STIR: 提升码率来降低查询复杂度

- Jade Xie jade@secbit.io
- Yu Guo <u>yu.guo@secbit.io</u>

本文主要受 <u>STIR 论文</u> 作者的博客文章 <u>STIR: Reed–Solomon Proximity Testing with Fewer Queries</u> 与演讲 <u>ZK11:</u> <u>STIR: Reed–Solomon Proximity Testing with Fewer Queries - Gal Arnon & Giacomo Fenzi</u> 的启发,介绍 STIR 协议。

STIR 和 FRI 一样,也是解决 Reed-Solomon Proximity Testing 问题,不过与 FRI 相比,其有更低的查询复杂度,这会降低 argument 的大小与 Verifier 的哈希复杂度。那么 STIR 是如何实现这一点的呢?其实谜底就在谜面上,STIR 取了 **S**hift **T**o Improve **R**ate 的首字母,STIR 的核心点就在其通过每次移动 evaluation domain,来提升码率。直观地理解,码率实际刻画的是码字中所含的真实信息的比例,码率降低,真实信息减少,对应码字中的冗余就增大了,Verifier 就更容易测试接受到的一个消息到该编码空间的 proximity 了,其测试能力变得更强了。换句话说,由于Verifier 的测试能力变强,那么其只需要更少的查询次数就能达到目标的安全性了。下面通过对比 FRI 和 STIR,来看看 STIR 是如何降低码率的。

FRI v.s. STIR

对于一个有限域 \mathbb{F} , 取 $\mathcal{L}\subseteq\mathbb{F}$ 为 evaluation domain,设其大小 $|\mathcal{L}|=n$,用 d 表示次数界限(不妨设 n 与 d 都是 2 的幂次),那么 Reed-Solomon 编码空间 $\mathrm{RS}[\mathbb{F},\mathcal{L},d]$ 包含的是所有这样的函数 $f:\mathcal{L}\to\mathbb{F}$,函数 f 能与一个次数严格小于 d 的多项式在 \mathcal{L} 上的求值完全一致。码率 $\rho:=d/|\mathcal{L}|$ 。

协议的目标是解决 Reed-Solomon Proximity Testing 问题,其中 Verifier 是可以通过查询获得一个函数 $f:\mathcal{L}\to\mathbb{F}$ 的,那么 Verifier 的目标就是在尽可能少的位置上查询 f 的值,能够区分出 f 属于下面哪一种情况:

- 1. f 是一个 Reed-Solomon 码字,即 $f \in \mathbf{RS}[\mathbb{F}, \mathcal{L}, d]$;
- 2. f 距离 Reed-Solomon 编码空间 $\mathrm{RS}[\mathbb{F},\mathcal{L},d]$ 中的所有码字的相对 Hamming 距离都有 δ 那么远,即 $\Delta(f,\mathrm{RS}[\mathbb{F},\mathcal{L},d])>\delta$ 。

我们在 IOPP(Interactive Oracle Proofs of Proximity) 模型下考虑上述 Reed-Solomon Proximity Testing 问题,此时 Verifier 可以和 Prover 进行交互,并且能通过 oracle 获得 Prover 的消息,如下图所示。

Verifier 通过与 Prover 一系列交互之后,分两种情况:

- $f \in \mathrm{RS}[\mathbb{F},\mathcal{L},d]$, Verifier 接受 :)
- $\Delta(f, \mathrm{RS}[\mathbb{F}, \mathcal{L}, d]) > \delta$, Verifier 大概率拒绝 :(

我们在k折的情况下对比FRI协议和STIR协议,如下图所示。

在 FRI 协议中,假设 g_1 是通过随机数 α_1 进行 k 折得到的,其中 $\mathcal{L}^k=\{x^k,x\in\mathcal{L}\}$ 。因此将测试 $f\in\mathrm{RS}[\mathbb{F},\mathcal{L},d]$ 转换为 $g_1\in\mathrm{RS}[\mathbb{F},\mathcal{L}^k,d/k]$,递归地来测试 $g_i\in\mathrm{RS}[\mathbb{F},\mathcal{L}^{k^i},d/k^i]$ 。因此在第 i 轮,其码率

$$\rho_i = \frac{\frac{d}{k^i}}{|\mathcal{L}_i|} = \frac{d}{k^i} \cdot \frac{k^i}{n} = \frac{d}{n} = \rho \tag{1}$$

可以发现在每一轮中,码率 ρ_i 始终为 ρ ,保持不变。

而在 STIR 协议中,注意 g_1' 仍然是 k 折,但是其 evaluation domain \mathcal{L}' 的大小却不是缩小 k 倍,而是 2 倍。此时将 测试 $f \in \mathrm{RS}[\mathbb{F},\mathcal{L}',d]$ 转换为测试 $g_1' \in \mathrm{RS}[\mathbb{F},\mathcal{L}',d/k]$ 。那么在第 i 轮,需要测试 $g_i' \in \mathrm{RS}[\mathbb{F},\mathcal{L}'_i,d/k^i]$ 。这时

$$\rho_i = \frac{\frac{d}{k^i}}{|\mathcal{L}_i'|} = \frac{d}{k^i} \cdot \frac{2^i}{n} = \left(\frac{2}{k}\right)^i \cdot \frac{d}{n} = \left(\frac{2}{k}\right)^i \cdot \rho \tag{2}$$

如果 $\frac{2}{k} < 1$ 即 k > 2 ,可以发现码率 ρ_i 每一轮都在减小,这就是 STIR 降低查询复杂的关键之处。

当我们将上述的 IOPP 编译成 SNARK 时,需要用到 BCS 转换 ([BCS16], BCS transformation) ,分为两步:

- 1. 将 Prover 的消息进行 Merkle 承诺,当 Verifier 想要查询时就打开这些承诺,这一步将 IOPP 转换为了一个简洁的交互论证(succinct interactive argument)。
- 2. 使用 Fait-Shamir 转换将第一步得到的简洁的交互论证转换为非交互的。

在BCS转换中,就需要 IOPP 有一个比较强的 soundness 性质,称为 round-by-round soundness,意思是要求 IOPP 在每一轮有比较小的 soundness error,这比要求整个 IOPP 有比较小的 soundness error 要求更强。我们假设要求 round-by-round soundness error 的界为 $2^{-\lambda}$ 。每一轮可以重复查询 t_i 次,整个 IOPP 协议进行 M 轮,那么整个证明的总查询复杂度就为 $\sum_{i=0}^M t_i$ 。对于 δ 达到 Johnson bound,即 $\delta=1-\sqrt{\rho}$,通过计算可以得到

1. FRI 的查询复杂度为:

$$O\left(\lambda \cdot \frac{\log d}{-\log\sqrt{\rho}}\right) \tag{3}$$

2. STIR 的查询复杂度为:

$$O\left(\lambda \cdot \log\left(\frac{\log d}{-\log\sqrt{\rho}}\right) + \log d\right) \tag{4}$$

在 STIR 查询复杂度中,d 通常不大,因此占比比较大的是第一项 $\lambda \cdot \log\left(\frac{\log d}{-\log\sqrt{\rho}}\right)$,可以发现其是 $\log\log$ 级别的,而原来的 FRI 只是 \log 级别。

在论文 [ACFY24] 6.4 节中的图 2 给出了 FRI 和 STIR 的对比试验结果,可以发现 STIR 降低查询复杂度导致了其在 argument 大小和 Verifier 计算的哈希数量相比 FRI 更优。这也比较好理解,更少的查询复杂度意味着:

- 1. 减少整个 argument 大小是显然的。
- 2. 由于查询次数更少,那么 Verifier 需要打开的 Merkle 承诺就更少,计算对应的哈希数量就更少。

Figure 2: Comparison of FRI and STIR for $\rho = 1/2$. FRI: \blacktriangle , STIR: \bullet . Lower is better.

关于 RS 编码的强有力的工具

在这里先引入几个关于 RS 编码的强大工具,其能帮助我们理解具体的 STIR 协议构造。

Folding

对于一个函数 $f:\mathcal{L}\to\mathbb{F}$, 给一个随机数 $r\in\mathbb{F}$,其 k 次折叠之后的函数记为 $f_r:=\mathrm{Fold}(f,r):\mathcal{L}^k\to\mathbb{F}$ 。其定义为,对于每一个 $x\in\mathcal{L}^k$,在 \mathcal{L} 中能找到 k 个 y 满足 $y^k=x$,由 k 对 (y,f(y)) 可以得到唯一的一个次数小于 k 的多项式 \hat{p} ,其满足 $\hat{p}(y)=f(y)$,那么 $\hat{p}(r)$ 就是函数 $f_r(x)$ 的值。这个 Fold 函数的定义和 FRI 协议中的 Fold 函数定义完全一致,其有两个很好的性质。

第一个性质是距离的保持。

- 1. 如果折叠前的函数 $f\in\mathrm{RS}[\mathbb{F},\mathcal{L},d]$,那么对于任意选取的随机数 $r\in\mathbb{F}$,都有折叠之后的函数依然是 RS 码,即 $f_r\in\mathrm{RS}[\mathbb{F},\mathcal{L}^k,d/k]$ 。
- 2. 对于 $\delta \in (0, 1 \sqrt{\rho})$,如果 f 距离 $\mathrm{RS}[\mathbb{F}, \mathcal{L}, d]$ 有 δ 远,那么以至少 $1 \mathrm{poly}(|\mathcal{L}|)/\mathbb{F}$ 的概率对随机数 r 进行选择,有 f_r 距离 $\mathrm{RS}[\mathbb{F}, \mathcal{L}^k, d/k]$ 有 δ 远。

这个性质保证了我们可以大胆进行折叠,如果 Prover 作弊,提供了距离编码空间有 δ 远的函数,极大概率其折叠之后的函数依然距离对应的编码空间有 δ 远。

第二个性质称为 Local,意思是如果要得到折叠后的函数在任意一点的值,只需要查询 f 在 k 个点的值就能计算得出,因为此时可以得到唯一一个次数小于 k 的多项式 \hat{p} ,再带入 r 计算得到 $\hat{p}(r)$ 就是该点的值。此时 Prover 也不需要单独提供 $\mathrm{Fold}(f,r)$ 的 oracle 了,Verifier 通过访问 f 的 oracle 就能得到了,这就减少了 argument 大小。

Quotienting

对于函数 $f:\mathcal{L} \to \mathbb{F}$,以及 $p:S \to \mathbb{F}$,其中 $S \subseteq \mathbb{F}$,则关于函数 f 的 quotient 定义为:

Quotient
$$(f, S, p)(x) := \frac{f(x) - \hat{p}(x)}{\prod_{a \in S} (X - a)},$$
 (5)

其中 \hat{p} 是满足对任意的 $a \in S$,都有 $\hat{p}(a) = p(a)$ 的次数小于 |S| 的唯一的多项式。

该函数的一个重要性质是一致性(Consistency) ,假设 S 与 $\mathcal L$ 不相交(其实也可以相交,结论会更复杂些,见[ACFY24] Lemma 4.4),那么

- 1. 如果 $f\in\mathrm{RS}[\mathbb{F},\mathcal{L},d]$,其是一个次数小于 d 的多项式在 \mathcal{L} 上的 evaluation,并且该多项式在 S 上与 p 一致,那么 $\mathrm{Quotient}(f,S,p)\in\mathrm{RS}[\mathbb{F},\mathcal{L},d-|S|]$ 。
- 2. 如果对于任意一个离 f 有 δ 近的次数小于 d 的多项式 \hat{u} ,都有 \hat{u} 与 p 在 S 上不完全一致,即对于一些 $a \in S$, 有 $\hat{u}(a) \neq p(a)$,那么 Quotient (f,S,p) 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L},d-|S|]$ 就有 δ 远。

对于上述第 2 点,在 f 的 δ 范围内的码字 \hat{u} ,这些码字组成的集合记为 $\mathrm{List}(f,d,\delta)$ 。对于任意的 $\hat{u}\in\mathrm{List}(f,d,\delta)$,只要在 S 上有一点,使得 $\hat{u}(a)\neq p(a)$,商多项式 $\mathrm{Quotient}(f,S,p)$ 的距离就被放大了,就有 δ 那么远了,也就是如果这里被除了错误的值 f(a)-p(a) ,商多项式距离低次多项式所在的 RS 编码空间就很远了。

注意到这里要求任意的 $\hat{u}\in \mathrm{List}(f,d,\delta)$,都有 \hat{u} 与 p 在 S 上不一致。而用 Out of Domain Sampling 的方法,我们可以将 f 在 δ 范围内的码字以极大概率限制到最多一个,这会使得 Verifier 更容易去检测。我们将在下一小节详细介绍该方法。

Quotient 函数可以帮助我们实现在函数 f 上添加约束。例如想限制 f 在点 a 处的值为 b ,那么可以通过 Quotient $(f,\{a\},p)$ 来实现,其中 p(a)=b ,即

Quotient
$$(f, \{a\}, p) = \frac{f(x) - p(x)}{x - a}$$
 (6)

接着证明 $\operatorname{Quotient}(f,\{a\},p)\in\operatorname{RS}[\mathbb{F},\mathcal{L},d-1]$ 就可以了。如果 Prover 提供的 f 在 a 点的值不为 b ,即 $f(a)\neq b$,那么 $f(a)\neq p(a)$,就会导致 $\operatorname{Quotient}(f,\{a\},p)$ 距离 $\operatorname{RS}[\mathbb{F},\mathcal{L},d-1]$ 有 δ 远,就容易被 Verifier 检测出来了。这里只添加了一个约束,自然可以添加多个约束,这样就能在 f 添加约束的同时将测试 f 转换为测试 $\operatorname{Quotient}$ 函数距离对应的 RS 编码空间有 δ 近了。

Quotient 函数和折叠函数一样有 Local 性质。要计算 Quotient 函数在点 $x \in \mathcal{L} \setminus \mathcal{S}$ 的值,通过查询函数 f 在 x 点的值就可以计算得出。

Out of Domain Sampling

Out of Domain Sampling 是一种强大的工具,其可以帮助我们限制 Prover 提供的函数 f 在 δ 范围内的码字数量,这样就就可以将 List Decoding 转换为 Unique Decoding 了。

对于函数 $f:\mathcal{L}\to\mathbb{F}$,Verifier 从区域 \mathcal{L} 之外随机选取一个数 $\alpha\in\mathbb{F}\setminus\mathcal{L}$,Prover 返回值 β ,那么在 f 的 δ 范围内的码字列表 $\mathrm{List}(f,d,\delta)$ 中,大概率最多只有一个码字 \hat{u} 满足 $\hat{u}(\alpha)=\beta$ 。

可以用代数基本定理来说明这一点。我们只要证明在 ${\rm List}(f,d,\delta)$ 中存在两个不同的码字 $\hat u'$ 与 $\hat u$,它们在 α 点的值都相等的概率比较小就可以了,这也就说明了大概率最多有一个码字满足 $\hat u(\alpha)=\beta$ 。

先固定两个不同的码字 \hat{u}' 与 \hat{u} ,由于它们是不同的码字并且次数都小于 d ,则由代数基本定理可以得到

$$\Pr_{\alpha \leftarrow \mathbb{F} \setminus \mathcal{L}}[\hat{u}'(\alpha) = \hat{u}(\alpha)] \le \frac{d-1}{|\mathbb{F}| - |\mathcal{L}|} \tag{7}$$

假设 $\mathrm{RS}[\mathbb{F},\mathcal{L},d]$ 是 (δ,l) 可列表解码的,意思就是在 δ 范围内的码字数量最多为 l 个,那么任意选取不同的两个码字 \hat{u}' 与 \hat{u} 的选法就有 $\binom{l}{2}$ 种。因此任意选取两个不同的码字 \hat{u}' 与 \hat{u} ,它们在 α 点的值相等的概率不超过 $\binom{l}{2}\cdot\frac{d-1}{\|\mathbb{F}\|-|\mathcal{L}\|}$ 。这个概率是非常小的,因此得证。

如何去限制 Prover 发送过来的 eta 真的是 f 在点 a 处的值呢?用上一小节引入的工具 Quotient 就能做到啦。

深入 STIR 协议的一次迭代

在这一节中将应用前面提到的三个工具,深入 STIR 协议中的一次迭代。

目标:

- 初始给定一个函数 f ,想证明其在 $\mathrm{RS}[\mathbb{F},\mathcal{L},d]$ 中,其中 $\mathcal{L}=\langle\omega\rangle$ 。
- 经过一次迭代后,证明函数 $f' \in \mathrm{RS}[\mathbb{F}, \mathcal{L}', d/k]$,其中 $\mathcal{L}' = \omega \cdot \langle \omega^2 \rangle$ 。

也就是函数 f 进行了 k 折,其次数降为 d/k,但是一次迭代后的函数 f' 的 evaluation domain \mathcal{L}' 的大小并不是缩小 k 倍,而是 2 倍。这就是前面提到的 STIR 协议的核心思想,通过提升码率来降低查询复杂度。

关于 evaluation domain $\mathcal{L}=\langle\omega\rangle$ 与 $\mathcal{L}'=\omega\cdot\langle\omega^2\rangle$,这里举一个例子来说明。假设 $\omega^8=1$ 。

这样构造的 \mathcal{L}' 相比 \mathcal{L} 大小减少了一半,但其实 $\langle \omega^2 \rangle$ 也能满足减少一半的要求,为什么不选择 $\mathcal{L}' = \langle \omega^2 \rangle$ 呢?假设我们进行 k=4 折,我们能保证 $\mathcal{L}^4=\{\omega^4,\omega^8\}$ 与 $\mathcal{L}'=\{\omega^1,\omega^3,\omega^5,\omega^7\}$ 不相交。这样做的好处是能避免构造 $\mathcal{L}^4\cap\mathcal{L}'$ 中的相交点定义的函数 Fill ,这样 Verifier 就不用额外检查 Fill 的函数值是否正确了([ACFY24] Remark 5.3 说明了这一点)。

一次迭代的协议流程如下图所示:

1. 取样折叠随机数(Sample folding randomness): Verifier 先从 $\mathbb F$ 中随机选取一个数 r^{fold} ,这个随机数将用于折叠函数 f 。

- 2. 发送折叠函数(Send folded function): Prover 发送折叠后的函数 $g:\mathcal{L}'\to\mathbb{F}$ 。如果 Prover 是诚实的,那么函数 g 是多项式 \hat{g} 在 \mathcal{L}' 上的 evaluation 。这里 evaluation 的意思就是 g 与 \hat{g} 在 \mathcal{L}' 上的值完全一致,而多项式 \hat{g} 是通过 $\operatorname{Fold}(f,r^{\operatorname{fold}})$ 得到的。首先用随机数 r^{fold} 对函数 f 进行 k 次折叠,得到了 $\operatorname{Fold}(f,r^{\operatorname{fold}}):\mathcal{L}^k\to\mathbb{F}$,此时折叠函数的取值范围是 \mathcal{L}^k ,我们想要的是在 \mathcal{L}' 上取值,这时只需将 $\operatorname{Fold}(f,r^{\operatorname{fold}})$ 的定义域扩展 (extension) 到 \mathcal{L}' 上即可,就得到了多项式 $\hat{g}:\mathcal{L}'\to\mathbb{F}$,其次数小于 d/k 。
- 3. Out-of-domain sample: Verifier 从 $\mathbb{F} \backslash \mathcal{L}'$ 中取一个随机数 $r^{ ext{out}}$,发送给 Prover 。
- 4. Out-of-domain reply: Prover 答复 $eta\in\mathbb{F}$ 。如果 Prover 是诚实的,那么 $eta:=\hat{g}(r^{\mathrm{out}})$ 。
- **Notes** 这里第 3 步和第 4 步的目的是为了用 Out of domain Sampling 来将 g' 在 δ 范围内的码字数量限制为最多一个,能将列表解码转换为唯一解码。
- 5. Shift queries: Verifier 从 $\langle \omega^k \rangle$ 中选取 t 个随机数,即 $\forall i \in [t], r_i^{\text{shift}} \leftarrow \langle \omega^k \rangle$ 。根据折叠函数的 Local 性质,Verifier 通过查询 f 可计算得到 $y_i := f_{\text{fold}}(r_i^{\text{shift}})$,其中 $f_{\text{fold}} := \operatorname{Fold}(f, r^{\text{fold}})$ 。

在第 2 步中 Prover 发送了 $g:\mathcal{L}'\to\mathbb{F}$ 并且 Prover 声称其与 $\operatorname{Fold}(f,r^{\operatorname{fold}})$ 在 \mathcal{L}' 上的取值是一致的,但是 Verfier 无法直接查询折叠函数在 \mathcal{L}' 上的值, Verifier 只能通过查询 f 的方式来计算得到 $\operatorname{Fold}(f,r^{\operatorname{fold}})$ 在 \mathcal{L}^k 上的取值。 好在这里可以用到 Quotient 工具来保证一致性。

在第 3 步和第 4 步先用 Out-of-domain Sampling 的方法限制 g 在 δ 范围内的码字数量最多为一个,设为 \hat{u} ,然后在第 5 步查询 $\operatorname{Fold}(f,r^{\operatorname{fold}})$ 在 \mathcal{L}^k 上的值,这里方便后续验证 \hat{u} 与折叠函数在 \mathcal{L}^k 上的值是否一致。验证是否一致就交给 Quotient 函数了。

将所有这些要确保一致性的点组成集合 $\mathcal{G}:=\{r^{ ext{out}},r_1^{ ext{shift}},\ldots,r_t^{ ext{shift}}\}$,然后定义函数 $p:\mathcal{G} o\mathbb{F}$,其满足:

$$p(r^{\text{out}}) = \beta,$$
 (8)

$$p(r_i^{\text{shift}}) = y_i. (9)$$

定义下一步的函数 f' 为

$$f' := \operatorname{Quotient}(f, \mathcal{G}, p) = \frac{g(x) - \hat{p}(x)}{\prod_{a \in \mathcal{G}} (X - a)}.$$
 (10)

由于 Quotient 函数具有 Local 性质,因此想要计算 f' 在 \mathcal{L}' 上的值,只需要查询 g 在 \mathcal{L}' 上的值就可以了。

至此,接下来测试 f' 距离 $RS[\mathbb{F}, \mathcal{L}', d/k]$ 是否有 δ 近就可以了。

细看 f' 的公式,可以发现 Prover 诚实情况下 $f'\in\mathrm{RS}[\mathbb{F},\mathcal{L}',d/k-|\mathcal{G}|]$,这里其实出现了多项式次数的降低,需要进行次数校正 (degree correction) ,将 f' 的次数校正为 d/k 。关于这一点将在后文进行介绍。

Soundness 分析

在本小节将对一次迭代进行 soundness 分析,即如果 Prover 作弊, f 距离 $RS[\mathbb{F},\mathcal{L},d]$ 有 δ 远,来分析 f' 距离 $RS[\mathbb{F},\mathcal{L}',d/k-|\mathcal{G}|]$ 也比较远的概率。[ACFY24] Lemma 1 给出了如下的结论:

命题 1 [ACFY24, Lemma 1] 如果 f 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L},d]$ 有 δ 远,那么除了概率为 $(1-\delta)^t + \mathrm{poly}(|\mathcal{L}|)/|\mathbb{F}|$ 的情况, f' 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L}',d/k-|\mathcal{G}|]$ (大约) 有 $(1-\sqrt{\rho'})$ 远。

证明思路:

- 1. 根据折叠函数保持距离的性质,对 f 用随机数 r^{fold} 折叠之后得到的函数 $f_{r^{\mathrm{fold}}} := \mathrm{Fold}(f, r^{\mathrm{fold}})$ 距离 $\mathrm{RS}[\mathbb{F}, \mathcal{L}^k, d/k]$ 有 δ 远的概率超过 $1 \mathrm{poly}(|\mathcal{L}|/|\mathbb{F}|)$ 。
- 2. 根据 Out-of-domain Sampling 的性质,g 在 $1-\sqrt{\rho'}$ 范围内最多有一个码字 \hat{u} 满足 $\hat{u}(r^{\mathrm{out}})=\beta$ 的概率超过 $1-\mathrm{poly}(|\mathcal{L}|)/|\mathbb{F}|$ 。

现在分析下第 2 点,函数 $g:\mathcal{L}'\to\mathbb{F}$,现在考虑其与编码空间 $\mathrm{RS}[\mathbb{F},\mathcal{L}',d/k]$ 的距离。根据 Johnson 界, $\mathrm{RS}[\mathbb{F},\mathcal{L}',d/k]$ 是 (γ,l) - 可列表解码(list-decodable)的,其中 $\gamma\approx 1-\sqrt{\rho'}$, $l=\mathrm{poly}(|\mathcal{L}'|)=\mathrm{poly}(|\mathcal{L}|)$,也就是最多有 l 个次数小于 d/k 的多项式距离 g 不超过 γ 。那么在 l 个多项式中任意选取两个不同的多项式 \hat{u}' 与 \hat{u} ,从 $\mathbb{F}\backslash\mathcal{L}'$ 中选取随机数 r^out ,它们在 r^out 点的值都等于 β 的概率不超过 $\frac{d/k-1}{|\mathbb{F}|-|\mathcal{L}'|}$ 。这两个多项式的选取方法有 $\binom{l}{2}$ 种,因此这个概率不超过

$$\binom{l}{2} \cdot \frac{d/k - 1}{|\mathbb{F}| - |\mathcal{L}'|} = O\left(\frac{l^2 \cdot (d/k - 1)}{|\mathbb{F}| - |\mathcal{L}'|}\right) = \text{poly}(|\mathcal{L}|)/|\mathbb{F}|.$$
 (11)

因此 g 在 $1-\sqrt{
ho'}$ 范围内最多有一个码字 \hat{u} 满足 $\hat{u}(r^{\mathrm{out}})=eta$ 的概率超过 $1-\mathrm{poly}(|\mathcal{L}|)/|\mathbb{F}|$ 。

如果第 1 项和第 2 项都成立,那么这个概率超过 $1-\operatorname{poly}(|\mathcal{L}|)/|\mathbb{F}|$,现在只需证明 f' 距离 $\operatorname{RS}[\mathbb{F},\mathcal{L}',d/k-|\mathcal{G}|]$ (大约) 有 $(1-\sqrt{\rho'})$ 远的概率至少为 $1-(1-\delta)^t$ 即可。

下面分两种情况进行讨论:

• 如果在第 2 项中没有码字满足要求,即在 g 的 $1-\sqrt{\rho'}$ 范围内没有码字满足 $\hat{u}(r^{\mathrm{out}})=\beta$,而根据协议的构造, $p(r^{\mathrm{out}})=\beta$ 。因此对于 g 的 $1-\sqrt{\rho'}$ 范围内的任意一个码字有 $\hat{u}(r^{\mathrm{out}})\neq p(r^{\mathrm{out}})$ 。由于

$$f' := \text{Quotient}(g, \mathcal{G}, p) = \frac{g(x) - \hat{p}(x)}{\prod_{a \in \mathcal{G}} (X - a)}.$$
 (12)

根据 Quotient 函数的一致性,此时 \hat{u} 与 p 在 \mathcal{G} 上不完全一致,那么 $f' = \operatorname{Quotient}(f, \mathcal{G}, p)$ 距离 $\operatorname{RS}[\mathbb{F}, \mathcal{L}', d/k - |\mathcal{G}|]$ 就有 $(1 - \sqrt{\rho'})$ 远。

• 如果在第 2 项中存在一个码字 \hat{u} 满足要求,在 g 的 $1-\sqrt{\rho'}$ 范围已经存在了一个码字满足 $\hat{u}(r^{\mathrm{out}})=\beta$ 。根据

$$f' := \text{Quotient}(g, \mathcal{G}, p) = \frac{g(x) - \hat{p}(x)}{\prod_{a \in \mathcal{G}} (X - a)}.$$
 (13)

现在已经满足 $\hat{u}(r^{\mathrm{out}})=\beta=p(r^{\mathrm{out}})$,如果对于任意的 $i\in[t]$,有 $\hat{u}(r_i^{\mathrm{shift}})=y_i=p(r_i^{\mathrm{shift}})$,那么 $f'=\mathrm{Quotient}(f,\mathcal{G},p)$ 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L}',d/k-|\mathcal{G}|]$ 不超过 $(1-\sqrt{\rho'})$ 。否则根据 Quotient 函数的一致性,一旦对于某一个 i 有 $\hat{u}(r_i^{\mathrm{shift}})\neq y_i$,此时 $\hat{u}(r_i^{\mathrm{shift}})\neq p(r_i^{\mathrm{shift}})$,就会导致 f' 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L}',d/k-|\mathcal{G}|]$ 有 $(1-\sqrt{\rho'})$ 远。

由于第 1 项成立,因此对于折叠函数有 $\Delta(f_{r^{\mathrm{fold}}},\mathrm{RS}[\mathbb{F},\mathcal{L}^k,d/k])\geq\delta$,因此

$$\Pr\left[\forall i \in [t], \hat{u}(r_i^{\text{shift}}) = y_i\right] = \Pr\left[\forall i \in [t], \hat{u}(r_i^{\text{shift}}) = f_{r^{\text{fold}}}(r_i^{\text{shift}})\right] \leq (1 - \delta)^t.$$
(14)

因此 f' 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L}',d/k-|\mathcal{G}|]$ (大约) 有 $(1-\sqrt{
ho'})$ 远的概率至少为 $1-(1-\delta)^t$ 。

实际上,协议的 round-by-round soundness error 大概就为 $\max\{rac{ ext{poly}(|\mathcal{L}|)}{|\mathbb{F}|}, (1-\delta)^t\}$ 。

Degree correction

现在还剩下一个小问题需要解决,那就是根据f' 函数的定义

$$f' := \text{Quotient}(g, \mathcal{G}, p) = \frac{g(x) - \hat{p}(x)}{\prod_{a \in \mathcal{G}} (X - a)}.$$
 (15)

可以发现,准确来讲,这里是将对 f 的测试转换为了测试 f' 到 $\mathrm{RS}[\mathbb{F},\mathcal{L}',d/k-|\mathcal{G}|]$ 的距离,而不是 $\mathrm{RS}[\mathbb{F},\mathcal{L}',d/k]$,这就需要进行次数校正(degree correction)了。

一般地,不妨假设我们要进行次数校正的函数是 $f:\mathcal{L}\to\mathbb{F}$,其初始的次数是 d ,目标矫正的次数是 $d^*\geq d$,我们想要构造一个高效的次数校正算法,能输出一个函数 f^* 满足:

- 1. 如果 $f \in \mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$,那么 $f^* \in \mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$ 。
- 2. 如果 f 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$ 有 δ 远,那么以极大的概率有 f^* 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$ 也有 δ 远。
- 3. 对 f^* 的查询可以通过查询 f 来高效的计算出来。

STIR 论文 ([ACFY24], 第 2.3 节) 中提出了一种方法,不仅满足上述三个条件,还利用几何级数求和的方法,使得第 3 项的计算更加高效。

该方法是,随机采样一个域中的元素 $r \leftarrow \mathbb{F}$,定义

$$f^*(x) = \sum_{i=0}^e r^i \cdot f_i(x) \tag{1}$$

其中, $f_i(x) := x^i \cdot f(x)$, $e = d^* - d$ 。将 (1) 式展开可得

$$f^*(x) = r^0 \cdot x^0 \cdot f(x) + r^1 \cdot x^1 \cdot f(x) + \dots + r^e \cdot x^e \cdot f(x)$$

$$\tag{2}$$

根据 f^* 的构造,自然第 1 项是成立的。

对于 $\delta < \min\{1-\sqrt{\rho}, 1-(1+1/d^*)\cdot \rho\}$,第 2 项也是成立的。这可以通过 [BCIKS20] 中的 Correlated Agreement 定理得到的,这里就不详细展开了。

接下来分析下第 3 项。通过 (2) 式,可以发现如果要计算 f^* 在 x 点处的值,当查询到 f(x) 的值后,要进行 e+1 项求和,需要花费 O(e) 的时间。如果 $e=\Omega(d)$,这是低效的,但是通过几何级数求和的方法,可以将计算复杂度降到 $O(\log e)$ 。

$$f^*(x) = \sum_{i=0}^{e} r^i \cdot f_i(x)$$

$$= \sum_{i=0}^{e} r^i \cdot x^i \cdot f(x)$$

$$= f(x) \cdot \sum_{i=0}^{e} (r \cdot x)^i$$
(16)

对 $\sum_{i=0}^{e} (r \cdot x)^{i}$ 使用几何级数求和公式,可以得到

$$f^*(x) = \begin{cases} f(x) \cdot \frac{1 - (r \cdot x)^{e+1}}{1 - r \cdot x} & \text{if} \quad r \cdot x \neq 1 \\ f(x) \cdot (e+1) & \text{if} \quad r \cdot x = 1 \end{cases}$$

$$(17)$$

对于比较复杂的 $f(x)\cdot \frac{1-(r\cdot x)^{e+1}}{1-r\cdot x}$, 其中 $(r\cdot x)^{e+1}$ 这一项可以通过反复平方的方法计算得到,需要 $O(\log e)$ 次计算,再通过查询 f 在点 x 处的值得到 f(x) ,因此整体需要 $O(\log e)$ 次操作来计算 $f^*(x)$ 。

将该方法可以扩展到多个不同次数的函数上。对于 m 个函数 $f_1,\ldots,f_m:\mathcal{L}\to\mathbb{F}$ 以及次数 d_1,\ldots,d_m ,我们希望进行批量次数校正(batch-degree-correct),最后得到一个函数 f^* ,次数为 d^* 。随机采样一个随机数 $r\leftarrow\mathbb{F}$,定义 $e_i=d^*-d_i$ 以及

$$f^*(x) = \sum_{i=0}^{e_1} r^i \cdot x^i \cdot f_1(x) + r^{1+e_1} \sum_{i=0}^{e_2} r^i \cdot x^i \cdot f_2(x) + \dots + r^{m-1+\sum_{j=1}^{m-1} e_j} \sum_{i=0}^{e_m} r^i \cdot x^i \cdot f_m(x).$$
 (18)

与上面单个函数的次数校正类似,对于 $\delta < \min\{1-\sqrt{\rho},1-(1+1/d^*)\cdot \rho\}$,如果有任意的 f_i 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L},d_i]$ 有 δ 远,那么 f^* 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L},d^*]$ 就有 δ 远。同样地,用几何级数求和的方式,通过查询 f_1,\ldots,f_m ,进行 $O(\sum_i \log e_i) = O(m\cdot \log d^*)$ 次操作就可以计算出 f^* 在 x 点的值。

总结

STIR 通过在每一轮中改变函数的 evaluation domain ,将原来 FRI 协议中的 \mathcal{L}^k 变为 \mathcal{L}' ,函数依然是 k 折,但是 \mathcal{L}' 只有原来的一半大小,这样做降低了编码空间的码率,能减少 Verifier 的查询数量,这也是 STIR 的核心思想。

在STIR 协议的构造中使用 RS 编码的几个有力的工具,使得整个协议是高效且安全的。

- 1. 首先和 FRI 协议一致,先对函数 f 进行 k 折,但得到的函数需要将 evaluation domain 从 \mathcal{L}^k 扩展到 \mathcal{L}' ,根据 折叠函数具有距离保持的性质,这一过程我们可以放心的进行折叠。
- 2. 接着为了降低 Verifier 的工作,使用 Out of Domain Sampling 的方式将列表编码的方式转换为唯一解码,也就是协议中 Verifier 从 $\mathbb{F}\setminus\mathcal{L}$ 中选取一个随机数 r^{out} ,要求 Prover 答复 β 。
- 3. 此时将 evaluation domain 变为 \mathcal{L}' 之后,面临的问题是 Verifier 只能查询 k 折函数 $\mathbf{f}_{r^{\mathrm{fold}}}$ 在 \mathcal{L}^k 上的值,好在可以用 Quotient 这个强大的工具来约束 Prover 发送的函数在 \mathcal{L}^k 上的值与折叠函数在 \mathcal{L}^k 上的值是一致的。此时 Verifier 从 \mathcal{L}^k 中选取 t 个随机数 r_i^{shift} 进行查询。
- 4. 最后结合 $r^{
 m out}$ 与 $r_i^{
 m shift}$,用 Quotient 工具来约束 Prover 在这些点发送的值是正确的。

结合这些工具对一次迭代的 STIR 协议进行了 soundness 分析,其实可以得到 STIR 的 round-by-round soundness error 为 $\max\{\frac{\operatorname{poly}(|\mathcal{L}|)}{\|\mathbb{F}\|}, (1-\delta)^t\}$ 。

最后为了将迭代后的 f' 从次数 $d/k-|\mathcal{G}|$ 提升到 d/k ,介绍了利用几何级数求和方法能高效计算的 degree correction 方法。

References

- [ACFY24] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. "STIR: Reed-Solomon proximity testing with fewer queries." In *Annual International Cryptology Conference*, pp. 380-413. Cham: Springer Nature Switzerland, 2024.
- [BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps for Reed–Solomon Codes. In *Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science*, pages 900–909, 2020.
- [BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. "Interactive Oracle Proofs". In: *Proceedings of the 14th Theory of Cryptography Conference*. TCC '16-B. 2016, pp. 31–60.
- [BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. "DEEP-FRI: Sampling Outside the Box Improves Soundness". In: *Proceedings of the 11th Innovations in Theoretical Computer Science Conference*. ITCS '20. 2020, 5:1–5:32.
- STIR: Reed-Solomon Proximity Testing with Fewer Queries
- Video: ZK11: STIR: Reed-Solomon Proximity Testing with Fewer Queries Gal Arnon & Giacomo Fenzi