Petersson Inner Product of Binary Theta Series

A computational approach

Nicolas SIMARD

McGill University

September 17th, 2016

Table of Contents

Background and setup

Modular forms
Spaces of modular forms
Newforms

Theta Series

The simplest example

Theta series attached to imaginary quadratic fields Some questions

Explicit formulas

The case $\ell > 0$

The case $\ell = 0$

Numerical computations

Towards an algorithm

Is the algorithm efficient?

Examples of computations

Idea of the proof

Mobius transformations

Let $\mathcal H$ be the Poincarre upper-half plane. Recall that $GL_2(\mathbb R)_+$ acts on $\mathcal H$ via Mobius transformations :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}.$$

Definition

Let $N \ge 1$ and define the Hecke subgroup of level N as

$$\Gamma_0(\textit{N}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \textit{SL}_2(\mathbb{Z}) | c \equiv 0 \pmod{\textit{N}} \right\}.$$

Level N modular forms with characters

Definition

Let $N \ge 1$ and $k \ge 0$ be integers and let χ be a Dirichlet character mod N. A modular form of weight k, level N and character χ is a holomorphic function

$$f:\mathcal{H}\longrightarrow\mathbb{C}$$

such that

$$f(\gamma z) = \chi(d)(cz+d)^{-k}f(z)$$

for all $z \in \mathcal{H}$ and all $\gamma \in \Gamma_0(N)$, which satisfies certain growth conditions at the cusps. The \mathbb{C} -vector-space of such modular forms is denoted

$$M_k(\Gamma_0(N),\chi)$$
.

q-expansion of modular forms

Every modular form f has a Taylor (or Fourrier) expansion at infinity, called its q-expansion :

$$f(z)=\sum_{n=0}^{\infty}a_nq^n,$$

where $q = exp(2\pi iz)$. If

$$a_0(f) = 0,$$

(at all cusps) f is called a cusp form.

Example : weight *k* Eisenstein series

Let $k \ge 4$ be an even integer and define

$$G_k(z) = \sum_{m,n} \frac{1}{(mz+n)^k} \in M_k(\Gamma_0(1),1).$$

After renormalisation, the q-expansion of G_k is

$$E_k(z) = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n.$$

Important non-example : weight 2 Eisenstein series

In level 1, there are no modular forms of weight 2. However, one can still define the weight 2 Eisenstein series as

$$E_2(2) = \frac{1}{8\pi\Im(z)} - \frac{1}{24} + \sum_{n=1}^{\infty} \sigma(n)q^n.$$

It is an example of an *almost holomorphic* modular form of level 1 and weight 2.

Spaces of modular forms

• $M_k(\Gamma_0(N), \chi)$ is finite dimensional.

Spaces of modular forms

- $M_k(\Gamma_0(N), \chi)$ is finite dimensional.
- For every integer $n \ge 1$, one can define a *Hecke operator* T_n (depending on k, N and χ) which acts on $M_k(\Gamma_0(N), \chi)$.

Spaces of modular forms

- $M_k(\Gamma_0(N), \chi)$ is finite dimensional.
- For every integer $n \ge 1$, one can define a *Hecke operator* T_n (depending on k, N and χ) which acts on $M_k(\Gamma_0(N), \chi)$.
- There exists a basis of common eigenvectors for all Hecke operators T_n with (n, N) = 1.

Petersson inner product

Let $f, g \in S_k(\Gamma_0(N), \chi)$ be two cusp forms. The Petersson inner product of f and g is defined as

$$\langle f,g \rangle = rac{1}{\mathsf{Vol}(\Gamma_0(N) \setminus \mathcal{H})} \int_{\Gamma_0(N) \setminus \mathcal{H}} f(x+iy) \overline{g(x+iy)} y^k \mathsf{d}\mu,$$

where

$$d\mu = \frac{dxdy}{y^2}$$

is the $SL_2(\mathbb{R})$ -invariant measure on \mathcal{H} . Note that the intergal does not converge if neither f nor g is a cusp form.

Newforms

The space $S_k(\Gamma_0(N), \chi)$ splits naturally as

$$S_k(\Gamma_0(N),\chi) = S_k(\Gamma_0(N),\chi)^{\text{new}} \oplus S_k(\Gamma_0(N),\chi)^{\text{old}}.$$

Theorem

The space $S_k(\Gamma_0(N),\chi)^{new}$ has an orthogonal basis of eigenvectors for all Hecke operators. Elements of this basis are called newforms (after suitable normalization).

0

Summary

1. The space $S_k(\Gamma_0(N), \chi)$ is a finite dimensional inner product space, equiped with an action of Hecke operators.

Summary

- 1. The space $S_k(\Gamma_0(N), \chi)$ is a finite dimensional inner product space, equiped with an action of Hecke operators.
- 2. The subspace $S_k(\Gamma_0(N),\chi)^{\text{new}}$ has distinguished elements (the newforms) which are mutually orthogonal and are eigenvectors for all Hecke operators.

Table of Contents

Background and setup

Modular forms

Spaces of modular forms

Newforms

Theta Series

The simplest example

Theta series attached to imaginary quadratic fields Some questions

Explicit formulas

The case $\ell > 0$

The case $\ell = 0$

Numerical computations

Towards an algorithm

Is the algorithm efficient?

Examples of computations

Idea of the proof

A half-integral weight theta series

Consider the function

$$\theta(z) = \sum_{x \in \mathbb{Z}} q^{x^2} = 1 + 2q + 2q^4 + O(q^5).$$

Then

$$\theta(\gamma z) = \epsilon(cz + d)^{1/2}\theta(z),$$

for all $\gamma \in \Gamma_0(4)$ and some $\epsilon_{c,d} \in \{\pm 1, \pm i\}$.

Theta series attached to ideals

Let K be an imaginary quadratic field of discriminant D < -4 and let \mathcal{O}_K be its ring of integers. Fix an integer $\ell \geq 0$. To each integral ideal \mathfrak{a} of K, one can attach the following theta series :

$$\theta_{\mathfrak{a}}^{(2\ell)} = \theta_{\mathfrak{a}} = \sum_{x \in \mathfrak{a}} x^{2\ell} q^{N(x)/N(\mathfrak{a})}.$$

Basic properties of these theta series

1. We have

$$\theta_{\mathfrak{a}} = \sum_{x \in \mathfrak{a}} x^{2\ell} q^{N(x)/N(\mathfrak{a})} \in \textit{M}_{2\ell+1}(\Gamma_0(|D|), \chi_D),$$

where χ_D is the Kronecker symbol. If $\ell \neq 0$, then

$$\theta_{\mathfrak{a}} \in S_{2\ell+1}(\Gamma_0(|D|), \chi_D).$$

2. If $\lambda \in K^{\times}$, then

$$\theta_{\lambda a} = \lambda^{2\ell} \theta_a$$
.

So there are essentially h_D theta series attached to K.

3. In general, the θ_{g} are *not* newforms.

Theta series attached to Hecke characters of K

Let I_K denote the group of fractionnal ideals of K. A Hecke character ψ of K of infinity type 2ℓ (and conductor 1) is a homomorphism

$$\psi: I_{\mathcal{K}} \longrightarrow \mathbb{C}^{\times}$$

such that

$$\psi((\alpha)) = \alpha^{2\ell}, \quad \forall \alpha \in K^{\times}.$$

One can define

$$\theta_{\psi} = \sum_{\mathfrak{a} \subset \mathcal{O}_K} \psi(\mathfrak{a}) q^{\textit{N}(\mathfrak{a})}.$$

Basic properties of these theta series

1. We have

$$\theta_{\psi}M_{2\ell+1}(\Gamma_0(|D|),\chi_D),$$

where χ_D is the Kronecker symbol. If $\psi^2 \neq 1$, then

$$\theta_{\psi} \in \textit{S}_{2\ell+1}(\Gamma_{0}(|\textit{D}|),\chi_{\textit{D}}).$$

- 2. The θ_{ψ} are newforms.
- 3. We have the identities

$$\theta_{\psi} = \frac{1}{w_{K}} \sum_{[\mathfrak{a}] \in \mathsf{Cl}_{K}} \psi^{-1}(\mathfrak{a}) \theta_{\mathfrak{a}} \quad \text{ and } \quad \theta_{\mathfrak{a}} = \frac{w_{K}}{h_{K}} \sum_{\psi} \psi(\mathfrak{a}) \theta_{\psi}.$$

Some questions

- Can we efficiently compute the Petersson inner product of theta series (whenever it makes sense)?
- · Can we find explicit formulas for it?
- Can we use those formulas/computations to study the arithmetic properties of those quantities?
- What about the p-adic properties of these quantities?

Table of Contents

Background and setup

Modular forms

Spaces of modular forms

Newforms

Theta Series

The simplest example

Theta series attached to imaginary quadratic fields Some questions

Explicit formulas

The case $\ell > 0$

The case $\ell = 0$

Numerical computations

Towards an algorithm

Is the algorithm efficient?

Examples of computations

Idea of the proof

Petersson norm of the θ_{ψ} (with $\ell > 0$)

Theorem

Let ψ be a Hecke character of K of infinity type 2ℓ , where $\ell>0$. Then

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = \textit{V}_{\textit{D}}^{-1} (|\textit{D}|/4)^{\ell} \frac{4\textit{h}_{\textit{K}}}{\textit{w}_{\textit{K}}^2} \sum_{[\mathfrak{a}] \in \textit{Cl}_{\textit{K}}} \psi^2(\mathfrak{a}) \delta^{2\ell-1} \textit{E}_2(\mathfrak{a}),$$

where

$$V_D = Vol(\Gamma_0(|D|) \setminus \mathcal{H}).$$

Here,

$$\partial f = \frac{1}{2\pi i} \frac{\partial f}{\partial z} - \frac{k}{4\pi \Im(z)} f$$

is the Shimura-Mass diffential operator, which preserves the graded algebra of almost holomorphic modular forms.

Petersson inner product of the theta series θ_{α}

Theorem

Let \mathfrak{a} and \mathfrak{b} be ideals of K and suppose $\ell > 0$. Then

$$\langle \theta_{\mathfrak{a}}, \theta_{\mathfrak{b}} \rangle = \textit{C}_{\textit{K}}^{(2\ell)} \textit{N}(\mathfrak{b})^{2\ell} \sum_{\mathfrak{a}\mathfrak{b}^{-1}\mathfrak{c}^2 = \lambda_{\mathfrak{c}}\mathcal{O}_{\textit{K}}} \lambda_{\mathfrak{c}}^{2\ell} \mathfrak{d}^{2\ell-1} \textit{E}_{2}(\mathfrak{c}),$$

where

$$C_K^{(2\ell)} = 4 V_D^{-1} (|D|/4)^{\ell}.$$

A few direct consequences of the formula

Corollary

For $\ell > 0$,

$$\langle \theta_{\mathfrak{a}}, \theta_{\mathfrak{b}} \rangle = 0$$

whenever \mathfrak{a} and \mathfrak{b} are not in the same genus (i.e. the classes of \mathfrak{a} and \mathfrak{b} are distinct in the genus group Cl_K/Cl_K^2).

Corollary

For $\ell > 0$,

$$\langle \theta_{\mathfrak{a}\mathfrak{c}}, \theta_{\mathfrak{b}\mathfrak{c}} \rangle = N(\mathfrak{b}\mathfrak{c})^{2\ell} \langle \theta_{\mathfrak{a}}, \theta_{\mathfrak{b}} \rangle.$$

Arithmetic consequences

Let

$$\Omega_{\mathcal{K}} = rac{1}{\sqrt{4\pi |D|}} \left(\prod_{j=1}^{|D|-1} \Gamma\left(rac{j}{|D|}
ight)
ight)^{w_{\mathcal{K}}/4h}$$

be the Chowla-Selberg period attached to *K*.

Corollary

For $\ell > 0$, the complex numbers

$$rac{V_D\langle heta_\psi, heta_\psi
angle}{\Omega_K^{4\ell}}$$
 and $rac{V_D\langle heta_\mathfrak{a}, heta_\mathfrak{b}
angle}{\Omega_K^{4\ell}}$

are algebraic.

If $\ell=0,$ the modular form $\theta_{\mathfrak{a}}$ is not a cusp form. But for $\theta_{\psi},$ we have the following

Theorem

Let θ_{ψ} be a Hecke character of infinity type 0 and suppose that $\psi^2 \neq 1$. Then

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = -V_D^{-1} \frac{4h_K}{w_K^2} \sum_{[\mathfrak{a}] \in \textit{CI}_K} \psi^2(\mathfrak{a}) \log (\mathfrak{I}(\tau_{\mathfrak{a}})^{1/2} |\eta(\tau_{\mathfrak{a}})|^2),$$

where $\tau_{\mathfrak{a}} \in \mathcal{H}$ is the complex root attached to \mathfrak{a} and

$$\eta(z) = \exp(2\pi i/24) \prod_{n=1}^{\infty} (1 - q^n)$$

is the standard eta-function.

Table of Contents

Background and setup

Modular forms

Spaces of modular forms

Newforms

Theta Series

The simplest example

Theta series attached to imaginary quadratic fields Some questions

Explicit formulas

The case $\ell > 0$

The case $\ell=0$

Numerical computations

Towards an algorithm Is the algorithm efficient? Examples of computations

Idea of the proof

First step : compute $\partial^n E_2$

This is easy! Indeed, we have the following formulas:

$$\partial E_2 = \frac{5}{6} E_4 - 2 E_2^2 \quad \partial E_4 = \frac{7}{10} E_6 - 8 E_2 E_4 \quad \partial E_6 = \frac{400}{7} E_4^2 - 12 E_2 E_6.$$

For example,

$$\partial^3 E_2 = -48E_2^4 + 120E_4E_2^2 - 14E_6E_2 + 25E_4^2.$$

Table of Contents

Background and setup

Modular forms

Spaces of modular forms

Newforms

Theta Series

The simplest example

Theta series attached to imaginary quadratic fields

Explicit formulas

The case $\ell > 0$

The case $\ell = 0$

Numerical computations

Towards an algorithm

Is the algorithm efficient?

Examples of computations

Idea of the proof

