WikipediA

x86

x86 is a family of <u>instruction set architectures[a]</u> initially developed by <u>Intel</u> based on the <u>Intel 8086 microprocessor</u> and its <u>8088</u> variant. The 8086 was introduced in 1978 as a fully <u>16-bit</u> extension of Intel's <u>8-bit 8080</u> microprocessor, with <u>memory segmentation</u> as a solution for addressing more memory than can be covered by a plain 16-bit address. The term "x86" came into being because the names of several successors to Intel's 8086 processor end in "86", including the <u>80186</u>, <u>80286</u>, <u>80386</u> and <u>80486</u> processors.

Many additions and extensions have been added to the x86 instruction set over the years, almost consistently with full backward compatibility. The architecture has been implemented in processors from Intel, Cyrix, AMD, VIA Technologies and many other companies; there are also open implementations, such as the Zet SoC platform (currently inactive). Nevertheless, of those, only Intel, AMD, VIA Technologies, and DM&P Electronics hold x86 architectural licenses, and from these, only the first two are actively producing modern 64-bit designs.

The term is not synonymous with <u>IBM PC compatibility</u>, as this implies a multitude of other <u>computer hardware</u>; <u>embedded systems</u>, and general-purpose computers, used x86 chips <u>before the PC-compatible market started</u>, <u>[c]</u> some of them before the IBM PC (1981) debut.

As of 2021, most <u>desktop computers</u>, <u>laptops</u> and <u>game consoles</u> (with the exception of the <u>Nintendo Switch [3][4]</u>) sold are based on the x86 architecture, while mobile categories such as <u>smartphones</u> or <u>tablets</u> are dominated by <u>ARM</u>; at the high end, x86 continues to dominate compute-intensive <u>workstation</u> and <u>cloud computing</u> segments, [5] while the <u>fastest</u> supercomputer is ARM-based, and the top 4 are no longer x86-based. [3]

C	Λr	1	ρr	its
U	111	ш		11.5

Overview

Chronology

History

x86

Designer	Intel, AMD		
Bits	16-bit, 32-bit and 64- bit		
Introduced	1978 (16-bit), 1985 (32-bit), 2003 (64-bit)		
Design	CISC		
Туре	Register-memory		
Encoding	Variable (1 to 15 bytes)		
Branching	Condition code		
Endianness	Little		
Page size	8086–i286: None i386, i486: 4 KB pages P5 Pentium: added 4 MB pages (Legacy PAE: 4 KB→2 MB) x86-64: added 1 GB pages		
Extensions	x87, IA-32, x86-64, MMX, 3DNow!, SSE, MCA, ACPI, SSE2, NX bit, SMT, SSE3, SSSE3, SSE4, SSE4.2, AES-NI, CLMUL, RDRAND, SHA, MPX, SME, SGX, XOP, F16C, ADX, BMI, FMA, AVX, AVX2, AVX-VNNI, AVX512, VT-x, VT-d, AMD-V, AMD-Vi, TSX, ASF, TXT		

1 of 31 11/28/2021, 3:42 PM

Other manufacturers

Extensions of word size

Basic properties of the architecture

Floating point and SIMD

Current implementations

Segmentation

Addressing modes

x86 registers

16-bit

32-bit

64-bit

128-bit

256-bit

512-bit

Miscellaneous/special purpose

Purpose

Structure

Operating modes

Real mode

Unreal mode

System Management Mode

Protected mode

Virtual 8086 mode

Long mode

Extensions

Floating-point unit

MMX

3DNow!

SSE and AVX

Physical Address Extension (PAE)

x86-64

Virtualization

AES

See also

Notes

References

Further reading

External links

Open

Partly. For some advanced features, x86 may require license from Intel; x86-64 may require an additional license from AMD. The 80486 processor has been on the market for more than 30 years[1] and so cannot be subject to patent claims. The pre-586 subset of the x86 architecture is therefore fully open.

Registers

General purpose

- 16-bit: 6 semidedicated registers, BP and SP are not general-purpose
- 32-bit: 8 GPRs, including EBP and ESP
- 64-bit: 16 GPRs, including RBP and RSP

Floating point

- 16-bit: optional separate <u>x87</u> FPU
- 32-bit: optional separate or integrated <u>x87</u> FPU, integrated <u>SSE</u> units in later processors
- 64-bit: integrated
 x87 and SSE2
 units, later
 implementations
 extended to AVX2
 and AVX512

2 of 31