Table of Contents

A.	C	Create a New Project:	2
1		Step 1 – create a new project and add VHDL files:	2
2		Step 2 – Add project files:	4
3		Step 3 – Code compilation:	5
4		Step 4 – Synthesis results:	8
5		Step 5 – Setting system constrains:	9
6		Step 6 – Pin Planner Layout:	10
7		Step 7 – Full compilation (finding of $fmax$):	11
8		Step 8 – Finding The Critical Path Location:	12
	i.	. Technology Map Viewer:	14
	ii.	i. Resource Property Editor:	14
	iii	ii. Chip Planner:	15
9		Step 9 – Code Programming:	16
В.	٧	Verification – Using Signal TAP:	17
1		Block Diagram:	17
2		Using STP with a student activation license:	17
3		Create a new STP file:	18
4		Configurations (after expansion of the previous window):	19
5		Project Compilation and Programming (an eventually the Signals results):	22
C.	C	Changing the VHDL source files of the project:	24
n	0	Onen Existing Project:	24

Quartus - Create or Open a Project

A. Create a New Project:

1. Step 1 – create a new project and add VHDL files:

< Back

Next >

Finish

Cancel

Help

2. Step 2 – Add project files:

a. <u>In order to open VHDL blank file use the next step (if you're using VHDL existing files, copy these files into project folder and skip to clause b):</u>

b. Add the project VHDL existing files:

3. Step 3 – Code compilation:

a. Set the compilation order and top level entity:

counter.vhd

```
library ieee;
use ieee.std logic 1164.all;
use IEEE.std logic unsigned.all;
entity counter is port (
    clk,enable : in std logic;
               : out std logic vector (7 downto 0));
end counter;
architecture rtl of counter is
    signal q int : std logic vector (31 downto 0):=x"00000000";
begin
    process (clk)
   begin
        if (rising_edge(clk)) then
           if enable = '1' then
                q int <= q int + 1;
           end if;
         end if;
    end process;
    q <= q int(31 downto 24); -- Output only 8MSB
end rtl;
```

Example application:

- 32bit behavioral counter with enable
- 8 MSB connected to green LEDs
- Enable connected to switch
- Clock to 50MHz onboard oscillator

b. Code compilation:

c. Start analysis and synthesis:

4. Step 4 – Synthesis results:

a. Synthesis RTL viewer:

b. Synthesis Map (Post-Fitting) viewer (LEs and FFs combination):

5. Step 5 – Setting system constrains:

a. Create the system constrains *.sdc file:

b. Add the *.sdc file to the project:

6. Step 6 - Pin Planner Layout:

Signal Name	FPGA Pin No.	Description	1					
		•	LEDG[0]	PIN_U22	LED Green[0]			
CLOCK_27	PIN_D12, PIN_E12	27 MHz clock input	LEDG[1]	PIN U21	LED Green[1]			
CLOCK_50	PIN_L1	50 MHz clock input		-				
CLOCK_24	PIN_A12, PIN_B12	24 MHz clock input from USB Blaster	LEDG[2]	PIN_V22	LED Green[2]			
EXT_CLOCK	PIN_M21	External (SMA) clock input	LEDG[3]	PIN_V21	LED Green[3]			
Table	Table 4.5. Pin assignments for the clock inputs.			PIN_W22	LED Green[4]			
1401	e 4.5. Fin assignin	ents for the clock inputs.	LEDG[5]	PIN_W21	LED Green[5]			
			LEDG[6]	PIN_Y22	LED Green[6]			
Signal Name	FPGA Pin No.	Description	LEDG[7]	PIN_Y21	LED Green[7]			
SW[0]	PIN_L22	Toggle Switch[0]						
Table 4.1. Pin assignments for the toggle switches. Table 4.3. Pin assignments for the LED								

7. Step 7 – Full compilation (finding of f_{max}):

Explanation: In order Quartus IDE can calculate f_{max} the logic design parts must be wrapped by registers

8. Step 8 – Finding The Critical Path Location:

i. Technology Map Viewer:

ii. Resource Property Editor:

iii. Chip Planner:

9. Step 9 – Code Programming:

B. Verification - Using Signal TAP:

1. Block Diagram:

2. Using STP with a student activation license:

Signal TAP Pros & Cons:

- Captures real time state of FPGA internal signals and pins (up to 200MHz)
- Connects to Quartus II through JTAG
- Do not require huge and expensive equipment
- Uses internal FPGA resources
 - Memory Blocks
 - Logic Elements
- Each time the captured signals list change the design must be recompiled

Signal TAP Features:

- Up to 1024 Data Channels
- Multiple Analyzers in One Device
 - Supports Analysis of Multiple Clock Domains
 - Each Analyzer Can Run Simultaneously
- Multiple Analyzers in One Device
- Up to 10 Trigger Levels Per Channel

3. Create a new STP file:

4. Configurations (after expansion of the previous window):

In case of more than one Trigger condition columns:

1) Between lines in the same column the operation is AND

Between columns the operation is OR.

5. Project Compilation and Programming (an eventually the Signals results):

C. Changing the VHDL source files of the project:

D. Open Existing Project:

