

Module 7

Upsampling and Downsampling, Part II

Overview

- Multistage downsampling concept
- Interpolated FIR (IFIR)
- IFIR design example
- Other stretch factors
- Multistage decimator design
- Multistage design example

Multistage Downsampler

 An M-fold downsampler can often be implemented more efficiently by splitting the operation into multiple stages

Multistage Downsampler

- Key questions
 - o How to factor $M=M_1xM_2xM_3...$?
 - o How to arrange the stages?
- We begin by introducing Interpolated FIR (IFIR) filters which are useful for the design of narrowband lowpass filters

Interpolated FIR (M=2)

Fig. 42. Illustrating IFIR approach for narrow-band FIR design. (a) Low-pass filter with desired response. (b) Twofold stretched response. (c) Replacing each delay with two delays. (d) Removing unwanted passband by use of low-pass filter *I*(*z*).

The desired frequency response is first *stretched* by a factor of 2.

The frequency response of the interpolated filter has the desired passband and stopband edge frequencies, but has an unwanted image at $\omega = \pi$.

The filter I(z) removes the unwanted image at $\omega = \pi$.

Interpolated FIR

$$\rightarrow$$
 $H(z) \rightarrow$ \equiv \rightarrow $I(z) \rightarrow$ $G(z^2) \rightarrow$

Since G(z) is a stretched version of the desired response H(z), its transition band is wider (2x in this example) and therefore it requires less computation.

I(z) removes the undesired image from $G(z^2)$ and has a wide transition band.

Interpolated FIR

 For an equiripple linear-phase filter designed using the Parks-McClellan algorithm, the filter order N is estimated by

$$N = \frac{-10\log_{10}(\delta_1 \delta_2) - 13}{2.324\Delta\omega}$$

 δ_1 and δ_2 are the passband and stopband ripple parameters, respectively, and $\Delta\omega$ is the width of the transition band.

Adjusting the Ripple Sizes

• For two lowpass filters with passband and stopband ripple parameters (α_1,α_2) and (β_1,β_2) , what can be said about the passband/stopband ripple for the cascade connection?

$$(1+\alpha_1)(1+\beta_1)\approx 1+(\alpha_1+\beta_1) \quad \text{passband}$$

$$\alpha_2\beta_2\leq \max(\alpha_2,\beta_2) \quad \text{stopband}$$

• We can choose $\alpha_1 = \beta_1 = \delta_1/2$ and $\alpha_2 = \beta_2 = \delta_2$

Specifications for H(z)

$$\circ \omega_p = 0.09\pi$$
, $\omega_s = 0.11\pi$

$$\circ \delta_1 = 0.02, \delta_2 = 0.001$$

 The required filter order for direct implementation of H(z) (equiripple design) is N=233.

- If we use the IFIR method with a stretch factor of 2x
 - Specifications for G(z)

$$\begin{array}{l} \circ\,\omega_p = \,0.18\pi,\,\omega_s = \,0.22\pi \\ \circ\,\delta_1 = 0.01,\,\delta_2 = 0.001 \end{array} \implies \begin{array}{l} \text{filter order for G(z) is} \\ N_G = 131 \end{array}$$

Specifications for I(z)

$$\begin{array}{l} \circ \, \omega_p = \, 0.09 \pi, \, \omega_s = \, \pi \text{-} 0.11 \pi \\ \circ \, \delta_1 = 0.01, \, \delta_2 = 0.001 \end{array} \Rightarrow \begin{array}{l} \text{filter order for I(z) is} \\ N_I = 6 \end{array}$$

Stretch Factors >2

 We can use a stretch factor M₁>2. In this case, the filter parameters for G(z) and I(z) are as follows:

```
 \circ G(z) 
 \circ M_{1}\omega_{p}, M_{1}\omega_{s} \longleftarrow 
 \circ \delta_{1}/2, \delta_{2} 
 \circ I(z) 
 \circ \omega_{p}, 2\pi/M_{1} - \omega_{s} \longleftarrow 
 \circ \delta_{1}/2, \delta_{2}
```

Passband/stopband edge frequencies stretched by M₁

Stopband edge frequency set to reject images of $G(z^{M_1})$

Stretch Factors >2

• Total computational cost is N_G + N_I where:

$$N_{G} = \frac{D(\delta_{1}/2, \delta_{2})}{M_{1}(\omega_{s} - \omega_{p})} \qquad N_{I} = \frac{D(\delta_{1}/2, \delta_{2})}{\frac{2\pi}{M_{1}} - (\omega_{s} + \omega_{p})}$$

$$D(\delta_{1}, \delta_{2}) = \frac{-10\log_{10}(\delta_{1}\delta_{2}) - 13}{2.324}$$

 By varying the stretch factor M₁, we can minimize the computational cost