Task 1:

Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickenss to be 13 mm)

Answer

To calculate the
$$U - value$$
 of a window,

$$U_{window} = \frac{U_{center}A_{center} + U_{edge}A_{edge} + U_{fram}A_{fram}}{A_{window}},$$

If it is a double - pane window, disregard the thermal resistances of glass layers,

$$\frac{1}{U_{double-pane\,(center\,region)}} \approx \frac{1}{h_i} + \frac{1}{h_{space}} + \frac{1}{h_0}, h_{space} = h_{rad,\,space} + h_{conv,\,space}$$

The Ucenter, i.e. the hspace changes by changing the gas that fills

From the diagram in the right side, we can see that:

When the gap thickenss is 13 mm,

By changing the gas that fills the gap from air to argon, the U-value of the center of the glass decreases from $2.8 \frac{W}{m^2 K}$ to 2.65 W, which means the U-value decreases about 5.36%;

By changing the gas that fills the gap from air to krypton, the U-value of the center of the glass decrease from $2.8 \frac{W}{m^2 K}$ to $2.6 \frac{W}{m^2 K}$, which means the U-value decreases abouth 7.14%.

The Ucenter, i.e. the h_{space} changes by adding an extra pane.

From the diagram in the right side, we can see that:

When the gap thickenss is 13 mm, and the gas that fills the gap is

By adding an extra pane, the U-value of the center of the glass decreases from 2.8 $\frac{W}{m^2K}$ to 1.8 $\frac{W}{m^2K}$, which means the U-value decreases about 35.71%

Another way to change the Ucenter, is to coat the glass surfaces with a film that has a low emissivity.

From the diagram in the right we can see that:

When the gap thickenss is 13 mm, and the gas fills the gap is air,

By coating the glass surfaces with a film that has the emissivity of 0.1, the U-value of the center of the glass decreases from $2.8 \frac{W}{m^2 K}$ to $1.8 \frac{W}{m^2 K}$, which means the U-value decreases about 35.71 %.

Consider the house that we analysed in the alst two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m² on the west, fixed 3.6 m² on the south and an operable 3.6 m² on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?

- 1. The net area of walls (excluding doors and windows) of a building located in Piacenza is 105.8 in³, the calculated II value is 0.438 W/ m2K for the winter and 0.435 W/m2K for the summer. Find the corresponding heating and cooling load.
- 2. A fixed heat absorbing double layer glass (with a wooden frame) window at the east side of a building located in Ptacessa has a surface of 14.4 m². In case there are no internal and external shading factors. Calculate the heating and cooling load of the corresponding to that window.)

						- 0	MCEN	CA, Italy						SHACK	100040
Lee	44,82N	Very	9.736	fac	136	240	99.88		Time Jone	1.00 (814	w)	Peter	89-18	want	91995
-	7	_	-	-											
Coatena	Heating ESS		Hamiltonia DESIGNS and HE						College morell WS-MCDB				HCH!		
			max.			Wh.		-	24%		1%		6.9035.08		100
	mers.	m.	139	165	MCOR	Dir.	100	MCGR	70	UCCU	ME.	MOTE	MOWS	PORE	
846	1987	CHE	LNO:	(M)	(0)	Tail	(9.2	0.0	833	(10)	. 241	-0.002	0.43	Chil	
	4.2	4.8	-91.6	1.4	3.5	4.8	1.8	1.6	8.8	44	3.3	6.2	2.0	298	
-	-		-	de Desp	-		10 4 10	- 177						22000	
Multiple Marrie	Hotel			Coding	NAME OF THE PARTY OF				Engineer WENCO				B 1806		
	MOVE .	700	40	-	No.	-	-	-	17000	100	200	-	T LEWIS T	1000	108
244	OR THE REAL	245	245	100	MACHINE L	- 001	124	000	1 4000	747	4500	4-75	A PROCESS	L Maria	170
546	1.640	100	1.43	1.40	311	0.00	1 1000	0.0		5.40	10.0	190	6.40	140	100

First of all define the cooling design temperature $T_{cooling}=24\,^{\circ}\mathrm{C}.$ and heating design temperature Theating = 20 °C. thus

 $\Delta T_{cooling} = 31.9 \, ^{\circ}C - 24 \, ^{\circ}C = 7.9 \, ^{\circ}C = 7.9 K$

 $\Delta T_{hasting} = 20^{\circ}C - (-4.8^{\circ}C) = 24.8^{\circ}C = 24.8K$

From the table above DR = 11.9 °C = 11.9 K

		Letter									
Espera :		*	-	æ	*	-	e	M	-	w	
turb.	T,	79	7	-	-	7	7	-	71	39	
	Б,	18	mi	MAI	-		-	- 84	- 90	. 4	
	16	191	754	191	175	100	=	184	178	18	
Salter Select	100	-	-	40	40	403	-	-	79	100	
	160	100	100	101	-	161	10	140	140	11	
	16	40	100	Jest	700	564	10	104	41		
ted Ton	64	100	-	hed	-	-	-	10.0	10	12	
	90	700	766	m	-10	160	-	140	196	14	
	K,	116	194	100	-	764	w	340	Tw	19	
States Saider	64	307	10	bel	411	-	-	10.0	-	h	
	40	les	ALC:	heat	700	min	-	line	24	44	
	ĸ.	-	m	833	-	4m	-	-	118	н	
	K.	100	les i	170	100	Jan	-	104	218	10	
	X,	-	227	101	-	-	m	ka	-	14	
Demonstration of the last of t	×.	ME	-	400	100	779	79	-	47	*	
	K.	116	1/9	1 %	100	ite	-79	176	Th	. 15	

Calculating the cooling load of the fixed window on the west:

 $q_{acadow_{max}} = A \times CF_{acadow_{max}}$

 $A = 14.4m^{T}$

 $CF_{window_{west}(Next Trainfer Part)} = U_{window_{west}}(\delta T_{cooling} - 0.46 DR)$

"The window has a fixed heat absorbing double layer glass

 $A U_{actual resigner} = 2.84 \frac{W}{m/g}$

i.e., $CF_{window_{west}(Mean Trainfer Fart)} = 2.84 \frac{W}{m^2 K} \times (7.9 K - 0.46 \times 11.9 K) = 6.89 \frac{W}{m^2}$

 $PXI_{window}_{max} = E_D + E_d = 559 + 188 \approx 747$

SMCC = 0.54

No internal shading, so MC = 1

Pedram Nafisi Poor Week 8

$$CF_{window_{west}(trradiation\ Part)} = PXI \times SHGC \times IAC \times FF_{s}$$

$$q_{window_{west}} = A \times CF_{window_{west}} = A \times (CF_{window_{west}(Heat Trasnfer Part)} + CF_{window_{west}(Irradiation Part)})$$

= 14.4 $m^2 \times (6.89 + 747 \times 0.54 \times 1 \times 0.56) \frac{W}{m^2} \approx 3352.07 W$

Calculating the heating load of the fixed window on the west;

$$q_{window_{west}} = A \times HF_{window_{west}} = A \times U_{window_{west}} \Delta T_{heating}$$

= $14.4 \text{ m}^2 \times 2.84 \frac{W}{m^2 W} \times 24.8K \approx 1014.22 \text{ W}$

When the frame were to be aluminium, $U_{window_{west}} = 3.61 \frac{W}{m^2 K}$. HSGC = 0.56

$$CF'_{window_{west}(Heat\ Trasnfer\ Part)} = U'_{window_{west}} (\Delta T_{cooling} - 0.46\ DR)$$

$$=3.61 \frac{W}{m^2 K} \times (7.9 \text{ K} - 0.46 \times 11.9 \text{ K}) \approx 8.76 \frac{W}{m^2}$$

Cooling load
$$q'_{window_{west}} = A \times CF'_{window_{west}}$$

$$= A \times \left(CF'_{window_{west}(teat\ Trasnfer\ Part)} + CF'_{window_{west}(trradiation\ Part)} \right)$$

$$\approx 14.4 \text{ m}^2 \times (8.76 + 747 \times 0.56 \times 1 \times 0.56) \frac{W}{m^2} \approx 3499.48 \text{ W}$$

$$Heating\ load\ q'_{window_{west}} = A \times HF'_{window_{west}} = A \times U'_{window_{west}}\ \Delta T_{heating}$$

$$= 14.4 \, m^2 \times 3.61 \frac{W}{m^2 K} \times 24.8 \, K \approx 1289.20 \, W$$

Calculating the cooling load of the fixed window on the south:

$$q_{window_{south}} = A \times CF_{window_{south}}$$

$$A = 3.6 m^2$$

$$CF_{window_{south}(Heat\ Trasnfer\ Part)} = U_{window_{south}} (\Delta T_{cooling} - 0.46\ DR)$$

"The window has a fixed heat absorbing double layer glass with a wooden frame,

$$\therefore U_{window_{south}} = 2.84 \frac{W}{m^2 V}$$

i.e.,
$$CF_{window_{posth}(Heat Trasnfer Part)} = 2.84 \frac{W}{m^2 k} \times (7.9 \text{ K} - 0.46 \times 11.9 \text{ K}) \approx 6.89 \frac{W}{m^2}$$

$$PXI_{window_{south}} = E_D + E_d = 348 + 209 = 557$$

$$SHGC = 0.54$$

No internal shading, so IAC =1

$$FF_s = 0.47$$

$$CF_{window_{south}(Irradiation\ Part)} = PXI \times SHGC \times IAC \times FF_{g}$$

$$q_{window_{south}} = A \times CF_{window_{south}} = A \times (CF_{window_{south}(treat_{rasmfer_{part}})} + CF_{window_{south}(treadiation_{part})})$$

$$\approx 3.6 \, m^2 \times (6.89 + 557 \times 0.54 \times 1 \times 0.47) \, \frac{W}{-3} \approx 553.72 \, W$$

Calculating the heating load of the fixed window on the south:

$$q_{window_{south}} = A \times HF_{window_{south}} = A \times U_{window_{south}} \Delta T_{heating}$$

= $3.6 \, m^2 \times 2.84 \, \frac{w}{-2} \times 24.8K = 253.56 \, W$

When the frame were to be aluminium, $U_{window_{south}} = 3.61 \frac{W}{m^2 K}$, HSGC = 0.56

$$CF'_{window_{south}(Neat\ Transfer\ Part)} = U'_{window_{south}} (\Delta T_{cooling} - 0.46\ DR)$$

$$=3.61\frac{w}{m^2K}\times(7.9\,K\,-0.46\times11.9\,K)\approx8.76\,\frac{w}{m^2}$$

Cooling load $q_{window_{south}}^r = A \times CF_{window_{south}}^r$

$$= A \times (CF'_{window_{south}(Heat Trasmfer Part)} + CF'_{window_{south}(Hradiation Part)})$$

$$= 3.6 \, m^2 \times (8.76 + 557 \times 0.56 \times 1 \times 0.47) \frac{W}{-3} = 559.30 \, W$$

 $Heating\ load\ q'_{window_{south}} = A \times HF'_{window_{south}} = A \times U'_{window_{south}}\ \Delta T_{heating}$

$$= 3.6 \, m^2 \times 3.61 \, \frac{W}{m^2 K} \times 24.8 \, K \approx 322.30 \, W$$

Calculating the cooling load of the operable window on the south:

$$q_{window_{south}} = A \times CF_{window_{south}}$$

$$A = 3.6 \, m^2$$

$$CF_{window_{south}(Heat\ Trasmfer\ Part)} = U_{window_{south}} (\Delta T_{cooling} - 0.46\ DR)$$

: The window has an operable heat absorbing double layer glass with a wooden frame,

$$\therefore U_{window_{south}} = 2.87 \frac{w}{m^2 \kappa}$$

i.e.,
$$CF_{window_{north}(Heat\ Transfer\ Part)} = 2.87 \frac{W}{m^2 k} \times (7.9\ K\ -0.46 \times 11.9\ K) \approx 6.96 \frac{W}{m^2}$$

$$PXI_{window_{south}} = E_D + E_d = 348 + 209 = 557$$

$$SHGC = 0.46$$

No internal shading, so IAC =1

$$FF_{\rm s} = 0.47$$

$$CF_{window_{south}(Irradiation\ Part)} = PXI \times SHGC \times IAC \times FF_3$$

$$q_{window_{south}} = A \times CF_{window_{south}} = A \times (CF_{window_{south}}(Heat Trasnfer Part) + CF_{window_{south}}(Irradiation Part))$$

$$\approx 3.6 \text{ } m^2 \times (6.96 + 557 \times 0.46 \times 1 \times 0.47) \xrightarrow{W} \approx 458.58 \text{ } W$$

Calculating the heating load of the operable window on the south:

$$q_{window_{south}} = A \times HF_{window_{south}} = A \times U_{window_{south}} \, \Delta T_{heating}$$

$$= 3.6 \, m^2 \times 2.87 \, \frac{W}{m^2 K} \times 24.8 K \approx 256.23 \, W$$

When the frame were to be aluminium, $U_{window_{south}} = 4.62 \frac{W}{m^2 K}$, HSGC = 0.55

$$CF'_{window_{south}(Heat Trasnfer Part)} = U'_{window_{south}} (\Delta T_{cooling} - 0.46 DR)$$

$$=4.62 \frac{W}{m^2 \pi} \times (7.9 \text{ K} - 0.46 \times 11.9 \text{ K}) \approx 11.21 \frac{W}{m^2}$$

Cooling load $q'_{window_{south}} = A \times CF'_{window_{south}}$

 $= A \times \left(CF'_{window_{anath}(Heat\ Framfer\ Part)} + CF'_{window_{anath}(Fradiation\ Part)} \right)$

$$\approx 3.6 \text{ m}^2 \times (11.21 + 557 \times 0.55 \times 1 \times 0.47) \frac{W}{-1} \approx 558.70 \text{ W}$$

Heating load
$$q'_{window_{south}} = A \times HF'_{window_{south}} = A \times U'_{window_{south}} \Delta T_{heating}$$

$$= 3.6 \, m^7 \times 4.62 \, \frac{W}{m^2 K} \times 24.8 \, K \approx 412.47 \, W$$

Pedram Nafisi Poor Week 8