Лабораторная работа № 2.5.1

Измерение коэффициента поверхностного натяжения жидкости

1 Аннотация

Цель работы: 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

В работе используются: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы; микроскоп.

2 Теоретические сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r},\tag{1}$$

где σ – коэффициент поверхностного натяжения, $P_{\text{внутри}}$ и $P_{\text{снаружи}}$ – давление внутри пузырька и снаружи, r – радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

3 Используемое оборудование

Рис. 1: Схема установки

Схема экспериментальной установки представлена на рисунке 1. Тестовая жидкость (этиловый спирт) наливается в сосуд, через пробку в него входит полая металлическа игла. При создании достаточно разреженного воздуха в колбе пузырьки воздуха начинают пробулькивать, поверхностное натяжение измеряется по величине разряжения. Разряжение создается с помощью аспиратора, разность давлений измеряется спиртовым микроманометром.

Для стабилизации температуры через рубашку колбы с исследуемой жидкостью прогоняется вода из термостата. Из-за большой теплопроводности трубки температура в разных частях трубки заметно различна и ввиду теплового расширения поднимается уровень жидкости при изменении температуры. Поэтому при температурном измерениии кончик иглы опускают до самого дна сосуда, тогда:

$$\Delta P = P - \rho g h \tag{2}$$

ho - плотность жидкости, h - высота погружения иглы.

4 Результаты измерений и обработка данных

Табличные значения

$$\sigma_{\text{спирт}} = (22.75 \pm 0.01) \text{ мH/м}$$

$$\rho_{\text{дист.вод}} = (1.00 \pm 0.01) \text{ г/см}^3$$

$$g = (9.81 \pm 0.01) \text{ м/c}^2$$

Диаметр иглы

Сначала определим диаметр иглы с помощью формулы (1). Разность давлений будем измерять несколько раз, принимая во внимание случайную погрешность и погрешность прибора.

Таблица 1: Показания микроманометра для спирта

Связь измеряемого давления P с отсчётом делений по шкале N:

$$P[\Pi a] = 9.8067 \cdot N \cdot K,$$

где K = 0.2 — угловой коэффициент.

В итоге по формуле (1):

$$d_{\text{спирт}} = (1.084 \pm 0.016) \text{ MM}$$
 (3)

А с помощью микроскопа:

$$d_{\text{MMKD}} = (0.90 \pm 0.05) \text{ MM} \tag{4}$$

Глубина погружения

Определим разность давлений P_1 , когда игла лишь касается поверхности воды:

$$P_1 = (230.1 \pm 1.4) \; \Pi a$$

И расстояние от некоторой фиксированной точки до поверхности:

$$h_1 = (2.0 \pm 0.1) \text{ MM}$$

Теперь утопим иглу до предела (между концом иглы и дном необходимо оставить небольшой зазор, чтобы образующийся пузырёк не касался дна) и проделаем тоже самое:

$$P_2 = (392.4 \pm 1.4) \; \Pi \mathrm{a}$$

 $h_2 = (0.3 \pm 0.1) \; \mathrm{mm}$

В итоге по формуле (2):

$$\Delta h_{\text{Teop}} = \frac{P_2 - P_1}{\rho \cdot g} = (1.654 \pm 0.026) \text{ cm}$$
 (5)

И с помощью линейки:

$$\Delta h_{\text{лин}} = (1.70 \pm 0.14) \text{ cm}$$
 (6)

Температурная зависимость

Снимем температурную зависимость N(T) показаний микроманометра дистиллированной воды:

T, ° C	N_1	N_2	N_3	N_4	N_5
25.1	204.0	204.0	204.0	203.5	204.0
30.3	202.5	202.0	202.5	202.5	202.5
35.2	200.5	201.0	200.5	200.5	201.0
40.2	198.5	199.0	199.0	199.0	199.5
45.2	198.0	198.0	198.0	198.0	198.0
50.2	196.5	197.5	196.5	197.0	197.0
55.2	194.5	195.0	195.0	195.0	195.0
60.1	193.0	193.0	192.5	193.0	193.0

Таблица 2: Показания микроманометра

По формуле (1) рассчитаем величину коэффициента поверхностного натяжения воды $\sigma(T)$, используя значение диаметра иглы, полученное при измерениях на спирте:

T , $^{\circ}C$	σ , м H /м	σ_{σ} , м $H/$ м
25.1	63.4	1.1
30.3	62.6	1.1
35.2	61.7	1.1
40.2	60.8	1.1
45.2	60.3	1.1
50.2	59.7	1.1
55.2	58.7	1.1
60.1	57.6	1.0

Таблица 3: Коэффициент поверхностного натяжения

Рис. 2: $\sigma(T)$

Рис. 3: Теплота образования и поверхностная энергия

5 Обсуждение результатов

Значение диаметра иглы (3), измеренное с помощью коэффициента вязкости спирта, близко к измеренному с помощью микроскопа (4), но в пределах погрешности они не совпадают. Это можно объяснить тем, что игла была деформирована. В зависимости от положения иглы относительно линейки диаметр менялся. С помощью микроскопа был зафиксирован ее диаметр в самом узком месте.

Значение глубины погружения (5), измеренное с помощью разницы давлений, в пределах погрешности совпало с измеренным с помощью линейки (6).

Получена температурная зависимость коэффициента поверхностного натяжения (2).

Вычислены зависимости теплоты образования единицы поверхности жидкости от температуры и поверхностной энергии единицы площади от температуры, постоянство второй из них подтверждается теоретически.