

Computer Organization and Design

Introduction and Chapter 1
(Sections 1.1 – 1.5)
Computer Abstractions and Technology

Definitions & Distinctions

- Computer architecture and computer organization are related but distinct concepts in the field of computer science.
- Computer architecture refers to the design of the internal workings of a computer system, including the CPU, memory, and other hardware components.
 - It involves decisions about the organization of the hardware, such as the instruction set architecture, the data path design, and the control unit design.
 - Computer architecture is concerned with optimizing the performance of a computer system and ensuring that it can execute instructions quickly and efficiently.

Definitions & Distinctions

- Computer organization refers to the way in which the hardware components of a computer system are arranged and interconnected.
 - It defines the operational units and their interconnections that implement the architecture specification.
 - It deals with how the components of a computer system are arranged and how they interact to perform the required operations.
 - Computer organization is concerned with the physical implementation of the architecture design and includes decisions about the interconnection and communication between components
 - such as the bus structure, memory hierarchy, and input/output systems.

Categories of Computers

Analog

- Uses the continuous variation aspect of physical quantities such as electrical, mechanical, or hydraulic (analog signals) to model the problem being solved.
- Norden bombsight, radar systems, aircraft flight computers
- Pre-1950s but current interest in analog/digital hybrid systems

Digital Focus of this class

- Processes information that is represented as discrete, finite values
- Majority of contemporary systems (1950 to current)

Quantum

- Exploits quantum mechanical phenomena, representing data as qubits using specialized hardware
- Convergence of quantum mechanics and computer science (1980 to current)

Classes of Computers By Application

Personal computers

- General purpose, variety of software, individual use
- Emphasis on delivery of good performance at reasonable cost

Server computers

- Network based, running larger programs accessed by many
- High capacity, performance, reliability
- Range from small servers to building sized systems

Supercomputers (subset of server class)

- High-end scientific and engineering calculations
- Highest capability but represent a small faction of the overall computer market

Embedded computers

- Components of systems programmed for specific function
 - Smart devices often WiFi connected
- Stringent power/performance/cost constraints

Computer Systems - Hardware

- Computing systems differ in their
 - Size
 - Cost
 - Power
 - Performance
- All computing systems
 - Process digital information
 - Execute binary programs
 - Have microprocessors and memory

Post-PC Era

- The PC is alive and doing well but
 - Mobile devices outnumber sales of PCs
- Personal Mobile Device (PMD)
 - Battery operated
 - Wireless connectivity to the Internet
 - Relatively low cost depending on features
 - Run "apps" but no external keyboard or mouse
 - Includes smart phones, smart watches, tablets, electronic eyewear

- Warehouse Scale Computers (WSC)
- Software as a Service (SAAS)
 - Portion of software run on PMD and a portion run in the cloud
 - Amazon, Google, Microsoft, social media

Understanding Program Performance

- The performance of a program depends on
 - A combination of the effectiveness of the algorithms used in the program
 - The software systems used to create and translate the program into machine instructions
 - The effectiveness of the computer hardware executing those instructions

Hardware or Software Component	How this component affects performance
Algorithm	Determines both the number of source-level statements & number of I/O operations executed
Programming language, compiler, & architecture	Determines the number of computer instructions for each source-level statement
Processor & memory system	Determines how fast instructions can execute
I/O system (hardware & operating system)	Determines how fast I/O operations may be executed

 Computational aspects of computer performance will be examined in more detail in a future lecture.

Abstraction – Hardware/Software Stack

- Abstraction helps us deal with complexity
 - Hide lower-level details
- Instruction set architecture (ISA)
 - The hardware/software interface
 - The interface between the hardware and low-level software
 - This interface is binary
- Application binary interface
 - The ISA plus system software interface
- Microarchitecture
 - How the ISA is implemented
 - Organizational level
 - Implementation varies

Application Software

Systems Software

Hardware

Problem
Algorithm
Programming Language
Runtime System
Instruction Set Architecture
Microarchitecture
Logic
Circuits
Physics
Electrons

Instruction Set Architecture (ISA)

- The interface between the hardware and the lowest level software – a.k.a. "architecture"
 - Defines the "rules" by which software must follow in order to be recognized in the hardware
 - One of the most important elements in computer system design
 - This is what distinguishes the performance and design of computer systems
- Two historical architectural categories:
 - CISC Complex Instruction Set Computer
 - RISC Reduced Instruction Set Computer
- The instruction set architecture encompasses everything necessary to write a machine language program that will run correctly (includes instructions, registers, memory access, and I/O devices and interfaces)

Technology

- The organization of a computer system is independent of any hardware technology
 - All computers have the same basic components
- The technology used to implement a system can differ among different classes of systems
 - Technology changes and evolves over time
 - How the technology is assembled into a computer system is governed by time-proven design concepts.
- There will always be differences in the implementation of computing systems but the organizational concepts will be consistent

Technology (continued)

- Process integration is the concept of making devices smaller while at the same time increasing the number of components per device
 - Moore's Law doubling of number of transistors on a single chip every 2 years
- Integrated circuit technology is historically categorized by the degree of integration, also called the growth in chip density
 - Feature size or process node size
 - Measured today in nanometers
 - Measurement of different manufacturers not necessarily equivalent
- The higher the chip density, the more circuits are contained in the chip, thus more function and generally, more complexity

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

Scales of Integrated Circuit Integration

Year	Technology	Relative performance/cost
1942 - 1959	Vacuum tube	1
1959 - 1965	Transistor	35
1965 - 1975	Integrated circuit (IC)	900
1975 -1988	Very large scale IC (VLSI)	2,400,000
1988 - 2008	Ultra large scale IC (ULSI)	250,000,000,000
2008 - Today	Giga scale IC (GSI)	14,880,000,000,000
2019 -	Tera scale IC (TSI)	? (too recent to know)

Relative performance per unit cost of technologies used in computers over time

ENIAC

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

IBM Mainframes

- IBM System/360
 - Circa 1965
 - Transistor technology (SLT modules)
 - Solid logic technology

- IBM System/370
 - Circa 1972
 - Integrated circuit technology (memory)

Significant Small Computers For Home

Micral (1973)

Apple II (1977)

Atari 400 (1979)

IBM PC (1981)

Commodore 64 (1982)

IBM Watson

- Data analytics processor that uses natural language processing
- Jeopardy Champion
 - February, 2011

- After Jeopardy, Watson was devoted to research in healthcare, finance, ecosystems, and customer service as a development platform in the Cloud.
- Today, called Watsonx, the platform is being used to advance AI and machine learning technologies.

World's Most Powerful Supercomputer

- Frontier (Top500 June 2024)
 - DOE/SC/Oak Ridge National Laboratory, Tennessee
 - 8,699,904 cores (AMD Optimized 3rd Generation EPYC 64C)
 - 1,714.81 peak petaflops (22,786 kWh)
 - First exascale computer

World's 2nd Most Powerful Supercomputer

- Aurora (Top500 June 2024)
 - DOE/SC/ Argonne National Laboratory, Illinois
 - 9,264,128 cores (Xeon CPU Max)
 - 1,980.01 peak petaflops (38,698 kWh)
 - Still being optimized for higher performance

Pentium 4 Processor Die 0.18 Micron Process (2000)

AMD Barcelona Die 65nm Process (2007)

463 million Transistors !!!!

4 CPU cores

512kB L1 Data Cache Store Cache Core 2 Shared Execution Decode/ Branch Core 3 Slow I/O Fuses

Die size = 285 sq. mm

IBM Blue Gene/Q 45nm Process (2012)

1.47 billion Transistors !!!!!!!!

18 CPU cores

PU 12 Network 00 01 Msq unit

Die size = 359 sq. mm

Intel Ivy Bridge 22nm Process (2014)

4.31 billion Transistors !!!!!!!!

15 CPU cores

Die size = 541 sq. mm

SPARC M7 20nm Process (2015)

>10 billion Transistors !!!!!!!!

32 CPU cores

ունա հումավայի <mark>-</mark> անավագիտականական <mark>- անավայի անա</mark>մամա L3\$ & ON-CHIP NETWORK CLUSTER

Die size = \sim 600 sq. mm

AMD EPYC 14nm Process (2017)

19,200,000,000 *Transistors* !!!!!!!

8 CPU cores/chip 4 chips/module

Intel Alder Lake 10nm Process (2021)

Approx. 21 billion transistors 215.25 mm²

Big.LITTLE design

- 8 High Performance cores/chip
- 8 Efficient cores/chip

Something Different: Cerebras WSE-2

- Wafer Scale Engine (WSE-2)
 - Designed specifically for AI
 - 850,000 Al-optimized cores organized into 84 dies all on a single silicon die
- 40 GB of local superfast SRAM memory
 - 2.6 trillion transistors
- 46,225 sq. mm. piece of silicon (from 300mm wafer)

Technology Terminology

- Other technology terms to know
 - GPU (Graphics Processing Unit)
 - processor designed for high compute intensity generally used primarily for graphics, but also vector processing
 - APU (Accelerated Processing Unit)
 - combines a CPU with a GPU on the same chip
 - used in mobile devices and gaming systems
 - SOC (System On a Chip)
 - integrates multiple components (digital and/or analog) onto single chip
 - NPU (Neural Processing Unit), TPU (Tensor Processing Unit)
 - specialized processor explicitly designed for executing machine learning algorithms. NPUs & TPUs are optimized for handling complex mathematical computations integral to artificial neural networks.

Technology Terminology

- Other technology terms to know (continued)
 - ASIC (Application Specific Integrated Circuit)
 - customized chip created for a specific use as opposed to general purpose
 - FPGA (Field Programmable Gate Array)
 - chip that can be configured after manufacture by HDL programming
 - VPU (Vision Processing Unit)
 - processor designed to accelerate machine vision tasks; may be incorporated with a NPU
 - DSP (Digital Signal Processor)
 - processing units are optimized for performing digital filtering and Fourier analysis, whether on audio or radio signals or images.

Hybrid Processor Design

- Commonly called "big.LITTLE" architecture
 - Big.LITTLE is trademarked by ARM
 - Apple adopted big.LITTLE architecture for M1 processor and subsequently the M1 Pro & M1 Max
 - Intel's Alder Lake processors also implement the concept and they call it the performance hybrid architecture (P-cores & E-cores)
- Multi-core design with heterogenous mix of different cores capable of operating at different performance levels determined by type of tasks
 - Compute intensive execution by big/performance cores
 - Less intensive execution by little/efficient cores

big.LITTLE Characteristics

- Clusters of two types of CPU cores
 - Each core is an individual processor
 - Little processors are designed for maximum power efficiency
 - Big processors are designed to provide maximum compute performance.
- Both types of processors are coherent and share the same instruction set architecture.
- Using big.LITTLE technology, each task can be dynamically allocated to a big or little core depending on the instantaneous performance requirement of that task.

Possible Future of Hybrid Technologies

- Today's APUs contain both CPU cores and GPU cores on the same silicon chip
- The big.LITTLE approach expands on this hybrid integrated approach
- Concept of hybrid CPUs can feasibly be expanded to include integrated neural processing units (NPU) for running machine learning algorithms and vision processing units (VPUs) for vision processing
- Looking way into the future (perhaps the 2030s or beyond), QPUs (quantum processing units) could potentially be another type of processor integrated into hybrid CPUs to support complex optimizations
 - Intel, Xanadu and other companies are conducting research in silicon-based quantum possibilities

Instructions and Data

- The two basic things that need to be represented in hardware
 - Instructions commands
 - Data numbers, characters, etc.
- Instructions that computers understand are just numbers (collections of bits) that tell the computer to perform some operation, such as add two values.
- All information stored in a computer system whether data or instructions are stored as a binary number.
- If you just look at a number, you can't tell what it represents unless you know its context.

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

Hardware

- Hardware is what the software runs on
- Computer systems generally have
 - Input only devices (keyboard, mouse, etc.)
 - Output only devices (monitor, printer, etc.)
 - Input/output devices (touch screens, disk, network, etc.)
 - Processors (manipulate information)
 - Memory (local storage)
 - Interfaces (connect all the devices)
- Under the covers
 - Electronics, wires, fans, motors, lights
- Motherboard (Mainboard)
 - Used as base for mounting electronics
 - Contains integrated circuits (chips)
 - Interface chips, memory, the processor

PC Motherboard

Mobile

Laptop

Apple iPad

Microsoft Surface

Smartphone

Hardware (continued)

- Interface chips control connections and flow of data between components on the motherboard
- Memory is where the programs and data reside when the programs are running
- Processor is the "brain" it follows the instructions of the program it executes
- Main processor is called a microprocessor or CPU
 - Many systems have other special purpose processors
 - Ex. Graphic Processing Unit (GPU)
 - Processor within a processor
 - GPU can be integrated into CPU
- Processor is composed of a
 - Datapath performs arithmetic and logic operations
 - Control tells the memory, datapath, I/O devices what to do according to the instructions it is executing

Hardware (continued)

- Computer systems contain five functional components
 - Input
 - Output
 - Memory
 - Datapath
 - Control

Making Today's Chips

https://www.youtube.com/watch?v=F2KcZGwntgg https://www.youtube.com/watch?v=bor0qLifjz4

Summary: Major Concepts

- All computer systems
 - Process Digital Information
 - Execute Programs
 - Use microprocessors
- All data in the hardware is a binary number
- Computers are built with common functionality but the technology may differ among different systems.
- Differences between computer systems is due to internal design
 - Instruction Set Architecture
 - What the programmer needs to know to write programs for the machine
- Evolutionary design vs revolutionary design
 - CISC vs RISC

Terminology to Know

- Desktop computer
- Server computer
- Embedded computer
- microprocessor (CPU)
- datapath
- control
- computer system components
 - (input, output, memory, datapath, control)
- CISC
- RISC
- Instruction Set Architecture
- Microarchitecture

- transistor
- integrated circuit
- Moore's Law
- high level language
- assembly language
- machine language
- abstraction
- GPU NPU
- APUVPU
- SOCDSP
- ASICFPGA
- Hybrid technologies