

Mathématiques et Statistiques appliquées à la Gestion

Correction Lab 1 BBA-1 (2021-2022)

Guillaume Metzler Université de Lyon, Université Lumière Lyon 2 Laboratoire ERIC EA3083, Lyon, France

guillaume.metzler@univ-lyon2.fr

• • •

Dans cette première partie, le département des services techniques d'AMS a travaillé sur un projet visant a amélioré le service et la qualité d'accès à internet de ces clients, pour cela ils ont effectué des mesures quant à la vitesse de chargement et ont pour objectif une valeur de 1.0 en terme de vitesse de chargement. Leurs étude se base sur des données issues de l'année précédente et ils montrent que les données, qui représentent la vitesse de chargement, sont distribuées selon une loi normale de moyenne $\mu=1.005$ et d'écart-type $\sigma=0.10$. On considère que la vitesse de chargement est acceptable si la mesure est comprise entre 0.95 et 1.05.

1. On considère que la distribution de la vitesse de chargement reste inchangée par rapport aux années précédentes. On demande alors d'estimer différentes probabilités.

On rappelle que si $X \sim \mathcal{N}(\mu, \sigma^2)$, alors la variable aléatoire $Z = \frac{X - \mu}{\sigma}$ suit une loi normale centrée réduite, *i.e.* $Z \sim \mathcal{N}(0, 1)$, dans le cas où vous devez faire vos calculs à l'aide d'une table de la loi normale.

Nous pouvons maintenant répondre aux différentes questions dans le cas où la vitesse de téléchargement est modélisée par une variable aléatoire X distribuée selon une loi $\mathcal{N}(1.005, 0.10)$:

• Quelles est la probabilité que cette vitesse de téléchargement soit inférieure à 1, i.e. calculer $\mathbb{P}[X < 1]$

$$\begin{split} \mathbb{P}\left[X<1\right] &= \mathbb{P}\left[\frac{X-1.005}{0.1} < \frac{1-1.005}{0.1}\right],\\ &\downarrow \text{ on pose ensuite } Z = \frac{X-1.005}{0.1} \text{ où } Z \sim \mathcal{N}(0,1)\\ &= \mathbb{P}\left[Z<-0.05\right],\\ &\downarrow \text{ on utilise le fait que } \mathbb{P}\left[Z<-t\right] = 1 - \mathbb{P}\left[Z< t\right]\\ &= 1 - \mathbb{P}\left[Z<0.05\right],\\ &\downarrow \text{ on recherche la valeur dans la table de la loi normale}\\ &= 1-0.5199,\\ &= 0.4801. \end{split}$$

• Quelle est la probabilité que cette vitesse de téléchargement soit comprise entre 0.95 et 1, i.e. calculer $\mathbb{P}[0.95 < X < 1.0]$

$$\begin{split} \mathbb{P}\left[0.95 < X < 1\right] &= \mathbb{P}\left[\frac{0.95 - 1.005}{0.1} < \frac{X - 1.005}{0.1} < \frac{1 - 1.005}{0.1}\right], \\ &\downarrow \text{ on pose ensuite } Z = \frac{X - 1.005}{0.1} \text{ où } Z \sim \mathcal{N}(0, 1) \\ &= \mathbb{P}\left[-0.55 < Z < -0.05\right], \\ &\downarrow \text{ on utilise le fait que } \mathbb{P}\left[a < Z < b\right] = \mathbb{P}\left[Z < b\right] - \mathbb{P}\left[Z < a\right] \\ &= \mathbb{P}\left[Z < -0.05\right] - \mathbb{P}\left[Z < -0.55\right], \\ &\downarrow \text{ on recherche la valeur dans la table de la loi normale} \\ &= 0.4801 - 0.2912, \\ &= 0.1889. \end{split}$$

• Quelle est la probabilité que cette vitesse de téléchargement soit comprise entre 1 et 1.05, i.e. calculer $\mathbb{P}[1 < X < 1.05]$

$$\begin{split} \mathbb{P}\left[1 < X < 1.05\right] &= \mathbb{P}\left[\frac{1 - 1.005}{0.1} < \frac{X - 1.005}{0.1} < \frac{1.05 - 1.005}{0.1}\right], \\ &\downarrow \text{ on pose ensuite } Z = \frac{X - 1.005}{0.1} \text{ où } Z \sim \mathcal{N}(0, 1) \\ &= \mathbb{P}\left[-0.05 < Z < 0.45\right], \\ &\downarrow \text{ on utilise le fait que } \mathbb{P}\left[a < Z < b\right] = \mathbb{P}\left[Z < b\right] - \mathbb{P}\left[Z < a\right] \\ &= \mathbb{P}\left[Z < 0.45\right] - \mathbb{P}\left[Z < -0.05\right], \\ &\downarrow \text{ on recherche la valeur dans la table de la loi normale} \\ &= 0.6736 - 0.4801, \\ &= 0.1935. \end{split}$$

• Quelle est la probabilité que cette vitesse de téléchargement soit plus petite que 0.95 ou supérieure à 1.05, *i.e.* calculer $\mathbb{P}[(X < 0.95) \cup (X > 1.05)]$

$$\begin{split} \mathbb{P}[(X < 0.95) \cup (X > 1.05)] &= 1 - \mathbb{P}[0.95 < X < 1.05], \\ &\downarrow \text{ on mobilise les deux questions précédentes} \\ &= 1 - 0.1935 - 1889, \\ &= 0.6176. \end{split}$$

- 2. L'objectif des opérations est faire en sorte de réduire la probabilité que la vitesse de chargement soit inférieure à 1. On souhaite savoir si l'équipe doit se concentrer sur l'augmentation de la vitesse moyenne de chargement (i.e. augmenter la valeur de μ à 1.05) ou sur un moyen de réduire la variabilité de la vitesse de chargement (i.e. réduire l'écart-type σ du process à 0.075). Pour cela, on va étudier la valeur de la probabilité de cet évènement en fonction des deux modifications de paramètres.
 - \bullet L'augmentation de μ implique le changement suivant :

$$\mathbb{P}\left[X < 1\right] = \mathbb{P}\left[\frac{X - 1.05}{0.1} < \frac{1 - 1.05}{0.1}\right],$$

$$\downarrow \text{ on pose ensuite } Z = \frac{X - 1.05}{0.1} \text{ où } Z \sim \mathcal{N}(0, 1)$$

$$= \mathbb{P}\left[Z < -0.5\right],$$

$$\downarrow \text{ on utilise le fait que } \mathbb{P}\left[Z < -t\right] = 1 - \mathbb{P}\left[Z < t\right]$$

$$= 1 - \mathbb{P}\left[Z < 0.5\right],$$

$$\downarrow \text{ on recherche la valeur dans la table de la loi normale}$$

$$= 1 - 0.6915,$$

$$= 0.3085.$$

• La diminution de σ implique le changement suivant :

$$\begin{split} \mathbb{P}\left[X < 1\right] &= \mathbb{P}\left[\frac{X - 1.005}{0.075} < \frac{1 - 1.005}{0.075}\right], \\ &\downarrow \text{ on pose ensuite } Z = \frac{X - 1.005}{0.075} \text{ où } Z \sim \mathcal{N}(0, 1) \\ &= \mathbb{P}\left[Z < -0.067\right], \\ &\downarrow \text{ on utilise le fait que } \mathbb{P}\left[Z < -t\right] = 1 - \mathbb{P}\left[Z < t\right] \\ &= 1 - \mathbb{P}\left[Z < 0.067\right], \\ &\downarrow \text{ on recherche la valeur dans la table de la loi normale} \\ &= 1 - 0.5279, \\ &= 0.4721 \end{split}$$

Il est donc préférable d'augmenter la vitesse moyenne de chargement, donc d'augmenter la valeur de μ .