ProcesoPoisson

Cleber Perez

2024-10-15

Drive Thru

El tiempo de llegada a una ventanilla de toma de órdenes desde un automóvil de un cierto comercio de hamburguesas sigue un proceso de Poisson con un promedio de 12 llegadas por hora.

a) Probabilidad de que el tiempo de espera de tres personas sea a lo más 20 minutos

```
lambda = 12 / 60
k = 3
tiempo = 20

a = pgamma(tiempo, k, lambda)
a
## [1] 0.7618967
```

b) Probabilidad de que el tiempo de espera de una persona esté entre 5 y 10 segundos

```
t1 = 5 / 60
t2 = 10 / 60
b = pexp(t2, lambda) - pexp(t1, lambda)
b
## [1] 0.01625535
```

c) Probabilidad de que en 15 minutos lleguen a lo más tres personas

```
np = 3
t15 = 15

lambda15 = lambda * t15

c = ppois(np, lambda15)
c

## [1] 0.6472319
```

d) Probabilidad de que el tiempo de espera de tres personas esté entre 5 y 10 segundos

```
d = pgamma(t2, k, lambda) - pgamma(t1, k, lambda)
d
## [1] 5.258533e-06
```

e) Media y varianza del tiempo de espera de tres personas

```
lambdat = 12
media = k / lambdat
varianza = k / (lambdat^2)

media
## [1] 0.25

varianza
## [1] 0.02083333
```

f) Probabilidad de que el tiempo de espera de tres personas exceda una desviación estándar arriba de la media

```
de = sqrt(varianza)
ls = media + de
f = 1 - pgamma(ls, k, lambdat)
f
## [1] 0.1491102
```

Entre partículas

Una masa radioactiva emite partículas de acuerdo con un proceso de Poisson con una razón promedio de 15 partículas por minuto. En algún punto inicia el reloj.

a) ¿Cuál es la probabilidad de que en los siguientes 3 minutos la masa radioactiva emita 30 partículas?

```
lambda2 = 15
k = 30
tiempo2 = 3
a2 = dpois(k, lambda2 * tiempo2)
a2
## [1] 0.00426053
```

b) ¿Cuál es la probabilidad de que transcurran cinco segundos a lo más antes de la siguiente emisión?

```
lambdas = 15 / 60
t = 5
b2 = pexp(t, lambdas)
b2
## [1] 0.7134952
```

c) ¿Cuánto es la mediana del tiempo de espera de la siguiente emisión?

```
c2 = log(2) / lambda2
c2
## [1] 0.04620981
```

d) ¿Cuál es la probabilidad de que transcurran a lo más cinco segundos antes de la segunda emisión?

```
d2 = pgamma(t, 2, lambdas)
d2
## [1] 0.3553642
```

e) ¿En que rango se encuentra el 50% del tiempo central que transcurre antes de la segunda emisión?

```
q1 = qgamma(0.25, 2, lambda2)
q3 = qgamma(0.75, 2, lambda2)
q1
## [1] 0.06408525
q3
## [1] 0.179509
```