ELMO & BERT

Transfer learning for NLP

TRANSFER LEARNING

ELMO

Forward language model $p(x_t|x_{t-1}, x_{t-2}, x_{t-3})$ Backward language model $p(x_t|x_{t+1}, x_{t+2}, x_{t+3})$

ELMO

The quick fox jumped over the log.

At every token x_k

$$R_k = \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\}$$
$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

Loss

$$\sum_{k=1}^{N} (\log p(t_k \mid t_1, \dots, t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k \mid t_{k+1}, \dots, t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s)).$$

ELMO can be fine-tuned on different tasks

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}.$$

- y^{task} determines how much a task is important
- s_j^{task} how layer j is important for task

ELMO

Whenever we train a classifier on top of ELMO:

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}.$$

- task becomes fixed
- s_i task gets fine-tuned

BERT

Is a transformer encoder

Trained on:

- Masked Language Model
 - The ice cream was [MASK] .
- Sentence Adjacency
 - Is B successor of A

