由感性认识到理性认识

——透析一类搏弈游戏的解答过程

1,	游戏	2
2,	从简单入手	3
3,	类比与联想	7
4、	证明	10
5,	推广	14
6,	精华	15
7,	结论	20
8、	总结	22

1、游戏

- □ 游戏 A:
- □ 甲乙两人面对若干堆石子,其中每一堆石子的数目可以任意确定。例如图 1

所示的初始局面: 共 n=3 堆, 其中第一堆的石子数 $a_1=3$, 第二堆石子数

 a_2 =3,第三堆石子数 a_3 =1。两人轮流按下列规则取走一些石子,游戏的规则如下:

- □ 每一步应取走至少一枚石子;
- □ 每一步只能从某一堆中取走部分或全部石子;
- □ 如果谁无法按规则取子,谁就是输家。

图 1 游戏的一个初始局面

□ 游戏 B:

- □ 甲乙双方事先约定一个数 m, 并且每次取石子的数目不能超过 m 个;
- □ 其余规则同游戏 A。

我们关心的是,对于一个初始局面,究竟是先行者(甲)有必胜策略,还

是	后行者	(Z_{\cdot})	有必胜策略。
ᄯ	/LII 1H		

下面,我们从简单入手,先来研究研究这个游戏的一些性质。

2、 从简单入手

- □ 用一个 n 元组(a₁, a₂, ..., a_n),来描述游戏过程中的一个局面。
 - □ 可以用 3 元组(3,3,1)来描述图 1 所示的局面。
- □ 改变这个 n 元组中数的顺序,仍然代表同一个局面。
 - □ (3, 3, 1)和(1, 3, 3),可以看作是同一个局面。
- □ 如果初始局面只有一堆石子,则甲有必胜策略。
 - 甲可以一次把这一堆石子全部取完,这样乙就无石子可取了。
- □ 如果初始局面有两堆石子,而且这两堆石子的数目相等,则乙有必胜策略。
 - . 因为有两堆石子,所以甲无法一次取完;
 - . 如果甲在一堆中取若干石子,乙便在另一堆中取同样数目的石子;
 - . 根据对称性,在甲取了石子之后,乙总有石子可取;
 - . 石子总数一直在减少,最后必定是甲无石子可取。
- □ 对于初始局面(1), 甲有必胜策略, 而初始局面(3,3), 乙有必胜策略。
- □ 局面的加法: $(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_m) = (a_1, a_2, ..., a_n, b_1, b_2, ..., b_m)$ 。

	(3)) + ((3)) + (1) = ((3.3)) + ((1)) = ((3.	3.	1)) _
_ \	. – .	, . ,	· •	, . ,		, ,	(-,-)	,	٠.	, ,	いつっ		,	0

□ 对于局面 A, B, S, $\exists S = A + B$, 则称局面 S 可以分解为"子局面"A 和

 \mathbf{B}_{\circ}

- □ 局面(3, 3, 1)可以分解为(3, 3)和(1)。
- □ 如果初始局面可以分成两个相同的"子局面",则乙有必胜策略。
 - 设初始局面 S=A+A, 想象有两个桌子, 每个桌子上放一个 A 局面;
 - 若甲在一个桌子中取石子,则乙在另一个桌子中对称的取石子;
 - 根据对称性,在甲取了石子之后,乙总有石子可取;
 - 石子总数一直在减少,最后必定是甲无石子可取。
- □ 初始局面(2, 2, 5, 5, 5, 5, 7, 7), 可以分成两个(2, 5, 5, 7), 故乙有必胜策略。
- □ 对于局面 S, 若先行者有必胜策略, 则称 "S 胜"。
- □ 对于局面 S, 若后行者有必胜策略, 则称 "S 负"。
 - □ 若 A=(1), B=(3,3), C=(2,2,5,5,5,5,7,7), 则 A 胜, B 负, C 负。
 - □ 我们所关心的,就是如何判断局面的胜负。
- □ 如果局面 S 胜,则必存在取子的方法 S \rightarrow T ,且 T 负。

如果局面 S 负,则对于任意取子方法 S→T,有 T 胜。
设初始局面S可以分解成两个子局面A和B(分解理论)。
□ 若 A 和 B 一 胜 一 负 , 则 S 胜 。
. 不妨设A胜B负;
. 想象有两个桌子 A 和 B,桌子上分别放着 A 局面和 B 局面;
. 因为 A 胜, 所以甲可以保证取桌子 A 上的最后一个石子;
. 与此同时,甲还可以保证在桌子B中走第一步的是乙;
. 因为B负,所以甲还可以保证取桌子B中的最后一个石子;
. 综上所述,甲可以保证两个桌子上的最后一个石子都由自己取得。
□ 若A负B负,则S负。
. 无论甲先从 A 中取,还是先从 B 中取,都会变成一胜一负的局面;
. 因此,乙面临的局面总是"胜"局面,故甲面临的S是"负"局面。
□ 若 B 负,则 S 的胜负情况与 A 的胜负情况相同。
□ 若A胜B胜,则有时S胜,有时S负。
如果 S=A+C+C, 则 S 的胜负情况与 A 相同。
令B=C+C,则S=A+B且B负,故S的胜负情况与A相同。

图 1 所示的初始局面 $(3,3,1) = (3) + (3) + (1)$,与局面 (1) 的胜负情况相同。
图 1 中所示的初始局面(3, 3, 1)是"胜"局面,甲有必胜策略。
称一个石子也没有的局面为"空局面"。
空局面是"负"局面。
如果局面S中,存在两堆石子,它们的数目相等。用T表示从S中把这两堆
石子拿掉之后的局面,则称"S可以简化为T"。
□ 局面(2, 2, 2, 7, 9, 9)可以简化为(2, 2, 2, 7),还可以进一步简化为(2, 7)。
一个局面的胜负情况,与其简化后的局面相同。
□ 三个局面(2, 2, 2, 7, 9, 9)、(2, 2, 2, 7)和(2, 7), 胜负情况都相同。
不能简化的局面称为"最简局面"。
□ 局面 (2,7)是最简局面。
最简局面中不会有两堆相同的石子,故可以用一个集合来表示最简局面。
□ 最简局面(2,7)可以用集合{2,7}来表示。

如果只关心局面的胜负。	则一个局面可以用	一个集合来描述。
-------------	----------	----------

□ 图 1 所示的局面(3,3,1),可以用集合 $\{1\}$ 来描述。

如果用搜索(搏弈树)的方法来解这个游戏,则采用集合来表示一个局面, 比采用多元组来表示一个局面,搜索量将有所减少,但时间复杂度仍然很高。 能不能进一步简化一个局面的表示呢?

3、 类比与联想

□ 二进制加法¹

1+0=1;

 \cap 0 + 1 = 1;

1 + 1 = 0

□ 二进制的加法 VS 局面的加法

□ 大写字母 AB 表示局面, 小写字母 ab 表示二进制

□ 若A和B相同,则A+B负;若a和b相等,则a+b=0

□ 若A胜B负,则A+B胜;若a=1且b=0,则a+b=1

□ 若B胜A负,则A+B胜;若b=1且a=0,则a+b=1

¹本文的"二进制加法",是指不进位的二进制加法,也可以理解为逻辑里的"异或"操作。

 74 7
□ 若A负B负,则A+B负;若a=0且b=0,则a+b=0
如果用二进制1和0,分别表示一个局面的胜或负
局面的加法,与二进制的加法有很多类似之处。
□ 若 A 胜 B 胜,则 A+B 有时胜,有时负;若 a=1 且 b=1,则 a+b=0。
二进制数的加法:对二进制数的每一位,都采用二进制的加法。
0011 1010
\perp + 1010 ' + 1010 °
1001 0000
二进制数的加法 VS 局面的加法
□ 大写字母 AB 表示局面,小写字母 ab 表示二进制数
□ 若A和B相同,则A+B负;若a和b相等,则a+b为0
□ 若A胜B负,则A+B胜;若a≠0且b=0,则a+b≠0
□ 若B胜A负,则A+B胜;若b≠0且a=0,则a+b≠0
□ 若A负B负,则A+B负;若a=0且b=0,则a+b=0

□ 若A胜B胜,则A+B有时胜,有时负

➤ 若 a≠0 且 b≠0,则有时 a+b≠0,有时 a+b=0

	>
	如果用二进制数 s 来表示一个局面 S 的胜或负, S 胜则 s≠0, S 负则 s=0
r)	局面的加法,与二进制数的加法,性质完全相同。
	能否用一个二进制数,来表示一个局面呢?
	用符号#S,表示局面 S 所对应的二进制数。
	如果局面 S 只有一堆石子,则用这一堆石子数目所对应的二进制数来表示
	S_{\circ}
	□ #(5)=5=101 _°
	若局面 S=A+B, 则#S=#A+#B。
	□ 局面(3, 3)=(3)+(3), 所以#(3, 3)=#(3)+#(3)=11+11=0。
	□ 局面(3, 3, 1)=(3, 3)+(1), 所以#(3, 3, 1)=#(3, 3)+#(1)=0+1=1。
	函数 f: 若局面 S 只有一堆石子,设 S={a ₁ },则 f(a ₁)=#S,即 f(a ₁)=#(a ₁)。 □ 对于游戏 A 来说,#(5)=101,所以 f(5)=101。

- \square 对于游戏 A 来说,f(x)就是 x 所对应的二进制数。换句话说,f(x)=x。

 $+f(a_n)_{\circ}$

- = #(3,3,1) = #((3)+(3)+(1)) = #(3)+#(3)+#(1) = f(3)+f(3)+f(1)=11+11+1=1
- □ 对于局面 S, 若#S=0, 则 S 负; 若#S≠0, 则 S 胜。
- 4、证明
- □ 二进制数 a, b, 若 a + b = 0, 当且仅当 a = b。

□ 二进制数 a, b, s, 若 a+b=s, 则 a=b+s.

□ 二进制数 $a_1+a_2+...+a_n=p\neq 0$,则必存在 k,使得 $a_k+p < a_k$ 。

- 因为 $p\neq 0$,所以p的最高位是1;
- 设p的最高位是第q位;
- 至少存在一个k, 使得 a_k 的第q位也是1;
- a_k+p 的第 q 位为 0,所以 a_k+p<a_k。

- □ 若#S=0,则无论先行者如何取子 S \rightarrow T,都有#T \neq 0。
 - 先行者只能从某一堆中取若干石子,不妨设他选择的就是第1堆;
 - 设先行者从第1堆中取了x个石子,用T表示取完之后的局面;
 - 没 $S=(a_1, a_2, ..., a_n)$,则 $T=(a_1-x, a_2, ..., a_n)$;
 - #S= $f(a_1)$ +# $(a_2, ..., a_n)$ =0, $\sharp f(a_1)$ =# $(a_2, ..., a_n)$;
 - $\#T = f(a_1 x) + \#(a_2, ..., a_n) = f(a_1 x) + f(a_1);$
 - $x>0 \rightarrow f(a_1)\neq f(a_1-x) \rightarrow f(a_1)+f(a_1-x)\neq 0 \rightarrow \#T\neq 0$.

- □ 若# $S \neq 0$,则先行者必然存在一种取子方法 $S \rightarrow T$,且#T = 0。

 - . 因为 $p\neq 0$, 所 以 必 然 存 在 k , 使 得 $f(a_k)+p < f(a_k)$, 不 妨 设 $k=1,\ f(a_1)+p=x;$
 - . 先行者将第1堆的石子的数目从 a₁变成 x, 用 T 表示这个局面;
 - . $p=\#S=f(a_1)+\#(a_2, ..., a_n)$, 故# $(a_2, ..., a_n)=f(a_1)+p=x$;
 - $\#T = f(x) + \#(a_2, ..., a_n) = f(x) + x = 0.$

□ 若 S 是空局面,则#S=0。

若#S=0,则S负;若#S≠0,则S胜。

- □ #(1, 2, 3)=01+10+11=0, 故局面(1, 2, 3)负。
- $\Box \#(1,2,3,4)=001+010+011+100=100$,故局面(1,2,3,4)胜。

对于游戏 A 来说,任意的一个初始局面 $S=(a_1, a_2, ..., a_n)$,我们把这里的 a_i 都 看成是二进制数。令 $\#S=a_1+a_2+...+a_n$ 。若 $\#S\neq 0$,则先行者(甲)有必胜策略;否则#S=0,这时后行者(乙)有必胜策略。

下面把这个结论推广到游戏B。

- □ 函数 f: $f(x)=x \mod (m+1)$; 把函数 f 的值看作是二进制数。
- □ 对于任意初始局面 $S=(a_1, a_2, ..., a_n)$, 令# $S=f(a_1)+f(a_2)+...+f(a_n)$ 。

	若#S≠0,则先行者(甲)	有必胜策略; 否则后行者(乙)有必胜策略。
	. 类似游戏 A 的证明。	
	游戏B的解法与游戏A十	一分类似。这是因为两个游戏的规则相当类似。
5、	、 推广	
	游戏 C:	
	甲乙两人面对若干排石子	上,其中每一排石子的数目可以任意确定。例如图 2
	所示的初始局面: 共 n=	3 排, 其中第一排的石子数 a _i =7, 第二排石子数
	a ₂ =3,第三排石子数 a ₃ =3	。两人轮流按下列规则取走一些石子,游戏的规则
	如下:	
	□ 每一步必须从某一排	中取走两枚石子;
	□ 这两枚石子必须是紧	紧挨着的;
	□ 如果谁无法按规则取	子,谁就是输家。
		1 2 3 4 5 6 7
	第一	
	第二	$\bigcirc \bigcirc \bigcirc$
	第三	$\bigcirc\bigcirc\bigcirc\bigcirc$

图 2 游戏的一个初始局面

- □ 如果甲第一步选择取第一排34这两枚石子,之后无论是甲还是乙,都不能
 - 一次取走25这两枚石子。换句话说,如果取了34这两枚石子,等价于将第
 - 一排分成了两排,这两排分别有2个和3个石子。

我们只关心,对于一个初始局面,究竟是先行者(甲)有必胜策略,还是 后行者(乙)有必胜策略。

游戏 C 的规则和游戏 A 并不那么相似。但是,前面所列出的,游戏 A 的关键性质,游戏 C 却都具有。比如说,图 2 所示的初始局面可以用三元组(7, 3, 3)来表示,它的胜负情况与初始局面(7)相同。

游戏A的解答是由它的性质得出来的。因此,我们猜想游戏C是否也能用类似的方法来解。

6、精华

- □ 回忆游戏 A 的结论,以及它在游戏 B 上的推广,对于游戏 C, 我们的想法 是
- □ 设计一个函数 f, 把函数 f 的值看作是二进制数。对于任意一个初始局面 S,

设 $S=(a_1, a_2, ..., a_n)$,令 $\#S=f(a_1)+f(a_2)+...+f(a_n)$ 。若 $\#S\neq 0$,则先行者(甲)有必

胜策略: 否则#S=0, 这时后行者(乙)有必胜策略。

\square 游戏 A 中, $f(x) = x$ 。
□ 游戏 B 中, $f(x) = x \mod (m+1)$ 。
\square 游戏 C 中, $f(x) = ?$ 。
关键就在于如何构造一个满足要求的函数 f。
回忆关于游戏A、B的结论的证明过程
函数f是否满足要求,关键在于#S是否满足下面的条件。
□ 若#S=0,则无论先行者如何取子 S→T,都有#T≠0。
□ 若#S≠0,则先行者必然存在一种取子方法 S→T,且#T=0。
用符号\$(x),表示局面(x)的下一步所有可能出现的局面的集合。
□ 在游戏A中, \$(3)={(2),(1),(0)}。
□ 在游戏B中, 若 m=4, 则\$(9)={(8), (7), (6), (5)}, \$(2)={(1), (0)}。
□ 在游戏 C 中, \$(7)={(5), (1, 4), (2, 3)}。
定义集合 $g(x)$: 设 $s(x)=\{S_1, S_2,, S_k\}$, 则 $g(x)=\{\#S_1, \#S_2,, \#S_k\}$ 。
□ 在游戏A中,\$(3)={(2), (1), (0)},故g(3)={#(2), #(1), #(0)}={10, 01,
$00\}$.

- □ 在游戏 B 中,若 m=4,则 g(9)={#(8), #(7), #(6), #(5)}, g(2)={#(1), #(0)}。
- □ 在游戏 C 中, g(7)={#(5), #(1, 4), #(2, 3)}。

$$(7)=\{(5), (1, 4), (2, 3)\}$$

 $g(7)=\{\#(5), \#(1, 4), \#(2, 3)\}$

- □ 若#S=0,则无论先行者如何取子 S→T,都有#T \neq 0。
 - . 设 $S=(a_1, a_2, ..., a_n)$, 由于先行者只能选择一堆石子,不妨设选择了 a_1 ;
 - 因为#S= $f(a_1)$ +# $(a_2, ..., a_n)$ =0,所以 $f(a_1)$ =# $(a_2, ..., a_n)$;
 - 先行者可能将局面 (a_1) 变为局面 $(b_1, ..., b_m)$, $\#(b_1, ..., b_m)$ 属于集合 $g(a_1)$;
 - 设这时的局面为 T, 我们有 $T=(b_1,...,b_m)+(a_2,...,a_n)$;
 - $\#T=\#(b_1, ..., b_m)+\#(a_2, ..., a_n)=\#(b_1, ..., b_m)+f(a_1);$
 - 如果要求# $T\neq 0$,则必然有# $(b_1, ..., b_m)\neq f(a_1)$;
 - 因此,函数 $f(a_1)$ 的值,不属于集合 $g(a_1)$ 。(充要)

□ 若# $S \neq 0$,则先行者必然存在一种取子方法 $S \rightarrow T$,且#T = 0。

- 没 $S=(a_1, a_2, ..., a_n), p=\#S=f(a_1)+f(a_2)+...+f(a_n);$
- 因为 p≠0 , 所以必然存在 k , 使得 f(a_k)+p<f(a_k) , 不妨设
 k=1, f(a₁)+p=x;
- 因为 $p=\#S=f(a_1)+\#(a_2,...,a_n)$,故 $(a_2,...,a_n)=p+f(a_1)=x$;
- 如果先行者把局面 (a_1) 变为局面 $(b_1, ..., b_m)$, # $(b_1, ..., b_m)$ 属于集合 $g(a_1)$;
- 设这时的局面为 T, 我们有 T= $(b_1, ..., b_m)$ + $(a_2, ..., a_n)$;
- . $\#T = \#(b_1, ..., b_m) + \#(a_2, ..., a_n) = \#(b_1, ..., b_m) + x;$
- 如果要使#T=0,相当于要找到 $(b_1,...,b_m)$,使得# $(b_1,...,b_m)$ 等于 x;
- 如果可以保证 x 属于集合 $g(a_1)$,则肯定可以找到相应的的 $(b_1, ..., b_m)$;
- 因为 $x < f(a_1)$, 所以, x 属于集合 $\{0, 1, ..., f(a_1)-1\}$;
- 如果集合 $g(a_1)$ 包含集合 $\{0, 1, ..., f(a_1)-1\}$,则 x一定属于 $g(a_1)$ 。(充分)

- □ 函数 f满足要求的一个充分条件
 - \Box $f(a_1)$ 不属于集合 $g(a_1)$ 。
 - □ 集合 $g(a_1)$ 包含集合 $\{0, 1, ..., f(a_1)-1\}$ 。
- □ 如果 $g(a_1)=\{0,1,2,5,7,8,9\}$,则 $f(a_1)=3$,满足要求。
- □ 用大写字母 N 表示非负整数集,即 N={0,1,2,...}。
- □ 令 N 为全集,集合 G(x)表示集合 g(x)的补集。
- \square 定义函数 f(n): $f(n)=min\{G(n)\}$, 即 f(n)等于集合 G(n)中的最小数。
- □ 设局面 $S=(a_1, a_2, ..., a_n)$, $\#S=f(a_1)+f(a_2)+...+f(a_n)$, 采用二进制数的加法。

若#S=0,则S负;若#S≠0,则S胜。

□ 游戏C的f值:

$$\Box$$
 g(0)={}, G(0)={0, 1, ...}, f(0)=0;

$$\Box$$
 g(1)={}, G(1)={0, 1, ...}, f(1)=0;

$$\Box$$
 g(2)={#(0)}={f(0)}={0}, G(2)={1, 2, ...}, f(2)=1;

$$= g(3) = \{f(1)\} = \{f(1)\} = \{0\}, G(2) = \{1, 2, ...\}, f(3) = 1;$$

$$g(4)=\{\#(2), \#(1, 1)\}=\{f(2), f(1)+f(1)\}=\{1, 0\}, G(4)=\{2, 3, ...\}, f(4)=2;$$

$$\Box$$
 g(5)={#(3), #(1, 2)}={f(3), f(1)+f(2)}={1, 1}, G(5)={0, 2, 3,

$$\dots$$
}, $f(5)=0$;

$$\square$$
 g(6)={#(4), #(1, 4), #(2, 2)}={2, 1, 0}, G(6)={3, 4, ...}, f(6)=3;

$$\square$$
 g(7)={#(4), #(1, 4), #(2, 3)}={2, 2, 0}, G(7)={1, 3, 4, ...}, f(7)=1;

□ 图 2 所示的局面
$$S=(7,3,3)$$
,有 $\#S=f(7)+f(3)+f(3)=1+1+1=1$,故 S 胜。

7、结论

□ 此类搏弈游戏的一般性解法:

□ 用一个 n 元组($a_1, a_2,, a_n$),来描述游戏过程中的一个局面。
□ 用符号#S,表示局面 S 所对应的二进制数。
□ 用符号\$(x),表示局面(x)的下一步所有可能出现的局面的集合。
$ \ \square \ 定义集合g(x); \ 设\$(x)\!\!=\!\!\{S_1,S_2,,S_k\}, \ 则g(x)\!\!=\!\!\{\#S_1,\#S_2,,\#S_k\}.$
\Box 令非负整数集为全集,集合 $G(x)$ 表示集合 $g(x)$ 的补集。
\square 定义函数 $f(n)$: $f(n)=min\{G(n)\}$, 即 $f(n)$ 等于集合 $G(n)$ 中的最小数。
□ 设局面 S=(a ₁ , a ₂ ,, a _n), #S=f(a ₁)+f(a ₂)++f(a _n), 采用二进制数的加法。
若#S≠0,则先行者有必胜策略;若#S=0,则后行者有必胜策略。
适用范围和限制条件:
□ 甲乙两人取石子游戏及其类似的游戏;
□ 每一步只能对某一堆石子进行操作;
□ 每一步操作的限制,只与这堆石子的数目或一些常数有关;
□ 操作在有限步内终止,并不会出现循环;
□ 谁无法继续操作,谁就是输家。
游戏D (POI'2000, Stripes):
一排石子有 L 个, 甲乙两人轮流从中取"紧紧挨着的"A 或 B 或 C 枚石子。

谁不能取了,谁就是输家。已知A,B,C,L,问甲乙二人谁有必胜策略。

□ 有了前面的结论,这个游戏就难不倒我们了。

8、总结

1. 从算法优化的角度

取石子游戏属于一类典型的搏弈游戏。穷举所有的局面,理论上可以求得最优策略。但穷举的时空复杂度太高,本文所提出的解法,有效的控制了算法的时空复杂度,可以看作是对穷举法的一个优化。

优化算法的过程,可以看作是在优化局面的表示。首先,我们用一个n元组表示一个局面,这是很直观很容易想到的。因为我们只关心局面的胜负,于是得到了第一个性质:这个n元组是无序的。进一步分析发现,n元组中如果出现两个相同的数字,则把它们消去,不影响局面的胜负。于是,我们改用集合来表示一个局面。最后,通过与二进制数的对比,又简化到用一个数来表示一个局面。优化局面的表示,使得搜索量大大减少。那么,减少的搜索量都到哪里去了呢?举个例子,对于游戏A中的5个局面:(3,3,1),(1,3,3),(5,5,1),(2,3);

- a. 采用 n 元组: 这 5 个局面互不相同;
- b. 采用无序 n 元组: 局面(3, 3, 1)和(1, 3, 3)相同;
- c. 采用集合: 局面(3, 3, 1), (1, 3, 3), (5, 5, 1)都相同,可以用集合{1}表示:

d. 采用二进制数: 4个局面所对应的二进制数都是1, 故都相同。

算法的优化,本质上是**避免穷举相同的局面**,即避免重复搜索。而优化的 关键,就在于"相同局面"的定义。

"相同局面"的定义,必须能够反映游戏的性质。我们没有简单的按照局面的胜负,来对局面归类,就是这个原因。

2. 从算法构造的角度

人们认识事物的过程中,开始只是看到了各个事物的现象。这就是认识的感性阶段。在这个阶段中,还不能作出合乎逻辑的结论。随着研究的深入,这些感觉和印象的东西反复了多次,于是在人们的脑子里生起了一个认识过程中的突变,最后产生出合乎逻辑的结论。这就是认识的理性阶段。

人们认识事物的过程,就是由感性认识上升到理性认识的过程。具体到解这类游戏,就是要**从简单入手**。当我们遇到了一个复杂的问题,或许人人都知道从简单入手,但却并不是每个人都能从中得到一般性的规律。那么,我们究竟是如何由**浅入深**的呢?

两堆数目相等的石子——这是个很简单的局面。我们就由此入手,将一堆石子与一个子局面相类比,并得出了两个子局面相等时的结论。在此基础上,我们研究了局面的胜负和其子局面的关系,并得出结论:可以用集合来描述一个局面。但我们并没有停留在这一步,而是将局面的分解与二进制数的加法相类比,从而发现了局面与二进制数之间的关系。我们称这个过程为"由此及彼"。

通过分析"用集合来表示一个局面"的结论,我发现这实质上是简化了局面的表示,从而联想到能否进一步化简,比如说用一个数来表示。在解游戏C时,

我们并不在意它与游戏 A 的规则有多大的区别,而是注意到它与游戏 A 有着相似的性质,从而想到用类似的方法解游戏 C。我们称这个过程为"由表及里"。

在解游戏 A 和 B 的过程中, 我们积累了很多经验。但在解游戏 C 时, 我们却

仅仅提到了解游戏A和B的精华:构造一个函数f。这就是"去粗取精"。

将局面与二进制数相类比,我们先试着把局面的胜负直接与二进制的 1 和 0 相类比。发现不妥后,再将其改为与二进制数来类比。这一步叫"**去伪存真**"。

"由此及彼、由表及里、去粗取精、去伪存真",这就是由感性认识上升到理性认识的关键。