Assignment 2 (A)

import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
import numpy as np
#
Code cell separator
#
df= pd.read_csv(r'C:\Users\rohit\OneDrive\Desktop\Sem 5\3.End_Sen
ML\temperatures.csv')
iviE\terriperatures.csv)
#
Code cell separator
#
df.head()
"
#
Code cell separator
#
df.tail()
unan()
#
Code cell separator
#
df.isnull().sum()
ш
#
Code cell separator
#
from sklearn.model_selection import train_test_split
#
Code cell separator
#
- ARTINE A DIT
x = df[['YEAR']]
y = df[['JAN']]
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3)
#

```
# Code cell separator
# -----
from sklearn.linear_model import LinearRegression
# -----
# Code cell separator
xtrain.shape
ytrain.shape
# -----
# Code cell separator
# -----
model = LinearRegression()
model.fit(xtrain, ytrain)
# -----
# Code cell separator
# -----
print(f"intercept: {model.intercept_}")
# -----
# Code cell separator
# -----
print(f"slope: {model.coef_}")
# -----
# Code cell separator
# -----
prediction=model.predict(xtest)
# -----
# Code cell separator
# -----
from sklearn import metrics
print("Mean Absolute Error:", metrics.mean_absolute_error(xtest, prediction))
print("Mean Squared Error ", metrics.mean_squared_error(xtest, prediction))
print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(xtest, prediction)))
# -----
# Code cell separator
```

```
# -----
import matplotlib.pyplot as mpl
mpl.scatter(x, y, color = 'g')
mpl.plot(x, model.predict(x), color= 'k')
mpl.show()
# -----
# Code cell separator
# -----
x = df[['YEAR']]
y = df[['MAR']]
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3)
# -----
# Code cell separator
# -----
xtrain.shape
ytrain.shape
# -----
# Code cell separator
# -----
model = LinearRegression()
model.fit(xtrain, ytrain)
# -----
# Code cell separator
# -----
print(f"intercept: {model.intercept_}")
# -----
# Code cell separator
# -----
print(f"slope: {model.coef_}")
# -----
# Code cell separator
# -----
prediction1=model.predict(xtest)
# -----
```

```
# Code cell separator
# -----
from sklearn import metrics
print("Mean Absolute Error:", metrics.mean absolute error(xtest, prediction1))
print("Mean Squared Error ", metrics.mean_squared_error(xtest, prediction1))
print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(xtest, prediction1)))
# -----
# Code cell separator
# -----
import matplotlib.pyplot as mpl
mpl.scatter(x, y, color = 'g')
mpl.plot(x, model.predict(x), color= 'k')
mpl.show()
# Code cell separator
# -----
x = df[['YEAR']]
y = df[['APR']]
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3)
# -----
# Code cell separator
# -----
xtrain.shape
ytrain.shape
# -----
# Code cell separator
model = LinearRegression()
model.fit(xtrain, ytrain)
# Code cell separator
# -----
print(f"intercept: {model.intercept_}")
# -----
# Code cell separator
# -----
```

```
print(f"slope: {model.coef_}")
# -----
# Code cell separator
# -----
prediction2=model.predict(xtest)
# -----
# Code cell separator
# -----
from sklearn import metrics
print("Mean Absolute Error:", metrics.mean_absolute_error(xtest, prediction2))
print("Mean Squared Error ", metrics.mean_squared_error(xtest, prediction2))
print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(xtest, prediction2)))
# -----
# Code cell separator
# -----
import matplotlib.pyplot as mpl
mpl.scatter(x, y, color = 'g')
mpl.plot(x, model.predict(x), color= 'k')
mpl.show()
# -----
# Code cell separator
# -----
x = df[['YEAR']]
y = df[['JUN']]
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3)
# -----
# Code cell separator
# -----
xtrain.shape
ytrain.shape
# -----
# Code cell separator
# -----
model = LinearRegression()
model.fit(xtrain, ytrain)
```

```
# -----
# Code cell separator
# -----
print(f"intercept: {model.intercept_}")
# Code cell separator
# -----
print(f"slope: {model.coef_}")
# -----
# Code cell separator
# -----
prediction3=model.predict(xtest)
# -----
# Code cell separator
# -----
from sklearn import metrics
print("Mean Absolute Error:", metrics.mean_absolute_error(xtest, prediction3))
print("Mean Squared Error ", metrics.mean_squared_error(xtest, prediction3))
print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(xtest, prediction3)))
# -----
# Code cell separator
# -----
import matplotlib.pyplot as mpl
mpl.scatter(x, y, color = 'g')
mpl.plot(x, model.predict(x), color= 'k')
mpl.show()
# -----
# Code cell separator
# -----
x = df[['YEAR']]
y = df[['MAY']]
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3)
# -----
# Code cell separator
# -----
```

```
xtrain.shape
ytrain.shape
# -----
# Code cell separator
# -----
model = LinearRegression()
model.fit(xtrain, ytrain)
# -----
# Code cell separator
# -----
print(f"intercept: {model.intercept_}")
# Code cell separator
# -----
print(f"slope: {model.coef_}")
# -----
# Code cell separator
# -----
prediction4=model.predict(xtest)
# -----
# Code cell separator
# -----
from sklearn import metrics
print("Mean Absolute Error:", metrics.mean_absolute_error(xtest, prediction4))
print("Mean Squared Error ", metrics.mean_squared_error(xtest, prediction4))
print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(xtest, prediction4)))
# -----
# Code cell separator
# -----
import matplotlib.pyplot as mpl
mpl.scatter(x, y, color = 'g')
mpl.plot(x, model.predict(x), color= 'k')
mpl.show()
```