

From 1D signals to images

Lecture 4

Course of: Signal and imaging acquisition and modelling in environment

14/03/2024

Federico De Guio - Matteo Fossati

1

Intro to digital images

What is a digital image?

• 2-dimensional matrix of intensity (gray or color) values

Imaging system

Image digitization

• **Digitization** causes a digital image to become an **approximation** of a real scene

- 1 value per pixel: B&W or Grayscale
- 3 values per pixel: Color image (RGB)

What is image processing?

- Algorithms that alter an input image to create new image
 - The input is an image, the output is an image

- Improve images for human or AI interpretation
 - o Image and features enhancement

An example: noise removal

Noisy Image

Denoised Image

An example: contrast adjustment

Low Contrast

Original Contrast

High Contrast

An example: edge detection

An example: region detection and segmentation

Application of image processing

Applications are countless:

- o Biology
- Astronomy
- Medicine
- Security and biometric
- Precision agriculture
- o Satellite imagery and terrain classification
- Meteorology
- o Art
- 0 ..

Credit: NASA, Jeff Hester, and Paul Scowen (Arizona State) More info here

Credit: NASA

Credit: Dartmouth Electron Microscopy Facility

Image acquisition

- The incoming energy (**light**) hits a sensor material which is **responsive to that type of energy**
- Collections of sensors are arranged to capture images
 - Record image values at discrete x, y (e.g. 10 MegaPixel)
 - o Discrete set of energy levels (e.g. 8-bit grayscale)

Representing images

- The image data structure is a 2D array of pixel values
- Pixel values are gray levels in the range 0-255 (or RGB colors)

Intensity level resolution

• Is the **number of intensity levels** used to represent the image

Histograms

Histograms

• They show how many times each intensity value occurs in the picture

Histograms

Brightness

$$B(I) = \frac{1}{wh} \sum_{v=1}^{h} \sum_{u=1}^{w} I(u, v)$$

2. Divide by total number of pixels

1. Sum up all pixel intensities

Exposure

Contrast

Dynamic range

Computing histograms

- Question for you: How would you compute the histogram of an image?
 - Range of the x axis?
 - Number of bins?
 - What about color images?
- Sometimes the **cumulative distribution** gives useful information
 - o E.g. for histograms equalization

Point operations

What do they do?

- Change the pixel's intensity value according to some function
 - Homogeneous operations
- New pixel intensity doesn't depend on:
 - The pixel location (x, y)
 - The pixel neighbours
- New pixel intensity **depends on:**
 - o The pixel previous intensity
 - o The mapping function

$$a' \leftarrow f(a)$$

 $I'(u,v) \leftarrow f(I(u,v))$

Example: clamping

- Deals with pixel values outside the displayable range
 - o if (a > 255): a = 255;
 - o if (a < 0): a = 0;
- This function will **clamp** (force) all values to fall within range [a, b]

$$f(p) = \begin{cases} a & \text{if } p < a \\ p & \text{if } a \le p \le b \\ b & \text{if } p > b \end{cases}$$

Example: thresholding

- The input values below threshold a_{th} are set to a₀
- The input values below threshold a_{th} are set to a₁

$$f_{\text{threshold}}(a) = \begin{cases} a_0 & \text{for } a < a_{\text{th}} \\ a_1 & \text{for } a \ge a_{\text{th}} \end{cases}$$

• Converts the grayscale image to binary image

Original Image

Thresholded Image

Example: negative images

$$f_{\text{invert}}(a) = -a + a_{\text{max}} = a_{\text{max}} - a$$

Example: grey levels transformation - the power law

- There are many options. A commonly used transformation is the **power law**
- Map a narrow range of dark input values into a wider range of output values or vice versa

Different power values highlight different details

Example: histograms equalization

- Adjust two different images to make their histograms (intensity distributions) similar
- Apply a point operation that changes the histogram to a **uniform distribution** as much as possible

Example: linear histograms equalization

Filters

What is a filter?

- Capabilities of point operations are limited
- Filters: combine pixel's value + values of neighbors

• **E.g. burring:** compute the average intensity of blocks of pixels

Average of a 3x3 matrix

• **Blurring:** Replace each pixel with the average intensity of pixel+neighbors

$$I'(u,v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9}$$

 $\bullet \quad \text{ In general:} \quad I'(u,v) \ \leftarrow \ \frac{1}{9} \cdot \sum_{j=-1}^1 \ \sum_{i=-1}^1 I(u+i,v+j)$

Filters parameters

- Filter size (size of neighborhood): 3x3, 5x5, 7x7, ...,21x21,...
- Filter shape: not necessarily square. Can be rectangle, circle, etc
- Filter weights: May apply unequal weighting to different pixels
- Filters function: can be linear (a weighted summation) or nonlinear

What does this filter do?

What does this filter do?

Effect of filter size

Applying linear filters: convolution

How to handle the boundaries?

Smoothing filters

- More effective smoothing filters can be generated by associating different weights to the pixels in the neighbourhood
 - Larger weight applied to the center

$$H(i,j) = \begin{bmatrix} 0.075 & 0.125 & 0.075 \\ 0.125 & \mathbf{0.2} & 0.125 \\ 0.075 & 0.125 & 0.075 \end{bmatrix}$$

An example: the gaussian filter

$$G_{\sigma}(r) = e^{-\frac{r^2}{2\sigma^2}} \qquad \text{or} \qquad$$

or
$$G_{\sigma}(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

- σ is width (standard deviation)
- r is distance from center

0	1	2	1	0
1	3	5	3	1
2	5	9	5	2
1	3	5	3	1
0	1	2	1	0

Gaussian filter

Other types of filters: edge detection

- Filters can be used to highlight features in the image
- For example detect the edges as sharp changes in brightness
 - o Can occur in boundaries between objects or within the same object (e.g. zebras)
- Ideal edges are step functions. In real life the **step** is smooth and **can be detected by looking at the first derivative**

Derivative filters

There are many more filters

- You have seen them in other courses
- A good reference is the book
 - Digital image processing-Pearson (2018)
 - O Gonzalez, Rafael C. Woods, Richard E.

Exercise

Let's gain some familiarity with operations on a digital image

Today's exercise with *OpenCV*

- Pick an image among the ones here (suggestion: start with a grayscale image) and:
 - Show the original picture
 - o Display its histogram and its cumulative distribution: comment the histogram
 - Transform the image from grayscale to B&W and show its histogram: comment the histogram
 - Equalize the image so that the full dynamic range is used, and show its histogram
 - Show the negative of the image
 - o Apply a filter that enhances the edges
 - o What features are highlighted?
 - Mirror, zoom and rotate the image (relevant for data augmentation)
- A basic example on how to use openCV can be found here