

自组显微镜与望远镜

钟瑞

2021年5月

实验概述

实验目的及内容

- 1. 了解显微镜和望远镜的工作原理及调节过程。
- 2. 掌握显微镜和望远镜放大率的测量方法。

实验器材

光学平台、滑轨、透镜、1/10 mm微尺、光学调节架、毫米尺、偏振片、光源。

实验原理

凸透镜对光线的作用

1. 平主过焦

4. 平行光会聚于焦平面

2. 过焦平主

5. 焦平面上任意点发出的光成为平行光

3. 过心不变

凸透镜成像规律

地里	像距ッ	成像				
物距u		虚实	大小	方向		
(0, f)	< 0	虚像	放大	正立		
=f	8		不成像			
(f, 2f)	> 2f	实像	放大	倒立		
=2f	=2f	实像 等大		倒立		
> 2f	(f, 2f)	实像	缩小	倒立		

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

显微镜成像原理

- 1. 物 y 位于物镜的一倍和二倍焦距之间,成倒立放大的实像 y'。
- 2. 物镜像 y'即目镜的物,位于目镜的一倍焦距以内(非常靠近目镜焦平面),成正立放大的虚像 y"。

显微镜放大率

目镜

人眼直接观察 $\tan \omega_0 = \frac{y}{L}$ (L: 人眼明视距离,约25cm,视个人情况)

用显微镜观察 $\tan \omega \approx \frac{y'}{f_2}$ (因为物镜像 y' 非常靠近目镜焦平面)

物镜的放大率
$$\beta_1 = \frac{y'}{y} = \frac{v_1}{u_1} = \frac{v_1 - f_1}{f_1} \approx \frac{\Delta}{f_1}$$
 \longrightarrow $y' \approx \frac{y \cdot \Delta}{f_1}$

显微镜放大率 $\Gamma = \frac{\tan \omega}{\tan \omega_0} \approx \frac{y'/f_2}{y/L} \approx \frac{L \cdot \Delta}{f_1 \cdot f_2}$

开普勒望远镜成像原理

- 1. 物位于物镜的二倍焦距之外无限远处,成倒立缩小的实像 y'(非常靠近物镜焦平面)。
- 2. 物镜像 y'即目镜的物,位于目镜的一倍焦距以内(非常 靠近目镜焦平面),成正立放大的虚像 y''。

开普勒望远镜放大率

y' 非常靠近物镜的后焦面和目镜的前焦面(f_1 和 $-f_2$ 位置几乎重合)

开普勒望远镜放大率修正

$$\tan \theta_0 = \frac{y}{u_1}$$

$$\tan \theta = \frac{y'}{u_2} = \frac{y'}{L - v_1}$$

$$\frac{1}{u_1} + \frac{1}{v_1} = \frac{1}{f_1}$$

$$M = \frac{\tan \theta}{\tan \theta_0} = \frac{u_1 \cdot f_1}{u_1 \cdot L - f_1 \cdot L - u_1 \cdot f_1}$$

实验操作

测显微镜放大率

a = 9.7格 (0.97mm) 读出未放大的 M_2 像距离 d所对应的 M_1 像的格数 a

d = 25.0mm

放大率计算值
$$\Gamma_1 = \frac{L \cdot \Delta}{f_1 \cdot f_2}$$

 $(f_1 = 45 \text{mm})$

放大率测量值
$$\Gamma_2 = \frac{d}{a \times 0.1mn}$$

 $(f_2 = 34 \text{mm})$

测显微镜放大率数据记录

序号	物镜位置 x ₁ (mm)	目镜位置 x ₂ (mm)	1/10微尺 M ₁ 位置 x ₃ (mm)	明视距离 <i>L</i> (mm)	光学筒长 Δ= x ₁ -x ₂ - f ₁ - f ₂ (mm)	d (mm)	<i>d</i> 对应的 格数 <i>a</i>	放大率 Γ	
								计算值	测量值
1	298.0	70.0	358.0	260.0	149.0	25.0	9.7	25.32	25.77
2									
3									
4									
5									

放大率计算值
$$\Gamma_1 = \frac{L \cdot \Delta}{f_1 \cdot f_2}$$

$$f_1 = 45 \text{mm}$$

放大率测量值
$$\Gamma_2 = \frac{d}{a \times 0.1mm}$$

$$f_2 = 34 \text{mm}$$

测开普勒望远镜放大率

- 1. 固定目镜位置不动,标尺距离物镜约1.5~3米,固定红色指标间距为 d_1 (例如取 $d_1=10.0$ mm),前后仔细调节物镜位置,直到能从目镜中观察到清晰的标尺像。
- 2. 经适应性练习,获得被望远镜放大的和直观的标尺的叠加像(通过仔细调节望远镜目镜的高矮和光轴的方向取得),再测出放大的红色指标内直观标尺的长度 d_2 (最好两位同学配合测量)。
- 3. 放大率测量值 $M_1=d_2/d_1$, 与修正后的计算值 $M_2=[u_1f_1/(u_1L-f_1L-u_1f_1)]$ 进行比较。

测开普勒望远镜放大率数据记录

序号	物镜位置 目 (mm)	目镜位置 x ₂ (mm)	目镜和物镜间距 <i>L</i> = <i>x</i> ₁ - <i>x</i> ₂ (mm)	标尺距离物镜的距离	红色指标间距 <i>d</i> ₁ (mm)	(mm)	放大率 M	
							测量值	计算值
1	410.0	100.0	310.0	1525.0	10.0	58.0	5.80	5.73
2								
3								

放大率计算值
$$M = \frac{u_1 \cdot f_1}{u_1 \cdot L - f_1 \cdot L - u_1 \cdot f_1}$$
 $(f_1 = 225 \text{mm})$

谢谢

