Semantic Thermodynamic Entropy Pruning: Key Insights

Core Principles

- 1. **Entropy-Guided Selection**: Pruning decisions based on information-theoretic measures rather than magnitude alone
- 2. **Semantic Preservation**: Maintaining meaningful content while reducing computational overhead
- 3. **Thermodynamic Optimization**: Applying energy minimization principles to neural network compression
- 4. **Information Conservation**: Preserving mutual information between network layers

Mathematical Framework

- **Landauer's Principle**: Minimum energy E â&¥ k_B * T * ln(2) for bit erasure - **Semantic Entropy**: H_s â&¤ H (semantic entropy bounded by syntactic entropy) - **Information Concentration**: IC = rank(W) * H(activations) / ||W||_0 - **Energy Efficiency**: η = (semantic_fidelity * compression_ratio) / energy consumption
- ## Performance Metrics Summary

Key Algorithms

- 1. **NEPENTHE**: Entropy-based depth reduction through layer linearization
- 2. **MIPP**: Mutual Information Preserving Pruning
- 3. **Energy-Aware Pruning**: Direct energy consumption optimization
- 4. **Thermodynamic Filter Selection**: Temperature-based filter importance

Applications

- Large Language Model optimization
- Edge computing deployment
- Medical AI safety systems
- Real-time semantic processing
- Resource-constrained environments