# FONCTION EXPONENTIELLE

## Résumé

Nous nous intéressons, ici, à une fonction exponentielle particulière. Elle est tellement importante qu'on l'appelle sobrement *exponentielle*.

# 1 Solution d'équation différentielle

### Théorème | Existence et unicité

Il existe une unique fonction f définie et dérivable sur  ${\bf R}$  telle que :

$$\begin{cases} f' = f \\ f(0) = 1. \end{cases}$$

On l'appelle **fonction exponentielle** et on la note  $f = \exp$ .

### Propriété | Fonction exponentielle de base e

Il existe un nombre  $e \approx 2,718$ , appelé le **nombre d'Euler**, tel que exp est la fonction exponentielle de base e.



#### Propriétés

Soient  $x, y \in \mathbf{R}$ :

- $ightharpoonup e^0 = 1$
- $ightharpoonup e^{x+y} = e^x e^y$
- $ightharpoonup (e^x)^y = e^{xy}$

*Démonstration.* On obtient toutes ces propriétés de l'étude des fonctions exponentielles. □

#### **Propriété | Variations de** exp

 $\exp: x \mapsto e^x$  est **strictement croissante** sur **R**.

*Démonstration*. e > 1.

#### **Théorème | Positivité de** exp

Pour tout  $x \in \mathbf{R}$ ,  $\exp(x) > 0$ .

# 2 Dérivation et primitives

#### Théorème | Dérivation et primitives de composées linéaires

Soit  $k \in \mathbb{R}^*$  et  $f: x \mapsto e^{kx}$ .

- ► f est dérivable sur **R** et  $f(x) = ke^{kx}$ .
- ► f admet une primitive F sur **R** d'expression  $F(x) = \frac{1}{k} e^{kx}$ .

**Exemples**  $f: x \mapsto 12e^{\frac{x}{3}}$  est dérivable sur **R** et  $f'(x) = 4e^{\frac{x}{3}}$ .

►  $f: x \mapsto e^{-13x}(x^2 + 2)$  est dérivable sur **R** et :

$$f'(x) = -13e^{-13x}(x^2 + 2) + e^{-13x} \times 2x$$
$$= e^{-13x} (-13x^2 + 2x - 26).$$

#### Exercice

Déterminer une primitive des fonctions suivantes.

1. 
$$f: x \mapsto 20e^{10x}$$

**3.** 
$$f: x \mapsto e^{-x} + e^x - 4x^4 + 2x^3$$

**2.** 
$$f: x \mapsto -e^{-3x} + 2$$

# 3 Comportement asymptotique

#### **Propriété** | Limite en $\pm \infty$

La fonction exponentielle dispose des limites suivantes pour  $x \to \pm \infty$ .



**Exemples** On dispose des limites suivantes :







#### Exercice

Donner les limites suivantes.

1. 
$$\lim_{x\to-\infty} \exp(4x-1)$$

$$2. \lim_{x \to +\infty} \exp(-x+7)$$

$$3. \lim_{x \to -\infty} \exp(5x^2)$$

#### Propriétés | Limites de monômes

► Si  $f(x) = x^n$  avec  $n \in \mathbb{N}^*$  pair, alors :



$$\lim_{x \to -\infty} x^n = +\infty$$

$$\lim_{x \to +\infty} x^n = +\infty.$$

► Si  $f(x) = x^n$  avec  $n \in \mathbb{N}$  impair, alors :



$$\lim_{x \to -\infty} x^n = -\infty$$

### Théorème | Limites de polynômes

La limite d'un polynôme  $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$  en  $\pm \infty$  est celle de son terme dominant  $a_n x^n$  (pour  $a_n \neq 0$ ).

**Exemples**  $\blacktriangleright \lim_{x \to -\infty} 5x^3 - 12x^2 - x + 2 = \lim_{x \to -\infty} 5x^3 = -\infty$ 

#### Théorème | Croissances comparées

Soit  $n \in \mathbb{N}^*$ .

**Exemples**  $\blacktriangleright$  Déterminons  $\lim_{x \to +\infty} x^3 + \frac{e^x}{x^3}$ .

D'une part,  $\lim_{x \to +\infty} x^3 = +\infty$  et d'une autre,  $\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x^3} = +\infty$  par le théorème des croissances comparées. En faisant la somme, nous avons  $\lim_{x \to +\infty} x^3 + \frac{\mathrm{e}^x}{x^3} = +\infty$ .

▶ Déterminons  $\lim_{t \to +\infty} e^t - t$ .

Nous sommes face à une forme indéterminée car  $\lim_{t\to +\infty} \mathrm{e}^t = \lim_{t\to +\infty} t = +\infty$  mais  $\lim_{t\to +\infty} \mathrm{e}^t - t$  ne vaut pas forcément 0!

Factorisons:

$$e^{t} - t = e^{t} \left( 1 - \frac{t}{e^{t}} \right)$$
$$= e^{t} \left( 1 - te^{-t} \right).$$

Ainsi, comme  $\lim_{t\to +\infty} 1-t\mathrm{e}^{-t}=1$  par croissances comparées, on a par produit que  $\lim_{t\to +\infty} \mathrm{e}^t-t=+\infty \times 1=+\infty.$ 

#### **Exercice**

Déterminer les limites suivantes.

- 1.  $\lim_{x \to +\infty} 3e^{4x} + 5x^2$
- $2. \lim_{t \to -\infty} -2t e^{2t}$
- 3.  $\lim_{x \to -\infty} \frac{e^{-3x}}{x^2 + 2x}$