MTH 442: Time Series Analysis Problem Set # 4

Let $\{X_t\}$ be an MA(1) process $X_t = \varepsilon_t + \theta \varepsilon_{t-1}$, where $|\theta| < 1$ and $\varepsilon_t \sim WN(0, \sigma^2)$.

Find $\lim_{k\to\infty} E\left(X_t + \sum_{i=1}^k (-\theta)^i X_{t-i} - \varepsilon_t\right)^2$ for $|\theta| < 1$.

- Let $\{X_t\}$ be a stationary AR(1) process $X_t = \phi X_{t-1} + \varepsilon_t$; $\varepsilon_t \sim WN(0, \sigma^2)$, $|\phi| < 1$. Find $\lim_{N \to \infty} E\left(X_t \sum_{i=0}^N \phi^i \varepsilon_{t-i}\right)^2$.
- Let $\{X_t\}$ be a stationary AR(1) process and suppose that it is possible to observe every second value only, i.e. $Y_t = X_{2t}$ is observable. Express $\{Y_t\}$ as $Y_t = \sum_{i=0}^{\infty} \psi_i Z_{t-i}$, with appropriate white proise process $\{Z_t\}$
- Consider a sequence $\{Z_t\}$ of i.i.d. random variables with mean 0 and variance σ^2 . Define a time series $\{X_t\}$ as $X_t = Z_t Z_{t-1} + Z_{t-1} Z_{t-2} + \frac{1}{4} Z_{t-2} Z_{t-3}$. Verify whether $\{X_t\}$ is an invertible MA process.
- Suppose $\{X_t\}$ be AR(1) process $X_t = 0.25 X_{t-1} + \varepsilon_t$, $\varepsilon_t \sim WN(0,1)$ and let $\{Y_t\}$ be an MA(1) process $Y_t = \delta_t \delta_{t-1}$, $\delta_t \sim WN(0,1)$. $\{\delta_t\}$ and $\{\varepsilon_t\}$ are assumed to be independently distributed. Verify whether $Z_t = (1 X_t)(1 + Y_t)$ is a white noise process.
- [6] Consider the ARMA(1,1) process $\{X_t\}$

$$X_{t} = \frac{1}{2} X_{t-1} + \varepsilon_{t} + \frac{2}{5} \varepsilon_{t-1}$$

- (a) Check stationarity, causality and invertibility of $\{X_t\}$.
- (b) If the process is causal, obtain the corresponding $MA(\infty)$ form of $\{X_t\}$.
- . (4) If the process is invertible, obtain the corresponding $AR(\infty)$ form
- [7] Let $\{X_t\}$ be a stationary MA(q) process with Auto Covariance function (ACVF) $\gamma_x(h)$. Define $Y_t = \sum_{j=0}^{\infty} a_j X_{t-j} + \varepsilon_t$; where, $\sum_{j=0}^{\infty} \left|a_j\right| < \infty$, $\{\varepsilon_t\}$ is WN(0,1) and $\{\varepsilon_t\}$ and $\{X_t\}$ are independently distributed.
 - (a) Express the Auto Covariance Generating Function (ACGF) of $\{Y_t\}$ in terms of ACGF of $\{X_t\}$, ACGF of $\{\varepsilon_t\}$ and $g(z) = \sum_{i=0}^{\infty} a_i z^i$.
 - (b) Suppose q=2 and $\left\{a_j\right\}_{j=0}^{\infty}$ is given by $a_0=1$, $a_1=2$, and $a_j=0 \ \forall \ j>1$. Using the ACGF of $\left\{Y_t\right\}$ obtained in (a), find $\gamma_{\gamma}(2)$.

- [8] Let $\{X_t\}$ be an AR(1) process $X_t = \frac{1}{2}X_{t-1} + \varepsilon_t$, $\varepsilon_t \sim WN(0, \sigma^2)$ and $\{Y_t\}$ be MA(2) process $Y_t = \delta_t \delta_{t-1} \delta_{t-2}$, $\delta_t \sim WN(0, \sigma^2)$. Furthermore, $\{\varepsilon_t\}$ and $\{\delta_t\}$ are independent. Express the ACGF of $Z_t = X_t X_{t-1} + Y_t$ in terms of ACGFs of $\{X_t\}$ and $\{Y_t\}$.
- [9] Let $\{X_t\}$ be a MA(I) process $X_t = \varepsilon_t + \theta \ \varepsilon_{t-1}$; $\varepsilon_t \sim WN(0, \sigma^2)$, $|\theta| > 1$. Define a new process $\{Y_t\}$ as $Y_t = \sum_{i=0}^{\infty} (-\theta)^{-i} X_{t-i}$. Verify whether $\{Y_t\}$ is stationary and/or white.