of EEE201

CMOS Digital Integrated Circuits

Department of Electrical & Electronic Engineering Xi'an Jiaotong-Liverpool University (XJTLU)

Monday, 7th October 2024

■ MOS Capacitor

- physical structure
- operation modes & band diagrams
- > capacitance

Module Roadmap

CMOS Digital Integrated Circuit

Recap: Lecture 3

MOS Transistor: IC Building Blocks

PN Junction

Current Characteristics

Electrostatic

- 1. Concentration gradient ⇒ Diffusion current (J_{diff})
- 2. Depletion regions (immobile ionized dopant and acceptors) \Rightarrow Drift current (J_{drift})
- 3. Built-in potential (V_{hi}) to balance J_{diff} and $J_{drift} \Rightarrow$ zero net current at equilibrium.
- 4. At equilibrium, $J_0 = J_0 = 0$

- L. Forward Bias:
 - Dominant Current: Diffusion current of majority carriers.
 - Large current flow through junction
- 2. Reverse Bias:
 - **Dominant Current: Drift current** of minority carriers.
- Small reverse saturation current until breakdown occurs.

- 1. Impacts circuit dynamics behavior.
- 2. Depletion Region as a Capacitor:
 - **Depletion regions with fixed charge** ⇒ electric field and act as the plates of a capacitor.

Capacitance Characteristics

- Depletion width ⇒ distance between the capacitor plates.
- Applying a reverse (forward) bias increases (decreases) W, reducing (increasing) capacitance.

$$E_{c} = \frac{J_{n} = 0}{V_{bi} = \frac{k_{B}T}{e} \ln \left(\frac{N_{A}N_{D}}{n_{i}^{2}}\right)} \qquad q \cdot V_{bi}$$

$$E_{f} = \frac{E_{c}}{E_{v}} \qquad p-type \qquad n-type$$

$$I = 0 \qquad Hole Diffusion$$

$$W_0 = W_p + W_n = \sqrt{\frac{2\varepsilon_{Si}(N_A + N_D)V_{bi}}{eN_A N_D}}$$

$$I_{D} = I_{so} \left[\exp \left(\frac{eV}{k_{B}T} \right) - 1 \right] C = \frac{\mathcal{E}A}{d} \implies C_{j} = \frac{\mathcal{E}_{Si}A_{j}}{W_{0}}$$

(fundamental to MOS transistor)

- □ CMOS digital ICs are constructed predominantly with MOS transistors.
- □ The MOS transistor is based on the MOS capacitor which is also a *fundamental* semiconductor structure apart from the *p-n* junction.
 - ➤ The MOS capacitor is also a <u>two-terminal device</u> like the p-n junction diode.
 - Knowledge of the MOS capacitor would be helpful to understand the operation and electrical properties of the MOS transistor or called the MOSFET.

(3-layered physical structure)

- ☐ The MOS capacitor consists of three layers:
 - > the **metal** or polysilicon gate electrode
 - the insulating oxide (typically SiO₂)

> the **semiconductor** substrate

(band diagram of silicon substrate)

□ An insightful understanding of the MOS capacitor needs to use the electronic energy band diagrams.

➤ The above energy band diagram is <u>p-type</u> silicon. (Do you know why?) Note the free space energy level (or called vacuum level), where electrons would be set free from the material.

(Fermi potential $\phi_{\scriptscriptstyle F}$)

☐ In a doped semiconductor, the position of the equilibrium Fermi level E_{Fp} (or E_{Fn}) relative to the intrinsic Fermi level E_i can be quantified as ϕ_F :

 $\triangleright \phi_F$ will be used to define **inversion**.

Valence band

Energy Band Diagram of MOS

(three layers isolated)

Integrated Circuits: Analysis & Design, 3rd edition, © 2003 McGraw-Hill, USA.

Metal's Energy Band Diagram

(work function)

- □ The energy band diagram of metal consists of the vacuum level E_0 and the Fermi level E_{Fm} .
- □ The energy difference between E_0 and E_{Fm} is called the work function $q\Phi$.
 - ► It is the energy required for an electron to set free from the metal. From: S.-M. Kang & Y. Leblebici, CMOS Digital Integrated Circuits: Analysis & Design, 3rd edition, © 2003 McGraw-Hill, USA.

Note that in metal there are states for electrons at E_{Fm} . In contrast, in semiconductor, E_F is typically in the band gap where there is no state for electrons.

西交利物浦大學

Energy Band Diagram of MOS

(three layers brought together)

■ When the three materials are brought together, the **Fermi levels** of the metal and semiconductor align with each other at equilibrium (open-circuit).

- Note the band bending in the oxide layer and in the surface region of the semiconductor near the oxide.
- What does the band bending mean?

Energy Band Diagram of MOS

(negative voltage at the gate)

- □ The energy band diagram of the MOS capacitor can be changed by an applied gate voltage V_G (assuming the substrate is grounded i.e. $V_B = 0$).
 - \triangleright negative $V_G \Rightarrow$ raised <u>electronic</u> energy at the gate

Hole Accumulation

(accumulation mode)

- With the raised <u>electronic</u> energy at the gate, it causes band-bending in the oxide and in the surface region of the semiconductor.
 - \triangleright At the semiconductor surface location, E_{Fp} is close to E_v .
 - > The hole concentration increases further at the surface.

> Holes are *accumulated* at the surface.

Energy Band Diagram of MOS

(positive voltage at the gate)

☐ If the gate voltage is positive, the <u>electronic</u> energy at the gate is lowered.

The metal's Fermi level E_{Fm} is lowered by qV_G from the open-circuit level.

Holes Depleted in Surface Region

(depletion mode)

- □ With the <u>electronic</u> energy at the gate lowered, it also causes band-bending in the oxide and in the surface region of the semiconductor.
 - \triangleright At the semiconductor surface location, $E_{Fp} \approx E_{Fi}$.
 - > The hole concentration decreases at the surface location.
 - ➤ Holes are <u>depleted</u> from the surface.

Energy Band Diagram of MOS

(larger positive voltage at the gate)

- □ When the positive voltage at the gate is even larger, there is more band bending such that E_{Fp} is now above E_{Fi} .
 - What is the implication?

"Minority" Carriers at Surface

(weak inversion)

■ With E_{Fp} above E_{Fi} in the surface region of the semiconductor, the electrons as the "minority" carriers in the p-type substrate has even higher concentration than the holes.

> There is *inversion* of charge carriers in the surface

Semester 1, 2024/2025 by **S.Lam@XJTLU**

region of the semiconductor.

罗 西交利物浦大学

p-type Si substrate

 $V_G > 0$ (large)

Xi'an Jiaotong-Liverpool University

Electrons attracted

Depletion region

to the surface

"Minority" Carriers at Surface

(strong inversion)

□ With a large enough positive V_G , E_{Fp} is now one ϕ_F above E_{Fi} . What is the implication?

➤ In this situation, it is called strong inversion.

Threshold Voltage

(gate voltage for strong inversion)

- The positive V_G that causes the band bending near the surface of the p-type substrate to have $|\phi_S| = |2\phi_F|$ is called the **threshold voltage** V_T .
 - \triangleright Do not confuse V_T with the thermal voltage k_BT/q .
 - $\triangleright V_T$ is typically positive for a p-type substrate.

➤ V_T is typically negative if the MOS structure has an n-type substrate. (Do you know why?)

Threshold Voltage

(three components)

□ There are typically three components in the **threshold voltage** V_T corresponding respectively the three changes in the energy band diagram.

(similar structure to parallel-plate capacitor)

■ Apparently, the MOS capacitor has a structure of a

parallel-plate capacitor.

$$\geq \epsilon_{r,SiO2} = 3.9$$
, $\epsilon_{r,Si} = 11.9$, $\epsilon_{o} = 8.85 \times 10^{-14} \text{ F/cm}$

- □ The MOS capacitor has different capacitance behaviour.

 Xi'an Jiaotong-Liverpool University
 - voltage dependence

西交利物浦大學

(voltage dependence)

- ☐ The voltage dependence of the MOS capacitance is because of the change of charges in the surface region of the substrate as the gate voltage varies.
- □ In the **accumulation** and **strong inversion** modes, there are respectively charge layers of holes and electrons right underneath the oxide layer;
- □ The MOS capacitance in these two modes can be estimated by the parallel-plate capacitance formula:

$$C = \frac{\mathcal{E}A}{t_{ox}} = \frac{\mathcal{E}_r \mathcal{E}_0 A}{t_{ox}}$$

$$\Rightarrow \frac{C}{A} = C_{ox} = \frac{\mathcal{E}_r \mathcal{E}_0}{t_{ox}}$$

(depletion capacitance)

- □ In the **depletion mode**, there is neither a layer of electrons nor a layer of holes right underneath the insulating oxide layer.
- ☐ Instead, there is a **depletion region** in which there is a layer of fixed dopant ions (a **space-charge layer**).
 - ➤ This is similar to the **depletion region** in the reversebiased **p-n** junction.

$$C_{j}$$
 increasing C_{j0}
$$V_{D}$$

$$V_{D}$$

$$V_{D}$$

$$V_{D}$$

➤ The depletion capacitance decreases as the magnitude of the voltage increases.

(C-V curves)

☐ The *voltage-dependent* **MOS capacitance** of is

(accumulation of majority carriers)

- We learn about the MOS capacitor with three operation regions, depending on the voltage applied to the gate (with the substrate grounded): accumulation, depletion, and inversion (weak & strong inversion).
 - > accumulation: <u>majority carriers</u> of the substrate accumulate near the surface (oxide-

layer of holes

semiconductor interface), with the carrier concentration even higher than the equilibrium concentration.

om: Donald A. Neamen, *Microelectronics: Circuit Analysis* & *Design*, 4th edition, © 2010 McGraw-Hill, USA.

西交利物浦大學

(depletion region & width)

- ➤ depletion: majority carriers of the substrate are depleted beneath the surface, resulting in a region without any mobile carriers but fixed dopant ions in space; it's called a depletion region or space-charge region.
- > This is similar to the <u>reverse-biased</u> **p-n** junction.

 $V_0 = \sqrt{\frac{2\varepsilon_{Si}(N_a + N_d)V_{bias} - V_{bi}}{eN_aN_d}}$

rom: Donald A. Neamen, *Microelectronics:***Circuit Analysis & Design, 4th edition, © 2010 McGraw-Hill, USA.

Xi'an Jiaotong-Liverpool University 西交利物浦大學

EEE201 CMOS Digital Integrated Circuits Semester 1, 2024/2025 by S.Lam@XJTLU

(strong inversion)

➤ inversion: a very thin charge layer of minority carriers is formed right beneath the surface of the semiconductor when an appropriate gate voltage is applied.

From: Donald A. Neamen, *Microelectronics: Circuit Analysis & Design*, 4th edition, © 2010

When the minority carrier concentration of the inversion layer is the same as the majority carrier concentration in the substrate, it is called strong

(inversion & threshold voltage)

 \gt At *strong* inversion, the corresponding gate voltage is called the **threshold voltage** V_T :

$$V_T = V_{FB} + 2\phi_F + \frac{\sqrt{2qN_a\varepsilon_{Si}(2\phi_F)}}{C_{ox}}$$

- ➤ When the minority carrier concentration in the inversion layer is smaller than the majority carrier concentration, it is called *weak* inversion.
- \gt In weak inversion, the gate voltage is slightly below the threshold voltage V_T .
- This accounts for the sub-threshold characteristics of the MOS transistor.
 Wi'an Jiaotong-Liverpool University
 あ交利が消大学

(2-terminal device)

If the substrate is not connected to ground but with a biased voltage V_B , V_T needs to be modified as follows (for MOSFET):

 $V_T = V_{FB} + 2\phi_F + \frac{\sqrt{2qN_A\varepsilon_{Si}(2\phi_F(-V_B))}}{C_{ox}}$

- ☐ The MOS capacitor is a <u>two-terminal device</u> and it is not very useful by itself in digital ICs.
 - two electrodes: gate (denoted by G) & substrate (or called bulk/body) (denoted by B)
 - > The MOS capacitor is however useful in analogue ICs in some circuits as well as CCD image sensors.
 - ➤ The *p-n* junction is also a 2-terminal device.

Summary: MOS Capacitor

$$V_{G} = V_{FB} + \phi_{S} + \frac{\sqrt{2qN_{a}\varepsilon_{Si}(\phi_{S})}}{C_{ox}}$$

$$V_{T} = V_{FB} + 2\phi_{F} + \frac{\sqrt{2qN_{a}\varepsilon_{Si}(2\phi_{F})}}{C_{ox}}$$

$$\phi_{F} = \text{equilibrium Fermi level } E_{f}$$

Impact of Doping on Low Frequency C-V of MOS Capacitor (p-type)

Observation:

- 1. $\uparrow N_A \Rightarrow \uparrow V_q$ range of depletion region.
- 2. $\uparrow N_A \Rightarrow \uparrow C in$ depletion region

Link to the script for calculating capacitance-voltage (C-V): https://core.xitlu.edu.cn/mod/f older/view.php?id=38872

Depletion Mode: $V_{FB} < V_G < V_T$

Gate voltage (V_G)

$$V_G = V_{FB} + 2\phi_S + \frac{\sqrt{2qN_a\varepsilon_{Si}(\phi_S)}}{C_{ar}}$$

Threshold voltage (V_{τ})

$$V_T = V_{FB} + 2\phi_F + \frac{\sqrt{2qN_a\varepsilon_{Si}(2\phi_F)}}{C_{or}}$$

Equilibrium Fermi level (ϕ_F)

$$\phi_F = \frac{kT}{q} \ln \left(\frac{n_i}{p} \right) \approx \frac{kT}{q} \ln \left(\frac{n_i}{N_A} \right)$$

Depletion width (X_d)

$$x_d = \sqrt{\frac{2\varepsilon_{Si}|\phi_S|}{qN_a}}$$

Capacitance (C)
$$C_{dep} = \frac{\mathcal{E}_s}{x_d}$$

$$\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}}$$