在线阅读!! 机器学习数学精华: 线性代数

原创 机器学习初学者 机器学习初学者 2019-11-01 19:31

收录干合集

#机器学习的数学基础(在线阅读)

5个

机器学习、需要一定的数学基础、需要掌握的数学基础知识特别多、如果从头到尾开始学、估计大部分 人来不及,我建议先学习最基础的数学知识,基础知识可以分为**高等数学、线性代数、概率论与数理统** 计三部分, 我整理了相关数学基础资料:

源文件下载:

https://github.com/fenadu78/Data-Science-Notes/tree/master/0.math

内容简介

一、斯坦福大学CS229数学基础

这是斯坦福大学 CS 229 机器学习课程的基础材料,是斯坦福各大人工智能课程的数学基础,对人工智能课 程做了优化、强烈推荐!!

我们对原始教程进行了翻译,翻译版本做成了在线阅读版本。

(点击查看: 1.**线性代数**, 2.概率论)

二、国内大学的数学基础教材精华

这个是我考研考博时候整理的中文教材的资料,分为高等数学、线性代数、概率论与数理统计三部分,我 把和机器学习相关的数学知识进行了整理、进行公布。

本文是线性代数部分,建议收藏慢慢看。

行列式

1.行列式按行(列)展开定理

(1) 设
$$A=(a_{ij})_{n imes n}$$
,则: $oldsymbol{A}$... $oldsymbol{$

取
$$AA^* = A^*A = |A|E$$
,其中: $A^*A = |A|E$,其中: $A^*A = A^*A = |A|E$,其中: $A^*A = A^*A = A^*$

$$egin{array}{c|cccc} & 1 & 1 & \dots \ x_1 & x_2 & \dots \end{array}$$

- (2) 设A, B为n阶方阵,则|AB| = |A||B| = |B||A| = |BA|,但 $|A \pm B| = |A| \pm |B|$ 不一定成 立。
- (3) $|kA| = k^n |A|$, A为n阶方阵。
- (4) 设A为n阶方阵, $|A^T|=|A|;|A^{-1}|=|A|^{-1}$ (若A可逆), $|A^*|=|A|^{n-1}$

 $n \ge 2$

(5)
$$ig| A \quad O ig| \ A \quad C ig|$$
, A , B 为方阵,但 $ig| O \quad A_{m imes m} ig|$ 。 $ig| 1 \quad 1 \quad \dots$ 6) 范德蒙行列式 $ig| x_1 \quad x_2 \quad \dots$ そ

设A是n阶方阵, $\lambda_i (i=1,2\cdots,n)$ 是A的n个特征值,则 $|A|=\prod_{i=1}^n \lambda_i$

矩阵

矩阵: $m \times n$ 个数 a_{ij} 排成m行n列的表格 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & \cdots & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$ 称为矩阵,简记为A,或 者 $(a_{ij})_{m \times n}$ 。若m = n,则称 $A \ge n$ 阶矩阵或n阶方阵。

矩阵的线性运算

1.矩阵的加法

设 $A=(a_{ij}), B=(b_{ij})$ 是两个m imes n矩阵,则m imes n 矩阵 $C=c_{ij})=a_{ij}+b_{ij}$ 称为矩阵A与B的和,记为A + B = C。

2.矩阵的数乘

设 $A = (a_{ij})$ 是 $m \times n$ 矩阵,k是一个常数,则 $m \times n$ 矩阵 (ka_{ij}) 称为数k与矩阵A的数乘,记为 kA \circ

3.矩阵的乘法

设 $A=(a_{ij})$ 是 $m\times n$ 矩阵, $B=(b_{ij})$ 是 $n\times s$ 矩阵,那么 $m\times s$ 矩阵 $C=(c_{ij})$,其中 $c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}=\sum_{k=1}^n a_{ik}b_{kj}$ 称为AB的乘积,记为C=AB。

4. \mathbf{A}^{T} 、 \mathbf{A}^{-1} 、 \mathbf{A}^* 三者之间的关系

(1)
$$(A^T)^T = A, (AB)^T = B^T A^T, (kA)^T = kA^T, (A \pm B)^T = A^T \pm B^T$$

(2)
$$(A^{-1})^{-1} = A, (AB)^{-1} = B^{-1}A^{-1}, (kA)^{-1} = \frac{1}{k}A^{-1},$$

但
$$(A \pm B)^{-1} = A^{-1} \pm B^{-1}$$
不一定成立。

(3)
$$(A^*)^* = |A|^{n-2} A \ (n \ge 3), \ (AB)^* = B^*A^*, (kA)^* = k^{n-1}A^* \ (n \ge 2)$$

但
$$(A \pm B)^* = A^* \pm B^*$$
不一定成立。

$$(4) (A^{-1})^T = (A^T)^{-1}, (A^{-1})^* = (AA^*)^{-1}, (A^*)^T = (A^T)^*$$

5.有关A*的结论

(1)
$$AA^* = A^*A = |A|E$$

(2)
$$|A^*| = |A|^{n-1} \ (n \ge 2), \quad (kA)^* = k^{n-1}A^*, \ (A^*)^* = |A|^{n-2}A(n \ge 3)$$

(3) 若A可逆,则

$$A^* = |A|A^{-1}, (A^*)^* = \frac{1}{|A|}A$$

(4) 若A为n阶方阵,则:

$$r(A^*) = egin{cases} n, & r(A) = n \ 1, & r(A) = n-1 \ 0, & r(A) < n-1 \end{cases}$$

6.有关 A^{-1} 的结论

$$A$$
可逆 $\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;$

 $\Leftrightarrow A$ 可以表示为初等矩阵的乘积; $\Leftrightarrow A$; $\Leftrightarrow Ax = 0$ 。

7.有关矩阵秩的结论

(1) 秩r(A)=行秩=列秩;

- $(2) r(A_{m \times n}) < \min(m, n);$
- (3) $A \neq 0 \Rightarrow r(A) > 1$;
- (4) $r(A \pm B) < r(A) + r(B)$;
- (5) 初等变换不改变矩阵的秩

$$(6) \ r(A) + r(B) - n < r(AB) < \min(r(A), r(B))$$
,特别若 $AB = O$ 则: $r(A) + r(B) \le n$

(7) 若
$$A^{-1}$$
存在 $\Rightarrow r(AB) = r(B);$ 若 B^{-1} 存在 $\Rightarrow r(AB) = r(A);$

若
$$r(A_{m imes n})=n\Rightarrow r(AB)=r(B);$$
若 $r(A_{m imes s})=n\Rightarrow r(AB)=r(A)$ 。

$$(8)$$
 $r(A_{m \times s}) = n \Leftrightarrow Ax = 0$ 只有零解

8.分块求逆公式

$$\begin{pmatrix}A&O\\O&B\end{pmatrix}^{-1}=\begin{pmatrix}A^{-1}&O\\O&B^{-1}\end{pmatrix};\quad \begin{pmatrix}A&C\\O&B\end{pmatrix}^{-1}=\begin{pmatrix}A^{-1}&-A^{-1}CB^{-1}\\O&B^{-1}\end{pmatrix};$$

$$\begin{pmatrix} A & O \\ C & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ -B^{-1}CA^{-1} & B^{-1} \end{pmatrix}; \quad \begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix}$$

这里A. B均为可逆方阵。

向量

1.有关向量组的线性表示

- $(1)\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关 \Leftrightarrow 至少有一个向量可以用其余向量线性表示。
- $(2)\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关, $\alpha_1,\alpha_2,\cdots,\alpha_s$, β 线性相关 $\Leftrightarrow \beta$ 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 唯一线性表 示。
- (3) β 可以由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表示 $\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_s) = r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta)$ 。

2.有关向量组的线性相关性

- (1)部分相关,整体相关;整体无关,部分无关.
- (2) ① $n \uparrow n$ 维向量 $\alpha_1, \alpha_2 \cdots \alpha_n$ 线性无关 $\Leftrightarrow |[\alpha_1 \alpha_2 \cdots \alpha_n]| \neq 0$, $n \uparrow n$ 维向量 $\alpha_1, \alpha_2 \cdots \alpha_n$ 线 性相关 \Leftrightarrow $|[\alpha_1, \alpha_2, \cdots, \alpha_n]| = 0$ 。
- ② n+1个n维向量线性相关。

③ 若 $\alpha_1, \alpha_2 \cdots \alpha_S$ 线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。

3.有关向量组的线性表示

- (1) $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关⇔至少有一个向量可以用其余向量线性表示。
- (2) $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关, $\alpha_1, \alpha_2, \dots, \alpha_s$, β 线性相关 $\Leftrightarrow \beta$ 可以由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 唯一线性表示。
- (3) β 可以由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表示 $\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_s) = r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta)$

4.向量组的秩与矩阵的秩之间的关系

设 $r(A_{m \times n}) = r$,则A的秩r(A)与A的行列向量组的线性相关性关系为:

- (1) 若 $r(A_{m \times n}) = r = m$,则A的行向量组线性无关。
- (2) 若 $r(A_{m \times n}) = r < m$,则A的行向量组线性相关。
- (3) 若 $r(A_{m \times n}) = r = n$,则A的列向量组线性无关。
- (4) 若 $r(A_{m \times n}) = r < n$,则A的列向量组线性相关。

5.n维向量空间的基变换公式及过渡矩阵

若 $\alpha_1, \alpha_2, \dots, \alpha_n$ 与 $\beta_1, \beta_2, \dots, \beta_n$ 是向量空间V的两组基,则基变换公式为:

$$(eta_1,eta_2,\cdots,eta_n)=(lpha_1,lpha_2,\cdots,lpha_n)egin{bmatrix} c_{11}&c_{12}&\cdots&c_{1n}\ c_{21}&c_{22}&\cdots&c_{2n}\ \cdots&\cdots&\cdots&\cdots\ c_{n1}&c_{n2}&\cdots&c_{nn} \end{bmatrix}=(lpha_1,lpha_2,\cdots,lpha_n)C$$

其中C是可逆矩阵,称为由基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 到基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵。

6.坐标变换公式

若向量 γ 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 与基 $\beta_1, \beta_2, \dots, \beta_n$ 的坐标分别是 $X = (x_1, x_2, \dots, x_n)^T$,

 $Y = (y_1, y_2, \dots, y_n)^T$ 即: $\gamma = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n = y_1\beta_1 + y_2\beta_2 + \dots + y_n\beta_n$,则 向量坐标变换公式为X = CY 或 $Y = C^{-1}X$,其中C是从基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 到基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵。

7.向量的内积

$$(\alpha, \beta) = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \alpha^T\beta = \beta^T\alpha$$

8.Schmidt 正交化

若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则可构造 $\beta_1, \beta_2, \cdots, \beta_s$ 使其两两正交,且 β_i 仅是 $\alpha_1, \alpha_2, \cdots, \alpha_i$ 的 线性组合 $(i=1,2,\cdots,n)$,再把 β_i 单位化,记 $\gamma_i = \frac{\beta_i}{|\beta_i|}$,则 $\gamma_1, \gamma_2, \cdots, \gamma_i$ 是规范正交向量组。其中 $\beta_1 = \alpha_1$, $\beta_2 = \alpha_2 - \frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1$, $\beta_3 = \alpha_3 - \frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1 - \frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2$,

.....

$$eta_s=lpha_s-rac{(lpha_s,eta_1)}{(eta_1,eta_1)}eta_1-rac{(lpha_s,eta_2)}{(eta_2,eta_2)}eta_2-\cdots-rac{(lpha_s,eta_{s-1})}{(eta_{s-1},eta_{s-1})}eta_{s-1}$$

9.正交基及规范正交基

向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量, 就称其为规范正交基。

线性方程组

1. 克莱姆法则

线性方程组 $\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1 \\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2 \\ \cdots\cdots\cdots\cdots\cdots \\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n \end{cases}$,如果系数行列式 $D=|A|\neq 0$,则方程组有唯一解, $x_1=\frac{D_1}{D},x_2=\frac{D_2}{D},\cdots,x_n=\frac{D_n}{D}$,其中 D_j 是把D中第j列元素换成方程组右端的常数列所得的行列式。

2. n阶矩阵A可逆 $\Leftrightarrow Ax = 0$ 只有零解。 $\Leftrightarrow \forall b, Ax = b$ 总有唯一解,一般地, $r(A_{m \times n}) = n \Leftrightarrow Ax = 0$ 只有零解。

3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构

- (1) 设A为m imes n矩阵,若 $r(A_{m imes n}) = m$,则对Ax = b而言必有 $r(A) = r(A \dot{:} b) = m$,从而Ax = b有解。
- (2) 设 $x_1, x_2, \cdots x_s$ 为Ax = b的解,则 $k_1x_1 + k_2x_2 \cdots + k_sx_s$ 当 $k_1 + k_2 + \cdots + k_s = 1$ 时仍为Ax = b的解;但当 $k_1 + k_2 + \cdots + k_s = 0$ 时,则为Ax = 0的解。特别 $\frac{x_1 + x_2}{2}$ 为Ax = b的解; $2x_3 (x_1 + x_2)$ 为Ax = 0的解。
- (3) 非齐次线性方程组Ax = b无解 $\Leftrightarrow r(A) + 1 = r(\overline{A}) \Leftrightarrow b$ 不能由A的列向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示。

4.奇次线性方程组的基础解系和通解、解空间、非奇次线性方程组的通解

(1) 齐次方程组Ax = 0恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此Ax = 0的全体解向量构成一个向量空间,称为该方程组的解空

- 间,解空间的维数是n-r(A),解空间的一组基称为齐次方程组的基础解系。
- (2) $\eta_1, \eta_2, \dots, \eta_t$ 是Ax = 0的基础解系,即:
 - 1. $\eta_1, \eta_2, \dots, \eta_t$ 是Ax = 0的解;
 - 2. $\eta_1, \eta_2, \dots, \eta_t$ 线性无关;
 - 3. Ax = 0的任一解都可以由 $\eta_1, \eta_2, \cdots, \eta_t$ 线性表出. $k_1\eta_1 + k_2\eta_2 + \cdots + k_t\eta_t$ 是Ax = 0的通 解,其中 k_1,k_2,\cdots,k_t 是任意常数。

矩阵的特征值和特征向量

1.矩阵的特征值和特征向量的概念及性质

- (1) 设 λ 是A的一个特征值,则 kA, aA+bE, A^2 , A^m , f(A), A^T , A^{-1} , A^* 有一个特征值分别为 $k\lambda$, $a\lambda$ + b, λ^2 , λ^m , $f(\lambda)$, λ , λ^{-1} , $\frac{|A|}{\lambda}$, 且对应特征向量相同(A^T 例外)。
- (2)若 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 为A的n个特征值,则 $\sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii}, \prod_{i=1}^n \lambda_i = |A|$,从而 $|A| \neq 0 \Leftrightarrow A$ 没有特征值。
- (3)设 $\lambda_1, \lambda_2, \dots, \lambda_s$ 为A的s个特征值,对应特征向量为 $\alpha_1, \alpha_2, \dots, \alpha_s$

若:
$$\alpha = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s$$

$$\mathbb{N}: A^n \alpha = k_1 A^n \alpha_1 + k_2 A^n \alpha_2 + \cdots + k_s A^n \alpha_s = k_1 \lambda_1^n \alpha_1 + k_2 \lambda_2^n \alpha_2 + \cdots + k_s \lambda_s^n \alpha_s$$
 .

2.相似变换、相似矩阵的概念及性质

(1) 若 $A \sim B$. 则

1.
$$A^T \sim B^T, A^{-1} \sim B^{-1}, A^* \sim B^*$$

2.
$$|A| = |B|, \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} b_{ii}, r(A) = r(B)$$

$$3. |\lambda E - A| = |\lambda E - B|$$
,对 $\forall \lambda$ 成立

3.矩阵可相似对角化的充分必要条件

- (1)设A为n阶方阵,则A可对角化 \Leftrightarrow 对每个 k_i 重根特征值 λ_i ,有 $n-r(\lambda_i E-A)=k_i$
- (2) 设A可对角化,则由 $P^{-1}AP = \Lambda$,有 $A = P\Lambda P^{-1}$,从而 $A^n = P\Lambda^n P^{-1}$
- (3) 重要结论

1. 若
$$A \sim B, C \sim D, \;\; 则 \begin{bmatrix} A & O \\ O & C \end{bmatrix} \sim \begin{bmatrix} B & O \\ O & D \end{bmatrix}.$$

- 2. 若 $A \sim B$,则 $f(A) \sim f(B)$, $|f(A)| \sim |f(B)|$,其中f(A)为关于n阶方阵A的多项式。
- 3. 若A为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩(A)

4.实对称矩阵的特征值、特征向量及相似对角阵

- (1)相似矩阵:设A,B为两个n阶方阵,如果存在一个可逆矩阵P,使得 $B=P^{-1}AP$ 成立,则 称矩阵A = B相似, 记为 $A \sim B$ 。
- (2)相似矩阵的性质: 如果 $A \sim B$ 则有:
 - 1 $A^T \sim B^T$
 - $2. A^{-1} \sim B^{-1}$ (若A. B均可逆)
 - $3. A^k \sim B^k$ (k为正整数)
 - 4. $|\lambda| E A| = |\lambda| E B|$,从而A, B 有相同的特征值
 - 5. |A| = |B|,从而A, B同时可逆或者不可逆
 - 6. 秩(A) =秩(B), $|\lambda| E A| = |\lambda| E B|$, A, B不一定相似

二次型

1.n个变量 x_1, x_2, \cdots, x_n 的二次齐次函数

$$f(x_1,x_2,\cdots,x_n)=\sum_{i=1}^n\sum_i$$
,其中 $a_{ij}=a_{ji}(i,j=1,2,\cdots,n)$,称为 n 元二次型,简称二次型. 若令 $x=egin{bmatrix}x_1\x_1\ \vdots\ \end{bmatrix}$, $A=egin{bmatrix}a_{11}&a_{12}&\cdot\ a_{21}&a_{22}&\cdot$,这二次型 f 可改写成矩阵向量形 \cdots

式 $f=x^TAx$ 。其中A称为二次型矩阵,因为 $a_{ij}=a_{ii}(i,j=1,2,\cdots,n)$,所以二次型矩阵均 为对称矩阵,且二次型与对称矩阵——对应,并把矩阵A的秩称为二次型的秩。

2.惯性定理, 二次型的标准形和规范形

(1) 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与 所选变换无关, 这就是所谓的惯性定理。

(2) 标准形

二次型
$$f = (x_1, x_2, \dots, x_n) = x^T A x$$
经过合同变换 $x = C y$ 化为 $f = x^T A x = y^T C^T A C$

 $y = \sum_{i=1}^r d_i y_i^2$ 称为 $f(r \le n)$ 的标准形。在一般的数域内,二次型的标准形不是唯一的,与所 作的合同变换有关,但系数不为零的平方项的个数由r(A)唯一确定。

(3) 规范形

任一实二次型f都可经过合同变换化为规范形 $f=z_1^2+z_2^2+\cdots z_n^2-z_n^2$,其中r为 A的秩,p为正惯性指数,r-p为负惯性指数,且规范型唯-

3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性

设A正定 $\Rightarrow kA(k>0), A^T, A^{-1}, A^*$ 正定; |A|>0, A可逆; $a_{ii}>0$, 且 $|A_{ii}|>0$

A. B正定 $\Rightarrow A + B$ 正定、但AB. BA不一定正定

$$A$$
正定⇔ $f(x) = x^T A x > 0, \forall x \neq 0$

- ⇔ A的各阶顺序主子式全大干零
- ⇔ A的所有特征值大干零
- $\Leftrightarrow A$ 的正惯性指数为n
- \Leftrightarrow 存在可逆阵P使 $A = P^TP$
- \Leftrightarrow 存在正交矩阵Q, 使

$$O^T AO - O^{-1} AO$$
 -

其中 $\lambda_i > 0, i = 1, 2, \dots, n$.正定 $\Rightarrow kA(k > 0), A^T, A^{-1}, A^*$ 正定; |A| > 0, A可逆 $; a_{ii} > 0,$ 且 $|A_{ii}|>0$ 。

"机器学习初学者"公众号由是黄海广博士创建,黄博个人知乎粉丝23000+, github排名全球前110名 (32000+)。本公众号致力于人工智能方向的科普性文章,为初学者提供学习路线和基础资料。原创作 品有:吴恩达机器学习个人笔记、吴恩达深度学习笔记等。

往期精彩回顾

- 。 那些年做的学术公益-你不是一个人在战斗
- 。 适合初学者入门人工智能的路线及资料下载
- 吴恩达机器学习课程笔记及资源(github标星12000+,提供百度云镜像)
- 吴恩达深度学习笔记及视频等资源(qithub标星8500+. 提供百度云镜像)
- 。 《统计学习方法》的python代码实现(github标星7200+)

备注:加入本站微信群或者qq群,请回复"加群"

加入知识星球(4300+用户, ID: 92416895),请回复"**知识星球**"

收录干合集 #机器学习的数学基础(在线阅读)5

上一篇 下一篇

在线阅读!! 机器学习数学精华: 高等数学 在线阅读!! 机器学习数学精华: 概率论与

数理统计

喜欢此内容的人还喜欢

【Matlab】主成分分析

夫也的笔记

50个常用的 Numpy 函数详解

数据派THU

R语言数据可视化-不一样的条形图(ggcharts)

数据统计和机器学习

