Politechnika Wrocławska

Wydział Elektroniki, Fotoniki i Mikrosystemów

KIERUNEK: Automatyka i Robotyka (AIR)

PRACA DYPLOMOWA INŻYNIERSKA

Tytuł pracy:

Aplikacja webowa zwiększająca rozdzielczość obrazów

AUTOR: Eryk Wójcik

PROMOTOR:

dr hab. inż. Andrzej Rusiecki, Katedra Informatyki Technicznej

Spis treści

1	Wst	zę p	3
	1.1	Cel pracy	3
	1.2	Zakres pracy	3
2	Pod	lstawy teoretyczne	5
	2.1	Definicja super-rozdzielczości	5
	2.2	Przegląd metod powiększania obrazów	5
	2.3	Wprowadzenie do głębokiego uczenia się w przetwarzaniu obrazów	5
	2.4	Wstęp do funkcji falkowych	5
3	DW	SR: Deep Wavelet Super Resolution	7
	3.1	Architektura DWSR	7
	3.2	Kluczowe cechy i innowacje	7
	3.3	Proces treningu i implementacji	7
	3.4	Przykłady zastosowań i rezultaty	7
4	ESF	RGAN	9
	4.1	Architektura ESRGAN	9
	4.2	Kluczowe cechy i innowacje	9
	4.3	Proces treningu i implementacji	9
	4.4	Przykłady zastosowań i rezultaty	9
5	Por	ównanie algorytmów ESRGAN i DWSR	11
	5.1	Kryteria porównawcze	11
	5.2	Analiza wydajności	11
	5.3	Jakość odtwarzania obrazów	11
	5.4	Ograniczenia i wyzwania	11
6	Apl	ikacja webowa do powiększania rozdzielczości obrazów	13
	6.1	Projektowanie aplikacji	13
	6.2	Wybór narzędzi i technologii	13
	6.3	Implementacja aplikacji	13
	6.4	Integracja algorytmów DWSR i ESRGAN	13
	6.5	Wdrożenie i utrzymanie aplikacji	13
7	Pod	lsumowanie i wnioski	15
	7.1	Dyskusja wyników	15
	7.2	Rekomendacje i kierunki dalszych badań	15
Ri	hilon	rrafia	16

Wstęp

1.1 Cel pracy

Opis celu badań, czyli stworzenia aplikacji webowej służącej do zwiększania rozdzielczości obrazów z użyciem algorytmów ESRGAN i DWSR oraz analiza i porównanie tych algorytmów.

1.2 Zakres pracy

Przedstawienie koncepcji i zagadnień, które zostaną omówione w pracy, w tym wybrane metody i technologie.

Podstawy teoretyczne

Celem rozdziału jest przedstawienie podstawowych definicji, wytłumaczenie aparatu matematycznego oraz metod wykorzystywanych w algorytmach na których skupia się praca. Dodatkowo ma on na celu ułatwienie dalszego czytania poprzez zapoznanie czytelnika z przyjętymi konwencjami, oznaczeniami oraz symbolami, które mogą pojawić się w kolejnych rozdziałach.

2.1 Definicja super-rozdzielczości

2.2 Przegląd metod powiększania obrazów

Omówienie technik zwiększania rozdzielczości obrazów od interpolacji liniowej do uczenia maszynowego

2.3 Wprowadzenie do głębokiego uczenia się w przetwarzaniu obrazów

Wprowadzenie do roli i zastosowań głębokich sieci neuronowych w przetwarzaniu i analizie obrazów

2.4 Wstęp do funkcji falkowych

Omówienie funkcji falkowych, opis do czego to narzędzie służy począwszy od transformaty Fouriera i jej ograniczeń, w jaki sposób funkcje falkowe rozwijają FFT, przedstawienie działania.

DWSR: Deep Wavelet Super Resolution

3.1 Architektura DWSR.

Dokładne przedstawienie struktury i funkcjonowania sieci DWSR, podkreślając jej unikalne cechy i mechanizmy.

3.2 Kluczowe cechy i innowacje

Dyskusja na temat głównych innowacyjnych rozwiązań zastosowanych w DWSR i ich wpływu na efektywność metody.

3.3 Proces treningu i implementacji

Wyjaśnienie procedur związanych z treningiem DWSR, z uwzględnieniem specyfikacji danych, procesu uczenia i kwestii implementacji.

3.4 Przykłady zastosowań i rezultaty

Ilustracja praktycznych zastosowań DWSR oraz ocena i interpretacja osiągniętych dzięki niemu wyników.

ESRGAN

4.1 Architektura ESRGAN

Szczegółowy opis architektury sieci ESRGAN, w tym jej głównych komponentów i zasady działania.

4.2 Kluczowe cechy i innowacje

Omówienie innowacji wprowadzonych w ESRGAN i w jaki sposób różnią się one od wcześniejszych podejść.

4.3 Proces treningu i implementacji

Opis procesu treningu sieci ESRGAN, w tym zbierania danych, uczenia oraz wyzwań implementacyjnych.

4.4 Przykłady zastosowań i rezultaty

Prezentacja przykładów, gdzie ESRGAN został użyty oraz analiza wyników, jakie osiągnięto dzięki tej technologii.

Porównanie algorytmów ESRGAN i DWSR

5.1 Kryteria porównawcze

Ustalenie kryteriów, które będą stosowane do oceny i porównania skuteczności i efektywności algorytmów super rozdzielczości.

5.2 Analiza wydajności

Bezpośrednie porównanie wydajności obu metod w różnych warunkach, bazujące na ustalonych kryteriach.

5.3 Jakość odtwarzania obrazów

Ocena jakości obrazów generowanych przez oba algorytmy, uwzględniając różne aspekty jakości wizualnej.

5.4 Ograniczenia i wyzwania

Dyskusja na temat ograniczeń obu metod i potencjalnych wyzwań w ich stosowaniu.

Aplikacja webowa do powiększania rozdzielczości obrazów

6.1 Projektowanie aplikacji

Wytłumaczenie wyboru określonych technologii i narzędzi użytych do stworzenia aplikacji webowej.

Projekt interfejsu użytkownika

Omówienie procesu projektowania interfejsu użytkownika, w tym wytycznych ergonomii i użyteczności.

6.2 Wybór narzędzi i technologii

6.3 Implementacja aplikacji

Opis technicznego procesu integracji wybranych algorytmów z aplikacją, wraz z napotkanymi wyzwaniami.

6.4 Integracja algorytmów DWSR i ESRGAN

6.5 Wdrożenie i utrzymanie aplikacji

Omówienie procesu wdrożenia gotowej aplikacji oraz planów dotyczących jej przyszłego utrzymania i aktualizacji.

Podsumowanie i wnioski

7.1 Dyskusja wyników

Krytyczna analiza uzyskanych wyników w kontekście celów pracy oraz istniejących badań i literatury w dziedzinie.

7.2 Rekomendacje i kierunki dalszych badań

Sugestie dotyczące potencjalnych ulepszeń i obszarów, które wymagają dalszych badań, w oparciu o obserwacje i wyniki badań.

[1]

Literatura

 $[1] \ \ J. \ Doe, \ J. \ Smith. \ An example article. \ \textit{Journal of Examples}, \ 1(1):1-10, \ 2023.$