CS 331: Artificial Intelligence Propositional Logic 2

Review of Last Time

- |= means "logically follows"
- |-i means "can be derived from"
- If your inference algorithm derives only things that follow logically from the KB, the inference is sound
- If everything that follows logically from the KB can be derived using your inference algorithm, the inference is complete

2

Outline

- Propositional Logic: Syntax and Semantics
- 2. Reasoning Patterns in Propositional Logic

Propositional Logic: Syntax and Semantics

4

Syntax: Backus-Naur Form grammar of sentences in propositional logic

```
\begin{split} & Sentence \rightarrow AtomicSentence \mid ComplexSentence \\ & AtomicSentence \rightarrow True \mid False \mid Symbol \\ & Symbol \rightarrow P \mid Q \mid R \mid ... \\ & ComplexSentence \rightarrow \neg Sentence \\ & \mid ( Sentence \wedge Sentence ) \\ & \mid ( Sentence \vee Sentence ) \\ & \mid ( Sentence \Rightarrow Sentence ) \\ & \mid ( Sentence \Leftrightarrow Sentence ) \end{split}
```

5

Atomic Sentences

- The indivisible syntactic elements
- Consist of a single propositional symbol e.g. P, Q, R that stands for a proposition that can be true or false e.g. P=true, Q=false
- We also call an atomic sentence a literal
- 2 special propositional symbols:
 - True (the always true proposition)
 - False (the always false proposition)

Complex Sentences

- Made up of sentences (either complex or atomic)
- 5 common logical connectives:
 - ¬ (not): negates a literal
 - \wedge (and): conjunction e.g. $P \wedge Q$ where P and Q are called the conjuncts
 - \vee (or): disjunction e.g. $P \vee Q$ where P and Q are called the disjuncts
 - $-\Rightarrow$ (implies): e.g. $P\Rightarrow Q$ where P is the premise/antecedent and Q is the conclusion/consequent
 - $-\Leftrightarrow$ (if and only if): e.g. $P\Leftrightarrow Q$ is a biconditional

7

Precedence of Connectives

- In order of precedence, from highest to lowest: ¬, ∧, ∨, ⇒, ⇔
- E.g. $\neg P \lor Q \land R \Rightarrow S$ is equivalent to $((\neg P) \lor (Q \land R)) \Rightarrow S$
- You can rely on the precedence of the connectives or use parentheses to make the order explicit
- Parentheses are necessary if the meaning is ambiguous

Semantics (Are sentences true?)

- Defines the rules for determining if a sentence is true with respect to a particular model
- For example, suppose we have the following model: P=true, Q=false, R=true
- Is $(P \wedge Q \wedge R)$ true?

I want the truth!

9

Semantics

For atomic sentences:

- · True is true, False is false
- · A symbol has its value specified in the model

For complex sentences (for any sentence S and model m):

- $\neg S$ is true in m iff S is false in m
- $S_1 \wedge S_2$ is true in m iff S_1 is true in m and S_2 is true in m
- $S_1 \vee S_2$ is true in m iff S_1 is true in m or S_2 is true in m
- S₁ ⇒ S₂ is true in m iff S₁ is false in m or S₂ is true in m i.e., can translate it as ¬S₁ ∨ S₂
- $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true in m and $S_2 \Rightarrow S_1$ is true in m

10

Note on implication

- P⇒Q seems weird…doesn't fit intuitive understanding of "if P then Q"
- Propositional logic does not require causation or relevance between P and Q
- Implication is true whenever the antecedent is false (remember P ⇒ Q can be translated as ¬P∨ Q)
 - Implication says "if P is true, then I am claiming that Q is true. Otherwise I am making no claim"
 - The only way for this to be false is if P is true but Q is false

11

Truth Tables for the Connectives

P	Q	P∧Q	P v Q	$P \Rightarrow Q$	P⇔Q
false	false	false	false	true	true
false	true	false	true	true	false
true	false	false	true	false	false
true	true	true	true	true	true

With the truth tables, we can compute the truth value of any sentence with a recursive evaluation e.g.

Suppose the model is P=false, Q=false, R=true

 $\neg P \land (Q \lor R) = true \land (false \lor true) = true \land true = true$

The Wumpus World KB (only dealing with knowledge about pits)

For each i, j: Let $P_{i,j}$ be true if there is a pit in [i, j]Let $B_{i,j}$ be true if there is a breeze in [i, j]

The KB contains the following sentences:

- 1. There is no pit in [1,1]:
 - R_1 : $\neg P_{1,1}$
- 2. A square is breezy iff there is a pit in a neighboring square: (not all sentences are shown)

$$\begin{array}{ll} R_2 \colon B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1} \\ R_3 \colon \ B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}) \end{array}$$

13

The Wumpus World KB

3. We add the percepts for the first two squares ([1,1] and [2,1]) visited in the Wumpus World example:

$$R_4$$
: $\neg B_{1,1}$
 R_5 : $B_{2,1}$

The KB is now a conjunction of sentences R_1 \wedge $R_2 \wedge R_3 \wedge R_4 \wedge R_5$ because all of these sentences are asserted to be true.

14

Inference

- How do we decide if $KB \models \alpha$?
- Enumerate the models, check that α is true in every model in which KB is true

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	P _{1,2}	$P_{2,1}$	P _{2,2}	P _{3,1}	R_1	R_2	R_3	R_4	R ₅	KB
false	false	false	false	false	false	false	true	true	true	true	false	false
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false	true	true	false	true	false

Inference

- Suppose we want to know if KB $\models \neg P_{1,2}$?
- In the 3 models in which KB is true, $\neg P_{1,2}$ is also true

B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R_1	R_2	R_3	R_4	R ₅	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

Complexity

- If the KB and α contain n symbols in total, what is the time complexity of the truth table enumeration algorithm?
- Space complexity is O(n) because the actual algorithm uses DFS

17

The really depressing news

• Every known inference algorithm for propositional logic has a **worse-case** complexity that is **exponential** in the size of the input

But some algorithms are more efficient in practice

Logical equivalence

- Intuitively: two sentences α and β are logically equivalent (i.e. $\alpha \equiv \beta$) if they are true in the same set of models
- Formally: $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$
- Can prove this with truth tables

19

Standard Logic Equivalences

```
\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Rightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ \alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{array}
```

In the above, α , β , and γ are arbitrary sentences of propositional logic

20

Validity

- · A sentence is valid if it is true in all models
- E.g. $P \lor \neg P$ is valid
- Valid sentences = Tautologies
- Tautologies are vacuous

Deduction theorem

For any sentences α and β , $\alpha \models \beta$ iff the sentence $(\alpha \Rightarrow \beta)$ is valid

21

Satisfiability

- A sentence is satisfiable if it is true in some model.
- A sentence is unsatisfiable if it is true in no models
- Determining the satisfiability of sentences in propositional logic was the first problem proved to be NP-complete
- Satisfiability is connected to validity:
 α is valid iff ¬α is unsatisfiable
- Satisfiability is connected to entailment:
 α |= β iff the sentence (α ∧¬β) is unsatisfiable (proof by contradiction)

22

Reasoning Patterns in Propositional Logic

23

Proof methods

How do we prove that α can be entailed from the KB?

- 1. Model checking e.g. check that α is true in all models in which KB is true
- 2. Inference rules

Inference Rules

1. Modus Ponens

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

2. And-Elimination

$$\frac{\alpha \wedge \beta}{\alpha}$$

These are both sound inference rules. You don't need to enumerate models now

25

Other Inference Rules

```
\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Rightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{array}
```

All of the logical equivalences can be turned into inference rules e.g. $\alpha \Leftrightarrow \beta$

 $\overline{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$

Example

Given the following KB, can we prove $\neg R$?

KB:

$$P \Rightarrow \neg (Q \vee R)$$

$$P$$

Proof:

 $\neg (Q \lor R)$ by Modus Ponens

 $\neg Q \land \neg R$ by De Morgan's Law

 $\neg R$ by And-Elimination

27

Proofs

- A sequence of applications of inference rules is called a proof
- Instead of enumerating models, we can search for proofs
- · Proofs ignore irrelevant propositions
- 2 methods:
 - Go forward from initial KB, applying inference rules to get to the goal sentence
 - Go backward from goal sentence to get to the KB

28

Monotonicity

- Proofs only work because of monotonicity
- Monotonicity: the set of entailed sentences can only increase as information is added to the knowledge base
- For any sentences α and β , if KB $\models \alpha$ then KB $\land \beta \models \alpha$

29

Resolution

- An inference rule that is sound and complete
- Forms the basis for a family of complete inference procedures
- Here, complete means refutation completeness: resolution can refute or confirm the truth of any sentence with respect to the KB

Resolution

 Here's how resolution works (¬l₂ and l₂ are called complementary literals):

$$\frac{l_1 \vee l_2, \quad \neg l_2 \vee l_3}{l_1 \vee l_3}$$

 Note that you need to remove multiple copies of literals (called factoring) i.e.

$$\frac{l_1 \vee l_2, \quad \neg l_2 \vee l_1}{l_1}$$

• If l_i and m_j are complementary literals, the full resolution rule looks like:

$$\frac{l_1 \vee \cdots \vee l_k, \quad m_1 \vee \cdots \vee m_n}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n}$$

Conjunctive Normal Form

- * Resolution only applies to sentences of the form $l_1 \\ \vee l_2 \vee \ldots \vee l_k$
- This is called a disjunction of literals
- It turns out that every sentence of propositional logic is logically equivalent to a conjunction of disjunction of literals
- Called Conjunctive Normal Form or CNF e.g. $(l_1 \lor l_2 \lor l_3 \lor l_4) \land (l_5 \lor l_6 \lor l_7 \lor l_8) \land \dots$
- k-CNF sentences have exactly k literals per clause e.g. A 3-CNF sentence would be (l₁ ∨ l₂ ∨ l₃) ∧ (l₄ ∨ l₅ ∨ l₆) ∧ (l₇ ∨ l₈ ∨ l₉)

32

Recipe for Converting to CNF

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$
- 3. Move \neg inwards using:

 $\neg(\neg\alpha) \equiv \alpha \text{ (double-negation elimination)}$

 $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$ (De Morgan's Law)

 $\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$ (De Morgan's Law)

4. Apply distributive law $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$

33

A resolution algorithm

To prove $KB \models \alpha$, we show that $(KB \land \neg \alpha)$ is unsatisfiable (Remember that $\alpha \models \beta$ iff the sentence $(\alpha \land \neg \beta)$ is unsatisfiable)

The algorithm:

- Convert (KB ∧ ¬α) to CNF
- Apply resolution rule to resulting clauses. Each pair with complementary literals is resolved to produce a new clause which is added to the KB
- 3. Keep going until
 - There are no new clauses that can be added (meaning KB $|\neq \alpha$)
 - $-\,$ $\,$ Two clauses resolve to yield the empty clause (meaning KB \mid
 - The empty clause is equivalent to false because a disjunction is true only if one of

its disjuncts is true

Resolution Pseudocode

function PL-RESOLUTION(KB, α) returns true or false $clauses \leftarrow \text{the set of clauses in the CNF representation of } KB \land \neg \alpha$ $new \leftarrow \{\}$ loop do $for each <math>C_i, C_j \text{ in } clauses \text{ do}$ $resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)$ if resolvents contains the empty clause then return <math>true $new \leftarrow -new \cup resolvents$ $if new \subseteq clauses \text{ then return } false$

35

Things you should know

- Understand the syntax and semantics of propositional logic
- Know how to do a proof in propositional logic using inference rules
- · Know how resolution works
- Know how to convert arbitrary sentences to CNF

In-class Exercise

KB

 $\begin{array}{c} \text{Person} \Rightarrow \text{Mortal} \\ \\ \text{Socrates} \Rightarrow \text{Person} \end{array}$

Can we show that:

 $KB \models (Socrates \Rightarrow Mortal)?$

37

In-class Exercise

If it is October, there will not be a football game at OSU	
If it is October and it is Saturday, I will be in Corvallis	
If it doesn't rain or if there is a football game, I will ride my bike to OSU	
Today is Saturday and it is October	
If I am in Corvallis, it will not rain	

Can you prove that I will ride my bike to OSU?