Fairness-Aware Graph Attention Networks

About

- O. Deniz Kose, Yanning Shen
- University of California, Irvine
- ACM Transactions on Knowledge Discovery from Data, Vol. 18, Issue 7
- August 2024
- https://doi.org/10.1145/3645096

Introduction From GNN to GAT

- Nodes used to contribute equally to embeddings
- GCN create node's weight based on its degree
- Better ways to represent neighborhood importance?
- Graph Attention Networks (Veličković et al. 2018)

$$\alpha_{ij} = \frac{\exp(\mathsf{LeakyReLU}(W_2[WH_i^{k-1} \mid WH_j^{k-1}]))}{\sum_{l \in N(i)} \exp(\mathsf{LeakyReLU}(W_2[WH_i^{k-1} \mid WH_l^{k-1}]))} \qquad H_i^k = \sigma\left(\sum_{j \in N(i)} \alpha_{ij}WH_j^{k-1}\right)$$

Problem

Algorithmic Bias

- Disparity in results when a sensitive class is changed
- GNN can propagate and amplify Bias
- No relevant studies on Bias for GATs
- Context of node classification
- Need for expressing bias boundaries

Some notation

Graph $\mathcal{G} := (\mathcal{V}, \mathcal{E})$ where $\mathcal{V} := \{v_1, ..., v_n\}$ and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$

Adjacency matrix: $A \in \{0,1\}^{N \times N}$

Nodes feature matrix: $X \in \mathbb{R}^{N \times F}$ where F is the dim of the features

Sensitive attributes: $s \in \{0,1\}^N$ a single binary attribute for each node

 S_0, S_1 are the set of nodes with sensitive attribute 0 and 1 respectively

Some notation

Inter-edge set: $\mathscr{E}^{\chi} := \{e_{ij} \mid v_i \in \mathcal{S}_a, v_j \in \mathcal{S}_b, a \neq b\}$

Intra-edge set: $\mathscr{E}^{\omega} := \{e_{ij} \mid v_i \in \mathcal{S}_a, v_j \in \mathcal{S}_b, a = b\}$

Set of nodes containing at least one inter-edge: $S^{\chi} := \{v_i \mid \exists e_{ij} \in \mathcal{E}^{\chi}\}$

Set of nodes containing only intra-edges: $\mathcal{S}^{\omega} := \{v_i \mid \forall e_{ij} \in \mathcal{E}^{\omega}\}$

$$\mathcal{S}_0^{\chi} := \mathcal{S}_0 \cap \mathcal{S}^{\chi} \qquad \qquad \mathcal{S}_1^{\chi} := \mathcal{S}_1 \cap \mathcal{S}^{\chi}$$

Attention weight for sensitive classes

Given S_i , S_j such that $i \neq j$, and $v_k \in S_j$

Attention weight assigned to neighbors of another sensitive group $a_k^\chi := \sum_{a \in \mathcal{N}(k) \cap S_i} \alpha_{ka}$

not feasible to calculate for each v_k

The attention weight of a node from a certain \mathcal{S}_i is shared. i.e., $\alpha^\chi := \alpha_k^\chi$

(not to be confused with the actual attention given from a node v_i to a node v_j ; α_{ij})

Classification disparity

$$\delta_{\hat{y}} := \| \operatorname{mean}(\hat{y}_j \mid s_j = 0) - \operatorname{mean}(\hat{y}_j \mid s_j = 1) \|_2$$

where \hat{y}_j is the soft label prediction for node v_j (predicted *pdf*), while the mean (\cdot, \cdot) function gets the sample mean value for the distribution

 $(\hat{c}_j$, the hard label prediction for node v_j will also be used)

Bias analysis Axiom 1

Let the sample mean vectors for S_s with $s \in \{0,1\}$ be:

- $\bar{\mathbf{z}}_s^{l+1} := \text{mean}(\mathbf{z}_j^{l+1} \mid v_j \in \mathcal{S}_s), \text{ where } \mathbf{z}_i^{l+1} := \sum_{j \in \mathcal{N}_i} \alpha_{ij}^l \mathbf{c}_j^{l+1} \text{ is the aggregation for node } v_i \text{ at layer } l+1$
- $\bar{\mathbf{c}}_s^{l+1} := \text{mean}(\mathbf{c}_j^{l+1} \mid v_j \in \mathcal{S}_s)$, where $\mathbf{c}_i^{l+1} := \mathbf{W}^l \mathbf{h}_i^l$

and let $max(\cdot, \cdot)$ outputs the element-wise maximum of the input vectors

- 1. $||c_i^{l+1} \bar{c}_s^{l+1}||_{\infty} \le (\Delta_c^{(s)})^{l+1}, \forall v_j \in \mathcal{S}_s \text{ with } s \in \{0,1\} \text{ where } \Delta_c^{l+1} = \max((\Delta_c^{(0)})^{l+1}, (\Delta_c^{(1)})^{l+1})$
- 2. $||z_j^{l+1} \bar{z}_s^{l+1}||_{\infty} \le (\Delta_z^{(s)})^{l+1}, \forall v_j \in \mathcal{S}_s \text{ with } s \in \{0,1\} \text{ where } \Delta_z^{l+1} = \max((\Delta_z^{(0)})^{l+1}, (\Delta_z^{(1)})^{l+1})$

where the delta terms correspond to the maximum deviation value at the I + 1 layer between each sensitive class

Bias analysis

Theorem

Theorem 4.1. The disparity between the representations of different sensitive groups that are output by the 1th GAT layer, δ_h^{l+1} , can be upper bounded by

$$\delta_h^{l+1} \le L \Big(\sigma_{max}(\mathbf{W}^l) \Big| (R_1^{\chi} \alpha^{\chi} + R_0^{\chi} \alpha^{\chi} - 1) \Big| \delta_h^l + 2\sqrt{N} \Delta_c^{l+1} + 2\sqrt{N} \Delta_z^{l+1} \Big), \tag{4}$$

where L is the Lipschitz constant of the utilized nonlinear activation, $\sigma_{max}(\cdot)$ denotes the largest singular value of the input matrix, and $R_1^{\chi} := \frac{|S_1^{\chi}|}{|S_1|}, R_0^{\chi} := \frac{|S_0^{\chi}|}{|S_0|}$.

Based on the above, a GAT architecture proposal is made

Objective: minimize the implied terms at the disparity upper bound

ALGORITHM 1: FairGAT

Data: $G := (V, \mathcal{E}), X, s, \alpha_{max}^{\chi}, \eta$

Result: ŷ

- S1. Employ fair attention learning described in Equation (10) at every attention layer.
- S2. Apply spectral normalization to \mathbf{W}^l at every layer l to ensure that $\sigma_{max}(SN(\mathbf{W}^l)) = 1$.
- S3. Scale representations \mathbf{Z}^{l+1} at every l and \mathbf{C}^{l+1} at every attention layer l by a factor η .

Fair Attention Learning

(3) $\boldsymbol{h}_{i}^{l+1} = \sigma \left(\sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{l} \cdot \boldsymbol{W}^{l} \boldsymbol{h}_{j}^{l} \right).$

$$(\alpha^{\chi})^* = \min_{\alpha^{\chi}} |R_1^{\chi} \alpha^{\chi} + R_0^{\chi} \alpha^{\chi} - 1| \longrightarrow (\alpha^{\chi})^* = \begin{cases} \alpha_{max}^{\chi}, & \text{if } R_1^{\chi} + R_0^{\chi} < \frac{1}{\alpha_{max}^{\chi}}, \\ \frac{1}{R_1^{\chi} + R_0^{\chi}}, & \text{else.} \end{cases}$$
s.t. $0 \le \alpha^{\chi} \le \alpha_{max}^{\chi}$.

where α_{max} is an hyperparameter limit less or equal to 1

$$(1) \ e\left(\boldsymbol{h}_{i}^{l}, \boldsymbol{h}_{j}^{l}\right) = \operatorname{LReLU}\left((\boldsymbol{a}^{l})^{\top} \cdot \left[\boldsymbol{W}^{l} \boldsymbol{h}_{i}^{l} \| \boldsymbol{W}^{l} \boldsymbol{h}_{j}^{l}\right]\right),$$

$$(2)$$

$$\alpha_{ij}^{l} = \begin{cases} (\alpha^{\chi})^{*} \frac{\exp\left(e\left(\boldsymbol{h}_{i}^{l}, \boldsymbol{h}_{j}^{l}\right)\right)}{\sum_{j' \in \mathcal{N}_{i} \cap \mathcal{S}_{q}} \exp\left(e\left(\boldsymbol{h}_{i}^{l}, \boldsymbol{h}_{j'}^{l}\right)\right)}, & \text{if } v_{i} \in \mathcal{S}_{p}, v_{j} \in \mathcal{S}_{q} \text{ and } p \neq q \\ (\alpha^{\omega})^{*} \frac{\exp\left(e\left(\boldsymbol{h}_{i}^{l}, \boldsymbol{h}_{j}^{l}\right)\right)}{\sum_{j' \in \mathcal{N}_{i} \cap \mathcal{S}_{q}} \exp\left(e\left(\boldsymbol{h}_{i}^{l}, \boldsymbol{h}_{j'}^{l}\right)\right)}, & \text{if } v_{i} \in \mathcal{S}_{p}, v_{j} \in \mathcal{S}_{q} \text{ and } p = q \end{cases}$$

$$(10)$$

Spectral normalization

The term W^l is normalized at every layer, $\sigma_{\max}(\mathsf{SN}(\mathbf{W}^l)) = 1$

The largest singular value, also known as the *spectral norm*, of a matrix $\mathbf{W} \in \mathbb{R}^{F_1 \times F_2}$ equals $\sigma_{max}(\mathbf{W}) = \max_{\boldsymbol{\xi} \in \mathbb{R}^{F_1}, \boldsymbol{\xi} \neq \mathbf{0}} \frac{\|\mathbf{W}\boldsymbol{\xi}\|_2}{\|\boldsymbol{\xi}\|_2}$. Consider the input–output relation $\hat{\mathbf{y}} = \sigma(\mathbf{W}\mathbf{h})$. Here, if a perturbation $\boldsymbol{\xi}$ is applied to the input, i.e., $\tilde{\mathbf{y}} = \sigma(\mathbf{W}(\mathbf{h} + \boldsymbol{\xi}))$, we have that

$$\frac{\|\tilde{y} - \hat{y}\|_2}{\|\xi\|_2} = \frac{\|\sigma(Wh) - \sigma(W(h + \xi))\|_2}{\|\xi\|_2} \le \frac{L\|(W\mathbf{h}) - (W(\mathbf{h} + \xi))\|_2}{\|\xi\|_2} \le L\frac{\|W\xi\|_2}{\|\xi\|_2} \le L\sigma_{\max}(W)$$

this also helps improve the robustness and generalizability of the model

FairGAT Scaling representation

Maximal deviation influence disparity, so it get scaled by an hyperparameter η

$$\|\eta \mathbf{z}_{j}^{l+1} - \eta \mathbf{z}_{s}^{l+1}\|_{\infty} = \eta \|\mathbf{z}_{j}^{l+1} - \mathbf{z}_{s}^{l+1}\|_{\infty} \le (\eta \Delta_{z}^{(s)})^{l+1}, \, \forall v_{j} \in S_{s}$$

 η provides a trade-off between fairness and utility

Experimental Results

Table 1. Comparative Results

	Pokec-z			Pokec-n			Recidivism		
	Acc (%)	Δ_{SP} (%)	Δ_{EO} (%)	Acc (%)	Δ_{SP} (%)	Δ_{EO} (%)	Acc (%)	Δ_{SP} (%)	Δ_{EO} (%)
GAT	66.26 ± 0.9	3.63 ± 2.6	4.30 ± 2.4	67.50 ± 0.4	2.26 ± 2.8	3.56 ± 1.7	95.63 ± 0.2	8.08 ± 1.7	2.09 ± 1.0
FairGNN	67.71 ± 0.7	2.27 ± 0.9	2.31 ± 1.0	65.81 ± 0.8	2.21 ± 1.4	2.97 ± 1.3	95.18 ± 0.2	7.31 ± 1.9	1.27 ± 1.0
EDITS	63.89 ± 0.7	3.27 ± 2.0	2.93 ± 2.2	63.47 ± 0.9	2.01 ± 1.5	2.48 ± 2.3	88.52 ± 0.6	6.59 ± 2.1	1.73 ± 1.1
NIFTY	66.59 ± 0.8	4.21 ± 1.4	4.19 ± 2.7	68.41 ± 1.5	1.41 ± 0.7	2.30 ± 1.8	88.52 ± 2.3	6.74 ± 2.4	1.48 ± 1.9
FairGAT	66.29 ± 0.6	2.55 ± 0.5	1.63 ± 0.9	67.81 ± 1.1	0.71 ± 0.7	1.23 ± 0.6	94.93 ± 0.1	7.39 ± 1.8	1.02 ± 0.05

Statistical Parity
$$\Delta_{SP} := \left| P(\hat{c}_j = 1 \mid s_j = 0) - P(\hat{c}_j = 1 \mid s_j = 1) \right|$$

Equal Opportunity
$$\Delta_{EO} := \left| P(\hat{c}_j = 1 \mid y_j = 1, s_j = 0) - P(\hat{c}_j = 1 \mid y_j = 1, s_j = 1) \right|$$

Lower is better

Conclusion

- Improved fairness metrics with similar accuracy than the rest of models.
- Maintained complexity, thus, utility.
- More work needs to be done on GNN interpretability and theoretical bias analysis.