I. INTRODUCTION

II. NOTATIONS AND PRELIMINARIES

Notations: The real number set is denote as \mathbb{R} . ||z|| denotes the ℓ_2 -norm of z. $[z_i]_{vec}$ where $i \in \{1, 2, ..., N\}$ is defined as a column vector whose dimension is $N \times 1$ and the ith element is z_i . diag $\{k_i\}$ for $i \in \{1, 2, ..., N\}$ is a diagonal matrix whose dimension is $N \times N$ and the ith diagonal element is k_i . diag $\{a_{ij}\}$ where $i, j \in \{1, 2, ..., N\}$ gives a diagonal matrix whose dimension is $N^2 \times N^2$ and diagonal elements are $a_{11}, a_{12}, ..., a_{1N}, a_{21}, ..., a_{NN}$, successively. $\mathcal{A} = [a_{ij}]$ is a matrix whose (i, j)th entry is a_{ij} . Given that matrix Q is symmetric and real, $\lambda_{min}(Q)(\lambda_{max}(Q))$ stands for the smallest(largest) eigenvalue of Q. $\max_{i \in \{1, 2, ..., N\}} \{l_i\}$ denotes the largest value of l_i for $i \in \{1, 2, ..., N\}$. $\mathbf{I}_{N \times N}$ is an identity matrix with its dimension being $N \times N$ and $\mathbf{1}(\mathbf{0})$ is a column vector with its entries being $\mathbf{1}(0)$. Moreover, \otimes is the Kronecker product.

Algebraic Graph Theory: A graph \mathcal{G} is given by $\mathcal{G} = (\mathcal{V}, \mathcal{E}_g)$, in which $\mathcal{V} = \{1, 2, ..., N\}$, $\mathcal{E}_g \subseteq \mathcal{V} \times \mathcal{V}$ respectively are the node set and edge set. The edge $(i, j) \in \mathcal{E}_g$ indicates are the node j can receive information from node i, but not necessarily vice versa. The in-neighbor set of node i is given as $\mathcal{N}_i^{in} = \{j | (j, i) \in \mathcal{E}_g\}$. A directed path is a sequence of edges of the form $(i_1, i_2), (i_2, i_3), ...$ A directed graph is strongly connected if for every pair of two distinct nodes, there is a path. Let $\mathcal{A} = [a_{ij}]$ be the adjacency matrix in which $a_{ij} > 0$ if $(i, j) \in \mathcal{E}_g$ and $a_{ij} = 0$ otherwise. The Laplacian matrix \mathcal{L} is defined as $\mathcal{L} = \mathcal{D} - \mathcal{A}$, where $\mathcal{D} = \text{diag}\{d_i\}$ and $d_i = \sum_{j=1}^N a_{ij}$.

III. PROBLEM STATEMENT

In the concerned game, N players with labels from 1 to N are engaged and each player i has a local objective function $f_i(\mathbf{x}) : \mathbb{R}^N \to \mathbb{R}$, in which $\mathbf{x} = [x_1, x_2, ..., x_N]^T$ and $x_i \in \mathbb{R}$ is the action of player i. Moreover, for second-order players, player i's action is governed by

$$\begin{cases} \dot{x}_i(t) = v_i(t) \\ \dot{v}_i(t) = u_i + d_i(t) \end{cases}$$

$$\tag{1}$$

where $v_i(t)$ is the velocity-like state of player i, u_i is the control input and $d_i(t)$ is the disturbance for $i \in \mathcal{V}$. Each player i aims to minimize its own objective function $f_i(\mathbf{x})$ by adjusting its action $x_i(t)$, that is

$$\min_{x_i} f_i(\mathbf{x})
\text{s.t.} (1) \text{ for second-order players}$$
(2)

Definition 1: An action profile $\mathbf{x}^* = (x_i^*, \mathbf{x}_{-i}^*)$ is a Nash equilibrium if for all $i \in \mathcal{V}$, we have

$$f_i(x_i^*, \mathbf{x}_{-i}^*) \le f_i(x_i, \mathbf{x}_{-i}^*), \forall x_i \in \mathbb{R}$$
(3)

where $\mathbf{x}_{-i} = [x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_N]^T$.

To facilitate later analysis, we made the following assumptions.

Assumptions 1: For $i \in \mathcal{V}$, $f_i(\mathbf{x})$ is C^2 and $\nabla f_i(\mathbf{x})$ is globally Lipschitz with l_i .

Assumptions 2: The digraph \mathcal{G} is strongly connected.

Lemma 1: Let D be a nonnegative diagonal matrix and $\mathcal{H} = \mathcal{L} + D$. Under Assumptions 2, there are symmetric positive definite matrices P and Q such that

$$\mathcal{H}^T P + P \mathcal{H} = Q \tag{4}$$

Assumptions 3: For $\mathbf{x}, \mathbf{z} \in \mathbb{R}^N$,

$$(\mathbf{x} - \mathbf{z})^{T} ([\nabla_{i} f_{i}(\mathbf{x})]_{vec} - [\nabla_{i} f_{i}(\mathbf{z})]_{vec}) \ge m \|\mathbf{x} - \mathbf{z}\|^{2}$$
(5)

where $\nabla_i f_i(\mathbf{x}) = \partial f_i(\mathbf{x})/\partial x_i$ and m is a positive constant.

Assumptions 4: For $i \in \mathcal{V}$, $\nabla_{ij}^2 f_i(\mathbf{x}) = \partial^2 f_i(\mathbf{x})/\partial x_i \partial x_j$ is bounded.

Assumptions 5: The disturbance d(t) is bounded, i.e., $\forall i \in \mathcal{V}, |d_i(t)| \leq \bar{d}_i(t)$ for a positive constant \bar{d}_i .

To realize asymptotic Nash equilibrium seeking for games with secondorder integrator-type players distributively, the control input is designed as

$$\begin{cases}
 u_{i} = -\tau k_{i} s_{i} - \beta_{i} \xi_{i}(t) \\
 s_{i} = v_{i} + \nabla_{i} f_{i}(\mathbf{y}_{i}) \\
 \dot{y}_{ij} = -\theta \bar{\theta}_{ij} \left(\sum_{k=1}^{N} a_{ik} (y_{ij} - y_{kj}) + a_{ij} (y_{ij} - x_{j}) \right) \\
 \dot{\varrho}_{i}(t) = -\alpha_{i} \varrho_{i}(t) \text{ with } \varrho_{i}(t) > 0
\end{cases}$$
(6)

where $i, j \in \mathcal{V}, \theta, \tau$ are adjustable positive parameters, $\bar{\theta}_{ij}, k_i, \alpha_i$ are fixed positive parameters, $\beta_i \geq \bar{d}_i$ is a positive constant, s_i and $\varrho_i(t)$ represents an auxiliary variable for player i and $\xi_i(t) = s_i(t)/(|s_i(t)| + \varrho_i(t))$.

By (1) and (6), the closed-loop system is

$$\begin{cases}
\dot{\mathbf{x}} = \mathbf{v} \\
\dot{\mathbf{v}} = -\tau \mathbf{k} \mathbf{s} - [\beta_i \xi_i(t)]_{vec} + \mathbf{d}(t) \\
\mathbf{s} = \mathbf{v} + [\nabla_i f_i(\mathbf{y}_i)]_{vec} \\
\dot{\mathbf{y}} = -\theta \bar{\theta} (\mathcal{L} \otimes \mathbf{I}_{N \times N} + \mathcal{A}_q) \tilde{\mathbf{y}}
\end{cases}$$
(7)

where $\mathbf{k} = \text{diag}\{k_i\}, \bar{\theta} = \text{diag}\{\bar{\theta}_{ij}\}, \mathcal{A}_q = \text{diag}\{a_{ij}\}, \mathbf{y} = [\mathbf{y}_1^T, \mathbf{y}_2^T, ..., \mathbf{y}_N^T]^T \text{ and } \tilde{\mathbf{y}} = \mathbf{y} - \mathbf{1}_N \otimes \mathbf{x}.$

Let
$$\tilde{\mathbf{x}} = \mathbf{x} - \mathbf{x}^*$$
.

Theorem 1: Under Assumptions 1-5, there exist a $\theta^* > 0$ such that for each $\theta > \theta^*$, there exists a $\tau^* > 0$ such that for each $\tau > \tau^*$, players' actions globally exponentially converge to the Nash equilibrium by (7).

Proof: Define $V = V_1 + V_2 + V_3$, where

$$V_{1}(t) = \frac{1}{2}\tilde{\mathbf{x}}^{T}\tilde{\mathbf{x}}$$

$$V_{2}(t) = \frac{1}{2}\tilde{\mathbf{y}}^{T}P\tilde{\mathbf{y}}$$

$$V_{3}(t) = \frac{1}{2}\mathbf{s}^{T}\mathbf{s} + \sum_{i=1}^{N} \frac{\beta_{i}}{\alpha_{i}}\varrho_{i}(t)$$
(8)

Then, taking the time derivative of V_1 yields

$$\dot{V}_{1} = \tilde{\mathbf{x}}^{T} (\mathbf{s} - [\nabla_{i} f_{i}(\mathbf{y}_{i})]_{vec})
\leq -m \|\tilde{\mathbf{x}}\|^{2} + \max_{i \in \mathcal{V}} \{l_{i}\} \|\tilde{\mathbf{x}}\| \|\tilde{\mathbf{y}}\| + \|\tilde{\mathbf{x}}\| \|\mathbf{s}\|$$
(9)

where in the inequality, we have used Assumptions 3 and $\|[\nabla_i f_i(\mathbf{y}_i)]_{vec} - [\nabla_i f_i(\mathbf{x})]_{vec}\| \leq \max_{i \in \mathcal{V}} \{l_i\} \|\tilde{\mathbf{y}}\|.$

Then, taking the time derivative of V_2 yields

$$\dot{V}_{2} = \dot{\tilde{\mathbf{y}}}^{T} P \tilde{\mathbf{y}} + \tilde{\mathbf{y}}^{T} P \dot{\tilde{\mathbf{y}}}
= -\theta \mathbf{y}^{T} Q \mathbf{y} - 2 \mathbf{y}^{T} P \mathbf{1}_{N} \otimes \mathbf{s}
+ 2 \tilde{\mathbf{y}}^{T} P \mathbf{1}_{N} \otimes [\nabla_{i} f_{i}(\mathbf{y}_{i})]_{vec}
\leq - (\theta \lambda_{\min}(Q) - 2 \sqrt{N} \|P\| \max_{i \in \mathcal{V}} \{l_{i}\}) \|\tilde{\mathbf{y}}\|^{2}
+ 2 \sqrt{N} \|P\| \|\tilde{\mathbf{y}}\| \|\mathbf{s}\| + 2N \|P\| \max_{i \in \mathcal{V}} \{l_{i}\} \|\tilde{\mathbf{y}}\| \|\tilde{\mathbf{x}}\|.$$
(10)

where in the inequality, by Assumption 2 and Lemma 1, we let $P, Q \in \mathbb{R}^{N^2 \times N^2}$ and $Q = P\bar{\theta}(\mathcal{L} \otimes \mathbf{I}_{N \times N} + \mathcal{A}_q) + (\mathcal{L} \otimes \mathbf{I}_{N \times N} + \mathcal{A}_q)^T \bar{\theta} P = Q$.

Moreover, taking the time derivative of V_3 yields

$$\dot{V}_{3} = \mathbf{s}^{T}(\dot{\mathbf{v}} + \bar{H}(\mathbf{y})\dot{\mathbf{y}}) - \sum_{i=1}^{N} \beta_{i}\varrho_{i}(t)$$

$$= \mathbf{s}^{T}(-\tau\mathbf{k}\mathbf{s} - [\beta_{i}\xi_{i}(t)]_{vec} + \mathbf{d}(t) + \bar{H}(\mathbf{y})\dot{\mathbf{y}}) - \sum_{i=1}^{N} \beta_{i}\varrho_{i}(t)$$
(11)

where $\bar{H}(\mathbf{y}) = [h_{ij}]$ in which for $i \neq j$, $h_{ij} = \mathbf{0}_N^T$ and for i = j, $h_{ii} =$ $\left[\nabla_{i1}^2 f_i(\mathbf{y}_i), \nabla_{i2}^2 f_i(\mathbf{y}_i), \dots, \nabla_{iN}^2 f_i(\mathbf{y}_i)\right], \nabla_{ij}^2 f_i(\mathbf{y}_i) = \frac{\partial^2 f_i(\mathbf{x})}{\partial x_i \partial x_i} \mid_{\mathbf{x} = \mathbf{y}_i}$. By Assumption 4, $\|\bar{H}\mathbf{y}\|$ is bounded. Hence, There are some positive constant L_1 meet $\|\bar{H}(\mathbf{y})\|\|\bar{\boldsymbol{\theta}}(\mathcal{L}\otimes\mathbf{I}_{N\times N}+\mathcal{A}_q)\|\leq L_1$. Therefore,

$$\dot{V}_{3} \leq -\tau \lambda_{\min}(\mathbf{k}) \|\mathbf{s}\|^{2} + \theta L_{1} \|\mathbf{s}\| \|\tilde{\mathbf{y}}\| - \sum_{i=1}^{N} \frac{(\beta_{i} - |d_{i}(t)|)|s_{i}(t)|(|s_{i}(t)| + \varrho_{i}(t)) + \beta_{i}\varrho_{i}^{2}(t)}{|s_{i}(t)| + \varrho_{i}(t)}$$
(12)

Hence,

$$\dot{V} \leq -m \|\tilde{\mathbf{x}}\|^{2} - \tau \lambda_{\min}(\mathbf{k}) \|\mathbf{s}\|^{2} \\
- (\theta \lambda_{\min}(Q) - 2\sqrt{N} \|P\| \max_{i \in \mathcal{V}} \{l_{i}\}) \|\tilde{\mathbf{y}}\|^{2} \\
+ (\max_{i \in \mathcal{V}} \{l_{i}\} + 2N \|P\| \max_{i \in \mathcal{V}} \{l_{i}\}) \|\tilde{\mathbf{x}}\| \|\tilde{\mathbf{y}}\| \\
+ (2\sqrt{N} \|P\| + \theta L_{1}) \|\tilde{\mathbf{y}}\| \|\mathbf{s}\| + \|\tilde{\mathbf{x}}\| \|\mathbf{s}\| \\
- \sum_{i=1}^{N} \frac{(\beta_{i} - |d_{i}(t)|) |s_{i}(t)| (|s_{i}(t)| + \varrho_{i}(t)) + \beta_{i} \varrho_{i}^{2}(t)}{|s_{i}(t)| + \varrho_{i}(t)} \\
\leq -\lambda_{\min}(F) \|\mathbf{E}_{1}\|^{2} - \tau \lambda_{\min}(\mathbf{k}) \|\mathbf{s}\|^{2} \\
+ (1 + 2\sqrt{N} \|P\| + \theta L_{1}) \|\mathbf{E}_{1}\| \|\mathbf{s}\|$$
(13)

where
$$F = \begin{bmatrix} m & a \\ a & \theta \lambda_{\min}(Q) - 2\sqrt{N} \|P\| \max_{i \in \mathcal{V}} \{l_i\} \end{bmatrix}$$
, $\mathbf{E}_1 = [\tilde{\mathbf{x}}^T, \tilde{\mathbf{y}}^T]^T$, $a = -\frac{\max_{i \in \mathcal{V}} \{l_i\} + 2N \|P\| \max_{i \in \mathcal{V}} \{l_i\} + 2N \|P\| \max_{i \in \mathcal{V}} \{l_i\} + 2N \|P\| \max_{i \in \mathcal{V}} \{l_i\} - 2N \|P\| + 2N \|P\|$

Then, $\lambda_{min}(F)$ is a real positive number and $\lambda_{min}(F) > 0$. Thus,

$$\dot{V}(t) \le -\lambda_{\min}(G) \|\mathbf{E}\|^2 \tag{14}$$

where
$$G = \begin{bmatrix} \lambda_{\min}(F) & -\frac{1+2\sqrt{N}\|P\|+\theta L_1}{2} \\ -\frac{1+2\sqrt{N}\|P\|+\theta L_1}{2} & \tau \lambda_{\min}(\mathbf{k}) \end{bmatrix}$$
, $\mathbf{E} = [\tilde{\mathbf{x}}^T, \tilde{\mathbf{y}}^T, \tilde{\mathbf{s}}^T]^T$. By choosing $\tau > \frac{(1+2\sqrt{N}\|P\|+\theta L_1)^2}{4\lambda_{\min}(F)\lambda_{\min}(\mathbf{k})}$, $\lambda_{\min}(G)$ is a real positive number and $\lambda_{\min}(G) > 0$.

 $\frac{\partial^2}{\partial r}$, $\lambda_{min}(G)$ is a real positive number and $\lambda_{min}(G) > 0$.

The conclusion can be drawn.