例 2: 用74161 设计模 24 计数器

两个 74161 最大状态: 23 (10111)

状态图 15th CLK 01111 16th CLK | RCO=1 10000 17th CLK ↓ 高位停 低位计数 10001 23th CLK ↓ 10111 24th CLK ↓ 00000

例 3: 求下图计数器电路的模值。

CLK

终点: 01010100 = 84

补数: 01001010 = 74

$$M = 84 - 74 + 1 = 11$$

§ 6.4.2 IC 计数器 74160 (M-10) (8421BCD码同步加法计数器)

模10, 其他与74161相同(同步计数,异步清0)

$$RCO = ENT \cdot Q_3 \cdot Q_0$$

当
$$Q_3Q_2Q_1Q_0 = 1001$$
, $RCO = 1$

例: 用74160 设计一个 60 s 定时器 (T_{clk}=1s) 59

§ 6.4.3 IC 计数器 74163 (M-16)

同步清0, 其他与 74161相同 (模16)

图中: 5CT=0 在 5 端有效时清0

74163 功能表

					, -	
CLR	\overline{LD}	ENT	ENP	CLK	$D_0 D_1 D_2 D_3$	功能
0	X	X	X	1	XXXX	Direct set 0
1	0	X	X	†	$D_0D_1D_2D_3$	Load 预置
1	1	0	X	X	XXXX	保持 RCO=0
1	1	X	0	X	XXXX	保持
1	1	1	1	1	XXXX	M-16 计数

同步清零0: 当 $\overline{CLR} = 0$ 时,下一个 CLK 到达,

 $Q_3Q_2Q_1Q_0 = 0000$

例:用74163的同步清零功能

(CLR)设计一个模11计数器

最大状态 1010

没有毛刺

用 *LD* 端,与74161相同,初始为0000

§ 6.4.4 IC 计数器 74290

1.74290 功能

模 2-5-10 异步计数器

框图

M-2 计数器,输出 Q_0

M-5 计数器, 输出 Q₃Q₂Q₁

两个独立的下降沿计数器

符号

功能

(1) 异步清0

$$\begin{cases} S_{9(1)} \cdot S_{9(2)} = 0 & \text{(low)} \\ R_{0(1)} = R_{0(2)} = 1 & \text{(high)} \end{cases}$$

$$Q_3 Q_2 Q_1 Q_0 = 0000$$

(2) 异步置9

当
$$S_{9(1)} = S_{9(2)} = 1$$

$$Q_3 Q_2 Q_1 Q_0 = 1001$$

(3) 计数

$$\begin{cases} S_{9(1)} \bullet S_{9(2)} = 0 \\ R_{0(1)} \bullet R_{0(2)} = 0 \end{cases}$$

同时满足,*CLK*下降沿实现计数

2.74290应用

(1) 模 2 计数器

$$\begin{cases} S_{9(1)} \bullet S_{9(2)} = 0 \\ R_{0(1)} \bullet R_{0(2)} = 0 \end{cases}$$

CLK 从 CLK_A 接入, Q_0 输出, 实现 模 2加计数

(2) 模 5 计数器

$$\begin{cases} S_{9(1)} \bullet S_{9(2)} = 0 \\ R_{0(1)} \bullet R_{0(2)} = 0 \end{cases}$$

CLK 从 CLK_B 接入, $Q_3Q_2Q_1$ 输出,实现 模 5加计数

两种用法完全独立。构成更大模数时,需外接线连接

(3) 8421BCD 码模10 计数器

$$S_{9(1)} \bullet S_{9(2)} = 0$$
 , $R_{0(1)} \bullet R_{0(2)} = 0$

CLK接 CLK_A , $Q_0 \longrightarrow CLK_B$

在 Q_0 下降沿(CLK_B $1 \rightarrow 0$), M-5 计数

$$CLK_{A}$$
 Q_{0}
 CLK_{B}

触发 M-5 计数

输出位权

 $Q_3Q_2Q_1Q_0: 8421$

(4) 8421 BCD码任意进制计数器

"直接置 $0 R_0$ "高电平清 0

例: M-7 计数器

- ②接: 8421 BCD 模10

$$Q_0 \rightarrow CLK_{\rm B}$$

- $\mathfrak{S}_{9(1)} = S_{9(2)} = \mathbf{0}$
- 4 输出 Q₃Q₂Q₁Q₀ = 0111→与门
- **⑤ 与门→** R₀ (直接清0)

不稳定状态用虚线连接

74290没有进位输出

(5) 8421 BCD 级联计数器

当计数模值>10

74290 级联

例: 用74290 设计

一个 8421BCD

码模 46 计数器

8421 十进制

进位

个位: 6 (0110)

十位: 4 (0100)

电路连接方式 也可以

注意: 进位

波形:

利用 Q_3 第10个CLK下降沿触发十位片的 CLK_A (不用连 Q_0Q_3)

§6.5 寄存器 Registers

· 什么是寄存器

寄存器是用于寄存一组二进制代码的逻辑部件。

一个触发器能够存储 1 位二进制代码,所以用 n 个触发器组成的寄存器可以存储一组 n 位二进制信息。

- · 寄存器的构成 寄存器一般由 D触发器构成。
- · 寄存器的分类 寄存器主要分并行寄存器和移位寄存器两种。

§ 6.5.1 寄存器分类

Classifications of Registers

1. 并入/并出型寄存器 Parallel In/Out

例如, 4个 D-FFs 构成寄存器

Q_0 Q_1 Q_2 Q_3 Q_1 Q_2 Q_3 Q_1 Q_2 Q_3 Q_4 Q_5 Q_7 Q_7

74LS175

在CLK 正边沿, 4 个数据并行输入,状态 $Q_0Q_1Q_2Q_3 = D_0D_1D_2D_3$ 并行输出

2. 左移串入/串出型寄存器

Serial In/Serial Out Shift Left Registers

一个CLK到来,左移一位

例:

初始 $Q_3Q_2Q_1Q_0 = 1001$

串入: 1011 (D_{SL})

CLK	串出	$Q_3Q_2Q_1Q_0$ 串入
	1	1,0,0,1,1011
1	0	0 0 1 1
2	0	
3	1	1 1 0 1
4	1	1 0 1 1

4 个CLK后, $Q_3Q_2Q_1Q_0 = 1011$

3. 左移串入/并出型寄存器

Serial In/Parallel Out Shift Left Registers

并行输出

4. 左移环型寄存器 Shift Left Ring Registers

串出端与串入端相连

各FF 输出接彩灯

初始状态为 0001, 接高电平的灯亮

灯亮顺序:绿红蓝黄

取四位中只有一个1 的状态为主循环

状态图

环形计数器

注意: n FFs $\rightarrow n$ 个状态

波形图

节拍发生器

5. 左移扭环寄存器 Shift Left Twisted-Ring Registers

初始 $Q_3Q_2Q_1Q_0=0001$

状态图: Q3Q2Q1Q0

扭环计数器

 $n \text{ FF} \rightarrow$ 模 2n

Johnson Counter

6. 右移串入/串出寄存器

Serial In/Serial Out Shift Right Registers

7. 右移串入/并出寄存器

Serial In/Parallel Out Shift Right Registers

8. 右移环型寄存器 Shift Right Ring Registers

9. 右移扭环寄存器 Shift Right Twisted-Ring Registers

扭环计数器

§ 6.5.3 集成寄存器 74194 IC Register 74194

多功能寄存器: 四位并行存取双向移位寄存器

 $D_{\rm SR}$ 在 Q_0 一侧, $D_{\rm SL}$ 在 Q_3 一侧

 $Q_3Q_2Q_1Q_0$ 数据输出

 $D_3D_2D_1D_0$ 数据输入

 $D_{\rm SR}$ $D_{\rm SL}$ 串入

- \rightarrow shift right
- ← shift left

 $\overline{CLR} = 0$, 异步清0

CLK 正边沿触发

 $M_1 M_0$ 控制 (模式), M_1 高位

 $M_1 M_0$ 组成4种模式

74194 功能

$M_{\scriptscriptstyle 1}$	M_0	功能
0	0	保持
0	1	右移
1	0	左移
1	1	并入

 $Q_0 Q_1 Q_2 Q_3$ $\uparrow \uparrow \uparrow \uparrow$ $D_0 D_1 D_2 D_3$

实现前面 9 种功能

注: $Q_0Q_1Q_2Q_3$ 只有排列顺序,没有高、低位。

(1) 并入/并出

(2) 左移串入/串出

串入 shift left

经过4个触发器

(3) 左移串入 / 并出

串入 shift left

(4) 左移环形

$$Q_0 \rightarrow D_{\rm SL}$$

先置
$$M_1$$
=1, M_0 =1,
在 CLK 上升沿并入,
 $Q_0Q_1Q_2Q_3$ =

再置 $M_0 = 0$, CLK 边 沿到来 \rightarrow 左移 M-4 计数

 $D_0D_1D_2D_3 = 0001$

接彩灯

一个1为主循环

 $Q_0Q_1Q_2Q_3$

左移环形的其他置 数方式:

保持

M-4环形计数器

M-4环形计数器

0101 ______ 1010