COVID Data Analysis

BY:

- RANJANI ANJUR VENKATRAMAN
- CODY GARDNER
- SHARON COLSON

Agenda

- 1. General Information
- 2. Exploratory Data
- 3. Visualizations/Data Trends
- 4. Linear Regression
- 5. Hypothesis Tests
- 6. Conclusion
- 7. Questions

General Information

Background:

Analyzing the trends in COVID data for different countries in the world

Resources/APIs:

- Historical API:
 - Using Historical API retrieved 30 days data of Cases, Deaths, and Recovered for multiple countries across world
 - Link: https://disease.sh/v3/covid-19/historical/
- Vaccination API:
 - Using Vaccination API retrieved vaccination information for multiple countries across world
 - Link: https://disease.sh/v3/covid-19/vaccine/coverage/countries?lastdays=1
- Daily data API :
 - Using Daily data API retrieved present day covid information
 - Link: https://disease.sh/v3/covid-19/countries/

Main COVID Data Frame

	Country	Cases	Deaths	Recovered	Vaccination_count	Latitude	Longitude	Population	Continent	Unvaccination_count
0	Afghanistan	137853.0	5983.0	82586.0	1046423.0	33.0	65.0	39869084	Asia	38822661.0
1	Albania	132638.0	2456.0	130064.0	1056075.0	41.0	20.0	2874408	Europe	1818333.0
2	Algeria	150504.5	3902.5	104103.0	3087405.0	28.0	3.0	44701619	Africa	41614214.0
3	Andorra	14256.0	127.0	13836.5	72315.0	42.5	1.6	77398	Europe	5083.0
4	Angola	40580.5	951.5	34672.0	1578873.0	-12.5	18.5	33961015	Africa	32382142.0

Group by Covid data

1	<pre>subset_today = today_df[['Country', 'Latitude', 'Longitude', 'Population', 'Continent']]</pre>
2	<pre>subset_today.head()</pre>

	Country	Latitude	Longitude	Population	Continent
0	Afghanistan	33.0	65.0	39869084	Asia
1	Albania	41.0	20.0	2874408	Europe
2	Algeria	28.0	3.0	44701619	Africa
3	Andorra	42.5	1.6	77398	Europe
4	Angola	-12.5	18.5	33961015	Africa

Top 10 Vaccinated Countries

Rank	Country	Latitude	Longitude
1	China	35.0000	105.0000
2	India	20.0000	77.0000
3	USA	38.0000	- 97.0000
4	Brazil	-10.0000	- 55.0000
5	Germany	51.0000	9.0000
6	UK	54.0000	- 2.0000
7	Japan	36.0000	138.0000
8	France	46.0000	2.0000
9	Turkey	39.0000	35.0000
10	Italy	42.8333	12.8333

Top 10 Unvaccinated Countries

Top 10 Countries with Highest COVID Cases

Rank	Country	Latitude	Longitude
1	USA	38.0000	-97.0000
2	India	20.0000	77.0000
3	Brazil	-10.0000	-55.0000
4	Russia	60.0000	100.0000
5	France	46.0000	2.0000
6	Turkey	39.0000	35.0000
7	UK	54.0000	- 2.0000
8	Argentina	- 34.0000	- 64.0000
9	Colombia	4.0000	- 72.0000
10	Italy	42.8333	12.8333

Top 10 Countries by Death Count

Cases and Recoveries

COVID Summary by Continent

Correlation Matrix

Pearson's Correlation Coefficient

Hypothesis:

- H0: Cases and Vaccination are independent
- H1: There is a dependency between Cases and Vaccination

Inference:

 Since p-value is less than 0.05 we can reject null hypothesis and accept the alternate hypothesis that there is a dependency between cases and vaccination

- H0: Cases and Vaccination are independent

- H1: There is a dependency between Cases and Vaccination

```
import scipy.stats as st
from scipy.stats import linregress

correlation=round(st.pearsonr(main_covid_df['Vaccination_count'],main_covid_df['Cases'])[0],2)
p_value = st.pearsonr(main_covid_df['Vaccination_count'],main_covid_df['Cases'])[1]
print(f"The correlation between cases and vaccination is {correlation}")
print(f"The p-value for cases and vaccination is {p_value}")

The correlation between cases and vaccination is 0.33
The p-value for cases and vaccination is 4.6514891598922895e-06
```

Probably cases and vaccination have correlation

Augmented Dickey Fuller Test

Hypothesis:

- H0: a unit root is present (series is non-stationary).
- H1: a unit root is not present (series is stationary).

Inference:

 As p-value is greater than 0.05 and ADF statistic > greater than critical value we fail to reject null hypothesis. So, the time series data is non-stationary


```
200000 Daily Covid Cases of USA for last 30 days
150000
50000
0 5 10 15 20 25
Days
```

```
In [49]: X = usa t
         result = adfuller(X)
         print('ADF Statistic: %f' % result[0])
         print('p-value: %f' % result[1])
         print('Critical Values:')
         for key, value in result[4].items():
             print('\t%s: %.3f' % (key, value))
         if result[0] < result[4]["5%"]:</pre>
             print ("Reject Ho - Time Series is Stationary")
             print ("Failed to Reject Ho - Time Series is Non-Stationary")
         ADF Statistic: 5.206378
         p-value: 1.000000
         Critical Values:
                 1%: -3.809
                 5%: -3.022
                 10%: -2.651
         Failed to Reject Ho - Time Series is Non-Stationary
```

Conclusion and Takeaways

Conclusion:

• Based on the analysis, we are seeing an upward trend and seasonality in COVID cases

Takeaways:

- The suggestion of this analysis to any business owner or manager would be to prepare an action plan for further restrictions due to rise in Covid-19 cases.
- Further analysis based on a larger time frame (say 90 or 180 days) might give additional information
- It could be that vaccination counts have not yet come to a number that would cause Covid-19 cases to fall or that the new Delta (or any subsequent) variant will cause Covid-19 cases to continue to rise despite increasing vaccination counts.

THANK YOU!!

ANY QUESTIONS??

