| MA 162              | Exam 2                   |     | Spring 2008 |
|---------------------|--------------------------|-----|-------------|
| Name                | SOLUTION                 | KEY |             |
|                     |                          |     |             |
| 10-digit PUID       |                          |     |             |
|                     |                          |     |             |
| RECITATION Div      | ision and Section Number | ers |             |
|                     |                          |     |             |
| Recitation Instruct | or                       |     |             |

## Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 17 problems. Problems 11 and 13 are worth 5 points each. The rest of the Problems are worth 6 points each. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators or any electronic devices are not to be used on this test.

1. What's an appropriate trig substitution for the integral  $\int x^3 \sqrt{4-9x^2} \ dx$ ?

$$\sqrt{a^2 - (u(x))^2} \Rightarrow \text{Let } u(x) = a \sin \theta$$

B. 
$$3x = 2\tan(\theta)$$

C. 
$$3x = 2\sec(\theta)$$

D. 
$$2x = 3\sin(\theta)$$

E. 
$$2x = 3\tan(\theta)$$

2. Using an appropriate trig substitution, the corresponding  $\theta$  limits of integration of the integral  $\int_{\sqrt{3}}^{3} \frac{x^3}{\sqrt{x^2+9}} dx$  are

$$\sqrt{\chi^2+9} \implies \chi = 3 \tan \theta \implies \theta = \tan^{-1}\left(\frac{\chi}{3}\right) A. \int_{\pi/4}^{\pi/6}$$

$$\Phi(\overline{3}) = \tan^{-1}\left(\frac{\overline{3}}{3}\right) = \tan^{-1}\left(\frac{1}{\overline{3}}\right) = \overline{8}$$

$$\begin{array}{c}
\text{B.} \int_{\pi/6}^{\pi/4}
\end{array}$$

$$\theta(3) = \tan^{-1}(\frac{3}{3}) = \tan^{-1}(1) = \frac{\pi}{4}$$

C. 
$$\int_{\pi/3}^{\pi/4}$$
D.  $\int_{-\pi/2}^{\pi/3}$ 

E. 
$$\int_{\pi/3}^{\pi/2}$$

3. Using an appropriate trig substitution,  $\int \frac{\sqrt{x^2-1}}{x} dx =$ 

$$\sqrt{\chi^2-1} \Rightarrow \chi = \sec \theta$$

A. 
$$\int \tan(\theta) \sec(\theta) d\theta$$

B. 
$$\int \sin(\theta)\cos(\theta) d\theta$$

C. 
$$\int \sin^2(\theta) \ d\theta$$

$$\int \frac{\int x^2 - 1}{x} dx = \int \frac{\tan \theta}{\sec \theta} \sec \theta \tan \theta d\theta$$

$$= \int \tan^2 \theta d\theta$$

D. 
$$\int \sec^2(\theta) d\theta$$

$$(E.) \int \tan^2(\theta) d\theta$$

4. What's an appropriate trig substitution for the integral  $\int \frac{\sqrt{4x-x^2}}{3x} dx$ ?

$$4x-x^2 = -(x^2-4x+4)+4$$
  
=  $4-(x-2)^2$ 

$$\int_{0}^{\infty} \int_{0}^{\infty} dx = 2 \sin \theta$$

A. 
$$x-2=3\sin(\theta)$$

B. 
$$x-4=2\sin(\theta)$$

C. 
$$x-2=3\tan(\theta)$$

$$\stackrel{\smile}{\text{E.}} x - 4 = 2 \tan(\theta)$$

5. The form of the partial fraction decomposition of  $\frac{162x}{x^4-16}$  is

$$\frac{162 \times \frac{162 \times 1}{(x^{2}-4)(x^{2}+4)}}{(x^{2}-4)(x^{2}+4)} = \frac{162 \times \frac{1}{(x^{2}-4)(x^{2}+4)}}{(x^{2}-4)(x^{2}+4)}$$

$$= \frac{162 \times \frac{1}{(x^{2}-4)(x^{2}+4)}}{(x^{2}-4)(x^{2}+4)}$$
B.  $\frac{A}{x-4} + \frac{B}{x+4}$ 
C.  $\frac{A}{x-2} + \frac{B}{x+2} + \frac{B}{x+2}$ 

A. 
$$\frac{Ax+B}{x^2-4} + \frac{Cx+D}{(x^2-4)^2}$$

B. 
$$\frac{A}{x-4} + \frac{B}{x+4}$$

$$\underbrace{\text{C.}}_{x-2} + \frac{B}{x+2} + \frac{Cx+D}{x^2+4}$$

D. 
$$\frac{A}{x-2} + \frac{B}{x+2} + \frac{C}{x^2+4}$$

E. 
$$\frac{A}{x^2 - 4} + \frac{B}{x^2 + 4}$$

6. 
$$\int \frac{3x}{(x-1)(x+2)} \ dx =$$

$$\frac{3x}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$$

$$\rightarrow 3x = A(x+2) + B(x-1)$$

$$x=-2 \rightarrow -6 = 0A - 3B \rightarrow B = 2$$

(A.) 
$$\ln|x-1| + 2\ln|x+2| + C$$

B. 
$$\ln|x-1| - 2\ln|x+2| + C$$

C. 
$$\ln|x-1| + \ln|x+2| + C$$

D. 
$$2 \ln |x-1| + \ln |x+2| + C$$

E. 
$$2 \ln |x-1| - 2 \ln |x+2| + C$$

$$\frac{x=-2}{\int \frac{3x}{(x-1)(x+2)} dx} = \int \left(\frac{1}{x+1} + \frac{2}{x+2}\right) dx = \ln|x-1| + 2\ln|x+2| + C$$

7. From a table of integrals, it appears the integral  $\int \frac{\sqrt{9x^2-4}}{12x} dx$  is closest in form to  $\int \frac{\sqrt{u^2-a^2}}{u} du$ . With an appropriate substitution,  $\int \frac{\sqrt{9x^2-4}}{12x} dx =$ 

Let u = 3x and a = 2. Then  $x = \frac{1}{3}u$  A.  $\frac{1}{4} \int \frac{\sqrt{u^2 - 2^2}}{u} du$ Then du = 3dx, so  $dx = \frac{1}{3}du$  B.  $\frac{1}{4} \int \frac{\sqrt{u^2 - 2^2}}{u} du$ 

A. 
$$\frac{1}{4} \int \frac{\sqrt{u^2 - 2^2}}{u} du$$

B. 
$$\frac{1}{36} \int \frac{\sqrt{u^2 - 2^2}}{u} du$$

$$\int \frac{\sqrt{2^{2}-4}}{12 \times dx} dx = \int \frac{\sqrt{u^{2}-a^{2}}}{12(\frac{1}{3}u)} du \qquad (C.) \frac{1}{12} \int \frac{\sqrt{u^{2}-2^{2}}}{u} du$$

$$D. 12 \int \frac{\sqrt{u^{2}-2^{2}}}{u} du$$

$$C. \frac{1}{12} \int \frac{\sqrt{u^2 - 2^2}}{u} du$$

$$= \frac{1}{12} \int \frac{\sqrt{u^2 - a^2}}{u} du \qquad \text{E. } \frac{2}{3} \int \frac{\sqrt{u^2 - 2^2}}{u} du$$

$$E. \frac{2}{3} \int \frac{\sqrt{u^2 - 2^2}}{2} du$$

8. A pool, 12 yards long, is shaped like an oval. The distance, in yards, across the pool, at 2 yard intervals, is shown below. Find the DIFFERENCE between  $T_6$ , the trapezoidal approximation of the area of the pool and  $M_3$ , the midpoint approximation of the area of the pool.



$$M_3 = 4(5+7+5) = 68$$

A. 12

$$T_6 = \frac{2}{2} \left( 0 + 2(5) + 2(6) + 2(7) + 2(6) + 2(5) + 0 \right) = 58$$

9. 
$$\int_{-1}^{2} \frac{1}{x} dx = \left| \frac{1}{x} \right| \times \left| \frac{2}{-1} \right|$$

$$= \left| \frac{1}{x} \right| = \left| \frac{2}{x} \right| = \left| \frac{2}{x} \right| = \left| \frac{2}{x} \right|$$

A. 
$$\ln\left(\frac{1}{2}\right)$$

C. 
$$\frac{3}{4}$$

D. 
$$\frac{5}{4}$$

10. 
$$\int_{1}^{\infty} \frac{1}{(2x+2)^{3}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{(2x+2)^{3}} dx$$

$$= \lim_{t \to \infty} \left( \frac{-1}{4(2x+2)^{2}} \right|_{1}^{t}$$

$$= \lim_{t \to \infty} \left( \frac{-1}{4(2t+2)^{2}} - \frac{-1}{64} \right) = 0 + \frac{1}{64}$$

A. 
$$\frac{1}{16}$$

B. 
$$\frac{1}{128}$$

C. 
$$\frac{1}{32}$$

$$\begin{array}{c}
\hline
D. \frac{1}{64}
\end{array}$$

$$u=2x+2 \Rightarrow du=2dx \Rightarrow \int \frac{1}{(2x+2)^3} dx = \int u^{-3} \frac{1}{2} du = \frac{1}{2} \frac{u^{-2}}{u^{-2}} + C = \frac{-1}{4u^2} + C$$

11. Find the length of the curve  $y = 3 + 2x_{-}^{3/2}$ ,  $1 \le x \le 2$ .

arc length = 
$$\int_{a}^{b} \sqrt{1 + (4/4x)^{2}} dx$$
  
 $1 + \frac{dy}{dx} = 1 + (3x^{1/2})^{2} = 1 + 9x$   
 $\int_{1}^{2} \sqrt{1 + 9x} dx = \frac{1}{9} \cdot \frac{3}{3} (1 + 9x)$   
 $= \frac{2}{27} \left( \frac{3}{2} - \frac{3}{2} \right)$ 

$$(A.)\frac{2}{27} \left(19^{3/2} - 10^{3/2}\right)$$

B. 
$$\frac{2}{27} \left( 21^{3/2} - 13^{3/2} \right)$$

C. 
$$\frac{1}{3} \left( 21^{3/2} - 13^{3/2} \right)$$

D. 
$$4\sqrt{2} - 1$$

E. 
$$4\sqrt{2} + 1$$

12. The curve  $y = x^5$ ,  $0 \le x \le 1$  is rotated about the y-axis. The surface area of the resulting surface of revolution is

$$ds = \sqrt{1 + (d\psi/_{dx})^{2}} dx \qquad A. \int_{0}^{1} 2\pi x \sqrt{1 + x^{10}} dx$$

$$= \sqrt{1 + (5x^{4})^{2}} dx \qquad B. \int_{0}^{1} 2\pi x^{5} \sqrt{1 + x^{10}} dx$$

A. 
$$\int_0^1 2\pi x \sqrt{1+x^{10}} \ dx$$

B. 
$$\int_0^1 2\pi x^5 \sqrt{1+x^{10}} \ dx$$

Surface one = 
$$\int_{0}^{1} 2 \pi x \sqrt{1 + 25x^{8}} dx$$
D. 
$$\int_{0}^{1} 2\pi x^{5} \sqrt{1 + 25x^{8}} dx$$

D. 
$$\int_0^1 2\pi x^5 \sqrt{1 + 25x^8} \ dx$$

E. 
$$\int_0^1 2\pi x \sqrt{1+5x^4} \ dx$$

13. A plane region is bounded by  $y = x^2, y = 0$  and x = 2. Find the y-coordinate,  $\overline{y}$ , of

its centroid. 
$$(x, \frac{x^2}{z})$$

its centroid.

$$\begin{pmatrix}
x \\
y
\end{pmatrix}$$

$$\begin{pmatrix}
x \\
z
\end{pmatrix}$$

A. 
$$\overline{y} = \frac{1}{5}$$

$$M_{x} = M_{y=0} = \int_{0}^{2} \left( \frac{x^{2}}{2} x^{2} dx \right) = \int_{0}^{2} \left( \frac{x^{2}}{2} x^{4} dx \right)$$

$$= \frac{1}{10} \times \frac{5}{10} = \frac{320}{10} = \frac{160}{5} \cdot \frac{7}{9} = \frac{160}{5} \cdot \frac{7}{9} = \frac{160}{5} \cdot \frac{7}{9} = \frac{6}{5}$$

14. A plane region in the first quadrant has centroid (3,4) and area 7 square units. The volume of the solid generated by revolving the region about the line x=-2 is



A. 
$$84\pi$$
 cubic units

B. 
$$70\pi$$
 cubic units C.  $56\pi$  cubic units

$$= 2\pi(5)(7) = 70\pi$$

D. 
$$42\pi$$
 cubic units

E. 
$$35\pi$$
 cubic units

15. Determine whether the sequence  $a_n = \frac{n^2 + 1}{n^2}$  converges or diverges. If it converges, find the limit.

$$\lim_{N\to\infty}\frac{N^2+1}{N^2}=1$$

- A. Converges to 2
- B. Converges to 1
- C. Converges to 0
- D. Converges to 1/2
- E. Diverges
- 16. Determine whether the sequence  $a_n = \sin(n/3)$  converges or diverges. If it converges, find the limit.

$$\lim_{n \to \infty} \sinh\left(\frac{n}{3}\right) \text{ does not exist.}$$

$$\lim_{n \to \infty} \sinh\left(\frac{n}{3}\right) \text{ diverges}$$

... 
$$\left\{ \sin\left(\frac{n}{3}\right) \right\}$$
 diverges

- A. Converges to 0
- B. Converges to 1
- C. Converges to  $\pi/3$
- D. Converges to  $\frac{\sqrt{3}}{2}$
- E. Diverges.
- 17. Determine whether the sequence  $a_n = \frac{2^{n-1}}{3^{n+2}}$  converges or diverges. If it converges, find the limit.

$$\lim_{N \to \infty} \frac{2^{N-1}}{3^{N+2}} = \lim_{N \to \infty} \frac{2^{N}(2)^{-1}}{3^{N}(3)^{2}}$$
A. Converges to  $\frac{2}{3}$ 
B. Converges to  $\frac{3}{54}$ 
C. Converges to  $\frac{1}{54}$ 
D. Converges to 0

$$=\lim_{N\to 9}\frac{1}{18}\left(\frac{2}{3}\right)^N=0$$

- E. Diverges.