Plan du cours

1.	Théorème de Pythagore	1
2.	Réciproque du théorème de Pythagore	1

Rappel du théorème de Pythagore et de sa réciproque

Remarque : Ces théorèmes ne s'appliquent qu'aux triangles rectangles!

1. Théorème de Pythagore

Dans un triangle rectangle, le côté opposé à l'angle droit est appelé l'hypoténuse.

Théorème

Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

Exemple:

Soit DFE un triangle rectangle en E. Calculer la longueur EF (donner l'arrondi au dixième) sachant que ED = 5 cm et DF = 13 cm.

On sait que **le triangle DFE est rectangle en E**. L'hypoténuse est le côté [DF]. Donc d'après **le théorème de Pythagore**, on a :

Or, **EF est une longueur donc EF \geq 0** . On utilise alors la touche racine carré de la calculatrice.

Donc

2. Réciproque du théorème de Pythagore

Théorème

(RÉCIPROQUE) Dans un triangle, si le carré de la longueur du plus grand côté est égal à la somme des carrés des deux autres côtés alors ce triangle est rectangle et admet ce plus grand côté pour hypoténuse.

Exemple :					
On considère le triangle	ZEN tel qu	e NE = 16 c	m, ZE = 12	cm et ZN =	20 cm.

Montrons que le triangle ZEN est rectangle.

Dans le triangle ZEN, [ZN] est le plus grand côté.

D'une part, D'autre part,

Donc

D'après la réciproque du théorème de Pythagore, on peut affirmer que le triangle ZEN est rectangle en E.