

EXPRESS MAIL EL606538001US
PATENT
39303.20223.00

JC511 U.S. PRO
09/761882
01/17/01

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the application of: Junichi FUJIMORI, et al.

Examiner: Not Assigned

Serial No.: Unknown

Group Art Unit: Not Assigned

Filing Date: Concurrently herewith

For: CONNECTION SETTING APPARATUS

TRANSMITTAL OF PRIORITY DOCUMENT

Assistant Commissioner for Patents
Washington, D.C. 20231

Dear Sir:

Enclosed herewith are certified copies of Japanese Patent Application No. 2000-010314, filed January 17, 2000, from which priority is claimed under 35 U.S.C. 119 and Rule 55b.

Acknowledgement of the priority document is respectfully requested to ensure that the subject information appears on the printed patent.

Respectfully submitted,

Dated: January 17, 2001

By:

David T. Yang
Registration No. 44,415
Morrison & Foerster LLP
555 West Fifth Street, Suite 3500
Los Angeles, California 90013-1024
Telephone: (213) 892-5587
Facsimile: (213) 892-5454

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

JC511 U.S. PTO
09/761082
01/17/01

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
る事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日

Date of Application:

2000年 1月 17日

出願番号

Application Number:

特願2000-010314

出願人

Applicant(s):

ヤマハ株式会社

CERTIFIED COPY OF
PRIORITY DOCUMENT

2000年 9月 22日

特許庁長官
Commissioner,
Patent Office

及川耕造

【書類名】 特許願
【整理番号】 DY2497
【提出日】 平成12年 1月17日
【あて先】 特許庁長官殿
【国際特許分類】 H04L 29/08
【発明の名称】 接続設定装置及び媒体
【請求項の数】 13
【発明者】
【住所又は居所】 静岡県浜松市中沢町10番1号 ヤマハ株式会社内
【氏名】 藤森 潤一
【発明者】
【住所又は居所】 静岡県浜松市中沢町10番1号 ヤマハ株式会社内
【氏名】 栗林 泰孝
【発明者】
【住所又は居所】 静岡県浜松市中沢町10番1号 ヤマハ株式会社内
【氏名】 中村 吉就
【発明者】
【住所又は居所】 静岡県浜松市中沢町10番1号 ヤマハ株式会社内
【氏名】 阿部 達利
【特許出願人】
【識別番号】 000004075
【氏名又は名称】 ヤマハ株式会社
【代表者】 石村 和清
【代理人】
【識別番号】 100091340
【弁理士】
【氏名又は名称】 高橋 敬四郎
【電話番号】 03-3832-8095

【選任した代理人】

【識別番号】 100105887

【弁理士】

【氏名又は名称】 来山 幹雄

【電話番号】 03-3832-8095

【選任した代理人】

【識別番号】 100108394

【弁理士】

【氏名又は名称】 今村 健一

【電話番号】 03-3832-8095

【手数料の表示】

【予納台帳番号】 009852

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9913042

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 接続設定装置及び媒体

【特許請求の範囲】

【請求項1】 各々が少なくとも1つのラインを有し、ネットワーク上に接続された複数の機器から第1の接続情報を取得する接続情報取得手段と、取得した接続情報に基づき第2の接続情報を作成する作成手段と、を有する接続設定装置。

【請求項2】 さらに、前記第2の接続情報を編集する編集手段と、前記編集された第2の接続情報を送信する送信手段とを有する請求項1記載の接続設定装置。

【請求項3】 前記編集手段は、1つの機器と複数の機器を接続するように設定できる請求項2記載の接続設定装置。

【請求項4】 さらに、前記第2の接続情報に基づき接続状況を表示する表示手段を有する請求項1記載の接続設定装置。

【請求項5】 さらに、ラインを情報を出力する側と入力される側に分けて、各ラインに固有の名称を割り当てる割り当て手段を有する請求項4記載の接続設定装置。

【請求項6】 さらに、前記表示手段に表示される前記接続状況を編集することにより前記第2の接続情報を編集する編集手段と、前記編集された第2の接続情報を送信する送信手段とを有する請求項4記載の接続設定装置。

【請求項7】 ネットワーク上に接続された複数機器から第1の接続情報を取得する接続情報取得手段と、

取得した接続情報に基づき第2の接続情報を作成する作成手段と、前記第2の接続情報を編集する編集手段と、非同期ポートと同期ポートを有し、接続情報を送信する送信手段と、第2の接続情報を受信する受信手段と、受信した第2の接続情報に基づき情報を処理する情報処理手段とを有する接続設定装置。

【請求項8】 前記送信手段は、接続情報を非同期ポートから送信し、その他の情報を同期ポートから送信する請求項7記載の接続設定装置。

【請求項9】 ネットワーク上に接続された機器を認識する認識手段と、認識した機器に対応するミキサーを表示するミキサー表示手段と、表示されたミキサーの編集に基づきミキシング情報を編集する編集手段と、編集したミキシング情報を送信する送信手段とを有する接続設定装置。

【請求項10】 ミキシング情報を受信する受信手段と、受信したミキシング情報に基づきミキシング状況を設定する設定手段とを有する接続設定装置。

【請求項11】 ネットワーク上に接続された複数の少なくとも1つのラインを有する機器から第1の接続情報を取得する接続情報取得手順と、取得した接続情報に基づき第2の接続情報を作成する作成手順とを有する接続設定手順をコンピュータに実行させるためのプログラムを記録した媒体。

【請求項12】 ネットワーク上に接続された複数機器から第1の接続情報を取得する接続情報取得手順と、取得した接続情報に基づき第2の接続情報を作成する作成手順と、前記第2の接続情報を編集する編集手順と、接続情報を送信する送信手順と、第2の接続情報を受信する受信手順と、受信した第2の接続情報に基づき情報を処理する情報処理手順とを有する接続設定手順をコンピュータに実行させるためのプログラムを記録した媒体。

【請求項13】 ネットワーク上に接続された機器を認識する認識手順と、認識した機器に対応するミキサーを表示するミキサー表示手順と、表示されたミキサーの編集に基づきミキシング情報を編集する編集手順と、編集したミキシング情報を送信する送信手順とを有する接続設定手順をコンピュータに実行させるためのプログラムを記録した

媒体。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、ネットワーク上に接続された複数機器間の接続設定装置に関する。

【0002】

【従来の技術】

ネットワークの発達により、近年の電子楽器は複数接続して同期演奏が行えるようになった。例えば、電子楽器間の通信の統一規格として、MIDI (Musical Instrument Digital Interface) がある。また、最近では、USB、IEEE1394等の高速ネットワーク規格を電子楽器又は楽音信号処理装置等に搭載することにより、より高速の同期が可能になった。

【0003】

特に、IEEE1394 規格で多チャンネルのデジタルオーディオとMIDI データを伝送する仕様である「オーディオ及び音楽データ転送に関する仕様 (Specification for Audio and Music Data Transmission)」(以降mLANと呼ぶ)においては、256～354 チャンネルのデジタルオーディオデータの転送、256本までのMIDIケーブルに相当する音楽データ転送などを1チャンネルで実現している。

【0004】

【発明が解決しようとする課題】

ところで、このように複数の電子楽器又は楽音信号処理装置間でネットワークを構成する場合、MIDIケーブルや、オーディオケーブルで接続すると、ケーブル本数が増えてしまい配線が非常に複雑になってしまう。

【0005】

また、MIDI機器や、オーディオ機器に実装されている端子が少ないと、所望の接続が出来ない場合がある。

【0006】

さらにまた、接続される機器間でやり取りされる情報について、自機でいずれの情報を扱うようにするかは、各機器毎に設定する必要がある。この設定作業は、それぞれの機器で対応を取りながら、機器ごとに接続状況を設定しなければならない。

【0007】

本発明の目的は、ネットワーク上の複数機器間の接続の設定及び情報の送受信の設定を容易に行えるようにすることである。

【0008】

【課題を解決するための手段】

本発明の一観点によれば、接続設定装置は、ネットワーク上に接続された複数の少なくとも1つのラインを有する機器から第1の接続情報を取得する接続情報取得手段と、取得した接続情報に基づき第2の接続情報を生成する作成手段とを有する。

【0009】

ネットワーク上に接続された複数機器から第1の接続情報を取得する接続情報取得手段と、取得した接続情報に基づき第2の接続情報を生成する作成手段と、前記第2の接続情報を編集する編集手段と、非同期ポートと同期ポートを有し、接続情報を送信する送信手段と、第2の接続情報を受信する受信手段と、受信した第2の接続情報に基づき情報を処理する情報処理手段とを有する。

【0010】

複数種類の情報、例えば、MIDI情報やオーディオ情報のやり取りを1つの機器で統一的に設定できるため、接続機器間の接続の設定が非常に容易になる。

【0011】

また、本発明の他の観点によれば、接続設定装置は、ネットワーク上に接続された機器を認識する認識手段と、認識した機器に対応するミキサーを表示するミキサー表示手段と、表示されたミキサーの編集に基づきミキシング情報を編集する編集手段と、編集したミキシング情報を送信する送信手段とを有する。

【0012】

【発明の実施の形態】

図1は、本実施例におけるIEEE1394を用いたmLANシステムの接続図である。図中、点線は、複数のノードの物理端子間をケーブル等を用いて物理的に接続する部分を表し、太線VCは、後述するユーザ設定による仮想的な接続状況を表す。

【0013】

物理端子とは、ケーブル等を用いて他の機器と物理的に接続することができる端子のことをさす。例えば、MIDI in/out端子、及びAUDIO in/out端子等である。なお、赤外線や、電波を利用した接続も物理的接続であり、そのためのポートも物理端子である。

【0014】

物理端子を用いて任意のノードを接続するかわりに、本実施例では、IEEE1394(mLAN)ポートを利用して、直接接続されていないノード間のみの送受信を仮想的に設定することができる。設定したネットワークを介してMIDI信号等の楽曲情報や、映像用データ等の種々のデータを送受信する。このようにして特定ノード間を、あたかもケーブル等で接続したのと同様の効果を得ることのできる接続を仮想的な接続と呼ぶ。すなわち、実際には、IEEE1394ポート及びシリアルポート以外のMIDIやオーディオ用の物理端子等は、各ノード間で直接接続されていないにもかかわらず、特定ノード間で直接接続されている時と同様の通信ができる。

【0015】

mLANシステムにおいては、シリアル又はツリー状に接続した多数のノードのうち、IEEE1394ケーブルでつながれたものは、任意のノード間での通信が可能となる。これを利用して、上記仮想的な接続が可能になる。

【0016】

コンピュータ端末PCは、後に図2を用いて説明するパーソナルコンピュータ又は汎用コンピュータである。本実施例では、コンピュータ端末PCは、点線C1で示すように、シリアルケーブルを用いて、接続機器IF1と接続されている。コンピュータ端末PCに、IEEE1394(mLAN)インターフェイスがある場合は、IEEE1394ケーブル(mLANケーブル)を用いて接続して

もよい。

【0017】

接続機器IF1、IF2及びIF3は、後に図3を用いて説明するような、少なくともIEEE1394(mLAN)インターフェイスを備えた機器であり、本実施例では、MIDI情報を送受信できるMIDIインターフェイスや、楽音情報(オーディオ情報等)を送受信できるオーディオ・インターフェイス等を備えている。さらに、コンピュータ端末PC等と接続するためのシリアル・インターフェースも備えている。

【0018】

接続機器IF1は、点線C2で示すように、IEEE1394ケーブル(mLANケーブル)を用いて、接続機器IF2と接続されている。さらに、点線C4で示すように、MIDI機器MD1が、MIDIケーブルを用いて接続機器IF1のMIDIin端子に接続され、点線C5で示すようにオーディオ機器AD1がデジタルケーブルを用いて接続機器IF1のAUDIOin端子に接続されている。

【0019】

MIDI機器MD1は、少なくともMIDIインターフェイスを備えた電子楽器等であり、例えば、鍵盤楽器用のキーボードや打楽器用のパッド等である。MIDI機器MD1としては、MIDI情報を生成して出力できるものならばどのようなものでもよい。無論、MIDI情報に基づいた楽曲を再生することもできる。生成されるMIDI情報は、ユーザの入力に基づくものであっても、コンピュータのソフトウェア等により自動的に生成されるものであってもよい。

【0020】

本実施例では、MIDI機器MD1はMIDIインターフェイスを備えており、接続機器IF1のMIDIinに接続される。つまり、MIDI機器MD1は、図1に示すmLANシステム上に、接続機器IF1を介して、MIDI情報を入力(送信)する為に利用される。

【0021】

オーディオ機器AD1は、少なくともオーディオ情報用の入出力端子を備えた

音響機器であり、例えば、CDプレイヤー等である。また、オーディオ機器AD1は、楽音を生成又は再生し、その楽音情報を出力できるものであれば、どのようなものでもよい。例えば、音源装置や自動演奏装置等を内蔵した電子楽器（鍵盤楽器、弦楽器タイプ、管楽器タイプ、打楽器タイプなど）をオーディオ機器として用いてもよい。

【0022】

本実施例では、オーディオ機器AD1は、デジタル・オーディオ・インターフェイスを備えており、接続機器IF1のDIGITALin (AUDIOin)に接続されている。つまり、オーディオ機器AD1は、図1に示すmLANシステム上に、接続機器IF1を介して、オーディオ情報を入力（送信）する為に利用される。

【0023】

接続機器IF2は、接続機器IF1に接続されると共に、点線C3で示すように、IEEE1394ケーブル（mLANケーブル）を用いて、接続機器IF3と接続されている。さらに、点線C6で示すように、MIDI機器MD2が、MIDIケーブルを用いて接続機器IF2のMIDIout端子に接続され、点線C7で示すようにオーディオ機器AD2がデジタルケーブルを用いて接続機器IF2のAUDIOout端子に接続されている。

【0024】

MIDI機器MD2は、少なくともMIDIインターフェイスを備えた音源装置又は自動演奏装置等を内蔵した電子楽器等である。MIDI機器MD2としては、受信したMIDI情報に基づき楽音を生成若しくは編集して出力できるものならばどのようなものでもよい。

【0025】

本実施例では、MIDI機器MD2はMIDIインターフェイスを備えており、接続機器IF2のMIDIoutに接続される。つまり、MIDI機器MD2は、図1に示すmLANシステムから、接続機器IF2を介して、MIDI情報を受信して、その情報に基づき楽曲再生等を行うために利用される。

【0026】

オーディオ機器AD2は、少なくともオーディオ情報用の入出力端子を備えた音響機器である。オーディオ機器AD2としては、入力された楽音（オーディオ情報）を再生、編集又は録音できるものであれば、どのようなものでもよい。例えば、オーディオ入力端子を備えたパーソナルコンピュータ等をオーディオ機器AD2として用いてもよい。

【0027】

本実施例では、オーディオ機器AD2は、デジタル・オーディオ・インターフェイスを備えており、DIGITALケーブルを用いて接続機器IF2のDIGITALout (AUDIOout) に接続されている。つまり、オーディオ機器AD2は、図1に示すmLANシステムから、接続機器IF2を介して、オーディオ情報を受信して、その情報に基づき楽曲再生等を行うために利用される。

【0028】

接続機器IF3は、点線C3で示すように、IEEE1394ケーブル (mLANケーブル) を用いて、接続機器IF2と接続されている。さらに、点線C8で示すように、MIDI機器MD3が、MIDIケーブルを用いて接続機器IF3のMIDIout端子に接続されている。

【0029】

MIDI機器MD3は、少なくともMIDIインターフェイスを備えた音源装置又は自動演奏装置等を内蔵した電子楽器等であり、前述のMIDI機器MD2と同様のものである。

【0030】

上述の点線C2及びC3で示すIEEE1394ケーブル (mLANケーブル) を用いて接続されている部分では、複数のMIDI情報及び楽音情報（オーディオ情報）、後述する各機器の機器情報及び接続情報を、mLAN接続されている機器 (IEEE1394で接続されている機器) のいずれに対しても送信することが出来る。

【0031】

送信される各情報には、どの機器から送信された情報か、あるいはどの機器へ流す情報かを表す識別情報が添付されている。各機器は、その識別情報を参照し

て、送信されてきた情報が、自機の必要とする情報か否かを判別し、自機の必要とする情報と判別された情報のみを受信する。

【0032】

上記m LANシステムにおいて、楽曲再生用のMIDI情報あるいはオーディオ情報などは、同期情報として、その旨を表す情報が添付されて送信される。この同期情報は、後述の非同期情報よりも優先的に扱われる。同期情報の送受信では、演奏が途切れる事の無いように、リアルタイム性が重視され、情報送信完了の確認は行われない。

【0033】

各機器の機器情報及び接続情報は、非同期情報として、その旨を表す情報が添付されて送信される。この非同期情報は、確実な情報の送受信が重視され、情報送信後に情報が正しく送られたか否かが判断され、エラーがあれば再送信される。非同期情報は、上記の同期情報よりも送信の優先度が低く、同期情報の送信が止まっている間等を利用して送信される。

【0034】

図2は、図1に示すm LANシステムを構成しているコンピュータ端末PC又はパーソナルコンピュータPCの基本的構成を示すブロック図である。

【0035】

バス1には、検出回路2、表示回路3、RAM4、ROM5、CPU6、外部記憶装置7、通信インターフェイス8、IN/OUTインターフェイス9、拡張スロット10、タイマ13が接続される。

【0036】

ユーザは、検出回路2に接続される入力装置であるキーボード11a及びマウス11bを用いて、接続情報の設定又は変更等を指示することができる。入力装置は、例えば、鍵盤、スイッチ等、ユーザの入力に応じた信号を出力できるものならどのようなものでもよい。

【0037】

表示回路3は、ディスプレイ12に接続され、各機器の接続状況等をディスプレイ12に表示することができる。ユーザは、ディスプレイ12に表示される接

続状況等を参照しながら、接続状況等の編集をすることができる。このように表示部への接続状況の表示及び表示部を利用しての接続状況の編集を行うことにより、ユーザは直感的にm LANシステム上の接続状況を理解することができ、直感的に接続状況を変更することができる。これにより、操作性が向上される。

【0038】

ディスプレイ12には、図1に示すようなm LAN上における接続状況の接続図を表示してもよいし、図4に示すように、リスト表示してもよい。また、両方の画像を並べて表示してもよい。さらには、必要に応じて、複数のウィンドウを表示させるようにしてもよい。接続情報の表示は、上記りすとか接続図を用いたものが好ましいが、m LAN上の接続状況がわかる他の表示方法で代用しても良い。

【0039】

図1に示すような接続図を表示する場合、まず、初期画面として、後述の機器情報及び接続情報に基づき図1の太線VC以外の部分が表示される。次に、ユーザが、太線VCの部分を検出回路2に接続された各種の入力装置を用いた画面表示上の操作(GUI操作)により入力する(入力に伴ない太線VCが表示される)。そして、ユーザの入力した接続状況に対応した情報(後述の全体接続情報及び接続状況情報)が各機器に送信され、m LANシステム上での各接続機器の接続状況が設定又は変更される。図4のリスト表示については後述する。

【0040】

外部記憶装置7は、外部記憶装置用のインターフェイスを含み、そのインターフェイスを介してバス1に接続される。外部記憶装置7は、例えばフロッピディスクドライブ(FDD)、ハードディスクドライブ(HDD)、光磁気ディスク(MO)ドライブ、CD-ROM(コンパクトディスクリードオンリィメモリ)ドライブ、DVDドライブ等である。

【0041】

なお、本実施例では、外部記憶装置7として少なくともHDD及びCD-ROMドライブを有している場合について説明する。

【0042】

HDDは、制御プログラム、各種データ、又は本実施例における接続設定プログラム等を記憶しておく記憶装置である。ROM5に制御プログラム等が記憶されていない場合、このHDD内に制御プログラム等を記憶させておき、それをRAM4に読み込むことにより、ROM5に制御プログラム等を記憶している場合と同様の動作をCPU6にさせることが出来る。このようにすると、制御プログラムや、本実施例における接続設定プログラム等の追加やバージョンアップ等が容易に行える。

【0043】

CD-ROMドライブは、CD-ROMに記憶されている制御プログラム又は本実施例における接続設定プログラムや、各種データを読み出す装置である。読み出した制御プログラム等はHDD内にストアされる。このCD-ROMドライブを用いて、制御プログラムや、本実施例における接続設定プログラム等の追加やバージョンアップ等を行ってもよい。

【0044】

RAM4は、フラグ、レジスタ又はバッファ、制御プログラム、各種データ等を記憶するCPU6用のワーキングエリアを有する。ROM5は、各種データ及び制御プログラム、又は本実施例における接続設定プログラム等を記憶する。CPU6は、ROM5に記憶されている制御プログラム等に従い、演算又は制御を行う。

【0045】

タイマ13は、CPU6に接続されており、基本クロック信号、割り込み処理タイミング等をCPU6に指示する。

【0046】

IN/OUTインターフェイス9は、RS232C又はRS422等のシリアル・インターフェース、MIDIインターフェイス、USB（ユニバーサル・シリアル・バス）インターフェイス、IEEE1394等、他の楽器、音響機器、コンピュータ等に接続できるものである。

【0047】

本実施例においては、コンピュータ端末PCは、接続機器IF1とシリアルポ

ート経由で接続されているので、本実施例におけるコンピュータ端末PCは、少なくともシリアルポートを備えている。

【0048】

拡張スロット10は、各種の拡張用カード又はボードを接続するためのスロットであり、IN/OUTインターフェイス9が、IEEE1394で無い場合には、ここにIEEE1394規格のインターフェースカードを挿して使っても良い。また、音源装置として、拡張スロット10にサウンドカード等を挿入して使用してもよい。

【0049】

通信インターフェイス8は、LAN（ローカルエリアネットワーク）やインターネット、電話回線等の通信ネットワーク17に接続可能であり、該通信ネットワーク17を介して、他のコンピュータ19と接続し、HDD等外部記憶装置7、又はRAM4等内に、他のコンピュータ19から制御プログラムや演奏データ等をダウンロードすることができる。クライアントとなるコンピュータ端末PCは、通信インターフェイス8及び通信ネットワーク17を介してコンピュータ19へと制御プログラムや各種データ等のダウンロードを要求するコマンドを送信する。コンピュータ19は、このコマンドを受け、要求された制御プログラムや演奏データ等を、通信ネットワーク17を介してコンピュータ端末PCへと配信し、コンピュータ端末PCが通信インターフェイス8を介して、これら制御プログラムや演奏データ等を受信して外部記憶装置7又はRAM4等内に蓄積することにより、ダウンロードが完了する。

【0050】

なお、コンピュータ端末PCは、さらに、後述の図3における音源装置14及びサウンドシステム15を備えていてもよい。この場合には、音源装置14及びサウンドシステム15は、I/Oインターフェイス9に接続される。さらに、音源装置14にはMIDI機器を接続することができる。

【0051】

図3は、図1に示すmLANシステムを構成している接続機器IF1、IF2及びIF3の基本的構成を示すブロック図である。図2と同じ参照番号を付した

ものは、基本的に同様の構成であるので説明を省略する。

【0052】

バス1には、図2に示すコンピュータ端末PCと同様に、検出回路2、表示回路3、RAM4、ROM5、CPU6、外部記憶装置7、タイマ13等が接続される。

【0053】

さらに、バス1には、音源装置14が直接接続されている。音源装置14には、サウンドシステム15が接続される。

【0054】

音源装置14は、供給されるMIDI信号等に応じて楽音信号を生成し、サウンドシステム15に供給する。サウンドシステム15は、D/A変換器及びスピーカーを含み、供給されるデジタル形式の楽音信号をアナログ形式に変換し、発音する。音源装置14は、さらに、供給されるオーディオ情報をサウンドシステム15に供給して、オーディオ情報に基づく再生も行える。

【0055】

なお、音源装置14は、波形メモリ方式、FM方式、物理モデル方式、高調波合成方式、フォルマント合成方式、VCO+VCF+VCAのアナログシンセサイザ方式等、どのような方式であってもよい。

【0056】

また、音源装置14は、専用のハードウェアを用いて構成するものに限らず、DSP+マイクロプログラムを用いて構成してもよいし、CPU+ソフトウェアのプログラムで構成するようにしてもよい。

【0057】

さらに、1つの音源回路を時分割で使用することにより複数の発音チャンネルを形成するようにしてもよいし、複数の音源回路を用い、1つの発音チャンネルにつき1つの音源回路で複数の発音チャンネルを構成するようにしてもよい。

【0058】

IEEE1394インターフェイス20は、IEEE1394規格の高速通信インターフェイスであり、バス1に接続されている。接続機器IFは、これを介

して、他の接続機器IFと接続する。また、コンピュータ端末PCにIEEE1394インターフェイスがあれば、コンピュータ端末PCとも、このIEEE1394インターフェイス20を介して接続しても良い。

【0059】

各種インターフェイス21は、RS232C又はRS422等のシリアル・インターフェース、MIDIインターフェイス、USB（ユニバーサル・シリアル・バス）インターフェイス等、他の楽器、音響機器、コンピュータ等に接続できるものであり、また、デジタル又はアナログのオーディオ・インターフェイス等である。これらインターフェイスは、複数装備していてもよい。

【0060】

操作子11は、検出回路2に接続され、例えば、マウス、キーボード、鍵盤、スイッチ、ジョイスティック等、ユーザの入力に応じた信号を出力できる入力手段ならどのようなものでもよい。また、複数の入力手段が接続されていてもよい。

【0061】

液晶画面12aは、表示回路3に接続され、各種設定情報等を表示する。

【0062】

本実施例では、以上のような構成を有する接続機器IFを用いるが、接続機器IFは、IEEE1394インターフェイスを有するものならば、以上のような形態に限らない。例えば、コンピュータ端末PCを接続機器として使用したり、また、音源装置や自動演奏装置等を内蔵した電子楽器（鍵盤楽器、弦楽器タイプ、管楽器タイプ、打楽器タイプなど）を接続機器として用いたりしてもよい。すなわち、接続機器IFが前述の図1に示すMIDI機器及びオーディオ機器を内蔵していてもよい。その場合は、接続機器IFとMIDI機器及びオーディオ機器間の物理的ケーブル接続は省略される。

【0063】

図4及び図5は、コンピュータ端末PCのディスプレイ12に表示される図1に示すmLANシステムの接続状況のリスト表示である。リスト表示は、後述する各機器の機器情報及び接続情報に基づき表示される。本実施例では、説明の便

宜上、mLAN上で送信されるデータはMIDIデータとオーディオデータだけであるが、送信するデータはこれに限られるものではない。

【0064】

mLANシステムの接続状況は、MIDIとオーディオを別リストとして表示してもよいし、同一リストとして表示してもよいし、また、2つのリストを並べて表示するようにしてもよい。しかし、情報種類ごとの接続状況が直感的に理解できるという面から、別リストとして表示することが好ましい。本実施例では、MIDIとオーディオを別リストとして表示している。

【0065】

図4は、ユーザによる接続状況設定前の画面である。すなわち、図1の太線VCを除く部分をリスト表示したものである。図4（A）がMIDI用の接続リストであり、図4（B）がオーディオ用の接続リストである。

【0066】

接続リストは、MIDI用、オーディオ用共に、from列とto列に分けられており、それぞれの列は点線で上段及び下段に区切られている。

【0067】

from列上段には、mLANシステムに接続されている使用可能な情報を送信する機器（ライン）を表示する。本実施例では、MIDI機器MD1及びオーディオ機器AD1が情報を送信する機器である。

【0068】

to列下段には、mLANシステムに接続されている使用可能な情報を受信する機器が表示される。本実施例では、MIDI機器MD2、MD3及びオーディオ機器AD2が情報を受信する機器である。

【0069】

ライン名の列には、各機器がmLANシステムに接続された時点で自動的に割り当てられた各機器固有のライン名が表示されます。

【0070】

図5は、ユーザによる接続状況設定後の画面である。すなわち、図4のリスト表示を、図1の太線VCのように仮想的に接続した場合のリスト表示である。そ

それぞれ図4（A）は、図5（A）に対応し、図4（B）は、図5（B）に対応する。

【0071】

このリスト表示による接続状況の設定及び変更は、リスト表示中 t o 列下段に表示された情報（受信機器のライン名と機器名の組合せ）のいずれか1つ又は複数を、例えばマウスなどのドラッグ・アンド・ドロップ操作などにより、t o 列上段の接続したい送信機器に対応する位置に移動させる（コピーする）ことにより仮想的に接続することが出来る。また、切断する場合は、受信機器の情報を下段に移動させればよい（上段から削除する）。このリスト表示による接続状況の設定及び変更を、以下、リスト編集と呼ぶ。

【0072】

このリスト編集にともなう接続状況の設定及び変更は、後述する接続状況情報（図11）として記憶され、m LANシステム上の各機器へ送信され、各機器に記憶される。

【0073】

なお、リスト編集は、当然、キーボード等からのキー入力操作によっても行うことができる。この場合、コピーや移動等のコマンドをいずれかのキーに割り当てるようにしてもよい。

【0074】

図5のリスト表示は、ユーザが、MIDI機器MD2及びMD3の情報をt o 列上段のMIDI機器MD1の情報に対応する位置に移動させることにより、MIDI機器MD2及びMD3をMIDI機器MD1に接続し、オーディオ機器AD2の情報をt o 列上段のオーディオ機器AD1の情報に対応する位置に移動させることにより、オーディオ機器AD2をオーディオ機器AD1に接続させたものである。

【0075】

本実施例では、上記のように、1つのfrom側ライン（送信機器）に対して複数のt o 側ライン（受信機器）を接続することができる。これにより、MIDI又はオーディオの出力端子を1つしか実装していない送信機器においても、複

数の受信機器との接続が可能である。つまり、実装されている端子数の少ない機器においても、複数機器間の接続ができる。

【0076】

また、上記のように、画面表示上での指示のみという簡単な操作で、複雑な配線（接続）を、設定又は変更することができる。

【0077】

図6は、後述する図8のステップSA7等で受信する機器情報の概念図である。機器情報は、各機器毎に記録されている情報であり、各機器が装備している物理端子及び各端子に物理的に接続されている機器の情報を表すデータである。左列には物理端子名、右列には各物理端子に接続されている機器の名称が記録されている。空欄は、何も接続されていないことを表す。

【0078】

図6（A）は、コンピュータ端末PCにおける機器情報の概念図であり、コンピュータ端末PCは、シリアルポートと、その他端子（MIDI端子等）を装備し、該シリアルポートに接続機器IF1が接続されていることを示す情報を記憶している。

【0079】

図6（B）は、接続機器IF1における機器情報の概念図であり、接続機器IF1は、シリアルポート、IEEE1394（mLAN）1、IEEE1394（mLAN）2、MIDIin、MIDIout、オーディオ・イン、オーディオ・アウトの端子を装備し、シリアルポートにはコンピュータ端末PCが、mLAN1には接続機器IF2が、MIDIinにはMIDI機器MD1が、オーディオ・インには、オーディオ機器AD1がそれぞれ接続されていることを示す情報を記憶している。

【0080】

図6（C）は、接続機器IF2における機器情報の概念図であり、接続機器IF2は、上記接続機器IF1同様の端子を装備し、mLAN1には接続機器IF1が、mLAN2には接続機器IF3が、MIDIoutにはMIDI機器MD2が、オーディオ・アウトには、オーディオ機器AD2がそれぞれ接続されてい

ることを示す情報を記憶している。

【0081】

図6(D)は、接続機器IF3における機器情報の概念図であり、接続機器IF3は、上記接続機器IF1及びIF2と同様の端子を装備し、mLAN2には接続機器IF2が、MIDIoutにはMIDI機器MD3がそれぞれ接続されていることを示す情報を記憶している。

【0082】

図7は、接続情報の概念図である。接続情報は、mLAN接続された機器において作成されるmLANシステム上における接続状況を表すために用いられるデータである。各接続機器毎に自機の有する物理端子分のラインを確保し、mLANシステム上に接続されている接続機器IF間で、矛盾の無いようにライン名が設定される。それぞれの物理端子には、固有のライン名が割り当てられる。

【0083】

図7(A)、(B)、(C)中、左側が、割り当てられたライン名であり、右側が各ラインに対応する物理端子名（機器に装備された物理端子のいずれかを指定する情報）である。

【0084】

MIDIin（又はAUDIOin）のようなMIDI機器（又はオーディオ機器）から接続機器IF及びmLAN上へ情報を入力する物理端子は、mLANシステム側から見ると、その物理端子から入力される情報を他の物理端子へ出力(out)させるライン（図4、図5及び図11のfrom側ラインに対応するライン）として捉えられるのである。

【0085】

よって、接続機器IFにおけるMIDIin（又はAUDIOin）のような物理端子には、情報を送り出す（出力する）ことを表すMIDIout（又はAUDIOout）といったライン名が割り当てられる。

【0086】

具体的には、接続機器IF1のMIDIin端子にライン名MIDIout1が割り当てられ、AUDIOin端子にライン名AUDIOout1が割り当て

られる。

【0087】

また、MIDIout（又はAUDIOout）のような、MIDI機器（又はオーディオ機器）へ接続機器IF及びmLAN上から情報を出力する物理端子は、mLANシステム側から見ると、その物理端子へ他の物理端子から情報を入力（in）させるライン（図4、図5及び図11のto側ラインに対応するライン）として捉えられるのである。

【0088】

よって、接続機器IFにおけるMIDIout（又はAUDIOout）のような物理端子には、情報を受け取る（入力する）ことを表すMIDIin（又はAUDIOin）といったライン名が割り当てられる。

【0089】

具体的には、接続機器IF2のMIDIout端子にライン名MIDIin2が割り当てられ、AUDIOout端子にライン名AUDIOin2が割り当てられる。また、接続機器IF3のMIDIout端子には、ライン名MIDIin3が割り当てられる。

【0090】

このように、各接続機器のそれぞれの物理端子に割り当てられるライン名を、mLANシステムを中心として割り当てることにより、ユーザは、接続状況表示（リスト表示）時にどこから出てきた情報がどこへ入力されるかが直感的に理解できる。

【0091】

また、ライン名の末尾につけられる番号（MIDIin1における末尾の番号1等）は、mLAN上で複数のラインが同時に扱われるために必要とされる識別子である。この識別番号は、複数のラインを判別できるものであれば番号に限らずアルファベット等を用いてもよい。

【0092】

本実施例では、各接続機器ごとにMIDIin/out及びAUDIOin/out端子をそれぞれ1つずつしか装備していないため、1つの接続機器の中で

は、1つの統一的な番号（識別子）が付されている。しかし、例えば、接続機器IF1にMIDI out端子が2つ装備されている場合は、接続機器IF1にある2つのMIDI out端子のそれぞれに対して、ライン名MIDI in1及びMIDI in2が割り当てられ、そのライン名と重ならないように、接続機器IF2のMIDI out端子には、ライン名MIDI in3が、接続機器IF3のMIDI out端子には、ライン名MIDI in4が割り当てられる。

【0093】

図8は、コンピュータ端末PCのCPU6が行う接続制御処理を示すフローチャートである。

【0094】

コンピュータ端末PCにおいて接続制御処理を含むプログラムが実行されると、ステップSA1から接続制御処理を開始し、次のステップSA2に進む。

【0095】

ステップSA2では、初期設定処理が行われる。この初期設定処理では、例えば、接続状況を初期化し、図4に対応した初期リスト（ライン名と機器名が表示されていない空のリスト）を表示し、各種バッファや、フラグなどをリセットして、次のステップSA3に進む。

【0096】

ステップSA3では、ユーザから、接続機器のリストを更新する指示があるか否かを判断する。このリスト更新処理（ステップSA4～SA11の処理）は、ユーザによるリスト更新処理があったときに行われるもので、ユーザは、画面表示上に設けられるリスト更新指示スイッチにより指示を与える。リスト更新の指示があれば、次のステップSA4に進み、リスト更新の指示がなければステップSA12へ進む。

【0097】

上記リスト更新処理は、具体的には、最初の接続リスト表示時及びmLANシステム上に新機器が接続されたとき、あるいは、機器が切断されたときなどを行うもので、現存のmLANシステム上の物理的な接続状況及びライン名の割当状況を認識するための処理である。なお、以上の状況において、自動的に、リス

ト更新処理を行うようにしてもよい。

【0098】

ステップSA4では、接続機器を検出し、次のステップSA5に進む。本実施例では、コンピュータ端末PCはmLANシステムにシリアルポート経由で接続されているため、図6(A)のコンピュータ端末PCの機器情報を参照して直接接続されている接続機器IF1のみを検出する。

【0099】

ステップSA5では、検出された接続機器へ要求信号を送信し、次のステップSA6に進む。要求信号とは、接続機器に対して、図6に示す機器情報と図7に示す接続情報を送信するように要求する信号である。

【0100】

本実施例では、接続機器IF1だけが検出されているので接続機器IF1にのみ要求信号を送信する。接続機器IF2及びIF3へは接続機器IF1から要求信号が送信される。

【0101】

ステップSA6では、検出された接続機器からの情報を受信する。情報の受信が終了するまで取得処理を継続する。情報通信の終了は、接続機器からの終了指示により判断する。情報の受信が終了したら次のステップSA7に進む。

【0102】

本実施例では、コンピュータ端末PCは、接続機器IF1へ要求信号を送信し、その要求信号を受信した接続機器IF1は、mLAN上の接続機器IF2及びIF3を検出し、接続機器IF2及びIF3へ要求信号を送信する。その後、接続機器IF2及びIF3から接続情報及び機器情報を受信し、それをコンピュータ端末PCへ送信すると共に自機の接続情報及び機器情報をコンピュータ端末PCへ送信する。このようにして、コンピュータ端末PCは、接続機器IF1を介して、その他の接続機器の情報を取得する。

【0103】

なお、コンピュータ端末PCが、mLAN接続されている場合は、コンピュータ端末PCは、mLANシステム上の全ての接続機器を検出し、検出した接続機

器に対して直接要求信号を送信し、全接続機器から接続情報及び機器情報を直接取得する。

【0104】

ステップSA7では、取得した情報からMIDI接続に関するものだけを抽出し、次のステップSA8に進む。

【0105】

ステップSA8では、ステップSA7で抽出した情報に基づき図10(A)に示すような、MIDI全体接続情報を作成する。その後、次のステップSA9に進む。

【0106】

ステップSA9では、取得した情報からオーディオ接続に関するものだけを抽出し、次のステップSA10に進む。

【0107】

ステップSA10では、ステップSA9で抽出した情報に基づき、図10(B)に示すような、オーディオ全体接続情報を作成する。その後、次のステップSA11に進む。

【0108】

全体接続情報は、接続情報及び機器情報に基づき作成されるものであり、mLAN上で通信される情報の種類ごとに異なる全体接続情報として作成される。これにより、複数種類の情報が流れるmLANシステムにおいて、情報種類ごとのノード間送受信の仮想的接続状況を容易に認識するために、例えば、図4に示すリストや、図1に示す接続図の表示が行われる。そして、その画面表示上のGUI操作などによって、設定又は変更することができる。

【0109】

上記全体接続情報には、ライン名とそれに接続されている機器名が含まれる。

【0110】

具体的には、図10(A)に示すように、MIDI機器については、MIDI用ラインMIDIin1～3又はMIDIout1～3(図中左列)に接続されたMIDI機器MD1～MD3(図中右列)を各機器から送信された機器情報と

接続情報より抽出し、1つのMIDI全体接続情報としてまとめる。

【0111】

また、オーディオ機器については、図10（B）に示すように、オーディオ用ラインAUDIOin1～3又はAUDIOout1～3（図中左列）に接続されたAUDIO機器AD1～AD2（図中右列）を各機器から送信された機器情報と接続情報より抽出し、1つのオーディオ全体接続情報としてまとめる。

【0112】

なお、MIDI及びオーディオ情報以外に、画像に関する情報等を送受信する場合には、上記ステップSA7（又はSA9）及びステップSA8（又はSA10）と同様の処理を行い画像全体接続情報等を作成する。

【0113】

すなわち、mLAN上で送受信される情報の種類と同じ数の全体接続情報が作成されるのである。つまりn種類の全体接続情報を作成するためには、上記ステップSA7（又はSA9）及びステップSA8（又はSA10）と同様の処理をn回繰り返せばよい。

【0114】

上記のように、全体接続情報をmLANシステム上で送受信される情報の種類ごとに作成することにより、表示画面上に、情報の種類ごとのリスト表示を行うことができる。ユーザは、その情報の種類ごとのリスト表示により、mLANシステム上での接続状況を容易に各情報の種類別に把握することができる。

【0115】

ステップSA11では、上記ステップSA8及びSA10で作成した全体接続情報に基づき、ディスプレイに、例えば、図4に示すリスト表示を表示する。その後、次のステップSA12（図9）に進む。

【0116】

図9は、図8に示すコンピュータ端末PCのCPU6が行う接続制御処理を示すフローチャートのその後の処理である。

【0117】

ステップSA12では、先に図5を用いて説明した、リスト編集がユーザによ

って行われたか否かを判断する。リスト編集が行われていれば、次のステップSA13に進み、行われていなければステップSA14に進む。

【0118】

ステップSA13では、上記ステップSA12で行われたリスト編集による接続状況の変更に対応するように、接続状況情報を作成又は変更する。その後、次のステップSA14に進む。

【0119】

接続状況情報は、ユーザによって行われた仮想的接続の状況を表す情報であり、全体接続情報に基づき、mLAN上で通信される情報の種類ごとに異なる接続状況情報として作成されるものである。すなわち、図1の太線VCで示すような仮想的接続に関する情報（ライン間の接続情報）が、接続状況情報に含まれる。これにより、各接続機器は、自機で処理する必要のある情報を判断することができる。

【0120】

具体的には、図11(A)に示すように、MIDI機器については、MIDI用入力ラインMIDIin（図中右側t o列）を接続されたMIDI用出力ラインMIDIout（図中左側from列）に対応する位置に記録し、どの入力ラインがどの出力ラインと接続されているかが判るように、1つのMIDI接続状況情報を作成する。

【0121】

本実施例においては、MIDIout1は、MIDIin2及び3と接続されているので、MIDIout1に対応する位置にMIDIin2及び3が記録されている。

【0122】

また、オーディオ機器については、図11(B)に示すように、AUDIO機器については、オーディオ用入力ラインAUDIOin（図中右列）を接続されたオーディオ用出力ラインAUDIOout（図中左列）に対応する位置に記録し、どの入力ラインがどの出力ラインと接続されているかが判るように、1つのAUDIO接続状況情報を作成する。

【0123】

本実施例においては、AUDIOout1は、AUDIOin2と接続されているので、AUDIOout1に対応する位置にAUDIOin2が記録されている。

【0124】

図11(A)及び(B)のto列は、図4及び図5に示すリストのto列に対応し、from列は、図4及び図5に示すリストのfrom列に対応している。

【0125】

上記の接続状況情報は、mLANシステム上の全ての機器にそれぞれ記憶されるものであり、いずれの機器においても同一のものが記憶される。このため、いずれかの機器で接続状況情報の変更があるたびに、その変更内容は各機器へ送信され、各機器に記憶されている接続状況情報の同一性を保つようになっている。

【0126】

なお、接続状況情報は、全体接続情報からだけではなく、各機器からの接続情報に基づき作成することもできる。また、接続状況情報の形式は、図11に示すものに限らず、どの入力ラインがどの出力ラインと接続されているかが判るものであればどのようなものでもよい。また、MIDI接続状況情報と、AUDIO接続状況情報を1つにした合成接続状況情報を作成してもよい。

【0127】

なお、MIDI及びオーディオ情報以外に、画像に関する情報等を送受信する場合には、上記ステップSA13と同様の処理を行い画像接続状況情報等を作成する。

【0128】

また、コンピュータ端末PCが、mLAN接続されている場合は、コンピュータ端末PCの機器情報と接続情報も踏まえて、全体接続情報及び接続状況情報が作成される。

【0129】

ステップSA14では、接続状況の変更内容をmLAN上の全接続機器に認識させたい場合（接続変更が完了した場合）の処理であり、ユーザの指示によりリ

スト（接続状況情報）が確定されると、次のステップSA15に進む。確定されなければ、ステップSA16に進む。リスト確定の指示は、表示画面上に設けられるリスト確定スイッチの操作により指示される。

【0130】

ステップSA15では、接続状況情報中の更新部分のみを各接続機器へ送信する。最初のリスト確定時には、上記リスト編集で設定された内容に基づく接続状況情報の全てが送信される。次回のリスト更新時からは、上記リスト編集で変更された内容（接続状況情報の更新部分）が、ここで各機器へ送信される。接続状況情報の更新部分のみを送信することにより、送信するデータの量が減るために、接続状況情報の全体を送信するより確実（エラーの少ない）で早い通信を行うことができる。なお、リスト確定ごとに、更新部分のみではなく、接続状況情報の全てを各機器に送信するようにしてもよい。

【0131】

ステップSA16では、接続状況情報を接続機器IFから受信したら、次のステップSA17に進む。接続状況情報を受け取らなければ、ステップSA19に進む。本実施例では、コンピュータ端末PCがシリアル接続されているので、接続機器IF1を通して接続機器IF2及びIF3の情報を受信する。ここで受信する接続状況情報は、更新された部分のみである。なお、受信する情報は、更新部分だけでなく、全接続情報を受信するようにしてもよい。

【0132】

ステップSA17では、接続状況情報の内容を、上記ステップSA16で受信した接続状況情報に基づき変更し、次のステップSA18に進む。

【0133】

ステップSA18では、更新された接続状況情報に基づき、接続状況を表示する。その後、次のステップSA19に進む。

【0134】

ステップSA16から18の処理は、接続機器IF1～IF3のいずれかにおいて接続状況が変更された場合等に行われるものである。すなわち、その変更された接続状況に対応する接続状況情報を変更の有った機器から受信し、受信した

内容に基づいてコンピュータ端末PCに記憶されている接続状況情報を変更し、その後、変更された接続状況情報に基づき、画面上のリスト表示又は接続図を変更する。

【0135】

つまり、本実施例においては、接続機器IF1～IF3の各々が、接続状況を変更することができる。この接続機器IF1～IF3における接続状況の変更及び送信は、後述する図13に示すフローチャートのステップSB11からSB13の処理で行われる。

【0136】

ステップSA19では、ミキサー表示が行われる。ミキサー表示は、mLANシステムに接続されている接続機器（本実施例においては接続機器IF1～IF3）のそれぞれに対応したミキサーを各機器毎にディスプレイ12（図2）に表示する。

【0137】

表示されたミキサーにより、各接続機器のミキシング状況の編集を行うことができる。編集されたミキシング状況に関するミキシング情報を各機器に送信する。ミキシング情報を受信した機器は、受信した情報に基づき、ミキシング状況を設定又は変更する。その後次のステップSA20に進む。

【0138】

ステップSA20では、その他の処理を行う。その後、次のステップSA21に進む。

【0139】

ステップSA21では、ユーザの指示により、接続制御処理を終了するか否かを選択する。終了する場合は、次のステップSA22に進み、接続制御処理を終了する。接続制御処理を終了しない場合は、図8のステップSA3に戻る。

【0140】

図12は、接続機器での処理を示すフローチャートである。

【0141】

本実施例では、コンピュータ端末PCがIEEE1394（mLAN）インタ

ーフェイスを装備していないので、コンピュータ端末PCとシリアルポート経由で直接接続されている接続機器IF1と、その他の接続機器IF2及びIF3とでは、行われる処理が若干異なる。

【0142】

以下、接続機器IF1における処理について説明するが、接続機器IF2及びIF3における処理は、以下に説明する処理から、コンピュータ端末PCとのやり取りを除いたものである。なお、コンピュータ端末PCが接続機器IF1とIEEE1394 (mLAN) 接続されている場合は、コンピュータ端末PCから直接全ての接続機器に対して情報を送受信できるようになるので、IF1の処理も、以下に説明する接続機器IF2及びIF3の処理と同様になる。

【0143】

ステップSB1で、接続機器が起動されると、接続機器処理が開始され、次のステップSB2に進む。

【0144】

ステップSB2では、初期化処理が行われる。ここで初期化処理では、例えば、各種バッファや、フラグなどをリセットして、自機の機器情報及び接続情報を作成する。その後次のステップSB3に進む。ここで、機器情報及び接続情報は、直接接続された機器やmLAN上の機器と対応を取りながら作成される。

【0145】

ステップSB3では、接続機器IFは、図8のステップSA5の要求信号を受信する。接続機器IF1においては、この要求信号は、シリアルポート経由でコンピュータ端末PCから直接受信する。接続機器IF2及びIF3に対しては、要求信号は、接続機器IF1からIEEE1394 (mLAN) の非同期ポートを介して送信される。要求信号を受信したら、次のステップSB4に進み、受信しないときは、図13のステップSB8に進む。

【0146】

ステップSB4では、接続機器IF1は、IEEE1394 (mLAN) 接続されている全接続機器を検出し、次のステップSB5に進む。

【0147】

ステップSB5では、接続機器IF1は、検出した全接続機器に対して、要求信号を送信する。その後、次のステップSB6に進む。

【0148】

ステップSB6では、接続機器IF1は、要求信号を送信した接続機器から、各機器の機器情報及び接続情報を受信する。接続機器IF1は、全ての接続機器から情報を受信したら、それらをコンピュータ端末PCへ送信する。その後、次のステップSB7に進む。

【0149】

上記ステップSB4～SB6における情報の送受信は、IEEE1394(mLAN)の非同期ポートで行われる。

【0150】

なお、各接続機器からの情報は、まとめて送信する代わりに、いずれかの機器から情報を受信するたびにそれぞれコンピュータ端末PCに送信するようにしてもよい。

【0151】

また、コンピュータ端末PCを起動した直後（最初）に行われる処理では、全接続情報を送信し、その後の処理では、変更があった部分の情報のみを送信するようにしてもよい。

【0152】

さらに、受信した情報を、自機に記録しておくようにしてもよい。すなわち、本実施例における接続機器IF1～IF3にそれぞれ全接続機器の機器情報及び接続情報を記憶しておくようにしてもよい。

【0153】

なお、上記ステップSB4～SB6は、コンピュータ端末PCが、IEEE1394(mLAN)接続されている場合には、本実施例における接続機器IF1～IF3のいずれにおいても実施されず、コンピュータ端末PCが、直接全ての接続機器から機器情報と接続情報を受信するようになる。すなわち、要求信号を出した機器が、その他の機器と、直接各種情報を送受信するようになる。

【0154】

ステップSB7では、接続機器IF1は、自機の機器情報及び接続情報を送信し、次のステップSB8(図13)に進む。この時、情報の送信が完了したことを表す終了信号も送信する。なお、コンピュータ端末PCが、IEEE1394(mLAN)接続されている場合には、接続機器IF2及びIF3においても、この処理により接続情報等をコンピュータ端末PCへ直接送信する。

【0155】

図13は、図12の接続機器での処理のその後の処理を示すフローチャートである。

【0156】

ステップSB8では、接続機器IFは、コンピュータ端末PCから送信される、リスト表示等を用いて変更された接続状況情報、あるいは最初に送信される初期の接続状況情報を受信する。受信した場合、次のステップSB9に進み、受信しない場合はステップSB11に進む。

【0157】

ステップSB9では、接続機器IF1は、mLAN上の他の接続機器IF2及びIF3へ上記ステップSB8で受信した接続状況情報を送信する。送信後、次のステップSB10に進む。

【0158】

ステップSB10では、受信した接続状況情報に基づき、自機に記憶されている接続状況情報の内容を更新(あるいは新規に記憶)する。これにより、自機においてmLANシステム上を流れる情報のいずれを処理するかが認識されるようになる。この時、受信した接続状況情報の中から自機に関連する部分の情報のみを取り出して別途記憶しておくことが望ましい。そうすれば、mLANシステム上を流れる情報のいずれを自機で処理すべきかが、迅速に認識できるようになる。その後、次のステップSB11に進む。

【0159】

ステップSB9の処理は、本実施例においては、接続機器IF1が、図9のステップSA15でコンピュータ端末PCから送信される接続状況情報を受信して、他の接続機器IF2及びIF3へ送信する処理である。したがって、接続

機器IF2及びIF3では実施されない処理である。

【0160】

ステップSB11では、接続機器に予め装備されている操作子11等を用いて、接続状況情報中の自機に関連する部分を変更する。その後、次のステップSB12に進む。

【0161】

ステップSB12では、ユーザの指示により接続状況の変更が確定されると、次のステップSB13に進む。変更が破棄されるなど確定しないときは、ステップSB14に進む。変更確定の指示は、予め設けられる確定スイッチ等の操作により指示される。

【0162】

ステップSB13では、上記ステップSB12で確定した新規接続状況情報を他の機器へ送信する。その後次のステップSB14に進む。

【0163】

なお、上記ステップSB11から13の処理は、mLANシステム上の他の接続機器に関連する接続状況情報を変更できるようにしてもよい。この場合は、各機器に、mLANシステム上の他の機器それぞれの接続情報及び機器情報を記憶しておくようとする。

【0164】

また、初期設定時や、リスト確定時、変更確定時、あるいは、物理的な接続状況に変更が有った時（新たな機器の追加や現在接続されている機器の取り外しが有った時等）等、各種情報に変更があった場合に、自機の機器情報や接続情報をmLANシステム上の全機器に送信するようにしてもよい。

【0165】

ステップSB14では、楽曲情報の通信が要求されているか否かを判断するか、あるいはユーザが楽曲情報の通信を行うか否かを指定する。通信を行う場合は、次のステップSB15に進み、行わない場合はステップSB16に進む。

【0166】

ステップSB15では、楽曲情報の処理が行われる。楽曲情報の処理は送信又

は受信に分けられる。楽曲情報は、同期情報として扱われる所以、楽曲情報の送受信は、同期ポートを利用して行われる。

【0167】

楽曲情報の送信は、MIDI機器MD1やオーディオ機器AD1からの入力情報に基づき該情報を生成して送信する機器において、自機の接続情報を参照して、自機の機器名と送信に利用するライン名が添付される。

【0168】

楽曲情報の受信は、該情報を受信する機器において、添付されている機器名とライン名を参照して、自機で処理するものか否かを判断する。自機で処理するものと判断した場合は、例えば、MIDI機器MD2及びMD3、オーディオ機器AD2などに情報を出力することにより、記録や再生などの処理を行う。その後、次のステップSB16に進む。

【0169】

ステップSB16では、その他の処理を行い、次のステップSB17に進む。ここでは、自機に接続変更があれば、接続情報を更新し、その他の機器へその情報を送信する等の処理を行う。

【0170】

ステップSB17では、ユーザの指示により、接続機器処理を終了するか否かを選択する。終了する場合は、次のステップSB18に進み、接続機器処理を終了する。接続機器処理を終了しない場合は、図12のステップSB3に戻る。

【0171】

以上、本実施例においては、コンピュータ端末PCは、接続状況を制御するためにのみ使用されているが、コンピュータ端末PCと接続機器IF1がmLANで接続されている場合は、コンピュータ端末PCは、接続状況の制御に加えて、接続機器IF1～IF3と同様に、楽曲情報等の処理及び送受信も行えるようになる。

【0172】

また、コンピュータ端末PCにMIDI機器あるいはオーディオ機器が接続されていてもよい。また、コンピュータ端末PCが、直接自機で楽音の生成又は再

生等を行うようにしてもよい。その場合には、そのコンピュータ端末PCに接続された機器等を考慮に入れた上で、ライン名の割当てが行われ、それに基づき、接続状況情報や、全体接続情報が作成される。

【0173】

さらに、接続機器IFが直接自機（のバス1に接続された音源装置14）で楽音の生成又は再生等を行うようにしてもよい。この場合には、接続機器の音源装置14等を考慮に入れて、ライン名の割当てが行われ、それに基づき、接続状況情報や、全体接続情報が作成される。

【0174】

なお、IEEE1394（mLAN）で利用されるチャンネル数は実施例のものに限らず、mLANシステム上に接続された機器の端子数分（コンピュータ端末PC及び接続機器IFが自機で楽音の生成又は再生等を行う場合には、それを含めた数）だけもうけられるようにすることが好ましい。

【0175】

なお、本実施例は、本実施例に対応するコンピュータプログラム等をインストールした市販の汎用コンピュータ又はパーソナルコンピュータ等によって、実施させるようにしてもよい。

【0176】

その場合には、本実施例に対応するコンピュータプログラム等を、CD-ROMやフロッピーディスク等の、コンピュータが読み込むことが出来る記憶媒体に記憶させた状態で、ユーザに提供してもよい。

【0177】

その汎用コンピュータ又はパーソナルコンピュータ等が、LAN、インターネット、電話回線等の通信ネットワークに接続されている場合には、通信ネットワークを介して、コンピュータプログラムや各種データ等を汎用コンピュータ又はパーソナルコンピュータ等に提供してもよい。

【0178】

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組合せ等が可能なことは当業者に自明であ

ろう。

【0179】

【発明の効果】

以上説明したように、本発明によれば、複数種類の情報のやり取りを1つの機器で統一的に設定できる。

【0180】

また、本発明によれば、接続機器間の接続の設定が非常に容易にできる。

【0181】

さらに、本発明によれば、実装されている端子数の少ない機器においても、複数機器間の接続ができる。

【図面の簡単な説明】

【図1】本実施例におけるmLANシステムの接続図である。

【図2】図1に示すmLANシステムを構成しているコンピュータ端末PC又はパーソナルコンピュータの基本的構成を示すブロック図である。

【図3】図1に示すmLANシステムを構成している接続機器の基本的構成を示すブロック図である。

【図4】図1に示すmLANシステムの接続状況のリスト表示である。

【図5】図1に示すmLANシステムの接続状況のリスト表示である。

【図6】機器情報の概念図である。

【図7】接続情報の概念図である。

【図8】CPUが行う接続制御処理を示すフローチャートである。

【図9】CPUが行う接続制御処理を示すフローチャートである。

【図10】全体接続情報の概念図である。

【図11】接続状況情報の概念図である。

【図12】接続機器での処理を示すフローチャートである。

【図13】接続機器での処理を示すフローチャートである。

【符号の説明】

1…バス、2…検出回路、3…表示回路、4…RAM、5…ROM、6…CPU
、7…外部記憶装置、8…通信インターフェイス、9…I/Oインターフェイス

、10…拡張スロット、11…操作子、12…ディスプレイ、13…タイマ、14…音源装置、15…サウンドシステム、17…通信ネットワーク、19…コンピュータ、20…IEEE1394インターフェイス、21…各種I/F

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

(A)

<MIDI>		<AUDIO>	
[from]		[to]	
ライン名	機器名	ライン名	機器名
MIDIout1	MD1	_____	_____
MIDIout2	_____	_____	_____
MIDIout3	_____	_____	_____
		MIDIin1	
		MIDIin2	MD2
		MIDIin3	MD3

(B)

<MIDI>		<AUDIO>	
[from]		[to]	
ライン名	機器名	ライン名	機器名
AUDIOout1	AD1	_____	_____
AUDIOout2	_____	_____	_____
AUDIOout3	_____	_____	_____
		AUDIOin1	
		AUDIOin2	AD2
		AUDIOin3	

【図5】

(A)

<MIDI>		<AUDIO>	
[from]		[to]	
ライン名	機器名	ライン名	機器名
MIDIout1	MD1	MIDIin2	MD2
MIDIout2	_____	_____	_____
MIDIout3	_____	_____	_____
		MIDIin1	
		MIDIin2	MD2
		MIDIin3	MD3

(B)

<MIDI>		<AUDIO>	
[from]		[to]	
ライン名	機器名	ライン名	機器名
AUDIOout1	AD1	AUDIOin2	AD2
AUDIOout2	_____	_____	_____
AUDIOout3	_____	_____	_____
		AUDIOin1	_____
		AUDIOin2	AD2
		AUDIOin3	

【図6】

(A) PC

シリアルポート	IF1
その他端子	

(B) IF1

シリアルポート	PC
IEEE1394(mLAN)1	IF2
IEEE1394(mLAN)2	
MIDIin	MD1
MIDIout	
AUDIOin	AD1
AUDIOout	

(C) IF2

シリアルポート	
IEEE1394(mLAN)1	IF1
IEEE1394(mLAN)2	IF3
MIDIin	
MIDIout	MD2
AUDIOin	
AUDIOout	AD2

(D) IF3

シリアルポート	
IEEE1394(mLAN)1	
IEEE1394(mLAN)2	IF2
MIDIin	
MIDIout	MD3
AUDIOin	
AUDIOout	

【図7】

(A) IF1

MIDIin1	
MIDIout1	MIDIin
AUDIOin1	
AUDIOout1	AUDIOin

(B) IF2

MIDIin2	
MIDIout2	
AUDIOin2	AUDIOout
AUDIOout2	

(C) IF3

MIDIin3	MIDIout
MIDIout3	
AUDIOin3	
AUDIOout3	

【図8】

B

A

【図9】

【図10】

(A)

MIDI全体接続情報

ライン名	機器名
MIDIin1	
MIDIin2	MD2
MIDIin3	MD3
MIDIout1	MD1
MIDIout2	
MIDIout3	

(B)

AUDIO全体接続情報

ライン名	機器名
AUDIOin1	
AUDIOin2	AD2
AUDIOin3	
AUDIOout1	AD1
AUDIOout2	
AUDIOout3	

【図11】

(A)

MIDI接続状況情報

from	to
MIDIout1	MIDIin2 MIDIin3
MIDIout2	
MIDIout3	

(B)

AUDIO接続状況情報

from	to
AUDIOout1	AUDIOin2
AUDIOout2	
AUDIOout3	

【図12】

【図13】

【書類名】 要約書

【要約】

【課題】 ネットワーク上の複数機器間の接続の設定及び情報の送受信の設定を容易に行える接続設定装置、又はプログラムを記録した媒体を提供する。

【解決手段】 接続設定装置は、ネットワーク上に接続された複数の少なくとも1つのラインを有する機器から第1の接続情報を取得する接続情報取得手段と、取得した接続情報に基づき第2の接続情報を作成する作成手段とを有する。

【選択図】 図1

出願人履歴情報

識別番号 [000004075]

1. 変更年月日 1990年 8月22日

[変更理由] 新規登録

住 所 静岡県浜松市中沢町10番1号

氏 名 ヤマハ株式会社