High Performance
Computing for Weather
and Climate (HPC4WC)

Content: Graphics Processing Units

Lecturer: Oliver Fuhrer

Block course 701-1270-00L

Summer 2024

Learning goals

- Understand why specialized hardware such as GPUs is become the new "normal"
- Learn how to program a GPU using a high-level programming language
- Understand potential and difficulties of GPUcomputing

How does the landscape of HPC look today?

Moore's Law (1965)

"The number of transistors in a dense integrated circuit will double every two years"

The End of General Purpose Computing

Transistor

Distance between Si-atoms is 0.5 nm!

Chip Design Costs

How does performance of our machines behave

Performance Development

Source: top500.org

So why are we still ok?

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)	
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE	8,699,904	1,194.00	1,679.82	22,703	
	DOE/SC/Oak Ridge National Laboratory United States		AN	ID GP	U	
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899	
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X,	2,220,288	309.10	428.70	6,016	
	Stingshot-11, HPE EuroHPC/CSC Finland		AM	ID GP	U	
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA	1,824,768	238.70	304.47	7,404	
	HDR100 Infiniband, Atos EuroHPC/CINECA Italy		NVID	IA GP	U	
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR	2,414,592	148.60	200.79	10,096	
	Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States		NVID	IA GP	U	

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s		wer V)
6	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480		NVID	125.71 IA C	7,438 6PU
7	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	9	3.01	125.44	15,371
8	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	761,856		0.87 NVID	93.75	^{2,589}
9	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520		3.46 NVID	^{79.22}	^{2,646} SPU
10	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	6	1.44 X 6	100.68 201	18,482 Phi

Specialized Chips are on the Rise!

Google's TPU
(e.g. machine learning)

FPGA (e.g. bitcoin mining)

GPU (e.g. gaming)

Dennard Scaling

• "If the transistor density doubles, power consumption (with twice the number of transistors) stays the same."

Performance / Watt

Intel Xeon E5-2690 v3 + DRAM

~ 200 W 0.5 TFLOP/s 70 GB/s

NVIDIA Tesla P100

~ 300 W 5.3 TFLOP/s 720 GB/s

Node Architecture

Crucial to minimize memory transfers between CPU and GPU!

Hybrid Supercomputer

Performance / Watt

Intel Xeon E5-2690 v3 + DRAM

NVIDIA Tesla P100

Weather and Climate on GPUs

How to program GPUs

How is it done?

```
!$acc enter data async create (this%c reff so, this%c
                                                !$acc enter data async create (this%c rhoguer, this%c
                                                !allocate pointers
                                                !$acc enter data async create (this%r eff so this%r e
                                                !$acc enter data async create (this%r pack scalar f64 kernel = (
# reset fields
with computation(FORWARD), interval(...):
                                                !$acc data present(this)
                                                                                               if cp is None
   zfix = 0
                                                                                               else cp.RawKernel(
   sum0 = 0.0
   sum1 = 0.0
with computation(PARALLEL), interval(...):
                                                !$acc loop gang vector collapse (3)
   lower fix = 0.0
                                                DO k= 1 , ke
                                                                                                    void pack scalar f64(const double* i sourceArray,
   upper fix = 0.0
                                                  DO i= 1, nproma
                                                    DO j= 1, nhabits ice
with computation(BACKWARD):
                                                      this%r eff so(i,k,j)
                                                                                  = 0.0 \text{ W}
   with interval(1, 2):
                                                      this%r eff th(i,k,j)
                                                                                  = 0.0 \text{ W}
       if q[0, 0, -1] < 0.0:
                                                                                                                          double* o destinationBuffer)
                                                      this%ar mean th(i,k,j)
                                                                                  = 0.0 \text{ W}
           a = (
               q + q[0, 0, -1] * dp[0, 0, -1] / d
                                                    END DO
           ) # move enough mass up so that the t
                                                  END DO
   with interval(0, 1):
                                                END DO
                                                !sacc end parallel
           q = 0
       dm = q * dp
with computation(FORWARD), interval(1, -1):
   if lower fix[0, 0, -1] != 0.0:
       q = q - (lower fix[0, 0, -1] / dp)
   if a < 0.0:
       zfix += 1
                                                                                                    "pack scalar f64",
       if q[0, 0, -1] > 0.0:
           # Borrow from the layer above
```

!\$acc enter data async create (this)

How to program GPUs

Lab Exercises

01-GPU-programming-cupy.ipynb

Introduction to GPU programming using a high-level programming language

Remarks

When running a GPU notebook, you may experience this error:

cupy_backends.cuda.api.runtime.CUDARuntimeError: cudaErrorDevicesUnavailable: all CUDA-capable devices are busy or unavailable

Don't worry, it's not your fault! Just restart the kernel and the error should disappear. If it persists, reach out to us.

To let multiple tasks access the same GPU: export CRAY_CUDA_MPS=1