One—Page Map of the Proof (Product—Certificate Route)

Outer-normalized ratio \mathcal{J} ; wedge (P+) via a length-free certificate; RH by Poisson, Cayley, and removability

Objects and normalizations.

- Outer-normalized ratio: $\mathcal{J}(s) = \frac{\det_2(I A(s))}{\mathcal{O}(s)\,\xi(s)}$, Cayley: $\Theta = \frac{2\mathcal{J} 1}{2\mathcal{J} + 1}$.
- Window and schedule: even ψ with $\psi \equiv 1$ on [-1,1], supp $\psi \subset [-2,2]$; Whitney boxes with $L \leq 1/\log\langle T \rangle$, aperture $\alpha \in [1,2]$.
- Phase drop density on an interval I: $\int_{I} (-w'(t)) dt$.

Locked constants (camera-ready).

$$c_0(\psi) = 0.17620819$$
, $C_H(\psi) \le 0.65$, $C_P(\kappa) = 0.020 \ (\kappa = 0.010)$, $C_{\psi}^{(H^1)} = 0.2400$.

$$K_0 \le 0.03486808$$
, $K_{\xi} \le 0.0219955$, $||U_{\Gamma}||_{\text{area}} \le 0.011803 \Rightarrow C_{\text{box}} \le 0.0686666$, $M_{\psi} \le \frac{4}{\pi} C_{\psi}^{(H^1)} \sqrt{C_{\text{box}}} \le 0.0800745$.

Length-free product certificate (interval-uniform).

$$c_0(\psi) \, \mu \big(Q(I) \big) \, \leq \, \int_{\mathbb{R}} (-w') \, \varphi_{L,t_0} \, \leq \, C_H(\psi) \, M_\psi \, + \, C_P(\kappa) \,$$
 (support chosen so $C_{\mathrm{tail}} = 0$).

Define the scalar wedge parameter

$$\Upsilon \; := \; \frac{C_H(\psi) \, M_\psi + C_P(\kappa)}{c_0(\psi)} \; \leq \; \frac{0.65 \cdot 0.0800745 + 0.020}{0.17620819} \; = \; 0.40890 \; \leq \; \tfrac{1}{2}.$$

Two-line implication. If $\mu(Q(I)) \leq \Upsilon$ for all I, then $\int_{I} (-w') \leq \pi \Upsilon \leq \frac{\pi}{2}$ for all I; hence the boundary wedge (P+) holds: $\Re(2\mathcal{J}(\frac{1}{2}+it)) \geq 0$ a.e.

From (P+) to RH.

- Poisson transport: boundary $(P+) \Rightarrow 2\mathcal{J}$ is Herglotz on Ω .
- Cayley transform: $\Theta = (2\mathcal{J} 1)/(2\mathcal{J} + 1)$ is Schur on Ω .
- Removable singularity at $\rho \in Z(\xi)$: bounded Schur on a punctured disc extends holomorphically; hence \mathcal{J} has no poles in Ω .
- Globalization/pinch: no poles in $\Omega \Rightarrow$ no zeros of ξ in Ω ; by the functional equation, all nontrivial zeros lie on $\Re s = \frac{1}{2}$ (RH).

Independence / non-circularity notes.

- $C_{\text{box}} = K_0 + K_{\xi} + ||U_{\Gamma}||_{\text{area}}$ with K_0 (prime–power tail), K_{ξ} (neutralized zeros, cubic decay), and the Archimedean term from Stirling/digamma.
- $M_{\psi} \leq \frac{4}{\pi} C_{\psi}^{(H^1)} \sqrt{C_{\text{box}}}$ (fixed aperture H¹–BMO/Carleson embedding), with $C_{\psi}^{(H^1)}$ evaluated once (analytic enclosure < 0.245, locked 0.2400).

Status of PSC. The sum-form PSC inequality closes numerically with the printed window (independent of M_{ψ} and C_{box}), but PSC is *archived* and not used to deduce (P+); the main chain to (P+) runs solely through the product certificate above.

Digits: $0.17620819 = \frac{1}{2\pi}\arctan 2$; 0.03486808, 0.0219955, 0.011803 per Appendix D/B/C; 0.0686666 = 0.03486808 + 0.0219955 + 0.011803 = 0.0686666; $0.0800745 = \frac{4}{\pi} \cdot 0.2400 \cdot \sqrt{0.0686666} = 0.0800745$.