Act-7008 Sujets spéciaux Quiz

Etienne Marceau, professeur titulaire

École d'actuariat, Université Laval, Québec (Qc), Canada

10 février 2022

Résumé

Le quiz aborde des thèmes avec les inégalités de concentration, qui sont pertinentes, notamment, en théorie du risque, en probabilité et en apprentissage automatique.

Table des matières

1	Contexte]
2	Q1 : Convergence en probabilité	2
3	Q2 : Inégalité de Chernoff	2
4	Q3 : Inégalité de Hoeffding	2
5	Inégalités de concentration	2

1 Contexte

Soit le processus d'occurrences des sinistres (évènements) $\mathbf{I} = \{I_k, k \in \mathbf{N}_+\}$ comme il est fait [Cossette et al., 2003], dans [Cossette et al., 2010] (\mathbf{I} est désigné par \mathbf{I}) et dans le projet d'Olivier.

On rappelle que

$$I_k \stackrel{\mathcal{D}}{=} I \sim Bern(q), \quad k \in \mathbb{N}_+.$$

Le paramètre de dépendance est $\alpha \in (c^-, c^+)$ où $c^+ = 1$ et $c^- = ?$. Il faudrait indiquer l'expression de c^-).

Dans [Cossette et al., 2003] (je crois), il est montré que

$$\rho_P(I_k, I_{k'}) = \alpha^{|k-k'|}, \quad k, k' \in \mathbb{N}_+. \tag{1}$$

On définit

$$N_n = I_1 + \dots + I_n \tag{2}$$

$$W_n = \frac{N_n}{n}, \quad n \in \mathbb{N}_+. \tag{3}$$

Voici une liste non-exhaustive de références :

- 1. [Edwards, 1960];
- 2. [Klotz, 1973];
- 3. [Gani, 1982];
- 4. [Cossette et al., 2003];
- 5. [Cossette et al., 2010];
- 6. [Dekking and Kong, 2011].

2 Q1 : Convergence en probabilité

- 1. Développez l'expression de $E[W_n], n \in \mathbb{N}_+$.
- 2. Développez l'expression de $Var(W_n)$, $n \in \mathbb{N}_+$.
- 3. Démontrez que, $\forall \epsilon > 0$, l'inégalité

$$\Pr(|W_n - q| > \epsilon) \le \frac{\epsilon}{Var(W_n)} = \xi(\epsilon, q, \alpha)$$
 (4)

est satisfaite pour $\forall n \in \mathbb{N}_+$. Indiquez l'expression de ξ .

- 4. Démontrez que $W_n \stackrel{\mathcal{P}}{\to} q$, quand $n \to \infty$.
- 5. Interprétez l'inégalité en (4).

3 Q2 : Inégalité de Chernoff

L'inégalité de Chernoff est un exemple d'inégalité de concentration.

1. Pour $\delta > 0$, développez l'inégalité de Chernoff pour

$$\Pr(N_n > (1+\delta)nq), \quad n \in \mathbb{N}_+. \tag{5}$$

- 2. Développez une extension au Lemme B.3 de [Shalev-Shwartz and Ben-David, 2014] dans le contexte du présent quiz.
- 3. Développez une extension au Lemme B.4 de [Shalev-Shwartz and Ben-David, 2014] dans le contexte du présent quiz.

4 Q3 : Inégalité de Hoeffding

L'inégalité de Hoeffding est un exemple d'inégalité de concentration.

1. Pour $\epsilon > 0$, développez une extention dans le contexte du présent contexte à l'inégalité de Hoeffding présentée au Lemme B.6. Bref, démontrez que, $\forall \epsilon > 0$, l'inégalité

$$\Pr(|W_n - q| > \epsilon) \le e^{-\zeta(\epsilon, q, \alpha)}$$
(6)

est satisfaite pour $\forall n \in \mathbb{N}_+$ et developpez l'expression de ζ .

- 2. Interprétez l'inégalité en (6).
- 3. Quelles sont les différences entre les inégalités en (4) et (6). Quelle est l'information supplémentaire fournie par (6) en comparaison de (4).

5 Inégalités de concentration

Donnez votre interprétation concernant une inégalité de concentration.

Voir Christopher pour les précisions [sourire].

RÉFÉRENCES RÉFÉRENCES

Références

[Cossette et al., 2003] Cossette, H., Landriault, D., and Marceau, E. (2003). Ruin probabilities in the compound markov binomial model. *Scandinavian Actuarial Journal*, 2003(4):301–323.

- [Cossette et al., 2010] Cossette, H., Marceau, E., and Maume-Deschamps, V. (2010). Discrete-time risk models based on time series for count random variables. *ASTIN Bulletin : The Journal of the IAA*, 40(1):123–150.
- [Dekking and Kong, 2011] Dekking, M. and Kong, D. (2011). Multimodality of the markov binomial distribution. *Journal of Applied Probability*, 48(4):938–953.
- [Edwards, 1960] Edwards, A. (1960). The meaning of binomial distribution. *Nature*, 186(4730):1074–1074
- [Gani, 1982] Gani, J. (1982). On the probability generating function of the sum of markov bernoulli random variables. *Journal of Applied Probability*, 19(A):321–326.
- [Klotz, 1973] Klotz, J. (1973). Statistical inference in bernoulli trials with dependence. *The Annals of Statistics*, pages 373–379.
- [Shalev-Shwartz and Ben-David, 2014] Shalev-Shwartz, S. and Ben-David, S. (2014). *Understanding machine learning: From theory to algorithms*. Cambridge university press.