model?



Add WeChat powcoder

What is the equivalent undirected model?



## GM Special Case: Time Series Model

#### A time series model:

A family of distributions over a sequence of random variables  $X_1$ ,  $X_2$ ,... that is indexed by a totally ordered indexing set (often referred to as *time*)

Assignment Project Exam Help

... 
$$X_{t-2}$$
  $X_{t-1}$   $X_t$   $X_{t+1}$   $X_{t+2}$  ... https://powcoder.com

past statAdd WeChattpowcoderture states

state

#### Many applications:

- Financial/Economic data over time
- Climate data
- Speech and natural language
- ...

#### Markov Models

#### Markov Model:

A time series model with the property:

The conditional distribution of the next state  $X_{t+1}$  given all the previous states  $X_i$  ( $i \le t$ ) only depends on the propert state  $X_i$ . Help

$$P(X_{t+1} \mid x_t, x_t) = \frac{1}{N} P(X_{t+1} \mid X_t)$$

#### Add WeChat powcoder

The corresponding graphical model:



also known as a Markov chain

#### Markov Chains: Distributions

#### To specify a Markov Chain:

Need to specify the distribution of the initial state: X<sub>1</sub>

Need to specify the conditional distribution:  $X_{t+1}$  given  $X_t$ 

This is often called the transition matrix

## Assignment Project Exam Help

(We will focus on finite size state space, say, d different states) <a href="https://powcoder.com">https://powcoder.com</a>

Initial state distribution: Add WeChat powcoder

$$P(X_1 = i) = \pi_i$$

#### Conditional distribution:

$$P(X_{t+1} = j \mid X_t = i) = A_{ij}$$

can be summarized in a d x d matrix A

A is row stochastic

# Markov Chain: Example

State space: {1,2}

Parameters:

$$\pi = \frac{\text{state 1}}{\text{state 2}} \left( \begin{array}{c} 0.1 \\ \text{state 1} \end{array} \right)$$

https://powcoder.com



What is the probability of seeing the random sequence: 2,2,2,1,1,2,2,1?

$$\pi_2 \cdot A_{2,2} \cdot A_{2,2} \cdot A_{2,1} \cdot A_{1,1} \cdot A_{1,2} \cdot A_{2,2} \cdot A_{2,1} \approx 0.004355$$

# Markov Chain: Example - PageRank

Web graph: vertices – webpages, edges – links between webpages



Question: how popular is a given webpage i?

Possible answer:

proportional to the probability that a random walk ends on page i.

$$P(X_t = i)$$
 (for some large t)

# Markov Chain: Marginals

#### Let's calculate the following probabilities:

$$\begin{split} P(X_1 = i) &= \pi_i \\ P(X_2 = i) &= \underbrace{\textbf{AssignmentxProject Exam Help}}_{j} \\ &= \sum_{j} P \underbrace{\textbf{https:}}_{j} / \textbf{ppwcoder.com}_{j}) \\ &= \sum_{j} \underbrace{\textbf{Add WeChat powcoder}}_{j} \\ &= i^{\text{th entry of } \pi^{\mathsf{T}} A} = (\pi^{\mathsf{T}} A)_{i} \end{split}$$

$$P(X_3 = i) = \dots = (\pi^\mathsf{T} A A)_i$$

$$P(X_t = i) = (\pi^{\mathsf{T}} A^{t-1})_i$$

for the PageRank example, does this converge to a stable value for large t?

# Markov Chain: Limiting Behavior

Question does/can  $P(X_t)$  have a limiting behavior?

$$P(X_t = i) = \left(\pi^{\mathsf{T}} A^{t-1}\right)_i$$

Equivalent to asking:

does 
$$\lim_{t\to\infty} A^t$$
 approach a limiting matrix  $\lim_{t\to\infty} A^t$  Assignment Project  $\lim_{t\to\infty} A^t$  (with identical rows)?  $\lim_{t\to\infty} A^t$  (with identical rows)?

For such an 
$$A$$
, it must satisfy:://powcoder.com 
$$\lim_{t\to\infty}A^t=\Big(\lim_{t\to\infty}A\mathrm{dd}\Big)\text{WeChat-powcoder}=\begin{bmatrix}\cdots & q & \cdots &$$

**Equivalently:** 

$$qA = q$$

ie, q is the **left** eigenvector of A with eigenvalue 1!

q unique whenever there is no multiplicity of eigenvalue 1

such a q is called the stationary distribution of A

# PageRank Example

Web graph doesn't have a unique stationary distribution, but can add some regularity to the link matrix A. That is  $\tilde{A} = A + \varepsilon 1$ 



Popularity of a given webpage i is proportional to the i<sup>th</sup> component of the (regularized) stationary distribution

## Markov Models with Unobserved Variable

Hidden Markov Model (HMM): A Markov chain on  $\{(X_t,Y_t)\}_t$ Some properties:

- $Y_t$  is unobserved / hidden variable; only  $X_t$  is observed.
- Conditioned on A, sxi game petale of octal Extern Valed poes!

The corresponding graphical https://powcoder.com



# Hidden Markov Models (HMMs) Applications

**Natural Language Processing** 

Observed: words in a sentence

Unobserved: words' part-of-speech or other word semantics Assignment Project Exam Help

https://powcoder.com Bioinformatics

Observed: Amino acids in a protein Add WeChat powcoder Unobserved: indicators of evolutionary conservation

Speech Recognition

Observed: Recorded speech

Unobserved: The phonemes the speaker intended to vocalize

#### **HHMs Parameters**

We will focus on discrete state space:

 $X_t$  takes values { 1, ..., D } (observed)

 $Y_t$  takes values  $\{1, ..., K\}$  (hidden)



#### Assignment Project Exam Help

We need the initial state distribution on  $Y_1$  https://powcoder.com

#### Add WeChat powcoder

Need to specify a  $K \times K$  transition matrix  $\overline{A}$  from  $Y_t$  to  $Y_{t+1}$ 

$$P(Y_{t+1} = j \mid Y_t = i) = A_{ij}$$

Need to specify a  $K \times D$  emission matrix B from  $Y_t$  to  $X_t$ 

$$P(X_t = j \mid Y_t = i) = B_{ij}$$

Both A and B are row stochastic

# HHM: Example – Dishonest Casino



**HMM Parameters** 

HMM Parameters fair die loaded die 
$$1$$
 2 3 4 5 6  $A = \frac{\text{fair die}}{\text{loaded die}} \begin{pmatrix} 0.95 & 0.05 \\ 0.10 & 0.90 \end{pmatrix}, \quad B = \frac{\text{fair die}}{\text{loaded die}} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{2} \end{pmatrix},$ 

 $\pi = (1,0)$  [the casino starts off with the fair die]

Problem: based on the sequence of rolls, guess which die was used at each time

# HHM Learning and Inference Problems

Conditional Probabilities (filtering/smoothing)

- Given: parameters  $\theta = (\pi, A, B)$ , and the observation  $X_{1:T}$
- Goal: What is the conditional probability of  $Y_{1:T}$ ?

Assignment Project Exam Help

Most probable sequence (decoding) wcoder.com

 $\operatorname{Add} \operatorname{Weehat}_{Y_{1:T}} \operatorname{powe,oder}$ 

#### Parameter Estimation

- Given: The observations X<sub>1:T</sub>
- Goal: Find the best parameter estimate of heta

# HHM: Example – Dishonest Casino



## HHM: Computing the Posterior Probabilities

#### Filtering Problem

Can directly compute  $P(Y_{1:T} \mid X_{1:T}, \theta)$  using the standard way, but that is slow and doesn't exploit the conditional independency structure of HMMs

### Assignment Project Exam Help

A popular fast algorithm:

Forward-Backward algorithms, capow contin two passes (one forward pass, one backward pass) over the states.

Add WeChat powcoder

#### **Decoding Problem**

Most likely posterior setting of the hidden states can be computed efficiently using a dynamic programming algorithm, called **Viterbi decoding algorithm** 

See supplementary material for detail on these algorithms

## HHM: Learning the Parameters

We can use the Expectation Maximization (EM) Algorithm!

**Input:** n observations sequences  $x_{1:T}^{(1)}, x_{1:T}^{(2)}, \ldots, x_{1:T}^{(n)}$ 

Initialize: Assignment Project Exam Help

Start with an initial setting / guess of parameters  $(\hat{\pi}, \hat{A}, \hat{B})$  https://powcoder.com

#### E-step:

Compute conditional expectation vgiven Wand Eurrent parameter guess

(this can be done using the Forward-Backward algorithm)

#### M-step:

Given the estimate of Y and the observations X, we have the complete likelihood, so simply maximize the likelihood by taking the derivative and examine the stationary points.

### What We Learned...

- Graphical Models
   Bayesian Networks and Markov Random Fields
- Doing inference and learning of graphical Hobels
- Markov Models https://powcoder.com
- Add WeChat powcoder
   Hidden Markov Models
- Bayesian Networks

## Questions?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder