HANDLING SLICE PERMUTATIONS VARIABILITY IN TENSOR RECOVERY

Jingjing Zheng^{1,2}, Xiaoqin Zhang², Wenzhe Wang² and Xianta Jiang¹

¹Memorial University, ²Wenzhou University

Motivation

► An assumption for matrix recovery and tensor recovery

Row/column permutation invariance for matrix:

Row permutation invariance

Columm permutation invariance

Slice permutation invariance (SPI) for tensor:

► A counter-example for tensor SPI: a huge gap between the tensor with different slices order

Figure 1: Color video ('bus') (modeled as a tensor $\mathcal{Y} \in \mathbb{R}^{144 \times 176 \times 90}$) can be approximated by low tubal rank tensor. Here, only first frame of visual results in (a)-(b) are presented. (a) The first frame of original video (b) approximation by tensor $\mathcal{X}^* \in \mathbb{R}^{144 \times 176 \times 90}$ with tubal rank r=30. (MPSNR=32.45dB) (c) approximation by tensor $\hat{\mathcal{X}}^* \in \mathbb{R}^{144 \times 176 \times 90}$ with tubal rank r=30. (MPSNR=29.27dB) (d) MSE results of \mathcal{X}^* and $\hat{\mathcal{X}}^*$ comparison for different r.

SPI of Tensor Nuclear Norm

Theorem 1. For same circle $C^1 = \{i_1, i_2, ..., i_{n_3}, i_1\}$ and $C^2 = \{i_1, i_2, ..., i_{n_3}, i_1\}$ $\{i_k, i_{k+1}, ..., i_{n_3}, ..., i_{k-1}, i_k\},\$

$$\mathcal{D}_{\tau}(\mathcal{Y} \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)}) \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)-1} = \mathcal{D}_{\tau}(\mathcal{Y} \circ \mathcal{P}_{\mathbf{Or}^{2}}^{(3)}) \circ \mathcal{P}_{\mathbf{Or}^{2}}^{(3)-1}$$

$$\tag{1}$$

where $\mathcal{D}_{\tau}(\mathcal{A}) = \arg\min_{\mathcal{X}} \frac{1}{2} \|\mathcal{A} - \mathcal{X}\|_F^2 + \tau \|\mathcal{X}\|_*$, $Or^1 = \{i_1, i_2, ..., i_{n_3}\}$ is obtained by ${\bf C}^1$, and ${\bf Or}^2=\{i_k,i_{k+1},...,i_{n_3},...,i_{k-1}\}$ is obtained by ${\bf C}^2$.

▶ The SPI of tensor recovery for color image ($n_3 = 3$)

Theorem 2. For $\mathcal{Y} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, if $n_3 \leq 3$, then

$$\mathcal{D}_{\tau}(\mathcal{Y}) = \mathcal{D}_{\tau}(\mathcal{Y} \circ \mathcal{P}^{(k)}) \circ \mathcal{P}^{(k)^{-1}}$$
(2)

for k = 1, 2, 3.

Methodology

$$\min_{\mathcal{X}, \mathcal{P}_{\bullet}^{(3)}} \frac{1}{2} \| \mathcal{Y} \circ \mathcal{P}_{\mathsf{Or}}^{(3)} - \mathcal{X} \|_F^2 + \tau \| \mathcal{X} \|_{*,a}$$
(3)

$$\min_{\mathcal{X}, \mathcal{P}_{\mathbf{Or}}^{(3)}} \frac{1}{2} \| \mathcal{Y} \circ \mathcal{P}_{\mathbf{Or}}^{(3)} - \mathcal{X} \|_F^2 + \tau \| \mathcal{X} \|_{*,a}
= \min_{\mathcal{X}, \mathcal{P}_{\mathbf{Or}}^{(3)}} \frac{1}{2n_3} \| \operatorname{beirc}(\mathcal{Y} \circ \mathcal{P}_{\mathbf{Or}}^{(3)}) - \operatorname{beirc}(\mathcal{X}) \|_F^2 + \tau \| \operatorname{beirc}(\mathcal{X}) \|_{*}.$$
(4)

$$\begin{pmatrix} \mathcal{Y}_{:,:,\mathbf{Or}(1)} & \mathcal{Y}_{:,:,\mathbf{Or}(n_3)} & \cdots & \mathcal{Y}_{:,:,\mathbf{Or}(2)} \\ \mathcal{Y}_{:,:,\mathbf{Or}(2)} & \mathcal{Y}_{:,:,\mathbf{Or}(1)} & \cdots & \mathcal{Y}_{:,:,\mathbf{Or}(3)} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{Y}_{:,:,\mathbf{Or}(n_3)} & \mathcal{Y}_{:,:,\mathbf{Or}(n_3-1)} & \cdots & \mathcal{Y}_{:,:,\mathbf{Or}(1)} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{Y}_{:,:,\mathbf{Or}(1)} & \mathcal{Y}_{:,:,\mathbf{Or}(2)} & \cdots & \mathcal{Y}_{:,:,\mathbf{Or}(n_3)} \\ \mathcal{Y}_{:,:,\mathbf{Or}(n_3)} & \mathcal{Y}_{:,:,\mathbf{Or}(n_3)} & \cdots & \mathcal{Y}_{:,:,\mathbf{Or}(n_3-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{Y}_{:,:,\mathbf{Or}(n_3)} & \mathcal{Y}_{:,:,\mathbf{Or}(1)} & \cdots & \mathcal{Y}_{:,:,\mathbf{Or}(n_3-1)} \end{pmatrix}.$$

$$(5)$$

- \triangleright \mathcal{Y} with similar adjacent frontal slices can be approximated by a lower rank matrix.
- ▶ The key point to find a better order sequence of the frontal slice is to solve a Minimum Hamiltonian circle problem

► From [1], the simplest idea for getting a Minimum Hamiltonian circle is that, when we get Circle k, we can make appropriate modifications for circle k to get another circle k+1 with a smaller weight.

Experiments and Results

► Experiment 1: Image classification

Figure 2: Classification accuracies of the 5 algorithms on ORL database and CMU PIE database: (a) RPCA[3] (b) SNN[4] (c) Liu[2] (d) TRPCA[5] (e) TRPCA-SPV

► Experiment 2: Image sequence recovery

		Botswana					Pavia University				
δ	С	RPCA	SNN	Liu	TRPCA	TRPCA-SPV	RPCA	SNN	Liu	TRPCA	TRPCA-SPV
5	5%	29.90	34.52	36.82	32.06	38.44	27.56	29.82	32.03	30.65	36.60
	15%	29.04	33.02	35.34	30.06	37.11	26.90	29.21	31.60	28.07	35.39
	25%	27.73	30.81	32.92	28.78	34.98	25.55	27.96	30.53	26.03	33.48
15	5%	28.11	30.91	32.42	31.11	34.21	25.58	27.19	28.07	30.22	31.51
	15%	27.32	29.47	30.92	28.99	32.34	24.77	26.43	28.35	27.17	30.38
	25%	25.78	27.23	28.48	27.18	29.67	23.20	24.96	26.99	24.67	27.76
	5%	26.84	29.17	30.37	29.34	31.65	23.63	25.12	26.94	28.50	29.02
25	15%	26.05	27.55	28.67	26.83	29.77	22.74	24.30	26.30	25.21	27.49
	25%	24.29	25.14	26.06	24.18	26.79	21.11	22.76	24.77	22.49	24.81

► Experiment 3: Sensitivity analysis of parameters

Figure 3: Sensitivity analysis of parameter κ for TRPCA-SPV on (a) ORL database and (b) Pavia University; Convergence analysis for TRPCA-SPV with different κ on (c) ORL database and (d) Pavia University.

References

- [1] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph theory with applications. Vol. 290. Macmillan London, 1976.
- [2] Emmanuel J Candes and Yaniv Plan. "Matrix completion with noise". In: *Proceedings of the* IEEE 98.6 (2010), pp. 925-936.
- [3] Emmanuel J Candès et al. "Robust principal component analysis?" In: Journal of the ACM (JACM) 58.3 (2011), pp. 1–37.
- [4] Silvia Gandy, Benjamin Recht, and Isao Yamada. "Tensor completion and low-n-rank tensor recovery via convex optimization". In: *Inverse Problems* 27.2 (2011), p. 025010.
- [5] Canyi Lu et al. "Tensor robust principal component analysis with a new tensor nuclear norm". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 42.4 (2019), pp. 925–938.