MNN. Xiremer abers com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9231 FURTHER MATHEMATICS

9231/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2008	9231	02

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2008	9231	02

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2008	9231	02

Qu No	Mark Schen	me Details			Part Mark	Total
1	Find MI a	about A of AB, AC (M1 for either):	$I_{AB} = (6m/24)(\frac{1}{3}3^2 + 3^2)a^2 = 3ma^2$	M1		
			$I_{AC} = (10m/24)(\frac{1}{3}5^2 + 5^2)a^2$			
			$=(125/9) ma^2$	A1		
	Find MI a	about A of BC:	$I_{BC} = (8m/24)(\frac{1}{3}4^2 + 6^2 + 4^2)a^2$			
			$= (172/9)ma^2$	M1 A1		
	Sum to fi	nd MI about A of wire:	$I = (324/9)ma^2 = 36ma^2$	A1	5	[5]
2	Find spee	eds from cons. of energy (M1 for eithe	er): $\frac{1}{2}mv_1^2 = mga(1 - \cos\theta)$	M1 A1		
			$\frac{1}{2}mv_2^2 = mga\left(1 + \cos\theta\right)$	A1		
	Find R_1 , R_2	R_2 by radial resolution (M1 for either)	$R_1 = mg \cos \theta - m{v_1}^2/a$	M1 A1		
			$R_2 = mg\cos\theta + mv_2^2/a$	A1		
	EITHER:	Substitute in R_1 , R_2 and combine:	$R_1 = 3mg\cos\theta - 2mg$			
			$R_2 = 3mg\cos\theta + 2mg$			
			$R_2 - R_1 = 4mg$ A.G.	M1 A1		
	OR:	Combine R_1 , R_2 and substitute:	$R_2 - R_1 = m(v_2^2 + v_1^2)/a$			
			= 4mg A.G.	(M1 A1)	8	[8]
3	EITHER:	Relate angular acceln. to tension for b	plock: $2ma d^2\theta/dt^2 = 2mg - T - mg/10$	M1 A1		
		Relate angular acceln. to tension for d	lisc: $I d^2 \theta / dt^2 = aT$, $I = \frac{1}{2} ma^2$	M1 A1		
		Eliminate tension <i>T</i> :	$(\frac{1}{2} + 2)ma^2 d^2 \theta dt^2 = (2 - 0.1)mga$	M1		
		Find $d^2\theta/dt^2$:	19g/25a or $0.76g/a$ or $7.6/a$	A1		
		Use $(d\theta/dt)^2 = 2 d^2\theta/dt^2 2\pi$ ($\sqrt{\text{on d}^2}$)	θ/dt^2): $(d\theta/dt)^2 = 76\pi g/25a$ A.E.F.	M1 A1 $$		
		Find $d\theta/dt$ (A.E.F.):	$d\theta/dt = 3.09\sqrt{(g/a)} \text{ or } 9.77/\sqrt{a}$	A1	9	
	OR:	Use conservation of energy for system	n: $\frac{1}{2}I(d\theta/dt)^2 + \frac{1}{2}2m(a d\theta/dt)^2$	(M1 A1)		
			$= 2mga\theta - 0.1 mga\theta$	(M1 A1)		
		Put $\theta = 2\pi$ and find $d\theta/dt$ (A.E.F.):	$d\theta/dt = 3.09\sqrt{(g/a)} \text{ or } 9.77/\sqrt{a}$	(M1 A1)		
		Differentiate energy eqn w.r.t. t:	$(5ma^2/4) 2 d^2\theta/dt^2 = 1.9 mga$	(M1 A1)		
		Find $d^2\theta/dt^2$:	19g/25a or $0.76g/a$ or $7.6/a$	(A1)	(9)	[9]

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2008	9231	02

Qu No	Mark	Scheme Details			Part Mark	Total
4	(i)	Use conservation of momentum:	$0.1v_A + mv_B = 0.1 \times 5 - m \times 2$	M1		
		Find <i>m</i> :	$m = (0.5 - 0.1 v_A) / (2 + v_B)$	A1		
		Use $v_A > 0$ to find lower bound on m :	$v_B > 0$, $m < 0.5/2 = 0.25$ A.G.	M1 A1	4	
	(ii)	Use Newton's law of restitution:	$v_B - v_A = \frac{1}{2}(2+5) = \frac{7}{2}$	M1 A1		
		Put $m = 0.2$ and find one of v_A , v_B :	$2 v_B + v_A = 1, v_A = -2 \text{ or } v_B = 1.5$	M1 A1		
		Find magnitude of impulse [N s]:	$0.1 (5 - v_A) or 0.2 (1.5 + 2) = 0.7$	M1 A1	6	[10]
5	Find	equation of motion at general point:	$m d^2x/dt^2 = mg ((a-x)/a)^{1/2}$			
			$- mg ((a+x)/a)^{-1/4}$	M1		
	Expa	and terms and approximate:	$\approx mg((1-x/2a) - (1-x/4a))$	M1 A1		
	Simp	plify to give SHM eqn:	$d^2x/dt^2 = -gx/4a$	A1	4	
	Use	SHM eqn to find speed when $x = 0$:	$v_{max}^2 = (g/4a) (0.04a)^2$	M1 A1		
	Simp	plify (A.E.F.):	$v_{max} = 0.02 \sqrt{(ag)} \text{ or } 0.0632 \sqrt{a}$	A1		
	Use	SHM eqn to find time when $v = \frac{1}{2}v_{max}$:	$\frac{1}{2}a\omega = a\omega \sin \omega t$ (A.E.F.)	M1 A1		
	Subs	stitute $\omega = \sqrt{(g/4a)}$ and simplify:	$t = \sqrt{(4a/g)} \sin^{-1} \frac{1}{2}$	M1		
			$= (\pi/3) \sqrt{(a/g)} \qquad (A.E.F.)$	A1	7	[11]
6	Use	standard formula for pooled estimate, e	.g.: $((128 - 15^2/5) + (980 - 36^2/10))/13$	M1		
	Awa	ard A1 for one term in numerator, e.g.:	5 × 16·6 or 10 × 85·04 or 83 or 850·4			
			$or\ 4 \times 20.75\ or\ 9 \times 94.5$	A1		
	Calc	rulate value of pooled estimate:	71.8	A1	3	[3]
7	(i)	Find sample mean:	$\overline{x} = \frac{1}{2}(61.21 + 64.39) = 62.8$	M1 A1		
		Use confidence interval formula:	$\overline{x} \pm ts/\sqrt{n}$ for any t	M1		
		Use correct tabular <i>t</i> :	$t_{24,099} = 2.492$	A1		
		Calculate standard deviation:	$s = 1.59 \times 5 / 2.492 = 3.19$	A1	5	
	(ii)	State assumption (A.E.F.):	Population has normal distribution	B1	1	
	(iii)	State valid reason (A.E.F.):	72 exceeds upper limit of interval	*B1		
		State conclusion (A.E.F., dep *B1):	Yes, it does reduce pulse rate	B1	2	[8]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2008	9231	02

Qu No	Mark Scheme Details			Part Mark	Total
8	(i) Formulate two eqns for means:	$\bar{y} + 0.425 \bar{x} = 1.28 and$			
		$\overline{x} + 0.516 \overline{y} = 1.05$	M1		
	Solve for means:	$\overline{x} = 0.499, \ \overline{y} = 1.068 \ or \ 1.07$	M1 A1	3	
	(ii) Find correlation coefficient for sample:	$r^2 = 0.425 \times 0.516; \ r = -0.468$	M1; *A1	2	
	(iii) State hypotheses:	$H_0: \rho = 0, H_1: \rho \neq 0$	B1		
	Valid method for reaching conclusion:	$\rho \neq 0$ if $ r > $ tabular value	M1		
	Use of correct tabular value:	$\rho_{25,2\cdot5\%} = 0.396$	*B1		
	Correct conclusion (A.E.F., dep *A1, *B	1): Coefficient does differ from zero	A1	4	[9]
9	Integrate $f(t)$ to give $F(t)$:	$F(t) = -9/8t^2$	M1		
	Apply limits:	$F(2.5) - F(2) = -(9/8)(2.5^{-2} - 2^{-2})$	A1		
	Evaluate and multiply by 100:	10·125 A.G.	A1	3	
	State hypotheses (A.E.F.):	H_0 : $f(t)$ fits data, H_1 : doesn't fit	B1		
	Find χ^2 (A1 if at least 3 terms correct):	$\chi^2 = 1.5^2/62.5 + 4.875^2/21.875$			
		$+5.875^2/10.125 + 2.5^2/5.5$	M1 A1		
	Evaluate χ^2 :	= 0.036 + 1.086 + 3.409 + 1.136			
		$= 5.67 \ [\pm 0.01]$	*A1		
	Compare with consistent tab. value (to 2 dp):	$\chi_{3, 0.9}^2 = 6.251$	*B1√		
	$(\chi_{2,0.9}^2 = 4.605, \chi_{1,0.9}^2 = 2.706)$				
	Consistent conclusion (A1 dep *A1, *B1):	Distribution fits data (A.E.F.)	M1√A1	7	[10]
10	Replace 2^x by e^{kx} to find k :	$f(x) = ae^{-kx}; k = \ln 2$	M1; A1		
	Show $a = k$ by e.g. $\int_0^\infty f(x) = 1$:	$[-(a/k) e^{-kx}]_0^\infty = 1, \ a = k \ or \ln 2$	M1 A1	4	
	State value of $E(X)$:	1 / ln 2 or 1·44	B1	1	
	Find distribution fn G of <i>Y</i> :	$G(y) = P(Y \le y) = P(X \le k^{-1} \ln y)$	M1 A1		
		= $F(k^{-1} \ln y) = (a/k)(1 - e^{-\ln y})$	M1 A1		
		= 1 - 1/y (CAO)	A1		
	Find probability density function g of <i>Y</i> :	$g(y) = 1/y^2 (CAO)$	M1 A1		
	State interval for either G or g:	$y \ge 1$	B1	8	[13]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2008	9231	02

Qu No	Mark Schem	ne Details			Part Mark	Total
11	EITHER:	Observe or deduce when R_B is maximised	d: $R_{B, max}$ occurs when dog at B	M1		
a		Moments for ladder about <i>A</i> :	$6a R_{B, max} = 4aW + 8a \times \frac{1}{4}W$	M1		
	OR:	Moments when dog is x hor. from wall:	$6a R_B = 4aW + (8a - x) \frac{1}{4}W$	(M1)		
		Deduce limit on R_B :	$R_{B, max}$ occurs when dog at B	(M1)		
	Find max.	value of R_B :	$R_{B, max} = W$	A1		
	Resolve he	orizontally for ladder AB:	$F_A = R_B$	B1		
	Resolve ve	ertically for ladder AB:	$R_A = W + \frac{1}{4}W = 5W/4$	B1		
	Find boun	d on μ from $F_A \leq \mu R_A$:	$\mu \geq F_A / R_A \geq R_{B, max} / (5W/4)$	M1		
			$\mu \ge 4/5$ A.G.	A1	7	
	Find friction	on F_{cube} along DE by hor. resolution:	$F_{cube} = F_A \text{ or } R_B$	B1		
	Find react	ion R_{cube} from floor by vert. resolution:	$R_{cube} = W + \frac{1}{4}W + kW$	B1		
	Show that	$F_{cube} \leq \mu R_{cube}$:	$\mu R_{cube} \geq W + 4kW/5 \geq W$			
			$= R_{B, max} \ge F_{cube}$	M1 A1	4	
	Find mom	ents about D opposing effect of R_{cube} :	$2akW + a5W/4 - 4aF_A$	M1		
	Find small	lest value of k for which moments ≥ 0 : (4)	W - 5W/4) / 2W = 11/8	M1 A1	3	[14]
11	State hypo	otheses (A.E.F.):	H_0 : $\mu_2 = \mu_1$, H_1 : $\mu_2 > \mu_1$	B1		
0	Calculate	$\sum (x_i - \overline{x})^2$ (M1 for either)	8.24, 4.62[4]			
	or estimate	e variances:	0·168 or 0·165, 0·0784 or 0·0771	M1 A1 A1		
	Find s^2 (N	M0 if inconsistent denominators used):	$s^2 = 0.168/50 + 0.0784/60$			
			or $0.165/49 + 0.0771/59$			
			[= 0.00467]	*M1		
	Find value	e of z (dep *M1):	$z = (1803 \cdot 6/60 - 1492 \cdot 0/50) / s$	M1		
			= (30.06 - 29.84)/0.0683 = 3.22	*A1		
	S.R	R. Using pooled estimate of variance:	$s^2 = (8.24 + 4.62)/108 = 0.119$	(M0)		
			$z = 0.22 / s\sqrt{(1/50 + 1/60)} = 3.33$	(B1)		
	Find tabul	ar. value (to 2 dp):	$\Phi^{-1}(0.98) = 2.05[4]$	*B1		
	Compare	values for conclusion (A1 dep *A1, *B1):	$\mu_2 > \mu_1$ (A.E.F., M1 $$ on values)	$M1\sqrt{A1}$	10	
	Find limit	ing value of z (to 2 dp):	z = (0.22 - 0.1)/s = 1.756	M1 A1		
	Find $\Phi(z)$	and hence values of α (to 1 dp):	$\Phi(z) = 0.9604, \ \alpha \ge 3.9 \ or \ 4.0$	M1 A1	4	
	$s^2 =$	= 0·119 gives:	$z = 1.816, \ \alpha \ge 3.47$	(M1 M1)		[14]