Discrete Structures and Theory of Logic Lecture-6

Dr. Dharmendra Kumar (Associate Professor) United College of Engineering and Research, Prayagraj September 17, 2023

Properties of binary relations

Properties of binary relations defined on a set

There are following properties which can be defined on a set. Consider the set is A.

Reflexive property

A binary relation R defined on set A is said to be satisfies reflexive property if every element of set A is related to itself. That is, aRa , \forall a \in A. That is, (a,a) \in R, \forall a \in A.

Symmetric property

A binary relation R defined on set A is said to be satisfies symmetric property if $(a,b) \in R$ then $(b,a) \in R$, $\forall a,b \in A$. That is, if aRb then bRa, $\forall a,b \in A$.

Properties of binary relations(cont.)

Transitive property

A binary relation R defined on set A is said to be satisfies transitive property if $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$, \forall $a,b,c \in A$.

Irreflexive property

A binary relation R defined on set A is said to be satisfies irreflexive property if no element of set A is related to itself. That is, $(a,a) \notin R$, $\forall a \in A$.

2

Properties of binary relations(cont.)

Anti-symmetric property

A binary relation R defined on set A is said to be satisfies antisymmetric property if $(a,b) \in R$ and $(b,a) \in R$ then $a=b, \forall a,b \in A$.

Asymmetric property

A binary relation R defined on set A is said to be satisfies asymmetric property if $(a,b) \in R$ then $(b,a) \notin R$, \forall $a,b \in A$.

3

Properties of binary relations(cont.)

Note: A relation which satisfies reflexive property is said to be reflexive relation. A relation which satisfies symmetric property is said to be symmetric relation. A relation which satisfies transitive property is said to be transitive relation. A relation which satisfies irreflexive property is said to be irreflexive relation. A relation which satisfies anti-symmetric property is said to be anti-symmetric relation. A relation which satisfies asymmetric property is said to be asymmetric relation.

Some examples

Example: Consider the following relations defined on set $A = \{1,2,3,4\}$. Find out which of these satisfies which of the above properties i.e. reflexive, symmetric, transitive, irreflexive, anti-symmetric, and asymmetric.

- 1. $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
- 2. $\{(1,1),(2,2),(2,1),(1,2),(3,3),(4,4)\}$
- 3. $\{(2,4),(4,2)\}$
- 4. $\{(1,2),(2,3),(3,4)\}$
- 5. $\{(1,1),(2,2),(3,3),(4,4)\}$
- 6. $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$

Solution:

- 1. Transitive.
- 2. Reflexive, symmetric, transitive.
- 3. Symmetric, irreflexive.
- 4. Irreflexive, anti-symmetric, asymmetric.
- 5. Reflexive, symmetric, transitive, anti-symmetric.
- 6. Irreflexive.

Example: Give an example of a relation which satisfies corresponding properties.

- 1. Neither reflexive nor irreflexive.
- 2. Both symmetric and anti-symmetric.
- 3. Reflexive, transitive but not symmetric.
- 4. Symmetric, transitive but not reflexive.
- 5. Reflexive, symmetric but not transitive.
- 6. Reflexive, transitive but neither symmetric nor anti-symmetric.

Example: Which of the following relations are transitive? $R_1 = \{(1,1)\}, R_2 = \{(1,2),(2,2)\}, R_3 = \{(1,2),(2,3),(1,3),(2,1)\}$ **solution:** R_1 and R_2 are transitive but R_3 is not transitive. R_3 is not transitive because for pairs (1,2) and (2,1), its transitie Pair (1,1) not belong into R_3 .

Example: Given $S = \{1,2,3,4\}$, and a relation R on S defined by $R = \{(1,2),(4,3),(2,2),(2,1),(3,1)\}$

Show that R is not transitive. Find a relation $R_1 \supseteq R$ such that R_1 is transitive. Can you find another relation $R_2 \supseteq R$ which is also transitive?

Example: Given $S = \{1,2,3,....,10\}$, and a relation R on S defined by

$$R = \{ (a,b) ! a+b = 10 \}$$

Which of the properties of a relation satisfy R?