Package 'BayesFBHborrow'

September 16, 2024

Title Bayesian Dynamic Borrowing with Flexible Baseline Hazard Function
Version 2.0.2
Description Allows Bayesian borrowing from a historical dataset for time-to-event data. A flexible baseline hazard function is achieved via a piecewise exponential likelihood with time varying split points and smoothing prior on the historic baseline hazards. The method is described in Scott and Lewin (2024) <doi:10.48550 arxiv.2401.06082="">, and the software paper is in Axillus et al. (2024) <doi:10.48550 arxiv.2408.04327="">.</doi:10.48550></doi:10.48550>
License Apache License (>= 2)
Encoding UTF-8
Author Darren Scott [aut, cre], Sophia Axillus [aut]
RoxygenNote 7.3.1
Suggests tibble, readxl, testthat (>= 3.0.0), rmarkdown, ggfortify, condSURV
Config/testthat/edition 3
Imports dplyr, stats, survival, invgamma, mvtnorm, checkmate, magrittr, ggplot2
Depends R (>= 4.1)
LazyData true
NeedsCompilation no
Maintainer Darren Scott <darren.scott@astrazeneca.com></darren.scott@astrazeneca.com>
Repository CRAN
Date/Publication 2024-09-16 11:00:06 UTC
Contents
.beta.MH.RW.glm

2 Contents

beta_MH_RW	
beta_mom	5
beta_mom.NR.fun	6
birth_move	
dataframe fun	7
death_move	7
glmFit	
ICAR_calc	
input_check	
J_RJMCMC	
J_RJMCMC_NoBorrow	
lambda_0_MH_cp	
lambda_0_MH_cp_NoBorrow	
lambda_conj_prop	
lambda_MH_cp	
lgamma_ratio	
llikelihood_ratio_lambda	
logsumexp	
log_likelihood	
lprop.dens.beta.NR	
lprop_density_beta	
ltau_dprior	
mu_update	
normalize_prob	
nu_sigma_update	
plot_hist	
plot_matrix	
plot_trace	
predictive_hazard	
predictive_hazard_ratio	
predictive_survival	
set_hyperparameters	27
set_tuning_parameters	
shuffle_split_point_location	
shuffle_split_point_location_NoBorrow	29
sigma2_update	30
smooth_hazard	31
smooth_survival	31
tau_update	32
BayesFBHborrow	33
BayesFBHborrow.NoBorrow	34
BayesFBHborrow.WBorrow	36
coef.BayesFBHborrow	38
GibbsMH	
GibbsMH.NoBorrow	
GibbsMH.WBorrow	
proun summary	45

.beta.MH.RW.glm

	init_lambda_hyperparameters	16
	piecewise_exp_cc	17
	piecewise_exp_hist	17
	plot.BayesFBHborrow	18
	summary.BayesFBHborrow	19
	weibull_cc	50
	weibull_hist	50
Index	5	52

.beta.MH.RW.glm

Beta MH RW sampler from freq PEM fit

Description

Sample beta from RW sampler

Usage

```
.beta.MH.RW.glm(df, beta, beta_count, cprop_beta)
```

Arguments

df Data frame with indicators

beta vector of parameters

beta_count count number of accepted proposals

cprop_beta proposal scalar

Value

beta, either old or new move

.beta_MH_MALA

Proposal beta with a Metropolis Adjusted Langevin (MALA)

Description

Proposal beta with a Metropolis Adjusted Langevin (MALA)

```
.beta_MH_MALA(df, beta, bp, cprop_beta, beta_count)
```

.beta_MH_NR

Arguments

df Data frame with indicators

beta vector of parameters
bp number of covariates

cprop_beta proposal variance standard deviation

beta_count count number of accepts

Value

updated beta vector

.beta_MH_NR Newton Raphson MH move

Description

Sample beta from RW sampler

Usage

```
.beta_MH_NR(df, beta, bp, cprop_beta, beta_count)
```

Arguments

df Data frame with indicators

beta vector of parameters
bp number of covariates

cprop_beta proposal scalar

beta_count count number of accepts

Value

updated beta

.beta_MH_RW 5

.beta_MH_RW	Beta Metropolis-Hastings random walk move
-------------	---

Description

Update beta via a Metropolis-Hastings Random Walk move

Usage

```
.beta_MH_RW(df, beta, bp, cprop_beta, beta_count)
```

Arguments

df data.frame from dataframe_fun()

beta beta values

bp number of covariates

cprop_beta hyperparameter for beta proposal standard deviation

beta_count number of moves done for beta

Value

beta, either old or new move

 $. \, {\tt beta_mom} \qquad \qquad \textit{Mean for MALA using derivative for beta proposal}$

Description

Mean for MALA using derivative for beta proposal

Usage

```
.beta_mom(df, k, beta, bp, cprop_beta)
```

Arguments

df Data frame with indicators

k index for beta

beta vector of parameters
bp number of covariates
cprop_beta proposal standard dev

Value

proposal mean

6 .birth_move

.beta_mom.NR.fun	First and second derivative of target for mode and variance of proposal

Description

First and second derivative of target for mode and variance of proposal

Usage

```
.beta_mom.NR.fun(df, k, beta, bp, cprop_beta)
```

Arguments

df	Data f	rame	with	indicators
uı	Data	ranne	willi	muicators

k index

beta vector of parameters bp number of covariates

cprop_beta proposal variance standard deviation

Value

First and second derivative mode and variance

.birth_move	Birth move in RJMCMC	

Description

Calculates new values of x when proposing another split point, based on a weighted mean, as $x_n = (1-U)/U$

Usage

```
.birth_move(U, sj, s_star, sjm1, x, j)
```

U	uniform random number
sj	upcoming split point location, j
s_star	new split point location, *
sjm1	previous split point location, j-1
X	vector of parameter values, length J + 1
i	split point

.dataframe_fun 7

Value

vector with adjusted parameter values after additional split point, length J + 2

.dataframe_fun

Create data.frame for piecewise exponential models

Description

Construct a split data.frame for updated split points

Usage

```
.dataframe_fun(Y, I, X, s, lambda, bp, J)
```

Arguments

Υ	time-to-event
I	censor indicator
Χ	design Matrix
S	split point locations, including start and end (length J + 2)
lambda	baseline Hazards (length J+1)
bp	number of covariates
J	number of split points

Value

data.frame with columns c(tstart, id, X1,..., Xp, Y, I, lambda)

.death_move

Death move in RJMCMC

Description

Calculates new values of x when proposing the death of a split point

```
.death_move(sjp1, sj, sjm1, x, j)
```

8 .ICAR_calc

Arguments

sjp1	upcoming split point location, $J + 1$
sj	split point location to be removed, j
sjm1	previous split point location, j-1
Х	vector of parameter values, length J + 1
j	split point

Value

vector with adjusted parameter values after removal of split point, length J

.glmFit	Fit frequentist piecewise exponential model for MLE and information
	matrix of beta

Description

Compute MLE for PEM

Usage

```
.glmFit(df)
```

Arguments

df

Data frame with time-to-event, censoring indicator and covariates

Value

beta MLE and inverse of information matrix

.ICAR_calc	Calculate covariance matrix in the MVN-ICAR

Description

Calculate covariance matrix in the MVN-ICAR

```
.ICAR_calc(s, J, clam)
```

.input_check 9

Arguments

```
\begin{array}{ll} s & split\ points,\ J+2 \\ \\ J & number\ of\ split\ points \\ \\ clam & controls\ neighbor\ interactions,\ in\ range\ (0,\ 1) \\ \end{array}
```

Value

```
Sigma_s = (I - W)^{(-1)} * Q, W, Q
```

.input_check

Input checker

Description

Checks inputs before Gibbs sampler is run

Usage

```
.input_check(
   Y,
   Y_0,
   X,
   X_0,
   tuning_parameters,
   initial_values = NULL,
   hyperparameters
)
```

Arguments

Value

```
a print statement
```

10 .J_RJMCMC

.J_RJMCMC

RJMCMC (with Bayesian Borrowing)

Description

Metropolis-Hastings Green Reversible Jump move, with Bayesian Borrowing

Usage

```
.J_RJMCMC(
 df_hist,
  df_curr,
 Υ,
 Y_0,
  I,
  I_0,
 Χ,
 X_0,
  lambda,
  lambda_0,
 beta,
 beta_0,
 mu,
  sigma2,
  tau,
  s,
  J,
  Jmax,
  bp,
  bp_0,
  clam_smooth,
  a_{tau} = NULL
 b_{tau} = NULL
 c_tau = NULL,
 d_{tau} = NULL,
  type,
  p_0 = NULL
 phi,
 pi_b,
 maxSj
)
```

```
df_hist data_frame containing historical data.

df_curr data_frame containing current trial data.
```

 $.J_RJMCMC$ 11

Υ data.

historical data. Y_0

Ι censoring indicator.

historical trial censoring indicator. I_0

Χ design matrix.

X_0 historical trial design matrix.

lambda baseline hazard.

lambda_0 historical trial baseline hazard.

current trial parameters. beta beta_0 historical trial parameters.

prior mean for baseline hazard. mu

sigma2 prior variance hyperparameter for baseline hazard.

borrowing parameter. tau

split point locations, J + 2. number of split points. J

Jmax maximum number of split points. number of covariates in current trial. bp number of covariates in historical trial.

clam_smooth neighbor interactions, in range (0, 1), for ICAR update.

a_tau tau hyperparameter. b_tau tau hyperparameter. c_tau tau hyperparameter. d_tau tau hyperparameter.

choice of borrowing, "mix", "uni", or any other string for borrowing on every type

baseline hazard without mixture.

mixture ratio. p_0 phi J hyperparameter.

pi_b probability of birth move.

maximal time point, either current or historic. maxSj

Value

bp_0

list of proposed J and s, with adjusted values of lambda, lambda_0, tau, Sigma_s, and data_frames for historical and current trial data.

.J_RJMCMC_NoBorrow

RJMCMC (without Bayesian Borrowing)

Description

Metropolis-Hastings Green Reversible Jump move, without Bayesian Borrowing

Usage

```
.J_RJMCMC_NoBorrow(
  df,
  Y_0,
  I_0,
  X_0,
  lambda_0,
  beta_0,
 mu,
  sigma2,
  s,
  J,
  Jmax,
  bp_0,
  clam_smooth,
  phi,
  pi_b
)
```

```
df
                  data_frame
Y_0
                  data
                  censoring indicator
I_0
                  design matrix
X_0
                  baseline hazard
lambda_0
                  historical trial parameters
beta_0
                  prior mean for baseline hazard
mu
                  prior variance hyperparameter for baseline hazard
sigma2
                  split point locations, J + 2
s
J
                  number of split points
                  maximum number of split points
Jmax
                  number of covariates in historical trial
bp_0
                  neighbor interactions, in range (0, 1), for ICAR update
clam_smooth
                  J hyperparameter
phi
pi_b
                  probability of birth move
```

.lambda_0_MH_cp

Value

list of proposed J and s, with adjusted values of lambda, lambda_0, tau, Sigma_s, and data_frames for historical and current trial data

.lambda_0_MH_cp

Lambda_0 MH step, proposal from conditional conjugate posterior

Description

Lambda_0 MH step, proposal from conditional conjugate posterior

Usage

```
.lambda_0_MH_cp(
 df_hist,
 Y_0,
 I_0,
 X_0 = NULL
 beta_0 = NULL,
 mu,
 sigma2,
 lambda,
  lambda_0,
  tau,
 bp_0 = 0,
  J,
 clam,
 a_{1am} = 0.01,
 b_{lam} = 0.01,
 lambda_0_count = 0,
  lambda_0_move = 0
)
```

df_hist	data.frame from dataframe_fun()
Y_0	historical trial data
I_0	historical trial censoring indicator
X_0	historical trial design matrix
S	split point locations, (J+2)
beta_0	parameter value for historical covariates
mu	prior mean for baseline hazard
sigma2	prior variance hyperparameter for baseline hazard

lambda	baseline hazard
lambda_0	historical baseline hazard
tau	borrowing parameter
bp_0	number of covariates, length(beta_0)
J	number of split points
clam	controls neighbor interactions, in range $(0, 1)$
a_lam	lambda hyperparameter, default is 0.01
b_lam	lambda hyperparameter, default is 0.01
lambda_0_count	number of total moves for lambda_0
lambda_0_move	number of accepted moves for lambda_0

Value

list of updated (if accepted) lambda_0 and data.frames, as well as the number of accepted moves

```
.lambda_0_MH_cp_NoBorrow
```

Lambda_0 MH step, proposal from conditional conjugate posterior

Description

Lambda_0 MH step, proposal from conditional conjugate posterior

```
.lambda_0_MH_cp_NoBorrow(
 df_hist,
 Y_0,
 I_0,
 X_0 = NULL,
 beta_0 = NULL,
 mu,
 sigma2,
 lambda_0,
 bp_0 = 0,
  J,
 clam,
 a_{1am} = 0.01,
 b_{lam} = 0.01,
 lambda_0_count = 0,
  lambda_0_move = 0
)
```

.lambda_conj_prop 15

Arguments

df_hist	data.frame from dataframe_fun()
Y_0	historical trial data
I_0	historical trial censoring indicator
X_0	historical trial design matrix
S	split point locations, (J+2)
beta_0	parameter value for historical covariates
mu	prior mean for baseline hazard
sigma2	prior variance hyperparameter for baseline hazard
lambda_0	baseline hazard
bp_0	number of covariates, length(beta_0)
J	number of split points
clam	controls neighbor interactions, in range (0, 1)
a_lam	lambda hyperparameter, default is 0.01
b_lam	lambda hyperparameter, default is 0.01
lambda_0_count	number of total moves for lambda_0
lambda_0_move	number of accepted moves for lambda_0

Value

list of updated (if accepted) lambda_0 and data.frames, as well as the number of accepted moves

.lambda_conj_prop	Propose lambda from a gamma conditional conjugate posterior pro-
	posal

Description

Propose lambda from a gamma conditional conjugate posterior proposal

Usage

```
.lambda_conj_prop(df, beta, j, bp, alam = 0.01, blam = 0.01)
```

df	data.frame from dataframe_fun()
beta	parameter value for beta
j	current split point
bp	number of covariates
alam	lambda hyperparameter, default set to 0.01
blam	lambda hyperparameter, default set to 0.01

.lambda_MH_cp

Value

list containing proposed lambda, shape and rate parameters

.lambda_MH_cp

Lambda MH step, proposal from conditional conjugate posterior

Description

Lambda MH step, proposal from conditional conjugate posterior

Usage

```
.lambda_MH_cp(
 df_hist,
  df_curr,
  Υ,
  I,
  Χ,
  s,
  beta,
  beta_0 = NULL,
 mu,
  sigma2,
  lambda,
  lambda_0,
  tau,
  bp,
  bp_0 = 0,
  J,
  a_{lam} = 0.01,
  b_{lam} = 0.01,
  lambda_move = 0,
  lambda_count = 0,
  alpha = 0.3
)
```

```
df_hist data.frame from dataframe_fun()
df_curr data.frame from dataframe_fun()
Y data
I censoring indicator
X design matrix
s split point locations, J + 2
beta parameter value for covariates
```

.lgamma_ratio 17

beta_0 parameter value for historical covariates

mu prior mean for baseline hazard

sigma2 prior variance hyperparameter for baseline hazard

lambda baseline hazard

lambda_0 historical baseline hazard tau borrowing parameter

bp number of covariates, length(beta)
bp_0 number of covariates, length(beta_0)

J number of split points
a_lam lambda hyperparameter
b_lam lambda hyperparameter

lambda_move number of accepted lambda moves lambda_count total number of lambda moves

alpha power parameter

Value

list of updated (if accepted) lambda and data.frames, as well as the number of accepted moves

.lgamma_ratio

Calculate log gamma ratio for two different parameter values

Description

Calculate log gamma ratio for two different parameter values

Usage

```
.lgamma_ratio(x1, x2, shape, rate)
```

Arguments

x1 old parameter value

x2 proposed parameter value

shape shape parameter rate rate parameter

Value

log gamma ratio

.llikelihood_ratio_beta

Loglikelihood ratio calculation for beta parameters

Description

Compute log likelihood for beta update

Usage

```
.llikelihood_ratio_beta(df, beta, beta_new)
```

Arguments

df data.frame from dataframe_fun()

beta beta values

beta_new proposed beta values

Value

likelihood ratio

```
.llikelihood_ratio_lambda
```

Log likelihood for lambda / lambda_0 update

Description

Log likelihood for lambda / lambda_0 update

Usage

```
.llikelihood_ratio_lambda(df, df_prop, beta)
```

Arguments

df data.frame from dataframe_fun()

df_prop proposal data.frame
beta parameter value for beta

Value

log likelihood ratio for lambda

.logsumexp

.logsumexp

Computes the logarithmic sum of an exponential

Description

Computes the logarithmic sum of an exponential

Usage

```
.logsumexp(x)
```

Arguments

Х

set of log probabilities

Value

the logarithmic sum of an exponential

.log_likelihood

Log likelihood function

Description

Log likelihood function

Usage

```
.log_likelihood(df, beta)
```

Arguments

df data.frame containing data, time split points, and lambda

beta coefficients for covariates

Value

log likelihood given lambdas and betas

20 .lprop_density_beta

.lprop.dens.beta.NR

log Gaussian proposal density for Newton Raphson proposal

Description

log Gaussian proposal density for Newton Raphson proposal

Usage

```
.lprop.dens.beta.NR(beta.prop, mu_old, var_old)
```

Arguments

beta.prop beta proposal
mu_old density mean
var_old density variance

Value

log Gaussian density

Description

Log density of proposal for MALA

Usage

```
.lprop_density_beta(beta_prop, mu, cprop_beta)
```

Arguments

beta_prop proposal beta

mu mean of proposal distribution

cprop_beta proposal standard dev

Value

log density

.ltau_dprior 21

.ltau_dprior	Calculate log density tau prior	

Description

Calculate log density tau prior

Usage

```
.ltau_dprior(tau, a_tau, b_tau, c_tau = NULL, d_tau = NULL, p_0 = NULL, type)
```

Arguments

tau	current value(s) of tau
a_tau	tau hyperparameter
b_tau	tau hyperparameter
c_tau	tau hyperparameter
d_tau	tau hyperparameter
p_0	mixture ratio
type	choice of borrowing, "mix", "uni", or any other string for borrowing on every baseline hazard without mixture

Value

log density of tau

.mu_update	Calculate mu posterior update

Description

Calculate mu posterior update

Usage

```
.mu_update(Sigma_s, lambda_0, sigma2, J)
```

```
Sigma_s VCV matrix (j + 1) x (j + 1).

lambda_0 Baseline hazard.

sigma2 Scale variance.

J Number of split point.
```

22 .nu_sigma_update

Value

mu update from Normal.

.normalize_prob

Normalize a set of probability to one, using the the log-sum-exp trick

Description

Normalize a set of probability to one, using the the log-sum-exp trick

Usage

```
.normalize_prob(x)
```

Arguments

Χ

set of log probabilities

Value

normalized set of log probabilities

 $.nu_sigma_update$

Calculates nu and sigma2 for the Gaussian Markov random field prior, for a given split point j

Description

Calculates nu and sigma2 for the Gaussian Markov random field prior, for a given split point j

Usage

```
.nu_sigma_update(j, lambda_0, mu, sigma2, W, Q, J)
```

Arguments

j	current split point
lambda_0	historical baseline hazard
mu	prior mean for baseline hazard
sigma2	prior variance hyperparameter for baseline hazard
W	influence from right and left neighbors
Q	individual effect of neighborhood
J	number of split points

Value

nu and sigma2

.plot_hist 23

 $.plot_hist$

Plot histogram from MCMC samples

Description

Plots a histogram of the given discrete MCMC samples

Usage

```
.plot_hist(
  samples,
  title = "",
  xlab = "Values",
  ylab = "Frequency",
  color = "black",
  fill = "blue",
  binwidth = 0.05,
  scale_x = FALSE
)
```

Arguments

samples	data.frame containing the discrete MCMC samples
title	title of the plot, default is none
xlab	x-label of the plot, default is "Values"
ylab	y-label of the plot, default is "Frequency"
color	outline color for the bars, default is "black"
fill	fill color, default is "blue"
binwidth	width of the histogram bins, default is 0.5
scale_x	option to scale the x-axis, suitable for discrete samples, default is FALSE

Value

```
a ggplot2 object
```

.plot_matrix

.plot_matrix

Plot smoothed baseline hazards

Description

Plot mean and given quantiles of a matrix. Can also be used to plot derivatives of the baseline hazard, such as estimated cumulative hazard and survival function.

Usage

```
.plot_matrix(
    x_lim,
    y,
    percentiles = c(0.05, 0.95),
    title = "",
    xlab = "",
    ylab = "",
    color = "blue",
    fill = "blue",
    linewidth = 1,
    alpha = 0.2,
    y2 = NULL,
    color2 = "red",
    fill2 = "red"
)
```

Arguments

```
x_lim
                   time grid
                   samples
percentiles
                   percentiles to include in plot, default is c(0.025, 0.975)
title
                   optional, add title to plot
xlab
                    optional, add xlabel
ylab
                   optional, add ylabel
                   color of the mid line, default is blue
color
fill
                   color of the percentiles, default is blue
                   thickness of the plotted line, default is 1
linewidth
alpha
                   opacity of the percentiles, default is 0.2
                    (optional) second set of samples for comparison
y2
                   (optional) color of the mid line, default is red
color2
fil12
                   (optional) color of the percentiles, default is red
```

Value

```
a ggplot2 object
```

.plot_trace 25

.plot_trace

Plot MCMC trace

Description

Creates a trace plot of given MCMC samples.

Usage

```
.plot_trace(
    x_lim,
    samples,
    title = "",
    xlab = "",
    ylab = "",
    color = "black",
    linewidth = 1
)
```

Arguments

x_lim	x-axis of the plot
samples	samples from MCMC
title	optional, add title to plot
xlab	optional, add xlabel
ylab	optional, add ylabel
color	color of the mid line, default is black
linewidth	thickness of the plotted line, default is 1

Value

```
a ggplot2 object
```

 $. \verb|predictive_haz| ard$

Predictive hazard from BayesFBHborrow object

Description

Predictive hazard from BayesFBHborrow object

```
.predictive_hazard(out_slam, x_pred, beta_samples)
```

26 .predictive_survival

Arguments

out_slam samples from the smoothed baseline hazard

x_pred set of predictors to be used for calculating the predictive hazard

beta_samples samples of the covariates

Value

matrix of the predictive hazard

```
.predictive_hazard_ratio
```

Predictive hazard ratio (HR) from BayesFBHborrow object

Description

Predictive hazard ratio (HR) from BayesFBHborrow object

Usage

```
.predictive_hazard_ratio(x_pred, beta_samples)
```

Arguments

x_pred set of predictors to be used for calculating the predictive HR

beta_samples samples of the covariates

Value

posterior samples for expectation and credible intervals

```
.predictive_survival Predictive survival from BayesFBHborrow object
```

Description

Predictive survival from BayesFBHborrow object

```
.predictive_survival(grid_width, out_slam, x_pred, beta_samples)
```

.set_hyperparameters 27

Arguments

grid_width size of time step

out_slam samples from the smoothed baseline hazard

x_pred set of predictors to be used for calculating the predictive survival

beta_samples samples of the covariates

Value

matrix of the predictive survival

.set_hyperparameters Set tuning parameters

Description

Set tuning parameters

Usage

```
.set_hyperparameters(hyperparameters = NULL, model_choice)
```

Arguments

hyperparameters

list of hyperparameters, could contain any combination of the listed hyperpa-

rameters

model_choice choice of model, could be either of 'mix', 'uni' or 'all'

Value

filled list of tuning_parameters

```
.set_tuning_parameters
```

Set tuning parameters

Description

Set tuning parameters

```
.set_tuning_parameters(tuning_parameters = NULL, borrow, X, X_0 = NULL)
```

Arguments

```
tuning_parameters
list of tuning_parameters, could contain any combination of the listed tuning parameters

borrow choice of borrow, could be TRUE or FALSE

X design matrix for concurrent trial

X_0 design matrix for historical trial
```

Value

filled list of tuning_parameters

```
.shuffle_split_point_location

Metropolis Hastings step: shuffle the split point locations (with Bayesian borrowing)
```

Description

Metropolis Hastings step: shuffle the split point locations (with Bayesian borrowing)

```
.shuffle_split_point_location(
 df_hist,
 df_curr,
  Y_0,
  I_0,
  X_0,
 lambda_0,
 beta_0,
 Υ,
 I,
 Χ,
  lambda,
 beta,
  s,
  J,
 bp_0,
 bp,
 clam_smooth,
 maxSj
)
```

Arguments

df_hist	dataframe containing historical trial data and parmaeters
df_curr	data.frame containing current trial data and parameters
Y_0	historical trial data
I_0	historical trial censoring indicator
X_0	historical trial design matrix
lambda_0	historical baseline hazard
beta_0	historical parameter vector
Υ	data
I	censoring indicator
X	design matrix
lambda	baseline hazard
beta	parameter vector
S	split point locations, J + 2
J	number of split points
bp_0	number of covariates in historical trial
bp	number of covariates in current trial
clam_smooth	neighbor interactions, in range (0, 1), for ICAR update

Value

maxSj

list containing new split points, updated Sigma_s and data.frames for historic and current trial data

the smallest of the maximal time points, $min(max(Y), max(Y_0))$

```
.shuffle_split_point_location_NoBorrow

Metropolis Hastings step: shuffle the split point locations (without Bayesian borrowing)
```

Description

Metropolis Hastings step: shuffle the split point locations (without Bayesian borrowing)

```
.shuffle_split_point_location_NoBorrow(
   df,
   Y_0,
   I_0,
   X_0,
   lambda_0,
```

30 .sigma2_update

```
beta_0,
s,
J,
bp_0,
clam_smooth
```

Arguments

df dataframe containing trial data and parameters Y_0 data I_0 censoring indicator X_0 design matrix $lambda_0$ baseline hazard beta_0 parameter vector split point locations, J + 2number of split points J

number of covariates in historical trial bp_0

neighbor interactions, in range (0, 1), for ICAR update clam_smooth

Value

list containing new split points, updated Sigma_s and data.frames for historic and current trial data

.sigma2_update Calculate sigma2 posterior update

Description

Calculate sigma2 posterior update

Usage

```
.sigma2_update(mu, lambda_0, Sigma_s, J, a_sigma, b_sigma)
```

mu	mean.
lambda_0	Baseline hazard.
Sigma_s	VCV matrix $(j + 1) \times (j + 1)$.
J	Number of split point.
a_sigma	Hyperparameter a.
b_sigma	Hyperparameter b.

.smooth_hazard 31

Value

sigma2 draw from IG

.smooth_hazard

Smoothed hazard function

Description

Smoothed hazard function

Usage

```
.smooth_hazard(out_slam, beta_samples = NULL)
```

Arguments

out_slam samples from GibbsMH of the baseline hazard beta_samples samples from GibbsMH from the treatment effect

Value

smoothed function for the baseline hazard

.smooth_survival

Smoothed survival curve

Description

Smoothed survival curve

Usage

```
.smooth_survival(grid_width, out_slam, beta_samples = NULL)
```

Arguments

grid_width step size

out_slam samples from GibbsMH of the baseline hazard beta_samples samples from GibbsMH from the treatment effect

Value

smoothed survival function

.tau_update

.tau_update

Sample tau from posterior distribution

Description

Sample tau from posterior distribution

Usage

```
.tau_update(
  lambda_0,
  lambda,
  J,
  s,
  a_tau,
  b_tau,
  c_tau = NULL,
  d_tau = NULL,
  type
)
```

Arguments

lambda_0	historical baseline hazard
lambda	baseline hazard
J	number of split points
S	split point locations, J + 2
a_tau	Inverse Gamma hyperparameter
b_tau	Inverse Gamma hyperparameter
c_tau	Inverse Gamma hyperparameter
d_tau	Inverse Gamma hyperparameter
p_0	mixture ratio
type	choice of borrowing, "mix", "uni", or any other string for borrowing on every baseline hazard without mixture

Value

list containing tau and new mixture ratio

BayesFBHborrow 33

BayesFBHborrow

BayesFBHborrow: Run MCMC for a piecewise exponential model

Description

Main function of the BayesFBHborrow package. This generic function calls the correct MCMC sampler for time-to-event Bayesian borrowing.

Usage

```
BayesFBHborrow(
  data,
  data_hist = NULL,
  borrow = TRUE,
  model_choice,
  tuning_parameters,
  hyperparameters,
  lambda_hyperparameters,
  iter,
  warmup_iter,
  refresh,
  verbose,
  max_grid
)
```

"phi" = 3)

Arguments

data.frame containing atleast three vectors of "tte" (time-to-event) and "event" data (censoring), and covariates "X_i" (where i should be a number/ indicator of the covariate) data_hist data.frame containing atleast two vectors of "tte" (time-to-event) and "event" (censoring), with the option of adding covariates named "X_0_i" (where i should be a number/indicator of the covariate), for historical data borrow TRUE (default), will run the model with borrowing model_choice choice of which borrowing model to use out of "mix", "uni" or "all" tuning_parameters list of "cprop_beta" ("cprop_beta_0" for historical data), "alpha", "Jmax", and "pi_b". Default is list("Jmax" = 5, "clam_smooth" = 0.8, "cprop_beta" = 0.5, "cprop_beta_0" = 0.5, "pi_b" = 0.5, "alpha" = 0.4) hyperparameters list containing the hyperparameters ("a_tau", "b_tau", "c_tau", "d_tau", "type", "p_0", "a_sigma", "b_sigma"). Default is list("a_tau" = 1, "b_tau" = 1, "c_tau" = 1, "d_tau" = 0.001, "type" = "mix", "p_0" = 0.5, "a_sigma" = 2, "b_sigma" = 2, lambda_hyperparameters

contains two hyperparameters (a_lambda and b_lambda) used for the update of

lambda and lambda_0. Default is c(0.01, 0.01)

iter number of iterations for MCMC sampler

warmup_iter number of warmup iterations (burn-in) for MCMC sampler.

refresh number of iterations between printed screen updates

verbose FALSE (default), choice of output, if TRUE will output intermittent results into

console

max_grid grid size for the smoothed baseline hazard

Value

a nested list of two items, 'out' and 'plots'. The list 'out' will contain all the samples of the MCMC chain, as well as acceptance ratios. The latter, 'plots', contains plots (and data) of the smoothed baseline hazard, smoothed survival, a histogram of the sampled number of split points, and the trace plot of the treatment effect beta_1

Examples

```
set.seed(123)
# Load the example data
data(piecewise_exp_cc, package = "BayesFBHborrow")
data(piecewise_exp_hist, package = "BayesFBHborrow")
# Set your tuning parameters
tuning_parameters <- list("Jmax" = 5,</pre>
                          "pi_b" = 0.5,
                           "cprop_beta" = 3.25,
                           "alpha" = 0.4)
# Set hyperparameters to default, with the borrowing model "mix"
out <- BayesFBHborrow(data = piecewise_exp_cc, data_hist = piecewise_exp_hist,
                      model_choice = 'mix', tuning_parameters = tuning_parameters,
                      iter = 2, warmup_iter = 0)
# Create a summary of the output
summary(out$out, estimator = "out_fixed")
# Plot the predictive curves for the treatment group
plots <- plot(out$out, out$out$time_grid, x_pred = c(1))</pre>
```

BayesFBHborrow.NoBorrow

Run the MCMC sampler without Bayesian Borrowing

Description

Main function of the BayesFBHborrow package. This generic function calls the correct MCMC sampler for time-to-event without Bayesian borrowing.

Usage

```
## S3 method for class 'NoBorrow'
BayesFBHborrow(
  data,
  data_hist = NULL,
  borrow = FALSE,
  model_choice = "no_borrow",
  tuning_parameters = NULL,
  hyperparameters = NULL,
  lambda_hyperparameters = list(a_lambda = 0.01, b_lambda = 0.01),
  iter = 2000,
  warmup_iter = 2000,
  refresh = 0,
  verbose = FALSE,
  max_grid = 2000
)
```

Arguments

data.frame containing atleast three vectors of "tte" (time-to-event) and "event" (event indicator), and covariates "X_i" (where i should be a number/ indicator of the covariate)

data_hist

NULL (not used)

borrow FALSE (default), will run the model with borrowing

model_choice 'no_borrow' (default), for no borrowing

tuning_parameters

list of "cprop_beta", "Jmax", and "pi_b". Default is ("Jmax" = 5, "cprop_beta" = 0.5, "pi_b" = 0.5)

hyperparameters

list containing the hyperparameters $c("a_sigma", "b_sigma", "phi", clam_smooth")$. Default is list("a_sigma" = 2, "b_sigma" = 2, "phi" = 3, "clam_smooth" = 0.8)

lambda_hyperparameters

contains two hyperparameters ("a lambda" and "b lambda") used for the update

of lambda, default is c(0.01, 0.01)

iter number of iterations for MCMC sampler. Default is 2000

warmup_iter number of warmup iterations (burn-in) for MCMC sampler. Default is 2000

refresh number of iterations between printed console updates. Default is 0

verbose FALSE (default), choice of output, if TRUE will output intermittent results into

console

max_grid grid size for the smoothed baseline hazard. Default is 2000

Value

a nested list of two items, 'out' and 'plots'. The list 'out' will contain all the samples of the MCMC chain, as well as acceptance ratios. The latter, 'plots', contains plots (and data) of the smoothed baseline hazard, smoothed survival, a histogram of the sampled number of split points, and the trace plot of the treatment effect beta_1

Examples

BayesFBHborrow.WBorrow

Run the MCMC sampler with Bayesian Borrowing

Description

Main function of the BayesFBHborrow package. This generic function calls the correct MCMC sampler for time-to-event Bayesian borrowing.

Usage

```
## $3 method for class 'WBorrow'
BayesFBHborrow(
  data,
  data_hist,
  borrow = TRUE,
  model_choice = "mix",
  tuning_parameters = NULL,
  hyperparameters = NULL,
  lambda_hyperparameters = list(a_lambda = 0.01, b_lambda = 0.01),
  iter = 2000,
  warmup_iter = 2000,
  refresh = 0,
  verbose = FALSE,
  max_grid = 2000
)
```

Arguments

data

data.frame containing atleast three vectors called "tte" (time-to-event), "event" (censoring), and covariates "X_i" (where i should be a number/indicator of the covariate)

data_hist data.frame containing atleast two vectors called "tte" (time-to-event) and "event"

(censoring), with the option of adding covariates named "X_0_i" (where i should

be a number/indicator of the covariate) for the historical data

borrow TRUE (default), will run the model with borrowing

model_choice choice of which borrowing model to use out of 'mix', 'uni' or 'all'

tuning_parameters

list of "cprop_beta" ("cprop_beta_0" for historical data), "alpha", "Jmax", and "pi_b". Default is list("Jmax" = 5, "clam_smooth" = 0.8, "cprop_beta" = 0.5, cprop_beta_0" = 0.5, "pi_b" = 0.5, "alpha" = 0.4)

hyperparameters

list containing the hyperparameters ("a_tau", "b_tau", "c_tau", "d_tau","type", "p_0", "a_sigma", "b_sigma"). Default is list("a_tau" = 1, "b_tau" = 1,"c_tau" = 1, "d_tau" = 0.001, "type" = "mix", "p_0" = 0.5, "a_sigma" = 2, "b_sigma" = 2, "phi" = 3)

lambda_hyperparameters

contains three hyperparameters (a_lambda, b_lambda) used for the update of

lambda and lambda_0. Default is c(0.01, 0.01)

iter number of iterations for MCMC sampler. Default is 2000

warmup_iter number of warmup iterations (burn-in) for MCMC sampler. Default is 2000

refresh number of iterations between printed console updates. Default is 0

verbose FALSE (default), choice of output, if TRUE will output intermittent results into

console

max_grid grid size for the smoothed baseline hazard. Default is 2000

Value

a nested list of two items, 'out' and 'plots'. The list 'out' will contain all the samples of the MCMC chain, as well as acceptance ratios. The latter, 'plots', contains plots (and data) of the smoothed baseline hazard, smoothed survival, a histogram of the sampled number of split points, and the trace plot of the treatment effect beta_1

coef.BayesFBHborrow

```
iter = 2, warmup_iter = 0)

# Create a summary of the output
summary(out$out, estimator = "out_fixed")

# Plot the predictive curves for the treatment group
plots <- plot(out$out, out$out$time_grid, x_pred = c(1))</pre>
```

coef.BayesFBHborrow

Extract mean posterior values

Description

S3 method for class "BayesFBHborrow", returns the mean posterior values for the fixed parameters

Usage

```
## S3 method for class 'BayesFBHborrow'
coef(object, ...)
```

Arguments

```
object MCMC sample object from BayesFBHborrow()
... other arguments, see coef.default()
```

Value

mean values of given samples

GibbsMH 39

GibbsMH

S3 generic, calls the correct GibbsMH sampler

Description

An MCMC sampler for Bayesian borrowing with time-to-event data. We obtain a flexible baseline hazard function by making the split points random within a piecewise exponential model and using a Gaussian Markov random field prior to smooth the baseline hazards. Only calls the sampler and does not run any input checks. Best practice is to call BayesFBHborrow(), if the user is not familiar with the model at hand.

Usage

```
GibbsMH(
   Y,
   I,
   X,
   Y_0 = NULL,
   I_0 = NULL,
   X_0 = NULL,
   tuning_parameters,
   hyperparameters,
   lambda_hyperparameters,
   iter,
   warmup_iter,
   refresh,
   max_grid
)
```

Arguments

```
Υ
                  data
Ι
                  event indicator
Χ
                  design matrix
                  historical data, default is NULL
Y_0
                  historical event indicator, default is NULL
I_0
X_0
                  historical design matrix, default is NULL
tuning_parameters
                  list of "cprop_beta", "cprop_beta_0", "alpha", "Jmax", and "pi_b"
hyperparameters
                  list containing the hyperparameters c("a_tau", "b_tau", "c_tau", "d_tau", "type",
                  "p_0", "a_sigma", "b_sigma", "Jmax", "clam_smooth", "cprop_beta", "phi",
                  "pi_b"). Default is list("a_tau" = 1,"b_tau" = 1,"c_tau" = 1, "d_tau" = 0.001,
                  "type" = "mix", "p_0" = 0.5, "a_sigma" = 2, "b_sigma" = 2, "Jmax" = 20,
                  "clam_smooth" = 0.8, "cprop_beta" = 0.5, "phi" = 3, "pi_b" = 0.5)
```

40 GibbsMH

lambda_hyperparameters

contains two hyperparameters (a_lambda and b_lambda) used for the update of lambda and lambda_0

iter number of iterations for MCMC sampler, excluding warmup, default is 2000

warmup_iter number of warmup iterations (burn-in) for MCMC sampler, default is 2000

refresh number of iterations between printed screen updates, default is 500

max_grid grid size for the smoothed baseline hazard, default is 2000

Value

depending on if the user wishes to borrow; returns a list with values after each iteration for parameters: out_fixed (J, mu, sigma2, beta), lambda, lambda_0, tau, s, as well as tuning values of the total number of accepts: lambda_move, lambda_0_move and beta_move. Also included is the out_slam which contains the shrunk estimate of the baseline hazard.

```
set.seed(123)
# Load example data and set your initial values and hyper parameters
data(weibull_cc, package = "BayesFBHborrow")
data(weibull_hist, package = "BayesFBHborrow")
# The datasets consists of 3 (2) columns named "tte", "event" and "X"
# (only for concurrent). To explicitly run the sampler, extract the samples as
# following
Y <- weibull_cc$tte
I <- weibull_cc$event</pre>
X <- matrix(weibull_cc$X_trt)</pre>
Y_0 <- weibull_hist$tte
I_0 <- weibull_hist$event</pre>
X_0 <- NULL
# Specify hyperparameters and tuning parameters
hyper \leftarrow list("a_tau" = 1,
                "b_tau" = 0.001,
                "c_tau" = 1,
                "d_tau" = 1,
                "type" = 'all',
                p_0" = 0.5
                a_sigma'' = 2,
                "b\_sigma" = 2,
                "clam_smooth" = 0.5,
                "phi" = 3)
tuning_parameters <- list("Jmax" = 5,</pre>
                           "pi_b" = 0.5,
                           "cprop_beta" = 0.5,
                           "alpha" = 0.4)
output <- GibbsMH(Y, I, X, Y_0, I_0, X_0,
```

GibbsMH.NoBorrow 41

```
tuning_parameters, hyper,
iter = 5, warmup_iter = 1)
```

GibbsMH.NoBorrow

GibbsMH sampler, without Bayesian Borrowing

Description

An MCMC sampler for time-to-event data, without Bayesian Borrowing. We obtain a flexible baseline hazard function by making the split points random within a piecewise exponential model and using a Gaussian Markov random field prior to smooth the baseline hazards. Only calls the sampler and does not run any input checks. Best practice is to call BayesFBHborrow(), if the user is not familiar with the model at hand.

Usage

```
## S3 method for class 'NoBorrow'
GibbsMH(
  Υ,
  I,
 X = NULL
 Y_0 = NULL
  I_0 = NULL,
  X_0 = NULL
  tuning_parameters,
  hyperparameters = list(a_sigma = 1, b_sigma = 1, phi = 3, clam_smooth = 0.8),
  lambda_hyperparameters = list(a_lambda = 0.01, b_lambda = 0.01),
  iter = 1500L,
 warmup_iter = 10L,
  refresh = 0,
 max\_grid = 2000L
)
```

Arguments

```
Y data

I event indicator

X design matrix

Y_0 historical data, default is NULL

I_0 historical event indicator, default is NULL

X_0 historical design matrix, default is NULL

tuning_parameters
    list of "cprop_beta", "Jmax", and "pi_b"
```

42 GibbsMH.NoBorrow

hyperparameters

list containing the hyperparameters c("a_sigma", "b_sigma", "Jmax", "clam_smooth", "cprop_beta", "phi"). Default is list("a_sigma" = 2, "b_sigma" = 2, "Jmax" = 20, "clam_smooth" = 0.8, "cprop_beta" = 0.5, "phi" = 3)

lambda_hyperparameters

contains two hyperparameters ("a" and "b") used for the update of lambda, de-

fault is c(0.01, 0.01)

iter number of iterations for MCMC sampler, excluding warmup, default is 2000

warmup_iter number of warmup iterations (burn-in) for MCMC sampler, default is 2000

refresh number of iterations between printed screen updates, default is 500

max_grid grid size for the smoothed baseline hazard, default is 2000

Value

list with values after each iteration for parameters: out_fixed (J, mu, sigma2, beta), lambda, s, as well as tuning values of the total number of accepts: lambda_move and beta_move. Also included is the out_slam which contains the shrunk estimate of the baseline hazard.

```
set.seed(123)
# Load example data and set your hyper parameters
data(weibull_cc, package = "BayesFBHborrow")
data(weibull_hist, package = "BayesFBHborrow")
# The datasets consists of 3 (2) columns named "tte", "event" and "X".
# To explicitly run the sampler, extract the samples as following
Y <- weibull_cc$tte
I <- weibull_cc$event</pre>
X <- matrix(weibull_cc$X_trt)</pre>
# Specify hyperparameters and tuning parameters
hyper <- list("a_sigma" = 2,
                "b\_sigma" = 2.
               "clam_smooth" = 0.5,
               "phi" = 3)
tuning_parameters <- list("Jmax" = 5,</pre>
                           "pi_b" = 0.5,
                           "cprop_beta" = 0.5)
# Set initial values to 'NULL' for default settings
output <- GibbsMH(Y, I, X, NULL, NULL, NULL,
                  tuning_parameters = tuning_parameters, hyperparameters = hyper,
                  iter = 5, warmup_iter = 1)
```

GibbsMH.WBorrow 43

GibbsMH.WBorrow

GibbsMH sampler, with Bayesian Borrowing

Description

An MCMC sampler for Bayesian borrowing with time-to-event data. We obtain a flexible baseline hazard function by making the split points random within a piecewise exponential model and using a Gaussian Markov random field prior to smooth the baseline hazards. Only calls the sampler and does not run any input checks. Best practice is to call BayesFBHborrow(), if the user is not familiar with the model at hand.

Usage

```
## S3 method for class 'WBorrow'
GibbsMH(
 Υ,
 Ι,
 Χ,
  Y_0,
  I_0,
 X_0,
  tuning_parameters = NULL,
 hyperparameters = list(a_tau = 1, b_tau = 0.001, c_tau = 1, d_tau = 1, type = "mix",
   p_0 = 0.8, a_sigma = 1, b_sigma = 1, phi = 3, clam_smooth = 0.8),
 lambda_hyperparameters = list(a_lambda = 0.01, b_lambda = 0.01),
  iter = 150L,
 warmup_iter = 10L,
 refresh = 0,
 max\_grid = 2000L
)
```

Arguments

```
Υ
                  data
Ι
                  event indicator
                  design matrix
Χ
Y_0
                  historical data
                  historical event indicator
I_0
X 0
                  historical design matrix
tuning_parameters
                  list of "cprop_beta", "cprop_beta_0", "alpha", "Jmax", and "pi_b"
hyperparameters
                  list containing the hyperparameters c("a_tau", "b_tau", "c_tau", "d_tau", "type",
                  "p_0", "a_sigma", "b_sigma", "Jmax", "clam_smooth", "cprop_beta", "phi",
                  "pi_b"). Default is list("a_tau" = 1,"b_tau" = 1,"c_tau" = 1, "d_tau" = 0.001,
```

44 GibbsMH.WBorrow

```
"type" = "mix", "p_0" = 0.5, "a_sigma" = 2, "b_sigma" = 2, "Jmax" = 20, 
"clam_smooth" = 0.8, "cprop_beta" = 0.5, "phi" = 3, "pi_b" = 0.5)

lambda_hyperparameters

contains two hyperparameters (a_lambda and b_lambda) used for the update of 
lambda and lambda_0. Default is c(0.01, 0.01)

iter

number of iterations for MCMC sampler, excluding warmup, default is 2000

warmup_iter

number of warmup iterations (burn-in) for MCMC sampler, default is 2000

refresh

number of iterations between printed screen updates, default is 500

max_grid

grid size for the smoothed baseline hazard, default is 2000
```

Value

list with values after each iteration for parameters: out_fixed (J, mu, sigma2, beta), lambda, lambda_0, tau, s, as well as tuning values of the total number of accepts: lambda_move, lambda_0_move and beta_move. Also included is the out_slam which contains the shrunk estimate of the baseline hazard.

```
set.seed(123)
# Load example data and set your initial values and hyper parameters
data(weibull_cc, package = "BayesFBHborrow")
data(weibull_hist, package = "BayesFBHborrow")
# The datasets consists of 3 (2) columns named "tte", "event" and "X"
# (only for concurrent). To explicitly run the sampler, extract the samples as
# following
Y <- weibull_cc$tte
I <- weibull_cc$event</pre>
X <- matrix(weibull_cc$X_trt)</pre>
Y_0 <- weibull_hist$tte
I_0 <- weibull_hist$event</pre>
X_0 <- NULL
# Specify hyperparameters and tuning parameters
hyper \leftarrow list("a_tau" = 1,
                "b_tau" = 0.001,
                "c_tau" = 1,
                "d_tau" = 1,
                "type" = "all",
                p_0" = 0.5
                a_sigma'' = 2,
                "b\_sigma" = 2,
                "clam_smooth" = 0.5,
                "phi" = 3)
tuning_parameters <- list("Jmax" = 5,</pre>
                           "pi_b" = 0.5,
                           "cprop_beta" = 0.5,
```

group_summary 45

group_summary

Create group level data

Description

Aggregate individual level data into group level data

Usage

```
group_summary(Y, I, X, s)
```

Arguments

Υ	data
I	censoring indicator
Χ	design matrix
S	split points, $J + 2$

Value

list of group level data

```
set.seed(111)
# Load example data and set your initial values and hyper parameters
data(weibull_cc, package = "BayesFBHborrow")
data(weibull_hist, package = "BayesFBHborrow")

Y <- weibull_cc$tte
I <- weibull_cc$tvent
X <- weibull_cc$x_trt

# Say we want to know the group level data for the following split points
s <- quantile(Y, c(0, 0.45, 0.65, 1), names = FALSE)
group_summary(Y, I, X, s)</pre>
```

```
init_lambda_hyperparameters
```

Initialize lambda hyperparameters

Description

Propose lambda hyperparameters for the choice of initial values for lambda

Usage

```
init_lambda_hyperparameters(group_data, s, w = 0.5)
```

Arguments

```
group_data group level data
s split points
w weight
```

Value

shape and rate for the estimated lambda distribution

```
set.seed(111)
# Load example data and set your initial values and hyper parameters
data(weibull_cc, package = "BayesFBHborrow")
data(weibull_hist, package = "BayesFBHborrow")

Y <- weibull_cc$tte
I <- weibull_cc$event
X <- weibull_cc$x_trt

# Say we want to know the group level data for the following split points
s <- quantile(Y, c(0, 0.45, 0.65, 1), names = FALSE)

group_data <- group_summary(Y, I, NULL, s)
init_lambda_hyperparameters(group_data, s)</pre>
```

piecewise_exp_cc 47

piecewise_exp_cc

Example data, simulated from a piecewise exponential model.

Description

Data is simulated for a concurrent trial with three columns named "tte" (time-to-event), "event" (event indicator), and "X_trt" (treatment indicator). It was simulated using the following parameters:

Usage

```
data(piecewise_exp_cc)
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 250 rows and 3 columns.

Examples

piecewise_exp_hist

Example data, simulated from a piecewise exponential model.

Description

Data is simulated for a historical trial with two columns named "tte" (time-to-event) and "event" (event indicator). It was simulated using the following parameters:

Usage

```
data(piecewise_exp_hist)
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 100 rows and 2 columns.

plot.BayesFBHborrow

Examples

48

plot.BayesFBHborrow

Plot the MCMC results

Description

S3 object which produces predictive probabilities of the survival, hazard, and hazard ratio for a given set of predictors

Usage

```
## S3 method for class 'BayesFBHborrow'
plot(x, x_lim, x_pred = NULL, ...)
```

Arguments

X	object of class "BayesFBHborrow" to be visualized
x_lim	x-axis to be used for plot, set to NULL to use default from MCMC sampling
x_pred	vector of chosen predictors
	other plotting arguments, see .plot_matrix() for more information

Value

nested list of 'plots' (posterior predictive hazard, survival, and hazard ratio) as well as their samples.

```
iter = 3, warmup_iter = 1)
# for the treatment group
plots <- plot(out$out, out$out$time_grid, x_pred = c(1))</pre>
```

summary.BayesFBHborrow

Summarize fixed MCMC results

Description

S3 method for with borrowing. Returns summary of mean, median and given percentiles for the one dimensional parameters.

Usage

```
## $3 method for class 'BayesFBHborrow'
summary(
  object,
  estimator = NULL,
  percentiles = c(0.025, 0.25, 0.75, 0.975),
  ...
)
```

Arguments

object MCMC sample object from BayesFBHborrow()

estimator The type of estimator to summarize, could be "fixed", "lambda", "lambda_0" or "s". The default is NULL and will print a summary of the output list.

percentiles Given percentiles to output, default is c(0.025, 0.25, 0.75, 0.975)

other arguments, see summary.default

Value

summary of the given estimator

50 weibull_hist

```
# Create a summary of the output
summary(out$out, estimator = "out_fixed")
```

weibull_cc

Example data, simulated from a Weibull distribution.

Description

Data is simulated for a concurrent trial with three columns named "tte" (time-to-event), "event" (event indicator), and " X_{tt} " (treatment indicator). It was simulated by drawing samples from a Weibull with kappa = 1.5 (shape) and nu = 0.4 (scale)

Usage

```
data(weibull_cc)
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 250 rows and 3 columns.

Examples

weibull_hist

Example data, simulated from a Weibull distribution

Description

Data is simulated for a historical trial with two columns named "tte" (time-to-event) and "event" (event indicator). It was simulated using the following parameters:

Usage

```
data(weibull_hist)
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 100 rows and 2 columns.

weibull_hist 51

Index

* datasets	.predictive_survival, 26
<pre>piecewise_exp_cc, 47</pre>	.set_hyperparameters,27
<pre>piecewise_exp_hist, 47</pre>	.set_tuning_parameters, 27
weibull_cc, 50	<pre>.shuffle_split_point_location, 28</pre>
weibull_hist, 50	.shuffle_split_point_location_NoBorrow
.ICAR_calc, 8	29
. J_RJMCMC, 10	$. {\tt sigma2_update}, 30$
.J_RJMCMC_NoBorrow, 12	.smooth_hazard, 31
.beta.MH.RW.glm, 3	.smooth_survival,31
.beta_MH_MALA, 3	.tau_update, 32
.beta_MH_NR, 4	D 5011 22
.beta_MH_RW, 5	BayesFBHborrow, 33
.beta_mom, 5	BayesFBHborrow.NoBorrow, 34
.beta_mom.NR.fun, 6	BayesFBHborrow.WBorrow,36
.birth_move, 6	coef.BayesFBHborrow,38
.dataframe_fun, 7	coer . bayesi blibor row, 30
.death_move, 7	GibbsMH, 39
$. {\tt glmFit}, 8$	GibbsMH.NoBorrow,41
.input_check, 9	GibbsMH.WBorrow,43
.lambda_0_MH_cp, 13	group_summary, 45
.lambda_0_MH_cp_NoBorrow, 14	
.lambda_MH_cp, 16	init_lambda_hyperparameters,46
.lambda_conj_prop, 15	
.lgamma_ratio, 17	piecewise_exp_cc, 47
.llikelihood_ratio_beta,18	piecewise_exp_hist, 47
.llikelihood_ratio_lambda,18	plot.BayesFBHborrow,48
.log_likelihood, 19	summary.BayesFBHborrow,49
.logsumexp, 19	Summar y. Dayesi bribor row, 47
.lprop.dens.beta.NR, 20	weibull_cc, 50
.lprop_density_beta,20	weibull_hist, 50
.ltau_dprior, 21	
.mu_update, 21	
.normalize_prob, 22	
.nu_sigma_update,22	
.plot_hist, 23	
.plot_matrix, 24	
.plot_trace, 25	
.predictive_hazard, 25	
.predictive hazard ratio, 26	