

System and Parallel Programming Prof. Dr. Felix Wolf

PARALLEL PERFORMANCE (PART 1)

Outline

- Performance metrics
- Amdahl's law
- Law of Gustavson
- Asymptotic complexity
- Little's formula

Primary performance metrics

- Response time, execution time
 - Time between start and completion of an event or program

- Throughput
 - Total amount of work done in a given time
- Energy (to solution)

Performance = 1

Resources to solution

Peak performance

 Peak performance is the performance a computer is guaranteed not to exceed

Source: Hennessy, Patterson: Computer Architecture, 4th edition, Morgan Kaufmann

Actual performance on a computer limited by critical resource

Opteron X2

Source: S. Williams, A. Waterman, D. Patterson: Roofline: An Insightful Visual Performance Model for Multicore Architectures, Communications of the ACM, 52(4), 2009.

Speedup

 Improvement in execution time to be gained from using some faster mode of execution (e.g., parallel execution)

- Depends on two factors
 - Fraction f of the original execution that can benefit from the enhancement
 - Improvement gained through enhancement during that fraction

Amdahl's law

$$S = \frac{1}{(1 - f_{enhanced}) + \frac{f_{enhanced}}{S_{enhanced}}}$$

$$S < \frac{1}{(1 - f_{enhanced})}$$

Example

- Function foo() of a program takes 20 % of the overall time
- How is the speedup if the time needed for foo() can be halved?

$$S = \frac{1}{(1 - 0.2) + \frac{0.2}{2}} = \frac{10}{9}$$

 How is the speedup if the time needed for foo() can almost be eliminated?

$$S = \frac{1}{(1-0.2) + \frac{0.2}{2}} = \frac{10}{8}$$

Amdahl's law for parallelism

• Assumption – program can be parallelized on p processors except for a sequential fraction f_{seq} with $0 \le f_{seq} \le 1$

$$S = \frac{1}{(1 - f_{enhanced}) + \frac{f_{enhanced}}{S_{enhanced}}}$$

$$S = \frac{1}{(1 - (1 - f_{seq}) + \frac{1 - f_{seq}}{p})}$$

$$S < \frac{1}{f_{seq}}$$

Speedup limited by sequential fraction

Available parallelism

Amdahl's law

$$S = \frac{1}{f_{seq} + \frac{1 - f_{seq}}{p}}$$

Overall speedup of 80 on 100 processors

$$80 = \frac{1}{f_{seq} + \frac{1 - f_{seq}}{100}} \Rightarrow f_{seq} = 0.0025$$

Amdahl's law visualized

Parallel efficiency

$$E(p) = \frac{S(p)}{p}$$

- Metric for cost of parallelization (e.g., communication)
- Without super-linear speedup

$$E(p) \le 1$$

Super-linear speedup possible

Critical data structures may fit into the aggregate cache

Law of Gustafson

- Amdahl's Law ignores increasing problem size
 - Parallelism often applied to calculate bigger problems instead of calculating a given problem faster
- Fraction of sequential part may be function of problem size
- Assumption
 - Sequential part has constant runtime $\tau_{\rm f}$
 - Parallel part has runtime $\tau_{v}(n,p)$
- Speedup

$$S(n,p) = \frac{\tau_f + \tau_v(n,1)}{\tau_f + \tau_v(n,p)} \longrightarrow p$$

If parallel part can be perfectly parallelized

Law of Gustafson (2)

Scalability

Weak scaling

- Ability to solve a larger input problem by using more resources (here: processors)
- Problem size per processor remains constant
- Example: larger domain, more particles, higher resolution

Strong scaling

- Ability to solve the same input problem faster as more resources are used
- Usually more challenging
- Limited by Amdahl's law and communication demand

Asymptotic complexity

- Example: dot product of two vectors of length N ≥ P
 - Split vector into pieces of length N/P
 - Calculate subproducts in parallel
 - Calculate global sum in tree-like fashion
- Asymptotic complexity

$$T(N,P) = \Theta(N/P + \lg P)$$

$$\left(egin{array}{c} a_1 \ dots \ a_n \end{array}
ight) st \left(egin{array}{c} b_1 \ dots \ b_n \end{array}
ight)$$

Asymptotic complexity notation

- Big **O** notation denotes a set of functions with an upper bound. O(f(N)) = set of all functions g(N) such that there exists positive constants c, N_0 with $|g(N)| \le c^* |f(N)|$ for $N \ge N_0$.
- Big **Omega** notation denotes a set of functions with a lower bound. $\Omega(f(N)) = \text{set of all functions } g(N) \text{ such that there exists positive constants } c$, N_0 with $|g(N)| \ge c^* |f(N)|$ for $N \ge N_0$.
- Big **Teta** notation denotes a set of functions with both lower and upper bounds. $\theta(f(N)) = \text{set of all functions } g(N) \text{ such that there exists}$ positive constants c_1 , c_2 , N_0 with $c_1^* |f(N)| \le |g(N)| \le c_2^* |f(N)|$ for $N \ge N_0$.

Asymptotic speedup

Asymptotic speedup

$$\frac{T_1}{T_P} = \frac{\Theta(N)}{\Theta(N/P + \lg P)} = \Theta\left(\frac{N}{N/P + \lg P}\right)$$

Asymptotic efficiency

$$\frac{T_1}{P \cdot T_P} = \Theta\left(\frac{N}{N + P \lg P}\right)$$

Little's formula

Relates throughput and latency of a system to concurrency

$$C = R \cdot L$$

Applies to system in steady state

- Desired throughput rate is R items per unit time
- Latency to process each item is L
- Number of items concurrently in the system is C

Determines concurrency required to hide latency

Summary

- Amdahl's law applies to strong scaling
- Law of Gustavson takes weak scaling into account
- Asymptotic complexity is an effective instrument to reason about an algorithm's scalability
- Little's formula tells how to hide latency