TP de Robotique Manuel de l'utilisateur

Muruo Wang, Thibault Blaise

26 Septembre 2018

1 Hypothèses

Le programme fontionne sous les hypothèses suivantes :

- la position initiale du robot est confondue avec la position de départ de la tâche;
- la configuration initiale q_0 est supposée connue;
- le robot ne gère pas les collisions i.e. les bras du robot peuvent se traverser s'ils sont coplanaires dans la réalité:
- ce programme étant destiné au test de modèles i.e. n'est pas applicable industriellement l'entrée du programme n'est pas la position initiale $\mathbf{X_0}$ de l'actionneur mais la configuration initiale des articulations du robot $\mathbf{q_0}$.

2 Liste des fichiers

2.1 Fichier principal

Le seul fichier que l'utilisateur devra executer est main.m. Celui-ci appelera les fonctions secondaires listées dans le paragraphe suivant.

2.2 Fichiers annexes

Les fichiers suivants contiennent des fonctions nécessaires à la bonne execution du code contenu dans main.m :

— choix_robot.m;
— dgm.m;
— dkm.m;
— ikm.m;
— jacobien.m;
— mat_hom.m;

— mouv.m.

3 Utilisation

3.1 Paramétrage

Le parametrage des trois robots est fait dans le fichier choix_robot.m sous le format suivant :

La variable 1 contient les longueurs des bras en partant du nœud 0. Dans l'exemple ci-dessus, $l_1 = 3$ et $l_2 = 5$. Certaines composantes de ces vecteurs seront des variables qui seront les composantes du vecteur \mathbf{q} . Elles sont initialisées ici à 0. Leurs valeurs de départ seront rentrées dans l'IHM 1 par l'utilisateur.

3.2 Execution

Comme dit précédement, le seul fichier à executer est le fichier main.m. A l'execution, l'IHM proposera des choix :

```
choix du robot:
1=double bras
2=scara
3=rx 90
choix du robot?
```

Il suffit de saisir le numéro du robot désiré.

L'IHM demandera ensuite le temps de simulation :

```
temps de simu?:
```

Il faut lui rentrer un nombre positif. La simulation durrera la durée spécifiée par l'utilisateur avec un pas fixé à 0.1 seconde. L'IHM demande à présent la valeur de $\dot{\mathbf{X}}_{\mathbf{0}}$:

```
valeur de Xpoint:
```

L'entrée de l'utilisateur doit être de la forme :

```
valeur de Xpoint: [1 1 0 0 0 0.5]
```

La dernière entrée est le vecteur $\mathbf{q_0}$:

```
valeur de q0:
```

L'utilisateur doit saisir un vecteur cohérent avec le robot choisi, i.e. $\mathbf{q_0}$ doit avoir autant de composantes que le robot a d'articulations. Par exemple, pour le robot à deux bras, une entrée valide serait :

```
valeur de q0: [0 0]
```

Le programme propose une animation dans le cas du robot à deux bras. Celle-ci se lance automatiquement après l'entrée de \mathbf{q}_0 .

^{1.} IHM =Interface Homme Machine

3.3 Sorties optionnelles

De manière native, le programme n'affiche pas les vecteurs $\mathbf{q}(t)$ et $\dot{\mathbf{q}}(t)$. On peut les afficher en supprimant les points-virgules les lignes 66 et 67 du fichier main.m :

qdotm;

qm;

Le programme renvoie alors la matrice de $\mathbf{Q}(t)$ (resp. $\dot{\mathbf{Q}}(t)$) dont les colonnes sont les vecteurs $\mathbf{q}(t)$ (resp. $\dot{\mathbf{q}}(t)$). Par exemple, la valeur de $\mathbf{q}(t)$ à t=5.3 s est obtenu dans la $53^{\mathrm{ème}}$ colonne de $\mathbf{Q}(t)$.