NP-Completeness

Preliminaries

Polynomial-Time algorithm:

On input size n the worst-case running time is $O(n^k)$ for some constant k.

Turing's Halting problem:

Not solvable by any computers

Tractability: Synonymous to polynomial-time.

NP- Complete Problems (an interesting class)

 No polynomial time algorithm has yet been discovered for an NP-Complete problem

 No one has been able to prove that no polynomial time algo can exist for any one of them

 P ≠ NP → most perplexing open research problem

Polynomial-time Solvable VS NP-Completeness

Polynomial-time Solvable

Shortest Path

• Euler Tour

• 2-CNF

NP-Completeness

- Longest Simple Path (NP-Complete even if all edge weight are 1)
- Hamiltonian Cycle
- 3-CNF

- P consists of problems solvable in polynomial time.
- NP consists problems that are verifiable in polynomial time
- If we were given a certificate of a solution, we can verify whether it is correct in polynomial time
- P ⊆ NP?
- (Open question whether P is a proper subset of NP)

NP-Complete Definition

 A problem P' is in NP and it is as hard as any problem in NP

 If any NP-Complete problem has a polynomial time algorithm, then every one will have one.

Optimization VS Decision Problem

• Given an instance α of problem A, use a polynomial time reduction algorithm to transform it to an instance β of B.

 \bullet Run the polynomial time decision algorithm for B on the instance β

• Use the answer for β as the answer for α

- By reducing solving problem A to solving problem B, we use the easiness of 'B' to prove easiness of 'A'.
- The same technique can now be used to show the same hardness of B if we already know the hardness of A.

 We will prove that B is NP-Complete by using the result that A is NP-complete.

First NP-Complete problem is required.

3-SAT was first proved to be NP-Complete.

Formal Language Framework

• An alphabet \sum is a finite set of symbols

- A language L over \sum is any set of strings made up of symbols from \sum .
- Example: $\sum = \{0, 1\}$, L = $\{10, 11, 101, 111, 1011, \dots\}$ is the language representing the binary strings for all prime numbers

Union and Intersection are defined on language

• Complement of L is L' = \sum^* - L

• Concatenation of 2 languages L_1 and L_2 is the language $L = \{X_1X_2 : X_1 \subseteq L_1 \text{ and } X_2 \subseteq L_2\}$

Closure or kleen star of a language L is the language L* = {∈} U L U L² U L³ U......

where L^k is the language obtained by concatenating L to itself k times.

- The set of instances of any decision problemQ is simply the set \sum^* , where \sum = {0, 1} since Q is entirely characterized by those problem instances that produce a 1 / (yes) answer, we can view Q as a language L over \sum = {0, 1}, where L = {x \in \sum^* : Q(x) = 1}
- We say an algo A accepts a string $x \in \{0, 1\}^*$, if given input x, the output of the algorithm A(x) is 1. L = $\{x \in \{0, 1\}^* : A(x) = 1\}$
- A language L is decided by an algorithm A if every binary string in L is accepted by A and every binary string not in L is rejected by A

A tentative definition of complexity Class P

• P = {L \subseteq {0, 1}*: \exists an algo. A that decides L in polynomial time}.

Verification Algorithm

 Two argument algorithm A, Where one argument is an ordinary input string x and the other is a binary string y called a certificate.

• A 2-argument algorithm A verifies an input string x if there exists a certificate y such that A(x, y) = 1.

Complexity class NP

- The class of languages that can be verified by a polynomial time algo.
- More precisely a language L belongs to NP if
 ∃ a two input poly-time algo A and a
 constant c such that
 - L = $\{x \in \{0, 1\}^* : \exists certificate y with |y| = O(|x|^c) such that A(x, y) = 1.\}$
- $L_1 \le_p L_2 \implies L_1$ is not more than a polynomial factor harder than L_2

NP Complete language

- A language $L \subseteq \{0, 1\}^*$ is NP-complete if
 - \Box L \subseteq NP, and

 \square L' \leq p L for every L' \in NP

- ☐ If only condition 2 is satisfied then L is
 - **NP-hard**

Optimization Problem

Find the maximum sized clique from a graph

 The corresponding decision problem called clique decision problem (CDP) is NP-Complete

 CNF satisfiability is NP- Complete by Cook-Levin theorem.

Karp reduced CNF-Sat to CDP.

Construction

- It has a vertex for every pair (v, c).
 - v is a variable or its negation (v'),
 - c is a clause in the formula f that contains v.
- Edges are there between (v, c) and (u, d) if , c
 ≠ d and u ≠ v'
- Means: between any 2 literals in different clauses, who are not each other's negation.

Example

(x U y U z) ^ (x' U y' U z') ^ (x' U y U z)

The 3 highlighted vertices give a 3-clique and correspond to a satisfying assignment.

• If k denotes the no. of clauses in the CNF formula (f), then the k-vertex clique in the graph represents ways of assigning truth values to some of its variables in order to satisfy the formula.

• f is satisfiable iff a k-clique exists.