Bài 2:

1. Mô hình Simulink mô phỏng hệ thống điều khiển hệ con lắc ngược

- Khối Pendulum:

- Các thông số bộ điều khiển:

K ₁	K_2	K ₃	K ₄	Ku
1/0.3	1	1/3	1/3	40

- Kết quả mô phỏng:

+ **TH1:** $x_0 = 0$, $xdot_0 = 0.1$, Theta $_0 = 0.1$, Theta $dot_0 = 0$. Setpoint = 1 trong 10s đầu và Setpoint = 0 trong 10s sau.

Nhận xét: Bộ điều khiển mờ có thể giữ cân bằng hệ con lắc ngược khi vị trí của xe thay đổi từ 1 về 0. Hệ thống đáp ứng khoảng 6s.

+ **TH2:** $x_0 = 3$, $xdot_0 = -0.5$, Theta $_0 = 0.2$, Theta $dot_0 = -0.4$. Setpoint = 1 trong 10s đầu và Setpoint = 0 trong 10s sau.

Nhận xét: Bộ điều khiển mờ có thể giữ cân bằng hệ con lắc ngược khi vị trí của xe thay đổi từ 1 về 0. Hệ thống đáp ứng khoảng 6s.

+ **TH3:** $x_0 = -2$, $xdot_0 = 1.5$, Theta $_0 = 0.3$, Theta $dot_0 = -0.8$. Setpoint = 2 trong 10s đầu và Setpoint = 0 trong 10s sau.

Nhận xét: Bộ điều khiển mờ có thể giữ cân bằng hệ con lắc ngược khi vị trí của xe thay đổi từ 2 về 0. Hệ thống đáp ứng khoảng 6s.

Kết luận: Sau khi thực hiện mô phỏng 3 trường hợp từ các trạng thái đầu khác 0 thì bộ điều khiển mờ có thể giữ cần bằng hệ con lắc ngược.

2. Thay đổi thông số hệ thống: M=5kg; m=3kg; l=1m.

Vì trong lượng xe, trọng lượng con lắc và chiều dài con lắc tăng lên rất nhiều lần, nên cần tăng lực tác động vào xe (K_u) lên nhiều lần.

+ **TH1:** Khảo sát tại trạng thái ban đầu $x_0 = -0.5$, $x dot_0 = 0$, Theta $_0 = 0.15$, Thetadot $_0 = 0$. Setpoint = 1 trong 10s đầu và Setpoint = 0 trong 10s sau. Giữ nguyên các giá trị K_1 , K_2 , K_3 , K_4 .

• $K_u = 150$

Nhận xét: Ta thấy đáp ứng của hệ thống vẫn còn dao động xung quanh giá trị Setpoint.

• $K_u = 200$

Nhận xét: Đáp ứng của hệ thống ổn định trong khoảng 6s.

• $K_u = 250$

Nhận xét: Đáp ứng của hệ thống ổn định trong khoảng 5s.

+ **TH2:** Khảo sát tại trạng thái ban đầu $x_0 = 1$, $x dot_0 = -1$, Theta $_0 = -0.2$, Thetadot $_0 = -0.2$. Setpoint = 1 trong 10s đầu và Setpoint = 0 trong 10s sau. Giữ nguyên các giá trị K_1 , K_2 , K_3 và $K_4 = 1/2$.

• $K_u = 400$

• $K_u = 600$

Nhận xét: Đáp ứng của hệ thống ổn định trong khoảng 4s.