Recitation (Review Week)

Alex Dong

CDS, NYU

Fall 2020

Review day: Linear Regression and SVD

- ▶ Your Questions
- ► Linear Regression Review
- ► SVD Review

Question: Linear Regression Review 1

- ▶ Goal is to minimize $\ell = ||X\beta y||_2^2$ w.r.t β
 - $\triangleright \ell$ is loss
 - ightharpoonup X is your data/design matrix
 - \blacktriangleright β is the coefficients that transform X into y

Let $x_1, ..., x_n \in \mathbb{R}^d$, $y_1, ..., y_n \in \mathbb{R}$. Let $\beta \in \mathbb{R}^d$

- 1. Recall that X is defined to have $x_1, ..., x_n$ as the rows of X, and y is defined to have $y_1, ..., y_n$ as its entries. Show that $||X\beta - y||_2^2 = \sum_{i=1}^n (y_i - \langle x_i, \beta \rangle)^2$
- 2. Notice that when $x_i = \vec{0}$, $\langle x_i, \beta \rangle = 0$. Suppose we wanted to add an 'intercept', or 'bias' $\beta_0 \in \mathbb{R}$, so that we are trying to minimize $||X\beta y||_2^2 = \sum_{i=1}^n (y_i \langle x_i, \beta \rangle \beta_0)^2$.

How can we modify our definitions of X, y, β to easily do this?

Solutions: Linear Regression Review 1

Solution

- 1. Recall that X is defined to have $x_1, ..., x_n$ as the rows of X, and y is defined to have $y_1, ..., y_n$ as its entries. Show that $||X\beta - y||_2^2 = \sum_{i=1}^n (y_i - \langle x_i, \beta \rangle)^2$ Use Inner product method of matrix multiplication
- 2. Notice that when $x_i = \vec{0}$, $\langle x_i, \beta \rangle = 0$. Suppose we wanted to add an 'intercept', or 'bias' $\beta_0 \in \mathbb{R}$, so that we are trying to minimize $||X\beta y||_2^2 = \sum_{i=1}^n (y_i \langle x_i, \beta \rangle \beta_0)^2$. How can we modify our definitions of X, y, β to easily do this?

Append/prepend a column of 1's to X, and append/prepend β_0 .

Questions: Ridge Regression and Multicollinearity

Let $X \in \mathbb{R}^{n \times d}$, n > d, and not have full rank. (X is a data matrix) Recall that the OLS solution is $\hat{x} = (X^T X)^{-1} X^T y$.

- 1. Since X is not full rank, what does this say about the features?
- 2. What is the issue with the OLS solution?
- 3. The ridge regression solution is given by $(X^TX + \lambda Id_d)^{-1}X^Ty$. How does this fix the issue?
- 4. Suppose that X has SVD $X = U\Sigma V^T$, and X has singular values $\sigma_1, ..., \sigma_d$. What are the eigenvalues of $X^TX + \lambda Id_d$?
- 5. How does increasing λ affect the condition number of $(X^TX + \lambda Id_d)$?

Solutions: Ridge Regression and Multicollinearity

Let $X \in \mathbb{R}^{n \times d}$, n > d, and not have full rank. (X is a data matrix) Recall that the OLS solution is $\hat{x} = (X^T X)^{-1} X^T y$.

Solution

- 1. Since X is not full rank, what does this say about the features?

 Columns of X are not linearly independent, so some of the features can be perfectly explained by other features.
- 2. What is the issue with the OLS solution?

 Since X does not have full rank, X^TX doesn't have full rank and is not invertible. So the OLS solution is not well-defined.
- 3. The ridge regression solution is given by $(X^TX + \lambda Id_d)^{-1}X^Ty$. How does this fix the issue? Adding λId_d to X^TX shifts its eigenvalues up, which makes $(X^TX + \lambda Id_d)$ invertible.

Solutions: Ridge Regression and Multicollinearity

Let $X \in \mathbb{R}^{n \times d}$, n > d, and not have full rank. (X is a data matrix) Recall that the OLS solution is $\hat{x} = (X^T X)^{-1} X^T y$.

Solution

4. Suppose that X has SVD $X = U\Sigma V^T$, and X has singular values $\sigma_1, ..., \sigma_d$. What are the eigenvalues of $X^TX + \lambda Id_d$?

Note that $X^TX = V\Sigma^T\Sigma V^T$

Eigvals of $X^T X$: $\sigma_1^2, ..., \sigma_d^2$, (Note: X isn't full rank, so $\sigma_d = 0$) Eigvals of $X^T X + \lambda Id_d$: $\sigma_1^2 + \lambda, ..., \sigma_d^2 + \lambda$.

5. How does increasing λ affect the condition number of $(X^TX + \lambda Id_d)$ vs X^TX ?

Condition number of $X^TX = \frac{\sigma_1^2}{\sigma_d^2} = \infty$

Condition number of $(X^TX + \lambda Id_d) = \frac{\sigma_1^2 + \lambda}{\sigma_2^2 + \lambda}$

Furthermore, for $\lambda_1 > \lambda_2$, we get the relationship $\frac{\sigma_1^2 + \lambda_1}{\sigma_2^2 + \lambda_1} < \frac{\sigma_1^2 + \lambda_2}{\sigma_2^2 + \lambda_2}$

Questions: More SVD

Let $A \in \mathbb{R}^{n \times m}$, where n > m, have SVD $A = U \Sigma V^T$.

Let $e_{i,m}, e_{i,n}$ denote the *i*th standard basis vector in \mathbb{R}^m , and \mathbb{R}^n .

- 1. Give basis transformations for U, Σ, V^T . (Your answer should look like T(a) = b. where you select convenient a's that form a basis for the origin space of T. Be careful about the dimensions w/ Σ !)
- 2. Let $x \in \mathbb{R}^m$ s.t $x = \sum_{i=1}^m \alpha_i v_i$, where v_i are the columns of V. and write the expressions for $V^T x$, $\Sigma V^T x$, and $U \Sigma V^T x$.
- 3. Use this to show $Im(AA^T) = Im(A)$

Solutions 1: More SVD

Let $A \in \mathbb{R}^{n \times m}$, where n > m, have SVD $A = U \Sigma V^T$.

Let $e_{i,m}, e_{i,n}$ denote the *i*th standard basis vector in \mathbb{R}^m , and \mathbb{R}^n .

1. Give basis transformations for U, Σ, V^T . (Your answer should look like T(a) = b. where you select convenient a's that form a basis for the origin space of T. Be careful about the dimensions w/ Σ !)

Solution

$$V^{T}(v_{i}) = e_{i,m}$$
 for $i \in \{1,...,m\}$
 $\Sigma(e_{i,m}) = \sigma_{i}e_{i,n}$ for $i \in \{1,...,m\}$ (Note the m here)
 $U(e_{i,n}) = u_{i}$ for $i \in \{1,...,n\}$

Solutions 2: More SVD

Let $A \in \mathbb{R}^{n \times m}$, where n > m, have SVD $A = U \Sigma V^T$.

Let $e_{i,m}, e_{i,n}$ denote the *i*th standard basis vector in \mathbb{R}^m , and \mathbb{R}^n .

2. Let $x \in \mathbb{R}^m$ s.t $x = \sum_{i=1}^m \alpha_i v_i$, where v_i are the columns of V. Write the expressions for $V^T x \Sigma V^T x$, and $U \Sigma V^T x$.

Solution

Let $e_{i,m}$ denote the ith standard basis vector in \mathbb{R}^m .

$$x = \sum_{i=1}^{m} \alpha_i v_i$$

$$V^T x = \sum_{i=1}^m \alpha_i e_{i,m}$$

$$\Sigma V^T x = \sum_{i=1}^{min(m,n)} \sigma_i \alpha_i e_{i,n}$$

$$U\Sigma V^T x = \sum_{i=1}^{\min(m,n)} \sigma_i \alpha_i u_i$$

Solutions 3: More SVD

Let $A \in \mathbb{R}^{n \times m}$, where n > m, have SVD $A = U\Sigma V^T$.

Let $e_{i,m}$, $e_{i,n}$ denote the *i*th standard basis vector in \mathbb{R}^m , and \mathbb{R}^n .

3. Use this to show $Im(AA^T) = Im(A)$

Solution

Let
$$x \in \mathbb{R}^m$$
, $x = \sum_{i=1}^m \alpha_i v_i$. Then $Ax = \sum_{i=1}^m \alpha_i \sigma_i u_i$.

Let
$$y \in \mathbb{R}^n$$
, $y = \sum_{i=1}^n \beta_i u_i$. Then $AA^T y = U \Sigma \Sigma^T U^T y = \sum_{i=1}^m \beta_i \sigma_i^2 u_i$.

We show
$$Im(A) \subset Im(AA^T)$$

Now, let
$$p \in \text{Im}(A) \subset \mathbb{R}^n$$
.

z must be of the form
$$p = \sum_{i=1}^{m} \gamma_i u_i$$
.

Notice that for
$$q \in \mathbb{R}^m$$
, where

$$q = \sum_{i=1}^{m} c_i v_i$$
, and $c_i = \frac{\gamma_i}{\sigma_i}$ if $\gamma_i \neq 0$, $c_i = 0$ if $\gamma_i = 0$

We get
$$Aq = p$$
. Similarly, if we let $r \in \mathbb{R}^n$ where

$$r = \sum_{i=1}^{m} d_i v_i$$
, and $d_i = \frac{\gamma_i}{\sigma^2}$ if $\gamma_i \neq 0$, $d_i = 0$ if $\gamma_i = 0$

We get
$$AA^Tr = p$$
.

So, we have found a vector
$$r$$
, s.t $AA^Tr = p \in Im(A)$. Then $Im(A) \subset Im(A^T)$.