Semantic annotations and querying **SBML** simulations

Michel Dumontier, Ph.D.

Associate Professor of Bioinformatics, Department of Biology, School of Computer Science, Institute of Biochemistry, Carleton University

> Professeur Associé, Département d'informatique et de génie logiciel, Université Laval

> > **Ottawa Institute of Systems Biology Ottawa-Carleton Institute of Biomedical Engineering**

Objective

To answer questions about SBML models and the results of simulations

Approach

- We formally represent semantically annotated biomodels using the Web Ontology Language (OWL), such that it becomes possible to:
 - reason about the knowledge and check it's consistency
 - simultaneously query the results of simulations with what is known about the model components (species, compartments, reactions, mathematical expressions, parameters, etc).

Example

- Repressilator: A self-regulating system
- A synthetic oscillatory network of transcriptional regulators. Elowitz MB, Leibler S. (2000). Nature 403: 335-338.

5 COMBINE2011::Dumontier

Annotated SBML Biomodel

```
<sbml xmlns="http://www.sbml.org/sbml/level2/version3" metaid=" 153818" level="2" version="3">
  <model metaid=" 000001" id="repressilator" name="Elowitz2000 Repressilator">
    <annotation>
  <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms=
  "http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" xmlns:bgbiol=
  "http://biomodels.net/biology-qualifiers/" xmlns:bgmodel="http://biomodels.net/model-qualifiers/">
    <rdf:Description rdf:about="# 000001">
      <dc:creator rdf:parseType="Resource">
      <dcterms:created rdf:parseType="Resource">
      <dcterms:modified rdf:parseType="Resource">
      <box><br/>bomodel:is></br/>
        <rdf:Bag>
          <rdf:li rdf:resource="urn:miriam:biomodels.db:BIOMD0000000012"/>
        </rdf:Bag>
      </bomodel:is>
      <box>del:is></box
      <bg rowspan="2"><bgmodel:isDescribedBy>
      <br/>dpiol:isVersionOf>
        <rdf:Bag>
          <rdf:li rdf:resource="urn:miriam:obo.go:G0%3A0040029"/>
        </rdf:Bag>
      </bddiol:isVersionOf>
      <bgbiol:is>
        <rdf:Bag>
          <rdf:li rdf:resource="urn:miriam:taxonomy:562"/>
        </rdf:Bag>
      </bddiol:is>
    </rdf:Description>
  </rdf:RDF>
    </annotation>
<listOfUnitDefinitions>
<listOfCompartments>
Species>
<listOfParameters>
tOfRules>
stOfReactions>
</model>
</sbml>
```

Conceptualization:

Model entities (models and model components) are distinguished from the entities they represent

The Web Ontology Language (OWL) Has Explicit Semantics

Can therefore be used to capture knowledge in a machine understandable way

Formalization: every element E of the SBML language represents a class Rep(E) and we assert that E subClassOf: represents some Rep(E)

Models and their components represent physical entities (material entities, processes)

SBMLHarvester

Robert Hoehndorf, Michel
Dumontier, John H Gennari, Sarala
Wimalaratne, Bernard de Bono,
Daniel L Cook and Georgios V
Gkoutos. Integrating systems
biology models and biomedical
ontologies. BMC Systems Biology
2011, 5:124.

COMBINE2011::Dumontier

Species are further described with 'modifiers' in the context of a reaction

essential activator

```
tOfModifiers>
  <modifierSpeciesReference sboTerm="SBO:0000461" species="X"/>
</listOfModifiers>
```

partial inhibitor

```
<listOfModifiers>
<modifierSpeciesReference sboTerm="SBO:0000536" species="PX"/>
</listOfModifiers>
```

Roles are realized in the context of processes by material entities

Semanticscience Integrated Ontology (SIO)

- OWL2 ontology
- 100+ classes covering basic types (physical, processual, abstract, informational) with an emphasis on biological entities
- 183 basic relations (mereological, participatory, attribute/quality, spatial, temporal and representational)
- axioms can be used by reasoners to compute inferences for consistency checking, classification and answering questions about life science knowledge
- embodies emerging ontology design patterns
 - specifies a data model
- dereferenceable URIs
- searchable in the NCBO bioportal
- Available at http://semanticscience.org/ontology/sio.owl

Examining Mathematical Expressions

<assignmentRule metaid="metaid 0400235"

```
<kineticLaw sboTerm="SBO:0000049">
                                      variable="k tl">
 <math>
                                       <math>
  <apply>
                                       <apply>
   <times/>
                                        <divide/>
    <ci> k tl </ci>
                                        <ci> eff </ci>
    <ci> X </ci>
                                        <ci>t ave </ci>
  </apply>
                                        </apply>
 </kineticLaw>
                                      </assignmentRule>
<parameter metaid="metaid_0000233" id="k_tl" name="k_tl" constant="false"</pre>
sboTerm="SBO:0000016"> (unimolecular rate constant)
 <notes> Translation rate constant </notes>
</parameter>
<parameter metaid="metaid_0000025" id="eff" name="translation efficiency" value="20">
 <notes> Average number of proteins per
transcript </notes>
≼/parameter>
                                                               COMBINE2011::Dumontier
```

SBML Reactions may be *specified by* mathematical expressions, which contain quantiative variables that *denote* quantities

SBMLFarmer

When running a simulation, some attributes change with time

Class

17 COMBINE2011::Dumontier

Copasi output: **not** machine understandable

Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q
#Time	Lacl prote	TetR prote	cl protein	Lacl mRNA	TetR mRN	cl mRNA		Values[be	Values[al	Values[al	Values[tra	Values[n]	Values[KN	Values[ml	Values[pr	-
0	0	0	0	0	20	0	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
1	81.4405	188.382	42.6413	19.9034	30.6156	7.491	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
2	218.539	358.027	84.5888	21.2335	23.6089	5.86627	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
3	337.623	469.627	113.055	18.5441	17.2349	4.40364	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
4	428.939	536.664	131.035	15.5598	12.4821	3.29582	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
5	495.497	572.019	141.441	13.018	9.03773	2.48567	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
6	542.466	585.398	146.532	11.0337	6.56428	1.90266	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
7	574.778	583.832	147.977	9.56151	4.79541	1.48837	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
8	596.57	572.335	146.993	8.51888	3.53331	1.19835	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
9	611.14	554.454	144.458	7.82324	2.63412	0.999828	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
10	621.044	532.674	141.004	7.40287	1.99408	0.869004	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
11	628.231	508.728	137.085	7.19849	1.5387	0.788821	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
12	634.16	483.805	133.028	7.16163	1.21462	0.747164	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
13	639.897	458.714	129.068	7.25233	0.983648	0.735535	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
14	646.193	433.993	125.381	7.43676	0.818491	0.748075	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
15	653.535	409.987	122.095	7.68527	0.699679	0.780855	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
16	662.19	386.909	119.309	7.97095	0.61336	0.83136	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
17	672.232	364.881	117.104	8.26865	0.549728	0.89813	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
18	683.569	343.958	115.547	8.55459	0.501895	0.980494	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
19	695.958	324.155	114.698	8.80638	0.465075	1.07839	1	0.2	0.216404	216.188	20	2	40	2	10	2.88539
							-					-		_		

18 COMBINE2011::Dumontier

Bio2RDF now serving over 40 billion triples of linked biological data

Query Answering over RDF/OWL

Find those concentration measurements for species that represent molecular entities that contain ribonucleotide residues

```
'concentration'

and ('measured at' some double[>20.0, <40.0])

and 'is attribute of' some (

'species'

and 'represents' some ('has part' some 'ribonucleotide residue')

)
```

Curve Analysis: Elements of a Plot

Queries

```
'local maximum'
and 'is attribute of' some (
species
and represents some (
'has function' some 'dna binding'
))
```

Get the non-monotonic curves for protein species

```
'non-monotonic curve'
and 'has part' some (
 'concentration'
 and 'is attribute of' some (
  'species'
  and 'represents' some 'protein'))
```

Conclusion

- We extended our OWL ontology based representation to include
 - Modifiers
 - Mathematical Expressions and Parameters
 - Simulation Results (from tab files)
- We could answer questions about simulation results with reference to the semantic annotations (GO) in biomodels, UniProt
- Further develop and release software.

Acknowledgements

Leonid Chepelev

Robert Hoehndorf

Michel Dumontier

michel_dumontier@carleton.ca

Publications: http://dumontierlab.com

Presentations: http://slideshare.com/micheldumontier