SY19

Apprentissage supervisé et théorie de la décision

T. Denœux

1 Introduction

Dans beaucoup d'applications, chaque individu d'une population (objet, entité, état d'un système) peut être décrit par p variables explicatives (entrées) x_1, \ldots, x_p et une variable explicative (sortie) y. Le problème considéré consiste alors à prédire la valeur de y à partir du vecteur \mathbf{x} des p variables explicatives x_1, \ldots, x_p . Lorsque la variable y est quantitative, on dit que l'on a un problème de régression. Dans le où y est une qualitative à c modalités, on a un problème de discrimination en c classes.

Pour résoudre un problème de régression ou de discrimination, il faut disposer d'un ensemble d'apprentissage $\mathcal{L} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ composé des observations des variables \mathbf{x} et y pour n individus de la population considérée. Les données peuvent être disposées dans un tableau de la forme suivante :

$$\begin{bmatrix} x_{11} & \dots & x_{1p} & y_1 \\ x_{21} & \dots & x_{2p} & y_2 \\ \vdots & \vdots & \vdots & \vdots \\ x_{i1} & \dots & x_{ip} & y_i \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & \dots & x_{np} & y_n \end{bmatrix}$$

L'apprentissage supervisé consiste à trouver à partir de \mathcal{L} une fonction de décision $g: \mathcal{X} \to \mathcal{Y}$, \mathcal{X} et \mathcal{Y} étant les domaines respectifs de \mathbf{x} et de y, telle que $g(\mathbf{x}) \approx y$ pour tout couple $(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$ (problème 1).

Une façon de résoudre ce problème est de trouver g telle que $g(x_i) \approx y_i$ pour tout $i \in \{1, \ldots, n\}$ (problème 2). Cependant, cette méthode a ses limites, car une fonction g solution exacte du problème 2 n'est pas forcément une solution du problème 1. Il faut imposer une contrainte de "régularité" à la solution du problème 2 pour espérer qu'elle soit une bonne solution du problème 1.

2 Formalisation

On peut formaliser le problème d'apprentissage supervisé de la manière suivante :

- Un générateur G tire au hasard des entrées \mathbf{x} selon une loi de probabilité $f(\mathbf{x})$, constante mais inconnue.
- Un superviseur S tire pour chaque \mathbf{x} une sortie y selon une loi de probabilité conditionnelle $f(y|\mathbf{x})$, également constante mais inconnue.

– Une machine M fournit pour chaque \mathbf{x} une décision $d = g(\mathbf{x})$ à valeurs dans un ensemble \mathcal{D} , ce qui engendre un coût L(d, y).

Chaque couple (\mathbf{x}, y) est donc une réalisation d'un couple de variables aléatoires (\mathbf{X}, Y) , de loi jointe $f(\mathbf{x}, y) = f(\mathbf{x})f(y|\mathbf{x})$. On appelle risque conditionnel de la fonction g sachant $\mathbf{X} = \mathbf{x}$ fixé l'espérance conditionnelle du coût :

$$R(g|\mathbf{x}) = \mathbb{E}_Y [L(g(\mathbf{x}), Y)|\mathbf{x}].$$

Le risque moyen de g est

$$R(g) = \mathbb{E}_{\mathbf{X},Y} [L(g(\mathbf{X}), Y)] = \mathbb{E}_{\mathbf{X}} [R(g|\mathbf{X})].$$

La fonction de décision optimale g^* est celle qui minimise le risque, pour $f(\mathbf{x}), f(y|\mathbf{x})$ et L donnés.

3 Fonctions de décision optimales

3.1 Coût quadratique

Considérons tout d'abord un problème de régression : $\mathcal{Y} \subseteq \mathbb{R}$, et supposons $\mathcal{D} = \mathcal{Y}$. Soit la fonction de coût suivante (coût quadratique) :

$$L(d, y) = (y - d)^2.$$

On a

$$R(g|\mathbf{x}) = \mathbb{E}\left[Y^2 - 2Yg(\mathbf{x}) + g(\mathbf{x})^2|\mathbf{x}\right]$$
$$= \operatorname{Var}(Y) + \left(\mathbb{E}(Y|\mathbf{x}) - g(\mathbf{x})\right)^2.$$

Toute fonction g telle que $g(\mathbf{x}) = \mathbb{E}(Y|\mathbf{x})$ minimise donc le risque conditionnel sachant \mathbf{x} . Par conséquent, la fonction g^* optimale pour ce problème est la fonction de régression, définie par

$$g^*(\mathbf{x}) = \mathbb{E}(Y|\mathbf{x}).$$

Supposons maintenant que l'on ait un problème de discrimination à deux classes, avec $\mathcal{Y} = \{0,1\}$ et $\mathcal{D} = [0,1]$. La fonction de décision optimale pour la fonction de coût quadratique est alors

$$g^*(\mathbf{x}) = \mathbb{E}(Y|\mathbf{x}) = \mathbb{P}(Y=1|\mathbf{x}).$$

Dans ce cas, la décision optimale pour une entrée \mathbf{x} est donc la probabilité a posteriori de la classe 1 sachant $\mathbf{X} = \mathbf{x}$.

3.2 Coûts 0/1

Restons dans le cadre de la discrimination à deux classes, et supposons maintenant que l'espace des décisions est $\mathcal{D} = \{0, 1\}$. La fonction de coût quadratique précédente se réduit à

$$L(d, y) = \begin{cases} 0 & \text{si } d = y, \\ 1 & \text{si } d \neq y \end{cases}$$

et le risque conditionnel s'écrit

$$R(g|\mathbf{x}) = L(g(\mathbf{x}), 0)\mathbb{P}(Y = 0|\mathbf{x}) + L(g(\mathbf{x}), 1)\mathbb{P}(Y = 1|\mathbf{x})$$
$$= \begin{cases} \mathbb{P}(Y = 1|\mathbf{x}) & \text{si } g(\mathbf{x}) = 0, \\ \mathbb{P}(Y = 0|\mathbf{x}) & \text{si } g(\mathbf{x}) = 1. \end{cases}$$

On voit que le risque conditionnel n'est autre dans ce cas que la probabilité d'erreur sachant \mathbf{x} . Pour \mathbf{x} fixé, le risque est minimisé pour $g^*(\mathbf{x})$ défini par :

$$g^*(\mathbf{x}) = \begin{cases} 0 & \text{si } \mathbb{P}(Y = 0 | \mathbf{x}) \ge \mathbb{P}(Y = 1 | \mathbf{x}), \\ 1 & \text{sinon.} \end{cases}$$

La fonction de décision g^* minimisant le risque (c'est-à-dire, dans ce cas, la probabilité d'erreur), consiste donc à choisir la classe de plus grande probabilité a posteriori. Cette règle est appelée règle de Bayes minimisant la probabilité d'erreur. Cette règle peut également s'exprimer à l'aide du rapport de vraisemblance $f_0(\mathbf{x})/f_1(\mathbf{x})$, $f_k(\mathbf{x})$ désignant la densité conditionnelle de \mathbf{x} sachant Y = k, $k \in \{0,1\}$. En effet, en notant $\pi_k = \mathbb{P}(Y = k)$, on peut écrire :

$$g^{*}(\mathbf{x}) = 0 \quad \Leftrightarrow \quad \mathbb{P}(Y = 0|\mathbf{x}) > \mathbb{P}(Y = 1|\mathbf{x})$$

$$\Leftrightarrow \quad \frac{f_{0}(\mathbf{x})\pi_{0}}{f(\mathbf{x})} > \frac{f_{1}(\mathbf{x})\pi_{1}}{f(\mathbf{x})}$$

$$\Leftrightarrow \quad \frac{f_{0}(\mathbf{x})}{f_{1}(\mathbf{x})} > \frac{\pi_{1}}{\pi_{0}}.$$

Le risque de la règle de Bayes, appelé dans ce cas *probabilité d'erreur de Bayes*, est égal à :

$$R(g^*) = \int R(g^*|\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

$$= \int \min \left(\mathbb{P}(Y = 0|\mathbf{x}), \mathbb{P}(Y = 1|\mathbf{x}) \right) f(\mathbf{x}) d\mathbf{x}$$

$$= \int \min \left(f_0(\mathbf{x}) \pi_0, f_1(\mathbf{x}) \pi_1 \right) d\mathbf{x}.$$

3.3 Discrimination avec coûts quelconques

Généralisons maintenant le cadre précédent, en supposant que la fonction de coût est définie par la matrice suivante :

$$\begin{array}{c|ccc} d/y & 0 & 1 \\ \hline 0 & L_{00} & L_{01} \\ 1 & L_{10} & L_{11} \\ \end{array}$$

Dans ce cas, la règle décision optimale s'écrit :

$$g^{*}(\mathbf{x}) = 0 \quad \Leftrightarrow \quad L_{00}\mathbb{P}(Y = 0|\mathbf{x}) + L_{01}\mathbb{P}(Y = 1|\mathbf{x}) < L_{10}\mathbb{P}(Y = 0|\mathbf{x}) + L_{11}\mathbb{P}(Y = 1|\mathbf{x})$$

$$\Leftrightarrow \quad (L_{00} - L_{10})\frac{f_{0}(\mathbf{x})\pi_{0}}{f(\mathbf{x})} < (L_{11} - L_{01})\frac{f_{1}(\mathbf{x})\pi_{1}}{f(\mathbf{x})}$$

$$\Leftrightarrow \quad \frac{f_{0}(\mathbf{x})}{f_{1}(\mathbf{x})} > \frac{L_{01} - L_{11}}{L_{10} - L_{00}}\frac{\pi_{1}}{\pi_{0}}.$$

3.4 Discrimination avec rejet

Supposons maintenant que l'espace de décision soit $\mathcal{D}=\{0,1,-1\}$, où -1 s'interprète comme une décision de rejet, qui correspond à une hésitation entre les deux classes. Supposons que la fonction de coût soit définie par la matrice suivante :

$$\begin{array}{c|cccc} d/y & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & L_0 & L_0 \\ \end{array}$$

Le coût est donc supposé nul en cas de bonne décision, égal à 1 en cas d'erreur, et égal à une valeur constante $L_0 \in [0,1]$ en cas de rejet. La fonction de décision optimale s'écrit

$$g^*(\mathbf{x}) = \begin{cases} 0 & \text{si } \mathbb{P}(Y = 0 | \mathbf{x}) \ge \mathbb{P}(Y = 1 | \mathbf{x}) \text{ et } \mathbb{P}(Y = 0 | \mathbf{x}) \ge 1 - L_0, \\ 1 & \text{si } \mathbb{P}(Y = 1 | \mathbf{x}) \ge \mathbb{P}(Y = 0 | \mathbf{x}) \text{ et } \mathbb{P}(Y = 1 | \mathbf{x}) \ge 1 - L_0, \\ -1 & \text{sinon.} \end{cases}$$

Soit $\mathcal{R}_r^* = \{\mathbf{x} \in \mathcal{X} | g^*(\mathbf{x}) = -1\}$ la région de rejet. La probabilité d'erreur conditionnelle associée à la fonction de la fonction de décision g^* est

$$\epsilon(g^*|x) = \begin{cases} 0 & \text{si } \mathbf{x} \in \mathcal{R}_r^* \\ \min(\mathbb{P}(Y = 0|\mathbf{x}), \mathbb{P}(Y = 1|\mathbf{x})) & \text{si } \mathbf{x} \in \overline{\mathcal{R}_r^*}. \end{cases}$$

La probabilité d'erreur s'écrit donc :

$$\epsilon(g^*) = \int_{\overline{\mathcal{R}_r^*}} \min(\pi_0 f_0(\mathbf{x}), \pi_1 f_1(\mathbf{x})) d\mathbf{x},$$

la probabilité de rejet étant

$$p_r(g^*) = \int_{\mathcal{R}_n^*} f(\mathbf{x}) d\mathbf{x}.$$

L'introduction de l'option de rejet permet donc de réduire la probabilité d'erreur.