Algebra Examenskurs Übungsblatt 6

Thema: Körpertheorie I ($\S 3.4 - \S 3.7$)

1 Aufwärmübungen

Aufgabe 1.1. Seien L/K und K/M zwei Galoiserweiterungen. Ist L/M auch eine Galoiserweiterung?

Aufgabe 1.2. Sei $K = \mathbb{Q}(\sqrt{2}, i)$, wobei $i \in \mathbb{C}$ die imaginäre Einheit mit $i^2 = -1$ ist. Bestimmen Sie die zugehörige Galoisgruppe $G = \operatorname{Gal}(K/\mathbb{Q})$ und alle Teilkörper von K.

2 Aufgaben

Aufgabe 2.1 (H16-T3-A4). Finden Sie zwei Polynome $f, g \in \mathbb{Q}[x]$ gleichen Grades, sodass $\operatorname{Gal}(f)$ und $\operatorname{Gal}(g)$ gleich viele Elemente haben, aber $\operatorname{Gal}(f)$ abelsch und $\operatorname{Gal}(g)$ nicht abelsch ist.

Aufgabe 2.2 (F16-T3-A5). Sei $f(x) = X^4 - 2X^2 - 2 \in \mathbb{Q}[x]$.

a) Zeigen Sie, dass

$$\alpha_1 = \sqrt{1 + \sqrt{3}}, \quad \alpha_2 = \sqrt{1 - \sqrt{3}}, \quad \alpha_3 = -\alpha_1, \quad \alpha_4 = -\alpha_2$$

die Nullstellen von f in \mathbb{C} sind.

- b) Zeigen Sie, dass $\mathbb{Q}(\alpha_1) \neq \mathbb{Q}(\alpha_2)$ (als Teilkörper von \mathbb{C}).
- c) Zeigen Sie, dass $\mathbb{Q}(\sqrt{3}) = \mathbb{Q}(\alpha_1) \cap \mathbb{Q}(\alpha_2)$.
- d) Zeigen Sie, dass die Körpererweiterungen $\mathbb{Q}(\sqrt{3}) \subset \mathbb{Q}(\alpha_1)$ und $\mathbb{Q}(\sqrt{3}) \subset \mathbb{Q}(\alpha_2)$ galoissch sind.
- e) Sie K der Zerfällungskörper von f über $\mathbb Q$. Zeigen Sie, dass $\mathbb Q(\sqrt{3})\subset K$ galoissch ist und bestimmen Sie den Isomorphietyp der Galoisgruppe.

Viel Erfolg!