Various definitions

Anna Jenčová

January 29, 2024

1 Symmetric monoidal categories (SMC)

Monoidal category: A category C equipped with

- A functor $\otimes : C \times C \to C$;
- unit object $I \in C$;
- associator: natural iso $(A \otimes B) \otimes C \xrightarrow{\alpha_{A,B,C}} A \otimes (B \otimes C)$;
- left unitor: natural iso $I \otimes A \xrightarrow{\lambda_A} A$;
- right unitor: natural iso $A \otimes I \xrightarrow{\rho_A} A$
- symmetric if there is a symmetry: natural iso $A \otimes B \xrightarrow{\sigma_{A,B}} B \otimes A$ such that $\sigma_{B,A} = \sigma_{A,B}^{-1}$, satisfying triangle, pentagon (+ symmetry) diagrams.

We will always assume that C is a SMC.

1.1 Closed SMC

A SMC C is **closed** if:

for every $b \in C$, the endofunctor $-\otimes b$ has a right adjoint [b, -] (internal hom).

- What does this mean?
 - (1) For all $a, c \in C$, $C(a \otimes b, c) \simeq C(a, [b, c])$, naturally in a, c.
 - (2) unit $\eta_a^b:a\to [b,a\otimes b]$, counit: $\epsilon_a^b:[b,a]\otimes b\to a$, natural transformations, triangle identities
- ' Relation of the two:
 - Let i be the iso of (1):

$$\eta_a^b \in C(a, [b, a \otimes b]) \simeq C(a \otimes b, a \otimes b), \qquad \eta_a^b = i(id_{a \otimes b})$$

$$\epsilon_a^b \in C([b, a] \otimes b, a) \simeq C([b, a], [b, a]), \qquad \epsilon_a^b = i^{-1}(id_{[b, a]}).$$

• Conversely, from η^b , ϵ^b of (2), we define i as

$$g \in C(a \otimes b, c), \qquad i(g) = [b, g] \circ \eta_a^b$$

with inverse

$$h \in C(a, [b, c]), \quad i^{-1}(h) = \epsilon_c^b \circ (h \otimes b)$$

Informally, we may interpret η_a^b as 'labeling of b by a' and ϵ_a^b as 'evaluation of [b, a]'.

1.2 Compact SMC

A SMC is **compact** if each object $a \in C$ has a dual $a^* \in C$ such that there are maps $\cup_a : I \to a^* \otimes a$ and $\cap_a : a \otimes a^* \to I$ satisfying the snake identities

$$(\cap_a \otimes id_a) \circ (id_a \otimes \cup_a) = id_a, \qquad (id_{a^*} \otimes \cap_a) \circ (\cup_a \otimes id_{a^*}) = id_{a^*}.$$

The following are easily seen by the snake identities (pictures):

- (1) a^* is determined up to iso;
- (2) $a^{**} \simeq a$, indeed, we may define $\bigcup_{a^*} : I \to a \otimes a^*$ and $\bigcap_{a^*} : a^* \otimes a$ as

$$\bigcup_{a^*} = \sigma_{a^*,a} \circ \bigcup_a, \qquad \cap_{a^*} = \cap_a \circ \sigma_{a^*,a},$$

so that a is dual to a^* , and use (1);

- (3) if we fix a^* and $\cup_a (\cap_a)$, then $\cap_a (\cup_a)$ is uniquely determined;
- (4) any assignment $a \mapsto a^*$ defines a functor $C \to C^{op}$ (if $f : a \to b$, we can use \cup_a and \cap_b to "bend the wires" to obtain a map $b^* \to a^*$, this is obviously functorial);
- (5) $(a \otimes b)^* \simeq a^* \otimes b^*$, we can clearly put (using symmetry)

$$\cup_{a\otimes b} = \cup_a \otimes \cup_b, \qquad \cap_{a\otimes b} = \cap_a \otimes \cap_b$$

(5) C is closed, with $[b,c]=b^*\otimes c$: the iso $i:C(a\otimes b,c)\simeq C(a,b^*\otimes c)$ can be obtain (roughly) as

$$i(g) = g \circ \cup_b, \qquad i^{-1}(h) = \cap_b \circ h,$$

the maps are inverses by the snake identities, naturality is obvious, since i does nothing on a or c. The unit and counit of the adjunction are given as

$$\eta_a^b = a \otimes \cup_b : a \to b^* \otimes a \otimes b, \qquad \epsilon_a^b = \cap_b \otimes a : b^* \otimes a \otimes b \to a.$$

(6) Can we state a theorem like: C is compact if and only if for each $b \in C$ there is some $b^* \in C$ such that $b^* \otimes -$ is the right adjoint of $- \otimes b$ and ...? What should be the additional conditions?

2 Kleisli categories and monoidal monads

A **monad** on C is a triple (P, η, μ) , where:

- $P: C \to C$ is an endofunctor;
- $\eta: Id_C \to P, \, \mu: P^2 \to P$ are natural transformations satisfying some triangles and squares.

The **Kleisli category** C_P has the same objects as C, with morphisms:

$$C_p(a,b) = C(a, P(b)),$$

and for $f \in C_p(a,b)$, $g \in C_p(b,c)$, the composition is defined as

$$g \circ f := \mu_c \circ P(g) \circ f.$$

A monad is **monoidal** [?] if there are maps

$$\kappa_{a,b}: Pa \otimes Pb \to P(a \otimes b), \quad a, b \in C,$$

natural in a, b and such that

- (P, η, κ) is a **monoidal functor**, that is, some diagrams involving P, α , λ , ρ , κ and η commute;
- additional diagrams containing μ commutes;
- symmetric: additionally a diagram with σ commutes.

Proposition 1. [?], Prop. 1.2.2] There is a bijective correspondence between:

- (i) families of morphisms $\{\kappa_{a,b}\}$ such that (P, η, μ, κ) is a (symmetric) monoidal monad;
- (ii) (symmetric) monoidal structures on C_P such that the left adjoint functor $F_P: C \to C_P$ is strict monoidal.