For a given N N, find the number of ways to choose an integer xx from the range $[0,2^N-1][0,2N-1]$ such that $x \oplus (x+1)=(x+2) \oplus (x+3)$ $x \oplus (x+1)=(x+2) \oplus (x+3)$, where \oplus denotes the bitwise XOR operator.

Since the number of valid xx can be large, output it modulo $10^9 + 7$ 109+7.

Input

- The first line contains an integer TT, the number of test cases. Then the test cases follow.
- The only line of each test case contains a single integer $N\ N$.

Output

For each test case, output in a single line the answer to the problem modulo $10^9 \pm 7$ 109+7.

Constraints

- $1 \le T \le 10^5$ $1 \le T \le 105$
- $1 \le N \le 10^5$ 1 \le N \le 105

Subtasks

Subtask #1 (100 points): Original Constraints

Sample Input

2

2

Sample Output

1 2

Explanation

Test Case 11: The possible values of xx are $\{0\}\{0\}$.

Test Case 22: The possible values of xx are $\{0,2\}\{0,2\}$.