

**AMENDMENTS TO THE CLAIMS WITH MARKINGS TO SHOW CHANGES
MADE, AND LISTING OF ALL CLAIMS WITH PROPER IDENTIFIERS**

1. (Original) A carboxamide-substituted dye of the formula (I)

in which

Y = oxygen, sulfur, selenium, CR_aR_b, NR_c, a direct linkage or is -R₁₄ and -R₁₅;

R₁, R₃, R₄ are independently hydrogen, halogen, -O^E, a hydroxyl group, thiol group, amino group, ammonium group, sulfo group, phospho group, nitro group, carbonyl group, carboxyl group, a carboxylic acid derivative, a nitrile group, isonitrile group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group or a straight-chain, branched or cyclic saturated or unsaturated hydrocarbon group having up to 40 carbon atoms; R_a, R_b, R_c and R₁₄, R₁₅ independently are as defined for R₁, R₃, R₄;

in which

R₇, R₈, R₉ independently are hydrogen or a straight-chain, branched or cyclic saturated or unsaturated hydrocarbon group having up to 40 carbon

atoms; or

R₁ together with R₂ is

in which

R₁₀, R₁₁, R₁₃ are as defined for R₁, R₃, R₄;

in which

R₁₆, R₁₇, R₁₈ are as defined for R₇, R₈, R₉;

R₅, R₆, independently are a straight-chain, branched or cyclic saturated or unsaturated hydrocarbon group having up to 40 carbon atoms;

Cyc1 is an organic moiety which comprises a ring system selected from aromatic, heteroaromatic, quinoidal and cycloaliphatic rings;

Cyc2 is an organic moiety which comprises a ring system selected from aromatic, heteroaromatic, quinoidal and cycloaliphatic rings;

each of said moieties in the dye of the formula (I) being able to form a ring system with one or more neighboring moieties;

and X being one or more mono- or multivalent anions, when required for balancing the charge;

with the proviso that

- $Y = \text{oxygen}$,
 - $\text{Cyc1} = \text{phenyl or substituted phenyl}$,
 - $\text{Cyc2} = \text{hydroxyl-, ether- or ester-substituted phenyl}$
- and
- $R_2 = O$

do not appear in the formula (I) at the same time.

2. (Original) The carboxamide-substituted dye as claimed in claim 1, in which Cyc2 is a nitrogen-containing heterocycle or a ring system substituted with at least one amino group

or/and $R_2 =$

or,

together with R_1 , =

in which $R_{12} =$

in which $R_7, R_8, R_{10}, R_{11}, R_{13}$ and R_{16}, R_{17} are as defined in claim 1.

3. (Currently amended) The carboxamide-substituted dye as claimed in claim 1 or 2, in which Cyc2 in the formula (I) has a structure (A), (B), (C), (D), (E), (F), (G), (H) or (J),

in which R in each case independently is defined as R₁, R₃, R₄ in claim 1; R₁₉, R₂₀ and R₂₂, R₂₃ are independently defined as R₇, R₈ in claim 1; and

R_{21} is defined as R_7 in claim 1 and the dashed lines are optionally double bonds in the presence of which the moieties bound via a dashed line are absent.

4. (Currently amended) The carboxamide-substituted dye as claimed in claim 1 any of the preceding claims, in which Cyc1 is substituted or unsubstituted phenyl, naphthyl, pyridyl or cyclohexyl.
5. (Currently amended) The carboxamide-substituted dye as claimed in claim 1 any of the preceding claims, in which

where R_7 and R_8 are as defined in claim 1.

6. (Currently amended) The carboxamide-substituted dye as claimed in claim 5, in which R_1 is bridged with R_8 or/and or R_3 is bridged with R_7 or R_1 is bridged with R_8 and R_3 is bridged with R_7 and forms a ring system.
7. (Currently amended) The carboxamide-substituted dye as claimed in claim 6, in which the ring system comprises system/s comprise(s) 5- or 6-membered rings.
8. (Currently amended) The carboxamide-substituted dye as claimed in claim 7, in which a ring system of the structure (K), (L), (M), (N) or (O) is formed:

in which ~~R in each case are~~ independently is defined as R₁, R₃, R₄ and R₇, R₈ are as defined in claim 1,
and the dashed lines are optionally double bonds in the presence of which
the moieties bound via a dashed line are absent.

9. (Currently amended) The carboxamide-substituted dye as claimed in ~~any of claims 1 to 4~~ claim 1, in which R₂ together with R₁ is

where R₁₀-R₁₃ are as defined in claim 1.

10. (Original) The carboxamide-substituted dye as claimed in claim 9, in which R₁₂ = O.

11. (Original) The carboxamide-substituted dye as claimed in claim 9, in which

where R₁₆ and R₁₇ are as defined in claim 1.

12. (Currently amended) The carboxamide-substituted dye as claimed in claim 1 ~~any of the preceding claims~~, in which Y = oxygen.

13. (Currently amended) The carboxamide-substituted dye as claimed in claim 1 ~~any of claims 1 to 11~~, in which Y = sulfur, selenium or CR_aR_b, R_a and R_b being as defined in claim 1.

14. (Currently amended) The carboxamide-substituted dye as claimed in ~~any of claims 1 to 11~~ claim 1, in which Y = r moieties -R₁₄ and -R₁₅, R₁₄ and R₁₅

being as defined in claim 1.

15. (Original) The carboxamide-substituted dye as claimed in claim 8, in which Cyc1 is optionally substituted phenyl, Cyc2 has the structure (E) and Y = oxygen and R₇ and R₃ form a ring system (K), R₇ and R₃ being as defined in claim 1.
16. (Original) The carboxamide-substituted dye as claimed in claim 8, in which Cyc1 is optionally substituted phenyl, Cyc2 has the structure (A) and Y = sulfur, selenium or CR_aR_b, R_a and R_b being as defined in claim 1.
17. (Currently amended) A multichromophore system in which a carboxamide-substituted dye as claimed in ~~any of claims 1 to~~ claim 1 is coupled via R₅ or/and R₆ to one or more further dye molecules, R₅ and R₆ being as defined in claim 1.
18. (Original) The multichromophore system as claimed in claim 17, in which the one or more further dye molecules are carboxamide-substituted dyes as claimed in any of claims 1 to 16.
19. (Original) The multichromophore system as claimed in claim 18, in which coupling takes place on R₅ or/and R₆ of the further carboxamide-substituted dyes, R₅ and R₆ being as defined in claim 1.
20. (Original) The multichromophore system as claimed in claim 17 of the formula (III)

where the moieties are as defined in claim 1, R in each case independently is defined as R₁, R₃, R₄ and R₂₄, R₂₅ and R₂₆, R₂₇ are defined as R₇, R₈ in claim 1, with n independently being 0, 1, 2 or 3 and m being 0, 1, 2, 3 or 4.

21. (Currently amended) A process for preparing carboxamide-substituted dyes of the formula (I) as claimed in ~~any of claims 1 to 16~~ claim 1, comprising the following steps:
- converting the carboxyl group of a dye of the formula (II)

in which the moieties are defined as indicated in claim 1, into an activated form;

- reacting the activated dye obtained in step (a) with a secondary amine HNR₅R₆; and

- (c) optionally isolating the carboxamide-substituted dye of the formula (I) obtained in step (b).
- 22. (Original) The process as claimed in claim 21, in which step (a) is carried out at temperatures of from room temperature to 60°C.
- 23. (Currently amended) The process as claimed in claim 21 or 22, in which an aprotic solvent is used in step (b).
- 24. (Currently amended) The process as claimed in ~~any of claims 21 to 23~~
~~claim 21~~ in which N-hydroxysuccinimide, N-hydroxyphthalimide, N-hydroxynaphthalimide, O-(N-succinimidyl)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TSTU) are used for activation.
- 25. (Cancelled);
- 26. (Currently amended) The use method as claimed in claim ~~33~~ 25, in which the carboxamide-substituted dye of the formula (I) is coupled to at least one of the analyte to be detected or and and to a component of at least one of a detection reagent or and and to a support.
- 27. (Currently amended) The use method as claimed in claim ~~25~~ or 26, in which detection comprises at least one of an immunological detection or and and detection by way of nucleic acid hybridization.
- 28. (Currently amended) A conjugate of a carboxamide-substituted dye of the formula (I) as claimed in ~~any of claims 1 to 16~~ and claim 1 wherein the carboxamide-substituted dye is coupled to a binding partner.
- 29. (Currently amended) The conjugate as claimed in claim 28, in which the binding partner is selected from the group consisting of among peptides,

polypeptides, nucleic acids, nucleosides, nucleotides, nucleic acid analogs and haptens.

30. (Currently amended) The ~~use of a conjugate method as claimed in claim 28 or 29~~ 26 in which the carboxamide-substituted dye is coupled to a binding partner and detection is carried out by nucleic acid hybridization processes and immunochemical processes.
31. (Currently amended) The ~~use method as claimed in claim 26 or 27, in which coupling to the analyte to be detected or/and the component of a detection reagent or/and the support takes place via the substituents R₅ or/and R₆ of the carboxamide-substituted dye of the formula (I), the moieties R₅ and R₆ being as defined in claim 1.~~
32. (Original) The use as claimed in claim 31, in which coupling is carried out via a covalent bond.
33. (New) A method of detecting an analyte using carboxamide-substituted dye comprising the steps of providing one or more compounds of the general formula (I)

for determining at least one of the qualitative and quantitative presence of the analyte with a detection agent;
wherein

Y = oxygen, sulfur, selenium, CR_aR_b, NR_c, a direct linkage or is -R₁₄ and -R₁₅;

R₁, R₃, R₄ are independently hydrogen, halogen, -O^e, a hydroxyl group, thiol group, amino group, ammonium group, sulfo group, phospho group, nitro group, carbonyl group, carboxyl group, a carboxylic acid derivative, a nitrile group, isonitrile group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group or a straight-chain, branched or cyclic saturated or unsaturated hydrocarbon group having up to 40 carbon atoms; R_a, R_b, R_c and R₁₄, R₁₅ independently are as defined for R₁, R₃, R₄;

in which

R₇, R₈, R₉ independently are hydrogen or a straight-chain, branched or cyclic saturated or unsaturated hydrocarbon group having up to 40 carbon atoms; or

R₁ together with R₂ is

in which

R₁₀, R₁₁, R₁₃ are as defined for R₁, R₃, R₄;

in which

R_{16} , R_{17} , R_{18} are as defined for R_7 , R_8 , R_9 ;

R_5 , R_6 , independently are a straight-chain, branched or cyclic saturated or unsaturated hydrocarbon group having up to 40 carbon atoms;

Cyc1 is an organic moiety which comprises a ring system selected from aromatic, heteroaromatic, quinoidal and cycloaliphatic rings;

Cyc2 is an organic moiety which comprises a ring system selected from aromatic, heteroaromatic, quinoidal and cycloaliphatic rings;

each of said moieties in the dye of the formula (I) being able to form a ring system with one or more neighboring moieties;

and X being one or more mono- or multivalent anions, when required for balancing the charge;

with the proviso that

- $Y = \text{oxygen}$,
- Cyc1 = phenyl or substituted phenyl,
 - Cyc2 = hydroxyl-, ether- or ester-substituted phenyl

and

- $R_2 = O$

do not appear in the formula (I) at the same time.