

l'école d'ingénierie informatique

0

MSPR - Bloc 2

RÉALISÉ PAR:

AHMED BOUSLAMA
ALEXANDRE CANTON CONDES
BENJAMIN HOARAU
SAMIR HOUBAD
ERIC MAJRI

Sommaire

Contexte du projet

Méthodologie utilisée

Préparation et Analyse des Données

Nettoyage du jeu de données

MSPR - Bloc 2 : Amazing

Nettoyage du jeu de données

Types courants d'erreurs et d'incohérences de données

0

CONSTRUIRE

lumn

event_time

event_type

product_id

category_id

category_code

brand

price

user_id

user_session

user id	int32
number of views 2m	int64
number of carts 2m	int64
number of sessions 2m	int64
count products 2m	int64
avg price 2m	float64
number of views 5m	int64
number of carts 5m	int64
number_of_sessions_5m	int64
count_products_5m	int64
avg_price_5m	float64
number_of_views_7m	int64
number_of_carts_7m	int64
number_of_sessions_7m	int64
count_products_7m	int64
avg_price_7m	float64
last_purchase	datetime64[ns]
days_since_last_purchase	int32
total_purchase_value	float64
cart_abandonments	int64
preferred_brand	object
preferred_category	object
most_active_time	object
most_active_day	object

Réduction des dimensions - ACP

 Variance expliquée par PC1: 46.51%

Variance expliquée par PC2:
 20.44%

Conception et optimisation du modèle

Visualisation du Clustering RFM et Évolution de l'Indice de Silhouette

Évolution de l'indice de silhouette :

Meilleure qualité de clustering observée avec 7 clusters (indice de silhouette maximal). Le graphique montre l'optimisation du nombre de clusters pour une segmentation efficace.

Visualisation 3D des clusters RFM:

Récence (R), Fréquence (F) et Valeur Monétaire (M) des clients visualisées Clusters bien définis avec une répartition claire sur les trois dimensions.

Matrice de Confusion - Analyse des Prédictions

- Classe 0 : Excellent modèle avec 29081 prédictions correctes.
- Classe 1: 32906 corrects, mais 4374 erreurs classées dans la classe 6.
- Classe 3: 26243 corrects, mais 4197 erreurs vers la classe 1.
- Classe 4: 17454 corrects, mais 2928 erreurs vers la classe 1.
- Autres classes : Prédictions majoritairement correctes, erreurs minimes.

	Precision	Recall	F1-score	Support
0	1.00	1.00	1.00	29081
1	0.82	0.88	0.85	37280
2	1.00	1.00	1.00	10269
3	1.00	0.86	0.93	30440
4	1.00	0.86	0.92	20382
5	1.00	1.00	1.00	16497
6	0.85	1.00	0.92	25372
Accuracy			0.93	169321
Macro avg	0.95	0.94	0.95	169321
Weighted avg	0.94	0.93	0.93	169321

Courbe ROC AUC - Arbre de Décision Multiclasse

Outil clé pour évaluer la capacité du modèle à discriminer entre les classes, ici montrant un modèle performant

- Performances excellentes avec des AUC proches de 1.00 pour toutes les classes.
- Classes 0, 2, 3, 4, 5 : AUC parfait de 1.00, indiquant une séparation idéale.
- Classes 1 et 6 : AUC de 0.98, avec de légères erreurs de classification, mais toujours très performantes.

Analyse des catégories finales

Arbre de décision

Arbre de décision

F_Score <= 2.5 samples = 49.5% value = [0.0, 0.374, 0.122, 0.0, 0.0, 0.199, 0.305] class = 1

M_Score <= 1.5 samples = 23.7% value = [0.0, 0.109, 0.254, 0.0, 0.0, 0.0, 0.637] class = 6 M_Score <= 2.5 samples = 25.8% value = [0.0, 0.618, 0.0, 0.0, 0.0, 0.382, 0.0] class = 1 $F_Score <= 2.5$ samples = 50.5% value = [0.338, 0.068, 0.0, 0.359, 0.235, 0.0, 0.0]class = 3

M_Score <= 2.5 samples = 27.2% value = [0.627, 0.0, 0.0, 0.0, 0.373, 0.0, 0.0] class = 0

M_Score <= 3.5 samples = 23.3% value = [0.0, 0.147, 0.0, 0.778, 0.075, 0.0, 0.0] class = 3

Arbre de décision

Clusters Finales

Lion

- Puissants,
- Dominants,
- Récents,
- Grandes Valeurs Marques

Ours

- Fidèles,
- Réguliers,
- Modérés,
- Stables

Écureuils

- Occasionnels,
- Petits dépensiers,
 - Discrets,
- Potentiellement activables

Renards

- Discrets,
- Stratégiques,
 - Grands dépensiers,
 - À cibler

Castors

- Actifs
- Prévisibles,
 - Modérés,
 - Fiables

Chouettes

- Discrets,
- Silencieux,
- Modérés,
- Réactivables

- Lents,
- Dépensiers,
 - Inactifs,
- À fort potentiel de réengagement

Architecture et déploiement

Architecture Cloud d'Amazing

Architecture ML

Dockerizer du Modèle

Dockerfile

```
# Utiliser une image de base officielle de Python 3.10
FROM python:3.10
# Définir un répertoire de travail dans le conteneur pour votre application
WORKDIR /app
# Copier le fichier .parquet dans le conteneur à l'emplacement approprié
COPY ./data/full_df_output.parquet /app/data/full_df_output.parquet
# Copier le script Python principal dans le conteneur
COPY ./5_RMF_full_data.py /app
# Copier le fichier requirements.txt pour gérer les dépendances Python
COPY ./requirements.txt .
# Installer les dépendances Python spécifiées dans requirements.txt sans utiliser le cache
RUN pip install --no-cache-dir -r requirements.txt
# Spécifier la commande à exécuter au démarrage du conteneur : exécuter le script Python
CMD ["python", "5 RMF full data.py"]
```

Docker compose

```
version: '3.8'
services:
   ml_model:
   build: .
   ports:
     - "8888:8888"
   tty: true
```

MSPR - Bloc 2 : Amazing

Déploiement sur AWS ECS

```
name: ML Docker Image CI
on:
  push:
   branches: [ "main" ]
  pull_request:
   branches: [ "main" ]
jobs:
  build:
   runs-on: ubuntu-latest
    steps:
    - uses: actions/checkout@v4
    - name: Build the Docker image
     run: docker build . --file Dockerfile --tag ml_model:$(date +%s)
```

```
deploy:
  name: Deploy
  runs-on: ubuntu-latest
  environment: production
  steps:
  - name: Checkout
   uses: actions/checkout@v4
  - name: Configure AWS credentials
   uses: aws-actions/configure-aws-credentials@v1
   with:
     aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
     aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
     aws-region: ${{ env.AWS_REGION }}
  - name: Login to Amazon ECR
   id: login-ecr
   uses: aws-actions/amazon-ecr-login@v1
  - name: Build, tag, and push image to Amazon ECR
   id: build-image
   env:
     ECR_REGISTRY: ${{ steps.login-ecr.outputs.registry }}
     IMAGE_TAG: ${{ github.sha }}
   run:
     # Build a docker container and
     # push it to ECR so that it can
     # be deployed to ECS.
     docker build -t $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG .
     docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG
     echo "image=$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG" >> $GITHUB_OUTPUT
```


Conclusion et Perspectives

