SQL PROJECT

By-Danish Rana

Topic- Analysed the current mining scenario in Australia by using SQL.

Table used in this project-

• 1.Mining Employment

SELECT * FROM mining_db.mining_employment;

2. Mining Accidents

SELECT * FROM mining_db.mining_accidents_safety;

• 3. Mining Companies

SELECT * FROM mining_db.major_mining_companies;

4. Mineral produced

SELECT * FROM mining_db.key_minerals_produced;

5. Environmental Impacts

SELECT * FROM mining_db.environmental_impact;

Result Grid						
	State_Territory	CO2_Emissions_Million_Tonnes	Land_Area_Disturbed_km2	Water_Usage_Billion_Litres		
•	Western Australia	50.00	120.00	500.00		
	Queensland	35.00	90.00	350.00		
	New South Wales	25.00	60.00	200.00		
	Victoria	10.00	30.00	150.00		
	South Australia	5.00	20.00	100.00		

1. Major Mining Companies in Australia-

```
select * from major_mining_companies;
select company_name from major_mining_companies
where established_year <2020;</pre>
```


2. Mining Employment in Australia in 2023-

We have to write a SQL query to find the state/territory with the highest mining employment.

```
select * from mining_employment;

select state_territory from mining_employment

order by percentage_total_workforce desc

limit 1;

state_territory

Western Australia
```

3. Write a SQL query to calculate the total mining employment in Australia.

Here we have to use sum()
function to calculate the total
mining employment.

```
select * from mining_employment;
select sum(employment_thousands) as total_employment
from mining_employment;

total_employment

310
```

Key mineral produce(2023)

4. Write a SQL query to list all minerals that have an export value greater than 20 billion AUD.

```
select * from key_minerals_produced;
select mineral from key_minerals_produced
where Export_Value_Billion_AUD>20;
```

	·
	mineral
-	Iron Ore
	Coal
	Gold

Combining Datasets-

5.Write a SQL query to list the states/territories along with their total mining employment and CO2 emissions.

In this question we have to use the concept of inner join.

```
select * from mining_employment;
select * from environmental_impact;
select e.state_territory, e.employment_thousands, i.CO2_emissions_million_tonnes
from mining_employment as e
join environmental_impact as i
on e.State_Territory=i.State_Territory;
```


Subquery to Find Maximum Employment

6.Write a SQL query to find the state/territory with the highest mining employment.

```
select * from mining_employment;
select state_territory from
mining_employment
where employment_thousands in (select max(employment_thousands) from mining_employment);
Result Grid Filter Rows:
                                                                        Wrap Cell Content: $\overline{\pmathbb{I}}$
     state_territory
    Western Australia
```

7. Write a SQL query to list all minerals with an export value above the average export value of all minerals.

```
select * from key minerals produced;
select mineral
from key minerals produced
where export_value_billion_AUD>
(SELECT AVG(export_value_billion_AUD) from key_minerals_produced);
  Result Grid
                                          Export: Wrap Cell Content: $\frac{1}{4}
               Filter Rows:
     mineral
  Iron Ore
     Coal
```

Window Function-

8.Write a SQL query using a window function to calculate the cumulative employment in mining across states/territories, ordered by employment.

Re	sult Grid 🔢 🙌	Filter Rows:	Export: Wrap Cell Content:
	State_Territory	Employment_Thousands	Cumulative_Employment
•	South Australia	15	15
	Victoria	20	35
	New South Wales	60	95
	Queensland	90	185
	Western Australia	125	310

Application of window function in SQL

9.Write a SQL query using a window function to rank the states/territories by CO2 emissions.

- select * from environmental_impact;
- select state_territory, CO2_emissions_million_tonnes, rank() over(order by CO2_emissions_million_tonnes) as emission_rank from environmental_impact;

10. Write a SQL query using a window function to calculate the rolling average of minor injuries over the years.

```
SELECT Year, Minor_Injuries,

AVG(Minor_Injuries)

OVER (ORDER BY Year ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS Rolling_Avg_Minor_Injuries

FROM Mining_Accidents_Safety

ORDER BY Year;
```

R	Result Grid				Wrap Cell Content:	‡A	
	Year	Minor_Injuries	Rolling_Avg_Minor_Injuries				
•	2020	300	290.0000				
	2021	280	296.6667				
	2022	310	293.3333				
	2023	290	300.0000				