FB 19| Geography

Department of Environmental Informatics.

Dr. Dirk Zeuss Spaska Forteva Madhuvanthi Venkatesh

Course Name: Species Distribution Modelling (SDM).

Software: Digitize IT.

Module: Object Detection.

Software Tutorial

Tasks (12th May)

- Extraction of Template Images.
- Find the real size in cm² of maps on your test images by trying several resolutions in dots per inch (DPI). **Not, Number of Pixels!.**
- Find the maximum value for the threshold of template matching.

Output

Figure 12: Page 212 [2]

Output

```
rows = [[tifffile, w, h , pt[1] + w, pt[0] + h, size, threshold, (time.time() - start_time)]
```

Filename	x1	y1	x2	y2	size	threshold	time
/content/drive/ MyDrive/Book 14/0124.tif	214	254	392	637	2.19176981	0.2	0.7414739132
Filename	x1	y1	x2	y2	size	threshold	time
/content/drive/ MyDrive/Book 14/0123.tif	214	254	340	319	2.19176981	0.2	1.596010208

x1 = pt[1] y1 = pt[0] x2 = x1 + wy2 = x2 + h Size of the map in the textbook = $51.2 (8*6.4) cm^2$.

Size = w * h * (2.54 / no of pixels) * (2.54 / no of pixels)

No of Pixels ~ 250 (261-262).

What's next?.

Let's execute the program together.

Step 1: Data.
 https://rstudio.cloud/
 https://github.com/environmentalinformatics-marburg/distribution_digitizer_students.git

```
    Step 2: R-Cloud.
        install.packages("reticulate")
        library(reticulate)
        os <- import("os")
        library(reticulate)
        use_python("/usr/local/bin/python")</li>
```

Step 3: Packages.
 py install(packages = "opency-p"

```
py_install(packages = "opencv-python", pip = TRUE)
py_install(packages = "pillow", pip = FALSE)
```

Step 4: Execution . source_python("template_matching_png.py")

Outputs (Threshold = 0.25)

• 2020_suprascan_00030 The Butterflies of Turkmenistan

Outputs (Threshold = 0.25)

• 2020_suprascan_00034 The Butterflies of Transbaikal Siberia.

• 2020_suprascan_00050 The Butterflies of Afghanistan.

Manually filter and choose the outputs for georeferencing!.

Importance of Records

- Helps to identify the missing files. For example: I can find out whether the file was executed or not in case if I don't get any output!.
- The threshold and order of execution.
- Time for executing the files (how fast the program is ?!).
- The coordinates can be used for training Convolutional Neural Network(CNN) or any other neural networks for training the data.

Filename	x1	y1	x2	y2	size	threshold	time
/content/drive/							
My							
Drive/testpakis							
tan/0217.tif	1197	1221	4431	1502	58.9328257	0.25	18.3143082
Filename	x1	y1	x2	y2	size	threshold	time
/content/drive/							
My							
Drive/testpakis							
tan/0217.tif	1190	1217	4427	1500	58.3962542	0.25	22.9821382

