Kvantovanie farieb dithering

Kvantovanie

Obrazovo nezávislé metódy

- najvýznamnejšie bity (~2)
- rozdelenie priestoru farieb (partitioning)
- referenčné farby, indexovanie
- prahovanie

Obrazovo závislé metódy

- zhlukovanie priestoru farieb (clustering)
- segmentácia obrazu rozdelenie obrazu na útvary, ktoré majú rovnaké charakteristiky (farba, textúra, ...)
- prahovanie

Šedotónové obrazy

Jednoduchý prípad – jeden kanál

Zmenšenie počtu farieb (úrovní šedej)

Histogram

- Každej farbe R_iG_jB_k priradí počet obrazových bodov s touto farbou
- Pre každú farbu 256 odtieňov 256³ pamäť
- Veľkosť obrazu oveľa menšia ako veľkosť histogramu
- Väčšina binov histogramu prázdna

Histogram - variácie

Xiang

Iba RG pole a list s hodnotami B a frekvenciu výskytu Zložitosť O(S/2) kde S je priemerná veľkosť B listov

Balasubramanian

Vylepšenie B list -> binárny strom Zložitosť O(log(S))

Histogram

každej úrovni jasu priradí zodpovedajúcu početnosť v obraze

vyhladenie histogramu

Prahovanie histogramu

prahová (hraničná) hodnota: p(i), i=0,..n reprezentatívna farba: f(i), i=1,..n - voľba

 \forall body obrazu s intenzitou I(x,y)

ak
$$p(i-1) < I(x,y) \le p(i)$$
 tak $I(x,y) = f(i)$

Prahovanie

adaptívne – hľadáme lokálne minimá

Výsledok

Prahovanie

pevný prah – pravidelné intervaly

Výsledok

Porovnanie

adaptívne vs. pevné

účel použitia

Binarizácia

2 farby (biela, čierna)

triviálne pomocou globálneho prahovania

stráca sa nám informácia

naivný algoritmus prah = 1/2

Problém?

Vylepšenie

prah taký, aby sa (približne) zachovala

priemerná intenzita

Intenzita

originál: 0.3297

prah 0.5: 0.2048

Príklad

priemerná intenzita = 0.6

prah taký, aby 60% bodov malo vyššiu hodnotu a 40% nižšiu hodnotu

Usporiadame "body" podľa intenzity Určíme prah

Nie vždy zachováme intenzitu presne

originál: 0.3297

prah 0.5: 0.2048

Náhodná modulácia

Intenzita 0.3297

Pred prahovaním pridáme šum

Každému pixlu sa pridá náhodná hodnota Rovnomerne rozloženie z [-a,a]

Náhodná modulácia

Gaussovský šum

Intenzita 0.3297

Halftoning

používa sa pri tlači novín

Šedé obrazové body sa reprodukujú ako rôzne veľké tlačové body.

Čím tmavší obrazový bod, tým väčší tlačový bod

Halftoning

Dithering

Využíva vlastnosť oka priemerovať body v malom okolí

Zmenšovaním veľkosti červeného a modrého obrazového bodu vytvorím fialovú farbu

Dither coding (alebo dithering) – zmena šedotónového obrazu na binárny, pri zachovaní priemernej intenzity v oblastiach obrazu

Dithering

Dithering

Najrozšírenejšie metódy

ordered dithering

error diffusion

Ordered dithering

 Aplikovanie prahovej mapy na obrazové body, čo spôsobuje že niektoré body sú zobrazované inou farbou

Ordered dithering

- obraz rozdelíme na bloky veľkosti n x n
- každý blok sa spracuje samostatne
- každý pixel bloku sa porovná s určeným prahom
- prahové hodnoty sú dané generátorom pseudonáhodných čísel

$$th_{i,j} = \frac{x_{\text{max}} + 1}{n^2} \cdot \left(k_{i,j} + 0.5\right)$$

n – veľkosť matice

ki,j – zodpovedajúca pseudonáhodná hodnota daná maticou

xmax – maximálna intenzita

Ordered dithering – matice

Ako vyrobiť maticu?

$$\mathbf{D}_2 = \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}$$

$$\mathbf{D}_{n} = \begin{bmatrix} 4\mathbf{D}_{n/2} + \mathbf{D}_{00}\mathbf{I}^{n/2} & 4\mathbf{D}_{n/2} + \mathbf{D}_{01}\mathbf{I}^{n/2} \\ 4\mathbf{D}_{n/2} + \mathbf{D}_{10}\mathbf{I}^{n/2} & 4\mathbf{D}_{n/2} + \mathbf{D}_{11}\mathbf{I}^{n/2} \end{bmatrix}$$

$$\mathbf{D}_{3} = \begin{bmatrix} 7 & 2 & 6 \\ 4 & 0 & 1 \\ 3 & 8 & 5 \end{bmatrix}$$

D_{ij} - i,j element matice D₂ Iⁿ - nxn jednotková matica

0	8	2	10
12	4	14	6
3	11	1	9
15	7	13	5

Matice

treba vyberať starostlivo, aby nevytvárali neželané efekty

Ordered dithering – príklad

	*		
8	136	40	168
200	72	232	104
56	184	24	152
248	120	216	88

<u> </u>	•	

Vstupný obrázok

Zodpovedajúce prahy

$$th_{i,j} = \frac{x_{\text{max}} + 1}{n^2} \cdot \left(k_{i,j} + 0.5\right)$$

Výsledný obrázok

Vstupná intenzita: 1038 (64.875)

Výstupná intenzita: 1020 (63.75)

blok, kde všetky intenzity sú v intervale 56 – 72: výsledný obraz: 4 biele a 12 čiernych pixlov

Ordered dithering - nedostatky

 Vytvára nežiaduce rekurzívne textúry, šrafovanie

Clustered dithering

napodobuje novinovú tlač

$$D = \begin{bmatrix} 21 & 22 & 9 & 19 & 13 \\ 24 & 2 & 7 & 4 & 16 \\ 14 & 5 & 0 & 1 & 10 \\ 11 & 8 & 3 & 6 & 20 \\ 17 & 18 & 12 & 23 & 15 \end{bmatrix}$$

Patterning

pixel nahradíme blokom výstupné zariadenie má vyššie rozlíšenie

Matice - podobne ako pre dithering

Patterning

Výsledný obrázok

Vstupný obrázok

33	113	234
64	121	219
92	133	245

1	4	8
2	4	8
3	5	9

Zodpovedajúca matica

prahy

14 42 71 99 128 156 184 213 241

Patterning

Error diffusion

 chyba z kvantizačného procesu sa prenáša na susedné obrazové body aby sa následne negovala.

metóda *Floyd-Steinberg* dithering

Error diffusion

Nech *I (x,y)* je hodnota obrazového bodu získaná pseudonáhodným procesom a $\Delta(x,y) = I(x,y) - I_Q(x,y)$ je kvantizačná chyba v obrazovom bode (x,y), potom I(x,y) je vyjadrené nasledovne

$$I'(x,y) = I(x,y) + \delta(x,y)$$

KOE
$$\delta(x,y) = \sum_{i=0}^{m} \sum_{j=0}^{n} C_{ij} \Delta(x-i, y-j)$$
 a $C_{00} = 0$ and $\sum_{i=0}^{m} \sum_{j=0}^{n} C_{ij} = 1$

$$C_{00} = 0$$
 and $\sum_{i=0}^{m} \sum_{j=0}^{n} C_{ij} = 1$

i a j určujú okolie na ktorom sa kvantizačná chyba akumuluje na základe koeficientov C_{ii} ,

Podmienka na C_{ii} zaručuje, že sa lokálne kvantizačná chyba priemeruje na nulu.

 $\delta(x,y)$ reprezentuje dvoj-rozmerný filter

Error diffusion

- Spracúva obraz po riadkoch zhora dolu zľava doprava.
- Každý bod je zaokrúhlený k 0 alebo 1 (255).
- Chyba pri zaokrúhľovaní je potom rozdelená medzi susedné body podľa masky.

Napr. ak hodnota intenzity je 191, zaokrúhlením na 255 máme chybu 64.

=> moc svetlý bod, preto susedné body stmavíme, aby sa suma intenzít bodov (veľmi) nezmenila.

Figure 9.15 The Floyd–Steinberg algorithm: (a) the propagation of the quantization error to neighboring pixels and (b) the contribution of neighboring pixels to the noise vector.

35	89	95	132
68	112	100	150
51	45	98	127

0

35/16 = 2.1875

	15
11	2

35	104	95	132
79	114	100	150
51	45	98	127

		7/16
3/16	5/16	1/16

35	104	95	132
79	114	100	150
51	45	98	127

0	0	

104/16 = 6.5

		46
20	33	6

35	104	141	132
99	147	106	150
51	45	98	127

	•	7/16
3/16	5/16	1/16

35	104	141	132
99	147	106	150
51	45	98	127

0	0	255	

$$-114/16 = -7.125$$

		-50
-21	-36	-7

35	104	141	82
99	126	70	143
51	45	98	127

vstup

35	89	95	132
68	112	100	150
51	45	98	127

výstup

0	0	255	0
0	255	0	255
0	0	0	255

Suma intenzít v originálnom obraze: 1102. Suma intenzít vo výslednom obraze: 1020.

Priemerná chyba na pixel: -6.83

Error diffusion - nedostatky

- Výber farebnej palety treba zaručiť aby každá farba pôvodného obrazu sa dala vyjadriť ako lineárna kombinácia farieb z farebnej palety
- Niekedy vzniknú "ghosts" v obraze
- Vytvára sa zrnitý obraz

24-bit RGB image dithered to <u>3-bit</u>
RGB using Floyd-Steinberg
dithering

Porovnanie rôznych metód

Pôvodný obraz

threshold

random

halftone

Ordered dithering

Floyd-Steinberg

Farebné obrazy

3 kanály – RGB, HSV, Lab, ...

2 problémy:

- Rozdelenie 3D priestoru
- Mapovanie farieb

Indexovanie

Paleta farieb Každému pixlu priradíme index do palety

Počet farieb v palete = 256 Index – 8 bitov

111	14	126	5	12	36
36	111	36	12	17	111
17	111	200	36	12	36
14	36	12	36	14	36
17	111	14	126	17	111
12	126	200	36	12	36

Zmenšíme potrebný priestor 3x z pôvodného R,G,B à 8 bitov

Obrazovo nezávislé kvantovanie

- Vyberieme K reprezentatívnych farieb z farebného priestoru nezávisle od frekvencie výskytu v konkrétnom obraze
- Rozdelenie priestoru farieb na K rovnakých subkociek.
- Reprezentatívne farby centroid subkocky
- Techniky sa líšia podľa geometrie priestoru farieb

Figure 9.2 Uniform quantization of color space *YIQ* into (a) rectangular sub-boxes and (b) skewed rectangular sub-boxes.

Pevná paleta - príklady

Pravidelné rozdelenie RGB kocky na 6x6x6 –216 farieb Web-save color pallete

Rozdelenie 3-3-2: rozdelenie RGB kocky na 8x8x4 – 256 farieb

216 3-3-2

Adaptívna paleta

Farby v palete – vyberú sa z farieb v obraze

Ak zvolíme "nesprávnu" paletu

spektrum

Ak zvolíme "nesprávnu" paletu

Black body

originál

Original image using the web-safe color palette with Floyd-Steinberg dithering.

Here, the original has been reduced to a 256-color optimized palette with Floyd-Steinberg dithering applied. The use of an optimized palette, rather than a fixed palette, allows the result to better represent the colors in the original image.