SE 380 — HW 2

Bilal Khan bilal2vec@gmail.com

November 4, 2023

Contents

1	1																						1
	1.1	(a)		 																			1
	1.2	(b)		 																			1
	1.3	(c)		 																			2
2	2																						2
0	0																						0
3	3																						3

1 1

Consider the following model of a DC motor:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{K_m}{s(R_a(Js+b) + K_bK_m)}$$

where the value of all parameters is positive, the input $u(t) = \mathcal{L}^{-1}(U(s))$ is the voltage supplied to the motor, and the output $y(t) = \mathcal{L}^{-1}(Y(s))$ is the angle of the motor axle. Assume a unit step input voltage is supplied.

1.1 (a)

Find the transfer function betwen the angular speed - time derivative of the angle - and the input voltage.

$$\omega(t) = y'(t)$$

$$G_{\omega}(s) = sG(s) = \frac{K_m}{R_a(Js+b) + K_bK_m}$$

1.2 (b)

Find the steady-state angular speed of the motor axle

$$\lim_{t \to \infty} \omega(t) = \lim_{s \to 0} sG_{\omega}(s)U(s)$$

$$= \lim_{s \to 0} s \frac{K_m}{R_a(Js+b) + K_b K_m} \frac{1}{s}$$

$$= \lim_{s \to 0} \frac{K_m}{R_a(Js+b) + K_b K_m} = \frac{K_m}{R_a b + K_b K_m}$$

1.3 (c)

How long does the motor take to reach 99% of its steady-state speed?

$$G_{\omega}(s) = \frac{K_m}{R_a(Js+b) + K_b K_m}$$

$$= \frac{K_m}{(R_a J)s + (R_a b + K_b K_m)}$$

$$= \frac{\frac{K_m}{R_a b + K_b K_m}}{\frac{R_a J}{R_c b + K_b K_m}s + 1}$$

$$\tau = \frac{R_a J}{R_a b + K_b K_m}, \text{ we have that settling time @ 99\% is approximately } 5\tau = 5 \frac{R_a J}{R_a b + K_b K_m}.$$

2 2

Consider the following feedback control system.

$$\xrightarrow{\rho}$$

$$s(s+5)(s+7)$$

Find the values of ρ for which the closed-loop system is stable.

 $L(s) = \frac{\rho}{s(s+5)(s+7)}$. We need to check if the poles of 1 + L(s) are in the left half of the plane.

$$0 = 1 + L(s) = 1 + \frac{\rho}{s(s^2 + 12s + 35)}$$
$$= 1 + \frac{\rho}{s^3 + 12s^2 + 35s}$$
$$0 = s^3 + 12s + 35s + \rho$$

None of the given coefficients are negative, so we don't know if it is Hurwitz or not, all we can know is that for the system to be stable, $\rho > 0$.

For all elements in the first column to be positive $\rho > 0$ and $\frac{\rho}{12} - 35 > 0$.

s^3	1	35
s^2	12	ρ
s^1	$\frac{\rho}{12} - 35$	0
s^0	ρ	0

$$\frac{\rho}{12} - 35 > 0$$
$$\frac{\rho}{12} > 35$$
$$\rho > 420$$

The system is stable for $\rho > 420$.

3 3

Consider the following feedback control system.

Design a proportional controller a controller in transfer function C(s) = K for some $K \in \mathbb{R}$ so that the closed-loop system satisfies the following specifications: It is stable, the steady state gain is 1, and the settling time is less than 100ms.

$$L(s) = \frac{K}{s}$$

$$T(s) = \frac{L(s)}{1 + L(s)} = \frac{\frac{K}{s}}{1 + \frac{K}{s}} = \frac{K}{s + K}$$

For the system to be stable, its poles are negative and so K > 0. The steady-state gain is given by $\lim_{s\to 0} sT(s)U(s) = \lim_{s\to 0} \frac{K}{s+K} = \frac{K}{K} = 1$. So the steadystate gain is 1.

The settling time to 99% is given by $5\tau = 5\frac{1}{K} < 0.1$. so K > 50.

This means that C(s) = K for any K > 50