	P(B) = 0.25 P(A B) = 0.25	and $P(A - A)$	B) = 0.25 th	hen we get	
(A) 0.25	B) 0.5	c) 0	D) 0.2	E) None	
Question Two: For some disjoint and independent events A, B with $P(A) = 0.1$ we have $P(B) =$					
A) 1	B) 0.3	(C) 00	D) 0.4	E) None	
Question Three: Let X be a discrete random variable with $E(X) = \bar{X}$. If $P(X = \bar{X}) = 0.8$, then $P(X \neq \bar{X}) =$					
A) 0		0.75	()0.2	E) None	
we have P(A)	For some independe $J\bar{B} = \rho (A \wedge B)$	ent events A	B with	P(A)P(B) = 0.2	then
Ouestion Face	(B) 0.8	C) 0.7	D) 0.6	E) None	1-02
$P(B \cap A) = 1.6$ be two events with equal probability and $P(A) = 0.2$					
Overstion Six: Let have $E(X^2) + F$	B) 0.1 X be a discrete rand	8.0 (D) 0.3	E) None	
Overstion Six: Let X be a discrete random variable with $R_X = \{0, 1, -1\}$ then we but $R_X = \{0, 1, -1\}$ then we					
	5) 1 C) 2			E) None	

Question Seven: Let f be a continuous strictly increasing function on $\mathbb R$. Then we have $\int_{-\infty}^{\infty} f(x)(\delta(x+1)-\delta(x-1))\,dx$ is

- A) zero
- B) negative
- C) positive
- D) equal to one

E) None

Question Eight: For the joint PDF $f(x,y) = 2 x^b$ when 0 < x < 1, 0 < y < 1 and zero otherwise, the positive constant b equals

- A) 2
- B) 0.5
- C) 0
- D) 1 E) No

Question Nine: For the joint PDF f(x,y) = 0.5 when 0 < x < 1, 0 < y < 2 and zero otherwise, we have P(0 < Y < 0.2) =

- A) 0.1
- B) 0
- C) 0.25
- D) 0.5
- E) None

Question Ten: A discrete random variable X with PDF

$$P(X=x) = a(\delta(x) + \delta(x-1) + \delta(x+1) + \delta(x-2))$$
; where $a > 0$ is a constant, then we have
$$a + P(X=0) + P(X=1) + P(X=-1) =$$

- A) 0
- B) 1
- C) 0.75
- D) 0.5
- E) None

Question Eleven (\sqrt{X}): For continuous random variables X,Y we always have $Cov(-X-1,-Y) \ge -\sigma_X\sigma_Y$

Question Twelve (\sqrt{X}): For continuous random variable X with CDF $F(x) = 1 - e^{-\sqrt{x}}$ when x > 0 and zero otherwise; then the PDF is $f(x) = e^{-\sqrt{x}}/\sqrt{x}$

Question Thirteen (OX): If $x \in (-1,1)$; then $u(-x-1) + \delta(x-2) = 1$

Question Fourteen (\checkmark (X) For some random variable X, if the CDF $F(x) = x^3$, $x \in (0,1)$, then $P(X \in (0,0.1)) + P(X = 0.5) = 0.01$ \checkmark

Question Fifteen (\(\stackslash \). Given the CDF

$$F(x) = \begin{cases} 0 & x < 1 \\ 0.25 & 1 \le x < 2 \\ 1 & 2 \le x \end{cases}$$

We have P(X = 2) = 3/4