SEQUENCE LISTING

<110> Lovejoy, David Chewpoy, R. Bradley Barsyte, Dalia Rotzinger, Susan

<120> TENEURIN C-TERMINAL ASSOCIATED PEPTIDES (TCAP) AND METHODS AND USES THEREOF

THEREO	F												
<130>	090931-360630												
<140> <141>	US 10/510,959 2005-08-10												
<150> <151>	PCT/CA03/00622 2003-05-02												
<150> <151>	US 60/376,879 2002-05-02												
	US 60/377,231 2002-05-03												
	US 60/424,016 2002-11-06												
<160>	138												
<170>	PatentIn version 3.1												
<210><211><212><212><213>	DNA												
<220> <223>													
<400> tccatc	1 tcgg gggtgcaaca ggaagtgacc cgg	caagcca aggctttcct	gtccttcgag	60									
aggatg	geegg agatecaget gageegeegg ege	tccaacc gggagaaacc	ctggctgtgg	120									
ttcgcc	accg ccaagtctct gatcggtaag ggt	gtcatgt tggcggtgac	gcagggccgt	180									
gtggtc	acca acgetetgaa categeeaae gag	gactgca tcaaggtcgc	cgccgtcctc	240									
aacaat	gcgt tctacctgga ggacctgcac ttc	acggtgg agggacgcga	cacgcactac	300									
ttcatc	aaga ccagcctccc ggagagcgac ctg	ggagcgc tgaggctgac	aagcgggagg	360									
aagtcg	octgg agaacggaag tcaacgtgac tgt	gtcccag tccaccaccg	tggtgaacgg	420									
cagaac	egge gettegeega egtggagetg eag	tacggcg ctctagcgct	ccacgtgcgc	480									

tatggcatga	ctctggacga	ggagaaggcg	cgtgtgctgg	agcaggccag	gcagaaggcg	540
ttgtcgagtg	cctggtccag	ggagcaacaa	cgggtgaggg	agggggagga	gggggtgagg	600
ctgtggacgg	agggggagaa	gaggcagctg	ctgagcggga	ggaaggttct	gggctacgac	660
gggtactacg	tcctctccat	agagcagtac	cccgagctag	cagactccgc	taacaacatc	720
cagttcctca	ggcagagcga	aatagggaag	aggtaacaga	cagaatcctc	ggcactggcc	780
gccaaagaga	ctaccccctc	caaatcctgc	ccccaacct	ccctcgcctc	ccccttttc	840
tctaaaaagg	gggagggtcc	aggctagtgc	tgtgtttagc	gccgactagc	tgaaacaaac	900
agtaaaatgt	agaatatctt	aaactgaact	atacctaata	ctaccactgt	ggggcctgaa	960
aatcaaacaa	aacggctcca	actgacgcaa	atgtttgtcc	catgtgctat	acagcgttga	1020
atggactgtg	gactctcttg	aaaagagaga	aaaaaaagtc	aaaactctcg	gtttgtgaaa	1080
ggagaaaaaa	acgtttttt	ttttttaaa	tagacttcct	gaatttgctt	tcggaaaaaa	1140
tattttaaaa	agaaagaaga	aatgtgttta	catacgcata	acactacaac	acgtctggac	1200
taatagaaga	aaagccttct	ggtttcttac	acaggacaac	gtctataatc	tgattctaca	1260
tcctgacgac	tgacctttga	ttgacctttg	cgtactgaaa	aaggtagtgt	tgttgttcgc	1320
agtaggacca	tgggtctcca	atggtggtaa	ctagacagtt	aaaaccactt	gttgaaacca	1380
cttgcttgtt	cttctgcttt	tctttccaaa	agggacaaaa	cagctcccac	caagtgactt	1440
ctttaccaat	actagatcaa	agtgggacgt	tttgggctcg	tgccgaattc		1490

<210> 2

gtggtcacca acgctctgaa catcgccaac gaggactgca tcaaggtcgc cgccgtcctc 240
aacaatgcgt tctacctgga ggacctgcac ttcacggtgg agggacgcga cacgcactac 300

ttcatcaaga ccagcctccc ggagagcgac ctgggagcgc tgaggctgac aagcgggagg 360

<211> 756

<212> DNA

<213> Artificial Sequence

<220>

<223> Rainbow Trout Ten M3 coding sequence of carboxy termini of Ten M3
<400> 2
tccatctcgg gggtgcaaca ggaagtgacc cggcaagcca aggctttcct gtccttcgag 60
aggatgccgg agatccagct gagccgccgg cgctccaacc gggagaaacc ctggctgtgg 120
ttcgccaccg ccaagtctct gatcggtaag ggtgtcatgt tggcggtgac gcagggccgt 180

aagtcgctgg	agaacggaag	tcaacgtgac	tgtgtcccag	tccaccaccg	tggtgaacgg	420
cagaaccggc	gcttcgccga	cgtggagctg	cagtacggcg	ctctagcgct	ccacgtgcgc	480
tatggcatga	ctctggacga	ggagaaggcg	cgtgtgctgg	agcaggccag	gcagaaggcg	540
ttgtcgagtg	cctggtccag	ggagcaacaa	cgggtgaggg	agggggagga	gggggtgagg	600
ctgtggacgg	agggggagaa	gaggcagctg	ctgagcggga	ggaaggttct	gggctacgac	660
gggtactacg	tcctctccat	agagcagtac	cccgagctag	cagactccgc	taacaacatc	720
cagttcctca	ggcagagcga	aatagggaag	aggtaa			756

<210> 3

<211> 251

<212> PRT

<213> Artificial Sequence

<220>

<223> Rainbow Trout Ten M3 carboxy termini of Ten M3

<400> 3

Ser Ile Ser Gly Val Gln Gln Glu Val Thr Arg Gln Ala Lys Ala Phe 5 10 15

Leu Ser Phe Glu Arg Met Pro Glu Ile Gln Leu Ser Arg Arg Arg Ser 20 25 30

Asn Arg Glu Lys Pro Trp Leu Trp Phe Ala Thr Ala Lys Ser Leu Ile 35 40 45

Gly Lys Gly Val Met Leu Ala Val Thr Gln Gly Arg Val Val Thr Asn 50 55 60

Ala Leu Asn Ile Ala Asn Glu Asp Cys Ile Lys Val Ala Ala Val Leu 65 70 75 80

Asn Asn Ala Phe Tyr Leu Glu Asp Leu His Phe Thr Val Glu Gly Arg 85 90 95

Asp Thr His Tyr Phe Ile Lys Thr Ser Leu Pro Glu Ser Asp Leu Gly 100 105 110

Ala Leu Arg Leu Thr Ser Gly Arg Lys Ser Leu Glu Asn Gly Val Asn 115 120 125

Val Thr Val Ser Gln Ser Thr Thr Val Val Asn Gly Arg Thr Arg Arg 130 135 140

Phe Ala Asp Val Glu Leu Gln Tyr Gly Ala Leu Ala Leu His Val Arg 145 150 155 160

Tyr Gly Met Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Glu Gln Ala 165 170 175

Arg Gln Lys Ala Leu Ser Ser Ala Trp Ser Arg Glu Gln Gln Arg Val 180 185 190

Arg Glu Gly Glu Gly Val Arg Leu Trp Thr Glu Gly Glu Lys Arg
195 200 205

Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val 210 215 220

Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 225 230 235 240

Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 245 250

<210> 4

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M1

<400> 4

Met Ile Leu Gly Ile Gln Cys Glu Leu Gln Lys Gln Leu Arg Asn Phe 1 5 10 15

Ile Ser Leu Asp Gln Leu Pro Met Thr Pro Gln Tyr Asn Glu Gly Arg
20 25 30

Cys Leu Glu Gly Gly Lys Gln Pro Arg Phe Ala Ala Val Pro Ser Val 35 40 45 Phe Gly Lys Gly Ile Lys Phe Ala Ile Lys Glu Gly Ile Val Thr Ala 50 55 60

Asp Ile Ile Gly Val Ala Asn Glu Asp Ser Arg Arg Leu Ala Ala Ile 65 70 75 80

Leu Asn Asn Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Glu Gly 85 90 95

Arg Asp Thr His Tyr Phe Ile Lys Leu Gly Ser Leu Glu Glu Asp Leu 100 105 110

Val Leu Ile Gly Asn Thr Gly Gly Arg Arg Ile Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Met Thr Ser Val Leu Asn Gly Arg Thr Arg 130 135 140

Arg Tyr Gly Thr Thr Val Glu Glu Glu Lys Asn His Val Leu Glu Met
165 170 175

Ala Arg Gln Arg Ala Val Ala Gln Ala Trp Thr Gln Glu Gln Arg Arg 180 185 190

Leu Gl
n Glu Gly Glu Gly Thr Arg Val Tr
p Thr Glu Gly Glu Lys 195 200 205

Gln Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe 210 215 220

Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 225 230 235 240

Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg 245 250

<210> 5

<211> 253

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M2

<400> 5

Leu Ile Thr Gly Val Gln Gln Thr Thr Glu Arg His Asn Gln Ala Phe 1 5 10 15

Leu Ala Leu Glu Gly Gln Val Ile Thr Lys Lys Leu His Ala Ser Ile 20 25 30

Arg Glu Lys Ala Gly His Trp Phe Ala Thr Thr Thr Pro Ile Ile Gly 35 40 45

Lys Gly Ile Met Phe Ala Ile Lys Glu Gly Arg Val Thr Thr Gly Val 50 55 60

Ser Ser Ile Ala Ser Glu Asp Ser Arg Lys Val Ala Ser Val Leu Asn 65 70 75 80

Asn Ala Tyr Tyr Leu Asp Lys Met His Tyr Ser Ile Glu Gly Lys Asp 85 90 95

Thr His Tyr Phe Val Lys Ile Gly Ala Ala Asp Gly Asp Leu Val Thr 100 105 110

Leu Gly Thr Thr Ile Gly Arg Lys Val Leu Glu Ser Gly Val Asn Val
115 120 125

Thr Val Ser Gln Pro Thr Leu Leu Val Asn Gly Arg Thr Arg Arg Phe 130 135 140

Thr Asn Ile Glu Phe Gln Tyr Ser Thr Leu Leu Leu Ser Ile Arg Tyr 145 150 155 160

Gly Leu Thr Pro Asp Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Asp 165 170 175

Gln Ala Gly Gln Arg Ala Leu Gly Thr Ala Trp Ala Lys Glu Gln Gln 180 185 190

Lys Ala Arg Asp Gly Arg Glu Gly Ser Arg Leu Trp Thr Glu Gly Glu
195 200 205

Lys Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr 210 215 220

Tyr Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser 225 230 235 240

Asn Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg 245 250

<210> 6

<211> 251

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M3

<400> 6

Pro Ile Phe Gly Val Gln Gln Gln Val Ala Arg Gln Ala Lys Ala Phe 1 5 10 15

Leu Ser Leu Gly Lys Met Ala Glu Val Gln Val Ser Arg Arg Lys Ala 20 25 30

Gly Ala Glu Gln Ser Trp Leu Trp Phe Ala Thr Val Lys Ser Leu Ile 35 40 45

Gly Lys Gly Val Met Leu Ala Val Ser Gln Gly Arg Val Gln Thr Asn 50 55 60

Val Leu Asn Ile Ala Asn Glu Asp Cys Ile Lys Val Ala Ala Val Leu 65 70 75 80

Asn Asn Ala Phe Tyr Leu Glu Asn Leu His Phe Thr Ile Glu Gly Lys 85 90 95

Asp Thr His Tyr Phe Ile Lys Thr Thr Thr Pro Glu Ser Asp Leu Gly
100 105 110

Thr Leu Arg Leu Thr Ser Gly Arg Lys Ala Leu Glu Asn Gly Ile Asn 115 120 125 Val Thr Val Ser Gln Ser Thr Thr Val Val Asn Gly Arg Thr Arg Arg 130 135 140

Phe Ala Asp Val Glu Met Gln Phe Gly Ala Leu Ala Leu His Val Arg 145 150 155 160

Tyr Gly Met Thr Leu Asp Glu Glu Lys Ala Arg Ile Leu Glu Gln Ala 165 170 175

Arg Gln Arg Ala Leu Ala Arg Ala Trp Ala Arg Glu Gln Gln Arg Val 180 185 190

Arg Asp Gly Glu Gly Ala Arg Leu Trp Thr Glu Gly Glu Lys Arg
195 200 205

Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val 210 215 220

Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 225 230 235 240

Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 245 250

<210> 7

<211> 243

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M4

<400> 7

Ser Ile Leu Gly Val Gln Cys Glu Val Gln Lys Gln Leu Lys Ala Phe 1 5 10 15

Val Thr Leu Glu Arg Phe Asp Gln Leu Tyr Gly Ser Thr Ile Thr Ser 20 25 30

Cys Gln Gln Ala Pro Glu Thr Lys Lys Phe Ala Ser Ser Gly Ser Ile 35 40 45

Phe Gly Lys Gly Val Lys Phe Ala Leu Lys Asp Gly Arg Val Thr Thr 50 55 60

Asp 65	Ile	Ile	Ser	Val	Ala 70	Asn	Glu	Asp	Gly	Arg 75	Arg	Ile	Ala	Ala	Ile 80
Leu	Asn	Asn	Ala	His 85	Tyr	Leu	Glu	Asn	Leu 90	His	Phe	Thr	Ile	Asp 95	Gly
Val	Asp	Thr	His 100	Tyr	Phe	Val	Lys	Pro 105	Gly	Pro	Ser	Glu	Gly 110	Asp	Leu
Ala	Ile	Leu 115	Gly	Leu	Ser	Gly	Gly 120	Arg	Arg	Thr	Leu	Glu 125	Asn	Gly	Val
Asn	Val 130	Thr	Val	Ser	Gln	Ile 135	Asn	Thr	Met	Leu	Ile 140	Gln	Leu	Gln	Tyr
Arg 145	Ala	Leu	Сув	Leu	Asn 150	Thr	Arg	Tyr	Gly	Thr 155	Thr	Val	Asp	Glu	Glu 160
Lys	Val	Arg	Val	Leu 165	Glu	Leu	Ala	Arg	Gln 170	Arg	Ala	Val	Arg	Gln 175	Ala
Trp	Ala	Arg	Glu 180	Gln	Gln	Arg	Leu	Arg 185	Glu	Gly	Glu	Glu	Gly 190	Leu	Arg
Ala	Trp	Thr 195	Asp	Gly	Glu	Lys	Gln 200	Gln	Val	Leu	Asn	Thr 205	Gly	Arg	Val

Gln Gly Tyr Asp Gly Phe Phe Val Thr Ser Val Glu Gln Tyr Pro Glu

Leu Ser Asp Ser Ala Asn Asn Ile His Phe Met Arg Gln Ser Glu Met

220

240

235

215

230

Gly Arg Arg

225

210

<210> 8

<211> 252

<212> PRT <213> Artificial Sequence

<220>

<223> Human Ten M1

<400> 8

Thr Ile Leu Gly Ile Gln Cys Glu Leu Gln Lys Gln Leu Arg Asn Phe 1 5 10 15

Ile Ser Leu Asp Gln Leu Pro Met Thr Pro Arg Tyr Asn Asp Gly Arg 20 25 30

Cys Leu Glu Gly Gly Lys Gln Pro Arg Phe Ala Ala Val Pro Ser Val 35 40 45

Phe Gly Lys Gly Ile Lys Phe Ala Ile Lys Asp Gly Ile Val Thr Ala 50 55 60

Asp Ile Ile Gly Val Ala Asn Glu Asp Ser Arg Arg Leu Ala Ala Ile 65 70 75 80

Leu Asn Asn Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Glu Gly 85 90 95

Arg Asp Thr His Tyr Phe Ile Lys Leu Gly Ser Leu Glu Glu Asp Leu 100 105 110

Val Leu Ile Gly Asn Thr Gly Gly Arg Arg Ile Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Met Thr Ser Val Leu Asn Gly Arg Thr Arg 130 135 140

Arg Phe Ala Asp Ile Gln Leu Gln His Gly Ala Leu Cys Phe Asn Ile 145 150 155 160

Arg Tyr Gly Thr Thr Val Glu Glu Glu Lys Asn His Val Leu Glu Ile 165 170 175

Ala Arg Gln Arg Ala Val Ala Gln Ala Trp Thr Lys Glu Gln Arg Arg 180 185 190

Leu Gln Glu Gly Glu Gly Ile Arg Ala Trp Thr Glu Gly Glu Lys
195 200 205

Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe 210 215 220

Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 225 230 235 240

Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg 245 250

<210> 9

<211> 253

<212> PRT

<213> Artificial Sequence

<220>

<223> Human Ten M2

<400> 9

Leu Ile Thr Gly Val Gln Gln Thr Thr Glu Arg His Asn Gln Ala Phe 1 5 10 15

Met Ala Leu Glu Gly Gln Val Ile Thr Lys Lys Leu His Ala Ser Ile 20 25 30

Arg Glu Lys Ala Gly His Trp Phe Ala Thr Thr Thr Pro Ile Ile Gly 35 40 45

Lys Gly Ile Met Phe Ala Ile Lys Glu Gly Arg Val Thr Thr Gly Val 50 55 60

Ser Ser Ile Ala Ser Glu Asp Ser Arg Lys Val Ala Ser Val Leu Asn 65 70 75 80

Asn Ala Tyr Tyr Leu Asp Lys Met His Tyr Ser Ile Glu Gly Lys Asp 85 90 95

Thr His Tyr Phe Val Lys Ile Gly Ser Ala Asp Gly Asp Leu Val Thr 100 105 110

Leu Gly Thr Thr Ile Gly Arg Lys Val Leu Glu Ser Gly Val Asn Val
115 120 125

Thr Val Ser Gln Pro Thr Leu Leu Val Asn Gly Arg Thr Arg Arg Phe 130 135 140

Thr 145	Asn	Ile	Glu	Phe	Gln 150	Tyr	Ser	Thr	Leu	Leu 155	Leu	Ser	Ile	Arg	Tyr 160
Gly	Leu	Thr	Pro	Asp 165	Thr	Leu	Asp	Glu	Glu 170	Lys	Ala	Arg	Val	Leu 175	Asp
Gln	Ala	Arg	Gln 180	Arg	Ala	Leu	Gly	Thr 185	Ala	Trp	Ala	Lys	Glu 190	Gln	Gln
Lys	Ala	Arg 195	Asp	Gly	Arg	Glu	Gly 200	Ser	Arg	Leu	Trp	Thr 205	Glu	Gly	Glu
Lys	Gln 210	Gln	Leu	Leu	Ser	Thr 215	Gly	Arg	Val	Gln	Gly 220	Tyr	Glu	Gly	Tyr
Tyr 225	Val	Leu	Pro	Val	Glu 230	Gln	Tyr	Pro	Glu	Leu 235	Ala	Asp	Ser	Ser	Ser 240
Asn	Ile	Gln	Phe	Leu 245	Arg	Gln	Asn	Glu	Met 250	Gly	Lys	Arg			
<210> 10 <211> 251 <212> PRT <213> Artificial Sequence															
<223	3> I	Humai	n Ter	1 М3											
<400		LO													
Pro 1	Ile	Phe	Gly	Val 5	Gln	Gln	Gln	Val	Ala 10	Arg	Gln	Ala	Lys	Ala 15	Phe
Leu	Ser	Leu	Gly 20	Lys	Met	Ala	Glu	Val 25	Gln	Val	Ser	Arg	Arg 30	Arg	Ala

Gly Gly Ala Gln Ser Trp Leu Trp Phe Ala Thr Val Lys Ser Leu Ile

Gly Lys Gly Val Met Leu Ala Val Ser Gln Gly Arg Val Gln Thr Asn

55

Val 65	Leu	Asn	Ile	Ala	Asn 70	Glu	Asp	Cys	Ile	Lys 75	Val	Ala	Ala	Val	Leu 80
Asn	Asn	Ala	Phe	Tyr 85	Leu	Glu	Asn	Leu	His 90	Phe	Thr	Ile	Glu	Gly 95	Lys
Asp	Thr	His	Tyr 100	Phe	Ile	Lys	Thr	Thr 105	Thr	Pro	Glu	Ser	Asp 110	Leu	Gly
Thr	Leu	Arg 115	Leu	Thr	Ser	Gly	Arg 120	Lys	Ala	Leu	Glu	Asn 125	Gly	Ile	Asn
Val	Thr 130	Val	Ser	Gln	Ser	Thr 135	Thr	Val	Val	Asn	Gly 140	Arg	Thr	Arg	Arg
Phe 145	Ala	Asp	Val	Glu	Met 150	Gln	Phe	Gly	Ala	Leu 155	Ala	Leu	His	Val	Arg 160
Tyr	Gly	Met	Thr	Leu 165	Asp	Glu	Glu	Lys	Ala 170	Arg	Ile	Leu	Glu	Gln 175	Ala
Arg	Gln	Arg	Ala 180	Leu	Ala	Arg	Ala	Trp 185	Ala	Arg	Glu	Gln	Gln 190	Arg	Val
Arg	Asp	Gly 195	Glu	Glu	Gly	Ala	Arg 200	Leu	Trp	Thr	Glu	Gly 205	Glu	Lys	Arg
Gln	Leu 210	Leu	Ser	Ala	Gly	Lys 215	Val	Gln	Gly	Tyr	Asp 220	Gly	Tyr	Tyr	Val
Leu 225	Ser	Val	Glu	Gln	Tyr 230	Pro	Glu	Leu	Ala	Asp 235	Ser	Ala	Asn	Asn	Ile 240
Gln	Phe	Leu	Arg	Gln 245	Ser	Glu	Ile	Gly	Arg 250	Arg					
<210 <211		11 252													
<212 <213	2> 1	PRT	ficia	al Se	equer	ıce									
					_										

<220>

<223> Human Ten M4

<400> 11

Ser Ile Leu Gly Val Gln Cys Glu Val Gln Lys Gln Leu Lys Ala Phe 5 10 15

Val Thr Leu Glu Arg Phe Asp Gln Leu Tyr Gly Ser Thr Ile Thr Ser 20 25 30

Cys Leu Gln Ala Pro Lys Thr Lys Lys Phe Ala Ser Ser Gly Ser Val 35 40 45

Phe Gly Lys Gly Val Lys Phe Ala Leu Lys Asp Gly Arg Val Thr Thr 50 55 60

Asp Ile Ile Ser Val Ala Asn Glu Asp Gly Arg Arg Val Ala Ala Ile 65 70 75 80

Leu Asn His Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Asp Gly
85 90 95

Val Asp Thr His Tyr Phe Val Lys Pro Gly Pro Ser Glu Gly Asp Leu 100 105 110

Ala Ile Leu Gly Leu Ser Gly Gly Arg Arg Thr Leu Glu Asn Gly Val

Asn Val Thr Val Ser Gln Ile Asn Thr Val Leu Ser Gly Arg Thr Arg 130 135 140

Arg Tyr Thr Asp Ile Gln Leu Gln Tyr Gly Ala Leu Cys Leu Asn Thr 145 150 155 160

Arg Tyr Gly Thr Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Glu Leu 165 170 175

Ala Arg Gln Arg Ala Val Arg Gln Ala Trp Ala Arg Glu Gln Gln Arg 180 185 190

Leu Arg Glu Gly Glu Gly Leu Arg Ala Trp Thr Glu Gly Glu Lys
195 200 205

Gln Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe 210 215 220 Val Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 225 230 235 240

Ile His Phe Met Arg Gln Ser Glu Met Gly Arg Arg 245 250

<210> 12

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

<223> Zebrafish Ten M3

<400> 12

Ser Ile Ser Gly Val Gln Gln Glu Val Met Arg Gln Ala Lys Ala Phe 1 5 10 15

Leu Ser Phe Glu Arg Met Pro Glu Ile Gln Leu Ser Arg Arg Arg Ser 20 25 30

Ser Arg Glu Lys Pro Trp Leu Trp Phe Ala Thr Val Lys Ser Leu Ile 35 40 45

Gly Lys Gly Val Met Leu Ala Ile Thr Ser Lys Gly Gln Val Ala Thr 50 55 60

Asn Ala Leu Asn Ile Ala Asn Glu Asp Cys Ile Lys Val Val Thr Val 65 70 75 80

Leu Asn Asn Ala Phe Tyr Leu Glu Asp Leu His Phe Thr Val Glu Gly 85 90 95

Arg Asp Thr His Tyr Phe Ile Lys Thr Ser Leu Pro Glu Ser Asp Leu 100 105 110

Gly Ala Leu Arg Leu Thr Ser Gly Arg Lys Ser Leu Glu Asn Gly Val

Asn Val Thr Val Ser Gln Ser Thr Thr Val Val Asn Gly Arg Thr Arg 130 135 140 Arg Phe Ala Asp Val Glu Leu Gln Tyr Gly Ala Leu Ala Leu His Val 145 150 155 Arg Tyr Gly Met Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Glu Gln 165 170 Ala Arg Gln Arg Ala Leu Ser Ser Ala Trp Ala Arg Glu Gln Gln Arg 180 185 Val Arg Asp Gly Glu Glu Gly Val Arg Leu Trp Thr Glu Gly Glu Lys 195 200 Arg Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr 210 215 Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 225 Val Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 245 <210> 13 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Rainbow Trout TCAP3 (40a.a.) <400> 13 Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val 5 10 15 Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 20 25 Gln Phe Leu Arg Gln Ser Glu Ile 35 <210> 14 <211> 41 <212> PRT <213> Artificial Sequence

<220>

```
<223> Rainbow Trout TCAP 3 (41a.a.)
<400> 14
Arg Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr
Val Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn
                               25
Ile Gln Phe Leu Arg Gln Ser Glu Ile
        35
<210> 15
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Rainbow Trout preTCAP3 (43 a.a.)
<400> 15
Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val
                5
                                    10
Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile
                                25
Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg
        35
<210> 16
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Rainbow Trout preTCAP3 (44 a.a.)
<400> 16
Arg Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr
Val Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn
            20
                                25
```

60

Ile Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 35 40 <210> 17

<211> 120 <212> DNA <213> Artificial Sequence <220> <223> Rainbow Trout TCAP3 (120 n.a.) <400> 17 cagctgctga gcgggaggaa ggttctgggc tacgacgggt actacgtcct ctccatagag cagtaccccg agctagcaga ctccgctaac aacatccagt tcctcaggca gagcgaaata 120

<210> 18 <211> 123 <212> DNA <213> Artificial Sequence

<210> 19

<220> <223> Rainbow Trout TCAP3 (123 n.a.)

<400> 18 aggcagctgc tgagcgggag gaaggttctg ggctacgacg ggtactacgt cctctccata 60 gagcagtacc ccgagctagc agactccgct aacaacatcc agttcctcag gcagagcgaa 120 123 ata

<211> 129 <212> DNA <213> Artificial Sequence <220> <223> Rainbow Trout preTCAP3 (129 n.a.)

cagctgctga gcgggaggaa ggttctgggc tacgacgggt actacgtcct ctccatagag 60 cagtaccccg agctagcaga ctccgctaac aacatccagt tcctcaggca gagcgaaata 120 129 gggaagagg

<210> 20 <211> 132 <212> DNA <213> Artificial Sequence <220>

```
<223> Rainbow Trout preTCAP3 (132 n.a.)
<400> 20
aggcagctgc tgagcgggag gaaggttctg ggctacgacg ggtactacgt cctctccata
                                                                    60
gagcagtacc ccgagctagc agactccgct aacaacatcc agttcctcag gcagagcgaa
                                                                    120
                                                                     132
atagggaaga gg
<210> 21
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP3 (40 a.a.)
<400> 21
Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val
               5
                                   10
                                                        15
Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Val
                                25
Gln Phe Leu Arg Gln Ser Glu Ile
        35
<210> 22
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP3 (41 a.a.)
<400> 22
Arg Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr
                5
                                    10
                                                        15
Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn
Val Gln Phe Leu Arg Gln Ser Glu Ile
        35
<210> 23
```

<211> 43

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish preTCAP3 (43 a.a.)
<400> 23
Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val
                                   10
Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Val
           20
Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg
        35
<210> 24
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish preTCAP3 (44 a.a.)
<400> 24
Arg Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr
                                    10
                5
Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn
            20
                                25
Val Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg
        35
                            40
<210> 25
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP3 (120 n.a.)
<400> 25
cagttgctca gctctgggaa ggtgctgggt tacgatggtt actatgtact atcagtggag
                                                                     60
caataccctg aactggccga cagtgccaac aatgtccagt tcttgaggca gagtgagata
                                                                     120
```

```
<210> 26
<211> 123
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP3 (123 n.a.)
<400> 26
aggcagttgc tcagctctgg gaaggtgctg ggttacgatg gttactatgt actatcagtg
                                                                      60
gagcaatacc ctgaactggc cgacagtgcc aacaatgtcc agttcttgag gcagagtgag
                                                                     120
ata
                                                                     123
<210> 27
<211> 129
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP3 (129 n.a.)
<400> 27
cagttgctca gctctgggaa ggtgctgggt tacgatggtt actatgtact atcagtggag
                                                                      60
caataccctg aactggccga cagtgccaac aatgtccagt tcttgaggca gagtgagata
                                                                     120
                                                                     129
gggaagagg
<210> 28
      132
<211>
<212> DNA
<213> Artificial Sequence
<220>
      Zebrafish preTCAP3 (132 n.a.)
<223>
<400>
       28
aggcagttgc tcagctctgg gaaggtgctg ggttacgatg gttactatgt actatcagtg
                                                                      60
gagcaatacc ctgaactggc cgacagtgcc aacaatgtcc agttcttgag gcagagtgag
                                                                     120
                                                                     132
atagggaaga gg
<210> 29
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP4 (40 a.a.)
```

<400> 29

Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr Ile 5 10 15

Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn Val 20 25 30

His Phe Trp Arg Gln Thr Glu Met 35 40

<210> 30

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> Zebrafish TCAP4 (41 a.a.)

<400> 30

Gln Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr 1 5 10 15

Ile Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn 20 25 30

Val His Phe Trp Arg Gln Thr Glu Met 35 40

<210> 31

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> Zebrafish preTCAP4 (43 a.a.)

<400> 31

Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr Ile 1 5 10 15

Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn Val 20 25 30

His Phe Trp Arg Gln Thr Glu Met Gly Arg Arg 35 40

```
<210> 32
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish preTCAP4 (44 a.a.)
<400> 32
Gln Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr
                                    10
Ile Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn
                                25
           20
Val His Phe Trp Arg Gln Thr Glu Met Gly Arg Arg
<210> 33
<211>
      120
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP4 (120 n.a.)
<400> 33
cagctcctaa gctctggacg tgtacagggc tacgaaggct tctacatagt atcagtcgac
                                                                      60
cagttcccag agttgactga caacataaat aacgtccatt tctggcgaca gactgagatg
                                                                     120
<210> 34
<211> 123
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP4 (123 n.a.)
<400> 34
cagcagetee taagetetgg aegtgtacag ggetacgaag gettetacat agtateagte
                                                                      60
gaccagttcc cagagttgac tgacaacata aataacgtcc atttctggcg acagactgag
                                                                     120
                                                                     123
atg
<210> 35
```

<211> 129

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish preTCAP4 (129 n.a.)
<400> 35
cagetectaa getetggaeg tgtacaggge tacgaagget tetacatagt atcagtegae
                                                                     60
cagttcccag agttgactga caacataaat aacgtccatt tctggcgaca gactgagatg
                                                                     120
                                                                     129
ggacgcagg
<210> 36
<211> 132
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish preTCAP4 (132 n.a.)
<400> 36
cagcagetee taagetetgg acgtgtacag ggctacgaag gettetacat agtateagte
                                                                      60
gaccagttcc cagagttgac tgacaacata aataacgtcc atttctggcg acagactgag
                                                                     120
                                                                     132
atgggacgca gg
<210> 37
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse TCAP1 (40 a.a.)
<400> 37
Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val
                                                        15
                                    10
                5
Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile
                                                    30
                                25
            20
His Phe Met Arg Gln Ser Glu Ile
        35
<210> 38
<211> 41
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Mouse TCAP1 (41 a.a.)
<400> 38
Gln Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe
Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn
                               25
           20
Ile His Phe Met Arg Gln Ser Glu Ile
<210> 39
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse preTCAP1 (43 a.a.)
<400> 39
Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val
Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile
            20
His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg
        35
                            40
<210> 40
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse preTCAP1 (44 a.a.)
<400> 40
Gln Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe
Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn
                                25
            20
```

```
Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg
                           40
<210> 41
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse TCAP1 (120 n.a.)
<400> 41
cagcttttgg gcaccgggag ggtgcagggg tatgatgggt attttgtctt gtctgttgag
                                                                     60
cagtatttag aactttcaga cagtgccaac aatattcact tcatgagaca gagtgaaata
                                                                    120
<210> 42
<211> 123
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse TCAP1 (123 n.a.)
<400> 42
cagcagettt tgggcaccgg gagggtgcag gggtatgatg ggtattttgt ettgtetgtt
                                                                     60
gagcagtatt tagaactttc agacagtgcc aacaatattc acttcatgag acagagtgaa
                                                                    120
                                                                    123
ata
<210> 43
<211> 129
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse preTCAP1 (129 n.a.)
<400> 43
cagcttttgg gcaccgggag ggtgcagggg tatgatgggt attttgtctt gtctgttgag
                                                                     60
cagtatttag aactttcaga cagtgccaac aatattcact tcatgagaca gagtgaaata
                                                                    120
                                                                    129
ggcaggagg
<210> 44
<211> 132
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Mouse preTCAP1 (132 n.a.)
<400> 44
cagcagcttt tgggcaccgg gagggtgcag gggtatgatg ggtattttgt cttgtctgtt
                                                                    60
gagcagtatt tagaactttc agacagtgcc aacaatattc acttcatgag acagagtgaa
                                                                    120
                                                                    132
ataggcagga gg
<210> 45
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse TCAP2 (40 a.a.)
<400> 45
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val
               5
                                   10
Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile
                               25
            20
Gln Phe Leu Arg Gln Asn Glu Ile
        35
<210> 46
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse TCAP2 (41 a.a.)
<400> 46
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr
                                    10
                                                        15
                5
Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn
Ile Gln Phe Leu Arg Gln Asn Glu Met
        35
```

```
<210> 47
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse preTCAP2 (43 a.a)
<400> 47
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val
                                    10
Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile
            20
                               25
Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg
<210> 48
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse preTCAP2 (44 a.a.)
<400> 48
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr
Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn
                                25
            20
Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg
                            40
<210> 49
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse TCAP2 (120 n.a.)
<400> 49
caactcctga gcacgggacg ggtacaaggt tatgagggct attacgtact tccggtggaa
                                                                      60
cagtacccgg agctggcaga cagtagcagc aacatccagt tcttaagaca gaatgagagg
                                                                     120
```

```
<210> 50
<211> 123
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse TCAP 2 (123 n.a.)
<400> 50
cagcaactcc tgagcacggg acgggtacaa ggttatgagg gctattacgt acttccggtg
                                                                      60
gaacagtacc cggagctggc agacagtagc agcaacatcc agttcttaag acagaatgag
                                                                     120
                                                                     123
atg
<210> 51
<211> 129
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse preTCAP2 (129 n.a.)
<400> 51
caactcctga gcacgggacg ggtacaaggt tatgagggct attacgtact tccggtggaa
                                                                      60
cagtaccegg agetggeaga cagtageage aacatecagt tettaagaca gaatgagatg
                                                                     120
                                                                     129
ggaaagagg
<210> 52
<211> 132
<212> DNA
<213> Artificial Sequence
<220>
      Mouse preTCAP2 (132 n.a.)
<223>
<400> 52
cagcaactcc tgagcacggg acgggtacaa ggttatgagg gctattacgt acttccggtg
                                                                      60
gaacagtacc cggagctggc agacagtagc agcaacatcc agttcttaag acagaatgag
                                                                     120
                                                                     132
atgggaaaga gg
       53
<210>
<211>
       40
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> Mouse TCAP3 (40 a.a.)
<400> 53
Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val
                                    10
Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile
                               25
Gln Phe Leu Arg Gln Ser Glu Ile
        35
<210> 54
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse TCAP3 (41 a..a)
<400> 54
Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr
                                    10
Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn
                                25
            20
Ile Gln Phe Leu Arg Gln Ser Glu Ile
<210> 55
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse preTCAP3 (43 a.a.)
<400> 55
Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val
                                    10
Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile
```

25

20

Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg

35 <210> 56 <211> 44 <212> PRT <213> Artificial Sequence <220> <223> Mouse preTCAP3 (44 a.a.) <400> 56 Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr 10 5 Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 30 25 20 Ile Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg <210> 57 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP3 (120 n.a.) <400> 57 cagctgctga gcgctggcaa ggtgcagggc tacgatgggt actacgtact gtcggtggag 60 120 caqtaccccg agctggctga cagtgccaac aacatccagt tcttgcgaca aagtgagatc <210> 58 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP3 (123 n.a.) <400> 58 cggcagctgc tgagcgctgg caaggtgcag ggctacgatg ggtactacgt actgtcggtg 60 gagcagtacc ccgagctggc tgacagtgcc aacaacatcc agttcttgcg acaaagtgag 120 123 atc

```
<210> 59
<211> 129
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse preTCAP3 (129 n.a.)
<400> 59
cagctgctga gcgctggcaa ggtgcagggc tacgatgggt actacgtact gtcggtggag
                                                                    60
cagtaccccg agctggctga cagtgccaac aacatccagt tcttgcgaca aagtgagatc
                                                                    120
                                                                    129
ggcaagagg
<210> 60
<211> 132
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse preTCAP3 (132 n.a.)
<400> 60
cggcagctgc tgagcgctgg caaggtgcag ggctacgatg ggtactacgt actgtcggtg
                                                                     60
gagcagtacc ccgagctggc tgacagtgcc aacaacatcc agttcttgcg acaaagtgag
                                                                    120
                                                                     132
atcggcaaga gg
<210> 61
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse TCAP4 (40 a.a.)
<400> 61
Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val
                                                        15
                                    10
                5
Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile
            20
His Phe Met Arg Gln Ser Glu Met
        35
<210> 62
<211> 41
```

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse TCAP4 (41 a.a.)
<400> 62
Gln Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe
Val Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn
                               25
Ile His Phe Met Arg Gln Ser Glu Met
<210> 63
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse preTCAP4 (43 a.a.)
<400> 63
Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val
Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile
           20
                               25
His Phe Met Arg Gln Ser Glu Met Gly Arg Arg
       35
<210> 64
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse preTCAP4 (44 a.a.)
<400> 64
Gln Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe
```

Val Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 20 25 Ile His Phe Met Arg Gln Ser Glu Met Gly Arg Arg 40 <210> 65 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP4 (120 n.a.) <400> 65 caggtgctga acacggggcg ggtgcaaggc tacgacggct tctttgtgac ctcggtcgag 60 cagtacccag aactgtcaga cagcgccaac aatatccact tcatgagaca gagcgagatg 120 <210> 66 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP4 (123 n.a.) <400> 66 cagcaggtgc tgaacacggg gcgggtgcaa ggctacgacg gcttctttgt gacctcggtc 60 gagcagtacc cagaactgtc agacagcgcc aacaatatcc acttcatgag acagagcgag 120 123 atg <210> 67 <211> 129 <212> DNA <213> Artificial Sequence <220> <223> Mouse preTCAP4 (129 n.a.) <400> 67 caggtgctga acacggggcg ggtgcaaggc tacgacggct tctttgtgac ctcggtcgag 60 cagtacccag aactgtcaga cagcgccaac aatatccact tcatgagaca gagcgagatg 120 129 ggccgaagg <210> 68

<211> 132

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse preTCAP4 (132 n.a.)
<400> 68
cagcaggtgc tgaacacggg gcgggtgcaa ggctacgacg gcttctttgt gacctcggtc
gagcagtacc cagaactgtc agacagcgcc aacaatatcc acttcatgag acagagcgag
                                                                     120
atgggccgaa gg
                                                                     132
<210> 69
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Human TCAP1 (40 a.a.)
<400> 69
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val
Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile
                                25
His Phe Met Arg Gln Ser Glu Ile
        35
<210> 70
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Human TCAP1 (41 a.a.)
<400> 70
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe
Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn
                                25
            20
Ile His Phe Met Arg Gln Ser Glu Ile
        35
                            40
```

```
<210> 71
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP1 (43 a.a.)
<400> 71
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val
Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile
           20
                               25
His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg
<210> 72
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP1 (44 a.a.)
<400> 72
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe
                5
                                   10
Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn
                                                   30
            20
                                25
Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg
        35
<210> 73
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Human TCAP1 (120 n.a.)
<400> 73
cagcttttga gcactgggcg ggtacaaggt tacgatgggt attttgtttt gtctgttgag
```

cagtatt	ttag aactttctga cagtgccaat aatattcact ttatgagaca gagcgaaata	120
	74 123 DNA Artificial Sequence	
<220> <223>	Human TCAP1 (123 n.a.)	
<400> cagcago	74 cttt tgagcactgg gcgggtacaa ggttacgatg ggtattttgt tttgtctgtt	60
gagcagt	tatt tagaactttc tgacagtgcc aataatattc actttatgag acagagcgaa	120
ata		123
<210><211><211><212><213>	75 129 DNA Artificial Sequence	
<220> <223>	Human preTCAP1 (129 n.a.)	
<400> cagctt	75 ttga gcactgggcg ggtacaaggt tacgatgggt attttgtttt gtctgttgag	60
cagtati	ttag aactttctga cagtgccaat aatattcact ttatgagaca gagcgaaata	120
ggcagga	agg	129
<210><211><211><212><213>	76 132 DNA Artificial Sequence	
<220> <223>	Human preTCAP1 (132 n.a.)	
<400> cagcag	76 gettt tgageactgg gegggtaeaa ggttaegatg ggtattttgt tttgtetgtt	60
gagcag	tatt tagaactttc tgacagtgcc aataatattc actttatgag acagagcgaa	120
ataggo	agga gg	132
<210><211><212><212><213>		

```
<220>
<223> Human TCAP2 (40 a.a.)
<400> 77
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val
Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile
                               25
           20
Gln Phe Leu Arg Gln Asn Glu Met
<210> 78
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP2 (41 a.a.)
<400> 78
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr
Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn
            20
Ile Gln Phe Leu Arg Gln Asn Glu Met
                            40
        35
<210> 79
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP2 (43 a.a.)
<400> 79
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val
                                    10
Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile
                                25
            20
```

```
Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg
       35
                           40
<210> 80
<211>
      44
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP2 (44 a.a.)
<400> 80
Gln Gln Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr
               5
                                   10
                                                        15
Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn
           20
Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg
                           40
<210> 81
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Human TCAP2 (120 n.a.)
<400> 81
cagcttctga gcaccgggcg cgtgcaaggg tacgagggat attacgtgct tcccgtggag
                                                                     60
caatacccag agcttgcaga cagtagcagc aacatccagt ttttaagaca gaatgagatg
                                                                    120
<210> 82
<211> 123
<212> DNA
<213> Artificial Sequence
<220>
<223> Human TCAP2 (123 n.a.)
<400> 82
cagcagette tgageacegg gegegtgeaa gggtaegagg gatattaegt getteeegtg
                                                                     60
gagcaatacc cagagcttgc agacagtagc agcaacatcc agtttttaag acagaatgag
                                                                     120
                                                                     123
atg
```

<210><211>	83 129	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Human preTCAP2 (129 n.a.)	
<400>	83	
cagette	tga gcaccgggcg cgtgcaaggg tacgagggat attacgtgct tcccgtggag	60
caataco	ccag agcttgcaga cagtagcagc aacatccagt ttttaagaca gaatgagatg	120
ggaaaga	egg	129
<210> <211>	84 132	
<212>	DNA	
	Artificial Sequence	
<220>		
	Human preTCAP2 (132 n.a.)	
<400>	84	
cagcago	ttc tgagcaccgg gcgcgtgcaa gggtacgagg gatattacgt gcttcccgtg	60
gagcaat	acc cagagettge agacagtage ageaacatee agtttttaag acagaatgag	120
atgggaa	aaga gg	132
<210>	85	
<211> <212>	40 PRT	
	Artificial Sequence	
<220>		
<223>	Human TCAP3 (40 a.a.)	
<400>	85	
Gln Leu 1	ı Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val 5 10 15	
Leu Ser	r Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 20 25 30	
Gln Phe	e Leu Arg Gln Ser Glu Ile	

```
<210> 86
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Human TCAP3 (41 a.a.)
<400> 86
Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr
               5
                                   10
Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn
                              25
           20
Ile Gln Phe Leu Arg Gln Ser Glu Ile
       35
<210> 87
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP3 (43 a.a.)
<400> 87
Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val
Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile
           20
                               25
Gln Phe Leu Arg Gln Ser Glu Ile Gly Arg Arg
        35
                            40
<210> 88
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP3 (44 a.a.)
<400> 88
Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr
                                    10
```

Val Le	ı Ser	Val 20	Glu	Gln	Tyr	Pro	Glu 25	Leu	Ala	Asp	Ser	Ala 30	Asn	Asn	
Ile Gli	n Phe 35	Leu	Arg	Gln	Ser	Glu 40	Ile	Gly	Arg	Arg					
<210><211><211><212><213>	89 120 DNA Arti	ficia	al Se	equei	nce										
<220> <223>	Huma	n TC	AP3	(120	n.a	.)									
<400> cagctgo	89 ctga	gcgc	cggc	aa g	gtgca	agggo	c ta	cgac	gggt	acta	acgta	act	ctcg	gtgga	ag 60
cagtac	ccg	agct	ggcc	ga c	agcg	ccaa	c aa	catco	cagt	tcct	gcg	gca	gagc	gagat	cc 120
<210><211><212><213>	90 123 DNA Arti	fici	al S	eque	nce										
<220> <223>	Huma	n TC.	AP3	(123	n.a	.)									
<400> cggcag	90 ctgc	tgag	cgcc	gg c	aagg	tgcaç	a aa	ctac	gacg	ggta	acta	cgt	actc	tcgg1	tg 60
gagcag	tacc	ccga	gctg	gc c	gaca	gcgc	c aa	caaca	atcc	agt	taat	gcg	gcag	agcga	ag 120
atc															123
<210><211><212><212><213>	91 129 DNA Arti	fici	al S	eque	nce										
<220> <223>	Huma	n pr	eTCA	P (1	29 n	.a.)									
<400>	91				~+ ~ <i>~</i>	2000	a +-	aa a a	aaa+	201	a a a t	a a t	atac	at aa	aq 60
cagctg															
cagtac	cccg	agct	ggcc	ga c	agcg	ccaa	c aa	catc	cagt	tcc	tgcg	gca	gagc	gaga	tc 120
ggcagg	agg														129

```
<210> 92
<211> 132
<212> DNA
<213> Artificial Sequence
<220>
<223> Human preTCAP3 (132 n.a.)
<400> 92
cggcagctgc tgagcgccgg caaggtgcag ggctacgacg ggtactacgt actctcggtg
                                                                     60
gagcagtacc ccgagctggc cgacagcgcc aacaacatcc agttcctgcg gcagagcgag
                                                                     120
atcggcagga gg
                                                                     132
<210> 93
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Human TCAP4 (40 a.a.)
<400> 93
Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val
Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile
                                25
            20
His Phe Met Arg Gln Ser Glu Met
       35
                            40
<210> 94
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Human TCAP4 (41 a.a.)
<400> 94
Gln Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe
                                    10
Val Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn
                               25
```

```
Ile His Phe Met Arg Gln Ser Glu Met
      35
<210> 95
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP4 (43 a..a)
<400> 95
Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val
                                  10
       5
Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile
His Phe Met Arg Gln Ser Glu Met Gly Arg Arg
<210> 96
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP4 (44 a.a.)
<400> 96
Gln Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe
               5
                                  10
Val Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn
                               25
                                                  30
           20
Ile His Phe Met Arg Gln Ser Glu Met Gly Arg Arg
<210> 97
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Human TCAP4 (120 n.a.)
```

<400> 97	7					
	ga gcacagggcg	ggtgcaaggc	tacgacggct	ttttcgtgat	ctctgtcgag	60
cagtaccca	ag aactgtcaga	cagcgccaac	aacatccact	tcatgagaca	gagcgagatg	120
<212> Di	8 23 NA rtificial Sequ	ence				
<220> <223> Ht	uman TCAP4 (12	3 n.a.)				
<400> 98	8 gc tgagcacagg	gcgggtgcaa	ggctacgacg	gctttttcgt	gatctctgtc	60
gagcagtad	cc cagaactgtc	agacagcgcc	aacaacatcc	acttcatgag	acagagcgag	120
atg						123
<212> DI	9 29 NA rtificial Sequ	ience				
<220> <223> Hi	uman preTCAP4	(129 n.a.)				
<400> 9	9 ga gcacagggcg	ggtgcaaggc	tacgacggct	ttttcgtgat	ctctgtcgag	60
cagtaccc	ag aactgtcaga	cagcgccaac	aacatccact	tcatgagaca	gagcgagatg	120
ggccggag	g					129
<211> 1 <212> D	00 32 NA rtificial Sequ	ience				
<220> <223> H	uman preTCAP4	(132 n.a.)				
	.00 gc tgagcacagg	gcgggtgcaa	ggctacgacg	gctttttcgt	gatctctgtc	60
gagcagta	cc cagaactgtc	agacagcgcc	aacaacatcc	acttcatgag	acagagcgag	120
atgggccg	ıga gg					132

<210> 101 <211> 41

```
<212> PRT
<213> Artificial Sequence
<223> G. gallus TCAP-1
<400> 101
Gln Gln Leu Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe
Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn
           20
                               25
Ile His Phe Met Arg Gln Ser Glu Ile
        35
<210> 102
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP-4
<400> 102
Gln Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr
                                    10
Ile Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn
           20
                                25
Val His Phe Trp Arg Gln Thr Glu Met
        35
<210> 103
<211> 37
<212> PRT
<213> Artificial Sequence
<220>
<223> D. melanogaster Ten-m gene product
<400> 103
Glu Leu Val Gln His Gly Asp Val Asp Gly Trp Asn Gly Asp Ile His
```

Ser Ile His Lys Tyr Pro Gln Leu Ala Asp Pro Gly Asn Val Ala Phe 20 25 30

Gln Arg Asp Ala Lys 35

<210> 104

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> Human CRF TCAP like region

<400> 104

Ser Glu Glu Pro Pro Ile Ser Leu Asp Leu Thr Phe His Leu Leu Arg 1 5 10 15

Glu Val Leu Glu Met Ala Arg Ala Glu Gln Leu Ala Gln Gln Ala His 20 25 30

Ser Asn Arg Lys Leu Met Glu Ile Ile 35 40

<210> 105

<211> 40

<212> PRT

<213> Artificial Sequence

<220>

<223> Human urocortin TCAP-like region

<400> 105

Asp Asn Pro Ser Leu Ser Ile Asp Leu Thr Phe His Leu Leu Arg Thr 1 5 10 15

Leu Leu Glu Leu Ala Arg Thr Gln Ser Gln Arg Glu Arg Ala Glu Gln 20 25 30

Asn Arg Ile Ile Phe Asp Ser Val 35 40

<210> 106

<211> 38

<212> PRT

<213> Artificial Sequence

<220> <223> Human urocortin 2 TCAP-like region <400> 106 Ile Val Leu Ser Leu Asp Val Pro Ile Gly Leu Leu Gln Ile Leu Leu 10 Glu Gln Ala Arg Ala Arg Ala Arg Glu Gln Ala Thr Thr Asn Ala 25 20 Arg Ile Leu Ala Arg Val 35 <210> 107 <211> 38 <212> PRT <213> Artificial Sequence <220> <223> Human urocortin 3 TCAP=like region <400> 107 Phe Thr Leu Ser Leu Asp Val Pro Thr Asn Ile Met Asn Leu Leu Phe Asn Ile Ala Lys Ala Lys Asn Leu Arg Ala Gln Ala Ala Ala Asn Ala 20 His Leu Met Ala Gln Ile 35 <210> 108 <211> 46 <212> PRT <213> Artificial Sequence <220> <223> L. migratoria DP <400> 108 Met Gly Met Gly Pro Ser Leu Ser Ile Val Asn Pro Met Asp Val Leu 10

Arg Gln Arg Leu Leu Glu Ile Ala Arg Arg Arg Leu Arg Asp Ala

25

```
Glu Glu Gln Ile Lys Ala Asn Lys Asp Phe Leu Gln Gln Ile
                          40
<210> 109
<211> 46
<212> PRT
<213> Artificial Sequence
<223> A. domesticus DP
<400> 109
Thr Gly Ala Gln Ser Leu Ser Ile Val Ala Pro Leu Asp Val Leu Arg
              5
Gln Arg Leu Met Asn Glu Leu Asn Arg Arg Met Arg Glu Leu Gln
                          25
Gly Ser Arg Ile Gln Gln Asn Arg Gln Leu Leu Thr Ser Ile
                          40
<210> 110
<211> 39
<212> PRT
<213> Artificial Sequence
<220>
<223> T. molitor DP
<400> 110
Ser Pro Thr Ile Ser Ile Thr Ala Pro Ile Asp Val Leu Arg Lys Thr
              5
                                  10
                                                      15
Trp Glu Gln Glu Arg Ala Arg Lys Gln Met Val Ala Gln Asn Asn Arg
Glu Phe Leu Asn Ser Leu Asn
       35
<210> 111
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> M. sexta DP-1
<400> 111
Arg Met Pro Ser Leu Ser Ile Asp Leu Pro Met Ser Val Leu Arg Gln
                                   10
Lys Leu Ser Leu Glu Lys Glu Arg Lys Val His Ala Leu Arg Ala Ala
            20
                               25
Ala Asn Arg Asn Phe Leu Asn Asp Ile
<210> 112
<211> 30
<212> PRT
<213> Artificial Sequence
<220>
<223> M. sexta DP-II
<400> 112
Ser Leu Ser Val Asn Pro Ala Val Asp Ile Leu Gln His Arg Tyr Met
                                   10
Glu Lys Val Ala Gln Asn Asn Arg Asn Phe Leu Asn Arg Val
                               25
            20
<210> 113
<211> 45
<212> PRT
<213> Artificial Sequence
<220>
<223> P. Americana
<400> 113
Thr Gly Ser Gly Pro Ser Leu Ser Ile Val Asn Pro Leu Asp Val Leu
               5
                                   10
Arg Gln Arg Leu Leu Glu Ile Ala Arg Arg Arg Met Arg Gln Ser
Gln Asp Gln Ile Gln Asn Arg Glu Ile Leu Gln Thr Ile
```

<210> 114 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> O. keta CRP <400> 114 Ser Asp Asp Pro Pro Ile Ser Leu Asp Leu Thr Phe His Met Leu Arg 10 Gln Met Asn Glu Met Ser Arg Ala Glu Gln Leu Gln Gln Gln Ala His 20 25 Ser Asn Arg Lys Met Met Glu Ile Phe <210> 115 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> R. norvegicus <400> 115 Asp Asp Pro Pro Leu Ser Ile Asp Leu Thr Phe His Leu Leu Arg Thr 5 10 Leu Leu Glu Leu Ala Arg Thr Gln Ser Gln Arg Glu Arg Ala Glu Gln 20 25 Asn Arg Ile Ile Phe Asp Ser Val 35 <210> 116 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> P. sauvageii <400> 116 Gln Gly Pro Pro Ile Ser Ile Asp Leu Ser Leu Glu Leu Leu Arg Lys

10

```
Met Ile Glu Ile Glu Lys Gln Glu Lys Gln Gln Ala Asn
                            25
Asn Arg Leu Leu Leu
       35
<210> 117
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> C. carpio US
<400> 117
Asn Asp Asp Pro Pro Ile Ser Ile Asp Leu Thr Phe His Leu Leu Arg
1 5
                   10
Asn Met Ile Glu Met Ala Arg Asn Glu Asn Gln Arg Glu Gln Ala Gly
                            25
Leu Asn Arg Lys Tyr Leu Asp Glu Val
 35
<210> 118
<211> 38
<212> PRT
<213> Artificial Sequence
<220>
<223> M. Musculus UCN2
<400> 118
Val Ile Leu Ser Leu Asp Val Pro Ile Gly Leu Leu Arg Ile Leu Leu
                            10
              5
Glu Gln Ala Arq Tyr Lys Ala Ala Arq Asn Gln Ala Ala Thr Asn Ala
                            25
Gln Ile Leu Ala His Val
       35
```

<210> 119 <211> 38

<212> PRT <213> Artificial Sequence	
<220> <223> R. dano UCN2	
<400> 119	
Leu Thr Leu Ser Leu Asp Val Pro Thr Asn Ile Met Asn Val Leu Phe 5 10 15	
Asp Val Ala Lys Ala Lys Asn Leu Arg Ala Lys Ala Ala Glu Asn Ala 20 25 30	
Arg Leu Leu Ala His Ile 35	
<210> 120 <211> 305 <212> DNA <213> Artificial Sequence	
<220> <223> Hamster 305bp urocortin cDNA probe examples "cloning mRNA"	
<400> 120 attcaccgcc gctcgggatc tgagcctgca ggcgagcggc agcgacggga agaccttccg	60
ctgtccatcg acctcacatt ccacctgcta cggaccctgc tggagatggc ccggacacag 1	20
agccaacgcg agcgagcaga gcagaaccga atcatactca acgcggtggg caagtgatcg 1	80
gcccggtgtg ggaccccaaa aggctcgacc ctttccccta cctaccccgg ggctgaagtc 2	4 (
acgcgaccga agtcggctta gtcccgcggt gcagcgcctc ccagagttac cctgaacaat 3	0 0
ceege 3	05
<pre><210> 121 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> TCAP1 fwd primer</pre>	
<400> 121	24

<210> 122

<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP1 rvs primer	
<400>	122	
cctcct	goot atttoactot gtotoat	27
<210>		
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP2 Fwd primer	
<400>	123	
tcgagg	gcaa ggacacaca tactt	25
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
.000		
<220>	MOADO was primor	
<223>	TCAP2 rvs primer	
<400>	124	
	tgga tgttgctgct actgtc	26
aagaac	tyga tyctyctyct actytt	
<210>	125	
<211>	25	
<212>		
	Artificial Sequence	
<220>		
	TCAP3 fwd primer	
	•	
<400>	125	
caacaa	cgcc ttctacctgg agaac	25
<210>	126	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP3 rvs primer	
<400>	126	

```
tgttgttggc actgtcagcc a
                                                                     21
<210> 127
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> TCAP4 fwd primer
<400> 127
tttgcctcca gtggttccat ctt
                                                                     23
<210> 128
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> TCAP4 rvs primer
<400> 128
                                                                     24
tggatattgt tggcgctgtc tgac
<210> 129
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Conserved motif between CRF and TCAP I/L S X X (X)-L/V at amino
      terminus
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> X=I or L
<220>
<221> MISC FEATURE
<222> (3)..(3)
<223> X=T or A
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> X=L, I or G
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> X=D, R or K
```

```
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> X=L or V
<400> 129
Xaa Ser Xaa Xaa Xaa
              5
<210> 130
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Conserved motif between CRF and TCAP - In middle L/V-L/I-X-V/ali
      phatic residue
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> X=V or L
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> X=L, I or F
<220>
<221> MISC_FEATURE <222> (3)..(3)
<223> X=E, N, S or P
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> X=M, L Q, I or V
<400> 130
Xaa Xaa Xaa Xaa
1
<210> 131
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Conserved motif between CRF and TCAP N/I/A-H/basic residue -I/L/F
      /-aliphatic at carboxy terminus
<220>
<221> MISC_FEATURE
```

```
<222> (2)..(2)
<223> X=R, A or I
<220>
<221> MISC FEATURE
<222>
      (3)..(3)
<223> X=H or basic residues, K, I, R or Q
<220>
<221> MISC FEATURE
<222> (4)..(4)
<223> X=I, L or F
<400> 131
Asn Xaa Xaa Xaa
<210> 132
<211> 8964
<212> DNA
<213> Mus musculus
<220>
<221> exon
<222> (50)..(8197)
<400> 132
aaqttctaag aagccggacc gatgtgcaca gagaaggaat gaaggaagt atg gat gtg
                                                      Met Asp Val
                                                                       106
aag gaa cgc agg cct tac tgc tcc ttg acc aag agc aga cgg gaa aag
Lys Glu Arg Arg Pro Tyr Cys Ser Leu Thr Lys Ser Arg Arg Glu Lys
                        10
gaa agg cgc tat aca aat tcg tcc gcg gac aat gag gag tgt agg gtc
                                                                       154
Glu Arg Arg Tyr Thr Asn Ser Ser Ala Asp Asn Glu Glu Cys Arg Val
ccc acg cag aag tcc tat agt tcc agt gaa acc ttg aaa gct ttc gat
                                                                       202
Pro Thr Gln Lys Ser Tyr Ser Ser Ser Glu Thr Leu Lys Ala Phe Asp
                                                                       250
cat gat tat tca cgg ctg ctt tat gga aac aga gta aag gat ttg gtc
His Asp Tyr Ser Arg Leu Leu Tyr Gly Asn Arg Val Lys Asp Leu Val
            55
                                60
                                                    65
cac aga gaa gcc gac gag tat act aga caa gga cag aat ttt acc cta
                                                                       298
His Arg Glu Ala Asp Glu Tyr Thr Arg Gln Gly Gln Asn Phe Thr Leu
        70
                                                                       346
agg cag tta gga gtg tgt gaa tcc gca act cga aga gga gtg gca ttc
Arg Gln Leu Gly Val Cys Glu Ser Ala Thr Arg Arg Gly Val Ala Phe
```

85 90 tgt gcg gaa atg ggg ctc cct cac aga ggt tac tcc atc agt gca ggg 394 Cys Ala Glu Met Gly Leu Pro His Arg Gly Tyr Ser Ile Ser Ala Gly 100 105 110 115 tca gat gcg gat acg gaa aac gaa gca gtg atg tcc cct gag cat gcc 442 Ser Asp Ala Asp Thr Glu Asn Glu Ala Val Met Ser Pro Glu His Ala 120 atg aga ctt tgg ggc agg ggc gtc aaa tcg ggc cgc agt tcc tgc ctg 490 Met Arg Leu Trp Gly Arg Gly Val Lys Ser Gly Arg Ser Ser Cys Leu tca agc cgg tcc aac tcc gcc ctc acc ctg aca gac acg gag cac gag 538 Ser Ser Arg Ser Asn Ser Ala Leu Thr Leu Thr Asp Thr Glu His Glu aac agg teg gac agt gag age gag caa eet tea aac aac eea ggg caa 586 Asn Arg Ser Asp Ser Glu Ser Glu Gln Pro Ser Asn Asn Pro Gly Gln 170 165 175 ccc acc ctg cag cct ttg ccg cca tcc cac aag cag cac ccg gcg cag 634 Pro Thr Leu Gln Pro Leu Pro Pro Ser His Lys Gln His Pro Ala Gln 190 195 180 185 682 cat cac ccg tcc atc act tcc ctc aat aga aac tcc ctg acc aat aga His His Pro Ser Ile Thr Ser Leu Asn Arg Asn Ser Leu Thr Asn Arg 200 730 Arg Asn Gln Ser Pro Ala Pro Pro Ala Ala Leu Pro Ala Glu Leu Gln acc aca ccc gag tcc gtc cag ctg cag gac agc tgg gtc ctt ggc agt 778 Thr Thr Pro Glu Ser Val Gln Leu Gln Asp Ser Trp Val Leu Gly Ser 230 aat gta cca ctg gaa agc agg cat ttc cta ttc aaa aca ggg aca ggg 826 Asn Val Pro Leu Glu Ser Arg His Phe Leu Phe Lys Thr Gly Thr Gly 250 acg acg cca ctg ttc agt acg gca acc ccg gga tac aca atg gca tct 874 Thr Thr Pro Leu Phe Ser Thr Ala Thr Pro Gly Tyr Thr Met Ala Ser 265 270 260 ggc tct gtt tat tct ccg cct acc cgg cca ctt cct aga aac acc cta 922 Gly Ser Val Tyr Ser Pro Pro Thr Arg Pro Leu Pro Arg Asn Thr Leu 280 285 tca aga agt gct ttt aaa ttc aag aag tct tca aag tac tgc agc tgg 970 Ser Arg Ser Ala Phe Lys Phe Lys Lys Ser Ser Lys Tyr Cys Ser Trp 295 300 1018 agg tgc acc gca ctg tgt gct gta ggg gtc tca gtg ctc ctg gcc att

Arg Cys Thr Ala Leu Cys Ala Val Gly Val Ser Val Leu Leu Ala Ile

310 315 320 ctc ctc tcc tat ttt ata gca atg cat cta ttt ggc ctc aac tgg cac 1066

						Ala 330	_									1066
						gac Asp										1114
						act Thr	-									1162
						cat His										1210
	_				_	gca Ala										1258
	_	_	_			att Ile 410	_	_		_			_			1306
			_	_	_	gca Ala	_									1354
						cag Gln										1402
_					_	gag Glu										1450
						tct Ser										1498
_		_	_			atc Ile 490			-							1546
				_	_	tcc Ser										1594
	_	_		_		tgc Cys										1642
	_		_			gly ggg				_	_	_		_	_	1690

535 540 545

						agt Ser									1738
						tgg Trp 570									1786
	_	_		-	_	cag Gln	_			_		_		-	1834
						tcg Ser									1882
						gga Gly									1930
						cca Pro									1978
_	-					gac Asp 650									2026
	_	_				act Thr									2074
						tca Ser									2122
-						tgt Cys									2170
	_	-	-	-		cct Pro	_	_	-	-					2218
_		_			_	agc Ser 730					 		_		2266
						aag Lys									2314
						tgc Cys									2362

760 765 770

									-	_	gcc Ala 785	_		2410
											ctc Leu			2458
											aac Asn			2506
						-	-			_	caa Gln	_		2554
											cga Arg			2602
											gaa Glu 865			2650
					_		_			_	cta Leu		-	2698
					 _			-			cac His		_	2746
						-	-		_		gac Asp	_		2794
	Gly	Gly	Ala	Ser	Thr	Leu	Val	Phe	Glu	Arg	tcc Ser	Pro	Phe	2842
											ttt Phe 945			2890
											ccc Pro			2938
						_					tct Ser		_	2986
											atc Ile			3034

980			9	985				99	90				995	
	ica cag Thr Gln					_		aca Thr 1005					_	3079
	aaa ctt .ys Leu								gca Ala					3124
	tt aag eu Lys							gtc Val 1035						3169
	ag gtc ys Val													3214
_	gg ttt rp Phe		_	_			_	gcc Ala 1065		_				3259
_	ag acg ys Thr	_	_			_		-	tac Tyr		-			3304
	gtt gtg Val Val		_			gag Glu			tcg Ser	tgc Cys	_	_	=	3349
	etc tgg Leu Trp	_	_			_	_	ttg Leu 1110						3394
	gct tcg Ala Ser							ttg Leu 1125						3439
	gac gtt Asp Val	_										-		3484
_	tc atc he Ile		_	_		_		gtc Val 1155	_	-		_		3529
_	ggt cgg Bly Arg		_	-			_	cca Pro 1170	agt Ser					3574
	ac ggg					gca Ala			gcg Ala		_	_		3619
_	sp Gly	_			_	ggg Gly	_	ttc Phe	aat Asn		_			3664

1195		1200	1205
	Asn Val Thr Ser	gtt tta gaa cta aga Val Leu Glu Leu Arg 1215	
aaa gat ttt aga cat Lys Asp Phe Arg His 1225	Ser Ser Asn Pro	gct cac aga tac tac Ala His Arg Tyr Tyr 1230	_
gct acg gac cca gtc Ala Thr Asp Pro Val 1240	Thr Gly Asp Leu	tac gtc tct gat act Tyr Val Ser Asp Thr 1245	
	Arg Pro Lys Ser	ctc acg gga gcc aaa Leu Thr Gly Ala Lys 1260	-
	Glu Val Val Ala	ggg acc ggg gaa cag Gly Thr Gly Glu Gln 1275	
	Ala Arg Cys Gly	gat gga ggc aag gct Asp Gly Gly Lys Ala 1290	
gaa gca acg ctc atg Glu Ala Thr Leu Met 1300	Ser Pro Lys Gly	atg gca atc gat aag Met Ala Ile Asp Lys 1305	
	Val Asp Gly Thr	atg atc aga aag gtt Met Ile Arg Lys Val 1320	
	Ser Thr Leu Leu	ggc tcc aac gac ctc Gly Ser Asn Asp Leu 1335	
	Thr Cys Asp Thr	agc atg cat atc agc Ser Met His Ile Ser 1350	
	Pro Thr Asp Leu	gcg atc aac ccc atg Ala Ile Asn Pro Met 1365	
aac tcc atc tac gtc Asn Ser Ile Tyr Val 1375	Leu Asp Asn Asn	gta gtt tta cag atc Val Val Leu Gln Ile 1380	
	Arg Ile Ala Ala	ggg cgg ccc atg cac Gly Arg Pro Met His 1395	
		ggg aag cac gcg gtt Gly Lys His Ala Val	

	1405	1410		1415
acc acc ctg gag Thr Thr Leu Glu			gtg tcc tac agc Val Ser Tyr Ser	
gtc ctt tac atc Val Leu Tyr Ile			aag atc aac cga Lys Ile Asn Arg	
agg cag gtc acg Arg Gln Val Thr			tta gtg gct ggg Leu Val Ala Gly	
			aac tgt gac tgc Asn Cys Asp Cys	
caa agc gga gac Gln Ser Gly Asp			aaa ctc aat gcg Lys Leu Asn Ala	
tcc tcc ctg gcc Ser Ser Leu Ala			ctg tac att gca Leu Tyr Ile Ala	
ctg gga aat atc Leu Gly Asn Ile			aag aat aaa cct Lys Asn Lys Pro	
ctg aac tca atg Leu Asn Ser Met			tct cca act gat Ser Pro Thr Asp	
5 5			cac cag tac acc His Gln Tyr Thr	
			ttt agt tac agc Phe Ser Tyr Ser	
			aat ggc aac acc Asn Gly Asn Thr	
cga atc cga agg Arg Ile Arg Arg	_		gtg cgg gtg gtg Val Arg Val Val	
cct gat aac cag Pro Asp Asn Gln		-	ggc acc aac ggg Gly Thr Asn Gly	-
ctg aaa agc atg Leu Lys Ser Met			ctg gtt ttg ttt Leu Val Leu Phe	

	1615	1620		1625
tac cat ggc aac Tyr His Gly Asn			aaa agt gac gaa Lys Ser Asp Glu	
gga tgg aca aca Gly Trp Thr Thr			gaa ggt cgc ctg Glu Gly Arg Leu	
aat gtt acc ttc Asn Val Thr Phe			aac ctg cac ggg Asn Leu His Gly	
atg gac aag gct Met Asp Lys Ala			tca tcc agc aga Ser Ser Ser Arg	
gaa gat gtc agc Glu Asp Val Ser	_		tcc atc gat tcc Ser Ile Asp Ser	
tac acc atg gtc Tyr Thr Met Val			agt tac cag att Ser Tyr Gln Ile	
tat gat ggc tcc Tyr Asp Gly Ser			agt ggt ctg gac Ser Gly Leu Asp	
cac tac cag aca His Tyr Gln Thr			ggc acg gcg aat Gly Thr Ala Asn	
aca gta gcc aaa Thr Val Ala Lys			ggt gag aac ggg Gly Glu Asn Gly	
aat ctg gtg gag Asn Leu Val Glu	_		caa gcc cag ggc Gln Ala Gln Gly	
			aat ggg cgc aac Asn Gly Arg Asn	
ctc tca gtg gac Leu Ser Val Asp		_	acg gaa aag atc Thr Glu Lys Ile	
gat gac cac cgg Asp Asp His Arg			gct tac gac acg Ala Tyr Asp Thr	-
ggg cac ccg act Gly His Pro Thr			aag cta atg gca Lys Leu Met Ala	

	1825	1830		1835
aac gtc acc tac Asn Val Thr Tyr			gcc agc atc cag Ala Ser Ile Gln	
		_	agc cag ggg agg Ser Gln Gly Arg	
gta tct cgg gtc Val Ser Arg Val			tgg agt tac acg Trp Ser Tyr Thr	
			agc cag cgg cag Ser Gln Arg Gln	
atc ttc gaa tac Ile Phe Glu Tyr			tcc gcc atc acc Ser Ala Ile Thr	•
			atc cgg tcc att Ile Arg Ser Ile	
tac tac cgc aac Tyr Tyr Arg Asn			agc aat gcc tct Ser Asn Ala Ser	
atc acc gac tac Ile Thr Asp Tyr			ctg caa aca gct Leu Gln Thr Ala	
ctg gga acg agt Leu Gly Thr Ser			tat aga agg cag Tyr Arg Arg Gln	
			aga gtc agt ttt Arg Val Ser Phe	
			gta aac ctt cag Val Asn Leu Gln	
gat ggt ttt att Asp Gly Phe Ile			caa att ggt ccc Gln Ile Gly Pro	
	_		gat gga atg gta Asp Gly Met Val	
gcg aga ttt gac Ala Arg Phe Asp			ttt cga gtg acc Phe Arg Val Thr	

	2035	2040		2045
			ccc att gat cta Pro Ile Asp Leu	
cag ttt gat gac Gln Phe Asp Asp			cag ttt gga aaa Gln Phe Gly Lys	
			att tcc acg gcc Ile Ser Thr Ala	
			ggg cgc atc aag Gly Arg Ile Lys	
		_	tac tgg att aca Tyr Trp Ile Thr	
caa tat gat aat Gln Tyr Asp Asn			aga gag att aaa Arg Glu Ile Lys	
ggg cct ttt gcc Gly Pro Phe Ala			tac gag tac gac Tyr Glu Tyr Asp	_
			gaa aag atc atg Glu Lys Ile Met	
			cac ttg ctc aac His Leu Leu Asn	
agc agc agc gcc Ser Ser Ser Ala			tat gac ctg cgc Tyr Asp Leu Arg	_
			cgg ctg gat gaa Arg Leu Asp Glu	
ggt ttc ctg cgt Gly Phe Leu Arg		_	ttt gaa tac agc Phe Glu Tyr Ser	
aaa ggg ctt ctg Lys Gly Leu Leu		-	ggc agt ggc tgg Gly Ser Gly Trp	
gtg atc tat cgg Val Ile Tyr Arg			cgt gtt tct agc Arg Val Ser Ser	

	2245	2250		2255
	_	_	tac gcc gac ctg Tyr Ala Asp Leu	
tac ccc acg aga Tyr Pro Thr Arg	•		cat tcc agt tca His Ser Ser Ser	•
			cat ctc ttc gcc His Leu Phe Ala	
			gcc tcg gac aac Ala Ser Asp Asn	
			ggg ctc atg ctg Gly Leu Met Leu	
cag acc cag tac Gln Thr Gln Tyr			tac ttt gac tcc Tyr Phe Asp Ser	
			ggg ggc ttg tat Gly Gly Leu Tyr	
ccg ctc acc aaa Pro Leu Thr Lys			aga gat tat gac Arg Asp Tyr Asp	
ttg gcg gga aga Leu Ala Gly Arg			gaa atc tgg aaa Glu Ile Trp Lys	
			tat atg ttt cgg Tyr Met Phe Arg	
			aaa gat tac atc Lys Asp Tyr Ile	
gat gtt aac agc Asp Val Asn Ser			ttc cat ctg cac Phe His Leu His	
gct att cct gga Ala Ile Pro Gly			gat tta act gag Asp Leu Thr Glu	
tcc tat gag ctt Ser Tyr Glu Leu			gaa gat gtg ccg Glu Asp Val Pro	

				2455					2460				2465	
				cag Gln 2470										7489
				aag Lys 2485										7534
				cag Gln 2500						-		-	-	7579
				ggc Gly 2515										7624
_				ctc Leu 2530			-			_	_			7669
				aac Asn 2545										7714
				aag Lys 2560	_									7759
				ctg Leu 2575										7804
_	_			999 Gly 2590					gtg Val 2595					7849
				agg Arg 2605										7894
				gca Ala 2620										7939
		_		cgc Arg 2635					gcg Ala 2640					7984
_				gca Ala 2650			_	_	_		_	_	 	8029
	ggt Gly		_	ctc Leu		_			gag Glu			_		8074

2665	2670 2675	
agc gct ggc aag gtg cag ggc tac ga Ser Ala Gly Lys Val Gln Gly Tyr As 2680	p Gly Tyr Tyr Val Leu Ser	
gtg gag cag tac ccc gag ctg gct ga Val Glu Gln Tyr Pro Glu Leu Ala As 2695		4
ttc ttg cga caa agt gag atc ggc aa Phe Leu Arg Gln Ser Glu Ile Gly Ly 2710		7
acccctgtgc agattctcct gtagcacaat cc	aaaccgga ctctccaaag agccttccaa 826	7
aatgacactg ctctgcagac agacacatcg ca	gatacaca cgcaacacaa accagaaaca 832	:7
aagacaactt tttttttttt ctgaatgacc tt	aaaggtga teggetttaa agaatatgtt 838	37
tacatacgca tatcgctgca ctcaattgga ct	ggaagtat gagaaaggaa aaaaaagcat 844	17
taaaaaaggc aacgttttgc catgacccct ct	gtaccttc gaggcactgt atttaacaaa 850)7
ggttttaaaa aggaaaaaaa aatgcgtaca at	gtttccag atattactga attgtcgacc 856	57
tttgcttaca ggaagtaatc tctacttagg at	gtgatata tatagatctg ttcattttaa 862	?7
aatgtggggc aaagttactg tttatagaac cc	aactgctt teeegtgetg etttgtaaaa 868	37
ggacactggc acaagggacg tctgcttcgg cg	gggattta ataatggatt ttactaacat 874	17
ggcttgccct gggagggaaa aactgacgaa ta	gaateett gteaetgata ageaaaggaa 880)7
accctgattt ttttgtaaat tatgtgagac aa	gttgttta tggattttta tatgaattac 886	57
aatttactgt acatcaaata ttagtctcag ag	gagttaat ttatgtaaag tgtttaaaaa 892	27
gtttatactt aaaaataaaa tgataaaaac aa	aaaaa 896	54
<210> 133 <211> 2253 <212> DNA <213> Homo sapiens		
<220> <221> exon <222> (107)(1090)		7.
<400> 133 gtgccccgga tgtgcccagc tggctcctgg cc	ccacccct cgggcctttg ggctggacca 6	50
gccacctctg cctgagacct ccggtcgccg ca	agaagctg gagagg atg tac agc 11 Met Tyr Ser	.5

						gac Asp 10				_					_	1	163
						cag Gln										2	211
						agg Arg	_	_						_		2	259
		_		_		aac Asn		_			_	_	_	_		3	307
_				_	_	cag Gln	_		_	_						3	355
	_				_	gac Asp 90				_		_	_			4	103
						agt Ser										4	451
_		_			-	ctg Leu										4	199
_	-	-				gaa Glu										Ę	547
			_			aag Lys	_								_	5	595
	_	-				atc Ile 170										6	543
			_			gag Glu	_									ϵ	591
	_		_	_		tgg Trp		_	_			_	_			7	739
						ctc Leu										7	787

215 220 225

gtg gag aag gaa gag gac atg att cac ttc tgg aag cgg ctg agc cgc Val Glu Lys Glu Glu Asp Met Ile His Phe Trp Lys Arg Leu Ser Arg 230 235 240	835
ctg atg agc aaa gtg aac cca gag ccg aac gtc atc cac atc atg ggc Leu Met Ser Lys Val Asn Pro Glu Pro Asn Val Ile His Ile Met Gly 245 250 255	883
tgc tac att ctg ggg aac ccc aat gga gag aag ctg ttc cag aac ctc Cys Tyr Ile Leu Gly Asn Pro Asn Gly Glu Lys Leu Phe Gln Asn Leu 260 265 270 275	931
agg acc ctc atg act cct tat agg gtc acc ttc gag tca ccc ctg gag Arg Thr Leu Met Thr Pro Tyr Arg Val Thr Phe Glu Ser Pro Leu Glu 280 285 290	979
ctc tca gcc caa ggg aag cag atg atc gag acg tac ttt gac ttc cgg Leu Ser Ala Gln Gly Lys Gln Met Ile Glu Thr Tyr Phe Asp Phe Arg 295 300 305	1027
ttg tat cgc ctg tgg aag agc cgc cag cac tcg aag ctg ctg gac ttt Leu Tyr Arg Leu Trp Lys Ser Arg Gln His Ser Lys Leu Leu Asp Phe 310 315 320	1075
gac gac gtc ctg tga ggggcagagg cctccgccca gtcaccatca ggccactccc Asp Asp Val Leu 325	1130
tctgcaccgg gacctggggc tgggccgcct cgtgctcccc gggactgtgt agctccggtc	1190
tegeetggag ceaetteagg geaecteaga egttgeteag gtteeceetg tgggtteegg	1250
tectegetge accegtggee geagaggetg cagtecetgg gggeegggag gatecegeee	1310
tgtggcccgt ggatgctcag cggccaggca ctgacctgcc atgcctcgcc tggaggctca	1370
gctgtgggca tccctccatg gggttcatag aaataagtgc aatttctaca cccccgaaac	1430
aattcaaagg gaagcagcat ttcttgttaa ctagttaagc actatgctgc tagttacagt	1490
gtaggcaccc cggcccagca gcccagcagc ccacatgtgt tcaggaccct ccctgcccac	1550
cccctccctg ccgtatcgat caccagcacc agggtggccc gtgtgcgtgg ggccagcgtc	1610
gccgggctgc ccagcctggc tctgtctaca ctggccgagt ctctgggtct gtctacactg	1670
gccgagtctc cgactgtctg tgctttcact tacactcctc ttgccacccc ccatcctgc	1730
ttacttagac ctcagccggc gccggacccg gtaggggcag tctgggcagc aggaaggaag	1790
ggcgcagcgt cccctccttc agaggaggct ctgggtgggg cctgctcctc atcccccaa	1850
gcccacccag cactctcatt gctgctgttg agttcagctt ttaccagcct cagtgtggag	1910

gctccatccc agcacacagg cctggggctt ggcaggggcc cagctggggc tgggccctgg	1970
gttttgagaa actcgctggc accacagtgg gcccctggac ccggccgcgc agctggtgga	2030
ctgtaggggc tcctgactgg gcacaggagc tcccagcttt tgtccacggc cagcaggatg	2090
ggctgtcgtg tatatagctg gggcgagggg gcaggccccc cttgtgcaga gccaggggtc	2150
tgagggcacc tggctgtgtt cccagctgag ggagggctgg ggcgggggcc gggcttggaa	2210
cgatgtacga taccctcata gtgaccatta aacctgatcc tcc	2253
<210> 134 <211> 2253 <212> DNA <213> Danio rerio	
<220> <221> exon <222> (1)(298)	
<pre><400> 134 gtg ccc cgg atg tgc cca gct ggc tcc tgg ccc cac ccc tcg ggc ctt Val Pro Arg Met Cys Pro Ala Gly Ser Trp Pro His Pro Ser Gly Leu 1 5 10 15</pre>	48
tgg gct gga cca gcc acc tct gcc tga gac ctc cgg tcg ccg caa gaa Trp Ala Gly Pro Ala Thr Ser Ala Asp Leu Arg Ser Pro Gln Glu 20 25 30	96
gct gga gag gat gta cag cgt tga ccg tgt gtc tga cga cat ccc tat Ala Gly Glu Asp Val Gln Arg Pro Cys Val Arg His Pro Tyr 35 40 45	144
tcg tac ctg gtt ccc caa gga aaa tct ttt cag ctt cca gac agc aac Ser Tyr Leu Val Pro Gln Gly Lys Ser Phe Gln Leu Pro Asp Ser Asn 50 55 60	192
cac aac tat gca agc ggt gtt cag ggg cta cgc gga gag gaa gcg ccg His Asn Tyr Ala Ser Gly Val Gln Gly Leu Arg Gly Glu Glu Ala Pro 65 70 75	240
gaa acg gga gaa tga ttc cgc gtc tgt aat cca gag gaa ctt ccg caa Glu Thr Gly Glu Phe Arg Val Cys Asn Pro Glu Glu Leu Pro Gln 80 85 90	288
aca cct gcg c atggtcggca gccggagggt gaaggcccag acgttcgctg Thr Pro Ala 95	338
agcggcgcga gcggagcttc agccggtcct ggagcgaccc cacccccatg aaagccgaca	398
cttcccacga ctcccgagac agcagtgacc tgcagagetc ccactgcacg ctggacgagg	458

ccttcgagga cctggactg	g gacactgaga	agggcctgga	ggctgtggcc	tgcgacaccg	518
aaggettegt gecaccaaa	g gtcatgctca	tttcctccaa	ggtgcccaag	gctgagtaca	578
tecceactat cateegeege	g gatgacccct	ccatcatccc	catcctctac	gaccatgagc	638
acgcaacctt cgaggacat	c cttgaggaga	tagagaggaa	gctgaacgtc	taccacaagg	698
gagccaagat ctggaaaat	g ctgattttct	gccagggagg	tcctggacac	ctctatctcc	758
tcaagaacaa ggtggccac	c tttgccaaag	tggagaagga	agaggacatg	attcacttct	818
ggaagcggct gagccgcct	g atgagcaaag	tgaacccaga	gccgaacgtc	atccacatca	878
tgggctgcta cattctggg	g aaccccaatg	gagagaagct	gttccagaac	ctcaggaccc	938
tcatgactcc ttatagggt	c accttcgagt	cacccctgga	gctctcagcc	caagggaagc	998
agatgatcga gacgtactt	t gacttccggt	tgtatcgcct	gtggaagagc	cgccagcact	1058
cgaagctgct ggactttga	c gacgtcctgt	gaggggcaga	ggcctccgcc	cagtcaccat	1118
caggccactc cctctgcac	c gggacctggg	gctgggccgc	ctcgtgctcc	ccgggactgt	1178
gtageteegg tetegeetg	g agccacttca	gggcacctca	gacgttgctc	aggttccccc	1238
tgtgggttcc ggtcctcgc	t gcacccgtgg	ccgcagaggc	tgcagtccct	gggggccggg	1298
aggatcccgc cctgtggcc	c gtggatgctc	agcggccagg	cactgacctg	ccatgcctcg	1358
cctggaggct cagctgtgg	g catccctcca	tggggttcat	agaaataagt	gcaatttcta	1418
caccccgaa acaattcaa	a gggaagcagc	atttcttgtt	aactagttaa	gcactatgct	1478
gctagttaca gtgtaggca	c cccggcccag	cagcccagca	gcccacatgt	gttcaggacc	1538
ctccctgccc accccctcc	c tgccgtatcg	atcaccagca	ccagggtggc	ccgtgtgcgt	1598
ggggccagcg tcgccgggc	t gcccagcctg	gctctgtcta	cactggccga	gtctctgggt	1658
ctgtctacac tggccgagt	c tccgactgtc	tgtgctttca	cttacactcc	tcttgccacc	1718
ccccatccct gcttactta	g acctcagccg	gcgccggacc	cggtaggggc	agtctgggca	1778
gcaggaagga agggcgcag	c gtcccctcct	tcagaggagg	ctctgggtgg	ggcctgctcc	1838
tcatccccc aagcccacc	c agcactctca	ttgctgctgt	tgagttcagc	ttttaccagc	1898
ctcagtgtgg aggctccat	c ccagcacaca	ggcctggggc	ttggcagggg	cccagctggg	1958
getgggeeet gggttttga	g aaactcgctg	gcaccacagt	gggcccctgg	acceggeege	2018
gcagctggtg gactgtagg	g gctcctgact	gggcacagga	gctcccagct	tttgtccacg	2078
gccagcagga tgggctgtc	g tgtatatagc	tggggcgagg	gggcaggccc	cccttgtgca	2138

gagccagggg tctgagggca cctggctgtg ttcccagctg agggagggct gggggggg 2198 ccgggcttgg aacgatgtac gataccctca tagtgaccat taaacctgat cctcc 2253 <210> 135 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> TCAP 3 General Motif <220> <221> MISC_FEATURE <222> (5)..(5) <223> X=G, S or A <220> <221> MISC_FEATURE <222> (6)..(6) <223> X=G or R <220> <221> MISC_FEATURE <222> (9)..(9) <223> X=L or Q <220> <221> MISC FEATURE <222> (19)..(19) <223> X=V or I <220> <221> MISC FEATURE <222> (32)..(32) <223> X=V or I <400> 135 Gln Leu Leu Ser Xaa Xaa Lys Val Xaa Gly Tyr Asp Gly Tyr Tyr Val 5 10 15 Leu Ser Xaa Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Xaa Gln Phe Leu Arg Gln Ser Glu Ile 35 <210> 136 <211> 36 <212> PRT <213> Artificial Sequence

<220>

<223> G. gallus TCAP2

<400> 136

Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val Leu Pro Val Glu 1 5 10 15

Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile Gln Phe Leu Arg 20 25 30

Gln Asn Glu Met 35

<210> 137

<211> 251

<212> PRT

<213> Artificial Sequence

<220>

<223> Human Ten M1

<400> 137

Thr Ile Leu Gly Ile Gln Cys Glu Leu Gln Lys Gln Leu Arg Asn Phe 1 5 10 15

Ile Ser Leu Asp Gln Leu Pro Met Thr Pro Arg Tyr Asn Asp Gly Arg 20 25 30

Cys Leu Glu Gly Gly Lys Gln Pro Arg Phe Ala Ala Val Pro Ser Val 35 40 45

Phe Gly Lys Gly Ile Lys Phe Ala Ile Lys Asp Gly Ile Val Thr Ala 50 55 60

Ile Ile Gly Val Ala Asn Glu Asp Ser Arg Arg Leu Ala Ala Ile Leu 65 70 75 80

Asn Asn Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Glu Gly Arg 85 90 95

Asp Thr His Tyr Phe Ile Lys Leu Gly Ser Leu Glu Glu Asp Leu Val 100 105 110

Leu	Ile	Gly 115	Asn	Thr	Gly	Gly	Arg 120	Arg	Ile	Leu	Glu	Asn 125	Gly	Val	Asn
Val	Thr 130	Val	Ser	Gln	Met	Thr 135	Ser	Val	Leu	Asn	Gly 140	Arg	Thr	Arg	Arg
Phe 145	Ala	Asp	Ile	Gln	Leu 150	Gln	His	Gly	Ala	Leu 155	Cys	Phe	Asn	Ile	Arg 160
Tyr	Gly	Thr	Thr	Val 165	Glu	Glu	Glu	Lys	Asn 170	His	Val	Leu	Glu	Ile 175	Ala
Arg	Gln	Arg	Ala 180	Val	Ala	Gln	Ala	Trp 185	Thr	Lys	Glu	Gln	Arg 190	Arg	Leu
Gln	Glu	Gly 195	Glu	Glu	Gly	Ile	Arg 200	Ala	Trp	Thr	Glu	Gly 205	Glu	Lys	Gln
Gln	Leu 210	Leu	Ser	Thr	Gly	Arg 215	Val	Gln	Gly	Tyr	Asp 220	Gly	Tyr	Phe	Val
Leu 225	Ser	Val	Glu	Gln	Tyr 230	Leu	Glu	Leu	Ser	Asp 235	Ser	Ala	Asn	Asn	Ile 240
His	Phe	Met	Arg	Gln 245	Ser	Glu	Ile	Gly	Arg 250	Arg					
<210 <210 <210 <210	1> 4 2> 1		ficia	al Se	equei	nce									
<22 <22		G. ga	allu	s TC	AP-1										
<40	0> :	138													
Gln 1	Leu	Leu	Asn	Thr 5	Gly	Arg	Val	Gln	Gly 10	Tyr	Asp	Gly	Tyr	Phe 15	Val
Leu	Ser	Val	Glu 20	Gln	Tyr	Leu	Glu	Leu 25	Ser	Asp	Ser	Ala	Asn 30	Asn	Ile

His Phe Met Arg Gln Ser Glu Ile 35 40