Epreuve Physique Chimie : Chimie & Thermodynamique & Transfert thermique Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-16	Les aciers inoxydables et la corrosion		
01-05	Autour de l'élément chrome		
1	Le principe d'exclusion de Pauli : dans un atome, deux électrons ne peuvent pas avoir leurs quatre nombres quantiques (n, l, m, s) identiques (ils ne peuvent pas être dans le même état : n niveau d'énergie, l moment cinétique, m moment magnétique, s spin). Les règles de Klechkowsky : remplissage par $(n + l)$ croissants $(n \text{ nombre quantique principal}, l \text{ nombre quantique secondaire})$; pour $(n + l)$ identiques, remplissage par n croissants. La règle de Hund : précise que lorsque plusieurs orbitales de même énergie sont disponibles $(n \text{ et } l \text{ donnés})$, les électrons occupent le maximum d'orbitales différentes avec des spins parallèles.	1	
2	La structure électronique du molybdène (Z = 42) est $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^4$ Le chrome, situé juste au dessus a donc une structure électronique qui se termine en $4s^23d^4$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^4$ Son numéro atomique est donc $Z = 24$. Il se situe dans la 4^e ligne et la 6^e colonne du tableau périodique à 18 colonnes.	1	
3	En réalité la configuration se termine en $4s^13d^5$. Stabilisation énergétique lorsqu'une orbitale d est à moitié ou totalement remplie.	1	
4	Deux isotopes sont deux noyau d'un même élément chimique (même nombre de protons) qui diffèrent par leur nombre de neutrons (même numéro atomique Z mais nombres de masse A différents). isotope $50 \Rightarrow 24$ protons et 26 neutrons isotope $52 \Rightarrow 24$ protons et 28 neutrons isotope $53 \Rightarrow 24$ protons et 29 neutrons	1	
5	isotope $54 \Rightarrow 24$ protons et 30 neutrons. La masse atomique du chrome à l'état naturel est $m_{Cr} = x_{50}m_{50} + x_{52}m_{52} + x_{53}m_{53} + x_{54}m_{54}$ où x_A est la fraction molaire du chrome A Cr de masse atomique m_A . l'application numérique donne : $m_{Cr} = 51,996$ u.m.a. L'indication sur le carbone nous dit qu'une uma est égale à $1/N_A$ g. La masse molaire atomique du chrome $M_{Cr} = m_{Cr}N_A = 51,996$ g.mol $^{-1}$	1	

06-10	Corrosion intergranulaire d'un acier inoxydable		
06-07	Corrosion généralisée et acier inoxydable		
6	Il faut établir les nombres d'oxydations de chaque espèces : $ \begin{array}{l} Cr(0); Cr^{2+}(+II); Cr^{3+}(+III); Cr_2O_3(+III); Cr_2O_7^{2-}(+VI); \\ CrO_4^{2-}(+VI) \\ Il faut aussi établir les couples acides/bases à degré d'oxydation voisins. \\ Cr^{3+}+3H_2O=Cr_2O_3+6H^+\\ Cr_2O_7+H_2O=2CrO_4^{2-}+2H^+\\ On classe de bas en haut du diagramme les espèces par nombre d'oxydation croissant de l'élément chrome et de gauche à droite, les espèces par caractère basique croissant. \\ F=Cr; E=Cr^{2+}; C=Cr^{3+}; D=Cr_2O_3; A=Cr_2O_7^{2-}; B=CrO_4^{2-}. \end{array} $	1	
7	Avec les pression standard en O_2 et H_2 et la concentration standard en H^+ on a les droites :	1	
	$E = -0.06V \times pH$ relative au couple H^+/H_2		
	$E = 1,23V-0,06V \times pH$ relative au couple O_2/H_2O ;		
08-10	Prévenir le risque de corrosion intergranulaire		
8	schéma d'un cubique faces centrées, avec tous les sites octaédriques occupés. Il y a un site au centre de la maille et les milieux des arêtes sont aussi des sites octaédriques qui sont partagés entre 4 mailles. Il y a donc $1+12\times\frac{1}{4}=4$ sites octaédriques donc 4 atomes de carbone par maille.	1	
	Il y a également 4 atomes de titane par maille : $8 \times \frac{1}{8} = 1$ aux sommets et $6 \times \frac{1}{2} = 3$ au milieu de chaque face. La stoechiométrie du cristal est donc de 1 pour 1 (TiC).		
9	On a contact entre un atome de carbone et un atome de titane plus proche voisin selon une arrête de la maille, $a = 2(r_{Ti} + r_C) = 444$ pm.	1	
10	La masse volumique du carbure de titane est $\rho_{TiC} = \frac{4 (M_{Ti} + M_C)}{N_A a^3} = 4,6 \times 10^3 \text{ kg.m}^{-3}$	1	
11-16	Etude thermodynamique de la formation des carbures de chrome		
11	$\begin{aligned} &2\text{Cr}_{(s)} + \frac{3}{2}\text{O}_{2(g)} = \text{Cr}_2\text{O}_{3(s)} \\ &K_1^\circ = \exp\left(-\frac{\Delta G_1^\circ}{RT}\right) = 2,49 \times 10^{32} \text{ à } T = 1273 \text{ K.} \\ &\text{De } K_1^\circ = \left(\frac{p^\circ}{p_{O_2}^{eq_1}}\right)^{3/2}, \text{ on déduit la pression en dioxygène à l'équilibre} \\ &\text{libre} \\ &p_{O_2}^{eq_1} = p^\circ \left(K_1^\circ\right)^{-2/3} = 2,5 \times 10^{-22} \text{ bar} \end{aligned}$	1	

12	$12C_{(s)} + 23Cr_2O_{3(s)} = \frac{69}{2}O_{2(g)} + 2Cr_23C_{6(s)}$	1	
13	$\Delta G_3^{\circ} = 2\Delta G_2^{\circ} - 23\Delta G_1^{\circ} = 2,49440 \times 10^7 - 6053,32T \text{ (J.mol}^{-1)}.$	1	
	$\mathring{A} 1273 \text{ K}, \Delta G_3^{\circ} = 17,2381 \times 10^6 \text{ J.mol}^{-1} \text{ et}$		
	$K_3^{\circ} = \exp\left(-\frac{\Delta G_3^{\circ}}{RT}\right) = \exp\left(-1629\right)$		
	La pression en dioxygène à l'équilibre est donc		
	$p_{O_2}^{eq_3} = p^{\circ} (K_3^{\circ})^{-2/69} = 3, 1 \times 10^{-21} \text{ bar}$		
14	L'enthalpie standard de réaction $\Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times$	1	
	$10^5 \mathrm{J.mol^{-1}}$		
	est positive. La loi de Van't Hoff $(\frac{d \ln K}{dT} = \frac{\Delta_r H^{\circ}}{RT^2})$ nous assure		
	alors que la constante d'équilibre est une fonction croissante de		
	la température. On favorise ainsi la réduction de Cr_2O_3 par le		
	carbone graphite en augmentant la température.		
15	En imposant une pression en dioxygène supérieure à sa valeur à	1	
	$\left(p_{O_2}\right)^{69/2}$		
	l'équilibre (3), on impose un quotient réactionnel $Q = \left(\frac{p_{O_2}}{p^{\circ}}\right)^{69/2}$		
	supérieur à la constante d'équilibre et donc une enthalpie libre de		
	réaction $\Delta_r G_3^{\circ} = RT \ln \left(\frac{Q}{K_2^{\circ}} \right)$ positive. La réaction (3) avance		
	alors dans le sens indirect. C'est Cr_2O_3 qui est stable à cette		
	température et sous cette pression.		
16	À 1273 K, le diagramme de prédominance est constitué de :	1	
	Cr pour $p_{O_2} < p_{O_2}^{eq_1}$	-	
	puis de Cr_{23}C_6 pour $p_{O_2}^{eq_1} < p_{O_2} < p_{O_2}^{eq_3}$		
	puis de $C_{123}C_{6}$ pour $p_{O_2} < p_{O_2} < p_{O_2}$		
	puis de Cr_2O_3 pour $p_{O_2}^{e\bar{q}_3} < p_{O_2}$		
1	La pression en O_2 dans l'air est de l'ordre de $0,2$ bar $\gg p_{O_2}^{eq_3}$. C'est		
	donc Cr_2O_3 qui est stable.		

17-41	Autour de l'eau		
17-23	Propriétés physiques de l'eau		
17-19	Quelques propriétés de la glace		
17	diagramme de l'eau	1	
18	Le système $\begin{cases} aT_0 + b = p_0 \\ aT_T + b = p_T \end{cases}$ donne	1	
	$\begin{cases} a = \frac{p_0 - p_T}{T_0 - T_T} = -1,01 \times 10^7 \text{ Pa} \cdot \text{K}^{-1} \\ b = \frac{p_T T_0 - p_0 T_T}{T_0 - T_T} = 2,75 \times 10^9 \text{ Pa} \end{cases}$		
19	La surface de contact du patin avec la glace est un rectangle de longueur 30 cm et de largeur $\ell \approx 5$ mm. L'aire de ce rectangle est donc de l'ordre de $S=15$ cm². La pression exercée sur la glace est alors $p\approx \frac{mg}{S}\approx 5\times 10^5$ Pa (la force exercée par le patin sur la glace est $m\vec{g}$ dans le cas où le centre de masse du patineur n'a pas accélération verticale). La pression d'équilibre solide-liquide à -5 °C est donnée par la courbe de fusion d'équation $p=aT+b$. On trouve $p_{eq}=4,2\times 10^7$ Pa très supérieure à celle exercée par le patin sur la glace. Pour $p\approx 5\times 10^5$ Pa à -5 °C, la glace est solide : la pression exercée par le patin n'est pas suffisante pour faire fondre la glace. Le filet d'eau se forme certainement à cause du travail des forces de	1	
20-23	frottement, qui provoquent une augmentation de la température. Quelques propriétés de la vapeur d'eau		
20-23	La relation des gaz parfaits $pV = nRT$ devient avec le volume	1	
20	$D\overline{T}$	1	
21	$\begin{array}{l} \text{massique } v: pv = \frac{RT}{M} \\ \left(\frac{\partial v}{\partial p}\right)_T = -\frac{RT}{p^2M} \\ \text{donc} \\ \chi_{T,GP} = \frac{RT}{p^2vM} = \frac{1}{p} \\ \\ \text{Affirmation } [1]: \textit{ « les isothermes sont des droites horizontales ».} \end{array}$	1	
22	Affirmation [1]: « les isothermes sont des droites horizontales ». Effectivement, la loi des gaz parfaits donne pv constant si T est constante ce qui donne bien des horizontales en diagramme d'Amagat. Affirmation [3]: « pv est une fonction de p qui présente un minimum. Au voisinage de ce minimum, pv varie peu et le fluide se comporte comme un gaz parfait ». Au voisinage du minimum, sur un intervalle de pression restreint, on peut considérer pv comme constant sur une isotherme: il s'agit donc bien d'un comportement local de gaz parfait.	1	

23	$\left(\frac{\partial(pv)}{\partial p}\right)_T = v + p\left(\frac{\partial v}{\partial p}\right)_T \text{ donc } \frac{1}{v}\left(\frac{\partial(pv)}{\partial p}\right)_T = 1 - p\chi_T = 1 $	1	
	$\frac{\chi_T}{\chi_T}$ Affirmation [2]: « à très haute température, pv est une		
	XT,GP		
	fonction croissante de p » se traduit par $\frac{1}{v} \left(\frac{\partial (pv)}{\partial p} \right)_T > 0$ donc		
	par $1 - \frac{\chi_T}{\chi_{T,GP}} > 0$. On obtient donc bien $\chi_T < \chi_{T,GP}$: « le fluide		
	est moins compressible qu'un gaz parfait ».		
24-28	Échangeur thermique		
24-26	Bilan d'enthalpie		
24	d_k est le débit à l'entrée $k.$ h_k est l'enthalpie massique entrant à l'entrée $k.$	1	
	d'_k est le débit à la sortie k' . h'_k est l'enthalpie massique sortante à la sortie k' .		
25	Le système étudié délimité par les pointillés est un système ouvert eau glycolée et eau sanitaire en écoulement stationnaire. Le milieu extérieur à ce système ne fournit ni puissance mécanique (pas de	1	
	partie mobile) ni puissance thermique (canalisations calorifugées). On en déduit $(d_4h_4 + d_2h_2) - (d_1h_1 + d_3h_3) = 0$ Les écoulements		
	sont stationnaires donc $d_1 = d_2 = d_g$ et $d_3 = d_4 = d_e$.		
	De plus, $h_2 - h_1 = c_g (T_2 - T_1)$ et $h_4 - h_3 = c_e (T_4 - T_3)$.		
	On en déduit $d_e c_e (T_4 - T_3) + d_g c_g (T_2 - T_1) = 0$		
26	1:4:		
26	application numérique $d_e = 13, 1 \text{ kg.s}^{-1}$	1	
27-28	Bilan d'entropie	1	
	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'}$ –	1 1	
27-28	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'}$ –		
27-28	Bilan d'entropie	_	
27-28	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'} - \sum_{k \in \text{entrée}} d_k s_k = \frac{\delta S_{\text{ech}}}{dt} + \frac{\delta S_{\text{cr}}}{dt}$ où s_k est l'entropie massique entrante à l'entrée k et s'_k est l'entropie massique sortante à la sortie k' .	_	
27-28	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'} - \sum_{k \in \text{entrée}} d_k s_k = \frac{\delta S_{\text{ech}}}{dt} + \frac{\delta S_{\text{cr}}}{dt}$ où s_k est l'entropie massique entrante à l'entrée k et s'_k est l'entropie massique sortante à la sortie k' . $\frac{\delta S_{\text{ech}}}{dt}$ est l'entropie reçue par le système ouvert par unité de temps	_	
27-28	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'} - \sum_{k \in \text{entrée}} d_k s_k = \frac{\delta S_{\text{ech}}}{dt} + \frac{\delta S_{\text{cr}}}{dt}$ où s_k est l'entropie massique entrante à l'entrée k et s'_k est l'entropie massique sortante à la sortie k' . $\frac{\delta S_{\text{ech}}}{dt}$ est l'entropie reçue par le système ouvert par unité de temps lors des échanges thermiques et $\frac{\delta S_{\text{cr}}}{dt}$ est l'entropie créée par unité	_	
27-28	Bilan d'entropie	_	
27-28	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'} - \sum_{k \in \text{entrée}} d_k s_k = \frac{\delta S_{\text{ech}}}{dt} + \frac{\delta S_{\text{cr}}}{dt}$ où s_k est l'entropie massique entrante à l'entrée k et s'_k est l'entropie massique sortante à la sortie k' . $\frac{\delta S_{\text{ech}}}{dt}$ est l'entropie reçue par le système ouvert par unité de temps lors des échanges thermiques et $\frac{\delta S_{\text{cr}}}{dt}$ est l'entropie créée par unité de temps pour le même système. En prenant le même système que précédemment, $\frac{\delta S_{\text{ech}}}{dt} = 0$ (au-	_	
27-28	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
27-28	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'} - \sum_{k \in \text{entrée}} d_k s_k = \frac{\delta S_{\text{ech}}}{dt} + \frac{\delta S_{\text{cr}}}{dt}$ où s_k est l'entropie massique entrante à l'entrée k et s'_k est l'entropie massique sortante à la sortie k' . $\frac{\delta S_{\text{ech}}}{dt}$ est l'entropie reçue par le système ouvert par unité de temps lors des échanges thermiques et $\frac{\delta S_{\text{cr}}}{dt}$ est l'entropie créée par unité de temps pour le même système. En prenant le même système que précédemment, $\frac{\delta S_{\text{ech}}}{dt} = 0$ (aucun transfert thermique). $d_e(s_4 - s_3) + d_g(s_2 - s_1) = 0 + \frac{\delta S_{\text{cr}}}{dt}$	1	
27-28	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'} - \sum_{k \in \text{entrée}} d_k s_k = \frac{\delta S_{\text{ech}}}{dt} + \frac{\delta S_{\text{cr}}}{dt}$ où s_k est l'entropie massique entrante à l'entrée k et s'_k est l'entropie massique sortante à la sortie k' . $\frac{\delta S_{\text{ech}}}{dt} \text{ est l'entropie reçue par le système ouvert par unité de temps}$ lors des échanges thermiques et $\frac{\delta S_{\text{cr}}}{dt} \text{ est l'entropie créée par unité de temps pour le même système.}$ En prenant le même système que précédemment, $\frac{\delta S_{\text{ech}}}{dt} = 0 \text{ (aucun transfert thermique).}$ $d_e(s_4 - s_3) + d_g(s_2 - s_1) = 0 + \frac{\delta S_{\text{cr}}}{dt}$ $\text{Avec } s_4 - s_3 = c_e \ln \left(\frac{T_4}{T_3}\right) \text{ et } s_2 - s_1 = c_e \ln \left(\frac{T_2}{T_1}\right), \text{ donc}$	1	
27-28	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'} - \sum_{k \in \text{entrée}} d_k s_k = \frac{\delta S_{\text{ech}}}{dt} + \frac{\delta S_{\text{cr}}}{dt}$ où s_k est l'entropie massique entrante à l'entrée k et s'_k est l'entropie massique sortante à la sortie k' . $\frac{\delta S_{\text{ech}}}{dt}$ est l'entropie reçue par le système ouvert par unité de temps lors des échanges thermiques et $\frac{\delta S_{\text{cr}}}{dt}$ est l'entropie créée par unité de temps pour le même système. En prenant le même système que précédemment, $\frac{\delta S_{\text{ech}}}{dt} = 0$ (aucun transfert thermique). $d_e(s_4 - s_3) + d_g(s_2 - s_1) = 0 + \frac{\delta S_{\text{cr}}}{dt}$ Avec $s_4 - s_3 = c_e \ln\left(\frac{T_4}{T_3}\right)$ et $s_2 - s_1 = c_e \ln\left(\frac{T_2}{T_1}\right)$, donc $\frac{\delta S_{\text{cr}}}{dt} = d_e c_e \ln\left(\frac{T_4}{T_3}\right) + d_g c_g \ln\left(\frac{T_2}{T_1}\right)$ application numérique :	1	
27-28	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'} - \sum_{k \in \text{entrée}} d_k s_k = \frac{\delta S_{\text{ech}}}{dt} + \frac{\delta S_{\text{cr}}}{dt}$ où s_k est l'entropie massique entrante à l'entrée k et s'_k est l'entropie massique sortante à la sortie k' . $\frac{\delta S_{\text{ech}}}{dt}$ est l'entropie reçue par le système ouvert par unité de temps lors des échanges thermiques et $\frac{\delta S_{\text{cr}}}{dt}$ est l'entropie créée par unité de temps pour le même système. En prenant le même système que précédemment, $\frac{\delta S_{\text{ech}}}{dt} = 0$ (aucun transfert thermique). $d_e(s_4 - s_3) + d_g(s_2 - s_1) = 0 + \frac{\delta S_{\text{cr}}}{dt}$ Avec $s_4 - s_3 = c_e \ln\left(\frac{T_4}{T_3}\right)$ et $s_2 - s_1 = c_e \ln\left(\frac{T_2}{T_1}\right)$, donc $\frac{\delta S_{\text{cr}}}{dt} = d_e c_e \ln\left(\frac{T_4}{T_3}\right) + d_g c_g \ln\left(\frac{T_2}{T_1}\right)$ application numérique :	1	
27-28	Bilan d'entropie En régime stationnaire d'écoulements, $\sum_{k' \in \text{sortie}} d_{k'} s_{k'} - \sum_{k \in \text{entrée}} d_k s_k = \frac{\delta S_{\text{ech}}}{dt} + \frac{\delta S_{\text{cr}}}{dt}$ où s_k est l'entropie massique entrante à l'entrée k et s'_k est l'entropie massique sortante à la sortie k' . $\frac{\delta S_{\text{ech}}}{dt} \text{ est l'entropie reçue par le système ouvert par unité de temps}$ lors des échanges thermiques et $\frac{\delta S_{\text{cr}}}{dt} \text{ est l'entropie créée par unité de temps pour le même système.}$ En prenant le même système que précédemment, $\frac{\delta S_{\text{ech}}}{dt} = 0 \text{ (aucun transfert thermique).}$ $d_e(s_4 - s_3) + d_g(s_2 - s_1) = 0 + \frac{\delta S_{\text{cr}}}{dt}$ $\text{Avec } s_4 - s_3 = c_e \ln \left(\frac{T_4}{T_3}\right) \text{ et } s_2 - s_1 = c_e \ln \left(\frac{T_2}{T_1}\right), \text{ donc}$	1	

29-41	Isolation thermique d'une canalisation d'eau		
29	$P_{\rm th} = \iint \vec{j}_Q . d\vec{S} = h (T_i - T_0) 2\pi r_i L$ est la puissance fournie par	1	
	la canalisation au fluide extérieur.		
30	La puissance fournie par l'isolant au fluide extérieur par conducto-	1	
	convection est $P_{\text{th, isolant}} = h (T_e - T_0) 2\pi r_e L$		
31	En appliquant le premier principe à la couche cylindrique de rayon	1	
	intérieur r et de rayon extérieur $r+dr$: $\frac{dH}{dt} = P_{\text{cond}}(r) - P_{\text{cond}}(r+1)$		
	40		
	dr = $-\frac{dP_{\text{cond}}}{dr}dr$ En régime stationnaire, $\frac{dH}{dt}$ = 0; donc P_{cond}		
	est indépendante de r.		
32	On a continuité de la puissance thermique (on prend comme sys-	1	
	tème une surface de capacié thermique nulle), la puissance thermique and quetien en re- (c'est à dins R) est école à la puissance		
	mique conductive en r_e^- (c'est-à-dire P_{cond}) est égale à la puissance thermique conducto-convective en r_e^+ (c'est-à-dire $P_{\text{th, isolant}}$):		
	$P_{\rm cond} = P_{\rm th, \ isolant}$		
00	T in T	1	
33	Loi de Fourier : $\vec{j}_{\text{cond}}(r) = -\lambda \frac{dT}{r} \vec{e}_r$	1	
	$\operatorname{donc} P_{\operatorname{cond}} = -\lambda \frac{dT}{dr} 2\pi r L$		
	$\frac{dr}{dT}$		
34	$P_{\text{cond}} = P_{\text{th, isolant}} \operatorname{donc} -\lambda \frac{dT}{dr} 2\pi r L = h (T_e - T_0) 2\pi r_e L \operatorname{donc}$	1	
	$\frac{dT}{dr} = \frac{hr_e}{\lambda r} \left(T_0 - T_e \right)$		
35	On intégre entre $r = r_i$ avec $T = T_i$ et r avec $T = T(r) : T(r) = T(r)$	1	
3 9	On integre entre $r = r_i$ avec $I = I_i$ et r avec $I = I(r)$: $I(r) = hr$.	1	
	$T_i + \frac{hr_e}{\lambda} \left(T_0 - T_e \right) \ln \left(\frac{r}{r_i} \right)$		
0.0		-	
36	$T_e = T(r_e) = T_i + \frac{hr_e}{\lambda} (T_0 - T_e) \ln \left(\frac{r_e}{r_i}\right)$	1	
	donc		
	$T_i + \frac{nr_e}{r} \ln \left(\frac{r_e}{r}\right) T_0$		
	$T_e = \frac{\lambda (r_i)}{h_m (r_i)} = T_0 + \frac{T_i - T_0}{h_m (r_i)}$		
	$1 + \frac{m_e}{\lambda} \ln \left(\frac{r_e}{r} \right)$ $1 + \frac{m_e}{\lambda} \ln \left(\frac{r_e}{r} \right)$		
	$T_{e} = \frac{T_{i} + \frac{hr_{e}}{\lambda} \ln\left(\frac{r_{e}}{r_{i}}\right) T_{0}}{1 + \frac{hr_{e}}{\lambda} \ln\left(\frac{r_{e}}{r_{i}}\right)} = T_{0} + \frac{T_{i} - T_{0}}{1 + \frac{hr_{e}}{\lambda} \ln\left(\frac{r_{e}}{r_{i}}\right)}$ $\frac{P_{\text{th}}}{P_{\text{th,isolant}}} = \frac{T_{i} - T_{0}}{T_{e} - T_{0}} \frac{r_{i}}{r_{e}}.$		
37	$\frac{\partial T}{\partial T_{\text{th isolant}}} = \frac{\partial T}{\partial T_{e} - T_{0}} \frac{\partial T}{\partial T_{e}}.$	1	
	or $\frac{T_i - T_0}{T_e - T_0} = 1 + \frac{hr_e}{\lambda} \ln\left(\frac{r_e}{r_i}\right)$.		
	or $\frac{1}{T_e - T_0} = 1 + \frac{1}{\lambda} \ln \left(\frac{1}{r_i} \right)$.		
	donc $\frac{P_{\text{th}}}{P_{\text{th,isolant}}} = \left(1 + \frac{hr_e}{\lambda} \ln \left(\frac{r_e}{r_i}\right)\right) \frac{r_i}{r_e}$.		
	$\frac{\text{donc}}{P_{\text{th,isolant}}} = (1 + \frac{1}{\lambda}) \frac{1}{r_e} \frac{1}{r_e}$		
	Avec $x = r_e/r_i$ et $\alpha = hr_i/\lambda$, alors $\frac{P_{\rm th}}{P_{\rm th,isolant}} = \frac{1}{x} + \alpha \ln(x)$		
	$P_{\rm th,isolant}$		

38	L'isolant présente un intérêt si $\frac{P_{\rm th}}{P_{\rm th,isolant}} > 1$ pour $r_e > r_i$ (ou $x > 1$). La figure de l'énoncé montre que pour $x > 1$, $\frac{1}{x} + \alpha \ln(x)$ est une fonction croissante de x à partir de la valeur $x = 1$. On a donc toujours $P_{\rm th,isolant} < P_{\rm th}$ quelle que soit l'épaisseur d'isolant. Le polyuréthane isole quelle que soit son épaisseur.	1	
39	Pour $x \in [1;60]$, $\frac{P_{\mathrm{th,isolant}}}{P_{\mathrm{th,isolant}}} \leq 1$ donc ajouter du plâtre augmente la puissance cédée par l'eau à l'air ambiant : l'eau se refroidit alors plus vite qu'en l'absence de plâtre. C'est seulement pour $x > 60$, soit $r_e > 60r_i$ que $P_{\mathrm{th,isolant}} < P_{\mathrm{th}}$. Il faut donc une valeur minimale de r_e égale à $r_{e,\mathrm{min}} = 120$ cm, pas pratique. Ceci est due à la résistance conducto-convective qui diminue avec r_e .	1	
40	Soit $f(x) = \frac{1}{x} + \alpha \ln x$. $f'(x) = \frac{\alpha x - 1}{x^2}$ $f'(x_m) = 0 \text{ donne } x_m = \frac{1}{\alpha}$	1	
41	La figure montre que $x_m \approx 4$. Avec $\frac{hr_i}{\lambda_2} = \frac{1}{x_m}$ on a $\lambda_2 = 0, 24$ W.m ⁻¹ .K ⁻¹	1	