이 문서는 "물리 메모리 크기의 극복: 정책"이라는 주제를 다루고 있으며, 운영체제의 가상 메모리 관리에서 사용되는 다양한 페이지 교체 정책을 설명하고 있습니다. 주요 내용을 요약하면 다음과 같습니다:

1. 캐시 관리

운영체제는 페이지 폴트 발생 시 비어 있는 메모리 페이지 를 할당하고, 메모리 압박이 발생하면 페이지를 페이징 아웃하여 공간을 확보합니다.

2. 최적 교체 정책 (OPT)

Belady의 알고리즘에 기반한 최적 교체 정책은 가장 나중에 필요할 페이지를 교체하는 방식으로, 실질적으로 구현하기는 어려우나 미스 최소화를 목표로 합니다.

3. 간단한 정책: FIFO (First In First Out)

먼저 들어온 페이지를 먼저 내보내는 방식으로, 구현이 간단 하지만 효율적이지 않을 수 있습니다. 특히 여러 번 참조되 는 페이지가 먼저 교체될 수 있는 단점이 있습니다.

4. 무작위 선택 (Random)

페이지를 무작위로 교체하는 정책으로, 운에 따라 성능이 달 라지며 대체로 효율적이지 않습니다.

5. LRU (Least Recently Used)

최근에 사용되지 않은 페이지를 교체하는 정책입니다. 과거 사용 이력을 기반으로 교체할 페이지를 결정하며, 일반적으 로 높은 성능을 보입니다.

6. 워크로드에 따른 성능 비교

FIFO, 무작위 선택, LRU 등의 정책들이 워크로드에 따라 어떤 성능을 보이는지 비교하며, LRU가 대체로 높은 성능을 보임을 설명합니다.

7. 쓰래싱 (Thrashing)

메모리 요구가 물리 메모리 크기를 초과하여 시스템이 계속 해서 페이징을 해야 하는 상태를 쓰래싱이라고 부르며, 이