Observer-based Decomposition Assuming Known Interfaces

Bharat Garhewal

TU/e Supervisor: dr. Pieter Cuijpers ASML Supervisor: dr. Ramon Schiffelers

Technische Universiteit Eindhoven

November 27, 2019

Introduction to decomposition

Decomposition in general

■ What is decomposition?

Introduction to decomposition

Decomposition in general What is decomposition? Breaking things down... decompose Figure 1: Decomposition

Introduction to decomposition

Decomposition in general

- What is decomposition?
 - Breaking things down...
 - ... in such a way that they can be combined back to the original!

Figure 2: Decomposition

A software system has...

A specification S and a (set of) interfaces $\{I_1, \ldots, I_N\}$.

000

A software system has...

A specification S and a (set of) interfaces $\{I_1, \ldots, I_N\}$.

We assume...

The software system is deterministic.

A software system has...

A specification S and a (set of) interfaces $\{I_1, \ldots, I_N\}$.

We assume...

The software system is deterministic.

We show...

Historical behaviour influences our understanding of the decomposed system.

A software system has...

A specification S and a (set of) interfaces $\{I_1, \ldots, I_N\}$.

We assume...

The software system is deterministic.

We show...

Historical behaviour influences our understanding of the decomposed system.

What you remember affects your interpretation of the decomposition!

System Specification S

Figure 3: Internal view of a system

Labelled Transition System

Figure 4: Unoriginal Example

Parallel Composition

Figure 5: Interfaces of the Unoriginal Example

Specification and Complete Interface

Figure 6: Unoriginal Example: Specification with a Complete Interface

Given a specification $\mathcal S$ and set of interfaces $\{I_1,I_2,\ldots,I_N\}$, compute a controller $\mathcal C=(\mathcal R,\mathcal O)$ such that:

$$\mathcal{S} \Leftrightarrow (I_1 \parallel_{\varnothing} I_2 \parallel_{\varnothing} \dots \parallel_{\varnothing} I_N) \parallel_{\mathcal{R}} \mathcal{O}$$

Given a specification S and set of interfaces $\{I_1, I_2, \dots, I_N\}$, compute a controller $C = (\mathcal{R}, \mathcal{O})$ such that:

$$\mathcal{S} \cong (I_1 \parallel_{\varnothing} I_2 \parallel_{\varnothing} \dots \parallel_{\varnothing} I_N) \parallel_{\mathcal{R}} \mathcal{O}$$
$$\mathcal{S} \cong \mathcal{I} \parallel_{\mathcal{R}} \mathcal{O}$$

Given a specification S and set of interfaces $\{I_1, I_2, \dots, I_N\}$, compute a controller $C = (\mathcal{R}, \mathcal{O})$ such that:

$$\mathcal{S} \cong (I_1 \parallel_{\varnothing} I_2 \parallel_{\varnothing} \dots \parallel_{\varnothing} I_N) \parallel_{\mathcal{R}} \mathcal{O}$$
$$\mathcal{S} \cong \mathcal{I} \parallel_{\mathcal{R}} \mathcal{O}$$

Looks similar to Supervisory Control!

Given a specification S and set of interfaces $\{I_1, I_2, \dots, I_N\}$, compute a controller $C = (\mathcal{R}, \mathcal{O})$ such that:

$$\mathcal{S} \cong (I_1 \parallel_{\varnothing} I_2 \parallel_{\varnothing} \dots \parallel_{\varnothing} I_N) \parallel_{\mathcal{R}} \mathcal{O}$$
$$\mathcal{S} \cong \mathcal{I} \parallel_{\mathcal{R}} \mathcal{O}$$

Looks similar to Supervisory Control! But first, a running example.

Infinitely Hungry Chefs

(c) Kitchen $S \neq A \parallel_{\varnothing} B$ (s_1 is repeated)

Figure 7: The stars of our kitchen

Supervisory Control Theory (SCT)

What does it do?

- 1 Plant P
- 2 Requirement R
- 3 Supervisor $S: S/P \models R$

Supervisory Control Theory (SCT)

What does it do?

- 1 Plant P :=Complete Interface \mathcal{I}
- **2** Requirement R :=System Specification S
- Supervisor $S: S/P \vDash R$ $S = P \parallel_{\varnothing} R = \mathcal{I} \parallel_{\varnothing} \mathcal{S} = \mathcal{S}$

Applying SCT on the Infinitely Hungry Chefs

00T 0 : : : ! ! ! ! ! ! !

Figure 8: Result of SCT: Supervisor is identical to the specification

SCT v/s Us

Figure 9: SCT

Figure 10: Our work

Specification and Complete Interface

Figure 11: Unoriginal Example: Specification with a Complete Interface

Constraints

Figure 12: Unoriginal Example: Simulation Relation

Constraints

Figure 12: Unoriginal Example constrained by $\mathcal{R} = \{(defend, (x_1y_1))\}$, red is constrained, and the blue is bisimilar (\Leftrightarrow)

Constraints

Definition (Constrained Parallel Composition)

The parallel composition of LTSs $A=(Q_A,\Sigma_A,\rightarrow_A,q_{0A})$ and $B=(Q_B,\Sigma_B,\rightarrow_B,q_{0B})$ constrained by $\mathcal{R}\subseteq (\Sigma_A\cup\Sigma_B)\times Q_A\times Q_B$ is defined as:

$$A \parallel_{\mathcal{R}} B = (Q_A \times Q_B, \Sigma_A \cup \Sigma_B, \rightarrow, (q_{0A}, q_{0B})),$$

where $\rightarrow \subseteq (Q_A \times Q_B) \times (\Sigma_A \cup \Sigma_B) \times (Q_A \times Q_B)$ is the transition relation. The transition $(q_1,q_2) \stackrel{e}{\rightarrow} (q_1',q_2')$ is contained in \rightarrow iff the transition satisfies one of the following properties:

- 1 $q_1 \xrightarrow{e}_A q_1', q_2 \xrightarrow{e}_B q_2', e \in \Sigma_A \cap \Sigma_B$, and $(e, (q_1, q_2)) \notin \mathcal{R}$, or
- $q_1 \xrightarrow{e}_A q_1', q_2 = q_2', e \in \Sigma_A \setminus \Sigma_B, \text{ and } (e, (q_1, q_2)) \notin \mathcal{R}, \text{ or } S$
- 3 $q_1 = q_1', q_2 \xrightarrow{e}_B q_2', e \in \Sigma_B \setminus \Sigma_A$, and $(e, (q_1, q_2)) \notin \mathcal{R}$.

Observer

Figure 12: Unoriginal Example: Insane version

Observer

- (a) Specification S
- (b) Comp. Interface \mathcal{I}
- (c) Observer O

Figure 12: Insanely Unoriginal Example with an observer

Observer

Figure 12: Insanely Unoriginal Example with a composed observer

Observer

Figure 12: Insanely Unoriginal Example: $S \Leftrightarrow \mathcal{I} \parallel_{\mathcal{R}} \mathcal{O}$

Constraints $\mathcal{R} = \{(defend, (i_1, o_1)), (present, (i_1, o_2))\}$

Infinitely Hungry Chefs

(c) Kitchen $S \neq A \parallel_{\varnothing} B$ (s_1 is repeated)

Figure 13: The stars of our kitchen

Infinitely Hungry Chefs

Figure 13: Complete Chefs: $\mathcal{I} = A_1 \parallel_{\varnothing} B_1 + B_2 + B_3 + B_4 + B_$

Algorithms: Introduction

What do we know?

- 1 We need a simulation relation f_r from specification $\mathcal S$ to complete interface $\mathcal I$.
- **2** If f_r is injective, then $\mathcal{O} = 1_{\Sigma_{\mathcal{I}}}$ (single state with self-loops).
- If f_r is non-injective, then make it injective using an observer \mathcal{O} .
- 4 Compute constraints \mathcal{R} using f_r , \mathcal{S} , \mathcal{I} , and \mathcal{O} .
- 5 Finally, $S \hookrightarrow \mathcal{I} \parallel_{\mathcal{R}} \mathcal{O}$.

Definition (Observer)

An observer $\mathcal O$ for a specification $\mathcal S$ and complete interface $\mathcal I$ is an LTS such that the following properties hold:

- \bigcirc should observe all events from \mathcal{S} ,
- \mathcal{O} should be input-enabled,
- There exists an injective simulation relation $f_r \subseteq Q_S \times Q_{T \parallel_{\alpha} \mathcal{O}}$.

- (a) Specification S
- (b) Flower $1_{\mathcal{S}}$
- (c) Exploded Flower ♣_S

Figure 14: Exploding a flower

Figure 14: Locally Minimal observer Figure 14: Locally Minimal observer

Algorithm 1: FindObserver

```
Data: Pre-observer \mathcal{O} = \clubsuit_{\mathcal{S}}, Complete Interface \mathcal{I}, Specification \mathcal{S}
     Result: Observer O
     if f_r \subseteq Q_{\mathcal{S}} \times Q_{\mathcal{I} \parallel_{\varnothing} \mathcal{O}} doesn't exist and \mathcal{O} \neq \clubsuit_{\mathcal{S}} then
                return 1
     if \mathcal{O} \cong 1_{\mathcal{O}} then
                return O
     for E \in \mathcal{P}(\rightarrow_{\mathcal{O}}) do
                 \mathcal{O}' := \mathcal{O}
                 \mathcal{O} := \text{FindObserver}(delTransitions(\mathcal{O}, E), \mathcal{I}, \mathcal{S})
                 if O is a DLTS then
                            return \mathcal{O}
                else
                            \mathcal{O} := \mathcal{O}'
11
                end
12
     end
```


troduction Preliminaries Problem Statement SCT Controller I'm Hungry... Algorithms Results Conclusion

Observers for the Infinitely Hungry Chefs

Figure 14: Two locally minimal observers (self-loops omitted)

Constraints for observer \mathcal{O}_2

Constraints for observer \mathcal{O}_2

Make Constraints

Algorithm 2: FindConstraints

Result: Set of constraints R

1 Create empty set B of elements of type $Q_{\mathcal{I} \parallel_{\,arnothing}\mathcal{O}} imes \Sigma_{\mathcal{I}}$

$$_{\mathbf{2}}$$
 for $(s,p):f_{r}$ do

$$B(p) := \{e \in \Sigma_{\mathcal{I}} \mid t \xrightarrow{e}_{\mathcal{I} \parallel_{\mathcal{O}} \mathcal{O}} and s \not\stackrel{e}{\rightarrow}_{\mathcal{S}} \}$$

4 end

$$\mathcal{R} = \{(e, g(i)) \mid (e, i) \in B^{-1}\} \text{ where } g(i) = \{(\pi_{\mathcal{I}}(x), \pi_{\mathcal{O}}(x)) | x \in i\}$$

Figure 16: The stars of our kitchen

Solution 1

Figure 17: Observer \mathcal{O}_1

$$(eatA, (\mathcal{O}._1s_2, A.s_3, B.s_2))$$

$$(swtichB, \{(\mathcal{O}_1.s_1, A.s_3, B.s_2),$$

$$(\mathcal{O}_1.s_1, A.s_1, B.s_2),$$

$$(\mathcal{O}_1.s_2, A.s_2, B.s_2)\})$$

$$(switchA, \{(\mathcal{O}_1.s_2, A.s_2, B.s_1),$$

$$(\mathcal{O}_1.s_1, A.s_2, B.s_3)\})$$

$$R_{\mathcal{O}_1}$$

troduction Preliminaries Problem Statement SCT Controller I'm Hungry... Algorithms Results Conclusion

Solution 1

Figure 17: Observer \mathcal{O}_1

$$(eat A, (\mathcal{O}._1s_2, A.s_3, B.s_2))$$

$$(swtich B, \{(\mathcal{O}_1.s_1, A.s_3, B.s_2),$$

$$(\mathcal{O}_1.s_1, A.s_1, B.s_2),$$

$$(\mathcal{O}_1.s_2, A.s_2, B.s_2)\})$$

$$(switch A, \{(\mathcal{O}_1.s_2, A.s_2, B.s_1),$$

$$(\mathcal{O}_1.s_1, A.s_2, B.s_3)\})$$

$$R_{\mathcal{O}_1}$$

- 1 Chef A cannot switch before she is prepared $(\mathcal{O}_1.s_1)$ and before chef B has eaten $(B.s_3)$ after switching, and
- 2 Chef A cannot switch before she is prepared $(\mathcal{O}_1.s_2)$ and before chef B has eaten and while chef B is prepared $(B.s_1)$.

Solution 2

Figure 18: Observer \mathcal{O}_2

$$(eat A, (\mathcal{O}_2.s_2, A.s_3, B.s_2))$$

$$(swtich B, \{(\mathcal{O}_2.s_1, A.s_1, B.s_2),$$

$$(\mathcal{O}_2.s_1, A.s_2, B.s_2),$$

$$(\mathcal{O}_2.s_1, A.s_3, B.s_2)\})$$

$$(switch A, \{(\mathcal{O}_2.s_1, A.s_2, B.s_1),$$

$$(\mathcal{O}_2.s_1, A.s_2, B.s_3)\})$$

$$R_{\mathcal{O}_2}$$

Solution 2

Figure 18: Observer \mathcal{O}_2

$$(eatA, (\mathcal{O}_2.s_2, A.s_3, B.s_2))$$

$$(swtichB, \{(\mathcal{O}_2.s_1, A.s_1, B.s_2),$$

$$(\mathcal{O}_2.s_1, A.s_2, B.s_2),$$

$$(\mathcal{O}_2.s_1, A.s_3, B.s_2)\})$$

$$(switchA, \{(\mathcal{O}_2.s_1, A.s_2, B.s_1),$$

$$(\mathcal{O}_2.s_1, A.s_2, B.s_3)\})$$

$$R_{\mathcal{O}_2}$$

1 Chef A cannot switch when chef B is not prepared $(B.s_1)$ or when chef B has already switched his dish $(B.s_3)$.

Which one is more 'intuitive'?

Solution 1

- 1 Chef A cannot switch before she is prepared $(\mathcal{O}_1.s_1)$ and before chef B has eaten $(B.s_3)$ after switching, and
- 2 Chef A cannot switch before she is prepared $(\mathcal{O}_1.s_2)$ and before chef B has eaten and while chef B is prepared $(B.s_1)$.

Solution 2

1 Chef A cannot switch when chef B is not prepared $(B.s_1)$ or when chef B has already switched his dish ($B.s_3$).

Which one is more 'intuitive'?

Solution 2

1 Chef A cannot switch when chef B is not prepared $(B.s_1)$ or when chef B has already switched his dish $(B.s_3)$.

Original

- 1 Chef A can switch her dish only after both the chefs have finished preparing their dishes,
- 2 Chef B catch his dish only after chef A has switched his dish.

Future Work

Intuitive

More 'intuitive' or more 'interesting'?

Mechanical

Construct hierarchical observers?

Supervisory Control Theory

Perhaps some techniques in SCT can help us out?

Wrap-up

A software system has...

A specification S and a (set of) interfaces $\{I_1, \ldots, I_N\}$.

We assume...

The software system is deterministic.

We show...

What you remember influences your interpretation of the decomposition!

