Stability of Ice bergs

floating at suface

zu above zv (of displaged fluid)

meta stable?

Stability

≥ is not fixed if body rotates?

Submerged avea changes?

=> stabilizes but how much

$$(x_0, y_0) = \frac{1}{A} \int_A (x, y) dA$$

$$x_{m} = \begin{bmatrix} x_{m} \\ y_{m} \\ z_{m} \end{bmatrix}$$
 $x_{B} = \begin{bmatrix} x_{B} \\ y_{B} \\ z_{B} \end{bmatrix}$

initially:
$$x_m = x_B = 0$$
 $y_m = y_B = 0$

Rotation around x-axis

components:

$$U_y = -(x_m - x_g)$$
 mg

$$T_z = 0$$

Stability criterium: [= - (ym - yB) mg

Horizontal shift:

due to rotation:

change of
$$\sum_{B}$$
 due to fluid displacement
 $\Delta y_{B}^{F} = -\frac{1}{V_{D}} \int_{A} (y - y_{B}) u dA = -\frac{x}{V_{D}} \int_{A} y^{2} dA = -x \frac{I}{V_{D}}$

I = \(\text{y}^2 dA \) second moment of water line

Horizoutal change in conter of buoyancy

$$\Delta y_{B} = \Delta y_{C}^{F} + \Delta y_{B}^{F}$$

$$= - \propto \left(z_{B} + \frac{I}{V_{D}} \right)$$

note
$$V_D \ge 0$$

Summary

$$y_B = 0 + \Delta y_M = -\alpha \left(z_B + \frac{I}{V}\right)$$

Stability criterium

$$\frac{\Sigma_{x}}{mg} = \alpha \left[Z_{m} - (Z_{8} + \frac{I}{V_{b}}) \right]$$

restoring moment: sign of z_m opposite of x ice beig is stable if $z_m > z_m$

unstable

of rotation

seuse of rotation

General theory for arbitrarily shaped objects and infinitesimal tilt (x = 1).

Effect of aspect ratio on stability

Tall objects are unstable

- 1) zm and z are further apart

 => hard to stabilize
- 2, Long arm leads to a large rotational displacement -> very destabilizing
- 3) Redistribution of submerged volume close to centerline (I is small)

 => weakly stabilizing
- => clearly unstable

Wide objects are stable
Large redistribution
1) zm & z, we close to gether
⇒ easy to stabilize
2) Short arm leads to small rotational
displacement => weakly destabilizing
3) Redistribution of submerged volume
is far from centerline
> strouly stabilizing
7 311000.9 310.011121009
⇒ clearly stable
- Cieding Bradie
But where is the boundary?
But where is the boundary? >> HW