PREDIKSI PENJUALAN MOBIL BEKAS MENGGUNAKAN METODE GAUSSIAN NAIVE BAYES CLASSIFIER

Proyek ini disusun untuk memenuhi tugas akhir mata kuliah Penambangan Data pada Program Sarjana Teknik Informatika Fakultas Ilmu Komputer Universitas Dian Nuswantoro Semester Ganjil Tahun Akademik 2023/2023

> Dosen Pengampu Dr. Aris Marjuni, S. Si, M. Kom

TIM PROYEK:

No.	NIM	NAMA
1.	A11.2017.10276	Sofwan Hidayat
2.	A11.2020.13205	Athiya Nahdhiana
3.	A11.2019.12030	Anggito Budhi Prasojo
4.	A11.2021.13605	Evan Faiz Fitri

ABSTRAKSI PROYEK

Pasar penjualan mobil bekas kini makin diminati oleh masyarakat dan tidak kalah dengan mobil baru. Pilihan model yang ditawarkan kepada pembeli sangat beragam mulai dari model automatic / manual, mesin dengan bahan bakar diesel / bensin bahkan mesin elektrik . Proyek ini dilakukan dengan tujuan untuk mengklasifikasi model mobil mana yang laku terjual.

Klasifikasi dilakukan menggunakan pendekatan penambangan data dengan model Gaussian Naive Bayes Model. Dataset yang digunakan adalah dataset publik yang bersumber dari Kaggle.com. Hasil klasifikasi menunjukkan bahwa Gaussian Naive Bayes Model mampu mengidentifikasi potensi penjualan mobil bekas dengan akurasi 52%.

A. DATASET

Nama dataset:

bmw.xlsx

Sumber:

https://www.kaggle.com/datasets/adityadesai13/used-car-dataset-ford-and-

mercedes

Informasi dataset:

10781 observations / records

9 attributes

Informasi Atribut:

1) model: model mobil;

2) year: tahun produksi mobil;

3) price: harga mobil;

4) transmission: tipe transmisi mesin mobil;

5) mileage: ukuran mile mobil;

6) fuelType: tipe bahan bakar pada mobil;

7) tax: pajak mobil;

8) mpg: ukuran mile per galon bahan bakar;

9) engineSize: ukuran mesin mobil;

Contoh instances:

Berikut tampilan 5 data instances pertama:

	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
0	5 Series	2014	11200	Automatic	67068	Diesel	125	57.6	2.0
1	6 Series	2018	27000	Automatic	14827	Petrol	145	42.8	2.0
2	5 Series	2016	16000	Automatic	62794	Diesel	160	51.4	3.0
3	1 Series	2017	12750	Automatic	26676	Diesel	145	72.4	1.5
4	7 Series	2014	14500	Automatic	39554	Diesel	160	50.4	3.0

B. DATA PREPROCESSING

Transformasi Data (Data Transformation), data akan diubah atau ditransformasikan menjadi bentuk yang sesuai dengan metode analisis yaitu tipe data numeric. Label encoding untuk mengonversi label kata menjadi angka. Label encoding mengacu pada proses transformasi label kata menjadi bentuk numerik. Dalam hal regresi jika memuat variabel kategori dan nilainya tidak bisa difaktorisasi dalam bentuk tingkatan, dilakukan proses dummy, setiap nilai dalam variabel itu menjadi variabel lain. Data preprocessing yang dilakukan terhadap dataset bertujuan agar dataset lebih mudah untuk diproses menggunakan metode gaussian naive bayes.


```
en = LabelEncoder()
  dataset['model'] = en.fit_transform(dataset['model'])
  dataset.head()
   model
                   price
                         transmission
                                        mileage
                                                  fuelType
                                                                        engineSize
           year
                                                            tax
                                                                  mpg
0
           2014
                  11200
                                    0
                                          67068
                                                     Diesel
                                                            125
                                                                  57.6
                                                                                2.0
1
        5
           2018
                 27000
                                    0
                                          14827
                                                     Petrol
                                                            145
                                                                  42.8
                                                                                2.0
2
           2016
                 16000
                                    0
                                          62794
                                                            160
                                                                  51.4
                                                                                3.0
        4
                                                     Diesel
           2017
                  12750
                                          26676
                                                                  72.4
3
        0
                                    0
                                                     Diesel
                                                            145
                                                                                1.5
                  14500
                                          39554
                                                     Diesel
                                                            160
                                                                  50.4
           2014
                                    0
                                                                                3.0
4
```

```
en = LabelEncoder()
  dataset['fuelType'] = en.fit transform(dataset['fuelType'])
  dataset.head()
   model
                 price transmission
                                    mileage
                                                            mpg
          year
                                             fuelType
                                                       tax
                                                                  engineSize
          2014 11200
                                      67068
                                                            57.6
0
       4
                                 0
                                                   0
                                                       125
                                                                        2.0
1
       5
          2018
               27000
                                 0
                                      14827
                                                   4
                                                       145
                                                            42.8
                                                                        2.0
2
       4 2016 16000
                                 0
                                      62794
                                                   0
                                                      160
                                                            51.4
                                                                        3.0
3
       0 2017 12750
                                 0
                                      26676
                                                       145
                                                            72.4
                                                                        1.5
                                                   0
       6 2014 14500
                                 0
                                      39554
                                                   0
                                                      160
                                                            50.4
                                                                        3.0
4
```

Berikut merupakan keadaan dataset sebelum dan sesudah preprocessing:

Sebelum Preprocessing:

	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
0	5 Series	2014	11200	Automatic	67068	Diesel	125	57.6	2.0
1	6 Series	2018	27000	Automatic	14827	Petrol	145	42.8	2.0
2	5 Series	2016	16000	Automatic	62794	Diesel	160	51.4	3.0
3	1 Series	2017	12750	Automatic	26676	Diesel	145	72.4	1.5
4	7 Series	2014	14500	Automatic	39554	Diesel	160	50.4	3.0

Sesudah Preprocessing:

	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
0	4	2014	11200	0	67068	0	125	57.6	2.0
1	5	2018	27000	0	14827	4	145	42.8	2.0
2	4	2016	16000	0	62794	0	160	51.4	3.0
3	0	2017	12750	0	26676	0	145	72.4	1.5
4	6	2014	14500	0	39554	0	160	50.4	3.0

C. EXPLORATORY DATA ANALYSIS (EDA)

Berikut merupakan langkah-langkah EDA terhadap dataset dan capture hasilnya, yaitu:

Deskripsi/informasi dataset : menggunakan referensi info()

```
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10781 entries, 0 to 10780
Data columns (total 9 columns):
                  Non-Null Count Dtype
    Column
                  10781 non-null int64
0
    model
                  10781 non-null int64
    year
    price
                  10781 non-null int64
    transmission 10781 non-null int64
                  10781 non-null int64
    mileage
    fuelType
                  10781 non-null int64
                  10781 non-null
                                  int64
 6
    tax
                  10781 non-null float64
 7
    mpg
    engineSize
                  10781 non-null float64
dtypes: float64(2), int64(7)
memory usage: 758.2 KB
```

Capture 10 data secara random : menggunakan referensi sample()

dat	aset.sa	mple(1	0)						
	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
8109	2	2018	19999	0	16882	0	145	62.8	2.0
4914	2	2016	18990	2	45090	0	165	51.4	3.0
1136	1	2015	12198	1	22812	0	20	74.3	1.5
6973	1	2015	16922	2	29538	4	200	43.5	2.0
5215	14	2020	37995	0	2500	4	145	34.0	2.0
7733	2	2013	7490	1	93000	4	145	47.9	1.6
7579	0	2016	17990	0	14000	4	235	37.7	3.0
2443	1	2019	28361	2	101	4	145	50.4	2.0
8002	2	2016	13699	0	72111	0	30	62.8	2.0
5789	17	2016	23912	0	89676	0	200	47.1	3.0

Periksa apakah ada data yang kosong (missing) : menggunakan referensi isnull()

dataset.isnull() model price transmission mileage year fuelType mpg engineSize tax 0 False **False** False False False False 1 False False False 2 False False False False False False 3 False False False False **False** False False False False 4 False 10776 False False False False False False False False 10777 False False False False False False False False False 10778 False False False False False False False False False 10779 False False False False False False False False False 10780 False False False False False False False False False 10781 rows × 9 columns

Tampilkan informasi statistik dari dataset tersebut: menggunakan referensi describe()

data	aset.describe	()							
	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
count	10781.000000	10781.000000	10781.000000	10781.000000	10781.000000	10781.000000	10781.000000	10781.000000	10781.000000
mean	5.297839	2017.078935	22733.408867	1.099991	25496.986550	1.333364	131.702068	56.399035	2.167767
std	6.054688	2.349038	11415.528189	0.869297	25143.192559	1.853240	61.510755	31.336958	0.552054
min	0.000000	1996.000000	1200.000000	0.000000	1.000000	0.000000	0.000000	5.500000	0.000000
25%	1.000000	2016.000000	14950.000000	0.000000	5529.000000	0.000000	135.000000	45.600000	2.000000
50%	2.000000	2017.000000	20462.000000	1.000000	18347.000000	0.000000	145.000000	53.300000	2.000000
75%	10.000000	2019.000000	27940.000000	2.000000	38206.000000	4.000000	145.000000	62.800000	2.000000
max	23.000000	2020.000000	123456.000000	2.000000	214000.000000	4.000000	580.000000	470.800000	6.600000

Plot correlogram (heatmap)

: menggunakan referensi heatmap()

```
fuelType_cyl = (
    dataset
    .groupby('fuelType')
    .model
    .value_counts()
    .unstack()
    .fillna(0)
    )

membuat heatmap (fuelType ke model)

sns.heatmap(fuelType_cyl);
```


D. PEMODELAN

Model prediksi Gaussian Naive Bayes adalah teknik dalam machine learning yang menggunakan pendekatan probabilitas dan distribusi Gaussian atau distribusi normal.

 Implementasi model Gaussian Naive Bayes pada dateset yang sudah dipreprocessing menjadi numerical value

Pendefinisian data variabel bebas dan tidak bebas

Pendefinisian data training dan testing

```
x_train, x_test, y_train, y_test= train_test_split(x,y, test_size=0.2, random_state=123)

print("x_train = ", len(x_train))
print("x_test = ", len(x_test))

print("y_train = ", len(y_train))
print("y_test = ", len(y_test))

x_train = 8624
x_test = 2157
y_train = 8624
y_test = 2157
```

Standarisasi fitur dengan menghapus rata-rata dan penskalaan ke varians satuan. Ini berarti kita mengubah fitur sehingga memiliki rata-rata 0 dan varians 1.

```
sc = StandardScaler()
   x train = sc.fit transform(x train)
   x_test = sc.transform(x_test)
   x_train
array([[-0.8701173 , 0.82024879, -0.16552358],
       [ 1.61906588, -0.03443925, -0.18953984],
       [-0.70417176, -0.88912729, -1.34275712],
       [-0.8701173 , -0.03443925, -0.71353103],
       [ 1.95095697, 0.82024879, 1.85716975],
      [-0.8701173 , -1.74381533, -1.08111085]])
   x test
array([[ 1.28717479, -0.46178327, -0.28577955],
       [ 1.28717479, -0.03443925, -0.86208253],
       [ 0.78933815, 0.82024879, 2.01978168],
       [-0.8701173, -0.03443925, -0.37546938],
       [-0.37228067, 0.82024879, 0.59120703],
       [-0.8701173 , -1.74381533, -1.02801307]])
```

```
y_train

array([1, 0, 1, ..., 2, 0, 1])

y_test

array([2, 1, 2, ..., 2, 2, 1])
```

Hasil eksperimen dan pengukuran/evaluasi model

```
classifier = GaussianNB()
  classifier.fit(x_train,y_train)

v GaussianNB
GaussianNB()

PREDIKSI

y_prediksi = classifier.predict(x_test)
 y_prediksi

array([0, 0, 2, ..., 1, 2, 1])
```

```
classifier.predict_proba(x_test)

array([[5.47549981e-01, 5.60441957e-02, 3.96405823e-01],
        [4.72904449e-01, 8.62184472e-02, 4.40877104e-01],
        [1.58770871e-01, 1.21413237e-07, 8.41229008e-01],
        ...,
        [2.18273455e-01, 4.84384683e-01, 2.97341862e-01],
        [2.34568813e-01, 1.66160711e-02, 7.48815116e-01],
        [1.42755460e-01, 8.50453651e-01, 6.79088924e-03]])

cm = confusion_matrix(y_test, y_prediksi)
    print(cm)

[[103 308 296]
        [46 349 117]
        [55 201 682]]
```

AKURASI

```
akurasi = classification_report(y_test,y_prediksi)
print(akurasi)
```

	precision	recall	f1-score	support
Ø	0.50	0.15	0.23	707
1	0.41	0.68	0.51	512
2	0.62	0.73	0.67	938
accuracy			0.53	2157
macro avg	0.51	0.52	0.47	2157
weighted avg	0.53	0.53	0.49	2157

```
akurasi = accuracy_score(y_test,y_prediksi)
print("Tingkat Akurasi : %d persen"%(akurasi*100))
```

Tingkat Akurasi : 52 persen

```
ydata = pd.DataFrame()
ydata['y_test'] = pd.DataFrame(y_test)
ydata['y_prediksi'] = pd.DataFrame(y_prediksi)
ydata
```

	y_test	y_prediksi
0	2	0
1	1	0
2	2	2
3	2	2
4	2	1
2152	1	1
2153	2	0
2154	2	1
2155	2	2
2156	1	1

2157 rows × 2 columns

```
ydata.to_excel('numpybmwdata.xlsx', index=False)
```

E. KESIMPULAN

Naive Bayes adalah salah satu algoritma yang sering digunakan dalam pengenalan pola, analisis teks, klasifikasi dokumen, dan banyak aplikasi lainnya. Algoritma Naive Bayes mengandalkan asumsi dasar yang cukup sederhana, yaitu bahwa semua atribut (fitur) yang digunakan dalam klasifikasi adalah independen satu sama lain. Oleh karena itu, istilah "naive" digunakan, karena dalam dunia nyata, atribut seringkali tidak benar-benar independen. Namun, asumsi ini mempermudah perhitungan matematis dan sering kali menghasilkan hasil yang cukup baik, terutama dalam kasus klasifikasi teks. Rumus dasar Naive Bayes adalah berdasarkan pada Teorema Bayes, yang menghubungkan probabilitas suatu peristiwa dengan probabilitas peristiwa lain yang berhubungan. Dalam konteks klasifikasi, Naive Bayes digunakan untuk menghitung probabilitas bahwa sebuah sampel data termasuk dalam suatu kelas tertentu.

F. KONTRIBUSI ANGGOTA

Tuliskan persentase kontribusi masing-masing anggota dalam pekerjaan tugas ini. Kontribusi diukur dari peran aktif anggota, khususnya dalam kerja sama tim untuk menyelesaikan proyek ini.

No	NIM	NAMA	KONTRIBUSI DAN KEAKTIFAN (%)
1.	A11.2017.10276	Sofwan Hidayat	100%
2.	A11.2020.13205	Athiya Nahdhiana	100%
3.	A11.2019.12030	Anggito Budhi Prasojo	100%
4.	A11.2021.13605	Evan faiz	100%