CS1010S Programming Methodology

Lecture 3 Recursion, Iteration & Order of Growth

26 Aug 2020

Python Problems?

cs1010s-staff@googlegroups.com

Difficulty Curve

LEAVE NO MAN BEHIND

Reinforcements

Remedial classes

- Every week
- 6:30 8:30 pm
- Watch Coursemology for updates

Course Hero

Done with all the missions?

Got a lot of time to burn?

Optional Trainings

Contests Due 06 Sep 2020

Winning: 400 EXP + Prize

Participation: 50 EXP

Recap

Don't need to know how it works

Just know what it does

(the inputs and output)

Learning Outcomes

After this lesson, you should be able to

- know how apply divide and conquer technique to solve a problem
- differentiate what is recursion and iteration
- state the order of growth in terms of time and space for computations

Divide Conquer

What is Recursion

Smaller child problem(s) has same structure as the parent

A recursive function is defined as itself

e.g.
$$f(n) = \cdots f(m) \cdots$$

Analogy

Your friend is late for lecture...

How to find your row?

The Strategy

- Your row number is 1 more than the row in front of you.
- Ask the person in front for his/her row number and add 1 to it.
- The person in front uses the same strategy.
- Eventually, person in front row simply replies 1.

This is Recursion

Example

Consider the factorial function:

$$n! = n \times (n-1) \times (n-2) \cdots \times 1$$

Rewrite:

$$\underbrace{n!} = \begin{cases} n \times (n-1)!, & n > 1 \\ 1, & n \le 1 \end{cases}$$

Factorial

$$n! = \begin{cases} n \times (n-1)!, & n > 1 \\ 1, & n \le 1 \end{cases}$$

```
def factorial(n):
    if n <= 1:
        return 1
    else:
        return n * factorial(n - 1)</pre>
```

Recursion

Function that calls itself is called a recursive function

Recursive process

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
5 * (4 * (3 * (2 * 1)))
5 * (4 * (3 * 2))
5 * (4 * 6)
5 * 24
120
                 Note the build up of pending operations.
```


How to write recursion

- 1. Figure out the base case
 - Typically n = 0 or n = 1
- 2. Assume you know how to solve n-1
 - Now how to solve for n?

Factorial: Linear recursion

```
def factorial(n):
    if n <= 1:
        return 1
    else:
        return n * factorial(n - 1)
                          factorial(4)
                          factorial(3)
                          factorial(2)
                          factorial(1)
```


Fibonacci Numbers

Leonardo Pisano Fibonacci (12th century) is credited for the sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Note: each number is the sum of the previous two.

Fibonacci in Math

$$fib(n) = \begin{cases} 0, & n = 0\\ 1, & n = 1\\ fib(n-1) + fib(n-2) & n > 1 \end{cases}$$

Fibonacci in Python

$$fib(n) = \begin{cases} 0, & n = 0\\ 1, & n = 1\\ fib(n-1) + fib(n-2) & n > 1 \end{cases}$$

```
def fib(n):
    if (n == 0):
        return 0
    elif (n == 1):
        return 1
    else:
        return fib(n - 1) + fib(n - 2)
```

Tree recursion

Mutual recursion

```
def ping(n):
                                          ping(10)
    if (n == 0):
        return n
                                          Ping!
                                          Pong!
    else:
        print("Ping!")
                                          Ping!
        pong(n - 1)
                                          Pong!
                                          Ping!
def pong(n):
                                          Pong!
    if (n == 0):
                                          Ping!
                                          Pong!
        return n
                                          Ping!
    else:
                                          Pong!
        print("Pong!")
        ping(n - 1)
```

Iteration

the act of repeating a process with the aim of approaching a desired goal, target or result.

- Wikipedia

Iterative Factorial

Idea

Start with 1, multiply by 2, multiply by 3, ..., multiply by n.

$$n! = 1 \times 2 \times 3 \cdots \times n$$

Product ×

Counter

Iterative Factorial

$$n! = 1 \times 2 \times 3 \cdots \times n$$

Computationally

Starting:

```
product = 1
counter = 1
```

Iterative (repeating) step:

```
product ← product × counter
counter ← counter + 1
```

End:

product contains the result

Iterative Factorial

```
Start with 1, multiply by 2, multiply by 3, ... n! = 1 \times 2 \times 3 \cdots \times n
```

Python Code

```
def factorial(n):
    product, counter = 1, 1
    while counter <= n:
        product = product * counter
        counter = counter + 1
    return product</pre>
```

while loop

```
while <expression>:
     <body>
```

expression

- Predicate (condition) to stay within the loop body
 - Statement(s) that will be evaluated if predicate is True

Yet another way

```
n! = 1 \times 2 \times 3 \cdots \times n
```

```
Factorial rule:
    product ← product × counter
    counter ← counter + 1
                                 non-inclusive.
def factorial(n):
                                    Up to n.
    product = 1
    for counter in range(2, n+1):
         product = product * counter
    return product
```

for loop

```
for <var> in <sequence>:
     <body>
```

sequence

a sequence of values

var

variable that take each value in the sequence

body

• statement(s) that will be evaluated for each value in the sequence

range function

```
range([start,] stop[, step])
```

creates a sequence of integers

- from start (inclusive) to stop (non-inclusive)
- incremented by step

Examples

```
for i in range(10):
    print(i)
for i in range(3, 10):
    print(i)
for i in range(3, 10, 4):
    print(i)
```

break & continue

```
for j in range(10):
                                  0
    print(j)
                                          Break out
    if j == 3:
                                           of loop
        break
print("done")
                                  done
for j in range(10):
                                        Continue with
    if j % 2 == 0:
                                          next value
        continue
    print(j)
print("done")
                                  done
```

Iterative process

```
def factorial(n):
    product, counter = 1, 1
    while counter <= n:</pre>
        product = (product *
                    counter)
        counter = counter + 1
    return product
factorial(6)
```

product	counter
1	1
1	2
2	3
6	4
24	5
120	6
720	7
counter > n return produ	(7 > 6) uct (720)

Recursion VS Iteration

Recursive process occurs when there are deferred operations.

Iterative process does not have deferred operations.

Recursive Process

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
                  * 1)))
  *
5 * 24
                         deferred
120
                         operations
```

Orders of Growth

Like Physicists, we care about two things:

Space
 Time

Rough measure of resources used by a computational process

Space: how much memory do we need to run the program

Time: how long it takes to run a program

Order of growth Why do we care?

We want to know how much resource our algorithm needs

Analogy

Suppose you want to buy a Blu-ray movie from Amazon (~40GB)

Two options:

- 1. Download
- 2. 2-day Prime Shipping

Which is faster?

Buying the Entire Series

What if you want more movies?

- 8 Blu-ray discs
- ~320 GB

Which is faster?

- 1. Download, or
- 2. 2-day delivery

Even more movies?

Download vs Delivery

We want to ask questions like:

```
factorial(5) \rightarrow factorial(10) ? fib(10) \rightarrow fib(20)?
```

How much more time? 2x?

How much more space? Same?

4x?

Order of Growth is NOT the absolute time or space a program takes to run

Order of Growth is the proportion of growth of the time/space of a program w.r.t. the growth of the input

Formal Definition

Let n denote size of the problem.

Let R(n) denote the resources needed.

Definition:

R(n) has order of growth $\Theta(f(n))$ written

$$R(n) = \Theta(f(n))$$

If there are positive constants k_1 and k_2 such that

$$k_1 f(n) \le R(n) \le k_2 f(n)$$

for any sufficiently large value of n

Diagram

For $n >= n_0$, R(n) is sandwiched between

Some common f(n)

- 1
- n
- n^2
- n^{3}
- $\log n$
- $n \log n$
- 2ⁿ

Intuitively

```
If n is doubled (i.e. increased to 2n) then R(n) (the resource required),
```

is increased to f(2n)

Another analogy

Suppose you can run 10 m in 1.5 secs

Time is linear to distance

Shuttle Run

Run and return

Time is _____ to distance

Recap: Recursive Factorial

```
def factorial(n):
    if n <= 1:
        return 1
    else:
        return n * factorial(n - 1)</pre>
```

Order of growth?

- 1. Time
- 2. Space

Recursive process

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
5 * (4 * (3 * (2 * 1)))
5 * (4 * (3 * 2))
5 * (4 * 6)
                     • Time ∞ #operations
5 * 24

    Linearly proportional to n

120
```

Recursive process

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
5 * (4 * (3 * (2 * 1)))
5 * (4 * (3 * 2))
5 * (4 * 6)
5 * 24
                      Space ∞ #pending operations
                       Linearly proportional to n
120
```

Recursive Factorial

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
5 * (4 * (3 * (2 * 1)))
5 * (4 * (3 * 2))
5 * (4 * 6)
                           Time: O(n) Linear
5 * 24
                          Space: O(n) Linear
120
```

Iterative Factorial

product	counter
1	1
1	2
2	3
6	4
24	5
120	6
720	7

Iterative process

product: 720

counter: 7

Time: O(n) Linear

Space: O(1) Constant

Time (# of steps):

 linearly proportional to n

Space (memory):

- constant
- no deferred operations
- All information contained in 2 variables (old values overwritten by new)

Recap: Fibonacci

$$fib(n) = \begin{cases} 0, & n = 0\\ 1, & n = 1\\ fib(n-1) + fib(n-2) & n > 1 \end{cases}$$

```
def fib(n):
    if (n == 0):
        return 0
    elif (n == 1):
        return 1
    else:
        return fib(n - 1) + fib(n - 2)
```

Tree recursion

Fibonacci

- Number of leaves in tree is fib(n + 1)
- Can be shown that fib(n) is the closest integer to $\frac{\Phi^n}{\sqrt{5}}$
 - Where $\Phi = \frac{1+\sqrt{5}}{2} \approx 1.6180$
 - called the golden ratio
- Therefore time taken is $\approx \Phi^n$
 - (exponential in n)

Tree recursion

- Time:
 - Proportional to number of leaves, i.e., exponential in n.
- Space (memory):
 - Proportional to the depth of the tree, i.e., linear in n.

General form

Suppose a computation C takes 3n + 5 steps to complete, what is the order of growth?

$$O(3n+5) = O(n)$$

Take the largest term. Drop the constants.

Another Example

How about $3^n + 4n^2 + 4$?

Order of growth

$$= 0(3^n + 4n^2 + 4)$$
$$= 0(3^n)$$

Tips

- Identify dominant terms, ignore smaller terms
- Ignore additive or multiplicative constants
 - $-4n^2 1000n + 300000 = O(n^2)$
 - $-\frac{n}{7} + 200n \log n = O(n \log n)$
- Note: $\log_a b = \frac{\log_c b}{\log_c a}$
 - So base is not important

More tricks in CS1231, CS3230

Some involve sophisticated proofs

For now...

Count the number of "basic computational steps".

- Identify the basic computation steps
- Try a few small values of *n*
- Extrapolate for really large *n*
- Look for "worst case" scenario

Numeric example

			2	2	
$\underline{\hspace{1cm}}$	$\log n$	$n \log n$	n^2	n^3	2^n
1	0	0	1	1	2
2	0.69	1.38	4	8	4
3	1.098	3.29	9	27	8
10	2.3	23.0	100	1000	1024
20	2.99	59.9	400	8000	10^6
30	3.4	109	900	27000	10^{9}
100	4.6	461	10000	106	1.2×10^{30}
200	5.29	1060	40000	8×10^6	1.6×10^{60}
300	5.7	1710	90000	27×10^6	2.03×10^{90}
1000	6.9	6910	10^{6}	109	1.07×10^{301}
2000	7.6	15200	4×10^6	8×10^9	?
3000	8	24019	9×10^6	27×10^{9}	?
10 ⁶	13.8	13.8×10^{6}	10^{12}	10^{18}	?

13.7 billion years $\approx 2^{59}$ seconds

Time: how long it takes to run a program

Space: how much memory do we need to run the program

pythontutor.com

Moral of the story

Different ways of performing a computation (algorithms) can consume dramatically different amounts of resources.

Recursion Revisited

- Solve the problem for a simple (base) case
- Express (divide) a problem into one or more smaller similar problems
- Similar to

Mathematical Induction

Comparison

Mathematical Induction

• Start with a base case b

- Assume k works, derive a function to show k+1 also works
- •Therefore, it must be true for all cases $\geq b$

Recursion

- Find base case(s) b where we can just state the answer
- Derive a function to express the problem of size n as subproblems of k < n
- The function can therefore solve all $n \ge b$

Sometimes it may be possible that you will need more than one base case?

When? Why?

Tree recursion

Other times you may have to express a problem in another form and the other form back in the present form (mutual recursion)

- E.g. sin and cos

More Examples

The GCD of two numbers a and b, is the largest positive integer that divides both a and b without remainder.

Naïve Algorithm:

Given two numbers a and b

Start with 1.

Check if it divides both a and b.

Try 2, then 3, and so on... until you reach α or b.

Euclid's Algorithm:

Given two numbers a and b, where $a = b \cdot Q + r$ (the remainder of the division), then we have

$$GCD(a,b) = GCD(b,r), \forall a,b > 0$$

 $GCD(a,0) = a$

```
GCD(a,b) = GCD(b,r), \forall a,b > 0
def gcd(a, b):
    if (b == 0):
                                GCD(a,0) = a
          return a
    else:
       return gcd(b, a % b)
GCD(206,40) = GCD(40,6)
             = GCD(6,4)
             = GCD(4,2)
             = GCD(2,0)
             = 2
```


Goal: Move all discs from one stick to another

Rules:

- 1. Can only move one disc at a time
- 2. Cannot put a larger disc over a smaller disc

Goal: Move all discs from one stick to another

Rules:

- 1. Can only move one disc at a time
- 2. Cannot put a larger disc over a smaller disc

Suppose we know how to move 3 discs from A to C

Suppose we know how to move 3 discs from A to C

Claim: we can move 3 discs from A to B. Why?

Claim: we can move 3 discs from A to B. Why?

How to move 4 discs from A to C?

How to move 4 discs from A to C?

Move 3 disc from A to B

How to move 4 discs from A to C?

- Move 3 disc from A to B
- Move 1 disc from A to C

How to move 4 discs from A to C?

- Move 3 disc from A to B
- Move 1 disc from A to C
- Move 3 disc from B to C

Divided into smaller problem

- Move 4 discs
- Move 5 discs?
- Move *n* discs?

- → Move 3 discs
- Move 4 discs
- \rightarrow Move n-1 discs

Recursion

1. Expressed (divided) the problem into one or more smaller problems

$$n = f(n-1)$$

- 2. Solve the simple (base) case
 - 1 disc?
 - 0 disc? Move directly from X to Y

Do nothing

To move n discs from A to C using B

To move n discs from A to C using B

1. move n-1 discs from A to B using C

To move *n* discs from A to C using B

- 1. move n-1 discs from A to B using C
- 2. move disc from A to C

To move *n* discs from A to C using B

- 1. move n-1 discs from A to B using C
- 2. move disc from A to C
- 3. move n-1 discs from B to C using A

Towers of Hanoi

```
def move_tower(size, src, dest, aux):
    if size == 1:
        print_move(src, dest) # display the move
    else:
        move_tower(size-1, src, aux, dest)
        print_move(src, dest)
        move_tower(size-1, aux, dest, src)
                                                    dest
                    src
                                    aux
```

Tower of Hanoi

```
def print_move(src, dest):
    print("move top disk from ", src" to ", dest)
```

Another example

What does this function compute?

```
def foo(x, y):
    if (y == 0):
        return 1
    else:
        return x * foo(x, y-1)
```

This?

```
def power(b, e):
    if (e == 0):
        return 1
    else:
        return b * power(b, e-1)
```

Exponentiation (b^e)

```
def power(b, e):
    if (e == 0):
        return 1
    else:
        return b * power(b, e-1)
• Time requirement?
                            O(n)
                            O(n)
Space requirement?
                      Can we do better?
```

Another way to express b^e

$$b^{e} = \begin{cases} 1, & e = 0\\ (b^{2})^{\frac{e}{2}}, & e \text{ is even}\\ b^{e-1} \cdot b, & e \text{ is odd} \end{cases}$$

Fast Exponentiation

```
b^{e} = \begin{cases} 1, & e = 0\\ (b^{2})^{\frac{e}{2}}, & e \text{ is even}\\ b^{e-1} \cdot b, & e \text{ is odd} \end{cases}
def fast_expt(b, e):
      if e == 0:
            return 1
      elif e % 2 == 0:
           return fast_expt(b*b, e/2)
     else:
           return b * fast expt(b, e-1)
                                             O(\log n)
• Time requirement?
                                              O(\log n)
• Space requirement?
                       Can we do this iteratively?
```

Summary

- Recursion
 - Solve the problem for a simple (base) case
 - Express (divide) a problem into one or more smaller similar problems
- Iteration: while and for loops

Summary

- Order of growth:
 - Time and space requirements for computations
 - Different ways of performing a computation (algorithms) can consume dramatically different amounts of resources.
 - Pay attention to efficiency!

Something to think about....

- Can you write a recursive function sum_of_digits that will return the sum of digits of an arbitrary positive integer?
- How about a recursive function product_of_digits that will return the product of the digits?

Notice a pattern?

How would you write a function that computed the sum of square roots of the digits of a number?