التصميح المقصل لاختبار مادة الرياضيات بكالوريا 2016 شعبة الرياضيات الموضوع الأول

و (P) و المستوي
$$H\left(\frac{5}{4};\frac{7}{4};-\frac{1}{2}\right)$$
 و $E(0;1;1)$ و $D\left(\frac{1}{2};2;-\frac{1}{2}\right)$ و $C(-1;0;1)$ و المستوي $B(2;-1;1)$ و $C(-1;0;1)$ و

ر (-2; 1) قط
$$A$$
 و A و A و منه النقط A و منه النقط A و A و

 \overline{n} , $\overline{AB}' = 1 - 6 + 5 = 0$ نحسب الجداءائين السلميين $\overline{n}(1;3;5)$ نحسب الجداءائين السلميين $\overline{n}(1;3;5)$ أن $\overline{n}(1;3;5)$ أن أن $\overline{n}(1;3;5)$ عنودي على الشعاعين \overline{AC} و منه محققة .

 $\overline{v}'(1;3;1)$ x+3y+z= x+3y+z=x

$$\begin{cases} \frac{1}{2} + 3(2) + \left(-\frac{1}{2}\right) - 6 = 0 \\ \overline{AD}. \ \overrightarrow{n} = 0 \end{cases}$$
 التحقق من الله يمر من $D\left(\frac{1}{2}; 2; -\frac{1}{2}\right)$ اي ان $D\left(\frac{1}{2}; 2; -\frac{1}{2}\right)$ و منه $D\left(\frac{1}{2}; 2; -\frac{1}{2}\right)$ و منه $D\left(\frac{1}{2}; 2; -\frac{1}{2}\right)$ و منه $D\left(\frac{1}{2}; 2; -\frac{1}{2}\right)$ محققة أي ان $D\left(\frac{1}{2}; 2; -\frac{1}{2}\right)$ و لدينا الشعاع $D\left(\frac{1}{2}; 2; -\frac{1}{2}\right)$

. (
$$\Delta$$
) إذن D تنتمي الى D و منه D \equiv (ΔBC) ومنه ΔD , $\overline{n}=-rac{1}{2}+3-rac{5}{2}=3-3=0$

$$\overline{DM}\left(\mathbf{x}-\frac{1}{2};\mathbf{y}-2;\mathbf{z}+\frac{1}{2}
ight)$$
 لدينا $M\in(P)$ ترت $\overline{n},\overline{DM}=0.$ حيث $M(x\,;y;z)$ مجموعة النقط

$$x+3y+z-6=0$$
 و $M\in(P)$ يعني ان $x+3y+5z-4=0$ و $x+3y+z-6=0$ و $x+3t+z-6=0$ يعني ان $x+3y+z-6=0$ لتالية $y=t$ نصب $y=t$ نصب $y=t$ نصب $y=t$ التالية $x+3y+z-6=0$

. و منه حقیقی
$$\begin{cases} x = -3t + \frac{13}{2} \\ y = t \end{cases}$$
 و منه $\begin{cases} x + 3t + 1 \\ y = -\frac{1}{2} \end{cases}$ و منه حقیقی $\begin{cases} x + 3t + 1 \\ y = -\frac{1}{2} \end{cases}$

$$\overline{v}^*(-3;1;0)$$
 عني النقطة A على Δ على عني ال $\overline{v}^* \pm \overline{AH}$ عيث $\overline{v}^* \pm \overline{AH}$

الأنتاق حراقل أحد

```
ح الصلة ((C; 2)); (B; −3); (C; 2)
                                                                                                                G(-6;5;-1) و منه \begin{cases} x_G = \frac{2(1)-3(2)+2(-1)}{1} = -6 \\ y_G = \frac{2(1)-3(-1)+2(0)}{1} = 5 \end{cases} و منه z_G = \frac{2(0)-3(1)+2(1)}{1} = -1
               \overline{EM}(x; y - \text{true}) = \overline{EM}.\overline{GM} = 11 يقق النقط M من الفضاء و التي تحقق \overline{EM}.\overline{GM} = 11 لدينا
 x(x+6) + (y-1)(y-5) + (z-1)(z+1) = 25 = 11 EM. \overrightarrow{GM} = 11 EM. \overrightarrow{GM} = 11 EM. \overrightarrow{GM} = 11
               x^2 + y^2 + x^2 + 6x - 6y - 4x^2 و منه تصبح المعادلة هي x^2 + 6x + y^2 - 6y + 5 + 2^2 - 1 = 11
  (x+3)^2 + (y-3)^2 + z^2 = 25 اي ان (x+3)^2 + 6x + 9 + y^2 - 6y + 9 + 5 + z^2 - 25 = 0 هي تکافي
                                                                                                                                                               . سادلة سطح كرة نصف قطره 5 و مركزها (3; 3; 0) .
                                    يد الوضعية النسبية بين المستوى (ABC) و المجموعة (٢) نحسب المسافة بين (ABC) و مركز سطح الكرة
    و (ABC) و هو أصغر من نصف قطر سطح الكرة (\Gamma) إذن المستوي (d) و هو أصغر من نصف قطر سطح الكرة (\Gamma) إذن المستوي (d) و هو أصغر من نصف قطر سطح الكرة (d) إذن المستوي (d) و مقاطعان وفق دائرة
               المثقالية (u_n) هندسية حدودها موجبة  \{ u_1.u_2 = e^{11} \\ u_1+u_2 = e^4(1+e^3) \}  لدينا \{ u_1 u_1 + u_2 = e^4(1+e^3) \} يكافئ لدينا \{ u_1 u_2 = e^4(1+e^3) \}
                                                                                                                                                                                                                                                                       e^4(1+e^3)x+e^{11}=
                                                                                   \Delta = e^8(1+e^3)^2 - 4e^{11} = e^8(1+e^6+2e^3) - 4e^{11} = 3e^{11}
       أي ان \Delta = e^8(1+e^6+2e^3-4e^3) = e^8(1+e^6-2e^3) = [e^4(1-e^3)]^2 المعادلة حلين هما
                                                                                                             \frac{u_2}{u_3} = \frac{e^4(1+e^2) - e^4(1-e^3)}{2} = \frac{e^2}{e^2} \text{ s} \quad \frac{u_1}{u_1} = \frac{e^4(1+e^2) + e^4(1-e^3)}{2} = \frac{e^4}{e^4}
\frac{u_2}{u_1} = u_1, q^{n-1} = e^4, (e^3)^{n-1} = \frac{e^{3n+1}}{e^{3n+1}} \text{ and } e^{3n+1}
                                                                          S_n = ln(u_0) + ln(u_1) + \dots + ln(u_1) = ln[u_0 \times u_1 \times \dots \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n] : S_n + \dots + ln(u_n) = ln[u_n \times u_n] : S_n + \dots + ln(u_n
                                               \mathcal{G}_n = \ln[e^1 \times e^4 \times e^7 \times ... \times e^{3n+1}] = \ln e^{1+4+7+...(3n+1)} = 1+4+7+\cdots.(3n+1) = 1+4+7+\cdots
```

محدده معدده معدده الأستان جوافل أحمد محدده معدده معدده معدده معدده والمستان عوافل أحمد

. 1 و مجموع حدود متتابعة من متتالية حمايية أساسها 3 و حدها الأول $S_n = \frac{n+1}{2}(1+3n+1) = \frac{n+1}{2}$

```
و منه بالقسة الإقليدية نجد 2S_n = 3n^2 + 5n + 2 أي أن 2S_n = (n+1)(2+3n) و منه بالقسة الإقليدية نجد a_n = n
و منه القاسم المشترك للعدين 2S_n = (n+3)(3n-4) + 14 و منه القاسم المشترك للعدين 2S_n = (n+3)(3n-4) + 14
                                                    a_n = a_n (3n - 4) ي قاسم للعدد a_n = a_n (3n - 4) .
                          a_n و كذالك 14 و الأكبر العددين 14 تعنيان القاسم المشترك الأكبر العددين 14 و 2S_n = a_n(3n-4) + 14
                                                              2S_n أي قاسم للعدد a_n(3n-4)+14 أي قاسم العدد
                                                     و منه نجد ان = PGCD(2S<sub>n</sub>; a<sub>n</sub>) = PGCD(14; a<sub>n</sub>) = و منه نجد ان
                               ب)القيم الممكنة للعدد (PGCD(2S<sub>n</sub>; a<sub>n</sub> هي قواسم 14 و هي 1 و 2 و 7 و 14 ...
                  n\equiv 4[7] يكاني n+3\equiv 0[7] أي a_n\equiv 0[7] أي PGCD(2S_n;a_n)=7
                                                                          و منه n = 7k + 4 و مند طبيعي .
                                                                                                  فسمة العدد 2n على 7
           2^{3k} \equiv 1و [7] \equiv 2^{1}و [7] \equiv 2^{1}و و [7] \equiv 2^{1} \equiv 1بالرفع الى قوى [7] \equiv 2^{1} \equiv 2
                                               ى 2 نجد |7|2 \equiv 2^{3k+2} و بالضرب في 2 نجد |7|1 \equiv 2^{3k+2} و منه
                                       n = 3k + 1 لى 7 هو 1 لما n = 3k باقى قسمة n = 3k على 7 هو 2 لما n = 3k
                                                                                       لى 7 هو 4 لما 2 n = 3k + 2
        1437^{2016} \equiv 1[7] و منه 2016 = 3(672) و 1437 \equiv 2[7] و 3016 = 31672 و 3016 = 31672 و 3016 = 31672 و 3016 = 31672
                                               a_n = \frac{25_n}{n} + \frac{1437^{2016}}{n} + 1 \equiv 0[7] b_n \equiv 0[7] a_n \equiv 0[5] a_n = 0[5] a_n = 0[5] a_n = 0[5] a_n = 0[5]
                       n\equiv 0 [7] ای ان 7 و 4 أولیان فیما بینهما فاتنا نستنتج ان a_{n}-3\equiv 0 ای ان 7 و 4 أولیان فیما بینهما فاتنا نستنتج ان a_{n}-3\equiv 0
                                   و بما 5 و 7 أوليان فيما بينهما قان [35] n ≡ 0 أي قيم المطلوبة هي مضاعفات 35 .
                                     3k + 1 من الشكل 9n + 1 الأن 9n + 1 من الشكل 1437<sup>9n+1</sup> ≡ 2<sup>[7]</sup> من الشكل 2n + 1
```

$$z^2 - 4z + 5 = 0$$
 المعادلة $z^2 - 4z + 5 = 0$ نصب المعين $\Delta = -4$ للمعدلة حلين هما $\Delta = -2$ نصب المعين $\Delta = -2$ للمعدلة حلين هما $\Delta = -2$ نصب المعين $\Delta = -2$ المعدلة حلين عمل المعادلة $\Delta = -2$ نصب المعين $\Delta = -2$ المعدلة عمل المعدلة $\Delta = -2$ المعدلة $\Delta = -2$

 $7 \equiv 0$ و منه $7 \equiv 0$ و منه و $7 \equiv 0$ و منه و منه و $7 \equiv 0$

والله احد الأستان جوالل احد

ر 1437 $^{9n+1}$ - 3 imes 4 $^{12n+1}$ + 52 imes 0[7] أي أن العدد مضاعف للعدد 7

 $1+i\sqrt{3}=\frac{2e^{\frac{\pi}{3}}}{2}$ على الشكل الأسي $\theta_1=\frac{\pi}{3}$ على الشكل الأسي $e^{\left(2\theta+\frac{\pi}{3}\right)}=\frac{1}{2}$; $sin\theta_1=\frac{\sqrt{3}}{2}$ و منه $e^{\left(2\theta+\frac{\pi}{3}\right)}=2e^{\frac{\pi}{3}}$ اي ان $e^{\left(2\theta+\frac{\pi}{3}\right)}=2e^{\frac{\pi}{3}}$ هذا يكافئ $e^{\left(2\theta+\frac{\pi}{3}\right)}=2e^{\frac{\pi}{3}}$ ي ان $e^{\left(2\theta+\frac{\pi}{3}\right)}=2e^{\frac{\pi}{3}}$ هذا يكافئ $e^{\left(2\theta+\frac{\pi}{3}\right)}=2e^{\frac{\pi}{3}}$ اي ان $e^{\left(2\theta+\frac{\pi}{3}\right)}=2e^{\frac{\pi}{3}}$ هذا يكافئ $e^{\left(2\theta+\frac{\pi}{3}\right)}=2e^{\frac{\pi}{3}}$ اي ان $e^{\left(2\theta+\frac{\pi}{3}\right)}=2e^{\frac{\pi}{3}}$ اي ان $e^{\left(2\theta+\frac{\pi}{3}\right)}=2e^{\frac{\pi}{3}}$

$$\theta = \frac{\pi}{12}$$
 ($\theta = \frac{\pi}{3} = \frac{\pi}{2}$

$$\left(\frac{z_{o}(1+i\sqrt{3})}{2}\right)^{n}=\left(e^{rac{\pi i}{3z}},e^{rac{\pi i}{3}}
ight)^{n}=e^{rac{5\pi}{3z}(n)}$$
 بنية على الشكل الأنسي :

عدد حقيقي مرجب ثماما يعني ان $n=\frac{24}{5}$ و $n=\frac{24}{5}$ و $n=\frac{24}{5}$ و $n=\frac{5\pi}{12}$ و $n=\frac{5\pi}{12}$ العدد العدد العدد مرتبعي أي ان $n=\frac{24}{5}$ العدد العدد

.
$$z_D=z_A-z_B+z_C=5+i\sqrt{3}$$
 يعني ان $\{(A;1)(\mathrm{B};-1)(\mathrm{C};1)\}$ عن الجمالة

و منه
$$ABCD$$
 و منه الرباعي $Z_D = Z_A - Z_B + Z_C$ و هذا يعني ان $\overline{CD} = \overline{BA}$ و منه الرباعي $Z_D = Z_A - Z_B + Z_C$ و منه الرباعي $Z_D = Z_A - Z_B + Z_C$ المنازي أضلاع
$$\frac{z_B - z_A}{z_B - z_B} = 2i \text{ ان ال } \frac{z_B - z_A}{z_B - z_B} = 2e^{\frac{\pi}{2}} \text{ ان ال } \frac{|z_B - z_A|}{|z_B - z_B|} = 2$$

$$z_E(1-2i) = z_A - 2iz_B$$
 و يكافئ $z_E - z_A = 2i($

$$.\ Z_E = \frac{z_A - 2iz_B}{1 - 2i} = \frac{2 - i - 2i(2 + i)}{1 - 2i} = \frac{4 - 5i}{1 - 2i} = \frac{(1 + 2i)(4 - 5i)}{5} = \frac{14 + 3i}{5} = \frac{14 + 3i}{5}$$

 $z_{A}-z_{B}=2i(z_{B}-z_{B})$ هذا يعني ان النقطة $z_{B}-z_{A}=2i(z_{B}-z_{B})$ هذا يعني ان النقطة $z_{B}-z_{A}=2i(z_{B}-z_{B})$ هذا يعني ان النقطة $z_{B}-z_{B}=1$ و نصبته $z_{B}-z_{B}=1$

$$z_{\rm I} = \frac{z_{\rm A} + z_{\rm B}}{2}$$

بق نمنتنج إشارة (g(x

$$z_{\rm E}-z_{\rm I}=rac{14}{5}+rac{3}{5}$$
 ديث $M(z)$ ميث $M(z)$ ميث يكافئ أن $z-z_{\rm I}=1$ ن بين عة النقط $M(z)$ ميث ميث عند النقط وعد ا

. (۲) إذن
$$|z_E - z_I| = 1$$
 الن $|z_E + \frac{3}{5}i|$

عة النقط (٢) هي الدائرة ذات المركز 1 و نصف القطر 1 .

ية و متزايدة $g \cdot (x) = 2x + \frac{2}{x}$ المشتقة $g \cdot (x) = 2x + \frac{2}{x}$ و هي مرجبة على المجال $g \cdot (x) = 2x + \frac{2}{x}$ و متزايدة $g \cdot (x) = 10$.

. g(0,52) = -0,037 و g(0,53) = 0,011143 و بما إن الدالة متزايدة و معتمرة على السجال [0,52; 0,53] فحسب القيم المتوسطة المعللة و (x) = 2,52; 0,53 و بنا إدارة (2,52; 0,53)

x 0 α + ∞ g(x) اثنارة (α) +

$$g(x)$$
 و اشار تها عکس اشار ه $f(x) = -1 + \frac{2}{x}x - 3 - 2 \ln x = \frac{-1 - x^2 - 2 \ln x}{x^2} = \frac{-g(x)}{x^2}$ بشار تها عکس اشار ه و استان الدالة $g(x)$ و اس

×	0		α	+ 00
f'(x)	1000	+	0	33-5
f(x)			 f(α) 	_
50000	-00	====		- 00

التحقق

$$ln(\alpha) = -\frac{1+\alpha^2}{2}$$
 يکافئ $1 + \alpha^2 + 2ln(\alpha) = 0$ يکافئ $g(\alpha) = 0$

$$..f(\alpha) = -\alpha + \frac{3 + 2\ln(\alpha)}{\alpha} = -\alpha + \frac{3 + 2\left(-\frac{1 + \alpha^2}{2}\right)}{\alpha} = -\alpha + \frac{3 - 1 - \alpha^2}{\alpha} = \frac{2 - \alpha}{\alpha}$$

و المطاوب
$$f(\alpha) = \frac{2}{\alpha} - 2\alpha = 2\left(\frac{1}{\alpha} - \frac{1}{\alpha}\right)$$

ي بالمنع
$$-0.53 < -\alpha < -0.52$$
 ي $\frac{1}{0.53} < \frac{1}{a} < \frac{1}{0.52}$ يا بالمنع $0.52 < \alpha < 0.53$ يا بالمنع بالمنع بالمناطق بالمن

و منه
$$2\left(\frac{1}{0.53}-0.53\right) < 2\left(\frac{1}{a}-\alpha\right) < 2\left(\frac{1}{0.52}-0.52\right)$$
 و منه $2\left(\frac{1}{0.53}-0.53\right) < 2\left(\frac{1}{a}-\alpha\right) < 2\left(\frac{1}{a}-\alpha\right)$

$$\lim_{x \to +\infty} [f(x) + x] = \lim_{x \to +\infty} \left(\frac{3 + 2\ln x}{x} \right) = 0$$

y = -x معانقته مقارب مثل (Δ) معانقته مقارب مثل (Δ) معانقته y = -x معانقته مقارب مثل (Δ) معانقته Δ (Δ) معانقته عرب الشارة Δ (Δ) معانقته عرب الشارة عارض (Δ) و (Δ) و (Δ) و (Δ) و (Δ) معانقته عرب الشارة عارض (Δ) معانقته عرب الشارة (Δ) معانقته عرب المعانقته عرب المعانقت عرب المعانقت عرب ا $x = e^{-\frac{3}{2}}$ يکانی $3 + 2lnx = -\frac{3}{2}$ يکانی 3 + 2 $lnx = -\frac{3}{2}$

x	0	$e^{-\frac{3}{2}}$	+ ∞		
f(x) - y	-	0	4		
الوضع النسيمي بين (C _F) و (Δ)	(Δ) 'ω' (C_f)	is like	يقع (<i>C_f</i>) فوق (∆)		
(2) 3 (0)	(C _γ) و (Δ) بتقاطعان				

بين ان (C_f) يقبل معامل (T) بوازي (Δ) أي ان معامل توجيه (T) هو (C_f) أي ان المعاملة (C_f) تقبل حلا $x = e^{-\frac{1}{2}}$ يکټي $g(x) = x^2$ يکټي $1 + 2\ln x = 0$ يکټي $1 + x^2 + 2\ln x = x^2$ يکټي $g(x) = x^2$ يکټي ان

$$f\left(e^{-\frac{1}{2}}\right) = -e^{-\frac{1}{2}} + 2e^{\frac{1}{2}}$$
 يه الممان (T) ممان للمنظى (C_f) في الفقطة ثات الفاصلة والمان (T)

بلته
$$y = -1(x - e^{-\frac{1}{2}}) + f(e^{-\frac{1}{2}})$$
 . $y = -1(x - e^{-\frac{1}{2}}) + f(e^{-\frac{1}{2}})$. $y = -1(x - e^{-\frac{$

يا ان f(x) = -x + m وحلها يعني ايجاد فو اصل f(x) = -x + m اي ان $-x + \frac{3 + 2 lnx}{x} = -x + m$ وحلها يعني ايجاد فو اصل . y = -x + m أو المستقيم (Δ_m) أو المعادلة (C_f)

. يتقاطعان في نقطة وحيدة و منه السعادلة تقبل حل وحيد $m \in]-\infty$ و حيد السعادلة تقبل حل وحيد $m \in]-\infty$

و (C_r) و في نقطتين و سنه المعادلة تقبل علين $m \in \left[0; 2e^{\frac{1}{2}}\right]$

فإن (c_r) و (Δ_m) غير يتقاطعان في نقطة وحيدة و سنه المعادلة تقبل حل وحيد $m=2e^{\frac{1}{2}}$

ي مناه المعادلة لا تقبل حلول (α_m) و (C_f) و المعادلة لا تقبل حلول $m \in [2e^{\frac{1}{2}}; +\infty]$

. $u_n = \int_{e^n}^{e^{n+1}} [f(x) + x] dx$ المجالات $u_n = \int_{e^n}^{e^{n+1}} [f(x) + x] dx$ المجالات لاينا $f(x) + x = \frac{3+2lnx}{x}$ و هو عدد موجب على المجالات الشكل $[e^n; e^{n+1}]$. $[e^n; e^{n+1}]$

, $u_n>0$ اي ان $\int_{e^n}^{e^{n+1}}[f(x)+x]\,dx>0$ يليكنلة نج f(x)+x>0 .

و المعتقيمان اللذان (C_r) و المعتقيم (C_r) و المعتقيمان اللذان و المعتقيمان اللذان اللذان المعتقيمان اللذان اللذان المعتقيمان اللذان اللذان المعتقيمان اللذان اللذان

$$\begin{split} u_n &= \int_{e^n}^{e^{n+1}} [f(x) + x] \, dx = \int_{e^n}^{e^{n+1}} \left[\frac{3+2inx}{x} \right] dx = \int_{e^n}^{e^{n+1}} \left[\frac{3}{x} + 2\frac{inx}{x} \right] dx = \left[3lnx + (lnx)^2 \right]_{e^n}^{e^{n+1}} \\ &: u_n = 2n + 4 \xrightarrow{\text{total } u_n} = 3(n+1) + (n+1)^2 - 3n - n^2 = \frac{2n+4}{n} \\ &: u_n = 2n + 4 \xrightarrow{\text{total } u_n} \underbrace{u_n} = 3(n+1) + (n+1)^2 - 3n - n^2 = \frac{2n+4}{n} \\ &: S_n = u_0 + u_1 + u_2 + \dots + u_n = \frac{n+1}{2} (u_0 + u_n) = \frac{n+1}{2} (4 + 2n + 4) = (n+1)(n+4) \xrightarrow{\text{total } u_n} \underbrace{u_n} = \underbrace{u_n}$$

 $S_n = (n+1)(n+4)$

********************* الأصلاذ جوائيل أحد ********************