Wzmacniacz operacyjny - badanie właściwości.

Rafał Kornel

Abstrakt

W doświadczeniu zbadano własności wzmacniacza operacyjnego o oznaczeniu uA741. Skonstruowano szereg układów niezbędnych do zbadania charakterystyk wzmacniacza. Udało się określić wzmocnienie wzmacniacza pracującego w trybie odwracającym fazę na

$$k = -10.11 \pm 0.11$$
,

co zgadza się z wartością deklarowaną przez producenta. Rownież zbadano pasmo przenoszenia wzmacniacza, wynosi ono $[0, 10^4]$ Hz.

Potwierdzono także właściwości całkujące urządzenia, określono pasmo dobrego całkowania na [0.1, 1] kHz, a także różniczkujące, gdzie pasmo przenoszenia wyniosło [5, 300] Hz.

Wstęp teoretyczny

Wzmacniacz operacyjny jest elementem elektronicznym pełniący szereg funkcji. Ten układ scalony, przedstawiony na Rys. 1 odpowiednio podłączony do właściwego obwodu pełni role wzmacniacza. Poza wzmocnieniem sygnału wejściowego, może on odwrócić jego fazę, a także posłużyć jako element różniczkujący, bądź całkujący sygnał. Na Rys. 1 zauważyć można, iż poza

Rys. 1: Symbol wzmacniacza operacyjnego, używany przy konstruowaniu obwodów wzmacniających. [1].

odnogą sygnału wyjściowego WY, wzmacniacz posiada dwie pary odnóg: U_+ / U_- , oraz $+V_{cc} - V_{ee}$. Napięcie podane między odnogami U_+ oraz U_- to nasz sygnał wejściowy, który chcemy wzmocnić. możemy jedną z odnóg podłączyć również do masy. Wtedy sygnał podany na U_+ (względem masy) będzie wzmacniany bez odwrócenia fazowego, zaś sygnał podany na U_- (względem masy) będzie miał odwróconą fazę. Odnogi $+V_{cc}$ oraz $-V_{ee}$ służą do zasilienia układu, a zatem one dostarczą energii potrzebnej do wzmocnienia sygnału. W praktyce powinno się na

każdą z odnóg podać prąd stały o ustalonwej wartości, lecz o przeciwnych znakach (zgodnie ze schematem).

Przebieg doświadczenia, uzyskane pomiary.

W niniejszym doświadczeniu wykorzystano następujące przyrządy pomiarowe:

- Generator funkcji Rigol DG1022
- Zasilacz sieciowy Rigol DP832
- Oscyloskop Rigol MSO1104z
- Multimetr Rigol DM3058e
- Lutownica
- Płytka montażowa

Krokiem "zerowym" było zmierzenie wartości oporów oraz pojemności otrzymanych elementów. Wartości te przedstawia Tab.1.

R_1	$5.6062~\mathrm{k}\Omega$
R_2	$56.553~\mathrm{k}\Omega$
R_3	$5.6025~\mathrm{k}\Omega$
R_4	$50.298~\mathrm{k}\Omega$
R_5	$5.1309~\mathrm{k}\Omega$
C	$95.3~\mathrm{nF}$

Tab. 1: Wartości oporów oraz pojemności użytych elementów.

Po rozpoznaniu oporników przystąpiono do skonstruowania układu wzmacniacza odwracającego, przestawionego na Rys. 2. Napięcie zasilające jednak wzmacniacz zwiększono do +25V na odnodze $+V_{cc}$ oraz -25V na $-V_{ee}$. Konsekwencje tej zmiany zostaną przedyskutowane w następnej sekcji.

Następnie zostały zebrane pomiary wartości U_{wy} oraz U_{we} dla punktów tej samej fazy, dla sygnału wejściowego o częstotliwości $f=1000 [{\rm Hz}]$. Dokonano tego za pomocą oscyloskopu wraz z funkcją kursorów. Wyniki przedstawia Tab.2.

Kolejnym krokiem było zebranie pomiarów maksymalnej wartości napięcia sygnału wejściowego U_{we} , oraz maksymalnej wartości napięcia sygnału wyjściowego U_{wy} dla różnych wartości częstotliwości sygnału wejściowego f. Wyniki tej części zostały przedstawione w Tab.3. Pomiary zostały wykonane korzystając z wbudowanej funkcji oscyloskopu V_{max} .

Po zebraniu odpowiednich pomiarów został zmontowany układ realizujący funkcję całkowania sygnału wejściowego, a następnie układ różniczkujący sygnał. Schematy są przedstawione na Rys. 3 oraz Rys. 4.

Analiza danych

Wzmacniacz odwracający

W pierwszej części doświadczenia zostały zmierzone wartości napięcia wyjściowego jako funkcji napięcia wejściowego dla sygnału wejściowego o częstotliwości f=1000 [Hz], $U_{wy}(U_{we})$. Spodziewamy się zależności liniowej o współczynniku proporcjonalności k:

$$U_{wu} = k \cdot U_{we} + b.$$

Rys. 2: Schemat układu realizującego wzmacniacz odwracający fazę. [2].

Rys. 3: Schemat układu realizującego wzmacni- Rys. 4: Schemat układu realizującego wzmacni- acz całkujący sygnał. [2]. acz różniczkujący sygnał. [2].

U_{we} [V]	$U_{wy}[V]$	
0.3	-2.8	
0.74	-7.0	
0.86	-8.4	
1.06	-10.4	
1.24	-12.4	
1.44	-14.2	
1.61	-16.0	
1.75	-17.4	
1.87	-18.8	
2.0	-20.0	
1.85	-18.0	
1.45	-14.4	

Tab. 2: Pomiary części pierwszej
doświadczenia, służące do wyznaczenia zależności wzmocnienia
wzmacniacza dla ustalonej częstotliwości.

400000 512 0.32
1000000 512 0.00
2000000 512 0.00

Tab. 3: Pomiary części drugiej doświadczenia, służące

f[Hz]	$U_{we}[mV]$	$U_{wy}[V]$
10	512	5.12
20	512	5.12
40	512	5.12
100	512	5.12
200	512	5.12
400	512	5.12
1000	512	5.12
2000	512	5.12
4000	512	5.12
10000	512	5.12
20000	512	5.04
40000	512	4.72
100000	512	2.16
200000	512	0.96
400000	512	0.32
1000000	512	0.00
2000000	512	0.00

Tab. 3: Pomiary części drugiej doświadczenia, służące do wyznaczenia zależności wzmocnienia od częstotliwości sygnału wejściowego.

Taka zależność została dopasowana do pomiarów, co przedstawia Rys.5. Niepewności zostały

Rys. 5: Pomiary napięcia wyjściowego w funkcji napięcia wejściowego, wraz z dopasowaniem liniowym.

policzone według następującego wzoru:

$$\delta_U = M \cdot 0.1 + U \cdot 0.01 + 0.002[V],$$

gdzie M to podziałka oscyloskopu użyta podczas wykonywania pomiarów, która wynosiła odpowiednio

$$M_{U_{we}} = 0.5 V, \qquad M_{U_{wy}} = 5 V$$

dla pomiarów z Tab.2, oraz

$$M_{U_{we}} = 0.2 V, \qquad M_{U_{wy}} = 2 V$$

dla pomiarów z Tab.3. Uznajemy, że częstotliwość sygnału wejściowego znamy dokładnie. Dopasowanie zostało wykonane przy użyciu biblioteki *scipy* w języku *python*. W rezultacie otrzymano:

$$k = -10.11 \pm 0.11$$
 $b = 0.30 \pm 0.17$ [V].

Porównując do wartości wynikającej ze specyfikacji wzmacniacza, $k_s = -10$ widzimy bardzo niewielką różnicę, ponadto wartość dokładna mieści się w przedziale $[k - \mu_k, k + \mu_k]$. Współczynnik b powinien być równy 0, nie zawiera się on zatem w przedziale $[b - \mu_b, b + \mu_b]$. Celem doświadczenia było wyznaczenie zakresu liniowości wzmacniacza dla częstotliwości f = 1000 [Hz]. Wcześniej wspomniano, iż napięcie zasilające wzmacniacz zostało zmienione do do ± 25 [V]. Spowodowało to, że zakres liniowości uległ zmianie, tak, że cały zawiera się w zakresie w którym wykonano pomiary. Można więc orzec, że dla napięć z zakresu [0.3, 2.0] Volta wzmacniacz pracuje liniowo.

W drugiej części doświadczenia zbadana została zależność wzmocnienia od częstotliwości sygnału wejściowego. Wzmocnienie zostało policzone według wzoru:

$$k = \frac{U_{wy}}{U_{we}}.$$

Niepewność wzmocnienia została policzona korzystając z metody propagacji małych błędów:

$$\mu_k = \left[\left(\frac{\mu_{U_{wy}}}{U_{we}} \right)^2 + \left(\frac{U_{wy} \cdot \mu_{U_{we}}}{U_{we}^2} \right)^2 \right]^{\frac{1}{2}}.$$

Rys. 6: Zależność wzmocnienia k od częstotliwości sygnału wejściowego.

Widać na Rys.6, iż wzmacniacz dla częstotliwości z zakresu $[0, 10^4]$ ma moduł wzmocnienia bardzo zbliżony do |k| = 10, wynikającego ze specyfikacji układu. Możemy zatem orzec, iż jest to pasmo przenoszenia badanego wzmacniacza.

Wzmacniacz całkujący

Po zbadaniu charakterystyki wzmacniacza odwracającego fazę, zbadano własności wzmacniacza całkującego. Realizuje go układ widoczny na Rys.3. Dla częstotliwości sygnału wejściowego rzędu 1 - 10 Hz o kształcie prostokątnym sygnał był wzmacniany ze współczynnikiem $k \sim .10$. Ustalono amplitudę sygnału wejściowego na 1 V. Przy zwiększaniu częstotliwości sygnał deformował się, aż przy $f \sim 100$ Hz zaczął przypominać sygnał piłokształtny. Dalej sygnał był dobrze całkowalny, aż do częstotliwości $f \sim 100$ kHz, po czym zaczął wykazywać zachowanie typu $sin(\omega_1 t) \cdot e^{-\omega_2 t}$, podobne do wariacji funkcji przy nieciągłościach podczas kompozycji funkcji prostokątnej z okresowych funkcji poprzez szereg (skończony) Fouriera. Można podsumować, iż wzmacniacz dobrze całkował sygnał dla zakresu [0.1, 100] kHz.

Wzmacniacz różniczkujący

Następnie zmontowano układ realizujący różniczkowanie sygnału wejściowego, przedstawiony na Rys. 4. Rozpoczęto od ustalenia sygnału wejściowego o kształcie piłokształtnym z amplitudą 100 mV oraz częstotliwością 100 Hz. Na wyjściu zauważono sygnał prostokątny, dla częstotliwości sięgających do $f\sim 300$ Hz. Powyżej tych częstotliwości występowało zjawisko takie jak przy wzmacniaczu całkującym dla wysokich częstotliwości. Dolną granicą dobrego różniczkowania sygnały była częstotliwość $f\sim 5$ Hz. Poniżej tej częstotliwości sygnał wyjściowy był bardzo słaby, jego amplituda sięgała rzędu 10 mV. Nie dało się odróżnić go od szumu. Podsumowując, zakres dobrego różniczkowania tego układu wynosił [5,300] Hz.

Podsumowanie

Otrzymane wartości wzmocnienia są bardzo dobrze zgodne z wartością podaną przez producenta. Zakres liniowości wzmacniacza zaś, został prawdopodobnie zwiększony poprzez zmianę napięcia

zasilania, co skutkowało uzyskaniem tylko liniowych pomiarów, w możliwym do zmierzenia zakresie napięć wejściowych. Podczas ponownego wykonania eksperymentu należy nie przejmować się, iż sygnał (przy podaniu napięcia zasilania $\pm 15 \mathrm{V}$ jest w pewnym momencie ucięty. Jest to oczekiwany efekt.

Poprawnie także zbadano własności różniczkujące i całkujące wzmacniacza. Udało się wyznaczyć przedział dobrego różniczkowania oraz całkowania.

References

- [1] Rysunek schematyczny pochodzący z wykładu Pracowni elektronicznej dla astronomów.
- [2] Schematy pochodzą z instrukcji doświadczenia http://pracownie1.fuw.edu.pl/pe-A/pliki/Instr_Wzmacniacz_2016.pdf
- $[3] Specyfikacja oscyloskopu Rigol DS1000Z-E \ https://www.batronix.com/files/Rigol/Oszilloskope/DS1000Z-E/DS1000Z-E-Data-sheet.pdf$