5	عناصر الإجابة (الموضوع الأ
مجزأة مجموع	
ن:(04 نقاط)	التمرين الأول
0.25	f'(0) = 1
0.25	$\frac{f'(0)=1}{\lim_{x \to -\infty} f(x)=-1} $ (1
0.5	(T): y = x
0.25.2	المعادلة لا تقبل حلا $m < 0$
0.75 0.25×3	المعادلة تقبل حلين متمايزين $m>0$ (2
	المعادلة تقبل حلا معدوما $m=0$
	a=1 $b=-1$ تبيان أنّ
01 0.5+0.5	$f'(x) = (x^2 + 2x + a)e^x$
	$\begin{cases} a=1 \\ b=-1 \end{cases} \begin{cases} f'(0)=1 \\ \lim_{x\to -\infty} f(x)=b \end{cases} $ (3
	$b = -1 \qquad \lim_{x \to -\infty} f(x) = b$
0.50	الدالة 8 زوجية
	$g(x) = f(x) \qquad x \in [0; +\infty[$
متناظر بالنسبة لحامل متناظر بالنسبة لحامل متناظر بالنسبة لحامل متناظر بالنسبة لحامل (C_g)) ينطبق على (C_f) في المجال (C_g)
	$(C_{arepsilon})$ محور الفواصل
3	
1.25	(4
	,
\1\/	
0.5	
2 -1 0	1 2
ے: (04 نقاط)	التمرين الثاني
0.50	$\lim_{x \to +\infty} (f(x) - (x-1)) = 0$ صحيحة لأن: (1
01 0.50	$x \rightarrow +\infty$
0.50	$x = 1$ of $x^2 = 1$ (2)
0.50	$x=1$ خاطئة لأن (E) : معناه $\begin{cases} x^2=1 \\ x>1/2 \end{cases}$
0.50 $F'(x) = f$	$\mathbf{C}(x):\mathbb{R}$ من x من أجل كل x من x صحيحة لأن x
0.50	
0.50	4) خاطئة لأن
0.50 $\ln u_1 + \ln u_2 + \dots + \ln u_n$	$u_{2022} = \ln \frac{2 \times 3 \times \times 2023}{1 \times 2 \times \times 2022} = \ln 2023$

التدريد الثلاث (50 نقاط)			
01	0.25×4	(שוב פני בי מון וווות פיני ווווות פיני וווות פיני ווווות פיני וווות פיני ו	(1
01	0.25 0.50	التبرير: $u_1>u_2$ و $u_0< u_1$	(2
	0.25	$(u_n):$ التخمين (u_n) متقاربة	
	0.50	$v_{n+1} = \frac{1}{4}v_n \qquad -1$ $v_0 = \frac{196}{9}$	(3
2.75	0.50	$v_n = \frac{196}{9} \left(\frac{1}{4}\right)^n$	
	0.50	$\lim_{n \to +\infty} v_n = 0$	
	0.25	$\lim_{n \to +\infty} u_n = \frac{2}{3}$	
0.25	0.25	$v_0 \times v_1 \times \dots \times v_{n-1} = \left(\frac{196}{9}\right)^n \left(\frac{1}{4}\right)^{0+1+2+\dots+n-1} = \left(\frac{14}{3}\right)^{2n} \left(\frac{1}{2}\right)^{n^2-n}$ تمنح العلامة 0.25 لكل محاولة	(4

الإجابة النموذجية. مادة: الرياضيات. الشعبة: علوم تجريبية. بكالوريا 2022

		التمرين الرابع: (07 نقاط)	
		, , , , , , , , , , , , , , , , , , , ,	(I
	0.50	$g'(x) = \frac{x^2 + 2x + 2}{x^3}$	
1.25	0.50	g'(x) > 0	
	0.25	$[0;+\infty]$ ومنه g متزایدة تماما علی	
	0.75	$lpha$ أحسب مبرهنة القيم المتوسطة $g\left(x ight)$ تقبل حلا وحيدا أ	(2
		$1,2 < \alpha < 1,3$ حيث	
1.25	0.50	$:g\left(x ight)$ ب $-$ اشارة	
		$\begin{array}{c ccc} x & 0 & a & +\infty \\ \hline g(x) & - & 0 & + \end{array}$	
			(Π
	0.25	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[\frac{1}{xe^x} - \frac{2}{e^x} - \frac{\ln x}{x} \times \frac{x}{e^x} \right] = 0$ أ- تبيان أن أ	(1
	0.25		
01		$\lim_{x \to 0} f(x) = +\infty$	
		ب-التفسير البياني	
	0.25×2	(C_f) معادلتي المستقيمين المقاربين للمنحني $x=0\;;\;y=0$	
	0.75	$f'(x) = \frac{g(x)}{e^x} - i$	(2
	0.25×2	f الدّالة f	
		$]0;lpha$ متزایدة تماما علی $[lpha;+\infty[$ ومتناقصة تماما علی f	
1.75		جدول تغيّراتها.	
	0.7	$x \mid 0 \alpha +\infty$ $f'(x) \mid - 0 +$	
	0.5	+∞ 0	
		$f(x)$ $f(\alpha)$	
		$\left(\left. C_f ight)$ إنشاء المنحنى	(3
0.50		(C_f)	
	0.5	1 0 1 2 3 4	
1.25	0.5	$F'(x)=f(x)$ ، $x\in \left]0;+\infty\right[$ أُ-التحقق :من أجل كل	(4
1.23		$I (\lambda) = J(\lambda) \cdot \lambda \in]0, +\infty[$	`

	يا 2022	الإجابة النموذجية. مادة: الرياضيات. الشعبة: علوم تجريبية. بكالور	
	0.5	$S(\lambda) = \left[F(x)\right]_{\lambda}^{0.5} = \frac{2 - \ln 2}{\sqrt{e}} - \frac{2 + \ln \lambda}{e^{\lambda}} .$	
	0.25	$\left(C_f ight)$ التفسير: $S(\lambda)$ مساحة الحيز من المستوي المحدد ب $x=rac{1}{2}$ ، $x=\lambda$ وحامل محور الفواصل والمستقيين ذي المعادلتين	
		عناصر الإجابة (الموضوع الثاني)	
		التمرين الأول: (04 نقاط)	
01.25	0.50 0.75	f'(0) = -1 $(T): y = -x$	
0.50	0.50	$a=1$ و منه $\begin{cases} f'(x)=a-rac{2}{x+1}: a=1 \end{cases}$ و منه $f'(0)=-1$	(2
0.75	0.25×3	المناقشة البيانية: $m < 0$ المعادلة لا تقبل حلا $m < 0$ للمعادلة حلا معدوما $m = 0$ للمعادلة حلىن مختلفين في الإشارة $m > 0$	(3
	0.50 0.25	اً- تبيان أنّ: $g(-2-x)=g(x) (-2-x)\in D_g \ \ \ x\in D_g$ من أجل كل $x=-1$ معادلة محور تناظر لـ (C_g)	
	0.25	$]-1;+\infty$ علی $g(x)=f(x)$ عبیان أنّ:	
1.50	0.50	(C_g) simil $ \stackrel{6}{\rightarrow}$	(4
		التّمرين الثاني: (04 نقاط)	
01	0.50 0.50	$I = \int_{1}^{2} (x-1)e^{x^2-2x} dx = \left[\frac{1}{2}e^{x^2-2x}\right]_{1}^{2}$ الاقتراح الصحيح هو ب	(1
01	0.50 0.50	$v_{n+1} = u_{n+1} + \alpha = \frac{1}{3}v_n + \frac{2}{3}\alpha + 3$:الاقتراح الصحيح هو أ	(2

الإجابة النموذجية. مادة: الرياضيات. الشعبة: علوم تجريبية. بكالوريا 2022

		, , , , , , , , , , , , , , , , , , ,	
01	0.50 0.50	الاقتراح الصحيح هو جـ) لأن: $\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \frac{(e^x - 1)}{x} = 1$	(3
01	0.50 0.50	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \frac{(e^x - 1)}{x} = 1$ $ H'(x) = 2x + \frac{1}{x} + c : $ $ H(x) = x^2 + \ln x + cx + d$ $ H(x) = x^2 - x + 4 + \ln x $ $ E(x) = x + 1 + C = 1$ $ E(x) = x + 1 + C $	(4
		التمرين الثالث: (05 نقاط)	
	0.50	$u_1 = e$	(1
01.50	0.50	$q = \frac{1}{e}$	
	0.50	$u_n = e^{2\pi i}$ ، التحقق آنة من اجل كل عدد طبيعي	/2
01	0.50	$S_n = u_0 \frac{q^{n+1} - 1}{q - 1}$	(2
O1	0.50	$S_n = \frac{e^3}{e - 1} \left(1 - \frac{1}{e^{n+1}} \right)$	
1 50	0.75+0.25	$v_n = rac{e^{3-n} - e^4}{1-e}$: البرهان بالتّراجع $v_n = rac{e^{3-n} - e^4}{1-e}$: بيان أن $v_n = rac{e^{3-n} - e^4}{1-e} = rac{e^4}{-1+e}$ -ب تبيان أن أن $rac{1}{e}v_n = rac{1}{1-e} \left(u_n - e^3\right)$	(3
1.50	0.50	$\lim_{x \to +\infty} \frac{e^{3-n} - e^4}{1 - e} = \frac{e^4}{-1 + e} - \hookrightarrow$	
01	0.50	$\frac{1}{e}v_n = \frac{1}{1-e}(u_n - e^3)$ ا- تبیان أن	(4
	0.50	$S_n' = \frac{1}{1-e} \left[S_n - (n+1)e^3 \right]$ ب- التحقق أن	
		التّمرين الرّابع: (07 نقاط)	
	0.25	$\lim_{x \to +\infty} f(x) = -\infty$	(1
0.75	0.50	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{2} e^{-2x} (1 - 9e^x - 4xe^{2x} + 8e^{2x}) = +\infty$	
	0.75	$f'(x) = -\frac{1}{2}e^{-2x}(e^x - 2)(4e^x - 1)$: أ- إثبات أن	(2
		ب-اتجاه التغير	
	0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1.75		جدول التغيرات	
	0.50	$ \begin{array}{c ccccc} x & -\infty & -Ln4 & Ln2 & +\infty \\ f'(x) & - & 0 & + & 0 & - \\ \hline f(x) & +\infty & & \frac{15}{8} - 2Ln2 & \\ & & -6 + 4Ln2 & -\infty \end{array} $	

		<u> </u>	
	0.25	$f(x) - (-2x + 4) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 5$	(3
	0.50	$\lim_{x \to +\infty} (f(x) - (-2x + 4)) = 0$	
		$\left(\Delta ight)$ بالنسبة إلى المراسة وضعية بالنسبة الم	
1.50	0.25	$f(x) - (-2x + 4) = \frac{1}{2}e^{-x}(e^{-x} - 9)$	
		$]-\ln 9;+\infty[$ على المجال (Δ) على المجال (C_f)	
	0.70	$]-\infty;-\ln 9[$ على المجال (C_f) اسفل المجال	
	0.50	$(C_f) \cap (\Delta) = \left\{ A(-\ln 9; 4 + 2\ln 9) \right\}$	
0.75	0.75	$(T): y = \frac{3}{2}x$	(4
1.50	0.50	$igl[-1,9;+\inftyigl[$ المنحنى $igl(C_figr)$ على المجال $igl(\Delta)$ و $igl(\Delta)$	(5
		2 (Δ)	
	0.50		
	0.50	(C_f) -1 (T) -2 -3	
	0.25	a = -1 -5	(6
	0.25	b=2	-
0.75	0.25	$b=2$ $h(x) = -f(x) + 2 \qquad \neg$	
0.73		(C_f) ننشئ (C_f) صورة ننشئ (بالتناظر بالنسبة لحامل محور الفواصل ثم	
		(C_f) عمورة عمورة (C_f) بالانسحاب ذو الشعاع (C_h)	
			1