Do-calculus

Charles K. Assaad, Emilie Devijver, Eric Gaussier

charles.assaad@ens-lyon.fr

Table of content

Preliminaries

Do-calculus

The ID algorithm

Conclusion

Exercises

Table of content

Preliminaries

Do-calculus

The ID algorithm

Conclusion

Exercises

Recap about causal graphical models (1/1)

Active and blocked paths A path is said to be blocked by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- ▶ it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathcal{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z.

d-separation Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are d-separated by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \perp\!\!\!\perp_{\mathcal{G}} \mathcal{Y} \mid \mathcal{Z}$.

Recap about causal graphical models (2/2)

The do() operator allows to represent interventions in equations.

Recap about the Back-door and Front-door criteria (1/3)

The back-door criterion: Consider a causal graph \mathcal{G} and a causal effect $P(y \mid do(x))$. A set of variables \mathcal{Z} satisfies the back-door criterion iff:

- no node in \mathcal{Z} is a descendant of X;
- Z blocks every path between X and Y that contains an arrow into X.

Theorem (back-door adjustment): If \mathcal{Z} satisfies the back-door criterion relative to (X, Y) and if Pr(x, z) > 0, then the causal effect of X on Y is identifiable and is given by

$$Pr(y \mid do(x)) = \sum_{z} Pr(y \mid x, z) Pr(z).$$

Recap about the Back-door and Front-door criteria (2/3)

Front-door criterion: Consider a causal graph \mathcal{G} and a causal effect $\Pr(y \mid do(x))$. A set of variables \mathcal{Z} satisfies the front-door criterion iff:

- Z intercepts all directed paths from X to Y;
- ► There is no back-door path from X to Z;
- All back-door paths from Z to Y are blocked by X.

Theorem (front-door adjustment): if \mathcal{Z} satisfies the front-door criterion relative to (X, Y) and if $\Pr(x, z) > 0$, then the causal effect of X on Y is identifiable and is given by

$$\Pr(y \mid \frac{do(X = x)}{do(X = x)}) = \sum_{z} \Pr(z \mid x) \sum_{x'} \Pr(y \mid x', z) \Pr(x').$$

Recap about the Back-door and Front-door criteria (3/3)

- ▶ If there exists a set that satisfy the back-door criterion for $Pr(y \mid do(x))$, then $Pr(y \mid do(x))$ is identifiable;
- ▶ If there exists a no set that satisfy the back-door criterion for $Pr(y \mid do(x))$, then $Pr(y \mid do(x))$ is not necesarly not identifiable.
- ▶ If there exists a set that satisfy the front-door criterion for $Pr(y \mid do(x))$, then $Pr(y \mid do(x))$ is identifiable;
- If there exists a no set that satisfy the fack-door criterion for $Pr(y \mid do(x))$, then $Pr(y \mid do(x))$ is not necesarly not identifiable.

The combination of the back-door and front door criteria are also incomplete.

Table of content

Preliminaries

Do-calculus

The ID algorithm

Conclusion

Exercises

Consider $Pr(y \mid do(z))$ and the Probabilistic Causal Model:

$$M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F}, P(\mathcal{U}) \rangle$$

Consider $Pr(y \mid do(z))$ and the Probabilistic Causal Model:

$$M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F}, P(\mathcal{U}) \rangle$$

Augmented model of M for do(z)

$$Aug(M, \mathcal{Z}) = \langle \mathcal{U}, \mathcal{V} \cup \hat{\mathcal{Z}}, \mathcal{F}_{\hat{\mathcal{Z}}}, P(\mathcal{U}) \rangle$$

where $\forall \hat{Z} \in \hat{Z}$, \hat{Z} represents do(z).

Consider $Pr(y \mid do(z))$ and the Probabilistic Causal Model:

$$M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F}, P(\mathcal{U}) \rangle$$

Augmented model of M for do(z)

$$Aug(M, \mathcal{Z}) = \langle \mathcal{U}, \mathcal{V} \cup \hat{\mathcal{Z}}, \mathcal{F}_{\hat{\mathcal{Z}}}, P(\mathcal{U}) \rangle$$

where $\forall \hat{Z} \in \hat{Z}$, \hat{Z} represents do(z).

Augmented graph of \mathcal{G} for do(z)

$$Aug(\mathcal{G},\mathcal{Z}) = \mathcal{G} \cup \{\hat{Z} \to Z \mid \forall \hat{Z} \in \hat{\mathcal{Z}}\}$$

Consider $Pr(y \mid do(z))$ and the Probabilistic Causal Model:

$$M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F}, P(\mathcal{U}) \rangle$$

Augmented model of M for do(z)

$$Aug(M, \mathcal{Z}) = \langle \mathcal{U}, \mathcal{V} \cup \hat{\mathcal{Z}}, \mathcal{F}_{\hat{\mathcal{Z}}}, P(\mathcal{U}) \rangle$$

where $\forall \hat{Z} \in \hat{Z}$, \hat{Z} represents do(z).

Augmented graph of \mathcal{G} for do(z)

$$Aug(\mathcal{G},\mathcal{Z}) = \mathcal{G} \cup \{\hat{Z} \to Z \mid \forall \hat{Z} \in \hat{\mathcal{Z}}\}\$$

and in the compatible distribution, $\forall Z \in \mathcal{Z}$

$$P(z \mid Pa(z), \hat{z}) = \begin{cases} P(z \mid Pa(z)) & \text{if } \hat{Z} = idle \\ \hat{z} & \text{if } \hat{Z} = do(z) \end{cases}$$

Example of an augmented graph

Example of an augmented graph

Rule 1: Insertion / deletion of observations

Theorem Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a causal graph. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{W} \subseteq \mathcal{V}$ be disjoint. We have:

$$\Pr(y|do(x), z, w) = \Pr(y|do(x), w)$$
 if $(\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{X}, \mathcal{W})_{\mathcal{G}_{\overline{\mathcal{X}}}}$

(proof on board)

Rule 1: Insertion / deletion of observations

Theorem Let $\mathcal{G}=(\mathcal{V},\mathcal{E})$ be a causal graph. Let $\mathcal{X},\mathcal{Y},\mathcal{Z},\mathcal{W}\subseteq\mathcal{V}$ be disjoint. We have:

$$\Pr(y|do(x), z, w) = \Pr(y|do(x), w)$$
 if $(\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{X}, \mathcal{W})_{\mathcal{G}_{\overline{\mathcal{X}}}}$ (proof on board)

Remark: This Rule is a generalization of d-separation.

Rule 2: Action/observation exchange

Theorem Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a causal graph. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{W} \subseteq \mathcal{V}$ be disjoint. We have:

$$\Pr(y|do(x),do(z),w) = \Pr(y|do(x),z,w) \quad \text{if} \quad (\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{X},\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{X}}\mathcal{Z}}}$$

Rule 2: Action/observation exchange

Theorem Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a causal graph. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{W} \subseteq \mathcal{V}$ be disjoint. We have:

$$\Pr(y|do(x),do(z),w) = \Pr(y|do(x),z,w) \quad \text{if} \quad (\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{X},\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{X}}\mathcal{Z}}}$$

Proof: Follows the following Lemma

Lemma Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a causal graph. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{W} \subseteq \mathcal{V}$ be disjoint.

$$(\mathcal{Y} \perp\!\!\!\perp \mathcal{Z} \mid \mathcal{X}, \mathcal{W})_{\mathcal{G}_{\overline{\mathcal{X}}\mathcal{Z}}} \iff (\hat{\mathcal{Z}} \perp\!\!\!\perp \mathcal{Y} \mid \mathcal{X}, \mathcal{Z}, \mathcal{W})_{\mathit{Aug}(\mathcal{G}_{\overline{\mathcal{X}}\mathcal{Z}}, \mathcal{Z})}$$

(proof on board)

Rule 2: Action/observation exchange

Theorem Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a causal graph. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{W} \subseteq \mathcal{V}$ be disjoint. We have:

$$\Pr(y|do(x),do(z),w) = \Pr(y|do(x),z,w) \quad \text{if} \quad (\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{X},\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{X}}\mathcal{Z}}}$$

Proof: Follows the following Lemma

Lemma Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a causal graph. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{W} \subseteq \mathcal{V}$ be disjoint.

$$(\mathcal{Y} \perp\!\!\!\perp \mathcal{Z} \mid \mathcal{X}, \mathcal{W})_{\mathcal{G}_{\overline{\mathcal{X}}\underline{\mathcal{Z}}}} \iff (\hat{\mathcal{Z}} \perp\!\!\!\perp \mathcal{Y} \mid \mathcal{X}, \mathcal{Z}, \mathcal{W})_{\mathit{Aug}(\mathcal{G}_{\overline{\mathcal{X}}\underline{\mathcal{Z}}}, \mathcal{Z})}$$

(proof on board)

Remark: This Rule is a generalization of the back-door criterion.

Rule 3: insertion / deletion of actions

Theorem Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a causal graph. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{W} \subseteq V$ be disjoint. We have:

$$\Pr(y|\frac{do(x),do(z)}{do(x)},w)=\Pr(y|\frac{do(x)}{do(x)},w)\quad \text{if}\quad (\mathcal{Y}\perp\!\!\!\perp\mathcal{Z}|\mathcal{X},\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{XZ}(\mathcal{W})}}}$$

where $\mathcal{Z}(\mathcal{W})$ is the set of \mathcal{Z} -vertices that are not ancestors of any \mathcal{W} -vertex in $\mathcal{G}_{\overline{\mathcal{X}}}$

Proof in (Pearl, 1995)

$$\Pr(y|\frac{do(x)}{do(z)},\frac{do(z)}{do(z)},w)=\Pr(y|\frac{do(x)}{do(x)},w)\quad\text{if}\quad (\mathcal{Y}\perp\!\!\!\perp\mathcal{Z}|\mathcal{X},\mathcal{W})_{\mathcal{G}^{-}_{\overline{\mathcal{X}}\mathcal{Z}(\mathcal{W})}}$$

where $\mathcal{Z}(\mathcal{W})$ is the set of \mathcal{Z} -vertices that are not ancestors of any \mathcal{W} -vertex in $G_{\overline{\mathcal{X}}}$

$$\Pr(y|do(z), w) = \Pr(y|w) \text{ if } (\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{Z}(\mathcal{W})}}}$$

where $\mathcal{Z}(\mathcal{W})$ is the set of $\mathcal{Z}\text{-vertices}$ that are not ancestors of any $\mathcal{W}\text{-vertex}$ in G

$$\Pr(y|\frac{do(z)}{do(z)},w) = \Pr(y|w) \quad \text{if} \quad (\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{Z}(\mathcal{W})}}}$$

where $\mathcal{Z}(\mathcal{W})$ is the set of \mathcal{Z} -vertices that are not ancestors of any \mathcal{W} -vertex in G

$$Pr(y \mid \frac{do(z)}{do(z)}, w_1, w_2)$$

$$= Pr(y \mid w_1, w_2)$$
if $(\mathcal{Y} \perp \!\!\! \perp \mathcal{Z} | W_1, W_2)_{\mathcal{G}_{\overline{z}}}$

$$\Pr(y|\frac{do(z)}{do(z)}, w) = \Pr(y|w) \text{ if } (\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{Z}(\mathcal{W})}}}$$

where $\mathcal{Z}(\mathcal{W})$ is the set of \mathcal{Z} -vertices that are not ancestors of any \mathcal{W} -vertex in G

$$Pr(y \mid \frac{do(z)}{do(z)}, w_1, w_2)$$

$$= Pr(y \mid w_1, w_2)$$
if $(\mathcal{Y} \perp \!\!\! \perp \mathcal{Z} | W_1, W_2)_{\mathcal{G}_{\overline{\mathcal{Z}}}}$

$$\Pr(y|\frac{do(z)}{do(z)}, w) = \Pr(y|w) \text{ if } (\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{Z}(\mathcal{W})}}}$$

where $\mathcal{Z}(\mathcal{W})$ is the set of \mathcal{Z} -vertices that are not ancestors of any \mathcal{W} -vertex in G

$$Pr(y \mid \frac{do(z)}{do(z)}, w_1, w_2)$$

$$= Pr(y \mid w_1, w_2)$$
if $(\mathcal{Y} \perp \!\!\! \perp \mathcal{Z} | W_1, W_2)_{\mathcal{G}_{\overline{\mathcal{Z}}}}$

$$\Pr(y|\frac{do(z)}{do(z)}, w) = \Pr(y|w) \text{ if } (\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{Z}(\mathcal{W})}}}$$

where $\mathcal{Z}(\mathcal{W})$ is the set of \mathcal{Z} -vertices that are not ancestors of any \mathcal{W} -vertex in G

$$Pr(y \mid \frac{do(z)}{do(z)}, w_1, w_2)$$

$$= Pr(y \mid w_1, w_2)$$
if $(\mathcal{Y} \perp \!\!\!\perp \mathcal{Z} | W_1, W_2)_{\mathcal{G}_{\overline{Z}}}$

$$\Pr(y|do(z), w) = \Pr(y|w) \text{ if } (\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{Z}(\mathcal{W})}}}$$

where $\mathcal{Z}(\mathcal{W})$ is the set of \mathcal{Z} -vertices that are not ancestors of any \mathcal{W} -vertex in G

$$Pr(y \mid \frac{do(z)}{do(z)}, w_1, w_2)$$

$$= Pr(y \mid w_1, w_2)$$
if $(\mathcal{Y} \perp \!\!\! \perp \mathcal{Z} | W_1, W_2)_{\mathcal{G}_{\overline{\mathcal{Z}}}}$

$$\Pr(y|do(z), w) = \Pr(y|w) \text{ if } (\mathcal{Y} \perp \!\!\! \perp \mathcal{Z}|\mathcal{W})_{\mathcal{G}_{\overline{\mathcal{Z}(\mathcal{W})}}}$$

where $\mathcal{Z}(\mathcal{W})$ is the set of \mathcal{Z} -vertices that are not ancestors of any \mathcal{W} -vertex in G

Suppose

$$Pr(y | do(z), w_1, w_2)$$

= $Pr(y | w_1, w_2)$

if $(\mathcal{Y} \parallel \mathcal{Z} \mid W_1, W_2)_{\mathcal{G}_{\mathcal{A}}}$

Completness of the do-calculus

Theorem A causal effect $P(y \mid do(x))$ is identifiable in a model characterized by a graph \mathcal{G} if and only if there exists a finite sequence of transformations, each conforming to one the Rules 1-3, that reduces $P(y \mid do(x))$ into a standard (i.e., "do"-free) probability expression involving observed quantities.

Proof in (Pearl, 1995) and (Shpitser and Pearl, 2006)

From do-calculus to back-door adjustment

What's the effect of exercice on cholesterol?

From do-calculus to back-door adjustment

What's the effect of exercice on cholesterol?

$$Pr(c \mid do(e)) = \sum_{a} Pr(c \mid do(e), a) Pr(a \mid do(e))$$
 (Probability Axioms)

From do-calculus to back-door adjustment

What's the effect of exercice on cholesterol?

$$Pr(c \mid do(e)) = \sum_{a} Pr(c \mid do(e), a) Pr(a \mid do(e))$$
 (Probability Axioms)
$$= \sum_{a} Pr(c \mid e, a) Pr(a \mid do(e))$$
 (Rule 2)

From do-calculus to back-door adjustment

What's the effect of exercice on cholesterol?

$$Pr(c \mid do(e)) = \sum_{a} Pr(c \mid do(e), a) Pr(a \mid do(e))$$
 (Probability Axioms)

$$= \sum_{a} Pr(c \mid e, a) Pr(a \mid do(e))$$
 (Rule 2)

$$= \sum_{a} Pr(c \mid e, a) Pr(a)$$
 (Rule 3)

What's the effect of smoking on cancer?

$$Pr(c \mid do(s)) = \sum_{t} Pr(c \mid do(s), t) Pr(t \mid do(s))$$

(Probability Axioms)

$$Pr(c \mid do(s)) = \sum_{t} Pr(c \mid do(s), t) Pr(t \mid do(s))$$
 (Probability Axioms)
$$= \sum_{t} Pr(c \mid do(s), do(t)) Pr(t \mid do(s))$$
 (Rule 2)

$$Pr(c \mid do(s)) = \sum_{t} Pr(c \mid do(s), t) Pr(t \mid do(s))$$
 (Probability Axioms)

$$= \sum_{t} Pr(c \mid do(s), do(t)) Pr(t \mid do(s))$$
 (Rule 2)

$$= \sum_{t} Pr(c \mid do(s), do(t)) Pr(t \mid s)$$
 (Rule 2)

$$Pr(c \mid do(s)) = \sum_{t} Pr(c \mid do(s), t) Pr(t \mid do(s))$$
 (Probability Axioms)

$$= \sum_{t} Pr(c \mid do(s), do(t)) Pr(t \mid do(s))$$
 (Rule 2)

$$= \sum_{t} Pr(c \mid do(s), do(t)) Pr(t \mid s)$$
 (Rule 2)

$$= \sum_{t} Pr(c \mid do(t)) Pr(t \mid s)$$
 (Rule 3)

$$\Pr(c \mid do(s)) = \sum_{t} \Pr(c \mid do(s), t) \Pr(t \mid do(s))$$
 (Probability Axioms)
$$= \sum_{t} \Pr(c \mid do(s), do(t)) \Pr(t \mid do(s))$$
 (Rule 2)
$$= \sum_{t} \Pr(c \mid do(s), do(t)) \Pr(t \mid s)$$
 (Rule 2)
$$= \sum_{t} \Pr(c \mid do(t)) \Pr(t \mid s)$$
 (Rule 3)
$$= \sum_{t} \sum_{t} \Pr(c \mid do(t), s') \Pr(s' \mid do(t)) \Pr(t \mid s)$$
 (Probability Axioms)

$$\Pr(c \mid do(s)) = \sum_{t} \Pr(c \mid do(s), t) \Pr(t \mid do(s))$$
 (Probability Axioms)
$$= \sum_{t} \Pr(c \mid do(s), do(t)) \Pr(t \mid do(s))$$
 (Rule 2)
$$= \sum_{t} \Pr(c \mid do(s), do(t)) \Pr(t \mid s)$$
 (Rule 2)
$$= \sum_{t} \Pr(c \mid do(t)) \Pr(t \mid s)$$
 (Rule 3)
$$= \sum_{s'} \sum_{t} \Pr(c \mid do(t), s') \Pr(s' \mid do(t)) \Pr(t \mid s)$$
 (Probability Axioms)
$$= \sum_{s'} \sum_{t} \Pr(c \mid t, s') \Pr(s' \mid do(t)) \Pr(t \mid s)$$
 (Rule 2)

$$\Pr(c \mid do(s)) = \sum_{t} \Pr(c \mid do(s), t) \Pr(t \mid do(s))$$
 (Probability Axioms)
$$= \sum_{t} \Pr(c \mid do(s), do(t)) \Pr(t \mid do(s))$$
 (Rule 2)
$$= \sum_{t} \Pr(c \mid do(s), do(t)) \Pr(t \mid s)$$
 (Rule 2)
$$= \sum_{t} \Pr(c \mid do(t)) \Pr(t \mid s)$$
 (Rule 3)
$$= \sum_{t} \sum_{t} \Pr(c \mid do(t), s') \Pr(s' \mid do(t)) \Pr(t \mid s)$$
 (Probability Axioms)
$$= \sum_{s'} \sum_{t} \Pr(c \mid t, s') \Pr(s' \mid do(t)) \Pr(t \mid s)$$
 (Rule 2)
$$= \sum_{s'} \sum_{t} \Pr(c \mid t, s') \Pr(s') \Pr(t \mid s)$$
 (Rule 3)

From a calculus toward an automated algorithm

Limitations of the do-calculus:

- The do-calculus demands a lot of manual labor
- Non-identifiability is complicated

From a calculus toward an automated algorithm

Limitations of the do-calculus:

- The do-calculus demands a lot of manual labor
- Non-identifiability is complicated

Is it possible automatize it?

From a calculus toward an automated algorithm

Limitations of the do-calculus:

- The do-calculus demands a lot of manual labor
- Non-identifiability is complicated

Is it possible automatize it? Yes! There exists many algorithms. In this course we will focus on the ID algorithm.

Table of content

Preliminaries

Do-calculus

The ID algorithm

Conclusion

Exercises

Some lemmas

Lemma (adding do on non-ancestors)

lf

$$\mathcal{W} = (\mathcal{V} \backslash \mathcal{X}) \backslash An(\mathcal{Y})_{\mathcal{G}_{\overline{\mathcal{X}}}},$$

then

$$Pr(y \mid do(x)) = Pr(y \mid do(x), do(w)),$$

where w are arbatrary values of W.

(proof on board)

Trees and forests

Tree A graph \mathcal{G} such that each vertex has at most one child, and only one vertex (called the root) has no children.

Trees and forests

Tree A graph \mathcal{G} such that each vertex has at most one child, and only one vertex (called the root) has no children.

Forest A graph \mathcal{G} such that each vertex has at most one child.

C-components

Confounded path A path where all directed arrowheads point at observable vertices, and never away from observable vertices.

C-components

Confounded path A path where all directed arrowheads point at observable vertices, and never away from observable vertices.

C-component A graph $\mathcal G$ where any pair of observable vertices is connected by a confounded path.

Any graph can be uniquely partitioned into a collection of subgraphs $C(\mathcal{G})$, each which is a maximal C-component.

Any graph can be uniquely partitioned into a collection of subgraphs $C(\mathcal{G})$, each which is a maximal C-component.

$$C(\mathcal{G}) = ?$$

Any graph can be uniquely partitioned into a collection of subgraphs $C(\mathcal{G})$, each which is a maximal C-component.

$$C(\mathcal{G}) = \begin{cases} \mathcal{G}[A, B, D, E] \\ \mathcal{G}[C] \\ \mathcal{G}[F, G] \end{cases}$$

Any graph can be uniquely partitioned into a collection of subgraphs $C(\mathcal{G})$, each which is a maximal C-component.

$$C(\mathcal{G}) = \begin{cases} \mathcal{G}[A, B, D, E] \\ \mathcal{G}[C] \\ \mathcal{G}[F, G] \end{cases}$$

Lemma (c-component factorization) Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a causal graph. Let $C(\mathcal{G} \setminus \mathcal{X}) = \{\mathcal{S}_1, \dots, \mathcal{S}_k\}$. Then

$$\Pr(y \mid \frac{do(x)}{do(x)}) = \sum_{v \setminus (y \cup x)} \prod_{i} \Pr(s_i \mid v \setminus s_i)$$

Proof in (Tian, 2002)

Hedges

C-forest A graph $\mathcal G$ which is both a C-component and a forest. If a given C-forest has a set of root nodes $\mathcal R$, we call it $\mathcal R$ -rooted.

Hedges

C-forest A graph $\mathcal G$ which is both a C-component and a forest. If a given C-forest has a set of root nodes $\mathcal R$, we call it $\mathcal R$ -rooted.

Hedge Let $\mathcal{X}, \mathcal{X} \in \mathcal{V}$ in \mathcal{G} . Let $\mathcal{H}, \mathcal{H}'$ be two R-rooted C-forests in \mathcal{G} such that

- $ightharpoonup \mathcal{H}' \subset \mathcal{H},$
- $\blacktriangleright \mathcal{H} \cap X \neq \emptyset,$
- $\mathcal{H}' \cap X = \emptyset$, and
- ▶ $R \in An(Y)_{\mathcal{G}_{\underline{X}}}$.

Then \mathcal{H} and \mathcal{H}' form a <u>hedge</u> for P(y|do(x)).

Hedges and non-identifiability

Theorem (Hedge criterion for non-identifiability) $\Pr(y \mid do(x))$ is not identifiable if and only if \mathcal{G} contains a hedge for some $\Pr(y', do(x'))$, where $\mathcal{Y}' \in \mathcal{Y}$, $\mathcal{X}' \in \mathcal{X}$.

Algorithm 1 ID

```
Input: \mathcal{Y}, \mathcal{X}, \Pr(\mathcal{V}), \mathcal{G}
Output: do-free expression for Pr(y \mid do(x)) or FAIL(\mathcal{H}, \mathcal{H}')
  1. if \mathcal{X} = \emptyset then
            Return \sum_{\mathcal{V}\setminus\mathcal{V}} \Pr(\mathbf{v})
  3: if \mathcal{V} \neq An(\mathcal{Y})_{\mathcal{G}} then
             Return ID(y, x \cap An(\mathcal{Y})_{\mathcal{G}}, \sum_{\mathcal{V} \setminus An(\mathcal{V})_{\mathcal{G}}} Pr(\mathbf{v}), \mathcal{G}[An(\mathcal{Y})_{\mathcal{G}}])
  5: if \exists \mathcal{W} = (\mathcal{V} \setminus \mathcal{X}) \setminus An(Y)_{\mathcal{G}_{\overline{V}}} such that \widetilde{\mathcal{W}} \neq \emptyset then
             Return ID(y, x \cup w, P, \mathcal{G})
  7: if C(\mathcal{G} \setminus \mathcal{X}) = \{S_1, \dots, S_k\} (for k \ge 2) then
             Return \sum_{\mathcal{V}\setminus(\mathbf{v}\cup\mathbf{x})}\prod_{i}\mathbf{ID}(s_{i},\mathbf{v}\setminus s_{i},\mathsf{Pr}(\mathbf{v}),\mathcal{G})
  9: else if C(G \setminus X) = \{S\} then
         if C(\mathcal{G}) = \{\mathcal{G}\} then
10:
                  Return FAIL(\mathcal{G}, \mathcal{S})
11:
12.
         if S \in C(G) then
                  Return \sum_{s \sim v} \prod_{V_i \in S} \Pr(v_i | v_{\pi}^{(i-1)})
13:
            if \exists S', S \subseteq S' \in C(G) then
14.
                  Return ID(y, x \cap S', \prod_{V_i \in S'} \Pr(V_i \mid V_{\pi}^{(i-1)} \cap S', v_{\pi}^{(i-1)} \setminus S'), S')
15:
```

Algorithm 2 ID

```
Input: \mathcal{Y}, \mathcal{X}, \Pr(\mathcal{V}), \mathcal{G}
Output: do-free expression for Pr(y \mid do(x)) or FAIL(\mathcal{H}, \mathcal{H}')
  1 if \mathcal{X} = \emptyset then
  2: Return \sum_{v \mid v} \Pr(v)
  3: if \mathcal{V} \neq An(\mathcal{Y})_{\mathcal{G}} then
             Return ID(y, x \cap An(\mathcal{Y})_{\mathcal{G}}, \sum_{\mathcal{V} \setminus An(\mathcal{V})_{\mathcal{G}}} Pr(\mathbf{v}), \mathcal{G}[An(\mathcal{Y})_{\mathcal{G}}])
  5: if \exists \mathcal{W} = (\mathcal{V} \setminus \mathcal{X}) \setminus An(Y)_{\mathcal{G}_{\overline{V}}} such that \widetilde{\mathcal{W}} \neq \emptyset then
             Return ID(y, x \cup w, P, \mathcal{G})
  7: if C(\mathcal{G}\setminus\mathcal{X}) = \{S_1, \dots, S_k\} (for k \geq 2) then
             Return \sum_{\mathcal{V}\setminus(\mathbf{v}\cup\mathbf{x})}\prod_{i}\mathbf{ID}(s_{i},\mathbf{v}\setminus s_{i},\mathsf{Pr}(\mathbf{v}),\mathcal{G})
  9: else if C(\mathcal{G} \setminus \mathcal{X}) = \{\mathcal{S}\} then
            if C(\mathcal{G}) = \{\mathcal{G}\} then
10:
                  Return FAIL(\mathcal{G}, \mathcal{S})
11:
12.
         if S \in C(G) then
                  Return \sum_{s \sim v} \prod_{V_i \in S} \Pr(v_i | v_{\pi}^{(i-1)})
13:
            if \exists S', S \subseteq S' \in C(G) then
14:
                  Return ID(y, x \cap S', \prod_{V_i \in S'} \Pr(V_i \mid V_{\pi}^{(i-1)} \cap S', v_{\pi}^{(i-1)} \setminus S'), S')
15:
```

Trivial

Algorithm 3 ID

```
Input: \mathcal{Y}, \mathcal{X}, \Pr(\mathcal{V}), \mathcal{G}
Output: do-free expression for Pr(y \mid do(x)) or FAIL(\mathcal{H}, \mathcal{H}')
  1. if \mathcal{X} = \emptyset then
             Return \sum_{\mathcal{V}\setminus\mathcal{V}} \Pr(\mathbf{v})
  3: if \mathcal{V} \neq An(\mathcal{Y})_{\mathcal{G}} then
  4: Return ID(y, x \cap An(\mathcal{Y})_{\mathcal{G}}, \sum_{\mathcal{V} \setminus An(\mathcal{Y})_{\mathcal{G}}} Pr(v), \mathcal{G}[An(\mathcal{Y})_{\mathcal{G}}])
  5: if \exists \mathcal{W} = (\mathcal{V} \setminus \mathcal{X}) \setminus An(Y)_{\mathcal{G}_{\overline{V}}} such that \mathcal{W} \neq \emptyset then
             Return ID(y, x \cup w, P, \mathcal{G})
  7: if C(\mathcal{G} \setminus \mathcal{X}) = \{S_1, \dots, S_k\} (for k \ge 2) then
              Return \sum_{\mathcal{V}\setminus(\mathbf{v}\cup\mathbf{x})}\prod_{i}\mathbf{ID}(s_{i},\mathbf{v}\setminus s_{i},\mathsf{Pr}(\mathbf{v}),\mathcal{G})
  9: else if C(\mathcal{G} \setminus \mathcal{X}) = \{\mathcal{S}\} then
            if C(\mathcal{G}) = \{\mathcal{G}\} then
10:
                  Return FAIL(\mathcal{G}, \mathcal{S})
11:
12.
         if S \in C(G) then
                  Return \sum_{S \setminus V} \prod_{V_i \in S} \Pr(v_i | v_{\pi}^{(i-1)})
13:
             if \exists S', S \subseteq S' \in C(G) then
14:
                  Return ID(y, x \cap S', \prod_{V_i \in S'} \Pr(V_i \mid V_{\pi}^{(i-1)} \cap S', v_{\pi}^{(i-1)} \setminus S'), S')
15:
```

14:

15:

Algorithm 4 ID **Input:** $\mathcal{Y}, \mathcal{X}, \Pr(\mathcal{V}), \mathcal{G}$ **Output:** do-free expression for $Pr(y \mid do(x))$ or $FAIL(\mathcal{H}, \mathcal{H}')$ 1: if $\mathcal{X} = \emptyset$ then **Return** $\sum_{\mathcal{V}\setminus\mathcal{V}} \Pr(\mathcal{V})$ 3: if $\mathcal{V} \neq An(\mathcal{Y})_{\mathcal{G}}$ then **Return ID** $(y, x \cap An(\mathcal{Y})_{\mathcal{G}}, \sum_{\mathcal{V} \setminus An(\mathcal{Y})_{\mathcal{G}}} Pr(\mathbf{v}), \mathcal{G}[An(\mathcal{Y})_{\mathcal{G}}])$ 5: if $\exists \mathcal{W} = (\mathcal{V} \setminus \mathcal{X}) \setminus An(Y)_{\mathcal{G}_{\nabla}}$ such that $\mathcal{W} \neq \emptyset$ then 6: **Return ID** $(y, x \cup w, P, \mathcal{G})$ 7: **if** $C(\mathcal{G} \setminus \mathcal{X}) = \{S_1, \dots, S_k\}$ (for $k \ge 2$) **then Return** $\sum_{\mathcal{V}\setminus(\mathbf{v}\cup\mathbf{x})}\prod_{i}\mathbf{ID}(s_{i},\mathbf{v}\setminus s_{i},\mathsf{Pr}(\mathbf{v}),\mathcal{G})$ 9: else if $C(\mathcal{G}\backslash\mathcal{X}) = \{\mathcal{S}\}$ then 10: if $C(\mathcal{G}) = \{\mathcal{G}\}$ then Return FAIL(G, S)11. if $S \in C(G)$ then 12: **Return** $\sum_{s \sim v} \prod_{V_i \in S} \Pr(v_i | v_{\pi}^{(i-1)})$ 13:

Return ID $(y, x \cap S', \prod_{V_i \in S'} \Pr(V_i \mid V_{\pi}^{(i-1)} \cap S', v_{\pi}^{(i-1)} \setminus S'), S')$ Lemma (adding do on non-ancestors)

if $\exists S', S \subseteq S' \in C(G)$ then

Algorithm 5 ID **Input:** $\mathcal{Y}, \mathcal{X}, \Pr(\mathcal{V}), \mathcal{G}$ **Output:** do-free expression for $Pr(y \mid do(x))$ or $FAIL(\mathcal{H}, \mathcal{H}')$ 1: if $\mathcal{X} = \emptyset$ then **Return** $\sum_{\mathcal{V}\setminus\mathcal{V}} \Pr(\mathbf{v})$ 3: if $\mathcal{V} \neq An(\mathcal{Y})_{\mathcal{G}}$ then **Return ID** $(y, x \cap An(\mathcal{Y})_{\mathcal{G}}, \sum_{\mathcal{V} \setminus An(\mathcal{Y})_{\mathcal{G}}} Pr(\mathbf{v}), \mathcal{G}[An(\mathcal{Y})_{\mathcal{G}}])$ 5: if $\exists W = (V \setminus X) \setminus An(Y)_{\mathcal{G}_{\nabla}}$ such that $W \neq \emptyset$ then **Return ID** $(y, x \cup w, P, \mathcal{G})$ 7: if $C(G \setminus X) = \{S_1, \dots, S_k\}$ (for $k \ge 2$) then **Return** $\sum_{\mathcal{V}\setminus(\mathcal{V}\cup\mathcal{X})}\prod_{i}\mathbf{ID}(s_{i},\mathcal{V}\setminus s_{i},\mathsf{Pr}(\mathcal{V}),\mathcal{G})$ 9: else if $C(\mathcal{G} \setminus \mathcal{X}) = \{\mathcal{S}\}$ then 10: if $C(\mathcal{G}) = \{\mathcal{G}\}$ then Return FAIL(G, S)11. if $S \in C(G)$ then 12: **Return** $\sum_{s \sim v} \prod_{V_i \in S} \Pr(v_i | v_{\pi}^{(i-1)})$ 13: if $\exists S', S \subseteq S' \in C(G)$ then 14: **Return ID** $(y, x \cap S', \prod_{V_i \in S'} \Pr(V_i \mid V_{\pi}^{(i-1)} \cap S', v_{\pi}^{(i-1)} \setminus S'), S')$ 15:

Lemma (c-component factorization)

Algorithm 6 ID

```
Input: \mathcal{Y}, \mathcal{X}, \Pr(\mathcal{V}), \mathcal{G}
Output: do-free expression for Pr(y \mid do(x)) or FAIL(\mathcal{H}, \mathcal{H}')
  1: if \mathcal{X} = \emptyset then
            Return \sum_{\mathcal{V}\setminus\mathcal{V}} \Pr(\mathbf{v})
  3: if \mathcal{V} \neq An(\mathcal{Y})_{\mathcal{G}} then
            Return ID(y, x \cap An(\mathcal{Y})_{\mathcal{G}}, \sum_{\mathcal{V} \setminus An(\mathcal{Y})_{\mathcal{G}}} Pr(\mathbf{v}), \mathcal{G}[An(\mathcal{Y})_{\mathcal{G}}])
  5: if \exists W = (V \setminus X) \setminus An(Y)_{\mathcal{G}_{\nabla}} such that W \neq \emptyset then
            Return ID(y, x \cup w, P, \mathcal{G})
  7: if C(\mathcal{G} \setminus \mathcal{X}) = \{S_1, \dots, S_k\} (for k \ge 2) then
             Return \sum_{\mathcal{V}\setminus(\mathcal{V}\cup\mathcal{X})}\prod_{i}\mathbf{ID}(s_{i},\mathcal{V}\setminus s_{i},\mathsf{Pr}(\mathcal{V}),\mathcal{G})
  9: else if C(\mathcal{G} \setminus \mathcal{X}) = \{\mathcal{S}\} then
10:
        if C(\mathcal{G}) = \{\mathcal{G}\} then
                 Return FAIL(G, S)
11:
        if S \in C(G) then
12:
                 Return \sum_{s \sim v} \prod_{V_i \in S} \Pr(v_i | v_{\pi}^{(i-1)})
13:
            if \exists S', S \subseteq S' \in C(G) then
14:
                 Return ID(y, x \cap S', \prod_{V_i \in S'} \Pr(V_i \mid V_{\pi}^{(i-1)} \cap S', v_{\pi}^{(i-1)} \setminus S'), S')
15:
```

Algorithm 7 ID

```
Input: \mathcal{Y}, \mathcal{X}, \Pr(\mathcal{V}), \mathcal{G}
Output: do-free expression for Pr(y \mid do(x)) or FAIL(\mathcal{H}, \mathcal{H}')
  1: if \mathcal{X} = \emptyset then
             Return \sum_{\mathcal{V}\setminus\mathcal{V}} \Pr(\mathbf{v})
  3: if \mathcal{V} \neq An(\mathcal{Y})_{\mathcal{G}} then
             Return ID(y, x \cap An(\mathcal{Y})_{\mathcal{G}}, \sum_{\mathcal{V} \setminus An(\mathcal{Y})_{\mathcal{G}}} Pr(\mathbf{v}), \mathcal{G}[An(\mathcal{Y})_{\mathcal{G}}])
  5: if \exists W = (V \setminus X) \setminus An(Y)_{\mathcal{G}_{\nabla}} such that W \neq \emptyset then
             Return ID(y, x \cup w, P, \mathcal{G})
  7: if C(\mathcal{G} \setminus \mathcal{X}) = \{S_1, \dots, S_k\} (for k \ge 2) then
             Return \sum_{\mathcal{V}\setminus(\mathbf{v}\cup\mathbf{x})}\prod_{i}\mathbf{ID}(s_{i},\mathbf{v}\setminus s_{i},\mathsf{Pr}(\mathbf{v}),\mathcal{G})
  9: else if C(\mathcal{G} \setminus \mathcal{X}) = \{\mathcal{S}\} then
10: if C(\mathcal{G}) = \{\mathcal{G}\} then
11: Return FAIL(\mathcal{G}, \mathcal{S})
12: if S \in C(G) then
                  Return \sum_{s \sim v} \prod_{V_i \in S} \Pr(v_i | v_{\pi}^{(i-1)})
13:
             if \exists S', S \subseteq S' \in C(G) then
14:
                  Return ID(y, x \cap S', \prod_{V_i \in S'} \Pr(V_i \mid V_{\pi}^{(i-1)} \cap S', v_{\pi}^{(i-1)} \setminus S'), S')
15:
```

Theorem (Hedge criterion for non-identifiability)

Algorithm 8 ID **Input:** $\mathcal{Y}, \mathcal{X}, \Pr(\mathcal{V}), \mathcal{G}$ **Output:** do-free expression for $Pr(y \mid do(x))$ or $FAIL(\mathcal{H}, \mathcal{H}')$ 1: if $\mathcal{X} = \emptyset$ then **Return** $\sum_{\mathcal{V}\setminus\mathcal{V}} \Pr(\mathbf{v})$ 3: if $\mathcal{V} \neq An(\mathcal{Y})_{\mathcal{G}}$ then **Return ID** $(y, x \cap An(\mathcal{Y})_{\mathcal{G}}, \sum_{\mathcal{V} \setminus An(\mathcal{Y})_{\mathcal{G}}} Pr(\mathbf{v}), \mathcal{G}[An(\mathcal{Y})_{\mathcal{G}}])$ 5: if $\exists W = (V \setminus X) \setminus An(Y)_{\mathcal{G}_{\nabla}}$ such that $W \neq \emptyset$ then **Return ID** $(y, x \cup w, P, \mathcal{G})$ 7: **if** $C(\mathcal{G} \setminus \mathcal{X}) = \{S_1, \dots, S_k\}$ (for $k \ge 2$) **then Return** $\sum_{\mathcal{V}\setminus(\mathbf{v}\cup\mathbf{x})}\prod_{i}\mathbf{ID}(s_{i},\mathbf{v}\setminus s_{i},\mathsf{Pr}(\mathbf{v}),\mathcal{G})$ 9: else if $C(\mathcal{G} \setminus \mathcal{X}) = \{\mathcal{S}\}$ then 10: if $C(\mathcal{G}) = \{\mathcal{G}\}$ then Return FAIL(G, S)11. 12: if $S \in C(G)$ then **Return** $\sum_{S \setminus V} \prod_{V_i \in S} \Pr(v_i | v_{\pi}^{(i-1)})$ 13: if $\exists S', S \subseteq S' \in C(G)$ then 14: **Return ID** $(y, x \cap S', \prod_{V_i \in S'} \Pr(V_i \mid V_{\pi}^{(i-1)} \cap S', v_{\pi}^{(i-1)} \setminus S'), S')$ 15:

Proof in (Shpitser and Pearl, 2006)

Algorithm 9 ID

```
Input: \mathcal{Y}, \mathcal{X}, \Pr(\mathcal{V}), \mathcal{G}
Output: do-free expression for Pr(y \mid do(x)) or FAIL(\mathcal{H}, \mathcal{H}')
  1: if \mathcal{X} = \emptyset then
            Return \sum_{\mathcal{V}\setminus\mathcal{V}} \Pr(\mathbf{v})
  3: if \mathcal{V} \neq An(\mathcal{Y})_{\mathcal{G}} then
            Return ID(y, x \cap An(\mathcal{Y})_{\mathcal{G}}, \sum_{\mathcal{V} \setminus An(\mathcal{Y})_{\mathcal{G}}} Pr(\mathbf{v}), \mathcal{G}[An(\mathcal{Y})_{\mathcal{G}}])
  5: if \exists W = (V \setminus X) \setminus An(Y)_{\mathcal{G}_{\nabla}} such that W \neq \emptyset then
            Return ID(y, x \cup w, P, \mathcal{G})
  7: if C(\mathcal{G} \setminus \mathcal{X}) = \{S_1, \dots, S_k\} (for k \ge 2) then
             Return \sum_{\mathcal{V}\setminus(\mathbf{v}\cup\mathbf{x})}\prod_{i}\mathbf{ID}(s_{i},\mathbf{v}\setminus s_{i},\mathsf{Pr}(\mathbf{v}),\mathcal{G})
  9: else if C(\mathcal{G} \setminus \mathcal{X}) = \{\mathcal{S}\} then
10:
           if C(G) = \{G\} then
                 Return FAIL(G, S)
11.
         if S \in C(G) then
12:
                 Return \sum_{s \sim v} \prod_{V_i \in S} \Pr(v_i | v_{\pi}^{(i-1)})
13:
            if \exists S', S \subseteq S' \in C(G) then
14:
                 Return ID(y, x \cap S', \prod_{V_i \in S'} \Pr(V_i \mid V_{\pi}^{(i-1)} \cap S', v_{\pi}^{(i-1)} \setminus S'), S')
15:
```

Proof in (Shpitser and Pearl, 2006)

Completeness of ID algorithm

Theorem (Soudness of the ID algorithm) Whenever the ID algorithm returns an expression for $Pr(y \mid do(x))$, it is correct.

Partially proved in the previous slides.

Completeness of ID algorithm

Theorem (Soudness of the ID algorithm) Whenever the ID algorithm returns an expression for $Pr(y \mid do(x))$, it is correct.

Partially proved in the previous slides.

Theorem (Completeness of ID algorithm) ID is complete.

Proof in (Shpitser and Pearl, 2006)

Table of content

Preliminaries

Do-calculus

The ID algorithm

Conclusion

Exercises

Conclusion

do calculus is complete;

▶ The ID algorithm is complete.

Conclusion

do calculus is complete;

► The ID algorithm is complete.

Some extensions

The IDC algorithm that support conditioning;

Finding optimal adjustment sets;

Identifiability for direct effects and indirect effects

Some extensions

The IDC algorithm that support conditioning;

Finding optimal adjustment sets;

▶ Identifiability for direct effects and indirect effects.

Some extensions

The IDC algorithm that support conditioning;

Finding optimal adjustment sets;

Identifiability for direct effects and indirect effects.

References

Direct inspirations

- Causal diagrams for empirical research, J. Pearl. Biometrika, 1995
- Identification of Joint Interventional Distributions in Recursive Semi-Markovian Causal Models, I. Shpitser, J. Pearl. Proceedings of the Twenty National Conference on Artificial Intelligence, 2006
- 3. Complete Identification Methods for the Causal Hierarchy, I. Shpitser, J. Pearl. Journal of Machine Learning Research, 2008
- 4. Studies in Causal Reasoning and Learning, J. Tian. PhD thesis, 2002
- Causality, J. Pearl. Cambridge University Press, 2nd edition, 2009

Consider the following semi-Markovian model:

Test, using do-calculus, whether the causal effect

$$P(y \mid do(r))$$

Consider the following semi-Markovian model:

Test, using do-calculus, whether the causal effect

$$P(r \mid do(y))$$

Consider the following semi-Markovian model:

Test, using do-calculus, whether the causal effect

$$P(y \mid do(r), do(s))$$

Consider the following semi-Markovian model:

Test, using do-calculus, whether the causal effect

$$P(r \mid do(x), do(z))$$

Consider the following semi-Markovian model:

Test, using do-calculus, whether the causal effect

$$P(s \mid do(x), do(z))$$

Consider the following semi-Markovian model:

Test, using do-calculus, whether the causal effect

$$P(r, s \mid do(x), do(z))$$

Consider the following semi-Markovian model:

Test, using do-calculus, whether the causal effect

$$P(y \mid do(x), do(z))$$

Exercise 2

Which of the following semi-Markovian models admet an identifiable causal effect $Pr(y \mid do(x))$?

Exercise 3

Consider the following semi-Markovian model containing a hedge for $Pr(y \mid do(x))$:

- Is it possible to remove the hedge by adding one directed edge to the graph? If yes, which one?
- Is it possible to remove the hedge by deleting one directed edge from the graph? If yes, which one?