

Introduction to Generative Al

Learning Objectives

Upon completion of this module, you should be able to:

- Define Al Fundamentals and Generative Models.
- Deconstruct Large Language Models (LLMs)
 - a. Analyze the behavior of LLMs and their understanding, completion, and prediction of text.
 - b. Investigate the phenomenon of hallucinations in LLMs and its underlying causes.
- Identify the diverse applications of ML, DL, and Generative AI in business, retail, health, and technology sectors.
- Gain practical experience by working with ChatGPT for text and Code generation

Agenda

Here, we will cover:

- Defining AI, ML, DL, LLM and Generative Models via Venn diagram
- Learning supervised and unsupervised ML tasks
- Understanding Generative and Discriminative AI
- A brief timeline of Generative AI
- A peek into generative models
- Deconstructing the behaviour of a large language models
- ML, DL and GenAl applications in business
- Hands-on demonstration of ChatGPT for text and code generation

Getting the Definitions Right

Supervised Learning

Should I give loan to this customer?

Supervised Learning

Unsupervised Learning

Discriminative AI vs. Generative AI

ModelLearns from relationship
between **labels** and
data

Could this be a dog?

Classify

Discriminative Al

Train

Model

Learns from patterns in large amounts of unstructured data

Create an image of dog, having fun in a party, wearing a black tuxedo with wine in one hand

Generate

Generative Al

Other images on the internet

A Brief History of Generative Al

A Peek into Generative Al Models

Large Language Models (LLMs)

- Large, because 2 things:
 - 1. trained on large amounts of data
 - 2. billions of trainable parameters
- Language, because it deals with text data (takes input in text and generates output in text).
- Model, because it predicts the next word/sentence/token.
- So LLMs are language models consisting of a neural network with billions of parameters, trained on large quantities of unlabeled text using self-supervised learning.

Interacting with Generative AI Models

Hands-on: Introducing ChatGPT

How does the Model understand text?

Is there a numeric way to represent association between text or words?

Word embeddings = semantic + syntactic relations in a vector space

How does it complete text?

The robot must obey instructions given to _____

Learning from the large set of documents, the model has understood that when the word **robot** is referred to again in a sentence, words like "it" / "its" are most likely to be the completion word.

It memorized this association by knowing they are close to each other in some vector dimension that associates pronouns with words. The robot must obey instructions given to it

The robot must obey instructions given to its control system or programming

The robot must obey instructions given to <u>its designated operator or user</u>

How does it predict the next word?

• **Step-1: Word Embeddings** - Break the sentence into words and convert them to embeddings

• **Step-3**: **Giving importance/attention**: Each word is assigned a score based on how important it is to other words in the sentence

How does it predict the next word?

Step-4: Assigning Weights - This is for "robot" - but step-3 and 4 will be repeated for all words

• **Step-6: Predict** - Get the next possible words with their probabilities and fill in or do the "chat completion" with the one that has the highest probability

How is it able to remember conversations?

Why do Language models hallucinate?

Business Problems solved by GenAl - Retail

Business Problems solved by GenAI - Healthcare

Business Problems solved by GenAl - Tech

Interacting with Generative AI Models

Hands-on: Exploring ChatGPT

Mind Map

Summary

Here's a brief recap:

- We gained a clear understanding of the concepts of Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), and Generative AI including their definitions, key principles, and how they are related to each other.
- Discriminative models aim to classify or differentiate between different classes or categories,
 while generative models focus on creating new data that resembles a given training dataset.
- The historical perspective provided insights into the evolution of generative AI techniques such as GANs, Stable diffusion and their applications.

Summary

Here's a brief recap:

- We explored various business applications of AI, highlighting how organizations leverage AI
 technologies to enhance operations, improve decision-making, automate tasks and personalize
 user experiences.
- We explored state-of-the-art models in the field of AI. ChatGPT, a text-based model, focuses on generating human-like text responses in conversational settings. We also used ChatGPT to generate code.

Learning Outcomes

Upon completion of this module, you should able to:

- Explain the key definitions and fundamentals of AI, ML, DL and Generative AI
- Identified supervised and unsupervised tasks.
- Explore the difference between Discriminative and Generative AI.
- Explain a brief history of Generative Al.
- Analyze the behaviour of LLMs and understood their processes of text completion and prediction.
- Identify various business use-cases of AI, DL, ML and GenAI.
- Explore ChatGPT (text and code).

Happy Learning!

