Section 1 Section 2 Section 3 Section 4

Runge-Kuttah Method Presentation Using Beamer

EDWIN OWINO, ALLAN VINCENT, NELSON IRUNGU

JKUAT

April 1, 2023

Introduction

Runge-Kuttah Method is a series of methods used to solve differential equations with more accuracy without performing many calculations. It assumes the following solutions:

- 1st Order (Eulers Method)
- 2nd Order Runge-Kuttah Method
- 4th Order Runge-Kuttah Method (RK4)

1st Order Runge-Kuttah Method

It uses the following formular:

$$y(x+h) = y(x) + hf(x,y)$$

To construct the tangent at the point x and obtain the value of y(x + h) whose slope is:

$$f(x, y)$$
 or simply, $\frac{dy}{dx}$

General formula: $y_{i+1} = y_i + hf(x_i, y_i)$

NB

This is the easiest of all the methods but has an error margin

2nd Order Runge-Kuttah Method

The Runge-Kutta method finds an approximate value of y for a given x. Only first-order ordinary differential equations can be solved by using the Runge Kutta 2nd order method.

Below is the formula used to compute next value: y_{n+1} from previous value

$$y_n$$
: y_{n+1} = value of y at $(x = n + 1)$
 y_n = value of y at $(x = n)$ where:
 $0n(x - x_0)/h$; h is step height
 $x_{n+1} = x_0 + h$

cont...

The essential formula to compute the value of y(n+1):

$$K_1 = h * f(x_n, y_n)$$

$$K_2 = h * f((x_n + \frac{h}{2}), (y_n + \frac{K_1 * h}{2}))$$

$$y_{n+1} = y_n + K_2 + (h^3)$$

2nd order Continuation

- The formula basically computes the next value y_{n+1} using current yn plus the weighted average of two increments:
- K1 is the increment based on the slope at the beginning of the interval, using *y*.
- K2 is the increment based on the slope at the midpoint of the interval, using (y + h * K1/2).
- The method is a second-order method, meaning that the local truncation error is on the order of O(h3), while the total accumulated error is order O(h4).

4th Order Runge-Kuttah Method

To be presented by Nelson

TIP

4th Order Runge-Kuttah method also called RK4 is the most important in the series

4th order RUNGE-KUTTA

- It finds an approximation of y for a given x.
- It works by aproximating the solution of an ODE at discrete step using weighted average of function evaluations at multiple intermediate points between those time steps.
- The RK4 is the most common variant method due to its high accuracy and computational efficiency.

4th order RUNGE-KUTTA

- It finds an approximation of y for a given x.
- It works by aproximating the solution of an ODE at discrete step using weighted average of function evaluations at multiple intermediate points between those time steps.
- The RK4 is the most common variant method due to its high accuracy and computational efficiency.

4th order RUNGE-KUTTA

- It finds an approximation of y for a given x.
- It works by aproximating the solution of an ODE at discrete step using weighted average of function evaluations at multiple intermediate points between those time steps.
- The RK4 is the most common variant method due to its high accuracy and computational efficiency.

General Form

$$y_{n+1} = y_n + h * (k_1 + 2 * K_2 + 2 * k_3 + k_4)$$

• The values of K_i are calculated as follows:

The value of K_1

$$k_1 = f(t_n, y_n)$$

The value of K_2

$$k_2 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

$$y_{n+1} = y_n + h * (k_1 + 2 * K_2 + 2 * k_3 + k_4)$$

• The values of K_i are calculated as follows:

The value of K_1

$$k_1 = f(t_n, y_n)$$

The value of K_2

$$k_2 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

The value of K_3

$$k_3 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

The value of $K_{\!\scriptscriptstyle A}$

$$k = f(t_n + (h/2), y_n + (h/2) * k_1)$$

• f() is the function that defines the ODE

General Form

The value of K_3

$$k_3 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

The value of K_4

$$k = f(t_n + (h/2), y_n + (h/2) * k_1)$$

• f() is the function that defines the ODE

- input initial values:t0,y0,h,T
- Set $t_n = t0$ and $y_n = y0$

- input initial values:t0,y0,h,T
- Set $t_n = t0$ and $y_n = y0$

• While $t_n < T$:

Calculate K1:

$$k_1=f(t_n,y_n)$$

Calculate K2:

$$k_2 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

Calculate K3:

$$k_3 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

Calculate K4:

$$k = f(t_n + (h/2), y_n + (h/2) * k_1)$$

• While $t_n < T$:

Calculate K1:

$$k_1 = f(t_n, y_n)$$

Calculate K2:

$$k_2 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

Calculate K3:

$$k_3 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

Calculate K4:

$$k = f(t_n + (h/2), y_n + (h/2) * k_1)$$

• While $t_n < T$:

Calculate K1:

$$k_1 = f(t_n, y_n)$$

Calculate K2:

$$k_2 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

Calculate K3:

$$k_3 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

Calculate K4

$$k = f(t_n + (h/2), y_n + (h/2) * k_1)$$

• While $t_n < T$:

Calculate K1:

$$k_1 = f(t_n, y_n)$$

Calculate K2:

$$k_2 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

Calculate K3:

$$k_3 = f(t_n + (h/2), y_n + (h/2) * k_1)$$

Calculate K4:

$$k = f(t_n + (h/2), y_n + (h/2) * k_1)$$

Calculate: y_{n+1}

$$y_{n+1} = y_n + (h/6) * (k_1 + 2 * K_2 + 2 * k_3 + k_4)$$

Set new t_n

$$t_n = t_n + h$$

Output Final Value of y(t)

Output final value of y(t)

Calculate: y_{n+1}

$$y_{n+1} = y_n + (h/6) * (k_1 + 2 * K_2 + 2 * k_3 + k_4)$$

Set new t_n

$$t_n = t_n + h$$

Output Final Value of y(t)

Output final value of y(t)

Calculate: y_{n+1}

$$y_{n+1} = y_n + (h/6) * (k_1 + 2 * K_2 + 2 * k_3 + k_4)$$

Set new t_n

$$t_n = t_n + h$$

Output Final Value of y(t)

Output final value of y(t)