

Semantic Image Segmentation via Deep Parsing Network

Ziwei Liu*, Xiaoxiao Li*, Ping Luo, Chen Change Loy, Xiaoou Tang

Multimedia Lab, The Chinese University of Hong Kong

Problem

Problem

Previous Attempts

Fully Convolutional Network [Long et al. CVPR 2015]

Learned Features	✓
Pairwise Relations	X
Joint Training	
# Iterations	-

DeepLab
[Chen et al. ICLR 2015]

Learned Features	√
Pairwise Relations	√
Joint Training	X
# Iterations	10

CRF as RNN
[Zheng et al. ICCV 2015]

Learned Features	✓
Pairwise Relations	✓
Joint Training	✓
# Iterations	10

Deep Parsing Network (DPN)

Learned Features	√
Pairwise Relations	✓
Joint Training	✓
# Iterations	1

Contributions

• Extend MRF to incorporate richer relationships

Formulate mean field inference of high-order MRF as CNN

• Capable of joint training and one-pass inference

Revisit MRF

$$p_i(label = 'table') = 0.8$$

Energy Function

$$min E = Unary + Pair$$

Unary Term

$$Unary = -\sum_{i} \ln p_{i}(label)$$

Revisit MRF

Appearance Consistency

Energy Function

$$min E = Unary + Pair$$

Unary Term

$$Unary = -\sum_{i} \ln p_{i}(label)$$

$$Pair = \sum_{i,j} cost(i) * diss(i,j)$$

Revisit MRF

$$cost(i; label = 'table') = 0.1$$

Label Consistency

Energy Function

$$min E = Unary + Pair$$

Unary Term

$$Unary = -\sum_{i} \ln p_{i}(label)$$

$$Pair = \sum_{i,j} cost(i) * diss(i,j)$$

Energy Function

$$min E = Unary + Pair$$

Unary Term

$$Unary = -\sum_{i} \ln p_{i}(label)$$

$$Pair = \sum_{i,j} cost(i) * diss(i,j)$$

Triple Penalty

$$Pair = \sum_{i,j} cost(i) * diss(i,j)$$

Triple Penalty

Mixture of Label Contexts

Solve High-order MRF as Convolution

Solve High-order MRF as Convolution

Iterative Updating Formula

$$p_i \propto exp\left\{-\left(Unary_i + \sum_{j} Pair_{i,j} * p_j\right)\right\}$$
Summation Convolution

Pair_{i,j}: Different Types of
Local and Global Filters

Unary Term

Fine-tuned VGG-16 Network

Original Image

Ground Truth

Unary Term

Triple Penalty

$$Pair = \sum_{i,j} \sum_{k} cost_{k} diss(j) + \sum_{z} *diss(i,j;z) * p_{z}$$

Triple Penalty

$$\sum_{z} diss(j;z) * p_{z}$$

ij

Original Image

Unary Term

Triple Penalty

Mixture of Label Contexts

$$Pair = \sum_{i,j} \sum_{k} cost_{k}(i,j) * \sum_{z} dist(i,j;z) * p_{z}$$

Mixture of Label Contexts

Triple Penalty Result

Mixture of Label Contexts

Triple Penalty Result

Mixture of Label Contexts

Triple Penalty Result

Mixture of Label Contexts

Original Image

Triple Penalty

Ground Truth

Label Contexts

Unary Term

Joint Tuning

Original Image

Triple Penalty

Ground Truth

Label Contexts

Unary Term

Joint Tuning

Overall Performance (Published Results)

FCN	62.2
DeepLab [†]	73.9
CRFasRNN [†]	74.7
BoxSup [†]	75.2
DPN [†]	77.5

Label Contexts Learned

penalty

favor

Label Contexts Learned

chair: person

penalty

favor

Challenging Case

Failure Case

Original drange

Conclusions

General framework of one-pass CNN to model high-order MRF

- Various types of pairwise terms are formulated as local and global filters
- High performance and easy to be speeded up

Thanks!

Semantic Image Segmentation via Deep Parsing Network

Project Page: http://personal.ie.cuhk.edu.hk/~lz013/projects/DPN.html