ESERCIZI FACOLTATIVI

16 novembre 2007

ESERCIZIO 4

Sia (G, \cdot) un gruppo.

- 1. Mostrare che l'intersezione di due sottogruppi di G è un sottogruppo di G.
- 2. Siano H e K due sottogruppi di G. Mostrare che l'unione insiemistica di H e K è un sottogruppo di G se e solo se H è contenuto in K o K è contenuto in H.

Risoluzione

1. Siano H e K due sottogruppi di G e dimostriamo che $H \cap K$ è un sottogruppo di G usando il criterio per i sottogruppi. Siano $x, y \in H \cap K$.

$$\underline{\mathrm{Tesi}}\ x \cdot y^{-1} \in H \cap K.$$

Da $x, y \in H \cap K$ segue che $x, y \in H$ e $x, y \in K$. Inoltre $y^{-1} \in H$ e $y^{-1} \in K$ perché, per ipotesi, H e K sono sottogruppi. Per lo stesso motivo H e K sono anche chiusi quindi $x \cdot y^{-1} \in H$ e $x \cdot y^{-1} \in K$. Segue che $x \cdot y^{-1} \in H \cap K$.

2. \Rightarrow) Supponiamo che $H \cup K$ sia un sottogruppo di G.

$$\underline{\mathrm{Tesi}}\ H\subseteq K\ \mathrm{o}\ K\subseteq H.$$

Supponiamo per assurdo che la tesi sia falsa e quindi che $H \nsubseteq K$ e $K \nsubseteq H$. Allora esistono $x \in H \setminus K$ e $y \in K \setminus H$, dove \ denota la differenza insiemistica. Banalmente si ha che $x,y \in H \cup K$ e quindi $x \cdot y \in H \cup K$ essendo $H \cup K$ un sottogruppo per ipotesi. Allora si presentano due possibilità:

1° caso: $x \cdot y \in H$. Per ipotesi H è un sottogruppo quindi $x^{-1} \in H$. Inoltre H è chiuso e quindi $(x^{-1} \cdot (x \cdot y)) \in H$. Ma

$$x^{-1} \cdot (x \cdot y) = (x^{-1} \cdot x) \cdot y = y$$

e così $y \in H$ che è assurdo perché avevamo supposto che $y \in K \setminus H$.

 2° caso: $x \cdot y \in K$. Analogo al caso precedente.

In entrambi i casi si ottiene un assurdo che deriva dall'aver supposto che la tesi è falsa. Segue che la tesi è vera, cioè $H \subseteq K$ o $K \subseteq H$.

 \Leftarrow) Supponiamo che $H \subseteq K$ oppure $K \subseteq H$.

<u>Tesi</u> $H \cup K$ è un sottogruppo di G.

Se $H\subseteq K$ allora $H\cup K=K$ e K per ipotesi è un sottogruppo di G. Analogamente, se è $K\subseteq H$ allora $H\cup K=H$ e H per ipotesi è un sottogruppo di G. In entrambi i casi si ottiene che $H\cup K$ è un sottogruppo di G.