

Supervised Learning

#1 Meeting

Overview & Minimasi RSS

Ferdian Bangkit Wijaya, S.Stat., M.Si NIP. 199005202024061001

Overview Machine Learning

- 1. Supervised Learning
- 2. Unsupervised Learning
- 3. Reinforcement Learning

Supervised Learning

- Karakteristik: Data latih memiliki label (input dan output yang benar). Tujuannya adalah memetakan input ke output.
- 2. Analogi Guru: Ada "guru" yang memberikan kunci jawaban selama proses belajar.

Regresi

Tujuan: Memprediksi nilai yang berkelanjutan (kontinu)

- 1. Linier Regression
- 2. Polynomial Regression
- 3. Gulud/ Ridge Regression
- 4. Lasso Regression
- 5. Support Vector Regression
- 6. Decision Tree Regression
- 7. Random Forest Regression

Klasifikasi

Tujuan: Memprediksi sebuah kategori atau kelas.

"Jawabannya" adalah sebuah label.

- 1. Logistic Regression
- 2. K-Nearest Neighbors (KNN)
- 3. Support Vector Machines (SVM)
- 4. Naive Bayes
- 5. Decision Tree Classification
- 6. Random Forest Classification

Unsupervised Learning

- 1. Karakteristik: Data tidak memiliki label. Model harus menemukan pola atau struktur tersembunyi di dalam data itu sendiri.
- 2. Analogi: Belajar mandiri tanpa guru, hanya dengan mengamati dan mengelompokkan data yang ada.

Clustering (Pengelompokan)

Tujuan: Memprediksi nilai yang berkelanjutan (kontinu)

- 1.K-Means
- 2. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)Gulud Regression
- 3. Hierarchical Clustering (Agglomerative & Divisive)
- 4. Gaussian Mixture Models (GMM)
- 5. Mean Shift

Association (Asosiasi)

Tujuan: Memprediksi sebuah kategori atau kelas. "Jawabannya" adalah sebuah label.

- 1. Apriori
- 2.FP-Growth (Frequent Pattern Growth)
- 3. Eclat (Equivalence Class Clustering and bottom-up Lattice Traversal)

Dimensionality Reduction

Tujuan: Mengurangi jumlah variabel (fitur atau dimensi) dalam data, tetapi tetap mempertahankan informasi penting.

- 1.PCA
- 2.t-SNE
- 3. Autoencoders

Reinforcement Learning

- 1. Karakteristik: Model (disebut "agent") belajar dengan berinteraksi dengan lingkungannya. Ia belajar dari trial and error berdasarkan reward (hadiah) dan punishment (hukuman).
- 2. Analogi: Melatih seekor anjing. Perilaku yang benar diberi hadiah, yang salah tidak diberi apa-apa atau ditegur.

Model-Free Learning

Tujuan: Fokus mempelajari value (nilai) dari setiap keadaan atau tindakan (Value Based) dan Fokus untuk langsung mempelajari policy (kebijakan) itu sendiri (Policy Based)

- 1.Q-Learning
- 2. SARSA (State-Action-Reward-State-Action)
- 3. Deep Q-Network (DQN)
- 4. REINFORCE
- 5.A2C / A3C

Model-Based Learning

Tujuan: Berbeda dengan Model-Free yang langsung belajar aksi dari pengalaman, Model-Based bertujuan untuk membangun pemahaman atau "model" internal dari lingkungannya terlebih dahulu.

- 1. Value Iteration & Policy Iteration
- 2. Monte Carlo Tree Search (MCTS)
- 3. Dyna-Q

Minimalisasi RSS (Residual Sum of Square) pada Regresi Linier Sederhana

$$RSS = \sum (y_i - (\beta_0 + \beta_1 x_i))^2$$

Turunan parsial RSS terhadap β_o diatur sama dengan nol.

$$\sum 2(y_i - \beta_o - \beta_1 x_i) \cdot (-1) = 0$$

Sederhanakan konstanta

$$-2\sum_{i}(y_i-\beta_0-\beta_1x_i)=0$$

Bagi kedua sisi dengan -2.

$$\sum (y_i - \beta_o - \beta_1 x_i) = 0$$

Distribusikan simbol Sigma (∑).

$$\sum y_i - \sum \beta_0 - \sum \beta_1 x_i = 0$$

Terapkan sifat-sifat Sigma. $(\sum \beta_o \text{ menjadi } n\beta_o, \text{ dan konstanta } \beta_1 \text{ keluar dari sigma})$

$$\sum y_i - n\beta_0 - \beta_1 \sum x_i = 0$$

Pindahkan suku-suku beta ke sisi kanan untuk mendapatkan Persamaan Normal Pertama.

$$\sum y_i = n\beta_0 + \beta_1 \sum x_i$$

Turunan parsial RSS terhadap β₁ diatur sama dengan nol.

$$\sum 2(y_i - \beta_0 - \beta_1 x_i) \cdot (-x_i) = 0$$

Sederhanakan konstanta.

$$-2\sum x_i(y_i-\beta_o-\beta_1x_i)=0$$

Bagi kedua sisi dengan -2.

$$\sum x_i(y_i - \beta_o - \beta_1 x_i) = 0$$

Distribusikan x_i ke dalam kurung.

$$\sum (x_i y_i - \beta_0 x_i - \beta_1 x_i^2) = 0$$

Distribusikan simbol Sigma (∑).

$$\sum x_i y_i - \sum \beta_0 x_i - \sum \beta_1 x_i^2 = 0$$

Keluarkan konstanta β₀ dan β₁ dari Sigma.

$$\sum x_i y_i - \beta_0 \sum x_i - \beta_1 \sum x_i^2 = 0$$

Pindahkan suku-suku beta ke sisi kanan untuk mendapatkan Persamaan Normal Kedua.

$$\sum x_i y_i = \beta_0 \sum x_i + \beta_1 \sum x_i^2$$

Persamaan Normal Pertama.

$$\sum y_i = n\beta_0 + \beta_1 \sum x_i$$

Bagi setiap suku dalam persamaan dengan n (jumlah data)

$$(\sum y_i / n) = (n\beta_0 / n) + (\beta_1 \sum x_i / n)$$

Maka persamaan di atas menjadi:

$$\bar{y} = \beta_0 + \beta_1 \bar{x}$$

Atau bisa ditulis menjadi

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

Persamaan Normal Kedua:

$$\sum x_i y_i = \beta_0 \sum x_i + \beta_1 \sum x_i^2$$

Substitusikan β_o

$$\sum x_i y_i = (\bar{y} - \beta_1 \bar{x}) \sum x_i + \beta_1 \sum x_i^2$$

Distribusikan ∑x_i ke dalam kurung.

$$\sum x_i y_i = \bar{y} \sum x_i - \beta_1 \bar{x} \sum x_i + \beta_1 \sum x_i^2$$

Kumpulkan semua suku yang memiliki β₁

$$\sum x_i y_i - \bar{y} \sum x_i = \beta_1 \sum x_i^2 - \beta_1 \bar{x} \sum x_i$$

Faktorkan keluar β₁ di sisi kanan.

$$\sum x_i y_i - \bar{y} \sum x_i = \beta_1 (\sum x_i^2 - \bar{x} \sum x_i)$$

Bagi kedua sisi untuk mendapatkan formula akhir β₁.

$$\beta_1 = (\sum x_i y_i - \bar{y} \sum x_i) / (\sum x_i^2 - \bar{x} \sum x_i)$$

Dalam praktiknya, formula ini sering ditulis dalam bentuk lain yang lebih stabil secara numerik dan lebih mudah diinterpretasikan, yaitu:

$$\beta_1 = \sum ((x_i - \bar{x})(y_i - \bar{y})) / \sum ((x_i - \bar{x})^2)$$

Kedua formula untuk β₁ di atas adalah identik secara matematis.

BUKTIKAN!

y: Vektor variabel dependen (hasil observasi)

$$y = [y_1]$$
 Ukuran: (n x 1)
 $[y_2]$
 $[...]$
 $[y_n]$

β: Vektor koefisien (yang ingin kita cari)

$$β = [β_0]$$

$$[β_1]$$
Ukuran: ((k+1) x 1)
$$[...]$$

$$[β_k]$$

X: Matriks Desain (Design Matrix)

ε: Vektor error

$$\varepsilon = [\varepsilon_1]$$

$$[\varepsilon_2] \quad \text{Ukuran: (n x 1)}$$

$$[\ldots]$$

$$[\varepsilon_n]$$

persamaan regresi berganda

$$y = X\beta + \varepsilon$$

nilai prediksi

$$\hat{y} = X\beta$$

Vektor residual (e):

$$e = y - \hat{y} = y - X\beta$$

RSS =
$$e^Te = (y - X\beta)^T (y - X\beta)$$

Dengan menggunakan sifat transpose (AB)^T = B^TA^T

RSS =
$$(y^T - (X\beta)^T) (y - X\beta)$$

RSS =
$$(y^T - \beta^T X^T) (y - X\beta)$$

RSS =
$$y^Ty - y^TX\beta - \beta^TX^Ty + \beta^TX^TX\beta$$

Karena $y^TX\beta$ adalah sebuah skalar (angka tunggal), nilainya sama dengan transposenya, $(y^TX\beta)^T = \beta^TX^Ty$

RSS =
$$y^Ty - 2\beta^TX^Ty + \beta^TX^TX\beta$$

Ambil Turunan terhadap β

Turunan dari a^Tx terhadap x adalah a.

Turunan dari x^TAx terhadap x adalah 2Ax

Menerapkan aturan ini ke fungsi RSS:

RSS =
$$y^Ty - 2\beta^TX^Ty + \beta^TX^TX\beta$$

$$\partial (RSS)/\partial \beta = 0 - 2X^{T}y + 2X^{T}X\beta$$

Atur Turunan Sama Dengan Nol:

$$2X^{\mathsf{T}}X\beta - 2X^{\mathsf{T}}y = 0$$

$$2X^TX\beta = 2X^Ty$$

$$X^TX\beta = X^Ty$$

kalikan kedua sisi dari kiri dengan (X^TX)⁻¹:

$$(X^TX)^{-1}(X^TX)\beta = (X^TX)^{-1}X^Ty$$

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Keterangan:

β (beta-hat) adalah notasi untuk vektor koefisien hasil estimasi kita.

X^T adalah transpose dari matriks desain X. (X^TX)⁻¹ adalah invers dari matriks X^TX.

Variabel	Deskripsi	Ukuran / Dimensi
У	Vektor nilai aktual / observasi	(n x 1)
X	Matriks data prediktor (plus kolom intersep)	(n x (k+1))
β	Vektor koefisien yang dicari	((k+1) x 1)
Хт	Transpose dari matriks X	((k+1) x n)
X ^T X	Matriks kovarians	((k+1) x (k+1))
(X ^T X) ⁻¹	Invers dari Matriks kovarians	((k+1) x (k+1))
Х ^т у	Vektor kovarians antara prediktor dan y	((k+1) x 1)
β	Hasil akhir: Vektor koefisien estimasi	((k+1) x 1)
е	Vektor error (residual)	(n x 1)

BETUL!!!

Yang Kita Bahas ini Adalah ORDINARY LEAST SQUARE

Apakah Ada Metode Least Square lain ???

Metode	Masalah Utama yang Diatasi	Modifikasi pada OLS
Ordinary Least Squares (OLS)	(Dasar)	Meminimalkan RSS
Weighted Least Squares (WLS)	Heteroscedasticity	Meminimalkan RSS yang diboboti
Generalized Least Squares (GLS)	Heteroscedasticity & Autokorelasi	Mentransformasi data menggunakan matriks kovarians error
Partial Least Squares (PLS)	Multikolinieritas & k > n	Reduksi dimensi, regresi pada komponen laten
Ridge & Lasso Regression	Overfitting & Multikolinieritas	Meminimalkan RSS + Suku Penalti pada koefisien

SEE YOU NEXT WEEK!

Ferdian Bangkit Wijaya, S.Stat., M.Si NIP. 199005202024061001 ferdian.bangkit@untirta.ac.id