

Harnessing Transformers for various Computer Vision tasks

Rajesh Shreedhar Bhat Sr. Data Scientist, Walmart & GDE ML

Computer Vision and various vision tasks

Computer Vision

Computer vision is a field of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images and videos.

Color Image

Grayscale Image

Various Computer Vision tasks

Other examples

Classification: Land Cover Classification Dataset with classes like Forest area, River, Highway etc...

Object Detection: People Detection

Section 1

Other examples ..

Segmentation: Lungs Segmentation

Instance Segmentation: cars, road, pedestrian, cyclists etc..

Evolution of Transformer models

Attention is all you need!

- Outperformed previous state-of-the-art models on a variety of natural language processing tasks
- Landmark paper in the field of natural language processing(NLP) by Vaswani et.al

The Transformer model architecture

Timeline of different transformer based models

BERT: Bidirectional Encoder Representations from Transformer

Section 03

Vision Transformer(ViT)

Details of ViT model architecture

ViT Architecture

Ref: <u>An image is worth 16 x 16 words: Transformers for Image Recognition at Scale</u>

Image to Patches

Number of patches = W * H / (P * P)

where

W: width of the image

H: height of the image

P: Patch size

Ref: <u>Vision Transformers and its applications</u>

Patch embeddings

Positional embeddings

Why Positional Embeddings?

Allows the model to learn the relative position of each patch in the image 3% drop in accuracy observed without positional embeddings

[class] embedding

Transformer Encoder

Contextual

Embeddings

Transformer Encoder continued ...

Single Encoder Block

Multi head attention

Scaled Dot Product Attention

ViT: MLP head and classification

Section 04

Keras Implementation for Vision Transformer(ViT)

https://github.com/rajesh-bhat/vision_transformers_googleio_extended


```
Transformer Encoder Keras NLP: code snippet
keras_nlp.layers.TransformerEncoder(
    intermediate_dim,
    num_heads,
    dropout=0,
    activation="relu",
    layer_norm_epsilon=1e-05,
    kernel_initializer="glorot_uniform",
    bias_initializer="zeros",
    normalize_first=False,
    name=None,
    **kwargs
```

Section 05

Transformers for other Vision tasks

Object Detection, segmentation ...

DETR: End to End Object detection with Transformers

DETR directly predicts (in parallel) the final set of detections by combining a common CNN with a transformer architecture

Segmenter

Overview of <u>Segmenter</u> model

Summary

- Intro to Computer Vision and various tasks
- Evolution of Transformer models
- Vision Transformer(ViT) architecture in detail
 - Images to Patches
 - Patch Embeddings
 - Positional Embeddings
 - Transformer Encoder
 - MLP head and classification
- Vision Transformers in Keras
- Transformers for Object Detection(DETR) and Segmentation tasks(Segmenter)

Thank You

Rajesh Shreedhar Bhat

Sr. Data Scientist, Walmart & GDE ML

Section 06

Appendix

Patch slide

Ref: <u>An image is worth 16 x 16 words: Transformers for Image Recognition at Scale</u>

Self Attention

Translate: "The animal didn't cross the street because it was too tired".

What does "it" in the above sentence refer to? Animal or Street?

Self Attention in detail

Self-Attention: output

Matrix Calculation of Self-Attention

Multi-head attention

- Model ability to focus on different positions.
- Input
 embeddings/
 vectors from
 lower
 encoders/decode
 rs into a different
 representation
 subspace.

Multi-head attention ...

Interpreting - Multi Head Attention

- As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired".
- In a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".

Positional Embeddings

- So far, order of the words in the input sequence is missing.
- Positional embeddings: vectors which follow a specific pattern that the model learns, which helps it determine the position of each word, or the distance between different words in the sequence.

Transformer Architecture

The decoder attends on the encoder's output and its own input (self-attention) to predict the next word.

BERT: Bidirectional Encoder Representations from Transformers

