MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

> NEMZETI ERŐFORRÁS MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.
- 5. Az ábrán kívül ceruzával írt részeket a javító tanár nem értékelheti.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **elté- rő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- 4. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 5. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 6. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül **a vizsgázó által** megielölt változat értékelhető.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A vizsgafeladatsor II. B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1.		
$S_6 = -63$	2 pont	Ha a vizsgázó jól felírja a sorozat elemeit vagy a mértani sorozat összeg- képletébe jól helyettesíti be az adatokat, de rosszul számol, akkor l pontot kap.
Összesen:	2 pont	

2. első megoldás		
Az f egyenes egy normálvektora a (2;-1) vektor, ez a vektor az e egyenesnek is egy normálvektora.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
$2x - y = 2 \cdot 3 + (-1) \cdot (-2)$	1 pont	Ez a pont jár az egyenes egyenletének bármely alakjába való jó behelyet- tesítés esetén.
Az <i>e</i> egyenes egyenlete: $2x - y = 8$.	1 pont	
Összesen:	3 pont	

2. második megoldás		
Az f egyenes meredeksége 2, így az e egyenes meredeksége is 2.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
$-2 = 2 \cdot 3 + b$ egyenletből $b = -8$.	1 pont	
Az <i>e</i> egyenes egyenlete: $y = 2x - 8$.	1 pont	
Összesen:	3 pont	

3.		
A minimum helye: –2.	1 pont	
A minimum értéke: 4.	1 pont	
Összesen:	2 pont	

4.		
A) igaz	1 pont	
B) igaz	1 pont	
Összesen:	2 pont	

5.		
András fizetése az emelés után 156 800 Ft lett.	2 pont	
Összesen:	2 pont	

6.		
$\alpha = 45^{\circ}$	2 pont	
Összesen:	2 pont	

7.		
A kör középpontja: $K(-2;0)$,	2 pont	Ha csak az egyik koordi- náta jó, akkor 1 pont jár.
sugara $r = 3$.	1 pont	
Összesen:	3 pont	

8.		
Károly testtömegindexe ≈ 25,42 (kg/m²).	3 pont	Ha a vizsgázó a magas- ságot nem számolja át méterbe, akkor legfeljebb 2 pontot kaphat. Más helyes kerekítés (pl. 25) is elfogadható.
Összesen:	3 pont	

9.		
Két kockával 3-féleképpen lehet a dobott számok összege 4: (1; 3), (2; 2), (3; 1).	1 pont	
Két kockával összesen $6^2 = 36$ -félét dobhatunk.	1 pont	
Így a kérdéses valószínűség: $\frac{3}{36} (\approx 0.083)$.	1 pont	
Összesen:	3 pont	

10.		
A logaritmus definíciója alapján: $x^2 = 16$,	1 pont	
a lehetséges x értékek: 4,	1 pont	
-4 .	1 pont	
Összesen:	3 pont	

Megjegyzés: Ha a vizsgázó $2\log_2 x = 4$ -et, majd ebből x = 4-et kap, akkor 1 pontot kaphat.

11.			
A tört egyszerűsített alakja: $\frac{x-3}{x+3}$.		3 pont	Ha a vizsgázó a számlá- lót, illetve a nevezőt jól alakítja szorzattá, akkor ezért 1-1 pontot kaphat.
	Összesen:	3 pont	

12.			
A helyes válasz betűjele: A.		2 pont	
•	Összesen:	2 pont	

II. A

13. a)		
(A hatványozás azonosságainak felhasználásával) $5 \cdot 5^x + 5^2 \cdot 5^x = 30$.	1 pont	
$30 \cdot 5^x = 30$	1 pont	
$5^x = 1$	1 pont	
(Az 5 alapú exponenciális függvény szigorú monotonitása miatt) $x = 0$.	1 pont	
Ellenőrzés.	1 pont	
Összesen:	5 pont	

13. b)		
Az egyenlet bal oldalát közös nevezőre hozva: $\frac{3(x+2)-2x}{x(x+2)} = 1.$	1 pont	Ez a pont akkor is jár, ha a vizsgázó az első lépés- ben az egyenlet mindkét oldalát x(x + 2)-vel meg- szorozza.
Az egyenlet mindkét oldalát $x(x+2)$ -vel szorozva: $3(x+2) - 2x = x(x+2)$.	1 pont	
A zárójelek felbontása és összevonás után: $x + 6 = x^2 + 2x$.	1 pont	
Nullára rendezve: $x^2 + x - 6 = 0$.	1 pont	
A másodfokú egyenlet gyökei: $x_1 = -3$, $x_2 = 2$.	2 pont	
Ellenőrzés.	1 pont	
Összesen:	7 pont	

14. a) első megoldás		
m_a 12 cm $Az ATC \text{ derékszögű háromszögben}$ $m_a = 12 \cdot \sin 40^\circ \approx$	1 pont	Ez az 1 pont akkor is jár, ha a vizsgázó ábra nélkül jól dolgozik.
≈ 7,7 cm.	1 pont	
Összesen:	2 pont	

14. a) második megoldás		
Az ABC háromszög területe: $T = \frac{12 \cdot 14 \cdot \sin 40^{\circ}}{2}.$	1 pont	
Ebből a <i>BC</i> oldalhoz tartozó m_a magasság: $m_a = \frac{12 \cdot 14 \cdot \sin 40^{\circ}}{14} \approx 7,7 \text{ cm.}$	1 pont	
Összesen:	2 pont	

14. b)		
A háromszög kérdéses oldalára a koszinusztételt felírva:	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
$AB^2 = 14^2 + 12^2 - 2 \cdot 14 \cdot 12 \cdot \cos 40^\circ$	1 pont	
$AB \approx 9.1$ cm	1 pont	
Összesen:	3 pont	

14. c) első megoldás		
Az <i>AEDC</i> négyszög trapéz, mert az <i>ED</i> szakasz az <i>ABC</i> háromszögben középvonal, így párhuzamos az <i>AC</i> oldallal.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
ED = 6 (cm)	1 pont	
A trapéz magassága az <i>ABC</i> háromszög <i>AC</i> oldalhoz tartozó magasságának a fele.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
Az ABC háromszög területe:		
$T = \frac{12 \cdot 14 \cdot \sin 40^{\circ}}{2} (\approx 54 \text{ cm}^2).$	1 pont	$m_b = 14 \cdot \sin 40^\circ \approx$
Ebből az AC oldalhoz tartozó m_b magasság:		
$m_b = \frac{T \cdot 2}{12} \approx 9$ (cm).	1 pont	≈ 9 (cm).
Az AEDC trapéz területe: $T = \frac{12+6}{2} \cdot \frac{m_b}{2} \approx$	1 pont	
$\approx 40.5 \text{ cm}^2.$	1 pont	
Összesen:	7 pont	

14. c) második megoldás		
Az <i>AEDC</i> négyszög területét megkapjuk, ha az <i>ABC</i> háromszög területéből levonjuk a <i>BDE</i> háromszög területét.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
A BDE háromszög hasonló az ABC háromszöghöz.	1 pont	

A hasonlóság aránya: $\frac{1}{2}$,	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
így a <i>BDE</i> háromszög területe negyede az <i>ABC</i> háromszög területének.	1 pont	
Mivel az ABC háromszög területe: $T \approx 54 \text{ (cm}^2)$,	1 pont	
ezért a <i>BDE</i> háromszög területe $\approx 13,5$ (cm ²),	1 pont	
így az $AEDC$ trapéz területe $\approx 40.5 \text{ cm}^2$.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó helyes kerekítésekkel a kérdéses trapéz területére 40,4 cm²-t kap eredményül, akkor a megfelelő pontok járnak.

Ha a vizsgázó az egész feladat megoldása során több helyen nem kerekít vagy rosszul kerekít, akkor emiatt összesen 1 pontot veszítsen. Ha a vizsgázó válaszait az egész feladat megoldása során több helyen mértékegység nélkül adja meg, akkor emiatt összesen 1 pontot veszítsen.

15. a)		
A nyári olimpiák évszámai egy olyan számtani sorozatot alkotnak, melynek első tagja 1896, különbsége pedig 4.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
$a_{20} = 1896 + 19 \cdot 4 = 1972$, vagyis 1972-ben tartották a 20. nyári olimpiát.	1 pont	
Összesen:	2 pont	

15. b)		
$1896 + (n-1) \cdot 4 = 2008$	1 pont	Ez a 2 pont jár, ha a vizs- gázó az olimpiák évszá-
n = 29. nyári olimpiát tartották 2008-ban.	1 pont	mának felsorolásával ad- ja meg a jó választ.
Összesen:	2 pont	

15. c)		
(A megadott két adatot egy számtani sorozat első, illetve harmadik tagjának tekintve:) $75 + 2d = 192$,	1 pont	
amiből $d = 58,5$.	1 pont	
Így Eszter becslése a sorozat nyolcadik tagjára: $75 + 7d (= 484,5) \approx 485$ (millió dollár).	1 pont	
(A megadott két adatot egy mértani sorozat első illetve harmadik tagjának tekintve:) $75q^2 = 192$,	1 pont	
amiből ($q > 0$ miatt) $q = 1,6$.	1 pont	
Így Marci becslése a sorozat nyolcadik tagjára: $75q^7 \approx 2013$ (millió dollár).	1 pont	
1383 - 485 = 898 és $2013 - 1383 = 630$,	1 pont	
vagyis Marci becslése tér el kisebb mértékben a tényleges adattól.	1 pont	
Összesen:	8 pont	

II. B

16. a)					
	A halmaz	B halmaz	C halmaz		
52	eleme	nem eleme	eleme		
78	eleme	eleme	nem eleme		
124	nem eleme	nem eleme	eleme		
216	nem eleme	eleme	eleme		
Minden jo	ól kitöltött sor		_	1-1 pont	
A 52	78 2 216 124				Ha a vizsgázó a táblázat egy sorát hibásan töltötte ki, de az adott számot a feladat szövegének meg- felelő tartományba írja, akkor ez a pont sem jár.
Minden jo	ó helyre írt szán	n:		1-1 pont	
			Összesen:	8 pont	

16. b)		
A három halmaz közös részében azok a pozitív egész számok vannak, melyek 100-nál nem nagyobbak és 3-mal és 4-gyel is (tehát 12-vel) oszthatók.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
Ezek a számok: $A \cap B \cap C = \{12, 24, 36, 48, 60, 72, 84, 96\}.$	1 pont	Ez a pont jár, ha a vizs- gázó a 100:12 = 8,3 mű- velet eredményére hivat- kozik.
Összesen 8 darab ilyen szám van.	1 pont	
Összesen:	3 pont	

16. c)		
Az A halmaz elemeinek a száma: $ A = 100$.	1 pont	
Ezek közül hárommal osztható (vagyis <i>B</i> -nek is eleme) 33 darab.	1 pont	
Néggyel osztható (vagyis <i>C</i> -nek is eleme) 25 darab.	1 pont	
Tizenkettővel osztható (vagyis mindhárom halmaznak eleme) 8 darab.	1 pont	
Így az A halmaz azon elemeinek a száma, melyek nem elemei sem a B , sem a C halmaznak: $100-33-25+8=50$.	1 pont	
A kérdéses valószínűség: $P = \frac{50}{100} = 0.5$.	1 pont	
Összesen:	6 pont	

17. a)		
András jegyeinek átlaga 3,8,	1 pont	
így jegyeinek szórása $\sqrt{\frac{(3-3,8)^2 + + (5-3,8)^2}{5}} \approx$	1 pont	Ez a 3 pont akkor is jár, ha a vizsgázó számoló- géppel jól számol.
≈ 0,75 .	1 pont	g-FF or jour z-minest
Összesen:	3 pont	

Megjegyzés: Ha számológéppel ún. "korrigált szórást" számol (≈ 0,84), akkor 2 pontot kap.

17. b)		
András jegyeinek átlaga 3,8, Bea jegyeinek átlaga 4,6.	1 pont	
Mivel Cili jegyeinek szórása 0, ezért minden jegye azonos.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
Így Cilinek minden jegye 4-es.	1 pont	
Összesen:	3 pont	

17. c)		
Dávid jegyeinek összege 22,	1 pont	
jegyeit nagyság szerint sorba rendezve a középső 4-es.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
A jegyek között 1-es, 2-es és 3-as nem szerepelhet. Négy darab 4-ese nem lehet, mert akkor a jegyek összege nem lehet 22.	1 pont	Ez a pont bármilyen he- lyes indoklás esetén jár.
Dávid jegyei: 4; 4; 4; 5; 5.	1 pont	
Ezekkel a jegyekkel érettségi bizonyítványát $\binom{5}{2}$ =	2 pont	Ez a 3 pont jár, ha a vizs- gázó felsorolja az összes
= 10 -féleképpen lehet kitölteni.	1 pont	lehetséges esetet.
Összesen:	7 pont	

17. d)		
Jeles osztályzatot az osztály $\frac{1}{6}$ része ért el, a hozzájuk tartozó körcikk középponti szöge 60°.	1 pont	
A közepes osztályzatot elérőkhöz tartozó középponti szög $360^{\circ} - (60^{\circ} + 45^{\circ} + 150^{\circ}) = 105^{\circ}$,	1 pont	
az ehhez tartozó diákok száma: $\frac{105^{\circ}}{360^{\circ}} \cdot 24$,	1 pont	Ez a pont akkor is jár, ha a vizsgázó megállapítja, hogy egy diákhoz 15°-os középponti szög tartozik.
vagyis közepes osztályzatot 7 diák szerzett.	1 pont	
Összesen:	4 pont	

18. a)		
A test alaplapja négyzet, melynek területe	1 pont	
$T = 100 \text{ (cm}^2).$	1 pont	
A gúla m magassága egy olyan derékszögű háromszög egyik befogója, melynek átfogója 10 (cm),	1 pont*	Ez a 2 pont akkor is jár, ha a megoldásból kide- rül, hogy a vizsgázó gon- dolatmenete helyes volt.
másik befogója (az alaplap átlójának fele): $\frac{10 \cdot \sqrt{2}}{2} (= \sqrt{50} \approx 7,07 \text{ cm}).$	1 pont*	
(Így a Pitagorasz-tétel értelmében:) $m^2 = 100 - 50 = 50$,	1 pont*	
amiből ($m > 0$ miatt) $m = \sqrt{50}$ ($\approx 7,07$ cm).	1 pont	
A gúla térfogata $V = \frac{Tm}{3} = \frac{100 \cdot \sqrt{50}}{3} (\approx 236) \text{ cm}^3$.	1 pont	
Összesen:	6 pont	

A *-gal jelölt 3 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

21 gai feioti 3 pontoi az atabbi gonabiaimenetett is me	s^{mp}	ti
A gúla <i>m</i> magassága egy olyan derékszögű háromszög egyik befogója, melynek másik befogója 5 (cm),	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
átfogója (egy 10 cm oldalú szabályos háromszög magassága): $\frac{10 \cdot \sqrt{3}}{2}$ (= $\sqrt{75} \approx 8,66$ cm).	1 pont	
(Így a Pitagorasz-tétel értelmében:) $m^2 = 75 - 25 = 50$,	1 pont	

18. b) első megoldás		
Mivel a kocka BA éle merőleges az ADHE oldallapra, ezért) a HAB szög nagysága 90°.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt
A kocka élének hosszát <i>a</i> -val jelölve $AH = a \cdot \sqrt{2}$,	1 pont	
$igy tg\alpha = \sqrt{2},$	1 pont	
amiből (0° < α < 90° miatt) $\alpha \approx 54,74$ °.	1 pont	Bármilyen helyes kere- kítés (pl. 55°) esetén jár ez a pont.
Összesen:	4 pont	

18. b) második megoldás		
A kocka élének hosszát <i>a</i> -val jelölve $AH = a \cdot \sqrt{2}$,	1 pont	
$BH = a \cdot \sqrt{3}$.	1 point	
Az ABH háromszögben felírható koszinusztétel:	1 nont	
$2a^2 = a^2 + 3a^2 - 2 \cdot a \cdot a \cdot \sqrt{3} \cdot \cos \alpha,$	1 pont	
amiből $\cos \alpha = \frac{1}{\sqrt{3}}$,	1 pont	
√3		
		Bármilyen helyes kere-
igy $(0^{\circ} < \alpha < 90^{\circ} \text{ miatt}) \ \alpha \approx 54,74^{\circ}.$	1 pont	kítés (pl. 55°) esetén jár
		ez a pont.
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó egy általa választott élhosszúságú kockából jól számolja ki a szöget, akkor teljes pontszámot kaphat.

18. c)		
A gömböket jelölje a megadott fokszámok sorrendjében A , B , C , D , E , F és G . Az A gömb mindegyik másik gömbbel össze van kötve.	1 pont	
Mivel G elsőfokú gömb, ezért csak A-val van összekötve.	1 pont	
F is elsőfokú gömb, ezért F is csak A -val van összekötve.	1 pont	
Ezek szerint <i>B</i> csak <i>A</i> -val, <i>C</i> -vel, <i>D</i> -vel és <i>E</i> -vel lehet összekötve, vagyis nem lehet ötödfokú.	1 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó egy olyan 7 csúcsú gráfot rajzol, amely tükrözi a feladat megértését, de szövegesen nem indokolja az ellentmondást, akkor 2 pontot kaphat.

18. d) első megoldás		
Mindegyik felhasznált pálcika két gömböt köt össze, így az egyes csúcsokból induló pálcikákat megszámolva minden felhasznált pálcikát kétszer számolunk meg.	1 pont	Ez a 2 pont akkor is jár, ha a megoldásból kide- rül, hogy a vizsgázó gon-
Így az összes (jól) feljegyzett szám összege éppen kétszerese a pálcikák számának.	1 pont	dolatmenete helyes volt.
A pálcikák száma tehát: $\frac{6+5+3+3+2+2+1}{2} = 11.$	1 pont	
Összesen:	3 pont	

18. d) második megoldás		
A gömböket tekintsük egy gráf csúcsainak, a gömböket összekötő pálcikákat pedig a gráf éleinek.	1 pont	Ez a 2 pont akkor is jár, ha a megoldásból kide-
Ebben a gráfban a csúcsok fokszámának összege az élek számának kétszerese.	1 pont	rül, hogy a vizsgázó gon- dolatmenete helyes volt.
A pálcikák száma tehát: $\frac{6+5+3+3+2+2+1}{2} = 11$.	1 pont	
Összesen:	3 pont	

Megjegyzés: Ha a vizsgázó egy helyesen felrajzolt gráfból adja meg az élek (pálcikák) számát, akkor ez a 3 pont jár.