NASA Technical Paper 2570

April 1986

Experimental Evaluation of Two Turning Vane Designs for High-Speed Corner of 0.1-Scale Model of NASA Lewis Research Center's Proposed Altitude Wind Tunnel

Royce D. Moore, Donald R. Boldman, and Rickey J. Shyne

LIBRARY COPY

WAY 5 1995

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

NASA Technical Paper 2570

1986

Experimental Evaluation of Two Turning Vane Designs for High-Speed Corner of 0.1-Scale Model of NASA Lewis Research Center's Proposed Altitude Wind Tunnel

Royce D. Moore, Donald R. Boldman, and Rickey J. Shyne

Lewis Research Center Cleveland, Ohio

Scientific and Technical Information Branch

Summary

Two turning vane designs were experimentally evaluated for corner 1 (downstream of the test section) of a 0.1-scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel (AWT). Vane A was a controlled-diffusion airfoil shape; vane B was a circular-arc airfoil shape. The vane designs were tested over corner inlet Mach numbers from 0.16 to 0.465. Several modifications in vane setting angle and vane spacing were also evaluated for vane A. The overall performance obtained from total pressure rakes indicated that vane B had a slightly lower loss coefficient than vane A. At Mach 0.35 (the design Mach number without the engine exhaust removal scoop), the loss coefficients were 0.150 and 0.178 for vanes B and A, respectively.

Resetting the vane A angle by -5° (vane A10) to turn the flow toward the outside corner reduced the loss coefficient to 0.119. The improvement was attributed to the reduction in the endwall losses (i.e., the interaction of the vane ends with the corner walls) especially in the outside corner region. Examination of the data indicated that the losses in the center portion of the corner (two-dimensional losses) were essentially the same for vanes A and A10 but higher for vane B. The best configuration (vane A10) was also tested with a simulated engine exhaust removal scoop. The loss coefficient for that configuration was 0.164 at Mach 0.41 (the approximate design Mach number with the scoop).

Introduction

It has been proposed that the inactive Altitude Wind Tunnel (AWT) at the NASA Lewis Research Center be rehabilitated to meet the aeropropulsion needs of the future. The program would extend the capabilities of the tunnel to permit testing at Mach numbers to 0.92. The tunnel would accommodate tests involving fuel-burning engines, adverse weather conditions, and acoustics. The original AWT became operational in 1944 and was used for aeropropulsion research until 1958. The tunnel internal components were then removed, and it was converted to altitude test chambers for space research in the late 1950's and early 1960's. Therefore the proposed AWT would require all new internal components. In addition to a new test section and heat exchanger, four new sets of turning vanes and a new two-stage fan drive system would be required (fig. 1). The highest Mach number corner (corner 1,

downstream of the test section) would have an engine exhaust removal scoop extending through the center of the turning vanes. The fan drive shaft fairing would extend through the corner 2 turning vanes. The proposed tunnel features and the new tunnel components are described in detail in references 1 to 3.

Because of the magnitude of the proposed rehabilitation of the AWT a modeling program was undertaken to ensure the technical soundness of the new component designs. A 0.1 scale was chosen as the common size for the various components, in part because it represented the upper limit of the Lewis exhauster flow capabilities. After the individual components are tested, they can be assembled as a complete loop to evaluate the interactions of the various components.

This report presents the test results for two turning vane designs proposed for corner 1. Vane A was a controlleddiffusion airfoil design; vane B was a circular-arc airfoil design. For vane A several modifications in vane setting angle and vane spacing were also evaluated. Data were obtained over a range of corner inlet Mach numbers from 0.16 to 0.465, corresponding to test section Mach numbers of approximately 0.3 to 0.92, respectively. However, for the initial evaluation of the turning vanes in corner 1 the engine exhaust removal scoop was not installed. The data for vane B and all modifications to vane A were evaluated and only the best configuration (vane A10) was chosen to be tested with a simulated scoop. In this report all of the total pressure data upstream and downstream of the vanes were obtained from rakes. Axial wall static pressure and vane surface pressure data were also obtained. The pressure data are presented in tabular form for all of the configurations evaluated. Additional data and results from some analyses are presented for vanes A, A10, and B in corner 1 without the scoop in reference 4.

Apparatus and Procedure

Test Apparatus

Without scoop.—The vane sets were tested without the simulated exhaust removal scoop in the configuration shown in figures 2 and 3. Room air entered the bellmouth and passed through a honeycomb flow straightener and two 1-diameterlong spool pieces before reaching the corner inlet measurement plane. The air was then turned by the corner vanes whereupon it flowed through the downstream instrumentation ring (corner

exit plane) and three 1-diameter-long spool pieces before exhausting through a choked-plate assembly to the NASA Lewis central altitude exhauster system.

A choked-plate assembly was used for flow control. It included a series of six removable plates plus one fixed plate to provide seven specific flow rates between 35.38 and 81.65 kg/sec. The flow straightener was an aluminum honeycomb with a hexagonal cell pattern. The distance across the flats was 0.95 cm and the length was 7.08 cm. The upstream and downstream diameters of the corners were 82.296 cm.

The vanes were all made the same height and mounted in a rectangular holder (fig. 4). A foam rubber filler material was used between the vanes to form the elliptical internal flow path. With the foam between the vanes the vane setting angles could be manually changed without disassembling the corner. The vane spacing could also be varied. Both the setting angles and the spacings were individually set for each vane.

With scoop.—Although the same basic components were used for the tests with the simulated exhaust removal scoop, they were rearranged as shown in figure 5. The instrumentation rings were moved 1 diameter upstream and downstream of the corner because of interference with the scoop and wing section. A vane survey instrumentation plate was also installed (for later use) just downstream of the vane holder. This plate served as a spacer and moved all downstream instrumentation further away from the vanes. The scoop assembly installed in corner 1 is shown in figure 6.

The simulated scoop (fig. 7) was made of wood in two parts. Material was removed in the region of the vanes. The wing section was mounted in the downstream corner section, and the upstream scoop was inserted from in front of the vanes. The geometry for the scoop is given in figure 8. As shown in figure 1, the active exhaust scoop would extend upstream of the vanes almost to the test section exit. For the simulation only the part in the corner was scaled. The nose contour was arbitrarily chosen. For all tests with the scoop the foam rubber in the outer flow path between the vanes was replaced by hard-plastic filler pieces cut to match the elliptical contour. Only the A10 vane configuration was tested with the simulated scoop and the hard-plastic filler pieces.

Turning Vanes

Two different sets of turning vanes were designed for corner 1. Each set was mounted in the vane holder (fig. 4). There was a flat length of 10.67 cm in the turn for mounting the vanes (fig. 3). The flat section formed an angle of 45° with both the inlet and exit corner spool pieces. The major axis of the elliptical corner was 116.38 cm and the minor axis was 82.296 cm.

Vane A.—Vane A (fig. 9), a controlled-diffusion airfoil, was designed by an inverse method developed by Sanz (ref. 5). The inverse design code has an advantage that the surface velocity distribution can be directly input. This allows control of the velocity diffusion to eliminate boundary layer separation. The calculation method accounts for the boundary layer

displacement thickness and adjusts the blade shape to provide the vane manufacturing coordinates as output. A schematic showing the vanes equally spaced along the major axis is shown in figure 10. The 20 equally spaced vanes had a solidity of 1.89. The design inlet Mach number was 0.352 and the vane chord was 10.67 cm. The leading edges of the first vane and the last vane were 4.454 cm from the outer walls. Dashed lines in figure 10 show where the next vanes would have been located with respect to the walls. The orientation of the vane setting angle and the vane spacing are also shown in the small illustration in the figure. The manufacturing coordinates for the vane are given in table 1.

During the testing of vane A several changes were made to the vane setting angle and to the vane spacing (table 2). The outside corner contour was also modified as shown in figure 11 for one test (vane A11). The original outside corner contour was straight from inlet to exit, forming the elliptical contour. A schematic showing the vane A10 setup in corner 1 with the scoop is presented in figure 12.

Vane B.—Vane B (fig. 13), a circular-arc airfoil, was designed by McFarland by the method described in reference 6. This method solves for a velocity distribution by using a blade-to-blade panel method code. These vanes were designed with a solidity of 2.290, resulting in 24 vanes. The design inlet Mach number was 0.35 and the vane chord was 10.67 cm. A schematic showing vane B along the major axis is presented in figure 14. The figure also shows by dashed line where the next inside and outside vanes would have been positioned. The leading edge of the first vane was 4.859 cm from the outer corner; the leading edge of the last vane was 4.422 cm from the inner corner. Vane B was tested only at its design conditions. The vane manufacturing coordinates of vane B are given in table 3.

Instrumentation

The airflow was determined from measurements on a choked plate located downstream of the vanes (fig. 3). Six removable plates and a fixed plate were used to set seven specific flows. The choked-plate assembly was an arrangement of the seven plates that tended to form a converging nozzle. To increase the flow, the last plate was removed and the preceding plates kept in place.

To determine the overall performance of the corner with the vane row, diametrical rakes (fig. 15) were used at the upstream and downstream instrumentation ring stations. These rakes could be moved to four positions around the circumference (0°, 315°, 270°, and 255°—clockwise looking downstream). The rakes contained 16 elements for total pressure measurement and six elements for total temperature measurement (fig. 15). Boundary layer rakes (fig. 16) were also installed at the upstream and downstream stations. Outer wall static pressure taps were located at approximately the same axial planes as the rakes.

Other wall static pressure taps were installed in the spool pieces and in the corner. The axial and circumferential locations of the taps for the corner without and with the scoop are given in figures 17 and 18, respectively. The locations of the scoop static pressure taps are given in figure 19. Vane performance was evaluated from measurements of surface static pressures obtained from taps on adjacent vanes at four sections (fig. 20). Three of the sections were along the major axis; the fourth was near the top of the middle vanes. With the scoop in place the vane surface static pressure taps at section C were covered and therefore not recorded.

All of the rake total pressure measurements and the static pressure measurements were recorded on individual transducers calibrated just before each reading. The temperatures were determined from Chromel-constantan thermocouples by using a floating-point temperature reference.

To visually indicate the flow conditions, tufts were taped to the walls around the circumference. Tufts were also taped to the scoop.

Test Procedure

For a given vane configuration a particular choked plate was installed to set the desired airflow. The diametrical rake upstream was positioned in the instrument ring at either 0° or 225° (clockwise looking downstream). The inlet boundary layer rakes were positioned 90° from the large rake. The downstream rake was positioned at either 225° or 0° (opposite the upstream rake position). The outlet boundary layer rakes were also positioned 90° from the large downstream rake. Data were recorded at the particular rake position. The facility was then shut down and all rakes were manually indexed 45°. The flow point was reestablished and data were then recorded at the next position. This procedure was repeated until data were recorded at the four rake positions. The upstream and downstream rakes were rotated in opposite directions to minimize the effect of the upstream rake wake on the downstream pressure measurement. All of the static pressure measurements were recorded at each rake position.

Calculation Procedure

The static pressure measurements recorded at the four rake positions were arithmetically averaged and corrected to standard-day conditions at the corner inlet plane to obtain the values presented in this report.

The total pressure measurements from the rakes were arranged to form arrays of total pressures at given circumferential locations and given percentages of span (from the outer wall). The data from the boundary layer rakes were arranged in a similar manner. The values from the upstream and downstream diametrical rakes were each area averaged to obtain the corner overall values.

The airflow was calculated from Fliegner's formula (ref. 7) for a choked flow by using measured values of nozzle total pressure and total temperature. This calculated airflow agreed within 2 percent of the mass-averaged airflow calculated from limited cases in which very detailed flow surveys were made.

The inlet velocity head and the average inlet and exit Mach numbers were based on the calculated airflow. Total pressure, static pressure, total temperature, velocity head, and airflow were all corrected to standard-day conditions based on the corner 1 inlet condition (station 11).

The symbols and equations used in the calculations are presented in appendixes A and B, respectively.

Results and Discussion

The results are presented in three main sections: overall total pressure losses, wall static pressure distributions, and vane surface Mach number distributions. The data for all of the vane A configurations are presented in the tables. However, for comparison, data plots are presented for the design cases for vanes A and B and for the best configuration (vane A10). The effect of the scoop on the performance of vane A10 is also presented.

The overall performance for corner 1, based on the rake measurements, is summarized in table 4 for the various vane configurations. The total pressure measurements for each data point are presented in tables 5 to 28. The vane inlet and exit circumferential distributions of static pressure are presented in tables 29 to 52. The wall axial static pressure measurements are presented in tables 53 to 76. The scoop static pressures with vane A10 in corner 1 are presented in tables 77 to 83. The vane surface static measurements are presented tables 84 to 107.

Overall Performance

The overall performances of vanes A, A10, and B are presented in figure 21 for corner 1 without the scoop. The loss coefficient for the corner based on measurements at stations 11 and 34 (see fig. 17 for locations) is shown as a function of the corner inlet Mach number. Over the range of Mach numbers investigated, vane A had a slightly higher overall loss than did vane B when the vanes were at their design setting angles. At the design inlet Mach number of 0.35 the loss coefficients were about 0.150 for vane B and 0.178 for vane A.

As discussed earlier, several changes in the vane setting angle and vane spacing were investigated with vane A. These changes were made because the results of the data and visual observations of tufts indicated severe flow separation in the outside region of the corner. The changes are listed in table 2 and the results of the overall performance are given in table 4. It is interesting to note that local changes in vane angle or vane spacing had relatively little effect on the overall performance. The overall performance did not change significantly until all of the vanes were reset by -5° (turning the exit flow toward the outside of the corner, vane A10). For the design inlet Mach number of 0.35 the corner loss coefficient decreased to 0.119. When the outside wall contour was modified with the reset vanes (vane A11), the loss

coefficient increased slightly over that of the unmodified corner but was still significantly less than that of the original vane (vane A). The vane B configuration was tested only at its design condition because the visual observations of the tufts and the results of the data did not indicate flow separation in the outside region of the corner.

Since the vane A10 configuration produced the lowest losses, it was chosen to be tested with the simulated scoop. The overall performance for vane A10 with the scoop is presented in figure 22. The figure also shows data for vane A10 without the scoop. With the scoop the design inlet Mach number increased to about 0.41 for the same airflow because of the decreased area in the corner. As expected the loss coefficient increased with the scoop configuration because the scoop, being located in the lowest loss region, forced more of the flow toward the higher loss region in the endwalls. The scoop also provided a surface for boundary layer growth. The loss coefficient for vane A10 with the scoop was 0.164 at Mach 0.41; the corresponding values without the scoop were 0.118 and 0.35, respectively. The airflow was approximately 72.5 kg/sec for both configurations (table 4).

The radial distributions of inlet total pressure are presented in figure 23 for vanes A, A10, and B without the scoop at the design inlet Mach number of 0.35. Although the data are presented at a circumferential location of 0° only, these radial distributions are typical of all circumferential locations. For all of the flows and configurations investigated, the inlet pressure profiles were essentially constant from 10 percent of span to the centerline. The loss in inlet total pressure in the outer wall region decreased at the lower flows (tables 5 to 28).

The rake data as well as observation of the tufts and the static pressure measurements indicate that the flow in the outside corner region was separated for vane A. To illustrate, the total pressure distribution along the major axis is presented in figure 24. The 90° location (inside corner) is shown in part (a) and the 270° location (outside corner), in part (b). For vane A the loss in total pressure at the outside corner was greater than at the inside corner. A comparison with vane A10 showed that resetting the vanes decreased the losses at the outside corner in the region from the outer wall to approximately 20 percent of span (fig. 24(b)). The losses for the reset vanes at the inside corner were slightly higher (fig. 24(a)). The losses in the central portion of the corner were approximately the same for vanes A and A10. This was also confirmed by the vane wake survey results of reference 4.

Computer-plotted contours of the exit total pressure field for the various vane configurations are presented in figures 25 and 26 for the nominal design airflow of 72.5 kg/sec. The pressure contours for vanes A, B, and A10 without the scoop (fig. 25) show that the losses were highest for vane A at the outside corner and highest for vane B on the inside corner. Vane A10 had the most uniform distribution of the three sets.

The trailing edge of vane A was offset from the leading edge by approximately 2.7 cm (table 1). Thus in the outside region of the elliptically contoured corner vane holder the vane leading-edge height was less than the vane trailing-edge height. In the inside region the opposite was true, with the leadingedge height being the greater. Therefore in the outside region of the corner the flow was effectively diffused through the vanes, and in the inside region the flow was accelerated. The interaction of the flow with the adverse geometry at the outside corner contributed to the higher losses there for vane A. Resetting the vanes by -5° (vane A10) probably unloaded them enough so that the interaction of the flow with the corner vane geometry did not cause separation. (Vane loadings are given in the section Vane Surface Distributions.) For vane B tufts located at approximately the 90° circumferential location and midway in the vane holder indicated flow separation. This separated flow probably resulted in the higher losses at the inside corner for vane B.

The effect of the scoop on the exit pressure contours for vane A10 is shown in figure 26. The plot for vane A10 without the scoop is repeated from figure 25. The effect of the scoop is evident by the lower pressures along the horizontal centerline.

Static Pressure Distribution

The axial static pressure distribution at the 90° position (inside corner) is presented in figure 27 for vanes A, A10, and B without the scoop for an airflow of approximately 72.5 kg/sec. For the 90° position the influence of the corner extended about 20 cm upstream and downstream. The static pressure for vane A suggests that the flow was being slowed in the inside corner probably as a result of excessive blockage between the inside corner and the twentieth (last) vane. Resetting the vane (vane A10) relieved the problem and let more flow through the inside corner as indicated by the lower static pressure. This point is further evidenced by the static pressure distribution through the corner at the 270° position (outside corner) in figure 28. The static pressure for vane A continued to decrease, suggesting a shift in the flow toward the outside of the corner. In contrast the static pressure for vanes A10 and B increased. In the corner downstream of the vanes the results for vanes A10 and B indicate the consistent trend of decreasing static pressure with distance. The downstream static pressure distribution for vane A showed the opposite trend. The low value of static pressure near the vane suggests that the flow has accelerated appreciably. Looking at the first vane and its relationship with the outside corner (fig. 10), one could get the impression that the passage formed a converging-diverging nozzle. For vane A the tufts indicated that the flow in the outside corner was separated.

The effect of the scoop on the wall static pressure at a circumferential location of 270° (outside corner) is shown in

figure 29 for vane A10 for the nominal design airflow of 72.5 kg/sec. The Mach number at the inlet of the corner was greater with the scoop, as suggested by the lower static pressure. As the air approached the vanes, the static pressure increased rapidly, indicating a decreased flow in the outside region as a result of the blockage from the scoop.

The circumferential distribution of wall static pressure coefficient 5.34 cm upstream and downstream of the vane row without the scoop is presented in figure 30 for vanes A, A10, and B. The wall static pressures in the outside region of the corner with vane A (fig. 30(a)) were significantly different across the vane row. This is an indication that the separation was not confined to the 270° location. The flow tufts showed that separation occurred from at least 225° to 315° (tuft locations). As discussed earlier, the vanes formed an adverse geometry with the walls in the outer half of the corner, with the geometry becoming more acute near the outside corner. This contributed to the flow separation. For vanes A10 and B (figs. 30(b) and (c)) the circumferential distributions upstream and downstream were quite similar. For these two configurations the tufts showed no separation.

The effect of the scoop on the circumferential distribution of wall static pressure coefficient just upstream and downstream of the vane row is presented in figure 31 for vane A10. The scoop affected the entire flow field upstream of the vanes, with the flow apparently shifting from the outer to the inner half of the corner.

From these static pressure distributions and the total pressure measurements presented earlier, the difference in overall performance between vanes A and A10 without the scoop appears to be predominately the result of the total pressure loss caused by the interaction of the walls with the vanes (three-dimensional effects). Resetting the vanes had little effect on the overall losses through the center portion (two-dimensional losses) of the corner. This is illustrated in reference 4, where measured vane wake losses are essentially the same for vanes A and A10. It is also indicated by the data in figure 24, which show the total pressure distribution in the center portion to be essentially the same for both vanes.

The endwall losses in the corner for vane B appear to be of the same order as those for vane A10. This would suggest that the loss in the center portion was higher for vane B than for vane A10. In reference 4 the measured vane wake losses in the center portion of the corner (two-dimensional losses) for vane B were significantly larger than those for vanes A and A10. The data in tables 5, 8, and 18 tend to confirm this conclusion.

For the three rows of static pressure taps the static pressure of the downstream scoop wing section (fig. 32) increased almost linearly to the end of the airfoil. The static pressure values on the bottom portion of the wing section agreed with those at the corresponding location on the upper surface. This indicates that the flow was axisymmetric about the airfoil. The

static pressure data as well as visual observation of tufts indicated that the flow was attached to the end of the section.

Vane Surface Distributions

Measured vane surface Mach number distributions for vanes A and B are presented for section C (middle of the vane set) because that section should be representative of the twodimensional flow characteristic of the design. In general the measured Mach number distributions for vane A (fig. 33) agreed quite well with the design, but the measured spike in Mach number toward the leading edge on the pressure surface was more pronounced than the design. The measured gradients in Mach number on the suction surface were slightly steeper than 'design, with the front-portion Mach numbers being slightly greater than design and those past midchord being less than design. The Mach number distribution on the pressure surface of vane B agreed reasonably well with the design distribution (fig. 34). However, the Mach numbers on the suction surface near both the leading and trailing edges were less than design. The flow near the trailing edge of the suction surface had probably separated, causing the more abrupt decrease in Mach number.

The Mach number distributions for each of four locations are presented in figures 35 to 37 for vanes A, A10, and B, respectively. For vane A the Mach number distributions are essentially the same for sections B and C (fig. 35). This would suggest that the endwall (three-dimensional) effects were confined to less than 20 percent of span. For section A (near the outside corner) the exit surface Mach number was approximately 0.46, indicating that more diffusing would be required to obtain the exit vane Mach number of 0.35. The reverse would be required for section D (near the inside corner), where the surface exit Mach number was less than 0.35. For vane A10 the surface Mach number distributions reflect the incidence angle change near the leading edge of each section (fig. 36). The surface exit Mach numbers were more uniform and closer to the exit corner Mach number of 0.35 (table 4). Resetting the vane angle reduced the exit Mach number for section A from about 0.47 to 0.36. For vane B the surface Mach number distributions were the same for sections B and C (fig. 37). Section A distributions were very similar to those of sections B and C. As with vane A10 the surface exit Mach numbers were fairly uniform for the four sections.

The effect of the scoop on the vane surface Mach number distributions for vane A10 is presented in figure 38. Sections A, B, and D are compared for the nominal airflow of 72.5 kg/sec. Since the scoop reduced the area, velocities would be expected to increase for all three sections with the scoop. For section A the surface Mach numbers were lower with the scoop; for both sections B and D the surface Mach numbers were higher with the scoop. Thus the flow had shifted away from the outside corner.

Summary of Results

Two turning vane designs were experimentally evaluated for corner 1 (downstream of the test section) of a 0.1-scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel (AWT). Vane A was a controlled-diffusion airfoil shape; vane B was a circular-arc airfoil shape.

The turning vanes were tested over a range of corner inlet Mach numbers from 0.16 to 0.465. In addition, several modifications of vane setting angle and vane spacing were evaluated for vane A. The best vane A configuration (vane A10) was also tested with a simulated engine exhaust removal scoop. This investigation yielded the following principal results:

1. At the design corner inlet Mach number of 0.35 the corner loss coefficient with vane B (0.150) was lower than that with vane A (0.178). Resetting vane A to turn the flow 5° toward the outside corner (vane A10) reduced the corner loss coefficient to 0.119.

- 2. The decrease in corner losses between vanes A and A10 was attributed to the reduction in endwall losses when the vanes were reset by -5° . The losses in the center portion of the corner were essentially the same with the angle change.
- 3. Although the corner losses were lower for vane B than for vane A, the losses through the center of the corner were higher for vane B. This suggests that for vane B the two-dimensional vane losses were greater and the endwall interactions (three-dimensional effects) were lower than for vane A.
- 4. The corner loss coefficient with vane A10 increased to 0.164 when it was tested with a simulated engine exhaust removal scoop. The corner inlet Mach number at design flow increased to about 0.41 with the scoop.

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, December 9, 1985

Appendix A

Symbols

\boldsymbol{A}	area, cm ²	$P_{t,e}$	individual rake element standard-day-corrected
A_{ex}	area at corner 1 exit, cm ²		exit total pressure, N/cm ²
$\Delta A_{\rm ex}$	incremental area for rake element at exit, cm ²	$P_{t,\text{ex}}$	area-averaged, standard-day-corrected exit total pressure, N/cm ²
$A_{\rm in}$	area at corner 1 inlet, cm ²	$P_{t,i}$	individual rake element standard-day-corrected
$\Delta A_{\rm in}$	incremental area for rake elements at inlet, cm ²	*,;	inlet total pressure, N/cm ²
A_s	cross-sectional area of scoop at corner 1 inlet, cm ²	$P_{t,in}$	area-averaged, standard-day-corrected inlet total pressure, N/cm ²
\boldsymbol{C}	vane chord, cm	$q_{ m in}$	standard-day-corrected velocity head, N/cm ²
D	diameter, cm	R R	gas constant
d_n	nozzle plate diameter, cm		radius, cm
M	Mach number	r T	,
$M_{\rm ex}$	Mach number at corner 1 exit	T_n	standard-day-corrected nozzle total temperature, K
$M_{\rm in}$	Mach number at corner 1 inlet	T_t	standard-day-corrected total temperature, K
M_{ν}	Mach number on vane surface based on inlet total pressure and vane surface static pressure	V	distance from corner 1, cm
N	station	W	airflow, kg/sec
P_n	standard-day-corrected nozzle total pressure,	X	axial distance from corner 1 inlet, cm
- n	N/cm ²	XC/C	fraction of vane chord in chordwise direction
$P_{s,in}$	standard-day-corrected static pressure at corner 1,	Y	axial distance from corner 1 exit, cm
- s,m	N/cm ²	Z	height from centerline, cm
$P_{s,\nu}$	standard-day-corrected vane surface static	γ	ratio of specific heats, 1.40
3,1	pressure at V location, N/cm ²	θ	circumferential location from top dead center
$P_{s,x}$	standard-day-corrected wall static pressure at X location, N/cm^2		(clockwise looking downstream), deg

Appendix B

Equations

Airflow

$$W = 0.04044 \frac{P_n}{T_n} \left(\frac{\pi}{4} d_n^2 \right)$$

Overall Inlet Total Pressure

$$P_{t,\text{in}} = \frac{\sum_{i=1}^{64} \Delta A_{in} P_{t,i}}{A_{\text{in}}}$$

Overall Exit Total Pressure

$$P_{t,\text{ex}} = \frac{\sum_{i=1}^{64} \Delta A_{\text{ex}} P_{t,e}}{A_{\text{ex}}}$$

Loss Coefficient

$$\frac{P_{t,\text{in}}-P_{t,\text{ex}}}{q_{\text{in}}}$$

Wall Static Pressure Coefficient

$$\frac{P_{t,\text{in}} - P_{s,x}}{q_{\text{in}}}$$

Vane Surface Static Pressure Coefficient

$$\frac{P_{s,\nu} - P_{s,\text{in}}}{q_{\text{in}}}$$
 (B6)

Mach Number

(B2)
$$\frac{M}{(1+0.2 M^2)^3} = \frac{W}{(A-A_s)P_t} \sqrt{\frac{RT_t}{\gamma}}$$
 (B7)

Velocity Head

$$q_{\rm in} = 0.7 P_{s,\rm in} (M_{\rm in})^2$$
 (B8)

(B3) Average Inlet Static Pressure

$$P_{s,\text{in}} = P_{t,\text{in}} \left(1 + \frac{M_{\text{in}}^2}{5} \right)^{-3.5}$$
 (B9)

(B5)

(B4)

References

- Chamberlin, R.: The Altitude Wind Tunnel (AWT)—A Unique Facility for Propulsion System and Adverse Weather Testing. AIAA Paper 85-0314, Jan. 1985.
- Blaha, B., and Shaw, R.J.: The NASA Altitude Wind Tunnel: Its Role in Advanced Icing Research and Development. AIAA Paper 85-0090, Ian. 1985
- Abbott, J.M.; Diedrich, J.H.; Groeneweg, J.F.; Povinelli, L.A.; Reid, L.; Reinmann, J.J.; and Szuch, J.R.: Analytical and Physical Modeling Program for the NASA Lewis Research Center's Altitude Wind Tunnel (AWT). AIAA Paper 85-0379, Jan. 1985.
- Gelder, T.F.; Moore, R.D.; Sanz, J.M.; and McFarland, E.R.: Wind Tunnel Turning Vanes of Modern Design. AIAA Paper 86-0044, Jan. 1986. (Also NASA TM-87146, 1986.)
- Sanz, J.M.: Improved Design of Subcritical and Supercritical Cascades Using Complex Characteristics and Boundary Layer Correction. (NASA Contract NAS3-22531.) NASA CR-168166, 1983.
- McFarland, E.R.: A Rapid Blade-to-Blade Solution for Use in Turbomachinery Design. J. Eng. Gas Turbines Power, vol. 106, no. 2, Apr. 1984, pp. 376-382.
- Shapiro, A.H.: The Dynamics and Thermodynamics of Compressible Fluid Flow. Vol. I. Ronald Press Co., 1953, p. 85.

TABLE 1.—MANUFACTURING COORDINATES FOR VANE A

[Coordinates are in centimeters.]

TABLE 2.—CONFIGURATIONS FOR CORNER 1

Configuration	Description
A	Vane A (fig. 10) Setting angle—all vanes at design Vane spacing—all vanes at design
A2	Vane A Setting angle—vanes 1 and 2 reset -5°; vanes 3 to 20 at design Vane spacing—all vanes at design
A3	Vane A Setting angle—vanes 1 and 2 reset -5°; vanes 3 to 20 at design Vane spacing—vane 1 moved 0.183 cm toward outside corner
A4	Vane A Setting angle—vanes 1 and 2 reset -5°; vanes 3 to 20 at design Vane spacing—vane 1 moved 0.386 cm and vane 2 moved 0.145 cm toward outside corner
A7	Vane A Setting angle—vane 1 reset -15°; vane 2 reset -10°; vane 3 reset -5°; vanes 4 to 17 at design; vane 18 reset -5°; vane 19 reset -10° Vane spacing—vane 20 removed
A8	Vane A Setting angle-vane 1 reset -10°; vane 2 reset -5°; vanes 3 to 19 at design Vane spacing—vane 20 removed
A10	Vane A Setting angle—all vanes reset -5° Vane spacing—all vanes at design
A11	Vane A Setting angle—all vanes reset -5° Vane spacing—all vanes at design; modified outside corner contour
В	Vane B Setting angle—all vanes at design Vane spacing—all vanes at design

TABLE 3.—MANUFACTURING COORDINATES FOR VANE B

[Coordinates are in centimeters.]

N	VX	VY	N .	٧x	VY	N	٧x	۷Y
1	10.6121	-1.0363	28	2.7682	0.5760	55	3.3198	2.2963
2 3	10.4292	-0.8972	29	2.4788	0.4941	56	3.6493	2.3742
3	10.1729	-0.7152	30	2.1894	0.4018	57	3.9788	2.4332
4 5	9.9166	-0.5456	31	1.8999	0.2985	58	4.3082	2.4741
5	9.6483	-0.3805	32	1.6105	0.1838	59	4.6377	2.4975
6	9.3800	-0.2276	33	1.3211	0.0572	60	4.9672	2.5040
7	9.1116	-0.0864	34	1.0468	-0.0742	61	5.2967	2.4941
8	8.8225	0.0531	35	0.7724	-0.2173	62	5.6228	2.4680
9	8.5334	0.1801	36	0.5715	-0.3299	63	5.9490	2.4248
10	8.2444	0.2950	37	0.4284	-0.3781	64	6.2752	2.3637
11	7.9553	0.3984	38	0.2778	-0.3668	65	6.6013	2.2839
12 13	7.6662	0.4909	39	0.1435	-0.2979	66	6.9275	2.1847
13	7.3601	0.5775	40	0.0464	-0.1822	67	7.2537	2.0651
14	7.0541	0.6527	41	0.0019	-0.0379	68	7.5798	1.9243
15	6.7480	0.7166	42	0.0169	0.1123	69	7.9060	1.7615
16	6.4419	0.7695	43	0.0891	0.2449	70	8.1904	1.5999
17	6.1359	0.8115	44	0.2556	0.4359	71	8.4748	1.4184
18	5.8298	0.8427	45	0.5018	0.6929	72	8.7591	1.2154
19	5.5238	0.8633	46	0.7480	0.9226	73	9.0435	0.9891
20	5.2177	0.8735	47	0.9942	1.1284	74	9.2710	0.7878
21	4.9115	0.8735	48	1.2404	1.3137	75	9.4986	0.5638
22	4.6053	0.8632	49	1.4866	1.4817	76	9.7261	0.3125
23	4.2991	0.8424	50	1.7802	1.6613	77	9.9537	0.0295
24	3.9929	0.8110	51	2.0737	1.8201	78	10.1812	-0.2898
25	3.6867	0.7689	52	2.3673	1.9597	79	10.3398	-0.5377
26	3.3806	0.7157	53	2.6608	2.0817	80	10.4983	-0.8148
27	3.0744	0.6515	54	2.9903	2.1991	81	10.6121	-1.0363

TABLE 4.—OVERALL PERFORMANCE FOR CORNER 1 BASED ON RAKE MEASUREMENTS $[\text{Inlet total pressure, } 10.132 \text{ N/cm}^2.]$

Configuration	Reading	Airflow, kg/sec	Mach number		Exit total pressure,	Total pressure loss,	Total loss coefficient
		kg/sec	Inlet	Exit	N/cm ²	N/cm ²	Coefficient
A	8-11	72.16	0.347	0.352	9.992	0.141	0.178
	12-25	77.15	.375	.382	9.965	.167	.183
	28-31	35.18	.161	.161	10.104	.028	.154
A2	35-38	72.09	.347	.352	10.000	.132	.168
A3	40-43	72.02	.346	1	10.000	.333	.168
A4	46-49	72.04	.346		10.003	.130	.164
A7	59-62	72.00	.347		9.987	.145	.184
A8	65-68	72.17	.347		9.982	.150	.190
A10	458-461	72.24	.348	↓	10.037	.095	.119
A11	696-699	72.89	.350	.355	10.035	.097	.120
В	947-950	35.50	0.162	0.163	10.106	0.026	0.142
	951-954	56.52	.264	.266	10.064	.068	.143
	955-958	68.91	.328	.332	10.027	.105	.147
	959-962	73.42	.353	.359	10.004	.128	.156
	963-966	75.56	.365	.371	9.999	.134	.153
	967-970	78.89	.384	.391	9.985	.148	.154
	971-974	81.77	.399	.407	9.975	.157	.152
A10 (with	12A-15A	73.10	0.408	0.358	9.960	0.172	0.164
scoop)	16A-19A	74.88	.420	.368	9.946	.186	.168
	20A-24A	78.32	.444	.389	9.921	.211	.173
	25A-28A	35.46	.184	.162	10.098	.034	.146
	29A-32A	56.42	.302	.266	10.043	.089	.147
	33A-36A	68.73	.378	.332	9.985	.147	.160
	37A-40A	81.33	.464	.406	9.911	.221	.168

TABLE 5.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 8 TO 11; AIRFLOW, 72.16 kg/sec)

[Pressures are in newtons per square centimeter.]

(A) INLET RAKE				
% SPAN 5.0 10.082 10.0 10.146 15.0 10.147 20.0 10.141 30.0 10.142 50.0 10.142 50.0 10.143 90.0 10.144	CIRCUMF 45 90 10.057 10.056 10.154 10.147 10.152 10.147 10.151 10.150 10.150 10.154 10.149 10.151 10.149 DARY LAYER RAKE	FERENTIAL LOCATI 135 180 10.029 10.021 10.146 10.132 10.140 10.129 10.136 10.131 10.134 10.132 10.142 10.138 10.147 10.144 10.149 10.143	225 270 10.065 10.039 10.152 10.143 10.153 10.145 10.151 10.146 10.151 10.144 10.151 10.144	10.146 10.146 10.147 10.145 10.144 10.144 10.144 10.144 10.147 10.145 10.147 10.148
(b) Incel booms				
1.0 9.811 2.0 9.881 3.0 9.937 4.0 9.995 5.0 10.043 7.5 10.124 10.0 10.138 12.5 10.141	9.815 9.853 9.886 9.921 9.945 9.971 10.002 10.020 10.052 10.063 10.140 10.135 10.149 10.145 10.148 10.145	9.825 9.837 9.894 9.907 9.944 9.952 10.006 10.004 10.056 10.047 10.142 10.129 10.151 10.145 10.148 10.145	9.881 9.873 9.936 9.911 10.000 9.985 10.051 10.033 10.139 10.125 10.149 10.141	9.937 9.898 9.990 9.948 10.040 10.007 10.080 10.053 10.143 10.135 10.151 10.146
(C) EXIT RAKE				
5.0 9.832 10.0 9.961 15.0 9.995 20.0 9.988 30.0 10.042 50.0 10.061 70.0 10.048 90.0 10.049	10.006 9.843 9.819 10.145 9.981 10.007 10.088 10.150 10.105 10.147 10.139 10.132 10.055 10.027 10.142 10.078	10.005 9.812 9.884 9.952 10.048 9.975 10.127 10.026 10.068 10.052 10.149 10.053 10.045 10.059 10.124 10.065	9.518 9.659 9.614 9.794 9.713 9.937 10.025 10.100 10.138 10.146 10.142 10.108	9.628 9.821 9.773 9.898 9.876 9.988 10.068 10.076 10.135 10.119 10.146 10.079
(D) EXIT BOUNDA	ARY LAYER RAKE			
1.0 9.621 2.0 9.678 3.0 9.727 4.0 9.775 5.0 9.819 7.5 9.912 10.0 9.962 12.5 9.981	10.030 9.600 10.014 9.710 10.004 9.770 10.001 9.789 9.983 9.891 9.853 10.102 9.851 10.149 9.932 10.139	9.937 9.610 9.924 9.669 9.945 9.726 9.979 9.779 9.993 9.828 9.896 9.914 9.877 9.954 10.144 9.989	9.441 9.575 9.450 9.591 9.455 9.601 9.464 9.607 9.486 9.627 9.519 9.663	9.474 9.686 9.488 9.713 9.502 9.735 9.516 9.763 9.560 9.794 9.623 9.825

TABLE 6.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 12 TO 15; AIRFLOW, 77.15 kg/sec)

(A) INLET RAKE

% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.071 10.148 10.152 10.148 10.144 10.144 10.149 10.152 LET BOUN	45 10.020 10.135 10.140 10.141 10.143 10.143 10.149 10.148	90 10.039 10.151 10.153 10.150 10.151 10.151 10.151	ERENTIAL 135 10.025 10.150 10.147 10.146 10.141 10.146 10.149 10.151	LOCATIO 180 10.029 10.151 10.150 10.150 10.145 10.152 10.153 10.152	N, DEG 225 10.049 10.149 10.151 10.148 10.148 10.149 10.149	270 10.025 10.147 10.147 10.148 10.147 10.143 10.146 10.151	315 10.092 10.147 10.149 10.147 10.144 10.148 10.137	AVG 10.044 10.147 10.147 10.146 10.147 10.148 10.151
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.825 9.915 9.980 10.040 10.083 10.145 10.144	9.772 9.857 9.926 9.996 10.052 10.140 10.146	9.816 9.902 9.961 10.021 10.072 10.146 10.148 10.152	9.770 9.848 9.906 9.975 10.030 10.126 10.136	9.787 9.866 9.916 9.978 10.027 10.126 10.149 10.150	9.763 9.852 9.917 9.993 10.051 10.143 10.151	9.752 9.833 9.892 9.965 10.021 10.126 10.146	9.136 9.119 9.106 9.104 9.104 9.096 9.078 9.145	9.703 9.774 9.825 9.884 9.930 10.006 10.013
5.0 10.0 15.0 20.0 30.0 70.0	9.760 9.929 9.957 9.953 10.016 10.021	9.997 9.775 9.961 10.085 10.095 10.047	9.763 10.134 9.974 10.150 10.151 10.133 10.008	9.989 9.861 10.033 10.126 10.046 10.145 10.030	9.743 9.911 9.941 10.000 10.029 10.030 10.038	9.349 9.411 9.527 9.649 10.021 10.143 10.150	9.518 9.586 9.741 9.902 10.097 10.145 10.106	9.402 9.526 9.704 9.843 10.050 10.133 10.145	9.690 9.767 9.855 9.963 10.063
90.0 (D) EX	10.027	10.150 ARY LAYE	10.076	10.124	10.046	10.049	10.092	10.107	10.068
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.519 9.586 9.644 9.703 9.755 9.872 9.933 9.960	10.016 10.020 10.023 10.018 9.983 9.796 9.783 9.876	9.494 9.632 9.707 9.725 9.839 10.097 10.147	9.912 9.893 9.903 9.935 9.970 9.887 9.857	9.510 9.581 9.646 9.706 9.762 9.863 9.915 9.900	9.298 9.314 9.325 9.333 9.343 9.372 9.410	9.439 9.476 9.493 9.505 9.510 9.532 9.571 9.976	9.333 9.354 9.371 9.386 9.400 9.452 9.521 9.601	9.565 9.607 9.639 9.664 9.695 9.734 9.767 9.908

TABLE 7.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 28 TO 31; AIRFLOW, 35.18 kg/sec)

(A)	INLET	RAKE

% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.121 10.136 10.136 10.135 10.137 10.136 10.137 10.136	45 10.109 10.132 10.133 10.133 10.132 10.134 10.132	90 10.109 10.136 10.137 10.136 10.136 10.137	ERENTIAL 135 10.114 10.137 10.136 10.135 10.133 10.135 10.138	LOCATION 180 10.111 10.134 10.133 10.133 10.133 10.136 10.137	N, DEG 225 10.111 10.132 10.133 10.133 10.133 10.133 10.131	270 10.115 10.137 10.136 10.137 10.136 10.136 10.136	315 10.126 10.138 10.139 10.138 10.138 10.137 10.138	AVG 10.115 10.135 10.135 10.135 10.135 10.136 10.136
1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5	10.074 10.089 10.101 10.112 10.121 10.137 10.137	10.065 10.080 10.091 10.102 10.112 10.132 10.136 10.137	10.069 10.084 10.094 10.102 10.112 10.131 10.136	10.064 10.078 10.087 10.099 10.108 10.125 10.127 10.127	10.071 10.086 10.096 10.109 10.117 10.135 10.136	10.065 10.081 10.092 10.105 10.116 10.134 10.138	10.065 10.080 10.090 10.102 10.113 10.136 10.136	10.071 10.086 10.097 10.109 10.118 10.133 10.133	10.068 10.083 10.094 10.105 10.115 10.132 10.135 10.135
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.072 10.099 10.100 10.094 10.110 10.112 10.109 10.107	10.101 10.074 10.106 10.123 10.129 10.137 10.121 10.137	10.076 10.136 10.110 10.138 10.139 10.134 10.113 10.130	10.097 10.080 10.115 10.128 10.113 10.134 10.116 10.130	10.068 10.094 10.097 10.105 10.111 10.111 10.112	10.010 10.020 10.038 10.054 10.111 10.135 10.137	10.032 10.045 10.070 10.088 10.124 10.137 10.132 10.126	10.021 10.042 10.070 10.088 10.121 10.133 10.136 10.129	10.059 10.074 10.088 10.102 10.120 10.129 10.122 10.124
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.035 10.047 10.058 10.068 10.076 10.092 10.104 10.108	10.110 10.111 10.109 10.104 10.097 10.074 10.076	10.015 10.041 10.054 10.061 10.080 10.121 10.132 10.133	10.095 10.093 10.096 10.095 10.094 10.080 10.081 10.009	10.032 10.045 10.057 10.068 10.077 10.093 10.100 10.029	10.002 10.005 10.007 10.008 10.010 10.014 10.019 10.007	10.011 10.018 10.022 10.025 10.026 10.031 10.037 9.999	10.006 10.011 10.015 10.019 10.020 10.029 10.040 10.054	10.038 10.047 10.052 10.056 10.060 10.067 10.074

TABLE 8.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A2 (READINGS 35 TO 38; AIRFLOW, 72.09 kg/sec)

(Α)	Ι	N	L	E	T	R	Α	K	E	

% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0 (B) IN	0 10.094 10.151 10.152 10.148 10.147 10.144 10.148 10.149 LET BOUN	45 10.042 10.145 10.146 10.148 10.149 10.147 10.152 10.149	90 10.056 10.150 10.150 10.148 10.152 10.140 10.150	ERENTIAL 135 10.036 10.138 10.136 10.138 10.129 10.140 10.081 10.145	LOCATION 180 10.036 10.137 10.139 10.140 10.139 10.147 10.151 10.149	N, DEG 225 10.067 10.150 10.152 10.149 10.150 10.150 10.152	270 10.046 10.148 10.149 10.149 10.146 10.146 10.148	315 10.095 10.144 10.144 10.141 10.145 10.145 10.143	AVG 10.059 10.145 10.146 10.145 10.144 10.145 10.141
1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5	9.873 9.949 10.003 10.053 10.053 10.146 10.150 10.148	9.818 9.889 9.947 10.005 10.054 10.132 10.141 10.142	9.851 9.922 9.974 10.026 10.069 10.140 10.149	9.827 9.895 9.943 10.004 10.051 10.129 10.138 10.140	9.841 9.910 9.953 10.006 10.049 10.135 10.152	9.806 9.883 9.937 10.001 10.051 10.133 10.143	9.805 9.877 9.927 9.991 10.042 10.131 10.146	9.859 9.935 9.994 10.054 10.151 10.151 10.151	9.835 9.907 9.960 10.018 10.063 10.137 10.146 10.147
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	9.824 9.970 9.989 9.987 10.043 10.063 10.048 10.051	10.013 9.828 9.986 10.095 10.115 10.143 10.069	9.830 10.141 10.004 10.147 10.129 10.024 10.082	10.011 9.902 10.050 10.217 10.047 10.148 9.999 10.131	9.785 9.947 9.979 10.023 10.049 10.055 10.070	9.541 9.577 9.671 9.750 10.016 10.145 10.147	9.729 9.818 9.974 10.024 10.119 10.138 10.115	9.519 9.581 9.690 9.798 10.036 10.142 10.148 10.104	9.782 9.846 9.918 10.005 10.071 10.121 10.077 10.094
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.606 9.660 9.708 9.758 9.800 9.905 9.963 9.984	10.021 10.016 10.012 10.016 10.016 10.004 9.857 9.844 9.926	9.535 9.677 9.763 9.786 9.878 10.104 10.149	9.955 9.936 9.942 9.967 9.991 9.918 9.899 9.910	9.576 9.629 9.682 9.734 9.784 9.888 9.940 9.916	9.513 9.532 9.540 9.543 9.544 9.553 9.581 9.907	9.610 9.657 9.683 9.705 9.723 9.763 9.815 9.907	9.480 9.497 9.506 9.512 9.520 9.542 9.581 9.630	9.662 9.700 9.729 9.753 9.781 9.816 9.816 9.916

TABLE 9.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A3 (READINGS 40 TO 43; AIRFLOW, 72.02 kg/sec)

[Pressures are in newtons per square centimeter.]

(A) INLET RAKE

1.0 2.0 3.0 4.0 5.0 7.5 10.0	(D) EX	5.0 10.0 15.0 20.0 30.0 50.0 70.0	(C) EX	1.0 2.0 3.0 4.0 5.0 7.5 10.0	(B) IN	% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0
9.611 9.667 9.716 9.766 9.809 9.914 9.970 9.991	CIT BOUND	9.818 9.967 9.984 9.979 10.038 10.060 10.047	IT RAKE	9.871 9.947 10.003 10.053 10.093 10.150 10.153	ILET BOUN	0 10.093 10.154 10.155 10.151 10.150 10.144 10.147
10.029 10.023 10.019 10.017 9.999 9.848 9.838 9.923	ARY LAYE	10.002 9.823 9.985 10.093 10.111 10.145 10.074 10.146		9.814 9.887 9.943 10.003 10.050 10.128 10.139 10.139	DARY LAY	45 10.055 10.147 10.146 10.146 10.145 10.147
9.523 9.667 9.752 9.777 9.864 10.095 10.145	R RAKE	9.815 10.147 10.018 10.152 10.150 10.133 10.032 10.082		9.854 9.922 9.974 10.025 10.067 10.142 10.152	ER RAKE	CIRCUMF 90 10.062 10.151 10.152 10.149 10.151 10.152 10.151
9.951 9.931 9.934 9.961 9.989 9.911 9.899 10.140		10.008 9.898 10.051 10.137 10.061 10.150 10.039 10.129		9.817 9.889 9.940 10.004 10.054 10.141 10.151		ERENTIAL 135 10.048 10.154 10.152 10.150 10.148 10.147 10.150 10.149
9.576 9.629 9.681 9.730 9.776 9.857 9.892 10.047		9.767 9.911 9.912 9.973 10.018 10.046 10.065 10.069		9.777 9.840 9.878 9.922 9.954 10.009 10.019		LOCATIO 180 9.992 10.100 10.103 10.105 10.119 10.145 10.151
9.528 9.546 9.554 9.558 9.559 9.569 9.593 9.918		9.552 9.598 9.693 9.849 10.024 10.147 10.149		9.805 9.882 9.925 10.001 10.051 10.135 10.147		N, DEG 225 10.047 10.143 10.145 10.144 10.146 10.146 10.146
9.602 9.647 9.674 9.694 9.712 9.764 9.837 9.947		9.712 9.845 10.031 10.014 10.128 10.144 10.121 10.109		9.810 9.883 9.935 9.998 10.045 10.134 10.149		270 10.049 10.148 10.149 10.149 10.146 10.146 10.149
9.499 9.517 9.525 9.532 9.538 9.560 9.594 9.641		9.534 9.593 9.698 9.807 10.032 10.139 10.148 10.102		9.861 9.935 9.993 10.049 10.145 10.146 10.145		315 10.101 10.149 10.149 10.147 10.145 10.148 10.148
9.665 9.703 9.732 9.754 9.781 9.815 9.846 9.969		9.776 9.848 9.922 10.000 10.070 10.120 10.084 10.094		9.826 9.898 9.949 10.007 10.051 10.123 10.132		AVG 10.056 10.143 10.144 10.144 10.146 10.148 10.149

TABLE 10.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A4 (READINGS 46 TO 49; AIRFLOW, 72.04 kg/sec)

(A)	INLET	RAKE

10.0 1 15.0 1 20.0 1 30.0 1 50.0 1 70.0 1 90.0 1 (B) INLE	0 45 10.067 10.043 10.142 10.142 10.143 10.149 10.141 10.151 10.140 10.149 10.144 10.152 10.144 10.150 ET BOUNDARY LAY 9.841 9.810 9.914 9.882 9.968 9.938 10.022 9.994 10.063 10.042	9.856 9.822 9.926 9.887 9.979 9.930 10.029 9.984 10.072 10.028	180 225 10.039 10.064 10.147 10.150 10.146 10.152 10.147 10.151 10.146 10.151 10.147 10.151 10.145 10.150 9.832 9.807 9.899 9.883 9.942 9.939 9.996 10.005 10.038 10.055	270 10.045 10.145 10.145 10.145 10.145 10.144 10.148 9.885 9.885 9.994 10.042	315 10.095 10.143 10.143 10.144 10.144 10.143 10.144 9.870 9.870 9.941 9.996 10.052 10.097	10 10 10 10 10 10 10 10 10
10.0	10.134 10.116 10.142 10.126 10.142 10.130 T RAKE	10.140 10.112 10.147 10.128 10.147 10.130	10.127 10.137 10.147 10.145 10.146 10.144	10.129 10.144 10.144	10.151 10.151 10.149	10. 10. 10.
50.0 1 70.0 1 90.0 1	9.820 10.000 9.966 9.832 9.991 9.990 9.995 10.092 10.041 10.113 10.057 10.140 10.045 10.063 10.048 10.143	9.815 9.988 10.143 9.895 9.997 10.039 10.331 10.122 10.144 10.047 10.131 10.145 10.025 10.040 10.079 10.127	9.795 9.544 9.949 9.564 9.980 9.651 10.025 9.790 10.050 10.036 10.056 10.138 10.062 10.144 10.060 10.056	9.740 9.902 10.055 10.004 10.127 10.142 10.112	9.516 9.581 9.692 9.822 10.032 10.137 10.144 10.102	9 9 10 10 10
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.612 10.010 9.669 10.007 9.720 10.006 9.771 10.009 9.812 10.003 9.906 9.867 9.955 9.847 9.981 9.932	9.541 9.942 9.675 9.921 9.761 9.928 9.785 9.954 9.871 9.978 10.105 9.907 10.152 9.881 10.148 9.940	9.591 9.527 9.650 9.544 9.705 9.549 9.759 9.548 9.810 9.545 9.903 9.544 9.948 9.563 10.017 9.927	9.626 9.669 9.699 9.723 9.749 9.823 9.914 9.918	9.494 9.510 9.516 9.521 9.527 9.543 9.579 9.624	9 9 9 9 9 9 9

TABLE 11.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A7 (READINGS 59 TO 62; AIRFLOW, 72.00 kg/sec)

% SPAN 5.0 10.0 15.0 20.0 30.0 70.0 90.0 (B) IN	0 10.066 10.141 10.148 10.144 10.143 10.141 10.146 10.148 LET BOUN	45 10.049 10.141 10.143 10.145 10.146 10.147 10.147	90 10.081 10.150 10.149 10.143 10.145 10.145	ERENTIAL 135 10.037 10.146 10.146 10.145 10.141 10.144 10.146 10.146	LOCATIO 180 10.034 10.148 10.147 10.149 10.144 10.147 10.150	N, DEG 225 10.065 10.147 10.147 10.145 10.145 10.147 10.146	270 10.042 10.144 10.144 10.144 10.144 10.144 10.146	315 10.087 10.147 10.145 10.144 10.141 10.146 10.146	AVG 10.058 10.145 10.146 10.145 10.143 10.144 10.146
1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5	9.836 9.910 9.967 10.024 10.067 10.138 10.143 10.142	9.815 9.887 9.942 10.000 10.050 10.131 10.145 10.147	9.867 9.940 9.993 10.045 10.146 10.150	9.812 9.881 9.933 9.995 10.043 10.135 10.147	9.842 9.908 9.952 10.005 10.049 10.133 10.148 10.146	9.815 9.890 9.944 10.008 10.057 10.137 10.146	9.814 9.885 9.934 9.995 10.043 10.130 10.145	9.873 9.942 9.996 10.049 10.092 10.146 10.147	9.834 9.905 9.958 10.015 10.061 10.137 10.147
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	9.771 9.960 9.980 9.992 10.044 10.050 10.041 10.040	9.933 9.840 9.963 10.066 10.138 10.143 10.084 10.145 ARY LAYE	9.673 10.085 10.150 10.052 10.144 10.148 10.042 10.093	9.881 9.812 9.983 10.073 10.102 10.143 10.046 10.122	9.750 9.934 9.972 10.013 10.048 10.042 10.053 10.065	9.597 9.674 9.811 9.868 10.051 10.147 10.144	9.808 9.790 9.791 9.753 9.857 10.127 10.118 10.106	9.615 9.659 9.775 9.887 10.024 10.134 10.142	9.753 9.844 9.928 9.963 10.051 10.117 10.084 10.091
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.583 9.627 9.668 9.715 9.760 9.880 9.956 9.988	10.026 10.031 10.021 9.983 9.929 9.813 9.842 9.908	9.101 9.146 9.242 9.470 9.719 9.953 10.101 10.145	9.806 9.821 9.816 9.835 9.871 9.852 9.830 10.035	9.576 9.624 9.671 9.721 9.773 9.885 9.946 9.963	9.547 9.570 9.580 9.583 9.586 9.612 9.656 9.961	9.704 9.754 9.780 9.782 9.800 9.806 9.803 9.942	9.598 9.618 9.624 9.622 9.620 9.626 9.663 9.715	9.618 9.649 9.675 9.714 9.757 9.803 9.850 9.957

TABLE 12.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A8 (READINGS 65 TO 68; AIRFLOW, 72.17 kg/sec)

•	A)	 	L	 	•		••	Ε
1	ΛІ	 v			•	n	ĸ	-

% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.063 10.138 10.144 10.143 10.144 10.141 10.145 10.145	45 10.038 10 10.147 10 10.148 10 10.148 10 10.143 10 10.146 10 10.149 10	90 .072 .152 .152 .147 .141 .145 .148	ERENTIAL 135 10.027 10.143 10.142 10.140 10.141 10.141 10.143 10.144	LOCATION 180 10.045 10.147 10.147 10.147 10.142 10.145 10.148	N, DEG 225 10.097 10.151 10.149 10.147 10.143 10.146 10.147	270 10.044 10.144 10.146 10.146 10.146 10.147 10.147	315 10.090 10.143 10.142 10.139 10.137 10.142 10.142	AVG 10.060 10.146 10.145 10.145 10.142 10.144 10.146
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.841 9.912 9.967 10.020 10.065 10.134 10.143	9.881 9.938 9.996 10.046 10.129 10.140	0.846 0.917 0.976 0.034 0.081 0.147 0.152	9.820 9.898 9.950 10.014 10.062 10.142 10.150 10.149	9.845 9.914 9.958 10.013 10.055 10.135 10.150 10.149	9.810 9.885 9.939 10.004 10.053 10.137 10.143	9.804 9.877 9.929 9.992 10.040 10.129 10.145 10.145	9.814 9.884 9.939 9.997 10.044 10.127 10.140 10.143	9.824 9.896 9.950 10.009 10.056 10.135 10.146
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	9.771 9.965 9.986 9.942 10.041 10.064 10.050 10.042	9.851 10 9.984 10 10.109 10 10.083 10 10.141 10 10.043 10	3.621 3.092 3.053 3.144 3.140 3.101 3.028 3.059	9.915 9.816 9.988 10.111 10.053 10.143 10.022 10.136	9.762 9.936 9.978 10.019 10.045 10.053 10.072	9.521 9.579 9.683 9.689 10.017 10.144 10.147	9.805 9.870 9.912 9.837 10.056 10.125 10.124	9.563 9.616 9.707 9.745 10.021 10.132 10.147 10.080	9.742 9.841 9.911 9.949 10.057 10.113 10.079 10.087
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.574 9.622 9.669 9.718 9.766 9.887 9.955	10.067 10.070 10.024 9.957 9.838 9.877	9.388 9.434 9.492 9.564 9.5657 9.933 0.124 0.153	9.879 9.853 9.832 9.856 9.905 9.861 9.813 9.931	9.573 9.624 9.675 9.725 9.775 9.878 9.934 9.952	9.484 9.501 9.512 9.517 9.523 9.541 9.574 9.935	9.679 9.737 9.767 9.788 9.806 9.840 9.869 9.937	9.524 9.543 9.550 9.556 9.557 9.606 9.649	9.642 9.673 9.696 9.719 9.744 9.794 9.844 9.936

TABLE 13.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 (READINGS 458 TO 461; AIRFLOW, 72.24 kg/sec)

(A)	۱ T	М	1	ı	Е.	Γ	D	٨	v	
\ A .	, ,	17	П	ь.	_	1 1	т.	н	N	ᄄ

10.0 15.0 20.0 30.0 50.0 70.0	0 10.095 10.146 10.146 10.144 10.140 10.141 10.143 10.144 ET BOUN	45 10.039 10.147 10.148 10.148 10.146 10.144 10.140 10.145	90 10.046 10.148 10.146 10.146 10.143 10.141 10.140	ERENTIAL 135 10.039 10.146 10.146 10.147 10.145 10.143 10.140 10.142	LOCATIO 180 10.038 10.146 10.146 10.147 10.145 10.143 10.140	N, DEG 225 10.093 10.145 10.144 10.140 10.139 10.141 10.142	270 10.093 10.147 10.144 10.143 10.140 10.142 10.144 10.143	315 10.093 10.146 10.145 10.142 10.141 10.142 10.144	AVG 10.067 10.146 10.146 10.142 10.142 10.142
7.5 10.0 12.5	9.798 9.872 9.931 9.991 10.036 10.124 10.136 10.140 T RAKE	9.796 9.871 9.928 9.983 10.031 10.116 10.131 10.132	9.800 9.874 9.930 9.988 10.033 10.121 10.135 10.138	9.807 9.881 9.934 9.998 10.046 10.134 10.148	9.807 9.881 9.931 9.992 10.041 10.129 10.142 10.144	9.814 9.891 9.943 10.006 10.053 10.136 10.147 10.148	9.810 9.886 9.937 10.002 10.048 10.132 10.146	9.799 9.873 9.929 9.986 10.031 10.120 10.135 10.137	9.804 9.879 9.933 9.993 10.040 10.127 10.140 10.142
50.0 70.0 90.0	9.831 9.894 9.948 9.927 10.072 10.131 10.131	9.788 9.808 9.875 9.994 10.147 10.138 10.073 10.142	9.684 10.082 10.078 10.147 10.136 10.136 10.126 10.093	9.967 9.877 9.906 10.120 10.144 10.127 10.071 10.142	9.781 9.901 9.907 10.012 10.137 10.138 10.146 10.113	9.867 9.969 10.080 10.040 10.067 10.122 10.145 10.050	9.804 9.904 10.029 9.992 10.124 10.139 10.123 10.100	9.847 9.938 10.021 9.990 10.107 10.128 10.139 10.089	9.821 9.922 9.981 10.028 10.117 10.132 10.119 10.107
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.613 9.662 9.709 9.753 9.791 9.871 9.892 9.885	9.772 9.778 9.775 9.782 9.792 9.784 9.812 9.849	9.469 9.510 9.564 9.634 9.712 9.956 10.103 10.144	9.799 9.899 9.966 9.976 9.951 9.895 9.875	9.691 9.741 9.773 9.805 9.826 9.861 9.890 10.205	9.769 9.809 9.831 9.846 9.864 9.913 9.969 9.977	9.689 9.742 9.773 9.7791 9.809 9.851 9.903 9.969	9.757 9.797 9.818 9.833 9.844 9.882 9.935 9.986	9.695 9.742 9.776 9.803 9.824 9.877 9.922 10.008

TABLE 14.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A11 (READINGS 696 TO 699; AIRFLOW, 72.87 kg/sec)

TABLE 15.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 947 TO 950; AIRFLOW, 35.50 kg/sec)

(A) INLET RAKE					
% SPAN 0 45 5.0 10.117 10.115 10.0 10.133 10.138 15.0 10.132 10.139 20.0 10.132 10.138 30.0 10.129 10.138 50.0 10.127 10.138 70.0 10.127 10.138 70.0 10.130 10.140 90.0 10.130 10.139 (B) INLET BOUNDARY LA	CIRCUMFERENTIAL 90 135 10.116 10.111 10.139 10.135 10.139 10.135 10.139 10.133 10.139 10.134 10.139 10.134 10.137 10.135	LOCATION, DEG 180 225 10.105 10.117 10.131 10.138 10.130 10.139 10.131 10.138 10.129 10.138 10.131 10.139 10.131 10.139 10.132 10.141 10.131 10.139	10.138 1 10.138 1 10.138 1 10.137 1 10.138 1 10.138 1	315 AVG 0.121 10.115 0.135 10.136 0.135 10.136 0.133 10.135 0.132 10.134 0.134 10.135 0.134 10.135 0.134 10.135	5 5 5 4 5
(b) Incel bookbakt ca	TEN RAKE				
1.0 10.075 10.062 2.0 10.091 10.078 3.0 10.105 10.090 4.0 10.115 10.102 5.0 10.126 10.112 7.5 10.140 10.128 10.0 10.141 10.130 12.5 10.141 10.131	10.065 10.068 10.079 10.082 10.090 10.092 10.102 10.105 10.111 10.115 10.130 10.131 10.133 10.133 10.132 10.132	10.068 10.066 10.082 10.081 10.091 10.091 10.103 10.105 10.113 10.115 10.132 10.133 10.138 10.135 10.138 10.135	10.075 1 10.085 1 10.098 1 10.108 1 10.128 1 10.132 1	0.075 10.067 0.089 10.082 0.101 10.093 0.113 10.105 0.122 10.115 0.138 10.132 0.140 10.135 0.140 10.135	2 3 5 5 2 5
(C) EXIT RAKE					
5.0 10.077 10.083 10.0 10.086 10.065 15.0 10.105 10.096 20.0 10.104 10.108 30.0 10.131 10.110 50.0 10.127 10.110 70.0 10.124 10.126 90.0 10.136 10.126	9.996 10.087 10.070 10.079 10.135 10.104 10.122 10.128 10.135 10.115 10.109 10.113 10.130 10.120 10.117 10.129	10.079 10.048 10.087 10.072 10.105 10.092 10.128 10.090 10.131 10.119 10.127 10.129 10.133 10.115 10.134 10.115	10.067 1 10.082 1 10.085 1 10.124 1 10.120 1 10.124 1	10.063 10.061 10.085 10.076 10.104 10.103 10.101 10.108 10.125 10.124 10.126 10.126 10.118 10.124 10.117 10.125	6 3 8 4 0 4
(D) EXIT BOUNDARY LAY	ER RAKE	,			
1.0 10.046 10.063 2.0 10.061 10.082 3.0 10.065 10.091 4.0 10.069 10.094 5.0 10.072 10.086 7.5 10.076 10.068 10.0 10.081 10.071 12.5 10.089 10.081	9.990 10.063 9.997 10.103 9.990 10.090 9.994 10.086 10.002 10.076 10.037 10.067 10.083 10.071 10.130 10.013	10.043 10.035 10.088 10.101 10.066 10.047 10.073 10.051 10.075 10.055 10.079 10.065 10.084 10.077 10.058 10.027	10.128 1 10.054 1 10.056 1 10.059 1 10.064 1 10.070 1	10.035 10.039 10.047 10.076 10.050 10.057 10.054 10.060 10.057 10.060 10.068 10.065 10.079 10.077	6 7 0 0 5 7

TABLE 16.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 951 TO 954; AIRFLOW, 56.52 kg/sec)

[Pressures are in newtons per square centimeter.]

(A) INLET RAKE

% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.116 10.145 10.146 10.143 10.128 10.135 10.140 10.142 LET BOUN	45 10.083 10.138 10.141 10.140 10.138 10.138 10.139 10.137	90 10.094 10.142 10.143 10.142 10.140 10.142 10.139 10.138	ERENTIAL 135 10.086 10.141 10.141 10.139 10.137 10.137 10.139	180 10.075 10 10.142 10 10.143 10 10.143 10 10.139 10 10.143 10 10.145 10	DEG 225 .085 .126 .137 .137 .139 .140 .140	270 10.082 10.141 10.141 10.139 10.137 10.139 10.139	315 10.107 10.142 10.142 10.140 10.136 10.139 10.138	AVG 10.091 10.140 10.142 10.140 10.137 10.139 10.140
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.981 10.024 10.057 10.090 10.114 10.143 10.144	9.960 10.000 10.030 10.062 10.087 10.133 10.140 10.142	9.985 10.023 10.050 10.077 10.101 10.140 10.147	9.957 9.996 10.025 10.059 10.133 10.138	9.988 10 10.013 10 10.042 10 10.066 10 10.118 10 10.131 10	.958 .000 .029 .064 .090 .133 .139	9.958 9.997 10.024 10.057 10.136 10.136 10.145	9.983 10.022 10.051 10.081 10.104 10.138 10.141 10.142	9.966 10.006 10.035 10.067 10.092 10.134 10.141
5.0 10.0 15.0 20.0 30.0 50.0 70.0	9.976 9.995 10.045 10.067 10.113 10.099 10.106	10.034 9.965 10.044 10.113 10.099 10.104 10.132 10.118	9.680 9.866 10.136 10.150 10.150 10.075 10.135 10.095	10.020 9.982 10.072 10.112 10.073 10.085 10.130 10.103	9.999 9 10.051 10 10.104 10 10.136 10 10.113 10 10.106 10	.924 .995 .048 .048 .120 .139 .095	9.933 9.973 10.037 10.058 10.114 10.117 10.112	9.932 9.998 10.046 10.052 10.115 10.097 10.088 10.089	9.935 9.972 10.060 10.082 10.113 10.105 10.112
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.910 9.945 9.959 9.969 9.976 9.986 9.995 10.018	9.945 9.990 10.016 10.037 10.030 9.960 9.967 9.998	9.661 9.680 9.670 9.674 9.684 9.746 9.890 10.070	9.961 10.050 10.031 10.035 10.012 9.977 9.989 10.067	10.000 10 9.966 9 9.981 9 9.989 9 9.992 9 10.003 9	.865 .015 .899 .909 .920 .952 .990	9.858 10.081 9.908 9.919 9.927 9.945 9.968 10.107	9.876 9.901 9.911 9.924 9.934 9.968 10.001 10.030	9.873 9.958 9.920 9.931 9.934 9.941 9.975

TABLE 17.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 955 TO 958; AIRFLOW, 68.91 kg/sec)

(A)	INLET	RAKE									
% SPAN 5.0 10.0 15.0 20.0 50.0 70.0 90.0	10. 10. 10. 10. 10. 10.	0 .105 .147 .146 .142 .136 .131	10. 10. 10. 10. 10.	5 068 147 150 148 146 145 147	CIRCUMF 90 10.081 10.150 10.151 10.149 10.146 10.145 10.144	ERENTIAL 135 10.060 10.144 10.142 10.141 10.141 10.140 10.139 10.141	LOCATIO 180 10.019 10.140 10.140 10.140 10.144 10.144	N, DEG 225 10.079 10.146 10.147 10.146 10.147 10.149 10.149	270 10.055 10.146 10.145 10.144 10.142 10.144 10.146	315 10.095 10.144 10.141 10.139 10.133 10.137 10.137	AVG 10.070 10.145 10.145 10.144 10.141 10.143 10.143
(B)	INLET	BOUNI	DARY	LAY	ER RAKE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9. 10. 10. 10. 10.	899 967 016 062 098 147 138	9. 10. 10. 10.	850 909 956 004 044 117 133	9.898 9.959 10.004 10.050 10.086 10.139 10.144 10.146	9.865 9.928 9.973 10.029 10.071 10.144 10.151	9.846 9.915 9.953 10.001 10.041 10.125 10.145	9.855 9.921 9.966 10.021 10.062 10.132 10.139	9.855 9.915 9.956 10.009 10.051 10.130 10.143	9.899 9.961 10.061 10.061 10.099 10.148 10.151 10.150	9.871 9.934 9.979 10.030 10.069 10.135 10.143
(C)	EXIT F	RAKE									
5.0 10.0 15.0 20.0 30.0 70.0 90.0	9. 10. 10. 10. 10.	891 921 000 041 106 116 089	9. 9. 10. 10. 10.	975 861 988 106 062 083 124 095	9.437 9.739 10.133 10.074 10.149 10.038 10.130 10.066	9.983 9.912 10.039 10.114 10.050 10.063 10.125 10.084	9.905 9.926 10.010 10.094 10.143 10.103 10.086 10.105	9.789 9.901 10.005 9.998 10.129 10.118 10.068 10.053	9.825 9.901 10.022 10.029 10.081 10.111 10.088 10.089	9.805 9.913 9.998 9.996 10.118 10.076 10.068	9.826 9.884 10.024 10.057 10.105 10.089 10.097 10.081
(D)	EXIT E	BOUNDA	RY	LAYER	RAKE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9. 9. 9. 9.	768 822 938 866 878 897 914	9. 10. 9. 9.	843 915 021 983 980 870 879 926	9.389 9.409 9.558 9.423 9.447 9.577 9.809 10.062	9.872 9.996 9.976 9.984 9.953 9.894 9.917	9.775 9.901 9.868 9.890 9.901 9.906 9.921 10.014	9.716 10.026 9.763 9.776 9.793 9.840 9.901 9.940	9.732 10.068 9.797 9.816 9.829 9.861 9.906 10.061	9.713 9.748 9.875 9.781 9.798 9.849 9.904 9.958	9.726 9.861 9.849 9.815 9.822 9.837 9.894 10.007

TABLE 18.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 959 TO 962; AIRFLOW, 73.42 kg/sec)

(A)	TA	п	ET	RA	v	E
(M)	_ I I'	Ł		T. F.	ľ	_

1.0 2.0 3.0 4.0 5.0 7.5 10.0	(D) E	5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	(C) E	1.0 2.0 3.0 4.0 5.0 7.5 10.0	(B) I	% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0
9.704 9.786 9.892 9.821 9.835 9.859 9.878 9.914	XIT BOUND	9.835 9.873 9.963 10.012 10.090 10.107 10.072	XIT RAKE	9.858 9.936 9.995 10.050 10.092 10.147 10.150	NLET BOUN	0 10.104 10.154 10.156 10.149 10.144 10.138 10.146
9.784 9.859 9.984 9.947 9.948 9.817 9.825 9.880	DARY LAYE	9.949 9.814 9.952 10.106 10.043 10.083 10.127 10.101		9.818 9.890 9.949 10.006 10.055 10.137 10.148 10.149	IDARY LAY	45 10.046 10.139 10.142 10.143 10.141 10.138 10.142 10.140
9.241 9.265 9.429 9.285 9.311 9.464 9.746 10.039	R RAKE	9.308 9.699 10.137 10.048 10.151 10.033 10.133		9.859 9.932 9.986 10.039 10.082 10.147 10.154	ER RAKE	CIRCUMF 90 10.074 10.149 10.146 10.145 10.144 10.142
9.823 9.967 9.943 9.964 9.937 9.863 9.890 10.174		9.948 9.878 10.020 10.105 10.012 10.049 10.116 10.073		9.811 9.887 9.940 10.003 10.052 10.138 10.145		ERENTIAL 135 10.051 10.149 10.151 10.146 10.145 10.145 10.147 10.148
9.715 9.899 9.824 9.849 9.862 9.874 9.893 10.119		9.853 9.877 9.975 10.074 10.131 10.085 10.069 10.089		9.809 9.877 9.924 9.968 10.026 10.119 10.141		LOCATIO 180 10.025 10.147 10.149 10.148 10.141 10.149 10.153 10.149
9.643 9.958 9.694 9.710 9.728 9.782 9.855 10.086		9.729 9.855 9.998 9.997 10.105 10.078 10.060		9.820 9.896 9.949 10.012 10.058 10.139 10.146		N, DEG 225 10.063 10.140 10.143 10.140 10.143 10.144 10.142
9.652 10.042 9.720 9.752 9.768 9.810 9.864 9.973		9.780 9.877 10.026 10.002 10.072 10.094 10.093 10.117		9.806 9.880 9.932 9.998 10.047 10.138 10.152		270 10.043 10.146 10.144 10.143 10.139 10.142 10.144
9.625 9.690 9.803 9.715 9.733 9.792 9.860 9.926		9.736 9.864 9.971 9.966 10.121 10.056 10.051		9.848 9.922 9.980 10.038 10.083 10.141 10.144		315 10.090 10.146 10.147 10.145 10.139 10.144 10.144
9.648 9.808 9.786 9.755 9.765 9.783 9.851 10.014		9.767 9.842 10.005 10.039 10.091 10.073 10.090 10.075		9.829 9.903 9.957 10.014 10.062 10.138 10.148		AVG 10.062 10.146 10.148 10.145 10.143 10.145

TABLE 19.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 963 TO 966; AIRFLOW, 75.56 kg/sec)

(A) IN	ILET RAKE					
% SPAN 5.0 10.0 15.0 20.0 30.0 70.0 90.0	0 10.093 10.149 10.150 10.146 10.142 10.133 10.140 10.143	45 90 10.031 10.0 10.143 10.1 10.149 10.1 10.150 10.1 10.146 10.1 10.150 10.1 10.150 10.1	69 10.044 51 10.148 54 10.146 50 10.147 48 10.147 50 10.143 46 10.143 45 10.146	LOCATION, DEG 180 225 10.011 10.065 10.141 10.145 10.143 10.148 10.143 10.146 10.135 10.146 10.143 10.150 10.148 10.151 10.145 10.150	10.148 1 10.147 1 10.146 1 10.142 1 10.145 1 10.146 1	315 AVG 10.088 10.056 10.147 10.146 10.146 10.148 10.142 10.146 10.138 10.144 10.142 10.144 10.142 10.146 10.145 10.146
(B) IN	ILEI BOUN	DARY LAYER RA	KE			
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.849 9.934 9.996 10.054 10.099 10.152 10.154	9.797 9.8 9.872 9.9 9.933 9.9 9.993 10.0 10.042 10.0 10.124 10.1 10.138 10.1 10.142 10.1	18 9.872 73 9.928 27 9.996 73 10.049 42 10.142 49 10.148	9.795 9.802 9.866 9.886 9.914 9.941 9.974 10.009 10.021 10.060 10.121 10.140 10.143 10.144 10.144 10.145	10.036 1 10.131 1 10.146 1	9.836 9.813 9.918 9.891 9.980 9.948 0.040 10.010 0.089 10.059 0.150 10.138 0.152 10.147 0.151 10.147
(C) EX	IT RAKE					
5.0 10.0 15.0 20.0 30.0 50.0 70.0	9.826 9.867 9.963 10.020 10.097 10.111 10.076	9.931 9.2 9.791 9.6 9.933 10.1 10.096 10.0 10.029 10.1 10.075 10.0 10.122 10.1 10.094 10.0	83 9.871 37 10.014 42 10.110 47 10.021 27 10.045 31 10.119	9.846 9.709 9.875 9.841 9.975 9.982 10.082 9.982 10.129 10.102 10.093 10.066 10.075 10.051 10.089 10.040	9.872 10.028 9.998 1 10.068 1 10.088 1	9.718 9.751 9.845 9.831 9.962 9.999 0.016 10.043 0.091 10.086 0.057 10.070 0.049 10.088 0.048 10.073
(D) EX	IT BOUND	ARY LAYER RAK	E			
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.676 9.742 9.864 9.799 9.816 9.842 9.862 9.869	9.770 9.2 9.851 9.2 9.970 9.3 9.939 9.2 9.942 9.2 9.805 9.4 9.812 9.7 9.869 10.0	39 9.959 84 9.934 55 9.950 84 9.918 46 9.844 36 9.875	9.689 9.621 9.863 9.835 9.803 9.675 9.830 9.691 9.845 9.708 9.858 9.763 9.875 9.835 10.048 10.120	9.716 9.739 9.757 9.801 9.862	9.613 9.629 9.660 9.762 9.778 9.765 9.691 9.737 9.708 9.747 9.767 9.766 9.837 9.837 9.905 10.015

TABLE 20.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 967 TO 970; AIRFLOW, 78.89 kg/sec)

(A) INLET RAKE	Ē		
% SPAN 5.0 10.092 10.0 10.154 15.0 10.158 20.0 10.150 30.0 10.142 50.0 10.139 70.0 10.148 90.0 10.151	CIRCUMFERENTIA 90 135 10.014 10.064 10.031 10.137 10.155 10.150 10.141 10.155 10.151 10.143 10.150 10.146 10.140 10.150 10.143 10.141 10.152 10.146 10.147 10.149 10.150 10.143 10.147 10.151	L LOCATION, DEG 180 225 270 10.002 10.048 10.02 10.149 10.140 10.14 10.150 10.144 10.14 10.150 10.140 10.14 10.142 10.144 10.14 10.148 10.147 10.14 10.154 10.150 10.14 10.152 10.146 10.14	7 10.092 10.046 9 10.152 10.148 8 10.151 10.150 8 10.149 10.147 4 10.142 10.143 8 10.147 10.146 8 10.149 10.149
(B) INLET BOUN	IDARY LAYER RAKE		
1.0 9.815 2.0 9.910 3.0 9.980 4.0 10.046 5.0 10.094 7.5 10.152 10.0 10.155 12.5 10.153	9.761 9.807 9.771 9.845 9.896 9.855 9.911 9.960 9.916 9.975 10.022 9.990 10.030 10.073 10.045 10.121 10.149 10.142 10.137 10.157 10.150 10.141 10.158 10.148	9.756 9.774 9.75 9.833 9.865 9.83 9.883 9.925 9.89 9.946 9.999 9.96 10.000 10.054 10.02 10.118 10.143 10.13 10.149 10.149 10.14 10.149 10.151 10.14	5 9.901 9.867 3 9.965 9.929 6 10.027 9.996 2 10.079 10.049 0 10.143 10.137 8 10.147 10.149
(C) EXIT RAKE			
5.0 9.784 10.0 9.833 15.0 9.940 20.0 9.999 30.0 10.087 50.0 10.104 70.0 10.064 90.0 10.062	9.930 9.173 9.933 9.777 9.634 9.841 9.931 10.137 10.002 10.123 10.003 10.099 10.027 10.147 10.003 10.069 10.020 10.041 10.123 10.135 10.119 10.098 10.039 10.060	9.807 9.657 9.72 9.833 9.803 9.84 9.941 9.974 10.02 10.072 9.985 10.03 10.121 10.121 10.06 10.085 10.053 10.07 10.064 10.046 10.08 10.076 10.037 10.11	4 9.813 9.797 2 9.942 9.986 1 9.960 10.034 8 10.097 10.084 1 10.046 10.061 2 10.041 10.084
(D) EXIT BOUND	DARY LAYER RAKE		
1.0 9.628 2.0 9.703 3.0 9.832 4.0 9.767 5.0 9.786 7.5 9.816 10.0 9.839 12.5 9.886	9.734 9.096 9.801 9.827 9.123 10.020 9.946 9.284 9.931 9.915 9.146 9.953 9.924 9.181 9.918 9.781 9.374 9.818 9.781 9.709 9.845 9.847 10.026 9.930	9.647 9.568 9.58 9.802 9.815 9.91 9.771 9.624 9.67 9.803 9.642 9.69 9.820 9.688 9.71 9.833 9.720 9.76 9.852 9.801 9.83 10.039 9.924 9.95	6 9.605 9.726 6 9.729 9.724 6 9.642 9.696 6 9.663 9.712 4 9.727 9.729 3 9.807 9.808

TABLE 21.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 971 TO 974; AIRFLOW, 81.77 kg/sec)

[Pressures are in newtons per square centimeter.]

(A) INLET RAKE

% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0 (B) IN	0 10.094 10.155 10.156 10.149 10.142 10.139 10.147 10.149	45 10.032 10.146 10.149 10.151 10.151 10.153 10.151 DARY LAY	90 10.050 10.153 10.155 10.151 10.148 10.150 10.146	ERENTIAL 135 10.028 10.151 10.150 10.148 10.147 10.142 10.145 10.147	LOCATIO 180 9.981 10.142 10.144 10.137 10.137 10.148 10.151	N, DEG 225 10.054 10.148 10.152 10.148 10.151 10.152 10.154	270 10.027 10.149 10.149 10.146 10.143 10.147 10.147	315 10.082 10.148 10.146 10.139 10.142 10.144	AVG 10.044 10.149 10.150 10.148 10.145 10.146 10.148
1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5	9.794 9.888 9.957 10.023 10.073 10.143 10.150	9.743 9.828 9.896 9.965 10.023 10.121 10.139 10.143	9.796 9.887 9.953 10.019 10.072 10.148 10.157	9.744 9.835 9.899 9.978 10.038 10.143 10.153	9.744 9.826 9.882 9.950 10.003 10.119 10.143 10.145	9.738 9.832 9.898 9.975 10.035 10.132 10.143	9.735 9.822 9.884 9.963 10.024 10.133 10.150	9.784 9.876 9.950 10.023 10.079 10.147 10.152 10.153	9.760 9.849 9.915 9.987 10.043 10.136 10.148
5.0 10.0 15.0 20.0 30.0 50.0 70.0	9.771 9.824 9.938 10.056 10.094 10.112 10.070 10.063	9.911 9.747 9.908 10.117 10.019 10.062 10.116 10.093	9.111 9.575 10.129 9.978 10.134 10.013 10.130 10.032	9.922 9.828 9.993 10.095 9.985 10.042 10.115 10.054	9.802 9.831 9.946 10.076 10.121 10.084 10.055 10.085	9.628 9.780 9.958 9.971 10.106 10.043 10.039	9.700 9.828 10.014 9.997 10.061 10.057 10.070	9.638 9.791 9.939 9.992 10.098 10.038 10.035	9.685 9.775 9.978 10.035 10.077 10.056 10.079
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.598 9.676 9.803 9.738 9.759 9.792 9.821 9.867	9.713 9.804 9.928 9.899 9.912 9.757 9.757	9.050 9.077 9.236 9.097 9.131 9.323 9.655	9.783 10.014 9.914 9.936 9.898 9.803 9.834 10.001	9.618 9.800 9.750 9.781 9.797 9.808 9.828 9.941	9.538 9.701 9.600 9.616 9.635 9.692 9.772 9.878	9.554 9.969 9.655 9.681 9.704 9.757 9.826 9.873	9.525 9.574 9.702 9.617 9.636 9.705 9.789 9.876	9.547 9.702 9.699 9.671 9.684 9.705 9.785 9.911

TABLE 22.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 12A TO 15A; AIRFLOW, 73.10 kg/sec)

(A) INLET F		K	

% SPAN 5.0 10.0 15.0 20.0 30.0 70.0 90.0	0 10.133 10.139 10.143 10.133 10.127 10.130 10.134 10.134	45 10.085 10.128 10.130 10.129 10.132 10.130 10.138 10.133	90 10.127 10.146 10.146 10.136 10.138 10.137	ERENTIAL 135 10.100 10.127 10.136 10.138 10.140 10.136 10.135 10.135	LOCATIO 180 10.099 10.136 10.137 10.135 10.131 10.139 10.139	N, DEG 225 10.127 10.136 10.137 10.132 10.134 10.138 10.140 10.135	270 10.110 10.142 10.138 10.137 10.132 10.137 10.137	315 10.133 10.140 10.141 10.136 10.131 10.134 10.134	AVG 10.114 10.137 10.138 10.135 10.135 10.135
1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5	9.907 10.003 10.072 10.121 10.140 10.142 10.142 10.138	9.857 9.948 10.019 10.181 10.112 10.133 10.136	9.912 9.998 10.053 10.099 10.128 10.141 10.144	9.835 9.928 9.995 10.070 10.110 10.133 10.132	9.838 9.924 9.985 10.058 10.101 10.132 10.135	9.865 9.963 10.028 10.121 10.133 10.136 10.134	9.886 9.963 10.012 10.073 10.111 10.135 10.140 10.138	9.878 9.980 10.055 10.108 10.126 10.136 10.140 10.141	9.872 9.963 10.027 10.088 10.118 10.136 10.138
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	9.887 9.919 9.931 9.960 10.090 10.052 10.044 9.943	9.894 9.906 9.946 10.008 10.129 10.058 9.932 9.945	9.570 9.563 9.591 9.712 10.047 9.779 9.849 9.879	9.940 9.954 9.979 10.079 10.228 10.105 9.990 9.921	9.832 9.899 9.911 9.975 10.072 10.043 10.027 9.960	9.815 9.814 9.867 9.867 10.092 10.074 10.107 9.888	9.871 9.918 9.938 9.881 9.934 9.956 9.908 9.836	9.811 9.812 9.864 9.968 10.095 10.098 10.107 9.860	9.827 9.848 9.878 9.931 10.086 10.021 9.995 9.904
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.701 9.758 9.865 9.905 9.831 9.875 9.898 9.904	9.729 9.779 9.876 9.864 9.809 9.805 9.811 9.830	9.746 9.806 9.895 9.898 9.868 9.896 9.917 9.929	9.729 9.907 9.806 9.813 9.813 9.808 9.813	9.718 9.898 9.827 9.861 9.885 9.911 9.917 10.117	9.753 9.951 9.864 9.887 9.898 9.908 9.918 10.081	7.507 9.669 9.563 9.573 9.576 9.572 9.565 9.999	9.765 9.837 9.951 10.003 9.947 9.961 9.949 9.952	9.706 9.826 9.831 9.851 9.829 9.842 9.848 9.980

TABLE 23.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 16A TO 19A; AIRFLOW, 74.88 kg/sec)

(A) INLET RAKE			
% SPAN 5.0 10.142 10.0 10.146 15.0 10.151 20.0 10.141 30.0 10.134 50.0 10.136 70.0 10.141 90.0 10.141	CIRCUMFEREN 45 90 1 10.073 10.118 10. 10.117 10.143 10. 10.126 10.146 10. 10.122 10.142 10. 10.121 10.136 10. 10.124 10.137 10. 10.130 10.136 10. 10.124 10.137 10.	35 180 225 119 10.103 10.107 140 10.143 10.125 144 10.145 10.127 141 10.141 10.122 142 10.137 10.125 138 10.145 10.129 138 10.145 10.131	270 315 AVG 10.111 10.135 10.113 10.140 10.141 10.137 10.137 10.143 10.140 10.138 10.138 10.136 10.132 10.132 10.132 10.138 10.135 10.135 10.136 10.136 10.137 10.136 10.136 10.136
(B) INLET BOUND	DARY LAYER RAKE		
5.0 10.134 7.5 10.141	9.941 10.005 9.	106 10.106 10.122 131 10.136 10.138 126 10.138 10.141	9.879 9.860 9.858 9.966 9.968 9.955 10.020 10.046 10.022 10.085 10.098 10.086 10.121 10.117 10.119 10.142 10.126 10.137 10.147 10.131 10.139 10.145 10.132 10.139
(C) EXIT RAKE			
30.0 10.071	9.912 9.533 9. 9.946 9.558 9. 10.010 9.690 10. 10.133 10.043 10. 10.054 9.762 10. 9.924 9.834 9.	138 10.025 10.095	9.860 9.792 9.811 9.908 9.795 9.834 9.920 9.846 9.863 9.871 9.909 9.913 9.927 10.092 10.065 9.953 10.095 10.012 9.899 10.105 9.989 9.820 9.851 9.891
(D) EXIT BOUNDA	RY LAYER RAKE		
1.0 9.682 2.0 9.742 3.0 9.854 4.0 9.931 5.0 9.865 10.0 9.890 12.5 9.895	9.768 9.778 9. 9.867 9.881 9. 9.867 9.876 9. 9.800 9.846 9. 9.792 9.875 9.	722 9.697 9.730 904 9.811 9.931 799 9.811 9.853 805 9.849 9.879 804 9.876 9.890 796 9.904 9.898 800 9.908 9.905 900 9.908 9.905	9.462 9.753 9.684 9.648 9.829 9.801 9.520 9.935 9.815 9.530 10.092 9.854 9.532 9.946 9.814 9.531 9.961 9.828 9.525 9.948 9.834 10.123 9.950 9.967

TABLE 24.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 20A TO 24A; AIRFLOW, 78.32 kg/sec)

(A)	· 71	ĸ.	п		Εī	r 1	D	Α	L	•	C
	, 1	М		L	_		м		١r	`	_

10.0 1 15.0 1 20.0 1 30.0 1 50.0 1 70.0 1 90.0 1	0.137 10 0.139 10 0.129 10 0.122 10 0.123 10 0.130 10	45).086).134).137).134).136).134).136	CIRCUMFE 90 10.125 10.149 10.150 10.147 10.140 10.141 10.139 10.142	RENTIAL 135 10.117 10.135 10.139 10.137 10.137 10.134 10.133	LOCATION 180 10.086 10.129 10.132 10.128 10.123 10.130 10.133	DEG 225 10.124 10.141 10.139 10.132 10.136 10.141 10.141	270 10.118 10.143 10.140 10.142 10.136 10.141 10.141	315 10.132 10.134 10.135 10.132 10.128 10.133 10.133	AVG 10.115 10.138 10.139 10.135 10.135 10.135
1.0 2.0 3.0 1 4.0 1 5.0 1 7.5 1	9.873 9.984 0.062 0.122 0.143 10.147 10.147	9.828 9.937 0.020 0.088 0.121 0.138 0.139	9.802 9.918 10.004 10.074 10.106 10.124 10.135 10.139	9.794 9.897 9.973 10.057 10.102 10.134 10.131	9.809 9.909 9.980 10.064 10.113 10.142 10.143	9.832 9.945 10.018 10.092 10.123 10.134 10.136	9.837 9.924 9.979 10.047 10.091 10.125 10.134	9.849 9.968 10.053 10.110 10.128 10.138 10.143	9.828 9.935 10.011 10.082 10.116 10.135 10.138
20.0 30.0 50.0	9.845 9.877 9.896 9.889 0.077 10 0.028 10	9.858 9.892 9.927 9.994 9.127 0.020 9.862 9.898	9.468 9.463 9.490 9.634 10.022 9.710 9.788 9.819	9.915 9.929 9.957 10.073 10.140 10.085 9.979 9.894	9.774 9.853 9.871 9.951 10.020 10.023 10.009 9.938	9.753 9.755 9.816 9.825 10.080 10.056 10.090 9.833	9.820 9.877 9.898 9.842 9.899 9.928 9.855 9.772	9.762 9.746 9.818 9.844 10.090 10.092 10.101 9.819	9.774 9.799 9.834 9.881 10.057 9.993 9.964 9.859
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.698 9.819 9.826 9.781 9.826 9.852	Y LAYER 9.660 9.726 9.837 9.830 9.754 9.754 9.763 9.786	9.682 9.753 9.865 9.859 9.828 9.860 9.883 9.883	9.666 9.851 9.751 9.758 9.755 9.742 9.747 9.895	9.651 9.856 9.777 9.816 9.842 9.857 9.870	9.691 9.883 9.823 9.853 9.867 9.876 9.890 10.029	9.395 9.594 9.458 9.470 9.473 9.472 9.464 10.095	9.702 9.786 9.916 10.002 9.915 9.931 9.920 9.925	9.635 9.768 9.781 9.802 9.778 9.790 9.799 9.925

TABLE 25.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 25A TO 28A; AIRFLOW, 35.46 kg/sec)

(A)	THEFT	RAKE
-----	-------	------

% SPAN 5.0 10.0 15.0 20.0 30.0 70.0 90.0 (B) IN	0 10.133 10.134 10.133 10.132 10.130 10.129 10.131 10.131	45 10.124 10.134 10.137 10.135 10.135 10.136 10.139 10.137	90 10.125 10.133 10.135 10.135 10.133 10.133 10.133	FERENTIAL 135 10.126 10.130 10.131 10.131 10.132 10.130 10.131 10.131	LOCATIO 180 10.123 10.132 10.132 10.130 10.133 10.133 10.133	IN, DEG 225 10.133 10.139 10.138 10.138 10.139 10.139	270 10.128 10.133 10.133 10.133 10.133 10.133 10.133	315 10.128 10.130 10.131 10.130 10.129 10.130 10.130	AVG 10.12: 10.13: 10.13: 10.13: 10.13: 10.13:
1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5	10.077 10.097 10.112 10.126 10.133 10.135 10.134 10.133	10.064 10.081 10.096 10.108 10.117 10.125 10.129	10.080 10.096 10.107 10.119 10.127 10.133 10.133	10.077 10.095 10.108 10.124 10.134 10.139 10.137	10.069 10.088 10.101 10.117 10.127 10.132 10.134 10.134	10.070 10.091 10.104 10.120 10.127 10.132 10.131	10.079 10.095 10.106 10.119 10.128 10.133 10.134	10.077 10.099 10.115 10.126 10.133 10.137 10.138	10.074 10.093 10.106 10.120 10.128 10.133 10.134
5.0 10.0 15.0 20.0 30.0 50.0 70.0	10.086 10.099 10.099 10.108 10.128 10.121 10.122 10.099	10.079 10.084 10.090 10.103 10.130 10.121 10.100 10.097	10.019 10.018 10.028 10.057 10.116 10.063 10.077 10.082	10.091 10.092 10.099 10.120 10.133 10.131 10.117 10.088	10.078 10.095 10.095 10.105 10.120 10.122 10.121 10.100	10.071 10.070 10.080 10.075 10.123 10.121 10.125 10.089	10.073 10.082 10.086 10.087 10.090 10.085 10.082	10.068 10.068 10.079 10.077 10.120 10.124 10.126 10.086	10.071 10.076 10.082 10.091 10.120 10.111 10.109
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.044 10.056 10.082 10.087 10.074 10.083 10.087 10.088	10.052 10.062 10.086 10.087 10.069 10.068 10.069 10.073	10.054 10.068 10.094 10.096 10.082 10.086 10.091	10.051 10.096 10.067 10.069 10.069 10.068 10.069	10.042 10.087 10.065 10.073 10.077 10.087 10.092 10.030	10.050 10.095 10.072 10.079 10.081 10.084 10.085	10.011 10.058 10.022 10.024 10.025 12.025 1.025	10.053 10.067 10.095 10.112 10.090 10.092 10.090	10.045 10.074 10.073 10.078 10.071 10.074 10.076

TABLE 26.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 29A TO 32A; AIRFLOW, 56.42 kg/sec)

(А)	I	N	L	E.	T	R/	٩	K	Ε

		45 10.126 10.147 10.153 10.155 10.155 10.157 10.157	90 10.129 10.142 10.143 10.142 10.138 10.140 10.137 10.137	ERENTIAL 135 10.110 10.124 10.127 10.126 10.126 10.123 10.123 10.123	LOCATIO 180 10.094 10.120 10.123 10.122 10.119 10.122 10.124 10.122	225 10.149 10.156 10.156 10.155 10.157 10.157	270 10.126 10.141 10.139 10.135 10.138 10.138	315 10.121 10.115 10.115 10.124 10.121 10.121 10.121	AVG 10.12 10.13 10.13 10.13 10.13 10.13
1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5 (C) EX	9.995 10.048 10.087 10.119 10.135 10.141 10.141 10.140 IT RAKE	9.962 10.009 10.045 10.074 10.091 10.106 10.114	9.996 10.044 10.074 10.102 10.119 10.127 10.128	9.987 10.036 10.072 10.113 10.137 10.152 10.152	9.973 10.021 10.056 10.097 10.120 10.134 10.136	9.977 10.029 10.065 10.101 10.116 10.123 10.124	9.986 10.030 10.058 10.092 10.112 10.122 10.126 10.124	10.018 10.074 10.116 10.145 10.156 10.158 10.158	9.98 10.03 10.07 10.10 10.12 10.13 10.13
5.0 10.0 15.0 20.0 30.0 50.0 70.0	10.028 10.049 10.052 10.034 10.130 10.112 10.115 10.057	9.992 10.000 10.014 10.045 10.118 10.088 10.026 10.027	9.823 9.823 9.844 9.915 10.082 9.943 9.983 9.995	10.033 10.040 10.057 10.110 10.139 10.129 10.085 10.026	9.999 10.037 10.041 10.071 10.108 10.116 10.102 10.068	9.956 9.954 9.982 10.036 10.096 10.092 10.107	9.980 10.004 10.015 10.026 10.018 10.017	9.968 9.970 9.998 10.025 10.113 10.120 10.124 10.008	9.97 9.98 10.00 10.03 10.10 10.07 10.06
1.0 2.0 3.0 4.0 5.0	9.895 9.928 9.987 10.008 9.970	9.927 9.957 10.008 10.016 9.973	9.947 9.980 10.035 10.037 10.016	9.909 9.955 9.951 9.956 9.955	9.901 10.010 9.961 9.980 9.993	9.930 10.042 9.992 10.005 10.01	9.825 9.923 9.854 9.859 9.861	9.919 9.956 10.019 10.081 10.017	9.90 9.96 9.97 9.99

TABLE 27.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 33A TO 36A; AIRFLOW, 68.73 kg/sec)

(A) INLET RAKE				
% SPAN 0 49 5.0 10.131 10.1 10.0 10.139 10.1 15.0 10.142 10.1 20.0 10.134 10.1 30.0 10.129 10.1 50.0 10.129 10.1 70.0 10.133 10.1 90.0 10.136 10.1	14 10.118 10.111 39 10.142 10.132 38 10.142 10.136 35 10.138 10.136 35 10.131 10.134 35 10.135 10.133 38 10.133 10.132 33 10.133 10.133	LOCATION, DEG 180 225 10.101 10.125 10.136 10.138 10.139 10.136 10.137 10.132 10.133 10.135 10.137 10.138 10.140 10.138 10.137 10.136	270 315 10.114 10.135 10.138 10.136 10.135 10.133 10.130 10.129 10.134 10.132 10.134 10.132	10.137 10.138 10.135 10.132 10.134 10.135
1.0 9.920 9.8 2.0 10.001 9.9 3.0 10.062 10.0 4.0 10.108 10.0 5.0 10.130 10.1 7.5 10.138 10.1 10.0 10.137 10.1 12.5 10.135 10.1	73 10.012 9.975 32 10.059 10.030 82 10.105 10.092 09 10.131 10.123 29 10.142 10.140 32 10.145 10.136	9.880 9.904 9.953 9.985 10.005 10.038 10.068 10.094 10.106 10.120 10.131 10.133 10.134 10.136 10.133 10.135	3.919 9.933 7.988 10.020 10.032 10.082 10.085 10.125 10.117 10.138 10.135 10.139 10.141 10.140 10.138 10.141	9.988 10.042
5.0 9.935 9.9 10.0 9.958 9.9 15.0 9.967 9.9 20.0 9.952 10.0 30 0 10.093 10.1 50.0 10.063 10.0 70.0 10.065 9.9 90.0 9.976 9.9	45 9.652 9.978 69 9.679 10.000 24 9.789 10.084 33 10.057 10.133 75 9.841 10.106 67 9.902 10.036 77 9.922 9.962	9.882 9.870 9.939 9.867 9.948 9.913 10.003 9.979 10.063 10.109 10.064 10.088 10.045 10.115 9.993 9.936	9.911 9.865 9.949 9.864 9.966 9.910 9.917 9.914 9.963 10.097 9.979 10.101 9.937 10.111 9.893 9.914	9.877 9.894 9.919 9.958 10.080 10.040 10.022 9.947
1.0 9.770 9.8 2.0 9.819 9.8 3.0 9.905 9.9 4.0 9.935 9.9 5.0 9.884 9.8 7.5 9.918 9.8 10.0 9.938 9.8 12.5 9.942 9.8	46 9.854 9.937 19 9.934 9.864 28 9.933 9.871 68 9.908 9.870 60 9.932 9.864 65 9.950 9.867	9.784 9.809 9.945 9.975 9.878 9.907 9.906 9.926 9.926 9.936 9.949 9.940 9.954 9.944 9.980 9.987	9.605 9.816 9.769 9.876 9.650 9.969 9.657 10.054 9.660 9.975 9.660 9.988 9.655 9.977 9.929 9.983	9.773 9.878 9.879 9.878 9.878 9.889 9.894 9.970

TABLE 28.—TOTAL PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 37A TO 40A; AIRFLOW, 81.33 kg/sec)

[Pressures are in newtons per square centimeter.]

(A) IN	LET RAKE								
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.142 10.146 10.150 10.137 10.129 10.131 10.137	45 10.081 10.117 10.124 10.125 10.126 10.132 10.139 10.132	90 10.118 10.134 10.148 10.143 10.137 10.139 10.137	ERENTIAL 135 10.110 10.137 10.141 10.138 10.139 10.135 10.133 10.138	LOCATION 180 10.085 10.135 10.138 10.137 10.132 10.142 10.144 10.142	N, DEG 225 10.118 10.136 10.135 10.129 10.135 10.139 10.139	270 10.114 10.131 10.126 10.139 10.133 10.138 10.138	315 10.137 10.138 10.139 10.135 10.130 10.136 10.133	AVG 10.113 10.134 10.138 10.136 10.133 10.136 10.137
(B) IN	LET BOUN	DARY LAY	ER RAKE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.850 9.966 10.049 10.114 10.139 10.145 10.143	9.814 9.925 10.010 10.083 10.120 10.139 10.140 10.139	9.872 9.977 10.042 10.100 10.134 10.146 10.151	9.773 9.890 9.975 10.066 10.117 10.142 10.135	9.775 9.879 9.956 10.043 10.096 10.133 10.137	9.816 9.934 10.013 10.090 10.123 10.137 10.140 10.136	9.837 9.930 9.991 10.065 10.110 10.139 10.144 10.143	9.836 9.961 10.052 10.112 10.131 10.137 10.140 10.139	9.822 9.933 10.011 10.084 10.121 10.139 10.141 10.140
(C) EX	IT RAKE								
5.0 10.0 15.0 20.0 30.0 50.0 70.0	9.836 9.858 9.880 9.874 10.072 10.015 10.017 9.887	9.843 9.877 9.921 9.993 10.130 10.020 9.852 9.886	9.424 9.419 9.454 9.608 10.021 9.686 9.767 9.800	9.890 9.911 9.938 10.057 10.135 10.063 9.972 9.876	9.757 9.833 9.853 9.937 10.024 10.015 10.001 9.914	9.740 9.740 9.802 9.883 10.083 10.056 10.097 9.817	9.809 9.865 9.890 9.832 9.886 9.926 9.834 9.751	9.734 9.737 9.801 9.879 10.085 10.085 10.090 9.801	9.754 9.780 9.817 9.883 10.055 9.983 9.954 9.842
(D) EX	IT BOUND	ARY LAYE	R RAKE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.608 9.678 9.792 9.922 9.760 9.807 9.836 9.840	9.649 9.710 9.809 9.814 9.739 9.728 9.735 9.762	9.650 9.723 9.831 9.831 9.805 9.841 9.868 9.883	9.646 9.845 9.736 9.743 9.741 9.731 9.739	9.634 9.779 9.765 9.806 9.831 9.855 9.857 9.884	9.667 9.883 9.804 9.833 9.846 9.858 9.875 10.120	9.350 9.562 9.418 9.430 9.437 9.436 9.427 10.008	9.683 9.769 9.898 10.130 9.904 9.922 9.910 9.913	9.611 9.744 9.757 9.814 9.758 9.772 9.781 9.953

TABLE 29.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 8 TO 11; AIRFLOW, 72.16 kg/sec)

CIRCUM.	INL	ET	EXIT			
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC		
DEG.	N/CM2		N/CM2			
0	9.326	1.018	9.232	1.135		
15	9.375	0.956	9.250	1.113		
30	9.392	0.934	9.296	1.055		
45	9.411	0.911	9.259	1.102		
60	9.450	0.861	9.228	1.141		
75	*****	*****	*****	*****		
90	*****	*****	*****	*****		
105	*****	*****	*****	*****		
120	9.450	0.861	9.251	1.112		
135	9.411	0.911	9.262	1.098		
150	9.375	0.956	9.215	1.158		
165	9.358	0.978	9.253	1.110		
180	9.327	1.017	9.258	1.103		
195	9.313	1.033	9.177	1.206		
210	9.335	1.006	9.095	1.309		
225	9.353	0.983	9.023	1.400		
240	9.375	0.955	8.775	1.713		
255	9.429	0.887	8.591	1.944		
270	9.376	0.955	8.837	1.635		
285	9.441	0.873	8.531	2.021		
30 0	9.395	0.931	8.732	1.767		
315	9.324	1.020	9.024	1.398		
330	9.347	0.990	9.116	1.282		
345	9.340	1.000	9.190	1.189		

TABLE 30.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 12 TO 15; AIRFLOW, 77.15 kg/sec)

CIRCUM.	INL	ET	EXIT			
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC		
DEG.	N/CM2		N/CM2			
0	9.195	1.026	9.079	1.152		
15	9.252	0.963	9.101	1.128		
30	9.272	0.941	9.162	1.062		
45	9.295	0.916	9.110	1.119		
60	9.341	0.866	9.076	1.155		
75	*****	*****	*****	*****		
90	*****	*****	*****	*****		
105	****	*****	*****	*****		
120	9.341	0.865	9.104	1.124		
135	9.296	0.915	9.114	1.114		
150	9.253	0.962	9.062	1.171		
165	9.233	0.984	9.105	1.124		
180	9.197	1.024	9.110	1.118		
195	9.182	1.040	9.014	1.223		
210	9.207	1.012	8.917	1.329		
225	9.229	0.988	8.834	1.420		
240	9.256	0.958	8.540	1.742		
255	9.322	0.887	8.326	1.976		
270	9.261	0.953	8.611	1.664		
285	9.334	0.873	8.256	2.052		
300	9.285	0.927	8.486	1.801		
315	9.202	1.018	8.832	1.422		
330	9.221	0.997	8.937	1.307		
345	9.214	1.004	9.026	1.210		

TABLE 31.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 28 TO 31; AIRFLOW, 35.18 kg/sec)

CIRCUM.	INL	ET	EXIT			
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC		
DEG.	N/CM2		N/CM2			
0	9.972	0.888	9.958	0.968		
15	9.981	0.837	9.960	0.956		
30	9.984	0.823	9.975	0.869		
45	9.988	0.797	9.962	0.946		
60	9.996	0.756	9.954	0.987		
75	*****	*****	*****	*****		
90	*****	*****	*****	*****		
105	*****	*****	*****	*****		
120	9.996	0.756	9.957	0.972		
135	9.988	0.801	9.962	0.944		
150	9.981	0.837	9.955	0.983		
165	9.979	0.852	9.960	0.956		
180	9.972	0.888	9.961	0.948		
195	9.969	0.903	9.948	1.020		
210	9.973	0.882	9.932	1.109		
225	9.977	0.862	9.917	1.195		
240	9.978	0.854	9.868	1.463		
255	9.987	0.805	9.830	1.672		
270	9.975	0.872	9.883	1.383		
285	9.990	0.785	9.812	1.777		
300	9.982	0.832	9.863	1.490		
315	9.969	0.905	9.919	1.184		
330	9.971	0.892	9.937	1.083		
345	9.974	0.874	9.950	1.012		

TABLE 32.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A2 (READINGS 35 TO 38; AIRFLOW, 72.09 kg/sec)

CIRCUM.	INL	ET	EX	ΙT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.329	1.015	9.240	1.129
15	9.378	0.954	9.257	1.107
30	9.396	0.932	9.310	1.040
45	9.416	0.906	9.264	1.098
60	9.454	0.857	9.236	1.134
75	*****	*****	*****	*****
90	****	*****	*****	*****
105	*****	*****	*****	*****
120	9.456	0.855	9.260	1.103
135	9.416	0.905	9.268	1.093
150	9.379	0.952	9.225	1.147
165	9.362	0.974	9.261	1.102
180	9.332	1.012	9.268	1.094
195	9.316	1.033	9.194	1.186
210	9.340	1.002	9.126	1.272
225	9.348	0.991	9.062	1.354
240	9.341	1.001	8.716	1.791
255	9.437	0.880	8.677	1.841
270	9.407	0.918	8.993	1.441
285	9.459	0.852	8.574	1.971
300	9.384	0.946	8.768	1.726
315	9.327	1.019	9.046	1.374
330	9.349	0.991	9.128	1.270
345	9.344	0.997	9.198	1.181

TABLE 33.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A3 (READINGS 40 TO 43; AIRFLOW, 72.02 kg/sec)

LOCATION, PRESSURE COEFFIC PRESSURE COEF DEG. N/CM2 N/CM2 0 9.328 1.019 9.237 1.1	134 112
The state of the s	112
n 9 7 9 8 1 1 1 9 9 7 7 7 1 1	112
0 9.320 1.017 9.23/ 1.3	
15 9.377 0.957 9.255 1.1	145
30 9.394 0.935 9.307 1.0	, , ,
45 9.415 0.909 9.264 1.1	100
60 9.453 0.860 9.236 1.3	36
75 ***** ***** ***** ***	(* *
90 ***** ***** ***** ***	(××
105 ***** ***** ***** ***	(* *
120 9.456 0.857 9.264 1.1	0.0
135 9.417 0.907 9.268 1.0	195
150 9.379 0.955 9.225 1.1	49
165 9.360 0.978 9.262 1.1	103
180 9.329 1.018 9.267 1.0	196
195 9.315 1.036 9.198 1.1	83
210 9.336 1.009 9.128 1.2	273
225 9.341 1.002 9.060 1.3	
240 9.309 1.043 8.736 1.7	169
255 9.412 0.912 8.692 1.8	325
270 9.426 0.894 8.952 1.4	96
285 9.444 0.873 8.653 1.8	
300 9.361 0.977 8.734 1.7	771
315 9.323 1.025 9.058 1.3	
330 9.347 0.995 9.129 1.2	271
345 9.342 1.001 9.200 1.1	81

TABLE 34.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A4 (READINGS 46 TO 49; AIRFLOW, 72.04 kg/sec)

CIRCUM.	INL	ΕT	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.327	1.020	9.243	1.126
15	9.376	0.957	9.259	1.105
30	9.395	0.934	9.306	1.046
45	9.414	0.909	9.264	1.099
60	9.454	0.858	9.236	1.134
75	*****	*****	****	*****
90	*****	*****	*****	*****
105	*****	*****	*****	*****
120	9.457	0.855	9.275	1.085
135	9.418	0.904	9.270	1.091
150	9.379	0.954	9.228	1.144
165	9.361	0.976	9.263	1.100
180	9.326	1.021	9.272	1.089
195	9.313	1.037	9.203	1.177
210	9.325	1.022	9.143	1.253
225	9.322	1.026	9.077	1.336
240	9.250	1.118	8.762	1.734
255	9.391	0.938	8.735	1.768
270	9.447	0.867	8.885	1.579
285	9.425	0.895	8.717	1.792
300	9.306	1.046	8.761	1.736
315	9.305	1.048	9.069	1.346
330	9.339	1.005	9.136	1.261
345	9.338	1.005	9.204	1.175

TABLE 35.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A7 (READINGS 59 TO 62; AIRFLOW, 72.00 kg/sec)

CIRCUM.	INL	.ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2	0 005	N/CM2	1.113
0	9.354	0.985	9.254 9.271	1.113
15 30	9.398 9.424	0.930 0.897	9.312	1.031
45	9.466	0.843	9.296	1.059
60	9.487	0.817	9.330	1.016
75	7.407 *****	*****	*****	*****
90	*****	*****	*****	*****
105	*****	*****	*****	*****
120	9.471	0.837	9.289	1.068
135	9.460	0.852	9.298	1.057
150	9.410	0.914	9.249	1.118
165	9.379	0.953	9.274	1.086
180	9.349	0.992	9.280	1.079
195	9.341	1.002	9.212	1.165
210	9.366	0.970	9.164	1.225
225	9.369	0.966	9.093	1.316
240	9.423	0.897	8.800	1.687
255	9.540	0.750	9.041	1.382
270	9.537	0.754	9.280	1.079
285	9.556	0.730	9.089	1.321
300	9.433	0.885	8.805	1.681
315	9.336	1.008	9.081	1.332
330	9.366	0.971	9.161	1.230
345	9.368	0.967	9.215	1.161

TABLE 36.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A8 (READINGS 65 TO 68; AIRFLOW, 72.17 kg/sec)

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.342	0.996	9.239	1.127
15	9.387	0.940	9.259	1.101
30	9.402	0.921	9.293	1.058
45	9.423	0.894	9.272	1.085
60	9.535	0.753	9.356	0.979
75	*****	*****	*****	*****
90	*****	****	*****	*****
105	*****	*****	*****	*****
120	9.509	0.786	9.312	1.034
135	9.426	0.891	9.282	1.072
15 0	9.386	0.941	9.237	1.129
165	9.368	0.964	9.264	1.095
180	9.336	1.004	9.269	1.089
195	9.326	1.017	9.194	1.184
210	9.353	0.983	9.120	1.277
225	9.366	0.967	9.059	1.354
240	9.378	0.952	8.732	1.766
255	9.472	0.833	8.787	1.696
270	9.451	0.860	9.143	1.248
285	9.479	0.823	8.757	1.734
300	9.386	0.941	8.702	1.804
315	9.333	1.008	9.050	1.365
330	9.353	0.983	9.127	1.268
345	9.356	0.979	9.196	1.180

TABLE 37.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 (READINGS 458 TO 461; AIRFLOW, 72.24 kg/sec)

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.426	0.887	9.233	1.131
15	9.368	0.960	9.293	1.055
30	9.374	0.954	9.302	1.044
45	9.359	0.972	9.262	1.094
60	9.419	0.897	9.266	1.089
75	*****	*****	*****	*****
90	*****	*****	*****	*****
105	*****	*****	*****	*****
120	9.408	0.910	9.258	1.099
135	9.344	0.991	9.262	1.094
150	9.346	0.989	9.233	1.131
165	9.362	0.968	9.286	1.064
180	9.387	0.937	9.317	1.026
195	9.427	0.887	9.311	1.033
210	9.502	0.793	9.337	1.000
225	9.548	0.734	9.337	1.000
240	9.576	0.699	9.353	0.980
255	9.611	0.655	9.375	0.952
270	9.585	0.688	9.403	0.917
285	9.613	0.653	9.399	0.922
300	9.584	0.689	9.341	0.995
315	9.528	0.760	9.332	1.007
330	9.487	0.811	9.330	1.009
345	9.469	0.835	9.328	1.011

TABLE 38.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A11 (READINGS 696 TO 699; AIRFLOW, 72.87 kg/sec)

CIRCUM.	INL	.ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.407	0.897	9.302	1.027
15	9.378	0.933	9.288	1.044
30	9.385	0.924	9.284	1.050
45	9.370	0.942	9.266	1.071
60	9.402	0.903	9.245	1.098
75	*****	****	*****	*****
90	*****	*****	****	*****
105	*****	*****	*****	*****
120	9.391	0.917	9.247	1.095
135	9.355	0.962	9.280	1.055
150	9.363	0.952	9.247	1.095
165	9.359	0.956	9.296	1.035
180	9.391	0.917	9.328	0.995
195	9.420	0.881	9.326	0.998
210	9.491	0.793	9.337	0.983
225	9.544	0.728	9.334	0.987
240	9.574	0.690	9.352	0.966
255	9.583	0.680	9.385	0.924
270	9.507	0.774	9.415	0.887
285	9.591	0.670	9.393	0.914
300	9.586	0.676	9.357	0.959
315	9.532	0.743	9.339	0.981
330	9.492	0.792	9.336	0.986
345	9.457	0.835	9.320	1.004

TABLE 39.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 947 TO 950; AIRFLOW, 35.50 kg/sec)

CIRCUM.	INL	.ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.989	0.778	9.965	0.909
15	9.983	0.814	9.961	0.930
30	9.979	0.836	9.964	0.918
45	9.977	0.844	9.958	0.950
60	9.976	0.848	9.955	0.964
75	*****	*****	*****	*****
90	*****	*****	*****	*****
105	*****	*****	*****	*****
120	9.975	0.854	9.955	0.967
135	9.975	0.855	9.959	0.941
150	9.976	0.848	9.957	0.956
165	9.981	0.825	9.962	0.924
180	9.988	0.785	10.065	0.364
195	9.994	0.751	9.970	0.884
210	10.003	0.702	9.973	0.865
225	10.018	0.624	9.975	0.857
240	10.025	0.585	9.977	0.848
255	10.031	0.549	9.978	0.841
270	10.029	0.562	9.975	0.854
285	10.036	0.523	9.977	0.843
300	10.030	0.555	9.976	0.852
315	10.016	0.634	9.975	0.856
330	10.007	0.680	9.972	0.870
345	10.001	0.712	9.969	0.889

TABLE 40.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 951 TO 954; AIRFLOW, 56.52 kg/sec)

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.754	0.797	9.684	0.945
15	9.733	0.841	9.674	0.966
30	9.721	0.868	9.676	0.962
45	9.713	0.883	9.658	1.000
60	9.712	0.886	9.653	1.010
7 5	*****	*****	*****	*****
90	*****	*****	*****	*****
105	*****	*****	*****	*****
120	9.709	0.893	9.651	1.015
135	9.711	0.889	9.665	0.986
150	9.714	0.881	9.657	1.003
165	9.727	0.855	9.676	0.961
180	9.747	0.811	10.086	0.098
195	9.768	0.769	9.698	0.916
210	9.793	0.716	9.709	0.892
225	9.832	0.633	9.715	0.879
240	9.854	0.586	9.723	0.863
255	9.872	0.548	9.730	0.847
270	9.864	0.566	9.725	0.859
285	9.884	0.523	9.726	0.856
300	9.864	0.565	9.720	0.869
315	9.827	0.644	9.716	0.878
330	9.803	0.694	9.707	0.895
345	9.787	0.727	9.697	0.916

TABLE 41.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 955 TO 958; AIRFLOW, 68.91 kg/sec)

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.535	0.832	9.419	0.995
15	9.502	0.878	9.404	1.015
30	9.482	0.907	9.406	1.013
45	9.470	0.923	9.383	1.045
60	9.485	0.902	9.371	1.061
75	*****	*****	*****	*****
90	*****	*****	*****	*****
105	*****	*****	*****	*****
120	9.462	0.935	9.366	1.069
135	9.468	0.926	9.388	1.037
150	9.473	0.919	9.374	1.057
165	9.492	0.893	9.409	1.008
180	9.529	0.841	9.432	0.976
195	9.556	0.804	9.440	0.965
210	9.597	0.747	9.457	0.941
225	9.662	0.656	9.468	0.925
240	9.698	0.605	9.484	0.904
255	9.727	0.564	9.501	0.881
270	9.718	0.578	9.492	0.893
285	9.744	0.541	9.491	0.894
300	9.718	0.578	9,480	0.910
315	9.653	0.668	9.469	0.925
330	9.615	0.721	9.453	0.947
345	9.588	0.759	9.440	0.965

TABLE 42.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 959 TO 962; AIRFLOW, 73.42 kg/sec)

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.426	0.859	9.286	1.031
15	9.386	0.909	9.268	1.052
30	9.364	0.936	9.269	1.051
45	9.351	0.951	9.243	1.083
60	9.379	0.917	9.236	1.092
75	*****	*****	*****	*****
90	****	*****	*****	*****
105	****	*****	*****	*****
120	9.341	0.964	9.223	1.107
135	9.348	0.955	9.250	1.074
150	9.354	0.948	9.232	1.096
165	9.376	0.921	9.274	1.045
180	9.420	0.868	9.302	1.011
195	9.450	0.830	9.310	1.002
210	9.500	0.770	9.330	0.976
225	9.578	0.675	9.344	0.960
240	9.623	0.620	9.364	0.936
255	9.658	0.578	9.385	0.910
270	9.646	0.593	9.376	0.921
285	9.677	0.554	9.373	0.924
300	9.645	0.594	9.358	0.942
315	9.567	0.688	9.344	0.960
330	9.521	0.744	9.328	0.979
345	9.490	0.782	9.311	1.000

TABLE 43.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 963 TO 966; AIRFLOW, 75.56 kg/sec)

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.392	0.849	9.240	1.023
15	9.351	0.896	9.224	1.042
30	9.326	0.925	9.226	1.039
45	9.312	0.940	9.197	1.072
60	9.352	0.895	9.195	1.075
75	*****	*****	*****	*****
90	*****	*****	*****	*****
105	*****	*****	*****	*****
120	9.301	0.953	9.178	1.094
135	9.310	0.943	9.206	1.062
150	9.314	0.938	9.187	1.084
165	9.338	0.911	9.231	1.034
180	9.384	0.858	9.260	1.000
195	9.417	0.820	9.267	0.992
210	9.469	0.761	9.289	0.967
225	9.552	0.665	9.303	0.951
240	9.599	0.611	9.324	0.927
255	9.635	0.570	9.348	0.899
270	9.622	0.585	9.335	0.914
285	9.656	0.546	9.336	0.914
30 0	9.622	0.585	9.319	0.932
315	9.540	0.679	9.304	0.949
330	9.490	0.736	9.286	0.971
345	9.458	0.773	9.269	0.990

TABLE 44.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 967 TO 970; AIRFLOW, 78.89 kg/sec)

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0 15	9.308	0.861	9.143	1.034
30	9.267	0.905	9.123	1.055
45	9.238 9.225	0.935 0.948	9.125	1.053
60	9.223	0.946	9.094 9.093	1.085 1.087
75	*****	******	7.U93 *****	1.UO/ *****
90	*****	*****	*****	*****
105	*****	*****	*****	*****
120	9.215	0.958	9.073	1.107
135	9.223	0.951	9.105	1.074
150	9.228	0.946	9.081	1.099
165	9.253	0.919	9.132	1.046
180	9.301	0.869	9.163	1.014
195	9.340	0.829	9.170	1.006
210	9.397	0.769	9.194	0.981
225	9.489	0.672	9.209	0.965
240	9.543	0.616	9.233	0.940
255 270	9.582 9.568	0.575	9.259	0.912
285	9.606	0.590 0.551	9.250 9.246	0.923
300	9.568	0.590	9.246	0.926 0.947
315	9.477	0.685	9.211	0.963
330	9.422	0.743	9.191	0.984
345	9.386	0.780	9.173	1.002

TABLE 45.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 971 TO 974; AIRFLOW, 81.77 kg/sec)

CIRCUM.	INL	ET	EXIT		
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC	
DEG.	H/CM2		N/CM2		
0	9.270	0.837	9.091	1.010	
15	9.223	0.882	9.069	1.031	
30	9.193	0.911	9.070	1.030	
45	9.180	0.923	9.040	1.059	
60	9.239	0.867	9.045	1.054	
75	*****	*****	*****	*****	
90	*****	*****	*****	*****	
105	*****	****	****	****	
120	9.171	0.933	9.018	1.081	
135	9.175	0.929	9.051	1.049	
150	9.182	0.922	9.026	1.073	
165	9.208	0.897	9.079	1.021	
180	9.262	0.844	9.112	0.990	
195	9.299	0.808	9.120	0.982	
210	9.360	0.749	9.143	0.959	
225	9.457	0.655	9.159	0.943	
240	9.513	0.600	9.183	0.921	
255	9.556	0.559	9.215	0.890	
270	9.541	0.574	9.205	0.900	
285	9.581	0.535	9.197	0.907	
300	9.539	0.575	9.177	0.926	
315	9.444	0.668	9.160	0.943	
330	9.386	0.724	9.140	0.963	
345	9.348	0.761	9.122	0.980	

TABLE 46.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 12A TO 15A; AIRFLOW, 73.10 kg/sec)

CIRCUM.	INL	ET	EXIT			
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC		
DEG.	N/CM2		N/CM2			
0	9.097	0.984	8.929	1.144		
15	9.024	1.054	8.993	1.083		
30	9.006	1.071	9.066	1.014		
45	9.027	1.051	9.075	1.005		
60	9.104	0.977	9.084	0.997		
7 5	*****	*****	*****	*****		
90	*****	*****	*****	*****		
105	*****	*****	*****	*****		
120	9.120	0.962	9.095	0.986		
135	9.048	1.031	9.065	1.014		
150	9.019	1.058	9.332	0.760		
165	9.029	1.049	8.988	1.088		
180	9.123	0.959	9.044	1.035		
195	9.270	0.820	8.879	1.192		
210	9.463	0.636	8.906	1.166		
225	9.601	0.505	8.984	1.092		
240	9.672	0.438	9.205	0.881		
255	*****	*****	*****	*****		
270	*****	*****	*****	*****		
285	*****	*****	*****	*****		
300	9.683	0.428	9.183	0.902		
315	9.594	0.512	8.997	1.080		
330	9.475	0.625	8.935	1.138		
345	9.277	0.813	8.903	1.168		

TABLE 47.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 16A TO 19A; AIRFLOW, 74.88 kg/sec)

CIRCUM.	INL	.ET	EX	ΙT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.045	0.982	8.866	1.144
15	8.969	1.051	8.935	1.081
30	8.950	1.068	9.009	1.014
45	8.973	1.048	9.022	1.003
<u>60</u>	9.054	0.974	9.032	0.994
75	****	*****	*****	*****
90	*****	*****	*****	*****
105	****	****	*****	*****
120	9.072	0.958	9.043	0.584
135	8.995	1.027	9.012	1.0.2
150	8.966	1.054	8.938	1.0.8
165	8.974	1.046	8.929	1.087
180	9.073	0.957	8.987	1.034
195	9.227	0.818	8.812	1.192
210	9.429	0.635	8.839	1.169
225	9.575	0.503	8.923	1.093
240	9.650	0.436	9.158	0.880
255	*****	*****	*****	*****
270	*****	*****	*****	*****
285	*****	*****	*****	*****
300	9.664	0.423	9.133	0.903
315	9.568	0.510	8.936	1.080
330	9.443	0.623	8.872	1.139
345	9.235	0.810	8.838	1.169

TABLE 48.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 20A TO 24A; AIRFLOW, 78.32 kg/sec)

CIRCUM.	INL	.ET	EXIT		
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC	
DEG.	N/CM2		N/CM2		
0	8.923	0.991	8.712	1.163	
15	8.840	1.059	8.795	1.095	
30	8.819	1.076	8.880	1.026	
45	8.844	1.055	8.895	1.014	
60	8.936	0.980	8.910	1.001	
75	*****	*****	*****	*****	
90	*****	*****	*****	*****	
105	*****	*****	*****	*****	
120	8.955	0.964	8.918	0.994	
135	8.870	1.034	8.884	1.022	
150	8.834	1.063	8.800	1.001	
165	8.846	1.054	8.789	1.100	
180	8.953	0.966	8.849	1.051	
195	9.126	0.824	8.651	1.213	
210	9.352	0.639	8.680	1.190	
225	9.515	0.505	8.774	1.112	
240	9.597	0.438	9.042	0.893	
255	*****	*****	*****	*****	
270	*****	*****	*****	*****	
285	*****	*****	*****	*****	
300	9.611	0.427	9.013	0.916	
315	9.506	0.513	8.788	1,101	
330	9.367	0.627	8.716	1.160	
345	9.136	0.816	8.679	1.190	

TABLE 49.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 25A TO 28A; AIRFLOW, 35.46 kg/sec)

CIRCUM.	INL	.ET	EXIT		
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC	
DEG.	N/CM2		N/CM2		
0	9.931	0.860	9.902	0.980	
15	9.915	0.928	9.912	0.939	
30	9.911	0.945	9.925	0.883	
45	9.914	0.932	9.924	0.888	
60	9.928	0.871	9.927	0.876	
75	*****	*****	*****	****	
90	*****	*****	*****	****	
105	*****	*****	*****	*****	
120	9.931	0.860	9.929	0.867	
135	9.917	0.918	9.922	0.898	
150	9.913	0.935	9.883	1.062	
165	9.916	0.923	9.910	0.948	
180	9.935	0.842	9.936	0.838	
195	9.963	0.722	9.898	1.001	
210	9.999	0.569	9.904	0.972	
225	10.025	0.457	9.917	0.916	
240	10.038	0.401	9.955	0.757	
255	*****	*****	*****	*****	
270	*****	*****	*****	*****	
285	*****	*****	*****	*****	
300	10.042	0.386	9.952	0.768	
315	10.023	0.464	9.917	0.915	
330	10.001	0.560	9.908	0.957	
345	9.964	0.719	9.901	0.987	

TABLE 50.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 29A TO 32A; AIRFLOW, 56.42 kg/sec)

CIRCUM.	INL	.ET	EXIT			
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC		
DEG.	N/CM2	• • • •	N/CM2			
, 0	9.588	0.897	9.510	1.026		
15	9.547	0.965	9.539	0.980		
30	9.537	0.982	9.573	0.923		
45	9.547	0.966	9.572	0.925		
60	9.586	0.902	9.581	0.909		
75	*****	*****	*****	*****		
90	*****	*****	*****	*****		
105	*****	*****	****	*****		
120	9.594	0.888	9.587	0.900		
135	9.557	0.950	9.571	0.927		
150	9.544	0.970	9.515	1.019		
165	9.550	0.960	9.535	0.985		
180	9.601	0.877	9.579	0.914		
195	9.677	0.751	9.491	1.058		
210	9.777	0.586	9.507	1.031		
225	9.849	0.468	9.546	0.968		
240	9.887	0.405	9.652	0.792		
255	*****	*****	*****	*****		
270	*****	*****	*****	*****		
285	*****	*****	*****	*****		
300	9.894	0.393	9.642	0.808		
315	9.843	0.478	9.551	0.960		
330	9.783	0.577	9.520	1.010		
345	9.681	0.745	9.502	1.039		

TABLE 51.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 33A TO 36A; AIRFLOW, 68.73 kg/sec)

CIRCUM.	INI	.ET	EXIT		
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC	
DEG.	N/CM2		N/CM2		
0	9.262	0.947	9.128	1.094	
15	9.199	1.016	9.178	1.039	
30	9.184	1.032	9.233	0.979	
45	9.202	1.013	9.242	0.970	
60	9.264	0.946	9.252	0.958	
75	*****	*****	*****	****	
90	*****	*****	*****	*****	
105	****	*****	*****	*****	
120	9.279	0.929	9.260	0.950	
135	9.217	0.996	9.235	0.977	
150	9.194	1.021	9.171	1.046	
165	9.204	1.011	9.174	1.043	
180	9.282	0.926	9.234	0.978	
195	9.406	0.790	9.091	1.134	
210	9.567	0.616	9.114	1.109	
225	9.682	0.490	9.178	1.039	
240	9.743	0.424	9.355	0.847	
255	*****	*****	*****	*****	
270	*****	*****	*****	*****	
285	*****	*****	****	*****	
300	9.754	0.411	9.340	0.863	
315	9.677	0.495	9.188	1.028	
330	9.577	0.604	9.136	1.085	
345	9.412	0.784	9.109	1.114	

TABLE 52.—VANE INLET AND EXIT STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 37A TO 40A; AIRFLOW, 81.33 kg/sec)

CIRCUM.	INL	.ET	EX	IT
LOCATION, DEG.	PRESSURE N/CM2	COEFFIC	PRESSURE	COEFFIC
0	8.864	0.962	N/CM2	
15	8.776	1.029	8.640 8.726	1.132
30	8.755	1.045	8.811	1.067 1.002
45	8.782	1.024	8.831	0.987
60	8.879	0.951	8.853	0.971
75	*****	*****	*****	*****
90	*****	*****	*****	*****
105	****	*****	*****	*****
120	8.895	0.938	8.857	0.967
135	8.809	1.004	8.821	0.995
150 165	8.771	1.033	8.788	1.020
180	8.783	1.023	8.721	1.070
195	8.895	0.938	8.790	1.018
210	9.078 9.315	0.800	8.571	1.184
225	9.486	0.620	8.601	1.161
240	9.571	0.490 0.425	8.701	1.086
255	*****	*****	8.987 *****	0.869 *****
270	*****	*****	*****	*****
285	*****	*****	*****	******
300	9.588	0.413	8.956	0.832
315	9.477	0.497	8.714	1.076
330	9.330	0.608	8.638	1.133
345	9.086	0.794	8.601	1.161

TABLE 53.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 8 TO 11; AIRFLOW, 72.16 kg/sec)

AXIAL STATION	0 C I	PRESSURE	E, N/CM2 CATION, 180	DEG 270	0	CIRCUM. L 90	FICIENT OCATION, 180	DEG 270
1 2 3 4 5 6 7 8 9		9.422 9.415 9.411 9.413 9.446 9.420 9.411 9.413				0.896 0.906 0.910 0.908 0.866 0.899 0.910		
10 11	9.371	9.406 9.485	9.383	9.377	0.960	0.916 0.817	0.945	0.953
12 13	*****	*****	*****	*****	****	****	****	****
13	9.386 9.371		9.366 9.356	9.364 9.359	0.942 0.960		0.967	0.969
15	9.355		9.344	9.350	0.981		0.980 0.995	0.976 0.987
16 17	9.329		9.313	9.331 9.321	1.013		1.034	1.011
18				9.309				1.024 1.039
19 20				9.300				1.051
21				9.294 9.309				1.058 1.039
22				*****				*****
23 24				***** 8.847				****
25				9.101				1.622 1.301
26 27				9.154				1.234
28				9.178 9.199				1.204 1.178
29	9.228		9.200	9.217	1.141		1.176	1.176
30 31	9.233 9.243		9.220 9.226	9.239 9.238	1.134		1.151	1.127
32	9.244		9.231	9.253	1.122		1.143 1.137	1.129
33	*****	*****	*****	*****	****	****	****	****
34 35	9.266 9.256	9.255 9.261	9.259 9.251	9.255 9.258	1.094	1.107	1.102	1.107
36	,,,,,	9.260	7.231	7.230	1.106	$1.099 \\ 1.100$	1.113	1.103
37 38		9.261 9.259				1.100		
39	9.257	9.262	9.255	9.260	1.105	1.101 1.098	1.106	1.101
40		9.258		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.203	1.103	1.100	1.101
41 42		9.261 9.259				1.099	*	
43	9.255	9.263	9.252	9.259	1.108	1.103 1.097	1.111	1.102
44 4 =		9.263				1.097		1.105
45 46		9.257 9.258				1.104 1.103		
47	10.040	9.258	9.255	9.256	0.116	1.104	1.107	1.105
48 49	9.247	9.262 9.257	9.258	9.239	1.118	1.099		
		,	,	/ /	1.110	1.104	1.103	1.127

TABLE 54.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 12 TO 15; AIRFLOW, 77.15 kg/sec)

AXIAL STATION		PRESSURE, N/CM RCUM. LOCATION 90 180	, DEG	0		FICIENT OCATION,	DEG 270
1 2 3 4 5 6 7 8 9	U	9.306 9.300 9.296 9.299 9.297 9.337 9.306 9.296 9.298	270	U	0.904 0.915 0.915 0.913 0.870 0.904 0.915 0.922	180	270
11	9.249	9.382 9.26		0.96	0.820	0.950	0.959
12 13	***** 9.266	***** 9.24		**** 0.94		**** 0.973	**** 0.974
14	9.249	9.23	9.232	0.960	5	0.986	0.985
15 16	9.230 9.199	9.21 9.17		0.98 1.02		1.002 1.043	0.990 1.011
17	,,,,,	7.17	9.186	1.02	-	1.015	1.036
18 19			9.175 9.167				1.047 1.056
20			9.161				1.062
21 22			9.181 *****				1.041 ****
23			*****				****
24 25			8.627 8.923				1.647 1.323
26			8.985				1.255
27 28			9.013 9.037				1.224 1.198
29	9.073	9.03		1.15	9	1.195	1.172
30 31	9.080 9.091	9.06 9.07		1.15	_	1.167 1.160	1.142 1.144
32	9.093	9.07		1.13		1.153	1.125
33 34	***** 9.119	***** **** 9.108 9.11		**** 1.10		**** 1.116	**** 1.121
35	9.119	9.115 9.10		1.12		1.110	1.117
36		9.114			1.114		
37 38		9.115 9.113			1.113		
39	9.110	9.115 9.10	8 9.112	1.11	8 1.112	1.120	1.116
40 41		9.112 9.116			1.116		
42		9.113			1.115		
43 44	9.108	9.118 9.10 9.117	5 9.114	1.12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.124	1.114
45		9.111			1.118		
46 47	9.973	9.112 9.110 9.10	9 9.110	0.17	1.117 4 1.118	1.119	1.119
48		9.115			1.113		
49	9.098	9.108 9.11	2 9.088	1.13	1 1.120	1.117	1.142

TABLE 55.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 28 TO 31; AIRFLOW, 35.18 kg/sec)

AXIAL STATION		PRESSURE, NA		DEG	С	COEFF: IRCUM. LO		DEG
1 2 3	0	9.989 9.989 9.988	180	270	0	90 0.793 0.796 0.800	180	270
2 3 4 5 6 7 8		9.988 9.985 9.995 9.989				0.798 0.815 0.763 0.792		
9 10		9.988 9.989 9.987				0.799 0.796 0.805		
11 12	9.980 *****		.983 (***	9.981 *****	0.842 ****	0.715 ****	0.827 ****	0.837 ****
13 14	9.983 9.980		.980 .978	9.976 9.971	0.829 0.841		0.846	0.868
15	9.978	9.	975	9.976	0.857		0.869	0.891 0.864
16 17	9.973	9.	.970	9.973 9.969	0.880		0.897	0.880 0.904
18 19				9.967 9.964				0.918
20				9.963				0.930 0.937
21 22				9.964 *****				0.931 ****
23				*****				****
24 25				9.891 9.935				1.335
26 27				9.943				1.047
28				9.948 9.950				1.023 1.007
29 30	9.956 9.954	9.	. 953 . 956	9.954 9.958	0.975 0.990		0.995	0.986
31	9.958		956	9.958	0.990		0.979 0.979	0.966 0.967
32 33	9.958 *****		.954 €×××	9.960 *****	0.963 ****	****	0.988 ****	0.952
34	9.963	9.961 9	.961	9.960	0.939	0.948	0.948	**** 0.953
35 36	9.959	9.961 9. 9.960	. 959	9.959	0.961	0.950 0.954	0.960	0.958
37		9.959				0.959		
38 39	9.959	9.959 9.960 9.	. 958	9.960	0.958	0.959 0.955	0.963	0.952
40	, , , ,	9.961	. , , ,	,., .	V.730	0.949	0.703	0.752
41 42		9.957 9.959				0.970 0.960		
43	9.959	9.961 9.	958	9.960	0.959	0.951	0.965	0.957
44 45		9.960 9.959				0.955 0.962		
46	10 0/0	9.960	0.5.0			0.953		
47 48	10.042	9.958 9. 9.960	. 958	9.959	0.498	0.964 0.957	0.966	0.957
49	9.958		959	9.955	0.968	0.955	0.958	0.980

TABLE 56.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A2 (READINGS 35 TO 38; AIRFLOW, 72.09 kg/sec)

AXIAL STATION 1 2 3 4 5 6 7 8	CIR O	RESSURE, N/CM CUM. LOCATION 90 180 9.424 9.418 9.414 9.417 9.415	2 , DEG 270	0 C1	COEFFI IRCUM. LOC 90 0.895 0.903 0.908 0.904 0.907		DEG 270
6 7 8 9 11 12 13 14 15 16 17 18	9.375 ***** 9.389 9.375 9.358 9.331	9.450 9.423 9.415 9.417 9.410 9.486 9.38 ****** 9.36 9.35 9.31	* ***** 9 9.367 9 9.357 7 9.352	0.957 **** 0.940 0.958 0.980 1.014	0.863 0.897 0.908 0.905 0.914 0.817 ****	0.942 ***** 0.966 0.978 0.993 1.032	0.951 ***** 0.968 0.987 1.009 1.036 1.036
20 21 22 22 22 22 22 22 28 29 31 32 33	9.233 9.239 9.247 9.250 *****	9.21 9.22 9.23 9.23 8*****	9.265 9.279 ***** 9.075 9.146 9.162 9.184 9.225 9.224 9.225 8 9.224	1.137 1.130 1.119 1.116 ****	****	1.167 1.144 1.137 1.133 *****	1.073 1.097 1.098 ***** 1.337 1.248 1.128 1.173 1.148 1.116 1.1105
34 35 36 37 38 39	9.272 9.260 9.261	9.261 9.26 9.266 9.25 9.265 9.266 9.264 9.266 9.25	8 9.259 3 9.262	1.088	1.101 1.095 1.097 1.095 1.099	1.093 1.111	1.104
40 41 42 43 44 45 46	9.260	9.264 9.266 9.264 9.268 9.25 9.267 9.262 9.263	7 9.264	1.103	1.098 1.095 1.098 1.093 1.094 1.100	1.107	1.098
47 48	9.969	9.262 9.25 9.266		0.207	1.100	1.104	1.101
49	9.251	9.261 9.26	3 9.241	1.114	1.102	1.099	1.127

TABLE 57.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A3 (READINGS 40 TO 43; AIRFLOW, 72.02 kg/sec)

AXIAL STATION	CI	PRESSURE, N/CM RCUM. LOCATION 90 180	, DEG	٥	CIRCUM. I	FICIENT OCATION,	
1 2 3 4 5 6 7 8 9	U	9.422 9.416 9.412 9.415 9.415 9.422 9.413 9.415	270	0	90 0.900 0.908 0.912 0.908 0.908 0.865 0.900 0.911	180	270
10 11	9.375	9.408 9.486 9.38		0.960		0.945	0.955
12 13	9.387	***** 9.36	9.365	**** 0.944	}	**** 0.969	**** 0.972
14 15	9.374 9.356	9.35 9.34	9.349	0.961 0.983		0.981 0.996	0.984
16 17	9.331	9.31	9.332 9.309	1.015	5	1.035	1.014
18 19			9.293 9.276				1.063
20 21			9.254 9.266				1.113
22 23			***** *****				****
24 25			9.087 9.150				**** 1.324
26 27			9.166 9.186				1.245
28 29	9.233	0.21	9.206	1 1/0			1.199
30	9.239	9.21 9.23	9.249	1.140		1.166 1.143	1.150 1.119
31 32	9.248 9.248	9.23 9.23	9.258	1.121 1.121		1.137 1.133	1.128 1.107
33 34	***** 9.271	****** ***** 9.257 9.26	9.259	**** 1.091	1.109	**** 1.097	**** 1.106
35 36	9.260	9.265 9.25 9.264	9.261	1.105	1.099	1.114	1.104
37 38		9.265 9.264			1.099		
39 40	9.261	9.266 9.255 9.264	9.263	1.104		1.111	1.102
41 42		9.266 9.264			1.098		
43	9.259	9.267 9.250 9.264	9.264	1.107	1.096	1.110	1.101
45 46		9.259			1.101		
47	9.999	9.262 9.262 9.263	9.260	0.168		1.107	1.105
48 49	9.250	9.266 9.261 9.25	9.239	1.117	1.097	1.107	1.131

TABLE 58.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A4 (READINGS 46 TO 49; AIRFLOW, 72.04 kg/sec)

AXIAL STATION		PRESSURE, N/C RCUM. LOCATIO 90 18	N, DEG	0	COEF CIRCUM. L	FICIENT OCATION, 180	DEG 270
1 2 3 4 5 6 7 8 9	·	9.423 9.416 9.412 9.415 9.414 9.422 9.413 9.414	v =v		0.898 0.907 0.912 0.908 0.909 0.866 0.899 0.899	200	
10 11	9.372	9.408 9.488 9.3				0.945	0.958
12 13	***** 9.386	***** *** 9.3				**** 0.969	**** 0.973
14	9.372	9.3	57 9.353	0.96		0.981	0.986
15 16	9.355 9.330	9.3 9.3	46 9.346 14 9.328			0.996 1.036	0.996 1.019
17	9.330	9.3	9.303		5	1.030	1.019
18			9.284				1.073
19 20			9.263 9.239				1.100 1.132
21			9.258	}			1.106
22 23			*****				***** *****
24			9.114				1.290
25 26			9.156				1.237
27			9.190)			1.193
28 29	9.235	9.2	9.209 14 9.226		4	1.163	1.169
30	9.240	9.2				1.141	1.118
31	9.248	9.2				1.135 1.132	1.126
32 33	9.249 *****	9.2 ****** ***				*****	1.107 ****
34	9.272	9.260 9.2	63 9.258	1.08		1.100	1.106
35 36	9.260	9.267 9.2 9.265	54 9.26]	1.10	4 1.096 1.098	1.111	1.103
37		9.266			1.097		
38 39	9.261	9.264 9.266 9.2	60 9.26	3 1.10	1.100 3 1.097	1.105	1.101
40	7.201	9.264	7.20	, 1.10	1.099	1.103	1.101
41 42		9.265 9.264			1.098 1.099		
43	9.260	9.267 9.2	57 9.263	1.10	5 1.096	1.109	1.100
44		9.263			1.100		
45 46		9.262 9.262			1.102 1.102		
47	10.034	9.261 9.2	59 9.26	0.12	5 1.103	1.106	1.104
48 49	9.251	9.266 9.260 9.2	62 9.23	3 1.11	1.097 6 1.104	1.101	1.131

TABLE 59.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A7 (READINGS 59 TO 62; AIRFLOW, 72.00 kg/sec)

AXIAL STATION	CI	PRESSURE RCUM. LO 90	, N/CM2 CATION, 180	DEG 270	0	COEFF CIRCUM. LO	FICIENT OCATION, 180	DEG 270
1 2 3 4 5 6 7 8 9		9.433 9.425 9.422 9.423 9.423 9.421 9.421 9.422				0.885 0.895 0.899 0.896 0.898 0.902 0.901 0.904 0.899		
10 11	9.394	9.416 9.381	9.399	9.390	0.934	0.906 0.952	0.928	0.939
12 13	***** 9.408	*****	***** 9.388	***** 9.383	**** 0.917	****	**** 0.942	**** 0.948
14	9.396		9.380	9.375	0.932		0.953	0.958
15 16	9.380 9.357		9.367 9.335	9.385 9.355	0.953 0.981		0.969 1.009	0.946 0.984
17 18				9.335 9.324				1.009
19				9.316				1.024
20 21				9.322 9.398				1.025
22 23				***** *****				****
24				9.165				**** 1.225
25 26				9.152 9.173				1.242 1.214
27				9.195				1.187
28 29	9.242		9.221	9.214 9.230	1.128		1.153	1.162
30 31	9.245 9.250		9.238 9.240	9.257 9.241	1.123 1.117		1.133 1.129	1.108
32	9.248		9.242	9.255	1.119		1.127	1.111
33 34	***** 9.255	***** 9.251	***** 9.265	***** 9.256	**** 1.110	**** 1.115	**** 1.097	**** 1.109
35	9.248	9.167	9.248	9.261	1.120	1.222	1.120	1.103
36 37		9.189 9.209				1.194 1.170		
38 39	9.251	9.228 9.241	9.249	9.258	1.116	1.145 1.129	1.119	1.107
40	,,	9.248	7.6.17	7.250	1.110	1.120	1.11/	1,107
41 42		9.253 9.254				1.114 1.112		
43 44	9.250	9.259 9.260	9.247	9.258	1.117	1.106	1.121	1.107
45		9.257				1.104 1.108		
46 47	10.036	9.258 9.257	9.250	9.254	0.122	1.107 1.109	1.117	1.111
48		9.261				1.104		
49	9.244	9.254	9.254	9.237	1.124	1.111	1.112	1.133

TABLE 60.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A8 (READINGS 65 TO 68; AIRFLOW, 72.17 kg/sec)

AXIAL STATION 1 2 3 4 5 6 7		PRESSURE, RCUM. LOCA 90 9.432 9.424 9.420 9.423 9.422 9.442		DEG 270	0 CI	RCUM. LO 90 0.884 0.893 0.898 0.895 0.896 0.870	ICIENT CATION, 180	DEG 27 0
7 8 9 11 12 14 15 16 17 18 19 22 22	9.386 ***** 9.398 9.383 9.367 9.344	9.427 9.419 9.422 9.415 9.448 *****	9.391 ***** 9.377 9.367 9.355 9.323	9.385 ***** 9.375 9.366 9.371 9.343 9.321 9.307 9.292 9.277 9.303 ****	0.941 **** 0.927 0.945 0.965 0.965	0.890 0.899 0.896 0.904 0.863 ****	0.935 ***** 0.952 0.965 0.981 1.021	0.943 **** 0.956 0.966 0.960 0.995 1.040 1.060 1.078 1.046
234567890123456 333333333333333	9.228 9.234 9.244 9.247 ***** 9.287 9.256	9.261 9.238 9.248	9.211 9.229 9.236 9.241 **** 9.269 9.255	***** 9.132 9.1355 9.180 9.203 9.2252 9.2552 9.2557 ***** 9.264	1.141 1.133 1.121 1.117 **** 1.066 1.106	**** 1.099 1.127 1.115	1.163 1.139 1.131 1.125 **** 1.089 1.106	***** 1.262 1.232 1.201 1.172 1.147 1.110 1.125 1.104 ***** 1.102
37 38 39 40 41	9.259	9.254 9.258 9.263 9.262 9.265	9.259	9.265	1.101	1.108 1.102 1.097 1.098 1.094	1.102	1.094
42 43 44 45	9.260	9.262 9.268 9.267 9.259	9.253	9.265	1.101	1.097 1.090 1.091 1.101	1.109	1.094
46 47	9.986	9.261 9.261	9.259	9.262	0.185	1.098	1.102	1.097
48 49	9.252	9.266 9.257	9.262	9.244	1.110	1.092 1.104	1.098	1.120

TABLE 61.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 (READINGS 458 TO 461; AIRFLOW, 72.24 kg/sec)

AXIAL STATION	C:	PRESSURE IRCUM. LO		DEG 270	0	CIRCUM. L 90	FICIENT OCATION, 180	DEG 270
1 2 3		9.422 9.411 9.410				0.894		
2 3 4 5 6		9.412 9.411				0.909 0.905 0.907		
6 7		9.432 9.414	·			0.881 0.903		
7 8 9		9.409 9.411				0.909 0.907		
10 11 12	9 403 *****	9.398 9.372 *****	9.398 ****	9.385 *****	0.917	0.923 0.956	0.923	0.940
13 14	9.394	~~~~~	9.375	9.399	**** 0.928 0.936	****	***** 0.953 0.960	**** 0.922 0.917
15 16	9.386		9.375 9.373	9.414 9.417	0.938 0.926		0.952 0.955	0.903
17 18				9.422 9.438			0.723	0.894
19 20				9.458 9.485				0.848 0.815
21 22 23				9.522 ***** *****				0.767 ****
24 25				9.399				**** 0.922 0.937
26 27				9.374 9.362				0.953
28 29	9.245		9.277	9.349 9.339	1.115		1.075	0.985
30 31 32	9.266 9.279 9.283		9.281 9.274 9.270	9.340 9.314 9.315	1.090		1.071	0.997 1.028
33 34	***** 9.320	***** 9.259	9.270 ***** 9.264	9.315 ***** 9.292	1.068 **** 1.021	**** 1.098	1.084 **** 1.091	1.028
35 36	9.290	9.276 9.278	9.277	9.295	1.059	1.077	1.076	1.056 1.053
37 38		9.280 9.281				1.072		
39 40	9.288	9.282 9.281	9.280	9.287	1.062	1.069 1.070	1.072	1.063
41 42 43	9.280	9.282 9.282 9.285	9.275	9.283	1 070	1.069	1 070	
44 45	7.200	9.285 9.281	7.613	7.403	1.072	1.065 1.066 1.070	1.078	1.069
46 47	10.081	9.283 9.281	9.276	9.278	0.065	1.068	1.076	1.075
48 49	9.272	9.285 9.280	9.277	9.256	1.082	1.066	1.075	1.102

TABLE 62.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A11 (READINGS 696 TO 699; AIRFLOW, 72.87 kg/sec)

AXIAL STATION	CIRCUM. L 0 90	E, N/CM2 OCATION, DEG 180 270	CI	COEFFICI RCUM. LOCAT 90 1 0.881	
2 3 4	9.420 9.410 9.407 9.410			0.893 0.897 0.894	
1 2 3 4 5 6 7 8 9	9.409 9.416 9.409 9.406	i.		0.895 0.887 0.894 0.898	
9 10	9.408 9.402	•		0.896	
11	9.394 9.380 *****	9.446 9.385	0.913 ****	0.930 0.	848 0.924 *** ****
12 13 14	9.397 9.390	9.377 9.398 9.373 9.400	0.910 0.918		934 0.908 939 0.905
15 16	9.387 9.389	9.372 9.416 9.366 9.413	0.922 0.920	0.	940 0.886 948 0.890
17	7.307	9.416	0.720	.	0.886
18 19		9.431 9.451			0.867 0.843
20 21		9.474 9.496			0.814 0.787
22 23		***** *****			**** ****
24 25		9.398 9.391			0.909 0.918
26 27		9.375 9.363			0.937 0.951
28 29	9.296	9.352 9.291 9.342	1.035	1.	0.966 040 0.978
30 31	9.289 9.286	9.285 9.344 9.280 9.315	1.043	ī.	048 0.976 055 1.011
32 33	9.282 ****** *****	9.278 9.316	1.052 *****	ī.	057 1.009 *** ****
34	9.304 9.267	9.259 9.289	1.025	1.070 1.	080 1.043
35 36	9.282 9.268 9.272		1.052	1.065	058 1.035
37 38	9.275 9.277	•		1.060 1.058	
39 40	9.279 9.280 9.281		1.055	1.054	055 1.047
41 42	9.282 9.282			1.052 1.052	
43 44	9.275 9.285 9.286	9.275 9.283	1.061		061 1.051
45 46	9.283 9.284	5		1.051	
47	10.157 9.282	9.275 9.276	031	1.052 1.	060 1.059
48 49	9.285 9.339 9.286		0.981	1.048 1.054 1.	060 1.086

TABLE 63.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 947 TO 950; AIRFLOW, 35.50 kg/sec)

AXIAL Station	CI	PRESSURE,	N/CM2	DEG	c	COEF	FICIENT OCATION,	DEG
1 2 3 4 5 6 7 8 9	O	90 9.989 9.988 9.988 9.988 9.985 9.986 9.986	180	270	0	90 0.777 0.780 0.785 0.785 0.785 0.801 0.799 0.795 0.806	180	270
11	9.984	9.981	9.983	9.988	0.807	0.794 0.823	0.814	0.787
12 13	***** 9.987	*****	9.984	***** 9.988	****	****	****	****
14	9.986		9.984	9.988	0.791 0.795		0.807 0.807	0.783 0.777
15	9.986		9.984	9.995	0.795		0.804	0.747
16 17	9.987		9.985	9.993 9.994	0.788		0.803	0.759
18				9.997				0.751 0.733
19 20				10.003 10.009				0.706
21				10.018				0.671 0.623
22 23				*****				****
24				***** 9.973				**** 0.864
25				9.973				0.865
26 27		.*		9.972 9.971				0.871
28				9.970				0.876 0.882
29 30	9.964 9.963		9.963 9.961	9.970	0.917		0.923	0.885
31	9.963		9.961	9.970 9.967	0.923 0.924		0.930 0.932	0.885 0.901
32	9.962	VVVVVV	9.961	9.967	0.927		0.932	0.902
33 34	***** 9.958	***** 9.960	***** 9.964	***** 9.963	**** 0.950	**** 0.936	**** 0.917	**** 0.922
35	9.960	9.956	9.960	9.961	0.936	0.958	0.917	0.922
36 37		9.957 9.958				0.951 0.950		
38		9.958				0.950		
39 40	9.960	9.956 9.959	9.959	9.961	0.939	0.961	0.940	0.934
41		9.959				0.943 0.944		
42		9.958				0.950		
43 44	9.959	9.959 9.959	9.959	9.960	0.944	0.945	0.940	0.940
45		9.959				0.945 0.944		
46 47	10 051	9.959	0 050	0 050		0.945		
47 48	10.051	9.958 9.958	9.958	9.958	0.444	0.949 0.946	0.950	0.950
49	9.969	9.958	9.959	9.955	0.891	0.947	0.943	0.966

TABLE 64.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 951 TO 954; AIRFLOW, $56.52\ kg/sec)$

AXIAL STATION 1 2 3 4 5 6 7 8 9	PRESSUR CIRCUM. L 0 90 9.750 9.748 9.745 9.746 9.739	E, N/CM2 OCATION, DEG 180 270	COEF CIRCUM. L 0 90 0.805 0.809 0.815 0.812 0.814 0.830 0.827	FICIENT OCATION, DEG 180 270
11 12 13 14 15 16 17 18 19 20 21	9.739 9.745 9.742 9.737 9.727 ****** ***** 9.744 9.742 9.743 9.746	9.732 9.745 ***** ***** 9.734 9.749 9.734 9.751 9.737 9.764 9.738 9.762 9.766 9.777 9.7791 9.809 9.834	0.830 0.817 0.823 0.834 0.854 ***** 0.819 0.823 0.820 0.814	0.843
22 22 22 22 22 22 22 33 33 33 33 35 35 36	9.680 9.677 9.676 9.675 ***** ***** 9.658 9.663 9.675 9.663	***** ****** 9.713 9.713 9.706 9.704 9.700 9.675 9.672 9.672 9.689 9.671 9.688 9.670 9.689 ***** 9.680 9.677 9.677	0.952 0.960 0.961 0.964 ***** **** 0.999 0.978 0.964 0.989	***** 0.885 0.884 0.898 0.903 0.911 0.964 0.970 0.971 0.975 0.975 0.975 0.975 0.960 0.960 0.972
37 38 39 40 41 42 43 44	9.667 9.669 9.672 9.670 9.670 9.670 9.669 9.671 9.671	9.673 9.673 9.670 9.672	0.982 0.980 0.977 0.970 0.974 0.975 0.974 0.976 0.972 0.973 0.972	0.969 0.968 0.974 0.971
45 46 47 48 49	9.669 9.668 10.072 9.668 9.669 9.667	9.669 9.667 9.670 9.660	0.972 0.976 0.979 0.128 0.978 0.976 0.923 0.980	0.976 0.980 0.974 0.996

TABLE 65.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 955 TO 958; AIRFLOW, 68.91 kg/sec)

AXIAL STATION	CI	PRESSURE, N/C RCUM. LOCATIO 90 18	۱, DEG		CIRCUM. I	FFICIENT LOCATION,	
1 2	v	90 18 9.529 9.526	270	0	90 0.841 0.845	180	270
3 4		9.521 9.524			0.852 0.847		
2 3 4 5 6 7 8 9		9.522 9.511 9.513			0.851 0.866 0.864		
8 9 10		9.514 9.520 9.516			0.861 0.854		
11 12	9.508 *****	9.493 9.5 ****** ****	(* *****	****		0.880 ****	0.853 ****
13 14 15	9.518 9.516 9.516	9.5 9.5 9.5	9.530	0.85	9	0.879 0.877	0.844
16 17	9.521	9.5	9.548 9.554	0.85		0.871 0.871	0.811 0.815 0.806
18 19 20			9.572 9.595 9.626				0.781 0.749 0.706
21 22			9.667 ****	•			0.649 ****
23 24 25			***** 9.475 9.466	;			**** 0.917 0.928
26 27 28			9.461 9.452 9.446	•			0.936 0.948
29 30	9.415 9.409	9.4 9.3	9.441 99 9.443	1.00	9	1.017 1.023	0.957 0.964 0.960
31 32 33	9.408 9.405 *****	9.3 9.3 *****	96 9.427	1.01	4	1.023 1.027 ****	0.991 0.983 ****
34 35	9.376 9.406	9.393 9.4 9.387 9.3	3 9.407	1.05	1.030 3 1.039	1.002	1.011
36 37 38		9.392 9.394 9.393			1.033 1.029 1.031		
39 40 41	9.402	9.399 9.49 9.398 9.400	9.403	1.018	3 1.023 1.023	1.016	1.016
42 43	9.401	9.400 9.398 9.401 9.3	9.401	1.02	1.021 1.023 1.020	1.022	1.019
44 45 46		9.401 9.397 9.395			1.019 1.024 1.028		
47 48	9.395	9.397 9.39 9.399	9.393	1.027		1.023	1.031
49	9.435	9.394 9.39	9.377	0.97		1.022	1.052

TABLE 66.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 959 TO 962; AIRFLOW, 73.42 kg/sec)

AXIAL STATION		PRESSURE, RCUM. LOG 90		DEG 270	0 C I	COEFF ERCUM. LO 90	ICIENT CATION, 180	DEG 270
1 2 3 4 5 6 7 8 9	U	9.421 9.416 9.411 9.415 9.412 9.399 9.402 9.403 9.409	100	270		0.866 0.872 0.878 0.874 0.878 0.892 0.890 0.888 0.881	180	270
10 11	9.395	9.405 9.379	9.387	9.410	0.898	0.886 0.917	0.907	0.879
12	*****	*****	*****	*****	****	****	****	****
13 14	9.407 9.404		9.387 9.389	9.417 9.421	0.883 0.886		0.907 0.905	0.871 0.867
15	9.405		9.394	9.445	0.886		0.900	0.837
16 17	9.410		9.393	9.442 9.449	0.880		0.900	0.841 0.832
18				9.470				0.807
19 20				9.499 9.536				0.771 0.726
21				9.585				0.726
22				*****				****
23 24				***** 9.355				**** 0.947
25				9.343				0.961
26 27				9.337 9.325				0.969 0.983
28				9.319				0.990
29	9.280		9.267	9.311	1.038		1.053	1.000
30 31	9.275 9.273		9.264 9.261	9.315 9.292	1.044 1.046		1.057 1.061	0.995 1.023
32	9.268		9.258	9.295	1.052		1.065	1.019
33 34	***** 9.237	***** 9.255	***** 9.279	***** 9.271	**** 1.090	**** 1.068	**** 1.039	**** 1.049
35	9.271	9.249	9.262	9.273	1.049	1.075	1.060	1.046
36		9.253				1.070		
37 38		9.257 9.259				1.066 1.064		
39	9.265	9.261	9.267	9.268	1.056	1.061	1.054	1.053
40		9.261 9.262				1.061 1.059		
41 42		9.262				1.059		
43	9.264	9.265	9.262	9.264	1.057	1.057	1.060	1.057
44 45		9.261 9.260				1.060 1.062		
46		9.258				1.065		
47	9.259	9.261	9.262	9.255	1.063	1.061	1.060	1.068
48 49	9.304	9.263 9.257	9.264	9.240	1.009	1.059 1.066	1.058	1.087

TABLE 67.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 963 TO 966; AIRFLOW, 75.56 kg/sec)

AXIAL STATION 1 2 3 4 5 6 7	0 C:	IRCUM. LO 90 9.386 9.382 9.376 9.380 9.377	E, N/CM2 DCATION, 180	DEG 270	0	CIRCUM. L 90 0.856 0.860 0.867 0.862 0.867	FICIENT OCATION, 180	DEG 270
67 89 10 112 133 145 167 189 221	9.359 ***** 9.371 9.368 9.368 9.374	9.364 9.366 9.368 9.374 9.369 9.345 ****	9.351 ***** 9.350 9.353 9.357 9.356	9.375 ***** 9.382 9.386 9.407 9.415 9.468 9.559	0.886 ***** 0.873 0.876 0.876 0.870	0.881 0.879 0.876 0.870 0.875 0.903 ****	0.896 ***** 0.897 0.894 0.889 0.890	0.868 ***** 0.856 0.829 0.832 0.796 0.762 0.7167
22 23 24 25 26 27 28 29 31 33 33 34 35	9.236 9.231 9.229 9.225 **** 9.194 9.226	**** 9.211 9.205 9.209	9.223 9.218 9.217 9.214 ***** 9.236 9.219	****** 9.309 9.303 9.295 9.284 9.277 9.269 9.250 9.250 9.252 ******	1.027 1.033 1.036 1.040 **** 1.076 1.039	**** 1.056 1.063 1.058	1.042 1.048 1.050 1.053 **** 1.027	0.657 **** 0.944 0.951 0.960 0.989 0.985 1.010 **** 1.035
37 38 39 40 41 42	9.222	9.213 9.215 9.217 9.217 9.218 9.218	9.224	9.223	1.044	1.054 1.052 1.049 1.049 1.048	1.042	1.043
43 44 45 46	9.220	9.220 9.220 9.216 9.213	9.218	9.221	1.046	1.048 1.046 1.046 1.050	1.048	1.045
47 48	9.215	9.217 9.220	9.217	9.211	1.052	1.054	1.049	1.057
49	9.260	9.213	9.220	9.194	1.000	1.047 1.055	1.046	1.076

TABLE 68.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 967 TO 970; AIRFLOW, 78.89 kg/sec)

AXIAL STATION	CI	PRESSURE, RCUM. LOC	N/CM2 ATION, 180	DEG 270	CI	COEFF RCUM. LO	ICIENT CATION, 180	DEG 270
1 2		9.307 9.302			•	0.863 0.867	200	2.70
1 2 3 4 5 6 7		9.296 9.297				0.875 0.873		
5 6 7		9.296 9.284 9.285				0.874 0.887		
8 9		9.286 9.293				0.886 0.884 0.877		
10 11	9,276	9.288 9.263	9.268	9.294	0.895	0.883	0.904	0.876
12 13	***** 9.289		***** 9.266	***** 9.301	**** 0.881	****	***** 0.905	***** 0.869
14 15	9.286 9.286		9.268	9.306 9.331	0.885 0.884		0.903	0.864
16 17	9.292		9.272	9.329 9.337	0.879		0.899	0.840 0.831
18 19				9.362 9.396				0.805
20 21				9.440 9.498				0.724
22 23				***** *****				***** *****
24 25				9.218 9.210				0.955 0.964
26 27				9.199 9.189				0.976
28 29	9.137		9.121	9.181 9.173	1.041		1.057	0.995
30 31	9.131 9.129		9.117 9.114	9.177 9.148	1.047 1.049		1.062 1.064	0.999 1.029
32 33	9.125 *****	****	9.110 *****	9.154 *****	1.053 ****	****	1.068 ****	1.023 ****
34 35	9.093 9.127	9.109 9.101	9.136 9.117	9.127 9.130	1.086 1.051	1.069 1.078	1.041	1.051 1.048
36 37		9.106 9.111				1.072 1.068		
38 39	9.403	9.112 9.116	9.123	9.122	0.762	1.066 1.063	1.055	1.056
40 41		9.115 9.117				1.064 1.061		
42 43	9.119	9.115 9.118	9.117	9.119	1.059	1.063 1.060	1.062	1.059
44 45		9.119 9.115				1.059		
46 47	9.113	9.111 9.115	9.117	9.108	1.065	1.068	1.062	1.071
48 49	9.160	9.118 9.111	9.118	9.089	1.016	1.060 1.068	1.060	1.091

TABLE 69.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 971 TO 974; AIRFLOW, 81.77 kg/sec)

AXIAL STATION	CI	PRESSURE, N RCUM. LOCAT	ION,		C I	RCUM. LO		
1 2 3 4 5 6 7 8 9	U	9.265 9.261 9.254 9.258 9.254 9.242 9.243 9.243	180	270	0	90 0.845 0.852 0.852 0.854 0.856 0.8662 0.854	180	270
10 11	9.233		.224	9.252	0.872	0.860 0.883	0.881	0.854
12 13	***** 9.248		**** .223	***** 9.259	**** 0.858	****	**** 0.882	**** 0.847
14 15	9.243 9.243	9	.223	9.263 9.290	0.862 0.862		0.881	0.843
16 17	9.249	9	.229	9.287 9.297	0.857		0.876	0.820
18 19				9.323 9.359				0.785
20 21				9.405 9.467				0.705
22 23				***** *****				***** *****
24 25				9.169 9.162				0.935 0.941
26 27				9.152 9.140				0.950 0.963
28 29	9.084		.067	9.130 9.123	1.017		1.033	0.972 0.979
30 31	9.076	9	.064	9.126 9.098	1.024 1.024		1.036 1.040	0.97 <u>6</u> 1.004
32 33	9.071 *****	*****	.056 ***	9.102 *****	1.029 ****	****	1.043 ****	1.000 ****
34 35	9.046 9.074	9.047 9	.084 .064	9.074 9.077	1.054 1.027	1.044 1.053	1.016 1.036	1.026 1.023
36 37		9.052 9.056				1.048 1.044	, ;	
38 39 40	9.069		.070	9.069	1.031	1.040	1.031	1.031
41		9.062 9.063				1.038		
42 43 44	9.066		.064	9.066	1.034	1.038	1.036	1.034
45 46		9.066 9.061 9.058				1.034		
47 48	9.061		.063	9.054	1.039	1.042 1.038 1.036	1.037	1.046
49	9.107		.066	9.033	0.994	1.042	1.034	1.066
							1	

TABLE 70.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 12A TO 15A; AIRFLOW, 73.10 kg/sec)

AXIAL STATION	C:	PRESSURE, N/CI IRCUM. LOCATION 90 180	, DEG	0	COEF CIRCUM. L	FICIENT OCATION, 180	DEG 27 0
1 2		9.419 9.415		•	0.678 0.682	100	270
1 2 3 4 5 6 7 8 9		9.409 9.412			0.688		
5 6		9.407 9.397			0.689		
7 8		9.392 9.355			0.704 0.739		
10		9.281 9.221			0.809		
11 12	9.394 *****	9.407 9.39 ****** ****			0.689	0.700 ****	0.701
13 14	9.097 9.164	9.06 9.15	7 9.242	0.985	i	1.013	***** 0.847
15 16	9.123 9.098	9.12 9.10	1 9.324	0.960 0.983	!	0.961 0.979	0.829
17 18			9.395 9.467	0.765	'	0.9/9	0.756
19 20			9.540				0.633 0.563 0.503
21 22 23			9.649 *****				0.460 ****
24			***** *****				***** *****
25 26			***** *****				***** *****
27 28			***** *****				***** *****
29 30	8.958 9.021	8.91 9.00		1.117 1.057		1.153 1.076	***** *****
31 32	9.080 9.128	9.05 9.10	7 *****	1.001		1.022	***** *****
33 34	***** 9.218	***** **** 9.233 9.23		**** 0.869	**** 0.855	***** 0.858	***** 0.849
35 36	9.202	9.163 9.18 9.179		0.884	0.921 0.906	0.901	0.710
37 38		9.191 9.200			0.895 0.887		
39 40	9.231	9.210 9.22 9.215	9.294	0.857	0.877 0.872	0.859	0.797
41 42		9.221 9.223			0.867		
43 44	9.240	9.229 9.23 9.232	9.264	0.849	0.859 0.856	0.854	0.826
45 46		9.232 9.232			0.856 0.856		
47 48	9.238	9.236 9.23 9.240		0.850	0.853 0.848	0.852	0.848
49	9.274	9.239 9.23	9.215	0.816	0.849	0.850	0.872

TABLE 71.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 16A TO 19A; AIRFLOW, 74.88 kg/sec)

AXIAL STATION	CI	PRESSURE, N/ RCUM. LOCATI	ON,			COEFFI RCUM. LOC	ATIOH,	
1 2 3 4 5 6 7 8 9	0	90 9.384 9.380 9.375 9.377 9.373 9.363 9.357 9.318 9.237	80	270	0	90 0.676 0.680 0.684 0.682 0.695 0.735 0.735	180	270
10 11	9.360	9.176	362	9.360	0.698	0.864	0.696	0.598
12 13	***** 9.046	*****	*** 015	***** 9.198	***** 0.981	****	1.009	77777 0.844
14	9.115	9.	102	9.217	0.919		0.930	0.827
15 16	9.073 9.046		070 050	9.282 9.301	0.957 0.981		0.959 0.977	0.768 0.750
17 18				9.359 9.435				0.699 0.630
19 20				9.512 9.578				0.561 0.501
21 22				9.625 *****				0.458
23				*****				****
24 25				***** *****				****
26 27				***** *****				***** *****
28 29	8.896	æ	856	***** *****	1.116		1.153	***** *****
30	8.963	8.	942	*****	1.056		1.075	*****
31 32	9.025 9.077	9.	001 051	****	0.953		0.977	****
33 34	***** 9.170		184	***** 9.195	**** 0.869	**** 0.855	**** 0.856	***** 0.846
35 36	9.156		137	9.348	0.882	0.919	0.899	0.709
37		9.144				0.893		
38 39	9.186		183	9.253	0.854	0.884 0.875	0.857	0.794
40 41		9.169 9.175				0.870 0.865		
42	0 106	9.178	100	0 217	0.846	0.862 0.857	0.852	0.826
43 44	9.196	9.187	189	9.217	0.040	0.854	0.002	0.020
45 46		9.187 9.186				0.854 0.854		
47	9.193	9.191 9.	192	9.196	0.848	0.850 0.846	0.849	0.846
48 49	9.228	9.196 9.193 9.	194	9.168	0.817	0.848	0.848	0.871

TABLE 72.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 20A TO 24A; AIRFLOW, 78.32 kg/sec)

AXIAL STATION	CI 0	PRESSURE RCUM. LO		DEG 270	0	COEFF CIRCUM. LO	FICIENT CATION, 180	DEG 270
1 2 3 4 5 6 7 8 9	v	9.305 9.300 9.295 9.297 9.293 9.280 9.276 9.231 9.144		270	v	0.678 0.681 0.686 0.684 0.688 0.698 0.702 0.738 0.810	130	270
10 11	9.277	9.071 9.294	9.281	9.278	0.700	0.869 0.686	0.698	0.700
12 13	***** 8.925	*****	***** 8.890	***** 9.093	**** 0.989	****	**** 1.018	***** 0.851
14	9.002		8.990	9.111	0.926		0.935	0.836
15 16	8.953 8.923		8.952 8.928	9.186 9.208	0.966 0.990		0.967 0.986	0.775 0.757
17 18				9.272 9.357				0.705
19				9.443				0.565
20 21				9.517 9.569				0.504 0.461
22 23				***** *****				***** *****
24				*****				****
25 26				****** ******				***** *****
27 28				*****				****
29	8.751		8.705	******	1.132		1.169	***** *****
30 31	8.828 8.898		8.805 8.871	****** ******	1.068		1.087 1.033	***** *****
32	8.956		8.927	*****	0.963		0.987	****
33 34	***** 9.065	***** 9.083	***** 9.079	***** 9.090	**** 0.875	**** 0.860	**** 0.863	***** 0.853
35	9.043	9.001	9.025	9.259	0.892	0.927	0.907	0.715
36 37		9.018 9.033				0.912 0.901		
38 39	9.079	9.044 9.055	0 077	0 157	0.070	0.892	0.045	0 000
40	7.077	9.061	9.077	9.153	0.862	0.883 0.877	0.865	0.802
41 42		9.068 9.071				0.872 0.869		
43	9.091	9.078	9.083	9.118	0.853	0.864	0.859	0.831
44 45		9.080 9.080				0.861 0.861		
46	0 007	9.078	0 001	0.000	A	0.864	<u>.</u>	
47 48	9.087	9.085 9.090	9.086	9.090	0.856	0.858 0.853	0.857	0.854
49	9.123	9.088	9.088	9.059	0.827	0.855	0.855	0.879

TABLE 73.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 25A TO 28A; AIRFLOW, 35.46 kg/sec)

AXIAL STATION 1 2 3 4		PRESSURE, N/CI RCUM. LOCATIO 90 18 9.987 9.987 9.986	N, DEG	0	COEFF CIRCUM. LO 90 0.618 0.619 0.623	FICIENT OCATION, D 180	EG 270
5 6 7 8 9 10 11	9.983	9.987 9.985 9.983 9.982 9.975 9.9761 9.950 9.985		0.636		0.636	0.634
12 13	***** 9.929	****** **** 9.9		**** 0.868			**** 0.743
14	9.941	9.9		0.814			0.743
15	9.935	9.9		0.840)	0.842	0.670
16 17	9.931	9.9	31 9.978 9.987	0.859)		0.659 0.618
18			10.001				0.561
19 20			10.014				0.502
21			10.026 10.035				0.454 0.416
22			*****				****
23 24			*****				****
25			***** *****				**** ****
26			*****				****
27			*****				****
28 29	9.907	9.9	***** 2 *****	0.961			**** ****
30	9.917	9.9		0.916			*****
31	9.927	9.9		0.874	ì	0.888	****
32 33	9.936 *****	9.9: *****		0.837 ****			****
34	9.951	9.954 9.9		0.773			**** 0.751
35	9.946	9.939 9.9		0.793			0.639
36 37		9.942			0.812		
3 <i>7</i> 38		9.943 9.946			0.805 0.793		
39	9.952	9.948 9.9	9.965	0.770		0.771	0.711
40		9.950			0.779		
41 42		9.950 9.951			0.777 0.773		
43	9.954	9.952 9.9	53 9.959	0.759		0.766	0.737
44		9.953			0.766		
45 46		9.950			0.778		
40 47	9.953	9.952 9.953 9.9	52 9.955	0.764	0.767	0.766	0.756
48		9.954			0.761		0.,70
49	9.960	9.954 9.9	53 9.950	0.733		0.762	0.777

TABLE 74.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 29A TO 32A; AIRFLOW, 56.42 kg/sec)

1 9.748 0.637 2 9.746 0.637 3 9.743 0.637 4 9.745 0.637 6 9.743 0.653 6 9.743 0.653 7 9.737 0.653 8 9.734 0.653 8 9.737 0.653 8 9.737 0.653 10 9.736 9.737 9.736 0.654 0.653 11 9.736 9.743 9.737 9.736 0.654 0.643 12 ******* ****** ****** ****** ****** ****	AXIAL STATION 1	0 C1	PRESSURE, N/CM IRCUM. LOCATION 90 180 9.748	2 , DEG 270	o	COEF CIRCUM. L 90 0.634	FICIENT OCATION, 180	DEG 270
11 9.736 9.743 9.737 9.736 0.654 0.643 0.653 0.653 12 ******* ******* ******* ******* ***** ***** </td <td>2 3 4 5</td> <td></td> <td>9.743 9.745 9.743</td> <td></td> <td></td> <td>0.642 0.639 0.643</td> <td></td> <td></td>	2 3 4 5		9.743 9.745 9.743			0.642 0.639 0.643		
12	7 8 9 10		9.734 9.715 9.677 9.647			0.658 0.689 0.751		
13	12	*****	*****	* *****				
15	13 14						0.924	0.774
9.744 9.781 18 9.781 19 9.818 9.851 20 19.875 0.462 21 22 23 24 24 25 26 27 28 29 9.523 9.506 27 28 29 9.523 9.506 27 28 29 9.524 9.506 27 28 29 9.525 9.506 27 28 29 9.525 9.506 27 28 29 9.524 29 9.525 9.506 27 28 29 9.525 9.506 27 28 29 9.526 27 28 29 9.527 28 29 9.528 29 9.528 20 9.594 20 20 20 20 20 20 20 20 20 20 20 20 20	15		9.59	9.708	0.878		0.879	0.701
19 20 20 39.818 9.851 0.463 21 22 23 24 23 24 25 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	17	7.300	7.37	9.744	0.097		0.894	0.641
21 22	19			9.818				
23 24 24 25 26 27 28 29 9.523 9.506 27 30 9.554 9.543 28 29 9.523 9.560 29.570 20.20	21			9.875				
24	23							
26 27	24 25							****
28 29 9.523 9.506 8****** 1 005 0.972 8***** 31 9.581 9.570 8***** 0.955 0.972 8***** 32 9.604 9.594 8***** 0.872 0.888 8***** 33 8***** 8***** 8***** 8**** 8**** 34 9.649 9.658 9.656 9.661 0.798 0.782 0.888 8**** 35 9.642 9.619 9.633 9.734 0.810 0.823 0.823 0.823 0.823 0.823 0.823 0.823 0.823 0.823 0.823 0.823 0.825 0.797 0.797 0.833 0.823 0.825 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.785 0.785 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.787 0.785 0.786 0.786 0.786 0.787 0.785 0.786 0.786 0.787 0.7880	26			*****				****
29 9.523 9.506 ****** 1.005 1.033 ****** 30 9.554 9.543 ****** 0.955 0.972 ****** 31 9.581 9.570 ****** 0.910 0.927 ****** 32 9.604 9.594 ****** 0.872 0.888 ****** 33 ****** ****** ****** 0.872 0.888 ****** 34 9.649 9.658 9.656 9.661 0.798 0.782 0.786 0.777 35 9.642 9.619 9.633 9.734 0.810 0.847 0.824 0.657 37 9.638 9.638 0.815 0.823 0.815 0.815 0.815 0.815 0.880 0.791 0.730 40 9.647 9.652 0.789 0.806 0.791 0.730 0.793 0.785 0.785 0.785 0.785 0.785 0.786 0.785 0.786 0.785 0.786 0.785 0.776 0.780 0.780 0.783 0.777 0.780 <td>28</td> <td></td> <td></td> <td>*****</td> <td></td> <td></td> <td></td> <td></td>	28			*****				
31 9.581 9.570 ******* 0.910 0.927 ****** 32 9.604 9.594 ****** 0.872 0.888 ***** 33 ****** ****** 0.872 0.888 ****** 34 9.649 9.658 9.656 9.661 0.798 0.782 0.786 0.777 35 9.642 9.619 9.633 9.734 0.810 0.847 0.824 0.657 36 9.637 9.638 0.815 0.823 0.823 0.815 39 9.654 9.644 9.653 9.690 0.789 0.806 0.791 0.730 41 9.649 9.652 0.797 0.789 0.785 0.775 42 9.652 0.797 0.789 0.785 0.785 0.776 43 9.654 9.655 9.656 0.786 0.785 0.785 0.785 45 9.656 9.656 0.786 0.786 0.780 0.780 0.780 0.780 48 9.659 9.657 <td>29 30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>****</td>	29 30							****
33 ******* ****** ****** ****** ******* ******* ******* ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******* ******* ******* ******* <td>31</td> <td>9.581</td> <td>9.57</td> <td>)</td> <td>0.910</td> <td></td> <td>0.972</td> <td></td>	31	9.581	9.57)	0.910		0.972	
34 9.649 9.658 9.656 9.661 0.798 0.782 0.786 0.777 35 9.642 9.619 9.633 9.734 0.810 0.847 0.824 0.657 36 9.627 0.810 0.847 0.824 0.657 37 9.633 0.823 0.815 0.815 39 9.654 9.644 9.653 9.690 0.789 0.806 0.791 0.730 40 9.647 0.649 0.789 0.806 0.791 0.730 41 9.652 0.797 0.789 0.785 0.785 43 9.660 9.654 9.657 9.674 0.779 0.789 0.785 0.756 45 9.656 9.656 0.786 0.785 0.786 0.786 0.786 47 9.659 9.657 9.658 9.662 0.782 0.784 0.783 0.777 48 9.660 0.650 0.650 0.780 0.780 0.780	33					****		
36	34		9.658 9.656	9.661	0.798	0.782		
37	36	9.042	9.619 9.63; 9.627	9./34	0.810		0.824	0.657
39 9.654 9.644 9.653 9.690 0.789 0.806 0.791 0.730 40 9.647 0.800 0.800 0.797 0.797 0.793 0.793 0.793 0.793 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.786 0.786 0.786 0.786 0.780 </td <td>37 38</td> <td></td> <td></td> <td></td> <td></td> <td>0.823</td> <td></td> <td></td>	37 38					0.823		
41 9.649 42 9.652 43 9.660 9.654 9.657 9.674 0.779 0.789 0.785 0.756 44 9.655 0.787 45 9.656 0.785 46 9.656 0.786 47 9.659 9.657 9.658 9.662 0.782 0.784 0.783 0.777 48 9.660 0.780	39	9.654	9.644 9.65	9.690	0.789	0.806	0.791	0.730
42 43 9.660 9.654 9.655 9.656 9.656 9.656 9.656 9.656 9.657 9.658	41		9.647					
44 9.655 0.787 0.787 0.785 45 9.656 0.785 0.786 47 9.659 9.657 9.658 9.662 0.782 0.784 0.783 0.777 48 9.660 0.780	42 43	9.660	1 1 1 1 1 1	9 676	0 770	0.793	0 705	0.75/
46 9.656 47 9.659 9.657 9.658 9.662 0.782 0.784 0.783 0.777 48 9.660 0.780	44		9.655	7.074	0.779	0.787	V./85	U./56
4/ 9.659 9.657 9.658 9.662 0.782 0.784 0.783 0.777 48 9.660 0.780	46		9.656					
49 9 475 0 450 0 450 0 444		9.659	9.657 9.658	9.662	0.782	0.784	0.783	0.777
		9.675		9.646	0.755		0.781	0.803

TABLE 75.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 33A TO 36A; AIRFLOW, 68.73 kg/sec)

AXIAL STATION	0 CI	PRESSURE, RCUM. LOC		DEG 270	C	COEFF IRCUM. LO	ICIENT CATION, 180	
1 2 3	-	9.526 9.523 9.519		2,0	v	0.660 0.663 0.668	180	270
2 3 4 5 6 7 8 9		9.521 9.517 9.509				0.666 0.670 0.679		
/ 8 9 10		9.504 9.473 9.412 9.362				0.684 0.718 0.784		
11 12	9.507 *****	9.518	9.509 *****	9.508 *****	0.681 ****	0.839 0.669 ****	0.679 ****	0.680 ****
13 14	9.261 9.316		9.237 9.304	9.383 9.398	0.949		0.975	0.816
15 16	9.281 9.262		9.280 9.265	9.451 9.465	0.927 0.948		0.928	0.742
17 18			,	9.511 9.572	0.740		0.777	0.676
19 20				9.632				0.611
21 22				9.686 9.724				0.486 0.445
23				***** *****				***** *****
24 25				***** *****				**** *****
26				*****				****
27 2 8				***** *****				***** *****
29	9.149		9.119	*****	1.070		1.104	****
30 31	9.201 9.249		9.185 9.230	***** *****	1.014		1.031	****
32	9.288		9.268	*****	0.962 0.919		0.982 0.941	***** *****
33	*****		*****	****	****	****	****	****
34 35	9.362 9.350	9.376 9.316	9.372 9.336	9.381 9.504	0.838	0.823	0.827	0.818
36	7.520	9.329	7.330	7.504	0.852	0.889 0.875	0.867	0.684
37 38		9.338 9.348				0.864 0.854		
39 40	9.372	9.355	9.371	9.427	0.828	0.846	0.829	0.768
41		9.360 9.364				0.841 0.836		
42 43	9.380	9.367 9.372	9.375	9.402	0.819	0.834 0.828	0.824	0.795
44 45		9.373 9.374				0.827 0.826		V.,,3
46		9.374				0.826		
47 48	9.379	9.376 9.381	9.378	9.381	0.821	0.823 0.818	0.821	0.817
49	9.403	9.380	9.379	9.360	0.794	0.820	0.820	0.841

TABLE 76.—AXIAL WALL STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 37A TO 40A; AIRFLOW, 81.33 kg/sec)

AXIAL STATION	CI	PRESSURE RCUM. LO	, N/CM2 CATION, 180		0	CIRCUM. LO		
1 2 3 4 5 6 7 8 9	U	9.267 9.262 9.256 9.259 9.254 9.236 9.186 9.098	100	270	U	90 0.656 0.665 0.665 0.666 0.676 0.680 0.717 0.785	180	270
10 11	9.239	9.020 9.256	9.242	9.240	0.678	0.843 0.665	0.675	0.677
12	*****	*****	****	*****	****	****	****	****
13 14	8.867 8.947		8.832 8.935	9.042 9.064	0.960 0.899		0.986 0.908	0.827 0.810
Ĩ5	8.896		8.893	9.139	0.938		0.940	0.754
16	8.864		8.869	9.163	0.962		0.958	0.735
17 18				9.230 9.319				0.684 0.617
19				9.409				0.548
20 21				9.487 9.543				0.489 0.447
22				*****				****
23				*****				****
24 25				***** *****				**** ****
26				****				****
27 28				***** *****				****
29	8.676		8.630	*****	1.104		1.139	**** *****
30	8.759		8.736	*****	1.042		1.059	****
31 32	8.834 8.897		8.806 8.865	***** *****	0.985 0.937		1.006 0.961	***** *****
33	*****	*****	*****	*****	****	****	*****	****
34	9.012	9.031	9.025	9.039	0.850	0.835	0.840	0.829
35 36	8.992	8.944 8.963	8.971	9.216	0.865	0.901 0.887	0.881	0.695
37		8.978				0.875		
38 39	0 027	8.989	0 005	0.107	0 070	0.867	0.040	0.700
40	9.027	9.001 9.008	9.025	9.104	0.838	0.858 0.853	0.840	0.780
41		9.014				0.848		
42 43	9.038	9.018	0 070	0 0/7	0 070	0.845	0 075	
44	7.038	9.025 9.028	9.032	9.067	0.830	0.840 0.837	0.835	0.808
45		9.028				0.838		
46 47	9.036	9.028 9.033	0 074	0 037	0 071	0.837	0 077	0 070
48	7.030	9.033	9.034	9.037	0.831	0.834 0.829	0.833	0.830
49	9.067	9.037	9.036	9.005	0.808	0.831	0.831	0.855

TABLE 77.—SCOOP STATIC PRESSURES FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 12A TO 15A; AIRFLOW, 73.10 kg/sec)

[Pressures are in newtons per square centimeter.]

CIRCUMFERENTIAL LOCATION, DEG 0 90 180 270 9.362 9.054 9.363 9.152 VANE INLET 9.093 8.945 9.097 9.595 EXIT AXIAL A B B B C STATION TOP TOP BOTTOM TOP 51	CTRCIME	CORNER I		u neo	
9.362 9.054 9.363 9.152 VANE INLET 9.093 8.945 9.097 9.595 EXIT AXIAL A B B B C TOP BOTTOM TOP 51 10.083 52 8.529 8.545 8.503 53 8.651 54 8.719 8.701 8.702 8.668 55 8.775 56 8.868 8.873 8.870 8.877 57 8.976 58 9.049 9.076 9.072 9.092 59 9.169 510 9.214 9.259 9.247 9.278 512 9.302 513 9.300 9.346 9.358 514					
9.093 8.945 9.097 9.595 EXIT AXIAL A B B B C STATION TOP TOP BOTTOM TOP \$1					
AXIAL STATION TOP TOP BOTTOM TOP 10.083 52	9.093			9.595	
STATION TOP TOP BOTTOM TOP 51 10.083 52 8.529 8.545 8.503 53 8.651 8.702 8.668 55 8.775 8.775 8.870 8.877 56 8.868 8.873 8.870 8.877 57 8.976 9.072 9.092 59 9.169 9.072 9.092 59 9.169 9.212 9.169 511 9.214 9.259 9.247 9.278 512 9.302 9.346 9.358 514 9.383 9.358		E	XIT		
51 10.083 52 8.529 8.545 8.503 53 8.651 8.702 8.668 54 8.719 8.701 8.702 8.668 55 8.775 8.870 8.870 8.877 56 8.868 8.873 8.870 8.877 57 8.976 9.072 9.092 59 9.169 9.169 9.072 9.092 51 9.214 9.259 9.247 9.278 512 9.302 9.346 9.358 514 9.383 9.358	AXIAL	Α	В	В	C
52 8.529 8.545 8.503 53 8.651 54 8.719 8.701 8.702 8.668 55 8.775 56 8.868 8.873 8.870 8.877 57 8.976 58 9.049 9.076 9.072 9.092 59 9.169 510 9.212 511 9.214 9.259 9.247 9.278 512 9.302 513 9.300 9.346 9.358 514 9.383	STATION	TOP	TOP	BOTTOM	TOP
52 8.529 8.545 8.503 53 8.651 8.702 8.668 54 8.719 8.701 8.702 8.668 8.775 8.775 8.870 8.877 56 8.868 8.873 8.870 8.877 57 8.976 9.072 9.092 59 9.169 9.212 510 9.212 9.212 511 9.214 9.259 9.247 9.278 512 9.302 513 9.300 9.346 9.358 514 9.383	51				10.083
\$3 \$4 \$5 \$8.719 \$8.701 \$8.702 \$8.668 \$8.775 \$6 \$8.868 \$8.873 \$8.870 \$8.877 \$8.976 \$8.976 \$9 \$9.049 \$9.076 \$9.169 \$9.212 \$11 \$9.214 \$9.229 \$9.302 \$13 \$9.300 \$9.358 \$14	52		8.529	8.545	
\$5 8.775 \$6 8.868 8.873 8.870 8.877 \$7 8.976 \$8 9.049 9.076 9.072 9.092 \$9 9.169 \$10 9.212 \$11 9.214 9.259 9.247 9.278 \$12 9.302 \$13 9.300 9.346 9.358 \$14 9.383	S 3		8.651		
\$6 8.868 8.873 8.870 8.877 \$7 8.976 \$8 9.049 9.076 9.072 9.092 \$9 9.169 \$10 9.212 \$11 9.214 9.259 9.247 9.278 \$12 9.302 \$13 9.300 9.346 9.358 \$14 9.383	S 4	8.719	8.701	8.702	8.668
\$7	S 5		8.775		
58 9.049 9.076 9.072 9.092 59 9.169 \$10 9.212 \$11 9.214 9.259 9.247 9.278 \$12 9.302 \$13 9.300 9.346 9.358 \$14 9.383	S 6	8.868	8.873	8.870	8.877
\$9 9.169 \$10 9.212 \$11 9.214 9.259 9.247 9.278 \$12 9.302 \$13 9.300 9.346 9.358 \$14 9.383			8.976		
\$10 9.212 \$11 9.214 9.259 9.247 9.278 \$12 9.302 \$13 9.300 9.346 9.358 \$14 9.383	58	9.049	9.076	9.072	9.092
511 9.214 9.259 9.247 9.278 512 9.302 513 9.300 9.346 9.358 514 9.383	59		9.169		
\$12	S10		9.212		
\$12 \$13 \$13 \$14 \$14 \$15 \$14 \$15 \$15 \$15 \$15 \$15 \$15 \$15 \$15 \$15 \$15	511	9.214	9.259	9.247	9.278
9.383	512		9.302		
9.383	\$13	9.300			9.358
S15 9.419 9.442 9.459	514				
	\$15	9.419	9.442		9.459

TABLE 78.—SCOOP STATIC PRESSURES FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 16A TO 19A; AIRFLOW, 74.88 kg/sec)

[Pressures are in newtons per square centimeter.]

CIRCUMF 0 9.327	CORNER : FERENTIAL 90 9.002	LOCATION 180	N, DEG 270 9.103	
9.042	VANE IN	LET 9.045	9.568	
	i	EXIT		
AXIAL	A	В	В	С
STATION	TOP	TOP	BOTTOM	TOP
S1				10.080
\$2 6.7		8.443	8.459	8.415
S 3	9 / 4 5	8.572	0 (0)	0 500
S4 S5	8.645	8.625 8.703	8.626	8.592
56	8.805	8.807	8.803	8.812
57 57	0.805	8.917	0.003	0.012
58 58	8.994	9.022	9.019	9.039
59	0.,,,	9.121	,,	7.007
510		9.165		
S11	9.169	9.214	9.203	9.235
S12		9.259		
S13	9.257	9.306		9.319
\$14		9.345		
\$15	9.383	9.408		9.426

TABLE 79.—SCOOP STATIC PRESSURES FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 20A TO 24A; AIRFLOW, 78.32 kg/sec)

[Pressures are in newtons per square centimeter.]

CIRCUMF 0 9.241	CORNER FERENTIAL 90 8.875		N, DEG 270 8.991	
8.924	VANE IN 8.746	LET 8.926	9.506	
		EXIT		
AXIAL STATION S1	TOP	B TOP	B BOTTOM	C TOP 10.076
\$2 \$3		8.235 8.381	8.256	8.198
S 4 S 5	8.464	8.442 8.531	8.443	8.402
S 6 S 7	8.649	8.649 8.774	8.647	8.654
S8 S9 S10	8.861	8.892 9.003 9.053	8.889	8.911
\$11 \$12	9.058	9.109 9.157	9.097	9.132
\$13 \$14	9.158	9.212 9.255		9.227
S15	9.297	9.326		9.345

TABLE 80.—SCOOP STATIC PRESSURES FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 25A TO 28A; AIRFLOW, 35.46 kg/sec)

[Pressures are in newtons per square centimeter.]

	CORNER		
CIRCUM	FERENTIAL	LOCATIO	DN, DEG
0	90	180	270
9.977	9.916	9.976	9.940

VANE INLET 9.924 9.902 9.928 10.025

	EXIT					
AXIAL	Α	В	В	С		
STATION	TOP	TOP	BOTTOM	TOP		
S 1				10.121		
S 2		9.831	9.834	9.829		
S 3		9.853				
S 4	9.864	9.862	9.862	9.857		
S 5		9.874				
S 6	9.890	9.891	9.891	9.892		
S 7		9.909				
S8	9.922	9.924	9.926	9.930		
S 9		9.944				
S10		9.952				
S11	9.952	9.960	9.958	9.964		
S12		9.969				
513	9.969	9.978		9.979		
S14		9.984				
S15	9.992	9.991		9.998		

TABLE 81.—SCOOP STATIC PRESSURES FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 29A TO 32A; AIRFLOW, 56.42 kg/sec)

[Pressures are in newtons per square centimeter.]

CIRCUMF 0 9.720	CORNER DERECTION OF SERVICE CONTROL OF SERVICE CONT		7, DEG 270 9.616	
9.581	VANE INI 9.507	.ET 9.584	9.847	
	ş	EXIT		
AXIAL STATION S1	A TOP	B TOP	BOTTOM	C TOP 10.107
\$2 \$3		9.311 9.373	9.319	9.302
\$4 \$5	9.404	9.398 9.433	9.398	9.383
56 57	9.479	9.481 9.531	9.479	9.483
58 59 510	9.566	9.580 9.628 9.649	9.579	9.589
\$11	9.650	9.673 9.695	9.668	9.682
\$12 \$13	9.695	9.719		9.724
S14 S15	9.760	9.737 9.768		9.777

TABLE 82.—SCOOP STATIC PRESSURES FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 33A TO 36A; AIRFLOW, 68.73 kg/sec)

[Pressures are in newtons per square centimeter.]

CIRCUMF 0 9.481	CORNER 1 ERENTIAL 90 9.218		7, DEG 270 9.309	
9.256	VANE INI 9.134	LET 9.258	9.678	
	i	EXIT		
AXIAL	Α	В	В	C
STATION	TÖP	TŌP	BOTTOM	TOP
51	, _,	•		10.090
\$ 2		8.798	8.811	8.779
\$3		8.900		
54	8.954	8.940	8.941	8.914
\$5		9.000		
56	9.077	9.080	9.078	9.084
Š7		9.164		
58	9.224	9.246	9.244	9.260
Š 9		9.323		
510		9.359		
S11	9.361	9.398	9.389	9.413
512		9.434		
\$13	9.432	9.472		9.478
514		9.501		
\$15	9.535	9.551		9.566

TABLE 83.—SCOOP STATIC PRESSURES FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 37A TO 40A; AIRFLOW, 81.33 kg/sec)

[Pressures are in newtons per square centimeter.]

	CORNER	INLET	
CIRCUMI	FERENTIAL	LOCATIO	DN, DEG
0	90	180	270
9.201	8.817	9.196	8.936

VANE INLET 8.867 8.678 8.870 9.476

		EXIT		
AXIAL	Α	В	В	С
STATION	TOP	TÖP	BOTTOM	TOP
SI				10.073
\$ 2		8.133	8.155	8.096
53		8.288		
\$4 \$4	8.373	8.350	8.355	8.307
S 5	0.010	8.445	0.000	
56	8.572	8.573	8.568	8.576
Š7	0.5.6	8.703		
58	8.798	8.828	8.826	8.850
59	0.770	8.947	0.020	• • • • • • • • • • • • • • • • • • • •
ŠÍ0		8.999		
511	9.004	9.058	9.046	9.082
S12	7.001	9.111	,	7.002
S13	9.106	9.166		9.179
S14	7.100	9.212		,,
\$15	9.253	9.286		9.306
313	7.233	7.200		7.500

XCO0 0.000 0.025 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.900 0.950	PRESSURE SUCT 9.395 8.491 8.276 8.155 8.056 7.7880 7.709 8.034 8.636 8.571 8.643 8.693	PRESS 9.393 9.280 9.183 9.255 9.330 9.411 9.437 9.433 9.477 9.438 9.170 9.975 8.952 8.778	MACH SUCT 0.330 0.5046 0.5666 0.582 0.610 0.637 0.585 0.492 0.473 0.473	NO PRESS 0.331 0.3578 0.362 0.345 0.320 0.320 0.321 0.325 0.325 0.380 0.150 0.424	COEFFI SUCT 0.092 -1.050 -1.321 -1.474 -1.599 -1.821 -1.968 -2.037 -1.627 -1.627 -1.119 -0.949 -0.857 -0.795	CIENT PRESS 0.088 -0.053 -0.195 0.009 0.112 0.146 0.195 0.140 -0.033 -0.193 -0.468 -0.687
		0 100	0 700	A 765		_
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	9.121 8.448 8.392 8.2271 8.2245 8.2666 9.110 9.145 9.165	9.122 9.546 9.456 9.4516 9.4518 9.5528 9.627 9.627 9.5466 9.333	0.390 0.516 0.526 0.5543 0.5546 0.5551 0.5547 0.478 0.472 0.388 0.3881	0.390 0.293 0.335 0.327 0.316 0.300 0.271 0.271 0.273 0.313 0.343 0.343	-0.254 -1.103 -1.173 -1.301 -1.327 -1.382 -1.360 -1.335 -0.829 -0.391 -0.268 -0.225 -0.199	-0.254 0.282 0.065 0.110 0.168 0.246 0.385 0.384 0.283 0.181 0.117 0.023 -0.115
(C) SEC	TION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.300 0.500 0.700 0.800 0.850 0.900	9.068 8.429 8.304 8.200 8.149 8.158 8.625 8.999 9.122 9.149 9.181 9.172	9.068 9.499 9.290 9.364 9.555 9.5556 9.5624 9.5551 9.5338	0.401 0.520 0.541 0.553 0.558 0.567 0.563 0.485 0.415 0.390 0.385 0.380	0.401 0.305 0.354 0.337 0.325 0.292 0.280 0.292 0.287 0.299 0.317 0.329 0.343 0.366	-0.321 -1.128 -1.286 -1.378 -1.417 -1.481 -1.457 -0.457 -0.408 -0.253 -0.220 -0.179 -0.190	-0.321 -0.223 -0.042 0.052 0.119 0.2286 0.345 0.356 0.2564 0.162 0.096 0.020 -0.106
(D) SEC	TION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.300 0.500 0.700 0.800 0.850 0.950	8.643 8.629 8.658 8.691 8.734 8.787 8.835 9.305 9.353 9.368 9.385	8.645 10.014 9.777 9.742 9.735 9.749 9.768 9.794 9.794 9.721 9.661 9.617 9.553 9.458	0.482 0.485 0.479 0.473 0.465 0.456 0.447 0.389 0.351 0.337 0.333	0.482 0.130 0.226 0.238 0.240 0.235 0.229 0.221 0.223 0.244 0.262 0.274 0.291 0.315	-0.857 -0.876 -0.839 -0.797 -0.743 -0.676 -0.615 -0.538 -0.246 -0.023 0.038 0.057 0.072	-0.856 0.573 0.529 0.538 0.562 0.595 0.5802 0.427 0.4271 0.291 0.171

TABLE 85.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 12 TO 15; AIRFLOW, 77.15 kg/sec)

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.300 0.500 0.700 0.800 0.850 0.950	PRESSURE SUCT 9.304 8.248 7.995 7.855 7.739 7.539 7.5393 7.325 7.688 8.148 8.302 8.386 8.444	N/CM2 PRESS 9.303 9.131 9.022 9.106 9.195 9.292 9.367 9.314 9.154 9.952 8.750 8.545	MACH SUCT 0.351 0.559 0.592 0.613 0.665 0.6897 0.641 0.5541 0.5527 0.518	NO PRESS 0.351 0.388 0.411 0.394 0.375 0.3548 0.3548 0.349 0.349 0.414 0.161 0.463 0.499	COEFFI SUCT 0.119 -1.036 -1.313 -1.465 -1.593 -1.822 -1.971 -2.046 -1.649 -1.146 -0.977 -0.885 -0.822	CIENT PRESS 0.119 -0.070 -0.189 -0.097 0.000 0.104 0.130 -0.188 0.130 -0.207 0.828 -0.487 -0.711
(B) SEC	CTION B					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950	8.978 8.178 8.118 7.998 7.971 7.918 7.937 7.962 8.426 8.824 8.936 8.976 9.000	8.978 9.436 9.281 9.336 9.409 9.466 9.538 9.5463 9.536 9.203	0.419 0.562 0.572 0.596 0.601 0.592 0.449 0.420 0.415	0.419 0.321 0.366 0.356 0.344 0.327 0.313 0.295 0.296 0.319 0.354 0.373 0.401	-0.238 -1.113 -1.178 -1.309 -1.339 -1.377 -1.349 -0.841 -0.406 -0.283 -0.240 -0.213	-0.237 0.263 0.047 0.094 0.154 0.234 0.297 0.375 0.373 0.272 0.171 0.105 0.008 -0.135
(C) SE	CTION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.800 0.850 0.950	8.916 8.156 8.003 7.912 7.879 7.819 7.827 7.839 8.372 8.808 8.950 8.981 9.018	8.916 9.370 9.134 9.221 9.287 9.390 9.444 9.511 9.415 9.332 9.271 9.202 9.083	0.431 0.565 0.590 0.605 0.610 0.620 0.619 0.617 0.452 0.425 0.411 0.413	0.431 0.336 0.388 0.369 0.355 0.332 0.319 0.305 0.302 0.325 0.345 0.374 0.398	-0.305 -1.136 -1.304 -1.403 -1.440 -1.506 -1.497 -1.483 -0.423 -0.267 -0.234 -0.194 -0.203	-0.306 0.192 -0.066 0.029 0.101 0.213 0.272 0.3346 0.241 0.150 0.083 0.007 -0.123
(D) SEC	CTION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.500 0.700 0.800 0.900 0.950	8.400 8.386 8.424 8.466 8.519 8.584 8.636 8.710 8.972 9.173 9.229 9.246 9.265	8.399 9.993 9.716 9.676 9.668 9.737 9.737 9.729 9.5587 9.5467	0.525 0.527 0.520 0.513 0.504 0.493 0.483 0.470 0.421 0.380 0.368 0.361 0.360	0.525 0.141 0.246 0.257 0.260 0.255 0.249 0.239 0.241 0.264 0.282 0.315 0.341	-0.870 -0.885 -0.844 -0.797 -0.739 -0.668 -0.611 -0.531 -0.244 -0.024 0.038 0.056 0.071	-0.870 0.873 0.577 0.527 0.517 0.535 0.558 0.593 0.584 0.500 0.429 0.370 0.290

TABLE 86.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A (READINGS 28 TO 31; AIRFLOW, 35.18 kg/sec)

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.500 0.500 0.850 0.950	PRESSURE SUCT 9.785 9.745 9.742 9.672 9.654 9.664 9.669 9.832 9.845 9.858	PRESS 9.957 9.955 9.965 9.965 9.978 9.997 10.005 9.996 9.996 9.944 9.858 9.904 9.872	MACH SUCT 0.158 0.224 0.227 0.244 0.249 0.259 0.264 0.267 0.251 0.208 0.208 0.203 0.200 0.198	NO PRESS 0.158 0.159 0.154 0.148 0.142 0.135 0.135 0.135 0.164 0.198	COEFF SUCT 0.033 -0.927 -1.145 -1.273 -1.548 -1.648 -1.708 -1.400 -0.863 -0.594 -0.516	ICIENT PRESS 0.038 0.138 0.175 0.147 0.218 0.255 0.297 0.250 0.094 -0.518 -0.264 -0.440
(B) SECT						
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.800 0.850 0.900	9.917 9.794 9.782 9.766 9.755 9.755 9.844 9.935 9.942 9.943 9.943	9.918 10.030 9.994 9.998 10.006 10.014 10.025 10.034 10.036 10.020 10.004 9.994 9.979 9.959	0.175 0.221 0.225 0.230 0.232 0.234 0.231 0.204 0.176 0.168 0.165 0.164	0.175 0.121 0.140 0.138 0.134 0.130 0.124 0.117 0.126 0.135 0.140 0.147 0.157	-0.188 -0.872 -0.936 -1.025 -1.059 -1.1051 -0.596 -0.200 -0.090 -0.054 -0.034	-0.185 0.434 0.239 0.304 0.348 0.461 0.467 0.379 0.293 0.293 0.156 0.044
(C) SECT	TION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.700 0.800 0.850 0.950	9.907 9.794 9.772 9.753 9.745 9.746 9.746 9.911 9.935 9.941 9.946	9.907 10.022 9.982 9.991 10.000 10.011 10.030 10.031 10.014 10.000 9.990 9.978 9.960	0.179 0.221 0.228 0.232 0.234 0.237 0.236 0.235 0.178 0.168 0.165 0.163	0.180 0.125 0.146 0.142 0.137 0.131 0.128 0.120 0.120 0.137 0.142 0.148 0.157	-0.244 -0.874 -0.993 -1.064 -1.099 -1.143 -1.137 -1.119 -0.223 -0.093 -0.058 -0.026	-0.248 0.393 0.169 0.221 0.268 0.331 0.368 0.436 0.447 0.268 0.215 0.149 0.046
(D) SECT	ION D					
0.000 0.025 0.050 0.055 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900	9.843 9.842 9.8842 9.8854 9.863 9.870 9.885 9.937 9.937 9.932	9.844 10.111 10.056 10.056 10.055 10.059 10.064 10.063 10.049 10.038 10.029 10.016	0.204 0.205 0.204 0.202 0.200 0.197 0.194 0.188 0.169 0.153 0.149 0.148	0.204 0.055 0.101 0.104 0.105 0.104 0.102 0.098 0.099 0.108 0.116 0.121 0.128 0.138	-0.601 -0.621 -0.603 -0.574 -0.541 -0.489 -0.453 -0.368 -0.109 0.087 0.138 0.154 0.164	-0.596 0.886 0.607 0.581 0.589 0.599 0.625 0.617 0.543 0.430 0.361 0.255

XCC00000000000000000000000000000000000	PRESSUR SUCT 9.887 8.737 8.093 7.891 7.562 7.381 7.411 8.053 8.587 8.740 8.8855 8.856	E, N/CM2 PRESS 9.8887 7.8394 8.761 8.961 9.141 9.235 9.345 9.384 9.315 9.395	MACH SUCT 0.187 0.470 0.578 0.668 0.668 0.6884 0.582 0.4452 0.4453 0.443	NO PRESS 0.187 0.618 0.526 0.463 0.367 0.386 0.367 0.342 0.348 0.367 0.155 0.401 0.428	COEFFI SUCT 0.711 -0.779 -1.558 -1.558 -1.813 -2.429 -2.458 -2.420 -1.608 -0.933 -0.740 -0.653 -0.594	CIENT PRESS 0.712 -1.886 -1.177 -0.712 -0.4633 -0.120 0.026 0.075 -0.008 -0.116 0.808 -0.322 -0.494
(B) SEC						
0.000 0.025 0.050 0.075 0.100 0.200 0.300 0.500 0.700 0.850 0.950	9.121 8.455 8.404 8.284 8.2264 8.682 9.119 9.1153 9.173	9.120 9.563 9.387 9.421 9.465 9.571 9.632 9.627 9.549 9.420 9.347 9.235	0.390 0.515 0.524 0.541 0.544 0.544 0.548 0.475 0.411 0.384 0.380 0.380	0.391 0.289 0.332 0.324 0.313 0.298 0.270 0.271 0.292 0.312 0.341 0.366	-0.257 -1.100 -1.164 -1.291 -1.314 -1.367 -1.343 -1.343 -0.382 -0.260 -0.219 -0.192	-0.259 0.301 0.079 0.121 0.177 0.254 0.312 0.388 0.284 0.186 0.120 0.028 -0.113
(C) SECT	TION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.900 0.950	9.064 8.435 8.312 8.243 8.166 8.174 8.638 9.011 9.131 9.157 9.182	9.064 9.516 9.309 9.375 9.4509 9.5550 9.606 9.529 9.456 9.4405 9.4405	0.402 0.519 0.539 0.556 0.566 0.5662 0.5661 0.483 0.4413 0.388 0.376 0.378	0.402 0.301 0.350 0.335 0.323 0.302 0.277 0.277 0.277 0.316 0.328 0.342 0.364	-0.330 -1.125 -1.281 -1.368 -1.406 -1.465 -1.455 -1.440 -0.869 -0.397 -0.245 -0.212 -0.173	-0.329 0.242 -0.020 0.064 0.129 0.233 0.291 0.349 0.356 0.166 0.101 0.027 -0.101
(D) SECT	ION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	8.652 8.642 8.672 8.707 8.805 8.852 8.913 9.313 9.363 9.377 9.393	8.652 10.022 9.785 9.750 9.742 9.755 9.773 9.793 9.793 9.726 9.671 9.624 9.562	0.480 0.482 0.477 0.470 0.463 0.453 0.444 0.432 0.386 0.386 0.333 0.333	0.480 0.125 0.224 0.235 0.238 0.233 0.228 0.220 0.221 0.242 0.259 0.272 0.289 0.314	-0.851 -0.863 -0.825 -0.726 -0.658 -0.598 -0.520 -0.230 -0.015 0.048 0.066 0.082 0.087	-0.850 0.881 0.5882 0.5538 0.527 0.544 0.567 0.598 0.598 0.437 0.300 0.175

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.500 0.850 0.850 0.900	PRESSURE SUCT 9.869 8.662 8.286 8.036 7.838 7.507 7.311 7.316 7.965 8.740 8.706 8.781 8.839	PRESS 9.869 7.841 8.826 9.022 9.198 9.286 9.286 9.395 9.424 9.3453 9.978 8.932	MACH SUCT 0.194 0.479 0.585 0.617 0.669 0.698 0.597 0.597 0.447 0.446	NO PRESS 0.194 0.616 0.504 0.449 0.411 0.374 0.355 0.323 0.362 0.369 0.169 0.428	COEFFI SUCT 0.689 -0.841 -1.318 -1.634 -1.886 -2.553 -2.5546 -1.724 -0.785 -0.785 -0.691 -0.624 -0.618	CIENT PRESS 0.688 -1.881 -0.634 -0.386 -0.162 -0.051 0.027 0.124 0.029 -0.769 -0.314 -0.499
(B) SECT						
0.000 0.025 0.050 0.075 0.100 0.200 0.200 0.500 0.700 0.800 0.850 0.900	9.116 8.453 8.4003 8.2844 8.2642 8.2642 8.681 9.024 9.120 9.1753 9.174	9.115 9.565 9.3881 9.4625 9.5571 9.626 9.626 9.5472 9.6420 9.3476	0.392 0.515 0.524 0.5541 0.5545 0.5548 0.5475 0.475 0.4391 0.384 0.380 0.380	0.392 0.288 0.332 0.313 0.298 0.287 0.270 0.272 0.272 0.312 0.324 0.341 0.366	-0.266 -1.106 -1.171 -1.296 -1.319 -1.370 -1.348 -1.320 -0.817 -0.383 -0.262 -0.219 -0.193	-0.268 0.302 0.078 0.120 0.175 0.310 0.387 0.380 0.283 0.185 0.119 0.027 -0.114
(C) SEC	TION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.900 0.950	9.059 8.431 8.310 8.238 8.212 8.166 8.174 8.188 9.012 9.132 9.139 9.139	9.057 9.521 9.316 9.376 9.428 9.5505 9.6609 9.6530 9.405 9.405 9.347 9.245	0.403 0.519 0.5540 0.5552 0.5564 0.5662 0.413 0.413 0.388 0.388 0.376	0.404 0.299 0.350 0.355 0.322 0.291 0.278 0.276 0.297 0.315 0.342 0.364	-0.339 -1.134 -1.288 -1.378 -1.412 -1.469 -1.460 -1.460 -0.869 -0.398 -0.246 -0.212 -0.173 -0.185	-0.341 -0.247 -0.019 0.064 0.129 0.233 0.298 0.345 0.258 0.167 0.100 0.026 -0.103
(D) SEC	TION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.700 0.850 0.950	8.650 8.641 8.671 8.707 8.751 8.805 8.853 8.914 9.143 9.316 9.378 9.378 9.390	8.650 10.024 9.788 9.751 9.743 9.755 9.774 9.798 9.727 9.671 9.624 9.562 9.463	0.481 0.482 0.477 0.470 0.462 0.452 0.432 0.386 0.338 0.333 0.3331	0.481 0.124 0.223 0.235 0.237 0.233 0.227 0.220 0.221 0.242 0.259 0.272 0.289 0.314	-0.856 -0.868 -0.830 -0.785 -0.729 -0.661 -0.5921 -0.521 -0.013 -0.048 0.065 0.085	-0.856 0.885 0.538 0.528 0.544 0.567 0.598 0.598 0.4377 0.379 0.173

TABLE 89.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A4 (READINGS 46 TO 49; AIRFLOW, 72.04 kg/sec)

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.500 0.700 0.850 0.850 0.900	PRESSURE SUCT 9.870 8.683 8.302 8.046 7.836 7.484 7.278 7.271 7.935 8.521 8.694 8.771 8.826 8.837	F, N/CM2 PRESS 9.870 7.657 8.473 8.770 8.973 9.151 9.245 9.357 9.390 9.317 9.224 10.097 9.042 8.890	MACH SUCT 0.194 0.475 0.541 0.583 0.617 0.672 0.704 0.705 0.601 0.504 0.475 0.448 0.446	NO PRE94 0.645 0.4512 0.452 0.452 0.3364 0.3331 0.3369 0.0436	COEFF: SUCT 0.690 -0.813 -1.619 -1.886 -2.331 -2.592 -2.601 -1.761 -1.019 -0.792 -0.632 -0.6319	PRESS 0.690 -2.112 -1.079 -0.703 -0.446 -0.221 -0.102 0.040 0.082 -0.010 -0.129 0.977 -0.3551
(B) SECT	ION B					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.800 0.850 0.900	9.107 8.452 8.403 8.306 8.288 8.270 8.292 8.689 9.029 9.123 9.176 9.176	9.107 9.573 9.394 9.425 9.467 9.526 9.571 9.6324 9.549 9.473 9.422 9.349	0.393 0.516 0.524 0.540 0.5543 0.5547 0.543 0.409 0.390 0.383 0.379 0.379	0.393 0.286 0.331 0.323 0.313 0.298 0.272 0.272 0.292 0.312 0.341 0.365	-0.276 -1.106 -1.168 -1.290 -1.313 -1.362 -1.3309 -0.375 -0.256 -0.214 -0.188 -0.189	-0.277 0.314 0.087 0.126 0.180 0.254 0.311 0.387 0.378 0.122 0.030 -0.109
(C) SECT	ION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.900 0.950	9.049 8.429 8.311 8.243 8.218 8.176 8.185 8.199 8.648 9.136 9.136 9.136	9.049 9.534 9.5320 9.3883 9.5558 9.6508 9.65359 9.4050 9.4050 9.249	0.405 0.520 0.5540 0.555 0.555 0.5661 0.558 0.4812 0.382 0.375 0.377	0.405 0.296 0.348 0.333 0.321 0.302 0.290 0.278 0.276 0.297 0.315 0.327 0.341 0.363	-0.350 -1.135 -1.284 -1.370 -1.402 -1.455 -1.444 -1.427 -0.858 -0.391 -0.239 -0.207 -0.168 -0.177	-0.350 0.264 -0.007 0.072 0.136 0.235 0.294 0.351 0.358 0.262 0.169 0.106 0.031 -0.097
(D) SECT	ION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.700 0.800 0.850 0.950	8.636 8.633 8.666 8.701 8.746 8.801 8.850 8.911 9.141 9.316 9.363 9.378 9.399	8.637 10.023 9.787 9.751 9.743 9.755 9.773 9.793 9.793 9.793 9.670 9.623 9.561 9.461	0.483 0.484 0.478 0.472 0.463 0.453 0.444 0.432 0.386 0.334 0.3334	0.483 0.124 0.223 0.235 0.237 0.233 0.228 0.220 0.242 0.242 0.259 0.272 0.289 0.315	-0.872 -0.877 -0.835 -0.790 -0.733 -0.663 -0.602 -0.525 -0.233 -0.012 0.048 0.048 0.081	-0.872 0.884 0.585 0.538 0.5529 0.567 0.567 0.597 0.592 0.437 0.437 0.298 0.172

XC/C	PRESSURE	, N/CM2	MACH	NO	COEFFI	CIENT
	SUCT	PRESS	SUCT	Press	SUCT	PRESS
0.000	10.008	10.008	0.133 0.412	0.133	0.866 -0.394	0.866
0.050	8.628 8.330	8.156 8.176	0.485	0.565 0.562	-0.882 -1.259	-1.479 -1.454
0.100 0.150	8.047 7.466	8.191 8.261	0.583	0.560	-1.617 -2.353	-1.435 -1.347
0.200	6.976	8.377 8.617	0.750 0.768	0.528 0.487	-2.973 -3.125	-1.199 -0.895
0.500	8.094 8.787	8.958 9.127	0.576	0.423	-1.557 -0.681	-0.463 -0.250
0.800	8.937	9.169	0.427	0.381	-0.491	-0.197
	8.990	10.149	0.417	0.049	-0.423	1.045
0.900	9.023	9.169	0.410	0.381	-0.381	-0.197
0.950	9.018	9.148	0.411	0.385	-0.387	-0.223
(B) SEC	TION B					
0.000	9.117	9.118	0.391	0.391	-0.262	-0.262
0.025	8.481	9.565	0.511	0.288	-1.068	0.305
0.050 0.075	8.434 8.338	9.397 9.431	0.519	0.330	-1.128 -1.249	0.092
0.100	8.317	9.475	0.539	0.311	-1.276	0.191
0.150	8.274	9.534	0.546	0.296	-1.330	0.266
0.200	8.292	9.579	0.543	0.284	-1.307	0.322
	8.316	9.637	0.539	0.268	-1.277	0.396
0.500	8.705	9.636	0.471	0.269	-0.784	0.394
0.700	9.041	9.559	0.407	0.290	-0.359	0.297
0.800	9.134	9.482	0.388	0.309	-0.241	0.200
0.850	9.167	9.431	0.381	0.322	-0.199	0.135
0.900	9.186	9.358	0.377	0.339	-0.175	0.043
0.950	9.186	9.249	0.377	0.363	-0.175	-0.095
(C) SEC	CTION C					
0.000	9.054	9.051	0.404	0.405	-0.342	$-0.346 \\ 0.233$
0.025	8.451	9.508	0.516	0.303	-1.105	
0.050	8.334	9.309	0.536	0.350	-1.253	-0.020
0.075	8.262	9.379	0.548	0.334	-1.345	0.069
0.100	8.233	9.432	0.553	0.321	-1.382	0.136
0.150	8.187	9.512	0.560	0.302	-1.440	0.237
0.200	8.194	9.560	0.559	0.289	-1.431	0.299
0.300	8.205	9.607	0.557	0.277	-1.417	0.358
0.500	8.655	9.614	0.480	0.275	-0.848	0.367
0.700	9.022	9.536	0.411	0.296	-0.383	
0.800 0.850	9.143 9.169	9.462 9.415	0.386 0.380	0.314	-0.230 -0.196	0.174
0.900	9.200	9.355	0.374	0.340	-0.157	0.039
0.950	9.191	9.258	0.376	0.361	-0.168	-0.084
(D) SE	CTION D					
0.000	9.803	9.805	0.218	0.217	0.606	0.608
0.025	9.215	9.823	0.371	0.211	-0.138	0.631
0.050	9.072	9.670	0.401	0.259	-0.320	0.437
0.075	8.967	9.690	0.422	0.253	-0.453	0.463
0.100	8.923	9.708	0.430	0.248	-0.508	0.486
0.150	8.862	9.744	0.442	0.237	-0.586	0.531
0.200	8.851	9.770	0.444	0.229	-0.599	0.565
0.300	8.882	9.812	0.438	0.215	-0.560	0.618
0.500 0.700	9.159 9.355	9.808 9.748	0.383	0.216 0.236	-0.209 0.039	0.612
0.800	9.403 9.414	9.696 9.655	0.328 0.326	0.251 0.263	$0.100 \\ 0.114 \\ 0.122$	0.471 0.419
0.900	9.421	9.598	0.324	0.279	0.122	0.346
0.950	9.405	9.502	0.328	0.304	0.103	0.226

TABLE 91.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A8 (READINGS 65 TO 68; AIRFLOW, 72.17 kg/sec)

XC/C 0.025 0.025 0.075 0.100 0.150 0.200 0.300 0.500 0.750 0.850 0.950	PRESSURE SUCT 9.945 8.746 8.309 7.990 7.694 7.130 6.773 6.876 7.993 8.662 8.829 8.927	PRESS 9.948 7.632 7.885 8.012 8.126 8.391 8.621 8.904 9.152 9.210 9.191 10.067 9.117 9.046	MACH SUC164 0.14643 0.5940 0.7781 0.7785 0.592 0.4487 0.4429 0.429	NO PRESS 0.162 0.669 0.589 0.570 0.526 0.486 0.434 0.3776 0.3776 0.391 0.406	COEFFI SUCT 0.785 -0.727 -1.278 -1.681 -2.054 -2.764 -3.216 -3.085 -1.676 -0.828 -0.547 -0.498	CIENT PRESS 0.789 -2.131 -1.6509 -1.175 -0.885 -0.527 -0.141 -0.1659 -0.348
(B) SEC						
0.000 0.025 0.055 0.100 0.100 0.200 0.300 0.500 0.700 0.850 0.950	9.099 8.456 8.409 8.313 8.2952 8.2271 8.293 8.687 9.120 9.153 9.171 9.173	9.099 9.588 9.4526 9.4626 9.5529 9.6627 9.65572 9.4421 9.333	0.55393 0.552393 0.55430 0.55443 0.55443 0.3380 0.3380 0.3380	0.395 0.289 0.332 0.313 0.298 0.271 0.271 0.271 0.292 0.312 0.341 0.366	-0.281 -1.092 -1.152 -1.279 -1.350 -1.326 -1.298 -0.801 -0.374 -0.255 -0.214 -0.198	-0.281 0.301 0.083 0.126 0.182 0.257 0.315 0.387 0.384 0.287 0.190 0.124 0.031
(C) SEC	TION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.850 0.950	9.029 8.419 8.300 8.228 8.126 8.156 8.1635 9.008 9.129 9.155 9.187 9.179	9.029 9.493 9.2966 9.366 9.5559 9.55597 9.5609 9.5406 9.346	0.401 0.5558 0.5558 0.55665 0.55664 0.418 0.3387 0.3378	0.409 0.307 0.354 0.357 0.324 0.304 0.292 0.277 0.297 0.297 0.316 0.328 0.342	-0.370 -1.140 -1.290 -1.380 -1.413 -1.471 -1.464 -1.466 -0.396 -0.243 -0.210 -0.171	-0.370 0.215 -0.040 0.055 0.125 0.2389 0.360 0.261 0.165 0.106 0.028 -0.096
(D) SEC	TION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	8.224 8.578 8.578 8.627 8.673 8.807 8.843 9.028 9.356 9.356 9.384 9.403	8.225 10.106 9.891 9.827 9.803 9.795 9.811 9.789 9.709 9.649 9.603 9.541 9.440	0.5505 0.5495 0.4486 0.4455 0.4455 0.4455 0.33337 0.33324	0.554 0.061 0.186 0.209 0.218 0.220 0.215 0.228 0.248 0.265 0.278 0.294 0.320	-1.385 -1.019 -0.939 -0.880 -0.814 -0.706 -0.604 -0.305 -0.305 -0.042 0.078 0.110	-1.384 0.988 0.718 0.637 0.606 0.597 0.604 0.616 0.588 0.413 0.354 0.276 0.149

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.500 0.800 0.850 0.950	PRESSURI SUCT 9.760 8.775 8.607 8.490 8.202 8.229 8.679 9.163 9.238 9.235	E, N/CM2 PRESS 9.759 8.795 9.214 9.340 9.448 9.504 9.578 9.603 9.503 10.087 9.302	MACH SUCT 0.232 0.463 0.468 0.509 0.541 0.558 0.575 0.475 0.404 0.382 0.372 0.366	NO PRESS 0.232 0.466 0.371 0.343 0.318 0.304 0.285 0.278 0.289 0.304 0.080 0.0352	COEFFI SUCT 0.555 -0.432 -0.717 -0.895 -1.043 -1.281 -1.405 -1.370 -0.804 -0.329 -0.197 -0.139 -0.105	CIENT PRESS 0.554 -0.7307 -0.132 0.026 0.163 0.232 0.326 0.357 0.303 0.232 0.966 0.095 -0.021
(B) SECT						
0.000 0.025 0.050 0.075 0.100 0.200 0.300 0.500 0.700 0.850 0.850 0.950	9.515 8.678 8.519 8.342 8.122 8.129 8.201 8.812 9.131 9.174 9.1205 9.211	9.515 8.697 8.887 9.114 9.271 9.3481 9.532 9.532 9.530 9.487 9.423	0.301 0.476 0.504 0.551 0.5571 0.571 0.558 0.451 0.388 0.379 0.377 0.373	0.301 0.472 0.437 0.392 0.358 0.358 0.309 0.287 0.280 0.280 0.280 0.304	0.247 -0.805 -1.006 -1.228 -1.350 -1.508 -1.406 -0.637 -0.237 -0.182 -0.165 -0.143	0.247 -0.783 -0.543 -0.257 -0.060 0.2060 0.315 0.314 0.348 0.2662 0.131 0.09
(C) SECT	TION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	9.375 8.567 8.335 8.181 8.082 7.923 7.927 8.653 9.083 9.206 9.240 9.275	9.375 8.528 8.665 9.041 9.172 9.330 9.416 9.5589 9.5552 9.496 9.459 9.410 9.332	0.335 0.496 0.536 0.561 0.578 0.603 0.590 0.480 0.398 0.373 0.358	0.335 0.502 0.478 0.477 0.380 0.325 0.325 0.325 0.302 0.305 0.335 0.335 0.345	0.071 -0.945 -1.238 -1.431 -1.555 -1.756 -1.750 -1.6537 -0.296 -0.142 -0.099 -0.058	0.071 -0.995 -0.822 -0.349 -0.185 0.013 0.122 0.245 0.245 0.293 0.222 0.176 0.114
(D) SECT	ION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.800 0.850 0.950	8.704 8.666 8.704 8.756 8.818 8.901 8.965 9.021 9.185 9.315 9.352 9.363 9.367	8.705 10.141 9.956 9.883 9.852 9.838 9.844 9.845 9.845 9.681 9.630 9.561 9.459	0.471 0.478 0.471 0.461 0.450 0.434 0.422 0.411 0.349 0.349 0.338 0.336	0.471 0.036 0.159 0.189 0.201 0.206 0.205 0.203 0.236 0.256 0.270 0.289 0.315	-0.773 -0.821 -0.773 -0.708 -0.630 -0.525 -0.446 -0.374 -0.169 -0.004 0.041 0.055 0.064 0.061	-0.772 1.034 0.801 0.709 0.671 0.653 0.657 0.662 0.537 0.455 0.392 0.304 0.177

XC/00 0.0025 0.0025 0.075 0.100 0.150 0.200 0.500 0.500 0.7800 0.850 0.950	PRESSURE SUCT 9.587 8.646 8.533 8.441 8.227 8.227 8.276 9.183 9.265	PRESS 7 8.5886 9.249 9.391 9.485 9.5603 9.5522 9.5526 9.416 9.3	MACH SUCT 2 0.2826 0.482 0.517 0.5542 0.5546 0.469 0.375 0.369 0.369	NO PRESS 0.282 0.418 0.395 0.363 0.331 0.296 0.271 0.284 0.297 0.097 0.325 0.347	COEFF SUCT 0.346 -0.582 -0.818 -0.957 -1.072 -1.247 -1.336 -1.276 -0.731 -0.272 -0.141 -0.089 -0.049	PRESS 0.3497 -0.255 -0.071 0.103 0.282 0.367 0.395 0.369 0.269 0.134 0.020
(B) SEC		0.577				
0.000 0.025 0.025 0.075 0.100 0.100 0.200 0.300 0.500 0.700 0.850 0.900	9.536 8.732 8.601 8.394 8.319 8.319 8.798 9.1215 9.2266 9.266	9.537 9.269 9.234 9.3401 9.5585 10.199 9.638 9.421 9.329	0.296 0.469 0.489 0.514 0.5338 0.5331 0.4533 0.3361 0.360 0.360	0.295 0.359 0.366 0.344 0.329 0.2283 0.2283 0.295 0.276 0.327	0.283 -0.711 -0.870 -1.047 -1.131 -1.229 -1.223 -1.171 -0.628 -0.221 -0.114 -0.077 -0.051	0.284 -0.047 -0.088 0.033 0.116 0.275 0.341 0.406 1.096 0.374 0.230 0.145 0.017
(C) SEC	TION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	9.491 8.719 8.527 8.413 8.353 8.265 8.304 8.794 9.141 9.248 9.271 9.300 9.292	9.489 9.290 9.314 9.392 9.519 9.5628 9.6605 9.544 9.5450 9.3600	0.307 0.458 0.502 0.552 0.5547 0.547 0.5454 0.3354 0.3354	0.307 0.353 0.376 0.349 0.331 0.300 0.288 0.271 0.262 0.277 0.294 0.317 0.338	0.227 -0.728 -0.966 -1.107 -1.180 -1.285 -1.290 -1.242 -0.635 -0.206 -0.074 -0.045 -0.009	0.226 -0.014 -0.146 0.105 0.262 0.321 0.397 0.438 0.368 0.292 0.244 0.177 0.068
(D) SEC	TION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.700 0.800 0.850 0.900	8.750 8.606 8.630 8.674 8.740 8.879 9.281 9.330 9.356 9.359	8.751 10.050 9.801 9.756 9.742 9.753 9.771 9.794 9.787 9.655 9.607 9.537 9.440	0.463 0.489 0.4884 0.44764 0.4453 0.3356 0.33439 0.3339	0.462 0.108 0.218 0.233 0.237 0.234 0.228 0.221 0.225 0.245 0.277 0.295 0.320	-0.690 -0.871 -0.867 -0.838 -0.783 -0.702 -0.624 -0.530 -0.530 -0.032 0.042 0.061 0.064	-0.688 0.619 0.6155 0.5538 0.5574 0.6094 0.5948 0.4371 0.285 0.164

TABLE 94.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 947 TO 950; AIRFLOW, 35.50 kg/sec)

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.800 0.850 0.900	SUCT 10.015 9.941 9.939 9.910 9.8852 9.854 9.844 9.853 9.862 9.873	RE, N/CM2 PRESS 10.015 9.9883 9.916 9.975 9.980 9.9989 9.999 9.9989 9.9988 9.988 9.988	MAC SUCT 0.129 0.165 0.166 0.175 0.180 0.188 0.193 0.200 0.203 0.203 0.200 0.197 0.193 0.171	H NO PRESS 0.129 0.146 0.189 0.176 0.147 0.143 0.142 0.141 0.141 0.144 0.144	COEFF SUCT 0.363 -0.0407 -0.157 -0.226 -0.343 -0.512 -0.557 -0.5657 -0.411 -0.108	PRESS 0.366 0.187 -0.353 -0.173 0.174 0.222 0.236 0.244 0.238 0.216 0.204
(B) SEC						
0.000 0.025 0.055 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.900	9.963 9.892 9.886 9.8877 9.8673 9.8841 9.8841 9.8851 9.8913 9.938	9.963 10.029 9.878 9.986 9.986 9.993 9.993 9.999 9.998 9.988 9.982 9.976	0.156 0.188 0.188 0.191 0.200 0.204 0.205 0.204 0.204 0.201 0.193 0.177 0.167	0.155 0.121 0.191 0.179 0.144 0.142 0.141 0.138 0.140 0.141 0.143 0.146 0.149	0.079 -0.305 -0.336 -0.387 -0.442 -0.516 -0.5881 -0.5881 -0.569 -0.527 -0.408 -0.192 -0.057	0.080 0.443 -0.379 -0.210 0.206 0.207 0.229 0.246 0.253 0.219 0.187 0.153
(C) SEC	TION ¢					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.800 0.850 0.950	9.961 9.892 9.882 9.8871 9.856 9.8443 9.8443 9.846 9.876 9.8909	9.962 10.026 9.869 9.909 9.983 9.986 9.988 9.992 9.995 9.995 9.995 9.985 9.985	0.156 0.185 0.186 0.189 0.194 0.199 0.203 0.204 0.204 0.202 0.199 0.192 0.179	0.156 0.123 0.194 0.179 0.146 0.144 0.143 0.141 0.143 0.145 0.148	0.073 -0.304 -0.306 -0.358 -0.421 -0.499 -0.554 -0.571 -0.543 -0.393 -0.215 -0.019	0.075 0.425 -0.432 -0.2192 0.205 0.225 0.225 0.225 0.225 0.225 0.223 0.203
(D) SECT	ION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	9.851 9.855 9.858 9.857 9.858 9.857 9.8843 9.8557 9.8857 9.886 9.946	9.851 10.081 9.898 9.940 9.988 9.990 9.996 9.998 10.002 10.000 9.998 9.992 9.982	0.201 0.196 0.199 0.199 0.200 0.202 0.204 0.201 0.199 0.188 0.179 0.169	0.201 0.085 0.183 0.166 0.143 0.142 0.139 0.136 0.136 0.136 0.137 0.138	-0.529 -0.453 -0.492 -0.494 -0.507 -0.549 -0.572 -0.524 -0.496 -0.317 -0.086 -0.012	-0.526 0.726 -0.273 -0.044 0.219 0.231 0.260 0.275 0.290 0.296 0.285 0.242 0.187

TABLE 95.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 951 TO 954; AIRFLOW, 56.52 kg/sec)

XCO00 0.025 0.025 0.075 0.100 0.150 0.200 0.500 0.500 0.700 0.850 0.950	PRESSURE, SUCT 9.842 9.634 9.581 9.581 9.450 9.450 9.4384 9.384 9.499 9.499 9.643	N/CM2 PRESS 9.7420 9.7420 9.7755 9.7755 9.7755 9.7757 9.7753 9.7757	MACH SUCT 0.204 0.267 0.284 0.293 0.308 0.317 0.329 0.333 0.334 0.321 0.321 0.325	NO PRESS 0.204 0.241 0.2233 0.233 0.233 0.233 0.233 0.233 0.233 0.233	COEFFI SUCT 0.396 -0.025 -0.154 -0.125 -0.353 -0.429 -0.528 -0.568 -0.576 -0.522 -0.4623 -0.022	CIENT PRESS 0.396 0.165 -0.4829 0.128 0.213 0.228 0.236 0.234 0.218 0.218 0.2196 0.207
(B) SEC						
0.000 0.025 0.055 0.1050 0.1050 0.200 0.300 0.500 0.700 0.850 0.900	9.712 9.533 9.497 9.467 9.439 9.401 9.364 9.369 9.376 9.476 9.576	9.713 9.8555 9.4601 9.7141 9.7754 9.7769 9.7759 9.7733	0.247 0.296 0.305 0.313 0.320 0.329 0.336 0.335 0.335 0.326 0.311 0.285 0.277	0.246 0.208 0.328 0.245 0.2334 0.2331 0.2230 0.2336 0.2336 0.247	0.124 -0.255 -0.330 -0.394 -0.453 -0.534 -0.611 -0.600 -0.585 -0.509 -0.375 -0.164 -0.097	0.125 0.420 -0.524 -0.111 0.138 0.232 0.260 0.236 0.232 0.164 0.124
(C) SEC	TION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.300 0.500 0.700 0.800 0.850 0.900	9.700 9.535 9.506 9.448 9.448 9.3370 9.3370 9.3416 9.468 9.5530	9.699 9.849 9.391 9.601 9.722 9.751 9.766 9.765 9.765 9.741 9.720	0.250 0.296 0.303 0.310 0.318 0.327 0.334 0.335 0.336 0.332 0.313 0.291 0.271	0.251 0.202 0.331 0.278 0.244 0.238 0.231 0.227 0.229 0.230 0.234 0.238	0.098 -0.249 -0.312 -0.371 -0.434 -0.576 -0.598 -0.598 -0.563 -0.500 -0.391 -0.206	0.096 0.411 -0.553 -0.111 0.144 0.185 0.227 0.2258 0.244 0.234 0.234
(D) SEC	TION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.950	9.354 9.380 9.377 9.382 9.371 9.351 9.359 9.362 9.379 9.468 9.537 9.598 9.610	9.354 9.981 9.449 9.718 9.718 9.7563 9.7774 9.7769 9.761 9.745	0.340 0.334 0.335 0.333 0.335 0.341 0.343 0.343 0.334 0.313 0.295 0.279	0.340 0.147 0.317 0.250 0.245 0.238 0.231 0.228 0.227 0.229 0.236 0.247	-0.632 -0.577 -0.584 -0.576 -0.573 -0.638 -0.663 -0.614 -0.379 -0.390 -0.246 -0.118	-0.631 0.689 -0.432 0.098 0.135 0.183 0.215 0.232 0.254 0.2543 0.247 0.194 0.123

XCO00 0.0025 0.0050 0.075 0.100 0.150 0.200 0.500 0.7800 0.8850 0.950	PRESSURE SUCT 9.688 9.374 9.361 9.275 9.1225 9.164 8.992 8.966 8.992 9.056 9.177 9.386	N/CM2 PRESS 9.6889 9.977 9.514 9.5550 9.5553 9.5553 9.55324 9.5532	MACH SUCT 0.2535 0.3358 0.358 0.359 0.407 0.422 0.422 0.423 0.423 0.404 0.379 0.332	NO PRESS 0.305 0.317 0.335 0.311 0.295 0.299 0.299 0.299 0.299	COEFFI SUCT 0.397 -0.042 -0.059 -0.178 -0.253 -0.388 -0.473 -0.610 -0.657 -0.620 -0.557 -0.315 -0.025	CIENT PRESS 0.393 -0.1376 -0.037 0.098 0.155 0.188 0.203 0.203 0.2091 0.180
(B) SEC						
0.000 0.025 0.055 0.100 0.150 0.300 0.500 0.500 0.700 0.850 0.950	9.485 9.219 9.137 9.091 9.047 8.985 8.926 8.928 9.000 9.106 9.261 9.303	9.486 9.685 9.6861 9.374 9.4604 9.5534 9.5547 9.5549 9.5520 9.466	0.308 0.370 0.387 0.397 0.406 0.428 0.429 0.429 0.427 0.4394 0.361 0.351	0.308 0.255 0.435 0.314 0.295 0.298 0.298 0.295 0.306 0.314	0.115 -0.257 -0.372 -0.435 -0.496 -0.589 -0.665 -0.662 -0.662 -0.563 -0.119	0.115 0.393 -0.617 -0.041 0.085 0.147 0.197 0.203 0.189 0.163 0.126 0.083
(C) SE	CTION C					
0.000 0.025 0.050 0.075 0.150 0.2500 0.500 0.700 0.800 0.850 0.950	9.461 9.197 9.143 9.099 9.050 8.987 8.929 8.923 8.923 8.920 9.001 9.086 9.225 9.327	9.463 9.673 9.673 9.393 9.465 9.5520 9.5543 9.5546 9.5547 9.5573	0.315 0.374 0.386 0.395 0.405 0.429 0.429 0.425 0.425 0.356 0.366	0.314 0.257 0.428 0.331 0.313 0.303 0.298 0.294 0.289 0.291 0.293 0.298 0.303 0.311	0.080 -0.287 -0.363 -0.424 -0.492 -0.581 -0.6644 -0.662 -0.669 -0.632 -0.561 -0.443 -0.248	0.083 0.380 -0.655 -0.015 0.087 0.144 0.173 0.223 0.210 0.199 0.173 0.147 0.097
(D) SE	CTION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.900	8.959 8.952 8.947 8.947 8.988 8.865 8.930 9.078 9.194 9.289	8.959 9.871 9.457 9.457 9.459 9.5558 9.5558 9.5558 9.5539 9.5539 9.5511	0.423 0.424 0.425 0.425 0.425 0.437 0.437 0.4329 0.3375 0.335 0.335	0.423 0.193 0.421 0.329 0.315 0.298 0.299 0.299 0.290 0.292 0.295 0.305	-0.620 -0.630 -0.641 -0.636 -0.636 -0.661 -0.719 -0.751 -0.660 -0.454 -0.291 -0.166	-0.619 0.655 -0.603 -0.004 0.075 0.133 0.170 0.1209 0.215 0.205 0.189 0.150

XCC0005 0.025 0.025 0.075 0.150 0.150 0.200 0.3500 0.700 0.850 0.850 0.95	PRESSURE SUCT 9.6220 9.2229 9.1229 9.065 8.947 8.7790 8.7758 8.870 9.025	PRESS 9.620 9.375 9.354 9.4435 9.4451 9.4436 9.4423 9.4423 9.4423	MACH SUCT 0.273 0.3648 0.389 0.402 0.425 0.455 0.463 0.463 0.463 0.440 0.362	NO PRESS 0.273 0.331 0.458 0.365 0.329 0.322 0.318 0.317 0.318 0.323 0.323	COEFFI SUCT 0.397 -0.059 -0.0201 -0.2279 -0.421 -0.614 -0.6652 -0.517 -0.517 -0.3247	CIENT PRESS 0.397 0.117 -0.636 0.074 0.132 0.168 0.184 0.187 0.169 0.144 0.157
(B) SECT	TION B					
0.000 0.025 0.050 0.075 0.100 0.200 0.200 0.500 0.700 0.800 0.850 0.950	9.380 9.053 8.957 8.955 8.852 8.774 8.716 8.706 8.717 8.790 8.919 9.097 9.148	9.381 9.600 8.733 9.222 9.336 9.3416 9.4433 9.440 9.440 9.447 9.335	0.334 0.404 0.423 0.433 0.443 0.458 0.469 0.471 0.469 0.455 0.431 0.395 0.385	0.334 0.279 0.466 0.369 0.322 0.325 0.325 0.323 0.323 0.323 0.3344	0.105 -0.294 -0.411 -0.474 -0.538 -0.703 -0.720 -0.716 -0.703 -0.613 -0.456 -0.239	0.106 0.373 -0.684 -0.087 0.051 0.116 0.149 0.203 0.178 0.162 0.135 0.050
(C) SECT	LION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	9.349 9.030 8.964 8.911 8.853 8.775 8.705 8.705 8.731 8.793 8.793 8.896 9.063 9.172	9.348 9.590 8.695 9.2357 9.385 9.4427 9.4455 9.4455 9.435 9.388	0.341 0.409 0.422 0.432 0.458 0.458 0.466 0.472 0.466 0.455 0.435 0.380	0.341 0.281 0.473 0.358 0.344 0.332 0.322 0.3215 0.318 0.321 0.326 0.3321	0.067 -0.322 -0.402 -0.466 -0.537 -0.632 -0.717 -0.717 -0.686 -0.610 -0.484 -0.282 -0.149	0.066 0.360 -0.729 -0.026 0.050 0.114 0.145 0.164 0.184 0.172 0.144 0.115 0.066
(D) SECT	TION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.900	8.783 8.746 8.735 8.737 8.736 8.713 8.661 8.632 8.679 8.710 8.889 9.029 9.129 9.140	8.786 9.823 8.742 9.264 9.330 9.410 9.445 9.445 9.445 9.325 9.329	0.457 0.465 0.465 0.465 0.469 0.479 0.486 0.476 0.470 0.4389 0.389	0.456 0.211 0.464 0.360 0.345 0.327 0.323 0.317 0.319 0.322 0.330 0.346	-0.623 -0.668 -0.681 -0.678 -0.680 -0.777 -0.806 -0.749 -0.711 -0.493 -0.493 -0.201 -0.188	-0.619 0.644 -0.673 -0.037 0.044 0.105 0.142 0.162 0.183 0.190 0.179 0.123 0.043

TABLE 98.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 963 TO 966; AIRFLOW, 75.56 kg/sec)

XC00 0.0025 0.0025 0.0505 0.100 0.1500 0.300 0.300 0.500 0.850 0.850 0.950	PRESSURE SUCT 9.600 9.204 9.185 9.080 9.013 8.890 8.811 8.722 8.689 8.679 8.738 8.811 8.976 9.211	PRESS 9.601 9.355 8.704 9.195 9.314 9.366 9.411 9.413 9.397 9.389 9.378	MACH SUCT 0.279 0.373 0.377 0.399 0.412 0.451 0.468 0.475 0.465 0.465 0.472	NO PRESS 0.279 0.340 0.471 0.375 0.349 0.326 0.326 0.326 0.326 0.330 0.332	COEFFI SUCT 0.411 -0.043 -0.065 -0.186 -0.263 -0.494 -0.596 -0.635 -0.577 -0.494 -0.306	CIENT PRESS 0.411 0.129 -0.617 -0.054 0.083 0.143 0.177 0.194 0.198 0.196 0.178 0.169 0.154
(B) SEC						
0.000 0.025 0.055 0.075 0.100 0.200 0.200 0.300 0.500 0.700 0.800 0.850 0.900	9.343 8.996 8.895 8.787 8.7648 8.623 8.6420 8.856 9.047	9.343 9.556 9.185 9.257 9.357 9.357 9.3403 9.3403 9.35635 9.355	0.342 0.415 0.4456 0.4456 0.4450 0.4884 0.4881 0.4463 0.4467 0.4496	0.342 0.286 0.480 0.377 0.353 0.341 0.335 0.323 0.328 0.332 0.337 0.345	0.116 -0.282 -0.398 -0.458 -0.522 -0.614 -0.685 -0.699 -0.683 -0.598 -0.442 -0.230	0.116 0.380 -0.672 -0.065 0.060 0.124 0.153 0.209 0.185 0.163 0.104 0.061
(C) SEC	TION C					
0.000 0.025 0.050 0.075 0.100 0.150 0.300 0.500 0.700 0.800 0.850 0.900	9.314 8.975 8.905 8.850 8.790 8.706 8.6432 8.6627 8.6627 8.726 8.726 8.837 9.014 9.121	9.313 9.562 8.616 9.230 9.294 9.376 9.376 9.422 9.410 9.400 9.377 9.353 9.308	0.349 0.420 0.433 0.445 0.471 0.481 0.485 0.477 0.466 0.412 0.390	0.349 0.289 0.487 0.367 0.353 0.341 0.335 0.324 0.327 0.329 0.335 0.340 0.350	0.083 -0.306 -0.386 -0.449 -0.519 -0.615 -0.682 -0.699 -0.668 -0.591 -0.464 -0.261 -0.138	0.082 0.367 -0.718 -0.013 0.059 0.122 0.154 0.173 0.192 0.181 0.185 0.127 0.076
(D) SEC	TION D					
0.000 0.025 0.025 0.075 0.170 0.150 0.200 0.300 0.500 0.700 0.850 0.950	8.734 8.681 8.669 8.669 8.644 8.589 8.558 8.606 8.638 8.826 8.978 9.089	8.734 9.807 8.664 9.219 9.288 9.342 9.374 9.391 9.409 9.415 9.358 9.288	0.465 0.475 0.477 0.477 0.482 0.492 0.497 0.489 0.483 0.449 0.420 0.399 0.397	0.466 0.216 0.478 0.370 0.355 0.335 0.335 0.331 0.327 0.328 0.331 0.339 0.355	-0.582 -0.643 -0.656 -0.657 -0.685 -0.749 -0.729 -0.692 -0.477 -0.307 -0.188 -0.176	-0.583 0.648 -0.662 -0.027 0.053 0.114 0.151 0.171 0.192 0.188 0.172 0.133 0.053

TABLE 99.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE B (READINGS 967 TO 970; AIRFLOW, 78.89 kg/sec)

XC005 0.025 0.025 0.075 0.150 0.150 0.150 0.200 0.500 0.700 0.850 0.95 0.95	PRESSURE SUCT 9.552 9.109 9.086 8.971 8.896 8.758 8.668 8.571 8.534 8.521 8.521 8.521 8.670 8.861 9.108	PRESS 9.2552 8.5553 8.5094 9.2279 9.315 9.3338 9.3315 9.3306 9.306	MACH SUCT 0.291 0.393 0.425 0.425 0.461 0.475 0.504 0.495 0.504 0.477 0.4473	NO PRE2958 0.3551 0.3567 0.3459 0.3445 0.3459 0.3459 0.3451 0.3551	COEFFI SUCT 0.418 -0.046 -0.190 -0.1998 -0.413 -0.509 -0.6692 -0.5905 -0.505 -0.3047	CIENT PRESS 0.1257 -0.6462 0.170 0.132 0.170 0.186 0.188 0.160 0.144 0.159
0.000	9.266	9.266	0.360	0.360	0.118	0.118
0.025 0.050 0.100 0.1500 0.2500 0.300 0.500 0.850 0.950	8.876 8.766 8.704 8.6451 8.462 8.4667 8.4680 8.565 8.718 8.918	9.511 8.481 9.080 9.197 9.261 9.263 9.313 9.345 9.321 9.321 9.281 9.242	0.439 0.460 0.471 0.482 0.511 0.513 0.511 0.499 0.431 0.419	0.302 0.511 0.375 0.375 0.3654 0.342 0.3450 0.3566 0.365	-0.289 -0.405 -0.405 -0.534 -0.529 -0.723 -0.727 -0.715 -0.455 -0.245	0.374 -0.703 -0.076 0.046 0.112 0.168 0.201 0.161 0.134 0.094
(C) SEC						
0.000 0.025 0.025 0.075 0.100 0.1200 0.200 0.300 0.500 0.700 0.850 0.950	9.231 8.231 8.771 8.771 8.641 8.445 8.4459 8.4571 8.691 8.691 9.00	9.230 9.502 8.425 9.128 9.196 9.259 9.342 9.3327 9.328 9.3217 9.265	0.367 0.448 0.458 0.470 0.482 0.513 0.514 0.518 0.473 0.473 0.414	0.367 0.304 0.519 0.389 0.375 0.3654 0.3550 0.3546 0.3546 0.3548	0.082 -0.318 -0.398 -0.462 -0.535 -0.720 -0.720 -0.725 -0.688 -0.479 -0.274	0.081 0.365 -0.750 -0.045 0.1413 0.163 0.193 0.172 0.145 0.117
(D) SEC	TION D					
0.000 0.025 0.055 0.075 0.100 0.150 0.350 0.350 0.700 0.850 0.950	8.620 8.541 8.528 8.528 8.527 8.500 8.4406 8.4457 8.498 8.8972 8.973	8.617 9.780 8.518 9.123 9.205 9.264 9.300 9.318 9.335 9.342 9.332 9.377 9.278	0.486 0.5002 0.5002 0.5502 0.5518 0.5515 0.512 0.441 0.442 0.448	0.487 0.225 0.504 0.390 0.373 0.360 0.352 0.348 0.3443 0.345 0.348	-0.557 -0.640 -0.654 -0.653 -0.654 -0.745 -0.781 -0.728 -0.697 -0.476 -0.300 -0.189 -0.177	-0.561 0.656 -0.664 -0.031 0.054 0.116 0.154 0.173 0.197 0.187 0.187 0.130 0.049

XC/C 0.000 0.025 0.075 0.175 0.150 0.150 0.200 0.300 0.500 0.700 0.850 0.95	PRESULT 9.5061 9.0614 9.0915 8.8915 8.6915 8.4511 8.4511 8.6006 8.805	PRESS 9.528 9.235 8.446 9.179 9.275 9.275 9.297 9.297 9.293 9.264 9.253	MACH SUCT 0.298 0.408 0.437 0.437 0.473 0.518 0.518 0.518 0.440 0.440	NO PRESS 0.298 0.366 0.517 0.407 0.378 0.358 0.354 0.353 0.354 0.358 0.364	COEFFI SUCT 0.437 -0.016 -0.042 -0.157 -0.235 -0.375 -0.468 -0.566 -0.605 -0.619 -0.549 -0.549 -0.263 -0.020	CIENT PRESS 0.437 0.152 -0.612 -0.034 0.157 0.192 0.208 0.213 0.209 0.181 0.162 0.171
(B) SEC	TION B					
0.000 0.025 0.050 0.075 0.100 0.150 0.2300 0.500 0.700 0.850 0.950	9.226 8.811 8.697 8.633 8.566 8.4795 8.375 8.381 8.393 8.485 8.646 8.855 8.917	9.226 9.477 8.391 9.023 9.145 9.2148 9.269 9.302 9.277 9.2635 9.198	0.368 0.451 0.472 0.484 0.496 0.5125 0.5229 0.528 0.526 0.510 0.4431	0.368 0.310 0.526 0.410 0.386 0.371 0.364 0.359 0.352 0.357 0.360 0.375 0.385	0.145 -0.258 -0.369 -0.431 -0.496 -0.589 -0.662 -0.675 -0.664 -0.574 -0.574 -0.156	0.144 0.388 -0.666 -0.053 0.065 0.132 0.165 0.188 0.193 0.180 0.153 0.114
(C) SEC	TION C					
0.000 0.025 0.050 0.075 0.100 0.1500 0.200 0.500 0.700 0.850 0.900 0.900	9.187 8.784 8.704 8.637 8.566 8.468 8.378 8.372 8.412 8.490 8.624 8.830 8.944	9.187 9.468 8.341 9.075 9.144 9.2245 9.2264 9.300 9.284 9.2274 9.226 9.166	0.377 0.451 0.473 0.496 0.5529 0.5529 0.5529 0.5529 0.4486 0.446	0.377 0.313 0.535 0.400 0.386 0.364 0.360 0.352 0.356 0.358 0.364 0.370 0.381	0.107 -0.285 -0.363 -0.427 -0.496 -0.591 -0.661 -0.684 -0.570 -0.440 -0.240	0.106 0.379 -0.714 -0.002 0.065 0.130 0.181 0.215 0.200 0.191 0.163 0.138 0.086
(D) SEC	TION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950	8.576 8.475 8.460 8.463 8.461 8.331 8.336 8.384 8.384 8.916 8.931	8.576 9.769 8.459 9.084 9.168 9.2265 9.284 9.306 9.278 9.278 9.278 9.2151	0.494 0.512 0.514 0.514 0.5519 0.5529 0.5235 0.5223 0.4451 0.428	0.494 0.229 0.514 0.398 0.381 0.368 0.356 0.3551 0.3551 0.357 0.367	-0.487 -0.584 -0.599 -0.596 -0.598 -0.625 -0.681 -0.646 -0.430 -0.261 -0.157	-0.487 0.671 -0.600 0.006 0.087 0.147 0.182 0.201 0.221 0.210 0.195 0.151

TABLE 101.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 12A TO 15A; AIRFLOW, 73.10 kg/sec)

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950 0.950	PRESSURE SUCT 9.667 9.1640 8.969 8.914 8.801 8.860 9.2442 9.638 9.675 9.711	PRESS 9.668 9.3426 9.523 9.606 9.671 9.707 9.757 9.757 9.753 9.7753 9.7753 9.7753	MACH SUCT 0.260 0.382 0.421 0.432 0.4453 0.452 0.454 0.226 0.225 0.223	NO PRESS 0.260 0.3423 0.2277 0.259 0.277 0.248 0.2234 0.2234 0.239 0.248 0.259	COEFFI SUCT 0.600 0.121 0.003 -0.063 -0.116 -0.223 -0.167 0.198 0.481 0.572 0.612 0.646 0.670	CIENT PRESS 0.601 0.292 0.3713 0.461 0.604 0.638 0.710 0.701 0.666 0.6403
0.000 0.025 0.050 0.075 0.100 0.150 0.300 0.500 0.700 0.850 0.900 0.950	9.644 8.435 8.085 7.761 7.511 7.176 7.095 8.005 8.760 8.7751 8.788 8.794	9.645 7.379 7.750 8.526 8.713 8.953 9.0238 10.253 9.272 9.179 9.119 9.025 8.892	0.267 0.519 0.577 0.629 0.668 0.722 0.732 0.7321 0.497 0.497 0.456 0.456	0.266 0.689 0.631 0.503 0.469 0.396 0.358 0.358 0.378 0.410 0.436	0.578 -0.572 -0.905 -1.212 -1.4568 -1.845 -1.775 -0.980 -0.452 -0.316 -0.271 -0.236	0.579 -1.575 -1.223 -0.485 -0.307 -0.079 0.1957 0.224 0.136 0.078 -0.010 -0.137
(C) SEC	TION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950	8.425 8.033 7.986 7.970 8.006 8.139 8.291 8.720 9.019 9.019 9.118 9.131 9.126	8.426 9.723 9.428 9.4361 9.5567 9.5654 9.5546 9.5510 9.4375 9.253	0.520 0.586 0.593 0.596 0.581 0.568 0.543 0.468 0.411 0.396 0.391 0.388 0.390	0.520 0.243 0.324 0.320 0.315 0.299 0.288 0.266 0.264 0.283 0.317 0.336 0.362	-0.581 -0.954 -0.998 -1.013 -0.980 -0.9853 -0.709 -0.300 -0.016 0.056 0.078 0.090	-0.589 0.658 0.383 0.4615 0.5588 0.5589 0.4997 0.3317 0.206

TABLE 102.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 16A TO 19A; AIRFLOW, 74.88 kg/sec)

XC/C 0.000 0.025 0.050 0.075 0.150 0.200 0.300 0.500 0.700 0.850 0.950	PRESSURI 9.646 9.118 8.987 8.9813 8.856 8.735 8.766 9.199 9.514 9.656 9.694 9.722	E, N/CM2 PRESS 9.647 9.303 9.389 9.492 9.579 9.648 9.685 9.7367 9.757 9.717 9.688 9.6647	MACH SUCT 0.266 0.391 0.417 0.432 0.463 0.465 0.453 0.374 0.301 0.275 0.263 0.263	NO PRESS 0.266 0.332 0.307 0.284 0.265 0.233 0.240 0.245 0.256 0.266	COEFF SUCT 0.606 0.128 0.010 -0.057 -0.109 -0.189 -0.217 -0.217 -0.577 0.615 0.649 0.674	PRESS 0.606 0.296 0.373 0.467 0.545 0.607 0.641 0.689 0.7106 0.686 0.670 0.684
(B) SEC	TION B					
0.000 0.025 0.050 0.075 0.150 0.200 0.300 0.500 0.700 0.850 0.950	9.623 8.353 7.986 7.645 7.374 7.024 6.930 7.016 7.898 8.478 8.628 8.717 8.724	9.620 7.205 7.597 8.426 8.628 8.882 9.031 9.186 10.259 9.224 9.128 9.063 8.966 8.827	0.272 0.533 0.593 0.647 0.689 0.754 0.757 0.607 0.607 0.485 0.469 0.467	0.273 0.715 0.6520 0.485 0.488 0.409 0.133 0.369 0.389 0.402 0.4428	0.585 -0.563 -0.894 -1.202 -1.447 -1.763 -1.848 -1.973 -0.973 -0.450 -0.314 -0.269 -0.233 -0.227	0.582 -1.599 -1.245 -0.497 -0.314 -0.084 0.050 0.190 1.159 0.224 0.137 0.079 -0.009 -0.135
(C) SEC	TION D					
0.000 0.025 0.050 0.075 0.150 0.200 0.300 0.500 0.700 0.850 0.850 0.950	8.347 7.931 7.883 7.866 7.904 7.965 8.045 8.655 8.655 8.966 9.045 9.066 9.083 9.077	8.347 9.703 9.387 9.405 9.4291 9.5423 9.556 9.480 9.418 9.333 9.210	0.534 0.601 0.612 0.612 0.597 0.587 0.482 0.406 0.408 0.399	0.534 0.249 0.332 0.328 0.323 0.307 0.272 0.270 0.270 0.270 0.310 0.325 0.345	-0.568 -0.944 -0.987 -1.002 -0.968 -0.913 -0.841 -0.696 -0.290 -0.009 0.063 0.082 0.097	-0.568 0.657 0.371 0.388 0.408 0.466 0.510 0.585 0.593 0.456 0.399 0.322 0.212

TABLE 103.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 20A TO 24A; AIRFLOW, 78.32 kg/sec)

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.500 0.850 0.900 0.950	PRESSUR SUCT 9.597 9.0808 8.7712 8.613 8.6577 8.6577 8.6577 9.4557 9.6447 9.6444	E, N/CM2 PRESS 9.598 9.203 9.413 9.515 9.592 9.634 9.693 9.7214 9.689 9.671 9.638 9.593	MACH SUCT 0.279 0.413 0.4458 0.470 0.487 0.480 0.396 0.318 0.278 0.266 0.258	NO PRESS 0.279 0.3752 0.3261 0.2869 0.2253 0.2253 0.2253 0.2258 0.2258	COEFFI SUCT 0.612 0.129 0.060 -0.113 -0.194 -0.224 -0.162 0.200 0.489 0.579 0.651 0.676	PRESS 0.612 0.289 0.369 0.465 0.642 0.691 0.708 0.687 0.6872 0.646 0.608
(B) SECT	TON B					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	9.579 8.166 7.7455 7.3551 6.504 6.504 6.630 8.276 8.4451 8.55453	9.580 6.751 7.200 8.176 8.412 8.707 8.877 9.056 10.272 9.109 9.001 8.931 8.820 8.665	0.284 0.564 0.631 0.692 0.740 0.806 0.822 0.804 0.650 0.545 0.5517 0.500 0.498	0.284 0.786 0.716 0.562 0.527 0.439 0.440 0.395 0.428 0.428 0.450	0.597 -0.560 -0.904 -1.224 -1.827 -1.837 -1.828 -0.999 -0.470 -0.332 -0.250 -0.250	0.598 -1.719 -1.352 -0.552 -0.357 -0.117 0.022 0.169 1.164 0.212 0.124 0.066 -0.025 -0.152
(C) SECT	ION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	8.164 7.688 7.633 7.618 7.662 7.824 8.003 8.497 8.839 8.926 8.953 8.963	8.163 9.647 9.296 9.317 9.345 9.471 9.564 9.575 9.498 9.338 9.244 9.108	0.564 0.641 0.652 0.655 0.634 0.639 0.590 0.598 0.446 0.429 0.421 0.422	0.564 0.266 0.353 0.348 0.342 0.325 0.312 0.288 0.285 0.307 0.327 0.364 0.393	-0.562 -0.957 -0.997 -1.009 -0.916 -0.894 -0.289 -0.009 0.084 0.096 0.093	-0.562 0.653 0.365 0.383 0.4664 0.5585 0.594 0.527 0.422 0.321

TABLE 104.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 25A TO 28A; AIRFLOW, 35.46 kg/sec)

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.500 0.800 0.850 0.950 0.950	PRESSURE SUCT 10.032 9.936 9.913 9.900 9.875 9.875 9.881 9.962 10.034 10.042 10.049 10.054	PRESS 10.033 9.988 10.000 10.014 10.028 10.042 10.048 10.057 10.062 10.060 10.053 10.053 10.048	MACH SUCT 0.119 0.168 0.177 0.182 0.186 0.192 0.193 0.190 0.156 0.129 0.118 0.113 0.109	NO PRESS 0.119 0.143 0.129 0.122 0.113 0.109 0.103 0.100 0.101 0.106 0.106	COEFFI SUCT 0.582 0.170 0.074 0.018 -0.025 -0.087 -0.102 -0.061 0.282 0.5509 0.588 0.622 0.653 0.673	CIENT PRESS 0.583 0.394 0.496 0.564 0.624 0.651 0.688 0.709 0.707 0.671 0.648 0.617
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950 0.950	10.024 9.791 9.730 9.673 9.635 9.585 9.575 9.724 9.834 9.863 9.872 9.880 9.880	10.025 9.678 9.755 9.850 9.894 9.925 9.945 9.972 10.157 9.973 9.954 9.925 9.900	0.124 0.222 0.241 0.258 0.269 0.283 0.287 0.286 0.243 0.207 0.197 0.199 0.190	0.123 0.257 0.234 0.201 0.185 0.172 0.163 0.151 0.059 0.150 0.150 0.150	0.548 -0.445 -0.706 -0.948 -1.109 -1.323 -1.369 -0.731 -0.261 -0.141 -0.102 -0.068	0.550 -0.928 -0.602 -0.197 -0.005 0.127 0.217 0.327 1.114 0.331 0.250 0.197 0.125 0.020
0.000 0.025 0.050 0.075 0.170 0.150 0.200 0.300 0.500 0.700 0.850 0.850 0.950	9.789 9.719 9.708 9.702 9.706 9.7124 9.749 9.842 9.928 9.928 9.930 9.931	9.789 10.054 9.994 9.996 10.000 10.011 10.031 10.035 10.020 10.005 9.993 9.978 9.955	0.222 0.245 0.248 0.250 0.247 0.243 0.235 0.204 0.180 0.173 0.171 0.170	0.222 0.105 0.140 0.139 0.137 0.127 0.120 0.117 0.126 0.134 0.141 0.148 0.159	-0.455 -0.755 -0.805 -0.825 -0.810 -0.782 -0.625 -0.230 0.044 0.114 0.136 0.148	-0.454 0.677 0.427 0.446 0.4927 0.575 0.575 0.5366 0.416 0.352

TABLE 105.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 29A TO 32A; AIRFLOW, 56.42 kg/sec)

XC/C 0.000 0.025 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950 0.950	PRESSURE SUCT 9.877 9.615 9.551 9.515 9.487 9.445 9.465 9.665 9.820 9.871 9.893 9.912	PRESS 9.8731 9.7770 9.812 9.858 9.892 9.910 9.934 9.944 9.944 9.934 9.949 9.949	MACH SUCT 0.191 0.275 0.292 0.301 0.308 0.318 0.321 0.313 0.260 0.212 0.193 0.185 0.178	NO PRESS 0.191 0.241 0.229 0.215 0.198 0.185 0.178 0.162 0.164 0.169 0.173 0.186	COEFFI SUCT 0.601 0.169 0.005 -0.042 -0.111 -0.131 -0.252 0.552 0.592 0.6682	ICIENT PRESS 0.600 0.495 0.656 0.656 0.656 0.720 0.7193 0.673 0.653
(8) 550	ITON R					
0.000 0.025 0.050 0.075 0.175 0.150 0.200 0.300 0.500 0.700 0.850 0.950	9.855 9.222 9.052 8.890 8.780 8.635 8.635 8.611 9.027 9.323 9.444 9.443	9.856 8.823 9.020 9.3847 9.4555 9.689 10.197 9.698 9.646 9.567	0.199 0.369 0.405 0.436 0.457 0.488 0.410 0.347 0.329 0.323 0.319	0.199 0.449 0.411 0.333 0.318 0.291 0.273 0.253 0.251 0.251 0.266 0.275 0.287	0.566 -0.480 -0.761 -1.027 -1.208 -1.449 -1.525 -0.801 -0.312 -0.186 -0.144 -0.115	0.567 -1.137 -0.813 -0.212 -0.108 0.070 0.178 0.292 1.130 0.305 0.221 0.170 0.090 -0.020
(C) SEC	TION D					
0.005 0.025 0.025 0.075 0.100 0.1500 0.2300 0.5000 0.7000 0.8500 0.950	9.216 9.021 8.994 8.982 8.995 9.018 9.054 9.130 9.536 9.578 9.599 9.599	9.217 9.927 9.765 9.771 9.782 9.812 9.835 9.835 9.839 9.839 9.868 9.768 9.768	0.371 0.411 0.416 0.419 0.416 0.411 0.404 0.336 0.296 0.285 0.287 0.279	0.370 0.171 0.230 0.228 0.225 0.215 0.207 0.191 0.205 0.219 0.229 0.243 0.261	-0.490 -0.811 -0.855 -0.876 -0.856 -0.757 -0.631 -0.237 0.108 0.130 0.142 0.141	-0.4857 0.4425 0.4494 0.5597 0.6537 0.6537 0.425 0.325 0.325

TABLE 106.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 33A TO 36A; AIRFLOW, 68.73 kg/sec)

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.850 0.950	PRESSURE SUCT 9.732 9.314 9.210 9.152 9.106 9.038 9.014 9.066 9.385 9.715 9.750 9.781 9.803	PRESS 9.732 9.475 9.5422 9.691 9.745 9.775 9.816 9.838 9.831 9.813 9.776 9.744	MACH SUCT 0.241 0.349 0.372 0.384 0.407 0.412 0.402 0.402 0.235 0.276 0.225 0.225	NO PRESS 0.241 0.311 0.294 0.273 0.253 0.227 0.213 0.206 0.208 0.214 0.219 0.227	COEFF1 SUCT 0.601 0.145 0.032 -0.031 -0.155 -0.182 -0.125 0.223 0.492 0.582 0.621 0.657	CIENT PRESS 0.601 0.321 0.393 0.485 0.5515 0.647 0.691 0.716 0.708 0.673 0.649 0.613
(B) SEC	TION B					
0.000 0.025 0.050 0.075 0.150 0.200 0.300 0.500 0.700 0.850 0.950	9.710 8.692 8.410 8.143 7.948 7.692 7.626 7.678 8.356 8.822 8.942 8.983 9.013	9.711 7.906 8.212 8.834 8.978 9.169 9.281 9.397 10.235 9.420 9.339 9.213 9.103	0.247 0.473 0.528 0.568 0.599 0.640 0.652 0.642 0.532 0.4426 0.412 0.411	0.247 0.606 0.556 0.447 0.419 0.356 0.330 0.120 0.324 0.354 0.371	0.577 -0.532 -0.839 -1.130 -1.342 -1.621 -1.693 -1.636 -0.898 -0.390 -0.259 -0.215 -0.182	0.577 -1.388 -1.055 -0.377 -0.221 -0.013 0.109 0.236 1.148 0.261 0.173 0.119 0.036
(C) SEC	TION D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.950	8.688 8.365 8.313 8.313 8.338 8.446 8.570 8.936 9.191 9.256 9.276 9.287	8.689 9.577 9.552 9.5571 9.616 9.657 9.724 9.7668 9.606 9.556 9.488 9.390	0.474 0.531 0.5337 0.5339 0.5327 0.5527 0.4927 0.4376 0.3355 0.3355 0.3356	0.474 0.294 0.294 0.291 0.287 0.274 0.263 0.243 0.243 0.260 0.277 0.291 0.308 0.331	-0.536 -0.888 -0.929 -0.945 -0.917 -0.868 -0.800 -0.665 -0.266 0.012 0.082 0.104 0.116	-0.536 0.671 0.395 0.425 0.475 0.519 0.592 0.593 0.464 0.408 0.335 0.228

TABLE 107.—VANE SURFACE STATIC PRESSURE DISTRIBUTION FOR CORNER 1 WITH VANE A10 WITH SCOOP (READINGS 37A TO 40A; AIRFLOW, 81.33 kg/sec)

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950	PRESURE SUCT 9.575 8.8715 8.644 8.6542 8.581 9.428 9.413 9.5721 9.654	PRESS 9.574 9.156 9.2581 9.4865 9.660 9.669 9.669 9.669 9.669 9.649 9.6167	MACH SUCT 0.286 0.424 0.453 0.469 0.507 0.507 0.493 0.406 0.326 0.297 0.285 0.273	NO PRESS 0.286 0.361 0.354 0.354 0.259 0.279 0.259 0.259 0.259 0.257 0.257	COEFF SUCT 0.632 0.162 0.045 -0.021 -0.151 -0.182 -0.121 0.230 0.509 0.598 0.635 0.667	PRESS 0.632 0.315 0.392 0.485 0.5625 0.625 0.704 0.732 0.703 0.663 0.663	
(B) SECTION B							
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.800 0.850 0.950	9.559 8.077 7.636 7.221 6.881 6.411 6.286 6.422 7.502 8.178 8.356 8.460 8.469	9.560 6.551 7.083 8.028 8.297 8.614 8.798 10.280 9.049 8.937 8.866 8.749 8.587	0.290 0.578 0.649 0.713 0.765 0.836 0.855 0.670 0.562 0.532 0.522 0.514	0.289 0.815 0.734 0.586 0.542 0.487 0.4517 0.143 0.405 0.405 0.441 0.463 0.492	0.620 -0.504 -0.838 -1.153 -1.412 -1.7662 -1.862 -0.940 -0.428 -0.292 -0.248 -0.214 -0.206	0.621 -1.661 -1.258 -0.541 -0.337 -0.096 0.043 0.148 0.148 0.094 0.006 -0.117	
(C) SEC	CTION D						
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.800 0.850 0.950	8.076 7.571 7.512 7.497 7.5619 7.720 7.906 8.419 8.778 8.868 8.895 8.911 8.906	8.076 9.621 9.253 9.276 9.3862 9.4549 9.549 9.549 9.301 9.2059	0.579 0.659 0.668 0.667 0.6651 0.6651 0.6521 0.457 0.4435 0.433	0.579 0.273 0.362 0.351 0.353 0.3295 0.295 0.295 0.315 0.352 0.352 0.403	-0.504 -0.888 -0.932 -0.944 -0.908 -0.851 -0.775 -0.633 -0.244 0.028 0.096 0.117 0.129 0.125	-0.504 0.667 0.388 0.406 0.428 0.5304 0.613 0.544 0.480 0.425 0.350	

Figure 1.—Capabilities of modified and rehabilitated AWT.

Figure 2.—Corner 1 test configuration.

Figure 3.—Schematic of corner 1 test apparatus without scoop.

Figure 4.—Corner 1 vane holder.

Figure 5.—Schematic of corner 1 test apparatus with scoop.

(a) Inlet. (b) Exit.

Figure 6.—Corner 1 with scoop.

Figure 7.—Scoop showing cutouts for vanes.

Figure 8.—Geometry of scoop.

Figure 9.—Vane A.

Positive-delta

Figure 10.—Schematic showing vane A setup (20 vanes) in corner 1 (along major axis).

Figure 11.—Outside corner modification for vane A (A11). (Dimensions are in centimeters.)

Figure 12.—Schematic showing vane A10 setup in corner 1 with scoop (along major axis).

C-85-6161

Figure 13.—Vane B.

Figure 14.—Schematic showing vane B setup (24 vanes) in corner 1 (along major axis).

Element	Distance from outer wall, cm	Distance from outer wall to centerline, percent of span	Туре
1	2. 057	5.0	Pressure
2 3	3. 086	7.5	Temperature
3	4. 115	10.0	Pressure
4	6. 172	15.0	
5	8. 230	20. 0	
6	12. 344	30.0	Y
7	16.459	40.0	Temperature
8	20. 574	50.0	Pressure
9	28.804	70.0	Pressure
10	32. 918	80.0	Temperature
11	37. 033	90.0	Pressure
12	45. 263	90.0	Pressure
13	49. 378	80.0	Temperature
14	53. 492	70.0	Pressure
15	61.722	50.0	Pressure
16	65.837	40.0	Temperature
17	69. 952	30.0	Pressure
18	74. 066	20.0	
19	76. 124	15.0	
20	78. 181	10.0	
21	79. 210	7.5	Temperature
22	80. 239	5. 0	Pressure

Figure 15.—Total pressure—total temperature diametrical rake.

Element	Distance from outer wall, cm	Distance from outer wall to centerline, percent of span
1	0.411	1.0
2	. 823	2. 0
3	1.234	3. 0
4	1.646	4.0
5	2.057	5.0
6	3. 086	7.5
7	4.115	10.0
8	5. 144	12.5

Figure 16.—Boundary layer total pressure rake.

Station	Х	θ	Station	Υ	θ
1	-167.92	90	a ₂₃	-78, 36	
2	-151, 46	1 1	24	-70, 13	270
3	-135.00		25	-61, 90	
2 3 4 5 6 7 8	-118, 54	1 1	26	-53. 67	1 1 1
5	-102.08		27	-45, 44	
6	-85.62		28	-37, 21	†
7	-69. 16		29	-28.98	0, 180, 270
8	-52, 71	1 1	30	-20.75	
9	-36, 25		31	-12, 52	
10	-19.79	*	32	-4, 29	!
11	-7.75	11, 101, 191, 281	a ₃₃	0	
a ₁₂	0		34	7.75	11, 101, 191, 281
13	4. 29	0, 180, 270	35	19. 79	0, 90, 180, 270
14	12, 52		36	23,90	90
15	20, 75		37	28, 02	90
16	28, 98		38	32, 13	90
17	37. 21	270	39	36, 25	0, 90, 180, 270
18	45.44		40	40, 36	90
19	53,67	1 1	41	44. 48	90
20	61, 90		42	48, 59	90
21	70. 13	Y	43	52, 71	0, 90, 180, 270
a ₂₂	78, 36		44	56, 82	90
1 1		1	45	60, 93	90
			46	65, 05	90
, ,			47	69. 16	0, 90, 180, 270
			48	77.39	90
			49	85, 62	0, 90, 180, 270

^aNo tap installed.

Vane static plane: Inlet V = 5,34 Outlet V = 5,34 Rake plane: inlet X = -10,08 Outlet Y = 5,41

Figure 17.—Instrumentation locations for corner 1 without scoop. (Linear dimensions are in centimeters.)

	Wall static pressure tap locations						
Station	X	θ		Station	Υ	θ	
1	-167. 92	90	!	^a 23	-67.58		
2	-151.46			24	-59. 35	^b 270	
2 3 4 5 6 7	-135.00	!		25	-51, 12	1 1	
4	-118.54		-	26	-42, 89		
5	-102.08]]		27	-34.66		
6	-78.00			28	-26.43	₩	
	-61.54			29	-18, 20	0, 90, 180, ^b 270	
8 9	-45.09			30	-9.97		
9	-28.63			31	-1.74		
10	-12. 17	\		32	6.49		
11	-90.046	11, 101, 191, 281		33	0		
a ₁₂	0			34	100.82	11, 101, 191, 281	
13	4, 29	0, 180, 270		35	22, 95	0, 90, 180, 270	
14	12, 52			36	27.06	90	
15	20. 75	! ! !		37	31.18	90	
16	28. 98			38	35. 29	90	
17	37.21	270		39	39.41	0, 90, 180, 270	
18	45.44			40	43.52	90	
19	53.67			41	47.64	90	
20	61.90	i i i		42	51.75	90	
21	70.13	₩		43	55.87	0, 90, 180, 270	
a ₂₂	78. 36			44	59. 98	90	
				45	64.09	90	
				46	68, 21	90	
				47	72. 32	0, 90, 180, 270	
	l			48	80, 55	90	
	{			49	88.78	0, 90, 180, 270	

^aNo tap installed. ^bTap covered by scoop. Vane stati

Vane static plane: Inlet V = 5,34 Outlet V = 12,96 Rake plane: Inlet X = -92, 376 Outlet Y = 98, 482

Figure 18.—Instrumentation locations for corner 1 with scoop. (Linear dimensions are in centimeters.)

Scoop static pressure tap locations

Station	Υ	Row (top surface)
SI	-68.00	С
S2	-48.69	B ^a , C
S3	-42.09	В
S4	-35, 48	A, B ^a , C
S5	-28, 88	В
S6	-22. 28	A, B ^a , C
S7	-15.67	В
S8	-9, 07	A, B ^a , C
59	-2.46	В
S10	. 84	В
\$11	4, 14	A, B ^a , C
S12	7.44	В
S13	10.74	A, B, C
\$14	13.03	B
S15	17.27	A, B, C

^aAlso on bottom surface.

Inlet static plane: Corner X = -3.94 Vane V = 5.34 $\theta = 0^{\circ}$, 90°, 180°, 270°

Figure 19.—Static pressure tap locations on scoop. (Linear dimensions are in centimeters.)

Centerline (major axis)

- (a) Vane A.
- (b) Vane B.

Figure 20.—Vane surface static pressure tap locations (looking downstream).

Figure 21.—Corner 1 loss coefficient as function of inlet Mach number without scoop.

Figure 23.—Total pressure profiles at inlet of corner 1 without scoop. Circumferential location, 0°; nominal inlet Mach number, 0.35.

Figure 22.—Corner 1 loss coefficient as function of inlet Mach number for vane A10 with scoop.

- (a) Circumferential location, 90° (inside corner.)
- (b) Circumferential location, 270° (outside corner).

Figure 24.—Exit total pressure profiles for vanes A and A10 in corner 1 without scoop. Nominal inlet Mach number, 0.35.

Figure 25.—Exit total pressure contours without scoop. Nominal airflow, 72.5 kg/sec; nominal inlet Mach number, 0.35.

Figure 25.—Concluded.

Figure 26.-Effect of scoop on exit total pressure contours for vane A10. Nominal airflow, 72.5 kg/sec.

Figure 27.—Axial wall static pressure distributions upstream and downstream of corner 1 without scoop. Circumferential location, 90°; nominal airflow, 72.5 kg/sec; nominal inlet Mach number, 0.35.

Figure 28.—Axial wall static pressure distribution in corner 1 without scoop. Circumferential location, 270°; nominal airflow, 72.5 kg/sec; nominal inlet Mach number, 0.35.

Figure 29.—Effect of scoop on axial wall static pressure distribution in corner 1 with vane A10. Circumferential location, 270°; nominal airflow, 72.5 kg/sec.

Figure 30.—Circumferential distribution of static pressure coefficient upstream and downstream of vane row. Corner 1 without scoop; nominal inlet Mach number, 0.35; nominal airflow, 72.5 kg/sec.

Figure 31.—Effect of scoop on circumferential distribution of static pressure coefficient upstream and downstream of vane A10 in corner 1. Nominal airflow, 72.5 kg/sec.

Figure 32.—Axial static pressure distribution on downstream scoop airfoil section for vane A10. Nominal airflow, 72.2 kg/sec.

Figure 33.—Measured and design Mach number distributions for vane A in corner 1 without scoop. Section C. Nominal inlet Mach number, 0.35.

Figure 34.—Measured and design Mach number distributions for vane B in corner 1 without scoop. Section C. Nominal inlet Mach number, 0.35.

Figure 35.—Surface Mach number distributions for vane A in corner 1 without scoop. Nominal inlet Mach number, 0.35.

Figure 36.—Surface Mach number distributions for vane A10 in corner 1 without scoop. Nominal inlet Mach number, 0.35.

Figure 37.—Surface Mach number distributions for vane B in corner 1 without scoop. Nominal inlet Mach number, 0.35.

Figure 38.—Effect of scoop on vane surface Mach number distributions for vane A10 in corner 1. Nominal airflow, 72.5 kg/sec.

·		

1. Report No. NASA TP-2570	2. Government Accession	No. 3	. Recipient's Catalog No.			
4. Title and Subtitle		5	. Report Date			
Experimental Evaluation of	e Designs	April 1986				
for High-Speed Corner of 0.	.1-Scale Model o	f NASA 6	6. Performing Organization Code			
Lewis Research Center's Pro	oposed Altitude I	Wind Tunnel	505-40-74			
7. Author(s)		8	. Performing Organization	Report No.		
Royce D. Moore, Donald R. E Rickey J. Shyne	Boldman, and		E-2831			
, and the second		10), Work Unit No.			
9. Performing Organization Name and Address		11	. Contract or Grant No.			
National Aeronautics and Sp Lewis Research Center	pace Administrat	ion ''	, contract of diane ivo.			
Cleveland, Ohio 44135		13	3. Type of Report and Peri	od Covered		
12. Sponsoring Agency Name and Address			Technical Pap	er		
National Aeronautics and S	pace Administrat	ion		1-		
Washington, D.C. 20546	pago //am	14	14. Sponsoring Agency Code			
Two turning vane designs w of the test section) of a proposed Altitude Wind Tun shape; vane B was a circul over corner inlet Mach num setting angle and vane spa formance obtained from tot lower loss coefficient tha the engine exhaust removal vanes B and A, respectivel turn the flow toward the o The best configuration (varemoval scoop. The loss c	O.1-scale model nel (AWT). Vane ar-arc airfoil s bers from O.16 t cing were also e al pressure rake n vane A. At Ma scoop), the los y. Resetting th outside corner re ine AlO) was also	of the NASA Lewer A was a controlled the vane of the vane of the description of the descr	wis Research Ce olled-diffusion e designs were ral modification ane A. The ove at vane B had a esign Mach numb were 0.150 and by -5° (vane A coefficient to simulated engi	enter's airfoil tested ons in vane erall per- a slightly per without 1 0.178 for a10) to 0 0.119. Ine exhaust		
(the approximate design Ma	ch number with t	the scoop).				
17. Key Words (Suggested by Author(s))		18. Distribution Statemen	•			
Wind tunnel turning vanes Cascades Corner flows		Unclassified STAR Category				

National Aeronautics and Space Administration Code NIT-4

Washington, D.C. 20546-0001

Official Business Penalty for Private Use, \$300

BULK RATE
POSTAGE & FEES PAID
NASA
Permit No. G-27

N/S/

POSTMASTER: If Underlyerable (Section 158 Postal Manual) Do Not Return