Първа и втора лема на Щолц

Минко Гечев

Софийски Университет, Факултет по Математика и Информатика

03.04.2013

Лема 1

Лема 1:

Нека $\{y_n\}_{n=1}$ е строго монотонна, а

$$\lim_{x\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=I$$

за $\forall \varepsilon_1 > 0, \exists N_1 : \forall k > n > N_1 :$

$$\left|\frac{x_k - x_n}{y_k - y_n} - I\right| < \varepsilon_1$$

Доказателство (1)

1 сл. $\{y_n\}_{n=0}^{\infty}$ е строго растяща $\Rightarrow y_j > y_i$ за $\forall j > i$

Доказателство (2)

$$\left|\frac{x_{j}-x_{i}}{y_{j}-y_{i}}-I\right|<\varepsilon_{1}\Leftrightarrow$$

$$(I-\varepsilon_{1})(y_{j}-y_{i})< x_{j}-x_{i}<(I+\varepsilon_{1})(y_{j}-y_{i})$$
 (1)

Доказателство (3)

Ако приложим (1) за
$$i=n, j=n+1$$
 и $j=n+2, i=n+1$ и т.н. получаваме:
$$+ \left\{ \begin{array}{l} (I-\varepsilon_1)(y_{n+1}-y_n) < x_{n+1}-x_n < (I+\varepsilon_1)(y_{n+1}-y_n) \\ ... \\ (I-\varepsilon_1)(y_k-y_{k-1}) < x_k-x_{k-1} < (I+\varepsilon_1)(y_k-y_{k-1}) \end{array} \right.$$

Доказателство (4)

$$(I - \varepsilon_{1})(y_{n+1} - y_{n} + y_{n+2} - y_{n+1} + ... + y_{k} - y_{k-1}) < x_{n+1} - x_{n} + x_{n+2} - x_{n-1} + ... + x_{k} - x_{k-1} < (I + \varepsilon_{1})(y_{n+1} - y_{n} + y_{n+2} - y_{n+1} + ... + y_{k} - y_{k-1})(I - \varepsilon_{1})(y_{k} - y_{n}) < x_{k} - x_{n} < (I - \varepsilon_{1})(y_{k} - y_{n})$$

Доказателство (5)

От тук намерихме $N_1: k>n>N_1$ и $|\frac{x_k-x_n}{y_k-y_n}-I|<\varepsilon_1$

Първа лема на Щолц

Лема:

Нека $(a_n)_{n\geq 1}$ и $(b_n)_{n\geq 1}$ са две редици от реални числа. Нека също b_n е строго растяща, неограничена редица и съществува следната граница:

$$\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=\ell$$

Тогава $\lim_{n\to\infty} \frac{a_n}{b_n}$ съществува и е равна на ℓ .

Доказателство (1)

От Лема
$$1\Rightarrow\exists \mathit{N}: k>n>\mathit{N}$$

$$|\frac{x_k-x_n}{v_k-v_n}-\mathit{I}|<\varepsilon$$

Доказателство (2)

Нека фиксираме n > N и направим граничен преход при $k \to \infty$ в горното неравенство. По условие $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ са намаляващи и клонят към 0 при $n \to \infty \Rightarrow |\frac{x_n}{y_n} - l| \le \varepsilon_1 < \varepsilon$ т.е.:

$$\forall n > N \Rightarrow \left| \frac{x_n}{y_n} - I \right| < \varepsilon \Rightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = I.$$

Втора лема на Щолц

Лема:

Нека $\{y_n\}_{n=1}^\infty$ е строго растяща - $\lim_{n \to \infty} y_n = \infty$ и

$$\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=I. \text{ Toraba:}$$

$$\lim_{n\to\infty}\frac{x_n}{y_n}=I$$

Доказателство (1)

Лема 1 следва, че
$$\exists N_1 : k > m > N_1$$
:

$$|rac{x_k - x_m}{y_k - y_m} - I| < arepsilon_1$$
 T.e. $(I - arepsilon_1)(y_k - y_m) < x_k - x_m < (I + arepsilon_1)(y_k - y_m).$

$$(1-\varepsilon_1)(y_k-y_m) < x_k-x_m < (1+\varepsilon_1)(y_k-y_m).$$

Доказателство (2)

Нека $m > N_1, y_m > 0$. Нека разделим на $y_k > 0$:

$$(I-\varepsilon_1)(I-\frac{y_m}{y_k})<\frac{x_k}{y_k}-\frac{x_m}{y_k}<(I+\varepsilon_1)(1-\frac{y_m}{y_k})$$

Доказателство (3)

Нека
$$k \to \infty$$
, понеже $y_k \to \infty$, при $k \to \infty$:

$$\lim_{k\to\infty} ((I-\varepsilon_1)(1-\frac{y_m}{v_k})+\frac{x_m}{v_k})=I-\varepsilon_1< I-\varepsilon,$$
 и

$$\lim_{k \to \infty} ((I + \varepsilon_1)(1 - \frac{y_m}{y_k}) + \frac{x_m}{y_k}) = I + \varepsilon_1 < I + \varepsilon$$

Теорема 1

Теорема 1:

Нека (a_n) е редица от реални числа, $\{b_n\}_{n=0}^{\infty}: \lim_{n\to\infty}b_n=\infty$. Ако:

$$\lim_{n\to\infty}\frac{b_n}{b_{n+1}}=b, b\in\mathbb{R}, b\neq 1$$

To:
$$\lim_{n\to\infty} \frac{a_n}{b_n} = I \Rightarrow \lim_{n\to\infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = I$$

Доказателство

$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n} \frac{\frac{1}{b_{n+1}}}{\frac{1}{b_{n+1}}} = \frac{\frac{a_{n+1}}{b_{n+1}} - \frac{a_n}{b_n} \frac{b_n}{b_{n+1}}}{1 - \frac{b_n}{b_{n+1}}} \to \frac{l - lb}{1 - b} = l.$$

Теорема 2

Теорема 2:

Нека е дадена редицата $\{x_n\}$. Ако

$$\lim_{n\to\infty} x_n = x, x \in (-\infty, \infty)$$
, тогава:

$$\lim_{n\to\infty}\frac{x_1+x_2+\ldots+x_n}{n}=x$$

Доказателство

Нека
$$b_n=n, a_n=x_1+x_2+...+x_n$$
, тогава от $\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=x_{n+1}\to x$.

Пример 1

Оценете
$$\lim_{n \to \infty} \frac{1^k + 2^k + \ldots + n^k}{n^{k+1}}$$
, където $k \in N$.

Решение

Нека $a_n = 1^k + 2^k + ... + n^k$, $b_n = n^{k+1}$. Ясно е, че редицата b_n е с положителни членове, строго растяща и неограничена. Сега:

$$\lim_{n \to \infty} \frac{a_{n+} - a_n}{b_{n+1} - b_n} = \lim_{n \to \infty} \frac{(n+1)^k}{(n+1)^{k+1} - n^{k+1}} = \frac{(n+1)^k}{(n+1)^k}$$

$$\lim_{n \to \infty} \frac{(n+1)^k}{(1 + \binom{k+1}{1}n + \binom{k+1}{2}n^2 + \dots + \binom{k+1}{k}n^k + n^{k+1}) - n^{k+1}} = \lim_{n \to \infty} \frac{(n+1)^k/n^k}{(1 + \binom{k+1}{1}n + \binom{k+1}{2}n^2 + \dots + \binom{k+1}{k}n^k)/n^k} = \lim_{n \to \infty} \frac{(1 + 1/n)^k}{\binom{k+1}{k}} = \frac{1}{k+1}.$$

Пример 2

Намерете:

$$\lim_{n\to\infty}\frac{1!+2!+\cdots+n!}{n!}$$

Решение

Като приложим лемата на Щолц получаваме:

$$\lim_{n\to\infty} \frac{1!+2!+\cdots+n!}{n!} = \lim_{n\to\infty} \frac{(n+1)!}{(n+1)!-n!} = \lim_{n\to\infty} \frac{n+1}{n} = 1$$

Пример 3

Нека $\{x_n\}$ е редица от реални числа и нека:

 $x_{n+1} = x_n + e^{-x_n}, \forall n \geq 0.$

Oценете: $\lim_{n\to\infty} (x_n - \ln(n+1))$.

Решение

 x_n е растяща, $x_n \to \infty$. Означаваме $y_n = e^{x_n - \ln(n+1)} = \frac{e^{x_n}}{n+1}$. Нека приложим лемата на

Щолц:

$$\frac{e^{x_{n+1}}-e^{x_n}}{n+2-(n+1)}=e^{x_n}(e^{x_{n+1}-x_n}-1)=\frac{e^{e^{-x_n}}-1}{e^{-x_n}}\to 1$$

Решение

Тъй като $\lim_{y \to 0} \frac{e^y - 1}{y} = 1$ и $e^{-\mathsf{x}_n} \to 0$.

От Щолц следва, че $y_n \to 1$, което означава, че $\lim_{n \to \infty} x_n - \ln(n+1) = 0$.

Благодаря за вниманието