Predictive Modeling

Polynomial Regression, Residual Analysis and Model Selection

Mirko Birbaumer

HSLU T&A

- Polynomial Regression
- 2 Residual Analysis in Multiple Linear Regression
- Summary and Conclusions The Marketing Plan
- Variable Selection
- Model Selection Criteria

Non-linear Relationships and Polynomial Regression

Example: Auto data set: mpg (gas mileage in miles per gallon) versus horsepower is shown for a number of cars, see example 4.13 in the Multiple Linear Regression chapter

Conclusion: relationship between mpg and horsepower is non-linear

Polynomial Regression - Example Auto

New Model:

$$mpg = \beta_0 + \beta_1 \cdot horsepower + \beta_2 \cdot horsepower^2 + \varepsilon$$

See example 4.13 in the Multiple Linear Regression chapter

Residual Analysis: Example Advertising

$$\begin{aligned} \mathbf{sales} &= \beta_0 + \beta_1 \cdot \mathtt{TV} + \beta_2 \cdot \mathtt{radio} + \varepsilon \\ \mathbf{sales} &= \beta_0 + \beta_1 \cdot \mathtt{TV} + \beta_2 \cdot \mathtt{radio} + \beta_3 \cdot \mathtt{TV} \cdot \mathtt{radio} + \varepsilon \end{aligned}$$

Tukey-Anscombe plots for the two models; *left* with predictor variables TV and radio; *right* with predictor variables TV, radio and interaction term radio · TV. See example 4.14 in the Multiple Linear Regression chapter.

Residual Analysis: Example Advertising

Scale-location plot for two models: *left* with predictor variables TV and radio; *right* with predictor variables TV, radio and interaction term radio · TV. See example 4.14 in the Multiple Linear Regression chapter

Leverage Statistic and Cook's Distance: Advertising

Scatter plots for model including the interaction term with **leverage statistic** h_i and **standardized residual** \tilde{r}_i . Contour lines of Cook's distance with $d_i = 0.5, 1$ are plotted as well.

Left: with outliers 131 and 156; right without observations 131 and 156 ⇒ not dangerously influential! See example 4.14 in the Multiple Linear Regression chapter

Example Credit

Data set Credit was recorded in the USA:

- Response Variable balance: average credit card debt for a number of individuals
- Quantitative predictor variables:
 - ▶ age
 - cards : number of credit cards
 - education : years of education
 - ▶ income : income in thousand of dollars
 - ▶ limit : credit card limit
 - rating : credit rating
- Qualitative predictor variables (factors):
 - ▶ gender
 - student : student status
 - ethnicity: Caucasian, African Amercian or Asian
- Regression of balance (as response variable) on age, rating and limit

Collinearity - Example Credit

Collinearity refers to the situation in which two or more predictor variables are closely related to one another

Example: Scatter plots of Credit data set: age versus limit and rating versus limit.

Collinearity: Example Credit

		Coefficient	Std.error	t-statistic	p-value
Model 1	Intercept	-173.411	43.828	-3.957	< 0.0001
	age	-2.292	0.672	-3.407	0.0007
	limit	0.173	0.005	34.496	< 0.0001
Model 2	Intercept	-377.537	45.254	-8.343	< 0.0001
	rating	2.202	0.952	2.312	0.0213
	limit	0.025	0.064	0.384	0.7012

- Model 1: p-values of age and limit are highly significant
- Model 2: Collinearity between limit and rating causes the standard errors of coefficient estimate for limit to increase by a factor of 12 and the p-value to increase to 0.701
- Importance of the limit variable has been masked due to the presence of collinearity

Identification of Collinearity in the Data

 Correlation matrix: very hight correlation between limit and rating: 0.997

• See example 4.17 in the Multiple Linear Regression chapter

 Not all collinearity problems can be detected by inspection of the correlation matrix: correlation matrix reveals only correlation between two variables

 Collinearity may occur between three or more variables even if no pair of variables has a particularly high correlation: multicollinearity

Identification of Collinearity in the Data

Variance inflation factor (VIF) to identify multicollinearity

$$\mathsf{VIF}(\hat{\beta}_j) = \frac{1}{1 - \mathsf{R}^2_{X_j|X_{-j}}}$$

 $\mathsf{R}^2_{X_j|X_{-j}}$ represents the R^2 -value for a regression model of X_j (response variable) onto all of the other predictors

- ▶ **VIF**-value between 5 and 10 : indicates a problematic amount of collinearity
- Smallest possible value of VIF is 1 : indicates complete absence of collinearity

Identification of Collinearity in the Data

 Example Credit: Regression of balance (as response variable) on age, rating, and limit indicates that predictors have considerable collinearity.

VIF values of

▶ age : 1.01

▶ rating: 160.67

▶ limit : 160.59 considerable collinearity

 See examples 4.18 and 4.19 in the Multiple Linear Regression chapter

The Marketing Plan

Advertising data set: sales of a particular product depending on the advertising budgets for TV, radio and newspaper

- Is there a relationship between sales and advertising budget?
- How strong is the relationship between sales and budget?
- Which media contribute to sales?
- How large is the effect of each medium on sales?
- How accurately can we predict future sales?
- Is the relationship linear?
- Is there synergy among the advertising media?

Example: Advertising

See example 5.1 in the Multiple Linear Regression chapter

1. Is there a relationship between **sales** and advertising budget?

This question can be answered by fitting a multiple regression model of sales onto TV, radio, and newspaper

sales =
$$\beta_0 + \beta_1 \cdot \text{TV} + \beta_2 \cdot \text{radio} + \beta_3 \cdot \text{newspaper} + \varepsilon$$

We test the null hypothesis

$$H_0$$
: $\beta_{\text{TV}} = \beta_{\text{radio}} = \beta_{\text{newspaper}} = 0$

- ② p-value associated with F-Statistic (F-Statistic) is approx. zero \Rightarrow we **reject** null hypothesis
- **Onclusion**: There is a relationship between advertising and sales

2. How strong is the relationship between **sales** and budget?

Two measures to assess model accuracy:

- RSE (Residual Standard error): average deviation of the response from the (true) population regression line
 - ► For the Advertising data, the RSE is 1.681 units
 - Mean value for the response is 14.022, indicating a percentage error of roughly 12 %
- R²-value (Multiple R-squared): records the percentage of variability in the response that is explained by the predictors
 - ► The predictors explain almost 90 % of the variance in sales

3. Which media contribute to sales?

This question is answered by considering the p-values associated with each predictor's t-statistic (t value):

• In the multiple linear regression analysis, the p-values (Pr(>|t|)) for TV and radio are low, but the p-value for newspaper is not.

This suggests that only TV and radio are related to sales

Systematic discussion: see next chapter about variable selection

4. How large is the effect of each medium on sales?

This question is answered by confidence intervals for the regression coefficients β_i :

- Confidence intervals for TV and radio for β_j are narrow and far from zero, providing evidence that these media are ralated to sales
- Confidence interval for newspaper includes zero, indicating that the variable is not statistically significant given the values of TV and radio

5. How accurately can we predict future sales?

There are two possibilities to quantify the accuracy of a prediction:

• We wish to predict an individual response $Y = f(X_1, ..., X_p) + \varepsilon$ \Rightarrow **Prediction interval**

- We wish to predict the average response Y
 - ⇒ Confidence interval

6. Is the relationship linear?

- Residual plots (in particular Tukey-Anscombe plot) showed in the case of the Advertising data a pattern that reveals a non-linear relationship
- If the relationships are linear, then the residual plots should display
 no pattern
- Solution: Taking interaction effects into account

7. Is there synergy among the advertising media?

- Standard linear regression model assumes an **additive** relationship between the predictors and the response
- An additive model is easy to interpret because the effect of each predictor on the response is unrelated to the values of the other predictors
- Including an interaction term in the model results in a substantial increase in R², from around 90 % to almost 97 %

Variable Selection: Example Credit

Data set Credit was recorded in the USA:

- Response Variable balance: average credit card debt for a number of individuals
- Quantitative predictor variables:
 - ► age
 - cards : number of credit cards
 - education : years of education
 - income : income in thousand of dollars
 - ▶ limit : credit card limit
 - ▶ rating : credit rating
- Qualitative predictor variables (factors):
 - ▶ gender
 - student : student status
 - ethnicity: Caucasian, African Amercian or Asian

Question: From which subset consisting of q predictor variables results the **best** model? Number of possible models: 2^p

Example Credit: Forward Stepwise Selection

1. We begin with the **null model** \mathcal{M}_0 which contains no predictors

Balance =
$$\beta_0 + \varepsilon$$

- 2. We **add** a predictor variable to the null model: See example 2.1 in the Linear Model Selection chapter
- 3. We now choose the **best** variable in the sense that adding this variable leads to the regression model with the lowest RSS or the highest R²: Rating

New model: \mathcal{M}_1

Balance =
$$\beta_0 + \beta_1 \cdot \text{Rating} + \varepsilon$$

Example Credit: Forward Stepwise Selection

4. We now add a further predictor variable to the model \mathcal{M}_1 which leads, when added, to the lowest RSS, etc.

5. Repetition of this procedure until we have obtained 11 models $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_{10}$

6. We select the single **best** model on the basis of one of the following criteria: AIC, BIC, C_p or adjusted R^2

See example 2.1 in the Linear Model Selection chapter

Forward Stepwise Selection

Algorithm: Forward stepwise selection

① Let \mathcal{M}_0 denote the *null* model, which contains no predictors.

- ② For k = 0, ..., p 1:
 - Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - **Q** Choose the *best* among these p-k models, and call it \mathcal{M}_{k+1} . Here **best** is defined as having smallest RSS or highest R².

3 Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using \mathcal{C}_p , AIC, BIC or adjusted \mathbb{R}^2 .

Backward Stepwise Selection: Example Credit

1. We begin with the **full model**, that is \mathcal{M}_{10} , which contains **all** p predictors of the **Credit** data set

$$\begin{split} \text{Balance} &= \beta_0 + \beta_1 \cdot \text{Income} + \beta_2 \cdot \text{Limit} + \beta_3 \cdot \text{Rating} + \beta_4 \cdot \text{Cards} \\ &+ \beta_5 \cdot \text{Age} + \beta_6 \cdot \text{Education} + \beta_7 \cdot \text{Gender} + \beta_8 \cdot \text{Student} \\ &+ \beta_9 \cdot \text{Married} + \beta_{10} \cdot \text{Ethnicity} + \varepsilon \end{split}$$

2. We **remove** one predictor variable from the model: see example 2.2 in the Linear Model Selection chapter

3. We remove the **least useful** variable: the one yielding the reduced regression model with the lowest RSS or the highest R². Its removal improves the model most significantly with respect to RSS. Most redundant variable here: **Education**

Backward Stepwise Selection: Example Credit

3. New Model: \mathcal{M}_9

$$\begin{aligned} \text{Balance} &= \beta_0 + \beta_1 \cdot \text{Income} + \beta_2 \cdot \text{Limit} + \beta_3 \cdot \text{Rating} + \beta_4 \cdot \text{Cards} \\ &+ \beta_5 \cdot \text{Age} + \beta_6 \cdot \text{Gender} + \beta_7 \cdot \text{Student} + \beta_8 \cdot \text{Married} \\ &+ \beta_9 \cdot \text{Ethnicity} + \varepsilon \end{aligned}$$

- 4. We iterate this procedure until **no** predictor is left in regression model
- 5. This iterative procedure yields 11 different models: $\mathcal{M}_0,\mathcal{M}_1,\dots,\mathcal{M}_{10}$
- 6. We identify the **best** among these models on the basis of AIC, BIC, C_p or adjusted \mathbb{R}^2

See example 2.2 in the Linear Model Selection chapter

Backward Stepwise Selection

Algorithm: Backward stepwise selection

1 Let \mathcal{M}_p denote the *full* model, which contains all p predictors.

- ② For k = p, p 1, ..., 1:
 - Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors
 - **Q** Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R².

3 Select a single best model among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using C_p , AIC, BIC or adjusted \mathbb{R}^2 .

Best Subset Selection

• Model with p predictor variables has 2^p possible submodels

• If $p = 20 : 1048\,576$ models need to be fitted and evaluated \Rightarrow **Best subset selection**: computationally infeasible for p > 40

• Comparison: Forward stepwise selection with p=20 predictor variables leads to 211 models

If computationally feasible: Go for it!

Hybrid stepwise selection

• Hybrid stepwise selection:

- ▶ We start with a model containing *k* predictor variables
- RSS of all models that result from adding to or removing each variable from the reference model is calculated
- ▶ We iterate this procedure until the RSE stops decreasing

 Result is similar to best subset selection while retaining computational advantages of forward and backward stepwise selection

Model Selection Criteria - Adjusted R²

• Recall: R² is defined as follows

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

• **Problem**: RSS always **decreases** as more predictors are added to the model \Rightarrow R² always **increases** as more predictors are added

 Solution: add penalty to RSS which penalizes adding further predictor variables

Model Selection Criteria - Adjusted R²

• adjusted R² is defined as

adjusted
$$R^2 = 1 - \frac{\mathsf{RSS}/(n-p-1)}{\mathsf{TSS}/(n-1)}$$

p:# predictor variables of least squares model

n: # data points

• To maximize adjusted $R^2 \Rightarrow$ minimize

$$\frac{\mathsf{RSS}}{\mathsf{n}-\mathsf{p}-1}$$

• See example 2.3 in the Linear Model Selection chapter

adjusted R² - Example Credit

 R^2 : values are steadily increasing, whereas adjusted R^2 reaches maximum for **seven** predictors (see example 2.3) \Rightarrow Best regression model among 11 models found by *forward stepwise selection*:

$$\begin{aligned} \text{Balance} &= \beta_0 + \beta_1 \cdot \text{Income} + \beta_2 \cdot \text{Limit} + \beta_3 \cdot \text{Rating} + \beta_4 \cdot \text{Cards} \\ &+ \beta_5 \cdot \text{Age} + \beta_6 \cdot \text{Gender} + \beta_7 \cdot \text{Student} + \varepsilon \end{aligned}$$

AIC - Akaike information criterion

AIC considers goodness-of-fit to the data and penalizes complexity
of the model

$$AIC = -2\log(L) + 2q$$

where L denotes the value of the likelihood function for a particular model and q is the number of variables of this model.

• If errors ε in linear regression model follow a normal distribution with expected value 0 and constant variance, then the **AIC** is

$$\mathsf{AIC} = \frac{1}{n\hat{\sigma}^2} \left(\mathsf{RSS} + 2p\hat{\sigma}^2 \right)$$

- \triangleright $\hat{\sigma}$: estimated standard deviation
- ▶ $2p\hat{\sigma}^2$ is the **penalty term**: increases if more predictors are added to the model compensating the decrease in the RSS

Mallow's C_p -statistic

ullet For least squares models: AIC is proportional to **Mallow's** C_p -statistic

$$C_p = \frac{1}{n} \left(\text{RSS} + 2p\hat{\sigma}^2 \right)$$

• See example 2.4 in the Linear Model Selection chapter

Model Selection with AIC: Example Credit

Best Model among 11 models found by *forward stepwise selection*: model with 6 predictor variables, see example 2.5

$$\begin{aligned} \text{Balance} &= \beta_0 + \beta_1 \cdot \text{Income} + \beta_2 \cdot \text{Limit} + \beta_3 \cdot \text{Rating} + \beta_4 \cdot \text{Cards} \\ &+ \beta_5 \cdot \text{Age} + \beta_6 \cdot \text{Student} + \varepsilon \end{aligned}$$

BIC - Bayesian information criterion

• The **BIC** is defined as

$$BIC = -2\log(L) + 2\log(n)q$$

where L denotes the likelihood function for a particular model and q is the number of estimated parameters of the model

 For the least squares model with p predictors, the BIC is, up to irrelevant constants, given by

$$\mathsf{BIC} = \frac{1}{n} \left(\mathsf{RSS} + \log(n) p \hat{\sigma}^2 \right)$$

- \triangleright $\hat{\sigma}$: estimated standard deviation
- ▶ $\log(n)p\hat{\sigma}^2$ penalty term: increases BIC when more predictors are added to the model

Model Selection with BIC: Example Credit

Best model among 11 models found by forward stepwise selection: model with 5 predictor variables, see example 2.6

$$\begin{aligned} \text{Balance} &= \beta_0 + \beta_1 \cdot \text{Income} + \beta_2 \cdot \text{Limit} + \beta_3 \cdot \text{Rating} + \beta_4 \cdot \text{Cards} \\ &+ \beta_5 \cdot \text{Student} + \varepsilon \end{aligned}$$