CS 473ug: Algorithms

Chandra Chekuri chekuri@cs.uiuc.edu 3228 Siebel Center

University of Illinois, Urbana-Champaign

Fall 2007

Part I

Polynomials, Convolutions and FFT

Polynomials

Definition

A polynomial is a function of one variable built from additions, subtractions and multiplications (but no divisions).

$$p(x) = \sum_{j=0}^{n-1} a_j x^j$$

The numbers a_0, a_1, \ldots, a_n are the coefficients of the polynomial. The degree is the highest power of x with a non-zero coefficient.

Example

$$p(x) = 3 - 4x + 5x^3$$

$$a_0 = 3$$
, $a_1 = -4$, $a_2 = 0$, $a_3 = 5$ and $deg(p) = 3$

Polynomials

Definition

A polynomial is a function of one variable built from additions, subtractions and multiplications (but no divisions).

$$p(x) = \sum_{j=0}^{n-1} a_j x^j$$

The numbers a_0, a_1, \ldots, a_n are the coefficients of the polynomial. The degree is the highest power of x with a non-zero coefficient.

Representation

Polynomials represented by vector $\mathbf{a} = (a_0, a_1, \dots a_{n-1})$ of coefficients.

Evaluate Given a polynomial p and a value x, compute p(x)

Evaluate Given a polynomial p and a value x, compute p(x)Add Given polynomials p, q, compute polynomial p + q

Evaluate Given a polynomial p and a value x, compute p(x)Add Given (representations of) polynomials p, q, compute (representation of) polynomial p + q

- Evaluate Given a polynomial p and a value x, compute p(x)
 - Add Given (representations of) polynomials p, q, compute (representation of) polynomial p + q
 - Multiply Given (representation of) polynomials p, q, compute (representation of) polynomial $p \cdot q$.

```
Evaluate Given a polynomial p and a value x, compute p(x)
```

Add Given (representations of) polynomials p, q, compute (representation of) polynomial p + q

Multiply Given (representation of) polynomials p, q, compute (representation of) polynomial $p \cdot q$.

Roots Given *p* find all *roots* of *p*.

Evaluation

Compute value of polynomial $a = (a_0, a_1, \dots a_{n-1})$ at x

Evaluation

Compute value of polynomial $a = (a_0, a_1, \dots a_{n-1})$ at x

```
power = 1
value = 0
for j = 0 to n-1
    // invariant: power = x<sup>j</sup>
    value = value + a<sub>j</sub> ·power
    power = power · x
end for
return value
```

Uses 2n multiplication and n additions

Evaluation

Compute value of polynomial $a = (a_0, a_1, \dots a_{n-1})$ at x

```
power = 1
value = 0
for j = 0 to n-1
    // invariant: power = x<sup>j</sup>
    value = value + a<sub>j</sub> ·power
    power = power · x
end for
return value
```

Uses 2n multiplication and n additions Horner's rule can be used to cut the multiplications in half

$$a(x) = a_0 + x(a_1 + x(a_2 + \cdots + xa_{n-1}))$$

Evaluation: Numerical Issues

Question

How long does evaluation really take? O(n) time?

Evaluation: Numerical Issues

Question

How long does evaluation really take? O(n) time?

Size of x^n in terms of bits is $n \log x$ while size of x is only $\log x$. Thus, need to pay attention to size of numbers and multiplication complexity.

Ignore this issue for now. Can get around it for applications of interest.

Addition

Compute the sum of polynomials

$$a = (a_0, a_1, \dots a_{n-1})$$
 and $b = (b_0, b_1, \dots b_{n-1})$

Addition

Compute the sum of polynomials

$$a = (a_0, a_1, \dots a_{n-1})$$
 and $b = (b_0, b_1, \dots b_{n-1})$

$$a + b = (a_0 + b_0, a_1 + b_1, \dots a_{n-1} + b_{n-1})$$
. Takes $O(n)$ time.

Multiplication

Compute the product of polynomials

$$a=(a_0,a_1,\dots a_n)$$
 and $b=(b_0,b_1,\dots b_m)$

Multiplication

Compute the product of polynomials $a = (a_0, a_1, \dots a_n)$ and $b = (b_0, b_1, \dots b_m)$ Recall $a \cdot b = (c_0, c_1, \dots c_{n+m})$ where

$$c_k = \sum_{i,j:\ i+j=k} a_i \cdot b_j$$

for j = 0 to n+m
$$c_j = 0$$

for j = 0 to n
for k = 0 to m
 $c_{j+k} = c_{j+k} + a_j \cdot b_k$
return $(c_0, c_1, \dots c_{n+m})$

Takes $O(n^2)$ time.

Multiplication

Compute the product of polynomials

$$a=(a_0,a_1,\ldots a_n)$$
 and $b=(b_0,b_1,\ldots b_m)$
Recall $a\cdot b=(c_0,c_1,\ldots c_{n+m})$ where

$$c_k = \sum_{i,j: i+j=k} a_i \cdot b_j$$

for j = 0 to n+m
$$c_j = 0$$

for j = 0 to n
for k = 0 to m
 $c_{j+k} = c_{j+k} + a_j \cdot b_k$
return $(c_0, c_1, \dots c_{n+m})$

Takes $O(n^2)$ time. We will give a better algorithm!

Convolutions

Definition

The convolution of vectors $a = (a_0, a_1, \dots a_n)$ and $b = (b_0, b_1, \dots b_m)$ is the vector $c = (c_0, c_1, \dots c_{n+m})$ where

$$c_k = \sum_{i,j: i+j=k} a_i \cdot b_j$$

Convolution of vectors a and b is denoted by a * b.

Convolutions

Definition

The convolution of vectors $a = (a_0, a_1, \dots a_n)$ and $b = (b_0, b_1, \dots b_m)$ is the vector $c = (c_0, c_1, \dots c_{n+m})$ where

$$c_k = \sum_{i,j: i+j=k} a_i \cdot b_j$$

Convolution of vectors a and b is denoted by a*b. In other words, the convolution is the coefficients of the product of the two polynomials

• Let $a = (a_0, a_1, \dots a_{n-1})$ be a sequence of measurements over time.

- Let $a = (a_0, a_1, \dots a_{n-1})$ be a sequence of measurements over time.
- To account for measurement errors or random fluctuations, measurements are "smoothed" by averaging each value with a weighted sum of its neighbors. For example, in Gaussian smoothing a_i is replaced by

$$a'_{i} = \frac{1}{Z} \sum_{j=i-k}^{i+k} a_{j} e^{-(j-i)^{2}}$$

- Let $a = (a_0, a_1, \dots a_{n-1})$ be a sequence of measurements over time.
- To account for measurement errors or random fluctuations, measurements are "smoothed" by averaging each value with a weighted sum of its neighbors. For example, in Gaussian smoothing a_i is replaced by

$$a'_{i} = \frac{1}{Z} \sum_{j=i-k}^{i+k} a_{j} e^{-(j-i)^{2}}$$

• Smoothing can be thought of as vector of weights $w = (w_{-k}, w_{-(k-1)}, \dots, w_{-1}, w_0, w_1 \dots w_k)$ used to average each entry as $a_i' = \sum_{s=-k}^k w_s a_{i+s}$

- Let $a = (a_0, a_1, \dots a_{n-1})$ be a sequence of measurements over time.
- To account for measurement errors or random fluctuations, measurements are "smoothed" by averaging each value with a weighted sum of its neighbors. For example, in Gaussian smoothing a_i is replaced by

$$a'_{i} = \frac{1}{Z} \sum_{j=i-k}^{i+k} a_{j} e^{-(j-i)^{2}}$$

CS473ug

- Smoothing can be thought of as vector of weights $w = (w_{-k}, w_{-(k-1)}, \dots, w_{-1}, w_0, w_1 \dots w_k)$ used to average each entry as $a_i' = \sum_{s=-k}^k w_s a_{i+s}$
- Taking $b = (b_0, b_1, \dots b_{2k})$ to be $b_j = w_{k-j}, \ a' = a * b$

Historical Applications

 Gauss used convolutions in the 1800s to compute the path of asteroids from a finite number of equi-spaced observations.

Historical Applications

- Gauss used convolutions in the 1800s to compute the path of asteroids from a finite number of equi-spaced observations.
- In the mid-60s, Cooley and Tukey used it to detect Soviet nuclear tests by interpolating off-shore seismic readings

Many Applications

To mention a few:

- Signal and image processing (radar, MRI, astronomy, compression, ...)
- Statistics
- Multiplication of numbers
- Pattern matching

Representation

Polynomials represented by vector $\mathbf{a} = (a_0, a_1, \dots a_{n-1})$ of coefficients.

Representation

Polynomials represented by vector $\mathbf{a} = (a_0, a_1, \dots a_{n-1})$ of coefficients.

Question

Are there other ways to represent polynomials?

Representation

Polynomials represented by vector $\mathbf{a} = (a_0, a_1, \dots a_{n-1})$ of coefficients.

Question

Are there other ways to represent polynomials?

Root of a polynomial p(x): r such that p(r) = 0. If $r_1, r_2, \ldots, r_{n-1}$ are roots then $p(x) = a_{n-1}(x - r_1)(x - r_2) \ldots (x - r_{n-1})$.

Representation

Polynomials represented by vector $\mathbf{a} = (a_0, a_1, \dots a_{n-1})$ of coefficients.

Question

Are there other ways to represent polynomials?

Root of a polynomial p(x): r such that p(r) = 0. If $r_1, r_2, \ldots, r_{n-1}$ are roots then $p(x) = a_{n-1}(x - r_1)(x - r_2) \ldots (x - r_{n-1})$.

Theorem (Fundamental Theorem of Algebra)

Every polynomial p(x) of degree d has exactly d roots r_1, r_2, \ldots, r_d where the roots can be complex numbers and can be repeated.

Representation

Polynomials represented by vector scale factor a_{n-1} and roots

$$r_1, r_2, \ldots, r_{n-1}$$
.

Representation

Polynomials represented by vector scale factor a_{n-1} and roots $r_1, r_2, \ldots, r_{n-1}$.

Evaluating p at a given x is easy. Why?

Representation

Polynomials represented by vector scale factor a_{n-1} and roots $r_1, r_2, \ldots, r_{n-1}$.

- Evaluating p at a given x is easy. Why?
- Multiplication: given p, q with roots r_1, \ldots, r_{n-1} and s_1, \ldots, s_{m-1} the product $p \cdot q$ has roots $r_1, \ldots, r_{n-1}, s_1, \ldots, s_{m-1}$. Easy!

Representation

Polynomials represented by vector scale factor a_{n-1} and roots $r_1, r_2, \ldots, r_{n-1}$.

- Evaluating p at a given x is easy. Why?
- Multiplication: given p, q with roots r_1, \ldots, r_{n-1} and s_1, \ldots, s_{m-1} the product $p \cdot q$ has roots $r_1, \ldots, r_{n-1}, s_1, \ldots, s_{m-1}$. Easy!
- Addition: requires $O(n^2)$ time??

Representing Polynomials by Roots

Representation

Polynomials represented by vector scale factor a_{n-1} and roots $r_1, r_2, \ldots, r_{n-1}$.

- Evaluating p at a given x is easy. Why?
- Multiplication: given p, q with roots r_1, \ldots, r_{n-1} and s_1, \ldots, s_{m-1} the product $p \cdot q$ has roots $r_1, \ldots, r_{n-1}, s_1, \ldots, s_{m-1}$. Easy!
- Addition: requires $O(n^2)$ time??
- Given coefficient representation, how do we go to root representation?? No finite algorithm because of potential for irrational roots.

Representing Polynomials by Samples

Let p be a polynomial of degree n-1.

Pick *n* distinct samples $x_0, x_1, x_2, \dots, x_{n-1}$

Let $y_0 = p(x_0), y_1 = p(x_1), \dots, y_{n-1} = p(x_{n-1}).$

Representation

Polynomials represented by $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}).$

Representing Polynomials by Samples

Let p be a polynomial of degree n-1.

Pick *n* distinct samples $x_0, x_1, x_2, \dots, x_{n-1}$

Let $y_0 = p(x_0), y_1 = p(x_1), \dots, y_{n-1} = p(x_{n-1}).$

Representation

Polynomials represented by $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}).$

Is the above a valid representation?

Representing Polynomials by Samples

Let p be a polynomial of degree n-1. Pick n distinct samples $x_0, x_1, x_2, \ldots, x_{n-1}$ Let $y_0 = p(x_0), y_1 = p(x_1), \ldots, y_{n-1} = p(x_{n-1})$.

Representation

Polynomials represented by $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}).$

Is the above a valid representation? Why do we use 2n numbers instead of n numbers for coefficient and root representation?

Theorem

Given a list $\{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$ there is exactly one polynomial p of degree n-1 such that $p(x_j) = y_j$ for $j = 0, 1, \dots, n-1$.

Theorem

Given a list $\{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$ there is exactly one polynomial p of degree n-1 such that $p(x_j) = y_j$ for $j = 0, 1, \dots, n-1$.

So representation is valid.

Theorem

Given a list $\{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$ there is exactly one polynomial p of degree n-1 such that $p(x_j) = y_j$ for $j = 0, 1, \dots, n-1$.

So representation is valid.

Can use same x_0, x_1, \dots, x_{n-1} for all polynomials of degree n-1! No need to store them explicitly! Need only n numbers

$$y_0, y_1, \ldots, y_{n-1}$$

Theorem

Given a list $\{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$ there is exactly one polynomial p of degree n-1 such that $p(x_j) = y_j$ for $j = 0, 1, \dots, n-1$.

So representation is valid.

Can use same x_0, x_1, \dots, x_{n-1} for all polynomials of degree n-1! No need to store them explicitly! Need only n numbers

 $y_0, y_1, \ldots, y_{n-1}$.

Lagrange interpolation formula: Given $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$ the following polynomial p satisfies $p(x_j) = y_j$ for $j = 0, 1, 2, \ldots, n-1$.

$$p(x) = \sum_{j=0}^{n-1} \left(\frac{y_j}{\prod_{k \neq j} (x_j - x_k)} \prod_{k \neq j} (x - x_k) \right)$$

Lagrange Interpolation

For n=3

$$p(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Easy to verify that $p(x_j) = y_j!$ Thus there exists one polynomial of degree n-1 that interpolates the values $(x_0, y_0), \dots, (x_{n-1}, y_{n-1})$.

Lagrange Interpolation

For n=3

$$p(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Easy to verify that $p(x_j) = y_j!$ Thus there exists one polynomial of degree n-1 that interpolates the values $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$.

Can there be two distinct polynomials?

Lagrange Interpolation

For n = 3

$$p(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Easy to verify that $p(x_j) = y_j!$ Thus there exists one polynomial of degree n-1 that interpolates the values $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$.

Can there be two distinct polynomials?

No! Use Fundamental Theorem of Algebra to prove it — exercise.

• Let $\{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$ and $\{(x_0, y_0'), (x_1, y_1'), \dots (x_{n-1}, y_{n-1}')\}$ be representations of two polynomials of degree n-1

- Let $\{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$ and $\{(x_0, y_0'), (x_1, y_1'), \dots (x_{n-1}, y_{n-1}')\}$ be representations of two polynomials of degree n-1
- a+b can be represented by $\{(x_0,(y_0+y_0')),(x_1,(y_1+y_1')),\dots(x_{n-1},(y_{n-1}+y_{n-1}'))\}$
 - Thus, can be computed in O(n) time

- Let $\{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$ and $\{(x_0, y_0'), (x_1, y_1'), \dots (x_{n-1}, y_{n-1}')\}$ be representations of two polynomials of degree n-1
- a+b can be represented by $\{(x_0,(y_0+y_0')),(x_1,(y_1+y_1')),\dots(x_{n-1},(y_{n-1}+y_{n-1}'))\}$
 - Thus, can be computed in O(n) time
- $a \cdot b$ can be evaluated at n samples $\{(x_0, (y_0 \cdot y_0')), (x_1, (y_1 \cdot y_1')), \dots (x_{n-1}, (y_{n-1} \cdot y_{n-1}'))\}$
 - Can be computed in O(n) time!

- Let $\{(x_0, y_0), (x_1, y_1), \dots (x_{n-1}, y_{n-1})\}$ and $\{(x_0, y_0'), (x_1, y_1'), \dots (x_{n-1}, y_{n-1}')\}$ be representations of two polynomials of degree n-1
- a+b can be represented by $\{(x_0,(y_0+y_0')),(x_1,(y_1+y_1')),\dots(x_{n-1},(y_{n-1}+y_{n-1}'))\}$
 - Thus, can be computed in O(n) time
- $a \cdot b$ can be evaluated at n samples $\{(x_0, (y_0 \cdot y_0')), (x_1, (y_1 \cdot y_1')), \dots (x_{n-1}, (y_{n-1} \cdot y_{n-1}'))\}$
 - Can be computed in O(n) time!

But what if p, q are given in coefficient form? Convolution requires p, q to be in coefficient form.

Coefficient representation to Sample representation

Given p as $(a_0, a_1, \ldots, a_{n-1})$ can we obtain a sample representation $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$ quickly? Also can we *invert* the representation quickly?

Coefficient representation to Sample representation

Given p as $(a_0, a_1, \ldots, a_{n-1})$ can we obtain a sample representation $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$ quickly? Also can we *invert* the representation quickly?

- Suppose we choose $x_0, x_1, \ldots, x_{n-1}$ arbitrarily.
- Take O(n) time to evaluate $y_j = p(x_j)$ given (a_0, \ldots, a_{n-1}) .
- Total time is $\Omega(n^2)$!
- Inversion via Lagrange interpolation also $\Omega(n^2)$.

Key Idea

Can choose $x_0, x_1, \ldots, x_{n-1}$ carefully!

Total time to evaluate $p(x_0), p(x_1), \ldots, p(x_{n-1})$ should be better than evaluating each separately.

Key Idea

Can choose $x_0, x_1, \ldots, x_{n-1}$ carefully!

Total time to evaluate $p(x_0), p(x_1), \ldots, p(x_{n-1})$ should be better than evaluating each separately.

How do we choose $x_0, x_1, \ldots, x_{n-1}$ to save work?

A Simple Start

$$a(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots + a_{n-1}x^{n-1}$$

Assume n is a power of 2 for rest of the discussion.

Observation: $(-x)^{2j} = x^{2j}$. Can we exploit this?

A Simple Start

$$a(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots + a_{n-1}x^{n-1}$$

Assume n is a power of 2 for rest of the discussion.

Observation: $(-x)^{2j} = x^{2j}$. Can we exploit this?

Example

$$3+4x+6x^2+2x^3+x^4+10x^5=(3+6x^2+x^4)+x(4+2x^2+10x^4)$$

A Simple Start

$$a(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots + a_{n-1}x^{n-1}$$

Assume n is a power of 2 for rest of the discussion.

Observation: $(-x)^{2j} = x^{2j}$. Can we exploit this?

Example

$$3+4x+6x^2+2x^3+x^4+10x^5=(3+6x^2+x^4)+x(4+2x^2+10x^4)$$

If we have a(x) then easy to also compute a(-x)!

Odd and Even Decomposition

- Let $a = (a_0, a_1, \dots a_{n-1})$ be a polynomial.
- Let $a_{\text{odd}} = (a_1, a_3, a_5, ...)$ be the n/2 degree polynomial defined by the odd coefficients; so

$$a_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \cdots$$

- Let $a_{\text{even}} = (a_0, a_2, a_4, ...)$ be the n/2 degree polynomial defined by the even coefficients.
- Observe

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

 Thus, evaluating a at x can be reduced to evaluating lower degree polynomials plus constantly many arithmetic operations.

Exploiting Odd-Even Decomposition

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

• Choose *n* samples

$$x_0, x_1, x_2, \ldots, x_{n/2-1}, -x_0, -x_1, \ldots, -x_{n/2-1}$$

Exploiting Odd-Even Decomposition

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

• Choose *n* samples

$$x_0, x_1, x_2, \dots, x_{n/2-1}, -x_0, -x_1, \dots, -x_{n/2-1}$$

• Sufficient to evaluate a_{even} and a_{odd} at $x_0^2, x_1^2, x_2^2, \dots, x_{n/2-1}^2$! Pluse O(n) work gives a(x) for all n samples!

Exploiting Odd-Even Decomposition

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

Choose n samples

$$x_0, x_1, x_2, \ldots, x_{n/2-1}, -x_0, -x_1, \ldots, -x_{n/2-1}$$

- Sufficient to evaluate a_{even} and a_{odd} at $x_0^2, x_1^2, x_2^2, \dots, x_{n/2-1}^2$! Pluse O(n) work gives a(x) for all n samples!
- Suppose we can make this work recursively. Then

$$T(n) = 2T(n/2) + O(n)$$
 which implies $T(n) = O(n \log n)$

- n samples $x_0, x_1, x_2, \dots, x_{n/2-1}, -x_0, -x_1, \dots, -x_{n/2-1}$
- Next step in recursion $x_0^2, x_1^2, \dots, x_{n/2-1}^2$

- n samples $x_0, x_1, x_2, \dots, x_{n/2-1}, -x_0, -x_1, \dots, -x_{n/2-1}$
- Next step in recursion $x_0^2, x_1^2, \dots, x_{n/2-1}^2$
- To continue recursion, we need

$$\{x_0^2, x_1^2, \dots, x_{n/2-1}^2\} = \{z_0, z_1, \dots, z_{n/4-1}, -z_0, -z_1, \dots, -z_{n/4-1}\}$$

- n samples $x_0, x_1, x_2, \dots, x_{n/2-1}, -x_0, -x_1, \dots, -x_{n/2-1}$
- Next step in recursion $x_0^2, x_1^2, \dots, x_{n/2-1}^2$
- To continue recursion, we need

$$\{x_0^2, x_1^2, \dots, x_{n/2-1}^2\} = \{z_0, z_1, \dots, z_{n/4-1}, -z_0, -z_1, \dots, -z_{n/4-1}\}$$

• If $z_0 = x_0^2$ and say $-z_0 = x_j^2$ then $x_0 = \sqrt{-1}x_j!$ That is $x_0 = ix_j$ where i is the imaginary number.

- n samples $x_0, x_1, x_2, \dots, x_{n/2-1}, -x_0, -x_1, \dots, -x_{n/2-1}$
- Next step in recursion $x_0^2, x_1^2, \dots, x_{n/2-1}^2$
- To continue recursion, we need

$$\{x_0^2, x_1^2, \dots, x_{n/2-1}^2\} = \{z_0, z_1, \dots, z_{n/4-1}, -z_0, -z_1, \dots, -z_{n/4-1}\}$$

- If $z_0 = x_0^2$ and say $-z_0 = x_j^2$ then $x_0 = \sqrt{-1}x_j!$ That is $x_0 = ix_j$ where i is the imaginary number.
- Can continue recursion but need to go to complex numbers.

Notation

For the rest of lecture, *i* stands for $\sqrt{-1}$

Definition

Notation

For the rest of lecture, *i* stands for $\sqrt{-1}$

Definition

Complex numbers are points lying in the complex plane represented as

Cartesian a + ib

Notation

For the rest of lecture, *i* stands for $\sqrt{-1}$

Definition

```
Cartesian a + ib
Polar re^{\theta i}
```


Notation

For the rest of lecture, *i* stands for $\sqrt{-1}$

Definition

Cartesian
$$a + ib = \sqrt{a^2 + b^2}e^{(\arctan(b/a))i}$$

Polar $re^{\theta i}$

Notation

For the rest of lecture, *i* stands for $\sqrt{-1}$

Definition

Cartesian
$$a + ib = \sqrt{a^2 + b^2}e^{(\arctan(b/a))i}$$

Polar $re^{\theta i} = r(\cos \theta + i\sin \theta)$

Notation

For the rest of lecture, *i* stands for $\sqrt{-1}$

Definition

Cartesian
$$a+ib=\sqrt{a^2+b^2}e^{(\arctan(b/a))i}$$

Polar $re^{\theta i}=r(\cos\theta+i\sin\theta)$
Thus, $e^{\pi i}=-1$ and $e^{2\pi i}=1$.

Power Series for Functions

What is e^z when z is a real number? When z is a complex number?

$$e^z = 1 + z/1! + z^2/2! + \dots + z^j/j! + \dots$$

Therefore

$$e^{i\theta} = 1 + i\theta/1! + (i\theta)^2/2! + (i\theta)^3/3! + \dots$$

= $(1 - \theta^2/2! + \theta^4/4! - \dots +) + i(\theta - \theta^3/3! + \dots +)$
= $\cos \theta + i \sin \theta$

Complex Roots of Unity

What are the roots of the polynomial $x^k - 1$?

• Clearly 1 is a root.

Complex Roots of Unity

What are the roots of the polynomial $x^k - 1$?

- Clearly 1 is a root.
- Suppose $re^{\theta i}$ is a root then $r^k e^{k\theta i} = 1$ which implies that r=1 and $k\theta = 2\pi$ since $e^{k\theta i} = \cos(k\theta) + i\sin(k\theta) = 1$

Complex Roots of Unity

What are the roots of the polynomial $x^k - 1$?

- Clearly 1 is a root.
- Suppose $re^{\theta i}$ is a root then $r^k e^{k\theta i} = 1$ which implies that r = 1 and $k\theta = 2\pi$ since $e^{k\theta i} = \cos(k\theta) + i\sin(k\theta) = 1$
- Let $\omega_k = e^{2\pi i/k}$. The roots are $1 = \omega_k^0, \omega_k^2, \dots, \omega_k^{k-1}$ where $w_k^j = e^{2\pi ji/k}$.

More on the Roots of Unity

Observations

- $\omega_k^j = \omega_{\nu}^{j \mod k}$
- $\omega_k = \omega_{jk}^j$; thus, every kth root is also a jkth root.

•
$$\sum_{s=0}^{k-1} (\omega_k^j)^s = (1 + \omega_k^j + \omega_k^{2j} + \ldots + \omega_k^{j(k-1)}) = 0$$
 for $j \neq 0$

More on the Roots of Unity

Observations

- $\omega_{\nu}^{j} = \omega_{\nu}^{j \mod k}$
- $\omega_k = \omega_{jk}^j$; thus, every kth root is also a jkth root.
- $\sum_{s=0}^{k-1} (\omega_k^j)^s = (1 + \omega_k^j + \omega_k^{2j} + \ldots + \omega_k^{j(k-1)}) = 0$ for $j \neq 0$
 - ω_k^j is root of $x^k 1 = (x 1)(x^{k-1} + x^{k-2} + \ldots + 1)$
 - Thus, ω_k^j is root of $(x^{k-1} + x^{k-2} + ... + 1)$

Back to Recursive Idea

• Let $a = (a_0, a_1, \dots a_{n-1})$ be a polynomial. Assume n is a power of 2.

Back to Recursive Idea

- Let $a = (a_0, a_1, \dots a_{n-1})$ be a polynomial. Assume n is a power of 2.
- Recall

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

Back to Recursive Idea

- Let $a = (a_0, a_1, \dots a_{n-1})$ be a polynomial. Assume n is a power of 2.
- Recall

$$a(x) = a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$$

• Choose $x_0, x_1, \ldots, x_{n-1}$ to be n'th roots of unity. That is $x_j = \omega_n^j$.

• Problem: Evaluate degree n-1 polynomial $a=(a_0,a_1,\ldots a_{n-1})$ on the nth roots of unity

- Problem: Evaluate degree n-1 polynomial $a=(a_0,a_1,\ldots a_{n-1})$ on the nth roots of unity
- Recall

$$a(\omega_n^j) = a_{\text{even}}((\omega_n^j)^2) + \omega_n^j a_{\text{odd}}((\omega_n^j)^2)$$

- Problem: Evaluate degree n-1 polynomial $a=(a_0,a_1,\ldots a_{n-1})$ on the nth roots of unity
- Recall

$$a(\omega_n^j) = a_{\text{even}}((\omega_n^j)^2) + \omega_n^j a_{\text{odd}}((\omega_n^j)^2)$$

• Observe that $(\omega_n^j)^2 = \omega_{n/2}^j$

- Problem: Evaluate degree n-1 polynomial $a=(a_0,a_1,\ldots a_{n-1})$ on the nth roots of unity
- Recall

$$a(\omega_n^j) = a_{\text{even}}((\omega_n^j)^2) + \omega_n^j a_{\text{odd}}((\omega_n^j)^2)$$

- Observe that $(\omega_n^J)^2 = \omega_{n/2}^J$
- Thus, evaluating a on the nth roots of unity, can be accomplished by evaluating $a_{\rm even}$ and $a_{\rm odd}$ on the n/2 roots of unity!

Divide and Conquer Evaluation

Evaluation Problem

Evaluate n-1-degree polynomial on nth roots of unity

Construct polynomials a_{even} and a_{odd} Recurisvely evaluate a_{even} and a_{odd} on the n/2th roots of unity Compute $a(\omega_n^j)$ as $a_{\mathrm{even}}(\omega_{n/2}^j) + \omega_n^j a_{\mathrm{odd}}(\omega_{n/2}^j)$

Let T(n) denote the running time of evaluating an n-1-degree polynomial on the nth roots of unity. Then,

$$T(n) \le 2T(n/2) + O(n) = O(n \log n)$$

Discrete Fourier Transform

Definition

Given a polynomial $a = (a_0, a_1, \ldots, a_{n-1})$ the *Discrete Fourier Transform* of a is the vector $a' = (a'_0, a'_1, \ldots, a'_{n-1})$ where $a'_j = a(\omega_n^j)$ for $0 \le j < n$.

a' is a sample representation of a for n'th roots of unity.

We have shown that a' can be computed from a in $O(n \log n)$ time. This divide and conquer algorithm is called the Fast Fourier Transform (FFT).

Convolutions

Compute convolution
$$c = (c_0, c_1, ..., c_{2n-2})$$
 of $a = (a_0, a_1, ..., a_{n-1})$ and $b = (b_0, b_1, ..., b_{n-1})$

- ① Compute values of a and b at some n sample points.
- ② Compute sample representation of product. That is $c' = (a'_0 b'_0, a'_1 b'_1, \dots, a'_{n-1} b'_{n-1}).$
- **3** Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.

Convolutions

Compute convolution
$$c = (c_0, c_1, ..., c_{2n-2})$$
 of $a = (a_0, a_1, ..., a_{n-1})$ and $b = (b_0, b_1, ..., b_{n-1})$

- ① Compute values of a and b at the nth roots of unity.
- ② Compute sample representation of product. That is $c' = (a'_0 b'_0, a'_1 b'_1, \dots, a'_{n-1} b'_{n-1}).$
- **3** Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.

How can be compute c from c'? We only have n sample points and c' has 2n-1 coefficients!

Convolutions

Compute convolution $c = (c_0, c_1, ..., c_{2n-2})$ of $a = (a_0, a_1, ..., a_{n-1})$ and $b = (b_0, b_1, ..., b_{n-1})$

- Pad a with n zeroes to make it a (2n-1) degree polynomial $a=(a_0,a_1,\ldots,a_{n-1},a_n,a_{n+1},\ldots,a_{2n-1})$. Similarly for b.
- ② Compute values of a and b at some 2n sample points.
- **3** Compute sample representation of product. That is $c' = (a'_0b'_0, a'_1b'_1, \dots, a'_{n-1}b'_{n-1}, \dots, a'_{2n-1}b'_{2n-1}).$
- ullet Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.

Convolutions

Compute convolution $c = (c_0, c_1, ..., c_{2n-2})$ of $a = (a_0, a_1, ..., a_{n-1})$ and $b = (b_0, b_1, ..., b_{n-1})$

- Pad a with n zeroes to make it a (2n-1) degree polynomial $a=(a_0,a_1,\ldots,a_{n-1},a_n,a_{n+1},\ldots,a_{2n-1})$. Similarly for b.
- Compute values of a and b at the 2nth roots of unity.
- **3** Compute sample representation of product. That is $c' = (a'_0b'_0, a'_1b'_1, \dots, a'_{n-1}b'_{n-1}, \dots, a'_{2n-1}b'_{2n-1}).$
- ullet Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.

Convolutions

Compute convolution
$$c = (c_0, c_1, ..., c_{2n-2})$$
 of $a = (a_0, a_1, ..., a_{n-1})$ and $b = (b_0, b_1, ..., b_{n-1})$

- Pad a with n zeroes to make it a (2n-1) degree polynomial $a = (a_0, a_1, \dots, a_{n-1}, a_n, a_{n+1}, \dots, a_{2n-1})$. Similarly for b.
- Compute values of a and b at the 2nth roots of unity.
- **3** Compute sample representation of product. That is $c' = (a'_0b'_0, a'_1b'_1, \dots, a'_{n-1}b'_{n-1}, \dots, a'_{2n-1}b'_{2n-1}).$
- **①** Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.
 - Step 1 takes $O(n \log n)$ using divide and conquer algorithm

Convolutions

Compute convolution $c = (c_0, c_1, ..., c_{2n-2})$ of $a = (a_0, a_1, ..., a_{n-1})$ and $b = (b_0, b_1, ..., b_{n-1})$

- Pad a with n zeroes to make it a (2n-1) degree polynomial $a=(a_0,a_1,\ldots,a_{n-1},a_n,a_{n+1},\ldots,a_{2n-1})$. Similarly for b.
- ② Compute values of a and b at the 2nth roots of unity.
- **3** Compute sample representation of product. That is $c' = (a'_0b'_0, a'_1b'_1, \dots, a'_{n-1}b'_{n-1}, \dots, a'_{2n-1}b'_{2n-1}).$
- **①** Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.
 - Step 1 takes $O(n \log n)$ using divide and conquer algorithm
 - Step 2 takes O(n) time

Convolutions

Compute convolution $c = (c_0, c_1, \dots, c_{2n-2})$ of $a = (a_0, a_1, \dots a_{n-1})$ and $b = (b_0, b_1, \dots b_{n-1})$

- 1 Pad a with n zeroes to make it a (2n-1) degree polynomial $a = (a_0, a_1, \dots, a_{n-1}, a_n, a_{n+1}, \dots, a_{2n-1})$. Similarly for b.
- 2 Compute values of a and b at the 2nth roots of unity.
- Ompute sample representation of product. That is $c' = (a'_0 b'_0, a'_1 b'_1, \dots, a'_{n-1} b'_{n-1}, \dots, a'_{2n-1} b'_{2n-1}).$
- Compute coefficients of unique polynomial associated with sample representation of product. That is compute c from c'.
 - Step 1 takes $O(n \log n)$ using divide and conquer algorithm
 - Step 2 takes O(n) time

Inverse Fourier Transform

Input Given the evaluation of a 2n-1-degree polynomial c on the 2nth roots of unity

Goal Compute the coefficients of *c*

Inverse Fourier Transform

Input Given the evaluation of a 2n-1-degree polynomial c on the 2nth roots of unity

Goal Compute the coefficients of *c*

We saw that a' can be computed from a in $O(n \log n)$ time. Can we compute a from a' in $O(n \log n)$ time?

A Matrix Point of View

$$a'_0 = a(x_0), a'_1 = a(x_1), \dots, a'_{n-1} = a(x_{n-1})$$
 where $x_j = \omega_n^j$.
Let $\omega_n^1 = e^{2\pi/n} = \omega$.

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_j & x_j^2 & \dots & x_j^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_j \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} a'_0 \\ a'_1 \\ \vdots \\ a'_j \\ \vdots \\ a'_{n-1} \end{bmatrix}$$

A Matrix Point of View

$$a'_0 = a(x_0), a'_1 = a(x_1), \dots, a'_{n-1} = a(x_{n-1})$$
 where $x_j = \omega_n^J$.
Let $\omega_n^1 = e^{2\pi/n} = \omega$.

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^j & \omega^{2j} & \dots & \omega^{j(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_j \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} a'_0 \\ a'_1 \\ \vdots \\ a'_j \\ \vdots \\ a'_{n-1} \end{bmatrix}$$

Inverting the Matrix

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_j \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^j & \omega^{2j} & \dots & \omega^{j(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{bmatrix}^{-1} \begin{bmatrix} a'_0 \\ a'_1 \\ \vdots \\ a'_j \\ \vdots \\ a'_{n-1} \end{bmatrix}$$

Inverting the Matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^j & \omega^{2j} & \dots & \omega^{j(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \dots & \omega^{-(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-j} & \omega^{-2j} & \dots & \omega^{-j(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \dots & \omega^{-(n-1)(n-1)} \end{bmatrix}$$

Replace ω by ω^{-1} which is also a root of unity! Inverse matrix is simply a permutation of the original matrix modulo scale factor 1/n.

Why does it work?

Can check using simple algebra $VV^{-1} = I$ where V is the original matrix and I is the $n \times n$ identity matrix.

$$(1, \omega^j, \omega^{2j}, \dots, \omega^{j(n-1)}) \cdot (1, \omega^{-k}, \omega^{-2k}, \dots, \omega^{-k(n-1)}) = \sum_{s=0}^{n-1} \omega^{(j-k)s}$$

Note that ω^{j-k} is a n'th root of unity. If j=k then sum is n, otherwise by previous observation sum is 0.

Rows of matrix V (and hence also those of V^{-1}) are *orthogonal*. Thus a' = Va can be thought of a transforming the vector a into a new Fourier basis with basis vectors corresponding to rows of V.

Inverse Fourier Transform

Input Given the evaluation of a 2n-1-degree polynomial c on the 2nth roots of unity

Goal Compute the coefficients of *c*

Inverse Fourier Transform

Input Given the evaluation of a 2n-1-degree polynomial c on the 2nth roots of unity

Goal Compute the coefficients of *c*

We saw that a' can be computed from a in $O(n \log n)$ time. Can we compute a from a' in $O(n \log n)$ time?

Yes! $a = V^{-1}a$ which is simply a permuted and scaled version of DFT. Hence can be computed in $O(n \log n)$ time.

Convolutions

Compute convolution of $a = (a_0, a_1, \dots a_{n-1})$ and

$$b=(b_0,b_1,\ldots b_{n-1})$$

- ① Compute values of a and b at the 2nth roots of unity
- ② Compute sample representation c' of product $c = a \cdot b$
- **3** Compute c from c' using inverse Fourier transform.

Convolutions

Compute convolution of $a = (a_0, a_1, \dots a_{n-1})$ and

$$b=(b_0,b_1,\ldots b_{n-1})$$

- ① Compute values of a and b at the 2nth roots of unity
- ② Compute sample representation c' of product $c = a \cdot b$
- **3** Compute c from c' using inverse Fourier transform.

Convolutions

Compute convolution of $a = (a_0, a_1, \dots a_{n-1})$ and $b = (b_0, b_1, \dots b_{n-1})$

- Compute values of a and b at the 2nth roots of unity
- ② Compute sample representation c' of product $c = a \cdot b$
- **3** Compute c from c' using inverse Fourier transform.
 - Step 1 takes $O(n \log n)$ using two FFTs

Convolutions

Compute convolution of $a = (a_0, a_1, \dots a_{n-1})$ and $b = (b_0, b_1, \dots b_{n-1})$

- ① Compute values of a and b at the 2nth roots of unity
- 2 Compute sample representation c' of product $c = a \cdot b$
- **3** Compute c from c' using inverse Fourier transform.
 - Step 1 takes $O(n \log n)$ using two FFTs
 - Step 2 takes O(n) time

Convolutions

Compute convolution of $a = (a_0, a_1, \dots a_{n-1})$ and $b = (b_0, b_1, \dots b_{n-1})$

- ① Compute values of a and b at the 2nth roots of unity
- ② Compute sample representation c' of product $c = a \cdot b$
- **3** Compute c from c' using inverse Fourier transform.
 - Step 1 takes $O(n \log n)$ using two FFTs
 - Step 2 takes O(n) time
 - Step 3 takes $O(n \log n)$ using one FFT

FFT Circuit

The recursive structure of the FFT algorithm.

Numerical Issues

- As noted earlier evaluating a polynomial a at a point x makes numbers big
- Are we cheating when we say $O(n \log n)$ algorithm for convolution?
- Can get around numerical issues work in finite fields and avoid numbers growing too big.
- Outside the scope of class.