

Towards Robustness to Label Noise in Text Classification via Noise Modeling

Siddhant Garg*, Goutham Ramakrishnan*, Varun Thumbe*

Amazon Alexa Al , Health at Scale , KLA Corporation

Motivation

- Obtaining large scale noise-free datasets for text classification is very challenging and expensive
- Crowd sourced datasets, from platforms like MTurks, have inevitable human annotation errors due to:
 - Ambiguity of annotations
 - Inexperience of annotators
 - Human error due to annotation speed
- Label noise in samples can be of the following form:
- Random (Randomly assigning a label to sample)
- Label-dependent (Confusing a specific label x for y)
- Input instance-dependent
- Learning with noisy labels is extensively explored for CV tasks, but not for NLP tasks (cannot directly apply CV techniques due to discrete nature of input space)

Related Work

- Noisy labels for NLP tasks [Jindal et al 2019 NAACL]
 - Learn a label dependent *noise model* (probability matrix) over the classifier model
 - Use I₂-regularizer on the noise model weights with no selective guiding for learning noisy samples
- Mixture Models for Noisy and Clean labels in CV
 [Arazo et al 2019 ICML]
 - Learning from clean labels is easier than learning from noisy labels initially
 - Training loss in early epochs clusters into 2 regions corresponding to samples with clean and noisy labels
 - A mixture model(Beta/Gaussian) can be fit to get the probability of sample label being clean or noisy

3-Step Training Methodology

- 1. Warmup: Train the classifier **M** for some warmup epochs(\mathbf{T}_0) by minimizing the CE loss between $\hat{\mathbf{y}}^{(c)}$ (predicted clean output) and \mathbf{y} '(noisy ground-truth)
- 2. Fit BMM: Fit a Beta Mixture Model $\mathcal{B}(x)$ on the CE loss($\hat{\mathbf{y}}^{(c)}, \mathbf{y'}$) distribution after warmup to estimate probability of sample having noisy or clean labels

3. <u>Train M and N_M</u>: Use probability scores from the fitted BMM with the de-noising loss to train end-to-end.

De-noising Loss Formulation

Experiments and Results

- Datasets: TREC and AG-News
- Model M: 2-layer LSTM, word-CNN with GloVe embed.
- Noise Model N_M: 2-layer feedforward NN over logits from M

Random Noise: Pick a random % of samples (noise %) and randomly assign them one of the class labels

Input-Dependent Noise (TREC): Two types of label-noise-

- 1) Samples starting with "How"/"What": Insert random noise
- 2) Randomly flip labels for the longest x% of samples

Noise Percent	Baseline		$ \mathcal{L}_{DN-H} $		$ \mathcal{L}_{DN-S} $		Noise Percent	Baseline		\mathcal{L}_{DN-H}		$ \mathcal{L}_{DN-S} $	
	Best	Last	Best	Last	Best	Last	refeelit	Best	Last	Best	Last	Best	Last
0	93.8	93.0	94	92.6	95	94	0	93.8	93.0	94	92.6	95	94
10	89.2	88.8	91.8	91.8	91.8	92	10	91.4	90.4	91.6	91	92	92.4
20	84.4	76.2	87.4	85.2	90.6	89.4	20	87	87.6	90.2	89.4	90.6	91.6
30	77.8	67.2	84.2	84.6	83.8	77	30	82.2	84	87.4	87.2	85.4	85.6
40	76	59	79	80	79.2	60	40	82.4	79.8	87.4	86.6	84	81.2
50	71.8	56	67.8	69.2	75.6	59.8	50	74.2	71.2	79	79	75	72

Robustness to over-fitting on label noise: Observe test loss on increasing training epochs on TREC dataset at different %-random noise levels

