Evaluating Machine Learning Models

Data Intelligence and Learning (<u>DIAL</u>) Lab

Prof. Jongwuk Lee

Cross Validation

Hold-out Method

- Divide the given data into a training set and a test set.
 - ◆ The training set and the test set should NOT overlap each other.
- How to choose a good model?
 - With the training set, build various models.
 - With the test set, evaluate each model.
 - Choose the model which shows the best performance with test set.

Hold-out Method

4. Choose the best model.

Hold-out Method

- > Advantage: Simple and easy
- > Disadvantage
 - Waste of data: The test set is not used for modeling building.
 - Random split: Evaluation can be different depending on data split.

Cross Validation

\triangleright Cross-validation (k-fold)

- Data D is randomly partitioned into k mutually exclusive subsets $\{D_1, ..., D_k\}$, each approximately equal size.
- k = 10 is most popular.

> Overall procedure

- ullet The data is partitioned into k groups.
 - k-1 of the groups are used for training the model.
 - One remaining group is used for evaluating the model.
- Repeat procedure for all k choices.
- Performance from the k runs are averaged.

Choose a model by the average performance of four sets.

Set I	0.75	0.80	•••	0.72
Set II				
Set III				
Set IV				

Set I	0.75	0.80		0.72
Set II	0.80	0.85	•••	0.65
Set III				
Set IV			•••	

Set I	0.75	0.80	 0.72
Set II	0.80	0.85	 0.65
Set III	0.72	0.70	 0.75
Set IV			

Set I	0.75	0.80	•••	0.72
Set II	0.80	0.85		0.65
Set III	0.72	0.70		0.75
Set IV	0.75	0.69		0.72

Cross Validation

> Summary

- The data set is divided into k subsets, and the hold-out method is repeated k times.
- Each time, one of the k subsets is used as the test set and the other k-1 subsets are put together to form a training set.
- ullet The average error across all k trials is computed.
- The variance is reduced as k is increased.

> Advantage

- Less dependent on how the data gets divided.
- Every data point gets to be in a test set exactly once and gets to be in a training set k-1 times.

Disadvantage

Time!

Leave-one-out Cross Validation

- > Extreme case of k-fold cross validation
 - If data size is n, set k = n.
 - Every data samples except one is used for training and the remaining one is used for testing.
 - Repeat this n times.

Evaluation Metrics

Evaluation in Regression Models

Mean absolute error (MAE) and mean squared error (MSE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |f(\mathbf{x}^{(i)}) - y^{(i)}|$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |f(\mathbf{x}^{(i)}) - y^{(i)}| \qquad MSE = \frac{1}{n} \sum_{i=1}^{n} (|f(\mathbf{x}^{(i)}) - y^{(i)}|)^{2}$$

- Root mean squared error (RMSE)
 - MSE is more popular than MAE because MSE punishes larger errors.
 - But, RMSE is even more popular than MSE because RMSE is interpretable in the "y" axis.

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (|f(\mathbf{x}^{(i)}) - y^{(i)}|)^2}$$

Confusion Matrix

> Building a confusion matrix for actual and predicted results

Ground-truth value

a)		Positive (1)	Negative (0)
d value	Positive (1)	True Positive (TP)	False Positive (FP)
Predicted	Negative (0)	False Negative (FN)	True Negative (TN)

◆ This can be used to measure accuracy, precision, recall, and so on.

Confusion Matrix

Accuracy, Error Rates

- > The fraction of these classifications that are correct
 - Given an image, classify it into "cat" or "No cat".

$$accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$error rate = 1 - accuracy$$

Ground-truth value

ne		Positive (1)	Negative (0)
ed value	Positive (1)	True Positive (TP)	False Positive (FP)
edicted	Negative (0)	False Negative (FN)	True Negative (TN)
۲			

> Why is not a useful evaluation measure in some domains?

Example: Accuracy

> Which system is better in terms of accuracy?

Example: Why not just Use Accuracy?

- > 99.9% of documents are irrelevant in most of the cases
 - Labeling every document as irrelevant has high accuracy, but it is useless in the Web search engine.

snoogle.com
Search for:
0 matching results found.

Precision and Recall

> Precision

• Exactness: how many selected items are relevant?

$$Precision = \frac{TP}{TP + FP}$$

> Recall

Completeness: how many relevant items are selected?

$$Recall = \frac{TP}{TP + FN}$$

- > The perfect score of both measures is 1.0.
 - In general, the inverse relationship between precision and recall

F-Measure (F-Score)

> F-measure (F₁ or F-score)

The weighted harmonic mean of precision and recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \quad \text{where } \beta^2 = \frac{1 - \alpha}{\alpha}$$

• When $\alpha = 0.5$ (*i.e.*, $\beta = 1.0$)

$$F = \frac{2PR}{P + R}$$

> Why harmonic mean?

- The harmonic mean is always less than or equal to the arithmetic mean and the geometric mean.
- When P and R differ greatly, the harmonic mean is closer to their minimum than to their arithmetic mean.

Dataset	Actual
X ₁	+
X_2	_
X ₃	_
X_4	+
X ₅	_
X ₆	_

System B	
Predicted	
+	
_	
_	
_	
_	
-	

Precision: Recall: F-score:

Precision: Recall: F-score:

Extending Multi-class Classification

> Categorizing each sample into 1 of N different classes

Ground-truth value

Predicted value

	Cat 2	Dog	Fish)
Cat 2	4	6	3
Dog	1	2	0
Fish)	1	1	6

Example: Accuracy

> The accuracy is (3 + 2 + 5)/25 = 10/25.

O
Ž
ल
>
7
Ð
cte
≟
2
<u>9</u>
Δ

	Cat 2	Dog	Fish)
Cat 2	3	6	5
Dog	2	2	0
Fish)	1	1	5

> For Cat, the precision is 3/(3+6+5)=3/14.

a)		Cat 2	Dog	Fish)
Predicted value	Cat 2	3	6	5
	Dog	2	2	0
	Fish)	1	1	5

> For Cat, the recall is 3/(3+2+1) = 3/6.

Predicted value		Cat 2	Dog	Fish)
	Cat 2	3	6	5
	Dog	2	2	0
	Fish)	1	1	5

- \triangleright For Dog and Fish, the precision is 2/4 and 5/7.
- \triangleright For Dog and Fish, the recall is 2/9 and 5/10.

o
<u> </u>
/a
6
Ũ
C
ᅙ
ē
Ξ

	Cat 2	Dog	Fish)
Cat 2	3	6	5
Dog	2	2	0
Fish)	1	1	5

Macro-Precision and Macro-Recall

- > For three classes, the average of precision and recall is called macro-precision and macro-recall.
 - Macro-precision: (3/14 + 2/4 + 5/7)/3 = 0.476
 - Macro-recall: (3/6 + 2/9 + 5/10)/3 = 0.407

4)		Cat 2	Dog	Fish)	
Predicted value	Cat 2	3	6	5	3/14
	Dog	2	2	0	2/4
	Fish)	1	1	5	5/7
		3/6	2/9	5/10	

Q&A

