Nom: Prénom:

EXAMEN ECRIT MATHÉMATIQUES APPLIQUEES 1 B. LE BAILLY

Bachelier en Informatique et Systèmes, Première Année

23/01/2023, Durée : 3h00 Tous appareils électroniques interdits

Q1 /40	Q2 /50	Q3 /40	Q4 /30	Q5 /20	Q6/60	Total / 240	Total /20

Question 1 (40 points)

- Pour chaque fonction f(x), compléter le tableau de valeurs et représenter f(x) dans \mathbb{R}^2 , l'espace euclidien de dimension 2 muni d'un repère orthonormé.
- a) $f(x) = x^2$

	Φ
	10 Y
	-14
x $y = f(x)$	13
$\begin{bmatrix} x & y - f(x) \end{bmatrix}$	-12
	-11
-2	10
0	
	5
3	4
	3
	2
	1 x
	-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
	-1
	-2
	-3
	4
	-5
	.0
	-7
	-8

Représenter, dans le même repère, la fonction $g(x) = f\left(\frac{x}{2}\right) - 4$ en expliquant la(les) manipulation(s) graphique(s) effectuée(s) pour passer du graphe de f(x) au graphe de g(x).

1

Prénom:

b)
$$f(x) = log_2(x)$$

x $y = f(x)$	7 8
0	4
1	2
	-9 -7 -6 -5 -4 -9 -2 -1 0 1 2 3 4 5 6 7 6
2	-2
4	
	6 7

Représenter, dans le même repère, la fonction $g(x) = -2^x$ en expliquant la(les) manipulation(s) graphique(s) effectuée(s) pour passer du graphe de f(x) au graphe de g(x).

c)
$$f(x) = \cos x$$

x y	y = f(x)			ý		
0						
π/2				1		
π					π/2	<u> </u>
$3\pi/2$						
2π						

Représenter, dans le même repère, la fonction $g(x) = 3 f\left(x - \frac{\pi}{2}\right)$ en expliquant la(les) manipulation(s) graphique(s) effectuée(s) pour passer du graphe de f(x) au graphe de g(x).

Prénom:

• Trouver les expressions analytiques des fonctions f, g et h représentées ci-dessous.

$$f(x) =$$

$$g(x) =$$

$$h(x) =$$

Prénom:

Question 2 (50 points) Vrai ou Faux. Justifier

a)
$$\sqrt[5]{a^4}$$
 $\sqrt[10]{a^7}$ $\sqrt{a} = a \sqrt[5]{a^3}$ où $a \in \mathbb{R}_0^+$

b)
$$\frac{1-2\sqrt{10}+\sqrt{20}}{\sqrt{5}} = \frac{10-10\sqrt{2}+\sqrt{5}}{5}$$

c)
$$log_{32}2 = \frac{1}{5}$$

d)
$$e^{\frac{\ln 4}{2}} = \frac{1}{2}$$

e) L'équation $3e^{2x} - e^x + 1 = 0$ n'admet pas de solution réelle.

f) Une population de bactéries qui triple tous les deux jours s'élèvera à 24 300 individus après 10 jours si elle est composée initialement de 100 individus.

g) La fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = \left(\frac{1}{2}\right)^x$ est surjective.

- h) Un triangle rectangle, dont l'hypoténuse mesure 9 cm et un des deux angles non droits vaut 30° , a son côté adjacent à cet angle de 30° qui mesure $\frac{9}{2}$ cm.
- i) Un angle au centre d'un cercle de rayon 3 cm et qui intercepte sur ce cercle un arc de longueur égale à $\frac{\pi}{2}$ cm mesure 60° .
- $j) \quad arc \ tg(-1) = \frac{3\pi}{4}$
- k) L'ensemble des solutions réelles de l'équation $\cos(x) = -\frac{1}{2}$ est $S = \left\{\frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}\right\}$.
- l) La fonction f(x) = cotg(2x) est de période π .

m) La relation binaire représentée ci-dessous est fonctionnelle et non-injective.

Nom: Prénom:

Question 3 (40 points)

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x)$ représentée par la parabole ci-dessous :

a) Compléter le tableau suivant en justifiant :

Image de $x = 2$ par f ?	
Valeur(s) de x envoyée(s) sur $y = -5$ par f ?	
Equation de l'axe de symétrie de la parabole ?	
Racine(s) de la parabole ?	
Parabole convexe ou concave ?	
f admet une fonction réciproque ?	
f est une application?	
f est une fonction paire?	

e) Calculer, s'il(s) existe(nt), le(s) point(s) d'intersection des droites d_1 et d_2 .

Prénom:

Question 4 (30 points) : Résoudre dans $\ensuremath{\mathbb{R}}$

a)
$$\frac{4^{x^2}}{(4^{2x})^{(x-1)}}$$
 : $\frac{16^x}{4^{x^2}}$ = 1

b)
$$tg^2(2x) = 3$$

c)
$$log_5 3x = 2 log_5 x - log_5 (x - 1)$$

d)
$$3 \sin x = 2 \cos^2 x$$

Question 5 (20 points)

a) Représenter sur le cercle trigonométrique ci-dessous les nombres trigonométriques de l'angle α et calculer les valeurs exactes de ces nombres trigonométriques.

b) Calculer à l'aide du cercle trigonométrique

sin(210°) =	arc cotg (1) =
$arccos(-\sqrt{3}/2) =$	cos(-420°) =
$tg\left(\frac{-2\pi}{3}\right) =$	cos(225°) =
$sin\left(\frac{5\pi}{3}\right) =$	$\operatorname{tg}\left(\frac{13\pi}{4}\right) =$

Question 6 (60 points)

Soient les matrices A, B, C et D suivantes :

$$\mathbf{A} = \begin{pmatrix} -1 & 3 & 2 \\ 2 & -5 & 0 \\ 1 & -3 & -1 \end{pmatrix} , \mathbf{B} = \begin{pmatrix} 1 & 2 & 4 \\ 4 & -1 & 3 \\ 2 & 4 & 8 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 & 1 & -5 \\ 0 & 8 & 1 \\ 0 & 0 & -2 \end{pmatrix}, \mathbf{D} \in \mathbb{R}^{2 \times 3} \text{ où } d_{ij} = (-1)^{i+j} i j .$$

- a) Vrai ou Faux ? Justifier.
 - 1) $b_{21} = 4$.
 - 2) Le mineur de a_{22} vaut 1.
 - 3) Le cofacteur de c_{32} vaut -3.
 - 4) A est inversible.
 - 5) C est triangulaire inférieure.

6)
$$D = \begin{pmatrix} 1 & -2 \\ -2 & 4 \\ 3 & -6 \end{pmatrix}$$
.

7) La troisième inconnue z du système linéaire de trois équations à trois inconnues $\begin{cases} -x + 3y + 2z = -2 \\ 2x - 5y = 0 \end{cases}$ a pour valeur z = -1. $\begin{cases} x - 3y - z = 1 \end{cases}$

- b) Si cela est possible, calculer (sinon, justifier pourquoi cela est impossible):
 - $1) \quad A^{T} + 2B$

Prénom:

- 2) BC
- 3) CD
- 4) A⁻¹

- 5) D²
- 6) B + D
- c) Utiliser la méthode de l'inverse pour trouver la solution du système linéaire de trois équations à trois inconnues $\begin{cases} -x+3y+2z=1\\ 2x-5y=2\\ x-3y-z=3 \end{cases}.$

Nom: Prénom: