Solution

Given Training Data

File	Edit View			AKFF-\	/iewer - C:\Users\Asl	iisri\Documents\U	DO/C2112/HW6/	duaione data.aiff	_	
abalone da	ta.arff									
lation: abal										
No. 1: Sex Nomina		3: Diameter Numeric	4: Height Numeric	5: Whole weight Numeric	6: Shucked weight Numeric	7: Viscera weight Numeric	8: Shell weight Numeric	9: Class_Rings Numeric		
143 M	0.655	0.525	0.18	1.402	0.624	0.2935	0.365	13.0		
144 F	0.655	0.5	0.22	1.359	0.642	0.3255	0.405	13.0		
145 M	0.67	0.535	0.19	1.669	0.7465	0.2935	0.508	11.0		
146 M	0.67	0.525	0.2	1.7405	0.6205	0.297	0.657	11.0		
147 M	0.695	0.53	0.21	1.51	0.664	0.4095	0.385	10.0		
148 M	0.695	0.55	0.195	1.6645	0.727	0.36	0.445	11.0		
149 M	0.77	0.605	0.175	2.0505	0.8005	0.526	0.355	11.0		
150 I	0.28	0.215	0.07	0.124	0.063	0.0215	0.03	6.0		
151 I	0.33	0.23	0.08	0.14	0.0565	0.0365	0.046	7.0		
152 I	0.35	0.25	0.075	0.1695	0.0835	0.0355	0.041	6.0		
153 I	0.37	0.28	0.09	0.218	0.0995	0.0545	0.0615	7.0		
154 I	0.43	0.315	0.115	0.384	0.1885	0.0715	0.11	8.0		
155 I	0.435	0.33	0.095	0.393	0.219	0.075	0.0885	6.0		
156 I	0.44	0.35	0.11	0.3805	0.1575	0.0895	0.115	6.0		
157 M	0.475	0.37	0.11	0.4895	0.2185	0.107	0.146	8.0		
158 M	0.475	0.36	0.14	0.5135	0.241	0.1045	0.155	8.0		
159 I	0.48	0.355	0.11	0.4495	0.201	0.089	0.14	8.0		
160 F	0.56	0.44	0.135	0.8025	0.35	0.1615	0.259	9.0		
161 F	0.585	0.475	0.165	1.053	0.458	0.217	0.3	11.0		
162 F	0.585	0.455	0.17	0.9945	0.4255	0.263	0.2845	11.0		
163 M	0.385	0.255	0.1	0.3175	0.137	0.068	0.092	8.0		
164 I	0.39	0.31	0.085	0.344	0.181	0.0695	0.079	7.0		
165 I	0.39	0.29	0.1	0.2845	0.1255	0.0635	0.081	7.0		
166 I	0.405	0.3	0.085	0.3035	0.15	0.0505	0.088	7.0		
167 I	0.475	0.365	0.115	0.499	0.232	0.0885	0.156	10.0		
168 M	0.5	0.38	0.125	0.577	0.269	0.1265	0.1535	9.0		
169 F	0.515	0.4	0.125	0.615	0.2865	0.123	0.1765	8.0		
170 M	0.52	0.385	0.165	0.791	0.375	0.18	0.1815	10.0		
171 M	0.55	0.43	0.13	0.8395	0.3155	0.1955	0.2405	10.0		
172 M	0.56	0.43	0.155	0.8675	0.4	0.172	0.229	8.0		
173 F	0.565	0.45	0.165	0.887	0.37	0.239	0.249	11.0		
174 M	0.59	0.44	0.135	0.966	0.439	0.2145	0.2605	10.0		
175 M	0.6	0.475	0.205	1.176	0.5255	0.2875	0.308	9.0		
176 F	0.625	0.485	0.15	1.0945	0.531	0.261	0.296	10.0		
177 M	0.71	0.555	0.195	1.9485	0.9455	0.3765	0.495	12.0		

Given Test Data

Since the attribute names of the training and test data are different, we will use Arffviewer to rename them as below

File Edit View

abalone data.arff

Relati	elation: abalone									
No.	1: Sex Nominal	2: Length Numeric	3: Diameter Numeric	4: Height Numeric	5: Wheight Numeric	6: Sweight Numeric	7: Vweight Numeric	8: Shweight Numeric	9: Rings Numeric	
1	M	0.455	0.365	0.095	0.514	0.2245	0.101	0.15	15.0	
2	M	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.07	7.0	
3	F	0.53	0.42	0.135	0.677	0.2565	0.1415	0.21	9.0	
4	M	0.44	0.365	0.125	0.516	0.2155	0.114	0.155	10.0	
5	1	0.33	0.255	0.08	0.205	0.0895	0.0395	0.055	7.0	
6	1	0.425	0.3	0.095	0.3515	0.141	0.0775	0.12	8.0	
7	F	0.53	0.415	0.15	0.7775	0.237	0.1415	0.33	20.0	
8	F	0.545	0.425	0.125	0.768	0.294	0.1495	0.26	16.0	
9	M	0.475	0.37	0.125	0.5095	0.2165	0.1125	0.165	9.0	
10	F	0.55	0.44	0.15	0.8945	0.3145	0.151	0.32	19.0	
11	F	0.525	0.38	0.14	0.6065	0.194	0.1475	0.21	14.0	
12	M	0.43	0.35	0.11	0.406	0.1675	0.081	0.135	10.0	
13	M	0.49	0.38	0.135	0.5415	0.2175	0.095	0.19	11.0	
14	F	0.535	0.405	0.145	0.6845	0.2725	0.171	0.205	10.0	
15	F	0.47	0.355	0.1	0.4755	0.1675	0.0805	0.185	10.0	
16	M	0.5	0.4	0.13	0.6645	0.258	0.133	0.24	12.0	
17	1	0.355	0.28	0.085	0.2905	0.095	0.0395	0.115	7.0	
18	F	0.44	0.34	0.1	0.451	0.188	0.087	0.13	10.0	
19	M	0.365	0.295	0.08	0.2555	0.097	0.043	0.1	7.0	
20	M	0.45	0.32	0.1	0.381	0.1705	0.075	0.115	9.0	
21	M	0.355	0.28	0.095	0.2455	0.0955	0.062	0.075	11.0	
22	1	0.38	0.275	0.1	0.2255	0.08	0.049	0.085	10.0	
23	F	0.565	0.44	0.155	0.9395	0.4275	0.214	0.27	12.0	
24	F	0.55	0.415	0.135	0.7635	0.318	0.21	0.2	9.0	
25	F	0.615	0.48	0.165	1.1615	0.513	0.301	0.305	10.0	
26	F	0.56	0.44	0.14	0.9285	0.3825	0.188	0.3	11.0	
27	F	0.58	0.45	0.185	0.9955	0.3945	0.272	0.285	11.0	
28	M	0.59	0.445	0.14	0.931	0.356	0.234	0.28	12.0	
29	M	0.605	0.475	0.18	0.9365	0.394	0.219	0.295	15.0	
30	M	0.575	0.425	0.14	0.8635	0.393	0.227	0.2	11.0	
31	M	0.58	0.47	0.165	0.9975	0.3935	0.242	0.33	10.0	
32	F	0.68	0.56	0.165	1.639	0.6055	0.2805	0.46	15.0	

Since the training data label (Rings) is in continuous format, in order to classifier work we need to discretize the data using binning method by setting "useEqualFrequency" we will use python code to transform data.

```
import pandas as pd
# Load the abalone dataset
url = '/kaggle/input/abalone-1-data/abalone-1.data.csv'
column_names = ['Sex','Length','Diameter','Height','Wheight','Sweight','Vweight','Shweight','Rings']
abalone = pd.read_csv(url, names=column_names)
# Examine the Rings attribute
print(abalone['Rings'].describe())
abalone['Length'] = pd.to_numeric(abalone['Length'], errors='coerce')
abalone['Diameter'] = pd.to_numeric(abalone['Diameter'], errors='coerce')
abalone['Height'] = pd.to_numeric(abalone['Height'], errors='coerce')
abalone['Wheight'] = pd.to_numeric(abalone['Wheight'], errors='coerce')
abalone['Sweight'] = pd.to_numeric(abalone['Sweight'], errors='coerce')
abalone['Vweight'] = pd.to_numeric(abalone['Vweight'], errors='coerce')
abalone['Shweight'] = pd.to_numeric(abalone['Shweight'], errors='coerce')
abalone['Rings'] = pd.to_numeric(abalone['Rings'], errors='coerce')
# Choose a discretization method - e.g., equal-width binning
num_bins = 5
# Alternatively, use equal-frequency binning
abalone['Rings_binned_quantile'] = pd.qcut(abalone['Rings'], q=num_bins, labels=False)
# Display the discretized attribute
print(abalone[['Rings', 'Rings_binned_quantile']].head())
# Define category labels
labels = ["Very Low", "Low", "Medium", "High", "Very High"]
# Map the bins to these labels
abalone['Rings_category'] = abalone['Rings_binned_quantile'].map({
   0: "Very Low",
   1: "Low",
2: "Medium",
   3: "High",
    4: "Very High"
})
# Display the categorized attribute
print(abalone[['Rings', 'Rings_binned_quantile', 'Rings_category']].head())
# Save the updated dataset
abalone.to_csv('abalone_discretized.csv', index=False)
```

Dataset after discretization looks as below

Relati	on: abalo	ne_discretiz	ed								
No.	1: Sex Nominal	2: Length Numeric	3: Diameter Numeric	4: Height Numeric	5: Wheight Numeric	6: Sweight Numeric	7: Vweight Numeric	8: Shweight Numeric	9: Rings Numeric	10: Rings_binned_quantile	11: Rings_category Nominal
1	М	0.455	0.365	0.095	0.514	0.2245	0.101	0.15	15.0	4.0	Very High
2	М	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.07	7.0	0.0	Very Low
3	F	0.53	0.42	0.135	0.677	0.2565	0.1415	0.21	9.0	1.0	Low
4	М	0.44	0.365	0.125	0.516	0.2155	0.114	0.155	10.0	2.0	Medium
5	1	0.33	0.255	0.08	0.205	0.0895	0.0395	0.055	7.0	0.0	Very Low
6	1	0.425	0.3	0.095	0.3515	0.141	0.0775	0.12	8.0	1.0	Low
7	F	0.53	0.415	0.15	0.7775	0.237	0.1415	0.33	20.0	4.0	Very High
8	F	0.545	0.425	0.125	0.768	0.294	0.1495	0.26	16.0	4.0	Very High
9	M	0.475	0.37	0.125	0.5095	0.2165	0.1125	0.165	9.0	1.0	Low
10	F	0.55	0.44	0.15	0.8945	0.3145	0.151	0.32	19.0	4.0	Very High
11	F	0.525	0.38	0.14	0.6065	0.194	0.1475	0.21	14.0	4.0	Very High
12	M	0.43	0.35	0.11	0.406	0.1675	0.081	0.135	10.0	2.0	Medium
13	M	0.49	0.38	0.135	0.5415	0.2175	0.095	0.19	11.0	3.0	High
14	F	0.535	0.405	0.145	0.6845	0.2725	0.171	0.205	10.0	2.0	Medium
15	F	0.47	0.355	0.1	0.4755	0.1675	0.0805	0.185	10.0	2.0	Medium
16	М	0.5	0.4	0.13	0.6645	0.258	0.133	0.24	12.0	3.0	High
17	1	0.355	0.28	0.085	0.2905	0.095	0.0395	0.115	7.0	0.0	Very Low
18	F	0.44	0.34	0.1	0.451	0.188	0.087	0.13	10.0	2.0	Medium
19	M	0.365	0.295	0.08	0.2555	0.097	0.043	0.1	7.0	0.0	Very Low
20	M	0.45	0.32	0.1	0.381	0.1705	0.075	0.115	9.0	1.0	Low
21	M	0.355	0.28	0.095	0.2455	0.0955	0.062	0.075	11.0	3.0	High
22	T	0.38	0.275	0.1	0.2255	0.08	0.049	0.085	10.0	2.0	Medium
23	F	0.565	0.44	0.155	0.9395	0.4275	0.214	0.27	12.0	3.0	High
24	F	0.55	0.415	0.135	0.7635	0.318	0.21	0.2	9.0	1.0	Low
25	F	0.615	0.48	0.165	1.1615	0.513	0.301	0.305	10.0	2.0	Medium
26	F	0.56	0.44	0.14	0.9285	0.3825	0.188	0.3	11.0	3.0	High
27	F	0.58	0.45	0.185	0.9955	0.3945	0.272	0.285	11.0	3.0	High
28	М	0.59	0.445	0.14	0.931	0.356	0.234	0.28	12.0		High
29	М	0.605	0.475	0.18	0.9365	0.394	0.219	0.295	15.0		Very High
30	М	0.575	0.425	0.14	0.8635	0.393	0.227	0.2	11.0	3.0	High
31	М	0.58	0.47	0.165	0.9975	0.3935	0.242	0.33	10.0		Medium
32	F	0.68	0.56	0.165	1.639	0.6055	0.2805	0.46	15.0	4.0	Very High
33	М	0.665	0.525	0.165	1.338	0.5515	0.3575	0.35	18.0		Very High
34	F	0.68	0.55	0.175	1.798	0.815	0.3925	0.455	19.0		Very High
35	F	0.705	0.55	0.2	1.7095	0.633	0.4115	0.49	13.0		Very High
36	М	0.465	0.355	0.105	0.4795	0.227	0.124	0.125	8.0		Low
37	F	0.54	0.475	0.155	1.217	0.5305	0.3075	0.34	16.0		Very High
38	F	0.45	0.355		0.5225	0.237	0.1165	0.145	8.0		Low
39	F	0.575	0.445	0.135	0.883	0.381	0.2035	0.26	11.0		High
40	M	0.355	0.29	0.09	0.3275	0.134	0.086	0.09	9.0		Low
41	F	0.45	0.335		0.425	0.1865	0.091	0.115	9.0		Low
42	F	0.55	0.425		0.8515	0.362	0.196	0.27	14.0		Very High
43	1	0.24	0.175		0.07	0.0315	0.0235	0.02	5.0		Very Low
44	1	0.205	0.15		0.042	0.0255	0.015	0.012	5.0		Very Low
45	1	0.21	0.15		0.042	0.0175	0.0125	0.015	4.0		Very Low
46	1	0.39	0.295		0.203	0.0875	0.045	0.075	7.0		Very Low
47	M	0.47	0.37		0.5795	0.293	0.227	0.14	9.0		Low
48	F	0.46	0.375	0.12	0.4605	0.1775	0.11	0.15	7.0	0.0	Very Low

Rings_category is now our new class and we use the classifiers.

Similar processing, we need to do for test data

```
import pandas as pd
# Load the abalone dataset
url = '/kaggle/input/abalone-data-test/abalone.data.test.csv'
column_names = ['Sex','Length','Diameter','Height','Wheight','Sweight','Sweight','Shweight','Rings']
abalone = pd.read_csv(url, names=column_names)
# Examine the Rings attribute
print(abalone['Rings'].describe())
abalone['Length'] = pd.to_numeric(abalone['Length'], errors='coerce')
abalone['Diameter'] = pd.to_numeric(abalone['Diameter'], errors='coerce')
abalone['Height'] = pd.to_numeric(abalone['Height'], errors='coerce')
abalone['Wheight'] = pd.to_numeric(abalone['Wheight'], errors='coerce')
abalone['Sweight'] = pd.to_numeric(abalone['Sweight'], errors='coerce')
abalone['Vweight'] = pd.to_numeric(abalone['Vweight'], errors='coerce')
abalone['Shweight'] = pd.to_numeric(abalone['Shweight'], errors='coerce')
abalone['Rings'] = pd.to_numeric(abalone['Rings'], errors='coerce')
# Choose a discretization method - e.g., equal-width binning
num_bins = 5
# Alternatively, use equal-frequency binning
abalone['Rings_binned_quantile'] = pd.qcut(abalone['Rings'], q=num_bins, labels=False)
# Display the discretized attribute
print(abalone[['Rings', 'Rings_binned_quantile']].head())
# Display the categorized attribute
print(abalone[['Rings', 'Rings_binned_quantile']].head())
# Save the updated dataset
abalone.to_csv('abalone_discretized_test.csv', index=False)
```

The test data will not have Rings category which we need to predict.

abalone_discretized_test.csv
Relation: abalone discretized t

Relati	on: abalo	ne_discretiz	ed_test								
No.	1: Sex Nominal	2: Length Numeric	3: Diameter Numeric	4: Height Numeric	5: Wheight Numeric	6: Sweight Numeric	7: Vweight Numeric	8: Shweight Numeric	9: Rings Numeric	10: Rings_binned_quantile Numeric	11: Ring Category Nominal
1	F	0.31	0.221	0.065	0.1495	0.311	0.0345	0.044	7.0	0.0	Very Low
2	F	0.45	0.351	0.145	0.486	0.451	0.126	0.154	11.0	2.0	Medium
3	F	0.465	0.421	0.15	0.747	0.466	0.153	0.239	8.0	1.0	Low
4	F	0.47	0.346	0.125	0.495	0.471	0.104	0.154	18.0	3.0	High
5	F	0.485	0.381	0.13	0.537	0.486	0.143	0.172	14.0	2.0	Medium
6	F	0.495	0.381	0.145	0.7875	0.496	0.141	0.239	23.0	4.0	Very High
7	F	0.5	0.396	0.15	0.6455	0.501	0.1335	0.204	17.0	3.0	High
8	F	0.51	0.406	0.13	0.658	0.511	0.134	0.194	15.0	2.0	Medium
9	F	0.53	0.416	0.155	0.757	0.531	0.174	0.274	9.0	1.0	Low
10	F	0.555	0.436	0.145	0.8955	0.556	0.152	0.319	19.0	3.0	High
11	F	0.555	0.461	0.175	1.2135	0.556	0.206	0.524	27.0	4.0	Very High
12	F	0.575	0.436	0.12	0.866	0.576	0.1735	0.269	12.0	2.0	Medium
13	F	0.58	0.416	0.13	0.858	0.581	0.148	0.2115	10.0	1.0	Low
14	F	0.59	0.446	0.12	0.875	0.591	0.2085	0.224	6.0	0.0	Very Low
15	F	0.625	0.476	0.16	1.0135	0.626	0.4375	0.323	10.0	1.0	Low
16	F	0.64	0.511	0.185	1.3725	0.641	0.306	0.449	10.0	1.0	Low
17	F	0.65	0.486	0.21	1.407	0.651	0.2295	0.509	25.0	4.0	Very High
18	F	0.685	0.546	0.195	1.597	0.686	0.4085	0.584	21.0	4.0	Very High
19	F	0.705	0.581	0.18	1.8085	0.706	0.3225	0.474	29.0	4.0	Very High
20	F	0.725	0.591	0.22	1.97	0.726	0.424	0.659	16.0	3.0	High
21	F	0.805	0.626	0.19	2.527	0.806	0.591	0.619	23.0	4.0	Very High
22	1	0.075	0.051	0.005	0.003	0.076	0.0015	5.0E-4	1.0	0.0	Very Low
23	1	0.145	0.101	0.03	0.015	0.146	0.0035	0.003	3.0	0.0	Very Low
24	1	0.155	0.096	0.02	0.016	0.156	0.005	0.004	2.0	0.0	Very Low
25	1	0.185	0.121	0.03	0.0275	0.186	0.0065	0.0075	4.0	0.0	Very Low
26	1	0.21	0.151	0.04	0.0505	0.211	0.012	0.013	3.0	0.0	Very Low
27	1	0.275	0.196	0.065	0.101	0.276	0.0255	0.034	5.0	0.0	Very Low
28	1	0.33	0.246	0.05	0.167	0.331	0.052	0.044	5.0	0.0	Very Low
29	1	0.365	0.271	0.07	0.2215	0.366	0.045	0.065	7.0	0.0	Very Low
30	1	0.425	0.311	0.095	0.3445	0.426	0.0805	0.089	6.0	0.0	Very Low
31	1	0.425	0.316	0.095	0.341	0.426	0.051	0.0935	8.0	1.0	Low
32	1	0.445	0.346	0.13	0.436	0.446	0.084	0.124	12.0	2.0	Medium
33	1	0.45	0.331	0.095	0.4905	0.451	0.087	0.1095	7.0	0.0	Very Low
34	1	0.485	0.366	0.12	0.5445	0.486	0.102	0.164	9.0	1.0	Low
35	1	0.535	0.421	0.125	0.782	0.536	0.2015	0.214	9.0	1.0	Low
36	1	0.63	0.461	0.15	0.973	0.631	0.1855	0.349	14.0	2.0	Medium
37	M	0.16	0.111	0.02	0.025	0.161	0.006	0.0065	5.0	0.0	Very Low
38	M	0.24	0.156	0.055	0.0555	0.241	0.0105	0.014	4.0	0.0	Very Low
39	M	0.28	0.196	0.075	0.1	0.281	0.025	0.029	5.0	0.0	Very Low
40	М	0.305	0.236	0.085	0.162	0.306	0.04	0.049	6.0	0.0	Very Low
41	M	0.33	0.226	0.085	0.148	0.331	0.035	0.044	4.0	0.0	Very Low
42	M	0.34	0.256	0.07	0.221	0.341	0.041	0.084	6.0	0.0	Very Low
43	M	0.44	0.331	0.105	0.4395	0.441	0.0725	0.1305	7.0	0.0	Very Low

Training AdaBoostM1


```
=== Evaluation on training set ===
Time taken to test model on training data: 1.13 seconds
                                                                      48.1446 %
Correctly Classified Instances
                                              2011
Incorrectly Classified Instances 2166
                                                                      51.8554 %
                                          0.3168
0.2289
0.3383
72.806 %
85.3273 %
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances
                                           4177
=== Detailed Accuracy By Class ===
                     TP Rate FP Rate Precision Recall F-Measure MCC
                                                                                            ROC Area PRC Area Class
                     0.000 0.000 ?
0.000 0.000 ?
                                                        0.000
                                                                                            0.801 0.333
                                                                                                                     Very High
                                                        0.000
                                                                                            0.812
                                                                                                         0.400
                                                        1.000 ? ?

1.000 0.750 0.654

0.000 ? ?

1.000 0.532 0.471

0.481 ? ?
                     1.000
                               0.287
                                          0.600
                                                                                           0.856
                                                                                                         0.600
                                                                                                                     Low
                                                                                            0.796
                    0.000
                              0.000
                                                                                                         0.305
                                                                                                                     Medium
1.000 0.388 0.362
Weighted Avg. 0.481 0.156 ?
                                                                                                                     High
                                                                                            0.820
                                                                                                         0.428
=== Confusion Matrix ===
   a b c d e <-- classified as
0 0 0 0 693 | a = Very High
0 0 839 0 0 | b = Very Low
0 0 1257 0 0 | c = Low
0 0 0 0 634 | d = Medium
0 0 0 0 754 | e = High
```

Save the model and load the model

Test AdaBoostM1

Prediction Output from test sample

		predicted	
inst#	actual	error	prediction
	2:'Very		
1	Low'	3:Low	0.6
2	4:Medium	5:High +	0.362
3	3:Low	3:Low	0.6
4	5:High	5:High	0.362
5	4:Medium	5:High +	0.362
	1:'Very		
6	High	' 5:High	0.362

7	5:High	5:High	0.362
8	4:Medium	5:High +	0.362
9	3:Low	3:Low	0.6
10	5:High	5:High	0.362
	1:'Very	31111811	0.002
11	High	' 5:High	0.362
12	4:Medium	5:High +	0.362
13	3:Low	5:High +	0.362
	2:'Very		
14	Low'	3:Low	0.6
15	3:Low	5:High +	0.362
16	3:Low	5:High +	0.362
	1:'Very		
17	High	' 5:High	0.362
	1:'Very		
18	High	' 5:High	0.362
10	1:'Very	' E-High	0.262
19	High	J.HIgH	0.362
20	5:High	5:High	0.362
21	1:'Very	! E.Uigh	0.362
	High 2:'Very	' 5:High	0.302
22	Low'	3:Low	0.6
	2:'Very	0.2011	0.0
23	Low'	3:Low	0.6
	2:'Very		
24	Low'	3:Low	0.6
	2:'Very		
25	Low'	3:Low	0.6
	2:'Very		
26	Low'	3:Low	0.6
27	2:'Very	2.1	0.6
27	Low	3:Low	0.6
28	2:'Very Low'	3:Low	0.6
20	2:'Very	3.LOW	0.0
29	Low'	3:Low	0.6
	2:'Very	0.2011	0.0
30	Low'	3:Low	0.6
31	3:Low	3:Low	0.6
32	4:Medium	5:High +	0.362
	2:'Very		
33	Low'	3:Low	0.6
34	3:Low	3:Low	0.6
35	3:Low	3:Low	0.6

36	4:Medium	5:High +	0.362
	2:'Very	0	
37	Low'	3:Low	0.6
	2:'Very		
38	Low'	3:Low	0.6
	2:'Very		
39	Low'	3:Low	0.6
	2:'Very		
40	Low'	3:Low	0.6
4.4	2:'Very		0.6
41	Low	3:Low	0.6
42	2:'Very Low'	2:10:4	0.6
42	2:'Very	3:Low	0.6
43	Low'	3:Low	0.6
44	3:Low	3:Low	0.6
45	5:High	5:High	0.362
46	3:Low		0.362
47	5:High	5:High	0.362
48	4:Medium	5:High +	0.362
49	3:Low	3:Low	0.6
50	5:High	5:High	0.362
51	4:Medium	5:High +	0.362
52	4:Medium	5:High +	0.362
53	5:High	5:High	0.362
54	5:High	5:High	0.362
	2:'Very		
55	Low'	3:Low	0.6
56	5:High	5:High	0.362
57	4:Medium	5:High +	0.362
	1:'Very		
58	High	' 5:High	0.362
59	4:Medium	5:High +	0.362
60	4:Medium	5:High +	0.362
61	5:High	5:High	0.362
62	5:High	5:High	0.362
63	4:Medium	5:High +	0.362
	1:'Very		
64	High	' 5:High	0.362
	1:'Very		
65	High	' 5:High	0.362
66	4:Medium	5:High +	0.362
67	3:Low	3:Low	0.6

	1:'Very		
68	High	' 5:High	0.362
	1:'Very		
69	High	' 5:High	0.362
70	5:High	5:High	0.362
	1:'Very		
71	High	' 5:High	0.362
72	5:High	5:High	0.362
	1:'Very		
73	High	' 5:High	0.362
	1:'Very		
74	High	' 5:High	0.362
75	4:Medium	5:High +	0.362
	1:'Very		
76	High	' 5:High	0.362
77	4:Medium	5:High +	0.362
	1:'Very		
78	High	' 5:High	0.362
79	4:Medium	5:High +	0.362
80	4:Medium	5:High +	0.36

Correctly Classified Instances 22 27.5 %

Training Bagging

Test Bagging

Prediction Output from test sample

inst# actual predicted error prediction

```
1 2:'Very Low' 2:Very Low 1
```

```
2 4:Medium 5:High + 1
```

3 3:Low 3:Low 1

4 5:High 1:Very High + 1

5 4:Medium 1:Very High + 1

- 6 1:'Very High' 1:Very High 1
- 7 5:High 1:Very High + 1
- 8 4:Medium 1:Very High + 1
- 9 3:Low 3:Low 1
- 10 5:High 1:Very High + 1
- 11 1:'Very High' 1:Very High 1
- 12 4:Medium 5:High + 1
- 13 3:Low 4:Medium + 1
- 14 2:'Very Low' 2:Very Low 1
- 15 3:Low 4:Medium + 1
- 16 3:Low 4:Medium + 1
- 17 1:'Very High' 1:Very High 1
- 18 1:'Very High' 1:Very High 1
- 19 1:'Very High' 1:Very High 1
- 20 5:High 1:Very High + 1
- 21 1:'Very High' 1:Very High 1
- 22 2:'Very Low' 2:Very Low 1
- 23 2:'Very Low' 2:Very Low 1
- 24 2:'Very Low' 2:Very Low 1
- 25 2:'Very Low' 2:Very Low 1
- 26 2:'Very Low' 2:Very Low 1
- 27 2:'Very Low' 2:Very Low 1
- 28 2:'Very Low' 2:Very Low 1
- 29 2:'Very Low' 2:Very Low 1
- 30 2:'Very Low' 2:Very Low 1

- 31 3:Low 3:Low 1
- 32 4:Medium 5:High + 1
- 33 2:'Very Low' 2:Very Low 1
- 34 3:Low 3:Low 1
- 35 3:Low 3:Low 1
- 36 4:Medium 1:Very High + 1
- 37 2:'Very Low' 2:Very Low 1
- 38 2:'Very Low' 2:Very Low 1
- 39 2:'Very Low' 2:Very Low 1
- 40 2:'Very Low' 2:Very Low 1
- 41 2:'Very Low' 2:Very Low 1
- 42 2:'Very Low' 2:Very Low 1
- 43 2:'Very Low' 2:Very Low 1
- 44 3:Low 3:Low 1
- 45 5:High 1:Very High + 1
- 46 3:Low 4:Medium + 1
- 47 5:High 1:Very High + 1
- 48 4:Medium 1:Very High + 1
- 49 3:Low 3:Low 1
- 50 5:High 1:Very High + 1
- 51 4:Medium 1:Very High + 1
- 52 4:Medium 5:High + 1
- 53 5:High 1:Very High + 1
- 54 5:High 1:Very High + 1
- 55 2:'Very Low' 2:Very Low 1

- 56 5:High 1:Very High + 1
- 57 4:Medium 1:Very High + 1
- 58 1:'Very High' 1:Very High 1
- 59 4:Medium 1:Very High + 1
- 60 4:Medium 1:Very High + 1
- 61 5:High 1:Very High + 1
- 62 5:High 1:Very High + 1
- 63 4:Medium 1:Very High + 1
- 64 1:'Very High' 1:Very High 1
- 65 1:'Very High' 1:Very High 1
- 66 4:Medium 1:Very High + 1
- 67 3:Low 3:Low 1
- 68 1:'Very High' 1:Very High 1
- 69 1:'Very High' 1:Very High 1
- 70 5:High 1:Very High + 1
- 71 1:'Very High' 1:Very High 1
- 72 5:High 1:Very High + 1
- 73 1:'Very High' 1:Very High 1
- 74 1:'Very High' 1:Very High 1
- 75 4:Medium 5:High + 1
- 76 1:'Very High' 1:Very High 1
- 77 4:Medium 5:High + 1
- 78 1:'Very High' 1:Very High 1
- 79 4:Medium 5:High + 1
- 80 4:Medium 1:Very High + 1

Train Randomcommittee


```
Time taken to test model on training data: 0.93 seconds
                                                           4177
                                                                                          100
0
Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
                                                              4177
Total Number of Instances
=== Detailed Accuracy By Class ===
                            TP Rate FP Rate Precision Recall F-Measure MCC
                                                                                                                               ROC Area PRC Area Class
                            1.000 0.000 1.000
1.000 0.000 1.000
                                                                                                                              1.000
1.000
                                                                                                                                                                Very High
Very Low
                                                                              1.000
                                                                                            1.000
                                                                                                               1.000
                                                                                                                                              1.000
                            1.000
                                        0.000
                                                          1.000
                                                                              1.000
                                                                                            1.000
                                                                                                               1.000
                                                                                                                               1.000
                                                                                                                                               1.000
                                                                                                                                                                 Low
                                                         1.000
                                                                             1.000
                                                                                            1.000
                                        0.000
                                                                                                                                                                 Medium
                                        0.000
                                                                                                                              1.000
                            1.000
                                                                                                                                                                 High
Weighted Avg. 1.000 0.000 1.000
                                                                            1.000
                                                                                            1.000
                                                                                                               1.000
                                                                                                                              1.000
=== Confusion Matrix ===

        a
        b
        c
        d
        e
        <-- classified as</th>

        693
        0
        0
        0
        |
        a
        = Very High

        0
        839
        0
        0
        |
        b
        = Very Low

        0
        0
        1257
        0
        0
        |
        c
        Low

        0
        0
        0
        634
        0
        |
        d
        = Medium

        0
        0
        0
        0
        754
        |
        e
        = High
```

Test Randomcommittee

Prediction Results from randomcommitte

=== Predictions on test set ===

inst# actual predicted error prediction

- 1 2:'Very Low' 2:Very Low 1
- 2 4:Medium 4:Medium 0.5
- 3 3:Low 3:Low 1
- 4 5:High 5:High 0.6
- 5 4:Medium 4:Medium 0.4
- 6 1:'Very High' 1:Very High 1
- 7 5:High 5:High 0.6
- 8 4:Medium 4:Medium 0.4
- 9 3:Low 3:Low 1
- 10 5:High 1:Very High + 0.5
- 11 1:'Very High' 1:Very High 1
- 12 4:Medium 4:Medium 0.6
- 13 3:Low 4:Medium + 0.6
- 14 2:'Very Low' 2:Very Low 1
- 15 3:Low 4:Medium + 0.7
- 16 3:Low 4:Medium + 0.7
- 17 1:'Very High' 1:Very High 1
- 18 1:'Very High' 1:Very High 1
- 19 1:'Very High' 1:Very High 1
- 20 5:High 1:Very High + 0.5
- 21 1:'Very High' 1:Very High 1
- 22 2:'Very Low' 2:Very Low 1
- 23 2:'Very Low' 2:Very Low 1
- 24 2:'Very Low' 2:Very Low 1

- 25 2:'Very Low' 2:Very Low 1
- 26 2:'Very Low' 2:Very Low 1
- 27 2:'Very Low' 2:Very Low 1
- 28 2:'Very Low' 2:Very Low 1
- 29 2:'Very Low' 2:Very Low 1
- 30 2:'Very Low' 2:Very Low 1
- 31 3:Low 3:Low 1
- 32 4:Medium 5:High + 0.7
- 33 2:'Very Low' 2:Very Low 1
- 34 3:Low 3:Low 1
- 35 3:Low 3:Low 1
- 36 4:Medium 4:Medium 0.6
- 37 2:'Very Low' 2:Very Low 1
- 38 2:'Very Low' 2:Very Low 1
- 39 2:'Very Low' 2:Very Low 1
- 40 2:'Very Low' 2:Very Low 1
- 41 2:'Very Low' 2:Very Low 1
- 42 2:'Very Low' 2:Very Low 1
- 43 2:'Very Low' 2:Very Low 1
- 44 3:Low 3:Low 1
- 45 5:High 5:High 0.6
- 46 3:Low 4:Medium + 0.6
- 47 5:High 5:High 0.6
- 48 4:Medium 4:Medium 0.4
- 49 3:Low 3:Low 1

- 50 5:High 1:Very High + 0.5
- 51 4:Medium 4:Medium 0.4
- 52 4:Medium 4:Medium 0.5
- 53 5:High 1:Very High + 0.5
- 54 5:High 1:Very High + 0.5
- 55 2:'Very Low' 2:Very Low 1
- 56 5:High 1:Very High + 0.5
- 57 4:Medium 4:Medium 0.4
- 58 1:'Very High' 1:Very High 1
- 59 4:Medium 4:Medium 0.5
- 60 4:Medium 4:Medium 0.4
- 61 5:High 1:Very High + 0.5
- 62 5:High 1:Very High + 0.5
- 63 4:Medium 4:Medium 0.6
- 64 1:'Very High' 1:Very High 1
- 65 1:'Very High' 1:Very High 1
- 66 4:Medium 4:Medium 0.5
- 67 3:Low 3:Low 1
- 68 1:'Very High' 1:Very High 1
- 69 1:'Very High' 1:Very High 1
- 70 5:High 1:Very High + 0.6
- 71 1:'Very High' 1:Very High 1
- 72 5:High 1:Very High + 0.6
- 73 1:'Very High' 1:Very High 1
- 74 1:'Very High' 1:Very High 1

- 75 4:Medium 4:Medium 0.5
- 76 1:'Very High' 1:Very High 1
- 77 4:Medium 4:Medium 0.6
- 78 1:'Very High' 1:Very High 1
- 79 4:Medium 4:Medium 0.5
- 80 4:Medium 1:Very High + 0.4

Correctly Classified Instances 64 80 %

Training LogitBoost

Test LogitBoost

Prediction Results

=== Predictions on test set ===

inst# actual predicted error prediction

- 1 2:'Very Low' 2:Very Low 1
- 2 4:Medium 5:High + 0.797
- 3 3:Low 3:Low 1
- 4 5:High 5:High 0.895
- 5 4:Medium 1:Very High + 0.7
- 6 1:'Very High' 1:Very High 1
- 7 5:High 5:High 0.895
- 8 4:Medium 1:Very High + 0.7
- 9 3:Low 3:Low 1
- 10 5:High 5:High 0.895
- 11 1:'Very High' 1:Very High 1
- 12 4:Medium 5:High + 0.797
- 13 3:Low 4:Medium + 0.847
- 14 2:'Very Low' 2:Very Low 1
- 15 3:Low 4:Medium + 0.847
- 16 3:Low 4:Medium + 0.847
- 17 1:'Very High' 1:Very High 1
- 18 1:'Very High' 1:Very High 1
- 19 1:'Very High' 1:Very High 1
- 20 5:High 5:High 0.895
- 21 1:'Very High' 1:Very High 1
- 22 2:'Very Low' 2:Very Low 1
- 23 2:'Very Low' 2:Very Low 1
- 24 2:'Very Low' 2:Very Low 1
- 25 2:'Very Low' 2:Very Low 1

- 26 2:'Very Low' 2:Very Low 1
- 27 2:'Very Low' 2:Very Low 1
- 28 2:'Very Low' 2:Very Low 1
- 29 2:'Very Low' 2:Very Low 1
- 30 2:'Very Low' 2:Very Low 1
- 31 3:Low 3:Low 1
- 32 4:Medium 5:High + 0.797
- 33 2:'Very Low' 2:Very Low 1
- 34 3:Low 3:Low 1
- 35 3:Low 3:Low 1
- 36 4:Medium 1:Very High + 0.7
- 37 2:'Very Low' 2:Very Low 1
- 38 2:'Very Low' 2:Very Low 1
- 39 2:'Very Low' 2:Very Low 1
- 40 2:'Very Low' 2:Very Low 1
- 41 2:'Very Low' 2:Very Low 1
- 42 2:'Very Low' 2:Very Low 1
- 43 2:'Very Low' 2:Very Low 1
- 44 3:Low 3:Low 1
- 45 5:High 5:High 0.895
- 46 3:Low 4:Medium + 0.847
- 47 5:High 5:High 0.895
- 48 4:Medium 1:Very High + 0.7
- 49 3:Low 3:Low 1
- 50 5:High 5:High 0.895

- 51 4:Medium 1:Very High + 0.7
- 52 4:Medium 5:High + 0.797
- 53 5:High 5:High 0.895
- 54 5:High 5:High 0.895
- 55 2:'Very Low' 2:Very Low 1
- 56 5:High 5:High 0.895
- 57 4:Medium 1:Very High + 0.7
- 58 1:'Very High' 1:Very High 1
- 59 4:Medium 1:Very High + 0.7
- 60 4:Medium 1:Very High + 0.7
- 61 5:High 5:High 0.895
- 62 5:High 5:High 0.895
- 63 4:Medium 1:Very High + 0.7
- 64 1:'Very High' 1:Very High 1
- 65 1:'Very High' 1:Very High 1
- 66 4:Medium 1:Very High + 0.7
- 67 3:Low 3:Low 1
- 68 1:'Very High' 1:Very High 1
- 69 1:'Very High' 1:Very High 1
- 70 5:High 5:High 0.895
- 71 1:'Very High' 1:Very High 1
- 72 5:High 5:High 0.895
- 73 1:'Very High' 1:Very High 1
- 74 1:'Very High' 1:Very High 1
- 75 4:Medium 5:High + 0.797

```
76 1:'Very High' 1:Very High 1
```

77 4:Medium 5:High + 0.797

78 1:'Very High' 1:Very High 1

79 4:Medium 5:High + 0.797

80 4:Medium 1:Very High + 0.7

Correctly Classified Instances 58 72.5 %

Train Random Tree

```
Choose RandomTree -K 0 -M 1.0 -V 0.001 -S 1

    Use training set

                                                                                                                                                    --- Run information ---
                                                                                                                                                                                weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1 abalone_discretized 4177 \,
 Cross-validation Folds 10
Percentage split % 66
                                                                                                                                                   Attributes:
                                                           More options...
                                                                                                                                                                                Length
Diameter
 (Nom) Rings_category
                                                                                                                                                 Diameter
Height
Wheight
Sweight
Vweight
Shweight
Rings
Rings_baned_quantile
Rings_category
Test mode: evaluate on training data
Start Stop

Result list (right-click for options)
21:25:35 - meta.AdaBoostM1
21:25:55 - meta.AdaBoostM1 from file 'adaboost.model'
21:26:03 - misc.InputMappedClassifier
21:26:00 - misc.InputAppedClassifier
21:33:104 - meta.Bagging
21:33:104 - meta.Bagging from file 'bagging.model'
21:33:13 - misc.InputAppedClassifier
21:33:43 - misc.InputAppedClassifier
21:33:43 - misc.InputAppedClassifier
21:34:15 - misc.InputAppedClassifier
21:41:40 - meta.Bagging from file 'bagging.model'
21:42:55 - meta.Bagding from file 'randomcommittee
21:42:55 - meta.RandomCommittee from file 'randomcommittee.model'
21:42:50 - meta.RandomCommittee from file 'randomcommittee.model'
21:41:43:13 - misc.InputAppedClassifier
21:44:74:00 - misc.InputAppedClassifier
                                                                                                                                                   --- Classifier model (full training set) ---
                                                                                                                                                   RandomTree
                                                                                                                                                 21:47:40 - misc.InputMappedClassifier
21:52:30 - trees.RandomTree
```

```
=== Evaluation on training set ===
       Time taken to test model on training data: 0.89 seconds
        === Summarv ===
       Correctly Classified Instances 4177
Incorrectly Classified Instances 0
Kappa statistic 1
                                                                                                                                                                                                                          100
0
       Kappa statistic
Mean absolute error
       === Detailed Accuracy By Class ===
                                                                               TF Rate FP Rate Precision Recall F-Measure MCC 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1
                                                                                                                                                                                                                                                                                                                                                    ROC Area PRC Area
1.000 1.000
1.000 1.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                      Class
Very High
Very Low
                                                                                                                                                                                                                                                                                                                                                       1.000
                                                                                                                                                                                                                                                                                                                                                                                                           1.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                        Low
Medium
                                                                                   1.000
                                                                                                                           0.000 1.000
                                                                                                                                                                                                                       1.000
                                                                                                                                                                                                                                                                 1,000
                                                                                                                                                                                                                                                                                                                    1.000
                                                                                                                                                                                                                                                                                                                                                           1,000
                                                                                                                                                                                                                                                                                                                                                                                                           1.000
       1.000 0.000 1.000
Weighted Avg. 1.000 0.000 1.000
                                                                                                                                                                                                                                                                                                                     1 000
                                                                                                                                                                                                                                                                                                                                                            1 000
                                                                                                                                                                                                                                                                                                                                                                                                            1 000
                                                                                                                                                                                                                                                                                                                                                                                                                                                         High
          === Confusion Matrix ===
              a b c d e <-- classified as 693 0 0 0 0 1 a = Very High 0 839 0 0 0 1 b = Very Low 0 0 1257 0 0 1 c = Low 0 0 0 634 0 1 d = Medium 0 0 0 0 754 | e = High
```

Test Random Tree

```
| Common | C
```

Prediction Results

=== Predictions on test set ===

```
actual predicted error prediction
inst#
  1 2:'Very Low' 2:Very Low
                              1
  2 4:Medium 4:Medium
                             1
  3
      3:Low
               3:Low
                        1
     5:High 1:Very High + 1
  5 4:Medium 1:Very High + 1
  6 1:'Very High' 1:Very High
                              1
     5:High 1:Very High + 1
  8 4:Medium 1:Very High + 1
  9
      3:Low
               3:Low
                        1
 10
      5:High 5:High
                        1
 11 1:'Very High' 1:Very High
                               1
 12 4:Medium 4:Medium
                              1
       3:Low 4:Medium + 1
 13
 14 2:'Very Low' 2:Very Low
                              1
 15
       3:Low
               3:Low
                         1
 16
       3:Low
               3:Low
                         1
 17 1:'Very High' 1:Very High
                               1
 18 1: Very High' 1: Very High
                               1
 19 1:'Very High' 1:Very High
                               1
      5:High 5:High
                         1
 20
 21 1:'Very High' 1:Very High
                               1
```

- 22 2:'Very Low' 2:Very Low 1
- 23 2:'Very Low' 2:Very Low 1
- 24 2:'Very Low' 2:Very Low 1
- 25 2:'Very Low' 2:Very Low 1
- 26 2:'Very Low' 2:Very Low 1
- 27 2:'Very Low' 2:Very Low 1
- 28 2:'Very Low' 2:Very Low 1
- 29 2:'Very Low' 2:Very Low 1
- 30 2:'Very Low' 2:Very Low 1
- 31 3:Low 3:Low 1
- 32 4:Medium 5:High + 1
- 33 2:'Very Low' 2:Very Low 1
- 34 3:Low 3:Low 1
- 35 3:Low 3:Low 1
- 36 4:Medium 4:Medium 1
- 37 2:'Very Low' 2:Very Low 1
- 38 2:'Very Low' 2:Very Low 1
- 39 2:'Very Low' 2:Very Low 1
- 40 2:'Very Low' 2:Very Low 1
- 41 2:'Very Low' 2:Very Low 1
- 42 2:'Very Low' 2:Very Low 1
- 43 2:'Very Low' 2:Very Low 1
- 44 3:Low 3:Low 1
- 45 5:High 1:Very High + 1
- 46 3:Low 4:Medium + 1

- 47 5:High 1:Very High + 1
- 48 4:Medium 1:Very High + 1
- 49 3:Low 3:Low 1
- 50 5:High 5:High 1
- 51 4:Medium 1:Very High + 1
- 52 4:Medium 4:Medium 1
- 53 5:High 1:Very High + 1
- 54 5:High 5:High 1
- 55 2:'Very Low' 2:Very Low 1
- 56 5:High 5:High 1
- 57 4:Medium 1:Very High + 1
- 58 1:'Very High' 1:Very High 1
- 59 4:Medium 4:Medium 1
- 60 4:Medium 1:Very High + 1
- 61 5:High 5:High 1
- 62 5:High 1:Very High + 1
- 63 4:Medium 4:Medium 1
- 64 1:'Very High' 1:Very High 1
- 65 1:'Very High' 1:Very High 1
- 66 4:Medium 4:Medium 1
- 67 3:Low 3:Low 1
- 68 1:'Very High' 1:Very High 1
- 69 1:'Very High' 1:Very High 1
- 70 5:High 5:High 1
- 71 1:'Very High' 1:Very High 1

- 72 5:High 5:High 1 73 1:'Very High' 1:Very High 1 74 1:'Very High' 1:Very High 75 4:Medium 4:Medium 1 76 1:'Very High' 1:Very High 1 77 4:Medium 4:Medium 1 78 1:'Very High' 1:Very High 1 79 4:Medium 4:Medium 1 80 4:Medium 4:Medium 1
- Correctly Classified Instances 65 81.25 %

Training Dagging


```
Time taken to test model on training data: 1.25 seconds
 === Summary ===
 Correctly Classified Instances
                                                                               48.1446 %
                                                 2011
2166
 Incorrectly Classified Instances
                                                                               51.8554 %
                                                     0.3168
 Kappa statistic
 Mean absolute error
 Root mean squared error
                                                        0.3383
                                                      72.806 %
 Relative absolute error
 Root relative squared error
                                                       85.3273 %
 Total Number of Instances
                                                    4177
 === Detailed Accuracy By Class ===
                                                                                                      ROC Area PRC Area Class
                        TP Rate FP Rate Precision Recall F-Measure MCC
TP Rate FP Rate Precision Recall F-Measure MCC KUC Are 0.000 0.000 ? ? 0.801 0.000 0.000 ? ? 0.801 0.000 0.000 ? ? 0.801 0.000 0.287 0.600 1.000 0.750 0.654 0.856 0.000 0.000 ? 0.000 ? ? 0.796 0.000 0.000 ? ? 0.796 0.796 0.000 0.388 0.362 1.000 0.532 0.471 0.806 0.000 0.481 0.156 ? 0.481 ? ? 0.820
                                                                                                                      0.400
                                                                                                                                    Very Low
                                                                                                                      0.600
                                                                                                                                     Low
                                                                                                                      0.305
                                                                                                                                     Medium
                                                                                                                     0.362
                                                                                                                                    High
                                                                                                                    0.428
 === Confusion Matrix ===
     a b c d e <-- classified as
0 0 0 0 0 693 | a = Very High
0 0 839 0 0 | b = Very Low
0 0 1257 0 0 | c = Low
0 0 0 0 0 634 | d = Medium
0 0 0 0 754 | e = High
                                e <-- classified as
```

Test Dagging

Prediction Results

=== Predictions on test set ===

inst# actual predicted error prediction

- 1 2:'Very Low' 3:Low + 0.6
- 2 4:Medium 5:High + 0.362
- 3 3:Low 3:Low 0.6
- 4 5:High 5:High 0.362
- 5 4:Medium 5:High + 0.362
- 6 1:'Very High' 5:High + 0.362
- 7 5:High 5:High 0.362
- 8 4:Medium 5:High + 0.362
- 9 3:Low 3:Low 0.6
- 10 5:High 5:High 0.362
- 11 1:'Very High' 5:High + 0.362
- 12 4:Medium 5:High + 0.362
- 13 3:Low 5:High + 0.362
- 14 2:'Very Low' 3:Low + 0.6
- 15 3:Low 5:High + 0.362
- 16 3:Low 5:High + 0.362
- 17 1:'Very High' 5:High + 0.362
- 18 1:'Very High' 5:High + 0.362
- 19 1:'Very High' 5:High + 0.362
- 20 5:High 5:High 0.362
- 21 1:'Very High' 5:High + 0.362

- 22 2:'Very Low' 3:Low + 0.6
- 23 2:'Very Low' 3:Low + 0.6
- 24 2:'Very Low' 3:Low + 0.6
- 25 2:'Very Low' 3:Low + 0.6
- 26 2:'Very Low' 3:Low + 0.6
- 27 2:'Very Low' 3:Low + 0.6
- 28 2:'Very Low' 3:Low + 0.6
- 29 2:'Very Low' 3:Low + 0.6
- 30 2:'Very Low' 3:Low + 0.6
- 31 3:Low 3:Low 0.6
- 32 4:Medium 5:High + 0.362
- 33 2:'Very Low' 3:Low + 0.6
- 34 3:Low 3:Low 0.6
- 35 3:Low 3:Low 0.6
- 36 4:Medium 5:High + 0.362
- 37 2:'Very Low' 3:Low + 0.6
- 38 2:'Very Low' 3:Low + 0.6
- 39 2:'Very Low' 3:Low + 0.6
- 40 2:'Very Low' 3:Low + 0.6
- 41 2:'Very Low' 3:Low + 0.6
- 42 2:'Very Low' 3:Low + 0.6
- 43 2:'Very Low' 3:Low + 0.6
- 44 3:Low 3:Low 0.6
- 45 5:High 5:High 0.362
- 46 3:Low 5:High + 0.362

- 47 5:High 5:High 0.362
- 48 4:Medium 5:High + 0.362
- 49 3:Low 3:Low 0.6
- 50 5:High 5:High 0.362
- 51 4:Medium 5:High + 0.362
- 52 4:Medium 5:High + 0.362
- 53 5:High 5:High 0.362
- 54 5:High 5:High 0.362
- 55 2:'Very Low' 3:Low + 0.6
- 56 5:High 5:High 0.362
- 57 4:Medium 5:High + 0.362
- 58 1:'Very High' 5:High + 0.362
- 59 4:Medium 5:High + 0.362
- 60 4:Medium 5:High + 0.362
- 61 5:High 5:High 0.362
- 62 5:High 5:High 0.362
- 63 4:Medium 5:High + 0.362
- 64 1:'Very High' 5:High + 0.362
- 65 1:'Very High' 5:High + 0.362
- 66 4:Medium 5:High + 0.362
- 67 3:Low 3:Low 0.6
- 68 1:'Very High' 5:High + 0.362
- 69 1:'Very High' 5:High + 0.362
- 70 5:High 5:High 0.362
- 71 1:'Very High' 5:High + 0.362

```
72 5:High 5:High 0.362
```

Correctly Classified Instances 22 27.5 %

Training MultiBoostAB

Weka tool showing an error for same training and test data.

Final Accuracy table

		Correct
Classifier	Accuracy(%)	Instance
RandomTree	81.25	65
RandomCommittee	80	64
Logitboost	72.5	58
Bagging	55	44
AdaBoostM1	27.5	22
Dagging	27.5	22