

planetmath.org

Math for the people, by the people.

Helly's theorem

Canonical name HellysTheorem

Date of creation 2013-03-22 13:57:38 Last modified on 2013-03-22 13:57:38

Owner bbukh (348) Last modified by bbukh (348)

Numerical id 6

Author bbukh (348)
Entry type Theorem
Classification msc 52A35

Suppose $A_1, \ldots, A_m \subset \mathbb{R}^d$ is a family of convex sets, and every d+1 of them have a non-empty intersection. Then $\bigcap_{i=1}^m A_i$ is non-empty.

Proof. The proof is by induction on m. If m=d+1, then the statement is vacuous. Suppose the statement is true if m is replaced by m-1. The sets $B_j = \bigcap_{i \neq j} A_i$ are non-empty by inductive hypothesis. Pick a point p_j from each of B_j . By Radon's lemma, there is a partition of p's into two sets P_1 and P_2 such that $I = (\operatorname{conv} P_1) \cap (\operatorname{conv} P_2) \neq \emptyset$. For every A_j either every point in P_1 belongs to A_j or every point in P_2 belongs to A_j . Hence $I \subseteq A_j$ for every j.