

## Zeroth Review Meeting

## Detection and Measurement of Bone Fractures in X-ray Images

Presented By: Aman Kshetri, Raj Sah Rauniyar

Supervisor: Dr. Sangapu Sreenivasa Chakravarthi

Department: CSE - CT

Domain: Machine Learning (NLP), Deep Learning



### Problem Identification

- In renowned hospitals within developed regions, experienced radiologists proficiently analyze X-ray images, while in smaller hospitals in underdeveloped areas, young and inexperienced surgeons may struggle to interpret X-ray images accurately.
- According to a recent survey, the percentage of X-ray images misinterpreted has reached 26%.
- Although many studies have focused on detecting the location of bone fractures, none have analyzed the length of the fractured bone segment.



## Problem Statement

- Develop an advanced ML model capable of detecting both the fractured part of the bone and analyzing the length of the fractured segment.
- This model aims to reduce the workload on radiologists by accurately identifying potential fractures in X-ray images.

## Supporting References (1-5)

| Author                                                                                   | Title                                                                                                       | Journal                                                  | Year | Gaps Identified                                          |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------|----------------------------------------------------------|
| Rui-Yang Ju, Weiming Cai                                                                 | Fracture Detection in Pediatric Wrist Trauma<br>X-ray Images Using YOLOv8 Algorithm                         | ArXiv                                                    | 2023 | Does not analyze the length of the fractured segment     |
| Kosrat Dlshad Ahmed , Roojwan<br>Hawezi                                                  | Detection of bone fracture based on machine<br>learning techniques                                          | Measurement: Sensors                                     | 2023 | Small Bone Cracks is difficult to detect                 |
| Ammar Ahmed, Ali Shariq Imran,<br>Abdul Manaf, Zenun Kastrati, Sher<br>Muhammad Daudpota | Enhancing Wrist Abnormality Detection with YOLO: Analysis of State-of-the-art Single-stage Detection Models | Biomedical Signal<br>Processing and Control              | 2024 | Data Augmentation could enhance performance              |
| N Satya Sriveni, K Hema Latha, A<br>Viji Amutha Mary, Mercy Paul<br>Selvan               | Detecting Bone Fracture in Medical Images                                                                   | Journal of Physics:<br>Conference Series                 | 2020 | Enhanced image technique is used which is not efficient. |
| Rinisha Bagaria, Sulochana<br>Wadhwani, A. K. Wadhwani                                   | Bone Fracture Detection in X-ray<br>Images using Convolutional Neural<br>Network                            | SCRS Conference<br>Proceedings on Intelligent<br>Systems | 2022 | Validated with a limited number of X-ray Images          |

## Supporting References (6-10)

| Author                                           | Title                                                                                                      | Journal                         | Year | Gaps Identified                                                  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------|------|------------------------------------------------------------------|
| Kallimpudi Bhaskara Sai Kiran,<br>B Satyasaivani | Bone Fracture Detection Using Convolutional<br>Neural Networks                                             | IJCRT Journal                   | 2022 | Lack of images (221 only) in both the training and testing sets. |
| Tanushree Meena, Sudipta Roy                     | Bone Fracture Detection Using Deep Supervised<br>Learning from Radiological Images: A Paradigm Shift       | National Library of<br>Medicine | 2022 | Lack of required dataset and<br>labelled training data           |
| Ammar Ahmed, Abdul Manaf                         | YOLOv10 for Automated Fracture Detection in<br>Pediatric Wrist Trauma X-rays                               | ArXiv                           | 2024 | Model can occasionally miss a fracture                           |
| K Thaiyalnayaki, L Kavyaa,<br>Joshua Sugumar     | Automated Bone Fracture Detection Using<br>Convolutional Neural Network                                    | Journal of Physics              | 2023 | Only 100 Images are there in the datasets.                       |
| Thian et al.                                     | Convolutional Neural Networks for Automated<br>Fracture Detection and Localization on Wrist<br>Radiographs | RSNA Journals                   | 2019 | Less dataset is used for training and validation                 |



# Significance of the Project

- Enhanced Diagnostic Accuracy: Automated detection and measurement of bone fractures will improve diagnostic precision, reduce misinterpretations, and ensure reliable fracture assessment.
- Reduction of Radiologist Workload: By automating X-ray analysis, the model will lighten radiologist's workload, especially in resource-limited settings, allowing them to concentrate on more complex cases.
- Consistency Across Settings: The model will offer a
  dependable tool for fracture detection and
  measurement, providing consistent results in both
  well-resourced and under-resourced healthcare
  facilities.

# Objectives and Scope

#### Objectives:



 Measure Fracture Length: Integrate functionality to precisely measure the length of the fractured bone segments, providing detailed insights for treatment planning.

#### Scope:

- <u>Detection Algorithm Development:</u> Develop highaccuracy machine learning or deep learning algorithms for detecting fractures in X-ray images.
- <u>Evaluation and Testing:</u> Perform thorough testing and validation with a diverse X-ray dataset to ensure clinical accuracy and reliability.



## Data Flow Diagram



## Gantt Chart

|                                         | PROJECT GANTT CHART - PHASE 1 |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
|-----------------------------------------|-------------------------------|-------|----|----|----|-----|----|----|----|-----|----|----|----|----|----|----|----------|----|----|----|
|                                         |                               | 2024  |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| TASKS                                   | STATUS                        |       | LY |    |    | AUG |    |    |    | PTE |    |    |    | CT |    |    | NOVEMBER |    |    |    |
|                                         |                               | W1 W2 | W3 | W4 | Wl | W2  | W3 | W4 | Wl | W2  | W3 | W4 | Wl | W2 | W3 | W4 | Wl       | W2 | W3 | W4 |
| PHASE -1                                | PLAN                          |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| INTRODUCTION                            | ACTUAL                        |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| 1. Detail discuss with supervisor about |                               |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| the project                             |                               |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| 2. Problem statement                    |                               |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| 3. Objectives                           |                               |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| REVIEW LITERATURE WORK                  | PLAN                          |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| Review literature (Journal and          | ACTUAL                        |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| book)                                   |                               |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| 2. Findings additional information and  |                               |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| METHODOLOGY                             | PLAN                          |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| 1. Design Algorithms                    | ACTUAL                        |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| 2. Prediction Results                   |                               |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| IMPLEMENTATION                          | PLAN                          |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| PROCESS                                 | ACTUAL                        |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| ANALYZE AND DISCUSSION                  | PLAN                          |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| Analyze data collection                 | ACTUAL                        |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| 2. Discussion                           |                               |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| PREPARATION AND                         | PLAN                          |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| PRESENTATION OF FINAL                   | ACTUAL                        |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |
| REPORT                                  |                               |       |    |    |    |     |    |    |    |     |    |    |    |    |    |    |          |    |    |    |

## Reference

| 1  | Ju, R. Y., & Cai, W. (2023, April 11). Fracture Detection in Pediatric Wrist Trauma X-ray Images Using YOLOv8 Algorithm. arXiv.org. https://arxiv.org/abs/2304.05071v5                                                                                                                    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Ahmed, K. D., & Hawezi, R. (2023). Detection of bone fracture based on machine learning techniques. Measurement. Sensors, 27, 100723. https://doi.org/10.1016/j.measen.2023.100723                                                                                                        |
| 3  | Ahmed, A., Imran, A. S., Manaf, A., Kastrati, Z., & Daudpota, S. M. (2024). Enhancing wrist abnormality detection with YOLO: Analysis of state-of-the-art single-stage detection models. Biomedical Signal Processing and Control, 93, 106144. https://doi.org/10.1016/j.bspc.2024.106144 |
| 4  | Sriveni, N. S., Latha, K. H., Mary, A. V. A., & Selvan, M. P. (2021). Detecting Bone Fracture in Medical Images.<br>Journal of Physics. Conference Series, 1770(1), 012008. https://doi.org/10.1088/1742-6596/1770/1/012008                                                               |
| 5  | Bagaria, R., Wadhwani, S., & Wadhwani, A. K. (2021). Bone Fracture Detection in X-ray Images using Convolutional Neural Network. In Soft Computing Research Society eBooks (pp. 459–466). https://doi.org/10.52458/978-93-91842-08-6-43                                                   |
| 6  | Bhaskara Sai Kiran, Kallimpudi, et al. "BONE FRACTURE DETECTION USING CONVOLUTIONAL NEURAL NETWORKS." International Journal of Creative Research Thoughts, vol. 10, no. 6, 2022, pp. 2320–2882, ijcrt.org/papers/IJCRT22A6O87.pdf.                                                        |
| 7  | Meena, T., & Roy, S. (2022). Bone Fracture Detection Using Deep Supervised Learning from Radiological Images: A Paradigm Shift. Diagnostics, 12(10), 2420. https://doi.org/10.3390/diagnostics12102420                                                                                    |
| 8  | Ahmed, A., & Manaf, A. (2024, July 22). YOLOv10 for Automated Fracture Detection in Pediatric Wrist Trauma X-rays. arXiv.org. https://arxiv.org/abs/2407.15689v1                                                                                                                          |
| 9  | Thaiyalnayaki, K., Kavyaa, L., & Sugumar, J. (2023). Automated Bone Fracture Detection Using Convolutional Neural Network. Journal of Physics. Conference Series, 2471(1), 012003. https://doi.org/10.1088/1742-6596/2471/1/012003                                                        |
| 10 | Thian, Y. L., Li, Y., Jagmohan, P., Sia, D., Chan, V. E. Y., & Tan, R. T. (2019b). Convolutional Neural Networks for Automated Fracture Detection and Localization on Wrist Radiographs. Radiology. Artificial Intelligence, 1(1),                                                        |

## Thank you

#### Name

Aman Kshetri

**Roll Number** 

CH.EN.U4CSE21003

Department

CSE - CT

**Phone Number** 

+91 9387485916

#### Name

Raj Sah Rauniyar

**Roll Number** 

CH.EN.U4CSE21051

Department

CSE - CT

**Phone Number** 

+91 9572412282