LA2 3

KYB

Thrn, it's a Fact mathrnfact@gmail.com

September 25, 2020

Overview

Ch6. Orthogonality and best approximation

Project: Pseudoinverse Summary of chapter 6

Ch7. The spectral theory of symmetric matrices

7.1 The spectral theorem for symmetric matrices

The Dual Space

Some properties of dual spaces

Project : Pseudoinverse

Ex6.6.13, the minimum-norm solution to Ax = y

Let $A\in\mathbb{R}^{m\times n}$ and $y\in\mathbb{R}^m$ be given. Suppose A is singular and $y\in\operatorname{col}(A)$. Then Ax=y has infinitely many solutions and the solution set is $\hat{x}+\mathcal{N}(A)$, where \hat{x} is any one solution.

- (a) Prove that there is a unique solution \overline{x} to Ax = y such that $\overline{x} \in \operatorname{col}(A^T)$.
- (b) Prve that if $x \in \mathbb{R}^n$ is a solution to Ax = y and $x \neq \overline{x}$, then $\|\overline{x}\|_2 < \|x\|_2$.

Ex6.6.14, the minimum-norm least-squares solution to Ax = y

The set of all least squares solutions to Ax=y is $\hat{x}+\mathcal{N}(A)$, where $\hat{x}\in\mathbb{R}^n$ is any one least-squares solution. Prove that \overline{x} has the smallest Euclidean norm of any element of $\hat{x}+\mathcal{N}(A)$.

Remark

Suppose $y\in\operatorname{col}(A)$. Let \hat{x} be a least-square solution to Ax=y and \tilde{x} be a solution to Ax=y. Then for any $x\in\mathbb{R}^n$,

$$||A\hat{x} - y|| \le ||Ax - y||.$$

In particular,

$$||A\hat{x} - y|| \le ||A\tilde{x} - y|| = 0.$$

Hecne \hat{x} is a solution to Ax = y.

So the least-square solution is a generalization of the solution to Ax=y.

Ex6.6.15, the pseudoinverse of A

Define $S:\mathbb{R}^m\to\mathbb{R}^n$ as follows: $\overline{x}=S(y)$ is the minimum-norm least-squares solution to Ax=y.

- (a) Prove that S is a linear operator. It follows that there is a matrix $A^{\dagger} \in \mathbb{R}^{n \times m}$ such that $S(y) = A^{\dagger}y$.
- (b) Find formulas for A^{\dagger} in each of the following cases:
 - i. $A \in \mathbb{R}^{n \times n}$ is non singular.
 - ii. $A \in \mathbb{R}^{m \times n}$, m > n, has full rank.
 - iii. $A \in \mathbb{R}^{m \times n}$, m < n, has rank m.

Find $\mathcal{N}(A^\dagger)$.

Prove that $\operatorname{col}(A^{\dagger}) = \operatorname{col}(A^T)$.

Prove that AA^{\dagger} is the matrix defining the orthogonal projection onto $\operatorname{col}(A)$.

Ex6.6.19

Prove that $A^\dagger A$ is the matrix defining the orthogonal projection onto $\operatorname{col}(A^T)$.

Recall, Ex6.2.6

If $A, B \in \mathbb{R}^{m \times n}$ and

$$y \cdot Ax = y \cdot Bx$$
 for $x \in \mathbb{R}^n, y \in \mathbb{R}^m$,

then A = B.

Proof.

Since
$$A_{ij} = e_i \cdot (Ae_j)$$
,

$$A_{ij} = e_i \cdot (Ae_j) = Be_i \cdot (Ae_j) = B_{ij}.$$

Prove that the following equations hold for all $A \in \mathbb{R}^{m \times n}$:

- (a) $AA^{\dagger}A = A$;
- (b) $A^{\dagger}AA^{\dagger} = A^{\dagger}$;
- (c) $A^{\dagger}A = (A^{\dagger}A)^{T}$;
- (d) $AA^{\dagger} = (AA^{\dagger})^T$.

Recall

In Ex6.4.16 and Ex6.4.17, we see that a linear map $P:V\to V$ is an orthogonal projection operator if and only if $P^2=P$ and $P^*=P$.

Project: Pseudoinverse

Ex6.6.21

Prove that the unique matrix $B \in \mathbb{R}^{n \times m}$ satisfying

$$ABA = A, BAB = B, BA = (BA)^T, AB = (AB)^T$$

is
$$B=A^{\dagger}.$$
 Hence, $(A^{\dagger})^{\dagger}=A.$

Properties of the pseudoinverse

- ▶ If A is invertible, $A^{\dagger} = A^{-1}$.
- $(A^{\dagger})^{\dagger} = A.$
- $(A^T)^{\dagger} = (A^{\dagger})^T.$
- For $\alpha \neq 0$, $(\alpha A)^{\dagger} = \alpha^{-1} A^{\dagger}$.

Example

▶ If $x \in \mathbb{R}$,

$$x^{\dagger} = \begin{cases} 0 & \text{if } x = 0; \\ x^{-1} & \text{otherwise.} \end{cases}$$

▶ If $x \in \mathbb{R}^n$,

$$x^{\dagger} = \begin{cases} 0^T & \text{if } x = 0; \\ x^T/x^T x & \text{otherwise.} \end{cases}$$

Summary

Norm

V is a vector space over $\mathbb R$ (or $\mathbb C$). $\|\cdot\|:V\times V\to\mathbb R$ is a norm if

- 1. $||u|| \ge 0$; and ||u|| = 0 if and only if u = 0.
- 2. $\|\alpha u\| = |\alpha| \|u\|$.
- 3. $||u+v|| \le ||u|| + ||v||$.

Inner product

V is a vector space over \mathbb{R} . $\langle \cdot, \cdot \rangle : V \to V \to \mathbb{R}$ is an inner product if

- 1. $\langle u, v \rangle = \langle v, u \rangle$
- 2. $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$.
- 3. $\langle u, u \rangle \ge 0$; and $\langle u, u \rangle = 0$ if and only if u = 0.

V is a vector space over \mathbb{C} . $\langle \cdot, \cdot \rangle : V \to V \to \mathbb{C}$ is a complex inner product if

- 1. $\langle u, v \rangle = \overline{\langle v, u \rangle}$
- 2. $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$. $\langle w, \alpha u + \beta v \rangle = \overline{\alpha} \langle w, u \rangle + \overline{\beta} \langle w, v \rangle$
- 3. $\langle u, u \rangle \geq 0$; and $\langle u, u \rangle = 0$ if and only if u = 0.

Cauchy-Schwarz inequlity and induced norm

V is an (complex) inner space. Then

$$|\langle u, v \rangle| \le [\langle u, u \rangle]^{1/2} [\langle v, v \rangle]^{1/2}.$$

So an inner product induces a norm $||v|| = \langle v, v \rangle^{1/2}$.

The adjoint of a linear operator

X,U two inner product spaces, $T:X\to U$ is linear. $\mathcal{X}=\{x_1,\cdots,x_n\}$, $\mathcal{U}=\{u_1,\cdots,u_m\}$ bases. Then there is a linear operator $L^*:U\to X$ which satisfies

$$\langle L(x), u \rangle_X = \langle x, L^*(u) \rangle_U.$$

Let
$$G_{ij} = \langle x_j, x_i \rangle_X$$
 and $M_{ij} = \langle u_j, L(x_i) \rangle_U$. Then $[L^*]_{\mathcal{U},\mathcal{X}} = G^{-1}B$.

Proof of the existence of the adjoint

Let $x = \sum \alpha_i x_i$ and $u = \sum \beta_j u_j$.

$$\langle T(x), u \rangle = \left\langle \sum_{i} \alpha_{i} T(x_{i}), \sum_{j} \beta_{j} u_{j} \right\rangle = \sum_{i} \sum_{j} \alpha_{i} \overline{\beta_{j}} \langle T(x_{i}), u_{j} \rangle$$
$$= \sum_{i} \alpha_{i} \overline{\sum_{j} \langle u_{j}, T(x_{i}) \rangle \beta_{j}} = \sum_{i} \alpha_{i} \overline{\langle M\beta \rangle_{i}} = \alpha \cdot M\beta.$$

Since
$$[S(u)] = B\beta$$
, $S(u) = \sum_k (B\beta)_k x_k$.

$$\langle x, S(u) \rangle = \left\langle \sum_{i} \alpha_{i} x_{i}, \sum_{k} (B\beta)_{k} x_{k} \right\rangle = \sum_{i} \sum_{k} \alpha_{i} \overline{(B\beta)_{k}} \langle x_{i}, x_{k} \rangle$$
$$= \sum_{i} \alpha_{i} \overline{\sum_{k}} \langle x_{k}, x_{i} \rangle (B\beta)_{k} = \sum_{i} \alpha_{i} (GB\beta)_{i} = \alpha \cdot GB\beta.$$

The projection theorem

Let V be an inner product space and S be a finite dimensional subspace of V. For $v\in V$, there is a unique $\mathrm{proj}_S v=w\in S$ such that

$$||v - w|| = \min_{z \in S} \{||v - z||\}.$$

Moreover, $\operatorname{proj}_S v = w$ if and only if $\langle v - w, z \rangle = 0$ for all $z \in S$. Let $\{u_1, \cdots, u_n\}$ be a basis for S, and $G_{ij} = \langle u_j, u_i \rangle$, $b_i = \langle v, u_i \rangle$. Then $\operatorname{proj}_S v = \sum x_i u_i$ where $x = G^{-1}b$.

Proof of the last formula

Let $w=\mathrm{proj}_S v=\sum x_i u_i$. Then $\langle v-w,z\rangle=0$ for all $z\in S$ if and only if $\langle v-w,u_i\rangle$ for all i.

$$0 = \langle v - w, u_i \rangle = \left\langle v - \sum x_j u_j, u_i \right\rangle = \langle v, u_i \rangle - \sum_j x_j \langle u_j, u_i \rangle = b_i - (Gx)_i.$$

Thus x is a solution of Gx = b.

Orthogonal case

If $\{u_1, \cdots, u_n\}$ is an orthogonal set, the Gram matrix is the identity matrix I. Thus $x_i = b_i = \langle v, u_i \rangle$. Moreover $\langle \operatorname{proj}_S v, u_i \rangle = x_i \langle u_i, u_i \rangle$.

$$\operatorname{proj}_S v = \sum \frac{\langle v, u_i \rangle}{\langle u_i, u_i \rangle} u_i.$$

The Gram-Schmidt process

For given linearly independent set $\{u_1,\cdots,u_n\}$, we can find an orthogonal set $\{\hat{u}_1,\cdots,\hat{u}_n\}$ such that

$$\hat{u}_1 = u_1, \hat{u}_{i+1} = u_{i+1} - \sum_{k=1}^{i} \frac{\langle u_{i+1}, u_k \rangle}{\langle u_k, u_k \rangle} u_k.$$

If we denote $S_k = \operatorname{span}\{\hat{u}_1, \cdots, \hat{u}_k\}$,

$$\hat{u}_{i+1} = u_{i+1} - \text{proj}_{S_k} u_{i+1}.$$

The least square solution

Let $A \in \mathbb{C}^{m \times n}$ and $y \in \mathbb{C}^m$. We can define a least square solution to Ax = y by

$$||Ax - y||_2^2 = \min_{z \in \mathbb{C}^m} \{||Az - y||_2^2\}.$$

x is a LSS to Ax=y iff $\operatorname{proj}_{\operatorname{col}(A)}y=Ax$ iff $\langle Ax-y,Az\rangle=0$ for all $z\in\mathbb{C}^n$ iff $\langle A^*Ax-A^*y,z\rangle=0$ for all $z\in\mathbb{C}^n$ iff $A^*Ax=A^*y$.

The minimum norm least square solution

Let \hat{x} be a LSS to Ax = y and $\overline{x} = \operatorname{proj}_{\operatorname{col}(A^*)} \hat{x}$. Then for all $z \in \mathbb{C}^m$,

$$0 = \langle \hat{x} - \overline{x}, A^* z \rangle = \langle A\hat{x} - A\overline{x}, z \rangle$$

So $A\hat{x}=A\overline{x}$ and this implies \overline{x} is also a LSS to Ax=y. Furthermore, \overline{x} is unique.

Orthogonal projection

Let $P(v) = \text{proj}_S v$. Then P is linear, $P^2 = P$, and $P^* = P$.

Proof.

For $s \in S$ and $\alpha \in \mathbb{C}$,

$$\langle (v+w) - P(v) - P(w), s \rangle = \langle v - P(v), s \rangle + \langle w - P(w), s \rangle = 0.$$
$$\langle \alpha v - \alpha P(V), s \rangle = \alpha \langle v - P(v), s \rangle = 0.$$

So
$$P(v+w)=P(v)+P(w)$$
 and $P(\alpha v)=\alpha P(v).$ For $v,s\in S$, $\langle v-P(v),s\rangle=0$ implies $P(v)=v.$ Thus $P^2(v)=P(v)$ for all $v\in V.$

Finally, for all $u, v \in V$,

$$\begin{split} \langle P(v), w \rangle - \langle v, P(w) \rangle &= \langle P(v), w \rangle - \langle P(v), P(w) \rangle + \langle P(v), P(w) \rangle - \langle v, P(w) \rangle \\ &= \langle P(v), w - P(w) \rangle - \langle v - P(v), w \rangle = 0 \end{split}$$

Orthogonal projection

Suppose $P:V\to V$ is linear map such that $P^2=P$ and $P^*=P$. Then P is an orthogonal projection to some subspace of V.

Proof.

Let $S = \mathcal{R}(P)$. For $v \in V$ and $P(w) \in S$,

$$\langle v - P(v), P(w) \rangle = \langle P^*(v - P(v)), w \rangle$$
$$= \langle P(v) - P^2(v), w \rangle$$
$$= \langle P(v) - P(v), w \rangle = 0$$

So
$$P(v) = \operatorname{proj}_S v$$
.

Pseudoinverse

Thus we can define a function $S:\mathbb{C}^m \to \operatorname{col}(A^*)$ by $S(y)=\overline{x}$. It is a routine proof that S is linear. Let A^\dagger be the corresponding matrix of S. A^\dagger is the pseudoinverse of A.

 AA^{\dagger} is an orthogonal projection to $\mathrm{col}(A)$ and $A^{\dagger}A$ is an orthogonal projection to $\mathrm{col}(A^*).$

We can show that

$$B=A^{\dagger}$$
 if and only if $ABA=A$, $BAB=B$, $BA=(BA)^{*}$ and $AB=(AB)^{*}$.

Ch7. The spectral theory of symmetric matrices

Recall

- $ightharpoonup A \in \mathbb{R}^{n \times n}$ is called *symmetric* if $A^T = A$.
- ▶ A is diagonalizable if there is invertible matrix X and diagonal matrix D such that $A = XDX^{-1}$.

For convenience, if we say a matrix A is symmetric, we may assume $A \in \mathbb{R}^{m \times n}$. The goal of this chapter :

- every symmetric (or Hermitian) matrix is diagonalizable
- ▶ the eigenvalues of symmetric (or Hermitian) matrix are real
- we can choose "nice" eigenvectors of a symmetric (or Hermitian)

diagonalizable

Let $A \in \mathbb{C}^{n \times n}$. Then A has eigenvalues $\lambda_1, \dots, \lambda_k$ such that

$$\operatorname{m.alg}(\lambda_1) + \cdots + \operatorname{m.alg}(\lambda_k) = n.$$

For each i, $m.geo(\lambda_i) \leq m.alg(\lambda_i)$.

A is diagonalizable if and only if $m.geo(\lambda_i) = m.alg(\lambda_i)$ for all i.

TFAE

- $\blacktriangleright E_{\lambda}(A) = G_{\lambda}(A).$
- ightharpoonup m.geo(λ) = m.alg(λ).

7.1 The spectral theorem for symmetric matrices

Theorem (328)

Let $A \in \mathbb{R}^{n \times n}$ be symmetric, and let $\lambda \in \mathbb{C}$ be an eigenvalue of A. Then $\lambda \in \mathbb{R}$ and there exists an eigenvector $x \in \mathbb{R}^n$ corresponding to λ .

Theorem (329)

Let $A \in \mathbb{R}^{n \times n}$ be symmetric, and let $\lambda_1, \lambda_2 \in \mathbb{R}$ be distinct eigenvalues of A, and let $x_1, x_2 \in \mathbb{R}^n$ be eigenvectors corresponding to λ_1, λ_2 , respectively. Then x_1 and x_2 are orthogonal.

Ch7. The spectral theory of symmetric matrices

-7.1 The spectral theorem for symmetric matrices

Definition

Let $Q \in \mathbb{R}^{n \times n}$. We say that Q is orthogonal if and only if $Q^T = Q^{-1}$.

Equivalently, $Q_i\cdot Q_j=\delta_{ij}$ where δ_{ij} is Kronecker delta. Thus $\{Q_1,\cdots,Q_n\}$ is orthonormal.

Theorem (331)

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and let $\lambda \in \mathbb{R}$ be an eigenvalue of A. Then the geometric multiplicity of λ equals the algebraic multiplicity of λ .

Proof

Induction on n. Assume the result hold for all matrices of dimension $(n-1)\times (n-1)$. Suppose $\lambda\in\mathbb{R}$ is an e.val of A of $\mathrm{m.alg}(\lambda)=k\geq 1$. Let $x\in\mathbb{R}^n$ be an e.vec of A corr to λ . We may assume $\|x\|=1$ and can find an orthonormal basis $\{x_1=x,x_2,\cdots,x_n\}$ for \mathbb{R}^n . Define $X=[x_1|\cdots|x_n]$. Then X is orthogonal.

Proof

Define $B = X^T A X$.

$$B = \begin{bmatrix} x_1 \cdot Ax_1 & \cdots & x_1 \cdot Ax_n \\ \vdots & \ddots & \vdots \\ x_n \cdot Ax_1 & \cdots & x_n \cdot Ax_n \end{bmatrix}$$

Since $Ax_1 = \lambda x_1$, $x_i \cdot Ax_1 = 0$. Also $x_1 \cdot Ax_i = Ax_1 \cdot x_i = 0$. Thus

$$B = \begin{bmatrix} x_1 \cdot Ax_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & x_n \cdot Ax_n \end{bmatrix}$$

Write $C = B^{(1,1)}$;

$$B = \begin{bmatrix} \lambda & 0 \\ \hline 0 & C \end{bmatrix}$$

Since B is symmetric, so is C.

-7.1 The spectral theorem for symmetric matrices

Proof

Then λ is an eigenvalue of C of $\mathrm{m.alg} = k-1$. By I.H, C has k-1 e.vec u_2, \cdots, u_k (may assume it is orthonormal). Define

$$z_i = \left[\frac{0}{u_i}\right]$$

Then

$$Bz_i = \begin{bmatrix} \lambda & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} 0 \\ u_i \end{bmatrix} = \begin{bmatrix} 0 \\ \lambda u_i \end{bmatrix} = \lambda z_i$$

Finally, $AXz_i = \lambda z_i$ implies Xz_2, \dots, Xz_n are all evec of A corr to λ .

Corollary (332)

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then there exists an orthogonal matrix $X \in \mathbb{R}^{n \times n}$ and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that $A = XDX^T$.

-7.1 The spectral theorem for symmetric matrices

Definition

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. We say that A is symmetric positive definite (SPD) if and only if

$$x \cdot (Ax) > 0$$
 for all $x \in \mathbb{R}^n - \{0\}$.

A is positive semidefinite if and only if

$$x \cdot (Ax) \ge 0$$
 for all $x \in \mathbb{R}^n$.

In other words, if A is SPD, then " $x \cdot Ax = 0$ iff x = 0." If A is just positive semidefinite, there may be nonzero x such that $x \cdot Ax = 0$.

-7.1 The spectral theorem for symmetric matrices

Theorem (334)

Let $A \in \mathbb{R}^{n \times n}$ be symmetric.

- ▶ A is SPD if and only if all of the e.val of A are positive.
- ▶ A is positive semidefinite if and only if all of the e.val of A are nonnegative.

Theorem (335)

Let X be an inner product space over $\mathbb R$ and let $\{x_1, \cdots, x_n\}$ be a basis for X. Then the Gram matrix G is SPD.

Corollary (336)

Let $A \in \mathbb{R}^{m \times n}$ be nonsingular. Then $A^T A$ is SPD.

Theorem (337)

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian, and let λ be eval of A. Then $\lambda \in \mathbb{R}$.

Theorem (338)

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian, and let λ be e.val of A. Then $m.geo(\lambda) = m.alg(\lambda)$.

Theorem (339)

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian, and let λ_1, λ_2 be e.val of A, and $x_1, x_2 \in \mathbb{C}^n$ be e.vec corr to λ_1, λ_2 , respectively. Then x_1 and x_2 are orthogonal.

Definition

 $U \in \mathbb{C}^{n \times n}$ is called unitary if and only if $U^* = U^{-1}$.

Theorem (340)

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian. Theb there exists a unitary matrix $X \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that $A = XDX^*$.

Definition

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian. We say that A is positive definite if and only if

$$x \cdot (Ax) > 0$$
 for all $x \in \mathbb{C}^n - \{0\}$.

A is positive semidefinite if and only if

$$x \cdot (Ax) \ge 0$$
 for all $x \in \mathbb{C}^n$.

Theorem (341)

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian.

- ▶ A is positive definite if and only if all of the e.val of A are positive.
- ▶ A is positive semidefinite if and only if all of the e.val of A are nonnegative.

-7.1 The spectral theorem for symmetric matrices

Theorem (343)

Let X be an inner product space over $\mathbb C$ and let $\{x_1, \cdots, x_n\}$ be a basis for X. Then the Gram matrix G is Hermitian positive definite.

Corollary (344)

Let $A \in \mathbb{C}^{m \times n}$ be nonsingular. Then A^*A is Hermitian and positive definite.

-7.1 The spectral theorem for symmetric matrices

Ex7.1.1

Let $A \in \mathbb{R}^{m \times n}$. Prove that $A^T A$ is positive semidefinite.

-7.1 The spectral theorem for symmetric matrices

Ex7.1.2

Prove that a symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if and only if all the eigenvalues of A are nonnegative.

Ex7.1.3

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Define $\langle \cdot, \cdot \rangle$ by

$$\langle x, y \rangle = x \cdot Ay.$$

Prove that $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^n .

Ex7.1.4

Let $U \in \mathbb{R}^{n \times n}$ be an orthogonal matrix. Prove that multiplication by U preserves norms and dot products:

$$\begin{split} \|Ux\|_2 &= \|x\|_2 \\ (Ux)\cdot (Uy) &= x\cdot y \end{split}$$

Ex7.1.5

Suppose multiplication by $A \in \mathbb{R}^{n \times n}$ preserves dot products:

$$(Ax) \cdot (Ay) = x \cdot y.$$

Does ${\cal A}$ have to be orthogonal? Prove or disprove.

Ex7.1.6

Suppose multiplication by $A \in \mathbb{R}^{n \times n}$ preserves dot norms:

$$||Ax||_2 = ||x||_2.$$

Does A have to be orthogonal? Prove or disprove.

-7.1 The spectral theorem for symmetric matrices

Ex7.1.7

Let $A\in\mathbb{C}^{n\times n}$ be a Hermitian positive definite matrix. Prove that there exists a Hermitian positive definite matrix $B\in\mathbb{C}^{n\times n}$ such that $B^2=A$. (The matrix B is calles the square root of A and is denoted $A^{1/2}$.)

-7.1 The spectral theorem for symmetric matrices

Ex7.1.8

Let X be a finite-dimensional inner product space over \mathbb{C} , and let $T:X\to X$ be a linear operator. We say T is self-adjoint if $T^*=T$. Suppose T is self-adjoint. Prove:

- (a) Every e.val of T is real.
- (b) e.vec of T corr to distinct e.val are orthogonal.

Ex7.1.9

X finite-dimensional inner product space over $\mathbb R$ with basis $\mathcal X=\{x_1,\cdots,x_n\}$, and $T:X\to X$ is a self-adjoint linear operator. Let $A=[T]_{\mathcal X,\mathcal X}$ and G be the Gram matrix for $\mathcal X$, and $B\in\mathbb R^{n\times n}$ by

$$B = G^{1/2}AG^{-1/2}$$
.

- (a) Prove that B is symmetric.
- (b) Since A and B are similar, they have the same eigenvalues and there is a simple relationship between their eigenvectors. What is this relationship?
- (c) Use the fact that there is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of B to prove that there is an orthonormal basis of X consisting of eigenvectors of T.

Ex7.1.9(a)

Prove that \boldsymbol{B} is symmetric.

-7.1 The spectral theorem for symmetric matrices

Ex7.1.9(b)

Since A and B are similar, they have the same eigenvalues and there is a simple relationship between their eigenvectors. What is this relationship?

-7.1 The spectral theorem for symmetric matrices

Ex7.1.9(c)

Use the fact that there is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of B to prove that there is an orthonormal basis of X consisting of eigenvectors of T.

Some properties of dual spaces

Matrix and dual space

Let $V=\mathbb{R}^n$. Every vector $v\in V$ is a matrix of size $n\times 1$. Since every matrix defines a linear operator, we can correspond v to a linear operator.

$$v: \mathbb{R} \to \mathbb{R}^n$$
.

Similarly, $v^T \in \mathbb{R}^{1 \times n}$.

$$v^T: \mathbb{R}^n \to \mathbb{R}.$$

So v^T is a dual vector of v and $\mathbb{R}^{1\times n}\cong\mathcal{L}(\mathbb{R}^n,\mathbb{R})=V^*$.

Dot product and dual vector space

Let $u,v\in V=\mathbb{R}^n$. We know that $u\cdot v=v^Tu$. So the map $v\mapsto v^T=(\text{-})\cdot v$ is a linear map from V to V^* . Moreover e_i^T is a basis for V^* because $e_i^Te_j=\delta_{ij}$. Similarly if $\{v_1,\cdots,v_n\}$ is a basis for V, then $\{v_1^T,\cdots,v_n^T\}$ is a basis for V^* .

Inner product and dual vector space

Let V be a finite dimensional inner product space over \mathbb{R} . The correspondence $L:v\mapsto \langle\cdot,v\rangle$ is a linear map from V to V^* . On the other hand $\mathcal{B}=\{v_1,\cdots,v_n\}$ is a basis for V, then $\mathcal{B}^*=\{v_1^*,\cdots,v_n^*\}$ is a basis for V^* where $v_i^*(v_j)=\delta_{ij}$. Now compute $M=[L]_{\mathcal{B},\mathcal{B}^*}$.

$$M = ([L(v_1)]| \cdots |[L(v_n)])$$

$$L(v_i) = \sum_i \alpha_{ij} v_j^* = \langle \cdot, v_i \rangle.$$

Since $L(v_i)(v_j) = \langle v_j, v_i \rangle = \alpha_{ij} v_i^*(v_j) = \alpha_{ij}$, $\alpha_{ij} = (G_{\mathcal{B}})_{ij}$. Hence $[L] = G_{\mathcal{B}}$.

Continued

$$\begin{array}{ccc}
\mathbb{R}^n & \xrightarrow{G_{\mathcal{B}}} \mathbb{R}^n \\
E_{\mathcal{B}} \uparrow & E_{\mathcal{B}^*} \uparrow \\
V & \xrightarrow{L} V^*
\end{array}$$

Theorem (Dual linear map)

Let U and V be two finite dimensional vector spaces over F. Suppose $L:U\to V$ is a linear map. Then there is a linear map $S:V^*\to U^*$ such that $S(f)=f\circ L$. Write $S=\hat{L}$.

Proof.

$$V \xrightarrow{f} \mathbb{R}$$

$$\downarrow L \uparrow \qquad \downarrow f \circ L$$

$$U$$

Let $f\in V^*$. Then $f\circ L:U\to\mathbb{R}$ is a linear map. So S(f) is well-defined map. Moreover $S(f+g)=(f+g)\circ L=f\circ L+g\circ L=S(f)+S(g)$ and $S(\alpha f)=(\alpha f)\circ L=\alpha(f\circ L)=\alpha S(f)$. Hence S is a linear map.

Theorem

Let U, V, and W be finite dimensional vector spaces over F. Suppose $T: U \to V$ and $S: V \to W$. Then $\widehat{(ST)} = \hat{T}\hat{S}$.

Proof.

$$\widehat{(ST)}(f) = fST = (\hat{S})T = \hat{T}(\hat{S}(f)).$$

$$U \xrightarrow{T} V \xrightarrow{S} W$$

$$U^* \xleftarrow{\hat{T}} V^* \xleftarrow{\hat{S}} W^*$$

Theorem

Let U and V be finite dimensional inner product spaces over \mathbb{R} . Then we have isomorphisms, $\phi^U: u \mapsto \langle \cdot, u \rangle_U$ and $\phi^V: v \mapsto \langle \cdot, v \rangle_V$. Let $L: U \to V$ be a linear map. $L^*: V \to U$ is a linear map such that $\langle L(u), v \rangle_V = \langle u, L^*(v) \rangle_U$. Then $\phi^U L^* = \hat{L} \phi^V$.

$$U \xleftarrow{L^*} V$$

$$\phi^U \downarrow \qquad \qquad \downarrow \phi^V$$

$$U^* \xleftarrow{f_*} V^*$$

Proof.

$$\begin{split} (\phi^U L^*(v))(u) &= \langle v, L^*(u) \rangle_U = \langle L(u), v \rangle_V \\ (\hat{L}\phi^V(v))(u) &= (\phi^V(v))(L(U)) = \langle L(u), v \rangle_V. \end{split}$$

Matrix for dual maps

Compute $A = [\hat{L}]_{\mathcal{V}^*,\mathcal{U}^*}$. Let $M_{ij} = \langle v_j, L(u_i) \rangle$. We already show that $B = (G_{\mathcal{U}})^{-1}M$.

$$[\hat{L}]_{\mathcal{V}^*,\mathcal{U}^*} = A = G_{\mathcal{U}}B(G_{\mathcal{V}})^{-1} = M(G_{\mathcal{V}})^{-1}$$
$$= ((G_{\mathcal{V}}^{-1})^T M^T)^T = (G_{\mathcal{V}}^{-1} M^T)^T = [L]_{\mathcal{U},\mathcal{V}}^T.$$

The last equality is followed by $(A^T)^{-1} = (A^{-1})^T$, $G^T = G$, and $(M^T)_{ij} = \langle u_i, L^*(v_i) \rangle$

Theorem

Let V be a vector sapce over F. Let $v \in V$. If f(v) = 0 for all $f \in V^*$, then v = 0.

Corollary

If $f(v_1) = f(v_2)$ for all $f \in V^*$, then $v_1 = v_2$.

Proof.

If $v \neq 0$, we can find a basis for V containing v. Then there is a linear map $f: V \to \mathbb{R}$ such that f(v) = 1. Hence if f(v) = 0 for all $f \in V^*$, v = 0.

Remark

If V is an inner product space over \mathbb{R} , $\langle v,w\rangle=0$ for all $w\in V$ implies v=0. Let V be a vector space over F and let $\langle\cdot,\cdot\rangle:V\times V^*\to F$ be an evalutation map. Above theorem says $\langle v,f\rangle=0$ for all $f\in V^*$, v=0.

Exercises in Dummit 11.3

Let S be any subset of V^* for some finite dimensional vector space V. Define $\mathrm{Ann}(S)=\{v\in V\mid f(v)=0 \text{ for all } f\in S\}$. We call $\mathrm{Ann}(S)$ the annihilator of S in V.

- (a) Ann(S) is a subspace of V.
- (b) Let W_1 , W_2 be subspaces of V^* . Then $\operatorname{Ann}(W_1+W_2)=\operatorname{Ann}(W_1)\cap\operatorname{Ann}(W_2) \text{ and } \operatorname{Ann}(W_1\cap W_2)=\operatorname{Ann}(W_1)+\operatorname{Ann}(W_2).$
- (c) $W_1 = W_2$ if and only if $Ann(W_1) = Ann(W_2)$.
- (d) Ann(S) = Ann(span(S)).
- (e) Let $\{v_1, \dots v_n\}$ be a basis for V. If $S = \{v_1^*, \dots, v_k^*\}$ for some $k \leq n$, then $\operatorname{Ann}(S) = \operatorname{span}\{v_{k+1}, \dots, v_n\}$.
- (f) If W^* is a subspace of V^* , then $\dim \operatorname{Ann}(W^*) = \dim V \dim W^*$.

Remark

If
$$A \subset B \subset V^*$$
,

$$Ann(A) \supset Ann(B)$$
.

Recall

If V is finite dimensional, $V \to V^{**}$ by $v \mapsto \langle v, \cdot \rangle$ is an isomorphism.

(a)

Ann(S) is a subspace of V.

Proof.

Let
$$v,w\in \mathrm{Ann}(S)$$
. For $f\in S$, $f(0)=0$, $f(v+w)=f(v)+f(w)=0+0=0$, $f(\alpha v)=\alpha f(v)=0$. Hecne $0,v+w,\alpha v\in \mathrm{Ann}(S)$. \square

(b)

Let W_1 , W_2 be subspaces of V^* . Then $\operatorname{Ann}(W_1+W_2)=\operatorname{Ann}(W_1)\cap\operatorname{Ann}(W_2)$ and $\operatorname{Ann}(W_1\cap W_2)=\operatorname{Ann}(W_1)+\operatorname{Ann}(W_2)$.

Proof.

Since $W_1 + W_2 \supset W_i$, $\operatorname{Ann}(W_1 + W_2) \subset \operatorname{Ann}(W_i)$. So $\operatorname{Ann}(W_1 + W_2) \subset \operatorname{Ann}(W_1) \cap \operatorname{Ann}(W_2)$.

Let
$$f_1+f_2\in W_1+W_2$$
. Let $v\in {\rm Ann}(W_1)\cap {\rm Ann}(W_2)$. Then $(f_1+f_2)(v)=f_1(v)+f_2(v)=0$. So ${\rm Ann}(W_1+W_2)\supset {\rm Ann}(W_1)\cap {\rm Ann}(W_2)$

Since $W_1 \cap W_2 \subset W_i$, $\operatorname{Ann}(W_1 \cap W_2) \supset \operatorname{Ann}(W_1) + \operatorname{Ann}(W_2)$. (continued)

Proof.

To show $\operatorname{Ann}(W_1 \cap W_2) \subset \operatorname{Ann}(W_1) + \operatorname{Ann}(W_2)$, choose a basis for $W_1 \cap W_2$ and extend it to a basis for $W_1 + W_2$ and one more to V^* , say \mathcal{B} . Let $v \in \operatorname{Ann}(W_1 \cap W_2)$. Define a map $E_i : V^* \to F$ by

$$E_1(f) = egin{cases} 0 & ext{for } f \in \mathcal{B} \cap W_1 \\ f(v) & ext{otherwise} \end{cases}$$
 $E_2(f) = egin{cases} f(v) & ext{for } f \in \mathcal{B} \cap W_1 \\ 0 & ext{otherwise.} \end{cases}$

Since V is finite dimensional, $V\cong V^{**}$. Thus we can find $v_i\in V$ such that $v_i\mapsto E_i$. Then for $f_i\in\mathcal{B}\cap W_i$, $f_1(v_j)=\langle v_j,f_i\rangle=E_j(f_i)$. Since $E_1(f_1)=0=f_1(v_1)$ and $E_2(f_2)=0=f_2(v_2)$, $v_i\in W_i$. Now for $f\in\mathcal{B}$, $f(v_1+v_2)=f(v_1)+f(v_2)=E_1(f)+E_2(f)=f(v)$. Thus for all $f\in V^*$, $f(v_1+v_2)=f(v)$. Hence $v=v_1+v_2$, as desired.

(c)

 $W_1 = W_2$ if and only if $Ann(W_1) = Ann(W_2)$.

Proof.

Claim) If $W_1 \subset W_2 \subset V^*$ and $\operatorname{Ann}(W_1) = \operatorname{Ann}(W_2)$, then $W_1 = W_2$.

Suppose not. Then there is $g \in W_2 - W_1$. We can find a basis \mathcal{B} containing g such that $\mathcal{B} \cap W_1$ is a basis for W_1 . We defind a map $E: V^* \to F$ by

$$E(f) = \begin{cases} 1 & \text{if } f = g \\ 0 & \text{if } f \neq g \end{cases}$$

Now let $w\in V$ whose image is E, i.e. $\langle w,f\rangle=E(f)$. Since $\langle w,f\rangle=E(f)=0$ for $f\in W_1,\ w\in \mathrm{Ann}(W_1)$. But $\langle w,g\rangle=E(g)=1$. So $\mathrm{Ann}(W_1)\neq \mathrm{Ann}(W_2)$ (contradiction.)

Using the claim, $\operatorname{Ann}(W_1 \cap W_2) = \operatorname{Ann}(W_1) + \operatorname{Ann}(W_2) = \operatorname{Ann}(W_i)$ implies $W_1 \cap W_2 = W_i$. Hence $W_1 = W_2$.

(d)

 $\operatorname{Ann}(S) = \operatorname{Ann}(\operatorname{span}(S)).$

Proof.

Clearly $Ann(S) \supset Ann(span(S))$. Let $\sum \alpha_i f_i \in span(S)$ and $v \in Ann(S)$.

$$(\sum \alpha_i f_i)(v) = \sum \alpha_i f_i(v) = 0.$$

Hence $v \in \text{Ann}(\text{span}(S))$.

(e)

Let
$$\{v_1, \dots v_n\}$$
 be a basis for V . If $S = \{v_1^*, \dots, v_k^*\}$ for some $k \leq n$, then $\mathrm{Ann}(S) = \mathrm{span}\{v_{k+1}, \dots, v_n\}$.

Proof.

Since
$$v_i^*(v_j) = \delta_{ij}$$
, $v_1, \dots, v_k \notin \text{Ann}(S)$ and $v_{k+1}, \dots, v_n \in \text{Ann}(S)$.

(f)

If W^* is a subspace of V^* , then $\dim \operatorname{Ann}(W^*) = \dim V - \dim W^*$.

Proof.

Claim) There is a linearly independent set $\{v_1, \dots, v_k\} \subset V$ such that $\{v_1^*, \dots, v_k^*\} \subset V^*$ is a basis for W^* .

Let $\{f_1,\cdots,f_k\}$ be a basis for W^* and extend to $\{f_1,\cdots,f_n\}$. Define $E_i:V^*\to F$ by $E_i(f_j)=\delta_{ij}$. Then $\{E_1,\cdots,E_k\}$ is linearly independent. Let $v_i\in V$ such that $\langle V_i,\cdot\rangle=E_i$. Then $f_i(v_j)=\langle v_j,f_i\rangle=E_j(f_i)=\delta_{ij}=\langle v_j,v_i^*\rangle$. Thus $f_i=v_i^*$. So $\{v_1^*,\cdots,v_k^*\}$ is a basis for W^* .

Now using (e), $\dim \operatorname{Ann}(W) = \dim V - \dim W^*$.

Annihilator vs orthogonal complement

Let V be an finite dimensional inner product space. For $S \subset V$, $S^\perp = \{v \in V \mid \langle v, s \rangle = 0 \text{ for all } s \in S\}.$

Let $v \in V$. If $v \neq 0$, we can extend $\{v\}$ to an orthogonal basis \mathcal{B} for V. Then $v^*(w) = \delta_{vw} = \langle w, v \rangle / \langle v, v \rangle$ for $w \in \mathcal{B}$. Let $S^* = \{s^* \mid s \in S\}$. Note that $0^* = 0$.

For $v \in S^{\perp}$ and for $s \neq 0$, $s^*(v) = \langle v, s \rangle / \langle s, s \rangle = 0$. So $S^{\perp} \subset \operatorname{Ann}(S^*)$. Conversely, for $v \in \operatorname{Ann}(S^*)$, $\langle v, s \rangle = \langle s, s \rangle s^*(v) = 0$. So $S^{\perp} \supset \operatorname{Ann}(S^*)$.

Summary

Suppose V is a finite dimensional inner product space. Then $V\cong V^*$. Let $\langle\cdot,\cdot\rangle_I$ be an inner product and $\langle\cdot,\cdot\rangle_E$ be an evalutation map. The map $v\mapsto\langle\cdot,v\rangle_I$ is an isomorphism from V and V^* .

Let $\{v_1, \dots, v_n\}$ be an orthonormal basis for V. Then

$$\langle v_j, v_i^* \rangle_E = v_i^*(v_j) = \langle v_j, v_i \rangle_I$$

Thus we can identity v with v^* and $\langle \cdot, \cdot \rangle_I$ with $\langle \cdot, \cdot \rangle_E$.

Or an evalutation map is a generalization of an inner product.

The End