# **先看原理**图

打开原理图,搜"LED",有2个用户LED。 如下图所示:



# 看芯片手册:先使能PLL4

RCC\_PLL4CR地址: 0x50000000 + 0x894

### 10.7.43 RCC PLL4 Control Register (RCC\_PLL4CR)

Address offset: 0x894 Reset value: 0x0000 0000

This register is used to control the PLL4.



Bit 1 PLL4RDY: PLL4 clock ready flag

Set by hardware to indicate that the PLL4 is locked. 0: PLL4 unlocked (default after reset)

1: PLL4 locked

Bit 0 PLLON: PLL4 enable

Set and cleared by software to enable the PLL4.
Cleared by hardware when entering Stop, LP-Stop, LPLV-Stop, or Standby mode.
Note that DIVPEN, DIVQEN and DIVREN of PLL4 must be set to '0' before setting PLLON to

refer to Section : PLL disabling procedure for details.
 O: PLL4 OFF (default after reset)
 1: PLL4 ON, and ref4\_ck is provided to the PLL4

#### 看芯片手册:使能GPIOA

以PA10为例,它属于GPIOA里的第10个引脚。

怎么使能GPIOA?A7、M4对应的寄存器地址不一样,位含义一样

RCC MP AHB4ENSETR地址: 0x50000000 + 0xA28 RCC\_MC\_AHB4ENSETR地址: 0x50000000 + 0xAA8

# 10.7.157 RCC AHB4 Periph. Enable For MPU Set Register (RCC\_MP\_AHB4ENSETR)

Address offset: 0xA28

Reset value: 0x0000 0000

This register is used to set the peripheral clock enable bit of the corresponding peripheral to '1'. It shall be used to allocate a peripheral to the MPU. Writing '0' has no effect, reading will return the effective values of the corresponding bits. Writing a '1' sets the corresponding bit to '1'.

| 31    | 30   | 29   | 28  | 27   | 26      | 25      | 24      | 23      | 22      | 21      | 20      | 19      | 18      | 17      | 16      |
|-------|------|------|-----|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| FEET. | Ales | Tim. | Hes | Res  | First.  | Res     | Files   | Fiers   | Ross    | Her.    | Pers    | Des     | Hed     | Res     | Film    |
| 15    | 14   | 13   | 12  | 11   | 10      | 9       | 8       | 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0       |
| Ales. | Rec  | Res. | Hes | Rusc | GPIOKEN | GPIOUEN | GPIOIEN | GPIOHEN | GPIOGEN | GPIOFEN | GPIOEEN | GPIODEN | GPIOCEN | GPIOBEN | GPIOAEN |
|       |      |      |     |      | rs      |

# 10.7.158 RCC AHB4 Periph. Enable For MCU Set Register (RCC\_MC\_AHB4ENSETR)

Address offset: 0xAA8

Reset value: 0x0000 0000

This register is used to set the peripheral clock enable bit of the corresponding peripheral to '1'. It shall be used to allocate a peripheral to the MCU. Writing '0' has no effect, reading will return the effective values of the corresponding bits. Writing a '1' sets the corresponding bit to '1'.

| 31   | 30  | 29    | 28  | 27    | 26      | 25      | 24      | 23      | 22      | 21      | 20      | 19      | 18     | 17      | 16      |
|------|-----|-------|-----|-------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|
| en.  | Rm  | Dirt. | Rm  | Res   | Firm    | Res     | Rim     | Res.    | Rm      | Res.    | Rm      | Res.    | Firm   | Res     | Rin     |
| 15   | 14  | 13    | 12  | 11    | 10      | 9       | 8       | 7       | 6       | 5       | 4       | 3       | 2      | 1       | 0       |
| Sen. | Res | Dire  | Res | Dies. | GPIOKEN | GPIOUEN | GPIOIEN | GPIOHEN | GPIOGEN | GPIOFEN | GPIOEEN | GPIODEN | GMOCEN | GPIOBEN | GPIOAEN |
|      |     |       |     |       | rs      | rs     | rs      | rs      |

# 看芯片手册:设置PA10, 用作输出

GPIOA MODER地址: 0x50002000 + 0x00, 设置bit[21:20]=0b01

#### 13.4.1 GPIO port mode register (GPIO $x_MODER$ ) (x = A to K, Z)

Address offset:0x00

Reset value: 0xFFFF FFFF

| 31                       | 30          | 29       | 28           | 27   | 26           | 25   | 24           | 23   | 22           | 21   | 20          | 19   | 18          | 17   | 16      |
|--------------------------|-------------|----------|--------------|------|--------------|------|--------------|------|--------------|------|-------------|------|-------------|------|---------|
| MODER15[1:0] MODER14[1:0 |             | R14[1:0] | MODER13[1:0] |      | MODER12[1:0] |      | MODER11[1:0] |      | MODER10[1:0] |      | MODER9[1:0] |      | MODER8[1:0] |      |         |
| rw                       | rw          | rw       | rw           | rw   | rw           | rw   | rw           | rw   | rw           | rw   | rw          | rw   | rw          | rw   | rw      |
| 15                       | 14          | 13       | 12           | 11   | 10           | 9    | 8            | 7    | 6            | 5    | 4           | 3    | 2           | 1    | 0       |
| MODE                     | MODER7[1:0] |          | R6[1:0]      | MODE | R5[1:0]      | MODE | R4[1:0]      | MODE | R3[1:0]      | MODE | R2[1:0]     | MODE | R1[1:0]     | MODE | R0[1:0] |
| rw                       | rw          | rw       | rw           | rw   | rw           | rw   | rw           | rw   | rw           | rw   | rw          | rw   | rw          | rw   | rw      |

Bits 31:0 MODER[15:0][1:0]: Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O mode.

00: Input mode

01: General purpose output mode

10: Alternate function mode

11: Analog mode

### 看芯片手册:怎么设置PA10的输出电平?

方法1:读寄存、修改值、写回去(低效) GPIOA\_ODR地址: 0x50002000 + 0x14

# 13.4.6 GPIO port output data register (GPIOx\_ODR) (x = A to K, Z)

Address offset: 0x14 Reset value: 0x0000 0000

| 31          | 30   | 29   | 28          | 27   | 26          | 25   | 24        | 23        | 22        | 21        | 20        | 19        | 18        | 17        | 16        |
|-------------|------|------|-------------|------|-------------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Res.        | Res. | Res. | Res.        | Res. | Res.        | Res. | Res.      | Res.      | Res.      | Res.      | Res.      | Res.      | Res.      | Res.      | Res.      |
|             |      |      |             |      |             |      |           |           |           |           |           |           |           |           |           |
|             |      |      |             |      |             |      |           |           |           |           |           |           |           |           |           |
| 15          | 14   | 13   | 12          | 11   | 10          | 9    | 8         | 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
| 15<br>ODR15 |      |      | 12<br>ODR12 |      | 10<br>ODR10 |      | 8<br>ODR8 | 7<br>ODR7 | 6<br>ODR6 | 5<br>ODR5 | 4<br>ODR4 | 3<br>ODR3 | 2<br>ODR2 | 1<br>ODR1 | 0<br>ODR0 |

写0或1

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODR[15:0]**: Port output data I/O pin y (y = 15 to 0)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and/or reset by writing to the GPIOx\_BSRR or GPIOx\_BRR registers (x = A..F).

#### 看芯片手册:怎么设置GPIOBO的输出电平?

方法2:直接写寄存器,一次操作即可,高效

GPIOA\_BSRR地址: 0x50002000 + 0x18

#### 13.4.7 GPIO port bit set/reset register (GPIOx\_BSRR) (x = A to K, Z)

Address offset: 0x18 Reset value: 0x0000 0000

|      |      |      |      | 写    | 1输出低 | 电平  |     |     |     |     |     |     |     |     |     |
|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 31   | 30   | 29   | 28   | 27   | 26   | 25  | 24  | 23  | 22  | 21  | 20  | 19  | 18  | 17  | 16  |
| BR15 | BR14 | BR13 | BR12 | BR11 | BR10 | BR9 | BR8 | BR7 | BR6 | BR5 | BR4 | BR3 | BR2 | BR1 | BR0 |
| W    | w    | w    | w    | w    | w    | W   | w   | w   | w   | w   | w   | w   | w   | w   | w   |
| 15   | 14   | 13   | 12   | 11   | 10   | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| BS15 | BS14 | BS13 | BS12 | BS11 | BS10 | BS9 | BS8 | BS7 | BS6 | BS5 | BS4 | BS3 | BS2 | BS1 | BS0 |
| W    | w    | w    | w    | w    | w    | w   | w   | w   | w   | w   | w   | w   | W   | w   | W   |

写1輸出高电平 Bits 31:16 **BR[15:0]:** Port x reset I/O pin y (y = 15 to 0)

These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BS[15:0]:** Port x set I/O pin y (y = 15 to 0)

These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit