- 6. 某软件企业获得10万元的贷款,偿还期为5年,年利率为10%,试就下述4种还贷方式,分别计算5年还款总额和还贷额的现值:
 - (1) 每年末还2万元本金及所欠利息;
 - (2) 每年末只还所欠利息,本金在第5年末一次还清;
 - (3) 每年末等额偿还本金和利息;
 - (4) 第五年末一次还清本金和利息。
- 答: (1) 13万元, 现值10万元;
 - (2) 15万元, 现值10万元;
 - (3) 13.19万元, 现值10万元;
 - (4) 16.11万元, 现值10万元。

(1) 每年末还2万元本金及所欠利息;

年数	年初所 欠金额	年利息 额	年终所 欠金额	偿还本 金	年终付 款总额
1	10	1	11	2	3
2	8	0.8	8.8	2	2.8
3	6	0.6	6.6	2	2.6
4	4	0.4	4.4	2	2.4
5	2	0.2	2.2	2	2. 2
总		3		10	13

(2) 每年末只还所欠利息,本金在 第5年末一次还清;

年数		年利息 额	年终所 欠金额	偿还本 金	年终付 款总额
1	10	1	11	0	1
2	10	1	11	0	1
3	10	1	11	0	1
4	10	1	11	0	1
5	10	1	11	10	11
总		5		10	15

验证: 根据每期的偿款金额(未来年份)反向求现值(贷款年份)

$$P_0 = \sum_{i=1}^{n} \frac{A_i}{(1+i)^j} = \frac{3}{1.1^1} + \frac{2.8}{1.1^2} + \frac{2.6}{1.1^3} + \frac{2.4}{1.1^4} + \frac{2.2}{1.1^5} = 10$$

(3) 每年末等额偿还本金和利息;

年数	年初所 欠金额	年利息 额	年终所 欠金额	偿还本 金	年终付 款总额
1	10.00	1.00	11.00	1.64	2.64
2	8.36	0.836	9.20	1.80	2.64
3	6.56	0.656	7.21	1. 98	2.64
4	4.57	0.457	5.03	2. 18	2. 64
5	2.39	0.239	2.63	2.40	2.64
总		3.19		10	13. 20

$$ext{CRF} = rac{0.10(1+0.10)^5}{(1+0.10)^5-1} = 0.2638$$

计算每期还款金额:

$$A = 100,000 \times 0.2638 = 26,380$$

等额还款金额公式

等额还款金额 A 可以用 CRF 表示为:

$$A = P \times CRF$$

其中:

- P 是贷款本金
- CRF 是资本恢复系数

$$ext{CRF} = rac{r(1+r)^n}{(1+r)^n-1}$$

其中:

- r 是每期的利率
- n 是还款期数

(4) 第五年末一次还清本金和利息。

年数	年初所 欠金额	年利息 额	年终所 欠金额	偿还本 金	年终付 款总额
1	10.00	1.00	11.00	0	0
2	11.00	1.10	12.10	0	0
3	12.10	1.21	13.31	0	0
4	13.31	1.33	14.64	0	0
5	14.64	1.46	16.11	10	16. 11
总		6.11		10	16. 11

9. 某公司计划7年后购进一台设备,约需投资6万元。为此,该公司决定从今年起每年从税后利润中提取等额年金,以作为专用基金存入银行。设银行存款年利率为5.5%,问该公司应提取多少年金。画出相应的现金流量图。

• 答:

第一年存入的金额

第1年末存入的金额 A, 在 n 年后会变成:

$$A\cdot (1+r)^{n-1}$$

因为这个金额会有n-1年的利息。

第二年存入的金额

第2年末存入的金额 A,在 n 年后会变成:

$$A \cdot (1+r)^{n-2}$$

年金终值的总和

将每年的终值相加,我们得到年金终值:

$$F = A \cdot (1+r)^{n-1} + A \cdot (1+r)^{n-2} + \dots + A \cdot (1+r) + A \ = A \cdot rac{(1+r)^n - 1}{r}$$

• 9. 某公司计划**7年后**购进一台设备,约需投资6万元。为此,该公司决定**从今年起** 每年从税后利润中提取等额年金,以作为专用基金存入银行。设银行存款年利率为 5.5%,问该公司应提取多少年金。画出相应的现金流量图。

• 答:

- ▶ 存在的主要问题:
- 1. 存款起点的确定
- 2. 存款结束时间的确定
- 3. 现金流量图

我们需要解这个公式以求出 A:

$$60000 = A \cdot \frac{(1+0.055)^7 - 1}{0.055}$$

首先, 我们计算 $(1+0.055)^7-1$:

$$(1+0.055)^7 = 1.055^7 \approx 1.4467$$

 $1.4467 - 1 = 0.4467$

接下来,计算 $\frac{0.4467}{0.055}$:

$$\frac{0.4467}{0.055} \approx 8.1218$$

最后,用60000除以8.1218来求出每年的提取金额 A:

$$A=rac{60000}{8.1218}pprox7387.37$$

所以,公司每年需要提取大约7387.37元。

- 13. 某软件企业一年前买了1万张面额为100元、年利率为10%(单利)、3 年后到期一次性还本付息国库券。现在有一机会可以购买年利率为12%、 二年期、到期还本付息的无风险企业债券,该企业拟卖掉国库券以购 买企业债券,试问该企业可接受的国库券最低出售价格是多少。
- 企业债券的到期的价格 >= 国债到期的价格
- 答: 设出售价格为P,则有

解得:

 $P \times (1 + 0.12)^2 \ge 100 \times (1 + 3 \times 0.1)\overline{\pi}$

▶ 存在的主要问题:

1. 企业债券为复利, 不能当作单利

P≥103.6352 元

单利(Simple Interest):利息只根据初始本金计算,每期的利息不会累积到本金中用于计算下一期的利息。

复利(Compound Interest):每期的利息都会加入本金,再计算下一期的利息。

• 14. 某软件项目现有两个设计方案 A_1 和 A_2 ,为比较这两个设计方案的优劣,该项目主管确定了五个指标 X_1 、 X_2 、 X_3 、 X_4 、 X_5 ,对这五个指标的相对重要性作了两两比较,如表2.19所示。此外,还确定了每个指标划分为四个等级: U_1 、 U_2 、 U_3 、 U_4 ,各等级的等级分分别为5、4、3、1;并对 A_1 、 A_2 方案的各指标所属等级作了判断,如表2.20所示。根据表2.19 和表2.20的有关信息,运用基于线性加权和法的关联矩阵法,对这两个软件设计方案的优劣做方案排序。

表 2.19 两两比较表

A_{ij}	X_1	X_2	X_3	X_4	X_5					
X_1	1	0	0	1	0					
X_2	1	1	0	1	0					
X_3	1	1	1	1	0					
$X_{\scriptscriptstyle 4}$	0	0	0	1	0					
X_5	1	1	1	1	1					

表 2.20 等级判断表

U	A_1				A_2			
X	u_1	u_2	u_3	u_4	u_1	u_2	u_3	u_4
X_1	~/					~/		
X_2		~/			√			
X_3		√			✓			
X_4			\checkmark				\checkmark	
$X_{\scriptscriptstyle 5}$				\checkmark			\checkmark	

步骤 1: 计算权重系数 W_i

参考答案中的权重系数 W_i 的计算如下:

权重 W_i 的计算方法是将每行中所有1的个数 (即 F_i) 除以总和 (15) ,得到每个指标的权重。

Eij	X1	X2	X3	X4	X5	Fi	Wi
X1	1	0	0	1	0	2	2/15
X2	1	1	0	1	0	3	3/15
X3	1	1	1	1	0	4	4/15
X4	0	0	0	1	0	1	1/15
X5	1	1	1	1	1	5	5/15
总						15	1

$$F_i = \sum_{j=1}^n E_{ij}$$

$$W_i = \frac{F_i}{\sum_{i=1}^n F_i}$$

权重总和为1, 计算正确。

步骤 2: 计算方案的综合评价值 V_i

四个等级: $U_1 \times U_2 \times U_3 \times U_4$, 各等级的等级分分别为5、4、3、1

根据参考答案中的等级分数:

对于 A₁:

•
$$X_1 = 5$$

•
$$X_2 = 4$$

•
$$X_3 = 4$$

•
$$X_4 = 3$$

•
$$X_5 = 1$$

表 2.20 等级判断表

U	A_1				A_2			
X	u_1	u_2	u_3	u_4	u_1	u_2	u_3	u_4
X_1	√					√		
X_2		\checkmark			\checkmark			
$X_{\scriptscriptstyle 3}$		\checkmark			\checkmark			
X_4			\checkmark				\checkmark	
X_5				\checkmark			\checkmark	

$$egin{aligned} V_{A_1} &= 0.1333 imes 5 + 0.2 imes 4 + 0.2667 imes 4 + 0.0667 imes 3 + 0.3333 imes 1 \ V_{A_1} &= 0.6665 + 0.8 + 1.0668 + 0.2001 + 0.3333 \ V_{A_1} &= 3.0667 pprox rac{46}{15} \end{aligned}$$

$$V_i = \sum_{j=1}^n u_{ij} W_j$$

四个等级: U_1 、 U_2 、 U_3 、 U_4 ,各等级的等级分分别为5、4、3、1

表 2.20 等 级 判 断 表

•	对于	A_2	:
---	----	-------	---

•
$$X_1 = 4$$

•
$$X_2 = 5$$

•
$$X_3 = 5$$

•
$$X_4 = 3$$

•
$$X_5=3$$

U	A_1				A_2			
X	u_1	u_2	u_3	u_4	u_1	u_2	u_3	u_4
X_1	√					√		
$X_{\scriptscriptstyle 2}$		\checkmark			✓			
X_3		\checkmark			√			
X_4			\checkmark				\checkmark	
$X_{\scriptscriptstyle 5}$				\checkmark			\checkmark	

$$V_{A_2} = 0.1333 imes 4 + 0.2 imes 5 + 0.2667 imes 5 + 0.0667 imes 3 + 0.3333 imes 3$$

$$V_{A_2} = 0.5332 + 1.0 + 1.3335 + 0.2001 + 1.0$$

$$V_{A_2}=4.0668pproxrac{61}{15}$$

结论

	X1 (2/15)	X2 (3/15)	X3 (4/15)	X4 (5/15)	X5 (5/15)	Vi
A1	5	4	4	3	1	46/15
A2	4	5	5	3	3	61/15

方案A2优于A1

• 16. 为对计算软件作综合评估,软件协会建立了如表2.21所示的指标体系与对应权重,并组织了一个九人专家评审委员会,该委员会对某软件A各质量指标 (C_i) 的所属等级频数分布如表2.21所示。试用模糊综合评判法根据表2.21的专家评定个人信息对软件A所属质量做出判断。

表 2.21 等级频数表

指标	W	$U_1(100)$	$U_2(85)$	$U_{3}(70)$	$U_{4}(55)$
C_1	0.12	3	4	2	0
$\overline{C_2}$	0.10	2	5	2	0
$\overline{C_3}$	0.10	4	3	1	1
C_4	0.12	1	2	4	2
$\overline{C_5}$	0.10	2	2	5	0
C_{6}	0.10	4	2	3	0
C_7	0.10	3	4	1	1
C_8	0.08	2	5	2	0
C_9	0.10	5	2	2	0
C_{10}	0.08	3	4	2	0

步骤 1: 确定评判集和权重集

- **评判集** $U = \{U_1, U_2, U_3, U_4\}$ 对应的评分为 $\{100, 85, 70, 55\}$.
- **权重集** $W = \{0.12, 0.10, 0.10, 0.12, 0.10, 0.10, 0.10, 0.08, 0.10, 0.08\}$

步骤 2: 计算模糊矩阵

每个指标的模糊向量 R_i 计算如下:

•
$$C_1: R_1 = \left(\frac{3}{9}, \frac{4}{9}, \frac{2}{9}, \frac{0}{9}\right) = (0.33, 0.44, 0.22, 0)$$

•
$$C_2$$
: $R_2 = \left(\frac{2}{9}, \frac{5}{9}, \frac{2}{9}, \frac{0}{9}\right) = (0.22, 0.56, 0.22, 0)$

•
$$C_3$$
: $R_3 = \left(\frac{4}{9}, \frac{3}{9}, \frac{1}{9}, \frac{1}{9}\right) = (0.44, 0.33, 0.11, 0.11)$

•
$$C_4$$
: $R_4 = \left(\frac{1}{9}, \frac{2}{9}, \frac{4}{9}, \frac{2}{9}\right) = (0.11, 0.22, 0.44, 0.22)$

•
$$C_5: R_5 = \left(\frac{2}{9}, \frac{2}{9}, \frac{5}{9}, \frac{0}{9}\right) = (0.22, 0.22, 0.56, 0)$$

•
$$C_6: R_6 = \left(\frac{4}{9}, \frac{2}{9}, \frac{3}{9}, \frac{0}{9}\right) = (0.44, 0.22, 0.33, 0)$$

•
$$C_7: R_7 = \left(\frac{3}{9}, \frac{4}{9}, \frac{1}{9}, \frac{1}{9}\right) = (0.33, 0.44, 0.11, 0.11)$$

•
$$C_8: R_8 = \left(\frac{2}{9}, \frac{5}{9}, \frac{2}{9}, \frac{0}{9}\right) = (0.22, 0.56, 0.22, 0)$$

•
$$C_9: R_9 = \left(\frac{5}{9}, \frac{2}{9}, \frac{2}{9}, \frac{0}{9}\right) = (0.56, 0.22, 0.22, 0)$$

•
$$C_{10}$$
: $R_{10} = \left(\frac{3}{9}, \frac{4}{9}, \frac{2}{9}, \frac{0}{9}\right) = (0.33, 0.44, 0.22, 0)$

步骤 3: 计算综合评价结果

 $V_j(k) = \sum_{i=1}^n w_i r_{ij}(k)$

将权重集 W 与模糊矩阵 R 相乘:

 $\{0.12, 0.10, 0.10, 0.12, 0.10, 0.10, 0.10, 0.08, 0.10, 0.08\}$

$$\begin{bmatrix} 0.33 & 0.44 & 0.22 & 0 \\ 0.22 & 0.56 & 0.22 & 0 \\ 0.44 & 0.33 & 0.11 & 0.11 \\ 0.11 & 0.22 & 0.44 & 0.22 \\ 0.22 & 0.22 & 0.56 & 0 \\ 0.44 & 0.22 & 0.33 & 0 \\ 0.33 & 0.44 & 0.11 & 0.11 \\ 0.22 & 0.56 & 0.22 & 0 \\ 0.56 & 0.22 & 0.22 & 0 \\ 0.33 & 0.44 & 0.22 & 0 \end{bmatrix}$$

 $= \{0.32, 0.36, 0.27, 0.05\}$

也可以逐项计算:

$$V1 = (3 \times 0.12 + 2 \times 0.1 + 4 \times 0.1 + ...)/9 = 0.32$$

$$V2 = (4 \times 0.12 + 5 \times 0.1 + 3 \times 0.1 + ...)/9 = 0.36$$

$$V3 = (2 \times 0.12 + 2 \times 0.1 + 1 \times 0.1 + ...)/9 = 0.27$$

$$V4 = (0 \times 0.12 + 0 \times 0.1 + 1 \times 0.1 + ...)/9 = 0.05$$

最大隶属度规则:是指在模糊综合评价中,选择隶属度最大的评价等级作为综合评价结果。

根据最大隶属度规则:

- $V_1 = 0.32$
- $V_2 = 0.36$ (最大隶属度)
- $V_3 = 0.27$
- $V_4 = 0.05$

因此,软件A的质量综合评价结果为 U_2 等级。

最邻近规则:指的是将综合评价值与评判集中的评分值进行比较,选取最接近的评分值作为最终的评价结果。

综合价值为:

$$85.62 = 100 \times 0.32 + 85 \times 0.36 + 70 \times 0.27 + 55 \times 0.05$$

$$V_k = \sum_{j=1}^n F_j \bullet V_j(k)$$

85.62最接近85分,因此属于 U_2 等级。