Introduction 000000000

²T.S. L. Crowl, and A. Fogelson. Platelet motion near a vessel wall or thrombus surface in whole blood simulations. Biophysical Journal (2013):²⁰ of ³²

Introduction

0000000000

- In order to make image above we needed to know if a point was inside of a red blood cell.
- This is a famous problem called the Point-in-a-Polygon (PIP).

an interesting problem

Introduction

0000000000

Use the cross product to calculate angles subtended by edges.

$$\sin(\theta_i) = \frac{|v_i \times v_{i+1}|}{|v_i||v_{i+1}|}$$

- Note that the angle between v_i and v_{i+1} , θ_i , is positive.
- The angle between v_j and v_{j+1} , θ_i , is negative.

0000000000

 \bullet The winding number, W_n , is defined as

$$W_n = \sum_i \theta_i$$

 $W_n = 0$ means the point is outside the polygon, $W_n \neq 0$ means inside.

We have so many points per RBC we save computation time by employing small angle approximation, $\sin \theta \approx \theta$.