- 积分 $\int B_s ds$ 的distribution 是Gaussian,把它写成求和之后极限的形式,每一个分量都服从Gaussian,加上独立,求和也就服从Gaussian,均值为0,方差为 $\frac{1}{3}T^3$
- quadrtaic variation: $\lim\sum (B_{t_{i+1}}-B_{t_i})^2=T$, 这个是啥啊,这不就是 $\int B_s^2ds$!!!不是!!!这个需要再乘 $(t_{i+1}-t_i)$, 这个是 $\int (dB_t)^2$
- total variation is ∞
- $\int H_u dB_u$
 - H_u 可以是任何函数哦,也可以包含 B_u 的
 - H_u is simple process --> continuous trajectories, martingale , isometry($E[(\int_0^t H_u dB_u)^2] = E[\int_0^t H_u^2 du]$),相乘($E[(\int_s^{t_1} H_u dB_u) \int_s^{t_2} K_u dB_u)] = E[\int_s^{min(t_1,t_2)} H_u K_u du]$),另一个 martingale($(\int_0^t H_u dB_u)^2 \int_0^t H_u^2 du$),均值为0
 - quadratic variation: $\int_0^t H_u^2 du$
 - ullet quadratic correlation: $\int_0^t H_u K_u du$
 - $H_u\in H^2, E[\int_0^t H_u^2 du]<+\infty$,可以用simple process 逼近 H^2 , --> 也满足martingale和 isometry

Proposition 5.3.5 (Wiener integral) Let
$$f: [o,T]$$
 $\rightarrow IR$ be a square-integrable deterministic function,
then the process $\left(\int_{0}^{t} f(s) dB_{s}\right)_{OSEST}$ is called Wiener integral and verifies

 $\int_{0}^{t} f(s) dB_{s} \sim \mathcal{N}\left(0, \int_{0}^{t} f'(s) ds\right)$

- $H_u \in H^1, \int_0^t H_u^2 du < +\infty$ 这时,这个积分不再是martingale,而是local martingale
- 注意哈,所有的讨论都是针对这一个积分,只不过是 H_u 不同满足的性质也就不一样
- local martingale + bounded from below --> supermartingale
- martingale representaion

Thm 7.1.7 Let
$$[M+]$$
 $0 \le t \in T$ be a square-tintegrable martingale. Then those exists a unique process $H \in \mathbb{H}^2$ s.t. $Mt = Mo + \int_0^t H s dws$ $0 \le t \le T$. p.a.s In particular M has continuous path. (most important)

- change of measure : $z=rac{dQ}{dP}$ 必须是一个martingale, 且在p的概念下期望为1,在也被称为 Radon-Nikodym derivative
 - deterministic:

BM:

- stochastic:
 - $\quad \phi \, {\rm is} \, H^2_{loc}$

$$Z_t := \exp \left(\int_0^t \phi_s \ dw_s - \frac{1}{2} \int_0^t |\phi_s|^2 ds \right)$$
 vete T .

• BM:

Let 3 be given by (A) and suppose that $\overline{E(zt)}=1$. Then the process $\widetilde{Wr}:=Wt-\int_0^t \phi_S dS$ teT is a Brownian Motion under 8 defined by $\frac{d\phi}{d\rho}=z_1$.