

Generative Al Landscape: From Popular Services to DIY Solutions on Azure

Platinum Sponsor

Technical Sponsor

Generative Al

"Photo of a young office assistant, seated at an office desk, staring into the distance with a thoughtful expression. A lightbulb icon, sym"

Generative Al...for all and everything

- Arts & Photography
- Design
- Fashion
- Writing
- Sounds & Music
- Gaming
- Architecture
- Marketing
- Customer Support
- Advertising
- Programming
- Scientific Research
- Cinema

• • •

Generative AI: Magic

"Photorealistic 8k image showing a wise wizard with an elaborate robe and staff, intently observing a crystal ball. Within the orb, snippets of Python"

Generative AI: Overview

Foundation Models

Generative AI: Overview

Generative AI: A little bit of history

• • •

Generative AI: Text

https://azure.microsoft.com/en-us/products/cognitive-services/openai-service

ChatGPT

Generative AI: Images

"Gorgeous Mole Antonelliana near the beach"

DALL-E 3

https://openai.com/dall-e-3

https://www.bing.com/images/create/

Generative AI: Images

"[Inter/Juventus/Milan] club as woman, She wears the [Inter/Juventus/Milan] jersey, ultrarealistic, ultrahd, 4K"

https://midjourney.com/

Generative AI: Developer Assistants

Generative AI: Video

R runway

Generative AI: Audio - STT

Generative AI: Audio - TTS

IlElevenLabs – Prime Voice Al

Generative AI: 2D to 3D generation

https://developer.nvidia.com/blog/get ting-started-with-nvidia-instant-nerfs/

https://jonbarron.info/zipnerf/

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting

Cinema: Animation

https://www.youtube.com/watch?v=Y1HGglCqZ3c

https://ebsynth.com/

Cinema: Face-Swap and De-Aging

METAPHYSIC

https://metaphysic.ai/

https://www.youtube.com/watch?v=Pal1Vv9MpYY

JARKAN VF)

Games: Super-Resolution

Intel® XeSS
Super Sampling

Real Time: High Quality Effects

Speaker Focus

Noise removal

Room echo removal

Audio Super-resolution

Acoustic echo cancellation

Face Expression Estimation

Eye Contact

Face Tracking

Face Landmark Tracking

Face Mesh

Body Pose Estimation

Super Resolution

Upscaler

Artifact Reduction

Video Noise Removal

Why alternative & O.S. models?

Customization & Flexibility

Embedded/Mobile Devices

Data Policies & Ownership

No Connectivity

Savings & Optimization

Tools and frameworks

O PyTorch

Demo

Azure Machine Learning

https://learn.microsoft.com/en-us/azure/machine-learning/concept-foundation-models

Audio: Speech-To-Text

Robust Speech Recognition via Large-Scale Weak Supervision

https://arxiv.org/abs/2212.04356

https://github.com/openai/whisper

DEMO

Azure ML Foundation Model

DEMO

Local Audio Transcription (IT/EN) in .NET

https://github.com/ggerganov/whisper.cpp

https://github.com/sandrohanea/whisper.net

https://github.com/gianni-rg/gen-ai-net-playground

Size	Parameters	English-only model	Multilingual model	Required VRAM	Relative speed
tiny	39 M	tiny.en	tiny	~1 GB	~32x
base	74 M	base.en	base	~1 GB	~16x
small	244 M	small.en	small	~2 GB	~6x
medium	769 M	medium.en	medium	~5 GB	~2x
large	1550 M	N/A	large	~10 GB	1x

Text: LLaMA.cpp

Meta and Microsoft Introduce the Next Generation of Llama

https://about.fb.com/news/2023/07/llama-2/https://github.com/facebookresearch/llama

Llama 2: Open Foundation and Fine-Tuned Chat Models https://arxiv.org/pdf/2307.09288.pdf

License:

Model and weights are licensed for both **research AND commercial use**, upholding the principles of openness.

https://ai.meta.com/llama/license/ https://github.com/facebookresearch/llama/blob/main/LICENSE

Prompt: "8k cartoon representation drawn in the style of popular animated series, featuring a llama character with a speech bubble enthusiastically shouting"

Text: LLama.cpp

Model	Original size	Quantized size (4-bit)
7B	13 GB	3.9 GB
13B	24 GB	7.8 GB
30B	60 GB	19.5 GB
65B	120 GB	38.5 GB

Model	Measure	F16	Q4_0	Q4_1	Q5_0	Q5_1	Q8_0
7B	perplexity	5.9066	6.1565	6.0912	5.9862	5.9481	5.9070
7B	file size	13.0G	3.5G	3.9G	4.3G	4.7G	6.7G
7B	ms/tok @ 4th	127	55	54	76	83	72
7B	ms/tok @ 8th	122	43	45	52	56	67
7B	bits/weight	16.0	4.5	5.0	5.5	6.0	8.5

Supported models:

- LLaMA 1
- LLaMA 2 🐂 🐂
- Falcon
- Alpaca
- **GPT4All**
- Chinese LLaMA / Alpaca and Chinese LLaMA-2 / Alpaca-2
- Vigogne (French)
- Vicuna
- Koala
- OpenBuddy (Multilingual)
- Pygmalion 7B / Metharme 7B
- WizardLM
- Baichuan-7B and its derivations (such as baichuan-7b-sft)
- Aquila-7B / AquilaChat-7B
- Starcoder models
- Mistral Al v0.1

Text: Developer Assistants

The open-source autopilot for software development

A **VS Code extension** that brings the power of ChatGPT (and other LLMs) to your IDE

https://continue.dev/

DEMO

https://github.com/SciSharp/LLamaSharp

Text: Developer Assistants

Answer coding questions

Highlight sections of code and ask Continue for another perspective

Edit in natural language

Highlight a section of code and instruct Continue to refactor it

Generate files from scratch

Open a blank file and let Continue start new Python scripts, React components, C# classes, C++ methods, etc.

Understand errors and exceptions

In case of error or exception, you can send the stack trace into Continue and ask for it to explain the issue to you.

Images: Stable Diffusion

https://huggingface.co/blog/stable_diffusion https://huggingface.co/blog/annotated-diffusion https://github.com/huggingface/diffusers https://github.com/runwayml/stable-diffusion stability.ai
R runway
LAION **

Images: Stable Diffusion

DEMO Web UI Tool

https://github.com/AUTOMATIC1111/stable-diffusion-webui/

DEMO Generative AI Playground .NET

https://github.com/gianni-rg/gen-ai-net-playground

Tools and frameworks: OpenVINO

https://docs.openvino.ai/

OpenVINO™ Notebooks

Al Trends - Notebooks Check out the latest notebooks that show how to optimize and deploy popular models on Intel CPU and GPU. Complementary Description Notebook Preview Materials Blog - How to get YOLOV8 -Optimize YOLOv8 YOLOv8 Over 1000 fps using NNCF PTQ API Optimization with Intel GPUs? Prompt based object Blog - SAM: Segment SAM segmentation mask Anything Model -Segment generation using Versatile by itself and Anything Segment Anything Model Faster by OpenVINO and OpenVINO™ A Text-to-Image Blog - Control your Stable Diffusion ControlNet -Generation with ControlNet Stable-Model with Diffusion Conditioning and ControlNet and OpenVINO" OpenVINO

Text-to-Image Generation with Stable Diffusion v2 and OpenVINO™

Stable Diffusion v2 is the next generation of Stable Diffusion model a Text-to-Image latent diffusion model created by the researchers and engineers from Stability AI and LAION.

General diffusion models are machine learning systems that are trained to denoise random gaussian noise step by step, to get to a sample of interest, such as an image. Diffusion models have shown to achieve state-of-the-art results for generating image data. But one downside of diffusion models is that the reverse denoising process is slow. In addition, these models consume a lot of memory because they operate in pixel space, which becomes unreasonably expensive when generating high-resolution images. Therefore, it is challenging to train these models and also use them for inference. OpenVINO brings capabilities to run model inference on Intel hardware and opens the door to the fantastic world of diffusion models for everyone!

In previous notebooks, we already discussed how to run Text-to-Image generation and Image-to-Image generation using Stable Diffusion v1 and controlling its generation process using ControlNet. Now is turn of Stable Diffusion v2.

Stable Diffusion v2: What's new?

The new stable diffusion model offers a bunch of new features inspired by the other models that have emerged since the introduction of the first iteration. Some of the features that can be found in the new model are:

- The model comes with a new robust encoder, OpenCLIP, created by LAION and aided by Stability Al: this version v2 significantly
 enhances the produced photos over the V1 versions.
- The model can now concern in a 259/250 each disc, effective more information to be shown in the concernd in a series.

Underrated Topics

- Ethical AI
- Model Security
- Data Privacy

Prompt: "HDR photo of a balance scale with a brain on one side representing AI and machine learning, while the other side showcases a shield and lock indicating security [...]"

Thank You!

EUXαριστώ Salamat Po شكراً வின் நின்ற Grazie благодаря ありがとうございます Kiitos Teşekkürler 谢谢 விவபிคุณครับ Obrigado شكريہ Terima Kasih Dziękuję Hvala Köszönöm Tak Dank u wel ДЯКУЮ Tack Mulţumesc спасибо Danke Cám ơn Gracias 多謝晒 Ďakujem תודה நன்ற Děkuji 감사합니다

"Simpson character in front of enthusiastic Software Developers. In a speech bubble saying 'Any questions?'"

- Alir-

References (1/2)

- https://github.com/DotNetCodeIT/AzureDay2023Torino
- https://www.bing.com/images/create/
- https://midjourney.com/
- https://azure.microsoft.com/en-us/products/cognitive-services/openai-service
- https://runwayml.com/
- https://research.runwayml.com/gen2
- https://openai.com/dall-e-3
- https://openai.com/research/whisper
- https://www.youtube.com/watch?v=17_xLsqny9E
- https://beta.elevenlabs.io/
- https://research.nvidia.com/labs/dir/magic3d/
- https://developer.nvidia.com/blog/getting-started-with-nvidia-instant-nerfs/
- https://jonbarron.info/zipnerf/
- https://github.com/steven2358/awesome-generative-ai
- https://github.com/imaurer/awesome-decentralized-llm
- https://onnx.ai/
- https://docs.openvino.ai/
- https://www.nvidia.com
- https://github.com/openvinotoolkit/openvino_notebooks
- https://www.youtube.com/watch?v=PaI1Vv9MpYY

References (2/2)

- https://huggingface.co/blog/stable_diffusion
- https://huggingface.co/blog/annotated-diffusion
- https://github.com/huggingface/diffusers
- https://github.com/runwayml/stable-diffusion
- https://github.com/AUTOMATIC1111/stable-diffusion-webui/
- https://github.com/gianni-rg/gen-ai-net-playground
- https://github.com/facebookresearch/llama
- https://arxiv.org/abs/2302.13971
- https://github.com/ggerganov/llama.cpp
- https://github.com/SciSharp/LLamaSharp
- https://github.com/tatsu-lab/stanford_alpaca
- https://github.com/nomic-ai/gpt4all
- https://github.com/oobabooga/text-generation-webui
- https://github.com/openai/whisper
- https://github.com/ggerganov/whisper.cpp
- https://github.com/sandrohanea/whisper.net
- https://github.com/gianni-rg/gen-ai-net-playground
- https://whisper.ggerganov.com/talk/
- https://github.com/voicepaw/so-vits-svc-fork
- https://github.com/facebookresearch/AnimatedDrawings

- https://developer.nvidia.com/maxine
- https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting
- https://ebsynth.com/
- https://metaphysic.ai/
- https://about.fb.com/news/2023/07/llama-2/
- https://github.com/facebookresearch/llama
- https://arxiv.org/pdf/2307.09288.pdf
- https://continue.dev/

About Us

Clemente GIORIO

R&D Senior Software Engineer @ deltatre

- Augmented/Mixed/Virtual Reality
- Artificial Intelligence, Machine Learning, Deep Learning
- Internet of Things
- Hybrid Clusters
- Multimodal Tracking

DVIDIA

INNOVATOR

About Us

Microsoft Microsoft

Programming in C#

Windows Store Apps Using C#

Ing. Gianni ROSA GALLINA

R&D Technical Lead @ deltatre

- AI, Machine Learning, Deep Learning on multimedia content
- Virtual/Augmented/Mixed Reality
- Immersive video streaming & 3D graphics for sport events
- Cloud solutions, web backends, serverless, video workflows
- Mobile apps dev (Windows / Android / .NET MAUI / Avalonia)
- End-to-end solutions with Microsoft Azure

Platinum Sponsor

Technical Sponsor

