Automated Reasoning Project Report
Daniel Bodin and Matthew Dutton
5/1/2024

Project 1: CDCL implementation with VSIDS

1. Overview

We implemented a CDCL solver with two watched literals using Python. We adapted this Python solver https://kienyew.github.io/CDCL-SAT-Solver-from-Scratch/ by adding a VSIDS heuristic. The original solver chose an unassigned variable at random during the during the decision step. The VSIDS heuristic makes this choice algorithmically by assigning a priority to each variable.

Our project is organized so that most of our CDCL solving logic is done in cdcl_solver.py. This file contains the functions needed for CDCL including the logic for the VSIDS implementation. The original solver we based our implementation on can be found at cdcl_solver_original.py. To see the affect VSIDS has on this solver, run the tests on these two files and compare their speeds. This is done below.

Additional files include common_classes.py. This file is shared between multiple other files in our project. It stores the definitions for a handful of classes fundamental to SAT solving, such as formulas, literals, etc. For testing, we implemented testall.py to run all the test cases on either cdcl_solver_original or cdcl_solver (our implementation). This automatically runs all the tests, so they do not have to be manually entered. Lastly, our project includes main.py. This file is used to run individual tests on either cdcl_solver_original or cdcl_solver. It uses system arguments to determine which solver to use.

2. VSIDS

The VSIDS heuristic prioritizes the more relevant variables, and it weighs newer clauses more heavily. Because of this, our group figured implementing this heuristic would be advantageous. A random search of unassigned variables would be inefficient and wouldn't utilize any of the information about the variables. Therefore, the VSIDS heuristic allows the receiver to make a more informed decision.

The VSIDS heuristic is implemented in the VSIDS class in cdcl_solver. This class contains a priority queue of variable/score pairs. The score is the variables weight, since it is the number of occurrences of that variable. These scores increase when additional clauses are added. The scores are stored in a priority queue using the Python heapq module (https://docs.python.org/3/library/heapq.html). This module allows for efficient and easy to use heap operations.

An additional step of the VSIDS heuristic is the decaying of priority. This involves decreasing all the scores in the priority queue by a fixed percentage, after a fixed amount of time. The amount the scores decrease and the amount of time between decreases are greatly important to the effectiveness of the VSIDS heuristic. The amount of time between decays in our implementation depends on the number of conflicts encountered. When enough conflicts are encountered, all scores are halved.

3. Test Script

To repeatably run our solver we implemented a to do that for us. To run the 'testall.py' script you must pass in two arguments. The first is the solver you want to use. The original, or our implementation of VSIDS heuristic on top of the original. This is achieved by passing in 'original' or 'vsids' as an argument. The second is the amount of time in seconds you want the solver to try and find the satisfiability of one of the problems. This number is how long the test script will spend trying to solve the problem and it will time-out if it takes longer. Because some of the problems take a long time to solve, we did not want to wait for all of them to be completed. So, by implementing this we can run the solvers on all the simpler problems relatively quickly. Refer to the readme for more specific commands of running all the tests. The test script times how long it takes for each problem to be solved and saves it to a table. After running all the problems, it prints the tables so the user can view how long it took to solve each test.

4. Testing Data

The following testing was done on a base 2020 MacBook Pro.

Processor: 1.4GHz Quad-Core Intel Core i5

Memory: 8 GB 2133 MHz LPDDR3

Original Python solver on revised tests with 180 second timeout:

		·
SAT Files	Result	Execution Time
sqrt1042441.cnf	sat	0.060552
prime121.cnf	sat	0.833240
elimredundant.cnf	sat	0.002067
prime169.cnf	sat	1.808916
prime961.cnf	sat	4.492535
sgrt10201.cnf	sat	0.134692
sat10.cnf	sat	0.002448
sat12.cnf	sat	0.001077
uf20-0100.cnf	sat	0.004059
uf20-0101.cnf	sat	0.005934
uf20-01000.cnf	sat	0.004503
uf20-0103.cnf	sat	0.004973
prime1849.cnf	sat	8.217051
uf20-0102.cnf	sat	0.011163
sgrt10609.cnf	sat	0.052871
uf20-0106.cnf	sat	0.007841
prime1681.cnf	sat	82.390177
uf20-0105.cnf	sat	0.013614
uf20-0104.cnf	sat	0.004148
sqrt11449.cnf	sat	0.198841
prime841.cnf	sat	5.857044
prime1369.cnf	sat	18.229610
block0.cnf	sat	0.003271
cnfgen-php-10-10.cnf	Timeout	>180sec
'		

+	·	· · · · · · · · ·
UNSAT Files	Result	Execution Time
+ ph6.cnf	l unsat	 19.201724
unit7.cnf	unsat	0.001753
uuf100-0182.cnf	unsat	129.408305
uuf100-0151.cnf	unsat	47.372786
false.cnf	unsat	0.001669
uuf100-0147.cnf	unsat	69.796790
uuf100-010.cnf	Timeout	>180sec
uuf100-010.cmf	unsat	94.298576
full5.cnf	unsat	0.009696
full7.cnf	unsat	0.096316
cnfgen-parity-9.cnf	unsat	3.281838
cnfgen-tseitin-10-4.cnf	unsat	3.201036 7.329235
elimclash.cnf	l unsat	7.327233 0.001796
uuf100-012.cnf	l unsat	71.686958
full3.cnf	l unsat	/1.000938 0.003378
	l unsat	0.003378 0.007735
cnfgen-peb-pyramid-20.cnf full1.cnf	l unsat	0.007/35 0.000470
		0.000470 97.958187
uuf100-0130.cnf	unsat	
add4.cnf	unsat	0.031905
add8.cnf	unsat	4.707284
uuf100-0117.cnf	unsat	178.203761
uuf100-0161.cnf	unsat 141.935478	
uuf100-0175.cnf	Timeout >180sec	
cnfgen-ram-4-3-10.cnf	Timeout	>180sec
cnfgen-php-5-4.cnf	unsat	0.020655
 	+	

Our revised Python solver with the VSIDS implementation. Ran on revised tests with 180 second timeout:

+	+ Res	 sult	⊦ Exe	 cution Time	+
· 	+				+
sqrt1042441.cnf	sat			0.044484	
prime121.cnf	Timeout		>180sec		
elimredundant.cnf	sat sat			0.001773	
prime169.cnf		eout	0.191511 >180sec		
sqrt10201.cnf		eout	>180sec >180sec		
sat10.cnf	:	at	0.002106		i
sat12.cnf	!	at	0.002100		
uf20-0100.cnf	!	at	0.020758		i
uf20-0101.cnf	Time	eout	>180sec		i
uf20-01000.cnf	sa	at	0.003596		i
uf20-0103.cnf	sa	at	0.016876		
prime1849.cnf	Time	eout	;	>180sec	
uf20-0102.cnf	sa	at		0.018809	
sqrt10609.cnf	!	at		0.026454	ļ
uf20-0106.cnf		at		0.002916	
prime1681.cnf		eout		>180sec	
uf20-0105.cnf	Time			>180sec	
uf20-0104.cnf	!	at		0.008199	!
sqrt11449.cnf	!	at	1	0.024122	
prime841.cnf		eout		>180sec	!
prime1369.cnf block0.cnf	Timeout sat			>180sec 0.002555	
cnfgen-php-10-10.cnf		eout	!	>180sec	ļ
+	+		<i>'</i> 		l ►
+		·		+	+
UNSAT Files		Res	sult	Execution ⁻ 	Гіте +
ph6.cnf		Time	 Timeout >180se		i
unit7.cnf		unsat		0.002103	3 j
uuf100-0182.cnf		Timeout		>180sec	
uuf100-0151.cnf		Time	eout	>180sec	- 1
false.cnf	false.cnf		sat	0.002043	3
uuf100-0147.cnf		Timeout		>180sec	
uuf100-010.cnf		Timeout		>180sec	!
uuf100-0120.cnf		Timeout		>180sec	,
full5.cnf		unsat		0.00761	
full7.cnf		unsat Timeout		0.10810 [,] >180sec	+
cnfgen-parity-9.cnf cnfgen-tseitin-10-4.cnf			eout	>180sec	
elimclash.cnf				0.00238	5
uuf100-012.cnf		unsat Timeout		0.002386 >180sec	
full3.cnf			sat	0.00155	9
cnfgen-peb-pyramid-20.cnf			sat	0.005528	
full1.cnf			sat	0.00047	
uuf100-0130.cnf		Time	Timeout >180se		į
add4.cnf			eout	>180sec	į
add8.cnf			Timeout >18		į
uuf100-0117.cnf			meout >180sec		
uuf100-0161.cnf			meout >180sec		
uuf100-0175.cnf			meout >180sec		
cnfgen-ram-4-3-10.cnf			eout	>180sec	į
cnfgen-php-5-4.cnf		lime	eout	>180sec	ļ

5. Initial Testing Evaluation

This data shows an increase in timeouts after implementing the VSIDS heuristic. Our implementation maintains the soundness of the original implementation, but it does have noticeably more timeouts. This could be due to a suboptimal decay interval. For VSIDS, the frequency of score decay is variable. We could have implemented a suboptimal decay interval in our previous data, which could've led to more timeouts.

Alternatively, the increase in timeouts could be due to increased overhead from heap operations. In the original, all the runtime at the decision step was a random step. Now with the VSIDS heuristic, there's more overhead due to various heapify operations when clauses are added and when an old heap is copied to a new heap. Specifically, every time the score is incremented, the entire heap is recreated to maintain the heap's structure. This process could be causing a lot of overhead, leading to an increase in timeouts.

Our group will attempt to improve our VSIDS heuristic in the following sections. Both by trying different decay intervals and by decreasing the overhead from heap operations. Specifically, to decrease heap operations, we will implement a threshold for score incrementation. That way, the score is only incremented when the threshold is met, decreasing heap operations and potentially reducing overhead.

6. Optimizing Decay interval

Tests run with 2 second timeout

Original (decay every 256	Decay every 4 conflicts	Decay every 4096	
conflicts)		conflicts	
SAT Files	SAT Files	SAT Files	
SAT: 10 timeouts	SAT: 10 timeouts	SAT: 10 timeouts	
UNSAT: 17 timeouts	UNSAT: 17 timeouts	UNSAT: 17 timeouts	

In our attempts to optimize the optimal number of conflicts we were not able to solve more problems (this is probably due to the small timeout time), but we did see an increase in speed on the 4096 conflicts with some of the solutions being solved many times faster. In all cases, decaying after 4096 is faster than decaying over 4 conflicts. We did also try a decay after 8192 conflicts, but this ended up being slower than 4096.

7. Optimizing Heap Operations

To optimize heap operations, we attempted to decrease the number of score incrementations. Each score incrementation recreates the heap to keep the heap's structure. This could be causing a lot of overhead, so we wanted to try to decrease the incrementations by implementing a threshold.

Specifically, we implemented a threshold where the score would only increment every hundredth call of increment_score. If the number of calls is divisible by one hundred, the heap operation takes place. If not, the heap is left the same, decreasing overhead. We experimented with different threshold values as well, like fifty or even ten.

However, this did not change the number of timeouts. After running the test script, the test data was essentially the same as it was before. This process does decrease overhead by limiting heap operations; however, since the test data is the same, the heuristic's bottleneck takes place elsewhere in the codebase.

8. Final Testing Evaluation & Conclusion

Our data shows an increase in timeouts after implementing the VSIDS heuristic. Our implementation maintains the soundness of the original implementation, but it does have noticeably more timeouts. We theorized that this could be due to a suboptimal decay threshold or increased overhead from heap operations. Unfortunately, after implementing changes to resolve these issues, the performance and results of the test script were the same.

Although the VSIDS heuristic provides a more sophisticated method of variable selection, it introduces more overhead which increases delay. It does preserve the correctness and soundness of the implementation we added to, but it increases the number of tests that result in a timeout.