北京邮电大学 2016——2017 学年第一学期

《数字逻辑与数字系统》期末考试试题(A)

<u>+</u>	一、学生参加考试须带学生证或学院证明,	未带者不准进入考场。	学生必须
写	按照监考教师指定座位就坐。		

注 三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有 考场违纪或作弊行为者,按相应规定严肃处理。

四、学生必须将答题内容做在试题答卷上,做在草稿纸上一律无效。

五、学生的姓名、班级、学号、班内序号等信息由教材中心统一印制。

考试 课程	数字	·逻辑 与数号	字系统	考试	时间		2017年	三1月	11 日
题号		二	三	四	五	六	七	八	总分
满分	10	20	5	35	10	10	10		
得分									
阅卷 教师									

一、填空题(每空1分,共10分)

参考答案:

项

1 **2n**; 2 循环码; 3 **6**; 4 **A**⊕**B**; 5 **2KB**; 6 余 **3** 码转 **8421** 码; 7 **7**; 8 **0100**; 9 10000110; 10 **0101**;

-	选择题	/伝水 1	Δ	共 10 分	7
<u>_</u> `	儿伴欢	(女子: 1	777,	犬リリケ	ľĮ

的描为	0
参考答案:	

1D; 2A; 3B; 4B; 5C; 6B; 7A; 8B; 9D; 10B;;

三、简答题(共 35 分)

1. 组合逻辑、时序逻辑(2分) 组合逻辑内部无反馈,无记忆功能。时序逻辑内部有反馈,有记忆功能(3分)

2. process (A) 2分 When (othes) 3分

3. 当三个使能端同时有效时,完成对地址码的译码。如地址码为 000 时,Y0 为低电平,其余为高电平(2 分)

RAM 的地址范围 1000H~13FH (3分)

```
4. (1) 米里型 (1分) (2) 功能: 完成对 110 序列的 jianc3 (2分)
    (3) (7分)
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
ENTITY mealy IS
  PORT (clk, x: IN STD LOGIC;
                 y: OUT STD_LOGIC );
END mealy;
ARCHITECTURE behv OF mealy IS
      TYPE state IS (s0, s1, s2, s3);
     SIGNAL current state, next state: state;
BEGIN
 REG: PROCESS (clk)
      BEGIN
          IF (clk'EVENT and clk='1') THEN
               current state <= next state;
          END IF;
      END PROCESS;
                              (3分)
COM:PROCESS (current state, x)
           BEGIN
               CASE current state IS
                  WHEN s0 \Rightarrow IF x = 0 THEN
                                                next state \leq s0;
                                                y <= '0';
                                            ELSE
                                                  next state \leq s1;
                                                  y \le '0';
                                            END IF;
                     WHEN s1 \Rightarrow IF x = '0' THEN
                                                  next state \leq s0;
                                                    y <= '0';
                                              ELSE
                                                  next state <= s2;
                                                   y \le 0;
                                             END IF;
                      WHEN s2 \Rightarrow IF x = '0' THEN
                                            next state \leq s0;
                                            y \le '1';
                                    ELSE
                                             next state \leq s2;
                                             y \le '0';
                                    END IF;
```

END case;

END PROCESS;

END behv; (4分)

5.

电路的状态方程和输出方程为: (4分)

$$Q_{1}^{n+1} = \overline{Q_{1}^{n}}$$

$$Q_{2}^{n+1} = (X \oplus Q_{1}^{n})\overline{Q_{2}^{n}} + \overline{(X \oplus Q_{1}^{n})}Q_{2}^{n}$$

$$Z = \overline{Q_{1}^{n}Q_{2}^{n}}$$

$$J_1 = 1 \quad J_2 = X \oplus Q_1^n$$

$$K_1 = 1 \quad K_2 = X \oplus Q_1^n$$

状态图(4分)

$Q_2^n Q_1^n$	$Q_2^{n+1}Q_1^{n+1}/Z$					
Q_2 Q_1	X =0	X =1				
0 0	01 / 1	11 / 1				
0 1	10 / 1	00 / 1				
1 0	10 / 1	00 / 1				
1 1	00 / 0	10 / 0				

该电路是 Moore 型电路。

功能 (2分)

当 X=0 时, 电路为模 4 加法计数器;

当 X=1 时, 电路为模 4 减法计数器

五、

1. 特快 A, 直快 B 和慢车 C, 开车信号分别为 FA, FB, FC (2分)

Α	В	С	FA	FB	FC	Α	В	С	FA	FB	FC
0	0	0	0	0	0	1	0	0	1	0	0
0	0	1	0	0	1	1	0	1	1	0	0
0	1	0	0	1	0	1	1	0	1	0	0
0	1	1	0	1	0	1	1	1	1	0	0

2. 真值表 (4分)

3.

$$FA = A\overline{BC} + A\overline{BC} + AB\overline{C} + ABC = A = \overline{\overline{A \cdot A}}$$

$$FB = \overline{ABC} + \overline{\overline{ABC}} = \overline{\overline{AB}}$$

$$FC = \overline{\overline{ABC}} = \overline{\overline{\overline{ABC}}}$$

与非门实现电路图略。 (1分)

六、

$$Y = \overline{A}_2 \overline{A}_1 \overline{A}_0 D_0 + \overline{A}_2 \overline{A}_1 A_0 D_1 + \dots + A_2 A_1 A_0 D_7$$

$$(2 \%)$$

2. 设计 8 进制计数器,其计数状态应为 000-001-010-011-100-101-110-111,或直接用 16 进制计数器的低三位直接接数据选择器的地址端(4 分)。 连线(4 分)

- 1、三态门(1分)
- 2、ASM图(2分)
- 4 控制命令(2分)

$$CAP = \overline{Q_1^n} \, \overline{Q_0^n}$$

$$LDC = \overline{Q_1^n} Q_0^n$$

$$LDB = Q_1^n \overline{Q_0^n}$$

$$CAP = Q_1^n Q_0^n$$

- * 状态转移表(2分)(不联扣)
- * 译码表达式 (2分)
- * 电路图 (1分)

$\begin{array}{c} PS \\ Q_1^{\ n}Q_0^{\ n} \end{array}$	$NS = Q_1^{n+1}Q_0^{n+1}$	转移条件
50 00	0 1	Ā>B
S0 00		A>B
S1 01	10	
S2 10	11	
S3 11		

$$Q_1^{n+1} = \overline{Q_1^n} Q_0^n + Q_1^n \overline{Q_0^n} = D1$$

$$Q_{\theta}^{n+1} = \overline{Q_{1}^{n}} \overline{Q_{\theta}^{n}} \overline{A > B} + Q_{1}^{n} \overline{Q_{\theta}^{n}} = D0$$

