

planetmath.org

Math for the people, by the people.

proof of Poincaré recurrence theorem 1

Canonical name ProofOfPoincareRecurrenceTheorem1

Date of creation 2013-03-22 14:29:56 Last modified on 2013-03-22 14:29:56

Owner Koro (127) Last modified by Koro (127)

Numerical id 5

Author Koro (127) Entry type Proof

Classification msc 37A05 Classification msc 37B20 Let $A_n = \bigcup_{k=n}^{\infty} f^{-k}E$. Clearly, $E \subset A_0$ and $A_i \subset A_j$ when $j \leq i$. Also, $A_i = f^{j-i}A_j$, so that $\mu(A_i) = \mu(A_j)$ for all $i, j \geq 0$, by the f-invariance of μ . Now for any n > 0 we have $E - A_n \subset A_0 - A_n$, so that

$$\mu(E - A_n) \le \mu(A_0 - A_n) = \mu(A_0) - \mu(A_n) = 0.$$

Hence $\mu(E-A_n)=0$ for all n>0, so that $\mu(E-\cap_{n=1}^{\infty}A_n)=\mu(\cup_{n=1}^{\infty}E-A_n)=0$. But $E-\cap_{n=1}^{\infty}A_n$ is precisely the set of those $x\in E$ such that for some n and for all k>n we have $f^k(x)\notin E$. \square