Weekly Report: Imtiaz AI Alpha

Week 1 (April 22 – April 25)

Machine Learning Specialization

Course: Supervised Machine Learning: Regression & Classification

Week 1

The first week provided an introduction to supervised learning, emphasizing its goal of mapping input variables to corresponding outputs. Real-world applications were outlined, and foundational machine learning concepts were systematically introduced.

Key Points to Note:

- > **Supervised Learning:** Mapping inputs (x) to outputs (y).
- **Regression**: Prediction of continuous numerical values; linear relationship modeled as y=mx+cy=mx+cy=mx+c.
- Classification: Categorization into classes (Binary or Multi-Class).
- > Unsupervised Learning:
 - Clustering: Grouping similar data points.
 - o Anomaly Detection: Identifying outliers.
 - Dimensionality Reduction: Simplifying datasets.
- **Linear Regression Notation:** Defining features, weights, bias, and predictions.
- **Cost Function:** Squared error to measure model performance.
- Gradient Descent:
 - Goal: Minimize cost function.
 - Types: Batch, Stochastic, Mini-Batch.
- > Learning Rate (α): Critical parameter for optimization convergence.

Week 2

The second week expanded into advanced regression techniques and essential preprocessing steps, emphasizing computational efficiency and the importance of preparing data for optimal model training.

Key Points to Note:

> Multiple Linear Regression:

- Handling multiple input features.
- Vectorization for computational efficiency.
- > Gradient Descent with Vectors: Speeding up training via matrix operations.
- > **Normal Equation**: Alternative method for solving linear regression without iterations (limited by dataset size).

> Feature Scaling:

- Mean Normalization and Z-Score Normalization.
- o Essential for convergence and balanced model training.
- ➤ **Learning Curves**: Visual tool for assessing gradient descent convergence.
- > Automatic Convergence Test: Measuring small improvements in cost function.
- > Feature Engineering:
 - Creating or selecting significant features.

> Polynomial Regression:

o Capturing non-linear relationships through higher-order terms.

Week 3 Summary

The third week transitioned from regression to classification, addressing the limitations of linear regression for classification tasks and introducing logistic regression as a robust alternative.

Key Points to Note:

> Issues with Linear Regression for Classification:

Unbounded and continuous outputs.

Logistic Regression:

- o Introduction of **Sigmoid Function** to bound outputs between 0 and 1.
- o Probabilistic interpretation of predictions.

> Decision Boundaries:

o Linear and non-linear boundaries based on feature interaction.

Cost Function for Logistic Regression:

Development of a convex function for effective optimization.

	Page	3 of 3
>	Gradient Descent for Logistic Regression: Adjustment of parameters using updated equations.	
>		
	 Definitions and visual interpretations. 	
>		
	 Data augmentation, feature selection, and regularization techniques. 	
>		
	 Addition of penalty terms to cost functions in both linear and logistic regression. 	
	 Importance of choosing appropriate regularization parameter (λ). 	