

**(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG**

**(19) Weltorganisation für geistiges Eigentum
Internationales Büro**

**(43) Internationales Veröffentlichungsdatum
25. September 2003 (25.09.2003)**

PCT

**(10) Internationale Veröffentlichungsnummer
WO 03/078629 A1**

- (51) Internationale Patentklassifikation⁷:** C12N 15/11, 15/82
- (21) Internationales Aktenzeichen:** PCT/EP03/02735
- (22) Internationales Anmeldedatum:** 17. März 2003 (17.03.2003)
- (25) Einreichungssprache:** Deutsch
- (26) Veröffentlichungssprache:** Deutsch
- (30) Angaben zur Priorität:** 102 12 892.8 20. März 2002 (20.03.2002) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US):** BASF PLANT SCIENCE GMBH [DE/DE]; Carl-Bosch-Strasse 38, 67056 Ludwigshafen (DE).
- (72) Erfinder; und**
- (75) Erfinder/Anmelder (nur für US):** KOCK, Michael [DE/DE]; Am Leutbusch 12, 67105 Schifferstadt (DE). BAUER, Jörg [DE/DE]; Friedrich-Profit-Str. 56, 67063 Ludwigshafen (DE).
- (74) Anwalt:** DÖRPER, Thomas; BASF Aktiengesellschaft, 67056 Ludwigshafen (DE).
- (81) Bestimmungsstaaten (national):** AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional):** ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: CONSTRUCTS AND METHODS FOR THE REGULATION OF GENE EXPRESSION

(54) Bezeichnung: KONSTRUKTE UND VERFAHREN ZUR REGULATION DER GENEXPRESSION

(57) Abstract: The invention relates to constructs and methods for the regulation of gene expression of at least two endogenous target genes by introduction of an at least partly double-stranded ribonucleic acid molecule into a eukaryotic cell or a eukaryotic organism, whereby the ribonucleic acid molecule comprises at least two ribonucleotide sequence sections which are homologous with various genes of the eukaryotic cell.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft Konstrukte und Verfahren zur Regulation der Genexpression von mindestens zwei endogenen Zielgenen durch Einbringen eines zum mindest teilweise doppelsträngigen Ribonukleinsäuremoleküls in eine eukaryotische Zelle oder einen eukaryotischen Organismus, wobei das Ribonukleinsäuremolekül mindestens zwei Ribonukleotidsequenzabschnitte umfasst, die zu verschiedenen Genen der eukaryotischen Zelle homolog sind.

WO 03/078629 A1

Konstrukte und Verfahren zur Regulation der Genexpression

Beschreibung

5.

Die vorliegende Erfindung betrifft Konstrukte und Verfahren zur Regulation der Genexpression von mindestens zwei endogenen Zielgenen durch Einbringen eines zumindest teilweise doppelsträngigen Ribonukleinsäuremoleküls in eine eukaryotische Zelle oder einen 10 eukaryotischen Organismus, wobei das Ribonukleinsäuremolekül mindestens zwei Ribonukleotidsequenzabschnitte umfasst, die zu verschiedenen Genen der eukaryotischen Zelle homolog sind.

Die gezielte Inhibition der Genexpression definierter Gene ist 15 eine der am meisten beforschten Technologie der Biotechnologie.

Die Expression von antisense-RNA ist dabei der am häufigsten verwendete Ansatz und vielfach beschrieben (u.a. EP-A1 0 458 367; EP-A1 0 140 308; van der Krol AR et al. (1988) BioTechniques 6(10):658-676; de Lange P et al. (1995) Curr Top Microbiol Immunol 197:57-75). Antisense-RNA vermittelte Ansätze haben jedoch den Nachteil, dass stöchiometrische Mengen der antisense-RNA erforderlich sind, um eine wirksame Inhibition der Ziel-mRNA zu bewirken. Weitere Probleme stehen im Zusammenhang mit dem Einbringen der antisense-RNA in ausreichenden Mengen in die Zellen und 20 mit der Labilität der antisense-RNA. Ansätze basierend auf antisense-RNA sind daher meist ineffizient.

Ein weiterer Ansatz zur Genregulation ist die "Co-Suppression" und meint die Verminderung der Expression eines endogenen Zielgens durch transgene Expression einer sense-RNA dieses Zielgens 30 (EP-A1 0 465 572). Der Co-Suppression liegen vermutlich mehr als ein Mechanismus zugrunde. Nachteilig ist die mangelnde Verlässlichkeit und Reproduzierbarkeit des Verfahrens. In manchen Fällen erfolgt Suppression, während in anderen Fällen - bedingt durch 35 die Expression der sense-RNA - die erwartete Überexpression erfolgt. Auch ist der erhaltene Phänotyp oft nicht stabil. Die Anwendung der Co-Suppression ist im wesentlichen auf Pflanzen beschränkt.

40 Verschiedene Abwandlungen der Verfahren basierend auf antisense-RNA oder Cosuppression sind bekannt. So beschreibt WO 93/23551 ein Verfahren zur Inhibition mehrerer Gene durch Expression einer chimären antisense-RNA oder sense-RNA. Das Verfahren kann die üblichen mit antisense-RNA oder sense-RNA verbundenen Probleme nicht lösen und bleibt ineffizient.

45 WO 98/36083 und WO 99/15682 beschreiben die Regulation der Genexpression mittels viralen Expressionssysteme ("virus induced gene

silencing" VIGS).

WO 99/32619 und WO 99/53050 beschreiben Verfahren zur Inhibition einzelner Zielgene unter Verwendung einer RNA mit doppelsträngiger Struktur, wobei das Zielgen und die Region der RNA Duplex zumindest eine teilweise Identität aufweisen (siehe auch: Montgomery MK et al. (1998) Proc Natl Acad Sci USA 95:15502- 15507; Sharp PA (1999) Genes & Development 13(2):139-141; Fire A et al. (1998) Nature 391:806-11). Das Verfahren wird heute auch als "RNA-Interference" (RNAi) bezeichnet und hat in Mechanismus und Wirkung Ähnlichkeiten mit dem oben erwähnten VIGS Verfahren.

Die beschriebenen Verfahren, insbesondere das RNAi-Verfahren, lösen zwar einige Probleme im Zusammenhang mit der Verminderung einzelner Zielgene. Für andere Probleme, insbesondere für die parallele Suppression mehrerer Zielgene, konnte jedoch bislang keine befriedigende Lösung bereit gestellt werden. Zahlreiche Ansätze in der Biotechnologie erfordern nicht nur die Verminderung eines einzelnen Zielgens, sondern mehrerer Zielgene, wie beispielsweise verschiedener Gene eines oder verschiedener Stoffwechselwege oder ganzer Genfamilien. Bislang war dies nur mit erheblichen Arbeits- und Zeitaufwand zu realisieren. Die Ansätze erforderten oft die individuelle Regulation der einzelnen Zielgene durch sukzessive Transformation beispielsweise mit verschiedenen Expressionskonstrukten, die jeweils für eine antisense RNA eines Zielgens kodierten. Neben dem erheblichen Arbeits- und Zeitaufwand, besteht dabei der Nachteil, dass für viele Systeme und Organismen nur eine beschränkte Anzahl von Selektionsmarkern, geeigneten Promotoren etc. zur Verfügung steht, was multiple Transformationen erheblich erschwert und beispielsweise die Deletion der Marker nach der Transformation und Selektion erfordert. Die mehrfache Verwendung eines Promotors hat oft unerwünschte Folgen, wie beispielsweise ein epigenetisches Gene-Silencing. Hierbei kommt es infolge der mehrfach verwendeten Kontrollsequenzen zu einer Inaktivierung derselben, vergleichbar der oben beschriebenen Cosuppression.

Es stellte sich also die Aufgabe, neue Verfahren bereit zu stellen, die eine effiziente Verminderung der Expression mindestens zweier endogener Zielgene in einer eukaryotischen Zelle oder einem eukaryotischen Organismus ermöglichen. Diese Aufgabe wird durch die vorliegende Erfindung gelöst.

Ein erster Gegenstand der Erfindung betrifft Verfahren zur Verminderung der Expression von mindestens zwei verschiedenen, endogenen Zielgenen in einer eukaryotischen Zelle oder einem eukaryotischen Organismus durch Einbringen eines zumindest teilweise doppelsträngigen Ribonukleinsäuremoleküls in besagte eukaryotische

Zelle oder besagten eukaryotischen Organismus, wobei das doppelsträngige Ribonukleinsäuremolekül umfasst

- 5 a) mindestens zwei "sense"-Ribonukleotidsequenzen, wobei jeweils
mindestens eine dieser "sense"-Ribonukleotidsequenzen im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes eines jeden der besagten endogenen Zielgene und
- 10 b) "antisense"-Ribonukleotidsequenzen, die zu besagten "sense"-Ribonukleotidsequenzen unter a) im wesentlichen komplementären sind.

Ein weiterer Gegenstand der Erfindung umfasst ein zumindest teilweise doppelsträngiges Ribonukleinsäuremolekül, wobei das doppelsträngige Ribonukleinsäuremolekül umfasst

- 20 a) mindestens zwei "sense"-Ribonukleotidsequenzen, wobei jeweils mindestens eine dieser "sense"-Ribonukleotidsequenzen im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes eines endogenen Zielgens, wobei jedoch nicht alle "sense"-Ribonukleotidsequenzen zu dem "sense"-RNA-Transkript eines einzigen endogenen Zielgens identisch sind, und
- 25 b) "antisense"-Ribonukleotidsequenzen, die zu besagten "sense"-Ribonukleotidsequenzen unter a) im wesentlichen komplementären sind.
- 30 Umfasst ist ferner die Verwendung der erfindungsgemäßen doppelsträngiges Ribonukleinsäuremolekül in einem der erfindungsgemäßen Verfahren.

Die vorliegende Erfindung löst die oben geschilderten Probleme und ermöglicht eine schnelle, besonders effiziente Methode zur Regulation der Expression verschiedener Zielgene. Insbesondere ergeben sich folgende Vorteile:

- 40 a) Transgene Organismen oder Zellen, in denen mehr als ein Zielgen inhibiert wird, können in einer einzigen Transformation erzeugt werden.
- 45 b) Die Transkriptionsrate für jeden Ribonukleotidsequenz der dsRNA ist gleich. Dadurch werden multiple Phänotypen durch unterschiedliche Expressionshöhen verhindert, wie sie bei individueller Expression separater Ribonukleotidsequenzen – beispielsweise durch den unterschiedlichen Ort der Insertion

in das Genom - oft entstehen. Dieser Vorteil gewährleistet eine gleichbleibend hohe Inhibition aller Zielgene und vermindert dramatisch die erforderlichen Selektionsschritte zu Generierung eines Organismus, bei dem alle Zielgene effizient supprimiert werden.

- c) Ein ökonomischer Umgang mit Kontrollelementen wie Promotoren und Selektionsmarkern wird ermöglicht. Zudem erübrigen sich Probleme, wie sie bei der mehrfachen Verwendung eines bestimmten Kontrollelementes, insbesondere eines Promoters, entstehen können ("epigenic gene silencing").
- d) Eine Segregation der einzelnen Ribonukleotidsequenzen bei nachfolgenden Züchtungs- und Kreuzungsschritten, wie sie bei der Verwendung mehrerer Expressionskonstrukte zwangsläufig entsteht, wird verhindert. Dadurch wird die nachfolgende Züchtung stabiler Linien erheblich erleichtert und beschleunigt.
- e) Organismen mit komplexen beispielsweise polyploide Genomen, wie beispielsweise manche Pflanzen, sind einer effizienten Gensuppression zugänglich. Aufgrund der zahlreichen Kopien für einzelne Gene sind diese Organismen klassischen verfahren der Mutagenese und Selektion nicht zugänglich.
- Überraschenderweise konnte bei dem erfindungsgemäßen Verfahren keine störende Interferenz zwischen den einzelnen Ribonukleotidsequenzabschnitte untereinander beobachtet werden.
- "Endogenes Zielgen einer eukaryotischen Zelle oder eines eukaryotische Organismus" meint jede Nukleinsäuresequenz in einer eukaryotischen Zelle, einem eukaryotische Organismus oder einem Teil, Organ, Gewebe, Samen etc. desselben, die zur Transkription befähigt ist. Dabei kann es sich um natürlicherweise vorkommende oder aber künstlich eingeführte Sequenzen (wie beispielsweise transgene Sequenzen) handeln, wobei natürlicherweise vorkommende Sequenzen bevorzugt sind. Natürlicherweise vorkommende Sequenzen sind bevorzugt und umfassen sowohl die eigenen Sequenzen der eukaryotischen Zelle oder des eukaryotischen Organismus als auch Gene von Pathogenen, die in der eukaryotischen Zelle oder dem eukaryotischen Organismus nach einem Befall durch ein Pathogen präsent sind. Das Zielgen kann in der chromosomal DNA oder der DNA der Organellen (wie beispielsweise der Plastiden z.B. Chloroplasten etc.) lokalisiert sein oder aber sich extrachromosomal in der Zelle befinden. Die natürlicherweise vorkommenden, eigenen Sequenzen des eukaryotischen Organismus umfassen bevorzugt Gene desselben, die stabil im Genom vorliegen, wobei das Genom die Ge-

5

samtheit der genetischen Information meint und sowohl die chromosomal als auch die plastidäre DNA umfasst. Bevorzugt ist das endogene Zielgen ein natürlicherweise in der chromosomal DNA vorkommendes Gen. Bevorzugt sind Gene deren verminderte Expression zu einem veränderten Phänotyp führt.

"Verminderung" oder "vermindern" der Expression eines Zielgens ist im Zusammenhang weit auszulegen und umfasst die teilweise oder im wesentlichen vollständige, auf unterschiedliche zellbiologische Mechanismen beruhende Unterbindung oder Blockierung der Expression des Zielgens oder der von ihm abgeleiteten RNA, mRNA, rRNA, tRNA und/oder des dadurch kodierten Proteinproduktes in einer Zelle oder einem Organismus oder einem davon abgeleiteten Teil, Gewebe, Organ, Zelle oder Samen. Eine Verminderung im Sinne der Erfindung umfasst die mengenmäßige Verringerung einer vom Zielgen exprimierten RNA, mRNA, rRNA, tRNA und/oder des dadurch kodierten Proteinproduktes bis hin zu einem im wesentlichen vollständigen Fehlen derselben. Dabei wird die Expression einer bestimmten RNA, mRNA, rRNA, tRNA und/oder des dadurch kodierten Proteinproduktes in einer Zelle oder einem Organismus im Vergleich zu der selben Zelle oder Organismus, die dem Verfahren nicht unterworfen wurden, bevorzugt um mehr als 50%, besonders bevorzugt um mehr als 80%, ganz besonders bevorzugt um mehr als 90%, am meisten bevorzugt mehr als 95% vermindert. Dabei kann die Verminderung durch den Fachmann geläufigen Verfahren ermittelt werden. So kann die Verminderung der Proteinmenge beispielsweise durch immunologischen Nachweis des Proteins bestimmt werden. Weiterhin können biochemische Techniken wie Northern-Hybridisierung, "nuclease protection assay", Reverse Transkription (quantitative RT-PCR), ELISA ("enzyme linked immunosorbent assay"), Western-Blotting, Radioimmunoassay (RIA) oder andere Immunoassays sowie "fluorescence activated cell analysis" (FACS) eingesetzt werden. Je nach Art des verminderten Proteinproduktes kann auch dess Aktivität oder der Einfluss auf den Phänotyp des Organismus oder der Zelle ermittelt werden.

"Proteinmenge" meinte die Menge eines bestimmten Polypeptides in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment.

"Verminderung" der Proteinmenge meint die mengenmäßige Verminderung der Menge eines bestimmten Polypeptides in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment - beispielsweise durch das erfindungsgemäße Verfahren - im Vergleich zu dem Wildtyp derselben Gattung und Art auf den dieses Verfahren nicht angewendet wurde, unter ansonst gleichen Rahmenbedingungen (wie beispielsweise Kulturbedingungen, Alter, Nährstoffzufuhr

etc.). Der Verminderung beträgt dabei mindestens 10 %, bevorzugt mindestens 10% oder mindestens 20%, besonders bevorzugt um mindestens 40% oder 60%, ganz besonders bevorzugt um mindestens 70% oder 80%, am meisten bevorzugt um mindestens 90% oder 95%. Verfahren zur Bestimmung der Proteinmenge sind dem Fachmann bekannt. Beispielhaft seien zu nennen: Das Mikro-Biuret Verfahren (Goa J (1953) Scand J Clin Lab Invest 5:218-222), die Folin-Ciocalteu-Methode (Lowry OH et al. (1951) J Biol Chem 193:265-275) oder die Messung der Adsorption von CBB G-250 (Bradford MM (1976) Analyt Biochem 72:248-254).

"Verschieden" meint in Bezug auf zwei endogene Zielgene bevorzugt, dass die von den beiden endogenen Zielgenen transkribierte RNA oder mRNA nicht identisch ist. Bevorzugt ist die Homologie der von den beiden endogenen Zielgenen transkribierte RNA oder mRNA geringer als 90%, bevorzugt geringer als 80%, besonders bevorzugt geringer als 70%, ganz besonders bevorzugt geringer als 60%, am meisten bevorzugt geringer als 50% über jeweils die gesamte Länge der transkribierten RNA oder mRNA.

"Zumindest teilweise doppelsträngiges Ribonukleinsäuremolekül" (infolge dsRNA) meint Ribonukleinsäuremolekül, die ganz oder teilweise doppelsträngig sind. Bevorzugt ist die Ribonukleinsäuresequenz überwiegend vollständig doppelsträngig. "Überwiegend vollständig doppelsträngig" meint, dass zumindest 50%, bevorzugt 70%, besonders bevorzugt 80%, ganz besonders bevorzugt 90% der in dem Molekül vorhandenen Basen in Paarung mit einer anderen Base der dsRNA vorliegen oder - entsprechend der Sequenz der dsRNA und den Basenpaarregeln sowie gegebenenfalls einer RNA-Sekundärstruktur voraussage mittels eines geeigneten Computeralgorithmus - zumindest theoretisch vorliegen können.

"Im wesentlichen identisch" meint, dass eine "sense"-Ribonukleotidsequenz der dsRNA auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu der Sequenz des "sense"-RNA-Transkriptes eines endogenen Zielgens aufweisen kann. Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Basen einer Nukleinsäuresequenz. Bevorzugt beträgt die Homologie zwischen einer "sense"-Ribonukleotidsequenz einer dsRNA und mindestens einem Teil des "sense"-RNA-Transkript eines endogenen Zielgens mindestens 60 %, bevorzugt mindestens 70 %, ganz besonders bevorzugt mindestens 90 %, am meisten bevorzugt 95%. Die Sequenzen können auch identisch mit der korrespondierenden Sequenz des Zielgens sein. Eine 100%ige Sequenzidentität zwischen der "sense"-Ribonukleotidsequenz der dsRNA und mindestens einem Teil des "sense"-Stranges der Transkriptes eines endogenen Gens ist bevorzugt, wenn gleich

nicht zwingend erforderlich, um eine effiziente Verminderung der Expression des endogenen Gens zu bewirken. Einzelne Mutationen werden toleriert. Das Verfahren ist demnach tolerant gegenüber Sequenzabweichungen, wie sie infolge genetischer Mutationen, Polymorphismen oder evolutionärer Divergenzen vorliegen können. So ist es beispielsweise auch möglich mit einer einzigen dsRNA, die ausgehend von einer bestimmten endogenen Gen generiert wurde, die Expression weiterer homologer endogener Gene des gleichen Organismus oder aber auch die Expression homologer endogener Gene in anderen verwandten Arten zu unterdrücken.

Unter Homologie wird das Maß der Übereinstimmung zwischen zwei Nukleotid-, Ribonukleotid- oder Proteinsequenzen verstanden, die bevorzugt durch Vergleich mit Hilfe des Programmalgorithmus 15 GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25:3389ff) unter Einstellung folgender Parameter berechnet wird:

20 Gap Weight: 50

Length Weight: 3

Average Match: 10

Average Mismatch: 0

Dem Fachmann ist bewusst, dass wenn die Homologie zwischen DNA 25 (z.B. Genen) und RNA bestimmt wird, Thymin (T) in der DNA Sequenz als äquivalent zu Uracil (U) in der RNA Sequenz betrachtet wird.

"Teil des "sense"-RNA-Transkriptes eines endogenen Zielgens" meint Fragmente einer RNA oder mRNA transkribiert von einem endogenen Zielgen. Dabei hat besagtes Teil bevorzugt eine Sequenzlänge von mindestens 10 Basen, bevorzugt mindestens 25 Basen, besonders bevorzugt mindestens 50 Basen, ganz besonders bevorzugt mindestens 100 Basen, am meisten bevorzugt mindestens 200 Basen oder mindestens 300 Basen. Umfasst ist auch die vollständige 35 transkribierte RNA oder mRNA.

Alternativ, kann eine "im wesentlichen identische" dsRNA auch als Nukleinsäuresequenz definiert werden, die befähigt ist, mit einem Teil eines Transkriptes, bevorzugt der mRNA, eines endogenen 40 Zielgenes zu hybridisieren (z.B. in 400 mM NaCl, 40 mM PIPES pH 6,4, 1 mM EDTA bei 50°C oder 70°C für 12 bis 16 h oder unter anderen Standardhybridisierungsbedingungen).

"Standardhybridisierungsbedingungen" ist breit zu verstehen und 45 meint weniger stringente als auch - bevorzugt - stringente Hybridisierungsbedingungen. Solche Hybridisierungsbedingungen sind unter anderem bei Sambrook J, Fritsch EF, Maniatis T et al., in

Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57) oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben.

5

Beispielhaft können die Bedingungen während des Waschschriftes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit ungefähr 2X SSC bei 50°C) und - bevorzugt - solchen mit hoher Stringenz (mit ungefähr 0,2X SSC

10 bei 50°C bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumcitrat, 3 M NaCl, pH 7.0). Darüberhinaus kann die Temperatur während des Waschschriftes von niedrig stringenten Bedingungen bei Raumtemperatur, ungefähr 22°C, bis zu - bevorzugt - stärker stringenten Bedingungen bei ungefähr 65°C angehoben werden. Beide Parameter, 15 Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50% Formamid wird 20 die Hybridisierung bevorzugt bei 42°C ausgeführt. Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:

(1) Hybridisierungbedingungen zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein:

- a) 4X SSC bei 65°C,
- b) 6X SSC bei 45°C,
- c) 6X SSC, 100 µg/ml denaturierter, fragmentierte Fischsperma-DNA bei 68°C,
- f) 50% Formamid, 4X SSC bei 42°C,
- h) 2X oder 4X SSC bei 50°C (schwach stringente Bedingung),
- i) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42°C (schwach stringente Bedingung).

35

(2) Waschschritte können zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein:

- a) 0,015 M NaCl/0,0015 M Natriumcitrat/0,1% SDS bei 50°C.
- b) 0,1X SSC bei 65°C.
- c) 0,1X SSC, 0,5% SDS bei 68°C.
- d) 0,1X SSC, 0,5% SDS, 50% Formamid bei 42°C.
- e) 0,2X SSC, 0,1% SDS bei 42°C.
- f) 2X SSC bei 65°C (schwach stringente Bedingung).

45

"Im wesentlichen komplementär" meint, dass die "antisense"-Ribonukleotidsequenzen der dsRNA auch Insertionen, Deletionen sowie

9

einzelne Punktmutationen im Vergleich zu dem Komplement der "sense"-Ribonukleotidsequenzen aufweisen kann. Bevorzugt beträgt die Homologie mindestens 80 %, bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, am meisten bevorzugt 100% zwischen den "antisense"-Ribonukleotidsequenzen und dem Komplement der "sense"-Ribonukleotidsequenzen. Komplement meint dabei - in der dem Fachmann geläufigen Weise - den entsprechend den Basenpaarregeln abgeleiteten Gegenstrang.

- 10 Die doppelsträngige Struktur der dsRNA kann ausgehend von einem einzigen, ganz oder teilweise selbstkomplementären RNA-Strang (bei dem die oben erwähnten "sense"- und "antisense"-Ribonukleotidsequenzen der dsRNA alle kovalent miteinander verbunden sind) oder ausgehend von zwei RNA-Strängen (indem die oben erwähnten 15 "sense"- und "antisense"-Ribonukleotidsequenzen der dsRNA auf separate Stränge vorliegen), die zueinander ganz oder teilweise komplementär sind, gebildet werden. Bei zwei separaten Strängen können beispielsweise alle "sense"-Ribonukleotidsequenzen auf dem einen und alle "antisense"-Ribonukleotidsequenzen auf dem anderen 20 Strang vorliegen. Die Sequenzen können aber auch anders auf die beiden Stränge verteilt sein. Die Ausbildung der doppelsträngigen Struktur kann *in vitro* aber auch *in vivo* - beispielsweise in der eukaryotischen Zelle selber - erfolgen. Bevorzugt liegt die dsRNA in Form eines einzigen, selbstkomplementären RNA-Stranges vor.
- 25 Die einzelnen "sense"-Ribonukleotidsequenzen können mit den korrespondierenden, im wesentlichen komplementären "antisense"-Ribonukleotidsequenzen eine doppelsträngige RNA-Struktur mittels Basenpaarung ausbilden und bilden eine Untereinheit der dsRNA.
- 30 Im Falle eines selbstkomplementären Stranges ergeben sich verschiedene Möglichkeiten für die Primärstruktur der dsRNA. Nachfolgend aufgeführte sind beispielhaft, jedoch nicht einschränkend zu verstehen:
- 35 a) Es können zunächst die "sense"-Ribonuklectidsequenzen (S) der einzelnen Untereinheiten aneinander gefügt werden, wodrauf dann eine Aneinanderreihung der im wesentlichen komplementären "antisense"-Ribonukleotidsequenzen (AS) folgt. Die Anzahl der Einheiten n ist größer oder gleich zwei. Es entsteht eine 40 Struktur mit einer einzelnen Haarnadel. Die Primärstruktur der dsRNA kann dabei schematisch beispielsweise wie folgt aussehen:
- 45 5'-S(1)-S(2)-.....-S(n)-AS(n)-....-AS(2)-AS(1)-3'

10

Die bevorzugte Sekundärstruktur ist in Fig. 2-A wiedergegeben.

- b) Es können zunächst die "sense"-Ribonukleotidsequenz (S) und
 5 die im wesentlichen komplementäre "antisense"-Ribonukleotidsequenz (AS) der ersten Untereinheiten aneinander gefügt werden, wodrauf dann die Aneinanderreihung von "sense"- und "antisense"-Ribonukleotidsequenzen der weiteren Untereinheiten folgt. Die Anzahl der Einheiten n ist größer oder gleich
 10 zwei. Es entsteht eine Struktur mit mehreren Haarnadeln. Die Primärstruktur der dsRNA kann dabei schematisch beispielsweise wie folgt aussehen:

5' -S(1)-AS(1)-S(2)-AS(2).....-S(n)-AS(n)-3'

- 15 Die bevorzugte Sekundärstruktur ist in Fig. 2-B wiedergegeben.

Ist die dsRNA - bevorzugt - in der Lage eine Haarnadelstruktur auszubilden, so entspricht der Stamm der Haarnadel dem doppelsträngige Anteil der dsRNA, der durch Basenpaarung zwischen auf dem gleich RNA-Moleküle lokalisierten "sense"- und "antisense"-Ribonukleotidsequenz gebildet wird. Dabei werden "sense"- und "antisense"-Ribonukleotidsequenzen bevorzugt durch einen "Linker" verbunden. Der "Linker" ist bevorzugt ein Intron, das aus der
 20 dsRNA herausgespleißt werden kann. Selbstkomplementären dsRNA-Strukturen ausgehend von einem einzelnen RNA-Molekül sind bevorzugt, da sie lediglich die Expression eines Kontraktes erfordern und die komplementären RNA-Stränge stets in einem äquimolaren
 25 Verhältnis umfassen.

- 30 Bei der Verwendung eines Linkers (I) - bevorzugt eines Intron - seien nachfolgende schematische Primärstrukturen für die dsRNA beispielhaft genannt:

- 35 c) Dies ist eine bevorzugte Variante von a), bei der an der Stelle der Haarnadelschlaufe ein Linker (I) - bevorzugt ein Intron - insertiert wird:

5' -S(1)-S(2)-.....-S(n)-I-AS(n)-....-AS(2)-AS(1)-3'

- 40 Die bevorzugte Sekundärstruktur ist in Fig. 2-C wiedergegeben.

- d) Dies ist eine bevorzugte Variante von b), bei der an der
 45 Stelle der jeder Haarnadelschlaufe ein Linker (I) - bevorzugt ein Intron - insertiert wird:

5'-S(1)-I-AS(1)-S(2)-I-AS(2).....-S(n)-I-AS(n)-3'

Die bevorzugte Sekundärstruktur ist in Fig. 2-D wiedergegeben.

Die dsRNA Moleküle sind jedoch auch ohne den Linker funktionell. Dabei ist jedoch zu berücksichtigen, dass die letzten ca. 10 Nukleotide der terminalen Untereinheit S(n) in diesem Fall nicht mehr korrekt paaren. In diesem Fall ist die Länge für diese Untereinheit um 10 Nukleotide zu ergänzen. Der Linker ist bevorzugt ein Intron, besonders bevorzugt ein Intron in sense-Orientierung. Bevorzugt handelt es sich um ein Intron eines pflanzlichen Gens. Beispielhaft jedoch nicht einschränkend seien zu nennen: Das Intron 3 der Alkoholdehydrogenase 1 (Adh1) aus Mais (GenBank Acc.-No.: AF044293; GI: 2828164), das Intron 4 der beta-Conglycinin alpha Untereinheit aus Soja (GenBank Acc.-No.: AB051865); eines der Introns des rbcS-3A Gens für Ribulose-1,5-bisphosphatcarboxylase (RBC) kleine Untereinheit aus Erbse (GenBank Acc.-No.: X04333). Diese und weitere geeignete Introns sind dem Fachmann bekannt (McCullough AJ & Schuler MA (1997) Nuc Acids Res 25:1071-1077). Für die Anwendung in dem erfindungsgemäßen Verfahren wird das Intron bevorzugt in Kombination mit Spleißakzeptor- und Spleißdonorsequenzen eingesetzt, die ein späteres Herausspleißen aus der dsRNA ermöglichen. Diese Spleißsequenzen können die flankierenden Sequenzen des Intron selber sein, oder aber auch durch entsprechende Sequenzen der übriggebliebenen dsRNA bereitgestellt werden.

Jede der einzelnen "sense"-Ribonukleotidsequenzen der dsRNA ist im wesentlichen identisch zu mindestens einem Teil des "sense"-RNA-Transkriptes eines endogenen Zielgens. Dabei sind jedoch nicht alle "sense"-Ribonukleotidsequenzen zu dem "sense"-RNA-Transkript eines einzigen endogenen Zielgens identisch, sondern die jeweils maximale Identität von mindestens zwei der "sense"-Ribonukleotidsequenzen besteht zu den "sense"-RNA-Transkripten von unterschiedlichen endogenen Zielgenen. Dabei beträgt die Homologie zwischen den Transkripten der beiden endogenen Zielgene unter 90%, bevorzugt unter 80%, besonders bevorzugt unter 70%, ganz besonders bevorzugt unter 60%, am meisten bevorzugt unter 50%.

Mindestens zwei der in der erfindungsgemäßen dsRNA umfassten einzelnen "sense"-Ribonukleotidsequenzen sind unterschiedlich. Unterschiedlich bedeutet zum einen, dass die Zielgene zu deren Transkripten sie die jeweils maximale Identität aufweisen, nicht identisch sind. Bevorzugt vermindert mindestens eine Untereinheit

- der dsRNA die Expression eines anderen Gens als mindstens eine andere Untereinheit. Unterschiedlich kann zum anderen auch heißen, dass die "sense"-Ribonukleotidsequenzen der Untereinheiten selber im wesentlichen nicht identisch sind und bevorzugt eine 5 Homologie zu einander unter 60%, besonders bevorzugt unter 50% ganz besonders bevorzugt unter 40% aufweisen. Die dsRNA kann in einer weiteren Ausführungsform mehrerer Kopien einer Untereinheit enthalten. Weiterhin kann die dsRNA auch mehrere verschiedene Untereinheiten enthalten, die aber gegen das gleiche endogene Ziel- 10 gens gerichtet sind und deren "sense"-Ribonukleotidsequenzen beispielsweise im wesentlichen identisch sind zu unterschiedlichen Teilen des "sense"-RNA-Transkriptes des besagten endogenen Zielgens.
- 15 Dabei kann jede der einzelnen "sense"-Ribonukleotidsequenzen auch zu dem Transkript mehrerer endogener Zielgene im wesentlichen identisch sein. Dies ist besonders dann der Fall, wenn die Zielgene über ähnliche Sequenzabschnitte verfügen, wie es beispielsweise bei Mitgliedern von Genfamilien (z.B. Speicherproteinen) 20 der Fall ist. Dies ist eine besonders vorteilhafte Anwendungsform, da - bei entsprechender Wahl der Ribonukleotidsequenz einer Untereinheit - besagte Untereinheit die Expression von mehr als einem Zielgen vermindern kann.
- 25 Vorzugsweise wird die Sequenz der dsRNA so gewählt, dass die angestrebte dsRNA Struktur nach Ausbildung der Duplex - im Vergleich zu anderen möglichen Faltungsvarianten der Primärstruktur der dsRNA - die jeweils geringste freie Energie hat. Dies kann beispielsweise durch Vermeidung von Sequenzduplikationen etc. ge- 30 währleistet werden. Die spezifische Sekundärstruktur kann beispielsweise mit geeigneten Computerprogrammen vorausgesagt und optimiert werden (z.B. FOLDRNA; Zuker and Stiegler (1981) Nucleic Acids Res 9(1):133-48).
- 35 Jede Untereinheit der dsRNA hat in einer bevorzugten Ausführungsform eine Länge von mindestens 20 Basenpaaren, bevorzugt mindestens 50 Basenpaaren, besonders bevorzugt mindestens 100 Basenpaare, ganz besonders bevorzugt mindestens 250 Basenpaare.
- 40 In einer weiterhin bevorzugten Ausführungsform hat jede Einheit eine Länge eine ganzzahligen Vielfachen von 21 oder 22 Basenpaaren, also beispielsweise 21, 22, 42, 43, 44, 63, 64, 65, 66, 84, 85, 86, 87, 88, 105, 106, 107, 108, 109, 110, 126, 127, 128, 129, 131, 132, 147, 148, 149, 150, 151, 152, 153, 154, 168, 169, 170, 45 171, 172, 173, 174, 175, 176, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219 oder 220 Basenpaare, bevorzugt 21, 22, 42, 44, 63, 66, 84, 88,

13

105, 110, 126, 132, 147, 154, 168, 176, 189, 198, 210 oder 220 Basenpaare, ganz besonders bevorzugt 21, 42, 63, 84, 105, 126, 147, 168, 189 oder 210 Basenpaare, am meisten bevorzugt 180 oder 210 Basenpaare.

5

Die "sense"- und/oder "antisense"-Ribonukleotidsequenzen der einzelnen Untereinheiten können direkt oder aber durch einen "Spacer" (SP; Abstandshalter) miteinander verbunden und/oder flankiert sein. Die einzelnen "Spacer" (SP) können dabei identisch 10 oder aber auch unterschiedlich sein. Der "Spacer" genügt dabei bevorzugt den gleichen Längenanforderungen wie sie oben für die Länge der Untereinheiten selber gegeben sind. Der "Spacer" kann eine doppelstränge Struktur ausbilden, kann aber auch – beispielsweise in Form einer Blase – in ungepaarter Formation bestehen, d.h. die Basen in Strang und Gegenstrang müssen nicht zwangsläufig komplementär sein. Bevorzugte Ausführungsformen sind 15 zum Beispiel durch nachfolgende Primärstrukturen beschrieben:

20

e) Dies ist eine bevorzugte Variante von c):

5' SP-S(1)-SP-S(2)-SP-...-S(n)-AS(n)-SP-...-AS(2)-SP-AS(1)-SP-3'

Die bevorzugte Sekundärstruktur ist in Fig. 3-A wiedergegeben.

25

Der "Spacer" kann weitere Funktionselemente umfassen. Beispielsweise jedoch nicht einschränkend sind zu nennen:

30

i) Sequenzen kodierend für eine von einem Ribozym als Substrat erkannten Erkennungssequenz (RE). Beispielsweise kann die dsRNA nachfolgende lineare Struktur vor der Faltung einnehmen:

5'-S(1)-(RE)-S(2)-...-S(n)-AS(n)-...-AS(2)-(RE)-AS(1)-3'

35

Die bevorzugte Sekundärstruktur ist in Fig. 3-B wiedergegeben. Das entsprechende Ribozym (R) kann separat exprimiert werden kann aber auch auf der dsRNA selber kodiert sein. Dabei ist die Sequenz kodierend für ein Ribozym bevorzugt so angeordnet, dass sie im gefalteten dsRNA Molekül einer Sequenz gegenüber liegt, die für dieses Ribozym als Substrat fungieren kann. Beispielsweise kann die dsRNA nachfolgende lineare Struktur vor der Faltung einnehmen:

45

5'-S(1)-(R)(RE)-S(2)-...-S(n)-AS(n)-...-AS(2)-(R)(RE)-AS(1)-3'

14

Die bevorzugte Sekundärstruktur ist in Fig. 3-C wiedergegeben. Durch die genannten Ausführungsformen werden nach Transkription die einzelnen Untereinheiten durch Wirkung des Ribozym voneinander getrennt. Diese Trennung ist vorteilhaft, jedoch nicht zwingend erforderlich. Entsprechend nutzbare Ribozyme und Erkennungssequenzen sind dem Fachmann bekannt.

Ribozyme meint katalytische RNA-Moleküle. Ribozyme können an jede beliebige Ziel-RNA angepasst werden und spalten das Phosphodiester-Gerüst an spezifischen Positionen, wodurch die Ziel-RNA funktionell deaktiviert wird (Tanner NK (1999) FEMS Microbiol Rev 23(3):257-275). Das Ribozym wird dadurch nicht selber modifiziert, sondern ist in der Lage, weitere Ziel-RNA-Moleküle analog zu spalten, wodurch es die Eigenschaften eines Enzyms erhält. Der Einbau von Ribozymsequenzen in "antisense"-RNAs verleiht eben diesen "antisense"-RNAs diese enzymähnliche, RNA-spaltende Eigenschaft und steigert so deren Effizienz bei der Inaktivierung der Ziel-RNA. Die Herstellung und Verwendung entsprechender Ribozym- "antisense"-RNA-Moleküle ist beispielsweise beschrieben bei Haselhoff et al. (1988) Nature 334: 585-591. Auf diese Art können Ribozyme (z.B. "Hammerhead"-Ribozyme; Haselhoff und Gerlach (1988) Nature 334:585-591) verwendet werden, um die eines bestimmten RNA katalytisch zu spalten. Verfahren zur Expression von Ribozymen zur Verminderung bestimmter Proteine sind beschrieben in (EP 0 291 533, EP 0 321 201, EP 0 360 257). In pflanzlichen Zellen ist eine Ribozym-Expression ebenfalls beschrieben (Steinecke P et al. (1992) EMBO J 11(4):1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338). Geeignete Zielsequenzen und Ribozyme können zum Beispiel wie bei "Steinecke P, Ribozymes, Methods in Cell Biology 50, Galbraith et al. eds, Academic Press, Inc. (1995), S.449-460" beschrieben, durch Sekundärstrukturberechnungen von Ribozym- und Ziel-RNA sowie durch deren Interaktion bestimmt werden (Bayley CC et al. (1992) Plant Mol Biol. 18(2):353-361; Lloyd AM and Davis RW et al. (1994) Mol Gen Genet. 242(6):653-657). Beispielsweise können Derivate der Tetrahymena L-19 IVS RNA konstruiert werden, die komplementäre Bereiche zu den mRNA des zu den Spacersequenzen aufweisen (siehe auch US 4,987,071 und US 5,116,742). Alternativ können solche Ribozyme auch über einen Selektionsprozess aus einer Bibliothek diverser Ribozyme identifiziert werden (Bartel D und Szostak JW (1993) Science 261:1411-1418).

45 ii) Sequenzen kodierend für Erkennungssequenzen für RNAasen
Der "Spacer" kann Erkennungssequenzen für RNAsen, bevorzugt sequenzspezifische RNAsen wie beispielsweise RNase III ent-

15

halten. RNase III schneidet am Motiv 5'-AGNN-3, wenn vier dieser Motive in einer Schleife vorhanden sind (Nagel R & Ares M (2000) RNA 6:1142-1156). Die RNase kann eine pflanze-neigene RNase sein, oder - wie beispielsweise für bakte-
rielle RNase III Proteine - auch transgen exprimiert werden.

iii) Sequenzen kodierend für Intronspleißsignale (IS). Dabei sind die Spleißdonor und Spleißakzeptorsequenzen bevorzugt so lo-
kalisiert, dass jeweils die Untereinheit als Intron heraus-
gespleißt wird. Intronspleißsignale sind in Meritt et
al. (1997) Plant Journal 12:937-943 oder in Egoavil et al.
(1997) Plant Journal 12:971-980 beschrieben.

Die dsRNA bzw. ihre Vorläufermoleküle können auf verschiedene dem
Fachmann geläufige Weise in einen Organismus oder eine Zelle ein-
gebracht werden. "Einbringen" ist breit zu verstehen und umfasst
im Rahmen der Erfindung alle Verfahren, die dazu geeignet eine
dsRNA bzw. ihre Vorläufermoleküle, direkt oder indirekt, in einen
Organismus oder eine Zelle, Kompartiment, Gewebe, Organ oder Sa-
men desselben einzuführen oder dort zu generieren. Die Einbrin-
gung kann zu einer vorübergehenden (transienten) Präsenz einer
dsRNA führen oder aber auch zu einer dauerhaften (stabilen). Um-
fasst sind Verfahren der direkten Transfektion oder Transfor-
mation der Zelle mit der als auch die Transformation oder Trans-
fektion der Zelle mit Expressionskassetten, die befähigt sind,
die der dsRNA zugrundeliegenden Ribonukleinsäuresequenzen in der
Zelle zu exprimieren (infolge dsRNA-Expressionssystem). Die Ex-
pression der dsRNA kann transient oder - beispielsweise nach In-
tegration in das Genom des Organismus - permanent erfolgen. Die
Duplex-Bildung der dsRNA kann entweder außerhalb der Zelle oder
innerhalb derselben initiiert werden.

Die dsRNA wird in einer Menge eingeführt, die zumindest eine Ko-
pie pro Zelle ermöglicht. Höhere Mengen (z.B. mindestens 5, 10,
35 100, 500 oder 1000 Kopien pro Zelle) können ggf. eine effizienter
Verminderung der Expression der Zielgene bewirken. Da dsRNA eine
außerordentlich gute Mobilität innerhalb eines Organismus hat,
ist es nicht zwingend erforderlich die dsRNA in jede Zelle des
Organismus zu applizieren. Es ist ausreichend, die dsRNA in eine
40 oder wenige Zellen einzubringen oder zu exprimieren, wobei die
erfindungsgemäße Wirkung dann auch in anderen Zellen des gleichen
Organismus erzielt werden kann.

Eine dsRNA - beispielsweise zur Verwendung in einer direkten
45 Transformation oder Transfektion - kann kann *in vivo* oder *in vi-*
tro, durch enzymatische, molekularbiologische oder chemisch-syn-
thetische Verfahren synthetisiert werden. Dazu können eukaryoti-

16

- sche, prokaryotische oder Bakteriophagen RNA Polymerasen (wie z.B. T3-, T7- oder SP6 RNA-Polymerase) verwendet werden. Entsprechende Verfahren zu in vitro Expression von RNA sind beschrieben (WO 97/32016; US 5,593,874; US 5,698,425, US 5,712,135, US 5,789,214, US 5,804,693). Eine chemisch oder enzymatisch in vitro synthetisierte dsRNA kann vor der Einführung in eine Zelle, Gewebe oder Organismus aus dem Reaktionsgemisch beispielsweise durch Extraktion, Präzipitation, Elektrophorese, Chromatographie oder Kombinationen dieser Verfahren ganz oder teilweise aufgereiht werden. Die dsRNA kann direkt in die Zelle eingeführt werden (beispielsweise durch Partikelbeschuss oder Mikroinjektion) oder aber extrazellulär (z.B. in den interstitial Raum, das Gefäßsystem, das Verdauungssystem o.ä.) appliziert werden. Auch eine Applikation beispielsweise von dsRNA exprimierenden Organismen in Form von Nahrung ist denkbar. Es ist bekannt, dass dsRNA eine gute Zellgängigkeit und ausreichende Stabilität hat. Durch die hohe Wirksamkeit der dsRNA sind auch wenige Moleküle ausreichend, um eine gute Wirkung im Sinne der Erfindung zu erzielen.
- Es können ferner Modifikationen sowohl des Zucker-Phosphat-Gerüsts als auch der Nukleoside in der dsRNA vorliegen. Beispielsweise können die Phosphodiesterbindungen der RNA dahingehend modifiziert sein, dass sie zumindest ein Stickstoff oder Schwefel-Heteroatom umfassen. Basen können dahingehend modifiziert werden, dass die Aktivität beispielsweise von Adenosindeaminase eingeschränkt wird. Die dsRNA kann enzymatisch oder ganz oder teilweise chemisch-synthetisch hergestellt werden.
- Bevorzugt wird die dsRNA jedoch ausgehend von entsprechenden Expressionssystemen in der Zelle exprimiert. Ein weiterer Gegenstand der Erfindung betrifft besagte dsRNA-Expressionssysteme. Wird die dsRNA als ein einzelner, selbstkomplementäre RNA-Strang exprimiert, so umfasst das Expressionssystem eine Expressionskassette mit einer für den selbstkomplementären RNA-Strang kodierenden DNA Sequenz in funktioneller Verknüpfung mit einem Promotor, der geeignet ist, die Expression in der jeweiligen eukaryotischen Zelle zu gewährleisten. Optional kann die Expressionskassette weitere funktionelle Elemente wie beispielsweise Transkriptionsterminatoren und/oder Polyadenylierungssignale umfassen. Derartige Expressionskassetten sind ebenfalls Gegenstand der Erfindung.

Wird die dsRNA in Form von zwei separaten Strängen exprimiert, die zueinander ganz oder teilweise komplementär sind, so umfasst das Expressionssystem zwei Expressionskassetten, wobei jeder der beiden Stränge in funktioneller Verknüpfung mit einem Promotor steht, der geeignet ist, die Expression in der jeweiligen eukary-

ryotischen Zelle zu gewährleisten. Optional können die Expressionskassetten weitere funktionelle Elemente wie beispielsweise Transkriptionsterminatoren und/oder Polyadenylierungssignale umfassen. Die Kombination der beiden Expressionskassetten zu dem 5 erfindungsgemäßen Expressionssystem kann auf verschiedene dem Fachmann geläufige Art geschehen. Beispielhaft seien zu nennen:

- a) Transformation der Zelle oder Pflanze mit einem Vektor, der Expressionskassetten für beide RNA-Stränge umfasst,
10
- b) Kotransformation der Zelle oder Pflanze mit zwei Vektoren, wobei jeweils ein Vektor für jeweils einen der beiden Stränge der dsRNA kodiert.
- 15 c) Kreuzung von zwei Pflanzen, die mit jeweils einem Vektor transformiert wurden, wobei jeweils ein Vektor für jeweils einen der beiden Stränge der dsRNA kodiert.

Es ist auch möglich, dass eine Expressionskassette einzusetzen, 20 bei der die für die dsRNA kodierende DNA-Sequenz zwischen zwei Promotoren mit entgegengerichteter Transkriptionsrichtung lokalisiert ist und so von beiden Seiten transkribiert wird.

Expressionskassette meint chimäre DNA-Moleküle in denen eine für 25 das dsRNA-Molekül (bzw. für einen der Stränge desselben) kodierende Nukleinsäuresequenz mit mindestens einem genetischen Kontrollelement (beispielsweise einem Promotor, Enhancer, Silencer, Splice-Donor oder -Akzeptor, Polyadenylierungssignal) derart verknüpft ist, das die Transkription des dsRNA-Moleküls (bzw. eines 30 der Stränge desselben) in der eukaryotischen Zelle oder Organismus gewährleistet ist. Entsprechend vorteilhafte Konstruktionen sind weiter unten beschrieben. Eine Polyadenylierung ist möglich, jedoch nicht erforderlich, ebenso müssen keine Elemente zur Initiierung einer Translation vorhanden sein.

35 Soll das Expressionskonstrukt in eine Pflanze eingeführt und die dsRNA in plantae erzeugt werden, so sind pflanzenspezifische ge- netische Kontrollelemente (beispielsweise pflanzenspezifische Promotoren) bevorzugt. Die dsRNA kann jedoch auch in anderen Or- 40 ganismen oder in vitro erzeugt und dann in die Pflanze einge- bracht werden.

Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung eines Promotors mit der zu transkri- 45 bierenden Nukleinsäuresequenz und ggf. weiterer regulativer Ele- mente wie zum Beispiel einem Terminator und/oder Polyadenylierungssignalen derart, dass jedes der regulativen Elemente seine

18

Funktion bei der Transkription der Nukleinsäuresequenz, je nach Anordnung der Nukleinsäuresequenzen erfüllen kann. Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische Kontrollsequenzen, wie zum Beispiel Enhancer-Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in denen die zu transkribierende Nukleinsäuresequenz hinter der als Promoter fungierenden Sequenz positioniert wird, so dass beide Sequenzen kovalent miteinander verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der transgen zu exprimierende Nukleinsäuresequenz geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner als 50 Basenpaare. In einer bevorzugten Ausführungsform wird die zu transkribierende Nukleinsäuresequenz so hinter dem Promotor lokalisiert, das der Transkriptionsstart identisch ist mit dem gewünschten Beginn der dsRNA.

Die Herstellung einer funktionellen Verknüpfung als auch die Herstellung einer Expressionskassette kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in Maniatis T, Fritsch EF und Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Silhavy TJ, Berman ML und Enquist LW (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Ausubel FM et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience und bei Gelvin et al. (1990) In: Plant Molecular Biology Manual beschrieben sind.

Unter einer Expressionskassette sind aber auch solche Konstruktionen zu verstehen, bei denen zum Beispiel eine Nukleinsäuresequenz kodierend für eines dsRNA derart hinter einen endogenen Promotor platziert werden, dass der gleiche Effekt auftritt. Beide Ansätze führen zu Expressionskassetten im Sinne der Erfindung.

Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für das erfindungsgemässe Verfahren verwendet werden, solange sie die Expression in dem Zielorganismus gewährleisten. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.

19

Es können weitere Promotoren funktionell mit der zu exprimierenden Nukleinsäuresequenz verknüpft sein, die eine Expression in weiteren Eukaryoten oder in Prokaryoten, wie zum Beispiel *E.coli* Bakterien ermöglichen.

5

Die in den erfindungsgemäßen Expressionskassetten oder Vektoren enthaltenen Nukleinsäuresequenzen können mit weiteren genetischen Kontrollsequenzen neben einem Promoter funktionell verknüpft sein. Der Begriff der genetischen Kontrollsequenzen ist breit zu verstehen und meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen oder die Funktion der erfindungsgemäßen Expressionskassette haben. Genetische Kontrollsequenzen modifizieren zum Beispiel die Transkription in prokaryotischen oder eukaryotischen Organismen. Vorzugsweise umfassen die erfindungsgemäßen Expressionskassetten 5'-stromaufwärts von der jeweiligen transgen zu exprimierenden Nukleinsäuresequenz einen pflanzenspezifischen Promoter und 3'-stromabwärts eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils funktionell verknüpft mit der transgen zu exprimierenden Nukleinsäuresequenz.

Genetische Kontrollsequenzen umfassen ferner auch die 5'-untranslatierte Regionen, Introns oder nichtkodierende 3'-Region von Genen. Es ist gezeigt worden, dass diese eine signifikante Funktion bei der Regulation der Genexpression spielen können. Kontrollsequenzen umfassen ferner Polyadenylierungssignale sowie Terminatorsequenzen.

Die Expressionskassette kann vorteilhafterweise eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promoter enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der transgen zu exprimierenden Nukleinsäuresequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren. Die transgen zu exprimierenden Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.

Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom erlauben. Methoden wie die cre/lox-Technologie erlauben eine gewebespezifische, unter Umständen induzierbare Entfernung der Expressionskassette aus dem Genom des Wirtsorganismus (Sauer B (1998) Methods. 14(4):381-92). Hier werden bestimmte flankierende

Sequenzen dem Zielgen angefügt (lox-Sequenzen), die später eine Entfernung mittels der cre-Rekombinase ermöglichen.

Bevorzugt kann die Expressionskassette, bestehend aus einer Verknüpfung von Promoter und zu transkribierender Nukleinsäuresequenz, integriert in einem Vektor vorliegen und durch zum Beispiel Transformation - nach einem der unten beschriebenen Verfahren - in die eukaryotische Zelle oder Organismus eingebracht werden. Die nachfolgende Expression kann transient sein oder aber 10 auch - bevorzugt - stabil nach Insertion (beispielsweise unter Verwendung von Selektionsmarkern) der Expressionskassetten in das Genom erfolgen. Bevorzugt wird das dsRNA-Expressionssystem stabil in das Genom - beispielsweise die chromosomale DNA oder die DNA der Organellen (z.B. der Plastiden, Mitochondrien etc.) - einer 15 Zelle integriert.

Die Einführung einer erfindungsgemäßen transgenen Expressionskassette in einen Organismus oder Zellen, Geweben, Organe, Teile bzw. Samen desselben (bevorzugt in Pflanzen bzw. pflanzliche Zellen, Gewebe, Organe, Teile oder Samen) kann vorteilhaft unter Verwendung von Vektoren realisiert werden, in denen die transgenen Expressionskassetten enthalten sind. Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren oder auch Agrobakterien sein. Die transgenen Expressionskassetten können in den Vektor (bevorzugt ein Plasmidvektor) über eine geeignete Restriktionsschnittstelle insertiert werden. Der entstandene Vektor wird zunächst in E.coli eingeführt. Korrekt transformierte E.coli werden selektioniert, gezüchtet und der rekombinante Vektor mit dem Fachmann geläufigen Methoden gewonnen. Restriktionsanalyse und 20 Sequenzierung können dazu dienen, den Klonierungsschritt zu überprüfen. Bevorzugt sind solche Vektoren, die eine stabile Integration der Expressionskassette in das Wirtsgenom ermöglichen.

Die Herstellung eines transformierten Organismus (bzw. einer transformierten Zelle oder Gewebes) erfordert, dass die entsprechende DNA (z.B. der Expressionsvektor) oder RNA in die entsprechende Wirtszelle eingebracht wird. Für diesen Vorgang, der als Transformation (oder Transduktion bzw. Transfektion) bezeichnet wird, steht eine Vielzahl von Methoden zur Verfügung (Keown et al. (1990) Methods in Enzymology 185:527-537). So kann die DNA oder RNA beispielhaft direkt durch Mikroinjektion oder durch Bombardierung mit DNA-beschichteten Mikropartikeln eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylen-glycol, permeabilisiert werden, so dass die DNA durch Diffusion 35 in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA-enthaltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen erfolgen. Elektroporation ist 40 45

21

- eine weitere geeignete Methode zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisiert werden. Entsprechende Verfahren sind beschrieben (beispielsweise bei Bilang et al. (1991) Gene 100:247-250; Scheid et al. 5 (1991) Mol Gen Genet 228:104-112; Guerche et al. (1987) Plant Science 52:111-116; Neuhause et al. (1987) Theor Appl Genet 75:30-36; Klein et al. (1987) Nature 327:70-73; Howell et al. (1980) Science 208:1265; Horsch et al. (1985) Science 227:1229-1231; DeBlock et al. (1989) Plant Physiology 91:694-701; 10 Methods for Plant Molecular Biology (Weissbach and Weissbach, eds.) Academic Press Inc. (1988); and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.) Academic Press Inc. (1989)).
- 15 Ein weiterer Gegenstand der Erfindung betrifft Zellen, die eines der erfindungsgemäßen dsRNA Moleküle, Expressionssysteme, Expressionskassetten oder Expressionsvektoren enthalten. Die Zelle kann von einem Organismus abgeleitet oder in diesem enthalten sein, meint aber auch einzellige Organismen wie Mikroorganismen. Die 20 Zelle kann prokaryotisch oder eukaryotischer Natur sein. Wobei das erfindungsgemäße Verfahren auf eukaryotische Organismen angewendet wird. Dennoch können prokaryotische Organismen die erfindungsgemäßen Expressionssysteme beispielsweise zum Zwecke der dsRNA-Produktion enthalten. Auch können prokaryotische Organismen, beispielsweise Agrobakterien, vorteilhaft als Vehikel für 25 die Transformation beispielsweise pflanzlicher Organismen eingesetzt werden.
- Bevorzugte Prokaryoten sind vor allem Bakterien wie Bakterien der 30 Gattung Escherichia, Corynebacterium, Bacillus, Clostridium, Proionibacterium, Butyrivibrio, Eubacterium, Lactobacillus, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Phaeodactylum, Colpidium, Mortierella, Entomophthora, Mucor, Cryptecodium oder Cyanobakterien zum Beispiel der Gattung Synechocystis. Be- 35 vorzugt sind vor allem Mikroorganismen, welche zur Infektion von Pflanzen und damit zur Übertragung der erfindungsgemäßen Konstrukte befähigt sind. Bevorzugte Mikroorganismus sind solche aus der Gattung Agrobacterium und insbesondere der Art Agrobacterium tumefaciens.
- 40 Eukaryotische Zellen und Organismen umfasst pflanzliche und tierische, nicht-menschliche Organismen und/oder Zellen sowie eukaryotische Mikroorganismen wie beispielsweise Hefen, Algen oder Pilze. Eine entsprechender transgener Organismus kann beispiels- 45 weise durch Einführung der entsprechenden Expressionssysteme in

eine Zygote, Stammzelle, Protoplast oder eine andere geeignete von dem Organismus abgeleitete Zelle hergestellt werden.

- "Tierische Organismus" meint nicht-menschliche Vertebraten oder
- 5 Invertebraten. Bevorzugte Vertebraten umfassen beispielsweise Fischarten, nicht-menschliche Säugetiere wie Rind, Pferd, Schaf, Ziege, Maus, Ratte oder Schwein, sowie Vögel wie Huhn oder Gans. Bevorzugte tierische Zellen umfassen CHO, COS, HEK293 Zellen. Invertebraten umfassen Nematoden oder andere Würmer sowie Insekten.
- 10 Invertebraten umfassen Insektenzellen wie Drosophila S2 und Spodoptera Sf9 oder Sf21 Zellen.

Bevorzugt sind ferner Nematoden, die in der Lage sind Tiere oder Menschen zu befallen, wie solche der Gattungen Ancylostoma, Ascaris, 15 ridia, Ascaris, Bunostomum, Caenorhabditis, Capillaria, Chabertia, Cooperia, Dictyocaulus, Haemonchus, Heterakis, Nematodirus, Oesophagostomum, Ostertagia, Oxyuris, Parascaris, Strongylus, Toxascaris, Trichuris, Trichostrongylus, Tfchchonema; Toxocara oder Uncinaria. Ferner bevorzugt sind solche, die in der Lage sind 20 pflanzliche Organismen zu befallen wie beispielsweise Bursaphallenches, Criconemella, Ditylenchus, Globodera, Heliocotylenchus, Heterodera, Longidorus, Meloidogyne, Nacobbus, Paratylenchus, Pratylenchus, Radopholus, Rotelychnus, Tylenchus oder Xiphinema. Bevorzugte Insekten umfassen solche der Gattungen 25 Coeloptera, Diptera, Lepidoptera und Homoptera.

Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria oder weitere in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze. Besonders bevorzugt ist der filamentöse Hemiascomycet Ashbya gossypii.

Bevorzugte Hefen sind Candida, Saccharomyces, Hansenula oder Pichia, besonders bevorzugt sind Saccharomyces cerevisiae oder Pichia pastoris (ATCC Accession No. 201178).

Als transgene Organismen bevorzugt sind vor allem pflanzliche Organismen. "Pflanzlicher Organismus" umfasst jeden Organismus, der zur Photosynthese befähigt ist, sowie die von diesem abgeleitete 40 Zellen, Gewebe, Teile oder Vermehrungsgut (wie Samen oder Früchte). Eingeschlossen sind im Rahmen der Erfindung alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches. Einjährige, mehrjährige, monocotyledone und dicotyledone Pflanzen sowie Gymnospermen sind bevorzugt. Eingeschlossen sind 45 reife Pflanze, Saatgut, Sprosse und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut (zum Beispiel Knollen, Samen oder Früchte) und Kulturen, zum Beispiel Zell- oder Kalluskulturen.

23

Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungsstadium.

- 5 "Pflanze" im Rahmen der Erfindung meint alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches. Eingeschlossen unter dem Begriff sind die reifen Pflanzen, Saatgut, Sprossen und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut, Pflanzenorgane, Gewebe, Protoplasten, Kallus und andere
- 10 Kulturen, zum Beispiel Zellkulturen, sowie alle anderen Arten von Gruppierungen von Pflanzenzellen zu funktionellen oder strukturellen Einheiten. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungsstadium.
- 15 "Pflanze" umfasst alle einjährige und mehrjährige, monokotyledonen und dikotyledonen Pflanzen und schließt beispielhaft jedoch nicht einschränkend solche der Gattungen Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solarium, Petunia, Digitalis, Majorana, Ciahorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browalia, Glycine, Pisum, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Secale, Triticum, Sorghum, Picea und Populus ein.

Bevorzugt sind Pflanzen nachfolgender Pflanzenfamilien: Amaranthaceae, Asteraceae, Brassicaceae, Carophyllaceae, Chenopodiaceae, 30 Compositae, Cruciferae, Cucurbitaceae, Labiate, Leguminosae, Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceae, Rubiaceae, Saxifragaceae, Scrophulariaceae, Solanacea, Sterculiaceae, Tetragoniacea, Theaceae, Umbelliferae.

35 Bevorzugte monokotyle Pflanzen sind insbesondere ausgewählt aus den monokotylen Kulturpflanzen, wie zum Beispiel der Familie der Gramineae wie Alfalfa, Reis, Mais, Weizen oder andere Getreidearten wie Gerste, Hirse, Roggen, Triticale oder Hafer sowie dem Zuckerrohr sowie alle Arten von Gräsern.

40

Die Erfindung wird ganz besonders bevorzugt aus dikotyledone pflanzliche Organismen angewendet. Bevorzugte dikotyle Pflanzen sind insbesondere ausgewählt aus den dikotylen Kulturpflanzen, wie zum Beispiel

45

- Asteraceae wie Sonnenblume, Tagetes oder Calendula und andere mehr,
 - Compositae, besonders die Gattung Lactuca, ganz besonders die Art sativa (Salat) und andere mehr,
 - Cruciferae, besonders die Gattung Brassica, ganz besonders die Arten napus (Raps), campestris (Rübe), oleracea cv Tastie (Kohl), oleracea cv Snowball Y (Blumenkohl) und oleracea cv Emperor (Broccoli) und weitere Kohlarten; und der Gattung Arabidopsis, ganz besonders die Art thaliana sowie Kresse oder Canova und andere mehr,
 - Cucurbitaceae wie Melone, Kürbis oder Zucchini und andere mehr,
 - Leguminosae besonders die Gattung Glycine, ganz besonders die Art max (Sojabohne) Soja sowie Alfalfa, Erbse, Bohnengewächsen oder Erdnuss und andere mehr
- 20 - Rubiaceae, bevorzugt der Unterklasse Lamiidae wie beispielsweise Coffea arabica oder Coffea liberica (Kaffestrauch) und andere mehr,
- 25 - Solanaceae besonders die Gattung Lycopersicon, ganz besonders die Art esculentum (Tomate) und die Gattung Solanum, ganz besonders die Art tuberosum (Kartoffel) und melongena (Aubergine) sowie Tabak oder Paprika und andere mehr,
- 30 - Sterculiaceae, bevorzugt der Unterklasse Dilleniidae wie beispielsweise Theobroma cacao (Kakaostrauch) und andere mehr,
- 35 - Theaceae, bevorzugt der Unterklasse Dilleniidae wie beispielsweise Camellia sinensis oder Thea sinensis (Teestrauch) und andere mehr,
- 40 - Umbelliferae, besonders die Gattung Daucus (ganz besonders die Art carota (Karotte)) und Apium (ganz besonders die Art graveolens dulce (Selarie)) und andere mehr; und die Gattung Capsicum, ganz besonders die Art annum (Pfeffer) und andere mehr, sowie Lein, Soya, Baumwolle, Hanf, Flachs, Gurke, Spinat, Möhre, Zuckerrübe und den verschiedenen Baum-, Nuss- und Weinarten, insbesondere Banane und Kiwi.
- 45 Umfasst sind ferner Schmuckpflanzen, Nutz- oder Zierbäume, Blumen, Schnittblumen, Sträucher oder Rasen. Beispielhaft aber nicht einschränkend seien zu nennen Angiospermen, Bryophyten wie zum

25

Beispiel Hepaticae (Leberblümchen) und Musci (Moose); Pteridophyten wie Farne, Schachtelhalm und Lycopoden; Gymnospermen wie Koniferen, Cycaden, Ginkgo und Gnetalen, die Familien der Rosaceae wie Rose, Ericaceae wie Rhododendrons und Azaleen, Euphorbiaceae wie Weihnachtssterne und Kroton, Caryophyllaceae wie Nelken, Solanaceae wie Petunien, Gesneriaceae wie das Usambaraveilchen, Balsaminaceae wie das Springkraut, Orchidaceae wie Orchideen, Iridaceae wie Gladiolen, Iris, Freesie und Krokus, Compositae wie Ringelblume, Geraniaceae wie Geranien, Liliaceae wie der Drachenbaum, Moraceae wie Ficus, Araceae wie Philodendron und andere mehr.

Pflanzliche Organismen im Sinne der Erfindung sind weiterhin weitere photosynthetisch aktive befähigte Organismen, wie zum Beispiel Algen, Cyanobakterien sowie Moose. Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella. Insbesondere bevorzugt ist Synechocystis.

20 Am meisten bevorzugt sind

- a) Pflanzen, die zur Ölproduktion geeignet sind, wie beispielsweise Raps, Sonnenblume, Sesam, Färberdistel (*Carthamus tinctorius*), Ölbaum, Soja, Mais, Erdnuß, Rizinus, Ölpalme, Weizen, Kakaostrauch oder verschiedene Nussarten wie beispielsweise Walnuss, Kokosnuß oder Mandel. Unter diesen wieder besonders bevorzugt sind dikotyledonen Pflanzen, insbesondere Raps, Soja und Sonnenblume.
- 25 b) Pflanzen, die der Stärkeproduktion dienen, wie beispielsweise Mais, Weizen oder Kartoffel.
- c) Pflanzen, die als Nahrungs- und/oder Futtermittel und/oder Nutzpflanze genutzt werden und bei denen eine Resistenz gg. Pathogene vorteilhaft wäre, wie beispielsweise Gerste, Roggen, Reis, Kartoffel, Baumwolle, Flachs, Lein.
- 35 d) Pflanzen, die zur Produktion von Feinchemikalien wie beispielsweise Vitaminen und/oder Carotinoiden dienen können, wie beispielsweise Raps.

Die in den Verfahren verwendeten Organismen werden je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente

26

wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0°C und 100°C, bevorzugt zwischen 10°C bis 60°C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden,

5 das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nach gefüttert werden.

10

Nachfolgende Anwendung des erfindungsgemäßen Verfahrens seien beispielhaft jedoch nicht einschränkend zu nennen:

I. Pflanzenbiotechnologie

15

Bevorzugt wird das erfindungsgemäße Verfahren im Rahmen der Pflanzenbiotechnologie zur Erzeugung von Pflanzen mit vorteilhaften Eigenschaften eingesetzt. So kann Eignung der Pflanzen oder deren Samen als Nahrungs- oder Futtermittel verbessert werden,

20 beispielsweise über eine Veränderung der Zusammensetzungen und/oder des Gehalt an Metaboliten, insbesondere Proteinen, Ölen, Vitaminen und/oder Stärke. Auch können Wachstumsrate, Ertrag oder die Resistenz gegen biotische oder abiotische Stressfaktoren erhöht werden. Nachfolgende Anwendungen im Bereich der Pflanzenbiotechnologie sind insbesondere vorteilhaft. Die angegebenen möglichen Zielgene sind beispielhaft jedoch nicht einschränkend zu verstehen:

1. Verbesserter Schutz gegen abiotische Stressfaktoren (Hitze, 30 Kälte, Trockenheit, erhöhte Feuchtigkeit, Umweltgifte, UV-Strahlung). Bevorzugt werden Gene in ihrer Expression vermindert, die am Stressreaktionen beteiligt sind.

2. Modifikation der Zusammensetzung und/oder des Gehaltes an 35 Fettsäuren, Lipiden oder Ölen

Eine Veränderung des Fettsäuregehalten oder der Fettsäurezusammensetzung, vorzugsweise in einer Ölfrucht wie Raps oder Sonnenblume, kann beispielsweise erreicht werden durch Verminderung der Genexpression von Genen der Fettsäurebiosynthese vorzugsweise ausgewählt aus der Gruppe bestehend aus Genen kodierend für Acetyltransacylasen, Acyltransportproteinen ("acyl carrier protein"), Desaturasen wie Stearyldesaturasen oder mikrosomale Δ12-Desaturasen insbesondere Fad2-1 Gene, 40 Malonyltransacylase, β-Ketoacyl-ACP-synthetasen, 3-Keto-ACP-reduktasen, Enoyl-ACP-hydrasen, Thioesterasen wie Acyl-ACP-thioesterases, Enoyl-ACP-reduktasen. Verschiedene weitere vor-

27

teilhafte Ansätze zur Modifizierung der Lipidzusammensetzung sind beschrieben (Shure M et al. (1983) Cell 35:225-233; Preiss et al. (1987) Tailoring Genes for Crop Improvement (Bruening et al., eds.), Plenum Press, S.133-152; Gupta et al. (1988) Plant Mol Biol. 10:215-224; Olive et al. (1989) Plant Mol Biol 12:525-538; Bhattacharyya et al. (1990) Cell 60:155-122; Dunwell JM (2000) J Exp Botany 51Spec No:487-96; Brar DS et al. (1996) Biotech Genet Eng Rev 13:167-79; Kishore GM und Somerville CR (1993) Curr Opin Biotech 4(2):152-8). Bevorzugt sind insbesondere Fad2 Gene (z.B. beschrieben durch Genbank Acc.-Nr.: AF124360 (*Brassica carinata*), AF042841 (*Brassica rapa*), L26296 (*Arabidopsis thaliana*), A65102 (*Corylus avellana*)). Weitere vorteilhafte Gene und Verfahren zur Modifikation des Lipidgehaltes sind beispielsweise beschrieben in US 5,530,192 und WO 94/18337. Ein erhöhter Lipidgehalt kann auch erreicht werden durch Verminderung des Stärkegehalts beispielsweise infolge verminderter Expression von Enzymen des Kohlenhydratstoffwechsels (z.B. ADP-Glucosepyrophosphorylasen).

20

3. Modifikation der Kohlenhydratzusammensetzung

Eine Modifikation der Kohlehydratzusammensetzung kann beispielsweise erreicht werden durch Verminderung der Genexpression von Genen des Kohlenhydratstoffwechsels oder der Kohlenhydratbiosynthese, beispielsweise der Biosynthese von Amylose, Pektinen, Cellulose oder Zellwandkohlenhydraten. Dadurch kann eine Vielzahl zellulärer Prozesse (Reifung, Haltestigkeit, Stärkezusammensetzung oder -gehalt etc.) in vorteilhafter Weise beeinflusst werden. Als Zielgene seien beispielhaft jedoch nicht einschränkend zu nennen Phosphorylasen, Stärkesynthetasen, Q-Enzyme, Sucrose-6-phosphatsynthetasen, Sucrose-6-phosphatphosphatasen, ADP-Glucosepyrophosphorylasen, Branching-Enzyme, Debranching-Enzyme sowie diverse Amylasen. Die entsprechenden Gene sind beschrieben (Dunwell JM (2000) J Exp Botany 51Spec No:487-96; Brar DS et al. (1996) Biotech Genet Eng Rev 13:167-79; Kishore GM und Somerville CR (1993) Curr Opin Biotech 4(2):152-8). Vorteilhafte Gene zur Beeinflussung des Kohlenhydratstoffwechsels - insbesondere der Stärkebiosynthese - sind beschrieben in WO 92/11375, WO 92/11376, US 5, 365,016 und WO 95/07355.

4. Veränderung der Farbe oder Pigmentierung

45 Veränderung der Farbe oder Pigmentierung vorzugsweise von Zierpflanzen kann beispielsweise erreicht werden durch Verminderung der Genexpression von Genen der Flavonoid-Biosynt-

hese wie beispielsweise Chalconsynthasen, Chalconisomerasen, Phenylalaninammonialyasen, Dehydrokaempferol (flavone) hydroxylasen wie Flavanon-3-hydroxylasen oder Flavanon-2-hydroxylasen, Dihydroflavonolreduktasen, Dihydroflavanol-2-hydroxylasen, Flavonoid-3'-hydroxylasen, Flavonoid-5'-hydroxylasen, Flavonoidglycosyltransferasen (z.B. Glucosyltransferasen wie UDPG:Flavonoid-3-O-glucosyltransferasen, UDPG:Flavonol-7-O-glucosyltransferasen oder Rhamnosyltransferasen), Flavonoidmethyltransferasen (wie z.B. SAM:Anthocyanidin-3-(p-coumaroyl)-rutinosid-5-glucosid-3',5'-O-methyltransferasen) und Flavonoidacyltransferasen (Hahlbrock (1981) Biochemistry of Plants, Vol.7, Conn (Ed.); Weiring and de Vlaeminig (1984) "Petunia", KC Sink (Ed.), Springer-Verlag, New York). Geeignet sind insbesondere die in EP-A1 522 880 beschriebenen Sequenzen.

5. Verminderung des Gehaltes von Speicherproteinen

Die Verminderung der Genexpression von Genen kodierend für Speicherproteine (infolge SP) hat zahlreiche Vorteile, wie beispielsweise Verminderung des allergenen Potentials oder Veränderung in der Zusammensetzung oder Menge anderer Metabolite. Speicherproteine sind u.a. beschrieben in EP-A 0 591 530, WO 87/47731, WO 98/26064, EP-A 0 620 281; Kohno-Murase J et al. (1994) Plant Mol Biol 26(4): 1115-1124.

SP dienen zur Speicherung von Kohlenstoff, Stickstoff und Schwefel, die für das schnelle heterotrophe Wachstum bei Keimung von Samen oder Pollen benötigt werden. Sie haben meist keine enzymatische Aktivität. SP werden dabei nur im Embryo während der Samenentwicklung synthetisiert und akkumulieren dabei zum einen in Proteinspeichervakuolen (PSV) von unterschiedlich differentiierten Zellen im Embryo bzw. Endosperm.

"Speicherprotein" meint allgemein ein Protein, das mindestens eine der nachfolgenden wesentlichen Eigenschaften aufweist:

- i) Speicherproteine werden im wesentlichen nur im Embryo während der Samenentwicklung exprimiert. "Im wesentlichen" bedeutet dabei, dass in dem besagten Stadium mindestens 50%, bevorzugt mindestens 70%, ganz besonders bevorzugt mindestens 90%, am meisten bevorzugt mindestens 95% der Gesamtexpression über die Lebensdauer einer Pflanze hinweg stattfindet.

ii) Speicherproteine werden während der Keimung des Samen wieder abgebaut. Dabei beträgt der Abbau während der Keimung mindestens 20%, bevorzugt mindestens 50%, ganz besonders bevorzugt mindestens 80%.

5

iii) Speicherproteine machen einen wesentlichen Anteil am Gesamtproteinangebot des nicht-keimenden Samens aus. Bevorzugt macht das Speicherprotein in dem nicht-keimenden Samen der Wildtyp-Pflanze mehr als 5 Gew.% des Gesamtproteins aus, besonders bevorzugt mindestens 10 Gew.%, ganz besonders bevorzugt mindestens 20 Gew.%, am meisten bevorzugt mindestens 30 Gew.-%.

10

Bevorzugt weisen Speicherproteine 2 oder alle der oben genannten wesentlichen Eigenschaften i), ii) oder iii) auf.

15

Speicherproteine können in Untergruppen entsprechend weiterer charakteristischer Eigenschaften, wie beispielsweise ihrem Sedimentationskoeffizienten oder der Löslichkeit in verschiedenen Lösungen (Wasser, Salzlösung, Alkohol) aufgeteilt werden. Die Bestimmung des Sedimentationskoeffizienten kann in der dem Fachmann vertrauten Weise mittels Ultrazentrifugation durchgeführt werden (z.B. beschrieben bei Correia JJ (2000) Methods in Enzymology 321:81-100).

20

Insgesamt können vier grosse Genfamilien für Speicherproteine aufgrund ihrer Sequenzen zugeordnet werden: 2S-Albumine (Napin-ähnlich), 7S-Globuline (Phaseolin-ähnlich), 11S/12S-Globuline (Legumin-/Cruciferin-ähnlich) und die Zein-Prolamine.

25

2S Albumine sind weit verbreitet in Samen von Dikotyledonen, einschliesslich wichtiger kommerzieller Pflanzenfamilien wie Fabaceae (z.B. Sojabohne), Brassicaceae (z.B. Raps), Euphorbiaceae (z.B. Rizinus) oder Asteraceae (z.B. Sonnenblume). 2S Albumine sind kompakte globuläre Proteine mit konservierten Cysteinresten, die oft Heterodimere bilden.

30

7S-Globuline liegen in trimerer Form vor und enthalten keine Cysteinreste. Nach ihrer Synthese werden sie wie die 2S-Albumine in kleinere Fragmente gespalten und glykosyliert. Trotz Unterschiede in der Polypeptidgröße sind die verschiedenen 7S-Globuline hoch konserviert und gehen vermutlich wie die 2S-Albumine auf einen gemeinsamen Vorläuferprotein zurück. Die 7S-Globuline sind nur in geringen Mengen in Monokotyledonen vorhanden. In Dikotyledonen ist ihr Anteil immer kleiner verglichen mit den 11S/12S-Globulinen.

35

30

11S/12S-Globuline stellen neben den 2S-Albuminen die Hauptfraktion der Speicherproteine in Dikotyledonen. Die hohe Ähnlichkeit der verschiedenen 11S-Globuline aus verschiedenen Pflanzengattungen lassen wiederum auf einen gemeinsamen Vorläuferprotein in der Evolution schliessen.

Bevorzugt ist das Speicherprotein ausgewählt aus den Klassen der 2S-Albumine (Napin-ähnlich), 7S-Globuline (Phaseolin-ähnlich), 11S/12S-Globuline (Legumin-/Cruciferin-ähnlich) oder Zein-Prolamine.

Besonders bevorzugte 2S-Albumine umfassen

- i) 2S-Albumine aus *Arabidopsis*, ganz besonders bevorzugt die 2S-Albumine mit der SEQ ID NO: 2, 4, 6 oder 8, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 1, 3, 5 oder 7 kodierten Proteine,
- ii) 2S-Albumine aus Arten der Gattung *Brassica*, wie beispielsweise *Brassica napus*, *Brassica nigra*, *Brassica juncea*, *Brassica oleracea* oder *Sinapis alba*, ganz besonders bevorzugt die 2S-Albumine mit der SEQ ID NO: 32, 34, 36, 38, 40, 46 oder 48, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 31, 33, 35, 37, 39, 45 oder 47 kodierten Proteine,
- iii) 2S-Albumine aus *Soja*, ganz besonders bevorzugt die 2S-Albumine mit der SEQ ID NO: 42 oder 44, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 41 oder 43 kodierten Proteine,
- iv) 2S-Albumine aus Sonnenblume (*Helianthus annus*), ganz besonders bevorzugt die 2S-Albumine mit der SEQ ID NO: 50 oder 52, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 49 oder 51 kodierten Proteine,

sowie die entsprechenden Homologen und funktionellen Äquivalente zu i) oder ii) oder iii) oder iv) aus identischen oder anderen Pflanzenarten, insbesondere Raps, Sonnenblume, Lein, Sesam, Färberdistel, Ölbaum, Soja oder verschiedene Nussarten. Funktionelle Äquivalente zeichnen sich bevorzugt neben den oben genannten wesentlichen Eigenschaften durch charakteristische Eigenschaften wie einen 2S-Sedimentationskoeffizienten und/oder durch eine Löslichkeit in Wasser aus.

45

31

- Funktionelle Äquivalente der 2S-Albumine haben in einer weiteren bevorzugten Ausführungsform eine Homologie von mindestens 60%, bevorzugt mindestens 80%, ganz besonders bevorzugt mindestens 90%, am meisten bevorzugt mindestens 95% zu einer der Proteinsequenzen mit der SEQ ID NO: 2, 4, 6, 8, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 oder 52 wobei die Homologie sich bevorzugt über eine Länge von mindestens 30 Aminosäuren, bevorzugt mindestens 50 Aminosäuren besonders bevorzugt über 100 Aminosäuren, am meisten bevorzugt über die gesamte Länge der jeweiligen Proteine erstreckt, und weisen die gleichen wesentlichen Eigenschaften eines Speicherproteins und - bevorzugt- die charakteristischen Eigenschaften eines 2S-Speicherproteins auf.
- Besonders bevorzugte 7S-Globuline umfassen solche aus Arabidopsis oder Soja, ganz besonders bevorzugt die Proteine mit der SEQ ID NO: 94 oder 96, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 93 oder 95 kodierten Proteine. Funktionelle Äquivalente zeichnen sich bevorzugt neben den oben genannten wesentlichen Eigenschaften durch charakteristische Eigenschaften wie einen 7S-Sedimentationskoeffizienten und/oder durch eine Löslichkeit in Salzlösung aus. Als weitere charakteristische Eigenschaft können 7S-Globuline keine Cysteinreste enthalten.
- Funktionelle Äquivalente der 7S-Globuline haben in einer weiteren bevorzugten Ausführungsform eine Homologie von mindestens 60%, bevorzugt mindestens 80%, ganz besonders bevorzugt mindestens 90%, am meisten bevorzugt mindestens 95% zu einer der Proteinsequenzen mit der SEQ ID NO: 94 oder 96 wobei die Homologie sich bevorzugt über eine Länge von mindestens 30 Aminosäuren, bevorzugt mindestens 50 Aminosäuren besonders bevorzugt über 100 Aminosäuren, am meisten bevorzugt über die gesamte Länge der jeweiligen Proteine erstreckt, und weisen die gleichen wesentlichen Eigenschaften eines Speicherproteins und - bevorzugt- die charakteristischen Eigenschaften eines 7S-Speicherproteins auf.
- Besonders bevorzugte 11S/12S-Globuline umfassen bevorzugt 11S-Globuline aus Raps, Soja und Arabidopsis insbesondere
- i) 11S-Globuline aus Raps mit der SEQ ID NO: 10, 12, 14, 16 oder 18, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 9, 11, 13, 15 oder 17 kodierten Proteine,

ii) die 11S-Globuline aus Soja mit der SEQ ID NO: 20, 22, 24, 26 oder 28, am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 19, 21, 23, 25 oder 27 kodierten Proteine,

5

iii) die 11S-Globuline aus *Arabidopsis thaliana* mit der SEQ ID NO: 60, 62, 64, 66, 68 oder 70 am meisten bevorzugt die durch die Nukleinsäuren gemäß SEQ ID NO: 59, 61, 63, 65, 67 oder 69 kodierten Proteine,

10

sowie die entsprechenden Homologen und funktionellen Äquivalente aus anderen Pflanzenarten, insbesondere Raps, Sonnenblume, Lein, Sesam, Färberdistel, Ölbaum, Soja oder verschiedene Nussarten, wie beispielsweise das Sonnenblume 11S Speicherprotein (SEQ ID NO: 30), insbesondere das durch die Nukleinsäuresequenz gemäß SEQ ID NO: 29 kodierte Protein. Funktionelle Äquivalente zeichnen sich bevorzugt neben den oben genannten wesentlichen Eigenschaften durch charakteristische Eigenschaften wie einen 11S- oder 12S-Sedimentationskoeffizienten und/oder durch eine Löslichkeit in Salzlösung (PBS; phosphatgepufferte Salzlösung) und/oder eine schlechte Löslichkeit in Wasser aus.

25

Funktionelle Äquivalente der 11S- oder 12S Albumine haben in einer weiteren bevorzugten Ausführungsform eine Homologie von mindestens 60%, bevorzugt mindestens 80%, ganz besonders bevorzugt mindestens 90%, am meisten bevorzugt mindestens 95% zu einer der Proteinsequenzen mit der SEQ ID NO: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 60, 62, 64, 66, 68 oder 70 wobei die Homologie sich bevorzugt über eine Länge von mindestens 30 Aminosäuren, bevorzugt mindestens 50 Aminosäuren besonders bevorzugt über 100 Aminosäuren, am meisten bevorzugt über die gesamte Länge der jeweiligen Proteine erstreckt, und weisen die gleichen wesentlichen Eigenschaften eines Speicherproteins und - bevorzugt- die charakteristischen Eigenschaften eines 11S- oder 12S-Speicherproteins auf.

40

Besonders bevorzugte Zein-Prolamine umfassen bevorzugt solche aus monokotyledonen Pflanzen, insbesondere Mais, Rais, Hafer, Gerste oder Weizen. Ganz besonders bevorzugt sind die Mais Zein-Prolamine beschrieben durch SEQ ID NO: 98, 100, 102 oder 104 - insbesondere die durch SEQ ID NO 97, 99, 101 oder 103 kodierten Protein -, das Reis Prolamin gemäß SEQ ID NO: 106 - insbesondere das durch SEQ ID NO 105 kodierte Protein -, das Hafer Prolamin gemäß SEQ ID NO: 108 - insbesondere das durch SEQ ID NO 107 kodierte Proteine-, das Gerste Prolamin gemäß SEQ ID NO: 110 und/oder 111 - insbesondere das durch SEQ ID

45

33

NO 109 kodierte Protein - und das das Weizen Prolamin gemäß SEQ ID NO: 113 - insbesondere das durch SEQ ID NO 112 kodierte Protein. Funktionelle Äquivalente zeichnen sich bevorzugt durch eine Löslichkeit in 70%iger ethanolischer Lösung und eine schlechte Löslichkeit in Wasser oder Salzlösung aus.

5

Funktionelle Äquivalente der Zein-Prolamine haben in einer weiteren bevorzugten Ausführungsform eine Homologie von mindestens 60%, bevorzugt mindestens 80%, ganz besonders bevorzugt mindestens 90%, am meisten bevorzugt mindestens 95% zu einer der Proteinsequenzen mit der SEQ ID NO: 98, 100, 102, 104, 106, 108, 110, 111 oder 113 wobei die Homologie sich bevorzugt über eine Länge von mindestens 30 Aminosäuren, bevorzugt mindestens 50 Aminosäuren besonders bevorzugt über 100 Aminosäuren, am meisten bevorzugt über die gesamte Länge der jeweiligen Proteine erstreckt, und weisen die gleichen wesentlichen Eigenschaften eines Speicherproteins und - bevorzugt- die charakteristischen Eigenschaften eines Zein-Prolamine auf.

10

Funktionelle Äquivalente meint insbesondere natürliche oder künstliche Mutationen der obengenannten Speicherproteine sowie homologe Polypeptide aus anderen Pflanzen, die die gleichen wesentlichen und - bevorzugt - charakteristischen Eigenschaften aufweisen. Bevorzugt sind homologe Polypeptide aus oben beschriebenen bevorzugten Pflanzen. Die zu den im Rahmen dieser Erfindung offenbarten Speicherproteinen homologen Sequenzen aus anderen Pflanzen - beispielsweise solchen deren genomische Sequenz ganz oder teilweise bekannt ist, wie beispielsweise aus *Arabidopsis thaliana*, *Brassica napus*, *Nicotiana tabacum* oder *Solanum tuberosum* - durch Homologievergleiche aus Datenbanken auffinden können z.B. durch Datenbanksuche oder Durchmustern von Gen-Banken - unter Verwendung der beispielhaft aufgeführten Speicherprotein-Sequenzen als Suchsequenz bzw. Sonde - leicht aufgefunden werden.

15

20

25

30

Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Aminosäurereste.

35

40

Ein weiterer Gegenstand der Erfindung umfasst ein zumindest teilweise doppelsträngiges Ribonukleinsäuremolekül, wobei das doppelsträngige Ribonukleinsäuremolekül umfasst

45

i) einen "sense"-RNA-Strang umfassend mindestens zwei Ribonukleotidsequenzabschnitte, wobei jeweils mindestens einer dieser Ribonukleotidsequenzabschnitte im wesentlichen

34

identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes einer Speicherprotein-Nukleinsäuresequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 59, 61, 63, 65, 67, 69, 71, 93, 95, 97, 99, 101, 103, 105, 107, 109 oder 112 oder eines funktionellen Äquivalentes derselben, wobei jedoch nicht alle Ribonukleotidsequenzabschnitte zu dem "sense"-RNA-Transkript eines einzigen einer Speicherprotein-Nukleinsäuresequenz identisch sind, und

ii) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter i) im wesentlichen komplementären ist.

Bevorzugt haben zumindest zwei der Speicherprotein-Nukleinsäuresequenzen, zu deren "sense"-RNA-Transkript die besagten Ribonukleotidsequenzabschnitte im wesentlichen identisch sind, untereinander eine Homologie von unter 90%, bevorzugt unter 80%, ganz besonders bevorzugt unter 60% am meisten bevorzugt unter 50% über die gesamte Länge ihrer kodierenden Nukleotidsequenz.

In einer weiteren bevorzugten Ausführungsform enthält die dsRNA mehrere Sequenzabschnitte, die eine gleichzeitige Suppression mehrerer Speicherproteine, bevorzugt von Speicherproteinen aus verschiedenen Klassen - wie beispielsweise einem 2S-Albumin, 7S-Globuline, 11S/12S-Globulin oder die Zein-Prolamine - bewirken.

Am meisten bevorzugt sind doppelsträngige RNA Moleküle beschrieben durch die Ribonukleinsäuresequenz gemäß SEQ ID NO: 84, 86 oder 88. Diese werden bevorzugt kodiert durch Nukleotidsequenzen entsprechend SEQ ID NO: 83, 85 oder 87.

35 5. Erreichen einer Resistenz gegen pflanzliche Pathogene

Eine Resistenz gegen pflanzliche Pathogene wie Arachniden, Pilze, Insekten, Nematoden, Protozoen, Viren, Bakterien und Krankheiten kann erreicht werden durch Verminderung der Expression von Genen, die für das Wachstum, Überleben, bestimmte Entwicklungsstufen (beispielsweise Verpuppung) oder die Vermehrung einer bestimmten Pathogens essentiell sind. Eine entsprechende Verminderung kann eine vollständige Inhibition vorgenannter Schritte aber auch eine Verzögerung derselben bewirken. Dies können pflanzliche Gene sein, die dem Pathogen beispielsweise das Eindringen ermöglichen, können aber auch pathogen-eigene Gene sein. Bevorzugt ist die dsRNA

gg. Gene des Pathogens gerichtet. Als anti-Pathogenes Agens kann dabei die dsRNA selber, jedoch auch die Expressionssysteme, Expressionskassetten oder transgenen Organismen wirken. Pflanzen können beispielsweise mit geeigneten Formulierungen vorgenannter Agentien behandelt, beispielsweise besprüht oder estäubt werden. Die Pflanzen selber können jedoch in Form eines transgenen Organismus die Agentien beinhalten und diese - beispielsweise in Form eines Fraßgiftes - an die Pathogene weitergeben. Verschiedene essentielle Gene diverser Pathogene sind dem Fachmann bekannt (z.B. für Nematodenresistenz WO 93/10251, WO 94/17194).

Am meisten bevorzugt als Pathogen sind Pilzpathogene wie Phytophthora infestans, Fusarium nivale, Fusarium graminearum, Fusarium culmorum, Fusarium oxysporum, Blumeria graminis, Magnaporthe grisea, Sclerotinia sclerotiorum, Septoria nodorum, Septoria tritici, Alternaria brassicae, Phoma lingam, bakterielle Pathogene wie Corynebacterium sepedonicum, Erwinia carotovora, Erwinia amylovora, Streptomyces scabies, Pseudomonas syringae pv. tabaci, Pseudomonas syringae pv. phaseolicola, Pseudomonas syringae pv. tomato, Xanthomonas campestris pv. malvacearum und Xanthomonas campestris pv. oryzae, und Nematoden wie Globodera rostochiensis, G. pallida, Heterodera schachtii, Heterodera avenae, Ditylenchus dipsaci, Anguina tritici und Meloidogyne hapla.

Eine Virusresistenz kann beispielsweise durch Verminderung der Expression eines viralen Hüllproteins, einer viralen Replikase, einer viralen Protease etc. erreicht werden. Zahlreiche Pflanzenviren und entsprechende Zielgene sind dem Fachmann bekannt.

6. Verhinderung von Halmbruch

35 Eine verminderte Anfälligkeit gegen Halmbruch kann beispielsweise erreicht werden durch Verminderung der Genexpression von Genen des Kohlenhydratstoffwechsels (s.o.). Vorteilhafte Gene sind beschrieben (u.a. WO 97/13865) und umfassen gewebespezifische Polygalacturonasen oder Cellulasen.

40

7. Verzögerung der Fruchtreifung

45 Eine verzögerte Fruchtreifung kann beispielsweise erreicht werden durch Verminderung der Genexpression von Genen ausgewählt aus der Gruppe bestehend aus Polygalacturonasen, Pectinesterasen, β -(1-4)glucanasen (Cellulasen), β -Galactanasen (β -Galactosidasen), oder Gene der Ethylenbiosynthese wie

36

- 1-Aminocyclopropan-1-carboxylatsynthase, Gene der Carotinoid-biosynthese wie z.B. Gene der Prephytoen- oder Phytoenbiosynthese beispielsweise Phytoendesaturasen. Weitere vorteilhafte Gene sind beispielsweise in WO 91/16440, WO 91/05865, WO 5 91/16426, WO 92/17596, WO 93/07275 oder WO 92/04456.
8. Erzielen einer männlichen Sterilität ("male sterility"). Entsprechende Zielgene sind beschrieben u.a. in WO 94/29465, WO 89/10396, WO 92/18625.
- 10 9. Verminderung unerwünschter oder toxischer Pflanzeninhaltsstoffe wie z.B. Glucosinolaten. Entsprechende Zielgene sind beschrieben (u.a. in WO 97/16559).
- 15 10. Verzögerung von Alterserscheinungen. Entsprechende Zielgene sind u.a. Cinnamoyl-CoA:NADPH-Reduktasen oder Cinnamoylalkoholdehydrogenasen. Weitere Zielgene sind beschrieben (u.a. in WO 95/07993).
- 20 11. Modifikation der Lignifikation und/oder des Ligningehaltes vor allem in Baumarten. Entsprechende Zielgene sind beschrieben u.a. in WO 93/05159, WO 93/05160.
- 25 12. Modifikation des Faseranteils in Nahrungsmitteln vorzugsweise in Samen durch Verminderung der Expression der Coffeinsäure-O-methyltransferase oder der Cinnamoylalkoholdehydrogenase.
13. Modifikation der Faserqualität in Baumwolle. Entsprechende Zielgene sind beschrieben u.a. in US 5,597,718.
- 30 14. Verminderung der Stoßanfälligkeit von beispielsweise Kartoffeln durch Verminderung beispielsweise der Polyphenoloxidase (WO 94/03607) etc.
- 35 15. Steigerung der Vitamin E Biosynthese beispielsweise durch Verminderung der Expression von Genen aus dem Homogentisatabbauweg wie z.B. der Homogentisat-1,2-dioxygenase (HGD; EC-Nr.: 1.13.11.5), der Maleylacetoacetatisomerase (MAAI; EC-Nr.: 5.2.1.2.) oder der Fumarylacetoacetathydrolase (FAAH; EC-Nr.: 3.7.1.2).

Ein weiterer Gegenstand der Erfindung umfasst ein zumindest teilweise doppelsträngiges Ribonukleinsäuremolekül, wobei das doppelsträngige Ribonukleinsäuremolekül umfasst

- i) einen "sense"-RNA-Strang umfassend mindestens zwei Ribonukleotidsequenzabschnitte, wobei jeweils mindestens einer dieser Ribonukleotidsequenzabschnitte im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes eines Gens aus dem Homogentisatabbauweg gemäß SEQ ID NO: 115, 116, 118 oder 120 oder eines funktionalen Äquivalentes derselben, wobei jedoch nicht alle Ribonukleotidsequenzabschnitte zu dem "sense"-RNA-Transkript eines einzigen einer Speicherprotein-Nukleinsäuresequenz identisch sind, und
- ii) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter i) im wesentlichen komplementären ist.
- 15 16. Verminderung des Nikotingehaltes beispielsweise in Tabak durch verminderte Expression beispielsweise der N-Methylputrescinoxidase und der Putrescin-N-methyltransferase.
- 20 17. Verminderung des Coffeingehaltes in der Kaffeebohne (*Coffea arabica*) durch durch Verminderung der Genexpression von Genen der Coffeinbiosynthese wie 7-Methylxanthine-3-methyltransferase.
- 25 18. Verminderung des Theophyllin-Gehaltes im Tee (*Camellia sinensis*) durch durch Verminderung der Genexpression von Genen der Theophyllin-Biosynthese wie beispielsweise 1-Methylxanthin-3-methyltransferase.
- 30 19. Erhöhung des Methioningehaltes durch Verminderung der Threoninbiosynthese, beispielsweise durch Verminderung der Expression der Threoninsynthase (Zeh M et al .(2001) Plant Physiol 127 (3):792-802).

35 Weitere Beispiele für vorteilhafte Gene sind zum Beispiel genannt bei Dunwell JM, Transgenic approaches to crop improvement, J Exp Bot. 2000;51 Spec No; Seite 487-96.

40 Jede der oben genannten Anwendungen kann als solche isoliert angewendet werden. Natürlich können auch mehr als eine der oben genannten Ansätze gleichzeitig angewendet werden. Dabei wird bei allen Anwendungen die Expression von mindestens zwei unterschiedlichen Zielgenen, wie oben definiert, vermindert. Diese Zielgene können dabei aus einer einzigen für eine Anwendung bevorzugten Gruppe von Genen stammen oder aber auch unterschiedlichen Anwendungsgruppen zugeordnet sein.

Zur Anwendung der erfindungsgemäßen Verfahren stehen dem Fachmann geläufige Werkzeuge, wie Expressionsvektoren mit für Pflanzen geeigneten Promotoren, sowie Verfahren zur Transformation und Regeneration von Pflanzen zur Verfügung. Pflanzenspezifische

5 Promotoren meint grundsätzlich jeden Promotor, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen oder Pflanzenteilen, -zellen, -geweben, -kulturen steuern kann. Dabei kann die Expression beispielsweise konstitutiv, induzierbar oder entwicklungsabhängig sein. Bevorzugt sind:

10

a) Konstitutive Promotoren

"Konstitutive" Promotoren meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten (Benfey et al. (1989) EMBO J 8:2195-2202). Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221- 228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202). Ein weiterer geeigneter konstitutiver Promotor ist der "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), den Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696), den Smas Promotor, den Cinnamylalcoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.

40 b) Gewebespezifische Promotoren

Bevorzugt sind ferner Promotoren mit Spezifitäten für die Antheren, Ovarien, Blüten, Blätter, Stengel, Wurzeln und Samen.

45 Samenspezifische Promotoren wie zum Beispiel der Promotor des Phaseolins (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1(9):839-53), des 2S Albumingens (Joseffson LG et al. (1987) J

- Biol Chem 262:12196-12201), des Legumins (Shirsat A et al. (1989) Mol Gen Genet 215(2): 326-331), des USP (unknown seed protein; Bäumlein H et al. (1991) Mol Gen Genet 225(3):459-67), des Napin Gens (US 5,608,152; Stalberg K et al. (1996) L Planta 199:515-519), des Saccharosebindeproteins (WO 00/26388) oder der Legumin B4-Promotor (LeB4; Bäumlein H et al. (1991) Mol Gen Genet 225: 121-128; Baeumlein et al. (1992) Plant Journal 2(2):233-9; Fiedler U et al. (1995) Biotechnology (NY) 13(10):1090f), der Oleosin-Promoter aus Arabidopsis (WO 98/45461), der Bce4-Promoter aus Brassica (WO 91/13980). Weitere geeignete samenspezifische Promotoren sind die der Gene kodierend für das "High Molecular Weight Glutenin" (HMWG), Gliadin, Verzweigungsenzym, ADP Glucose Pyrophosphatase (AG-Pase) oder die Stärkesynthase. Bevorzugt sind ferner Promotoren, die eine samenspezifische Expression in Monokotyledonen wie Mais, Gerste, Weizen, Roggen, Reis etc. erlauben. Vorteilhaft eingesetzt werden können der Promoter des lpt2 oder lpt1-Gen (WO 95/15389, WO 95/23230) oder die Promotoren beschrieben in WO 99/16890 (Promotoren des Hordein-Gens, des Glutelin-Gens, des Oryzin-Gens, des Prolamin-Gens, des Gliadin-Gens, des Glutelin-Gens, des Zein-Gens, des Kasirin-Gens oder des Secalin-Gens). Weitere samenspezifische Promotoren sind beschrieben in WO89/03887.
- Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren wie beispielsweise der Patatin Promotor Klasse I (B33), der Promotor des Cathepsin D Inhibitors aus Kartoffel.
- Blattspezifische Promotoren wie Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), der SSU Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphatcarboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451).
- Blütenspezifische Promotoren wie beispielsweise der Phytoen Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593).
- Antheren-spezifische Promotoren wie den 5126-Promotor (US 5,689,049, US 5,689,051), den glob-1 Promotor und den γ -Zein Promotor.
- c) Chemisch induzierbare Promotoren
- Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die

40

Expression des exogenen Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure-induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.

d) Stress- oder Pathogen-induzierbare Promotoren

Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRP1-Gens (Ward et al. (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814), der licht-induzierbare PPDK Promotor oder der verwundungsinduzierte pinII-Promoter (EP375091).

Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Pathogenbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR-Proteinen, β -1,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Uknas, et al. (1992) The Plant Cell 4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al. (1986) Proc Natl Acad Sci USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sci USA 91:2507-2511; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968 (1989)).

Umfasst sind auch verwundungs-induzierbare Promotoren wie der des pinII Gens (Ryan (1990) Ann Rev Phytopath 28:425-449; Duan et al. (1996) Nat Biotech 14:494-498), des wun1 und wun2-Gens (US 5,428,148), des win1- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215:200-208), des Systemin (McGurl et al. (1992) Science 225:1570-1573), des WIP1-Gens (Rohmeier et al. (1993) Plant Mol Biol 22:783-792; Eckelkamp et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al. (1994) The Plant J 6(2):141-150) und dergleichen.

41

e) Entwicklungsabhängige Promotoren

Weitere geeignete Promotoren sind beispielsweise fruchtreifungsspezifische Promotoren, wie beispielsweise der fruchtreifungsspezifische Promotor aus Tomate (WO 94/21794, EP 409 625). Entwicklungsabhängige Promotoren schließt zum Teil die Gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß entwicklungsabhängig erfolgt.

Besonders bevorzugt sind konstitutive sowie samenspezifische Promotoren.

Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressionsteuernden Eigenschaften modifizieren können. So kann durch genetische Kontrollsequenzen zum Beispiel die gewebespezifische Expression zusätzlich abhängig von bestimmten Stressfaktoren erfolgen. Entsprechende Elemente sind zum Beispiel für Wasserstress, Abscisinsäure (Lam E und Chua NH, J Biol Chem 1991; 266(26): 17131 -17135) und Hitzestress (Schoffl F et al., Molecular & General Genetics 217(2-3):246-53, 1989) beschrieben.

Genetische Kontrollsequenzen umfassen ferner auch die 5'-untranslatierte Regionen, Introns oder nichtkodierende 3'-Region von Genen wie beispielsweise das Actin-1 Intron, oder die Adh1-S Introns 1, 2 und 6 (allgemein: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)). Es ist gezeigt worden, dass diese eine signifikante Funktionen bei der Regulation der Genexpression spielen können. So wurde gezeigt, dass 5'-untranslatierte Sequenzen die transiente Expression heterologer Gene verstärken können. Beispielhaft für Translationsverstärker sei die 5'-Leadersequenz aus dem Tabak-Mosaik-Virus zu nennen (Gallie et al. (1987) Nucl Acids Res 15:8693-8711) und dergleichen. Sie können ferner die Gewebsspezifität fördern (Rouster J et al. (1998) Plant. J 15:435-440).

35

Als Kontrollsequenzen geeignete Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA Polyadenylierungssignale aus *Agrobacterium tumefaciens*, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACHS entsprechen (Gielen et al. (1984) EMBO J 3:835 ff) oder funktionelle Äquivalente davon. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin-Synthase)-Terminator und der NOS (Nopaline-Synthase)-Terminator.

45 Eine Expressionskassetten und die von ihr abgeleiteten Vektoren können weitere Funktionselemente enthalten. Der Begriff Funktionselement ist breit zu verstehen und meint all solche Elemente,

42

die einen Einfluss auf Herstellung, Vermehrung oder Funktion der erfindungsgemässen Expressionskassetten, Vektoren oder transgenen Organismen haben. Beispielhaft aber nicht einschränkend seien zu nennen:

5

- a) Selektionsmarker, die eine Resistenz gegen einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456), Antibiotika oder Biozide, bevorzugt Herbizide, wie zum Beispiel Kanamycin, G 418, Bleomycin, Hygromycin, oder Phosphinothricinacetyltransferasen (PAT) kodieren und Glutaminsynthaseinhibitoren inaktivieren (bar und pat Gen), 5-Enolpyruvylshikimat-3-phosphatsynthasegene (EPSP Synthasegene), die eine Resistenz gegen Glyphosat® (N-(phosphonomethyl)glycin) verleihen, das für das Glyphosat® degradierende Enzyme kodierende gox Gen (Glyphosatoxidoreduktase), das deh Gen (kodierend für eine Dehalogenase, die Dalapon inaktiviert); Sulfonyleurea- und Imidazolinon inaktivierende Acetolactatsynthasen sowie bxn Gene, die für Bromoxynil degradierende Nitrilaseenzyme kodieren, das aasa-Gen, das eine Resistenz gegen das Antibiotikum Apectinomycin verleiht, das Streptomycinphosphotransferase (SPT) Gen, das eine Resistenz gegen Streptomycin gewährt, das Neomycinphosphotransferas (NPTII) Gen, das eine Resistenz gegen Kanamycin oder Geneticidin verleiht, das Hygromycinphosphotransferase (HPT) Gen, das eine Resistenz gegen Hygromycin vermittelt, das Acetolactatsynthas Gen (ALS), das eine Resistenz gegen Sulfonylharnstoff-Herbizide verleiht (z.B. mutierte ALS-Varianten mit z.B. der S4 und/oder Hra Mutation).
- b) Reportergene, die für leicht quantifizierbare Proteine kodieren und über Eigenfarbe oder Enzymaktivität eine Bewertung der Transformationseffizienz oder des Expressionsortes oder -zeitpunktes gewährleisten. Ganz besonders bevorzugt sind dabei Reporter-Proteine (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(1):29-44) wie das "green fluorescence protein" (GFP) (Sheen et al. (1995) Plant Journal 8(5):777-784), die Chloramphenicoltransferase, eine Luziferase (Ow et al. (1986) Science 234:856-859), das Aequorin-Gen (Prasher et al. (1985) Biochem Biophys Res Commun 126(3):1259-1268); die β-Galactosidase, ganz besonders bevorzugt ist die β-Glucuronidase (Jefferson et al. (1987) EMBO J 6:3901-3907).

45

43

- c) Replikationsursprünge, die eine Vermehrung der erfindungsge-mässen Expressionskassetten oder Vektoren in zum Beispiel E.coli gewährleisten. Beispielhaft seien genannt ORI (origin of DNA replication), der pBR322 ori oder der P15A ori (Sam-brook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
- 5 d) Elemente, die für eine Agrobakterium vermittelte Pflanzen-
10 transformation erforderlich sind, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.

Zur Selektion erfolgreich homolog rekombinierter oder auch trans-formierter Zellen ist es in der Regel erforderlich, einen selek-tionierbaren Marker zusätzlich einzuführen, der den erfolgreich rekombinierten Zellen eine Resistenz gegen ein Biozid (zum Bei-spiel ein Herbizid), einen Metabolismusinhibitor wie 2-Desoxyglu-cose-6-phosphat (WO 98/45456) oder ein Antibiotikum verleiht. Der Selektionsmarker erlaubt die Selektion der transformierten Zellen
20 von untransformierten (McCormick et al. (1986) Plant Cell Reports 5:81-84).

Verschiedene Methoden und Vektoren zum Einschleusen von Genen in das Genom von Pflanzen sowie zur Regeneration von Pflanzen aus
25 Pflanzengeweben oder Pflanzenzellen sind bekannt (Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapi-tel 6/7, S. 71-119 (1993); White FF (1993) Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Enginee-ring and Utilization, Hrsg.: Kung und Wu R, Academic Press,
30 15-38; Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsg.: Kung und R. Wu, Academic Press, S.128-143; Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225; Halford NG, Shewry PR (2000) Br Med Bull 56(1):62-73). Dazu zählen beispielhaft die
35 oben erwähnten. Bei Pflanzen werden dabei die beschriebenen Me-thoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind vor allem die Protoplastentransformation durch Polyethylenglykol-induzierte
40 DNA-Aufnahme, die Liposomen vermittelte Transformation (wie z.B. in US 4,536,475 beschrieben), biolistische Verfahren mit der Gen-kanone ("particle bombardment" Methode; Fromm ME et al. (1990) Bio/Technology. 8(9):833-9; Gordon-Kamm et al. (1990) The Plant Cell 2:603), die Elektroporation, die Inkubation trockener Em-
45 bryonen in DNA-haltiger Lösung und die Mikroinjektion. Im Falle dieser "direkten" Transformationsmethoden sind keine besonderen Anforderungen an das verwendete Plasmid gestellt. Einfache Plas-

mide wie die der pUC-Reihe, pBR322, M13mp Reihe, pACYC184 etc. können verwendet werden. Sollen vollständige Pflanzen aus den transformierten Zellen regeneriert werden, so ist er erforderlich, dass sich auf dem Plasmid ein zusätzliches selektionierbares 5 Markergen befindet.

Neben diesen "direkten" Transformationstechniken kann eine Transformation auch durch bakterielle Infektion mittels Agrobacterium (z.B. EP 0 116 718), virale Infektion mittels viraler Vektoren 10 (EP 0 067 553; US 4,407,956; WO 95/34668; WO 93/03161) oder mittels Pollen (EP 0 270 356; WO 85/01856; US 4,684,611) durchgeführt werden.

Die für die Agrombacterium-Transformation meist verwendeten 15 Stämme Agrobacterium tumefaciens oder Agrobacterium rhizogenes eine auch durch bakterielle Infektion mittels enthalten ein Plasmid (Ti bzw. Ri Plasmid), das auf die Pflanze nach Agrobacterium-Infektion übertragen wird. Ein Teil dieses Plasmids, genannt T-DNA (transferred DNA), wird in das Genom der Pflanzenzelle integriert. Alternativ können durch Agrobakterium auch binäre Vektoren (Mini-Ti-Plasmide) auf Pflanzen übertragen und in deren Genom 20 integriert werden. Die Agrobacterium-vermittelte Transformation ist am besten für dicotyledone, diploide Pflanzenzellen geeignet, wohingegen die direkten Transformationstechniken sich für jeden 25 Zelltyp eignen. Verfahren zur Agrobakterium vermittelten Transformation sind beispielsweise beschrieben bei Horsch RB et al. (1985) Science 225:1229f. Werden Agrobacterien verwendet, so ist die Expressionskassette in spezielle Plasmide zu integrieren, entweder in einen Zwischenvektor (englisch: shuttle or intermediate vector) oder einen binären Vektor. Wird ein Ti oder Ri 30 Plasmid zur Transformation verwendet werden soll, ist zumindest die rechte Begrenzung, meistens jedoch die rechte und die linke Begrenzung der Ti oder Ri Plasmid T-DNA als flankierende Region mit der einzuführenden Expressionskassette verbunden.

35 Für die Agrobacterium Tranformation werden bevorzugt binäre Vektoren verwendet. Binäre Vektoren können sowohl in E.coli als auch in Agrobacterium replizieren. Sie enthalten in der Regel ein Selektionsmarkergen und einen Linker oder Polylinker flankiert von 40 der rechten und linken T-DNA Begrenzungssequenz. Sie können direkt in Agrobacterium transformiert werden (Holsters et al. (1978) Mol Gen Genet 163:181-187). Das Selektionsmarkergen erlaubt eine Selektion transformierter Agrobakteria und ist zum Beispiel das nptII Gen, das eine Resistenz gegen Kanamycin verleiht. Das in diesem Fall als Wirtsorganismus fungierende Agrobacterium sollte bereits ein Plasmid mit der vir-Region enthalten. Diese ist für die Übertragung der T-DNA auf die pflanzliche 45

45

Zelle erforderlich. Ein so transformiertes Agrobacterium kann zur Transformation pflanzlicher Zellen verwendet werden. Die Verwendung von T-DNA zur Transformation pflanzlicher Zellen ist intensiv untersucht und beschrieben (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Alblas-
5 serdam, Chapter V; An et al. (1985) EMBO J 4:277-287). Verschiedene binäre Vektoren sind bekannt und teilweise kommerziell erhältlich wie zum Beispiel pBI101.2 oder pBIN19 (Clontech Laboratories, Inc. USA; Bevan et al. (1984) Nucl Acids Res 12:8711),
10 pBinAR, pPZP200 oder pPTV.

Die mit einem solchen Vektor transformierten Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie z.B. von Raps, verwendet werden,
15 indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschliessend in geeigneten Medien kultiviert werden. Die Transformation von Pflanzen durch Agrobakterien ist beschrieben (White FF, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15 - 38; Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, S.128-143; Potrykus (1991) Annu Rev Plant Physiol Plant
20 Molec Biol 42:205- 225). Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die integriert die oben beschriebenen erfindungsgemässen Expressionssysteme enthalten.

30 Stabil transformierte Zellen d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten, können von untransformierten selektioniert werden, wenn ein selektionierbarer Marker Bestandteil der eingeführten DNA ist. Als Marker kann beispielhaft jedes Gen fungieren, dass eine Resistenz gegen Antibiotika oder Herbizide (wie Kanamycin, G418, Bleomycin, Hygromycin oder Phosphinotricin etc.) zu verleihen vermag (s.o.). Transformierte Zellen, die ein solches Marker gen exprimieren, sind in der Lage, in der Gegenwart von Konzentrationen eines entsprechenden Antibiotikums oder Herbicides zu überleben, die einen untransformierten Wildtyp abtöten. Beispiel sind oben genannt und umfassen bevorzugt das bar Gen, dass Resistenz gegen das Herbizid Phosphinotricin verleiht. (Rathore KS et al. (1993) Plant Mol Biol 21(5):871-884), das nptII Gen, dass Resistenz gegen Kanamycin verleiht, das hpt Gen, das Resistenz gegen Hygromycin verleiht,
35 40 oder das EPSP-Gen, das Resistenz gegen das Herbizid Glyphosat verleiht. Der Selektionsmarker erlaubt die Selektion von transformierten Zellen von untransformierten (McCormick et al. (1986)

46

Plant Cell Reports 5:81-84). Die erhaltenen Pflanzen können in üblicher Weise gezüchtet und gekreuzt werden. Zwei oder mehr Generationen sollten vorzugsweise kultiviert werden, um sicherzustellen, dass die genomische Integration stabil und vererblich ist.

Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann bekannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen aus.. Aus diesen noch undifferenzierten Zellmassen kann die Bildung von Spross und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprösslinge können ausgepflanzt und gezüchtet werden. Entsprechende Verfahren sind beschrieben (Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al (1995) Plant Cell Rep. 14:273-278; Jahne et al. (1994) Theor Appl Genet 89:525-533).

Die Wirksamkeit der Expression der transgen exprimierten Nukleinsäuren kann beispielsweise *in vitro* durch Sprossmeristemvermehrung unter Verwendung einer der oben beschriebenen Selektionsmethoden ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression eines Zielgens und die Auswirkung auf den Phänotyp der Pflanze an Testpflanzen in Gewächshausversuchen getestet werden.

25

II. Medizinische Anwendungen

Die erfindungsgemäß bereitgestellten dsRNA, Expressionssysteme oder Organismen eignen sich zur Herstellung von Arzneimitteln zur Behandlung von menschlichen und tierischen Erkrankungen. Für eine effizient Therapie ist es oft unzureichend nur ein einzelnes Zielgen zu vermindern. Das erfindungsgemäße Verfahren eignet sich insbesondere zur Behandlung von

35 - Pathogenbefall, wie beispielsweise virale oder bakterielle Erkrankungen. In diesen Fällen führen Ansätze, die lediglich gegen ein molekulares Ziel gerichtet sind, oft zu der Ausbildung von Resistenzen. Eine Kombinationstherapie, die mehrere Ziele abdeckt, ist jedoch kompliziert zu koordinieren und v.a. nur sehr aufwendig in klinischen Experimenten zu evaluieren. Das erfindungsgemäße Verfahren ermöglicht hier eine vorteilhafte Alternative. Die inhibitorische dsRNA kann dabei in der dem Fachmann geläufigen Weise appliziert werden. dsRNA verfügt über eine erstaunliche Stabilität und effiziente Wirkung und kann beispielsweise durch Verfütterung entsprechender dsRNA exprimierenden Bakterien appliziert werden. Das Verfahren

40

45

5 eignet sich insbesondere zur Behandlung von viralen Infektionen z.B. mit dem "human immunodeficiency virus" (HIV), indem gleichzeitig die Expression von mindestens zwei viralen Gene vermindert wird, beispielsweise bei HIV. von Genen wie gp41, die für den Zelleintritt verantwortlich sind, und der viralen Replikase oder reversen Transkriptase.

- 10 - Behandlung von Krebs (beispielsweise solider Tumore und/oder Leukämien). Zahlreiche potentielle Zielgene sind hier dem Fachmann bekannt (z.B. Oncogene wie ABL1, BCL1, BCL2, BCL6, CBFA2, CBL, CSF1R, ERBA, ERBB, EBRB2, FGR, FOS, FYN, HRAS, JUN, LCK, LYN, MYB, MYC, NRAS, RET oder SRC; Tumorsuppressorgene wie BRCA1 oder BRCA2; Adhäsionsmoleküle; Cyclinekinasen und deren Inhibitoren).
- 15

20 Weitere potentiell mit dem erfindungsgemäßen Verfahren behandelbare Erkrankungen und die entsprechenden Zielgene sind dem Fachmann ohne weiteres zugänglich und umfassen beispielsweise Erkrankungen des Herz/Kreislaufsystems wie Bluthochdruck, Erkrankungen des zentralen oder peripheren Nervensystems wie Alzheimer, Parkinson oder multiple Sklerose usw. Auch ist es durch das erfindungsgemäße Verfahren möglich, mehr als eine Erkrankung parallel zu behandeln, wie beispielsweise ein

25 Herzkreislauferkrankung und eine Erkrankung des zentralen Nervensystems, was durch klassische Ansätze nicht möglich ist. Derartige Ansätze sind v.a. bei multiplen Erkrankungen wie sie oft im fortgeschrittenen Alter auftreten vorteilhaft. Beispielhaft sei die parallele Behandlung von Bluthochdruck und z.B. Alzheimer oder seniler Demenz zu nennen. Dabei kann dieser Anwendungen als solche isoliert angewendet werden. Natürlich können auch mehr als eine der oben genannten Ansätze gleichzeitig angewendet werden. Dabei wird bei allen Anwendungen die Expression von mindestens zwei unterschiedlichen Zielgenen vermindert. Diese Zielgene können dabei aus der für eine Anwendung bevorzugten Gruppe von Genen stammen oder aber auch unterschiedlichen Anwendungsgruppen zugeordnet sein.

30

35

III. Biotechnologische Anwendungen

40 Das erfindungsgemäße Verfahren lässt sich vorteilhaft in biotechnologischen Verfahren anwenden. Beispielhaft jedoch nicht einschränkend sei zu nennen die Optimierung von Stoffwechselwegen in fermentativ genutzten Hefen, Pilzen oder anderen eukaryotischen Mikroorganismen oder Zellen zur Herstellung von Feinchemikalien wie Aminosäuren (z.B. Lysin oder Methionin), Vitaminen (wie Vitamin B2, Vitamin C, Vitamin E), Carotinoi-

45

den, Ölen und Fetten, polyungesättigten Fettsäuren, Biotin usw. Dabei kann dieser Anwendungen als solche isoliert angewendet werden. Natürlich können auch mehr als eine der oben genannten Ansätze gleichzeitig angewendet werden. Dabei wird 5 bei allen Anwendungen die Expression von mindestens zwei unterschiedlichen Zielgenen vermindert. Diese Zielgene können dabei aus der für eine Anwendung bevorzugten Gruppe von Genen stammen oder aber auch unterschiedlichen Anwendungsgruppen zugeordnet sein.

10

Als Vektoren zur Expression in E.coli sind bevorzugt pQE70, pQE60 und pQE-9 (QIAGEN, Inc.); pBluescript Vektoren, Phagescript Vektoren, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.).

15

Bevorzugte Vektoren zur eukaryotischen Expression umfassen pWLNE0, pSV2CAT, pOG44, pXT1 und pSG (Stratagene Inc.); pSVK3, pBPV, pMSG und pSVL (Pharmacia Biotech, Inc.). Als induzierbare 20 Vektoren seien pTet-tTak, pTet-Splice, pcDNA4/TO, pcDNA4/TO / LacZ, pcDNA6/TR, pcDNA4/TO/Myc-His /LacZ, pcDNA4/TO/Myc-His A, pcDNA4/TO/Myc-His B, pcDNA4/TO/Myc-His C, pVgRXR (Invitrogen, Inc.) oder die pMAM-Serie (Clontech, Inc.; GenBank Accession No.: U02443) zunennen. Diese stellen bereits das induzierbare regulative 25 Kontrollelement beispielsweise für eine chemisch, induzierbare Expression eines DSBI-Enzyms zur Verfügung. In diese Vektoren kann die Nukleinsäuresequenz kodierend für ein DSBI-Enzym direkt insertiert werden.

30 Vektoren für die Expression in Hefe umfassen beispielhaft pYES2, pYD1, pTEF1/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, PHIL-D2, PHIL-S1, pPIC3SK, pPIC9K, und PA0815 (Invitrogen, Inc.).

35 Vorteilhafte Kontrollsequenzen sind beispielsweise die gram-positiven Promotoren amy und SPO2, und die Hefe- oder Pilzpromotoren ADC1, MFa , AC, P-60, CYC1, GAPDH, TEF, rp28, ADH.

Klonierungsvektoren und Techniken zur genetischen Manipulation 40 von Ciliaten und Algen sind dem Fachmann bekannt (WO 98/01572; Falciatore et al. (1999) Marine Biotechnology 1(3):239-251; Dunahay et al. (1995) J Phycol 31:10004-1012).

Als Selektionsmarker können prinzipiell viele der auch für Pflanzen bevorzugten Selektionssysteme verwendet werden. Insbesondere 45 bevorzugt sind für Säugerzelle die Neomycin (G418) Resistenz, die Hygromycin-Resistenz, die Zeocin-Resistenz oder die Puromycin-Re-

49

sistenz. Für Prokaryoten ist insbesondere die Ampicillin-Resistenz, die Kanamycin-Resistenz oder die Tetracyclin-resistant bevorzugt.

5 Prinzipiell sind für die Transformation tierischer Zelle oder von Hefezellen ähnliche Verfahren wie für die "direkte" Transformation von pflanzlichen Zellen anzuwenden. Insbesondere Verfahren wie die Calciumphosphat oder Liposomen vermittelte Transformation oder aber Elektroporation sind bevorzugt.

10

Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der erfindungsgemässen, transgenen Organismen und der von ihnen abgeleitete Zellen, Zellkulturen, Teile - wie zum Beispiel bei transgenen pflanzlichen Organismen Wurzeln, Blätter etc.- , und transgenes Vermehrungsgut wie Saaten oder Früchte, zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder Feinchemikalien, wie beispielsweise Enzymen, Vitaminen, Aminosäuren, Zucker, Fettsäuren, natürliche und synthetische Geschmacks-, Aroma- und Farbstoffe. Besonders bevorzugt ist die Produktion von Triacylglyceriden, Lipiden, Ölen, Fettsäuren, Stärke, Tocopherolen und Tocotrienolen sowie Carotinoiden. Von Menschen und Tieren verzehrbare erfindungsgemässe, genetisch veränderte Pflanzen können auch beispielsweise direkt oder nach an sich bekannter Aufbereitung als Nahrungsmittel oder Futtermittel verwendet werden.

15
20
25

30

35

40

45

50

Sequenzen

1. SEQ ID NO: 1
Nukleinsäuresequenz kodierend für A.thaliana Albumin 2S sub-unit 1 (GenBank Acc.-No.: M22032)
2. SEQ ID NO: 2
Proteinsequenz kodierend für A.thaliana Albumin 2S subunit 1
- 10 3. SEQ ID NO: 3
Nukleinsäuresequenz kodierend für A.thaliana Albumin 2S sub-unit 3 (GenBank Acc.-No.: M22035)
4. SEQ ID NO: 4
15 Proteinsequenz kodierend für A.thaliana Albumin 2S subunit 3
5. SEQ ID NO: 5
Nukleinsäuresequenz kodierend für A.thaliana Albumin 2S sub-unit 2 (GenBank Acc.-No.: M22034)
- 20 6. SEQ ID NO: 6
Proteinsequenz kodierend für A.thaliana Albumin 2S subunit 2
7. SEQ ID NO: 7
25 Nukleinsäuresequenz kodierend für A.thaliana Albumin 2S sub-unit 4 (GenBank Acc.-No.: M22033)
8. SEQ ID NO: 8
Proteinsequenz kodierend für A.thaliana Albumin 2S subunit 4
- 30 9. SEQ ID NO: 9
Nukleinsäuresequenz kodierend für B.napus Cruciferin Speicherprotein (GenBank Acc.-No.: X59294)
- 35 10. SEQ ID NO: 10
Proteinsequenz kodierend für B.napus Cruciferin Speicherprotein
11. SEQ ID NO: 11
40 Nukleinsäuresequenz kodierend für Brassica napus Cruciferin (GenBank Acc.-No.: X14555)
12. SEQ ID NO: 12
Proteinsequenz kodierend für Brassica napus Cruciferin

45

51

13. SEQ ID NO: 13
Nukleinsäuresequenz kodierend für B.napus BnC2 Cruciferin Speicherprotein (GenBank Acc.-No.: X59295)
- 5 14. SEQ ID NO: 14
Proteinsequenz kodierend für B.napus BnC2 Cruciferin Speicherprotein
15. SEQ ID NO: 15
10 partielle Nukleinsäuresequenz kodierend für B.napus Cruciferin cru4 subunit (GenBank Acc.-No.: X57848)
16. SEQ ID NO: 16
15 partielle Proteinsequenz kodierend für B.napus Cruciferin cru4 subunit
17. SEQ ID NO: 17
20 Nukleinsäuresequenz kodierend für B.napus cru1 Cruciferin subunit (GenBank Acc.-No.: X62120)
18. SEQ ID NO: 18
25 Proteinsequenz kodierend für B.napus cru1 Cruciferin subunit
19. SEQ ID NO: 19
25 Nukleinsäuresequenz kodierend für Glycinin A-1a-B-x subunit aus des Sojabohne (GenBank Acc.-No.: M36686)
20. SEQ ID NO: 20
30 Proteinsequenz kodierend für Glycinin A-1a-B-x subunit aus des Sojabohne
21. SEQ ID NO: 21
35 Nukleinsäuresequenz kodierend für Sojabohne Glycinin subunit G2 (GenBank Acc.-No.: X15122)
22. SEQ ID NO: 22
35 Proteinsequenz kodierend für Sojabohne Glycinin subunit G2
23. SEQ ID NO: 23
40 Nukleinsäuresequenz kodierend für Sojabohne A5A4B3 Glycinin subunits (GenBank Acc.-No.: X02626)
24. SEQ ID NO: 24
45 Proteinsequenz kodierend für Sojabohne A5A4B3 Glycinin subunits

52

25. SEQ ID NO: 25
Nukleinsäuresequenz kodierend für Sojabohne (G.max) Glycinin Speicherprotein subunit A3-B4 (GenBank Acc.-No.: M10962)
- 5 26. SEQ ID NO: 26
Proteininsequenz kodierend für Sojabohne (G.max) Glycinin Speicherprotein subunit A3-B4
27. SEQ ID NO: 27
10 Nukleinsäuresequenz kodierend für Sojabohne Glycinin subunit G3 (GenBank Acc.-No.: X15123)
28. SEQ ID NO: 28
Proteininsequenz kodierend für Sojabohne Glycinin subunit G3
15
29. SEQ ID NO: 29
Nukleinsäuresequenz kodierend für Sonnenblume 11S Speicherprotein (G3-D1) (GenBank Acc.-No.: M28832)
- 20 30. SEQ ID NO: 30
Proteininsequenz kodierend für Sonnenblume 11S Speicherprotein (G3-D1)
31. SEQ ID NO: 31
25 Nukleinsäuresequenz kodierend für Raps (B.napus) Napin (GenBank Acc.-No.: J02586)
32. SEQ ID NO: 32
Proteininsequenz kodierend für Raps (B.napus) Napin
30
33. SEQ ID NO: 33
Nukleinsäuresequenz kodierend für Brassica juncea 2S Speicherprotein (GenBank Acc.-No.: X65040)
- 35 34. SEQ ID NO: 34
Proteininsequenz kodierend für Brassica juncea 2S Speicherprotein
35. SEQ ID NO: 35
40 Nukleinsäuresequenz kodierend für Brassica oleracea 2S Speicherprotein (GenBank Acc.-No.: X65038)
36. SEQ ID NO: 36
Proteininsequenz kodierend für Brassica oleracea 2S Speicherprotein
45

37. SEQ ID NO: 37
Nukleinsäuresequenz kodierend für Brassica napus cv. Topas Napin (GenBank Acc.-No.: U04945)
- 5 38. SEQ ID NO: 38
Proteinsequenz kodierend für Brassica napus cv. Topas Napin
39. SEQ ID NO: 39
partielle Nukleinsäuresequenz kodierend für Sinapis alba sin1
10 Speicherprotein (GenBank Acc.-No.: X91799)
40. SEQ ID NO: 40
partielle Proteinsequenz kodierend für Sinapis alba sin1
Speicherprotein
- 15 41. SEQ ID NO: 41
Nukleinsäuresequenz kodierend für Sojabohne (Glycine max) napin-type 2S Albumin 1 (GenBank Acc.-No.: U71194)
- 20 42. SEQ ID NO: 42
Proteinsequenz kodierend für Sojabohne (Glycine max) napin-type 2S Albumin 1
43. SEQ ID NO: 43
25 Nukleinsäuresequenz kodierend für Sojabohne (Glycine max) 2S Albumin (GenBank Acc.-No.: AF005030)
44. SEQ ID NO: 44
30 Proteinsequenz kodierend für Sojabohne (Glycine max) 2S Albumin
45. SEQ ID NO: 45
35 Nukleinsäuresequenz kodierend für Brassica nigra 2S Speicherprotein (GenBank Acc.-No.: X65039)
46. SEQ ID NO: 46
35 Proteinsequenz kodierend für Brassica nigra 2S Speicherprotein
- 40 47. SEQ ID NO: 47
Nukleinsäuresequenz kodierend für Sinapis alba sin5 Speicherprotein (GenBank Acc.-No.: X91798)
48. SEQ ID NO: 48
45 Proteinsequenz kodierend für Sinapis alba sin5 Speicherprotein

54

49. SEQ ID NO: 49
Nukleinsäuresequenz kodierend für Sonnenblume HaG5 2 S Albumin (GenBank Acc.-No.: X06410)
- 5 50. SEQ ID NO: 50
proteinsequenz kodierend für Sonnenblume HaG5 2 S Albumin
51. SEQ ID NO: 51
partielle Nukleinsäuresequenz kodierend für Sonnenblume (Helianthus annuus) 2S Albumin (GenBank Acc.-No.: X76101)
- 10 52. SEQ ID NO: 52
partielle Proteinsequenz kodierend für Sonnenblume (Helianthus annuus) 2S Albumin
- 15 53. SEQ ID NO: 53
Nukleinsäuresequenz kodierend für dsRNA zur Suppression von Arabidopsis thaliana 12S Speicherprotein AtCru3 (Insert von Vektor pCR2.1-AtCRU3-RNAi)
- 20 54. SEQ ID NO: 54
Ribonukleinsäuresequenz kodierend für dsRNA zur Suppression von Arabidopsis thaliana 12S Speicherprotein AtCru3
- 25 55. SEQ ID NO: 55
Nukleinsäuresequenz kodierend für dsRNA zur Suppression von Arabidopsis thaliana 12S Speicherprotein AtCra1
- 30 56. SEQ ID NO: 56
Ribonukleinsäuresequenz kodierend für dsRNA zur Suppression von Arabidopsis thaliana 12S Speicherprotein AtCra1
- 35 57. SEQ ID NO: 57
Nukleinsäuresequenz kodierend für dsRNA zur Suppression von Arabidopsis thaliana 2S Speicherprotein At2S2
- 40 58. SEQ ID NO: 58
Ribonukleinsäuresequenz kodierend für dsRNA zur Suppression von Arabidopsis thaliana 2S Speicherprotein At2S2
- 45 59. SEQ ID NO: 59
Nukleinsäuresequenz kodierend für Arabidopsis thaliana 12S Cruciferin Speicherprotein (ATCRU3; GenBank Acc.-No.: U66916)

60. SEQ ID NO: 60
Proteinsequenz kodierend für Arabidopsis thaliana 12S Cruciferin Speicherprotein (ATCRU3)
- 5 61. SEQ ID NO: 61
Nukleinsäuresequenz kodierend für A.thaliana 12S Speicherprotein (CRA1; GenBank Acc.-No.: M37247)
62. EQ ID NO: 62
10 Proteinsequenz kodierend für A.thaliana 12S Speicherprotein (CRA1)
63. SEQ ID NO: 63
15 Nukleinsäuresequenz kodierend für Arabidopsis thaliana 12S Speicherprotein AT5g44120/MLN1_4 (GenBank Acc.-No.: AY070730)
64. SEQ ID NO: 64
20 Proteinsequenz kodierend für Arabidopsis thaliana 12S Speicherprotein AT5g44120/MLN1_4
65. SEQ ID NO: 65
25 Nukleinsäuresequenz kodierend für Arabidopsis 12S Speicherprotein (CRB; GenBank Acc.-No.: X14313; M37248)
- 25 66. SEQ ID NO: 66
Proteinsequenz kodierend für Arabidopsis 12S Speicherprotein (CRB)
67. SEQ ID NO: 67
30 Nukleinsäuresequenz kodierend für Arabidopsis thaliana putatives 12S Speicherprotein (aus GenBank Acc.-No.: AC003027)
68. SEQ ID NO: 68
35 Proteinsequenz kodierend für Arabidopsis thaliana putatives Speicherprotein (Protein_id="AAD10679.1")
69. SEQ ID NO: 69
40 Nukleinsäuresequenz kodierend für Arabidopsis thaliana Cruciferin 12S Spwicherprotein (At1g03890) (GenBank Acc.-No.: AY065432)
70. SEQ ID NO: 70
45 Proteinsequenz kodierend für Arabidopsis thaliana Cruciferin 12S Speicherprotein (At1g03890)

71. SEQ ID NO: 71
Nukleinsäuresequenz kodierend für *Arabidopsis thaliana* Prohibitin 1 (Atphb1) (GenBank Acc.-No.: U66594)
- 5 72. SEQ ID NO: 72
Proteinsequenz kodierend für *Arabidopsis thaliana* Prohibitin 1 (Atphb1)
- 10 73. SEQ ID NO: 73 Oligonukleotidprimer OPN1
74. SEQ ID NO: 74 Oligonukleotidprimer OPN2
75. SEQ ID NO: 75 Oligonukleotidprimer OPN3
- 15 76. SEQ ID NO: 76 Oligonukleotidprimer OPN4
77. SEQ ID NO: 77 Oligonukleotidprimer OPN5
78. SEQ ID NO: 78 Oligonukleotidprimer OPN6
- 20 79. SEQ ID NO: 79 Oligonukleotidprimer OPN7
80. SEQ ID NO: 80 Oligonukleotidprimer OPN8
- 25 81. SEQ ID NO: 81 Oligonukleotidprimer OPN9
82. SEQ ID NO: 82 Oligonukleotidprimer OPN10
83. SEQ ID NO: 83
- 30 Nukleinsäuresequenz kodierend für sRNAi4-dsRNA zur Suppression mehrerer Speicherproteine
84. SEQ ID NO: 84
- 35 Ribonukleinsäuresequenz kodierend für sRNAi4-dsRNA zur Suppression mehrerer Speicherproteine
85. SEQ ID NO: 85
- Nukleinsäuresequenz kodierend für sRNAi8-dsRNA zur Suppression mehrerer Speicherproteine
- 40 86. SEQ ID NO: 86
- Ribonukleinsäuresequenz kodierend für sRNAi8-dsRNA zur Suppression mehrerer Speicherproteine
- 45 87. SEQ ID NO: 87 Oligonukleotidprimer OPN11

57

88. SEQ ID NO: 88 Oligonukleotidprimer OP12
89. SEQ ID NO: 89 Oligonukleotidprimer OPN13
- 5 90. SEQ ID NO: 90 Oligonukleotidprimer OPN15
91. SEQ ID NO: 91 Oligonukleotidprimer OPN16
92. SEQ ID NO: 92 Oligonukleotidprimer OPN17
- 10 93. SEQ ID NO: 93 Nukleinsäuresequenz kodierend für Arabidopsis thaliana "globulin-like protein" (GenBank Acc.-No.: NM_119834)
- 15 94. SEQ ID NO: 94 Proteinsequenz kodierend für Arabidopsis thaliana "globulin-like protein" (Protein_id="NP_195388.1")
95. SEQ ID NO: 95
- 20 Nukleinsäuresequenz kodierend für Glycine max 7S Samenglobulin (GenBank Acc.-No.: U59425)
96. SEQ ID NO: 96
- 25 Proteinsequenz kodierend für für Glycine max 7S Samenglobulin
97. SEQ ID NO: 97
- Nukleinsäuresequenz kodierend für Zea mays 19kD Zein (GenBank Acc.-No.: E01144)
- 30 98. SEQ ID NO: 98
- Proteinsequenz kodierend für Zea mays 19kD Zein
99. SEQ ID NO: 99
- 35 Nukleinsäuresequenz kodierend für Zea mays 19kD alpha Zein B1 (GenBank Acc.-No.: AF371269)
100. SEQ ID NO: 100
- Proteinsequenz kodierend für Zea mays 19kD alpha Zein B1
- 40 101. SEQ ID NO: 101
- Nukleinsäuresequenz kodierend für Zea mays 19kD alpha Zein B2 (GenBank Acc.-No.: AF371270)
102. SEQ ID NO: 102
- 45 Proteinsequenz kodierend für Zea mays 19kD alpha Zein B2

103. SEQ ID NO: 103

Nukleinsäuresequenz kodierend für Zea mays 22kD alpha-zein
(GenBank Acc.-No.: X61085)

5 104. SEQ ID NO: 104

Proteinsequenz kodierend für Zea mays 22kD alpha-zein

105. SEQ ID NO: 105

10 Nukleinsäuresequenz kodierend für Oryza sativa Prolamin
(GenBank Acc.-No.: AB016503)

106. SEQ ID NO: 106

Proteinsequenz kodierend für Oryza sativa Prolamin

15 107. SEQ ID NO: 107

Nukleinsäuresequenz kodierend für A.sativa Avenin (GenBank
Acc.-No.: M38446)

108. SEQ ID NO: 108

20 Proteinsequenz kodierend für A.sativa Avenin

109. SEQ ID NO: 109

Nukleinsäuresequenz kodierend für Hordeum vulgare C-Hordein
(GenBank Acc.-No.: M36941)

25

110. SEQ ID NO: 110

Proteinsequenz Teil 1 kodierend für Hordeum vulgare C-Hordein

111. SEQ ID NO: 111

30 Proteinsequenz Teil 2 kodierend für Hordeum vulgare C-Hordein

112. SEQ ID NO: 112

Nukleinsäuresequenz kodierend für Triticum aestivum LMW Glu-
tenin-1D1 (GenBank Acc.-No.: X13306)

35

113. SEQ ID NO: 113

Proteinsequenz kodierend für Triticum aestivum LMW Glute-
nin-1D1

40 114. SEQ ID NO: 114

Binärer Expressionsvektor für Agrobakterium vermittelte
Pflanzentransformation pSUN2-USP.

45

115. SEQ ID NO: 115

Partielle Nukleinsäuresequenz kodierend für Homogentisat-1,2-dioxygenase aus Brassica napus (HGD; EC-Nr.: 1.13.11.5)

5

116. SEQ ID NO: 116

Nukleinsäuresequenz kodierend für Homogentisat-1,2-dioxygenase aus Arabidopsis thaliana (HGD; EC-Nr.: 1.13.11.5)

10 117. SEQ ID NO: 117

Proteinsequenz kodierend für Homogentisat-1,2-dioxygenase aus Arabidopsis thaliana (HGD; EC-Nr.: 1.13.11.5)

118. SEQ ID NO: 118

15 Nukleinsäuresequenz kodierend für Maleylacetoacetatisomerase aus Arabidopsis thaliana (MAAI; EC-Nr.: 5.2.1.2.)

119. SEQ ID NO: 119

20 Proteinsequenz kodierend für Maleylacetoacetatisomerase aus Arabidopsis thaliana (MAAI; EC-Nr.: 5.2.1.2.)

120. SEQ ID NO: 120

Nukleinsäuresequenz kodierend für Fumarylacetoacetathiolase aus Arabidopsis thaliana (FAAH; EC-Nr.: 3.7.1.2)

25

121. SEQ ID NO: 121

Proteinsequenz kodierend für Fumarylacetoacetathiolase aus Arabidopsis thaliana (FAAH; EC-Nr.: 3.7.1.2)

30 122. SEQ ID NO: 122

Nukleinsäuresequenz kodierend für Suppressionskonstrukt 2 (p3300.1-Toc159-GFP-RNAi)

35 123. SEQ ID NO: 123

Oligonukleotidprimer OPN18

124. SEQ ID NO: 124

Oligonukleotidprimer OPN19

125. SEQ ID NO: 125

Oligonukleotidprimer OPN20

40

126. SEQ ID NO: 126

Oligonukleotidprimer OPN21

Abbildungen

45 1. Fig.1: Schematische Darstellung der Speicherprotein-Suppressionskonstrukte.

60

Insert aus Vektor pCR2.1-sRNAi4 (1) (vgl. Beispiel 2d) und pCR2.1-sRNAi8 (2) (vgl. Beispiel 2e) kodierend für eine die AtCru3-, AtCRB und At2S3-Expression supprimierende dsRNA.

5 In den beiden Konstrukten sind die "sense"-Ribonukleotidsequenzen und die komplementären "antisense"-Ribonukleotidsequenzen (symbolisiert durch auf dem Kopf stehende Buchstaben) für die einzelnen zu supprimierenden Zielgene (AtCru3; AtCRB, At2S3) unterschiedlich angeordnet. Schraffierte Bereiche (I1, 10 I2 etc.) stellen Intronsequenzen (Linker) dar.

2. Fig.2A-D: Symbolische Darstellung verschiedener dsRNAs in ihrer Sekundärstruktur.

15 S1, S2, ... S(n): "sense"-Ribonukleotidsequenz
AS1, AS2, ... AS(n): "antisense"-Ribonukleotidsequenz
I: Intronsequenz

20 Die Anordnung der einzelnen "sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen kann so erfolgen, dass zunächst alle "sense"-Ribonukleotidsequenzen aneinander ge- 25 reiht werden und so quasi einen "sense"-Strang bilden, wo- drauf dann alle "antisense"-Ribonukleotidsequenzen aneinander zu einem "antisense"-Strang zusammengefügt werden (A und C).

25 Alternativ kann die Anordnung der einzelnen "sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen so erfolgen, dass Paare von jeweils komplementären "sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen an- 30 einander gefügt werden (B und D).

35 "sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen können direkt aneinandergefügt sein (A und B) oder aber durch weitere Sequenzen beispielsweise Introns (I) von- einander getrennt sein (C und D).

3. Fig.3A-C: Symbolische Darstellung verschiedener dsRNAs in ihrer Sekundärstruktur.

40 S1, S2, ... S(n): "sense"-Ribonukleotidsequenz
AS1, AS2, ... AS(n): "antisense"-Ribonukleotidsequenz
SP: "SPACER"
RE: Erkennungssequenz für Ribozym
R: Ribozym

45

61

"sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen können durch weitere Sequenzen ("SPACER"; SP) von einander getrennt sein (A). Der Spacer kann beispielsweise einer Erkennungssequenz für ein Ribozym sein. Das korrespondierende Ribozym kann separat exprimiert werden (B) oder aber auch ebenfalls von dem Spacer kodiert sein (C).

- 5 4. Fig.4: Abbildung des Suppressionskonstrukts mit den entsprechenden Restriktionsenzymeschnittstellen:
- 10 5. Fig.5A: Identifikation einer Pflanze, die den Albino-Phänotyp zeigt (links). Der Phänotyp ist identisch zur ppi2 Mutante, die Toc159 nicht mehr exprimieren kann. Als Kontrolle Pflanzen mit Wildtyp Phänotyp, die parallel gewachsen sind.
- 15 Fig. 5B: Fluoreszenz-Analyse der Pflanzen aus Fig.5A. Anregung der Fluoreszenz durch Licht im Wellenlängenbereich 470-490 nm. Es wurde dieselbe Vergrösserung gewählt wie in Fig.5A.
- 20

25

30

35

40

45

Beispiele

Allgemeine Methoden:

- 5 Alle Chemikalien, wenn nicht anders erwähnt, stammen von den Firmen Fluka (Buchs), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) und Sigma (Deisenhofen). Restriktionsenzyme, DNA-modifizierende Enzyme und Molekularbiologie-Kits wurden von den Firmen Amersham-Pharmacia (Freiburg), Biometra (Göttingen), Roche 10 (Mannheim), New England Biolabs (Schwalbach), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Qiagen (Hilden), Stratagen (Amsterdam, Niederlande), Invitrogen (Karlsruhe) und Ambion (Cambridgeshire, United Kingdom). Die verwendeten Reagenzien wurden entsprechend der Angaben des Herstellers eingesetzt.
- 15 Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungs- 20 schritte wie z.B. Restriktionsspaltungen, Agarosegelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von *E. coli* Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA werden 25 wie bei Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt. Die Sequenzierung rekombinanter DNA-Moleküle erfolgt mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc Natl Acad Sci USA 74:5463-5467).
- 30

Beispiel 1: Allgemeine Verfahren

Die Pflanze *Arabidopsis thaliana* repräsentiert ein Mitglied der höheren Pflanzen (Samenpflanzen). Diese Pflanze ist eng verwandt mit anderen Pflanzenarten aus der Familie der Cruciferen wie z.B. *Brassica napus*, aber auch mit anderen Pflanzenfamilien der Dikotyledonen. Aufgrund des hohen Grades an Homologie ihrer DNA-Sequenzen bzw. Polypeptidsequenzen kann *Arabidopsis thaliana* als 40 Modellpflanze für andere Pflanzenarten eingesetzt werden.

a) Anzucht von *Arabidopsis* Pflanzen

Die Pflanzen werden entweder auf Murashige-Skoog Medium mit 0,5 % Saccharose (Ogas et al. (1997) Science 277:91-94) oder auf Erde gezogen (Focks & Benning (1998) Plant Physiol 118:91-101). Um einheitliche Keimungs- und Blühzeiten zu erreichen, werden die

63

Samen nach Ausplattieren bzw. Ausstreuen auf Erde zwei Tage bei 4° C stratifiziert. Nach der Blüte werden die Schoten markiert. Entsprechend der Markierungen werden dann Schoten mit einem Alter von 6 bis 20 Tagen nach der Blüte geerntet.

5

b) Isolierung von total RNA und poly-A⁺ RNA aus Pflanzen

Für die Herstellung von Suppressionskonstrukten wird RNA bzw. polyA⁺ RNA isoliert. RNA wurde aus Schoten von *Arabidopsis* Pflanzen nach folgender Vorschrift isoliert: Schotenmaterial im Alter von 6 bis 20 Tage nach Blüte wurde geerntet und in flüssigem Stickstoff schockgefroren. Das Material wurde vor der weiteren Verwendung bei -80°C gelagert. 75 mg des Materials wurde im gekühlten Mörser zu einem feinem Pulver gemahlen und mit 200 µL des Lysis-Puffers aus dem Ambion RNAAqueos-Kit versetzt. Die Isolierung der totalen RNA wurde dann nach Herstellerangaben durchgeführt. Die RNA wurde mit 50 µL Elutionspuffer (Ambion) eluiert und die Konzentration durch Absorption einer 1 zu 100 verdünnten Lösung am Photometer (Eppendorf) bei 260 nm bestimmt. 40 µg/ml RNA entspricht dabei einer Absorption von 1. Die RNA-Lösungen wurden mit RNase freiem Wasser auf eine Konzentration von 1 µg/µL eingestellt. Die Konzentrationen wurden durch Agarosegelektrophorese überprüft. Zur Isolierung von polyA⁺ RNA wurde oligo(dT)-Zellulose von Amersham Pharmacia nach Herstellerangaben verwendet. RNA bzw. polyA⁺ RNA wurde bei -70°C gelagert.

c) Konstruktion der cDNA-Bank

Zur Konstruktion der cDNA-Bank aus *Arabidopsis* Schoten-RNA wurde die Erststrangsynthese unter Verwendung von Reverser Transkriptase aus Maus-Leukämie-Virus (Clontech) und Oligo-d(T)-Primern, die Zweitstrangsynthese durch Inkubation mit DNA-Polymerase I, Klenow-Enzym und RNase H-Spaltung bei 12°C (2 Std.), 16°C (1 Std.) und 22°C (1 Std.) erzielt. Die Reaktion wurde durch Inkubation bei 65°C (10 min) gestoppt und anschließend auf Eis überführt. Doppelsträngige DNA-Moleküle wurde mit T4-DNA-Polymerase (Roche, Mannheim) bei 37°C (30 min) mit glatten Enden versehen. Die Nukleotide wurden durch Phenol/Chloroform-Extraktion und Sephadex-G50-Zentrifugiersäulen entfernt. EcoRI/XhoI-Adapter (Pharmacia, Freiburg, Deutschland) wurden mittels T4-DNA-Ligase (Roche, 12°C, über Nacht) an die cDNA-Enden ligiert, mit XhoI nachgeschnitten und durch Inkubation mit Polynukleotidkinase (Roche, 37°C, 30 min) phosphoryliert. Dieses Gemisch wurde der Trennung auf einem Low-Melting-Agarose-Gel unterworfen. DNA-Moleküle über 300 Basenpaaren wurden aus dem Gel eluiert, Phenol-extrahiert, auf Elutip-D-Säulen (Schleicher und Schüll, Dassel, Deutschland) konzentriert und an Vektorarme ligiert und in lambda-ZAPII-Phagen

64

oder lambda-ZAP-Express-Phagen unter Verwendung des Gigapack Gold-Kits (Stratagene, Amsterdam, Niederlande) verpackt, wobei Material des Herstellers verwendet und seine Anweisungen befolgt wurden.

5

- d) Isolierung von genomischer DNA aus Pflanzen wie *Arabidopsis thaliana* oder *Brassica napus* (CTAB-Methode)

Zur Isolierung genomischer DNA aus Pflanzen wie *Arabidopsis thaliana* oder *Brassica napus* werden ca. 0,25 g Blattmaterial junger Pflanzen im vegetativen Stadium in flüssigem Stickstoff zu feinem Pulver gemörsert. Das pulverisierte Pflanzenmaterial wird zusammen mit 1 ml 65°C-warmem CTAB I-Puffer (CTAB: Hexadecyltrimethylammoniumbromid, auch genannt Cetyltrimethylammoniumbromid; Sigma Kat.-Nr.: H6269) und 20 µl L-Mercaptoethanol in einen vorgewärmten zweiten Mörser gegeben und nach vollständiger Homogenisierung wird der Extrakt in ein 2 ml Eppendorf-Gefäß überführt und für 1 h bei 65°C unter regelmäßiger, vorsichtiger Durchmischung inkubiert. Nach Abkühlung auf Raumtemperatur wird der Ansatz mit 1 ml Chloroform/Octanol (24:1, mit 1M Tris/HCl, pH 8,0 ausgeschüttelt) durch langsames Invertieren extrahiert und zur Phasentrennung für 5 min bei 8,500 rpm (7,500 x g) und Raumtemperatur zentrifugiert. Anschließend wird die wässrige Phase erneut mit 1 ml Chloroform/Octanol extrahiert, zentrifugiert und durch Invertieren mit 1/10 Volumen auf 65°C vorgewärmtem CTAB II-Puffer sorgfältig gemischt. Anschließend wird der Ansatz durch vorsichtiges Schwenken mit 1 ml Chloroform/Octanol-Gemisch (siehe oben) versetzt und zur erneuten Phasentrennung für 5 min bei 8,500 rpm (7,500 x g) und Raumtemperatur zentrifugiert. Die wässrige untere Phase wird in ein frisches Eppendorf-Gefäß überführt und die obere organische Phase wird in einem frischen Eppendorf-Gefäß erneut für 15 min bei 8,500 rpm (7,500 x g) und Raumtemperatur zentrifugiert. Die hieraus resultierende wässrige Phase wird mit der wässrigen Phase des vorherigen Zentrifugationsschrittes vereinigt und der gesamte Ansatz mit exakt demselben Volumen vorgewärmtem CTAB III-Puffer versetzt. Es folgt eine Inkubation bei 65°C, bis die DNA in Flocken ausfällt. Dies kann bis zu 1 h dauern oder durch Inkubation bei 37°C über Nacht erfolgen. Das aus dem anschließenden Zentrifugationsschritt (5 min, 2000 rpm (500 x g), 4°C) resultierende Sediment wird mit 250 µl auf 65°C vorgewärmtem CTAB IV-Puffer versetzt und für mindestens 30 min bzw. bis zur vollständigen Auflösung des Sediments bei 65°C inkubiert. Anschließend wird die Lösung zur Fällung der DNA mit 2,5 Volumina eiskaltem Ethanol vermischt und für 1h bei -20°C inkubiert. Alternativ kann der Ansatz mit 0.6 Volumina Isopropanol vermischt und ohne weitere Inkubation sofort für 15 min bei 8,500 rpm (7,500 x g) und 4°C zentrifugiert werden. Die sedimentierte DNA wird durch

65

Invertieren des Eppendorf-Gefäßes zweimal mit je 1 ml 80%igem eiskaltem Ethanol gewaschen, nach jedem Waschschritt erneut zentrifugiert (5 min, 8,500 rpm (7,500 x g), 4°C) und anschließend für ca. 15 min luftgetrocknet. Abschließend wird die DNA in

5 100 µl TE mit 100 µg/ml RNase resuspendiert und für 30 min bei Raumtemperatur inkubiert. Die DNA Lösung ist nach einer weiteren Inkubationsphase über Nacht bei 4°C homogen und kann für weiterführende Experimente verwendet werden.

10 Lösungen für CTAB:

Lösung I (für 200 ml):

100 mM Tris/HCl pH 8,0 (2,42 g)

1,4 M NaCl (16,36 g)

15 20 mM EDTA (8,0 ml von 0,5 M Stammlösung)
2 % (w/v) CTAB (4,0 g)

Jeweils vor der Verwendung werden frisch zugesetzt:

2 % β-Mercaptoethanol (20 µl für 1 ml Lösung I).

20

Lösung II (für 200 ml):

0,7 M NaCl (8,18 g)

10 % (w/v) CTAB (20 g)

25 Lösung III (für 200 ml):

50 mM Tris/HCl pH 8,0 (1,21 g)

10 mM EDTA (4 ml 0,5 M von 0,5 M Stammlösung)

1 % (w/v) CTAB (2,0 g)

30 Lösung IV (High-salt TE) (für 200 ml):

10 mM Tris/ HCl pH 8,0 (0,242 g)

0,1 mM EDTA (40 µl 0,5 M Stammlösung)

1 M NaCl (11, 69 g)

35 Chloroform/Octanol (24:1) (für 200 ml):

192 ml Chloroform

8 ml Octanol

Die Mischung wird 2x mit 1 M TrisHCl pH 8,0 ausgeschüttelt und vor Licht geschützt gelagert.

40

Beispiel 2: Herstellung von Suppressionskonstrukten

Ausgehend von der genomischer *Arabidopsis thaliana* DNA oder cDNA wurden über PCR mittels der aufgeführten Oligonukleotide folgende

45 Fragmente von Speicherproteinsequenzen amplifiziert. Dabei kam nachfolgendes PCR Protokoll zum Einsatz:

66

Zusammensetzung des PCR-Ansatzes (50 µL):

- 5,00 µL Template cDNA oder genomische DNA (ca. 1 µg)
5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl₂
5 5,00 µL 2mM dNTP
1,25 µL je Primer (10 pmol/µL)
0,50 µL Advantage-Polymerase (Clontech)

PCR-Programm: Anfangsdenaturierung für 2 min bei 95°C, dann 35 Zy-
10 klen mit 45 sec 95°C, 45 sec 55°C und 2 min 72°C. Abschliessende Extension von 5 min bei 72°C.

a) Ausgangsvektor pCR2.1-AtCRU3-RNAi

- 15 Aus genomischer Arabidopsis thaliana DNA wird mit nachfolgendem Oligonukleotid-Primerpaar ein Exonbereich mit dem vollständigen anschließenden Intron einschließlich der an das Intron anschließenden Spleiß-Akzeptorsequenz des 12S Speicherprotein AtCRU3 (Basenpaar 1947 bis 2603 der Sequenz mit der GenBank Acc.-No:
20 U66916) amplifiziert:

ONP1 (SEQ ID NO: 134):

5'-ATAAGAATGCGGCCGCGTGTCCATTGGCCGGAAACAAAC-3'

25 ONP2 (SEQ ID NO: 135):

5'-CCCGGATCCTCTGTAAACATTGACAAAACATG-3'

Das PCR-Produkt wird in den pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in dem pCR2.1-1
30 Vektor und die Sequenz überprüft.

Für die den antisense-Strang der dsRNA kodierende Sequenz wird aus Arabidopsis thaliana cDNA lediglich das gleiche Exon wie oben (Basenpaar 1947 bis 2384) mit dem nachfolgenden Primerpaar amplifi-
35 fiziert:

ONP3 (SEQ ID NO: 136):

5'ATAAGAATGCGGCCGCGTGTCCATTGGCCGGAAACAAAC-3'

40 ONP4 (SEQ ID NO: 137):

5' ATAAGAATGCGGCCGCGGATCCACCCTGGAGAACGCCACGAGTG-3'

Das PCR-Produkt wird in den pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in dem pCR2.1-2
45 Vektor und die Sequenz überprüft.

0,5 µg von Vektor pCR2.1-1 werden mit dem Restriktionsenzym BamHI (New England Biolabs) für 2 Stunden nach Herstellerangaben inkubiert und dann für 15 min mit alkalischer Phosphatase (New England Biolabs) dephosphoryliert. Der so präparierte Vektor (1 µL)

5 wird dann mit dem aus Vektor pCR2.1-2 gewonnenen Fragment ligiert. Dazu werden 0,5 µg von Vektor pCR2.1-2 2 Stunden mit BamHI (New England Biolabs) verdaut und die DNA-Fragmente per Gelelektrophorese aufgetrennt. Das neben dem Vektor (3,9 kb) entstandene 489 bp grosse Stück wird aus dem Gel ausgeschnitten und mit dem

10 "Gelpurification"-Kit (Qiagen) nach Herstellerangaben aufgereinigt und mit 50 µL Elutionspuffer eluiert. 10 µL des Eluats werden mit Vektor pCR2.1-1 (s.o.) über Nacht bei 16°C ligiert (T4 Ligase, New England Biolabs). Die Ligationsprodukte werden dann in TOP10 Zellen (Stratagene) nach Herstellerangaben transformiert und ent-

15 sprechend selektioniert. Positive Klone werden mit dem Primerpaar ONP1 und ONP2 durch PCR verifiziert. Der erhaltene Vektor wird pCR2.1-AtCRU3-RNAi genannt. Die für die dsRNA kodierende Nukleinsäuresequenz ist durch SEQ ID NO: 105 beschrieben.

20 b) Ausgangsvektor pCR2.1-AtCRB-RNAi

Mit nachfolgendem Oligonukleotid-Primerpaar wird ein Exonbereich des 12S Speicherprotein AtCRB (SEQ ID NO: 117 bzw. 118; Basenpaar 601 bis 1874 der Sequenz mit der GenBank Acc.-No: M37248) aus

25 Arabidopsis thaliana cDNA amplifiziert:

ONP5 (SEQ ID NO: 138):

5' ATAAGAATGCGGCCGCGGATCCCTCAGGGTCTTTCTTGCCCCT-3'

30 ONP6 (SEQ ID NO: 139):

5' -CCGCTCGAGTTACGGATGGAGCCACGAAG-3'

Das PCR-Produkt wird in den pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in dem pCR2.1-3

35 Vektor und die Sequenz überprüft.

Für den als Linker fungierenden Bereich wird aus Arabidopsis thaliana genomischer DNA ein Intron mit den entsprechenden Spliceakzeptor und -donorsequenzen der flankierenden Exons (Basenpaar 1874 bis 2117 der Sequenz mit der GenBank Acc.-No: M37248) mit

40 dem nachfolgenden Primerpaar amplifiziert:

ONP7 (SEQ ID NO: 140):

5' -CCGCTCGAGGTAAGCTAACAAATCTTTAG-3'

45 ONP8 (SEQ ID NO: 141):

5' -ACGCCGTCGACGCCGTTCTGCCGTGCAAGATATT-3'

68

Das PCR-Produkt wird in den pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in dem pCR2.1-4 Vektor und die Sequenz überprüft.

- 5 Das Konstrukt für AtCRB wird in einer ähnlichen Strategie wie für AtCRU3 erläutert, erstellt. Vektor pCR2.1-3 wird mit XhoI (New England Biolabs) für 2 Stunden inkubiert und dephosphoryliert (alkalische Phosphatase, New England Biolabs). Vektor pCR2.1-4 wird ebenfalls mit XhoI in derselben Weise inkubiert und
- 10 die Gelfragmente per Gelelektrophorese aufgetrennt. Die entsprechenden Fragmente werden in der unter AtCRU3 beschriebenen Art und Weise aufgereinigt und ligiert, resultierend nach Bakterientransformation in dem Vektor pCR2.1-AtCRB Exon/Intron. Dieser Vektor wird für 2 Stunden mit XbaI (NEB), anschliessend für 15
- 15 min mit Klenow-Fragment (NEB), dann für 2 Stunden mit Sall inkubiert und zuletzt 15 min mit alkalischer Phosphatase (NEB) behandelt. Parallel wird der Vektor pCR2.1-3 mit BamHI (NEB); dann 15 min mit Klenow-Fragment und anschliessend 2 Stunden mit XhoI (NEB) inkubiert. Das Exon-Fragment von AtCRB wird nach Gelelektrophorese isoliert, gereinigt und zur Ligation eingesetzt. Beide
- 20 Fragmente wurden dann ligiert und der Vektor pCR2.1-AtCRB-RNAi resultierte. Der erhaltene Vektor wird pCR2.1-AtCRB-RNAi genannt. Die für die dsRNA kodierende Nukleinsäuresequenz ist durch SEQ ID NO: 107 beschrieben.
- 25 c) Ausgangsvektor pCR2.1-At2S3-RNAi.

Mit nachfolgendem Oligonukleotid-Primerpaar wird ein Exonbereich des 2S Speicherprotein At2S3 (SEQ ID NO: 3 bzw. 4; Basenpaar 212 bis 706 der Sequenz mit der GenBank Acc.-No: M22035) amplifiziert:

- ONP9 (SEQ ID NO: 142):
5'-ATAAGAATGCGGCCGCGATCCATGGCTAACAAAGCTTCCCTCGTC-3'
- 35 ONP10 (SEQ ID NO: 143):
5'-ATAAGAATGCGGCCGCGATCCCTAGTAGTAAGGAGGGAAGAAAG-3'
- 40 Das PCR-Produkt wird in den pCR2.1-TOPO Vektor (Invitrogen) gemäss Herstellerangaben kloniert, resultierend in dem pCR2.1-5 Vektor und die Sequenz überprüft. Für den als Linker fungierenden Bereich wird das gleiche Intron wie unter b) mit den Primern OPN 7 und OPN 8 amplifiziert eingesetzt.
- 45 Das Konstrukt für At2S3 wird in einer ähnlichen Strategie wie für AtCRU3 erläutert, erstellt. Vektor pCR2.1-5 wird mit XhoI (New England Biolabs) für 2 Stunden inkubiert und dephosphoryliert (alkalische Phosphatase, New England Biolabs). Vektor

pCR2.1-3 werden ebenfalls mit XhoI in derselben Weise inkubiert und die Gelfragmente per Gelelektrophorese aufgetrennt. Die entsprechenden Fragmente werden in der unter AtCRU3 beschriebenen Art und Weise aufgereinigt und ligiert, resultierend nach Bakterientransformation in dem Vektor pCR2.1-At2S3 Exon/Intron. Dieser Vektor wird für 2 Stunden mit SallI (NEB), anschliessend für 15 min mit Klenow-Fragment (NEB) inkubiert und zuletzt 15 min mit alkalischer Phosphatase (NEB) behandelt. Parallel wird der Vektor pCR2.1-5 mit BamHI (NEB) und dann 15 min mit Klenow-Fragment inkubiert. Das Exon-Fragment von At2S3 wird nach Gelelektrophorese isoliert, gereinigt und zur Ligation eingesetzt. Beide Fragmente werden dann ligiert und der Vektor pCR2.1-At2S3-RNAi resultierte. Die für die dsRNA kodierende Nukleinsäuresequenz ist durch SEQ ID NO: 109 beschrieben.

15

d) Herstellung von Super-Suppressionskonstrukt 1

Die Vektoren pCR2.1-AtCRU3-RNAi und pCR2.1-4 (siehe oben) werden mit den Restriktionsenzymen XhoI und SallI für 2 Stunden bei 37°C inkubiert, die DNA-Fragmente durch Agarose-Gelelektrophorese aufgetrennt und sowohl der Vektor als auch das PCR-Insert aus pCR2.1-4 ausgeschnitten und mit dem "Gelpurification"-Kit von Qiagen nach Herstellerangaben aufgereinigt und mit 50 µL Elutionspuffer eluiert. Vom Vektor wird 1 µL, vom PCR-Insert aus pCR2.1-4 8 µL der Eluate für die Ligation eingesetzt, resultierend in dem Konstrukt pCR2.1-sRNAi1. Dieser Vektor wird für 2 Stunden mit dem Restriktionsenzym XhoI und dann für 15 min mit Klenow-Fragment inkubiert.

30 Der Vektor pCR2.1-AtCRB-RNAi (siehe oben) wird mit dem Enzym EcoRI für 2 Stunden inkubiert und ebenfalls 15 min mit Klenow-Fragment behandelt. Beide Inkubationsansätze werden durch Gelelektrophorese aufgetrennt und jeweils der Vektor (pCR2.1-sRNAi1) bzw. das Insert (aus pCR2.1-AtCRB-RNAi) aus dem Agarosegel ausgeschnitten und die DNA-Fragmente wie oben beschrieben aufgereinigt. Für die Ligation werden 1 µL des Eluates vom Vektor und 8 µL des Eluates vom Insert eingesetzt und bei 4°C über Nacht inkubiert. Das resultierende Konstrukt wird mit pCR2.1-sRNAi2 bezeichnet. Der resultierende Vektor wird mit dem Enzym XbaI und anschliessend mit Klenow-Fragment inkubiert. Der Vektor pCR2.1-4 wird mit den Enzymen EcoRV und XbaI und anschliessend mit Klenow-Fragment inkubiert. Nach Gelelektrophorese und -reinigung wird das Fragment aus pCR2.1-4 mit dem Vektor pCR2.1-sRNAi2 ligiert, resultierend in dem Konstrukt pCR2.1-sRNAi3. Der resultierende Vektor wird dann mit dem Enzym ApaI für 2 Stunden und dann mit Klenow-Fragment für 15 min inkubiert. Als Insert wird der Vektor pCR2.1-At2S3-RNAi mit dem Enzym EcoRI für 2 Stunden und dann mit

70

Klenow-Fragment für 15 min inkubiert. Nach Gelelektrophorese und -reinigung werden die Eluate ligiert, resultierend in dem Vektor pCR2.1-sRNAi4. Aus diesem Vektor wird dann das sRNAi4-Fragment (SEQ ID NO: 144; vgl. Fig. 1(1)), kodierend für die super-suppressierende dsRNA, durch Inkubation mit HindIII und PvuI ausgeschnitten und in den binären Vektor pSUN-USP (SEQ ID NO: 179) ligiert. Das Konstrukt dient der gleichzeitigen Suppression von *Arabidopsis thaliana* Speicherproteinen CRB (SEQ ID NO: 4), CRU3 (SEQ ID NO: 112) und At2S3 (SEQ ID NO: 118).

10

Der verwendete Vektor pSUN-USP ist ein binärer Vektor zur Pflanzentransformation auf Basis von pBinAR (Höfgen und Willmitzer (1990) Plant Science 66: 221-230). Eine gewebespezifische Expression im Samen lässt sich unter Verwendung des gewebespezifischen 15 Promotors USP-Promotors erzielt.

e) Herstellung von Super-Suppressionskonstrukt 2

Ausgehend von *Arabidopsis thaliana* cDNA wird ein Fragment aus dem 20 Speicherprotein AtCRU3 (SEQ ID NO: 111, 112) mit dem nachfolgenden Oligonukleotid-Primerpaar unter den in Beispiel 2 angegebenen PCR-Bedingungen amplifiziert:

OPN 11: 5'-AAAAGGCCTGTGTTCCATTGGCCGGAAACAAAC-3' (SEQ ID NO: 148)

25 OPN 12: 5'-AAAGATATCACCCCTGGAGAACGCCACGAGTG-3' (SEQ ID NO: 149).

Das erhaltene Fragment wird in den Vektor pCR2.1-TOPÖ Vektor (In-vitrogen) gemäss Herstellerangaben kloniert, resultierend in den pCR2.1-6 und die Sequenzen überprüft.

30

Ausgehend von *Arabidopsis thaliana* cDNA wird ein Fargment aus dem Speicherprotein At2S3 (SEQ ID NO: 3, 4) mit dem nachfolgenden Oligonukleotid-Primerpaar unter den in Beispiel 2 angegebenen PCR-Bedingungen amplifiziert:

35

OPN 13: 5'-AAAAGGCCTATGGCTAACAAAGCTTCCCTCGTC-3' (SEQ ID NO: 150)

OPN 14: 5'-AAAGATATCCTAGTAGTAAGGAGGGAAGAAAG-3' (SEQ ID NO: 151).

Das erhaltene Fragment wird in den Vektor pCR2.1-TOPÖ Vektor (In-vitrogen) gemäss Herstellerangaben kloniert, resultierend in den pCR2.1-7 und die Sequenzen überprüft.

Aus den pCR2.1-3, pCR2.1-4 (siehe Beispiel 2) und pCR2.1-6 und pCR2.1-7 werden dann die Konstrukte folgendermassen zusammen 45 ligiert: Der Vektor pCR2.1-3 wird 2 Stunden mit EcoRV inkubiert und anschliessend 15 min mit alkalischer Phosphatase dephosphoryliert. Der Vektor pCR2.1-6 wird mit den Enzymen StuI und EcoRV

für 2 Stunden inkubiert und das PCR-Insert über Gelelektrophorese und -reinigung isoliert. Vektor pCR2.1-3 und Insert aus pCR2.1-6 werden dann über Nacht bei 4°C ligiert, resultierend in dem Konstrukt pCR2.1-sRNAi5. Dieser Vektor wird dann mit EcoRV inkubiert
 5 und dephosphoryliert und mit dem StuI/ EcoRV inkubierten und gelaufgereinigten Fragment aus pCR2.1-7 ligiert, resultierend in dem Konstrukt pCR2.1-sRNAi6. Dieser Vektor wird dann mit XhoI inkubiert und dephosphoryliert. Der Vektor pCR2.1-4 wird mit SalI und XhoI inkubiert und das Insert aus pCR2.1-4 mit dem vorbereitet
 10 Vektor pCR2.1-sRNAi6 ligiert, resultierend in dem Konstrukt pCR2.1-sRNAi7. Ausgehend von pCR2.1-sRNAi7 wird eine PCR mit den nachfolgenden Primerpaar unter den in Beispiel 2 gegebenen Bedingungen durchgeführt:

- 15** OPN 15: 5' CCGCTCGAGCTCAGGGTCTTTCTTGCCCCACT (SEQ ID NO: 152)
OPN 16: 5'-CCGGTCGACCTAGTAGTAAGGAGGGAAAGAAAG (SEQ ID NO: 153).

Das resultierende PCR-Produkt wird mit den Enzymen XhoI und SalI inkubiert. Das Fragment wird dann in den Vektor pCR2.1-sRNAi7
 20 (inkubiert mit XhoI) ligiert, resultierend in dem Konstrukt pCR2.1-sRNAi8. Aus diesem Vektor wird dann das sRNAi8-Fragment (SEQ ID NO: 146; vgl. Fig. 1(2)), kodierend für die super-supprimierende dsRNA, durch Inkubation mit HindIII und XbaI ausgeschnitten und in den binären Vektor pSUN-USP (SEQ ID NO: 179) li-
 25 giert. Das Konstrukt dient der gleichzeitigen Suppression von *Arabidopsis thaliana* Speicherproteinen CRB (SEQ ID NO: 4), CRU3 (SEQ ID NO: 112) und At2S3 (SEQ ID NO: 118).

Beispiel 3: Transformation von Agrobacterium

30 Die Agrobacterium-vermittelte Pflanzentransformation kann zum Beispiel unter Verwendung der *Agrobacterium tumefaciens*-Stämme GV3101 (pMP90) (Koncz und Schell (1986) Mol Gen Genet 204: 383-396) oder LBA4404 (Clontech) durchgeführt werden. Die Transfor-
 35 mation kann durch Standard-Transformationstechniken durchgeführt werden (Deblaere et al. (1984) Nucl Acids Res 13:4777-4788).

Beispiel 4: Pflanzentransformation

40 Die Agrobacterium-vermittelte Pflanzentransformation kann unter Verwendung von Standard-Transformations- und Regenerationstechniken durchgeführt werden (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2. Aufl., Dordrecht: Kluwer Academic Publ., 1995, in Sect., Ringbuc Zentrale Signatur: BT11-P
45 ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods

in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993, 360 S., ISBN 0-8493-5164-2).

- Die Transformation mittels Agrobacterium von *Arabisopsis thaliana* wird durch die Methode nach Bechthold et al., 1993 (C.R. Acad. Sci. Ser. III Sci. Vie., 316, 1194-1199) durchgeführt. Beispielsweise kann Raps mittels Kotyledonen- oder Hypokotyltransformation transformiert werden (Moloney et al., Plant Cell Report 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701). Die Verwendung von Antibiotika für die Agrobacterium- und Pflanzenselektion hängt von dem für die Transformation verwendeten binären Vektor und Agrobacterium-Stamm ab. Die Rapsselektion wird gewöhnlich unter Verwendung von Kanamycin als selektierbarem Pflanzenmarker durchgeführt.
- Der Agrobacterium-vermittelte Gentransfer in Lein (*Linum usitatissimum*) lässt sich unter Verwendung von beispielsweise einer von Mlynarova et al. (1994) Plant Cell Report 13:282-285 beschriebenen Technik durchführen.
- Die Transformation von Soja kann unter Verwendung von beispielsweise einer in EP-A-0 0424 047 (Pioneer Hi-Bred International) oder in EP-A-0 0397 687, US 5,376,543, US 5,169,770 (University Toledo) beschriebenen Technik durchgeführt werden.
- Die Pflanzentransformation unter Verwendung von Teilchenbeschuß, Polyethylenglycol-vermittelter DNA-Aufnahme oder über die Siliziumcarbonatfaser-Technik ist beispielsweise beschrieben von Freeling und Walbot "The maize handbook" (1993) ISBN 3-540-97826-7, Springer Verlag New York).

Beispiel 5: Untersuchung der Expression eines rekombinanten Genproduktes in einem transformierten Organismus

- Die Aktivität eines rekombinanten Genproduktes im transformierten Wirtsorganismus wurde auf der Transkriptions- und/oder der Translationsebene gemessen.

Ein geeignetes Verfahren zur Bestimmung der Menge an Transkription des Gens (ein Hinweis auf die Menge an RNA, die für die Translation des Genproduktes zur Verfügung steht) ist die Durchführung eines Northern-Blots wie unten ausgeführt (als Bezugsstelle siehe Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York, oder den oben erwähnten Beispielteil), wobei ein Primer, der so gestaltet ist, daß er an das Gen von Interesse bindet, mit einer nachweisbaren Markierung (gewöhnlich radioaktiv oder chemilumineszent) markiert wird, so daß, wenn die

73

Gesamt-RNA einer Kultur des Organismus extrahiert, auf einem Gel aufgetrennt, auf eine stabile Matrix transferiert und mit dieser Sonde inkubiert wird, die Bindung und das Ausmaß der Bindung der Sonde das Vorliegen und auch die Menge der mRNA für dieses Gen 5 anzeigt. Diese Information zeigt den Grad der Transkription des transformierten Gens an. Zelluläre Gesamt-RNA kann aus Zellen, Geweben oder Organen mit mehreren Verfahren, die alle im Fachgebiet bekannt sind, wie zum Beispiel das von Bormann, E.R., et al. (1992) Mol. Microbiol. 6:317-326 beschriebene, präpariert werden.

10

Northern-Hybridisierung:

Für die RNA-Hybridisierung wurden 20 µg Gesamt-RNA oder 1 µg poly(A)⁺-RNA mittels Gelelektrophorese in Agarosegelen mit einer Stärke von 1,25 % unter Verwendung von Formaldehyd, wie beschrieben in Amasino (1986, Anal. Biochem. 152, 304) aufgetrennt, mittels Kapillaranziehung unter Verwendung von 10 x SSC auf positiv geladene Nylonmembranen (Hybond N+, Amersham, Braunschweig) übertragen, mittels UV-Licht immobilisiert und 3 Stunden bei 68°C unter Verwendung von Hybridisierungspuffer (10 % Dextransulfat 15 Gew./Vol., 1 M NaCl, 1 % SDS, 100 mg Heringssperma-DNA) vorhybridisiert. Die Markierung der DNA-Sonde mit dem Highprime DNA labeling-Kit (Roche, Mannheim, Deutschland) erfolgte während der Vorhybridisierung unter Verwendung von alpha-³²P-dCTP (Amersham Pharmacia, Braunschweig, Deutschland). Die Hybridisierung wurde nach 20 Zugabe der markierten DNA-Sonde im gleichen Puffer bei 68°C über Nacht durchgeführt. Die Waschschritte wurden zweimal für 15 min unter Verwendung von 2 X SSC und zweimal für 30 min unter Verwendung von 1 X SSC, 1 % SDS, bei 68°C durchgeführt. Die Exposition der verschlossenen Filter wurde bei -70°C für einen Zeitraum von 1 25 bis 14 T durchgeführt.

Zur Untersuchung des Vorliegens oder der relativen Menge an von dieser mRNA translatiertem Protein können Standardtechniken, wie ein Western-Blot, eingesetzt werden (siehe beispielsweise Ausubel 35 et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). Bei diesem Verfahren werden die zellulären Gesamt-Proteine extrahiert, mittels Gelelektrophorese aufgetrennt, auf eine Matrix, wie Nitrozellulose, übertragen und mit einer Sonde, wie einem Antikörper, der spezifisch an das gewünschte Protein bindet, inkubiert. Diese Sonde ist gewöhnlich mit einer chemilumineszenten oder kolorimetrischen Markierung versehen, die sich leicht nachweisen lässt. Das Vorliegen und die Menge der beobachteten Markierung zeigt das Vorliegen und die Menge des gewünschten, in der Zelle vorliegenden mutierten Proteins an.

45

Beispiel 6: Analyse der Auswirkung der rekombinanten Proteine auf die Produktion des gewünschten Produktes

Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen,
5 Algen, Ciliaten oder auf die Produktion einer gewünschten Verbin-
dung (wie einer Fettsäure) kann bestimmt werden, indem die modi-
fizierten Mikroorganismen oder die modifizierte Pflanze unter ge-
eigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet
10 werden und das Medium und/oder die zellulären Komponenten auf die
erhöhte Produktion des gewünschten Produktes (d.h. von Lipiden
oder einer Fettsäure) untersucht wird. Diese Analysetechniken
sind dem Fachmann bekannt und umfassen Spektroskopie, Dünn-
schichtchromatographie, Färbeverfahren verschiedener Art, enzymati-
sche und mikrobiologische Verfahren sowie analytische Chromato-
graphie, wie Hochleistungs-Flüssigkeitschromatographie (siehe
beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd.
A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et
al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory
Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et
20 al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery
and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et
al. (1988) Bioseparations: downstream processing for Biotechno-
logy, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S.
(1992) Recovery processes for biological Materials, John Wiley
25 and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Se-
parations, in: Ullmann's Encyclopedia of Industrial Chemistry,
Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J.
(1989) Separation and purification techniques in biotechnology,
Noyes Publications).

30

Neben den oben erwähnten Verfahren werden Pflanzenlipide aus
Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad.
Sci. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic
Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative
35 und quantitative Lipid- oder Fettsäureanalyse ist beschrieben
bei Christie, William W., Advances in Lipid Methodology, Ayr/
Scotland: Oily Press (Oily Press Lipid Library; 2); Christie,
William W., Gas Chromatography and Lipids. A Practical Guide -
Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily
40 Press Lipid Library; 1); "Progress in Lipid Research, Oxford:
Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Che-
mistry of Fats and Other Lipids CODEN.

Zusätzlich zur Messung des Endproduktes der Fermentation ist
45 es auch möglich, andere Komponenten der Stoffwechselwege zu ana-
lysieren, die zur Produktion der gewünschten Verbindung verwendet
werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz

75

- der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums,
- 5 Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192
- 10 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.

Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie-Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).

Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-

20 Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33:343-353).

25 Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment

30 wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definiert werden.

Für die Öl-Analyse der mit den Suppressionskonstrukten transformierten *Arabidopsis* Pflanzen wird folgendes Protokoll angewendet:

76

Die Extraktion der Lipide aus Samen wird nach der Methode von Bligh & Dyer (1959) Can J Biochem Physiol 37:911 durchgeführt. Dazu werden 5 mg Arabidopsis Samen in 1,2 ml Qiagen-Microtubes (Qiagen, Hilden) auf einer Sartorius (Göttingen) Mikrowaage abgewogen. Das Samenmaterial wird mit 500 µL Chloroform/Methanol (2:1; enthält Mono-C17-glycerin von Sigma als internen Standard) in der Rätschmühle MM300 der Firma Retsch (Haan) homogenisiert und 20 min bei RT inkubiert. Nach Zugabe von 500 µL 50 mM Kaliumphosphatpuffer pH 7,5 erfolgt die Phasentrennung. Von der organischen Phase werden 50 µL abgenommen, mit 1500 µL Chloroform verdünnt und 5 µL auf die Kapillaren Chromarods SIII der Firma Iatroskan (SKS, Bechenheim) aufgetragen. Nach Auftrag der Proben werden diese für 15 min in einer Dünnschichtkammer, die gesättigt ist mit 6:2:2 Chloroform: Methanol: Toluol in einem ersten Schritt aufgetrennt. Nach Ablauf der Zeit werden die Kapillaren 4 min bei Raumtemperatur getrocknet und dann für 22 min in eine Dünnschichtkammer, die gesättigt ist mit 7:3 n-Hexan:Dieethylather gestellt. Nach einem weiteren Trocknungsschritt für 4 min bei Raumtemperatur werden die Proben in einem Iatroskan MK-5 (SKS, Bechenheim) entsprechend Fraser & Taggart, 1988 J. Chromatogr. 439:404 analysiert. Folgende Parameter wurden für die Messungen eingestellt: Slice width 50 msec, Threshold 20 mV, Noise 30, Skim ratio 0. Die Quantifizierung der Daten erfolgte anhand des internen Standards Mono-C17-glycerin (Sigma) sowie einer erstellten Eichkurve mit Tri-C17-glycerin (Sigma) mittels des Programms ChromStar (SKS, Beichenheim).

Für die quantitative Bestimmung der Ölgehalte werden Samen von jeweils 10 Pflanzen derselben unabhängigen transgenen Linie analysiert. Insgesamt wurde der Ölgehalt von 30 transgene Linien der T1 Generation, 10 transgene Linien mit je 10 Pflanzen der T2 Generation und 5 transgene Linien mit je 10 Pflanzen der T3 Linien bestimmt. Dabei zeigen die transgenen Pflanzen einen signifikant höheren Ölgehalt als entsprechend gleichbehandelte Kontrollpflanzen.

Beispiel 7:

Zum Nachweis der Funktionalität der multiplen RNAi Konstrukte wurden Gene ausgewählt, deren Supression einen deutlichen phänotypischen Effekt hervorrufen. Ein solches Gen ist zum Beispiel Toc159. Dieses Gen ist essentiell für die Entwicklung und Funktionalität von Chloroplasten in Arabidopsis (Bauer et al. Nature, 403, 203-207). Ein Ausschalten dieses Gens führt zu chlorophylldefizienten Pflanzen, deren Blatt-Erscheinungsbild dann hell-grün bis weiss ist. Dieser Albino-Phänotyp ist sehr leicht zu unterscheiden von normalen Pflanzen.

Als weiteres visuelles Repoterogen wurde GFP, das grün-fluoreszierende Protein aus der Qualle Aequorea victoria eingesetzt.

Dieses Reportergen ist ein häufig verwendetes Reportergen in Pflanzen (siehe z.B. Stewart, Plant Cell Rep 2001 20(5):376-82).

5 Ausgehend von Arabidopsis thaliana cDNA oder vom Plasmid pEGFP (BD Clontech, Heidelberg, Genbank-Eintrag U476561) wurde über PCR mittels der aufgeführten Oligonukleotide erzeugt. Dabei wurde folgendes Protokoll eingesetzt:

10 Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA oder genomische DNA (ca. 1 µg)
5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl₂
5,00 µL 2mM dNTP

15 1,25 µL je Primer (10 pmol/µL)
0,50 µL Advantage-Polymerase (Clontech)

PCR-Programm: Anfangsdenaturierung für 2 min bei 95°C, dann 35 Zyklen mit 45 sec 95°C, 45 sec 55°C und 2 min 72°C. Abschliessende

20 Extension von 5 min bei 72°C.

a) Ausgangsvektor pGEM-Toc159: Ausgehend von Arabidopsis cDNA wurde mit nachfolgendem Oligonukleotid-Primerpaar ein Fragment aus Toc159 (Genbank Acc.-No. T14P8.24) amplifiziert:

25 ONP18 (SEQ ID NO: 123):
5'-CTCGAGGAATTCAATGGACTCAAAGTCGGTTACTCCA

ONP19 (SEQ ID NO: 124):

30 5'-GGATCCATAAGCAAGCTTCTCACTCTCCCCATCTGTGGA

Das PCR Produkt wurde in den Vektor pGEM-T easy von Promega (Mannheim) gemäss Herstellerangaben kloniert, resultierend in dem pGEM-Toc159 Vektor und die Sequenz überprüft.

35 b) Ausgangsvektor pGEM-GFP: Ausgehend von dem Plasmid pEGFP (BD Clontech, Heidelberg, GenbankAcc.-No.: U476561) wurde mit nachfolgendem Oligonukleotid-Primerpaar ein Fragment aus GFP amplifiziert:

40 ONP20 (SEQ ID NO: 125): 5'-AAGCTTCCAACACTTGTCACTACTTT
ONP21 (SEQ ID NO: 126): 5'-GGATCCTAAAGCTCATCATGTTGT

Das PCR Produkt wurde in den Vektor pGEM-T easy von Promega (Mannheim) gemäss Herstellerangaben kloniert, resultierend in dem pGEM-GFP Vektor und die Sequenz überprüft.

c) Herstellung des Konstruktes pGEM-159-GFP Der Vektor pGEM-GFP wurde mit den Restriktionsenzymen HindIII und BamHI für 2 Stunden inkubiert. Parallel wurde der Vektor pGEM-Toc159 mit den gleichen Restriktionsenzymen inkubiert, anschliessend dann zusätzlich für 5 15 min mit alkalischer Phosphatase behandelt. Die alkalische Phosphatase wurde anschliessend durch Erhitzen auf 95 oC für 10 min inaktiviert. Die entstandenen DNA-Fragmente aus beiden Ansätzen wurden über Agarose-Gelelektrophorese aufgetrennt. Das 558 bp Fragment aus pGEM-GFP sowie das 3471 bp Fragment von pGEM-Toc159 10 wurden aus dem Gel ausgeschnitten und mit dem „Gelpurification“-Kit (Qiagen) nach Herstellerangaben aufgereinigt. Beide Fragmente wurden für 2 h bei 16°C ligiert (T4 Ligase, New England Biolabs) und anschliessend nach Herstellerangaben in E. coli DH5 α Zellen (Stratagen) transformiert. Positive Klone wurden durch PCR 15 mit dem Primerpaar OPN1 und OPN4 identifiziert und anschliessend verifiziert durch Sequenzierung. Der erhaltene Vektor wurde mit pGEM-159-GFP bezeichnet.

d) Herstellung des Suppressionskonstrukt 1: Der Vektor 20 pGEM-159-GFP wurde einerseits mit den Restriktionsenzymen XhoI und BamHI, ein weiterer Ansatz mit BamHI und SalI inkubiert. Der zweite Ansatz mit BamHI/ SalI wurde anschliessend für weitere 15 min mit alkalischer Phosphatase inkubiert. Die DNA-Fragmente aus beiden Ansätzen wurden über Agarose-Gelelektrophorese aufgetrennt 25 und folgende Fragmente ausgeschnitten: Ansatz BamHI-XhoI das 1091 bp Fragment; Ansatz BamHI-SalI das 4029 bp Fragment. Beide Fragmente wurden nach Aufreinigung aus dem Agarose-Gel (siehe oben) für 2 h bei 16°C mit T4 Ligase inkubiert und anschliessend in E. coli DH5 α Zellen (Stratagen) transformiert. Positive Klone wurden 30 durch PCR mit dem Primerpaar OPN1 identifiziert und anschliessend verifiziert durch Sequenzierung. Der erhaltene Vektor wurde als Suppressionskonstrukt 1 bezeichnet.

e) Herstellung des Suppressionskonstrukt 2: Das Suppressionskonstrukt 1 und der Vektor p3300.1 (Andreas Hilbrunner, Dissertation 35 ETH Zürich, 2003) wurden für 2h Stunden mit dem Restriktionszym EcoRI inkubiert. Anschliessend wurde der Vektor p3300.1 15 min mit alkalischer Phosphatase behandelt. Beide Ansätze wurden gemischt und für 2 h bei 16°C mit T4 Ligase inkubiert. Der Ligationsansatz wurde dann in E. coli DH5 α Zellen (Stratagen) transformiert. Das entstandene Suppressionskonstrukt 2 wurde dann für die Agrobacterium- und Pflanzentransformation eingesetzt. Die Nukleinsäuresequenz kodierend für Suppressionskonstrukt 2 (p3300.1-Toc159-GFP-RNAi) ist unter SEQ ID NO: 122 wiedergegeben.

- Die Transformation von Agrobakterien und Pflanzen wurde wie in Beispiel 3 bzw. 4 beschrieben durchgeführt. Zum Nachweis der Funktionalität des Suppressionskonstruktes 2 wurde dieses durch die nach Bechtold et al., 1993 (C.R. Acad. Sci. Ser. III Sci. Vie., 316, 1194-1199) beschriebene Blüten-Transformationsmethode in Arabidopsis transformiert. Aus Ausgangsmaterial wurden Arabidopsis Pflanzen der Varietät Columbia-0 verwendet, die bereits die T-DNA des binären Vektors pBIN-35S-GFP enthielten.
- 10 Durch Anregung durch ultraviolettes Licht im Wellenlängenbereich 470-490 nm die grüne Fluoreszenz von GFP in diesen Pflanzen angeregt werden und damit die Expression des eingebrachten Transgens überprüft werden. Dazu wurden Keimlinge 1 Woche nach Keimung oder Blattstücke bei älteren Pflanzen mit dem Fluoreszenzmikroskop MZFLIII von Leica analysiert. Zur Anregung von GFP wurden folgende Parameter eingestellt: Quecksilberlampe HBO 100W/DC, Filter GFP3, Bildbearbeitung Leica-Software. Speziell die Verwendung eines Filters (GFP3), der oberhalb einer Wellenlänge von 525 nm nicht mehr durchlässig ist, ermöglicht die GFP-Analyse von grünen Blattmaterial. Ohne diesen Filter könnte die starke Autofluoreszenz des Blattfarbstoffes Chlorophyll nicht ausgeschlossen werden. Die zur Transformation verwendete Arabidopsis Linie zeigte eine starke GFP Expression nach mikroskopischer Analyse.
- 25 Transformierte Samen wurden direkt auf Erde ausgelegt und angezogen. Nach einer Woche wurde nach Keimlingen gesucht, die keinen oder einen reduzierten Anteil des Blattfarbstoffes Chlorophyll enthielten. Solche Pflanzen waren leicht an ihrer hellgrünen oder weisen Erscheinungsbild zu erkennen. Diese Pflanzen wurden dann weiter durch Fluoreszenz-Mikroskopie untersucht und mit entsprechend parallel gewachsenen grünen Pflanzen verglichen. Fig.5A zeigt beispielhaft ein solche identifizierte Pflanze, die sich deutlich in der Farbe der Blätter von parallel gewachsenen Pflanzen unterscheidet. Dabei ist der Albino-Phänotyp (weisse Blätter) auf die Wirkung des Toc159-Suppressionskonstrukts zurückzuführen. Die nicht transformierten Nachkommen der mit Agrobacterium-Suspension behandelten Pflanzen zeigen den Albino-Phänotyp nicht. Der auftretende Albino-Phänotyp ist damit ein spezifischer Effekt des eingebrachten Suppressionskonstruktes.
- 40 Die Fluoreszenz-mikroskopische Untersuchung der Albino-Pflanzen zeigte dann (Fig.5B), dass keine GFP-Signale in solchen Pflanzen gefunden werden konnte. Im Vergleich dazu zeigten die parallel gewachsenen grünen Pflanzen deutliche GFP Signale. Die Abwesenheit des GFP-Signals in allen identifizierten Albino-Pflanzen demonstriert die Funktionalität des Suppressionskonstruktes, denn nur die mit dem Suppressionkonstrukt transformierten Pflanzen

80

zeigten keine GFP-Signale mehr. Es konnte keine Segregation der beiden angestrebten Phänotypen beobachtet werden. Damit konnte gezeigt werden, dass durch Verwendung von nur einem Kontrollelement (Promotor) zwei funktionell völlig unterschiedliche Gene,
5 die ihrerseits durch unterschiedliche Kontrollelemente in ihrer Expression reguliert werden, ausgeschaltet werden konnten.

10

15

20

25

30

35

40

45

Patentansprüche

1. Verfahren zur Verminderung der Expression von mindestens zwei verschiedenen, endogenen Zielgenen in einer eukaryotischen Zelle oder einem eukaryotischen Organismus durch Einbringen eines zumindest teilweise doppelsträngigen Ribonukleinsäuremoleküls in besagte eukaryotische Zelle oder besagten eukaryotischen Organismus, wobei das doppelsträngige Ribonukleinsäuremolekül umfasst
 - a) mindestens zwei "sense"-Ribonukleotidsequenzen, wobei jeweils mindestens eine dieser "sense"-Ribonukleotidsequenzen im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes eines jeden der besagten endogenen Zielgene und
 - b) "antisense"-Ribonukleotidsequenzen, die zu besagten "sense"-Ribonukleotidsequenzen unter a) im wesentlichen komplementären sind.
2. Verfahren nach Anspruch 1, wobei die transkribierten RNAs von mindestens zwei der in ihrer Expression verminderten Zielgene untereinander eine Homologie von unter 90% haben.
3. Verfahren nach Anspruch 1 oder 2, wobei die doppelsträngige RNA durch ein einziges selbstkomplementäres Ribonukleotidmolekül gebildet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei mindestens eine der ausgehend von den einzelnen "sense"-Ribonukleotidsequenzen gebildeten doppelsträngigen RNA-Strukturen eine Länge eines geradzahligen Vielfachen von 21 oder 22 Basenpaaren hat.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Ribonukleotidmolekül zwischen mindestens einer "sense"-Ribonukleotidsequenz und der dazu im wesentlichen komplementären "antisense"-Ribonukleotidsequenz eine Ribonukleotidsequenz kodierend für ein Intron enthält.

82

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens zwei der endogenen Zielgene ausgewählt sind aus jeweils unterschiedlichen Klassen von Speicherprotein ausgewählt aus den Speicherprotein-Klassen der 5 2S-Albumine, 7S-Globuline, 11S/12S-Globuline oder Zein-Prolamine.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei mindestens eine "sense"-Ribonukleotidsequenz im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes 10
- a) einer Speicherprotein-Nukleinsäuresequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 59, 61, 15 63, 65, 67, 69, 71, 93, 95, 97, 99, 101, 103, 105, 107, 109 oder 112, oder
- b) eines Gens aus dem Homogentisatabbauweg gemäß SEQ ID NO: 115, 116, 118 oder 120, oder 20
- c) eines Gens ausgewählt aus der Gruppe bestehend aus Acetyltransacylasen, Acyltransportproteinen, Fettsäuredesaturasen, Malonyltransacylasen, β -Ketoacyl-ACP-synthetasen, 3-Keto-ACP-reduktasen, Enoyl-ACP-hydrasen, Thioesterasen, Enoyl-ACP-reduktasen, ADP-Glucosepyrophosphorylasen, Phosphorylasen, Stärkesynthetasen, Q-Enzymen, Sucrose-6-phosphatsynthetasen, Sucrose-6-phosphatphosphatasen, ADP-Glucosepyrophosphorylasen, Branching-Enzymen, Debranching-Enzymen, Amylasen, Chalconsynthetasen, Chalconisomerasen, Phenylalaninammonialyasen, Dehydrokaempferol(flavone)hydroxylasen, Dihydroflavonolreduktasen, Dihydroflavanol-2-hydroxylasen, Flavonoid-3'-hydroxylasen, Flavonoid-5'-hydroxylasen, Flavonoidglycosyltransferasen, Flavonoidmethyltransferasen, Flavonoiddacyltransferasen, Polygalacturonasen, Cellulasen, Pectinesterasen, β -(1-4)Glucanasen, β -Galactanasen, 1-Aminocyclopropan-1-carboxylatsynthetasen, Phytoendesaturasen, Cinnamoyl-CoA:NADPH-Reduktasen, Cinnamoylalkoholdehydrogenasen, Coffeinsäure-O-methyltransferasen Cinnamoylalkoholdehydrogenasen, Polyphenoloxidases, Homogentisat-1,2-dioxygenasen, Maleylacetoacetatisomerasen, Fumarylacetoacetathylolasen, N-Methyl-putrescinoxidasen, Putrescin-N-methyltransferasen, 7-Methylxanthine-3-methyltransferasen, 1-Methylxanthin-3-methyltransferasen und Threoninsynthasen. 25 30 35 40 45

83

8. Ribonukleinsäuremolekül, das eine zumindest teilweise doppelsträngige Struktur hat und umfasst
- 5 a) mindestens zwei "sense"-Ribonukleotidsequenzen, wobei jeweils mindestens eine dieser "sense"-Ribonukleotidsequenzen im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes eines endogenen Zielgens, wobei jedoch nicht alle "sense"-Ribonukleotidsequenzen zu dem "sense"-RNA-Transkript eines einzigen endogenen Zielgens im wesentlichen identisch sind, und
- 10 b) "antisense"-Ribonukleotidsequenzen, die zu besagten "sense"-Ribonukleotidsequenzen unter a) im wesentlichen komplementären sind.
- 15 9. Ribonukleinsäuremolekül nach Anspruch 8, wobei das Ribonukleinsäuremolekül wie in einem der Ansprüche 2 bis 7 gekennzeichnet ist.
- 20 10. Transgene Expressionskassette enthaltend in funktioneller Verknüpfung mit einem Promotor eine Nukleinsäuresequenz kodierend für doppelsträngiges Ribonukleinsäuremolekül gemäß einem der Ansprüche 8 oder 9, wobei das Ribonukleinsäuremolekül aus einem einzigen RNA-Strang gebildet wird.
- 25 11. Transgenes Expressionssystem enthaltend
- 30 a) in funktioneller Verknüpfung mit einem Promotor eine Nukleinsäuresequenz kodierend für "sense"-Ribonukleotidsequenzen eines doppelsträngigen Ribonukleinsäuremoleküls gemäß einem der Ansprüche 8 oder 9 und
- 35 b) in funktioneller Verknüpfung mit einem Promotor eine Nukleinsäuresequenz kodierend für "antisense"-Ribonukleotidsequenzen eines doppelsträngigen Ribonukleinsäuremoleküls gemäß einem der Ansprüche 8 oder 9,
- 40 wobei das Ribonukleinsäuremolekül aus den beiden unter a) und b) definierten Strängen gebildet wird, und die Promotoren so gewählt sind, dass in einem bestimmten Organismus oder Zelle die gleichzeitige Expression von "sense"-Ribonukleotidsequenzen und "antisense"-Ribonukleotidsequenzen gewährleistet ist.
- 45

84

12. Transgener Vektor enthaltend eine transgene Expressionskassette gemäß Anspruch 10 oder ein transgenes Expressionssystem gemäß Anspruch 11.
- 5 13. Transgener Organismus enthaltend eine transgene Expressionskassette gemäß Anspruch 10 oder ein transgenes Expressionssystem gemäß Anspruch 11 oder einen transgenen Vektor gemäß Anspruch 12.
- 10 14. Transgener Organismus nach Anspruch 13 ausgewählt aus der Gruppe bestehend aus Bakterien, Hefen, nicht-menschlichen Tieren und Pflanzen.
15. Transgener Organismus nach Ansprüche 13, dadurch gekennzeichnet, dass die Pflanze ausgewählt ist aus der Gruppe der landwirtschaftlichen Nutzpflanzen.
16. Verwendung eines Ribonukleotidmoleküls nach einem der Ansprüche 8 oder 9, einer transgenen Expressionskassette gemäß Anspruch 10, eines transgenen Expressionssystems gemäß Anspruch 11, eines transgenen Vektors gemäß Anspruch 12 oder eines transgenen Organismus gemäß einem der Ansprüche 13 bis 15 zur Herstellung von Arzneimitteln, in biotechnologischen Verfahren oder in der Pflanzenbiotechnologie.
- 25 17. Verwendung nach Anspruch 16, wobei mindestens einer der nachfolgenden Eigenschaften in Pflanzen erzielt wird:
 - a) Verbesserter Schutz gegen abiotische Stressfaktoren
 - 30 b) Modifikation der Zusammensetzung und/oder des Gehaltes an Fettsäuren, Lipiden oder Ölen
 - c) Modifikation der Kohlenhydratzusammensetzung
 - 35 d) Veränderung der Farbe oder Pigmentierung
 - e) Verminderung des Gehaltes von Speicherproteinen
- 40 f) Erreichen einer Resistenz gegen pflanzliche Pathogene
- g) Verhinderung von Halmbruch
- 45 h) Verzögerung der Fruchtreifung
- i) Erzielen einer männlichen Sterilität

85

- j) Verminderung unerwünschter oder toxischer Pflanzeninhaltsstoffe
- 5 k) Verzögerung von Alterserscheinungen
- l) Modifikation der Lignifikation und/oder des Ligningehaltes
- 10 m) Modifikation des Faseranteils in Nahrungsmitteln oder der Faserqualität in Baumwolle
- n) Verminderung der Stoßanfälligkeit
- 15 o) Steigerung der Vitamin E Biosynthese
- p) Verminderung des Nikotingehaltes, des Coffeingehaltes oder des Theophyllin-Gehaltes
- 20 q) Erhöhung des Methioningehaltes durch Verminderung der Threoninbiosynthese

25

30

35

40

45

Fig. 1

Fig.2

Fig.3

4 / 5

Fig.4

A**B****Fig.5**

SEQUENZPROTOKOLL

<110> BASF Plant Science GmbH
 <120> Konstrukte und Verfahren zur Regulation der Genexpression
 <130> PD009300062-AT
 <140>
 <141>
 <160> 126
 <170> PatentIn Ver. 2.1
 <210> 1
 <211> 495
 <212> DNA
 <213> Arabidopsis thaliana
 <220>
 <221> CDS
 <222> (1)..(492)
 <223> albumine 2S subunit 1
 <400> 1
 atg gca aac aag ttg ttc ctc gtc gca gct ctc gct ctc tgc ttc . 48
 Met Ala Asn Lys Leu Phe Leu Val Cys Ala Ala Leu Ala Leu Cys Phe
 1 5 10 15
 ctc ctc acc aac gct tcc atc tac cgc acc gtc gtt gag ttc gaa gaa . 96
 Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Val Val Glu Phe Glu Glu
 20 25 30
 gat gac gcc act aac ccc ata ggc cca aaa atg agg aaa tgc cgc aag . 144
 Asp Asp Ala Thr Asn Pro Ile Gly Pro Lys Met Arg Lys Cys Arg Lys
 35 40 45
 gag ttt cag aaa gaa caa cac cta aga gct tgc cag caa ttg atg ctc . 192
 Glu Phe Gln Lys Glu Gln His Leu Arg Ala Cys Gln Gln Leu Met Leu
 50 55 60
 cag caa gca agg caa ggc cgt agc gat gag ttt gat ttc gaa gac gac . 240
 Gln Gln Ala Arg Gln Gly Arg Ser Asp Glu Phe Asp Phe Glu Asp Asp
 65 70 75 80
 atg gag aac cca cag gga caa cag cag gaa caa cag cta ttc cag cag . 288
 Met Glu Asn Pro Gln Gly Gln Gln Glu Gln Gln Leu Phe Gln Gln
 85 90 95
 tgc tgc aac gag ctt cgc cag gaa gag cca gat tgt gtt tgc ccc acc . 336
 Cys Cys Asn Glu Leu Arg Gln Glu Glu Pro Asp Cys Val Cys Pro Thr
 100 105 110
 ttg aaa caa gct gcc aag gcc gtt aga ctc cag gga cag cac caa cca . 384
 Leu Lys Gln Ala Ala Lys Ala Val Arg Leu Gln Gly Gln His Gln Pro
 115 120 125
 atg caa gtc agg aaa att tac cag aca gcc aag cac ttg ccc aac gtt . 432
 Met Gln Val Arg Lys Ile Tyr Gln Thr Ala Lys His Leu Pro Asn Val
 130 135 140
 tgc gac atc ccg caa gtt gat gtt tgt ccc ttc aac atc cct tca ttc . 480
 Cys Asp Ile Pro Gln Val Asp Val Cys Pro Phe Asn Ile Pro Ser Phe
 145 150 155 160
 cct tct ttc tac taa . 495
 Pro Ser Phe Tyr

<210> 2
 <211> 164
 <212> PRT
 <213> Arabidopsis thaliana
 <400> 2
 Met Ala Asn Lys Leu Phe Leu Val Cys Ala Ala Leu Ala Leu Cys Phe
 1 5 10 15
 Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Val Val Glu Phe Glu Glu
 20 25 30
 Asp Asp Ala Thr Asn Pro Ile Gly Pro Lys Met Arg Lys Cys Arg Lys
 35 40 45
 Glu Phe Gln Lys Glu Gln His Leu Arg Ala Cys Gln Gln Leu Met Leu
 50 55 60
 Gln Gln Ala Arg Gln Gly Arg Ser Asp Glu Phe Asp Phe Glu Asp Asp
 65 70 75 80
 Met Glu Asn Pro Gln Gly Gln Gln Glu Gln Gln Leu Phe Gln Gln
 85 90 95
 Cys Cys Asn Glu Leu Arg Gln Glu Glu Pro Asp Cys Val Cys Pro Thr
 100 105 110
 Leu Lys Gln Ala Ala Lys Ala Val Arg Leu Gln Gly Gln His Gln Pro
 115 120 125
 Met Gln Val Arg Lys Ile Tyr Gln Thr Ala Lys His Leu Pro Asn Val
 130 135 140
 Cys Asp Ile Pro Gln Val Asp Val Cys Pro Phe Asn Ile Pro Ser Phe
 145 150 155 160
 Pro Ser Phe Tyr

<210> 3
 <211> 495
 <212> DNA
 <213> Arabidopsis thaliana
 <220>
 <221> CDS
 <222> (1)..(492)
 <223> albumine 2S subunit 3
 <400> 3
 atg gct aac aag ctc ttc ctc gtc tgc gca act ctc gcc ctc tgc ttc 48
 Met Ala Asn Lys Leu Phe Leu Val Cys Ala Thr Leu Ala Leu Cys Phe
 1 5 10 15
 ctc ctc acc aac gct tcc atc tac cgc acc gtt gtc gaa ttc gaa gaa 96
 Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Val Val Glu Phe Glu Glu
 20 25 30
 gat gac gcc agc aac ccc gta ggt cca aga cag aga tgc cag aag gag 144
 Asp Asp Ala Ser Asn Pro Val Gly Pro Arg Gln Arg Cys Gln Lys Glu
 35 40 45
 ttt cag caa tca caa cac cta aga gct tgc cag aga tgg atg agc aag 192
 Phe Gln Gln Ser Gln His Leu Arg Ala Cys Gln Arg Trp Met Ser Lys
 50 55 60

caa atg agg caa gga cgt ggt ggt cct tcc ctc gac gat gag ttc 240
 Gln Met Arg Gln Gly Arg Gly Gly Pro Ser Leu Asp Asp Glu Phe
 65 70 75 80
 gat ttc gag ggc ccc cag cag gga tac cag cta ctc cag cag tgc tgc 288
 Asp Phe Glu Gly Pro Gln Gln Gly Tyr Gln Leu Leu Gln Gln Cys Cys
 85 90 95
 aac gag ctt cgc cag gaa gag cca gtt tgc gtt tgc ccc acc ttg aaa 336
 Asn Glu Leu Arg Gln Glu Pro Val Cys Val Cys Pro Thr Leu Lys
 100 105 110
 caa gct gcc agg gca gtt agc ctc cag gga cag cac gga cca ttc caa 384
 Gln Ala Ala Arg Ala Val Ser Leu Gln Gly Gln His Gly Pro Phe Gln
 115 120 125
 tcc agg aaa att tac cag tca gct aag tac ttg cct aac att tgc aag 432
 Ser Arg Lys Ile Tyr Gln Ser Ala Lys Tyr Leu Pro Asn Ile Cys Lys
 130 135 140
 atc cag caa gtt ggt gaa tgg ccc ttc cag acc acc atc cct ttc ttc 480
 Ile Gln Gln Val Gly Glu Cys Pro Phe Gln Thr Thr Ile Pro Phe Phe
 145 150 155 160
 cct cct tac tac tag
 Pro Pro Tyr Tyr 495
 <210> 4
 <211> 164
 <212> PRT
 <213> *Arabidopsis thaliana*
 <400> 4
 Met Ala Asn Lys Leu Phe Leu Val Cys Ala Thr Leu Ala Leu Cys Phe
 1 5 10 15
 Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Val Val Glu Phe Glu Glu
 20 25 30
 Asp Asp Ala Ser Asn Pro Val Gly Pro Arg Gln Arg Cys Gln Lys Glu
 35 40 45
 Phe Gln Gln Ser Gln His Leu Arg Ala Cys Gln Arg Trp Met Ser Lys
 50 55 60
 Gln Met Arg Gln Gly Arg Gly Gly Pro Ser Leu Asp Asp Glu Phe
 65 70 75 80
 Asp Phe Glu Gly Pro Gln Gln Gly Tyr Gln Leu Leu Gln Gln Cys Cys
 85 90 95
 Asn Glu Leu Arg Gln Glu Glu Pro Val Cys Val Cys Pro Thr Leu Lys
 100 105 110
 Gln Ala Ala Arg Ala Val Ser Leu Gln Gly Gln His Gly Pro Phe Gln
 115 120 125
 Ser Arg Lys Ile Tyr Gln Ser Ala Lys Tyr Leu Pro Asn Ile Cys Lys
 130 135 140
 Ile Gln Gln Val Gly Glu Cys Pro Phe Gln Thr Thr Ile Pro Phe Phe
 145 150 155 160
 Pro Pro Tyr Tyr

<210> 5
 <211> 513

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(510)

<223> albumine 2S subunit 2

<400> 5

atg	gca	aac	aag	ctc	tcc	ctc	gtc	gca	act	ttc	gcc	ctc	tgc	ttc	48
Met	Ala	Asn	Lys	Leu	Phe	Leu	Val	Cys	Ala	Thr	Phe	Ala	Leu	Cys	Phe
1	5								10				15		

ctc	ctc	acc	aac	gct	tcc	atc	tac	cgc	act	gtt	gtc	gag	ttc	gac	gaa	96
Leu	Leu	Thr	Asn	Ala	Ser	Ile	Tyr	Arg	Thr	Val	Val	Glu	Phe	Asp	Glu	
20	25									30						

gat	gac	gcc	agc	aac	ccc	atg	ggc	cca	aga	cag	aaa	tgt	cag	aag	gag	144
Asp	Asp	Ala	Ser	Asn	Pro	Met	Gly	Pro	Arg	Gln	Lys	Cys	Gln	Lys	Glu	
35	40									45						

ttt	cag	caa	tca	cag	cac	cta	aga	gct	tgc	cag	aaa	ttg	atg	cgc	atg	192
Phe	Gln	Gln	Ser	Gln	His	Leu	Arg	Ala	Cys	Gln	Lys	Leu	Met	Arg	Met	
50	55									60						

caa	atg	agg	caa	ggc	cgt	ggt	ggt	ccc	tcc	ctc	gac	gat	gag	ttc	240	
Gln	Met	Arg	Gln	Gly	Arg	Gly	Gly	Gly	Pro	Ser	Leu	Asp	Asp	Glu	Phe	
65	70								75			80				

gat	ttg	gaa	gac	gac	atc	gag	aac	cca	caa	ggc	ccc	cag	cag	gga	cac	288
Asp	Leu	Glu	Asp	Asp	Ile	Glu	Asn	Pro	Gln	Gly	Pro	Gln	Gln	Gly	His	
85	90								95							

cag	atc	ctc	cag	cag	tgc	tgc	agc	gag	ctt	cgc	cag	gaa	gag	cca	gtt	336
Gln	Ile	Leu	Gln	Gln	Cys	Cys	Ser	Glu	Leu	Arg	Gln	Glu	Glu	Pro	Val	
100	105								110							

tgt	gtt	tgc	ccc	acc	ttg	aga	caa	gct	gcc	agg	gcc	gtt	agc	ctc	cag	384
Cys	Val	Cys	Pro	Thr	Leu	Arg	Gln	Ala	Ala	Arg	Ala	Val	Ser	Leu	Gln	
115	120								125							

gga	caa	cac	gga	cca	ttc	caa	tcc	agg	aaa	att	tac	aag	aca	gct	aag	432
Gly	Gln	His	Gly	Pro	Phe	Gln	Ser	Arg	Lys	Ile	Tyr	Lys	Thr	Ala	Lys	
130	135								140							

tac	ttg	cct	aac	att	tgc	aag	atc	cag	caa	gtt	gaa	tgc	ccc	ttc	480
Tyr	Leu	Pro	Asn	Ile	Cys	Lys	Ile	Gln	Gln	Val	Gly	Glu	Cys	Pro	Phe
145	150								155			160			

cag	acc	acc	atc	cct	ttc	ttc	cct	cct	tac	taa					513
Gln	Thr	Thr	Ile	Pro	Phe	Phe	Pro	Pro	Tyr						
165	170														

<210> 6

<211> 170

<212> PRT

<213> Arabidopsis thaliana

<400> 6

Met	Ala	Asn	Lys	Leu	Phe	Leu	Val	Cys	Ala	Thr	Phe	Ala	Leu	Cys	Phe
1	5								10				15		

Leu	Leu	Thr	Asn	Ala	Ser	Ile	Tyr	Arg	Thr	Val	Val	Glu	Phe	Asp	Glu
20	25									30					

Asp	Asp	Ala	Ser	Asn	Pro	Met	Gly	Pro	Arg	Gln	Lys	Cys	Gln	Lys	Glu
35	40									45					

Phe Gln Gln Ser Gln His Leu Arg Ala Cys Gln Lys Leu Met Arg Met
 50 55 60
 Gln Met Arg Gln Gly Arg Gly Gly Pro Ser Leu Asp Asp Glu Phe
 65 70 75 80
 Asp Leu Glu Asp Asp Ile Glu Asn Pro Gln Gly Pro Gln Gln Gly His
 85 90 95
 Gln Ile Leu Gln Gln Cys Cys Ser Glu Leu Arg Gln Glu Glu Pro Val
 100 105 110
 Cys Val Cys Pro Thr Leu Arg Gln Ala Ala Arg Ala Val Ser Leu Gln
 115 120 125
 Gly Gln His Gly Pro Phe Gln Ser Arg Lys Ile Tyr Lys Thr Ala Lys
 130 135 140
 Tyr Leu Pro Asn Ile Cys Lys Ile Gln Gln Val Gly Glu Cys Pro Phe
 145 150 155 160
 Gln Thr Thr Ile Pro Phe Phe Pro Pro Tyr
 165 170

<210> 7
<211> 501
<212> DNA
<213> *Arabidopsis thaliana*
<220>
<221> CDS
<222> (1)...(498)
<223> albumine 2S subunit 4
<400> 7
atg gcg aac aag ctc ttc ctc gtc tgc gca gct ctc gcc ctg tgt ttc 48
Met Ala Asn Lys Leu Phe Leu Val Cys Ala Ala Leu Ala Leu Cys Phe
 1 5 10 15
atc ctc acc aac gct tcc gtc tat cgc acc gtt gtc gag ttc gac gaa 96
Ile Leu Thr Asn Ala Ser Val Tyr Arg Thr Val Val Glu Phe Asp Glu
 20 25 30
gat gac gcc agt aac ccc ata ggc cca ata cag aaa tgt cag aag gag 144
Asp Asp Ala Ser Asn Pro Ile Gly Pro Ile Gln Lys Cys Gln Lys Glu
 35 40 45
ttt cag caa gac cag cac cta aga gct tgc cag aga tgg atg cgc aag 192
Phe Gln Gln Asp Gln His Leu Arg Ala Cys Gln Arg Trp Met Arg Lys.
 50 55 60
caa atg tgg caa gga cgt ggt ggt cct tcc ctc gac gat gag ttc 240
Gln Met Trp Gln Gly Arg Gly Gly Pro Ser Leu Asp Asp Glu Phe
 65 70 75 80
gat atg gaa gac gac atc gag aac ccg cag aga cga cag cta ctc cag 288
Asp Met Glu Asp Asp Ile Glu Asn Pro Gln Arg Arg Gln Leu Leu Gln
 85 90 95
aag tgc tgc agc gag ctt cgc caa gaa gag cca gtt tgc gtt tgc ccc 336
Lys Cys Cys Ser Glu Leu Arg Gln Glu Glu Pro Val Cys Val Cys Pro
 100 105 110
acc ttg aga caa gct gcc aag gcc gtt aga ttc cag gga cag caa cac 384
Thr Leu Arg Gln Ala Ala Lys Ala Val Arg Phe Gln Gly Gln Gln His
 115 120 125

caa cca gag caa gtc agg aaa att tac cag gca gct aag tac ttg cct 432
 Gln Pro Glu Gln Val Arg Lys Ile Tyr Gln Ala Ala Lys Tyr Leu Pro
 130 135 140

aac att tgc aaa atc cag caa gtt ggt gtt tgc ccc ttc cag atc cct 480
 Asn Ile Cys Lys Ile Gln Gln Val Gly Val Cys Pro Phe Gln Ile Pro
 145 150 155 160

tca atc cct tct tac tac taa 501
 Ser Ile Pro Ser Tyr Tyr
 165

<210> 8

<211> 166

<212> PRT

<213> Arabidopsis thaliana

<400> 8

Met Ala Asn Lys Leu Phe Leu Val Cys Ala Ala Leu Ala Leu Cys Phe
 1 5 10 15

Ile Leu Thr Asn Ala Ser Val Tyr Arg Thr Val Val Glu Phe Asp Glu
 20 25 30

Asp Asp Ala Ser Asn Pro Ile Gly Pro Ile Gln Lys Cys Gln Lys Glu
 35 40 45

Phe Gln Gln Asp Gln His Leu Arg Ala Cys Gln Arg Trp Met Arg Lys
 50 55 60

Gln Met Trp Gln Gly Arg Gly Gly Pro Ser Leu Asp Asp Glu Phe
 65 70 75 80

Asp Met Glu Asp Asp Ile Glu Asn Pro Gln Arg Arg Gln Leu Leu Gln
 85 90 95

Lys Cys Cys Ser Glu Leu Arg Gln Glu Glu Pro Val Cys Val Cys Pro
 100 105 110

Thr Leu Arg Gln Ala Ala Lys Ala Val Arg Phe Gln Gly Gln Gln His
 115 120 125

Gln Pro Glu Gln Val Arg Lys Ile Tyr Gln Ala Ala Lys Tyr Leu Pro
 130 135 140

Asn Ile Cys Lys Ile Gln Gln Val Gly Val Cys Pro Phe Gln Ile Pro
 145 150 155 160

Ser Ile Pro Ser Tyr Tyr
 165

<210> 9

<211> 1473

<212> DNA

<213> Brassica napus

<220>

<221> CDS

<222> (1)..(1470)

<223> cruciferin

<400> 9

atg gct cgg ctc tca tct ctt ctc tct ttt tcc tta gca ctt ttg atc 48
 Met Ala Arg Leu Ser Ser Leu Leu Ser Phe Ser Leu Ala Leu Leu Ile
 1 5 10 15

ttt ctc cat ggc tct aca gct caa cag ttt cca aac gag tgt cag cta Phe Leu His Gly Ser Thr Ala Gln Gln Phe Pro Asn Glu Cys Gln Leu	96
20 25 30	
gac cag ctc aat gca ctg gag ccg tca cac gta ctt aag gct gag gct Asp Gln Leu Asn Ala Leu Glu Pro Ser His Val Leu Lys Ala Glu Ala	144
35 40 45	
ggc cgc atc gag gtg tgg gac cac cac gct cct cta cgt tgc tct Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser	192
50 55 60	
ggc gtc tcc ttt gta cgt tac atc atc gag tct aag ggt ctc tac ttg Gly Val Ser Phe Val Arg Tyr Ile Glu Ser Lys Gly Leu Tyr Leu	240
65 70 75 80	
ccc tct ttc ttt agc acc gcg aag ctc tcc ttc gtg gct aaa gga gaa Pro Ser Phe Phe Ser Thr Ala Lys Leu Ser Phe Val Ala Lys Gly Glu	288
85 90 95	
ggc ctt atg ggg aga gtg gtc cct gga tgc gcc gag aca ttc cag gac Gly Leu Met Gly Arg Val Val Pro Gly Cys Ala Glu Thr Phe Gln Asp	336
100 105 110	
tca tca gtg ttt caa cca agc ggt ggt agc ccc tcg gga gaa ggt cag Ser Ser Val Phe Gln Pro Ser Gly Gly Ser Pro Ser Gly Glu Gly Gln	384
115 120 125	
ggc caa gga caa caa ggt cag ggc caa ggc cac caa ggt caa ggc caa Gly Gln Gly Gln Gly Gln Gly Gln Gly His Gln Gly Gln Gly Gln	432
130 135 140	
gga caa cag ggc caa caa ggt cag caa gga caa cag agt caa ggc cag Gly Gln Gly Gln Gly Gln Gly Gln Gly Gln Ser Gln Gly Gln	480
145 150 155 160	
ggc ttc cgt gat atg cac cag aaa gtg gag cac ata agg act ggg gac Gly Phe Arg Asp Met His Gln Lys Val Glu His Ile Arg Thr Gly Asp	528
165 170 175	
acc atc gct aca cat ccc ggt gta gcc caa tgg ttc tac aac gac gga Thr Ile Ala Thr His Pro Gly Val Ala Gln Trp Phe Tyr Asn Asp Gly	576
180 185 190	
aac caa cca ctt gtc atc gtt tcc gtc ctc gat tta gcc agc cac cag Asn Gln Pro Leu Val Ile Val Ser Val Leu Asp Leu Ala Ser His Gln	624
195 200 205	
aat cag ctc gac cgc aac cca agg cca ttt tac tta gcc gga aac aac Asn Gln Leu Asp Arg Asn Pro Arg Pro Phe Tyr Leu Ala Gly Asn Asn	672
210 215 220	
cca caa ggc caa gta tgg ata gaa gga cgc gag caa cag cca caa aag Pro Gln Gly Gln Val Trp Ile Glu Gly Arg Glu Gln Gln Pro Gln Lys	720
225 230 235 240	
aac atc ctt aat ggc ttc aca cca gag gtt ctt gct aaa gct ttc aag Asn Ile Leu Asn Gly Phe Thr Pro Glu Val Leu Ala Lys Ala Phe Lys	768
245 250 255	
atc gat gtt agg aca gcg caa caa ctt cag aac cag caa gac aac cgt Ile Asp Val Arg Thr Ala Gln Gln Leu Gln Asn Gln Gln Asp Asn Arg	816
260 265 270	
gga aac att atc cga gtc caa ggc cca ttc agt gtc att agg ccg cct Gly Asn Ile Ile Arg Val Gln Gly Pro Phe Ser Val Ile Arg Pro Pro	864
275 280 285	

ttg agg agt cag aga ccg cag gag aca gaa gtt aac ggt tta gaa gag Leu Arg Ser Gln Arg Pro Gln Glu Thr Glu Val Asn Gly Leu Glu Glu 290 295 300	912
acc ata tgc agc gcg agg tgc acc gat aac ctc gat gac cca tct aat Thr Ile Cys Ser Ala Arg Cys Thr Asp Asn Leu Asp Asp Pro Ser Asn 305 310 315 320	960
gct gac gta tac aag cca cag ctc ggt tac atc agc act ctg aac agc Ala Asp Val Tyr Lys Pro Gln Leu Gly Tyr Ile Ser Thr Leu Asn Ser 325 330 335	1008
tat gat ctc ccc atc ctt cgc ttc ctt cgt ctc tca gcc ctc cgt gga Tyr Asp Leu Pro Ile Leu Arg Phe Leu Arg Leu Ser Ala Leu Arg Gly 340 345 350	1056
tct atc cgtcaa aac gcg atg gtg ctt cca cag tgg aac gca aac gca Ser Ile Arg Gln Asn Ala Met Val Leu Pro Gln Trp Asn Ala Asn Ala 355 360 365	1104
aac gcg gtt ctc tac gtg aca gac ggg gaa gcc cat gtg cag gtg gtt Asn Ala Val Leu Tyr Val Thr Asp Gly Glu Ala His Val Gln Val Val 370 375 380	1152
aac gac aac ggt gac aga gtg ttc gac gga caa gtc tct caa gga cag Asn Asp Asn Gly Asp Arg Val Phe Asp Gly Gln Val Ser Gln Gly Gln 385 390 395 400	1200
cta ctt tcc ata cca caa ggt ttc tcc gtg gtg aaa cgc gca aca agc Leu Leu Ser Ile Pro Gln Gly Phe Ser Val Val Lys Arg Ala Thr Ser 405 410 415	1248
gaa cag ttc cgg tgg atc gag ttc aag aca aac gca aac gca cag atc Glu Gln Phe Arg Trp Ile Glu Phe Lys Thr Asn Ala Asn Ala Gln Ile 420 425 430	1296
aac aca ctt gct gga cga acc tcg gtc ttg aga ggt tta cca tta gag Asn Thr Leu Ala Gly Arg Thr Ser Val Leu Arg Gly Leu Pro Leu Glu 435 440 445	1344
gtc ata tcc aat ggg tac caa atc tca ctc gaa gaa gca aga agg gtt Val Ile Ser Asn Gly Tyr Gln Ile Ser Leu Glu Ala Arg Arg Val 450 455 460	1392
aag ttc aac acg atc gag acc act ttg acg cac agc agt ggc cca gct Lys Phe Asn Thr Ile Glu Thr Thr Leu Thr His Ser Ser Gly Pro Ala 465 470 475 480	1440
agc tac gga ggg cca agg aag gct gat gct taa Ser Tyr Gly Gly Pro Arg Lys Ala Asp Ala 485 490	1473
<210> 10	
<211> 490	
<212> PRT	
<213> Brassica napus	
<400> 10	
Met Ala Arg Leu Ser Ser Leu Leu Ser Phe Ser Leu Ala Leu Leu Ile 1 5 10 15	
Phe Leu His Gly Ser Thr Ala Gln Gln Phe Pro Asn Glu Cys Gln Leu 20 25 30	
Asp Gln Leu Asn Ala Leu Glu Pro Ser His Val Leu Lys Ala Glu Ala 35 40 45	

Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser
 50 55 60
 Gly Val Ser Phe Val Arg Tyr Ile Ile Glu Ser Lys Gly Leu Tyr Leu
 65 70 75 80
 Pro Ser Phe Phe Ser Thr Ala Lys Leu Ser Phe Val Ala Lys Gly Glu
 85 90 95
 Gly Leu Met Gly Arg Val Val Pro Gly Cys Ala Glu Thr Phe Gln Asp
 100 105 110
 Ser Ser Val Phe Gln Pro Ser Gly Gly Ser Pro Ser Gly Glu Gly Gln
 115 120 125
 Gly Gln Gly Gln Gln Gly Gln Gly Gln His Gln Gly Gln Gly Gln
 130 135 140
 Gly Gln Gln Gly Gln Gln Gly Gln Gln Gln Ser Gln Gly Gln
 145 150 155 160
 Gly Phe Arg Asp Met His Gln Lys Val Glu His Ile Arg Thr Gly Asp
 165 170 175
 Thr Ile Ala Thr His Pro Gly Val Ala Gln Trp Phe Tyr Asn Asp Gly
 180 185 190
 Asn Gln Pro Leu Val Ile Val Ser Val Leu Asp Leu Ala Ser His Gln
 195 200 205
 Asn Gln Leu Asp Arg Asn Pro Arg Pro Phe Tyr Leu Ala Gly Asn Asn
 210 215 220
 Pro Gln Gly Gln Val Trp Ile Glu Gly Arg Glu Gln Gln Pro Gln Lys
 225 230 235 240
 Asn Ile Leu Asn Gly Phe Thr Pro Glu Val Leu Ala Lys Ala Phe Lys
 245 250 255
 Ile Asp Val Arg Thr Ala Gln Gln Leu Gln Asn Gln Asp Asn Arg
 260 265 270
 Gly Asn Ile Ile Arg Val Gln Gly Pro Phe Ser Val Ile Arg Pro Pro
 275 280 285
 Leu Arg Ser Gln Arg Pro Gln Glu Thr Glu Val Asn Gly Leu Glu Glu
 290 295 300
 Thr Ile Cys Ser Ala Arg Cys Thr Asp Asn Leu Asp Asp Pro Ser Asn
 305 310 315 320
 Ala Asp Val Tyr Lys Pro Gln Leu Gly Tyr Ile Ser Thr Leu Asn Ser
 325 330 335
 Tyr Asp Leu Pro Ile Leu Arg Phe Leu Arg Leu Ser Ala Leu Arg Gly
 340 345 350
 Ser Ile Arg Gln Asn Ala Met Val Leu Pro Gln Trp Asn Ala Asn Ala
 355 360 365
 Asn Ala Val Leu Tyr Val Thr Asp Gly Glu Ala His Val Gln Val Val
 370 375 380
 Asn Asp Asn Gly Asp Arg Val Phe Asp Gly Gln Val Ser Gln Gly Gln
 385 390 395 400
 Leu Leu Ser Ile Pro Gln Gly Phe Ser Val Val Lys Arg Ala Thr Ser
 405 410 415
 Glu Gln Phe Arg Trp Ile Glu Phe Lys Thr Asn Ala Asn Ala Gln Ile
 420 425 430

Asn Thr Leu Ala Gly Arg Thr Ser Val Leu Arg Gly Leu Pro Leu Glu
 435 440 445
 Val Ile Ser Asn Gly Tyr Gln Ile Ser Leu Glu Glu Ala Arg Arg Val
 450 455 460
 Lys Phe Asn Thr Ile Glu Thr Thr Leu Thr His Ser Ser Gly Pro Ala
 465 470 475 480
 Ser Tyr Gly Gly Pro Arg Lys Ala Asp Ala
 485 490

<210> 11
<211> 1467
<212> DNA
<213> Brassica napus

<220>
<221> CDS
<222> (1)..(1464)
<223> cruciferin

<400> 11

atg gct cgg ctc tca tct ctt ctc tct ttt tcc tta gca ctt ttg act	48
Met Ala Arg Leu Ser Ser Leu Leu Ser Phe Ser Leu Ala Leu Leu Thr	
1 5 10 15	
ttt ctc cat ggc tct aca gct caa cag ttt cca aac gag tgt cag cta	96
Phe Leu His Gly Ser Thr Ala Gln Gln Phe Pro Asn Glu Cys Gln Leu	
20 25 30	
gac cag ctc aat gca ctg gag ccg tca cac gta ctt aag gct gag gct	144
Asp Gln Leu Asn Ala Leu Glu Pro Ser His Val Leu Lys Ala Glu Ala	
35 40 45	
ggt cgc atc gag gtg tgg gac cac cac gct cct cag cta cgt tgc tct	192
Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser	
50 55 60	
ggt gtc tcc ttt gta cgt tac atc atc gag tct aag ggt ctc tac ttg	240
Gly Val Ser Phe Val Arg Tyr Ile Ile Glu Ser Lys Gly Leu Tyr Leu	
65 70 75 80	
ccc tct ttc ttt agc acc gcg agg ctc tcc ttc gtg gct aaa gga gaa	288
Pro Ser Phe Phe Ser Thr Ala Arg Leu Ser Phe Val Ala Lys Gly Glu	
85 90 95	
ggt ctt atg ggg aga gtg gtc ctg tgc gcc gag aca ttc cag gac tca	336
Gly Leu Met Gly Arg Val Val Leu Cys Ala Glu Thr Phe Gln Asp Ser	
100 105 110	
tca gtg tttcaa cca agc ggt agc ccc ttc gga gaa ggt cag ggc	384
Ser Val Phe Gln Pro Ser Gly Gly Ser Pro Phe Gly Glu Gln Gly	
115 120 125	
caa gga caa caa ggt cag ggc caa ggc cac caa ggt caa ggc caa gga	432
Gln Gly Gln Gly Gln Gly Gln Gly His Gln Gly Gln Gly Gln Gly	
130 135 140	
caa cag ggc caa caa ggt cag caa gga caa cag agt caa ggc cag ggt	480
Gln Gln Gly Gln Gln Gly Gln Gln Gly Gln Gln Ser Gln Gly Gln Gly	
145 150 155 160	
ttc cgt gat atg cac cag aaa gtg gag cac ata agg act ggg gac acc	528
Phe Arg Asp Met His Gln Lys Val Glu His Ile Arg Thr Gly Asp Thr	
165 170 175	

atc gct aca cat ccc ggt gta gcc caa tgg ttc tac aac gac gga aac Ile Ala Thr His Pro Gly Val Ala Gln Trp Phe Tyr Asn Asp Gly Asn 180 185 190	576
caa cca ctt gtc atc gtt tcc gtc ctc gat tta gcc agc cac cag aat Gln Pro Leu Val Ile Val Ser Val Leu Asp Leu Ala Ser His Gln Asn 195 200 205	624
cag ctc gac cgc aac cca agg cca ttt tac tta gcc gga aac aac cca Gln Leu Asp Arg Asn Pro Arg Pro Phe Tyr Leu Ala Gly Asn Asn Pro 210 215 220	672
caa ggc caa gta tgg ata gaa gga cgc gag caa cag cca caa aag aac Gln Gly Gln Val Trp Ile Glu Gly Arg Glu Gln Gln Pro Gln Lys Asn 225 230 235 240	720
atc ctt aat ggc ttc aca cca gag gtt ctt gct aaa gct ttc aag atc Ile Leu Asn Gly Phe Thr Pro Glu Val Leu Ala Lys Ala Phe Lys Ile 245 250 255	768
gat gtt agg aca gcg caa caa ctt cag aac cag caa gac aac cgt gga Asp Val Arg Thr Ala Gln Gln Leu Gln Asn Gln Gln Asp Asn Arg Gly 260 265 270	816
aac att atc cga gtc caa ggc cca ttc agt gtc att agg ccg cct ttg Asn Ile Ile Arg Val Gln Gly Pro Phe Ser Val Ile Arg Pro Pro Leu 275 280 285	864
agg agt cag aga ccg cag gag gaa gtt aac ggt tta gaa gag acc ata Arg Ser Gln Arg Pro Gln Glu Val Asn Gly Leu Glu Glu Thr Ile 290 295 300	912
tgc agc gcg agg tgc acc gat aac ctc gat gac cca tct aat gct gac Cys Ser Ala Arg Cys Thr Asp Asn Leu Asp Asp Pro Ser Asn Ala Asp 305 310 315 320	960
gta tac aag cca cag ctc ggt tac atc agc act ctg aac agc tat gat Val Tyr Lys Pro Gln Leu Gly Tyr Ile Ser Thr Leu Asn Ser Tyr Asp 325 330 335	1008
ctc ccc atc ctt cgc ttc ctt cgt ctc tca gcc ctc cgt gga tct atc Leu Pro Ile Leu Arg Phe Leu Arg Leu Ser Ala Leu Arg Gly Ser Ile 340 345 350	1056
cgt caa aac gcg atg gtg ctt cca cag tgg aac gca aac gca aac gcg Arg Gln Asn Ala Met Val Leu Pro Gln Trp Asn Ala Asn Ala Asn Ala 355 360 365	1104
gtt ctc tac gtg aca gac ggg gaa gcc cat gtg cag gtg gtt aac gac Val Leu Tyr Val Thr Asp Gly Glu Ala His Val Gln Val Val Asn Asp 370 375 380	1152
aac ggt gac aga gtg ttc gac gga caa gtc tct caa gga cag cta ctt Asn Gly Asp Arg Val Phe Asp Gly Gln Val Ser Gln Gly Gln Leu Leu 385 390 395 400	1200
tcc ata cca caa ggt ttc tcc gtg gtg aaa cgc gca aca agc gaa cag Ser Ile Pro Gln Gly Phe Ser Val Val Lys Arg Ala Thr Ser Glu Gln 405 410 415	1248
ttc cgg tgg atc gag ttc aag aca aac gca aac gca cag atc aac aca Phe Arg Trp Ile Glu Phe Lys Thr Asn Ala Asn Ala Gln Ile Asn Thr 420 425 430	1296
ctt gct gga cga acc tcg gtc ttg aga ggt tta cca tta gag gtc ata Leu Ala Gly Arg Thr Ser Val Leu Arg Gly Leu Pro Leu Glu Val Ile 435 440 445	1344

tcc aat ggg tac caa atc tca ctc gaa gaa gca aga agg gtt aag ttc 1392
 Ser Asn Gly Tyr Gln Ile Ser Leu Glu Glu Ala Arg Arg Val Lys Phe
 450 455 460

aac acg atc gag acc act ttg acg cac agc agt ggc cca gct agc tac 1440
 Asn Thr Ile Glu Thr Thr Leu Thr His Ser Ser Gly Pro Ala Ser Tyr
 465 470 475 480

gga ggg cca agg aag gct gat gct taa 1467
 Gly Gly Pro Arg Lys Ala Asp Ala
 485

<210> 12

<211> 488

<212> PRT

<213> Brassica napus

<400> 12

Met Ala Arg Leu Ser Ser Leu Leu Ser Phe Ser Leu Ala Leu Leu Thr 15
 1 5 10 15

Phe Leu His Gly Ser Thr Ala Gln Gln Phe Pro Asn Glu Cys Gln Leu 30
 20 25 30

Asp Gln Leu Asn Ala Leu Glu Pro Ser His Val Leu Lys Ala Glu Ala 45
 35 40 45

Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser 60
 50 55 60

Gly Val Ser Phe Val Arg Tyr Ile Ile Glu Ser Lys Gly Leu Tyr Leu 80
 65 70 75 80

Pro Ser Phe Phe Ser Thr Ala Arg Leu Ser Phe Val Ala Lys Gly Glu 95
 85 90 95

Gly Leu Met Gly Arg Val Val Leu Cys Ala Glu Thr Phe Gln Asp Ser 110
 100 105 110

Ser Val Phe Gln Pro Ser Gly Gly Ser Pro Phe Gly Glu Gly Gln Gly 125
 115 120 125

Gln Gly Gln Gln Gly Gln Gly Gln Gly His Gln Gly Gln Gly Gln Gly 140
 130 135 140

Gln Gln Gly Gln Gln Gly Gln Gln Gly Gln Ser Gln Gly Gln Gly 160
 145 150 155 160

Phe Arg Asp Met His Gln Lys Val Glu His Ile Arg Thr Gly Asp Thr 175
 165 170 175

Ile Ala Thr His Pro Gly Val Ala Gln Trp Phe Tyr Asn Asp Gly Asn 190
 180 185 190

Gln Pro Leu Val Ile Val Ser Val Leu Asp Leu Ala Ser His Gln Asn 205
 195 200 205

Gln Leu Asp Arg Asn Pro Arg Pro Phe Tyr Leu Ala Gly Asn Asn Pro 220
 210 215 220

Gln Gly Gln Val Trp Ile Glu Gly Arg Glu Gln Gln Pro Gln Lys Asn 240
 225 230 235 240

Ile Leu Asn Gly Phe Thr Pro Glu Val Leu Ala Lys Ala Phe Lys Ile 255
 245 250 255

Asp Val Arg Thr Ala Gln Gln Leu Gln Asn Gln Gln Asp Asn Arg Gly 270
 260 265 270

Asn Ile Ile Arg Val Gln Gly Pro Phe Ser Val Ile Arg Pro Pro Leu
 275 280 285
 Arg Ser Gln Arg Pro Gln Glu Glu Val Asn Gly Leu Glu Glu Thr Ile
 290 295 300
 Cys Ser Ala Arg Cys Thr Asp Asn Leu Asp Asp Pro Ser Asn Ala Asp
 305 310 315 320
 Val Tyr Lys Pro Gln Leu Gly Tyr Ile Ser Thr Leu Asn Ser Tyr Asp
 325 330 335
 Leu Pro Ile Leu Arg Phe Leu Arg Leu Ser Ala Leu Arg Gly Ser Ile
 340 345 350
 Arg Gln Asn Ala Met Val Leu Pro Gln Trp Asn Ala Asn Ala Asn Ala
 355 360 365
 Val Leu Tyr Val Thr Asp Gly Glu Ala His Val Gln Val Val Asn Asp
 370 375 380
 Asn Gly Asp Arg Val Phe Asp Gly Gln Val Ser Gln Gly Gln Leu Leu
 385 390 395 400
 Ser Ile Pro Gln Gly Phe Ser Val Val Lys Arg Ala Thr Ser Glu Gln
 405 410 415
 Phe Arg Trp Ile Glu Phe Lys Thr Asn Ala Asn Ala Gln Ile Asn Thr
 420 425 430
 Leu Ala Gly Arg Thr Ser Val Leu Arg Gly Leu Pro Leu Glu Val Ile
 435 440 445
 Ser Asn Gly Tyr Gln Ile Ser Leu Glu Glu Ala Arg Arg Val Lys Phe
 450 455 460
 Asn Thr Ile Glu Thr Thr Leu Thr His Ser Ser Gly Pro Ala Ser Tyr
 465 470 475 480
 Gly Gly Pro Arg Lys Ala Asp Ala
 485

<210> 13
 <211> 1491
 <212> DNA
 <213> Brassica napus

<220>
 <221> CDS
 <222> (1)..(1488)
 <223> cruciferin BnC2

<400> 13
 atg gct cga ctc tcg tct ctt ctc tat ttt tcg ata aca gtt ttg atc 48
 Met Ala Arg Leu Ser Ser Leu Leu Tyr Phe Ser Ile Thr Val Leu Ile
 1 5 10 15
 ttt ctc cat ggc tct aca gct caa cag ttt cca aac gag tgc caa cta 96
 Phe Leu His Gly Ser Thr Ala Gln Gln Phe Pro Asn Glu Cys Gln Leu
 20 25 30
 gac cag ctc aat gcg ctg gag ccg tca cac gta ctt aag gcc gag gct 144
 Asp Gln Leu Asn Ala Leu Glu Pro Ser His Val Leu Lys Ala Glu Ala
 35 40 45
 ggt cgc atc gaa gtg tgg gac cac gct cct cag cta cgc tgc tct 192
 Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser
 50 55 60

ggt gtc tcc ttc gta cgt tac ata atc gag tct cag ggt cta tac ttg		240
Gly Val Ser Phe Val Arg Tyr Ile Glu Ser Gln Gly Leu Tyr Leu		
65 70 75 80		
ccc tct ttc tta aat acc gcg aac gtc tct ttc gtt gct aaa gga caa		288
Pro Ser Phe Leu Asn Thr Ala Asn Val Ser Phe Val Ala Lys Gly Gln		
85 90 95		
ggc ctt atg ggg aga gtg gtc cct gga tgc gct gag act ttc cag gac		336
Gly Leu Met Gly Arg Val Val Pro Gly Cys Ala Glu Thr Phe Gln Asp		
100 105 110		
tca tca gta ttc caa cca ggc agt ggc agc ccc ttc gga gaa ggt caa		384
Ser Ser Val Phe Gln Pro Gly Ser Gly Ser Pro Phe Gly Glu Gly Gln		
115 120 125		
ggc caa ggt cag cag ggt cag ggg caa ggt cag ggt cag ggt caa ggc		432
Gly Gln Gly		
130 135 140		
aag ggc caa cag ggt caa ggc aag ggc caa cag ggt caa tcc cag ggc		480
Lys Gly Gln Gly Gln Gly Lys Gly Gln Gln Gly Gln Ser Gln Gly		
145 150 155 160		
caa cag ggt caa ggt caa ggt ttc cgt gat atg cac cag aaa gta gag		528
Gln Gln Gly Gln Gly Phe Arg Asp Met His Gln Lys Val Glu		
165 170 175		
cac ata agg agc ggc gac acc att gct aca cat ccc ggt gta gct caa		576
His Ile Arg Ser Gly Asp Thr Ile Ala Thr His Pro Gly Val Ala Gln		
180 185 190		
tgg ttc tac aac aat gga aac caa cct ctt gtc atc gtt gcc gtc atg		624
Trp Phe Tyr Asn Asn Gly Asn Gln Pro Leu Val Ile Val Ala Val Met		
195 200 205		
gat tta gct agc cac cag aac cag ctt gac cgc aac cca agc caa ttt		672
Asp Leu Ala Ser His Gln Asn Gln Leu Asp Arg Asn Pro Ser Gln Phe		
210 215 220		
tac tta gca gga aaa aac cca caa ggc caa tca tgg cta cac gga cga		720
Tyr Leu Ala Gly Lys Asn Pro Gln Gly Gln Ser Trp Leu His Gly Arg		
225 230 235 240		
ggg caa cag cca caa aac aac atc ctt aat ggc ttc tct cca gag gtt		768
Gly Gln Gln Pro Gln Asn Asn Ile Leu Asn Gly Phe Ser Pro Glu Val		
245 250 255		
ctt gct caa gcg ttc aag atc gat gtt agg aca gcg caa caa ctt cag		816
Leu Ala Gln Ala Phe Lys Ile Asp Val Arg Thr Ala Gln Gln Leu Gln		
260 265 270		
aac cag caa gat aac cgg gga aac att gtc cgt gtc caa ggc ccc ttc		864
Asn Gln Asp Asn Arg Gly Asn Ile Val Arg Val Gln Gly Pro Phe		
275 280 285		
ggt gtt att agg ccg cca ttg aaa agc cag aga cca cag gag aca gaa		912
Gly Val Ile Arg Pro Pro Leu Lys Ser Gln Arg Pro Gln Glu Thr Glu		
290 295 300		
gct aac ggt cta gaa gag acc ata tgc agc gca agg tgc acg gat aac		960
Ala Asn Gly Leu Glu Glu Thr Ile Cys Ser Ala Arg Cys Thr Asp Asn		
305 310 315 320		
ctc gat gac cca tct aac gcg gat gtg tat aag cca cag ctt ggt tac		1008
Leu Asp Asp Pro Ser Asn Ala Asp Val Tyr Lys Pro Gln Leu Gly Tyr		
325 330 335		

15

atc agc att ctt aac agt tat gat cta ccc atc ctt cgc gta ctt cgc Ile Ser Ile Leu Asn Ser Tyr Asp Leu Pro Ile Leu Arg Val Leu Arg 340 345 350	1056
ctc tca gcc ctc cgt gga tca atc cgt caa aat gca atg gtt ctt cca Leu Ser Ala Leu Arg Gly Ser Ile Arg Gln Asn Ala Met Val Leu Pro 355 360 365	1104
cag tgg aag tca aag tca aac gcg gtt ctc tac gtg aca gac ggg gaa Gln Trp Lys Ser Lys Ser Asn Ala Val Leu Tyr Val Thr Asp Gly Glu 370 375 380	1152
gcc caa ata cag gtg gtt aac gac aac ggt gac aga gtg ttc gat gga Ala Gln Ile Gln Val Val Asn Asp Asn Gly Asp Arg Val Phe Asp Gly 385 390 395 400	1200
caa gtc tct caa ggg cag cta ctt tcc att cca caa gga ttc tcc gtt Gln Val Ser Gln Gly Gln Leu Leu Ser Ile Pro Gln Gly Phe Ser Val 405 410 415	1248
gtg aaa cgc gca aca agc gat cag ttc agg tgg ata gaa ttc aag aca Val Lys Arg Ala Thr Ser Asp Gln Phe Arg Trp Ile Glu Phe Lys Thr 420 425 430	1296
aac gca aac gcc cag atc aac act ctt gct gga cgt acc tca gtc atg Asn Ala Asn Ala Gln Ile Asn Thr Leu Ala Gly Arg Thr Ser Val Met 435 440 445	1344
aga ggt tta cca tta gag gtc ata gcc aat ggg tac caa atc tca ctt Arg Gly Leu Pro Leu Glu Val Ile Ala Asn Gly Tyr Gln Ile Ser Leu 450 455 460	1392
gaa gaa gca aga agg gtt aag ttc aac aca ata gag acc act ttg acc Glu Glu Ala Arg Arg Val Lys Phe Asn Thr Ile Glu Thr Thr Leu Thr 465 470 475 480	1440
cac agt agt ggc cca gcg agc tac gga agg cca agg aag gct gat gct His Ser Ser Gly Pro Ala Ser Tyr Gly Arg Pro Arg Lys Ala Asp Ala 485 490 495	1488
tga	1491
<210> 14	
<211> 496	
<212> PRT	
<213> Brassica napus	
<400> 14	
Met Ala Arg Leu Ser Ser Leu Leu Tyr Phe Ser Ile Thr Val Leu Ile 1 5 10 15	
Phe Leu His Gly Ser Thr Ala Gln Gln Phe Pro Asn Glu Cys Gln Leu 20 25 30	
Asp Gln Leu Asn Ala Leu Glu Pro Ser His Val Leu Lys Ala Glu Ala 35 40 45	
Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser 50 55 60	
Gly Val Ser Phe Val Arg Tyr Ile Ile Glu Ser Gln Gly Leu Tyr Leu 65 70 75 80	
Pro Ser Phe Leu Asn Thr Ala Asn Val Ser Phe Val Ala Lys Gly Gln 85 90 95	
Gly Leu Met Gly Arg Val Val Pro Gly Cys Ala Glu Thr Phe Gln Asp 100 105 110	

Ser Ser Val Phe Gln Pro Gly Ser Gly Ser Pro Phe Gly Glu Gly Gln
 115 120 125
 Gly Gln Gly Gln Gln Gly Gln Gly Gln Gly Gln Gly Gln Gly Gln Gly
 130 135 140
 Lys Gly Gln Gln Gly Gln Gly Lys Gly Gln Gln Gly Gln Ser Gln Gly
 145 150 155 160
 Gln Gln Gly Gln Gln Gly Phe Arg Asp Met His Gln Lys Val Glu
 165 170 175
 His Ile Arg Ser Gly Asp Thr Ile Ala Thr His Pro Gly Val Ala Gln
 180 185 190
 Trp Phe Tyr Asn Asn Gly Asn Gln Pro Leu Val Ile Val Ala Val Met
 195 200 205
 Asp Leu Ala Ser His Gln Asn Gln Leu Asp Arg Asn Pro Ser Gln Phe
 210 215 220
 Tyr Leu Ala Gly Lys Asn Pro Gln Gly Gln Ser Trp Leu His Gly Arg
 225 230 235 240
 Gly Gln Gln Pro Gln Asn Asn Ile Leu Asn Gly Phe Ser Pro Glu Val
 245 250 255
 Leu Ala Gln Ala Phe Lys Ile Asp Val Arg Thr Ala Gln Gln Leu Gln
 260 265 270
 Asn Gln Gln Asp Asn Arg Gly Asn Ile Val Arg Val Gln Gly Pro Phe
 275 280 285
 Gly Val Ile Arg Pro Pro Leu Lys Ser Gln Arg Pro Gln Glu Thr Glu
 290 295 300
 Ala Asn Gly Leu Glu Glu Thr Ile Cys Ser Ala Arg Cys Thr Asp Asn
 305 310 315 320
 Leu Asp Asp Pro Ser Asn Ala Asp Val Tyr Lys Pro Gln Leu Gly Tyr
 325 330 335
 Ile Ser Ile Leu Asn Ser Tyr Asp Leu Pro Ile Leu Arg Val Leu Arg
 340 345 350
 Leu Ser Ala Leu Arg Gly Ser Ile Arg Gln Asn Ala Met Val Leu Pro
 355 360 365
 Gln Trp Lys Ser Lys Ser Asn Ala Val Leu Tyr Val Thr Asp Gly Glu
 370 375 380
 Ala Gln Ile Gln Val Val Asn Asp Asn Gly Asp Arg Val Phe Asp Gly
 385 390 395 400
 Gln Val Ser Gln Gly Gln Leu Leu Ser Ile Pro Gln Gly Phe Ser Val
 405 410 415
 Val Lys Arg Ala Thr Ser Asp Gln Phe Arg Trp Ile Glu Phe Lys Thr
 420 425 430
 Asn Ala Asn Ala Gln Ile Asn Thr Leu Ala Gly Arg Thr Ser Val Met
 435 440 445
 Arg Gly Leu Pro Leu Glu Val Ile Ala Asn Gly Tyr Gln Ile Ser Leu
 450 455 460
 Glu Glu Ala Arg Arg Val Lys Phe Asn Thr Ile Glu Thr Thr Leu Thr
 465 470 475 480
 His Ser Ser Gly Pro Ala Ser Tyr Gly Arg Pro Arg Lys Ala Asp Ala
 485 490 495

<210> 15
 <211> 555
 <212> DNA
 <213> Brassica napus
 <220>
 <221> CDS
 <222> (1)..(552)
 <223> cruciferin cru4
 <400> 15

ttg tgc aca atg aga tgc acc gaa aac ctt gat gac ccg tca agt gct	48
Leu Cys Thr Met Arg Cys Thr Glu Asn Leu Asp Asp Pro Ser Ser Ala	
1 5 10 15	
gat gtc tac aag cca tcg ctc gga tac att agc aca ctc aac agc tac	96
Asp Val Tyr Lys Pro Ser Leu Gly Tyr Ile Ser Thr Leu Asn Ser Tyr	
20 25 30	
aac ctc cct atc ctc aga ttc ctc cgc ctt agc gct ctt cgt ggc tcc	144
Asn Leu Pro Ile Leu Arg Phe Leu Arg Leu Ser Ala Leu Arg Gly Ser	
35 40 45	
atc cat aac aac gct atg gtg ctg ccg caa tgg aac gtg aac gca aac	192
Ile His Asn Asn Ala Met Val Leu Pro Gln Trp Asn Val Asn Ala Asn	
50 55 60	
gcg gca ctc tac gtg aca aag ggg aag gct cat ata cag atg gtg aac	240
Ala Ala Leu Tyr Val Thr Lys Gly Lys Ala His Ile Gln Met Val Asn	
65 70 75 80	
gac aac gga caa aga gtg ttt gac caa gag atc tcc cag gga cag tta	288
Asp Asn Gly Gln Arg Val Phe Asp Gln Glu Ile Ser Gln Gly Gln Leu	
85 90 95	
ctt gtc gtg cca caa ggc ttc gcg gtc gtg aaa cgt gcc aca agc caa	336
Leu Val Val Pro Gln Gly Phe Ala Val Val Lys Arg Ala Thr Ser Gln	
100 105 110	
cag ttc cag tgg atc gag ttc aag agc aac gac aac gca cag atc aac	384
Gln Phe Gln Trp Ile Glu Phe Lys Ser Asn Asp Asn Ala Gln Ile Asn	
115 120 125	
aca ctc gcg gga cgc acc tca gtc atg aga ggt tta cca ctt gag gtt	432
Thr Leu Ala Gly Arg Thr Ser Val Met Arg Gly Leu Pro Leu Glu Val	
130 135 140	
ata tcc aac ggg tat cag atc tca ccc caa gaa gct aga agt gtt aag	480
Ile Ser Asn Gly Tyr Gln Ile Ser Pro Gln Glu Ala Arg Ser Val Lys	
145 150 155 160	
ttc agc act ctt gag acc aca ttg act caa agc agt ggt cct atg ggc	528
Phe Ser Thr Leu Glu Thr Thr Leu Thr Gln Ser Ser Gly Pro Met Gly	
165 170 175	
tac ggt atg cct aga gtc gag gct tga	555
Tyr Gly Met Pro Arg Val Glu Ala	
180	
<210> 16	
<211> 184	
<212> PRT	
<213> Brassica napus	
<400> 16	
Leu Cys Thr Met Arg Cys Thr Glu Asn Leu Asp Asp Pro Ser Ser Ala	
1 5 10 15	

Asp Val Tyr Lys Pro Ser Leu Gly Tyr Ile Ser Thr Leu Asn Ser Tyr
 20 25 30
 Asn Leu Pro Ile Leu Arg Phe Leu Arg Leu Ser Ala Leu Arg Gly Ser
 35 40 45
 Ile His Asn Asn Ala Met Val Leu Pro Gln Trp Asn Val Asn Ala Asn
 50 55 60
 Ala Ala Leu Tyr Val Thr Lys Gly Lys Ala His Ile Gln Met Val Asn
 65 70 75 80
 Asp Asn Gly Gln Arg Val Phe Asp Gln Glu Ile Ser Gln Gly Gln Leu
 85 90 95
 Leu Val Val Pro Gln Gly Phe Ala Val Val Lys Arg Ala Thr Ser Gln
 100 105 110
 Gln Phe Gln Trp Ile Glu Phe Lys Ser Asn Asp Asn Ala Gln Ile Asn
 115 120 125
 Thr Leu Ala Gly Arg Thr Ser Val Met Arg Gly Leu Pro Leu Glu Val
 130 135 140
 Ile Ser Asn Gly Tyr Gln Ile Ser Pro Gln Glu Ala Arg Ser Val Lys
 145 150 155 160
 Phe Ser Thr Leu Glu Thr Thr Leu Thr Gln Ser Ser Gly Pro Met Gly
 165 170 175
 Tyr Gly Met Pro Arg Val Glu Ala
 180

<210> 17
 <211> 1530

<212> DNA

<213> Brassica napus

<220>

<221> CDS

<222> (1)..(1527)

<223> cruciferin cru4

<400> 17

atg gtt aaa gtt cct cat ctc ctc gtc gca acg ttc ggg gtt etc ctc	48
Met Val Lys Val Pro His Leu Leu Val Ala Thr Phe Gly Val Leu Leu	
1 5 10 15	

gtc ctc aac ggc tgt ctc gca agg cag tcg cta ggg gtt cct cct cag	96
Val Leu Asn Gly Cys Leu Ala Arg Gln Ser Leu Gly Val Pro Pro Gln	
20 25 30	

cta ggg aac gcg tgt aac ctc gat aac tta gac gtt ctc cag cct acc	144
Leu Gly Asn Ala Cys Asn Leu Asp Asn Leu Asp Val Leu Gln Pro Thr	
35 40 45	

gaa act atc aag agc gag gct ggt cgg gtc gag tac tgg gat cac aac	192
Glu Thr Ile Lys Ser Glu Ala Gly Arg Val Glu Tyr Trp Asp His Asn	
50 55 60	

aat cct cag atc cga tgt gct ggt gtc tct gtc tct cgt gtt ata atc	240
Asn Pro Gln Ile Arg Cys Ala Gly Val Ser Val Ser Arg Val Ile Ile	
65 70 75 80	

gaa caa ggc ggt ctc tac ctt cct acc ttc ttc agc tcc ccc aaa att	288
Glu Gln Gly Gly Leu Tyr Leu Pro Thr Phe Phe Ser Ser Pro Lys Ile	
85 90 95	

tca tac gtt caa gga atg ggt att agc gga aga gtg gtc cct gga Ser Tyr Val Val Gln Gly Met Gly Ile Ser Gly Arg Val Val Pro Gly 100 105 110	336
tgc gcg gaa acc ttc atg gac tcg cag cct atg caa gga caa caa caa Cys Ala Glu Thr Phe Met Asp Ser Gln Pro Met Gln Gly Gln Gln Gln 115 120 125	384
ggt caa cca tgg cag gga caa caa gga caa cag ggt cag cag gga caa Gly Gln Pro Trp Gln Gly Gln Gln Gly Gln Gln Gln Gln Gln Gln 130 135 140	432
caa ggt caa cag ggt cag cag gga caa caa ggt caa cag ggt cag cag Gln Gly Gln Gln Gly Gln Gln Gly Gln Gln Gly Gln Gln Gln Gln 145 150 155 160	480
ggt caa cag gga cag cag ggt cag cag cag caa ggg ttc cgt gac atg Gly Gln Gln Gly Gln Gln Gln Gln Gln Gln Gly Phe Arg Asp Met 165 170 175	528
cac cag aag gtc gaa cat gtt cga cat gga gac atc att gcc att act His Gln Lys Val Glu His Val Arg His Gly Asp Ile Ile Ala Ile Thr 180 185 190	576
gca ggc tct tcc cat tgg atc tac aac acc ggt gac cag cca ctt gtc Ala Gly Ser Ser His Trp Ile Tyr Asn Thr Gly Asp Gln Pro Leu Val 195 200 205	624
att atc tgc ctt ctc gac att gcc aac tac caa aac caa ctc gac cgc Ile Ile Cys Leu Leu Asp Ile Ala Asn Tyr Gln Asn Gln Leu Asp Arg 210 215 220	672
aac cca aga acg ttc cgt ctg gcc gga aac aac cca cag ggc ggt tcc Asn Pro Arg Thr Phe Arg Leu Ala Gly Asn Asn Pro Gln Gly Gly Ser 225 230 235 240	720
cag cag cag cag caa caa caa cag aac atg ttg agc ggg ttc gac cct Gln Gln Gln Gln Gln Gln Asn Met Leu Ser Gly Phe Asp Pro 245 250 255	768
cag gtc cta gcc cag gca ttg aaa atc gac gtt agg ttg gct cag gag Gln Val Leu Ala Gln Ala Leu Lys Ile Asp Val Arg Leu Ala Gln Glu 260 265 270	816
ctt cag aac caa caa gac agc aga gga aac atc gtt cgt gtt aag gga Leu Gln Asn Gln Asp Ser Arg Gly Asn Ile Val Arg Val Lys Gly 275 280 285	864
cct ttc cag gtt gtg agg ccg cct ctt aga cag cca tac gag agt gag Pro Phe Gln Val Val Arg Pro Pro Leu Arg Gln Pro Tyr Glu Ser Glu 290 295 300	912
cag tgg aga cac ccc cgt ggc cca cca caa agc cca caa gac aac ggc Gln Trp Arg His Pro Arg Gly Pro Pro Gln Ser Pro Gln Asp Asn Gly 305 310 315 320	960
ttg gag gag act atc tgc agc atg agg acc cac gag aac att gat gac Leu Glu Glu Thr Ile Cys Ser Met Arg Thr His Glu Asn Ile Asp Asp 325 330 335	1008
cca gcc cgt gct gac gtg tat aag ccc aac ctc ggc cgt gtg act agc Pro Ala Arg Ala Asp Val Tyr Lys Pro Asn Leu Gly Arg Val Thr Ser 340 345 350	1056
gtc aac agc tac act tta ccc atc ttg cag tat atc aga ctc agc gcc Val Asn Ser Tyr Thr Leu Pro Ile Leu Gln Tyr Ile Arg Leu Ser Ala 355 360 365	1104

acc cgt ggc att ctc cag ggt aat gcg atg gtg ctt ccg aaa tac aac 1152
 Thr Arg Gly Ile Leu Gln Gly Asn Ala Met Val Leu Pro Lys Tyr Asn
 370 375 380
 atg aac gcg aac gag atc ttg tac tgc act caa gga caa gca agg att 1200
 Met Asn Ala Asn Glu Ile Leu Tyr Cys Thr Gln Gly Gln Ala Arg Ile
 385 390 395 400
 caa gtg gtg aac gac aac gga cag aac gtg ctg gac cag cag gtg cag 1248
 Gln Val Val Asn Asp Asn Gly Gln Asn Val Leu Asp Gln Gln Val Gln
 405 410 415
 aag gga cag ctc gtg gtc atc cca caa gga ttc gcc tat gtt gtc cag 1296
 Lys Gly Gln Leu Val Val Ile Pro Gln Gly Phe Ala Tyr Val Val Gln
 420 425 430
 tcc cac caa aac aac ttc gaa tgg att tct ttc aag aca aac gct aac 1344
 Ser His Gln Asn Asn Phe Glu Trp Ile Ser Phe Lys Thr Asn Ala Asn
 435 440 445
 gcg atg gtc agc act ttg gcc ggt aga acc tcg gcc ttg agg gca ttg 1392
 Ala Met Val Ser Thr Leu Ala Gly Arg Thr Ser Ala Leu Arg Ala Leu
 450 455 460
 cca cta gag gtc ata acc aac gct ttc caa att tct ctc gag gaa gct 1440
 Pro Leu Glu Val Ile Thr Asn Ala Phe Gln Ile Ser Leu Glu Glu Ala
 465 470 475 480
 aga agg atc aag ttc aac acg ctt gag acc act ttg act cgt gcg cgc 1488
 Arg Arg Ile Lys Phe Asn Thr Leu Glu Thr Thr Leu Thr Arg Ala Arg
 485 490 495
 ggt gga caa ccc cag ttg atc gag gag ata gtc gag gct taa 1530
 Gly Gly Gln Pro Gln Leu Ile Glu Glu Ile Val Glu Ala
 500 505

<210> 18

<211> 509

<212> PRT

<213> Brassica napus

<400> 18

Met Val Lys Val Pro His Leu Leu Val Ala Thr Phe Gly Val Leu Leu
 1 5 10 15

Val Leu Asn Gly Cys Leu Ala Arg Gln Ser Leu Gly Val Pro Pro Gln
 20 25 30

Leu Gly Asn Ala Cys Asn Leu Asp Asn Leu Asp Val Leu Gln Pro Thr
 35 40 45

Glu Thr Ile Lys Ser Glu Ala Gly Arg Val Glu Tyr Trp Asp His Asn
 50 55 60

Asn Pro Gln Ile Arg Cys Ala Gly Val Ser Val Ser Arg Val Ile Ile
 65 70 75 80

Glu Gln Gly Leu Tyr Leu Pro Thr Phe Phe Ser Ser Pro Lys Ile
 85 90 95

Ser Tyr Val Val Gln Gly Met Gly Ile Ser Gly Arg Val Val Pro Gly
 100 105 110

Cys Ala Glu Thr Phe Met Asp Ser Gln Pro Met Gln Gly Gln Gln Gln
 115 120 125

Gly Gln Pro Trp Gln Gly Gln Gln Gly Gln Gln Gln Gly Gln Gln
 130 135 140

Gln Gly Gln Gln Gly Gln Gln Gly Gln Gln Gly Gln Gln Gln Gln
 145 150 155 160
 Gly Gln Gln Gly Gln Gln Gly Gln Gln Gln Gly Phe Arg Asp Met
 165 170 175
 His Gln Lys Val Glu His Val Arg His Gly Asp Ile Ile Ala Ile Thr
 180 185 190
 Ala Gly Ser Ser His Trp Ile Tyr Asn Thr Gly Asp Gln Pro Leu Val
 195 200 205
 Ile Ile Cys Leu Leu Asp Ile Ala Asn Tyr Gln Asn Gln Leu Asp Arg
 210 215 220
 Asn Pro Arg Thr Phe Arg Leu Ala Gly Asn Asn Pro Gln Gly Gly Ser
 225 230 235 240
 Gln Gln Gln Gln Gln Gln Gln Asn Met Leu Ser Gly Phe Asp Pro
 245 250 255
 Gln Val Leu Ala Gln Ala Leu Lys Ile Asp Val Arg Leu Ala Gln Glu
 260 265 270
 Leu Gln Asn Gln Gln Asp Ser Arg Gly Asn Ile Val Arg Val Lys Gly
 275 280 285
 Pro Phe Gln Val Val Arg Pro Pro Leu Arg Gln Pro Tyr Glu Ser Glu
 290 295 300
 Gln Trp Arg His Pro Arg Gly Pro Pro Gln Ser Pro Gln Asp Asn Gly
 305 310 315 320
 Leu Glu Glu Thr Ile Cys Ser Met Arg Thr His Glu Asn Ile Asp Asp
 325 330 335
 Pro Ala Arg Ala Asp Val Tyr Lys Pro Asn Leu Gly Arg Val Thr Ser
 340 345 350
 Val Asn Ser Tyr Thr Leu Pro Ile Leu Gln Tyr Ile Arg Leu Ser Ala
 355 360 365
 Thr Arg Gly Ile Leu Gln Gly Asn Ala Met Val Leu Pro Lys Tyr Asn
 370 375 380
 Met Asn Ala Asn Glu Ile Leu Tyr Cys Thr Gln Gly Gln Ala Arg Ile
 385 390 395 400
 Gln Val Val Asn Asp Asn Gly Gln Asn Val Leu Asp Gln Gln Val Gln
 405 410 415
 Lys Gly Gln Leu Val Val Ile Pro Gln Gly Phe Ala Tyr Val Val Gln
 420 425 430
 Ser His Gln Asn Asn Phe Glu Trp Ile Ser Phe Lys Thr Asn Ala Asn
 435 440 445
 Ala Met Val Ser Thr Leu Ala Gly Arg Thr Ser Ala Leu Arg Ala Leu
 450 455 460
 Pro Leu Glu Val Ile Thr Asn Ala Phe Gln Ile Ser Leu Glu Glu Ala
 465 470 475 480
 Arg Arg Ile Lys Phe Asn Thr Leu Glu Thr Thr Leu Thr Arg Ala Arg
 485 490 495
 Gly Gly Gln Pro Gln Leu Ile Glu Glu Ile Val Glu Ala
 500 505

<210> 19
 <211> 1488
 <212> DNA
 <213> Glycine max
 <220>
 <221> CDS
 <222> (1)...(1485)
 <223> Gycinin A-1a-B-x subunit
 <400> 19

atg	gcc	aag	cta	gtt	ttt	tcc	ctt	tgt	ttt	ctg	ctt	ttc	agt	ggc	tgc	48
Met	Ala	Lys	Leu	Val	Phe	Ser	Leu	Cys	Phe	Leu	Leu	Phe	Ser	Gly	Cys	
1			5						10					15		
tgc	ttc	gct	ttc	agt	tcc	aga	gag	cag	cct	cag	caa	aac	gag	tgc	cag	96
Cys	Phe	Ala	Phe	Ser	Ser	Arg	Glu	Gln	Pro	Gln	Gln	Asn	Glu	Cys	Gln	
20			25						30							
atc	caa	aaa	ctc	aat	gcc	ctc	aaa	ccg	gat	aac	cgt	ata	gag	tca	gaa	144
Ile	Gln	Lys	Leu	Asn	Ala	Leu	Lys	Pro	Asp	Asn	Arg	Ile	Glu	Ser	Glu	
35			40								45					
gga	ggg	ctc	att	gag	aca	tgg	aac	cct	aac	aac	aag	cca	ttc	cag	tgt	192
Gly	Gly	Leu	Ile	Glu	Thr	Trp	Asn	Pro	Asn	Asn	Lys	Pro	Phe	Gln	Cys	
50			55								60					
gcc	ggt	gtt	gcc	ctc	tct	cgc	tgc	acc	ctc	aac	cgc	aac	gcc	ctt	cgt	240
Ala	Gly	Val	Ala	Leu	Ser	Arg	Cys	Thr	Leu	Asn	Arg	Asn	Ala	Leu	Arg	
65			70						75					80		
aga	cct	tcc	tac	acc	aac	ggt	ccc	cag	gaa	atc	tac	atc	caa	caa	ggt	288
Arg	Pro	Ser	Tyr	Thr	Asn	Gly	Pro	Gln	Glu	Ile	Tyr	Ile	Gln	Gln	Gly	
85			90								95					
aag	ggt	att	ttt	ggc	atg	ata	tac	ccg	ggt	tgt	cct	agc	aca	ttt	gaa	336
Lys	Gly	Ile	Phe	Gly	Met	Ile	Tyr	Pro	Gly	Cys	Pro	Ser	Thr	Phe	Glu	
100			105								110					
gag	cct	caa	caa	cct	caa	caa	aga	gga	caa	agc	agc	aga	cca	caa	gac	384
Glu	Pro	Gln	Gln	Pro	Gln	Gln	Arg	Gly	Gln	Ser	Ser	Arg	Pro	Gln	Asp	
115			120								125					
cgt	cac	cag	aag	atc	tat	aac	ttc	aga	gag	ggt	gat	ttg	atc	gca	gtg	432
Arg	His	Gln	Lys	Ile	Tyr	Asn	Phe	Arg	Glu	Gly	Asp	Leu	Ile	Ala	Val	
130			135								140					
cct	act	ggt	gtt	gca	tgg	tgg	atg	tac	aac	aat	gaa	gac	act	cct	gtt	480
Pro	Thr	Gly	Val	Ala	Trp	Trp	Met	Tyr	Asn	Asn	Glu	Asp	Thr	Pro	Val	
145			150						155					160		
gtt	gcc	gtt	tct	att	att	gac	acc	aac	agc	ttg	gag	aac	cag	ctc	gac	528
Val	Ala	Val	Ser	Ile	Ile	Asp	Thr	Asn	Ser	Leu	Glu	Asn	Gln	Leu	Asp	
165			170								175					
cag	atg	cct	agg	aga	tcc	tat	ctt	gct	ggg	aac	caa	gag	caa	gag	ttt	576
Gln	Met	Pro	Arg	Arg	Phe	Tyr	Leu	Ala	Gly	Asn	Gln	Glu	Gln	Glu	Phe	
180			185								190					
cta	aaa	tat	cag	caa	gag	caa	gga	ggt	cat	caa	agc	cag	aaa	gga	aag	624
Leu	Lys	Tyr	Gln	Gln	Glu	Gln	Gly	Gly	His	Gln	Ser	Gln	Lys	Gly	Lys	
195			200								205					
cat	cag	caa	gaa	gaa	aac	gaa	gga	ggc	agc	ata	ttg	agt	ggc	tcc	672	
His	Gln	Gln	Glu	Glu	Asn	Glu	Gly	Gly	Ser	Ile	Leu	Ser	Gly	Phe		
210			215								220					

acc ctg gaa ttc ttg gaa cat gca ttc agc gtg gac aag cag ata gcg Thr Leu Glu Phe Leu Glu His Ala Phe Ser Val Asp Lys Gln Ile Ala	720
225 230 235 240	
aaa aac cta caa gga gag aac gaa ggg gaa gac aag gga gcc att gtg Lys Asn Leu Gln Gly Glu Asn Glu Gly Glu Asp Lys Gly Ala Ile Val	768
245 250 255	
aca gtg aaa gga ggt ctg agc gtg ata aaa cca ccc acg gac gag cag Thr Val Lys Gly Gly Leu Ser Val Ile Lys Pro Pro Thr Asp Glu Gln	816
260 265 270	
caa caa aga ccc cag gaa gag gaa gaa gaa gag gat gag aag cca Gln Gln Arg Pro Gln Glu Glu Glu Glu Asp Glu Lys Pro	864
275 280 285	
cag tgc aag ggt aaa gac aaa cac tgc caa cgc ccc cga gga agc caa Gln Cys Lys Gly Lys Asp Lys His Cys Gln Arg Pro Arg Gly Ser Gln	912
290 295 300	
agc aaa agc aga aga aat ggc att gac gag acc ata tgc acc atg aga Ser Lys Ser Arg Arg Asn Gly Ile Asp Glu Thr Ile Cys Thr Met Arg	960
305 310 315 320	
ctt cgc cac aac att ggc cag act tca tca cct gac atc tac aaac cct Leu Arg His Asn Ile Gly Gln Thr Ser Ser Pro Asp Ile Tyr Asn Pro	1008
325 330 335	
caa gcc ggt agc gtc aca acc gcc acc agc ctt gac ttc cca gcc ctc Gln Ala Gly Ser Val Thr Thr Ala Thr Ser Leu Asp Phe Pro Ala Leu	1056
340 345 350	
tcg tgg ctc aga ctc agt gct gag ttt gga tct ctc cgc aag aat gca Ser Trp Leu Arg Leu Ser Ala Glu Phe Gly Ser Leu Arg Lys Asn Ala	1104
355 360 365	
atg ttc gtg cca cac tac aac ctg aac gcg aac agc ata ata tac gca Met Phe Val Pro His Tyr Asn Leu Asn Ala Asn Ser Ile Ile Tyr Ala	1152
370 375 380	
ttg aat gga cgg gca ttg ata caa gtg gtg aat tgc aac ggt gag aga Leu Asn Gly Arg Ala Leu Ile Gln Val Val Asn Cys Asn Gly Glu Arg	1200
385 390 395 400	
gtg ttt gat gga gag ctg caa gag gga cgg gtg ctg atc gtg cca caa Val Phe Asp Gly Glu Leu Gln Glu Gly Arg Val Leu Ile Val Pro Gln	1248
405 410 415	
aac ttt gtg gtg gct gca aga tca cag agt gac aac ttc gag tat gtg Asn Phe Val Val Ala Ala Arg Ser Gln Ser Asp Asn Phe Glu Tyr Val	1296
420 425 430	
tca ttc aag acc aat gat aca ccc atg atc ggc act ctt gca ggg gca Ser Phe Lys Thr Asn Asp Thr Pro Met Ile Gly Thr Leu Ala Gly Ala	1344
435 440 445	
aac tca ttg ttg aac gca tta cca gag gaa gtg att cag cac act ttc Asn Ser Leu Leu Asn Ala Leu Pro Glu Glu Val Ile Gln His Thr Phe	1392
450 455 460	
aac cta aaa agc cag cag gcc agg cag ata aag aac aac aac cct ttc Asn Leu Lys Ser Gln Gln Ala Arg Gln Ile Lys Asn Asn Asn Pro Phe	1440
465 470 475 480	
aag ttc ctg gtt cca cct cag gag tct cag aag aga gct gtg gct tag Lys Phe Leu Val Pro Pro Gln Glu Ser Gln Lys Arg Ala Val Ala	1488
485 490 495	

<210> 20
 <211> 495
 <212> PRT
 <213> Glycine max
 <400> 20

Met	Ala	Lys	Leu	Val	Phe	Ser	Leu	Cys	Phe	Leu	Leu	Phe	Ser	Gly	Cys
1				5					10					15	
Cys	Phe	Ala	Phe	Ser	Ser	Arg	Glu	Gln	Pro	Gln	Gln	Asn	Glu	Cys	Gln
	20					25						30			
Ile	Gln	Lys	Leu	Asn	Ala	Leu	Lys	Pro	Asp	Asn	Arg	Ile	Glu	Ser	Glu
	35						40				45				
Gly	Gly	Leu	Ile	Glu	Thr	Trp	Asn	Pro	Asn	Asn	Lys	Pro	Phe	Gln	Cys
	50					55					60				
Ala	Gly	Val	Ala	Leu	Ser	Arg	Cys	Thr	Leu	Asn	Arg	Asn	Ala	Leu	Arg
	65				70				75				80		
Arg	Pro	Ser	Tyr	Thr	Asn	Gly	Pro	Gln	Glu	Ile	Tyr	Ile	Gln	Gln	Gly
		85						90					95		
Lys	Gly	Ile	Phe	Gly	Met	Ile	Tyr	Pro	Gly	Cys	Pro	Ser	Thr	Phe	Glu
		100					105					110			
Glu	Pro	Gln	Gln	Pro	Gln	Gln	Arg	Gly	Gln	Ser	Ser	Arg	Pro	Gln	Asp
		115					120					125			
Arg	His	Gln	Lys	Ile	Tyr	Asn	Phe	Arg	Glu	Gly	Asp	Leu	Ile	Ala	Val
		130				135					140				
Pro	Thr	Gly	Val	Ala	Trp	Trp	Met	Tyr	Asn	Asn	Glu	Asp	Thr	Pro	Val
	145					150			155			160			
Val	Ala	Val	Ser	Ile	Ile	Asp	Thr	Asn	Ser	Leu	Glu	Asn	Gln	Leu	Asp
			165					170					175		
Gln	Met	Pro	Arg	Arg	Phe	Tyr	Leu	Ala	Gly	Asn	Gln	Glu	Gln	Glu	Phe
			180				185					190			
Leu	Lys	Tyr	Gln	Gln	Glu	Gln	Gly	Gly	His	Gln	Ser	Gln	Lys	Gly	Lys
		195				200					205				
His	Gln	Gln	Glu	Glu	Asn	Glu	Gly	Gly	Ser	Ile	Leu	Ser	Gly	Phe	
		210				215					220				
Thr	Leu	Glu	Phe	Leu	Glu	His	Ala	Phe	Ser	Val	Asp	Lys	Gln	Ile	Ala
	225				230				235				240		
Lys	Asn	Leu	Gln	Gly	Glu	Asn	Glu	Gly	Glu	Asp	Lys	Gly	Ala	Ile	Val
			245				250					255			
Thr	Val	Lys	Gly	Gly	Leu	Ser	Val	Ile	Lys	Pro	Pro	Thr	Asp	Glu	Gln
		260					265			270					
Gln	Gln	Arg	Pro	Gln	Glu	Glu	Glu	Glu	Glu	Glu	Asp	Glu	Lys	Pro	
		275			280						285				
Gln	Cys	Lys	Gly	Lys	Asp	Lys	His	Cys	Gln	Arg	Pro	Arg	Gly	Ser	Gln
		290				295					300				
Ser	Lys	Ser	Arg	Arg	Asn	Gly	Ile	Asp	Glu	Thr	Ile	Cys	Thr	Met	Arg
	305					310				315				320	
Leu	Arg	His	Asn	Ile	Gly	Gln	Thr	Ser	Ser	Pro	Asp	Ile	Tyr	Asn	Pro
			325					330				335			
Gln	Ala	Gly	Ser	Val	Thr	Thr	Ala	Thr	Ser	Leu	Asp	Phe	Pro	Ala	Leu
			340					345				350			

Ser Trp Leu Arg Leu Ser Ala Glu Phe Gly Ser Leu Arg Lys Asn Ala
 355 360 365
 Met Phe Val Pro His Tyr Asn Leu Asn Ala Asn Ser Ile Ile Tyr Ala
 370 375 380
 Leu Asn Gly Arg Ala Leu Ile Gln Val Val Asn Cys Asn Gly Glu Arg
 385 390 395 400
 Val Phe Asp Gly Glu Leu Gln Glu Gly Arg Val Leu Ile Val Pro Gln
 405 410 415
 Asn Phe Val Val Ala Ala Arg Ser Gln Ser Asp Asn Phe Glu Tyr Val
 420 425 430
 Ser Phe Lys Thr Asn Asp Thr Pro Met Ile Gly Thr Leu Ala Gly Ala
 435 440 445
 Asn Ser Leu Leu Asn Ala Leu Pro Glu Glu Val Ile Gln His Thr Phe
 450 455 460
 Asn Leu Lys Ser Gln Gln Ala Arg Gln Ile Lys Asn Asn Asn Pro Phe
 465 470 475 480
 Lys Phe Leu Val Pro Pro Gln Glu Ser Gln Lys Arg Ala Val Ala
 485 490 495

<210> 21
 <211> 1458
 <212> DNA
 <213> Glycine max
 <220>
 <221> CDS
 <222> (1)..(1455)
 <223> glycinin G2 subunit
 <400> 21
 atg gcc aag ctt gtt ctt tcc ctt tgt ttc ctt ctt ttc agt ggc tgc 48
 Met Ala Lys Leu Val Leu Ser Leu Cys Phe Leu Leu Phe Ser Gly Cys
 1 5 10 15
 ttc gct ctg aga gag cag gca cag caa aat gag tgc cag atc caa aag 96
 Phe Ala Leu Arg Glu Gln Ala Gln Gln Asn Glu Cys Gln Ile Gln Lys
 20 25 30
 ctg aat gcc ctc aaa ccg gat aac cgt ata gag tcg gaa ggt ggg ttc 144
 Leu Asn Ala Leu Lys Pro Asp Asn Arg Ile Glu Ser Glu Gly Gly Phe
 35 40 45
 att gag aca tgg aac cct aac aag cca ttc cag tgt gcc ggt gtt 192
 Ile Glu Thr Trp Asn Pro Asn Asn Lys Pro Phe Gln Cys Ala Gly Val
 50 55 60
 gcc ctc tct cgc tgc acc ctt aac cgc aat gcc ctt cgt aga cct tcc 240
 Ala Leu Ser Arg Cys Thr Leu Asn Arg Asn Ala Leu Arg Arg Pro Ser
 65 70 75 80
 tac acc aac ggt ccc cag gaa atc tac ata caa caa ggt aat ggt att 288
 Tyr Thr Asn Gly Pro Gln Glu Ile Tyr Ile Gln Gln Gly Asn Gly Ile
 85 90 95
 ttt ggc atg ata ttc ccg ggt tgt cct agc act tat caa gag ccg caa 336
 Phe Gly Met Ile Phe Pro Gly Cys Pro Ser Thr Tyr Gln Glu Pro Gln
 100 105 110

gaa tct cag caa cga gga cga agc cag agg ccc caa gac cgt cac caa		384	
Glu Ser Gln Gln Arg Gly Arg Ser Gln Arg Pro Gln Asp Arg His Gln			
115	120	125	
aag gta cat cgc ttc aga gag ggt gat ttg atc gca gtg cct act ggt		432	
Lys Val His Arg Phe Arg Glu Gly Asp Leu Ile Ala Val Pro Thr Gly			
130	135	140	
gtt gca tgg tgg atg tac aac aat gaa gac act cct gtt gtt gcc gtt		480	
Val Ala Trp Trp Met Tyr Asn Asn Glu Asp Thr Pro Val Val Ala Val			
145	150	155	160
tct att att gac acc aac agc ttg gag aac cag ctc gac cag atg cct		528	
Ser Ile Ile Asp Thr Asn Ser Leu Glu Asn Gln Leu Asp Gln Met Pro			
165	170	175	
agg aga ttc tat ctt gct ggg aac caa gag caa gag ttt cta aaa tat		576	
Arg Arg Phe Tyr Leu Ala Gly Asn Gln Glu Glu Phe Leu Lys Tyr			
180	185	190	
cag cag cag caa gga ggt tcc caa agc cag aaa gga aag caa caa		624	
Gln Gln Gln Gln Gly Gly Ser Gln Ser Gln Lys Gly Lys Gln Gln			
195	200	205	
gaa gaa gaa aac gaa gga agc aac ata ttg agt ggc ttc gcc cct gaa		672	
Glu Glu Asn Glu Gly Ser Asn Ile Leu Ser Gly Phe Ala Pro Glu			
210	215	220	
ttc ttg aaa gaa gcg ttc ggc gtg aac atg cag ata gtg aga aac cta		720	
Phe Leu Lys Glu Ala Phe Gly Val Asn Met Gln Ile Val Arg Asn Leu			
225	230	235	240
caa ggt gag aac gaa gag gag gat agt gga gcc att gtg aca gtg aaa		768	
Gln Gly Glu Asn Glu Glu Asp Ser Gly Ala Ile Val Thr Val Lys			
245	250	255	
gga ggt cta aga gtc aca gct cca gcc atg agg aag cca cag caa gaa		816	
Gly Gly Leu Arg Val Thr Ala Pro Ala Met Arg Lys Pro Gln Gln Glu			
260	265	270	
gaa gat gat gat gag gaa gag cag cca cag tgc gtg gag aca gac		864	
Glu Asp Asp Asp Glu Glu Glu Gln Pro Gln Cys Val Glu Thr Asp			
275	280	285	
aaa ggt tgc caa cgc caa agc aaa agg agc aga aat ggc att gat gag		912	
Lys Gly Cys Gln Arg Gln Ser Lys Arg Ser Arg Asn Gly Ile Asp Glu			
290	295	300	
acc att tgc aca atg aga ctt cgc caa aac att ggt cag aat tca tca		960	
Thr Ile Cys Thr Met Arg Leu Arg Gln Asn Ile Gly Gln Asn Ser Ser			
305	310	315	320
cct gac atc tac aac cct caa gct ggt agc atc aca acc gcc acc agc		1008	
Pro Asp Ile Tyr Asn Pro Gln Ala Gly Ser Ile Thr Thr Ala Thr Ser			
325	330	335	
ctt gac ttc cca gcc ctc tgg ctt ctc aaa ctc agt gcc cag tat gga		1056	
Leu Asp Phe Pro Ala Leu Trp Leu Leu Lys Leu Ser Ala Gln Tyr Gly			
340	345	350	
tca ctc cgc aag aat gct atg ttc gtg cca cac tac acc ctg aac gcg		1104	
Ser Leu Arg Lys Asn Ala Met Phe Val Pro His Tyr Thr Leu Asn Ala			
355	360	365	
aac agc ata ata tac gca ttg aat ggg cgg gca ttg gta caa gtg gtg		1152	
Asn Ser Ile Ile Tyr Ala Leu Asn Gly Arg Ala Leu Val Gln Val Val			
370	375	380	

aat tgc aat ggt gag aga gtg ttt gat gga gag ctg caa gag gga ggg Asn Cys Asn Gly Glu Arg Val Phe Asp Gly Glu Leu Gln Glu Gly Gly 385 390 395 400	1200
gtg ctg atc gtt cca caa aac ttt gcg gtg gct gca aaa tcc cag agc Val Leu Ile Val Pro Gln Asn Phe Ala Val Ala Ala Lys Ser Gln Ser 405 410 415	1248
gat aac ttt gag tat gtg tca ttc aag acc aat gat aga ccc tcg atc Asp Asn Phe Glu Tyr Val Ser Phe Lys Thr Asn Asp Arg Pro Ser Ile 420 425 430	1296
gga aac ctt gca ggg gca aac tca ttg ttg aac gca ttg cca gag gaa Gly Asn Leu Ala Gly Ala Asn Ser Leu Leu Asn Ala Leu Pro Glu Glu 435 440 445	1344
gtg att cag cac act ttt aac cta aag agc cag cag gcc agg cag gtg Val Ile Gln His Thr Phe Asn Leu Lys Ser Gln Gln Ala Arg Gln Val 450 455 460	1392
aag aac aac aac cct ttc agc ttc ctt gtt cca cct cag gag tct cag Lys Asn Asn Asn Pro Phe Ser Phe Leu Val Pro Pro Gln Glu Ser Gln 465 470 475 480	1440
agg aga gct gtg gct tag Arg Arg Ala Val Ala 485	1458
<210> 22	
<211> 485	
<212> PRT	
<213> Glycine max	
<400> 22	
Met Ala Lys Leu Val Leu Ser Leu Cys Phe Leu Leu Phe Ser Gly Cys 1 5 10 15	
Phe Ala Leu Arg Glu Gln Ala Gln Gln Asn Glu Cys Gln Ile Gln Lys 20 25 30	
Leu Asn Ala Leu Lys Pro Asp Asn Arg Ile Glu Ser Glu Gly Gly Phe 35 40 45	
Ile Glu Thr Trp Asn Pro Asn Asn Lys Pro Phe Gln Cys Ala Gly Val 50 55 60	
Ala Leu Ser Arg Cys Thr Leu Asn Arg Asn Ala Leu Arg Arg Pro Ser 65 70 75 80	
Tyr Thr Asn Gly Pro Gln Glu Ile Tyr Ile Gln Gln Gly Asn Gly Ile 85 90 95	
Phe Gly Met Ile Phe Pro Gly Cys Pro Ser Thr Tyr Gln Glu Pro Gln 100 105 110	
Glu Ser Gln Gln Arg Gly Arg Ser Gln Arg Pro Gln Asp Arg His Gln 115 120 125	
Lys Val His Arg Phe Arg Glu Gly Asp Leu Ile Ala Val Pro Thr Gly 130 135 140	
Val Ala Trp Trp Met Tyr Asn Asn Glu Asp Thr Pro Val Val Ala Val 145 150 155 160	
Ser Ile Ile Asp Thr Asn Ser Leu Glu Asn Gln Leu Asp Gln Met Pro 165 170 175	
Arg Arg Phe Tyr Leu Ala Gly Asn Gln Glu Gln Phe Leu Lys Tyr 180 185 190	

Gln Gln Gln Gln Gln Gly Gly Ser Gln Ser Gln Lys Gly Lys Gln Gln
 195 200 205
 Glu Glu Glu Asn Glu Gly Ser Asn Ile Leu Ser Gly Phe Ala Pro Glu
 210 215 220
 Phe Leu Lys Glu Ala Phe Gly Val Asn Met Gln Ile Val Arg Asn Leu
 225 230 235 240
 Gln Gly Glu Asn Glu Glu Asp Ser Gly Ala Ile Val Thr Val Lys
 245 250 255
 Gly Gly Leu Arg Val Thr Ala Pro Ala Met Arg Lys Pro Gln Gln Glu
 260 265 270
 Glu Asp Asp Asp Asp Glu Glu Glu Gln Pro Gln Cys Val Glu Thr Asp
 275 280 285
 Lys Gly Cys Gln Arg Gln Ser Lys Arg Ser Arg Asn Gly Ile Asp Glu
 290 295 300
 Thr Ile Cys Thr Met Arg Leu Arg Gln Asn Ile Gly Gln Asn Ser Ser
 305 310 315 320
 Pro Asp Ile Tyr Asn Pro Gln Ala Gly Ser Ile Thr Thr Ala Thr Ser
 325 330 335
 Leu Asp Phe Pro Ala Leu Trp Leu Leu Lys Leu Ser Ala Gln Tyr Gly
 340 345 350
 Ser Leu Arg Lys Asn Ala Met Phe Val Pro His Tyr Thr Leu Asn Ala
 355 360 365
 Asn Ser Ile Ile Tyr Ala Leu Asn Gly Arg Ala Leu Val Gln Val Val
 370 375 380
 Asn Cys Asn Gly Glu Arg Val Phe Asp Gly Glu Leu Gln Glu Gly Gly
 385 390 395 400
 Val Leu Ile Val Pro Gln Asn Phe Ala Val Ala Ala Lys Ser Gln Ser
 405 410 415
 Asp Asn Phe Glu Tyr Val Ser Phe Lys Thr Asn Asp Arg Pro Ser Ile
 420 425 430
 Gly Asn Leu Ala Gly Ala Asn Ser Leu Leu Asn Ala Leu Pro Glu Glu
 435 440 445
 Val Ile Gln His Thr Phe Asn Leu Lys Ser Gln Gln Ala Arg Gln Val
 450 455 460
 Lys Asn Asn Asn Pro Phe Ser Phe Leu Val Pro Pro Gln Glu Ser Gln
 465 470 475 480
 Arg Arg Ala Val Ala
 485

<210> 23
 <211> 1689
 <212> DNA
 <213> Glycine max

<220>
 <221> CDS
 <222> (1)..(1686)
 <223> glycinin A5A4B3 subunits

<400> 23
 atg ggg aag ccc ttc act ctc tct ctt tcc ctt tgc ttg cta ctc 48

Met	Gly	Lys	Pro	Phe	Thr	Leu	Ser	Leu	Ser	Ser	Leu	Cys	Leu	Leu		
1			5			10						15				
ttg	tcg	agt	gca	tgc	ttt	gct	att	agc	tcc	agc	aag	ctc	aac	gag	tgc	96
Leu	Ser	Ser	Ala	Cys	Phe	Ala	Ile	Ser	Ser	Ser	Lys	Leu	Asn	Glu	Cys	
			20					25				30				
caa	ctc	aac	aac	ctc	aac	gcg	ttg	gaa	ccc	gac	cac	cgc	gtt	gag	tcc	144
Gln	Leu	Asn	Asn	Leu	Asn	Ala	Leu	Glu	Pro	Asp	His	Arg	Val	Glu	Ser	
			35				40				45					
gaa	ggg	ggt	ttg	att	caa	aca	tgg	aac	tct	caa	cac	cct	gag	ctg	aaa	192
Glu	Gly	Gly	Leu	Ile	Gln	Thr	Trp	Asn	Ser	Gln	His	Pro	Glu	Leu	Lys	
			50				55.				60					
tgc	gcc	ggt	gtc	act	gtt	tcc	aaa	ctc	acc	ctc	aac	cgc	aat	ggc	ctc	240
Cys	Ala	Gly	Val	Thr	Val	Ser	Lys	Leu	Thr	Leu	Asn	Arg	Asn	Gly	Leu	
	65			70				75			80					
cac	tcg	cca	tct	tac	tca	cct	tat	ccc	cgg	atg	atc	atc	atc	gcc	caa	288
His	Ser	Pro	Ser	Tyr	Ser	Pro	Tyr	Pro	Arg	Met	Ile	Ile	Ile	Ala	Gln	
			85				90				95					
ggg	aaa	gga	gca	ctt	gga	gtt	gca	att	cca	gga	tgt	cct	gag	acg	ttt	336
Gly		Gly														
			100				105				110					
gag	gag	cca	caa	gaa	caa	tca	aac	aga	aga	ggc	tca	agg	tcg	cag	aag	384
Glu	Glu	Pro	Gln	Glu	Gln	Ser	Asn	Arg	Arg	Gly	Ser	Arg	Ser	Gln	Lys	
	115			120			125									
cag	cag	cta	cag	gac	agt	cac	cag	aag	att	cgt	cac	ttc	aat	gaa	gga	432
Gln	Gln	Leu	Gln	Asp	Ser	His	Gln	Lys	Ile	Arg	His	Phe	Asn	Glu	Gly	
	130			135			140									
gac	gta	ctc	gtg	att	cct	cct	agt	gtt	cct	tac	tgg	acc	tat	aac	act	480
Asp	Val	Leu	Val	Ile	Pro	Pro	Ser	Val	Pro	Tyr	Trp	Thr	Tyr	Asn	Thr	
	145			150			155				160					
ggc	gat	gaa	cca	gtt	gcc	atc	agt	ctt	ctt	gac	acc	tct	aac	ttc	528	
Gly	Asp	Glu	Pro	Val	Val	Ala	Ile	Ser	Leu	Leu	Asp	Thr	Ser	Asn	Phe	
			165			170				175						
aat	aac	cag	ctt	gat	caa	acc	cct	agg	gta	ttt	tac	ctt	gct	ggg	aac	576
Asn	Asn	Gln	Leu	Asp	Gln	Thr	Pro	Arg	Val	Phe	Tyr	Leu	Ala	Gly	Asn	
	180			185			190									
cca	gat	ata	gag	tac	cca	gag	acc	atg	caa	caa	caa	cag	cag	aaa	624	
Pro	Asp	Ile	Glu	Tyr	Pro	Glu	Thr	Met	Gln	Gln	Gln	Gln	Gln	Gln	Lys	
	195			200			205									
agt	cat	ggt	gga	cgc	aag	cag	ggg	caa	cac	cac	cag	cag	gag	gaa	672	
Ser	His	Gly	Gly	Arg	Lys	Gln	Gly	Gln	His	Gln	Gln	Glu	Glu	Glu	Glu	
	210			215			220									
gaa	ggt	ggc	agc	gtg	ctc	agt	ggc	ttc	agc	aaa	cac	ttc	ttg	gca	caa	720
Glu	Gly	Gly	Ser	Val	Leu	Ser	Gly	Phe	Ser	Lys	His	Phe	Leu	Ala	Gln	
	225			230			235				240					
tcc	ttc	aac	acc	aac	gag	gac	ata	gct	gag	aaa	ctt	gag	tct	cca	gac	768
Ser	Phe	Asn	Thr	Asn	Glu	Asp	Ile	Ala	Glu	Lys	Leu	Glu	Ser	Pro	Asp	
	245			250			255									
gac	gaa	agg	aag	cag	atc	gtg	aca	gtg	gaa	gga	ggt	ctc	agc	gtt	atc	816
Asp	Glu	Arg	Lys	Gln	Ile	Val	Thr	Val	Glu	Gly	Gly	Leu	Ser	Val	Ile	
	260			265			270									

agc ccc aag tgg caa gaa caa gat gaa gat gaa gac gaa	864
Ser Pro Lys Trp Gln Glu Gln Gln Asp Glu Asp Glu Asp Glu	
275 280 285	
gat gat gaa gat gaa caa att ccc tct cac cct cct cgc cga cca agc	912
Asp Asp Glu Asp Glu Gln Ile Pro Ser His Pro Pro Arg Arg Pro Ser	
290 295 300	
cat gga aag cgt gaa caa gac gag gac gac gaa gat gaa gat aaa	960
His Gly Lys Arg Glu Gln Asp Glu Asp Glu Asp Glu Asp Lys	
305 310 315 320	
cct cgt cct agt cga cca agc caa gga aag cgg aac aag aca gga cag	1008
Pro Arg Pro Ser Arg Pro Ser Gln Gly Lys Arg Asn Lys Thr Gly Gln	
325 330 335	
gac gag gac gaa gat gaa gat gaa gat caa cct cgc aag agc cgc gaa	1056
Asp Glu Asp Glu Asp Glu Asp Gln Pro Arg Lys Ser Arg Glu	
340 345 350	
tgg aga tcg aaa aag aca caa ccc aga aga cct aga caa gaa gaa cca	1104
Trp Arg Ser Lys Lys Thr Gln Pro Arg Arg Pro Arg Gln Glu Glu Pro	
355 360 365	
cgt gaa aga gga tgc gag aca aga aac ggg gtt gag gaa aat atc tgc	1152
Arg Glu Arg Gly Cys Glu Thr Arg Asn Gly Val Glu Glu Asn Ile Cys	
370 375 380	
acc ttg aag ctt cac gag aac att gct cgc cct tca cgc gct gac ttc	1200
Thr Leu Lys Leu His Glu Asn Ile Ala Arg Pro Ser Arg Ala Asp Phe	
385 390 395 400	
tac aac cct aaa gct ggt cgc att agt acc ctc aac agc ctc acc ctc	1248
Tyr Asn Pro Lys Ala Gly Arg Ile Ser Thr Leu Asn Ser Leu Thr Leu	
405 410 415	
cca gcc ctc cgc caa ttc caa ctc agt gcc caa tat gtt gtc ctc tac	1296
Pro Ala Leu Arg Gln Phe Gln Leu Ser Ala Gln Tyr Val Val Leu Tyr	
420 425 430	
aag aat gga att tac tct cca cat tgg aat ctg aat gca aac agt gtg	1344
Lys Asn Gly Ile Tyr Ser Pro His Trp Asn Leu Asn Ala Asn Ser Val	
435 440 445	
atc tat gtg act cga gga caa gga aag gtt aga gtt gtg aac tgc caa	1392
Ile Tyr Val Thr Arg Gly Gln Gly Lys Val Arg Val Val Asn Cys Gln	
450 455 460	
ggg aat gca gtg ttc gac ggt gag ctt agg agg gga caa ttg ctg gtg	1440
Gly Asn Ala Val Phe Asp Gly Glu Leu Arg Arg Gly Gln Leu Val	
465 470 475 480	
gta cca cag aac ttc gtg gtg gcg gag caa gcc gga gaa caa gga ttc	1488
Val Pro Gln Asn Phe Val Val Ala Glu Gln Ala Gly Glu Gln Gly Phe	
485 490 495	
gaa tac ata gta ttc aag aca cac cac aac gca gtc act agc tac ttg	1536
Glu Tyr Ile Val Phe Lys Thr His His Asn Ala Val Thr Ser Tyr Leu	
500 505 510	
aag gat gtg ttt agg gca att ccc tca gag gtt ctt gcc cat tct tac	1584
Lys Asp Val Phe Arg Ala Ile Pro Ser Glu Val Leu Ala His Ser Tyr	
515 520 525	
aac ctt cga cag agt caa gtg tct gag ctt aag tat gaa gga aat tgg	1632
Asn Leu Arg Gln Ser Gln Val Ser Glu Leu Lys Tyr Glu Gly Asn Trp	
530 535 540	

ggt cct ttg gtc aac cct gag tct caa caa ggc tca ccc cgt gtt aaa 1680
 Gly Pro Leu Val Asn Pro Glu Ser Gln Gln Gly Ser Pro Arg Val Lys
 545 550 555 560
 gtc gca taa 1689
 Val Ala
 <210> 24
 <211> 562
 <212> PRT
 <213> Glycine max
 <400> 24
 Met Gly Lys Pro Phe Thr Leu Ser Leu Ser Ser Leu Cys Leu Leu Leu
 1 5 10 15
 Leu Ser Ser Ala Cys Phe Ala Ile Ser Ser Ser Lys Leu Asn Glu Cys
 20 25 30
 Gln Leu Asn Asn Leu Asn Ala Leu Glu Pro Asp His Arg Val Glu Ser
 35 40 45
 Glu Gly Gly Leu Ile Gln Thr Trp Asn Ser Gln His Pro Glu Leu Lys
 50 55 60
 Cys Ala Gly Val Thr Val Ser Lys Leu Thr Leu Asn Arg Asn Gly Leu
 65 70 75 80
 His Ser Pro Ser Tyr Ser Pro Tyr Pro Arg Met Ile Ile Ile Ala Gln
 85 90 95
 Gly Lys Gly Ala Leu Gly Val Ala Ile Pro Gly Cys Pro Glu Thr Phe
 100 105 110
 Glu Glu Pro Gln Glu Gln Ser Asn Arg Arg Gly Ser Arg Ser Gln Lys
 115 120 125
 Gln Gln Leu Gln Asp Ser His Gln Lys Ile Arg His Phe Asn Glu Gly
 130 135 140
 Asp Val Leu Val Ile Pro Pro Ser Val Pro Tyr Trp Thr Tyr Asn Thr
 145 150 155 160
 Gly Asp Glu Pro Val Val Ala Ile Ser Leu Leu Asp Thr Ser Asn Phe
 165 170 175
 Asn Asn Gln Leu Asp Gln Thr Pro Arg Val Phe Tyr Leu Ala Gly Asn
 180 185 190
 Pro Asp Ile Glu Tyr Pro Glu Thr Met Gln Gln Gln Gln Gln Lys
 195 200 205
 Ser His Gly Gly Arg Lys Gln Gly Gln His Gln Gln Glu Glu Glu
 210 215 220
 Glu Gly Gly Ser Val Leu Ser Gly Phe Ser Lys His Phe Leu Ala Gln
 225 230 235 240
 Ser Phe Asn Thr Asn Glu Asp Ile Ala Glu Lys Leu Glu Ser Pro Asp
 245 250 255
 Asp Glu Arg Lys Gln Ile Val Thr Val Glu Gly Leu Ser Val Ile
 260 265 270
 Ser Pro Lys Trp Gln Glu Gln Gln Asp Glu Asp Glu Asp Glu Asp Glu
 275 280 285
 Asp Asp Glu Asp Glu Gln Ile Pro Ser His Pro Pro Arg Arg Pro Ser
 290 295 300

His Gly Lys Arg Glu Gln Asp Glu Asp Glu Asp Glu Asp Lys
 305 310 315 320
 Pro Arg Pro Ser Arg Pro Ser Gln Gly Lys Arg Asn Lys Thr Gly Gln
 325 330 335
 Asp Glu Asp Glu Asp Glu Asp Gln Pro Arg Lys Ser Arg Glu
 340 345 350
 Trp Arg Ser Lys Lys Thr Gln Pro Arg Arg Pro Arg Gln Glu Glu Pro
 355 360 365
 Arg Glu Arg Gly Cys Glu Thr Arg Asn Gly Val Glu Glu Asn Ile Cys
 370 375 380
 Thr Leu Lys Leu His Glu Asn Ile Ala Arg Pro Ser Arg Ala Asp Phe
 385 390 395 400
 Tyr Asn Pro Lys Ala Gly Arg Ile Ser Thr Leu Asn Ser Leu Thr Leu
 405 410 415
 Pro Ala Leu Arg Gln Phe Gln Leu Ser Ala Gln Tyr Val Val Leu Tyr
 420 425 430
 Lys Asn Gly Ile Tyr Ser Pro His Trp Asn Leu Asn Ala Asn Ser Val
 435 440 445
 Ile Tyr Val Thr Arg Gly Gln Gly Lys Val Arg Val Val Asn Cys Gln
 450 455 460
 Gly Asn Ala Val Phe Asp Gly Glu Leu Arg Arg Gly Gln Leu Leu Val
 465 470 475 480
 Val Pro Gln Asn Phe Val Val Ala Glu Gln Ala Gly Glu Gln Gly Phe
 485 490 495
 Glu Tyr Ile Val Phe Lys Thr His His Asn Ala Val Thr Ser Tyr Leu
 500 505 510
 Lys Asp Val Phe Arg Ala Ile Pro Ser Glu Val Leu Ala His Ser Tyr
 515 520 525
 Asn Leu Arg Gln Ser Gln Val Ser Glu Leu Lys Tyr Glu Gly Asn Trp
 530 535 540
 Gly Pro Leu Val Asn Pro Glu Ser Gln Gln Gly Ser Pro Arg Val Lys
 545 550 555 560
 Val Ala

<210> 25
 <211> 1551
 <212> DNA
 <213> Glycine max

<220>
 <221> CDS
 <222> (1)..(1548)
 <223> glycinin A3-B4 subunit

<400> 25
 atg ggg aag ccc ttc ttc act ctc tct ctt tcc ctt tgc ttg cta 48
 Met Gly Lys Pro Phe Phe Thr Leu Ser Leu Ser Ser Leu Cys Leu Leu
 1 5 10 15
 ctc ttg tcg agt gca tgc ttt gct att acc tcc agc aag ttc aac gag 96
 Leu Leu Ser Ser Ala Cys Phe Ala Ile Thr Ser Ser Lys Phe Asn Glu
 20 25 30

tgc caa ctc aac aac ctc aac gcg ttg gaa ccc gac cac cgc gtt gag		144	
Cys Gln Leu Asn Asn Leu Asn Ala Leu Glu Pro Asp His Arg Val Glu			
35	40	45	
tcc gaa ggt ggt ctt att gaa aca tgg aac tct caa cac cct gag ctg		192	
Ser Glu Gly Gly Leu Ile Glu Thr Trp Asn Ser Gln His Pro Glu Leu			
50	55	60	
caa tgc gcc ggt gtc act gtt tcc aaa cgc acc ctc aac cgc aac ggc		240	
Gln Cys Ala Gly Val Thr Val Ser Lys Arg Thr Leu Asn Arg Asn Gly			
65	70	75	80
tcc cac ttg cca tct tac tta cct tat ccc caa atg atc att gtc gtt		288	
Ser His Leu Pro Ser Tyr Leu Pro Tyr Pro Gln Met Ile Ile Val Val			
85	90	95	
caa ggg aag gga gca att gga ttt gca ttt ccg gga tgt ccc gag acg		336	
Gln Gly Lys Gly Ala Ile Gly Phe Ala Phe Pro Gly Cys Pro Glu Thr			
100	105	110	
ttt gag aag cca caa caa tca agc aga aga ggc tca agg tca cag		384	
Phe Glu Lys Pro Gln Gln Ser Ser Arg Arg Gly Ser Arg Ser Gln			
115	120	125	
cag caa cta caa gac agt cac cag aag att cgt cac ttc aat gaa gga		432	
Gln Gln Leu Gln Asp Ser His Gln Lys Ile Arg His Phe Asn Glu Gly			
130	135	140	
gac gta cta gtg att cct ctt ggt gtt cct tac tgg acc tat aac act		480	
Asp Val Leu Val Ile Pro Leu Gly Val Pro Tyr Trp Thr Tyr Asn Thr			
145	150	155	160
ggc gat gaa cca gtt gtt gcc atc agt cct ctt gac acc tcc aac ttc		528	
Gly Asp Glu Pro Val Val Ala Ile Ser Pro Leu Asp Thr Ser Asn Phe			
165	170	175	
aac aat cag ctt gat caa aac ccc aga gta ttt tac ctt gct ggg aac		576	
Asn Asn Gln Leu Asp Gln Asn Pro Arg Val Phe Tyr Leu Ala Gly Asn			
180	185	190	
cca gat ata gag cat ccc gag acc atg caa caa cag cag cag cag aag		624	
Pro Asp Ile Glu His Pro Glu Thr Met Gln Gln Gln Gln Lys			
195	200	205	
agt cat ggt gga cgc aag cag ggg caa cac cga cag cag gag gaa gaa		672	
Ser His Gly Gly Arg Lys Gln Gly Gln His Arg Gln Gln Glu Glu Glu			
210	215	220	
ggt ggc agt gtg ctc agt ggc ttc agc aaa cat ttc tta gca caa tcc		720	
Gly Gly Ser Val Leu Ser Gly Phe Ser Lys His Phe Leu Ala Gln Ser			
225	230	235	240
ttc aac acc aac gag gac aca gct gag aaa ctt cgg tct cca gat gac		768	
Phe Asn Thr Asn Glu Asp Thr Ala Glu Lys Leu Arg Ser Pro Asp Asp			
245	250	255	
gaa agg aag cag atc gtg aca gtg gag gga ggc ctc agc gtt atc agc		816	
Glu Arg Lys Gln Ile Val Thr Val Glu Gly Leu Ser Val Ile Ser			
260	265	270	
ccc aag tgg caa gaa caa gaa gac gaa gac gaa gac gaa gaa gaa		864	
Pro Lys Trp Gln Glu Gln Glu Asp Glu Asp Glu Asp Glu Asp Glu Glu			
275	280	285	
tat gga cgg acg ccc tct tat cct cca cga cga cca agc cat gga aag		912	
Tyr Gly Arg Thr Pro Ser Tyr Pro Pro Arg Arg Pro Ser His Gly Lys			
290	295	300	

cat gaa gat gac gag gac gag gac gaa gaa gaa gat caa cct cgt cct	960
His Glu Asp Asp Glu Asp Glu Asp Glu Glu Asp Gln Pro Arg Pro	
305 310 315 320	
gat cac cct cca cag cga cca agc agg ccc gaa caa caa gaa cca cgt	1008
Asp His Pro Pro Gln Arg Pro Ser Arg Pro Glu Gln Gln Glu Pro Arg	
325 330 335	
gga aga gga tgt cag act aga aat ggg gtt gag gaa aat att tgc acc	1056
Gly Arg Gly Cys Gln Thr Arg Asn Gly Val Glu Glu Asn Ile Cys Thr	
340 345 350	
atg aag ctt cac gag aac att gct cgc cct tca cgt gct gac ttc tac	1104
Met Lys Leu His Glu Asn Ile Ala Arg Pro Ser Arg Ala Asp Phe Tyr	
355 360 365	
aac cca aaa gct ggt cgc att agc acc ctc aac agt ctc acc ctc cca	1152
Asn Pro Lys Ala Gly Arg Ile Ser Thr Leu Asn Ser Leu Thr Leu Pro	
370 375 380	
gcc ctc cgc caa ttc gga ctc agt gcc caa tat gtt gtc ctc tac agg	1200
Ala Leu Arg Gln Phe Gly Leu Ser Ala Gln Tyr Val Val Leu Tyr Arg	
385 390 395 400	
aat gga att tac tct cca gat tgg aac ttg aac gcg aac agt gtg acg	1248
Asn Gly Ile Tyr Ser Pro Asp Trp Asn Leu Asn Ala Asn Ser Val Thr	
405 410 415	
atg act cga ggg aaa gga aga gtt aga gtg gtg aac tgc caa ggg aat	1296
Met Thr Arg Gly Lys Gly Arg Val Arg Val Val Asn Cys Gln Gly Asn	
420 425 430	
gca gtg ttc gac ggt gag cta agg agg gga caa ttg cta gtg gtg ccg	1344
Ala Val Phe Asp Gly Glu Leu Arg Arg Gly Gln Leu Leu Val Val Pro	
435 440 445	
cag aac ccc gcg gtg gct gag caa ggg gga gaa caa gga ttg gaa tat	1392
Gln Asn Pro Ala Val Ala Glu Gln Gly Glu Gln Gly Leu Glu Tyr	
450 455 460	
gta gtg ttc aag aca cac cac aac gcc gtg agc agc tac att aag gat	1440
Val Val Phe Lys Thr His His Asn Ala Val Ser Ser Tyr Ile Lys Asp	
465 470 475 480	
gtg ttt agg gta atc cct tcg gag gtt ctt tcc aat tct tac aac ctt	1488
Val Phe Arg Val Ile Pro Ser Glu Val Leu Ser Asn Ser Tyr Asn Leu	
485 490 495	
ggc cag agt caa gtg cgt cag ctc aag tat caa gga aac tcc ggc cct	1536
Gly Gln Ser Gln Val Arg Gln Leu Lys Tyr Gln Gly Asn Ser Gly Pro	
500 505 510	
ttg gtc aac cca taa	1551
Leu Val Asn Pro	
515	
<210> 26	
<211> 516	
<212> PRT	
<213> Glycine max	
<400> 26	
Met Gly Lys Pro Phe Phe Thr Leu Ser Leu Ser Ser Leu Cys Leu Leu	
1 5 10 15	
Leu Leu Ser Ser Ala Cys Phe Ala Ile Thr Ser Ser Lys Phe Asn Glu	
20 25 30	

Cys Gln Leu Asn Asn Leu Asn Ala Leu Glu Pro Asp His Arg Val Glu
 35 40 45

Ser Glu Gly Gly Leu Ile Glu Thr Trp Asn Ser Gln His Pro Glu Leu
 50 55 60

Gln Cys Ala Gly Val Thr Val Ser Lys Arg Thr Leu Asn Arg Asn Gly
 65 70 75 80

Ser His Leu Pro Ser Tyr Leu Pro Tyr Pro Gln Met Ile Ile Val Val
 85 90 95

Gln Gly Lys Gly Ala Ile Gly Phe Ala Phe Pro Gly Cys Pro Glu Thr
 100 105 110

Phe Glu Lys Pro Gln Gln Ser Ser Arg Arg Gly Ser Arg Ser Gln
 115 120 125

Gln Gln Leu Gln Asp Ser His Gln Lys Ile Arg His Phe Asn Glu Gly
 130 135 140

Asp Val Leu Val Ile Pro Leu Gly Val Pro Tyr Trp Thr Tyr Asn Thr
 145 150 155 160

Gly Asp Glu Pro Val Val Ala Ile Ser Pro Leu Asp Thr Ser Asn Phe
 165 170 175

Asn Asn Gln Leu Asp Gln Asn Pro Arg Val Phe Tyr Leu Ala Gly Asn
 180 185 190

Pro Asp Ile Glu His Pro Glu Thr Met Gln Gln Gln Gln Lys
 195 200 205

Ser His Gly Gly Arg Lys Gln Gly Gln His Arg Gln Gln Glu Glu Glu
 210 215 220

Gly Gly Ser Val Leu Ser Gly Phe Ser Lys His Phe Leu Ala Gln Ser
 225 230 235 240

Phe Asn Thr Asn Glu Asp Thr Ala Glu Lys Leu Arg Ser Pro Asp Asp
 245 250 255

Glu Arg Lys Gln Ile Val Thr Val Glu Gly Leu Ser Val Ile Ser
 260 265 270

Pro Lys Trp Gln Glu Gln Glu Asp Glu Asp Glu Asp Glu Asp Glu Glu
 275 280 285

Tyr Gly Arg Thr Pro Ser Tyr Pro Pro Arg Arg Pro Ser His Gly Lys
 290 295 300

His Glu Asp Asp Glu Asp Glu Asp Glu Glu Asp Gln Pro Arg Pro
 305 310 315 320

Asp His Pro Pro Gln Arg Pro Ser Arg Pro Glu Gln Gln Glu Pro Arg
 325 330 335

Gly Arg Gly Cys Gln Thr Arg Asn Gly Val Glu Glu Asn Ile Cys Thr
 340 345 350

Met Lys Leu His Glu Asn Ile Ala Arg Pro Ser Arg Ala Asp Phe Tyr
 355 360 365

Asn Pro Lys Ala Gly Arg Ile Ser Thr Leu Asn Ser Leu Thr Leu Pro
 370 375 380

Ala Leu Arg Gln Phe Gly Leu Ser Ala Gln Tyr Val Val Leu Tyr Arg
 385 390 395 400

Asn Gly Ile Tyr Ser Pro Asp Trp Asn Leu Asn Ala Asn Ser Val Thr
 405 410 415

Met Thr Arg Gly Lys Gly Arg Val Arg Val Val Asn Cys Gln Gly Asn
 420 425 430

Ala Val Phe Asp Gly Glu Leu Arg Arg Gly Gln Leu Leu Val Val Pro
 435 440 445

Gln Asn Pro Ala Val Ala Glu Gln Gly Glu Gln Gly Leu Glu Tyr
 450 455 460

Val Val Phe Lys Thr His His Asn Ala Val Ser Ser Tyr Ile Lys Asp
 465 470 475 480

Val Phe Arg Val Ile Pro Ser Glu Val Leu Ser Asn Ser Tyr Asn Leu
 485 490 495

Gly Gln Ser Gln Val Arg Gln Leu Lys Tyr Gln Gly Asn Ser Gly Pro
 500 505 510

Leu Val Asn Pro
 515

<210> 27
 <211> 1446
 <212> DNA
 <213> Glycine max

<220>
 <221> CDS
 <222> (1)..(1443)
 <223> glycinin G3 subunit
 <400> 27

atg gct aag ctt gtt ctt tcc ctt tgt ttt ctg ctt ttc agt ggc tgc	48
Met Ala Lys Leu Val Leu Ser Leu Cys Phe Leu Leu Phe Ser Gly Cys	
1 5 10 15	
tgc ttc gct ttc agt ttc aga gag cag cca cag caa aac gag tgc cag	96
Cys Phe Ala Phe Ser Phe Arg Glu Gln Pro Gln Gln Asn Glu Cys Gln	
20 25 30	
atc caa cgc ctc aat gcc cta aaa ccg gat aac cgt ata gag tca gaa	144
Ile Gln Arg Leu Asn Ala Leu Lys Pro Asp Asn Arg Ile Glu Ser Glu	
35 40 45	
ggc ggc att gag aca tgg aac cct aac aac aag cca ttc cag tgt	192
Gly Gly Phe Ile Glu Thr Trp Asn Pro Asn Asn Lys Pro Phe Gln Cys	
50 55 60	
gcc ggt gtt gcc ctc tct cgc tgc acc ctc aac cgc aac gcc ctt cgc	240
Ala Gly Val Ala Leu Ser Arg Cys Thr Leu Asn Arg Asn Ala Leu Arg	
65 70 75 80	
aga cct tcc tac acc aac gct ccc cag gag atc tac atc caa caa ggt	288
Arg Pro Ser Tyr Thr Asn Ala Pro Gln Glu Ile Tyr Ile Gln Gln Gly	
85 90 95	
agt ggt att ttt ggc atg ata ttc ccg ggt tgt cct agc aca ttt gaa	336
Ser Gly Ile Phe Gly Met Ile Phe Pro Gly Cys Pro Ser Thr Phe Glu	
100 105 110	
gag cct caa caa aaa gga caa agc agc agg ccc caa gac cgt cac cag	384
Glu Pro Gln Gln Lys Gly Gln Ser Ser Arg Pro Gln Asp Arg His Gln	
115 120 125	
aag atc tat cac ttc aga gag ggt gat ttg att gca gtg cca acc ggt	432
Lys Ile Tyr His Phe Arg Glu Asp Leu Ile Ala Val Pro Thr Gly	
130 135 140	

ttt gca tac tgg atg tac aac aat gaa gac act cct gtt gtt gcc gtt	480
Phe Ala Tyr Trp Met Tyr Asn Asn Glu Asp Thr Pro Val Val Ala Val	
145 150 155 160	
tct ctt att gac acc aac agc ttc cag aac cag ctc gac cag atg cct	528
Ser Leu Ile Asp Thr Asn Ser Phe Gln Asn Gln Leu Asp Gln Met Pro	
165 170 175	
agg aga ttc tat ctt gct ggg aac caa gag caa gag ttt cta cag tat	576
Arg Arg Phe Tyr Leu Ala Gly Asn Gln Glu Gln Glu Phe Leu Gln Tyr	
180 185 190	
cag cca cag aag cag caa gga ggt act caa agc cag aaa gga aag cgt	624
Gln Pro Gln Lys Gln Gln Gly Thr Gln Ser Gln Lys Gly Lys Arg	
195 200 205	
cag caa gaa gaa aac gaa gga ggc agc ata ttg agt ggc ttc gcc	672
Gln Gln Glu Glu Asn Glu Gly Ser Ile Leu Ser Gly Phe Ala	
210 215 220	
ccg gaa ttc ttg gaa cat gcg ttc gtc gtg gac agg cag ata gtg aga	720
Pro Glu Phe Leu Glu His Ala Phe Val Val Asp Arg Gln Ile Val Arg	
225 230 235 240	
aag cta caa ggt gag aac gaa gag gaa gag aag ggt gcc att gtg aca	768
Lys Leu Gln Gly Glu Asn Glu Glu Glu Lys Gly Ala Ile Val Thr	
245 250 255	
gtg aaa gga ggt ctc agc gtg ata agc cca ccc acg gaa gag cag caa	816
Val Lys Gly Gly Leu Ser Val Ile Ser Pro Pro Thr Glu Glu Gln Gln	
260 265 270	
caa aga ccc gag gaa gag gag aag cca gat tgt gac gag aaa gac aaa	864
Gln Arg Pro Glu Glu Glu Lys Pro Asp Cys Asp Glu Lys Asp Lys	
275 280 285	
cat tgc caa agc caa agc aga aat ggc att gac gag acc att tgc aca	912
His Cys Gln Ser Gln Ser Arg Asn Gly Ile Asp Glu Thr Ile Cys Thr	
290 295 300	
atg aga ctt cgc cac aac att ggc cag act tca tca cct gac atc ttc	960
Met Arg Leu Arg His Asn Ile Gly Gln Thr Ser Ser Pro Asp Ile Phe	
305 310 315 320	
aac cct caa gct ggt agc atc aca acc gct acc agc ctc gac ttc cca	1008
Asn Pro Gln Ala Gly Ser Ile Thr Thr Ala Thr Ser Leu Asp Phe Pro	
325 330 335	
gcc ctc tcg tgg ctc aaa ctc agt gcc cag ttt gga tca ctc cgc aag	1056
Ala Leu Ser Trp Leu Lys Leu Ser Ala Gln Phe Gly Ser Leu Arg Lys	
340 345 350	
aat gct atg ttc gtg cca cac tac aac ctg aac gca aac agc ata ata	1104
Asn Ala Met Phe Val Pro His Tyr Asn Leu Asn Ala Asn Ser Ile Ile	
355 360 365	
tac gca ttg aat gga cgg gca ttg gta caa gtg gtg aat tgc aat ggt	1152
Tyr Ala Leu Asn Gly Arg Ala Leu Val Gln Val Val Asn Cys Asn Gly	
370 375 380	
gag aga gtg ttt gat gga gag ctg caa gag gga cag gtg tta att gtg	1200
Glu Arg Val Phe Asp Gly Glu Leu Gln Glu Gly Gln Val Leu Ile Val	
385 390 395 400	
cca caa aac ttt gcg gtg gct gca aga tca cag agc gac aac ttc gag	1248
Pro Gln Asn Phe Ala Val Ala Ala Arg Ser Gln Ser Asp Asn Phe Glu	
405 410 415	

tat gtt tca ttc aag acc aat gat aga ccc tcg atc ggc aac ctt gca	1296
Tyr Val Ser Phe Lys Thr Asn Asp Arg Pro Ser Ile Gly Asn Leu Ala	
420 425 430	
ggt gca aac tca ttg ttg aac gca ttg ccg gag gaa gtg att cag caa	1344
Gly Ala Asn Ser Leu Leu Asn Ala Leu Pro Glu Glu Val Ile Gln Gln	
435 440 445	
act ttt aac cta agg agg cag cag gcc agg cag gtc aag aac aac aac	1392
Thr Phe Asn Leu Arg Arg Gln Gln Ala Arg Gln Val Lys Asn Asn Asn	
450 455 460	
cct ttc agc ttc ctg gtt cca cct aag gag tct cag agg aga gtt gtg	1440
Pro Phe Ser Phe Leu Val Pro Pro Lys Glu Ser Gln Arg Arg Val Val	
465 470 475 480	
gct tag	1446
Ala	
<210> 28	
<211> 481	
<212> PRT	
<213> Glycine max	
<400> 28	
Met Ala Lys Leu Val Leu Ser Leu Cys Phe Leu Leu Phe Ser Gly Cys	
1 5 10 15	
Cys Phe Ala Phe Ser Phe Arg Glu Gln Pro Gln Gln Asn Glu Cys Gln	
20 25 30	
Ile Gln Arg Leu Asn Ala Leu Lys Pro Asp Asn Arg Ile Glu Ser Glu	
35 40 45	
Gly Gly Phe Ile Glu Thr Trp Asn Pro Asn Asn Lys Pro Phe Gln Cys	
50 55 60	
Ala Gly Val Ala Leu Ser Arg Cys Thr Leu Asn Arg Asn Ala Leu Arg	
65 70 75 80	
Arg Pro Ser Tyr Thr Asn Ala Pro Gln Glu Ile Tyr Ile Gln Gln Gly	
85 90 95	
Ser Gly Ile Phe Gly Met Ile Phe Pro Gly Cys Pro Ser Thr Phe Glu	
100 105 110	
Glu Pro Gln Gln Lys Gly Gln Ser Ser Arg Pro Gln Asp Arg His Gln	
115 120 125	
Lys Ile Tyr His Phe Arg Glu Gly Asp Leu Ile Ala Val Pro Thr Gly	
130 135 140	
Phe Ala Tyr Trp Met Tyr Asn Asn Glu Asp Thr Pro Val Val Ala Val	
145 150 155 160	
Ser Leu Ile Asp Thr Asn Ser Phe Gln Asn Gln Leu Asp Gln Met Pro	
165 170 175	
Arg Arg Phe Tyr Leu Ala Gly Asn Gln Glu Gln Glu Phe Leu Gln Tyr	
180 185 190	
Gln Pro Gln Lys Gln Gln Gly Gly Thr Gln Ser Gln Lys Gly Lys Arg	
195 200 205	
Gln Gln Glu Glu Glu Asn Glu Gly Gly Ser Ile Leu Ser Gly Phe Ala	
210 215 220	
Pro Glu Phe Leu Glu His Ala Phe Val Val Asp Arg Gln Ile Val Arg	
225 230 235 240	

39

Lys Leu Gln Gly Glu Asn Glu Glu Glu Lys Gly Ala Ile Val Thr
 245 250 255

Val Lys Gly Gly Leu Ser Val Ile Ser Pro Pro Thr Glu Glu Gln Gln
 260 265 270

Gln Arg Pro Glu Glu Glu Lys Pro Asp Cys Asp Glu Lys Asp Lys
 275 280 285

His Cys Gln Ser Gln Ser Arg Asn Gly Ile Asp Glu Thr Ile Cys Thr
 290 295 300

Met Arg Leu Arg His Asn Ile Gly Gln Thr Ser Ser Pro Asp Ile Phe
 305 310 315 320

Asn Pro Gln Ala Gly Ser Ile Thr Thr Ala Thr Ser Leu Asp Phe Pro
 325 330 335

Ala Leu Ser Trp Leu Lys Leu Ser Ala Gln Phe Gly Ser Leu Arg Lys
 340 345 350

Asn Ala Met Phe Val Pro His Tyr Asn Leu Asn Ala Asn Ser Ile Ile
 355 360 365

Tyr Ala Leu Asn Gly Arg Ala Leu Val Gln Val Val Asn Cys Asn Gly
 370 375 380

Glu Arg Val Phe Asp Gly Glu Leu Gln Glu Gly Gln Val Leu Ile Val
 385 390 395 400

Pro Gln Asn Phe Ala Val Ala Ala Arg Ser Gln Ser Asp Asn Phe Glu
 405 410 415

Tyr Val Ser Phe Lys Thr Asn Asp Arg Pro Ser Ile Gly Asn Leu Ala
 420 425 430

Gly Ala Asn Ser Leu Leu Asn Ala Leu Pro Glu Glu Val Ile Gln Gln
 435 440 445

Thr Phe Asn Leu Arg Arg Gln Gln Ala Arg Gln Val Lys Asn Asn Asn
 450 455 460

Pro Phe Ser Phe Leu Val Pro Pro Lys Glu Ser Gln Arg Arg Val Val
 465 470 475 480

Ala

<210> 29
 <211> 1482
 <212> DNA
 <213> Helianthus annuus

<220>
 <221> CDS
 <222> (1)..(1479)
 <223> 11S storage protein G3-D1

<400> 29

atg gca tcc aaa gca act ttg ctc tta gct ttt acc ctt ctc ttt gcc 48
 Met Ala Ser Lys Ala Thr Leu Leu Leu Ala Phe Thr Leu Leu Phe Ala
 1 5 10 15

act tgc att gcc cgc cac cag caa cgg caa cag caa cag aac cag tgc 96
 Thr Cys Ile Ala Arg His Gln Gln Arg Gln Gln Gln Asn Gln Cys
 20 25 30

cag ctt caa aac atc gag gcg ctc gag ccc atc gaa gtt atc caa gct Gln Leu Gln Asn Ile Glu Ala Leu Glu Pro Ile Glu Val Ile Gln Ala	35	40	45	144
gaa gcc ggt gtg acc gaa att tgg gac gcc tat gac caa cag ttc cag Glu Ala Gly Val Thr Glu Ile Trp Asp Ala Tyr Asp Gln Gln Phe Gln	50	55	60	192
tgt gcg tgg tcg att tta ttc gac acc gga ttc aac ctg gtg gcc ttc Cys Ala Trp Ser Ile Leu Phe Asp Thr Gly Phe Asn Leu Val Ala Phe	65	70	75	240
tct tgc ctt cct acg tca aca ccc cta ttt tgg cct tcg tcg aga gag Ser Cys Leu Pro Thr Ser Thr Pro Leu Phe Trp Pro Ser Ser Arg Glu	85	90	95	288
ggg gtt ata ttg ccg gga tgc cgc aga acc tat gaa tat tcg cag gag Gly Val Ile Leu Pro Gly Cys Arg Arg Thr Tyr Glu Tyr Ser Gln Glu	100	105	110	336
caa cag ttt tcc ggt gag ggt ggc cgc aga gga gga gga gag ggc aca Gln Gln Phe Ser Gly Glu Gly Arg Arg Gly Gly Glu Gly Thr	115	120	125	384
ttc agg acc gtc atc aga aag tta gag aac tta aag gag ggt gac gtg Phe Arg Thr Val Ile Arg Lys Leu Glu Asn Leu Lys Glu Gly Asp Val	130	135	140	432
gtt gcc atc ccc acc gga aca gct cac tgg ctt cac aac gac ggc aac Val Ala Ile Pro Thr Gly Thr Ala His Trp Leu His Asn Asp Gly Asn	145	150	155	480
aca gaa ctt gtg gtc gtc ttc ttg gat act cag aac cat gag aac cag Thr Glu Leu Val Val Phe Leu Asp Thr Gln Asn His Glu Asn Gln	165	170	175	528
ctt gac gaa aac caa agg aga ttc ttc tta gcc gga aac cct caa gct Leu Asp Glu Asn Gln Arg Arg Phe Phe Leu Ala Gly Asn Pro Gln Ala	180	185	190	576
caa gct caa agc cag cag caa caa caa aga caa cca cgc caa caa tct Gln Ala Gln Ser Gln Gln Gln Gln Arg Gln Pro Arg Gln Gln Ser	195	200	205	624
cct caa agg caa agg caa agg caa agg caa ggg caa ggt cag aac gcc Pro Gln Arg Gln Arg Gln Arg Gln Arg Gln Gly Gln Gln Asn Ala	210	215	220	672
ggc aac atc ttc aac ggt ttc acc ccc gag ctc att gca caa tca ttc Gly Asn Ile Phe Asn Gly Phe Thr Pro Glu Leu Ile Ala Gln Ser Phe	225	230	235	720
aac gtc gac caa gag acc gcc cag aag cta caa gga caa aac gac cag Asn Val Asp Gln Glu Thr Ala Gln Lys Leu Gln Gly Gln Asn Asp Gln	245	250	255	768
aga ggc cac att gtt aat gtc gga caa gac ctt caa ata gtc cgc cca Arg Gly His Ile Val Asn Val Gly Gln Asp Leu Gln Ile Val Arg Pro	260	265	270	816
cca caa gac aga cgc tct cct cgc caa caa caa gag caa gcg acg tct Pro Gln Asp Arg Arg Ser Pro Arg Gln Gln Glu Gln Ala Thr Ser	275	280	285	864
cct cgc caa caa caa gag cag cag caa ggc aga cgt ggc gga tgg agc Pro Arg Gln Gln Gln Glu Gln Gln Gly Arg Arg Gly Gly Trp Ser	290	295	300	912

aac ggt gtg gaa gaa acc atc tgc agc atg aag ttc aaa gtg aac att		960	
Asn Gly Val Glu Glu Thr Ile Cys Ser Met Lys Phe Lys Val Asn Ile			
305	310	315	320
gac aac cct tcc cag gct gac ttt gta aac ccg caa gcc ggc agc att		1008	
Asp Asn Pro Ser Gln Ala Asp Phe Val Asn Pro Gln Ala Gly Ser Ile			
325	330	335	
gca aac ctc aac agc ttc aaa ttc ccc att ctc gag cac ctc cgg ctc		1056	
Ala Asn Leu Asn Ser Phe Lys Phe Pro Ile Leu Glu His Leu Arg Leu			
340	345	350	
agc gtg gaa aga ggc gaa ctc cgt ccg aat gcc atc caa tcc cca cac		1104	
Ser Val Glu Arg Gly Glu Leu Arg Pro Asn Ala Ile Gln Ser Pro His			
355	360	365	
tgg aca atc aac gcc cac aat ctt ctc tac gta acc gag gga gcc ttg		1152	
Trp Thr Ile Asn Ala His Asn Leu Leu Tyr Val Thr Glu Gly Ala Leu			
370	375	380	
agg gta caa atc gtc gac aac caa gga aac tca gtt ttc gac aac gag		1200	
Arg Val Gln Ile Val Asp Asn Gln Gly Asn Ser Val Phe Asp Asn Glu			
385	390	395	400
ctc cgt gag gga cag gtg gtg atc ccg cag aac ttt gcg gtg atc		1248	
Leu Arg Glu Gly Gln Val Val Ile Pro Gln Asn Phe Ala Val Ile			
405	410	415	
aag aga gcc aat gaa caa gga agc agg tgg gtg tct ttc aag act aat		1296	
Lys Arg Ala Asn Glu Gln Gly Ser Arg Trp Val Ser Phe Lys Thr Asn			
420	425	430	
gat aat gcc atg ata gca aac ctt gca ggg cgt gtg tcc gca tca gca		1344	
Asp Asn Ala Met Ile Ala Asn Leu Ala Gly Arg Val Ser Ala Ser Ala			
435	440	445	
gca tcg ccg ttg acg ttg tgg gcg aat cgg tat cag cta tct cga gag		1392	
Ala Ser Pro Leu Thr Leu Trp Ala Asn Arg Tyr Gln Leu Ser Arg Glu			
450	455	460	
gaa gct cag cag ctc aag ttt agc cag agg gag acg gtt ttg ttt gca		1440	
Glu Ala Gln Gln Leu Lys Phe Ser Gln Arg Glu Thr Val Leu Phe Ala			
465	470	475	480
cca agt ttt tcc agg ggc caa ggg atc agg gct tca cgt taa		1482	
Pro Ser Phe Ser Arg Gly Gln Gly Ile Arg Ala Ser Arg			
485	490		
<210> 30			
<211> 493			
<212> PRT			
<213> Helianthus annuus			
<400> 30			
Met Ala Ser Lys Ala Thr Leu Leu Leu Ala Phe Thr Leu Leu Phe Ala			
1	5	10	15
Thr Cys Ile Ala Arg His Gln Gln Arg Gln Gln Gln Asn Gln Cys			
20	25	30	
Gln Leu Gln Asn Ile Glu Ala Leu Glu Pro Ile Glu Val Ile Gln Ala			
35	40	45	
Glu Ala Gly Val Thr Glu Ile Trp Asp Ala Tyr Asp Gln Gln Phe Gln			
50	55	60	
Cys Ala Trp Ser Ile Leu Phe Asp Thr Gly Phe Asn Leu Val Ala Phe			
65	70	75	80

Glu Ala Gln Gln Leu Lys Phe Ser Gln Arg Glu Thr Val Leu Phe Ala
 465 470 475 480
 Pro Ser Phe Ser Arg Gly Gln Gly Ile Arg Ala Ser Arg
 485 490

<210> 31
 <211> 537
 <212> DNA
 <213> Brassica napus

<220>
 <221> CDS
 <222> (1)..(534)
 <223> NAPIN

<400> 31

atg	gcg	aac	aag	ctc	tcc	ctc	gtc	tcg	gca	act	ctc	gcc	tcc	tcc	tcc	tcc		48
Met	Ala	Asn	Lys	Leu	Phe	Leu	Val	Ser	Ala	Thr	Leu	Ala	Phe	Phe	Phe	Phe		
1	5								10				15					

ctt	ctc	acc	aat	gcc	tcc	atc	tac	cg	acg	gtc	gtc	gag	tcc	gac	gaa		96
Leu	Leu	Thr	Asn	Ala	Ser	Ile	Tyr	Arg	Thr	Val	Val	Glu	Phe	Asp	Glu		
20	25								30								

gat	gat	gcc	aca	gac	tca	gcc	ggc	cca	ttt	agg	att	cca	aaa	tgt	agg		144
Asp	Asp	Ala	Thr	Asp	Ser	Ala	Gly	Pro	Phe	Arg	Ile	Pro	Lys	Cys	Arg		
35	40								45								

aag	gag	ttt	cag	caa	gca	caa	cac	cta	aga	gct	tgc	cag	cag	tgg	ctc		192
Lys	Glu	Phe	Gln	Gln	Ala	Gln	His	Leu	Arg	Ala	Cys	Gln	Gln	Trp	Leu		
50	55							60									

cac	aag	caa	gca	atg	cag	tct	ggc	ggt	ggt	cct	agc	tgg	acc	ctc	gac		240
His	Lys	Gln	Ala	Met	Gln	Ser	Gly	Gly	Gly	Pro	Ser	Trp	Thr	Leu	Asp		
65	70							75				80					

ggt	gag	ttt	gac	ttt	gaa	gac	gac	atg	gag	aac	ccg	cag	ggt	cca	cag		288
Gly	Glu	Phe	Asp	Phe	Glu	Asp	Asp	Met	Glu	Asn	Pro	Gln	Gly	Pro	Gln		
85	90							95									

cag	aga	ccg	cct	cta	ctc	cag	cag	tgc	tgt	aac	gag	ctc	cac	cag	gaa		336
Gln	Arg	Pro	Pro	Leu	Leu	Gln	Gln	Cys	Cys	Asn	Glu	Leu	His	Gln	Glu		
100	105								110								

gag	ccc	ctt	tgc	gtt	tgc	cca	acc	ttg	aaa	gga	gca	tcc	aaa	gcg	gtt		384
Glu	Pro	Leu	Cys	Val	Cys	Pro	Thr	Leu	Lys	Gly	Ala	Ser	Lys	Ala	Val		
115	120							125									

aaa	caa	caa	att	caa	caa	cag	gga	caa	cag	caa	gga	aag	cag	caa	atg		432
Lys	Gln	Gln	Ile	Gln	Gln	Gly	Gln	Gln	Gln	Gly	Lys	Gln	Gln	Met			
130	135							140									

gtg	agc	cgt	atc	tac	cag	acc	gct	acg	cac	tta	cct	aaa	gtt	tgc	aac		480
Val	Ser	Arg	Ile	Tyr	Gln	Thr	Ala	Thr	His	Leu	Pro	Lys	Val	Cys	Asn		
145	150							155				160					

atc	ccg	caa	gtt	agc	gtt	tgt	ccc	tcc	cag	aag	acc	atg	cct	ggg	ccc		528
Ile	Pro	Gln	Val	Ser	Val	Cys	Pro	Phe	Gln	Lys	Thr	Met	Pro	Gly	Pro		
165	170							175									

tcc	tac	tag														537	
Ser	Tyr																

<210>	32																	
<211>	178																	

<212> PRT

<213> Brassica napus

<400> 32

Met	Ala	Asn	Lys	Leu	Phe	Leu	Val	Ser	Ala	Thr	Leu	Ala	Phe	Phe	Phe
1				5				10					15		
Leu	Leu	Thr	Asn	Ala	Ser	Ile	Tyr	Arg	Thr	Val	Val	Glu	Phe	Asp	Glu
	20					25			25			30			
Asp	Asp	Ala	Thr	Asp	Ser	Ala	Gly	Pro	Phe	Arg	Ile	Pro	Lys	Cys	Arg
	35						40				45				
Lys	Glu	Phe	Gln	Gln	Ala	Gln	His	Leu	Arg	Ala	Cys	Gln	Gln	Trp	Leu
	50					55				60					
His	Lys	Gln	Ala	Met	Gln	Ser	Gly	Gly	Pro	Ser	Trp	Thr	Leu	Asp	
	65					70			75			80			
Gly	Glu	Phe	Asp	Phe	Glu	Asp	Asp	Met	Glu	Asn	Pro	Gln	Gly	Pro	Gln
		85						90					95		
Gln	Arg	Pro	Pro	Leu	Leu	Gln	Gln	Cys	Cys	Asn	Glu	Leu	His	Gln	Glu
		100						105				110			
Glu	Pro	Leu	Cys	Val	Cys	Pro	Thr	Leu	Lys	Gly	Ala	Ser	Lys	Ala	Val
		115						120				125			
Lys	Gln	Gln	Ile	Gln	Gln	Gln	Gly	Gln	Gln	Gln	Gly	Lys	Gln	Gln	Met
		130				135						140			
Val	Ser	Arg	Ile	Tyr	Gln	Thr	Ala	Thr	His	Leu	Pro	Lys	Val	Cys	Asn
	145					150				155			160		
Ile	Pro	Gln	Val	Ser	Val	Cys	Pro	Phe	Gln	Lys	Thr	Met	Pro	Gly	Pro
		165							170				175		
Ser Tyr															

<210> 33

<211> 537

<212> DNA

<213> Brassica juncea

<220>

<221> CDS

<222> (1)..(534)

<223> 2S storage protein

<400> 33

atg	gcg	aac	aag	ctc	ttc	ctc	gtc	tcg	gca	act	ctc	gcc	ttc	ttc	ttc
Met	Ala	Asn	Lys	Leu	Phe	Leu	Val	Ser	Ala	Thr	Leu	Ala	Phe	Phe	Phe
1				5				10					15		
ctt	ctc	acc	aat	gcc	tcc	atc	tac	cgg	acg	gtc	gtc	gag	ttc	gac	gaa
Leu	Leu	Thr	Asn	Ala	Ser	Ile	Tyr	Arg	Thr	Val	Val	Glu	Phe	Asp	Glu
	20					25				30					96
gat	gat	gcc	aca	gac	tca	gcc	ggc	cca	ttt	agg	att	cca	aaa	tgt	agg
Asp	Asp	Ala	Thr	Asp	Ser	Ala	Gly	Pro	Phe	Arg	Ile	Pro	Lys	Cys	Arg
	35							40			45				144
aag	gag	ttt	cag	caa	gca	caa	cac	cta	aga	gtc	tgc	cag	cag	tgg	ctc
Lys	Glu	Phe	Gln	Gln	Ala	Gln	His	Leu	Arg	Val	Cys	Gln	Gln	Trp	Leu
	50							55			60				192

45

cac aag caa gca atg cag tct ggc ggt ctc agc tgg acc ctc gac	240
His Lys Gln Ala Met Gln Ser Gly Gly Leu Ser Trp Thr Leu Asp	
65 70 75 80	
ggt gag ttt gac ttt gaa gac gac atg gag aac tcg cag ggt cca cag	288
Gly Glu Phe Asp Phe Glu Asp Asp Met Glu Asn Ser Gln Gly Pro Gln	
85 90 95	
cag aga ccg cct cta ctc cag cag tgc tgt aac gag ctc cac cag gaa	336
Gln Arg Pro Pro Leu Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu	
100 105 110	
gag ccc ctt tgc gtt tgc cca acc ttg aaa gga gca tcc aaa gcg gtt	384
Glu Pro Leu Cys Val Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val	
115 120 125	
aaa caa caa att caa caa cag gga caa cag caa gga aag cag caa atg	432
Lys Gln Gln Ile Gln Gln Gly Gln Gln Gly Lys Gln Gln Met	
130 135 140	
gtg agc cgt atc tac cag acc gct acg cac tta cct aaa gtt tgc aac	480
Val Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Lys Val Cys Asn	
145 150 155 160	
atc ccg caa gtt agc gtt tgt ccc ttc cag aag acc atg cct ggg ccc	528
Ile Pro Gln Val Ser Val Cys Pro Phe Gln Lys Thr Met Pro Gly Pro	
165 170 175	
tcc tac tag	537
Ser Tyr	
<210> 34	
<211> 178	
<212> PRT	
<213> Brassica juncea	
<400> 34	
Met Ala Asn Lys Leu Phe Leu Val Ser Ala Thr Leu Ala Phe Phe Phe	
1 5 10 15	
Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Val Val Glu Phe Asp Glu	
20 25 30	
Asp Asp Ala Thr Asp Ser Ala Gly Pro Phe Arg Ile Pro Lys Cys Arg	
35 40 45	
Lys Glu Phe Gln Gln Ala Gln His Leu Arg Val Cys Gln Gln Trp Leu	
50 55 60	
His Lys Gln Ala Met Gln Ser Gly Gly Leu Ser Trp Thr Leu Asp	
65 70 75 80	
Gly Glu Phe Asp Phe Glu Asp Asp Met Glu Asn Ser Gln Gly Pro Gln	
85 90 95	
Gln Arg Pro Pro Leu Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu	
100 105 110	
Glu Pro Leu Cys Val Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val	
115 120 125	
Lys Gln Gln Ile Gln Gln Gly Gln Gln Gly Lys Gln Gln Met	
130 135 140	
Val Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Lys Val Cys Asn	
145 150 155 160	
Ile Pro Gln Val Ser Val Cys Pro Phe Gln Lys Thr Met Pro Gly Pro	
165 170 175	

Ser Tyr

<210> 35
 <211> 537
 <212> DNA
 <213> Brassica oleracea
 <220>
 <221> CDS
 <222> (1)..(534)
 <223> 2S storage protein
 <400> 35

atg	gcg	aac	aag	ctc	tcc	ctc	gtc	tcg	gca	act	ctc	gcc	tcc	ttc	ttc		48
Met	Ala	Asn	Lys	Leu	Phe	Leu	Val	Ser	Ala	Thr	Leu	Ala	Phe	Phe	Phe		
1				5					10							15	
ctt	ctc	acc	aat	gcc	tcc	atc	tac	cgg	acg	gtg	gtc	gag	tcc	gac	gaa		96
Leu	Leu	Thr	Asn	Ala	Ser	Ile	Tyr	Arg	Thr	Val	Val	Glu	Phe	Asp	Glu		
						20			25							30	
gat	gat	gcc	aca	aac	cca	gcc	ggc	cca	ttt	agg	atc	cca	aaa	tgt	agg		144
Asp	Asp	Ala	Thr	Asn	Pro	Ala	Gly	Pro	Phe	Arg	Ile	Pro	Lys	Cys	Arg		
						35			40							45	
aag	gag	ttt	cag	caa	gca	caa	cac	cta	aga	gct	tgc	cag	cag	tgg	ctc		192
Lys	Glu	Phe	Gln	Gln	Ala	Gln	His	Leu	Arg	Ala	Cys	Gln	Gln	Trp	Leu		
						50			55							60	
cac	aag	caa	gca	atg	cag	tct	ggc	ggt	ggt	cct	agc	tgg	acc	ctc	gac		240
His	Lys	Gln	Ala	Met	Gln	Ser	Gly	Gly	Gly	Pro	Ser	Trp	Thr	Leu	Asp		
						65			70							80	
agt	gag	ttt	gac	ttt	gaa	gac	gac	atg	gag	aac	ccg	cag	ggt	cca	cag		288
Ser	Glu	Phe	Asp	Phe	Glu	Asp	Asp	Met	Glu	Asn	Pro	Gln	Gly	Pro	Gln		
						85			90							95	
cag	aga	ccg	cct	cta	ctc	ctg	caa	tgc	tgt	aac	gag	ctg	gac	cag	gaa		336
Gln	Arg	Pro	Pro	Leu	Leu	Leu	Gln	Cys	Cys	Asn	Glu	Leu	Asp	Gln	Glu		
						100			105							110	
gag	ccc	ctt	tgc	gtt	tgc	cca	acc	ttg	aaa	gga	gca	tcc	aaa	gcg	gtt		384
Glu	Pro	Leu	Cys	Val	Cys	Pro	Thr	Leu	Lys	Gly	Ala	Ser	Lys	Ala	Val		
						115			120							125	
aaa	caa	caa	att	caa	caa	cag	gga	caa	cag	caa	gga	aag	cag	caa	atg		432
Lys	Gln	Gln	Ile	Gln	Gln	Gly	Gln	Gln	Gln	Gly	Lys	Gln	Gln	Gln	Met		
						130			135							140	
gtg	agc	cgt	atc	tac	cag	acc	gct	acg	cac	tta	cct	aaa	gtt	tgc	aac		480
Val	Ser	Arg	Ile	Tyr	Gln	Thr	Ala	Thr	His	Leu	Pro	Lys	Val	Cys	Asn		
						145			150							160	
atc	ccg	caa	gtt	agc	gtt	tgt	ccc	ttc	cag	aag	acc	atg	cct	ggg	ccc		528
Ile	Pro	Gln	Val	Ser	Val	Cys	Pro	Phe	Gln	Lys	Thr	Met	Pro	Gly	Pro		
						165			170							175	
tcc	tac	tag															537
Ser	Tyr																

<210> 36
 <211> 178
 <212> PRT
 <213> Brassica oleracea

<400> 36

Met	Ala	Asn	Lys	Leu	Phe	Leu	Val	Ser	Ala	Thr	Leu	Ala	Phe	Phe	Phe
1				5					10				15		
Leu	Leu	Thr	Asn	Ala	Ser	Ile	Tyr	Arg	Thr	Val	Val	Glu	Phe	Asp	Glu
	20						25					30			
Asp	Asp	Ala	Thr	Asn	Pro	Ala	Gly	Pro	Phe	Arg	Ile	Pro	Lys	Cys	Arg
	35						40				45				
Lys	Glu	Phe	Gln	Gln	Ala	Gln	His	Leu	Arg	Ala	Cys	Gln	Gln	Trp	Leu
	50					55				60					
His	Lys	Gln	Ala	Met	Gln	Ser	Gly	Gly	Gly	Pro	Ser	Trp	Thr	Leu	Asp
	65				70				75			80			
Ser	Glu	Phe	Asp	Phe	Glu	Asp	Asp	Met	Glu	Asn	Pro	Gln	Gly	Pro	Gln
		85						90				95			
Gln	Arg	Pro	Pro	Leu	Leu	Leu	Gln	Cys	Cys	Asn	Glu	Leu	Asp	Gln	Glu
		100					105				110				
Glu	Pro	Leu	Cys	Val	Cys	Pro	Thr	Leu	Lys	Gly	Ala	Ser	Lys	Ala	Val
		115				120			125						
Lys	Gln	Gln	Ile	Gln	Gln	Gly	Gln	Gln	Gly	Lys	Gln	Gln	Met		
	130				135				140						
Val	Ser	Arg	Ile	Tyr	Gln	Thr	Ala	Thr	His	Leu	Pro	Lys	Val	Cys	Asn
	145				150				155			160			
Ile	Pro	Gln	Val	Ser	Val	Cys	Pro	Phe	Gln	Lys	Thr	Met	Pro	Gly	Pro
		165					170				175				
Ser	Tyr														

<210> 37

<211> 543

<212> DNA

<213> Brassica napus cv. Topas

<220>

<221> CDS

<222> (1)...(540)

<223> Napin

<400> 37

atg	gcg	aac	aag	ctc	tcc	ctc	gtc	tcg	gca	act	ctt	gcc	tcc	tcc	tcc
Met	Ala	Asn	Lys	Leu	Phe	Leu	Val	Ser	Ala	Thr	Leu	Ala	Phe	Phe	Phe
1				5					10				15		
ctt	ctc	acc	aac	gcc	tcc	atc	tac	cgc	acc	atc	gtg	gaa	gtc	gac	gaa
Leu	Leu	Thr	Asn	Ala	Ser	Ile	Tyr	Arg	Thr	Ile	Val	Glu	Val	Asp	Glu
	20					25						30			
gat	gat	gcc	aca	aac	cca	gcc	ggc	cca	ttt	agg	att	cca	aaa	tgt	agg
Asp	Asp	Ala	Thr	Asn	Pro	Ala	Gly	Pro	Phe	Arg	Ile	Pro	Lys	Cys	Arg
	35					40				45					
aag	gag	ttt	cag	caa	gca	caa	cac	ctg	aaa	gct	tgc	caa	caa	tgg	ctc
Lys	Glu	Phe	Gln	Gln	Ala	Gln	His	Leu	Lys	Ala	Cys	Gln	Gln	Trp	Leu
	50					55				60					
cac	aag	cag	gca	atg	cag	tcc	ggt	agt	ggc	cca	agc	tgg	acc	ctc	gac
His	Lys	Gln	Ala	Met	Gln	Ser	Gly	Ser	Gly	Pro	Ser	Trp	Thr	Leu	Asp
	65				70				75			80			

ggt gag ttt gat ttt gaa gat gac atg gag aac ccc cag ggc cca caa		288	
Gly Glu Phe Asp Phe Glu Asp Asp Met Glu Asn Pro Gln Gly Pro Gln			
85	90	95	
cag agg ccg cca cta ctc cag cag tgc tgc aac gag ctc cac cag gaa		336	
Gln Arg Pro Pro Leu Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu			
100	105	110	
gag cca ctt tgc gtt tgc cca acc ttg aaa gga gca tcc aaa gcc gtt		384	
Glu Pro Leu Cys Val Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val			
115	120	125	
aaa caa cag gtt cga caa cag caa gga cag cag gga cag cag ctg cag		432	
Lys Gln Gln Val Arg Gln Gln Gly Gln Gln Gly Gln Gln Leu Gln			
130	135	140	
caa gta att agc cgt atc tac cag act gct acg cac tta cct aaa gtt		480	
Gln Val Ile Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Lys Val			
145	150	155	160
tgc aac atc ccg caa gtt agc gtt tgt ccc ttc cag aag acc atg cct		528	
Cys Asn Ile Pro Gln Val Ser Val Cys Pro Phe Gln Lys Thr Met Pro			
165	170	175	
gga ccc tcc tac tag		543	
Gly Pro Ser Tyr			
180			
<210> 38			
<211> 180			
<212> PRT			
<213> Brassica napus cv. Topas			
<400> 38			
Met Ala Asn Lys Leu Phe Leu Val Ser Ala Thr Leu Ala Phe Phe Phe			
1	5	10	15
Leu Leu Thr Asn Ala Ser Ile Tyr Arg Thr Ile Val Glu Val Asp Glu			
20	25	30	
Asp Asp Ala Thr Asn Pro Ala Gly Pro Phe Arg Ile Pro Lys Cys Arg			
35	40	45	
Lys Glu Phe Gln Gln Ala Gln His Leu Lys Ala Cys Gln Gln Trp Leu			
50	55	60	
His Lys Gln Ala Met Gln Ser Gly Ser Gly Pro Ser Trp Thr Leu Asp			
65	70	75	80
Gly Glu Phe Asp Phe Glu Asp Asp Met Glu Asn Pro Gln Gly Pro Gln			
85	90	95	
Gln Arg Pro Pro Leu Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu			
100	105	110	
Glu Pro Leu Cys Val Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val			
115	120	125	
Lys Gln Gln Val Arg Gln Gln Gly Gln Gln Gly Gln Gln Leu Gln			
130	135	140	
Gln Val Ile Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Lys Val			
145	150	155	160
Cys Asn Ile Pro Gln Val Ser Val Cys Pro Phe Gln Lys Thr Met Pro			
165	170	175	
Gly Pro Ser Tyr			
180			

<210> 39
 <211> 435
 <212> DNA
 <213> Sinapis alba
 <220>
 <221> CDS
 <222> (1)..(432)
 <223> coding for partial sin1 storage protein
 <400> 39

cca	gcc	ggc	cca	ttt	ggg	att	cca	aaa	tgt	agg	aag	gag	ttt	caa	caa		48	
Pro	Ala	Gly	Pro	Phe	Gly	Ile	Pro	Lys	Cys	Arg	Lys	Glu	Phe	Gln	Gln			
1				5					10					15				
gca	caa	cac	cta	aga	gct	tgc	cag	caa	tgg	ctc	cac	aag	cag	gca	atg		96	
Ala	Gln	His	Leu	Arg	Ala	Cys	Gln	Gln	Trp	Leu	His	Lys	Gln	Ala	Met			
				20					25					30				
cag	tct	ggt	agt	ggt	cca	agc	tgg	acc	ctc	gac	gat	gag	ttt	gat	ttt		144	
Gln	Ser	Gly	Ser	Gly	Pro	Ser	Trp	Thr	Leu	Asp	Asp	Glu	Phe	Asp	Phe			
				35				40				45						
gaa	gat	gac	atg	gag	aac	cca	cag	gga	cca	cag	cag	agg	cca	cca	cta		192	
Glu	Asp	Asp	Met	Glu	Asn	Pro	Gln	Gly	Pro	Gln	Gln	Arg	Pro	Pro	Leu			
				50				55				60						
ctc	cag	cag	tgc	tgc	aac	gag	ctc	cac	cag	gaa	gag	cca	ctt	tgc	gtt		240	
Leu	Gln	Gln	Cys	Cys	Asn	Glu	Leu	His	Gln	Glu	Glu	Pro	Leu	Cys	Val			
				65			70		75					80				
tgc	cca	acc	ttg	aaa	gga	gca	tcc	aaa	gcc	gtt	aaa	cag	cag	gtt	aga		288	
Cys	Pro	Thr	Leu	Lys	Gly	Ala	Ser	Lys	Ala	Val	Lys	Gln	Gln	Val	Arg			
				85				90				95						
caa	cag	ctg	gag	cag	cag	gga	cag	cag	gga	ccg	cac	ctg	cag	cat	gta		336	
Gln	Gln	Leu	Glu	Gln	Gly	Gln	Gln	Gly	Gly	Pro	His	Leu	Gln	His	Val			
				100				105				110						
att	agc	cgt	atc	tac	cag	acc	gct	acg	cac	tta	cct	aga	gtt	tgc	aac		384	
Ile	Ser	Ile	Tyr	Gln	Thr	Ala	Thr	His	Leu	Pro	Arg	Val	Cys	Asn				
				115			120				125							
att	agg	caa	gtt	agc	gtt	tgt	ccc	ttc	cag	aag	acc	atg	cct	gga	ccc		432	
Ile	Arg	Gln	Val	Ser	Val	Cys	Pro	Phe	Gln	Lys	Thr	Met	Pro	Gly	Pro			
				130			135			140								
tcc																435		
<210>	40																	
<211>	144																	
<212>	PRT																	
<213>	Sinapis alba																	
<400>	40																	
Pro	Ala	Gly	Pro	Phe	Gly	Ile	Pro	Lys	Cys	Arg	Lys	Glu	Phe	Gln	Gln			
1				5					10					15				
Ala	Gln	His	Leu	Arg	Ala	Cys	Gln	Gln	Trp	Leu	His	Lys	Gln	Ala	Met			
				20				25				30						
Gln	Ser	Gly	Ser	Gly	Pro	Ser	Trp	Thr	Leu	Asp	Asp	Glu	Phe	Asp	Phe			
				35				40				45						
Glu	Asp	Asp	Met	Glu	Asn	Pro	Gln	Gly	Pro	Gln	Gln	Arg	Pro	Pro	Leu			
				50				55				60						

50

Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu Glu Pro Leu Cys Val
 65 70 75 80
 Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val Lys Gln Gln Val Arg
 85 90 95
 Gln Gln Leu Glu Gln Gln Gly Gln Gln Gly Pro His Leu Gln His Val
 100 105 110
 Ile Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Arg Val Cys Asn
 115 120 125
 Ile Arg Gln Val Ser Val Cys Pro Phe Gln Lys Thr Met Pro Gly Pro
 130 135 140

<210> 41
 <211> 468
 <212> DNA
 <213> Glycine max

<220>
 <221> CDS
 <222> (1)..(465)
 <223> 2S albumine 1

<400> 41

atg acc aag ctt aca att ctc ctc atc gct ctt ctc ttc atc gcc cac	48
Met Thr Lys Leu Thr Ile Leu Leu Ile Ala Leu Leu Phe Ile Ala His	
1 5 10 15	
acc tgc tgc gcc tcc aaa tgg caa cag cac cag caa gag agc tgc cgc	96
Thr Cys Cys Ala Ser Lys Trp Gln Gln His Gln Gln Glu Ser Cys Arg	
20 25 30	
gag cag ctc aag ggg atc aac ctc aac ccc tgt gag cac atc atg gag	144
Glu Gln Leu Lys Gly Ile Asn Leu Asn Pro Cys Glu His Ile Met Glu	
35 40 45	
aag atc caa gct ggc cgc ggc gag gac ggc agc gac gaa gat cac	192
Lys Ile Gln Ala Gly Arg Arg Gly Glu Asp Gly Ser Asp Glu Asp His	
50 55 60	
att ctc atc agg acc atg ccg gga aga atc aac tac atc agg aag aag	240
Ile Leu Ile Arg Thr Met Pro Gly Arg Ile Asn Tyr Ile Arg Lys Lys	
65 70 75 80	
gaa gga aaa gaa gaa gaa gaa gga cac atg cag aag tgc tgc agc	288
Glu Gly Lys Glu Glu Glu Glu Gly His Met Gln Lys Cys Cys Ser	
85 90 95	
gaa atg agc gag ctg aaa agc ccc ata tgc cag tgc aaa gcg cta cag	336
Glu Met Ser Glu Leu Lys Ser Pro Ile Cys Gln Cys Lys Ala Leu Gln	
100 105 110	
aag ata atg gat aac cag agc gag caa ctg gag ggg aag gag aag aag	384
Lys Ile Met Asp Asn Gln Ser Glu Gln Leu Glu Gly Lys Glu Lys Lys	
115 120 125	
cag atg gag aga gag ctc atg aac ttg gct att agg tgc agg ttg gga	432
Gln Met Glu Arg Glu Leu Met Asn Leu Ala Ile Arg Cys Arg Leu Gly	
130 135 140	
ccc atg ata ggg tgc gac ttg tcc tcc gat gac tga	468
Pro Met Ile Gly Cys Asp Leu Ser Ser Asp Asp	
145 150 155	

<210> 42
 <211> 155
 <212> PRT
 <213> Glycine max
 <400> 42
 Met Thr Lys Leu Thr Ile Leu Leu Ile Ala Leu Leu Phe Ile Ala His
 1 5 10 15
 Thr Cys Cys Ala Ser Lys Trp Gln Gln His Gln Gln Glu Ser Cys Arg
 20 25 30
 Glu Gln Leu Lys Gly Ile Asn Leu Asn Pro Cys Glu His Ile Met Glu
 35 40 45
 Lys Ile Gln Ala Gly Arg Arg Gly Glu Asp Gly Ser Asp Glu Asp His
 50 55 60
 Ile Leu Ile Arg Thr Met Pro Gly Arg Ile Asn Tyr Ile Arg Lys Lys
 65 70 75 80
 Glu Gly Lys Glu Glu Glu Glu Gly His Met Gln Lys Cys Cys Ser
 85 90 95
 Glu Met Ser Glu Leu Lys Ser Pro Ile Cys Gln Cys Lys Ala Leu Gln
 100 105 110
 Lys Ile Met Asp Asn Gln Ser Glu Gln Leu Glu Gly Lys Glu Lys Lys
 115 120 125
 Gln Met Glu Arg Glu Leu Met Asn Leu Ala Ile Arg Cys Arg Leu Gly
 130 135 140
 Pro Met Ile Gly Cys Asp Leu Ser Ser Asp Asp
 145 150 155

<210> 43
 <211> 477
 <212> DNA
 <213> Glycine max
 <220>
 <221> CDS
 <222> (1)...(474)
 <223> 2S albumine
 <400> 43
 atg acc aag ttc aca atc ctc ctc atc tct ctt ctc ttc tgc atc gcc 48
 Met Thr Lys Phe Thr Ile Leu Leu Ile Ser Leu Leu Phe Cys Ile Ala
 1 5 10 15
 cac act tgc agc gcc tcc aaa tgg cag cac cag caa gat agc tgc cgc 96
 His Thr Cys Ser Ala Ser Lys Trp Gln His Gln Gln Asp Ser Cys Arg
 20 25 30
 aag cag ctc cag ggg gtg aac ctc acg ccc tgc gag aag cac atc atg 144
 Lys Gln Leu Gln Gly Val Asn Leu Thr Pro Cys Glu Lys His Ile Met
 35 40 45
 gag aag atc caa ggc cgc ggc gat gac gat gat gat gac gac gac 192
 Glu Lys Ile Gln Gly Arg Gly Asp Asp Asp Asp Asp Asp Asp Asp Asp
 50 55 60
 aat cac att ctc agg acc atg cgg gga aga atc aac tac ata agg agg 240
 Asn His Ile Leu Arg Thr Met Arg Gly Arg Ile Asn Tyr Ile Arg Arg
 65 70 75 80

aac gaa gga aaa gac gaa gac gaa gaa gaa gga cac atg cag aag 288
 Asn Glu Gly Lys Asp Glu Asp Glu Glu Glu Gly His Met Gln Lys
 85 90 95
 tgc tgc aca gaa atg agc gag ctg aga agc ccc aaa tgc cag tgc aaa 336
 Cys Cys Thr Glu Met Ser Glu Leu Arg Ser Pro Lys Cys Gln Cys Lys
 100 105 110
 gcg ctg cag aag ata atg gag aac cag agc gag gaa ctg gag gag aag 384
 Ala Leu Gln Lys Ile Met Glu Asn Gln Ser Glu Glu Leu Glu Lys
 115 120 125
 cag aag aag aaa atg gag aag gag ctc att aac ttg gct act atg tgc 432
 Gln Lys Lys Met Glu Lys Glu Leu Ile Asn Leu Ala Thr Met Cys
 130 135 140
 agg ttt gga ccc atg atc cag tgc gac ttg tcc tcc gat gac taa 477
 Arg Phe Gly Pro Met Ile Gln Cys Asp Leu Ser Ser Asp Asp
 145 150 155
 <210> 44
 <211> 158
 <212> PRT
 <213> Glycine max
 <400> 44
 Met Thr Lys Phe Thr Ile Leu Leu Ile Ser Leu Leu Phe Cys Ile Ala
 1 5 10 15
 His Thr Cys Ser Ala Ser Lys Trp Gln His Gln Gln Asp Ser Cys Arg
 20 25 30
 Lys Gln Leu Gln Gly Val Asn Leu Thr Pro Cys Glu Lys His Ile Met
 35 40 45
 Glu Lys Ile Gln Gly Arg Gly Asp Asp Asp Asp Asp Asp Asp Asp
 50 55 60
 Asn His Ile Leu Arg Thr Met Arg Gly Arg Ile Asn Tyr Ile Arg Arg
 65 70 75 80
 Asn Glu Gly Lys Asp Glu Asp Glu Glu Glu Glu Gly His Met Gln Lys
 85 90 95
 Cys Cys Thr Glu Met Ser Glu Leu Arg Ser Pro Lys Cys Gln Cys Lys
 100 105 110
 Ala Leu Gln Lys Ile Met Glu Asn Gln Ser Glu Glu Leu Glu Lys
 115 120 125
 Gln Lys Lys Lys Met Glu Lys Glu Leu Ile Asn Leu Ala Thr Met Cys
 130 135 140
 Arg Phe Gly Pro Met Ile Gln Cys Asp Leu Ser Ser Asp Asp
 145 150 155

<210> 45
 <211> 537
 <212> DNA
 <213> Brassica nigra
 <220>
 <221> CDS
 <222> (1)...(534)
 <223> 2S storage protein

<400> 45

atg	gcg	aac	aag	ctc	tcc	ctc	gtc	tcg	gca	act	ctc	gcc	tcc	ttc	ttc		48	
Met	Ala	Asn	Lys	Leu	Phe	Leu	Val	Ser	Ala	Thr	Leu	Ala	Phe	Phe	Phe			
1				5					10				15					
ctg	ctc	acc	aat	gcc	tcc	atc	tac	cgg	acg	gtc	gtc	gag	ttc	gac	gaa		96	
Leu	Leu	Thr	Asn	Ala	Ser	Ile	Tyr	Arg	Thr	Val	Val	Glu	Phe	Asp	Glu			
20				25					30									
gat	gat	gac	aca	aac	caa	gcc	gga	cca	ttt	agg	att	cca	aga	tgt	cga		144	
Asp	Asp	Asp	Thr	Asn	Gln	Ala	Gly	Pro	Phe	Arg	Ile	Pro	Arg	Cys	Arg			
35				40					45									
aag	gag	ttt	cgg	caa	gca	caa	cat	cta	aga	gct	tgc	cag	caa	tgg	ctc		192	
Lys	Glu	Phe	Arg	Gln	Ala	Gln	His	Leu	Arg	Ala	Cys	Gln	Gln	Trp	Leu			
50				55					60									
cac	agg	cag	gca	atg	cag	tcc	ggt	agt	ggt	cca	agc	tgg	acc	ctg	gac		240	
His	Arg	Gln	Ala	Met	Gln	Ser	Gly	Ser	Gly	Pro	Ser	Trp	Thr	Leu	Asp			
65				70					75				80					
ggt	gag	ttt	gac	ttt	gaa	gac	gac	atg	gag	aac	caa	cag	ggc	cca	cag		288	
Gly	Glu	Phe	Asp	Phe	Glu	Asp	Asp	Met	Glu	Asn	Gln	Gln	Gly	Pro	Gln			
85				90					95									
cag	agg	cca	cct	cta	ctc	cag	caa	tgc	tgc	aac	gag	ctc	cac	cag	gaa		336	
Gln	Arg	Pro	Pro	Leu	Leu	Gln	Gln	Cys	Cys	Asn	Glu	Leu	His	Gln	Glu			
100				105					110									
gag	gca	ctt	tgt	gtt	tgc	cca	acc	ttg	aaa	gga	gca	tcc	aaa	gcg	gtt		384	
Glu	Ala	Leu	Cys	Val	Cys	Pro	Thr	Leu	Lys	Gly	Ala	Ser	Lys	Ala	Val			
115				120					125									
aga	caa	cag	gtt	cga	caa	cag	gga	cac	cag	cag	cag	atg	cag	cat	gtt		432	
Arg	Gln	Gln	Val	Arg	Gln	Gln	Gly	His	Gln	Gln	Gln	Met	Gln	His	Val			
130				135					140									
att	agc	cgt	atc	tac	cag	acc	gct	acg	cac	tta	cct	aga	gtt	tgc	aac		480	
Ile	Ser	Arg	Ile	Tyr	Gln	Thr	Ala	Thr	His	Leu	Pro	Arg	Val	Cys	Asn			
145				150					155				160					
atc	ccg	caa	gtt	agc	gtt	tgt	ccc	tcc	cag	aag	acc	atg	cct	ggg	ccc		528	
Ile	Pro	Gln	Val	Ser	Val	Cys	Pro	Phe	Gln	Lys	Thr	Met	Pro	Gly	Pro			
165				170					175									
tcc	tac	tag														537		
Ser	Tyr																	
<210> 46																		
<211> 178																		
<212> PRT																		
<213> Brassica nigra																		
<400> 46																		
Met	Ala	Asn	Lys	Leu	Phe	Leu	Val	Ser	Ala	Thr	Leu	Ala	Phe	Phe	Phe			
1				5					10				15					
Leu	Leu	Thr	Asn	Ala	Ser	Ile	Tyr	Arg	Thr	Val	Val	Glu	Phe	Asp	Glu			
20				25					30									
Asp	Asp	Asp	Thr	Asn	Gln	Ala	Gly	Pro	Phe	Arg	Ile	Pro	Arg	Cys	Arg			
35				40					45									
Lys	Glu	Phe	Arg	Gln	Ala	Gln	His	Leu	Arg	Ala	Cys	Gln	Gln	Trp	Leu			
50				55					60									
His	Arg	Gln	Ala	Met	Gln	Ser	Gly	Ser	Gly	Pro	Ser	Trp	Thr	Leu	Asp			
65				70					75				80					

Gly Glu Phe Asp Phe Glu Asp Asp Met Glu Asn Gln Gln Gly Pro Gln
 85 90 95
 Gln Arg Pro Pro Leu Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu
 100 105 110
 Glu Ala Leu Cys Val Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val
 115 120 125
 Arg Gln Gln Val Arg Gln Gln Gly His Gln Gln Gln Met Gln His Val
 130 135 140
 Ile Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Arg Val Cys Asn
 145 150 155 160
 Ile Pro Gln Val Ser Val Cys Pro Phe Gln Lys Thr Met Pro Gly Pro
 165 170 175
 Ser Tyr

<210> 47
<211> 435
<212> DNA
<213> Sinapis alba

<220>
<221> CDS
<222> (1)...(432)
<223> sin5 storage protein

<400> 47
cca gcc ggc cca ttt ggg att cca aaa tgt agg aag gag ttt caa caa 48
Pro Ala Gly Pro Phe Gly Ile Pro Lys Cys Arg Lys Glu Phe Gln Gln
 1 5 10 15
gca caa cac cta aga gct tgc cag caa tgg ctc cac aag cag gca atg 96
Ala Gln His Leu Arg Ala Cys Gln Gln Trp Leu His Lys Gln Ala Met
 20 25 30
cag tct ggt agt ggt cca agc tgg acc ctc gac gat gag ttt gat ttt 144
Gln Ser Gly Pro Ser Trp Thr Leu Asp Asp Glu Phe Asp Phe
 35 40 45
gaa gac gac atg gag aac ccc cag gga cca cag cag aag ccg cca cta 192
Glu Asp Asp Met Glu Asn Pro Gln Gly Pro Gln Gln Lys Pro Pro Leu
 50 55 60
ctc cag caa tgc tgc aac gag ctt cac cag gag cca ctt tgc gtt 240
Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu Glu Pro Leu Cys Val
 65 70 75 80
tgc cca act ttg aaa gga gct tcc aaa gcc gtt aaa caa cag gtt cga 288
Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val Lys Gln Gln Val Arg
 85 90 95
caa cag ttg ggg cag cag gga cag cag gga ccg cag gtg cag cat gta 336
Gln Gln Leu Gly Gln Gln Gly Gln Gln Gly Pro Gln Val Gln His Val
 100 105 110
att agc cgt atc tac cag acc gct acg cac tta cct aaa gtt tgc aac 384
Ile Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Lys Val Cys Asn
 115 120 125
atc ccc caa gta agc gtt tgt ccc ttc aag aag acc atg cct gga ccc 432
Ile Pro Gln Val Ser Val Cys Pro Phe Lys Lys Thr Met Pro Gly Pro
 130 135 140

tcc 435

<210> 48
<211> 144
<212> PRT
<213> Sinapis alba

<400> 48

Pro Ala Gly Pro Phe Gly Ile Pro Lys Cys Arg Lys Glu Phe Gln Gln
1 5 10 15

Ala Gln His Leu Arg Ala Cys Gln Gln Trp Leu His Lys Gln Ala Met
20 25 30

Gln Ser Gly Ser Gly Pro Ser Trp Thr Leu Asp Asp Glu Phe Asp Phe
35 40 45

Glu Asp Asp Met Glu Asn Pro Gln Gly Pro Gln Gln Lys Pro Pro Leu
50 55 60

Leu Gln Gln Cys Cys Asn Glu Leu His Gln Glu Glu Pro Leu Cys Val
65 70 75 80

Cys Pro Thr Leu Lys Gly Ala Ser Lys Ala Val Lys Gln Gln Val Arg
85 90 95

Gln Gln Leu Gly Gln Gln Gly Gln Pro Gln Val Gln His Val
100 105 110

Ile Ser Arg Ile Tyr Gln Thr Ala Thr His Leu Pro Lys Val Cys Asn
115 120 125

Ile Pro Gln Val Ser Val Cys Pro Phe Lys Lys Thr Met Pro Gly Pro
130 135 140

<210> 49
<211> 888
<212> DNA
<213> Helianthus annuus

<220>
<221> CDS
<222> (1)..(885)
<223> HaG5 2S albumine

<400> 49

atg gca aag caa ata gtt ctc gca ctc gct ttc gcc gcc ctt gta gcc 48
Met Ala Lys Gln Ile Val Leu Ala Leu Ala Phe Ala Ala Leu Val Ala
1 5 10 15

ttt gct acc gcc cac aca acc ata atc acc acc acc atc gaa gac gag 96
Phe Ala Thr Ala His Thr Thr Ile Ile Thr Thr Ile Glu Asp Glu
20 25 30

aac ccg atc tcc gga caa agg caa gtg agc caa cggt ata cag gga caa 144
Asn Pro Ile Ser Gly Gln Arg Gln Val Ser Gln Arg Ile Gln Gly Gln
35 40 45

agg ctg aac cag tgt cgc atg ttc ctc cag cag ggt cag aac att cct 192
Arg Leu Asn Gln Cys Arg Met Phe Leu Gln Gln Gly Gln Asn Ile Pro
50 55 60

cgc gaa ttc gat aac cct cag atg ggg cgg cag cag gag cag cag ctc 240
Arg Glu Phe Asp Asn Pro Gln Met Gly Arg Gln Gln Glu Gln Gln Leu
65 70 75 80

cag cag tgt tgt caa gag ctc caa aac atc gaa ggg cag tgc caa tgt Gln Gln Cys Cys Gln Glu Leu Gln Asn Ile Glu Gly Gln Cys Gln Cys 85 90 95	288
gag gcg gtg aag cag gtg ttc cga gaa gcc cag cag caa gta caa cag Glu Ala Val Lys Gln Val Phe Arg Glu Ala Gln Gln Gln Val Gln Gln 100 105 110	336
caa cag gga cgg cag ctt gta ccc ttc cgc ggt tcg cag cag acc caa Gln Gln Gly Arg Gln Leu Val Pro Phe Arg Gly Ser Gln Gln Thr Gln 115 120 125	384
cag ttg aag cag aag gct cag att ctc cct aac gta tgc aac ctt caa Gln Leu Lys Gln Lys Ala Gln Ile Leu Pro Asn Val Cys Asn Leu Gln 130 135 140	432
tca aga cga tgt gaa atc gga acc atc acc acc acc gtc acc gag agc Ser Arg Arg Cys Glu Ile Gly Thr Ile Thr Thr Val Thr Glu Ser 145 150 155 160	480
aat atc gat atc ccc ttc cgt gac agg ccc ttt ggc act gga tca caa Asn Ile Asp Ile Pro Phe Arg Asp Arg Pro Phe Gly Thr Gly Ser Gln 165 170 175	528
cag tgc aga gaa act gaa atc caa cga ccc gtt ggt gaa tgc caa agg Gln Cys Arg Glu Thr Glu Ile Gln Arg Pro Val Gly Glu Cys Gln Arg 180 185 190	576
ttc gtg gag cag caa atg cag cag tct ccg agg tcc act aga cca tac Phe Val Glu Gln Gln Met Gln Gln Ser Pro Arg Ser Thr Arg Pro Tyr 195 200 205	624
caa cag cgg cca gga caa cag cag cag cag cag aga ggg ctc caa caa Gln Gln Arg Pro Gly Gln Gln Gln Gln Gln Arg Gly Leu Gln Gln 210 215 220	672
caa tgc tgc aac gag cta caa aac gtg aag agg gag tgc gag Gln Cys Cys Asn Glu Leu Gln Asn Val Lys Arg Glu Cys His Cys Glu 225 230 235 240	720
gca att caa gaa gtg gct agg aga gtg atg agg cag cca cag cag cag Ala Ile Gln Glu Val Ala Arg Arg Val Met Arg Gln Pro Gln Gln Gln 245 250 255	768
cag cag caa cgt cgt ggg cag ttc ggt ggg cag gag atg gaa acc gcg Gln Gln Arg Arg Gly Gln Phe Gly Gly Gln Glu Met Glu Thr Ala 260 265 270	816
agg agg gtg att cag aat ctg ccc aac cag tgc gac ttg gaa gtc cag Arg Arg Val Ile Gln Asn Leu Pro Asn Gln Cys Asp Leu Glu Val Gln 275 280 285	864
caa tgc aca acc tgt acg gga tga Gln Cys Thr Thr Cys Thr Gly 290 295	888
<210> 50	
<211> 295	
<212> PRT	
<213> Helianthus annuus	
<400> 50	
Met Ala Lys Gln Ile Val Leu Ala Leu Ala Phe Ala Ala Leu Val Ala 1 5 10 15	
Phe Ala Thr Ala His Thr Thr Ile Ile Thr Thr Thr Ile Glu Asp Glu 20 25 30	

Asn Pro Ile Ser Gly Gln Arg Gln Val Ser Gln Arg Ile Gln Gly Gln
 35 40 45
 Arg Leu Asn Gln Cys Arg Met Phe Leu Gln Gln Gly Gln Asn Ile Pro
 50 55 60
 Arg Glu Phe Asp Asn Pro Gln Met Gly Arg Gln Gln Glu Gln Gln Leu
 65 70 75 80
 Gln Gln Cys Cys Gln Glu Leu Gln Asn Ile Glu Gly Gln Cys Gln Cys
 85 90 95
 Glu Ala Val Lys Gln Val Phe Arg Glu Ala Gln Gln Val Gln Gln
 100 105 110
 Gln Gln Gly Arg Gln Leu Val Pro Phe Arg Gly Ser Gln Gln Thr Gln
 115 120 125
 Gln Leu Lys Gln Lys Ala Gln Ile Leu Pro Asn Val Cys Asn Leu Gln
 130 135 140
 Ser Arg Arg Cys Glu Ile Gly Thr Ile Thr Thr Val Thr Glu Ser
 145 150 155 160
 Asn Ile Asp Ile Pro Phe Arg Asp Arg Pro Phe Gly Thr Gly Ser Gln
 165 170 175
 Gln Cys Arg Glu Thr Glu Ile Gln Arg Pro Val Gly Glu Cys Gln Arg
 180 185 190
 Phe Val Glu Gln Gln Met Gln Gln Ser Pro Arg Ser Thr Arg Pro Tyr
 195 200 205
 Gln Gln Arg Pro Gly Gln Gln Gln Gln Arg Gly Leu Gln Gln
 210 215 220
 Gln Cys Cys Asn Glu Leu Gln Asn Val Lys Arg Glu Cys His Cys Glu
 225 230 235 240
 Ala Ile Gln Glu Val Ala Arg Arg Val Met Arg Gln Pro Gln Gln Gln
 245 250 255
 Gln Gln Gln Arg Arg Gly Gln Phe Gly Gly Gln Glu Met Glu Thr Ala
 260 265 270
 Arg Arg Val Ile Gln Asn Leu Pro Asn Gln Cys Asp Leu Glu Val Gln
 275 280 285
 Gln Cys Thr Thr Cys Thr Gly
 290 295

<210> 51
 <211> 973
 <212> DNA
 <213> Helianthus annuus

<220>
 <221> CDS
 <222> (2)..(970)
 <223> coding for partial 2S albumine
 <400> 51

g gca aag ata aca ctt ctc ttg ctc gcc tta gct gct ctt gta gcc ttg 49
 Ala Lys Ile Thr Leu Leu Leu Ala Leu Ala Ala Leu Val Ala Leu
 1 5 10 15

gct aca gcc cac aca acc atc atc acc acc acc atc gac gac gag aac 97
 Ala Thr Ala His Thr Thr Ile Ile Thr Thr Ile Asp Asp Glu Asn
 20 25 30

ccg atc tcc gaa caa agg caa tgt tgg caa cag gta cag gga caa agg Pro Ile Ser Glu Gln Arg Gln Cys Trp Gln Gln Val Gln Gly Gln Arg 35 40 45	145
ttg aac cag tgt cgc atg ttc ctc cag caa ggt cag agg ggg cag caa Leu Asn Gln Cys Arg Met Phe Leu Gln Gln Gly Gln Arg Gly Gln Gln 50 55 60	193
cac caa cag caa cag cat cag cag cag gag cag cag ctc ctc cag cag His Gln Gln Gln His Gln Gln Glu Gln Gln Leu Leu Gln Gln 65 70 75 80	241
tgt tgt caa gag ctt caa aac atc gaa gga cag tgc caa tgt gag gcg Cys Cys Gln Glu Leu Gln Asn Ile Glu Gly Gln Cys Gln Cys Glu Ala 85 90 95	289
gtg aag cag gtg gtc cga gat gct cag cga cac gag caa cag cga ccg Val Lys Gln Val Val Arg Asp Ala Gln Arg His Glu Gln Gln Arg Pro 100 105 110	337
cga gtg ccc ttc cag ggt tct cag cag tct caa cag ttg aag cag agg Arg Val Pro Phe Gln Gly Ser Gln Ser Gln Gln Leu Lys Gln Arg 115 120 125	385
gct cag att ctc cct aac gta tgc aac ctt caa tca aga cga tgc gaa Ala Gln Ile Leu Pro Asn Val Cys Asn Leu Gln Ser Arg Arg Cys Glu 130 135 140	433
atc gaa agc gtc agg agt gtt gct gag agc aat ttt gaa atc cca ttt Ile Glu Ser Val Arg Ser Val Ala Glu Ser Asn Phe Glu Ile Pro Phe 145 150 155 160	481
gat atg ccg ttt gat atc cct tgg ccc ttt cgc cca agc tca gag tca Asp Met Pro Phe Asp Ile Pro Trp Pro Phe Arg Pro Ser Ser Glu Ser 165 170 175	529
cag caa tgc aga cag agt gaa atc caa agg cct gtg agt cag tgc caa Gln Gln Cys Arg Gln Ser Glu Ile Gln Arg Pro Val Ser Gln Cys Gln 180 185 190	577
agg tat gtg gag cag caa att cag tcc tcc agg cca tac caa cag agc Arg Tyr Val Glu Gln Ile Gln Ser Ser Arg Pro Tyr Gln Gln Ser 195 200 205	625
ccg tac gac cgg agg caa cag agc cca tac gac cgg agg caa cag agc Pro Tyr Asp Arg Arg Gln Gln Ser Pro Tyr Asp Arg Arg Gln Gln Ser 210 215 220	673
cca tat gaa cag agg caa gga cca tac gaa cag agg cca tac gaa cag Pro Tyr Glu Gln Arg Gln Gly Pro Tyr Glu Gln Arg Pro Tyr Glu Gln 225 230 235 240	721
agg cca tac caa cag cga gga gga cga cag cag gag cag caa ggg ctc Arg Pro Tyr Gln Gln Arg Gly Arg Gln Gln Glu Gln Gln Gly Leu 245 250 255	769
cag caa tgc tgc aac gag ctc caa aac gtg agg agg gag tgt cag tgc Gln Gln Cys Cys Asn Glu Leu Gln Asn Val Arg Arg Glu Cys Gln Cys 260 265 270	817
gag gcg att aag gaa gtg ggc caa aga atg agg cag cag caa caa caa Glu Ala Ile Lys Glu Val Gly Gln Arg Met Arg Gln Gln Gln Gln Gln 275 280 285	865
caa cgt agg cag tat ggt ggg cag cag aca caa act gtg gag aga att Gln Arg Arg Gln Tyr Gly Gln Gln Thr Gln Thr Val Glu Arg Ile 290 295 300	913

ctt gag aat ctg cct aac caa tgc gac cta gat gtc cag caa tgc aac 961
 Leu Glu Asn Leu Pro Asn Gln Cys Asp Leu Asp Val Gln Gln Cys Asn
 305 310 315 320
 atc ccc tac tga 973
 Ile Pro Tyr
 <210> 52
 <211> 323
 <212> PRT
 <213> Helianthus annuus
 <400> 52
 Ala Lys Ile Thr Leu Leu Leu Ala Leu Ala Ala Leu Val Ala Leu
 1 5 10 15
 Ala Thr Ala His Thr Thr Ile Ile Thr Thr Thr Ile Asp Asp Glu Asn
 20 25 30
 Pro Ile Ser Glu Gln Arg Gln Cys Trp Gln Gln Val Gln Gly Gln Arg
 35 40 45
 Leu Asn Gln Cys Arg Met Phe Leu Gln Gln Gly Gln Arg Gly Gln Gln
 50 55 60
 His Gln Gln Gln His Gln Gln Glu Gln Gln Leu Leu Gln Gln
 65 70 75 80
 Cys Cys Gln Glu Leu Gln Asn Ile Glu Gly Gln Cys Gln Cys Glu Ala
 85 90 95
 Val Lys Gln Val Val Arg Asp Ala Gln Arg His Glu Gln Gln Arg Pro
 100 105 110
 Arg Val Pro Phe Gln Gly Ser Gln Gln Ser Gln Gln Leu Lys Gln Arg
 115 120 125
 Ala Gln Ile Leu Pro Asn Val Cys Asn Leu Gln Ser Arg Arg Cys Glu
 130 135 140
 Ile Glu Ser Val Arg Ser Val Ala Glu Ser Asn Phe Glu Ile Pro Phe
 145 150 155 160
 Asp Met Pro Phe Asp Ile Pro Trp Pro Phe Arg Pro Ser Ser Glu Ser
 165 170 175
 Gln Gln Cys Arg Gln Ser Glu Ile Gln Arg Pro Val Ser Gln Cys Gln
 180 185 190
 Arg Tyr Val Glu Gln Gln Ile Gln Ser Ser Arg Pro Tyr Gln Gln Ser
 195 200 205
 Pro Tyr Asp Arg Arg Gln Gln Ser Pro Tyr Asp Arg Arg Gln Gln Ser
 210 215 220
 Pro Tyr Glu Gln Arg Gln Gly Pro Tyr Glu Gln Arg Pro Tyr Glu Gln
 225 230 235 240
 Arg Pro Tyr Gln Gln Arg Gly Gly Arg Gln Gln Glu Gln Gln Gly Leu
 245 250 255
 Gln Gln Cys Cys Asn Glu Leu Gln Asn Val Arg Arg Glu Cys Gln Cys
 260 265 270
 Glu Ala Ile Lys Glu Val Gly Gln Arg Met Arg Gln Gln Gln Gln
 275 280 285
 Gln Arg Arg Gln Tyr Gly Gly Gln Gln Thr Gln Thr Val Glu Arg Ile
 290 295 300

Leu Glu Asn Leu Pro Asn Gln Cys Asp Leu Asp Val Gln Gln Cys Asn
 305 310 315 320
 Ile Pro Tyr

<210> 53
<211> 1114
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: DNA
 construct coding for dsRNA
<400> 53
ggccgcgtgt tccatttggc cggaaacaac cagcagggag gctttggcg ttcacagcaa 60
caacaagaac agaaaaactt gtggagcggg ttcgacgcac aggtcatagc tcaagcattt 120
aaaattgacg ttcagttggc tcagcagctt cagaaccaac aagacagcag aggaaacatc 180
gttcgtgtta agggacctt ccaggtcgtg aggccacctc taagacagcc ctacgagagc 240
gaggagtgga gacaccccacg tagccccacag ggcaacggcc ttgaggagac tatctgcagc 300
atgagggtccc acgagaacat tgacgaccct gctcgtgctg acgtgtacaa gcccagccta 360
ggtcgcgtga ccagcgtcaa cagctatacc ttgcccattt tggagttatgt caggctcagt 420
gccactcgtg gcgttctcca gggtggtatcc ttctgttaaca tttgacaaaa catgtgaaca 480
cgtcatccgt catatagaac ttccaatttt aatatgtttt gctaaagaaa aaaaaaagga 540
ataaaatatct atcaaattca tttttaaaac atttgtatac gttcttaaat aatttaggat 600
atgactaatt tttctttttt gtaaaaatgt taatatctat atttaatita ttaagaaaaaa 660
tgtacttaca ccctggagaa cgccacgagt ggcactgagc ctgacatact ccaagatggg 720
caaggtatacg ctgttgcacgc tggcacgcg acctaggctg ggcttgtaca cgtcagcacg 780
agcagggtcg tcaatgttct cgtgggacct catgctgcag atagtctcct caaggccgtt 840
gccctgtggg ctacgtgggt gtctccactc ctcgctctcg tagggctgtc ttagaggtgg 900
cctcacgacc tgaaaagggtc ccttaacacg aacgatgtt cctctgctgt cttgttgggt 960
ctgaagctgc tgagccaact gaacgtcaat ttcaatgtc tgagctatga cctgtgcgtc 1020
gaacccgctc cacaagttt tctgttcttg ttgttgctgt gaaccgcca agcctccctg 1080
ctggttgttt cgggccaaat ggaacacgcg gccc 1114
<210> 54
<211> 1114
<212> RNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: RNA sequence
 for forming dsRNA
<400> 54
ggccgcgugu uccauuuuggc cggaaacaac cagcagggag gcuuuggcg uucacagcaa 60
caacaagaac agaaaaacuu guggagcggg uucgacgcac aggucauagc ucaagcauug 120
aaaaauugacg uucaguuggc ucagcagcuu cagaaccaac aagacagcag aggaaacauc 180
guucguguua agggaccuuu ccaggucug aggccaccuc uaagacagcc cuacgagagc 240
gaggagugga gacaccccacg uagcccacag ggcaacggcc uugaggagac uaucugcagc 300
augaggguccc acgagaacau ugacgaccu gcucgugcug acguguacaa gcccagccua 360
ggucgcguga ccagcgucaa cagcuauacc uugcccaucu uggaguaugu caggcucagu 420
gccacucugug gcgucucucca ggguggaucc uucuguaaca uuugacaaaa caugugaaca 480
cgucauccgu cauauagaac uuccaaauuu aauauguuuu gcuaaagaaaa aaaaaaagga 540
auaaaaauucu aucaaaauuca uuuuuuuaac auuuguaauac guucuuuaau aauuuuaggau 600
augacuaauu uuuuuuuuug guaaaaaaugu uaaauaucuau auuuaauuuua uuaagaaaaaa 660
uguacuuaca cccuggagaa cgccacgagu ggcacugagc cugacauacu ccaagaugggg 720
caagguauag cuguugacgc uggucacgc accuaggcug ggcuuguaaca cgucagcacg 780
agcagggucg ucaauguucu cgugggaccu caugcugcag auagucuccu caaggccguu 840

gcccugugggg cuacgugggu gucuccacuc cucgcucucg uagggcuguc uuagaggugg 900
 ccucacgacc ugaaaagguc ccuuaacacg aacgauguu ccucugcugu cuuguugguu 960
 cugaagcugc ugagccaacu gaacgucaau uuuaaugcu ugagcuaua ccugugcgc 1020
 gaacccgcuc cacaaguuu ucuguucuug uuguugcugu gaaccgccaa agccucccug 1080
 cugguuguuu ccggccaaau ggaacacgcg gccg 1114

<210> 55

<211> 1789

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: DNA
 construct coding for dsRNA

<400> 55

gcggccgcgg atcctcaggg tctttcttgc cccactttct tgaacgcggg caaactcacg 60
 tttgttgttc acgaaagggg tctaattggg agagttattc cgggatgcgc cgagacgttc 120
 atggagtcac cggattttgg agaaggtaa ggtcagggtc agagtcaagg gttccgtgac 180
 atgcaccaga aagtagagca cctacgggtc ggtgacacca ttgcaacacc atctgggtta 240
 gctcaatggt tctacaacaa tggaaatgag cctctcatc ttgttgccagc cgccgatctc 300
 gccagcaacc agaaccagct tgaccgcaac cttagaccat tttgtatagc cgaaaaacaac 360
 ccacaagggc aggaatggct acaaggccga aagcaacaga agcaaaaccaa catcttcaat 420
 ggcttcgcac ctgagatctt ggctcaagcc ttcaagatca atgtcgagac ggctcagcag 480
 ctccagaacc agcaagataa ccgtggcaac atcgtcaagg tcaacggacc tttccggcgtc 540
 attaggccac ctttgagacg cggcgaaggc ggccaacaac cacatgaaat agctaattgg 600
 ttagaggaga ctttgtcac catgcgatgc actgaaaaacc tcgatgaccc gtcggatgct 660
 gacgtgtaca agccatcaact cggatcacatt agcacactta acagctacaa tcttcctatc 720
 ctcagacttc tccgccttag cgctttcgt ggctccatcc gtaaaaactcg aggttaagctc 780
 aacaaatctt tagaaaatta attttatgtg acatatgcaa taatttgatt tggcaagata 840
 aactaataga ttttgcgatt tggagttta aactctaaat aatctaaatc gttttcaatt 900
 ggtttaaata tatatcttgc attttaatc gtttttaatt aaaaaatata tatatatata 960
 tatatcttgc attttaatc gttttcaatt taaaaaatat ctgcacgca gaacgctgtc 1020
 gagtttacg gatggagcca cgaagagcgc taaggcggag aagtctgagg ataggaagat 1080
 tgtagctgtt aagtgtgcta atgtatccga gtgatggctt gtacacgtca gcatccgacg 1140
 ggtcatcgag gtttcagtgc catcgcatgg tgcacaaagt ctctctaaa ccattagcta 1200
 tttcatgtgg ttgttggccg ctttcgcgc gtctcaaggg tggcctaatg acgccgaaag 1260
 gtccgttgac cttgacgatg ttgccacggt tatcttgctg gttctggagc tgctgagccg 1320
 tctcgacatt gatcttgaag gcttgagcca agatctcagg tgcgaagcca ttgaagatgt 1380
 tgtttgctt ctgttgctt cggccctgtt gccattcctg cccttggg ttgttccgg 1440
 ctataaaaaaaaa tggcttaagg ttgcggtaa gctggttctg gttgctggg agatccgccc 1500
 ctgcaacaag aatgagaggc tcatttccat tggttagaa ccattgagct acaccagatg 1560
 gtgttgcaat ggtgtcaccg caccgttaggt gctctactt ctggtgcatg tcacggaacc 1620
 cttgactctg accctgaccc tgaccttctc caaataccgg tgaactccatg aacgtctcgg 1680
 cgcatcccg aataactctt cccattagac cccttccgtg aacaacaaac gtgagtttgc 1740
 cggcggttcaa gaaaagtggc aagaaaagac cctgaggatc cgccggccgc 1789

<210> 56

<211> 1789

<212> RNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: : RNA
 sequence for forming dsRNA

<400> 56

gcggccgcgg auccucaggg ucuuuuucuug cccacuuucu ugaacgcggg caaacucacg 60
 uuuguuguuc acgaaagggg ucuuauggga agaguuaauuc cgggaugcgc cgagacguuc 120
 auggagucac cgguaauuugg agaaggucaa ggucaggguc agagucaagg guuccgugac 180
 augcaccaga aaguagagca ccuacggugc ggugacacca uugcaacacc aucuggugua 240

gcucaauuggu ucuacaacaa ugaaaugag ccucucuuuc uuguugcagc cgcggaucuc 300
 gccagcaacc agaaccagcu ugaccgcaac cuuagaccau uuuugauagc cgaaacaaac 360
 ccacaaggc aggaauggcu acaaggccga aagcaacaga agcaaaacaa caucuucaa 420
 ggcuucgcac cugagaucuu ggcucaagcc uucaagauca augucgagac ggcucagcag 480
 cuccagaacc agcaagauaa ccguggcaac aucgucaagg ucaacggacc uuucggcgc 540
 auuagggcac cciuugagacg cggcgaaggc ggcacaacaac cacaugaaaau agcuaauggu 600
 uuagaggaga cuuugugcac caugcgaugc acugaaaacc ucgaugaccc gucggaugcu 660
 gacguguaca agccaucacu cggauacauu agcacacuu acagcuacaa uciuccuauc 720
 cucagacuuc uccgcuuag cgcucuucgu ggcuccaucc guaaaacucg agguaagcuc 780
 aacaaaucuu uagaaaauua auuuuaugug acauaugcaa uaauuugauu uggcaagaua 840
 aacuaauaga uuuugcgauu uggaguuuua aacucuaauu aaucuaaua guuuucaauu 900
 gguuuuuaaua uauaucuugc auuuuuaauc guuuuuaauu aaaaaauaua uauauauaua 960
 uauaucuugc auuuuuaauc guuuuuaauu uaaaaauaua cuugcacgca gaacgcuguc 1020
 gaguuuuaucg gauggagcca cgaagagcgc uaaggcggag aagucugagg auaggaagau 1080
 uguagcuguu aagugugcua auguauccga gugauggcuu guacacguca gcauccgacg 1140
 ggucaucgag guuuucagug caucgcaugg ugcacaaaagu cuccucuaaa ccauuagcua 1200
 uuucaugugg uuguuggccg cciuucgcgc gucucaaggg uggccuaaug acgcccggaa 1260
 guccguugac cuugacgaug uugccacggu uaucuugcug guucuggagc ugcugagccg 1320
 ucucgacauu gaucuugaag gcuugagcca agaucucagg ugcgaagcca uugaagauu 1380
 uguumuugcuu cuguugcuuu cggccuugua gccauiuccug cccuuguggg uuguumccgg 1440
 cuauaaaaaa uggucuaagg uugcggucaa gcugguucug guugcuggcg agauccgccc 1500
 cugcaacaag aaugagaggc ucauuuuccau uguuguagaa ccauugagcu acaccagaug 1560
 guguugcaau ggugucacccg caccguaggu gcucuacuuu cuggugcaug ucacggaacc 1620
 cuugacucug acccugaccu ugaccuucuc caaauaccgg ugacuccaung aacgucucgg 1680
 cgcaucccgg aauaacucuu cccauuagac cccuuccgug aacaacaaac gugaguuuggc 1740
 cggcguucaa gaaagugggc aagaaaagac ccugaggauc cgccggccgc 1789

<210> 57

<211> 1273

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: DNA
construct coding for dsRNA

<400> 57

gcggccgccc atccatggct aacaagctct tcctcgctcg cgcaactctc gccctctgct 60
 tcctcctcac caacgcttcc atctaccgca ccgttgcga attcgaagaa gatgacgcca 120
 gcaaccccgta aggtccaaga cagagatgcc agaaggagtt tcagcaatca,caacaccta 180
 gagcttgcca gagatggatg agcaagcaaa tgaggcaagg acgtgggtgt ggtccttccc 240
 tcgacgatga gttcgatttc gagggcccccc agcagggata ccagctactc cagcagtgct 300
 gcaacgagct tcgccaggaa gagccagttt gcgttgcgg caccttggaa caagctgcca 360
 gggcagtttag cctccaggaa cagcacggac cattccaaatc caggaaaatt taccagttag 420
 ctaagtactt gcctaacatt tgcaagatcc agcaagttgg tgaatgtccc ttccagacca 480
 ccatcccttt ctccctcct tactactagg gtactcgagg taagctcaac aaatctttag 540
 aaaattaatt ttatgtgaca tatgcaataa ttgtatgg caagataaac taatagattt 600
 tgcgatttgg agtttaaac tctaaataat ctaaatcggtt ttcaatttgtt ttaaatatat 660
 atcttgcatt ttaatcggtt ttaatattaa aaatatatat atatatatat atcttgcatt 720
 ttaatcggtt ttcaattttaa aaaatatctt gcacgcagaa cgctgtcgac taccctagta 780
 gtaaggaggg aagaaaggaa tgggtgtcg gaaggacat tcaccaactt gctggatctt 840
 gcaaatgtta ggcaagtact tagctgactg gtaaatttc ctggattgga atgtccgtg 900
 ctgtccctgg aggctaactg ccctggcagc ttgttcaag gtggggcaaa cgcaaactgg 960
 ctcttcctgg cgaagctcgt tgcaagactg ctggagtagc tggtatccct gctgggggcc 1020
 ctcgaaatcg aactcatcgta cgagggagg accaccacca cgtccttgcc tcatttgctt 1080
 gctcatccat ctctggcaag ctcttaggtt ttgtgattgc tggaaactcct tctggcatct 1140
 ctgtcttggc cctacgggggt tgctggcgtc atcttcttcg aattcgacaa cggtgcggta 1200
 gatggaagcg ttggtgagga ggaaggcagag ggcgagagtt ggcgcagacga ggaagagctt 1260
 gttagccatg gat 1273

<210> 58
 <211> 1273
 <212> RNA
 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz: : RNA
 sequence for forming dsRNA
 <400> 58
 gccccccggc auccauggcu aacaaggcucu uccucgucug cgcaacucuc gcccucugcu 60
 uccuccucac caacgcuucc aucsuccgca cccguugucga auucgaagaa gaugacgcca 120
 gcaaccccgua agguccaaga cagagaugcc agaaggaguu ucagcaauca caacaccuaa 180
 gagcuuggcc a gagauggaug agcaagcaaa ugaggcaagg acguggguggu gguccuucc 240
 ucgacgaugà guucgauuuc gaggcccccc agcagggaaua ccagcuacuc cagcagugcu 300
 gcaacgagcu ucgccaggaa gagccaguuu gcuuugccc caccuugaaa caagcugcc 360
 gggcaguua g cuccaggaa cagcacggac cauuccaauc caggaaaaauu uaccagucag 420
 cuaaguacuu gccuaacauu ugcaagaaucc agcaaguugg ugaauguccc uuccagacca 480
 ccauccuuu cuucccuuccu uacuacuagg guacucgagg uaagcuuac aaaaucuuuag 540
 aaaaauuaauu uuaugugaca uaugcaauaa uuugauuugg caagauaaac uaaauagauuu 600
 ugcgauuugg aguuuuuaaac ucuaaaaauu cuaaaaucuu uucaauuuggu uuaaaaauauu 660
 auciugcauu uuuuaaucguu uuuuaauuuaaa aaaaauauau aaaaauauau auciugcauu 720
 uuuuaaucguu uucaauuuua aaaaauaucuu guacgcagaa cgcugucgac uacccuagua 780
 guaaggaggg aagaaaggga ugguggucug gaaggggacau ucaccaacuu gcuggaucuu 840
 gcaaauguua ggcaaguacu uagcugacug guaaaauuuc cuggauugga augguccgug 900
 cugucccugg aggcuaacug cccuggcagc uuguuucaag guggggcaaa cgcaaacugg 960
 cucuuccugg cgaagcucgu ugcagcacug cuggaguagc ugguauccu gcugggggccc 1020
 cucgaaaucg aacucaucgu cgagggaaagg accaccacca cguccuugcc ucauuugcuu 1080
 gcucauccau cucuggcaag cucuuaggug uugugauugc ugaaacuccu ucuggcaaucu 1140
 cugucuugga ccuacggggu ugcuggcgc uacuucuucg aauucgacaa cggugcggua 1200
 gauggaagcg uuggugagga ggaagcagag ggcgagaguu ggcgagacga ggaagagcuu 1260
 guuagccaug gau 1273
 <210> 59
 <211> 1575
 <212> DNA
 <213> Arabidopsis thaliana
 <220>
 <221> CDS
 <222> (1)...(1572)
 <223> 12S cruciferin.
 <400> 59
 atg gtt aag ctc agc aat ctc ctc gtt gca acc ttc ggg gtt ctc ctc 48
 Met Val Lys Leu Ser Asn Leu Leu Val Ala Thr Phe Gly Val Leu Leu
 1 5 10 15
 gtc ctt aac ggc tgc ctt gcg agg cag tca ctt ggg gtt cct cct cag 96
 Val Leu Asn Gly Cys Leu Ala Arg Gln Ser Leu Gly Val Pro Pro Gln
 20 25 30
 cta cag aac gag tgt aac ctc gac aac cta gat gtt ctc caa gcc acc 144
 Leu Gln Asn Glu Cys Asn Leu Asp Asn Leu Asp Val Leu Gln Ala Thr
 35 40 45
 gaa act atc aag agt gaa gcc ggt cag atc gag tac tgg gac cac aac 192
 Glu Thr Ile Lys Ser Glu Ala Gly Gln Ile Glu Tyr Trp Asp His Asn
 50 55 60
 cac cct cag ctc cga tgt ggt gtt tcc gtt gct cgt tat gta att 240
 His Pro Gln Leu Arg Cys Val Gly Val Ser Val Ala Arg Tyr Val Ile
 65 70 75 80

gaa caa ggc ggt ctt tac ttg ccc acc ttc ttc act tcc cca aaa att		288	
Glu Gln Gly Gly Leu Tyr Leu Pro Thr Phe Phe Thr Ser Pro Lys Ile			
85	90	95	
tcc tac gtc gtt caa gga acg ggt atc agc gga aga gtg gtc cct gga		336	
Ser Tyr Val Val Gln Gly Thr Gly Ile Ser Gly Arg Val Val Pro Gly			
100	105	110	
tgt gcc gag acc ttc atg gac tcg cag ccg atg caa gga caa caa caa		384	
Cys Ala Glu Thr Phe Met Asp Ser Gln Pro Met Gln Gly Gln Gln Gln			
115	120	125	
ggc caa cca tgg caa gga cga cag gga caa caa ggc caa cca tgg gaa		432	
Gly Gln Pro Trp Gln Gly Arg Gln Gly Gln Gln Gln Pro Trp Glu			
130	135	140	
gga cag gga caa cag gga caa caa gga aga caa ggc caa cca tgg gaa		480	
Gly Gln Gly Gln Gly Gln Gly Arg Gln Gly Gln Gln Pro Trp Glu			
145	150	155	160
gga cag gga caa cag gga caa caa gga cga cag gga caa caa ggc caa		528	
Gly Gln Gly Gln Gly Gln Gly Arg Gln Gly Gln Gln Gly Gln Gln			
165	170	175	
cca tgg gaa gga cag gga cag cag gga caa caa ggg ttc cgt gac atg		576	
Pro Trp Glu Gly Gln Gln Gly Gln Gln Gly Phe Arg Asp Met			
180	185	190	
cac cag aag gtg gaa cat gtg aga cgc gga gac gtc ttt gcc aac act		624	
His Gln Lys Val Glu His Val Arg Arg Gly Asp Val Phe Ala Asn Thr			
195	200	205	
cca ggc tct gcc cac tgg atc tac aac tca gga gaa cag cca ctt gtc		672	
Pro Gly Ser Ala His Trp Ile Tyr Asn Ser Gly Glu Gln Pro Leu Val			
210	215	220	
atc atc gct ctt ctc gac atc gcc aac tac caa aac caa ctc gac cgc		720	
Ile Ile Ala Leu Leu Asp Ile Ala Asn Tyr Gln Asn Gln Leu Asp Arg			
225	230	235	240
aac cct aga gtg ttc cat ttg gcc gga aac aac cag cag gga ggc ttt		768	
Asn Pro Arg Val Phe His Leu Ala Gly Asn Asn Gln Gln Gly Phe			
245	250	255	
ggc ggt tca cag caa caa gaa cag aaa aac ttg tgg agc ggg ttc		816	
Gly Gly Ser Gln Gln Gln Glu Gln Lys Asn Leu Trp Ser Gly Phe			
260	265	270	
gac gca cag gtc ata gct caa gca ttg aaa att gac gtt cag ttg gct		864	
Asp Ala Gln Val Ile Ala Gln Ala Leu Lys Ile Asp Val Gln Leu Ala			
275	280	285	
cag cag ctt cag aac caa caa gac agc aga gga aac atc gtt cgt gtt		912	
Gln Gln Leu Gln Asn Gln Gln Asp Ser Arg Gly Asn Ile Val Arg Val			
290	295	300	
aag gga cct ttc cag gtc gtg agg cca cct cta aga cag ccc tac gag		960	
Lys Gly Pro Phe Gln Val Val Arg Pro Pro Leu Arg Gln Pro Tyr Glu			
305	310	315	320
agc gag gag tgg aga cac cca cgt agc cca cag ggc aac ggc ctt gag		1008	
Ser Glu Glu Trp Arg His Pro Arg Ser Pro Gln Gly Asn Gly Leu Glu			
325	330	335	
gag act atc tgc agc atg agg tcc cac gag aac att gac gac cct gct		1056	
Glu Thr Ile Cys Ser Met Arg Ser His Glu Asn Ile Asp Asp Pro Ala			
340	345	350	

cgt gct gac gtg tac aag ccc agc cta ggt cgc gtg acc agc gtc aac Arg Ala Asp Val Tyr Lys Pro Ser Leu Gly Arg Val Thr Ser Val Asn 355	360	365	1104
agc tat acc ttg ccc atc ttg gag tat gtc agg ctc agt gcc act cgt Ser Tyr Thr Leu Pro Ile Leu Glu Tyr Val Arg Leu Ser Ala Thr Arg 370	375	380	1152
ggc gtt ctc cag ggt aat gcg atg gtg ctt cct aaa tac aac atg aac Gly Val Leu Gln Gly Asn Ala Met Val Leu Pro Lys Tyr Asn Met Asn 385	390	395	400
gct aac gag atc ttg tac tgc act gga gga caa gga agg atc caa gtg Ala Asn Glu Ile Leu Tyr Cys Thr Gly Gln Gly Arg Ile Gln Val 405	410	415	1248
gtc aac gac aac gga cag aac gtg ttg gac caa cag gtg cag aag gga Val Asn Asp Asn Gly Gln Asn Val Leu Asp Gln Gln Val Gln Lys Gly 420	425	430	1296
cag ctc gtg gtc atc cca caa ggg ttc gca tac gtt gtc cag tcc cac Gln Leu Val Val Ile Pro Gln Gly Phe Ala Tyr Val Val Gln Ser His 435	440	445	1344
gga aac aag ttc gag tgg atc tct ttc aaa act aat gaa aac gca atg Gly Asn Lys Phe Glu Trp Ile Ser Phe Lys Thr Asn Glu Asn Ala Met 450	455	460	1392
atc agc act ttg gcg ggt aga acc tcg ctc ttg agg gca ttg cca ttg Ile Ser Thr Leu Ala Gly Arg Thr Ser Leu Leu Arg Ala Leu Pro Leu 465	470	475	480
gag gtc ata tca aat ggt ttc cag atc tct ccc gag gaa gct agg aag Glu Val Ile Ser Asn Gly Phe Gln Ile Ser Pro Glu Glu Ala Arg Lys 485	490	495	1488
atc aag ttc aac aca ctt gag acc act ttg acc cgc gct gcc ggt agg Ile Lys Phe Asn Thr Leu Glu Thr Thr Leu Thr Arg Ala Ala Gly Arg 500	505	510	1536
caa caa caa cag ttg atc gag gag att gtc gag gct taa Gln Gln Gln Leu Ile Glu Glu Ile Val Glu Ala 515	520		1575
<210> 60			
<211> 524			
<212> PRT			
<213> <i>Arabidopsis thaliana</i>			
<400> 60			
Met Val Lys Leu Ser Asn Leu Leu Val Ala Thr Phe Gly Val Leu Leu 1	5	10	15
Val Leu Asn Gly Cys Leu Ala Arg Gln Ser Leu Gly Val Pro Pro Gln 20	25	30	
Leu Gln Asn Glu Cys Asn Leu Asp Asn Leu Asp Val Leu Gln Ala Thr 35	40	45	
Glu Thr Ile Lys Ser Glu Ala Gly Gln Ile Glu Tyr Trp Asp His Asn 50	55	60	
His Pro Gln Leu Arg Cys Val Gly Val Ser Val Ala Arg Tyr Val Ile 65	70	75	80
Glu Gln Gly Gly Leu Tyr Leu Pro Thr Phe Phe Thr Ser Pro Lys Ile 85	90	95	

66

Ser Tyr Val Val Gln Gly Thr Gly Ile Ser Gly Arg Val Val Pro Gly
 100 105 110

Cys Ala Glu Thr Phe Met Asp Ser Gln Pro Met Gln Gly Gln Gln Gln
 115 120 125

Gly Gln Pro Trp Gln Gly Arg Gln Gly Gln Gln Gly Gln Pro Trp Glu
 130 135 140

Gly Gln Gly Gln Gln Gly Gln Gly Arg Gln Gly Gln Pro Trp Glu
 145 150 155 160

Gly Gln Gly Gln Gln Gly Gln Gly Arg Gln Gly Gln Gln Gly Gln
 165 170 175

Pro Trp Glu Gly Gln Gly Gln Gly Gln Gly Phe Arg Asp Met
 180 185 190

His Gln Lys Val Glu His Val Arg Arg Gly Asp Val Phe Ala Asn Thr
 195 200 205

Pro Gly Ser Ala His Trp Ile Tyr Asn Ser Gly Glu Gln Pro Leu Val
 210 215 220

Ile Ile Ala Leu Leu Asp Ile Ala Asn Tyr Gln Asn Gln Leu Asp Arg
 225 230 235 240

Asn Pro Arg Val Phe His Leu Ala Gly Asn Asn Gln Gln Gly Phe
 245 250 255

Gly Gly Ser Gln Gln Gln Glu Gln Lys Asn Leu Trp Ser Gly Phe
 260 265 270

Asp Ala Gln Val Ile Ala Gln Ala Leu Lys Ile Asp Val Gln Leu Ala
 275 280 285

Gln Gln Leu Gln Asn Gln Gln Asp Ser Arg Gly Asn Ile Val Arg Val
 290 295 300

Lys Gly Pro Phe Gln Val Val Arg Pro Pro Leu Arg Gln Pro Tyr Glu
 305 310 315 320

Ser Glu Glu Trp Arg His Pro Arg Ser Pro Gln Gly Asn Gly Leu Glu
 325 330 335

Glu Thr Ile Cys Ser Met Arg Ser His Glu Asn Ile Asp Asp Pro Ala
 340 345 350

Arg Ala Asp Val Tyr Lys Pro Ser Leu Gly Arg Val Thr Ser Val Asn
 355 360 365

Ser Tyr Thr Leu Pro Ile Leu Glu Tyr Val Arg Leu Ser Ala Thr Arg
 370 375 380

Gly Val Leu Gln Gly Asn Ala Met Val Leu Pro Lys Tyr Asn Met Asn
 385 390 395 400

Ala Asn Glu Ile Leu Tyr Cys Thr Gly Gly Gln Gly Arg Ile Gln Val
 405 410 415

Val Asn Asp Asn Gly Gln Asn Val Leu Asp Gln Gln Val Gln Lys Gly
 420 425 430

Gln Leu Val Val Ile Pro Gln Gly Phe Ala Tyr Val Val Gln Ser His
 435 440 445

Gly Asn Lys Phe Glu Trp Ile Ser Phe Lys Thr Asn Glu Asn Ala Met
 450 455 460

Ile Ser Thr Leu Ala Gly Arg Thr Ser Leu Leu Arg Ala Leu Pro Leu
 465 470 475 480

Glu Val Ile Ser Asn Gly Phe Gln Ile Ser Pro Glu Glu Ala Arg Lys
 485 490 495
 Ile Lys Phe Asn Thr Leu Glu Thr Thr Leu Thr Arg Ala Ala Gly Arg
 500 505 510
 Gln Gln Gln Leu Ile Glu Glu Ile Val Glu Ala
 515 520

<210> 61
<211> 1419
<212> DNA
<213> *Arabidopsis thaliana*
<220>
<221> CDS
<222> (1)...(1416)
<223> 12S Cral storage protein
<400> 61
atg gct cga gtc tct tct ctt tct ttc tgc tta aca ctt ttg atc 48
Met Ala Arg Val Ser Ser Leu Leu Ser Phe Cys Leu Thr Leu Leu Ile
1 5 10 15
ctt ttc cat ggc tac gcg gct caa cag ggt cag cag ggt cag cag ttt 96
Leu Phe His Gly Tyr Ala Ala Gln Gln Gly Gln Gln Gly Gln Gln Phe
20 25 30
ccg aac gag tgc cag ctc gac cag ctc aat gcg ctc gag ccg tca cac 144
Pro Asn Glu Cys Gln Leu Asp Gln Leu Asn Ala Leu Glu Pro Ser His
35 40 45
gta ctg aag agc gag gct ggt cgc atc gag gtg tgg gac cac cac gct 192
Val Leu Lys Ser Glu Ala Gly Arg Ile Glu Val Trp Asp His His Ala
50 55 60
cct cag ctc cgt tgc tca ggt gtc tcc ttt gca cgt tac atc atc gag 240
Pro Gln Leu Arg Cys Ser Gly Val Ser Phe Ala Arg Tyr Ile Ile Glu
65 70 75 80
tct aag ggt ctc tac ttg ccc tct ttc ttt aac acc gcg aag ctc tct 288
Ser Lys Gly Leu Tyr Leu Pro Ser Phe Phe Asn Thr Ala Lys Leu Ser
85 90 95
ttc gtg gct aag gga cga ggt ctt atg gga aaa gtg atc cct gga tgc 336
Phe Val Ala Lys Gly Arg Gly Leu Met Gly Lys Val Ile Pro Gly Cys
100 105 110
gcc gaa aca ttc caa gac tca tca gag ttc caa cca cgc ttc gaa ggt 384
Ala Glu Thr Phe Gln Asp Ser Ser Glu Phe Gln Pro Arg Phe Glu Gly
115 120 125
caa ggt caa agc cag agg ttc cgt gac atg cac cag aaa gtg gag cac 432
Gln Gly Gln Ser Gln Arg Phe Arg Asp Met His Gln Lys Val Glu His
130 135 140
att agg agc ggt gat acc att gcc aca aca ccc ggt gta gca cag tgg 480
Ile Arg Ser Gly Asp Thr Ile Ala Thr Thr Pro Gly Val Ala Gln Trp
145 150 155 160
ttc tac aac gac gga cag cag cca ctt gtc atc gtc agc gtc ttc gat 528
Phe Tyr Asn Asp Gly Gln Gln Pro Leu Val Ile Val Ser Val Phe Asp
165 170 175
cta gcc agt cac cag aac cag ctt gac cgc aac cca agg cca ttt tac 576
Leu Ala Ser His Gln Asn Gln Leu Asp Arg Asn Pro Arg Pro Phe Tyr
180 185 190

tta gcc gga aac aac cca caa ggt caa gta tgg cta caa gga cga gag Leu Ala Gly Asn Asn Pro Gln Gly Gln Val Trp Leu Gln Gly Arg Glu 195 200 205	624
caa cag cca cag aag aac att ttc aat gga ttt gga ccc gag gtt att Gln Gln Pro Gln Lys Asn Ile Phe Asn Gly Phe Gly Pro Glu Val Ile 210 215 220	672
gct caa gct ttg aag atc gat ctt cag aca gca cag caa ctt cag aac Ala Gln Ala Leu Lys Ile Asp Leu Gln Thr Ala Gln Gln Leu Gln Asn 225 230 235 240	720
caa gat gac aac cgt gga aac att gtc cga gtc caa gga ccg ttc ggt Gln Asp Asp Asn Arg Gly Asn Ile Val Arg Val Gln Gly Pro Phe Gly 245 250 255	768
gtc att agg ccg cct ttg agg ggc cag aga cct cag gag gag gaa gaa Val Ile Arg Pro Pro Leu Arg Gly Gln Arg Pro Gln Glu Glu Glu Glu 260 265 270	816
gaa gaa gga cga cat gga cga cac ggt aat ggc tta gag gag acc atc Glu Glu Gly Arg His Gly Arg His Gly Asn Gly Leu Glu Glu Thr Ile 275 280 285	864
tgc agc gcc agg tgc acc gat aac ctc gat gac ccg tct cgt gct gac Cys Ser Ala Arg Cys Thr Asp Asn Leu Asp Asp Pro Ser Arg Ala Asp 290 295 300	912
gtg tac aag cca cag ctc ggt tac atc agc act ctc aac agt tac gat Val Tyr Lys Pro Gln Leu Gly Tyr Ile Ser Thr Leu Asn Ser Tyr Asp 305 310 315 320	960
ctc ccc att ctt cgc ttc atc cgt ctc tca gcc ctc cgt gga tct atc Leu Pro Ile Leu Arg Phe Ile Arg Leu Ser Ala Leu Arg Gly Ser Ile 325 330 335	1008
cgt caa aac gca atg gtg ctt cca cag tgg aac gca aac gcg aac gct Arg Gln Asn Ala Met Val Leu Pro Gln Trp Asn Ala Asn Ala Asn Ala 340 345 350	1056
att ctt tac gag aca gac ggg gaa gcc caa atc cag atc gta aac gac Ile Leu Tyr Glu Thr Asp Gly Glu Ala Gln Ile Gln Ile Val Asn Asp 355 360 365	1104
aat ggt aac aga gtg ttt gac gga caa gtc tct caa gga cag ctc ata Asn Gly Asn Arg Val Phe Asp Gly Gln Val Ser Gln Gly Gln Leu Ile 370 375 380	1152
gcc gta cca caa ggt ttc tcg gtg aaa cgc gca aca agc aac cga Ala Val Pro Gln Gly Phe Ser Val Val Lys Arg Ala Thr Ser Asn Arg 385 390 395 400	1200
ttc cag tgg gtt gag ttc aaa aca aac gct aac gcg caa atc aac act Phe Gln Trp Val Glu Phe Lys Thr Asn Ala Asn Ala Gln Ile Asn Thr 405 410 415	1248
ctg gcg gga cga acc tca gtc ttg aga ggt tta cca ctt gaa gtc ata Leu Ala Gly Arg Thr Ser Val Leu Arg Gly Leu Pro Leu Glu Val Ile 420 425 430	1296
acc aat ggg ttc caa atc tca ccc gaa gaa gca agg agg gtc aag ttc Thr Asn Gly Phe Gln Ile Ser Pro Glu Glu Ala Arg Arg Val Lys Phe 435 440 445	1344
aac acg ctc gag acc act ttg act cac agc agt ggc cca gct agc tac Asn Thr Leu Glu Thr Thr Leu Thr His Ser Ser Gly Pro Ala Ser Tyr 450 455 460	1392

gga agg cca aga gtg gct gca gct taa 1419
 Gly Arg Pro Arg Val Ala Ala Ala
 465 470

<210> 62
 <211> 472
 <212> PRT
 <213> Arabidopsis thaliana

<400> 62

Met	Ala	Arg	Val	Ser	Ser	Leu	Leu	Ser	Phe	Cys	Leu	Thr	Leu	Leu	Ile
1				5					10					15	

Leu	Phe	.His	Gly	Tyr	Ala	Ala	Gln	Gln	Gly	Gln	Gln	Gly	Gln	Gln	Phe
	20						25					30			

Pro	Asn	Glu	Cys	Gln	Leu	Asp	Gln	Leu	Asn	Ala	Leu	Glu	Pro	Ser	His
	35					40						45			

Val	Leu	Lys	Ser	Glu	Ala	Gly	Arg	Ile	Glu	Val	Trp	Asp	His	His	Ala
	50					55					60				

Pro	Gln	Leu	Arg	Cys	Ser	Gly	Val	Ser	Phe	Ala	Arg	Tyr	Ile	Ile	Glu
	65					70				75			80		

Ser	Lys	Gly	Leu	Tyr	Leu	Pro	Ser	Phe	Phe	Asn	Thr	Ala	Lys	Leu	Ser
	85							90					95		

Phe	Val	Ala	Lys	Gly	Arg	Gly	Leu	Met	Gly	Lys	Val	Ile	Pro	Gly	Cys
	100							105				110			

Ala	Glu	Thr	Phe	Gln	Asp	Ser	Ser	Glu	Phe	Gln	Pro	Arg	Phe	Glu	Gly
	115						120					125			

Gln	Gly	Gln	Ser	Gln	Arg	Phe	Arg	Asp	Met	His	Gln	Lys	Val	Glu	His
	130					135				140					

Ile	Arg	Ser	Gly	Asp	Thr	Ile	Ala	Thr	Thr	Pro	Gly	Val	Ala	Gln	Trp
	145					150				155			160		

Phe	Tyr	Asn	Asp	Gly	Gln	Gln	Pro	Leu	Val	Ile	Val	Ser	Val	Phe	Asp
							165		170				175		

Leu	Ala	Ser	His	Gln	Asn	Gln	Leu	Asp	Arg	Asn	Pro	Arg	Pro	Phe	Tyr
							180		185			190			

Leu	Ala	Gly	Asn	Asn	Pro	Gln	Gly	Gln	Val	Trp	Leu	Gln	Gly	Arg	Glu
							195		200			205			

Gln	Gln	Pro	Gln	Lys	Asn	Ile	Phe	Asn	Gly	Phe	Gly	Pro	Glu	Val	Ile
						210		215			220				

Ala	Gln	Ala	Leu	Lys	Ile	Asp	Leu	Gln	Thr	Ala	Gln	Gln	Leu	Gln	Asn
	225					230				235			240		

Gln	Asp	Asp	Asn	Arg	Gly	Asn	Ile	Val	Arg	Val	Gln	Gly	Pro	Phe	Gly
							245		250			255			

Val	Ile	Arg	Pro	Pro	Leu	Arg	Gly	Gln	Arg	Pro	Gln	Glu	Glu	Glu	
						260		265			270				

Glu	Glu	Gly	Arg	His	Gly	Arg	His	Gly	Asn	Gly	Leu	Glu	Glu	Thr	Ile
							275		280			285			

Cys	Ser	Ala	Arg	Cys	Thr	Asp	Asn	Leu	Asp	Asp	Pro	Ser	Arg	Ala	Asp
							290		295			300			

Val	Tyr	Lys	Pro	Gln	Leu	Gly	Tyr	Ile	Ser	Thr	Leu	Asn	Ser	Tyr	Asp
	305						310				315			320	

70

Leu Pro Ile Leu Arg Phe Ile Arg Leu Ser Ala Leu Arg Gly Ser Ile
 325 330 335
 Arg Gln Asn Ala Met Val Leu Pro Gln Trp Asn Ala Asn Ala Asn Ala
 340 345 350
 Ile Leu Tyr Glu Thr Asp Gly Glu Ala Gln Ile Gln Ile Val Asn Asp
 355 360 365
 Asn Gly Asn Arg Val Phe Asp Gly Gln Val Ser Gln Gly Gln Leu Ile
 370 375 380
 Ala Val Pro Gln Gly Phe Ser Val Val Lys Arg Ala Thr Ser Asn Arg
 385 390 395 400
 Phe Gln Trp Val Glu Phe Lys Thr Asn Ala Asn Ala Gln Ile Asn Thr
 405 410 415
 Leu Ala Gly Arg Thr Ser Val Leu Arg Gly Leu Pro Leu Glu Val Ile
 420 425 430
 Thr Asn Gly Phe Gln Ile Ser Pro Glu Glu Ala Arg Arg Val Lys Phe
 435 440 445
 Asn Thr Leu Glu Thr Thr Leu Thr His Ser Ser Gly Pro Ala Ser Tyr
 450 455 460
 Gly Arg Pro Arg Val Ala Ala Ala
 465 470

<210> 63
 <211> 1419
 <212> DNA
 <213> Arabidopsis thaliana
 <220>
 <221> CDS
 <222> (1)..(1416)
 <223> At5g442120/MLN1_4 storage protein
 <400> 63

atg gct cga gtc tct tct ctt ttc tgc tta aca ctt ttg atc	48
Met Ala Arg Val Ser Ser Leu Leu Ser Phe Cys Leu Thr Leu Leu Ile	
1 5 10 15	
ctt ttc cat ggc tac gcg gct caa cag ggt cag cag ggt cag cag ttt	96
Leu Phe His Gly Tyr Ala Ala Gln Gln Gly Gln Gln Gly Gln Phe	
20 25 30	
ccg aac gag tgc cag ctc gac cag ctc aat gcg ctc gag ccg tca cac	144
Pro Asn Glu Cys Gln Leu Asp Gln Leu Asn Ala Leu Glu Pro Ser His	
35 40 45	
gta ctg aag agc gag gct ggt cgc atc gag gtg tgg gac cac cac gct	192
Val Leu Lys Ser Glu Ala Gly Arg Ile Glu Val Trp Asp His His Ala	
50 55 60	
cct cag ctc cgt tgc tca ggt gtc tcc ttt gca cgt tac atc atc gag	240
Pro Gln Leu Arg Cys Ser Gly Val Ser Phe Ala Arg Tyr Ile Ile Glu	
65 70 75 80	
tct aag ggt ctc tac ttg ccc tct ttc ttt aac acc gcg aag ctc tct	288
Ser Lys Gly Leu Tyr Leu Pro Ser Phe Phe Asn Thr Ala Lys Leu Ser	
85 90 95	
ttc gtg gct aag gga cga ggt ctt atg gga aaa gtg atc cct gga tgc	336
Phe Val Ala Lys Gly Arg Gly Leu Met Gly Lys Val Ile Pro Gly Cys	
100 105 110	

gcc gaa aca ttc caa gac tca tca gag ttc caa cca cgc ttc gaa ggt Ala Glu Thr Phe Gln Asp Ser Ser Glu Phe Gln Pro Arg Phe Glu Gly 115 120 125	384
caa ggt caa agc cag agg ttc cgt gac atg cac cag aaa gtg gag cac Gln Gly Gln Ser Gln Arg Phe Arg Asp Met His Gln Lys Val Glu His 130 135 140	432
att agg agc ggt gat acc att gcc aca aca ccc ggt gta gca cag tgg Ile Arg Ser Gly Asp Thr Ile Ala Thr Thr Pro Gly Val Ala Gln Trp 145 150 155 160	480
ttc tac aac gac gga cag gaa cca ctt gtc atc gtc agc gtc ttc gat Phe Tyr Asn Asp Gly Gln Glu Pro Leu Val Ile Val Ser Val Phe Asp 165 170 175	528
cta gcc agt cac cag aac cag ctt gac cgc aac cca agg cca ttt tac Leu Ala Ser His Gln Asn Gln Leu Asp Arg Asn Pro Arg Pro Phe Tyr 180 185 190	576
tta gcc gga aac aac cca caa ggt caa gta tgg cta caa gga cga gag Leu Ala Gly Asn Asn Pro Gln Gly Gln Val Trp Leu Gln Gly Arg Glu 195 200 205	624
caa cag cca cag aag aac att ttc aat gga ttt gga ccc gag gtt att Gln Gln Pro Gln Lys Asn Ile Phe Asn Gly Phe Gly Pro Glu Val Ile 210 215 220	672
gct caa gct ttg aag atc gat ctt cag aca gca cag caa ctt cag aac Ala Gln Ala Leu Lys Ile Asp Leu Gln Thr Ala Gln Gln Leu Gln Asn 225 230 235 240	720
caa gat gac aac cgt gga aac att gtc cga gtc caa gga ccg ttc ggt Gln Asp Asp Asn Arg Gly Asn Ile Val Arg Val Gln Gly Pro Phe Gly 245 250 255	768
gtc att agg ccg cct ttg agg ggc cag aga cct cag gag gag gaa gaa Val Ile Arg Pro Pro Leu Arg Gly Gln Arg Pro Gln Glu Glu Glu Glu 260 265 270	816
gaa gaa gga cga cat gga cga cac ggt aat ggc tta gag gag acc atc Glu Glu Gly Arg His Gly Arg His Gly Asn Gly Leu Glu Glu Thr Ile 275 280 285	864
tgc agc gcc agg tgc acc gat aac ctc gat gac ccg tct cgt gct gac Cys Ser Ala Arg Cys Thr Asp Asn Leu Asp Asp Pro Ser Arg Ala Asp 290 295 300	912
gtg tac aag cca cag ctc ggt tac atc agc act ctc aac agt tac gat Val Tyr Lys Pro Gln Leu Gly Tyr Ile Ser Thr Leu Asn Ser Tyr Asp 305 310 315 320	960
ctc ccc atc ctt cgc ttc atc cgt ctc tca gcc ctc cgt gga tct atc Leu Pro Ile Leu Arg Phe Ile Arg Leu Ser Ala Leu Arg Gly Ser Ile 325 330 335	1008
cgt caa aac gca atg gtg ctt cca cag tgg aac gca aac gcg aac gct Arg Gln Asn Ala Met Val Leu Pro Gln Trp Asn Ala Asn Ala Asn Ala 340 345 350	1056
att ctt tac gtg aca gac ggg gaa gcc caa atc cag atc gta aac gac Ile Leu Tyr Val Thr Asp Gly Glu Ala Gln Ile Gln Ile Val Asn Asp 355 360 365	1104
aat ggt aac aga gtg ttt gac gga caa gtc tct caa gga cag ctc ata Asn Gly Asn Arg Val Phe Asp Gly Gln Val Ser Gln Gly Gln Leu Ile 370 375 380	1152

gcc gta cca caa ggt ttc tcg gtg gtg aaa cgc gca aca agc aac cga 1200
 Ala Val Pro Gln Gly Phe Ser Val Val Lys Arg Ala Thr Ser Asn Arg
 385 390 395 400
 ttc cag tgg gtt gag ttc aaa aca aac gct aac gcg caa atc aac act 1248
 Phe Gln Trp Val Glu Phe Thr Asn Ala Asn Ala Gln Ile Asn Thr
 405 410 415
 ctg gcg gga cga acc tca gtc ttg aga ggt tta cca ctt gaa gtc ata 1296
 Leu Ala Gly Arg Thr Ser Val Leu Arg Gly Leu Pro Leu Glu Val Ile
 420 425 430
 acc aat ggg ttc caa atc tca ccc gaa gaa gca agg agg gtc aag ttc 1344
 Thr Asn Gly Phe Gln Ile Ser Pro Glu Glu Ala Arg Arg Val Lys Phe
 435 440 445
 aac acg ctc gag acc act ttg act cac agc agt ggc cca gct agc tac 1392
 Asn Thr Leu Glu Thr Leu Thr His Ser Ser Gly Pro Ala Ser Tyr
 450 455 460
 gga agg cca agg gtg gct gca gct taa 1419
 Gly Arg Pro Arg Val Ala Ala Ala
 465 470
 <210> 64
 <211> 472
 <212> PRT
 <213> Arabidopsis thaliana
 <400> 64
 Met Ala Arg Val Ser Ser Leu Leu Ser Phe Cys Leu Thr Leu Leu Ile
 1 5 10 15
 Leu Phe His Gly Tyr Ala Ala Gln Gln Gly Gln Gln Gly Gln Gln Phe
 20 25 30
 Pro Asn Glu Cys Gln Leu Asp Gln Leu Asn Ala Leu Glu Pro Ser His
 35 40 45
 Val Leu Lys Ser Glu Ala Gly Arg Ile Glu Val Trp Asp His His Ala
 50 55 60
 Pro Gln Leu Arg Cys Ser Gly Val Ser Phe Ala Arg Tyr Ile Ile Glu
 65 70 75 80
 Ser Lys Gly Leu Tyr Leu Pro Ser Phe Phe Asn Thr Ala Lys Leu Ser
 85 90 95
 Phe Val Ala Lys Gly Arg Gly Leu Met Gly Lys Val Ile Pro Gly Cys
 100 105 110
 Ala Glu Thr Phe Gln Asp Ser Ser Glu Phe Gln Pro Arg Phe Glu Gly
 115 120 125
 Gln Gly Gln Ser Gln Arg Phe Arg Asp Met His Gln Lys Val Glu His
 130 135 140
 Ile Arg Ser Gly Asp Thr Ile Ala Thr Thr Pro Gly Val Ala Gln Trp
 145 150 155 160
 Phe Tyr Asn Asp Gly Gln Glu Pro Leu Val Ile Val Ser Val Phe Asp
 165 170 175
 Leu Ala Ser His Gln Asn Gln Leu Asp Arg Asn Pro Arg Pro Phe Tyr
 180 185 190
 Leu Ala Gly Asn Asn Pro Gln Gly Gln Val Trp Leu Gln Gly Arg Glu
 195 200 205

Gln Gln Pro Gln Lys Asn Ile Phe Asn Gly Phe Gly Pro Glu Val Ile
 210 215 220
 Ala Gln Ala Leu Lys Ile Asp Leu Gln Thr Ala Gln Gln Leu Gln Asn
 225 230 235 240
 Gln Asp Asp Asn Arg Gly Asn Ile Val Arg Val Gln Gly Pro Phe Gly
 245 250 255
 Val Ile Arg Pro Pro Leu Arg Gly Gln Arg Pro Gln Glu Glu Glu
 260 265 270
 Glu Glu Gly Arg His Gly Arg His Gly Asn Gly Leu Glu Glu Thr Ile
 275 280 285
 Cys Ser Ala Arg Cys Thr Asp Asn Leu Asp Asp Pro Ser Arg Ala Asp
 290 295 300
 Val Tyr Lys Pro Gln Leu Gly Tyr Ile Ser Thr Leu Asn Ser Tyr Asp
 305 310 315 320
 Leu Pro Ile Leu Arg Phe Ile Arg Leu Ser Ala Leu Arg Gly Ser Ile
 325 330 335
 Arg Gln Asn Ala Met Val Leu Pro Gln Trp Asn Ala Asn Ala Asn Ala
 340 345 350
 Ile Leu Tyr Val Thr Asp Gly Glu Ala Gln Ile Gln Ile Val Asn Asp
 355 360 365
 Asn Gly Asn Arg Val Phe Asp Gly Gln Val Ser Gln Gly Gln Leu Ile
 370 375 380
 Ala Val Pro Gln Gly Phe Ser Val Val Lys Arg Ala Thr Ser Asn Arg
 385 390 395 400
 Phe Gln Trp Val Glu Phe Lys Thr Asn Ala Asn Ala Gln Ile Asn Thr
 405 410 415
 Leu Ala Gly Arg Thr Ser Val Leu Arg Gly Leu Pro Leu Glu Val Ile
 420 425 430
 Thr Asn Gly Phe Gln Ile Ser Pro Glu Glu Ala Arg Arg Val Lys Phe
 435 440 445
 Asn Thr Leu Glu Thr Thr Leu Thr His Ser Ser Gly Pro Ala Ser Tyr
 450 455 460
 Gly Arg Pro Arg Val Ala Ala Ala
 465 470

<210> 65
 <211> 1368
 <212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (1)..(1365)
 <223> 12S Crb storage protein
 <400> 65

atg ggt cga gtc tca tct att atc tct ttc tct ttg aca ctc ttg atc	48
Met Gly Arg Val Ser Ser Ile Ile Ser Phe Ser Leu Thr Leu Leu Ile	
1 5 10 15	
ctc ttc aat ggc tac act gcc caa cag tgg ccc aac gag tgc cag ctc	96
Leu Phe Asn Gly Tyr Thr Ala Gln Gln Trp Pro Asn Glu Cys Gln Leu	
20 25 30	

74

gat caa ctc aat gcg ctc gaa cca tcc caa atc atc aag agc gag ggt		144	
Asp Gln Leu Asn Ala Leu Glu Pro Ser Gln Ile Ile Lys Ser Glu Gly			
35	40	45	
ggt cgc atc gag gtc tgg gac cac cat gca ccc cag ctc cgt tgc tcc		192	
Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser			
50	55	60	
ggc ttt gcc ttt gag cgt ttc gtc att gag cct cag ggt ctt ttc ttg		240	
Gly Phe Ala Phe Glu Arg Phe Val Ile Glu Pro Gln Gly Leu Phe Leu			
65	70	75	80
ccc act ttc ttg aac gcc ggc aaa ctc acg ttt gtt gtt cac gga agg		288	
Pro Thr Phe Leu Asn Ala Gly Lys Leu Thr Phe Val Val His Gly Arg			
85	90	95	
ggt cta atg gga aga gtt att ccg gga tgc gcc gag acg ttc atg gag		336	
Gly Leu Met Gly Arg Val Ile Pro Gly Cys Ala Glu Thr Phe Met Glu			
100	105	110	
tca ccg gta ttt gga gaa ggt caa ggt cag ggt cag agt caa ggg ttc		384	
Ser Pro Val Phe Gly Glu Gly Gln Gly Gln Ser Gln Gly Phe			
115	120	125	
cgt gac atg cac cag aaa gta gag cac cta cgg tgc ggt gac acc att		432	
Arg Asp Met His Gln Lys Val Glu His Leu Arg Cys Gly Asp Thr Ile			
130	135	140	
gca aca cca tct ggt gta gct caa tgg ttc tac aac aat gga aat gag		480	
Ala Thr Pro Ser Gly Val Ala Gln Trp Phe Tyr Asn Asn Gly Asn Glu			
145	150	155	160
cct ctc att ctt gtt gca gcc gcg gat ctc gcc agc aac cag aac cag		528	
Pro Leu Ile Leu Val Ala Ala Asp Leu Ala Ser Asn Gln Asn Gln			
165	170	175	
ctt gac cgc aac ctt aga cca ttt ttg ata gcc gga aac aac cca caa		576	
Leu Asp Arg Asn Leu Arg Pro Phe Leu Ile Ala Gly Asn Asn Pro Gln			
180	185	190	
ggg cag gaa tgg cta caa ggc cga aag caa cag aag caa aac aac atc		624	
Gly Gln Glu Trp Leu Gln Gly Arg Lys Gln Gln Lys Gln Asn Asn Ile			
195	200	205	
ttc aat ggc ttc gca cct gag atc ttg gct caa gcc ttc aag atc aat		672	
Phe Asn Gly Phe Ala Pro Glu Ile Leu Ala Gln Ala Phe Lys Ile Asn			
210	215	220	
gtc gag acg gct cag cag ctc cag aac cag caa gat aac cgt ggc aac		720	
Val Glu Thr Ala Gln Gln Leu Gln Asn Gln Gln Asp Asn Arg Gly Asn			
225	230	235	240
atc gtc aag gtc aac gga cct ttc ggc gtc att agg cca ccc ttg aga		768	
Ile Val Lys Val Asn Gly Pro Phe Gly Val Ile Arg Pro Pro Leu Arg			
245	250	255	
cgc ggc gaa ggc ggc caa caa cca cat gaa ata gct aat ggt tta gag		816	
Arg Gly Glu Gly Gln Gln Pro His Glu Ile Ala Asn Gly Leu Glu			
260	265	270	
gag act ttg tgc acc atg cga tgc act gaa aac ctc gat gac ccg tcg		864	
Glu Thr Leu Cys Thr Met Arg Cys Thr Glu Asn Leu Asp Asp Pro Ser			
275	280	285	
gat gct gac gtg tac aag cca tca ctc gga tac att agc aca ctt aac		912	
Asp Ala Asp Val Tyr Lys Pro Ser Leu Gly Tyr Ile Ser Thr Leu Asn			
290	295	300	

75

agc tac aat ctt cct atc ctc aga ctt ctc cgc ctt agc gct ctt cgt 960
 Ser Tyr Asn Leu Pro Ile Leu Arg Leu Leu Arg Leu Ser Ala Leu Arg
 305 310 315 320
 ggc tcc atc cgt aaa aac gct atg gtg cta ccg caa tgg aac gta aac 1008
 Gly Ser Ile Arg Lys Asn Ala Met Val Leu Pro Gln Trp Asn Val Asn
 325 330 335
 gca aac gcg gca ctc tac gtg aca aac gga aag gct cat ata caa atg 1056
 Ala Asn Ala Ala Leu Tyr Val Thr Asn Gly Lys Ala His Ile Gln Met
 340 345 350
 gtg aac gac aac gga gaa aga gtg ttc gac caa gag atc tcc agc gga 1104
 Val Asn Asp Asn Gly Glu Arg Val Phe Asp Gln Glu Ile Ser Ser Gly
 355 360 365
 cag tta cta gtc gtg cca caa ggc ttt tcg gtc atg aaa cat cgc ata 1152
 Gln Leu Leu Val Val Pro Gln Gly Phe Ser Val Met Lys His Arg Ile
 370 375 380
 ggc gaa cag ttc gag tgg atc gaa ttc aag aca aac gaa aac gca cag 1200
 Gly Glu Gln Phe Glu Trp Ile Glu Phe Lys Thr Asn Glu Asn Ala Gln
 385 390 395 400
 gtc aac aca ctc gcg ggc cgt acc tca gtc atg aga ggt ttg ccg ctt 1248
 Val Asn Thr Leu Ala Gly Arg Thr Ser Val Met Arg Gly Leu Pro Leu
 405 410 415
 gag gtt ata acc aat ggg tac cag atc tct ccc gaa gaa gct aaa cga 1296
 Glu Val Ile Thr Asn Gly Tyr Gln Ile Ser Pro Glu Glu Ala Lys Arg
 420 425 430
 gta aag ttt agc acg att gag acc aca ctg acc cat agc agt cca atg 1344
 Val Lys Phe Ser Thr Ile Glu Thr Thr Leu Thr His Ser Ser Pro Met
 435 440 445
 agc tac gga agg cct agg gct tga 1368
 Ser Tyr Gly Arg Pro Arg Ala
 450 455
 <210> 66
 <211> 455
 <212> PRT
 <213> Arabidopsis thaliana
 <400> 66
 Met Gly Arg Val Ser Ser Ile Ile Ser Phe Ser Leu Thr Leu Leu Ile
 1 5 10 15
 Leu Phe Asn Gly Tyr Thr Ala Gln Gln Trp Pro Asn Glu Cys Gln Leu
 20 25 30
 Asp Gln Leu Asn Ala Leu Glu Pro Ser Gln Ile Ile Lys Ser Glu Gly
 35 40 45
 Gly Arg Ile Glu Val Trp Asp His His Ala Pro Gln Leu Arg Cys Ser
 50 55 60
 Gly Phe Ala Phe Glu Arg Phe Val Ile Glu Pro Gln Gly Leu Phe Leu
 65 70 75 80
 Pro Thr Phe Leu Asn Ala Gly Lys Leu Thr Phe Val Val His Gly Arg
 85 90 95
 Gly Leu Met Gly Arg Val Ile Pro Gly Cys Ala Glu Thr Phe Met Glu
 100 105 110
 Ser Pro Val Phe Gly Glu Gly Gln Gly Gln Gln Ser Gln Gly Phe
 115 120 125

76

Arg Asp Met His Gln Lys Val Glu His Leu Arg Cys Gly Asp Thr Ile
 130 135 140
 Ala Thr Pro Ser Gly Val Ala Gln Trp Phe Tyr Asn Asn Gly Asn Glu
 145 150 155 160
 Pro Leu Ile Leu Val Ala Ala Ala Asp Leu Ala Ser Asn Gln Asn Gln
 165 170 175
 Leu Asp Arg Asn Leu Arg Pro Phe Leu Ile Ala Gly Asn Asn Pro Gln
 180 185 190
 Gly Gln Glu Trp Leu Gln Gly Arg Lys Gln Gln Lys Gln Asn Asn Ile
 195 200 205
 Phe Asn Gly Phe Ala Pro Glu Ile Leu Ala Gln Ala Phe Lys Ile Asn
 210 215 220
 Val Glu Thr Ala Gln Gln Leu Gln Asn Gln Gln Asp Asn Arg Gly Asn
 225 230 235 240
 Ile Val Lys Val Asn Gly Pro Phe Gly Val Ile Arg Pro Pro Leu Arg
 245 250 255
 Arg Gly Glu Gly Gly Gln Gln Pro His Glu Ile Ala Asn Gly Leu Glu
 260 265 270
 Glu Thr Leu Cys Thr Met Arg Cys Thr Glu Asn Leu Asp Asp Pro Ser
 275 280 285
 Asp Ala Asp Val Tyr Lys Pro Ser Leu Gly Tyr Ile Ser Thr Leu Asn
 290 295 300
 Ser Tyr Asn Leu Pro Ile Leu Arg Leu Leu Arg Leu Ser Ala Leu Arg
 305 310 315 320
 Gly Ser Ile Arg Lys Asn Ala Met Val Leu Pro Gln Trp Asn Val Asn
 325 330 335
 Ala Asn Ala Ala Leu Tyr Val Thr Asn Gly Lys Ala His Ile Gln Met
 340 345 350
 Val Asn Asp Asn Gly Glu Arg Val Phe Asp Gln Glu Ile Ser Ser Gly
 355 360 365
 Gln Leu Leu Val Val Pro Gln Gly Phe Ser Val Met Lys His Arg Ile
 370 375 380
 Gly Glu Gln Phe Glu Trp Ile Glu Phe Lys Thr Asn Glu Asn Ala Gln
 385 390 395 400
 Val Asn Thr Leu Ala Gly Arg Thr Ser Val Met Arg Gly Leu Pro Leu
 405 410 415
 Glu Val Ile Thr Asn Gly Tyr Gln Ile Ser Pro Glu Glu Ala Lys Arg
 420 425 430
 Val Lys Phe Ser Thr Ile Glu Thr Thr Leu Thr His Ser Ser Pro Met
 435 440 445
 Ser Tyr Gly Arg Pro Arg Ala
 450 455

<210> 67

<211> 1356

<212> DNA

<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (1)..(1353)
<223> putative 12S storage protein
<400> 67

atg cat aag ctt ttg ttt tct ctt ctc tcc gtc gtc tca ctc tca ttt	48
Met His Lys Leu Leu Phe Ser Leu Leu Ser Val Val Ser Leu Ser Phe	
1 5 10 15	
ctc ctc ttc cat ggc gcc gag gca cgc cag cga gag gcg ccg ttt	96
Leu Leu Phe Phe His Gly Ala Glu Ala Arg Gln Arg Glu Ala Pro Phe	
20 25 30	
cca aac gcc tgc cat ttc agc caa atc aac agc ctc gcg ccc gct cag	144
Pro Asn Ala Cys His Phe Ser Gln Ile Asn Ser Leu Ala Pro Ala Gln	
35 40 45	
gcg acg aag ttc gaa gcc ggt cag atg gaa gta tgg gac cac atg agc	192
Ala Thr Lys Phe Glu Ala Gly Gln Met Glu Val Trp Asp His Met Ser	
50 55 60	
cct gag ctc cga tgc gcc ggt gta acg gtg gct cgc atc acc ctt cag	240
Pro Glu Leu Arg Cys Ala Gly Val Thr Val Ala Arg Ile Thr Leu Gln	
65 70 75 80	
ccc aat tcc att ttc ttg ccc gct ttc ttt agc cca cct gcc ctt gct	288
Pro Asn Ser Ile Phe Leu Pro Ala Phe Ser Pro Pro Ala Leu Ala	
85 90 95	
tac gtt gtc caa gga gaa gga gtt atg ggg acg att gct tct ggt tgt	336
Tyr Val Val Gln Gly Glu Gly Val Met Gly Thr Ile Ala Ser Gly Cys	
100 105 110	
cct gag act ttt gca gaa gtt gaa gga tca tca gga aga gga gga gga	384
Pro Glu Thr Phe Ala Glu Val Glu Gly Ser Ser Gly Arg Gly Gly Gly	
115 120 125	
gga gac ccg ggt cga cgt ttt gag gac atg cac cag aag ttg gag aat	432
Gly Asp Pro Gly Arg Arg Phe Glu Asp Met His Gln Lys Leu Glu Asn	
130 135 140	
ttc cgg cga ggg gat gtg ttt gct tcg ctt gcc gga gtt tca cag tgg	480
Phe Arg Arg Gly Asp Val Phe Ala Ser Leu Ala Gly Val Ser Gln Trp	
145 150 155 160	
tgg tac aac cgc ggt gat tcc gat gcc gtc att gtc att gtt ctt gat	528
Trp Tyr Asn Arg Gly Asp Ser Asp Ala Val Ile Val Ile Val Leu Asp	
165 170 175	
gtc acc aac aga gaa aac cag ctt gac caa gtc cct agg atg ttc caa	576
Val Thr Asn Arg Glu Asn Gln Leu Asp Gln Val Pro Arg Met Phe Gln	
180 185 190	
cta gcc ggg agc aga acg caa gaa gaa caa cca tta acg tgg cca	624
Leu Ala Gly Ser Arg Thr Gln Glu Glu Gln Pro Leu Thr Trp Pro	
195 200 205	
tca ggc aac aac gct ttc agc ggt ttc gac cca aac ata atc gcg gaa	672
Ser Gly Asn Asn Ala Phe Ser Gly Phe Asp Pro Asn Ile Ile Ala Glu	
210 215 220	
gca ttc aaa atc aac atc gag aca gct aag caa cta caa aac cag aag	720
Ala Phe Lys Ile Asn Ile Glu Thr Ala Lys Gln Leu Gln Asn Gln Lys	
225 230 235 240	
gac aac aga gga aac ata atc cga aat ggt cct ctc cat ttc gtc	768
Asp Asn Arg Gly Asn Ile Ile Arg Ala Asn Gly Pro Leu His Phe Val	
245 250 255	

atc cca ccg cct cgt gaa tgg cag caa gat ggc att gct aat ggc atc Ile Pro Pro Pro Arg Glu Trp Gln Gln Asp Gly Ile Ala Asn Gly Ile 260 265 270	816
gaa gag act tat tgc acg gct aag att cat gag aat atc gat gat cca Glu Glu Thr Tyr Cys Thr Ala Lys Ile His Glu Asn Ile Asp Asp Pro 275 280 285	864
gaa cgg tct gac cat ttt agc aca cga gcc gga aga atc agc act ctt Glu Arg Ser Asp His Phe Ser Thr Arg Ala Gly Arg Ile Ser Thr Leu 290 295 300	912
aac agc ctt aat ctc cct gtt cta cgt cta gtc aga ctt aac gcc ctt Asn Ser Leu Asn Leu Pro Val Leu Arg Leu Val Arg Leu Asn Ala Leu 305 310 315 320	960
aga ggt tat ctc tac agc gga gga atg gtg ttg cca caa tgg acg gca Arg Gly Tyr Leu Tyr Ser Gly Gly Met Val Leu Pro Gln Trp Thr Ala 325 330 335	1008
aac gcg cac acg gtg cta tac gtc aca gga ggt caa gcc aag ata caa Asn Ala His Thr Val Leu Tyr Val Thr Gly Gly Gln Ala Lys Ile Gln 340 345 350	1056
gtg gtg gac gac aat ggt cag tcg gtg ttc aat gag caa gtg gga caa Val Val Asp Asp Asn Gly Gln Ser Val Phe Asn Glu Gln Val Gly Gln 355 360 365	1104
ggc caa atc att gtg att cca caa ggc ttt gca gtt tca aaa acg gct Gly Gln Ile Ile Val Ile Pro Gln Gly Phe Ala Val Ser Lys Thr Ala 370 375 380	1152
ggt gaa acg ggt ttc gag tgg ata tca ttc aag aca aac gat aac gct Gly Glu Thr Gly Phe Glu Trp Ile Ser Phe Lys Thr Asn Asp Asn Ala 385 390 395 400	1200
tac att aac aca ctg agc ggc caa aca tcg tac ttg aga gca gtt cca Tyr Ile Asn Thr Leu Ser Gly Gln Thr Ser Tyr Leu Arg Ala Val Pro 405 410 415	1248
gtg gat gtg atc aaa gcg tca tat gga gtg aac gag gaa gaa gcc aag Val Asp Val Ile Lys Ala Ser Tyr Gly Val Asn Glu Glu Ala Lys 420 425 430	1296
agg atc aag ttt agt cag caa gag acc atg ttg tct atg aca cca agc Arg Ile Lys Phe Ser Gln Gln Glu Thr Met Leu Ser Met Thr Pro Ser 435 440 445	1344
tct tct tct taa Ser Ser Ser 450	1356
<210> 68	
<211> 451	
<212> PRT	
<213> Arabidopsis thaliana	
<400> 68	
Met His Lys Leu Leu Phe Ser Leu Leu Ser Val Val Ser Leu Ser Phe 1 5 10 15	
Leu Leu Phe Phe His Gly Ala Glu Ala Arg Gln Arg Glu Ala Pro Phe 20 25 30	
Pro Asn Ala Cys His Phe Ser Gln Ile Asn Ser Leu Ala Pro Ala Gln 35 40 45	

Ala Thr Lys Phe Glu Ala Gly Gln Met Glu Val Trp Asp His Met Ser
 50 55 60

Pro Glu Leu Arg Cys Ala Gly Val Thr Val Ala Arg Ile Thr Leu Gln
 65 70 75 80

Pro Asn Ser Ile Phe Leu Pro Ala Phe Phe Ser Pro Pro Ala Leu Ala
 85 90 95

Tyr Val Val Gln Gly Glu Gly Val Met Gly Thr Ile Ala Ser Gly Cys
 100 105 110

Pro Glu Thr Phe Ala Glu Val Glu Gly Ser Ser Gly Arg Gly Gly Gly
 115 120 125

Gly Asp Pro Gly Arg Arg Phe Glu Asp Met His Gln Lys Leu Glu Asn
 130 135 140

Phe Arg Arg Gly Asp Val Phe Ala Ser Leu Ala Gly Val Ser Gln Trp
 145 150 155 160

Trp Tyr Asn Arg Gly Asp Ser Asp Ala Val Ile Val Ile Val Leu Asp
 165 170 175

Val Thr Asn Arg Glu Asn Gln Leu Asp Gln Val Pro Arg Met Phe Gln
 180 185 190

Leu Ala Gly Ser Arg Thr Gln Glu Glu Glu Gln Pro Leu Thr Trp Pro
 195 200 205

Ser Gly Asn Asn Ala Phe Ser Gly Phe Asp Pro Asn Ile Ile Ala Glu
 210 215 220

Ala Phe Lys Ile Asn Ile Glu Thr Ala Lys Gln Leu Gln Asn Gln Lys
 225 230 235 240

Asp Asn Arg Gly Asn Ile Ile Arg Ala Asn Gly Pro Leu His Phe Val
 245 250 255

Ile Pro Pro Pro Arg Glu Trp Gln Gln Asp Gly Ile Ala Asn Gly Ile
 260 265 270

Glu Glu Thr Tyr Cys Thr Ala Lys Ile His Glu Asn Ile Asp Asp Pro
 275 280 285

Glu Arg Ser Asp His Phe Ser Thr Arg Ala Gly Arg Ile Ser Thr Leu
 290 295 300

Asn Ser Leu Asn Leu Pro Val Leu Arg Leu Val Arg Leu Asn Ala Leu
 305 310 315 320

Arg Gly Tyr Leu Tyr Ser Gly Gly Met Val Leu Pro Gln Trp Thr Ala
 325 330 335

Asn Ala His Thr Val Leu Tyr Val Thr Gly Gly Gln Ala Lys Ile Gln
 340 345 350

Val Val Asp Asp Asn Gly Gln Ser Val Phe Asn Glu Gln Val Gly Gln
 355 360 365

Gly Gln Ile Ile Val Ile Pro Gln Gly Phe Ala Val Ser Lys Thr Ala
 370 375 380

Gly Glu Thr Gly Phe Glu Trp Ile Ser Phe Lys Thr Asn Asp Asn Ala
 385 390 395 400

Tyr Ile Asn Thr Leu Ser Gly Gln Thr Ser Tyr Leu Arg Ala Val Pro
 405 410 415

Val Asp Val Ile Lys Ala Ser Tyr Gly Val Asn Glu Glu Ala Lys
 420 425 430

Arg Ile Lys Phe Ser Gln Gln Glu Thr Met Leu Ser Met Thr Pro Ser
 435 440 445
 Ser Ser Ser
 450

```
<210> 69
<211> 1356
<212> DNA
<213> Arabidopsis thaliana
```

<220>
<221> CDS
<222> (1)..(1353)
<223> 12S storage protein At1g03890

<400> 69
 atg cat aag ctt ttg ttt tct ctt ctc tcc gtc gtc tca ctc tca ttt 48
 Met His Lys Leu Leu Phe Ser Leu Leu Ser Val Val Ser Leu Ser Phe
 1 5 10 15
 ctc ctc ttc ttc cat ggc gcc gag gca cgc cag cga gag gcg ccg ttt 96
 Leu Leu Phe Phe His Gly Ala Glu Ala Arg Gln Arg Glu Ala Pro Phe
 20 25 30
 cca aac gcc tgc cat ttc agc caa atc aac agc ctc gcg ccc gct cag 144
 Pro Asn Ala Cys His Phe Ser Gln Ile Asn Ser Leu Ala Pro Ala Gln
 35 40 45
 gcg acg aag ttc gaa gcc ggt cag atg gaa gta tgg gac cac atg agc 192
 Ala Thr Lys Phe Glu Ala Gly Gln Met Glu Val Trp Asp His Met Ser
 50 55 60
 cct gag ctc cga tgc gcc ggt gta acg gtg gct cgc atc acc ctt cag 240
 Pro Glu Leu Arg Cys Ala Gly Val Thr Val Ala Arg Ile Thr Leu Gln
 65 70 75 80
 ccc aat tcc att ttc ttg ccc gct ttc ttt agc cca cct gcc ctt gct 288
 Pro Asn Ser Ile Phe Leu Pro Ala Phe Phe Ser Pro Pro Ala Leu Ala
 85 90 95
 tac gtt gtc caa gga gaa gga gtt atg ggg acg att gct tct ggt tgt 336
 Tyr Val Val Gln Gly Glu Gly Val Met Gly Thr Ile Ala Ser Gly Cys
 100 105 110
 cct gag act ttt gca gaa gtt gaa gga tca tca gga aga gga gga gga 384
 Pro Glu Thr Phe Ala Glu Val Glu Gly Ser Ser Gly Arg Gly Gly Gly
 115 120 125
 gga gac ccg ggt cga cgt ttt gag gac atg cac cag aag ttg gag aat 432
 Gly Asp Pro Gly Arg Arg Phe Glu Asp Met His Gln Lys Leu Glu Asn
 130 135 140
 ttc cgg cga ggg gat gtg ttt gct tcg ctt gcc gga gtt tca cag tgg 480
 Phe Arg Arg Gly Asp Val Phe Ala Ser Leu Ala Gly Val Ser Gln Trp
 145 150 155 160
 tgg tac aac cgc ggt gat tcc gat gcc gtc att gtc att gtt ctt gat 528
 Trp Tyr Asn Arg Gly Asp Ser Asp Ala Val Ile Val Ile Val Leu Asp
 165 170 175
 gtc acc aac aga gaa aac cag ctt gac caa gtc cct agg atg ttc caa 576
 Val Thr Asn Arg Glu Asn Gln Leu Asp Gln Val Pro Arg Met Phe Gln
 180 185 190

ctc	gcc	ggg	agc	aga	acg	caa	gaa	gaa	caa	cca	tta	acg	tgg	cca	624
Leu	Ala	Gly	Ser	Arg	Thr	Gln	Glu	Glu	Gln	Pro	Leu	Thr	Trp	Pro	
195						200					205				
tca	ggc	aac	aac	gct	ttc	agc	ggt	ttc	gac	cca	aac	ata	atc	gcg	672
Ser	Gly	Asn	Asn	Ala	Phe	Ser	Gly	Phe	Asp	Pro	Asn	Ile	Ile	Ala	
210						215					220				
gca	ttc	aaa	atc	aac	atc	gag	aca	gct	aag	caa	cta	caa	aac	cag	720
Ala	Phe	Lys	Ile	Asn	Ile	Glu	Thr	Ala	Lys	Gln	Leu	Gln	Asn	Gln	
225						230					235			240	
gac	aac	aga	gga	aac	ata	atc	cga	gca	aat	ggt	cct	ctc	cat	ttc	768
Asp	Asn	Arg	Gly	Asn	Ile	Ile	Arg	Ala	Asn	Gly	Pro	Leu	His	Phe	
						245					250			255	
atc	cca	ccg	cct	cgt	gaa	tgg	cag	caa	gat	ggc	att	gct	aat	ggc	816
Ile	Pro	Pro	Pro	Arg	Glu	Trp	Gln	Gln	Asp	Gly	Ile	Ala	Asn	Gly	
						260					265			270	
gaa	gag	act	tat	tgc	acg	gct	aag	att	cat	gag	aat	atc	gat	gat	864
Glu	Glu	Thr	Tyr	Cys	Thr	Ala	Lys	Ile	His	Glu	Asn	Ile	Asp	Asp	
						275					280			285	
gaa	cgg	tct	gac	cat	ttt	agc	aca	cga	gcc	gga	aga	atc	agc	act	912
Glu	Arg	Ser	Asp	His	Phe	Ser	Thr	Arg	Ala	Gly	Arg	Ile	Ser	Thr	
						290					295			300	
aac	agc	ctt	aat	ctc	cct	gtt	cta	cgt	cta	gtc	aga	ctt	aac	gcc	960
Asn	Ser	Leu	Asn	Leu	Pro	Val	Leu	Arg	Leu	Val	Arg	Leu	Asn	Ala	
						305					310			315	
aga	ggt	tat	ctc	tac	agc	gga	gga	atg	gtg	ttg	cca	caa	tgg	acg	1008
Arg	Gly	Tyr	Leu	Tyr	Ser	Gly	Gly	Met	Val	Leu	Pro	Gln	Trp	Thr	
						325					330			335	
aac	gcg	cac	acg	gtg	cta	tac	gtc	aca	gga	ggt	caa	gcc	aag	ata	1056
Asn	Ala	His	Thr	Val	Leu	Tyr	Val	Thr	Gly	Gly	Gln	Ala	Lys	Ile	
						340					345			350	
gtg	gtg	gac	aat	ggt	cag	tcg	gtg	ttc	aat	gag	caa	gtg	gga	caa	1104
Val	Val	Asp	Asp	Asn	Gly	Gln	Ser	Val	Phe	Asn	Glu	Gln	Val	Gly	
						355					360			365	
ggc	caa	atc	att	gtg	att	cca	caa	ggc	ttt	gca	gtt	tca	aaa	acg	1152
Gly	Gln	Ile	Ile	Val	Ile	Pro	Gln	Gly	Phe	Ala	Val	Ser	Lys	Thr	
						370					375			380	
ggt	gaa	acg	ggt	ttc	gag	tgg	ata	tca	ttc	aag	aca	aac	gat	aac	1200
Gly	Glu	Thr	Gly	Phe	Glu	Trp	Ile	Ser	Phe	Lys	Thr	Asn	Asp	Asn	
						385					390			395	
tac	att	aac	aca	ctg	agc	ggc	caa	aca	tcg	tac	ttg	aga	gca	gtt	1248
Tyr	Ile	Asn	Thr	Leu	Ser	Gly	Gln	Thr	Ser	Tyr	Leu	Arg	Ala	Val	
						405					410			415	
gtg	gat	gtg	atc	aaa	gcg	tca	tat	gga	gtg	aac	gag	gaa	gcc	aag	1296
Val	Asp	Val	Ile	Lys	Ala	Ser	Tyr	Gly	Val	Asn	Glu	Glu	Ala	Lys	
						420					425			430	
agg	atc	aag	ttt	agt	cag	caa	gag	acc	atg	ttg	tct	atg	aca	cca	1344
Arg	Ile	Lys	Phe	Ser	Gln	Gln	Glu	Thr	Met	Leu	Ser	Met	Thr	Pro	
						435					440			445	
tct	tct	tct	taa												1356
Ser	Ser	Ser													
			450												

<210> 70
 <211> 451
 <212> PRT
 <213> Arabidopsis thaliana
 <400> 70
 Met His Lys Leu Leu Phe Ser Leu Leu Ser Val Val Ser Leu Ser Phe
 1 5 10 15
 Leu Leu Phe Phe His Gly Ala Glu Ala Arg Gln Arg Glu Ala Pro Phe
 20 25 30
 Pro Asn Ala Cys His Phe Ser Gln Ile Asn Ser Leu Ala Pro Ala Gln
 35 40 45
 Ala Thr Lys Phe Glu Ala Gly Gln Met Glu Val Trp Asp His Met Ser
 50 55 60
 Pro Glu Leu Arg Cys Ala Gly Val Thr Val Ala Arg Ile Thr Leu Gln
 65 70 75 80
 Pro Asn Ser Ile Phe Leu Pro Ala Phe Phe Ser Pro Pro Ala Leu Ala
 85 90 95
 Tyr Val Val Gln Gly Glu Gly Val Met Gly Thr Ile Ala Ser Gly Cys
 100 105 110
 Pro Glu Thr Phe Ala Glu Val Glu Gly Ser Ser Gly Arg Gly Gly
 115 120 125
 Gly Asp Pro Gly Arg Arg Phe Glu Asp Met His Gln Lys Leu Glu Asn
 130 135 140
 Phe Arg Arg Gly Asp Val Phe Ala Ser Leu Ala Gly Val Ser Gln Trp
 145 150 155 160
 Trp Tyr Asn Arg Gly Asp Ser Asp Ala Val Ile Val Ile Val Leu Asp
 165 170 175
 Val Thr Asn Arg Glu Asn Gln Leu Asp Gln Val Pro Arg Met Phe Gln
 180 185 190
 Leu Ala Gly Ser Arg Thr Gln Glu Glu Glu Gln Pro Leu Thr Trp Pro
 195 200 205
 Ser Gly Asn Asn Ala Phe Ser Gly Phe Asp Pro Asn Ile Ile Ala Glu
 210 215 220
 Ala Phe Lys Ile Asn Ile Glu Thr Ala Lys Gln Leu Gln Asn Gln Lys
 225 230 235 240
 Asp Asn Arg Gly Asn Ile Ile Arg Ala Asn Gly Pro Leu His Phe Val
 245 250 255
 Ile Pro Pro Pro Arg Glu Trp Gln Gln Asp Gly Ile Ala Asn Gly Ile
 260 265 270
 Glu Glu Thr Tyr Cys Thr Ala Lys Ile His Glu Asn Ile Asp Asp Pro
 275 280 285
 Glu Arg Ser Asp His Phe Ser Thr Arg Ala Gly Arg Ile Ser Thr Leu
 290 295 300
 Asn Ser Leu Asn Leu Pro Val Leu Arg Leu Val Arg Leu Asn Ala Leu
 305 310 315 320
 Arg Gly Tyr Leu Tyr Ser Gly Gly Met Val Leu Pro Gln Trp Thr Ala
 325 330 335
 Asn Ala His Thr Val Leu Tyr Val Thr Gly Gly Gln Ala Lys Ile Gln
 340 345 350

Val Val Asp Asp Asn Gly Gln Ser Val Phe Asn Glu Gln Val Gly Gln
 355 360 365
 Gly Gln Ile Ile Val Ile Pro Gln Gly Phe Ala Val Ser Lys Thr Ala
 370 375 380
 Gly Glu Thr Gly Phe Glu Trp Ile Ser Phe Lys Thr Asn Asp Asn Ala
 385 390 395 400
 Tyr Ile Asn Thr Leu Ser Gly Gln Thr Ser Tyr Leu Arg Ala Val Pro
 405 410 415
 Val Asp Val Ile Lys Ala Ser Tyr Gly Val Asn Glu Glu Ala Lys
 420 425 430
 Arg Ile Lys Phe Ser Gln Gln Glu Thr Met Leu Ser Met Thr Pro Ser
 435 440 445
 Ser Ser Ser
 450

<210> 71
<211> 867
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (1)..(864)
<223> prohibitin 1
<400> 71
atg aac aac gtc aaa gtt cca aag ata cca ggt ggt ggt gcc att tcg 48
Met Asn Asn Val Lys Val Pro Lys Ile Pro Gly Gly Gly Ala Ile Ser
 1 5 10 15
acg ttg ctt aag gtt ggg att att ggt ggg ctt ggc ctc tat ggt gct 96
Thr Leu Leu Lys Val Gly Ile Ile Gly Gly Leu Gly Leu Tyr Gly Ala
 20 25 30
acg cac agt ctc tac aat gtt gaa gga cat cga gcc atc atg ttc 144
Thr His Ser Leu Tyr Asn Val Glu Gly Gly His Arg Ala Ile Met Phe
 35 40 45
aat cgt tta gtc ggt att aaa gat aag gtt tac cct gag ggt aca cac 192
Asn Arg Leu Val Gly Ile Lys Asp Lys Val Tyr Pro Glu Gly Thr His
 50 55 60
ctt atg att cct tgg ttt gaa agg ccg gtc atc tat gac gtt cgt gct 240
Leu Met Ile Pro Trp Phe Glu Arg Pro Val Ile Tyr Asp Val Arg Ala
 65 70 75 80
cga cct tac ctt gtt gag agt aca tcc gga agc cgt gat ctt cag atg 288
Arg Pro Tyr Leu Val Glu Ser Thr Ser Gly Ser Arg Asp Leu Gln Met
 85 90 95
gtg aaa att ggg ctt agg gtt ctc aca cgt ccc atg gca gac cag tta 336
Val Lys Ile Gly Leu Arg Val Leu Thr Arg Pro Met Ala Asp Gln Leu
 100 105 110
cct gaa atc tac aga agc ctt ggt gag aac tac agc gag aga gtt cta 384
Pro Glu Ile Tyr Arg Ser Leu Gly Glu Asn Tyr Ser Glu Arg Val Leu
 115 120 125
cct tct ata atc aac gag act ttg aaa gct gtg gtt gct cag tac aat 432
Pro Ser Ile Ile Asn Glu Thr Leu Lys Ala Val Val Ala Gln Tyr Asn
 130 135 140

gca agc cag ctt att act cag aga gag gcg gtc agt agg gag atc agg Ala Ser Gln Leu Ile Thr Gln Arg Glu Ala Val Ser Arg Glu Ile Arg 145 150 155 160	480
aag att ctg act gaa cga gca gca aac ttc aat gtt gcg ctt gac gat Lys Ile Leu Thr Glu Arg Ala Ala Asn Phe Asn Val Ala Leu Asp Asp 165 170 175	528
gtg tcc atc aca aac ctg aca ttc ggg aag gag ttc aca gct gcc att Val Ser Ile Thr Asn Leu Thr Phe Gly Lys Glu Phe Thr Ala Ala Ile 180 185 190	576
gaa gca aag cag gtg gcg gct caa gag gct gag cggt gct aag ttc att Glu Ala Lys Gln Val Ala Ala Gln Glu Ala Glu Arg Ala Lys Phe Ile 195 200 205	624
gtt gag aag gcc gaa caa gac aag aga agt gct gtt atc cgc gcc cag Val Glu Lys Ala Glu Gln Asp Lys Arg Ser Ala Val Ile Arg Ala Gln 210 215 220	672
gga gaa gcc aag agt gct cag ctc att ggt caa gca att gca aac aac Gly Glu Ala Lys Ser Ala Gln Leu Ile Gly Gln Ala Ile Ala Asn Asn 225 230 235 240	720
caa gcg ttt atc acg ctc agg aag atc gag gct gca aga gag att gca Gln Ala Phe Ile Thr Leu Arg Lys Ile Glu Ala Ala Arg Glu Ile Ala 245 250 255	768
cag acc ata gca aac tcg gcg aac aag gtt tac ttg agc tca gac gat Gln Thr Ile Ala Asn Ser Ala Asn Lys Val Tyr Leu Ser Ser Asp Asp 260 265 270	816
ctt ttg ctt aac cta caa ggg atg aat ttg gat gtt gat gca aag aac Leu Leu Leu Asn Leu Gln Gly Met Asn Leu Asp Val Asp Ala Lys Asn 275 280 285	864
tag	867
<210> 72	
<211> 288	
<212> PRT	
<213> Arabidopsis thaliana	
<400> 72	
Met Asn Asn Val Lys Val Pro Lys Ile Pro Gly Gly Gly Ala Ile Ser 1 5 10 15	
Thr Leu Leu Lys Val Gly Ile Ile Gly Gly Leu Gly Leu Tyr Gly Ala 20 25 30	
Thr His Ser Leu Tyr Asn Val Glu Gly Gly His Arg Ala Ile Met Phe 35 40 45	
Asn Arg Leu Val Gly Ile Lys Asp Lys Val Tyr Pro Glu Gly Thr His 50 55 60	
Leu Met Ile Pro Trp Phe Glu Arg Pro Val Ile Tyr Asp Val Arg Ala 65 70 75 80	
Arg Pro Tyr Leu Val Glu Ser Thr Ser Gly Ser Arg Asp Leu Gln Met 85 90 95	
Val Lys Ile Gly Leu Arg Val Leu Thr Arg Pro Met Ala Asp Gln Leu 100 105 110	
Pro Glu Ile Tyr Arg Ser Leu Gly Glu Asn Tyr Ser Glu Arg Val Leu 115 120 125	

85

Pro Ser Ile Ile Asn Glu Thr Leu Lys Ala Val Val Ala Gln Tyr Asn
 130 135 140
 Ala Ser Gln Leu Ile Thr Gln Arg Glu Ala Val Ser Arg Glu Ile Arg
 145 150 155 160
 Lys Ile Leu Thr Glu Arg Ala Ala Asn Phe Asn Val Ala Leu Asp Asp
 165 170 175
 Val Ser Ile Thr Asn Leu Thr Phe Gly Lys Glu Phe Thr Ala Ala Ile
 180 185 190
 Glu Ala Lys Gln Val Ala Ala Gln Glu Ala Glu Arg Ala Lys Phe Ile
 195 200 205
 Val Glu Lys Ala Glu Gln Asp Lys Arg Ser Ala Val Ile Arg Ala Gln
 210 215 220
 Gly Glu Ala Lys Ser Ala Gln Leu Ile Gly Gln Ala Ile Ala Asn Asn
 225 230 235 240
 Gln Ala Phe Ile Thr Leu Arg Lys Ile Glu Ala Ala Arg Glu Ile Ala
 245 250 255
 Gln Thr Ile Ala Asn Ser Ala Asn Lys Val Tyr Leu Ser Ser Asp Asp
 260 265 270
 Leu Leu Leu Asn Leu Gln Gly Met Asn Leu Asp Val Asp Ala Lys Asn
 275 280 285

<210> 73
<211> 40
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
 oligonucleotid primer
<400> 73
ataagaatgc ggccgcgtgt tccatttggc cggaaacaac 40
<210> 74
<211> 33
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
 oligonucleotid primer
<400> 74
cccggatcct tctgtaacat ttgacaaaac atg 33
<210> 75
<211> 40
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
 oligonucleotid primer
<400> 75
ataagaatgc ggccgcgtgt tccatttggc cggaaacaac 40
<210> 76
<211> 44

<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
 oligonucleotid primer

<400> 76
ataagaatgc ggccgcggat ccaccctgga gaacgccacg agtg 44

<210> 77
<211> 45
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
 oligonucleotid primer

<400> 77
ataagaatgc ggccgcggat ccctcagggt cttttcttgc ccact 45

<210> 78
<211> 30
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
 oligonucleotid primer

<400> 78
ccgctcgagt ttacggatgg agccacgaag 30

<210> 79
<211> 30
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
 oligonucleotid primer

<400> 79
ccgctcgagg taagctcaac aaatcttag 30

<210> 80
<211> 31
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
 oligonucleotid primer

<400> 80
acgcgtcgac gcgttctgct tgcaagatat t 31

<210> 81
<211> 46
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:
 oligonucleotid primer

<400> 81
ataagaatgc ggccgcggat ccatggctaa caagctcttc ctgcgc 46

<210> 82
<211> 45
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
oligonucleotid primer

<400> 82
ataagaatgc ggccgcggat ccctagtagt aaggagggaa gaaag 45

<210> 83
<211> 4954
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: DNA
construct coding for dsRNA for suppression of
multiple storage proteins

<400> 83
agctttggta cgagctcgga tccactagta acggccgcca gtgtgctgga attccccc 60
gcggccgcgt gttccatttg gccggaaaaca accagcaggg aggctttggc ggttcacagc 120
aacaacaaaga acagaaaaac ttgtggagcg ggttcgacgc acaggtcata gctcaagcat 180
tgaaaaattga cgttcagttg gtcagcagc ttcaagaacca acaagacagc agaggaaaca 240
tcgttcgtgt taagggacct ttccaggtcg tgaggccacc tctaagacag ccctacgaga 300
gcgaggagtg gagacaccca cgtagccac agggcaacgg ccttgaggag actatctgca 360
gcatgaggtc ccacgagaac attgacgacc ctgctcgatc tgacgtgtac aagcccagcc 420
taggtcgcgt gaccagcgtc aacagctata cttggccat cttggagtat gtcaggctca 480
gtgccactcg tggcgttctc cagggtgat cttctgtaa catttgacaa aacatgtgaa 540
cacgtcatcc gtcatataga acttccaatt ttaatatgtt ttgctaaaga aaaaaaaaaag 600
gaataaaatct atatcaaatt catttttaaa acatttgtat acgttcttaa ataatttagg 660
atatgactaa ttttctttt tggtaaaaat gtaatatct atatthaatt tattaagaaa 720
aatgtactta caccctggag aacgccacga gtggcactga gcctgacata ctccaagatg 780
ggcaaggtat agctgttgc gctggtcacg cgacctaggc tggcttgc cacgtcagca 840
cgagcagggt cgtcaatgtt ctcgtggac ctcatgtgc agatagtctc ctcaaggccg 900
ttgccctgtg ggctacgtgg gtgtctccac tcctcgctc ctagggctg tcttagaggt 960
ggcctcacga cctggaaagg tcccttaaca cgaacgatgt ttcctctgt gtcttgtgg 1020
ttctgaagct gctgagccaa ctgaacgtca atttcaatg cttgagctat gaccgtgtcg 1080
tcgaacccgc tccacaagtt tttctgttct tggtgtgtc gtgaaccgccc aaagcctccc 1140
tgctggttgt ttccggccaa atggAACACG atcacactgg cggccgctcg acgtaagctc 1200
acatatgcaa taatggatt tggcaagata aacaatctt tagaaaatata attttatgtg 1260
aactctaaat aatctaaatc gtttcaatt aactaataga ttttgcgatt tggagttta 1320
gttttaatt aaaaaatata tatatatata aactaataga ttttgcgatt tggagttta 1380
taaaaaatata ctgcacgca gaacgctctc tttttttttt tttttttttt 1440
tgcccacttt ctgcacgca ggcaaaactca gaggtgtat tccggatgc gcccggatc 1500
ggccgcgtat tccggatgc gcccggatc aaggtcaggg tcagagtcaa ggttccgtg 1560
ggccgcgtat cattgcaaca ccatctggtg acctctcat tcttggca gcccggatc 1620
accttagacc attttgata gccgaaaca aacatcttc aatgtcgatc acatctcat 1680
gaaagcaaca gaagcaaaaac aacatcttc ctttcggcg agctccagaa ccagcaagat 1740
ccttcaagat caatgtcgag acggctcagc acatctcat tcttggca ggtttagagga 1800
acatctcat ggtcaacgga ctttcggcg tcattaggcc acccttggaa gactttgtgc 1860
gcggccaaaca accacatgaa atagctaatg gtttagagga gactttgtgc accatgcgat 1920
gcggccaaaca accacatgaa atagctaatg gtttagagga gactttgtgc accatgcgat 1980
gcggccaaaca accacatgaa atagctaatg gtttagagga gactttgtgc accatgcgat 2040
gcggccaaaca accacatgaa atagctaatg gtttagagga gactttgtgc accatgcgat 2100

gcactaaaaa cctcgatgac ccgtcggatg ctgacgtgta caagccatca ctcggataca 2160
ttagcacact taacagctac aatttccta tcctcagact tctccgcctt agcgtcttc 2220
gtggctccat ccgtaaaact cgaggtaagc tcaacaaatc ttagaaaaat taattttatg 2280
tgacatatgc aataattga tttggcaaga taaactaata gatttgcga ttggagtt 2340
taaactctaa ataatctaaa tcgtttcaa ttggttaaa tatatatctt gcattttaa 2400
tcgttttaa taaaaaaaata tatatatata tatatatctt gcattttaa tcgtttcaa 2460
ttaaaaaaat atcttgacac cagaacgctg tcgagttta cggatggagc cacgaagagc 2520
gctaaggcgg agaagtctga ggataggaag attgtagctg ttaagtgtgc taatgtatcc 2580
gagtgtatggc ttgtacacgt cagcatccga cgggtcatcg aggtttcag tgcacatcgat 2640
ggtcacaaa gtctcctcta aaccattagc tatttcatgt gttgttggc cgccttcgccc 2700
gcgtctcaag gttggcctaa tgacgcccga aggtccgtt accttgacga tgttgccaag 2760
gttatcttgc tggttctgga gctgctgagc cgtctcgaca ttgatcttga aggcttgagc 2820
caagatctca gttgcgaagc cattgaagat ttgttttgc ttctgttgct ttccgcctt 2880
tagccattcc tgcccttgg ggtgtttcc ggctatcaaa aatggtctaa gttgcggc 2940
aagctggttc tggttgtctgg cgagatccgc ggctgcaaca agaatgagag gtcattttcc 3000
attgtttag aaccattttag ctacaccaga tggtgttgc atgggtgcac cgcaccgttag 3060
gtgctctact ttctggtgc tgcacggaa cccttgactc tgaccctgac ttgcaccc 3120
tccaaatacc ggtgactcca tgaacgtctc ggccatcccc ggaataactc ttcccattag 3180
acccttcgg tgaacaacaa acgtgagttt gccggcgttc aagaaagtgg gcaagaaaaag 3240
accctggagga tccgcggccg cgcatgcatt tagctcgagg taagctcaac aaatcttttag 3300
aaaattaatt ttatgtgaca tatgcaataa ttgttggg caagataaac taatagattt 3360
tgcgatttgg agtttaaac tctaaataat ctaatcgat ttcaatggt taaatataat 3420
atcttgcatt ttaatcgtt ttaattttaa aaatataat atatataat atcttgcatt 3480
ttaatcggtt tcaattttaa aaaatatctt gcacgcagaa cgctagggcc gcggccgcgg 3540
atccatggct aacaagctct tcctcgctg cgcaactctc gccctctgct ttccctcac 3600
caacgcttcc atctaccgca ccgttgcga attcgaagaa gatgacgcca gcaaccccg 3660
aggtccaaga cagagatgcc agaaggagtt tcagcaatca caacacctaa gagcttgc 3720
gagatggatg agcaagccaa tgaggcaagg acgtgggtt ggtccttccc tcgacgatga 3780
gttcgatttgc gagggcccccc agcagggata ccagctactc cagcagtgt gcaacgagct 3840
tcgcccaggaa gagccaggaa ggtttgccc caccctgaaa caagctgcca gggcagttag 3900
cctccaggaa cagcacgac cattccaatc caggaaaatt taccagtca gtaagtactt 3960
gcctaacatt tgcaagatcc agcaagttgg tgaatgtccc ttccagacca ccatccctt 4020
cttccctct tactactagg gtactcgagg taagctcaac aaatcttttag aaaattaatt 4080
ttatgtgaca tatgcaataa ttgttggg caagataaac taatagattt tgcgatttgg 4140
agtttaaac tctaaataat ctaatcgat ttcaatttgg ttaaatataat atcttgcatt 4200
ttaatcggtt ttaattttaa aaatataat atatataat atcttgcatt ttaatcgat 4260
ttaatcggtt ttaattttaa aaaatatctt gcacgcagaa cgctgtcgac taccctagta gtaaggaggg 4320
aagaaaggaa tgggtgtctg gaagggacat tcaccaactt gctggatctt gcaaatttta 4380
ggcaagttact tagctgactg gtaaattttc ctggatttgg atggtcgtg ctgtccctgg 4440
aggctaactg ccctggcagc ttgttcaag gtggggccaa cgaaactgg ctctccctgg 4500
cgaagctgt tgcagcactg ctggagtagc ttgtatccct gctggggcc ctcgaaatcg 4560
aactcatgt cgagggaaagg accaccacca cgtccttgc tcatttgcctt gctcatccat 4620
ctctggcaag ctcttaggtt ttgtgattgc tgaactctt tctggcatct ctgtcttgg 4680
cctacgggt tgctggcgtc atcttcttgc aattcgacaa cggtgcggta gatggaaagcg 4740
ttggtgagga ggaagcagag ggcgagagtt ggcagacga ggaagagctt gtagccatg 4800
gatcaattcg ccctataatgt agtcgttata caattcactg gccgtcgttt tacaacgtcg 4860
tgactggaa aaccctggcg ttacccaact taatcgccctt cgacgcacatc ccccttgc 4920
cagctggcgt aatagcgaag agggccgcac cgat 4954

<210> 84

<211> 4954

<212> RNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: RNA coding for dsRNA for suppression of multiple storage proteins

<400> 84

agcuugguac cgagcucggg uccacuagua acggccgcca gugugcugga auucgcccuu 60
 gcggccggu guuccauuug gccggaaaca accagcaggg aggciuuggc gguucacagc 120
 aacaacaaga acagaaaaac uuguggagcg gguucgacgc acaggucaua gcucaagcau 180
 ugaaaauuga cguucaguug gcucagcagc uucagaacca acaagacagc agaggaaaca 240
 ucguucgugu uaagggaccu uuccaggucg gcgaggagug gagacacccca cguagcccac
 gcaugagguc ccacgagaac auugacgacc uaggucgugu gaccagcgc aacagcuua
 gugccacucg uggtguucuc caggguggau cacgucaucc gucauauaga aciuuccaaau
 gaauaaauau cuaucaaauu cauuuuuaaa auaugacuua uuuuicuuuu ugguaaaaau
 aauguacuua caccucggag aacgccacga ggcaaggua agcuguugac gcuggucacg
 cgagcagggu cgucaauguu cucgugggac uugccugug ggcuacgugg gugucuccac
 ggccucacga ccuggaaagg uccciuaaca uucugaagcu gcugagccaa cugaacguca
 ucgaacccgc uccacaaguu uucuguuu ugcugguugu uuccggccaa auggaacacg
 aucacacugg cggccgcucg acguaagcuc acauaugcaa uaauuugau uggcaagaua
 aacucuaaaau aaucuaaauc guuuucaauu guuuuuaauu aaaaauuaua uauauaua
 uaaaaaaaaau cuugcacgca gaacgcucuc ggccaaacuca gaagaguua uccgggaugc
 aaggucaggg ucagagucaa ggguuccgug gcggugacac cauugcaaca ccaucuggug
 agccucucau uciuguugca gccgccccauc accuuagacc auuuuugaua gccggaaaca
 gaaagcaaca gaagcaaaac aacauuuuca cciuuaagau caaugucgag acggcucagc
 acaucguaa ggucaacgga cciuucggcg gcggccaaaca accacauugaa auagcuaaua
 gcacugaaaa ccucgaugac cgcucggau uuagcacakc uaacagcuac aaucuuccua
 guggcuccau cgguaaaaacu cgagguaagc ugacauauggc aaaaacuuaaua auaauuuu
 uaaacucuua auuaucuua ucguiuuu uuuuuuuuauu auuuuuuauu auaauuuu
 uuuuuuuuauu aucuugcact cagaacgcug gcuaaggccg agaagucuga ggauaggaag
 gagugauuggc uuguacacgu cagcauccga ggugcacaac gucuccucua aaccauuu
 gcgucucaag gguggccuaa ugacgcccga guuaucuugc ugguiucugga ugguiuc
 caagauuca gugcgaagc cauugaagau uagccauuucc ugcccuiugug gguugui
 aagcugguuc ugguiugcug cgagauccgc augguiugcug augguiugcug
 auuguiugcug aaccauugag cuacaccaga ugguguiugcug auggugucac
 gugcucuacu uucuggugca uguacaggaa ccciuugacuc ugacccugac cuugaccuu
 uccaaauuacc ggugacucca ugaacgucuc acgugaguuu ggcgcaccc ggaauuac
 acccciuuccg ugaacaacaa acgugaguuu uccggcgguuc aagaaagugg gcaagaaaag
 accccugagga uccggcccg cgcaugcauc uagcucgagg uaagcucuac aaaaucuuu
 aaaauuuauu uuaugugaca uaugcaauaa uuugauuugg caagauaaac uauuagauuu

ugcgauuugg aguuuuuaaac ucuaaaauau cuaaaucguu uucaauuggu uuaaauauau 3420
 aucuugcauu uuuaaucguu uuuauuuaaa aaauauauau auauauauau auciugcauu 3480
 uuuaaucguu uucaauuuuaa aaaaauaucuu gcacgcagaa cgcuagggcc gcggccgcgg 3540
 auccauggcu aacaagcucu uccucgucug cgaacucuc gcccucugcu uccuccucac 3600
 caacgcuucc auciaccgca ccguugugca auucgaagaa gaugacgcca gcaaccccg 3660
 agguccaaga cagagaugcc agaaggaguuc ucagcaauca caacaccuaa gagcuugcca 3720
 gagauggaug agcaagcaaa ugaggcaagg acgugguggu gguccuuccc ucgacgauga 3780
 guucgauuuc gagggcccccc agcagggaaua ccagcuacuc cagcagugcu gcaacgagcu 3840
 ucgccagggaa gagccaguuu gcfuiiugccc caccuugaaa caagcugcca gggcaguuaag 3900
 ccuccagggaa cagcacggac cauuccaauc cagggaaaaauu uaccagucag cuaaguacuu 3960
 gccuaacauu ugcaagaucc agcaaguugg ugaauugucc uuccagacca ccauccccuu 4020
 cuuccuccu uacuacuagg guacucgagg uaagcuacaac aaaucuuuag aaaaauuaau 4080
 uuaugugaca uaugcaauuaa uuugauuugg caagauaaac uaaauagauuu ugcgauuugg 4140
 aguuuuuaaac ucuaauuaau cuaaaucguu uucaauuggu uuaaauuaau auciugcauu 4200
 uuuaaucguu uuuaauuaaa aaaaauuaau auauauuaau auciugcauu uuuaaucguu 4260
 uucaauuuuaa aaaaauaucuu gcacgcagaa cgcugucgac uacccuagua guaaggaggg 4320
 aagaaaggga ugugugucug gaagggacau ucaccaacuu gcuggaucuu gcaaauguua 4380
 ggcaaguacu uagcugacug guaaauuuuc cuggauugga augguccgug cugucccugg 4440
 aggcuacug cccuggcagc uuguuucaag guggggcaaa cgcacacugg cucuuccugg 4500
 cgaagcucgu ugcagcacug cuggaguagc ugguauccu gcugggggcc cucgaaaucg 4560
 aacucaucgu cgagggaaagg accaccacca cguccuugcc ucauuugccu gcucauccau 4620
 cucuggcaag cucuuaggug uugugauugc ugaauacucc ucuuggcaucu cugucuugga 4680
 ccuacggggu ugcuggcgc aucuucuicg aauucgacaa cggugcggua gauggaagcg 4740
 uuggugagga ggaagcagag ggcgagaguu ggcgagacga ggaagagcuu guuagccaug 4800
 gaucaauucg cccuauagug agucguauua caauucacug gccgucguuu uacaacgucg 4860
 ugacugggaa aaccucuggcg uuacccaacu uaaucgccuu gcagcacaac cccuuucgc 4920
 cagcuggcgu aauagcgaag aggccccgac cgau 4954

<210> 85

<211> 4456

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: DNA
 construct coding for dsRNA for suppression of
 multiple storage proteins

<400> 85

agcttggta ctagtcggta tccactatgt aacggccgcca gtgtgctgga attcgccctt 60
 gcggccgcgg atcctcaggg tcttttctt cccactttct tgaacgcggg caaactcacg 120
 ttgttggta acggaagggg tctaattggg agagttttc cggatgcgc cgagacgttc 180
 atggagtac acgttatggg agaaggtaa ggtcagggtc agagtcaagg gttccgtgac 240
 atgcaccaga aagttagagca cctacgggtc ggtgacacca ttgcaacacc atctggtgta 300
 gctcaatggt tctacaacaa tgaaaatgag cctctcattt ttgttgcagc cgcggatctc 360
 gccagcaacc agaaccagct tgaccgcaac cttagaccat tttttagatgc cgaaaacaac 420
 ccacaagggc aggaatggct acaaggccga aagcaacaga agcaaaacaa catcttcaat 480
 ggcttcgcac ctgagatctt ggctcaagcc ttcaagatca atgtcgagac ggctcagcag 540
 ctccagaacc agcaagataa ccgtggcaac atcgtcaagg tcaacggacc tttcggcg 600
 attaggccac ctttgagacg cggcgaaggc ggccaacaac cacatgaaat agctaattgt 660
 ttagaggaga ctttgtgcac catgcgtatgc actgaaaacc tcgatgaccc gtcggatgct 720
 gacgtgtaca agccatcaat cggatacatt agcacactt acagctacaa tcttcctatc 780
 ctcagacttc tccgccttag cgctcttcgt ggctccatcc gtaaaaggat ccggccgc 840
 aagggcgaat tctgcagatc cttcagggtc ttttcttgc cactttctt aacgcccggca 900
 aactcacgtt tggatgttccac ggaagggtc taatgggaag agttattccg ggtatgcggccg 960
 agacgttcat ggagtccacg gtatggag aaggtcaagg tcagggtcag agtcaagggt 1020
 tccgtgacat gcaccagaaaa gtagagcacc tacgggtcgg tgacaccatt gcaacaccat 1080
 ctgggttagc tcaatggttc tacaacaaatg gaaatgagcc tctcattttt gttgcagccg 1140
 cggatctcgc cagcaaccag aaccagctt accgcaaccc tagaccattt ttgatagccg 1200

gaaacaaccc acaaggggcag gaatggctac aaggccgaaa gcaacagaag caaaaacaaca 1260
tcttcaatgg cttcgcacct gagatcttgg ctcagaccaa caagatcaat gtcgagacgg 1320
ctcagcagct ccagaaccag caagataacc gtggcaacat cgtcaaggtc aacggacctt 1380
tcggcgcat taggccaccc ttgagacgag gcgaaaggcgg ccaacaacca catgaaatag 1440
ctaattggttt agaggagact ttgtgcacca tgcgatgcac tgaaaacctc gatgaccctg 1500
cgatgctga cgtgtacaag ccatcactcg gatacattag cacacttaac agctacaatc 1560
ttccttatcct cagacttctc cgcccttagcg ctcttcgtgg ctccatccgt aaaagatcct 1620
atggctaaca agctcttctc cgctctgcga actctcgccc tctgcttcct cctcaccaac 1680
gcttccatct accgcaccgt tgtcgaattc gaagaagatg acgcccagcaa ccccgttaggt 1740
ccaagacaga gatgccagaa ggagtttcag caatcacaac acctaagagc ttgcccagaga 1800
tggatgagca agcaaattttag gcaaggacgt ggtgggttc cttccctcga cgatgagttc 1860
gatttcgagg gccccccagca gggataccag ctactccagc agtgctgcaa cgagcttcgc 1920
caggaagagc cagtttgcgt ttgccccacc ttgaaacaag ctgcccaggc agttagcctc 1980
cagggacacgc acggaccatt ccaatccagg aaaatttacc agtcagctaa gtacttgcct 2040
aacatttgc a agatccagca agttggtaa tgtcccttcc agaccaccat ccctttcttc 2100
cctccttact actagggttag atatccatca cactggcggc cgctcgacgt aagctcaaca 2160
aatctttaga aaattaattt tatgtgacat atgcaataat ttgatttggc aagataaaact 2220
aatagatttt gcgattttgga gttttaaact ctaaataatc taaatcgtt tcaattgggt 2280
taaatatata tcttgcattt ttaatcgttt ttaataaaaaa aatataatata tatataatata 2340
tcttgcattt ttaatcgttt tcaattttaaa aaatatcttgc acgcagaac gcctcgacta 2400
cccttagtagt aaggagggaa gaaagggatg gtggcttggaa agggacattc accaacttgc 2460
tggatcttgc aaatgttagg caagtactta gctgacttgtt aaattttcctt ggttggaaat 2520
ggtccgtgct gtccctggag gctaactgccc ctggcagctt gttcaaggt gggcaaaacg 2580
caaactggct cttccctggcg aagctcggtt cagcactgct ggagtagctg gtatccctgc 2640
tggggggccct cgaaatcgaa ctcatcgctc agggaggac caccaccacg tccttgcctc 2700
atttgcttgc tcatccatct ctggcaagct ctttagtgtt gtgattgctg aaactcccttc 2760
tggcatctct gtcttggacc tacggggttt ctggcgtcat cttcttgcga ttcgacaacg 2820
gtgcggtaga tggaaagcgtt ggtgaggagg aagcagaggg cgagagttgc gcagacgagg 2880
aagagcttgc tagccataagg atctttacg gatggagcca cgaagagcgc taaggcggag 2940
aagtctgagg ataggaagat ttagtgcgtt aagtgtgcta atgtatccga gtgatggctt 3000
gtacacgtca gcatccgacg ggtcatcgag gttttcagtg catcgcatgg tgcacaaaagt 3060
ctccctctaaa ccattagcta tttcatgtgg ttgttggccg ctttcgcgcg gtctcaaggg 3120
tggcctaattt acgcccggaa gtcgggttgc cttgacgatg ttgccacggg tatcttgctg 3180
gttctggagc tgctgagccg tctcgacatt gatcttgcg gcttggccca agatctcagg 3240
tgcgaagcca ttgaagatgt tttttgcctt ctgttgcctt cggccttgc gccatttcctg 3300
cccttgcggg ttgttccgg ctatcaaaaa ttgtctaagg ttgcggtcaa gctggttctg 3360
gttctggcg agatccgggg ctgcaacaag aatgagaggc tcatttccat tttttagaa 3420
ccatttagct acaccagatg gtgttgcattt ggtgttcccg caccgttagt gctctacttt 3480
ctgggtgcattt tcacggaaacc cttgactctg accctgaccc tgaccttctc caaataccgg 3540
tgactccatg aacgtctcg gcatcccgaa aataactctt cccatttagac cccttcgtg 3600
aacaacaaac gtgagtttc cggcggttcaaa gaaagtgggc aaaaaagac cctgaaggat 3660
ctgcagaattt cggcccttgcg gcccggatc ctttacgga tggagccacg aagagcgcta 3720
aggcggagaa gtctgaggat aggaagattt tagctttaa gtgtgctaat gtatccgagt 3780
gatggcttgc acacgtcagc atccgacggg tcatcgaggt tttcagtgca tcgcattgg 3840
cacaaggctt cctctaaacc attagctatt tcatgtggtt gttggccgccc ttgcggcggt 3900
ctcaagggtt gcctaatttgc gcccggatc cgggttgcatt tgacgatgtt gccacgggtt 3960
tcttgcgtgt tctggagctg ctgagccgtc tcgacattga tcttgaaggc ttgagccaa 4020
atctcagggtt cgaaggccatt gaagatgtt ttttgcattt gttgttccg gcctttagc 4080
cattcctgccc ttgttgggtt gttccggctt atcaaaaatg gtctaaagggtt ggggtcaagc 4140
tggttctgggt tgctggcgag atccggcgct gcaacaagaa tgagaggctc atttccattt 4200
ttgttagaacc attgagctac accagatgtt gttcaatgg tgcacccgca cctgttagtgc 4260
tctactttct ggtgcatttgc acggaaaccct tgactctgac cctgacccctg accttctcca 4320
aataccgggtt actccatgaa cgtctccggcg catccggaa taactcttcc cattagaccc 4380
cttccctgaa caacaaacgt gagtttgcgg gcggttcaaga aagtgggcaa gaaaagaccc 4440
tgactcgagc atgcatttgc 4456

<210> 86

<211> 4456

<212> RNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: RNA coding
for dsRNA for suppression of multiple storage
proteins

<400> 86

agcuugguac cgagcucgga uccacuagua acggccgcca gugugcugga auucgcccuu 60
 gcggccgcgg auuccucagg ucuuuuuuuug cccacuuucu ugaacgcccgg caaacucacg 120
 uuuuguuuc acggaagggg ucuaauugga agaguuaauuc cgggaugcgc cgagacguuc 180
 auggagucac cgguaauuugg agaaggucaa ggucaggguc agaguacaagg guuuccugac 240
 augcaccaga aaguagagca ccuacggugc ggugacacca uugcaacacc aucuggugua 300
 gcuuauugg ucuacaacaa uggaaaauugag ccucucuuuc uuguugcagc cgccgaucuc 360
 gccagcaacc agaaccagacu ugaccgcaac cuuagaccu uuuugauagc cggaaacaac 420
 ccacaagggc aggaauuggc acaaggccga aagcaacaga agaaaaacaa caucuucaau 480
 ggcuucgcac cugagaucuu ggcucaagcc uucaagaauca augucgagac ggcucagcag 540
 cuccagaacc agcaagauaa ccguggcaac aucguuagg ucaacggacc uuuucggcgc 600
 auuaggccac cciuugagacg cggcgaaggc ggccaacaac cacaugaaaa agcuaauuggu 660
 uuagaggaga cuuugugcac caugcgaugc acugaaaaacc ucgauagaccc guccggaugcu 720
 gacguguaca agccaucacu cggauacauu agcacacuuua acagcuacaa ucuuccuauc 780
 cucagacuuuc uccgccccuuag cgcucuucg ugcucccaucc guaaaaggau ccgcggccgc 840
 aaggggcgaauc ucuugcagauuc cuucaggguc uuuucuugcc cacuuuuuug aacgcccggc 900
 aacucacguu uguuguucac ggaagggguc uaaugggaag aguuauuccg ggaugcgcgc 960
 agacguucau ggagucacccg guauuuggag aaggucuagg ucagggucag agucaagggu 1020
 uccgugacau gcaccagaaa guagagcacc uacggugcgg ugacaccaau gcaacaccau 1080
 cugguguagc ucaaugguuc uacaacaaug gaaaugagcc ucucauuucu guugcagccg 1140
 cggauucgc cagcaaccag aaccagcuug accgcacccu uagaccauuu uugauagccg 1200
 gaaacaaccc acaagggcag gaauggcuac aaggccgaaa gcaacagaag caaaacaaca 1260
 ucuucauagg cuucgcaccu gagaucuugg cucaagccuu caagaucaau gucgagacgg 1320
 cucagcagc ccagaaccag caagauaacc guggcaacau cgucaagguc aacggaccuu 1380
 ucggcgucau uaggccaccc uugagacgug gcgaaggcgg ccaacaacca caugaaaaauag 1440
 cuuauugguuu agaggagacu uugugcbecca ugcgaugcac ugaaaaccuc gaugacccgu 1500
 cggauugcuga cguguacaaag ccaucacucg gauacauuag cacacuuuac agcuacaauc 1560
 uuccuauccu cagacuuucu cgcuccuagcg cucuucgugg cuccauccgu aaaagaauccu 1620
 auggcuaaca agcucuuccu cgucugcgc acucucgccc ucugcuuuccu ccucaccaac 1680
 gcuuuccauu accgcacccg ugucaauuc gaagaagaug acgccagcaa ccccguaagg 1740
 ccaagacaga gaugccagaa ggaguuucag caaucacaac accuaagagc uugccagaga 1800
 uggaugagca agcaaauugag gcaaggacgu gguggugguc cuuuccucga cgaugaguuuc 1860
 gauuucgagg gccccccagca gggauaccag cuacuccagc agugcugcaa cgagcuucgc 1920
 caggaagagc caguuugcgu uugccccacc uugaaacaag cugccagggc aguuagccuc 1980
 cagggacagc acggaccauu ccaauccagg aaaaauuacc agucagcuu guacuuggcu 2040
 aacauuugca agauccagca aguuggugaa uguccuucc agaccaccau cccuuuuuic 2100
 ccuccuuacu acuaggguaug auauccauca cacuggcggc cgcucgacgu aagcuacaaca 2160
 aaucuuuaga aaaaauuauu uaugugacau augcaauuaau uugauuuggc aagauaaacu 2220
 aauagauuuvu gcgauuugga guuuuuaacu cuaaaauaau uaaaauccu ucaauuugguu 2280
 uaaaauauaua ucuugcauuu uuaauucguuu uuaauuaaaa aauauauaua uauauauaua 2340
 ucuugcauuu uuaauucguuu ucaauuuuaaa aaaaaucuug cacgcagaac gccucgacua 2400
 cccuaguagu aaggaggggaa gaaagggaug guggucugga agggacauuc accaacuugc 2460
 uggaucuugc aaaauguuuagg caaguacuuu gcugacuggu aaaaauuuccu ggauuggaaau 2520
 gguccgugcu guccucaggag gcuaacugcc cuggcagcuu guuucaagg guggccaaacg 2580
 caaacuggcu cuuccuggcg aagcucguug cagcacugcu ggaguagcug guaucccugc 2640
 ugcccccccu cgaaaaucgaa cucaucguug agggaaaggac caccaccacg uccuugccuc 2700
 auuugcuugc ucauccauu cuggcaagcu cuuagguguu gugauugcug aacuccuuic 2760
 uggaucuucu gucuuggacc uacgggguug cuggcguau cuucuucgaa uucgacaacg 2820
 gugcguaga uggaagcguu ggugaggagg aagcagaggg cgagaguugc gcagacgagg 2880
 aagagcuugu uagccauagg aucsuumuacg gauggagcca cgaagagcgc uaaggcggag 2940

aagucugagg auaggaagau uguagcuguu aagugugcua auguauccga gugauggcuu 3000
 guacacguca gcauccgacg ggucaucgag guuuucagug caucgcugg ugacacaaagu 3060
 cuccucuaaa ccauuagcua uuucaugugg uuguuggccg cciuucgccc gucucaagg 3120
 ugcccuaaug acgccgaaag guccguugac cuugacgaug uugccacgg uaucuugcug 3180
 guucuggagc ugcugagccg ucucgacauu gaucuugaag gcuugagcca agaucucagg 3240
 ugcgaagcca uugaagangu uguuuugcuu cguuugcuuu cggccuugua gc当地uuccug 3300
 cccuuguggg uuguuuccgg cuauaaaaa uggucuaagg uugcggucaa gcugguucug 3360
 guugcuggcg agauccgcgg cugcaacaag aaugagaggc ucauuuccau uguuguagaa 3420
 ccauugagcu acaccagaug guguugcaau ggugucaccg caccguaggu gc当地uacuuu 3480
 cuggugcaug ucacggaacc cuugacucug acccugaccu ugacuuucuc caaauaccgg 3540
 ugacuccaung aacgucucgg cgcauuccgg aauaacucuu cccauuagac cccuuccgug 3600
 aacaacaaac gugaguuugc cggcguucaa gaaagugggc aagaaaagac ccugaaggau 3660
 cugcagaaauu cgcccuuggcg gccgccauc cuuuuacgga uggagccacg aagagcgcua 3720
 aggccggagaa gucugaggau aggaagauug uagcuguuaa gugugcuaau guauccgagu 3780
 gauggcuugu acacgucagc auccgacggg ucaucgaggu uuuucagugca uc当地auggug 3840
 cacaaagucu ccucuuaacc auuagcuaauu ucaugugguu guuggccgcu uucgcccgcu 3900
 cucaaggug gccuaaugac gccgaaagg ucgacauuuga ucuugaaggc uugagccaag 4020
 ucuuggug ucuuggugcug cugagccguc aaucaggug uuuugcuiu guugcuiuucg gcuuuguagc 4080
 aucucaggug cgaagccauu gaagauguug aucaaaaaug gucuaaggiu gcggucaagc 4140
 cauuccugcc cuuguggguu guuuccggcu ucuacuuuicu ggugcauguc acggaaacccu ugacucugac ccugaccuug accuucucca 4320
 aauaccggug acuccaugga cgucucggcg cauuccggaa uaacucuuucc cauagaccc 4380
 cuuccgugaa caacaaacgu gaguuugccg gcuucaaga aagugggcaa gaaaagaccc 4440
 ugacucgagc augcau 4456

<210> 87

<211> 33

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:
oligonucleotide primer

<400> 87

aaaaggcctg tggccattt ggccggaaac aac

33

<210> 88

<211> 31

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:
oligonucleotide primer

<400> 88

aaagatatac ccctggagaa cggcacgagt g

31

<210> 89

<211> 33

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:
oligonucleotide primer

<400> 89

aaaaggccta tggctaacaa gctttcctc gtc

33

```

<210> 90
<211> 32
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
      oligonucleotide primer

<400> 90
aaagatatacc tagtagtaag gagggaaagaa ag 32

<210> 91
<211> 32
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
      oligonucleotide primer

<400> 91
ccgctcgagc tcagggtctt ttcttgccca ct 32

<210> 92
<211> 32
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
      oligonucleotide primer

<400> 92
ccgggtcgacc tagtagtaag gagggaaagaa ag 32

<210> 93
<211> 1500
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (1)..(1497)
<223> globuline-like protein

<400> 93
atg act aga ttt gcg gta ttg cca ctc tct gtt ctt ctt ctc gtt ctc 48
Met Thr Arg Phe Ala Val Leu Pro Leu Ser Val Leu Leu Leu Val Leu
   1           5           10          15
ttg ttc ctc tgc act gag tcg ttg gct aag tcg gag gag tct gaa gaa 96
Leu Phe Leu Cys Thr Glu Ser Leu Ala Lys Ser Glu Glu Ser Glu Glu
   20          25          30
tac gac gtc gct gtg cct tca tgt tgc ggg ttt tcg tct cct ctt ctg 144
Tyr Asp Val Ala Val Pro Ser Cys Cys Gly Phe Ser Ser Pro Leu Leu
   35          40          45
att aag aaa gat caa tgg aaa cca atc ttc gag acg aag ttt gga cag 192
Ile Lys Lys Asp Gln Trp Lys Pro Ile Phe Glu Thr Lys Phe Gly Gln
   50          55          60
atc tca acc gtt caa atc ggc aat gga tgc ggt gga atg gga cct tac 240
Ile Ser Thr Val Gln Ile Gly Asn Gly Cys Gly Gly Met Gly Pro Tyr
   65          70          75          80

```

95

aag ata cat tcc ata acg ttg gag cca aac aca att ttg ctc cct ctt		288	
Lys Ile His Ser Ile Thr Leu Glu Pro Asn Thr Ile Leu Leu Pro Leu			
85	90	95	
ctt ctt cat tcc gac atg gtc ttc gtt gac tct gga agt ggg att		336	
Leu Leu His Ser Asp Met Val Phe Phe Val Asp Ser Gly Ser Gly Ile			
100	105	110	
ctg aat tgg gtt gac gag gaa gcg aag agt acc gag atc aga cta gga		384	
Leu Asn Trp Val Asp Glu Glu Ala Lys Ser Thr Glu Ile Arg Leu Gly			
115	120	125	
gac gtt tac agg cta cgt ccc ggt tcg gtt ttc tac tta cag agc aaa		432	
Asp Val Tyr Arg Leu Arg Pro Gly Ser Val Phe Tyr Leu Gln Ser Lys			
130	135	140	
ccg gat cct tgc ttt ggt gcc tat tcg agt atc aca gat cta atg ttt		480	
Pro Asp Pro Cys Phe Gly Ala Tyr Ser Ser Ile Thr Asp Leu Met Phe			
145	150	155	160
ggt ttt gat gag aca att ctc cag tca gct ttt ggg gtt cct gag ggg		528	
Gly Phe Asp Glu Thr Ile Leu Gln Ser Ala Phe Gly Val Pro Glu Gly			
165	170	175	
att ata gag ctg atg agg aac cgt acg aag cca cca ttg atc gtg agt		576	
Ile Ile Glu Leu Met Arg Asn Arg Thr Lys Pro Pro Leu Ile Val Ser			
180	185	190	
gag acg ctt tgc aca cca ggt gtg gcc aac act tgg cag ctc caa ccg		624	
Glu Thr Leu Cys Thr Pro Gly Val Ala Asn Thr Trp Gln Leu Gln Pro			
195	200	205	
cga tta cta aag ctc ttt gct gga agt gca gac ttg gtg gat aac aag		672	
Arg Leu Leu Lys Leu Phe Ala Gly Ser Ala Asp Leu Val Asp Asn Lys			
210	215	220	
aag aag aaa gag aag aaa gag aag gag aag gtg aag aaa gcg aag		720	
Lys Lys Lys Glu Lys Lys Glu Lys Lys Glu Lys Val Lys Lys Ala Lys			
225	230	235	240
aca ttc aat gtt ttc gaa tct gaa ccg gat ttc gag agc ccc tac ggt		768	
Thr Phe Asn Val Phe Glu Ser Glu Pro Asp Phe Glu Ser Pro Tyr Gly			
245	250	255	
cgt act ata acg att aac agg aag gat ctg aaa gtt tta aaa ggc tca		816	
Arg Thr Ile Thr Ile Asn Arg Lys Asp Leu Lys Val Leu Lys Gly Ser			
260	265	270	
atg gtt gga gtt tcc atg gtg aat ctc act caa gga tcg atg atg gga		864	
Met Val Gly Val Ser Met Val Asn Leu Thr Gln Gly Ser Met Met Gly			
275	280	285	
ccg cac tgg aat cca tgg gct tgc gag att tcg att gta ttg aaa gga		912	
Pro His Trp Asn Pro Trp Ala Cys Glu Ile Ser Ile Val Leu Lys Gly			
290	295	300	
gca gga atg gtt agg gtt ctt agg tct tcg ata tca tca aac aca tca		960	
Ala Gly Met Val Arg Val Leu Arg Ser Ser Ile Ser Ser Asn Thr Ser			
305	310	315	320
tca gag tgt aag aac gtg agg ttt aaa gta gag gaa gga gat att ttc		1008	
Ser Glu Cys Lys Asn Val Arg Phe Lys Val Glu Glu Gly Asp Ile Phe			
325	330	335	
gca gtt cca cgg tta cat cca atg gct caa atg tct ttc aac aat gac		1056	
Ala Val Pro Arg Leu His Pro Met Ala Gln Met Ser Phe Asn Asn Asp			
340	345	350	

96

tcg tta gtg ttc gtt ggg ttt act act tca gct aag aat aac gag ccg Ser Leu Val Phe Val Gly Phe Thr Thr Ser Ala Lys Asn Asn Glu Pro 355 360 365	1104
cag ttc tta gcc ggg gag gac tcg gct ttg cgg atg ctt gac cg ^g caa Gln Phe Leu Ala Gly Glu Asp Ser Ala Leu Arg Met Leu Asp Arg Gln 370 375 380	1152
gta ttg gct gca tcg ctt aat gtg agt agt gtg acg att gat gga ttg Val Leu Ala Ala Ser Leu Asn Val Ser Ser Val Thr Ile Asp Gly Leu 385 390 395 400	1200
ttg gga gct cag aag gaa gct gtt atc ttg gaa tgt cat tct tgt gcg Leu Gly Ala Gln Lys Glu Ala Val Ile Leu Glu Cys His Ser Cys Ala 405 410 415	1248
gaa gga gag ata gag aag ctt aag gtg gag ata gag agg aag aaa ata Glu Gly Glu Ile Glu Lys Leu Lys Val Glu Ile Glu Arg Lys Lys Ile 420 425 430	1296
gat gat gag agg aag aga cat gat gaa agg aag aaa gaa gaa gaa Asp Asp Glu Arg Lys Arg Arg His Asp Glu Arg Lys Lys Glu Glu Glu 435 440 445	1344
gag gcg aag aga gaa gag gaa gag agg agg aaa cgt gaa gaa gaa gaa Glu Ala Lys Arg Glu Glu Glu Arg Arg Lys Arg Glu Glu Glu Glu 450 455 460	1392
gag aag aag cgg tgg cca cct caa caa cca cca caa gaa gaa gaa ctt Glu Lys Lys Arg Trp Pro Pro Gln Gln Pro Pro Gln Glu Glu Glu Leu 465 470 475 480	1440
agg gaa cgg caa cta ccg atg gag aaa gaa tgg gaa atg gaa ggt gaa Arg Glu Arg Gln Leu Pro Met Glu Lys Glu Trp Glu Met Glu Gly Glu 485 490 495	1488
gag gag agt taa Glu Glu Ser	1500
<210> 94	
<211> 499	
<212> PRT	
<213> <i>Arabidopsis thaliana</i>	
<400> 94	
Met Thr Arg Phe Ala Val Leu Pro Leu Ser Val Leu Leu Leu Val Leu 1 5 10 15	
Leu Phe Leu Cys Thr Glu Ser Leu Ala Lys Ser Glu Glu Ser Glu Glu 20 25 30	
Tyr Asp Val Ala Val Pro Ser Cys Cys Gly Phe Ser Ser Pro Leu Leu 35 40 45	
Ile Lys Lys Asp Gln Trp Lys Pro Ile Phe Glu Thr Lys Phe Gly Gln 50 55 60	
Ile Ser Thr Val Gln Ile Gly Asn Gly Cys Gly Gly Met Gly Pro Tyr 65 70 75 80	
Lys Ile His Ser Ile Thr Leu Glu Pro Asn Thr Ile Leu Leu Pro Leu 85 90 95	
Leu Leu His Ser Asp Met Val Phe Phe Val Asp Ser Gly Ser Gly Ile 100 105 110	
Leu Asn Trp Val Asp Glu Glu Ala Lys Ser Thr Glu Ile Arg Leu Gly 115 120 125	

Asp Val Tyr Arg Leu Arg Pro Gly Ser Val Phe Tyr Leu Gln Ser Lys
 130 135 140
 Pro Asp Pro Cys Phe Gly Ala Tyr Ser Ser Ile Thr Asp Leu Met Phe
 145 150 155 160
 Gly Phe Asp Glu Thr Ile Leu Gln Ser Ala Phe Gly Val Pro Glu Gly
 165 170 175
 Ile Ile Glu Leu Met Arg Asn Arg Thr Lys Pro Pro Leu Ile Val Ser
 180 185 190
 Glu Thr Leu Cys Thr Pro Gly Val Ala Asn Thr Trp Gln Leu Gln Pro
 195 200 205
 Arg Leu Leu Lys Leu Phe Ala Gly Ser Ala Asp Leu Val Asp Asn Lys
 210 215 220
 Lys Lys Lys Glu Lys Lys Glu Lys Lys Glu Lys Val Lys Lys Ala Lys
 225 230 235 240
 Thr Phe Asn Val Phe Glu Ser Glu Pro Asp Phe Glu Ser Pro Tyr Gly
 245 250 255
 Arg Thr Ile Thr Ile Asn Arg Lys Asp Leu Lys Val Leu Lys Gly Ser
 260 265 270
 Met Val Gly Val Ser Met Val Asn Leu Thr Gln Gly Ser Met Met Gly
 275 280 285
 Pro His Trp Asn Pro Trp Ala Cys Glu Ile Ser Ile Val Leu Lys Gly
 290 295 300
 Ala Gly Met Val Arg Val Leu Arg Ser Ser Ile Ser Ser Asn Thr Ser
 305 310 315 320
 Ser Glu Cys Lys Asn Val Arg Phe Lys Val Glu Glu Gly Asp Ile Phe
 325 330 335
 Ala Val Pro Arg Leu His Pro Met Ala Gln Met Ser Phe Asn Asn Asp
 340 345 350
 Ser Leu Val Phe Val Gly Phe Thr Thr Ser Ala Lys Asn Asn Glu Pro
 355 360 365
 Gln Phe Leu Ala Gly Glu Asp Ser Ala Leu Arg Met Leu Asp Arg Gln
 370 375 380
 Val Leu Ala Ala Ser Leu Asn Val Ser Ser Val Thr Ile Asp Gly Leu
 385 390 395 400
 Leu Gly Ala Gln Lys Glu Ala Val Ile Leu Glu Cys His Ser Cys Ala
 405 410 415
 Glu Gly Glu Ile Glu Lys Leu Lys Val Glu Ile Glu Arg Lys Lys Ile
 420 425 430
 Asp Asp Glu Arg Lys Arg Arg His Asp Glu Arg Lys Lys Glu Glu Glu
 435 440 445
 Glu Ala Lys Arg Glu Glu Glu Arg Arg Lys Arg Glu Glu Glu Glu
 450 455 460
 Glu Lys Lys Arg Trp Pro Pro Gln Gln Pro Pro Gln Glu Glu Glu Leu
 465 470 475 480
 Arg Glu Arg Gln Leu Pro Met Glu Lys Glu Trp Glu Met Glu Gly Glu
 485 490 495
 Glu Glu Ser

<210> 95
 <211> 1284
 <212> DNA
 <213> Glycine max
 <220>
 <221> CDS
 <222> (1)...(1281)
 <223> 7S seed globuline
 <400> 95

atg gct tcc atc ctc cac tac ttt tta gcc ctc tct ctt tct tgc tct	48
Met Ala Ser Ile Leu His Tyr Phe Leu Ala Leu Ser Leu Ser Cys Ser	
1 5 10 15	
ttt ctt ttc ttc tta tcc gac tca gtc acc cct aca aaa cca ata aac	96
Phe Leu Phe Leu Ser Asp Ser Val Thr Pro Thr Lys Pro Ile Asn	
20 25 30	
ctt gtt gtt cta ccc gtt caa aat gat ggt tcc aca ggg ctc cat tcg	144
Leu Val Val Leu Pro Val Gln Asn Asp Gly Ser Thr Gly Leu His Ser	
35 40 45	
gcc aac ctc caa aaa aga acc cct cta atg caa gta cca gtc ctg gtg	192
Ala Asn Leu Gln Lys Arg Thr Pro Leu Met Gln Val Pro Val Leu Val	
50 55 60	
gac ctc aat gga aat cac ttg tgg gtt aac tgt gag cag cag tac tca	240
Asp Leu Asn Gly Asn His Leu Trp Val Asn Cys Glu Gln Gln Tyr Ser	
65 70 75 80	
tcc aaa acg tac caa gca ccc ttc tgc cac tcc acc caa tgc tct aga	288
Ser Lys Thr Tyr Gln Ala Pro Phe Cys His Ser Thr Gln Cys Ser Arg	
85 90 95	
gcc aac acc cac caa tgc ctc agt tgc ccc gcg gca tca agg cca ggg	336
Ala Asn Thr His Gln Cys Leu Ser Cys Pro Ala Ala Ser Arg Pro Gly	
100 105 110	
tgc cac aaa aac acg tgt ggc ctc atg tcc act aat ccc atc acc caa	384
Cys His Lys Asn Thr Cys Gly Leu Met Ser Thr Asn Pro Ile Thr Gln	
115 120 125	
caa acc ggt tta ggt gaa cta gga gaa gac gtt ctt gca atc cac gcc	432
Gln Thr Gly Leu Gly Glu Leu Gly Glu Asp Val Leu Ala Ile His Ala	
130 135 140	
aca caa ggg tcg acc caa caa ctt ggc cca ttg gtc aca gtc cca caa	480
Thr Gln Gly Ser Thr Gln Gln Leu Gly Pro Leu Val Thr Val Pro Gln	
145 150 155 160	
ttc ctc ttt tct tgt gca cct tcc ttc ctt gtt caa aag ggt ctt cct	528
Phe Leu Phe Ser Cys Ala Pro Ser Phe Leu Val Gln Lys Gly Leu Pro	
165 170 175	
aga aac act caa ggt gtg gct ggg tta ggc cat gca cca att tct ctt	576
Arg Asn Thr Gln Gly Val Ala Gly Leu Gly His Ala Pro Ile Ser Leu	
180 185 190	
cca aac caa ctc gct tcc cac ttt ggc cta caa cgc cca ttc acc act	624
Pro Asn Gln Leu Ala Ser His Phe Gly Leu Gln Arg Gln Phe Thr Thr	
195 200 205	
tgc ctt tct cgc tac cct act tca aag ggt gct ata ata ttc ggg gat	672
Cys Leu Ser Arg Tyr Pro Thr Ser Lys Gly Ala Ile Ile Phe Gly Asp	
210 215 220	

99

gca cct aac aac atg cga cag ttt caa aac caa gat att ttc cac gat Ala Pro Asn Asn Met Arg Gln Phe Gln Asn Gln Asp Ile Phe His Asp 225 230 235 240	720
ttg gcc ttc acc cca tta acc atc acc ctg cag gga gag tac aac gtg Leu Ala Phe Thr Pro Leu Thr Ile Thr Leu Gln Gly Glu Tyr Asn Val 245 250 255	768
aga gtc aac tca ata aga atc aac cag cac agt gtg ttc cca ctg aac Arg Val Asn Ser Ile Arg Ile Asn Gln His Ser Val Phe Pro Leu Asn 260 265 270	816
aag ata tca tcc acc atc gta ggg tcg acc tct gga gga acc atg att Lys Ile Ser Ser Thr Ile Val Gly Ser Thr Ser Gly Gly Thr Met Ile 275 280 285	864
agc acc tca act cct cac atg gtt ctc cag caa tcc gtg tac cag gct Ser Thr Ser Pro His Met Val Leu Gln Gln Ser Val Tyr Gln Ala 290 295 300	912
ttc act cag gtg ttt gct cag cag cta cca aag caa gca cag gtg aaa Phe Thr Gln Val Phe Ala Gln Gln Leu Pro Lys Gln Ala Gln Val Lys 305 310 315 320	960
tct gtg gca cca ttt ggg tta tgc ttc aac tcc aac aag atc aat gca Ser Val Ala Pro Phe Gly Leu Cys Phe Asn Ser Asn Lys Ile Asn Ala 325 330 335	1008
tat cct agc gtg gac ctt gtg atg gac aag ccc aat ggt cct gtt tgg Tyr Pro Ser Val Asp Leu Val Met Asp Lys Pro Asn Gly Pro Val Trp 340 345 350	1056
aga atc tct ggt gag gac ttg atg gtg cag gca caa cct ggg gtc acg Arg Ile Ser Gly Glu Asp Leu Met Val Gln Ala Gln Pro Gly Val Thr 355 360 365	1104
tgt ttg ggt gtt atg aat gga gga atg caa cct aga gct gaa att acc Cys Leu Gly Val Met Asn Gly Gly Met Gln Pro Arg Ala Glu Ile Thr 370 375 380	1152
tta ggg gca cgt cag ttg gaa gag aac ctg gtg ttc gat ctt gca Leu Gly Ala Arg Gln Leu Glu Asn Leu Val Val Phe Asp Leu Ala 385 390 395 400	1200
agg tca agg gtt ggg ttt agc acc tca tca ctg cac tcg cat gga gtc Arg Ser Arg Val Gly Phe Ser Thr Ser Ser Leu His Ser His Gly Val 405 410 415	1248
aaa tgt gct gac ctc ttc aac ttt gcc aat gca tga Lys Cys Ala Asp Leu Phe Asn Phe Ala Asn Ala 420 425	1284

<210> 96

<211> 427

<212> PRT

<213> Glycine max

<400> 96

Met Ala Ser Ile Leu His Tyr Phe Leu Ala Leu Ser Leu Ser Cys Ser 1 5 10 15
--

Phe Leu Phe Phe Leu Ser Asp Ser Val Thr Pro Thr Lys Pro Ile Asn 20 25 30

Leu Val Val Leu Pro Val Gln Asn Asp Gly Ser Thr Gly Leu His Ser 35 40 45

100

Ala Asn Leu Gln Lys Arg Thr Pro Leu Met Gln Val Pro Val Leu Val
 50 55 60

Asp Leu Asn Gly Asn His Leu Trp Val Asn Cys Glu Gln Gln Tyr Ser
 65 70 75 80

Ser Lys Thr Tyr Gln Ala Pro Phe Cys His Ser Thr Gln Cys Ser Arg
 85 90 95

Ala Asn Thr His Gln Cys Leu Ser Cys Pro Ala Ala Ser Arg Pro Gly
 100 105 110

Cys His Lys Asn Thr Cys Gly Leu Met Ser Thr Asn Pro Ile Thr Gln
 115 120 125

Gln Thr Gly Leu Gly Glu Leu Gly Glu Asp Val Leu Ala Ile His Ala
 130 135 140

Thr Gln Gly Ser Thr Gln Gln Leu Gly Pro Leu Val Thr Val Pro Gln
 145 150 155 160

Phe Leu Phe Ser Cys Ala Pro Ser Phe Leu Val Gln Lys Gly Leu Pro
 165 170 175

Arg Asn Thr Gln Gly Val Ala Gly Leu Gly His Ala Pro Ile Ser Leu
 180 185 190

Pro Asn Gln Leu Ala Ser His Phe Gly Leu Gln Arg Gln Phe Thr Thr
 195 200 205

Cys Leu Ser Arg Tyr Pro Thr Ser Lys Gly Ala Ile Ile Phe Gly Asp
 210 215 220

Ala Pro Asn Asn Met Arg Gln Phe Gln Asn Gln Asp Ile Phe His Asp
 225 230 235 240

Leu Ala Phe Thr Pro Leu Thr Ile Thr Leu Gln Gly Glu Tyr Asn Val
 245 250 255

Arg Val Asn Ser Ile Arg Ile Asn Gln His Ser Val Phe Pro Leu Asn
 260 265 270

Lys Ile Ser Ser Thr Ile Val Gly Ser Thr Ser Gly Gly Thr Met Ile
 275 280 285

Ser Thr Ser Thr Pro His Met Val Leu Gln Gln Ser Val Tyr Gln Ala
 290 295 300

Phe Thr Gln Val Phe Ala Gln Gln Leu Pro Lys Gln Ala Gln Val Lys
 305 310 315 320

Ser Val Ala Pro Phe Gly Leu Cys Phe Asn Ser Asn Lys Ile Asn Ala
 325 330 335

Tyr Pro Ser Val Asp Leu Val Met Asp Lys Pro Asn Gly Pro Val Trp
 340 345 350

Arg Ile Ser Gly Glu Asp Leu Met Val Gln Ala Gln Pro Gly Val Thr
 355 360 365

Cys Leu Gly Val Met Asn Gly Gly Met Gln Pro Arg Ala Glu Ile Thr
 370 375 380

Leu Gly Ala Arg Gln Leu Glu Glu Asn Leu Val Val Phe Asp Leu Ala
 385 390 395 400

Arg Ser Arg Val Gly Phe Ser Thr Ser Ser Leu His Ser His Gly Val
 405 410 415

Lys Cys Ala Asp Leu Phe Asn Phe Ala Asn Ala
 420 425

<210> 97
 <211> 814
 <212> DNA
 <213> Zea mays
 <220>
 <221> CDS
 <222> (1)...(720)
 <223> 19kd zein
 <400> 97
 atg gca gcc aag att ttt gcc ctc ctt gcc ctc ctt gct ctt tca gca 48
 Met Ala Ala Lys Ile Phe Ala Leu Leu Ala Leu Leu Ala Leu Ser Ala
 1 5 10 15
 aac gtt gct acc gcg act att att cca caa tgc tca caa caa tac ctc 96
 Asn Val Ala Thr Ala Thr Ile Ile Pro Gln Cys Ser Gln Gln Tyr Leu
 20 25 30
 tct ccg gtg aca gcc gcg aga ttt gaa tac cca act ata caa tcc tac 144
 Ser Pro Val Thr Ala Ala Arg Phe Glu Tyr Pro Thr Ile Gln Ser Tyr
 35 40 45
 agg cta caa cag gcc atc gca gca agc atc tta cgg tcg tta gca ttg 192
 Arg Leu Gln Gln Ala Ile Ala Ala Ser Ile Leu Arg Ser Leu Ala Leu
 50 55 60
 act gtc caa caa cca tat gcc cta ttg caa caa cca tcc tta gtg aat 240
 Thr Val Gln Gln Pro Tyr Ala Leu Leu Gln Gln Pro Ser Leu Val Asn
 65 70 75 80
 cta tat ctc caa aga atc gta gca caa caa cta caa caa caa ttg ctt 288
 Leu Tyr Leu Gln Arg Ile Val Ala Gln Gln Leu Gln Gln Leu Leu
 85 90 95
 cca aca atc aat gaa gta gtt gca gcg aac ctt gat gct tac ctc cag 336
 Pro Thr Ile Asn Glu Val Val Ala Ala Asn Leu Asp Ala Tyr Leu Gln
 100 105 110
 caa caa caa ttt ctt cca ttc aat caa cta gct ggg gtg aac cct gct 384
 Gln Gln Gln Phe Leu Pro Phe Asn Gln Leu Ala Gly Val Asn Pro Ala
 115 120 125
 gct tac ttg cag gca caa cag cta cta cca ttc aac caa ctt gtc agg 432
 Ala Tyr Leu Gln Ala Gln Gln Leu Leu Pro Phe Asn Gln Leu Val Arg
 130 135 140
 agc cct gct gcc ttc tta ctg cag caa cag ttg ttg cca ttc cat cta 480
 Ser Pro Ala Ala Phe Leu Leu Gln Gln Leu Leu Pro Phe His Leu
 145 150 155 160
 caa gtt gtg gca aac att gct gct ttc ttg caa caa caa caa ttg ctg 528
 Gln Val Val Ala Asn Ile Ala Ala Phe Leu Gln Gln Gln Leu Leu
 165 170 175
 cca ttt tac cca cag gtt gtg gga aac att aac gcc ttc ttg caa cag 576
 Pro Phe Tyr Pro Gln Val Val Gly Asn Ile Asn Ala Phe Leu Gln Gln
 180 185 190
 caa cag ttg ctg cca ttc tac cca cag gat gtg gca aac aat gtc gcc 624
 Gln Gln Leu Leu Pro Phe Tyr Pro Gln Asp Val Ala Asn Asn Val Ala
 195 200 205
 ttc tta caa caa caa ttg ctg cca ttt agc caa ctt gct ttg acg 672
 Phe Leu Gln Gln Gln Leu Leu Pro Phe Ser Gln Leu Ala Leu Thr
 210 215 220

102

aat cct acc acc tta ttg cag cag ccc acc att ggt ggt gcc atc ttc 720
 Asn Pro Thr Thr Leu Leu Gln Gln Pro Thr Ile Gly Gly Ala Ile Phe
 225 230 235 240
 tagattttt atgctttata ctgtaataat aaagttctca tactgatatg tgcaacttct 780
 cagtaataaa agatttagaga tctatatttt atta 814
 <210> 98
 <211> 240
 <212> PRT
 <213> Zea mays
 <400> 98
 Met Ala Ala Lys Ile Phe Ala Leu Leu Ala Leu Leu Ala Leu Ser Ala
 1 5 10 15
 Asn Val Ala Thr Ala Thr Ile Ile Pro Gln Cys Ser Gln Gln Tyr Leu
 20 25 30
 Ser Pro Val Thr Ala Ala Arg Phe Glu Tyr Pro Thr Ile Gln Ser Tyr
 35 40 45
 Arg Leu Gln Gln Ala Ile Ala Ala Ser Ile Leu Arg Ser Leu Ala Leu
 50 55 60
 Thr Val Gln Gln Pro Tyr Ala Leu Leu Gln Gln Pro Ser Leu Val Asn
 65 70 75 80
 Leu Tyr Leu Gln Arg Ile Val Ala Gln Gln Leu Gln Gln Gln Leu Leu
 85 90 95
 Pro Thr Ile Asn Glu Val Val Ala Ala Asn Leu Asp Ala Tyr Leu Gln
 100 105 110
 Gln Gln Gln Phe Leu Pro Phe Asn Gln Leu Ala Gly Val Asn Pro Ala
 115 120 125
 Ala Tyr Leu Gln Ala Gln Gln Leu Leu Pro Phe Asn Gln Leu Val Arg
 130 135 140
 Ser Pro Ala Ala Phe Leu Leu Gln Gln Leu Leu Pro Phe His Leu
 145 150 155 160
 Gln Val Val Ala Asn Ile Ala Ala Phe Leu Gln Gln Gln Leu Leu
 165 170 175
 Pro Phe Tyr Pro Gln Val Val Gly Asn Ile Asn Ala Phe Leu Gln Gln
 180 185 190
 Gln Gln Leu Leu Pro Phe Tyr Pro Gln Asp Val Ala Asn Asn Val Ala
 195 200 205
 Phe Leu Gln Gln Gln Leu Leu Pro Phe Ser Gln Leu Ala Leu Thr
 210 215 220
 Asn Pro Thr Thr Leu Leu Gln Gln Pro Thr Ile Gly Gly Ala Ile Phe
 225 230 235 240

<210> 99
 <211> 705
 <212> DNA
 <213> Zea mays
 <220>
 <221> CDS
 <222> (1)...(702)
 <223> 19 kd zein B1

<400> 99

atg gca gcc aaa ata ttt tgc ctc ctt atg ctc ctt ggt ctt tct gca	48
Met Ala Ala Lys Ile Phe Cys Leu Leu Met Leu Leu Gly Leu Ser Ala	
1 5 10 15	
agt gct gct acg gcg acc att ttc cca caa tgc tca caa gct cct ata	96
Ser Ala Ala Thr Ala Thr Ile Phe Pro Gln Cys Ser Gln Ala Pro Ile	
20 25 30	
gct tcc ctt ctt ccc ccg tac ctc tca cca gcg gtg tct tcg gta tgt	144
Ala Ser Leu Leu Pro Pro Tyr Leu Ser Pro Ala Val Ser Ser Val Cys	
35 40 45	
gaa aac cca att ctt caa ccc tat agg atc caa cag gca atc gca gct	192
Glu Asn Pro Ile Leu Gln Pro Tyr Arg Ile Gln Gln Ala Ile Ala Ala	
50 55 60	
ggc atc tta cct tta tca ccc ttg ttc ctc caa caa tca tca gcc cta	240
Gly Ile Leu Pro Leu Ser Pro Leu Phe Leu Gln Gln Ser Ser Ala Leu	
65 70 75 80	
tta cag cag tta cct ttg gtg cat tta ttg gca caa aac atc agg gca	288
Leu Gln Gln Leu Pro Leu Val His Leu Leu Ala Gln Asn Ile Arg Ala	
85 90 95	
caa caa cta caa caa ctt gtg cta gca aac ctt gct gcc tac tct cag	336
Gln Gln Leu Gln Gln Leu Val Leu Ala Asn Leu Ala Ala Tyr Ser Gln	
100 105 110	
caa caa cag ttt ctt cca ttc aac caa cta gct gca ttg aac tct gct	384
Gln Gln Phe Leu Pro Phe Asn Gln Leu Ala Ala Leu Asn Ser Ala	
115 120 125	
tct tat ttg caa caa caa caa cta cca ttc agc cag cta tct gct gcc	432
Ser Tyr Leu Gln Gln Gln Leu Pro Phe Ser Gln Leu Ser Ala Ala	
130 135 140	
tac ccc cag caa ttt ctt cca ttc aac caa ctg aca gct ttg aac tct	480
Tyr Pro Gln Gln Phe Leu Pro Phe Asn Gln Leu Thr Ala Leu Asn Ser	
145 150 155 160	
cct gct tat tta cag cag caa caa cta cta cca ttc agc cag cta gct	528
Pro Ala Tyr Leu Gln Gln Gln Leu Leu Pro Phe Ser Gln Leu Ala	
165 170 175	
ggt gtg agc cct gct acc ttc ttg aca caa cca caa ttg ttg ccg ttc	576
Gly Val Ser Pro Ala Thr Phe Leu Thr Gln Pro Gln Leu Leu Pro Phe	
180 185 190	
tac cag cac gct gcg cct aac gct ggc acc ctc tta caa ctg caa caa	624
Tyr Gln His Ala Ala Pro Asn Ala Gly Thr Leu Leu Gln Leu Gln Gln	
195 200 205	
ttg ctg cca ttc aac caa ctt gct ttg aca aac cca aca gca ttc tac	672
Leu Leu Pro Phe Asn Gln Leu Ala Leu Thr Asn Pro Thr Ala Phe Tyr	
210 215 220	
caa caa ccc atc att ggt ggt gcc ctc ttt tag	705
Gln Gln Pro Ile Ile Gly Gly Ala Leu Phe	
225 230	
<210> 100	
<211> 234	
<212> PRT	
<213> Zea mays	
<400> 100	
Met Ala Ala Lys Ile Phe Cys Leu Leu Met Leu Leu Gly Leu Ser Ala	
1 5 10 15	

104

Ser Ala Ala Thr Ala Thr Ile Phe Pro Gln Cys Ser Gln Ala Pro Ile
 20 25 30
 Ala Ser Leu Leu Pro Pro Tyr Leu Ser Pro Ala Val Ser Ser Val Cys
 35 40 45
 Glu Asn Pro Ile Leu Gln Pro Tyr Arg Ile Gln Gln Ala Ile Ala Ala
 50 55 60
 Gly Ile Leu Pro Leu Ser Pro Leu Phe Leu Gln Gln Ser Ser Ala Leu
 65 70 75 80
 Leu Gln Gln Leu Pro Leu Val His Leu Leu Ala Gln Asn Ile Arg Ala
 85 90 95
 Gln Gln Leu Gln Gln Leu Val Leu Ala Asn Leu Ala Ala Tyr Ser Gln
 100 105 110
 Gln Gln Gln Phe Leu Pro Phe Asn Gln Leu Ala Ala Leu Asn Ser Ala
 115 120 125
 Ser Tyr Leu Gln Gln Gln Leu Pro Phe Ser Gln Leu Ser Ala Ala
 130 135 140
 Tyr Pro Gln Gln Phe Leu Pro Phe Asn Gln Leu Thr Ala Leu Asn Ser
 145 150 155 160
 Pro Ala Tyr Leu Gln Gln Gln Leu Leu Pro Phe Ser Gln Leu Ala
 165 170 175
 Gly Val Ser Pro Ala Thr Phe Leu Thr Gln Pro Gln Leu Leu Pro Phe
 180 185 190
 Tyr Gln His Ala Ala Pro Asn Ala Gly Thr Leu Leu Gln Leu Gln Gln
 195 200 205
 Leu Leu Pro Phe Asn Gln Leu Ala Leu Thr Asn Pro Thr Ala Phe Tyr
 210 215 220
 Gln Gln Pro Ile Ile Gly Gly Ala Leu Phe
 225 230

<210> 101

<211> 804

<212> DNA

<213> Zea mays

<220>

<221> CDS

<222> (1)...(801)

<223> 19 kd zein B2

<400> 101

atg gca gcc aaa ata ttt tgc ctc att atg ctc ctt ggt ctt tct gca	48
Met Ala Ala Lys Ile Phe Cys Leu Ile Met Leu Leu Gly Leu Ser Ala	
1 5 10 15	

agt gct gct acg gcg agc att ttc ccg caa tgc tca caa gct cct ata	96
Ser Ala Ala Thr Ala Ser Ile Phe Pro Gln Cys Ser Gln Ala Pro Ile	
20 25 30	

gct tcc ctt ctt ccc cca tac ctc tca cca gcg atg tct tca gta tgt	144
Ala Ser Leu Leu Pro Pro Tyr Leu Ser Pro Ala Met Ser Ser Val Cys	
35 40 45	

gaa aat cca att ctt cta ccc tac agg atc caa cag gca atc gca gca	192
Glu Asn Pro Ile Leu Leu Pro Tyr Arg Ile Gln Gln Ala Ile Ala Ala	
50 55 60	

105

ggc atc tta cct tta tca ccc ttg ttc ctc caa caa tca tca gcc cta Gly Ile Leu Pro Leu Ser Pro Leu Phe Leu Gln Gln Ser Ser Ala Leu	240
65 70 75 80	
tta cag cag tta cct ttg gtg cat tta ttg gca caa aac atc agg gca Leu Gln Gln Leu Pro Leu Val His Leu Leu Ala Gln Asn Ile Arg Ala	288
85 90 95	
caa caa cta caa caa ctc gtg cta gca aac ctt gct gcc tac tct cag Gln Gln Leu Gln Gln Leu Val Ala Asn Leu Ala Ala Tyr Ser Gln	336
100 105 110	
caa cag cag tta cct ttg gtg cat ttg gca caa aac atc agg gca Gln Gln Leu Pro Leu Val His Leu Leu Ala Gln Asn Ile Arg Ala	384
115 120 125	
caa caa cta caa caa ctc gtg cta gca aac ctt gct gcc tac tct cag Gln Gln Leu Gln Gln Leu Val Leu Ala Asn Leu Ala Ala Tyr Ser Gln	432
130 135 140	
caa caa cag ttt ctg cca ttc aac caa cta gct gca ttg aac tct gct Gln Gln Gln Phe Leu Pro Phe Asn Gln Leu Ala Ala Leu Asn Ser Ala	480
145 150 155 160	
gct tat ttg cag caa caa caa cta cta cca ttc agc cag cta gct gct Ala Tyr Leu Gln Gln Gln Leu Leu Pro Phe Ser Gln Leu Ala Ala	528
165 170 175	
gcc tac ccc cgg caa ttt ctt cca ttc aac caa ctg gca gca ttg aac Ala Tyr Pro Arg Gln Phe Leu Pro Phe Asn Gln Leu Ala Ala Leu Asn	576
180 185 190	
tct cat gct tat gta caa caa caa cta cta cca ttc agc cag cta Ser His Ala Tyr Val Gln Gln Gln Leu Leu Pro Phe Ser Gln Leu	624
195 200 205	
gct gct gtg agc cct gct gcc ttc ttg aca cag caa cat ttg ttg ccg Ala Ala Val Ser Pro Ala Ala Phe Leu Thr Gln Gln His Leu Leu Pro	672
210 215 220	
ttc tac ctg cac act gcg cct aac gtt ggc acc ctc tta caa ctg caa Phe Tyr Leu His Thr Ala Pro Asn Val Gly Thr Leu Leu Gln Leu Gln	720
225 230 235 240	
caa ttg ctg cca ttc gac caa ctt gct ttg aca aac cca gca gtg ttc Gln Leu Leu Pro Phe Asp Gln Leu Ala Leu Thr Asn Pro Ala Val Phe	768
245 250 255	
tac caa caa ccc atc att ggt ggt gcc ctc ttt tag Tyr Gln Gln Pro Ile Ile Gly Gly Ala Leu Phe	804
260 265	

<210> 102

<211> 267

<212> PRT

<213> Zea mays

<400> 102

Met Ala Ala Lys Ile Phe Cys Leu Ile Met Leu Leu Gly Leu Ser Ala	
1 5 10 15	

Ser Ala Ala Thr Ala Ser Ile Phe Pro Gln Cys Ser Gln Ala Pro Ile	
20 25 30	

Ala Ser Leu Leu Pro Pro Tyr Leu Ser Pro Ala Met Ser Ser Val Cys	
35 40 45	

106

Glu Asn Pro Ile Leu Leu Pro Tyr Arg Ile Gln Gln Ala Ile Ala Ala
 50 55 60

Gly Ile Leu Pro Leu Ser Pro Leu Phe Leu Gln Gln Ser Ser Ala Leu
 65 70 75 80

Leu Gln Gln Leu Pro Leu Val His Leu Leu Ala Gln Asn Ile Arg Ala
 85 90 95

Gln Gln Leu Gln Gln Leu Val Leu Ala Asn Leu Ala Ala Tyr Ser Gln
 100 105 110

Gln Gln Gln Leu Pro Leu Val His Leu Leu Ala Gln Asn Ile Arg Ala
 115 120 125

Gln Gln Leu Gln Gln Leu Val Leu Ala Asn Leu Ala Ala Tyr Ser Gln
 130 135 140

Gln Gln Gln Phe Leu Pro Phe Asn Gln Leu Ala Ala Leu Asn Ser Ala
 145 150 155 160

Ala Tyr Leu Gln Gln Gln Leu Leu Pro Phe Ser Gln Leu Ala Ala
 165 170 175

Ala Tyr Pro Arg Gln Phe Leu Pro Phe Asn Gln Leu Ala Ala Leu Asn
 180 185 190

Ser His Ala Tyr Val Gln Gln Gln Leu Leu Pro Phe Ser Gln Leu
 195 200 205

Ala Ala Val Ser Pro Ala Ala Phe Leu Thr Gln Gln His Leu Leu Pro
 210 215 220

Phe Tyr Leu His Thr Ala Pro Asn Val Gly Thr Leu Leu Gln Leu Gln
 225 230 235 240

Gln Leu Leu Pro Phe Asp Gln Leu Ala Leu Thr Asn Pro Ala Val Phe
 245 250 255

Tyr Gln Gln Pro Ile Ile Gly Gly Ala Leu Phe
 260 265

<210> 103

<211> 801

<212> DNA

<213> Zea mays

<220>

<221> CDS

<222> (1)..(798)

<223> 22kd alpha-zein

<400> 103

atg gct acc aag ata tta gcc ctc ctt gcg ctc ctt tcc ctt tca gtg		48
Met Ala Thr Lys Ile Leu Ala Leu Leu Ala Leu Leu Ser Leu Ser Val		
1 5 10 15		

agc gca aca act gca ttc att att cca caa tgc tca ctt gct cct aat		96
Ser Ala Thr Thr Ala Phe Ile Ile Pro Gln Cys Ser Leu Ala Pro Asn		
20 25 30		

gcc att att cca cag ttc ctc cca tca gtt aca tca atg ggc atc gaa		144
Ala Ile Ile Pro Gln Phe Leu Pro Ser Val Thr Ser Met Gly Ile Glu		
35 40 45		

cac cct att gtg caa gcc tat agg cta caa caa gcg ctt gcg gcg agc		192
His Pro Ile Val Gln Ala Tyr Arg Leu Gln Gln Ala Leu Ala Ala Ser		
50 55 60		

107

gtc tta caa caa ccg ttt gcc caa tta caa caa caa tcc ttg gca cat	240
Val Leu Gln Gln Pro Phe Ala Gln Leu Gln Gln Ser Leu Ala His	
65 70 75 80	
cta acc ata caa acc atc gca aca caa cta gag caa cag ttt gtg ccc	288
Leu Thr Ile Gln Thr Ile Ala Thr Gln Leu Glu Gln Gln Phe Val Pro	
85 90 95	
gca ttg agc caa cta gcc gcg gtg aac cct gtc tcc tac ttg caa cag	336
Ala Leu Ser Gln Leu Ala Ala Val Asn Pro Val Ser Tyr Leu Gln Gln	
100 105 110	
caa atg ctt gca tcc aac cca ctt gct ctg gcg aac aca gcc gca tac	384
Gln Met Leu Ala Ser Asn Pro Leu Ala Leu Asn Thr Ala Ala Tyr	
115 120 125	
cag caa caa cta cag ttg caa cag ttt cta cca gct ctt agt caa cta	432
Gln Gln Gln Leu Gln Gln Phe Leu Pro Ala Leu Ser Gln Leu	
130 135 140	
gcc agg gtg aac cct gcc aca tac ctg caa cag caa caa ctg ctt tca	480
Ala Arg Val Asn Pro Ala Thr Tyr Leu Gln Gln Gln Leu Leu Ser	
145 150 155 160	
tct agc cca ctc gct gtg ggc aat gcg gct aca tac ctg caa cag cag	528
Ser Ser Pro Leu Ala Val Gly Asn Ala Ala Thr Tyr Leu Gln Gln	
165 170 175	
ctg cta caa cag atc gta ccg gct ctt agt cag cta gtt gtg gcg aac	576
Leu Leu Gln Ile Val Pro Ala Leu Ser Gln Leu Val Val Ala Asn	
180 185 190	
cct act gcc tac tta caa cag ctt ctt cca ttc aac caa cta gat gtg	624
Pro Thr Ala Tyr Leu Gln Gln Leu Leu Pro Phe Asn Gln Leu Asp Val	
195 200 205	
gca aac tct gct gcg tac cta caa cag ccg cag caa cta ctt aat cca	672
Ala Asn Ser Ala Ala Tyr Leu Gln Gln Arg Gln Gln Leu Leu Asn Pro	
210 215 220	
ctt gca gcg gct aac cca ttg gtc gcc gcc ttc ctg caa cag caa caa	720
Leu Ala Ala Asn Pro Leu Val Ala Ala Phe Leu Gln Gln Gln Gln	
225 230 235 240	
ttt ctg cca tac aac caa atc tct ttg atg aac ctt gct gcc ttg tca agg	768
Phe Leu Pro Tyr Asn Gln Ile Ser Leu Met Asn Leu Ala Leu Ser Arg	
245 250 255	
cag caa ccg atc gtt gga ggt gcc atc ttt tag	801
Gln Gln Pro Ile Val Gly Gly Ala Ile Phe	
260 265	
<210> 104	
<211> 266	
<212> PRT	
<213> Zea mays	
<400> 104	
Met Ala Thr Lys Ile Leu Ala Leu Leu Ala Leu Leu Ser Leu Ser Val	
1 5 10 15	
Ser Ala Thr Thr Ala Phe Ile Ile Pro Gln Cys Ser Leu Ala Pro Asn	
20 25 30	
Ala Ile Ile Pro Gln Phe Leu Pro Ser Val Thr Ser Met Gly Ile Glu	
35 40 45	

108

His Pro Ile Val Gln Ala Tyr Arg Leu Gln Gln Ala Leu Ala Ala Ser
 50 55 60

Val Leu Gln Gln Pro Phe Ala Gln Leu Gln Gln Ser Leu Ala His
 65 70 75 80

Leu Thr Ile Gln Thr Ile Ala Thr Gln Leu Glu Gln Gln Phe Val Pro
 85 90 95

Ala Leu Ser Gln Leu Ala Ala Val Asn Pro Val Ser Tyr Leu Gln Gln
 100 105 110

Gln Met Leu Ala Ser Asn Pro Leu Ala Leu Ala Asn Thr Ala Ala Tyr
 115 120 125

Gln Gln Gln Leu Gln Leu Gln Phe Leu Pro Ala Leu Ser Gln Leu
 130 135 140

Ala Arg Val Asn Pro Ala Thr Tyr Leu Gln Gln Gln Leu Leu Ser
 145 150 155 160

Ser Ser Pro Leu Ala Val Gly Asn Ala Ala Thr Tyr Leu Gln Gln Gln
 165 170 175

Leu Leu Gln Gln Ile Val Pro Ala Leu Ser Gln Leu Val Val Ala Asn
 180 185 190

Pro Thr Ala Tyr Leu Gln Gln Leu Leu Pro Phe Asn Gln Leu Asp Val
 195 200 205

Ala Asn Ser Ala Ala Tyr Leu Gln Gln Arg Gln Gln Leu Leu Asn Pro
 210 215 220

Leu Ala Ala Ala Asn Pro Leu Val Ala Ala Phe Leu Gln Gln Gln
 225 230 235 240

Phe Leu Pro Tyr Asn Gln Ile Ser Leu Met Asn Leu Ala Leu Ser Arg
 245 250 255

Gln Gln Pro Ile Val Gly Gly Ala Ile Phe
 260 265

<210> 105

<211> 471

<212> DNA

<213> Oryza sativa

<220>

<221> CDS

<222> (1)..(468)

<223> prolamin

<400> 105

atg aag atc att ttc gta ttt gct ctc ctt gct att gtt gca tgc aac	48
Met Lys Ile Ile Phe Val Phe Ala Leu Leu Ala Ile Val Ala Cys Asn	
1 5 10 15	

gct tct gca cgg ttt gat gct ctt agt caa agt tat aga caa tat caa	96
Ala Ser Ala Arg Phe Asp Ala Leu Ser Gln Ser Tyr Arg Gln Tyr Gln	
20 25 30	

cta caa tcg cat ctc ctg cta cag caa caa gtg ctc agc cca tgc agt	144
Leu Gln Ser His Leu Leu Gln Gln Gln Val Leu Ser Pro Cys Ser	
35 40 45	

gag ttc gta agg caa cag cat agc ata gtg gca acc ccc ttc tgg caa	192
Glu Phe Val Arg Gln Gln His Ser Ile Val Ala Thr Pro Phe Trp Gln	
50 55 60	

109

cca gct acg ttt caa ttg ata aac aac caa gtc atg cag caa cag tgt 240
 Pro Ala Thr Phe Gln Leu Ile Asn Asn Gln Val Met Gln Gln Gln Cys
 65 70 75 80

 tgc caa cag ctc agg ctg gta gcg caa caa tct cac tac cag gcc att 288
 Cys Gln Gln Leu Arg Leu Val Ala Gln Gln Ser His Tyr Gln Ala Ile
 85 90 95

 agt agc gtt cag gcg att gtg cag caa cta cag ctg cag cag gtc ggt 336
 Ser Ser Val Gln Ala Ile Val Gln Gln Leu Gln Leu Gln Gln Val Gly
 100 105 110

 gtt gtc tac ttt gat cag act caa gct caa gct ttg ctg gcc 384
 Val Val Tyr Phe Asp Gln Thr Gln Ala Gln Ala Gln Leu Leu Ala
 115 120 125

 tta aac ttg cca tcc ata tgt ggt atc tat cct aac tac tac att gct 432
 Leu Asn Leu Pro Ser Ile Cys Gly Ile Tyr Pro Asn Tyr Tyr Ile Ala
 130 135 140

 ccg agg agc att ccc acc gtt ggt gtc tgg tac tga 471
 Pro Arg Ser Ile Pro Thr Val Gly Gly Val Trp Tyr
 145 150 155

 <210> 106
 <211> 156
 <212> PRT
 <213> Oryza sativa

 <400> 106
 Met Lys Ile Ile Phe Val Phe Ala Leu Leu Ala Ile Val Ala Cys Asn
 1 5 10 15

 Ala Ser Ala Arg Phe Asp Ala Leu Ser Gln Ser Tyr Arg Gln Tyr Gln
 20 25 30

 Leu Gln Ser His Leu Leu Leu Gln Gln Gln Val Leu Ser Pro Cys Ser
 35 40 45

 Glu Phe Val Arg Gln Gln His Ser Ile Val Ala Thr Pro Phe Trp Gln
 50 55 60

 Pro Ala Thr Phe Gln Leu Ile Asn Asn Gln Val Met Gln Gln Gln Cys
 65 70 75 80

 Cys Gln Gln Leu Arg Leu Val Ala Gln Gln Ser His Tyr Gln Ala Ile
 85 90 95

 Ser Ser Val Gln Ala Ile Val Gln Gln Leu Gln Leu Gln Gln Val Gly
 100 105 110

 Val Val Tyr Phe Asp Gln Thr Gln Ala Gln Ala Gln Leu Leu Ala
 115 120 125

 Leu Asn Leu Pro Ser Ile Cys Gly Ile Tyr Pro Asn Tyr Tyr Ile Ala
 130 135 140

 Pro Arg Ser Ile Pro Thr Val Gly Gly Val Trp Tyr
 145 150 155

<210> 107
 <211> 645
 <212> DNA
 <213> Avena sativa

 <220>
 <221> CDS

110

<222> (1)...(642)

<223> avenin

<400> 107

atg aag atc ttc ttc tta gct ctc ctt gct ctg gta gtg agc gcc	48
Met Lys Ile Phe Phe Leu Ala Leu Leu Ala Leu Val Val Ser Ala	
1 5 10 15	
acc ttt gca caa tat gca gaa tct gac ggt agt tat gag gaa gtg gag	96
Thr Phe Ala Gln Tyr Ala Glu Ser Asp Gly Ser Tyr Glu Glu Val Glu	
20 25 30	
ggt tct cat gat cga tgc caa caa cat cag atg aag ctg gac tct tgc	144
Gly Ser His Asp Arg Cys Gln Gln His Gln Met Lys Leu Asp Ser Cys	
35 40 45	
aga gag tac gtg gcg gag cgg tgc aca acg atg aga gat ttt ccg atc	192
Arg Glu Tyr Val Ala Glu Arg Cys Thr Thr Met Arg Asp Phe Pro Ile	
50 55 60	
acc tgg cca tgg aaa tgg tgg aag ggt ggt tgc gag gag ctc cgc aat	240
Thr Trp Pro Trp Lys Trp Trp Lys Gly Gly Cys Glu Glu Leu Arg Asn	
65 70 75 80	
gag tgc tgc caa ctg ttg ggc cag atg cca tcg gag tgt cgc tgt gat	288
Glu Cys Cys Gln Leu Leu Gly Gln Met Pro Ser Glu Cys Arg Cys Asp	
85 90 95	
gcg att tgg aga tca atc cag cgc gag ctt ggt ggc ttc ttt gga act	336
Ala Ile Trp Arg Ser Ile Gln Arg Glu Leu Gly Gly Phe Phe Gly Thr	
100 105 110	
caa caa ggt ctg ata ggg aaa agg ttg aag ata gcc aag agt ttg ccc	384
Gln Gln Gly Leu Ile Gly Lys Arg Leu Lys Ile Ala Lys Ser Leu Pro	
115 120 125	
acg cag tca aca tgg gcc ctg agt gca ata tcc cca aac tcc atg gtt	432
Thr Gln Ser Thr Trp Ala Leu Ser Ala Ile Ser Pro Asn Ser Met Val	
130 135 140	
agc cac att gct gga aag agc tcc att ctt cgt gcc ttg ccc gtg gat	480
Ser His Ile Ala Gly Lys Ser Ser Ile Leu Arg Ala Leu Pro Val Asp	
145 150 155 160	
gtc ctc gcc aat gca tac cgc att tcc agg caa gaa gcc cga aac ctc	528
Val Leu Ala Asn Ala Tyr Arg Ile Ser Arg Gln Glu Ala Arg Asn Leu	
165 170 175	
aaa aac aac agg gga caa gag tct ggt gta ttc act cca aaa ttt acc	576
Lys Asn Asn Arg Gly Gln Glu Ser Gly Val Phe Thr Pro Lys Phe Thr	
180 185 190	
caa acg agc ttc caa cct tat cca gag ggc gag gat gag tca tct ttg	624
Gln Thr Ser Phe Gln Pro Tyr Pro Glu Gly Glu Asp Glu Ser Ser Leu	
195 200 205	
att aat aag gca tca gag taa	645
Ile Asn Lys Ala Ser Glu	
210	
<210> 108	
<211> 214	
<212> PRT	
<213> Avena sativa	
<400> 108	
Met Lys Ile Phe Phe Phe Leu Ala Leu Leu Ala Leu Val Val Ser Ala	
1 5 10 15	

111

Thr Phe Ala Gln Tyr Ala Glu Ser Asp Gly Ser Tyr Glu Glu Val Glu
 20 25 30
 Gly Ser His Asp Arg Cys Gln Gln His Gln Met Lys Leu Asp Ser Cys
 35 40 45
 Arg Glu Tyr Val Ala Glu Arg Cys Thr Thr Met Arg Asp Phe Pro Ile
 50 55 60
 Thr Trp Pro Trp Lys Trp Trp Lys Gly Gly Cys Glu Glu Leu Arg Asn
 65 70 75 80
 Glu Cys Cys Gln Leu Leu Gly Gln Met Pro Ser Glu Cys Arg Cys Asp
 85 90 95
 Ala Ile Trp Arg Ser Ile Gln Arg Glu Leu Gly Gly Phe Phe Gly Thr
 100 105 110
 Gln Gln Gly Leu Ile Gly Lys Arg Leu Lys Ile Ala Lys Ser Leu Pro
 115 120 125
 Thr Gln Ser Thr Trp Ala Leu Ser Ala Ile Ser Pro Asn Ser Met Val
 130 135 140
 Ser His Ile Ala Gly Lys Ser Ser Ile Leu Arg Ala Leu Pro Val Asp
 145 150 155 160
 Val Leu Ala Asn Ala Tyr Arg Ile Ser Arg Gln Glu Ala Arg Asn Leu
 165 170 175
 Lys Asn Asn Arg Gly Gln Glu Ser Gly Val Phe Thr Pro Lys Phe Thr
 180 185 190
 Gln Thr Ser Phe Gln Pro Tyr Pro Glu Gly Glu Asp Glu Ser Ser Leu
 195 200 205
 Ile Asn Lys Ala Ser Glu
 210

<210> 109
 <211> 1044
 <212> DNA
 <213> Hordeum vulgare

<220>
 <221> CDS
 <222> (1)..(1041)
 <223> c-hordein

 <220>
 <221> misc_feature
 <222> (481)..(482)
 <223> /transl_except=(pos:481..483,aa:OTHER)

<400> 109
 atg aag acg ttc ctc acc ttt gtc ctc ctt gcc atg gcg atg agc atc 48
 Met Lys Thr Phe Leu Thr Phe Val Leu Leu Ala Met Ala Met Ser Ile
 1 5 10 15
 gtc act acc gct agg cag cta aac cct agc cac caa gag ttg caa tca 96
 Val Thr Thr Ala Arg Gln Leu Asn Pro Ser His Gln Glu Leu Gln Ser
 20 25 30
 cca caa caa cca ttt ctg aaa caa caa tca tat ctg caa caa cca tat 144
 Pro Gln Gln Pro Phe Leu Lys Gln Gln Ser Tyr Leu Gln Gln Pro Tyr
 35 40 45

112

cca caa caa cca tat cta ccg cag caa cca ttc ccc aca ccc caa caa		192
Pro Gln Gln Pro Tyr Leu Pro Gln Gln Pro Phe Pro Thr Pro Gln Gln		
50	55	60
ttt ttc ccc tat cta cca cag caa aca ttt ccc cca tcc caa caa cca		240
Phe Phe Pro Tyr Leu Pro Gln Gln Thr Phe Pro Pro Ser Gln Gln Pro		
65	70	75
aac ccc cta caa cca caa cca ttc ccc ctg caa ccc caa cca cca		288
Asn Pro Leu Gln Pro Gln Gln Pro Phe Pro Leu Gln Pro Gln Pro Pro		
85	90	95
caa caa cct ttt cct cag ccc caa caa cca aat ccc cag caa cca caa		336
Gln Gln Pro Phe Pro Gln Pro Gln Pro Asn Pro Gln Gln Pro Gln		
100	105	110
caa cct ttc ccc cgg caa cca caa ata gta ccc cag caa cca caa		384
Gln Pro Phe Pro Arg Gln Pro Gln Ile Val Pro Gln Gln Pro Gln		
115	120	125
caa cca ttc cct cag caa cca caa cct ttt cct cag ccc caa caa		432
Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln		
130	135	140
cca ttc tct tgg caa cca caa cca ttt ctc cag ccc cta caa cta		480
Pro Phe Ser Trp Gln Pro Gln Gln Pro Phe Leu Gln Pro Leu Gln Leu		
145	150	155
160		
tag ccc ctg caa gca caa cca ttc ccc ttg caa cct caa cta cca		528
Pro Leu Gln Ala Gln Gln Pro Phe Pro Leu Gln Pro Gln Leu Pro		
165	170	175
ttt ccg caa ccc caa caa cca att gga cag caa cca aaa caa cca ctc		576
Phe Pro Gln Pro Gln Gln Pro Ile Gly Gln Gln Pro Lys Gln Pro Leu		
180	185	190
ctg cag caa cca caa aca att ccc cag caa cca caa cca cca ttc		624
Leu Gln Gln Pro Gln Gln Thr Ile Pro Gln Gln Pro Gln Gln Pro Phe		
195	200	205
ccc ctg cag ccg caa cca ttc ccc caa cca cca caa cca cca ctt		672
Pro Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Leu		
210	215	220
ccc caa caa ccc caa caa ata att tcc cag caa ccc caa caa cca ttc		720
Pro Gln Gln Pro Gln Gln Ile Ile Ser Gln Gln Pro Gln Gln Pro Phe		
225	230	235
240		
cct cta caa cct caa caa cca ttc ccc caa ccc caa cca ttc ccc cag		768
Pro Leu Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Pro Phe Pro Gln		
245	250	255
gag caa ccc caa caa gca ttc ccc cta caa ccg caa caa cca ttc ccc		816
Glu Gln Pro Gln Gln Ala Phe Pro Leu Gln Pro Gln Gln Pro Phe Pro		
260	265	270
gag gaa tca gaa caa ata att acc caa cca ttc cct cta caa cca		864
Glu Glu Ser Glu Gln Ile Ile Thr Gln Gln Pro Phe Pro Leu Gln Pro		
275	280	285
caa caa ctg ttc ccc cag caa cca caa cca ctt ccc cag ccc caa		912
Gln Gln Leu Phe Pro Gln Gln Pro Gln Gln Pro Leu Pro Gln Pro Gln		
290	295	300
caa cca ttc cgc caa cta cca aaa tat ata att ccc cag caa cct caa		960
Gln Pro Phe Arg Gln Leu Pro Lys Tyr Ile Ile Pro Gln Gln Pro Gln		
305	310	315
		320

113

caa cca ttc ctt ctg caa cca cac caa cct cag caa cct tat gca caa 1008
 Gln Pro Phe Leu Leu Gln Pro His Gln Pro Gln Gln Pro Tyr Ala Gln
 325 330 335
 caa gac atc tgg agt gat ata gcc ctc ttg ggc taa 1044
 Gln Asp Ile Trp Ser Asp Ile Ala Leu Leu Gly
 340 345

<210> 110
 <211> 160
 <212> PRT
 <213> Hordeum vulgare

<400> 110
 Met Lys Thr Phe Leu Thr Phe Val Leu Leu Ala Met Ala Met Ser Ile
 1 5 10 15
 Val Thr Thr Ala Arg Gln Leu Asn Pro Ser His Gln Glu Leu Gln Ser
 20 25 30
 Pro Gln Gln Pro Phe Leu Lys Gln Gln Ser Tyr Leu Gln Gln Pro Tyr
 35 40 45
 Pro Gln Gln Pro Tyr Leu Pro Gln Gln Pro Phe Pro Thr Pro Gln Gln
 50 55 60
 Phe Phe Pro Tyr Leu Pro Gln Gln Thr Phe Pro Pro Ser Gln Gln Pro
 65 70 75 80
 Asn Pro Leu Gln Pro Gln Gln Pro Phe Pro Leu Gln Pro Gln Pro Pro
 85 90 95
 Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Asn Pro Gln Gln Pro Gln
 100 105 110
 Gln Pro Phe Pro Arg Gln Pro Gln Gln Ile Val Pro Gln Gln Pro Gln
 115 120 125
 Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln
 130 135 140
 Pro Phe Ser Trp Gln Pro Gln Gln Pro Phe Leu Gln Pro Leu Gln Leu
 145 150 155 160

<210> 111
 <211> 186
 <212> PRT
 <213> Hordeum vulgare

<400> 111
 Pro Leu Gln Ala Gln Gln Pro Phe Pro Leu Gln Pro Gln Leu Pro Phe
 1 5 10 15
 Pro Gln Pro Gln Gln Pro Ile Gly Gln Gln Pro Lys Gln Pro Leu Leu
 20 25 30
 Gln Gln Pro Gln Gln Thr Ile Pro Gln Gln Pro Gln Gln Pro Phe Pro
 35 40 45
 Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Leu Pro
 50 55 60
 Gln Gln Pro Gln Gln Ile Ile Ser Gln Gln Pro Gln Gln Pro Phe Pro
 65 70 75 80
 Leu Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Pro Phe Pro Gln Glu
 85 90 95
 Gln Pro Gln Gln Ala Phe Pro Leu Gln Pro Gln Gln Pro Phe Pro Glu
 100 105 110
 Glu Ser Glu Gln Ile Ile Thr Gln Gln Pro Phe Pro Leu Gln Pro Gln
 115 120 125
 Gln Leu Phe Pro Gln Gln Pro Gln Gln Pro Leu Pro Gln Pro Gln Gln
 130 135 140
 Pro Phe Arg Gln Leu Pro Lys Tyr Ile Ile Pro Gln Gln Pro Gln Gln
 145 150 155 160

114

Pro Phe Leu Leu Gln Pro His Gln Pro Gln Gln Pro Tyr Ala Gln Gln
 165 170 175
 Asp Ile Trp Ser Asp Ile Ala Leu Leu Gly
 180 185

<210> 112
<211> 924
<212> DNA
<213> Triticum aestivum
<220>
<221> CDS
<222> (1)..(921)
<223> glutenin-1D1
<400> 112
atg aag acc ttc ctc gtc ttt gcc ctc ctc gcc gtt gcg gcg aca agt 48
Met Lys Thr Phe Leu Val Phe Ala Leu Leu Ala Val Ala Ala Thr Ser
1 5 10 15
gca att gcg cag atg gag act aga tgc atc cct ggt ttg gag aga cca 96
Ala Ile Ala Gln Met Glu Thr Arg Cys Ile Pro Gly Leu Glu Arg Pro
20 25 30
tgg cag cag caa cca tta cca cca caa cag aca ttt cca caa caa cca 144
Trp Gln Gln Pro Leu Pro Pro Gln Gln Thr Phe Pro Gln Gln Pro
35 40 45
cta ttt tca caa caa caa caa caa cta ttt cct caa caa cca tca 192
Leu Phe Ser Gln Gln Gln Gln Leu Phe Pro Gln Gln Pro Ser
50 55 60
ttt tcg cag caa caa cca ttt tgg cag caa caa cca cca ttt tct 240
Phe Ser Gln Gln Gln Pro Pro Phe Trp Gln Gln Gln Pro Pro Phe Ser
65 70 75 80
cag caa caa cca att cta cca cag caa cca cca ttt tcg cag caa caa 288
Gln Gln Gln Pro Ile Leu Pro Gln Gln Pro Pro Phe Ser Gln Gln Gln
85 90 95
caa cta gtt cta ccg caa caa cca ttt tca cag caa caa cca cca 336
Gln Leu Val Leu Pro Gln Gln Pro Pro Phe Ser Gln Gln Gln Pro
100 105 110
gtt tta cct cca caa caa tca cct ttt cca caa caa caa caa cac 384
Val Leu Pro Pro Gln Gln Ser Pro Phe Pro Gln Gln Gln Gln His
115 120 125
caa cag ctg gtg caa caa caa atc cct gtt cag cca tcc att ttg 432
Gln Gln Leu Val Gln Gln Ile Pro Val Val Gln Pro Ser Ile Leu
130 135 140
cag cag cta aac cca tgc aag gta ttc ctc cag cag cag tgc agc cct 480
Gln Gln Leu Asn Pro Cys Lys Val Phe Leu Gln Gln Gln Cys Ser Pro
145 150 155 160
gtg gca atg cca caa cgt ctt gct agg tcg caa atg ttg cag cag agc 528
Val Ala Met Pro Gln Arg Leu Ala Arg Ser Gln Met Leu Gln Gln Ser
165 170 175
agt tgc cat gtg atg caa caa caa tgt tgc cag cag ttg ccg caa atc 576
Ser Cys His Val Met Gln Gln Gln Cys Cys Gln Gln Leu Pro Gln Ile
180 185 190
ccc cag caa tcc cgc tat gag gca atc cgt gct atc atc tac tcc atc 624
Pro Gln Gln Ser Arg Tyr Glu Ala Ile Arg Ala Ile Ile Tyr Ser Ile
195 200 205

115

atc ctg caa gaa caa caa cag gtt cag ggt tcc atc caa tct cag cag	672
Ile Leu Gln Glu Gln Gln Gln Val Gln Gly Ser Ile Gln Ser Gln Gln	
210 215 220	
cag caa ccc caa cag ttg ggc caa tgt gtt tcc caa ccc caa cag cag	720
Gln Gln Pro Gln Gln Leu Gly Gln Cys Val Ser Gln Pro Gln Gln Gln	
225 230 235 240	
tcg cag cag caa ctc ggg caa caa cct caa caa caa ttg gca cag	768
Ser Gln Gln Gln Leu Gly Gln Gln Pro Gln Gln Gln Leu Ala Gln	
245 250 255	
ggt acc ttt ttg cag cca cac cag ata gct cag ctt gag gtg atg act	816
Gly Thr Phe Leu Gln Pro His Gln Ile Ala Gln Leu Glu Val Met Thr	
260 265 270	
tcc att gcg ctc cgt atc ctg cca acg atg tgc agt gtt aat gtg ccg	864
Ser Ile Ala Leu Arg Ile Leu Pro Thr Met Cys Ser Val Asn Val Pro	
275 280 285	
ttg tac aga acc acc act agt gtg cca ttc ggc gtt ggc acc gga gtt	912
Leu Tyr Arg Thr Thr Ser Val Pro Phe Gly Val Gly Thr Gly Val	
290 295 300	
ggt gcc tac tga	924
Gly Ala Tyr	
305	
<210> 113	
<211> 307	
<212> PRT	
<213> Triticum aestivum	
<400> 113	
Met Lys Thr Phe Leu Val Phe Ala Leu Leu Ala Val Ala Ala Thr Ser	
1 5 10 15	
Ala Ile Ala Gln Met Glu Thr Arg Cys Ile Pro Gly Leu Glu Arg Pro	
20 25 30	
Trp Gln Gln Gln Pro Leu Pro Pro Gln Gln Thr Phe Pro Gln Gln Pro	
35 40 45	
Leu Phe Ser Gln Gln Gln Gln Gln Leu Phe Pro Gln Gln Pro Ser	
50 55 60	
Phe Ser Gln Gln Gln Pro Pro Phe Trp Gln Gln Pro Pro Phe Ser	
65 70 75 80	
Gln Gln Gln Pro Ile Leu Pro Gln Gln Pro Pro Phe Ser Gln Gln Gln	
85 90 95	
Gln Leu Val Leu Pro Gln Gln Pro Pro Phe Ser Gln Gln Gln Pro	
100 105 110	
Val Leu Pro Pro Gln Gln Ser Pro Phe Pro Gln Gln Gln Gln His	
115 120 125	
Gln Gln Leu Val Gln Gln Ile Pro Val Val Gln Pro Ser Ile Leu	
130 135 140	
Gln Gln Leu Asn Pro Cys Lys Val Phe Leu Gln Gln Cys Ser Pro	
145 150 155 160	
Val Ala Met Pro Gln Arg Leu Ala Arg Ser Gln Met Leu Gln Gln Ser	
165 170 175	
Ser Cys His Val Met Gln Gln Cys Cys Gln Gln Leu Pro Gln Ile	
180 185 190	

116

Pro Gln Gln Ser Arg Tyr Glu Ala Ile Arg Ala Ile Ile Tyr Ser Ile
 195 200 205

Ile Leu Gln Glu Gln Gln Val Gln Gly Ser Ile Gln Ser Gln Gln
 210 215 220

Gln Gln Pro Gln Gln Leu Gly Gln Cys Val Ser Gln Pro Gln Gln
 225 230 235 240

Ser Gln Gln Leu Gly Gln Gln Pro Gln Gln Gln Leu Ala Gln
 245 250 255

Gly Thr Phe Leu Gln Pro His Gln Ile Ala Gln Leu Glu Val Met Thr
 260 265 270

Ser Ile Ala Leu Arg Ile Leu Pro Thr Met Cys Ser Val Asn Val Pro
 275 280 285

Leu Tyr Arg Thr Thr Ser Val Pro Phe Gly Val Gly Thr Gly Val
 290 295 300

Gly Ala Tyr
 305

<210> 114
<211> 8482
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: binary expression vector
<400> 114
ttccatggac atacaatgg acgaacggat aaacctttc acgcccttt aaatatccga 60
ttattctaataa aacgcgttctt ttctcttagg tttacccgccc aatataatcct gtcaaacact 120
gatagtttaaa actgaaggcg ggaaacgaca atcagatcta gtaggaaaca gctatgacca 180
tgattacgccc aatcaccact ttgtacaaga aagctgggtc tagatgacgg acaatcagta 240
aattgaacgg agaatattat tcataaaaat acgatagtaa cgggtgatattt attcattt 300
atgaaccgaa accggcggta aggatctgag ctacacatgc tcaggtttt tacaacgtgc 360
acaacagaat tgaaagcaa tatcatgcga tcataggcgt ctcgcataatc tcattaaagc 420
aggaggcctt ctagactgca ggccggccgccc caccgcgtg ggctggctat gaagaaatta 480
taatcgtgtaa aacttagt agtgtgtatg aatgaaagta ttgcaaaatc ctcatttat 540
agactacatg cataactagt tgcatgtaaa ttgttagttt tcttcattat tgcatcctcc 600
aagtggatgt catggtttta cacatggctt ccatgcaaat catttccaaa atattttaa 660
actttccaca gggcatccat gcacatgcacct caaaacttgt gtgtggtaac attgttgtct 720
tgaaaaattttt ctaaaccttt tgtccacgtg acgttcatgc acctcaaatc ttgtgtggta 780
ccattattat cctcaagaat tattgaatgt ttgtgttata tgccatccat gcagcattgc 840
aacaattaaa tctccaaacc ttgtggtacc atattcaactc actttaaatc tcctatagta 900
gaaatattttt caaatattttt cattccagt tgattgtat atgtattttt aagacaaaaaa 960
taatttagaa tcaattaatc aacttgcaaa ttgcttaagtg ttggcaaaacg tttagcataaa 1020
aggtgttata aatttagtac caaatataaa aatttatcgc aatcaaata cataacacac 1080
atagaaaaac aaaaacaaat tacaagggtt tagacgttta gtggcaatgt gtaaatttgc 1140
tcgactgaat tggttccctt aacgcgttctt ttgttacaa acttgtgata attcaactggc 1200
cgtcgttta caacgactca ggatcctgtc aaacactgat agttttaact gaaggcggga 1260
aacgacaatc tgatcatgag cggagaatta agggagtcac gttatgaccc ccggcgtatga 1320
cgccggacaa gccgttttac gtttggact gacagaaccg caacgttggaa ggagccactc 1380
agccgcgggt ttctggagtt taatgagcta agcacatacg tcagaaacca ttattgcgcg 1440
ttcaaaaagtc gcctaaggtc actatcagct agcaaataatt tcttgcgtaaa aatgcgtccac 1500
tgacgttcca taaattcccc tcggtatcca attagagtct catattcact ctcataatccaa 1560
ataatctgca ccggatctgg atcggttcgc atgattgaac aagatggatt gcacgcaggt 1620
tctccggccg cttgggtgga gaggcttgc ggctatgact gggcacaaca gacaatcggc 1680

tgctctgatg ccggcgtgtt ccggctgtca gcgcaggggc gcccgttct ttttgtcaag 1740
accgacctgt ccggtgccct gaatgaactg caggacgagg cagcgcggct atcgtggctg 1800
gccacgacgg gcgttccttgc cgcaactgtg ctcgacgttgc taactgaagc gggaaaggac 1860
tggctgttat tggcgaagt gccggggcag gatctctgt catctcacct tgctcctgccc 1920
gagaaaagtat ccatcatggc tgatgcaatg cggcgctgc atacgcttga tccggcttacc 1980
tgcccattcg accaccaagc gaaacatcg ctcgacgttgc cacgtactcg gatggaagcc 2040
ggtcttgcg atcaggatga tctgacgaa gagcatcagg ggctcgcgc agccgaactg 2100
ttcggccaggc tcaaggcgcg catgcccgc ggcgaggatc tcgtcggtac ccatggcgat 2160
gcctgcttgc cgaatatacat ggtgaaaaat ggccgcgttt ctggattcat cgactgtggc 2220
cggctgggtg tggcggaccg ctatcaggac atagcgttgg ctacccgtga tattgctgaa 2280
gagcttggcg gcaatgggc tgaccgctt ctcgtctt acggatcgc cgctcccgat 2340
tcgcagcgc tgccttcta tcgccttctt gacgaggatc tctgagcggg acccaagctc 2400
tagatcttgc tgcgttgcgaa tatttcgtt gaggatcccgc cacagaccgc gatgatcccc 2460
gatcgttcaa acatttggca ataaaatgttca ttaagattga atcctgttgc cggcttgcg 2520
atgattatca tataatttttca ttgtgattac gttaagcatg taataattaa catgtaatgc 2580
atgacgttat ttatgagatg ggtttttatg attagagtcc cgcaattata cattaatac 2640
gcgatagaaa acaaaaatata ggcgcacaac taggataaat tatcgcgcgc ggtgtcatct 2700
atgttacttag atcgggcctc ctgtcaagct ctgcttggta ataattgtca ttagattgtt 2760
tttatgcata gatgcactcg aaatcagcca attttagaca agtataaacc ggtatgttaat 2820
tcagtagtattt aaagacgtcc gcaatgtgtt attaaggatc ttaagcgatc atttgttttac 2880
accacaatatac atcctgcccac cagccagcca acagctcccc gaccggcagc tcggcacaaa 2940
atcaccacgc gttaccacca cgccggccgg cccgatgttgc ttgaccgtgt tcggccggat 3000
tgccgaggatc gaggcttccc taatcatcgaa ccgcacccgg agcgggcgcg aggccgc当地 3060
ggcccgaggc gtgaagtttgc gccccggccc taccctcacc cccgcacaga tcgcgcacgc 3120
ccgcgagctg atcgaccagg aaggccgcac cgtgaagag ggccgtgcac tgcttggcg 3180
gcatcgctcg accctgtacc ggcacttgc ggcgcggcgc ggcgcggag gaagtgcgc ccaccggagg 3240
caggcggcgc ggtgccttcc gtgaggacgc attgaccgg ggcgcacgc tggcggccgc 3300
cgagaatgaa cggcaagagg aacaagcatg aaaccgcacc aggacggcca ggacgaaccg 3360
ttttcatta cggaaagagat cgaggcggag atgatcgccg ccgggtacgt gttcgagccg 3420
cccgcgcacg tctcaaccgt ggcgttgc gaaatcttgc cccgtttgtc tgatgccaag 3480
ctggcggctt gggccggccag cttggccgtt gaaagaaaccg agcggccgcg tctaaaaagg 3540
tgatgtgttat ttgagtaaaa cagcttgcgt catgcgtcg ctgcgtatata gatgcgtatga 3600
gtaaataaac aaatacgcaa gggaaacgc gtaaggttat cgctgtactt aaccagaaag 3660
gcgggtcagg caagacgacc atcgcaaccc atctagccccg cggccgttgc gtcgcgggg 3720
ccgatgttct gttagtcgat tccgatcccc agggcagtgc cccgcattgg gcggccgtgc 3780
gggaagatca accgctaacc gttgtcgca tcgaccggcc gacgattgac cgcgcacgtga 3840
aggccatcgg cccgcgcgac ttctgtgtgc tcgacggagc gccccaggcg gcggacttgg 3900
ctgtgtccgc gatcaaggca ggcacttgc tgctgattcc ggtgcagcca agcccttacg 3960
acatatggc caccgcgcac ctggtggagc tggtaagca ggcgcatttgc gtcacggatg 4020
gaaggctaca agcggcctt gtcgtgtcgca gggcgatcaa aggacgcgcg atcggcggtg 4080
agggtgccga ggcgttgc gggtaacgc tgcccattct tgagttccgt atcacgcacg 4140
gcgtgagcta cccaggcact gcccggccg gcacaaccgt tcttgcata gaaaaaggagg 4200
gcgcacgtgc cccgcagggtc caggcgctgg cgcgttgc taaatcaaaa ctcatttgc 4260
ttaatgaggt aaagagaaaa tgagcaaaatg cacaacacg ctaagtgcgc gccgtccgag 4320
cgacacgcacg agcaaggctg caacgttgc cagcttgc gacacgcgc ccatgaagcg 4380
ggtcaactt cagttgcgg cggaggatca caccacgtg aagatgtacg cggtaacgc 4440
aggcaagacc attaccgcgc tgctatctga atacatcgcc cagcttccatg agtaaatgag 4500
caaataataa aatgagtaga tgaatttttgc cggctaaagg aggccggatg gaaaatcaag 4560
aacaaccagg caccgcgcgc gtggaaatgc ccatgtgtgg aggaacgggc ggttggccag 4620
cgtaagcgg ctgggttgc tgccggccct gcaatggcac tggaaaccccc aagcccgagg 4680
aatcggcgatc agcggcgcgc aaccatccgg cccggatcaa atcggcgccg cgctgggtga 4740
tgacctgttgc gagaagttga aggccgcgc ggcgcggccag cggcaacgc tcgaggcaga 4800
agcacgcggcc ggtgaatcgt ggcaaggcgc cgctgatcga atccgcacaaag aatcccgca 4860
accgcggcgc gccggcgcgc cgtcgattag gaagccccc aagggcgacg agcaaccaga 4920
tttttcgtt ccatgtcttgc atgacgttgg caccggcgat agtgcgcagca tcatggacgt 4980
ggccgtttc cgtctgtcgaa agcgtgaccc acgagctggc gaggtgatcc gctacgagct 5040
tccagacggg cacgttagagg tttccgcagg gccggccggc atggccagtg tggggattta 5100

cgacctggta ctgatggcgg tttccatct aaccgaatcc atgaaccgat accgggaagg 5160
 gaagggagac aagcccggcc gcgttccg tccacacgtt gcggacgtac tcaagttctg 5220
 cccgcgagcc gatggcggaa agcagaaaaga cgacctggta gaaacctgca ttgggttaaa 5280
 caccacgcac gttccatgc agcgtacgaa gaaggccaag aacggccccc ttggacggt 5340
 atccgagggt gaagccttga ttagccgcta caagatcgta aagagcggaa ccggccggcc 5400
 ggagtacatc gagatcgac tagctgattg gatgtaccgc gagatcacag aaggcaagaa 5460
 cccggacgtg ctgacggttc accccgatta cttttgatc gatcccggca tcggccgtt 5520
 tctctaccgc ctggcacgccc ggcggcagg caaggcagaa gccagatggt tttcaagac 5580
 gatctacgaa cgcatggca ggcgggaga gttcaagaag ttctgtttca ccgtgcgcaa 5640
 gctgatcggt tcaaattgacc tgccggagta cgatttgaag gaggaggcgg ggcaggctgg 5700
 cccgatcta gtcatgcgc accgcaacct gatcgaggc gaagcatccg ccggttctta 5760
 atgtacggag cagatgctag ggcaatttgc cctagcagg gaaaaaggc gaaaaggct 5820
 ctttcctgtg gatagcacgt acattggaa cccaaagccg tacattggg accggaaccc 5880
 gtacattggg aacccaaagc cgtacattgg gaaccgtca cacatgttaag tgactgat 5940
 aaaagagaaa aaaggcgatt ttccgccta aaactcttta aaacttattta aaactcttaa 6000
 aacccgcctg gcctgtcat aactgtctgg ccagcgcaca gccgaagagc tgcaaaaagc 6060
 gcctaccctt cggtcgctgc gtcctactg cccgcggct tcgcgtcgcc statcgccg 6120
 cgctggccgc tcaaaaatgg ctggctactg gccaggcaat ctaccaggc gcggacaaagc 6180
 cgccgcgtcg ccactcgacc gccggcgcacc acatcaaggc accctgcctc gcgcgttcc 6240
 gtatgacgg tgaaaacctc tgacacatgc agtcccgga gacggtcaca gttgtctgt 6300
 aagcggatgc cgggagcaga caagccgctc agggcgcgtc agcgggtgtt ggccgggtgtc 6360
 gggcgcagc catgaccctc tcacgtacg atacggagt gtatactggc ttaactatgc 6420
 ggcacatcagag cagattgtac tgagagtca ccatatcgcc tttgaaatac cgacacatg 6480
 cgttaaggaga aaataccgc tcaggcgctc ttccgccttc tcgctcactg actcgctcg 6540
 ctcggtcgtt cggctgcggc gagcggtac agtcactca aaggcggtaa tacggttatc 6600
 cacagaatca gggataacg cagggaaagaa catgtgagca aaaggccagc aaaaggccag 6660
 gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgcctt ctgacgagca 6720
 tcacaaaaat cgacgctcaa gtcaaggggt gcgaaacccg acaggactat aaagatacca 6780
 ggcgtttccc cctggaaagct ccctcgctg ctctcctgtt ccgaccctgc cggttaccgg 6840
 atacctgtcc gccttctcc ttccggaaag cgtggcgctt tctcatagct cacgctgtag 6900
 gtatctcagt tcggtgttagg tcgttcgctc taacaggatt agcagagcga ggtatgtagg 7080
 tcagccgcac cgctgcgcct tatccgtaa cggcaacaa accaccgcgtc gtagcggtgg ttttttgtt tgcaagcagc agattacgcg 7260
 cgacttatcg ccactggcag cagccactgg taactacggc tacactagaa ggacagtatt 7140
 cggtgctaca gagttcttga agtggtgcc cttcgaaaa agagttggta gcttttgc 7200
 tggtatctgc gctctgctga agccagttac ttttttggta gatcttttgc acgggtctg acgctcagtg 7320
 cggcaacaaa accaccgcgtc gtagcgggtt gatcttttgc acgggtctg acgctcagtg 7380
 cagaaaaaaaaa ggtatctcaag aagatctttt gatcttttgc acgggtctg acgctcagtg 7440
 gcaattatgt gcttagtgca tctaaccgtt gatcttttgc acgggtctg acgctcagtg 7500
 cttgaacgaa ttcttagcta gacattattt gatcttttgc acgggtctg acgctcagtg 7560
 gtagtggaca aattcttcca actgatctgc gatcttttgc acgggtctg acgctcagtg 7620
 aagataagcc tgtctagctt caagtatgac gatcttttgc acgggtctg acgctcagtg 7680
 tgcccagtcg gcaagcgcacat cttccggcgc gatcttttgc acgggtctg acgctcagtg 7740
 gccccgacaac gtaagcacta catttcgctc atcgccagcc cagtcggcgc gcgagttcca 7800
 tagcgttaag gtttcattt ggcgcctaaa tagatctgt tcaggaaccg gatcaaagag 7860
 ttccctccgccc gctggaccta ccaaggcaac gctatgttct cttgccttttgc tcaagcagat 7920
 agccagatca atgtcgatcg tggctggctc gaagataacct gcaagaatgt cattgcgtc 7980
 ccattctcca aattgcagtt cgccgttagc tggataacgc cacggaaatga tgcgtcgt 8040
 cacaacaatgt gtgacttcta cagcgcggag aatctcgctc tctccagggg aagccgaagt 8100
 ttccaaaagg tcgttgatca aagctcgccg cgttggatca tcaagcctta cggtcaccgt 8160
 aaccagcaaa tcaatatcac tggatggctt caggccgca tccactgcgg acccgatcaa 8220
 atgtacggcc agcaacgtcg gttcgagatg ggcgtcgatg acgccaacta cctctgatag 8280
 ttgagtcgtacttcggcata tcaccgcctt ccccatgtatg tttacttttgc ttttagggc 8340
 actgccttcg tgcgtaacat cgttgcgtct ccataacatc aaacatcgac ccacggcgt 8400
 acgcgttgc tgcttggatg cccgaggcat agactgtacc ccaaaaaaac agtcataaca 8460
 agccatgaaa accgccactg cg 8482

<210> 115
 <211> 575
 <212> DNA
 <213> Brassica napus
 <220>
 <221> misc_feature
 <222> (1)..(6)
 <223> restriction site
 <220>
 <221> misc_feature
 <222> (570)..(575)
 <223> restriction site
 <220>
 <221> misc_feature
 <222> (7)..(575)
 <223> coding for homogentisate-1,2-dioxygenase (HDG)
 <400> 115
 gtcgacgggc cgatggggc gaagggtctt gctgcaccaa gagattttct tgcaccaacg 60
 gcatggtttgc aggaagggc acggcctgac tacactattt ttcagaagtt tggcggtgaa 120
 ctctttactg ctaaacaaga tttctctccg ttcaatgtgg ttgcctggca tggcaattac 180
 gtgccttata agtatgacct gcacaagttc tgtccataaca acactgtcct tgttagaccat 240
 ggagatccat ctgtaaatac agttctgaca gcaccaacgg ataaacctgg tggcgttgc 300
 cttgattttg tcataattccc tcctcgttgg ttgggttgctg agcataacctt tcgacccctt 360
 tactaccatc gtaactgcat gagtgaattt atgggcctaa tctatggtgc ttacgaggcc 420
 aaagctgatg gatttctacc tggcgttgc agtcttcaca gttgtatgac acctcatgg 480
 ccagatacaa ccacatacga ggcgacgatt gctcgtgtaa atgcaatggc tccttataag 540
 ctcacaggca ccatggcctt catgtttgag gtacc 575
 <210> 116
 <211> 1386
 <212> DNA
 <213> Arabidopsis thaliana
 <220>
 <221> CDS
 <222> (1)..(1383)
 <223> coding for homogentisate-1,2-dioxygenase (HDG)
 <400> 116
 atg gaa gag aag aag gag ctt gaa gag ttg aag tat caa tca ggt 48
 Met Glu Glu Lys Lys Glu Leu Glu Leu Lys Tyr Gln Ser Gly
 1 5 10 15
 ttt ggt aac cac ttc tca tcg gaa gca atc gcc gga gct tta ccg tta 96
 Phe Gly Asn His Phe Ser Ser Glu Ala Ile Ala Gly Ala Leu Pro Leu
 20 25 30
 gat cag aac agt cct ctt tgt cct tac ggt ctt tac gcc gaa cag 144
 Asp Gln Asn Ser Pro Leu Leu Cys Pro Tyr Gly Leu Tyr Ala Glu Gln
 35 40 45
 atc tcc ggt act tct ttc act tct cct cgc aag ctc aat caa aga agt 192
 Ile Ser Gly Thr Ser Phe Thr Ser Pro Arg Lys Leu Asn Gln Arg Ser
 50 55 60
 tgg ttg tac cgg gtt aaa cca tcg gtt aca cat gaa ccg ttc aag cct 240
 Trp Leu Tyr Arg Val Lys Pro Ser Val Thr His Glu Pro Phe Lys Pro
 65 70 75 80
 cgt gta cca gct cat aag aag ctt gtg agt gag ttt gat gca tca aat 288
 Arg Val Pro Ala His Lys Lys Leu Val Ser Glu Phe Asp Ala Ser Asn
 85 90 95

120

agt cgt acg aat ccg act cag ctt cg ^g tgg aga cct gag gat att cct		336
Ser Arg Thr Asn Pro Thr Gln Leu Arg Trp Arg Pro Glu Asp Ile Pro		
100 105 110		
gat tcg gag att gat ttc gtt gat ggg tta ttt acc att tgt gga gct		384
Asp Ser Glu Ile Asp Phe Val Asp Gly Leu Phe Thr Ile Cys Gly Ala		
115 120 125		
gga agc tcg ttt ctt cgc cat ggc ttc gct att cac atg tat gtg gct		432
Gly Ser Ser Phe Leu Arg His Gly Phe Ala Ile His Met Tyr Val Ala		
130 135 140		
aac aca gga atg aaa gac tcc gca ttt tgc aac gct gat ggt gac ttc		480
Asn Thr Gly Met Lys Asp Ser Ala Phe Cys Asn Ala Asp Gly Asp Phe		
145 150 155 160		
ttg tta gtt cct caa aca gga agg cta tgg att gaa act gag tgt gga		528
Leu Leu Val Pro Gln Thr Gly Arg Leu Trp Ile Glu Thr Glu Cys Gly		
165 170 175		
agg ctt ttg gta act cct ggt gag att gct gtt ata cca caa ggt ttc		576
Arg Leu Leu Val Thr Pro Gly Glu Ile Ala Val Ile Pro Gln Gly Phe		
180 185 190		
cgt ttc tcc ata gat tta ccg gat ggg aag tct cgt ggt tat gtt gct		624
Arg Phe Ser Ile Asp Leu Pro Asp Gly Lys Ser Arg Gly Tyr Val Ala		
195 200 205		
gaa atc tat ggg gct cat ttt cag ctt cct gat ctt gga cca ata ggt		672
Glu Ile Tyr Gly Ala His Phe Gln Leu Pro Asp Leu Gly Pro Ile Gly		
210 215 220		
gct aat ggt ctt gct gca tca aga gat ttt ctt gca cca aca gca tgg		720
Ala Asn Gly Leu Ala Ala Ser Arg Asp Phe Leu Ala Pro Thr Ala Trp		
225 230 235 240		
ttt gag gat gga ttg cgg cct gaa tac aca att gtt cag aag ttt ggc		768
Phe Glu Asp Gly Leu Arg Pro Glu Tyr Thr Ile Val Gln Lys Phe Gly		
245 250 255		
ggt gaa ctc ttt act gct aaa caa gat ttc tct cca ttc aat gtg gtt		816
Gly Glu Leu Phe Thr Ala Lys Gln Asp Phe Ser Pro Phe Asn Val Val		
260 265 270		
gcc tgg cat ggc aat tac gtg cct tat aag tat gac ctg aag aag ttc		864
Ala Trp His Gly Asn Tyr Val Pro Tyr Lys Tyr Asp Leu Lys Lys Phe		
275 280 285		
tgt cca tac aac act gtg ctt tta gat cat gga gat cca tct ata aat		912
Cys Pro Tyr Asn Thr Val Leu Leu Asp His Gly Asp Pro Ser Ile Asn		
290 295 300		
aca gtc ctt aca gca cca act gat aaa cct ggt gtg gcc ttg ctt gat		960
Thr Val Leu Thr Ala Pro Thr Asp Lys Pro Gly Val Ala Leu Leu Asp		
305 310 315 320		
ttt gtc ata ttt cct cct cga tgg ttg gtt gct gag cat act ttt cga		1008
Phe Val Ile Phe Pro Pro Arg Trp Leu Val Ala Glu His Thr Phe Arg		
325 330 335		
cct cct tac tat cat cgt aac tgc atg agt gaa ttt atg ggc tta atc		1056
Pro Pro Tyr Tyr His Arg Asn Cys Met Ser Glu Phe Met Gly Leu Ile		
340 345 350		
tac ggt gca tac gag gcg aaa gct gat gga ttt ctc cct ggc ggt gca		1104
Tyr Gly Ala Tyr Glu Ala Lys Ala Asp Gly Phe Leu Pro Gly Gly Ala		
355 360 365		

121

agt ctt cat agc tgt atg aca cct cat ggt cca gat act acc acg tac 1152
 Ser Leu His Ser Cys Met Thr Pro His Gly Pro Asp Thr Thr Thr Tyr
 370 375 380
 gag gcg aca att gct cga gta aat gca atg gct cct tct aaa ctc aca 1200
 Glu Ala Thr Ile Ala Arg Val Asn Ala Met Ala Pro Ser Lys Leu Thr
 385 390 395 400
 ggt acg atg gct ttc atg ttc gaa tca gca ttg atc cct aga gtc tgt 1248
 Gly Thr Met Ala Phe Met Phe Glu Ser Ala Leu Ile Pro Arg Val Cys
 405 410 415
 cat tgg gct ctg gag tct cct ttc ctg gat cac gac tac tac cag tgt 1296
 His Trp Ala Leu Glu Ser Pro Phe Leu Asp His Asp Tyr Tyr Gln Cys
 420 425 430
 tgg att ggc ctc aag tct cat ttc tcg cgc ata agc ttg gac aag aca 1344
 Trp Ile Gly Leu Lys Ser His Phe Ser Arg Ile Ser Leu Asp Lys Thr
 435 440 445
 aat gtt gaa tca aca gag aaa gaa cca gga gct tcg gag taa 1386
 Asn Val Glu Ser Thr Glu Lys Glu Pro Gly Ala Ser Glu
 450 455 460
 <210> 117
 <211> 461
 <212> PRT
 <213> Arabidopsis thaliana
 <400> 117
 Met Glu Glu Lys Lys Lys Glu Leu Glu Leu Lys Tyr Gln Ser Gly
 1 5 10 15
 Phe Gly Asn His Phe Ser Ser Glu Ala Ile Ala Gly Ala Leu Pro Leu
 20 25 30
 Asp Gln Asn Ser Pro Leu Leu Cys Pro Tyr Gly Leu Tyr Ala Glu Gln
 35 40 45
 Ile Ser Gly Thr Ser Phe Thr Ser Pro Arg Lys Leu Asn Gln Arg Ser
 50 55 60
 Trp Leu Tyr Arg Val Lys Pro Ser Val Thr His Glu Pro Phe Lys Pro
 65 70 75 80
 Arg Val Pro Ala His Lys Lys Leu Val Ser Glu Phe Asp Ala Ser Asn
 85 90 95
 Ser Arg Thr Asn Pro Thr Gln Leu Arg Trp Arg Pro Glu Asp Ile Pro
 100 105 110
 Asp Ser Glu Ile Asp Phe Val Asp Gly Leu Phe Thr Ile Cys Gly Ala
 115 120 125
 Gly Ser Ser Phe Leu Arg His Gly Phe Ala Ile His Met Tyr Val Ala
 130 135 140
 Asn Thr Gly Met Lys Asp Ser Ala Phe Cys Asn Ala Asp Gly Asp Phe
 145 150 155 160
 Leu Leu Val Pro Gln Thr Gly Arg Leu Trp Ile Glu Thr Glu Cys Gly
 165 170 175
 Arg Leu Leu Val Thr Pro Gly Glu Ile Ala Val Ile Pro Gln Gly Phe
 180 185 190
 Arg Phe Ser Ile Asp Leu Pro Asp Gly Lys Ser Arg Gly Tyr Val Ala
 195 200 205

122

Glu Ile Tyr Gly Ala His Phe Gln Leu Pro Asp Leu Gly Pro Ile Gly
 210 215 220
 Ala Asn Gly Leu Ala Ala Ser Arg Asp Phe Leu Ala Pro Thr Ala Trp
 225 230 235 240
 Phe Glu Asp Gly Leu Arg Pro Glu Tyr Thr Ile Val Gln Lys Phe Gly
 245 250 255
 Gly Glu Leu Phe Thr Ala Lys Gln Asp Phe Ser Pro Phe Asn Val Val
 260 265 270
 Ala Trp His Gly Asn Tyr Val Pro Tyr Lys Tyr Asp Leu Lys Lys Phe
 275 280 285
 Cys Pro Tyr Asn Thr Val Leu Leu Asp His Gly Asp Pro Ser Ile Asn
 290 295 300
 Thr Val Leu Thr Ala Pro Thr Asp Lys Pro Gly Val Ala Leu Leu Asp
 305 310 315 320
 Phe Val Ile Phe Pro Pro Arg Trp Leu Val Ala Glu His Thr Phe Arg
 325 330 335
 Pro Pro Tyr Tyr His Arg Asn Cys Met Ser Glu Phe Met Gly Leu Ile
 340 345 350
 Tyr Gly Ala Tyr Glu Ala Lys Ala Asp Gly Phe Leu Pro Gly Gly Ala
 355 360 365
 Ser Leu His Ser Cys Met Thr Pro His Gly Pro Asp Thr Thr Thr Tyr
 370 375 380
 Glu Ala Thr Ile Ala Arg Val Asn Ala Met Ala Pro Ser Lys Leu Thr
 385 390 395 400
 Gly Thr Met Ala Phe Met Phe Glu Ser Ala Leu Ile Pro Arg Val Cys
 405 410 415
 His Trp Ala Leu Glu Ser Pro Phe Leu Asp His Asp Tyr Tyr Gln Cys
 420 425 430
 Trp Ile Gly Leu Lys Ser His Phe Ser Arg Ile Ser Leu Asp Lys Thr
 435 440 445
 Asn Val Glu Ser Thr Glu Lys Glu Pro Gly Ala Ser Glu
 450 455 460

<210> 118
 <211> 815
 <212> DNA
 <213> *Arabidopsis thaliana*

<220>
 <221> CDS
 <222> (37)..(705)
 <223> coding for maleylacetoacetate isomerase (MAAI)

<400> 118
 gtaatctccg aagaagaaca aattccttgc tgaatc atg tct tat gtt acc gat 54
 Met Ser Tyr Val Thr Asp
 1 5

ttt tat cag gcg aag ttg aag ctc tac tct tac tgg aga agc tca tgt 102
 Phe Tyr Gln Ala Lys Leu Lys Leu Tyr Ser Tyr Trp Arg Ser Ser Cys
 10 15 20

123

gct cat cgc gtc cgt atc gcc ctc act tta aaa ggg ctt gat tat gaa			150
Ala His Arg Val Arg Ile Ala Leu Thr Leu Lys Gly Leu Asp Tyr Glu			
25	30	35	
tat ata ccg gtt aat ttg ctc aaa ggg gat caa tcc gat tca gat ttc			198
Tyr Ile Pro Val Asn Leu Leu Lys Gly Asp Gln Ser Asp Ser Asp Phe			
40	45	50	
aag aag atc aat cca atg ggc act gta cca gcg ctt gtt gat ggt gat			246
Lys Lys Ile Asn Pro Met Gly Thr Val Pro Ala Leu Val Asp Gly Asp			
55	60	65	70
gtt gtg att aat gac tct ttc gca ata ata atg tac ctg gat gat aag			294
Val Val Ile Asn Asp Ser Phe Ala Ile Met Tyr Leu Asp Asp Lys			
75	80	85	
tat ccg gag cca ccg ctg tta cca agt gac tac cat aaa cgg gcg gta			342
Tyr Pro Glu Pro Pro Leu Leu Pro Ser Asp Tyr His Lys Arg Ala Val			
90	95	100	
aat tac cag gcg acg agt att gtc atg tct ggt ata cag cct cat caa			390
Asn Tyr Gln Ala Thr Ser Ile Val Met Ser Gly Ile Gln Pro His Gln			
105	110	115	
aat atg gct ctt ttt agg tat ctc gag gac aag ata aat gct gag gag			438
Asn Met Ala Leu Phe Arg Tyr Leu Glu Asp Lys Ile Asn Ala Glu Glu			
120	125	130	
aaa act gct tgg att act aat gct atc aca aaa gga ttc aca gct ctc			486
Lys Thr Ala Trp Ile Thr Asn Ala Ile Thr Lys Gly Phe Thr Ala Leu			
135	140	145	150
gag aaa ctg ttg gtg agt tgc gct gga aaa tac gcg act ggt gat gaa			534
Glu Lys Leu Leu Val Ser Cys Ala Gly Lys Tyr Ala Thr Gly Asp Glu			
155	160	165	
gtt tac ttg gct gat ctt ttc cta gca cca cag atc cac gca gca ttc			582
Val Tyr Leu Ala Asp Leu Phe Leu Ala Pro Gln Ile His Ala Ala Phe			
170	175	180	
aac aga ttc cat att aac atg gaa cca ttc ccg act ctt gca agg ttt			630
Asn Arg Phe His Ile Asn Met Glu Pro Phe Pro Thr Leu Ala Arg Phe			
185	190	195	
tac gag tca tac aac gaa ctg cct gca ttt caa aat gca gtc ccg gag			678
Tyr Glu Ser Tyr Asn Glu Leu Pro Ala Phe Gln Asn Ala Val Pro Glu			
200	205	210	
aag caa cca gat act cct tcc acc atc tgattctgtg aaccgtaagc			725
Lys Gln Pro Asp Thr Pro Ser Thr Ile			
215	220		
ttctctcagt ctcagctcaa taaaatctct taggaaacaa caacaacacc ttgaacttaa			785
atgtatcata tgaaccagtt tacaataat			815
<210> 119			
<211> 223			
<212> PRT			
<213> Arabidopsis thaliana			
<400> 119			
Met Ser Tyr Val Thr Asp Phe Tyr Gln Ala Lys Leu Lys Leu Tyr Ser			
1	5	10	15
Tyr Trp Arg Ser Ser Cys Ala His Arg Val Arg Ile Ala Leu Thr Leu			
20	25	30	

124

Lys Gly Leu Asp Tyr Glu Tyr Ile Pro Val Asn Leu Leu Lys Gly Asp
 35 40 45

Gln Ser Asp Ser Asp Phe Lys Lys Ile Asn Pro Met Gly Thr Val Pro
 50 55 60

Ala Leu Val Asp Gly Asp Val Val Ile Asn Asp Ser Phe Ala Ile Ile
 65 70 75 80

Met Tyr Leu Asp Asp Lys Tyr Pro Glu Pro Pro Leu Leu Pro Ser Asp
 85 90 95

Tyr His Lys Arg Ala Val Asn Tyr Gln Ala Thr Ser Ile Val Met Ser
 100 105 110

Gly Ile Gln Pro His Gln Asn Met Ala Leu Phe Arg Tyr Leu Glu Asp
 115 120 125

Lys Ile Asn Ala Glu Glu Lys Thr Ala Trp Ile Thr Asn Ala Ile Thr
 130 135 140

Lys Gly Phe Thr Ala Leu Glu Lys Leu Leu Val Ser Cys Ala Gly Lys
 145 150 155 160

Tyr Ala Thr Gly Asp Glu Val Tyr Leu Ala Asp Leu Phe Leu Ala Pro
 165 170 175

Gln Ile His Ala Ala Phe Asn Arg Phe His Ile Asn Met Glu Pro Phe
 180 185 190

Pro Thr Leu Ala Arg Phe Tyr Glu Ser Tyr Asn Glu Leu Pro Ala Phe
 195 200 205

Gln Asn Ala Val Pro Glu Lys Gln Pro Asp Thr Pro Ser Thr Ile
 210 215 220

<210> 120
<211> 1227
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (1)..(1224)
<223> coding for fumarylacetoacetate hydrolase (FAAH)
<400> 120
atg gcg ttg ctg aag tct ttc atc gat gtt ggc tca gac tcg cac ttc 48
Met Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser His Phe
 1 5 10 15
cct atc cag aat ctc cct tat ggt gtc ttc aaa ccg gaa tcg aac tca 96
Pro Ile Gln Asn Leu Pro Tyr Gly Val Phe Lys Pro Glu Ser Asn Ser
 20 25 30
act cct cgt cct gcc gtc gct atc ggc gat ttg gtt ctg gac ctc tcc 144
Thr Pro Arg Pro Ala Val Ala Ile Gly Asp Leu Val Leu Asp Leu Ser
 35 40 45
gct atc tct gaa gct ggg ctt ttc gat ggt ctg atc ctt aag gac gca 192
Ala Ile Ser Glu Ala Gly Leu Phe Asp Gly Leu Ile Leu Lys Asp Ala
 50 55 60
gat tgc ttt ctt cag cct aat ttg aat aag ttc ttg gcc atg gga cgg 240
Asp Cys Phe Leu Gln Pro Asn Leu Asn Lys Phe Leu Ala Met Gly Arg
 65 70 75 80

125

cct	gca	tgg	aag	gaa	gca	cgt	tct	acg	ctg	caa	aga	atc	ttg	tca	ttt		288	
Pro	Ala	Trp	Lys	Glu	Ala	Arg	Ser	Thr	Leu	Gln	Arg	Ile	Leu	Ser	Phe			
																85	90	95
ttg	tta	ttt	ggc	tcc	aag	gtt	ttg	gtt	ttg	gta	tgt	ttt	cat	gca	gct		336	
Leu	Leu	Phe	Gly	Phe	Lys	Val	Leu	Val	Leu	Val	Cys	Phe	His	Ala	Ala			
																100	105	110
aat	gaa	cct	atc	ttg	cga	gac	aat	gat	gtt	ttg	agg	aga	aaa	tca	ttc		384	
Asn	Glu	Pro	Ile	Leu	Arg	Asp	Asn	Asp	Val	Leu	Arg	Arg	Lys	Ser	Phe			
																115	120	125
cat	cag	atg	agt	aaa	gtg	gaa	atg	att	gtt	cct	atg	gtg	att	ggg	gac		432	
His	Gln	Met	Ser	Lys	Val	Glu	Met	Ile	Val	Pro	Met	Val	Ile	Gly	Asp			
																130	135	140
tat	aca	gac	ttc	ttt	gca	tct	atg	cat	cac	gca	aag	aac	tgc	gga	ctt		480	
Tyr	Thr	Asp	Phe	Phe	Ala	Ser	Met	His	His	Ala	Lys	Asn	Cys	Gly	Leu			
																145	150	155
atg	tcc	cgt	ggg	cct	gag	aat	gca	ata	aac	cca	aat	tgg	ttt	cgt	ctt		528	
Met	Phe	Arg	Gly	Pro	Glu	Asn	Ala	Ile	Asn	Pro	Asn	Trp	Phe	Arg	Leu			
																165	170	175
ccc	att	gca	tat	cat	gga	cgg	gca	tca	tct	att	gtc	atc	tct	ggg	act		576	
Pro	Ile	Ala	Tyr	His	Gly	Arg	Ala	Ser	Ser	Ile	Val	Ile	Ser	Gly	Thr			
																180	185	190
gac	att	att	cga	cca	aga	ggt	cag	ggc	cat	cca	caa	gga	aac	tct	gaa		624	
Asp	Ile	Ile	Arg	Pro	Arg	Gly	Gln	Gly	His	Pro	Gln	Gly	Asn	Ser	Glu			
																195	200	205
cca	tat	ttt	gga	cct	tcg	aag	aaa	ctt	gat	ttt	gag	ctt	gag	atg	gct		672	
Pro	Tyr	Phe	Gly	Pro	Ser	Lys	Lys	Leu	Asp	Phe	Glu	Leu	Glu	Met	Ala			
																210	215	220
gct	gtg	gtt	ggc	cca	gga	aat	gaa	ttg	gga	aag	cct	att	gac	gtg	aat		720	
Ala	Val	Val	Gly	Pro	Gly	Asn	Glu	Leu	Gly	Lys	Pro	Ile	Asp	Val	Asn			
																225	230	235
aat	gca	gcc	gat	cat	ata	ttt	ggt	cta	tta	ctg	atg	aat	gac	tgg	agt		768	
Asn	Ala	Ala	Asp	His	Ile	Phe	Gly	Leu	Leu	Leu	Met	Asn	Asp	Trp	Ser			
																245	250	255
gct	agg	gat	att	cag	gca	tgg	gag	tat	gta	cct	ctt	ggt	cct	ttc	ctg		816	
Ala	Arg	Asp	Ile	Gln	Ala	Trp	Glu	Tyr	Val	Pro	Leu	Gly	Pro	Phe	Leu			
																260	265	270
ggg	aag	agt	ttt	ggg	act	act	ata	tcc	cct	tgg	att	gtt	acc	ttg	gat		864	
Gly	Lys	Ser	Phe	Gly	Thr	Thr	Ile	Ser	Pro	Trp	Ile	Val	Thr	Leu	Asp			
																275	280	285
gcg	ctt	gag	cct	ttt	ggt	tgt	caa	gct	ccc	aag	cag	gat	cca	cct	cca		912	
Ala	Leu	Glu	Pro	Phe	Gly	Cys	Gln	Ala	Pro	Lys	Gln	Asp	Pro	Pro	Pro			
																290	295	300
ttg	cca	tat	ttg	gct	gag	aaa	gag	tct	gta	aat	tac	gat	atc	tcc	ttg		960	
Leu	Pro	Tyr	Leu	Ala	Glu	Lys	Glu	Ser	Val	Asn	Tyr	Asp	Ile	Ser	Leu			
																305	310	315
gag	cta	gca	cac	cat	acc	gtt	aac	ggt	tgc	aat	ttg	agg	cct	ggt	gat		1008	
Glu	Leu	Ala	His	His	Thr	Val	Asn	Gly	Cys	Asn	Leu	Arg	Pro	Gly	Asp			
																325	330	335
ctc	ctt	ggc	aca	gga	acc	ata	agc	gga	cgg	gag	cca	gat	tca	tat	ggg		1056	
Leu	Leu	Gly	Thr	Gly	Thr	Ile	Ser	Gly	Pro	Glu	Pro	Asp	Ser	Tyr	Gly			
																340	345	350

126

tgc cta ctt gag ttg aca tgg aat gga cag aaa cct cta tca ctc aat		1104	
Cys Leu Leu Glu Leu Thr Trp Asn Gly Gln Lys Pro Leu Ser Leu Asn			
355	360	365	
gga aca act cag acg ttt ctc gaa gac gga gac caa gtc acc ttc tca		1152	
Gly Thr Thr Gln Thr Phe Leu Glu Asp Gly Asp Gln Val Thr Phe Ser			
370	375	380	
ggt gta tgc aag gga gat ggt tac aat gtt ggg ttt gga aca tgc aca		1200	
Gly Val Cys Lys Gly Asp Gly Tyr Asn Val Gly Phe Gly Thr Cys Thr			
385	390	395	400
ggg aaa att gtt cct tca ccg cct tga		1227	
Gly Lys Ile Val Pro Ser Pro Pro			
405			
<210> 121			
<211> 408			
<212> PRT			
<213> Arabidopsis thaliana			
<400> 121			
Met Ala Leu Leu Lys Ser Phe Ile Asp Val Gly Ser Asp Ser His Phe			
1	5	10	15
Pro Ile Gln Asn Leu Pro Tyr Gly Val Phe Lys Pro Glu Ser Asn Ser			
20	25	30	
Thr Pro Arg Pro Ala Val Ala Ile Gly Asp Leu Val Leu Asp Leu Ser			
35	40	45	
Ala Ile Ser Glu Ala Gly Leu Phe Asp Gly Leu Ile Leu Lys Asp Ala			
50	55	60	
Asp Cys Phe Leu Gln Pro Asn Leu Asn Lys Phe Leu Ala Met Gly Arg			
65	70	75	80
Pro Ala Trp Lys Glu Ala Arg Ser Thr Leu Gln Arg Ile Leu Ser Phe			
85	90	95	
Leu Leu Phe Gly Phe Lys Val Leu Val Leu Val Cys Phe His Ala Ala			
100	105	110	
Asn Glu Pro Ile Leu Arg Asp Asn Asp Val Leu Arg Arg Lys Ser Phe			
115	120	125	
His Gln Met Ser Lys Val Glu Met Ile Val Pro Met Val Ile Gly Asp			
130	135	140	
Tyr Thr Asp Phe Phe Ala Ser Met His His Ala Lys Asn Cys Gly Leu			
145	150	155	160
Met Phe Arg Gly Pro Glu Asn Ala Ile Asn Pro Asn Trp Phe Arg Leu			
165	170	175	
Pro Ile Ala Tyr His Gly Arg Ala Ser Ser Ile Val Ile Ser Gly Thr			
180	185	190	
Asp Ile Ile Arg Pro Arg Gly Gln Gly His Pro Gln Gly Asn Ser Glu			
195	200	205	
Pro Tyr Phe Gly Pro Ser Lys Lys Leu Asp Phe Glu Leu Glu Met Ala			
210	215	220	
Ala Val Val Gly Pro Gly Asn Glu Leu Gly Lys Pro Ile Asp Val Asn			
225	230	235	240
Asn Ala Ala Asp His Ile Phe Gly Leu Leu Met Asn Asp Trp Ser			
245	250	255	

127

Ala Arg Asp Ile Gln Ala Trp Glu Tyr Val Pro Leu Gly Pro Phe Leu
 260 265 270
 Gly Lys Ser Phe Gly Thr Thr Ile Ser Pro Trp Ile Val Thr Leu Asp
 275 280 285
 Ala Leu Glu Pro Phe Gly Cys Gln Ala Pro Lys Gln Asp Pro Pro Pro
 290 295 300
 Leu Pro Tyr Leu Ala Glu Lys Glu Ser Val Asn Tyr Asp Ile Ser Leu
 305 310 315 320
 Glu Leu Ala His His Thr Val Asn Gly Cys Asn Leu Arg Pro Gly Asp
 325 330 335
 Leu Leu Gly Thr Gly Thr Ile Ser Gly Pro Glu Pro Asp Ser Tyr Gly
 340 345 350
 Cys Leu Leu Glu Leu Thr Trp Asn Gly Gln Lys Pro Leu Ser Leu Asn
 355 360 365
 Gly Thr Thr Gln Thr Phe Leu Glu Asp Gly Asp Gln Val Thr Phe Ser
 370 375 380
 Gly Val Cys Lys Gly Asp Gly Tyr Asn Val Gly Phe Gly Thr Cys Thr
 385 390 395 400
 Gly Lys Ile Val Pro Ser Pro Pro
 405

<210> 122

<211> 11667

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: supression construct 2 p3300.1-Toc159-GFP-RNAi

<400> 122

```

aattcgtttc tccataataa tgtgtgagta gttcccagat aaggaaatta gggttcctat 60
agggttccgc tcatagtgttg agcatataag aaacccttag tatgtatttg tatttgtaaa 120
atacttctat caataaaatt tctaattcct aaaaccaaaa tccagtacta aaatccagat 180
cccccgaaatt aattccggcgt taattcagca attcgtaatc atggtcatacg ctgtttcctg 240
tgtgaaattt ttatccgctc acaattccac acaacatacg agccggaagc ataaaagtgt 300
aaggctgggg tgcctaataa gtgagctaac tcacattaat tgcgttgcgc tcactgccc 360
ctttccagtc gggaaacctg tcgtgccagc tgcattaatg aatcgccaa cgccgggg 420
gaggcggtt gcttattggc tagacgact tgccaaatcg gtggagcacg acactctcg 480
ctactccaag aatatcaaag atacagtctc agaagacca aaggctattt agactttca 540
acaaagggtt atatcgggaa acctccctcg attccattgc ccagctatct gtcacttc 600
caaaaggaca gtagaaaagg aagggtggcac ctacaaatgc catcattgcg ataaaaggaaa 660
ggctatcggtt caagatgcct ctgcgcacag tggccaaaa gatggacccc caccacgag 720
gagcatcggtt gaaaaagaag acgttccaaac cacgtcttca aagcaagtgg attgtatgt 780
taacatgggtt gagcacgaca ctctcgctt ctccaaagat atcaaagata cagtctcaga 840
agaccaaagg gctattgaga ctttcaaca aagggttaata tcgggaaacc tcctcggtt 900
ccattgcctt gctatctgtc acttcataa aaggacagta gaaaaggaaag gtggcaccta 960
caaatgcctt cattgcgata aaggaaaggc tattcggttca gatgcctctg ccgacagtgg 1020
tccccaaagat ggaccccccac ccacgaggag catcggttca aaagaagacg ttccaaccac 1080
gtcttcaaag caagtggatt gatgtgatat ctccactgac gtaaggatg acgcacaatc 1140
ccactatcct tcgcaagacc ttcccttata taaggaagtt catttcattt ggagaggaca 1200
cgctgaaatc accagtctt ctctacaaat tattctctt cgagtctacc atgagccca 1260
aacgacgccc gcccgcacatc cggccgtgcca ccgaggcggc catgcccggc gtctgcacca 1320
tcgtcaacca ctacatcgag acaagcacgg tcaacttccg taccgagccg caggaaccgc 1380

```

aggagtggac ggacgaccc tcgttgc gggagcgcta tccctggctc gtcgcccagg 1440
 tggacggcga ggtcgccggc atcgcttacg cgggccccctg gaaggcacgc aacgcctacg 1500
 actggacggc cgagtcgacc gtgtacgtct ccccccggca ccagcgacg ggactgggct 1560
 ccacgctcta cacccacccg ctgaagtccc tggaggcaca gggcttcaag agcgtggct 1620
 ctgtcatcg gctgcccac gaccggagcg tgccatgca cgaggcgctc ggatatgcc 1680
 ccccgccat gctgcggggc gccggcttca agcacggaa ctggcatgac gtgggtttct 1740
 ggcagctgga cttcagccctg cgggtaccgc cccgtccggc cctgcccgtc accgagatt 1800
 gactcgagtt tctccataat aatgtgtgag tagttccag ataaggaaat tagggttcct 1860
 atagggtttc gctcatgtgt tgagcatata agaaaaccctt agtatgtatt tgtatggta 1920
 aaataacttct atcaataaaaa ttcttaattt ctaaaaccaa aatccagtttac taaaatccag 1980
 atccccggaa ttaattcggc gttaattttag tacattaaaa acgtccgcaa tgtgttatta 2040
 agttgtctaa gcgtcaattt gtttacacca caatatatcc tgccaccaggc cagccaacag 2100
 ctcccccggacc ggcagctgg cacaatca ccactcgata caggcagggc atcagtccgg 2160
 gacggcgatca gcggggagagc cgttgtaagg cggcagactt tgctcatgtt accgatgcta 2220
 ttcggaaagaa cggcaactaa gctgcccgggt ttgaaacacg gatgtatcg cggagggtag 2280
 catgttggatt gtaacgatga cagagcggtt ctgcctgtga tcaccgcggt ttcaaaatcg 2340
 gctccgtcga taatgttta tacgccaact ttgaaaacaa ctttggaaaaa gctgtttct 2400
 ggtatttaag gttttagaat gcaaggaaca gtgaatttggc gtctgttctt ttataatttag 2460
 cttcttgggg tatctttaaa tactgttagaa aagagaaagg aaataataaa tggctaaaat 2520
 gagaatatca cccggaaatttga aaaaactgtat cggaaaaatac cgctgcgtaa aagatacgga 2580
 aggaatgtct cctgcttaagg tatataagct ggtggggagaa aatgaaaacc tatatttaaa 2640
 aatgacggac agccggataa aagggaccac ctatgtatgtt gaacggggaaa aggacatgtat 2700
 gctatggctg gaaggaaagc tgctgttcc aaaggctctg cactttgaac ggcattgtgg 2760
 ctggagcaat ctgctcatga gtgaggccga tggcgttcc ttatcggaag agtataaaga 2820
 tgaacaaagc cctgaaaaga ttatcgagct gtatcgagg tgcattcaggc tctttcactc 2880
 catcgacata tcggattgtc cctatacgaa tagcttagac agccgcttag cccgaaatttga 2940
 ttacttactg aataacgatc tggccgtatgtt ggatttgcgaa aactggggag aagacactcc 3000
 atttaaagat cccggcgagc tttatgtattt tttaaagacg gaaaagcccg aagaggaact 3060
 tgtctttcc cacggcgacc tggagacag caacatctt gtggaaatgtt gcaaaatgtt 3120
 tggctttattt gatcttgggaa gaagcgccgg ggcggacaag tggatgtaca ttgccttctg 3180
 cgtccggctg atcaggggagg atatcggggaa agaacatgtat gtcgagctat tttttactt 3240
 actggggatc aagcctgattt gggagaaaaat aaaatattt attttactgg atgaatttgtt 3300
 ttagtaccta gaatgcataa cccaaatccc ttaacgttggat ttttgcgttcc actgagcgatc 3360
 agaccccgta gaaaagatca aaggatctt ttgagatctt tttttctgc gcttaatctg 3420
 ctgcttgc当地 aaaaaaaaaac caccgctacc agcgggggtt ttttgcggg atcaagagct 3480
 accaactt tttccgaagg taacttggctt cagcagacg cagataccaa atactgtcct 3540
 tctatgttag cctgtatgtt ggcaccactt caagaactct gtacgaccgc ctacataacct 3600
 cgctctgcta atcctgttac cagtggttgc tgccagtggc gataagtctgt gtcttaccgg 3660
 gttggactca agacgatgtt taccggataa ggcgcagcgcc tggggcttca cgggggggttc 3720
 gtgcacacag cccagcttgg agcgaacgac ctacaccggaa ctgagatacc tacagcgatg 3780
 gctatggaa agcggccacgc ttccggaaagg gagaaggcgc gacaggatcc cggtaagcg 3840
 cagggtcgga acaggagagc gcacgggggaa gcttccagggg gaaaacgcctt ggtatcttta 3900
 tagtcctgtc gggtttgc当地 acctctgtact tgagcttgc当地 tttttgtat gctcgcttcc 3960
 gggggggggc ctatggaaaaa acggccggccaa cggggccctt ttacgggttcc tggcctttt 4020
 ctggcctttt gtcacatgtt tcttccttgc gttatcccctt gattctgtgg ataaaccgtat 4080
 taccggctttt gaggatgtt gatccgttgc cccggccggaa acgaccggagc gcagcgagtc 4140
 agtggggcggag ggagcgaaag agcggcttgc ggggttccat tcccttacgc atctgtgcgg 4200
 tatttcacac cggcatatgtt gcaactcttgc tacaatcttgc tctgtatggccg catagttaa 4260
 ccagtataca ctccgttac gctacgttgc tgggtcatgg ctgcggccgg acacccggcc 4320
 acacccggccgtg aegcgcccttgc acgggcttgc ctgctccgg catccggatca cagacaagct 4380
 gtgaccgtct cccggggatgttgc catgttgc当地 aggttttccat cgtcatcacc gaaacgcgg 4440
 aggccgggtt ccttgc当地 ggcggccggc gtcgagttggc gacggccggc cttgtccgg 4500
 ccctggtaga ttgcctggcc gttagggccat ctttttgc当地 cggccggccgg ccggatagg 4560
 cccgacggccaa gcccggggcc gttagggggcc cagcggccggc agggtagggcc ctttttgc当地 4620
 ctcttcggct gtgcgttgc当地 cagacatgtt gtcacaggcc aggccgggtt taagatgtt 4680
 aataagttt aaagatgtt gggggggaaa atcgctttt ttatcgatgttca tttttttt 4740
 ttacatgttgc gaccgggttcc caatgttgc当地 ctttgggttcc ccaatgttgc当地 gttccgggtt 4800

ccaaatgtac ggctttgggt tcccaatgtta cgtgctatcc acaggaaaaga gaccttttcg 4860
accttttccc cctgcttaggg caatttgcgg tagcatctgc tccgtacatt aggaaccggc 4920
ggatgcttcg ccctcgatca gggtgcggta gcgcataactcggatccatctggct tctgccttgc ctgcggcgcg gcgtgccagg cggatcggc cagcctgccc 4980
cgccctctcc ttcaaatacg actccggcag gtcatttgac ccgatcagct tgccgacacgt 5040
aaaaacagaac ttcttgaact ctccggcgct gccactgcgt tcgtatcg tcttgaacaa 5100
ccatctggct tctgccttgc ctgcggcgcg gcgtgccagg cggtagagaa aacggccgat 5160
gccgggatcg atcaaaaagt aatcggggtg aaccgtcagc acgtccgggt tcttgccttc 5220
tgtgatctcg cggtacatcc aatcagctag ctgcatactcg atgtactccg gccgccccgg 5280
ttcgctcttt acgatcttgc agcggctaatt caaggcttca ccctcgata ccgtcaccag 5340
gcggccgttc ttggccttct tcgtacgctg catggcaacg tgcgtgtgt ttaaccgaat 5400
gcaggtttct accaggtcgt ctttctgtt tccggccatcg gctgcggc aagaactttag 5460
tacgtccgca acgtgtggac ggaacacgcg gccgggcttgc tctcccttcc cttcccggt 5520
tcggttcatg gattcggtt gatgggaaac cgccatcagt accaggtcgt aatcccacac 5580
actggccatg ccggccggcc ctgcggaaac ctctacgtgc ccgtctggaa gctcgtagcg 5640
gatcacctcg ccagctcgcc ggtcacgctt cgacagacgg aaaacggcca cgtccatgat 5700
gctgcgacta tcgcgggtgc ccacgtcata gagcatcgga acgaaaaaat ctgggtgctc 5760
gtcgccttgc ggcggcttcc taatcgacgg cgacccggct gccggcggtt gccgggattc 5820
tttgcgatt cgatcagcg ccgcttgcca cgattcaccg gggcgtgtt ctgcctcgat 5880
gcgttgcgc tggcggccct ggcggccctt caacttctcc accaggtcat caccggcgc 5940
cgcccgatt tgtaccggc cggatggttt ggcacgtca cgccgattcc tcgggcttgg 6000
gggttccagt gccattgcag ggccggcaga caaccagcc gcttacgcct ggccaaccgc 6060
cggttcctcc acacatgggg cattccacgg cgtcgtgcc tgggttgc tgggttgc 6120
tgccgcctcc tttagccgtt aaaattcatc tactcatttac ttcatttgct catttactct 6180
ggtagctgcg cgatgtattc agatagcgc tcggtaatgg tctgccttgc gcgttaccgc 6240
tacatcttca gcttgggtgt atcctccgc ggcaactgaa agttgaccgc cttcatggct 6300
ggcgtgtctg ccaggctggc caacgttgc gccttgcgc tgcgtgcgc tggacggccg 6360
gcacttagcg tgggtgtct ttgcatttgc ttctctttac ctcattaact caaatgagtt 6420
ttgatttaat ttcagcggcc aggccttgc cctcgcggc agcgtgcgc tcgggttctg 6480
attcaagaac gtttgcggc gggcggcag tgcctggta gctcacgcgc tgctgtatc 6540
gggactcaag aatgggcagc tcgtacccgg ccagcgctc ggcaacctca cccggatgc 6600
gcgtgcctt gatgcggccg gacacgacaa aggccgcttgc tagccttcca tccgtgaccc 6660
caatgcgctg cttaccggc tccaccaggc cggcgtggc ccatatgtcg taagggttgc 6720
gctgcacccgg aatcagcagc aagtccgtgc cttgatcgc ggacacagcc aagtccggc 6780
cctggggcgc tccgtcgatc actacgaatc cgccggccca gatggccttc acgtcgccgt 6840
caatcgctgg cgggtcgatg ccgacaacgg ttagcggttgc atcttcccgc acggccggcc 6900
aatcgccggc actgcccgg ggtatcgaaat cgactaacag aacatcgcc cccggcgagtt 6960
gcagggcgcg ggctagatgg gttgcgtatgg tcgttgcgc tgacagcgat aacccgcctt 7020
gtacagcgat aacccatcg cgttccctt gcttatttgc ttatattactc atcgcatcat 7080
atacgcagcg accgcgtac gcaagctgtt ttactcaaat acacatcacc ttttagacg 7140
gcggcgctcg gtttcttcag cggccaagct ggccggccag gccgcagct tggtatcaga 7200
caaaccggcc aggatttcat gcagccgcac gtttagacgc tgccggcg gctcgaacac 7260
gtacccggcc gcgatcatct ccgcctcgat ctcttcggta atgaaaaacg gttcgtctgc 7320
gccgtcttgc tgccgttca tgcttgcgtt ctcttgcgtt cattctcgcc ggccgcccagg 7380
gcgtcgccct cggtaatgc tcgtcacgg aaggcaccgc gccgccttgc ctcgggtggc 7440
gtcacttcct cgctcgctc aagtgcgcgg tacagggtcg agcgatgcac gccaaggcgt 7500
gcagccgcct ttgcacggc gcccgttcc tggtcgatca gctcgccggc gtgcgcgatc 7560
tgtgccccgg tgagggttagg gccccggccca aacttcacgc ctcggccctt ggccggctcg 7620
cgccccgtcc ggggtcgccg gatgatttagg gaacgcgtca actcggaat gcccggcgaac 7680
acggtaaca ccatgcggcc gggccggcgtg tggtgtcgcc cccacggctc tgccaggcta 7740
cgcaggcccg cgccggcctc ctggatgcgc tcggcaatgt ccagtaggtc gccccgtcg 7800
cgggccaggc ggtctagcct ggtcaactgtc acaacgtcgc cagggcgtag gtggtaaagc 7860
atccctggcca gtcggggcg gtcgcgcctg gtgcgggtga tcttctcgga aaacagcttgc 7920
gtgcagccgg cggcgatcg ttcggccgt tggttgcgtc agtcctggtc gtcgggtgt 7980
acgcggccat agcccagcag gccagccggc ggcgtcttgc tcatggcgta atgtctccgg 8040
ttcttagtcgc aagtattcta ctttatgcga ctaaaacacgc gacacaagaaa acgcccaggaa 8100
aaggccaggc cggcagcctg tgccgtact taggacttgt gcgacatgtc gttttcagaa 8160
gacggctgca ctgaacgtca gaagccgact gcactatagc agcggagggg ttggatcaaa 8220

gtacttttat cccgaggggga accctgtggg tggcatgcac atacaatgg acgaacggat 8280
aaacctttc acgcctttt aaatatccgt tattctaata aacgctttt tctcttaggt 8340
ttacccgcca atatatcctg tcaaacactg atagttaaa ctgaaggcg gaaacgacaa 8400
tctgatccaa gctcaagctg ctctagcatt cgccatttcg gctgcacaac tggtggaaag 8460
ggcgatcggt gcgggcctt tcgctattac gccagctggc gaaaggggaa tggtgtcaa 8520
ggcgattaag ttggtaacg ccagggtttt ccagtcacg acgtttaaa acgacggcca 8580
gtgccaagct tttggctaga gcagcttgcc aacatggtgg agcagcacac tctctgtctac 8640
tccaagaata tcaaagatac agtctcagaa gaccaaagg aggtaat cctcgatttc cattgcccag 8700
aggacactg aaaaggaagg tggcacctac aaatgccatc attgcataa aggaaaggct 8820
atcggtcaag atgcctctgc cgacagtggt cccaaagatg gaccccccacc cacgaggagc 8880
atcggtggaaa aagaagacgt tccaaccacg tcttcaaagc aagtggattg atgtgataac 8940
atggtgagc acgacactct cgtctactcc aagaatatca aagatacagt ctcagaagac 9000
caaaggctt ttgagacttt tcaacaaagg gtaatatcg gaaaccttct cggattccat 9060
tgccctgacta tctgtcactt catcaaaagg acagtagaaa aggaagggtt cacctacaaa 9120
tgccatcatt gcgataaaagg aaaggctatc gttcaagatg cctctgcccga cagtggtccc 9180
aaagatggac ccccacccac gaggagcatc gtggaaaaag aagacgttcc aaccacgtct 9240
tcaaagcaag tggattgttg tgatatctcc actgacgtaa gggatgacgc acaatccac 9300
tatccttcgc aagaccttcc tctatataag gaagttcatt tcattttggag aggacacgct 9360
gaaatcacca gtctctctt acaaatttat ctctccatgg catgttctgc aggtcgactc 9420
tagaggatcc cgggttaccc agctcgaaga tttcgacgt cggattcat ggactcaaag 9480
tcggttactc cagaaccaac caaccccttc tacgcttctt cggggcaatc agggaaaaacc 9540
tatgcttctg ttgtcgccgc cgctgctgct gcagccgcg ataaggagga tgggtgtgt 9600
gtgagtagtg ccaaggagtt ggattctca tcggaggctg tgtctgtta ttggataag 9660
gttggagctg atgatttatac tgactcccgag aaggagaagc cgaattttggt gggatgtgg 9720
aaggttccg acgaggtgga tggttctta aaggaggatt ctactactcc tgaggctact 9780
ccgaagccctg aggtggtttcc tggtgagaca attggtagt atgatgtttc atcgttatct 9840
ccgaagccgg aggctgtttc tgatgggtta ggggttggg aggagaataa gaaggtaag 9900
gaggacgtgg aggtatattaa agacgtggt gagagtaaga ttgaaaatgg gagtgttgat 9960
gtttagtgta aacaggcttcc cacagatggg gagagtgaga aagttccaa cacttgtcac 10020
tactttcttct tatgggtttc aatgctttc aagataccca gatcatatga aacggcatga 10080
cttcttcaag agcgccatgc ctgaggata cgtcaggag aggaccatct tcttcaagga 10140
cgacggaaac tacaagacac gtgtgaagt caagtttag gtagacaccc tcgtcaacag 10200
gatcgagctt aaggaaatcg atttcaagga ggacggaaac atcctcgcc acaagttgga 10260
atacaactac aactcccaca acgtatacat catggccgac aagaaaaaga acggcatcaa 10320
agccaacttc aagacccggcc acaaactcgaa agacggcgcc gtgcaactcg ctgatcatta 10380
tcaacaaaat actccaatttgcgatggccc tgccttttta ccagacaacc attacctgtc 10440
cacacaatct gccccttcga aagatcccac cgaaaagaga gaccacatgg tccttcttga 10500
gtttgttaca agtgtgggaa ttacacatgg catggatgaa ctatacaac atgatgagct 10560
ttaaggatcc ttaagctca tcatgtttgt atagttcatttcatgcattgt gtaatccac 10620
cagctgttac aaactcaaga aggaccatgt ggtctctt ttcgggtggaa tctttcgaaa 10680
gggcagattt gttggacagg taatgggtt ctggtaaaag gacaggggcca tcgccaattt 10740
gagtattttt tgataatga tcaagcgagtt gcacggcgcc gtcttcgatg ttgtggcg 10800
tcttgaagtt ggctttagt ccgttctttt gcttgcggc catgatgtat acgttgggg 10860
agttgttagtt gtattccaac ttgtggccga ggtgtttcc gtcctcctt aatcgattc 10920
ccttaagctc gatctgttgc acgagggtgt cttcccttcaaa cttgacttca gcacgtgtct 10980
tgttagtccc gtcgtccttgc aagaagatgg tcctctcctg cacgtatccc tcaggcatgg 11040
cgctctgaa gaagtcatgc cgtttcatat gatctggta tcttggaaaag cattgaacac 11100
cataagagaa agtagtgaca agtggatggaa gctttctcac tctccccatc tttggaaagcc 11160
tgtttcacat caacatcaac actcccattt tcaatttac tctcaccatc gtctttaata 11220
tcctccacgt ctccttaac cttcttatttc tcctccacaa cccctacacc atcagaaaca 11280
gcctccggct tcggagataa cgatgaaaca tcattctacac caattgtctc accagaaacc 11340
acctcaggct tcggagtagc cttaggatgtt gtagaatcctt ctttggaaaaga accatccacc 11400
tcgtcgaaaa cttcccatc acccaccatc ttccggcttctt cttctcgga gtcagataaa 11460
tcatcagctc caaccttatac cgaattacca gacacagcct ccgatggagga atccaactcc 11520
ttggcactac tcacagcacc accatcctcc ttatcgccg ctgcagcagc agcggcgcc 11580

acaacagaag cataggaaaa tcctgattgc cccgaagaag cgtagaaggg gttggttgggt 11640
tctggagtaa ccgactttga gtccatg 11667

<210> 123
<211> 36
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
oligonucleotide primer

<400> 123
ctcgaggaat tcatggactc aaagtccgtt actcca 36

<210> 124
<211> 40
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
oligonucleotide primer

<400> 124
ggatccataa gcaagctttc tcactctccc catctgtgga 40

<210> 125
<211> 26
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
oligonucleotide primer

<400> 125
aagcttccaa cacttgtcac tacttt 26

<210> 126
<211> 26
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
oligonucleotide primer

<400> 126
ggatccttaa agctcatcat gtttgt 26

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/02735

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/11 C12N15/82

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 93 23551 A (SEYMOUR GRAHAM BARRON ; TUCKER GREGORY ALAN (GB); GRIERSON DONALD () 25 November 1993 (1993-11-25) Ansprüche, examples 1-8 ---	1-17
Y	FIRE A ET AL: "Potent and specific genetic interference by double-stranded RNA in <i>Caenorhabditis elegans</i> " NATURE, MACMILLAN JOURNALS LTD. LONDON, GB, vol. 391, 19 February 1998 (1998-02-19), pages 806-811, XP002095876 ISSN: 0028-0836 cited in the application the whole document ---	1-17 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

19 August 2003

Date of mailing of the international search report

27/08/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Kalsner, I

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/02735

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 02 00894 A (CROPDESIGN N V ;ZHOU ZHONGYI (BE); BROEKAERT WILLEM (BE); MIRONOV) 3 January 2002 (2002-01-03) the whole document ---	1-17
A	FIRE A: "RNA-triggered gene silencing" TRENDS IN GENETICS, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, NL, vol. 15, no. 9, 1 September 1999 (1999-09-01), pages 358-363, XP004176656 ISSN: 0168-9525 the whole document ---	1-17
A	MONTGOMERY ET AL: "RNA as a target of double-stranded RNA-mediated genetic interference in <i>Caenorhabditis elegans</i> " PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 95, December 1998 (1998-12), pages 15502-15507, XP002138441 ISSN: 0027-8424 the whole document ---	1-17
A	WESLEY S VARSHA ET AL: "Construct design for efficient, effective and high-throughput gene silencing in plants" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, vol. 27, no. 6, September 2001 (2001-09), pages 581-590, XP002187670 ISSN: 0960-7412 the whole document -----	1-17

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 03/02735

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 9323551	A 25-11-1993	AU EP WO US ZA	4079493 A 0644942 A1 9323551 A1 5942657 A 9303361 A	13-12-1993 29-03-1995 25-11-1993 24-08-1999 23-09-1994
WO 0200894	A 03-01-2002	AU WO	9165601 A 0200894 A2	08-01-2002 03-01-2002

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 03/02735

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C12N15/11 C12N15/82

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C12N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	WO 93 23551 A (SEYMOUR GRAHAM BARRON ;TUCKER GREGORY ALAN (GB); GRIERSON DONALD () 25. November 1993 (1993-11-25) Ansprüche, Beispiele 1-8 ---	1-17
Y	FIRE A ET AL: "Potent and specific genetic interference by double-stranded RNA in <i>Caenorhabditis elegans</i> " NATURE, MACMILLAN JOURNALS LTD. LONDON, GB, Bd. 391, 19. Februar 1998 (1998-02-19), Seiten 806-811, XP002095876 ISSN: 0028-0836 in der Anmeldung erwähnt das ganze Dokument ---	1-17 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche Absendedatum des internationalen Recherchenberichts

19. August 2003

27/08/2003

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Kalsner, I

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/02735

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 02 00894 A (CROPDESIGN N V ;ZHOU ZHONGYI (BE); BROEKAERT WILLEM (BE); MIRONOV) 3. Januar 2002 (2002-01-03) das ganze Dokument ----	1-17
A	FIRE A: "RNA-triggered gene silencing" TRENDS IN GENETICS, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, NL, Bd. 15, Nr. 9, 1. September 1999 (1999-09-01), Seiten 358-363, XP004176656 ISSN: 0168-9525 das ganze Dokument ----	1-17
A	MONTGOMERY ET AL: "RNA as a target of double-stranded RNA-mediated genetic interference in <i>Caenorhabditis elegans</i> " PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, Bd. 95, Dezember 1998 (1998-12), Seiten 15502-15507, XP002138441 ISSN: 0027-8424 das ganze Dokument ----	1-17
A	WESLEY S VARSHA ET AL: "Construct design for efficient, effective and high-throughput gene silencing in plants" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, Bd. 27, Nr. 6, September 2001 (2001-09), Seiten 581-590, XP002187670 ISSN: 0960-7412 das ganze Dokument ----	1-17

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationale Aktenzeichen

PCT/EP 03/02735

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9323551	A 25-11-1993	AU EP WO US ZA	4079493 A 0644942 A1 9323551 A1 5942657 A 9303361 A	13-12-1993 29-03-1995 25-11-1993 24-08-1999 23-09-1994
WO 0200894	A 03-01-2002	AU WO	9165601 A 0200894 A2	08-01-2002 03-01-2002