

Analog IC Design

Lecture 17 Noise Analysis Fundamentals

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Recapping previous key results
- Noise in time and frequency domains
- Resistor thermal noise
- MOSFET thermal and flicker noise
- Signal-to-noise ratio (SNR) and input-referred noise
- Noise analysis example

Outline

- ☐ Recapping previous key results
- Noise in time and frequency domains
- Resistor thermal noise
- MOSFET thermal and flicker noise
- ☐ Signal-to-noise ratio (SNR) and input-referred noise
- Noise analysis example

MOSFET in Saturation

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH}$$
 or $V_{DS} \geq V_{ov}$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

Regions of Operation Summary

High Frequency Small Signal Model

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_D} = \frac{2I_D}{V_{ov}}$$
$$g_{mb} = \eta g_m \qquad \qquad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\partial I_{D}/\partial V_{DS}} = \frac{V_{A}}{I_{D}} = \frac{1}{\lambda I_{D}}$$
 $V_{A} \propto L \leftrightarrow \lambda \propto \frac{1}{L}$ $V_{DS} \uparrow V_{A} \uparrow$

$$V_A \propto L \leftrightarrow \lambda \propto \frac{1}{L}$$

$$V_{DS} \uparrow V_A \uparrow$$

$$C_{gb} \approx 0$$

$$C_{gs} \gg C_{gd}$$
 $C_{sb} > C_{db}$

$$C_{sb} > C_{db}$$

Rin/out Shortcuts Summary

Summary of Basic Topologies

	CS	CG	CD (SF)
	R_D $v_{in} \circ v_{out}$ R_S	R_D v_{out} R_S	R_D $v_{in} \circ V_{out}$ R_S
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier
Rin	∞	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D r_o[1+(g_m+g_{mb})R_S]$	$R_D r_o$	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Differential Amplifier

	Pseudo Diff Amp	Diff Pair (w/ ideal CS)	Diff Pair (w/ R _{SS})
A_{vd}	$-g_m R_D$	$-g_m R_D$	$-g_m R_D$
A_{vCM}	$-g_m R_D$	0	$\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$
A_{vd}/A_{vCM}	1	∞	$2(g_m + g_{mb})R_{SS} \\ \gg 1$

$$A_{vCM2d} = \frac{v_{od}}{v_{iCM}} \approx \frac{\Delta R_D}{2R_{SS}} + \frac{\Delta g_m R_D}{2g_{m1,2}R_{SS}}$$

$$CMRR = \frac{A_{vd}}{A_{vCM2d}}$$

Op-Amp

- ☐ An op-amp is simply a high gain differential amplifier
 - The gain can be increased by using cascodes and multi-stage amplification
- ☐ The diff amp is a key block in many analog and RF circuits
 - DEEP understanding of diff amp is ESSENTIAL

Op-Amp vs OTA

- ☐ In short, an OTA is an op-amp without an output stage (buffer)
- ☐ Some designers just use op-amp name and symbol for both

	Op-amp	ОТА
Rout	LOW	HIGH
Model	$v_{in} \bigcirc \downarrow i_{in}$ $\downarrow k_{in}$	$v_{in} \bigcirc \downarrow i_{in} \bigcirc v_{out}$ $\downarrow R_{in} \bigcirc G_m v_{in} \bigcirc R_{out} \bigcirc \downarrow I_{out} \bigcirc V_{out}$
Diff input, SE output		
Fully diff		

V-star (V^*)

 \Box V-star (V^*) is inspired by V_{ov} but calculated from actual simulation data

$$g_m = \frac{2I_D}{V^*} \leftrightarrow V^* = \frac{2I_D}{g_m} = \frac{2}{g_m/I_D}$$

 \Box Figures-of-merit in terms of V^*

$$g_m r_o = \frac{2I_D}{V^*} \cdot \frac{1}{\lambda I_D} = \frac{2}{\lambda V^*}$$

$$f_T = \frac{g_m}{2\pi C_{gg}} = \frac{1}{2\pi} \cdot \frac{2I_D}{V^*} \cdot \frac{1}{C_{gg}}$$

$$\frac{g_m}{I_D} = \frac{2}{V^*}$$

 \Box The boundary between weak and strong inversion ($n=1.2 \rightarrow 1.5$)

$$V_{ov}(SI) = V^*(WI) = 2nV_T \approx 60 \rightarrow 80mV$$

Negative Feedback

$$\beta = \frac{R_2}{(R_1 + R_2)}$$

$$A_{CL} = \frac{V_{out}}{V_{in}} = \frac{A_{OL}}{1 + \beta A_{OL}} = \frac{A_{OL}}{1 + \beta A_{OL}} \approx \frac{1}{\beta} = \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2}$$

$$\omega_{p,CL} = (1 + \beta A_{OLo})\omega_{P,OL}$$

Phase Margin and the Ultimate GBW

- - Typically inadequate (peaking/ringing)
- \blacksquare Thus ω_{p2} should be $>\omega_u$ \rightarrow ω_{p1} \ll ω_u < ω_{p2}
 - ω_{p1} defines OL BW and ω_{p2} defines ultimate GBW (max CL BW)

→ noise amplification
 Time domain ringing
 → poor settling time

Outline

- ☐ Recapping previous key results
- Noise in time and frequency domains
- Resistor thermal noise
- MOSFET thermal and flicker noise
- ☐ Signal-to-noise ratio (SNR) and input-referred noise
- Noise analysis example

Noise in Time Domain

- ☐ Noise is an unwanted random signal
- ☐ We cannot predict (model) its instantaneous value in advance
- ☐ But we can predict (model) noise statistical distribution

Noise Statistical Distribution

- ☐ Noise has normal (gaussian) distribution
- \Box The mean is zero (average noise voltage in time domain = 0)
- \Box The variance (σ^2) is the mean-square value
- \Box The standard deviation (σ) is the root-mean-square (rms) value
- \Box Peak-to-peak instantaneous noise voltage is usually within $\pm 3\sigma$

Noise Power and Noise Voltage

Average power of a periodic signal (in Watts)

$$P_{avg} = \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} P(t)dt = \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} \frac{V^{2}(t)}{R_{L}} dt = \frac{1}{R_{L}} \cdot \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} V^{2}(t) dt = \frac{\overline{V^{2}}}{R_{L}} = \frac{\sigma^{2}}{R_{L}}$$

Average power of a noise signal (non-periodic)

$$P_{avg} = \frac{1}{R_L} \cdot \lim_{T \to \infty} \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} V_n^2(t) dt = \frac{\overline{V_n^2}}{R_L} = \frac{\sigma_n^2}{R_L}$$

Mean-square noise voltage

$$\overline{V_n^2} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} V_n^2(t) dt = \sigma_n^2 \propto P_{avg}$$

☐ RMS (root-mean-square) noise voltage

$$V_{nrms} = \sqrt{\overline{V_n^2}} = \sigma_n$$

Noise in Frequency Domain

- A signal x(t) has power spectral density (PSD) = $S_x(f)$
 - How much power is carried around each frequency.
- PSD of a noise signal x(t) at a frequency f_1 is the average power (mean-square value) in a one-hertz bandwidth around f_1
 - Measured in W/Hz or V^2/Hz
 - Sweep f_1 from 0 to ∞
- Voltage noise density: $V_n(f) = \sqrt{S_x(f)} \rightarrow V/\sqrt{Hz}$

17: Noise Fundamer [Razavi, 2017]

White Noise and Noise Shaping

- ☐ White noise: noise PSD has the same value at all frequencies.
 - Similar to white light.
- ☐ The noise spectrum is shaped by the system transfer function.
- ☐ Average output noise power (mean-square value) is the area under the output PSD curve.

$$P_{avg} = \int_{-\infty}^{\infty} S_y(f) df$$

Is Wide BW Good BW?

- ☐ Wide BW means more noise power is integrated
- Wide BW is not good BW
 - The amplifier BW should just fit the signal

17: Noise Fundamentals [Razavi, 2017] 21

Types of Noise

- ☐ External noise
 - A.k.a. interference noise or man-made noise.
 - Unwanted interaction between the outside world and the circuit.
 - Ex: EM interference noise and power supply noise.
 - Can be eliminated by careful design, layout, shielding, etc.
- Internal noise
 - Inherent noise due to the fundamental physical properties of the circuit components.
 - Can be reduced but cannot be eliminated.

Internal Noise Mechanisms

- ☐ Thermal noise (a.k.a. Johnson or Nyquist noise):
 - Due to thermal excitation of charge carriers
 - White spectral density
 - Independent of DC current
 - Occurs in all resistive elements (including semiconductors)
- ☐ Shot noise:
 - Due to non-smooth DC current (flow of individual carriers)
 - White spectral density
 - Occurs in pn-junctions (and consequently BJT)
- ☐ Flicker noise (1/f noise):
 - Due to traps in semiconductors affecting DC current flow
 - Significant noise source in MOSFET

Outline

- ☐ Recapping previous key results
- Noise in time and frequency domains
- Resistor thermal noise
- MOSFET thermal and flicker noise
- ☐ Signal-to-noise ratio (SNR) and input-referred noise
- Noise analysis example

Resistor Thermal Noise

From thermodynamics, it can be shown that the <u>spectral density</u> of resistor thermal noise is given by

$$V_n^2(f) = S_v(f) = 4kTR$$

 $k = 1.38 \times 10^{-23} \text{ J/K} \text{ and } kT = 4.14 \times 10^{-21} \text{ J @ } T = 300 \text{ K}$

$$V_n(f) \approx \sqrt{\frac{R}{1 k}} \times 4 \frac{nV}{\sqrt{Hz}}$$

Resistor Thermal Noise

☐ The Thevenin noise model can be converted to Norton model

$$I_n^2(f) = \frac{V_n^2(f)}{R^2} = \frac{4kT}{R}$$

 $\Box \quad \text{For } R = 1k\Omega \rightarrow I_n(f) \approx 4 \, \frac{pA}{\sqrt{Hz}}$

$$I_n(f) \approx \sqrt{\frac{1 \, k}{R}} \times 4 \, \frac{pA}{\sqrt{Hz}}$$

Noise in RC Circuit

- Resistors never exist alone
 - The BW is always limited by a cap

$$S_{nout}(f) = S_{v}(f) \left| \frac{V_{nout}(j\omega)}{V_{n}(j\omega)} \right|^{2}$$

$$\overline{V_{nout}^{2}} = V_{noutrms}^{2} = \int_{-\infty}^{\infty} S_{nout}(f) df$$

$$\frac{\overline{V_{nout}^2}}{C} = \frac{kT}{C}$$

Noise in RC Circuit

$$\overline{V_{nout}^2} = \frac{kT}{C}$$

- \square RMS noise is independent of R! (why?)
- \Box For $C = 1 pF \rightarrow V_{nrms} \approx 64 \,\mu Vrms$

$$V_{nrms} \approx \sqrt{\frac{1 p}{C}} \times 64 \,\mu Vrms$$

Equivalent Noise Bandwidth

- Define an equivalent noise BW (B_N) such that the area under a brick-wall response is the same area under the actual spectral density curve
- For a first order system

$$V_{nrms}^2 = \int_{-\infty}^{\infty} S_n(f) df = 4kTR \times B_N = \frac{kT}{C}$$
$$B_N = \frac{1}{4RC} = \frac{\pi}{2} f_p$$

Outline

- ☐ Recapping previous key results
- ☐ Noise in time and frequency domains
- Resistor thermal noise
- MOSFET thermal and flicker noise
- Signal-to-noise ratio (SNR) and input-referred noise
- Noise analysis example

MOSFET Channel Thermal Noise

- MOSFET has thermal noise due to the resistive nature of the channel
- ☐ It can be shown that noise current **spectral density** is given by

$$I_n^2(f) = 4kT\gamma g_m$$

- Similar to a resistor with $R = \frac{1}{\gamma g_m}$
- \square γ : MOSFET thermal noise coefficient
 - $\gamma \approx \frac{2}{3}$ for long channel MOSFET, but close to 1 for short channel

Thermal Noise Referred to Gate

- ☐ The noise current can be referred to the gate voltage
- \square The relation between I_n and V_n is g_m (not G_m)

$$V_n^2(f) = \frac{4kT\gamma}{g_m}$$

- Can be proven by showing that the $i_{out,sc}$ is the same in both cases (you may ignore body effect and CLM for simplicity)
- ☐ This result is valid at zero gate current (low/medium frequencies)

MOSFET Flicker (1/f) Noise

- ☐ Mainly due to dangling bonds at the oxide/silicon interface
- ☐ It can be shown that noise voltage **spectral density** is given by

$$V_n^2(f) = \frac{K}{C_{ox}WL} \frac{1}{f}$$

- \square K: Flicker noise coefficient
- Can be reduced by increasing device area
- ☐ PMOS has usually much less flicker noise compared to NMOS

Flicker Noise Corner

- ☐ Tells which type of noise is dominant for a given signal band
- ☐ Model both sources as noise current

$$4kT\gamma g_m = \frac{K}{C_{ox}WL} \frac{1}{f_c} \cdot g_m^2$$

$$f_c = \frac{K}{C_{ox}WL} \cdot g_m \cdot \frac{1}{4kT\gamma}$$

 \Box f_c can be as high as 100s of MHz for DSM nodes.

Noise Models Summary

Resistor thermal noise

$$R = I_n$$

$$V_n(f) = \sqrt{4kTR} \approx \sqrt{\frac{R}{1 k}} \times 4 \frac{nV}{\sqrt{Hz}}$$

$$I_n(f) = \sqrt{\frac{4kT}{R}} \approx \sqrt{\frac{1 k}{R}} \times 4 \frac{pA}{\sqrt{Hz}}$$

MOSFET thermal and flicker noise

$$I_n^2(f) = 4kT\gamma g_m$$

$$V_n^2(f) = \frac{K}{C_{ox}WL} \frac{1}{f}$$

RMS noise

$$V_{noutrms}^{2} = 4kTR \times B_{N} = \frac{kT}{C}$$
$$B_{N} = \frac{1}{4RC} = \frac{\pi}{2} f_{p}$$

$$V_{noutrms} \approx \sqrt{\frac{1 p}{C}} \times 64 \,\mu Vrms$$

Outline

- ☐ Recapping previous key results
- Noise in time and frequency domains
- Resistor thermal noise
- MOSFET thermal and flicker noise
- ☐ Signal-to-noise ratio (SNR) and input-referred noise
- Noise analysis example

Signal-to-Noise Ratio (SNR)

☐ Signal-to-Noise Ratio (SNR) is the ratio of signal power to noise power

$$SNR = \frac{P_{signal}}{P_{noise}} = \frac{V_{sigrms}^2}{V_{nrms}^2}$$

SNR is usually expressed in dB

$$SNR = 10 \log \frac{P_{signal}}{P_{noise}} = 20 \log \frac{V_{sigrms}}{V_{nrms}}$$

- ☐ Example:
 - $V_{sigrms} = 100 \, mVrms$
 - $V_{nrms} = 100 \,\mu Vrms$
 - SNR = 60 dB

Multiple Noise Sources

■ Noise adds in time domain

$$V_{nout}(t) = V_{n1}(t) + V_{n2}(t)$$

- lacktriangle But remember than $V_n(t)$ is a random variable
 - We cannot add rms values

$$V_{noutrms} \neq V_{n1rms} + V_{n2rms}$$

☐ If $V_{n1}(t)$ and $V_{n2}(t)$ are uncorrelated (independent random variables)

$$V_{noutrms}^2 = V_{n1rms}^2 + V_{n2rms}^2$$

- ☐ The largest noise contributor dominates
 - $3^2 + 1^2 \approx 3^2$

Output-Referred Noise

■ Which amplifier has lower noise?

Input-Referred Noise

- ☐ The output-referred noise does not allow a fair comparison
 - Output-referred noise depends on the amplifier gain
 - But the signal is multiplied by the gain as well
 - For a fair comparison noise should be referred to the input

$$V_{ninrms} = 2 \mu V rms$$

$$Av$$

$$= 50$$
 $V_{noutrms} = 100 \mu V rms$

$$V_{ninrms} = 5 \,\mu Vrms$$

$$= 10$$

$$V_{noutrms} = 50 \,\mu Vrms$$

Outline

- ☐ Recapping previous key results
- Noise in time and frequency domains
- Resistor thermal noise
- MOSFET thermal and flicker noise
- Signal-to-noise ratio (SNR) and input-referred noise
- Noise analysis example

Ex: CS with Resistive Load

- Deactivate the input signal
- Identify the noise sources
 - Resistor: Thermal
 - MOSFET: Thermal + Flicker
- ☐ Find the noise spectral density at output using superposition

Output Noise Density

Apply superposition (noise is small signal)

$$V_{nout}^{2}(f)' \approx 4kT\gamma g_{m}R_{D}^{2}$$

$$V_{nout}^{2}(f)'' \approx \frac{K}{C_{ox}WL}\frac{1}{f} \cdot g_{m}^{2}R_{D}^{2}$$

$$V_{nout}^{2}(f)''' \approx \frac{4kT}{R_{D}}R_{D}^{2}$$

Output Noise Density

$$\begin{split} V_{nout}^2(f)' &\approx 4kT\gamma g_m R_D^2 \\ V_{nout}^2(f)'' &\approx \frac{K}{C_{ox}WL} \frac{1}{f} \cdot g_m^2 R_D^2 \\ V_{nout}^2(f)''' &\approx \frac{4kT}{R_D} R_D^2 \\ V_{nout}^2(f) &\approx \left(4kT\gamma g_m + \frac{K}{C_{ox}WL} \frac{1}{f} \cdot g_m^2 + \frac{4kT}{R_D}\right) R_D^2 \end{split}$$

Input-Referred Noise Density

$$V_{nout}^2(f) = \left(4kT\gamma g_m + \frac{K}{C_{ox}WL}\frac{1}{f} \cdot g_m^2 + \frac{4kT}{R_D}\right)R_D^2$$

☐ For a fair comparison noise should be referred to the input

$$V_{nin}^{2}(f) = \frac{V_{nout}^{2}(f)}{A_{v}^{2}} = \frac{4kT\gamma}{g_{m}} + \frac{K}{C_{ox}WL}\frac{1}{f} + \frac{4kT}{g_{m}^{2}R_{D}}$$

☐ Fundamental trade-off between power consumption and noise

Noise Analysis Procedure

- Deactivate the input signal
- ☐ Identify the **dominant** noise sources → Model as $V_n^2(f)$ or $I_n^2(f)$
- \Box Find the output noise density for each source: $V_{nout,x}^2(f)$
- ☐ Calculate the rms output noise of each source

$$V_{noutrms,x}^2 = \overline{V_{nout,x}^2} = V_{nout,x}^2(f) \times B_{N,x}$$

Calculate total rms noise

$$V_{noutrms,tot}^2 = \overline{V_{nout,tot}^2} = V_{nrms,1}^2 + V_{nrms,2}^2 + \cdots$$

☐ Calculate the input-referred rms noise voltage

$$V_{ninrms,tot}^2 = V_{noutrms,tot}^2 / A_v^2$$

 \Box For low Z_{in} , input referred noise current must be added

RMS Output Noise

Assume thermal noise is dominant

$$V_{nout}^2(f) \approx 4kTg_m \left(\gamma + \frac{1}{g_m R_D}\right) R_D^2$$

 $oldsymbol{\square}$ Assume BW is limited by a load capacitance \mathcal{C}_L

$$V_{noutrms}^{2} = \overline{V_{nout}^{2}} \approx V_{nout}^{2}(f) \cdot \frac{1}{4R_{D}C_{L}} \approx kT(1 + \gamma g_{m}R_{D}) \cdot \frac{1}{C_{L}}$$

$$\theta = (1 + \gamma g_{m}R_{D}) = (1 + \gamma |A_{v}|)$$

$$V_{noutrms}^{2} \approx \frac{kT\theta}{C_{L}}$$

 \square Amplifier rms output noise can be written in the form $\frac{kT\theta}{C}$, where C the bandwidth-limiting cap, and $\theta>1$ is topology dependent

SNR

lacktriangle Assume input signal is a sinusoid with amplitude = V_p

$$SNR = \frac{V_{outrms}^2}{V_{noutrms}^2} \approx \left(\frac{V_p}{\sqrt{2}} \cdot g_m R_D\right)^2 \cdot \frac{C_L}{kT\theta}$$
$$= \frac{V_p^2}{2} \frac{g_m^2 R_D^2 C_L}{kT\theta} = \frac{2V_p^2 V_{R_D}^2 C_L}{V^{*2} kT\theta}$$

 \square Assume $V_{R_D} = \frac{V_{DD}}{2}$ (to maximize output swing)

$$SNR \approx \frac{V_p^2 V_{DD}^2 C_L}{2V^{*2} kT\theta}$$

- lacksquare Using higher V_{DD} improves SNR
 - V_{DD} was scaled from > 10V to sub-1V
 - Design at low-supply voltage is quite challenging

SNR

 \square Assume a maximum rms output amplitude = κV_{DD}

$$SNR = \frac{V_{outrms}^2}{V_{noutrms}^2} \approx \frac{(\kappa V_{DD})^2 C_L}{kT\theta} = \frac{(\kappa V_{DD})^2 C_L}{kT(1 + \gamma |A_v|)}$$

- \Box Using higher V_{DD} improves SNR
 - V_{DD} was scaled from > 10V to sub-1V
 - Design at low-supply voltage is quite challenging

Noise/Power Tradeoff

Assume speed spec is fixed

$$SNR \approx \frac{V_p^2 V_{DD}^2 C_L}{2V^{*2} kT\theta}$$

$$GBW = \frac{g_m}{C_L}$$

- ☐ To improve SNR by 6 dB (equivalent to 1-bit) in a system limited by thermal noise
 - C_L must be quadrupled
 - g_m must be quadrupled to maintain GBW
 - Power dissipation is quadrupled (assuming V^* is constant)

Noise/Speed Tradeoff

☐ Assume power consumption spec is fixed

$$SNR \approx \frac{V_p^2 V_{DD}^2 C_L}{2V^{*2} kT\theta}$$

$$GBW = \frac{g_m}{C_L}$$

- To improve SNR by 6 dB (equivalent to 1-bit) in a system limited by thermal noise
 - C_L must be quadrupled
 - *GBW* decreases by four-times
- \Box Decreasing V^* may also help
 - But f_T decreases \rightarrow Lower speed

Thank you!

References

☐ B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017.

T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," 2nd ed., Wiley, 2012.