www.csvtuonline.com

322452(14)

B. E. (Fourth Semester) Examination, Nov.-Dec. 2015

(New Scheme)

(CSE Branch)

DISCRETE STRUCTURES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: All questions are compulsory. Part (a) from each question is compulsory. Attempt any two parts from (b), (c) and (d) each question.

Unit-I

(a) Define Quantifiers.

www.csvtuonline.com

2

www.csvtuonline.com

322452(14)

PTO

www.csvtuonline.com

www.csvtuonline.com

[2]

(b) Define disjunctive normal form. Change the Boolean

function
$$f(x, y, z) = \left[x + (x' + y)'\right] \cdot \left[x + (y' \cdot z')'\right]$$

to disjunctive normal form.

7

- (c) Define Boolean algebra prove De-Morgan's laws using the properties of Boolean algebra.
- (d) Draw a simpler circuit for the following diagram and verify the equivalent circuits by truth tables.

Unit-II

- 2. (a) Define Set. Explain roster and set builder form with an example.
 - (b) Define function. If Q is the set of all rational numbers and $f:Q \to Q$ is defined by f(x) = 3x + 2, $x \in Q$, then prove that f is one-one and onto. Also find f^{-1} .

322452(14) www.csvtuonline.com

- period equivalence relation. If R is an equivalence relation in the set A, then prove that R^{\perp} is also an equivalence relation in the set A.
- (d) (i) Explain the following with examples partial order relation lattice,
 - (ii) Draw the Hasse diagram for the partial ordering $\{(A, B)/A \subseteq B\}$ on the power set P(S) where $S = \{a, b, c\}$.

Unit-III

- 1 (a) Define Homomorphism and Isomorphism.
 - (b) Show that the set of cube roots of unity is an abelian group with respect to multiplication.
 - (c) State and prove Lagrange's theorem.
 - (d) Show that $S = \{a + b\sqrt{2} : a, b \in z\}$ for the operations $+, \times$ is an integral domain but not a field.

Unit-IV

322452(14) www.csvtuonline.com PTO

7

www.csvtuonline.com

- 141
- 4. (a) Find the indegree and outdegree of each vertex for the following graph.

(b) Define and write the adjacency and incidence matrix of the following graph.

[5]

pefine spanning tree. Use Kruskal's algorithm to find the minimal spanning tree for the following graph

- (d) Explain the following:
 - (i) Walk
 - (ii) Path
 - (iii) Circuit
 - (iv) Cut set
 - (v) Euler graph
 - (vi) Hamiltonian graph

Unit-V

(a) How many ways are there to arrange the nine letters in the word ALLAHABAD?

322452(14)

PTO

2

www.csvtuonline.com

www.csvtuonline.com

- (b) What is mathematical induction? Show that $2^n > n^3$ for $n \ge 10$.
- (c) Solve the recurrence relation

$$a_r - 6a_{r-1} + 8a_{r-2} = 0$$
. $r \ge 2$

with the boundary conditions $a_0 = 1$ and $a_1 = 4$.

(d) How many positive integers not exceeding 500 are divisible by 7 or 11?