CSE 331 Assignment 1 Summer 2025

Deadline: 25th July

Submit in google classroom. Don't forget to turn in.

- 1. Draw DFA's accepting the following languages over the alphabet {0,1}:
 - a. Draw a DFA for the set of strings that have three consecutive 0s.
 - b. Draw a DFA for the set of strings that doesn't contain 0s. $\Sigma = \{0,1\}$
 - c. Draw a DFA of strings that ends with "0101".
 - d. Construct a DFA defined as $L = \{ w \in \{0,1\}^* : w$, when interpreted as a binary number, is divisible by 5.}
 - e. The set of binary numbers has 0 in all even positions. $\Sigma = \{0,1\}$.
 - f. Draw a DFA which accepts exactly two "00" as a substring.
 - g. Draw a DFA which accepts at most two "00" as a substring.
- 2. Draw DFA's accepting the following languages over the alphabet {0,1}:
 - a. $L_1 = \{w \in a \text{ string where 1 is followed by at least one 0}\}, \Sigma = \{0, 1\}$
 - b. $L_2 = \{w \in a \text{ string which contains of odd length}\}, \Sigma = \{0, 1\}$
 - C. $L_3 = L_1 \cap L_2$
 - d. $L_4 = \{w \in A \text{ string has substring of '010'}\}, \Sigma = \{0, 1\}$
 - e. $L_5 = \{w \in \text{ start and ends with same symbol}\}, \Sigma = \{0, 1\}$
 - f. $L_6 = L_4 \cap L_5$
- 3. Draw DFA's accepting the following languages over the alphabet {a,b}:

- a. Construct a DFA that accept the language, $L = \{ w \in \{a,b\}^*: w \text{ starts and ends with different symbols.} \}$
- b. Construct a DFA that accept the language, $L = \{ w \in \{a,b\}^* : w \text{ starts and ends with the same symbol.} \}$
- c. Construct a DFA defined as L = {w| each "b" is followed by at least one "a"} Σ = {a,b} For example: baaa
- 4. Write regular expressions for the following languages:
 - a. The set of all strings of 0s and 1s such that every pair of adjacent 0s appears before any pair of adjacent 1s
 - b. The set of all strings of 0s and 1s **not containing** 101 as a substring.
 - c. {w| w has an even number of a's and each a is followed by at least one b}
 - d. {w| w is any string that doesn't contain exactly two a's}
 - e. Construct a Regular Expression that generates the language $L = \{ w \in \{0,1\}^* : w \text{ contains at least two 1s.} \}$
 - f. {w| w starts with 0 and has odd length, or starts with 1 and has even length}
 - g. Construct a Regular Expression that generates the language $L = \{ w \in \{0,1\}^* : w \text{ doesn't contain 00 and 11.} \}$
- 5. Give english descriptions of the languages of the following regular expressions:
 - a. $(1 + \varepsilon)(00*1)*0*$
 - b. $(0 + 10)^* 1^*$
- 6. Convert the following regular expressions to NFAs with ε transitions
 - a. 01*
 - b. $00(0+1)^*$
 - c. 0*(0+1)*010+1*0(10+1)*