

Modulhandbuch

für den Studiengang

Bachelor of Science Life Science Engineering

(Prüfungsordnungsversion: 20192)

Inhaltsverzeichnis

Allgemeine und Anorganische Chemie	3
Bachelorarbeit (B.Sc. Life Science Engineering 20192)	5
Bioanalytik	
Biochemie 1 und 2	10
Bioinformatik	12
Bioprozesstechnik mit Hauptseminar	14
Bioseparation	
Biotechnologie 1: Grundlagen der Zellbiotechnologie	18
Biotechnologie 2: Bioreaktions- und Bioverfahrenstechnik	
Biotechnologie 3: Medizinische Biotechnologie	
Biotechnologie 4: Metabolic Engineering	
Computeranwendungen in der Verfahrenstechnik 1	
Experimentalphysik	
Grenzflächen in der Biotechnologie	
Konstruktionslehre	
Mathematik für LSE 1	
Mathematik für LSE 2	
Mathematik für LSE 3	
Mechanische Verfahrenstechnik	
Mikrobiologie	
Organische Chemie	
Physikalische Chemie	
Praktikum Life Science Engineering 1	
Praktikum Life Science Engineering 2	49
Technisches Zeichnen	
Thermodynamik und Wärmeübertragung	
Thermofluiddynamik der Biotechnologie	
Wahlmodul aus dem Angebot der FAU	
Wahlpflichtmodul	
Bioprozessautomation	
Chemische Reaktionstechnik	
Experimental fluid mechanics	
Genetic Engineering (Gentechnik)	
Immunologie	
Medizintechnik I (Biomaterialien)	
Organ-Funktion und Organ-Technik	
Prozessmaschinen und Apparatetechnik	
Reaktionstechnik	
Scientific computing in engineering 2	76
Zellkulturtechnik für LSE (Wahlnflichtfach)	77

1	Modulbezeichnung 62050	Allgemeine und Anorganische Chemie General and inorganic chemistry	7,5 ECTS
		Vorlesung: Allgemeine und Anorganische Chemie (mit Experimenten) (4 SWS)	5 ECTS
2	Lehrveranstaltungen	Praktikum: Anorganisch-analytisch-chemischer Kurs für Anfänger (CBI/LSE/CEN)) (2 SWS)	-
		Seminar: Seminar z. AnorganChemischen Praktikum für CBI, LSE, CEN (1 SWS)	-
3	Lehrende	Prof. Dr. Karsten Meyer Prof. Dr. Karl Mandel	

4	Modulverantwortliche/r	Prof. Dr. Karsten Meyer
5	Inhalt	(1) Allgemeine Chemie: Aufbau der Materie, Stöchiometrische Grundgesetze, Aggregatzustände, Gasgesetze und Atommassenbestimmung, Atombau und Periodensystem, Chemische Bindung, Molekülstrukturen (VSEPR, Hybridisierung), Struktur-Eigenschafts-Beziehungen, Chemische Reaktionen, Thermodynamik, Reaktionskinetik, Massenwirkungsgesetz, Löslichkeitsprodukt, Säure-Base-Gleichgewichte, Elektrochemie, Regeln und Einheiten. (2) Anorganische Chemie: Ausgewählte Hauptgruppenelemente mit den Schwerpunkten: Physikalische Eigenschaften, Vorkommen, Darstellung in Labor und Technik, Chemische Eigenschaften, wichtigste Verbindungen, Anwendungen in Natur und Technik. Chemische Terminologie und Nomenklatur. Themen im Rahmen des Praktikums: Elementare Sicherheitsfragen beim Umgang mit Gefahrstoffen im nasschemischen und qualitativ analytischen Bereich. Sicherer Umgang mit den dabei verwendeten Chemikalien. Erlernen von Konzepten des chemischen Experimentierens. Erlernen der wissenschaftlichen Dokumentation durch Führen eines Laborjournals. Qualitative Analyse ausgewählter Kationen und Anionen. Quantitative Analyse durch Titration (Säure-Base, Komplexometrie, Iodometrie).
6	Lernziele und Kompetenzen	 verstehen die Grundlagen der anorganischen Chemie sowie der qualitativen und quantitativen Analyse als Basis für die Kernfächer der technischen Chemie kennen die chemische Terminologie und einfache Syntheseprinzipien verstehen Beziehungen zwischen Struktur und Eigenschaften verschiedener chemischer Verbindungen erwerben Fachkompetenzen und kritisches Verständnis der Chemie ausgewählter Hauptgruppenelemente des Periodensystems und können die Zusammenhänge zwischen ihren physikalischen und chemischen Eigenschaften unter anwendungsorientierten Gesichtspunkten nachvollziehen

	Voraussetzungen für die	 können mit Gefahrstoffen und Abfällen in chemischen Laboratorien sicher umgehen wenden die Laborarbeitstechniken zur qualitativen und quantitativen Bestimmung von Ionen in wässriger Lösung in der Laborpraxis an können die im Praktikum erhaltenen Daten auswerten 	
7	Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (180 Minuten) Praktikumsleistung	
11	Berechnung der Modulnote	Klausur (100%) Praktikumsleistung (0%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 105 h Eigenstudium: 120 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	Vorlesung: Lehrbuch der Anorganischen Chemie; Holleman-Wiberg; 2007 Allgemeine und Anorganische Chemie; Binnewies, Jäckel, Willner; 2003 Anorganische Chemie, Housecroft, Sharpe; 2006 Praktikum: Jander/Blasius Anorganische Chemie I+II: Einführung & Qualitative Analyse / Quantitative Analyse & Präparate; 2011	

1	Modulbezeichnung 1999	Bachelorarbeit (B.Sc. Life Science Engineering 20192) Bachelor's thesis	15 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	
5	Inhalt	Die Bachelorarbeit umfasst eine praktische Tätigkeit an einem aktuellen Forschungsprojekt am Department Chemie- und Bioingenieurwesen. Folgende Themenbereiche stehen zur Verfügung: • Bioreaktions- und Bioverfahrenstechnik • Chemische Reaktionstechnik • Energieverfahrenstechnik • Mechanische Verfahrenstechnik • Medizinische Biotechnologie • Multiscale Simulation • Strömungsmechanik • Technische Thermodynamik • Thermische Verfahrenstechnik
6	Lernziele und Kompetenzen	 kennen die Grundlagen des wissenschaftlichen Arbeitens in einem der ausgewählten Fachgebiete des Life Science Engineerings und können eine begrenzte Fragestellung auf diesem Gebiet selbständig bearbeiten setzen sich kritisch mit wissenschaftlichen Ergebnissen auseinander und ordnen diese in den jeweiligen Erkenntnisstand ein wenden die Grundlagen der Forschungsmethodik an, indem sie relevante Informationen sammeln, Daten und Informationen interpretieren und bewerten können komplexe fachbezogene Inhalte klar und zielgruppengerecht schriftlich und mündlich präsentieren und argumentativ vertreten können ihren eigenen Fortschritt überwachen und steuern
7	Voraussetzungen für die Teilnahme	Zulassungsvoraussetzung zur Bachelorarbeit ist der Erwerb von mindestens 110 ECTS-Punkten sowie der erfolgreiche Abschluss der GOP (s. ABMPO/TechFak § 27 (3)).
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192
10	Studien- und Prüfungsleistungen	mündlich schriftlich (5 Monate)

		Die Bearbeitungszeit der Bachelorarbeit beträgt ca. 360 Stunden. Die Bachelorarbeit und deren Ergebnisse sind im Rahmen eines max. 30 Minuten dauernden Referates mit anschließender Diskussion vorzustellen. Die Bachelorarbeit wird mit 12, das Referat mit 3 ECTS-Punkten veranschlagt (s. FPO LSE § 40).
11	Berechnung der Modulnote	mündlich (20%) schriftlich (80%)
12	Turnus des Angebots	keine Angaben zum Turnus des Angebots hinterlegt!
13	Wiederholung der Prüfungen	Die Prüfungen dieses Moduls können nur einmal wiederholt werden.
14	Arbeitsaufwand in Zeitstunden	Präsenzzeit: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt) Eigenstudium: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt)
15	Dauer des Moduls	?? Semester (keine Angaben zur Dauer des Moduls hinterlegt)
16	Unterrichts- und Prüfungssprache	Deutsch
17	Literaturhinweise	keine Literaturhinweise hinterlegt!

1	Modulbezeichnung 63350	Bioanalytik Bioanalytics	7,5 ECTS
2	Lehrveranstaltungen	Übung: Bioanalytik - Übung (1 SWS) Praktikum: Bioanalytik - Praktikum (2 SWS) Vorlesung: Bioanalytik (2 SWS)	- 2,5 ECTS 5 ECTS
3	Lehrende	Lucas Kreiß Dr. Martin Vielreicher Prof.Dr.Dr. Oliver Friedrich Dr. Cornelia Damm Prof. DrIng. Sebastian Aljoscha Wahl	

4	Modulverantwortliche/r	Dr. Martin Vielreicher
5	Inhalt	*Vorlesung*: • Einführung in Konzepte der Datenerhebung, Messdaten, Anwendungsgebiete in den Lebenswissenschaften (z.B. Forensische Bio-analytik, Lebensmittelanalytik, Labordiagnostik, analytische Trenntechnik), Einheiten und physiko-chemische Größen • Statistische Verfahren und Tests, Datenpopulationen, Verteilungen und Beschreibungen, Mittelwerte, Standardabweichungen, Statistische Tests und deren Gültigkeit (Student t-Test, ANOVA, nicht-parametrische Tests), Fehler 1. und 2. Art, Konfidenzintervalle, Beispiele • Allgemeine Messtechniken für, z.B., Temperatur, Druck, pH-Wert, Osmolarität, Ionen-Konzentrationen; Arbeitsweise der Mess-Sensoren (ionen-selektive Elektroden, Osmometer, etc.), Kalibration und Fit-Prozeduren, allgemeine Sensor-Antworten • Licht-Analytik (nicht bildgebend): Lichtabsorption, Extinktion, Lambert-Beer-Gesetz, Spektren, Spektrometrie, optische Filter, Plate-Reader und Anwendungen • Licht-Analytik (bildgebend): Lichtmikroskopie-Verfahren (Hellfeld, Dunkelfeld, Phasenkontrast, Differentieller Interferenz-Kontrast), Abbildung von Zellen und morphologische Beschreibungen • Chromatographie (Grundlagen und Messprinzipien), biologische Beispiele chromatographischer Analytik • Nukleinsäure-Analytik, Eigenschaften von Nukleinsäuren, Konzentrationsbestimmung, Polymerase-Kettenreaktion • Analytische elektrochemische Trenntechnik, Elektrophorese (Agarose-Geleektrophorese, SDS-PAGE) • Proteinanalytik, Bestimmung von Proteinkonzentrationen (z.B. Bradford), Bestimmung einzelner Proteine, HPLC (Ihigh pressure liquid chromatographyl) • Übergreifende Anwendungsbereiche, z.B. aus der forensischen Analytik (Vaterschaftstests, Drogentests, Vergiftungen)

		 Das Praktikum besteht aus zwei Messtechnik-Versuchen, die jeweils über einen Tag stattfinden. Versuche sind u.a. Chemische und Proteindiagnostik im eigenen Urin unter Bedingungen normo-, Anti- und Wasserdiurese *(MBT)* Bestimmung von wasserlöslichen Vitaminen in Nahrungsergänzungspräpa-raten mittels HPLC-UV/Vis *(BVT)* Wirbelschicht-Coating von Pellets/Tabletten zur Einstellung des Lösungs-verhaltens *(LFG)* Bestimmung von Koffein als organischer Verbindung mittels HPLC *(TVT)*
6	Lernziele und Kompetenzen	 Anwendungsgebiete der Analytik in Bereichen der Lebenswissenschaften benennen und sinnvolle Messtechniken zur Erhebung von spezifischen Daten auswählen können Messprinzipien verschiedener Sensoren erklären können und deren Limitationen gegenüber anderen Sensor-Typen gleicher Modalität für ihre eigenen Messungen erfassen können Grundzüge der Datenerhebung und kritische Evaluation von Messdaten anhand statistischer Beschreibungen erlernen und bewerten lernen die wichtigsten analytischen Verfahren für Biomoleküle (mit Fokus auf Proteinen und Nukleinsäuren) benennen und anwenden lernen sowie deren Nachweisgrenzen einordnen können Grundzüge der bildgebenden Zell-Analytik für die Untersuchung von Zellen in Bereichen der Labormedizin, Zellbiologie und Biotechnologie kennen lernen und die für spätere Experimente besten Verfahren zur Visualisierung auswählen können
7	Voraussetzungen für die Teilnahme	Keine
8	Einpassung in Studienverlaufsplan	Semester: 2
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten) Praktikumsleistung
11	Berechnung der Modulnote	Klausur (100%) Praktikumsleistung (0%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 150 h
14	Dauer des Moduls	1 Semester

15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	 Lottspeich F, Engels JW, et al. (2012), 3.Aufl., Spektrum Akadem. Verlag, ISBN-10: 3827429420 Gey MH (2015), 3. Aufl., Springer Verl., ISBN-10: 3662462540 Langford A (2018), 3rd Edition, Pearsons Education Ltd., ISBN-10: 1292139463

1	Modulbezeichnung 62900	Biochemie 1 und 2 Biochemistry 1 and 2	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Einführung in die Biochemie für Naturwisschenschaftler und Techniker Teil1 (2 SWS) Vorlesung: Einführung in die Biochemie für Naturwissenschaftler Teil2 (2 SWS)	-
3	Lehrende	Prof. Dr. Christian Koch Prof. Dr. Yves Muller	

4	Modulverantwortliche/r	Prof. Dr. Christian Koch	
5	Inhalt	 BCNF1: Proteine und deren Aufbau Methoden in der Biochemie Enzyme, Enzymkinetik, Enzymmechanismen, Regulierung der Enzymaktivität, Cofaktoren Biochemie der Nukleinsäure, Kopartimentierung genetischen Materials, DNA Strukturen, DNA Topologie, Nukleosomen, DNA Polymerasen, Ligasen, Telomerase, Primase, Grundlagen der RNA Struktur. BCNF2: Grundlagen des Stoffwechsels, Ernährungsstrategien unterschiedlicher Zellen, Stofftransport, Glykolyse, Gluconeogenese, Pyruvatdehydrogenase, Citrat Cyclus, ATP Synthase, Photosynthese, Glykogenstoffwechsel, Phosphorylase, Insulinregulation des Blutzuckers, Stärke und Cellulose in Pflanzen, Lysosomen, RNA Synthese und Prozessierung, Proteinbiosynthese, Aminosäureaktivierung, gentechnische Methoden, DNA Sequenzierung Herstellung rekombinanter Proteine. 	
6	Lernziele und Kompetenzen	 verstehen die Grundlagen der Biochemie, insb. die Grundprinzipien des Stoffwechsels in Zellen und die Regulationsprinzipien von Enzymen sowie deren Bedeutung für die Physiologie tierischer und pflanzlicher Organismen können thermodynamische Gesetzmäßigkeiten auf biologische Systeme anwenden kennen die Bausteine aller wesentlichen biologischen Makromoleküle und sind in der Lage, sie zu beschreiben und miteinander zu vergleichen beherrschen die chemischen Grundlagen der wichtigsten biochemischen Reaktionen. 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 3	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	

10	Studien- und Prüfungsleistungen	schriftlich schriftlich	
11	Berechnung der Modulnote	schriftlich (50%) schriftlich (50%)	
12	Turnus des Angebots	in jedem Semester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h	
14	Dauer des Moduls	2 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	 J.M. Berg, L. Stryer, J.L. Tymoczko: Biochemie (Spektrum Akademischer Verlag; Auflage: 7. Aufl.); D.L. Voet et al: Lehrbuch der Biochemie (Wiley VCH); D. Nelson and Cox: Lehninger principles of biochemistry (Freeman; 5. Ed 2008); T.A. Baker et al.:Watson: Molecular Biology of the Gene 7th ed. 2013) 	

1	Modulbezeichnung 22050	Bioinformatik Bioinformatics	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Grundlagen der Bioinformatik (2 SWS) Übung: Übung - Grundlagen der Bioinformatik [UeBioinf] (1 SWS)	-
3	Lehrende	Prof. Dr. Heinrich Sticht	

4	Modulverantwortliche/r	Prof. Dr. Heinrich Sticht	
5	Inhalt	 Quellen für Sequenzdaten und Sequenzdatenbanken Proteinähnlichkeit und Proteinevolution Kriterien zur Bewertung der Proteinähnlichkeit Methoden zum paarweisen Sequenzvergleich Algorithmen für schnelle Datenbanksuchen Sekundäre Datenbanken Multiples Sequenzalignment Grundlagen von Proteinstrukturen Vergleich von Proteinstrukturen Sekundärstrukturvorhersage Vorhersage von Proteinstrukturen 	
6	Lernziele und Kompetenzen	 kennen und nachvollziehen elementare Fragestellungen und wesentliche Grundlagen der Bioinformatik kennen die Standardwerkzeuge zum Durchführen von Sequenzvergleichen, zur Suche in Sequenzdatenbanken und zur Sekundärstrukturvorhersage wählen geeignete Werkzeuge und Parameter zur Bewertung der entsprechenden Ergebnisse und zum Erkennen möglicher Fehler aus kennen und bewerten elementare bioinformatische Verfahren zur Strukturvorhersage und Strukturanalyse wenden die mathematischen und statistischen Grundlagen der Verfahren an können geeignete bioinformatische Verfahren zur Bearbeitung molekularbiologischer Fragen selbständig auswählen 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 4	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	schriftlich	
11	Berechnung der Modulnote	schriftlich (100%)	
12	Turnus des Angebots	nur im Sommersemester	

13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Literatur auf der (passwortgeschützten) Webseite http:// www.biochem.uni-erlangen.de/studium/index.php unter Downloads Bioinformatik" verfügbar

1	Modulbezeichnung 63355	Bioprozesstechnik mit Hauptseminar Bioprocess engineering with advanced seminar	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Chemische und Biologische Prozesstechnik mit Einführungsprojekt (2 SWS)	5 ECTS
3	Lehrende	apl.Prof.Dr. Marco Haumann DrIng. Detlef Freitag Prof. Dr. Kathrin Castiglione	

4	Modulverantwortliche/r	DrIng. Holger Hübner	
5	Inhalt	In der einsemestrigen Lehrveranstaltung werden ausgewählte typische chemische und biotechnologische Produktionsverfahren vorgestellt und im Sinne des integralen Charakters des Stoffverbundes in industriellen Produktionsverfahren behandelt. In den jeweiligen Abschnitten werden neben dem Produktionsverfahren, die dazugehörigen Rohstoffe und die Eigenschaften der Produkte charakterisiert und bewertet, sowie die für den Prozess wichtigen Grundreaktionen und Trennverfahren einschliesslich der dazugehörigen apparativen Lösungen vorgestellt. Dabei werden die fachlichen Zusammenhänge zu den Inhalten der Studienfächer des Grund- und Hauptstudiums aufgezeigt, die zur weiterführenden quanitiativen Beschreibung der Produktionsverfahren des CBI und des LSE erforderlich sind.	
6	Lernziele und Kompetenzen	 kennen typische chemische und biotechnologische Produktionsverfahren und dazugehörige Rohstoffe. charakterisieren und bewerten die Rohstoffe sowie die Eigenschaften der Produkte. kennen die wichtigen chemischen Grundreaktionen und Trennverfahren einschließlich der dazugehörigen apparativen Lösungen. erkennen die fachlichen Zusammenhänge zu den Inhalten anderer Studienfächer als Grundlage für weiterführende quantitative Beschreibung der Produktionsverfahren des CBI und des LSE. 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 2	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Studienleistung Klausur (120 Minuten)	
11	Berechnung der Modulnote	Studienleistung (0%) Klausur (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h	

14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	keine Literaturhinweise hinterlegt!

<u>:</u>	1	Modulbezeichnung 92121	Bioseparation	5 ECTS
2	2	Lehrveranstaltungen	Übung: Übung zu Bioseparation (2 SWS) Vorlesung: Bioseparation (2 SWS)	5 ECTS
;	3	Lehrende	Malvina Supper Prof. DrIng. Malte Kaspereit	

4	Modulverantwortliche/r	Prof. DrIng. Malte Kaspereit
5	Inhait	Das Modul gibt eine Einführung in die wesentlichen Trennverfahren zur Aufarbeitung biotechnologischer Produkte. Aufbauend auf einer kurzen Einführung in die thermodynamischen Grundlagen behandelt die Vorlesung zunächst die wichtigsten konventionellen thermischen Trennverfahren Destillation, Absorption, Extraktion und Kristallisation. Anschließend werden Verfahren erörtert, die speziell zur Aufarbeitung sensitiver Biomoleküle, wie z.B. rekombinanter Proteine, genutzt werden. Ein besonderer Schwerpunkt liegt dabei auf membranbasierten und chromatographischen Verfahren. Gliederung: 1. Einführung 2. Thermische Trennverfahren • Grundlagen • Destillation • Absorption • Extraktion • Kristallisation 3. Biotechnologische Aufarbeitungen • Biotechnologische Produktionsverfahren • Trennverfahren in der Biotechnologie • Zellaufschluss • Filtration • Extraktion • Membranverfahren • Sedimentationsverfahren • Chromatographie • Kristallisation und Fällung
6	Lernziele und Kompetenzen	 bie Studierenden: kennen die wesentlichen thermischen und mechanischen Trennverfahren für chemische und biotechnologische Aufarbeitungen verstehen die physikalischen Grundlagen dieser Verfahren beherrschen die grundlegende Bilanzierung und Auslegung entsprechender Verfahren beherrschen grundlegende experimentelle Techniken zur Untersuchung und Entwicklung biotechnologischer Trennverfahren
7	Voraussetzungen für die Teilnahme	Keine

8	Einpassung in Studienverlaufsplan	Semester: 5	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (120 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	Vorlesungsbegleitendes Material. Weitere Literaturempfehlungen werden in der Vorlesung gegeben.	

1	Modulbezeichnung 63360	Biotechnologie 1: Grundlagen der Zellbiotechnologie Biotechnology 1: Introduction to cell bioengineering	7,5 ECTS
2	Lehrveranstaltungen	Übung: Praktische mikrobiologische Grundlagen für Biotechnologie 1 (3 SWS) Vorlesung: Biotechnologie 1 (Grundlagen der Zellbiotechnologie) (2 SWS) Übung: Übung zu Biotechnologie 1 (Grundlagen der Zellbiotechnologie) (2 SWS)	5 ECTS
3	Lehrende	Prof. Dr. Andreas Burkovski Dr. Gerald Seidel PD Dr. Daniel Gilbert Prof. Dr. Bärbel Kappes Prof. Dr. Kathrin Castiglione	

4	Modulverantwortliche/r	Prof. Dr. Kathrin Castiglione	
5	Inhalt	 Einführung in die grundlegenden Methoden und Arbeitstechniken, die für die Entwicklung von zellulären Systemen für die industrielle (weiße) und medizinische (rote) Biotechnologie von Bedeutung sind. * Weiße Biotechnologie: * Identifizierung von neuen Biokatalysatoren, heterologe Expressionssysteme und ihre Kultivierungsbedingungen, Protein Engineering (rationales Design, semi-rationale Ansätze, gerichtete Evolution), Cell Engineering * Rote Biotechnologie: * Säuger-Zellen Aufbau und Verwendung unter biotechnologischen und diagnostischen Aspekten, stabile Zell-Linien und Einsatzgebiete, Immortalisierung von Zellen, Primärzellen und deren Gewinnung, Zellkulturmedien und physiologische Lösungen, Zellaufbewahrungstechniken (Kryokonseriverung) und Kultivierung von Säugerzellen, Zellkultur und Techniken zur Vermehrung, Splittung und Zellzählung, Sicherheitslabore und Arbeitsabläufe, Reporterzellen, Beispiele aus dem Bereich der Hochdurchsatz-Screening Technologien Bearbeitung ausgewählter Probleme der Zellbiotechnologie (z.B. gerichtetes targeting von Zellsystemen für dauerhafte genomische oder transiente ribosomale Protein-Produktion; Design von Arbeitsabläufen für Zellkultur ausgewählter Zellsysteme, etc.) *Praktikum:* Theorie: Mikroskop, Färbetechniken - Kultur- und Sterilisationsverfahren - Wachstum von Bakterien - Antibiotika - Transformation von Acinetobacter spec Identifizierung/ Diagnostik von Bakterien - Grundlegende Techniken der Molekularbiologie Experimente: Beobachtung von Bakterien im Mikroskop, verschiedene Darstellungsverfahren - Nachweis von 	

		Keimen in der Luft - Erlernen verschiedener Techniken - Herstellung von Nährmedien - Bestimmung der Zellzahl in einer Kolonie - Bestimmung der Phagenzahl in einem Plaque - Sterilisationsversuche - Selektive Anreicherung von Bakterien - Bakterienwuchskurve; Einfluss von Antibiotika auf das Wachstum von Bakterien - Isolierung von Antibiotika-Produzenten - Transformation von Acinetobacter spec. Nachweis und Identifizierung von Bakterien - Resistenzbestimmung - Isolierung von Antibiotika- Produzenten - Identifizierung von Bakterien - Plasmid- Isolierung und Spaltung mit Restriktionsenzymen, Agarose- Gelelektrophorese - Protein-Isolierung und Polyacrylamid- Gelelektrophorese.	
6	Lernziele und Kompetenzen	 benennen die wichtigsten Geräte und Methoden für die gezielte Manipulation zellulärer Systeme in der weißen und roten Biotechnologie. können einschätzen, welche Plattformorganismen für eine konkrete biotechnologische Stoffproduktion Vor- bzw. Nachteile bieten und welche Anforderungen diese Organismen haben. kennen grundlegende Techniken der Molekularbiologie sowie verschiedene Darstellungsverfahren. können einfache Versuche zur Isolierung von Antibiotika-Produzenten und Proteinen durchführen. können Bakterien nachweisen und auf Resistenzen bestimmen. 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 3	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten) Praktikumsleistung	
11	Berechnung der Modulnote	Klausur (100%) Praktikumsleistung (0%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 105 h Eigenstudium: 120 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	

		- Clark, David; Pazdernik, Nanette (2009) Molekulare Biotechnologie: Grundlagen und Anwendungen, Springer Verlag, ISBN 978-3-8274-2189-0
		Bornscheuer, Uwe T., Höhne, Matthias (Eds.) (2018) Protein Engineering. Methods and Protocols, Springer Verlag, ISBN
		978-1-4939-7366-8
16	Literaturhinweise	Freshney, R. Ian (2016) Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Wiley-
		Blackwell; Auflage: 7. ISBN-10: 9781118873656
		Hauser, Hansjörg & Wagner, Roland (2015) Animal Cell
		Biotechnology. De Gruyter Berlin/München/Boston, ISBN
		978-3-11-027886-6
		Kasper, Cornelia, Charwat, Verena / Lavrentieva, Antonia
		(Eds) (2018) Cell Culture Technology. Springer Nature, ISBN
		978-3-319-74853-5

1	Modulbezeichnung 92084	Biotechnologie 2: Bioreaktions- und Bioverfahrenstechnik Biotechnology 2: Bioreaction and bioprocess engineering	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Bioreaktions- und Bioverfahrenstechnik (nur LSE) (2 SWS) Übung: Übung zur Bioreaktions- und Bioverfahrenstechnik (nur LSE) (1 SWS)	
3	Lehrende	Prof. Dr. Kathrin Castiglione	

4	Modulverantwortliche/r	Prof. Dr. Kathrin Castiglione	
5	Inhalt	Vorlesung: • Biotransformationen (Grundlagen, Enzymkinetik, Immobilisierung, ideale Reaktortypen für enzymatische Umsetzungen, Herstellung chiraler Verbindungen) • Fermentationen (Wachstumskinetik, Bilanzierung idealer Reaktoren, aerobe Prozesse, technische Anwendungen) • Bioreaktoren (Funktionskomponenten, Apparatebau) • Steriltechnik Übung:	
		Vertiefung der Inhalte aus der Vorlesung durch die Lösung von Übungsaufgaben und die Besprechung von beispielhaften Klausurfragen, die von den Studierenden selbst entwickelt worden sind.	
6	Lernziele und Kompetenzen	 Die Studierenden wenden die Reaktionskinetik auf biologische Prozesse an. verstehen die Herstellungsverfahren von biologischen Produkten. können die Bioreaktoren unter Berücksichtigung des Stoffübergangs und des Mischverhaltens auslegen. 	
7	Voraussetzungen für die Teilnahme	Mikrobiologie Biochemie I und II Kenntnisse zur Bioreaktions- und Bioverfahrenstechnik	
8	Einpassung in Studienverlaufsplan	Semester: 4	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (120 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Sommersemester Präsenzzeit: 60 h Eigenstudium: 90 h	
13	Arbeitsaufwand in Zeitstunden		
14	Dauer des Moduls	1 Semester	

15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	Bisswanger: Enzymkinetik Chmiel: Bioprozesstechnik	

1	Modulbezeichnung 94072	Biotechnologie 3: Medizinische Biotechnologie Biotechnology 3: Medical biotechnology	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Medizinische Biotechnologie (2 SWS) Übung: Medizinische Biotechnologie - Übung (1 SWS)	5 ECTS
3	Lehrende	Dr. Martin Vielreicher PD Dr. Daniel Gilbert Prof.Dr.Dr. Oliver Friedrich PD Dr.habil. Sebastian Schürmann Prof. Dr. Bärbel Kappes Michael Haug	

4	Modulverantwortliche/r	Dr. Martin Vielreicher	
5	Inhalt	 Bioelektrizität: Grundlagen der elektrischen Informations- Generierung und Übertragung im Nervensystem höherer Organismen Anwendungen und Technologien zur Bioelektrizität Funktionsweise und biomedizinische Mechanismen der Sinnesorgane (Auge, Ohr) und technische Strategien zum Ersatz/Unterstützung der Sinnesfunktion Immunsystem und Antikörper; Prozesstechnische Verfahren der Antikörperproduktion (polyklonal, Impfung, monoklonale AK, rekombinante AK, personalisierte AK) und Aufreinigung in der Biotechnologie Grundzüge der Genetik und Gentechnik: Chimären, Klonierung, Transfektionen, transgene Tiere, knock-out Mäuse, Gensequenzierung Stammzell-Technologien 	
6	Lernziele und Kompetenzen	 benennen die biophysikalischen und physikochemischen Grundlagen der Signalverarbeitung im Nervensystem und Sinnesorganen beschreiben, klassifizieren und bewerten verschiedene Verfahren der Immuntechnologie in der Biomedizin lösen spezifische Probleme der Klonierung in der Gentechnik für Forschung und Industrie durch Wahl der geeigneten Gentechnik-Verfahren analysieren und bewerten verschiedene Techniken zur Plasmid-Aufreinigung 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 5	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (120 Minuten)	

11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Wird in der Vorlesung bekannt gegeben

1	Modulbezeichnung 63375	Biotechnologie 4: Metabolic Engineering Biotechnology 4: Metabolic engineering	5 ECTS
2		Vorlesung: Biotechnologie 4: Metabolic Engineering (2 SWS)	5 ECTS
2	Lehrveranstaltungen	Übung: Übung zu Biotechnologie 4: Metabolic Engineering (3 SWS)	-
3	Lehrende	Prof. DrIng. Sebastian Aljoscha Wahl	

4	Modulverantwortliche/r	Prof. DrIng. Sebastian Aljoscha Wahl	
5	Inhalt	 Experimentelle Ansätze zur Analyse biologischer Systeme mit Omics"-Technologien Aktuelle Methoden im Bereich des Metabolic Engineering Möglichkeiten und Herausforderungen der Analyse und Design von Stoffwechselwegen mit aktuellen Beispielen Grundlagen der mathematischen Modellbildung für zelluläre Systeme (Stöchiometrische Netzwerke, Thermodynamik, Resource allocation, Kinetik) Modellanalyse (Sensitivitätsanalyse, Parameterschätzung) Ansätze aus der Datenanalyse für biotechnologische Systeme 	
6	Lernziele und Kompetenzen	Die Studierenden • kennen grundlegende Arbeitstechniken für die umfassende Analyse und den gezielten Eingriff in den Stoffwechsel von Organismen. • haben ein Verständnis für die Möglichkeiten und Herausforderungen bei der systematischen gentechnischen Manipulation von Organismen. • können Bilanzgleichungen für komplexe zelluläre Netzwerke erstellen und analysieren. • können experimentelle Ergebnisse anhand von Modellen einordnen und interpretieren.	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 6	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (120 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h	
14	Dauer des Moduls	1 Semester	

1	Unterrichts- und Prüfungssprache	Deutsch
1	Literaturhinweise	 Sahm, H.; Antranikian, G.; Stahmann, KP.; Takors, R. (Hrsg.), Industrielle Mikrobiologie Springer Spektrum Verlag, 2012, ISBN 978-3-8274-3039-7 Kremling A., Systems Biology: Mathematical Modeling and Model Analysis. Chapman and Hall/CRC, 2013, ISBN 978146656789 Orth, J., Thiele, I. & Palsson, B. What is flux balance analysis?. Nat Biotechnol 28, 245248 (2010). https://doiorg.tudelft.idm.oclc.org/10.1038/nbt.1614

1	Modulbezeichnung 94101	Computeranwendungen in der Verfahrenstechnik 1 Scientific computing in engineering 1	5 ECTS
		Praktikum: Praktikum Computeranwendungen in der Verfahrenstechnik 1 (1 SWS)	-
		Übung: Computeranwendungen in der Verfahrenstechnik 1 (Übung4) (2 SWS)	-
		Übung: Computeranwendungen in der Verfahrenstechnik 1 (Übung3) (2 SWS)	-
2	Lehrveranstaltungen	Übung: Computeranwendungen in der Verfahrenstechnik 1 (Übung1) (2 SWS)	-
	Vorlesung: Computeranwendungen in der Verfahrenstechnik 1 (2 SWS) Übung: Computeranwendungen in der Verfahrenstechnik 1 (Übung2) (2 SWS)		-
		-	
		Tutorium: Computeranwendungen in der Verfahrenstechnik 1 (Tutorium2) (1 SWS)	-
3	Lehrende	Holger Götz Felix Buchele Prof. Dr. Thorsten Pöschel	

4	Modulverantwortliche/r	Prof. Dr. Thorsten Pöschel	
5	Inhalt	Modul #1 Einführung in MATLAB: • 1.1. MATLAB 1 (Variablen, Vektoren) • 1.2. MATLAB 2 (Funktionen) • 1.3. MATLAB 3 (Kontrollstrukturen) • 1.4. MATLAB 4 (Ein- und Ausgabe) • 1.5. MATLAB 5 (Grafik, Datentypen) Modul #2 Grundlegende numerische Verfahren: • 2.1. Nullstellenbestimmung • 2.2. Regression • 2.3. Integration • 2.4. Gewöhnliche Differentialgleichungen • 2.5. Partielle Differentialgleichungen	
6	Lernziele und Kompetenzen	bie Studierenden können computergestützt in Wissenschaft und Technik arbeiten rechnen und programmieren wissenschaftlich in MATLAB implementieren numerische Verfahren	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 4	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	

10	Studien- und Prüfungsleistungen	Klausur (90 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 75 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Vorlesungsskript

1	Modulbezeichnung 66040	Experimental physics	7,5 ECTS
	Lehrveranstaltungen	Übung: Übungen zur Experimentalphysik für Energietechnik (1 SWS)	-
		Vorlesung: Experimentalphysik für CBI, LSE, CEN, Energietechnik (4 SWS)	7,5 ECTS
2		Übung: Übungen zur Experimentalphysik für Chemical Engineering CEN (1 SWS)	-
		Übung: Übungen zur Experimentalphysik für Chemie- und Bio-Ing. (1 SWS)	-
		Übung: Übungen zur Experimentalphysik für Life Science Engineering (1 SWS)	-
3	Lehrende	Prof. Dr. Reinhard Neder	

4	Modulverantwortliche/r	Prof. Dr. Reinhard Neder	
5	Inhalt	 Mechanik: Bewegungsgleichungen im 1D-, 3D, Kreisbewegungen, Newton'sche Axiome, Kräfte, Potentielle Energie, Kinetische Energie, Energieerhaltung, Impuls, Stöße, Drehbewegungen, Drehmoment, Drehimpuls, Erhaltungssätze Fluide: Dichte, Druck, Auftrieb; Fluide in Bewegung: Bernoulligleichung, reale Fluide, Viskosität Schwingungen: Harmonische Schwingungen, Pendel, gedämpfte Schwingungen Wellen: Wellengleichung, Geschwindigkeit, Interferenz Optik: Grundlegende Strahlenoptik, Linsen Wellenoptik: Beugung am Spalt, Beugung am Doppelspalt Elektrizität: Elektrostatik: Coulombkraft, El. Feld, Kondensatoren, einfache Stromkreise; Magnetismus: Induktion, Wechselstromkreise 	
6	Lernziele und Kompetenzen	 Die Studierenden erklären die Grundlagen der Experimentalphysik aus den Bereichen der Mechanik, Fluide, Schwingungen, Wellen, Optik und Elektrizität setzen die Vorlesungsinhalte mit Hilfe thematisch passender Übungsaufgaben praktisch um. 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	schriftlich (120 Minuten)	
11	Berechnung der Modulnote	schriftlich (100%)	

12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 150 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
		D. Halliday, R. Resnick: Halliday Physik, Bachelor Edition, Wiley-VCH
16	Literaturhinweise	P. A. Tipler, G. Mosca: Physik, Spektrum Akad. Verlag
10	Literaturiiiweise	E. Hering, R. Martin, M. Stohrer: Physik für Ingenieure, Springer
		D. Meschede: Gehrtsen Physik, Springer

1	Modulbezeichnung 63370	Grenzflächen in der Biotechnologie no english module name available for this module	5 ECTS
2	Lehrveranstaltungen	Übung: Übung Grenzflächen in der Biotechnologie (3 SWS) Vorlesung: Grenzflächen in der Biotechnologie (2 SWS)	-
3	Lehrende	Prof. Dr. Nicolas Vogel Sophie Mayer	

4	Modulverantwortliche/r	Prof. Dr. Nicolas Vogel	
5	Inhalt	Einführung in Bedeutung von Grenzflächen in Natur und Biotechnologie Molekulare Wechselwirkungen: Wie wechselwirken einzelne Moleküle Mikroskopische Wechselwirkungen: Wie verhindert man Aggregation von Proteinen und kolloidalen Systemen? Makroskopische Wechselwirkungen: Wie erklärt man Haftkräfte auf Basis der molekularen Wechselwirkungen Flüssige Grenzflächen: Wie entsteht Oberflächenspannung? Was ist der Kontaktwinkel? Welchen Einfluss haben Tenside und Proteine auf Flüssigkeiten, Emulsionen und Schäume? Adsorption an Oberflächen: Warum adsorbieren Moleküle an Grenzflächen? Adsorption und Grenzflächenüberschuss Messmethoden und Adsorptionsisothermen Einfluss von Porengeometrie, Porengröße, Kontaktwinkel und Krümmung auf Adsorption- und Phasenverhalten Adsorption von Tensiden, Proteinen an Oberflächen und in porösen Materialien sowie ausgewählte Anwendungen (z.B. Trennverfahren)	
6	Lernziele und Kompetenzen	Die Studierenden: kennen grundlegende, verschiedene molekulare Wechselwirkungen in Materie verfügen über Grundkenntnisse zur physikalischen und chemischen Beschreibung von Grenzflächen verbinden molekulare und makroskopische Vorstellungen von Wechselwirkungen verstehen die Unterschiede zwischen Oberflächen- und Volumenmolekülen erklären Benetzungsphenomene ausgehend von molekularen Wechselwirkungen und Substratgeometrie verfügen über Grundkenntnisse von Adsorptionsprozessen an Oberflächen und porösen Materialien erklären entsprechende Ansätze und wenden diese auf Fragen der Biotechnologie an	
7	Voraussetzungen für die Teilnahme	Keine	

8	Einpassung in Studienverlaufsplan	Semester: 5	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 75 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	Lehrbuch: Butt, HJ., Graf, K.; Kappl, M.; Physics and Chemistry of Interfaces, Wiley-VCH, Berlin 2013, ISBN 978-3-527-41216-7 Lehrbuch: Israelachvili J.; Intermolecular and Surface Forces, Rev. 3rd Edition, Academic Press, ISBN: 9780123919274 Lehrbuch: D. H. Everett: Basic Principles of Colloid Science, 1998, RCC, ISBN: 978-1-84755-020-0	

1	Modulbezeichnung 92040	Konstruktionslehre Machine design	5 ECTS
2	Lehrveranstaltungen	Übung: Übungen zu Konstruktionslehre (1 SWS) Vorlesung: Konstruktionslehre (2 SWS)	2 ECTS 3 ECTS
3	Lehrende	DrIng. Wolfgang Wirth	

4	Modulverantwortliche/r	DrIng. Wolfgang Wirth	
5	Inhalt	Das Modul vermittelt einen Überblick über wichtige Konstruktionselemente und Berechnungsverfahren aus dem Fachgebiet Maschinenbau. Schwerpunkte: • Festigkeitsnachweis • Werkstoffe • nichtlösbare Verbindungselemente (Schweißen, Löten, Kleben, Nieten) • lösbare Verbindungselemente (Schrauben, Bolzen, Stifte) • Welle-Nabe-Verbindungen (Paßfeder, Kegel, Spannelemente) • Federn • Dimensionierung von Achsen und Wellen • Gleit- und Wälzlager	
6	Lernziele und Kompetenzen	 Verfügen über einen Überblick über wichtige Konstruktionselemente und deren Berechnungsverfahren Verstehen die Funktionsweise und Anwendungen verschiedener Konstruktionselemente (Verbindungselemente, Federn, Wellen, Welle-Nabe-Verbindungen, Lager) können ausgewählte Maschinenelemente beanspruchungsgerecht dimensionieren und überprüfen 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 4	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (120 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	

16 Literaturhinweise	 Klein,M.: Einführung in die DIN-Normen, 14. Auflage, Beuth-Verlag, Berlin, 2008 DUBBEL - Taschenbuch für den Maschinenbau, 25. Auflage, Springer, Berlin, 2018 Skript zur Vorlesung
----------------------	---

1	Modulbezeichnung 67721	Mathematik für LSE 1 Mathematics for LSE 1	7,5 ECTS
2	Lehrveranstaltungen	Vorlesung: Mathematik für Ingenieure D1: CBI, CEN, IP, LSE, MWT, NT (4 SWS) Übung: Übungen zur Mathematik für Ingenieure D1: CBI, CEN, IP, LSE, MWT, NT (2 SWS)	7,5 ECTS -
3	Lehrende	Dr. Wigand Rathmann	

4	Modulverantwortliche/r	Dr. Wigand Rathmann	
5	Inhalt	*Grundlagen* Aussagenlogik, Mengen, Relationen, Abbildungen *Zahlensysteme* natürliche, ganze, rationale und reelle Zahlen, komplexe Zahlen *Vektorräume* Grundlagen, Lineare Abhängigkeit, Spann, Basis, Dimension, euklidische Vektor- und Untervektorräume, affine Räume *Matrizen, Lineare Abbildungen, Lineare Gleichungssysteme* Matrixalgebra, Lösungsstruktur linearer Gleichungssysteme, Gauß-Algorithmus, inverse Matrizen, Matrixtypen, lineare Abbildungen, Determinanten, Kern und Bild, Eigenwerte und Eigenvektoren, Basis, Ausgleichsrechnung *Grundlagen Analysis einer Veränderlichen* Grenzwert, Stetigkeit, elementare Funktionen, Umkehrfunktionen	
6	Lernziele und Kompetenzen	 erklären grundlegende Begriffe und Strukturen der Mathematik erklären den Aufbau von Zahlensystemen im Allgemeinen und der Obengenannten im Speziellen rechnen mit komplexen Zahlen in Normal- und Polardarstellung und Wechseln zwischen diesen Darstellungen berechnen lineare Abhängigkeiten, Unterräume, Basen, Skalarprodukte, Determinanten vergleichen Lösungsmethoden zu linearen Gleichungssystemen bestimmen Lösungen zu Eigenwertproblemen überprüfen Eigenschaften linearer Abbildungen und Matrizen überprüfen die Konvergenz von Zahlenfolgen ermitteln Grenzwerte und überprüfen Stetigkeit entwickeln Beweise anhand grundlegender Beweismethoden aus den genannten Themenbereichen 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	

10	Studien- und Prüfungsleistungen	schriftlich (90 Minuten)	
11	Berechnung der Modulnote	schriftlich (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 90 h Eigenstudium: 135 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	W. Merz, P. Knabner, Mathematik für Ingenieure und Naturwissenschaftler, Springer, 2013 Fried, Mathematik für Ingenieure I für Dummies I, Wiley A. Hoffmann, B. Marx, W. Vogt, Mathematik für Ingenieure 1, Pearson v. Finckenstein et.al: Arbeitsbuch Mathematik fuer Ingenieure: Band I Analysis und Lineare Algebra. Teubner-Verlag 2006, ISBN 9783835100343 Meyberg, K., Vachenauer, P.: Höhere Mathematik 1. 6. Auflage, Sprinbger-Verlag, Berlin, 2001	

1	Modulbezeichnung 67731	Mathematik für LSE 2 Mathematics for LSE 2	7,5 ECTS
2	Lehrveranstaltungen	Übung: Übungen zur Mathematik für Ingenieure D2: CBI, CEN, LSE, MWT, NT (2 SWS) Vorlesung: Mathematik für Ingenieure D2: CBI, CEN, LSE, IP, MWT, NT (4 SWS)	2,5 ECTS
3	Lehrende	Dr. Wigand Rathmann	

4	Modulverantwortliche/r	Dr. Wigand Rathmann
5	Inhalt	*Differentialrechnung einer Veränderlichen* Ableitung mit Rechenregeln, Mittelwertsätze, LHospital, Taylor-Formel, Kurvendiskussion *Integralrechnung einer Veränderlichen* Riemann-Integral, Hauptsatz der Infinitesimalrechnung, Mittelwertsätze, Partialbruchzerlegung, uneigentliche Integration *Folgen und Reihen* reelle und komplexe Zahlenfolgen, Konvergenzbegriff und - sätze, Folgen und Reihen von Funktionen, gleichmäßige Konvergenz, Potenzreihen, iterative Lösung nichtlinearer Gleichungen *Grundlagen Analysis mehrerer Veränderlicher* Grenzwert, Stetigkeit, Differentiation, partielle Ableitungen, totale Ableitung, allgemeine Taylor-Formel
6	Lernziele und Kompetenzen	 Die Studierenden analysieren Funktionen einer reellen Veränderlichen mit Hilfe der Differentialrechnung berechnen Integrale von Funktionen mit einer reellen Veränderlichen stellen technisch-naturwissenschaftliche Problemstellungen mit mathematischen Modellen dar und lösen diese erklären den Konvergenzbegriff bei Folgen und Reihen berechnen Grenzwerte und rechnen mit diesen analysieren und klassifizieren Funktionen mehrerer reeller Veränderlicher an Hand grundlegender Eigenschaften wenden grundlegende Beweistechniken in o.g. Bereichen an
7	Voraussetzungen für die Teilnahme	Keine
8	Einpassung in Studienverlaufsplan	Semester: 2
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192
10	Studien- und Prüfungsleistungen	schriftlich (90 Minuten)
11	Berechnung der Modulnote	schriftlich (100%)

12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 90 h Eigenstudium: 135 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Skripte des Dozenten M. Fried, Mathematik für Ingenieure I für Dummies und Mathematik für Ingenieure II für Dummies, Wiley W. Merz, P. Knabner, Mathematik für Ingenieure und Naturwissenschaftler, Springer, 2013 K. Finck von Finckenstein, J. Lehn et. al., Arbeitsbuch für Ingenieure, Band I, Teubner A. Hoffmann, B. Marx, W. Vogt, Mathematik für Ingenieure 1, Pearson

1	Modulbezeichnung 67741	Mathematik für LSE 3 Mathematics for LSE 3	7,5 ECTS
2	Lehrveranstaltungen	Übung: Übungen zur Mathematik für Ingenieure D3: CBI, CEN, IP, LSE, MWT, NT (2 SWS) Vorlesung: Mathematik für Ingenieure D3: CBI, CEN, LSE, MWT, NT (4 SWS)	7,5 ECTS
3	Lehrende	Prof. Dr. Michael Stingl Dr. Wigand Rathmann	

4	Modulverantwortliche/r	Dr. Wigand Rathmann	
5	Inhalt	*Anwendung der Differentialrechnung im R^n^ * Extremwertaufgaben, Extremwertaufgaben mit Nebenbedingungen, Lagrange-Multiplikatoren, Theorem über implizite Funktionen, Anwendungsbeispiele *Vektoranalysis* Potentiale, Volumen-, Oberflächen- und Kurvenintegrale, Parametrisierung, Transformationssatz, Integralsätze, Differentialoperatoren *Gewöhnliche Differentialgleichungen* Explizite Lösungsmethoden, Existenz- und Eindeutungssätze, Lineare Differentialgleichungen, Systeme von Differentialgleichungen, Eigen- und Hauptwertaufgaben, Fundamentalsysteme, Stabilität	
6	Lernziele und Kompetenzen	Die Studierenden klassifizieren verschiedene Extremwertaufgaben anhand der Nebenbedingungen und kennen die grundlegende Existenzaussagen erschließen den Unterschied zur eindimensionalen Kurvendiskussion, wenden die verschiedene Extremwertaufgaben bei Funktionen mehrerer Veränderlicher mit und ohne Nebenbedingungen berechnen Integrale über mehrdimensionale Bereiche beobachten Zusammenhänge zwischen Volumen-, Oberflächen- und Kurvenintegralen ermitteln Volumen-, Oberflächen- und Kurvenintegrale wenden grundlegende Differentialoperatoren an. klassifizieren gewöhnliche Differentialgleichungen nach Typen wenden elementare Lösungsmethoden auf Anfangswertprobleme bei gewöhnlichen Differentialgleichungen an wenden allgemeine Existenz- und Eindeutigkeitsresultate an erschließen den Zusammenhang zwischen Analysis und linearer Algebra wenden die erlernten mathematischen Methoden auf die Ingenieurswissenschaften an.	
7	Voraussetzungen für die Teilnahme	Keine	

8	Einpassung in Studienverlaufsplan	Semester: 3
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192
10	Studien- und Prüfungsleistungen	schriftlich (90 Minuten)
11	Berechnung der Modulnote	schriftlich (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 90 h Eigenstudium: 135 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Skripte des Dozenten M. Fried: Mathematik für Ingenieure II für Dummies , Wiley A. Hoffmann, B. Marx, W. Vogt: Mathematik für Ingenieure 1,2 Pearson K. Finck von Finckenstein, J. Lehn et. al.: Arbeitsbuch für Ingenieure, Band I und II , Teubner H. Heuser: Gewöhnliche Differentialgleichungen Teubner
		H. Heuser: Gewonnliche Differentialgleichungen Teubher

1	Modulbezeichnung 92091	Mechanische Verfahrenstechnik Mechanical process engineering	5 ECTS
2	Lehrveranstaltungen	Vorlesung mit Übung: Mechanische Verfahrenstechnik (4 SWS) Übung: Übung Mechanischen Verfahrenstechnik (2 SWS)	5 ECTS
3	Lehrende	Prof. DrIng. Wolfgang Peukert Nabi Traore Florentin Tischer	

4	Modulverantwortliche/r	Prof. DrIng. Wolfgang Peukert		
5	Inhalt	Im Rahmen des Moduls werden die wichtigsten Grundlagen disperser Partikelsysteme behandelt. Ausgehend von der Kennzeichnung disperser Systeme (Partikelgröße und Partikelform) wird zunächst die Bewegung einzelner Partikeln in Fluiden behandelt. Dann werden Partikelgrößenverteilungen eingeführt, Grundlagen des Trennens und des Mischens behandelt. Mit Hilfe der Dimensionsanalyse wird auch das Mischen und Rühren in Flüssigkeiten angeschnitten. Als Beispiele für Wechselwirkungen in dispersen Systemen werden die Benetzung als Grundlagen der Entfeuchtung sowie Haftkräfte als Grundlage für die Agglomeration behandelt. Als Beispiel für die Partikelproduktion wird das Zerkleinern behandelt. Die Dynamik disperser Systeme wird durch Populationsbilanzen beschrieben. Die Kennzeichnung von Packungen sowie deren Durchströmung werden anschliessend behandelt. Wirbelschicht, Förderung und eine Einführung in das Fliessen von Schüttgütern schliessen die Vorlesung ab.		
6	Lernziele und Kompetenzen	 beherrschen die Grundlagen der Partikeltechnik verstehen die Bewegung von Partikeln und deren Partikelgrößenverteilungen verstehen den Aufbau von Packungen und Schüttgütern sowie deren Durchströmung erwerben Grundlagen über die Prozesse des Trennens, Mischens, Zerkleinerns und Fluidisierens sowie deren Beschreibung über Dimensionsanalysen und Populationsbilanzen können durch zusätzliches Vertiefen in Übungen und Tutorien das Erlernte auf verfahrenstechnische Fragenstellungen anwenden und so eigenständig Probleme aus dem Bereich der mechanischen Verfahrenstechnik lösen können die erlernten Grundlagen in wissenschaftlichen Experimenten anwenden und sind in der Lage diese zu planen und eigenständig durchzuführen können die Ergebnisse der eigenständig durchgeführten Experimente protokollieren, analysieren sowie kritisch diskutieren 		

7	Voraussetzungen für die Teilnahme	Keine
8	Einpassung in Studienverlaufsplan	Semester: 5
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192
10	Studien- und Prüfungsleistungen	Klausur (120 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Peukert: Skriptum zur Vorlesung H. Rumpf: Particle Technology
		Stiess: Mechanische Verfahrenstechnik Schubert: Handbuch der Mechanischen Verfahrenstechnik

1	Modulbezeichnung 62863	Mikrobiologie Microbiology	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Allgemeine Mikrobiologie für Naturwissenschaftler und Techniker (3 SWS)	-
3	Lehrende	Prof. Dr. Andreas Burkovski	

4	Modulverantwortliche/r	Prof. Dr. Andreas Burkovski	
5	Inhalt	Morphologie, Anatomie der prokaryotischen Zelle, Bakteriophagen, bakterielle Transfersysteme, Taxonomie der Prokaryoten, Stoffwechselphysiologie (aerob, anaerob, chemotroph, phototroph), Anwendungsbeispiele aus der Biotechnologie.	
6	Lernziele und Kompetenzen	Die Studierenden	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	 Lehrbuch: Brock Mikrobiologie, M. T. Madigan & J. M. Martinko, aktuelle Ausgabe (z.Zt. 2009) Lehrbuch: Allgemeine Mikrobiologie, G. Fuchs, aktuelle Ausgabe (z.Zt. 2007) 	

1	Modulbezeichnung 63491	Organische Chemie Organic Chemistry	7,5 ECTS
		Hauptseminar: Seminar zum organisch-chemischen Praktikum für Chemieingenieure (1 SWS)	-
2	Lehrveranstaltungen	Praktikum: Organisch-chemisches Praktikum für Chemieingenieure (3 SWS)	-
		Vorlesung: Organische Chemie (4 SWS)	-
3	Lehrende	Prof. Dr. Andriy Mokhir	

4	Modulverantwortliche/r	Prof. Dr. Andriy Mokhir	
5	Inhalt	(1) Grundlagen der Organischen Chemie: Die chemische Bindung, Schreibweisen in der Organischen Chemie, funktionelle Gruppen, IUPAC-Nomenklatur (2) Alkane: Radikalreaktionen, Stereochemie, Nukleophile aliphatische Substitution (SN-Reaktionen) (3) Alkene: Eliminierungsreaktionen (E), Additionsreaktionen (4) Alkine: Eigenschaften, Darstellung, Reaktionen (5) Carbonylverbindungen: Eigenschaften, Synthese, Reaktionen, C-C-Knüpfungsreaktionen (6) Carbonsäuren und ihre Derivate: Eigenschaften, Darstellung, Synthese von Derivaten, Reaktionen (7) Aromaten: Aromatizität, elektrophile und nukleophile aromatische Substitution, Reaktionen von Diazoniumsalzen (8) Chemie der Farbstoffe: Grundlagen, Azofarbstoffe, Triphenylmethanfarbstoffe (9) Waschmittel: Grundlagen, Beispiele (10) Polymere: Grundlagen, Beispiele	
6	Lernziele und Kompetenzen	Die Studierenden: beherrschen die Grundlagen der Organischen Chemie; haben die Grundkenntnisse über die wichtigsten organischen Stoffklassen; kennen die wichtigsten Reaktionen der Stoffumwandlungen und verstehen deren Mechanismen; besitzen die Fähigkeiten die Reaktivität der organischen Substanzen einzuschätzen; können die einfachsten organischen Reaktionen sicher, nachhaltig und umweltfreundlich durchführen und deren Produkte isolieren und charakterisieren.	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 3	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Praktikumsleistung schriftlich (180 Minuten)	

11	Berechnung der Modulnote	Praktikumsleistung (0%) schriftlich (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 120 h Eigenstudium: 105 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	K. P. C. Vollhardt, N. E. Schore Organische Chemie, Wiley-VCH, Weinheim

	1	Modulbezeichnung 62493	Physikalische Chemie Physical chemistry	5 ECTS
	o o		Vorlesung: Physikalische Chemie für CBI, CEN u. LSE (2 SWS)	-
,	۷	Lehrveranstaltungen	Übung: Übung zur Physikalischen Chemie für CBI, CEN u. LSE (1 SWS)	-
	3	Lehrende	Prof. Dr. Jörg Libuda	

4	Modulverantwortliche/r	Prof. Dr. Jörg Libuda	
5	Inhait	(1) Chemische Reaktionskinetik: Grundlagen der chemischen Kinetik; Experimentelle Methoden der Reaktionskinetik; Kinetik komplexer Reaktionssysteme; Theorie der Kinetik; Katalyse. (2) Aufbau der Materie: Grenzen der klassischen Mechanik u. Elektrodynamik; Einführung in die Quantenmechanik; einfache quantenmechanische Modelle; Aufbau der Atome; chemische Bindung u. Aufbau der Moleküle. (3) Spektroskopie: Wechselwirkung von Strahlung und Materie; Rotations- und Schwingungsspektroskopie; elektronische Spektroskopien.	
6	Lernziele und Kompetenzen	 Die Studierenden interpretieren die Grundprinzipien der chemischen Thermodynamik fassen die Grundlagen die chemischen Reaktionskinetik zusammen und geben die theoretischen Hintergründe der Kinetik komplexer Systeme wieder kennen die Grenzen der klassischen Physik und beschreiben einfache quantenmechanische Modelle erläutern die Grundlagen des Aufbaus der Materie und der Wechselwirkung zwischen Strahlung und Materie 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 2	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	schriftlich (90 Minuten)	
11	Berechnung der Modulnote	schriftlich (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 75 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	

16	G. Wedler, HJ. Freund: Lehrbuch der Physikalischen Chemie, Wiley- VCH
	P. W. Atkins, C. A. Trapp: Physikalische Chemie, Wiley-VCH

1	Modulbezeichnung 94191	Praktikum Life Science Engineering 1 Laboratory course: Life science engineering 1	5 ECTS
2	Lehrveranstaltungen	Praktikum: Verfahrenstechnisches Praktikum für CBI, CEN und LSE (0 SWS) Praktikum: Praktikum Life Science Engineering 1 (0 SWS)	5 ECTS
3	Lehrende	DrIng. Marcus Fischer	

4	Modulverantwortliche/r	DrIng. Marcus Fischer	
5	Inhalt	keine Inhaltsbeschreibung hinterlegt!	
6	Lernziele und Kompetenzen	 Ziel des Praktikums ist, die bisher im Studium erworbenen Fach- und Methodenkompetenzen in der Laborpraxis umzusetzen. Die Studierenden wenden die erworbenen theoretischen Grundlagen auf verfahrenstechnische, biologische und medizinische Fragenstellungen an, kennen verfahrenstechnische, biologische und medizinische Grundreaktionen, Prozesse und apparative Lösungen, führen wissenschaftliche Experimente selbständig durch, protokollieren, analysieren und diskutieren experimentelle Ergebnisse kritisch. 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 5	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Informationen und Anmeldung: https://www.studon.fau.de/cat1959349.html	
11	Berechnung der Modulnote		
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 75 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	keine Literaturhinweise hinterlegt!	

1	Modulbezeichnung 94192	Praktikum Life Science Engineering 2 Laboratory course: Life science engineering 2	5 ECTS
2	Lehrveranstaltungen	Praktikum: Verfahrenstechnisches Praktikum für CBI, CEN und LSE (0 SWS)	5 ECTS
3	Lehrende	DrIng. Marcus Fischer	

4	Modulverantwortliche/r	DrIng. Marcus Fischer	
5	Inhalt	keine Inhaltsbeschreibung hinterlegt!	
6	Lernziele und Kompetenzen	keine Beschreibung der Lernziele und Kompetenzen hinterlegt!	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 6	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Informationen und Anmeldung: https://www.studon.fau.de/ cat1959349.html	
11	Berechnung der Modulnote		
12	Turnus des Angebots	keine Angaben zum Turnus des Angebots hinterlegt!	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt) Eigenstudium: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt)	
14	Dauer des Moduls	?? Semester (keine Angaben zur Dauer des Moduls hinterlegt)	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	keine Literaturhinweise hinterlegt!	

1	Modulbezeichnung 92050	Technisches Zeichnen Technical drawing	2,5 ECTS
2	Lehrveranstaltungen	Kurs: Technisches Zeichnen (3 SWS)	2,5 ECTS
3	Lehrende	DrIng. Wolfgang Wirth	

4	Modulverantwortliche/r	DrIng. Wolfgang Wirth	
5	Inhalt	Im Rahmen des Moduls werden die geeignete Darstellung und normgerechte Ausführung von Konstruktionszeichnungen vorzugsweise aus den Bereichen Maschinen- und Anlagenbau behandelt. Schwerpunkte: • Fertigungsgerechte Konstruktion • Bemaßungsregeln • Kennzeichnung von Werkstoffen und Oberflächengüten • Berechnung und Angabe von Toleranzen - Darstellung von Normteilen • Diagramme • Fließbilder • CAD	
6	Lernziele und Kompetenzen	 Die Studierenden: verfügen über grundlegende Kenntnisse der normgerechten Darstellung von Bauteilen und Baugruppen in Konstruktionszeichnungen sind mit Zeichnungslesen vertraut sind fähig, normgerechte technische Zeichnungen selbständig anzufertigen erkennen Maschinenelemente in technischen Zeichnungen sind in der Lage, Fließbildern unterschiedlichen Detaillierungsgrades zu verstehen und damit Prozesse der Verfahrenstechnik zu beschreiben 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen		
11	Berechnung der Modulnote		
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 30 h	
14	Dauer des Moduls	1 Semester	

15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	 Labisch, S.; Wählisch, G.: Technisches Zeichnen, 6. Auflage, Springer-Fachmedien, Wiesbaden, 2020 Geschke, H. W., Helmetag, M., Wehr, W.: Böttcher Forberg Technisches Zeichnen, 26. Auflage, B.G. Teubner Stuttgart, 2014 Hoischen: Technisches Zeichnen, 30. Auflage, W. Girardet, Essen 2005 Klein,M.: Einführung in die DIN-Normen, 14. Auflage, Beuth- Verlag, Berlin, 2008 Skript zur Vorlesung

1	Modulbezeichnung 92076	Thermodynamik und Wärmeübertragung no english module name available for this module	5 ECTS
2	Lehrveranstaltungen	Übung: Übung zu Thermodynamik und Wärmeübertragung (2 SWS) Vorlesung: Thermodynamik und Wärmeübertragung (3 SWS)	-
3	Lehrende	Prof. DrIng. Stefan Will DrIng. Franz Huber	

4	Modulverantwortliche/r	DrIng. Franz Huber Prof. DrIng. Stefan Will
5	Inhalt	 Grundbegriffe der Technischen Thermodynamik Ideale Gase und deren Zustandsgleichungen 1. und 2. Hauptsatz der Thermodynamik Thermodynamische Eigenschaften reiner Stoffe Ausgewählte Kreisprozesse Grundlagen der Wärme- und Stoffübertragung Wärmeleitung in ruhenden Körpern Wärmeübertragung in einphasigen Strömungen durch konvektiven Wärmeübergang Wärmeübertragung durch Strahlung
6	Lernziele und Kompetenzen	 bie Studierenden: kennen die Begriffe und Grundlagen der Technischen Thermodynamik und der Wärmeübertragung erstellen energetische und exergetische Bilanzen wenden thermodynamische Methodik für die Berechnung der Zustandseigenschaften sowie von Zustandsänderungen reiner Fluide an berechnen relevante thermodynamische Prozesse und bewerten diese aufgrund charakteristischer Kennzahlen verstehen die Mechanismen der Wärme- und Stoffübertragung und können ihre Bedeutung und ihren Einzelbeitrag bei technischen Problemstellungen ermessen können die Beiträge der verschiedenen Wärmeübertragungsmechanismen (Wärmeleitung, Konvektion, Strahlung) quantifizieren und einfache Wärmeübertragungsprobleme lösen
7	Voraussetzungen für die Teilnahme	Keine
8	Einpassung in Studienverlaufsplan	Semester: 3
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten)

11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 75 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	 Vorlesungsskript C. Cerbe, G. Wilhelms, Technische Thermodynamik K. Langeheinecke, P. Jany, G. Thieleke, et al., Thermodynamik für Ingenieure H. D. Baehr, K. Stephan, Wärme- und Stoffübertragung

1	Modulbezeichnung 63365	Thermofluiddynamik der Biotechnologie no english module name available for this module	7,5 ECTS
2	Lehrveranstaltungen	Vorlesung mit Übung: Thermofluiddynamik der Biotechnologie (6 SWS)	7,5 ECTS
3	Lehrende	DrIng. Thomas Manfred Koller Julius Jander Patrick Schmidt Prof. DrIng. Andreas Paul Fröba	

4	Modulverantwortliche/r	DrIng. Thomas Manfred Koller
5	Inhalt	 Bedeutung der Thermofluiddynamik in der Biotechnologie Grundlagen der Thermodynamik, insbesondere hinsichtlich der Einteilung von Zustands- und Prozessgrößen, dem Zustandsverhalten reiner Fluide, dem ersten und zweiten Hauptsatz der Thermodynamik sowie der Gemischthermodynamik Grundlagen der Strömungsmechanik, insbesondere hinsichtlich Strömungsformen, Fluidstatik und Fluiddynamik sowie den Grundgleichungen der Strömungsmechanik einschließlich des Transports von Impuls Grundlagen der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Mechanismen zum Transport von Energie und Masse sowie deren zugrundeliegenden Gleichungen Analyse und Auslegung von biologischen und bioverfahrenstechnischen Prozessen und Systemen auf verschiedenen Skalen vom menschlichen Kreislaufsystem und dessen Darstellung über Ersatzsysteme über Organsysteme und multizellulare Systeme bis hin zum Bioreaktor unter Anwendung der Thermofluiddynamik Aufstellung von skalenübergreifenden Analogien bezüglich Kategorien wie Reaktor, Kreislauf, Wärmeübertrager und Stoffübertrager anhand von biotechnologischen Beispielen in der Verfahrenstechnik und am bzw. im Menschen Berücksichtigung von entsprechender Messtechnik und Sensorik zur Kontrolle bzw. Überwachung von biologischen und bioverfahrenstechnischen Prozessen und Systemen innerhalb eines thermofluiddynamischen Kontextes
6	Lernziele und Kompetenzen	 Studierenden sind mit der Bedeutung der Thermofluiddynamik in der Biotechnologie vertraut kennen die Grundlagen der Thermodynamik, der Strömungsmechanik sowie der Wärme- und Stoffübertragung sind mit der Analyse und Auslegung von biologischen und bioverfahrenstechnischen Prozessen und Systemen auf verschiedenen Skalen unter Anwendung der Thermofluiddynamik vertraut

		 können thermofluiddynamische Methodik für die Bilanzierung von biotechnologischen Systemen und Prozessen hinsichtlich Masse, Energie und Impuls anwenden sind in der Lage, skalenübergreifende Analogien bezüglich Kategorien wie Reaktor, Kreislauf, Wärmeübertrager und Stoffübertrager zu erstellen verstehen die thermofluiddynamischen Grundzüge der Messtechnik und Sensorik zur Kontrolle bzw. Überwachung von biologischen und bioverfahrenstechnischen Prozessen und Systemen
7	Voraussetzungen für die Teilnahme	Keine
8	Einpassung in Studienverlaufsplan	Semester: 4
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 90 h Eigenstudium: 135 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	 Vorlesungsskript (Folien und Notizen) Y. A. Çengel, R. H. Turner, J. M. Cimbala, Fundamentals of Thermal-Fluid Sciences H. D. Baehr, S. Kabelac, Thermodynamik H. D. Baehr, K. Stephan, Wärme- und Stoffübertragung F. Durst, Grundlagen der Strömungsmechanik H. Chmiel, R. Takors, D. Weister-Botz, Bioprozesstechnik W. J. Thieman, M. A. Palladino, Biotechnologie H. Dellweg, Biotechnologie verständlich

1	Modulbezeichnung 1500	Wahlmodul aus dem Angebot der FAU Elective modules from the university module catalog	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	
5	Inhalt	keine Inhaltsbeschreibung hinterlegt!
6	Lernziele und Kompetenzen	Die individuell in den gewählten Modulen erworbenen Kompetenzen können den Modulbeschreibungen der gewählten Module entnommen werden. Vom individuellen Modul unabhängige Kompetenzen: Die Studierenden erwerben zusätzliche Kenntnisse und Kompetenzen in einem neuen Fachgebiet oder vertiefen vorhandenes Wissen in einem bereits im LSE-Curriculum enthaltenen Themenfeld. Die Studierenden erwerben Selbst- und Sozialkompetenz durch eine breite, fachrichtungsübergreifende Qualifizierung innerhalb der individuell gewählten Module. Die Studierenden schärfen durch die Wahlfreiheit ihr individuelles Profil im Hinblick auf ihr angestrebtes zukünftiges Berufsfeld.
7	Voraussetzungen für die Teilnahme	Keine
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20192
10	Studien- und Prüfungsleistungen	
11	Berechnung der Modulnote	
12	Turnus des Angebots	in jedem Semester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt) Eigenstudium: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt)
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	keine Literaturhinweise hinterlegt!

Wahlpflichtmodul

1	Modulbezeichnung 94034	Bioprozessautomation Automation of Bioprocesses	5 ECTS
		Vorlesung: Bioprozessautomation (2 SWS)	-
2	Lehrveranstaltungen	Übung: Übung Bioprozessautomation (2 SWS)	-
		Praktikum: Praktikum Bioprozessautomation (2 SWS)	-
3	Lehrende	Prof. DrIng. Andreas Bück	

4	Modulverantwortliche/r	Prof. DrIng. Andreas Bück	
5	Inhalt	Das Modul Bioprozessautomation gibt einen Überblick über die Grundlagen der Automatisierung mit dem Schwerpunkt auf biotechnologische Prozesse. Diese Spezialisierung zielt auf die Herausforderungen biotechnologischer Matrices ab, in denen sich entscheidende Prozessgrößen, z.B. Konzentrationen, häufig nicht oder nicht mit klassischen Methoden bestimmen lassen. Neben einer allgemeinen Einführung zu den Bereichen Steuern, R und Leiten stellt die Verarbeitung von Informationen, z.B. Übermittl und mögliche Störungen, einen wesentlichen Teil des Modules dar Als Teile der Automatisierungstechnik werden hier auch Sensoren Aktoren und deren Bedeutung für die Automatisierung behandelt. Schließlich werden auch Grundzüge der Programmierung von Automatisierungssystemen behandelt. Im Praktikum (optional) werden die theoretisch erarbeiteten Kenntrinsbesondere die Programmierung anhand praktischer Aufgaben vertieft.	
6	Lernziele und Kompetenzen	 verstehen die Grundlagen der Automatisierungstechnik und wenden diese in einfachen Beispielen an erkennen potentielle Problemen im Informationsmanagement eines Automatisierungssystems wissen, wie Sensoren in Schaltplänen gemäß DIN angegeben werden können das Verhaltens von Regelstrecken mittels etablierter Verfahren (insbesondere Prüffunktionen) abschätzen wenden die Boolsche Logik sowie Codes an entwickeln Codezeilen eines Automatisierungsprogramms gemäß vorgegebener Angaben 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 5	
9	Verwendbarkeit des Moduls	Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Variabel	

11	Berechnung der Modulnote	Variabel (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	keine Literaturhinweise hinterlegt!

1	Modulbezeichnung 92491	Chemische Reaktionstechnik Chemical reaction Engineering	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Chemische Reaktionstechnik (2 SWS) Übung: Übungen zur Chemischen Reaktionstechnik (2 SWS)	5 ECTS
3	Lehrende	Prof. Dr. Tanja Franken	

4	Modulverantwortliche/r	Prof. Dr. Tanja Franken	
5	Inhalt	 Einführung in die Chemische Reaktionstechnik (Introduction to chemical reaction engineering) Grundlagen der Chemischen Reaktionstechnik (Fundamentals of chemical reaction engineering) Kinetik chemischer Reaktionen Mikrokinetik (Kinetics of chemical reactions Microkinetics) Chemische Reaktion und Transportprozesse Makrokinetik (Chemical reaction and transport processes Macrokinetics) Messung und Auswertung reaktionskinetischer Daten (Measurement and evaluation of reaction kinetic data) Chemische Reaktoren (Chemical reactors) Modellierung chemischer Reaktoren (Modelling of chemical reactors) 	
6	Lernziele und Kompetenzen	bie Studierenden kennen und verstehen grundlegende Vorgehensweisen der chemischen Reaktionstechnik interpretieren Reaktionsbedingungen anhand derer ein Reaktormodell aufgestellt wird organisieren selbständig die gemeinsame Bearbeitung der Übungsaufgaben und lösen diese kooperativ.	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 5	
9	Verwendbarkeit des Moduls	Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (120 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	

1	Modulbezeichnung 42933	Experimental fluid mechanics no english module name available for this module	5 ECTS
2	Lehrveranstaltungen	Vorlesung mit Übung: Experimental Fluid Mechanics (Strömungsmesstechnik) (3 SWS)	5 ECTS
3	Lehrende	Prof. Dr. Andreas Wierschem	

4	Modulverantwortliche/r	Prof. Dr. Andreas Wierschem	
5	Inhalt	 Content: Flow visualization Measurement techniques for velocity: Particle Image and Tracking Velocimetry and Laser Doppler anemometry, ultrasound, Measurement techniques for flow rate, pressure, temperature, concentration, free surfaces Applicability and limitations, typical errors 2-, 2+1-, 3-dimensional techniques, time-resolved techniques Data acquisition and processing 	
6	Lernziele und Kompetenzen	Students who participate in this course will become familiar with measurement techniques in fluid mechanics. Students who successfully participate in this module: • Have an overview over the most extended and important measurement techniques • Understand the principles of the different techniques • Know and understand the abilities and limitations of the techniques • Can to select an appropriate technique for a given task • Can identify and avoid typical measurement errors	
7	Voraussetzungen für die Teilnahme	*Prerequisites:* To succeed in this course, students will need to apply acquired knowledge from fluid mechanics. Basic knowledge in physics and measurement techniques is beneficial.	
8	Einpassung in Studienverlaufsplan	Semester: 6;4	
9	Verwendbarkeit des Moduls	Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Variabel	
11	Berechnung der Modulnote	Variabel (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	

16 Literaturhinweise	 Tropea, Yarin, Foss: Handbook of Experimental Fluid Mechanics, Springer Merzkirch: Flow Visualization, Academic Press Mayinger, Feldmann: Optical Measurements, Springer
----------------------	--

1	Modulbezeichnung 92130	Genetic Engineering (Gentechnik) Genetic engineering	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Genetic Engineering (Gentechnik) (nur LSE) (2 SWS)	5 ECTS
		Praktikum: Genetic Engineering (Gentechnik) (nur LSE) - Praktikum (1 SWS)	2,5 ECTS
		Übung: Genetic Engineering (Gentechnik) (nur LSE) - Übung (1 SWS)	-
3	Lehrende	PD Dr. Daniel Gilbert Prof. Dr. Bärbel Kappes	

1	Modulverantwortliche/r	Drof Dr. Pärhol Kannos	
4	modulverantwortiicne/r	Prof. Dr. Bärbel Kappes	
5	Inhalt	 Geschichte des Genetic Engineering Molekularbiologische Grundlagen gentechnologischer Verfahren Methoden des Genetic Engineering Das Humane Genomprojekt als erstes Großprojekt im Bereich Genetic Engineering Epigenetik und ihre Konsequenzen für das Genetic Engineering Stammzelltechnologien Transgene Pflanzen und Tiere Anwendungen und Restriktionen" Ausblick in die Synthetische Biologie 	
6	Lernziele und Kompetenzen	 verstehen und beschreiben grundlegende gentechnologische Techniken und können deren molekularen oder biochemischen Grundlagen erklären sind mit verschiedenen Vektorsystemen vertraut und können diese hinsichtlich ihre Verwendbarkeit für die jeweiligen Klonierungsstrategien beurteilen kennen grundlegende Klonierungsabläufe und können selbständig Klonierungsstrategien entwickeln sind mit den Verfahren zur Herstellung transgener pflanzlicher und tierischer Organismen vertraut erlangen die Kompetenz wissenschaftliche Ergebnisse und Technologien im Bereich Genetic Engineering zu analysieren und zu bewerten erweitern ihre soft skills, in dem sie selbständig einen Vortrag zu einem spezifischen Thema im Bereich Genetic Engineering ausarbeiten, im Plenum präsentieren, die Diskussion leiten und ein Handout erstellen (optional) 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 6;4	

9	Verwendbarkeit des Moduls	Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Praktikumsleistung Variabel	
11	Berechnung der Praktikumsleistung (0%) Modulnote Praktikumsleistung (0%) Variabel (100%)		
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h	
14 Dauer des Moduls 1 Semester		1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	 An Introduction to Genetic Engineering Third Edition, Dr Desmond S. T. Nicholl Biotechnologie für Einsteiger - Reinhard Renneberg, Darja Süßbier Molekulare Biotechnologie: Konzepte, Methode und Anwendungen Michael Wink 	

1	Modulbezeichnung 92141	Immunologie Immunology	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r		
5	Inhalt	 Geschichte und Konzepte der Immunologie Angeborene Immunität (Makrophagen, Komplement, immunologische Barrieren, Pattern recognition) Humorale Immunität (Antikörper, B-Zellreifung, Antikörperdiversität, Toleranz, Gedächtnis, Klassenwechsel, Affinitätsreifung, Effektorreaktionen) Zelluläre Immunität (T-Zellreifung, positive und negative Selektion, T-Zell-Rezeptoren, Signaltranduktion, Generierung von Helfer-, Killer- und regulatorischer T-Zellen, Effektormechanismen) Regulation der Immunantwort (Zytokine, Signaltransduktion) Grundlagen der Infektionsabwehr (T Zell-Subpopulationen, antimikrobielle Abwehrmechanismen, Makrophagen und Granulozyten) Schutzimpfung Transplantation Immunologische Erkrankungen (Allergie, Autoimmunität, Immundefizienzen, lymphatische Tumoren) 	
6	Lernziele und Kompetenzen	 bie Studierenden können die Geschichte und die Grundkonzepte der Immunologie grundlegend darzustellen und zu erläutern können den aktuellen Kenntnisstand zur Funktionsweise der angeborenen, humoralen und zellulären Immunität, über immunologische Erkrankungen sowie zu den Prinzipien der Abwehr von Infektionskrankheiten umfassend darstellen und erklären sind sich in ihrem Handeln der ethischen Verantwortung bewusst 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 5	
9	Verwendbarkeit des Moduls	Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (120 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	

12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	 Immunologie, Janeway et al., 5. Auflage (deutsch) Wörterbuch der Immunologie https://www.molim.med.fau.de/ teaching/bachelor/

1	Modulbezeichnung 95801	Medizintechnik I (Biomaterialien) Medical engineering I (biomaterials)	5 ECTS
2	Lehrveranstaltungen	Übung: Übungen zu Medizintechnik I (Biomaterialien) (2 SWS)	2,5 ECTS
		Vorlesung: Medizintechnik I (Biomaterialien) (2 SWS)	2,5 ECTS
3	Lehrende	Dr. Julia Will	

4	Modulverantwortliche/r	Drof Dr. Ing. Aldo Possociai	
4	wodulverantworthiche/i	Prof. DrIng. Aldo Boccaccini	
5	Inhalt	 Biomaterialien: Definition Bioabbaubare Polymere, bioaktive Keramiken und biokompatible Metalle Biomaterialien für Dauerimplantate Orthopädische Beschichtungen Biomaterialien fuer Tissue Engineering: Soft- und Hardgewebe Einführung in die Scaffold-Technologie Einführung in Scaffold-Charakterisierung Biomaterialien für Drug Delivery 	
6	Lernziele und Kompetenzen	 bie Studierenden kennen die Vielfalt verschiedener Werkstoffe, die bei der Herstellung von Biomaterialien und als Werkstoffe in der Medizin Anwendung finden. können die notwendigen Eigenschaften und Herstellungsmethoden von Biomaterialien für Dauerimplantate, Tissue Engineering und Drug Delivery benennen und differenzieren. können Biomaterialien für verschiedene Anwendungen auswählen. 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 5	
9	Verwendbarkeit des Moduls	Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	

16	_iteraturhinweise	 Wintermantel, Suk-Woo: Medizintechnik; Berlin, 5. Auflage, 2009 Hench, Jones (eds.): Biomaterials, artifical organs und tissue engineering; Oxford, 2005 B.D. Ratner, W.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Elsevier, Amsterdam, (2004)
----	-------------------	---

1	Modulbezeichnung 642026	Organ-Funktion und Organ-Technik Organ function and organ technology	5 ECTS
2	Lehrveranstaltungen	Übung: Organ-Funktion & Organ-Technik - Übung (1 SWS)	-
		Vorlesung: Organ-Funktion & Organ-Technik (2 SWS)	5 ECTS
3	Lehrende	Dominik Schneidereit Prof.Dr.Dr. Oliver Friedrich	

4	Modulverantwortliche/r	Dominik Schneidereit	
5	Inhalt	 Grundzüge der Architektur von inneren Organen und des biomechatronischen Apparates Physikalische und biomedizinische Funktionsprinzipien ausgewählter Organsysteme (v.a. Lunge, Herz-Kreislauf-System) Interaktion und Stoffumwandlung zwischen Organsystemen System-Fehlfunktionen von Organen und Gewebsanteilen Strategien der Organ-Ersatz-Technologien und Assist-Device-Technologien aus dem Bereich Medizintechnik, Organ-Mechatronik, Prothetik, Tissue Engineering 	
6	Lernziele und Kompetenzen	 verstehen und beschreiben die biomedizinischen Grundlagen der Organfunktion und der Gewebsarchitektur bewerten, konzipieren und wenden die Applikationen technologischer Möglichkeiten zum Ersatz/Erhalt gestörter Organfunktion aus der Beurteilung von Struktur-Funktionsbeziehungen an analysieren und beurteilen die Vorzüge und Limitationen technischer Lösungen, Bio-Hybrid-Lösungen und reiner Organtransplantationslösungen erweitern ihre soft skills, indem sie anhand eigener Literaturrecherche spezielle Probleme aus dem Bereich Organ-Funktion/-Technik als Vortrag ausarbeiten und halten sowie ein Handout zur Verfügung stellen erkennen und vertiefend beurteilen die Zusammenhänge von Organ-Support oder Ersatz-Prozessverfahren 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 5	
9	Verwendbarkeit des Moduls	Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Wintersemester	

13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	 *Speckmann & Wittokowski*, Handbuch Anatomie - Bau und Funktion des menschlichen Körpers (2009), 7Hill Publishing *Myer Kutz (Ed.)*, Biomedical Engineering and Design Handbook (2009), 2^nd^ Edt., McGraw-Hill Publ.

1	Modulbezeichnung 92101	Prozessmaschinen und Apparatetechnik Process machines and process technology	5 ECTS
		Vorlesung: Prozessmaschinen und Apparatetechnik (Process Equipment) (2 SWS)	3 ECTS
2	Lehrveranstaltungen	Übung: Übungen zu Prozessmaschinen und Apparatetechnik (Exercises Process Equipment) (2 SWS)	2 ECTS
3	Lehrende	Prof. DrIng. Michael Wensing Irina Wiemann Felix Potrykus	

4	Modulverantwortliche/r	DrIng. Sebastian Rieß Prof. DrIng. Michael Wensing	
5	Inhalt	Einführung (Charakterisierung der Stoffeigenschaften), Lagerung (Silos, Tanks), Förderung (Pumpen, Verdichter, Schüttgutdosierung, elektrische Antriebe und Getriebe), Rohrleitungen und Armaturen, Wärmeübertragung (Rohrbündel-Wärmeübertrager, Platten-Wärmeübertrager, Kondensatoren, Verdampfer), Reaktoren (Gasphasen-, Flüssigphasen-Reaktoren). Trennung (Kolonnen und Kolonneneinbauten), Durchflussmesser (Durchflussmesser für Flüssigkeiten und Gase, Durchflussmesser für Feststoffe).	
6	Lernziele und Kompetenzen	 Sind mit dem Aufbau verschiedener Maschinen und Apparate der chemischen Verfahrenstechnik zum Fördern von Gasen und Flüssigkeiten sowie zur Wärme- und Stoffübertragung vertraut verstehen die Grundlagen elektrischer Motoren können die Funktionsweise von Pumpen und Verdichtern verschiedener Bauarten und Funktionsprinzipien nachvollziehen, sie bezüglich ihrer Energieeffizienz bewerten und darauf aufbauend anwendungsorientiert auswählen können die Versuchsergebnisse eigenständig protokollieren, auswerten und kritisch diskutieren 	
7	Voraussetzungen für die Teilnahme	Technisches Zeichnen (Modul B19), Konstruktionslehre (Modul B18)	
8	Einpassung in Studienverlaufsplan	Semester: 6	
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science Life Science Engineering 20152 Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Klausur (120 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Sommersemester	

13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	 Gülich, J. F.: Kreiselpumpen -Handbuch für Entwicklung, Anlagenplanung und Betrieb, Springer Verlag, 2013 Eifler, W., Schlücker, E., Spicher, U., Will, G. Küttner Kolbenmaschinen, Springer Verlag, 2009 Vetter, G.: Handbuch Dosieren, 2. Auflage, Vulkan-Verlag, Essen, 2002 Vetter, G.: Leckfreie Pumpen, Verdichter und Vakuumpumpen, Vulkan-Verlag, Essen, 1998 Vetter, G.: Rotierende Verdrängerpumpen in der Prozesstechnik, Vulkan-Verlag, Essen, 2006 VDI-Wärmeatlas Thier, B.: Wärmetauscher, Vulkan-Verlag, Essen, 1994 Sattler, K.: Thermische Trennverfahren, VCH, Weinheim, 1995 Skript zur Vorlesung

1	Modulbezeichnung 94732	Reaktionstechnik Chemical Reaction Engineering	5 ECTS
2	Lehrveranstaltungen	Übung: Exercise Chemical Reaction Engineering (2 SWS)	-
		Vorlesung: Reaktionstechnik / Chemical Reaction Engineering, Kern (2 SWS)	-
		Tutorium: Tutorium zur Vorlesung Reaktionstechnik / Tutorial Chemical Reaction Engineering, Kern (1 SWS)	-
3	Lehrende	Patrick Schühle Dennis Weber Adrian Seitz	

		Data de Calcilla	
4	Modulverantwortliche/r	Patrick Schühle	
		Dr. Peter Schulz	
		Prof. Dr. Peter Wasserscheid	
		Im Rahmen des Moduls Chemische Reaktionstechnik (Kernfach) werden folgende Themen behandelt: The subject Chemical Reaction Engineering (B.Sc.) comprises the following topics:	
5	Inhalt	 Bilanzierung chemischer Anlagen (Mass and energy balancing of chemical plants) Kinetik und Auswertung kinetischer Messungen (Kinetics and Analysis of kinetic measurements) Kinetik heterogen katalysierter Oberflächenreaktionen (Kinetics of heterogeneously catalyzed reactions) Stofftransport und Chemische Reaktion (Mass Transport and chemical reaction) Verweilzeitmessungen idealer Reaktoren (Residence Time Distribution Measurements of ideal reactors) Umsatz/ Ausbeute in idealen, isothermen Reaktoren (Conversion/ Yield in ideal, isothermal reactors) Beschreibung realer Reaktoren (Description of real reactors) 	
6	Lernziele und Kompetenzen	Die Studierenden • kennen und verstehen grundlegende Vorgehensweisen der Reaktionstechnik • interpretieren Reaktionsbedingungen anhand derer ein Reaktormodell aufgestellt wird • organisieren selbständig die gemeinsame Bearbeitung der Übungsaufgaben und Praktikumsversuche und lösen diese kooperativ	
7	Voraussetzungen für die Teilnahme	Um an den Veranstaltungen teilzunehmen, ist die Anmeldung für den zugehörigen StudOn-Kurs verpflichtend. Der Link zum Kurs sowie das Passwort werden in der ersten Vorlesung mitgeteilt.	
8	Einpassung in Studienverlaufsplan	Semester: 6;4	

9	Verwendbarkeit des Moduls	Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192
10	Studien- und Prüfungsleistungen	Klausur (120 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Fitzer, Fritz, Emig, Einführung in die Chemische Reaktionstechnik, Springer Verlag, 4. Auflage, Berlin 1995 Baerns, Hofmann, Renken, Chemische Reaktionstechnik, Thieme Verlag, Stuttgart. Jess, Wasserscheid, Chemical Technology, Wiley Verlag, 2019.

1	Modulbezeichnung 42932	Scientific computing in engineering 2 no english module name available for this module	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Scientific computing in engineering 2 (2 SWS)	-
		Übung: Tutorial Scientific computing in engineering 2 (2 SWS)	-
3	Lehrende	Prof. Dr. Jens Harting	

	[
4	Modulverantwortliche/r	Prof. Dr. Jens Harting	
5	Inhalt	 Process system modeling Fluid mechanics and dimensionless parameters Cellular automata Lattice gas and lattice Boltzmann methods Multiphase flows Reaction-diffusion systems Molecular dynamics Monte Carlo simulations Programming in modern programming languages such as Python or Julia. 	
6	Lernziele und Kompetenzen	 The students model process systems and can formulate practical examples mathematically, implement simple algorithms on the computer and perform simulations know and use methods such as cellular automata, lattice Boltzmann methods, molecular dynamics, computational fluid dynamics and Monte Carlo simulations interpret results independently and can present them visually 	
7	Voraussetzungen für die Teilnahme	Keine	
8	Einpassung in Studienverlaufsplan	Semester: 6;4	
9	Verwendbarkeit des Moduls	Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	Variabel	
11	Berechnung der Modulnote	Variabel (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 90 h Eigenstudium: 60 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	
16	Literaturhinweise	keine Literaturhinweise hinterlegt!	

1	Modulbezeichnung 959016	Zellkulturtechnik für LSE (Wahlpflichtfach) Cell Culture Technology for LSE	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Zellkulturtechnik für LSE (2 SWS) Übung: Übung zu Zellkulturtechnik LSE (1 SWS)	- 2,5 ECTS
3	Lehrende	DrIng. Holger Hübner	

4	Modulverantwortliche/r	DrIng. Holger Hübner	
5	Inhalt	*Vorlesung*	
6	Lernziele und Kompetenzen	 kennen und verstehen die Grundlagen, um erste Versuche in der Zellkultur zu planen und durchzuführen kennen die Theorie sowie die praktische Ausführung prozessbegleitender analytischer Verfahren und können erhaltene Messdaten kritisch analysieren und Fehlerquellen ermitteln. Hauptaugenmerk liegt dabei auf der Evaluation wachstumscharakteristischer Parameter, wie die Wachstumsgeschwindigkeit der Zellkultur, deren Vitalität und metabolische Aktivität. kennen theoretisch Techniken und Methoden, um praktische Arbeiten im Zusammenhang mit Zellkulturen durchzuführen. kennen die Regeln zur Auswahl verschiedene Kultivierungssysteme und können diese anhand ihrer Vor- und Nachteile für verschiedene Kultivierungsprozesse auswählen. 	

		 kennen beispielhafte praxisrelevante Produktionsprozesse von zellkulturtechnisch hergestellten Stoffen. sind in der Lage, Produktionsprozesse zu analysieren und zu verbessern. beherrschen Techniken zur Reduzierung komplexer Fragestellungen auf relevante Aspekte. 	
7	Voraussetzungen für die Teilnahme	Solide Kenntnisse der Biochemie und Mikrobiologie werden für die mündliche Prüfung vorausgesetzt und nur in Ausnahmen in der Vorlesung wiederholt.	
8	Einpassung in Studienverlaufsplan	Semester: 6;	
9	Verwendbarkeit des Moduls	Wahlpflichtmodul Bachelor of Science Life Science Engineering 20192	
10	Studien- und Prüfungsleistungen	mündlich	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	Vorlesungsunterlagen zur Vorlesung über StudOn	