Neural Query Expansion for Code Search

The 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages

Authors

Swarat Chaudhuri

Satish Chandra

Background

NCS是一项代码搜索技术,采用自然语言查询并输出相关代码段

NCS存在的问题:

- 1)查询语句较短时NCS性能下降
- 2) 查询语句较短时有更多的查询重新重写
- 3) 查询语句较短时需要更多的时间浏览结果

Background

Definition

D 程序的语料库

d 某一个具体的程序 $(d \in D)$

Vm D中所有的方法名

split 一个基于Snake和Camel的切割函数

Vk 由Vm中的方法名经过split函数得到的关键词集合

$$V_k = \bigcup_{v \in V_m} split(v)$$

Definition

查询序列
$$X = \{x_1, \dots, x_n\} \ x_i \in V_k$$
 结果序列 $R = \langle d_1, \dots, d_k \rangle \ d_X \in \mathcal{D}$ $rank(d_X, R) = \mathbf{i}$ $M: \varphi(v_k) -> S(D)$ $Q: \mathcal{P}(V_k) \to \mathcal{P}(V_k)$ $Y = \langle y_1, \dots, y_m \rangle$

NQE

Evaluation

Two instantiations: NCS and BM25

Another alternate query expansion model: FIM

Data Collection

737 public Android repositories(105,747 files 308,309 valid method bodies)

95%, 3%, and 2% for training, testing, and validation

GeneratingXquery from Y (TF-IDF dataset)

- 1. from d, the method calls are extracted to form Y.
- 2. take the top 50% TF-IDF methods from Y
- 3. extract the keywords
- 4. form candidate tokens(Xcand)

Manually creating Xquery (Manual Dataset)

given Y, create an Xquery from lengths 1 to 6.

RQ1: Does NQE improve performance for shorter queries?

Table 2. The number of Stack Overflow questions answered in the top 1, 5, 10 results with varying lengths of the queries. Search performance increases when *NCS* is aided by *NQE*, especially for shorter queries.

	Query Length									
Top K	1			4			All			
	NCS	NCS+	NCS+	NCS	NCS+	NCS+	NCS	NCS+	NCS+	
	NCS	FIM	NQE	NCS	FIM	NQE		FIM	NQE	
1	10	10	14	12	12	16	20	18	22	
5	15	15	22	20	21	29	33	28	34	
10	18	18	25	23	25	33	40	40	40	
	BM25	BM25+	BM25+	BM25	BM25+	BM25+	BM25	BM25+	BM25+	
	DIVI25	FIM	NQE	DIV125	FIM	NQE	DIVIZS	FIM	NQE	
1	11	11	17	13	14	16	16	16	18	
5	17	15	20	21	20	22	26	22	24	
10	19	17	24	22	21	22	30	27	28	

Table 3. MRR results on *TF-IDF* dataset. Note that *NCS* + *NQE* outperforms *NCS* on short queries of length 1 and 2.

Query	Mean Reciprocal Rank							
Length	NCS	NCS +	NCS +	BM25	BM25 +	BM25 +		
	NCS	FIM	NQE	DIVIZO	FIM	NQE		
1	0.092	0.109	0.284	0.060	0.045	0.219		
2	0.416	0.428	0.543	0.276	0.193	0.390		
3	0.672	0.547	0.574	0.528	0.356	0.424		
4	0.807	0.706	0.650	0.657	0.494	0.542		
5	0.852	0.727	0.679	0.649	0.491	0.531		
6	0.951	0.839	0.812	0.729	0.574	0.605		

Figure 6. Top 1 ranking changes between *NCS+NQE* vs *NCS*.

Table 4. MRR results on *Manual* dataset. Note similar trends to Table 3.

Query	Mean Reciprocal Rank							
Length	NCS	NCS +	NCS +	BM25	BM25 +	BM25 +		
	NCS	FIM	NQE	DIV125	FIM	NQE		
1	0.040	0.080	0.178	0.035	0.049	0.139		
2	0.319	0.292	0.352	0.272	0.258	0.310		
3	0.545	0.381	0.456	0.440	0.310	0.396		
4	0.706	0.438	0.560	0.573	0.364	0.492		
5	0.782	0.430	0.609	0.690	0.378	0.547		
6	0.814	0.481	0.626	0.721	0.452	0.589		

RQ2: How does the quality of NQE sequence prediction affect the end-

result?

Figure 7. Top 10 ranking changes between *NQE* + *NCS* vs *NCS* when the prediction is correct, wrong, or close on the *TF-IDF* dataset.

RQ3: Do these findings generalize to other search

Future Work

- 1、NQE的一个修改是在token的子集上进行序列预测
- 优点: 1) 较小的解码器词汇集大小
 - 2) 处理包含公共token的稀有方法名称的能力

2、将NQE与集合扩展方法进行对比