Mathematical Logic (XII)

Yijia Chen

1. Theories and Decidability

Definition 1.1. A set $T \subseteq L_0^S$ of L-sentences is a *theory* if

- T is satisfiable,

– and T is closed under consequences, i.e., for every $\varphi \in L_0^S$, if $T \vdash \varphi$, then $\varphi \in T$.

Example 1.2. Let $\mathfrak A$ be an S-structure. Then

$$Th(\mathfrak{A}) := \{ \varphi \in L_0^S \mid \mathfrak{A} \models \varphi \}$$

is a theory. -

Definition 1.3. Let $\mathfrak{N} := (\mathbb{N}, +, \cdot, 0, 1)$. Then $\mathsf{Th}(\mathfrak{N})$ is called (*elementary*) arithmetic. 1

Definition 1.4. Let $T \subseteq L_0^S$. We define

$$\mathsf{T}^{\models} := \big\{ \phi \in \mathsf{L}_0^\mathsf{S} \; \big| \; \mathsf{T} \models \phi \big\}.$$

Lemma 1.5. All the following are equivalent.

 \bigcap – T^{\models} is a theory.

uivalent.

O=>@ TF is theory => TF satisfiable => TSTF
is satisfiable

+

T is satisfiable.

B= B if T= 25= T bdx 7x=x=) T not satisfiable.

 $\bigcirc - \mathsf{T}^{\models} \neq \mathsf{L}_0^{\mathsf{S}}.$

(3) = O Claim. TFP9 => TFP; YAFT, AFTF

Definition 1.6. The *Peano Arithmetic* Φ_{PA} consists of the following S_{ar} -sentences, where $S_{ar} = P$ $\{+,\cdot,0,1\}$:

> $\forall x \neg x + 1 \equiv 0$, $\forall x \ x + 0 \equiv x$ $\forall x \ x \cdot 0 \equiv 0$.

 $\forall x \forall y (x+1 \equiv y+1 \rightarrow x \equiv y),$ $\forall x \forall y \ x + (y+1) \equiv (x+y)+1$, remains to show $\forall x \forall y \ x \cdot (y+1) \equiv x \cdot y + x,$

and for all $n \in \mathbb{N}$, all variables x_1, \ldots, x_n , y, and all $\varphi \in L^{S_{ar}}$ with

proof by contradiction.

This satisfiable.

free $(\phi) \subseteq \{x_1, \dots, x_n, y\}$

YUELS TF 1=4

the sentence

$$\forall x_1 \cdots \forall x_n \left(\left(\varphi \frac{0}{y} \wedge \forall y \left(\varphi \rightarrow \varphi \frac{y+1}{y} \right) \right) \rightarrow \forall y \varphi \right). \Rightarrow \text{ \emptyset ($\partial x_n = 0)$ ($$$

Remark 1.7. It is easy to see that $\mathfrak{N} \models \Phi_{PA}$, i.e., $\Phi_{PA}^{\models} \subseteq Th(\mathfrak{N})$. We will show that $\Phi_{PA}^{\models} \subsetneq Th(\mathfrak{N})$.

Definition 1.8. Let $T \subseteq L_0^S$ be a theory.

H EPA F Y then MEY

7用到证了中的有性负

(i) T is R-axiomatizable if there exists an R-decidable $\Phi \subseteq L_0^S$ with $T = \Phi^{\models}$. e.g. $T = Th (\mathfrak{H})$

(ii) T is finitely axiomatizable if there exists a finite $\Phi \subseteq L_0^S$ with $T = \Phi^{\models}$. e.q. T= { pelsy G+ & VG is grap } Clearly any finitely axiomatizable T is R-axiomatizable.

Theorem 1.9. Every R-axiomatizable theory is R-enumerable.

Proof: Let $T = \Phi^{\models}$ where $\Phi \subseteq L_0^S$ is R-decidable. We can effectively generate all derivable sequent proofs and check for each proof whether all the used assumptions belong to Φ (by the n additionally R-decidability of Φ). check all assumptions

Remark 1.10. There are R-axiomatizable theories that are not R-decidable, e.g., for $S = S_{\infty}$ and $\Phi = \emptyset$

 $\Phi^{\models} = \{ \varphi \in L_{\mathbf{0}}^{S_{\infty}} \mid \models \varphi \}.$ =) enumerable but not decidable

Definition 1.11. A theory $T \subseteq L_0^S$ is complete if for any $\varphi \in L_0^S$, either $\varphi \in T$ or $\neg \varphi \in T$. Regation complete

Remark 1.12. Let \mathfrak{A} be an S-structure. Then the theory $Th(\mathfrak{A})$ is complete

运行处程序要公中ide print. 图674 (i) Every R-axiomatizable complete theory is R-decidable. Theorem 1.13.

(ii) Every R-enumerable complete theory is R-decidable.

Remark S= \$ \$ = \$ T=10 \$

2. The Undecidability of Arithmetic

BX3Y. TKEYET? =) not complete

Corollary Th(IT) is not R-axiomatizable **Theorem 2.1.** Th(\mathfrak{N}) is not R-decidable.

Again, for the alphabet $A = \{\}$ we consider the halting problem

 $\Pi_{\text{halt}} := \{ w_{\mathbb{P}} \mid \mathbb{P} \text{ a program over } \mathcal{A} \text{ and } \mathbb{P} : \square \to \text{halt} \}.$

For any program $\mathbb P$ over $\mathcal A$ we will construct effectively an S_{ar} -sentence $\phi_{\mathbb P}$ (i.e., $\phi_{\mathbb P}$ can be computed by a register machine) such that

Recull

は停机可能等化力-ケゴに占5中 $\mathfrak{N} \models \varphi_{\mathbb{P}}$ $\mathbb{P}: \square \to \text{halt.}$

Not clecidable. Assume that \mathbb{P} consists of instructions $\alpha_0, \ldots, \alpha_k$. Let n be the maximum index i such that R_i is used by \mathbb{P} . Recall that a configuration of \mathbb{P} is an (n+2)-tuple

$$(L, m_0, \ldots, m_n),$$

where $L \leq k$ and $m_0, \ldots, m_n \in \mathbb{N}$, meaning that α_L is the instruction to be executed next and every register R_i contains m_i , i.e., the word $|\cdot| \cdot \cdot|$.

Lemma 2.2. For every program \mathbb{P} over \mathcal{A} we can compute an S_{ar} -formula

$$\chi_{\mathbb{P}}(x_0,\ldots,x_n,z,y_0,\ldots,y_n)$$

such that for all $\ell_0, \ldots, \ell_n, L, m_0, \ldots, m_n \in \mathbb{N}$

$$\mathfrak{N} \models \chi_{\mathbb{P}}[\ell_0, \dots, \ell_n, L, m_0, \dots, m_n]$$

if and only if \mathbb{P} , beginning with the configuration $(0, \ell_0, \dots, \ell_n)$, after finitely many steps, reaches the configuration $(L, m_0, ..., m_n)$.

Using the formula $\chi_{\mathbb{P}}$ in Lemma 2.2, we define

n Lemma 2.2, we define
$$\phi_{\mathbb{P}} := \exists y_0 \cdots \exists y_n \mathbf{1}_{X_{\mathbb{P}}} (0, \dots, 0, \bar{k}, y_0, \dots, y_n),$$

where $\bar{k}:=\underbrace{1+\cdots+1}$. Then By Lemma 2.2, we conclude $\mathfrak{N}\models\phi_{\mathbb{P}}$ if and only if \mathbb{P} , beginning

with the initial configuration $(0,0,\ldots,0)$, after finitely many steps, reaches the configuration (k, m_0, \ldots, m_n) , i.e., $\mathbb{P} : \square \to \text{halt. This finishes our proof of Theorem 2.1.}$

By Theorem 2.1, Theorem 1.13, and Remark 1.12:

Corollary 2.3. Th(\mathfrak{N}) is neither R-axiomatizable nor R-enumerable. Thus

$$\Phi_{PA}^{\models} \subsetneq Th(\mathfrak{N}).$$
 PARATEINE TESTIF

Proof of Lemma 2.2. Recall that $\chi_{\mathbb{P}}$ expresses in \mathfrak{N} that there is an $s \in \mathbb{N}$ and a sequence of configurations C_0, \ldots, C_s such that

$$- C_0 = (0, x_0, \dots, x_n),$$

$$-C_s = (z, y_0, \dots, y_n),$$

- for all i < s we have $C_i \stackrel{\mathbb{P}}{\to} C_{i+1}$, i.e., from the configuration C_i the program \mathbb{P} will reach C_{i+1} in one step.

We slightly rewrite the above formulation as that there is an $s \in \mathbb{N}$ and a sequence of natural numbers

$$\underbrace{\alpha_0, \dots, \alpha_{n+1}}_{C_0} \underbrace{\alpha_{n+2}, \dots, \alpha_{(n+2)+(n+1)}}_{C_1} \dots \underbrace{\alpha_{s \cdot (n+2)}, \dots, \alpha_{s \cdot (n+2)+(n+1)}}_{C_s} \tag{1}$$

such that

$$-a_0=0, a_1=x_0, \ldots, a_{n+1}=x_n,$$

$$-a_{s\cdot(n+2)}=z, a_{s\cdot(n+2)+1}=y_0, \ldots, a_{s\cdot(n+2)+(n+1)}=y_n,$$

- for all i < s we have

$$\left(a_{\mathfrak{i}\cdot(n+2)},\ldots,a_{\mathfrak{i}\cdot(n+2)+(n+1)}\right)\overset{\mathbb{P}}{\longrightarrow}\left(a_{(\mathfrak{i}+1)\cdot(n+2)},\ldots,a_{(\mathfrak{i}+1)\cdot(n+2)+(n+1)}\right).$$

Observe that the length of the sequence (1) is unbounded, so we cannot quantify it directly in \mathfrak{N} . So we need the following beautiful (elementary) number-theoretic tool.

Lemma 2.4 (Gödel's β -function). There is a function $\beta: \mathbb{N}^3 \to \mathbb{N}$ with the following properties.

(i) For every $r \in \mathbb{N}$ and every sequence (a_0,\ldots,a_r) in \mathbb{N} there exist $t,p \in \mathbb{N}$ such that for all $i \leqslant r$

$$\beta(t,p,i)=a_i$$
. (if no such a exists, $\beta(t,p,i):=0$)

(ii) β is definable in $L^{S_{ar}}$. That is, there is an S_{ar} -formula $\phi_{\beta}(x,y,z,w)$ such that for all $t,q,i,a\in$

xp:= 3p 3t 3ς (θβ(t,p,0,0) Λθβ(t,p,1, xo) 1... Λθβ(t,p, n+1, xn) 1 Vi (ics -> Vuyuo .. Vun Yui tus ... tus ((β (t.p. i · (m2), u) 1... Λ (β (t.p. i · (m2) + m+1, un) Λ (β (t.p. (i+1) · (m2) + m+1, un))

Proof: Let
$$(a_0, \ldots, a_r)$$
 be a sequence over \mathbb{N} . Choose a prime $p > \max\{a_0, \ldots, a_r, r+1\},$

and set

$$t := 1 \cdot p^{0} + a_{0} \cdot p^{1} + 2 \cdot p^{2} + a_{1} \cdot p^{3} + \dots + (i+1) \cdot p^{2i} + a_{i} \cdot p^{2i+1} + \dots + (r+1) \cdot p^{2r} + a_{r} \cdot p^{2r+1}.$$

$$(2)$$

In other words, the p-adic representation of t is precisely

$$a_r(r+1)\cdots a_i(i+1)\cdots a_12a_01.$$

Claim. Let $i \le r$ and $a \in \mathbb{N}$. Then $a = a_i$ if and only if there are $b_0, b_1, b_2 \in \mathbb{N}$ such that:

(B1)
$$t = b_0 + b_1((i+1) + a \cdot p + b_2 \cdot p^2),$$

(B2)
$$a < p$$
,

(B3)
$$b_0 < b_1$$
,

(B4)
$$b_1 = p^{2m}$$
 for some $m \in \mathbb{N}$.

Proof of the claim. Assume $a = a_i$. We set

$$\begin{split} b_0 &:= 1 \cdot p^0 + a_0 \cdot p^1 + 2 \cdot p^2 + a_1 \cdot p^3 + \dots + i \cdot p^{2i-2} + a_{i-1} \cdot p^{2i-1} \\ b_1 &:= p^{2i} \\ b_2 &:= (i+2) + a_{i+1} \cdot p + \dots + a_r \cdot p^{2(r-i)-1}. \end{split}$$

By (2) it is routine to verify that all (B1)-(B4) hold.

Conversely,

$$t = \left(1 \cdot p^0 + a_0 \cdot p^1 + 2 \cdot p^2 + a_1 \cdot p^3 + \dots + i \cdot p^{2i-2} + a_{i-1} \cdot p^{2i-1}\right)$$

$$+ \frac{(i+1) \cdot p^{2i} + a \cdot p^{2i+1}}{((i+2) + a_{i+1} \cdot p + \dots + a_r \cdot p^{2(r-i)-1}) \cdot p^{2i+2}}$$

$$= b_0 + \frac{(i+1) \cdot p^{2m} + a \cdot p^{2m+1} + b_2 \cdot p^{2m+2}}{(i+1) \cdot p^{2m} + a \cdot p^{2m+1} + b_2 \cdot p^{2m+2}}.$$
In that the p-adic representation of any number is unique. Together with b_0 and $a = a_i$.

It is well known that the p-adic representation of any number is unique. Together with $b_0 < p^{2m}$, we conclude $a = a_i$.

Since p is chosen to be a prime, it is easy to verify that (B4) is equivalent to

(B4') b_1 is a square, and for any d > 1 if $d \mid b_1$, then $p \mid d$.

Finally for every $t, q, i \in \mathbb{N}$ we define $\beta(t, q, i)$ to be *smallest* $\alpha \in \mathbb{N}$ such that there are $b_0, b_1, b_2 \in \mathbb{N}$ such that

$$- t = b_0 + b_1 ((i+1) + a \cdot q + b_2 \mathbf{\hat{q}}),$$

 $-\alpha < q$

 $-b_0 < b_1$

- b_1 is a square, and for any d > 1 if $d \mid b_1$, then $q \mid d$.

र्नेशन निर्देश, भिरान १६०५५न 两限t去到止。

If no such a exists, then we let $\beta(t, q, i) := 0$.

By the above argument, (i) holds by choosing q to be a sufficiently large prime. To show (ii) we define

$$\begin{split} \phi_{\beta}(x,y,z,w) := & \Big(\psi(x,y,z,w) \wedge \forall w' \big(\psi(x,y,z,w') \to (w' \equiv w \vee w < w'^1) \big) \Big) \\ & \vee \Big(\neg \psi(x,y,z,w) \wedge w \equiv 0 \Big). \end{split}$$

Here $\psi(x, y, z, w)$ expresses the properties (B1), (B2), (B3), and (B4'):

$$\begin{split} \psi(x,y,z,w) &:= \exists u_0 \exists u_1 \exists u_2 \Big(x \equiv u_0 + u_1 \cdot \big((z+1) + w \cdot y + u_2 \cdot y \cdot y \big) \\ & \wedge w < y \wedge u_0 < u_1 \\ & \wedge \exists v \ u_1 \equiv v \cdot v \wedge \forall v \big(\exists v' u_1 \equiv v \cdot v' \rightarrow (v \equiv 1 \vee \exists v' v \equiv y \cdot v') \big) \Big). \end{split}$$

3. Exercises

Exercise 3.1. Prove that

$$\Phi_{PA} \models \forall x \forall y \ x + y \equiv y + x.$$

 \dashv

Exercise 3.2. Let T be an R-enumerable theory. Show that T is R-axiomatizable.

Exercise 3.3. Construct an S_{ar} -formula $\varphi_{exp}(x,y,z)$ such that for every $a,b,c \in \mathbb{N}$

$$c = a^b \iff \mathfrak{N} \models \phi_{exp}[a, b, c].$$

w < w' stands for the formula $\exists v (\neg v \equiv 0 \land w + v \equiv w')$.