1. Introduction

Let δ_X denote an T-parameterized metric space $\delta_X = (X, d_X(\cdot))$, where $d_X : T \times X \times X \to \mathbb{R}_+$ is called a *time-varying metric* and X is a finite set with fixed cardinality |X| = n. δ_X as called a *dynamic metric space* (DMS) iff $d_X(\cdot)(x, x') : \mathbb{R} \to \mathbb{R}_+$ is continuous for every pair $x, x' \in X$ and, for every $t \in T$, $(X, d_X(t))$ is a pseudo-metric space. For a fixed $t \in T$, the *Vietoris-Rips* complex at scale $\epsilon \in \mathbb{R}$ is the abstract simplicial complex given by

$$\operatorname{Rips}_{\epsilon,\mathbf{t}}(X,d_X(t)):=\{\sigma\subset X:d_X(t)(x,x')\leq\epsilon\text{ for all }x,x'\in\sigma\}$$

By connecting successive complexes via inclusion maps $\operatorname{Rips}_{\epsilon, t} \hookrightarrow \operatorname{Rips}_{\epsilon', t}$ for $\epsilon < \epsilon'$, one obtains a family of complexes is called the *Vietoris-Rips filtration* $\operatorname{Rips}_{\alpha, t} := \{\operatorname{Rips}_{\epsilon}\}_{\epsilon \leq \alpha}$ as some fixed $t \in T$. These inclusions induce maps at level of homology, i.e.

$$H_p(Rips_{\epsilon,t}) \hookrightarrow H_p(Rips_{\epsilon',t}) \hookrightarrow \cdots \hookrightarrow H_p(Rips_{\alpha,t})$$

where $0 \le \epsilon \le \epsilon' \le \alpha$. The pth Betti number is defined as the dimension of any of these homology groups $\beta_p = \dim(H_p(\operatorname{Rips}_{\alpha,t}))$. By restricting our attention to the persistent homology groups which were born before $b \in \mathbb{R}$ and died after $d \in \mathbb{R}$, we obtain the p-th persistent Betti number with respect to (b,d) at time $t \in T$:

$$\beta_{p}^{b,d} = \left(\dim \circ \mathcal{H}_{p}^{i,j} \circ \operatorname{Rips} \circ d_{X}\right)(t)$$

This quantity can be readily visualized as the number of persistent pairs lying inside the box $[0, b] \times (d, \infty)$ on the collection of all persistence diagrams for varying $t \in T$. We consider the problem of maximizing the *p*-th persistent Betti number $\beta_p^{b,d}$ over T:

$$t_* = \underset{t \in T}{\arg\max} \beta_p^{b,d}(t) \tag{1}$$

Since Betti numbers are integer-valued invariants, direct optimization is difficult. Moreover, the space of persistence diagrams is [banach space statement].... Nonetheless, the differentiability of persistence has been studied extensively in [show chain rule paper on persistence diagrams]...

A motivating derivation

For the moment, we omit the subscript $t \in T$ and focus our attention on a particular instance in time. Let $B_p(X_*) \subseteq Z_p(X_*) \subseteq C_p(X_*)$ denote the p-th boundary, cycle, and chain groups of X_* , respectively. Given a simplicial filtration X_{\bullet} , let boundary operator $\partial_p: C_p(X_{\bullet}) \to C_p(X_{\bullet})$ denote the boundary operator sending p-chains to their respective boundaries. With a slight abuse of notation, we use ∂_p to also denote the filtration boundary matrix with respect to the ordered basis $(\sigma_i)_{1 \le i \le m_p}$. Recall the p-th persistent Betti number between scales (b,d) is defined as:

$$\beta_p^{b,d} = \dim(H_p^{b,d}) = \dim(Z_p(X_b)/(Z_p(X_b) \cap B_p(X_d)) = \dim(Z_p(X_b)) - \dim(Z_p(X_b) \cap B_p(X_d))$$
 (2)

Note we may rewrite (2) with a straightforward application of the rank-nullity theorem:

$$\beta_p^{b,d} = \dim\left(C_p(X_b)\right) - \dim\left(B_p(X_b)\right) - \dim\left(Z_p(X_b) \cap B_p(X_d)\right) \tag{3}$$

Let ∂_p^b and $\partial_p^{b,d}$ denote matrices whose columns span the subspaces $B_p(X_b)$ and $Z_p(X_b) \cap B_p(X_d)$, respectively. We address their computation in section (??). Observe that equation (3) can be written as:

$$\beta_p^{b,d} = |\partial_p^b| - \operatorname{rank}(\partial_p^b) - \operatorname{rank}(\partial_p^{b,d}) \tag{4}$$

$$= |\partial_p^b| - \left(\operatorname{rank}(\partial_p^b) + \operatorname{rank}(\partial_p^{b,d})\right) \tag{5}$$

$$= |\partial_p^b| - \operatorname{rank}\left(\left\lceil \frac{\partial_p^b|}{0} \frac{0}{|\partial_p^{b,d}|}\right\rceil\right) \tag{6}$$

where here we use $|M| = \dim(\operatorname{dom}(M))$. Thus, in the Rips-specific setting, the persistence Betti number can be expressed as a difference between the number of *p*-simplices satisfying $\{\operatorname{diam}(\sigma) \leq b\}$ for some fixed $b \in \mathbb{R}_+$ and the rank of a particular block matrix.

Relaxation: We would like a continuous relaxation of equation (6) amenable to optimization.

A remarkable result established by [] show that the rank(\cdot) function is lower-bounded by the convex envelope... [describe this more in detail]

2. Computation

Bases computation

In this section, we discuss the computation of suitable bases for the subspaces $Z_p(X_*)$, $B_p(X_*)$, and $Z_p(X_*) \cap B_p(X_*)$. In particular, we address two cases: the *dense* case, wherein the aforementioned bases are represented densely in memory, and the *sparse* case, which uses the structure of a particular decomposition of the boundary matrices to derive bases whose size in memory inherits the sparsity pattern of the decomposition.

Dense case: < TODO >
Sparse case: < TODO >

A. Appendix

Dynamic Metric Spaces

Consider an \mathbb{R} -parameterized metric space $\delta_X = (X, d_X(\cdot))$ where X is a finite set and $d_X(\cdot) : \mathbb{R} \times X \times X \to \mathbb{R}_+$, satisfying:

- 1. For every $t \in \mathbb{R}$, $\delta_X(t) = (X, d_X(t))$ is a pseudo-metric space¹
- 2. For fixed $x, x' \in X$, $d_X(\cdot)(x, x') : \mathbb{R} \to \mathbb{R}_+$ is continuous.

When the parameter $t \in \mathbb{R}$ is interpreted as *time*, the above yields a natural characterization of a "time-varying" metric space. More generally, we refer to an \mathbb{R}^h -parameterized metric space as *dynamic metric space*(DMS). Such space have been studied more in-depth [] and have been shown...

Homology

Let K be an abstract simplicial complex and \mathbb{F} a field. A p-chain is a formal \mathbb{F} -linear combination of p-simplices of K. The collection of p-chains under addition yields an \mathbb{F} -vector space denoted $C_p(K)$. The p-boundary $\partial_p(\sigma)$ of a p-simplex $\sigma \in K$ is the alternating sum of its oriented co-dimension 1 faces, and the p-boundary of a p-chain is defined linearly in terms of its constitutive simplices. A p-chain with zero boundary is called a p-cycle, and together they form $Z_p(K) = \operatorname{Ker} \partial_p$. Similarly, the collection of p-boundaries forms $B_p(K) = \operatorname{Im} \partial_{p+1}$. Since $\partial_p \circ \partial_{p+1} = 0$ for all $p \geq 0$, then the quotient space $H_p(K) = Z_p(K)/B_p(K)$ is well-defined, and called the p-th homology of K with coefficients in \mathbb{F} . If $\{K_i\}_{i \in [m]}$ is a filtration, then the inclusion maps $K_i \subset K_{i+1}$ induce linear transformations at the level of homology:

$$H_p(K_1) \to H_p(K_2) \to \cdots \to H_p(K_m)$$
 (7)

Simplices whose inclusion in the filtration creates a new homology class are called *creators*, and simplices that destroy homology classes are called *destroyers*. The filtration indices of these creators/destroyers are referred to as *birth* and *death* times, respectively. The collection of birth/death pairs (i,j) is denoted $dgm_p(K)$, and referred to as the *p*-th *persistence* diagram of K. If a homology class is born at time i and dies entering time j, the difference |i-j| is called the *persistence* of that class. In practice, filtrations often arise from triangulations parameterized by geometric scaling parameters, and the "persistence" of a homology class actually refers to its lifetime with respect to the scaling parameter.

Rips complex

$$\operatorname{Rips}_{\epsilon}(X) = \{ S \subseteq X : S \neq \emptyset \text{ and } \operatorname{diam}(S) \leq \epsilon \}$$
 (8)

Letting the scale parameter $\epsilon \in \mathbb{R}$ vary, one obtains a filtration of simplicial complexes connected by inclusion maps:

$$\operatorname{Rips}_{\epsilon}(X) \to \operatorname{Rips}_{\epsilon'}(X) \to \cdots \to \operatorname{Rips}_{\epsilon''}(X)$$

¹This is required so that if one can distinguish the two distinct points $x, x' \in X$ incase $d_X(t)(x, x') = 0$ at some $t \in \mathbb{R}$.