'Optimized Quantum Implementation of AES' 논문 리뷰

장경배

https://youtu.be/ZjJjR69UuXs

Paper

Optimized Quantum Implementation of AES

Da Lin, Zejun Xiang*, Runqing Xu, Shasha Zhang and Xiangyong Zeng

Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, 430062, China.

• 23년, 2월 15일

Contribution

- AES 양자 회로 최적화 논문
- 큐비트 수를 줄이는 데 초점을 둠
- **새로운 S-box 구현** 제시 (Asiacrypt'20의 S-box 개선)
- Toffoli depth X 큐비트 수 비용이 가장 낮음

Overall

Table 1 The quantum resource of different NCT-based circuits for AES-128.

Sour	Source		Toffoli Depth	#Toffoli	#CNOT	#Pauli-X	$T\cdot M$
[10]		984	12672	151552	166548	1456	12469248
[1]		976	not reported	150528	192832	1370	not reported
[18]		864	1880	16940	107960	1570	1624320
[32		512	2016	19788	128517	4528	1032192
		656	not reported	18040	101174	1976	not reported
[28]		400	not reported	19064	118980	4528	not reported
[13]*		492	820	17888	126016	2528	403440
[13]*		374	1558	11000	120010	2020	582692
[14] ^{\$\lambda\$}		3936	76	12920	84120	800	299136
		6368	40	12240	81312	800	254720
	m = 1	269	7396		77408		1989524
	$m=1^{\dagger}$	274	6480		78448		1775520
	m=2	282	3720		77408		1049040
	$m=2^\dagger$	287	3306		78416		948822
	m = 3	295	2622		77444		773490
	m=4	308	1970		77408		606760
	$m=4^{\dagger}$	313	1700		78272		532100
	m = 5	321	1736		77444		557256
	m = 6	334	1304		77552		435536
	m = 7	347	1304		77480		452488
This work	m = 8	360	1106	19608	77408	2224	398160
	$m=8^{\dagger}$	365	908	13000	77984	2224	331420
	m = 9	373	872		77660		325256
	m = 10	386	872		77624		336592
	m = 11	399	872		77588		347928
	m = 12	412	872		77552		359264
	m = 13	425	872		77516		370600
	m = 14	438	872		77480		381936
	m = 15	451	872		77444		393272
	m = 16	464	674		77408		312736
	$m=16^{\dagger}$	474	476		77984		225624

[32] Asiacrypt'20

[13] Asiacrypt'22

❷ [14] 한성대

• *m*은 S-box 병렬화 개수

Overall

Table 1 The quantum resource of different NCT-based circuits for AES-128.

Sour	rce	#Qubits	Toffoli Depth	#Toffoli	#CNOT	#Pauli-X	$T \cdot M$
[10	[10]		12672	151552	166548	1456	12469248
[1]		976	not reported	150528	192832	1370	not reported
[18]		864	1880	16940	107960	1570	1624320
[32	2]	512	2016	19788	128517	4528	1032192
[96]	[28]		not reported	18040	101174	1976	not reported
[20	·]	400	not reported	19064	118980	4528	not reported
[13]	1*	492	820	17888	100010	2528	403440
[13]	J	374	1558	11000	126016	2020	582692
[14]*		3936	76	12920	84120	800	299136
		6368	40	12240	81312	000	254720
	m=1	269	7396		77408		1989524
	$m=1^{\dagger}$	274	6480		78448		1775520
	m=2	282	3720		77408		1049040
	$m=2^{\dagger}$	287	3306	78416		948822	
	m=3	295	2622		77444		773490
	m=4	308	1970		77408		606760
	$m=4^{\dagger}$	313	1700		78272		532100
	m=5	321	1736		77444		557256
	m=6	334	1304		77552		435536
	m=7	347	1304		77480		452488
This work	m=8	360	1106	19608	77408	2224	398160
	$m=8^{\dagger}$	365	908	15000	77984	2224	331420
	m=9	373	872		77660		325256
	m=10	386	872		77624		336592
	m = 11	399	872		77588		347928
	m = 12	412	872		77552		359264
	m = 13	425	872		77516		370600
	m=14	438	872		77480		381936
	m = 15	451	872		77444		393272
	m = 16	464	674		77408		312736
	$m=16^{\dagger}$	474	476		77984		225624

- Asiacrypt'22와 이번 논문
 둘 다 큐비트 수를 적게 사용
- 하지만 이번 논문에서
 Toffoli depth를 더 줄임
 → S-box 변경의 영향이 큼

Overall

Table 1 The quantum resource of different NCT-based circuits for AES-128.

Sour		#Qubits	Toffoli Depth	#Toffoli	#CNOT	#Pauli-X	$T\cdot M$
[10	[10]		12672	151552	166548	1456	12469248
[1]	[1]		not reported	150528	192832	1370	not reported
[18]		864	1880	16940	107960	1570	1624320
[32	2]	512	2016	19788	128517	4528	1032192
[28]		656	not reported	18040	101174	1976	not reported
[20)	400	not reported	19064	118980	4528	not reported
[13]*		492	820	17888	126016	2528	403440
	J	374	1558	11000	120010	2020	582692
[14]◊		3936	76	12920	84120	800	299136
[14]*		6368	40	12240	81312	800	254720
	m=1	269	7396		77408		1989524
	$m=1^{\dagger}$	274	6480		78448		1775520
	m=2	282	3720	77408		1049040	
	$m=2^{\dagger}$	287	3306		78416		948822
	m=3	295	2622		77444		773490
	m=4	308	1970		77408		606760
	$m=4^{\dagger}$	313	1700		78272		532100
	m=5	321	1736		77444		557256
	m=6	334	1304		77552		435536
	m=7	347	1304		77480		452488
This work	m=8	360	1106	19608	77408	2224	398160
	$m=8^{\dagger}$	365	908	10000	77984	2224	331420
	m=9	373	872		77660		325256
	m=10	386	872		77624		336592
	m = 11	399	872		77588		347928
	m = 12	412	872		77552		359264
	m = 13	425	872		77516		370600
	m=14	438	872		77480		381936
	m=15	451	872		77444		393272
	m=16	464	674		77408		312736
	$m=16^{\dagger}$	474	476		77984		225624

Toffoli, Full depth 최소화,
 대신 많은 큐비트 수 허용

Quantum circuits for S-box

• S-box 양자 회로 구현들에 대한 성능 비교

Table 7 The comparison of different NCT-based circuits for outputs are $|0\rangle^{\otimes 8}$.

Operation	Source	#Qubits	#Toffoli	#CNOT	#Pauli-X	Toffoli Depth
	[18]	16	55	314	4	40
	[28]	16	55	322	4	40
	[15]	120	34	186	4	6
		6	52	326	4	41
S-box	[32]	7	48	330	4	39
S-box		8	46	332	4	37
	[13]	120	34	212	4	4
	[13]	202	78	355	4	3
	This work	5	57	193	4	24
	THIS WOLK	6	57	195	4	22
	[13]	6	52	368	8	41
S -box $^{-1}$		5	58	187	10	26*
B-DOX	This work	5	57	205	8	24^{\dagger}
		6	57	207	8	22^{\dagger}

Asiacrypto'20의 S-box 구현을 개선
 → 큐비트 수를 적게 사용, 하지만 Toffoli depth 감소

Quantum circuits for S-box

• S-box 양자 회로 구현들에 대한 성능 비교

Table 7 The comparison of different NCT-based circuits for outputs are $|0\rangle^{\otimes 8}$.

Operation	Source	#Qubits	#Toffoli	#CNOT	#Pauli-X	Toffoli Depth
	[18]	16	55	314	4	40
	[28]	16	55	322	4	40
	[15]	120	34	186	4	6
		6	52	326	4	41
S-box	[32]	7	48	330	4	39
D-00X		8	46	332	4	37
	[13]	120	34	212	4	4
	[19]	202	78	355	4	40 6 41 39 37
	This work	5	57	193	4	24
	THIS WOLK	6	57	195	4	22
	[13]	6	52	368	8	41
S -box $^{-1}$		5	58	187	10	26*
	This work	5	57	205	8	24^{\dagger}
		6	57	207	8	22^{\dagger}

- Asiacrypt'22 [13] 의 S-box보다 무조건 좋다고 평가할 수는 없음
 - 하지만 Toffoli depth X 큐비트 수 성능이 많이 차이나는 이유는
 회로 아키텍처 선택의 차이 → [13]의 S-box 특성 상, Zig-zag 아키텍처는 적합하지 않음.

Proposed Quantum Circuit of AES

• S-box⁻¹를 활용한 큐비트 수 감소 (Aisacrypt'20, 21과 동일)

Fig. 3 The procedure for the SubBytes when m=4.

Proposed Quantum Circuit of AES

- AES 양자 회로 첫 번째 라운드 : Key Whitening 최적화
 - → Known-plaintext에 대한 **128-qubit 절약**

Fig. 5 The quantum circuit for the first round of AES-128. (m = 4)

Proposed Quantum Circuit of AES

• 이후 라운드들에 대한 AES 양자 회로

Fig. 6 The quantum circuit for the second round of AES-128. (m = 4)

Conclusion

- 최적화 metric
 - 큐비트 X Full depth
 - 큐비트 X Toffoli depth
 - 390656 (한성대)
 - 388892 (리뷰 논문)
 - **양자 게이트 수** X Full depth (양자 공격 비용)
 - 큐비트 X Toffoli depth²
 - 21876736 (한성대)
 - 251224232 (리뷰 논문) 큐비트 x Toffoli depth Toffoli depth ²

	GLRS [24]	233836	1943	215040	14976	1336	20007936	130929	299638849536
	LPS [39]	151011	1992	23760	2160	1232	2661120	33525	5748019200
	ZWSLW [57]	177645	6103	26774	2292	768	1760256		4034506752
1,0	₽	117704	1103	18088	108	4576	494208	1907	53374464
256	⊚ ☆	113744	1103	17408	56	6976	390656	1377	21876736
		127472	1103	17408	56	8640	483840	1118	27095040
	₽	193248	1103	41496	81	5816	471096	1826	38158776
	⊚ %	186448	1103	39936	42	9456	397152	1335	16680384
	♦	200176	1103	39936	42	11120	467040	1076	19615680

• 큐비트 X Full depth²

Table 3 The quantum resource of different NCT-based circuits for AES-256.

Sour		#Qubits	Toffoli Depth	#Toffoli	#CNOT	#Pauli-X	$T \cdot M$
[10]		1336	14976	215040	233836	1943	20007936
[18]		1232	2160	23760	151011	1992	2661120
[32	2]	768	2292	26774	177645	6103	1760256
[14]*		4576	108	18088	18088 117704		494208
		6976	56	17408	113744	1103	390656
	m = 1	397	10622		109856		4216934
	$m=1^{\dagger}$	402	9322		111416		3747444
	m=2	410	5324		109830	3069	2182840
	$m=2^{\dagger}$	415	4724		111312		1960460
	m = 3	423	3736		109908		1580328
	m=4	436	2826		109856		1232136
	$m=4^{\dagger}$	441	2436		111104		1074276
	m = 5	449	2488		109908		1117112
	m = 6	462	1864		110064		861168
	m = 7	475	1844		109920		875900
This work	m = 8	488	1556	27816	109856		759328
	$m=8^{\dagger}$	493	1270	27010	110688		626110
	m = 9	501	1218		110220		610218
	m = 10	514	1218		110168		626052
	m = 11	527	1218		110116		641886
	m = 12	540	1218		110064		657720
	m = 13	553	1218		110012 109960		673554
	m = 14	566	1218				689388
	m = 15	579	1218		109908		705222
	m = 16	592	932		109856		551744
	$m=16^\dagger$	602	646		110688		388892

Thank you!