Differentiable manifolds and the Hairy Ball Theorem

Jonathan Lau

February 21, 2023

Manifolds

2 Integration of Differential *n*-Forms

Manifolds

2 Integration of Differential *n*-Forms

Charts

A chart on a topological space M is a pair (U,ϕ) where $U\subset M$ and $\phi:U\to\mathbb{R}^n$ is a homeomorphism.

Sometimes, we express ϕ as (x_1, \ldots, x_n) .

Manifolds

A n dimensional manifold M is a subset of \mathbb{R}^ℓ together with a collection of charts $\mathcal A$ that cover M such that for all charts (U,ϕ) , (V,ψ) , the maps $\psi\circ\phi^{-1}$ and $\phi\circ\psi^{-1}$ are smooth on $\phi(U\cap V)$ and $\psi(U\cap V)$ respectively.

Tangent Space

Given a point $p \in M$ and a smooth curve $\gamma: (-1,1) \to M$ in M such that $\gamma(0) = p$, its velocity vector is $\frac{d\gamma}{dt}|_{t=0}$. The set of all velocity vectors at p is the tangent space at p, denoted T_pM .

With a chart (U, ϕ) such that $\phi(p) = 0$, construct curves $\gamma_i : t \mapsto \phi^{-1} \circ \iota_i(t)$, where ι_i is the inclusion into the *i*th coordinate. Their velocity vectors form a basis for the tangent space.

Example: sphere

Smooth Functions

A continuous function $F: N \to M$ is smooth if for all charts (U, ϕ) on N and (V, ψ) on M, $\psi \circ F \circ \phi^{-1}$ is smooth.

1-form

A 1-form ω is a linear function from T_pM to \mathbb{R} .

The space of 1-forms $\operatorname{Hom}(T_pM,\mathbb{R})$ is a vector space of dimension n. If we fix a basis for T_pM , then we can express vectors in T_pM in terms of the coordinates in that basis. Then, we define $dx_i(a_1,\ldots,a_n)=a_i$.

k-form

A k-form ω is an alternating multilinear function from $(T_p M)^k$ to \mathbb{R} .

Theorem

 $\{dx_{i_1} \wedge \cdots \wedge dx_{i_k} | 1 \leq i_i < \cdots < i_k \leq n\}$ is a basis for $\Lambda^k(T_pM)$, the set of alternating multilinear functions on $(T_pM)^k$.

This theorem shows that dx_1, \ldots, dx_n is a basis for the vector space of 1-forms. With this basis, we can express all 1-forms ω as (a_1, \ldots, a_n) . For a vector $v = (b_1, \ldots, b_n) \in T_p M$,

$$\omega(v) = (a_1 dx_1 + \dots + a_n dx_n)(b_1, \dots, b_n)$$

= $a_1 dx_1(b_1, \dots, b_n) + \dots + a_n dx_n(b_1, \dots, b_n)$
= $a_1 b_1 + \dots + a_n b_n$

So, a 1-form ω maps tangent vectors to the length of their projection onto the subspace spanned by ω , up to a multiplicative constant $|\omega|$.

Wedge Product

The wedge product of k 1-forms $\omega_1, \ldots, \omega_k$ is the k-form $\omega_1 \wedge \cdots \wedge \omega_k(v_1, \ldots, v_k) = \det(\omega_i(v_i))$.

Consider a 3-form $dx_1 \wedge dx_2 \wedge dx_3$ on $T_p\mathbb{R}^5$, and apply it to the vectors

$$u = (0, 0, 1, 1, 1), v = (1, 2, 0, 0, 1), w = (2, 2, 2, 1, 0).$$
 The result is $\det \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 2 \\ 1 & 0 & 2 \end{pmatrix}$.

This is the same as projecting u, v, w onto the subspace $(c_1, c_2, c_3, 0, 0)$, then calculating it's volume.

By the Gram Schmidt process, $\omega_1 \wedge \cdots \wedge \omega_k = c\tau_1 \wedge \cdots \wedge \tau_k$ where τ_1, \ldots, τ_k are orthonormal. Then,

$$\omega_1 \wedge \cdots \wedge \omega_k(v_1, \dots, v_k) = c\tau_1 \wedge \cdots \wedge \tau_k(v_1, \dots, v_k)$$
$$= c \det(\tau_i(v_i)),$$

which is projecting the $v_i's$ onto the subspace spanned by the $\tau_i's$, then taking the hypervolume and multiplying by a constant c.

Differential Forms

A differential form ω is an object where at each $p \in M$, ω_p is a n-form on T_pM , and for all charts (U, x_1, \ldots, x_n) , $\omega = f(p)dx_1 \wedge \cdots \wedge dx_n$ for some smooth f.

Example: dx_1 is a differential 1-form.

The d operator

Let $f:M\to\mathbb{R}$ be a smooth function. We define a differential 1-form df as $\sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i$. Given a differential form ω on M and a chart (U,ϕ) , $\omega=\sum_I f dx_I$ on U. Then, on U, $d\omega$ is defined as $\sum_I df \wedge dx_I$.

Manifolds

2 Integration of Differential *n*-Forms

Orientation

Manifolds with Boundary

Integration on a \mathbb{R}^n

Let ω be a *n*-form on (U, ϕ) , where $U \subset \mathbb{R}^n$. Then $\omega = f(x)dx_1 \wedge \cdots \wedge dx_n$ for some smooth f. The integral of ω over U, denoted $\int_U \omega$, is defined to be $\int_U f$.

Pullback

...

Integration on a chart

Let ω be a *n*-form on U. The integral of ω over U is defined as

Partition of Unity

A partition of Unity on a manifold M is a collection of nonnegative smooth functions $\{\rho_\alpha:M\to\mathbb{R}\}_{\alpha\in A}$ such that

- the collection of supports, $\{\operatorname{supp} \rho_{\alpha}\}_{{\alpha}\in A}$, is locally finite,

Integration on a Manifold

Let ω be a *n*-form on M. The integral of ω over M, denoted by $\int_M \omega$, is defined to be $\sum_{\alpha \in A} \int_{U_\alpha} \rho_\alpha \omega$.

Stokes' theorem on \mathcal{H}^n

Stokes' theorem on Manifolds

Manifolds

2 Integration of Differential *n*-Forms

stuff