Кодирование

Информатика 8 класс

8 октября 2012 г.

Информация

- Информация окружает человека повсюду.
- Живущий в информационном обществе индивид постоянно занимается поиском, обработкой, хранением и анализом информации.
- Информация, доводимая до общества, должна быть достоверной и актуальной, в противном случае недостоверная информация вводит членов общества в заблуждение.
- Перед наукой стоит задача в поиске *полной* и *точной* информации.

Классификация информации

Визуальная

Органолентическая (запах и вкус)

Аудиальная

Машинно-выдаваемая и воспринимаемая

Передача информации

- КУ кодирующее устройство,
- ДУ декодирующее устройство.

Алфавит

Алфавит •00000

Алфавит

Непересекающийся набор символов

Греческий алфавит

Αα	Ββ	$\Gamma\gamma$	$\Delta\delta$	Εε	$Z\zeta$	$H\eta$	Θθ	Iι	$K\varkappa$	Λλ	$M \mu$
άλφα alfa a [a]	βήτα vita b [∨]	γάμα gama g, y [γ, i]	δέλτα thelta d [ŏ]	έψιλον epsilon ē [e]	ζήτα zita z [z]	ήτα ita ē [i]	θήτα thita th [θ]	γιώτα yiota i [i]	κάπα kapa k [k,c]	λάμδα Iamtha I [I, ʎ]	μι mi m [m]
$N\nu$	Ξξ	Оо	$\Pi\pi$	Pρ	Σσς	$T\tau$	$Y\upsilon$	Φφ	$X\chi$	Ψψ	$\Omega\omega$
VI	ξι	όμικρον	πі	ρο	σίγμα	ταυ	ύψιλον	фі	χı	ψι	ωμέγα
ni	Хİ	omikron	pi	ro	sigma	taf	ipsilon	fi	hi	psi	omega
n	ks, x	0	р	r, rh	s	t	u, y	ph	kh, ch	ps	ō
[n]	[ks]	[0]	f n 1	[r]	[9 7]	Γ±1	ri1	Γf1	fv cl	Fine 1	f o 1

Произвольный алфавит

Алфавит может состоять из любых символов!

Мощность алфавита

- Наборы символов из алфавита называются словами.
- Пример слов: *мама* (русский алфавит), $\mu \alpha \mu \alpha$ (греческий), :):(:):) (произвольный).
- Мощность алфавита количество символов в алфавите.
- Мощность русского алфавита 33 символа.
- Мощность английского алфавита 26 символов.

Единицы измерения информации

Для измерения информации есть специальные единицы.

Величина	Перевод	Байты
----------	---------	-------

Величина	Перевод	Байты
1 байт	8 бит	2 ³ бит

Величин	а Перевод	Байты
1 байт	8 бит	2 ³ бит
1 Кбай	т 1024 байта	2 ¹⁰ байт

Величина	Перевод	Байты		
1 байт	8 бит	2 ³ бит		
1 Кбайт	1024 байта	2 ¹⁰ байт		
1 Мбайт	1024 Кбайт	2 ²⁰ байт		

Величина	Перевод	Байты
1 байт	8 бит	2 ³ бит
1 Кбайт	1024 байта	2 ¹⁰ байт
1 Мбайт	1024 Кбайт	2 ²⁰ байт
1 Гбайт	1024 Мбайт	2 ³⁰ байт

Величина	Перевод	Байты	
1 байт	8 бит	2 ³ бит	
1 Кбайт	1024 байта	2 ¹⁰ байт	
1 Мбайт	1024 Кбайт	2 ²⁰ байт	
1 Гбайт	1024 Мбайт	2 ³⁰ байт	
1 Тбайт	1024 Гбайт	2 ⁴⁰ байт	

Бит — минимальная единица информации

Бит

- Кодирование двух равновероятных состояний системы один бит.
- Например, количество информации, получаемое от ответа "Да" или "Нет" на какой-либо вопрос, равно 1 биту.
- Результат бросания монетки (орёл, решка) также содержит 1 бит информации.
- Для кодирования большего числа состояний нужно больше бит.
- Если у нас есть 2 бита, то мы можем закодировать 4 символа: для каждого из двух состояний первого бита есть два состояния второго бита.
- А если 3? Для каждого из 2 состояний первого бита есть два состояния второго. Для каждой из 4 пар первых двух бит есть две комбинации 3-го. Итого: 4*2=8 символов.

Количество символов

Бит	Комбинаций	Число
1	2^{1}	2
2	2 ²	4
3	2^{3}	8
4	2 ⁴	16
5	2 ⁵	32
6	2^{6}	64
7	2 ⁷	128
8	2 ⁸	256
9	2 ⁹	512
10	2^{10}	1024

Русский алфавит

- Рассмотрим, сколько бит будет занимать один символ русского алфавита.
- В русском алфавите 33 символа.
- Посмотрим в таблицу, сколько бит нам хватит. 5 бит не хватает, так как 5 бит кодирует только 32 символа, а нам надо 33. Значит, берём 6 бит. Они кодируют 64 символа, поэтому этого хватит даже с лихвой.
- Ответ: 1 символ русского алфавита занимает 6 бит.

- Сколько бит занимает один символ английского алфавита?
- Сколько бит занимает один символ алфавита, состоящего из цифр?
- Сколько бит будет занимать слово "мама" в русском алфавите? А предложение "There is no spoon" в английском алфавите?

Решение

- В английском алфавите 26 символов (27 с учётом пробела). Для кодирования одного из них достаточно 5 бит (которые дают аж 32 символа, а у нас и того меньше. 4 не подойдёт, так как 4 бита кодируют только 16 комбинаций).
- Итого, 1 символ кодируется 5 битами.
- Посчитаем (с учётом пробелов) количество символов в предложении "There is no spoon": 17 символов.
- Составляем пропорцию: 1 символ 5 бит, 17 символов х.
- $x = 5 \cdot 17 = 85$ бит.

Перевод единиц измерения

- Задача. У Васи имеется имеется доступ к Интернету со скоростью скачивания 2^{25} бит/с. Сколько он сможет скачать Мбайт за 10 секунд?
- Решение. Прежде всего, переведём бит/с в Мбайт/с. Для этого воспользуемся таблицей перевода: 1 Мбайт = 2^{23} бит

•
$$\frac{2^{25}}{2^{23}} = 2^{25-23} = 2^2 = 4$$
 Мбайта.

- Итого, скорость Васи составляет 4 Мбайт/с.
- Значит, за 10с Вася скачает $4 \cdot 10 = 40$ Мбайт информации.
- Ответ: 40 Мбайт.

Задачи

- У Пети имеется доступ к Интернету со скоростью 2^{28} бит/с. Сколько информации он скачает за 5 секунд?
- Вася хочет скачать фильм объёмом 4 Гбайта. Скорость соединения Васи с Интернетом составляет 2^{28} бит/с. Посчитайте, сколько времени потребуется Васе, чтобы скачать фильм.
- Маша скачивает программу из Интернета, которая занимает 128 Мбайт. Скорость соединения Маши с Интернетом составляет 2⁸ Кбайт/с. Сколько времени потребуется Маше, чтобы скачать всю программу.

Решение

- Решим задачу с Машей.
- Переведём размер программы и скорость Интернета Маши в биты для простого сравнения.
- \bullet Программа: 128 Мбайт = $128 \cdot 2^{23}$ бит.
- ullet Скорость: 2^8 Кбайт/ $c=2^8\cdot 2^{13}$ бит/ $c=2^{21}$ бит/с.
- ullet Разделим: $\frac{128 \cdot 2^{23}}{2^{21}} = 128 \cdot 2^{23-21} = 128 \cdot 2^2 = 512 \ \text{c}.$
- Ответ: Маше потребуется 512 секунд для скачки программы.

Как запомнить перевод величин

- Следует всегда помнить, что все соотношения (кроме байта и бита) между соседними величинами равны 1024 (или 2^{10}). Для байта и бита это число равно 8 (2^3).
- Зная это, очень легко перевести Мбайты в биты.
- 1 Мбайт = 2^{10} Кбайт = $2^{10} \cdot 2^{10}$ байт = 2^{20} байт = $2^{20} \cdot 2^3$ бит = 2^{23} бит