Lösungsvorschläge zu Aufgabenblatt 10

(Restklassengruppen mit Multiplikation)

Aufgabe 10.1

Zeigen Sie die folgende Variante das Satzes von Bézout:

Seien $a, b \in \mathbb{N}$. Dann gibt es $s \in \mathbb{N}$ und $t \in \mathbb{Z}$ mit

$$ggT(a,b) = s \cdot a + t \cdot b.$$

Lösung

Nach dem Satz von Bézout finden wir zunächst $s', t' \in \mathbb{Z}$ mit

$$ggT(a,b) = s' \cdot a + t' \cdot b.$$

Ist s' > 0, so ist nichts mehr zu tun. Ist $s' \le 0$, so wähle ein $k \in \mathbb{Z}$ mit $s := s' + k \cdot b > 0$ (dies ist möglich, da $b \ne 0$). Setze $t := t' - k \cdot a$. Dann folgt:

$$s \cdot a + t \cdot b = (s' + kb) \cdot a + (t' - ka) \cdot b = s'a + kba + t'b - kab = s'a + t'b = ggT(a, b).$$

Aufgabe 10.2

Aufgrund der vielen Studenten soll die Nordakademie in Elmshorn an die U-Bahn angeschlossen werden. Zwei Linien, die U_{15} und die U_{21} fahren im 15- bzw. 21-Minuten Takt. Leider hat der Bahnhof nur einen Bahnsteig, so dass in einer Minute immer nur ein Zug in Elmshorn halten kann.

- (a) Ist es möglich, einen Fahrplan zu erstellen so, dass die angegebene Taktung (unfallfrei) eingehalten werden kann?
- (b) Wie verhält es sich mit den Linien U_{15} und U_{22} , wenn die Linie U_{22} im 22-Minuten Takt fährt?

Lösung

Zur Modellierung: Wir bezeichnen die Zeitdifferenz, um die Linie U_{15} nach der Linie U_{21} (bzw. U_{21} im Fall (b)) startet, mit $d \in \mathbb{N}$. Wir nehmen also an, dass der erste Zug der Linie U_{2x} ($x \in \{1,2\}$) zum Zeitpunkt 0 startet und der erste Zug der Linie U_{15} zum Zeitpunkt d Minuten später. Dass sich zwei Züge der Linie U_{15} und U_{2x} ($x \in \{1,2\}$) treffen ist dann äquivalent dazu, dass es $a, b \in \mathbb{N}_0$ gibt mit

$$2x \cdot a = 15 \cdot b + d.$$

(a) In dieser Situation ist es möglich, einen Fahrplan zu erstellen so, dass die angegebene Taktung (unfallfrei) eingehalten werden kann. Hintergrund ist die Tatsache, dass $ggT(15,21)=3\neq 1$ ist. Es reicht, d so zu wählen, dass d nicht von 3 geteilt wird, etwa d=1. Es gibt keine Zahlen $a,b\in\mathbb{N}$ mit

$$21 \cdot a = 15 \cdot b + 1,$$

denn dann wäre $3|(21 \cdot a - 15 \cdot b) = 1$, was ein Widerspruch ist.¹

(b) In dieser Situation ist es nicht möglich, einen Fahrplan zu erstellen so, dass die angegebene Taktung (unfallfrei) eingehalten werden kann. In diesem Fall ist nämlich ggT(15,22)=1, wir finden nach dem Satz von Bézout in der Fassung von Aufgabe 10.1 Zahlen $s,t\in\mathbb{N}$ mit $22\cdot s-15\cdot t=1$ (konkret findet man mit dem erweiterten euklidischen Algorithmus und Aufgabe 10.1 z.B. s=13 und t=19). Folglich gilt für jedes $d\in\mathbb{N}_0$

$$22 \cdot (d \cdot s) = 15 \cdot (t \cdot d) + d$$

so dass es eine Kollision des $(d \cdot s)$ -ten Zugs der Linie 22 mit dem $(d \cdot t)$ -ten Zug der Linie 15 gibt.

Aufgabe 10.3

Welche der folgenden Gleichungen sind lösbar? Geben Sie gegebenenfalls alle Lösungen an.

- (a) $[140]_{555} \cdot x = [100]_{555}$,
- (b) $[210]_{1100} \cdot x = [147]_{1100}$,
- (c) $[21]_{80} \cdot x = [6]_{80}$,
- (d) $[207]_{5814} \cdot x = [45]_{5814}$.

Lösung

(a) Hier ist $m = 555 = 3 \cdot 5 \cdot 37$ und $a = 140 = 2^2 \cdot 5 \cdot 7$, also g := ggT(m, a) = 5. Es ist g = 5 ein Teiler von b = 100, also ist die Gleichung lösbar. Wegen g = 5 gibt es insgesamt 5 Lösungen.

Bestimmen einer Lösung: Setze $n:=\frac{b}{g}=\frac{100}{5}=20$. Mit dem erweiteren euklidischen Algorithmus erhält man

$$5 = (-1) \cdot 555 + 4 \cdot 140,$$

also t = 4 und damit die Lösung $x_0 := [n \cdot t]_{555} = [20 \cdot 4]_{555} = [80]_{555}$.

Bestimmen aller Lösungen: Man erhält die anderen 4 Lösungen durch sukzessives Addieren von $q:=\frac{m}{g}=\frac{555}{5}=111$:

$$x_1 = [191]_{555}, \quad x_2 = [302]_{555}, \quad x_3 = [413]_{555}, \quad x_4 = [524]_{555}.$$

- (b) Hier ist $m=1100=2^2\cdot 5^2\cdot 11$ und $a=210=2\cdot 3\cdot 5\cdot 7$, also $g:=\operatorname{ggT}(m,a)=10$. Es ist g=10 keine Teiler von b=147, also besitzt diese Gleichung keine Lösung.
- (c) Hier ist $m=80=2^4\cdot 5$ und $a=21=3\cdot 7$, also ${\rm ggT}(m,a)=1$ und somit die Gleichung eindeutig lösbar. Die Lösung ist

$$x = [21]_{80}^{-1} \otimes [6]_{80} = [-19]_{80} \otimes [6]_{80} = [-114]_{80} = [46]_{80}.$$

 $^{^{-1}}$ Alternativ kann man die gegebene Gleichung umschreiben zu einer Gleichung in \mathbb{Z}_{15} , indem man auf beiden Seiten mod 15 rechnet, die Gleichung lautet dann $[6]_{15} \cdot x = [1]_{15}$, und diese Gleichung besitzt nach Vorlesung keine Lösung, da ggT(15,6) = 3 kein Teiler von 1 ist.

(d) Die Gleichung besitzt die Lösungen $x = [c]_{5814}$ mit

$$c \in \{253, 899, 1545, 2191, 2837, 3483, 4129, 4775, 5421\}.$$

Aufgabe 10.4

Beweisen Sie die fehlende Richtung vom Satz "Gesamtheit Lösungen Restklassengleichung" (Folie 191):

Sei $m \in \mathbb{N}$ ein fester Modulus, und seien $a, b \in \mathbb{Z}$ mit $g := \operatorname{ggT}(a, m)|b$. Es sei $x_0 = [c]_m$ eine Lösung der Gleichung

$$[a]_m \otimes x = [b]_m.$$

Dann ist jede Lösung von der Gestalt

$$x_j = [c + j \cdot q]_m$$

$$f\ddot{u}r\ ein\ j\in\{0,\ldots,g-1\}\ mit\ q:=\frac{m}{q}.$$

Lösung

Es sei $y = [d]_m$ eine Lösung der Gleichung, also gilt

$$[a \cdot d]_m = [b]_m$$
 und $[a \cdot c]_m = [b]_m$.

Subtrahieren dieser Identitäten liefert $a \cdot (d-c) \equiv_m 0$, also gibt es ein $k \in \mathbb{Z}$ mit $a \cdot (d-c) = k \cdot m$. Setze $p := \frac{a}{q}$, dann folgt

$$p \cdot g \cdot (d - c) = k \cdot q \cdot g$$
, also $p \cdot (d - c) = k \cdot q$,

das heißt, $q|p\cdot(d-c)$. Nach Konstruktion sind p und q teilerfremd (denn $g=\operatorname{ggT}(p\cdot g,q\cdot g)$), also folgt q|(d-c), es gibt also ein $\ell\in\mathbb{Z}$ mit $d-c=\ell\cdot q$, also $d=c+\ell\cdot q$. Setze schließlich $j:=\ell$ mod g, dann gilt $\ell=j+s\cdot g$, also

$$d = c + \ell \cdot q = c + j \cdot q + s \cdot q \cdot q = (c + j \cdot q) + s \cdot m \equiv_m c + j \cdot q,$$

also

$$y = [d]_m = [c + \ell \cdot q]_m = [c + j \cdot q]_m = x_j.$$

Aufgabe 10.5

Erstellen Sie ein Programm, das zu einer gegebenen modulo-Gleichung alle Lösungen ausgibt.