보행자세 측정 장치 개발

이재길^{*}, 김익현^{*}, 전승현^{*}, 이세진^{*}, 신정문^o

*^o강릉워주대학교 정보기술공학과

e-mail: leejg@gwnu.ac.kr*, show5817@naver.com*, mokkcandy@naver.com*, sejin6609@naver.com*, koreap2000@naver.com°

Development of mesuring device for walking posture

Jae-Gil Lee*, Ik-Hyeon Kim*, Seung-hyeon Jeon*, Se-Jin Lee*, Jeong-Mun Shin°

**Opept. of Information Technology Engineering, GangNeung-wonju National University

● 요 약 ●

본 논문에서는 잘못된 걸음걸이로 인해 생기는 다양한 질환들을 예방하고자 압력센서를 통해 걸음형태를 측정하여 블루투스 통신을 이용, 사용자가 스마트폰에서 실시간으로 확인 할 수 있게 하였고, 잘못된 자세를 인식 할 수 있도록 구현하였다. 이 시스템을 통하여 자신의 잘못된 보행 자세를 인지하고 바른 걸음을 할 수 있도록 도움을 주도록 하며 운동시에는 만보기와 칼로리를 계산하는 기능을 활용할 수 있다.

키워드: 스마트 폰(smart phone), 압력센서(pressure sensor), 보행(walk)

I 서 론

최근 현대인들은 잘못된 자세로 인해 다양한 질병에 시달리고 있다. 질환에 대한 대비와 건강을 위해서 많은 사람들은 걷기 운동을 하지만 바르게 걷지 않으면 척추 디스크, 중추 질환, 관절염 등 또 다른 질환이 오게 된다. 이러한 사례를 이유로 바른 보행 자세에 대한 경각심을 고취시키기 위해 이 시스템을 만들게 되었다.

Ⅱ 본론

1. 시스템 구조

[그림1]은 스마트폰을 이용하여 보행 자세를 측정하기 위한 시스템 구조이다. 장치 모듈로는 발바닥 각 부분마다 실리는 체중을 측정하기 위한 압력센서와 센서 값을 필요에 따라 처리 할 수 있는 이두이노 프로세서, 처리한 압력 값을 스마트폰으로 통신하기위한 블루투스 모듈에 대한 설명이다. 신발에 압력센서가 내장되어 있으며,이 신발을 신고 걷게 되면 아두이노를 통해 처리된 압력 값을 블루투스 통신으로 스마트폰에 전달한다. 이 데이터를 가지고 스마트폰에서는 체중이 어떻게 실리고 있는지 실시간으로 확인을 시켜주고,측정을 끝내게 되면 최종 결과 값을 보여준다. 또한 사용자가 운동을 목적으로도 사용할 수 있도록 만보기와 그에 따른 칼로리 소모량도실시간 확인 가능하다.

그림 136. 시스템 구조 Fig. 1. System Architecture

1.1 압력센서

압력센서는 가해지는 압력세기에 따라 0~1023까지의 값을 출력한다(0에 가까울수록 가해지는 압력이 높음). 이 압력센서를 신발이 발바닥과 맞닿는 부분에 적절히 설치하여 체중이 발에 전달되는 패턴을 파악할 수 있게 하였다. 실험에서 사용된 압력센서는 FSR-400을 사용하였으며 신발 앞부분 좌우에 한개씩 중간부분에한 개 그리고 뒷부분 좌우에 한개씩 총 다섯 개의 압력센서를 배치하였다.

1.2 제어장치

제어장치는 신발에 부착된 여러 압력센서들의 출력값을 취합하여 통신모듈을 통해 안드로이드 스마트폰으로 전송하는 역할을 담당한

한국컴퓨터정보학회 동계학술대회 논문집 제22권 제1호 (2014. 1)

다. 제어장치는 이두이노 보드를 사용하였으며 다음 그림2와 같이 센서 마다 받아들이는 압력 세기를 4단계로 분류하여 총 20개의 다른 문자를 발생시켜 안드로이는 장치로 보냄으로써 각 센서 마다의 압력값을 구분할 수 있도록 하였다.

압력 값 센서	1023 ~850	850 ~700	700~550	550~400
1번 센서	А	F	K	Р
2번 센서	В	G	L	Q
3번 센서	С	Н	М	R
4번 센서	D	I	N	S
5번 센서	Е	J	0	Т

그림 2. 압력 값에 대한 데이터 값 정의 Fig. 2. data value for the Pressure

1.3 블루투스 통신 모듈

블루투스(FB155BC)는 검색대기 및 연결대기를 위해 Slave로 설정하며 Connection mode는 model로 설정하여 최근에 연결이 이루어졌던 Master(스마트폰)에 연결을 허용하도록 한다. model에 서는 최근에 연결이 이루어졌던 Master의 정보가 없을 경우 주변의 블루투스 장치 중 가장 먼저 연결을 요청하는 Master에게 검색대기 및 연결대기를 한다. 이렇게 설정 된 블루투스는 스마트폰에 기본 내장되어있는 블루투스와 페어링 후, 통신하여 아두이노를 통해 정의되어진 데이터 값을 보낸다. [그람2]에서처럼 압력 값에 따른 데이터 값을 정의하면 발을 지면에서 땠을 경우 A,B,C,D,E와 같은 데이터를 전송하게 된다.

1.4 스마트 폰 앱

블루투스로부터 전송받은 데이터 값을 분석하여 [그림 3]과 같이 발바닥에 많은 하중이 실리면 초록색에서 붉은색으로 바뀌도록 제작하였으며, 각 부분에 대한 색의 변화를 실시간으로 확인하여 사용자의 걸음을 확인 할 수 있도록 하였다. 측정이 끝나면 최종 결과를 확인 하도록 하고, 그 결과를 데이터베이스를 이용해 저장하여 날짜 별로 측정결과를 조회 할 수 있다.

그림 3. 안드로이드 폰에서 실행된 앱의 회면 Fig. 3. App screen captured at Android phone

Ⅲ. 결 론

사용자의 걸음 형태를 측정하여 습관 및 자세를 파악할 수 있으며, 재활치료나 운동의 목적으로 활용 될 수 있다. 또한 현재 주목받고 있는 웨어러블 디바이스시대에 맞추어 다양하게 활용 될 것으로 보인다.

참고문헌

1. 압력센서

http://roboholic1.godo.co.kr/shop/goods/goods_view.php?g oodsno=20&inflow=naver&NaPm=ct%3Dhpfggzh4%7Cci %3Ddae290ddb6dade0b70ecf213158700524d2d5c12%7Ctr %3Dslsl%7Csn%3D188145%7Chk%3D159266cd6f2ae9fa7 00f630a8e611788e3aad946

2. 블루투스

http://firmtech7.cafe24.com/bizdemo4649/product/bluetooth/sub01_product01.php

http://developer.android.com/reference/android/bluetooth/package-summary.html

- 4. "그림으로 쉽게 설명하는 안드로이드 프로그래밍",생능출판사, 천인국 저
- 5. "안드로이드 프로그래밍", 한빛미디어