

LABORATORIUM NR 5

Celem ćwiczenia jest poznanie metod konfiguracji tras statycznych w protokole IPv6. Pod względem zakresu poruszanych tematów ćwiczenie jest tożsame z cwiczeniem nr 3. Dzięki temu student ma możliwość porównania zasad konfiguracji routingu statycznego w IPv4 jak i IPv6.

Zapis adresów IPv6 i ich prefiksy.

Dlugość adresu IPv6 128 bits. Najpopularniejszy jego zapis to zapis szesnastkowodwukropkowy, który zawiera 32 szestastkowe wartości, pogrupowane po cztery (w tzw. hextety) i rozdzielone dwukropkiem(4 x 32 = 128). Przykładowa postać adresu to: A

2001:0DB8:0001:0000:0000:0000:0000:0001

Innymi słowami, w adresach IPv6, każdy pojedynczy hextet to 16 bits a osiem hextetów definiuje 128-bitowy adres IPv6.

11111111111111 = FFFF (pojedynczy hextet)

Typ adresu określony jest za pomocą najstarszych bitów adresu (tzw. prefiksów). Zakres najpopularniejszych prefiksów jest przedstawiony w tabeli poniżej.

First Hextet (Far Left)	Type of IPv6 Address		
0000 to 00FF	Loopback address, any address, unspecified address, or IPv4-compatible		
2000 to 3FFF	Global unicast address (a routable address in a range of addresses that currently being handed out by the Internet Assigned Numbers Authori [IANA])		
	Link-local (a unicast address which identifies the host computer on the local network)		
FC00 to FCFF	Unique-local (a unicast address which can be assigned to a host to ider it as being part of a specific subnet on the local network)		
FF00 to FFFF	Multicast address		

UWAGI:

- 1. Istnieją jeszcze inne typy adresów, których wykorzystanie nie jest jeszcze zbyt szerokie. Przykładem mogą być adresy typu anycast.
- 2. Adresy typu site-local, które w zamierzeniu miały zastępować adresy prywatne IPv4, nie są już wykorzystywane w praktyce i zostały zastąpione przez powszechne korzystanie z adresów typu unique-local.
- 3. W sieciach bazujących na protokole IPv6 nie stosuje się adresów sieci i adresów broadcast.

Zasady stosowania skrotów w zapisie adresów IPv6.

Zasada 1:

W adresach IPv6, ciąg czterech zer w danym hextecie może zostać skrócony do postaci pojedyńczego zera.

2001:0404:0001:1000:**0000:0000**:0EF0:BC00

2001:0404:0001:1000:**0:0**:0EF0:BC00

Zasada 2:

W adresach IPv6, początkowe zera w danym hextecie mogą zostać pominięte. Jednocześnie należy pamiętać, że ostatnie zera nie może być pominięte.

2001:**0**404:**000**1:1000:0000:0000:**0**EF0:BC00

2001:404:1:1000:0:0:EF0:BC00

Zasada 3:

W adresach IPv6, pojedynczy ciąg czterech albo więcej zer (tylko jeden taki ciąg w adresie podlega tej regule) może zostać zapisany w skróconej formie jako dwa dwukropki (::).

2001:0404:0001:1000:**0000:0000**:0EF0:BC00

2001:404:1:1000::EF0:BC00

Hierarchia prefiksów w adresacji IPv6

Struktura adresu IPv6 zawiera dwie główne części: część sieciową reprezentowaną przez pierwsze 64 bity adresu (pierwsze cztery hextety) oraz cześć hosta zawierającą ostatnie 64 bity. Poniżej zilustrowany jest taki podział na przykładzie typowego adresu typu global unicast:

Część sieciowa: 2001:DB8:0001:ACAD:xxxx:xxxx:xxxx:xxxx Część hosta: xxxx:xxxx:xxxx:xxxx:0000:0000:0001

Dlugość części sieciowej zapisywana jest analogicznie jak długość prefiksu sieciowego w CIDR w IPv4. Poniżej przedstawione są przykładowe adresy IPv6 z częścią sieciową (prefiksem sieciowym) o różnych długościach.

Global unicast address:	d unicast address: 2001:DB8:0001:ACAD:0000:0000:0000:0001/64		
Loopback address:	::1/128		
Multicast address:	Iticast address: FF00::/8		
All networks address:	etworks address: ::/0 (similar to a quad zero address in IPv4)		
Link-local address	fe80::8d4f:4f4d:3237:95e2%14 (notice that the slash fourteen at the end of the address is represented by a percent sign and the decimal number of fourteen. This address was taken from the output of an ipconfig /all command in the Windows Command Prompt)		

Analizując część sieciową adres od lewej do prawej, można odczytać hierarchiczną strukturę adresu IPv6 typu global unicast. Ilustrują to przykłady ponizej:

- IANA Global Routing Number (pierwsze trzy bity ustawione na wartość 001)
 200::/12
- Regional Internet Registry (RIR) Prefix (bity od /12 do /23)
 2001:0D::/23 (szestnastkowy zapis D to 1101 binarni. Bity 21 tdo 23 to 110 a ostatni bit jest częścią ISP Prefix)
- Internet service provider (ISP) Prefix (bity do /32)

2001:0DB8::/32

 Site Prefix or Site Level Aggregator (SLA), przypisywany do danego odbiorcy przez dostawcę usług sieciowych ISP (bity do /48)

2001:0DB8:0001::/48

Subnet Prefix (przypisywany przez końcowego odbiorcy; bity do /64)
 2001:0DB8:0001:ACAD::/64

Interface ID

2001:DB8:0001:ACAD:**8D4F:4F4D:3237:95E2**/64

Rysunek poniżej ilustruje prefiksy występujące w adresach IPv6 czyli:

- 1. Global Routing Prefix /32
- 2. Site Level Aggregator (SLA) /48
- 3. Subnet ID (LAN) /64
- 4. Interface ID (last 64 bits)

UWAGA:

Część hosta w adresie IPv6 powinna być nazywana jako Interface ID, ponieważ nie identyfikuje konkretnego hosta a jego interfejs sieciowy. Dodatkowo, każdy interfejs sieciowy danego hosta może mieć wiele adresów IPv6 a za tym, wiele Interface ID.

Konfiguracja tras statycznych i domyślnych w IPv6

Trasy statyczne w IPv6 można podzielić na pięć podstawowych grup z czego pierwsze trzy odgrywają najważniejsze znaczenie w praktycznych przypadkach konfiguracji routerów:

 Directly Connected IPv6 Static Route (trasa bezpośrednia) – tworzona jest w przypadku podania interfejsu wyjściowego. Ten typ trasy statycznej jest zazwyczaj wykorzystywany w połączeniach szeregowych typu point-to-point. Składnia polecenia jest następująca:

Router(config)# ipv6 route <ipv6-prefix/prefix-length> <outgoing-interface-type> <outgoing-interface-number>

 Recursive IPv6 Static Route (trasa rekurencyjna) – tworzona jest w przypadku podania adresu IP następnego skoku. Nazwa pochodzi stąd, że w przypadku takiej trasy router musi dokonać rekurencyjnego przeglądu tablicy routingu by określić interfejs wyjściowy. Składnia polecenia jest następująca:

Router(config)# ipv6 route <ipv6-prefix/prefix-length> <next-hop-ipv6-address>

• Default IPv6 Static Route (trasa domyślna) – jest odpowiednikiem trasy domyślnej, poznanej dla IPv4. Notacja trasy domyślnej polega na zapisaniu wyzerowanego prefiksu adresu docelowego i wyzerowanej długości prefik czyli ::/0. Podobnie jak w IPv4, w składni polecenia można użyć nazwy i numeru interfejsu wyjściowego lub adresu IPv6 następnego skoku.

Router(config)# ipv6 route ::/0 <outgoing-interface-type> <outgoing-interface-number> {and/or} <next-hop-ipv6-address>

• Fully specified static IPv6 route (trasa z pełnym opisem) - tworzona jest w przypadku podania w poleceniu tak adresu IPv6 następnego skoku jak i interfejsu wyjściowego. W praktyce wykorzystywana stosunkowo rzadko, w starszych wersjach systemu IOS na łączach typu punkt-punkt. Przykład konfiguracji trasy statycznej tego typu ilustruje rysunek niżej:

Floating Static Route (trasa zastępcza) - jest to taki rodzaj trasy statycznej, która posiada odleglość administracyjną większą niż pozostałe trasy statyczne lub dynamiczne (zagadnienie to było tematem pytania na zakończenie poprzedniego ćwiczenia). Dzięki

temu, w przypadku niedostępności trasy preferowanej jest ona tą, która może przejąć ruch sieciowy. Przykład wykorzystania Floating Static Route przedstawia rysunek poniżej

Sumaryzacja tras w IPv6

Sumaryzacja tras w IPv6 podlega tym samym regułom co poznana wcześniej, sumaryzacja tras w IPv4. Wielokrotne trasy statyczne IPv6 mogą zostać zsumaryzowane do pojedynczej trasy statycznej jeżeli:

- sieci docelowe są ciągłe i mogą zostać zsumowane do pojedynczego adresu sieciowego.
- wielokrotne trasy statyczne wykorzystują ten sam interfejs wyjściowy lub adres IPv6 następnego skoku.

Reguła postępowania przy sumaryzacji tras w IPv6.

- Krok 1. Wylistuj wszystkie adresy (prefiksy) i zidentyfikuj te części, które się różnia.
- Krok 2. Usuń wszystkie skrócone formy zapisu (jeśli występują) i zamień różniące się fragmenty (hekstety) z zapisu szesnatkowego do binarnego.
- Krok 3. Wyznacz od lewej liczbę bitów "niezmieniających się" by określić długośc prefiksu dla trasy sumarycznej.
- Krok 5. Skopiuj wszystkie "niezmieniające się" bity i dodaj bity zerowe by określic adres zsumaryzowany (prefix).
- Krok 6. Zamień adres z postaci binarnej do szesnastkowej zgodnej z konwencją zapisu adresów IPv6.

Przykład usunięcia tras wielokrotnych i dodanie trasy sumarycznej ilustruje rysunek poniżej.

PRZEBIEG ĆWICZENIA

UWAGA: W sprawozdaniu muszą znaleźć się wszystkie elementy (pytania, polecenia) wyróżnione kolorem czerwonym.

Uwaga:

podane na rysunku nazwy interfejsów prosze traktować jako przykładowe i w trakcie wykonywania ćwiczenia uwzględniać typ użytych routerów i switchy.

Ćwiczenie należy rozpocząć od utworzenia fizycznej sieci zgodnej z rysunkiem powyżej. Prosze zastosować adresację zgodnie z tabelą poniżej:

Device	Interface	IPv6 Address / Prefix Length	Default Gateway
R1	G0/1	2001:DB8:ACAD:A::/64 eui-64	N/A
	S0/0/1	FC00::1/64	N/A
R3	G0/1	2001:DB8:ACAD:B::/64 eui-64	N/A
	S0/0/0	FC00::2/64	N/A
PC-A	NIC	SLAAC	SLAAC
PC-C	NIC	SLAAC	SLAAC

Krok 1. Konfiguracja adresów IPv6 na interfejsach routerów.

a. Przypisz pierwszemu routerowi nazwę R1.b. Zezwól na routing IPv6.c. Skonfiguruj interfejsy sieciowe routera R1 zgodnie z tabelą powyżej.
R1(config)# interface g0/1 R1(config-if)# ipv6 address 2001:DB8:ACAD:A::/64 eui-64 R1(config-if)# no shutdown R1(config-if)# interface serial 0/0/1 R1(config-if)# ipv6 address FC00::1/64 R1(config-if)# no shutdown R1(config-if)# exit
d. Powtórz punkty a - c dla routera R3.
e. Sprawdż czy na komputerach PC-A oraz PC-C ustawione jest automatyczne przypisanie adresów IPv6 i adres serwera DNS. Przeładuj interfejsy sieciowe komputerów PC.
f. Z komputera PC-A i PC-C, sprawdz działanie polecenia ping na adres link-local bramy domyślnej.
C:\Users\student> ping -6 <default-gateway-address></default-gateway-address>
Czy test ping zakończył się sukcesem ? dla PC-A dla PC_C
g. Wykonaj test ping z PC-A do PC-C.
C:\Users\student> ping -6 PC-C-IPv6-address
Czy ping zakonczył działanie z sukcesem ? Uzasadnij odpowiedź ?
Krok 2. Weryfikacja ustawień IPv6 na routerach
a. Sprawdź status interfejsów na R1 za pomocą polecenia show ipv6 interface brief. Odpowiedz na poniższe pytania.
Jakie dwa adresy IPv6 są zarejestrowane na interfejsie G0/1 i jakiego typu są to adresy?
Jakie dwa adresy IPv6 są zarejestrowane na interfejsie S0/0/1 i jakiego typu są to adresy?

b. W celu otrzymania szczegółowszych informacji o ustawieniach IPv6 interfejsów routera R1, wydaj polecenie show ipv6 interface . Odpowiedz na poniższe pytania.

Czy do ktoregoś interfejsu przypisany jest adres multikastowy FF02::1 a jeśli tak to do którego i do czego jest wykorzystywany ?

Czy do któregoś interfejsu przypisany jest adres multikastowy FF02::2 a jeśli tak to do któregi i do czego jest wykorzystywany ?

Do czego służą adresy multikastowe FF02::1:FF00:1 oraz FF02::1:FF0D:1A60 ?

c. Wyświetl tablicę routingu IPv6 na routerze R1 za pomocą polecenia show ipv6 route.

Czy na podstawie wyświetlonych informacji można uzasadnić niepowodzenie testu ping z PC-A do PC-C ? Jeśli tak, to prosze podać to uzasadnienie poniżej.

Krok 3. Konfiguracja tras statycznych IPv6.

- 1. Konfiguracja trasy statycznej typu directly connected
- a. Na routerze R1 skonfiguruj trasę statyczną do sieci 2001:DB8:ACAD:B::/64 na routerze R3, wykorzystując interfejs wyjściowy S0/0/1 na routerze R1.

R1(config)# ipv6 route 2001:DB8:ACAD:B::/64 serial 0/0/1

- b. Umieść w sprawozdaniu tablicę routingu dla R1.
- c. Na routerze R3 skonfiguruj trasę statyczną do sieci 2001:DB8:ACAD:A::/64 na routerze, wykorzystując interfejs wyjściowy S0/0/0 na routerze R3.

R3(config)# ipv6 route 2001:DB8:ACAD:A::/64 serial 0/0/0

d. Wykonaj test ping pomiędzy PC-A i PC-C. Czy zakończył się on sukcesem? Uzasadnij odpowiedź.

- 2. Konfiguracja trasy statycznej typu recursive
- a. Na routerze R1 usuń trasę statyczną do sieci 2001:DB8:ACAD:B::/64 i dodaj statyczną trasę typu recursive.

R1(config)# no ipv6 route 2001:DB8:ACAD:B::/64 serial 0/0/1 R1(config)# ipv6 route 2001:DB8:ACAD:B::/64 FC00::2 R1(config)# exit

b. Na routerze R3 usuń trasę statyczną do sieci 2001:DB8:ACAD:A::/64 i dodaj statyczną trasę typu recursive.

R3(config)# no ipv6 route 2001:DB8:ACAD:A::/64 serial 0/0/0 R3(config)# ipv6 route 2001:DB8:ACAD:A::/64 FC00::1 R3(config)# exit

- c. Umieść w sprawozdaniu tablicę routingu dla R3.
- d. Wykonaj test ping pomiędzy PC-A i PC-C.Czy zakończył się on sukcesem?
- 3. Konfiguracja trasy statycznej typu default.
- a. Na routerze R1 usuń statyczną trasę typu recursive i dodaj trasę domyślną

R1(config)# no ipv6 route 2001:DB8:ACAD:B::/64 FC00::2 R1(config)# ipv6 route ::/0 serial 0/0/1 R1(config)#

- b. Powtórz punkt a w odniesieniu do routera R3.
- c. Umieść w sprawozdaniu tablicę routingu dla R3.
- d. Wykonaj test ping pomiędzy PC-A i PC-C.Czy zakończył się on sukcesem?

ZADANIE DO SAMODZIELNEGO OPRACOWANIA

Przedstaw szczegółowo (wedlug reguł umieszczonych we wstępie do instrukcji) proces sumaryzacji dwóch sieci IPv6:

2001:CC1E:2AB3:1A3C::/64 2001:CC1E:2AB3:1A4D::/64

SPRAWOZDANIE NALEŻY UMIEŚCIĆ NA DROPBOX W KATALOGU /Laboratorium/Sprawozdania/<dzień tygodnia_godz. rozpoczęcia zajęć>

PLIK SPRAWOZDANIA PROSZĘ NAZWAĆ WEDŁUG SCHEMATU: Spr5_<nazwisko studenta wykonującego sprawozdanie>.pdf

PREFEROWANY FORMAT PLIKU: PDF