2 矩阵

(1) 设 A^* 为 3 阶方阵 A 的伴随矩阵,若 |A| = -8,则 $|(\frac{1}{4}A)^* + 4A^{-1}| =$

若方阵 A, B 满足 $(AB)^2 = E$,则 $(BA)^2 = E$; \ 若方阵 A, B 均不可逆,则 A + B 必不可逆; 🗶

若方阵 A, B 均不可逆,则 AB 必不可逆。

- (3) 设 $A = (a_{ij})$ 是 3 阶非零实方阵, |A| 为 A 的行列式, A_{ij} 为 a_{ij} 的代数余子式。若 $a_{ij} + A_{ij} = 0 (i, j = 1, 2, 3)$, 求 |A|.
- (4) 设 A 为 $n \times m$ 矩阵, B 为 $m \times n$ 矩阵, 如果 $E_n AB$ 可逆, 证明: $E_m BA$ 也可逆, 并求 $(E_m BA)^{-1}$ 。

$$\Rightarrow A = (A_{ij}) \Rightarrow A^{*} = (A_{ij})^{T} = A^{T}$$

(1) 设A为n阶方阵,且 α 为n维列向量,若R(A)

 $Ax = \alpha$ 必有唯一解 (C) $r \begin{pmatrix} A & a \\ a^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = O$ 仅有零解 (D) $r \begin{pmatrix} A & a \\ a^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = O$ 必有非零解

$$\begin{cases} ax_1 + x_2 + x_3 = 1\\ x_1 + ax_2 + x_3 = a\\ x_1 + x_2 + ax_3 = a \end{cases}$$

11)
$$R(a^{\dagger}a) = R(A) < nH \Rightarrow 3R(B)$$

$$|A| = \left| \begin{array}{c} \alpha & 1 \\ 1 & \alpha \end{array} \right| = \left(\alpha + \delta \right) \left| \begin{array}{c} 1 & 1 \\ 1 & \alpha \end{array} \right|$$

X1+ X1+ X3=1 783 184

330-101,

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} = C_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 7 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$