

Content

- Descriptive Statistics
 - Numerical Methods
 - Measures of Central Tendency
 - Measures of Dispersion
 - Measures of Range
 - Measures of Shape
 - Graphical Methods

Descriptive Statistics

- Also known as preliminary analysis.
- · Describes the behavior of the variables.
- Variables can be described in two ways.
 - Graphical Methods
 - Numerical Methods
- Each method depends on the type of the variable

NUMERICAL METHODS

Numerical Methods

- Measures of Central Tendency
- Measures of Dispersion
- Measures of Skewness
- Measures of Kurtosis

MEASURES OF CENTRAL TENDENCY

Measures of Central Tendency

- Mean
- Median
- Mode

Other Location Measurements

- Percentiles
- Deciles
- Quartiles

Mean

• Mean of n elements $x_1, x_2, ... x_n$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Sample Mean - \bar{x} Population Mean - μ

Example

Example 1.2 (revisited):

Find the median "marks for FCS" of each student at SLIIT Metro.

78	74	82	66	91	71	64	88	55	80
51	74	82	75	16	78	84	79	71	83

Example 1.3 (revisited):

A load of aluminum sheets were purchased to construct a temporary shed. Twenty such sheets were examined for surface flaws. Find the median number of flaws in a sheet.

Number of flaws	Frequency		
0	4		
1	3		
2	5		
3	2		
4	4		
5	1		
6	1		

Mode

- Most frequent value
- There can be multiple modes in a data set.
- If all the data values are different, the data set has no mode.

Quartiles

Divides the entire set of values into 4 equal sections.

Position of
$$Q_1 = \frac{1}{4} \times (n+1)$$

Position of $Q_2 = \frac{2}{4} \times (n+1)$

Position of
$$Q_3 = \frac{3}{4} \times (n+1)$$

Q2 is also called as the median.

Deciles

Divides the entire set of values into 10 equal sections.

Position of
$$D_1 = \frac{1}{10} \times (n+1)$$

Position of $D_2 = \frac{2}{10} \times (n+1)$

Percentiles

Divides the entire set of values into 100 equal sections.

Position of
$$P_1 = \frac{1}{100} \times (n+1)$$

Position of $P_2 = \frac{2}{100} \times (n+1)$

Measures of Dispersion

- Standard Deviation
- Range
- Inter Quartile Range

Variance

- Describes how the data has dispersed around its mean.
- Not sensitive to outliers.(more robust for outliers).

Population Variance

$$\sigma^2 = \frac{\sum_{i=1}^N (x_i - \mu)^2}{N}$$

Variance

Sample Variance

$$s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

Standard Deviation

Square root of the variance.

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Standard Deviation

Range

Range = Maximum – Minimum

Inter Quartile Range (IQR)

• IQR = Q3 - Q1

Skewness

- Skewness is a measure of symmetry of a distribution.
 - Symmetric Distribution
 - Negatively Skewed Distribution
 - Positively Skewed Distribution

$$Skewness = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^3}{(n-1)s^3}$$

Skewness

Negatively Skewed Distributions

- The left tail is longer
- Mass of the distribution is concentrated on the right.
- The distribution is said to be left-skewed

Positively Skewed Distribution

- The right tail is longer.
- Mass of the distribution is concentrated on the left.
- The distribution is said to be right-skewed

Kurtosis

- It is a measure of the tallness or flatness ("peaked ness") of the distribution.
- It is a measure of whether the data are peaked or flat relative to a normal distribution.

$$Kurtosos = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^4}{(n-1)s^4}$$

GRAPHICAL METHODS

Graphical Methods

 Can be used to analyze both categorical and numerical variables.

 Type of the graph, depends on the type of the variable

Graphical Methods

Graphical Methods

BAR CHARTS

Bar Charts

- Bars can be drawn vertically or horizontally.
- Y axis can represent Frequency, cumulative frequency or percentages
- X axis represents the categorical variable.

Bar Charts

- Different Types of bar charts
 - Simple Bar Charts
 - Component Bar Charts/Stacked Bar Charts
 - Percentage Component Bar Charts
 - Multiple Bar Charts

Examples

Stacked Bar Chart

Percentage Component Bar Chart

Simple Bar Chart

PIE CHARTS

Pie Charts

- Use to analyze one categorical variable
- Area of each sector is proportional to the value of the category
- Appropriate, when there are few number of categories or when value of each category is varying widely

Example

HISTOGRAMS

Histograms

- Divide the given data set into suitable number of classes (intervals/categories) which have the same width.
- Frequency, relative frequency or percentages can be used for the y axis while x axis will represent the classes of the variable.
- Classes with their frequencies (counts) is called a frequency distribution.
- Bar represents a class and length of the bar is proportional to the frequency of respective class.
- Bars are adjacent to each other (No gaps between two bars)

Example

Draw the histogram for the following data set.

78	74	82	66	91	71	64	88	55	80
51	74	82	75	16	78	84	79	71	83

$$Range = Maximum - Minimum = 91 - 16 = 75$$

$$Class\ Width = \frac{Range}{Number\ of\ classes}$$

Classes can be selected by fixing the class width also

Histogram Example

Class	Frequency
14.5 – 24.5	1
24.5 – 34.5	0
34.5 – 44.5	0
44.5 – 54.5	1
54.5 - 64.5	2
64.5 – 74.5	5
74.5 - 84.5	9
84.5 - 94.5	2

Box Plot

- Five Number Summary is used to draw a box plot.
- Five Number Summary includes:
 - Minimum
 - Q1 (First Quartile)
 - Q2 (Second Quartile)
 - Q3 (Third Quartile)
 - Maximum

Example

Draw the boxplot for the following data

set.

78	74	82	66	91	71	64	88	55	80
51	74	82	75	16	78	84	79	71	83

$$Q_1 = ?$$
 $Q_2 = ?$
 $Q_3 = ?$

Outliers

• Outliers are the data points (x_i) satisfy the following.

$$-x_i > Q_3 + 1.5 \times IQR$$

$$-x_i < Q_1 - 1.5 \times IQR$$

Box Plot

STEM AND LEAF PLOT

Stem and Leaf Plot

- Useful when the data set is very small.
- First the data set is sorted in ascending order.
- Then, each data value is split into two parts known as stem and leaf.
- The "leaf" is usually the last digit of the number.
- The other digits to the left of the "leaf" form the "stem".

Stem	Leaves		
1	6		
2			
3			
4			
5	1 5		
6	4 6		
7	11445889		
8	022348		
9	1		
Key: 1 6 → 16			

Stem and Leaf Plot

Thank You

Questions?