Vertex of the Quadratic

Given a quadratic $p(z) = az^2 + bz + c$ compute its value at $z_1 = -\frac{b}{2a}$ namely $p(z_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $z_{1^+} h$, namely $p(z_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = p(z_1 + h) - p(z_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1.

 $p(z) = 2z^2 + 38$ 400

