Révisions d'intégration

Exercice 1 ★

Calculer

1.
$$\int x \arctan^2(x) dx$$

4.
$$\int \frac{x \, dx}{\sqrt{1+x}} \text{ en posant } u = \sqrt{1+x}.$$

$$2. \int e^x \sin^2(x) \, \mathrm{d}x$$

5.
$$\int \frac{\mathrm{d}x}{\mathrm{ch}\,x}$$

3.
$$\int \cos(\ln x) \, dx \text{ en posant } u = \ln x$$

Exercice 2 ★★

On pose S = $\int_0^{\frac{\pi}{2}} \frac{\sin t}{\sin t + \cos t} dt et C = \int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t + \cos t} dt.$

- 1. Justifier que S et C sont bien définies.
- **2.** Montrer que S = C par changement de variable.
- 3. Que vaut S + C? En déduire S et C.
- **4.** En déduire I = $\int_0^1 \frac{dt}{t + \sqrt{1 t^2}}.$

Exercice 3 ★★

Règles de Bioche

Calculer

1.
$$\int_0^{\pi} \frac{\sin t \, dt}{4 - \cos^2 t}$$
 en posant $u = \cos t$;

2.
$$\int_{\frac{\pi}{2}}^{x} \frac{dt}{\sin t} \text{ pour } x \in]0, \pi[\text{ en posant } u = \cos t;$$

3.
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\mathrm{d}t}{\cos^3 t} \text{ en posant } u = \sin t;$$

4.
$$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sin t + \cos t} \text{ en posant } u = \tan \frac{t}{2}.$$

Exercice 4 ★★

Intégrales de Wallis

On pose pour tout $n \ge 0$,

$$I_n = \int_0^{\pi/2} \sin^n(x) dx.$$

- **1.** Calculer I_0 et I_1 .
- **2.** En intégrant par parties, trouver une relation de récurrence entre I_n et I_{n+2} .
- **3.** En déduire une expression de I_{2n} et I_{2n+1} pour tout $n \in \mathbb{N}$ à l'aide de factorielles.
- **4.** Vérifier que $(I_n)_{n\geq 0}$ est décroissante. En déduire que $\frac{n+1}{n+2}I_n\leq I_{n+1}\leq I_n$.
- **5.** Démontrer que $I_{n+1} \underset{n \to +\infty}{\sim} I_n$.
- **6.** Établir que $\forall n \in \mathbb{N}, \ (n+1)I_{n+1}I_n = \frac{\pi}{2}$.
- 7. En déduire que

$$I_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}.$$

Exercice 5

On pose pour $n \in \mathbb{N}$, $u_n = \int_0^1 \frac{\mathrm{d}x}{1 + x^n}$.

- 1. Montrer que (u_n) converge et donner sa limite.
- 2. A l'aide d'une intégration par parties, donner un développement asymptotique à deux termes de u_n .

Exercice 6 ★★

On considère la suite de terme général $I_n = \int_0^1 \frac{t^n}{1+t} dt$.

- **1.** Déterminer la limite de (I_n) .
- 2. Déterminer une relation de récurrence entre I_n et I_{n+1} .
- 3. On pose $S_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Exprimer S_n en fonction de I_n .
- **4.** En déduire la convergence et la limite de (S_n) .

Exercice 7

Calculer les intégrales suivantes.

$$I = \int_0^{\pi} x \sin(x) dx$$

$$J = \int_1^2 x^2 \ln(x) dx$$

$$K = \int_0^{\pi} e^{2x} \sin(3x) dx$$

$$L = \int_0^{\frac{1}{2}} \arccos x dx$$

Exercice 8

Calculer les primitives suivantes.

1.
$$\int x^2 e^{3x} dx$$

2.
$$\int \arctan(x) dx$$

3.
$$\int e^{2x} \sin x dx$$

4.
$$\int \arcsin(x) dx$$

Convergences

Exercice 9 ★★

On pose $u_n = \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}x}{1 + x^4 \sin^2 x}$ pour $n \in \mathbb{N}$.

- 1. Montrer que $u_n = \int_0^{\pi} \frac{\mathrm{d}x}{1 + (x + n\pi)^4 \sin^2 x}$ pour tout $n \in \mathbb{N}$.
- 2. Encadrer les termes de la suite (u_n) à l'aide des termes de la suite (v_n) où

$$v_n = \int_0^\pi \frac{\mathrm{d}x}{1 + (n\pi)^4 \sin^2 x}$$

- 3. Calculer explicitement v_n et en déduire un équivalent de u_n .
- **4.** En déduire la convergence de l'intégrale $\int_0^{+\infty} \frac{\mathrm{d}x}{1 + x^4 \sin^2 x}.$

Exercice 10 ★★★★

Mines MP 2016

Soit $P \in \mathbb{R}[X]$ de degré supérieur ou égal à 2.

- 1. Déterminer la nature de l'intégrale $I = \int_0^{+\infty} \cos(P(x)) dx$.
- 2. Déterminer la nature de l'intégrale $J = \int_0^{+\infty} |\cos(P(x))| dx$.
- 3. Déterminer le signe de I lorsque $P = X^2$.

Exercice 11 ★★

Les intégrales suivantes convergent-elles?

$$1. \int_0^1 \ln t \, dt$$

$$5. \int_0^1 \frac{\mathrm{d}t}{(1-t)\sqrt{t}}$$

$$2. \int_0^{+\infty} e^{-t^2} \, \mathrm{d}t$$

6.
$$\int_0^{+\infty} \frac{\ln(t)}{t^2 + 1} dt$$

3.
$$\int_0^{+\infty} x \sin(x) e^{-x} dx$$

7.
$$\int_{1}^{+\infty} \frac{\sqrt{\ln x}}{(x-1)\sqrt{x}} dx$$

4.
$$\int_0^{+\infty} \ln(t)e^{-t} dt$$

Intégrales de Bertrand

- 1. Pour quelles valeurs des réels α et β l'intégrale $\int_{e}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}(\ln t)^{\beta}}$ converge-t-elle?
- 2. Même question pour l'intégrale $\int_0^{\frac{1}{e}} \frac{dt}{t^{\alpha} |\ln t|^{\beta}}$.

Exercice 13 ★★★

Centrale-Supélec MP 2021

On considère I = $\int_0^{+\infty} e^{-x} \ln x \, dx.$

- 1. Montrer l'existence de I.
- **2.** Montrer I < 0.

Exercice 14 ***

- 1. Montrer que $\int_1^{+\infty} \frac{\sin x}{\sqrt{x}} dx$ converge.
- 2. Déterminer la nature de $\int_1^{+\infty} \frac{\sin x}{\sqrt{x} + \sin x} dx$.

Exercice 15 ***

Pour quelles valeurs du réel α l'intégrale $\int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ converge-t-elle?

Exercice 16 ★★★

X-ESPCI PC 2013

Soit $f: [1, +\infty[\to \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ telle que } (f')^2 \text{ est intégrable sur } [1, +\infty[. \text{ Montrer qu'il en est de même pour } g: t \mapsto \left(\frac{f(t)}{t}\right)^2.$

Exercice 17 ★★

Non convergence absolue de l'intégrale de Dirichlet

Montrer que $t \mapsto \frac{\sin t}{t}$ n'est pas intégrable sur \mathbb{R}_+^* .

Exercice 18 ★★

E3A PSI 2020

Exercice 19

Centrale-Supélec MP 2022

Soient a un réel strictement positif et f une fonction continue sur \mathbb{R} .

Pour tout réel λ , on pose $I(\lambda) = \int_a^{+\infty} \frac{\lambda - f(t)}{t} dt$, lorsque cela existe.

- 1. Justifier qu'il existe au plus un réel λ tel que $I(\lambda)$ converge.
- 2. Pour tout réel x, on pose $H_{\lambda}(x) = \int_{a}^{x} (\lambda f(t)) dt$.

Démontrer que, si H_{λ} est bornée sur \mathbb{R} , alors $I(\lambda)$ existe et $I(\lambda) = \int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^2} dt$.

- **3.** On suppose désormais que f est continue sur \mathbb{R} et T-périodique.
 - **a.** Montrer que pour tout réel x :

$$H_{\lambda}(x+T) - H_{\lambda}(x) = \lambda T - \int_{0}^{T} f(t) dt$$

- **b.** Montrer qu'il existe une unique valeur λ_0 du réel λ pour la quelle la suite $(H_{\lambda}(a+nT))_{n\in\mathbb{N}}$ est bornée.
- **c.** Prouver que, dans ce cas, la fonction H_{λ} est périodique et bornée sur \mathbb{R} .
- **d.** Déterminer alors toutes les valeurs du réel λ pour lesquelles $I(\lambda)$ converge.
- **e.** Dans le cas où $\lambda_0 \neq 0$, déterminer un équivalent de $\int_a^x \frac{f(t)}{t} dt$ lorsque x tend vers $+\infty$.
- **4.** Pour tout entier naturel non nul *n*, on pose

$$A_n = \int_0^{\frac{\pi}{2}} \frac{|\sin(nt)|}{\sin(t)} dt \qquad \text{et} \qquad B_n = \int_0^{\frac{\pi}{2}} \frac{|\sin(nt)|}{t} dt$$

- **a.** Justifier que A_n et B_n sont bien définies.
- **b.** Déterminer un équivalent au voisinage de 0 de la fonction $\varphi: t \mapsto \frac{1}{t} \frac{1}{\sin(t)}$.
- **c.** Démontrer que la suite $(A_n B_n)_{n \in \mathbb{N}^*}$ est bornée.
- **d.** A l'aide d'un changement de variable et de la question 3, déterminer un équivalent de B_n lorsque n tend vers $+\infty$. En déduire un équivalent de A_n lorsque n tend vers l'infini.

- 1. Enoncer et démontrer la formule de Taylor avec reste intégral.
- 2. Donner la nature de l'intégrale $\int_0^{+\infty} \frac{\sin(\sqrt{t})}{t} dt$.
- 3. Donner la nature de la série $\sum_{n\geq 1} \frac{\sin(\sqrt{n})}{n}$.

Exercice 20 ★★★

Mines-Ponts MP 2025

Soit $\alpha > 1$.

- **1.** Montrer que l'équation $x^{\alpha} = \sin x$ admet une unique solution sur \mathbb{R}_{+}^{*} . On note a cette solution.
- 2. Etudier la convergence de l'intégrale $\int_{a}^{+\infty} \frac{\cos x \, dx}{\sqrt{x^{\alpha} \sin x}}.$

Théorie

Exercice 21 ***

- 1. Soit f une application continue par morceaux de \mathbb{R}_+ dans \mathbb{R} admettant une limite ℓ en $+\infty$ et telle que l'intégrale $\int_0^{+\infty} f(t) \, \mathrm{d}t$ converge. Montrer que $\ell=0$.
- 2. Soit f une application uniformément continue de \mathbb{R}_+ dans \mathbb{R} telle que l'intégrale $\int_0^{+\infty} f(t) \ \mathrm{d}t \ \mathrm{converge}. \ \mathrm{Montrer} \ \mathrm{que} \lim_{+\infty} f = 0.$

Exercice 22 ★★★★

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction lipschitzienne telle que l'intégrale $\int_0^{+\infty} f(t) \, \mathrm{d}t$ converge. Montrer que $\lim_{t \to +\infty} f(t) = 0$.

Exercice 23 ***

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 telle que f et f'' soit de carré intégrable sur \mathbb{R} .

- 1. Montrer que f' est également de carré intégrable sur \mathbb{R} .
- 2. Montrer que

$$\left(\int_{\mathbb{R}} f'^2\right)^2 \le \left(\int_{\mathbb{R}} f^2\right) \left(\int_{\mathbb{R}} f''^2\right)$$

Exercice 24 ★★★

Banque Mines-Ponts PSI 2021

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue telle que $\lim_{x \to +\infty} f(x) = 0$.

1. Prouver que $\int_0^{+\infty} f(t) dt$ converge si et seulement si la suite $n \mapsto \int_0^n f(t) dt$ converge et que dans ces conditions :

$$\int_0^{+\infty} f(t) dt = \lim_{n \to +\infty} \int_0^n f(t) dt$$

2. Que se passe-t-il si on enlève l'hypothèse $\lim_{x \to +\infty} f(x) = 0$?

Exercice 25 ***

Mines-Télécom (hors Mines-Ponts) MP 2017

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue, décroissante et intégrable sur \mathbb{R}_+ .

- **1.** Montrer que f est de limite nulle en $+\infty$.
- 2. Montrer que $f(x) = o\left(\frac{1}{x}\right)$.

Exercice 26

Saint-Cyr MP 2024

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue et intégrable telle que $\int_0^{+\infty} f(t) \, \mathrm{d}t = 1$ et $\int_0^{+\infty} t f(t) \, \mathrm{d}t$ convergent. On pose $g: x \mapsto \int_x^{+\infty} f(t) \, \mathrm{d}t$.

- **1.** Montrer que $\int_0^{+\infty} g(t) dt$ converge et que $\int_0^{+\infty} g(t) dt = \int_0^{+\infty} t f(t) dt$.
- **2.** On suppose dorénavant que f est décroissante. Montrer qu'il existe $m \in \mathbb{R}_+$ tel que $\int_0^m f(t) \, \mathrm{d}t = \frac{1}{2}$.
- 3. Montrer que $\int_0^{+\infty} t f(t) dt \ge m$.

Calculs

Exercice 27 ***

Convergence et calcul de $\int_0^{+\infty} e^{-a^2t^2 - \frac{b^2}{t^2}} dt$ où a, b > 0. On admettra que $\int_{-\infty}^{+\infty} e^{-u^2} du = \sqrt{2\pi}$.

Exercice 28 ★★★

n désigne un entier naturel et α un réel strictement supérieur à -1. On pose

$$I_n(\alpha) = \int_0^1 \frac{x^n dx}{\sqrt{(1-x)(1+\alpha x)}}$$

- 1. Justifier que cette intégrale est bien définie.
- **2.** Calculer $I_0(0)$. Posant $t = \sqrt{\frac{1 + \alpha x}{1 x}}$, calculer $I_0(\alpha)$. Montrer que la fonction $\alpha \mapsto I_0(\alpha)$ est continue en 0.
- 3. En dérivant $x^n \sqrt{(1-x)(1+\alpha x)}$ trouver une relation de récurrence entre $I_{n-1}(\alpha)$, $I_n(\alpha)$ et $I_{n+1}(\alpha)$. En déduire les valeurs de $I_n(0)$ et $I_n(1)$.

Exercice 29 ★★

Convergence et calcul de

$$I = \int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$$

Exercice 30 ***

X MP 2010

Déterminer

$$\sup_{x>0} \int_0^{+\infty} \frac{\ln t}{x^2 + t^2} \, \mathrm{d}t$$

Exercice 31 ***

- **1.** Pour quelles valeurs de $a \in \mathbb{R}$ l'intégrale $I(a) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+t^a)}$ converget-elle?
- **2.** On pose $J(a) = \int_0^1 \frac{dt}{(1+t^2)(1+t^a)}$. Montrer que I(a) = J(a) + J(-a).
- **3.** En déduire la valeur de I(a).

Exercice 32 ★★ CCP MP

- **1.** Déterminer le domaine de définition F : $x \mapsto \int_0^{+\infty} \frac{\ln t}{x^2 + t^2} dt$.
- **2.** Calculer F(1).
- **3.** Calculer F(x) pour tout x dans le domaine de définition de f.

Exercice 33 ★★★

Intégrale de Dirichlet

- **1.** A l'aide d'une intégration par parties, montrer que l'intégrale $I = \int_0^{+\infty} \frac{\sin t}{t} dt$ converge.
- **2.** On pose pour $n \in \mathbb{N}$,

$$u_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{\sin(t)} dt$$
 et $v_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{t} dt$

Justifier que u_n et v_n sont bien définies.

- 3. En calculant $u_{n+1} u_n$, montrer que la suite (u_n) est constante et préciser sa valeur.
- **4.** Soit φ une fonction de classe \mathcal{C}^1 sur un segment [a, b]. Par une intégration par parties, montrer que $\lim_{\lambda \to +\infty} \int_a^b h(t) \sin(\lambda t) dt = 0$.
- **5.** Montrer que la fonction $h: t \mapsto \frac{1}{t} \frac{1}{\sin t}$ est prolongeable en une fonction de classe $\mathcal{C}^1 \sup \left[0, \frac{\pi}{2}\right]$.
- **6.** Calculer la limite de la suite $(u_n v_n)$ puis celle de (v_n) .
- 7. En déduire la valeur de I.

Exercice 34 ★★★

TPE-EIVP PSI 2017

Soit a > 1, Soit f une fonction continue sur $[1, +\infty[$ admettant une limite finie ℓ en $+\infty$.

1. Montrer que pour tout x dans $[1, +\infty[$:

$$\int_{1}^{x} \frac{f(at) - f(t)}{t} dt = \int_{x}^{ax} \frac{f(t)}{t} dt - \int_{1}^{a} \frac{f(t)}{t} dt$$

2. En déduire que $\int_1^{+\infty} \frac{f(at) - f(t)}{t} dt$ converge et la calculer en fonction de $\int_1^a \frac{f(t)}{t} dt$ et de ℓ .

Exercice 35 ★★

On pose $I = \int_0^{\frac{\pi}{2}} \ln(\sin t) dt$.

- 1. Justifier que l'intégrale définissant I converge.
- 2. Montrer que I = $\int_0^{\frac{\pi}{2}} \ln(\cos t) dt.$
- 3. Montrer que $2I = \int_0^{\pi} \ln(\sin t) dt$.
- 4. En déduire la valeur de I.

Exercice 36 ***

Soient a et b deux réels strictement positifs. Convergence et calcul de

$$I = \int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} \, \mathrm{d}t$$

Exercice 37 ★★

Existence et calcul de

$$I = \int_0^{+\infty} \frac{\mathrm{d}x}{x^3 + 1}$$

Exercice 38 ★★

Trigonométrie

Soit $a \in \mathbb{R}_+^*$. Justifier la convergence et calculer

$$I = \int_0^{+\infty} \cos(t)e^{-at} dt \qquad \text{et} \qquad J = \int_0^{+\infty} \sin(t)e^{-at} dt$$

Exercice 39 ★

Déterminer la nature des intégrales suivantes et calculer leurs valeurs le cas échéant.

1.
$$I = \int_0^{+\infty} \frac{1}{4+t^2} dt$$

5.
$$M = \int_0^{+\infty} e^{-at} dt \operatorname{avec} a \in \mathbb{R}_+^*$$

2.
$$J = \int_0^2 \frac{1}{4 - t^2} dt$$

6. N =
$$\int_0^{\frac{1}{3}} \frac{1}{\sqrt{1 - 9t^2}} dt$$

$$3. K = \int_0^{+\infty} \sin(t) dt$$

7.
$$O = \int_{2}^{+\infty} \frac{dt}{t^2 - 3t + 2}$$

$$4. L = \int_0^1 \ln(t) dt$$

8.
$$P = \int_{2}^{+\infty} \frac{dt}{t \ln t}$$

Exercice 40 ★★

E3A MP Maths1 2015

1. Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin x}{x} dx$ converge. On admet alors que

$$\int_0^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}$$

- 2. Dans la suite de l'énoncé, α désigne un réel strictement positif et x un réel.
 - a. Montrer que l'application $t\mapsto \frac{1-\cos(\alpha t)}{t^2}e^{-itx}$ est prolongeable par continuité en 0
 - **b.** Montrer que l'application $t \mapsto \frac{1 \cos(\alpha t)}{t^2} e^{-itx}$ ainsi prolongée est intégrable sur \mathbb{R} .
- **3.** On pose

$$I = \int_{-\infty}^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{-itx} dt$$

- a. Montrer que I est réelle.
- **b.** Soient A > 0 et B > 0. On admet l'existence de l'intégrale $\int_{A}^{+\infty} \frac{\cos(Bx)}{x^2} dx$. Montrer que

$$\int_{A}^{+\infty} \frac{\cos(Bx)}{x^2} dx = \frac{\cos(AB)}{A} - B \int_{AB}^{+\infty} \frac{\sin t}{t} dt$$

- **c.** En déduire le calcul de l'intégrale $\int_0^{+\infty} \frac{1 \cos(Bx)}{x^2}$ pour B > 0 puis pour B quelconque.
- **d.** En déduire la valeur de I.

Comportements asymptotiques

Exercice 41 ★★★

Centrale PSI

Soit f une fonction continue sur \mathbb{R}_+ . On pose

$$\forall x \in \mathbb{R}_+, \ \varphi(x) = f(x) + \int_0^x f(t) \ dt$$

On suppose que φ admet une limite finie en $+\infty$. Montrer que f admet pour limite 0 en $+\infty$.

Exercice 42 ***

Mines-Ponts MP 2016

- 1. Soient $a \in \mathbb{C}$ tel que $\operatorname{Re}(a) > 0$ et f de classe \mathcal{C}_1 sur \mathbb{R}_+ à valeurs dans \mathbb{C} telle que $\lim_{t \to \infty} f' + af = 0$. Montrer que $\lim_{t \to \infty} f = 0$.
- **2.** Soit f de classe C^2 sur \mathbb{R}_+ à valeurs dans \mathbb{C} telle que $\lim_{t\to\infty} f'' + f' + f = 0$. Montrer que $\lim_{t\to\infty} f = 0$.
- 3. Généraliser.

Exercice 43 ***

Centrale MP 2018

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue de carré intégrable sur \mathbb{R}_+ . On pose $g: x \in \mathbb{R}_+^* \to \frac{1}{x} \int_0^x f(t) dt$.

- 1. Déterminer la limite de g en 0.
- **2.** Déterminer la limite de g en $+\infty$.
- **3.** Montrer que g est de carré intégrable sur \mathbb{R}_+ .

Exercice 44 ★★★

Déterminer un équivalent simple de F : $x \mapsto \int_0^x e^{t^2} dt$ au voisinage de $+\infty$.

Exercice 45 ***

- **1.** Montrer que $f: t \mapsto e^{-t^2}$ est intégrable sur \mathbb{R}_+ .
- 2. Déterminer un équivalent de g : $x \mapsto \int_{x}^{+\infty} e^{-t^2} dt$ au voisinage de $+\infty$.

Exercice 46 ★★★

Soit f une fonction de classe \mathcal{C}^1 sur \mathbb{R} telle que $\lim_{x\to +\infty} f(x) + f'(x) = 0$. Montrer que $\lim_{x\to +\infty} f(x) = 0$.

Exercice 47 ***

Banque Mines-Ponts PSI 2021

Soit
$$f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt$$
.

- **1.** Montrer que f est définie sur $I = [0, +\infty)$.
- **2.** Montrer que f est dérivable sur I et déterminer f'.
- 3. Déterminer un équivalent de f en 0 et en $+\infty$.
- **4.** Montrer que $\int_0^{+\infty} f(t) dt$ est définie et la calculer.

Exercice 48 ★★

Mines-Télécom (hors Mines-Ponts) MP 2017

On pose pour tout *x* non nul,

$$F(x) = \int_{x}^{7x} \frac{1 - e^{-t}}{t^2} dt$$

Déterminer $\lim_{x\to 0^+} F(x)$ et $\lim_{x\to +\infty} F(x)$.

Exercice 49 ★

Déterminer des équivalents de

- 1. $\int_1^x \frac{\arctan t}{t} dt$ lorsque x tend vers $+\infty$;
- 2. $\int_{x}^{+\infty} \frac{\operatorname{th} t}{t^2} dt \operatorname{lorsque} x \operatorname{tend} \operatorname{vers} + \infty;$
- 3. $\int_{x}^{1} \frac{e^{t}}{t^{3}} dt$ lorsque x tend vers 0^{+} ;
- 4. $\int_0^x \frac{\sin t}{t^{\frac{3}{2}}} dt \text{ lorsque } x \text{ tend vers } 0^+.$

Exercice 50

On considère la fonction

$$f: x \mapsto \int_{x}^{2x} \frac{\operatorname{ch} t}{t} \, \mathrm{d}t$$

- **1.** Justifier que f est définie sur \mathbb{R}^* .
- **2.** Montrer que la fonction φ : $t \mapsto \frac{\operatorname{ch} t 1}{t}$ est prolongeable en une fonction continue sur \mathbb{R} .
- 3. Montrer que $f(x) = \ln 2 + \frac{3}{4}x^2 + o(x^2)$.
- **4.** A l'aide d'une intégration par parties, montrer que $\int_1^x \frac{e^t}{t} dt \sim \frac{e^x}{x \to +\infty}$.
- 5. Montrer que $f(x) \sim \frac{e^{2x}}{4x}$.

Exercice 51 ★★★

CCINP (ou CCP) MP 2021

1. Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique $u_n \in [0,1]$ tel que

$$\int_{u_n}^1 \frac{e^t}{t} \, \mathrm{d}t = n$$

On pourra considérer la fonction $x \mapsto \int_{x}^{1} \frac{e^{t}}{t} dt$.

- **2.** Étudier la monotonie de (u_n) et sa limite.
- 3. On pose $v_n = n + \ln u_n$. Montrer que (v_n) converge et exprimer sa limite sous forme d'une intégrale.
- **4.** Quelle est la nature de la série $\sum u_n$?

Suites d'intégrales

Exercice 52 ***

CCP MP 2018

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue et π -périodique vérifiant

$$\int_0^{\pi} f(t) \, \mathrm{d}t = 0$$

Pour $n \in \mathbb{N}^*$, on pose

$$u_n = \int_0^{\pi} f(t)e^{-t/n} dt \qquad v_n = \int_0^{+\infty} f(t)e^{-t/n} dt$$

- **1.** Justifier que u_n et v_n sont bien définis pour tout $n \in \mathbb{N}^*$.
- **2.** Justifier qu'il existe une suite (a_n) , que l'on précisera, telle que $v_n = a_n u_n$ pour tout $n \in \mathbb{N}^*$.
- 3. Montrer que $a_n \sim \frac{n}{n+\infty} \frac{n}{\pi}$.
- **4.** Montrer que (u_n) converge vers 0. Montrer que (v_n) converge et préciser sa limite.

Exercice 53 ★★

Soit $f_n: t \mapsto \cos(2nt)\ln(\sin t)$ pour $n \in \mathbb{N}^*$.

- **1.** Justifier que f_n est intégrable sur $\left]0, \frac{\pi}{2}\right]$.
- **2.** On pose alors $I_n = \int_0^{\frac{\pi}{2}} f_n(t) dt$ et $J_n = 2nI_n$. Justifier que pour tout $n \in \mathbb{N}^*$,

$$J_n = -\int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot \sin(2nt) dt$$

3. Calculer $J_{n+1} - J_n$ et en déduire la valeur de J_n puis celle de I_n .

Exercice 54 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 (t \ln(t))^n dt$. Montrer que cette intégrale converge. Donner sa valeur.

Exercice 55 ★

On pose $I_n = \int_0^1 \ln^n(x) dx$ pour $n \in \mathbb{N}$.

- **1.** Justifier que I_n converge.
- 2. Déterminer une relation de récurence suivie par la suite (I_n) .
- **3.** En déduire la valeur de I_n .

Fonctions définies par des intégrales

Exercice 56 ★★

Fonction Γ

On pose
$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$
.

- **1.** Déterminer le domaine de définition de Γ .
- **2.** Montrer que

$$\forall x \in \mathbb{R}_+^*, \ \Gamma(x+1) = x\Gamma(x)$$

3. Déterminer $\Gamma(n)$ pour $n \in \mathbb{N}^*$.

Exercice 57 ★★

Fonction B d'Euler

Onpose B:
$$(x,y) \mapsto \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
.

- **1.** Montrer que B est définie sur $(\mathbb{R}_+^*)^2$.
- **2.** Montrer que

$$\forall (x, y) \in (\mathbb{R}_+^*)^2, \ B(x, y) = B(y, x)$$

3. Montrer que

$$\forall (x, y) \in (\mathbb{R}_+^*)^2, \ B(x+1, y) = \frac{x}{x+y} B(x, y)$$

4. Calculer B(n+1, p+1) pour tout $(n, p) \in \mathbb{N}^2$.