- **Problem 7.9.** $G^0 = 0$. $G_1 = 1$ and $G_n = 7G_{n-1} 12G_{n-2}$ for n > 1. Compute G_5 . Show $G_n = 4^n 3^n$ for $n \ge 0$.
- Problem 7.12(c). (See Problem 7.28 for hints.) Tinker to guess a formula for each recurrence and prove it. In each case $A_1 = 1$ and for n > 1:
 - (a) $A_n = 10A_{n-1} + 1$
 - (b) $A_n = nA_{n-1}/(n+1) + n$
 - (c) $A_n = 10nA_{n-1}/(n-1) + n$
- Problem 7.13(a).
- Problem 7.19(d).
- Problem 7.42.
- Problem 7.45(c).
- Problem 7.49.
- Problem 8.12(d).
- Problem 8.14.