NOIP 模拟题

laofu

2021年7月17日

题目名称	白云的时钟	白兔的旅行	序列	联通子树
英文名称	clock	travel	seq	tree
输入文件名	clock.in	travel.in	seq.in	tree.in
输出文件名	clock.out	travel.out	seq.out	tree.out
数据组数	100	10	10	10
时间限制	1s	1s	1s	1s
空间限制	512MB	512MB	512MB	512MB

1 白云的时钟

1.1 description

凌晨 0:00, 白云躺在了床上, 但是怎么都睡不着。

过了一会儿,它看到了墙上挂的钟出现了一个非常有趣的情况:时针和分针重合了。 于是,它想到了一个问题:从凌晨 0:00 到 hh:mm 这段时间内,时针和分针一共重 合了多少次¹。

1.2 input

仅一行, hh:mm

1.3 output

仅一行,表示重合次数。

1.4 样例数据

1.4.1 样例输入一

01:05

1.4.2 样例输出一

1

1.4.3 样例输入二

08:36

1.4.4 样例输出二

8

¹这里的区间是闭区间,包含 0:00 时刻和 hh:mm 时刻

1.4.5 样例输入三

03:16

1.4.6 样例输出三

3

1.5 数据范围

对于 100% 的数据, $0 \le hh < 24, 0 \le mm < 60$

2 白兔的旅行

2.1 description

白云开着飞机带白兔来到了一座城市,这座城市有 n 个景点。

这座城市的道路非常有意思,每个景点都恰好存在一条通往其它某个节点的单向道路。

现在白云可以把飞机降落在任何一个景点,然后让白兔独自旅行。当白兔旅行结束时,白云会到白兔所在的景点来接它。而在旅行的中途,白兔只能靠城市的道路来移动。

现在白兔想制定一个旅游的顺序,按照这个顺序依次前往每一个景点。在每个景点游玩会消耗白兔一定的体力值。为了让白兔有充足的信心,我们的这个方案必须满足:每次游览景点所消耗的体力值必须**严格**比前一个景点消耗的体力值要小。

白兔想知道它最多能去几个景点游玩。

2.2 input

第一行,一个数 n,表示景点的个数。

第二行 n 个数,表示每个景点游玩需要消耗的体力值。

第三行 n 个数 $p_1 \cdots p_n$,表示存在一条从 i 到 p_i 的路径。

2.3 output

输出最多能玩几个景点

2.4 测试样例

2.4.1 样例输入一

5

1 2 3 5 2

2 3 1 1 3

2.4.2 样例输出一

4

2.4.3 样例解释

我们先去 5 号景点,然后去 3 号景点,接下来去 2 号景点,最后去 1 号景点,这样一共能在 4 个景点游玩

2.5 数据范围

每个景点消耗的体力值在 [0,109] 范围内

对于 30% 的数据, $n \le 1000$;

对于 50% 的数据, $n \le 10000$;

对于 100% 的数据, $n \le 100000$;

3 白兔的树与白云的序列

3.1 description

白兔有一棵 n 个结点带边权的树。定义 g(x,y) 为 x 和 y 两个点路径上所有边权最大值。特别地,g(x,x)=0。

白云想构造一个序列 $p_1\cdots p_n$,一个序列的价值为 $\min_{i=1}^n g(i,p_i)$ 。同时,白兔给了白云一个限制:任何一个数 x 在序列中不得超过 s_x 次。

白云想知道满足要求的所有序列的最大价值。

3.2 input

第一行一个数 n。

接下来 n-1 行,每一行三个数 (u,v,w) 表示一条 (u,v) 之间权值为 w 的边。 最后一行 n 个数表示 $s_1\cdots s_n$

3.3 output

求最大价值

3.4 样例数据

3.4.1 样例输入一

4

1 2 1

2 3 2

3 4 3

1 1 1 1

3.4.2 样例输出一

2

3.4.3 样例解释

一个最佳的序列 P 为 4, 3, 2, 1。

3.5 数据范围

对于 30% 的数据, $n \le 10$;

对于 60% 的数据, $n \le 1000$;

对于 100% 的数据, $n \le 10^5, w \le 10^9, 1 \le s_i \le n$;

4 tree

4.1 description

白云有一棵 n 个结点的树,以 1 号结点为根,这棵树的每个结点有一个权值 val_i 。 定义一个连通块的喜爱度为块内所有结点权值的乘积。

白兔有很多疑问,每个疑问有两个参数 k,s,表示询问所有经过点 k 的大小为 s 的连通块的喜爱度之和。

白云会定期对树做一些修改。

4.2 input

第一行 1 个整数 n,Q,表示树的结点个数和事件个数。

第二行 n 个整数表示 val_{1} n。

第三行 n-1 个整数表示 2...n 号结点的父亲。

接下来 Q 行,第一个数为 $op \in \{0,1\}$,如果 op = 0 表示白云要对某个结点的权值进行修改,接下来两个数 k,c 表示把结点 k 的权值修改为 c。如果 op = 1 表示白兔的疑问,接下来两个数 k,s。

4.3 output

对于 op = 1,每行一个数表示答案。答案对 $10^9 + 7$ 取模。

4.4 样例文件

共下放 2 个样例

4.5 数据范围

结点 k 的父亲为 1...k-1 的一个均匀随机整数。

 $val_i \in [1, 10^9 + 7), \ s \le 10$

注:本题每个测试点的分数不均匀分布,详情见表格。

测试点编号	每个测试点分值	$n,Q \leq$	其它
1	40	15	
2,3	20	5000	
4,5	2		每次询问满足 $k=1$ 。
6,7	2	10^{5}	每个结点权值始终为1,无修改操作。
8, 9, 10	4		