Verteilungen

21.04.2022

Bibliotheken laden, Hilfsfunktion

Resistenzen_U.csv o. Resistenzen_LE8000.csv o.Resistenzen_GT8000.csv einlesen

```
Diese Tabellen wurden von Resistenzen.Rmd erzeugt. Sie evtl. auch ansehen
```

```
Schicht <- "LE8000"
Schicht <- "GT8000"
Schicht <- "U"

Resistenzen <- read.csv(paste("Resistenzen_",Schicht,".csv",sep=""))

# csv rausschreiben u. wieder einlesen fügt vorne Index-Spalte an; diese entfernen :
Resistenzen[,1] <- NULL

if(debug){View(Resistenzen)}
```

Verteilungen

```
# Hilfs-Dataframes, implizit sollte genügen!
ResistenzenWM1 <- Resistenzen[Resistenzen["WM.group"] == "1",] # waste milk Group
ResistenzenWM2 <- Resistenzen[Resistenzen["WM.group"] == "2",] # no waste milk Group
#if(debug){View(ResistenzenWM2)}
ResistenzenOLSO <- Resistenzen[Resistenzen["OLS.group"] == "0",] # other livestock Group
ResistenzenOLS1 <- Resistenzen[Resistenzen["OLS.group"] == "1",] # no other livestock Group
#if(debug){View(ResistenzenOLS0); View(ResistenzenOLS1)}
ResistenzenIACO <- Resistenzen[Resistenzen["IAC.group"] == "0",] # ill animals in calving box Group
ResistenzenIAC1 <- Resistenzen[Resistenzen["IAC.group"] == "1",] # no ill animals in calving box Group
#if(debug){View(ResistenzenIAC0); View(ResistenzenIAC1)}
ResistenzenHSCO <- Resistenzen[Resistenzen["HSC.group"] == "0",] # stable w\o outlet
ResistenzenHSC1 <- Resistenzen[Resistenzen["HSC.group"] == "1",] # stable with outlet
ResistenzenHSC2 <- Resistenzen[Resistenzen["HSC.group"] == "2",] # outdoors
ResistenzenHSC3 <- Resistenzen[Resistenzen["HSC.group"] == "3",] # 0+1
ResistenzenHSC4 <- Resistenzen[Resistenzen["HSC.group"] == "4",] # 1+2
ResistenzenHSC5 <- Resistenzen[Resistenzen["HSC.group"] == "5",] # 0+2
\#if(debuq)\{View(ResistenzenHSC0); View(ResistenzenHSC1); View(ResistenzenHSC2); View(ResistenzenHSC3); View(ResistenzenHSC3)\}\}
```

Graphiken und Deskriptive Analyse: Für diesen Fall analysieren wir die (meist links und/oder rechts abgeschnittenen) Verteilungen

```
graphisch <- function(groups,antib, anfang,ende, schrittBin,schrittLab) {</pre>
 if (ende < 0) {
                         # kleiner Trick um zusätzliches Funktionsargument zu vermeiden
   Ende=F
   ende = -ende
 } else{
   Ende=T
 Log(paste("Ende, ende =",Ende,ende))
 dir.create(paste("verteilungen ",Schicht,sep=""))
                                                       # directory for writing the plots
 if(groups == "WM.group" ){
   listdfs <- list(Resistenzen , ResistenzenWM1 , ResistenzenWM2 ) # implizit sollte genügen! (Vektor klappt
   Titel <- c( "WM or not", "WM ", "no WM ")
 }
  if(groups == "OLS.group" ){
   listdfs <- list(Resistenzen
                               , ResistenzenOLS1 , ResistenzenOLS0 )
   Titel <- c( "OLS or not", "OLS
                                   ", "no OLS ")
  if(groups == "IAC.group" ){
   Titel <- c( "IAC or not", "IAC ", "no IAC ")
 }
 if(groups == "HSC.group"){
   ResistenzenHSC2, ResistenzenHSC3, ResistenzenHSC4, ResistenzenHSC5)
   Titel <- c( "arbitrary HSC ",
                                                                                 ","3 = 0 + 1
                 "0: stable w\\o outlet", "1: stable with outlet", "2: outdoors
 }
 for (i in 2:length(Titel)){
                            # nicht 1. plot "XY oder nicht" deskriptive Statistik - geht sicher o. eigene D.
   DF <- listdfs[[i]]</pre>
                              # listdfs kürzer: nur hier explizit?
   numstrings <- str_replace(DF[[antib]], paste0("<=",anfang), as.character(anfang))</pre>
   # z.B. "1" als numerischer Platzhalter für "<=1"
   numstrings <- str_replace(numstrings</pre>
                                            , paste0(">",ende) , as.character(ende)) #+1))
   # z.B. "33" als numerischer Platzhalter für ">32"
   numbers <- as.numeric(numstrings ) # jetzt alles als Zahlen</pre>
   Log("numbers =");Log(numbers)
   \# Median könnte im "<=" Bereich liegen oder im ">=", entsprechend reagieren:
   median <- median(numbers, na.rm=T) # (na.rm=T fürs Lesen aus file, vorher war das "NA")
   rel <- "="
                                   # Relations-Symbol
   Log(paste( "median, anfang =", median, anfang ))
   if(median == anfang){
     rel <- "<="
   if(Ende && median == ende){
     rel <- ">"
   print(paste(antib,"- Resistance,", Titel[i], ":"))
   if (Ende && (max(numbers, na.rm=T) > ende)) { # gibt overflow bin, ist nicht leer: Verteilung nicht nach oben b
     # kleinste Werte kleinstmöglich und grösste Werte kleinstmöglich ergibt Mindestwert des Mittelwertes
     mean <- mean(replace(numbers, numbers==anfang, 0), na.rm=T)</pre>
     print(paste(" Mean >= ", mean ))
     print("")
   } else {
                              # Verteilung nach oben beschränkt
```

```
if (anfang %in% numbers) { # Verteilung nach oben beschränkt, nicht nach unten
                                 # (underflow bin gibt's FAST immer)
                                          # kleinste Werte grösstmöglich gibt Höchstwert des Mittelwertes
      mean1 <- mean(numbers, na.rm=T)</pre>
      numbers0 <- replace(numbers, numbers==anfang, 0) # kleinste Werte kleinstmöglich
      mean0 <- mean(numbers0, na.rm=T)</pre>
                                                                    #
                                                                         ergibt Mindestwert des Mittelwertes
      print(paste(" Mean in ", sprintf("%.3f",mean0), "...", sprintf("%.3f",mean1) ))
      print("")
    } else {
                                 # Verteilung nach oben und unten beschränkt : einfachster Fall
      print(paste(" Mean = ", sprintf("%.3f", mean(numbers, na.rm=T)) ) )
      print("")
    }
  }
}
DF2 <- Resistenzen
numstrings <- str_replace(DF2[[antib]], paste0("<=",anfang), as.character(anfang)) # \\ OBEN SCHON: factor ou
# z.B. "1" als numerischer Platzhalter für "<=1"
                                               , paste0(">",ende) , as.character(ende)) #+1))
numstrings <- str_replace(numstrings</pre>
# z.B. "33" als numerischer Platzhalter für ">32"
numbers <- as.numeric(numstrings) # jetzt alles als Zahlen
Log(3)
DF2$numbers <- numbers
Log("i, numbers=");Log(i);Log(numbers)
# https://stackoverflow.com/questions/23944355/r-hist-right-left-clump-binning war hier eine Inspiration,
# fieseln für die tick labels weil R sonst aus Platzproblemen das wichtige letzte tick label unterdrückt:
if(Ende) {
  seqAt <- seq(schrittBin</pre>
                                    ,ende+schrittBin,by=schrittLab) # kleineres ende+... klappt nicht
  seqAt[length(seqAt)] <- seqAt[length(seqAt)]-schrittBin</pre>
                                                                     # also zurückkorrigieren
  \#seqAt \leftarrow seq(schrittBin , ende+0.001, by=schrittLab)
} else {
  seqAt <- seq(schrittBin,ende</pre>
                                           ,by=schrittLab) # 1 Bin weniger
Log("seqAt:"); Log(seqAt)
seqLab <- seq(schrittBin+schrittLab,ende</pre>
                                                    ,by=schrittLab)
seqLab <- seq(schrittBin</pre>
                                   ,ende+schrittBin,by=schrittLab)
Log("seqLab:");Log(seqLab)
seqLab_cutR <- seqLab[1:length(seqLab)-1]</pre>
Log("seqLab_cutR:");Log(seqLab_cutR)
seqLab_cutLR <- seqLab_cutR[2:length(seqLab_cutR)]</pre>
Log("seqLab_cutLR:");Log(seqLab_cutLR)
Labels <- c(paste0("<=",anfang),seqLab_cutLR)
Log("Labels, 1:");Log(Labels)
if(Ende) { Labels <- c(Labels,paste0(">",ende)) }
Log("Labels, 2:");Log(Labels)
Ylab <- "Frequency"
Xlab <- "Dose"</pre>
Log("breaks="); Log(seqAt)
Log("labels ="); Log(Labels)
plot <- ggplot(DF2, aes(x=numbers)) +</pre>
  scale_x_continuous(trans = "log10", breaks=seqAt, labels=Labels, limits=c(anfang*.8,ende*1.2)) +
  # limits=anfang...ende aber bisschen mehr um dort zu plotten
```

```
# -0.01 o. *0.9; +1 o. *1.1 genügt nicht
  geom_histogram()
  theme(axis.text.x = element_text(size=12)) +
                                                 # HSC.group kleben die labels oft aneinander
  theme(axis.text.y = element_text(size=12)) +
                                                 # aber das ist kaum zu ändern: mit < 12 nimmt R oft noch mehr t
  xlab(Xlab) + ylab(Ylab)
 facet_grid(reformulate(".",groups))
                                                              geschichtet. reformulate gibt Formel (IAC.group ~
                                                 # vertikal
  #facet_grid(reformulate(groups,".")) +
                                                 # horizontal geschichtet - war weniger schön.
  ggtitle(paste(antib, "for different", groups, "
                                                (MY group", Schicht,")"))
print(plot)
ggsave(paste("verteilungen_",Schicht,"/verteilung_", Schicht,"_",groups,"_",antib,".png", sep=""))
```

Ill Animals in Calving Box - Gruppen

graphisch("IAC.group", "AMP", 1,32, 1,8)

Mit "IAC" abgekürzt.

```
## [1] "AMP - Resistance, IAC :"
## [1] " Median = 4"
## [1] " Mean = 13.148"
## [1] ""
## [1] "AMP - Resistance, no IAC :"
## [1] " Median = 4"
## [1] " Mean = 13.875"
## [1] ""
```

AMP for different IAC.group (MY group U)


```
graphisch("IAC.group", "MERO", 0.03,-0.06, 0.015,0.015)
```

```
## [1] "MERO - Resistance, IAC :"
## [1] " Median <= 0.03"
```

MERO for different IAC.group (MY group U)


```
graphisch("IAC.group", "CIP", 0.015, 8, 0.015, 4)
```

CIP for different IAC.group (MY group U)


```
graphisch("IAC.group","AZI" , 2,64, 1,10)
```

AZI for different IAC.group (MY group U)

0.5 ,

```
## [1] "GEN - Resistance, IAC :"
## [1] " Median <= 0.5"
## [1] " Mean in 1.602 ... 1.986"
## [1] ""
## [1] "GEN - Resistance, no IAC :"
## [1] " Median <= 0.5"
## [1] " Mean in 1.083 ... 1.510"
## [1] ""</pre>
```

graphisch("IAC.group", "GEN" , 0.5 , 16 ,

GEN for different IAC.group (MY group U)


```
graphisch("IAC.group", "TGC" , 0.25 , -0.5 , 0.25 , 0.25 )
## [1] "TGC - Resistance, IAC :"
```

TGC for different IAC.group (MY group U)


```
graphisch("IAC.group", "TAZ", 0.25,-1, 0.25,0.25)
```

TAZ for different IAC.group (MY group U)

[1] " Median ## [1] " Mean

[1] ""

in 0.250 ... 0.484"

FOT for different IAC.group (MY group U)

, 64

8,16

graphisch("IAC.group", "CHL" , 8

CHL for different IAC.group (MY group U)


```
graphisch("IAC.group", "NAL" , 4,64, 4,16

## [1] "NAL - Resistance, IAC :"
```


TET for different IAC.group (MY group U)

[1] " Median = 0.5"

[1] "TMP - Resistance, no IAC

[1] " Mean in 5.250 ... 5.302"

[1] ""

8,256

```
## [1] "SMX - Resistance, IAC :"
## [1] " Median = 16"
## [1] " Mean in 205.926 ... 207.852"
## [1] ""
## [1] "SMX - Resistance, no IAC :"
## [1] " Median = 24"
## [1] " Mean in 220.333 ... 222.167"
```

[1] ""

graphisch("IAC.group", "SMX", 8, 512, ,

SMX for different IAC.group (MY group U)

#stop the script - by error

Die Mittelwerte der Resistenz sind für 5 Antibiotika vergleichbar (AMP, MERO, TGC, TAZ, CHL), für GEN tendenziell grösser im Fall *Ill Animals in Calving box*, für 3 Antibiotika tendenziell kleiner in diesem Fall (ZIP, AZI, NAL), für TET definitv grösser in diesem Fall und für 3 Antibiotika definitiv kleiner in diesem Fall (FOT, TMP, SMX). Diese Relationen sind im wesentlichen gleich gerichtet wie in WM - keine WM.

Der Vergleich des Medians der 2 Gruppen zeigt Unterschiede nur für TET und SMX, in der gleichen Richtung wie der Mittelwert. Deshalb diskutiere ich den Median nicht weiter.

Other Live Stock - Gruppen

Mit "OLS" abgekürzt.

```
graphisch("OLS.group", "AMP", 1,32, 1,8)

## [1] "AMP - Resistance, OLS :"
## [1] " Median = 4"
```

```
## [1] " Mean in 13.188 ... 13.195"
## [1] ""
## [1] "AMP - Resistance, no OLS :"
## [1] " Median = 4"
## [1] " Mean = 9.685"
```


Dose

MERO for different OLS.group (MY group U)

[1] ""

graphisch("OLS.group", "CIP", 0.015, 8, 0.015,


```
## [1] "AZI - Resistance, OLS :"
## [1] " Median = 8"
## [1] " Mean in 7.281 ... 7.344"
## [1] ""
## [1] "AZI - Resistance, no OLS :"
## [1] " Median = 8"
## [1] " Mean in 6.852 ... 6.889"
## [1] ""
```

AZI for different OLS.group (MY group U)

graphisch("OLS.group", "GEN", 0.5, 16, 0.5, 4

GEN for different OLS.group (MY group U)


```
graphisch("OLS.group", "TGC", 0.25, -0.5, 0.25, 0.25)
```


Dose

[1] " Mean in 9.333 ... 16.000"

CHL for different OLS.group (MY group U)

[1] " Median <= 4" ## [1] " Mean in 2.074 ... 5.815"

NAL for different OLS.group (MY group U)

32

2,8

graphisch("OLS.group", "TET" , 2

TET for different OLS.group (MY group U)

[1] " Median = 0.5" ## [1] " Mean in 2.324 2.363"

[1] "TMP - Resistance, no OLS

[1] " Mean in 2.324 ... 2.363"

TMP for different OLS.group (MY group U)

[1] " Median = 16" ## [1] " Mean in 151.556 ... 153.704"


```
graphisch("OLS.group", "SMX", 8 , 512 , 8,256 )

## [1] "SMX - Resistance, OLS :"

## [1] " Median = 16"

## [1] " Mean in 244.625 ... 246.625"

## [1] ""

## [1] "SMX - Resistance, no OLS :"
```


#stop the script

Die Mittelwerte der Resistenz sind für MERO, GEN und TAZ vergleichbar, für 5 Antibiotika tendenziell grösser im Fall *Other Livestock* (CIP, FOT, CHL, NAL, SMX), für TGC tendenziell kleiner in diesem Fall und für 4 Antibiotika definitiv kleiner in diesem Fall (AMP, AZI, TET, TMP). Diese Relationen sind im wesentlichen entgegengesetzt zu WM - keine WM!

Waste Milk - Gruppen

```
## [1] "AMP - Resistance, WM :"
## [1] " Median = 4"
## [1] " Mean in 9.517 ... 9.526"
## [1] ""
## [1] "AMP - Resistance, no WM :"
## [1] " Median = 4"
## [1] " Mean = 13.583"
## [1] ""
```

graphisch("WM.group", "AMP", 1,32, 1,8)

AMP for different WM.group (MY group U)

Der Mittelwert ist höher ohne WM.

graphisch("WM.group", "MERO", .03,-0.06, .015,.015)

MERO for different WM.group (MY group U)

Der Mittelwert ist vergleichbar ohne WM (tatsächlich tendenziell minimal höher - das ist leicht zu kontrollieren: MERO ist immer <=3 - ausser einmal 0.06 für Betrieb 4 und der ist WM group 2).

```
graphisch("WM.group", "CIP", 0.015,8, .015,4)
```

```
## [1] "CIP - Resistance, WM
## [1] "
         Median
                             <= 0.015"
## [1] "
         Mean
                in 0.077 ... 0.091"
## [1] ""
## [1] "CIP - Resistance, no WM
                             <= 0.015"
## [1] "
         Median
## [1] "
         Mean
                in 0.338 ... 0.351"
## [1] ""
```

CIP for different WM.group (MY group U)

Der Mittelwert ist tendenziell höher ohne WM.

```
graphisch("WM.group", "AZI", 2,64, 1,10)
```

AZI for different WM.group (MY group U)

Der Mittelwert ist höher ohne WM.

graphisch("WM.group", "GEN", 0.5,16, 0.5,4)

Der Mittelwert ist vergleichbar ohne WM.

graphisch("WM.group", "TGC", 0.25,-0.5, 0.25,0.25)

TGC for different WM.group (MY group U)

Der Mittelwert ist vergleichbar ohne $\operatorname{WM}.$

graphisch("WM.group", "TAZ", 0.25, -1, .25,.25)

Der Mittelwert ist vergleichbar ohne WM. Genauer: tendenziell höher - das kann man auch noch per Hand kontrollieren: TAZ ist immer <= 0.25 ausser für:

- Waste Milk: 0.5 für Betriebe 11 und 15
- Keine Waste Milk: 0.5 für Betriebe 12, 59 und 3*1 für Betrieb52

(Betrieb 30 wurde ganz am Anfang schon gelöscht)

Die Werte 0.5 balanzieren sich also aus für Waste Milk oder nicht, und der Unterschied kommt von den 3 Werten 1: Ohne WM ist resistenter.

```
graphisch("WM.group", "FOT", 0.25, 4, .25, 1)
```


Der Mittelwert ist tendenziell höher ohne WM.

graphisch("WM.group", "CHL", 8,64, 8,16)

Der Mittelwert ist tendenziell höher ohne WM.

```
graphisch("WM.group", "NAL", 4,64, 4,16)
```

NAL for different WM.group (MY group U)

Der Mittelwert ist tendenziell höher ohne WM.

graphisch("WM.group", "TET", 2,32, 2,8)

TET for different WM.group (MY group U)

Der Mittelwert ist tendenziell höher ohne WM.

graphisch("WM.group", "TMP", 0.25,16, .25,8)

```
## [1] "TMP - Resistance, WM :"
## [1] " Median = 0.5"
## [1] " Mean in 2.297 ... 2.347"
## [1] ""
## [1] "TMP - Resistance, no WM :"
## [1] " Median = 0.5"
## [1] " Mean in 4.804 ... 4.860"
## [1] ""
```

TMP for different WM.group (MY group U)

Der Mittelwert ist höher ohne WM.

```
## [1] "SMX - Resistance, WM :"
## [1] " Median = 16"
## [1] " Mean in 172.138 ... 173.862"
## [1] ""
## [1] "SMX - Resistance, no WM :"
## [1] " Median = 16"
## [1] " Mean in 230.933 ... 233.333"
## [1] ""
```

graphisch("WM.group", "SMX", 8,512, 8,256)

SMX for different WM.group (MY group U)

Der Mittelwert ist vergleichbar ohne WM.

Die Mittelwerte der Resistenz sind für 5 Antibiotika vergleichbar (MERO, GEN, TGC, TAZ, SMX), für 3 Antibiotika tendenziell grösser im Fall WM (CIP, FOT, NAL) und für 5 Antibiotika definitiv grösser in diesem Fall (AMP, AZI, HCL, TET, TMP).

Husbandry System Calves - Gruppen

graphisch("HSC.group", "AMP", 1,32, 1,8)

```
Mit "HSC" abgekürzt.
```

```
## [1] "AMP - Resistance, 0: stable w\\o outlet :"
## [1] "
                             = 4"
         Median
         Mean = 10.795"
## [1]
  [1]
## [1] "AMP - Resistance, 1: stable with outlet :"
## [1]
         Median
                             = 4"
      11
                   13.192"
## [1]
         Mean
## [1]
## [1] "AMP - Resistance, 2: outdoors
## [1] "
         Median
         Mean = 10.450"
## [1]
## [1] ""
## [1] "AMP - Resistance, 3 = 0 + 1
## [1]
         Median
## [1] "
         Mean
                 = 7.625"
## [1] ""
## [1] "AMP - Resistance, 4 = 1 + 2
## [1]
         Median
      11
                 = 13.400"
##
  [1]
         Mean
## [1]
      11 11
      "AMP - Resistance, 5 = 0 + 2
  [1]
         Median
  [1]
## [1] "
         Mean
               in 14.500 ... 14.550"
## [1] ""
```

AMP for different HSC.group (MY group U)

```
graphisch("HSC.group", "MERO", 0.03, -0.06, 0.015,0.015)
```

```
## [1] " Median
## [1] " Mean in 0.000 ... 0.030"
## [1] ""
## [1] "MERO - Resistance, 1: stable with outlet :"
## [1] " Median
                         <= 0.03"
## [1] " Mean in 0.000 ... 0.030"
## [1] ""
## [1] "MERO - Resistance, 2: outdoors
## [1] " Median
                           <= 0.03"
## [1] " Mean in 0.000 ... 0.030"
## [1] ""
## [1] "MERO - Resistance, 3 = 0 + 1
## [1] " Median
                          <= 0.03"
## [1] " Mean in 0.000 ... 0.030"
## [1] ""
## [1] "MERO - Resistance, 4 = 1 + 2
                <= 0.03"
## [1] " Median
## [1] " Mean in 0.000 ... 0.030"
## [1] ""
## [1] "MERO - Resistance, 5 = 0 + 2
## [1] " Median
## [1] " Mean in 0.003 ... 0.032"
## [1] ""
```

[1] "MERO - Resistance, 0: stable w\\o outlet :"

MERO for different HSC.group (MY group U)


```
## [1] "CIP - Resistance, 0: stable w\\o outlet :"
## [1] " Median
## [1] " Mean in 0.278 ... 0.291"
## [1] ""
## [1] "CIP - Resistance, 1: stable with outlet:"
## [1] " Median
                 <= 0.015"
## [1] " Mean in 0.011 ... 0.025"
## [1] ""
## [1] "CIP - Resistance, 2: outdoors
## [1] " Median
                         <= 0.015"
## [1] " Mean in 0.405 \dots 0.416"
## [1] ""
## [1] "CIP - Resistance, 3 = 0 + 1
## [1] " Median
               <= 0.015"
## [1] " Mean in 0.002 ... 0.016"
## [1] ""
## [1] "CIP - Resistance, 4 = 1 + 2
## [1] " Median <= 0.015"
## [1] " Mean in 0.400 ... 0.414"
## [1] ""
## [1] "CIP - Resistance, 5 = 0 + 2
## [1] " Median <= 0.015"
## [1] " Mean in 0.015 ... 0.028"
## [1] ""
```

graphisch("HSC.group", "CIP", 0.015, 8, 0.015,

Dose

```
## [1] "AZI - Resistance, 0: stable w\\o outlet :"
## [1] " Median
## [1] " Mean in 7.636 ... 7.659"
## [1] ""
## [1] "AZI - Resistance, 1: stable with outlet :"
## [1] " Median
## [1] " Mean in 6.462 ... 6.538"
## [1] ""
## [1] "AZI - Resistance, 2: outdoors
## [1] " Median
## [1] " Mean in 6.600 ... 6.700"
## [1] ""
## [1] "AZI - Resistance, 3 = 0 + 1
## [1] " Median
                          = 8"
## [1] " Mean = 6.500"
## [1] ""
## [1] "AZI - Resistance, 4 = 1 + 2
## [1] " Median = 8"
## [1] " Mean in 8.200 ... 8.300"
## [1] ""
## [1] "AZI - Resistance, 5 = 0 + 2
## [1] " Median
## [1] " Mean = 6.600"
## [1] ""
```

AZI for different HSC.group (MY group U) 60-40-0 20-0 -60-40-20-0 -60-40-Erednency 40-2 40 -20 ω 0 -60-40-4 20-0 -60-40-S 20-0 -11 21 31 41 51>64 Dose

```
## [1] "GEN - Resistance, 0: stable w\\o outlet :"
## [1] " Median
## [1] " Mean in 0.557 ... 0.989"
## [1] ""
## [1] "GEN - Resistance, 1: stable with outlet:"
                 <= 0.5"
## [1] " Median
## [1] " Mean in 1.481 ... 1.875"
## [1] ""
## [1] "GEN - Resistance, 2: outdoors
                         <= 0.5"
## [1] " Median
## [1] " Mean in 2.575 ... 2.925"
## [1] ""
## [1] "GEN - Resistance, 3 = 0 + 1
## [1] " Median <= 0.5"
## [1] " Mean in 0.062 ... 0.531"
## [1] ""
## [1] "GEN - Resistance, 4 = 1 + 2
## [1] " Median <= 0.5"
## [1] " Mean in 0.050 ... 0.525"
## [1] ""
## [1] "GEN - Resistance, 5 = 0 + 2
## [1] " Median <= 0.5"
## [1] " Mean in 0.150 ... 0.575"
## [1] ""
```

graphisch("HSC.group", "GEN" , 0.5 , 16 , 0.5 , 4

GEN for different HSC.group (MY group U)


```
graphisch("HSC.group", "TGC", 0.25, -0.5, 0.25, 0.25)
```

```
## [1] "TGC - Resistance, 0: stable w\\o outlet :"
## [1] " Median
                          <= 0.25"
## [1] " Mean in 0.040 ... 0.270"
## [1] ""
## [1] "TGC - Resistance, 1: stable with outlet :"
## [1] " Median
                 <= 0.25"
## [1] " Mean in 0.096 ... 0.298"
## [1] ""
## [1] "TGC - Resistance, 2: outdoors
## [1] " Median
                          <= 0.25"
## [1] " Mean in 0.013 ... 0.256"
## [1] ""
## [1] "TGC - Resistance, 3 = 0 + 1
## [1] " Median
                          <= 0.25"
## [1] " Mean in 0.062 ... 0.281"
## [1] ""
## [1] "TGC - Resistance, 4 = 1 + 2
## [1] " Median <= 0.25"
## [1] " Mean in 0.075 ... 0.287"
## [1] ""
## [1] "TGC - Resistance, 5 = 0 + 2
## [1] " Median <= 0.25"
## [1] " Mean in 0.000 ... 0.250"
## [1] ""
```

TGC for different HSC.group (MY group U)


```
graphisch("HSC.group", "TAZ", 0.25, -1, 0.25, 0.25)
```

```
## [1] " Median
## [1] " Mean in 0.034 ... 0.276"
## [1] ""
## [1] "TAZ - Resistance, 1: stable with outlet :"
## [1] " Median <= 0.25"
## [1] " Mean in 0.000 ... 0.250"
## [1] ""
## [1] "TAZ - Resistance, 2: outdoors
## [1] " Median
                         <= 0.25"
## [1] " Mean in 0.025 ... 0.263"
## [1] ""
## [1] "TAZ - Resistance, 3 = 0 + 1
               <= 0.25"
## [1] " Median
## [1] " Mean in 0.031 ... 0.266"
## [1] ""
## [1] "TAZ - Resistance, 4 = 1 + 2
## [1] " Median <= 0.25"
## [1] " Mean in 0.025 ... 0.263"
## [1] ""
## [1] "TAZ - Resistance, 5 = 0 + 2
## [1] " Median <= 0.25"
## [1] " Mean in 0.000 ... 0.250"
## [1] ""
```

[1] "TAZ - Resistance, 0: stable w\\o outlet :"

TAZ for different HSC.group (MY group U)


```
## [1] "FOT - Resistance, 0: stable w\\o outlet :"
## [1] " Median
## [1] " Mean in 0.136 ... 0.378"
## [1] ""
## [1] "FOT - Resistance, 1: stable with outlet:"
## [1] " Median
                 <= 0.25"
## [1] " Mean in 0.010 ... 0.255"
## [1] ""
## [1] "FOT - Resistance, 2: outdoors
## [1] " Median
                          <= 0.25"
## [1] " Mean in 0.000 ... 0.250"
## [1] ""
## [1] "FOT - Resistance, 3 = 0 + 1
## [1] " Median
                <= 0.25"
## [1] " Mean in 0.000 ... 0.250"
## [1] ""
## [1] "FOT - Resistance, 4 = 1 + 2
## [1] " Median <= 0.25"
## [1] " Mean in 0.000 ... 0.250"
## [1] ""
## [1] "FOT - Resistance, 5 = 0 + 2
## [1] " Median <= 0.25"
## [1] " Mean in 0.000 ... 0.250"
## [1] ""
```

graphisch("HSC.group", "FOT", 0.25, 4, 0.25,

FOT for different HSC.group (MY group U)

, 64 , 8,16

```
## [1] "CHL - Resistance, 0: stable w\\o outlet :"
## [1] " Median
## [1] " Mean in 13.455 ... 19.636"
## [1] ""
## [1] "CHL - Resistance, 1: stable with outlet :"
                          <= 8"
## [1] " Median
## [1] " Mean in 16.000 ... 21.538"
## [1] ""
## [1] "CHL - Resistance, 2: outdoors
                          <= 8"
## [1] " Median
## [1] " Mean in 8.800 ... 15.400"
## [1] ""
## [1] "CHL - Resistance, 3 = 0 + 1
                <= 8"
## [1] " Median
## [1] " Mean in 2.000 ... 9.000"
## [1] ""
## [1] "CHL - Resistance, 4 = 1 + 2
## [1] " Median <= 8"
## [1] " Mean in 6.400 ... 13.600"
## [1] ""
## [1] "CHL - Resistance, 5 = 0 + 2
## [1] " Median <= 8"
## [1] " Mean in 16.800 ... 22.400"
## [1] ""
```

graphisch("HSC.group", "CHL" , 8

CHL for different HSC.group (MY group U)

4,16

```
## [1] " Median
## [1] " Mean in 2.364 ... 6.136"
## [1] ""
## [1] "NAL - Resistance, 1: stable with outlet :"
## [1] " Median
                         <= 4"
## [1] " Mean in 2.462 ... 6.308"
## [1] ""
## [1] "NAL - Resistance, 2: outdoors
                          <= 4"
## [1] " Median
## [1] " Mean in 3.800 ... 7.300"
## [1] ""
## [1] "NAL - Resistance, 3 = 0 + 1
                         <= 4"
## [1] " Median
## [1] " Mean in 0.000 ... 4.000"
## [1] ""
## [1] "NAL - Resistance, 4 = 1 + 2
## [1] " Median <= 4"
## [1] " Mean in 3.200 ... 7.000"
## [1] ""
## [1] "NAL - Resistance, 5 = 0 + 2
## [1] " Median
```

[1] " Mean in 4.000 ... 7.400"

[1] ""

graphisch("HSC.group", "NAL" , 4 , 64 ,

[1] "NAL - Resistance, 0: stable w\\o outlet :"

NAL for different HSC.group (MY group U)


```
## [1] "TET - Resistance, 0: stable w\\o outlet :"
## [1] " Median
## [1] " Mean in 10.136 ... 11.364"
## [1] ""
## [1] "TET - Resistance, 1: stable with outlet :"
## [1] " Median
                          = 4"
## [1] " Mean in 12.538 ... 13.385"
## [1] ""
## [1] "TET - Resistance, 2: outdoors
                          <= 2"
## [1] " Median
## [1] " Mean in 10.100 ... 11.300"
## [1] ""
## [1] "TET - Resistance, 3 = 0 + 1
                          <= 2"
## [1] " Median
## [1] " Mean in 12.000 ... 13.250"
## [1] ""
## [1] "TET - Resistance, 4 = 1 + 2
## [1] " Median <= 2"
## [1] " Mean in 10.000 ... 11.200"
## [1] ""
## [1] "TET - Resistance, 5 = 0 + 2
## [1] " Median > 32"
## [1] " Mean in 17.800 ... 18.600"
## [1] ""
```

TET for different HSC.group (MY group U)


```
## [1] "TMP - Resistance, 0: stable w\\o outlet :"
## [1] " Median = 0.5"
## [1] " Mean in 2.915 ... 2.963"
## [1] ""
## [1] "TMP - Resistance, 1: stable with outlet:"
## [1] " Median
               = 0.5"
## [1] " Mean in 4.279 ... 4.332"
## [1] ""
## [1] "TMP - Resistance, 2: outdoors
                         = 0.5"
## [1] " Median
## [1] " Mean in 3.875 ... 3.931"
## [1] ""
## [1] "TMP - Resistance, 3 = 0 + 1
               = 0.5"
## [1] " Median
## [1] " Mean in 1.438 ... 1.469"
## [1] ""
## [1] "TMP - Resistance, 4 = 1 + 2
## [1] " Median = 0.5"
## [1] " Mean in 5.900 ... 5.938"
## [1] ""
## [1] "TMP - Resistance, 5 = 0 + 2
## [1] " Median = 0.5"
## [1] " Mean in 3.400 ... 3.500"
## [1] ""
```

graphisch("HSC.group", "TMP", 0.25, 16, 0.25,8

TMP for different HSC.group (MY group U)


```
## [1] "SMX - Resistance, 0: stable w\\o outlet :"
## [1] " Median
## [1] " Mean in 199.455 ... 201.455"
## [1] ""
## [1] "SMX - Resistance, 1: stable with outlet:"
## [1] " Median
                 = 16"
## [1] " Mean in 212.615 ... 214.769"
## [1] ""
## [1] "SMX - Resistance, 2: outdoors
                         = 16"
## [1] " Median
## [1] " Mean in 160.400 ... 163.000"
## [1] ""
## [1] "SMX - Resistance, 3 = 0 + 1
## [1] " Median
## [1] " Mean in 199.000 ... 200.500"
## [1] ""
## [1] "SMX - Resistance, 4 = 1 + 2
## [1] " Median = 32"
## [1] " Mean in 214.400 ... 215.600"
## [1] ""
## [1] "SMX - Resistance, 5 = 0 + 2
## [1] " Median = 264"
## [1] " Mean in 259.200 ... 261.600"
## [1] ""
```

graphisch("HSC.group", "SMX", 8, 512, 8,256

Dose

Es ist kein sehr ausgeprägtes Muster für grösste/kleinste Resistenzen zu erkennen. Tendenziell ergeben 1 und 1+2 die grössten Resistenzen, 2 und vor allem 0+1 die kleinsten.

Vollständigkeit

Jetzt sind alle Verteilungen geplotted und deskriptiv analysiert, ausser:

AMI: alle Proben sensitiv <=4
COL: alle Proben sensitiv <=1

Weitere Schritte

Technischer Natur

• noch minimale Verbesserungen Verteilungsplots?

Fundamentaler Natur

Kausalitäten studieren mittels Regressionen :

- Kausalitätsgraph
- Lineare Regressionen
- multivariable logistische Regression, mixed effects