A Behavioral Type System for Memory-Leak Freedom

1. abstract

We extend a behavioral type system with dependent types for a program language with manual memory management primitives. The extended type system describes more precise behavior information for a program, which not only can abstract behavior of a program but also deal with path-sensitive statement. By using our current type system with another safe memory deallocation tools, we can even guarantee memoryleak free for nonterminating programs.

2. Introduction

Manual memory mangagement primitives (e.g. malloc and free in C language) are a very flexible way to manage computer memory cells. We can write a program which dynamically allocates a memory cell during running and deallocates a memory cell when it is no longer used. However, manual memory management primitives often cause hard-to-find problems, for example, double frees (free a deallocated memory cell), memory leaks (forget to deallocate memory cells) and illegal accesses to a dangling pointer. Therefore, many static verification methods have been proposed to guarantee safe memory deallocation. They prove partial memory-leak freedom: if a program terminates, all the memory cells are safe deallocated. As we know that nonterminating programs are very common in real-world programmings such as Web servers and operating systems. To guarantee total memory-leak freedom, if a program does not consume unbounded number of memory cells during execution, is a very crucial issue.

3. Language \mathscr{L}

In this section we define an imperative language $\mathcal L$ with memory allocation and deallocation primitives, and for simplification we only use pointers as values.

The syntax of the language \mathcal{L} is as follows.

```
Var
x, y, z, \dots (variables)
         s (statements) ::= \mathbf{skip} \mid s_1; s_2 \mid *x \leftarrow y \mid \mathbf{free}(x)
                                          let x = \text{malloc}() in s \mid \text{let } x = \text{null in 3.1. Operational semantics}
                                          \mathbf{let} \ x = y \mathbf{in} \ s \mid \mathbf{let} \ x = *y \mathbf{in} \ s
                                          ifnull (*x) then s_1 else s_2 \mid f(\vec{x})
                                          const(*x)s \mid endconst(*x)
        d (proc. defs.) ::= \{f \mapsto (x_1, \dots, x_n)s\}
       D (definitions)
                                ::= \langle d_1 \cup \cdots \cup d_n \rangle
          P 	ext{ (programs)} ::= \langle D, s \rangle
             E 	ext{ (context)} ::= E; s \mid []
```

Notation \vec{x} is for a finite sequence $\{x_1,...,x_n\}$, where we assume that each element is distinct; $[\vec{x'}/\vec{x}]s$ is for a term obtained by replacing each free occurrence of \vec{x} in s with variables \vec{x}' ; the **Dom**(f) is a mapping from function name fto its domain; for a map f, the $f\{x \mapsto v\}$ and $f \setminus x$ are defined as follows:

$$f\{x \mapsto v\}(w) = \begin{cases} v & \text{if } x = w \\ f(w) & \text{otherwise.} \end{cases}$$
$$(f \setminus x)(w) = \begin{cases} v & \text{if } x = w \\ f(w) & \text{otherwise.} \end{cases}$$

and $filter_C(C, *x)$ is defined by a pseudcode as follows:

$$filter_C(C,*x) = let C' = C - \mathbf{const}(*x) in$$

$$if \ \mathbf{const}(*x) \in C' \ then \ return \ C'$$

$$else \ return \ C' \setminus \{\mathbf{null}(*x), \neg \mathbf{null}(*x)\}$$

The Var is a countably infinite set of variables and each variable is a pointer. The statement **skip** means "does nothing". The statement s_1 ; s_2 is a sequential execution of s_1 and s_2 . The statement $*x \leftarrow y$ updates the content of cell which is pointed to by x with the value y. The statement free(x) deallocates a memory cell which is pointed to by pointer x. The statement let x = e in s evaluates the expression e, binds x to the result, and executes s. The expression **malloc()** allocates a new memory cell. The expression null evaluates to the null pointer. The expression *y means dereferencing a memory cell pointed to by y. The statement **ifnull** (*x)**then** s_1 **else** s_2 executes s_1 if *x is **null** and executes s_2 otherwise. The statement $f(\vec{x})$ expresses a procedure f with arguments \vec{x} . The statement **const**(*x)s means (*x) is a constant in statement s; the statement **endconst**(*x) means from this point (*x) maybe not constant.

The d represents a procedure definition which maps a procedure name f to its procedure body $(\vec{x})s$; The D represents a set of procedure definitions $\langle d_1 \cup \dots d_n \rangle$, and each definition is distinct; The pair $\langle D, s \rangle$ represents a program, where D is a set of definitions and s is a main statement; the E represents evaluation context.

In this section we introduce operational semantics of language \mathscr{L} . We assume there is a countable infinite set \mathscr{H} of *heap addresses* ranged over by *l*.

We use a configuration $\langle H, R, s, n, C \rangle$ to express a run-time state. Each elements in the configuration is as follows.

- H, a heap, is a finite mapping from \mathcal{H} to $\mathcal{H} \cup \{\mathbf{null}\}$;
- R, an *environment*, is a finite mapping from Var to $\mathcal{H} \cup$ {null};

- s is the statement that is being executed;
- n is a natural number that represents the number of memory cells available for allocation.
- *C* is a set of actions, which contains const(*x), null(*x) and $\neg null(*x)$.

The operational semantics of the language \mathscr{L} is given by a labeled transition relation $\langle H, R, s, n, C \rangle \xrightarrow{\rho}_D \langle H', R', s', n', C' \rangle$. The label ρ is as follows.

$$\rho$$
 (label) ::= **malloc**(x') | **free** | τ

The ρ , an *action*, is **malloc**, **free**, or τ . The action **malloc** expresses an allocation of a memory cell; **free** expresses a deallocation of a memory cell; τ expresses the other actions. We often omit τ in $\xrightarrow{\tau}_D$. We use a metavariable σ for a finite sequence of actions $\rho_1 \dots \rho_n$. We write $\xrightarrow{\rho_1 \dots \rho_n}_D \cap \rho_1 \cap \rho_2 \cap \rho_2 \cap \rho_2 \cap \rho_3 \cap \rho_4 \cap \rho_5 \cap \rho_5$

Figure 1 depicts the relation $\xrightarrow{\rho}_D$. Several important rules are listed as follows.

- SEM-CONSTSKIP: That a memory cell pointed to by *x* is no longer a constant is expressed by doing nothing.
- SEM-CONSTSEQ: That a memory cell pointed to by x should be a constant in a stamtement s is expressed by adding a statement endconst(*x) at the end of statement s.
- SEM-FREE: Deallocation of a memory cell pointed to by x is expressed by deleting the entry for R(x) from the heap.
 This action increments the number of available cells (i.e., n) by one (i.e., n+1).
- SEM-MALLOC and SEM-OUTOFMEM: Allocation of a memory cell is expressed by adding a fresh entry to the heap. This action is allowed only if the number of available cells is positive; if the number is zero, then the configuration leads to an error state **OutOfMemory**.
- SEM-ASSIGNEXN,SEM-FREEEXN,SEM-DEREFEXN and SEM-FREEEXN: These rules express an illegal access to memory. If such action is performed, then the configuration leads to exceptional state **MemEx**. This state **MemEx** is not seen as an erroneous state in the current paper, hence a well-typed program may lead to these states. The command **free**(x), if x is a null pointer, leads to **MemEx** in the current semantics, although it is equivalent to **skip** in the C language.
- SEM-CONSTEXN: expresses that if a constant *x is changed in s it will raise **ConstEx** exception.

Our goal is to guarantee *total* memory-leak freedom and reject memory leaks. By our language \mathcal{L} , they are formally defined as follows:

Definition 1 (total memory-leak freedom). *A program* $\langle D, s \rangle$ *is* totally memory-leak free *if there is a natural number n such that it does not require more than n cells.*

Definition 2 (Memory leak). A configuration $\langle H, R, s, n, C \rangle$ goes overflow *if there is* σ *such that* $\langle H, R, s, n, C \rangle \stackrel{\sigma}{\Longrightarrow} \mathbf{OutOfMemory}$. A program $\langle D, s \rangle$ consumes at least n cells *if* $\langle \emptyset, \emptyset, s, n, \emptyset \rangle$ *goes overflow*.

4. Type system

4.1. Types

The syntax of the types is as follows.

```
(behavioral types)
                                                      ::= \mathbf{0} \mid P_1; P_2 \mid \mathbf{free} \mid \alpha \mid \mu \alpha. P
                                                               |  let x = y in P |  let x = malloc
                                                                | \mathbf{let} \, x = \mathbf{null} \, \mathbf{in} \, P \, | \, \mathbf{let} \, x = *y \, \mathbf{in}
                                                               |(*x)(P_1, P_2)|  const(*x)P|  end
     (variable type environment)
                                                               \{x_1, x_2, \ldots, x_n\}
     (dependent function type)
                                                              (\vec{x})P
                                                      ::=
     (function type environment)
                                                      ::=
                                                              \{f_1:\Psi_1,\ldots,f_n:\Psi_n\}
                                                              \mathbf{null}(*x) \mid \neg \mathbf{null}(*x) \mid \mathbf{const}(*x)
k
     (constant values)
     (constant value environment)
                                                     ::=
                                                              \{k_1,...,k_n\}
```

Behavioral types ranged over by P express the abstaction of behaviors of a program. The type $\mathbf{0}$ represents the do-nothing behavior; the type P_1 ; P_2 represents the sequential execution of P_1 and P_2 ; The type **malloc** represents an allocation of a memory cell exactly once; the type **free** represents a deallocation; the type $\mu\alpha.P$ represents the behavior of α defined by the recursive equation $\alpha = P$; the type $(*x)(P_1, P_2)$ represents that P_1 or P_2 is obtained dependent on *x; the type $P_1 + P_2$ represents the choice between P_1 and P_2 ; the α is a type variable; the type **const**(*x)P represents that *x is a constant in behavioral type P; the type **endconst**(*x) represents *x no longer be a constant from this point.

A type environments for variables ranged over by Γ is a set of variables. Since our interest is the behavior of a program, not the types of values, a variable type environment does not carry information on the types of variables.

Dependent function types ranged over by Ψ represents the behavior of a function; \vec{x} is the formal arguments of the function.

Function types ranged over by $\boldsymbol{\Theta}$ is a mapping from function names to dependent function types.

k represents constant values, where **null**(*x) represents (*x) is a null pointer; \neg **null**(*x) represents (*x) is not a null pointer; **const**(*x) represents (*x) is a constant.

Constant value environment ranged over by F is a set of constant variables.

Figure 2 depicts semantics of behavioral types with dependent types, and they are given by the labeled transition system. The relation $\langle P, F \rangle \stackrel{\rho}{\longrightarrow} \langle P', F' \rangle$ means that P can make an action ρ , and P turns into P' after it makes action ρ ; F and F' record constant value environment before and after action ρ respectively.

```
\frac{C' = filter\_C(C, *x)}{\langle H, R, \mathbf{endconst}(*x), n, C \rangle \rightarrow_D \langle H, R, \mathbf{skip}, n, C' \rangle} \underbrace{\langle \mathbf{free}, F \rangle}_{\text{free}} \underbrace{\langle \mathbf{0}, F \rangle}_{\text{SEM-CONSTSKIP}} \underbrace{\langle \mathbf{TR}\text{-}FREE \rangle}_{\text{SEM-CONSTSKIP}} \underbrace{\langle H, R, \mathbf{endconst}(*x), n, C \rangle}_{\text{CR-CHOICEL}} \underbrace{\langle \mathbf{1}, R, \mathbf{endconst}(*x), n, C \rangle}_{\text{CR-CHOICEL}} \underbrace{\langle \mathbf{1}, R, \mathbf{1}, \mathbf{1}, C \rangle}_{\text{CR-CHOICEL}} \underbrace{\langle \mathbf{1}, R, 
                                                                                                                                                                                            \langle H, R, \mathbf{const}(*x)s, n, C \rangle \rightarrow_D \langle H, R, s; \mathbf{endconst}(*x), n, C \cup \{\mathbf{const}(*x)\} \rangle
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (SEM-CONSTSEQ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (\underbrace{SEMP_{K}F_{1}}) \xrightarrow{\rho} \langle P'_{1}, F' \rangle \langle P_{1}; P_{2}, F \rangle \xrightarrow{\rho} \langle P'_{1}; P_{2}, F \rangle
                                                                                                                                                                                                                                                                                                                                  \langle H, R, \mathbf{skip}; s, n, C \rangle \longrightarrow_D \langle H, R, s, n, C \rangle
                                                                                                                                                                                                                                                                                                                                  \langle H, R, s_1, n, C \rangle \xrightarrow{\rho}_D \langle H', R', s'_1, n', C' \rangle
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (SEM-SEQ)
                                                                                                                                                                                                                                                                                                          \frac{}{\langle H, R, s_1; s_2, n, C \rangle \xrightarrow{\rho}_{D} \langle H', R', s_1'; s_2, n', C' \rangle}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \langle \mathbf{let} \ x = \mathbf{malloc} \ \mathbf{in} \ P, F \rangle \xrightarrow{\mathbf{malloc}(x')}
                                                                                                                                                                                                                                                                                                                                                                                                                                     x' \notin \mathbf{Dom}(R)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (\text{SEM-LETNULL})

(\text{Iet } x = \forall \text{ in } P, F) \rightarrow \langle [x'/x]
                                                                                                                                                                                                      \overline{\langle H, R, \text{ let } x = \text{ null in } s, n, C \rangle} \longrightarrow_D \langle H, R\{x' \mapsto \text{ null}\}. [x'/x] s. n. C \rangle
                                                                                                                                                                                                                                                                                                                                                                                                               x' \notin \mathbf{Dom}(R)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \langle \mathbf{let}, \mathbf{x} = \mathbf{x}, \mathbf{y}, \mathbf{in}, P, F \rangle \rightarrow \langle [x'/x]
                                                                                                                                                                                                                 \langle H, R, \text{ let } x = y \text{ in } s, n, C \rangle \xrightarrow{P} \langle H, R \{x' \mapsto R(y)\}, [x'/x] s, n, C \rangle
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x']/[x']
                                                                                                                                                                                                                                                                                                                                                          H(R(x)) = \mathbf{null}, \mathbf{const}(*x) \notin C
                                                                                                                                                                                                                                   \langle H, R, \text{ ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \rightarrow_D \langle H, R, s_1, n, C \rangle
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (SEM-IFNULLT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \langle \mathbf{const}(*x)P, F \rangle \rightarrow \langle P; \mathbf{endconst}(*x), F \rangle
                                                                                                                                                                                                                                                                                                                                                              H(R(x)) \neq \text{null}, \text{const}(*x) \notin C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (SEM-IFNULLFilter T(F,*x)
                                                                                                                                                                                                                                      \overline{\langle H, R, \text{ ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle} \rightarrow_D \langle H, R, s_2, n, C \rangle
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \overline{\langle \mathbf{endconst}(*x), F \rangle \rightarrow \langle \mathbf{0}, \mathbf{0} \rangle}
                                                                                                                                                                    H(R(x)) = \text{nun,const}(*x) \in C
\overline{\langle H, R, \text{ ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle} \rightarrow_D \langle H, R, s_1, n, C \cup \text{const}((*x)) \not\models F
(SEM-IFCONSTNULLT)
H(R(x)) \neq \text{null,const}(*x) \in C
\overline{\langle (*x)(P_1, P_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle H, R, \text{ ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle} \rightarrow_D \langle H, R, s_2, \text{ final}(*x) \text{ const}(*x) \in F
\overline{\langle (*x)(P_1, P_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (*x)(P_1, P_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (*x)(P_1, P_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_1, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow \langle P_1, F \rangle
\overline{\langle (H_2, F_2), F \rangle} \rightarrow 
                                                                                                                                                                                                                                                                                                                                                              H(R(x)) = \text{null}, \text{const}(*x) \in C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \mathbf{null}(*x), \neg \mathbf{null}(*x) \notin F
                                                                                                                                                                                                                                                                                                                                            x' \notin \mathbf{Dom}(R) R(y) \in \mathbf{Dom}(H)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (S_{E}(x_{1}, x_{2}), P_{E}, P_{E}, P_{E}) \rightarrow \langle P_{1}, F \cup \mathbf{n} \rangle
                                                                                                                                                                                           \overline{\langle H, R, \text{ let } x = *y \text{ in } s, n, C \rangle \longrightarrow_D \langle H, R\{x' \mapsto H(R(y))\}, [x'/x]s, n, C \rangle}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \mathbf{null}(*x), \neg \mathbf{null}(*x) \notin F con
                                                                                                                                                                                                                                                                                                                                                    R(x) \neq \mathbf{null} and R(x) \in \mathbf{Dom}(H)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \langle (*x)(SEMPFREE) \rightarrow \langle P_2, F \cup \neg r \rangle
                                                                                                                   \frac{\langle H\{R(x)\mapsto v\},\,R,\,\mathbf{free}(x),n,C\rangle \xrightarrow{\mathbf{free}}_D \langle H\backslash R(x),\,R,\,\mathbf{skip},n+1,C\rangle}{\mathsf{Figure}\,2\colon \mathbf{semantics}\,\mathsf{of}\,\,\mathsf{behavioral}\,\,\mathsf{types}\,\,\mathsf{with}\,\,\mathsf{dependent}\,\,\mathsf{types}.} \\ \frac{l\notin \mathbf{Dom}(H) \qquad n>0}{\langle H,\,R,\,\mathbf{let}\,x=\mathbf{malloc}()\,\,\mathbf{in}\,s,n,C\rangle \xrightarrow{\mathbf{malloc}(x')} \underbrace{\mathbf{Notation}\quad filter\_T(F,*x)}_{D}\,\,\mathsf{is}\,\,\mathsf{defined}\,\,\mathsf{by}\,\,\mathsf{a}\,\,\,\mathsf{psec}\,\,\mathsf{del}\,\,\mathsf{las}\,\,\mathsf{psec}}_{D}} \\ \langle H,\,R,\,\,\mathbf{let}\,x=\mathbf{malloc}()\,\,\mathbf{in}\,s,n,C\rangle \xrightarrow{\mathbf{malloc}(x')}_{D}\,\,\mathsf{is}\,\,\mathsf{del}\,\,\mathsf{let}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,\,\mathsf{v}\,
          \frac{D(f) = (\vec{y})s}{H, R, f(\vec{x}), n, C} \xrightarrow{\longrightarrow_D \langle H, R, [\vec{x}/\vec{y}] s, n, C \rangle} (\text{SEM-CALL}) \\ \frac{Filter\_R(r)*\bar{x}}{\langle H, R, free(x), n, C \rangle} \xrightarrow{\longrightarrow_D \langle H, R, [\vec{x}/\vec{y}] s, n, C \rangle} (\text{SEM-CALL}) \\ \frac{R(x) = \text{null or } R(x) \notin \text{Dom}(H)}{\langle H, R, *x \leftarrow y, n, C \rangle} \xrightarrow{\longrightarrow_D \text{MemEx}} (\text{SEM-ASSIGNEXN}) \\ \frac{R(y) = \text{null or } R(y) \notin \text{Dom}(H)}{\langle H, R, *x \leftarrow y, n, C \rangle} \xrightarrow{\longrightarrow_D \text{MemEx}} (\text{SEM-DEREFEXN}) \\ \frac{R(y) = \text{null or } R(y) \notin \text{Dom}(H)}{\langle H, R, *x \leftarrow y, n, C \rangle} \xrightarrow{\longrightarrow_D \text{MemEx}} (\text{SEM-DEREFEXN})
\frac{D(f) = (\vec{y})s}{\langle H, R, f(\vec{x}), n, C \rangle \longrightarrow_D \langle H, R, [\vec{x}/\vec{y}|s, n, C \rangle} \text{ (Sem-Call)}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 The type judgment for statements is of the form \Theta; \Gamma \vdash s : P,
                                                                                                                                                                                                                                                                                            \frac{\forall z.\mathbf{const}(*z) \in C \text{ and } R(\mathbf{r}) = R(\mathbf{z})}{\langle H\{R(x) \mapsto v\}, R, *x \leftarrow y. \text{and } C \text{ the } \mathbf{var} \text{ abstracted behavioral}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 type of statement s is P.
                                                                                                                                                                                                                             \langle H, R, \text{ let } x = \text{malloc}() \text{ in } s, 0, C \rangle \frac{\text{nBefore}(s)\text{showing typing rules for statements in Figure 2 and 10 model of the statements of the first one is a several important definitions. The first one is
                                                   Figure 1: Operational semantics of \mathscr{L}.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 OK_n(P,F), a predicate, where P represents the behavior of a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 program which consumes at most n memory cells.
```

 $\langle \mathbf{0}; P, F \rangle \rightarrow \langle P, F \rangle$

$$\Theta$$
; $\Gamma \vdash \mathbf{skip} : \mathbf{0}$ (T-SKIP)

$$\Theta; \Gamma, x, y \vdash *x \leftarrow y : \mathbf{0}$$
 (T-Assign)
 $\Theta; \Gamma, x \vdash s : P$

$$\overline{\Theta; \Gamma \vdash \mathbf{let} \ x = \mathbf{malloc}() \ \mathbf{in} \ s : \mathbf{let} \ x = \mathbf{malloc} \ \mathbf{in} \ P}$$

$$(\text{T-MALLOC})$$

$$\frac{\Theta; \Gamma, x, y \vdash s : P}{\Theta; \Gamma, y \vdash \mathbf{let} \ x = *y \ \mathbf{in} \ s : \mathbf{let} \ x = *y \ \mathbf{in} \ P} \ (\text{T-LetDeref})$$

 $\langle P', F' \rangle$.

> $\begin{array}{cccc} \textbf{Lemma} & \textbf{4.3} & (\textbf{Lack} & \textbf{of} & \textbf{immediate} & \textbf{ove(flow)}.TE \textbf{\textit{Q}}) \\ \Theta; \Gamma & \vdash & \langle H, R, s, n, C \rangle & : & \langle P, F \rangle, & \textit{then} & \langle H, R, s, n, C \rangle & \xrightarrow{\textbf{malloc}} \end{array}$ **OutOfMemory**. Θ ; Γ , $x \vdash s : P$

> **5.** Experiments null in s: let x = null in P (T-LETNULL)

$$\Theta$$
; Γ , $x \vdash \text{endconst}(*x \textbf{6}: \textbf{Related}(*W) \text{orks})$ (T-ENDCONST)

$$\frac{\Theta; \Gamma, x \vdash \overset{\text{[todo]}}{S: P}}{\Theta; \Gamma, x \vdash \textbf{const}(*x) 7: \textbf{Constelusion}}$$
(T-Const)

$$\frac{\Theta; \Gamma, x \vdash s_1 : P_1 \qquad \text{both } s_1 \vdash s_2 : P_2}{\Theta; \Gamma, x \vdash \text{ifnull } (*x) \text{ then } s_2 \mid \text{ecknowledgements}} \tag{T-Ifnull}$$

$$\Theta, f: (\vec{y})P; \Gamma, \vec{x} \vdash \mathbf{Appendix}$$
 (T-CALL)

$$\frac{\Theta; \Gamma \vdash s : P_1 \quad \textbf{9. Proof of Lemmas}}{\Theta; \Gamma \vdash s \, \textbf{Lemma 9.1.} \quad \textit{If } \langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle \ \textit{and } OK(F), \ \textit{then } OK(F')}$$

We need to prove OK(F'). From assumption, we have Θ ; $\emptyset \vdash S$: Phat $O(R) \not \in F$ holds, and in this case F' is the same as F. $\vdash D : \Theta$ (T-PROGRAM)

malloc in $P', F \rangle \xrightarrow{\text{malloc}(x')} \langle [x'/x]P', F \rangle$ Similiar to above.

- Case $P = \mathbf{let} \ x = y \ \mathbf{in} \ P'$ and $\langle \mathbf{let} \ x = y \ \mathbf{in} \ P', F \rangle \rightarrow$ $\langle [x'/x]P',F\rangle$
 - Similiar to above.
- Case $P = \mathbf{let} \ x = *y \mathbf{in} \ P'$ and $\langle \mathbf{let} \ x = *y \mathbf{in} \ P', F \rangle \rightarrow$ $\langle [x'/x]P',F\rangle$ Similiar to above.
- Case P = let x = null in P' and $\langle \text{let } x = \text{null in } P', F \rangle \rightarrow$ $\langle [x'/x]P',F\rangle$ Similiar to above.
- Case P =free and \langle free $, F \rangle \xrightarrow{\text{free}} \langle \mathbf{0}, F \rangle$ Similiar to above.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\mathbf{const}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \rangle}$ We need to prove OK(F). From the assumption, OK(F)holds.
- holds. Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{const}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle}$ We need to prove OK(F). From the assumption, OK(F)holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{null}(*x) \in F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \rangle} \frac{\operatorname{const}(*x)}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \rangle}$ We need to prove OK(F). From the assumption, OK(F)holds.

Figure 3: typing rules

Definition 3 $(\sharp_{\rho}(\sigma))$. $\sharp_{\rho}(\sigma)$ is the number of ρ in the seauence σ .

Definition 4. $OK_n(P,F)$ holds if, (1) $\forall P'$ and σ . if $\langle P,F \rangle \xrightarrow{\sigma}$ $\langle P', F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F)

Definition 5. OK(F) holds if F does not contain both null(*x)and \neg **null**(*x).

Definition 6 (Subtyping). $F \vdash P_1 \leq P_2$ is the largest relation such that, for any P'_1 , F' and ρ , if $\langle P_1, F \rangle \xrightarrow{\rho} \langle P'_1, F' \rangle$, then there exists P_2' such that $\langle P_2, F \rangle \stackrel{\rho}{\Longrightarrow} \langle P_2', F' \rangle$ and $F' \vdash P_1' \leq P_2'$. We write $P_1 \leq P_2$ if $F \vdash P_1 \leq P_2$ for any F.

4.3. Type soundness

Theorem 4.1. If $\vdash \langle D, s \rangle$: n for some n, then $\langle D, s \rangle$ is totally memory-leak free.

The proof is based on the following lemmas: preservation and lack of immediate overflow.

Definition 7. we write Θ ; $\Gamma \vdash \langle H, R, s, n, C \rangle : \langle P, F \rangle$, if Θ ; $\Gamma \vdash$ $s: P \text{ and } OK_n(P,F) \text{ with } C \approx F.$

- Case $P = (*x)(P_1, P_2)$ and $\frac{\neg \mathbf{null}(*x) \in F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle}$ We need to prove OK(F). From the assumption, it holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{null}(*x), \neg \operatorname{null}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \cup \operatorname{null}(*x) \rangle}$ We need to prove $OK(F \cup \operatorname{null}(*x))$. From the assumption, we have OK(F) and $\neg \operatorname{null}(*x) \notin F$. Therefore $OK(F \cup \operatorname{null}(*x))$ holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{null}(*x), \neg \operatorname{null}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \cup \neg \operatorname{null}(*x) \rangle}$ We need to prove $OK(F \cup \neg \operatorname{null}(*x))$. From the assumption, we have OK(F) and $\operatorname{null}(*x) \notin F$. Therefore $OK(F \cup \neg \operatorname{null}(*x))$ holds.
- Case $P = \mathbf{const}(*x)P'$ and $\langle \mathbf{const}(*x)P', F \rangle \rightarrow \langle P'; \mathbf{endconst}(*x), F \cup \{\mathbf{const}(*x)\} \rangle$ We need to prove $OK(F \cup \{\mathbf{const}(*x)\})$. From the assumption, we have OK(F) holds. Also, $F \cup \{\mathbf{const}(*x)\}$ does not contain both $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$. Therefore, $OK(F \cup \{\mathbf{const}(*x)\})$ holds.
- Case $P = \mathbf{endconst}(*x)$ and $\frac{F' = filter_T(F,*x)}{\langle \mathbf{endconst}(*x), F\rangle \to \langle \mathbf{0}, F'\rangle}$ we need to prove OK(F'). Form assumption, we have OK(F) which means F does not contain both $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$. By the definition of filter function, we have $F' = F \setminus \{\mathbf{null}(*x), \neg \mathbf{null}(*x)\}$ or $F \mathbf{const}(*x)$, which means F' does not contain both $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$. Therefore, OK(F') holds.
- Case $P = \mu \alpha . P'$ and $\langle \mu \alpha . P', F \rangle \rightarrow \langle [\mu \alpha . P'] P', F \rangle$ We need to prove OK(F). From the assumption, we have that OK(F) holds.
- Case $P = P_1; P_2$ and $\frac{\langle P_1, F \rangle \stackrel{\rho}{\longrightarrow} \langle P'_1, F' \rangle}{\langle P_1; P_2, F \rangle \stackrel{\rho}{\longrightarrow} \langle P'_1; P_2, F' \rangle}$ We need to prove OK(F'). By IH, we have $\langle P_1, F \rangle \stackrel{\rho}{\longrightarrow} \langle P'_1, F' \rangle$ and OK(F) holds, then OK(F') holds.

Lemma 9.2. If $OK_n(P,F)$ and $\langle P,F \rangle \xrightarrow{\rho} \langle P',F' \rangle$, then

- $OK_{n-1}(P',F')$ if $\rho =$ malloc,
- $OK_{n+1}(P',F')$ if $\rho =$ free,
- $OK_n(P', F')$ if $\rho = Otherwise$

Proof. By induction on $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$.

- Case $P = \mathbf{0}; P'$ and $\langle \mathbf{0}; P', F \rangle \rightarrow \langle P', F \rangle$ We need to prove $OK_n(P', F)$. Assume that $OK_n(P', F)$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle P', F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$, $\sharp_m(\sigma) - \sharp_f(\sigma) > n$ or (2) OK(F) does not hold. From the definition of that $OK(\mathbf{0}; P', F)$ holds, we have (1) if $\langle \mathbf{0}; P', F \rangle \rightarrow \langle P', F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F), which are in contradiction to the assumption. Therefore, $OK_n(P', F)$ holds.
- Case P = let x = malloc in P' and $\langle \text{let } x = \text{malloc in } P', F \rangle \xrightarrow{\text{malloc}(x')} \langle [x'/x]P', F \rangle$ we need to prove $OK_{n-1}([x'/x]P', F)$. Assume that $OK_{n-1}([x'/x]P', F)$ does not hold. Then we have (1) $\exists \sigma$ and Q s.t. $\langle [x'/x]P', F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m \sigma \sharp_f \sigma > n$ or (2) OK(F) does not hold.

From the definition of $OK_n(P,F)$, we have (1) $\langle \mathbf{let} \ x = \mathbf{malloc} \ \mathbf{in} \ P',F \rangle \xrightarrow{\mathbf{malloc}(x')} \langle [x'/x]P',F \rangle \xrightarrow{\sigma} \langle Q,F' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n-1$ and (2) OK(F) holds. Therefore, we get the contradiction, and the $OK_{n-1}([x'/x]P',F)$ holds.

• Case $P = \mathbf{let} \ x = y \ \mathbf{in} \ P'$ and $\langle \mathbf{let} \ x = y \ \mathbf{in} \ P', F \rangle \rightarrow \langle [x'/x]P', F \rangle$

Similar to the above.

- Case $P = \mathbf{let} \ x = *y \ \mathbf{in} \ P'$ and $\langle \mathbf{let} \ x = *y \ \mathbf{in} \ P', F \rangle \rightarrow \langle [x'/x]P', F \rangle$ Similar to the above.
- Case P = let x = null in P' and $\langle \text{let } x = \text{null in } P', F \rangle \rightarrow \langle [x'/x]P', F \rangle$ Similar to the above.
- Case P =free and \langle free $, F \rangle \xrightarrow{\text{free}} \langle \mathbf{0}, F \rangle$ We need to prove $OK_{n+1}(\mathbf{0},F)$, which means we need to prove (1) $\forall \sigma$ and Q if $\langle \mathbf{0}, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then $\sharp_m(\sigma) \sharp_f(\sigma) \leq n$ and (2) OK(F) holds. There is no Q and σ s.t. $\langle \mathbf{0}, F \rangle \xrightarrow{\sigma} \langle Q, F \rangle$, so (1) holds. OK(F) holds from Lemma 9.1. Therefore, $OK(\mathbf{0},F)$ holds.
- Case $P = \mathbf{endconst}(*x)$ and $\frac{F' = filter_T(F,*x)}{(\mathbf{endconst}(*x),F) \to \langle \mathbf{0},F'\rangle}$ We need to prove $OK_n(\mathbf{0},F')$, which means we need to prove (1) $\forall \sigma$ and Q if $\langle \mathbf{0},F\rangle \xrightarrow{\sigma} \langle Q,F'\rangle$, then $\sharp_m(\sigma) \sharp_f(\sigma) \leq n$ and (2) OK(F') holds. There is no Q and σ s.t. $\langle \mathbf{0},F\rangle \xrightarrow{\sigma} \langle Q,F\rangle$, so (1) holds. From the assumption $OK_n(P,F)$, we have OK(F), which means F does not contain both $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$. By the definition of function $filter_T$, we have $F' = F \setminus \{\mathbf{null}(*x), \neg \mathbf{null}(*x)\}$ or $F \mathbf{const}(*x)$. Therefore OK(F') holds. So $OK_n(\mathbf{0},F')$ holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{const}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \rangle}$ We need to prove $OK_n(P_1, F)$. Assume that $OK_n(P_1, F)$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle P_1, F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$ and $\sharp_m(\sigma) \sharp_f(\sigma) > n$ or (2) OK(F) does not hold. From the definition of that $OK_n((*x)(P_1, P_2), F)$ holds, we have (1) if $\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$ then $\sharp_m(\sigma) \sharp_f(\sigma) \leq n$ and (2) OK(F) holds, which are in contradiction to the assumption. Therefore, $OK_n(P_1, F)$ holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{const}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \to \langle P_2, F \rangle}$ We need to prove $OK_n(P_2, F)$. Assume that $OK_n(P_2, F)$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle P_2, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m(\sigma) \sharp_f(\sigma) > n$ or (2) OK(F) does not hold. From the definition of that $OK_n((*x)(P_1, P_2), F)$ holds, we have (1) if $\langle (*x)(P_1, P_2), F \rangle \to \langle P_2, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then $\sharp_m(\sigma) \sharp_f(\sigma) \leq n$ and (2) OK(F) holds, which are in contradiction to the assumption. Therefore, $OK_n(P_2, F)$ holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{null}(*x) \in F}{\langle (*x)(P_1, P_2), F \rangle \to \langle P_1, F \rangle}$ We need to prove $OK_n(P_1, F)$. Assume that $OK_n(P_1, F)$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle P_1, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$ or (2) OK(F) does not hold. From the definition of that $OK_n((*x)(P_1, P_2), F)$ holds, we have (1) if $\langle (*x)(P_1, P_2), F \rangle \to \langle P_1, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then

П

 $\sharp_m(\sigma) - \sharp_f(\sigma) \le n$ and (2) OK(F) holds, which are in contradiction to the assumption. Therefore, $OK_n(P_1, F)$ holds.

- Case $P = (*x)(P_1, P_2)$ and $\frac{\neg \text{null}(*x) \in F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle}$ We need to prove $OK_n(P_2, F)$. Assume that $OK_n(P_2, F)$ does not hold. Then we have (1) $\exists \sigma$ and Q s.t. $\langle P_2, F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$ and $\sharp_m(\sigma) \sharp_f(\sigma) > n$ or (2) OK(F) does not hold. From the definition of that $OK_n((*x)(P_1, P_2), F)$ holds, we have (1) if $\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$, then $\sharp_m(\sigma) \sharp_f(\sigma) \leq n$ and (2) OK(F) holds, which are in contradiction to the assumption. Therefore, $OK_n(P_2, F)$ holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{null}(*x), \neg \operatorname{null}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \cup \{\operatorname{null}(*x)\} \rangle}$ We need to prove $OK_n(P_1, F \cup \{\operatorname{null}(*x)\})$. Assume that $OK_n(P_1, F \cup \{\operatorname{null}(*x)\})$ does not hold. Then we have (1) $\exists \sigma$ and Q s.t. $\langle P_1, F \cup \{\operatorname{null}(*x)\} \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$ and $\sharp_m(\sigma) \sharp_f(\sigma) > n$ or (2) $OK(F \cup \{\operatorname{null}(*x)\})$ does not hold. From the definition of that $OK_n((*x)(P_1, P_2), F)$ holds, we have (1) if $\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \cup \{\operatorname{null}(*x)\} \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$, then $\sharp_m(\sigma) \sharp_f(\sigma) \leq n$ and (2) OK(F) holds. By OK(F) and $\operatorname{null}(*x), \neg \operatorname{null}(*x) \notin F$, we have $OK(F \cup \{\operatorname{null}(*x)\})$ holds. Therefore, we get the contradiction and $OK_n(P_1, F \cup \{\operatorname{null}(*x)\})$ holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\mathbf{null}(*x), \neg \mathbf{null}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \cup \{\neg \mathbf{null}(*x)\} \rangle}$ Similar to the above.
- Case $P = \mathbf{const}(*x)P'$ and $\langle \mathbf{const}(*x)P', F \rangle \rightarrow \langle P'; \mathbf{endconst}(*x), F \cup \mathbf{const}(*x) \rangle$ We need to prove $OK_n(P'; \mathbf{endconst}(*x), F \cup \mathbf{const}(*x))$. Assume that $OK_n(P'; \mathbf{endconst}(*x), F \cup \mathbf{const}(*x))$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle P'; \mathbf{endconst}(*x), F \cup \mathbf{const}(*x) \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$ or (2) $OK(F \cup \mathbf{const}(*x))$ does not hold. From the definition of that $OK_n(\mathbf{const}(*x)P', F)$ holds, we have (1) if $\langle \mathbf{const}(*x)P', F \rangle \rightarrow \langle P; \mathbf{endconst}(*x), F \cup \mathbf{const}(*x) \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F) holds, which are in contradiction to the assumption. Therefore, $OK_n(P_1, F)$ holds.
- Case $P = \mu \alpha.P'$ and $\langle \mu \alpha.P', F \rangle \rightarrow \langle [\mu \alpha.P'/\alpha]P', F \rangle$ We need to prove $OK_n([\mu \alpha.P'/\alpha]P', F)$. Assume that $OK_n([\mu \alpha.P'/\alpha]P', F)$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle [\mu \alpha.P'/\alpha]P', F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m(\sigma) \sharp_f(\sigma) > n$ or (2) OK(F) does not hold. From the definition of that $OK_n(\mu \alpha.P', F)$ holds, we have (1) if $\langle \mu \alpha.P', F \rangle \rightarrow \langle [\mu \alpha.P'/\alpha]P', F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then $\sharp_m(\sigma) \sharp_f(\sigma) \leq n$, which is a contradiction; and (2) OK(F) holds. From the Lemma 9.1, $OK(F \cup \neg \mathbf{null}(*x))$ holds. Therefore, $OK([\mu \alpha.P'/\alpha]P', F)$ holds.
- Case $P = P_1$; P_2 and $\frac{\langle P_1, F \rangle \xrightarrow{\rho} \langle P_1', F' \rangle}{\langle P_1; P_2, F \rangle \xrightarrow{\rho} \langle P_1'; P_2, F' \rangle}$ We need to prove $OK_{n'}(P_1'; P_2, F)$, where n' is determined by

$$n' = \begin{cases} n+1 & \rho = \mathbf{free} \\ n-1 & \rho = \mathbf{malloc} \\ n & \text{Otherwise.} \end{cases}$$

Assume that $OK_{n'}(P'_1; P_2, F')$ does not hold. Then, we have (1) $\exists \sigma$, Q and F'' s.t. $\langle P'_1; P_2, F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F'' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n'$ or (2) OK(F') does not hold. From the definition of that $OK_n(P_1; P_2, F)$ holds, we have (1) if $\langle P_1; P_2, F \rangle \stackrel{\rho}{\Longrightarrow} \langle P'_1; P_2, F' \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F'' \rangle$, then $\sharp_m(\rho\sigma) - \sharp_f(\rho\sigma) \leq n$ and (2) OK(F) holds. From (1), we get $n' + \sharp_m(\rho) - \sharp_f(\rho) < \sharp_m(\rho) + \sharp_m(\sigma) - \sharp_f(\rho) - \sharp_f(\sigma) \leq n$. For any ρ , the $n' + \sharp_m(\rho) - \sharp_f(\rho) = n$, therefore we get a contradiction. By IH, we have OK(F') holds, which is a contradiction. Therefore, $OK_{n'}(P_1; P_2, F')$ holds

Proof of Lemma 4.2: By induction on the derivation of $\langle H, R, s, n, C \rangle \xrightarrow{\rho} \langle H', R', s', n', C' \rangle$.

- Case: $\langle H, R, \mathbf{const}(*x)s, n, C \rangle \rightarrow \langle H, R, s; \mathbf{endconst}(*x), n, C \cup \{\mathbf{const}(*x)\} \rangle$ From the assumption $\Theta; \Gamma \vdash \langle H, R, \mathbf{const}(*x)s, n, C \rangle : \langle P, F \rangle$, we have $\Theta; \Gamma \vdash \mathbf{const}(*x)s : P$ and $OK_n(P, F)$. From the inversion of typing rules, we get $\Theta; \Gamma \vdash s : P''$ and $\mathbf{const}(*x)P'' \leq P$ for some P''. By subtyping, we have $P''; \mathbf{endconst}(*x) \leq Q$ and $\langle P, F \rangle \Longrightarrow \langle Q, F \cup \{\mathbf{const}(*x)\} \rangle$ for some Q.
 - we need to find P' and F' s.t. $\Theta; \Gamma \vdash s;$ endconst $(*x) : P', OK_n(P', F')$ and $\langle P, F' \rangle \Longrightarrow \langle P', F' \rangle$. Taking Q as P' and $F \cup \{$ const $(*x) \}$ as F'. Therefore $\langle P, F \rangle \to \langle P', F' \rangle$ holds, and $OK_n(P', F')$ holds from Lemma 9.2. From $\Theta; \Gamma \vdash s;$ endconst(*x) : P''; endconst(*x) : P''; endconst(*x) : P' holds.
- Case: $\langle H, R, \mathbf{endconst}(*x), n, C \rangle \rightarrow \langle H, R, \mathbf{skip}, n, C' \rangle$ where $C' = filter_C(C, *x)$ From the assumption $\Theta; \Gamma \vdash \langle H, R, \mathbf{endconst}(*x), n, C \rangle$: $\langle P, F \rangle$, we have $\Theta; \Gamma \vdash \mathbf{endconst}(*x) : P$ and $OK_n(P, F)$. From the inversion of typing rules, we get $\Theta; \Gamma \vdash \mathbf{endconst}(*x) : \mathbf{endconst}(*x) : \mathbf{endconst}(*x)$ and $\mathbf{endconst}(*x) \leq P$. By subtyping and function $filter_T(F, *x)$, we get $0 \leq Q$ and $\langle P, F \rangle \rightarrow \langle Q, F'' \rangle$ for some Q. we need to find P' and F' s.t. $\Theta; \Gamma \vdash \mathbf{skip} : P', OK_n(P', F')$ and $\langle P, F \rangle \Longrightarrow P', F' \rangle$. Taking Q as P' and F'' as F'
 - and $\langle P, F \rangle \Longrightarrow P', F' \rangle$. Taking Q as P' and F'' as F' therefore $F' \approx C'$ from functions $filter_T(F, *x)$ and $filter_C(C, *x)$; $\langle P, F \rangle \to \langle P', F' \rangle$ and $OK_n(P', F')$ hold. From T-SKIP, T-SUB and $0 \le Q$, then $\Theta : \Gamma \vdash \mathbf{skip} : P'$ holds.
- Case: $\langle H, R, \mathbf{free}(x), n, C \rangle \xrightarrow{\mathbf{free}} \langle H', R, \mathbf{skip}, n+1, C \rangle$ From the assumption $\Theta : \Gamma \vdash \langle H, R, \mathbf{free}(x), n, C \rangle : \langle P, F \rangle$, we have $OK_n(P, F)$ and $\Theta : \Gamma \vdash \mathbf{free}(x) : P$. From inversion of the typing rules, we have $\Theta : \Gamma \vdash \mathbf{free}(x) : \mathbf{free}$ and $\mathbf{free} \leq P$. By the subtyping, we have $\langle P, F \rangle \xrightarrow{\mathbf{free}} \langle Q, F \rangle$ and $\mathbf{0} \leq Q$ for some Q.

We need to find P' and F' such that $\langle P, F \rangle \stackrel{\text{free}}{\Longrightarrow} \langle P', F' \rangle$, $\Theta; \Gamma \vdash \text{skip} : P'$, and $OK_{n+1}(P', F')$. Take Q as P' and F as F'. Then, $\langle P, F \rangle \stackrel{\text{free}}{\Longrightarrow} \langle P', F' \rangle$ holds, and $OK_{n+1}(P', F')$ holds from Lemma 9.2. We also have $\Theta; \Gamma \vdash \text{skip} : P'$ from

T-SKIP, $0 \le Q$ and T-SUB.

 $\langle H, R, \mathbf{let} \ x = \mathbf{malloc}() \ \mathbf{in} \ s, n, C \rangle$ • Case: $\langle H', R', [x'/x]s, n-1, C \rangle$ From the assumption Θ ; $\Gamma \vdash \langle H, R, \mathbf{let} \ x =$ **malloc()** in s, n, C : $\langle P, F \rangle$, we have $\Theta; \Gamma \vdash \text{let } x = 0$ **malloc()** in s:P and $OK_n(P,F)$. By the inversion of typing rules, we have Θ ; Γ , $x \vdash s : P''$ and **let** x = **malloc in** $P'' \le P$ for some P''. By subtyping, we get $\langle P, F \rangle \xrightarrow{\text{malloc} x'} \langle O, F \rangle$ and $[x'/x]P'' \leq Q$ for some Q. We need to find P' and F' such that $\Theta; \Gamma, x' \vdash [x'/x]s : P'$ and $\langle P,F \rangle \xrightarrow{\mathbf{mallocx'}} \langle P',F' \rangle$ and $OK_{n-1}(P',F')$. Take Q as P' and F as F'. Then $\langle P, F \rangle \xrightarrow{\text{malloc} x'} \langle P', F' \rangle$ holds, and

 $OK_{n-1}(P',F')$ holds by Lemma 9.2. From $\Theta;\Gamma,x\vdash s:P''$ and let x =malloc in $P'' \le P$, we have $\Theta; \Gamma, x'' \vdash [x''/x]s$: [x''/x]P'' and let x'' = malloc in $[x''/x]P'' \le P$, and then by the definition of subtyping we have $[x''/x]P'' \leq Q'$ for some Q'. Therefore, we get Θ ; Γ , $x'' \vdash [x''/x]s : Q'$. Take x'' as x'and Q' as P', then Θ ; $\Gamma, x' \vdash [x'/x]s : P'$ holds.

• Case: $\langle H, R, \mathbf{skip}; s, n, C \rangle \rightarrow \langle H, R, s, n, C \rangle$ From the assumption Θ ; $\Gamma \vdash \langle H, R, \mathbf{skip}; s, n, C \rangle : \langle P, F \rangle$, we have Θ ; $\Gamma \vdash \mathbf{skip}$; s : P and $OK_n(P, F)$. From the inversion of the typing rules, we get Θ ; $\Gamma \vdash s : P''$ and $0 : P'' \le P$. From the definition of subtyping, we have $\langle P, F \rangle \Longrightarrow \langle Q, F \rangle$ and $P'' \leq Q$ for some Q.

We need to find P' and F' such that $\Theta; \Gamma \vdash s : P'$ and $\langle P,F\rangle \to \langle P',F'\rangle$ and $OK_n(P',F')$. Take Q as P' and Fas F'. Then $\langle P, F \rangle \Longrightarrow \langle P', F' \rangle$ and $OK_n(P', F')$ hold. We also have Θ ; $\Gamma \vdash s : P'$ from T-SUB, $\Gamma \vdash s : P''$ and $P'' \leq Q$.

- Case: $\langle H, R, *x \leftarrow y, n, C \rangle \rightarrow \langle H', R, \mathbf{skip}, n, C \rangle$ From the assumption Θ ; $\Gamma \vdash \langle H, R, *x \leftarrow y, n, C \rangle : \langle P, F \rangle$, we have Θ ; $\Gamma \vdash *x \leftarrow y : P$ and $OK_n(P, F)$. From the inversion of typing rules, we have 0 < P. We need to find P' such that $\Theta; \Gamma \vdash \mathbf{skip} : P', \langle P, F \rangle \Longrightarrow$ $\langle P', F' \rangle$ and $OK_n(P', F')$. Take P as P' and F as F'. Then, $\langle P, F \rangle \Longrightarrow \langle P', F' \rangle$ and $OK_n(P', F')$ hold. We also have Θ ; $\Gamma \vdash$ **skip** : P' from T-SKIP, $0 \le P$ and T-SUB.
- Case: $\langle H, R, \mathbf{let} \ x = y \ \mathbf{in} \ s, n, C \rangle \rightarrow \langle H, R', [x'/x] s, n, C \rangle$ From the assumption Θ ; $\Gamma \vdash \langle H, R, \mathbf{let} \ x = y \ \mathbf{in} \ s, n, C \rangle$: $\langle P, F \rangle$, we have $\Theta; \Gamma, y \vdash \mathbf{let} \ x = y \ \mathbf{in} \ s : P \ \mathbf{and} \ OK_n(P, F)$. From the inversion of typing rules, we have Θ ; Γ , x, $y \vdash s$: P''and **let** x = y **in** $P'' \le P$ for some P''. By subtying, we have $\langle P, F \rangle \to \langle Q, F \rangle$ and $[x'/x]P'' \leq Q$ for some Q. We need to find P' and F' such that $\Theta; \Gamma, x', y \vdash [x'/x]s$: P', $\langle P,F\rangle \to \langle P',F'\rangle$ and $OK_n(P',F')$. Take Q as P' and F as F'. Then $\langle P,F\rangle \Longrightarrow \langle P',F'\rangle$ and $OK_n(P',F')$ hold. From Θ ; Γ , x, $y \vdash s$: P'' and let x = y in $P'' \le P$, we have Θ ; Γ , x'', $y \vdash [x''/x]s : [x''/x]P''$ and let x'' = y in $[x''/x]P'' \le y$ P, and then by subtying we have $[x''/x]P'' \leq Q'$ for some Q'. Therefore, we have $\Theta; \Gamma, x'', y \vdash [x''/x]s : Q'$. Take x'' as x' and Q' as P', then Θ ; Γ , x', $y \vdash [x'/x]s : P'$ holds.
- Case: $\langle H, R, \mathbf{let} \ x = \mathbf{null in} \ s, n \rangle \to \langle H, R', [x'/x]s, n \rangle$ Similar to the above.
- Case: $\langle H, R, \mathbf{let} \ x = *y \ \mathbf{in} \ s, n \rangle \to \langle H, R', [x'/x]s, n \rangle$

Similar to the above.

• Case:

malloc

- $\langle H, R, \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \rightarrow$ $\langle H, R, s_1, n, C \rangle$ if H(R(x)) = null and $\text{const}(*x) \notin C$ assumption Θ:Γ From $\langle H, R, \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle : \langle P, F \rangle, \text{ we}$ have Θ ; $\Gamma \vdash$ if null (*x) then s_1 else $s_2 : P$ and $OK_n(P, F)$. From the inversion of typing rules, we have Θ ; $\Gamma \vdash s_1 : P_1$, Θ ; $\Gamma \vdash s_2 : P_2$ and $(*x)(P_1, P_2) \leq P$. By subtyping and $\mathbf{const}(*x) \notin C$, which means $\mathbf{const}(*x) \notin F$, we get $\langle P, F \rangle \Longrightarrow \langle Q, F \rangle$ and $P_1 \leq Q$ for some Q. We need to find P' and F' such that Θ ; $\Gamma \vdash s_1 : P', \langle P, F \rangle \Longrightarrow$ $\langle P', F' \rangle$ and $OK_n(P', F')$. Take Q as P' and F as F'. Then $\langle P,F\rangle \to \langle P',F'\rangle$ and $OK_n(P',F')$ hold. We also have Θ ; $\Gamma \vdash s_1 : P'$ from T-SUB, Θ ; $\Gamma \vdash s_1 : P_1$ and $P_1 \leq Q$.
- Case: $\langle H, R, \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \rightarrow$ $\langle H, R, s_1, n, C \rangle$ if $H(R(x)) \neq \text{null and const}(*x) \notin C$ Similar to the above.

 $\langle H, R, \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \rightarrow$

- $\langle H, R, s_1, n, C' \rangle$ if H(R(x)) = null, $\text{const}(*x) \in C$ and C' = $C \cup \{\mathbf{null}(*x)\}$ From assumption Θ ; Γ $\langle H, R, \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle : \langle P, F \rangle, \text{ we}$ have Θ ; $\Gamma \vdash$ **ifnull** (*x) **then** s_1 **else** $s_2 : P$ and $OK_n(P, F)$. From the inversion of typing rules, we have Θ ; $\Gamma \vdash s_1 : P_1$, Θ ; $\Gamma \vdash s_2 : P_2$ and $(*x)(P_1, P_2) \leq P$. By subtyping, $\mathbf{const}(*x) \in C$ and $\mathbf{assume}(*x \neq \mathbf{null}) \notin C$ which are similar to $\mathbf{const}(*x) \in F$ and $\neg \mathbf{null}(*x) \notin F$, we get $\langle P, F \rangle \Longrightarrow \langle Q, F \cup \{ \mathbf{null}(*x) \} \rangle$ and $P_1 \leq Q$ for some Q. We need to find P' and F' such that Θ ; $\Gamma \vdash s_1 : P', \langle P, F \rangle \Longrightarrow$ $\langle P', F' \rangle$ and $OK_n(P', F')$. Take Q as P' and $F \cup \{ \mathbf{null}(*x) \}$ as F'. Then $C' \approx F'$, $\langle P, F \rangle \rightarrow \langle P', F' \rangle$ and $OK_n(P', F')$ hold. We also have Θ ; $\Gamma \vdash s_1 : P'$ from T-SUB, Θ ; $\Gamma \vdash s_1 : P_1$ and $P_1 \leq Q$.
- Case: $\langle H, R, \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \rightarrow$ $\langle H, R, s_2, n, C' \rangle$ if $H(R(x)) \neq \text{null}$, $\text{const}(*x) \in C$ and C' = $C \cup \{\neg \mathbf{null}(*x)\}$ Similar to the above proof.
- Case: $\langle H, R, s_1; s_2, n, C \rangle \rightarrow \langle H', R', s'_1; s_2, n', C' \rangle$ From the assumption Θ ; $\Gamma \vdash \langle H, R, s_1; s_2, n, C \rangle : \langle P, F \rangle$, we have Θ ; $\Gamma \vdash s_1; s_2 : P$ and $OK_n(P, F)$ with $C \approx F$. By inversion of typing rules, we have $\Theta; \Gamma \vdash s_1 : P_1, \Theta; \Gamma \vdash s_2 : P_2$ and P_1 ; $P_2 \leq P$ for some P_1 and P_2 . $\langle H, R, s_1, n, C \rangle$ ΙH on with $\langle H, R, s_1, n, C \rangle \xrightarrow{\rho} \langle H', R', s_1', n', C' \rangle$, we have $\exists P_1', F_1'$ s.t. $\Theta; \Gamma \vdash \langle H', R', s'_1, n', C' \rangle : \langle P'_1, F'_1 \rangle \text{ and } \langle P_1, F \rangle \xrightarrow{\rho} \langle P'_1, F'_1 \rangle.$ By subtyping we have $\langle P, F \rangle \xrightarrow{\rho} \langle Q, F_1' \rangle$ and $P_1'; P_2 \leq Q$ for some Q.

We need to find P' and F' s.t. $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$, $OK_n(P',F')$ and $\Theta;\Gamma \vdash s_1';s_2:P'$. Take Q as P' and F_1' as F', $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$ and $OK_n(P', F')$ hold. By T-Sub, Θ ; $\Gamma \vdash s'_1$; $s_2 : P'_1$; P_2 and P'_1 ; $P_2 \leq Q$, we have Θ ; $\Gamma \vdash s'_1$; $s_2 : P'$ holds.

We write $\langle H, R, s, n, C \rangle \xrightarrow{\rho}$ if there is a transition $\xrightarrow{\rho}$ from $\langle H, R, s, n, C \rangle$.

Lemma 9.3. If Θ ; $\Gamma \vdash \langle H, R, s, n, C \rangle$: $\langle P, F \rangle$ and $\langle H, R, s, n, C \rangle \stackrel{\rho}{\Longrightarrow}$ and $\rho \in \{\text{malloc, free}\}$, then there exists P' and F' such that $\langle P, F \rangle \stackrel{\rho}{\Longrightarrow} \langle P', F' \rangle$.

Proof. Induction on the derivation of Θ ; $\Gamma \vdash \langle H, R, s, n, C \rangle$: $\langle P, F \rangle$.

Proof of Lemma 4.3:

By contradiction. Assume $\langle H, R, s, n, C \rangle \xrightarrow{\rho}$ **OutOfMemory**. Then, n is 0 and ρ = **malloc** from SEM-OUTOFMEM. From the assumption we have $\Theta; \Gamma \vdash s: P$ and $OK_0(P,F)$. From Lemma 9.3, there exists P' and F' such that $\langle P, F \rangle \xrightarrow{\text{malloc}} \langle P', F' \rangle$. However, this contradicts $OK_0(P,F)$.

Proof of Theorem 4.1:

We have Θ ; $\emptyset \vdash s : P \vdash D : \Theta$ and $OK_n(P, F)$.

Suppose that there exists σ such that $\langle \emptyset, \emptyset, s, n, C \rangle \xrightarrow{\sigma} \langle H', R', s', n', C' \rangle \xrightarrow{\rho}$ **OutOfMemory**. Then, n' = 0 and $\rho =$ **malloc**. From Lemma 4.2, there exists P' and F' such that $\Theta; \Gamma' \vdash s' : P', \langle P, F \rangle \xrightarrow{\sigma} \langle P', F' \rangle$, and $OK_0(P', F')$; hence $\langle H', R', s', 0 \rangle \xrightarrow{\text{malloc}}$. However, this contradicts Lemma 4.3.

10. Syntax Directed Typing Rules

$$\frac{C = \emptyset}{\Theta; \Gamma; C \vdash \mathbf{skip} : \mathbf{0}} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C_1 \vdash s_1 : P_1 \quad \Theta; \Gamma; C_2 \vdash s_2 : P_2 \quad C = C_1 \cup C_2}{\Theta; \Gamma; C \vdash s_1; s_2 : P}$$

$$\frac{\Theta; \Gamma; C_1 \vdash y \quad \Theta; \Gamma; C_2 \vdash x : \quad C = C_1 \cup C_2}{\Theta; \Gamma; C_1 \vdash x \quad C = C_1} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C_1 \vdash x \quad C = C_1}{\Gamma; C \vdash \mathbf{free}(x) : \mathbf{free}} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C_1 \vdash x \quad C = C_1}{\Gamma; C \vdash \mathbf{free}(x) : \mathbf{free}} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C_1 \vdash x \quad C = C_1}{\Theta; \Gamma; C_1 \vdash x \quad \Theta; \Gamma; C_2 \vdash s : P_1 \quad C = C_1 \cup C_2 \cup C_2} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C_1 \vdash y \quad \Theta; \Gamma, x; C_2 \vdash s : P_1 \quad C = C_1 \cup C_2 \cup C_2}{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C_1 \vdash x \quad \Theta; \Gamma; C_2 \vdash s_1 : P_1 \quad \Theta; \Gamma; C_3 \vdash s_2 : P_2 \quad C = C_1 \cup C_2}{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P}{\Gamma; x : \overrightarrow{\tau} \vdash f(\overrightarrow{x}) : P} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P}{\Gamma; x : \overrightarrow{\tau} \vdash f(\overrightarrow{x}) : P} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad s : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad x : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad x : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad x : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad x : P}{C \vdash C_1 \cup C_2 \cup C_3 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad x : P}{C \vdash C_1 \cup C_2 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in} \quad x : P}{C \vdash C_1 \cup C_2 \cup C_3} \quad (ST-SI)$$

$$\frac{\Theta; \Gamma; C \vdash \mathbf{let} \quad x = *y \mathbf{in}$$

 $\Theta; \Gamma; C_1 \vdash x$ $\Theta; \Gamma; C_2 \vdash s : P_1$ C =

 Θ ; Γ ; $C \vdash \mathbf{const}(*x)s : \mathbf{const}$

11. Type Inference

$$PT_{\Theta}(f) = \begin{cases} \text{let } \alpha = \Theta(f) \\ \text{in } (C = \{\alpha \leq \beta\}, \beta) \\ PT_{\Theta}(\text{skip}) = (\emptyset, 0) \\ PT_{\Theta}(s_1; s_2) = \\ \text{let } (C_1, P_1) = PT_{\Theta}(s_1) \\ (C_2, P_2) = PT_{\Theta}(s_2) \\ \text{in } (C_1 \cup C_2 \cup \{P_1; P_2 \leq \beta\}, \beta) \\ PT_{\Theta}(*x \leftarrow y) = \\ \text{let } (C_1, \emptyset) = PT_v(*x) \\ (C_2, \emptyset) = PT_v(y) \\ \text{in } (C_1 \cup C_2, 0) \\ PT_{\Theta}(\text{free}(x)) = \\ \text{let } (C_1, \emptyset) = PT_v(x) \\ \text{in } (C_1, \text{free}) \\ PT_{\Theta}(\text{endconst}(*x)) = \\ \text{let } (C_1, \emptyset) = PT_v(*x) \\ \text{in } (C_1, \text{endconst}(*x)) \\ PT_{\Theta}(\text{const}(*x)s) = \\ \text{let } (C_1, \emptyset) = PT_v(*x) \\ \text{in } (C_1 \cup C_2 \cup P_1 \leq \beta, \text{const}(*x)\beta) \\ PT_{\Theta}(\text{let } x = \text{malloc}() \text{ in } s) = \\ \text{let } (C_1, P_1) = PT_{\Theta}(s) \\ \text{in } (C_1 \cup \{P_1 \leq \beta\}, \text{malloc}; \beta) \\ PT_{\Theta}(\text{let } x = y \text{ in } s) = \\ \text{let } (C_1, \emptyset) = PT_v(y) \\ (C_2, P_1) = PT_{\Theta}(s) \\ \text{in } (C_1 \cup C_2 \cup \{P_1 \leq \beta\}, \beta) \\ PT_{\Theta}(\text{let } x = \text{vi in } s) = \\ \text{let } (C_1, \emptyset) = PT_v(y) \\ (C_2, P_1) = PT_{\Theta}(s) \\ \text{in } (C_1 \cup C_2 \cup \{P_1 \leq \beta\}, \beta) \\ PT_{\Theta}(\text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2) = \\ \text{let } (C_1, P_1) = PT_{\Theta}(s_1) \\ (C_2, P_2) = PT_{\Theta}(s_1) \\ (C_2, P_2) = PT_{\Theta}(s_2) \\ (C_3, \emptyset) = PT_v(*x) \\ \text{in } (C_1 \cup C_2 \cup C_3 \cup \{(*x)(P_1, P_2) \leq \beta\}, \beta) \\ PT((D, s)) = \\ \text{let } \Theta = \{f_1 : \alpha_1, \dots, f_n : \alpha_n\} \\ \text{where } \{f_1, \dots, f_n\} = \text{dom}(D) \text{ and } \alpha_1, \dots, \alpha_n \text{ are } \text{fresh} \text{ in let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{in } \text{let } (C_i, P_i) = PT_{\Theta}(s) \\ \text{let } (C_i,$$

Figure 4: Type Inference Algorithm