Dynamic Optimization of Electric Arc Furnace Operation with State Estimation as a Decision Support Tool

Smriti Shyamal Yasser Ghobara Christopher L.E. Swartz

Deparment of Chemical Engineering McMaster University Hamilton ON L8S 4L7

64th Canadian Chemical Engineering Conference, 2014

Motivation

Objective: Develop a decision-support tool to determine economically optimal policies for EAF operation

Smriti Shyamal Dynamic Optimization Oct 20, 2014 2 / 16

Outline

- Electric Arc Furnace (EAF) Process
 - Dynamic Model of EAF
- Dynamic Optimization
 - Formulation and Solution Strategy
- Moving Horizon Estimation (MHE)
 - Formulation and Solution Strategy
- Results
- 6 Application
- 6 Conclusions and Future Work

Smriti Shyamal Dynamic Optimization Oct 20, 2014 3 / 16

Electric Arc Furnace (EAF) Modeling Paradigm

EAF Dynamic Model¹

- Chemical equilibrium within zones
- Reaction limited by mass transfer
- Mass and energy balances
- Equilibrium, diffusion and heat transfer relationships
- Parameter estimation using plant data

¹MacRosty, R. D. & Swartz, C. L. E. (2005). Ind.Eng.Chem.Res., 44, 8067-8083

EAF Dynamic Model¹

- Chemical equilibrium within zones
- Reaction limited by mass transfer
- Mass and energy balances
- Equilibrium, diffusion and heat transfer relationships
- Parameter estimation using plant data

- DAE system within gPROMS
- 30 differential and 1050 algebraic variables

¹MacRosty, R. D. & Swartz, C. L. E. (2005). Ind.Eng.Chem.Res., 44, 8067-8083

Dynamic Optimization Formulation and Solution

Find: Input trajectories that

Maximize: Selling price of steel \times $M_{steel} - \sum_{inputs}$ Cost price $\times \int_{t_0}^{t_f}$ Input

Subject to: DAE Model

Input, operational and product quality constraints

Smriti Shyamal Dynamic Optimization Oct 20, 2014 6 / 16

²Chong, Z. (2012). Ph.D. thesis, McMaster University

Dynamic Optimization Formulation and Solution

Find: Input trajectories that

Maximize: Selling price of steel \times $M_{steel} - \sum_{inputs}$ Cost price $\times \int_{t_0}^{t_f}$ Input

Subject to: DAE Model

Input, operational and product quality constraints

²Chong, Z. (2012). Ph.D. thesis, McMaster University

Smriti Shyamal Dynamic Optimization Oct 20, 2014

6 / 16

Moving Horizon Estimation (MHE)

s.t.
$$x_{k+1} = f_k(x_k, w_k), \quad x_k \in \mathbb{X}$$

 $\bar{y}_{k+l-N} = h_k(x_k) + v_k$

Continuous Time \rightarrow Simultaneous Collocation Approach

Smriti Shyamal Dynamic Optimization Oct 20, 2014 7 / 16

MHE Solution Strategy

- ullet Discretized DAE Model o Large Scale & Sparse NLP
- NLP solver: IPOPT with linear solver ma27
- No plant-model mismatch
- Challenge: Discontinuity due to 2 charges of scrap (0 & 25 min)

State variables	30
Measured state variables	13
Estimation Horizon (min)	10
Total Horizon (min)	60
Sample Time (min)	1

State Variable Profile (Solid Scrap Temperature)

State Variable Profile (Gas Zone Temperature)

10 / 16

Unresolved Issues

 Observability analysis: Solutions Satisfy Second Order Conditions then System Locally Observable³

- Use of actual measurements rather than measured states
- Estimator tuning
- Infrequent observation of certain measurements

³Zavala, V.M. & Biegler, L.T. (2009) Computers & Chemical Engineering 33.10 : 1735-1746.

Computational Result

Performance of NLP Solver in background

Average Solution Time: 23 sec

Application

Off-line

Dynamic optimization

- Initial conditions specified
- Constraints specified by user
- Selected inputs could be fixed

Dynamic Simulation

- All inputs fixed
- System trajectories computed
- Useful for what-if studies

Real Time

- Model runs in parallel with plant
- Dynamic optimization or simulation
- States/model parameters inferred using plant measurements

Conclusions

- EAF dynamic model successfully translated into AMPL, with minor simplifying assumptions
- Optimization completed
- MHE implemented with no plant-model mismatch

Future Work

- Moving horizon state estimation
 - Quantify the observability
 - MHE with parametric mismatch and measurement noise
 - Detailed performance evaluation
 - Fast MHE optimization solution using NLP sensitivity
 - Nonlinear Model Predictive Control (NMPC)
- Evaluation of decision support tool on simulated plant
 - Detailed model with perturbed parameters to serve as plant
 - Real-time system with state estimation applied under various scenarios of disturbances and model mismatch
 - Performance evaluated and compared against typical operating strategies
- Evaluation on industrial plant

Acknowledgements

McMaster Advanced Control Consortium

 McMaster Steel Research Center (SRC)

