



# **Amazon Wildfire Prediction** using Al/ML Submitted by: Charola Krutarth



## **Learning Objectives**

- Understand wildfire trends in the Amazon
- > Apply data preprocessing and feature engineering
- ➤ Train a machine learning model (Random Forest)
- Evaluate model performance
- Visualize wildfire trends over time



Source: www.freepik.com/



## **Tools and Technology used**

- Python (Pandas, NumPy, Matplotlib, Scikit-learn)
- Jupyter Notebook
- Kaggle Dataset: Forest Fires in Brazil
- Random Forest Classifier
- Data Visualization



## Methodology

- 1. Load dataset from Kaggle
- 2. Filter to Amazon states only
- 3. Preprocess data (encoding months, binary fire label)
- 4. Train-test split
- 5. Train Random Forest Classifier
- 6. Evaluate with classification report & confusion matrix
- 7. Predict wildfire occurrence
- 8. Visualize yearly fire trends



#### **Problem Statement:**

- Wildfires in the Amazon rainforest cause severe damage to biodiversity
- Climate, and local communities. Predicting fire occurrences is essential
- > To mitigate risks and plan preventive measures.





#### **Solution:**

- Use historical fire data from Kaggle
- ➤ Apply AI/ML techniques to predict fire occurrences
- > Focus only on Amazon rainforest region
- Provide predictive insights for fire risk management
- Visualize wildfire patterns over time
- > Achieved 88.6% validation accuracy with XGBoost





## **Screenshot of Output:**

| index | latitude           | longitude           | day_of_year | temperature        | humidity           | wind_speed          | precipitation       | vegetation_index   | fire |
|-------|--------------------|---------------------|-------------|--------------------|--------------------|---------------------|---------------------|--------------------|------|
| 0     | 35.74540118847362  | -117.7000168901003  | 85          | 29.719137344568097 | 44.969229488882526 | 5.233062555337937   | 0.2110781894007256  | 0.5696640300754157 | 1    |
| 1     | 41.50714306409916  | -123.15488004401288 | 65          | 19.82723235123194  | 49.25467402484774  | 0.48200342842421673 | 1.3962681414404594  | 0.6505508186313109 | 0    |
| 2     | 39.31993941811405  | -121.53360305630113 | 52          | 15.082152168254392 | 38.25706763589521  | 3.73032946147105    | 0.0937205319086583  | 0.6823087391291582 | 0    |
| 3     | 37.98658484197037  | -118.36719363142181 | 3           | 18.35824419428465  | 53.45848898350361  | 3.762628242837112   | 0.34011756658201014 | 0.9386355691546535 | 0    |
| 4     | 33.560186404424364 | -120.17910655475521 | 77          | 23.136784400673992 | 54.15819611639561  | 4.902724731070796   | 1.1758384799779673  | 0.7093146665893655 | 0    |
|       |                    |                     |             |                    |                    |                     |                     |                    |      |





| <del>_</del> _₹ |                   | count     | mean               | std          | min         | 25%         | \ |
|-----------------|-------------------|-----------|--------------------|--------------|-------------|-------------|---|
| ت               | latitude          | 20000.0   | 36.993447          | 2.885029     | 32.000116   | 34.498868   |   |
|                 | longitude         | 20000.0   | -120.006181        | 2.878799     | -124.999945 | -122.495440 |   |
|                 | day of year       | 20000.0   | 183.850400         | 105.347623   | 1.000000    | 92.000000   |   |
|                 | temperature       | 20000.0   | 14.951204          | 8.122822     | -11.444000  | 8.461962    |   |
|                 | humidity          | 20000.0   | 60.155862          | 16.243666    | 6.379466    | 46.973253   |   |
|                 | wind_speed        | 20000.0   | 4.030260           | 1.929672     | 0.001608    | 2.674128    |   |
|                 | precipitation     | 20000.0   | 0.512238           | 0.512360     | 0.000008    | 0.146907    |   |
|                 | vegetation_index  | 20000.0   | 0.399455           | 0.367308     | -0.456121   | 0.062039    |   |
|                 | fire              | 20000.0   | 0.105050           | 0.306626     | 0.000000    | 0.000000    |   |
|                 |                   |           |                    |              |             |             |   |
|                 |                   | 5         | <b>0</b> % 7       | 75% n        | ıax         |             |   |
|                 | latitude          | 36.9893   | 18 39.4914         | 10 41.9992   | 248         |             |   |
|                 | longitude         | -119.9893 | 88 -117.5388       | 33 -115.0009 | 990         |             |   |
|                 | day_of_year       | 185.0000  | 00 275.0000        | 000 365.0000 | 900         |             |   |
|                 | temperature       | 14.9200   | 72 21.5357         | 705 38.4942  | 278         |             |   |
|                 | humidity          | 60.2409   | 51 73.3895         | 94 108.2876  | 89          |             |   |
|                 | wind_speed        | 3.9876    | 64 5.3316          | 92 11.6595   | 564         |             |   |
|                 | precipitation     | 0.3551    | 42 0.7106          | 669 5.7266   | 513         |             |   |
|                 | vegetation_index  | 0.3989    | 55 0.7369          | 45 1.2596    | 982         |             |   |
|                 | fire              | 0.0000    | 00 0 <b>.</b> 0006 | 000 1.0000   | 900         |             |   |
|                 | fire              |           |                    |              |             |             |   |
|                 | 0 0.89495         |           |                    |              |             |             |   |
|                 | 1 0.10505         |           |                    |              |             |             |   |
|                 | Name: proportion, | dtype: f  | loat64             |              |             |             |   |
|                 |                   |           |                    |              |             |             |   |

| <b>₹</b> | /usr/local/lib/python3.12/dist-packages/xgboost/training.py:183 | : UserWarning: | [12:45:24] WARNING: | /workspace/src/learner.cc:738: |
|----------|-----------------------------------------------------------------|----------------|---------------------|--------------------------------|
|          | Parameters: { "use_label_encoder" } are not used.               |                |                     |                                |

bst.update(dtrain, iteration=i, fobj=obj) Val acc (XGB): 0.886 recall f1-score support precision 0.90 0.99 0.94 2685 0.14 0.02 0.03 accuracy 0.89 3000 macro avg 0.52 0.50 3000 weighted avg 0.89 0.84 3000

| <del></del> | Test acc:                   | 0.834666  | 66666666 | 67     |          |         |  |
|-------------|-----------------------------|-----------|----------|--------|----------|---------|--|
|             |                             | precision |          | recall | f1-score | support |  |
|             |                             |           |          |        |          |         |  |
|             |                             | 0         | 0.90     | 0.92   | 0.91     | 2685    |  |
|             |                             | 1         | 0.16     | 0.13   | 0.14     | 315     |  |
|             |                             |           |          |        |          |         |  |
|             | accur                       | racy      |          |        | 0.83     | 3000    |  |
|             | macro                       | avg       | 0.53     | 0.53   | 0.53     | 3000    |  |
|             | weighted                    | avg       | 0.82     | 0.83   | 0.83     | 3000    |  |
|             |                             |           |          |        |          |         |  |
|             | ROC AUC: 0.5994703082971239 |           |          |        |          |         |  |



### **Conclusion:**

- Amazon wildfire prediction is feasible using ML models
- > Random Forest performed well on historical data
- Seasonal patterns (dry months) show higher fire risks
- Model helps in early warning systems
- > Future scope: include satellite imagery, weather data