

ECDS GROUP 11



The hospitality sector is witnessing a shift in booking dynamics, marked by increasing last-minute cancellations, causing significant revenue losses and poor demand forecasting



### Problem Definition:



Can we predict if a hotel booking will be canceled at the time of booking, using customer and booking information

### DATA SET

#### **Hotel Booking Prediction (99.5% acc)**

Notebook Input Output Logs Comments (95)

#### **Input Data**



#### **26 MONTHS**



### 119,000 booking records 32 FEATURES











### EXPLORATORY DATA ANALYSIS

### DATA PREPEARATION, CLEANING AND FEATURE ENGINEERING

Handled missing values by removing rows with nulls in 'children' and imputing values for 'country', 'agent', and 'company'.

Transformed 'agent' and 'company' to categorical strings, encoded categorical variables using one-hot encoding, and dropped irrelevant columns.

Created new features — 'stay\_duration', 'total\_guests', and 'Has\_agent' — and checked for class imbalance to inform model strategy.

### IRREGULARITIES

### **Outliers**



### Inter Quartile Range

```
a = ['adr','lead_time']
for i in a:
    var = data[i]

Q1 = var.describe().loc["25%"]
    Q3 = var.describe().loc["75%"]
    IQR = Q3-Q1

Low = (Q1-(1.5*IQR))
    Upper = (Q3 + (1.5*IQR))

data = data[(data[i] >= Low ) & (data[i] <Upper)]</pre>
```

### Exploitary Data Analysis

From our initial data analysis
we realised that the
correlation between the
numeric variables are low ...
With the highest being 0.29,
between lead\_time and
is\_cancelled



### Exploitary Data Analysis

### Use of Cramer's V to obtain coerralation between categorical variables

```
from scipy.stats import chi2_contingency
def cramers_v(confusion_matrix):
    """Calculate Cramer's V (association strength between two categorical variables)."""
    chi2 = chi2_contingency(confusion_matrix)[0]
    n = confusion_matrix.sum().sum()
    phi2 = chi2 / n
    r, k = confusion_matrix.shape
    return np.sqrt(phi2 / min(k-1, r-1))
categorical cols = data.select_dtypes(include=['object', 'category']).columns.tolist()
cramers_v_scores = {}
for col in categorical cols:
    confusion_matrix = pd.crosstab(data[col], data['is_canceled'])
    score = cramers_v(confusion_matrix)
    cramers_v_scores[col] = score
cramers_v_sorted = pd.Series(cramers_v_scores).sort_values(ascending=False)
print("Coerralation of categorical Variables with 'is_cancelled'")
print()
print(cramers_v_sorted)
```

### Output

Coerralation of categorical Variables with 'is\_cancelled'

| deposit_type         | 0.472156 |
|----------------------|----------|
| agent                | 0.376709 |
| country              | 0.358607 |
| market_segment       | 0.255142 |
| assigned_room_type   | 0.200957 |
| distribution_channel | 0.171346 |
| company              | 0.142737 |
| hotel                | 0.136757 |
| customer_type        | 0.125814 |
| Has_Agent            | 0.097748 |
| arrival_date_month   | 0.074611 |
| reserved_room_type   | 0.071304 |
| meal                 | 0.053124 |
| dtyne: float64       |          |

dtype: float64

### Exploratory Data Analysis

In the case of categorical data we managed to obtain better relationship between the variables. Some of the key factors that we found were:

Country, agent and Refundable deposit\_type



### Exploratory Data Analysis

In the case of categorical data we managed to obtain better relationship between the variables. Some of the key factors that we found were:

Country, Customer\_type and Refundable deposit\_type



### Exploratory Data Analysis

In the case of categorical data we managed to obtain better relationship between the variables. Some of the key factors that we found were:

Country, agent and Refundable deposit\_type



## Which variables to choose

#### Numerical Variables:

lead\_time, total\_of\_special\_requests
Categorical Variables:

deposit\_type, agent, market\_segment

Using a combination of variables improves our model's predictive performance and reflects the complexity of real-world decisionmaking



### MODELS USED





DECISION TREE



RANDOM FOREST



XGBOOST

### DECISION TREE

```
from sklearn.model_selection import train_test_split
'''from sklearn.linear_model import LinearRegression'''
from sklearn.metrics import mean_squared_error, r2_score, accuracy_score, confusion_matrix, classification_report
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import plot_tree
 dectree = DecisionTreeClassifier(class_weight='balanced', random_state=42)
 dectree.fit(X_train, y_train)
 y_train_pred_dtc = dectree.predict(X_train)
 y_test_pred_dtc = dectree.predict(X_test)
```

### DECISION TREE

#### **KEY INSIGHTS**

Accuracy Score of Decision Tree Classifier: 0.789082774049217

Classification Report:

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.85      | 0.81   | 0.83     | 14261   |  |
| 1            | 0.69      | 0.76   | 0.72     | 8089    |  |
| accuracy     |           |        | 0.79     | 22350   |  |
| macro avg    | 0.77      | 0.78   | 0.78     | 22350   |  |
| weighted avg | 0.80      | 0.79   | 0.79     | 22350   |  |



### RANDOM FOREST

#### **KEY INSIGHTS**

```
from sklearn.ensemble import RandomForestClassifier

randforest = RandomForestClassifier(n_estimators=500,
    max_depth=15,
    min_samples_split=2,
    class_weight='balanced',
    random_state=42
)

randforest.fit(X_train, y_train)

y_train_pred_rfc = randforest.predict(X_train)
y_test_pred_rfc = randforest.predict(X_test)
```

AN ENSEMBLE METHOD THAT BUILDS MULTIPLE DECISION TREES AND AVERAGES THEIR PREDICTIONS TO IMPROVE ACCURACY AND REDUCE OVERFITTING.



### RANDOM FOREST

#### **KEY INSIGHTS**

Accuracy Score of Random Forest Classifier: 0.7935570469798657 Classification Report:

| Ctassiiicatio | ii Neporti |        |          |         |  |
|---------------|------------|--------|----------|---------|--|
|               | precision  | recall | f1-score | support |  |
| 0             | 0.82       | 0.87   | 0.84     | 14261   |  |
| 1             | 0.75       | 0.65   | 0.70     | 8089    |  |
| accuracy      |            |        | 0.79     | 22350   |  |
| macro avg     | 0.78       | 0.76   | 0.77     | 22350   |  |
| weighted avg  | 0.79       | 0.79   | 0.79     | 22350   |  |



### **XGBOOST**

#### **KEY INSIGHTS**

```
from xgboost import XGBClassifier
xgb = XGBClassifier(
    n_estimators=500,
   max_depth=10,
    learning_rate=0.1,
    subsample=0.8,
    colsample_bytree=0.8,
    eval_metric='logloss',
    random_state=42
xgb.fit(X_train, y_train)
y_train_pred_xgb = xgb.predict(X_train)
y_test_pred_xgb = xgb.predict(X_test)
```

A POWERFUL BOOSTING ALGORITHM THAT BUILDS TREES SEQUENTIALLY AND OPTIMIZES ERRORS FROM PREVIOUS TREES. IT'S KNOWN FOR BEING FAST AND ACCURATE.



### **XGBOOST**

#### **KEY INSIGHTS**

Accuracy Score of XGB Classifier: 0.8170917225950783 Classification Report:

| support | f1-score | recall | precision |              |
|---------|----------|--------|-----------|--------------|
| 14261   | 0.87     | 0.92   | 0.82      | 0            |
| 8089    | 0.72     | 0.64   | 0.82      | 1            |
| 22350   | 0.82     |        |           | accuracy     |
| 22350   | 0.79     | 0.78   | 0.82      | macro avg    |
| 22350   | 0.81     | 0.82   | 0.82      | weighted avg |



| MODEL         | ACCURACY | PRECISION | RECALL | F1 SCORE |
|---------------|----------|-----------|--------|----------|
| DECISION TREE | 79       | 80        | 79     | 79       |
| RANDOM FOREST | 80       | 79        | 79     | 79       |
| XGBOOST       | 82       | 82        | 82     | 81       |



### XGBOOST

### RECOMENDATION

### Conclusion:



With reliable predictions, hotels can safely overbook slightly to compensate for expected cancellations

This maximises their revenue while still maintaining customer satisfaction

#