CARACTERIZACIÓN ESPECTRAL DE MÓDULOS FOTOVOLTAICOS DE CONCENTRACIÓN A PARTIR DE VARIABLES ATMOSFÉRICAS MEDIANTE TÉCNICAS DE INTELIGENCIA ARTIFICIAL

propuesto por

Dr.Pedro Manuel Rodrigo

DEEP LEARNING VS MACHINE LEARNING

CONTENIDOS

- Cel.Foto.Concentración
- El problema
- Los datos
- Metodología Tecnología
- Machine Learning
- Deep Learning
- Resultados
- Próximo pasos

SISTEMAS FOTOVOLTAICOS DE CONCENTRACIÓN

Elementos ópticos para concentrar la luz solar sobre las células

RECORD 46% EFICIENCIA EN APLICACIONES SOLARES

SISTEMAS FOTOVOLTAICOS DE CONCENTRACIÓN

P-PK: Power Peak

DNI: Direct Normal Irradiance

TF: Thermal Factor

SF: Spectral Factor

$$P = P_{pk} \cdot \frac{DNI}{1000 W/m^2} \cdot SF \cdot TF$$

ES CAPITAL PODER PREDECIR LA PONTENCIA QUE VA A GENERAR UN SISTEMA RENOVABLE

EL PROBLEMA

Calcular SF es caro. Se necesitan simuladores solares y espectrorradiómetros.

$$SF = \frac{\min_{j} \left[\int E(\lambda) \cdot SR_{j}(\lambda) \cdot d\lambda \right]}{\min_{j} \left[\int E^{i}(\lambda) \cdot SR_{j}(\lambda) \cdot d\lambda \right]} \cdot \frac{\int E^{i}(\lambda) \cdot d\lambda}{\int E(\lambda) \cdot d\lambda}$$

Se sabe por física que SF depende de tres factores atmosféricos que son baratos de medir-

- -Air Mass
- -Aerosol Optical Depth
- -Precipitable Water

9.094719	0.14540		
	0.14548	4.670454	0.154467
1.037272	0.14548	4.670454	0.423916
7.723984	0.14548	4.670454	0.612491
5.934944	0.14548	4.670454	0.737127
4.819924	0.14548	4.670454	0.821330
4.060702	0.14548	4.670454	0.880082
3.511752	0.14548	4.670454	0.922377
3.097262	0.14548	4.670454	0.953616
2.773908	0.14548	4.670454	0.977192
2.515162	0.14548	4.670454	0.995313
2.303882	0.14548	4.670454	1.009508
2.128505	0.14548	4.670454	1.020666
1.980948	0.14548	4.670454	1.029719
1.855399	0.14548	4.670454	1.036994
1.747567	0.14548	4.670454	1.038944
1.654223	0.14548	4.670454	1.033348
1.572886	0.14548	4.670454	1.028373
1.501624	0.14548	4.670454	1.023837
	7.723984 5.934944 4.819924 4.060702 3.511752 3.097262 2.773908 2.515162 2.303882 2.128505 1.980948 1.855399 1.747567 1.654223 1.572886	7.723984 0.14548 5.934944 0.14548 4.819924 0.14548 4.060702 0.14548 3.511752 0.14548 3.097262 0.14548 2.773908 0.14548 2.515162 0.14548 2.303882 0.14548 2.128505 0.14548 1.980948 0.14548 1.855399 0.14548 1.747567 0.14548 1.654223 0.14548	7.723984 0.14548 4.670454 5.934944 0.14548 4.670454 4.819924 0.14548 4.670454 4.060702 0.14548 4.670454 3.511752 0.14548 4.670454 3.097262 0.14548 4.670454 2.773908 0.14548 4.670454 2.515162 0.14548 4.670454 2.303882 0.14548 4.670454 2.128505 0.14548 4.670454 1.980948 0.14548 4.670454

LOS DATOS

129.546 registros en diferentes localizaciones:

- -Solar Village en Arabia Saudi
- -Alta Floresta en Brasil
- -Frenchman Flat en USA
- -Granada en España
- -Pekín en China

	am.am	aod	pw	sf
0	19.094719	0.14548	4.670454	0.154467
1	11.037272	0.14548	4.670454	0.423916
2	7.723984	0.14548	4.670454	0.612491
3	5.934944	0.14548	4.670454	0.737127
4	4.819924	0.14548	4.670454	0.821330
5	4.060702	0.14548	4.670454	0.880082
6	3.511752	0.14548	4.670454	0.922377
7	3.097262	0.14548	4.670454	0.953616
8	2.773908	0.14548	4.670454	0.977192
9	2.515162	0.14548	4.670454	0.995313
10	2.303882	0.14548	4.670454	1.009508
11	2.128505	0.14548	4.670454	1.020666
12	1.980948	0.14548	4.670454	1.029719
13	1.855399	0.14548	4.670454	1.036994
14	1.747567	0.14548	4.670454	1.038944
15	1.654223	0.14548	4.670454	1.033348
16	1.572886	0.14548	4.670454	1.028373
17	1.501624	0.14548	4.670454	1.023837

LOS DATOS: PROCESADO

Se llevaron a cabo varias técnicas:

- -Limpieza: Casteo a dato más preciso.
- -Escalados: Coma flotante.
- -Técnicas de normalización.

METODOLOGIA | TECNOLOGÍA

MACHINE LEARNING

modelo+parámetros óptimos+ bucle infinito

```
getTheForest():
count=11
while(True):
    model = RandomForestRegressor(bootstrap=bool, criterion='mse', max depth=m,
                  max features=x, max leaf nodes=None,
                  min impurity decrease=x, min impurity split=None,
                  min samples leaf=x, min samples split=m,
                  min weight fraction leaf=x, n estimators=s,
                  n jobs=None, oob score=False, random state=None,
                  verbose=x, warm start=False)
    data= pd.read csv('./input/especNum.csv').drop(columns='Unnamed: 0')
    X train, X test, y train, y test = train test split(data.drop(columns='sf'), data.sf,test size=0.5)
    model.fit(X train,y train)
    y pred= model.predict(X test)
    score=r2_score(y_test, y_pred)
    print(score)
    if score > 0.0:
        print(print('YEEEHHHH'))
        dump(model, './output/forest/forestFitted{}.joblib'.format(count))
    del model
```

NO problema de acoplamiento

60%

DATA

DEEP LEARNING

topología+parámetros óptimos+ bucle infinito

```
def eternal():
   early stop = keras.callbacks.EarlyStopping(monitor='val loss', patience=10)
   EPOCHS = 1000
   score=0.0
   count=1
   scaler=getScaler(pd.read_csv('./input/especNum.csv').drop(columns='Unnamed: 0'))
   while(True):
       train_dataset, test_dataset, train_labels ,test labels=getData()
       model = build model(train dataset)
       train dataset=scaler.transform(train dataset)
        test dataset=scaler.transform(test dataset)
        model.fit(train dataset, train labels, epochs=EPOCHS,
                   validation split = 0.2, verbose=0, callbacks=[early stop, PrintDot()])
        y pred= model.predict(test dataset).flatten()
       newScore=r2 score(test labels, y pred)
       print(newScore)
        if newScore>score:
           print('YEEEHHHHHHHHHHHHHHHHH')
           score=newScore
           model.save('./output/keras/kerasSGDScaler{}.h5'.format(count))
           count+=1
        elif score==1:
           raise Exception("APOCALYPSE!!!!!!")
        del model
```

Red Neuronal

RESULTADOS

MACHINE LEARNING

DEEP LEARNING

25 predicciones aleatorias por modelo entre las 129.546 predicciones

RESULTADOS

MACHINE LEARNING

DEEP LEARNING

99.833%

r2_score (%)

99.176%

r2_score (%)

202 predicciones ErrorAbsP>0.1

1038 prediciones ErrorAbsP>0.1

129.546 predicciones totales

Contrastar con nuevos datos

Ecuación Subyacente

¿Publicar?

99% DONE?

