Machine Learning (CE 40717) Fall 2024

Ali Sharifi-Zarchi

CE Department Sharif University of Technology

September 20, 2024

- Introduction
- 2 Principal Component Analysis (PCA)
- 3 Choose PCs
- **4** Applications
- **5** Shortcomings
- **6** Conclusion
- References

Introduction

- 2 Principal Component Analysis (PCA)
- 3 Choose PCs
- 4 Applications
- Shortcomings
- **6** Conclusion
- **7** References

High Dimensional Data

- High-Dimensions = Lots of Features
- EEG Signals of Brain 64 Channels * 3000 Time Points For Each Trial

High Dimensional Data

- High-Dimensions = Lots of Features
- High Resolution Images (Millions of Pixels)

Principal Component Analysis (PCA) Choose PCs Applications Shortcomings Conclusion References

Dimensionality Reduction

Introduction

- Feature Selection
 - Select a subset of a given feature set
- Feature Extraction
 - A linear or non-linear transform on the original feature space

feature extraction

feature selection

Dimensionality Reduction Benefits

Visualization

- Project high dimensional data into 2D or 3D
- More efficient use of resources
 - Time, Memory, CPU
- Statistical
 - Fewer dimensions leads to better generalization
- Removing Noise
- Pre-Process
 - Improve accuracy by reducing features
 - As a Preprocessing step to reduce dimensions for supervised learning tasks
 - Helps avoiding overfitting

- 2 Principal Component Analysis (PCA)
- 4 Applications

Definition

- Goal is reducing the dimensionality of the data while preserving important aspects of the data
- **Principal Components (PCs)** are orthogonal vectors that are ordered by the fraction of the total information (variation) in the corresponding directions
 - Find the directions at which data approximately lie

Definition

Orthogonal projection of the data onto a **lower-dimensional** linear space that:

- Maximizes variance of projected data
- · Minimizes sum of squared distances to the line

Definition

• Minimizing sum of square distances to the line is **equivalent** to maximizing the sum of squares of the projections on that line.

- Given data points in a d-dimensional space, project them into a lower dimensional space while preserving as much information as possible,
 - · Find best planar approximation of 3D data
 - Find best 12-D approximation of 104-D data
- In particular, choose projection that minimizes squared error in reconstructing the original data

• 2D Gaussian dataset

- 2D Gaussian dataset
- First PCA axis

- 2D Gaussian dataset
- First and second PCA axes

Random vs Principal Projection

• Random direction vs. principal component

Pre-processing

- Center the data
 - **Zero**ing out the **mean** of each feature
- Scaling to normalize each feature to have variance 1
 - An arbitrary step (May affect the final result!)
 - It helps when unit of measurements of features are different and some features may be ignored without normalization

Pre-processing

• Scaling to normalize each feature may affect the final result!!

Algorithms

- Algorithm 1: sequential
- Algorithm 2: sample covariance matrix

- 2 Principal Component Analysis (PCA) Sequential Algorithm
- 4 Applications

- First view
 - Find directions with the maximum variations

$$\max_{v_1} \frac{1}{N} \sum_{n=1}^{N} (v_1^T x_n)^2 = \frac{1}{N} \sum_{n=1}^{N} v_1^T (x_n x_n^T) v_1 = v_1^T \left(\frac{1}{N} \sum_{n=1}^{N} (x_n x_n^T) \right) v_1 = v_1^T S v_1$$
s.t. $v_1^T v_1 = 1$

- First view
- why $v_1^T v_1 = 1$?
- Eigenvector with maximum eigenvalue maximizes the objective
 - Using Lagrangian multiplier technique

$$L(\nu_1, \lambda) = \nu_1^T S \nu_1 + \lambda (1 - \nu_1^T \nu_1)$$
$$\frac{\partial L}{\partial \nu_1} = 0 \Rightarrow 2S \nu_1 - 2\lambda \nu_1 = 0$$
$$\Rightarrow S \nu_1 = \lambda \nu_1$$

- First view
- To find v_2 , we maximize the variance of the projection in the residual subspace

$$v_2 = max_{v_2} \left(\frac{1}{N} \sum_{i=1}^{N} (x_i - v_1^T x_i)^2 \right)$$

s.t.
$$v_2^T v_2 = 1$$

• To find v_k , we maximize the variance of the projection in the residual subspace

$$v_k = max_{v_k} \left(\frac{1}{N} \sum_{i=1}^{N} \left(x_i - \sum_{j=1}^{k-1} W_j^T x_i \right)^2 \right)$$

s.t.
$$v_k^T v_k = 1$$

- Second view
 - Find directions with the minimum reconstruction error

$$\min_{v_1} \sum_{n=1}^{N} \|x_n - (v_1^T x_n) v_1\|_2^2$$

s.t.
$$v_1^T v_1 = 1$$

Show this has an equal solution with the first view

• As we have $Sv_j = \lambda_j v_j$,

$$\Rightarrow \operatorname{var}(\boldsymbol{v}_j^T\boldsymbol{x}) = \boldsymbol{v}_j^T\boldsymbol{x}\boldsymbol{x}^T\boldsymbol{v}_j = \boldsymbol{v}_j^T\boldsymbol{S}\boldsymbol{v}_j = \lambda_j\boldsymbol{v}_j^T\boldsymbol{v}_j = \lambda_j$$

• The variance along an eigenvector v_j equals the eigenvalue λ_j .

- Eigenvalues: $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge ...$
 - The first PC v_1 is the the eigenvector of the sample covariance matrix S associated with the largest eigenvalue
 - The 2nd PC v_2 is the eigenvector of the sample covariance matrix S associated with the second largest eigenvalue
 - And so on ...
- To reduce the dimension of the data to k, we select eigenvectors with the top k eigenvalues

27 / 48

- 2 Principal Component Analysis (PCA) Sample Covariance Matrix Algorithm
- 4 Applications

Sample Covariance Matrix

• Given data x_1, \ldots, x_n , compute covariance matrix Σ

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T$$
 where $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$

- PCA basis vectors = the eigenvectors of Σ
- Larger eigenvalue → more important eigenvectors

Sample Covariance Matrix

Algorithm 1 Sample Covariance Matrix

- 1: **Input:** $X \in \mathbb{R}^{N \times d}$ (data matrix with N data points and d dimensions)
- 2: Compute the mean of each feature: $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
- 3: Subtract the mean from each data point (center the data): $\tilde{X} \leftarrow X 1_N \bar{x}^T$
- 4: Compute the covariance matrix: $S = \frac{1}{N} \tilde{X}^T \tilde{X}$
- 5: Compute the eigenvalues and eigenvectors of *S*: $[\lambda_1, \lambda_2, ..., \lambda_d]$, $[\nu_1, \nu_2, ..., \nu_d] = \text{eig}(S)$
- 6: Select the top K eigenvectors corresponding to the largest eigenvalues: $A \leftarrow [v_1, v_2, ..., v_K]$
- 7: Transform the data into the new subspace: $X' \leftarrow X \cdot A$
- 8: **Output:** $X' \in \mathbb{R}^{N \times K}$ (transformed data with reduced dimensions)

Sample Covariance Matrix

- Eigen-vectors of symmetric matrices are orthogonal
- Covariance matrix is symmetric
 - Principal component are orthonormal
- We have

$$v_i^T v_j = 0, \quad \forall i \neq j$$
$$v_i^T v_i = 1, \quad \forall i$$

000

- 1 Introduction
- Principal Component Analysis (PCA)
- 3 Choose PCs
- 4 Applications
- 6 Conclusion

How many PCs?

- For *n* original dimensions, sample covariance matrix is *n* * *n*, and has up to *n* eigenvectors. So *n* PCs
- Can ignore the components of lesser significance

• You do lose some information, but if the eigenvalues are small, you don't lose much

How many PCs?

$$\frac{\sum_{i=d-k+1}^d \lambda_i}{\sum_{i=1}^d \lambda_i}$$

33 / 48

- 1 Introduction
- Principal Component Analysis (PCA)
- Choose PCs
- 4 Applications
- 6 Conclusion

Image Compression

- Divide the original 372x492 image into patches
 - Each patch is an instance that contains 12x12 pixels on a grid
- Consider each as a 144-D vector

Image Compression

• $144D \Rightarrow 60D$

• $144D \Rightarrow 16D$

37 / 48

• 16 most important eigenvectors

38 / 48

Image Compression

• $144D \Rightarrow 3D$

• 3 most important eigenvectors

L2 error and PCA dim

42 / 48

- 1 Introduction
- 2 Principal Component Analysis (PCA)
- 3 Choose PCs
- 4 Applications
- **5** Shortcomings
- 6 Conclusion
- References

000

Class Labels

PCA doesn't know about class labels!

Shortcomings

Non-Linear

• PCA cannot capture Non-Linear structure!

•0

- 1 Introduction
- Principal Component Analysis (PCA)
- Choose PCs
- 4 Applications
- **6** Conclusion

Conclusion

- PCA
 - finds orthonormal basis for data
 - Sorts dimensions in order of "importance"
 - Discard low significance dimensions
- Applications
 - Get compact description
 - Remove noise
 - Improve classification (hopefully)
 - More efficient use of resources
 - Statistical
- Not magic
 - Doesn't know class labels
 - Can only capture linear variations
- One of many tricks to reduce dimensionality!

- 1 Introduction
- Principal Component Analysis (PCA)
- Choose PCs
- 4 Applications
- 6 Conclusion
- References

References

- Advanced Introduction to Machine Learning, CMU-10715, Barnabás Póczos
- 10-701 Introduction to Machine Learning, CMU, Matt Gormley
- 10-301/10-601 Introduction to Machine Learning, CMU, Matt Gormley
- CE-477: Machine Learning CS-828: Theory of Machine Learning, Sharif University of Technology, Fatemeh Seyyedsalehi

