~
<u>ෆ</u>
Ĭ

·					1/54				
Activity	U/g IB	0	0	0	40.00	0	105.26	15.65	48.70
550 mM	L- Arg	0	+	0	+	0	+	0	+
440 m.M	Sucrose	0	+	+	0	+	0	0	+
2.2 mM	CaCl ₂	+	0	+	0	0	+	0	+
2.2 mM	MgCl ₂	+	0	+	0	0	+	0	+
1.1 m.M	EDTA	0	+	. 0	+	+	0	+	0
550 mM	GndHCI	+	+	0	0	0	0	+	+
0.055%	9EG 3350	0	+	0	4-	0	-1-	0	+
Mm	Š	0.44	0.44	£	=	0.44	0.44	=	11
Mm	NaCl	10.56	10.56	264	264	10.56	10.56	264	264
0.3 mM	LM	+	0	0	-1-	+	, 0	0	+
0.1 mM	9889	+	+	+	+	+	-1-	+	+
1 mM	SSH	+	-1-	+	+	-1-	-}-	+	+
	#	2 (55 mM MES pH 6.5)	3 (55 mM MES pH 6.5)	#5 (55 mM MES pH 6.5)	#8 (55 mM MES pH 6.5)	#10 (55 mM MES pH 8.2)	#11 (55 mM Tris pH 8.2)	#13 (55 mM Tris pH 8.2)	#16 (55 mM Tris pH 8.2)

SUBSTITUTE SHEET (RULE 26)

2/54

ELution of MBP-ST3Gal III from Amylose column

FIG. 2

ST3 Gal III activities of the Amylose purified refolded MBP-ST3Gal III fractions

FIG. 3

FIG. 4

5/54

GlycoPEGylation (20 K) of EPO

FIG. 5

6/54

P27115		RGRRVHLAP	PQTWDGYDPS	SWI	FI	G. 6	
/usr/t	IVTFQE	•	PPIWEGYDPS	• • •			
	420	430	440				
		370	380	390	400	410	420
P27115	LARVYO	APQLQVEKV	RINDRKELGE	EVRVQYTGRDS			
/usr/t	LARVYO	APQLQVEKV	RINDRKELGE	TVRVQYTGRDS		VMDDLKSGVE	
	360	370	380	390	400	410	
P27115	KGRACV	RPEISRTMT 310	FGRKGVSHGQ 320	FFDQHLKFIK 330	1.NQQFVPF1 340	QLDLSYLQQE 350	360 360
	.::::.		:::::::::	:::::::::	::::::	:::::::::	::::::
/usr/t	200 QGRACI			EFDQHLKFIK			AYDRDF
	300	310	320	330	340	350	
P27115	SAWNDN			FPGLGWLLLA 270			
	:::::	:::::::::	.::::::::	FPGLGWLLLA	::::::::	:::::::::	::::::
	240			270		290 WDKA EMIDDWM	₽₽₽₽∩₽
		190	200	210	220	230	240
P27115	FQGYYK	IARHYRWAL	GQIFHNFNYP	AAVVVEDDLE	VAPDFFEYF	QATYPLLKAD	PSLWCV
	::::::	::::::::	::.:.:: .:	AAVVVEDDLE'		.::::::::	::::::
	180	190	200			230	חפד זאיריי ז
		130	140	150	160	170	180
P27115	RRCLDK		LFPIIVSQDC	GHEETAQVIA:		ROPDLSNIAV	QPDHRK
/usr/t	RRCLDK.	LLHYRPSAEI	TELITASÕDO	GHEETAQAIA!	SIGSAVITI	:::::::::::	
, ,	L20	130	140	150		170	DDDLIDV
		70	80	90	100	TTO	140
P27115	AEVELE			WKVPTAAPPA(90	OPHVPVTPPI 100	PAVIPILVIA 110	CDRSTV 120
	::::::		. :: :::		:::::::	:::::::::	:::::
//	יים אינו אינו	70		90 GRVPTAAPPAÇ	100 1000 700 700 1	110	יחפפתי
		10	20	30	40	50	00
P27115	MLKKQSA			LFFWTRPVPSF	RLPSDNALDI 40	DDPASLTREVI 50	RLAQD 60
	:::::::			:::::::::::	:: .:::	:::::::::::	:::::
/ / - -	N #T T2T2/\\\\\\\\	10	20	30 LFFWIRPAPGF	40	50 דע אישפיית די אנטרטי	00 COA.TET

SUBSTITUTE SHEET (RULE 26)

gqvfrqfrfpaavvveddlevapdffeyfratypllkadpslwcvsawndngkeqmvdasrpellyrtdffpglgwlllaelwae lepkwpkafwddwmrrpeqrqgracirpeisrtmtfgrkgvshgqffdqhlkfiklinqqfvhftqldlsylqreaydrdflarvyg avipilviacdrstvrrsldkllhyrpsaelfpiivsqdcgheetaqaiasygsavthirqpdlssiavppdhrkfqgyykiarhyrwa ${
m apqlqvekvrt}$ ndrkelgevrv ${
m qytgrdsfkafakalgvmddlksgvpragyrgivtfqfpgrrvhlappptwegydpswn*}$

GnT1 Cys121Ser mutant

getettececateategttagecaggactgegggcaegaggaggaeggeeeggecategeeteetaeggeageggeggteaegeacae sagottoaaggotttogocaaggototgggtgtoatggatgacottaagtogggggttoogagagotggotacogggggtattgtoacott Geggtgatteceatectggteategeetgtgacegeageactgtteggege**tet**etagaeaagetgetgeattateggeeeteggt coggcagcccgacctgagcagcattgcggtgccggccggaccaccgcaagttccagggctactacaagatcgcgccactaccg coctgagatotcaagaacgatgacotttggccgcaagggtgtgagccacgggcagttotttgaccagcacotcaagtttatcaagctga ctgggcgctgggccaggtcttccggcagtttcgcttcccggggccgtggtggtggtggaggatgacctggaggtggccccggacttctt accagcagtttgtgcacttcacccagctggacctgtcttacctgcagcgggaggcctatgaccgagatttcctcgcccgcgtctacggt scagttcccgggccgccgtgtccacctggcgcccccaccgacgtgggaggggggtatgatcctagctggaattag

FG. 7

avipilviacdrstvrrdldkllhyrpsaelfpiivsqdcgheetaqaiasygsavthirqpdlssiavppdhrkfqgyykiarhyrwa .gqvfrqfrfpaavvveddlevapdffeyfratypllkadpslwcvsawndngkeqmvdasrpellyrtdffpglgwlllaelwae lepkwpk afwddwm rrpeqrqgracirpe is rtmtfgrkgvshgqffdqhlkfiklnqqfvhftqldlsylqreaydrdffarvyg ${
m apqlqvekvrt}$ ndr ${
m kelgevrvqytgrdsfkafakalgvmddlksgvpragyrgivtfqfpgrrvhlappptwegydpswn*}$

GnT1 Cys121Asp

gecetgagateteaagaacgatgacetttggeegeaagggtgtgageeacgggeagttetttgaeeageaeeteaagtttateaagetg ${\it cagcttcaaggcttcgccaaggctctgggtgtcatggatgaccttaagtcggggggttccgagagctggctaccggggtattgtcacctt}$ aaccagcagtttgtgcacttcacccagctggacctgtcttacctgcagcgggaggcctatgaccgagatttcctcgcccgcgtctacgg gctgggcgctgggccaggtcttccggcagtttcgcttccccgcggccgtggtggtggtggaggatgacctggaggtggccccggacttct Geggtgatteceateetggteategeetgtgacegeageactgtteggegegatetagaeaagetgetgeattateggeeeteggetg atccggcagcccgacctgagcagcattgcggtgccgccggaccaccgcaagttccagggctactacaagatcgcgcgccactacc scagttcccgggccgccgtgtccacctggcgcccccaccgacgtgggaggggtatgatcctagctggaattag

FIG. 8

avipilviacdrstvrrtldkllhyrpsaelfpiivsqdcgheetaqaiasygsavthirqpdlssiavppdhrkfqgyykiarhyrwal gqvfrqfrfpaavvveddlevapdffeyfratypllkadpslwcvsawndngkeqmvdasrpellyrtdffpglgwlllaelwaelepkwpkafwddwmrpeqrqgracirpeisrtmtfgrkgvshgqffdqhlkfiklnqqfvhffqldlsylqreaydrdflarvyg ${
m apqlqvekvrt}$ ndrkelgevrvqytgrdsfkafakalgvmddlksgvpragyrgivtfqfpgrrvhlappptwegydpswn *

cagetteaaggetttegecaaggetetgggtgteatggatgaecttaagtegggggtteegagagetggetaeeggggtattgteaeett gecetgagateteaagaacgatgacetttggeegeaagggtgtgageeaegggeagttetttgaeeageaeeteaagtttateaagetg agetetteeceateategttagecaggaetgegggeacgaggagagaeggeceaggecategeettetaeggeageggggggteaegeae gctgggcgctgggccaggtcttccggcagtttcgcttcccggggccgtggtggtggtggaggatgacctggaggtggccccggacttct aaccagcagtttgtgcacttcacccagctggacctgtcttacctgcagcgggaggcctatgaccgagatttcctcgccgcgtctacgg Geggtgatteceatectggteategeetgtgacegeageactgtteggegeactetagaeaagetgetgeattateggeeeteggetg atccggcagcccgacctgagcagcattgcggtgccgccggaccaccgcaagttccagggctactacaagatcgcgcgccactacc tegagtaetttegggecaectateegetgetgaaggeegaeeeteetteetgtggtgegteteggeetggaatgaeaaeggeaaggage ccagttcccgggccgccgtgtccacctggcgcccccaccgacgtgggaggggtatgatcctagctggaattag

FIG. (2)

GnT1 Cys121Ala

avipilviacdrstvrraldkllhyrpsaelfpiivsqdcgheetaqaiasygsavthirqpdlssiavppdhrkfqgyykiarhyrwa lgqvfrqfrfpaavvvveddlevapdffeyfratypllkadpslwcvsawndngkeqmvdasrpellyrtdffpglgwlllaelwae $apqlqvekvrtndrkelgevrvqytgrdsfkafakalgvmddlksgvpragyrgivtfqfpgrrvhlappptwegydpswn^{\ast}$

gecetgagateteaagaacgatgacetttggeegeaagggtgtgageeaegggeagttetttgaeeageaeeteaagtttateaagetg cagettcaaggetttegecaaggetetgggtgteatggatgaecttaagtegggggtteegagagetggetaeegggggtattgteaeett agetetteeceateategttagecaggaetgegggeacgaggagagaeggeecaggecategeetectaeggeageggeggteaegeae aaccagcagtttgtgcacttcacccagctggacctgtcttacctgcagcgggaggcctatgaccgagatttcctcgccgcgtctacgg getgggegetgggecaggtetteeggeagtttegetteeeegeggeegtggtggtggtggaggatgaeetggaggtggeeeeggaettet atccggcagcccgacctgagcagcattgcggtgccgccggaccaccgcaagttccaggggctactacaagatcgcgcgccactacc ccagttcccgggccgccgtgtccacctggcgcccccaccgacgtgggaggggctatgatcctagctggaattag

FIG. 10

PCT/US2005/003856

algqv frq frfp a avvveddlev apd ffey fratypllk adpslwcvs awn dng keqmv das rpellyrt dffpglgwlllaelwa $a vipilvia c dr s tv r {\color{red} {\bf a} {\bf h}} l dk l l h y r p sa e l f piiv s q d c g h e e ta qaia s y g sa v thir q p d l s siav p p d h r k f q g y y kiar h y r w$ elepkwpk af wddwmrrpeqrqgracirpeisrtmtf grkgwshgqff dqhlkfiklnqqf whftqldlsylqreaydrdflarwyddd ar wall and ar wall a ${
m gapqlq}$ vekvr ${
m tndr}$ kel ${
m gevrvqytgrdsfkafakalgvmddlksgvpragyrgivtfqfpgrrvhlappptwegydpswn*}$

GnT1 Arg120Ala, Cys121H

gecetgagateteaagaacgatgacetttggeegeaagggtgtgageeaegggeagttetttgaceageaceteaagtttateaagetg cagetteaaggetttegecaaggetetgggtgteatggatgaecttaagteggggggtteegagagetggetaeegggggtattgteaeett aaccagcagtttgtgcacttcacccagctggacctgtcttacctgcagcgggaggcctatgaccgagatttcctcgccgcgtctacgg Geggtgatteceatectggteategeetgtgacegeageactgttegggeeeaectagaeaagetgetgeattateggeeeteggetg getgggcgctgggccaggtcttccggcagtttcgcttcccgcggccgtggtggtggtggaggatgacctggaggtggccccggacttct atccggcagcccgacctgagcagcattgcggtgccgccggaccaccgcaagttccagggctactacaagatcgcgcgccactacc ccagttcccgggccgccgtgtccacctggcgccccaccgacgtgggagggggggtatgatcctagctggaattag

五 万 子

Rat Liver ST3Gal III amino acid sequence:

ARIREFVPPFGIKGQDNLIKAIL.SVTKEYRLTPALDSLHCRRCIIVGNGGVLANKSLGS GFLLKLDSKLPAELATKYANFSEGACKPGYASAMMTAIFPRFSKPAPMFLDDSFRKW RIDDYDIVIRLNSAPVKGFEKDVGSKTTLRITYPEGAMQRPEQYERDSLFVLAGFKW *MGLLVFVRNILLALCLFLVLGFLYYSAW*KLHLLQWEDSNSLILSLDSAGQTLGTEYDRL GLMGRGNIPTLGSVAVTIMALDGCDEVAVAGFGYDMNTPNAPLHYYETVRMAAIKE QDFKWLKYIVYKERVSASDGFWKSVATRVPKEPPEIRILNPYFIQEAAFTLIGLPFNN SWTHNIQREKEFLRKLVKARVITDLSSGI

FIG. 1,

13/54
Full length UDP-N-acetylgalactosaminyltransferase 2 (GalNAcT2)
nucleic acid and amino acid sequences

Amino acid sequence Met Arg Arg Arg Ser Arg Met Leu Leu Cys Phe Ala Phe Leu Trp Val Leu Gly Ile Ala Tyr Tyr Met Tyr Ser Gly Gly Gly Ser Ala Leu Ala 20 25 30 Gly Gly Ala Gly Gly Ala Gly Arg Lys Glu Asp Trp Asn Glu Ile 35 40 45 Asp Pro Ile Lys Lys Asp Leu His His Ser Asn Gly Glu Glu Lys 50 55 60 Ala Gln Ser Met Glu Thr Leu Pro Pro Gly Lys Val Arg Trp Pro Asp 65 70 75 80 Phe Asn Gln Glu Ala Tyr Val Gly Gly Thr Met Val Arg Ser Gly Gln
85 90 95 Asp Pro Tyr Ala Arg Asn Lys Phe Asn Gln Val Glu Ser Asp Lys Leu 100 105 110 Arg Met Asp Arg Ala Ile Pro Asp Thr Arg His Asp Gln Cys Gln Arg 115 120 125 Lys Gln Trp Arg Val Asp Leu Pro Ala Thr Ser Val Val Ile Thr Phe His Asn Glu Ala Arg Ser Ala Leu Leu Arg Thr Val Val Ser Val Leu 155 160 Lys Lys Ser Pro Pro His Leu Ile Lys Glu Ile Ile Leu Val Asp Asp 165 170 175 Tyr Ser Asn Asp Pro Glu Asp Gly Ala Leu Leu Gly Lys Ile Glu Lys Val Arg Val Leu Arg Asn Asp Arg Arg Glu Gly Leu Met Arg Ser Arg 195 200 205 Val Arg Gly Ala Asp Ala Ala Gln Ala Lys Val Leu Thr Phe Leu Asp 210 215 220 Ser His Cys Glu Cys Asn Glu His Trp Leu Glu Pro Leu Leu Glu Arg 24Ō Val Ala Glu Asp Arg Thr Arg Val Val Ser Pro Ile Ile Asp Val Ile 245 250 255 Asn Met Asp Asn Phe Gln Tyr Val Gly Ala Ser Ala Asp Leu Lys Gly 260 265 270 Gly Phe Asp Trp Asn Leu Val Phe Lys Trp Asp Tyr Met Thr Pro Glu 275 280 285

FIG. 13A SUBSTITUTE SHEET (RULE 26)

14/54 Gln Arg Arg Ser Arg Gln Gly Asn Pro Val Ala Pro Ile Lys Thr Pro 295 Met Ile Ala Gly Gly Leu Phe Val Met Asp Lys Phe Tyr Phe Glu Glu Leu Gly Lys Tyr Asp Met Met Met Asp Val Trp Gly Glu Asn Leu 330 Glu Ile Ser Phe Arg Val Trp Gln Cys Gly Gly Ser Leu Glu Ile Ile Pro Cys Ser Arg Val Gly His Val Phe Arg Lys Gln His Pro Tyr Thr 360 Phe Pro Gly Gly Ser Gly Thr Val Phe Ala Arg Asn Thr Arg Arg Ala Ala Glu Val Trp Met Asp Glu Tyr Lys Asn Phe Tyr Tyr Ala Ala Val 395 Pro Ser Ala Arg Asn Val Pro Tyr Gly Asn Ile Gln Ser Arg Leu Glu Leu Arg Lys Lys Leu Ser Cys Lys Pro Phe Lys Trp Tyr Leu Glu Asn 425 Val Tyr Pro Glu Leu Arg Val Pro Asp His Gln Asp Ile Ala Phe Gly Ala Leu Gln Gln Gly Thr Asn Cys Leu Asp Thr Leu Gly His Phe Ala 450 Asp Gly Val Val Gly Val Tyr Glu Cys His Asn Ala Gly Gly Asn Gln 475 Glu Trp Ala Leu Thr Lys Glu Lys Ser Val Lys His Met Asp Leu Cys 495 490 485 Leu Thr Val Val Asp Arg Ala Pro Gly Ser Leu Ile Lys Leu Gln Gly 500 505 Cys Arg Glu Asn Asp Ser Arg Gln Lys Trp Glu Gln Ile Glu Gly Asn Ser Lys Leu Arg His Val Gly Ser Asn Leu Cys Leu Asp Ser Arg Thr Ala Lys Ser Gly Gly Leu Ser Val Glu Val Cys Gly Pro Ala Leu Ser 555 560 550 545

FIG. 13A (CONT.) SUBSTITUTE SHEET (RULE 26)

Gln Gln Trp Lys Phe Thr Leu Asn Leu Gln Gln

15/54

15/54	
Nucleic acid sequence atgaggagge gatagagat gatgataga ttagaattaa tgtgggtgat gggaatagaa	60
tactacatgt actogggggg oggctctgog ctggcogggg gogogggogg oggogooggc	120
aggaaggagg actggaatga aattgacccc attaaaaaga aagaccttca tcacagcaat	180
ggagaagaga aagcacaaag catggagacc ctccctccag ggaaagtacg gtggccagac	240
tttaaccagg aagettatgt tggagggacg atggtooget cogggcagga coettacgec	300
ogcaacaagt toaaocaggt ggagagtgat aagettogaa tggacagage catcoctgae	360
accoggoatg accagtgtca goggaagcag tggogggtgg atctgooggc caccagogtg	420
gtgatcacgt ttcacaatga agccaggtcg gccctactca ggaccgtggt cagcgtgctt	480
aagaaaagoc ogooccatct cataaaagaa atcatcttgg tggatgacta cagcaatgat	540
cetgaggaeg gggetetett ggggaaaatt gagaaagtge gagttettag aaatgatega	600
ogagaaggoc tcatgogctc acgggttogg ggggoogatg ctgcocaagc caaggtoctg	660
acetteetgg acagteactg ogagtgtaat gagcactgge tggagcooot ootggaaagg	720
gtggggggg acaggactog ggttgtgtca cocatcatog atgtcattaa tatggacaac	780
tttcagtatg tgggggcatc tgctgacttg aagggcggtt ttgattggaa cttggtattc	840
aagtgggatt acatgacgcc tgagcagaga aggtcccggc aggggaaccc agtcgcccct	900
ataaaaaccc ccatgattgc tggtgggctg tttgtgatgg ataagttcta ttttgaagaa	960
ctggggaagt acgacatgat gatggatgtg tggggaggag agaacctaga gatctcgttc	1020
cgcgtgtggc agtgtggtgg cagcctggag atcatcccgt gcagccgtgt gggacacgtg	1080
ttooggaago agoacoocta caogttooog ggtggoagtg goactgtett tgooogaaac	1140
accogcoggg cagcagaggt ctggatggat gaatacaaaa atttctatta tgcagcagtg	1200
octtotgota gaaacgttoc ttatggaaat attoagagoa gattggagot taggaagaaa	1260
ctcagctgca agoctttcaa atggtacctt gaaaatgtct atccagagtt aagggttcca	1320
gaccatcagg atatagettt tggggcettg cagcagggaa ctaactgeet cgacaetttg	1380
ggacactttg ctgatggtgt ggttggagtt tatgaatgtc acaatgctgg gggaaaccag	1440
gaatgggoot tgaogaagga gaagtoggtg aagcacatgg atttgtgoot tactgtggtg	1500
gaccgggcac ogggctctct tataaagctg cagggctgcc gagaaaatga cagcagacag	1560
azatgggaac agatcgaggg caactccaag ctgaggcacg tgggcagcaa cctgtgcctg	1620
gacagtogca oggocaagag ogggggocta agogtggagg tgtgtggocc ggocctttog	1680
cagcagtgga agttcacgct caacctgcag cag	1713

FIG. 13B SUBSTITUTE SHEET (RULE 26)

16/54 Δ51 UDP-N-acetylgalactosaminyltransferase 2, GalNAcT2, nucleic acid and amino acid sequences

Amino acid sequence Lys Lys Lys Asp Leu His His Ser Asn Gly Glu Glu Lys Ala Gln Ser 1 10 15 Met Glu Thr Leu Pro Pro Gly Lys Val Arg Trp Pro Asp Phe Asn Gln 20 25 30 Glu Ala Tyr Val Gly Gly Thr Met Val Arg Ser Gly Gln Asp Pro Tyr 35 40 45Ala Arg Asn Lys Phe Asn Gln Val Glu Ser Asp Lys Leu Arg Met Asp 50 60 Arg Ala Ile Pro Asp Thr Arg His Asp Gln Cys Gln Arg Lys Gln Trp 65 75 80 Arg Val Asp Leu Pro Ala Thr Ser Val Val Ile Thr Phe His Asn Glu 85 90 95 Ala Arg Ser Ala Leu Leu Arg Thr Val Val Ser Val Leu Lys Lys Ser 100 105 Pro Pro His Leu Ile Lys Glu Ile Ile Leu Val Asp Asp Tyr Ser Asn 115 120 125 Asp Pro Glu Asp Gly Ala Leu Leu Gly Lys Ile Glu Lys Val Arg Val 130 135 140 Leu Arg Asn Asp Arg Glu Gly Leu Met Arg Ser Arg Val Arg Gly 145 150 150 Ala Asp Ala Ala Gln Ala Lys Val Leu Thr Phe Leu Asp Ser His Cys 165 170 175 Glu Cys Asn Glu His Trp Leu Glu Pro Leu Leu Glu Arg Val Ala Glu 180 185 190 Asp Arg Thr Arg Val Val Ser Pro Ile Ile Asp Val Ile Asn Met Asp 195 200 Asn Phe Gln Tyr Val Gly Ala Ser Ala Asp Leu Lys Gly Gly Phe Asp 210 220 Trp Asn Leu Val Phe Lys Trp Asp Tyr Met Thr Pro Glu Gln Arg Arg 225 230 235 Ser Arg Gln Gly Asn Pro Val Ala Pro Ile Lys Thr Pro Met Ile Ala 245 255 Gly Gly Leu Phe Val Met Asp Lys Phe Tyr Phe Glu Glu Leu Gly Lys 260 270 Tyr Asp Met Met Met Asp Val Trp Gly Gly Glu Asn Leu Glu Ile Ser 275 280 285 Phe Arg Val Trp Gln Cys Gly Gly Ser Leu Glu Ile Ile Pro Cys Ser

FIG. 14A SUBSTITUTE SHEET (RULE 26)

17/54

	290					295					300				
Arg 305	Val	Gly	His	Val	Phe 310	Arg	Lys	Gln	His	Pro 315	Tyr	Thr	Phe	Pro	Gly 320
Gly	Ser	Gly	Thr	Val 325	Phe	Ala	Arg	Asn	Thr 330	Arg	Arg	Ala	Ala	Glu 335	Val
Trp	Met	Asp	Glu 340	Tyr	Lys	Asn	Phe	Tyr 345	Tyr	Ala	Ala	Val	Pro 350	Ser	Ala
Arg	Asn	Val 355	Pro	Tyr	Gly	Asn	Ile 360	Gln	Ser	Arg	Leu	Glu 365	Leu	Arg	Lys
Lys	Leu 370	Ser	Cys	Lys	Pro	Phe 375	Lys	Trp	Tyr	Leu	Glu 380	Asn	Val	Tyr	Pro
Glu 385	Leu	Arg	Val	Pro	Asp 390	His	Gln	Asp	Ile	Ala 395	Phe	Gly	Ala	Leu	Gln 400
Gln	Gly	Thr	Asn	Cys 405	Leu	Asp	Thr	Leu	Gly 410	His	Phe	Ala	Asp	Gly 415	Val
Val	Gly	Val	Tyr 420	Glu	Cys	His	Asn	Ala 425	Gly	Gly	Asn	Gln	Glu 430	Trp	Ala
Leu	Thr	Lys 435	Glu	Lys	Ser	Val	Lys 440	His	Met	Asp	Leu	Cys 445	Leu	Thr	Val
Val	Asp 450	Arg	Ala	Pro	Gly	Ser 455	Leu	Ile	Lys	Leu	Gln 460	Gly	Cys	Arg	Glu
Asn 465	Asp	Ser	Arg	Gln	Lys 470	Trp	Glu	Gln	Ile	Glu 475	Gly	Asn	Ser	Lys	Leu 480
Arg	His	Val	Gly	Ser 485	Asn	Leu	Cys	Leu	Asp 490	Ser	Arg	Thr	Ala	Lys 495	Ser
Gly	Gly	Leu	Ser 500	Val	Glu	Val	Cys	Gly 505	Pro	Ala	Leu	Ser	Gln 510	Gln	Trp
Lys	Phe	Thr 515		Asn	Leu	Gln	Gln 520								

FIG. 14A (CONT.)

SUBSTITUTE SHEET (RULE 26)

Nucleic acid sequence 18/54	
aaaaagaaag aocttcatca cagcaatgga gaagagaaag cacaaagcat ggagacc	etc 60
octocaggga aagtacggtg gocagacttt aaccaggaag cttatgttgg agggacg	atg 120
gtccgctccg ggcaggaccc ttacgcccgc aacaagttca accaggtgga gagtgata	eag 180
cttogaatgg acagagocat occtgacacc oggcatgacc agtgtcagog gaagoagt	
oggytggatc tgcoggccac cagogtggtg atcacgtttc acaatgaagc caggtog	gec 300
ctactcagga cogtggtcag cgtgcttaag aaaagcccgc cccatctcat aaaagaaa	atc 360
atcttggtgg atgactacag caatgateet gaggacgggg etetettggg gaaaattg	gag 420
aaagtgogag ttottagaaa tgatogaoga gaaggootoa tgogotoaog ggttogg	ggg 480
googatgetg cocaagooaa ggteetgaee tteetggaea gteactgega gtgtaat	gag 540
cactggctgg agococtoct ggaaagggtg goggaggaca ggactogggt tgtgtca	
atcatogatg tcattaatat ggacaacttt cagtatgtgg gggcatctgc tgacttg	aag 660
ggoggttttg attggaactt ggtattcaag tgggattaca tgacgoctga gcagaga	agg 720
tocoggcagg ggaacocagt cgccctata aaaaccccca tgattgctgg tgggctg	ttt 780
gtgatggata agttetattt tgaagaactg gggaagtacg acatgatgat ggatgtg	itgg 840
ggaggagaga acctagagat ctogttoogc gtgtggcagt gtggtggcag octggag	atc 900
atcoogtgca googtgtggg acacgtgttc oggaagcagc accoctacac gttcoog	ggt 960
ggcagtggca ctgtctttgc cogaaacacc ogoogggcag cagaggtctg gatggat	rgaa 1.020
tacaaaaatt tetattatge ageagtgeet tetgetagaa aegtteetta tggaaat	att 1080
cagagcagat tggagcttag gaagaaactc agctgcaagc ctttcaaatg gtacctt	rgaa 1140
aatgtotato cagagttaag ggttocagac catcaggata tagottttgg ggootto	ycag 1200
cagggaacta actgoctoga cactttggga cactttgctg atggtgtggt tggagtt	tat 1260
gaatgtcaca atgctggggg aaaccaggaa tgggccttga cgaaggagaa gtcggtg	gaag 1320
cacatggatt tgtgccttac tgtggtggac cgggcacogg gctctcttat aaagctg	gcag 1380
ggctgccgag aaaatgacag cagacagaaa tgggaacaga tcgagggcaa ctccaac	getg 1440
aggcacgtgg gcagcaacct gtgcctggac agtcgcacgg ccaagagcgg gggccta	eagc 1500
gtggaggtgt gtggcccggc cetttcgcag cagtggaagt tcacgetcaa cetgca	gcag 1560

FIG. 14B

SUBSTITUTE SHEET (RULE 26)

20/54

SUBSTITUTE SHEET (RULE 26)

21/54

22/54

SUBSTITUTE SHEET (RULE 26)

23/54

SUBSTITUTE SHEET (RULE 26)

25/54

	Volume (mL)	Activity (U/L)	A280
Load	890	1.5	0.110
FT _{A4-C4}	670	9.2	NA
FT _{C5-C7}	120	1.0	0
Wash	138	3.6	0.100
D6	45	4.5	0
D5	45	2.4	0.026
D4	45	2.0	0.108
D3/2	90	1.1	0.179
E6		0.0	0.017

FIG. 20

SUBSTITUTE SHEET (RULE 26)

27/54

Pooled A4-C4 and adjusted pH to 7.0 using 1mM HCl 670mL load pH 7.0 16mS/cm

	Volume	Activity	Activity	A280	A280/	Activity	Mass	Specific
		pre- dialysis	post- dialysis		(mg/mL)	<u>5</u>	(6 _{III})	Activity (U/mg)
Load	029	9.2	NA	AN				
FT	029	0.0	A	0.122				
Wash	6	2.9	NA	-0.013				
A5/6	9	1.1	NA	-0.005				
A7	3	0.1						
A8	င	1.3						
A9	3	4.6	19.3 (13ml)	0.180	0.119	0.25	1.55	0.16
A10	3	2.4	(101115)					
A11	3	0.4						

FIG. 22

28/54

SUBSTITUTE SHEET (RULE 26)

GNVDPLLEKRLVSCRRCAVVGNSGNLKESYYGPOIDSHDFVLRMNKAPTEGFEADVGSKTTHHFVYPE KELKAKGKSALMFNLOEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKH MNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASP PCTCTRCIEEORVSAWFDERFNRSMOPLLTAKNAHLEEDTYKWWLRLOREKOPNNLNDTIRELFOVVP <u> GRYPSTGILSVIFSLHICDEVDLYGFGADSKGNWHHYWENNPSAGAFRKTGVHDGDFESNVTTILASIN</u> WYAVRTAVINAASGROTVDEALKDAOTNSSSINININININININLGIEGRISEFGSELSENFKKLMKYPYR NKELAKEFLENYLITDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAF MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRF SFRELAQEVSMILVPFKTTDLEWVISATTTGRISHTYVPVPAKIKVKKEKILIYHPAFIKYVFDRWLQGH GGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALD

MBP-pST3Gal1 fusion protein

IG. 24A

MBPSBD-pST3Gal1 fusion protein

KELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKH MINADTDYSIAEAAFNIKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASP FKKLMKYPYRPCTCTRCIEEORVSAWFDERFNRSMOPLLTAKNAHLEEDTYKWWLRLOREKOPNNLN YVFDRWLQGHGRYPSTGILSVIFSLHICDEVDLYGFGADSKGNWHHYWENNPSAGAFRKTGVHDGDF DTIRELFQVVPGNVDPLLEKRLVSCRRCAVVGNSGNLKESYYGPQIDSHDFVLRMNKAPTEGFEADVG NKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAOKGEIMPNIPOMSAF KYTSSDPLWYVTVTLPAGESFEYKFIRIESDDSVEWESDPNREYTVPQACGTSTATVTDTWRGSELSEN MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPOVAATGDGPDIIFWAHDRF SKTTHHFVYPESFRELAOEVSMILVPFKTTDLEWVJSATTTGRISHTYVPVPAKIKVKKEKILJYHPAFIK GGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALD WYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNNNNNLGIEGRISEFGSIVATGGTTTTTATPTG SGSVTSTSKTTATASKTSTSTSSTSCTTPTAVAVTFDLTATTTYGENIYLVGSISOLGDWETSDGIALSAD ESNVTTILASINKIRIFKGR

FIG. 24B

30/54

Test pST3Gal1 for activity after Hampton refold

FIG. 25

KELKAKGKSALMFNLQEPYFTWPLJAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLJKNKH NCSASVKIKASKSPWLQNIFLPNITLFLDSGRFTQSEWNRLEHFAPPFGFMELNQSLVQKVVTRFP HRPQEAFRNALDLDRYLLLHPDFLRYMKNRFLRSKTLDTAXWRIYRPTTGALLLLTALHLCDKV MNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASP STRKTPMATGAVPAKKKVVQATKSPASSPHPTTRRRQRLKASEFKSEPRWDFEEEYSLDMSSLQT SFYGFTAFSLTQSILILGRRGFQHVPLGKDVRYLHFLEGTRNYEWLEAMFLNQTLAKTHLSWFR NKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAF PVRQQQLLLASLPTGYSKCITCAVVGNGGILNDSRVGREIDSHDYVFRLSGAVIKGYEQDVGTRT WYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNNNNNLGIEGRISEFGSSEHLDKVPRTPGAL GGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALD SAYGFITEGHERFSDHYYDTSWKRLIFYINHDFRLERMVWKRLHDEGIIWLYQRPQSDKAKN

MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRF

FIG. 26A

SPITIQRNQRLKAANFKSEPRWDFEEKYSFEIGGLQTTCPDSVKIKASKSLWLQKLFLPNLTLFLDS GILNNSHMGQEIDSHDYVFRLSGALIKGYEQDVGTRTSFYGFTAFSLTQSLLILGNRGFKNVPLGK **DVRYLHFLEGTRDYEWLEALLMNOTVMSKNLFWFRHRPQEAFREALHMDRYLLLHPDFLRYM** KNRFLRSKTLDGAHWRIYRPTTGALLLLTALQLCDQVSAYGFTTEGHERFSDHYYDTSWKRLJFY KELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKH NIKERSL QSL AKPKSQAPTRARRITIYAEPVPENNALNTQTQPKAHTTGDRGKEANQAPPEEQDK **VPHTAQRAAWKSPEKEKTMVNTLSPRGQDAGMASGRTEAQSWKSQDTKTTQGNGGQTRKLTA** MNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASP RHFNQSEWDRLEHFAPPFGFMELNYSLVQKVVTRFPPVPQQQLLLASLPAGSLRCITCAVVGNG NKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAF WYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNNNNNLGIEGRISEFGSKEPQTKPSRHQRTE SKTVSEKHQGKAATTAKTLIPKSQHRMLAPTGAVSTRIRQKGVTTAVIPPKEKKPQATPPPAPFQ MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRF GGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALD NHDFKLEREVWKRLHDEGIRLYQRPGPGTAKAKN

FIG. 26B

32/54

FIG. 27A

FIG. 27B

There is no obvious inducible band at the expected

Mass of 36 kDa for the native SiaA protein.

FIG. 28

Induced SiaA/MBP expression in E.coli

Lanes 2-6 E.coli JM109 stain

Compare to figure X where SiaA production is not obvious. The presence of High level production of SiaA/MBP even in absence of IPTG induction. the fusion partner (MBP) drives high levels of expression.

FIG. 29

ggvsalskqq kknepnpgrf gpgpgsnlts ytpmdcisph llnvgfkeal pqlvgvhppl agesmfnrak kcrmirhsrd alhlgvtlvy ylagrdlrrl nldayshpgp gfslpyvqyf qnpkvklggr sskprsraps ipvdlklieg svsrpnavig ytkitvdigt ldygiyving rhisvamdkf hntyrcfsqp mvlevqrypl racrllvavc lvgpmliefn ylhpmvqrqq iynrlafrgm gvapppplqn ywgwggedddrqehlkywly sdvdlipmnd lsdglnslty saampgaslq gqpsgelrlr ltacpeespl flsingfpnn driahtketm kvaiiilfrn kdydyncfvf apvpstttrs mkfrepllgg qgsshgaaai 241 301 361 181

FIG. 3(

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

42/54

SUBSTITUTE SHEET (RULE 26)

43/54

GnT1 constructs

MBP-GnT1(A35)

MBP-GnT1(∆103)

mlkkqsaglv lwgailfvaw nallllffwt rpapgrppsv saldgdpasl trevirlagd

aevelerqrg llqqigdals sqrgrvptaa ppaqprvpvt papavipilv iacdrstvrr

121 cldkllhyrp saelfpiivs qdcgheetaq aiasygsavt hirqpdlssi avppdhrkfq

181 gyykiarhyr walgqvfrqf rfpaavvved dlevapdffe yfratypllk adpslwcvsa 241 wndngkeqmv dasrpellyr tdffpglgwl llaelwaele pkwpkafwdd wmrrpegrqg 301 racirpeisr tmtfgrkgvs hgqffdqhlk fiklnqqfvh ftqldlsylq reaydrdfla

361 rvygapqlqv ekvrtndrke lgevrvqytg rdsfkafaka lgvmddlksg vpragyrgiv

421 tfqfrgrrvh lappptwegy dpswn

FIG. 36

SUBSTITUTE SHEET (RULE 26)

45/54

gfgadskgnw kqpnnlndti fkklmkypyr isatttgtis ykwwlrlgre pqidshdfvl kqmvielsen lhicdevdly stgilsvifs htvvttawfp aknahleedt sgnlkesyyg pfkttdlewv lasinkirif lagevsmilv rwlqghgryp scrrcavvgn gdfesnvtti fltsfflnys fnrsmqpllt kvkkekiliy hpafikyvfd gafrktgvhd vdpllekrlv hfvypesfre qrvsawfder klltllvlfi eadvgsktth hhywennpsa relfqvvpgn pctctrciee mapmrkkstl 61 121 181 241 301

FIG. 3

46/54

Human ST6GalNAcI
MRSCLWRCRHLSQGVQWSLLLAVLVFFLFALPSFIKEPQTKPSRHQRTENIKERSLQS
LAKPKSQAPTRARRTTIYAEPVPENNALNTQTQPKAHTTGDRGKEANQAPPEEQDK
VPHTAQRAAWKSPEKEKTMVNTLSPRGQDAGMASGRTEAQSWKSQDTKTTQGNG
GQTRKLTASRTVSEKHQGKAATTAKTLIPKSQHRMLAPTGAVSTRTRQKGVTTAVIP
PKEKKPQATPPPAPFQSPTTQRNQRLKAANFKSEPRWDFEEKYSFEIGGLQTTCPDSV
KIKASKSLWLQKLFLPNLTLFLDSRHFNQSEWDRLEHFAPPFGFMELNYSLVQKVVT
RFPPVPQQQLLLASLPAGSLRCITCAVVGNGGILNNSHMGQEIDSHDYVFRLSGALIK
GYEQDVGTRTSFYGFTAFSLTQSLLILGNRGFKNVPLGKDVRYLHFLEGTRDYEWLE
ALLMNQTVMSKNLFWFRHRPQEAFREALHMDRYLLLHPDFLRYMKNRFLRSKTLD
GAHWRIYRPTTGALLLLTALQLCDQVSAYGFITEGHERFSDHYYDTSWKRLIFYINH
DFKLEREVWKRLHDEGIIRLYQRPGPGTAKAKN

FIG. 38A

Chicken ST6GalNAcI
MGFLIRRLPKDSRIFRWLLILTVFSFIITSFSALFGMEKSIFRQLKIYQSIAHMLQVDTQ
DQQGSNYSANGRISKVGLERDIAWLELNTAVSTPSGEGKEEQKKTVKPVAKVEEAK
EKVTVKPFPEVMGITNTTASTASVVERTKEKTTARPVPGVGEADGKRTTIALPSMKE
DKEKATVKPSFGMKVAHANSTSKDKPKAEEPPASVKAIRPVTQAATVTEKKKLRAA
DFKTEPQWDFDDEYILDSSSPVSTCSESVRAKAAKSDWLRDLFLPNITLFIDKSYFNV
SEWDRLEHFAPPYGFMELNYSLVEEVMSRLPPNPHQQLLLANSSSNVSTCISCAVVG
NGGILNNSGMGQEIDSHDYVFRVSGAVIKGYEKDVGTKTSFYGFTAYSLVSSLQNLG
HKGFKKIPQGKHIRYIHFLEAVRDYEWLKALLLDKDIRKGFLNYYGRRPRERFDEDF
TMNKYLVAHPDFLRYLKNRFLKSKNLQKPYWRLYRPTTGALLLLTALHLCDRVSAY
GYITEGHQKYSDHYYDKEWKRLVFYVNHDFNLEKQVWKRLHDENIMKLYQRS

FIG. 38B

Mouse ST6GalNAcI protein beginning at residue 32 of the native mouse protein DPRAKDSRCQFIWKNDASAQENQQKAEPQVPIMTLSPRVHNKESTSVSSKDLKKQER EAVQGEQAEGKEKRKLETIRPAPENPQSKAEPAAKTPVSEHLDKLPRTPGALSTRKTP MATGAVPAKKKVVQATKSPASSPHPTTRRRQRLKASEFKSEPRWDFEEEYSLDMSSL QTNCSASVKIKASKSPWLQNIFLPNITLFLDSGRFTQSEWNRLEHFAPPFGFMELNQSL VQKVVTRFPPVRQQQLLLASLPTGYSKCITCAVVGNGGILNDSRVGREIDSHDYVFR LSGAVIKGYEQDVGTRTSFYGFTAFSLTQSILILGRRGFQHVPLGKDVRYLHFLEGTR NYEWLEAMFLNQTLAKTHLSWFRHRPQEAFRNALDLDRYLLLHPDFLRYMKNRFL RSKTLDTAHWRIYRPTTGALLLLTALHLCDKVSAYGFITEGHQRFSDHYYDTSWKRL IFYINHDFRLERMVWKRLHDEGIIWLYQRPQSDKAKN

FIG. 38C

47/54

Hum (h)ST6GalNAcl truncations			E110 491 aa	M134 467 aa	T171 430 aa			G273 321 da	
	Λ35	Δ72	∆109	Δ133	7	۵۱۲0	Λ232	Δ272	

SUBSTITUTE SHEET (RULE 26)

MBP-hST6GalNAcl constructs

FIG. 40

49/54

MASKSWLNFLTFLCGSAIGFLLCSQLFSILLGEKVDTQPNVLHNDPHARHSDDNGQN HLEGQMNFNADSSQHKDENTDIAENLYQKVRILCWVMTGPQNLEKKAKHVKATW AQRCNKVLFMSSEENKDFPAVGLKTKEGRDQLYWKTIKAFQYVHEHYLEDADWFL KADDDTYVILDNLRWLLSKYDPEEPIYFGRRFKPYVKQGYMSGGAGYVLSKEALKR FVDAFKTDKCTHSSSIEDLALGRCMEIMNVEAGDSRDTIGKETFHPFVPEHHLIKGYL PRTFWYWNYNYYPPVEGPGCCSDLAVSFHYVDSTTMYELEYLVYHLRPYGYLYRY QPTLPERILKEISQANKNEDTKVKLGNP

FIG. 41

	50/54											
		50	50	100	150 150	200	200	250	7	300	350	350
г		40	PEQ DVGGHEHVHE NS' PEQ DVGGHEHVHE NS'	80 HVKRTWGKRC NKLIFMSSAK DDELDAVALP HVKRTWGKRC NKLIFMSSAK DDELDAVALP	, <u></u>	190 190	YVI. SRE	-	LAGDSRDSNG RGREFPFVPE HHLIPSHIDK 300	XVS PNOMYVLDYL IXI	340	EQATESTSDG VSKRS RETK1 Q' EQATESTSDG VSKRS RETK1 Q'
Mode	Normal Normal			HVKF	田田	HE					, c	
	342 N 342 N	20	GDVNDAHHSH GDVNDAHHSH	70 NPSNHOKKAR	_	KTKEAYKYIY 170	CKEKPYVKQG CKEKPYVKQG	220 TGKCLONVNV		KTDE		AVGEIMPEIK AVGEIMPEIK
Range	1 1	10	EFMPYDGHRH EFMPYDGHRH	60 EVRVI.CWIMI	110 VGEGRNNLWG	VGEGRNNLWG 160	YSPETPVYFG YSPETPVYFG	210	SDNSGAEDVE	KEWYWQY IEY	STO 310	NTPDALPNKL NTPDALPNKL
Size	342	7.		51	5T	101	151	201	201	251	TC7	301
Sequence	SCIGALTI.AMI	SFTST77	SCIGALTI.AMI	SCIGALTI.AMI	SPTS122.AMI	SPTS122.AMI	SCIGALT1.AMI	F 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SCIGALII.AMI SPTS122.AMI	SC1GALT1.AMI	SPTS122.AMI	SC1GALT1.AMI SPTS122.AMI

FIG. 42

51/54

Yersinia MBI				
MKTEEGKLVI	WINGDKGYNG	LAEVGKKFEK	DTGIKVTIEH	PDKLEEKFPQ
VAATGDGPDI	IFWAHDRFGG	YAOSGLLAEL	TPSKAFQEKL	FPFTWDAVRF
NGKLTGYPVA	VEALSLIYNK	DLVKEAPKTW	EEIPALDKTL	RANGKSAIMW
NTOEPYETWP	VIAADGGYAF	KFENGVYDAK	NVGVNNAGAQ	AGLQFIVDLV
KNKHINZULD	YSTAEAAFNK	GETAMTINGP	WAWSNIDKSK	INYGVTLLPT
	GVLTAGINAA		LENYLITDQG	LAEVNKDKPL
CAMATRGEOR	OTAKOPRTAA	TMDNATNGEI	MPNIPOMAAF	WYATRSAVLN
	ALMDAATRIT			

FIG. 43A

E. coli MBP				
MKIEEGKLVI	WINGDKGYNG	LAEVGKKFEK	DTGIKVTVEH	PDKLEEKFPQ
VAATGDGPDI	IFWAHDRFGG	YAOSGLLAEI	TPDKAFQDKL	YPFTWDAVRY
NGKLTAYPIA	VEALSLIYNK	DLLPNPPKTW	EEIPALDKEL	KAKGKSALMF
NLOEPYETWP	LIAADGGYAF	KYENGKYDIK	DVGVDNAGAK	AGLTFLVDLI
KNKHMNADTD			WAWSNIDTSK	VNYGVTVLPT
FKGQPSKPFV			LENYLLTDEG	LEAVNKDKPL
GAVALKSYEE				
AASGRQTVDE				

FIG. 43B

Pvroc	coccus fi	uriosus MBP			
MKIE	EGKVVÍ	WHAMOPNELE	VFQSLAEEYM	ALSPEVEIVF	EQKPNLEDAL
KAAT.	PTGOGP	DLFIWAHDWI	GKFAEAGLLE	PIDEYVTEDL	LNEFAPMAQD
AMOY	KGHYYA	LPFAAETVAI	IYNKEMVSEP	PKTFDEMKAI	MEKYYDPANE
KYĞI	AWPINA	YFISAIAOAF	GGYYFDDKTE	QPGLDKPETI	EGFKFFFTEI
WPYM	APTGDY	NTOOSIFLEG	RAPMMVNGPW	SINDVKKAGI	NFGVVPLPPI
TKDG	KEYWPR	PYGGVKLIYF	AAGIKNKDAA	WKFAKWLTTS	EESIKTLALE
LGYT	PVT.TKV	LODDEIKNDE	VIYGFGQAVQ	HAYLMPKSPK	MSAVWGGVDG
AINE	TLODPO	NADIEGILKK	YQQEILNNMQ	G	

Thermococcus litoralis MBP. 43C

1 nermococcu	S morans was	L		
MKIEEGKIVF	AVGGAPNEIE	YWKGVIAEFE	KKYPGVTVEL	KRQATDTEQR
RIDLVNALRG	KSSDPDVFLM	DVAWLGQFIA	SGWLEPLDDY	VQKDNYDLSV
FFOSVINIAD	KOGGKLYALP	VYIDAGLLYY	RKDLLEKYGY	SKPPETWQEL
VEMAORTOSG	ERETNPNEWG	FVWQGKQYEG	LVCDFVEYVY	SNGGSLGEFK
DCKMALLINK	PENVEALOFM	VDLĪHKYKIS	PPNTYTEMTE	EPVRLMFQQG
NAAFERNWPY	AWGLHNADDS	PVKGKVGVAP	LPHFPGHKSA	ATLGGWHIGI
		SVQKGFAMNL		DDPAVVSKSP
UT.KET.DAVEE	MAUDRPTUPY	YPQLSEIIQK		
		11 57077 1 510	_ v _ v _ v _ v _ v _ v _ v _ v _ v _ v	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
KEARELVKOY	SK			

FIG. 43D

Thermatoga n	naritime MBP			
MKTEOTKLTT	WSSEKOVDIL	OKLGEEFKAK	YGIPVEVQYV	DFGSIKSKFL
TAAPÕGOGAD	IIVGAHDWVG	ELAVNGLIEP	IPNFSDLKNF	YDTALKAFSY
GGKLYGVPYA	MEAVALIYNK	DYVDSVPKTM	DELIEKAKQI	DEEYGGEVRG
FTYDVANFYF	SAPFILGYGG	YVFKETPQGL	DVTDIGLANE	GAVKGAKLIK
RMIDEGVLTP	GDNYGTMDSM	FKEGLAAMII	NGLWAIKSYK	DAGINYGVAP
TPELEPGVPA	KPFVGVOGFM	INAKSPNKVI	AMEFLTNFIA	RKETMYKIYL
ADPRIPARKD	VLELVKDNPD	VVAFTQSASM	GTPMPNVPEM	APVWSAMGDA
LSTITUGOAS				

FIG. 43E SUBSTITUTE SHEET (RULE 26)

52/54

Wibrio cholerae MBP MKIEEGQLTI WINGDKGYNG LAEVGKKFEA DTGIKVTVAH PDALQDKFPQ TAATGDGPDI VFWAHDRFGG YAEAGLLVEI KPSAKIQEGI VDFAWDAVKY NGKIIGYPIA VESLSLIYNK DLVPNPPKSW EEVAELDAKL KKEGKSAIMW NLKEPYFTWP LMAADGGYAF KYGVDGYDVK DAGINNKGVK DAMNFVKGLV DKGVISPDMD YSVSESAFNQ GNTAMTINGP WSWGNIEKSG INYGVTTLPK FNGQASKPFV GVLTAGISTA SPNKDLAVEF IENYLLTNDG LRMVNNDKPL GAVALNSFQR ELDADARIAA TMDNAMNGEI MPNIPQMNAF WSSAKNAIIN IVDGRQTVDA ALADAEKQMT KP

FIG. 43F

53/54 50 HSGALNAT1.pep (1)MRKFAYCKVVLATSLIWVLLDMFLLLYFS----ECNKC HSGALNAT2.pep (1)MRRRS--RMLLCFAFLWVLGIAYYMYSGGGSALAGGAGGGAGRKEDWNEI (1)MRK A KMLL A IWVL Consensus FL DN 51 100 HSGALNATI.pep (35) DEKKERGLPAGDVLEPVQKPHEGP-G----EMGKPVVIPKEDQEKMKEM HSGALNAI2.pep (49) DPIKKKDLHHSNGEEKAQSMETLPPGKVRWPDFNQEAYVGGTMVRSGODP Consensus (51)D KKL E O PGD 101 150 (79) FKINQFNLMASEMIALNRSLPDVRLEGCKIKVYPDNLPITSVVIVFHNEA HSGALNAT1.pep HSGALNAT2 pep (99) YARNKFNQVESDKLRMDRAIPDIRHDQCQRKQWRVDLPATSVVITFHNEA Consensus (101)F N FN M SD I L RAIPD R D C K W LP TSVVI FHNEA 151 200 HSGALNAT1.pep (129)WSTLLRTVHSVINRSPRHMIEEIVLVDDASERDFLKRPLESYVKKLKVPV HSGAINAT2.pep (149)RSALLRTVVSVLKKSPPHLIKEIILVDDYSN----DPEDGALLGKIEKV Consensus (151) S LLRTV SVI KSP HLI EIILVDD S V 201 250 HSGALNATI.pep (179) HVIRMEQRSGLIRARLKGAAVSKGQVITFLDAHCECTVGWLEPLLARIKH HSGALNAT2.pep (194) RVLRNDRREGIMRSRVRGADAAQAKVLTFLDSHCECNEHWLEPLLERVAE Consensus (201) VIR D R GLIRARLKGA A A VITFLDAHCEC HSGALNAT1.pep (229) DRRTVVCPIIDVISDDIFEYMAGSDMIYGGFNWKLNFRWYPVPQREMDRR HSGALNAT2.pep (244) DRTRVVSPIIDVINMDNFQYVGASADLKGGFDWNLVFKWDYMTPEQRRSR Consensus (251)DR VV PIIDVI D F YMAAS GGF W L FKW M R 301 350 HSGALNAT1.pep (279)KGDRTLPVRTPIMAGGLFSIDRDYFQEIGTYDAGMDIWGGENLEISFRIW HSGALNAT2.pep (294)QGNPVAPIKTPMIAGGLFVMDKFYFEELGKYDMMDVWGGENLEISFRVW PIKTP IAGGLF IDK YF EIG YD MDIWGGENLEISFRIW Consensus (301) G 351. HSGALNAT1.pep (329)QCGGTLEIVTCSHVGHVFRKATPYTFPGGTGQIINKNNRRLAEVWMDEFK HSGALNAT2.pep (344)QCGGSLEIIPCSRVGHVFRKQHPYTFPGGSGTVFARNTRRAAEVWMDEYK Consensus (351)QCGGSLEII CS VGHVFRK PYTFPGGSG I KN RR AEVWMDEFK 401 HSGALNAT1.pep (379)NFFYIISPGVTKVDYGDISSRVGLRHKLQCKPFSWYLENIYPDSQIPRHY HSGALNAT2.pep (394)NFYYAAVPSARNVPYGNIQSRLELRKKLSCKPFKWYLENVYPELRVPDHQ V YG I SRL LR KL CKPF WYLENIYPD Consensus (401)NFFY IP H 451 500 HSGAINAT1.pep (429) FSLGEIRNVETNQCLDNMARKENEKVGIFNCHGMGGNQVFSYTANKEIRT HSGALNAT2.pep (444) DIAFGALQQGTN-CLDTLGHFADGVVGVYECHNAGGNQEWALTKEKSVKH Consensus (451) N TN CLD LA VGIF CH GGNQ FA T K IK 501 HSGALNAT1.pep (479) DDLCLDVSKLN--GPVTMLKCHHLKGNQLWEYDPVKLTLQHVNSNQCLDK HSGAINAT2.pep (493)MDLCLTVVDRAPGSLIKLQGCRENDSRQKWEQIEGNSKLRHVGSNLCLDS Consensus (501) DLCL V IL C QWE L HV SN CLD 551 584 HSGALNAT1.pep (527) ATEEDSQVPSIRDCNGSRSQQWLLRNVTLPEIF-HSGALNAT2.pep (543) RTAK-SGGLSVEVCGPALSQOWKFTLNLQQ----Consensus (551) T S SI C A SQQW

FIG. 44 SUBSTITUTE SHEET (RULE 26)

54/54

SUBSTITUTE SHEET (RULE 26)