

BSM307 İşaretler ve Sistemler

Dr. Seçkin Arı

Sürekli Zaman Fourier Dönüşümü

İçerik

- Fourier Dönüşümü
- Ters Fourier Dönüşümü
- Fourier Dönüşüm Özellikleri
 - ◆ Doğrusallık
 - ♦ Zamanda
 - Öteleme
 - Ters çevirme
 - Türev ve İntegral
 - ◆ Zamanda ve Frekansta Ölçekleme
 - ♦ Frekansta Türev
 - ♦ Çift Taraflılık
 - ♦ Konvolüsyon
 - ◆ Çarpma

- Sürekli Zaman Periyodik Olmayan İşaretler
 - ♦ Frekans spektrumu

- $X(z) = \sum_{n=-\infty}^{\infty}$
- $X(\omega) =$

- Sürekli Zaman Periyodik Olmayan İşaretler
 - ♦ Frekans spektrumu

- $X(z) = \sum_{n=-\infty}^{\infty}$
- $X(\omega) = \int_{-\infty}^{\infty}$

- Sürekli Zaman Periyodik Olmayan İşaretler
 - ♦ Frekans spektrumu

- $X(z) = \sum_{n=-\infty}^{\infty} x(n)$
- $X(\omega) = \int_{-\infty}^{\infty}$

- Sürekli Zaman Periyodik Olmayan İşaretler
 - ♦ Frekans spektrumu

- $X(z) = \sum_{n=-\infty}^{\infty} x(n)$
- $X(\omega) = \int_{-\infty}^{\infty} x(t)$

- Sürekli Zaman Periyodik Olmayan İşaretler
 - ♦ Frekans spektrumu

- $X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$
- $X(\omega) = \int_{-\infty}^{\infty} x(t)$

- Sürekli Zaman Periyodik Olmayan İşaretler
 - ♦ Frekans spektrumu

- $X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$
- $X(\omega) = \int_{-\infty}^{\infty} x(t) \left(\frac{e^{j\omega}}{e^{j\omega}}\right)^{-t} dt =$

- Sürekli Zaman Periyodik Olmayan İşaretler
 - ♦ Frekans spektrumu

- $X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$
- $X(\omega) = \int_{-\infty}^{\infty} x(t) \left(e^{j\omega}\right)^{-t} dt = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$

• $x(t) = e^{-at}u(t)$ ise $X(\omega) = ?$

- $x(t) = e^{-at}u(t)$ ise $X(\omega) = ?$
- $X(\omega) = \int_0^\infty e^{-at} e^{-j\omega t} dt$

- $x(t) = e^{-at}u(t)$ ise $X(\omega) = ?$
- $X(\omega) = \int_0^\infty e^{-at} e^{-j\omega t} dt$
- $X(\omega) = \int_0^\infty e^{-(a+j\omega)t} dt$
- $X(\omega) =$

- $x(t) = e^{-at}u(t)$ ise $X(\omega) = ?$
- $X(\omega) = \int_0^\infty e^{-at} e^{-j\omega t} dt$
- $X(\omega) = \int_0^\infty e^{-(a+j\omega)t} dt$
- $X(\omega) = -\frac{1}{a+j\omega} e^{-(a+j\omega)t} \Big|_{0}^{\infty}$
- $X(\omega) =$

•
$$x(t) = e^{-at}u(t)$$
 ise $X(\omega) = ?$

•
$$X(\omega) = \int_0^\infty e^{-at} e^{-j\omega t} dt$$

•
$$X(\omega) = \int_0^\infty e^{-(a+j\omega)t} dt$$

•
$$X(\omega) = -\frac{1}{a+j\omega} e^{-(a+j\omega)t} \Big|_{0}^{\infty}$$

•
$$X(\omega) = -\frac{1}{a+j\omega}(0-1) = \frac{1}{a+j\omega} \frac{\widehat{3}}{\widehat{3}}$$

• $x(t) = e^{-a|t|}$ ise $X(\omega) = ?$

•
$$x(t) = e^{-a|t|}$$
 ise $X(\omega) = ?$

•
$$x(t) = \begin{cases} \Box, & t \ge 0 \\ \Box, & t < 0 \end{cases}$$

• $x(t) = e^{-a|t|}$ ise $X(\omega) = ?$

•
$$x(t) = \begin{cases} e^{-at}, & t \ge 0 \\ e^{at}, & t < 0 \end{cases}$$

• $X(\omega) =$

•
$$x(t) = e^{-a|t|}$$
 ise $X(\omega) = ?$

•
$$x(t) = \begin{cases} e^{-at}, & t \ge 0 \\ e^{at}, & t < 0 \end{cases}$$

•
$$X(\omega) = \int_0^\infty e^{-at} e^{-j\omega t} dt +$$

•
$$x(t) = e^{-a|t|}$$
 ise $X(\omega) = ?$

•
$$x(t) = \begin{cases} e^{-at}, & t \ge 0 \\ e^{at}, & t < 0 \end{cases}$$

•
$$X(\omega) = \int_0^\infty e^{-at} e^{-j\omega t} dt$$

+ $\int_{-\infty}^{0} e^{at} e^{-j\omega t} dt$

•
$$x(t) = e^{-a|t|}$$
 ise $X(\omega) = ?$

•
$$x(t) = \begin{cases} e^{-at}, & t \ge 0 \\ e^{at}, & t < 0 \end{cases}$$

•
$$X(\omega) = \frac{1}{a+j\omega} + \int_{-\infty}^{-0} e^{at} e^{-j\omega t} dt_{\oplus}$$

•
$$\int_{-\infty}^{0} e^{at}e^{-j\omega t}dt =$$

•
$$x(t) = e^{-a|t|}$$
 ise $X(\omega) = ?$

•
$$x(t) = \begin{cases} e^{-at}, & t \ge 0 \\ e^{at}, & t < 0 \end{cases}$$

•
$$X(\omega) = \frac{1}{a+j\omega} + \int_{-\infty}^{-0} e^{at} e^{-j\omega t} dt$$

•
$$x(t) = e^{-a|t|}$$
 ise $X(\omega) = ?$

•
$$x(t) = \begin{cases} e^{-at}, & t \ge 0 \\ e^{at}, & t < 0 \end{cases}$$

•
$$X(\omega) = \frac{1}{a+j\omega} + \int_{-\infty}^{-0} e^{at} e^{-j\omega t} dt$$

$$\int_{-\infty}^{0} e^{at} e^{-j\omega t} dt = \frac{1}{a-j\omega} e^{(a-j\omega)t}$$

$$= \frac{1}{a-j\omega} (1-0) = \frac{1}{a-j\omega}$$

•
$$x(t) = e^{-a|t|}$$
 ise $X(\omega) = ?$

•
$$x(t) = \begin{cases} e^{-at}, & t \ge 0 \\ e^{at}, & t < 0 \end{cases}$$

•
$$X(\omega) = \frac{1}{a+j\omega} + \frac{1}{a-j\omega}$$

$$\int_{-\infty}^{0} e^{at} e^{-j\omega t} dt = \frac{1}{a-j\omega} e^{(a-j\omega)t} \Big|_{a-j\omega}^{0}$$

$$= \frac{1}{a-j\omega} (1-0) = \frac{1}{a-j\omega}$$

•
$$x(t) = e^{-a|t|}$$
 ise $X(\omega) = ?$

•
$$x(t) = \begin{cases} e^{-at}, & t \ge 0 \\ e^{at}, & t < 0 \end{cases}$$

•
$$X(\omega) = \frac{1}{a+j\omega} + \frac{1}{a-j\omega}$$

•
$$X(\omega) = \frac{2a}{a^2 + \omega^2}$$

- $x(t) = \delta(t)$ ise $X(\omega) = ?$
- $X(\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt =$

- $x(t) = \delta(t)$ ise $X(\omega) = ?$
- $X(\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt = 1$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases}$$
 is $e^{-1}(x) = \frac{1}{2}$

- $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$
- $X(\omega) =$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases}$$
 is $e^{-1}(x) = \frac{1}{2}$

•
$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

•
$$X(\omega) = \int_{-\infty}^{-T_1} + \int_{-T_1}^{T_1} + \int_{T_1}^{\infty}$$

•
$$X(\omega) =$$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

•
$$X(\omega) = \int_{-\infty}^{-T_1} + \int_{-T_1}^{T_1} + \int_{T_1}^{\infty}$$

•
$$X(\omega) = \int_{-T_1}^{T_1} e^{-j\omega t} dt$$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

•
$$X(\omega) = \int_{-\infty}^{-T_1} + \int_{-T_1}^{T_1} + \int_{T_1}^{\infty}$$

•
$$X(\omega) = \int_{-T_1}^{T_1} e^{-j\omega t} dt$$

•
$$X(\omega) = -\frac{1}{j\omega} e^{-j\omega t} \Big|_{-T_1}^{T_1}$$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$X(\omega) = -\frac{1}{j\omega} e^{-j\omega t} \Big|_{-T_1}^{T_1}$$

•
$$X(\omega) =$$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases}$$
 is $e^{-j\omega t} = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases}$
• $X(\omega) = -\frac{1}{j\omega} e^{-j\omega t} = \begin{cases} T_1 \\ -T_1 \end{cases}$
• $X(\omega) = -\frac{1}{j\omega} \left(e^{-j\omega T_1} - e^{j\omega T_1} \right)$
• $X(\omega) = \frac{2}{2j\omega} \left(-e^{-j\omega T_1} + e^{j\omega T_1} \right)$

t(sn.)

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases}$$
 is $e^{X(\omega)} = ?$

•
$$X(\omega) = -\frac{1}{j\omega} e^{-j\omega t} \Big|_{-T_1}^{T_1}$$

•
$$X(\omega) = -\frac{1}{j\omega} \left(e^{-j\omega T_1} - e^{j\omega T_1} \right)$$

•
$$X(\omega) = \frac{2}{2j\omega} \left(-e^{-j\omega T_1} + e^{j\omega T_1} \right)$$

•
$$X(\omega) = \frac{2}{\omega} \frac{-e^{-j\omega T_1} + e^{j\omega T_1}}{2j} =$$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$X(\omega) = -\frac{1}{j\omega} e^{-j\omega t} \Big|_{-T_1}^{T_1}$$

•
$$X(\omega) = -\frac{1}{j\omega} \left(e^{-j\omega T_1} - e^{j\omega T_1} \right) \stackrel{\widehat{\mathfrak{Z}}}{\bowtie}$$

•
$$X(\omega) = \frac{2}{2j\omega} \left(-e^{-j\omega T_1} + e^{j\omega T_1} \right)$$

•
$$X(\omega) = \frac{2}{\omega} \frac{-e^{-j\omega T_1} + e^{j\omega T_1}}{2j} = \frac{2}{\omega} \sin(\omega T_1)$$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases}$$
 is $e^{X(\omega)} = ?_{2T_1}$

•
$$X(\omega) = \frac{2}{\omega} \frac{-e^{-j\omega T_1} + e^{j\omega T_1}}{2j} = \frac{2}{\omega} \sin(\omega T_1)$$

- Zamanda sınırlı
- Frekansta sınırsız
- Keskin geçişler
 - ♦ Yüksek frekans

- Zamanda sınırlı
- Frekansta sınırsız
- Keskin geçişler
 - ♦ Yüksek frekans
- Görüntü de kenarlar
 - ♦ Yüksek frekanslı bileşenler

Ters Fourier Dönüşümü

• $X(\omega)$ biliniyor x(t) bulunuyor.

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

•
$$X(\omega) = \begin{cases} 1, & |\omega| \le W \\ 0, & |\omega| > W \end{cases}$$
 is $e^{-x}(t) = ?$

• x(t) =

•
$$X(\omega) = \begin{cases} 1, & |\omega| \le W \\ 0, & |\omega| > W \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

$$\bullet \ x(t) = \frac{1}{2\pi}(\quad)$$

•
$$X(\omega) = \begin{cases} 1, & |\omega| \le W \\ 0, & |\omega| > W \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

•
$$x(t) = \frac{1}{2\pi} \left(\int_{-\infty}^{-W} + \int_{-W}^{W} + \int_{W}^{\infty} \right)^{3}$$

•
$$x(t) =$$

•
$$X(\omega) = \begin{cases} 1, & |\omega| \le W \\ 0, & |\omega| > W \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

•
$$x(t) = \frac{1}{2\pi} \left(\int_{-\infty}^{-W} + \int_{-W}^{W} + \int_{W}^{\infty} \right)^{3}$$

•
$$x(t) = \frac{1}{2\pi} \int_{-W}^{W} e^{j\omega t} d\omega$$

•
$$x(t) =$$

•
$$X(\omega) = \begin{cases} 1, & |\omega| \le W \\ 0, & |\omega| > W \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

•
$$x(t) = \frac{1}{2\pi} \left(\int_{-\infty}^{-W} + \int_{-W}^{W} + \int_{W}^{\infty} \right)$$

•
$$x(t) = \frac{1}{2\pi} \int_{-W}^{W} e^{j\omega t} d\omega$$

•
$$x(t) = \frac{1}{2\pi} \frac{1}{jt} e^{j\omega t} \Big|_{-W}^{W}$$

•
$$x(t) =$$

•
$$X(\omega) = \begin{cases} 1, & |\omega| \le W \\ 0, & |\omega| > W \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$x(t) = \frac{1}{2\pi} \frac{1}{jt} e^{j\omega t} \Big|_{-W}^{W}$$

•
$$x(t) = \frac{1}{2\pi} \frac{1}{jt} \left(e^{jWt} - e^{-jWt} \right)$$

•
$$x(t) =$$

•
$$X(\omega) = \begin{cases} 1, & |\omega| \le W \\ 0, & |\omega| > W \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$x(t) = \frac{1}{2\pi} \frac{1}{jt} e^{j\omega t} \Big|_{-W}^{W}$$

•
$$x(t) = \frac{1}{2\pi} \frac{1}{jt} \left(e^{jWt} - e^{-jWt} \right)$$

•
$$x(t) = \frac{1}{\pi t} \frac{e^{jWt} - e^{-jWt}}{2j} =$$

•
$$X(\omega) = \begin{cases} 1, & |\omega| \le W \\ 0, & |\omega| > W \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$x(t) = \frac{1}{2\pi} \frac{1}{jt} e^{j\omega t} \Big|_{-W}^{W}$$

•
$$x(t) = \frac{1}{2\pi} \frac{1}{jt} \left(e^{jWt} - e^{-jWt} \right)$$

•
$$x(t) = \frac{1}{\pi t} \frac{e^{jWt} - e^{-jWt}}{2j} = \frac{1}{\pi t} \sin(Wt)$$

•
$$X(\omega) = \begin{cases} 1, & |\omega| \le W \\ 0, & |\omega| > W \end{cases}$$
 is $e^{-x}(t) = ?$

•
$$x(t) = \frac{1}{\pi t} \sin(Wt)$$

- Frekansta sınırlı
- Zamanda sınırsız

Dr. Arı BSM307 - İşaretler ve Sistemler

• $X(\omega) = ?$

•
$$X(\omega) = 2\pi\delta($$

- $X(\omega) = 2\pi\delta(\omega \omega_0)$
- x(t) =

•
$$X(\omega) = 2\pi\delta(\omega - \omega_0)$$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\omega - \omega_0) e^{j\omega t} d\omega$$

•
$$X(\omega) = 2\pi\delta(\omega - \omega_0)$$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\omega - \omega_0) e^{j\omega t} d\omega$$

•
$$x(t) = \int_{-\infty}^{\infty} \delta(\omega - \omega_0) e^{j\omega t} d\omega^{\frac{3}{8}}$$

•
$$x(t) =$$

•
$$X(\omega) = 2\pi\delta(\omega - \omega_0)$$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\omega - \omega_0) e^{j\omega t} d\omega$$

•
$$x(t) = \int_{-\infty}^{\infty} \delta(\omega - \omega_0) e^{j\omega t} d\omega^{\frac{3}{8}}$$

•
$$x(t) = e^{j\omega_0 t}$$

•
$$X(\omega) = 2\pi\delta(\omega - \omega_0)$$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\omega - \omega_0) e^{j\omega t} d\omega$$

•
$$x(t) = \int_{-\infty}^{\infty} \delta(\omega - \omega_0) e^{j\omega t} d\omega^{\frac{3}{\aleph}}$$

•
$$x(t) = e^{j\omega_0 t}$$

•
$$x(t) = e^{j\omega_0 t} \leftrightarrow X(\omega) = 2\pi\delta(\omega - \omega_0)$$

•
$$X(\omega) =$$

•
$$X(\omega) = 2\pi\delta(\omega - k\omega_0) \leftrightarrow x(t) =$$

•
$$X(\omega) = 2\pi\delta(\omega - k\omega_0) \leftrightarrow x(t) = e^{jk\omega_0 t}$$

- $X(\omega) = 2\pi\delta(\omega k\omega_0) \leftrightarrow x(t) = e^{jk\omega_0 t}$
- Fourier Seri Açılımı

•
$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

- $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$
- $\mathcal{F}\{x(t)\} = \mathcal{F}\{\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\}$

- $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$
- $\mathcal{F}\{x(t)\} = \mathcal{F}\{\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\}$
- $\mathcal{F}\{x(t)\} = \sum_{k=-\infty}^{\infty} \mathcal{F}\{a_k e^{jk\omega_0 t}\}$

63

- $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$
- $\mathcal{F}\{x(t)\} = \mathcal{F}\{\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\}$
- $\mathcal{F}\{x(t)\} = \sum_{k=-\infty}^{\infty} \mathcal{F}\{a_k e^{jk\omega_0 t}\}$
- $\mathcal{F}\{x(t)\} = \sum_{k=-\infty}^{\infty} a_k \mathcal{F}\{e^{jk\omega_0 t}\}$

Dr. Ari

- $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$
- $\mathcal{F}\{x(t)\} = \mathcal{F}\{\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\}$
- $\mathcal{F}\{x(t)\} = \sum_{k=-\infty}^{\infty} \mathcal{F}\{a_k e^{jk\omega_0 t}\}$
- $\mathcal{F}\{x(t)\} = \sum_{k=-\infty}^{\infty} a_k \mathcal{F}\{e^{jk\omega_0 t}\}$
- $\mathcal{F}\{x(t)\} = \sum_{k=-\infty}^{\infty} a_k 2\pi \delta(\omega k\omega_0)$
- $X(\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega k\omega_0)$

Fourier Dönüşüm Özellikleri

- Doğrusallık
- $x(t) \leftrightarrow X(\omega)$ ve
- $y(t) \leftrightarrow Y(\omega)$ olduğu biliniyorsa

- z(t) = ax(t) + by(t) ise
- $\mathcal{F}{z(t)} = a\mathcal{F}{x(t)} + b\mathcal{F}{y(t)}$
- $Z(\omega) = aX(\omega) + bY(\omega)$

Fourier Dönüşüm Özellikleri

- Zamanda Öteleme
- $x(t) \leftrightarrow X(\omega)$ olduğu biliniyorsa

• $\mathcal{F}\{x(t-t_0)\}=e^{-j\omega t_0}X(\omega)$

•
$$x(t) = \frac{1}{2}x_1\left(t - \frac{5}{2}\right) + x_2\left(t - \frac{5}{2}\right)$$

• $X(\omega) = ?$

•
$$x(t) = \frac{1}{2}x_1\left(t - \frac{5}{2}\right) + x_2\left(t - \frac{5}{2}\right)$$

•
$$X(\omega) = ?$$

•
$$X(\omega) = \frac{1}{2}\mathcal{F}\left\{x_1\left(t - \frac{5}{2}\right)\right\} + \mathcal{F}\left\{x_2\right\}$$

• $\mathcal{F}\left\{x_1\left(t - \frac{5}{2}\right)\right\} =$

•
$$x(t) = \frac{1}{2}x_1\left(t - \frac{5}{2}\right) + x_2\left(t - \frac{5}{2}\right)$$

•
$$X(\omega) = ?$$

•
$$X(\omega) = \frac{1}{2}\mathcal{F}\left\{x_1\left(t - \frac{5}{2}\right)\right\} + \mathcal{F}\left\{x_2\right\}$$

•
$$x(t) = \frac{1}{2}x_1\left(t - \frac{5}{2}\right) + x_2\left(t - \frac{5}{2}\right)$$

•
$$X(\omega) = ?$$

•
$$X(\omega) = \frac{1}{2}\mathcal{F}\left\{x_1\left(t - \frac{5}{2}\right)\right\} + \mathcal{F}\left\{x_2\right\}$$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases} \leftrightarrow X(\omega) = \frac{2}{5} \sin(\omega T_1)$$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1(\omega) = ?$
• $X_1($

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases} \leftrightarrow X(\omega) = \frac{2}{5} \sin(\omega T_1)$$

•
$$X_1(\omega) = \frac{2}{\omega} \sin\left(\omega \frac{1}{2}\right)$$

• $X_2(\omega) =$

•
$$X_2(\omega) =$$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases} \leftrightarrow X(\omega) = \frac{2}{\omega} \sin(\omega T_1)$$

• $X_1(\omega) = \frac{2}{\omega} \sin(\omega \frac{1}{2})$

•
$$X_2(\omega) = \frac{2}{\omega} \sin\left(\omega \frac{3}{2}\right)$$

• $X(\omega) = \frac{1}{2}e^{-j\omega\frac{5}{2}}X_1(\omega) + e^{-j\omega\frac{5}{2}}X_2$

•
$$x(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & |t| > T_1 \end{cases} \leftrightarrow X(\omega) = \frac{2}{\omega} \sin(\omega T_1)$$

• $X_1(\omega) = \frac{2}{\omega} \sin(\omega \frac{1}{2})$
• $X_2(\omega) = \frac{2}{\omega} \sin(\omega \frac{3}{2})$
• $X(\omega) = \frac{1}{2} e^{-j\omega \frac{5}{2}} X_1(\omega) + e^{-j\omega \frac{5}{2}} X_2(\omega)$

•
$$X(\omega) = \frac{e^{-j\omega\frac{5}{2}}}{\omega} \sin\left(\frac{\omega}{2}\right) + \frac{2e^{-j\omega\frac{5}{2}}}{\omega} \sin\left(\frac{3\omega}{2}\right)^{-1} = 0$$

$$t(sn.)$$

- Zamanda Ters Çevirme
- $x(t) \leftrightarrow X(\omega)$ olduğu biliniyorsa

•
$$\mathcal{F}\{x(-t)\} = X(-\omega)$$

•
$$x(t) = e^{at}u(-t)$$
 ise $X(\omega) = ?$

- $x(t) = e^{at}u(-t)$ ise $X(\omega) = ?$
- $x_1(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) =$

- $x(t) = e^{at}u(-t)$ ise $X(\omega) = ?$
- $x_1(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{1}{a+j\omega}$
- $\bullet \ x(t) = x_1(\quad)$

- $x(t) = e^{at}u(-t)$ ise $X(\omega) = ?$
- $x_1(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{1}{a+j\omega}$
- $\bullet \ x(t) = x_1(-t)$
- $X(\omega) =$

- $x(t) = e^{at}u(-t)$ ise $X(\omega) = ?$
- $x_1(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{1}{a+j\omega}$
- $\bullet \ x(t) = x_1(-t)$
- $X(\omega) = X_1(-\omega) = \frac{1}{a j\omega}$

- Zamanda Türev ve İntegral
- $x(t) \leftrightarrow X(\omega)$ olduğu biliniyorsa

•
$$\mathcal{F}\left\{\frac{\partial x(t)}{\partial t}\right\} = j\omega X(\omega)$$

- Zamanda İntegral
- $x(t) \leftrightarrow X(\omega)$ olduğu biliniyorsa

•
$$\mathcal{F}\{\int x(t)dt\} = \frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$$

- Zamanda Ölçekleme
- $x(t) \leftrightarrow X(\omega)$ olduğu biliniyorsa

•
$$\mathcal{F}\{x(at)\} = \frac{1}{|a|}X\left(\frac{\omega}{a}\right)$$

- $x(t) = e^{-2at}u(t)$ ise $X(\omega) = ?$
- $x_1(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{1}{a+j\omega}$
- $x(t) = x_1($

- $x(t) = e^{-2at}u(t)$ ise $X(\omega) = ?$
- $x_1(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{1}{a+j\omega}$
- $\bullet \ x(t) = x_1(2t)$
- $X(\omega) =$

- $x(t) = e^{-2at}u(t)$ ise $X(\omega) = ?$
- $x_1(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{1}{a+j\omega}$
- $\bullet \ x(t) = x_1(2t)$
- $X(\omega) = \frac{1}{2}X_1\left(\frac{\omega}{2}\right) = \frac{1}{2}\frac{1}{a+j\frac{\omega}{2}} = \frac{1}{2a+j\omega}$

- Frekansta Ölçekleme
- $x(t) \leftrightarrow X(\omega)$ olduğu biliniyorsa

•
$$\mathcal{F}\left\{\frac{1}{|a|}x\left(\frac{t}{a}\right)\right\} = X(a\omega)$$

- Frekansta Türev
- $x(t) \leftrightarrow X(\omega)$ olduğu biliniyorsa

•
$$\mathcal{F}\{tx(t)\} = j\frac{\partial X(\omega)}{\partial \omega}$$

- $x(t) = te^{-at}u(t)$ ise $X(\omega) = ?$
- $x_1(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{1}{a+j\omega}$
- $x(t) = x_1($

- $x(t) = te^{-at}u(t)$ ise $X(\omega) = ?$
- $x_1(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{1}{a+j\omega}$
- $x(t) = tx_1(t)$
- $X(\omega) =$

- $x(t) = te^{-at}u(t)$ ise $X(\omega) = ?$
- $x_1(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{1}{a+j\omega}$
- $x(t) = tx_1(t)$
- $X(\omega) = j \frac{\partial X_1(\omega)}{\partial \omega} = \frac{1}{(a+j\omega)^2}$

- Çift Taraflılık
- $x(t) \leftrightarrow X(\omega)$ olduğu biliniyorsa

• $\mathcal{F}{X(t)} = 2\pi x(-\omega)$

- $x(t) = 1 \text{ ise } X(\omega) = ?$
- $x_1(t) = \delta(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = 1$
- $x(t) = X_1($

- $x(t) = 1 \text{ ise } X(\omega) = ?$
- $x_1(t) = \delta(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = 1$
- $x(t) = X_1(t) = 1$
- $X(\omega) =$

- $x(t) = 1 \text{ ise } X(\omega) = ?$
- $x_1(t) = \delta(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = 1$
- $x(t) = X_1(t) = 1$
- $X(\omega) = 2\pi x_1(-\omega) = 2\pi\delta(-\omega) = 2\pi\delta(\omega)$

- $x(t) = \delta(t a)$ ise $X(\omega) = ?$
- 1. yol: zamanda öteleme
- $x_1(t) = \delta(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = 1$
- $\bullet \ x(t) = x_1(\quad)$

- $x(t) = \delta(t a)$ ise $X(\omega) = ?$
- 1. yol: zamanda öteleme
- $x_1(t) = \delta(t) \overset{\mathcal{F}}{\leftrightarrow} X_1(\omega) = 1$
- $x(t) = x_1(t-a) = \delta(t-a)$
- $X(\omega) =$

- $x(t) = \delta(t a)$ ise $X(\omega) = ?$
- 1. yol: zamanda öteleme
- $x_1(t) = \delta(t) \overset{\mathcal{F}}{\leftrightarrow} X_1(\omega) = 1$
- $x(t) = x_1(t-a) = \delta(t-a)$
- $X(\omega) = e^{-j\omega a} X_1(\omega) = e^{-j\omega a}$

- $x(t) = \delta(t a)$ ise $X(\omega) = ?$
- 2. yol: çift taraflılık
- $x_1(t) = e^{j\omega_0 t} \overset{\mathcal{F}}{\leftrightarrow} X_1(\omega) = 2\pi\delta(\omega \omega_0)$
- $x_2(t) = e^{jat} \overset{\mathcal{F}}{\leftrightarrow} X_2(\omega) =$

- $x(t) = \delta(t a)$ ise $X(\omega) = ?$
- 2. yol: çift taraflılık
- $x_1(t) = e^{j\omega_0 t} \overset{\mathcal{F}}{\leftrightarrow} X_1(\omega) = 2\pi\delta(\omega \omega_0)$
- $x_2(t) = e^{jat} \overset{\mathcal{F}}{\leftrightarrow} X_2(\omega) = 2\pi\delta(\omega a)$
- $x(t) = X_2($

- $x(t) = \delta(t a)$ ise $X(\omega) = ?$
- 2. yol: çift taraflılık
- $x_1(t) = e^{j\omega_0 t} \overset{\mathcal{F}}{\leftrightarrow} X_1(\omega) = 2\pi\delta(\omega \omega_0)$
- $x_2(t) = e^{jat} \overset{\mathcal{F}}{\leftrightarrow} X_2(\omega) = 2\pi\delta(\omega a)$
- $x(t) = \frac{1}{2\pi}X_2(t) = \delta(t a)$
- $X(\omega) =$

- $x(t) = \delta(t a)$ ise $X(\omega) = ?$
- 2. yol: çift taraflılık
- $x_1(t) = e^{j\omega_0 t} \overset{\mathcal{F}}{\leftrightarrow} X_1(\omega) = 2\pi\delta(\omega \omega_0)$
- $x_2(t) = e^{jat} \overset{\mathcal{F}}{\leftrightarrow} X_2(\omega) = 2\pi\delta(\omega a)$
- $x(t) = \frac{1}{2\pi}X_2(t) = \delta(t a)$
- $X(\omega) = \frac{1}{2\pi} 2\pi x_2(-\omega) = e^{-ja\omega}$

•
$$x(t) = \frac{\sin(at)}{\pi t}$$
 ise $X(\omega) = ?$

•
$$x_1(t) = \begin{cases} 1, & |t| \le T_1 \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{2}{\omega} \sin(\omega T_1) \\ 0, & |t| > T_1 \end{cases}$$

•
$$x_2(t) = \begin{cases} 1, & |t| \le a \xrightarrow{\mathcal{F}} X_2(\omega) = 0, & |t| > a \end{cases}$$

•
$$x(t) = \frac{\sin(at)}{\pi t}$$
 ise $X(\omega) = ?$

•
$$x_1(t) = \begin{cases} 1, & |t| \le T_1 \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{2}{\omega} \sin(\omega T_1) \\ 0, & |t| > T_1 \end{cases}$$

•
$$x_2(t) = \begin{cases} 1, & |t| \le a \xrightarrow{\mathcal{F}} X_2(\omega) = \frac{2}{\omega} \sin(a\omega) \\ 0, & |t| > a \end{cases}$$

•
$$x(t) = X_2($$

•
$$x(t) = \frac{\sin(at)}{\pi t}$$
 ise $X(\omega) = ?$

•
$$x_1(t) = \begin{cases} 1, & |t| \le T_1 \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{2}{\omega} \sin(\omega T_1) \\ 0, & |t| > T_1 \end{cases}$$

•
$$x_2(t) = \begin{cases} 1, & |t| \le a \xrightarrow{\mathcal{F}} X_2(\omega) = \frac{2}{\omega} \sin(a\omega) \\ 0, & |t| > a \end{cases}$$

•
$$x(t) = \frac{1}{2\pi}X_2(t) = \frac{1}{2\pi}\frac{2}{t}\sin(at)$$

•
$$X(\omega) =$$

•
$$x(t) = \frac{\sin(at)}{\pi t}$$
 ise $X(\omega) = ?$

•
$$x_1(t) = \begin{cases} 1, & |t| \le T_1 \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{2}{\omega} \sin(\omega T_1) \\ 0, & |t| > T_1 \end{cases}$$

•
$$x_2(t) = \begin{cases} 1, & |t| \le a \xrightarrow{\mathcal{F}} X_2(\omega) = \frac{2}{\omega} \sin(a\omega) \\ 0, & |t| > a \end{cases}$$

•
$$x(t) = \frac{1}{2\pi}X_2(t) = \frac{1}{2\pi}\frac{2}{t}\sin(at)$$

•
$$X(\omega) = \frac{1}{2\pi} 2\pi x_2(-\omega) = x_2(-\omega) = \begin{cases} 1, & |-\omega| \le a \\ 0, & |-\omega| > a \end{cases} = \begin{cases} 1, & |\omega| \le a \\ 0, & |\omega| > a \end{cases}$$

•
$$x(t) = \frac{1}{a^2+t^2}$$
 ise $X(\omega) = ?$

•
$$x_1(t) = e^{-a|t|} \overset{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{2a}{a^2 + \omega^2}$$

•
$$x(t) = X_1($$

•
$$x(t) = \frac{1}{a^2+t^2}$$
 ise $X(\omega) = ?$

•
$$x_1(t) = e^{-a|t|} \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{2a}{a^2 + \omega^2}$$

•
$$x(t) = \frac{1}{2a}X_1(t) = \frac{1}{2a}\frac{2}{t}\frac{2a}{a^2+t^2} = \frac{1}{a^2+t^2}$$

•
$$X(\omega) =$$

•
$$x(t) = \frac{1}{a^2 + t^2}$$
 ise $X(\omega) = ?$

•
$$x_1(t) = e^{-a|t|} \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega) = \frac{2a}{a^2 + \omega^2}$$

•
$$x(t) = \frac{1}{2a}X_1(t) = \frac{1}{2a}\frac{2}{t}\frac{2a}{a^2+t^2} = \frac{1}{a^2+t^2}$$

•
$$X(\omega) = \frac{1}{2a} 2\pi x_1(-\omega) = \frac{\pi}{a} x_1(-\omega) = \frac{\pi}{a} e^{-a|-\omega|} = \frac{\pi}{a} e^{-a|\omega|}$$

Fourier Dönüşüm Özellikleri

- Konvolüsyon
- $x(t) \leftrightarrow X(\omega)$ ve
- $h(t) \leftrightarrow H(\omega)$ olduğu biliniyorsa

• y(t) =

Fourier Dönüşüm Özellikleri

- Konvolüsyon
- $x(t) \leftrightarrow X(\omega)$ ve
- $h(t) \leftrightarrow H(\omega)$ olduğu biliniyorsa
- y(t) = x(t) * h(t)
- $\mathcal{F}{y(t)} = \mathcal{F}{x(t) * h(t)}$
- $Y(\omega) = X(\omega)H(\omega)$
- $H(\omega) = \frac{Y(\omega)}{X(\omega)}$ Sistemin frekans domeninde transfer fonksiyonu

•
$$h(t) = \delta(t - t_0)$$
 ise $y(t) = ?$

- $h(t) = \delta(t t_0)$ ise y(t) = ?
- $H(\omega) =$

114

- $h(t) = \delta(t t_0)$ ise y(t) = ?
- $H(\omega) = e^{-j\omega t_0}$
- $Y(\omega) =$

- $h(t) = \delta(t t_0)$ ise y(t) = ?
- $H(\omega) = e^{-j\omega t_0}$
- $Y(\omega) = H(\omega)X(\omega)$

- $h(t) = \delta(t t_0)$ ise y(t) = ?
- $H(\omega) = e^{-j\omega t_0}$
- $Y(\omega) = H(\omega)X(\omega)$
- $Y(\omega) = e^{-j\omega t_0}X(\omega)$

• y(t) =

- $h(t) = \delta(t t_0)$ ise y(t) = ?
- $H(\omega) = e^{-j\omega t_0}$
- $Y(\omega) = H(\omega)X(\omega)$
- $Y(\omega) = e^{-j\omega t_0}X(\omega)$
 - ♦ Zamanda öteleme
- y(t) =

- $h(t) = \delta(t t_0)$ ise y(t) = ?
- $H(\omega) = e^{-j\omega t_0}$
- $Y(\omega) = H(\omega)X(\omega)$
- $Y(\omega) = e^{-j\omega t_0}X(\omega)$
 - ◆ Zamanda öteleme
- $y(t) = x(t-t_0)$

- $h(t) = e^{-at}u(t)$ ve
- $x(t) = e^{-bt}u(t)$ ise y(t) = ?
- $H(\omega) =$
- $X(\omega) =$

- $h(t) = e^{-at}u(t)$ ve
- $x(t) = e^{-bt}u(t)$ ise y(t) = ?
- $H(\omega) = \frac{1}{a+j\omega}$
- $X(\omega) = \frac{1}{b+j\omega}$
- $Y(\omega) = H(\omega)X(\omega) = \frac{1}{a+j\omega} \frac{1}{b+j\omega}$

- $h(t) = e^{-at}u(t)$ ve
- $x(t) = e^{-bt}u(t)$ ise y(t) = ?
- $H(\omega) = \frac{1}{a+j\omega}$
- $X(\omega) = \frac{1}{b+j\omega}$
- $Y(\omega) = H(\omega)X(\omega) = \frac{1}{a+j\omega} \frac{1}{b+j\omega}$

Fourier Dönüşüm Özellikleri

- Çarpma
- $p(t) \leftrightarrow P(\omega)$ ve
- $r(t) \leftrightarrow R(\omega)$ olduğu biliniyorsa

- s(t) = p(t)r(t)
- $\mathcal{F}{s(t)} = \mathcal{F}{p(t)r(t)}$
- $S(\omega) = \frac{1}{2\pi} (P(\omega) * R(\omega)) = \frac{1}{2\pi} \int_{-\infty}^{\infty} P(\theta) S(\omega \theta) d\theta$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right)\sin\left(\frac{2\pi}{3}t\right)$$
 ise $X(\omega) = ?$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right) \sin\left(\frac{2\pi}{3}t\right)$$
 ise $X(\omega) = ?$

•
$$X(\omega) =$$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right) \sin\left(\frac{2\pi}{3}t\right)$$
 ise $X(\omega) = ?$

- $X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * X_2(\omega) \right)$
- $X_1(\omega) =$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right) \sin\left(\frac{2\pi}{3}t\right)$$
 ise $X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$$
 $(3)^{\frac{3}{2}}$ $(-\frac{\pi}{4}, \frac{\pi}{4})$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

- $X_2(\omega) =$
- $X(\omega) =$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right) \sin\left(\frac{2\pi}{3}t\right)$$
 ise $X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * X_2(\omega) \right)$$

$$\begin{array}{c|c}
3 \\
X \\
-\frac{\pi}{4} & \frac{\pi}{4}
\end{array}$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X_2(\omega) = \frac{\pi}{j} \left(\delta \left(\omega - \frac{2\pi}{3} \right) - \delta \left(\omega + \frac{2\pi}{3} \right) \right)$$

•
$$X(\omega) =$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{2\pi}{3}t\right)}_{x_2(t)}$$
 is $= X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

$$\begin{array}{c|c}
3 \\
X \\
-\frac{\pi}{4} & \frac{\pi}{4}
\end{array}$$

•
$$X_2(\omega) = \frac{\pi}{j} \left(\delta \left(\omega - \frac{2\pi}{3} \right) - \delta \left(\omega + \frac{2\pi}{3} \right) \right)$$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \left(\delta \left(\omega - \frac{2\pi}{3} \right) - \delta \left(\omega + \frac{2\pi}{3} \right) \right) \right)$$

- $x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{2\pi}{3}t\right)}_{x_2(t)}$ is $= X(\omega) = ?$
- $X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$
- $X_1(\omega) = \pi \left(\delta \left(\omega \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$
- $X_2(\omega) = \frac{\pi}{j} \left(\delta \left(\omega \frac{2\pi}{3} \right) \delta \left(\omega + \frac{2\pi}{3} \right) \right)$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \left(\delta \left(\omega - \frac{2\pi}{3} \right) - \delta \left(\omega + \frac{2\pi}{3} \right) \right) \right)$$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \delta \left(\omega - \frac{2\pi}{3} \right) - X_1(\omega) * \frac{\pi}{j} \delta \left(\omega + \frac{2\pi}{3} \right) \right)$$

•
$$X(\omega) =$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{2\pi}{3}t\right)}_{x_2(t)}$$
 is $= X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X_2(\omega) = \frac{\pi}{j} \left(\delta \left(\omega - \frac{2\pi}{3} \right) - \delta \left(\omega + \frac{2\pi}{3} \right) \right)$$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \delta \left(\omega - \frac{2\pi}{3} \right) - X_1(\omega) * \frac{\pi}{j} \delta \left(\omega + \frac{2\pi}{3} \right) \right)^{\frac{11\pi}{12} - \frac{2\pi}{3}}$$

•
$$X(\omega) = \frac{1}{2j}X_1\left(\omega - \frac{2\pi}{3}\right)$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{2\pi}{3}t\right)}_{x_2(t)}$$
 is $= X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X_2(\omega) = \frac{\pi}{j} \left(\delta \left(\omega - \frac{2\pi}{3} \right) - \delta \left(\omega + \frac{2\pi}{3} \right) \right)$$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \left(\delta \left(\omega - \frac{2\pi}{3} \right) - \delta \left(\omega + \frac{2\pi}{3} \right) \right) \right) \frac{\pi}{2j}$$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \delta \left(\omega - \frac{2\pi}{3} \right) - X_1(\omega) * \frac{\pi}{j} \delta \left(\omega + \frac{2\pi}{3} \right) \right)^{\frac{11\pi}{12} - \frac{2\pi}{3}}$$

•
$$X(\omega) = \frac{1}{2j}X_1\left(\omega - \frac{2\pi}{3}\right) - \frac{1}{2j}X_1\left(\omega + \frac{2\pi}{3}\right)$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{2\pi}{3}t\right)}_{x_2(t)}$$
 is $= X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X_2(\omega) = \frac{\pi}{j} \left(\delta \left(\omega - \frac{2\pi}{3} \right) - \delta \left(\omega + \frac{2\pi}{3} \right) \right)$$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \left(\delta \left(\omega - \frac{2\pi}{3} \right) - \delta \left(\omega + \frac{2\pi}{3} \right) \right) \right) \frac{\pi}{2j}$$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \delta \left(\omega - \frac{2\pi}{3} \right) - X_1(\omega) * \frac{\pi}{j} \delta \left(\omega + \frac{2\pi}{2j} \right) \right)$$

•
$$X(\omega) = \frac{1}{2j} X_1 \left(\omega - \frac{2\pi}{3} \right) - \frac{1}{2j} X_1 \left(\omega + \frac{2\pi}{3} \right)$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{2\pi}{3}t\right)}_{x_2(t)} \operatorname{ise} X(\omega) = ?$$

•
$$X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X(\omega) = \frac{1}{2j} X_1 \left(\omega - \frac{2\pi}{3} \right) - \frac{1}{2j} X_1 \left(\omega + \frac{2\pi}{3} \right) = \frac{\pi}{2j} \left[\frac{\pi}{2j} \right]$$

•
$$X(\omega) = \frac{1}{2j}\pi\left(\delta\left(\omega - \frac{2\pi}{3} - \frac{\pi}{4}\right) + \delta\left(\omega - \frac{2\pi}{3} + \frac{\pi}{4}\right)\right)\frac{1}{12}$$
$$-\frac{1}{2j}\pi\left(\delta\left(\omega + \frac{2\pi}{3} - \frac{\pi}{4}\right) + \delta\left(\omega + \frac{2\pi}{3} + \frac{\pi}{4}\right)\right)\frac{\pi}{2j}$$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right) \sin\left(\frac{2\pi}{3}t\right)$$
 is $ext{is } x_1(t) = x_2(t)$

•
$$X(\omega) = \frac{\pi}{2j} \delta\left(\omega - \frac{11\pi}{12}\right) + \frac{\pi}{2j} \delta\left(\omega - \frac{5\pi}{12}\right)$$

 $-\frac{\pi}{2j} \delta\left(\omega + \frac{5\pi}{12}\right) - \frac{\pi}{2j} \delta\left(\omega + \frac{11\pi}{12}\right)$

•
$$x(t) =$$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right) \sin\left(\frac{2\pi}{3}t\right)$$
 ise $X(\omega) = ?$

•
$$X(\omega) = \frac{\pi}{2j} \delta\left(\omega - \frac{11\pi}{12}\right) + \frac{\pi}{2j} \delta\left(\omega - \frac{3\pi}{12}\right)$$

 $-\frac{\pi}{2j} \delta\left(\omega + \frac{5\pi}{12}\right) - \frac{\pi}{2j} \delta\left(\omega + \frac{11\pi}{12}\right)$

•
$$x(t) = \frac{1}{2}\sin\left(\frac{11\pi}{12}t\right) +$$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right) \cdot \sin\left(\frac{2\pi}{3}t\right)$$
 ise $x(\omega) = ?$
• $x(\omega) = \frac{\pi}{2j} \delta\left(\omega - \frac{11\pi}{12}\right) + \frac{\pi}{2j} \delta\left(\omega - \frac{5\pi}{12}\right) - \frac{\pi}{4} \cdot \frac{\pi}{4}$ $\frac{\pi}{2} \cdot \frac{\pi}{2}
 $-\frac{11\pi}{12}$ $-\frac{2\pi}{3}$ $-\frac{5\pi}{12}$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{\pi}{4}t\right)}_{x_2(t)} \operatorname{ise} X(\omega) = ?$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{\pi}{4}t\right)}_{x_2(t)} \operatorname{ise} X(\omega) = ?$$

•
$$X(\omega) =$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{\pi}{4}t\right)}_{x_2(t)} \operatorname{ise} X(\omega) = ?$$

- $X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * X_2(\omega) \right)$
- $X_1(\omega) =$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right) \sin\left(\frac{\pi}{4}t\right)$$
 ise $X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X_2(\omega) =$$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right) \sin\left(\frac{\pi}{4}t\right)$$
 ise $X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * X_2(\omega) \right)$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X_2(\omega) = \frac{\pi}{j} \left(\delta \left(\omega - \frac{\pi}{4} \right) - \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X(\omega) =$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{\pi}{4}t\right)}_{x_2(t)}$$
 is $= X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X_2(\omega) = \frac{\pi}{j} \left(\delta \left(\omega - \frac{\pi}{4} \right) - \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \delta \left(\omega - \frac{\pi}{4} \right) - X_1(\omega) * \frac{\pi}{j} \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X(\omega) = \frac{1}{2j}X_1\left(\omega - \frac{\pi}{4}\right)$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{\pi}{4}t\right)}_{x_2(t)}$$
 is $= X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X_2(\omega) = \frac{\pi}{j} \left(\delta \left(\omega - \frac{\pi}{4} \right) - \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \delta \left(\omega - \frac{\pi}{4} \right) - X_1(\omega) * \frac{\pi}{j} \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X(\omega) = \frac{1}{2j}X_1\left(\omega - \frac{\pi}{4}\right) - \frac{1}{2j}X_1\left(\omega + \frac{\pi}{4}\right)$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{\pi}{4}t\right)}_{x_2(t)}$$
 is $= X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2\pi} (X_1(\omega) * X_2(\omega))$$

•
$$X_1(\omega) = \pi \left(\delta \left(\omega - \frac{\pi}{4} \right) + \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

•
$$X_2(\omega) = \frac{\pi}{j} \left(\delta \left(\omega - \frac{\pi}{4} \right) - \delta \left(\omega + \frac{\pi}{4} \right) \right)$$

 $\sum_{j=1}^{\infty} X_{2j}$

•
$$X(\omega) = \frac{1}{2\pi} \left(X_1(\omega) * \frac{\pi}{j} \delta \left(\omega - \frac{\pi}{4} \right) - X_1(\omega) * \frac{\pi}{j} \delta \left(\omega + \frac{\pi}{2j} \right) \right)$$

• $X(\omega) = \frac{1}{2\pi} X_1 \left(\omega - \frac{\pi}{2} \right) - \frac{1}{2\pi} X_1 \left(\omega + \frac{\pi}{2} \right)$

•
$$X(\omega) = \frac{1}{2j}X_1\left(\omega - \frac{\pi}{4}\right) - \frac{1}{2j}X_1\left(\omega + \frac{\pi}{4}\right)$$

•
$$x(t) = \cos\left(\frac{\pi}{4}t\right) \sin\left(\frac{\pi}{4}t\right)$$
 ise $X(\omega) = ?$

•
$$X(\omega) = \frac{1}{2j} X_1 \left(\omega - \frac{\pi}{4} \right) - \frac{1}{2j} X_1 \left(\overset{\Im}{\omega} + \frac{\pi}{4} \right) - \frac{\pi}{4} \overset{\pi}{4}$$
• $X(t) = \frac{1}{2j} X_1 \left(\overset{\Im}{\omega} + \frac{\pi}{4} \right) \overset{\Im}{\omega} \overset{\Im}{\omega} \overset{\Im}{\omega} \overset{\Im}{\omega} \overset{\Im}{\omega} \overset{\Im}{\omega} \overset{\pi$

•
$$x(t) =$$

•
$$x(t) = \underbrace{\cos\left(\frac{\pi}{4}t\right)}_{x_1(t)} \underbrace{\sin\left(\frac{\pi}{4}t\right)}_{x_2(t)} \operatorname{ise} X(\omega) = ?$$

•
$$X(\omega) = \frac{1}{2j} X_1 \left(\omega - \frac{\pi}{4} \right) - \frac{1}{2j} X_1 \left(\overset{\Im}{\omega} + \frac{\pi}{4} \right) - \frac{\pi}{4} \overset{\pi}{4}$$

•
$$x(t) = \frac{1}{2}\sin\left(\frac{\pi}{2}t\right)$$

