

HEXFET® Power MOSFET

V _{DS}	30	V
V _{GS Max}	± 12	٧
R _{DS(on) max} (@V _{GS} = 4.5V)	29	$\mathbf{m}\Omega$
R _{DS(on) max} (@V _{GS} = 2.5V)	37	$\mathbf{m}\Omega$

Application(s)

• Load/ System Switch

Features and Benefits

Low R_{DSon} (<29m Ω)
Industry-standard SOT-23 Package
RoHS compliant containing no lead, no bromide and no halogen
MSL1, Consumer Qualification

results in

Benefits Lower Conduction Losses Multi-vendor compatibility Environmentally friendly Increased Reliability

Absolute Maximum Ratings

Symbol Parameter		Max.	Units
V _{DS}	Drain-Source Voltage	30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	5.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	4.0	А
I _{DM}	Pulsed Drain Current	25	
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	10/
P _D @T _A = 70°C Maximum Power Dissipation		0.8	 w
	Linear Derating Factor	0.01	W/°C
V _{GS} Gate-to-Source Voltage		± 12	V
T _{J,} T _{STG} Junction and Storage Temperature Range		-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) @		99	0/44

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

Electric Characteristics @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_{D} = 250\mu A$
	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		22	29	mΩ	V _{GS} = 4.5V, I _D = 5.0A ②
R _{DS(on)}	Static Dialit-to-Source Off-Nesistance		27	37	11122	V _{GS} = 2.5V, I _D = 4.0A ②
$V_{GS(th)}$	Gate Threshold Voltage	0.5	0.8	1.1	٧	$V_{DS} = V_{GS}$, $I_D = 10\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	uА	$V_{DS} = 24V, V_{GS} = 0V$
	Diam-to-Source Leakage Current			150	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	пA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			-100	I IIA	V _{GS} = -12V
R_G	Internal Gate Resistance		1.7		Ω	
gfs	Forward Transconductance	19			S	$V_{DS} = 10V, I_{D} = 5.0A$
Q_g	Total Gate Charge		6.8			I _D = 5.0A
Q_{gs}	Gate-to-Source Charge		0.3		nC	V _{DS} =15V
Q_{gd}	Gate-to-Drain ("Miller") Charge		2.4			V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		4.2			V _{DD} =15V②
t _r	Rise Time		5.6			I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		22		ns	$R_G = 6.8\Omega$
t _f	Fall Time		9.1			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		650			$V_{GS} = 0V$
C _{oss}	Output Capacitance		65		рF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		46		Ī	f = 1.0 MHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			1.3		MOSFET symbol
	(Body Diode)			1.0	Α	showing the
I _{SM}	Pulsed Source Current			25		integral reverse
	(Body Diode) ①			23		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	٧	$T_J = 25$ °C, $I_S = 5.0$ A, $V_{GS} = 0$ V ②
t _{rr}	Reverse Recovery Time		10	15	ns	$T_J = 25$ °C, $V_R = 15$ V, $I_F = 1.3$ A
Q _{rr}	Reverse Recovery Charge		3.8	5.7	nC	di/dt = 100A/µs ②

International Rectifier

IRLML6344TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

- ▶ 汇集 8,000 家半导体厂商, 坐拥 70,000,000 个电子元器件 datasheet
- 涉及详细参数,器件、封装、应用图,参考设计,中文PDF。
- 🕨 工程师首选 datasheet 全球数据中心,你能想到我们就能搜到

集成电路查询网:www.datasheet5.com

- 国内唯一一家电路图分享、交易平台,让电路体现你电子行业的价值
- 聚焦万量级热门免费电路,哪怕你是一个初学者,手把手教你创造出实物。

电路城:www.cirmall.com

- 百万电子行业工程师(创客)知识交流平台,电路图免费分享乐园
- 百万精品电路图为你倾心准备
- 工程师的驿站、技术达人停泊的港湾

电子电路图网:www.cndzz.com

- 依托全球电子业 16 年的 Findchips 充当幕后器件搜索引擎
- ▶ 国内首家实时 BOM 批量比价平台,让你站在最高的舞台纵观电子行业

批量器件比价:www.bom2buy.com

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International Rectifier

IRLML6344TRPbF

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

(mg), Drain-to-Source On Resistance (mg), Drain-to-Source On Box (ou), Dra

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International Rectifier

IRLML6344TRPbF

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3™(SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS				
SYMBOL	MILLIMETERS		INCHES	
STIVIBOL	MIN	MAX	MIN	MAX
Α	0.89	1.12	0.035	0.044
A1	0.01	0.10	0.0004	0.004
A2	0.88	1.02	0.035	0.040
b	0.30	0.50	0.012	0.020
С	0.08	0.20	0.003	0.008
D	2.80	3.04	0.110	0.120
Е	2.10	2.64	0.083	0.104
E1	1.20	1.40	0.047	0.055
е	0.95	BSC	0.037	BSC
e1	1.90	BSC	0.075	BSC
L	0.40	0.60	0.016	0.024
L1	0.54	REF	0.021	REF
L2	0.25	BSC	0.010	BSC
0	0	8	0	8

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- 1. DIMENSIONING & TOLEPANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS ARE SHOWN IN MULIMETERS (INCHES).
 3. CONTROLLING DIMENSION: MILLIMETER

 ADATUM PLANE HIS LOCATED AT THE MICL PARTITING LINE.

 ADATUM A AND B TO BE DETERMINED AT DATUM PLANEH.

 AD IMENSIONS DAND E1 ARE MEASURED AT DATUM PLANEH.

 DIMENSIONS DAND E1 ARE MEASURED AT DATUM PLANEH. DIMENSIONS DOES

 NOT INCLUDE MOLD PHOTRUSIONS OR INTERLEAD FLASH, MOLD PROTRUSIONS. OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM (0.010 INCH) PER SIDE.

 DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3™(SOT-23) Part Marking Information

W= (27-52) IF PRECEDED BY ALETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	E		
2006	F		
2007	G		
2008	Н	1	1
2009	J	7	1
2010	K	50	X
		51	Υ
		52	Z

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3[™](SOT-23) Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Orderable part number	Package Type	Standard Pack		Note
		Form	Quantity	
IRLML6344TRPbF	Micro3™(SOT-23)	Tape and Reel	3000	

Qualification information[†]

Ovelification level	Consumer ^{††}		
Qualification level	(per JEDEC JESD47F ^{†††} guidelines)		
Maiatura Caraitiritud aval	Minus CIM/COT 00)	MSL1	
Moisture Sensitivity Level	Micro3™(SOT-23)	(per IPC/JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 3 Surface mounted on 1 in square Cu board
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/2010