IFAE: from particles to the Cosmos

Hottest Topics in Fundamental Physics

Why is the expansion of the Universe accelerating? **Dark energy**

How can it be that one part in 10⁹ of matter did not annihilate with antimatter?

Why is it that the majority of matter in galaxies does not emit light?

Dark matter

What is the origin of the mass of all particles? **Higgs particle**Why so light?

Frontiers in Fundamental Physics

The Energy Frontier

- At the energy frontier, physicists use particle accelerators to investigate the fundamental laws of physics
- The Large Hadron Collider (LHC)
 produces proton collisions at
 13TeV, recreating the conditions of
 the Universe just after the Big Bang
- Experiments like ATLAS allow us to study the Higgs boson and other particles and search for dark matter and supersymmetry

The Intensity Frontier

- At the intensity frontier, physicists use **neutrino beams** to investigate the fundamental laws of physics
- Measurements of the properties of the neutrinos are key to the understanding of new physics beyond today's models
- Experiments like T2K measure neutrino oscillations to elucidate if matter behave differently in its matter and antimatter forms

The Cosmic Frontier

- At the cosmic frontier,
 astrophysicists use cosmic
 sources as a laboratory to
 investigate the fundamental laws
 of physics
- High Energy Astrophysics study the most energetic phenomena in the universe, which generate gamma rays of energies above few tens of GeV up to hundreds of TeV
- Telescopes like MAGIC offer a window into the most violent Universe, and allow us to study dark matter

The Cosmic Frontier

- At the cosmic frontier,
 cosmologists use the whole
 Universe as a laboratory to investigate the fundamental laws of physics
- Cosmologists try to shed light on the nature of the mysterious dark energy, responsible for the current accelerated expansion of the universe
- Galaxy surveys like the Dark Energy Survey (DES) use gravitational lensing to explore 14 billion years of Cosmic History

Experimental Division

DES

PAU

DESI

EUCLID

dark matter

Theory Division

 $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha_{\nu}$ $\frac{1}{8}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(c^{2})^{2}]W_{\mu}^{+}$ $W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-} - \phi^{+}\partial_{\mu}\phi^{0})]$ $[\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{c}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{\mu}^{2}}{c_{c}})$ $igs_w MA_\mu (W_\mu^+ \phi^- - W_\mu^- \phi^+) - ig \frac{1-2c_w^2}{2c} Z_\mu^0 (e^{-igs_w} - W_\mu^+ \phi^-)$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [I_\mu^- Q_\mu^- Q_\mu^- Q_\mu^- Q_\mu^- Q_\mu^- Q_\mu^- Q_\mu^-]$ $\frac{1}{4}g^2 \frac{1}{c^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-]$ $W_{\mu}^{-}\phi^{+}$) $-\frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{-}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})$ + $W_{\mu}^{-}\phi^{+}$) + $\frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}t$ $g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{\nu}^\lambda \gamma \partial \nu$ $\bar{d}_{i}^{\lambda}(\gamma \partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u})]$ $\frac{ig}{4c}Z_u^0[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2-1 (1 - \gamma^5)u_i^{\lambda} + (\bar{d}_i^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{iq}{2\sqrt{2}}$ $(\bar{u}_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^-[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^5)C_{\lambda\kappa}d_j^{\kappa})]$ $\gamma^5 u_j^{\lambda}$] + $\frac{ig}{2\sqrt{2}} \frac{m_c^{\lambda}}{M} \left[-\phi^+ (\bar{\nu}^{\lambda} (1 - \gamma^5)e^{\lambda}) + \phi^{\lambda} \right]$ $\frac{g}{2} \frac{m_e^{\lambda}}{M} [H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^0(\bar{e}^{\lambda}\gamma^5e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_e^2]$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)d_j^{\kappa}]]$ γ^{5} $[u_{i}^{\kappa}] - \frac{g}{2} \frac{m_{i}^{\lambda}}{M} H(\bar{u}_{i}^{\lambda} u_{i}^{\lambda}) - \frac{g}{2} \frac{m_{i}^{\lambda}}{M} H(\bar{d}_{i}^{\lambda} d_{i}^{\lambda}) +$

Applied Physics

- The same group of scientists that perform the experiments start by designing and building the instruments.
- IFAE works at the cutting edge of detector & telescope technology.
- The expertise gained is applied to medical imaging and other industrial fields.
- Our facilities include a microelectronics laboratory with state-of-the-art technologies, a data center, a mechanical workshop, electronics labs, an optical room and a shielded room.

Engineering

Data Center: PIC

Port d'Informació Científica

- Part of LHC Computing Grid
- One of 12 Tier-1 LHC data processing centers, only one in Spain
- ~10 PB on disk, ~10 PB on tape
- MAGIC data center
- One of Euclid's data centers
- Could be useful for big data in Biosciences

IFAE at a glance

Fundat per | Founded by

Membre de | Member of

Amb el suport de | Supported by

- born in 1991
- **150** people
- three divisions: theory, experimental, technical
- basic research in fundamental physics and applied research in instrumentation and medical applications
- **research lines**: Particle Physics, Astroparticle Physics, Cosmology, Medical Imaging & Physics Instrumentation
- one large engineering group (33 engineers and technicians)
- collaborations in 9 international major experiments in leadership positions (ATLAS, MAGIC, DES, T2K, PAU, CTA, DESI, Euclid, LSST)
- facilities: chip packaging & assembly, clean room, shielded room, electronics lab, optical lab, mechanical workshop (300 m²)
- one data processing centre: PIC (ATLAS Tier-1)
- member of Barcelona Institute of Science and Technology
- twice awarded with the Severo Ochoa accreditation of excellence (2012, 2016)