

Органическая химия

Часть 2. Задачи

Содержание

1.	Задачи
	1.1. Алканы
	1.2. Алкены
	1.3. Алкины и диены
	1.4. Ароматические углеводороды (арены)
	1.5. Спирты, простые эфиры, тиолы и тиоэфиры
	1.6. Карбонильные соединения
	1.7. Кислоты, производные кислот
	1.8. Амины, нитро и диазо соединения
2.	Решения
	2.1. Алканы
	2.2. Алкены
	2.3. Алкины и диены
	2.4. Ароматические углеводороды (арены)
	2.5. Спирты, простые эфиры, тиолы и тиоэфиры
	2.6. Карбонильные соединения
	2.7. Кислоты, производные кислот
	2.8. Амины, нитро и диазо соединения
	2.8. Амины, нитро и диазо соединения

Раздел 1. Задачи

1.1 Алканы

1. Дополните схемы реакций

$$+ Br_2 = X$$

$$+ Nacn = X$$

$$X + AgNO_2 = O_2N$$

$$X + Nash = Hs$$

$$X + Y = AgNO_2 + LiBr$$

2. Исходя из бутанола-2, ацетилена и любых других веществ получите 3-метилпентин-1, структура которого приведена ниже.

3. Изобразите структуры всех неизвестных соединений.

$$A \xrightarrow{\text{NaC}_2H} E \xrightarrow{\text{NaNH}_2} F \xrightarrow{\text{MeI}} G$$

1.2 Алкены

1. Дополните схемы.

2. Какой продукт образуется в результате приведенной ниже реакции? Приведите механизм его образования.

3. Изобразите структурную формулу продукта X.

4. Какой продукт образуется в результате реакции.

5. Укажите структуру веществ

1.3 Алкины и диены

1.4 Ароматические углеводороды (арены)

1. Предложите механизмы следующих реакций:

1)
$$CI \xrightarrow{AlCI_3}$$
 PhH

2) $OMe \xrightarrow{O}$ OMe

1.5 Спирты, простые эфиры, тиолы и тиоэфиры

1. Какой продукт по какой причине образуется в результате реакции?

- 2. 1
- 3. 1

1.6 Карбонильные соединения

1. Исходя из фталевого ангидрида, N, N-диметилэтаноламинового эфира гидроксиламина (смотри задачу 7 раздела «амины, нитро и диазо соединения») и любых других веществ предложите метод синтеза ноксиптилина (noxiptiline) — одного из самых эффективных антидепрессантов. Его структура приведена ниже

2. Предложите такой метод синтеза фенилглиоксаля (А) из бензойной кислоты и любых других реагентов, при котором в качестве дополнтельных реагентов использовались бы третбутанол и 1,3-дитиан.

- 3. Предложите метод синтеза 1,1,2-тридейтероциклопентана из адипиновой кислоты.
- 4. 1

1.7 Кислоты, производные кислот

1. Предложите специфичный (наличие лишь одного продукта) метод синтеза этилового эфира 4-оксобутановой кислоты (A) и метилэтилсукцината (B), исходя из янтарной кислоты.

2. Расшифруйте цепочку синтеза гувацина – алкалоида ореха вида Агеса.

- 3. 1
- 4. 1

1.8 Амины, нитро и диазо соединения

1. Изобразите продукт реакции.

2. Какое вещество образуется в результате производимых реакций.

3. Предложите метод синтеза соединений А-F из соединения X.

$$O_2N$$
 O_2
 O_2H
 O_2
 O_3
 O_4
 O_4
 O_5
 O_7
 O_8
 $O_$

4. Укажите структурную формулу обезболивающего препарата новокаина (F), а также промежуточных соединений А-Е.

5. Расшифруйте цепочку синтеза гормона адреналина (в виде смеси двух энантиомеров).

6. Изобразите все неизвестные соединения, с учётом стереохимии.

7. Предложите 2 метода получения (один по линейной, другой конвергентной (разветвленной) схеме) N, N-диметилэтаноламинового эфира гидроксиламина (A) исходя из гидроксиламина, диметиламина и любых других реагентов. В каком из предложенных методов достигается больший выход?

$$Me_2N$$
 O
 NH_2

Раздел 2. Решения

1.1 Алканы

1.

2.

$$\begin{array}{c|c} & & & \\ \hline & & & \\ \hline & & \\ C_2H_2 & & \\ \hline & & \\ NaC_2H \end{array}$$

1.2 Алкены

1.

Ph	
	OMe 82Br
	OH

3. На первой стадии происходит протонирование гидроксильной группы. Образующийся затем карбокатион перегруппировывается, в результате миграции метильной группы, из вторичного в более стабильный третичный. Элиминирование протона приводит к продукту, показанному ниже.

4.

1.3 Алкины и диены

1.

1.4 Ароматические углеводороды (арены)

1. Каждая из реакций протекает по S_EAr.

1.5 Спирты, простые эфиры, тиолы и тиоэфиры

1. Указанный ниже продукт образуется в результате перегруппировке вторичного карбокатиона в бензильный, который вследствие эффекта сопряжения стабильнее третичного карбокатиона.

- 2. 1
- 3. 1
- 4. 1

1.6 Карбонильные соединения

1. На последней стадии используется разновидность ацилирования. Реакция идет под действием полифосфорной кислоты при нагревании.

2. Третбутанол используется для уменьшения восстановительных свойств алюмогидрида лития, дитиол — для получения производного дитиана.

2) t

4. 1

HO₂C

5.

1.7 Кислоты, производные кислот

<u>1) TsN2Ha</u>

2) BuLi

1. Специфичное образование продукта достигается использованием не самой кислоты, а её ангидрида.

$$O_2$$
C O_2 H O_2 C O_2 H O_3 C O_2 H O_4 C O_2 H O_4 C O_2 H O_5 C O_2 Et O_5 C O_2 Et O_5 C O_2 Et O_5 C O_2 Et O_5 C O_5

2.

- 3. 11
- 4. 1
- 5. 1
- 6. 1
- 7. 1

1.8 Амины, нитро и диазо соединения

3. Ниже приведены схемы получения веществ A-F из исходного вещества X (если придуманный вами способ отличается от указанного ниже, правильность или ошибочность вашего решения может оценить ваш преподаватель химии)

5.

6.

7. При реакции гидроксиламина с фталевым ангидридом, специфично образуется N-гидроксифталимид (поскольку амидная связь прочнее сложноэфирной), свойства которого подобны свойствам самого фталимида. Прямое алкилирование гидроксиламина приводит к смесям N и O производных. Больший выход достигается по нижней стрелке, так как он предполагает конвергентный подход, выходы при котором больше выходов линейного подхода.