THH OF $BP\langle 2 \rangle$

G. ANGELINI-KNOLL ÜND D. CULVER

ABSTRACT. Various spectral sequences for getting the calculation of $THH_*BP\langle 2 \rangle$ started.

CONTENTS

1.	Bökstedt spectral sequence for H_* THH(R)	1
2.	$THH(BP\langle 2 \rangle; \mathbb{F}_2)$	2
3.	THH(R; k(2))	3
Re	ferences	5

Throughout, we will probably let p = 2. Also, I don't feel like writing $BP\langle 2 \rangle$ all the time, so we will set R to be $BP\langle 2 \rangle$ or $tmf_1(3)$ or whatever...

1. Bökstedt spectral sequence for H_* THH(R)

The Bökstedt spectral sequence for *R* takes the form

$$HH_s(H_tR) \implies H_{s+t} THH(R).$$

Since

$$H_*(R) = A /\!\!/ E(2)_* = P(\zeta_1^2, \zeta_2^2, \zeta_3^2, \zeta_4, \zeta_5, \ldots).$$

So by standard theorems about Hochschild homology,

$$HH_*R \cong A/\!\!/ E(2)_* \otimes E(\sigma\zeta_1^2, \sigma\zeta_2^2, \sigma\zeta_3^2, \sigma\zeta_4, \ldots)$$

For degree reasons, this spectral sequence collapses immediately (or by comparison with the Bökstedt spectral sequence for $THH(\mathbb{F}_2)$, which is known to collapse immediately). However, there are hidden multiplicative extensions arising from power operations. We get

$$H_* \operatorname{THH}(R) = A /\!\!/ E(2)_* \otimes E(\lambda_1, \lambda_2, \lambda_3) \otimes P(\mu)$$

where $|\lambda_1| = 3$, $|\lambda_2| = 7$, and $|\lambda_3| = 15$ and $|\mu| = 16$.

2.
$$THH(BP\langle 2\rangle; \mathbb{F}_2)$$

Recall that

$$THH(BP\langle 2\rangle; \mathbb{F}_2) := H\mathbb{F}_2 \wedge_{R \wedge R^{op}} R$$

It turns out that there is an equivalence

$$THH(R; \mathbb{F}_2) \simeq H\mathbb{F}_2 \wedge_R THH(R).$$

The first way we will compute $THH_*(R; \mathbb{F}_2)$ is by The Bökstedt spectral sequence for this then becomes

$$HH_*(H_*R; A_*) \implies H_*(THH(R; \mathbb{F}_2))$$

I am pretty sure the Bökstedt spectral sequence with coefficients take this form... I think it does, I think this is because we can think of THH(R;M) as the realization of the diagram simplicial module

$$[n] \mapsto M \wedge R^{\wedge n}$$

and then we just take the skeleton spectral sequence. Think about applying homology to this simplicial object, then the E_1 -page is the alternating sign chain complex of this simplicial graded abelian group and it happens to be the same as the chain complex computing $HH_*(H_*(R); H_*(M))$.

As in the topological case¹, we should have

$$HH_*(H_*R; A_*) \cong Tor^{A/\!\!/E(2)_*}(A_*, H_*THH(R)).$$

I don't understand this statement. It is true that $HH_*(H_*(R); H_*HF_2) \cong Tor^{H_*(R)\otimes H_*(R)^{op}}(A_*, H_*(R))$ and it is also true that the RHS is the input for a Künneth spectral sequence computing $H_*THH(R; HF_2)$, but the RHS and LHS will only agree when the Bökstedt spectral sequence collapses and there are no hidden multiplicative extensions. Since A_* is free over $A/\!\!/E(2)_*^2$, we have that this Tor-group is concentrated in Tor₀, and so the E^2 -page is

$$\operatorname{Tor}_0^{A/\!\!/E(2)_*}(A_*,A/\!\!/E(2)_*\otimes E(\lambda_1,\lambda_2,\lambda_3)\otimes P(\mu))=A_*\otimes E(\lambda_1,\lambda_2,\lambda_3)\otimes P(\mu).$$

Feeding this into the Adams spectral sequence yields

$$THH_*(R; \mathbb{F}_2) \cong E(\lambda_1, \lambda_2, \lambda_3) \otimes P(\mu)$$

As a check that this is correct, we will also calculate via the Künneth spectral sequence. This is a spectral sequence of the form

$$\operatorname{Tor}_{s,t}^{H_*R}(\mathbb{F}_2,\mathbb{F}_2) \implies \operatorname{THH}_{s+t}(R;\mathbb{F}_2).$$

I don't understand this either. I think of the Künneth spectral sequence as a spectral sequence for computing E_* of a relative smash product $A \wedge_R B$ and then the input is

ck that is the of the with

¹Lemma 2.1 of [1] which states that when R is a commutative S-algebra and M an R-module, then $THH(R;M) \simeq M \wedge_R THH(R).$

²Indeed, as an $A/\!\!/E(2)_*$ -module it is $A/\!\!/E(2)_*\{\zeta_1,\zeta_2,\zeta_1\zeta_2\}$

 $Tor^{E_*(R)}(E_*(A); E_*(B))$ so the LHS above looks like the input for a Künneth spectral sequence computing $\pi_*(HF_2 \wedge_{HF_2 \wedge R} HF_2)$, whereas the RHS is $\pi_*(HF_2 \wedge_{R \wedge R^{op}} R)$. The E^2 -term is

$$\operatorname{Tor}^{A/\!\!/E(2)_*}(\mathbb{F}_2,\mathbb{F}_2) \cong E(\sigma\zeta_1^2,\sigma\zeta_2^2,\sigma\zeta_3^2,\sigma\zeta_4,\ldots)$$

with the degree of $\sigma \zeta_n$ being $(1, 2^n - 1)$. This spectral sequence collapses at E_2 and also plays well with power operations. Thus giving the desired answer.

3.
$$THH(R; k(2))$$

Let k(2) denote the connective second Morava K-theory. We will follow the analogous proof for $THH(\ell;k(1))$ which can be found in [3] and [2].

Recall that

$$THH(R; k(2)) := k(2) \wedge_{R \wedge R^{op}} R \simeq k(2) \wedge_R THH(R)$$

In the case of ku, one could note that

$$V(0) \wedge \mathrm{THH}(ku) = V(0) \wedge (\mathrm{ku} \wedge_{\mathrm{ku} \wedge \mathrm{ku}^{\mathrm{op}}} \mathrm{ku}) \simeq (V(0) \wedge \mathrm{ku}) \wedge_{\mathrm{ku} \wedge \mathrm{ku}^{\mathrm{op}}} \mathrm{ku} = k(1) \wedge_{\mathrm{ku} \wedge \mathrm{ku}^{\mathrm{op}}} \mathrm{ku}$$

$$V(0) \wedge R \simeq R/2$$

I just want to see if there is unique pattern of differentials.... So let's just assume for now that the only v_2 -torsion free class in THH(R;k(2)) is 1. Let's see if this uniquely determines the Adams differentials.

First we need to calculate the mod 2 homology of THH(R; k(2)).

There is an isomorphism

$$H_*(THH(R;k(2)) \cong H_*(THH(R) \wedge_R k(2))$$

Since $H_*THH(R)$ is free over $H_*(R)$ the Künneth spectral sequence collapses and therefore

$$H_*(THH(R;k(2)) \cong H_*(k(2)) \otimes E(\lambda_1,\lambda_2,\lambda_3) \otimes P(\mu)$$

We then want to compute the Adams spectral sequence

$$Ext_A^{*,*}(H\mathbb{F}_p; H_*(k(2)) \otimes E(\lambda_1, \lambda_2, \lambda_3) \otimes P(\mu)) \Rightarrow \pi_*(HH(R; k(2)))$$

and the input is isomorphic to

$$Ext_{E(Q_2)}(H\mathbb{F}_p; E(\lambda_1, \lambda_2, \lambda_3) \otimes P(\mu))$$

by a change of rings isomorphism. Since $E(\lambda_1, \lambda_2, \lambda_3) \otimes P(\mu)$ has trivial $E(Q_2)$ -coaction, this in turn is isomorphic to

$$E(\lambda_1, \lambda_2, \lambda_3) \otimes P(\mu) \otimes P(v_2)$$

where v_2 is in bidegree (2p-2,1). In other words, this spectral sequence has isomorphic E_2 -page to the Bockstein spectral sequence.

We then want to compute differentials in this spectral sequence. To do this, it will be useful to consider the v_2^{-1} Adams spectral sequence

$$v_2^{-1}Ext_{E(Q_2)}(H\mathbb{F}_p; E(\lambda_1, \lambda_2, \lambda_3) \otimes P(\mu))$$

converging to $v_2^{-1}\pi_*THH(R;k(2))$.

Question: Is $v_2^{-1}\pi_*THH(R;k(2))\cong \pi_*(L_{K(2)}THH(R;k(2)))$? This is definitely not true in general (conjecturally), but I think it is true for $tmf_1(3)$, and k(2) and $THH(tmf_1(3);k(2))$ is a $tmf_1(3)$ -module and a k(2)-module.

In McClure-Staffeldt, they prove that the unit map $\ell \to THH(\ell)$ is a $K(1)_*$ -equivalence, so K(1)-locally all the classes of the form σx must die. Since the telescope conjecture is true at height 1, this implies that all the classes of the form σx are v_2 -torsion and that forces all the differentials (note we also know in the case of ℓ that all powers of v_1 itself survive so there can be no differentials on the λ_i for i=0,1 hitting powers of v_1 .

REFERENCES

- [1] Vigleik Angeltveit, Michael Hill, and Tyler Lawson, *Topological hochschild homology of l and ko* (200710), available at 0710.4368.
- [2] Vigleik Angeltveit and John Rognes, *Hopf algebra structure on topological hochschild homology*, available at math/0502195.
- [3] J.E. McClure and R. E. Staffeldt, *On the topological Hochschild homology of bu, i,* American Journal of Mathematics **115** (1993Feb.), no. 1, 1–45.

University of Illinois, Urbana-Champaign

E-mail address: dculver@nd.edu

MICHIGAN STATE UNIVERSITY, EAST LANSING

E-mail address: angelini@math.msu.edu