Disclaimer

- The material provided in this document is not my original work and is a summary of some one else's work(s).
- A simple Google search of the title of the document will direct you to the original source of the material.
- I do not guarantee the accuracy, completeness, timeliness, validity, non-omission, merchantability or fitness of the contents of this document for any particular purpose.
- Downloaded from najeebkhan.github.io

Document Clustering Techniques

Clustering and Information Retrieval
Presented
By
Najeeb

Outline

- Introduction
- Document Representation
- Distance Measures
- Techniques
 - Hierarchical
 - Partitioning
 - Density Based
 - Model Based
 - Soft Computing Based
- Comparison

Introduction

- Document Clustering
 - Unsupervised classification of documents into groups such that documents in a cluster are similar, whereas documents in different clusters are dissimilar

- A text document is an unstructured data type
- We need to represent each document as a structured data type so that our machine learning algorithms can work on it
- Many structured representations for text documents have been proposed
- The most common of them is the TF-IDF Vector Space Model

Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

• Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

• Term-Frequencies: The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Each document is a count vector in N^v

- Problem with Term-Frequencies
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term
 - But not 10 times more relevant
 - Relevance does not increase proportionally with term frequency
 - Many alternatives: Log-frequency weighting, TF-IDF etc.

- Document frequency
- Rare terms are more informative than frequent terms
- We want a high weight for rare terms like "Turing test" than for frequent terms like "the"
- For rare terms we want higher weights while for frequent terms we want lower weights

- Inverse Document frequency
 - df_t is the document frequency of t: the number of documents that contain t
 - We define the idf (inverse document frequency) of t by

$$idf_t = log_{10} (N/df_t)$$

Inverse Document frequency

term	df_t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

- tf-idf weighting
 - The tf-idf weight of a term is the product of its tf weight and its idf weight

$$\mathbf{w}_{t,d} = \log(1 + \mathbf{tf}_{t,d}) \times \log_{10}(N/\mathbf{df}_t)$$

Best known weighting scheme in information retrieval

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: 5000+ for one of the dataset I used
- These are very sparse vectors most entries are zero.

Distance Measures

• Euclidean Distance

Distance Measures

Euclidean Distance

Distance Measures

- Euclidean Distance
- Cosine Similarity

$$sim(A, B) = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

Clustering Methods

- Clustering algorithms can be broadly divided into
 - Hierarchical
 - Partitioning
 - Density Based
 - Model Based
 - Soft Computing Based

Hierarchical Clustering

- Agglomerative hierarchical clustering
 - Each object initially represents a clusterof its own
 - Then clusters are successively merged until the desired cluster structure is obtained
- Divisive hierarchical clustering
 - All objects initially belong to one cluster
 - Then the cluster is divided into sub-clusters, which are successively divided into their own subclusters

Hierarchical Clustering

Hierarchical Clustering

- Single Link Clustering (good for non isotropic)
- Complete Link Clustering
- Average link Clustering

Partitioning Methods

- Partitioning methods relocate instances by moving them from one cluster to another, starting from an initial partitioning
- Partitioning methods usually converge to a local minimum
- Some heuristic is used for achieving global optimality

Partitioning Methods

K-means

 K-Medoid: Each cluster is represented by the most centric object in the cluster, rather than by the implicit mean that may not belong to

the cluster

Density Based Methods

- Density-based methods assume that the points that belong to each cluster are drawn from a specific probability distribution
- Density based clustering algorithms include
 - DBSCAN (Arbitrary Shape)
 - AUTOCLASS (Gaussian, Bernoulli, Poisson, and lognormal distributions)
 - MCLUST
 - SNOB

- Clusters are dense regions in the data space, separated by regions of lower object density
- A cluster is defined as the maximal set of density connected points
- ε-Neighborhood: Objects within a radius of ε from an object

$$N_{\varepsilon}(p):\{q\,|\,d(p,q)\leq\varepsilon\}$$

 "High density" - ε-Neighborhood of an object contains at least MinPts of objects

Directly Density-Reachable

MinPts = 4

The algorithm

```
for each o \in D do
   if o is not yet classified then
       if o is a core-object then
          collect all objects density-reachable from o
          and assign them to a new cluster.
       else
          assign o to NOISE
```

- Advantages:
 - Resistant to Noise
 - Can handle clusters of different shapes and sizes

- Disadvantages:
 - Cannot handle varying densities
 - Sensitive to parameters—hard to determine the correct set of parameters

Original Points

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

Model Based

- These methods attempt to optimize the fit between the given data and some mathematical models
 - Decision Trees
 - Self Organizing Maps

Soft-computing Methods (Fuzzy Clustering)

- Traditional clustering approaches generate partitions; in a partition, each instance belongs to one and only one cluster
- In fuzzy clustering each pattern is associated with every cluster using some sort of membership function, namely, each cluster is a fuzzy set of all the patterns
- Larger membership values indicate higher confidence in the assignment of the pattern to the cluster

Soft-computing Methods (Fuzzy Clustering)

Fuzzy C Means

objective function

$$J_h = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij} d_{ij}^2.$$

new membership weights:

$$u_{ij} = \begin{cases} 1, & \text{if } i = \operatorname{argmin}_{l=1}^{c} d_{lj} \\ 0, & \text{otherwise} \end{cases}$$

new cluster centres:

$$\mathbf{c}_i = \frac{\sum_{j=1}^n u_{ij} \mathbf{x}_j}{\sum_{j=1}^n u_{ij}}$$

$$J_f = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^m d_{ij}^2.$$

$$u_{ij} = \begin{cases} 1, & \text{if } i = \operatorname{argmin}_{l=1}^{c} d_{lj}, \\ 0, & \text{otherwise} \end{cases} \qquad u_{ij} = \frac{1}{\sum_{l=1}^{c} \left(\frac{d_{ij}^{2}}{d_{lj}^{2}}\right)^{\frac{1}{m-1}}} = \frac{d_{ij}^{\frac{-2}{m-1}}}{\sum_{l=1}^{c} d_{lj}^{\frac{-2}{m-1}}},$$

$$\mathbf{c}_i = \frac{\sum_{j=1}^n u_{ij}^m \mathbf{x}_j}{\sum_{j=1}^n u_{ij}^m}.$$

DataSet

- Originally I tried to work with the dataset given in this book
- It contains 75 blogs however only 65 of them can be retrieved currently
- The distribution of the dataset is somewhat uniform
- (too small and too bad)

DataSet

DataSet

- Many papers used very large datasets including
 - Classic4
 - Newsgroup20
 - Reuters-21578
- I have chosen the Classic4 dataset
- After keeping only stem words and removing stop words
 - There are 7095 documents
 - − 5896 terms ⊗ (unique words)

Results

KMeans Clustering with 4 clusters

KMeans Clustering with 5 clusters

KMeans Clustering with 10 clusters

Heirarichal Clustering with 4 clusters

Heirarichal Clustering with 10 clusters

KMeans Clustering with 4 clusters

Fuzzy C-Means

 I also applied the FCM algorithm but for some reason its result is not correct

Refrences

- Rokach, Lior. "A survey of clustering algorithms." Data mining and knowledge discovery handbook. Springer US, 2010. 269-298.
- Premalatha, K., and A. M. Natarajan. "A literature review on document clustering." Information Technology Journal 9.5 (2010): 993-1002.
- Singh, Vivek Kumar, Nisha Tiwari, and Shekhar Garg. "Document Clustering using K-means, Heuristic K-means and Fuzzy C-means." Computational Intelligence and Communication Networks (CICN), 2011 International Conference on. IEEE, 2011.
- Jursic, Matjaz, and Nada Lavrac. "Fuzzy clustering of documents." (2008).

Thanks