VISÃO COMPUTACIONAL:

A MANIFESTAÇÃO MAIS PODEROSA DA INTELIGÊNCIA ARTIFICIAL QUE ESTÁ CONSTRUINDO O FUTURO

Palestrante: Omar Vidal Pino

INTRODUÇÃO

Visão Computacional

O que é CV?

- Diferenças com IP e CG
- Porque estudar CV?
- Usos

O que é Visão Computacional?

A Visão Computacional (Computer Vision - CV) é uma área da Inteligência Artificial que tenta modelar (ou replicar) o sistema de visão humano usando um computador.

A CV pode ser definida como a disciplina que visa interpretar, extrair e representar a informação contida em imagens.

Visão Computacional

- O que é CV?
- Diferenças com IP e CG
- Porque estudar CV?
- Usos

Diferenças entre Visão Computacional, Processamento de Imagens e Computação Gráfica

Visão Computacional

Por que estudar CV?

- 1. O que é CV?
- 2. Diferenças com IP e CG
- 3. Por que estudar CV?
- 4. Usos

First attempt at a solution – 1D

Replace each pixel with an average of all the values in its neighborhood – a moving average:

Source: S. Marschner

Memória humana

Generalização

Discriminação

Extração e representação de características

- Características artesanais
 - SIFT [Lowe, 2004]
 - SURF [Bay et al., 2006]
 - DAYSY [Tola et al., 2008]
- Aprendizado de máquina
 - Análise Discriminativo Linear [Strecha et al., 2012]
 - Algoritmo Genético [Perez &Olague, 2013]
 - Otimização Convexa [Simonyan et al., 2014]
- Redes Neurais Convolucionais
 - LIFT [Yi et al., 2016]
 - DeepBit [Lin et al., 2016]
 - DBD-MQ [Duan et al., 2017]
 - FCSS [Kim et al., 2017]

Objetivo Geral

Modelar um descritor semântico global fundamentado na Teoria dos Protótipos que inclua o protótipo da categoria na descrição semântica do objeto.

TRABALHOS RELACIONADOS

Descrição de características

- 1. Características artesanais
- Aprendizado de máquina
- 3. Descritores Convolucionais
- Descritores
 Semânticos

BRIEF [Calonder et al., 2010]

Descrição de características

- Características artesanais
- Aprendizado de máquina
- **Descritores** Convolucionais
- **Descritores** Semânticos

Hashing [Ambai & Yoshida, 2011]

Boosting (Trzcinski et al., 2013)

LDA [Strecha et al., 2012]

Descrição de características

- Características artesanais
- Aprendizado de máquina
- **Descritores** Convolucionais
- **Descritores** Semânticos

LIFT [Yi et al., 2016]

DeepBit [Lin et al., 2016]

Descrição de características

- 1. Características artesanais
- 2. Aprendizado de máquina
- Descritores Convolucionais
- 4. Descritores Semânticos

(a) Semantic alignment

(b) Strongest inlier matches

Weakly-supervised semantic alignment [Rocco et al., 2018]

FUNDAMENTOS TEÓRICOS

Fundamentos Teóricos

Teoria dos Protótipos

- 1. Primórdios
- O protótipo e a estrutura interna da categoria
- 3. Semelhança familiar
- 4. Efeitos prototípicos
- 5. Definições

√ 0 protótipo e a estrutura interna da categoria

	a	b	c	d
elemento 1 (prototípico)	+	+	+	+
elemento 2	+	+	+	-
elemento 3	+	+	+5	+
elemento 4	+	-	-/+	+

- importância relativa da característica
- A saliência está relacionada ao número e tipo de características

[Rosch, 1988; Geeraerts, 2010]

METODOLOGIA

Metodologia

Visão Geral

- 1. Construção do Protótipo Semântico
- 2. Categorização baseada em Protótipos
- 3. Descrição semântica baseada em Protótipos

Metodologia

Visão Geral

- Construção do Protótipo Semântico
- Categorização baseada em Protótipos
- 3. Descrição semântica baseada em Protótipos

O MODELO MATEMÁTICO DO PROTÓTIPO

Definições

- Protótipo semântico
- Protótipo abstrato
- Conjunto de protótipos semânticos
- Protótipo semântico convolucional
- Valor semântico do objeto
- Valor semântico da categoria
- Distância prototípica
- Distância entre objetos
- Espaço métrico das características
- 10. Fronteira prototípica

$$\begin{aligned} O &= \{o \ universo \ de \ objetos\} \\ C &= \{c_1, c_2, ..., c_n\} \\ F &= \{f_1, f_2, ..., f_m\} \\ O_{c_i} &= \{o \in O : categoria(o) = c_i\} \quad \forall c_i \in C, \ \forall i = 1, ..., n \end{aligned}$$

Definições

- Protótipo semântico
- Protótipo abstrato
- Conjunto de protótipos semânticos
- Protótipo semântico convolucional
- Valor semântico do objeto
- Valor semântico da categoria
- Distância prototípica
- Distância entre objetos
- Espaço métrico das características
- 10. Fronteira prototípica

$$o \in O_{c_i}$$
 $F_o = \{f_1, f_2, ..., f_m\}$

significado semântico do obieto

$$\hat{z_o} = \sum \omega_{ij} f_j + b_i$$

$$\forall j = 1, ..., m; \forall i = 1, ..., n.$$

$$O_{c_i} = \{o \in O : categoria(o) = c_i\}$$

$$\omega_{ij} \in \Omega_i \quad f_j \in F$$

$$\Omega_i, b_i \in P_i = (M_i, \Sigma_i, \Omega_i, b_i)$$

Definições

- Protótipo semântico
- Protótipo abstrato
- Conjunto de protótipos semânticos
- Protótipo semântico convolucional
- Valor semântico do objeto
- Valor semântico da categoria
- Distância prototípica
- Distância entre objetos
- Espaço métrico das características
- 10. Fronteira prototípica

- significado semântico do centro abstrato da i-ésima categoria
- valor resumo do protótipo semântico i-ésima da categoria

$$\hat{z}_i = \sum_{i=1}^{m} \omega_{ij} \mu_{ij} + b_i$$

$$\forall j = 1, ..., m; \forall i = 1, ..., n.$$
 $\omega_{ij} \in \Omega_i, \ \mu_{ij} \in M_i = [\mu_{i1}, \mu_{i2}, ..., \mu_{im}]$
 $\Omega_i, b_i \in P_i = (M_i, \Sigma_i, \Omega_i, b_i)$

Definições

- Protótipo semântico
- Protótipo abstrato
- Conjunto de protótipos semânticos
- Protótipo semântico convolucional
- Valor semântico do objeto
- Valor semântico da categoria
- Distância prototípica
- Distância entre objetos
- Espaço métrico das características
- 10. Fronteira prototípica

$$\delta: F_{c_i} \times F_{c_i} \to \mathbb{R}^+$$

- $\delta(o_1, o_2) \ge 0$ (n\tilde{a}o-negatividade)
- $\delta(o_1, o_2) = 0 \Leftrightarrow o_1 = o_2$ (identidade de indiscernível)
- $\delta(o_1, o_2) = \delta(o_2, o_1)$ (simetria)
- $\delta(o_1, o_3) \leq \delta(o_1, o_2) + \delta(o_2, o_3)$ (designal dade triangular)

 (F_{c_i}, δ) constitui um espaço métrico

$$o_1, o_2, o_3 \in O_{c_i} \quad \forall i = 1, ..., n$$

Experimentos e Análises dos Resultados

- 1. Bancos de Dados e Modelos
- 2. Construção dos protótipos
- 3. Comportamento Prototípico
- 4. Organização prototípica da categoria
- 5. Análises da distância semântica
- 6. Conclusões

MNIST [Lecun et al., 1998]

Simples - MNIST

ILSVRC 2014 [Russakovsky et al.,2015]

VGG16 [Simonyan & Zisserman, 2014]

Banco de Dados

DESCRITOR SEMÂNTICO GLOBAL

Descritor Semântico Global

Experimentos e Análises dos Resultados

- 1. Bancos de Dados e Modelos
- 2. Assinaturas do descritor
- Comprimento das assinaturas
- Estrutura interna
- Taxonomias das assinaturas
- Interpretação semântica
- 3. Organização Prototípica
- 4. Avaliação do desempenho
- 5. Conclusões

6 1 9 4 2 5 7 8 7 1 3 0 0 7 2 4 8 0 8 4 5 3 8 7 7 7 3 6 8 2

MNIST [Lecun et al., 1998]

Modelos

Simples - MNIST

ILSVRC 2014 [Russakovsky et al.,2015]

VGG16 [Simonyan & Zisserman, 2014]

Descritor Semântico Global

Experimentos e Análises dos Resultados

- Bancos de Dados e Modelos
- Assinaturas do descritor
- Comprimento das assinaturas
- Estrutura interna
- Taxonomias das assinaturas
- Interpretação semântica
- 3. Organização Prototípica
- Avaliação do desempenho
- Conclusões

- o Descritor Semântico Global proposto (GSDP) constrói assinaturas discriminativas que podem ser agrupadas em famílias de distribuições construídas a partir dos protótipos da categoria.
- o Descritor GSDP constrói representações interpretáveis da informação visual dos objetos, que preservam a informação semântica usada pelos modelos CNN de classificação e a pontuação da tipicidade do objeto.
- o desempenho da codificação do descritor semântico GSDP supera significativamente o desempenho de outros descritores globais quanto às métricas de agrupamento.

PRÓXIMOS PASSOS

Próximos passos

- Recuperação do protótipo semântico da categoria
 - O Construção de uma camada de classificação baseada em protótipos
 - Avaliação da camada em vários modelos CNN de classificação
- Descritor Semântico Global
 - Experimentação com outros modelos CNN de classificação (ResNet)
 - Experimentação com outros comprimentos de assinatura
 - Avaliação do desempenho em tarefas práticas

Deadlines

- Construção de artigo para periódico (Dez/2018)
- Construção de artigo para periódico (Fev/2019)

Próximos passos

Cronograma de Atividades

Atividades		Data	
•	Construção da camada de classificação baseada em protótipos	Set Out./2018	
•	Avaliação da camada de classificação baseada em protótipos	Out Dez./2018	
•	Ajustes do artigo WACV2019 (camera ready)	Nov. /2018	
•	Implementação de GSDP usando o modelo de classificação ResNet	Nov. /2018	
•	Implementação da GSDP para outros comprimentos de assinatura	Nov. /2018	
•	Construção do Artigo para Revista	Dez. /2018	
•	Implementação das sugestões da banca	Constantemente	
•	Experimentação, Otimização e Melhorias	Constantemente	
•	Escrita da Tese	Constantemente	
•	Defesa da Tese	Fev Março/2019	

Muchas Gracias.

Omar Vidal Pino ovidalp@dcc.ufmg.br

Orientador: Mario Fernando Montenegro Campos Coorientador: Erickson Rangel do Nascimento

> Universidade Federal de Minas Gerais (UFMG) - Brasil Departamento de Ciência da Computação

Agradecimentos:

XIII Semana de Informática Universidade Estado de Amazonas(UEA) Itacoatiara - Novembro 27-29 de 2019

Omar Vidal Pino ovidalp@dcc.ufmg.br

VISÃO COMPUTACIONAL: A MANIFESTAÇÃO MAIS PODEROSA DA INTELIGÊNCIA ARTIFICIAL QUE ESTÁ CONSTRUINDO O FUTURO

Universidade Estado de Amazonas(UEA) – Brasil XIII Semana de Informática

Camada de Similaridade Prototípica

Resultados Preliminares

Banco de Dados

- ✓ MNIST dataset [Lecun et al., 1998]
- ✓ CIFAR-10 [Krizhevsky & Hinton, 2009]
- ✓ CIFAR-100 [Krizhevsky & Hinton, 2009]
- ✓ LSVRC 2014 [Russakovsky et al.,2015]

Modelos

- ✓ simples-MNIST[Lecun et al., 1998]
- ✓ simples-CIFAR10
- ✓ simples-CIFAR100
- ✓ VGG-CIFAR10 [Liu & Deng, 2015]
- ✓ VGG-CIFAR100 [Liu & Deng, 2015]
- ✓ VGG16 [Simonyan & Zisserman, 2014]

Distância Semântica

✓ Distância Prototípica:

$$\delta(o, P_i) = \sum_{j=1}^{m} |\omega_{ij}| |f_j - \mu_{ij}|$$

✓ Distância Prototípica Penalizada (Baseada da Desigualdade de Chebyshev):

$$\delta_p(o, P_i) = \sum_{i=1}^m unitary_penalty_j(o, P_i)$$

$$unitary_penalty_j(o, P_i) = \begin{cases} |\omega_{ij}| \, u_j, & \text{if } u_j > 0 \\ 0, & \text{if } u_j \leq 0. \end{cases} \qquad u_j = (|f_j - \mu_{ij}| - \kappa \sigma_{ij}) \times \phi.$$

