Nicholas Wogan

Department of Earth and Space Science/Astrobiology Program University of Washington, Seattle, WA wogan@uw.edu

Education

2017-Present	Ph.D Graduate Student, Dual-title Earth and Space Science and Astrobiology,
	University of Washington, Seattle, WA.
2012-2016	B.S. , Physics major, University of Oregon Honors College.

Professional Experience

2017-Present	Research Assistant, Planetary Science and Astrobiology, University of
	Washington, Seattle, WA. Advisor: David Catling.

- Research topics include the origin of life, the evolution of the Early Earth atmosphere, and interpretation of exoplanet biosignatures.
- 2016-2017 **Research Assistant**, Geophysics, University of Oregon, Eugene, OR. Supervisor: Eugene Humphreys
- 2014-2015 **Undergraduate Research Assistant**, Geophysics, University of Oregon, Eugene, OR. Supervisor: Dean Livelybrooks
- 2014 **Undergraduate Teaching Assistant**, Introductory Physics, University of Oregon, Eugene, OR. Supervisor: Ben McMorran.

Awards and Honors

2023	NASA Postdoctoral Program fellowship recipient
2023	Award for best graphic in presentation, Earth and Space Science Gala, University of Washington
2017	Department of Earth and Space Sciences Top Scholar Award, University of Washington
2016	Undergraduate Research Award, University of Oregon Physics department
2016	Undergraduate Honors Thesis: Passed with Distinction, University of Oregon Honors college
2012	Presidential Scholarship Recipient, University of Oregon

Teaching Experience

2019	Teaching Assistant: Intro. Astrobiology (ASTBIO 115; Winter) , University of Washington.
2018	Teaching Assistant: Intro. Geology (ESS 101; Winter) , University of Washington.
2014	Undergraduate Teaching Assistant: Intro. Physics (PHYS 251) , University of Oregon

Recent Outreach

2021

2022 Astronomy on Tap presentation at Bickerson Brewhouse, Seattle, WA. 2022 "Rockin' Out" volunteer. Rockin' Out is a K-12 volunteer-based outreach program at the Department of Earth and Space Sciences at the University of Washington (UW).

Mentoring Maanit Goel, a high school student in Seattle, WA. 2021-2022

Peer-Reviewed Publications		
In-Prep		
2023	Zoe Todd, Nicholas Wogan , David Catling (2023). Environmental influences on the formation of ferrocyanide and implications for prebiotic chemistry. <i>In-prep</i> .	
2023	Nicholas Wogan , David Catling, Kevin Zahnle (2023). Earth's impact history and the timing of the origin of life. <i>In-prep</i> .	
Submitted		
2023	Nicholas Wogan , David Catling, Kevin Zahnle, Roxana Lupu (2023). Origin of Life Molecules in the Atmosphere After Big Impacts on the Early Earth. <i>Submitted, Planetary Science Journal</i> .	
In-Review		
2023	Amber Young, Tyler Robinson, Joshua Krissansen-Totton, Edward Schwieterman, Nicholas Wogan , Michael Way, Linda Sohl, Giada Arney, Christopher Reinhard, Michael Line, David Catling, James Windsor (2023). On Inferred Chemical Disequilibrium Biosignatures for Proterozoic Earth-Like Exoplanets. <i>In-review, Nature Astronomy</i> .	
Published	•	
2023	Zachary Cohen, Zoe Todd, Nicholas Wogan , Roy Black, Sarah Keller, David Catling (2023). Plausible sources of membrane-forming fatty acids on the early Earth: a review of the literature and an estimation of amounts. <i>ACS Earth and Space Chemistry</i> . DOI:10.1021/acsearthspacechem.2c00168.	
2022	Nicholas Wogan , David Catling, Kevin Zahnle, and Mark Claire (2022). Rapid timescale for an oxic transition during the Great Oxidation Event and the instability of low atmospheric O ₂ . <i>Proceedings of the National Academy of Sciences</i> . DOI:10.1073/pnas.2205618119.	
2022	Maggie Thompson, Joshua Krissansen-Totton, Nicholas Wogan , Myriam Telus, and Jonathan Fortney (2022). The case and context for atmospheric methane as an exoplanet biosignature. <i>Proceedings of the National Academy of Sciences</i> . DOI:10.1073/pnas.2117933119.	

Joshua Krissansen-Totton, Max Galloway, Nicholas Wogan, Jasmeet Dhaliwal,

and Jonathan Fortney (2021). Waterworlds Probably Do Not Experience

	Magmatic Outgassing. <i>The Astrophysical Journal</i> . <u>DOI:10.3847/1538-4357/abf560</u> .
2021	Joshua Krissansen-Totton, Jonathan Fortney, Francis Nimmo, and Nicholas Wogan . Oxygen False Positives on Habitable Zone Planets Around Sun-Like Stars. <i>AGU Advances</i> . DOI:10.1029/2020AV000294.
2020	Nicholas Wogan, Joshua Krissansen-Totton and David Catling. Abundant Atmospheric Methane from Volcanism on Terrestrial Planets Is Unlikely and Strengthens the Case for Methane as a Biosignature. <i>The Astrophysical Journal</i> . DOI:10.3847/PSJ/abb99e.
2020	Kevin Zahnle, Roxana Lupu, David Catling, and Nicholas Wogan . Creation and Evolution of Impact-generated Reduced Atmospheres of Early Earth. <i>The Planetary Science Journal</i> . DOI:10.3847/PSJ/ab7e2c.
2020	Nicholas Wogan and David Catling. When is chemical disequilibrium in Earth-like planetary atmospheres a biosignature versus an anti-biosignature? Disequilibria from dead to living worlds. <i>The Astrophysical Journal</i> . DOI:10.3847/1538-4357/ab7b81.
Selected Cor	nference Presentations
Invited	
2022	Nicholas Wogan , David Catling, Kevin Zahnle, Mark Claire. Rapid timescale for an oxic transition during the Great Oxidation Event and the instability of low atmospheric O ₂ . NASA Goddard Exoplanets Seminar.
2020	Nicholas Wogan and David Catling. Atmospheric Synthesis of Prebiotic Molecules on the Hadean Earth. Prebiotic Chemistry and Early Earth Environments Consortium (PCE3), remote conference.
Contributed	
2022	Nicholas Wogan , David Catling and Kevin Zahnle. Atmospheric Nitriles for the Origin of Life from the Atmosphere after Large Asteroid Impacts on the Hadean Earth. Latsis Conference, Zurich, Switzerland.
2022	Nicholas Wogan , David Catling and Kevin Zahnle. Origin of Life Chemistry in the Atmosphere After Large Impacts on the Early Earth. Astrobiology Science Conference, Atlanta, GA.
2021	Nicholas Wogan , David Catling and Kevin Zahnle. Molecules for the origin of life from impact-generated atmospheres on early Earth. Simons Foundation Collaboration on the Origin of Life Annual meeting, remote conference.
2021	Nicholas Wogan , David Catling and Kevin Zahnle. Molecules for the origin of life from impact-generated atmospheres on early Earth. Goldschmidt 2021, remote conference.
2019	Nicholas Wogan and David Catling. When is chemical disequilibrium in Earth-

like planetary atmospheres a biosignature versus an anti-biosignature?

Investigating disequilibria from prebiotic to post-biotic worlds. American Geophysical Union Fall Meeting, San Francisco, CA.

Open-Source Software

- photochem: https://github.com/Nicholaswogan/photochem. A one-dimensional photochemical-climate model.
- clima: https://github.com/Nicholaswogan/clima. A one-dimensional radiative transfer code and suite of climate models.
- numbalsoda: https://github.com/Nicholaswogan/numbalsoda. A high-performance ordinary differential equation solver for Python.
- NumbaMinpack: https://github.com/Nicholaswogan/NumbaMinpack. High-performance non-linear root solving for Python.
- fortran-yaml-c: https://github.com/Nicholaswogan/fortran-yaml-c. A YAML parser and emitter for Fortran.