

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА «П	оограммное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе № 3 по курсу «Моделирование»

Тема	Исследование псевдослучайных чисел			
Студе	ент Виноградов А. О.			
Групі	та_ИУ7-76Б			
Оценка (баллы)				
Преп	одаватель Рудаков И. В.			

1 Теоретическая часть

Для выполнения работы был выбран критерий «хи-квадрат». Это один из самых известных статистических критериев, также это основной метод, используемый в сочетании с другими критериями. С помощью этого критерия можно узнать, удовлетворяет ли генератор случайных чисел требованию равномерного распределения или нет. Для оценки по этому критерию необходимо вычислить статистику V по формуле:

$$V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_S^2}{p_s}\right) - n, \tag{1.1}$$

где n — количество независимых испытаний, k — количество категорий, Y_s — число наблюдений, которые действительно относятся к категории S, p_s — вероятность того, что случайное наблюдение относится к категории s.

Значение V является значением критерия «хи-квадрат» для экспериментальных данных. Приемлемое значение этого критерия можно определить по таблице на рисунке 1.1. Для этого используем строку с v=k-1, где $k=10,\,90,\,900$ для задания лабораторной. Р в этой таблице — это вероятность того, что экспериментальное значение V_e будет меньше теоретического V_t или равно ему. Ее также можно рассматривать как доверительную вероятность.

Если вычисленное по таблице P_V окажется меньше 0.01 или больше 0.99, можно сделать вывод, что эти числа недостаточно случайные. Если P_V лежит между 0.01 и 0.05 или между 0.95 и 0.99, то эти числа «подозрительны». Если P_V лежит между 0.05 и 0.1 или 0.9-0.95, то числа можно считать «почти подозрительными». Обычно необходимо произвести проверку три раза и более с разными данными. Если по крайней мере два из трех результатов оказываются подозрительными, то числа рассматриваются как недостаточно случайные.

	p = 1%	p = 5%	p = 25%	p = 50%	p = 75%	p = 95%	p = 99%		
$\nu = 1$	0.00016	0.00393	0.1015	0.4549	1.323	3.841	6.635		
$\nu = 2$	0.02010	0.1026	0.5754	1.386	2.773	5.991	9.210		
$\nu = 3$	0.1148	0.3518	1.213	2.366	4.108	7.815	11.34		
$\nu = 4$	0.2971	0.7107	1.923	3.357	5.385	9.488	13.28		
$\nu = 5$	0.5543	1.1455	2.675	4.351	6.626	11.07	15.09		
$\nu = 6$	0.8721	1.635	3.455	5.348	7.841	12.59	16.81		
$\nu = 7$	1,239	2.167	4.255	6.346	9.037	14.07	18.48		
$\nu = 8$	1.646	2.733	5.071	7.344	10.22	15.51	20.09		
$\nu = 9$	2.088	3.325	5.899	8.343	11.39	16.92	21.67		
$\nu = 10$	2.558	3.940	6.737	9.342	12.55	18.31	23.21		
$\nu = 11$	3.053	4.575	7.584	10.34	13.70	19.68	24.72		
$\nu = 12$	3.571	5.226	8.438	11.34	14.85	21.03	26.22		
$\nu = 15$	5.229	7.261	11.04	14.34	18.25	25.00	30.58		
$\nu = 20$	8.260	10.85	15.45	19.34	23.83	31.41	37.57		
$\nu = 30$	14.95	18.49	24.48	29.34	34.80	43.77	50.89		
$\nu = 50$	29.71	34.76	42.94	49.33	56.33	67.50	76.15		
$\nu > 30$	$\nu + \sqrt{2\nu}x_p + \frac{2}{3}x_p^2 - \frac{2}{3} + O(1/\sqrt{\nu})$								
$x_p =$	-2.33	-1.64	674	0.00	0.674	1.64	2.33		

Рисунок 1.1 – Некоторые процентные точки χ^2 - распределения. (Источник: Кнут Д. Э. «Искусство программирования»)

2 Результат

На рисунке 2.1 приведен пример работы программы.

Рисунок 2.1 – Пример работы программы