ОПИСАНИЕ МНОГООБРАЗИЙ КОЛЕЦ, В КОТОРЫХ КОНЕЧНЫЕ КОЛЬЦА ОДНОЗНАЧНО ОПРЕДЕЛЯЮТСЯ СВОИМИ ГРАФАМИ ДЕЛИТЕЛЕЙ НУЛЯ

В данной работе рассматриваются ассоциативные кольца (не обязательно коммутативные и не обязательно имеющие единицу).

Определение. Графом делителей нуля кольца R называется граф, вершинами которого являются все ненулевые делители нуля кольца (односторонние и двусторонние), причем две различные вершины x, y соединяются ребром тогда и только тогда, когда xy = 0 или yx = 0.

Обычно граф делителей нуля кольца R обозначается через $\Gamma(R)$. Мы также будем использовать это обозначение.

Понятие графа делителей нуля было введено в работе [6]. И. Бек ввел это понятие для коммутативного кольца и вершинами графа делителей нуля считал все элементы кольца. В статье [5] определение было изменено: в качестве вершин графа делителей нуля коммутативного кольца авторы этой работы рассматривали лишь ненулевые делители нуля. Затем понятие графа делителей нуля было распространено и на некоммутативный случай (см., например, [4]).

Нетрудно привести примеры неизоморфных колец, графы делителей нуля которых равны. Например, если A — счетномерная алгебра с нулевым умножением над полем \mathbb{Z}_p , а B — счетномерная алгебра с нулевым умножением над полем \mathbb{Z}_q , где p,q — это различные простые числа, то $\Gamma(A) \cong \Gamma(B)$, но $A \ncong B$. Другими словами, даже в многообразии $var \langle xy = 0 \rangle$ существуют примеры бесконечных неизоморфных колец, графы делителей нуля которых имеют одинаковое строение. В связи с этим интерес представляет такой вопрос: при каких условиях из равенства графов делителей нуля следует изоморфизм колец? Некоторые результаты, дающие ответ на этот вопрос для коммутативных колец, были получены в работе [3]. В настоящей работе данная проблема исследуется на языке многообразий, а именно: исследуются многообразия ассоциативных колец, в которых каждое конечное кольцо однозначно определяется своим графом делителей нуля. Другими словами, изучаются свойства многообразия колец \mathfrak{M} , для которого из равенства $\Gamma(R) = \Gamma(S)$ для конечных колец $R, S \in \mathfrak{M}$, следует, что $R \cong S$. Ранее такие многообразия исследовались в работах [1, 7]. Однако полного описания получено не было. В настоящей же работе многообразия, в которых все конечные кольца однозначно определяются своими графами делителей нуля, полностью описаны.

Введем обозначения и понятия, используемые в настоящей работе.

Полным n-вершинным графом K_n называется граф (без петель и кратных ребер), все n вершин которого смежны между собой.

Пусть аддитивная группа кольца R разлагается в прямую сумму своих ненулевых аддитивных подгрупп A_i , где $i=1,\ldots,n$ и $n\geq 2$, т.е. $R=A_1\dotplus\ldots\dotplus A_n$. Если все подгруппы A_i являются двусторонними идеалами кольца R, то кольцо R называется разложимым (в обозначении $R=A_1\oplus\ldots\oplus A_n$).

Порядок конечного кольца R мы будем обозначать через |R|. Для любого элемента $a \in R$, где R — произвольное кольцо, будем использовать следующее обозначение: $ann(a) = \{x \in R; xa = ax = 0\}$. Для любых элементов x, y кольца R положим [x,y] = xy - yx и $x \circ y = xy + yx$. Через \mathbb{Z}_n мы будем обозначать кольцо классов вычетов по модулю n. Для простого числа p будем полагать, что $N_{0,p} = \langle a \rangle$, pa = 0, $a^2 = 0$.

Пусть $\mathbb{Z}\langle X \rangle = \mathbb{Z}\langle x_1, x_2, \ldots \rangle$ — свободное ассоциативное кольцо от счетного числа переменных $X = \{x_1, x_2, \ldots \}$ и $f(x_1, \ldots, x_d) \in \mathbb{Z}\langle X \rangle$. Многочлен $f(x_1, \ldots, x_d)$ существенно зависит от x_1, x_2, \ldots, x_d , если $f(0, x_2, \ldots, x_d) = \ldots = f(x_1, \ldots, x_{d-1}, 0) = 0$. Минимальная из степеней одночленов, входящих в запись $f(x_1, \ldots, x_d)$ с ненулевым коэффициентом, называется нижней степенью многочлена $f(x_1, \ldots, x_d)$.

Пусть \mathfrak{M} – многообразие колец. Через $T(\mathfrak{M})$ будем обозначать множество всех многочленов из $\mathbb{Z}\langle X\rangle$, являющихся тождествами на всех кольцах из \mathfrak{M} . Назовем множество $T(\mathfrak{M})$ идеалом тождеств многообразия \mathfrak{M} . Если идеал тождеств $T(\mathfrak{M})$ порождается (как вполне характеристический идеал) многочленами $f_i, i \in I$, то будем использовать следующее обозначение: $T(\mathfrak{M}) = \{f_i \mid i \in I\}^T$. Через $\mathfrak{M} \vee \mathfrak{N}$ обозначается объединение многообразий \mathfrak{M} и \mathfrak{N} . Нетрудно заметить, что $T(\mathfrak{M} \vee \mathfrak{N}) = T(\mathfrak{M}) \cap T(\mathfrak{N})$.

Пусть $\mathfrak{M}_{1,p} = var \langle xyz = 0, x^2 = 0, px = 0 \rangle$ и $\mathfrak{M}_{2,p} = var \langle xyz = 0, [x,y] = 0, px = 0 \rangle$, где p — произвольное простое число. Заметим, что $\mathfrak{M}_{1,2} \subseteq \mathfrak{M}_{2,2}$, а при нечетном p мы имеем $\mathfrak{M}_{1,p} \cap \mathfrak{M}_{2,p} = var \langle xy = 0, px = 0 \rangle$. Далее, пусть F_i — приведенно свободное кольцо с шестью порождающими $\{x_1, \ldots, x_6\}$ многообразия $\mathfrak{M}_{i,p}$, i = 1, 2. Рассмотрим кольца

$$A_{i,p} = F_i / \langle x_3 x_4 - x_1 x_2 \rangle$$
, $B_{i,p} = F_i / \langle x_5 x_6 - x_1 x_2 - x_3 x_4 \rangle$,

где $\langle a, b, \ldots \rangle$ — это идеал кольца F_i , порожденный элементами $\{a, b, \ldots \}$, i=1,2. Наша ближайшая цель — доказать, что $\Gamma(A_{1,p}) \cong \Gamma(B_{1,p})$ для любого простого числа p и $\Gamma(A_{2,p}) \cong \Gamma(B_{2,p})$ при нечетном простом p.

По теореме Тарского любое ненулевое многообразие колец содержит одно из минимальных многообразий: $var \ \mathbb{Z}_p$ или $var \ N_{0,p}$, где p — некоторое простое число [8]. Оказывается, что в минимальных многообразиях $var \ \mathbb{Z}_p$ и $var \ N_{0,p}$, где p — любое простое число, все конечные кольца однозначно определяются своими графами делителей нуля так же, как и в многообразии $var \ N_{0,p_1} \lor \ldots \lor var \ N_{0,p_s}$ [1]. В многообразии $var \ N_{0,p_1} \lor \ldots \lor var \ N_{0,p_s} \lor var \ \mathbb{Z}_p$, где p_1, \ldots, p_s — попарно различные простые числа, p —

любое простое число (возможно, совпадающее с одним из чисел p_i), каждое конечное кольцо однозначно определяется своим графом делителей нуля тогда и только тогда, когда $(p_i,p) \neq (3,2)$ при $i \leq s$ [1]. Наша цель — показать, что любое многообразие, в котором все конечные кольца однозначно определяются своими графами делителей нуля, является подмногообразием многообразия вида $var\ N_{0,p_1} \lor \ldots \lor var\ N_{0,p_s} \lor var\ \mathbb{Z}_p$, где p_1,\ldots,p_s — попарно различные простые числа, p — любое простое число и $(p_i,p)\neq (3,2)$ при всех $i\leq s$. Для этого нам понадобятся некоторые вспомогательные утверждения.

Покажем сначала, что $\Gamma(A_{1,p})\cong\Gamma(B_{1,p})$, в то время, как $A_{1,p}\not\cong B_{1,p}$ для любого простого числа p.

Замечание. Порядок алгебр $A_{i,p}$, $B_{i,p}$, i=1,2, равен p^{14} . Возникает вопрос о существовании в указанных многообразиях примеров неизоморфных конечных колец небольшого порядка с одинаковыми графами делителей нуля. Однако нами было доказано, что в многообразии $\mathfrak{M}_{1,2}$ все конечные кольца порядка ≤ 64 однозначно определяются своими графами делителей нуля (фактически были полностью описаны все конечные кольца в многообразии $\mathfrak{M}_{1,2}$, порядок которых не превышает 64).

Лемма 1. Множество $C_1 = \{\overline{x}_i \overline{x}_j; \ (i,j) \neq (3,4), 1 \leq i < j \leq 6\}$ является базисом алгебры $A_{1,p}^2$, где p- простое число.)

Доказательство. Множество C_1 является системой образующих векторного пространства $A_{1,p}^2$. Докажем, что это множество линейно независимо. Если множество C_1 линейно зависимо, то существуют элементы $\alpha, \delta_{ij} \in \mathbb{Z}_p$, не все равные нулю, такие, что в алгебре F_1 справедливо равенство

$$\sum_{\substack{i < j \\ (i,j) \neq (3,4)}} \delta_{ij} x_i x_j = \alpha (x_3 x_4 - x_1 x_2). \tag{1}$$

Положим в этом равенстве $x_3=x_4=x_5=x_6=0$. Тогда $\delta_{12}=-\alpha$, другими словами, $\sum_{\substack{i < j \\ (i,j) \neq (3,4) \\ (i,j) \neq (1,2)}} \delta_{ij} x_i x_j = \alpha x_3 x_4.$ Положим $x_1=x_2=x_5=x_6=0$. Получим, что $\alpha=0$ и $\delta_{ij}=0$

для всех i, j, таких, что i < j и $(i, j) \neq (3, 4), (1, 2)$. Противоречие доказывает лемму. \square

Предложение 1. Пусть $a = \sum_{i=1}^{6} \alpha_{i} \overline{x}_{i} + u$, $b = \sum_{i=1}^{6} \beta_{i} \overline{x}_{i} + v$ — произвольные элементы из кольца $A_{1,p}$, причем $u, v \in A_{1,p}^{2}$. Если $a, b \notin A_{1,p}^{2}$, то $ab = \overline{0}$ тогда и только тогда, когда $(\beta_{1}, \ldots, \beta_{6}) = \lambda(\alpha_{1}, \ldots, \alpha_{6})$ для некоторого ненулевого элемента $\lambda \in \mathbb{Z}_{p}$.

Доказательство. Пусть $(\beta_1, \dots, \beta_6) = \lambda(\alpha_1, \dots, \alpha_6)$, где $0 \neq \lambda \in \mathbb{Z}_p$. Тогда a = c + u, $b = \lambda c + v$ и $ab = \lambda c^2 = \overline{0}$, т.к. $x^2 = 0$ — тождество в алгебре $A_{1,p}$.

Докажем обратное утверждение. Пусть $ab = \overline{0}$. Тогда

$$ab = \left(\left| \begin{array}{cc|c} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{array} \right| + \left| \begin{array}{cc|c} \alpha_3 & \alpha_4 \\ \beta_3 & \beta_4 \end{array} \right| \right) \overline{x}_1 \overline{x}_2 + \sum_{\substack{i < j \\ (i,j) \neq (1,2) \\ (i,j) \neq (3,4)}} \left| \begin{array}{cc|c} \alpha_i & \alpha_j \\ \beta_i & \beta_j \end{array} \right| \overline{x}_i \overline{x}_j = \overline{0}.$$

По лемме 1 множество $C_1 = \{\overline{x}_i \overline{x}_j; \ (i,j) \neq (3,4), i < j\}$ — базис векторного пространства $A_{1,n}^2$. Поэтому получаем, что

$$\begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} + \begin{vmatrix} \alpha_3 & \alpha_4 \\ \beta_3 & \beta_4 \end{vmatrix} = 0 \text{ и } \begin{vmatrix} \alpha_i & \alpha_j \\ \beta_i & \beta_j \end{vmatrix} = 0,$$

где $i < j, (i, j) \neq (1, 2)$ и $(i, j) \neq (3, 4)$.

Рассмотрим следующие случаи.

Случай 1. Пусть $\alpha_1 \neq 0$.

Поскольку

$$\left| \begin{array}{cc} \alpha_1 & \alpha_3 \\ \beta_1 & \beta_3 \end{array} \right| = 0, \left| \begin{array}{cc} \alpha_1 & \alpha_4 \\ \beta_1 & \beta_4 \end{array} \right| = 0,$$

то вторые строки этих определителей линейно выражаются через первые, т.е. $\beta_1 = \lambda \alpha_1$, $\beta_3 = \lambda \alpha_3$ и $\beta_1 = \mu \alpha_1$, $\beta_4 = \mu \alpha_4$ для некоторых элементов $\lambda, \mu \in \mathbb{Z}_p$. Поскольку $\alpha_1 \neq 0$ и $(\lambda - \mu)\alpha_1 = \beta_1 - \beta_1 = 0$, то $\lambda = \mu$ и $\beta_4 = \lambda \alpha_4$. Аналогично доказывается, что $\beta_5 = \lambda \alpha_5$ и $\beta_6 = \lambda \alpha_6$.

Далее, из равенств $\begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} + \begin{vmatrix} \alpha_3 & \alpha_4 \\ \beta_3 & \beta_4 \end{vmatrix} = 0$, $\beta_3 = \lambda \alpha_3$ и $\beta_4 = \lambda \alpha_4$ следует, что

$$\left| \begin{array}{cc} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{array} \right| = 0$$
 и, значит, $\beta_2 = \lambda \alpha_2$. Таким образом, $(\beta_1, \dots, \beta_6) = \lambda(\alpha_1, \dots, \alpha_6)$.

Случай 2. Пусть $\alpha_1 = 0$.

Если хотя бы один из элементов $\alpha_2, \alpha_3, \alpha_4$ не равен нулю, то рассуждаем так же, как при рассмотрении случая 1. Поэтому можем полагать, что $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$ и, например, $\alpha_5 \neq 0$. (Заметим, что поскольку $a \notin A_{1,p}^2$, то один из элементов α_5 или α_6 отличен от нуля.) Аналогично мы можем считать, что $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$. Следовательно,

$$ab = \left| egin{array}{ccc} lpha_5 & lpha_6 \ eta_5 & eta_6 \end{array}
ight| \overline{x}_5 \overline{x}_6 = \overline{0}, \; ext{или} \; \left| egin{array}{cccc} lpha_5 & lpha_6 \ eta_5 & eta_6 \end{array}
ight| = 0,$$

т.е. $\beta_5 = \lambda \alpha_5$, $\beta_6 = \lambda \alpha_6$ для некоторого ненулевого элемента $\lambda \in \mathbb{Z}_p$. Таким образом, $(\beta_1, \dots, \beta_6) = \lambda(\alpha_1, \dots, \alpha_6)$.

Из предложения 1 получаем, что для каждого элемента $a = \sum_{i=1}^{6} \alpha_i \overline{x}_i \in A_{1,p} \setminus A_{1,p}^2$ множество $\{\alpha a + u; 0 \neq \alpha \in \mathbb{Z}_p, u \in A_{1,p}^2\}$ образует полный подграф Γ_a графа $\Gamma(A_{1,p})$, причем каждая вершина подграфа Γ_a смежна только с вершинами этого подграфа и элементами из множества $A_{1,p}^2$. Покажем, что такое же строение имеет граф $\Gamma(B_{1,p})$.

Лемма 2. Множество $D_1 = \{ \overline{x}_i \overline{x}_j; \ (i,j) \neq (5,6), 1 \leq i < j \leq 6 \}$ является базисом алгебры $B_{1,p}^2$ для любого простого числа p.

Доказательство аналогично доказательству леммы 1.

Предложение 2. Пусть $a = \sum_{i=1}^{6} \alpha_i \overline{x}_i + u$, $b = \sum_{i=1}^{6} \beta_i \overline{x}_i + v$ — произвольные элементы из кольца $B_{1,p}$, где $u, v \in B_{1,p}^2$. Если $a, b \notin B_{1,p}^2$, то $ab = \overline{0}$ тогда и только тогда, когда $(\beta_1, \ldots, \beta_6) = \lambda(\alpha_1, \ldots, \alpha_6)$ для некоторого ненулевого элемента $\lambda \in \mathbb{Z}_p$.

Доказательство. Пусть $(\beta_1, \dots, \beta_6) = \lambda(\alpha_1, \dots, \alpha_6)$, где $0 \neq \lambda \in \mathbb{Z}_p$. Тогда a = c + u, $b = \lambda c + v$ и $ab = \lambda c^2 = \overline{0}$, т.к. $x^2 = 0$ для любого элемента $x \in B_{1,p}$.

Докажем обратное утверждение. Пусть $ab = \overline{0}$. Тогда

$$ab = \left(\left| \begin{array}{cc} \alpha_{1} & \alpha_{2} \\ \beta_{1} & \beta_{2} \end{array} \right| + \left| \begin{array}{cc} \alpha_{5} & \alpha_{6} \\ \beta_{5} & \beta_{6} \end{array} \right| \right) \overline{x}_{1} \overline{x}_{2} + \left(\left| \begin{array}{cc} \alpha_{3} & \alpha_{4} \\ \beta_{3} & \beta_{4} \end{array} \right| + \left| \begin{array}{cc} \alpha_{5} & \alpha_{6} \\ \beta_{5} & \beta_{6} \end{array} \right| \right) \overline{x}_{3} \overline{x}_{4} +$$

$$+ \sum_{\substack{i < j \\ (i,j) \neq (1,2) \\ (i,j) \neq (5,6)}} \left| \begin{array}{cc} \alpha_{i} & \alpha_{j} \\ \beta_{i} & \beta_{j} \end{array} \right| \overline{x}_{i} \overline{x}_{j} = 0.$$

По лемме 2 множество $D_1 = \{\overline{x}_i \overline{x}_j; \ (i,j) \neq (5,6), i < j\}$ — базис векторного пространства $B_{1,p}^2$. Поэтому

$$\begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} + \begin{vmatrix} \alpha_5 & \alpha_6 \\ \beta_5 & \beta_6 \end{vmatrix} = 0, \begin{vmatrix} \alpha_3 & \alpha_4 \\ \beta_3 & \beta_4 \end{vmatrix} + \begin{vmatrix} \alpha_5 & \alpha_6 \\ \beta_5 & \beta_6 \end{vmatrix} = 0 \text{ и} \begin{vmatrix} \alpha_i & \alpha_j \\ \beta_i & \beta_j \end{vmatrix} = 0,$$

если $i < j, (i, j) \neq (1, 2), (i, j) \neq (3, 4)$ и $(i, j) \neq (5, 6)$.

Так же, как при доказательстве предложения 1, рассмотрим два случая.

Случай 1. Пусть $\alpha_1 \neq 0$.

Аналогично тому, как это было сделано в доказательстве предложения 1, получаем, что $\beta_i = \lambda \alpha_i$ для любого $i \neq 2$. Поэтому из равенства $\begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} + \begin{vmatrix} \alpha_5 & \alpha_6 \\ \beta_5 & \beta_6 \end{vmatrix} = 0$

вытекает равенство $\begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} = 0$. Отсюда следует, что $\beta_2 = \lambda \alpha_2$. Таким образом, при $\alpha_1 \neq 0$ мы имеем, что $(\beta_1, \dots, \beta_6) = \lambda(\alpha_1, \dots, \alpha_6)$.

Случай 2. Пусть $\alpha_1 = 0$.

Если хотя бы один из элементов $\alpha_2, \alpha_3, \alpha_4, \beta_1, \beta_2, \beta_3, \beta_4$ не равен нулю, то рассуждаем так же, как в случае 1. Поэтому можем считать, что $\alpha_i = \beta_j = 0$ при $i, j \in \{1, 2, 3, 4\}$. Значит,

$$ab = (\alpha_5 \overline{x}_5 + \alpha_6 \overline{x}_6)(\beta_5 \overline{x}_5 + \beta_6 \overline{x}_6) = \begin{vmatrix} \alpha_5 & \alpha_6 \\ \beta_5 & \beta_6 \end{vmatrix} (\overline{x}_1 \overline{x}_2 + \overline{x}_3 \overline{x}_4) = \overline{0}.$$

Поскольку $a \notin B_{1,p}^2$, то, например, $\alpha_5 \neq 0$. Таким образом, $\beta_5 = \lambda \alpha_5$, $\beta_6 = \lambda \alpha_6$ для некоторого ненулевого элемента $\lambda \in \mathbb{Z}_p$, т.е. $(\beta_1, \dots, \beta_6) = \lambda(\alpha_1, \dots, \alpha_6)$.

Таким образом, справедливо

Следствие 1. $\Gamma(A_{1,p}) \cong \Gamma(B_{1,p})$ для любого простого числа p.

Предложение 3. Алгебра $A_{1,p}$ не изоморфна алгебре $B_{1,p}$ для любого простого числа p.

Доказательство. Предположим противное: существует изоморфизм φ алгебры $B_{1,p}$ на алгебру $A_{1,p}$. Введем такие обозначения: $\overline{x_i} = x_i + \langle x_1x_2 + x_3x_4 - x_5x_6 \rangle \in B_{1,p}$ и $\overline{x}_i' = x_i + \langle x_1x_2 - x_3x_4 \rangle \in A_{1,p}, \ i = \overline{1,6}$. Заметим что $\varphi(B_{1,p}^2) \subseteq A_{1,p}^2$, а значит, отображение $\overline{\varphi}: B_{1,p}/B_{1,p}^2 \to A_{1,p}/A_{1,p}^2$, определенное по правилу $\overline{\varphi}(a+B_{1,p}^2) = \varphi(a) + A_{1,p}^2$, $a \in B_{1,p}$, также является изоморфизмом. Отсюда следует, что существует невырожденная матрица $P = (p_{ij})_{6\times 6}, p_{ij} \in \mathbb{Z}_p$, такая, что

$$\begin{cases} \varphi(\overline{x}_{1}) = p_{11}\overline{x}'_{1} + p_{21}\overline{x}'_{2} + p_{31}\overline{x}'_{3} + p_{41}\overline{x}'_{4} + p_{51}\overline{x}'_{5} + p_{61}\overline{x}'_{6} + b_{1}; \\ \varphi(\overline{x}_{2}) = p_{12}\overline{x}'_{1} + p_{22}\overline{x}'_{2} + p_{32}\overline{x}'_{3} + p_{42}\overline{x}'_{4} + p_{52}\overline{x}'_{5} + p_{62}\overline{x}'_{6} + b_{2}; \\ \varphi(\overline{x}_{3}) = p_{13}\overline{x}'_{1} + p_{23}\overline{x}'_{2} + p_{33}\overline{x}'_{3} + p_{43}\overline{x}'_{4} + p_{53}\overline{x}'_{5} + p_{63}\overline{x}'_{6} + b_{3}; \\ \varphi(\overline{x}_{4}) = p_{14}\overline{x}'_{1} + p_{24}\overline{x}'_{2} + p_{34}\overline{x}'_{3} + p_{44}\overline{x}'_{4} + p_{54}\overline{x}'_{5} + p_{64}\overline{x}'_{6} + b_{4}; \\ \varphi(\overline{x}_{5}) = p_{15}\overline{x}'_{1} + p_{25}\overline{x}'_{2} + p_{35}\overline{x}'_{3} + p_{45}\overline{x}'_{4} + p_{55}\overline{x}'_{5} + p_{65}\overline{x}'_{6} + b_{5}; \\ \varphi(\overline{x}_{6}) = p_{16}\overline{x}'_{1} + p_{26}\overline{x}'_{2} + p_{36}\overline{x}'_{3} + p_{46}\overline{x}'_{4} + p_{56}\overline{x}'_{5} + p_{66}\overline{x}'_{6} + b_{6}, \end{cases}$$

где $b_1,\,b_2,\,b_3,\,b_4,\,b_5,\,b_6$ – некоторые элементы из $A^2_{1,p}.$

Учитывая свойства изоморфизма, получаем

$$\varphi(\overline{x}_{1}\overline{x}_{2} + \overline{x}_{3}\overline{x}_{4} - \overline{x}_{5}\overline{x}_{6}) =$$

$$= (p_{11}\overline{x}'_{1} + p_{21}\overline{x}'_{2} + p_{31}\overline{x}'_{3} + p_{41}\overline{x}'_{4} + p_{51}\overline{x}'_{5} + p_{61}\overline{x}'_{6})(p_{12}\overline{x}'_{1} + p_{22}\overline{x}'_{2} + p_{32}\overline{x}'_{3} + p_{42}\overline{x}'_{4} + p_{52}\overline{x}'_{5} + p_{62}\overline{x}'_{6}) +$$

$$+ (p_{13}\overline{x}'_{1} + p_{23}\overline{x}'_{2} + p_{33}\overline{x}'_{3} + p_{43}\overline{x}'_{4} + p_{53}\overline{x}'_{5} + p_{63}\overline{x}'_{6})(p_{14}\overline{x}'_{1} + p_{24}\overline{x}'_{2} + p_{34}\overline{x}'_{3} + p_{44}\overline{x}'_{4} + p_{54}\overline{x}'_{5} + p_{64}\overline{x}'_{6}) -$$

$$- (p_{15}\overline{x}'_{1} + p_{25}\overline{x}'_{2} + p_{35}\overline{x}'_{3} + p_{45}\overline{x}'_{4} + p_{55}\overline{x}'_{5} + p_{65}\overline{x}'_{6})(p_{16}\overline{x}'_{1} + p_{26}\overline{x}'_{2} + p_{36}\overline{x}'_{3} + p_{46}\overline{x}'_{4} + p_{56}\overline{x}'_{5} + p_{66}\overline{x}'_{6}) =$$

$$= (p_{11}p_{62} - p_{12}p_{61} + p_{13}p_{64} - p_{14}p_{63} - p_{15}p_{66} + p_{16}p_{65})\overline{x}'_{1}\overline{x}'_{6} +$$

$$+ (p_{21}p_{62} - p_{22}p_{61} + p_{23}p_{64} - p_{24}p_{63} - p_{25}p_{66} + p_{26}p_{65})\overline{x}'_{2}\overline{x}'_{6} +$$

$$+ (p_{31}p_{62} - p_{32}p_{61} + p_{33}p_{64} - p_{34}p_{63} - p_{35}p_{66} + p_{36}p_{65})\overline{x}'_{3}\overline{x}'_{6} +$$

$$+ (p_{41}p_{62} - p_{42}p_{61} + p_{43}p_{64} - p_{44}p_{63} - p_{45}p_{66} + p_{46}p_{65})\overline{x}'_{4}\overline{x}'_{6} +$$

$$+ (p_{51}p_{62} - p_{52}p_{61} + p_{53}p_{64} - p_{54}p_{63} - p_{55}p_{66} + p_{56}p_{65})\overline{x}'_{5}\overline{x}'_{6} +$$

$$+ f(\overline{x}'_{1}, \overline{x}'_{2}, \overline{x}'_{3}, \overline{x}'_{4}, \overline{x}'_{5}) = 0,$$

где $f(\overline{x}_1', \overline{x}_2', \overline{x}_3', \overline{x}_4', \overline{x}_5')$ – некоторый многочлен от переменных $\overline{x}_1', \overline{x}_2', \overline{x}_3', \overline{x}_4', \overline{x}_5'$, не содержащий переменную \overline{x}_6' . Так как $\overline{x}_1'\overline{x}_6', \overline{x}_2'\overline{x}_6', \overline{x}_3'\overline{x}_6', \overline{x}_4'\overline{x}_6', \overline{x}_5'\overline{x}_6'$, линейно независимы,

$$p_{11}p_{62} - p_{12}p_{61} + p_{13}p_{64} - p_{14}p_{63} - p_{15}p_{66} + p_{16}p_{65} = 0;$$

$$p_{21}p_{62} - p_{22}p_{61} + p_{23}p_{64} - p_{24}p_{63} - p_{25}p_{66} + p_{26}p_{65} = 0;$$

$$p_{31}p_{62} - p_{32}p_{61} + p_{33}p_{64} - p_{34}p_{63} - p_{35}p_{66} + p_{36}p_{65} = 0;$$

$$p_{41}p_{62} - p_{42}p_{61} + p_{43}p_{64} - p_{44}p_{63} - p_{45}p_{66} + p_{46}p_{65} = 0;$$

$$p_{51}p_{62} - p_{52}p_{61} + p_{53}p_{64} - p_{54}p_{63} - p_{55}p_{66} + p_{56}p_{65} = 0.$$

Добавив очевидное равенство, получим

$$p_{11}p_{62} - p_{12}p_{61} + p_{13}p_{64} - p_{14}p_{63} - p_{15}p_{66} + p_{16}p_{65} = 0;$$

$$p_{21}p_{62} - p_{22}p_{61} + p_{23}p_{64} - p_{24}p_{63} - p_{25}p_{66} + p_{26}p_{65} = 0;$$

$$p_{31}p_{62} - p_{32}p_{61} + p_{33}p_{64} - p_{34}p_{63} - p_{35}p_{66} + p_{36}p_{65} = 0;$$

$$p_{41}p_{62} - p_{42}p_{61} + p_{43}p_{64} - p_{44}p_{63} - p_{45}p_{66} + p_{46}p_{65} = 0;$$

$$p_{51}p_{62} - p_{52}p_{61} + p_{53}p_{64} - p_{54}p_{63} - p_{55}p_{66} + p_{56}p_{65} = 0;$$

$$p_{61}p_{62} - p_{62}p_{61} + p_{63}p_{64} - p_{64}p_{63} - p_{65}p_{66} + p_{66}p_{65} = 0.$$

Отсюда

$$(p_{62}, -p_{61}, p_{64}, -p_{63}, -p_{66}, p_{65}) \cdot P^T = 0.$$

Матрица P невырожденная и, в частности, не имеет нулевых строк, а значит, полученное равенство невозможно. Противоречие доказывает предложение. \Box

Из следствия 1 и предложения 3 вытекает справедливость следующего утверждения.

Следствие 2. Если в многообразии колец \mathfrak{M} все конечные кольца однозначно определяются своими графами делителей нуля, то для любого простого числа р многообразие \mathfrak{M} не содержит многообразия $\mathfrak{M}_{1,p}$.

Далее, покажем, что алгебры $A_{2,p}$ и $B_{2,p}$ не изоморфны для любого простого нечетного p, однако $\Gamma(A_{2,p}) \cong \Gamma(B_{2,p})$. Для этого нам понадобятся некоторые вспомогательные леммы.

Лемма 3. Множество $C_2=\{\overline{x}_k^{\ 2},\overline{x}_i\overline{x}_j;\ (i,j)\neq (3,4), 1\leq i< j\leq 6, 1\leq k\leq 6\}$ является базисом алгебры $A_{2,p}^2\ (p>2.)$

Доказательство. Множество C_2 является системой образующих векторного пространства $A_{2,p}^2$. Если оно линейно зависимо, то существуют элементы $\alpha, \gamma_1, \ldots, \gamma_6, \delta_{ij} \in \mathbb{Z}_p$, не все равные нулю, такие, что в алгебре F_2 справедливо равенство

$$\sum_{i=1}^{6} \gamma_i x_i^2 + \sum_{\substack{i < j \\ (i,j) \neq (3,4)}} \delta_{ij} x_i x_j = \alpha (x_3 x_4 - x_1 x_2).$$
 (2)

Полагая в равенстве (1) $x_1 = \ldots = x_{i-1} = x_{i+1} = \ldots = x_6$, где $1 \le i \le 6$, получим, что $\gamma_i x_i^2 = 0$, т.е. $\gamma_1 = \ldots = \gamma_6 = 0$. Положим теперь в равенстве (1) $x_3 = x_4 = x_5 = x_6 = 0$. Тогда $\delta_{12} = -\alpha$, другими словами, $\sum_{\substack{i < j \ (i,j) \ne (3,4) \\ (i,j) \ne (3,4)}} \delta_{ij} x_i x_j = \alpha x_3 x_4$. Положим, наконец,

 $x_1=x_2=x_5=x_6=0$. Получим, что lpha=0 и $\delta_{ij}=0$ для всех i,j, таких, что i< j и $(i,j)\neq (3,4),(1,2)$.

Лемма 4. Если $a = \sum_{i=1}^{6} \alpha_i \overline{x}_i + u \in A_{2,p}$, где p > 2, $\alpha_i \in \mathbb{Z}_p$ для всех чисел $i \in \{1, \dots, 6\}$, $u \in A_{2,p}^2$, $a \notin A_{2,p}^2$, mo $ann(a) = A_{2,p}^2$.

Доказательство. Пусть $b = \sum_{i=1}^{6} \beta_i \overline{x}_i + v \in ann(a)$, где $\beta_i \in \mathbb{Z}_p$, $i \in \{1, \dots, 6\}$, $v \in A_{2,p}^2$. Тогда

$$\overline{0} = ab = \left(\sum_{i=1}^{6} \alpha_{i} \overline{x}_{i}\right) \left(\sum_{i=1}^{6} \beta_{i} \overline{x}_{i}\right) =
= \sum_{i=1}^{6} \alpha_{i} \beta_{i} \overline{x}_{i}^{2} + (\alpha_{1} \beta_{2} + \alpha_{2} \beta_{1} + \alpha_{3} \beta_{4} + \alpha_{4} \beta_{3}) \overline{x}_{1} \overline{x}_{2} + \sum_{\substack{i < j \\ (i,j) \neq (1,2) \\ (i,j) \neq (3,4)}} (\alpha_{i} \beta_{j} + \alpha_{j} \beta_{i}) \overline{x}_{i} \overline{x}_{j}.$$

Из леммы 3 следует, что

$$\alpha_1\beta_1=\ldots=\alpha_6\beta_6=0, \alpha_1\beta_2+\alpha_2\beta_1+\alpha_3\beta_4+\alpha_4\beta_3=0$$
 и $\alpha_i\beta_i+\alpha_i\beta_i=0$

для всех $i, j \in \{1, \dots, 6\}$, таких, что $i < j, \, (i, j) \neq (1, 2)$ и $(i, j) \neq (3, 4)$.

Пусть $\alpha_1 \neq 0$. Тогда из равенств $\alpha_1\beta_1 = 0$ и $\alpha_1\beta_i + \alpha_i\beta_1 = 0$, где i = 3, 4, 5, 6, получаем, что $\beta_1 = 0$ и $\beta_3 = \beta_4 = \beta_5 = \beta_6 = 0$. Далее, из равенства $\alpha_1\beta_2 + \alpha_2\beta_1 + \alpha_3\beta_4 + \alpha_4\beta_3 = 0$ следует, что $\alpha_1\beta_2 = 0$, т.е. $\beta_2 = 0$. Другими словами, мы показали, что в этом случае $b = v \in A_{2,n}^2$.

Расссмотрим теперь случай, когда $\alpha_1=0$. Ввиду доказанного выше, можем считать, что $\alpha_2=\alpha_3=\alpha_4=0$. Значит, имеем равенства $\alpha_5\beta_5=\alpha_6\beta_6=0$, $\alpha_5\beta_6+\alpha_6\beta_5=0$. Поскольку $a\notin A_{2,p}^2$, то $\alpha_6\neq 0$ или $\alpha_5\neq 0$. Пусть $\alpha_5\neq 0$. Тогда из равенства $\alpha_5\beta_5=0$ получаем, что $\beta_5=0$. Поэтому $\alpha_5\beta_6=0$. Отсюда $\beta_6=0$. Другими словами, $b\in A_{2,p}^2$. Случай, когда $\alpha_6\neq 0$ рассматривается аналогично.

Таким образом, граф $\Gamma(A_{2,p})$ имеет следующее строение: множество ненулевых элементов из множества $A_{2,p}^2$ образуют полный подграф, а любая вершина $a \in A_{2,p} \setminus A_{2,p}^2$ смежна со всеми вершинами из этого подграфа и только с ними.

Для алгебры $B_{2,p}$ (p > 2) справедливы аналоги лемм 3–4.

Лемма 5. Множество $D_2=\{\overline{x}_k^{\ 2},\overline{x}_i\overline{x}_j;\ (i,j)\neq (5,6), 1\leq i< j\leq 6, 1\leq k\leq 6\}$ является базисом алгебры $B_{2,p}^2\ (p>2.)$

Доказательство аналогично доказательству леммы 3.

Лемма 6. Пусть $a = \sum_{i=1}^{6} \alpha_i \overline{x}_i + u \in B_{2,p}$, где p > 2, $\alpha_i \in \mathbb{Z}_p$ для всех чисел $i \in \{1, ..., 6\}$, $u \in B_{2,p}^2$ $u \ a \notin B_{2,p}^2$. Тогда $ann(a) = B_{2,p}^2$.

Доказательство. Возьмем элемент $b = \sum_{i=1}^{6} \beta_i \overline{x}_i + v \in ann(a)$, где $\beta_i \in \mathbb{Z}_p$ для всех чисел $i \in \{1, \dots, 6\}$ и $v \in A^2_{2,p}$. Получаем

$$\overline{0} = ab = \sum_{i=1}^{6} \alpha_{i} \beta_{i} \overline{x}_{i}^{2} + (\alpha_{1} \beta_{2} + \alpha_{2} \beta_{1} + \alpha_{5} \beta_{6} + \alpha_{6} \beta_{5}) \overline{x}_{1} \overline{x}_{2} +$$

$$+ (\alpha_{3} \beta_{4} + \alpha_{4} \beta_{3} + \alpha_{5} \beta_{6} + \alpha_{6} \beta_{5}) \overline{x}_{3} \overline{x}_{4} + \sum_{\substack{i < j \\ (i,j) \neq (1,2) \\ (i,j) \neq (3,4) \\ (i,j) \neq (5,6)}} (\alpha_{i} \beta_{j} + \alpha_{j} \beta_{i}) \overline{x}_{i} \overline{x}_{j}.$$

Из леммы 5 следует, что

$$\alpha_1 \beta_1 = \ldots = \alpha_6 \beta_6 = 0, \alpha_1 \beta_2 + \alpha_2 \beta_1 + \alpha_5 \beta_6 + \alpha_6 \beta_5 = 0,$$

$$\alpha_3 \beta_4 + \alpha_4 \beta_3 + \alpha_5 \beta_6 + \alpha_6 \beta_5 = 0 \text{ и } \alpha_i \beta_i + \alpha_j \beta_i = 0$$

для всех $i, j \in \{1, \dots, 6\}$, таких, что i < j и $(i, j) \neq (1, 2), (3, 4), (5, 6).$

Предположим, что $\alpha_1 \neq 0$. Из равенства $\alpha_1\beta_1 = 0$ получаем, что $\beta_1 = 0$. Далее, из равенств $\alpha_1\beta_i + \alpha_i\beta_1 = 0$, i = 3, 4, 5, 6, следует, что $\beta_3 = \beta_4 = \beta_5 = \beta_6 = 0$. Наконец, из равенства $\alpha_1\beta_2 + \alpha_2\beta_1 + \alpha_5\beta_6 + \alpha_6\beta_5 = 0$ вытекает, что $\beta_2 = 0$. Таким образом, $b = v \in B_{2,p}^2$.

Аналогично рассматриваются случаи, когда отличен от нуля один из коэффициентов $\alpha_2, \alpha_3, \alpha_4$. Итак, мы можем полагать, что $\alpha_i = 0$ для i = 1, 2, 3, 4. Так как $a \notin A_{2,p}^2$, то $\alpha_6 \neq 0$ или $\alpha_5 \neq 0$. Предположим, что $\alpha_5 \neq 0$. Из равенства $\alpha_5\beta_5 = 0$ получаем, что $\beta_5 = 0$. Следовательно, $\alpha_5\beta_6 = 0$, т.е. и $\beta_6 = 0$. Из равенств $\alpha_i\beta_5 + \alpha_5\beta_i = 0$, где i = 1, 2, 3, 4, следует, что $\beta_i = 0$ для i = 1, 2, 3, 4. Значит, $b = v \in B_{2,p}^2$.

Из лемм 4 и 6 получаем

Следствие 3. $\Gamma(A_{2,p}) \cong \Gamma(B_{2,p})$ для любого простого нечетного числа p.

Предложение 4. Алгебра $A_{2,p}$ не изоморфна алгебре $B_{2,p}$ для любого простого нечетного числа p.

Доказательство. Предположим противное. Пусть φ – изоморфизм $B_{2,p}$ на $A_{2,p}$. Обозначим $\overline{x_i} = x_i + \langle x_1 x_2 + x_3 x_4 - x_5 x_6 \rangle \in B_{2,p}$ и $\overline{x_i'} = x_i + \langle x_1 x_2 - x_3 x_4 \rangle \in A_{2,p}$, $i = \overline{1,6}$. Заметим что $\varphi(B_{2,p}^2) \subseteq A_{2,p}^2$, а значит, отображение $\overline{\varphi} : B_{2,p}/B_{2,p}^2 \to A_{2,p}/A_{2,p}^2$, определенное по правилу $\overline{\varphi}(a + B_{2,p}^2) = \varphi(a) + A_{2,p}^2$, $a \in B_{2,p}$, также является изоморфизмом.

Отсюда следует, что существует невырожденная матрица $P=(p_{ij})_{6\times 6},\ p_{ij}\in\mathbb{Z}_p,$ такая, что

$$\begin{cases} \varphi(\overline{x}_{1}) = p_{11}\overline{x}'_{1} + p_{21}\overline{x}'_{2} + p_{31}\overline{x}'_{3} + p_{41}\overline{x}'_{4} + p_{51}\overline{x}'_{5} + p_{61}\overline{x}'_{6} + b_{1}; \\ \varphi(\overline{x}_{2}) = p_{12}\overline{x}'_{1} + p_{22}\overline{x}'_{2} + p_{32}\overline{x}'_{3} + p_{42}\overline{x}'_{4} + p_{52}\overline{x}'_{5} + p_{62}\overline{x}'_{6} + b_{2}; \\ \varphi(\overline{x}_{3}) = p_{13}\overline{x}'_{1} + p_{23}\overline{x}'_{2} + p_{33}\overline{x}'_{3} + p_{43}\overline{x}'_{4} + p_{53}\overline{x}'_{5} + p_{63}\overline{x}'_{6} + b_{3}; \\ \varphi(\overline{x}_{4}) = p_{14}\overline{x}'_{1} + p_{24}\overline{x}'_{2} + p_{34}\overline{x}'_{3} + p_{44}\overline{x}'_{4} + p_{54}\overline{x}'_{5} + p_{64}\overline{x}'_{6} + b_{4}; \\ \varphi(\overline{x}_{5}) = p_{15}\overline{x}'_{1} + p_{25}\overline{x}'_{2} + p_{35}\overline{x}'_{3} + p_{45}\overline{x}'_{4} + p_{55}\overline{x}'_{5} + p_{65}\overline{x}'_{6} + b_{5}; \\ \varphi(\overline{x}_{6}) = p_{16}\overline{x}'_{1} + p_{26}\overline{x}'_{2} + p_{36}\overline{x}'_{3} + p_{46}\overline{x}'_{4} + p_{56}\overline{x}'_{5} + p_{66}\overline{x}'_{6} + b_{6}, \end{cases}$$

где $b_1, b_2, b_3, b_4, b_5, b_6$ – некоторые элементы из $A_{2,p}^2$.

Учитывая свойства изоморфизма, имеем

$$\varphi(\overline{x}_{1}\overline{x}_{2} + \overline{x}_{3}\overline{x}_{4} - \overline{x}_{5}\overline{x}_{6}) =$$

$$= (p_{11}\overline{x}'_{1} + p_{21}\overline{x}'_{2} + p_{31}\overline{x}'_{3} + p_{41}\overline{x}'_{4} + p_{51}\overline{x}'_{5} + p_{61}\overline{x}'_{6})(p_{12}\overline{x}'_{1} + p_{22}\overline{x}'_{2} + p_{32}\overline{x}'_{3} + p_{42}\overline{x}'_{4} + p_{52}\overline{x}'_{5} + p_{62}\overline{x}'_{6}) +$$

$$+ (p_{13}\overline{x}'_{1} + p_{23}\overline{x}'_{2} + p_{33}\overline{x}'_{3} + p_{43}\overline{x}'_{4} + p_{53}\overline{x}'_{5} + p_{63}\overline{x}'_{6})(p_{14}\overline{x}'_{1} + p_{24}\overline{x}'_{2} + p_{34}\overline{x}'_{3} + p_{44}\overline{x}'_{4} + p_{54}\overline{x}'_{5} + p_{64}\overline{x}'_{6}) -$$

$$- (p_{15}\overline{x}'_{1} + p_{25}\overline{x}'_{2} + p_{35}\overline{x}'_{3} + p_{45}\overline{x}'_{4} + p_{55}\overline{x}'_{5} + p_{65}\overline{x}'_{6})(p_{16}\overline{x}'_{1} + p_{26}\overline{x}'_{2} + p_{36}\overline{x}'_{3} + p_{46}\overline{x}'_{4} + p_{56}\overline{x}'_{5} + p_{66}\overline{x}'_{6}) =$$

$$= (p_{11}p_{62} + p_{12}p_{61} + p_{13}p_{64} + p_{14}p_{63} - p_{15}p_{66} - p_{16}p_{65})\overline{x}'_{1}\overline{x}'_{6} +$$

$$+ (p_{21}p_{62} + p_{22}p_{61} + p_{23}p_{64} + p_{24}p_{63} - p_{25}p_{66} - p_{26}p_{65})\overline{x}'_{2}\overline{x}'_{6} +$$

$$+ (p_{31}p_{62} + p_{32}p_{61} + p_{33}p_{64} + p_{34}p_{63} - p_{35}p_{66} - p_{36}p_{65})\overline{x}'_{3}\overline{x}'_{6} +$$

$$+ (p_{41}p_{62} + p_{42}p_{61} + p_{43}p_{64} + p_{44}p_{63} - p_{45}p_{66} - p_{46}p_{65})\overline{x}'_{4}\overline{x}'_{6} +$$

$$+ (p_{51}p_{62} + p_{52}p_{61} + p_{53}p_{64} + p_{54}p_{63} - p_{55}p_{66} - p_{56}p_{65})\overline{x}'_{5}\overline{x}'_{6} +$$

$$+ (p_{61}p_{62} + p_{63}p_{64} - p_{65}p_{66})\overline{x}'_{6}\overline{x}'_{6} + f(\overline{x}'_{1}, \overline{x}'_{2}, \overline{x}'_{3}, \overline{x}'_{4}, \overline{x}'_{5}) = 0,$$

где $f(\overline{x}'_1, \overline{x}'_2, \overline{x}'_3, \overline{x}'_4, \overline{x}'_5)$ – некоторый многочлен от переменных $\overline{x}'_1, \overline{x}'_2, \overline{x}'_3, \overline{x}'_4, \overline{x}'_5$, не содержащий \overline{x}'_6 . Поскольку элементы $\overline{x}'_1\overline{x}'_6, \overline{x}'_2\overline{x}'_6, \overline{x}'_3\overline{x}'_6, \overline{x}'_4\overline{x}'_6, \overline{x}'_5\overline{x}'_6, \overline{x}'_6\overline{x}'_6$ линейно независимы, то

$$p_{11}p_{62} + p_{12}p_{61} + p_{13}p_{64} + p_{14}p_{63} - p_{15}p_{66} - p_{16}p_{65} = 0;$$

$$p_{21}p_{62} + p_{22}p_{61} + p_{23}p_{64} + p_{24}p_{63} - p_{25}p_{66} - p_{26}p_{65} = 0;$$

$$p_{31}p_{62} + p_{32}p_{61} + p_{33}p_{64} + p_{34}p_{63} - p_{35}p_{66} - p_{36}p_{65} = 0;$$

$$p_{41}p_{62} + p_{42}p_{61} + p_{43}p_{64} + p_{44}p_{63} - p_{45}p_{66} - p_{46}p_{65} = 0;$$

$$p_{51}p_{62} + p_{52}p_{61} + p_{53}p_{64} + p_{54}p_{63} - p_{55}p_{66} - p_{56}p_{65} = 0;$$

$$p_{61}p_{62} + p_{63}p_{64} - p_{65}p_{66} = 0.$$

Изменив последнее уравнение, получим

$$p_{11}p_{62} + p_{12}p_{61} + p_{13}p_{64} + p_{14}p_{63} - p_{15}p_{66} - p_{16}p_{65} = 0;$$

$$p_{21}p_{62} + p_{22}p_{61} + p_{23}p_{64} + p_{24}p_{63} - p_{25}p_{66} - p_{26}p_{65} = 0;$$

$$p_{31}p_{62} + p_{32}p_{61} + p_{33}p_{64} + p_{34}p_{63} - p_{35}p_{66} - p_{36}p_{65} = 0;$$

$$p_{41}p_{62} + p_{42}p_{61} + p_{43}p_{64} + p_{44}p_{63} - p_{45}p_{66} - p_{46}p_{65} = 0;$$

$$p_{51}p_{62} + p_{52}p_{61} + p_{53}p_{64} + p_{54}p_{63} - p_{55}p_{66} - p_{56}p_{65} = 0;$$

$$p_{61}p_{62} + p_{62}p_{61} + p_{63}p_{64} + p_{64}p_{63} - p_{65}p_{66} - p_{66}p_{65} = 0.$$

Отсюда

$$(p_{62}, p_{61}, p_{64}, p_{63}, -p_{66}, -p_{65}) \cdot P^T = 0.$$

Так как матрица P невырожденная, то полученное равенство невозможно. Противоречие. \Box

Из следствия 3 и предложения 4 вытекает справедливость следующего утверждения.

Следствие 4. Если в многообразии колец \mathfrak{M} все конечные кольца однозначно определяются своими графами делителей нуля, то для любого нечетного простого числа р многообразие \mathfrak{M} не содержит многообразия $\mathfrak{M}_{2,p}$.

Пусть \mathfrak{M} — многообразие, в котором все конечные кольца однозначно определяются своими графами делителей нуля. В работе [1] доказано, что $T(\mathfrak{M})$ содержит многочлены вида mx, $dx + x^2g(x)$, причем $m = p_1^{\alpha_1} \dots p_s^{\alpha_s}$, $\alpha_i \leq 3$ для всех $i \leq s$, $g(x) \in \mathbb{Z}[x]$, d = 1 или $d = p_{i_1} \dots p_{i_k}$, где p_{i_1}, \dots, p_{i_k} — попарно различные простые делители числа m.

Далее, пусть $\mathfrak{N}_i = var \langle p_i^{\alpha_i} x = 0 \rangle \cap \mathfrak{M}$, где $1 \leq i \leq s$. Тогда $\mathfrak{M} = \mathfrak{N}_1 \vee \ldots \vee \mathfrak{N}_s$ и $T(\mathfrak{M}) = T(\mathfrak{N}_1) \cap \ldots \cap T(\mathfrak{N}_s)$.

Лемма 7. Если кольцо A удовлетворяет тождеству $x(y-y^n)=0, n \geq 2, a$ кольцо B удовлетворяет тождеству $x(y-y^m)=0, m \geq 2, mo$ в кольце $A \oplus B$ выполняется тождество

$$x(y - y^{(n-1)(m-1)+1}) = 0.$$

Доказательство. Пусть a, b — произвольные элементы из кольца A. Тогда

$$ab = ab^n = ab \cdot b^{n-1} = (ab \cdot b^{n-1})b^{n-1} = ab \cdot b^{2(n-1)} = \dots = ab^{1+(n-1)t},$$

где t — произвольное неотрицательное целое число. Другими словами, в кольце A выполняются тождества $xy=xy^{1+(n-1)t},\,t\geq 1$. Аналогично доказывается, что кольцо B удовлетворяет тождествам $xy=xy^{1+(m-1)s},$ где s — произвольное целое неотрицательное число. Значит, $xy=xy^{1+(n-1)(m-1)}$ — тождество в кольце $A\oplus B$.

Предложение 5. $T(\mathfrak{N}_i)$ содержит многочлен $x(y-y^{p_i}), i=1,\ldots,s$.

Доказательство. Из работы [7] следует, что $T(\mathfrak{N}_i)$ содержит многочлены вида $p_i^{\alpha_i}x$ и $dx + x^2 f(x)$, где d = 1 или $d = p_i$, $f(x) \in \mathbb{Z}[x]$, $\alpha_i \leq 3$. Если d = 1, то идеал тождеств $T(\mathfrak{N}_i)$ содержит многочлен $x + x^2 f(x)$, и из [2] следует, что \mathfrak{N}_i порождается полем \mathbb{Z}_{p_i} или $\mathfrak{N}_i = var \langle x = 0 \rangle$. В каждом из этих случае получаем, что $T(\mathfrak{N}_i)$ содержит многочлен $x(y - y^{p_i})$.

Рассмотрим случай, когда $d=p_i$, т.е. $p_ix+x^2f(x)\in T(\mathfrak{N}_i)$. Из следствия 2 имеем, что многообразие \mathfrak{N}_i не содержит многообразия \mathfrak{M}_{1,p_i} . Это означает, что существует многочлен $g(x_1,\ldots,x_N)\in T(\mathfrak{N}_i)$, существенно зависящий от переменных x_1,\ldots,x_N , такой, что $g(x_1,\ldots,x_N)\notin \{xyz,x^2,p_ix\}^T$. Ясно, что $N\leq 2$.

Пусть N = 1. В этом случае многочлен g можно записать в виде:

$$g(x) = bx + ap_i x + x^2 h(x),$$

где $h(x) \in \mathbb{Z}[x]$, $a, b \in \mathbb{Z}$, причем число b не делится на p_i , По лемме о НОД существуют целые числа u, v, такие, что $bu + p_i v = 1$. Поскольку $p_i x + x^2 f(x) \in T(\mathfrak{N}_i)$, то $T(\mathfrak{N}_i)$ содержит многочлен вида $g_1(x) = x + c p_i x + x^2 h_1(x)$ для некоторых $c \in \mathbb{Z}$ и $h_1(x) \in \mathbb{Z}[x]$. Отсюда, наконец, получаем, что

$$(x + cp_i x + x^2 h_1(x)) - c(p_i x + x^2 f(x)) = x + x^2 (h_1(x) - cf(x)) \in \mathfrak{N}_i.$$

Из [7] следует, что $T(\mathfrak{N}_i)$ содержит многочлен $x(y-y^{p_i})$.

Пусть теперь N=2. Тогда можем записать

$$g(x,y) = \alpha xy + \beta(x \circ y) + \gamma p_i xy + \varphi(x,y),$$

где $\varphi(x,y) \in \mathbb{Z}[x,y]$, $\alpha,\beta,\gamma \in \mathbb{Z}$, причем число α не делится на p_i , а нижняя степень многочлена $\varphi(x,y)$ больше 2. По лемме о НОД существуют целые числа u,v, такие, что $\alpha u + p_i v = 1$. Поэтому $T(\mathfrak{N}_i)$ содержит многочлен

$$g_1(x,y) = ug(x,y) = u\alpha xy + u\beta(x \circ y) + u\gamma p_i xy + u\varphi(x,y) =$$

$$= xy + u\beta(x \circ y) + (u\gamma - v)p_i xy + u\varphi(x,y) =$$

$$= xy + u\beta(x \circ y) + (u\gamma - v)\left(-x^2y^2f(xy)\right) + u\varphi(x,y) =$$

$$= xy + \beta_1(x \circ y) + \varphi_1(x,y),$$

где $\beta_1 = u\beta$ и $\varphi_1(x,y)$ — некоторый многочлен с целыми коэффициентами, нижняя степень которого больше 2. Итак, $T(\mathfrak{N}_i)$ содержит многочлен

$$g_1(x,y) = xy + \beta_1(x \circ y) + \varphi_1(x,y),$$

где $\beta_1 \in \mathbb{Z}$ и $\varphi_1(x,y)$ — многочлен с целыми коэффициентами, нижняя степень которого больше 2.

Рассмотрим случай, когда $p_i=2$. Тогда

$$g_1(x,x) = x^2 + 2\beta_1 x^2 + \varphi_1(x,x) = x^2 + \beta_1 \left(-x^4 f(x^2) \right) + \varphi_1(x,x) = x^2 + x^3 \varphi_2(x) \in T(\mathfrak{N}_i)$$

для некоторого многочлена $\varphi_2(x) \in \mathbb{Z}[x]$. Отсюда следует, что многообразие \mathfrak{N}_i удовлетворяет тождеству вида $x \circ y + \psi(x, y) = 0$, где $\psi(x, y) \in \mathbb{Z}[x, y]$, причем нижняя степень многочлена $\psi(x, y)$ больше 2. Следовательно,

$$g_1(x,y) = xy + \beta_1(-\psi(x,y)) + \varphi_1(x,y) = xy + \psi_1(x,y),$$

где $\psi_1(x,y) = -\beta_1 \psi(x,y) + \varphi_1(x,y)$ — многочлен, нижняя степень которого больше 2. Из теоремы 1 работы [7] имеем, что $\mathfrak{N}_i \subseteq var\ N_{0,2} \oplus \mathbb{Z}_2$. Следовательно, многообразие \mathfrak{N}_i удовлетворяет тождеству $x(y-y^2)=0$.

Рассмотрим теперь случай, когда p_i — нечетное число. Из следствия 4 имеем, что многообразие \mathfrak{N}_i не содержит многообразия \mathfrak{M}_{2,p_i} . Значит, существует многочлен $p(x_1,\ldots,x_M)\in T(\mathfrak{N}_i)$, существенно зависящий от переменных x_1,\ldots,x_M , такой, что $p(x_1,\ldots,x_M)\notin \{xyz,[x,y],p_ix\}^T$. Ясно, что $M\leq 2$.

Положим сначала M=1. Тогда можем записать

$$p(x) = \lambda x + \mu p_i x + \nu x^2 + \delta p_i x^2 + x^3 \sigma(x),$$

где $\sigma(x) \in \mathbb{Z}[x]$, $\lambda, \mu, \nu, \delta \in \mathbb{Z}$, причем либо λ — ненулевое число, не делящееся на p_i , либо ν — ненулевое число, не делящееся на p_i . Пусть λ не равно нулю и взаимно просто с числом p_i . Тогда лемме о НОД существуют целые числа u, v, такие, что $\lambda u + p_i v = 1$. Отсюда следует, что

$$up(x) = x + p_i(\mu u - v)x + \nu ux^2 + \delta up_i x^2 + ux^3 \sigma(x) =$$

= $x + (\mu u - v)(-x^2 f(x)) + \nu ux^2 + \delta up_i x^2 + ux^3 \sigma(x),$

т.е. \mathfrak{N}_i удовлетворяет тождеству вида $x+x^2q(x)=0$, где $q(x)\in\mathbb{Z}[x]$. Ранее мы отмечали, что в этом случае $x(y-y^{p_i})\in T(\mathfrak{N}_i)$. Пусть теперь $\lambda=0$. Тогда число ν не равно нулю и не делится на p_i . Отсюда следует, что лемме о НОД существуют целые числа u,v, такие, что $\nu u+p_iv=1$. Значит, имеем

$$up(x) = \mu u p_i x + x^2 + p_i (\delta u - v) x^2 + u x^3 \sigma(x) =$$

$$= \mu u p_i x + x^2 + (\delta u - v) (-x^4 f(x^2)) + u x^3 \sigma(x) = \mu u p_i x + x^2 + x^3 \sigma_1(x)$$

для некоторого многочлена $\sigma_1(x) \in \mathbb{Z}[x]$. Линеаризуя многочлен $\mu u p_i x + x^2 + x^3 \sigma_1(x)$, мы получим, что идеал тождеств $T(\mathfrak{N}_i)$ содержит многочлен вида $x \circ y + w(x,y)$, где w(x,y) — некоторый многочлен с целыми коэффициентами, нижняя степень которого больше 2. Из тождеств $x \circ y + w(x,y) = 0$ и $g_1(x,y) = 0$ получаем, что $T(\mathfrak{N}_i)$ содержит многочлен вида $xy + w_1(x,y)$, где $w_1(x,y) \in \mathbb{Z}[x,y]$ и нижняя степень многочлена $w_1(x,y)$

больше 2. По теореме 1 статьи [7] следует, что многообразие \mathfrak{N}_i удовлетворяет тождеству $x(y-y^{p_i})=0$.

Пусть, наконец, M = 2. Тогда можем записать

$$p(x,y) = \lambda_1 xy + \mu_1 [x,y] + \nu_1 p_i xy + \omega(x,y),$$

где $\lambda_1, \mu_1, \nu_1 \in \mathbb{Z}$, причем λ_1 не делится на p_i , и $\omega(x,y)$ — многочлен с целыми коэффициентами, нижняя степень которого больше 2. Используя лемму о НОД так же, как это было сделано выше, мы можем считать, что $\lambda_1 = 1$, т.е.

$$p(x,y) = xy + \mu_1[x,y] + \nu_1 p_i xy + \omega(x,y).$$

Пользуясь тождеством $p_i x + x^2 f(x) = 0$, получаем, что

$$p(x,y) = xy + \mu_1[x,y] + \nu_1(-x^2y^2f(xy)) + \omega(x,y) = xy + \mu_1[x,y] + \omega_1(x,y)$$

для некоторого многочлена $\omega_1(x,y) \in \mathbb{Z}[x,y]$, нижняя степень которого больше 2. Тогда $p(x,x) = x^2 + x^3\omega_2(x)$, где $\omega_2 \in \mathbb{Z}[x]$. Линеаризуя тождество p(x,x) = 0, получим, что многообразие \mathfrak{N}_i удовлетворяет тождеству вида $x \circ y + w(x,y) = 0$, где w(x,y) — некоторый многочлен с целыми коэффициентами, нижняя степень которого больше 2. Из тождеств $x \circ y + w(x,y) = 0$ и $g_1(x,y) = 0$ следует тождество вида $xy + w_1(x,y) = 0$, где $w_1(x,y) \in \mathbb{Z}[x,y]$ и нижняя степень многочлена $w_1(x,y)$ больше 2. По теореме 1 статьи [7] получаем, что многообразие \mathfrak{N}_i удовлетворяет тождеству $x(y-y^{p_i}) = 0$.

Из предложения 5 и леммы 7 получаем следующее утверждение.

Следствие 5. Пусть \mathfrak{M} — многообразие, в котором все конечные кольца однозначно определяются своими графами делителей нуля. Тогда $T(\mathfrak{M})$ содержит многочлен вида $x(y-y^N)$, где $N \geq 2$.

Теперь мы можем доказать основной результат настоящей работы.

Теорема 1. Для любого многообразия \mathfrak{M} ассоциативных колец следующие условия эквивалентны:

- (1) Произвольное конечное кольцо из \mathfrak{M} однозначно определяется своим графом делителей нуля;
- (2) $\mathfrak{M} \subseteq var \langle N_{0,p_1} \oplus \ldots \oplus N_{0,p_s} \oplus \mathbb{Z}_p \rangle$, где $s \in \mathbb{N}$ и $(p_i,p) \neq (3,2)$ для любого числа $i \in \{1,\ldots,s\}$.

Доказательство. Импликация $(2) \Rightarrow (1)$ следует из предложения 4 работы [1]. Докажем импликацию $(1) \Rightarrow (2)$. Пусть в многообразии \mathfrak{M} все конечные кольца однозначно определяются своими графами делителей нуля. Тогда по следствию 5 идеал тождеств $T(\mathfrak{M})$ содержит многочлен вида $x(y-y^N)$, где $N \geq 2$. По теореме 1.1 из статьи [7] имеем, что $\mathfrak{M} \subseteq var \langle N_{0,p_1} \oplus \ldots \oplus N_{0,p_s} \oplus \mathbb{Z}_p \rangle$, где $s \in \mathbb{N}$ и $(p_i,p) \neq (3,2)$ для любого числа $i \in \{1,\ldots,s\}$.

Список литературы

- Кузьмина А.С. О некоторых свойствах многообразий колец, в которых конечные кольца однозначно определяются своими графами делителей нуля [Электронный ресурс]// Сибирские электронные математические известия. – 2011. – №8. – С. 179–190.
- [2] Джекобсон Н. Строение колец. М.: Изд-во иностр. литературы, 1961. 392 с.
- [3] Akbari S., Mohammadian A. On the zero-divisor graph of a commutative ring// Journal of Algebra. 2004. 274. p.847-855.
- [4] Akbari S., Mohammadian A. On zero-divisor graphs of finite rings// Journal of Algebra.
 2007. 314. p.168-184.
- [5] Anderson D.F., Livingston P.S. The Zero-Divisor Graph of a Commutative Ring // Journal of Algebra. − 1999. − 217. − № 2. − p. 434–447.
- [6] Beck I. Coloring of Commutative Rings // Journal of Algebra. 1988. 116. p.208– 226.
- [7] Kuzmina A.S., Maltsev Y.N. On varieties of rings whose finite rings are determined by their zero-divisor graphs, http://arxiv.org/abs/1201.3441, to appear in Asian-European J. Math.
- [8] Tarski A. Equationally complete rings and relation algebras, Indag. Math., 18 (1956), 39–46.