Air Pollution in the SF Bay Area

Group 3: Celina Kamler, Chris Kilkes, Divya Govil, Jonathan Gonzalez, Meredith Jones, & Palash Raval

Topic: 2020 AQI & Income in Bay Area Cities

Intended Audience:

Residents of the SF Bay Area, policymakers, and leaders at large Greenhouse Gas polluters

Data Sources:

Environmental Protection Agency (EPA)

Air Quality System API

ACS Census Data from 2020

Topic background:

Environmental pollutants tend to impact communities of color and low-income neighborhoods disproportionately; asthma rates are nearly double in these areas

Disparate Health Impacts

air pollution

https://www.edf.org/airqualitymaps/oakland/health-disparities

Our Process

01

ETL in Python

- Retrieved air quality
 data for various
 pollutants from the
 EPA's Air Quality
 System API for the Bay
 Area in 2020
- Merged the data with income data
- Aggregated the data into the max pollutant level for each city and date

02

Plotly Visualizations

- We utilized Plotly to create interactive visualizations that provide insights into the relationship between pollution levels and median income across different cities.
- Created line charts of the various pollutants across the different cities over the twelve months

03

PostgreSQL

- Generated master
 pollutant dataframes
 for future reference
- Created PostgreSQL
 database using robust
 table structure
- Exported SQL database & table files with ERD, enabling project dashboard

Leaflet

04

Created a map of the
Bay Area with layers for
median annual income
and major pollution
sources

05

Flask & Javascript

- Created an app using
 Flask through the app
 route
- The Flask application
 responds to requests at
 2 main endpoints and 5
 data endpoints
- The endpoint fetches
 data from the SQL
 database and does
 Plotly and dropdowns
 for the pollutant and
 month visualization
 across cities

Database Design

Purpose:

 Ingest, store and enable accurate pollutant and income data in SQL database for further analysis and use by Team #3 for dynamic visualization in the Air Quality & Income dashboard

Overall database design process:

- Clean pollutant data used post-ETL process using Pandas creating consolidated Bay Area pollutant data frame for storage and future reference
- Python used to create new consolidated .csv file providing a central referential SQL table for the new Air Quality & Income PostgreSQL database - maximizing integrity and utility
- pgAdmin used to create the new Air Quality & Income PostgreSQL database tying together the 1x new central City Master Table - holding the Primary Keys - with the 5x city & pollutant tables

Overall data flow:

- City Master Table is built to serve as referential centerpiece to the Air Quality & Income Database enabling maximum data integrity and usability for long-term analytics use
- Each of the other five tables contain pollutant data for Bay Area cities
- "city_index", "city", and "month" fields serve as unique
 Primary Keys in the City Master Table, serving as connecting
 Foreign Keys in the other pollutant tables

Webpage Demo

Leaflet Map Demo

Data Wrangling/Challenges

- Finding usable API data by city was challenging
- Flask: jsonify data for each pollutant to use d3.json for in JavaScript
- Leaflet: converted shapefile to geojson; converted geojson coordinates into a format Leaflet could use
- Getting dropdowns to work

Next Steps

- Expand geographic area to all of California
- Examine concentrated poverty (% of pop living below the federal poverty level)
- Get more complete AQI data for all neighborhoods and all cities

