Géométrie Différentielle, TD 14 du 24 mai 2019

1. Questions diverses - A FAIRE AVANT LE TD

Soit $S \subseteq \mathbb{R}^3$ une surface orientée.

- 1- Justifier que l'application de Gauss $\nu: S \to \mathbb{S}^2$ est C^{∞} .
- 2– Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ une isométrie directe de \mathbb{R}^3 , on munit la surface compacte $f(S) \subseteq \mathbb{R}^3$ de l'orientation de S poussée par f. Montrer que les secondes formes fondamentales S et f(S) coïncident au sens où : $\forall p \in S, X, Y \in T_pS$,

$$II_S(X,Y) = II_{f(S)}(TfX,TfY)$$

- 3– Montrer que le résultat précédent devient faux si f n'est qu'un plongement isométrique de S dans \mathbb{R}^3 (qui ne s'étend pas à \mathbb{R}^3 à priori).
- 4- Soit $\sigma \in \Omega^2(S)$ la forme d'aire sur S (pour la métrique induite par \mathbb{R}^3), $\alpha \in \Omega^2(\mathbb{S}^2)$ la forme volume standard sur \mathbb{S}^2 . Justifier que pour tout $p \in S$, on a

$$\sigma_p = \alpha_{\nu(p)}$$

Solution:

- 1– On se donne une base locale (X_1, X_2) de champs de vecteurs, définie sur un ouvert U de S. On se donne $p \in U$, $X_3 : U \to \mathbb{R}^3$ fonction constante telle que $(X_1(p), X_2(p), X_3(p))$ est une base de \mathbb{R}^3 . Quitte à réduire U, c'est une base en tout point de U. On applique ensuite le procédé d'orthonormalisation de Gram-Schmidt (préservant le caractère C^{∞}) pour obtenir un nouveau triplet (Y_1, Y_2, Y_3) . On a $Y_3 = \nu$, donc ν est C^{∞} .
- 2– La condition d'isométrie implique que f préserve la distance entre les points : pour tout $x, y \in \mathbb{R}^3$, on a d(f(x), f(y)) = d(x, y). C'est un exercice classique que d'en déduire que $f \in SO(3, \mathbb{R})$. On pourra donc confondre f et Tf.
 - Soit (X,Y) est une base orthonormée directe de TS en un point $p \in S$, alors par définition de l'orientation sur f(S), le couple (fX,fY) est une base orthonormée directe de f(S) en f(p). De plus, comme f préserve l'orientation de \mathbb{R}^3 , le triplet $(fX,fY,f\nu_S(f(p)))$ est une base orthonormée directe de \mathbb{R}^3 . On en déduit que $f \circ \nu_S = \nu_{f(S)} \circ f$, puis que $f \circ d\nu_S = d\nu_{f(S)} \circ f$, puis que $II_S(X,Y) = -\langle d\nu_S(X), Y\rangle = -\langle fd\nu_S(X), fY\rangle = -\langle d\nu_{f(S)}(fX), fY\rangle = II_{f(S)}(fX,fY)$ comme attendu.
- 3– Il suffit de vérifier que les courbures principales ne sont pas toujours préservées par isométrie locale. Considérons par exemple : $S =]0,1[^2 \times \{0\} \subseteq \mathbb{R}^3, f:S \to \mathbb{R}^3, (x,y) \mapsto (x,\cos(y),\sin(y))$. C'est un plongement isométrique. Cependant S a ses courbures principales nulles (car ν est constante) mais f(S) est un ouvert du cyclindre de $\mathbb{R} \times S^1$ donc a une de ses courbures principales non nulle.
- 4– Par définition, σ_p est l'unique forme bilinéaire alternée sur T_pS telle que si (X_1, X_2) est une base orthonormée directe de T_pS , on a $\sigma_p(X_1, X_2) = 1$.
 - Par définiton, $\alpha_{\nu(p)}$ est l'unique forme bilinéaire alternée sur $T_{\nu(p)}\mathbb{S}^2$ telle que si (X_1, X_2) est une base orthonormée directe de $T_{\nu(p)}\mathbb{S}^2$, on a $\sigma_p(X_1, X_2) = 1$.
 - Il est clair que les espaces vectoriels euclidiens T_pS et $T_{\nu(p)}\mathbb{S}^2$ coïncident. Il s'agit donc de voir qu'ils ont même orientation. Or une base (X_1, X_2) est directe dans T_pS ssi $(X_1, X_2, \nu(p))$ est direct dans \mathbb{R}^3 ssi (X_1, X_2) est directe dans $T_{\nu(p)}\mathbb{S}^2$ par définition de l'orientation de \mathbb{S}^2 . D'où le résultat.

2. Surfaces minimales - A FAIRE AVANT LE TD

Soit S une surface riemannienne orientée connexe. La métrique riemanienne sur S induit une forme volume sur S notée vol $_S$, ainsi qu'une norme |.| sur chaque espace tangent ou cotangent.

1– On note J a rotation d'angle $+\pi/2$ dans chaque espace tangent ou cotangent, i.e. si (X_1, X_2) est une base orthonormale directe locale de TS, et (X^1, X^2) sa base duale, alors $JX_1 = X_2$, $JX_2 = -X_1$, et de même $JX^1 = X_2$, $JX^2 = -X^1$. Montrer que si α est une 1-forme sur S, alors on a :

$$\alpha \wedge J\alpha = |\alpha|^2 \text{vol}_S$$

- 2– Pour toute fonction $f \in C^{\infty}(M, \mathbb{R})$, on définit son laplacien en posant : $\Delta f := d(J(df)) \in \Omega^2(S)$. Montrer que si S est compacte, on a $\int_S f \Delta f = -\int_S |df|^2 \mathrm{vol}_S$, puis que $\Delta f = 0$ si et seulement si f est constante.
- 3- On suppose S isométriquement plongée dans \mathbb{R}^3 . Soit $v \in \mathbb{R}^3$, $f_v : S \to \mathbb{R}$ l'application définie par $f_v(x) := \langle v, x \rangle$.
 - Calculer Δf_v (on pourra décomposer df_v dans la base locale (X^1, X^2) puis appliquer (IV.11) et (IV.14) du cours).
 - En déduire que S est minimale (i.e. de courbure moyenne nulle) si et seulement si $\Delta f_v = 0$ pour tout $v \in \mathbb{R}^3$.
- 4– En déduire qu'il n'existe pas de surface minimale compacte dans \mathbb{R}^3 .

Solution:

- 1– Il suffit de le prouver localement. On se donne X^1, X^2 comme dans l'énoncé, base locale des sections du fibré cotangent sur un ouvert $U \subseteq X$. On peut décomposer $\alpha = aX^1 + bX^2$ où $a, b \in C^{\infty}(U)$. Alors $\alpha \wedge J\alpha = a^2X^1 \wedge X^2 b^2X^2 \wedge X^1 = |\alpha|^2X^1 \wedge X^2$ avec $\operatorname{vol}_S = X^1 \wedge X^2$ par définition de vol_S .
- 2– On a $d(fJ(df))=df\wedge J(df)+f\Delta f$. Or $\int_S d(fJ(df))=0$ d'après la formule de Stokes. Donc $\int_S f\Delta f=-\int_S df\wedge J(df)=-\int_S |df|^2 \mathrm{vol}_S$ d'après la question précédente.
- 3– On se donne des bases locales (X_1,X_2) , (X^1,X^2) comme dans l'énoncé, définie sur un ouvert U de S. En tout point $p \in U$, la seconde forme fondamentale II_p est représentée dans la base (X_1,X_2) par une matrice $II_p = \begin{pmatrix} e(p) & f(p) \\ f(p) & g(p) \end{pmatrix}$. On va montrer qu'en tout point de U,

$$\Delta f_v = \langle v, \nu \rangle (e+g) X^1 \wedge X^2$$

où $\nu: S \to \mathbb{S}^2$ désigne l'application de Gauss.

L'application f_v est linéaire donc coïncide avec sa différentielle. On peut ainsi écrire en tout point de U,

$$df_v = \langle v, X_1 \rangle X^1 + \langle v, X_2 \rangle X^2$$

puis

$$J(df_v) = \langle v, X_1 \rangle X^2 - \langle v, X_2 \rangle X^1$$

On rappelle les formules suivantes démontrées en cours : Il existe une unique 1-forme ω sur U telle que $dX^1 = \omega \wedge X^2$, $dX^2 = -\omega \wedge X^1$, et elle vérifie $dX_1 = \omega X_2 + A^1 \nu$, $dX_2 = -\omega X_1 + A_2 \nu$ où $A_1 := II(X_1,.) = eX^1 + fX^2$, $A_2 := II(X_2,.) = fX^1 + gX^2$ (où on voit X_1, X_2 comme des applications de S dans \mathbb{R}^3). Différencions :

$$\Delta f_v = \langle v, dX_1 \rangle \wedge X^2 + \langle v, X_1 \rangle dX^2 - \langle v, X_2 \rangle \wedge X^1 - \langle v, X_2 \rangle dX^1$$

$$= \langle v, X_2 \rangle \omega \wedge X^2 + \langle v, \nu \rangle A^1 \wedge X^2 - \langle v, X_1 \rangle \omega \wedge X^1 + \langle v, X_1 \rangle \omega \wedge X^1 - \langle v, \nu \rangle A^2 \wedge X^1 - \langle v, X_2 \rangle \omega \wedge X^2$$

$$= \langle v, \nu \rangle A^1 \wedge X^2 - \langle v, \nu \rangle A^2 \wedge X^1$$

$$= \langle v, \nu \rangle (e+g) X^1 \wedge X^2$$

ce qui est la formule annoncée.

- Si la surface est minimale, on a $\operatorname{tr}(II) = e + g = 0$ en tout point de U donc $\Delta f_v = 0$ sur U quelque soit $v \in \mathbb{R}^3$. Comme U peut être choisi comme un voisinage de n'importe quel point, on a $\Delta f_v = 0$ sur tout S.

Réciproquement, supposons $\Delta f_v = 0$ pour tout $v \in \mathbb{R}^3$. Soit $p \in U$. On choisit $v = \nu(p)$. L'expression de $\Delta f_{\nu(p)}$ donne que e(p) + g(p) = 0 Ainsi $\operatorname{tr}(II) = 0$ sur U puis sur S tout entier car U peut être choisi comme un voisinage de n'importe quel point.

4- On raisonne par l'absurde : Supposons qu'il existe $S \subseteq \mathbb{R}^3$ une surface compacte minimale. On peut la supposer connexe, orientée. D'après les questions 2 et 3, on a que pour tout $v \in \mathbb{R}^3$, la fonction f_v est constante sur S. En spécifiant $v = e_1$ et $v = e_3$, on que S est inclus dans une intersection de translatés : $S \subseteq (w_1 + \{0\} \times \mathbb{R}^2) \cap (w_2 + \mathbb{R}^2 \times \{0\})$ qui est une droite affine. Absurde car S est une surface.

3. Surfaces convexes

Soit Σ une surface compacte connexe orientée de \mathbb{R}^3 . On suppose que Σ est convexe, c'est-à-dire que sa courbure K est strictement positive en tout point. Le but de cet exercice est de montrer que Σ est la frontière d'un ensemble convexe au sens usuel.

On note $\nu: \Sigma \to \mathbb{S}^2$ l'application de Gauss de Σ .

- 1– On note σ la forme d'aire sur Σ et $\alpha_2 = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$ la forme volume standard sur \mathbb{S}^2 . Montrer que $\nu^*(\alpha_2) = K\sigma$.
- 2
– Montrer que ν est un difféomorphisme local de degré strictement positif.
- 3– Montrer que Σ a la même caractéristique d'Euler que \mathbb{S}^2 et que $\deg \nu = 1.$
- 4– Montrer que ν est un difféomorphisme.
- 5- Soit $p=(x_0,y_0,z_0)$ l'unique point tel que $\nu(p)=(0,0,1)$. Montrer que, quitte à munir Σ de l'orientation opposée, on a Σ contenue dans $\{(x,y,z)\in\mathbb{R}^3\mid z\leqslant z_0\}$.
- 6- Pour $u_0 \in \Sigma$ et $v \in \mathbb{S}^2$, on note $H(u_0, v) = \{u \in \mathbb{R}^3 \mid \langle u u_0, v \rangle \leqslant 0\}$. Montrer que $\Sigma \subset \bigcap_{u_0 \in \Sigma} H(u_0, \nu(u_0))$.
- 7- Montrer que $\bigcap_{u_0 \in \Sigma} H(u_0, \nu(u_0))$ est un ensemble convexe ayant pour bord Σ .

Solution:

1– Soit $p \in \Sigma$. Soit (u, v) une base orthonormale de $T_p\Sigma$ dans laquelle $d_p\nu$ s'écrit $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$. Alors

$$\nu^*(\alpha_2)_p(u,v) = (\alpha_2)_{\nu(p)}(d_p\nu(u), d_p\nu(v)) = (\alpha_2)_{\nu(p)}(\lambda u, \mu v) = \lambda \mu = K(p)\sigma_p(u,v).$$

Donc $\nu^*(\alpha_2)_p$ et $K(p)\sigma_p$ coïncident sur $\Lambda^2 T_p \Sigma$, d'où $\nu^*(\alpha_2) = K\sigma$.

2- Comme K(p) > 0 pour tout $p \in \Sigma$, $d_p \nu$ s'écrit $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ avec λ et μ non nuls, donc $d_p \nu$ est inversible et ν est un difféomorphisme local. De plus,

$$\deg(\nu) \int_{\mathbb{S}^2} \alpha_2 = \int_{\Sigma} \nu^*(\alpha_2) = \int_{\Sigma} K\sigma > 0$$

donc $deg(\nu) > 0$.

3- On a

$$\chi(\Sigma) = \dim(H^0(\Sigma)) - \dim(H^1(\Sigma)) + \dim(H^2(\Sigma)) = 2 - \dim(H^1(\Sigma)) \leqslant \chi(\mathbb{S}^2).$$

De plus,

$$\chi(\Sigma) = \frac{1}{2\pi} \int_{\Sigma} K\sigma = \deg(\nu) \frac{1}{2\pi} \int_{\mathbb{S}^2} \alpha_2 = \deg(\nu) \chi(\mathbb{S}^2)$$

donc $\chi(\Sigma) \geqslant \chi(\mathbb{S}^2)$. On en déduit $\chi(\Sigma) \geqslant \chi(\mathbb{S}^2) = 2$ et l'égalité $\chi(\Sigma) = \deg(\nu)\chi(\mathbb{S}^2)$ montre que $\deg \nu = 1$.

- 4– Comme $\nu^*(\alpha_2) = K\sigma$ et K > 0, ν préserve l'orientation. Donc deg $\nu = 1$ est le nombre d'antécédents d'une valeur régulière. Comme ν est un difféomorphisme local, on en déduit que tout point de \mathbb{S}^2 est valeur régulière et donc admet exactement un antécédent par ν . L'application ν est donc une bijection et un difféomorphisme local en tout point : c'est donc un difféomorphisme.
- 5- On considère l'application

$$f: \begin{array}{ccc} \Sigma & \to & \mathbb{R} \\ (x, y, z) & \mapsto & z \end{array}$$

Comme Σ est compacte, f atteint son maximum. Soit $u=(x_1,y_1,z_1)$ un point en lequel le maximum est atteint. Alors $d_u f_{|T_u\Sigma}=0$, i.e. $d_u f_{\nu(u)^{\perp}}=0$. Comme df=dz, $\nu(u)^{\perp}\subset\ker dz=(0,0,1)^{\perp}$. Par égalité des dimensions, on a égalité des espaces et donc $\nu(u)=(0,0,1)$ ou $\nu(u)=(0,0,-1)$. En considérant le minimum de f, on voit que le maximum et le minimum de f sont obtenus en les points p et q tels que $\nu(p)=(0,0,1)$ et $\nu(q)=(0,0,-1)$. En choisissant l'orientation de Σ de telle sorte à ce que les valeurs propres de d_{ν} soient positives, on déduit d'une étude en coordonnées locales que le maximum de f est atteint au point p tel que $\nu(p)=(0,0,1)$.

- 6- On fait le même raisonnement avec la fonction $u \mapsto \langle u, \nu(u_0) \rangle$ pour tous les u_0 de Σ .
- 7- C'est un ensemble convexe comme intersection d'ensembles convexes. Soit $u_0 \in \Sigma$. Soit $u_n = u_0 + \frac{1}{n}\nu(u_0)$. Alors $\langle u_n u_0, \nu(u_0) \rangle = \frac{1}{n} > 0$ donc $u_n \notin \bigcap_{u_0 \in \Sigma} H(u_0, \nu(u_0))$. De plus, $u_n \xrightarrow[n \to \infty]{} u_0$ donc $u_0 \in \mathbb{R}^3 \setminus \bigcap_{u_0 \in \Sigma} H(u_0, \nu(u_0))$. Comme $\Sigma \subset \bigcap_{u_0 \in \Sigma} H(u_0, \nu(u_0))$, on en déduit $u_0 \in \partial \bigcap_{u_0 \in \Sigma} H(u_0, \nu(u_0))$ et donc $\Sigma \subset \partial \bigcap_{u_0 \in \Sigma} H(u_0, \nu(u_0))$.

Réciproquement, soit $u \in \partial \bigcap_{u_0 \in \Sigma} H(u_0, \nu(u_0))$. Par compacité de Σ , il existe $u_0 \in \Sigma$ tel que $u \in \partial H(u_0, \nu(u_0))$ i.e. $\langle u - u_0, \nu(u_0) \rangle = 0$, i.e. $u - u_0 \in T_{u_0}\Sigma$. Supposons par l'absurde que $u \neq u_0$. On se donne $c:]-\varepsilon, \varepsilon[\to \Sigma$ un chemin lisse tel que $c(0) = u_0, c'(0) = u - u_0$ (dans l'idée, c va de u_0 vers u). On calcule $\frac{d}{dt}_{|t=0}\langle u - c(t), \nu(c(t)) \rangle = -\langle u - u_0, \nu(u - u_0) \rangle + \langle u - u_0, d\nu(u - u_0) \rangle = \langle u - u_0, d\nu(u - u_0) \rangle$. Or l'orientation est choisie de sorte que la seconde forme fondamentale est définie positive. On a donc $\frac{d}{dt}_{|t=0}\langle u - c(t), \nu(c(t)) \rangle > 0$, puis $\langle u - c(t), \nu(c(t)) \rangle > 0$ pour t > 0 assez petit, ce qui est absurde.

4. Courbure de Gauss

- 1- Calculer la courbure de Gauss de la sphère unité \mathbb{S}^2 de \mathbb{R}^3 .
- 2– Soit $S \subset \mathbb{R}^3$ une surface compacte connexe orientée. Montrer qu'il existe $x \in S$ tel que la courbure de Gauss K(x) en x soit strictement positive (on pourra considérer un point à distance maximale de l'origine).
- 3– Soit $S \subset \mathbb{R}^3$ une surface compacte connexe orientée qui n'est pas difféomorphe à \mathbb{S}^2 . Montrer qu'il existe $x \in S$ tel que K(x) = 0.
- 4– Montrer qu'on peut trouver une surface compacte connexe orientée $S \subset \mathbb{R}^3$ difféomorphe à \mathbb{S}^2 qui possède un point de courbure de Gauss nulle.

Solution:

- 1– L'application de Gauss est l'identité. Il est donc immédiat de calculer que la courbure est constante égale à 1.
- 2- Comme S est compacte, on peut trouver un point $p \in S$ à distance maximale de l'origine. Quitte à effectuer une rotation et une homothétie, on peut supposer que p = (0,0,1). On se donne $U \subseteq \mathbb{R}^2$ voisinage ouvert de 0 et $z:U\to\mathbb{R}$ une application C^∞ tels que l'application $U\to\mathbb{R}^3, (x,y)\mapsto (x,y,z(x,y))$ est paramétrisation de S au voisinage de p. On a z(0,0)=1, $dz_{(0,0)}=0$. On peut donc écrire $z(x,y)=1+ex^2+2fxy+gy^2+O(|x,y|^3)$. Quitte à choisir d'autres coordonnées orthonormales directes sur $\mathbb{R}^2\times\{0\}$ (ce qui n'affecte pas la courbure en p), on peut supposer que $z(x,y)=1+ex^2+gy^2+O(|x,y|^3)$. On a alors en p que K(p)=4eg (cf. cours). Par maximalité de la norme en p, on peut écrire $z(x,y)\leqslant \sqrt{1-x^2-y^2}\approx 1-\frac{1}{2}(x^2+y^2)$. Cela force $e\leqslant -\frac{1}{2},\ g\leqslant -\frac{1}{2}$ puis $K(p)\geqslant 1$.
- 3– Par le théorème de Gauss-Bonnet et classificiation des surfaces compactes orientables, l'intégrale sur S de la courbure est négative ou nulle (car S n'est pas difféomorphe à \mathbb{S}^2). Il existe donc un point y où la courbure est négative ou nulle. Comme la courbure est strictement positive en un point x, la connexité de S assure qu'il existe un point où la courbure s'annule.
- 4– Il suffit de plonger \mathbb{S}^2 dans \mathbb{R}^3 de sorte qu'il existe un ouvert de \mathbb{S}^2 dont l'image est contenue dans un plan.

5. Calcul de courbure

On définit une surface de révolution en se donnant une sous variété connexe $L \subseteq \mathbb{R}_{>0} \times \{0\} \times \mathbb{R}$ de dimension 1 et en appelant Σ l'orbite de L sous le groupe des rotations d'axe (Oz). On peut se donner un chemin lisse $\gamma : \mathbb{R} \to \mathbb{R} \times \{0\} \times \mathbb{R}, s \mapsto (g(s), 0, h(s))$ parcourant L à vitesse 1. On a alors

$$\Sigma = \{ (g(s)\cos(\theta), g(s)\sin(\theta), h(s)) \mid s \in \mathbb{R}, \theta \in \mathbb{R} \}$$

L'application $\varphi:(s,\theta)\mapsto (g(s)\cos(\theta),g(s)\sin(\theta),h(s))$ donne une paramétrisation locale de Σ , justifiant que Σ est bien une sous variété de \mathbb{R}^3 .

- 1– Montrer que la métrique riemannienne sur Σ s'écrit $ds^2 + g(s)^2 d\theta^2$.
- 2– Calculer la courbure de Σ en $\varphi(s,\theta)$ en fonction de s et θ .
- 3- Calculer la courbure d'un tore de révolution muni de la métrique induite par celle de l'espace euclidien. Le théorème de Gauss-Bonnet est-il vérifié?

Solution:

1– On note $(\frac{\partial}{\partial s}, \frac{\partial}{\partial \theta})$ la base canonique de $\{(s, \theta) \in \mathbb{R}^2\}$. Il s'agit d'évaluer la métrique riemanienne induite par \mathbb{R}^3 dans la base $(\varphi_\star \frac{\partial}{\partial s}, \varphi_\star \frac{\partial}{\partial \theta})$ de $T_{\varphi(s,\theta)}\Sigma$.

On a

$$T_{(s,\theta)}\varphi(\frac{\partial}{\partial s}) = \frac{\partial}{\partial s}\varphi(s,\theta) = (g'(s)\cos(\theta), g'(s)\sin(\theta), h'(s))$$

et

$$T_{(s,\theta)}\varphi(\frac{\partial}{\partial \theta}) = \frac{\partial}{\partial \theta}\varphi(s,\theta) = (-g(s)\sin(\theta), g(s)\cos(\theta), 0).$$

Cela fournit

$$||T_{(s,\theta)}\varphi(\frac{\partial}{\partial s})||^2 = g'(s)^2 \cos^2(\theta) + g'(s)^2 \sin^2(\theta) + h'(s)^2 = g'(s)^2 + h'(s)^2 = 1,$$

$$||T_{(s,\theta)}\varphi(\frac{\partial}{\partial\theta})||^2 = g(s)^2,$$

$$\langle T_{(s,\theta)}\varphi(\frac{\partial}{\partial s}), T_{(s,\theta)}\varphi(\frac{\partial}{\partial \theta})\rangle = -g'(s)g(s)\cos(\theta)\sin(\theta) + g'(s)g(s)\cos(\theta)\sin(\theta) + 0 = 0.$$

D'où le résultat.

2- Notons $X_s = T_{(s,\theta)}\varphi(\frac{\partial}{\partial s})$ et $X_\theta = T_{(s,\theta)}\varphi(\frac{\partial}{\partial \theta})$. Ces vecteurs forment une base (directe) de $T_{\varphi(s,\theta)}\Sigma$. Un vecteur normal à Σ est alors donné par le produit extérieur $n_1 = X_s \wedge X_\theta$, ce qui fournit

$$n_1 = \begin{pmatrix} -h'(s)g(s)\cos(\theta) \\ -h'(s)g(s)\sin(\theta) \\ g'(s)g(s) \end{pmatrix}$$

Pour obtenir $\nu_{\varphi(s,\theta)}$, il faut un vecteur de norme 1, et on remarque que

$$\nu_{\varphi(s,\theta)} = \begin{pmatrix} -h'(s)\cos(\theta) \\ -h'(s)\sin(\theta) \\ g'(s) \end{pmatrix}$$

est bien un vecteur normal de norme 1. Calculons la valeur de la seconde forme fondamentale dans la base orthonormée $(X_s, \frac{1}{q(s)}X_{\theta})$. Pour commencer, on a

$$d_{\varphi(s,\theta)}\nu[X_s] = \frac{\partial}{\partial s}\nu_{\varphi(s,\theta)} = \begin{pmatrix} -h''(s)\cos(\theta) \\ -h''(s)\sin(\theta) \\ g''(s) \end{pmatrix}$$

et

$$d_{\varphi(s,\theta)}\nu\left[\frac{1}{g(s)}X_{\theta}\right] = \frac{1}{g(s)}\frac{\partial}{\partial\theta}\nu_{\varphi(s,\theta)} = \frac{1}{g(s)}\begin{pmatrix} h'(s)\sin(\theta)\\ -h'(s)\cos(\theta) \end{pmatrix}.$$

Cela donne

$$\langle d_{\varphi(s,\theta)}\nu[X_s], X_s \rangle = -h''(s)g'(s)\cos^2(\theta) - h''(s)g'(s)\sin^2(\theta) + h'(s)g''(s) = -h''(s)g'(s) + h'(s)g''(s),$$

$$\langle d_{\varphi(s,\theta)}\nu[X_s], X_\theta \rangle = h''(s)g(s)\cos(\theta)\sin(\theta) - h''(s)g(s)\cos(\theta)\sin(\theta) + 0 = 0.$$

$$\langle d_{\varphi(s,\theta)}\nu[\frac{1}{g(s)}X_{\theta}], \frac{1}{g(s)}X_{\theta}\rangle = \frac{1}{g(s)^2} \left(-h'(s)g(s)\sin^2(\theta) - h'(s)g(s)\cos^2(\theta) + 0\right) = \frac{-h'(s)g(s)}{g(s)^2} = \frac{-h'(s)}{g(s)}.$$

La seconde forme fondamentale est donc diagonale dans la base orthonormée $(X_s, \frac{1}{g(s)}X_\theta)$, et la courbure K en $\varphi(s, \theta)$ vaut alors

$$K(\varphi(s,\theta)) = \frac{-h'(s)}{g(s)}(-h''(s)g'(s) + h'(s)g''(s)) = \frac{h'(s)h''(s)g'(s) - h'(s)^2g''(s)}{g(s)}.$$

On peut simplifier cette expression. Comme $g'(s)^2 + h'(s)^2 = 1$, on obtient en dérivant : 2g'(s)g''(s) + 2h'(s)h''(s) = 0, donc h'(s)h''(s) = -g'(s)g''(s). D'où

$$\begin{split} K(\varphi(s,\theta)) &= \frac{-g'(s)g''(s)g'(s) - h'(s)^2 g''(s)}{g(s)} \\ &= \frac{-g'(s)^2 g''(s) - (1 - g'(s)^2) g''(s)}{g(s)} \\ &= -\frac{g''(s)}{g(s)}. \end{split}$$

3– Pour le tore de rayon R et de rayon intérieur ρ , le paramétrage à vitesse 1 du cercle qu'on fait tourner est donné par $(g(s),h(s))=(R+\rho\cos(s/\rho),\rho\sin(s/\rho))$. On a alors

$$K(\varphi(s,\theta)) = -\frac{g''(s)}{g(s)} = \frac{\cos(s/\rho)}{\rho(R + \rho\cos(s/\rho))}.$$

Dans le cas du tore, le paramétrage

$$\varphi:\begin{array}{ccc} R/2\varphi\rho\mathbb{Z}\times\mathbb{R}/2\varphi\mathbb{Z} & \to & \Sigma \\ (s,\theta) & \mapsto & ((R+\rho\cos(s/\rho))\cos(\theta),(R+\rho\cos(s/\rho))\sin(\theta),\rho\sin(s/\rho))) \end{array}$$

est un difféomorphisme. En notant ω_0 la forme d'aire sur le tore, on a :

$$\int_{\Sigma} K\omega_{0} = \int_{s} \int_{\theta} \varphi^{*}(K\omega_{0})$$

$$= \int_{s} \int_{\theta} \varphi^{*}(K)\varphi^{*}(\omega_{0})$$

$$= \int_{s} \int_{\theta} \varphi^{*}(K)g(s)dsd\theta$$

$$= \int_{s=0}^{2\pi\rho} \int_{\theta=0}^{2\pi} \frac{\cos(s/\rho)}{\rho(R+\rho\cos(s/\rho))} (R+\rho\cos(s/\rho))dsd\theta$$

$$= \int_{s=0}^{2\pi\rho} \int_{\theta=0}^{2\pi} \frac{\cos(s)}{\rho} dsd\theta$$

$$= \int_{s=0}^{2\pi} \int_{\theta=0}^{2\pi} \cos(s) dsd\theta$$

$$= \int_{s=0}^{2\pi} \int_{\theta=0}^{2\pi} \cos(s) dsd\theta$$

Donc le théorème de Gauss-Bonnet est bien vérifié.