PYTHON PANDAS CHEAT SHEET

CREATING DATAFRAMES

Creating DataFrames is the foundation of using Pandas. Here's how to create a simple DataFrame and display its content.

```
import pandas as pd
import numpy as np
# Create a simple DataFrame
df = pd.DataFrame(
   [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],
   columns=["A", "B", "C"],
   index=["x", "y", "z", "zz"]
# Display the first few rows
df head()
# Display the last two rows
df.tail(2)
```

LOADING DATA

Loading data into DataFrames from various file formats is crucial for real-world data analysis.

```
# Load data from CSV
coffee = pd.read_csv('./warmup-data/coffee.csv')
# Load data from Parquet
results = pd.read_parquet('./data/results.parquet')
# Load data from Excel
olympics_data = pd.read_excel('./data/olympics-
data.xlsx'. sheet_name="results")
```

ACCESSING DATA

Accessing different parts of the DataFrame allows for flexible data manipulation and inspection.

```
# Access columns
df.columns
# Access index
df.index.tolist()
# General info about the DataFrame
df.info()
# Statistical summary
df.describe()
# Number of unique values in each column
df.nunique()
# Access unique values in a column
df['A'].unique()
# Shape and size of DataFrame
df.shape
df.size
```

FILTERING DATA

Filtering data is essential for extracting relevant subsets based on conditions.

```
# Filter rows based on conditions
bios.loc[bios["height_cm"] > 215]
# Multiple conditions
bios[(bios['height_cm'] > 215) &
(bios['born_country']=='USA')]
# Filter by string conditions
bios[bios['name'].str.contains("keith", case=False)]
# Regex filters
bios[bios['name'].str.contains(r'*[AEIOUaeiou]',
na=False)]
```

ADDING/REMOVING COLUMNS

Adding and removing columns is important for maintaining and analyzing relevant data.

```
# Add a new column
coffee['price'] = 4.99
# Conditional column
coffee['new_price'] = np.where(coffee['Coffee
Type']=='Espresso', 3.99, 5.99)
# Remove a column
coffee.drop(columns=['price'], inplace=True)
# Rename columns
coffee.rename(columns=('new_price': 'price'),
inplace=True)
# Create new columns from existing ones
coffee['revenue'] = coffee['Units Sold'] *
coffee['price']
```

MERGING AND CONCATENATING DATA

Merging and concatenating DataFrames is useful for combining different datasets for comprehensive analysis.

```
# Merge DataFrames
nocs = pd.read_csv('./data/noc_regions.csv')
bios_new = pd.merge(bios, nocs,
left_on='born_country', right_on='NOC', how='left')
# Concatenate DataFrames
usa = bios[bios['born_country']=='USA'].copy()
gbr = bios[bios['born_country']=='GBR'].copy()
new_df = pd.concat([usa, gbr])
```

HANDLING NULL VALUES

Handling null values is essential to ensure the integrity of data analysis.

```
# Fill NaNs with a specific value
coffee['Units Sold'].fillna(0, inplace=True)
# Interpolate missing values
coffee['Units Sold'].interpolate(inplace=True)
# Drop rows with NaNs
coffee.dropna(subset=['Units Sold'], inplace=True)
```

Fundamentals of Analytics Wodeling | THIRD YEAR - BSIT LECTURE / FIRST SEMESTER

AGGREGATING DATA

Aggregation functions like value counts and group by help in summarizing data efficiently.

```
# Value counts
bios['born_city'].value_counts()
# Group by and aggregation
coffee.groupby(['Coffee Type'])['Units Sold'].sum()
coffee.groupby(['Coffee Type'])['Units Sold'].mean()
# Pivot table
pivot = coffee.pivot(columns='Coffee Type',
index='Day', values='revenue')
```

ADVANCED FUNCTIONALITY

Advanced functionalities such as rolling calculations, rankings, and shifts can provide deeper insights.

```
# Cumulative sum
coffee['cumsum'] = coffee['Units Sold'].cumsum()
# Rolling window
latte = coffee[coffee['Coffee Type']=="Latte"].copy()
latte['3day'] = latte['Units Sold'].rolling(3).sum()
# Rank
bios['height_rank'] =
bios['height_cm'].rank(ascending=False)
# Shift
coffee['yesterday_revenue'] =
coffee['revenue'].shift(1)
```

NEW FUNCTIONALITY

The PyArrow backend offers optimized performance for certain operations, particularly string operations.

```
# PyArrow backend
results_arrow = pd.read_csv('./data/results.csv',
engine='pyarrow', dtype_backend='pyarrow')
results_arrow.info()
```

DATA CLEANING

IMPORTING PANDAS

import pandas as pd

This line imports the pandas library, which is used for data manipulation and analysis. The alias pd is commonly used to refer to it.

LOADING THE DATASET

pd.read_csv('https://raw.githubusercontent.com/datasciencedoj o/datasets/refs/heads/master/titanic.csv')

This line loads the Titanic dataset from a URL and stores it in a variable called df. The dataset is in CSV (Comma-Separated Values) format.

DISPLAYING THE DATASET

display(df)

This line shows the contents of the dataset in a tabular form.

GETTING INFORMATION ABOUT THE DATASET

df.info()

This command provides a summary of the dataset, including the number of rows, columns, and the data types of each column. It also shows if there are any missing values.

CLEANING THE DATASET

dfClean = df.drop(['PassengerId','Name','Cabin','Ticket'], axis=1)

This line removes (drops) the columns PassengerId, Name, Cabin, and Ticket from the dataset, as they may not be useful for the analysis.

HANDLING MISSING VALUES

dfClean['Age'].fillna(dfClean['Age'].mean(), inplace=True) dfClean['Embarked'].fillna(dfClean['Embarked'].mode()[0], inplace=True)

- The missing values in the Age column are replaced with the average (mean) age.
- The missing values in the Embarked column are filled with the most common value (mode).

ENCODING CATEGORICAL DATA

from sklearn.preprocessing import LabelEncoder le = LabelEncoder() dfClean['Sex'] = le.fit transform(dfClean['Sex']) dfClean['Embarked'] = le.fit_transform(dfClean['Embarked'])

Categorical data (like Sex and Embarked) is converted into numbers using LabelEncoder. For example, the Sex column values (male and female) are turned into 0 and 1.

CHECKING CORRELATIONS

dfClean.corr()

This line computes the correlation between different columns in the dataset. Correlation measures how changes in one feature relate to changes in another.

SEPARATING FEATURES AND TARGET VARIABLE

x = dfClean.drop('Survived', axis=1) y = dfClean['Survived']

The features (x) are all the columns except Survived, which is the target variable (y) that indicates whether a passenger survived or not.

Fundamentals of Analytics Wodeling | THIRD YEAR - BSIT | LECTURE / FIRST SEMESTER

SPLITTING THE DATA INTO TRAINING AND TEST SETS

from sklearn.model selection import train test split x_{train} , x_{test} , y_{train} , y_{test} = $train_{test}$ split(x, y, test size=0.2, random state=42)

This line splits the dataset into training and testing sets. 80% of the data will be used for training, and 20% will be used for testing. The random state=42 ensures that the split is reproducible.

FILTERING THE DATA

 $dfClean[(dfClean['Age'] \le 5) | (dfClean['Sex'] == 1)]$

This line filters the dataset to show only the rows where the passenger's age is 5 or younger, or where the passenger's sex is represented as 1 (after encoding).

DATA ANALYSIS

LOADING AND EXPLORING THE DATA

import pandas as pd mpg_df = pd.read_csv('autompg1.csv') mpg df.info()

We import the pandas library, load a CSV file (autompg1.csv) into a dataframe (mpg df), and check the data's structure using mpg df.info().

CREATING A BASIC PLOT

import matplotlib.pyplot as plt plt.scatter(x='mpg', y='cylinder', data=mpg_data) plt.show()

This creates a scatter plot with 'mpg' (miles per gallon) on the x-axis and 'cylinder' on the y-axis to visualize their relationship.

INSTALLING AND USING SEABORN FOR VISUALIZATION

pip install seaborn import seaborn as sns sns.pairplot(mpg df)

We install and use the seaborn library to create a pairplot, which shows relationships between different numerical columns in mpg df.

CALCULATING CORRELATIONS

mpg df.corr()

This calculates and shows the correlation values (relationships) between different columns in the data.

ENCODING TEXT DATA

from sklearn.preprocessing import LabelEncoder le = LabelEncoder() mpg df['car name'] = le.fit transform(mpg df['car name'])

LabelEncoder turns text data in 'car name' into numbers so the model can use it. Here, we replace 'car name' with numbers to help with calculations.

HANDLING MISSING VALUES

mpg df[mpg df['horsepower']=='?'] mpg_df['horsepower'].replace('?', np.nan, inplace=True) mpg_df['horsepower'].fillna(mpg_df['horsepower'].mean(), inplace=True) mpg df['horsepower'] = mpg df['horsepower'].astype('float')

Here, ? in the 'horsepower' column is treated as a missing value and replaced with the average horsepower value for accuracy.

PREPARING DATA FOR MODEL TRAINING

x = mpg_df[['origin', 'model year', 'cylinder', 'displacement', 'weight', 'horsepower'll y = mpg df['mpg']from sklearn.preprocessing import StandardScaler sc = StandardScaler() $x_std = sc.fit_transform(x)$

We set x as the input features and v as the target to predict ('mpg'). We then scale x with StandardScaler to standardize values, which improves model performance.

SPLITTING DATA FOR TRAINING AND TESTING

from sklearn.model selection import train test split x_train, x_test, y_train, y_test = train_test_split(x_std, y, test_size=0.2, random_state=42)

We split the data into training (80%) and testing (20%) sets. The training set is used to teach the model, while the test set is for evaluation.

CREATING AND TRAINING A MODEL

from sklearn.linear model import LinearRegression lr model = LinearRegression() lr_model.fit(x_train, y_train)

A LinearRegression model is created and trained using the x train and y train data.

MAKING PREDICTIONS

y pred = lr model.predict(x test)

We use the trained model to predict mpg values based on x test.

EVALUATING MODEL ACCURACY

from sklearn.metrics import r2 score print('Accuracy score:', r2_score(y_test, y_pred) * 100, '%')

We calculate the model's accuracy by checking how close the predictions (y pred) are to the actual test values (y test) using r2 score. An r2 score closer to 1 means better accuracy.