Sei
$$A = \{x \in \mathbb{Z} \mid -3 \le x \le 3\}$$

Geben Sie die folgenden Relationen in $A \times A$ in aufzählender Schreibweise an:

a)
$$R_1 = \{(x, y) \mid y < 2x + 2\}$$

$$R_1 = \{(-2, -3), (-1, -3), (-1, -2), (-1, -1), (0, -3), (0, -2), (0, -1), (0, 0), (0, 1), (1, -3), (1, -2), (1, -1), (1, 0), (1, 1), (1, 2), (1, 3), (2, -3), (2, -2), (2, -1), (2, 0), (2, 1), (2, 2), (2, 3), (3, -3), (3, -2), (3, -1), (3, 0), (3, 1), (3, 2), (3, 3)\}$$

$$R_1^{-1} = \{(-3, -2), (-3, -1), (-2, -1), (-1, -1), (-3, 0), (-2, 0), (-1, 0), (0, 0), (1, 0), (-3, 1), (-2, 1), (-1, 1), (0, 1), (1, 1), (2, 1), (3, 1), (-3, 2), (-2, 2), (-1, 2), (0, 2), (1, 2), (2, 2), (3, 2), (-3, 3), (-2, 3), (-1, 3), (0, 3), (1, 3), (2, 3), (3, 3)\}$$

b)
$$R_2 = \{(x,y) \mid 2x + y > 1\} \cup \{(x,y) \mid x = y\}$$

Da 2x + y > 1 sein muss kann man bereits alle Tupel welche im Bereich x = [-3, 0] und y = [-3, 1] liegen ausschließen da diese niemals größer 1 werden.

$$R_2 = \{(0,2), (0,3), (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\} \cup \{(-3,-3), (-2,-2), (-1,-1), (0,0), (1,1), (2,2), (3,3)\}$$

$$= \{(-3,-3), (-2,-2), (-1,-1), (0,0), (0,2), (0,3), (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

$$R_2^{-1} = \{(-3, -3), (-2, -2), (-1, -1), (0, 0), (2, 0), (3, 0), (1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3, 3)\}$$

c)
$$R_3 = \{(a,b) \mid 3 - a^2 \le b\} \cap \{(x,y) \mid x^2 = y + 3\}$$

$$R_3 = \{(-3, -3), (-3, -2), (-3, -1), (-3, 0), (-3, 1), (-3, 2), (-3, 3), (-2, -1), (-2, 0), (-2, 1), (-2, 2), (-2, 3), (-1, 2), (-1, 3), (0, 3), (1, 2), (1, 3), (2, -1), (2, 0), (2, 1), (2, 2), (2, 3), (3, -3), (3, -2), (3, -1), (3, 0), (3, 1), (3, 2), (3, 3)\} \cap \{(-2, 1), (-1, -2), (0, -3), (1, -2), (2, 1)\}$$

$$= \{(-2, 1), (-1, -2), (2, 1)\}$$

$$R_3^{-1} = \{(1, -2), (-2, -1), (1, 2)\}$$

Bestimmen Sie für alle drei Relationen jeweils die Umkehrrelation ebenfalls in aufzählender Schreibweise.

Es sei $M = \{x \in \mathbb{Z} \mid -3 \le x \le 3\}, N = \mathbb{N}, K = \{n \in \mathbb{N} \mid 0 \le n \le 10\}$ Ferner seien folgende Relation $R \subseteq M \times N, S \subseteq N \times K$ gegeben:

$$(x,y) \in R \Leftrightarrow y \le x+1$$

 $(a,b) \in S \Leftrightarrow b = 2a-1$

a) Man gebe die Relationen explizit (d.h. in aufzählender Schreibweise) an.

$$R = \{(-1,0), (0,0), (0,1), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (2,3), (3,0), (3,1), (3,2), (3,3)(3,4)\}$$

$$S = \{(1,1), (2,3), (3,5), (4,7), (5,9)\}$$

b) Geben Sie R^{-1} und S^{-1} explizit an.

$$R^{-1} = \{(0, -1), \\ (0, 0), (1, 0), \\ (0, 1), (1, 1), (2, 1), \\ (0, 2), (1, 2), (2, 2), (3, 2), \\ (0, 3), (1, 3), (2, 3), (3, 3)(4, 3)\}$$

$$S^{-1} = \{(1,1), (3,2), (5,3), (7,4), (9,5)\}$$

c) Geben Sie $S \circ R$ explizit an.

$$S \circ R = \{(0,1), (1,1), (2,1), (3,1), (1,3), (2,3), (3,3), (2,5), (3,5), (3,7)\}$$

d) Es sei nun die dreistellige Relation $T \subseteq M \times N \times K$ gegeben durch

$$(m, n, k) \in T \Leftrightarrow (m, n) \in R \text{ und } (n, k) \in S$$

Geben Sie auch T explizit an

$$T = \{(0,1,1), (1,1,1), (2,1,1), (3,1,1), (1,2,3), (2,2,3), (3,2,3), (2,3,5), (3,3,3), (3,4,7)\}$$

Gegeben seien Mengen $A,\,B,\,C$ und die Relationen $R\subseteq A\times B$ und $S\subseteq B\times C.$ Zeigen Sie: $(S\circ R)^{-1}=R^{-1}\circ S^{-1}$

Es sei $M \subseteq \mathbb{N}$ eine beliebige Teilmenge. Auf M betrachten wir die "Teilrelation" T:

 $xTy \Leftrightarrow x \text{ ist Teiler von } y$

a) Man zeige, dass T eine Ordnungsrelation ist.

Reflexiv:

 $xTx \rightarrow jede\ Zahl\ ist\ Teiler\ von\ sich\ selbst.$

Antisymmetrie:

Wenn $xTy \wedge yTx$ gelten muss, müssen zwei Zahlen $n, m \in \mathbb{N}$ exitieren, sodass $x = n \cdot y$ und $y = m \cdot x$ ist. Somit gilt $x = n \cdot y = n \cdot (m \cdot x) = (n \cdot m) \cdot y$. Dies kann allerdings nur stimmen wenn m, n = 1 sind, woraus folgt x = y.

Transitiv:

Wenn $xTy \wedge yTz \Rightarrow xTz$ gelten muss, müssen zwei Zahlen $n, m \in \mathbb{N}$ exitieren, sodass $y = n \cdot x$ und $z = m \cdot y$ ist. Somit gilt $z = m \cdot y = m \cdot (n \cdot x) = (m \cdot n) \cdot x$. Also gibt es eine Zahl $(m \cdot n)$ die multipliziert mit mit x gleich z ist. Somit ist x auch Teiler von z.

b) Es sei jetzt $M=\{2\mid n\in\mathbb{N}\}$ die Menge aller geraden natürlichen Zahlen. Man zeige, dass die Relation T nicht linear ist.

Anmerkung: Lineare $Ordnung = aRb \ und \ bRa$

$$M = \{2, 4, 6, 8, 10, \dots\}$$

Man muss zwei Zahlen x, y finden, die in M sind, sodass x kein Teiler von y ist und y kein Teiler von x (z.B x = 4, y = 10)

c) Es sei jetzt $M = \{2^n | n \in \mathbb{N}\}$ die Menge aller 2er-Potenzen. Man zeige, dass die Relation T auf dieser Menge linear ist.

$$M = \{1, 2, 4, 8, 16, \dots\}$$

Es sei R die folgende Ordnungsrelation auf der Menge \mathbb{N}^2 : (x,y) R $(x',y') \Leftrightarrow x \leq x'$ und $y \leq y'$

a) Man zeige, dass R eine nichtlineare Ordnungsrelation auf \mathbb{N}^2 ist.

Linear bedeutet $\forall a, b \in A : aRb \lor bRa$ somit bedeutet nicht linear $\exists a, b \in A : \neg aRb \land \neg bRa$. Zwei Elemente aus B auf die das zutrifft sind (1,2), (2,1).

b) Für die Menge $B = \{(1,3), (1,2), (2,1), (2,2), (2,3)\}$ bestimme man, falls existent, maximale, minimale Elemente, größtes und kleinstes Element, Supremum und Infimum. Zeichnen Sie das Hasse-Diagramm von B bzgl. der Relation R.

Maximales Element:

(2,3)

Minimales Element:

 $(1,2),(2,1) \rightarrow stehen\ nicht\ in\ Relation,\ können\ somit\ nicht\ verglichen\ werden$

Größtes Element:

(2,3)

Kleinstes Element:

Existiert nicht, (1,2) und (2,1) stehen nicht in Relation, sind also nicht vergleichbar. Somit kann man nicht alle Element vergleichen um herrauszufinden, welches das kleinste Element ist.

Infimum:

(1,1) da wir (1,2) und (2,1) nicht vergleichen können und dies das nächst kleinere untere Grenze ist. Das (1,1) nicht in B ist spielt hierbei keine Rolle.

Supermum:

(2,3)

Abbildung 1: Hasse-Diagram

c) Man gebe eine beschränkte Teilmenge von \mathbb{N}^2 an, die kein größtes und kein kleinstes Element besitzt.

$$\mathbb{N}^2 = \{(1,2), (2,1), (1,3), (2,2)\}$$

Es sei $M=\{n\in\mathbb{N}\mid 1\leq n\leq 13\}$. Auf M^2 betrachten wir folgende Relation S: $(a,b)S(a',b')\Leftrightarrow a+b'=a'+b$

a) Man zeige, dass S eine Äquivalenzrelation ist.

Eine Äquivalenzrelation hat die Eigenschaften Reflexivität, Symmetrie und Trasitivität.

Reflexiv:

(a,b)S(a,b). Für (a,b)S(a,b) gilt a+b=a+b. Da die linke Seite gleich rechte Seite ist stehen sie in Relation und es ist somit reflexiv.

Symmetrie:

$$(a,b)S(a',b') \Rightarrow (a',b')S(a,b)$$
. Für $(a,b)S(a',b')$ gilt $a+b'=a'+b$ und für $(a',b')S(a,b)$ gilt $a'+b=a+b'$. Somit ist es symmetrisch.

Transitiv:

$$(a,b)S(c,d) \wedge (c,d)S(e,f) \Rightarrow (a,b)S(e,f)$$
. Für $(a,b)S(c,d)$ gilt $a+d=c+b$ und für $(c,d)S(e,f)$ gilt $c+f=e+d$. Nicht transitiv ???

b) Man gebe die Äquivalenzklassen von (2,5) und von (7,3) explizit an.

Für die Äquivalenzklasse von x = (2,5) gilt $[(2,5)]_R = \{y \in A \mid (2,5)Ry\}$. D.h wir suchen alle Tupel für die die Gleichung 2 + b' = a' + 5 aufgeht.

$$[(2,5)]_R = \{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9),(7,10),(8,11),(9,12),(10,13)\}$$

Für die Äquivalenzklasse von x = (7,3) gilt $[(7,3)]_R = \{y \in A \mid (7,3)Ry\}$. D.h wir suchen alle Tupel für die die Gleichung 7 + b' = a' + 3 aufgeht.

$$[(7,3)]_R = \{(5,1), (6,2), (7,3), (8,4), (9,5), (10,6), (11,7), (12,8), (13,9)\}$$

Es sei G die Menge aller Geraden in der euklidischen Ebene.

Prüfen Sie, ob die folgenden Relationen P und S in $G \times G$ Äquivalenzrelationen sind:

a) $g_1Pg_2 \Leftrightarrow g_1$ ist parallel zu g_2

Eine Äquivalenzrelation hat die Eigenschaften Reflexivität, Symmetrie und Trasitivität.

Reflixiv:

 g_1Pg_1 . Jede Gerade ist parallel zu sich selbst. Somit ist es reflexiv.

Symmetrie:

 $g_1Pg_2 \Leftarrow g_2Pg_1$. Ist eine Gerade g_1 parallel zu einer Gerade g_2 folgt daraus, dass g_2 auch parallel zu g_1 ist. Somit ist es symmetrisch.

Transitiv:

 $g_1Pg_2 \wedge g_2Pg_3 \Rightarrow g_1Pg_3$. Ist eine Gerade g_1 parallel zu einer Gerade g_2 und ist Gerade g_2 parallel zu g_3 , so ist g_1 auch parallel zu g_3 . Somit ist die transitiv.

Da alle drei Eigenschaften zutreffen, handelt es sich bei P um eine Äquivalenzrelation.

b) $g_1Sg_2 \Leftrightarrow g_1$ ist senkrecht zu g_2

Eine Äquivalenzrelation hat die Eigenschaften Reflexivität, Symmetrie und Trasitivität.

Reflixiv:

 g_1Sg_1 . Eine Gerade kann nicht senkrecht zu sich selbst stehen. Somit ist es nicht reflexiv.

Es handelt es sich bei S um keine Äquivalenzrelation.