Network QoS 371-2-0213

Lecture 6

Gabriel Scalosub

Outline

- Competitive Weight-based Buffer Management
 - Basic Model
 - Upper Bound
 - Lower Bound
- 2 Going Beyond: Algorithms and Models
 - Better Algorithms
 - Other Models

Model

- Commitments model we saw: managing a single AF PHB
- Now: a more general DiffServ Model
 - Managing multiple AF PHBs / EF classes
 - Differentiate between packets corresponding to different classes
 - E.g.: EF ">" AF41 ">" AF43
 - scheduling: link access (delay / rate)
 - buffer management: drop rate
- System model: slotted time
- Traffic model
 - uniform size packets (WLOG, size is 1)
 - for each packet p we have
 - a(p): arrival time
 - w(p): packet weight
 - $s_A(p)$: forwarding/delivery time by algorithm A
- Packet weight gives means for differentiation
 - can be considered as part of PHB

Model

- Queue model
 - Single FIFO queue Q
 - buffer of size B
 - service rate r
 - preemptive: may drop enqueued packets

Goal

Maximize overall weight of forwarded packets

- What algorithm would you pick?
- Assumptions and notation:
 - $\mathcal{B}_A(t)$: set of packets in the buffer of algorithm A at time t
 - $S_A(t)$: set of packets sent by algorithm A at time t
 - w(P): overall weight of set of packets P
 - i.e., $w(P) = \sum_{p \in P} w(p)$
 - for simplicity, assume r=1

The Greedy Algorithm

Algorithm 1 G: upon the arrival of p at time t

```
1: if |\mathcal{B}_{G}(t)| < B then
 2:
           accept p
 3: else
           q \leftarrow \operatorname{arg\,min} \left\{ w(q') \mid q' \in \mathcal{B}_{\mathrm{G}}(t) \right\}
 4:
           if w(p) \leq w(q) then
 5:
                drop p
 6:
         else
 7:
 8:
                drop q
 9.
                 accept p
           end if
10:
11: end if
```

- Notation:
 - A(t): packets arriving at t
 - $D_{\rm G}(t)$: packets dropped by G at t

• V(t): B highest weight packets arriving during [t+1, t+B]

Lemma

For any time t,

$$w(\mathcal{B}_{G}(t)) + w(V(t)) \leq \sum_{i=1}^{B} w(s_{G}(t+i)) + w(\mathcal{B}_{G}(t+B))$$

- LHS: current buffer at t + best potential arrivals by (t + B)
- RHS: actual deliveries by (t + B) + future buffer at (t + B)

• V(t): B highest weight packets arriving during [t+1, t+B]

Lemma

For any time t,

$$w(\mathcal{B}_{G}(t)) + w(V(t)) \leq \sum_{i=1}^{B} w(s_{G}(t+i)) + w(\mathcal{B}_{G}(t+B))$$

- Y_0^t : $\mathcal{B}_{G}(t) \cup V(t)$
- $Y_i^t = Y_{i-1}^t \cup A(t+i) \setminus D_G(t+i)$ (for $i \ge 1$)
 - By definition of G, $w(Y_{i-1}^t) \le w(Y_i^t)$ $\Rightarrow w(Y_0^t) \le w(Y_R^t)$
 - $Y_B^t \subseteq \mathcal{B}_G(t) \cup \bigcup_{i=1}^B A(t+i)$
 - none of the packets in Y_B^t are discarded by t + B
 - packets in Y_B^t either sent by t+B, or in $\mathcal{B}_G(t+B)$

Theorem

Algorithm G is 2-competitive

- Partition time into intervals of length B
 - $I_k = [kB, (k+1)B), k = 0, 1, ...$
- U(k): set of packets accepted by OPT during I_k
- $|I_k| = B$
 - $|U(k)| \le 2B$
 - $w(U(k)) \leq 2w(V(kB))$

Theorem

Algorithm G is 2-competitive

Proof.

• Previous lemma:

$$w(V(kB)) \leq \sum_{i=1}^{B} w(s_{G}(kB+i)) + w(\mathcal{B}_{G}(kB+B)) - w(\mathcal{B}_{G}(kB))$$

• for $T = \max\{a(p)\} + B$

$$\textstyle \sum_k w(V(kB)) \leq \sum_t w(s_{\mathrm{G}}(t)) + \underbrace{w(\mathcal{B}_{\mathrm{G}}(T))}_0 - \underbrace{w(\mathcal{B}_{\mathrm{G}}(0))}_0$$

 $\Rightarrow w(OPT) \le 2 \sum_{k} w(V(kB)) \le 2w(G)$

Competitive Analysis of Greedy

- The analysis of G is essentially tight
 - Consider the traffic:

- $w(G) = B(1 + \alpha)$
- $w(OPT) = 2B\alpha$
- the ratio is $\frac{2B\alpha}{B(1+\alpha)} = \frac{2\alpha}{1+\alpha} = 2 \frac{2}{1+\alpha}$
- tends to 2 as α goes to infinity
- Uses only 2 distinct values

Competitive Analysis - Deterministic Lower Bound

Theorem

No deterministic algorithm has competitive ratio better than 1.281

- ullet Fix some deterministic algorithm ALG
- Consider traffic similar to previous
 - continues until earliest time $t \leq B$:
 - ALG sends an α -packet at (t+1), or
 - \bullet t = B
 - .
- Scenario one:
 - sequence ends
 - ALG gains $t+t\alpha$
 - ullet OPT would have gained B+tlpha

Competitive Analysis - Deterministic Lower Bound

Theorem

No deterministic algorithm has competitive ratio better than 1.281

- Scenario two:
 - sequence continues similar to greedy's tight example
 - ALG gains $t + B\alpha$
 - OPT would have gained $(t + B)\alpha$
- Competitive ratio of ALG is at least

$$\max\left\{\frac{B+t\alpha}{t+t\alpha},\frac{(t+B)\alpha}{t+B\alpha}\right\}$$

Competitive Analysis - Deterministic Lower Bound

Theorem

No deterministic algorithm has competitive ratio better than 1.281

- ullet The minimum (over t) is obtained when equality holds
 - Solving (for t): $t_0(B,\alpha) = B \frac{\sqrt{(\alpha-1)^2 + 4\alpha^3 \alpha + 1}}{2\alpha^2}$
 - define $t_0^*(\alpha) = t_0(B, \alpha)/B$
 - competitive ratio is at least $\frac{1+\alpha t_0^*(\alpha)}{(1+\alpha)t_0^*(\alpha)}$
- solving (numerically, for α), this is maximized for $\alpha \approx 4.01545$
- Competitive ratio of ALG cannot be better than 1.281

Better Algorithms: What Would You Do?

- Recall Greedy:
- Improvement options:
 - consider *complex p-q relationships*
 - drop q only if $w(q) \ll w(p)$
 - not just comparison-based actual values matter!!
 - consider the overall present "state" of the buffer
 - how much value is currently in the buffer?
 - do we currently have enough to "cover" for not preempting?
 - proactive dropping? (avoid delaying others...)
 - consider the present state and history
 - how much value did we gain recently?
 - did we gain enough to "cover" for not preempting?
 - admission control
 - drop even if the buffer isn't full? (proactive...)
 - may depend on / be combined with all of the above
 - toss coins...

```
Algorithm \mathbf{1} G: upon the arrival of p at time t
1: if |\mathcal{B}_{G}(t)| < \mathcal{B} then
2: accept p
3: else
4: q \leftarrow \arg\min\{w(q') \mid q' \in \mathcal{B}_{G}(t)\}
5: if w(p) \leq w(q) then
6: drop p
7: else
8: drop q
9: accept p
10: end if
```

How Was This Useful?

- Detailed results we saw are due to:
 - upper bound: Mansour, Patt-Shamir, Lapid (2000)
 - lower bound: Kesselman, Lotker, Mansour, Patt-Shamir, Schieber, Sviridenko (2001)
- Many papers tried to close the gap

many algorithms!!

ost o	f the	focus:	2-valued	case	

- M
 - matching upper bound finally by Englert&Westermann (2008)
- What about randomized algorithms?
 - strictly better than deterministic...

deterministic		randomized	
upper	lower	upper	lower
	1.282		
$2-\frac{2}{\alpha+1}$			
1.894			
1.544			
1.304			
		1.25	1.197
1.282			

Non-preemptive, 2-valued FIFO

- Actually, the first model considering packet weights
 - Aiello, Mansour, Rajagopolan, Rosén (2000)
- Focus solely on admission control
- greedy is bad: tight $1/\alpha$ -competitive
 - ullet upper bound: every 1-packet mapped to an lpha-packet
 - lower bound: non-preemption implies algorithm may only accept 1-packets
- lower bound: $\frac{\alpha}{2\alpha-1}$
- matching upper bound by Andelman, Mansour, Zhu (2003)

General Values

• Many more papers...

\det ern	$_{ m ninistic}$	randomized		
upper	lower	upper	lower	
4				
2				
	1.282			
	1.414			
	1.419			
	1.434			
1.983				
1.75				
			1.25	
		1.75		
1.732				

More Models

- Loss-bounded model
 - measure: packets dropped (instead of delivered)
 - Kesselman&Mansour (2003)
 - constant competitive
 - · also implies good competitive ratio in "standard" model
- Multiple Queues
 - multiple output-queues with shared memory
 - unit-values (not really "DiffServ")
 - goal is doing load-balancing (e.g., longest-queue-drop)
 - constant competitive
 - multiple input-queues
 - essentially a scheduling problem: which IQ to schedule
 - goal is doing load-balancing (e.g., longest-queue-first)
 - mostly constant competitive
- Many more...