AIM

Programs to handle data using pandas

Programming Code:

```
import numpy as np
import pandas as pd

s = pd.Series([1, 3, 5, 6, 8])
print(s)
```

OUTPUT:

```
0 1
1 3
2 5
3 6
4 8
dtype: int64
```

```
country capital area population

Brazil Brasilia 8.516 200.40

Russia Moscow 17.100 143.50

India New Dehli 3.286 1252.00

China Beijing 9.597 1357.00

South Africa Pretoria 1.221 52.98
```

Programming Code:

```
b.index = ["BR", "RU", "IN", "CH", "SA"]
print(b)
```

OUTPUT:

	country	capital	area	population
BR	Brazil	Brasilia	8.516	200.40
RU	Russia	Moscow	17.100	143.50
IN	India	New Dehli	3.286	1252.00
CH	China	Beijing	9.597	1357.00
SA	South Africa	Pretoria	1.221	52.98

Dataset used: cars1.csv

```
import pandas as pd
cars = pd.read_csv('cars1.csv')
print(cars)
```

	Car	Model	Volume	Weight	C02
0	Toyoty	Aygo	1000	790	99
1	Mitsubishi	Space Star	1200	1160	95
2	Skoda	Citigo	1000	929	95
3	Fiat	500	900	865	90
4	Mini	Cooper	1500	1140	105
5	VW	Up!	1000	929	105
6	Skoda	Fabia	1400	1109	90
7	Mercedes	A-Class	1500	1365	92
8	Ford	Fiesta	1500	1112	98
9	Audi	A1	1600	1150	99
10	Hyundai	120	1100	980	99
11	Suzuki	Swift	1300	990	101
12	Ford	Fiesta	1000	1112	99
13	Honda	Civic	1600	1252	94
14	Hundai	I30	1600	1326	97
15	Opel	Astra	1600	1330	97
16	BMW	1	1600	1365	99
17	Mazda	3	2200	1280	104
18	Skoda	Rapid	1600	1119	104
19	Ford	Focus	2000	1328	105
20	Ford	Mondeo	1600	1584	94
21	Opel	Insignia	2000	1428	99
22	Mercedes	C-Class	2100	1365	99
23	Skoda	Octavia	1600	1415	99
24	Volvo	S60	2000	1415	99
25	Mercedes	CLA	1500	1465	102
26	Audi	A4	2000	1490	104
27	Audi	A6	2000	1725	114
28	Volvo	V70	1600	1523	109
29	BMW	5	2000	1705	114
30	Mercedes	E-Class	2100	1605	115
31	Volvo	XC70	2000	1746	117
32	Ford	B-Max	1600	1235	104
33	BMW	216	1600	1390	108
34	Opel	Zafira	1600	1405	109
35	Mercedes	SLK	2500	1395	120

```
# Print out first 4 observations
print(cars[0:4])
# Print out fifth and sixth observation
print(cars[4:6])
```

OUTPUT:

```
Car Model Volume Weight CO2
              Aygo 1000
                           790 99
     Toyoty
1 Mitsubishi Space Star
                           1160 95
                     1200
2
     Skoda Citigo 1000
                           929 95
     Fiat
               500
                     900
                           865 90
  Car Model Volume Weight CO2
4 Mini Cooper 1500 1140 105
5 VW Up! 1000 929 105
```

Programming Code:

```
import pandas as pd
cars = pd.read_csv('cars1.csv', index_col = 0) #first column is t
aen as index column
print(cars.iloc[2])
```

OUTPUT:

```
Model Citigo
Volume 1000
Weight 929
CO2 95
```

Name: Skoda, dtype: object

OUTPUT:

```
Name Gender Age
      Jay
             M 18
0
1 Jennifer
              F 17
             F 19
2 Preity
     Neil
             M 17
3
    Name Gender Age
2 Preity
          F 19
3 Neil
           M 17
     Name Gender Age
0 Jay M 18
1 Jennifer F 17
```

```
import pandas as pd
import numpy as np

#Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print(s)

print ("The actual data series is:")
print( s.values)
```

```
0 -1.138968
1 -1.097746
2 0.109717
3 1.159537
dtype: float64
The actual data series is:
[-1.13896826 -1.09774589 0.10971687 1.15953676]
```

Programming Code:

```
print (s.head(2))
```

OUTPUT:

```
0 -1.138968
1 -1.097746
dtype: float64
```

Programming Code:

```
print(s.tail(3))
```

```
1 -1.097746
2 0.109717
3 1.159537
dtype: float64
```

```
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith
','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

# Create a DataFrame
df = pd.DataFrame(d)
print(df)
print(df)
print(df.T)
```

OUTPUT:

```
Name Age Rating
       25
   Tom
            4.23
0
1 James
       26
            3.24
2 Ricky
       25 3.98
3
   Vin
       23
            2.56
4 Steve 30
             3.20
5 Smith 29 4.60
  Jack 23
             3.80
The transpose of the data series is:
              1
                   2 3
                              4
Name
       Tom James Ricky
                      Vin Steve Smith Jack
Age
        25
            26
                  25
                       23
                             30
                                  29
Rating 4.23
            3.24
                 3.98 2.56
                             3.2
                                  4.6
                                       3.8
```

```
import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith
','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
```

```
print(df)
print ("Row axis labels and column axis labels are:")
print (df.axes)
```

```
Name Age Rating
   Tom
         25
               4.23
1 James
              3.24
         26
2 Ricky
        25
              3.98
3
    Vin 23 2.56
         30
29
4 Steve
              3.20
  Smith
               4.60
        23
  Jack
              3.80
Row axis labels and column axis labels are:
[RangeIndex(start=0, stop=7, step=1), Index(['Name', 'Age', 'Rating'], dtype='object')]
```

Programming Code:

```
import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith
','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("The data types of each column are:")
print (df.dtypes)
```

```
The data types of each column are:
Name object
Age int64
Rating float64
dtype: object
```

```
import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith
','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("Is the object empty?")
print (df.empty)
```

OUTPUT:

Is the object empty? False

```
import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith
','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]), 'Rating':pd.Series([
4.23,3.24,3.98,2.56,3.20,4.6,3.8])
    }

#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print (df)
print ("The dimension of the object is:")
print (df.ndim)
```

```
Our object is:
   Name
       Age Rating
0
   Tom
        25
            4.23
            3.24
1 James
       26
2 Ricky
           3.98
       25
       23
            2.56
3
  Vin
4 Steve 30 3.20
5 Smith 29 4.60
  Jack 23
              3.80
The dimension of the object is:
```

Programming Code:

```
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smit
h','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,30]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print(df)
print ("Our object is:")
print ("The shape of the object is:")
print (df.shape)
```

```
Name Age Rating
0
  Tom 25 4.23
1 James 26
             3.24
2 Ricky 25
            3.98
3
   Vin
        23
            2.56
4 Steve
             3.20
        30
             4.60
5 Smith 29
         30
              3.80
  Jack
Our object is:
The shape of the object is:
(7, 3)
```

```
print (df.size)
print (df.values)
```

OUTPUT:

21

```
[['Tom' 25 4.23]

['James' 26 3.24]

['Ricky' 25 3.98]

['Vin' 23 2.56]

['Steve' 30 3.2]

['Smith' 29 4.6]

['Jack' 30 3.8]]
```

Programming code:

```
df.isnull().sum()
```

```
Name 0
Age 0
Rating 0
dtype: int64
```

```
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
```