

ENG 346 Data Structures and Algorithms for Artificial Intelligence Course Overview

Dr. Mehmet PEKMEZCİ

mpekmezci@gtu.edu.tr

https://github.com/mehmetpekmezci/GTU-ENG-346

ENG-346-FALL-2025 Teams code is Ouv7jlm

Quick Notes: PROGRAM - ALGORITHM - MATH RELATION

- A Computer Program is based on an Algorithm.
- Algorithm (Webster Dict.) :

An algorithm is a finite sequence of **mathematically** rigorous instructions, typically used to solve a class of specific problems or to perform a computation.

Quick Notes: MATH. > ALGO. > PROG. LANGUAGE

- Example : Fibonacci Numbers : a_n=a_{n-1}+a_{n-2}
- a₁₀₀₀₀₀=?
- Math: Binet's Formula (Generating Functions) O(log(n))

$$F(n)=rac{\phi^n-(1-\phi)^n}{\sqrt{5}}$$
 $\phi=rac{\phi}{2}$

• Algorithm: Find an algorithm that calculates faster with less resource:

```
\begin{array}{l} \text{def nth\_fibonacci(n):} \\ \text{if n <= 1: return n} \\ \text{return nth\_fibonacci(n - 1) + nth\_fibonacci(n - 2)} \\ \text{print(nth\_fibonacci(5))} \\ \\ \hline \\ \text{O(2^n)} \\ \end{array}
```

 Programming Language: C/Rust programs run definitely faster than java/python programs (for the same algorithm)

Quick Notes: ARTIFICIAL INTELLIGENCE

 Artificial intelligence (AI) is the capability of computational systems to perform tasks typically associated with human intelligence, such as learning, reasoning, problem-solving, perception, and decisionmaking. (Wikipedia)

Quick Notes: ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

NEURAL NETWORKS

DEEP LEARNING

GENERATIVE MODEL

GENERATIVE PRETRAINED TRANSFORMER **REGRESSION**

SVM

DECISION TREE

KNN

PCA

RANDOM FOREST

CLUSTERING

Computer Vision

Automation

Robotics

NLP

Quick Notes: MACHINE LEARNING

PROBLEM DEFINITION

DATA COLLECTION

DATA CLEANING

FEATURE EXTRACTION

TRAINING

VALIDATION

TESTING

DATA VISUALIZATION

REPORT GENERATION

Quick Notes: IMPLEMENTATION OF AI TASKS

PYTHON

R

MATLAB

JAVA

C++

RUST

Homework and Project will be implemented in Python.

Python has large set of Machine Learning libraries that wraps native (C) libraries.

Python is easy to learn.

MEHMET PEKMEZCİ :

• ACADEMY :

- 2003 BSc, Galatasaray University, Computer Engineering
- 2011 MSc, Maltepe University, Computer Engineering
- 2025 PhD, Gebze Technical University, Computer Engineering

• WORK :

- 2003 32BIT LTD. Java Developer
- 2008 HAVELSAN Unix/Linux System Admin
- 2011 HAVELSAN Development Environment Admin
- 2017 HAVELSAN System Admin Team Leader
- 2019 HAVELSAN Infrastructure Group Leader (Sysops, Devops, Infra Teams)

Introduce yourself

- Your name
- Your department
- Your expectations from the course
- Your skill of AI knowledge

Course Overview

Why Data Structures and Algorithms

- Data structures are vital in handling and manipulating large datasets in fields like machine learning and data science.
- Algorithms are used for data analysis, pattern recognition, and more.
- Code efficiency, e.g., optimizations in searching and sorting, which is critical for software performance.
- Structural approach to problem solving.
- Critical Thinking and Problem-Solving Skills: Encourages to break down complex problems into manageable components.
- Resource management, i.e., efficient use of system resources like memory and processing power.

Purpose and Outcomes

Purpose of the course

This is a course designed to enhance advanced Python programming, data structures, and algorithm skills necessary for developing software, coding, and conducting group work in the field of data science and artificial intelligence

Learning outcomes

- Ability to perform basic data structures and algorithm design and analysis
- Ability to collaborate in software development
- Possessing skills in current software development technologies

Methodology

GEBZE TECHNICAL UNIVERSITY

- Face-to-face lectures,
- Active participation expected,
- Hands-on coding,
- Homeworks: Individual work expected. A pdf report and a python file is expected to be delivered.
- Project: May be group project based on the project idea. A pdf report is
 excepted after each phase, and a python code tar ball is expected at the end
 of the semester. Phases are indicated in "Project Phases", report dates are
 indicated in "Schedule" pages.
- Two quizzes,
- One midterm exam,
- One final exam.

Project Phases

- Data Collection
- Data Extraction (Standardized Format)
- Data Cleaning
- Find and replace missing value
- Normalize data
- Data Visualization
- Feature Extraction
- Training
- Validation
- Testing

Project Report Templates

https://github.com/mehmetpekmezci/GTU-ENG-346/tree/main/Reports

Project - Possible Receivers/Transmitters

- Receivers
 - Webcam (image receiver)
 - Microphone (sound receiver)
 - Sensors in mobile phone (Accelerometers/Gyros/GPS, ... etc.)
 - Bluetooth temperature/humidity sensors
- Transmitters
 - Loud-Speaker (sound transmitter)

Example Scenario: Transmit various sound frequencies and take photo of the leaves of a tree. Try to find a relation between the growth speed of the leaves and the sound frequencies they are applied.

Homework	20
Quiz	20
Midterm Exam	20
Project	30
Final Exam	30
Total	130

Schedule

Week#	Topic	Assessment
Week 1	Basic Python Concepts with GUI	
Week 2	Matrix Operations and Numpy	HW1
Week 3	Basic Bash Concepts	Project proposals
Week 4	Data Analysis and Visualization	HW2 / Project-Data-Collection-Report
Week 5	Object-Oriented Programming	QUIZ1 / Project-Data-Extraction-Report
Week 6	Complexity	Project-Data-Cleaning-And-Missing-Value-Report
Week 7	Arrays, Linked Lists, Maps,	HW3 / Project-Data-Normalization-Visualization-Report
Week 8	Recursion	Midterm exam
Week 9	Stacks and Queues	HW4 - Project-Feature-Extraction-And-Training-Report
Week 10	Linked Lists, Trees	Project-Validation-And-Testing-Report
Week 11	Graphs and NetworkX	HW5
Week 12	Graphs and NetworkX	QUIZ2
Week 13		HW6
Week 14	Final Projects	
Week 15	-	
Week 16	Final exam	Final project presentations

ENG 346 - Dat

Windows Subsystem for Linux (WSL)


```
## https://learn.microsoft.com/en-us/windows/wsl/install
## https://ubuntu.com/desktop/wsl
## In poweshell :
Wsl --list --online
Wsl --install Ubuntu-24.04
Wsl -d Ubuntu-24.04
## Linux Shell Starts Here
sudo apt update
sudo apt install python3-pip
pip3 install matplotlib numpy pandas
## The first time you run code from Ubuntu, it will trigger a download of the necessary
dependencies:
code .
```

Textbooks and Other Resources

Textbooks

- Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser, Data structures and algorithms in Python, John Wiley & Sons Ltd, 2013.
- Grus, Joel, Data science from scratch: first principles with python, O'Reilly Media, 2019.

Recommended

- https://www.kaggle.com/learn
- https://www.coursera.org/learn/python-data
- https://www.coursera.org/learn/python-data-analysis

Office Hours and Communication

No office. We can talk between and after the lectures.

• Reach me at mpekmezci@gtu.edu.tr