3.3 Linear and Quadratic Discrimination

Ga young Moon 2025-02-15

Department of Statistics Sungshin Women's University

Outline

1 Linear / Quadratic Discrimination

2 Discriminant Function

3 Example 35, 36

Linear / Quadratic Discrimination

In discriminant analysis, the discriminant function is divided into two types according to its form.

In the case of a discriminant function in the form:

- ullet a straight line \to Linear Discrimination
- \bullet a quadratic curve \to Quadratic Discrimination

Distribution of $x \in \mathbb{R}^p$ given $y = \pm 1$

The distribution of $x \in \mathbb{R}^p$ given $y = \pm 1$

$$\rightarrow N(\mu_{\pm 1}, \sum_{\pm 1}),$$

that is, it is assumed to follow a multivariate normal distribution.

- \rightarrow Multivariate Normal Distribution: distribution that extends the normal distribution to multidimensional spaces
 - $\mu_{\pm 1}$: means of each features, $\sum_{\pm 1}$: matrix of variance-covariance,

$$\sum = \begin{pmatrix} \sigma_{11}^2 & \cdots & \sigma_{1p}^2 \\ \vdots & \ddots & \vdots \\ \sigma_{p1}^2 & \cdots & \sigma_{pp}^2 \end{pmatrix}$$

Probability Density Function of $x \in \mathbb{R}^p$ given $y = \pm 1$

Probability Density Function of $x \in \mathbb{R}^p$ given $y = \pm 1$:

$$f_{\pm 1}(x) = \frac{1}{\sqrt{(2\pi)^p \left| \sum \right|}} \exp \left\{ -\frac{1}{2} (x - \mu_{\pm 1})^T \sum_{\pm 1}^{-1} (x - \mu_{\pm 1}) \right\}$$

Outline

1 Linear / Quadratic Discrimination

2 Discriminant Function

3 Example 35, 36

Posterior probability

Assuming that the probabilities of $y = \pm 1$ are known before seeing the covariates x,

- \rightarrow this is called Prior probability.
 - When the probability function of a random variable X is $f_{\pm 1}(x)$ and the prior probability at that time is $\pi_{\pm 1}$,

The posterior probability:

$$\begin{split} P(Y|X) &= \frac{P(X=x|Y=\pm 1)P(Y=\pm 1)}{P(X=x)} \\ &= \frac{\pi_{\pm 1}f_{\pm 1}(x)}{\pi_{1}f_{1}(x) + \pi_{-1}f_{-1}(x)} \end{split}$$

Minimizing the erroe probability

Assuming that:

- 1. f_{+1} follows a Gaussian distribution,
- 2. The expectation $\mu_{\pm 1}$ and the covariance matrix $\sum_{\pm 1}$ are known,
- 3. $\pi_{\pm 1}$ is also known,

$$\frac{\pi_1 f_1(x)}{\pi_1 f_1(x) + \pi_{-1} f_{-1}(x)} \; \geq \; \frac{\pi_{-1} f_{-1}(x)}{\pi_1 f_1(x) + \pi_{-1} f_{-1}(x)}$$

That is, we can minimize the error probability:

- by estimating y=1, when $\pi_1 f_1(x) \geq \pi_{-1} f_{-1}(x)$.
- by estimating y=-1, when $\pi_1 f_1(x) \leq \pi_{-1} f_{-1}(x)$.

Maximizing the posterior probability

When the number of values is K:

Maximizing the posterior probability applies,

not only to the case of K=2 but also to the case of $K\geq 2.$

• The probability that y=k is P(y=k|x), when $k=1,\cdots,K$ and the covariates x are given.

Maximizing the posterior probability

When estimating $y = \hat{k}$, the probability that the estimate is correct:

$$1 - \sum_{k \neq \hat{k}} P(y = k|x) \ = \ 1 - P(y = \hat{k}|x)$$

- \bullet when the prior probability is known, \hat{k} minimizes the average error probability.
- We choose a k that maximizes the posterior probability $P(y = \hat{k}|x)$.

For simplicity, let's assume K=2, and when maximizing the posterior probability,

 \rightarrow we see the properties at the border between $y=\pm 1.$

Property:

$$-(x-\mu_1)^T \textstyle \sum_{1}^{-1} (x-\mu_1) + (x-\mu_{-1})^T \textstyle \sum_{-1}^{-1} (x-\mu_{-1}) = \log \frac{\left| \sum_{1} \right|}{\left| \sum_{-1} \right|} - 2 \log \frac{\pi_1}{\pi_{-1}}$$

In general, the border is

 \rightarrow a functoin of the quadratic forms of $x^T \sum_1^{-1} x$ and $x^T \sum_{-1}^{-1} x$

and this case is Quadratic Discrimination.

• In particular, when $\sum_1 = \sum_{-1}$ (if we write them as \sum), the border becomes a surface, that we call Linear Discrimination.

When
$$x^T \sum_{1}^{-1} x = x^T \sum_{-1}^{-1} x$$
,

The border becomes:

$$2(\mu_1 - \mu_{-1})^T \sum^{-1} x - (\mu_1^T \sum^{-1} \mu_1 - \mu_{-1} \sum^{-1} \mu_{-1}) \; = \; -2\log\frac{\pi_1}{\pi_{-1}}$$

or more simply,

$$(\mu_1 - \mu_{-1})^T \sum^{-1} (x - \frac{\mu_1 + \mu_{-1}}{2}) \; = \; -\log \frac{\pi_1}{\pi_{-1}}$$

If
$$\pi_1=\pi_{-1},$$

then the border is $x = \frac{\mu_1 + \mu_{-1}}{2}$.

 \bullet If $\pi_{\pm 1}$ and $f_{\pm 1}$ are unknown, we need to estimate them from the training data.

Outline

1 Linear / Quadratic Discrimination

2 Discriminant Function

3 Example 35, 36

[Example 35] Output the border of the Quadratic Discriminant using the R code

The following code draws the border for estimating the mean and covariance of the covariates x for $y=\pm 1$.

```
mu.1=c(2,2); sigma.1=2; sigma.2=2; rho.1=0
mu.2=c(-3,-3); sigma.3=1; sigma.4=1; rho.2=-0.8
n=100
u=rnorm(n); v=rnorm(n); x.1=sigma.1*u+mu.1[1];
y.1=(rho.1*u+sqrt(1-rho.1^2)*v)*sigma.2+mu.1[2]
u=rnorm(n); v=rnorm(n); x.2=sigma.3*u+mu.2[1];
y.2=(rho.2*u+sqrt(1-rho.2^2)*v)*sigma.4+mu.2[2]
f=function(x,mu,inv,de)drop(-0.5*t(x-mu)%*%inv%*%(x-mu)-0.5*log(de))
mu.1=mean(c(x.1,y.1)); mu.2=mean(c(x.2,y.2));
df=data.frame(x.1,y.1); mat=cov(df); inv.1=solve(mat); de.1=det(mat)
df=data.frame(x.2,y.2); mat=cov(df); inv.2=solve(mat); de.2=det(mat)
f.1=function(u,v)f(c(u,v),mu.1,inv.1,de.1);
f.2=function(u,v)f(c(u,v),mu.2,inv.2,de.2)
pi.1=0.5; pi.2=0.5
u = v = seq(-6, 6, length=50); m=length(u); w=array(dim=c(m,m))
for(i \ in \ 1:m)for(j \ in \ 1:m)w[i,j] = log(pi.1) + f.1(u[i],v[j]) - log(pi.2) - f.2(u[i],v[i]) + f.2(u[i],v[i]) - f.2(u[i],v[i]) + f.2(u
```

[Example 35] Output the border of the Quadratic Discriminant using the R code

[Example 35] Output the border of the Linear Discriminant using the R code

If the covariance matrices are equal, we can use the following code:

```
mu.1=c(2,2); sigma.1=2; sigma.2=2; rho.1=0
mu.2=c(-3,-3); sigma.3=1; sigma.4=1; rho.2=-0.8
n=100
u=rnorm(n); v=rnorm(n); x.1=sigma.1*u+mu.1[1];
y.1=(rho.1*u+sqrt(1-rho.1^2)*v)*sigma.2+mu.1[2]
u=rnorm(n); v=rnorm(n); x.2=sigma.3*u+mu.2[1];
y.2=(rho.2*u+sqrt(1-rho.2^2)*v)*sigma.4+mu.2[2]
f=function(x,mu,inv,de)drop(-0.5*t(x-mu)%*%inv%*%(x-mu)-0.5*log(de))
mu.1=mean(c(x.1,y.1)); mu.2=mean(c(x.2,y.2));
df=data.frame(c(x.1,y.1)-mu.1, c(x.2,y.2)-mu.2); inv.1=solve(mat); de.1=det(mat)
inv.2=inv.1: de.2=de.1
f.1=function(u,v)f(c(u,v),mu.1,inv.1,de.1);
f.2=function(u,v)f(c(u,v),mu.2,inv.2,de.2)
pi.1=0.5; pi.2=0.5
u = v = seq(-6, 6, length=50); m=length(u); w=array(dim=c(m,m))
for(i in 1:m)for(j in 1:m)w[i,j]=log(pi.1)+f.1(u[i],v[j])-log(pi.2)-f.2(u[i],v[
# plot
                                                                           18/23
```

[Example 35] Output the border of the Linear Discriminant using the R code

[Example 35] Output the Quadratic Discriminant graph using the R code

Through two border pictures,

- We can see that if covariance matrices are equal, the border is a line, otherwise, it is a quadratic curve.
- In the linear discrimination, if the prior probabilities and the covariance matrices are equal, then the border is the vertical bisector of the line connecting the centers.

[Example 36] Iris data classification: using the classifier via Quadratic Discrimination

When the response takes more than two values

 \rightarrow we can choose the response with the maximum posterior probability.

Fisher's Iris data to use in Ex.36:

- It contains four covariates, and the response variable which is the three species containing 50 samples. (N= 150, p= 4)
- We evaluate it using the test data set that is different from the training data set.

[Example 36] Iris data classification: using the classifier via Quadratic Discrimination

```
f=function(w,mu,inv,de)-0.5*(w-mu)%*%inv%*%t(w-mu)-0.5*log(de)
df=iris; df[[5]]=c(rep(1,50),rep(2,50),rep(3,50))
n=nrow(df); train=sample(1:n,n/2,replace=FALSE); test=setdiff(1:n,train)
mat=as.matrix(df[train,])
mu=list(); covv=list()
for(j in 1:3){
  x=mat[mat[,5]==j,1:4];
  mu[[j]]=c(mean(x[,1]),mean(x[,2]),mean(x[,3]),mean(x[,4]))
  covv[[j]]=cov(x)
g=function(v,j)f(v,mu[[j]],solve(covv[[j]]),det(covv[[j]]))
z=array(dim=n/2)
for(i in test){
  u=as.matrix(df[i,1:4]); a=g(u,1); b=g(u,2); c=g(u,3)
  if(a<b){if(b<c)z[i]=3 else z[i]=2}
  else \{if(a < c)z[i] = 3 else z[i] = 1\}
}
table(z[test],df[test,5])
```

[Example 36] Iris data classification: using the classifier via Quadratic Discrimination

- vertical axis: Values classified using the classifier
- horizontal axis: Values of test data set
- Setosa and Virginia can be seen as being well classified accroding to the test data set,
- on the other hand, in the case of Versicolor,
 there are two values that were incorrectly classified as Virginia when analyzed by the QDA classifier.