Identifying Machine Learning Models to Predict Serious Credit Delinquency

Noah Keogh

What is a Credit Score?

- Created in 1989 with Introduction of FICO score [1].
- Gives quantitative measure to a borrower's potential riskiness [2].
- Scores range from 300 to 850 [3].

How do Models Calculate Credit Score?

Common Credit Score Factors:

- 1) Payment history
- 2) Credit utilization ratio
- 3) Total debt
- 4) Credit mix
- 5) Account age/depth of credit
- 6) Hard inquiries

Business Objective

Supervised Model: To classify a given person as being likely or not likely to experience serious delinquency.

Unsupervised Model: Any financial tendencies or behaviors of people in the dataset. Do these tendencies have any correlation to risk of serious delinquency?

Dataset

Publicly Available on Kaggle

11 Features (one considered label)

Data Wrangling

Label Count Check (Entire Dataset)

Class 1 (Delinquent): 10,026

Class 0 (Not Delinquent): 139,974

Train Dataset

Class 0: 111,979

Class 1: 8,021

Under Sampling

Train Dataset

Class 0: 8,021 Class 1: 8,021

Class 0: 27,995

Class 1: 2,005

Data Wrangling

1) Missing Values (Entire Dataset):

Monthly Income: 29,731

Number of Dependents: 3,924

2) Label Balancing (under sampling)

3) Feature Standardization

4) PCA Dimensionality Reduction

10 dimensions [] 7 dimensions (94.8% explained variance)

```
Explained Variance Ratio:
[0.30587879 0.16867738 0.11931453 0.10115368 0.09935303 0.07923475 0.07456405 0.05026824 0.00102548 0.00053007]

Cumulative Sum of EVR:
[0.30587879 0.47455617 0.5938707 0.69502438 0.79437741 0.87361216 0.94817621 0.99844445 0.99946993 1.
```


Model Testing

Data Modeling: Logistic Regression

Average Accuracy: 70.75%

Nested Cross Validation:

10 trials conducted

Parameters Tested

1) C: 1, 10, 100

2) Solver: lbfgs, liblinear

Data Modeling: Support Vector Machine (SVM)

Average CV Score: 0.7436730257378245

Average Accuracy: 74.37%

Nested Cross Validation:

10 trials conducted

Parameters Tested

- 1) C: 1, 10
- 2) Gamma: 0.01, 0.1
- 3) Solver: rbf

Data Modeling: Random Forest Classifier

Average Accuracy: 77.68%

Nested Cross Validation:

10 trials conducted

Parameters Tested

- 1) Max Depth: 4, 6, 8
- 2) Min Samples Leaf: 30, 100

Data Modeling: K-Means-Clustering

1) Dimensionality Reduction
10 dimensions [] 2 dimensions
(47.46% variance)

2) Clustering
Use K=2 to perform clustering

Data Modeling: K-Means-Clustering

Most Important Features for PC 1:
NumberOfTime30-59DaysPastDueNotWorse 0.560500
NumberOfTimes90DaysLate 0.563166
NumberOfTime60-89DaysPastDueNotWorse 0.562465
Name: PC_1, dtype: float64

Most Important Features for PC 2:
MonthlyIncome 0.443187
NumberOfOpenCreditLinesAndLoans 0.563457
NumberRealEstateLoansOrLines 0.592006
Name: PC 2, dtype: float64

Random Forest Classifier Optimization

Hyperparameter Testing: Validation Curves

Optimal Values for Each
Hyperparameter to Test in
Randomized Search

max_depth: 3 to 8

min_samples_leaf: 45 to 100

max_features: 1 to 10 n estimators: 15 to 25

Randomized CV Search for Final Model

Accuracy in CV: 78.12%

Model Hyperparameters

- 1) max_depth: 7
- 2) max_features: 5
- 3) min_samples_leaf: 48
- 4) n_estimators: 19

Assessing Accuracy

Test Dataset

Class 0: 27,995

Class 1: 2,005

Number of Samples: 30000 Number Positive: 2005

Number Negative: 27995

True Positive (TN): 1579

True Negative (TN): 21815 False Positive (TN): 6180

False Negative (TN): 426

Model Accuracy: 0.7798

Precision: 0.2035

Recall: 0.7875

F1 Score: 0.3234

Assessing Accuracy

Future Explorations

- Exploring different models such as neural networks.
- Further optimizing tested models such as logistic regression and SVMs.
- Collecting more data and training examples to improve performance.

Questions?

Sources

- [1] https://www.creditrepair.com/blog/education/when-were-credit-scores-invented/
- [2] https://www.onemainfinancial.com/resources/credit/credit-scoring-models#:~:text=A%20credit%20scoring%20model%20is%20an %20algorithm%20used,helps%20lenders%20make%20informed%20decisions%20when%20approving%20loans.
- [3] https://www.bankrate.com/personal-finance/credit/no-credit-score-zero-credit/

