Aberrant Data

Lesson 4

PROFESSIONAL & CONTINUING EDUCATION

Aberrant Data

Overview

Data Cleaning

- -Removal
- -Imputation

Data Types Missing Values

- -Null Values
- -Removal

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Data Cleaning

Removal

PROFESSIONAL & CONTINUING EDUCATION

Erroneous Inputs – an example

Python Numpy library – for working with numbers import numpy as np

Examine an array of age of preschooler in daycare

x = np.array([2, 1, 1, 99, 1, 5, 3, 1, 4, 3])-99 is an outlier

PROFESSIONAL & CONTINUING EDUCATION

Outliers

2+ standard deviations from the mean

-Gaussian distribution has 95% of values within 2 stds

Use numpy for mean & standard deviation

```
LimitHi = np.mean(x) + 2*np.std(x)
```

$$LimitLo = np.mean(x) - 2*np.std(x)$$

PROFESSIONAL & CONTINUING EDUCATION

High and low limits

Name	Туре	Size	Value
LimitHi	float64	1	70.062035789317619
LimitLo	float64	1	-46.062035789317619
×	int32	(10,)	array([2, 1, 1, 99, 1, 5, 3, 1, 4, 3])

What values are the Outliers?

PROFESSIONAL & CONTINUING EDUCATION

Flag: A Boolean array

```
FlagGood = (x >= LimitLo) & (x <= LimitHi)
Element-wise comparison

-Checks each value in the array</pre>
```

Element-wise logical AND

-Operator &

```
array([ True, True, True, False, True, True, True, True, True, True],

dtype=bool)

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON
```

Indexing an array with a Boolean array

x[FlagGood]

Show the value in x if the FlagGood is True:

array([2, 1, 1, 1, 5, 3, 1, 4, 3])

Recall original array:

x int32 (10,) array([2, 1, 1, 99, 1, 5, 3, 1, 4, 3])

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Remove outlier from data set

x = x[FlagGood]

How big is the new data set?

Name	Туре	Size	Value			
FlagGood	bool	(10,)	ndarray object of numpy module			
LimitHi	float64	1	70.062035789317619			
LimitLo	float64	1	-46.062035789317619			
x	int32	(9,)	array([2, 1, 1, 1, 5, 3, 1, 4, 3])			

PROFESSIONAL & CONTINUING EDUCATION

Data Cleaning

Replacement

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Imputation

Replacing an outlier value with a guess Mean imputation

-Arithmetic mean replaces every outlier

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Replacing outliers – an example

```
import numpy as np
x = np.array([2, 1, 1, 99., 1, 5, 3, 1, 4, 3])
    -99 is the outlier
LimitHi = np.mean(x) + 2*np.std(x)
LimitLo = np.mean(x) - 2*np.std(x)
    -Limits within 2 standard deviations from the mean
```

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Flag the Outlier Values

```
FlagBad = (x < LimitLo) | (x > LimitHi)
```

- -True for every outlier in the array
- -False for values within the limits

Element-wise operator OR

```
-Operator |
```

```
array([False, False, False, True, False,
False, False, False, False], dtype=bool)
```

-4th value is the outlier

PROFESSIONAL & CONTINUING EDUCATION

Replace outliers with the mean

Use the Flag as the index on the array:

$$x[FlagBad] = np.mean(x)$$

Mean of the dataset = 12

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Imputation with outlier influence

12 is too large for age of preschooler.

Need mean of values that are not outliers

```
FlagGood = ~FlagBad
```

-Complement operator ~

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Imputation without outlier influence

Mean without outliers
np.mean(x[FlagGood])

Replacement:

```
x[FlagBad] = np.mean(x[FlagGood])
```

```
array([ 2. , 1. , 1. , 2.333333333, 1. , , 5. , 3. , 1. , 4. , 3. ])
```

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Median Imputation

Median is less sensitive to outliers Before

```
array([ 2., 1., 1., 99., 1., 5., 3., 1., 4., 3.])

x[FlagBad] = np.median(x)
```

After

```
array([ 2. , 1. , 1. , 2.5, 1. , 5. , 3. , 1. , 4. , 3. ])
```

UNIVERSITY of WASHINGTON

Summary

- >Use Boolean flags to create new arrays
 - -FlagBad are values outside of the limits
 - –FlagGood = ~FlagBad , values inside the limits
- >Remove Outliers
 - -Keep the FlagGood values
- >Replace Outliers (Imputation)
 - -Use the mean without the outlier
 - -Use the median even with the outlier

