DS3: Électricité

Durée 4h, calculatrices interdites. Le DS est probablement trop long pour que vous puissiez tout faire, c'est normal, faites-en le maximum.

Exercice 1: Résistances équivalentes

Exprimer en fonction de R les résistances équivalentes entre les points A et B dans les trois circuits suivants :

Exercice 2: Quelques circuits (TD4)

Attention, les réponses aux questions suivantes devront être correctement justifiées.

- 1. Circuit 1 : Exprimer i en fonction de E, R_1 et R_2 .
- 2. Circuit 2 : Exprimer i et U en fonction de E et des R_k .
- 3. Circuit 3 : Exprimer U, i, i₁ et i₂ en fonction de E et R.

Exercice 3: Surtension aux bornes d'une bobine (TD5)

On considère le circuit ci-contre où une bobine est branchée à un générateur avec par l'intermédiaire d'une résistance en série. À t=0 on ferme l'interrupteur K et on observe l'évolution de l'intensité du courant dans la bobine

- 1. Décrire qualitativement comment évolue l'intensité i_L au cours du temps. Justifier la réponse.
- 2. Écrire l'équation différentielle satisfaite par l'intensité $i_L(t)$
- 3. Résoudre l'équation différentielle précédente pour trouver l'évolution temporelle de $i_L(t)$.

On suppose que l'interrupteur K reste fermé $suffisamment\ long temps\ pour\ que\ le\ régime\ permanent\ soit\ atteint.\ puis\ on\ ouvre\ l'interrupteur.$

4. Préciser ce que signifie *suffisamment longtemps*. Donner, en fonction de R et L, une estimation du temps pendant lequel l'interrupteur doit rester fermé.

2018–2019 page 1/4

- 5. Exprimer l'énergie W_L emmagasinée dans la bobine.
- 6. L'intensité du courant qui traverse un interrupteur idéal ouvert est nulle. L'interrupteur K peut-il être considéré comme idéal?
- 7. Justifier que lorsqu'on ouvre l'interrupteur K la tension aux bornes de L augmente considérablement. Quels problèmes cela peut-il poser? À quoi ce phénomène peut-il servir?

Exercice 4: Convertisseur buck

On se propose d'étudier le circuit suivant qui représente un convertisseur de type buck dont le but est de convertir une tension continue $u_{\rm in}$ en une autre tension continue $u_{\rm out} < u_{\rm in}$. Ce circuit sert à abaisser une tension continue.

Les interrupteurs K_1 et K_2 sont commandés électroniquement, ils s'ouvrent et se ferment de manière cyclique. Pendant un temps noté $t_{\rm on}$, K_1 est fermé et K_2 est ouvert, et pendant un temps noté $t_{\rm off}$, K_1 est ouvert et K_2 est fermé. La période $t_{\rm on}+t_{\rm off}$ du cycle complet est notée T.

Le rapport $r=\frac{t_{\mathrm{on}}}{T}$ est appelé le rapport cyclique du signal de commande de l'interrupteur.

On considère que le circuit fonctionne en régime permanent, c'est à dire que la tension de sortie u_{out} est **constante** au cours du temps, l'intensité i évolue de façon périodique.

- 1. Lors de la phase où K_1 est fermé et K_2 ouvert, exprimer le taux de variation $\frac{\mathrm{d}\,i}{\mathrm{d}\,t}$ en fonction de $u_{\mathrm{in}},\,u_{\mathrm{out}}$ et L.
- 2. En déduire l'expression de i(t), on notera i_{\min} l'intensité au moment où K_1 se ferme. Montrer qu'au moment où K_1 s'ouvre l'intensité vaut :

$$i_{\max} = i_{\min} + \frac{(u_{\text{in}} - u_{\text{out}})t_{\text{on}}}{L}$$

- 3. Déterminer $\frac{\mathrm{d}\,i}{\mathrm{d}\,t}$ lors de la phase où K_1 est ouvert et K_2 fermé en fonction de u_out et L.
- 4. En déduire l'expression de i(t) lors de cette phase, c'est à dire pour $t \in [t_{on}, t_{on} + t_{off}]$.
- 5. Justifier que $i(t_{\text{on}} + t_{\text{off}}) = i(0) = i_{\text{min}}$. Tracer l'évolution temporelle de i(t).
- 6. En déduire l'expression de $u_{\rm out}$ en fonction de $u_{\rm in}$ et r. On vérifiera que l'on a bien $u_{\rm out} < u_{\rm in}$

Exercice 5 : CIRCUIT RLC PARALLÈLE (TD6)

On étudie le circuit RLC parallèle ci-contre. L'interrupteur K est initialement fermé pendant un temps suffisamment long pour que le régime permanent soit atteint. À t=0 on ouvre l'interrupteur et on observe l'évolution de la tension u(t).

- 1. Donner les valeurs des intensités i_C , i_R , et i_L et de la tension u dans le circuit à $t=0^-$, $t=0^+$, et $t\to\infty$.
- 2. Tracer qualitativement l'allure de u(t) après l'ouverture de K.
- 3. Comment le facteur de qualité Q du circuit dépend-il de R? Proposer une expression de Q basée sur une analyse dimensionnelle.

2018–2019 page 2/4

- 4. Déterminer l'équation différentielle satisfaite par u(t) pour t > 0.
- 5. En déduire les expressions de la fréquence propre w_0 et du facteur de qualité Q en fonction de R, L et C. Comparer l'expression de Q avec celle trouvée à la question précédente.
- 6. A.N. : On donne R=40, $C=200\,\mu\mathrm{F}$ et $L=10\,\mathrm{m}\,\mathrm{H}$. Calculer la pulsation propre du système et le facteur de qualité. Quelle est la durée du régime transitoire?
- 7. Tracer l'allure du portrait de phase de la tension u(t), c'est-à-dire le graphique représentant $\frac{\mathrm{d} u}{\mathrm{d} t}$ en fonction de u.

Exercice 6 : CIRCUIT RLC SÉRIE

On s'intéresse au circuit ci-dessous dans lequel le générateur de tension délivre une tension variable dans le temps e(t).

I - Réponse à un échelon de tension

Dans cette partie on considère que la tension e(t) est telle que :

- -e(t) = 0 pour t < 0;
- -e(t) = E pour t > 0.
- 1. Déterminer les valeurs de $i(0^-)$, $u_L(0^-)$ et $u_C(0^-)$ juste avant l'instant t=0. Justifier précisément la réponse.
- 2. Déterminer les valeurs de $i(0^+)$, $u_L(0^+)$ et $u_C(0^+)$ juste après l'instant t=0. Justifier précisément la réponse.
- 3. Déterminer l'équation différentielle satisfaite par la tension $u_L(t)$ pour t > 0.
- 4. Exprimer la pulsation propre ω_0 et le facteur de qualité Q du circuit en fonction de R, L et C.
- 5. On donne ci-dessous l'évolution de la tension $u_L(t)$ pour t>0. Déterminer à partir de ce graphique une estimation des valeurs numériques de E, ω_0 et Q.

6. Quelles valeurs de R, L et C peut-on utiliser pour réaliser ce circuit?

II - Régime sinusoïdal forcé

On étudie maintenant ce circuit en régime sinusoïdal forcé, la tension e(t) est une tension alternative sinusoïdale :

$$e(t) = E\cos(\omega t)$$

- 7. Donner l'expression de la tension complexe $\underline{e}(t)$ associée à la tension réelle e(t).
- 8. Monter que la tension complexe \underline{u}_L est donnée par :

$$\underline{u}_{L} = \underline{e} \frac{jQ\frac{\omega}{\omega_{0}}}{1 + jQ\left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)}$$

avec $\omega_0 = \frac{1}{\sqrt{LC}}$ et $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$.

2018–2019 page 3/4

- 9. Déterminer l'amplitude $U(\omega)$ d'oscillation de la tension $u_L(t)$ aux bornes de la bobine en fonction de E,Q,ω et ω_0 . Que vaut $U(\omega_0)$?
- 10. Comparer cette valeur à l'amplitude E de variation de la tension d'alimentation, comment s'appelle ce phénomène?
- 11. Quelle est la valeur du déphasage φ entre la tension d'alimentation e(t) et la tension aux bornes de la bobine lorsque $\omega = \omega_0$?

2018–2019 page 4/4