

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Departement of Computer Science Prof. Dennis Hofheinz Julia Kastner Information Security Lab 2022 Module 02 - Reductions - Week 1 October 10 - 14

Theory Exercises

Exercise 1. Prove that if P = NP there does not exist a public key encryption (PKE) scheme which is IND-CPA secure.

Exercise 2. In the following, we want to consider how one can combine existing PKE schemes to build new ones.

- (a) Consider two public-key encryption (PKE) schemes $E_i = (\text{KeyGen}_i, \text{Enc}_i, \text{Dec}_i)$ for $i \in \{0, 1\}$. Both E_0 and E_1 are correct and have the same message space \mathcal{M} . Assume only one of the schemes E_0 and E_1 is IND-CPA secure. Without knowing which scheme is secure, design a PKE scheme E_2 for \mathcal{M} that uses E_0 and E_1 and is IND-CPA secure and provide a proof of IND-CPA security of your new scheme.
- (b) Assume you have n PKE schemes $E_i = (\mathsf{KeyGen}_i, \mathsf{Enc}_i, \mathsf{Dec}_i)$ for $i \in \{1, \dots, n\}$ with the same message space \mathcal{M} , all of which are correct, and at least one of which is IND-CPA secure (but you do not know which one). Use these schemes to construct a new scheme E_{n+1} that is IND-CPA secure. Provide a proof for the IND-CPA security of your new scheme.

Exercise 3. Consider a cyclic group \mathbb{G} of known prime order p > 2 and let \mathbf{g} be a generator of \mathbb{G} .

- (a) You are given access to an oracle square which on input \mathbf{g}^a outputs $\mathbf{g}^{(a^2)}$. Show that given access to square, there exists a polynomial-time algorithm that solves **DDH** in \mathbb{G} .
- (b) You are given access to an oracle inv which on input \mathbf{g}^a outputs $\mathbf{g}^{\frac{1}{a}}$. Show that given access to inv, there exists a polynomial-time algorithm that solves **DDH** in \mathbb{G} .

Exercise 4. Consider two digital signature schemes $\Sigma_i = (\mathsf{KeyGen}_i, \mathsf{Sign}_i, \mathsf{Verify}_i)$ for $i \in \{0, 1\}$. You know that both of these signature schemes are correct, but only one of them is EUF-CMA secure. Using these two schemes, construct a new digital signature scheme Σ_2 that is EUF-CMA secure. Prove the security of your new scheme.

References

[KL21] Jonathan Katz and Yehuda Lindell. *Introduction to modern cryptography*. eng. Third edition. Chapman & Hall/CRC cryptography and network security. Boca Raton, Florida; CRC Press, 2021. ISBN: 1-351-13303-9.