1数据集分析

1.1 数据中的特征数: 34

ID:每个贷款申请的唯一标识符。

year: 贷款申请提交的年份。

loan_limit: 借款人可以申请贷款的最大金额。

Gender: 借款人的性别。

approv_in_adv: 表示贷款是否事先获批。 loan type: 贷款类型,如个人或商业。

loan_purpose: 贷款用途,如家庭装修或债务合并。

Credit_Worthiness: 衡量借款人偿还贷款能力的得分或评级。

open credit: 借款人拥有的未还信用额度。

business_or_commercial: 表示贷款是用于商业还是个人用途。

loan_amount: 借款人申请的贷款金额。rate_of_interest: 贷款利率的百分比。

Interest rate spread: 贷款利率与贷款时国债安全利率之间的差异。

Upfront charges: 与贷款相关的任何预付费或费用。

term: 贷款还款期限。

Neg_ammortization: 表示贷款是否具有负面摊销功能。

interest_only: 表明借款人在一段时间内只需支付贷款利息, 然后再开始偿还贷款本金。

lump sum payment: 表示借款人可以进行一次性支付,以还清贷款本金。

property_value: 用作贷款抵押品的财产价值。

construction_type: 表示财产维修的类型。

occupancy_type: 表示财产是否为业主自住或非自住。

Secured by: 表示用于担保贷款的抵押品类型。

total units: 抵押物质产权益的个数。

income: 借款人的收入。

credit_type: 信用产品类型,如信用卡或汽车贷款。 Credit_Score: 借款人在申请贷款时的信用评分。

co-applicant credit type: 共同申请人的信用产品类型(如果有)。

age: 借款人申请贷款时的年龄。

submission of application: 贷款申请提交日期。

LTV: 贷款的贷款与价值比(贷款金额除以财产价值)。

Region: 财产所在地区。

Security_Type: 用于担保贷款的安全类型。

Status: 表示贷款申请的状态。

dtir1: 借款人的债务收入比(总月度债务支付除以月收入)。

```
数据中的特征数: 34
数据中每个特征对应的数据类型:
ID
                              int64
                             int64
year
loan_limit
                             object
Gender
                            object
approv_in_adv
                            object
loan_type
                            object
                            object
loan_purpose
Credit_Worthiness
                            object
open_credit
                            object
business_or_commercial
                            object
                             int64
loan_amount
rate of interest
                            float64
Interest_rate_spread
                           float64
                            float64
Upfront charges
                            float64
Neg ammortization
                            object
interest_only
                            object
lump sum payment
                            object
                            float64
property_value
construction_type
                            object
occupancy_type
                            object
Secured by
                            object
total units
                            object
income
                            float64
credit_type
                            object
Credit_Score
                             int64
co-applicant_credit_type
                            object
                            object
submission_of_application
                            object
LTV
                            float64
Region
                            object
Security_Type
                            object
Status
                             int64
dtir1
                            float64
dtype: object
```

1.2 贷款申请成功和失败的比例

0表示贷款成功,1代表贷款失败,可以看到成功和失败的比例大概为3:1

1.3 各特征的缺失值比例

对缺失值比例较高的几列进行分析:

Upfront_charges,Interest_rate_spread,rate_of_interest 这三列缺失的原因是因为这三个值是只有贷款成功的人才有的,而贷款失败的人是不会有的,因此在对放贷分析时,我们直接去除这三个列。去除三列后的结果。

dtir1 列,出现频率前十的值为如下:

37.0	6848		
36.0	6553		
44.0	6500		
49.0	6309		
43.0	5307		
42.0	5121		
41.0	4881		
40.0	4699		
39.0	4540		
38.0	4461		
Name:	dtir1,	dtype:	int64

LTV 列, 出现频率前十的值为如下:

81.250000	530	
91.666667	499	
80.038760	380	
80.032468	328	
94.956140	322	
78.846154	317	
78.645833	310	
79.040404	309	
80.063291	309	
95.168067	306	
Name: LTV,	dtype:	int64

property_value 列,出现频率前十的值为如下:

```
308000.0
            2792
258000.0
            2763
358000.0
            2679
408000.0
            2537
328000.0
            2524
278000.0
            2513
268000.0
            2497
228000.0
            2493
238000.0
            2408
288000.0
            2398
Name: property_value, dtype: int64
```

income 列,出现频率前十的值为如下:

0.0	1260	
3600.0	1250	
4200.0	1243	
4800.0	1191	
3120.0	1168	
3720.0	1161	
3900.0	1159	
5400.0	1152	
3300.0	1144	
4500.0	1139	
Name: in	come, dtype:	int64

然后进行填充,对于 object 类型的列使用出现次数最多的值进行填充,# 对于数据类型的列使用平均值填充缺失值。填充后的结果如下:

对特征进行一下相关性分析:

结果分析:

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
lightgbm	Light Gradient Boosting Machine	0.6966		0.6229	0.9303				
gbc	Gradient Boosting Classifier	0.8880	0.8837	0.5853	0.9364	0.7203	0.6549	0.6832	
rf	Random Forest Classifier	0.8875	0.8850	0.5858	0.9330	0.7197	0.6539	0.6816	
ada	Ada Boost Classifier	0.8745	0.8678	0.5527	0.8996	0.6847	0.6118	0.6402	
et	Extra Trees Classifier	0.8688	0.8618	0.5187	0.9103	0.6608	0.5869	0.6226	
lda	Linear Discriminant Analysis	0.8625	0.8318	0.4538	0.9748	0.6192	0.5486	0.6084	
ridge	Ridge Classifier	0.8615	0.0000	0.4462	0.9622	0.6136	0.5433	0.6062	
knn	K Neighbors Classifier	0.8305	0.7365	0.4592	0.7577	0.5718	0.4740	0.4971	
dt	Decision Tree Classifier	0.8236	0.7716		0.6348	0.6515	0.5335	0.5339	
qda	Quadratic Discriminant Analysis	0.8209	0.7486	0.5155	0.7500	0.5918	0.4823	0.5085	
Ir	Logistic Regression	0.7536	0.5865	0.0000	0.0000	0.0000	0.0000	0.0000	
dummy	Dummy Classifier	0.7536	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	
nb	Naive Bayes	0.7506	0.6150	0.0305	0.4197	0.0563	0.0240	0.0534	
svm	SVM - Linear Kernel	0.6013	0.0000	0.3010	0.1603	0.1232	0.0013	0.0006	
*	LGBI	MClassifie	r						
LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,									