Quiz 1: Control Systems Eng. 2019/03/28

Student Number: [] Name:
-------------------	---------

- 1. (20 points = 2×10 pts)
- (1) Solve the following differential equations with the given initial conditions:

$$y'' - y = 0$$
 with initial conditions $y(0) = -1$ and $y'(0) = 1$.

Hint:
$$L(f'(t)) = sL(f(t)) - f(0)$$
, $L(f''(t)) = sL(f'(t)) - f'(0)$

(2) Write MATLAB code to find the transfer function, G(s) = Y(s) / R(s), for the following system represented in state space.

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -7 & -9 & -2 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 5 \\ 8 \\ 2 \end{bmatrix} r$$

$$y = \begin{bmatrix} 1 & 3 & 4 & 6 \end{bmatrix} \mathbf{x}$$

2. (20 points) An *R-C* network mechanization of a lead compensator is shown in the following figure. Find its transfer function, $V_o(s)/V_i(s)$.

3. (20 points = 2×10 pts) Consider the following block diagram:

- (1) Find a transfer function, $T(s) = \frac{Y(s)}{R(s)}$.
- (2) Find a state-space representation of the block diagram.
- 4. (20 points) Find the transfer function of the following state-space representation.

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \mathbf{u}, \quad \mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

5. (20 points)

- (1) (10 pts) Find the linear approximation of the function, $f(x) = \sqrt{1+2x}$ at x = 4.
- (2) (5 pts) Use it to find an approximation for the value of f(4.3).
- (3) (5 pts) Calculate the absolute difference between real value and approximated value at x = 4.3. (use: the real value of f(4.3) = 3.098)