

IDENTIFYING INFLUENTIAL NODES IN COMPLEX NETWORKS (2011)

Presented by Carles Sans Fuentes

Social Network Analysis

Introduction to social network analysis

Content for network analysis

Article

Model presented

SIR evaluation model

Results

Conclusions & Criticism

Annex

THE FIRST RELLEVANT STUDY ABOUT DEGREES OF SEPARATION ON SOCIETY DATES FROM 1960

The Small World experiment (1960)

SET UP

Objective

Average path length for social networks of people in the US

Instructions

Send to "randomly" selected individuals (from Nebraska or Kansas) information packets:

- study's purpose
- · target contact person
- Rules

Main Rule:

If(knew person == TRUE){
 forward the letter directly
} Else {
 think of a friend or who was

more likely to know the target

RESULTS

Reaching the destination

- 78% didn't reach destination (232 of the 296 letters)
 - large % rejection of on participation
- 22% (64 of the letters) eventually did reach the target contact

CONCLUSIONS

Average path length

6 degrees of separation

Hub people

50% letters from Kansas had the same two people as last contact

The average degree of separation between people was determined to be 6

DURING THE LAST DECADES THE DEGREES OF SEPARATION AMONG INTERNET USERS HAS SHRUNKED BETWEEN 3 AND 5

Main facts about social network connections through the last decade

person in Facebook (2016) (2)

(1) https://sysomos.com/inside-twitter/twitter-friendship-data/ http://barnraisersllc.com/2012/04/studies-social-media-6-degrees-of-separatio/

(2) https://research.fb.com/three-and-a-half-degrees-of-separation/

UNDERSTANDING SOCIAL NETWORKS IS CRUCIAL TO EVALUATE HUBBS AND THE POWER OF ITS NODES

Top 10 most influential Man

Top 10 most influential Women

10	WHAT NOW?	@KevinHart4real
9	1	@BillGates
8	å	@jimmyfallon

@Oprah

@selenagomez

@katyperry

@JLo

By Brandwatch 2016 (1)

Top 10 influential channels

Top 12 influential channels by Subscribers

Ranking	Influencer	Likes	Comments	Engagement
1 kin	nkardashian	443,413,766	5,613,461	449,027,227
2 kyl	iejenner	383,667,470	33,235,937	416,903,407
3 mil	leycyrus	379,865,123	5,594,090	385,459,213
4 aria	anagrande	349,941,016	5,353,575	355,294,591
5 jus	tinbieber	302,037,886	8,909,224	310,947,110
6 nic	kiminaj	301,564,363	4,707,143	306,271,506
7 khl	loekardashian	286,570,015	3,478,218	290,048,233
8 nev	ymarjr	266,899,059	19,902,550	286,801,609
9 tay	vlorswift	239,644,922	3,364,992	243,009,914
10 sel	enagomez	230,039,262	3,435,666	233,474,928

By Instagram	1 2015 ⁽²⁾
--------------	-----------------------

RANK	SB SCORE	USE	R	SUBSCRIBERS	VIDEO VIEWS
1	13786949		Music	97,068,174	
2	12893138		Gaming	77,716,341	
3	11859803		<u>Sports</u>	75,546,769	
4	46	A+	<u>PewDiePie</u>	54,914,225	15,203,162,864
5	236069	B-	YouTube Movies	47,121,447	1,006,181
6	13492087		<u>News</u>	33,812,289	
7	899	Α	HolaSoyGerman.	31,641,863	3,081,272,681
8	11786124		Popular on YouTube	29,665,991	
9	42	A+	<u>JustinBieberVEVO</u>	28,825,980	15,060,800,995
10	16602	В	YouTube Spotlight	25,511,130	1,100,925,024
11	157	Α	<u>RihannaVEVO</u>	24,623,628	11,183,861,175
12	113	Α	elrubiusOMG	24,215,352	5,307,366,565

By SocialBlade 2016⁽³⁾

Sources:

- (1) https://www.brandwatch.com/blog/react-the-most-influential-men-and-women-on-twitter/
- (2):http://www.edigitalagency.com.au/instagram/top-most-popular-instagram-influencers-video-creators/
- (3) https://socialblade.com/youtube/top/100/mostsubscribed

Introduction to social network analysis

Content for network analysis

Article

Model presented

SIR evaluation model

Results

Conclusions & Criticism

Annex

A NETWORK GRAPH IS A COLLECTION OF ENTITIES, EACH CALLED A VERTEX OR NODE

Main characteristics of a network/graph

Definition Vertex/ > Collection of entities, each called a vertex or node Node **Network** (graph) Edges/ > A list of pairs of vertices that are neighbors, representing edges or links Links **Directed** > Edges have a direction associated with them Edges does not have a direction associated **Undirected** Bidirecttional Type of edges > Edges have a weight associated with them Weighted Edges does not have a weight associated **Unweighted Bidirecttional**

Examples

- Vertices are mathematicians, edges represent coauthorship relationships
- Vertices are Facebook users, edges represent Facebook friendships

Networks can represent any binary relationship over individuals

Sources:

- (1) http://www.cis.upenn.edu/~mkearns/NetworkedLifeOnline/ → what is a network?
- (2) https://www.slideshare.net/bodacea/network-analysis-lecture

INFLUENTIAL NODES ARE AFFECTED BY MECHANISMS SUCH AS CASCADING, SPREADING AND SYNCHRONIZING

When a person observes the actions of others and then engages in the same acts¹

How information is transmitted to new nodes from an initial node²

Nodes that are able to transmit and receiving information with regular frequency³

Identifying influential nodes is of great importance:
e.g. controlling rumor and disease spreading, and creating new marketing tools

- (1) https://en.wikipedia.org/wiki/Information_cascade
- (2) https://en.wikipedia.org/wiki/Spreading_activation
- (3) https://www.techopedia.com/definition/13390/synchronization-dot-net

DEGREE, CLOSENNESS AND BETWEENNES CENTRALITY ARE MEASURES USED TO IDENTIFY INFLUENTIAL CENTRAL NODES

Main centrality measures

Average degree of a network¹

Betweenness

Centrality

Closeness

Centrality

Definition

> Average number of steps along the shortest paths for all possible pairs of network nodes $l_G = \frac{1}{n \cdot (n-1)} \cdot \sum_{i \neq j} d(v_i, v_j)$

Degree > The number of neighbours a node has (e.g. the number of links it has)

Fraction of shortest paths between node pairs that pass through the node of interest.

$$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}},$$

 $C_D(v) = \deg(v)$

> The reciprocal of the sum of geodesic distances to all other nodes of V 1

(k) is the average degree of the network

Example

> $C_c(b) = d(b, a) + d(b, c) + d(b, d)$ + d(b, e) / 4) = (1 + 1 + 1 + 2) = 5/4 = 1.2

$$C_D(b) = A$$
, C, D/A, C,D, E = 3/4 = 0.75

> $C_b(b) = ((\sigma_{ac}(b) / \sigma_{ac}) + (\sigma_{ad}(b) / \sigma_{ad}) + (\sigma_{ae}(b) / \sigma_{ae}) + (\sigma_{cd}(b) / \sigma_{cd}) + (\sigma_{ce}(b) / \sigma_{ce}) + (\sigma_{de}(b) / \sigma_{de})) / 6 = ((1 / 1) + (1 / 1) + (2 / 2) + (1 / 2) + 0 + 0) / 6 = 3.5 / 6$

Better at quantifying the influence of nodes, but higher computational complexity²

It exists a tradeoff between the algorithm of centrality used and the computational complexity

- (1) Average degree of a network is not itself a measure of centrality but to understand the article
- (2) Centralities based on PageRank or LeaderRank are even more relevant, but more complex Sources: http://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.7/

Introduction to social network analysis

Content for network analysis

Article

Model presented

SIR evaluation model

Results

Conclusions & Criticism

Annex

THE LOCAL CENTRALITY MEASURE CONSIDERS BOTH THE NEAREST NEIGHBORS AND THE NEXT NEAREST NEIGHBORS

Main Issue

Finding better algorithm with less complexity

Degree centrality problem: The network consisted of 23 nodes and 40 edges. Although node 23 has lower degree than node 1, its influence may be even higher

Solution model proposed

Local centrality measure

- It considers both the nearest and the next nearest neighbors
- The local centrality CL(v) of node v is defined as:

$$Q(u) = \sum_{w \in \varGamma(u)} N(w),$$

where Γ (u) is the set of the nearest neighbors of node u and N(w) is the number of the nearest and the next nearest neighbors of node w. Then:

$$C_L(v) = \sum_{u \in \Gamma(v)} Q(u),$$

Example from Figure 1

$$N(1) = 9$$

 $Q(1) = N(2) + N(3) + N(4) + N(5)$
 $+ N(6) + N(7) + N(8) + N(9) = 67$

$$C_L(1) =$$
 $Q(2)+Q(3)+Q(4)+Q(5)+Q(6)+Q(7)$
 $Q(8)+Q(9) = 145$

Theoretical advantages

- ✓ Tradeoff between low-relevant degree centrality and other timeconsuming measures
- ✓ O(n*(k)^2) which grows linearly with the size of a sparse network
- ✓ It considers two neighbors level for the importance of spreading.

THE SIR MODEL IS AN EPIDEMIC MODEL USED TO EXAMINE THE SPREADING INFLUENCE OF TOPRANKED NODES

#1 Susceptible #2 Infection

#3 Recovery

S(t)

No of individuals not yet infected but susceptible to get it

· Beta: % susceptible-infected contact results in a new infection I(t)

No of individuals who have been infected capable of spreading it

 Gamma: % infected recovers & moves into the resistant phase

R(t)

No of individuals who were infected and then removed from the disease (due to immunization or death).

Main formulas

Typical

model

information

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dI}{dt} \ = \ \beta \frac{SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

General

$$N = S + I + R$$

Assumptions of the model

At each step, for each infected node, one randomly selected susceptible neighbor gets infected with probability Beta = 1/# Neighbours

Infected nodes recover with probability 1/(k) at each step, with (k) is the average degree of the network Gamma = $1/\langle k \rangle$

- ✓ An infected node will in average contact (k) neighbors before he/she is recovered
 - The process stops when there is no infected node

✓ The total number of infected and recovered nodes at time t, denoted by F (t), can be considered as an indicator to evaluate the influence of the initially infected node at time t • higher F (T_c) indicates a larger influence

- http://www.public.asu.edu/~hnesse/classes/sir.html?Alpha=1&Beta=0.2&initialS=1000&initialI=10&initialR=3&iters=10
- https://en.wikipedia.org/wiki/Epidemic_model#The_SIR_model
- (3) http://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model Social Network Analysis

THE OBJECTIVE OF THE ARTICLE IS TO EVALUATE THE PERFORMANCE OF THE LOCAL CENTRALITY MEASURE

Objective

 Evaluate the performance of our centrality measure compared with the other centrality measures

Data

- Blogs—the communication relationships between owners of blogs on the MSN (Windows Live) Spaces website
- Netscience—the network of coauthorships between scientists who are themselves publishing on the topic of networks.
- Router level topology of the Internet, collected by the Rocket fuel Project
- iv. Email—the network of e-mail.
 Interchanges between members of the University Rovira i Virgili (Tarragona)

Model of evaluate

• The SIR model from the previous slide

Order of performance

Data Features¹

Network	n	m	$\langle k \rangle$	k_{max}	С	(d)	r	Н
Blogs	3982	6803	3.42	189	0.1409	6.227	-0.1330	4.038
Netscience	379	914	4.82	34	0.3706	6.061	-0.0817	1.663
Router	5022	6258	2.49	106	0.0058	6.393	-0.1384	5.503
Email	1133	5451	9.62	71	0.1101	3.716	0.0782	1.942

Methodology

- After n implementations (each node is selected to be the initially infected node once and only once)
- Evaluate the total number of infected and recovered nodes at time t, denoted by F (t) where t = 10, can be considered as an indicator to evaluate the influence of the initially infected node at time t.

(1) n and m are the total numbers of nodes and links, respectively. (k) and kmax denote the average and the maximum degree. (d) is the average shortest distance. C and r are the clustering coefficient and assortative coefficient respectively. H is the degree heterogeneity

Figures from the results and tables with the main characteristics of the networks can be found in big with its description in the annex

Focus in next slides

Social Network Analysis

THE LOCAL CENTRALITY MEASURE PERFORMS COMPETITIVELY BETTER THAN THE OTHER MEASURES (I)

The relation between node's influence measured by F (t) (t = 10) and its centrality

The average number of F (t) (t = 10) of the top-L users as ranked and its centrality¹

- Local and closeness centrality measures perform good
- X Degree and betweenness centrality perform quite bad

- Local centrality measure outperforms
 - In Blogs and Netscience local centrality performs best
 - In Router and Email closeness centrality performs a little bit better
- X Random, Degree and Betweenness centrality perform quite bad

THE LOCAL CENTRALITY MEASURE PERFORMS COMPETITIVELY BETTER THAN THE OTHER MEASURES (II)

The cumulative number of infected nodes as a function of time¹

Relations between local centrality and degree, betweenness and closeness²

Correlation with Local measure: O Bad Excellent Kendals tau used to evaluate concordancy thorugh data

• In E-mail, all centralities are positively correlated with the local

⁽¹⁾ with the initially infected nodes being those that either appear in the top-10 list by local centrality (circles) or degree centrality (squares)

Each data point denotes a node, and its color represent the F (t) value (t = 10) of this node. The values are obtained by averaged over 100 independent runs.

THE LOCAL CENTRALITY PERFORMS BETTER THAN DEGREE CENTRALITY BEING LESS COMPLEX AND MORE EFFECTIVE

Main conclusions of the paper

Annex

Relation between node's influence measured by f (t) and its centrality

Average number of f(t) (t = 10) of the top-I users as ranked and its centrality

The cumulative number of infected nodes as a function of time

Relations between local centrality and degree, betweenness and closeness

Table (iii) top-10 ranked nodes by local centrality

Table (iv) mean value of the top nodes

A

ANNEX - RELATION BETWEEN NODE'S INFLUENCE MEASURED BY F (T) (T = 10) AND ITS CENTRALITY

Fig. 2. The relation between node's influence measured by F(t) (t=10) and its centrality. Four rows respectively correspond to the results on four example networks, and four columns respectively correspond to four centrality measures. For each initial node, F(t) is obtained by averaging over 100 independent runs.

ANNEX - AVERAGE NUMBER OF F (t) (t = 10) OF THE TOP-L USERS AS RANKED AND ITS CENTRALITY

Fig. 3. The average number of F(t) (t = 10) of the top-L users as ranked by the five centrality measures, including degree centrality (dash line), betweenness centrality (dash-dot line), closeness centrality (dash-dot-dot line), random ranking method (dot line) and our method (solid line).

ANNEX - THE CUMULATIVE NUMBER OF INFECTED NODES AS A FUNCTION OF TIME

Fig. 4. The cumulative number of infected nodes as a function of time, with the initially infected nodes being those that either appear in the top-10 list by local centrality (circles) or degree centrality (squares), but not appearing in both list. Results are obtained by averaging over 100 implementations.

DEGREE, BETWEENNESS AND CLOSENESS

Fig. 6. The relations between local centrality and degree, betweenness and closeness centralities on four example networks. Each data point denotes a node, and its color represent the F(t) value (t = 10) of this node. The values are obtained by averaged over 100 independent runs.

ANNEX – TABLE (III) TOP-10 RANKED NODES BY LOCAL CENTRALITY AND (IV) MEAN VALUE OF THE TOP NODES

Table 3 The top-10 ranked nodes by local centrality (L) and their corresponding ranks by degree (D), closeness (C) and betweenness (B) centralities. $F(t_c)$ is obtained by averaging over 100 implementations.

Blogs					Router				
L	D	С	В	$F(t_c)$	L	D	С	В	$F(t_c)$
1	1	3	3	525.18	1	5	16	31	7.34
2	15	11	45	67 1.01	2	9	2	2	8.45
3	3	7	16	520.92	3	7	7	4	7.93
4	37	15	66	652.71	4	6	19	36	7.74
5	16	16	50	679.46	5	11	1	1	8.24
6	87	57	741	619.74	6	15	4	5	12.62
7	96	63	832	660.57	7	20	9	24	8.65
8	88	22	140	610.62	8	16	20	52	8.73
9	109	56	184	653.00	9	37	8	20	7.95
10	135	78	707	624.29	10	31	21	47	12.48
NetScien	ce				Email				
L	D	С	В	$F(t_c)$	L	D	С	В	$F(t_c)$
1	1	19	12	47.08	1	1	3	2	255.70
2	2	7	6	52.38	2	3	4	10	268.18
3	4	77	50	44.16	3	2	1	1	271.70
4	8	81	21	43.30	4	4	40	22	244.38
5	29	85	101	41.92	5	5	2	3	265.24
6	44	86	135	47.56	6	19	11	61	283.24
7	45	87	136	41.40	7	7	19	15	245.54
8	46	88	137	46.78	8	6	5	8	268.64
9	47	89	138	42.58	9	9	21	16	264.62
10	30	22	15	51.84	10	12	33	36	270.24

Table 4 Mean value of F(t) over top, 10 nodes on four centralities

mean value of 1 (t) over top-10 hours on four centralities.								
Network	L	D	С	В				
Blogs	621.75	373.08	419.28	361.75				
Netscience	45.90	41.75	47.21	45.30				
Router	40.76	23.81	48.18	37.95				
Email	264.75	261.91	267.88	262.88				

