Astronomía Extragaláctica

Práctico: ¿En qué universo vivimos?

Análisis Analítico

Problema 1: La comología moderna está construída en el principio cosmológico, el cual se basa en la hipótesis de un universo homogéneo e isotrópico. Si es Universo es isotrópico, entonces es homogéneo. ¿Por qué?

En un universo con principio cosmológico, el elemento de línea está dado por la métrica de Friedmann, Robertson y Walker (FRW):

$$ds^{2} = c^{2}dt^{2} - R(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}(\theta)d\phi^{2}) \right]$$
(1)

en un sistema de coordenadas esférico donde (r, θ, ϕ) son coordenada comóviles. El valor de k está relacionado con la curvatura del espacio-tiempo. Toma valores -1, 0 y 1, si la curvatura es negativa, nula o positiva, respectivamente. Por otro lado, R(t) es el factor de escala, cuyo valor pueden encontrarse a través de las ecuaciones de campo de Einstein, si conocemos la distribución de materia.

Podemos escribir la ecuación (1) como

$$ds^{2} = c^{2}dt^{2} - R(t)^{2} \left[d\chi^{2} + S(\chi)^{2} (d\theta^{2} + \sin^{2}(\theta)d\phi^{2}) \right]$$
 (2)

donde
$$S(\chi) = sen(\chi)$$
 si $k = 1$, $S(\chi) = \chi$ si $k = 0$ y $S(\chi) = senh(\chi)$ si $k = -1$.

Las ecuaciones de campo de Einstein vinculan el espacio-tiempo con el tensor energía-momento, es decir, la geometría con la distribución de materia del universo.

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - \Lambda g_{\mu\nu} = -\frac{8\pi G}{c^4}T_{\mu\nu}$$
 (3)

donde $R_{\mu\nu}$ es el tensor de Ricci, R el parámetro de curvatura y Λ la constante cosmológica.

Se necesita un modelo para $T^{\mu\nu}$. Asumimos un fluído perfecto, el cual está caraterizado en cada momento, por su densidad ρ y su presión p:

$$T^{\mu\nu} = \left(\rho + \frac{p}{c^2}\right)u^{\mu}u^{\nu} - pg^{\mu\nu}$$

Como el Universo es homogéneo e isotrópico, ρ y p sólo pueden ser funciones del tiempo, luego:

$$T^{\mu\nu} = \begin{bmatrix} \rho c^2 & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{bmatrix}$$

Combinando estas ecuaciones se obtienen las ecuaciones de Friedmann-Lemaître:

$$\ddot{R} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2}\right) R + \frac{1}{3} \Lambda c^2 R \tag{4}$$

$$\dot{R}^2 = \frac{8\pi G}{3}\rho R^2 + \frac{1}{3}\Lambda c^2 R^2 - c^2 k \tag{5}$$

Planteando la conservación de la energía-momento: $\nabla_{\mu}T^{\mu\nu}=0$ se obtiene

$$\dot{\rho} + \left(\rho + \frac{p}{c^2}\right) \frac{3\dot{R}}{R} = 0 \tag{6}$$

o lo que es equivalente a

$$\frac{d(\rho R^3)}{dR} = -\frac{3pR^2}{c^2} \tag{7}$$

De las ecuaciones (4), (5) y (7) se puede obtener como varían R(t), $\rho(t)$ y p(t).

Problema 2:

- a) Sabiendo que la ecuación de estado para un fluido ideal es $p = \omega \rho c^2$, determinar cómo varía ρ en función de R y de ω . Notar que como el fluído ideal consiste de distintas componentes que no interactúan entre sí, salvo por su gravedad mutua, la densidad de cada fluído (radiación, polvo y energía del vacío) evolucionan independientemente uno del otro.
- b) Se considera que $\rho(t) = \rho_m(t) + \rho_r(t) + \rho_{\Lambda}(t)$, donde m denota la materia (bariónica y materia oscura), r la radiación y Λ la energía del vacío. Dar la expresión general para $\rho(t)$ y en función del redshift z.
- C) Sea el parámetro de Hubble $H=\frac{\dot{R}}{R}$ a un tiempo dado. Demostrar que

$$\rho = \frac{3}{8\pi G} \left[H^2 + \frac{c^2 k}{R^2} \right]$$

- d) Si k=0 se dice que el universo es plano. La densidad en un univero plano se llama densidad crítica $\rho_c=\frac{3H^2}{8\pi G}$. Analizar que tipo de universo resulta si $\rho>\rho_c$ y si $\rho<\rho_c$.
- e) Se define $\Omega(t) = \frac{\rho(t)}{\rho_c}$ al parámetro adimensional de densidad. Aquí la densidad puede ser de materia, radiación y de energía oscura. En tal caso tendremos Ω_m , Ω_r y Ω_Λ , respectivamente. Se define el parámetro de densidad de curvatura:

$$\Omega_k(t) = -\frac{c^2 k}{H^2(t)\dot{R}(t)} 2$$

tal que para todos los tiempos cósmicos t, se cumple que: $\Omega_m + \Omega_r + \Omega_\Lambda + \Omega_k = 1$. Analizar cómo varía esta última ecuación para los diferentes valores de k. Dar una expresión para $\Omega_i(t)$ donde i es materia, radiación y constante cosmológica.

- f) Definimos el parámetro de desaceleración $q=-\frac{R\ddot{R}}{\dot{R}^2}$. Demostar que $q=\frac{1}{2}(\Omega_m+2\Omega_r-2\Omega_\Lambda)$.
- g) Definimos el parámetro de escala adimensional $a=R(t)/R_0$, donde R_0 es el tiempo presente, por lo tanto, $a_0=1$. Demostar que

$$H(t)^{2} = H_{0}^{2}(\Omega_{m,0}a(t)^{-3} + \Omega_{r,0}a(t)^{-4} + \Omega_{\Lambda,0} + \Omega_{k,0}a(t)^{-2})$$
(8)

en términos del redshift

$$H(z)^{2} = H_{0}^{2}(\Omega_{m,0}(1+z)^{3} + \Omega_{r,0}(1+z)^{3} + \Omega_{k,0}(1+z)^{2} + \Omega_{\Lambda,0})$$

h) La ecuación (8) se puede transformar en

$$\left(\frac{da}{dt}\right)^2 = H_0^2(\Omega_{m,0}a(t)^{-1} + \Omega_{r,0}a(t)^{-2} + \Omega_{\Lambda,0}a^2 + \Omega_{k,0}) \tag{9}$$

donde H_0 , $\Omega_{m,0}$, $\Omega_{r,0}$ y $\Omega_{\Lambda,0}$ son los valores a tiempo presente, y determinarlos es uno de los objetivos de la cosmología. La solución general de la ecuación (9) es numérica. Pero podemos encontrar soluciones análiticas para algunas situaciones particulares.

Los modelos con $\Lambda=0$, se llaman modelos de Friedmann, en tal caso la ecuación (9) está dada por: $\left(\frac{dR}{dt}\right)^2=H_0^2(\Omega_{m,0}R^{-1}+\Omega_{r,0}R^{-2}+\Omega_{k,0}).$

- i. Cuáles son los casos posibles según el valor de k.
- ii. Si consideramos ahora que $\rho_m >> \rho_r$, modelos sólo con polvo, cómo es la evolución de a(t)?.
- iii. En los modelos con sólo radiación, cómo varía a(t)
- iv. En el modelo Einstein de Sitter?
- f) Nuestro universo parece ser muy cercano a k = 0 con tres etapas claras: la era de la radiación, la era de la materia y la era de la energía oscura. Completar la siguiente tabla con la evolución de a(t) y graficar a(t).

Tipo de energía	ω	$\rho(R)$	a(t)
Materia	0		
Radiación	1/3		
Λ	-1		

Problema 3: Supongamos que un fotón es emitido en un tiempo t_E y es recibido por un observador en un tiempo t_R . Demostar que el redshift cosmológico z se relaciona con el factor de expansión como:

$$1 + z = \frac{R(t_R)}{R(t_E)}$$

Esto implica que si el universo se está expandiendo, el fotón tendrá en corrimiento al rojo dado por el valor de z.

Problema 4: Las mediciones de distancias en un universo en expansión pueden ser difíciles de determinar.

- a) Obterner la ley de Hubble-Lemaître.
- b) La distancia propia de un objeto a coordenada χ , a un tiempo t es $d = R(t)\chi$. pero no puede medirse en la práctica. Dos de las distacias más importantes usadas en astronomía son la distancia luminosidad d_L y la distancia diámetro angular d_A . Demostrar que $d_L = R_0 S(\chi)(1+z)$ y $d_A = R_0 S(\chi)/(1+z)$.

Problema 5: La constante cosmológica: ¿Cómo fue su descubrimiento a través de las supernovas tipo Ia? ¿Qué significa un universo con constante cosmológica?

Análisis Numérico

Ejercicio 1: Realizar un programa de fortran, en el que se calcule la coordenada comovil $\chi(z)$, la distancia en luminosidad dl(z), y en diámetro angular da(z), para la siguiente cosmología.

$$H_0 = 70kms^{-1}Mpc_{-1}, \ \Omega_{m,0} = 0.3, \ \Omega_{\Lambda,0} = 0.7, \ \Omega_{r,0} = 0, \ \Omega_{k,0} = 0$$

$$\chi(z) = \frac{c}{H_0 R_0} \int_0^z \frac{dz}{\sqrt{\Omega_{r,0} (1+z)^4 + \Omega_{m,0} (1+z)^3 + \Omega_{k,0} (1+z)^2 + \Omega_{\Lambda,0}}}$$

Ejercicio 2: Repetir las cuentas del ejercicio 1, usando astropy.

Bibliografía

- Apuntes de Complementos de Física Moderna, Cap. 7
- General Relativity, Hobson et al.
- Gravitation and Cosmology. Weinberg.
- Trodden & Carroll, astro-ph 0401547