Universidade do Rio de Janeiro Tópicos Especiais em Matemática e Computação Trabalho 3

Gustavo Dias de Oliveira

01/07/2024

1 Descrição dos Dados

1.1 Informações relevantes

O banco de dados selecionado foi "Estimation of Obesity Levels Based On Eating Habits and Physical Condition", encontrado no repositório UCI, esta base de dados apresenta dados para a estimativa dos níveis de obesidade em indivíduos dos países México, Peru e Colômbia, com base em seus hábitos alimentares e condição física. As amostras são rotuladas com a variável de classe NObesity (Nível de Obesidade), que permite a classificação dos dados utilizando os valores de Peso Insuficiente, Peso Normal, Sobrepeso Nível I, Sobrepeso Nível II, Obesidade Tipo I , Obesidade Tipo II e Obesidade Tipo III. 77% dos dados foram gerados de forma sintética utilizando a ferramenta Weka e o filtro SMOTE, 23% dos dados foram coletados diretamente dos usuários através de uma plataforma web.

1.2 Número de amostras

Os dados contêm 17 atributos e 2111 amostras.

1.3 Atributos

Descrição geral dos atributos presentes neste conjunto de dados:

1. **Gender:** Gênero do participante.

Resposta: Masculino(Male), Feminino(Female).

2. Age: Idade do participante.

Resposta: Numérica (anos).

3. **Height:** Altura do participante.

Resposta: Numérica (metros).

4. Weight: Peso do participante.

Resposta: Numérica (quilogramas).

5. family_history_with_overweight: Histórico familiar de sobrepeso.

Resposta: Sim(yes), Não(no).

6. FAVC: Consumo de alimentos com alto teor de calorias.

Resposta: Sim(yes), Não(no).

7. **FCVC:** Consumo de vegetais.

Resposta: Numérica (1-Nunca, 2-Às vezes, 3-Sempre).

8. NCP: Número de refeições principais por dia.

Resposta: Numérica (1-Uma, 2-Duas ,3-Três , 4-Mais de três).

9. CAEC: Consumo de comida entre as refeições.

Resposta: Não(No), Às vezes(Sometimes), Frequentemente(Frequently), Sempre(Always).

10. **SMOKE:** Hábito de fumar.

Resposta: Sim(yes), Não(no).

11. CH2O: Consumo de água diário.

Resposta: Numérica (1-Menos de um litro, 2-Entre 1 e 2 litros, 3-mais de 2 litros).

12. SCC: Monitora o consumo de calorias.

Resposta: Sim(yes), Não(no).

13. **FAF:** Frequência de prática de atividade física.

Resposta: Numérica (0-não pratica, 1-um ou dois dias, 2-dois ou quatro dias, 3-quatro ou cinco dias).

14. **TUE:** Tempo gasto com dispositivos tecnológicos como celular, videogame, televisão, computador e outros.

Resposta: Numérica (0-zero a duas horas, 1-três a cinco horas, 2-mais de cinco horas).

15. CALC: Consumo de álcool.

Resposta: Não(No), Às vezes(Sometimes), Frequentemente(Frequently), Sempre(Always).

16. MTRANS: Meio de transporte usado pelo participante.

Resposta: Transporte Publico(Public_Transportation), Automóvel(Automobile), Bicicleta(Bicycle), A pé(Walking), Moto(Motorbike).

17. **NObeyesdad:** Nível de obesidade do participante.

Resposta: Insuficientemente Pesado(Insufficient_Weight), Normal(Normal_Weight), Excesso de Peso Nivel I(Overweight_Level_I), Excesso de Peso Nivel II(Overweight_Level_II), Obesidade Tipo II(Obesity_Type_II), Obesidade Tipo III(Obesity_Type_III).

1.4 Classes

A classe 'NObeyesdad' é considerada o atributo alvo neste conjunto de dados, sendo fundamental para a análise, pois representa o nível de obesidade dos participantes. É a variável que estamos interessados em prever ou estimar com base nas outras características disponíveis, como gênero, idade, hábitos alimentares e estilo de vida.

1.5 Balanceamento

Para avaliar a balanceamento da classe, comparamos o número de amostras em cada categoria, se o número de amostras em cada categoria for parcialmente igual, então a classe é considerada balanceada.

• Obesity_Type_III: 324 amostras

• Obesity_Type_II: 297 amostras

• Obesity_Type_I: 351 amostras

• Overweight_Level_II: 290 amostras

• Overweight_Level_I: 290 amostras

• Normal_Weight: 287 amostras

• Insufficient_Weight: 272 amostras

Neste caso, não há uma grande disparidade entre o número de amostras em cada categoria. Embora haja algumas diferenças, a variação não é significativa. Portanto, pode-se dizer que a classe "NObeyesdad" está relativamente balanceada.

1.6 Valores Nulos ou Faltantes

Utilizando o comando 'dados.isnull().sum()', que retorna a contagem de valores nulos em cada coluna dos dados, foi observado que os atributos não possuiam nenhum valor nulo ou faltante.

1.7 Valores Duplicados

Usando o comando 'dados[dados.duplicated() == True]', que retorna a tabela com todas as linhas duplicadas encontradas nos dados, pudemos analisar a tabela com todos os valores duplicados, e vimos que eles são existentes.

1.8 Outliers (Boxplot)

Um boxplot é um gráfico que representa a distribuição de um conjunto de dados. Ele é composto por uma caixa que mostra a mediana e os quartis dos dados, com linhas que se estendem a partir da caixa para indicar a variabilidade dos dados. Pontos fora dessa linha são considerados outliers, ou seja, valores incomuns. O boxplot é uma ferramenta eficaz para identificar padrões e discrepâncias em conjuntos de dados.

Na Figura 1 abaixo, conseguimos observar que Age(Idade), Height(Altura), Weight(Peso) e NCP(Numero de refeições principais por dia) possuem outliers.

Figura 1: Boxplot dos dados numéricos

2 Análise dos Dados

Será apresentada a média, o desvio padrão, a variância, a matriz de correlação, o valor mínimo e máximo de cada atributo do nosso banco de dados.

2.1 Média

Na tabela 1 abaixo, será apresentados os atributos numéricos e suas determinadas médias.

Tabela 1: Valores Médios dos Atributos

Atributo	Média
Idade	24.31
Altura	1.70
Peso	86.59
FCVC	2.42
NCP	2.69
CH2O	2.01
FAF	1.01
TUE	0.66

2.2 Desvio Padrão

O desvio padrão é uma medida estatística que indica o quanto os valores de um conjunto de dados estão dispersos em relação à média.

Na tabela 2 abaixo, será apresentados os atributos numéricos e seus determinados desvios padrão.

Tabela 2: Desvios Padrão dos Atributos

Atributo	Desvio Padrão
Idade	6.35
Altura	0.09
Peso	26.19
FCVC	0.53
NCP	0.78
CH2O	0.61
FAF	0.85
TUE	0.61

2.3 Variância

A variância é uma medida estatística que descreve a dispersão dos valores de um conjunto de dados em relação à média

Na tabela 3 abaixo, será apresentados os atributos numéricos e suas determinadas variância.

Tabela 3: Variâncias dos Atributos

Atributo	Variância
Idade	40.27
Altura	0.01
Peso	685.98
FCVC	0.29
NCP	0.61
CH2O	0.38
FAF	0.72
TUE	0.37

2.4 Matriz de correlação

A matriz de correlação é uma tabela que mostra como cada variável em um conjunto de dados está relacionada às outras. Ela usa coeficientes de correlação para representar a força e a direção dessas relações. Valores próximos de 1 indicam uma forte correlação positiva, valores próximos de -1 indicam uma forte correlação negativa, e valores próximos de 0 indicam pouca ou nenhuma correlação.

Na Figura 2 abaixo, será apresentado a matriz de correlação dos dados numéricos, nela observamos que as variáveis que possuem maior correlação são Height(Altura) e Weight(Peso) com correlação de 0.46, as outras variáveis possuem correlação de 0.3 para menos, acredito que não tenha grande relevância.

Figura 2: Matriz de correlação

2.5 Valor mínimo

Na tabela 4 abaixo, será apresentados os atributos numéricos e seus determinados valores mínimos.

Tabela 4: Valores Mínimos dos Atributos

Atributo	Valor Mínimo
Idade	14
Altura	1.45
Peso	39
FCVC	1
NCP	1
CH2O	1
FAF	0
TUE	0

2.6 Valor Máximo

Na tabela 5 abaixo, será apresentados os atributos numéricos e seus determinados valores maximos.

Tabela 5: Valores Máximos dos Atributos

Atributo	Valor Máximo
Idade	61
Altura	1.98
Peso	173
FCVC	3
NCP	4
CH2O	3
FAF	3
TUE	2

3 Metodologia

O pré-processamento dos dados, que consistiu em remover os valores duplicados, remover os outliers dos atibutos [Age(Idade), Height(Altura), Weight(Peso), NCP(Numero de refeições principais por dia)] e transformar as variáveis qualitativas[Gender(Gênero), family_history_with_overweight (Histórico familiar de sobrepeso), FAVC(Consumo de alimentos calóricos com frequência), CAEC (Consumo de alimentos entre refeições), SMOKE(Fumante), SCC(Monitora o consumo de calorias), CALC(Consumo de alcool), MTRANS(Meio de transporte), NObeyesdad(Nível de obesidade)] para quantitativas.

Após o término do pré-processamento foi dado inicio de fato as metodologias.

3.1 Método SelectPercentile

O *SelectPercentile* é uma técnica de seleção de características baseada em percentil. Ele é utilizado para selecionar um percentual das características mais relevantes de um conjunto de dados com base em uma estatística univariada.

3.2 Método K-fold Cross-Validation

O método K-fold cross-validation é uma técnica para avaliar modelos de machine learning dividindo os dados em K subconjuntos (folds), treinando o modelo K vezes usando cada fold como conjunto de validação uma vez, e calculando a média das métricas de desempenho obtidas. Isso ajuda a reduzir a variabilidade na estimativa de desempenho do modelo e utiliza os dados de forma eficiente.

3.3 Método K-Vizinhos Mais Próximos (KNN)

O algoritmo KNN (K-Nearest Neighbors) é um método de aprendizado supervisionado utilizado tanto para classificação quanto para regressão em problemas de machine learning. Sua abordagem é simples e intuitiva: Treinamento, Previsão, Seleção dos Vizinhos, Classificação ou Regressão. O parâmetro "k"representa o número de vizinhos a serem considerados e é crucial para a eficácia do algoritmo. Um valor baixo de "k"pode levar a uma variância alta e sensibilidade a ruído, enquanto um valor alto de "k"pode suavizar fronteiras de decisão e mascarar padrões locais.

3.4 Método de Evolução Diferencial (DE)

O Método de Evolução Diferencial (DE) é uma técnica de otimização global estocástica, utilizada principalmente para resolver problemas de otimização contínua. É uma variante dos algoritmos genéticos e pertence à categoria de algoritmos de otimização evolucionária.

3.5 Método de Enxame de Partículas (PSO)

O Método de Enxame de Partículas (Particle Swarm Optimization - PSO) é uma técnica de otimização computacional baseada em modelos de comportamento social de enxames, como o movimento de bandos de pássaros ou cardumes de peixes.

4 Experimentos Computacionais

O objetivo é encontrar os melhores parâmetros para o classificador KNN utilizando o algoritmo de otimização Differential Evolution, avaliando seu desempenho com o KFold em diferentes conjuntos de dados. O processo é repetido 30 vezes para garantir a robustez dos resultados. Os resultados finais incluem as melhores configurações de parâmetros, bem como as métricas de desempenho correspondentes.

4.1 SelectPercentile

Foi realizado um processo de seleção de características utilizando o SelectPercentile nos dados pré-processados para obter as 10 características mais relevantes de acordo com o método aplicado, visto que os dados já estavam relativamente balanceados.

As 10 características mais relevantes foram:

• Gender: Gênero do participante.

• Age: Idade do participante.

• Height: Altura do participante.

• Weight: Peso do participante.

• family_history_with_overweight: Histórico familiar de sobrepeso.

• FAVC: Consumo de alimentos com alto teor de calorias.

• FCVC: Consumo de vegetais.

• NCP: Número de refeições principais por dia.

• CAEC: Consumo de comida entre as refeições.

4.2 K-fold Cross-Validations com o K-Vizinhos Mais Próximos

Foi aplicado o Método K-fold cross-validation integrado com o método K-Vizinhos Mais Próximos (KNN) para dividir o conjunto de dados, treinar e avaliar o modelo .

Onde os parâmetros utilizados pelo K-Fold seguem na tabela 6 abaixo:

Tabela 6: Parâmetros para o K-fold

Modelo	Parâmetro	Valor
K-Fold	n_splits	5
	shuffle	True
	random_state	run*10+100

- n_splits: O número de divisões no K-Fold. Foi definido como 5, o que significa que o conjunto de dados será dividido em 5 partes iguais.
- shuffle: Indica se os dados devem ser embaralhados antes de serem divididos. Está definido como True para garantir que as divisões sejam aleatórias.
- random_state: A semente aleatória para reproducibilidade. Este valor é calculado como run*10+100, variando a cada iteração para garantir diferentes sementes em diferentes execuções.

4.3 Resultados

4.3.1 Evolução Diferencial (DE)

Foi realizado 30 iterações utilizando os parametros da tabela 7 a seguir:

Tabela 7: Limites dos parâmetros do KNN e Parâmetros da DE

Parâmetro KNN	Limite Inferior	Limite Superior
n_neighbors	1	30
weights	0	1
p	1	3
Parâmetros da DE	Nome Parâmetro	Valor
Número de iterações	maxiter	10
Tamanho	popsize	10
Imprimir mensagens	disp	True
Otimização local	polish	False
Semente para o gerador de números aleatórios	seed	run*10+100

- n_neighbors: O número de vizinhos a serem considerados.
- weights: A função de ponderação dos vizinhos.
- p: O parâmetro da métrica de distância.

Onde foi obtido os seguintes resultados da tabela 8:

Tabela 8: Resultados Médios e Desvios Padrão para DE

Métrica	Tipo de Dados	Média ± Desvio Padrão
ACCURACY	Originais	0.9301 ± 0.0026
F1	Originais	0.9274 ± 0.0028
RECALL	Originais	0.9301 ± 0.0026
ACCURACY	Pré-processados	0.9215 ± 0.0031
F1	Pré-processados	0.9197 ± 0.0032
RECALL	Pré-processados	0.9215 ± 0.0031

Os resultados médios e os desvios padrão são fornecidos para dar uma ideia da variabilidade do desempenho do modelo. Observa-se uma consistência nos resultados, com variações muito pequenas, indicando que o modelo é estável.

A seguir, temos os melhores parametros do método conforme a tabela 9 abaixo:

Tabela 9: Melhores Parâmetros e Métricas de Desempenho

Método	Melhores Parâmetros	Acurácia	F1	Recall
DE (Originais)	'p': 1, 'n_neighbors': 2, 'weights': 'distance'	93%	93%	93%
DE (Pré-Processados)	'p': 1, 'n_neighbors': 2, 'weights': 'distance'	92%	92%	92%

Os melhores parâmetros para ambas as configurações (dados originais e pré-processados) foram os mesmos, sugerindo que a seleção dos parâmetros KNN é robusta independentemente do pré-processamento dos dados.

Os dados originais tendem a ter um desempenho ligeiramente melhor em termos de acurácia, F1 e recall em comparação com os dados pré-processados, mas em termos de tempo, os dados pré-processados reduziu mais de 50% em relação aos dados originais.

4.3.2 Enxame de Partículas (PSO)

Foi realizado 30 iterações utilizando os parametros da tabela 10 a seguir:

Tabela 10: Limites dos parâmetros do KNN e Parâmetros do PSO

Parâmetro KNN	Limite Inferior	Limite Superior
n_neighbors	1	30
weights	0	1
p	1	3
Parâmetros do PSO	Nome Parâmetro	Valor
Número de iterações	maxiter	10
Tamanho do enxame	swarmsize	10
Fator de inércia	omega	0.5
Componente cognitiva	phip	0.5
Componente social	phig	0.5
Informações detalhadas	debug	True

- n_neighbors: O número de vizinhos a serem considerados.
- weights: A função de ponderação dos vizinhos.
- p: O parâmetro da métrica de distância.

Onde foi obtido os seguintes resultados, conforme a tabela 11:

Tabela 11: Resultados Médios e Desvios Padrão para PSO

Métrica	Tipo de Dados	Média ± Desvio Padrão
ACCURACY	Originais	0.9269 ± 0.0093
F1	Originais	0.9239 ± 0.0099
RECALL	Originais	0.9269 ± 0.0093
ACCURACY	Pré-processados	0.9207 ± 0.0045
F1	Pré-processados	0.9189 ± 0.0046
RECALL	Pré-processados	0.9207 ± 0.0045

Os resultados médios e os desvios padrão são relativamente baixos, especialmente para os dados pré-processados, indicando uma menor variabilidade e maior estabilidade do modelo para esses dados.

Embora a acurácia e o recall dos dados originais sejam ligeiramente superiores, a variação dos resultados para os dados originais é maior (desvio padrão de 0.0093) comparada aos dados préprocessados (desvio padrão de 0.0045).

Segue os melhores parametros do método, conforme a tabela 12 abaixo:

Tabela 12: Melhores Parâmetros e Métricas de Desempenho

Método	Melhores Parâmetros	Acurácia	F1	Recall
PSO (Originais)	'p': 1, 'n_neighbors': 1, 'weights': 'uniform'	93%	92%	93%
PSO (Pré-Processados)	'p': 1, 'n_neighbors': 1, 'weights': 'uniform'	92%	92%	92%

Os dados originais apresentam uma leve vantagem em termos de acurácia e recall, enquanto a métrica F1 é igual para ambas as configurações, mas em termos de tempo, os dados préprocessados reduziu mais de 50% em relação aos dados originais.

A consistência dos melhores parâmetros entre os dados originais e pré-processados indica que o PSO é robusto e eficiente na busca de parâmetros ótimos para o KNN.

4.4 Comparação dos Métodos DE e PSO

Comparando os modelos da Evolução Diferencial (DE com dados originais e DE com dados préprocessados) e Enxame de Partículas (PSO com dados originais e PSO com dados pré-processados),

- Em ambas as técnicas (DE e PSO), os dados originais geralmente apresentam métricas ligeiramente melhores em termos de acurácia, F1 e recall em comparação com os dados pré-processados. No entanto, a diferença no desempenho é relativamente pequena, com as métricas dos dados pré-processados sendo muito próximas às dos dados originais.
- Os dados pré-processados tendem a apresentar desvios padrão menores, indicando maior estabilidade e consistência nos resultados, especialmente com PSO. A menor variação nos resultados dos dados pré-processados sugere que o modelo é mais robusto e menos sensível a pequenas mudanças nos dados.
- Os dados pré-processados reduzem o tempo de processamento em mais de 50%, o que é um ganho significativo em eficiência computacional. Considerando o tempo de processamento reduzido e a mínima perda de desempenho, os dados pré-processados representam uma escolha vantajosa em cenários onde a eficiência computacional é crucial.

5 Conclusão

Neste trabalho, foi realizada uma análise comparativa entre os algoritmos de Evolução Diferencial (DE) e Otimização por Enxame de Partículas (PSO), aplicados em dados originais e préprocessados. Nossos resultados mostram que o pré-processamento dos dados tem um impacto significativo no desempenho de ambos os algoritmos, mantendo o desempenho do modelo, e também reduzindo o tempo de execução em mais de 50

Para o algoritmo DE, observamos que a acurácia, F1 e recall para os dados originais foram de 93.01%, 92.74% e 93.01%, respectivamente. Já para os dados pré-processados, os mesmos indicadores foram ligeiramente inferiores, com valores de 92.15%, 91.97% e 92.15%. Apesar da leve queda nos indicadores de desempenho, a redução significativa no tempo de execução torna o pré-processamento uma etapa vantajosa no contexto de aplicações onde o tempo é um fator crítico.

No caso do algoritmo PSO, os resultados seguiram uma tendência semelhante. Para os dados originais, a acurácia, F1 e recall foram de 93%, 92% e 93%, respectivamente. Para os dados pré-processados, os valores foram 92%, 92% e 92%. Novamente, a pequena diminuição no desempenho é compensada pela considerável redução no tempo de processamento.

Portanto, concluímos que, embora o pré-processamento dos dados possa resultar em uma leve diminuição nas métricas de desempenho, a significativa redução no tempo de execução torna esta prática altamente recomendável, especialmente em cenários onde a eficiência temporal é crucial. Caso não seja o caso, pelo ganho de tempo com o pré-processamento dos dados, poderia ser feito um ajuste nos parametros dos métodos para alcançar melhores resultados.

Referências

- https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+based+ on+eating+habits+and+physical+condition
- https://doi.org/10.1016/j.dib.2019.104344
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. *Journal of machine learning research*.
- Liu, H., & Motoda, H. (Eds.). (2007). Computational methods of feature selection. CRC Press.
- Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. *Journal of the Royal Statistical Society. Series B (Methodological)*.
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer.
- Storn, R. and Price, K. (1997). Differential Evolution A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization
- Kennedy, J., & Eberhart, R. C. (1995). Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks