JEDEC STANDARD

Addendum No. 1 to JESD79-4, 3D Stacked DRAM

JESD79-4-1A

(Revision of JESD79-4-1, February 2017)

MARCH 2020

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

NOTICE

JEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Board of Directors level and subsequently reviewed and approved by the JEDEC legal counsel.

JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than JEDEC members, whether the standard is to be used either domestically or internationally.

JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the JEDEC standards or publications.

The information included in JEDEC standards and publications represents a sound approach to product specification and application, principally from the solid state device manufacturer viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or publication may be further processed and ultimately become an ANSI standard.

No claims to be in conformance with this standard may be made unless all requirements stated in the standard are met.

Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC at the address below, or refer to www.jedec.org under Standards and Documents for alternative contact information.

Published by
©JEDEC Solid State Technology Association 2020
3103 North 10th Street
Suite 240 South
Arlington, VA 22201-2107

This document may be downloaded free of charge; however JEDEC retains the copyright on this material. By downloading this file the individual agrees not to charge for or resell the resulting material.

PRICE: Contact JEDEC

Printed in the U.S.A. All rights reserved

ADDENDUM No. 1 to JESD79-4, 3D STACKED SDRAM

Contents

1	Scope	1
2	3DS SDRAM Package Pinout and Addressing	1
2.1	Overview	1
2.2	Pinout Description	
2.3	3D Stacked / DDR4 SDRAM x4 Ballout using MO-207	
2.4	3D Stacked / DDR4 SDRAM x8 Ballout using MO-207	3
2.5	Logical Rank Addressing	4
2.6	3D Stack Organizations	
2.7	3DS SDRAM System Addressing	4
2.8	DDR4 3DS Stack Addressing Table	5
2.9	Logical Rank, Bank Group and Bank Selection	9
3	Functional Description	10
3.1	Simplified State Diagram	10
3.2	Basic Functionality	
3.3	Reset Signal and Initialization Procedure	10
3.4	Mode Register Definition	
4	SDRAM Command Description and Operation	
4.1	ACTIVATE Command	
4.2	Precharge and Precharge All Commands	16
4.3	Read and Write Commands	
4.4	Refresh Command	
4.5	Self-Refresh Operation and Power-Down Modes	
4.6	Write Leveling	
4.7	ZQ Calibration Commands	
4.8	Command Address Parity (CA Parity)	
4.9	Target Row Refresh (TRR)	
4.10	Post Package Repair (PPR)	
5	On Die Termination	
6	Absolute Maximum Ratings	
7	AC and DC Operating Conditions	
8	AC and DC Output Measurement Levels	
9	Speed Bins	
9.1	Standard 3DS Speed Bins for x4	
9.2	Standard 3DS Speed Bins for x8	
9.3	Notes to Speed Bin Tables	
10	I _{DD} Current Specification	
10.1	I _{DD} , I _{PP} , and I _{DDQ} Measurement Conditions	
10.2	I _{DD} and I _{PP} Specifications	
11	Input/Output Capacitance	
12	Electrical Characteristics and AC Timings for DDR4-1600-3DS to DDR4-2400-3DS	
12.1	Refresh parameters	
12.2	Timing Parameters by Speed Grade	
Annex	A (informative) Differences Between Revisions	01

ADDENDUM No. 1 to JESD79-4, 3D STACKED SDRAM

(From JEDEC Board Ballot JCB-16-29 and JCB-19-34, formulated under the cognizance of the JC-42.3C Subcommittee on DRAM Parametrics.)

1 Scope

This document defines the 3DS DDR4 SDRAM specification, including features, functionalities, AC and DC characteristics, packages, and ball/signal assignments. The purpose of this specification is to define the minimum set of requirements for a compliant 8 Gbit through 128 Gbit for x4, x8 3DS DDR4 SDRAM devices. This addendum was created based on the JESD79-4 DDR4 SDRAM specification. Each aspect of the changes for 3DS DDR4 SDRAM operation was considered. Any TBD's, as of the publication of this document, are under discussion by the formulating committee.

The requirement for 3DS devices compliant to this spec addendum is to have a single electrical load for the stacked devices no matter if the stack is comprised of 2, 4 or 8 devices. The I/O buffer circuitry can be built into the base SDRAM of the stack or into a separate logic buffer device. In either case (built in native circuitry or separate logic die), the assumption is that the I/O buffers are located at the bottom of the stack closest to the package substrate. All pictures and diagrams in the spec depict a master die at the bottom of the stack; it is associated with logical rank 0.

2 3DS SDRAM Package Pinout and Addressing

ODT, C0, C1, C2 and RESET_n) do not supply termination.

2.1 Overview

These ballouts have been derived from JESD79-4. The ballout comprehends x4 and x8 data widths, where x4 is a subset of the x8 ballout, and the addressing described in this section.

2.2 Pinout Description

The following table only documents differences of DDR4 3DS SDRAMs relative to the pinout description in JESD79-4.

Symbol	Туре	Function						
PAR	Input	Command and Address Parity Input: DDR4 Supports Even Parity check in DRAMs with MR setting. Once it's enabled via Register in MR5, then DRAM calculates Parity with ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,BG0-BG1,BA0-BA1,A17-A0 and C0, C1, C2. Input parity should maintain at the rising edge of the clock and at the same time with command and address with CS_n LOW						
NOTE 1 Input only	NOTE 1 Input only pins (BG0-BG1.BA0-BA1. A0-A17. ACT n. RAS n/A16. CAS n/A15. WE n/A14. CS n. CKE.							

2.3 3D Stacked / DDR4 SDRAM x4 Ballout using MO-207

Ball locations in Figure 1, "3D Stacked DDR4 SDRAM x4 Ballout" show the proposed DDR4 3D Stacked SDRAM x4 ballout.

[X-ray view from package top surface] 1 9 NC VDD **VSSQ** NC NC **VSSQ** vss NC VPP VDDQ DQ1 VDDQ В DQS_c ZQ C **VDDQ** DQ0 DQS_t VDD VSS **VDDQ** D vssq NC DQ2 DQ3 NC VSSQ Ε vss **VDDQ** NC NC **VDDQ** vss C2, NC¹ ODT F **VDD** CK_t CK_c VDD G vss C0 CKE CS_n C1, NC² RFU WE_n, A14 ACT_n н VDD CAS_n, A15 RAS_n, A16 VSS **VREFCA** BG0 A10, AP A12, BC_n VDD BG1 VSS BA0 Κ Α4 А3 BA1 VSS RESET_n L Α6 Α0 Α1 Α5 ALERT_n **VDD** Α8 Α9 Α7 **VPP** М **A2** NC vss A17, NC³, NC N A11 PAR A13 VDD NC NC

Figure 1 — 3D Stacked DDR4 SDRAM x4 Ballout

^{1.} This pin is not connected for 3DS devices with two or four logical ranks.

 $[\]hbox{2.This pin is not connected for 3DS devices with two logical ranks.} \\$

^{3.} This pin is not connected for 4Gb and 8Gb devices.

2.4 3D Stacked / DDR4 SDRAM x8 Ballout using MO-207

Ball locations in Figure 2, "3D Stacked DDR4 SDRAM x8 Ballout" show the proposed DDR4 3D Stacked SDRAM x8 ballout.

1 9 NC DBI_n, NC VDD vssq vss NC TDQS_c TDQS_t **VSSQ** VPP **VDDQ** DQS_c DQ1 **VDDQ** ZQ В С **VDDQ** DQ0 DQS_t VDD VSS **VDDQ** D DQ4 DQ2 DQ5 **VSSQ VSSQ** DQ3 VDDQ Ε VSS DQ6 DQ7 VDDQ VSS VDD F VDD C2, NC¹ ODT CK_t CK_c C1, NC² G VSS C0 CKE CS_n RFU WE_n, A14 н VDD ACT_n CAS_n, A15 RAS_n, A16 VSS **VREFCA** BG0 A10, AP A12, BC_n BG1 VDD VSS BA0 VSS κ А3 BA1 A4 RESET_n Α6 Α0 **A1** Α5 ALERT_n VDD VPP М Α8 A2 Α9 Α7 Ν NC VSS A11 PAR NC A13 VDD NC NC

[X-ray view from package top surface]

Figure 2 — 3D Stacked DDR4 SDRAM x8 Ballout

^{1.} This pin is not connected for 3DS devices with two or four logical ranks.

^{2.} This pin is not connected for 3DS devices with two logical ranks.

2.5 Logical Rank Addressing

The 3DS package is organized into two, four or eight logical ranks.

For DDR4 3DS devices, the logical ranks are selected by the Chip ID bus C[2:0].

The functional behavior of logical rank(s) should not deviate from monolithic DDR4 SDRAMs (specified in JESD79-4A), except when noted in this document. Each logical rank may be implemented as a single slice but the DDR4 3DS addendum doesn't require this to be the case.

2.6 3D Stack Organizations

Table 1, "Supported 3D Stack Organizations," indicates valid configurations supported by the DDR4 3DS addendum.

Logical # of CS_n Chip ID # of CKE # of ODT **Ranks** 2 C0 1 1 1 4 1 C0, C1 1 1 8 1 C0, C1, C2 1 1

Table 1 — Supported 3D Stack Organizations

Figure 3, Figure 4, and Figure 5 show one architectural diagram per row of Table 1. For the names of the these figures the standard *3DS configuration notation* LR-CS-CKE-ODT is used where LR indicates the number of logical ranks, CS_n indicates the number of chip select inputs, CKE indicates the number of CKE inputs and ODT indicates the number of ODT inputs. Since there is only one valid configuration for each number of logical ranks, this document will typical use the abbreviations 2H, 4H and 8H to describe 3DS devices with two, four or eight logical ranks.

2.7 3DS SDRAM System Addressing

3DS addressing scheme for DDR4 3DS devices is explained in section 2.8. This document comprehends using these 3DS devices in RDIMM and LRDIMM applications with x4 or x8 3DS SDRAMs.

2.8 DDR4 3DS Stack Addressing Table

Table 2, Table 3 and Table 4 indicate the address and select pins that are used for different configurations of 3DS stacks.

The DDR4 3DS devices may be derived from monolithic DDR4 devices. Therefore the address signals used within a logical rank are identical to the address signals used by a monolithic DRAM of the same density. Logical Rank 0 is considered to be associated with the master die.

Figure 3 — 2-1-1-1 Device (2H)

	DDR4 3DS Address Table: 2H 3D Stacked SDRAM										
	3DS Lo	ogical Ra	nk Organ	3DS	Package Or	ganizatio	n				
	x4	x8	M:	SB Addre	SS		Laniaal				
Density	Page	Page Page Row Capacity		Capacity Logical Rank	CS_n	C0					
	Size	Size	Col	x4 Die	x8 Die	1	Kank				
4 Gb	512 B	1 KB	A9	A15	A14	8 Gb	0	L	L		
4 Gb	312 0	IND	Α9	AIS	A14	8 Gb	1	L	Н		
8 Gb	512 B	1 KB	A9	A16	A15	16 Gb	0	L	L		
0 Gb	512 0	ו אט	ζ	710	713	10 Gb	1	L	Η		
16 Gb	512 B	1 KB	A9	A17	A16	32 Gb	0	Ĺ	Ĺ		
10 00	0120	טאוו	79		710	52 GD	1	L	Н		

Table 2 — DDR4 Address Table: 2H Stacked SDRAM

2.8 DDR4 3DS Stack Addressing Table (cont'd)

Figure 4 — 4-1-1-1 Device (4H)

Table 3 — DDR4 Address Table: 4H Stacked SDRAM

			DDR4 3	DS Addre	ss Table:	4H 3D Stack	ed SDRAM						
	3DS Lo	ogical Ra	nk Organ	ization		3DS Packag	e Organi	zation					
	x4	x8	M	SB Addre	ss		Logical						
Density	Page	Page	Col	Ro	w	Capacity	Logical Rank	CS_n	C1	C0			
	Size	Size	5	x4 Die	x8 Die		Rank						
							0	L	L	L			
4 Gb	512 B	1 KB	A9	A15	A14	A14	16 Gb	1	L	L	Η		
4 Gb	312.0	TND	79	713			A14	10 Gb	2	L	Н	L	
							3	L	Н	Н			
							0	L	L	L			
8 Gb	512 B	1 KB	A9	A16	A15	32 Gb	1	L	L	Н			
0 Gb	312.0	IND	79		710		Alo	AIS	.10 A13	32 GD	2	L	Н
							3	L	Н	Н			
							0	L	L	L			
16 Gb	512 B	1 KB	A9	A17	A16	64 Gb	1	L	L	Н			
10 00	3120	1 KB	A9	AII	AIO	04 GD	2	Ĺ	Н	L			
							3	L	Н	Н			

2.8 DDR4 3DS Stack Addressing Table (cont'd)

Figure 5 — 8-1-1-1 Device (8H)

2.8 DDR4 3DS Stack Addressing Table (cont'd)

Table 4 — DDR4 Address Table: 8H Stacked SDRAM

	DDR4 3DS Address Table: 8H 3D Stacked SDRAM																							
	3DS Lo	gical Rar	ık Organ	ization		3DS Package Organization																		
	x4 x8 MSB Address			Logical																				
Density	Page	Page	Col		ow	Capacity	Capacity	Rank	CS_n	C2	C1	C0												
	Size	Size		x4 Die	x8 Die																			
							0	L	L	L	L													
							1	L	L	L	Н													
							2	L	L	Н	L													
4 Gb	512 B	1 KB	A9	A15	A14	32 Gb	3	L	L	Н	Н													
4 05	012.0	TILD	710	/(10	7.14	02 05	4	L	Н	L	L													
							5	L	Ι	L	Ι													
									6	L	Н	Н	L											
							7	L	Н	Н	Н													
							0	L	L	L	L													
					.16 A15		1	L	L	L	Н													
		1 KB		A16		64 Gb	2	L	L	Н	L													
8 Gb	512 B		A9				3	L	L	Н	Н													
0 GD	312 0		A9				4	L	Н	L	L													
									ļ	ļ	<u> </u>				ĺ		ļ		101		5	L	Н	L
							6	L	Н	Н	L													
							7	L	Н	Н	Н													
							0	L	L	L	L													
							1	L	L	L	Н													
							2	L	L	Н	L													
16 Ob	540 D	4 KD	40	A 4 7	A46	400 Ch	3	L	L	Н	Н													
16 Gb	512 B	1 KB	A9	A17	A16	128 Gb	4	L	Н	L	L													
							5	L	Н	L	Н													
			6	L	Н	Н	L																	
							7	L	Н	Н	Н													

NOTE These diagrams show only the logical organizations of these devices. No 1:1 relationship to physical organizations is implied. The Logical Rank 0 is considered the "master die", regardless of its physical arrangement.

2.9 Logical Rank, Bank Group and Bank Selection

DDR4 3DS devices can accommodate up to 128 banks, organized into 32 independent bank groups of 4 dependent banks each. The 128 banks are distributed among 8 logical ranks, each of which has 16 banks, organized into 4 independent bank groups of 4 dependent banks each. Table 5 shows how the logical ranks and bank groups in a DDR4 3DS device are selected. Table 6 shows how the individual banks are selected.

Table 5 — Logical rank and Bank Group Selection

Logical Rank 7 Logical Rank 6 Logical Rank 5 Logical Rank 4 Logical Rank 3 Logical Rank 2 Logical Rank 1 Logical Rank 0

31	30	29	28						
27	26	25	24						
23	22	21	20						
19	18	17	16						
15	14	13	12						
11	10	9	8						
7	6	5	4						
3	2	1	0						
Ad	Address by BG[1:0] =								
4.4	4.0	0.4							

C2	C1	C0	CS_n
1	1	1	0
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

11

Table 6 — Bank Selection

Logical Rank 7 Logical Rank 6 Logical Rank 5 Logical Rank 4 Logical Rank 3 Logical Rank 2 Logical Rank 1 Logical Rank 0

127	126	125	124	123	122	121	120	119	118	117	116	115	114	113	112
111	110	109	108	107	106	105	104	103	102	101	100	99	98	97	96
95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80
79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64
63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4		Bank G	Group C)

Addressed by BA[1:0] =10 11 01 00

Addressed by BG[1:0] =

11	10	01	00

3 Functional Description

3.1 Simplified State Diagram

There is no difference between the simplified state diagrams for DDR4 and 3DS DDR4. Situations involving more than one bank, and multiple logical ranks are not reflected in the simple state diagram for DDR4 and are not captured in full detail.

3.2 Basic Functionality

The 3DS DDR4 SDRAM is a 2H, 4H or 8H stacked high-speed dynamic random-access memory with each logical rank configured as a 16-bank SDRAM (organized into four bank groups of four banks each). The 3DS SDRAM has 32, 64 or 128 physical banks available internally, depending on the number of logical ranks. The 3DS DDR4 SDRAM retains the use of an 8n pre-fetch architecture to achieve high-speed operation. The 8n prefetch architecture is combined with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write operation for the 3DS DDR4 SDRAM consists of a single 8n-bit wide, one clock data transfer at the internal SDRAM core and eight corresponding n-bit wide, one-half clock cycle data transfers at the I/O pins.

3.3 Reset Signal and Initialization Procedure

Prior to normal operation, the 3DS DDR4 SDRAM must be powered up and initialized in a predefined manner. The following sections provide detailed information covering device reset and initialization, register definition, command descriptions and device operation.

A single reset pin with a single load is available per 3DS device. It is expected that the entire stack of SDRAMs within the package reset as per DDR4 specification. After RESET_n is de-asserted, the SDRAM will start internal state initialization; this will be done independently of external clocks. All steps in the DDR4 initialization sequence must be followed. No additional steps are required for 3DS DDR4 devices but the unique nature of 3DS devices (which have a single external I/O structure shared by all logical ranks of the entire device) has to be considered when programing the SDRAM mode register bits (see next section for details).

3.4 Mode Register Definition

For application flexibility, various functions, features and modes are programmable in seven Mode Registers. One set of registers controls the entire stack regardless if the 3DS stack has two, four or eight logical ranks, and they must be programmed via a Mode Register Set (MRS) command.

For 3DS DDR4 stacks configured as n logical ranks, a single set of MRS registers is addressed by the Chip Select signal (CS_n) as shown in Table 7.

Table 7 — Simplified Truth Table for MRS Command

DRAM Command	CS_n	C2	C1	CO	Logical Rank0	Logical Rank1	Logical Rank2	Logical Rank3	Logical Rank4	Logical Rank5	Logical Rank6	Logical Rank7	Notes
Mode Register Set	L	V	V	V	MRS	1							
Mode Register Set	Н	V	V	V	DES	1							
Any other command	Н	V	V	٧	DES	1							

NOTE 1 "V" means H or L (but a defined logic level).

Programming the register fields for a stacked device has some special considerations. Waiting for tMRD is required between two MRS commands issued to a 3DS SDRAM. After an MRS command is given, waiting for tMOD is required before a non-MRS command can be issued to any of the logical ranks in the stack.

Due to the difference between CAS Latency and nRCD, DDR4 3DS devices require a different Additive Latency definition than mono DDR4 SDRAMs. The changes to MR1 are shown in Table 10.

Table 8 — MR0 Definition for DDR4 3DS

Address	Operating Mode	Description
BG1	RFU	0 = must be programmed to 0 during MRS
BG0, BA1:BA0	MR Select	000 = MR0 100 = MR4 001 = MR1 101 = MR5 010 = MR2 110 = MR6 011 = MR3 111 = RCW ¹
A17	RFU	0 = must be programmed to 0 during MRS
A13	RFU	0 = must be programmed to 0 during MRS
A11:A9	WR and RTP	Write Recovery and Read to Precharge for auto precharge see respective table in JESD79-4)
A8	DLL Reset	0 = NO 1 = Yes
A7	TM	0 = Normal 1 = Test
A12, A6:A4, A2	CAS Latency ²	(see Table 9)
A3	Read Burst Type	0 = Sequential 1 = Interleave
A1:A0	Burst Length	00 = 8 (Fixed) 01 = BC4 or 8 (on the fly) 10 = BC4 (Fixed) 11 = Reserved

NOTE 1 Reserved for Register control word setting. DRAM ignores MR command with BG0,BA1;BA0=111 and doesn't respond. When RFU MR code setting is inputted, DRAM operation is not defined.

NOTE 2 The table only shows the encodings for a given Cas Latency. For actual supported Cas Latency, please refer to speedbin tables for each frequency which device supports. A12 is an additional bit to encode for Cas Latency. Hence availability of A12=1 could depend on Device.

Table 9 — CAS Latency

A12	A6	A5	A4	A2	CAS Latency
0	0	0	0	0	9
0	0	0	0	1	10
0	0	0	1	0	11
0	0	0	1	1	12
0	0	1	0	0	13
0	0	1	0	1	14
0	0	1	1	0	15
0	0	1	1	1	16
0	1	0	0	0	18
0	1	0	0	1	20
0	1	0	1	0	22
0	1	0	1	1	24
0	1	1	0	0	23
0	1	1	0	1	17
0	1	1	1	0	19
0	1	1	1	1	21
1	0	0	0	0	25
1	0	0	0	1	26
1	0	0	1	0	27
1	0	0	1	1	28
1	0	1	0	0	Reserved for 29
1	0	1	0	1	30
1	0	1	1	0	Reserved for 31
1	0	1	1	1	32
1	1	0	0	0	Reserved

Table 10 — MR1 Definition for DDR4 3DS

Address	Operating Mode	Description
BG1	RFU	0 = must be programmed to 0 during MRS
BG0, BA1:BA0	MR Select	000 = MR0 100 = MR4
		001 = MR1 101 = MR5
		010 = MR2 110 = MR6
		$011 = MR3$ $111 = RCW^3$
A17	RFU	0 = must be programmed to 0 during MRS
A13	RFU	0 = must be programmed to 0 during MRS
A12	Qoff ¹	0 = Output buffer enabled
		1 = Output buffer disabled
A11	TDQS enable	0 = Disable 1 = Enable
A10, A9, A8	RTT_NOM	(see respective table in JESD79-4)
A7	Write Leveling Enable	0 = Disable 1 = Enable
A6, A5	RFU	0 = must be programmed to 0 during MRS
A4, A3	Additive Latency ⁴	00 = 0(AL disabled) 10 = CL-2
		01 = Reserved 11 = CL-3
A2, A1	Output Driver Impedance Control	(see respective table in JESD79-4)
A0	DLL Enable	0 = Disable ² 1 = Enable

NOTE 1 Outputs disabled - DQs, DQS_ts, DQS_cs.

NOTE 4 When the gap between tAA and tRCD is bigger than 2 clock cycles, host should increment tRCD accordingly to use AL, knowing that DDR4 3DS only supports AL of CL-2 and CL-3.

NOTE 2 States reversed to "0 as Disable" with respect to DDR3.

NOTE 3 Reserved for Register control word setting. DRAM ignores MR command with BG0,BA1;BA0=111 and doesn't respond. When RFU MR code setting is inputted, DRAM operation is not defined.

Table 11 — MR2 Definition for DDR4 3DS

Address	Operating Mode	Description	
C2, C1, C0	TRR Mode Chip ID	000 = LR0 100 = LR4 001 = LR1 101 = LR5 010 = LR2 110 = LR6 011 = LR3 111 = LR7	DDR4 3DS only
BG1	RFU	0 = must be programmed to 0 during MRS	
BG0, BA1:BA0	MR Select	000 = MR0 100 = MR4 001 = MR1 101 = MR5 010 = MR2 110 = MR6 011 = MR3 111 = RCW ¹	
A17	RFU	0 = must be programmed to 0 during MRS	
A13	RFU	0 = must be programmed to 0 during MRS	
A12	Write CRC	0 = Disable 1 = Enable	
A11	RFU	0 = must be programmed to 0 during MRS	No change
A10:A9	RTT_WR	(see respective table in JESD79-4)	from
A8	RFU	0 = must be programmed to 0 during MRS	JESD79-4
A7:A6	Low Power Array Self Refresh (LP ASR)	00 = Manual Mode (Normal Operaing Temperature Range) 01 = Manual Mode (Reduced Operating Temperature Range) 10 = Manual Mode (Extended Operating Temperature Range) 11 = ASR Mode (Auto Self Refresh)	
A5:A3	CAS Write Latency(CWL)	(see respective table in JESD79-4)	
A2:A0	RFU	0 = must be programmed to 0 during MRS	

NOTE 1 Reserved for Register control word setting.DRAM ignores MR command with BG0,BA1;BA0=111 and doesn't respond. When RFU MR code setting is inputted, DRAM operation is not defined.

4 SDRAM Command Description and Operation

4.1 ACTIVATE Command

In a 3D Stacked DDR4 SDRAM the single chip select pin and the C[2:0] pins select the logical rank - see Table 12.

The value on the BA0 - BA1 and BG0 - BG1 inputs selects the bank, the chip ID inputs select the logical ranks and the address provided on inputs A0-A17 selects the row. This row remains open (or active) for accesses until a precharge command is issued to that bank in that logical rank. A PRECHARGE command must be issued (to that bank in that logical rank) before opening a different row in the same bank in the same logical rank.

The minimum time interval between successive ACTIVATE commands to the same bank of a DDR SDRAM is defined by tRC. The minimum time interval between successive ACTIVATE commands to different banks within the same bank group of a DDR4 SDRAM is defined by tRRD_L (Min). The minimum time interval between successive ACTIVATE commands to different banks within different bank groups of a DDR4 SDRAM is defined by tRRD_S (Min). For a DDR4 3DS device, the timing parameters that applies to successive ACTIVATE commands to different banks in the same logical rank are defined as tRRD_S_slr (Min) and tRRD_L_slr (Min). The timing parameter that applies to successive ACTIVATE commands to different logical ranks is defined as tRRD_dlr (Min).

No more than four bank ACTIVATE commands may be issued in a given tFAW_slr (Min) period to the same logical rank. For all logical ranks in a 3DS device, the tFAW_dlr timing constraint applies, i.e., no more than four bank ACTIVATE commands to the whole 3DS SDRAM may be issued in a given tFAW_dlr (Min) period.

The timing restrictions covering ACTIVATE commands are documented in Table 47.

Logical Logical Logical Logical Logical Logical Logical Logical C0 CS_n C2 **C1** Symbol Rank1 Rank₀ Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 ACTIVATE (ACT) L L L L **ACT** DES DES **DES** DES DES **DES DES** ACTIVATE (ACT) L L L Η DES **ACT** DES **DES** DES DES **DES** DES ACTIVATE (ACT) L L Η L **DES DES ACT DES DES DES DES DES** ACTIVATE (ACT) L L Н Н DES **DES DES** ACT **DES DES DES DES** ACTIVATE (ACT) Н **DES** DES **DES DES ACT DES DES DES** L L L ACTIVATE (ACT) **DES** DES **DES DES DES ACT DES DES** L Н L Н ACTIVATE (ACT) L Н Н L DES DES DES DES DES DES ACT **DES** ACTIVATE (ACT) L Н Н **DES DES DES DES DES** DES **DES ACT** Any command DES **DES DES DES DES DES** DES **DES**

Table 12 — Truth Table for ACTIVATE Command

NOTE "V" means H or L (but a defined logic level).

4.2 Precharge and Precharge All Commands

The Single Bank Precharge (PRE) and Precharge All Banks (PREA) commands apply only to a single logical rank of a 3D Stacked SDRAM. PRE commands (or PRE commands to each open bank) have to be issued to all logical ranks with open banks before the device can enter Self Refresh mode.

DDR4 3D Stacked SDRAMs have the same values for tRP, tRTP, tRAS and tDAL as planar DDR4 SDRAMs of the same frequency.

Table 13 and Table 14 show the truth tables for Precharge and Precharge All commands.

Table 13 — Truth Table for Precharge

DRAM Command	CS_n	C2	C1	C0	Logical Rank0	Logical Rank1	Logical Rank2	Logical Rank3	Logical Rank4	Logical Rank5	Logical Rank6	Logical Rank7	Notes
Precharge (PRE)	L	L	L	L	PRE	DES	1, 3						
Precharge (PRE)	L	L	L	Н	DES	PRE	DES	DES	DES	DES	DES	DES	1, 3
Precharge (PRE)	L	L	Н	L	DES	DES	PRE	DES	DES	DES	DES	DES	1, 3
Precharge (PRE)	L	L	Н	Н	DES	DES	DES	PRE	DES	DES	DES	DES	1, 3
Precharge (PRE)	L	Н	L	L	DES	DES	DES	DES	PRE	DES	DES	DES	1, 3
Precharge (PRE)	L	Н	L	Н	DES	DES	DES	DES	DES	PRE	DES	DES	1, 3
Precharge (PRE)	L	Н	Н	L	DES	DES	DES	DES	DES	DES	PRE	DES	1, 3
Precharge (PRE)	L	Н	Н	Н	DES	PRE	1, 3						
Any command	Н	V	V	٧	DES	2							

NOTE 1 Precharge only to the same selected bank within selected logical rank(s)

NOTE 2 "V" means H or L (but a defined logic level)

NOTE 3 A10=L

Table 14 — Truth Table for Precharge All

DRAM Command	CS_n	C2	C1	C0	Logical Rank0	Logical Rank1	Logical Rank2	Logical Rank3	Logical Rank4	Logical Rank5	Logical Rank6	Logical Rank7	Notes
Precharge All (PREA)	L	L	L	L	PREA	DES	1, 3						
Precharge All (PREA)	L	L	L	Н	DES	PREA	DES	DES	DES	DES	DES	DES	1, 3
Precharge All (PREA)	L	L	Н	L	DES	DES	PREA	DES	DES	DES	DES	DES	1, 3
Precharge All (PREA)	L	L	Н	Н	DES	DES	DES	PREA	DES	DES	DES	DES	1, 3
Precharge All (PREA)	L	Н	L	L	DES	DES	DES	DES	PREA	DES	DES	DES	1, 3
Precharge All (PREA)	L	Н	L	Н	DES	DES	DES	DES	DES	PREA	DES	DES	1, 3
Precharge All (PREA)	L	Н	Н	L	DES	DES	DES	DES	DES	DES	PREA	DES	1, 3
Precharge All (PREA)	L	Н	Н	Н	DES	PREA	1, 3						
Any command	Н	V	٧	V	DES	2							

NOTE 1 Precharge all banks only in selected logical rank(s)

NOTE 2 "V" means H or L (but a defined logic level)

NOTE 3 A10=H

4.3 Read and Write Commands

In a DDR4 3D Stacked SDRAM the single select pin and the C[2:0] pins select the logical rank.

The DDR4 3DS command to command timings are shown in Table 15 through Table 18.

Table 15 — Command Timing Parameters by Speed Grade: Minimum Read to Read or Write to Write

Parameter	DDR4-1600-3	DS	DDR4-1866-3	DS	Unit	NOTE
Farameter	min	max	min	max	Oilit	NOTE
tCCD_L_slr	max(5nCK, 6.250ns)	-	max(5nCK, 5.355ns)	-	nCK	x,y
tCCD_S_slr	4	-	4	-	nCK	x,y
tCCD_dlr	max(4nCK, 5.000ns)	-	max(4nCK, 4.284ns)	-	nCK	x,y

Table 16 — Command Timing Parameters by Speed Grade: Minimum Read to Read or Write to Write

Parameter	DDR4-2133-3I	DS	DDR4-2400-3	DS	Unit	NOTE
Farameter	min	max	min	max	Oilit	NOTE
tCCD_L_slr	max(5nCK, 5.355ns)	-	max(5nCK, 5.000ns)	-	nCK	x,y
tCCD_S_slr	4	-	4	-	nCK	x,y
tCCD_dlr	max(4nCK, 3.748ns)	-	max(4nCK, 3.748ns)	-	nCK	x,y

Table 17 — Command Timing Parameters by Speed Grade: Minimum Read to Read or Write to Write

Parameter	DDR4-2666-3	DS	DDR4-2933-3	DS	Unit	NOTE
Farameter	min	max	min	max	Oille	NOIL
tCCD_L_slr	max(5nCK, 5.000ns)	-	max(5nCK, 5.000ns)	-	nCK	x,y
tCCD_S_slr	4	-	4	-	nCK	x,y
tCCD_dlr	max(4nCK, 3.748ns)	-	max(4nCK, 3.410ns)	-	nCK	x,y

Table 18 — Command Timing Parameters by Speed Grade: Minimum Read to Read or Write to Write

Parameter	DDR4-3200-3	DS	Unit	NOTE
Farameter	min	max	Oille	NOTE
tCCD_L_slr	max(5nCK, 5.000ns)	-	nCK	x,y
tCCD_S_slr	4	-	nCK	x,y
tCCD_dlr	max(4nCK, 3.125ns)	-	nCK	x,y

NOTE 1 These timings require extended calibrations times tZQinit and tZQCS (values TBD).

4.4 Refresh Command

No more than one logical rank Refresh Command can be initiated simultaneously to DDR4 3D Stacked SDRAMs as shown in Table 19.

The minimum refresh cycle time to a single logical rank (=tRFC_slr) has the same value as tRFC for a planar DDR4 SDRAM of the same density as the logical rank.

The minimum time between issuing refresh commands to different logical ranks is specified as tRFC_dlr. After a Refresh command to a logical rank, other valid commands can be issued before tRFC_dlr to the other logical ranks that are not the target of the refresh.

DRAM Command	CS_n	C2	C1	C0	Logical Rank0	Logical Rank1	Logical Rank2	Logical Rank3	Logical Rank4	Logical Rank5	Logical Rank6	Logical Rank7	Notes
Refresh (REF)	L	L	L	L	REF	DES	1						
Refresh (REF)	L	L	L	Н	DES	REF	DES	DES	DES	DES	DES	DES	1
Refresh (REF)	L	L	Н	L	DES	DES	REF	DES	DES	DES	DES	DES	1
Refresh (REF)	L	L	Н	Н	DES	DES	DES	REF	DES	DES	DES	DES	1
Refresh (REF)	L	Н	L	L	DES	DES	DES	DES	REF	DES	DES	DES	1
Refresh (REF)	L	Н	L	Н	DES	DES	DES	DES	DES	REF	DES	DES	1
Refresh (REF)	L	Н	Н	L	DES	DES	DES	DES	DES	DES	REF	DES	1
Refresh (REF)	L	Н	Н	Н	DES	REF	1						
Any command	Н	V	V	V	DES	1, 2							

Table 19 — Truth Table for Refresh Command

NOTE 1 CKE=H.

NOTE 2 "V" means H or L (but a defined logic level).

In general, a Refresh command needs to be issued to each logical rank in 3D Stacked DDR4 SDRAM regularly every tREFI slr interval. To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided. A maximum of 8 Refresh commands per logical rank can be postponed during operation of the 3D stacked DDR4 SDRAM, meaning that at no point in time more than a total of 8 Refresh commands are allowed to be postponed per logical rank. In case that 8 Refresh commands are postponed in a row, the resulting maximum interval between the surrounding Refresh commands is limited to 9 × tREFI slr. A maximum of 8 additional Refresh commands can be issued in advance ("pulled in") per logical rank, with each one reducing the number of regular Refresh commands required later by one. Note that pulling in more than 8 Refresh commands in advance does not further reduce the number of regular Refresh commands required later, so that the resulting maximum interval between two surrounding Refresh commands is limited to 9 × tREFI slr. At any given time, a maximum of 16 REF commands per logical rank can be issued within 2 x tREFI_slr. Self-Refresh Mode may be entered with a maximum of eight Refresh commands per logical rank being postponed. After exiting Self-Refresh Mode with one or more Refresh commands postponed, additional Refresh commands may be postponed to the extent that the total number of postponed Refresh commands (before and after the Self-Refresh) will never exceed eight per logical rank. During Self-Refresh Mode, the number of postponed or pulled-in REF commands does not change.

4.5 Self-Refresh Operation and Power-Down Modes

The CKE functionality should adhere to the DDR4 specification for planar DDR4 SDRAMs. Since there is only one CKE pin per 3DS device, all logical ranks enter self refresh and power down together, as shown in Table 20.

DRAM Logical Logical Logical Logical Logical Logical Logical Logical CS_n C2 **C1** C₀ **Notes** Command Rank1 Rank2 Rank₀ Rank3 Rank4 Rank5 Rank6 Rank7 ٧ Refresh (REF) ٧ ٧ SRE **SRE SRE** SRE **SRE** SRE **SRE** SRE 1, 2 Refresh (REF) Н ٧ ٧ V PDE **PDE PDE PDE PDE** 1, 2 **PDE PDE PDE** NOP V PDE **PDE PDE PDE PDE** L ٧ ٧ **PDE PDE PDE** 1, 2 1, 2 Н V **PDE PDE PDE** PDE **PDE PDE PDE PDE** Any command

Table 20 — Truth Table for SRE and PD

NOTE 1 "V" means H or L (but a defined logic level).

NOTE 2 With CKE H-->L.

Self-Refresh exit (SRX) and power-down exit (PDX) apply to all logical ranks in a 3D Stacked device and is caused by the Low-to-High transition of the single CKE pin.

A Deselect command must be used for SRX.

A Deselect command must be used for PDX.

3D Stacked SDRAMs have the same values of all parameters for Self Refresh Timings and Power Down Timings as planar DDR4 SDRAMs of the same frequency. Specification of tXS DDR4 3DS has been modified with Refresh Parameter by Logical Rank Density.

Once a Self-Refresh Exit command (SRX, combination of CKE going high and either NOP or Deselect on command bus) is registered, a delay of at least tXS must be satisfied before a valid command not requiring a locked DLL can be issued to the device to allow for any internal refresh in progress. The use of Self-Refresh mode introduces the possibility that an internally timed refresh event can be missed when CKE is raised for exit from Self-Refresh mode. Upon exit from Self-Refresh, the DDR4 3D stacked SDRAM requires a minimum of one extra refresh command to all logical Ranks (each refresh period of tRFC_slr), before it is put back into Self-Refresh Mode.

4.6 Write Leveling

The memory controller initiates Leveling mode of all SDRAMs by setting bit A7 of MR1 to 1. Upon entering write leveling mode, the DQ pins are in undefined driving mode. During write leveling mode, only DESELECT commands are allowed, as well as an MRS command to exit write leveling mode. Since the controller levels one rank at a time, the output of other physical ranks must be disabled by setting MR1 bit A12 to 1.

4.7 ZQ Calibration Commands

Each 3DS package will have a single ZQ calibration pin, independent of the number of logical ranks in the stack. Since there is only one I/O per device, the ZQ pin should be associated with the master die.

The calibration procedure and the result should adhere to JEDEC DDR4 component specification (JESD79-4). The host may issue ZQ calibration command to each logical rank. If a ZQ command is issued to the master logical rank ZQ calibration will be performed. If a ZQ command is issued to a non-master rank the ZQ command may be ignored, however ZQ calibration timings must be observed. The SDRAM can choose to ignore the ZQ commands to the non-master logical rank or execute the calibration of the I/O attached to the master die.

4.8 Command Address Parity (CA Parity)

C/A Parity signal (PAR) covers ACT_n, RAS_n, CAS_n, WE_n and the address bus including bank address, bank group bits and chip ID bits C[2:0]. The control signals CKE, ODT and CS_n are not included. (e.g., for a 4 Gbit x4 monolithic device, parity is computed across BG0, BG1, BA1, BA0, A16/RAS_n, A15/CAS_n, A14/WE_n, A13-A0 and ACT_n). (DRAM should internally treat any unused address pins as 0's, e.g., if a common die has stacked pins C[2:0] but the device is used in a monolithic or less than 8H stacked application then the unused address pins should internally be treated as 0's).

When Refresh commands are issued to logical ranks prior to an Error command on the other rank, 3DS DDR4 shall finish the on-going Refresh operation. Upon Alert Pulse Width deactivation, DRAM conducts Precharge-All operation to the logical ranks which are not on Refresh operation to make them ready for valid commands. After tRP_CA_Parity from the end of tPAR_ALERT_PW, valid commands can be issued to the logical ranks which do not have on-going Refresh operation. Valid commands, including MRS, to the logical ranks with on-going Refresh can be issued after both tRFC_slr and tRP_CA_Parity are met as illustrated in Figure 6.

- NOTE 1 DRAM is emptying queues, Precharge All and parity checking off until Parity Error Status bit cleared.
- NOTE 2 Command execution is unknown the corresponding DRAM internal state change may or may not occur. The DRAM controller should consider both cases and make sure that the command sequence meets the specifications.
- NOTE 3 Normal operation with parity latency (CA Parity Persistent Error Mode Disabled). Parity checking off until Parity Error Status bit cleared.
- NOTE 4 When REF is issued in tPAR_UNKNOWN range, REF may not be executed. But, host must wait tRFC_slr to issue valid commands to the same logical rank.
- NOTE 5 Valid commands to the rank with no on-going REF are available.
- NOTE 6 Valid commands, including MRS, to the rank with on-going REF are available.

Figure 6 — DDR4 3DS SDRAM Refresh Operation

Table 21 — Timing delay for Valid commands from Alert Pulse deassertion

Parameter	Symbol	DDR4-1600, 1866, 2133, 2400	DDR4-2666, 3200	Units	Note
Minimum time for valid commands except for MRS to the logical ranks that do not conduct REF	tRP_CA_Parity	TBD	TBD	n _{CK}	

4.9 Target Row Refresh (TRR)

For DRAM to operate TRR function independently on the selected logical rank, logical rank information (C0, C1 and C2) should be given to DRAM at the TRR mode entry (MR2 A13=H) and disable (MR2 A13=L) along with Bank and Bank Group Address.

4.10 Post Package Repair (PPR)

For DRAM to operate PPR function independently on the selected logical rank, logical rank information (C0, C1 and C2) should be given to DRAM at the ACT, WR, WRA, REF and PRE during PPR mode.

In case of PPR with WRA, REF (1x) commands are allowed from PL+WL+BL/2+tWR+tRP after WRA command during tPGM and tPGMPST for proper repair. Upon receiving REF (1x) command, DRAM performs normal Refresh operation and maintains the array content except for the Bank containing row that is being repaired. Other commands except REF during t_{PGM} can cause incomplete repair so no other command except REF to the banks and logical ranks which do not have on-going PPR is allowed during tPGM.

4.11 Gear Down mode

The 3DS device defaults in 1/2 rate(1N) clock mode and utilizes a low frequency MRS command followed by a sync pulse to align the proper clock edge for operating the control lines specifically CS_n, CKE and ODT in 1/4 rate (2N) mode. Only one sync pulse is required for a 3DS device and the sync pulse should be associated with the master die. For operation in 1/2 rate mode the MRS command and sync pulse are not required. For more details on Gear Down mode refer to JESD79-4.

5 On Die Termination

No changes from JESD79-4.

6 Absolute Maximum Ratings

No changes from JESD79-4.

7 AC and DC Operating Conditions

No changes from JESD79-4.

8 AC and DC Output Measurement Levels

No changes from JESD79-4.

9 Speed Bins

9.1 Standard 3DS Speed Bins for x4

Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to be JEDEC compliant. JEDEC compliance does not require support for all speed bins within a given speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins.

DDR4 3D Stacked SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.

Notes for Tables 22 through 29 are in Section 9.3.

Table 22 — DDR4 x4 3DS-1600 Speed Bins and Operations

	Speed Bin		DDR4-160	00J-3DS2B	DDR4-160	0K-3DS2B	DDR4-160	0L-3DS2B		
	CL-nRCD-nRP		12-1	11-10	13-1	2-11	14-1	3-12	Unit	Note
Parai	meter	Symbol	min	max	min	max	min	max		
Internal read co	ommand to first	t _{AA}	15.00	21.5	16.25	21.5	17.50	21.5	ns	17
ACT to internal delay time	read or write	tRCD	13.75	-	15.00	-	16.25	-	ns	17
PRE command	period	tRP	12.50	-	13.75	-	15.00	-	ns	17
ACT to PRE co	mmand period	tRAS	35	9 x tREFI	35	9 x tREFI	35	9 x tREFI	ns	17
ACT to ACT or period	REF command	tRC	47.50	-	48.75	-	50.00	-	ns	17
	CL=12	tCK(AVG)	1.25	1.5	Rese	erved	Rese	erved	ns	1,2,3,4
CWL=9, 11	CL=13	tCK(AVG)	1.25	1.5	1.25	1.5	Rese	erved	ns	1,2,3,4
	CL=14	tCK(AVG)	1.25	1.5	1.25	1.5	1.25	1.5	ns	1,2,3
Sup	ported CL Settin	gs	12,	13,14	13,	14	1	4	nCK	
Supported	nRCD Timings	minimum	1	10	1	0	1	1	nCK	
Supporte	d nRP Timings n	ninimum		9	1	0	1	0	nCK	
Supp	orted CWL Setti	ngs	9,	11	9,	11	9,	11	nCK	

Table 23 — DDR4 x4 3DS-1866 Speed Bins and Operations

	Speed Bin		DDR4-1866I	L-3DS2B	DDR4-1866	M-3DS2B	DDR4-186	6N-3DS2B		
C	L-nRCD-nRP		14-13-	-12	15-14	-13	16-1	5-14	Unit	Note
Parar	neter	Symbol	min	max	min	max	min	max		
Internal read of first data	command to	t _{AA}	15.00	21.5	16.07	21.5	17.14	21.5	ns	17
ACT to internated delay time	I read or write	tRCD	13.92 (13.75) ^{5,17}	-	15.00	-	16.07	-	ns	17
PRE comman	d period	tRP	12.85 (12.50) ^{5,17}	-	13.92 (13.75) ^{5,17}	-	15.00	-	ns	17
ACT to PRE of period	ommand	tRAS	34	9 x tREFI	34	9 x tREFI	34	9 x tREFI	ns	17
ACT to ACT or command peri	· · ·—·	tRC	46.85 (46.50) ^{5,17}	-	47.92 (47.75) ^{5,17}	-	49.00	-	ns	17
	CL=12	+CI((A)(C)	1.25	1.5	Danas		Dane		ns	40040
	CL=12	tCK(AVG)	(Optiona	I) ^{5,17}	Reser	Reserved Reserved		ervea	ns	1,2,3,4,6
CWL=9, 11	CL=13	tCK(AVG)	1.25	1.5	1.25	1.5	Rese	ar (od	20	1,2,3,4,6
	OL-13	ick(AvG)	1.20	1.5	(Optiona	al) ^{5,17}	Kese	ei veu	ns	1,2,3,4,0
	CL=14	tCK(AVG)	1.25	1.5	1.25	1.5	1.25	1.5	ns	1,2,3,6
	CL=14	tCK(AVG)	1.071	< 1.25	Reser	ved	Rese	erved	ns	1,2,3,4
CWL=10, 12	CL=15	tCK(AVG)	1.071	< 1.25	1.071	< 1.25	Rese	erved	ns	1,2,3,4
	CL=16	tCK(AVG)	1.071	< 1.25	1.071	< 1.25	1.071	< 1.25	ns	1,2,3
Supp	orted CL Settir	ngs	(12), 13, 14	, 15, 16	(13), 14,	15, 16	14,	16	nCK	15
Supported	nRCD Timings	minimum	10		10		1	1	nCK	
Supported	nRP Timings r	ninimum	9		10		1	0	nCK	
Suppo	orted CWL Sett	ings	9, 10, 1	1, 12	9, 10, 1	1, 12	9, 10,	11, 12	nCK	

Table 24 — DDR4 x4 3DS-2133 Speed Bins and Operations

Speed Bin			DDR4-213	3P-3DS2A	DDR4-213	3P-3DS3A	DDR4-213	3R-3DS4A		
	CL-nRCD-nRF	•	17-1	5-15	18-1	5-15	20-16-16		Unit	Note
Parameter		Symbol	min	max	min max		min	max		
Internal read command to first data		t _{AA}	15.95	21.5	16.88	21.5	18.76 (17.14) ^{5,17}	21.5	ns	17
ACT to intern write delay tir		tRCD	14.06	-	14.06	-	15.00	-	ns	17
PRE commar	nd period	tRP	14.06 (13.75) ^{5,17}	-	14.06	-	15.00	-	ns	17
ACT to PRE of period	command	tRAS	33	9 x tREFI	33	9 x tREFI	33	9 x tREFI	ns	17
ACT to ACT or REF command period		tRC	47.06 (46.75) ^{5,17}	-	47.06	-	48.00	-	ns	17
	CL=13	tCK(AVG)	1.25 1.5 Reserved		Reserved		ns	1,2,3,4,7		
CWL=9, 11	CL=14	CL=14 tCK(AVG)	1.25	1.5	1.5 1.25	1.5	1.25	1.5	ns	1,2,3,4,7
			1.25	1.0		1.5	(Option	nal) ^{5,17}		1,2,3,4,7
	CL=14	tCK(AVG)	Rese	rved	Rese	erved	Rese	Reserved		4
CWL=10,	CL=15	tCK(AVG)	1.071 < 1.25 (Optional) ^{5,17}		Reserved		Reserved		ns	1,2,3,4,7
12							1.071	< 1.25		
	CL=16	tCK(AVG)	1.071	< 1.25	1.071	< 1.25	(Optional) ^{5,17}		ns	1,2,3,4,7
	CL=16	tCK(AVG)	Rese	rved	Rese	erved	Reserved		ns	4
CWL=11,	CL=17	tCK(AVG)	0.937	< 1.071	Rese	erved	Rese	rved	ns	1,2,3,4
14	CL=18	tCK(AVG)	0.937	< 1.071	0.937	< 1.071	Rese	rved	ns	1,2,3,4
	CL=20	tCK(AVG)	0.937	< 1.071	0.937	< 1.071	0.937	< 1.071	ns	1,2,3
Supported CL Settings		(13),14,(15),16,17, 18, 20		14, 16, 18, 20		(14), (16), 20		nCK	15	
	nRCD Timing		10		10		11		nCK	_
	d nRP Timings		10		-	0	10		nCK	
Supp	orted CWL Se	ttings	9, 10, 11	, 12, 14	9, 10, 1	1, 12, 14	9, 10, 11	, 12, 14	nCK	

Table 25 — DDR4 x4 3DS-2400 Speed Bins and Operations

Speed Bin				DDR4-2400T-3DS2A		DDR4-2400U-3DS2A		DDR4-2400U-3DS4A							
С	L-nRCD-nR	P	18-16-15		19-17-17		20-18-18 ¹⁹		22-18-18		Unit	Note			
Parar	meter	Symbol	min	max	min	max	min	max	min max						
Internal read command to first data		t _{AA}	15.00	21.50	15.83	21.50	16.67	21.50	18.33 (17.14) ^{5,17}	21.50	ns	17			
ACT to inter write delay t		tRCD	13.33	-	14.16 (14.06) ^{5,17}	-	15.00 (14.06) ^{5,17,19}	-	15.00	-	ns	17			
PRE comma	and period	tRP	12.50	-	14.16 (13.75) ^{5,17}	-	15.00 (14.06) ^{5,17,19}	-	15.00	-	ns	17			
ACT to PRE period	command	tRAS	32	9 x tREFI	32	9 x tREFI	32	9 x tREFI	32	9 x tREFI	ns	17			
ACT to ACT command po		tRC	44.50	-	46.16 (45.75) ^{5,17}	1	47.00 (46.06) ^{5,17}	-	47.00	-	ns	17			
CWL=	CL=13	tCK(AVG)	1.25	1.5	1.25 (Option	1.5 al) ^{5,17}	Reserve	ed	Reserved		ns	1,2,3,4,8			
9, 11	CL=14	tCK(AVG)	1.25	1.5	1.25	1.5	1.25	1.5	1.25 (Optiona	1.5 I) ^{5,17}	ns	1,2,3,4,8			
	CL=14	tCK(AVG)	1.071	< 1.25	Rese	ved	Reserve	ed	Reserved		ns	1,2,3,4,8			
		15 tCK(AVG)	1.071	< 1.25	1.071	4.05					ns	1,2,3,4,8			
CWL= 10, 12	CL=15				(Option	1.25 al) ^{5,17}	Reserve	ed	Reserved		ns	1,2,3,4,8			
	CL=16	tCK(AVG)	1.071	< 1.25	1.071	1.25	1.071	< 1.25	1.071 < 1.25 (Optional) ^{5,17}		ns	1,2,3,4,8			
	CL=16	tCK(AVG)	Res	erved	Rese	ved	Reserved		Reserved		ns	4			
		tCK(AVG)	0.937	Cived	0.937	< 1.071	110001104		reserved		110	-			
CWL=	CL=17			< 1.071	(Option	al) ^{5,17}	Reserve	ed	Reserved		ns	1,2,3,4,8			
11, 14	01 40	tCK(AVG)				0.007	. 4 074	0.937	< 1.071	0.937	< 1.071				40040
	CL=18		0.937	< 1.071	(Optional) ^{5,17}		(Optional) ^{5,17,19}		Reserved		ns	1,2,3,4,8			
	CL=20	tCK(AVG)	Res	erved	Rese		Reserve	ed	0.937	< 1.071	ns	1,2,3,4,8			
	CL=18	tCK(AVG)	0.833	< 0.937	Resei	ved	Reserve	ed	Reserv	red	ns	1,2,3,4			
CWL=	CL=19	tCK(AVG)	0.833	< 0.937	0.833	< 0.937	Reserve	ed	Reserv	ed .	ns	1,2,3,4			
12, 16	CL=20	tCK(AVG)	0.833	< 0.937	0.833	< 0.937	0.833	< 0.937	Reserv	ed .	ns	1,2,3,4			
	CL=22	tCK(AVG)	Res	erved	Resei		Reserve	ed	0.833	< 0.937	ns	1,2,3,4			
Supp	Supported CL Settings			13, 14, 15, 16, (13 17,18, 19, 20		(13), 14, (15), 16, (17) (18), 19, 20		14, 16, (18), 20		(14), (16), 20, 22		15			
	nRCD Timing		-	9	10		10		11		nCK				
	nRP Timings			9	10		10		10		nCK				
Supported CWL Settings		ettings	9, 10, 11, 12, 14, 16		9, 10, 11, 1	2, 14, 16	9, 10, 11, 12, 14, 16		9, 10, 11, 12, 14, 16		nCK				

Table 26 — DDR4 x4 3DS-2666 Speed Bins and Operations

Speed Bin			DDR4-26	66T- 3DS3A	DDR4-2666	V- 3DS3A	DDR4-2666	6W- 3DS4A		
CI	CL-nRCD-nRP		20-17-17		22-19	-19	24-20-20		Unit	Note
Parameter		Symbol	min	max	min	max	min	max		
Internal read cor first data	nmand to	t _{AA}	15.00	21.50	16.50	21.50	18.00 (17.14) ^{5,17}	21.50	ns	17
ACT to internal r delay time	ead or write	tRCD	12.75	-	14.25 ¹⁸ (14.06) ^{5,17}	-	15.00	-	ns	17
PRE command p	period	tRP	12.75	-	14.25 ¹⁸ (14.06) ^{5,17}	-	15.00	-	ns	17
ACT to PRE comperiod	nmand	tRAS	32	9 x tREFI	32	9 x tREFI	32	9 x tREFI	ns	17
ACT to ACT or R		tRC	44.75	-	46.25 ¹⁸ (46.06) ^{5,17}	-	47.00	-	ns	17
	CL=13	tCK(AVG)	1.25	1.5	Reser	ved	Reserved		ns	1,2,3, 4,9
CWL=9,11	CL=14	CL=14 tCK(AVG)	1.25	1.5	1.25	1.5	1.25	1.5		1,2,3,4,9
			1.23				(Optional) ^{5,17}		ns	1,2,3,4,9
	CL=14	tCK(AVG)	Res	served	Reser	ved	Reserved		ns	9
CWL=10,12	CL=15	tCK(AVG)	1.071	< 1.25	Reserved		Reserved		ns	1,2,3, 4,9
CVVL-10,12	CL=16	6 tCK(AVG)	1.071	< 1.25	1.071	< 1.25	1.071	< 1.25	ns	1,2,3,4,9
		, ,	, l				(Optional) ^{5,17}		110	1,2,0,1,0
	CL=16	tCK(AVG)	Res	erved	Reser		Reserved		ns	9
CWL=11,14	CL=18	tCK(AVG)	0.937	< 1.071	0.937 (Optiona	< 1.071 al) ^{5,17}	Reserved		ns	1,2,3,4,9
	CL=20	tCK(AVG)	0.937	< 1.071	0.937	< 1.071	0.937	< 1.071	ns	1,2,3,9
	CL=18	tCK(AVG)	Res	served	Reser	ved	Rese	erved	ns	9
CWL=12,16	CL=20	tCK(AVG)	0.833	< 0.937	0.833 (Optional) ^{5,17,18}	< 0.937	Rese	erved	ns	1,2,3, 4,9
	CL=22	tCK(AVG)	0.833	< 0.937	0.833	< 0.937	0.833	< 0.937	ns	1,2,3,9
	CL=20	tCK(AVG)	0.75	< 0.833	Reser	ved	Rese	erved	ns	1,2,3, 4
CWL=14,18	CL=22	tCK(AVG)	0.75	< 0.833	0.75	< 0.833	Rese	erved	ns	1,2,3, 4
	CL=24	tCK(AVG)	0.75	< 0.833	0.75	< 0.833	0.75	< 0.833	ns	1,2,3
Supported CL Settings		13, 14, 15, 16, 18, 20, 22, 24		14, 16, (18), (20), 22, 24		(14),(16), 20, 22, 24		nCK	15	
	RCD Timings			11	12			2	nCK	
	nRP Timings r			10	12		12		nCK	
Suppor	ted CWL Sett	ings	9, 10, 11, 12, 14, 16, 18		9, 10, 11, 12, 14, 16, 18		9, 10, 11, 12, 14, 16, 18		nCK	

Table 27 — DDR4 x4 3DS-2933 Speed Bins and Operations

Speed Bin			DDR4-2933W- 3DS3A			DDR4-2933Y- 3DS3A		AA- 3DS 4 3A		
CI	nRCD-nRP		23-2	:0-20	24-21	-21	25-22-22		Unit	Note
Parameter		Symbol	min	max	min	max	min	max		
Internal read command to first data		t _{AA}	15.69	21.50	16.37	21.50	17.05	21.50	ns	17
ACT to internal redelay time	ad or write	tRCD	13.64	-	14.32 ¹⁸ (14.06) ^{5,17}	-	15.00	-	ns	17
PRE command po	eriod	tRP	13.64	-	14.32 ¹⁸ (14.06) ^{5,17}	-	15.00	-	ns	17
ACT to PRE com	mand period	tRAS	32	9 x tREFI	32	9 x tREFI	32	9 x tREFI	ns	17
ACT to ACT or REperiod	EF command	tRC	45.64	-	46.32 ¹⁸ (46.06) ^{5,17}	-	47.00	-	ns	17
CWL=9,11	CL=13	tCK(AVG)	1.25	1.5	Reser	ved	Reserved		ns	1,2,3,4,14
CVVL-9,11	CL=14	tCK(AVG)	1.25	1.5	1.25	1.5	1.25	1.5	ns	1,2,3,4,14
	CL=14	tCK(AVG)	Rese	erved	Reser	ved	Reserved		ns	4
CWL=10,12	CL=15	tCK(AVG)	1.071	< 1.25	Reser	ved	Reserved		ns	1,2,3,4,14
	CL=16	tCK(AVG)	1.071	< 1.25	1.071	< 1.25	1.071	< 1.25	ns	1,2,3,4,14
	CL=16	tCK(AVG)	Rese	erved	Reser	ved	Reserved		ns	4
CWL=11,14	CL=18	tCK(AVG)	0.937	< 1.071	0.937 (Optional	< 1.071	Reserved		ns	1,2,3,4,14
	CL=20	tCK(AVG)	0.937	< 1.071	0.937	< 1.071	0.937	< 1.071	ns	1,2,3, 4 ,14
	CL=18	tCK(AVG)	Reserved		Reserved		Reserved		ns	4
CWL=12,16	CL=20	tCK(AVG)	0.833	< 0.937	0.833 (Optional) ^{5,17,18}	< 0.937	Reserved		ns	1,2,3,4,14
	CL=22	tCK(AVG)	0.833	< 0.937	0.833	< 0.937	0.833	< 0.937	ns	1,2,3,4,14
	CL=20	tCK(AVG)	Rese	erved	Reser	ved	Rese	erved	ns	4
CWL=14,18	CL=22	tCK(AVG)	0.75	< 0.833	0.75 (Optional	< 0.833	Rese	Reserved		1,2,3,4,14
	CL=24	tCK(AVG)	0.75	< 0.833	0.75	< 0.833	0.75	< 0.833	ns	1,2,3,4,14
	CL=22	tCK(AVG)	Rese	erved	Reser	ved	Rese	erved	ns	4
	CL=23	tCK(AVG)	0.682	<0.75	Reser	ved	Rese	erved	ns	1,2,3,4
CWL=16,20	CL=24	tCK(AVG)	0.682	<0.75	0.682	<0.75	Rese	erved	ns	1,2,3,4
	CL=25	tCK(AVG)	0.682	<0.75	0.682	<0.75	0.682	<0.75	ns	1,2,3
Supported CL Settings		13, 14, 15, 16, 18, 20, 22, 23, 24, 25		14, 16, (18), (20), (22), 24. 25		14, 16, 20, 22, 24, 25		nCK	15	
Supported n	RCD Timings r	minimum	1	0	10	1	10		nCK	
Supported r	nRP Timings m	inimum	1	0	10		10		nCK	
Supported CWL Settings		ngs	9, 10, 11, 12, 14, 16, 18, 20		9, 10, 11, 12, 14, 16, 18, 20		9, 10, 11, 12, 14, 16, 18, 20		nCK	

Table 28 — DDR4 x4 3DS-3200 Speed Bins and Operations

;	Speed Bin		DDR4-3200W- 3DS4A		DDR4-3200AA- 3DS4A		DDR4-3200AC- 3DS4A			
CL	nRCD-nRP		24-2	0-20	26-22-22		28-24-24		Unit	Note
Parameter		Symbol	min	max	min	max	min	max		
Internal read command to first data		t _{AA}	15.00	21.50	16.25	21.50	17.50 (17.14) ^{5,17}	21.50	ns	17
ACT to internal re delay time	ad or write	tRCD	12.50	-	13.75	-	15.00	-	ns	17
PRE command pe	eriod	tRP	12.50	-	13.75	-	15.00	-	ns	17
ACT to PRE com	mand period	tRAS	32	9 x tREFI	32	9 x tREFI	32	9 x tREFI	ns	17
ACT to ACT or RE period	EF command	tRC	44.5	-	45.75	-	47.00	-	ns	17
CWL=9,11	CL=13	tCK(AVG)	1.25	1.5	1.25	1.5	Rese	erved	ns	1,2,3,4,10
CVVL-9,11	CL=14	tCK(AVG)	1.25	1.5	1.25	1.5	1.25	1.5	ns	1,2,3,10
	CL=14	tCK(AVG)	Rese	erved	Rese	erved	Rese	erved	ns	4
0)4/1 40 40	CL=15	tCK(AVG)	1.071	< 1.25	Rese	erved	Rese	Reserved		1,2,3,4,10
CWL=10,12		101((1)(0)	4.074	< 1.25	1.071	< 1.25	1.071	< 1.25	ns	100110
	CL=16	tCK(AVG)	1.071				(Option	(Optional) ^{5,17}		1,2,3,4,10
	CL=16	tCK(AVG)	Rese	erved	Rese	erved	Rese	erved	ns	4
CWL=11,14	CL=18	tCK(AVG)	0.937	< 1.071	0.937	< 1.071	Reserved		ns	1,2,3,4,10
	CL=20	tCK(AVG)	0.937	< 1.071	0.937	< 1.071	0.937	< 1.071	ns	1,2,3,10
	CL=18	tCK(AVG)	Rese	erved	Rese	erved	Reserved		ns	4
CWL=12,16	CL=20	tCK(AVG)	0.833	< 0.937	0.833	< 0.937	Reserved		ns	1,2,3,4,10
İ	CL=22	tCK(AVG)	0.833	< 0.937	0.833	< 0.937	0.833	< 0.937	ns	1,2,3,10
	CL=20	tCK(AVG)	0.75	< 0.833	Rese	erved	Reserved		ns	1,2,3,4,10
CWL=14,18	CL=22	tCK(AVG)	0.75	< 0.833	0.75	< 0.833	Reserved		ns	1,2,3,4,10
İ	CL=24	tCK(AVG)	0.75	< 0.833	0.75	< 0.833	0.75	< 0.833	ns	1,2,3,10
	CL=23	tCK(AVG)	0.682	< 0.75	Rese	erved	Rese	erved	ns	1,2,3,4,10
İ	CL=24	tCK(AVG)	0.682	< 0.75	0.682	< 0.75	Reserved		ns	1,2,3,4,10
CWL=16,20	CL=25	tCK(AVG)	0.682	< 0.75	0.682	< 0.75	Rese	erved	ns	1,2,3,4,10
İ	CL=26	tCK(AVG)	0.682	< 0.75	0.682	< 0.75	0.682	< 0.75	ns	1,2,3,10
İ	CL=28	tCK(AVG)	0.682	< 0.75	0.682	< 0.75	0.682	< 0.75	ns	1,2,3,10
	CL=24	tCK(AVG)	0.625	< 0.682	Rese	erved	Reserved		ns	1,2,3,4
CWL=16,20	CL=26	tCK(AVG)	0.625	< 0.682	0.625	< 0.682	Reserved		ns	1,2,3,4
İ	CL=28	tCK(AVG)	0.625	< 0.682	0.625	< 0.682	0.625	< 0.682	ns	1,2,3
Supported CL Settings			13, 14, 15, 16, 18, 20, 22, 23, 24, 25, 26, 28		13, 14, 16, 18, 20, 22, 24, 25, 26, 28		14, (16), 20, 22, 24, 26, 28		nCK	15
Supported nl	RCD Timings r	minimum	1	1	1	2	12		nCK	
Supported r	nRP Timings m	inimum	10		1	1	12		nCK	
Supported CWL Settings			9, 10, 11, 12,	14, 16, 18, 20	9, 10, 11, 12, 14, 16, 18, 20		9, 10, 11, 12, 14, 16, 18, 20		nCK	

9.2 Standard 3DS Speed Bins for x8

x8 speed bins for DDR4 3DS have not been developed at the time of this publication. Users should consult suppliers for specific x8 3DS requirements as timings are not assumed to be inherited from the mono-die specification in JESD79-4.

9.3 Notes to Speed Bin Tables

Absolute Specification

- $V_{DDQ} = V_{DD} = 1.20 V + / 0.06 V$
- $V_{PP} = 2.5 V + 0.25 / -0.125 V$
- The values defined with above-mentioned table are DLL ON case.
- DDR4-3DS-1600, 1866, 2133, 2400 Speed Bin Tables are valid only when Gear Down mode is disabled.
- NOTE 1 The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
- NOTE 2 tCK(avg).MIN limits: Since CAS Latency is not purely analog data and strobe output are synchronized by the DLL all possible intermediate frequencies may not be guaranteed. CL in clock cycle is calculated from tAA following the rounding algorithm defined in JESD79-4.
- NOTE 3 tCK(avg).MAX limits: Calculate tCK(avg) = t_{AA} .MAX / CL SELECTED and round the resulting tCK(avg) down to the next valid speed bin (i.e., 1.5 ns or 1.25 ns or 1.071 ns or 0.937 ns or 0.833 ns). This result is tCK(avg).MAX corresponding to CL SELECTED.
- NOTE 4 'Reserved' settings are not allowed. User must program a different value.
- NOTE 5 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Any combination of the 'optional' CL's is supported. The associated 'optional' tAA, tRCD, tRP, and tRC values must be adjusted based upon the CL combination supported. Refer to supplier's data sheet and/or the DIMM SPD information if and how this setting is supported.
- NOTE 6 Any DDR4-3DS-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- NOTE 7 Any DDR4-3DS-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- NOTE 8 Any DDR4-3DS-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- NOTE 9 Any DDR4-3DS-2666 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- NOTE 10 Any DDR4-3DS-3200 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- NOTE 11 Deleted
- NOTE 12 Deleted
- NOTE 13 Deleted
- NOTE 14 Any DDR4-3DS-2933 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- NOTE 15 CL number in parenthesis, it means that these numbers are optional.
- NOTE 16 Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to be JEDEC compliant. JEDEC compliance does not require support for all speed bins within a given speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins.
- NOTE 17 Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
- NOTE 18 DDR4 SDRAM supports CL=20 as long as a system meets tAA(min), tRCD(min), tRP(min), and tRC(min).
- NOTE 19 DDR4-2400U-3DS2A CL-nRCD-nRP=20-18-18 timing will change to 20-17-17 if the 'optional' CL18 setting is supported.

10 I_{DD} Current Specification

10.1 I_{DD}, I_{PP}, and I_{DDO} Measurement Conditions

In this chapter, I_{DD} , I_{PP} , and I_{DDQ} measurement conditions such as test load and patterns are defined. Figure 7 shows the setup and test load for I_{DD} , I_{PP} and I_{DDQ} measurements.

 I_{DD} currents (such as I_{DD0} , I_{DD0A} , I_{DD1} , I_{DD1A} , I_{DD2N} , I_{DD2NA} , I_{DD2NL} , I_{DD2NT} , I_{DD2P} , I_{DD2Q} , I_{DD3N} , I_{DD3NA} , I_{DD3P} , I_{DD4R} , I_{DD4R} , I_{DD4R} , I_{DD5B1} , I_{DD5B2} , I_{DD5F2} , I_{DD5F4} , I_{DD6N} , I_{DD6E} , I_{DD6R} , I_{DD6R} , I_{DD7} , and I_{DD8}) are measured as time-averaged currents with all V_{DD} balls of the DDR4 SDRAM under test tied together. Any I_{DD0} current is not included in I_{DD} currents.

 I_{PP} currents have the same definition as I_{DD} except that the current on the V_{PP} supply is measured.

 I_{DDQ} currents (such as I_{DDQ2NT} and I_{DDQ4R}) are measured as time-averaged currents with all V_{DDQ} balls of the DDR4 SDRAM under test tied together. Any I_{DD} current is not included in I_{DDQ} currents. Attention: I_{DDQ} values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 8. In SDRAM module application, I_{DDQ} cannot be measured separately since V_{DD} and V_{DDQ} are using one merged-power layer in Module PCB.

For I_{DD} and I_{DDQ} measurements, the following definitions apply:

- "0" and "LOW" is defined as VIN <= V_{IL(AC)max}.
- "1" and "HIGH" is defined as VIN \geq V_{IH(AC)min}.
- "MID-LEVEL" is defined as inputs are VREF = V_{DD} / 2.
- \bullet Timings used for $I_{\mbox{\scriptsize DD}}$ and $I_{\mbox{\scriptsize DDO}}$ Measurement-Loop Patterns are provided in Table 29.
- \bullet Basic $I_{\mbox{\scriptsize DD}},\,I_{\mbox{\scriptsize PP}}$ and $I_{\mbox{\scriptsize DDO}}$ Measurement Conditions are described in Table .
- I_{DD} Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not limited to setting:

```
RON = RZQ/7 (34 Ohm in MR1);

Qoff = 0_B (Output Buffer enabled in MR1);

R_{TT}_NOM = RZQ/6 (40 Ohm in MR1);

R_{TT}_WR = RZQ/2 (120 Ohm in MR2);

R_{TT}_PARK = Disable;

Qoff = 0_B (Output Buffer enabled) in MR1;

TDQS_t Feature disabled in MR1;

CRC disabled in MR2;

CA parity feature disabled in MR5;

Gear Down mode disabled in MR3.
```

- Attention: The I_{DD}, I_{PP} and I_{DDQ} Measurement-Loop Patterns need to be executed at least one time before actual I_{DD}, I_{PP} or I_{DDO} measurement is started.
- Define D = $\{CS0 \text{ n, , ACT n, RAS n, CAS n, WE n}\} := \{HIGH, LOW, LOW, LOW, LOW\}$
- Define $D\# = \{CS0 \text{ n, , ACT n, RAS n, CAS n, WE n}\} := \{HIGH, HIGH, HIGH, HIGH, HIGH\}$

10.1 I_{DD}, I_{PP}, and I_{DDO} Measurement Conditions (cont'd)

NOTE 1 DIMM level Output test load condition may be different.

Figure 7 — Measurement Setup and Test Load for I_{DD} and I_{DDO} (optional) Measurements

Figure 8 — Correlation from simulated Channel I/O Power to actual Channel I/O Power supported by $I_{\mbox{\scriptsize DDO}}$ Measurement

10.1 I_{DD}, I_{PP}, and I_{DDQ} Measurement Conditions (cont'd)

Table 29 — Timings used for $I_{DD},\,I_{PP},\,\text{and}\,\,I_{DDQ}$ measurements loop patterns

Symbol			DDR4-160	0	ı	DDR4-1866	6	Unit
		12-11-10	13-12-11	14-13-12	14-13-12	15-14-13	16-15-14	
tCK			1.25			1.071		ns
CL		12	13	14	14	15	16	nCK
CWL			11			12		nCK
nRCD		11	12	13	13	14	15	nCK
nRC		38	39	40	44	45	46	nCK
nRAS			28			32		nCK
nRP		10	11	12	12	13	14	nCK
nFAW_slr	x4		16			16		nCK
111 AVV_311	x8		20			22		nCK
nRRD_S_slr	x4		4	5		4		nCK
111(1 <u>D_</u> 3311	x8		4			4		nCK
nRRD_L_sIr	x4		5			5		nCK
IINND_L_SII	x8		5			5		nCK
nRFC_slr 4 Gb	1.		208			243		nCK
nRFC_slr 8 Gb			280			327		nCK
nRFC_slr 16 Gb			440			514		nCK
nRFC_dlr 4 Gb			72			85		nCK
nRFC_dlr 8 Gb			96			113		nCK
nRFC_dlr 16 Gb			152			178		nCK

 $Table~29 - Timings~used~for~I_{DD}, I_{PP}, and~I_{DDQ}~measurements~loop~patterns~(Cont'd)\\$

Symb	ool		DDR4-2133	1		DDR4	1-2400		Unit
		17-15-15	18-15-15	20-16-16	18-16-15	19-17-17	20-18-18	22-18-18	
t _{CK}			0.937			3.0	333		ns
CL		17	18	20	18	19	20	22	nCK
CWI	_		14			1	6		nCK
nRCl	D	15	15	16	16	17	18	18	nCK
nRC	;	51	51	52	54	56	57	57	nCK
nRA:	S		36	ı		3	9	ı	nCK
nRF)	15	15	16	15	17	18	18	nCK
pEAW olr	x4		16			1	6		nCK
nFAW_sIr	x8		23			2	6		nCK
DDD C alm	x4		4		>	4	4		nCK
nRRD_S_slr	x8		4	111		4	4		nCK
"DDD I als	x4		6			(6		nCK
nRRD_L_slr	x8		6			(6		nCK
nRFC_slr	4 Gb		278			3	13		nCK
nRFC_slr			374			42	21		nCK
nRFC_slr			587				61		nCK
nRFC_dlı			97			10	09		nCK
nRFC_dlı			129			14	45		nCK
nRFC_dlr	16 Gb		203			22	29		nCK

 $Table\ 29 - Timings\ used\ for\ I_{DD}, I_{PP}, and\ I_{DDQ}\ measurements\ loop\ patterns\ (Cont'd)$

Symbol	l	ı	DDR4-2660	6	ı	DDR4-293	3	ı	DDR4-3200)	Unit
		20-17-17	22-19-19	24-20-20	23-20-20	24-21-21	25-22-22	24-20-20	26-22-22	28-24-24	
t _{CK}			0.75			0.682			0.625		ns
CL		20	22	24	23	24	25	24	26	28	nCK
CWL			18			20			20		nCK
nRCD		17	19	20	20	21	22	20	22	24	nCK
nRC		60	62	63	67	68	69	72	74	76	nCK
nRAS			43	II.		47	!		52		nCK
nRP		17	19	20	20	21	22	20	22	24	nCK
	x4		16			16			16		nCK
nFAW_sIr	x8		28			31			34		nCK
DDD 0 da	x4		4			4			4		nCK
nRRD_S_slr	x8		4			4			4		nCK
nPPD L alr	x4		7			8			8		nCK
nRRD_L_slr	x8		7			8			8		nCK
nRFC_slr 4	Gb		347			382			416		nCK
nRFC_slr 8	Gb		467			514			560		nCK
nRFC_slr 16		_	734		_	807			880	_	nCK
nRFC_dlr 4	Gb		120		_	132			144		nCK
nRFC_dlr 8			160			176			192		nCK
nRFC_dlr 16	6 Gb		254			279			304		nCK

Table 30 defines 3DS I_{DD} definition per 3DS package.

Table 30: Basic $I_{DD},\,I_{PP},\,\text{and}\,\,I_{DDQ}$ Measurement Conditions

Symbol	Description
I _{DD0}	Operating One Bank Active-Precharge Current (AL=0) CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: High between ACT and PRE; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 31; Data IO: V _{DDQ} ; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2, (see Table 31); Logical Rank Activity: Cycling with one logical rank active at a time; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pattern Details: see Table 31
I _{DD0A}	Operating One Bank Active-Precharge Current (AL=CL-2) AL = CL-2, Other conditions: see I _{DD0}
I _{PP0}	Operating One Bank Active-Precharge I _{PP} Current Same condition with I _{DD0}
I _{DD1}	Operating One Bank Active-Read-Precharge Current (AL=0) CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: High between ACT, RD and PRE; Command, Address, Bank Group Address, Bank Address Inputs, Data IO: partially toggling according to Table 32; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2, (see Table 32); Logical Rank Activity: Cycling with one logical rank active at a time; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pattern Details: see Table 32
I _{DD1A}	Operating One Bank Active-Read-Precharge Current (AL=CL-2) AL = CL-2, Other conditions: see I _{DD1}
I _{PP1}	Operating One Bank Active-Read-Precharge I _{PP} Current Same condition with I _{DD1}
I _{DD2N}	Precharge Standby Current (AL=0) CKE: High; External clock: On; tCK, CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 33; Data IO: V _{DDQ} ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pattern Details: see Table 33
I _{DD2NA}	Precharge Standby Current (AL=CL-2) AL = CL-2, Other conditions: see I _{DD2N}
I _{PP2N}	Precharge Standby I _{PP} Current Same condition with I _{DD2N}
I _{DD2NT}	Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 34; Data IO: V _{SSQ} ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: toggling according to Table 34; Pattern Details: see Table 34
I _{DDQ2NT} (Optional)	Precharge Standby ODT I _{DDQ} Current Same definition like for I _{DD2NT} , however measuring I _{DDQ} current instead of I _{DD} current
I _{DD2NL}	Precharge Standby Current with CAL enabled Same definition like for I _{DD2N} , CAL enabled ³
I _{DD2NG}	Precharge Standby Current with Gear Down mode enabled Same definition like for I _{DD2N} , Gear Down mode enabled ³
I _{DD2ND}	Precharge Standby Current with DLL disabled Same definition like for I _{DD2N} , DLL disabled ³

Table 30: Basic I_{DD} , I_{PP} , and I_{DDQ} Measurement Conditions (Cont'd)

Symbol	Description
I _{DD2N} _par	Precharge Standby Current with CA parity enabled
-DD2N_Pai	Same definition like for I _{DD2N} , CA parity enabled ³
I _{DD2P}	Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: V _{DDQ} ;
5521	DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0
I _{PP2P}	Precharge Power-Down I _{PP} Current Same condition with I _{DD2P}
I _{DD2Q}	Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: V _{DDQ} ; DM_n: stable at 1;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0
I _{DD3N}	Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 33; Data IO: V _{DDQ} ; DM_n: stable at 1;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pattern Details: see Table 33
I _{DD3NA}	Active Standby Current (AL=CL-2) AL = CL-2, Other conditions: see I _{DD3N}
I _{PP3N}	Active Standby I _{PP} Current Same condition with I _{DD3N}
I _{DD3P}	Active Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: V _{DDQ} ; DM_n: stable at 1; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0
I _{PP3P}	Active Power-Down IPP Current Same condition with IDD3P
I _{DD4R}	Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 29; BL: 8 ² ; AL: 0; CS_n: High between RD; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 35; Data IO: seamless read data burst with different data between one burst and the next one according to Table 35; DM_n: stable at 1; Bank Activity: all banks of all logical ranks open, RD commands cycling through banks: 0,0,1,1,2,2, (see Table 35) and through logical ranks; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pattern Details: see Table 35
I _{DD4RA}	Operating Burst Read Current (AL=CL-2) AL = CL-2, Other conditions: see I _{DD4R}
I _{PP4R}	Operating Burst Read I _{PP} Current Same condition with I _{DD4R}
I _{DDQ4R} (Optional)	Operating Burst Read I _{DDQ} Current Same definition like for I _{DD4R} , however measuring I _{DDQ} current instead of I _{DD} current
I _{DD4W}	Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: High between WR; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 36; Data IO: seamless write data burst with different data between one burst and the next one according to Table 36; DM_n: stable at 1; Bank Activity: all banks open of all logical ranks, WR commands cycling through banks: 0,0,1,1,2,2, (see Table 36) and through logical ranks; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at HIGH; Pattern Details: see Table 36
I _{DD4WA}	Operating Burst Write Current (AL=CL-2) AL = CL-2, Other conditions: see I _{DD4W}

Table 30: Basic I_{DD} , I_{PP} , and I_{DDQ} Measurement Conditions (Cont'd)

Symbol	Description
I _{DD4WC}	Operating Burst Write Current with Write CRC Write CRC enabled ³ , Other conditions: see I _{DD4W}
I _{DD4W} _par	Operating Burst Write Current with CA Parity CA Parity enabled ³ , Other conditions: see I _{DD4W}
I _{PP4W}	Operating Burst Write I _{PP} Current Same condition with I _{DD4W}
I _{DD5B1}	Burst Refresh Current (1X REF) CKE: High; External clock: On; tCK, CL, nRFC: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: High between REF; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 37; Data IO: V _{DDQ} ; DM_n: stable at 1; Bank Activity: REF command every nRFC (see Table 37); Logical Rank Activity: REF command staggered nRFC_dlr between REF command to REF command; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pattern Details: see Table 37
I _{PP5B1}	Burst Refresh Write I _{PP} Current (1X REF) Same condition with I _{DD5B1}
I _{DD5B2}	Burst Refresh Current (1X REF) CKE: High; External clock: On; tCK, CL, nRFC: see Table 29; BL: 8 ¹ ; AL: 0; CS_n: High between REF; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 37; Data IO: V _{DDQ} ; DM_n: stable at 1; Bank Activity: REF command every nRFC (see Table 37); Logical Rank Activity: REF command staggered nRFC_slr between REF command to REF command; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pattern Details: see Table 37
I _{PP5B2}	Burst Refresh Write I _{PP} Current (1X REF) Same condition with I _{DD5B2}
I _{DD5F2}	Burst Refresh Current (2X REF) tRFC=tRFC_x2, Other conditions: see I _{DD5B1}
I _{PP5F2}	Burst Refresh Write I _{PP} Current (2X REF) Same condition with I _{DD5F2}
I _{DD5F3}	Burst Refresh Current (2X REF) tRFC=tRFC_x2, Other conditions: see I _{DD5B2}
I _{PP5F3}	Burst Refresh Write I _{PP} Current (2X REF) Same condition with I _{DD5F3}
I _{DD5F4}	Burst Refresh Current (4X REF) tRFC=tRFC_x4, Other conditions: see I _{DD5B1}
I _{PP5F4}	Burst Refresh Write I _{PP} Current (4X REF) Same condition with I _{DD5F4}
I _{DD5F5}	Burst Refresh Current (4X REF) tRFC=tRFC_x4, Other conditions: see I _{DD5B2}
I _{PP5F5}	Burst Refresh Write I _{PP} Current (4X REF) Same condition with I _{DD5F5}
I _{DD6N}	Self Refresh Current: Normal Temperature Range T _{CASE} : 0 - 85°C; Low Power Array Self Refresh (LP ASR): Normal ⁴ ; CKE: Low; External clock: Off; CK_t and CK_c: LOW; CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: MID-LEVEL
I _{PP6N}	Self Refresh I _{PP} Current: Normal Temperature Range Same condition with I _{DD6N}
I _{DD6E}	Self-Refresh Current: Extended Temperature Range) T _{CASE} : 0 - 95°C; Low Power Array Self Refresh (LP ASR): Extended ⁴ ; CKE: Low; External clock: Off; CK_t and CK_c: LOW; CL: see Table 29; BL: 8¹; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: MID-LEVEL

Table 30: Basic I_{DD}, I_{PP}, and I_{DDO} Measurement Conditions (Cont'd)

Symbol	Description
I _{PP6E}	Self Refresh I _{PP} Current: Extended Temperature Range Same condition with I _{DD6E}
I _{DD6R}	Self-Refresh Current: Reduced Temperature Range T _{CASE} : 0 - TBD (~35-45)°C; Low Power Array Self Refresh (LP ASR): Reduced ⁴ ; CKE: Low; External clock: Off; CK_t and CK_c: LOW; CL: see Table 29; BL: 8 ¹ ; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: MID-LEVEL
I _{PP6R}	Self Refresh I _{PP} Current: Reduced Temperature Range Same condition with I _{DD6R}
I _{DD6A}	Auto Self-Refresh Current T _{CASE} : 0 - 95°C; Low Power Array Self Refresh (LP ASR): Auto ⁴ ;Partial Array Self-Refresh (PASR): Full Array; CKE: Low; External clock: Off; CK_t and CK_c: LOW; CL: see Table 29; BL: 8¹; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: MID-LEVEL
I _{PP6A}	Auto Self-Refresh I _{PP} Current Same condition with I _{DD6A}
I _{DD7}	Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 29; BL: 8 ¹ ; AL: CL-2; CS_n: High between ACT and RDA; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 40; Data IO: read data bursts with different data between one burst and the next one according to Table 40; DM_n: stable at 1; Bank Activity: two times interleaved cycling through banks (0, 1,7) with different addressing, see Table 38; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pattern Details: see Table 38
I _{PP7}	Operating Bank Interleave Read I _{PP} Current Same condition with I _{DD7}
I _{DD8}	Maximum Power Down Current TBD
I _{PP8}	Maximum Power Down I _{PP} Current Same condition with I _{DB}

NOTE 1 Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].

NOTE 2 Output Buffer Enable

- set MR1 [A12 = 0] : Qoff = Output buffer enabled

- set MR1 [A2:1 = 00] : Output Driver Impedance Control = RZQ/7

RTT_Nom enable

- set MR1 [A10:8 = 011] : RTT_NOM = RZQ/6

RTT_WR enable

- set MR2 [A10:9 = 01] : RTT_WR = RZQ/2

RTT_PARK disable

- set MR5 [A8:6 = 000]

NOTE 3 CAL enabled : set MR4 [A8:6 = 001] : 1600MT/s

010]: 1866MT/s, 2133MT/s

011]: 2400MT/s

Gear Down mode enabled :set MR3 [A3 = 1] : 1/4 Rate

DLL disabled : set MR1 [A0 = 0]

CA parity enabled :set MR5 [A2:0 = 001] : 1600MT/s,1866MT/s, 2133MT/s

010]: 2400MT/s

NOTE 4 Low Power Array Self Refresh (LP ASR) : set MR2 [A7:6 = 00] : Normal

01] : Reduced Temperature range

10]: Extended Temperature range

11] : Auto Self Refresh

10.1 I_{DD}, I_{PP}, and I_{DDQ} Measurement Conditions (cont'd)

Table 31 — I_{DD0} , I_{DD0A} and I_{PP0} Measurement-Loop Pattern¹

CK_t/CK_c	CKE	Sub-Loop	Logical Rank-Loop	Cycle Number	Command	u_S3	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/ A14	DDT	C[2:0] ²	BG[1:0]	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	0	ACT	0	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				1,2	D, D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				3,4	D_#, D_#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
					repeat pa	ttern	14 ι	until n	RAS	- 1, tr	uncat	e if ne	cess	ary							
				nRAS	PRE	0	1	0	1	0	0	000	0	0	0	0	0	0	0	0	-
					repeat pa																
			1	1*nRC	repeat Lo																
			2	2*nRC	repeat Lo																
			3	3*nRC	repeat Lo	gical	Rank	-loop	0, use	e C[2:	0] ² =	011 ir	stead	d							
			4	4*nRC																	
			5	5*nRC	repeat Lo	gical	Rank-	-loop	0, us	e C[2:	0]2 =	101 ir	nstea	d							
			6	6*nRC	repeat Lo	gical	Rank	-loop	0, use	C[2:	0]2 =	110 ir	stead	d							
	Ч		7	7*nRC	repeat Lo	gical	Rank-	-loop	0, use	e C[2:	0]2 =	111 in	stead	b							
toggling	Static High	1		8*nRC	repeat Su	b-Loc	p 0, ι	use B	G[1:0)] = 1	BA[:0] =	1 ins	tead							
togc	static	2		16*nRC	repeat Su	b-Loc	p 0, ι	use B	G[1:0] = 0	BA[l:0] =	2 ins	tead							
	0)	3		24*nRC	repeat Su	b-Loc	p 0, ι	use B	G[1:0] = 1	BA[:0] =	3 ins	tead							
		4		32*nRC	repeat Su	b-Loc	p 0, ι	use B	G[1:0] = 0	BA[:0] =	1 ins	tead							
		5		40*nRC	repeat Su	b-Loc	p 0, ι	use B	G[1:0] = 1	BA[:0] =	2 ins	tead							
		6		48*nRC	repeat Su	b-Loc	p 0, ι	use B	G[1:0] = 0	BA[:0] =	3 ins	tead							
		7		56*nRC	repeat Su	b-Loc	p 0, ι	use B	G[1:0)] = 1,	BA[l:0] =	0 ins	tead							
		8		64*nRC	repeat Su	b-Loc	p 0, ι	use B	G[1:0] = 2	BA[l:0] =	0 ins	tead							
		9		72*nRC	repeat Su	b-Loc	p 0, ι	use B	G[1:0] = 3	BA[l:0] =	1 ins	tead							
		10		80*nRC	repeat Sub-Loop 0, use BG[1:0] = 2 , BA[1:0] = 2 instead																
		11		88*nRC	repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 3 instead																
		12		96*nRC	repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 1 instead																
		13		104*nRC	repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 2 instead																
		14		112*nRC	repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 3 instead																
		15		120*nRC	repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 0 instead																
NO.		D(•																

NOTE 1 DQS_t, DQS_c are V_{DDQ}.

NOTE 2 C2 is a don't care for 2H and 4H 3DS devices. C1 is a don't care for 2H 3DS devices.

NOTE 3 DQ signals are V_{DDQ} .

$10.1 \qquad I_{DD}, I_{PP}, and \ I_{DDQ} \ Measurement \ Conditions \ (cont'd)$

Table 32 — $I_{DD1},\,I_{DD1A}$ and $I_{PP1}\,Measurement\text{-Loop Pattern}^1$

CK_t, CK_c	CKE	Sub-Loop	Logical Rank-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	C[2:0] ²	BG[1:0]	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	0	ACT	0	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				1, 2	D, D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				3, 4	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
					repeat pat				I		_	_	_				•	_	_	_	D0 00 D4 55
				nRCD -AL	RD	0	1	1	0	1	0	000	0	0	0	0	0	0	0	0	D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
					repeat pattern 14 until nRAS - 1, truncate if necessary																
				nRAS	PRE	0	1	0	1	0		000	0	0	0	0	0	0	0	0	-
			_	 4*DC	repeat pat																
			1	1*nRC	repeat Log																
			2	2*nRC	repeat Log																
			3	3*nRC	repeat Logical Rank-loop 0, use C[2:0] ² = 011 instead																
			4	4*nRC	repeat Logical Rank-loop 0, use C[2:0] ² = 100 instead repeat Logical Rank-loop 0, use C[2:0] ² = 101 instead																
			5	5*nRC	repeat Log	jical	Ranl	⟨-loo	p 0,	use (C[2:0] ² = 1	101 iı	nstea	ad						
			6	6*nRC	repeat Log	gical	Ranl	k-loo	p 0,	use (C[2:0] ² = 1	110 ir	nstea	ıd						
			7	7*nRC	repeat Log	gical	Ranl	⟨-loo	p 0,	use (C[2:0] ² = 1	l11 ir	stea	d						
g	igh	1	0	8*nRC + 0	ACT	0	0	0	1	1	0	000	1	1	0	0	0	0	0	0	-
toggling	Static High			8*nRC + 1, 2	D, D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
ᅌ	Sta			8*nRC + 3, 4	D#, D#	1	1	1	1	1	0	000	3 ^b	3	0	0	0	7	F	0	-
				 8*nRC + nRCD -	repeat pat					—	_	+ nF 000	_		_	_	_		r –	_	D0-EE D4-00
				AL	KD	0	1	1	0	1	0	000	1	1	0	0	0	0	0	0	D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
					repeat pat				_		_		_								
				8*nRC + nRAS	PRE repeat nRe	0	1	0 until	1 2*pE	0	0 1 tru	000		0	0	0	0	0	0	0	-
			1	··· 9*nRC	repeat Log										_						
			2	10*nRC	· `						÷	_									
			3	11*nRC	repeat Logical Rank-loop 0, use C[2:0] ² = 010 instead repeat Logical Rank-loop 0, use C[2:0] ² = 011 instead																
			4	12*nRC	repeat Logical Rank-loop 0, use C[2:0] ² = 101 instead repeat Logical Rank-loop 0, use C[2:0] ² = 100 instead repeat Logical Rank-loop 0, use C[2:0] ² = 101 instead																
			5	13*nRC																	
			6	14*nRC	repeat Logical Rank-loop 0, use C[2:0] ² = 101 instead repeat Logical Rank-loop 0, use C[2:0] ² = 110 instead																
			7	15*nRC	repeat Log						_										
		2	<u>'</u>	16*nRC	- `				•		•	•									
		3		24*nRC	repeat Sub-Loop 0, use BG[1:0] = 0 , BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0] = 1 , BA[1:0] = 3 instead																
		4		32*nRC																	
		4		JZ IIRU	repeat Sub	o-Loc	p 0,	use	BG[1:0]	= 0,	3A[1	:0] =	1 in:	stead	1					

Table 32 — $I_{DD1},\,I_{DD1A}$ and I_{PP1} Measurement-Loop Pattern 1 (Cont'd)

CK_t, CK_c	CKE	Sub-Loop	Logical Rank-Loop	Cycle Number	Command	u_S)	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	C[2:0] ²	BG[1:0]	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		5		40*nRC	repeat Sub	o-Loc	эр 1,	use	BG[1:0]=	= 1, E	3A[1	:0] =	2 ins	stead	t					
		6		48*nRC	repeat Sub	epeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 3 instead															
		7		56*nRC	repeat Sub	epeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 0 instead															
		8		64*nRC	repeat Sub	o-Loc	op 1,	use	BG[1:0] =	= 1, E	3A[1	:0] =	0 ins	stead	d					
		9		72*nRC	repeat Sub	o-Loc	op 1,	use	BG[1:0] =	= 2, E	3A[1	:0] =	1 ins	stead	t					
		10		80*nRC	repeat Sub	o-Loc	op 0,	use	BG[1:0] =	= 3, E	3A[1	:0] =	2 ins	stead	t					
		11		88*nRC	repeat Sub	o-Loc	op 1,	use	BG[1:0]=	= 2, E	3A[1	:0] =	3 ins	stead	t					
		12		96*nRC	repeat Sub	o-Loc	op 0,	use	BG[1:0] =	= 3, E	3A[1	:0] =	1 ins	stead	t					
		13		104*nRC	repeat Sub-Loop 1, use BG[1:0] = 2 , BA[1:0] = 2 instead																
		14		112*nRC	repeat Sub-Loop 0, use BG[1:0] = 3 , BA[1:0] = 3 instead																
		15		120*nRC	repeat Sub	o-Loc	op 1,	use	BG[1:0] =	= 2, E	3A[1	:0] =	0 ins	stead	ł					

NOTE 1 DQS_t, DQS_c are used according to RD Commands, otherwise V_{DDQ}.

NOTE 2 C2 is a don't care for 2H and 4H 3DS devices. C1 is a don't care for 2H 3DS devices.

NOTE 3 Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are V_{DDQ}.

 $\begin{array}{c} \text{Table 33} - I_{DD2N}, I_{DD2NA}, I_{DD2NL}, I_{DD2NO}, I_{DD2ND}, I_{DD2N_par}, I_{PP2}, I_{DD3N}, I_{DD3NA}, \text{and } I_{DD3P} \\ \text{Measurement-Loop Pattern}^1 \end{array}$

CK_t, CK_c	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	C[2:0] ²	BG[1:0]2	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	D, D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	0
			1	D, D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	0
			2	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	0
			3	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	0
		1	4-7	repeat S	Sub-l	Loop	0, ι	ıse E	3G[1	:0]=	= 1, B	A[1:	:0] =	1 in	stea	d				
		2	8-11	repeat S	Sub-l	Loop	0, ι	ıse E	3G[1	:0]=	= 0, B	A[1:	:0] =	2 in	stea	d				
		3	12-15	repeat Sub-Loop 0, use BG[1:0] = 1, BA[1:0] = 3 instead																
		4	16-19	repeat S	Sub-l	Loop	0, ι	ıse E	3G[1	:0] =	= 0, B	A[1	:0] =	1 in	stea	d				
ng	Static High	5	20-23	repeat S	Sub-l	Loop	0, ι	ıse E	3G[1	:0] =	= 1, B	A[1:	:0] =	2 in	stea	d				
toggling	tic I	6	24-27	repeat S	Sub-l	Loop	0, ι	ıse E	3G[1	:0] =	= 0, B	A[1	:0] =	3 in	stea	d				
유	Sta	7	28-31	repeat S	Sub-l	Loop	0, ι	ıse E	3G[1	:0] =	= 1, B	A[1	:0] =	0 in	stea	d				
		8	32-35	repeat S	Sub-l	Loop	0, ι	ıse E	3G[1	:0] =	= 2, B	A[1	:0] =	0 in	stea	d				
		9	36-39	repeat S	Sub-l	Loop	0, ι	ıse E	3G[1	:0] =	= 3, B	A[1	:0] =	1 in	stea	d				
		10	40-43	repeat S	Sub-l	Loop	0, ι	ıse E	3G[1	:0]=	= 2, B	A[1:	:0] =	2 in	stea	d				
		11	44-47	repeat S	Sub-l	Loop	0, ι	ıse E	3G[1	:0] =	= 3, B	A[1	:0] =	3 in	stea	d				
		12	48-51	repeat Sub-Loop 0, use BG[1:0] = 2 , BA[1:0] = 1 instead																
		13	52-55	repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 2 instead																
		14	56-59	repeat Sub-Loop 0, use BG[1:0] = 2 , BA[1:0] = 3 instead																
		15	60-63	repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 3 instead																

NOTE 1 DQS_t, DQS_c are V_{DDQ} .

NOTE 2 C2 is a don't care for 2H and 4H 3DS devices. C1 is a don't care for 2H 3DS devices.

NOTE 3 DQ signals are V_{DDQ} .

$10.1 \qquad I_{DD}, I_{PP}, and \ I_{DDQ} \ Measurement \ Conditions \ (cont'd)$

Table 34 — I_{DD2NT} and I_{DDQ2NT} Measurement-Loop Pattern 1

CK_t, CK_c	CKE	Sub-Loop	Cycle Number	Command	cs_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	C[2:0] ²	BG[1:0]	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	D, D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
			1	D, D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
			2	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
			3	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
		1	4-7	repeat Su	b-Lo	op 0	, but	ODT	T = 1	and	BG[1	l:0] :	= 1,	BA[1	:0] =	= 1 ir	rstea	d		
		2	8-11	repeat Su	b-Lo	op 0	, but	ODT	T = 0	and	BG[1	l:0] :	= 0, I	BA[1	:0] =	= 2 ir	nstea	d		
		3	12-15	repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 1 , BA[1:0] = 3 instead repeat Sub-Loop 0, but ODT = 0 and BG[1:0] = 0 , BA[1:0] = 1 instead																
	_	4	16-19	repeat Su	b-Lo	op 0	, but	ODT	= 0	and	BG[1	l:0] :	= 0 , I	BA[1	:0] =	= 1 ir	nstea	d		
ng	Static High	5	20-23	repeat Su	b-Lo	op 0	, but	ODT	T = 1	and	BG[1	l:0] :	= 1,	BA[1	:0] =	= 2 ir	nstea	d		
toggling	tic F	6	24-27	repeat Su	b-Lo	op 0	, but	ODT	T = 0	and	BG[1	l:0] :	= 0 , I	BA[1	l:0] =	= 3 ir	nstea	d		
ţ	Stai	7	28-31	repeat Su	b-Lo	op 0	, but	ODT	「 = 1	and	BG[1	l:0]	= 1,	BA[1	:0] =	= 0 ir	nstea	d		
		8	32-35	repeat Su	b-Lo	op 0	, but	ODT	T = 0	and	BG[1	1:0] :	= 2 , I	BA[1	:0] =	= 0 ir	nstea	d		
		9	36-39	repeat Su	b-Lo	op 0	, but	ODT	T = 1	and	BG[1	1:0] :	= 3,	BA[1	l:0] =	= 1 ir	nstea	d		
		10	40-43	repeat Su	b-Lo	op 0	, but	ODT	T = 0	and	BG[1	1:0] :	= 2,	BA[1	l:0] =	= 2 ir	nstea	d		
		11	44-47	repeat Su	b-Lo	op 0	, but	ODT	T = 1	and	BG[1	1:0] :	= 3,	BA[1	:0] =	= 3 ir	nstea	d		
		12	48-51	repeat Su	b-Lo	op 0	, but	ODT	= 0	and	BG[1	1:0] :	= 2,	BA[1	:0] =	= 1 ir	nstea	d		
		13	52-55	repeat Su	b-Lo	op 0	, but	ODT	T = 1	and	BG[1	1:0] :	= 3,	BA[1	:0] =	2 ir	nstea	d		
		14	56-59	repeat Sub-Loop 0, but ODT = 0 and BG[1:0] = 2, BA[1:0] = 3 instead																
		15	60-63	repeat Su	b-Lo	op 0	, but	ODT	= 1	and	BG[1	1:0] :	= 3,	BA[1	:0] =	0 ir	nstea	d		

NOTE 1 DQS_t, DQS_c are V_{DDQ} .

NOTE 2 C2 is a don't care for 2H and 4H 3DS devices. C1 is a don't care for 2H 3DS devices.

NOTE 3 DQ signals are V_{DDQ} .

Table 35 — $I_{DD4R},\,I_{DDR4RA}$ and I_{DDQ4R} Measurement-Loop Pattern 1

CK_t, CK_c	CKE	Sub-Loop	Logical Rank Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	C[2:0] ²	BG[1:0]	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	0	RD	0	1	1	0	1	0	000	0	0	0	0	0	0	0	0	D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
				1	D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				2,3	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
		1		4	RD	0	1	1	0	1	0	000	1	1	0	0	0	7	F	0	D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
				5	D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				6,7	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
		2		8-11	repeat Sul						_		_	_							
		3		12-15	repeat Sul					_	_	_	_	_							
		4		16-19	repeat Sul				_					_							
		5		20-23	repeat Sul		•			-	-		-	-							
g	gh	6		24-27	repeat Sul																
toggling	Static High	7		28-31	repeat Sul																
tog	stati	8		32-35	repeat Sul						_		_	_							
	(0)	9		36-39 40-43	repeat Sul						_		_								
		10 11		44-47	repeat Sul repeat Sul						_		_	_							
		12		48-51	repeat Sul						_		_	_							
		13		52-55	repeat Sul																
		14		56-59	repeat Sul																
		15		60-63	repeat Sul																
			1	64-127	repeat Log																
			2	128-191	repeat Log																
			3		repeat Log																
			4		repeat Log																
			5		repeat Log																
			6		repeat Log																
			7		repeat Log																

NOTE 1 DQS_t, DQS_c are used according to RD Commands, otherwise V_{DDQ}.

NOTE 2 C2 is a don't care for 2H and 4H 3DS devices. C1 is a don't care for 2H 3DS devices.

NOTE 3 Burst Sequence driven on each DQ signal by Read Command.

Table 36 — $I_{DD4W}\!,\,I_{DD4WA}$ and I_{DD4W_par} Measurement-Loop Pattern 1

CK_t, CK_c	CKE	Sub-Loop	Logical Rank Loop	Cycle Number	Command	u_S3	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	C[2:0] ²	BG[1:0]	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	0	WR	0	1	1	0	0	0	000	0	0	0	0	0	0	0	0	D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
				1	D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				2,3	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
		1		4	WR	0	1	1	0	0	0	000	1	1	0	0	0	7	F	0	D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
				5	D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
			,	6,7	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
		2	,	8-11	repeat Sul						_										
		3	,	12-15	repeat Sul				_	_	_										
		4		16-19	repeat Sul	o-Lo	op 0	, use	BG	[1:0)] =	0, BA	[1:0] = 1	lins	tead					
		5	,	20-23	repeat Sul																
	gh	6		24-27	repeat Sul					_	_										
toggling	Ξ̈́	7		28-31	repeat Sul					_	_										
tog	Static High	8		32-35	repeat Sul																
	S	9		36-39	repeat Sul					_	_		_								
		10		40-43	repeat Sul																
		11		44-47	repeat Sul																
		12		48-51	repeat Sul					_	_		_								
		13		52-55	repeat Sul					_	_		_								
		14		56-59	repeat Sul																
		15		60-63	repeat Sul	o-Lo	op 1	, use	BG	[1:0)] =	3, BA	[1:0] = 0) ins	tead					
			1	64-127	repeat Log																
			2	128-191	repeat Log	gical	Ran	k-lo	op 0	, use	e C[2:0] ²	= 01	0 ins	stead	<u></u>					
			3	192-255	repeat Log	gical	Ran	k-lo	ор 0	, use	e C[2:0] ² :	= 01	1 ins	stead	1					
			4		repeat Log																
			5	320-383	repeat Log																
			6	384-447	repeat Log	gical	Ran	k-lo	op 0	, use	e C[2:0] ²	= 11	0 ins	stead	1					
			7	448-511	repeat Log	gical	Ran	ık-lo	op 0	, use	e C[2:0] ² :	= 11	1 ins	teac						

NOTE 1 DQS_t, DQS_c are used according to WR Commands, otherwise V_{DDQ} . NOTE 2 C2 is a don't care for 2H and 4H 3DS devices. C1 is a don't care for 2H 3DS devices.

NOTE 3 Burst Sequence driven on each DQ signal by Write Command.

Table 37 — I_{DD4WC} Measurement-Loop Pattern¹

CK_t, CK_c	CKE	Sub-Loop	Cycle	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	C[2:0] ²	BG[1:0]	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	WR	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF D8=CRC
			1,2	D, D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			3,4	D#, D#	1	1	1	1	1	0	0	3	3	0	0	0	7	F	0	-
			5	WR	0	1	1	0	0	0	0	1	1	0	0	0	7	F	0	D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00 D8=CRC
			6,7	D, D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	ے		8,9	D#, D#	1	1	1	1	1	0	0	3	3	0	0	0	7	F	0	-
ing	Static High	2	10-14	repeat Su	ıb-Lo	оор	0, us	se B	G[1:	0] =	0, E	BA[1	:0] =	= 2 ir	nstea	ad				
toggling	atic	3	15-19	repeat Sι	ıb-Lo	оор	1, us	se B	G[1:	0] =	1, E	BA[1	:0] =	= 3 ir	nstea	ad				
ᅜ	Sta	4	20-24	repeat Su	ıb-Lo	оор	0, us	se B	G[1:	0] =	0, E	BA[1	:0] =	= 1 ir	nstea	ad				
		5	25-29	repeat Su	ıb-Lo	оор	1, us	se B	G[1:	0] =	1, E	BA[1	:0] =	= 2 ir	nstea	ad				
		6	30-34	repeat Su	ıb-Lo	оор	0, us	se B	G[1:	0] =	0, E	BA[1	:0] =	= 3 ir	nstea	ad				
		7	35-39	repeat Su	ıb-Lo	оор	1, us	se B	G[1:	0] =	1, E	BA[1	:0] =	= 0 ir	nstea	ad				
		8	40-44	repeat Su																
		9	45-49	repeat Su	ıb-Lo	оор	1, us	se B	G[1:	0] =	3, E	BA[1	:0] =	= 1 ir	nstea	ad				
		10	50-54	repeat Su	ıb-Lo	оор	0, us	se B	G[1:	0 ² =	2, E	3A[1	:0] =	= 2 i	nste	ad				
		11	55-59	repeat Su	ıb-Lo	оор	1, us	se B	G[1:	0] =	3, E	BA[1	:0] =	= 3 ir	nstea	ad				
		12	60-64	repeat Sι	ıb-Lo	оор	0, us	se B	G[1:	0] =	2, E	BA[1	:0] =	= 1 ir	nstea	ad				
		13	65-69	repeat Su	ıb-Lo	oop	1, us	se B	G[1:	0] =	3, E	BA[1	:0] =	2 ir	nste	ad				
		14	70-74	repeat Su	ıb-Lo	oop	0, us	se B	G[1:	0] =	2, E	BA[1	:0] =	= 3 ir	nstea	ad				
		15	75-79	repeat Su	ıb-Lo	оор	1, us	se B	G[1:	0] =	3, E	A[1	:0] =	= 0 ir	nstea	ad				

NOTE 1 DQS_t, DQS_c are V_{DDQ}.

NOTE 2 C2 is a don't care for 2H and 4H 3DS devices. C1 is a don't care for 2H 3DS devices.

NOTE 3 Burst Sequence driven on each DQ signal by Write Command.

$Table~38 - I_{DD5B1}~Measurement-Loop~Pattern^1$

CK_t, CK_c	CKE	Sub-Loop	Logical Rank-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ООТ	C[2:0] ²	BG[1:0]	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	0	REF	0	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
		1		1	D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				2	D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				3	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
				4	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
				4-7	repeat pa																
				8-11	repeat pa																
				12-15	repeat pattern 14, use BG[1:0] = 1, BA[1:0] = 3 instead																
				16-19	repeat pattern 14, use BG[1:0] = 0, BA[1:0] = 1 instead repeat pattern 14, use BG[1:0] = 1, BA[1:0] = 2 instead																
				20-23																	
				24-27	repeat pa				_	_											
				28-31	repeat pa			_	_												
				32-35	repeat pa				_												
				36-39	repeat pa																
۵	gh			40-43 44-47	repeat pa																
toggling	ΞĖ				repeat pa																
tog	Static High			48-51 52-55	repeat pa																
	S			56-59	repeat pa																
				60-63	repeat pa																
		2	,		repeat Su													,			
			1	nRFC_dlr 2*nRF- C_dlr - 1	repeat Lo												oui y	<u> </u>			
			2	2*nRFC_dlr 3*nRFC_dlr - 1	repeat Lo	gica	ıl Ra	nk-lo	оор	0, us	e C	[2:0] ²	= 0	10 ir	nstea	ad					
			3	3*nRFC_dlr 4*nRFC_dlr - 1	repeat Lo	gica	ıl Ra	nk-lo	ор (0, us	e C	[2:0] ²	= 0	11 ir	nstea	ad					
				4*nRFC_dlr 5*nRFC_dlr - 1	repeat Lo	gica	ıl Ra	nk-lo	оор	0, us	e C	[2:0] ²	= 1	00 ir	nstea	ad					
				5*nRFC_dlr 6*nRFC_dlr - 1	repeat Lo	gica	ıl Ra	nk-lo	оор	0, us	e C	[2:0] ²	= 1	01 ir	nstea	ad					
				6*nRFC_dlr 7*nRFC_dlr - 1	repeat Lo	gica	ıl Ra	nk-lo	оор	0, us	e C	[2:0] ²	= 1	10 ir	stea	ad					
			7	7*nRFC_dlr 8*nRFC_dlr - 1	repeat Lo	gica	ıl Ra	nk-lo	оор	0, us	e C	[2:0] ²	= 1	11 in	stea	ad					

NOTE 1 DQS_t, DQS_c are V_{DDQ} .

NOTE 2 C2 is a don't care for 2H and 4H 3DS devices. C1 is a don't care for 2H 3DS devices.

NOTE 3 DQ signals are V_{DDQ} .

Table 39 — I_{DD5B2} Measurement-Loop Pattern¹

CK_t, CK_c	CKE	Sub-Loop	Logical Rank-Loop	Cycle Number	Command	cs_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ООТ	C[2:0] ²	BG[1:0]	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	0	REF	0	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
		1	,	1	D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				2	D	1	0	0	0	0	0	000	0	0	0	0	0	0	0	0	-
				3	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
				4	D#, D#	1	1	1	1	1	0	000	3	3	0	0	0	7	F	0	-
				4-7	repeat pa																
				8-11	repeat pattern 14, use BG[1:0] = 0, BA[1:0] = 2 instead repeat pattern 14, use BG[1:0] = 1, BA[1:0] = 3 instead																
				12-15	repeat pattern 14, use BG[1:0] = 1, BA[1:0] = 3 instead																
				16-19	repeat pattern 14, use BG[1:0] = 0, BA[1:0] = 1 instead repeat pattern 14, use BG[1:0] = 1, BA[1:0] = 2 instead																
			,	20-23						_											
				24-27	repeat pa																
				28-31	repeat pa				_												
				32-35	repeat pa				_												
				36-39	repeat pa																
g	gh			40-43 44-47	repeat pa																
toggling	Static High			48-51	repeat pa																
tog	itati			52-55	repeat pa																
	0)			56-59	repeat pa																
				60-63	repeat pa																
		2			repeat Su													,			
		_	1	nRFC_slr 2*nRF- C_slr - 1	repeat Lo							-,.		,			<u>,</u>				
			2	2*nRFC clr	repeat Lo	gica	ıl Ra	nk-lo	оор	0											
				3*nRFC_slr 4*nRFC_slr - 1	repeat Lo	gica	ıl Ra	nk-lo	ор (0											
			4	4*nRFC_slr 5*nRFC_slr - 1	repeat Lo	gica	ıl Ra	nk-lo	oop	0											
			5	5*nRFC_slr 6*nRFC_slr - 1	repeat Lo	gica	ıl Ra	nk-lo	оор	0											
			6	6*nRFC_slr 7*nRFC_slr - 1	repeat Lo	gica	ıl Ra	nk-lo	оор	0											
			7	7*nRFC_slr 8*nRFC_slr - 1	repeat Lo	gica	ıl Ra	nk-lo	оор	0											

NOTE 1 DQS_t, DQS_c are V_{DDQ} .

NOTE 2 C2 is a don't care for 2H and 4H 3DS devices. C1 is a don't care for 2H 3DS devices.

NOTE 3 DQ signals are $V_{\mbox{\scriptsize DDQ}}$.

$Table~40 - I_{DD7}~Measurement-Loop~Pattern^1$

CK_t, CK_c	CKE	Sub-Loop	Cycle	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ОПТ	C[2:0] ²	BG[1:0]	BA[1:0]	A12/BC_n	A[17,13,11]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	ACT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			1	RDA	0	1	1	0	1	0		0	0	0	0	1	0	0	0	D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
			2	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			3	D#	1	1	1	1	1	0	0	3 ²	3	0	0	0	7	F	0	-
				repeat pa	tterr	1 2	.3 ur	itil n	RRD	- 1,	if n	RCE) > 4	. Tru	ınca	te if	nece	essa	ry	
		1	nRRD	ACT	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	-
			nRRD + 1	RDA	0	1	1	0	1	0		1	1	0	0	1	0	0	0	D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
				repeat pa													e if r	ece	ssar	у
		2	2*nRRD	repeat Sι		_			_		_									
		3	3*nRRD	repeat Sι						_										
	Ч	4	4*nRRD	repeat pa	tterr	า 2	3 ι	ıntil	nFA	N - 1	1, if ı	nFA\	N >	4*nF	RCD	. Tru	ncat	e if ı	nece	essary
toggling	Static High	5	nFAW	repeat Su	ıb-Lo	оор	0, us	se B	G[1:	0] =	0, E	3A[1	:0] =	= 1 ir	nstea	ad				
ogg	atic	6	nFAW + nRRD	repeat Su	ıb-Lo	оор	1, us	se B	G[1:	0] =	1, E	3A[1	:0] =	2 ir	nstea	ad				
-	ŝ	7	nFAW + 2*nRRD	repeat Su	ıb-Lo	оор	0, us	se B	G[1:	0] =	0, E	3A[1	:0] =	= 3 ir	nstea	ad				
		8	nFAW + 3*nRRD	repeat Su	ıb-Lo	оор	1, us	se B	G[1:	0] =	1, E	3A[1	:0] =	0 ir	nstea	ad				
		9	nFAW + 4*nRRD	repeat Sι	ıb-Lo	оор -	4													
		10	2*nFAW	repeat Su	ıb-Lo	goc	0. us	se B	G[1:	01 =	2. E	3 A [1	:01 =	= 0 ir	nstea	ad				
			2*nFAW + nRRD	repeat Su																
		12	2*nFAW + 2*nRRD	repeat Su																
		13	2*nFAW + 3*nRRD	repeat Su	ıb-Lo	оор	1, us	se B	G[1:	0] =	3, E	3A[1	:0] =	3 ir	nstea	ad				
		14	2*nFAW + 4*nRRD	repeat Sι	ıb-Lo	оор -	4													
		15	3*nFAW	repeat Su	ıh-l (าดท	0 119	e R	G[1·	01 =	2 F	3Δ[1	·01 =	= 1 ir	nstea	ad				
			3*nFAW + nRRD	repeat Su		_														
			3*nFAW + 2*nRRD	repeat Su																
			3*nFAW + 3*nRRD	repeat Su																
		19	3*nFAW + 4*nRRD	repeat Su		-				<u> </u>	-, -					==				
		20	4*nFAW	repeat pa	ttorr	1.2	2.	ıntil	nPC	_ 1	if n ^c	or >	1*0	ΕΛ\ <i>1</i>	/ Tr	unaa	ate if	noo	000	arv.
Ц		20	+ 1117AVV	rehear ha	iiiCi i	۱۷	J L	ırıdl	IINU	- 1,	11 111	\U /	4 ()	I-\	v. IÍ	unce	ile II	Hec	C336	яі у

NOTE 1 DQS_t, DQS_c are V_{DDQ} . NOTE 2 C2 is a don't care for 2H and 4H 3DS devices. C1 is a don't care for 2H 3DS devices.

NOTE 3 Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are V_{DDQ} .

10.2 I_{DD} and I_{PP} Specifications

 $I_{\mbox{\scriptsize DD}}$ and $I_{\mbox{\scriptsize PP}}$ values are for full operating range of voltage and temperature unless otherwise noted.

Table 41 — $I_{\mbox{\scriptsize DD}}$ and $I_{\mbox{\scriptsize DDQ}}$ Specification Example

Speed Grade B	in			
Symbol	I _{DD} Max.	I _{PP} Max.	Unit	NOTE
I _{DD0}			mA	
I _{DD0A}			mA	
I _{DD1}			mA	
I _{DD1A}			mA	
I _{DD2N}			mA	
I _{DD2NA}			mA	
I _{DD2NT}			mA	
I _{DDQ2NT}			mA	
I _{DD2P}			mA	
$I_{\rm DD2Q}$			mA	
I _{DD3N}		6	mA	
I _{DD3NA}			mA	
I _{DD3P}			mA	
I _{DD4R}			mA	
I _{DD4RA}			mA	
I _{DDQ4R}			mA	
I _{DD4W}			mA	
I _{DD4WA}			mA	
I _{DD4WC}			mA	
I _{DD4W_par}			mA	
I _{DD5B1}			mA	
I _{DD5B2}			mA	
I _{DD6}			mA	
I _{DD6E} ¹			mA	
I _{DD6N}			mA	
I _{DD6R}			mA	
I _{DD6A}			mA	
I _{DD7}			mA	
I _{DD8}			mA	

NOTE 1 Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR4 3D Stacked SDRAM devices support the following options or requirements referred to in this material.

10.2 I_{DD} and I_{PP} Specifications (cont'd)

Table 42 — I_{PP} and I_{PPQ} Specification Example

Speed Grade	Bin		Unit	NOTE
Symbol	I _{DD} Max.	I _{PP} Max.		
I _{PP0}			mA	
I _{PP1}			mA	
I _{PP2N}			mA	
I _{PP2P}			mA	
I _{PP3N}			mA	
I _{PP3P}			mA	
I _{PP4R}			mA	
I _{PP4W}			mA	
I _{PP5B}			mA	
I _{PP5F2}		29	mA	
I _{PP5F4}			mA	
I _{PP6E} ¹			mA	
I _{PP6N}			mA	
I _{PP6R}			mA	
I _{PP6A}			mA	
I _{PP7}			mA	
I _{PP8}	hould refer to the DDAM or		mA	

NOTE 1 Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR4 3D Stacked SDRAM devices support the following options or requirements referred to in this material.

10.2 I_{DD} and I_{PP} Specifications (cont'd)

Table 43 — I_{DD6} Specification

Symbol	Temperature Range	Max Value1	Unit	Notes
I _{DD6N}	0 - 85 °C		mA	2, 3
I _{DD6E}	0 - 95 °C		mA	3, 4, 5
I _{DD6R}	0 - 45 °C		mA	3, 4, 8
I _{DD6A}	0 °C ~ T _a		mA	3, 5, 6, 7
	$T_b \sim T_y$		mA	3, 5, 6, 7
	T _z ~ T _{OPERmax}		mA	3, 5, 6, 7

- NOTE 1 Max. values for I_{DD} currents considering worst case conditions of process, temperature and voltage.
- NOTE 2 Applicable for MR2 settings A6=0 and A7=0.
- NOTE 3 Supplier data sheets include a max value for I_{DD6} .
- NOTE 4 Applicable for MR2 settings A6=0 and A7=1. I_{DD6E} is only specified for devices which support the Extended Temperature Range feature.
- NOTE 5 Refer to the supplier data sheet for the value specification method (e.g., max, typical) for I_{DD6E} and I_{DD6A}
- NOTE 6 Applicable for MR2 settings A6=1 and A7=0. I_{DD6A} is only specified for devices which support the Auto Self Refresh feature.
- NOTE 7 The number of discrete temperature ranges supported and the associated T_a T_z values are supplier/design specific. Temperature ranges are specified for all supported values of T_{OPER} . Refer to supplier data sheet for more information.
- NOTE 8 Applicable for MR2 settings TBD. I_{DD6R} is verified by design and characterization, and may not be subject to production test.

11 Input/Output Capacitance

Table 44 — DDR4 3DS Silicon pad I/O Capacitance

							_				
Symbol	Parameter	DD 1600, 21	1866,	DD 2400	R4- ,2666	DDR4	-2933	DDR4	-3200	Unit	NOTE
		min	max	min	max	min	max	min	max		
C _{IO}	Input/output capaci- tance	0.55	1.4	0.55	1.15	0.55	1.0	0.55	1.0	pF	1,2,3
C _{DIO}	Input/output capaci- tance delta	-0.1	0.1	-0.1	0.1	-0.1	0.1	-0.1	0.1	pF	1,2,3,11
C _{DDQS}	Input/output capaci- tance delta DQS_t and DQS_c	Ξ	0.05	=	0.05	-	0.05	-	0.05	pF	1,2,3,5
C _{CK}	Input capacitance, CK_t and CK_c	0.2	0.8	0.2	0.7	0.2	0.7	0.2	0.7	pF	1,3
C _{DCK}	Input capacitance delta CK_t and CK_c	=	0.05	=	0.05	-	0.05	-	0.05	pF	1,3,4
C _I	Input capaci- tance(CTRL, ADD, CMD pins only)	0.2	0.8	0.2	0.7	0.2	0.6	0.2	0.55	pF	1,3,6
C _{DI_CTRL}	Input capacitance delta(All CTRL pins only)	-0.1	0.1	-0.1	0.1	-0.1	0.1	-0.1	0.1	pF	1,3,7,8
C _{DI_}	Input capacitance delta(All ADD/CMD pins only)	-0.1	0.1	-0.1	0.1	-0.1	0.1	-0.1	0.1	pF	1,2,9,10
C _{ALERT}	Input/output capaci- tance of ALERT	0.5	1.5	0.5	1.5	0.5	1.5	0.5	1.5	pF	1,3
C _{ZQ}	Input/output capaci- tance of ZQ		2.3		2.3	-	2.3	-	2.3	pF	1,3,12

NOTE 1 This parameter is not subject to production test. It is verified by design and characterization. The silicon only capacitance is validated by de-embedding the package L & C parasitic. The capacitance is measured with V_{DD} , V_{DDQ} , V_{SS} , V_{SSQ} applied with all other signal pins floating. Measurement procedure tbd.

NOTE 2 DQ, DM_n, DQS_T, DQS_C, TDQS_T, TDQS_C. Although the TDQS_T and TDQS_C pins have different functions, the loading matches DQ and DQS

NOTE 3 This parameter applies to 3DS devices. It is meant to represent the silicon pad capacity of the master die.

NOTE 4 Absolute value CK_T-CK_C

NOTE 5 Absolute value of CIO(DQS_T)-CIO(DQS_C)

NOTE 6 CI applies to ODT, CS_n, CKE, A0-A17, BA0-BA1, BG0-BG1, RAS_n/A16, CAS_n/A15, WE_n/A14, ACT_n and PAR.

NOTE 7 CDI CTRL applies to ODT, CS n and CKE

NOTE 8 $CDI_CTRL = CI(CTRL)-0.5*(CI(CK_t)+CI(CK_c))$

NOTE 9 CDI_ADD_ CMD applies to, A0-A17, BA0-BA1, BG0-BG1,RAS_n/A16, CAS_n/A15, WE_n/A14, ACT_n and PAR.

NOTE 10 $CDI_ADD_CMD = CI(ADD_CMD)-0.5*(CI(CK_t)+CI(CK_c))$

NOTE 11 CDIO = $CIO(DQ,DM)-0.5*(CIO(DQS_T)+CIO(DQS_C))$

NOTE 12 Maximum external load capacitance on ZQ pin: tbd pF.

11 Input/Output Capacitance (cont'd)

Table 45 — 3DS DRAM package electrical specifications

Symbol	Parameter	DDF 1600,1866,213	R4-	DD	R4- ,3200	Unit	NOTE
		min	max	min	max		
Z _{IO}	Input/output Zpkg	45	85	48	85	Ω	1,2,4,5,10,11
T _{dIO}	Input/output Pkg Delay	14	42	14	40	ps	1,3,4,5,11
L _{io}	Input/Output Lpkg	-	3.3	-	3.3	nΗ	11, 12
C _{io}	Input/Output Cpkg	-	0.78	-	0.78	pF	11, 13
Z _{IO DQS}	DQS_t, DQS_c Zpkg	45	85	48	85	Ω	1,2,5,10,11
Td _{IO DQS}	DQS_t, DQS_c Pkg Delay	14	42	14	40	ps	1,3,5,10,11
L _{io DQS}	DQS Lpkg	-	3.3	-	3.3	nΗ	11, 12
C _{io DQS}	DQS Cpkg	-	0.78	-	0.78	pF	11, 13
DZ _{DIO DQS}	Delta Zpkg DQS_t, DQS_c	-	10	-	10	Ω	1,2,5,7,10
D _{TdDIO DQS}	Delta Delay DQS_t, DQS_c	-	5	-	5	ps	1,3,5,7,10
Z _{I CTRL}	Input- CTRL pins Zpkg	40	80	40	80	Ω	1,2,5,9,10,11
T _{dl_CTRL}	Input- CTRL pins Pkg Delay	14	42	14	40	ps	1,3,5,9,10,11
L _{i CTRL}	Input CTRL Lpkg	-	3.4	-	3.4	nΗ	11, 12
C _{i CTRL}	Input CTRL Cpkg	-	0.7	-	0.7	pF	11, 13
Z _{IADD CMD}	Input- CMD ADD pins Zpkg	40	80	40	80	Ω	1,2,5,8,10,11
Td _{IADD_CMD}	Input- CMD ADD pins Pkg Delay	14	45	14	40	ps	1,3,5,8,10,11
L _{i ADD CMD}	Input CMD ADD Lpkg	-	3.6	-	3.6	nΗ	11, 12
C _{i ADD CMD}	Input CMD ADD Cpkg	-	0.74	-	0.74	pF	11, 13
Z _{CK}	CLK_t & CLK_c Zpkg	40	80	40	80	Ω	1,2,5,10,11
Td _{CK}	CLK_t & CLK_c Pkg Delay	14	42	14	42	ps	1,3,5,10,11
L _{i CLK}	Input CLK Lpkg	-	3.4	-	3.4	nΗ	11, 12
C _{i CLK}	Input CLK Cpkg	-	0.7	-	0.7	pF	11, 13
DZ _{DCK}	Delta Zpkg CLK_t & CLK_c	-	10	-	10	Ω	1,2,5,6,10
D _{TdCK}	Delta Delay CLK_t & CLK_c	-	5	-	5	ps	1,3,5,6,10
Z _{OZQ}	ZQ Zpkg	-	100	-	100	Ω	1,2,5,10,11
Td _{O ZQ}	ZQ Delay	20	90	20	90	ps	1,3,5,10,11
Z _{O ALERT}	ALERT Zpkg	40	100	40	100	Ω	1,2,5,10,11
Td _{O ALERT}	ALERT Delay	20	55	20	55	ps	1,3,5,10,11

NOTE

 $Zpkg(total per pin) = \sqrt{Lpkg/Cpkg}$

^{1.} This parameter is not subject to production test. It is verified by design and characterization. The package parasitic(L & C) are validated using package only samples. The capacitance is measured with VDD, VDDQ, VSS, VSSQ shorted with all other signal pins floating. The inductance is measured with VDD, VDDQ, VSS and VSSQ shorted and all other signal pins shorted at the die side (not pin). Measurement procedure tbd 2. Package only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where:

11 Input/Output Capacitance (cont'd)

3. Package only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where:

Tdpkg(total per pin) = $\sqrt{Lpkg*Cpkg}$

- 4. Z & Td IO applies to DQ, DM, TDQS_T and TDQS_C
- 5. This parameter applies to stacked(2H, 4H, 8H) devices6. Absolute value of ZCK_t-ZCK_c for impedance(Z) or absolute value of TdCK_t-TdCK_c for delay(Td).
- ueriay, ruj.
 7. Absolute value of ZIO(DQS_t)-ZIO(DQS_c) for impedance(Z) or absolute value of TdIO(DQS_t)-TdIO(DQS_c) for delay(Td)
 8. ZI & Td ADD CMD applies to A0-A13,A17, ACT_n BA0-BA1, BG0-BG1, RAS_n/A16 CAS_n/A15, WE_n/A14 and PAR
 9. ZI & Td CTRL applies to C0,C1, and C2 for 2H, 4H, and 8H.
 10. This table applies to X4 and X8 stacked (2H, 4H, 8H) devices.

- 11. Package implementations shall meet spec if the Zpkg and Pkg Delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values shown.
- 12. It is assumed that Lpkg can be approximated as Lpkg = Zo*Td.
- 13. It is assumed that Cpkg can be approximated as Cpkg = Td/Zo.

12 Electrical Characteristics and AC Timings for DDR4-1600-3DS to DDR4-2400-3DS

12.1 Refresh parameters

Typical platforms are designed with the assumption that no more than one physical rank is refreshed at the same time. In order to limit the maximum refresh current (I_{DD5B1}) for a 3D stacked SDRAM, it will be required to stagger the refreshes to each device in a stack.

The tRFC time for a single logical rank is defined as tRFC_slr and is specified as the same value as for a monolithic DDR4 SDRAM of equivalent density. The minimum amount of stagger between refresh commands (=tREF_stagger) sent to different logical ranks is specified to be approximately tRFC_slr/3 - Table 46.

Table 46 — Refresh parameters by logical rank density - Q1'17 RB17110

		Sumbal		cal Rank [lluita	Note
Parameter		Symbol	4 Gb	8 Gb	16 Gb	Units	Note
REF command to		tRFC_slr1 (1X mode)	260	350	550	ns	
ACT or REF command time to		tRFC_slr2 (2X mode)	160	260	350	ns	
same logical rank		tRFC_slr4 (4X mode)	110	160	260	ns	
REF command to		tRFC_dlr1 (1X mode)	90	120	190	ns	
REF command to different logical		tRFC_dlr2 (2X mode)	55	90	120	ns	
rank		tRFC_dlr4 (4X mode)	40	55	90	ns	
	tREFI_slr1	0 °C =< T _{CASE} =< 85 °C	7.8	7.8	7.8	us	
	(1X mode)	85 °C < T _{CASE} =< 95 °C	3.9	3.9	3.9	us	
Average periodic refresh interval in	tREFI_slr2	0 °C =< T _{CASE} =< 85 °C	3.9	3.9	3.9	us	
same logical rank	(2X mode)	85 °C < T _{CASE} =< 95 °C	1.95	1.95	1.95	us	
	tREFI_slr4	0 °C =< T _{CASE} =< 85 °C	1.95	1.95	1.95	us	
	(4X mode)	85 °C < T _{CASE} =< 95 °C	0.975	0.975	0.975	us	

12.2 Timing Parameters by Speed Grade

Table 47 — Timing Parameters by Speed Bin for DDR4-1600-3DS to DDR4-1866-3DS

Davamatav	Cumbal	DDR4-1600-3D	3	DDR4-1866-3D	11	Nista		
Parameter	Symbol	Min	Max	Min	Max	Units	Note	
Row Activate to Row Activate Delay								
ACTIVATE to ACTIVATE command period to different bank group in the same logical rank	tRRD_S_slr	Max(4nCK, 5ns)	-	Max(4nCK, 4.2ns)	-	ns		
ACTIVATE to ACTIVATE command period to same bank group in the same logical rank	tRRD_L_slr	Max(4nCK, 6ns)	-	Max(4nCK, 5.3ns)	-	ns		
ACTIVATE to ACTIVATE command period to different logical ranks	tRRD_dlr	4	-	4	-	nCK		
Four Activate Window	,							
Four activate window to the same logical rank for 0.5 KB page size	tFAW_slr_x4	Max(16nCK, 20ns)	-	Max(16nCK, 17ns)	-	ns	1	
Four activate window to the same logical rank for 1 KB page size	tFAW_slr_x8	Max(20nCK, 25ns)	-	Max(20nCK, 23ns)	-	ns	2	
Four activate window to different logical ranks	tFAW_dlr	16	-	16	-	nCK		
Self-Refresh Timings					•			
Exit Self-Refresh to commands not requiring a locked DLL	tXS	max(5nCK, tRF- C_slr(min) + 10ns)		max(5nCK, tRF- C_slr(min) + 10ns)			3	

NOTE 1 For x4 devices only.

NOTE 2 For x8 devices only.

NOTE 3 Upon exit from Self-Refresh, the 3D Stacked DDR4 SDRAM requires a minimum of one extra refresh command to all logical ranks before it is put back into Self-Refresh Mode.

12.2 Timing Parameters by Speed Grade (cont'd)

Table 48 — Timing Parameters by Speed Bin for DDR4-2133-3DS to DDR4-2400-3DS

Parameter	Cumbal	DDR4-2133-3DS Min Max		DDR4-2400-3DS		Units	Note		
Parameter	Symbol			Min Ma		Units	Note		
Row Activate to Row Activate D	Row Activate to Row Activate Delay								
ACTIVATE to ACTIVATE command period to different bank group in the same logical rank	tRRD_S_slr	max(4nCK, 3.7ns)	-	max(4nCK, 3.3ns)	-	ns			
ACTIVATE to ACTIVATE command period to same bank group in the same logical rank	tRRD_L_slr	max(4nCK, 5.3ns)	-	max(4nCK, 4.9ns)	-	ns			
ACTIVATE to ACTIVATE command period to different logical ranks	tRRD_dlr	4	-	4	-	nCK			
Four Activate Window	Four Activate Window								
Four activate window to the same logical rank for 0.5KB page size	tFAW_slr_x4	Max(16nCK, 15ns)		Max(16nCK, 13ns)	-	ns	1		
Four activate window to the same logical rank for 1KB page size	tFAW_slr_x8	Max(20nCK, 21ns)		Max(20nCK, 21ns)	-	ns	2		
Four activate window to different logical ranks	tFAW_dlr	16	-	16	-	nCK			
Self-Refresh Timings									
Exit Self-Refresh to commands not requiring a locked DLL	tXS	max(5nCK, tRF- C_slr(min) + 10ns)		max(5nCK, t _{RF-} _C slr(min) + 10ns)			3		

12.2 Timing Parameters by Speed Grade (cont'd)

Table 49 - Timing Parameters by Speed Bin for DDR4 - 2666-3DS to DDR4-3200-3DS

Dorometer	Symbol	DDR4-2666-3DS		DDR4-2933-3DS		DDR4-3200-3DS		Units	N-4-
Parameter		Min	Max			Min	Max	Units	Note
Row Activate to Ro	w Activate Dela	ıy							
ACTIVATE to ACTIVATE command period to different bank group in the same logical rank	tRRD_S_slr	max(4nCK, 3ns)	-	max(4nCK, 2.7ns)	-	max(4nCK, 2.5ns)	-	ns	
ACTIVATE to ACTIVATE command period to same bank group in the same logical rank	tRRD_L_slr	max(4nCK, 4.9ns)	-	max(4nCK, 4.9ns)	-	max(4nCK, 4.9ns)	-	ns	
ACTIVATE to ACTIVATE command period to different logical ranks	tRRD_dlr	4	-	4	-	4	-	nCK	
Four Activate Wind	ow			73					
Four activate window to the same logical rank for 0.5KB page size	tFAW_slr_x4	Max(16nCK, 12ns)		Max(16nCK, 10.875ns)		Max(16nCK, 10ns)	-	ns	1
Four activate window to the same logical rank for 1KB page size	tFAW_slr_x8	Max(20nCK, 21ns)		Max(20nCK, 21ns)		Max(20nCK, 21ns)	-	ns	2
Four activate window to different logical ranks	tFAW_dlr	16	-	16	-	16	-	nCK	
Self-Refresh Timings									
Exit Self-Refresh to commands not requiring a locked DLL	tXS	max(5nCK, tRFC_slr(min) + 10ns)		max(5nCK, tRFC_slr(min) + 10ns)		max(5nCK, t _{RFC} _slr(min) + 10ns)			3

NOTE 1 For x4 devices only.

NOTE 2 For x8 devices only.

NOTE 3 Upon exit from Self-Refresh, the 3D Stacked DDR4 SDRAM requires a minimum of one extra refresh command to all logical ranks before it is put back into Self-Refresh Mode.

Annex A (informative) Differences Between Revisions

This table briefly describes most of the changes made to entries that appear in this standard, JESD79-4-1A, compared to its predecessor, JESD79-4-1 (February 2017).

RB18516	"Proposal for DDR4 3DS IDD, IPP, IDDQ Measurement Spec"
RB19073	"Proposal for DDR4 3DS Command Timing Parameters Rev1"
RB19074	"DDR4 3DS IDD Timing Corrections 1600-3200"
RB19076	"DDR4 3DS Speed Bin Table corrections and proposal"
RB18111	C _{IO} for 1600 ~ 2666
RB18284	C _{ZQ} for all speed bins
RB18284	modifying Incorrect references in speed bin tables

Standard Improvement Form	JEDEC
	nical Committees of JEDEC with input from the industry iduals or companies are invited to submit comments to ersed to the appropriate committee(s).
If you can provide input, please complete this form	m and return to:
JEDEC Attn: Publications Department 3103 North 10th Street Suite 240 South Arlington, VA 22201-2107	Fax: 703.907.7583
I recommend changes to the following: Requirement, clause number Clause number Clause number	
Test method number Cla	ause number
The referenced clause number has proven to Unclear Too Rigid In E	
Other	
2. Recommendations for correction:	
3. Other suggestions for document improvemen	nt:
Submitted by	
Name:	Phone:
Company:	E-mail:
Address:	
City/State/Zip:	Date:

