

Life Cycle Assessment integrated to process simulator EMSO

Simone C. Miyoshi Argimiro R. Secchi

Outline

- 1. Introduction
- 2. Introducing EMSO
- 3. Life Cycle Assessment
- 4. EMSO_OLCA
- 5. Applications

Applications of Process Modeling

Sequential Modular Simulators

Sequential Modular Simulators

ex: AspenPlus, Hysys, PRO/II, Chemcad, Petrox

Black Box Modeling

The code is specific for every equipment

Equation-Oriented Simulators

and physics of the model

ex: EMSO, Ascend, Jacobian, gPROMS, AspenDynamics, EcosimPro

All equipments or modules are simultaneously evaluated (Block decomposition can be used to explore sequential solution)

Object-oriented modeling

Examples of general-purpose object-oriented modeling languages:

- ABACUSS II (Barton, 1999)
- ASCEND (Piela, 1989)
- Dymola (Elmqvist, 1978)
- EcosimPro (EA Int. & ESA, 1999)
- EMSO (Soares and Secchi, 2003)
- gPROMS/Speedup (Barton and Pantelides, 1994)
- Modelica (Modelica Association, 1996)
- ModKit (Bogusch et al., 2001)
- MPROSIM (Rao et al., 2004)
- Omola (Andersson, 1994)
- ProMoT (Tränkle et al., 1997)

Object-oriented modeling

OOM main concepts

Inheritance: is the process whereby one object acquires (gets, receives) characteristics from one or more other objects.

Aggregation: is the process of creating a new object from two or more other objects, or an object that is composed of

Column model =
Condenser + Splitter +
Pump + Linked Trays +
Feed Tray + Reboiler

EO CAPE Tools

- Key advantages of EO:
 - Models can be inspected, refined, or reused
 - Easier to diagnose ill-posed problems
 - Same model as the source for several tasks: simulation, optimization, design, parameter estimation, data reconciliation, etc. → integrated environment

- Some disadvantages:
 - More difficult to establish good initial guesses
 - More demand on computer resources

Welcome to the ALSOC Project homepage

ALSOC is the acronym used to identify the project of a free environment for simulation, optimization, and process control. ALSOC é a sigla utilizada para identificar o projeto de um Ambiente Livre para Simulação, Otimização e Controle de Processos.

The ALSOC Project is an effort to bring together university-industry through the standardization and distribution without cost of specifications and software tools among universities and partner companies.

O Projeto ALSOC é um esforço de aproximação universidade-indústria através da padronização e distribuição sem custo de especificações e ferramentas de software entre universidades e empresas consorciadas.

Look here the list of institutions that participate and sponsor the project.

Veja aqui a lista de instituições que participam e patrocinam o projeto.

The main goals of the ALSOC Project are:

Project Goals

As principais finalidades do Projeto ALSOC são:

- to develop, maintain, and distribute specifications of a modeling language and a library of models for the synthesis, simulation, optimization and control of general processes (check the ALSOC OPEN LICENSE); desenvolver, manter e distribuir especificações de uma linguagem de modelagem e uma biblioteca de modelos abertas para síntese, simulação, otimização e controle de processos em geral (veia a licenca aberta ALSOC):
- to develop and maintain state-of-the-art software and to distribute it at no cost to the universities and partner companies (check the ALSOC LICENSE); desenvolver e manter software no estado-da-arte distribuído sem custo entre os consorciados e entidades educacionais (veia a licenca ALSOC):
- to certify third party solution and models as conforming to the developed standards. certificar a conformidade de soluções externas com os padrões desenvolvidos e adicionar ao Projeto contribuições externas,

EMSO Process Simulator

EMSO is the acronym for Environment for Modeling Simuation and Optimization.

EMSO é a sigla para Environment for Modeling Simuation and Optimization.

EMSO is the simulation software of the ALSOC project. Its development was started at 2001 by ⇒ Rafael de Pelegrini Soares, today the EMSO process simulator is developed and maintained by ALSOC.

O EMSO é o software de simulação do projeto ALSOC. Sua construção foi iniciada em 2001 por 🖨 Rafael de Pelegrini Soares, hoje o simulador EMSO é desenvolvido e mantido pelo projeto ALSOC.

Learn more about EMSO, check the ChangeLog, or download it here!

Saiba mais sobre o EMSO, veja o ChangeLog ou faça o seu download aqui

News!

- mar 07 2008: EMSO version 0.9.55 released! Download it here
- . dez 25 2007: EMSO version 0.9.54 released! Download it
- · aug 31 2007: EMSO version 0.9.53 released! Download it
- aug 27 2007: Curso do simulador EMSO. Clique AQUI para fazer o download do material do curso.
- iun 15 2007: A nice Ouick Reference is now available.
- feb 14 2007: Displaying a formula Click here.
- dec 18 2006: ALSOC meeting: sponsors and developers discussing about the future of the project and recent advances. Read more...
- . nov 1 2006: Get involved!: Contribute your models to the EMSO Model Library, Check the Contribution Page!

<u>Industry-University Partnership (2004-2009):</u>

FINEP-CNPq

UFRGS

COPPE/UFRJ

USP

MACKENZIE

PETROBRAS

BRASKEM

COPESUL

INNOVA

IPIRANGA

P. TRIUNFO

REFAP

ALSOC Project

Collaborators Universities

EMSO Applications:

Soft Sensor:

Especification of GLP

GLP: C2 (11%)

C3

C4

C5 (1,5%)

Plant

Reflux

Temperature of the Bottom Pressure

Inference (min a min) x Measurements (20 min)

Composition of C5 In top of the column

Desbutanizadora

FlowSheet EMSO

Model Building

✓ A mathematical model has:

- A set of model parameters (reaction order, valve constant, etc.)
- A set of variables (temperatures, pressures, flow rates, etc.)
- A set of equations (algebraic and differential) relating the variables

✓ Problems in model building:

- Number of equations and variables do not match (DoF ≠ 0)
- Equations of the model are inconsistent (linear dependence, UOM, etc.)
- The number of initial conditions and DDoF do not match

The Simplest Example

Abstract model

mass balance:
$$F_{in} - F_{out} = \frac{dV}{dt}$$

valve equation: $F_{out} = k\sqrt{h}$

liquid volume: V = A h

EMSO:

```
using "types";
Flowsheet basic flowsheet
PARAMETERS
  k as Real (Brief="Valve constant", Unit='m^2.5/h', Default = 12);
  D as length (Brief="Tank hydraulic diameter", Default = 4);
VARIABLES
   Fin as flow vol (Brief="Feed flow rate");
   Fout as flow vol (Brief ="Output flow rate");
   A as area (Brief="Cross section area");
   V as volume (Brief="Liquid volume");
   h as length (Brief="Tank level");
EQUATIONS
   "Mass balance" Fin - Fout = diff(V); # (1)
   "Valve equation" Fout = k * sqrt(h); # (2)
  "Liquid volume" V = A * h;
                                      # (3)
end
```

Modeling Consistency Analysis

- Model consistency analysis for unit of measurements (UOM)
- Degree of freedom analysis
- Dynamic degree of freedom analysis

<u>variable</u>		<u>UOM</u>
F_{in}, F_{out}	$\mathrm{m}^3\mathrm{h}^{\text{-}1}$	
V		m^3
Α		m^2
h		m
k		m ^{2.5} h ⁻¹
t		h

equations

(1):
$$[m^3 h^{-1}] - [m^3 h^{-1}] = [m^3] / [h]$$

(2):
$$[m^3 h^{-1}] = [m^{2.5} h^{-1}] ([h])^{0.5}$$

(3):
$$[m^3] = [m^2] [m]$$

Modeling Consistency Analysis

```
variables: F_{in}, F_{out}, V, A, h, k, t \rightarrow 7
```

constants: $k, A \rightarrow 2$ specifications: $t \rightarrow 1$

driving forces: $F_{in} \rightarrow 1$

unknown variables: V, h, A, F_{out} → 4

equations: 3

Degree of Freedom = variables – constants – specification – driving forces – equations = unknown variables – equations = 7 - 2 - 1 - 1 - 3 = 0

Dynamic Degree of freedom (index < 2) = differential equations = 1

Needs 1 initial condition: $h(0) \rightarrow 1$

```
using "types";
constante as Real (Unit = 'm^2.5/h');
Flowsheet meuprimeirotanque
PARAMETERS
K as constante:
A as area:
VARIABLES
V as volume:
h as length;
Fe as flow vol:
Fs as flow vol;
EQUATIONS
diff(V) = Fe - Fs;
V = A * h;
Fs = K * sqrt(h);
SET
K = 5 * 'm^2.5/h':
A = 1 * 'm^2:
SPECIFY
Fe = 2 * (1 + \sin(40*time*'rad/h')) * 'm^3/h';
\#Fe = 2 * 'm^3/h':
INITIAL h = 0.5 * m':
```

My first EMSO Simulation Hello World!

OPTIONS
TimeStart = 0;
TimeStep = 0.01;
TimeEnd = 1.5;
TimeUnit = 'h';

Modeling Structure in EMSO

Modeling Structure in EMSO

using reference to files.

Model a new model is set with this word

the new model should have:

PARAMETERS

parameters section of the model.

VARIABLES

variables section of the model.

EQUATIONS

equations section of the model

Componentes Básicos do Modelo

Submodels and predefined **EMSO** models Information for documentation **Basic Section** Of the model Inlet and Outlet

Conections

```
🍓 mixer.mso
  20 using "streams":
  22 ▼Model mixer
          ATTRIBUTES
  24
          Pallete
                       = "icon/mixer"
                       = "Model of a mixer":
          Info
       "== Assumptions ==
      * static
      * adiabatic
  31
32
33
34
35
      == Specify ==
      * the inlet streams";
         PARAMETERS
      outer NComp as Integer (Brief = "Number of chemical components", Lower = 1);
            Ninlet as Integer (Brief = "Number of Inlet Streams", Lower = 1, Default = 2);
     In Inlet(Ninlet) as stream (Brief = "Inlet streams", PosX=0, PosY=0.5, Symbol="_{in}");
  41 out Outlet
                         as streamPH (Brief = "Outlet stream", PosX=1, PosY=0.5, Symbol="_{out}");
        EQUATIONS
           "Flow"
          Outlet.F = sum(Inlet.F);
          | for i in [1:NComp]
  49
  50
51
52
53
54
55
56
               "Composition"
              Outlet.F*Outlet.z(i) = sum(Inlet.F*Inlet.z(i));
          "Energy Balance"
          Outlet.F*Outlet.h = sum(Inlet.F*Inlet.h);
  57
           "Pressure"
          Outlet.P = min(Inlet.P):
  59
```

Modeling Structure in EMSO


```
* FlowSheet generated automaticaly by EMSO-GUI
using "cstr_vdv_T.mso";
FlowSheet ex vdv3
    DEVTCES
    Sink as Sink conc:
    Source as Source_conc;
    CSTR as cstr_vdv_dvn:
    CONNECTIONS
    Source.Outlet to CSTR.Inlet:
    CSTR.Outlet to Sink.Inlet:
    CSTR.cv = 1 * 'm^{(5/2)/h'};
   CSTR.k1 = 1.287E+012 * '1/h'
   CSTR. k2 = 1.287E+012 * '1/h';
    CSTR.k3 = 9.043E+009 * '1/mo1/h' :
   CSTR.E1 = 9758.3 * 'K' ;
    CSTR.E2 = 9758.3 * 'K'
    CSTR.E3 = 8560 * 'K' ;
    CSTR.A = 1 * 'm^2':
    Source.Outlet.Ca = 5.5 * 'kmol/m^3';
    Source.Outlet.Cb = 0 * 'kmo1/m^3'
    Source.Outlet.Cc = 0 * 'kmol/m^3'
    Source.Outlet.Cd = 0 * 'kmol/m^3';
    Source.Outlet.T = 387 * 'K' :
    Source.Outlet.P = 1 * 'atm'
    Source.Outlet.Fvol = 1 * 'm^3/h';
   CSTR.x = 1:
    INITIAL
    CSTR.Ca = 5 * 'kmo1/m^3'
   CSTR.Cb = 0 * 'kmo1/m^3'
    CSTR.CC = 0 * 'kmo1/m^3'
    CSTR.Cd = 0 * 'kmo1/m^3'
   CSTR.h = 1 * 'm':
                               Simulation
```

Degree of freedom

Dynamic Degree of freedom

Simulation Options **EQUIPAMENTS** parameters

```
OPTIONS
Dvnamic = true:
TimeStep = 0.01:
TimeEnd' = .5;
TimeUnit = 'h';
Integration = "original":
NLASolver(
    File = "sundials",
    RelativeAccuracy = 1e-6.
    AbsoluteAccuracy = 1e-6.
    MaxIterations = 100
DAESolver(
    File = "dasslc",
    RelativeAccuracy = 1e-6.
    AbsoluteAccuracy = 1e-6,
    EventAccuracy = 1e-2
```

Simple Example

Streams

Inlet stream feeding the tank
Outlet stream leaving the tank

Parameters

K Valve constant

Variables

A Tank cross section area

V Tank volume h Tank level

Devices: source, tank, sink

Creating Models

```
using "types";
# Source model
Model Feed
 VARIABLES
 out F as flow_vol;
end
# Sink model
Model Sink
 VARIABLES
 in F as flow_vol;
end
```

Creating Models

Model Tank_Basic PARAMETERS K as Real;

VARIABLES
in Fin as flow_vol;
out Fout as flow_vol;
V as volume;
h as length;
A as area;

EQUATIONS
Fin - Fout = diff(V);
Fout = K * sqrt(h);
V = A * h;
end

```
FlowSheet meusegundotanque
DEVICES
Tank1 as Tank_Basic;
Input as Feed;
Output as Sink;
CONNECTIONS
Input to tanque1;
Tank1 to Output;
                                            Creating Models
SFT
Tank1.K = 5 * \text{'m}^2.5/\text{h}:
Tank1.A = 1 * 'm^2';
SPECIFY
Input.F = 2 * (1 + \sin(40*time*'rad/h')) * 'm^3/h';
INITIAI
Tank1.h = 0.5 * 'm';
OPTIONS
TimeStart = 0;
TimeStep = 0.01;
TimeEnd = 1.5;
TimeUnit = 'h';
end
```

Life Cycle Assessment

Life Cycle Assessment

Source: MCTI (2021). 4º Inventário nacional de emissões.

With every increment of global warming, regional changes in mean climate and extremes become more widespread and pronounced

Source: IPCC AR6 (2023)

Life Cycle Assessment

Life Cycle Assessment (LCA):

LCA is defined by the ISO 14040 as the compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle.

Source: ISO14040 (2006)

Life Cycle Assessment

Standardization - Life Cycle Assessment (LCA). :

- ISO 14040:2006 Environmental management -- Life cycle assessment -- Principles and framework. ISO 14040: 2006/Amd 1:2020 Environmental management Life cycle assessment Principles and framework Amendment 1.
- ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines.
- ISO 14044:2006/Amd 1:2017 Environmental management Life cycle assessment Requirements and guidelines. Amendment 1.
- ISO 14044:2006/Amd 2:2020 Environmental management Life cycle assessment Requirements and guidelines. Amendment 2.

Why should you make a LCA?

- ✓ Government Policy
- ✓ Decision-making Process

- ✓ Demonstrate the process is Green
- ✓ Product Marketing

Source: ISO14040 (2006)

Life Cycle Assessment

Goal and Scope

- Goal (application, purpose, intended audience)
- Assumptions (Functional Unit, System boundaries, Allocation procedures, quality requirements)

Life Cycle Inventory

- Data collection (Inputs / Outputs)
- Validation

Impact Assessment

- Selection of Assessment Methods
 - Selection of Assessment Categories
- Classification and Characterization

Interpretation

- Identification of significant issues
- Evaluation
- Conclusions and recommendations

Source: ISO14040 (2006)

Goal and Scope

Goal:

The goal has four key aspects ISO 14044 (2006)

- ✓ Intended Application of the study
- ✓ The purpose of the study
- ✓ The intended audience
- ✓ Use of comparative analysis

Example:

LCA Element	Summary for this Work	
Intended Application	To compare the energy and environmental impact of LED lamps used in general illumination applications with traditional lighting products.	
Reasons for the Study	 To quantify the energy and environment impacts of LEDs. To address uncertainty in the existing body of literature and LCA reports concerning LED manufacturing methods and assumptions. 	
Audience	Lighting designers, policy makers, researchers and technical experts considering LED technology in general illumination applications.	
Public Results	Results of this study will be freely available, published on the U.S. DOE Solid State Lighting website: http://www1.eere.energy.gov/buildings/ssl/	

Source:

US Department of Energy. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

Goal and Scope

Scope:

- ✓ System under study (description of the system)
- ✓ System boundaries
- ✓ Function of the product and functional unit
- ✓ Allocation procedures
- ✓ Impact categories and the impact assessment method
- ✓ Data requirements
- **√** ...

Goal and Scope

System Boundaries:

✓ Cradle to Grave: 1-7

✓ Cradle to Gate: 1-2

✓ Gate to Grave: 3-7

✓ Gate to Gate: 2

Example:

Figure 4-1. System boundary of the Life Cycle Assessment of this Study (Part 2)

Source:

US Department of Energy. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

Source:

Matssura et al. RenovaCalc

-> Process Diagram is useful!

Goal and Scope

System function and functional unit:

✓ To describe a product the product's function has to be defined. The functional unit is the quantified definition of the function of a product.

Example:

Function:

Intensity of illumination over a lifetime

Functional unit: 20 million Lumen-Hours

Source:

US Department of Energy. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

Goal and Scope

Life Cycle Assessment Categories from CML-IA Methodology

Category	Impact e Effects	Main Substances	Unity
Global Warming Potential (GWP 100 Years)	Climate Change, extreme climate events	CO ₂ , N ₂ O, CH ₄	kg CO ₂ -eq
Ozone Layer Depletion Potential (ODP)	Increase of UV rays intensity, skin cancer	Trichlorofluoromet hane (CFC-11), Halon 1301, Halon 1211	ka CEC-11 -ea
Eutrophication Potential (EP)	Emission of macronutrients such as nitrogen (N) and phosphorus (P) and carbon (C) into the environment: Algal blooms, oxygen depletion	NH ₃ , P, PO ₄ , NO ₃	kg PO₄-eq
Acidification Potential (AP)	Damage to vegetation, rivers and lakes; material damage	SO _x , NH ₃ , NO _x	kg SO ₂ -eq
Photochemical oxidation Potential (POCP)	Damage to human health and ecosystems and can also damage agricultural crops	^	kg C ₂ H ₄ eq
Human Toxicity Potential (HTP)	Acute and chronic toxicity to humans	Benzene, Cupper, Lead	kg 1,4-DB eq (1,4- dichlorobenzene)
EcoToxicity	Acute and chronic toxicity in ecosystems	1,4- dichlorobenzene, Mercury, Arsenic	kg 1,4-DB eq (1,4- dichlorobenzene)

Goal and Scope

In case of multi-product system:

- Expand the product system (consequential)
- Allocation of the impacts (attributional)
 - Allocation by Mass: The inputs and outputs of a process are assigned to all of its products proportionally to their mass
 - □Allocation by Energy: The inputs and outputs of a process are assigned to all of its products according to their heating value. This allocation method is often used for production processes of fuels.
 - Allocation by Economic Value: The inputs and outputs of a process are assigned to all of its products according to their market value.
 - □Allocation by Other Rules: This can include exergy, substance content, etc.

Life Cycle Assessment

Life Cycle Assessment Concepts Elementary Process

Example Carbon Capture Case Study Inventory¹

Functional unit 1t CO2 captured

Flow	Category	Amount	Unit	Description
Inputs				•
	C:Manufacturing/2011:Manufacture of basic			100%wt. MEA. MEA Makeup from Carbon
monoethanolamine	chemicals	5.28	kg	Capture Unit
natural gas production	natural gas, energy based	6616872.40	kJ	Natural Gas of CHP
	E:Water supply; sewerage, waste			99.5%. TEG Makeup from Carbon Capture
triethylene glycol	management and remediation activities	0.22	kg	Unit
	E:Water supply; sewerage, waste			Net Water Makeup from MEA and CWT
water, decarbonised	management and remediation activities	3048.82	kg	units
Carbon dioxide	Elementary flows/Resource/in air	819.41	kg	CO2 input from Carbon Capture unit
Nitrogen	Elementary flows/Resource/in air	76600.62	kg	Air Input in CHP/ Air from input of CCU
Oxygen	Elementary flows/Resource/in air	21968.50	kg	Air Input in CHP/ Air from input of CCU
Water, in air	Elementary flows/Resource/in air	852.83	kg	Air Input in CHP/ Air from input of CCU
Outputs				
CO2 to wells - MEA				
Carbon Capture - TW		1000.00	kg	CO2 to the wells
electricity, medium	D:Electricity, gas, steam and air conditioning			
voltage	supply	328812.65	kJ	Net Electricity Produced
Carbon dioxide, fossil	Elementary flows/Emission to air/unspecified	146.07	kg	from CC MEA unit, treated gas.
Carbon dioxide, fossil	Elementary flows/Emission to air/unspecified	35.99	kg	Others CO2 emissions
Monoethanolamine	Elementary flows/Emission to air/unspecified	5.26	kg	from CC MEA unit, treated gas
Nitrogen	Elementary flows/Emission to air/unspecified	9315.59	kg	Emission to Air
Oxygen	Elementary flows/Emission to air/unspecified	1009.39	kg	from Oxygen Removal Unit.
Water	Elementary flows/Emission to air/unspecified	1218.03	kg	Emission to Air

¹ Based on Aspen Hysys Simulation Results.

Life Cycle Assessment

https://doi.org/10.3390/pr12071285

EMSO:

- Free for Academic use
- Equation-Oriented Simulator
- Easy to create new models: Flexibility
- Fast: lower computational time
- Interface with Python, C++, Matlab, Scilab, OPC, Excel, LibreOffice

OpenLCA:

- Free, OpenSource
- Several LCIA databases:
 Ecolnvent, Agri-footprint,...
- Update of the impact assessment databases

Characteristics

- Flexibility
- ✓ Computational Speed (LCA of ethanol): 0.296 s
- ✓ Accuracy (LCA of ethanol): mean error of 0.0015%
- Integrated to functionalities of EMSO
- ✓ Emissions impact is accessed by OpenLCA database
- ✓ OpenLCA Impact Methodologies Available:
 - 99 methodologies: IPCC, 2013; CML, 2001; ReCiPe, 2016; ...
 - √ 1479 Characterization Factors
- OpenLCA database update

Applications:

- ✓ Identification of bottleneck and improvement opportunities
- ✓ Chemical Process Routes Selection
- ✓ Process design decisions: E.g. Different equipment configurations, process variables values
- ✓ Process Monitoring
- ✓ Process Control

Installation

✓ For installation, the file EMSO_OLCA library should be informed on EMSO in Menu> Config>Plugins

✓ In the field New Plugin:

✓ Type: EMSO_OLCA

✓ File: Path to library

LCIA Database

- ✓ Database is available on the NEXUS-OPENLCA website (*nexus.openlca.org/databases*). It can be downloaded for free (OpenLCA LCIA methods)
- ✓ The integration format with EMSO-OLCA is JSON-LD
- Note that the methodology should be compatible with the LCI
- ✓ DataBasePath will be the path to this folder.

Identification of the Emissions Flows Example: Co-generation Steam and Electricity

Get Impact Assessment from Inputs -> Input LCA File

EMSO-OLCA entries are imported directly from OpenLCA and their impact is calculated through Menu TOOLS > Developer

Input LCA File

To export the entries in a .csv file, please:

- ✓ Run the code in Python
- ✓ Select the entries to be considered
- ✓ Select the Life Cycle Assessment method
- ✓ Indicate the location to save the .csv file with the results of input impacts.

Elementary Flows

natural resources, emissions or waste.

For example (see OpenLCA),

ElementaryFlowPath1: Emission to air

ElementaryFlowPath2: high population density/low population density/unspecified/stratosphere/lower stratosphere + upper troposphere

ElementaryFlowPath1: Emission to water

ElementaryFlowPath2: fóssil-/fresh water/ground water/lake/ocean/ river/ surface water/unspecified

EMSO_OLCA User Configurations Syntax

PARAMETERS

```
obj as Plugin (Type= "EMSO_OLCA",
DataBasePath=["Path/methods_database"],
MethodName= ["MethodName"],
ImpactCategory=["ImpactCategory1", " ImpactCategory2"],
InputFileName=["Path/export_input.csv"],
Inputs=["name of input1", "name of input 2"],
OutputName=["name of the output 1"],
OutputUnit=["kg"],
ElementaryFlows=["Emission1", "Emission2", "ResourceName1", "ResourceName"],
ElementaryFlowPath1=["Emission to air", "Emission to air", "Resource", "Resource"],
ElementaryFlowPath2=["low population density", "low population density", "in water",
"land"],
UnitFileName=["Path/EMSO_OLCA_units.csv"],
MethodologyType=["attributional"], # ou "consequential"
AllocationType=["mass"]); # ou "energy" ou "economic"
```

LCA Calculations

$$LCIA_c = \sum_{i} IF_{c,i} \times LCI_i$$

(Jolliet et al., 2010)

$$f_k = \frac{par_k \cdot m_k}{\sum_j (par_j \cdot m_j)}$$

(Guinée, 1995)

EMSO_OLCA Basic LCAModel Syntax

```
▼Model LCABasic
            PARAMETERS
  outer NoComps as Integer;
  outer obj as Plugin(Type="EMSO_OLCA");
            ni as Integer (Brief="Number of Inputs", Default=2);
            ncf as Integer (Brief="Number of Characterization Factors", Default=3);
           no as Integer (Brief= "Number of Outputs", Default=2);
           ne as Integer (Brief= "Number of ElementaryFlows (emissions+resources)". Default=2);
           nc as Integer (Brief= "Number of Consequential Input", Default=0);
            alloc_par(no) as Real (Default=1, Lower=1e-5);
            VARIABLES
            cf(ncf, ni) as Real;
            ef(ncf, ne) as Real;
            r (ncf, no) as Real;
            p (ncf, ni+ne+nc) as Real:
            input_values(ni) as Real (Default=1);
            emission_values(ne) as Real(Default=1):
            output_values(no) as Real (Default=1, Lower=1e-5):
            EQUATIONS
            [ef(1,:),ef(2,:),ef(3,:),ef(4,:),ef(5,:),ef(6,:),ef(7,:),ef(8,:),ef(9,:),ef(10,:),ef(11,:)] = obj.EmissionFactor();
            [cf(1,:),cf(2,:),cf(3,:),cf(4,:),cf(5,:),cf(6,:),cf(7,:),cf(8,:),cf(9,:),cf(10,:),cf(11,:)] = obj.CharacterizationFacto
            # keep input values and emissions values in kg
            [r(1,:), r(2,:), r(3,:), r(4,:), r(5,:), r(6,:), r(7,:), r(8,:), r(9,:), r(10,:), r(11,:)] =
                                                                                          obj.LcaCalc(input_values, emission_values, output_values, alloc_par);
            [p(1,:), p(2,:), p(3,:), p(4,:), p(5,:), p(6,:), p(7,:), p(8,:), p(9,:), p(10,:), p(11,:)] = [p(1,:), p(2,:), p(3,:), p(3,:), p(4,:), p(5,:), p(6,:), p(6,:), p(8,:), p(9,:), p(10,:), p(11,:)] = [p(1,:), p(2,:), p(3,:), p(3,:), p(4,:), p(5,:), p(6,:), p(6,:), p(8,:), p(9,:), p(10,:), p(11,:)] = [p(1,:), p(3,:), p(4,:), p(4,:), p(5,:), p(6,:), p(6,:), p(8,:), p(8,:), p(9,:), p(10,:), p(11,:)] = [p(1,:), p(3,:), p(4,:), p(4,:), p(5,:), p(6,:), p(6,:), p(6,:), p(6,:), p(10,:), p(10,:), p(11,:)] = [p(1,:), p(1,:), p
                                                                                            obj.LcaPercentual(input_values, emission_values, output_values, alloc_par);
  end
```

EMSO_OLCA Test

Ethanol Test Case - Ecolnvent 3.8, ethanol production autonomous plant, BR, 1Kg CML Baseline

Impact	Reference	OpenLCA	OLCA_EMSO	
category	unit	Result	Result	% Error
Abiotic depletion	kg Sb eq	$4.2916 \cdot 10^{-6}$	4.2962 · 10-6	0.1083%
Abiotic depletion (fossil				
fuels)	MJ	3.2862	3.2862	-0.0001%
Acidification	kg SO2 eq	$1.3946 \cdot 10^{-2}$	1.3946 · 10-2	0.0001%
Eutrophication	kg PO4 eq	$7.4082 \cdot 10^{-3}$	7.4082 · 10 ⁻³	-0.0001%
Fresh water aquatic ecotox.	kg 1,4-DB eq	$1.3882 \cdot 10^{-1}$	1.3882 · 10 ⁻¹	0.0000%
Global warming (GWP100a)	kg CO2 eq	$6.5146 \cdot 10^{-2}$	6.5140 · 10 ⁻²	-0.0090%
Human toxicity	kg 1,4-DB eq	$2.5019 \cdot 10^{-1}$	2.5019 · 10-1	-0.0001%
Marine aquatic ecotoxicity	kg 1,4-DB eq	$2.5725 \cdot 10^{+2}$	2.5726 · 10+2	0.0000%
Ozone layer depletion				
(ODP)	kg CFC-11 eq	$1.9625 \cdot 10^{-8}$	1.9639 · 10-8	0.0686%
Photochemical oxidation	kg C2H4 eq	$1.6936 \cdot 10^{-3}$	1.6938 · 10-3	0.0128%
Terrestrial ecotoxicity	kg 1,4-DB eq	1.0923 · 10 ⁻³	1.0924· 10 ⁻³	0.0071%

Mean Error 0.0015%

Bioelectricity and Steam Co-generation Scenario 1 – without condensing turbine

Bioelectricity and Steam Co-generation Scenario2 -with condensing turbine

Bioelectricity and Steam Co-generation Emission on Boiler

Emissions ¹	Elementary	Elementary	Value ¹	Unit
	Flow ²	Flow Path1 ²		
VOC	NMVOC	Emission to air	0.00761463	kg/t
СО	Carbon monoxide	Emission to air	0.120739025	kg/t
NO	Nitrogen oxides	Emission to air	0.795076714	kg/t
PM2.5	Particulates, <	Emission to air	0.015689025	kg/t
	2.5 um			
PM10	Particulates, <	Emission to air	0.017764133	kg/t
	10um			
SO	Sulfur oxides	Emission to air	0.729576105	kg/t
BC	Black Carbon	Emission to air	0.002165085	kg/t
OC	Organic Carbon	Emission to air	0.005114622	kg/t
CH ₄	Methane	Emission to air	0.122146171	kg/t
NO ₂	Dinitrogen	Emission to air	0.075615476	kg/t
	monoxide			
CO ₂	Carbon dioxide,	Emission to air	from simulation	-
	biogenic			

Source: 1 Greet (2022) 2 OpenLCA (2022)

Cogeneration Analysis Inventory Results

Inventory	Unit	Scenario 1	Scenario 2	Δ%
Inputs				
Bagasse/Straw	t/h	38.04	129.06	239%
Water	t/h	7.46	479.56	6333%
Emissions				
VOC	kg/h	0.32	1.08	239%
CO	kg/h	5.06	17.18	239%
NO	kg/h	33.34	113.11	239%
Particulate M., < 2,5 um	kg/h	0.66	2.23	239%
Particulate M., < 10um	kg/h	0.74	2.53	239%
SO	kg/h	30.59	103.79	239%
BC	kg/h	0.09	0.31	239%
OC	kg/h	0.21	0.73	239%
CH ₄	kg/h	5.12	17.38	239%
N ₂ O	kg/h	3.17	10.76	239%
CO ₂ , biogenic	t/h	61.56	208.87	239%
Products				
Vapor	MWh	113.50	113.50	0%
Bioelectricity, net	MWh	34.02	154.38	354%

Cogeneration Analysis LCA Results

Impact Category	Unit	Scenario 1	Scenario 2	Δ%
Global Warming (GWP100a)	kg CO ₂ eq/MJ	$1.995 \cdot 10^{-3}$	$4.033 \cdot 10^{-3}$	102%
Photochemical oxidation	kg C ₂ H ₄ eq/MJ	$2.761 \cdot 10^{-6}$	$5.285 \cdot 10^{-6}$	91%
Human toxicity	kg 1,4-DB eq/MJ	$5.087 \cdot 10^{-4}$	$1.571 \cdot 10^{-3}$	209%
Abiotic depletion	kg Sb eq/MJ	$7.270 \cdot 10^{-9}$	$2.776 \cdot 10^{-8}$	282%
Eutrophication	kg PO ₄ -eq/MJ	$2.172 \cdot 10^{-5}$	$4.120 \cdot 10^{-5}$	90%
Abiotic depletion (fossil fuels)	MJ/MJ	$5.979 \cdot 10^{-3}$	$1.448 \cdot 10^{-2}$	142%
Marine aquatic ecotoxicity	kg 1,4-DB eq/MJ	$4.470 \cdot 10^{-1}$	1.533E+00	243%
Ozone layer depletion (ODP)	kg CFC-11 – eq/MJ	3.558 · 10 ⁻¹¹	9.244E-11	160%
Terrestrial ecotoxicity	kg 1,4-DB eq/MJ	$1.955 \cdot 10^{-6}$	7.737E-06	296%
Acidification	kg SO ₂ -eq/MJ	$5.381 \cdot 10^{-5}$	1.026E-04	91%
Fresh water aquatic ecotox.	kg 1,4-DB eq/MJ	2.411 · 10 ⁻⁴	8.787E-04	264%

Cogeneration Analysis

Contribution of Inputs and Emissions on Result - Scenari

Cogeneration Analysis

Contribution of Inputs and Emissions on Result - Scenari

Cogeneration Analysis Results Effect on GWP and Steam Cost, varying Steam Consumption

High Bagasse Price: 0.150 US\$/kg

Cogeneration Analysis Results Effect on GWP and Steam Cost, varying Steam Consumption

Low Bagasse Price: 0.015 US\$/kg

Examples - Bottle

Figure 2: System boundaries, edited from Papong (2014, 541). PET = polyethylene terephthalate, PP = polypropylene, HDPE = high density polyethylene, POS = point of sale

Cogeneration Analysis Results Minimize vapor price varying condenser duty (u)

Feasible path approach

min Vapor Price

s.t.:

$$x(u) \in \{x \in X \subseteq \Re^m / h(x,u) = 0\}$$

$$\nabla_u x = -\nabla_u h \ [\nabla_x h]^{-1}$$
 $J^{\mathrm{T}}(x, u) = \nabla_x h$

Ethanol 1G-2G

Process Flow Diagram in EMSO

Ethanol 1G-2G

Fig. 3. Pareto set of optimal results for Net Present Value and Global Warming Potential.

Multi-objective optimization

- -2G bagasse ratio
- -Solid loading
- -Enzyme loading

Source: Carpio et al (2021). J.Clean. Prod.

Ethanol 1G-2G

Pareto set of optimal solutions

The integrated biorefinery would award about 625-728 mil CBio credits yearly.

The CBio price to achieve economic feasibility of the integrated biorefinery would be about \$20.96-\$21.55.

Opportunities in ChemEng

Source: IPCC AR6 (2023)