What is Cluster Analysis?

- Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups.
 - Based on information found in the data that describes the objects and their relationships.
 - Also known as unsupervised classification.
- Many applications
 - Understanding: group related documents for browsing or to find genes and proteins that have similar functionality.
 - Summarization: Reduce the size of large data sets.

What is not Cluster Analysis?

- Supervised classification.
 - Have class label information.
- Simple segmentation.
 - Dividing students into different registration groups alphabetically, by last name.
- Results of a query.
 - Groupings are a result of an external specification.
- Graph partitioning
 - Some mutual relevance and synergy, but areas are not identical.

Notion of a Cluster is Ambiguous

Initial points.

Four Clusters

Types of Clusterings

- A *clustering* is a set of clusters.
- One important distinction is between hierarchical and partitional sets of clusters.
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset.
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree.

Partitional Clustering

Original Points

A Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Other Distinctions Between Sets of Clusters

- Exclusive versus non-exclusive
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Can represent multiple classes or 'border' points
- Fuzzy versus non-fuzzy
 - In fuzzy clusterings, a point belongs to every cluster with some weight between 0 and 1.
 - Weights must sum to 1.
 - Probabilistic clustering has similar characteristics.
- Partial versus complete.
 - In some cases, we only want to cluster some of the data.

Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster.
- The center of a cluster is often a *centroid*, the average of all the points in the cluster, or a *medoid*, the most "representative" point of a cluster.

Types of Clusters: Contiguity-Based

- Contiguous Cluster(Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.
- The three curves don't form clusters since they fade into the noise, as does the bridge between the two small circular clusters.

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different two data objects are.
 - Is lower when objects are more alike.
 - Minimum dissimilarity is often 0.
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Summary of Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } p = q \\ 1 & \text{if } p \neq q \end{cases}$	$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d, s = \frac{1}{1+d}$ or
		$s=-d, s=rac{1}{1+d} ext{ or } $ $s=1-rac{d-min_d}{max_d-min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

- where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.
- Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

- where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L_1 norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors.
- r = 2. Euclidean distance.
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors.
- Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L∞	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties:
 - $1.d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - 2.d(p,q) = d(q,p) for all p and q. (Symmetry)
 - $3.d(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)
 - where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.
- A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties:
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)
 - where s(p, q) is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes.
- Compute similarities using the following quantities M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0 M_{00} = the number of attributes where p was 0 and q was 0 M_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients
- SMC = number of matches / number of attributes = $(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$
- J = number of 11 matches / number of not-both-zero attributes values

$$= (M_{11}) / (M_{01} + M_{10} + M_{11})$$

SMC versus Jaccard: Example

```
p = 10000000000
q = 0000001001
```

 M_{01} = 2 (the number of attributes where p was 0 and q was 1)

 $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)

 $M_{00} = 7$ (the number of attributes where p was 0 and q was 0)

 $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

= $(0+7) / (2+1+0+7) = 0.7$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11})$$
$$= 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

• If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where • indicates vector dot product and ||d|| is the length of vector

• Example:

$$d_1 = 3205000200$$

 $d_2 = 100000102$

$$\begin{aligned} d_1 & \bullet d_2 = \ 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ & | \ |d_1| \ | = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = \ (42)^{0.5} = 6.481 \\ & | \ |d_2| \ | = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = \ (6)^{0.5} = 2.245 \end{aligned}$$

$$\cos(d_1, d_2) = .3150$$

Correlation

- Correlation measure the linear relationship between objects.
- To compute correlation, we standardize data objects,
 p and q, and then take the dot product.

$$p'_{k} = (p_{k} - mean(p)) / std(p)$$
 $q'_{k} = (q_{k} - mean(q)) / std(q)$
 $correlation(p,q) = p' \cdot q'$

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1

Data Mining Sanjay Ranka Spring 2011

Mahalanobis Distance

mahalanobis
$$(p,q) = (p-q)\sum^{-1}(p-q)^T$$

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6

A General Approach for Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.
- 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0,1].
- 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:
 - $\delta_k = \left\{ \begin{array}{ll} 0 & \text{if the k^{th} attribute is a binary asymmetric attribute and both objects have} \\ & \text{a value of 0, or if one of the objects has a missing values for the k^{th} attribute} \\ & 1 & \text{otherwise} \end{array} \right.$
- 3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^n \delta_k s_k}{\sum_{k=1}^n \delta_k}$$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
 - Use weights w_k which are between 0 and 1 and sum to 1.

$$similarity(p,q) = \frac{\sum_{k=1}^{n} w_k \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

$$distance(p,q) = \left(\sum_{k=1}^n w_k |p_k - q_k|^r \right)^{1/r}.$$