

Primal estimated sub-gradient solver for SVM

Lei Zhong Advanced Topics in Machine Learning

Nov. 4, 2014

- Recap
- 2 Convergence analysis
 - Classical analysis
 - New analysis
- 3 Experiments
- 4 Conclusion
- 6 Reference

Motivating example

Nov. 4, 2014

Support Vector Machine

Definition

In machine learning many models to do classification and regression analysis are of the following form. Given a training set $(\mathbf{x}_i, y_i)_{i=1}^n$ with $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$, learning is formulated as the task of minimizing the following objective function:

$$f(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} L_i(\boldsymbol{w}) + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$$

Loss Function and Subgradient

Definition

• Loss: $L_i := \ell(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i)$

• Subgradient: $I'(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i)$

Use the notation $z = \langle \mathbf{w}, \mathbf{x}_i \rangle$, sample loss functions:

Loss function	Subgradient
$I(z,y_i) = \max\{0,1-y_iz\}$	SS
$I(z,y_i) = \log(1+e^{-y_iz})$	1
$I(z, y_i) = \max\{0, y_i - z - \epsilon\}$	1

Stochastic Gradient Descent

Description

Following the basic Pegasos algorithm, \mathbf{w} is set to be 0 initially. In each round, we pick a random training example (\mathbf{x}_i, y_i) in which i is picked with probability p_i , s.t. $p_i \geq 0$ and $\sum_{i=1}^{n} p_i = 1$.

Basic Pegasos Algorithm

Algorithm

- 2 Iterate for $t = 1, 2, \dots, T$
 - Choose $A_t \subset S = \{1, 2, ..., n\}, |A_t| = b$, uniformly at random
 - **2** Set stepsize $\eta_t \leftarrow \frac{1}{\lambda t}$
 - **3** Update $w^{(t+1)} \leftarrow w^{(t)} \eta$

Theorem For $\overline{\boldsymbol{w}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_t$, we have:

$$\mathbb{E}[f(\overline{\boldsymbol{w}})] \leq f(w^*) + c\log(T) \times \frac{1}{\lambda T}$$

where
$$c = (\sqrt{(\lambda)} + 1)^2$$
.

- Technically
- XX
- Methodologically
- XX

Thank You!

Q&A

Acknowledgement:

Thanks to Martin for helpful discussions, suggestions and chips!!!

Reference

- [1] Shalev-Shwartz, Shai, et al. "Pegasos: Primal estimated sub-gradient solver for svm." Mathematical programming 127.1 (2011): 3-30.
- [2] Lacoste-Julien, Simon, Mark Schmidt, and Francis Bach. "A simpler approach to obtaining an o (1/t) convergence rate for the projected stochastic subgradient method." arXiv preprint arXiv:1212.2002 (2012).
- [3] Takáč Martin, et al. "Mini-batch primal and dual methods for SVMs." arXiv preprint arXiv:1303.2314 (2013).
- [4] Zhao, Peilin, and Tong Zhang. "Stochastic optimization with importance sampling." arXiv preprint arXiv:1401.2753 (2014).