Solution Description - Part (2)

Team A - Mufan Li, Mengye Ren, Tian Xia March 19, 2016

We first display the four time series plots.

We can also look at the relevant statistics below.

	Names	Values
1	Average Daily Log Returns	0.0055
2	Standard Deviation of Daily Log Returns	0.0125
3	Annualized Sharpe Ratio	6.9619
4	Skewness	4.5473
5	Kurtosis	71.2202
6	Maximum Drawdown - Number of Days	4.0000
7	Maximum Drawdown - Return	-0.0732
8	Correlation with Equal Weighted Returns	0.0113

Table 1: Summary Statistics - Using In-Sample Data

Judging from in-sample data, the strategy is performing quite well. We first observe plot 2 of cumulative returns and the annualized Sharpe ratio, both of which are significantly outperforming the strategy in part (1) and the equal weight portfolio. From a correlation of only 0.0113 with the equal weight portfolio, and observing plot 4 this strategy rarely has a portfolio direction of more than 0.2, we can see that the strategy is very market neutral. We also note the maximum drawdown for this strategy is extremely low at 4 days and -7.3%.

The only negative sign we observe from in-sample statistics is the large skew and excess kurtosis, implying extremely heavy tails. However, but looking a histogram below (plot 5), we realize that there is data point returning 20%. Removing that point, we would have a skewness of 0.556 and an excess kurtosis of 7.640

