Software Systems

Day 5 - Information Theory, Memory

Intro: Cold Boot Attack

- Think OS Chapter 3 mentions that when you power off the machine, the contents of main memory (RAM) is lost.
- This is...sort of true.

Intro: Cold Boot Attack

Information theory is useful far outside of computer systems.

- In systems, information theory is useful for:
 - Calculating how many bits of information it takes to store something.
 - Figuring out how to encode different types of data as a series of bits.
 - Calculating how many bits of information you get from something happening.
- So being able to figure out how to calculate information and work with bits is helpful.

• The formula $-\log_2 p$ tells you how many bits are communicated when you observe an event that occurs with probability p.

• Example:

- You randomly pick one of the following colors: red, orange, yellow, green, blue, purple, pink, brown.
- I randomly guess one of the colors, and I get it right.
- I can do that with probability $\frac{1}{8} = 0.125$.
- That means that I get $-\log_2 0.125 = 3$ bits of information from guessing correctly.
- If there were only six colors to choose from, I would get ~2.58 bits of information.

- When we say it takes n bits to store some type of data (like characters), we have to:
 - Calculate all of the possible values of that type.
 - Assume that each value is equally likely.
 - Calculate the self-information of one of those values occurring.
 - Round that value up.

• Examples:

- Six possible colors: ~2.58 bits (takes 3 bits to store one color)
- Single decimal digit: ~3.32 bits (takes 4 bits to store)
- Single letter of the English alphabet: ~4.7 bits (takes 5 bits to store)

- But practice, not all values are equally likely.
- "e" appears 13% of the time in English text: ~2.94 bits
- "z" appears 0.074% of the time: ~10.4 bits
- The less likely something is, the more "information" it carries.

Information Theory: Exercise

- Calculate the self-information of the following:
 - The outcome of a fair coin flip
 - The outcome of rolling a fair, 12-sided die.
 - The letter "q" in English (look up letter frequencies for this).
 - Being dealt a full house in poker.
 - Assuming all characters are equally likely, seeing a whitespace character in C (look at the isspace function documentation).

Information Theory: Scale

- There's a difference between KiB (kibibyte) and KB (kilobyte).
 - 1 KiB is 2^10, or 1024 bytes.
 - 1 KB is 10³, or 1000 bytes.
- This means 1 KiB is about 2.4% larger than a KB, which can add up with larger units.
- Also, this means there's a nice trick to approximately convert between powers of 2 and 10.
 - 2^x is roughly 10^(0.3x).
 - 10⁴ y is roughly 2⁴(3.3y).

Information Theory: Scale

- Let's do another quick exercise:
 - How much larger is 1 GiB than 1 GB?
 - Use the command 1s -1 on your computer to see each file in the directory along with their sizes in bytes.
 - Now use 1s -1h to see the files with "human-readable" sizes. Is this using KiB/MiB/GiB or KB/MB/GB?

```
int A(void)
                      void B(void)
                                           void C(void)
  C();
                                            void C(void)
```

- Each function call has its own stack frame.
- A stack frame tracks:
 - Local variables
 - Parameters to pass to other functions
 - Other temporary space
- Function call: push a new frame onto the stack
- Function return: pop a frame from the stack

A's stack frame

B's stack frame

C's stack frame (2)

- Returning from a function means the data in its stack frame isn't accessible anymore.
- The return value is passed in a special register, %rax (or %eax).
 - We haven't talked about registers yet, but they're small pieces of memory that the CPU uses to execute machine instructions.

Write and try to use the function below in a program. What happens?
 int *add(int x, int y) {
 int z = x + y;
 return &z;

• The stack frame is gone once add returns. Thus, so is z.
int* add(int x, int y) {
 int z = x + y;
 return &z;
}

```
    This is why you typically pass pointers into functions:

void add(int x, int y, int *z) {
  *z = x + y;
int main() {
  int z;
  add(42, 47, &z);
  return 0;
```

Memory Management

- Virtual memory is an abstraction of physical memory.
- Physical memory:
 - Usually, people mean RAM.
 - In this context, we mean disk space.
 - But RAM plays a role in accessing physical memory.

Memory Management

Memory Management

Page number is translated; offset is where in the page it is.

Get the Infinity
Stones actual
data from
physical memory.

Look up the corresponding physical page in the kernel's page table.

- How large is the page size on your computer? On Linux, you can do this with getconf PAGE_SIZE to see the result in bytes.
- How much disk space does your machine have? You can use the df command to see what disks you are using and sudo fdisk -l to see how much space that disk actually has.
- Write these values up on the board.

- How many bits will it take to store a physical address (somewhere in your disk space)? Remember, you can only refer to bytes, not bits.
- How many pages will fit into your physical memory?

- Check whether your system is 32 or 64 bits with uname -m. (x86 is 32 bit, x86_64 is 64 bit).
- This means you have 2^32 or 2^64 addresses in virtual memory.
- How many pages will fit into virtual memory?

- Run 1scpu on your machine.
- There is a line that indicates how many bits are used for a physical and virtual address on your machine. Is it what you expect?

Project 1: Learning C

- Project 1 is an opportunity to deepen your knowledge of one area or application of C.
- You have to build either a reasonably sized piece of software or an educational activity in C.
- Software examples:
 - Implement a small game emulator or virtual machine.
 - Write a simple text editor, shell, or HTTP server.
 - Implement a small part of the compilation process.
- Educational examples:
 - Write a tutorial or assignment designed to teach student what all of the different operators do in C.
 - Try out and teach a different unit testing framework in C.
 - Create at least five practice problems for students at this course level to do.

Project 1: Learning C

- Project 1 must be done in a team of 3-4 students.
- It will last just over a month.
- Ask on Discord to discuss ideas or to find partners.
- Proposals are due in a little over a week, so think ahead to then!
- Consider:
 - What do you want to make?
 - What do you want to learn?
 - Who will do what?
 - What resources will you need?