Multi-core and Multi-processor Architecture (CS423A), Spring 2023 Indian Institute of Technology Kanpur Assignment 2

Members: Manish (190477), Sarthak Rout (190772)

REPORT

2

Group Number: 10
Date: March 22, 2023

Contents

1	\mathbf{Pro}	Program 1									
	1.1	Number of Machine Accesses: 140 526 301	2								
	1.2	Access distance analytics	2								
	1.3	Access distance filtered by LRU cache	2								
	1.4	Hits and Misses for each trace when passed on LRU Cache	2								
	1.5	Observations	3								
	1.6	Sharing Profile	3								
2	Pro	$_{ m ogram} \ 2$	4								
	2.1	Number of Machine Accesses: 2 511 043	4								
	2.2	Access distance analytics	4								
	2.3	Access distance filtered by LRU cache	4								
	2.4	Hits and Misses for each trace when passed on LRU Cache	4								
	2.5	Observations	5								
	2.6	Sharing Profile	5								
3	Pro	$_{ m ogram}$ 3	6								
	3.1	Number of Machine Accesses: 9 609 095	6								
	3.2	Access distance analytics	6								
	3.3	Access distance filtered by LRU cache	6								
	3.4	Hits and Misses for each trace when passed on LRU Cache	6								
	3.5	Observations	7								
	3.6	Sharing Profile	7								
4	Pro	ogram 4	8								
	4.1	Number of Machine Accesses: 1 065 642	8								
	4.2	Access distance analytics	8								
	4.3	Access distance filtered by LRU cache	8								
	4.4	Hits and Misses for each trace when passed on LRU Cache	8								
	4.5	Observations	9								
	16	Sharing Profile	O								

1.1 Number of Machine Accesses: 140 526 301

1.2 Access distance analytics

Figure 1: CDF vs Log of distance for Program 1

1.3 Access distance filtered by LRU cache

Figure 2: CDF vs Log of distance for Program 1 with LRU cache

1.4 Hits and Misses for each trace when passed on LRU Cache

• Hits: 133 827 577

• Misses: 6 698 724

- In the first plot, we observe that $F(2.5) \approx 0.9$. After d = 2.5, the CDF saturates and it increases later after d = 5. So, most of the machine accesses have a distance of around 300 and most of rest of accesses have a distance greater than 100000.
- After passing the trace through a layer of LRU Cache, we observe that machine accesses for small distances are filtered out. In essence, the second plot is a magnified version of the top right region of the first plot.

# Threads Shared	1	2	3	4	5	6	7	8
1	440	70	1872	32456	143251	244970	173832	124528

2.1 Number of Machine Accesses: 2 511 043

2.2 Access distance analytics

Figure 3: CDF vs Log of distance for Program 1

2.3 Access distance filtered by LRU cache

Figure 4: CDF vs Log of distance for Program 1 with LRU cache

2.4 Hits and Misses for each trace when passed on LRU Cache

• Hits: 2 282 709

• Misses: 228 334

- In the first plot, we observe that $F(2) \approx 0.9$. After d = 2, the CDF saturates and it increases later after d = 5.5. So, most of the machine accesses have a distance of around 100 and most of rest of accesses have a distance greater than 300000.
- After passing the trace through a layer of LRU Cache, we observe that machine accesses for small distances are filtered out. In essence, the second plot is a magnified version of the top right region of the first plot.

# Threads Shared	1	2	3	4	5	6	7	8
2	438	8262	16384	40958	5	0	1	11

3.1 Number of Machine Accesses: 9 609 095

3.2 Access distance analytics

Figure 5: CDF vs Log of distance for Program 1

3.3 Access distance filtered by LRU cache

Figure 6: CDF vs Log of distance for Program 1 with LRU cache

3.4 Hits and Misses for each trace when passed on LRU Cache

• Hits: 8 960 747

• Misses: 648 348

- In the first plot, we observe that $F(2) \approx 0.9$. After d = 2, the CDF saturates and it increases sharply later after d = 6. So, most of the machine accesses have a distance of around 100 and most of rest of accesses have a distance greater than 1000000.
- After passing the trace through a layer of LRU Cache, we observe that machine accesses for small distances are filtered out. In essence, the second plot is a magnified version of the top right region of the first plot.
- For the second plot, there is a sharp increase at d = 4.8.

# Threads Shared	1	2	3	4	5	6	7	8
3	444	63	0	1	1	0	1	65546

4.1 Number of Machine Accesses: 1 065 642

4.2 Access distance analytics

Figure 7: CDF vs Log of distance for Program 1

4.3 Access distance filtered by LRU cache

Figure 8: CDF vs Log of distance for Program 1 with LRU cache

4.4 Hits and Misses for each trace when passed on LRU Cache

• Hits: 939 845

• Misses: 125 797

- In the first plot, we observe that $F(2) \approx 0.93$. After d=2, the CDF saturates and it increases later after d=5.5. So, most of the machine accesses have a distance of around 100 and most of rest of accesses have a distance greater than 300000.
- After passing the trace through a layer of LRU Cache, we observe that machine accesses for small distances are filtered out. In essence, the second plot is a magnified version of the top right region of the first plot.

# Threads Shared	1	2	3	4	5	6	7	8
4	8628	57410	6	0	0	0	2	12