Commercial Aircraft Trajectory Weather and Fuel Analysis

Project for Erdös Institute by Andre Guimaraes,
Ruth Meadow-MacLeod, Dumindu de Silva,
Hannah Solomon, Noah Thompson

Objectives:

Data Collection

Download, clean and organize Flight Data and Weather Data

Data Analysis

- Estimate fuel consumption
- Estimate weather conditions on the paths of each flight
- Analyze flight paths and carry out EDA

Machine Learning

- Identify how weather might affect flight paths and/or fuel consumption
- Train a predictive model to estimate fuel consumption given the forecasted weather pattern

Flight and Weather Data Collection

- Flight Data OpenSky Network
 - o Icao24, callsign
 - o longitude, latitude, altitude, heading, etc
- Weather Data The Iowa Environmental Mesonet (IEM)
 - Temperature, wind speed, relative humidity, etc.
 - Using interpolation and weather models to estimate the weather at any point in space and time

Flight and Weather Data Collection

- Flight Data OpenSky Network
 - o Icao24, callsign
 - o longitude, latitude, altitude, heading, etc
- Weather Data The Iowa Environmental Mesonet (IEM)
 - Temperature, wind speed, relative humidity, etc.
 - Using interpolation and weather models to estimate the weather at any point in space and time

Data Treatment and Metric Calculations

Data Analysis - Key Findings

Our Predictive Model

- Machine Learning
 - Model: Random Forest Regressor
 - Features: Air Density, Air Pressure, Wind Speed, Cloud Coverage, Weather Severity, and Aircraft Type
 - Predicted Value: Fuel Consumption
- Feature importance
 - **Gini importance:** A measure on how much each feature lowers the data variance on each node of a decision tree

SEA ←→ **DEN** (January 2023)

LAX → JFK (January + July 2023)

- Values clustered by aircraft type
- Not predictive due to aircraft type having stronger influence than weather

LAX → JFK (January + July 2023) Airbus 321

LAX → JFK (January + July 2023) Boeing 736

Key Findings

- Model works reasonably well for shorter duration flights, not as reliable for longer durations
 - Higher discrepancy of fuel consumption
 - Higher variance of weather influences to be summarized in a single value
- Wind is consistently the most impactful feature, followed by either Air Pressure or Air Density
- Limitations:
 - Learning curves might indicate issues with fit
 - Relies on long computation times for weather influence on flight paths
 - Weather computations accumulate large errors quickly
 - Small dataset

Next Steps

Improvements and Future Directions:

- Collect more data
 - Diversify flight locations and times
- Improve on estimation of weather conditions
 - Experiment with other weather models
 - Parallelize the processing
- Understand and improve upon the traffic module used to calculate fuel consumption
- Experiment with different definitions of *Optimal Path*
- Experiment with different ML models
- Carbon footprint calculations and optimization

Thank You

EXTRA SLIDES

Data Analysis - Key Findings

Average Fuel Consumption

6500

7000

1.55

3500

4000