Численные методы, осень 2022

Задание 4 [Число обусловленности. Числа с плавающей точкой и вычислительная устойчивость]

Всего баллов: 37 Срок сдачи: 18 ноября

РЕКОМЕНДОВАННАЯ ЛИТЕРАТУРА

- Лекции 12–19, 20–23 из [1]
- Лекции 6–7 из [2]

УПРАЖНЕНИЯ

- 1. (3) Предложите вычислительно устойчивый способ вычислить функцию $f(x,a) = \sqrt{x+a} \sqrt{x}$ при положительных x и a.
- 2. (2) Вычислите $\mathcal{C} = \tan(10^{100})$ с помощью модуля **mpmath**, предназначенного для арифметики произвольной точности. Пример использования:

```
from mpmath import *

mp.dps = 64  # точность (число десятичных цифр)

mp.pretty = True

+pi  # pi - переменная из тртаth
```

Чему равно относительное число обусловленности при вычислении $\mathcal{C} = \mathcal{C}(10^{100})$? Сколько цифр нужно хранить в памяти при промежуточных вычислениях, чтобы получить \mathcal{C} с точностью в 7 значащих цифр?

3. (4) Реализуйте функцию $solve_quad(b, c)$, возвращающую корни приведённого квадратного уравнения $x^2 + bx + c = 0$. Корни могут повторяться или быть комплексными. Когда вам покажется, что функция работает, запустите её на следующих пяти тестах. Добейтесь того, чтобы она правильно работала на каждом из них.

4. (5) Рассмотрите многочлен

$$w(x) = \prod_{r=1}^{20} (x - r) = \sum_{i=0}^{20} a_i x^i$$

и исследуйте число обусловленности его корней, выступающих в роли функций от коэффициентов a_i . Проведите эксперимент: случайным образом измените коэффициенты и найдите новые корни с помощью алгоритма из **numpy**. Коэффициенты изменяйте по правилу $a_i \to n_i a_i$, где n_i подчиняются нормальному распределению с математическим ожиданием, равным 1, и дисперсией, равной $\exp(-10)$. Проведите 100 таких экспериментов и изобразите результаты на одном графике вместе с корнями исходного многочлена.

Оцените по одному из экспериментов абсолютное и относительное число обусловленности корней многочлена как функций его коэффициентов.

5. (10) Рассмотрим задачу наименьших квадратов — $Ax \approx b$:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1.00001 \\ 1 & 1.00001 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 0.00001 \\ 4.00001 \end{bmatrix}$$

• Формально решение можно найти как

$$x = (A^T A)^{-1} A^T b. (1)$$

Вычислите его по этой формуле аналитически.

- Вычислите (1) с помощью **питру**, используя числа одинарной и двойной точности; сравните результат с аналитическим.
- Помимо формулы (1), реализуйте решение, основанное на сингулярном разложении. Какой способ вычислительно более стабильный?

- Решите эту же задачу с помощью np.linalg.lstsq. Какой алгоритм использует эта функция?
- Какие четыре числа обусловленности, относящиеся к этой задаче, упоминаются в теореме 18.1 из [1]? (Возможно, их требуется вычислить прим. пер.). Приведите примеры таких δb и δA , при которых приблизительно достигаются оценки на $\|\delta x\|$, даваемые числами обусловленности.
- 6. (7) Пусть

$$A = \begin{bmatrix} \epsilon & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- Аналитически найдите LU-разложение матрицы A с применением выбора главного элемента и без него.
- Объясните, почему при $|\epsilon| \ll 1$ мы можем неправильно оценить множители L и U в арифметике конечной точности.
- 7. (6) Пусть функция $f(n,\alpha)$ определена следующим образом:

$$f(n,\alpha) = \frac{1}{n} - \alpha f(n-1,\alpha)$$
$$f(0,\alpha) = \ln(1+1/\alpha)$$

Вычислите f(20,0.1) и f(20,10) с помощью арифметики обычной (двойной) точности. Теперь сделайте то же самое в арифметике произвольной точности:

```
from mpmath import mp, mpf
mp.dps = 64 # precision (in decimal places)
f = mp.zeros(1, n)
f[0] = mp.log(1 + 1/mpf(alpha))
for i in range(1, n):
    f[i] = 1/mpf(i) - mpf(alpha) * f[i-1]
```

Постройте в единицах машинного эпсилон график относительной разности между точными и приближёнными результатами как функции от n. Сделайте это при $\alpha=0.1$ и при $\alpha=10$. Машинный эпсилон можно получить как np.finfo(float).eps.

Как бы вы стали вычислять f(30,10) без арифметики произвольной точности?

[1] L. N. Trefethen and D. Bau III, Numerical linear algebra, Vol. 50 (Siam, 1997).

[2] E. E. Tyrtyshnikov, A brief introduction to numerical analysis (Springer Science & Business Media, 2012).