

## Outline



- Introduction to Deep Learning (DL)
- The History of DL
- Programming Tools
- Artificial Neural Networks (ANNs)
- Optimization in DL
- Convolutional Neural networks (CNNs)
- Unsupervised Pre-trained Networks (UPNs)



# ARCHITECTURE OF DEEP LEARNING

### **DL** Architectures



- Higher-level Architecture
  - Convolutional Neural Networks (CNNs)
  - Unsupervised Pre-trained Networks (UPNs)
    - Deep belief networks (DBNs)
    - Autoencoders (AE)
    - Generative adversarial networks (GANs)
  - Recurrent Neural Networks (RNNs)
    - Bidirectional recurrent neural networks (BRNN)
    - LSTM
  - Recursive Neural Networks

# **Topics**



- Introduction
- Sparse AE
- Denoising AE
- Contractive AE
- Applications



### Autoencoder (AE)

- A type of artificial neural networks
- Trained to copy its input to its output
- Components:
  - Encoder: h = f(x)
  - **Decoder**: r = g(h)



Input



- Modern AE
  - Deterministic functions to stochastic mappings





#### • AE vs. PCA

- Try to make the output be the same as the input in a network with a central bottleneck.
- If the hidden and output layers are linear, it will learn hidden units that are a linear function of the data and minimize the squared reconstruction error.
  - This is exactly the functionality of PCA
  - Their weight vectors may not be orthogonal





#### • AE vs. PCA

- With non-linear layers before and after the code, it should be possible to efficiently represent data that lies on or near nonlinear manifold.
  - The encoder converts coordinates in the input space to coordinates on the manifold.
  - The decoder does the inverse mapping



## Deep AE



- Very difficult to optimize deep AE using backpropagation.
  - With small initial weights the backpropagated gradient vanishes.
- 2006: Prof. Hinton applied RBMs for AEs
  - Train a stack of 4 RBMs and then 'unroll' them.
  - Then, fine-tune with gentle backpropagation.



# Types of AE



• Types:

### 1. Undercomplete AEs:

• The dimensions in the code layer is less than the input.

### 2. Overcomplete AEs:

• The dimensions in the code layer is more than the input.

## **Types of AE**



### 1. Undercomplete AE

- h has lower dimensions than x
- Forces the AE to capture the most salient features
- Loss function: L(x, g(f(x)))
- Encoder and decoder function
  - Linear: low capacity (learns to span the same subspace as PCA)
  - Non-linear: more powerful
    - Problem: copying task with extracting useful information
  - Must discard some information in **h**



## Types of AE



### 2. Overcomplete AE

- h has higher dimensions than x
- Problem: Can learn to copy the input to the output without learning anything
- Solution:
  - Keeping the encoder and decoder shallow with a small code size
  - Regularized AE



# Regularized AE



- Methods of **regularizations**:
  - Sparse AE
  - Denoising AE
  - Contractive AE

## Sparse AE



• Limit capacity of AE by adding a term to the cost function:

$$L(x, g(f(x))) + \Omega(h)$$

- $\Omega(\mathbf{h})$ : Kullback-Leibler
- Constrain the neurons to be active.
- Typically used to learn features for another task such as classification

$$J_{sparse}(W,b) = J(W,b) + \beta \sum_{j=1}^{s_2} KL(\rho \parallel \hat{\rho}_j)$$

- $\hat{\rho}_i$ : the average activation of hidden unit j
- $\rho$ : sparsity parameter, e.g. enforce the constraint
  - Normally close to zero  $\sim 0.05$



## **Denoising AE**



#### Loss function

$$L\left(\mathbf{x},g(f(\widetilde{\mathbf{x}}))\right)$$

- $\tilde{x}$ : a copy of x that has been corrupted by some form of noise.
- Must undo corruption rather than simply copying the input.



## **Denoising AE**



### Learn a manifold

• A denoising AE is trained to map a corrupted data point  $\tilde{x}$  back to the original data point x



### **Contractive AE**



• Encouraging the derivative of f to be as small as possible

$$\Omega(\boldsymbol{h}) = \lambda \left\| \frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} \right\|_{F}^{2}$$

- Make the feature extraction function resist infinitesimal perturbations of the input.
- Contracting the input neighborhood to smaller output neighborhood.

## **Contractive AE**



Derivation of the reconstruction function around the data points.



## **Applications of AE**



### 1. Dimensionality reduction

- Lower-dimensional representation can improve performance of many tasks
- Less memory
- Cost efficient
- Time efficient

#### 2. Information retrieval



#### **Information retrieval**

• Find entries in a database in response to a query.





#### Information retrieval

- Coding Techniques
  - Semantic hashing
    - Low dimensional and binary codes
    - Store all database entries in a hash table
    - Information retrieval by returning all database entries that have the same binary code as the query
    - Can be used for both textual and images.





#### Information retrieval

- Coding Techniques
  - Semantic hashing
    - How to generate those binary codes?
    - Set Sigmoid on the final layer
    - Sigmoid units must be trained to be saturated to nearly 0 or nearly 1 for all input values
      - Inject additive noise just before the sigmoid nonlinearity during the training
      - The magnitude of the noise should increase over time
      - To overcome the noise, the network must increase the magnitude of the inputs to the sigmoid function, until saturation occurs.



### Semantic hashing

• Deep AE as a hash function to find approximate matches.





### Binary codes for image retrieval

- Image retrieval is typically done by using the captions and not the images.
  - Unlike words; individual pixels do not tell us much about the content
- We may extract a real-valued vector that contains information about the content.
  - Matching real-valued vectors in a big database is slow and requires a lot of storage.
- **Short binary** codes are very easy to store and match.



### Binary codes for image retrieval

- A two-stage method
  - First, generate a semantic hash with 28-bit binary codes to get a long 'shortlist' of promising images
  - Then, use 256-bit binary codes to do a serial search for good matches.
    - This only requires a few words of storage per image and the serial search can be done using fast bitoperations.
  - But, how good are the 256-bit binary codes?
    - Do they find the desired images?



### Krizhevsky's Deep AE

- The encoder has about 67,000,000 parameters.
- It takes a few days on a GTX 285
  GPU to train on two million images.
- There is no theory to justify this architecture.





• Reconstruction of  $32 \times 32$  color image from 256-bit codes.





• Retrieved images using 256-bit codes.



• Retrieved using Euclidian distance in pixel intensity space



### Resources



- <a href="https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf">https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf</a>
- <a href="http://www.iro.umontreal.ca/~lisa/pointeurs/ECML2011\_CAE.pdf">http://www.iro.umontreal.ca/~lisa/pointeurs/ECML2011\_CAE.pdf</a>
- <a href="http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf">http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf</a>

