Chapter 3, Section 2

April 17, 2025

1. Let (X, \mathscr{O}_X) be a ringed space, and let $\mathscr{F}', \mathscr{F}'' \in \mathfrak{Mod}(X)$. An extension of \mathscr{F}'' by \mathscr{F}' is a short exact sequence

$$0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$$

in $\mathfrak{Mod}(X)$. Two extensions are *isomorphic* if there is an isomorphism of the short exact sequences, inducing the identity maps on \mathscr{F}' and \mathscr{F}'' . Given an extension as above consider the long exact sequence arising from $\mathrm{Hom}(\mathscr{F}'',\cdot)$, in particular the map

$$\delta : \operatorname{Hom}(\mathscr{F}'', \mathscr{F}'') \to \operatorname{Ext}^1(\mathscr{F}'', \mathscr{F}'),$$

and let $\xi \in \operatorname{Ext}^1(\mathcal{F}'', \mathcal{F}')$ by $\delta(1_{\mathcal{F}''})$. Show that this process gives a one-to-one correspondence between isomorphism classes of extensions of \mathcal{F}'' by \mathcal{F}' , and elements of the group $\operatorname{Ext}^1(\mathcal{F}'', \mathcal{F}')$.

- **2.** Let $X = \mathbb{P}^1_k$, with k an infinite field.
 - (a) Show that there does not exist a projective object $\mathscr{P} \in \mathfrak{Mod}(X)$, together with a surjective map $\mathscr{P} \to \mathscr{O}_X \to 0$.
 - (b) Show that there does not exist a projective object \mathscr{P} in either $\mathfrak{Qco}(X)$ or $\mathfrak{Coh}(X)$ together with a surjective $\mathscr{P} \to \mathscr{O}_X \to 0$.
- **3.** Let X be a Noetherian scheme, and let $\mathscr{F}, \mathscr{G} \in \mathfrak{Mod}(X)$.
 - (a) If \mathscr{F},\mathscr{G} are both coherent, then $\operatorname{Ext}^i(\mathscr{F},\mathscr{G})$ is coherent, for all $i \geq 0$.
 - (b) If \mathscr{F} is coherent and \mathscr{G} is quasi-coherent, then $\mathcal{E}_{\mathcal{X}}^{i}(\mathscr{F},\mathscr{G})$ is quasi-coherent, for all $i \geq 0$.
- **4.** Let X be a Noetherian scheme, and suppose that every coherent sheaf on X is a quotient of a locally free sheaf. In this case we say $\mathfrak{Coh}(X)$ has enough locally frees. Then for any $\mathscr{G} \in \mathfrak{Mod}(X)$, show that the δ -functor $(\mathfrak{Ext}^i(\cdot,\mathscr{G}))$, from $\mathfrak{Coh}(X)$ to $\mathfrak{Mod}(X)$, is a contravariant universal δ -functor.
- **5.** Let X be a Noetherian scheme, and assume that $\mathfrak{Coh}(X)$ has enough locally frees (Ex. 6.4). Then for any coherent sheaf \mathscr{F} we define the *homological dimension* of \mathscr{F} , denoted $\mathrm{hd}(\mathscr{F})$, to be the least length of a locally free resolution of \mathscr{F} (or $+\infty$ if there is no finite one). Show:
 - (a) \mathscr{F} is locally free $\iff \mathcal{E}_{\mathcal{X}}t^1(\mathscr{F},\mathscr{G}) = 0$ for all $\mathscr{G} \in \mathfrak{Mod}(X)$;
 - (b) $\operatorname{hd}(\mathscr{F}) \leq n \iff \operatorname{Ext}^i(\mathscr{F},\mathscr{G}) = 0 \text{ for all } i > n \text{ and all } \mathscr{G} \in \mathfrak{Mod}(X);$
 - (c) $\operatorname{hd}(\mathscr{F}) = \sup_{x} \operatorname{pd}_{\mathscr{O}_{X}} \mathscr{F}_{x}$.
- **6.** Let A be a regular local ring, and let M be a finitely generated A-module. In this case, strengthen the result (6.10A) as follows.
 - (a) M is projective if and only if $\operatorname{Ext}^{i}(M, A) = 0$ for all i > 0.
 - (b) Use (a) to show that for any n, $pd M \leq n$ if and only if $Ext^i(M,A) = 0$ for all i > n.
- 7. Let $X = \operatorname{Spec} A$ be an affine Noetherian scheme. Let M, N be A-modules, with M finitely generated. Then

$$\operatorname{Ext}_X^i(\tilde{M}, \tilde{N}) \cong \operatorname{Ext}_A^i(M, N)$$

and

$$\mathscr{E}xt_X^i(\tilde{M},\tilde{N}) \cong \widetilde{\operatorname{Ext}^i(M,N)}.$$

8. Prove the following theorem of Kleiman: if X is a Noetherian, integral, separated, locally factorial scheme, then every coherent sheaf on X is a quotient of a locally free sheaf (of finite rank).

- (a) First show that open sets of the form X_s , for various $s \in \Gamma(X, \mathcal{L})$, and various invertible sheaves \mathcal{L} on X, form a base for the topology of X.
- (b) Now use (II, 5.14) to show that any coherent sheaf is a quotient of a direct sum $\bigoplus \mathcal{L}_i^{n_i}$ for various invertible sheaves \mathcal{L}_i and various integers n_i .
- 9. Let X be a noetherian, integral, separated, regular scheme. (We say a scheme is regular if all of its local rings are regular local rings.) Recall the definition of the Grothendieck group K(X) from (II, Ex. 6.10). We define similarly another group $K_1(X)$ using locally free sheaves: it is the quotient of free abelian group generated by all locally free (coherent) sheaves, by the subgroup generated by all expressions of the form $\mathscr{E} \mathscr{E}' \mathscr{E}''$, whenever $0 \to \mathscr{E}' \to \mathscr{E} \to \mathscr{E}'' \to 0$ is a short exact sequence of locally free sheaves. Clearly there is a natural group homomorphism $\varepsilon: K_1(X) \to K(X)$. Show that ε is an isomorphism as follows.
 - (a) Given a coherent sheaf \mathscr{F} , use (Ex. 6.8) to show that it has a locally free resolution $\mathscr{E} \to \mathscr{F} \to 0$. Then use (6.11A) and (Ex. 6.5) to show that it has a finite locally free resolution

$$0 \to \mathcal{E}_n \to \cdots \to \mathcal{E}_1 \to \mathcal{E}_0 \to \mathcal{F} \to 0.$$

- (b) For each \mathscr{F} , choose a finite locally free resolution $\mathscr{E} \to \mathscr{F} \to 0$, and let $\delta(\mathscr{F}) = \sum (-1)^i \gamma(\mathscr{E}_i)$ in $K_1(X)$. Show that $\delta(\mathscr{F})$ is independent of the resolution chosen, that it defines a homomorphism of K(X) to $K_1(X)$, and finally, that it is an inverse to ε .
- 10. Duality for a Finite Flat Morphism.
 - (a) Let $f: X \to Y$ be a finite morphism of Noetherian schemes. For any quasi-coherent \mathscr{O}_Y -module \mathscr{G} ,

$$\mathcal{H}om_Y(f_*\mathscr{O}_X,\mathscr{G})$$

is a quasi-coherent $f_*\mathscr{O}_X$ -module, hence corresponds to a quasi-coherent \mathscr{O}_X -module, which we call $f^!\mathscr{G}$ (II, Ex. 5.17e).

(b) Show that for any coherent \mathscr{F} on X and any quasi-coherent \mathscr{G} on Y, there is a natural isomorphism

$$f_* \operatorname{Hom}_X(\mathscr{F}, f^!\mathscr{G}) \xrightarrow{\sim} \operatorname{Hom}_Y(f_*\mathscr{F}, \mathscr{G}).$$

(c) For each $i \geq 0$, there is a natural map

$$\varphi_i : \operatorname{Ext}_X^i(\mathscr{F}, f^!\mathscr{G}) \to \operatorname{Ext}_Y^i(f_*\mathscr{F}, \mathscr{G}).$$

(d) Now assume that X and Y are separated, $\mathfrak{Coh}(X)$ has enough locally frees, and assume that $f_*\mathscr{O}_X$ is locally free on Y (this is equivalent to saying f flat - see §9). Show that φ_i is an isomorphism for all i, all \mathscr{F} coherent on X, and all \mathscr{G} quasi-coherent on Y.