CUDA内存管理与同步

汤善江 副教授 天津大学智能与计算学部

tashj@tju.edu.cn

http://cic.tju.edu.cn/faculty/tangshanjiang/

Outline

- · CUDA內存管理
 - · CUDA内存模型
 - · CUDA变量存储
 - · CUDA内存分配
- · CUDA线程同步
 - · CUDA线程同步
 - · CUDA原子操作

Outline

- · CUDA內存管理
 - · CUDA内存模型
 - · CUDA变量存储
 - · CUDA内存分配
- · CUDA线程同步
 - · CUDA线程同步
 - · CUDA原子操作

存储器模型

- Register
- Local
- shared
- Global
- Constant
- Texture
- Host memory
- Pinned host memory

寄存器与local memory

• 对每个线程来说,寄存器 都是线程私有的--这与CPU 中一样。如果寄存器被消 耗完,数据将被存储在本 地存储器(local memory)。 Local memory对每个线程 也是私有的,但是local memory中的数据是被保存 在显存中, 而不是片内的 寄存器或者缓存中,速度 很慢。线程的输入和中间 输出变量将被保存在寄存 器或者本地存储器中。

Shared memory

- 用于线程问通信的共享存储器。共享存储器是一块可以被同一block中的所有thread访问的可读写存储器
- 访问共享存储器几乎和访问寄存器一样快,是实现线程间通信的延迟最小的方法。
- ·共享存储器可以实现许多不同的功能,如用于保存 共用的计数器(例如计算循环次数)或者block的公用结果(例如计算512个数的平均值,并用于以后的计算)。

constant memory, texture memory

- ·利用GPU用于图形计算的专用单元发展而来的高速只读 缓存
- 速度与命中率有关,不命中 时将进行对显存的访问
- · 常数存储器空间较小(只有64k),支持随机访问。从host端只写,从device端只读
- 纹理存储器尺寸则大得多, 并且支持二维寻址。(一个 数据的"上下左右"的数据 都能被读入缓存)适合实现 图像处理算法和查找表

全局存储器(Global Memory)

- 使用的是普通的显存,无缓存,可读写,速度慢
- ·整个网格中的任意线程都 能读写全局存储器的任意 位置,并且既可以从CPU 访问,也可以从GPU访问。

各种存储器的大小

- 每个SM中有64K (GT200) 或者32K(G8x, G9x)寄存 器,寄存器的最小单位是 32bit的register file
- 每个SM中有16K shared memory
- 一共可以声明64K的 constant memory, 但每 个SM的cache序列只有8K
- 可以声明很大的texture memory,但是实际上的 texture cache序列为每 SM 6-8K

Tesla GPU内存大小

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
SMs	15	24	56	80
TPCs	15	24	28	40
FP32 Cores / SM	192	128	64	64
FP32 Cores / GPU	2880	3072	3584	5120
FP64 Cores / SM	64	4	32	32
FP64 Cores / GPU	960	96	1792	2560
Tensor Cores / SM	NA	NA	NA	8
Tensor Cores / GPU	NA	NA	NA	640
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
Peak FP32 TFLOPS ¹	5	6.8	10.6	15.7
Peak FP64 TFLOPS ¹	1.7	.21	5.3	7.8
Peak Tensor TFLOPS ¹	NA	NA	NA	125
Texture Units	240	192	224	320
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB
L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB
Register File Size / SM	256 KB	256 KB	256 KB	256KB
Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB
TDP	235 Watts	250 Watts	300 Watts	300 Watts
Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion
GPU Die Size	551 mm²	601 mm ²	610 mm ²	815 mm ²
Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN

Tesla GPU内存大小

使用存储器时可能出现的问题

- 致命问题:无法产生正确结果
 - 多个block访问global同一块,以及block内thread间线程通信时的数据一致性问题
- 效率问题: 大大增加访存延迟
 - Shared bank conflict问题
 - · Global 合并访问问题

Shared Memory Bank

- 为了获得高带宽, shared memory 被分为了16(或32)个等大小内存 块(banks),单位是32-bit。
- ·相邻数据在不同bank中,对16 (或32)余数相同的数据在同一 bank
- 如果warp访问shared memory,对于每个bank只访问不多于一个内存地址,那么只需要一次内存传输就可以了,否则需要多次传输,因此会降低内存带宽的使用。

Shared Memory访问模式

- · warp有三种典型的获取shared memory的模式:
 - Parallel access:最通常的模式,多个地址分散在多个bank。这个模式一般暗示,一些(也可能是全部)地址请求能够被一次传输解决。理想情况是,获取无conflict的shared memory的时,每个地址都在落在不同的bank中。
 - Serial access:最坏的模式,多个地址落在同一个bank。如果warp 中的32个thread都访问了同一个bank中的不同位置,那就是32次单独的请求,而不是同时访问了。
 - Broadcast access: 一个地址读操作落在一个bank。也是只执行一次传输,然后传输结果会广播给所有发出请求的thread。这样的话就会导致带宽利用率低

Bank conflict

以G80为例,其share memory具有16个bank,在下面的图示中,只有S为奇数时,才不会存在bank conflicts

__shared__ float shared[256]; float foo = shared[base + s * threadIdx.x];

Bank conflict

以G80为例,其share memory具有16个bank,在下面的图示中,只有S为奇数时,才不会存在bank conflicts

合并访问

- ·数据从全局内存到SM (stream-multiprocessor) 的传输, 会进行cache,如果cache命中了,下一次的访问的耗时将 大大减少。
- 每个SM都具有单独的L1 cache,所有的SM共用一个L2 cache。对于L1 cache,每次按照128字节进行缓存;对于L2 cache,每次按照32字节进行缓存。
- •对于L1 cache,内存块大小支持32字节、64字节以及128字节,分别表示线程束中每个线程以一个字节(1*32=32)、16位(2*32=64)、32位(4*32=128)为单位读取数据。前提是,访问必须连续,并且访问的地址是以32字节对齐。

合并访问

 例子:假设每个thread读取一个float变量,那么一个warp (32个thread)将会执行32*4=128字节的合并访存指令, 通过一次访存操作完成所有thread的读取请求

Figure 3 Coalesced access - all threads access one cache line was year

分散访问

• 例子: Warp请求访问位于不同地址的数据,数据是非连续的,此时Warp无法进行合并访问,每个thread访问一个float,一共需要执行32次访存指令

Outline

- · CUDA內存管理
 - · CUDA内存模型
 - · CUDA变量存储
 - · CUDA内存分配
- · CUDA线程同步
 - · CUDA线程同步
 - · CUDA原子操作

CUDA C语言

- 由Nvidia的CUDA编译器(nvcc)编译
- · CUDA C不是C语言,而是对C语言进行扩展形成的变种。

CUDA对C的扩展:函数限定符

对函数有了限定符,用来规定函数是在host还是在device上执行,以及这个函数是从host调用还是从device调用。这些限定符是:___device___,__host__和__global___。

CUDA对C的扩展:函数限定符

- · ___device___函数在device端执行,并且也只能从device端调用,即作为device端的子函数来使用
- · __global__函数即kernel函数,它在设备上执行,但是要从 host端调用
- ·__host__函数在host端执行,也只能从host端调用,与一般的C函数相同

- 对变量类型的限定符,用来规定变量被存储在哪一种存储器上。
- ·传统的在CPU上运行的程序中,编译器就能自动决定将变量存储在CPU的寄存器还是在计算机的内存中。
- 而在CUDA中,不仅要使用host端的内存,而且也要使用显卡上的显存和GPU上的几种寄存器和缓存。在CUDA编程模型中,一共抽象出来了多达8种不同的存储器!

- <u>device</u>
- __device__限定符声明的变量存在于device端,其他的变量限定符声明的变量虽然存在于不同的存储器里,但总体来说也都在device端。所以__device__限定符可以与其他的限定符联用。当单独使用__device__限定符修饰变量时,这个变量存在于global memory中;
- 变量生命周期与整个程序一样长;
- •可以被grid中所有的线程都可以访问,也可以从host端通过 运行时库中的函数访问。

- __constant___
- __constant__限定符,可以与__device___联用,即__device__
 __constant__, 此 时 等 同 于 单 独 使 用 __constant__。 使 用 __constant__限定符修饰的变量;
- ·存在于constant memory中,访问时速度一般比使用global memory略快;
- 变量生命周期与整个程序一样长;
- •可以被grid中所有的线程读,从host端通过运行肘库中的函数写。

- __shared__
- __shared__限定符,可以与__device__联用,即__device__ __shared__,此时等同于单独使用__shared__。使用
 - __shared__限定符修饰的变量:
- · 存在于block中的shared memory中;
- 变量生命周期与block相同;
- · 只有同一block内的thread才能访问。

CUDA对C的扩展: kernel执行参数

- · <<< >>>运算符,用来传递一些kernel执行参数
- · Grid的大小和维度
- · Block的大小和维度
- · 外部声明的shared memory大小
- stream编号

CUDA对C的扩展:内建变量

- Dim3 ThreadIdx (三维)
- Dim3 ThreadDim (三维)
- Dim3 BlockIdx(二维)
- Dim3 BlockDim (二维)

执行参数与内建变量的作用

- · 各个thread和block之间的唯一不同就是threadID和BlockID, 通过内建变量控制各个线程处理的指令和数据
- CPU运行核函数时的执行参数确定GPU在SPA上分配多少个block,在SM上分配多少个thread

CUDA中函数与变量类型汇总

函数类型

__device__

- ·在GPU中执行
- 有GPU调用

__global___

- ·在GPU中执行
- 自CPU调用

host

- · 在CPU中执行/调用
- 默认函数类型

变量类型

__device__

- global memory space
- grid中所有线程可访问

__constant___

- constant memory space
- grid中所有线程可访问

__shared__

- space of a thread block
- 只能由block中的线程访问

Outline

- ·CUDA內存管理
 - · CUDA内存模型
 - · CUDA变量存储
 - ·CUDA内存分配
- · CUDA线程共享与同步
 - · CUDA线程同步
 - · CUDA原子操作

内存分配

- 内存分为两种
 - ·可分页内存(Pageable Memory)
 - 标准C/C++函数操作, malloc() / new()
 - · 分页锁定内存(page-locked Memory)
 - cudaMallocHost(void** ptr, size_t size)
 - cudaHostAlloc(void** pHost, size_t size, unsigned int flags)
 - cudaHostAllocPortable: 多个 CPU线程都可访问
 - cudaHostAllocWriteCombined:数据传输快,但只允许host写(读速度慢)
 - cudaHostAllocMapped: CPU/GPU 都可访问
 - · 支持 DMA
 - 可分页内存转为分页锁定内存
 - cudaHostRegister (void* ptr, size_t size, unsigned int flags)

显存分配

- cudaMalloc()
 - 一维数组,数据连续存储
- cudaMallocPitch()
 - 二维数组,会自动对齐,可能会浪费部分内存空间
- cudaMalloc3D()
 - 三维数组

Host - Device数据交换

- cudaMemcpy()
 - 在存储器直接传输数据
 - 四个参数
 - 目的对象数组指针
 - 源对象数组指针
 - 数组尺寸
 - 传输方向
 - Host到Host
 - Host到Device
 - Device到Host
 - Device 到 Device

Host - Device数据交换

- 代码实例
 - M.elements: CPU主存
 - Md: GPU显存
 - 符号常数: cudaMemcpyHostToDevice和cudaMemcpyDeviceToHost

```
cudaMemcpy(Md, M.elements, size, cudaMemcpyHostToDevice);
cudaMemcpy(M.elements, Md, size, cudaMemcpyDeviceToHost);
```

数据拷贝

```
int main() {
 int N = 256 * 1024;
 float* h_a = malloc(sizeof(float) * N);
 //Similarly for h b, h c. Initialize h a, h b
 float *d_a, *d_b, *d_c;
 cudaMalloc(&d a, sizeof(float) * N);
 //Similarly for d b, d c
 cudaMemcpy(d a, h a, sizeof(float) * N, cudaMemcpyHostToDevice);
 //Similarly for d b
 //Run N/256 blocks of 256 threads each
 vecAdd<<<N/256, 256>>>(d a, d b, d c);
 cudaMemcpy(h_c, d_c, sizeof(float) * N, cudaMemcpyDeviceToHost);
```

内存映射

ZeroCopy

- · host内存直接映射到GPU 内存空间
- 调用cudaHostAlloc() 分配时传入cudaHostAllocMapped 标签
- 使用cudaHostRegister() 注册时使用cudaHostRegisterMapped 标签
- device 可直接访问分页锁定内存,硬件在 kernel 访问显存时通过 PCIE 总线传递,由硬件自动处理数据传输和计算的异步执行。
- 适用于计算密集型程序
 - 数据访问量小
 - 计算与数据传输重叠
 - 不需要显式内存管理

统一寻址 (Unified Memory)

- Managed memory (CUDA6.0起开始支持)
 - 在 host 内存与device显存之间根据访问需要自动迁移数据,同时保证 host 和 device 都可访问,应用程序并不需要知道访问时数据所在位置
 - 需要进行显式同步(以保证前一步骤中数据更新操作全部完成)
- 优势
 - 编程简化
 - 数据访问性能提升
- 适用条件
 - · SM 体系结构3.0以上(Kepler 架构, 或更新的架构)
 - 64 位进程,非嵌入式系统

统一寻址: host 与 device 使用同一指针

· 定义方式: cudaMallocManaged

```
global void AplusB(int *ret, int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
int main() {
   int *ret:
   cudaMallocManaged(&ret, 1000 * sizeof(int));
   AplusB<<< 1, 1000 >>>(ret, 10, 100);
   cudaDeviceSynchronize(); //同步,等待所有kernel完成
   for(int i=0; i<1000; i++)
      printf("%d: A+B = %d\n", i, ret[i]);
    cudaFree(ret);
    return 0;
```

统一寻址 (全局变量)

```
device managed int ret[1000];
global void AplusB(int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
int main() {
   AplusB<<< 1, 1000 >>>(10, 100);
    cudaDeviceSynchronize();//同步
   for(int i=0; i<1000; i++)</pre>
      printf("%d: A+B = %d\n", i, ret[i]);
   return 0:
```

Outline

- · CUDA內存管理
 - · CUDA内存模型
 - · CUDA变量存储
 - · CUDA内存分配
- · CUDA线程共享与同步
 - · CUDA线程同步
 - · CUDA原子操作

Synchronization

- 为保证计算结果的正确性, 有些计算过程需要对并发运 行的线程进行同步
 - 如规约操作(e.g., sum, max),数据更新操作
 - CUDA中每一组Warp的32线程都是默认显示同步的
 - 在共享内存里头, CUDA还提供了__syncthreads()来保证一个block内的线程的同步。
 - 在条件代码同步中,一定要确保所有线程都能达到 __syncthreads(), 否则就会 出现死锁。

```
if(radius <= 10.0) {
    area = PI * radius * radius;
    __syncthreads();
} else {
    area = 0.0;
}</pre>
```


Synchronization

· CUDA同步程序代码样例

```
// load in data to shared memory
// synchronisation to ensure this has finished
syncthreads();
// now do computation using shared data
```

示例: 1D Stencil

- ·对1D数组进行1D stencil 处理(卷积)
 - 每个输出元素是输入元素一定"半径"内的数据和

• 若半径为3,则每个输出元素是7个输入元素的和:

在block内实现

- ·每个thread处理一个输出元素
 - · 每个block分配 blockDim.x 个元素 (同thread数)

- 输入数据会被读取多次
 - 半径为3, 每个输入元素被读取7次

Threads之间共享数据

- · 在block內部,threads 可以通过 shared memory 共享数据
- Shared memory特性:
 - 片内, 高速, 用户可管理
 - 使用__shared__声明, 每个block单独分配
 - · 其他block不可以读写

使用Shared Memory实现

- 在shared memory中缓存数据
 - 旬global memory 读取 (blockDim.x + 2 * radius) 个输入元素到 shared memory
 - 计算 blockDim.x 个输出元素
 - 将 blockDim.x 个输出元素写回到global memory
 - -需要两个"半径"大小的 halo (边界数据)

Stencil Kernel

```
global void stencil 1d(int *in, int *out) {
 shared int temp[BLOCK SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;
// Read input elements into shared memory, 读数据
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {</pre>
  temp[lindex - RADIUS] = in[gindex - RADIUS];
  temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
// Apply the stencil, 计算
int result = 0:
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)</pre>
  result += temp[lindex + offset];
// Store the result, 存储结果
out[gindex] = result;
```

竞态条件

- 之前的 stencil 示例并不能保证结果正确
- 假设 thread 15 在 thread 0 完成数据缓存之前读取halo数据

_syncthreads()

- void syncthreads();
- · 同步同一个block之内的全部线程
 - 用于避免 RAW / WAR / WAW 风险
- · 所有线程必须都运行到barrier (路障)
 - -如果是条件代码,整个block中线程对应的条件必须一致

Stencil Kernel

```
global void stencil_1d(int *in, int *out) {
 shared int temp[BLOCK SIZE + 2 * RADIUS];
  int gindex = threadIdx.x + blockIdx.x * blockDim.x;
  int lindex = threadIdx.x + radius;
  // Read input elements into shared memory, 读数据
  temp[lindex] = in[gindex];
  if (threadIdx.x < RADIUS) {</pre>
      temp[lindex - RADIUS] = in[gindex - RADIUS];
      temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
  // Synchronize (ensure all the data is available) 同步
  syncthreads();
```

Stencil Kernel

```
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
    result += temp[lindex + offset];

// Store the result
out[gindex] = result;</pre>
```

Synchronization函数

·设备block内部同步函数 void syncthreads(); int syncthreads count(int predicate); int syncthreads and(int predicate); int syncthreads or(int predicate); void syncwarp(unsigned mask=0xfffffffff); ·设备block之间同步函数 threadfence(); threadfence block(); • Host和Device之间同步 void cudaDeviceSynchronize(); · 注意:这个函数用在host端

Outline

- · CUDA內存管理
 - · CUDA内存模型
 - · CUDA变量存储
 - · CUDA内存分配
- · CUDA线程共享与同步
 - · CUDA线程同步
 - · CUDA原子操作

原子操作

- · 当需要2个或者更多的线程更新同一个变量的时候,可采用原子操作进行更新同步
 - 保证任何时候只有一个线程进行变量值的更新操作
- · CUDA提供了一系列原子操作
 - type atomicAdd(type* address, type val);
 - type atomicSub(type* address, type val);
 - type atomicMin(type* address, type val);
 - type atomicMax(type* address, type val);
 - int atomicCAS(int * address, int compare, int val);

例子:统计字符出现频率的直方图

```
global void histo kernel (unsigned char* buffer, long size, unsigned int* histo) {
   shared unsigned int temp[256];
   tmp[threadIdx.x] = 0;
   syncThreads();
   int i = threadIdx.x + blockIdx.x * blockDim.x;
   int offset = blockDim.x * gridDim.x;
   while(i<size) {</pre>
       atomicAdd( &temp[buffer[i]], 1);
       i += offset;
   syncthreads();
   atomicAdd( &(histo[threadIdx.x]), temp[threadIdx.x]);
```