

Nnso	rted sing	sorted sing	unsorted	doub sorted coub
search 1	1 0(n)	O(n)	D(n)	O(n)
Insert	(1)0	0(n)	0(1)	0(1)
delete	0(n)	0(1)	0(1)	0(1)
successor	0(1)	0(1)	0(1)	0(1)
predecessor		O(n)	0(1)	0(1)
WIN	0(1)	0(1)	0(1)	0(1)
Max	10(n)	O(n)	0(1)	O(i)

*Search requires traversing every #, sorted double could be 0(2) max *inserting unsorted could just put thement at end, sorted requires traversal for the correct spot to keep it sorted * you'd have to traverse the list for node's previous node for single before deleting, you'd have the previous with dll * Finding the next element would be O(1) for any linked 11st * you'd need to maverse the SII to find previous element, dil has * min (max would be O(1) for earted but O(n) For unsorted