Consider the DAG shown below.

Select all true facts about the topological sort for this DAG.

- ☐ It cannot be topologically sorted since there is a cycle in the graph.
- When we topologically sort this graph the first node in the topological sort must be 2.
- Correct
 Correct since 2 has no incoming edges and every other node in the graph does.
- The last node in the topological sort must necessarily be 10.
- The last node in the topological sort must have no outgoing edges from it.
- There are multiple possible topological sorted orders for the vertices of this graph.
- Correct
 Correct.

2. Consider the DAG from Question 1 recalled below.

Running a DFS on all the nodes of the graph, we have the following discovery and finish times.

Node	Discovery	Finish
1	1	8
2	9	20
3	2	7
4	10	19
5	3	6
6	11	18
7	12	17
8	4	5
9	13 16	
10	14	15

Answer questions about the full topological sorted order output by this DFS run.

L	J The	topo	logical	sorted	order	is	[1,2,3,	4,5	,6,7	,8,9,10]
---	-------	------	---------	--------	-------	----	---------	-----	------	---------	---

The topological sorted order output would be [1,3,5,8,2,4,6,7,9,10]

The first node must be 2 since it has latest finish time

The last node must be 8 since has the earliest finish time.

✓ Correct Correct

The topological sorted order output by this DFS run is [2,4,6,7,9,10,1,3,5,8]

