Лекция 1

8 февраля

Лемма 1 (о структуре компактного оператора).

- $V: \mathbb{R}^m \to \mathbb{R}^m$ линейный оператор
- $\det V \neq 0$

Тогда \exists ортонормированные базисы $g_1\dots g_m$ и $h_1\dots h_m$, а также $\exists s_1\dots s_m>0$, такие что:

$$\forall x \in \mathbb{R}^m \quad V(x) = \sum_{i=1}^m s_i \langle x, g_i \rangle h_i$$

 $\mathsf{M} \mid \det V \mid = s_1 s_2 \dots s_m.$

Примечание. Эта лемма из функционального анализа, что такое компактный оператор — мы не знаем.

Доказательство. $W := V^*V -$ самосопряженный оператор (матрица симметрична относительно диагонали).

Из линейной алгебры мы знаем, что такой оператор имеет:

- Собственные числа: $c_1 \dots c_m$ вещественные (возможно с повторениями)
- Собственные векторы: $g_1 \dots g_m$ ортонормированные

Примечание. Пока мы в \mathbb{R}^m (а не в \mathbb{C}^m), * есть транспонирование. В комплексном случае ещё берется сопряжение.

$$c_i \langle g_i, g_i \rangle \stackrel{(1)}{=} \langle W g_i, g_i \rangle \stackrel{(2)}{=} \langle V g_i, V g_i \rangle > 0$$

• (1): т.к. g_i — собственный вектор для W с собственным значением c_i .

• (2): из линейной алгебры:

$$W_{kl} = \sum_{i=1}^{m} V_{ik} V_{il}$$
$$\langle Wg_i, g_i \rangle = \sum_{k,l,j} V_{jk} V_{jl} g_k^{(i)} g_l^{(i)} = \langle Vg_i, Vg_i \rangle$$

Таким образом, $c_i > 0$.

$$s_i := \sqrt{c_i}$$

$$h_i := \frac{1}{s_i} V g_i$$

$$\langle h_i, h_j \rangle \stackrel{\text{def } h_i}{=} \frac{1}{s_i s_j} \langle Vg_i, Vg_j \rangle \stackrel{(3)}{=} \frac{1}{s_i s_j} \langle Wg_i, g_j \rangle \stackrel{(4)}{=} \frac{c_i}{s_i s_j} \langle g_i, g_j \rangle \stackrel{(5)}{=} \delta_{ij}$$

- (3): из линейной алгебры, аналогично предыдущему.
- (4): т.к. g_i собственный вектор для W с собственным значением c_i .
- (5): при $i\neq j$ $\langle g_i,g_j\rangle=0$ в силу ортогональности, а при i=j $\langle g_i,g_j\rangle=1$ в силу ортонормированности и $\frac{c_i}{s_is_j}=\frac{c_i}{\sqrt{c_i}\sqrt{c_i}}=1$

Примечание.
$$\delta_{ij} = egin{cases} 1, & i=j \\ 0, & i
eq j \end{cases}$$
— символ Кронекера.

Таким образом, $\{h_i\}$ ортонормирован.

$$V(x) \stackrel{\text{def } x}{=} V \left(\sum_{i=1}^{m} \langle x, g_i \rangle g_i \right) \stackrel{\text{(6)}}{=} \sum_{i=1}^{m} \langle x, g_i \rangle V(g_i) \stackrel{\text{def } h_i}{=} \sum_{i=1}^{m} s_i \langle x, g_i \rangle h_i$$
$$(\det V)^2 \stackrel{\text{(7)}}{=} \det(V^*V) \stackrel{\text{def } W}{=} \det W \stackrel{\text{(8)}}{=} c_1 \dots c_m$$

$$|\det V| = \sqrt{c_1} \dots \sqrt{c_m} = s_1 \dots s_m$$

Теорема 1 (о преобразовании меры Лебега под действием линейного отображения).

^{(6):} в силу линейности V

^{(7):} в силу мультипликативности det и инвариантности относительно транспонирования.

^{(8):} т.к. det инвариантен по базису и в базисе собственных векторов det $W = c_1 \dots c_m$.

• $V: \mathbb{R}^m \to \mathbb{R}^m$ — линейное отображение

Тогда
$$\forall E \in \mathfrak{M}^m \ V(E) \in \mathfrak{M}^m$$
 и $\lambda(V(E)) = |\det V| \cdot \lambda E$

Доказательство.

- 1. Если $\det V=0$ $\operatorname{Im}(V)$ подпространство в $\mathbb{R}^m\Rightarrow \lambda(\operatorname{Im}(V))=0$ по следствию 6 лекции 15 третьего семестра. Тогда $\forall E\ V(E)\subset \operatorname{Im}(V)\Rightarrow \lambda(V(E))=0$
- 2. Если $\det V \neq 0 \quad \mu E := \lambda(V(E))$ мера, инвариантная относительно сдвигов. Это было доказано в конце прошлого семестра:

$$\mu(E+a) = \lambda(V(E+a)) = \lambda(V(E) + V(a)) = \lambda(V(E)) = \mu E$$

 $\Rightarrow \exists k : \mu = k\lambda$ по недоказанной теореме из прошлого семестра.

Мы хотим найти k, для этого нужно что-нибудь померять. Померяем что-то очень простое, например $Q = \{ \sum \alpha_i g_i \mid \alpha_i \in [0,1] \}$ — единичный куб на векторах g_i .

$$V(g_i) = s_i h_i$$
. Таким образом, $V(Q) = \{\sum \alpha_i s_i h_i \mid \alpha_i \in [0,1]\}.$

$$\mu Q = \lambda(V(Q)) = s_1 \dots s_m = |\det V| = |\det V| \underbrace{\lambda Q}_{=1}$$

Таким образом, $k = |\det V|$

1 Интеграл

1.1 Измеримые функции

Определение.

- 1. E множество, $E = \bigsqcup_{\text{кон.}} e_i$ разбиение множества.
- 2. $f:X \to \mathbb{R}$ ступенчатая, если:

$$\exists$$
 разбиение $X = \bigsqcup_{\scriptscriptstyle{ ext{ t KOH.}}} e_i : orall i \ f \Big|_{e_i} = ext{const}_i = c_i$

При этом разбиение называется допустимым для этой функции.

Пример.

1. Характеристическая функция множества $E\subset X: \chi_E(x)= egin{cases} 1, & x\in E \\ 0, & x\in X\setminus E \end{cases}$

2.
$$f = \sum_{\text{кон.}} c_i \chi_{e_i}$$
, где $X = \bigsqcup e_i$

Рис. 1.1: Ступенчатая функция

Свойства.

1. $\forall f, g$ — ступенчатые:

 \exists разбиение X, допустимое и для f, и для g:

$$f = \sum_{\text{koh.}} c_i \chi_{e_i} \quad g = \sum_{\text{koh.}} b_k \chi_{a_k}$$

$$f = \sum_{i,k} c_i \chi_{e_i \cap a_k} \quad g = \sum_{i,k} b_k \chi_{e_i \cap a_k}$$

2. f, g — ступенчатые, $\alpha \in \mathbb{R}$

Тогда $f+g, \alpha f, fg, \max(f,g), \min(f,g), |f|$ — ступенчатые.

Определение. $f: E \subset X \to \overline{\mathbb{R}}, a \in \mathbb{R}$

 $E(f < a) = \{x \in E : f(x) < a\}$ — лебегово множество функции f

Аналогично можно использовать $E(f \le a), E(f > a), E(f \ge a)$

Примечание.

$$E(f \ge a) = E(f < a)^c \quad E(f < a) = E(f \ge a)^c$$
$$E(f \le a) = \bigcap_{b>a} E(f < b) = \bigcap_{n \in \mathbb{N}} E\left(f < a + \frac{1}{n}\right)$$

Определение.

- (X, \mathfrak{A}, μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$
- E ∈ A

f измерима на множестве E, если $\forall a \in \mathbb{R} \;\; E(f < a)$ измеримо, т.е. $\in \mathfrak{A}$

Вместо "f измерима на X" говорят просто "измерима".

Если $X = \mathbb{R}^m$, мера — мера Лебега, тогда f — измеримо по Лебегу.

Примечание. Эквивалентны:

- 1. $\forall a \ E(f < a)$ измеримо
- 2. $\forall a \ E(f \leq a)$ измеримо
- 3. $\forall a \ E(f > a)$ измеримо
- 4. $\forall a \ E(f \geq a)$ измеримо

Доказательство. Тривиально по соображениям выше.

Пример.

1. $E \subset X, E$ — измеримо $\Rightarrow \chi_E$ — измеримо.

$$E(\chi_E < a) = \begin{cases} \varnothing, & a < 0 \\ X \setminus E, & 0 \le a \le 1 \\ X, & a > 1 \end{cases}$$

2. $f:\mathbb{R}^m \to \mathbb{R}$ — непрерывно. Тогда f — измеримо по Лебегу.

Доказательство. $f^{-1}((-\infty,a))$ открыто по топологическому определению открытости, а любое открытое множество измеримо по Лебегу.

Свойства.

1. f измеримо на $E \Rightarrow \forall a \in \mathbb{R} \ E(f=a)$ измеримо.

В обратную сторону неверно, пример — $f(x) = x + \chi_{\mbox{\tiny Heusm.}}$

2. f — измеримо $\Rightarrow \forall \alpha \in \mathbb{R} \ \alpha f$ — измеримо.

Доказательство.
$$E(\alpha f < a) = \begin{cases} E(f < \frac{a}{\alpha}), & \alpha > 0 \\ E(f > \frac{a}{\alpha}), & \alpha < 0 \\ E, & \alpha = 0, a \geq 0 \\ \varnothing, & \alpha = 0, a < 0 \end{cases}$$

- 3. f измеримо на $E_1, E_2, \cdots \Rightarrow f$ измеримо на $E = \bigcup E_k$
- 4. f измеримо на $E, E'_{\text{изм.}} \subset E \Rightarrow f$ измеримо на E' Доказательство. $E'(f < a) = E(f < a) \cap E'$
- 5. $f \neq 0$, измеримо на $E \Rightarrow \frac{1}{f}$ измеримо на E.
- 6. $f \geq 0$, измеримо на $E, \alpha \in \mathbb{R} \Rightarrow f^{\alpha}$ измеримо на E.

Это неверно, т.к. при $f\equiv 0, \alpha=-1$ Д f^{α}

Теорема 2. f_n — измеримо на X. Тогда:

- 1. $\sup f_n$, $\inf f_n$ измеримо.
- 2. $\overline{\lim} f_n, \underline{\lim} f_n$ измеримо.
- 3. Если $\forall x \; \exists \lim_{n \to +\infty} f_n(x) = h(x)$, то h(x) измеримо.

Доказательство.

1. $g = \sup f_n \quad X(g > a) \stackrel{(9)}{=} \bigcup_n X(f_n > a)$ и счётное объединение измеримых множеств измеримо.

(9):

•
$$X(g>a)\subset\bigcup_n X(f_n>a)$$
, т.к. если $x\in X(g>a)$, то $g(x)>a$.
$$\sup_x f_n(x)=g(x)\neq a\Rightarrow \exists n: f_n(x)>a$$

- $X(g>a)\supset\bigcup_n X(f_n>a)$, т.к. если $x\in X(f_n>a)$, то $f_n(x)>a$, следовательно g(x)>a.
- 2. $(\overline{\lim} f_n)(x) = \inf_n(s_n = \sup(f_n(x), f_{n+1}(x), \dots))$. Т.к. \sup и \inf измерим, $\overline{\lim} f_n$ тоже измерим.
- 3. Очевидно, т.к. если $\exists \lim$, то $\lim = \overline{\lim} = \underline{\lim}$

1.2 Меры Лебега-Стилтьеса

 $\mathbb{R},\mathcal{P}^1,g:\mathbb{R}\to\mathbb{R}$ возрастает, непрерывно.

 $\mu[a,b):=g(b)-g(a)-\sigma$ -конечный объем (и даже σ -конечная мера на \mathcal{P}^1)

Также можно определить для монотонной, но непрерывной g. Тогда в точках разрыва $\exists g(a+0), g(a-0)$. Пусть $\mu[a,b)=g(b-0)-g(a-0)$. Такое изменение нужно, потому что исходное μ не является объемом для разрывных функций.

Применим теорему о лебеговском продолжении меры. Получим меру μ_g на некоторой σ —алгебре. Это мера Лебега-Стилтьеса.

 Π ример. g(x) = [x], тогда мера ячейки — количество целых точек в этой ячейке.

Если μ_g определена на Борелевской σ -алгебре, то она называется мерой Бореля-Стилтьеса.

Лекция 2

15 февраля

Теорема 3 (о характеризации измеримых функций с помощью ступенчатых).

- $f: X \to \mathbb{R}$
- f ≥ 0
- f измеримо

Тогда $\exists f_n$ — ступенчатые:

1.
$$0 \le f_1 \le f_2 \le f_3 \le \dots$$

2.
$$\forall x \ f(x) = \lim_{n \to +\infty} f_n(x)$$

Доказательство.

$$e_k^{(n)} = X\left(\frac{k-1}{n} \le f < \frac{k}{n}\right) \quad k = 1 \dots n^2$$

$$e_{n^2+1}^{(n)} := X(n \le f)$$

$$g_n := \sum_{k=1}^{n^2+1} \frac{k-1}{n} \chi_{e_k^{(n)}}$$

$$g_n \ge 0$$

$$\lim_{n \to +\infty} g_n(x) = f(x) : g_n(x) \le f(x)$$

Не дописано.

Следствие 3.1.

• f — измеримо

Тогда $\exists f_n$ — измеримые : $f_n \xrightarrow[n \to +\infty]{} f$ всюду и $|f_n| \leq |f|$

Доказательство. Рассмотрим срезки f^+, f^- , дальше очевидно.

Следствие 3.2.

• f, g — измеримо

Тогда fg — измеримо, если $0\cdot\infty=0$.

Доказательство.

$$\underbrace{f_n}_{\text{ступ.}} \to f, \underbrace{g_n}_{\text{ступ.}} \to g$$

$$f_n g_n - \text{ступ.} \quad f_n g_n \to fg$$

Измеримость выполняется в силу измеримости предела.

Следствие 3.3.

• f, g — измеримо

Тогда f+g измеримо.

Примечание. Считаем, что $\forall x$ не может быть одновременно $f(x)=\pm\infty, g(x)=\pm\infty.$

Доказательство.

$$f_n + g_n \to f + g$$

Теорема 4 (об измеримости функций, непрерывных на множестве полной меры).

Примечание. $A \subset X$ — полной меры, если $\mu(X \setminus A) = 0$.

- $f: E \to \mathbb{R}, E \subset \mathbb{R}^m$
- $e \subset E$
- $\lambda_m e = 0$
- f непрерывно на $E' = E \setminus e$

Тогда f — измеримо.

Доказательство. f — измеримо на E', т.к. E'(f < a) открыто в E' по топологическому определению непрерывности.

$$e(f < a) \subset e, \lambda_m$$
 — полная $\Rightarrow e(f < a)$ — измеримо в E .

$$E(f < a) = E'(f < a) \cup e(f < a)$$
, объединение измеримых множеств измеримо.

 Π ример. $E=\mathbb{R}, f=\chi_{\operatorname{Irr}}$, где Irr — множество иррациональных чисел. f непр. на Irr и разрывно на $\mathbb{R}.$

Следствие 4.1.

- $f: E \to \mathbb{R}$
- $e \subset E \subset X$
- $\mu e = 0$
- $E' = E \setminus e$
- f измеримо на E'

Тогда можно так переопределить f на e, что полученная функция \tilde{f} будет измерима.

Доказательство. Пусть
$$\tilde{f}(x) = \begin{cases} f(x), x \in E' \\ \mathrm{const}, x \in e \end{cases}$$

$$E(\tilde{f} < a) = \underbrace{E'(\tilde{f} < a)}_{E'(f < a)} \subset \underbrace{e(\tilde{f} < a)}_{\varnothing \text{ или } e}$$

Следствие 4.2. $f: \langle a, b \rangle \to \mathbb{R}$ — монотонна.

Тогда f измерима.

Доказательство. f — непрерывно на $\langle a,b \rangle$ за исключением, возможно, счётного множества точек.

Упражнение. $f, g: \mathbb{R} \to \mathbb{R}$ — измеримо.

 $arphi:\mathbb{R}^2 o\mathbb{R}$ — непрерывна.

Доказать: $x \mapsto \varphi(f(x), g(x))$ — измеримо.

Упражнение. $f: \mathbb{R} \to \mathbb{R}$ — измеримо.

Доказать: $\mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto f(x,y)$ — измеримо.

 $\mathit{Упражнениe}.\$ Доказать, что \exists измеримая функция $f:\mathbb{R} \to \mathbb{R}$

 $\forall e \subset \mathbb{R} : \lambda e = 0$, если f непрерывно на e, то полученная \tilde{f} разрывна всюду.

Сходимость почти везде и по мере

Определение.

- (X,\mathfrak{A},μ)
- $E \in \mathfrak{A}$
- W(x) высказывание $(x \in X)$

W(x) — верно при почти всех из E = почти всюду на E = почти везде на E = п.в. E, если:

$$\exists e \in E : \mu e = 0 \ W(x)$$
 — истинно при $x \in E \setminus e$

 Π ример. $X=\mathbb{R},W$ = иррационально.

Пример.
$$f_n(x) \xrightarrow[x \to +\infty]{} f(x)$$
 при п.в. $x \in E$

Свойства.

- 1. $\mu -$ полная
 - $f_n, f: X \to \overline{R}$ п.в. X
 - f_n измеримо

Tогда f измеримо.

Доказательство. $f_n \to f$ на X', где $e = X \setminus X', \mu e = 0$

f — измеримо на X

$$\mu$$
 — полная $\Rightarrow f$ измеримо на X , т.к. $X(f < a) = \underbrace{X'(f < a)}_{\text{изм.}} \cup \underbrace{e(f < a)}_{\subseteq e}$

- 2. ???
- 3. Пусть $\forall n \ W_n(x)$ истинно при почти всех x.

Тогда утверждение " $\forall n \ W_n$ истинно" — верно при почти всех X

Доказательство.
$$\triangleleft e_n: \mu(e_n)=0$$
. Искомое высказывание верно при $x\in X\setminus \begin{pmatrix} +\infty\\ 0\\ i=1 \end{pmatrix}, \mu(\bigcup e_i)=0$

Определение. $f_n, f: X \to \overline{\mathbb{R}}$ — почти везде конечны.

$$f_n$$
 сходится к f по мере μ , обозначается $f_n \Longrightarrow f : \forall \varepsilon > 0 \ \mu X(|f_n - f| \ge \varepsilon) \Longrightarrow_{n \to +\infty} 0$

Примечание. f_n и f можно изменить на множестве меры 0, т.е. предел не задан однозначно.

 $Упражнение. \ f_n \xrightarrow[\mu]{} f; f_n \xrightarrow[\mu]{} g.$ Тогда f и g эквивалентны.

Пример.

1.
$$f_n(x) = \frac{1}{nx}, x > 0, X = \mathbb{R}_+, f \equiv 0$$
 $f_n \to f$ всюду на $(0, +\infty)$ $f_n \xrightarrow{\mu} f$

$$X(|f_n - f| \ge \varepsilon) = X\left(\frac{1}{nx} \ge \varepsilon\right) = X(x \le \frac{1}{\varepsilon n})$$

$$\lambda(\dots) = \frac{1}{\varepsilon n} \to 0$$

2.
$$f_n(x) := e^{-(n-x)^2}, x \in \mathbb{R}$$

$$f_n(x) \to 0 \text{ при всех } x$$

$$f_n(x) \Longrightarrow 0$$

$$\mu(\mathbb{R}(e^{-(n-x)^2} \ge \varepsilon)) = \text{const} \not\to 0$$

3.
$$n = 2^k + l, 0 \le l < 2^k, X = [0, 1], \lambda$$

$$f_n(x) := \chi_{\left[\frac{l}{2^k}, \frac{l+1}{2^k}\right]}$$

 $\lim f_n(x)$ не существует ни при каком x!

$$X(f_n \ge \varepsilon) = \frac{1}{2^k} \to 0 \Rightarrow f_n \xrightarrow{\lambda} 0$$

Теорема 5 (Лебега).

- (X,\mathfrak{A},μ)
- μX конечно
- f_n, f измеримо, п.в. конечно
- $f_n \to f$ п.в.

Тогда $f_n \xrightarrow[\mu]{} f$

Доказательство. Переопределим f_n, f на множестве меры 0, чтобы сходимость была всюду.

Рассмотрим частный случай: $\forall x$ последовательность $f_n(x)$ монотонно убывает к 0, то есть $f\equiv 0$

$$X(|f_n| \ge \varepsilon) = X(f_n \ge \varepsilon) \supset X(f_{n+1} \ge \varepsilon)$$

$$\bigcap X(f_n \ge \varepsilon)$$

Таким образом, по теореме о непрерывности меры сверху, $\mu X(f_n \geq \varepsilon) \to 0$

Рассмотрим общий случай:
$$f_n \to f$$
, $\varphi(x) := \sup_{k \ge n} |f_k(x) - f(x)|$

Тогда $\varphi_n \to 0, \varphi_n \geq 0$ и монотонно, таким образом мы попали в частный случай.

$$X(|f_n - f| \ge \varepsilon) \subset X(\varphi_n \ge \varepsilon)$$
$$\mu X(|f_n - f| \ge \varepsilon) \le \mu X(\varphi_n \ge \varepsilon) \to 0$$

Теорема 6 (Рисс).

- (X,\mathfrak{A},μ)
- $f_n \Longrightarrow f$.

Тогда $\exists n_k: f_{n_k} \to f$ почти везде.

Доказательство.

$$orall k \;\; \mu X\left(|f_n-f|\geq rac{1}{k}
ight) o 0$$

$$\exists n_k: \mathrm{при}\; n\geq n_k \;\; \mu X\left(|f_n-f|\geq rac{1}{k}
ight)<rac{1}{2^k}$$

Можно считать, что $n_1 < n_2 < n_3$

Проверим, что $f_{n_k} o f$ почти везде.

$$E_k := \bigcup_{j=k}^{+\infty} X\left(|f_{n_j} - f| \ge \frac{1}{j}\right) \quad E = \bigcap E_k$$

$$E_k \supset E_{k+1} \quad \mu E_k \stackrel{(10)}{\le} \sum_{j=k}^{+\infty} \mu X\left(|f_{n_j} - f| \ge \frac{1}{j}\right) < \sum_{j=k}^{+\infty} \frac{1}{2^j} \le \frac{2}{2^k} \to 0$$

$$\mu E_k \to \mu E \Rightarrow \mu E = 0$$

Покажем, что при $x \not\in E$ $f_{n_k} \to f$.

$$x
ot\in E \ \exists N \ x
ot\in E_k$$
 при $k>N \ |f_{n_k}(x)-f(x)|<rac{1}{k}$

To есть $f_{n_k}(x) \to f(a)$.

Т.к. $\mu E = 0$, искомое выполнено.

 $\mathit{Следствие}$ 6.1. $f_n \Longrightarrow f \ |f_n| \leq g$ почти всюду. Тогда $|f| \leq g$ почти всюду.

Доказательство. $\exists n_k \ f_{n_k} \to f$ почти всюду.

$$f_n \rightrightarrows f \Rightarrow f_n(x) \to f(x) \ \forall x \Rightarrow f_n \Longrightarrow f$$

Теорема 7 (Егорова).

- X, \mathfrak{A}, μ
- $\mu X < +\infty$
- f_n, f почти везде конечно, измеримо

^{(10):} по счётной полуаддитивности меры.

Тогда

$$\forall \varepsilon > 0 \ \exists e \subset X : \mu e < \varepsilon \quad f_n \Longrightarrow_{X \setminus e} f$$

Доказательство. Упражнение.

Интеграл

 $\sphericalangle(X,\mathfrak{A},\mu)$ — зафиксировали.

Определение (1).

- $f = \sum \alpha_k \chi_{E_k}$
- E_k допустимое разбиение
- $\alpha_k \ge 0$

$$\int_X f d_{\mu(x)} := \sum \alpha_k \mu E_k$$

И пусть $0 \cdot \infty = 0$

Свойства.

1. Не зависит от представления f в виде суммы, т.е.:

$$f = \sum \alpha_k \chi_{E_k} = \sum \alpha'_k \chi_{E'_k} = \sum_{k,j} \alpha_k \chi_{E_k \cap E'_j}$$

Примечание. При $E_k \cap E_j' \neq \varnothing$ $\alpha_k = \alpha_j \Rightarrow$ можно писать любое из них.

$$\int f = \sum \alpha_k \mu E_k = \sum_{k,j} \alpha_k \mu(E_k \cap E'_j) = \sum \alpha'_k \mu E'_k$$

2.
$$\underbrace{f}_{\text{ct.}} \leq \underbrace{g}_{\text{ct.}} \Rightarrow \int_X f \leq \int_X g$$

Определение (2).

- $f \ge 0$
- f измеримо

$$\int_X f d\mu := \sup_{\substack{g - \text{cryn.} \\ 0 < q < f}} \int g d\mu$$

Свойства.

- Если f ступенчатая, то определение 2 = определение 1.
- $0 \le \int_{Y} f \le +\infty$
- $g \leq f, f$ измеримая, g измеримая $\Rightarrow \int_X g \leq \int_X f$

Определение (3).

- f измеримо
- $\int f^+$ или $\int f^-$ конечен

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$$

Требование о конечности необходимо для избегания неопределенностей.

Теорема 8 (Тонелли).

- $f: \mathbb{R}^{m+n} \to \overline{\mathbb{R}}$
- $f \ge 0$
- f измерима
- Записывается как f(x,y), где $x \in \mathbb{R}^m, y \in \mathbb{R}^n$
- $E \subset \mathbb{R}^{m+n}$

Обозначение.

$$\forall x \in \mathbb{R}^{m+n} \ E_x := \{ y \in \mathbb{R}^n : (x,y) \in E \}$$

Тогда:

- 1. При почти всех $x \in \mathbb{R}^m$ функция $y \mapsto f(x,y)$ измерима на \mathbb{R}^n
- 2. Функция $x\mapsto \int_{E_x}f(x,y)d\lambda_n(y)\geq 0$, измерима и корректно задана.

3.

$$\int_{E} f(x,y)d\mu = \int_{\mathbb{R}^{m}} \left(\int_{E_{x}} f(x,y)d\lambda_{n}(y) \right) d\lambda_{m}(x)$$

Примечание. Неформально говоря, можно разбить \mathbb{R}^{m+n} на \mathbb{R}^m и \mathbb{R}^n и интегрировать сначала по одной переменной, потом по другой.

Лекция 3

22 февраля

Определение. Если оказалось, что $\int_X f^+, \int_X f^-$ оба конечны, то f называется суммируемой.

Примечание.

1. Если f измеримо и \geq , то интеграл определения 3 = интегралу определения 2.

Определение (4).

- $E \subset X$ измеримо
- f измеримо на X

$$\int_{E} f d\mu := \int_{X} f \cdot \chi_{E}$$

Примечание.

- $f = \sum \alpha_k \chi_{E_k} \Rightarrow \int_E f = \sum \alpha_k \mu(E_k \cap E)$
- $\int_E f d\mu = \sup\{\int_E g: 0 \leq g \leq f$ на E,g ступ. $\}$ и мы считаем, что $g \equiv 0$ вне E.
- $\int_E f$ не зависит от значений f вне множества E.

 $\it Cвойства. \ (X, \mathfrak{A}, \mu)$ — пространство с мерой, $E \subset X$ — измеримо, g, f — измеримо.

1. Монотонность $f \leq g: \int_E f \leq \int_E g$

Доказательство.

- (a) При $f, g \ge 0$ очевидно из определения.
- (b) При произвольных f,g $f^+ \leq g^+$ и $f^- \geq g^-$ (очевидно из определения). Из предыдущего случая $\int_E f^+ \leq \int_E g^+, \int_E f^- \geq \int_E g^-$.

2.
$$\int_{E} 1 d\mu = \mu E, \int_{E} 0 d\mu = 0$$

3.
$$\mu E = 0 \Rightarrow \int_E f = 0$$

Доказательство.

- (a) f ступ. Тривиально.
- (b) f измеримо, $f \ge 0$. $\sup 0 = 0$, поэтому искомое выполнено.

(c)
$$\int f^+, \int f^- = 0 \Rightarrow \int f = 0$$

Примечание. f — измерима. Тогда f суммируема $\Leftrightarrow \int |f| < +\infty$

Доказательство.

$$\Leftarrow$$
 следует из $f^+, f^- \leq |f|$

 \Rightarrow будет доказано позже на этой лекции.

4.
$$\int_E (-f) = -\int_E f, \forall c \in \mathbb{R} \quad \int_E cf = c \int_E f$$

Доказательство.

(a)
$$(-f)^+ = f^-, (-f)^- = f^+$$
, тогда искомое очевидно.

(b) Можно считать c>0 без потери общности, тогда для $f\geq 0$ тривиально.

5.
$$\exists \int_E f d\mu$$
. Тогда $|\int_E f d\mu| \le \int_E |f| d\mu$

Доказательство.

$$-|f| \le f \le |f|$$

$$-\int |f| \le \int f \le \int |f|$$

$$\left| \int f \right| \le \int |f|$$

6. $\mu E < +\infty, a \leq f \leq b$. Тогда

$$a\mu E \le \int_E f \le b\mu E$$

 $\it C$ ледствие 8.1. f — измеримо на $E,\,f$ — ограничено на $E,\,\mu E<+\infty.$ Тогда f суммируемо на E

7. f суммируема на E. Тогда f почти везде конечна.

Доказательство.

(a)
$$f \geq 0$$
 и $f = +\infty$ на $A \subset E$. Тогда $\int_E f \geq n \mu A \ \ \forall n \in \mathbb{N} \Rightarrow \mu A = 0$

(b) В произвольном случае аналогично со срезками.

Лемма 2.

•
$$A = \coprod_{i=1}^{+\infty} A_i$$
 — измеримо

• *g* — ступенчато

•
$$g \ge 0$$

Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_i} g d\mu$$

Доказательство.

$$\begin{split} \int_{A} g d\mu &= \sum_{\text{koh.}} \alpha_{k} \mu(E_{k} \cap A) \\ &= \sum_{k} \sum_{i} \underbrace{\alpha_{k} \mu(E_{k} \cap A_{i})}_{\geq 0} \\ &\stackrel{\text{(11)}}{=} \sum_{i} \sum_{k} \dots \\ &= \sum_{i} \int_{A_{i}} g d\mu \end{split}$$

Теорема 9.

•
$$A = \coprod A_i$$
 — измеримо

•
$$f:X o \overline{\mathbb{R}}$$
 — измеримо на A

•
$$f \ge 0$$

Тогда

$$\int_{A} f d\mu = \sum_{i=1}^{+\infty} \int_{A_i} f d\mu$$

^{(11):} переставлять можно, т.к. члены суммы ≥ 0 .

 $\ \ \, \mathcal{L}$ оказательство. Докажем, что части равенства \le и \ge , тогда равенство выполнено.

$$\leq \langle g: 0 \leq g \leq f$$

$$\int_{A} g \stackrel{\text{(12)}}{=} \sum \int_{A_{i}} g \le \sum \int_{A_{i}} f$$

$$\geq$$
 1. $A = A_1 \sqcup A_2$

 $\sphericalangle 0 \le g_1 \le f\chi_{A_1}, 0 \le g_2 \le f\chi_{A_2}$. Пусть E_k — совместное разбиение, у g_1 коэффициенты α_k , у $g_2:\beta_k$.

$$\int_{A_1} g_1 + \int_{A_2} g_2 = \int_A (g_1 + g_2) \le \int_A f$$

$$\int_{A_1} f + \int_{A_2} g_2 \le \int_A f$$

$$\int_{A_1} f + \int_{A_2} f \le \int_A f$$

- 2. $A = \coprod A_i$ тривиально по индукции.
- 3. $A = \bigsqcup_{i=1}^n A_i \cup B_n$, где $B_n = \bigsqcup_{i>n} A_i$

$$\int_{A} f = \sum_{i=1}^{n} \int_{A_{i}} f + \int_{B_{n}} f \ge \sum_{i=1}^{n} \int_{A_{i}} A_{i} f$$

 $\mathit{Спедствие}$ 9.1. $f \geq 0$ — измеримо. Пусть $\nu: \mathfrak{A} \to \overline{\mathbb{R}}_+$ и $\nu E := \int_E f d\mu$. Тогда ν — мера.

 $\mathit{Следствие}$ 9.2 (Счётная аддитивность интеграла). f суммируема на $A = \bigsqcup A_i$ — измеримо. Тогда

$$\int_{A} f = \sum \int_{A_i} f$$

Доказательство. Очевидно, если рассмотреть срезки.

Следствие 9.3. $A \subset B, f \geq 0 \Rightarrow \int_A f \leq \int_B f$

(12): по лемме об интеграле.

Предельный переход под знаком интеграла

Пусть $f_n \to f$. Можно ли утверждать, что $\int_E f_n \to \int_E f$?

Пример (контр).

$$f_n:=rac{1}{n}\chi_{[0,n]}$$
 $f\equiv 0$ $f_n o f$ (даже $f_n
ightharpoonup f$)
$$\int_{\mathbb{R}}f_n=rac{1}{n}\lambda[0,n]=1
eq 0=\int_{\mathbb{R}}f$$

Теорема 10 (Леви).

- (X,\mathfrak{A},μ) пространство с мерой
- f_n измеримо
- $\forall n \ 0 \le f_n \le f_{n+1}$ почти везде.
- $f(x):=\lim_{n\to +\infty}f_n(x)$ эта функция определена почти везде.

Тогда

$$\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu$$

Примечание. f задано везде, кроме множества e меры 0. Считаем, что f=0 на e. Тогда f измеримо на X.

Доказательство.

 \leq очевидно, т.к. $\int f_n \leq f$ почти везде, таким образом:

$$\int_{X} f_n = \int_{X \setminus e} f_n + \underbrace{\int_{e} f_n}_{0} = \int_{X \setminus e} f_n \le \int_{X \setminus e} f \le \int_{X} f$$

 \geq достаточно проверить, что \forall ступенчатой $g:0\leq g< f$ выполняется следующее $\lim \int_X f_n \geq \int_X g$

Сильный трюк: достаточно проверить, что $\forall c \in (0,1) \; \lim \int_X f_n \geq c \int_X g$

$$E_n := X(f_n \ge cg) \quad E_1 \subset E_2 \subset \dots$$

$$\bigcup E_n = X$$
, т.к. $c < 1$

$$\int_X f_n \ge \int_{E_n} f_n \ge c \int_{E_n} g$$

Тогда $\lim \int_X f_n \geq c \cdot \lim \int_{E_n} g \stackrel{(13)}{=} c \int_X g$

Теорема 11.

• $f, g \ge 0$

• f, g измеримо на E

Тогда $\int_E f + g = \int_E f + \int_E g$

Доказательство.

1. f,g — ступенчатые, т.е. $f=\sum \alpha_k \chi_{E_k}, g=\sum \beta_k \chi_{E_k}$ $\int_E f+g=\sum (\alpha_k+\beta_k)\mu(E_k\cap E)=\sum \alpha_k \mu(E_k\cap E)+\sum \beta_k \mu(E_k\cap E)=\int_E f+\int_E g$

2. $f \ge 0$, измеримо. \exists ступ. $f_n : 0 \le f_n \le f_{n+1} \le \dots$ $\lim f_n = f$ $g \ge 0$, измеримо. \exists ступ. $g_n : 0 \le g_n \le g_{n+1} \le \dots$ $\lim g_n = g$

$$f_n + g_n o f + g$$

$$\int_E f_n + g_n \xrightarrow{\text{т. Леви}} \int_E f + g$$

$$\int_E f_n + \int_E g_n o \int_E f + \int_e g$$

Следствие 11.1. f,g суммируемы на E. Тогда f+g суммируемо и $\int_E f+g=\int_E f+\int_E g.$ Таким образом, доказано 3.

Доказательство суммируемости. $|f+g| \leq |f| + |g|$. Пусть h=f+g. Тогда

$$h^{+} - h^{-} = f^{+} - f^{-} + g^{+} - g^{-}$$

$$h^{+} + f^{-} + g^{-} = f^{+} + g^{+} + h^{-}$$

$$\int_{E} h^{+} + \int_{E} f^{-} + \int_{E} g^{-} = \int_{E} f^{+} + \int_{E} g^{+} + \int_{E} h^{-}$$

$$\int_{E} h^{+} - \int_{E} f^{-} = \int_{E} f^{+} + \int_{E} g^{+} - \int_{E} f^{-} - \int_{E} g^{-}$$

^{(13):} по непрерывности снизу меры $\nu: E \mapsto \int_E g$

Определение. $\mathcal{L}(X)$ — множество суммируемых функций на X

 $\mathit{Следствие}$ 11.2 (следствия). $\mathcal{L}(X)$ — линейное пространство, а отображение $f\mapsto \int_X f$ это линейный функционал¹ на $\mathcal{L}(X)$, т.е. $\forall f_1\dots f_n\in\mathcal{L}(X)\ \forall \alpha_1\dots\alpha_n\in\mathbb{R}$

???

Теорема 12 (об интегрировании положительных рядов).

- (X,\mathfrak{A},μ) пространство с мерой
- $E \in \mathfrak{A}$
- $u_n: X \to \overline{\mathbb{R}}$
- $u_n \ge 0$ почти везде
- *u_n* измеримо

Тогда

$$\int_{E} \left(\sum_{n=1}^{+\infty} u_n(x) \right) d\mu = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu$$

Доказательство. По теореме Леви:

$$S_n := \sum_{k=1}^n u_k \quad 0 \le S_n \le S_{n+1} \le \dots$$

Пусть $S_n o S$. Тогда $\int_E S_n o \int_E S$

Следствие 12.1. u_n измеримо и $\sum\limits_{n=1}^{+\infty}\int_E|u_n|<+\infty$. Тогда ряд $\sum u_n(x)$ абсолютно сходится при почти всех x.

Доказательство.

$$S(x) := \sum |u_n(x)|$$

$$\int_E S(X) = \sum \int_E |u_n| < +\infty \Rightarrow S$$
 суммируемо $\Rightarrow S$ почти везде конечно

Пример. $x_n \in \mathbb{R}$ — произвольная последовательность, $\sum a_n$ абсолютно сходится.

Тогда $\sum \frac{a_n}{\sqrt{|x-x_n|}}$ абсолютно сходится при почти всех x.

¹ т.е. функция функций

Доказательство. Достаточно проверить абсолютную сходимость на [-N,N] почти везде.

$$\int_{[-N,N]} \frac{|a_n| d\lambda}{\sqrt{|x - x_n|}} = \int_{-N}^{N} \frac{|a_n|}{\sqrt{|x - x_n|}} dx$$

$$= |a_n| \int_{-N - x_n}^{N - x_n} \frac{dx}{\sqrt{|x|}}$$

$$\leq |a_n| \int_{-N}^{N} \frac{dx}{\sqrt{|x|}}$$

$$4\sqrt{N} |a_n|$$

Лекция 4. 1 марта стр. 25 из 40

Лекция 4

1 марта

Теорема 13 (об абсолютной непрерывности интеграла).

- (X,\mathfrak{A},μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$
- f суммируемо

Тогда $\forall \varepsilon>0 \;\; \exists \delta>0 \;\; \forall E$ — изм., $\mu E<\delta:\left|\int_{E}f\right|<\varepsilon$

 $\it C$ ледствие 13.1. f суммируемо на $X,E_n\subset X$, тогда $\mu E_n\to 0\Rightarrow \int_{E_n}f\to 0$

Доказательство. ¹

$$X_{n} := X(|f| \ge n)$$

$$X_{n} \supset X_{n+1} \supset \dots \Rightarrow \mu\left(\bigcap X_{n}\right) \stackrel{(14)}{=} 0$$

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \ \int_{X_{n_{\varepsilon}}} |f| < \frac{\varepsilon}{2}$$

$$(15)$$

Пусть $\delta := \frac{\varepsilon}{2n_{\varepsilon}}$. Тогда при $\mu E < \delta$:

$$\left| \int_{E} f \right| \leq \int_{E} |f| \stackrel{(16)}{=} \int_{E \cap X_{n_{\varepsilon}}} |f| + \int_{E \cap X_{n_{\varepsilon}}^{c}} |f| \leq \int_{X_{n_{\varepsilon}}} |f| + \int_{E \cap X_{n_{\varepsilon}}^{c}} n_{\varepsilon} < \frac{\varepsilon}{2} + \underbrace{\mu E}_{\delta} \cdot n_{\varepsilon} \leq \varepsilon$$

¹ Теоремы, не следствия

(14): Т.к. f на $\bigcap X_n$ бесконечна и f почти везде конечна.

(15): По непрерывности сверху меры $A\mapsto \int_A |f| d\mu$

(16): Т.к. |f| на $E\cap X_{n_{\varepsilon}}^{c}$ не превосходит n_{ε} по построению $X_{n_{\varepsilon}}$

Лекция 4. 1 марта стр. 26 из 40

Примечание. Следующие два свойства не эквивалентны:

1.
$$f_n \underset{\mu}{\Rightarrow} f \stackrel{def}{\iff} \forall \varepsilon > 0 \ \mu X(|f_n - f| > \varepsilon) \to 0$$

2.
$$\int_{\mathcal{X}} |f_n - f| d\mu \to 0$$

Из 1 не следует 2: пусть $(X,\mathfrak{A},\mu)=(\mathbb{R},\mathfrak{M},\lambda),$ $f_n=\frac{1}{nx}.$ Тогда $f_n \stackrel{\lambda}{\Rightarrow} 0,$ но $\int |f_n-f|=+\infty$ при всех n.

Из 2 следует 1, т.к.

$$\mu\underbrace{X(|f_n - f| > \varepsilon)}_{X_n} = \int_{X_n} 1 \le \int_{X_n} \frac{|f_n - f|}{\varepsilon} = \frac{1}{\varepsilon} \int_{X_n} |f_n - f| \le \frac{1}{\varepsilon} \int_X |f_n - f| \xrightarrow{n \to +\infty} 0$$

Теорема 14 (Лебега о предельном переходе под знаком интеграла).

- (X, \mathfrak{A}, μ) пространство с мерой
- f_n, f измеримо и почти везде конечно
- $f_n \stackrel{\mu}{\Longrightarrow} f$
- $\exists g$, называемое "суммируемая мажоранта":
 - 1. $\forall n \mid f_n \mid \stackrel{(17)}{\leq} g$ почти везде
 - 2. g суммируемо на X

Тогда: f_n, f — суммируемы и $\int_X |f_n - f| d\mu \xrightarrow{n \to +\infty} 0$, и тем более $\int_X f_n d\mu \to \int_X f d\mu$

Примечание. Почти везде конечность f_n и f следует из (17), поэтому в условии этого можно не требовать.

Доказательство. f_n — суммируемы в силу неравенства (17), f суммируемо в силу следствия теоремы Рисса, тем более $|\int_X f_n - \int_X f| \le \int_X |f_n - f| \to 0$

1.
$$\mu X < +\infty$$

Зафиксируем ε . $X_n := X(|f_n - f| > \varepsilon)$

$$f_n \Rightarrow f$$
, r.e. $\mu X_n \to 0$

$$|f_n - f| \le |f_n| + |f| \le 2g$$

$$\int_X |f_n - f| = \int_{X_n} + \int_{X_n^c} = \underbrace{\int_{X_n} 2g}_{\text{C.T. T. of a6c. Henp.}} + \int_{X_n^c} \varepsilon d\mu < \varepsilon + \varepsilon \mu X$$

$$\xrightarrow{n \to +\infty} 0$$
(18)

2.
$$\mu X = +\infty$$

Утверждение: $\forall \varepsilon>0 \quad \exists A\subset X$, изм., конечной меры, μA конечно : $\int_{X\backslash A}g<\varepsilon$. Локажем его

$$\int_X g = \sup \left\{ \int g_n, 0 \le g_n \le g, g_n - \operatorname{ступ.} \right\}$$

$$A := \left\{ x : g_n(x) > 0 \right\}$$

$$0 \le \int_X g - \int_X g_n = \int_A g - g_n + \int_{X \backslash A} g < \varepsilon$$

$$\int_X |f_n - f| d\mu = \int_A + \int_{X \backslash A} \le \underbrace{\int_A |f_n - f|}_{\text{по случаю 1}} + \underbrace{\int_{X \backslash A} 2g}_{<2\varepsilon} < 3\varepsilon$$

Теорема 15 (Лебега).

- (X, \mathfrak{A}, μ) пространство с мерой
- f_n, f измеримо
- $f_n \stackrel{(19)}{\to} f$ почти везде
- $\exists g$, называемое "суммируемая мажоранта":
 - 1. $\forall n \mid f_n \mid \leq g$ почти везде
 - 2. q суммируемо на X

Тогда f_n, f — суммируемы, $\int_X |f_n - f| d\mu \to 0$, и тем более $\int_X f_n \to \int_X f$

Доказательство. Суммируемость f_n , f, а также утверждение "и тем более" доказываются так же, как в теореме Лебега о предельном переходе под знаком интеграла.

$$h_n := \sup(|f_n - f|, |f_{n+1} - f|, |f_{n+2} - f|, \dots)$$

$$0 \stackrel{(20)}{\leq} h_n \stackrel{(21)}{\leq} 2g$$

 h_n монотонно убывает, что очевидно по определению sup.

$$\lim h_n \stackrel{\text{def}}{=} \overline{\lim} |f_n - f| \stackrel{(22)}{=} 0$$
 почти везде

^{(20):} по построению

^{(21):} по (18)

^{(22):} по (19)

Лекция 4. 1 марта стр. 28 из 40

 $2g-h_n \geq 0$ и возрастает как последовательность функций, $2g-h_n \rightarrow 2g$ почти везде. Тогда по теореме Леви:

$$\int_{X} 2g - h_n \to \int_{X} 2g \Rightarrow \int_{X} h_n \to 0$$
$$\int_{X} |f_n - f| \le \int_{X} h_n \to 0$$

Пример. $\langle x > 0, x_0 > 0$

$$\int_{0}^{+\infty} t^{x-1} e^{-t} dt$$

$$\lim_{x \to x_{0}} \int_{0}^{+\infty} t^{x-1} e^{-t} dt \stackrel{?}{=} \int_{0}^{+\infty} t^{x_{0}-1} e^{-t} dt$$

Равенство выполнено, т.к. $t^{x-1}e^{-t} \xrightarrow{x \to x_0} t^{x_0-1}e^{-t}$ при t>0 и суммируемая мажоранта $t^{\alpha-1}e^{-t}+t^{\beta-1}e^{-t}$, где $0<\alpha< x_0, 0<\beta$

Теорема 16 (Фату).

- X, \mathfrak{A}, μ пространство с мерой
- $f_n \geq 0$
- f_n измеримо
- $f_n \to f$ почти везде
- $\exists C > 0 \ \forall n \ \int_X f_n \leq C$

Тогда $\int_X f \leq C$

 $\mbox{$\Pi$pume}$ чисть: здесь не требуется, чтобы $\int_X f_n \to \int_X f$ и это может быть неверно.

Пример.

$$f_n=rac{1}{n}\chi_{[0,n]} o 0=f$$
 п.в. $\int_{\mathbb{D}}f_n=1\leq 1$

По теореме Фату $\int_{\mathbb{R}} f \leq 1$, что верно, т.к. $\int_{\mathbb{R}} f = 0 \leq 1$

Пример. Условие $f_n \geq 0$ важно:

$$f_n=-rac{1}{n}\chi_{[0,n]} o 0=f$$
 п.в. $\int_{\mathbb{R}}f_n=-1\leq -1$, но $\int_{\mathbb{R}}f=0\not\leq -1$

Лекция 4. 1 марта стр. 29 из 40

Доказательство.

$$g_{n} := \inf(f_{n}, f_{n+1}, \dots)$$

$$0 \le g_{n} \le g_{n+1}$$

$$\lim g_{n} \stackrel{\text{def}}{=} \underline{\lim} f_{n} = f \text{ II.B.}$$

$$\int_{X} g_{n} \le \int_{X} f_{n} \le C$$

$$\int_{X} g_{n} \stackrel{(24)}{\to} \int_{X} f$$

$$(23)$$

Значит $\int_X f \leq C$ по предельному переходу в (23)

Следствие 16.1.

- $f_n, f \ge 0$
- f_n, f измеримы
- f_n, f почти везде конечны
- $f_n \Rightarrow f$
- $\exists C > 0 \ \forall n \ \int_X f_n \le C$

Тогда $\int_X f \leq C$

Доказательство.

$$f_n \Rightarrow f \implies \exists n_k : f_{n_k} \to f \text{ n.b.}$$

По теореме Фату получим искомое.

Следствие 16.2.

- $f_n \geq 0$
- f_n измеримо

Тогда $\int_X \underline{\lim} f_n \leq \underline{\lim} \int_X f_n$

Доказательство. Возьмём (23) как в теореме. Выберем $n_k:\int_X f_{n_k} \xrightarrow{n \to +\infty} \varliminf \int_X f_n$

$$\int_{X} g_{n_{k}} \leq \int_{X} f_{n_{k}}$$

$$\downarrow$$

$$\int_{X} \underline{\lim} f_{n} \leq \underline{\lim} \int_{X} f_{n}$$

2 Плотность одной меры по отношению к другой. Замена переменных в интеграле.

 $\sphericalangle(X,\mathfrak{A},\mu)$ — пространство с мерой, $(Y,\mathfrak{B}, \square), \Phi: X \to Y$

Пусть Φ — измеримо в следующем смысле:

$$\Phi^{-1}(\mathfrak{B})\subset\mathfrak{A}$$

Упражнение. Проверить, что $\Phi^{-1} - \sigma$ -алгебра.

Для $E\in\mathfrak{B}$ положим $\nu(E)=\mu\Phi^{-1}(E)$. Тогда ν — мера:

$$\nu\left(\bigsqcup E_n\right) = \mu(\Phi^{-1}\left(\bigsqcup E_n\right)) = \mu\left(\bigsqcup \Phi^{-1}(E_n)\right) = \sum \mu\Phi^{-1}E_n = \sum \nu E_n$$

Мера ν называется образом μ при отображении Φ и $\nu E = \int_{\Phi^{-1}(E)} 1 d\mu$

Hаблюдение 1. $f:Y \to \overline{\mathbb{R}}$ — измеримо относительно \mathfrak{B} . Тогда $f\circ \Phi$ — измеримо относительно \mathfrak{A} .

$$X(f(\Phi(x)) < a) = \Phi^{-1}(Y(f < a)) \stackrel{(25)}{\in} \mathfrak{A}$$

Определение. $\omega:X\to\overline{\mathbb{R}},\omega\geq0$, измеримо на X.

$$\forall B \in \mathfrak{B} \ \nu(B) := \int_{\Phi^{-1}(B)} \omega(x) d\mu(x)$$

Тогда ν называется "взвешенный образ меры μ ", ω называется весом.

Теорема 17 (о вычислении интеграла по взвешенному образу меры).

- (X, \mathfrak{A}, μ) пространство с мерой
- (Y, \mathfrak{B}, ν) пространство с мерой
- $\Phi: X \to Y$
- $\omega \geq 0$
- ω измеримо на X
- $\, \nu \,$ взвешенный образ $\, \mu \,$ при отображении $\, \Phi \,$ с весом $\, \omega \,$

Тогда \forall измеримой относительно \mathfrak{B} f на $Y,f\geq 0$ выполнено следующее:

(25): т.к.
$$Y(f < a) \in \mathfrak{B}$$

Лекция 4. 1 марта

1. $f \circ \Phi$ измеримо на X относительно $\mathfrak A$

2.

$$\int_{Y} f(y)d\nu(y) = \int_{X} f(\Phi(x)) \cdot \omega(x)d\mu(x)$$
 (26)

То же самое верно для суммируемой f.

Доказательство. Измеримость $f \circ \Phi$ выполнена по наблюдению 1.

0. Пусть $f = \chi_B, B \in \mathfrak{B}$

$$(f \circ \Phi)(x) = f(\Phi(x)) = \begin{cases} 1, & \Phi(x) \in B \\ 0, & \Phi(x) \notin B \end{cases} = \chi_{\Phi^{-1}(B)}$$

Тогда (26) это:

$$\mu B \stackrel{?}{=} \int_X \chi_{\Phi^{-1}(B)} \cdot \omega d\mu = \int_{\Phi^{-1}(B)} \omega d\mu$$

Это выполнено по определению μB

- 1. Пусть f ступенчатая
 - (26) следует из линейности интеграла.
- 2. Пусть $f \ge 0$, измеримая

По теореме о характеризации измеримых функций с помощью ступенчатых и теореме Леви $\exists \{h_i\}: 0 \leq h_1 \leq h_2 \leq \ldots$ — ступенчатые, $h_i \leq f, h_i \to f$

$$\int_{Y} h_{i} d\nu = \int_{X} h_{i} \circ \Phi \cdot \omega d\mu \xrightarrow{i \to +\infty}$$
 (26)

3. Пусть f измерима.

Тогда для |f| выполнено (26); |f| и $|f \circ \Phi| \cdot \omega$ суммируемы одновременно.

$$(f \circ \Phi \cdot \omega)_{+} = f_{+} \circ \Phi \cdot \omega \quad (f \circ \Phi \cdot \omega)_{+} = f_{+} \circ \Phi \cdot \omega$$

Таким образом, искомое выполнено для f_+ и f_- , а следовательно и для f.

Следствие 17.1 (об интегрировании по подмножеству). В условиях теоремы пусть:

- $B \in \mathfrak{B}$
- f суммируемо на Y

Лекция 4. 1 марта

Тогда

$$\int_B f d\nu = \int_{\Phi^{-1}(B)} f(\Phi(x)) \omega d\mu$$

Доказательство. В условие теоремы подставим $f \cdot \chi_B$

Определение. Рассмотрим частный случай: $X=Y, \mathfrak{A}=\mathfrak{B}, \Phi=\mathrm{id}.$ Кажется, что мы убили всю содержательность, но это не так — есть ещё $\omega.$

$$\nu(B) = \int_{B} \omega(x) d\mu$$

В этой ситуации ω называется плотностью меры ν относительно меры μ и тогда по теореме о вычислении интеграла по взвешенному образу меры:

$$\int_X f d\nu = \int_X f(x)\omega(x)d\mu$$

Лекция 5

15 марта

Не дописано

Лекция 6

22 марта

2.1 Сферические координаты в \mathbb{R}^m

Координаты задаются $r, \varphi_1, \varphi_2 \dots \varphi_{m-1}$. Зададим их по индукции:

- φ_1 угол между \overline{e}_1 и $\overline{OX} \in [0,\pi]$
- φ_2 угол между \overline{e}_2 и $P_{2_{(e_2\dots e_n)}}(x)\in [0,\pi]$
- :
- $\, arphi_{m-1} {
 m no}$ лярный угол в \mathbb{R}^2

$$\begin{split} x_1 &= r \cos \varphi_1 \\ x_2 &= r \sin \varphi_1 \cos \varphi_2 \\ x_3 &= r \sin \varphi_1 \sin \varphi_2 \cos \varphi_3 \\ &\vdots \\ x_{n-1} &= r \sin \varphi_1 \dots \sin \varphi_{m-2} \cos \varphi_{m-1} \\ x_n &= r \sin \varphi_1 \dots \sin \varphi_{m-2} \sin \varphi_{m-1} \end{split}$$

$$J=r^{m-1}\sin^{m-2}\varphi_1\sin^{m-3}\varphi_2\ldots\sin\varphi_{m-2}$$

Примечание. В \mathbb{R}^3 "географические" координаты имеют якобиан $J=r^2\cos\psi$ Поймём, почему якобиан именно такой. Можно его посчитать руками, но это трудно. 1 шаг

$$x_m = \rho_{m-1} \sin \varphi_{m-1}$$

$$x_{m-1} = \rho_{m-1} \cos \varphi_{m-1}$$

$$(x_1 \dots x_m) \leadsto (x_1 \dots x_{m-2}, \rho_{m-1}, \varphi_{m-1})$$
$$J = \begin{vmatrix} E & 0 \\ 0 & J_2 \end{vmatrix} = \rho_{m-1}$$

2 шаг

$$\rho_{m-1} = \rho_{m-2} \sin \varphi_{m-2}$$
$$x_{m-2} = \rho_{m-2} \cos \varphi_{m-2}$$

$$(x_1 \dots x_{m-2}, \rho_{m-1}, \varphi_{m-1}) \leadsto (x_1 \dots x_{m-3}, \rho_{m-2}, \varphi_{m-2}, \varphi_{m-1})$$

последний шаг

$$(x_1 \rho_2, \varphi_2 \dots \varphi_{m-1}) \leadsto (r, \varphi_1 \dots \varphi_{m-1})$$

 $\rho_2 = r \sin \varphi_1$
 $x_1 = r \cos \varphi_1$

$$\lambda_{m}(\Omega) = \int_{\Omega} 1 d\lambda_{m}$$

$$\stackrel{1 \text{ mar}}{=} \int_{\Omega_{1}} \rho_{m-1}$$

$$\stackrel{2 \text{ mar}}{=} \int_{\Omega_{2}} \rho_{m-2}^{2} \sin \varphi_{m-2}$$

$$\stackrel{3 \text{ mar}}{=} \int_{\Omega_{3}} \rho_{m-3}^{3} \sin^{2} \varphi_{m-3} \sin \varphi_{m-2}$$

$$= \dots$$

$$= \int_{\Omega_{m-1}} r^{m-1} \sin^{m-2} \varphi_{1} \sin^{m-3} \varphi_{2} \dots \sin \varphi_{m-2} d\lambda$$

Тогда по теореме о единственности плотности искомое верно.

3 Произведение мер

 $\triangleleft(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ — пространства с мерой

Лемма 3. $\mathfrak{A},\mathfrak{B}$ — полукольца $\Rightarrow \mathfrak{A} \times \mathfrak{B} = \{A \times B \subset X \times Y : A \in \mathfrak{A}, B \in \mathfrak{B}\}$ — полукольцо.

Доказательство. Тривиально.

Обозначение. $\mathcal{P} = \mathfrak{A} \times \mathfrak{B}$ — называем измеримыми прямоугольниками.

 $m_0(A \times B) = \mu(A) \cdot \nu(B)$, при этом $0 \cdot \infty$ принимаем за 0.

Теорема 18.

- 1. m_0 мера на ${\cal P}$
- 2. $\mu, \nu \sigma$ -конечны $\Rightarrow m_0$ тоже σ -конечно.

Доказательство.

1. Проверим счётную аддитивность m_0 , т.е. $m_0P=\sum_{k=1}^{+\infty}m_0P_k^{-1}$, если $A\times B=P=\bigsqcup P_k$, где $P_k=A_k\times B_k$

Заметим, что $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y)$.

Тогда
$$\chi_P=\sum\chi_{P_k}$$
, где $\forall x\in X,y\in Y\;\;\chi_A(x)\chi_B(y)=\sum\chi_{A_k}(x)\chi_{B_k}(y)$

Проинтегрируем по y по мере ν по пространству Y:

$$\chi_A(x)\nu B = \sum \chi_{A_k}(x) \cdot \nu B_k$$

Проинтегрируем по x по мере μ по пространству X:

$$\mu A \mu B = \sum \mu A_k \nu B_k$$

Это и есть искомое.

- 2. Очевидно, т.к.:
 - $\mu \sigma$ -конечно $\Rightarrow X = \bigcup X_k, \mu X_k$ конечно $\forall k$
 - ν σ -конечно $\Rightarrow Y = \bigcup Y_n, \nu Y_n$ конечно $\forall k$

Тогда $X\times Y=\bigcup X_k\times Y_n, m_0(X_k\times Y_n)=\mu X_k\nu Y_n.$ Конечное произведение конечных конечно, поэтому m_0 σ -конечно.

¹ Прочие суммы/объединения также счётны в рамках данного доказательства.

Определение.

- $\triangleleft(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечны

Пусть m — лебеговское продолжение меры m_0 на σ -алгебру, которую будем обозначать $\mathfrak{A}\otimes\mathfrak{B}^2$

Обозначение. $m = \mu \times \nu$

$$(X \times Y, \mathfrak{A} \otimes \mathfrak{B}, \mu \times \nu)$$
 — произведение пространств с мерой (X, \mathfrak{A}, μ) и (Y, \mathfrak{B}, ν)

Примечание.

- Это произведение ассоциативно.
- σ -конечность нужна для единственности произведения.

Теорема 19. $\lambda_m \times \lambda_n = \lambda_{m+n}$

Доказательство. Не будет.

Определение. X,Y — множества, $C\subset X\times Y$

$$\forall x \in X \ C_x := \{ y \in Y : (x, y) \in C \}$$

$$\forall y \in Y \ C^y := \{x \in X : (x, y) \in C\}$$

 C_x, C^y называется сечением.

Примечание.

$$\left(\bigcup_{\alpha} C_{\alpha}\right)_{x} = \bigcup_{\alpha} (C_{\alpha})_{x} \quad \left(\bigcap_{\alpha} C_{\alpha}\right)_{x} = \bigcup_{\alpha} (C_{\alpha})_{x} \quad (C \setminus C')_{x} = C_{x} \setminus C'_{x}$$

Теорема 20 (принцип Кавальери³).

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\mu, \nu \sigma$ -конечны.
- μ, ν полные.
- $m = \mu \times \nu$

 $^{^{2}\}otimes$ — не тензорное произведение

³ Кавальери имеет к этой теореме косвенное отношение, т.к. он жил за пару веков до появления теории меры.

• $C \in A \otimes B$

Тогда:

1. $C_x \in \mathfrak{B}$ при почти всех x

2.
$$x \mapsto \nu(C_x)$$
 — измеримая функция на X

3.
$$mC = \int_X \nu(C_x) d\mu(x)$$

Аналогичное верно для C^y .

Пример. ???

Доказательство. Пусть \mathfrak{D} — система множеств, для которых выполнено 1.-3.

1.
$$C = A \times B \Rightarrow C \in \mathfrak{D}$$

(a)
$$C_x = \begin{cases} \varnothing, x \notin A \\ B, x \in A \end{cases}$$

(b)
$$x \mapsto \nu(C_x) - \varphi$$
ункция $\nu B \cdot \chi_A$

(c)
$$\int \nu(C_x) d\mu = \int_X \nu B \cdot \chi_A d\mu = \nu B \cdot \mu A = mC$$

2. $E_i \in \mathfrak{D}$, дизъюнктны $\Rightarrow \bigsqcup E_i \in \mathfrak{D}$. Обозначим $E = \bigsqcup E_i$

 $E_i \in \mathfrak{D} \Rightarrow (E_i)_x$ измеримо почти везде \Rightarrow при почти всех x все $(E_i)_x$ измеримы.

Тогда при этих x $E_x = \bigsqcup (E_i)_x \in \mathfrak{B}$ — это 1.

$$u E_x = \sum_{\substack{\text{измеримая} \\ \text{функция}}}
u (E_i)_x \Rightarrow \Phi$$
ункция $x \mapsto \nu E_x$ измеримо — это 2.

$$\int_X
u E_x d\mu = \sum_i \int_X
u(E_i) x = \sum_i m E_i = m E$$
 — это 3.

3. $E_i\in\mathfrak{D}, E_1\supset E_2\supset\ldots, E=\bigcap_i E_i, \mu E_i<+\infty$. Тогда $E\in\mathfrak{D}.$

$$\int_X
u(E_i)_x d\mu = mE_i < +\infty \Rightarrow
u(E_i)_x$$
 — конечно при почти всех x .

$$\forall x$$
 верно $(E_1)_x \supset (E_2)_x \supset \dots, E_x = \bigcap (E_i)_x$

Тогда E_x измеримо (это 1.) и $\lim_{i\to +\infty} \nu(E_i)_x = \nu E_x$ при п.в. x.

Таким образом, $x\mapsto \nu E_x$ измерима — это 2.

$$\int_x
u E_x d\mu = \lim \int_X
u(E_i)_x d\mu = \lim m E_i = m E$$
 — это 3.

По теореме Лебега $|\nu(E_i)x| \leq \nu(E_i)x$ суммируемо.

Итого: Если $A_{ij}\in\mathcal{P}=\mathfrak{A} imes\mathfrak{B}$, то $\bigcap\bigcup A_{ij}\in\mathfrak{D}$

 $^{^4}$ функция задана при почти всех X; она равна п.в. некоторой измеримой функции, заданной всюду

4. $mE = 0 \Rightarrow E \in \mathfrak{D}$

 $mE=\inf\{\sum m_0P_k: E\subset \bigcup P_k, P_k\in \mathcal{P}\}$ — из пункта 5 теоремы о лебеговском продолжении.

 \exists множество H вида $\bigcap_l \mid \mid_k P_{kl}$, т.е. $H \in \mathfrak{D}$.

$$E \subset H, mH = mE = 0$$

$$0=mH=\int_X \underbrace{
u H_x}_{>0} d\mu \Rightarrow
u H_x=0$$
 про почти всех $x.$

 $E_x\subset H_x, \nu$ — полная $\Rightarrow E_x$ — измеримо при почти всех x — это 1 и $\nu E_x=0$ почти везде, это 2.

$$\int \nu E_x d\mu = 0 = mE -$$
это 3.

5. C — измеримо, $mC < +\infty$. Тогда $C \in \mathfrak{D}$.

$$C=H\setminus e$$
, где H имеет вид $\bigcap\bigcup P_{k_l}, me=0$

$$mC = mH$$

- (a) $C_x = H_x \setminus e_x$ измеримо при почти всех x
- (b) $\nu e_x = 0$ при почти всех $x \Rightarrow \nu C_x = \nu H_x \nu E_x = \nu H_x \Rightarrow$ измеримо.

(c)
$$\int_X \nu C_x d\mu = \int_X \nu H_x d\mu = mH = mC$$

6. C — произвольное измеримое множество в $X \times Y \Rightarrow C \in \mathfrak{D}$

$$X = \coprod X_k, \mu X_k < +\infty, Y = \coprod Y_j, \nu Y_j < +\infty$$

$$C = \coprod \underbrace{\left(C \cap (X_k \times Y_j)\right)}_{???} ????$$

 $\mathit{Спедствие}$ 20.1. C измеримо в $X\times Y.$ Пусть $P_1(C)=\{x\in X, C_x\neq\varnothing\}$ — проекция C на X.

Если $P_1(C)$ измеримо, то:

$$mC = \int_{P_1(C)} \nu(C_x) d\mu$$

Доказательство. При $x \not\in P_1(C)$ $\nu(C_x) = 0$

Примечание.

- 1. C измеримо $\Rightarrow P_1(C)$ измеримо.
- 2. C измеримо $\Rightarrow \forall x \ C_x$ измеримо.

- 3. $\forall x, \forall y \ C_x, C^y$ измеримо $\Rightarrow C$ измеримо.
 - Пример Серпинского.