Optics/microscopy club @ MDC

April 2017 meeting (Nikita Vladimirov)

Why do we see stuff?

Light is *scattered* (also absorbed and reflected) by an object surface

The surface can be represented by a myriad of individual *point sources*

An image is formed by collecting (focusing) the light: object points -> image points

Things to notice

Image is flipped relatively to object (left-right and up-down)

Not all light from an object source is collected -> loss of information (resolution)

There is no such thing as perfect lens.

https://upload.wikimedia.org/wikipedia/commons/5/5e/Wine grapes03.jp

High-resolution image is formed only on fovea, **1.5 mm** in diameter.

Most focusing occurs at the air/cornea surface. That's why we poorly see in the water.

Kids can learn to **see in the water**, because their lens can accommodate more.

We have a **blind spot** in our visual field, but our brain masks it for us (Demo).

Humans and frogs can see *single* photon counts.

f – focal length,a, b - distances

K.F. Gauss

I. Newton

Ray tracing rules

- 1) Ray parallel to the axis is deflected through focal point F.
- 2) Ray intersecting the center of lens continues undeviated.
- 3) Ray passing through F is deflected parallel to the axis (see Rule 1).

Optical rays have NO direction. Time can be 'reversed' and rays will go backward the same way.

Examples 2F Simple relay lens (1:1) Object and image are 2F away from the lens plane

 $\frac{1}{2f} + \frac{1}{2f} = \frac{1}{f}$

 $\frac{1}{f} + \frac{1}{\infty} = \frac{1}{f}$

Collimator
Object (point source) at F, image at ∞

Demo

Keplerian telescope

J. Kepler

magnification M = F/f

Ray angles are magnified by M

image is upside down ⊖

Another use: beam expander in optical setups (Demo)

Another use: a *relay* system (4F system)

Another use: prototype microscope, just turn it around: M = F/f, > 1

Demo

Lens magnification

Magnification M = $\frac{D}{d}$.

As d \rightarrow f, D \rightarrow ∞ and M \rightarrow ∞

A given positive lens can have, theoretically, any magnification! Such a lens is the simplest microscope

Popular microscope systems

1. Compound microscope (fixed tube length)

Infinity-corrected microscope (1980s - now)

Why lenses work this way? **Snell's law of refraction**

Ray model

W. Snellius

Actually, first discovered by Ibn Sahl, 984

(glass,
$$n_2 = 1.5$$
)

Wave model