

RocksDB Festival

Supported by IITP, StarLab.

August 2, 2021 송인호**,** 한예진

inhoinno@dankook.ac.kr , hbb97225@naver.com

TeamName: 멘탈모델을 만들고 싶어요

Contents

Last Week

- ✓ Leveled vs Universal Compaction Comparison
 - Throughput
 - Write Amplification
 - Latency distribution + # of Compactions

This Week

- ✓ Leveled vs Universal Compaction Comparison
 - Block cache size Hit ratio
 - Write-Ahead-Log Throughput, Latency

LVL vs Univ Compaction Comparison

LVL vs Univ Write Throughput: WAL_OFF

Throughput comparison

Key [16, 32, 64, 128, 256, 1024] Value [64, 128, 256, 512, 1024, 4096] DB_Size 2.4GB Storage Samsung 512GB 860 Pro File System Ext4 CPU Intel(R) Core(TM) i5-4440 CPU @ 3.10GHz

LVL vs Univ Write Throughput: WAL_OFF

Write Throughput: WAL_OFF - K16, 1024 / V[64-4096]

LVL vs Univ Read Throughput: WAL_OFF

Throughput comparison

--use_existing_db

Key [16, 32, 64, 128, 256, 1024] **Value** [64, 128, 256, 512, 1024, 4096]

DB Size 2.4GB

Storage Samsung 512GB 860 Pro

File System Ext4

CPU Intel(R) Core(TM) i5-4440 CPU @ 3.10GHz

LVL vs Univ Read Throughput: WAL_OFF

Read Throughput: WAL_OFF - K16, 1024 / V[64-4096]

LVL vs Univ WAF Comparison:WAL_OFF

WAF: WAL_OFF

LVL vs Univ # of Compactions, latency Comparison

Fillrandom latency 99.99%: WAL_OFF

LVL vs Univ # of Compactions, latency Comparison

Readrandom latency 99.99%: WAL_OFF

LVL vs Univ Cache Hit ratio Comparison

- Block Cache Hit ratio Comparison
 - ✓ 8MB, 16MB, 32MB, 64MB, 256MB → 512MB, 1GB, 2GB, 4GB 실험 중...

☞ Hit ratio is less than 50% under block cache size == 256MB

LVL vs Univ Cache Hit ratio Comparison

Block Cache Hit ratio Comparison

LVL vs Univ Cache Hit ratio Comparison

Mental Model

- Quantative Experiment
 - ✓ LvL vs Univ
 - KV distribution
 - · Throughput, latency, Hit ratio, QPS(queries per second)
 - SST Table Size
 - · Throughput, latency
 - WAL off
 - Adjusting block cache size
- Qualitative Experiment
 - ✓ Level Compaction's weak point
 - Write Amplification
 - Write Stall
 - → Methods to overcome
 - Universal Compaction's weak point
 - Read Amplification
 - Space Amplification
 - → Methods to overcome
 - → New Idea!

1~2 Week

Mental Model

Level Compaction

Universal Compaction

Fig: Luo, Chen, and Michael J. Carey. "LSM-based storage techniques: a survey." The VLDB Journal 29.1 (2020): 393-418.

Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, The Unwritten Contract of Solid State Drives, EuroSys'17

https://github.com/junhe/wiscsee

Discussion

Last Week

Compaction Style

- Leveled Compaction, Universal Compaction
 - ✓ Sorted Level vs Sorted Run

Example of LeveledCompaction

Example of Universal Compaction

Mental Model

LVL vs Univ Throughput Comparison

Througput comparison

Key [16, 32, 64, 128, 256, 1024]

Value [64, 128, 256, 512, 1024, 4096]

Entries 500 0000

Storage Samsung 1TB 860 Pro

File System Ext4

CPU Intel(R) Core(TM) i7-10700K CPU @

3.80GHz

LVL vs Univ Throughput Comparison

LVL vs Univ Throughput Comparison

LVL vs Univ WAF Comparison

LVL vs Univ # of Compactions, latency Comparison

Fillrandom

LVL vs Univ # of Compactions / latency Comparison

Readrandom

Issue on Last week

Throughput(KOPS)

Throughput(MB/s)

☞ 한 쪽은 OPS, 한 쪽은 MB/s 임. 즉, KV Size가 늘어날 수록 MB/s는 늘어나고, OPS는 줄어들게 됨

