Resource Allocation in Cellular and Ad Hoc Networks

Cellular Convergence

- 4.6 billion cell phones in use today.
- All major forms of modern electronic communication on one platform.
 - Texting (SMS), Email, Web-Browsing, iPod/Podcasts/Music, Games, Location-Based Services...
- Major platform for speech of all types.

Cellular's Evolution

- Pre-Cellular (IMTS)
 - FCC allocation of 11 channels (VHF High)
 - 1976 545 customers in New York, 3700 on waiting list
- October 12, 1983 1st cellular system in Chicago
- 1985 204,000 subscribers in US
- 1988 1,600,000 subscribers in US
- 1990 2nd Generation Cellular in Europe
- 1999 3G (first release R99)
- 2012 4G

Reasons for Cellular Success

- Moore's law
- Distributed processing
- Frequency reuse...
 - Power control allows increased number of cochannel users per unit area.
- High national capacity
 - Keep transmission distances short
 - Higher (Bits/sec/Hz)/km²

A Cell

Classical Design of Cellular Systems

r = Cell Radius d = Co-channel Distance

For Hexagons: $Q = d/r = (3N)^{1/2}$,

N = Number of Cells per Cluster

Interference-Capacity Tradeoff

- High Q => low interference, but
- High N => low capacity

Fixed Channel Allocation (FCA)

Sample channel allocation/occupancy table

$Channels \Rightarrow$	1	2	n-1	n	Cell User
↓ Cells					Traffic
A	1	0	1	0	33
В	0	1	1	0	26
C	0	1	1	1	5
D	0	0	0	1	49

- Traditional Approach: Equal number of channels allocated for each cell this is not a good solution if user traffic is not uniform in all cells.
- A Better Approach: Take into account the average traffic in each cell, the known interference and bandwidth constraints and come up with the best allocation possible.

A Sample Channel Allocation Problem

Traffic Vector **T**: 1 1 1 3

Interference Matrix **I**:

Sub-optimal Allocation A - 1 conflict, cost 1

	<u>channels</u>											
1	0	0	0	0	0	0	0	0	0	1	0	
11	0	0	1	0	0	0	0	0	0	0	0	
cells	0	0	1	0	0	0	0	0	0	0	0	
+	1	0	0	0	0	1	0	0	1	0	0	
	•	•	•		•			·		•	•	
							1	\				_conflict
							•					8

Sample Problem

Traffic Vector **T**: 1 1 1 3

Interference Matrix **I**:

$$\left(\begin{array}{ccccc}
5 & 4 & 0 & 0 \\
4 & 5 & 0 & 1 \\
0 & 0 & 5 & 2 \\
0 & 1 & 2 & 5
\end{array}\right)$$

Optimal Allocation A*- 0 conflicts, cost 0

		_	>								
1	0	0	0	0	0	0	0	0	0	1	0
11	0	0	1	0	0	0	0	0	0	0	0
cells	0	0	1	0	0	0	0	0	0	0	0
₩	1	0	0	0	0	1	0	0	0	0	1

Note: There may not always be a 0 cost assignment.

Still, fewer conflicts \Rightarrow better call quality, lower call blocking rate.

The Philadelphia Problem

Known to take at least 258 channels to get conflict free assignment! Size of search space: $(^{5418}C_{470})$

Interference Matrix:

```
2 1 0 0 1 2 2 1 0 0 0 0 1 1 1 0 0 0 0
   5 2 1 0 0 1 2 2 1 0 0 0 0 1 1 1 0 0 0
0 1 2 5 2 0 0 0 1 2 2 1 0 0 0 0 1 1 0 0 0
0 0 1 2 5 0 0 0 0 1 2 2 0 0 0 0 0 1 0 0 0
 0 0 0 0 5 2 1 0 0 0 0 2 2 1 0 0 0 0 0 0
 10002521000122100100
 2 1 0 0 1 2 5 2 1 0 0 0 1 2 2 1 0 1 1 0
00012000012500000
0 0 0 0 0 2 1 0 0 0 0 0 5 2 1 0 0 0 0 0
100002210000252100100
1 1 1 0 0 0 1 2 2 1 0 0 0 1 2 5 2 1
0 1 1 1 0 0 0 1 2 2 1 0 0 0 1 2
0 0 1 1 1 0 0 0 1 2 2 1 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 0 1 2 2 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 2 2 1 2 5 2
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 2 2 1 2 5
```

Traffic Vector: 5 5 5 8 12 25 30 25 30 40 40 45 20 30 25 15 15 30 20 20 25

Using Heuristic Search

- The Channel Allocation Problem is known to be NP-complete
- Problem representation:
 - Treat A matrix as a row vector
 - Cost function: Given A, the number of "conflicts" (interference constraint violations) is the cost.
 - Neighborhoods for Simulated Annealing,
 Taboo Search, Genetic Algorithms: must
 preserve the number of 1s in each row of A

Using Heuristic Search

- Possible neighborhoods for SA, GS / Mutation for GA:
 - 1. Pick a 0 bit in one of the rows of A and invert it. Also pick a 1 bit in the same row and invert at the same time.
 - 2. With probability P_m mutate a given bit, if inverting from 0 to 1, pick some other 1-bit at random and invert it to 0 and vice-versa
- Crossover for GA: Perform crossover points at ends of rows. In other words, treat all allocations for a single cell as one indivisible unit/gene.

Neighborhood Schemes

Representation of decision variables

Possible neighbor for SA, TS or mutation for GA

 $0010 \ 1\underline{1}0\underline{0} \ 0001 \longrightarrow 0010 \ 1\underline{0}0\underline{1} \ 0001$

Crossover for GA

13

Ad Hoc Networks

- An ad hoc network is a network of nodes in which routing and other network layer functionality resides primarily in the nodes, as opposed to a dedicated infrastructure.

 [Goldsmith/Wicker 2002]
- We allocate channels to users instead of base stations.
- Problem
 - Interference matrix?
 - Traffic vector?
 - Allocation vector?

Suggested References

- Bhaskar Krishnamachari and Stephen B. Wicker, "Global Search Techniques for Problems in Mobile Communications," in *Telecommunications*Optimization: Adaptive and Heuristic Approaches, Eds. David Corne et al., John Wiley & Sons Publishers, October 2000.
- Andrea Goldsmith And Stephen B. Wicker, "Design Challenges For Energy-Constrained Ad Hoc Wireless Networks," *IEEE Wireless Communications Magazine*, August, 2002.
- Stephen B. Wicker, "Digital Telephony and the Question of Privacy," *Communications of the ACM*, Vol. 54, No. 7, July, 2011, pp. 88 98.