Let F be a flow network with integer capacities. Your task is to return the minimum cut with the smallest number of edges that cross the cut.

(a) Consider the new flow network \hat{F} , defined by the new capacity function

$$\hat{c}(x \to y) = c(x \to y) \cdot (m+1) + 1,$$

where m denotes the number of edges in F. Show that if (S,T) is *not* a minimum cut of F, then (S,T) cannot be a minimum cut of \hat{F} .

This shows that any minimum cut of \hat{F} must be a minimum cut of F.

(b) Show that the minimum cut of F with the minimum number of edges will have the lowest cut capacity in \hat{F} .

Hence, the minimum cut of \hat{F} will be the minimum cut with the smallest number of edges that cross the cut.

Rubric.

- This task will form part of the portfolio.
- Ensure that your argument is clear and keep reworking your solutions until your lab demonstrator is happy with your work.