Estructura de la Materia 2 Segundo cuatrimestre 2018 Guía 8: Semiconductores

1. Semiconductor intrínseco 3D

Considere un semiconductor con bandas de valencia (v) y de conducción (c) de forma parabólica general en un entorno de los respectivos puntos extremos, masas efectivas m_v , m_c y energías E_v , E_c .

- i) Exprese y grafique las densidades de estados por unidad de volumen.
- ii) Exprese y grafique las funciones de Fermi de electrones y huecos superpuestas sobre el gráfico anterior. Suponga $\mu(T=0)=\frac{\varepsilon_c+\varepsilon_v}{2}$ y úselo como cero de energía.
- iii) Exprese la concentración de electrones en la banda de conducción n_c , de huecos en la banda de valencia p_v .
- iv) Suponga satisfecha la condición de no degeneración $\frac{|\mu E_{c,v}|}{kT} \gg 1$ en escala de kT, μ está en el interior del gap ($\varepsilon_g = \varepsilon_c \varepsilon_v$) lejos de los estremos de las bandas. Calcule y grafique $\mu(T) = \mu_i(T)$ (i por intrínsico). Use masas típicas para Ge: $m_v = 0.37m$, $m_c = 0.56m$. Estime el valor de ε_g a partir del cual se viola la condición anterior a temperatura ambiente. ($\varepsilon_g(Ge) = 0.67$ eV)
- **v**) Calcule $n_c(T)$ y $p_v(T)$.
- 2. Masas efectivas de huecos y electrones.

Suponga semiconductores con gaps de 1 eV y 0.1 eV.

- i) ¿En cuánto deben diferir las masas efectivas de electrones y huecos para que el potencial químico μ se ubique a una energía KT_a ($T_a=300K$) por debajo de la banda de conducción?
- ii) Grafique la densidad de estados para electrones y huecos en ambos casos.

3. Semiconductor intrínseco 2D.

Se quiere modelar el comportamiento de un semiconductor bidimensional no dopado. Para ello se suponen bandas de valencia y de conducción de forma parabólica en un entorno de sus respectivos extremos coincidentes (gap directo), masas efectivas m_V^* y m_C^* , y aplicable la condición de no degeneración.

- i) Calcule y grafique las densidades de estados por unidad de superficie para cada banda.
- ii) Escriba la ecuación de balance de carga y calcule explícitamente las densidades de portadores.
- iii) Utilice la ecuación de electroneutralidad para hallar el potencial químico en función de la temperatura. Grafique su valor a T=0K en el gráfico que realizó en el primer inciso.

- 4. i) Mediante una comparación con un átomo hidrogenoide, argumente por qué el radio aproximado de la órbita de un electrón ligado a una impureza donora es $r=\frac{\epsilon a_0 m}{m^*}$ y su energía $\epsilon_d=\epsilon_c-\frac{m^*}{m\epsilon^2}$ Ry. Compare $\epsilon_c-\epsilon_d$ con ϵ_g para casos típicos. $a_0=\frac{\hbar^2}{me^2}\approx 0,53 \text{Å es el radio de Bohr, } \epsilon \text{ es la constante dieléctrica del medio y 1Ry}=\frac{me^4}{2\hbar^2}\approx 13,6 \text{eV} \text{ es la energía del nivel fundamental del átomo de hidrógeno}$
 - ii) Halle la expresión que tiene la concentración de electrones en el nivel donor n_d para un semiconductor fabricado con uno intrínseco al que se le agrega una concentración de impurezas donoras N_d .
 - iii) Exprese el balance de carga en este caso.
 - iv) La condición de no degeneración ahora es $\frac{|\mu-\varepsilon_d|}{kT}\gg 1$. Utilísela para calcular $\mu(T)$ y compare con $\mu_i(T)$ del ejercicio 1 para $N_d=10^{12}m^{-3}$. Note la existencia de una región de temperatura dominada por el comportamiento intrínseco y otra dominada por el comportamiento extrínsico. Estime el rango de temperatura en el cual vale la condición de no degeneración.
 - **v**) Obtenga $n_c(T)$ y $p_v(T)$ y compare con $n_i(T)$ del ejercicio 1.
 - vi) Calcule las expresiones pedidas en los ítems ii-v si ahora el semiconductor extrínseco se obtiene añadiendo una concentración N_a de impurezas aceptoras al semiconductor intrínseco.

Ayuda: Para i) la energía del nivel enésimo de energía de un átomo hidrogenoide de carga Ze es $E_n=\frac{-mZ^2e^4}{2\hbar^2n^2}$ y el radio de la órbita $r_n=\frac{\hbar^2n^2}{mZe^2}$. Por otro lado en un medio de constante dieléctrica ε la carga nuclear se apantalla según $Ze \to Ze/\varepsilon$.

- 5. Órbitas de impurezas: el InSb tiene un gap $\varepsilon_g=0,23{\rm eV}$, una constante dieléctrica $\varepsilon=18$ y una masa efectiva $m_c^*=0,015m$. Calcular
 - i) La energía de ionización del donor.
 - ii) El radio típico del estado fundamental.
 - iii) La concentración de donores a la que comenzarán a superponerse los orbitales correspondientes a átomos de impurezas adyacentes.
- 6. Ionización de donores: en un dado semiconductor hay 10^{13} donores/ cm^3 , con una energía de ionoización $I_d = 1$ meV y una masa efectiva $m_c^* = 0.01m$.
 - i) Estimar la concentración n_c de electrones de conducción y el potencial químico a T=4 K.
 - ii) Calcular el coeficiente Hall. Suponer que no hay impurezas aceptoras presentes y que $\varepsilon_d \gg kT$. Recordar que $R_H = -1/nec$ (CGS) (aunque esta ecuación no es válida si se tienen dos tipos de portadores).