微分積分学 A 期末試験問題

2016年7月28日第2時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず. 解答用紙のみを提出し、問題用紙は持ち帰ること、

問題 1 は全員が 1 枚目の解答用紙を用いて答えよ. 問題 2 以降につ いては、3題以上を選択して答えよ、それぞれの問題について、解答用 紙の片面のみを使い、問題番号を指定の枠内に書くこと、

問題 1.

次の各問いに答えよ. ただし、答えのみを書くこと.

- (1) $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して, $f(x) := x^2$ で定義するとき, 像 f([-2,1]) を答えよ.
- (2) $\arccos(\cos(-\pi))$ を求めよ.
- (3) $\arctan(\tan(\pi))$ を求めよ.
- (4) a>1 に対して、極限 $\lim_{x\to 0}\frac{\log_a(1+x)}{x}$ を求めよ. (5) 極限 $\lim_{x\to -\infty}e^x\cos(3x)$ を求めよ.
- (6) 極限 $\lim_{x\to 0} \frac{x}{\arcsin x}$ を求めよ (ヒント: $y = \arcsin x$ とおく).
- (7) 極限 $\lim (\sqrt{x^2 + 4x + 3} x)$ を求めよ.
- (8) 極限 $\lim_{x\to 0} \frac{x^3 \sin x}{x^{\alpha}}$ が 0 でない値に収束するような実数 $\alpha \in \mathbb{R}$ を求
- (9) 実数列 $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束すること、すなわち、 $\lim a_n = a$ の ε -N 論法による定義を答えよ.
- (10) 実数列 $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束しないこと、すなわち、 $\lim_{n \to \infty} a_n \neq a$ の ε -N 論法による主張を答えよ.
- (11) $f:(-1,\infty)\setminus\{1\}\to\mathbb{R}$ ξ
 - (a) $\lim_{x\to 1} f(x) = \infty$ であることの ε - δ 論法を用いた定義を答えよ.
 - (b) $A \in \mathbb{R}$ に対して, $\lim_{x \to \infty} f(x) = A$ であることの ε - δ 論法を用いた 定義を答えよ.
 - (c) $A \in \mathbb{R}$ に対して, $\lim_{x \to 1+0} f(x) = A$ であることの ε - δ 論法を用い た定義を答えよ
- (12) $I \subset \mathbb{R}, f: I \to \mathbb{R}$ とする.
 - (a) $x_0 \in I$ に対して, f が $x = x_0$ で連続であることの ε - δ 論法を用 いた定義を答えよ.
 - (b) f が I 上一様連続であることの定義を答えよ.

- (c) f は I 上連続となるが, I 上一様連続とならないような I と f の例を与えよ.
- (13) 開区間 (0,1) 上の連続な関数 $f:(0,1) \to \mathbb{R}$ で, (0,1) 上連続かつ有界であり、最大値は存在するが最小値が存在しない例をあげよ.
- (14) 整数 a に対して、方程式 $x^3 + 15x^2 + 68x + 81 = 0$ の実数解が a < x < a + 1 をみたすとき、整数 a を求めよ.
- (15) $f: [-1,1] \to \mathbb{R}$ を連続な関数とする.
 - (a) f(-1) < f(1) とする. 中間値の定理を述べよ.
 - (b) Weierstrassの定理で最小値に関する主張を inf を用いて述べよ.

以下余白 計算用紙として使ってよい.

問題 2.

関数 $f:(-1,1)\setminus\{0\}\to\mathbb{R}, g:(-1,1)\setminus\{0\}\to\mathbb{R}$ は $x\to 0-0$ のとき にそれぞれ $A,B\in\mathbb{R}$ に収束するとする. このとき, $\lim_{x\to 0-0}f(x)+g(x)=A+B$ となることを ε - δ 論法を用いて示したい.

- (1) $\lim_{x\to 0-0} f(x) + g(x) = A + B$ の定義を述べよ.
- (2) $\lim_{x\to 0-0} f(x) + g(x) = A + B$ を ε - δ 論法を用いて示せ.

問題 3.

 $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して, $f(x) := 2x^2 + x - 7$ で定義する. f が $x_0 = 2$ で連続であることの証明を与えたい.

- (1) f が $x_0 = 2$ で連続であることの ε - δ 論法による定義を述べよ.
- (2) f が $x_0 = 2$ で連続であることの ε - δ 論法による証明を与えよ.

問題 4.

 $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して, $f(x) := x^3 + 2$ で定義する. f が \mathbb{R} 上連続であることの証明を与えたい.

- (1) f が \mathbb{R} 上連続であることの ε - δ 論法による定義を述べよ.
- (2) f が \mathbb{R} 上連続であることの ε - δ 論法による証明を与えよ.

以下余白 計算用紙として使ってよい.

問題 5.

関数 $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ は $x \to \infty$ のときにそれぞれ $A, B \in \mathbb{R}$ に収束するとする. 次の 2 条件を仮定する.

- (A) B < 0 である.
- (B) すべての $x \in \mathbb{R}$ に対して, $g(x) < \frac{1}{2}B$ となる.

このとき, $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\frac{A}{B}$ となることを ε - δ 論法を用いて示せ.

問題 6.

 $f:(-1,1)\to\mathbb{R}$ は、ある定数 C>0 が存在して、任意の $x,x'\in(-1,1)$ に対して

(L)
$$|f(x) - f(x')| \le C|x - x'|^{\frac{2}{3}}$$

をみたすとする. このとき, f は (-1,1) 上一様連続であることを示せ. なお, どこで (L) を用いたのかをわかるように証明を書くこと.

問題 7.

 $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して

$$f(x) := \begin{cases} x \cos \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

で定義する. f は x=0 で連続となるかどうかを考察し, ε - δ 論法による証明を与えよ.

以下余白 計算用紙として使ってよい.

問題番号

(11 [0.4] (2) T (31 0 (4) loga e (##13 loga) (510

- (6) 1 (7) 2 (8) d=4
- (9) YEROUS JALLY BNEEN S.t. YNEIN IS JALL NZNE => Lan-ale
- (10) = 870 s.t. ANEIN 15415. JUEN 2.t. NZN \$2 100-012 8
- (111(a) *K>01=対にて、35>05.4、 *xet-1.00)(111 .1=対はて |x-11<6=) f(x)>K.
 - (b) \$\$\text{1]} \(\partial \text{1]} \(\partial \text{1]} \\ \text{1]} \(\partial \text{1]} \\ \text{2]} \\ \text{2} \\ \te
 - (C) HE2017+4C7. 3500 5.4. 4x €(-1.00) / (1) 1=27 (-1) 3>1A-1×13 (= 3>1-1×2)

(121(a)(b) 講義トトは問.

- (C) · I=R とし、f: I→Rをf(x)=x²(xeI)で定める.
 · I=(0.1)とし、f: I→Rをf(x) := 元(xeI)で定める.
- (13) $f(x) := -(x \frac{1}{2})^2 (x \in (0.1)) t' f(x) := sin(\pi x) (x \in (0.1))$
- (14) a=-2
 - (15) 講教トトを参照

コメント

(4)(5)(り)(8)(13)(14)は高核の内定をほどんどこれでいる。

出来がりるかたのは(10),(12)(0),(13).

- (10) limanta の主張をかくのだから、liman=aの定義の否定をかけということ、
 - (12) (c). IEまらんと明記しなければだめ、関数(字像)は定義成と値域 で書かなければいけない
 - (13) 最大値はある最小値がないのがから下限がメニッのアスニイで 直成されらな関数を対しればよい、

問題番号

T. 1= 2

HE70 1-2412. 3570 S. t. 4xeR 1-2412 1x-01<5 => 1fm)-fn) 1< 8

1. ∀x ∈ REXTLT

x=0 or z=1 | f(x) = |f(x)| = 0 = |x| $x \neq 0$ or z=1 | $f(x) = |x \cos \frac{1}{x}| \leq |x|$ (" | $(x \leq x \leq 1)$)

「f(x) 「ミ (x) -(*) が成ける。

2. $\forall \xi > 0 = \xi \neq 1$ $\xi > 0 = \xi > 0$ $\xi \neq 0$

$$|f(x) - f(0)| = |f(x)|$$
 (-: $f(x) = 0$)
 $\leq |x|$ (:: $|x-0| < \delta$)
 $= \epsilon$

すなわち lf(x)-frooteをなるのでfはx=oで連続である.

コメント 1、を使めずに示すなら、たのようになる:

4€201= xx+1. 8== €20 xx.C. +x EREXXIC 1x-01< 5 tijit

2=0 0x2. |fix1-fio1 |= |fio1-fio1 = 0 < E.

x + 0 0 x = |f(x) - f(0)| = |x cos x |

 $\leq |x| \qquad (-|x - 0| \leq x)$ $\leq |x| \qquad (-|x - 0| \leq x)$

となり、どうらの土場をでもしかいくととなる。