Naïve Bayes Classifier Application

Movie Reviews

Faisal Ahmad Ben Cheng Ivy Lee Angela

April 22, 2013

Bayesian Inference

Motivation?

Given that a patient tests positive, what is probability the patient is sick?

$$\rho\left(\dot{sick}|+\right) = \frac{\rho\left(+|\dot{sick}\right)\rho\left(\dot{sick}\right)}{\rho\left(+\right)} = \frac{99}{198} = \frac{1}{2}$$

$$\frac{99/100^{2}+99/100^{2}}{198/100^{2}} = \frac{99}{198} = \frac{1}{2}$$

where
$$p(+) = p(+|sick) p(sick) + p(+|healthy) p(healthy)$$
.

Model Representation

Representing each feature as Independent Bernoulli Random variable, probability of observing label x, given feature c is:

Why Naive?

We assume features are independent

Maximum Likelihood

Under maximum likelihood inference we define the "best" parameter values as those for which the observed data are most probable:

Class (A) =
$$\arg \max \log P(label i) + \sum_{j=1}^{n} \log [P(f_j | label i)]$$

Logarithmic Estimation and Smoothing

Logarithmic Estimation introduced due to:

- If training set is not fully representative, then for some P(feature; | Label;)=0
- Possibility of floating points underflow.

Additive Smoothing:

A constant smoothing factor is introduced-

POS Tagger

- Input: Documents and POS Type
- Tokenize the Documents into Words
- Tag the Words using nltk.pos_tag()
- Return only alpha character words with appropriate POS Type

Naïve Bayes Classifier

- Input: Training data, Boolean switch for log density and smoothing parameter
- Procedures
 - Clean Training Data
 - Train
 - Calculate (Smoothed) Posterior Probabilities
 - Classify (Most probable class)

Selecting features from training data

- Split reviews into 'positive' and 'negative'
 - Separately, search through the first 50 reviews, filtering out only adjectives/verbs using posTagger
 - From all words obtained, choose features from the top 10% most frequent words
- Combine chosen features from 'positive' and 'negative' training data
- Implement Naive Bayes classification with and without a smoothing parameter of 0.5
- Report error metrics (10 trials)
 - Hit (TP), False alarm (FP), Specificity (SPEC)

Results - Using adjectives

	Basic			Smooth (0.5)		
Experiment	TP	FP	SPEC	TP	FP	SPEC
1	77.8%	46.7%	53.3%	77.1%	45.9%	54.1%
2	74.8%	39.4%	60.6%	74.8%	39.0%	61.0%
9	66.2%	34.4%	65.6%	67.5%	33.5%	66.5%
10	62.9%	24.0%	76.0%	62.1%	23.4%	76.6%
Average	71.5%	38.8%	61.2%	71.6%	38.3%	61.7%

148 FEATURES

Results - Using adjectives

Top features	<u>PosNegRatio</u>	Bottom features	PosNeg Ratio
'accessible'	7.26	'bite'	0.19
'breathtaking'	6.57	'worst'	0.22
'ambitious'	5.18	'biblical'	0.26
'additional'	5.18	'bitchy'	0.26
'annual'	5.18	'awful'	0.30

Results - Including verbs

	Basic			Smooth (0.5)		
Experiment	<u>TP</u>	<u>FP</u>	<u>SPEC</u>	<u>TP</u>	<u>FP</u>	<u>SPEC</u>
1	68.2%	39.0%	61.0%	68.6%	38.6%	61.4%
2	81.1%	54.0%	46.0%	81.1%	53.8%	46.2%
9	73.2%	46.1%	53.9%	73.4%	46.1%	53.9%
10	68.8%	44.1%	55.9%	68.8%	43.5%	56.5%
Average	68.7%	44.3%	55.7%	68.8%	44.1%	55.9%

116 FEATURES

Results - Including verbs

<u>Top features</u>	PosNeg Ratio	Bottom features	PosNeg Ratio
'disturbing'	3.05	'dressed'	0.30
'opened'	2.96	'dumb'	0.36
'minor'	2.50	'pull'	0.51
'compelling'	2.20	'guess'	0.53
'loose'	1.88	'replaced'	0.56

Conclusion

- Smoothing effect not significant
- Using only adjectives attains better result than combining adjectives and verbs.