Algoritmos de ML (Parte 1)

Regresión Lineal Simple

A diferencia de los modelos anteriores, es un modelo estadístico que trata de explicar la relación que existe entre una variable dependiente (variable respuesta) y una variable independiente (explicativa)

Regresión Lineal Simple

El modelo de regresión lineal está dado por la siguiente expresión:

$$y=a+\beta X+\epsilon$$

a= intercepto (valor que toma Y cuando X vale O)

 β = es la pendiente (indica cómo cambia Y al incrementar X en una unidad)

 ϵ = representa el error aleatorio con una distribución normal (0, σ)

Regresión Lineal Simple

Supuestos

- Independencia: los residuales deben ser independientes entre sí
- 2. Homocedasticidad: significa varianzas iguales, para cada valor de X la varianza de los residuales debe ser la misma
- 3. Normalidad: para cada valor de X, los residuales tienen distribución normal con media cero

Regresión Lineal Múltiple

Similar al modelo estadístico de
Regresión lineal simple donde trata de
explicar la relación que existe entre una
variable dependiente (variable
respuesta) y unas variables
independientes (explicativas)

$$y=\alpha+\beta 1X1+...+\beta nXn+\epsilon$$

Regresión Lineal Múltiple

Este modelo al igual que el de regresión lineal simple tiene los mismos supuestos y se puede cuantificar su desempeño de la misma forma (utilizando el coeficiente de determinación (R^2)

De igual forma el **la pendiente** de cada **variable independiente** puede ser o no significativa y se necesita verificar individualmente.

