Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Tröltzsch

WS 05/06 10. April 2006

April – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:	Studi	engang	:		• • • • • •	
Neben einem handbeschriebenen A4 l zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Rechei	naufgal	oen. G	eben S	Sie imn	ner den
Die Bearbeitungszeit beträgt eine Stu	nde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 12				,	v	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 8 Punkte

Es sei die 2π -periodische Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch f(x) = 2, falls $x \in]-\pi,0]$ und f(x) = -2, falls $x \in]0,\pi]$.

- a) Skizzieren Sie f (über mehr als eine Periode).
- b) Berechnen Sie die Fourierreihe von f.

2. Aufgabe 7 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{, falls}(x,y) \neq (0,0) \\ 0 & \text{, sonst} \end{cases}$$

An welchen Stellen $(x,y) \in \mathbb{R}^2$ ist f partiell differenzierbar? Geben Sie gegebenenfalls die partiellen Ableitungen an.

3. Aufgabe 8 Punkte

Bestimmen Sie das globale Maximum und das globale Minimum der Funktion f(x,y)=2x-4y auf der Menge $D=\{(x,y)\in\mathbb{R}^2\mid 2x^2+8y^2\leq 1\}$, falls diese exisitieren.

4. Aufgabe 8 Punkte

Sei $B = \{(x, y) \in \mathbb{R}^2 \mid y \le 2x, \ y \le 3 - x, \ y \ge 0\}.$

- a) Skizzieren Sie B.
- b) Berechnen Sie $\iint_B 2y dx dy$.

5. Aufgabe 9 Punkte

Sei $B=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2\leq 1,\; |z|\leq 1\}$ und $\vec{v}:\mathbb{R}^3\to\mathbb{R}^3,\; \vec{v}(x,y,z)=(zx^3,zy^3,x^2+y^3)^T.$ Skizzieren Sie B und berechnen Sie den Fluss von v durch die Randfläche von B:

$$\iint_{\partial B} \vec{v} \cdot d\vec{O}.$$