Summation and induction worksheet

1. Consider the mn numbers $\{a_{ij}\}$ in a rectangular spreadsheet that has m rows and n columns. Denote the arithmetic mean of them by \bar{a} , and the mean of all the numbers in the jth column by \bar{a}_j , so that

$$\bar{a} = \frac{1}{mn} \sum_{r=1}^{m} \sum_{s=1}^{n} a_{rs}$$
, and $\bar{a}_j = \frac{1}{m} \sum_{r=1}^{m} a_{rj}$

Prove that \bar{a} is the mean of the column sums \bar{a}_j , $(j=1,\ldots,n)$. (Hint: The mean of a collection of n numbers, $\{x_1,x_2,\ldots,x_n\}$, is $\frac{1}{n}\sum_{i=1}^n x_i$.)

2. Now suppose n = m. Prove that $\sum_{r=1}^{m} \sum_{s=1}^{m} (a_{rj} - \bar{a})(a_{sj} - \bar{a}) = m^2(\bar{a}_j - \bar{a})^2$

3. Use induction to prove that $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$.

4. Use induction to prove that $\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$

5. Use induction to prove that $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$