

Name of the School	School of Basic and Applied Sciences	Name of the Department	Department of Mathematics
Name of the Program	B Tech	Course Code- Course Name	UBS 1003M Maths I / UBS 1006M Engg. Math.1
Session	2024-25	Branch, Year & Semester	CSE/ECE/R&AI, 1st,
Time/Maximum Marks	90 Minutes/50	Set	A
Note: Attompt all and	antinaa		

Note: Attempt all questions.

Q No.	QUESTIONS	MARKS	СО	
	SECTION-A			
1	Verify Rolle's theorem for $f(x) = \sin x + 2$ for $0 \le x \le 2\pi$.	2	1	
2	If $y = (2x + 3)^{-1}$, find y_{30} .	2	1	
3	If $z = \frac{x^{-\frac{9}{2} + y^{-\frac{9}{2}}}}{x + y}$, find $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$.	2	2	
4	If $u = e^{-r\sin\theta}$, find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial \theta}$.	2	2	
5	Evaluate $\int_0^1 \int_0^1 x^2 e^y dx dy$.	2	3	
6	Find $\int_0^5 \int_{2-x}^{2+x} dy dx$.	2	3	
	SECTION-B			
7	Find the n th derivative of $y = e^{3x} \sin^2 x$.	5	1	
8	If $\log y = \tan^{-1} x$, show that $(1+x^2)y_{n+2} - \{2(n+1)x - 1\}y_{n+1} + n(n+1)y_n = 0$.	7	1 .	
9	If $x^x y^y z^z = c$, show that at $x = y = z$ $\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}$.	7	2	
10	If $u = \log\left(\frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}}\right)$, find the value of (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$	7	2	
11	Evaluate $\int_0^a \int_0^{a-z} \int_0^{a-y-z} (x^2 + y^2 + z^2) dx dy dz$	5	3	
12	By changing of order of integration, evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{e^y}{(e^y+1)^4 \sqrt{1-x^2-y^2}} dy dx.$	7	3	

111.M University, Greater Nolda End Semester Examination

Name of the School	School of Basic & Applied Sciences	Name of the Department	Mathematics
Name of the Program	B. Tech.	Course Code/ Course Name	UBS1003M [Maths I] /UBS1006M [Engg. Mathematics I]
Session	2024 – 25	Branch, Year & Semester	CSE, R&AI, EEE
Time/Max Marks	3 Hours/100	Set	Λ

1) Attempt all sections (A, B & C).
2) Attempt all sections and assume any missing data.
3) Appropriate marks are allotted to each question, answer accordingly.

Q No.	QUESTIONS	MARKS	co
	SECTION-A: Attempt All of the following Questions in brief.		(10x2=20)
Q1(a)	Find the n^{th} derivative of $y = \sin 2x \cos 3x$	2	1
Q1(b)	Test the applicability of Rolle's theorem for $f(x) = x^2 - 3x + 4$ on $[0, 2]$	2	1
Q1(c)	Find $\frac{dy}{dx}$ if $y^2 + xy - 3x - 3 = 0$ at $(-1, 1)$	2	2
Q1(d)	Find Jacobian if $x = r \cos \theta \& y = r \sin \theta$	2	2
Q1(e)	Evaluate $\int_{0}^{3} \int_{0}^{x} y dy dx$ Evaluate	2	3
Q1(f)	Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dz dy dx$	2	3
Q1(f)	Describe in brief the Cauchy – Riemann equations for the analyticity of a complex function.	2	4
Q1(h)	Define the continuity of a complex function.	2	4
Q1(i)	Discuss the nature of the series $2-2+2-2+2-\dots \dots \infty$	2	5
Q1(j)	What do you mean by infinite series? Write an example of a positive infinite series.	2	5
	SECTION-B: Attempt all Questions.		(5x6=30)
22(a)	Expand $e^x \sin x$ in powers of $(x-1)$ up-to third degree term.	6 1	. 1
2263	Find the extreme values of the function $x^3 + y^3 + 3axy$	675	2
22(01)	Change the order of integration in $\int_{0}^{4} \int_{y}^{4} \frac{x dx dy}{x^2 + y^2}$	<i>⊗</i> .	3
Q2(d)	& evaluate the same. Show that $u = e^x \cos y$ is harmonic function. Find its harmonic conjugate.	6 -> 3	4
Q2(e)	Examine the convergence of the series $\frac{3}{5} + \frac{4}{5^2} + \frac{3}{5^3} + \frac{4}{5^4} + \dots + \infty$ SECTION-C: Attempt ANY ONE of the following Questions.	6-3 \$	5

	x = 1 $x = 1$ $x = 1$	10 🗸	1
Q3(h)	If $y = x \log \left(\frac{x-1}{x+1} \right)$ then show that $y_n = (-1)^{n-2} (n-2)! \left[\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n} \right]$		
		10	1
Q3(b)	Verify Lagrange's mean value theorem $f(x) = x^3 - 6x^2 + 9x + 1$ in [1,4]		
	SECTION-C: Attempt ANY ONE of the following Questions.		(1x10=10)
	SECTION-C. Attemption $u = \sin^{-1}\left(\frac{x}{x}\right) + \tan^{-1}\left(\frac{y}{x}\right)$	10 - 6	2
Q4(a)	Verify Euler's theorem on homogenous function for the function $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$		
		10	2
Q4(b)	If $u = xyz$, $v = xy + yz + zx & w = x + y + z$ then compute the Jacobian $\frac{\partial(u,v,w)}{\partial(x,y,z)}$		

•

	SECTION-C: Attempt ANY ONE of the following Questions.		(1x10=10)
Q5(a)	Evaluate $\int_{1}^{1\sqrt{1-x^2}} \int_{1-x^2-y^2}^{1-x^2-y^2} \frac{1}{\sqrt{1-x^2-y^2-z^2}} dz dy dx$	10/	3
Q5(Q)	Change the order of integration and hence evaluate $\int_{0}^{a} \int_{\sqrt{ax}}^{a} \frac{y^{2}}{\sqrt{y^{4} - a^{2}x^{2}}} dy dx$	10/	3

	SECTION-C: Attempt ANY ONE of the following Questions.		(1x10=10)
Q6(a)	Determine analytic function using Milne Thomson's method whose real part is $e^x(x \cos y - y \sin y)$	10	4
Q(b)	Prove that $u = x^4 - 6x^2y^2 + y^4$ is harmonic. Also find the analytic function $f(z) = u(x,y) + iv(x,y)$. %	4

Г		SECTION-C: Attempt ANY ONE of the following Questions.		(1x10=10)
0	(T(B)	Discuss the convergence of infinite series $\sum \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n; x > 0$	150	5
	Q7(b)	Discuss the convergence of infinite series $\frac{x}{1} + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots + \infty$	10	5