LECTURE 26

R commutative inha

Have canonical map $f: \mathbb{Z} \rightarrow \mathbb{R}$ ung hom
characterized by $f(1)=1\mathbb{R}$ For $n \ge 1: f(n) = f(1+-+1) = 1\mathbb{R} + -+1\mathbb{R}$ f(-n) = -f(n).

ker(f) is an ideal of ZZ & hence is of the form nZZ (nzo)

Ex.! If $R = \{0\}$, $\ker f = \mathbb{I}$ If $R = \mathbb{Z}_{\rho} \mathbb{Q}_{\rho} R_{\rho} \mathbb{Q}_{\rho}$, $\ker f = 0 \cdot \mathbb{Z}_{\rho} = \{0\}$ If $R = \mathbb{Z}_{h} \mathbb{Z}_{h}$, then $\ker f = n \mathbb{Z}_{h}$

Prop If R is a field, bur $f = \int_{PZ}^{(0)} for p$ Pf) Suppose bor f = hZZ,

where n is comparite, say $n = a \cdot b \quad (a > 1, b > 1)$ Then in R, $Q = f(a) \cdot f(b)$ $= a \cdot b \cdot b \cdot a$

Then in R, O= f(n)= f(a).f(b)

If ap =0, multiply by ge to

get bp =0. So one of ap bp must

be 0. So a Elect or be kerf.

Contradiction, since a, b & n72.

Notablen If as above berf= (w), we say the feld & has characteristic O & if lest = (p), we say the field R has characteristic p >0. Thin (Galois) Let F be a finte field. Then IFI = pt for como prime p. P() Consider the canonical map Z-→F Since Fix Rute, this can't be an rinjection, so kerf = (0). So kerf = CP7, and of induces a rung 1st 'Isomorphien homomorphien:
Theorem to F This gives & the Structure of a rectorspace over the field I/pI, when has finite dimension (since Fix Herefore IFI = pt. \boxtimes .

Note: We will show later that for every f=1, and prime f, there is a unique fold F with IFI=pf.

We need some additional theory to do thus, though.

Quotient rings. & Isomorphies on thems
R DI i'deal
R -> R/I = R quotient ring surjective ring hom.
Prop There is a bijection
Sideals ICJCRI () Sideals J? Of Roontaining I) of R
$J \longrightarrow f(J) \subset R$
f-(F) < F
Moreover R/J ~ R/J 13 onorpusm of quorient rings!
Pf) Easily verify: · Given ideal J of R containing I, f(J) is an ideal of R
(need to use surjectivity of R->R/I
· Weense, given ideal of of R, it's lary to verify f'(J) is ideal of R
e it contains I. $f(f'(\bar{J})) = \bar{J} + \bar{J}$
f-1 (f(J)) = J again by given try potheses

· remains to check

R/J ~ R/J

this follows from would

first isomorphism than for mys

R -> R/J is surjective

with beernel J = f-1(J)

sor R/J ~ R/J.

Question: When is R/I a field?

Answer: @ R=RII has may two ideals: (0) & R

(R has only two rideals containing I, namely I & R.

Refs If ICR, I #R
we say I is maximal if
there is no J containing Ise
ideal of R, other than I and R.

Mote: The above shows:

RII is a field (=>) I is a maximal ideal.

Creating relations in a ring R
aER.
If we want a ruley R which is an image of R , where $a=0$, then the largest such quotient is $R=R/(a)$
If we want one where $a_1 = a_2 = \cdots = a_n = 0$ takes $R = R/(a_1, a_2, \dots, a_n)$
Mote: could also construct this R as R/(a,)/(\(\bar{a}_2\))/(\(\bar{a}_3\))
· Let's make this concrete by considering what happens in the setting of $R = \mathbb{Z}[i] = \mathbb{Z} + \mathbb{Z}[i] = fa+bi$: abeZZ.
Ex: Suppose we want "2+i=0" Let $I=(2+i)$, $R:=R/I$.
first, lets identity InZ.
Pf) 5=(2+i)(2-i) A Hence 5Z CINZ But 5 is pume, so can't fit
any ideals smithy between 57 & INT.

Claim 2 If (2+1i) (a+bi) EZ then it is in 52
(2a-b)+(2b+a)i = Z=) 2b+a=0
=) a = -2b =) 2a - b = -4b - b = -5b
Therefore INZ=5Z
Canonical map Z >R/I=R has
herel 57 and image 2/57.
In fact R= 21/52 under this nap.
Put another way: ZZ -> R/J is sujective.
When is and ?
Why is sujective? Well: $i \equiv -2 \mod I$
So bi = -26 mod I.
So $a+bi \equiv a-2b \pmod{I}$.
Therefore $R \simeq \mathbb{Z}/5\mathbb{Z}$.
Theorem
More generally, it is a source number
with p=1 and 4) (p=5,13, 17,29,)
More generally, if p is a prime number with p=1 and 4) (p=5,13, 17,29,) Then there is an ideal IC III = R with R/I ~ 7/07
R/I ~ ZI/pZ.
Pf) Let f: R > RIT be the can map.
If fli) has order 4 in (Z/pZ)* (<- order p-), then P=1 (mod 4)
then $P \equiv 1 \pmod{4}$

Note (p-1)! = -1 (mod p) (Wilson's theorem): it follows because can pour off elements I their huerses & left with -1) It follows that (型)! has by same arguments) order 4 mod p. This is our candidate for f(i). Let a=(=)! Let I be the ideal generated by (Notationally: I= (p,i-a). This actually works! Check: IPIZ = PIZ PE) Clearly pZCINZ since p+I. Also (1-a)(b+ci) = (-ab-c)+ & use -actl=0 to show (i-a)(b+ci) EpIL. Hence by same argument cos i'n earlier example, RI ~ Z/pI. \boxtimes

But Thm (Gauss) Every ICR is puncipal.

Since every I is puncipal, the one above is, in particular, I=(x+iy), R/Z ~ Z/pZ. It follows that particular, I=(x+iy), R/Z ~ Z/pZ. (In fact 1200)(4+100) = a2+10/(4+100)