Protein Family Classification

Aarohi Chopra & Daniel Quintana

7 01OVERVIEW

Why do we care about this?

How did we do what we did?

Crash course on proteins!

This is what we got!!! :D

01

OVERVIEW

What we want to do!

Problem Statement

- Our goal is to predict what family a protein belongs to.
- Why?
 - Evolutionary Relationships -Family Trees!
 - 2. Infer novel proteins' biological functions

2 BACKGROUND

Protein Time!!!:D

Background

Amino Acids

Proteins

Classification

Familys

Amino Acids

Proteins

Classification and Effects

Familys

Problem Statement

- Our goal is to predict what family a protein belongs to.
 - Saves time!

How?

• Graph Classification!

03

METHODS

Here is what we did!

METHODS

Data

Graph

Model

Tuning

Data

- Kaggle Data "<u>Deep Protein Sequence family Classification</u>"
 - 1. Metadata

structureId chainId sequence residueCount_x classification experimentalTechnique macromoleculeType_y residueCount y resolution structureMolecularWeight crvstallizationMethod crystallizationTempK densityMatthews densityPercentSol pdbxDetails phValue

	structureId	classification	experimentalTechnique	macromoleculeType	• • •	:entSol	pdbxDetails	phValue	publicationYear
0	100D	DNA-RNA HYBRID	X-RAY DIFFRACTION	DNA/RNA Hybrid	•••	30.89	pH 7.00, VAPOR DIFFUSION, HANGING DROP	7.0	1994.0
1	101D	DNA	X-RAY DIFFRACTION	DNA	• • •	38.45	NaN	NaN	1995.0
2	101M	OXYGEN TRANSPORT	X-RAY DIFFRACTION	Protein	•••	60.20	3.0 M AMMONIUM SULFATE, 20 MM TRIS, 1MM EDTA,	9.0	1999.0

2. Sequence

str	uctureId ch	hainId	sequence	residueCount	macromoleculeType
0	100D	Α	ccggcgccgg	20	DNA/RNA Hybrid
1	100D	В	ccggcgccgg	20	DNA/RNA Hybrid
2	101D	Α	CGCGAATTCGCG	24	DNA
3	101D	В	CGCGAATTCGCG	24	DNA
4	101M	A MVLSI	EGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDR	154	Protein

Data

Exploratory Data Analysis:

1. Removed non-proteins

struct	ureId	macromoleculeType		structureId	macromoleculeTy
0	100D	DNA/RNA Hybrid	0	1TQF	Pro
1	100D	DNA/RNA Hybrid	1	1Y4W	Pro
2	101D	DNA	2	5MJY	Pro
3	101D	DNA	3	3ENP	Pro
4	101M	Protein	4	1NPZ	Pro

2. Removed duplicate ID and Sequence

1. Removed short sequences

3	101D	В	CGCGAATTCGCG	24	DNA
4	101M	A MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRL	FKSHPETLEKFDR	154	Protein

Data

- Exploratory Data Analysis:
 - o Only picked top 10 families, balanced data (all to 500)

Graphs

 Queried the "RCSB Protein Data Bank" to for the aforementioned proteins pdb files

```
Downloading PDB files: 11% | 530/5000 [13:47<1:58:00, 1.58s/it]Warning: Failed to download PDB file with ID 4V7G 2.04s/it]Warning: Failed to download PDB file with ID 5BP4 2426/5000 [1:00:56<57:49, 1.35s/it] Warning: Failed to download PDB file with ID 5EUJ 2.04s/it]Warning: Failed to download PDB file with ID 5EUJ 3.45s/it]Warning: Failed to download PDB file with ID 4V96 2.04s/it]Warning: Failed to download PDB file with ID 4V96 3.50s/it]Total successful downloads: 4996
```


Graphs

- Turned pbd's into graphs and labels using their respective family
 - 1. Graphein

2. NetworkX

Models

- Now we have three data sets!
 - 1. Metadata + Sequence
 - 2. Sequence
 - 3. Graphs

Traditional Models

- Machine Learning on: Sequence & Metadata
 - Logistic Regression max iteration = 50
 - Random Forest n_estimators = 100
 - Gradient Boosting n_estimators = 100

Traditional Models

- Machine Learning on: Sequence Only, using CountVectorizer
 - Logistic Regression max iteration = 50
 - Random Forest n_estimators = 100
 - Gradient Boosting n_estimators = 100

Traditional Models

- Machine Learning on: Sequence Only
 - Naive bayes
 - SVM kernel = rbf

Graph Models + Tuning

GCN

- o 20 Epocs
- o Hidden size: 64
- Learning rate 0.001 & 0.0005
- o Dropout rate 0.3 & 0.5
- ADAM optimizer
- Training Time: 6+ hrs

OL RESULTS

Look at the pretty chart!:O

Results

Dataset	Model	Best Protein	Best Protein Accuracy	Overall Accuracy	Overall Ranking!
Kagala Daraan	CNN	IMMUNE SYSTEM	0.59	0.22	8th
Kaggle Person	CNN v2	LYASE	0.72	0.59	1st
	Logistic Regression	TRANSFERASE	0.86	0.50	3rd
Sequence + Metadata	Random Forest	TRANSFERASE	0.86	0.53	2nd
Metadata	Gradient Boosting	TRANSFERASE	0.78	0.40	6th
	Logistic Regression	TRANSFERASE	0.92	0.49	4th
	Random Forest	TRANSFERASE	0.93	0.45	5th
Sequence Only	Gradient Boosting	TRANSFERASE	0.68	0.39	7th
	Naive Bayes	TRANSFERASE	0.71	0.49	4th
	SVM	TRANSFERASE	0.91	0.49	4th
	GCN	LYASE	0.77	0.15	9th
Graphs	GATs			TBD	
	GraphSAGE			TBD	

Takeaways

- Kaggle people only got 59% accuracy!!!! :o
- Our Baseline was 50% but we were using less data
- We first thought the model worked better with Sequence Only, we were wrong:
- Graphs were not as good as just using all the data

Next Steps

- Improving GCNs
 - B-factor
- GATs
- GraphSAGE
- Graph that includes metadata

QŧΑ