21-238, Math Studies Algebra 2, Department of Mathematical Sciences, Carnegie Mellon University Spring 2012: Monday, Wednesday, Friday, 10:30 am, Doherty Hall 1211.

Luc TARTAR, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

9- Friday February 3, 2012.

Definition 9.1: If V, W are Hermitian spaces, and A is a linear mapping from V into W, then the *adjoint* A^* of A is defined by $(Av, w) = (v, A^*w)$ for all $v \in V, w \in W$.

If W = V, then A is said to be normal if A^* commutes with A, A is said to be self-adjoint or Hermitian if $A^* = A$, A is said to be skew Hermitian if $A^* = -A$, A is said to be unitary if $A^*A = A$.

Remark 9.2: If V, W, X are Hermitian spaces, one has $(\lambda I)^* = \overline{\lambda} I$ for all $\lambda \in \mathbb{C}$; one has $(A^*)^* = A$ for all $A \in L(V, W)$; one has $(BA)^* = A^*B^*$ for all $A \in L(V, W)$, $B \in L(W, X)$; if $A \in L(V, W)$ is invertible, then A^* is invertible and $(A^*)^{-1} = (A^{-1})^*$.

If $e_i, i \in I$, is an orthonormal basis of V, and $f_j, j \in J$, is an orthonormal basis of W, then $A_{i,j}^* = (A^*f_j, e_i) = (f_j, Ae_i) = \overline{(Ae_i, f_j)} = \overline{A_{j,i}}$ for all $i \in I, j \in J$; in particular, if $A \in L(V, V)$ is diagonal on an orthonormal basis, then A is normal (since both A and A^* are diagonal on such a basis).

If M is an Hermitian operator from V into itself, it can be recovered from the function $v \mapsto (Mv, v)$: for $v, w \in V$, one has $(M(v \pm w), v \pm w) = (Mv, v) + (Mw, w) \pm 2\Re(Mw, v)$, so that $(M(v \pm iw), v \pm iw) = (Mv, v) + (Mw, w) \mp 2\Im(Mw, v)$.

Remark 9.3: If $V_{\mathbb{R}}$ is an Euclidean space (so that the field of scalars is \mathbb{R}), it is useful to embed it into a Hermitian space $V_{\mathbb{C}}$ by extending the field of scalars from \mathbb{R} to \mathbb{C} , and since $[\mathbb{C}:\mathbb{R}]=2$, $V_{\mathbb{C}}$ is an \mathbb{R} -vector space isomorphic to $V_{\mathbb{R}} \times V_{\mathbb{R}}$, and the multiplication by $\lambda + i \mu$ (with $\lambda, \mu \in \mathbb{R}$) is $(\lambda + i \mu) (u, v) = \lambda u - \mu v, \mu u + \lambda v$), so that $(u, v) \in V_{\mathbb{R}} \times V_{\mathbb{R}}$ is thought of as $u + i v \in V_{\mathbb{C}}$.

If A is a symmetric operator on $V_{\mathbb{R}}$, there is no need to extend the scalars to \mathbb{C} since there exists an orthonormal (\mathbb{R} -) basis of $V_{\mathbb{R}}$ on which A is diagonal,³ but if A is either skew symmetric or orthogonal,⁴ it may have complex eigenvalues, and it is useful to consider the Hermitian space $V_{\mathbb{C}}$, in order to have A either skew Hermitian or unitary, and apply the general result for normal operators in a Hermitian space below; then, it has implication on what kind of block-diagonal structure one may find for A on an adapted orthonormal (\mathbb{R} -) basis of $V_{\mathbb{R}}$.

Lemma 9.4: Let V be a Hermitian space, and $A \in L(V, V)$. A is normal if and only if $||Av|| = ||A^*v||$ for all $v \in V$. If A is normal and $Ae = \lambda e$, then $A^*e = \overline{\lambda} e$, and both A and A^* map e^{\perp} into itself. If A is normal and V is finite dimensional, there exists an orthonormal basis of eigenvectors (of both A and A^*).

¹ Of course, the scalar product in W is used in (Av, w), and the scalar product in V is used in (v, A^*w) .

If V is finite dimensional, $A^*A = I$ is equivalent to $AA^* = I$, since $A^*A = I$ implies that A is injective and A^* is surjective, hence they are invertible. It is not so if V is infinite dimensional: for example, if $V = \ell^2$ and A is the right shift (where Ax = y means $y_1 = 0$ and $y_n = x_{n-1}$ for $n \ge 2$), then A^* is the left shift (where $A^*x = z$ means $x_n = x_{n+1}$ for all $n \ge 1$); A is an isometry (i.e. ||Av|| = ||v|| for all $v \in V$) which is not surjective (its image is e_1^{\perp}) and $A^*A = I$; A^* is a contraction (i.e. $||A^*v|| \le ||v||$ for all $v \in V$) but since $Ae_1 = 0$ it is not injective (hence not an isometry), and it is surjective (since $AA^* = I$), and because AA^* is the orthogonal projection on e_1^{\perp} , one has $AA^* \ne I$.

³ Because a proof was already given for the existence of an orthonormal (\mathbb{R} -) basis of $V_{\mathbb{R}}$ made of eigenvectors of A, but Lemma 9.4 actually provides a different proof of the existence of a real eigenvalue for a symmetric operator: since $Ae = \lambda e$ implies $A^*e = \overline{\lambda} e$, and $A^* = A$ and $e \neq 0$ imply $\overline{\lambda} = \lambda$, i.e. $\lambda \in \mathbb{R}$.

⁴ If the dimension of $V_{\mathbb{R}}$ is even, an operator may be both skew symmetric and orthogonal, in which case there exists an orthonormal (\mathbb{R} -) basis of $V_{\mathbb{R}}$ on which A is block-diagonal, with blocks of size 2 being either a rotation of $+\frac{\pi}{2}$ or a rotation of $-\frac{\pi}{2}$.

⁵ It is not true for an infinite dimensional Hermitian space. For continuous functions on [0,1] with the scalar product $(f,g) = \int_0^1 f(x) \, \overline{g(x)} \, dx$, although the operator A of multiplication by x is Hermitian, it has no eigenvalues, i.e. $A - \lambda I$ is injective for all $\lambda \in \mathbb{C}$, but $A - \lambda I$ is not surjective for λ real $\in [0,1]$. Assuming that one has a Hilbert space (i.e. the space is complete for the norm), it is true that if besides being normal A is also compact (i.e. it sends the closed unit ball inside a compact set) then there is a Hilbert basis $e_i, i \in I$, (i.e. $(e_i, e_j) = \delta_{i,j}$ for $i, j \in I$ and finite linear combinations are a dense set) of eigenvectors of A.

Proof: Since both A^*A and AA^* are Hermitian, $A^*A = AA^*$ is equivalent to $(A^*Av, v) = (AA^*v, v)$ for all $v \in V$, i.e. $||Av||^2 = ||A^*v||^2$ for all $v \in V$. In particular, if A is normal, Ae = 0 is equivalent to $A^*e = 0$; that $(A - \lambda I)e = 0$ is equivalent to $(A^* - \overline{\lambda}I)e = 0$ follows then from the fact that $(\lambda I)^* = \overline{\lambda}I$ and that $A - \lambda I$ and $A^* - \overline{\lambda}I$ commute, so that $A - \lambda I$ is normal. If $f \in e^{\perp}$, i.e. (f, e) = 0, one has $(Af, e) = (f, A^*e) = (f, \overline{\lambda}e) = \lambda (f, e) = 0$, so that $Af \in e^{\perp}$, and similarly, $(A^*f, e) = (f, Ae) = (f, \lambda e) = \overline{\lambda}(f, e) = 0$, so that $A^*f \in e^{\perp}$. If V has dimension n, then the characteristic polynomial $P_{char}(\lambda) = det(A - \lambda I)$ has degree n and has at least one root (since $\mathbb C$ is algebraically closed), hence there is an eigenvector e for an eigenvalue λ , and then the problem is to repeat the operation of e^{\perp} , which has dimension n - 1, and one concludes by induction on n (the case n = 1 being trivial).

Remark 9.5: If A is skew symmetric on an Euclidean space $V_{\mathbb{R}}$, then one extends the scalars to be complex, which creates a Hermitian space $V_{\mathbb{C}}$, where the natural extension of A is skew Hermitian, so that each eigenvalue λ satisfies $\overline{\lambda} = -\lambda$, i.e. besides 0 the eigenvalues are purely imaginary. One starts by working on $(ker(A))^{\perp}$ in $V_{\mathbb{R}}$, i.e. one is led to the case where 0 is not an eigenvalue; an eigenvalue $\lambda \in \mathbb{C}$ of A in $V_{\mathbb{C}}$ is then $\lambda = i \mu$ for a non-zero $\mu \in \mathbb{R}$, and one writes an eigenvector as v + i w with $v, w \in V_{\mathbb{R}}$, so that $A(v+iw) = i \mu(v+iw)$ means $Av = -\mu w$ and $Aw = \mu v$; one deduces that neither v nor w is 0, and since (Av, v) = (Aw, w) = 0 one has (v, w) = 0, and by normalizing v and w in $V_{\mathbb{R}}$, it corresponds to a diagonal block $\begin{pmatrix} 0 & \mu \\ -\mu & 0 \end{pmatrix}$, which has eigenvalues $\pm i \mu$.

Remark 9.6: If A is orthogonal on $V_{\mathbb{R}}$, then the natural extension of A to $V_{\mathbb{C}}$ is unitary, so that every eigenvalue $\lambda \in \mathbb{C}$ must satisfy $\overline{\lambda} \lambda = 1$, i.e. λ has modulus 1. After taking care of the eigenvalues equal to +1 or -1, one is led to work on the orthogonal, where neither +1 nor -1 is an eigenvalue, so that $\lambda = \cos \theta + i \sin \theta$ with $\theta \neq k \pi$, and $A(v+iw) = (\cos \theta + i \sin \theta) (v+iw)$ means $Av = \cos \theta v - \sin \theta w$ and $Aw = \sin \theta v + \cos \theta w$, which imply that v-iw is an eigenvector of A for the eigenvalue $\cos \theta - i \sin \theta \neq \cos \theta + i \sin \theta$ so that v-iw is orthogonal to v+iw; since $(v-iw,v+iw) = ||v||^2 - ||w||^2 - 2i(v,w)$, and $||v+iw||^2 = ||v||^2 + ||w||^2$, one deduces that $||v|| = ||w|| \neq 0$ and (v,w) = 0; by normalizing v and w in $V_{\mathbb{R}}$, it corresponds to a diagonal block $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, which is a rotation of angle $-\theta$ and has eigenvalues $\cos \theta \pm i \sin \theta$.

block $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, which is a rotation of angle $-\theta$ and has eigenvalues $\cos \theta \pm i \sin \theta$. If $A \in SO(n)$ (i.e. V has dimension n, and det(A) = +1), then the multiplicity of the eigenvalue -1 is even, and one may create diagonal blocks $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ which correspond to rotation of π .

Remark 9.7: If A is normal on a Hermitian space, it has an orthonormal basis of eigenvectors e_1, \ldots, e_n with $A e_i = \lambda_i e_i$ and $A^* e_i = \overline{\lambda_i} e_i$ for $i = 1, \ldots, n$. If there are m distinct eigenvalues of A, let $P \in \mathbb{C}[x]$ be the interpolation polynomial of degree $\leq m-1$ such that $P(\lambda_i) = \overline{\lambda_i} e_i$ for $i = 1, \ldots, n$; then, one has $A^* = P(A)$ on this basis, hence in every basis: a normal operator is then any operator such that $A^* = P(A)$ for some polynomial P (which implies that A^* commutes with A).

If A commutes with A^T on $V_{\mathbb{R}}$, then its extension to $V_{\mathbb{C}}$ is normal, and since $\overline{\lambda_i}$ is also an eigenvalue of A, the interpolation polynomial satisfies $P(\overline{\lambda_i}) = \lambda_i$, and it is easy to check on the explicit formula giving the Lagrange interpolation polynomial that $P \in \mathbb{R}[x]$.

Remark 9.8: If V is an n-dimensional E-vector space, $A \in L(V,V)$ and its characteristic polynomial $P_{char}(x) = det(A-xI)$ splits over E (for example if E is algebraically closed), then if the distinct eigenvalues are $\lambda_1, \ldots, \lambda_r$ with algebraic multiplicity m_1, \ldots, m_r , there is a unique decomposition $V = V_1 \oplus \ldots \oplus V_r$, where for $j = 1, \ldots, r$, $dim(V_j) = m_j$, A maps V_j into itself and has only the eigenvalue λ_j , and $V_j = ker((A-\lambda_i)^{k_j})$ for some smallest k_j . Selecting $j \in \{1, \ldots, r\}$, and restricting attention to $W = V_j$ (with dim(W) = m) and writing $A = \lambda_j I + B$ with $B \in L(W, W)$ satisfying $B^k = 0$ and $B^{k-1} \neq 0$ for some $k \geq 1$, one looks for a (non uniquely defined) basis where the matrix of B has a simple form, and then by adding λ in the diagonal one recovers the form of A.

Let $Y_i = ker(B^i)$, and $d_i = dim(Y_i)$ for i = 1, ..., k, so that $0 < d_1 < ... < d_k = m$ (d_1 is the geometric multiplicity of the eigenvalue 0, $Y_k = W$ has dimension the algebraic multiplicity of the eigenvalue 0). There are other inequalities satisfied by $d_1, ..., d_k$, namely $d_2 - d_1 \ge d_3 - d_2 \ge ... \ge d_{k-1} - d_k$, which follow from the construction of a particular basis, made of Jordan blocks, of maximum size k: for an eigenvalue λ , a Jordan block of size d is the $d \times d$ matrix of the mapping M defined by $M e_1 = \lambda e_1$ and $M e_j = \lambda e_j + e_{j-1}$ for j = 2, ..., d (i.e. with λ s in the diagonal, 1s in the diagonal above it, and 0s elsewhere).