Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

-4500.000

ò

500

-2750.000 --3000.000 --3250.000 --3750.000 --4000.000 --4250.000 -

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

1000

1500

Tidspunkt for observasjon (timer)

2000

2500

3000

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -2000.000 -2250.000 -2500.000 Radiell fart m/s -2750.000 -3000.000 -3250.000 -3500.000 -3750.000 ó 1000 2000 3000 4000 5000 6000 7000 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 3.80e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas overflatetemperatur er 2500K og energien transporteres fra kjernen kun via konveksjon

STJERNE B) stjerna er 10 milliarder år gammel, men har bare levd1/10av levetida si

STJERNE C) stjerna fusjonerer helium i kjernen

STJERNE D) stjernas luminositet er 1/10 av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE E) det finnes noe jern i kjernen

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 7.619e+06 kg/m3̂ og temperatur 34 millioner K.

Kjernen i stjerne B har massetet
thet 3.527e+06 kg/m3̂ og temperatur 20 millioner K.

Kjernen i stjerne C har massetet
thet 2.180e+06 kg/m3̂ og temperatur 18 millioner K.

Kjernen i stjerne D har massetet
thet 6.508e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne E har massetet
thet 7.278e+06 kg/m3̂ og temperatur 32 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er nærmest oss

Påstand 2: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig mindre enn den tilsynelatende størrelseklassen i blått filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

Bølgelgende (cm)

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 1.616e+05 kg/m3̂ og temperatur 29.58 millioner K.

Kjernen i stjerne B har massetet
thet 2.276e+05 kg/m3̂ og temperatur 27.59 millioner K.

Kjernen i stjerne C har massetet
thet 2.692e+05 kg/m $\hat{3}$ og temperatur 17.74

millioner K.

Kjernen i stjerne D har massetet
thet $3.184\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 19.52 millioner K.

Kjernen i stjerne E har massetet
thet $3.332\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 25.66 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen~1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_Figur_3_.png$

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen 2B/2B_Figur_1.png

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

4.56

0.00

4.56

9.12

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

41.03

36.47

31.91

27.35

22.80

18.24

13.68

9.12

Vinkelforflytning 3.75 buesekunder i løpet av et millisekund.

13.68 18.24 22.80 27.35 31.91 36.47 41.03

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tønsberg som ligger i en avstand av 150 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 95.24500 km/t.

Filen 3E.txt

Tog1 veier 74600.00000 kg og tog2 veier 78600.00000 kg.

Filen 4A.png

14.20 -14.00 -13.80 -13.60 -13.40 -13.20 -13.00 -

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

ò

Hastigheten til Helium-partikkelen i x-retning er 520 km/s.

20

40

60

Observasjonstid (dager)

80

100

120

Filen 4E.txt

Massen til gassklumpene er 8400000.00 kg.

Hastigheten til G1 i x-retning er 55800.00 km/s.

Hastigheten til G2 i x-retning er 59100.00 km/s.

Filen 4G.txt

Massen til stjerna er 43.90 solmasser og radien er 3.33 solradier.