Homework 3

1 Understanding Point Clouds and Sensor Data

(c) Visualization of the down samped point cloud

Figure 1: Terrain (top)

Figure 2: Terrain (front)

Figure 3: Terrain (side)

Figure 4: Terrain_noisy (top)

Figure 5: Terrain_noisy (front)

Figure 6: Terrain_noisy (side)

Figure 7: Terrain_partial (top)

Figure 8: Terrain_partial (front)

Figure 9: Terrain_partial (side)

1 UNDERSTANDING POINT CLOUDS AND SENSOR DATA

(d) Chamfer Distance

The Chamfer distance between the denoised pc and ground-truth is: 0.00040969444983181166 The Chamfer distance between the noisy pc and ground-truth is: 0.0006414638119259131 The Chamfer distance between the partial pc and ground-truth is: 0.00020744294757761195

2 Kernels in Gaussian Processes

The combined kernel performs the bets for this data.

Figure 10: Result plot using RBF kernel

Figure 11: Result plot using exponential_sine_squared kernel

Figure 12: Result plot using combined kernel

3 Gaussian Processes for Sensors

3.1 MSE on Training Data

 $MSE_train = 0.0025033282351671895$

3.2 MSE on Testing Data

 $MSE_{test} = 0.008519195648037572$

3.3 Visualization

The areas of high uncertainty locate in the right corner and the hollow area which matched with my expectations.

Figure 13: Visualization of the spatial variability of the GP outputs