Paweł Galewicz 234053 Karol Podlewski 234106

JĘZYKI PROGRAMOWANIA W ANALIZIE DANYCH – LABORATORIUM

Zadanie 2

Opis implementacji

Stworzone rozwiązanie to program konsolowy, zaimplementowany w języku Python 3.7.5. W projekcie wykorzystano następujące biblioteki: Matplotlib, NumPy, Pandas oraz Scikit-learn.

Zbiór danych

W zadaniu wykorzystano zbiór danych dotyczących cen domów i mieszkań w Hrabstwie King, USA. Dane zbierano w okresie 05.2014 - 05.2015, łącznie zawierają one ponad 20 tysięcy rekordów. Zbiór zawiera informacje dotyczące wielu parametrów, takich jak lokalizacja, liczba pięter czy różnego rodzaju udogodnienia, natomiast do analizy wybrane zostały kolumny:

- Sqft_living informująca o przestrzeni mieszkalnej
- Price przedstawiająca cenę danego miejsca

Kolumny te charakteryzują się dużą wariancją, co było wymogiem zadania. Ponieważ dane nie posiadały braków, zostały one wygenerowane przy użyciu pomocniczego skryptu. Zbiór dostępny jest pod następującym linkiem: https://www.kaggle.com/harlfoxem/housesalesprediction

Wpływ metody uzupełniającej dane na uzyskanie wyniki

Pierwszy eksperyment polegał na przetestowanie różnych metod uzupełniania brakujących danych i sprawdzenie jak wpływają one na cechy charakterystyczne zbioru danych. Braki danych w rozważanych kolumnach ustawiono na poziom ~8%. Dane z zastosowanymi metodami wypełniania porównane zostały z danymi, gdzie rekordy z występującymi brakami zostały usunięte. Dla każdego zbioru wyliczono wartości średniej, odchylenia standardowego oraz trzech kwartyli (Q1, Q2, Q3), a także wyznaczono krzywą regresji.

 $\textbf{Tabela 1.} \ \text{Cechy charakterystyczne wyliczone dla kolumny } \textbf{sqft_living} \ \text{dla } 8\% \ \text{brakujących danych}$

Metoda	Średnia	Odchylenie standardowe	Pierwszy kwartyl	Drugi kwartyl	Trzeci kwartyl
Usuwanie rzędów	2078.89	913.23	1420	1914	2550
Mean imputation	2079.98	881.81	1470	2010	2480
Interpolacja	2082.02	902.46	1440	1920	2540
Hot-Deck	2081.9	922.68	1420	1910	2550
Wartości z krzywej regresji	2079.98	920.23	1420	1910	2550

Tabela 2. Cechy charakterystyczne wyliczone dla kolumny price dla 8% brakujących danych

Metoda	Średnia	Odchylenie standardowe	Pierwszy kwartyl	Drugi kwartyl	Trzeci kwartyl
Usuwanie rzędów	540729.68	364617.1	321500	450000	645500
Mean imputation	539749.05	346961.99	330000	479500	622500
Interpolacja	539662.35	354272.61	325000	454975	644750
Hot-Deck	540247.04	361080.86	322000	450000	648000
Wartości z krzywej regresji	541034.87	358477.11	325000	454925	649950

Rysunek 1. Krzywa regresji dla danych z usuniętymi rzędami, dla 8% braków

Rysunek 2. Krzywa regresji dla danych wypełnionych metodą mean imputation, dla 8% braków

Rysunek 3. Krzywa regresji dla danych wypełnionych metodą interpolacji, dla 8% braków

Rysunek 4. Krzywa regresji dla danych wypełnionych metodą hot-deck, dla 8% braków

 $\mathbf{Rysunek}$ 5. Krzywa regresji dla danych wypełnionych wartościami uzyskanymi z tej krzywej, dla 8% braków

Tabela 3. Współczynniki regresji dla 8% braków

Metoda	Współczynnik kierunkowy	Wyraz wolny	
Usuwanie rzędów	280.49	-42376.33	
Mean imputation	253.89	11671.62	
Interpolacja	244.2	31228.63	
Hot-Deck	234.2	52661.13	
Wartości z krzywej regresji	280.49	-42376.33	

Wszystkie testowane metody wykazały porównywalnie dobre wyniki i nieznacznie zmieniały charakterystyki zbioru. Każda metoda, ze względu na swą implementację, cechowała się zmianami innego rodzaju i tak na przykład zbiór wykorzystujący metodę mean imputation, która zakłada wypełnianie brakujących danych średnią wartością danej kolumny w zbiorze nie wpływała zauważalnie na wartość średniej, zaś mocno zmniejszała odchylenie standardowe. Wszystkie metody zmniejszają kąt krzywej regresji – oczywistym wyjątkiem od tego jest metoda wypełniająca dane wartościami z krzywej.

Wpływ dodatkowych braków na uzyskane wyniki

Drugim eksperymentem było sprawdzenie jak wypełnianie danych wpływa na zmianę parametrów zbioru przy różnych procentowych progach brakujących danych. Dla każdego z następujących progów: 15%, 30%, 45%, porównane wyznaczone cechy charakterystyczne zbiorów z:

- Usuniętymi brakującymi danymi
- Brakującymi danymi wypełnionymi metodą Hot-Deck, która wybrana została na podstawie zadowalających wyników w pierwszym eksperymencie

Tabela 4. Cechy charakterystyczne wyliczone dla kolumny sqft_living dla 8% metody Hot-Deck

% brakujących danych	Imputacja	Średnia	Odchylenie standardowe	Pierwszy kwartyl	Drugi kwartyl	Trzeci kwartyl
11	Nie	2077.44	906.11	1430	1910	2550
15	Tak	2075.44	910,3	1430	1910	2550
30	Nie	2080.8	917.51	1430	1920	2550
30	Tak	2068.4	904.5	1420	1900	2530
45	Nie	2081.58	913.72	1430	1910	2550
	Tak	2088.12	920.66	1430	1920	2550

Tabela 5. Cechy charakterystyczne wyliczone dla kolumny price dla 8% metody Hot-Deck

% brakujących danych	Imputacja	Średnia	Odchylenie standardowe	Pierwszy kwartyl	Drugi kwartyl	Trzeci kwartyl
15	Nie	538033.16	356032.88	322000	450000	642000
15	Tak	539294.79	361392.88	322500	450000	641000
30	Nie	542757.81	372321.61	323000	450700	649950
30	Tak	538597.33	368482.93	320000	450000	643002
45	Nie	539222.08	357915.16	321013.5	450000	649950
45	Tak	536711.58	352735.35	320000	450000	643000

Rysunek 6. Krzywa regresji dla danych z usuniętymi rzędami, dla 15% braków

Rysunek 7. Krzywa regresji dla danych wypełnionych metodą hot-deck, dla 15% braków

Rysunek 8. Krzywa regresji dla danych z usuniętymi rzędami, dla 30% braków

Rysunek 9. Krzywa regresji dla danych wypełnionych metodą hot-deck, dla 30% braków

Rysunek 10. Krzywa regresji dla danych z usuniętymi rzędami, dla 45% braków

Rysunek 11. Krzywa regresji dla danych wypełnionych metodą hot-deck, dla 45% braków

 ${\bf Tabela~6.}$ Współczynniki regresji dla metody hot-deck

% brakujących danych	Imputacja	Współczynnik kierunkowy	Wyraz wolny	
15%	Nie	272.76	-30610.46	
1970	Tak	201.54	119854.04	
30%	Nie	283.82	-41621.11	
	Tak	159.76	220236.49	
4507	Nie	273.26	-36070.69	
45%	Tak	106.08	347025.71	

Wraz ze wzrostem brakujących danych imputacja miała coraz większy wpływ na cechy zbioru, co widoczne jest przede wszystkim, kiedy porównujemy współczynniki regresji. Im więcej danych brakowało, tym bardziej malał współczynnik kierunkowy – krzywa regresji była jeszcze bardziej wypłaszczona. Natomiast różnice te nadal nie są tak duże jak można by się było tego spodziewać. Prawdopodobnie jest to spowodowane bardzo dużą liczbą danych, przez co nawet 50% obserwacji wystarczająco dobrze opisuje zbiór. Dzięki temu metody imputacji dobrze się sprawdzały.