Correcta

Puntúa 1,00 sobre 1,00 Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz dependiente del parámetro real a definida por

$$\begin{bmatrix} 4 & 1 & a \\ 0 & (a-3)^2 & 1 \\ 0 & 0 & (a-5)^2 \end{bmatrix}.$$

Existe una matriz inversible $P \in \mathbb{R}^{3 \times 3}$ tal que

$$P^{-1}AP = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

si, y solo si,

Seleccione una:

- o a. $a \in \{1, 7\}$.
- O b. $a \notin \{1, 3, 4, 5, 7\}$.
- \bigcirc c. a = 4.
- O d. $a \in \{3, 5\}$.

Respuesta correcta

La respuesta correcta es: a = 4.

Correcta

Puntúa 1,00 sobre 1,00

Una matriz $A \in \mathbb{R}^{3 \times 2}$ tal que $\max_{\|x\|=1} \|Ax\| = 25\sqrt{2}$, $\min_{\|x\|=1} \|Ax\| = 15$ y $\begin{bmatrix} -1 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 0 & 0 \end{bmatrix}$ puede ser

Seleccione una:

O b.
$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}$$
.

$$\bullet \quad \mathbf{c.} \ A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -4 & 3 \\ 3 & 4 \end{bmatrix}. \checkmark$$

O d.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} -3 & 4 \\ -4 & -3 \end{bmatrix}$$
.

Respuesta correcta

La respuesta correcta es:
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -4 & 3 \\ 3 & 4 \end{bmatrix}.$$

Pregunta **4**

Correcta

Puntúa 1.00

La seudoinversa de Moore - Penrose de la matriz

$$\begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & 2 \\ 2 & -2 & 1 \end{bmatrix}$$

sobre 1,00

es

Seleccione una:

O b.
$$\frac{1}{1800} \begin{bmatrix} 19 & -8 \\ 14 & 2 \\ -10 & 20 \end{bmatrix}$$
.

$$\begin{array}{ccc} & \text{c.} \ \frac{1}{900} \begin{bmatrix} 19 & -8 \\ 14 & 2 \\ -10 & 20 \end{bmatrix}. \end{array}$$

o d.
$$\frac{1}{450} \begin{bmatrix} 19 & -8 \\ 14 & 2 \\ -10 & 20 \end{bmatrix}$$
.

Respuesta correcta

La respuesta correcta es: $\frac{1}{450}\begin{bmatrix} 19 & -8\\ 14 & 2\\ -10 & 20 \end{bmatrix}$.

Correcta

Puntúa 1,00 sobre 1,00

Sea $(\mathbb{V}, \langle \cdot, \cdot, \rangle)$ un \mathbb{R} -espacio euclídeo de dimensión 3 y sea

$$G_B = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

la matriz del producto interno $\langle \cdot, \cdot \rangle$ respecto de la base $B = \{v_1, v_2, v_3\}$. La proyección ortogonal del vector $4v_1 + v_2 + 5v_3$ sobre el subespacio gen $\{v_1 + v_2, v_3\}$ es

Seleccione una:

- o a. $\frac{18}{7}(v_1+v_2)+5v_3$.
- o b. $\frac{17}{7}(v_1+v_2)+5v_3$.
- o. $\frac{16}{7}(v_1+v_2)+5v_3$.
- o d. $\frac{19}{7}(v_1+v_2)+5v_3$.

Respuesta correcta

La respuesta correcta es: $\frac{19}{7}(v_1+v_2)+5v_3$.

Pregunta **6**

Correcta

Puntúa 1,00 sobre 1,00

Sea
$$A = \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$
. Si $a \in \{-1, 1\}$, entonces

Seleccione una:

- a. algunas soluciones no nulas del sistema Y'=AY satisfacen que $\lim_{t\to +\infty}\|Y(t)\|=0$ y otras satisfacen que $\lim_{t\to +\infty}\|Y(t)\|=+\infty$.
- \bigcirc b. todas las soluciones no nulas del sistema Y'=AY satisfacen que $\lim_{t\to +\infty}\|Y(t)\|=+\infty$.
- o c. algunas soluciones no nulas del sistema Y'=AY satisfacen que $\lim_{t\to +\infty}\|Y(t)\|=+\infty$ y otras satisfacen que Y(t)=Y(0) para todo $t\in\mathbb{R}$.

Respuesta correcta

La respuesta correcta es: algunas soluciones no nulas del sistema Y'=AY satisfacen que $\lim_{t\to +\infty}\|Y(t)\|=+\infty$ y otras satisfacen que Y(t)=Y(0) para todo $t\in\mathbb{R}$.

Pregunta **7**

Correcta

Puntúa 1,00 sobre 1,00 Sea Y(t) la solución del sistema de ecuaciones diferenciales

$$\begin{cases} y_1' = -y_1 + 2y_2 \\ y_2' = 2y_1 + 2y_3 \\ y_3' = 2y_2 + y_3 \end{cases}$$

tal que
$$Y(0) = \begin{bmatrix} 2 & 4 & -5 \end{bmatrix}^T$$
. Vale que

Seleccione una:

$$lacksquare$$
 a. $\lim_{t o \infty} Y(t) = \begin{bmatrix} 4 & 2 & -4 \end{bmatrix}^T$.

O b.
$$\lim_{t\to\infty}Y(t)=\begin{bmatrix}-4 & -2 & 4\end{bmatrix}^T$$
.

$$\bigcirc \quad \text{d. } \lim_{t \to \infty} Y(t) = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix}^T.$$

Respuesta correcta

La respuesta correcta es: $\lim_{t \to \infty} Y(t) = \begin{bmatrix} 4 & 2 & -4 \end{bmatrix}^T$.

Correcta

Puntúa 1,00 sobre 1,00

Sean \mathbb{S}_1 y \mathbb{S}_2 los subespacios de \mathbb{R}^3 definidos por $\mathbb{S}_1 = \left\{ \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T \in \mathbb{R}^3 : x_3 = 0 \right\}$ y $\mathbb{S}_2 = \operatorname{gen} \left\{ \begin{bmatrix} 1 & 1 \end{bmatrix}^T \right\}$ y sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por:

$$T\left(\begin{bmatrix}1 & 1 & 0\end{bmatrix}^T\right) = \begin{bmatrix}-1 & -1 & 0\end{bmatrix}^T,$$

$$T\left(\begin{bmatrix}1 & 0 & -1\end{bmatrix}^T\right) = \begin{bmatrix}-3 & -2 & -1\end{bmatrix}^T$$

$$T\left(\begin{bmatrix}1 & 0 & 1\end{bmatrix}^T\right) = \begin{bmatrix}1 & 2 & 1\end{bmatrix}^T.$$

Entonces

Seleccione una:

- \bigcirc a. T es la proyección de \mathbb{R}^3 sobre \mathbb{S}_2 en la dirección de \mathbb{S}_1 .
- O b. T es la proyección de \mathbb{R}^3 sobre \mathbb{S}_1 en la dirección de \mathbb{S}_2 .
- \bigcirc c. T es la simetría de \mathbb{R}^3 con respecto \mathbb{S}_1 en la dirección de \mathbb{S}_2 .
- o d. T es la simetría de \mathbb{R}^3 con respecto \mathbb{S}_2 en la dirección de \mathbb{S}_1 .

Respuesta correcta

La respuesta correcta es: T es la simetría de \mathbb{R}^3 con respecto \mathbb{S}_2 en la dirección de \mathbb{S}_1 .

Pregunta **9**

Correcta

Puntúa 1,00 sobre 1,00 Sea $A \in \mathbb{R}^{3\times 3}$ la matriz simétrica tal que $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T \in \operatorname{nul}(A-2I)$, $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T \in \operatorname{nul}(A-I)$ y $\det(A) = -4$. Los puntos x_m de la superficie de ecuación $x^TAx = 4$ cuya distancia al origen es mínima son aquellos que satisfacen que

Seleccione una:

$$lacksquare$$
 a. $x_m \in \operatorname{gen}\left\{\left[\frac{1}{\sqrt{2}} \quad 0 \quad \frac{1}{\sqrt{2}}\right]\right\} \text{ y } \|x_m\|^2 = 2.$

o b.
$$x_m \in \text{gen} \left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \right\} \text{ y } ||x_m||^2 = 1.$$

o c.
$$x_m \in \text{gen} \left\{ \begin{bmatrix} \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \right\} \ y \ \|x_m\|^2 = 2.$$

O d.
$$x_m \in \operatorname{gen}\left\{ \begin{bmatrix} \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \right\} \mathbf{y} \|x_m\|^2 = 1.$$

Respuesta correcta

La respuesta correcta es:
$$x_m \in \text{gen}\left\{\left[\frac{1}{\sqrt{2}} \quad 0 \quad \frac{1}{\sqrt{2}}\right]\right\} \text{ y } \|x_m\|^2 = 2.$$

Correcta

Puntúa 1,00 sobre 1,00

Sean

$$A = \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 2/3 & 2/3 & 1/3 \end{bmatrix} - \begin{bmatrix} -1/3 \\ 2/3 \\ -2/3 \end{bmatrix} \begin{bmatrix} -1/3 & 2/3 & -2/3 \end{bmatrix} + \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix} \begin{bmatrix} -2/3 & 1/3 & 2/3 \end{bmatrix}$$

y $Q: \mathbb{R}^3 \to \mathbb{R}$ la forma cuadrática definida por $Q(x) = x^T A x$. Entonces $Q(x) = \|x\|^2$ si, y solo si,

Seleccione una:

$$\bullet \quad \mathbf{a.} \ x \in \operatorname{gen} \left\{ \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix} \right\}. \quad \checkmark$$

o b.
$$x \in \text{gen} \left\{ \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, \begin{bmatrix} -1/3 \\ 2/3 \\ -2/3 \end{bmatrix} \right\}.$$

O d.
$$x \in \text{gen} \left\{ \begin{bmatrix} -1/3 \\ 2/3 \\ -2/3 \end{bmatrix} \right\}$$
.

Respuesta correcta

La respuesta correcta es:
$$x \in \text{gen} \left\{ \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix} \right\}$$
.

Información

Cliquee "Terminar intento..." y en la próxima página "Enviar todo y terminar"

■ Avisos

Ir a...

Entrega **d**e las evaluaciones (Álvarez Juliá, Mesa 3) ▶