DGCL: An Efficient Communication Library for Distributed GNN Training

Zhenkun CAI

The Chinese University of Hong Kong

Graph Neural Network (GNN)

Graph neural networks in recent years

Social network

Graph Neural Networks

Distributed GNN Training on GPUs

GNN Systems on GPUs

Peer-to-peer communication:
each GPU fetch required
vertices directly from other
GPUs

Unbalanced communication

Bandwidth contention

2-layer GCN

Peer-to-Peer Communication

• Unbalanced communication

Bandwidth contention

Table 1. The speed (GBps) of common communication links (NV2 and NV1 mean 2 and 1 NVLinks between two GPUs)

Type	NV2	NV1	PCIe	QPI	IB	Ethernet
Speed	48.35	24.22	11.13	9.56	6.37	3.12

Table 2. The time (ms) peer-to-peer communication spends on different links for training a GCN layer with 8 GPUs

	Web-Google	Reddit	Wiki-Talk
NVLink	0.99	1.70	1.39
Others	6.20	18.1	6.13

Table 3. Attainable bandwidth (Gbps) of a GPU when there are different number of GPUs using the QPI link

Number of GPUs	1	2	3
Attainable bandwidth	9.50	5.12	3.34

System

- Read the graph and communication topology
- Graph partitioning
- Communication planning
- Training and communication on each device

Design

Problem Formulation

Input

Algorithm

Constraints

Objective

Communication Strategy

Cost Model

Shortest Path Spanning Tree (SPST) Algorithm

Heuristic: minimize $Cost_i$ when determining $strategy_i$

Stage 1 N_1 : c_1 , N_2 : c_2 , N_3 : c_3 , ...

Stage 2 $N_1: c_1, N_2: c_2, N_3: c_3, ...$

Experiment Setup

Hardware

- Two machines with 8 V100 GPU (NVLink)
- One machine with 8 1080ti GPU (No NVLink)

Baseline

- Peer-to-peer
- Replication: replicate k-hop vertices to eliminate communication
- Swap: using the main memory as shared memory

Dataset

• Reddit, Webgoogle, Wiki-Talk, Com-Orkut

GNN Model

• GCN, CommNet, GIN

End-to-End Performance on 8 V100 GPUs

Figure 7. The per-epoch time and communication time for training the 3 GNN models on 4 datasets with 8 GPUs

	Peer-to-peer	Swap
Average communication time	4.5x	60x
Average per-epoch time	1.5x	7.4x

Performance on 8 1080ti GPUs

Table 6. Time (ms) for one *graphAllgather* operation in a hardware configuration without NVLink

	Reddit	Com-Orkut	Web-Google	Wiki-Talk
DGCL	14.3	128	7.84	5.86
Swap	14.5	1220	116	317
Peer-to-peer	17.9	179	8.72	8.51

Cost Model Accuracy

Figure 10. Relation between the model estimated communication cost and the actual communication time for one *graphAllgather* operation with 8 GPUs

Breakdown Analysis

Table 7. The breakdown of the communication time (ms) of one *graphAllgather* operation for DGCL with 8 GPUs

	NVLink	Others	Relative difference
Web-Google	0.787	0.821	4.32%
Reddit	1.16	1.07	7.41%
Com-Orkut	7.43	7.30	1.78%
Wiki-Talk	0.783	0.882	12.6%

Conclusions

Start from a communication problem

Analysis of peer-to-peer communications

General communication library DGCL with cost model and planning algorithm

DGCL outperforms other communications on different datasets, GNN models and GPU types.

Q & A

