1 Лабораторная работа №1

1.1 Вероятностное пространство, формула Байеса

- 1. Определить (с обоснованием), зависимы или независимы следующие события:
 - (а) Несовместные события;
 - (b) События, образующие σ -алгебру Σ в пространстве $(\Omega, \Sigma, \mathbb{P})$;
 - (с) События, имеющие одинаковую вероятность?
- 2. Опыт заключается в независимом подбрасывании двух симметричных монет. Рассматриваются следующие события:
 - A появление герба на первой монете;
 - B появление решки на первой монете;
 - \bullet C появление герба на второй монете;
 - D появление решки на второй монете;
 - E появление хотя бы одного герба;
 - F появление хотя бы одной решки;
 - \bullet G появление одного герба и одной решки;
 - *H* непоявление ни одного герба;
 - $\bullet \ K$ появление двух гербов.

Определить, каким событиям этого списка равносильны следующие события:

- (a) A + C = ?
- (b) AC = ?
- (c) EF = ?
- (d) G + E = ?
- (e) GE = ?
- (f) BD = ?
- (g) E + K = ?

- 3. Производится выстрел по вращающейся круговой мишени, в которой закрашены два непересекающихся сектора с углом 20°. Какова вероятность попадания в закрашенную область?
- 4. Два парохода должны подойти к одному и тому же причалу независимо друг от друга и равновозможно в течение суток. Определить вероятность того, что одному из них придется ожидать освобождения причала, если время стоянки первого парохода 1 час, а второго 2 часа.
- 5. Самолет, по которому ведется стрельба, состоит из трех различных по уязвимости частей:
 - (а) Кабина летчика и двигатель
 - (b) Топливные баки
 - (с) Планер

Для поражения самолета достаточно либо одного попадания в первую часть, либо двух попаданий во вторую, либо трех в третью. При попадании в самолет одного снаряда, снаряд с вероятностью p_1 попадает в первую часть, с вероятностью p_2 — во вторую, с вероятностью p_3 — в третью. Попавшие снаряды распределяются по частям независимо друг от друга.

Известно, что в самолет попало m снарядов. Найти условную вероятность $\mathbb{P}(A|m)$ события A – «Самолет поражен» – при m=1,2,3,4.

1.2 Случайный вектор и числовые характеристи-ки

1. Пусть

$$f_{\xi}(x,y) = \frac{e^{-2|y|}}{\pi(1+x^2)}$$

Является ли данная функция плотностью распределения случайного вектора?

2. Совместное распределение случайных величин ξ и η задано следующей таблицей

2

(a) Найти маргинальные распределения ξ и η

- (b) Вычислить математическое ожидание, ковариационную и корреляционную матрицы вектора (ξ, η)
- (c) Исследовать ξ и η на независимость и некоррелированность
- 3. Пусть имеются два одинаковых тетраэдра с числами 1, 2, 3, 4 на гранях. Подкидываем оба и смотрим на выпавшие числа ξ_1 и ξ_2 . Зададим следующие случайные величины:

$$\phi_1 = \xi_1 + \xi_2$$
 $\phi_2 = \begin{cases} 1, & (\xi_1 : \xi_2) \cup (\xi_2 : \xi_1) \\ 0, & else \end{cases}$

- (a) Составить таблицу совместного распределения ξ и η
- (b) Найти маргинальные распределения ξ и η
- (c) Вычислить математическое ожидание, ковариационную и корреляционную матрицы вектора (ξ, η)
- (d) Исследовать ξ и η на независимость и некоррелированность
- 4. Пусть $\xi \sim U_{-\pi,\pi}$ и $\eta_1 = \cos \xi$, $\eta_2 = \sin \xi$.
 - (a) Вычислить математическое ожидание, ковариационную и корреляционную матрицы вектора (ξ, η)
 - (b) Исследовать ξ и η на независимость и некоррелированность
- 5. Найти плотность распределения суммы двух независимых случайных величин ξ и η , если $\xi \sim \operatorname{Exp}_2$ и $\eta \sim U_{0.1}$.