

3/7/23, 22:35

Homework due Mar 8, 2023 08:59 -03

In this question, we will investigate the fitting of linear regression.

## 5. (a)

2/2 points (graded)

For each of the datasets below, provide a simple feature mapping  $\phi$  such that the transformed data  $(\phi(x^{(i)}), y^{(i)})$  would be well modeled by linear regression.



Which feature mapping  $\phi$  is appropriate for the above model?

 $\bigcirc \exp(x)$ 

 $\bigcap$  log (x)

 $\bigcirc x$ 

 $\bigcirc \sqrt{x}$ 

~



Which feature mapping  $\phi$  is appropriate for the above model?

 $\bigcirc \ \phi\left(x\right)=x+\mathrm{sign}\left(x\right)$ 

 $\bigcirc \ \phi\left(x\right)=x\mathrm{-sign}\left(x\right)$ 

 $\bigcirc \ \phi\left(x\right) = x \cdot \mathrm{sign}\left(x\right)$ 

 $\bigcirc \ \phi \left( x\right) =x/\mathrm{sign}\left( x\right)$ 

3/7/23, 22:35

3 of 5

| =            | If needed, please enter                                                                                         |                       | tion sum_t(), includir | ng the parentheses. Enter |
|--------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|---------------------------|
| and          | as x^{t} and y^{t}, respec                                                                                      | ctively. Enter as a   | arx.                   |                           |
|              |                                                                                                                 |                       |                        |                           |
| Now after    | he optimal is obtained, y                                                                                       | ou can use it to cor  | mpute the optimal      |                           |
|              |                                                                                                                 | ou ou., uoo ,, to oo. | прило пто ортина       |                           |
| Submit       | You have used 0 of 5 atten                                                                                      | npts                  |                        |                           |
|              |                                                                                                                 |                       |                        |                           |
| Diaguas      |                                                                                                                 |                       |                        |                           |
| Discussion   |                                                                                                                 |                       |                        | Hide Discussion           |
|              |                                                                                                                 | :                     | ring (2                |                           |
|              | Nonlinear Classification, Linear regre<br>vork 2 / 5. Linear Regression and Re                                  |                       | 9 (2                   |                           |
|              |                                                                                                                 |                       | 9 (2                   | Add a Post                |
|              | ork 2 / 5. Linear Regression and Re                                                                             |                       |                        | Add a Post                |
| weeks):Home  | ork 2 / 5. Linear Regression and Regression was regression and Regression and Regression and Regression and Reg |                       |                        | by recent activity 🗸      |
| weeks):Homev | ork 2 / 5. Linear Regression and Regression and Regression and Regression and Regression and Regression and Reg |                       | Next >                 |                           |



## edX

<u>About</u>

**Affiliates** 

edX for Business

Open edX

Careers

<u>News</u>

## Legal

Terms of Service & Honor Code

Privacy Policy

**Accessibility Policy** 

**Trademark Policy** 

<u>Sitemap</u>

**Cookie Policy** 

Do Not Sell My Personal Information

## **Connect**

<u>Blog</u>

Contact Us

Help Center

Security

Media Kit

3/7/23, 22:35













© 2023 edX LLC. All rights reserved. 深圳市恒宇博科技有限公司 粤ICP备17044299号-2

3/7/23, 22:35 5 of 5