David Corzo Diferencial, section B, Spring 2019 Instructor: Christiaan Ketelaar

Current Score: 39 / 33 Due: Friday, March 22, 2019 11:59 PM CSTLast Saved: n/a Saving... ()

The due date for this assignment is past. Your work can be viewed below, but no changes can be made.

Important! Before you view the answer key, decide whether or not you plan to request an extension. Your Instructor may *not* grant you an extension if you have viewed the answer key. Automatic extensions are not granted if you have viewed the answer key.

Request Extension

1. 2/2 points | Previous Answers SCalcET8 3.4.003.

Write the composite function in the form f(g(x)). [Identify the inner function u = g(x) and the outer function y = f(u).]

$$y = \tan(\pi x)$$

$$(g(x), f(u)) = \left($$

$$\$\$ \pi x, \tan(u)$$

$$\checkmark \pi x, \tan(u)$$

Find the derivative dy/dx.

$$\frac{dy}{dx} =$$

$$\$\$sec2(\pi x)(\pi)$$

Solution or Explanation

Let
$$u=g(x)=\pi x$$
 and $y=f(u)=\tan(u)$. Then $\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}=(\sec^2(u))(\pi)=\pi\sec^2(\pi x)$.

2. 1/1 points | Previous Answers SCalcET8 3.4.007.

Find the derivative of the function.

Solution or Explanation

$$F(x) = (3x^6 + 4x^3)^4 \Rightarrow F'(x) = 4(3x^6 + 4x^3)^3 \cdot \frac{d}{dx}(3x^6 + 4x^3) = 4(3x^6 + 4x^3)^3(18x^5 + 12x^2)$$
. We can factor as follows: $4(x^3)^3(3x^3 + 4)^36x^2(3x^3 + 2) = 24x^{11}(3x^3 + 4)^3(3x^3 + 2)$.

3. 1/1 points | Previous AnswersSCalcET8 3.4.011

Find the derivative of the function.

$$f(\theta) = \cos(\theta^2)$$

$$f'(\theta) =
\$\$-\sin(\theta^2)2\theta$$

$$-2\theta\sin(\theta^2)$$

Solution or Explanation

$$f(\theta) = \cos(\theta^2) \quad \Rightarrow \quad f'(\theta) = -\sin(\theta^2) \cdot \frac{d}{d\theta} (\theta^2) = -\sin(\theta^2) \cdot (2\theta) = -2\theta \sin(\theta^2)$$

4. 1/1 points | Previous Answers SCalcET8 3.4.021.

Find the derivative of the function.

Solution or Explanation

$$y = \sqrt{\frac{x}{x+9}} = \left(\frac{x}{x+9}\right)^{1/2} \Rightarrow$$

$$y' = \frac{1}{2} \left(\frac{x}{x+9}\right)^{-1/2} \frac{d}{dx} \left(\frac{x}{x+9}\right) = \frac{1}{2} \left(\frac{x^{-1/2}}{(x+9)^{-1/2}}\right) \left(\frac{(x+9)(1) - x(1)}{(x+9)^2}\right)$$

$$= \frac{1}{2} \left(\frac{(x+9)^{1/2}}{x^{1/2}}\right) \left(\frac{9}{(x+9)^2}\right) = \frac{9}{2\sqrt{x}(x+9)^{3/2}}$$

5. 1/1 points | Previous Answers SCalcET8 3.4.023.

Find the derivative of the function.

Solution or Explanation

$$y = e^{\tan(\theta)} \Rightarrow y' = e^{\tan(\theta)} \frac{d}{d\theta} (\tan(\theta)) = (\sec^2(\theta))e^{\tan(\theta)}$$

6. 1/1 points | Previous AnswersSCalcET8 3.4.031.

Find the derivative of the function.

$$F(t) = e^{3t\sin(2t)}$$

$$F'(t) = $\$e3t\sin(2t)(3\sin(2t)+6t\cos(2t))$$

$$e^{3t\sin(2t)}(6t\cos(2t)+3\sin(2t))$$

Solution or Explanation

By the example,
$$F(t) = e^{3t\sin(2t)} \Rightarrow F'(t) = e^{3t\sin(2t)}(3t\sin(2t))' = e^{3t\sin(2t)}(3t\cdot 2\cos(2t) + \sin(2t)\cdot 3) = e^{3t\sin(2t)}(6t\cos(2t) + 3\sin(2t))$$

7. 1/1 points | Previous Answers SCalcET8 3.4.041.

Find the derivative of the function.

$$f(t) = \cos^{2}(e^{\cos^{2}(t)})$$

$$f'(t) =$$

$$\$\$2(\cos(e\cos 2(t)))(-\sin(e\cos 2(t)))(e\cos 2(t))(2\cos(t))(-\sin(t))$$

$$4\cos\left(e^{\cos^{2}(t)}\right)\sin\left(e^{\cos^{2}(t)}\right)e^{\cos^{2}(t)}\cos\left(t\right)\sin\left(t\right)$$

Solution or Explanation

Click to View Solution

8. 1/0 points | Previous Answers SCalcET8 3.4.042.

Find the derivative of the function.

$$y = \sqrt{7x + \sqrt{7x + \sqrt{7x}}}$$

$$y' =
\$\$\{12\sqrt{7x + \sqrt{7x} + \sqrt{7x}} \{7 + 7 + 72\sqrt{7x} 2\sqrt{7x} + \sqrt{7x}\}\}$$

$$\frac{\frac{1}{2}\sqrt{7}\sqrt{\frac{1}{x} + 7}}{\sqrt{\frac{1}{x} + 7}} + 7$$

Solution or Explanation

9. 2/2 points | Previous Answers SCalcET8 3.4.050.

Find y' and y''.

$$y = e^{4e^x}$$

\$\$(e4ex)(4ex)

 $y' = 4e^{x+4e^x}$

\$\$(e4ex)(4ex)(4ex)+(e4ex)(4ex)

 $y'' = 4e^{x+4e^x}$

Solution or Explanation

Click to View Solution

10.1/1 points | Previous Answers SCalcET8 3.4.053.

Find an equation of the tangent line to the curve at the given point.

$$y = \sin(\sin(x)), (\pi, 0)$$

$$\$\$y = -1(x - \pi)$$

$$y = \pi - x$$

Solution or Explanation

Click to View Solution

11.1/1 points | Previous Answers SCalcET8 3.4.062.

If
$$h(x) = \sqrt{7 + 6f(x)}$$
, where $f(4) = 7$ and $f'(4) = 3$, find $h'(4)$.
 $h'(4) = 9/7$ $9/7$

Solution or Explanation

12.2/2 points | Previous AnswersSCalcET8 3.4.069.

Suppose f is differentiable on \mathbb{R} . Let $F(x) = f(e^x)$ and $G(x) = e^{f(x)}$. Find expressions for the following.

Solution or Explanation

(a)
$$F(x) = f(e^x)$$
 \Rightarrow $F'(x) = f'(e^x) \frac{d}{dx} (e^x) = f'(e^x) e^x$

(b)
$$G(x) = e^{f(x)} \Rightarrow G'(x) = e^{f(x)} \frac{d}{dx} f(x) = e^{f(x)} f'(x)$$

13.1/1 points | Previous Answers SCalcET8 3.4.073.

If
$$F(x) = f(6f(4f(x)))$$
, where $f(0) = 0$ and $f'(0) = 1$, find $F'(0)$. $F'(0) = 24$

Solution or Explanation

Click to View Solution

14.1/0 points | Previous Answers SCalcET8 3.4.079.

The displacement of a particle on a vibrating string is given by the equation $s(t) = 3 + \frac{1}{4}\sin(3\pi t)$ where s is measured in centimeters and t in seconds. Find the velocity of the particle after t seconds.

Solution or Explanation

15.1/0 points | Previous Answers SCalcET8 3.4.071.

Let
$$r(x) = f(g(h(x)))$$
, where $h(1) = 3$, $g(3) = 5$, $h'(1) = 3$, $g'(3) = 3$, and $f'(5) = 5$. Find $r'(1)$. $r'(1) = 45$

Solution or Explanation

16.3/3 points | Previous Answers SCalcET8 3.4.083.MI.

The motion of a spring that is subject to a frictional force or a damping force (such as a shock absorber in a car) is often modeled by the product of an exponential function and a sine or cosine function. Suppose the equation of motion of a point on such a spring is

$$s(t) = 4e^{-1.6t}\sin(2\pi t)$$

where s is measured in centimeters and t in seconds. Find the velocity after t seconds.

 $v(t) = $$4[e-1.6t(-1.6)(sin(2\pi t))+e-1.6t(cos(2\pi t)(2\pi))]$

$$4e^{-1.6t} \left(2\pi \cos(2\pi t) - 1.6\sin(2\pi t)\right)$$

Graph the position function for $0 \le t \le 2$.

Graph the velocity function for $0 \le t \le 2$.

Solution or Explanation Click to View Solution

17.1/1 points | Previous Answers SCalcET8 3.4.505.XP.

Find the derivative of the function.

$$y = \left(\frac{x^2 + 2}{x^2 - 2}\right)^6$$

$$y' = $$$ $$ $$ $$ $x2+2x2-2$ $$ [(2x)(x2-2)-(x2+2)(2x)(x2-2)2] $$$ $$ $$ $$ $$ $\frac{-48x(x^2+2)^5}{(x^2-2)^7} $$ $$$$

Solution or Explanation Click to View Solution

18.2/2 points | Previous Answers SCalcET8 3.4.515.XP.

Find the derivative of the function.

$$y = \cos(\cos(\cos(x)))$$

$$y' =$$

$$\$\$[-\sin(\cos(\cos(x)))][-\sin(\cos(x))][-\sin(x)]$$

$$-\sin(\cos(\cos(x)))\sin(\cos(x))\sin(x)$$

Solution or Explanation Click to View Solution 19.1/0 points | Previous Answers SCalcET8 3.4.516.XP.

Find the derivative of the function.

$$y = 5^{4^{x^2}}$$

$$y' = $$$[54x2ln(5)][4x2ln(4)][2x]$$

$$5^{4^{x^2}} \ln(5) 4^{x^2} \ln(4) (2x)$$

Solution or Explanation

Click to View Solution

20.2/2 points | Previous Answers SCalcET8 3.5.001.

Consider the following equation.

$$4x^2 - v^2 = 3$$

(a) Find y' by implicit differentiation.

$$y' = $$$-8x-2y$$

$$4x$$

$$y$$

(b) Solve the equation explicitly for y and differentiate to get y' in terms of x.

$$y' = \pm$$
\$\$[12(4x2-3)-12][8x]
$$\frac{4x}{\sqrt{4x^2 - 3}}$$

Solution or Explanation

(a)
$$\frac{d}{dx}(4x^2 - y^2) = \frac{d}{dx}(3) \Rightarrow 8x - 2yy' = 0 \Rightarrow 2yy' = 8x \Rightarrow y' = \frac{4x}{y}$$

(b)
$$4x^2 - y^2 = 3 \Rightarrow y^2 = 4x^2 - 3 \Rightarrow y = \pm \sqrt{4x^2 - 3}$$
, so $y' = \pm \frac{1}{2}(4x^2 - 3)^{-1/2}(8x) = \pm \frac{4x}{\sqrt{4x^2 - 3}}$.

From part (a), $y' = \frac{4x}{y} = \frac{4x}{\pm \sqrt{4x^2 - 3}}$, which agrees with part (b).

21.1/1 points | Previous AnswersSCalcET8 3.5.005.

Find dy/dx by implicit differentiation.

$$x^{2} - 8xy + y^{2} = 8$$

$$y' =$$

$$\$\$8y - 2x - 8x + 2y$$

$$4y - x$$

$$y - 4x$$

Solution or Explanation

$$\frac{d}{dx}(x^2 - 8xy + y^2) = \frac{d}{dx}(4) \implies 2x - 8[xy' + y(1)] + 2yy' = 0$$

$$\implies 2yy' - 8xy' = 8y - 2x$$

$$\implies y'(2y - 8x) = 8y - 2x$$

$$\implies y' = \frac{4y - x}{y - 4x}$$

22.1/1 points | Previous Answers SCalcET8 3.5.011.

Find dy/dx by implicit differentiation.

$$y \cos(x) = 3x^{2} + 2y^{2}$$

$$y' =$$

$$\$\$6x + y\sin(x)\cos(x) - 4y$$

$$y\sin(x) + 6x$$

$$\cos(x) - 4y$$

Solution or Explanation

$$\frac{d}{dx}(y\cos(x)) = \frac{d}{dx}(3x^2 + 2y^2) \Rightarrow y(-\sin(x)) + \cos(x) \cdot y' = 6x + 4yy' \Rightarrow \cos(x) \cdot y' - 4yy' = 6x + y\sin(x) \Rightarrow$$

$$y'(\cos(x) - 4y) = 6x + y\sin(x) \Rightarrow y' = \frac{6x + y\sin(x)}{\cos(x) - 4y}$$

23.2/0 points | Previous Answers SCalcET8 3.5.020.

Find dy/dx by implicit differentiation.

$$\tan(x - y) = \frac{y}{9 + x^2}$$

$$y' = \frac{\$x4\sec(x-y) + 18x2\sec(x-y) + 81\sec(x-y) + 2xyx2 + 9 + x4\sec(x-y) + 18x2\sec(x-y) + 81\sec(x-y)}{1 + (9 + x^2)\sec^2(x - y)}$$

$$\frac{(9 + x^2)\sec^2(x - y) + 2x\tan(x - y)}{1 + (9 + x^2)\sec^2(x - y)}$$

Solution or Explanation

24.1/1 points | Previous Answers SCalcET8 3.5.025.

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

$$y \sin(12x) = x \cos(2y), \quad (\pi/2, \pi/4)$$

 $y =$
 $\$\$-3(x-\pi 2)+\pi 4$
 $-3x + \frac{7}{4}\pi$

Solution or Explanation

$$y \sin(\frac{12x}{2}) = x \cos(2y) \Rightarrow y \cdot \cos(\frac{12x}{2}) \cdot \frac{12}{2} + \sin(\frac{12x}{2}) \cdot y' = x(-\sin(2y) \cdot 2y') + \cos(2y) \cdot 1 \Rightarrow \sin(\frac{12x}{2}) \cdot y' + 2x \sin(2y) \cdot y' = -\frac{12y}{2} \cos(\frac{12x}{2}) + \cos(2y) \Rightarrow y'(\sin(\frac{12x}{2}) + 2x \sin(2y)) = -\frac{12y}{2} \cos(\frac{12x}{2}) + \cos(2y) \Rightarrow y'' = \frac{-\frac{12y}{2} \cos(\frac{12x}{2}) + \cos(2y)}{\sin(\frac{12x}{2}) + 2x \sin(2y)}.$$
 When $x = \frac{\pi}{2}$ and $y = \frac{\pi}{4}$, we have $y' = \frac{(-3\pi)(1) + 0}{0 + \pi \cdot 1} = \frac{-3\pi}{\pi} = -3$, so an equation of the tangent line is $y - \frac{\pi}{4} = -3\left(x - \frac{\pi}{2}\right)$, or $y = -3x + \frac{7}{4}\pi$.

25.1/1 points | Previous Answers SCalcET8 3.5.029.

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

$$x^2 + y^2 = (4x^2 + 2y^2 - x)^2$$

(0, 0.5)
(cardioid)

Solution or Explanation

26.1/1 points | Previous Answers SCalcET8 3.5.030.

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

$$x^{2/3} + y^{2/3} = 4$$

(-3 $\sqrt{3}$, 1)
(astroid)

Solution or Explanation

Click to View Solution

27.1/1 points | Previous Answers SCalcET8 3.5.035.

Find y'' by implicit differentiation.

$$x^{2} + 4y^{2} = 4$$
 $y'' = $$$-14y3$

Solution or Explanation

$$x^{2} + 4y^{2} = 4 \implies 2x + 8yy' = 0$$

$$\Rightarrow y' = -x/(4y)$$

$$\Rightarrow y'' = -\frac{1}{4} \frac{y \cdot 1 - x \cdot y'}{y^{2}} = -\frac{1}{4} \frac{y - x[-x/(4y)]}{y^{2}} = -\frac{1}{4} \frac{4y^{2} + x^{2}}{4y^{3}} = -\frac{1}{4} \frac{4}{4y^{3}}$$
[since x and y must satisfy the]

since x and y must satisfy the original equation $x^2 + 4y^2 = 4$

Thus,
$$y'' = -\frac{1}{4y^3}$$
.

28.0/0 points | Previous Answers SCalcET8 3.5.040.

If
$$x^2 + xy + y^3 = 1$$
, find the value of y''' at the point where $x = 1$. $$$$2(27y4-81y3+6y2+12y-1)(3y2+1)4$

Solution or Explanation

If x = 1 in $x^2 + xy + y^3 = 1$, then we get $1 + y + y^3 = 1 \Rightarrow y^3 + y = 0 \Rightarrow y(y^2 + 1) \Rightarrow y = 0$, so the point where x = 1 is (1, 0). Differentiating implicitly with respect to x gives us $2x + xy' + y \cdot 1 + 3y^2 \cdot y' = 0$. Substituting 1 for x and 0 for y gives us $2 + y' + 0 + 0 = 0 \Rightarrow y' = -2$. Differentiating $2x + xy' + y + 3y^2y' = 0$ implicitly with respect to x gives us $2 + xy'' + y' \cdot 1 + y' + 3(y^2y'' + y' \cdot 2yy') = 0$. Now substitute 1 for x, 0 for y, and y = 0 implicitly with respect to y = 0 implicitly with respect to y = 0 implicitly with respect to y = 0 in the content of y = 0 in the content of y = 0 implicitly with respect to y = 0 in the content of y = 0 in t

29.3/3 points | Previous Answers SCalcET8 3.5.502.XP.

Consider the following.

$$cos(x) + \sqrt{y} = 6$$

(a) Find y' by implicit differentiation.

$$y' = $$$sin(x)12(y)-12$$

$$2\sqrt{y}\sin(x)$$

(b) Solve the equation explicitly for y and differentiate to get y' in terms of x.

(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part (a).

$$y' = $$$sin(x)12((6-cos(x))2)-12$$

$$2 \sin(x) (6-cos(x))$$

Solution or Explanation

30.1/1 points | Previous Answers SCalcET8 3.5.508.XP.

Find dy/dx by implicit differentiation.

```
5 \cos(x) \sin(y) = 1
y' = $$5\sin(x)\sin(y)5\cos(x)\cos(y)
\tan(x)\tan(y)
```

Solution or Explanation Click to View Solution