```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from SIGNALscripts import plots
import SIGNALscripts.functions as f
```

SIGNALscripts.config loaded! SIGNALscripts.notebooks loaded!

Auswertung Residuallast-Signale

greift auf die Datei 'RES_pro_Stunde.csv' und die eingegebenen csv-Dateien der Schaltsignale zu.

Inhalt

- Häufigkeiten
 - Anteil positiver/negativer Stunden insgesamt
 - Längste positive Phase/längste negative Phase
 - Phasenlängen von x Stunden negativ/positiv
- Zusammenhang mit der Residuallast
 - Häufigkeit Signal positiv und RES > 0
 - Häufigkeit Signal negativ und RES < 0

Input

Namen der Dateien, die die Signale enthalten und Namen, die später für die Identifikation in diesem Notebook verwendet werden können (Anzahl Dateinamen und Namen muss übereinstimmen)

```
In [2]:
    ###

    dateien = ['Schaltsignal_RES1.csv', 'Schaltsignal_RES2.csv', 'Schaltsignal_RES3.csv']
    names = ['Signal 1', 'Signal 2', 'Signal 3']
    resload = pd.read_csv('RES_pro_Stunde.csv', header = 1, names = ['snapshots', 'signal'])
    ###
    sdf = f.import_func(dateien, names)
```

Anforderungen an das Dataframe

- csv-file mit einer header-Zeile und zwei Spalten
 - erste Spalte: Index bzw. Datums- und Zeitangaben
 - zweite Spalte: Signal
- Signal: binäres Signal x mit $x \in [0,1]$
- mindestens 2 negative bzw. positive Einträge
- \rightarrow Signal erfüllt die Anforderungen zur Auswertung:

```
In [3]: f.check_input(sdf[1])
Out[3]: True
```

Häufigkeits-Analyse

Allgemeine Statistik

- Anteil pos. Signal: gibt an, welchen Anteil der gesamt vergangenen Zeit ein positives Signal 1 gebracht wird.
- Anteil neg. Signal: gibt an, welchen Anteil der gesamt vergangenen zeit ein negatives Signal 0 gebracht wird.
- Längstes pos. Signal: Gibt die längste Zeitdauer, die durchgehend ein positives Signal 1 erscheint, an
- Längstes neg. Signal: Gibt die längste Zeitdauer, die durchgehend ein negatives Signal 0 erscheint, an
- Mean neg. Signal: Mittelwert der Zeitdauern, die durchgehend ein negatives Signal 0 erscheint
- Mean pos. Signal: Mittelwert der Zeitdauern, die durchgebend ein positives Signal 1 erscheint

Alle größenbehafteten Angaben werden in Stunden angegeben.

```
In [4]: f.statistics(sdf)
```

Out[4]:		Name	Anteil pos. Signal	Anteil neg. Signal	Längstes neg. Signal [h]	Mean neg. Signal [h]	Längstes pos. Signal [h]	Mean pos. Signal [h]
	0	Signal 1	0.46	0.54	284.0	25.69	200.0	22.51
	1	Signal 2	0.48	0.52	20.0	5.07	29.0	4.78
	2	Signal 3	0.62	0.38	19.0	4.11	190.0	6.74

Zeitdauern eines durchgängigen Signals

Die Daten sind im DataFrame 'res' gespeichert und können mit der auskommentierten Zeile als csv gespeichert werden.

```
for i in range(0,len(sdf[1])):
    res = f.all_lengths(sdf[1][i]['signal'])
    res[1:40].plot(kind = 'bar', figsize=(20,5))
    plt.title('Länge der Signale von ' + sdf[0][i], fontsize = 23)
    plt.xlabel('Zeitdauer [h]')
    plt.ylabel('Auftreten ')
    #res.to_csv('pathtofolder/ZD_'+ sdf[0][i].csv)
```


Zusammenhang mit der Residuallast

- Positives Signal RES > 0 gibt an, zu wie vielen Stunden das Schaltsignal positiv ist und die Residuallast ebenfalls
- Positives Signal RES < 0 gibt an, zu wie vielen Stunden das Schaltsignal positiv ist, die Residuallast hingegen negativ
- Negatives Signal RES > 0 gibt an, zu wie vielen Stunden das Schaltsignal negativ ist und die Residuallast positiv
- Negatives Signal RES < 0 gibt an, zu wie vielen Stunden das Schaltsignal negativ ist und die die Residuallast positiv.
- Anteil neg. Signal RES < 0 gibt an, welcher Anteil der negativen Residuallast ein negatives Schaltsignal auslöst \rightarrow sollte minimal sein
- Anteil pos. Singnal RES > 0 gibt an, welcher Anteil der positiven Residuallast ein positives Schaltsignal auslöst \rightarrow abhängig von der Zeitreihe der Residuallast nicht zu klein

In [6]:

f.signal_res(sdf, resload)

Out[6]:		Name	Pos. Signal RES > 0	Pos. Signal RES < 0	Neg. Signal RES > 0	Neg. Signal RES < 0	Anteil neg. Signal RES < 0	Anteil pos. Signal RES > 0
	0	Signal 1	232.0	3805.0	4494.0	228.0	0.057	0.049
	1	Signal 2	1669.0	6634.0	7783.0	1432.0	0.178	0.177
	2	Signal 3	3238.0	10494.0	10940.0	1605.0	0.133	0.228