Notes on The Formal Semantics of Programming Languages

Ray Li

October 16, 2024

Contents

1	Chapter 3: some principles of induction	2
	1.1 3.1 Mathematical induction Excercise Answers	2
2	Ray's Notes Ssummary	4

1 Chapter 3: some principles of induction

1.1 3.1 Mathematical induction Excercise Answers

Question 1. (*E3.2*)

A string is a sequence of symbols. A string $a_1 a_2 \cdots a_n$ with n positions occupied by symbols is said to have length n. A string can be empty in which case it is said to have length 0. Two strings s and t can be concatenated to form the string st. Use mathematical induction to show there is no string u which satisfies au = ub for two distinct symbols a and b.

Proof. by induction on the length of uLet $A = \{n \mid \text{len}(u) = n \text{ and } au \neq ub\}.$

- 1. Base Case:
 - $0 \in A$: By the hypothesis, since $a \neq b$, it is clear that when u is the empty string (i.e., length 0), $au \neq ub$. Thus, $0 \in A$.
 - $1 \in A$: If u has length 1, it is easy to see that $au \neq ub$ because $a \neq b$.
 - $2 \in A$: For u = xy, where len(u) = 2, we have $axy \neq xyb$, given that $a \neq b$.
- 2. Inductive Step: Assume $n \in A$. We want to show that $n + 1 \in A$ for $n \ge 2$.

Proof by contradiction: Suppose len(u) = n+1 and au = ub. Since $n+1 \geq 3$, we can write u = qu'p, where len(q) = len(p) = 1. Thus, au = aqu'p and ub = qu'pb, leading to the equation aqu'p = qu'pb.

From this, we deduce that a=q. By eliminating the leftmost characters, we are left with qu'p=u'pb. Since q=a, the equation becomes au'p=u'pb, where len(u'p)=n. By the induction hypothesis, $au'p\neq u'pb$, leading to a contradiction.

Therefore, $n + 1 \in A$.

By mathematical induction, we conclude that there is no string u such that au = ub for two distinct symbols a and b.

Question 2. (E3.6)

What goes wrong when you try to prove the execution of commands is deterministic by using structural induction on commands?

Proof. The issue arises in verifying the **while** rule. By the **Rules for While-loops**, we aim to show that:

(while
$$b \operatorname{do} c, \sigma \rangle \to \sigma_1$$
 and (while $b \operatorname{do} c, \sigma \rangle \to \sigma_2 \implies \sigma_1 = \sigma_2$

When $\langle b, \sigma \rangle \to \text{false}$, there is no problem. However, the issue emerges when $\langle b, \sigma \rangle \to \text{true}$.

To argue this, we use **Proposition 2.8** (while $b \operatorname{do} c \sim \operatorname{if} b \operatorname{then} c$; $w \operatorname{else} \operatorname{skip}$). This allows us to simplify the verification to:

(if b then c; w else skip, σ) $\to \sigma_1$ and (if b then c; w else skip, σ) $\to \sigma_2 \implies \sigma_1 = \sigma_2$

However, if we attempt to use structural induction, we would need to assume something smaller or a predecessor of w. Yet, in each "previous" case, we still need to argue about w itself (rather than a predecessor or a smaller set). Therefore, it is not possible to prove this by structural induction.

Question 3. (E 3.8) Let \prec be a well-founded relation on a set B. Prove

- 1. its transitive closure \prec^+ is also well-founded,
- 2. its reflexive, transitive closure \prec^* is a partial order.

Proof. 1. The transitive closure \prec^+ is well-founded:

proof by way of contradiction (BWOC). Assume there exists an infinite chain:

$$\cdots \prec^+ a_{n+1} \prec^+ a_n \prec^+ \cdots$$

Now, pick an element a_k , and $\exists b \prec^+ a_k$ such that $b \prec a_k$, call such b a_{k+1} . If no such b exists, we would have $\forall b, a_k \prec b$, which contradicts the assumption of an infinite descending chain. By continuing this process, we can pick an infinite chain of \prec , which contradicts the well-foundedness of \prec . Hence, \prec^+ is well-founded.

2. The reflexive, transitive closure \prec^* is a partial order:

By the definition of a partial order, we need to show that the relation is reflexive, antisymmetric, and transitive. Since \prec^* is already reflexive and transitive by definition, we only need to prove antisymmetry.

BWOC. : Assume there exist $a, b \in B$ such that $a \prec^* b$ and $b \prec^* a$, yet $a \neq b$. If $a \neq b$, then it must be the case that either $a \prec^* b$ or $b \prec^* a$, but not both. This leads to a contradiction, hence a = b. Therefore, \prec^* is antisymmetric, and thus a partial order.

3

2 Ray's Notes Ssummary

Ray's Note 1: