MATLAB Based Femtocell Network Simulation

Travis Collins

Worcester Polyntechnic Institute traviscollins@wpi.edu

January 23, 2015

Overview

1 LTE Basics

2 Simulator

LTE Attributes/Features

- LTE uses a fully scheduled MAC Layer (except for RACH)
- LTE comes in flavors of both TDD and FDD (FDD will be focused on since it can be simplier to evaluate and explain)
- Bandwidths from 1.4MHz to 20MHz
- Resource Blocks can be QPSK, 16QAM, 64QAM
- Turbocoding rates from 1/2 to 948/1024 (Puncturing when necessary)

Basic LTE Resource Allocation

Cell Topologies

Femtocells

- Cheap with small transmission range
- Reduce load on Macrocells
- Provide service to residential dead zones

Interference Problems

Inter-cell (Among)

- ICIC (inter-cell interference coordination) is used to resource interference among overlapping edge users
- Uses coordination over X2 interface between eNodeB's to enforce scheduling rules

Intra-cell (Within)

- elCIC is still under development and only methods for Pico-cells have been standardized
- Femtocell interference is still an area of debate, but will most likely adopt strategies similar to ICIC
- Interference among Femtocells is still up for grabs

Current Approaches for Femtocell Interference

Split Bands

- Macro users get bands A-C and Femto users get bands D-E
- Pros: Simple to implement and no co-channel interference
- Cos: Spectrally inefficient

Shared Bands

- Both share all bands, Macro transmits deterministic ABS to lower cell edge transmissions
- Pros: All users can use all bands
- Cos: Co-channel interference, coordination required

Overview

1 LTE Basics

2 Simulator

Goal

- Model interference between Femtocells
- Impacts of interference on network
- Avoidance with minimal changes to network operation

Scenarios of Interest

Working and Tobe Changed

Working

- Can simulate N Femtocells with M UE's associate with each cell
- Pathloss is based off WINNER Model (Current using indoor only models without walls)
- Resource blocks utilization is monitored simulation wide
- AP's can have custom positions
- Nodes can have customized tasks (aka VOIP, Web, etc...)
- Scheduler is Round Robin based (first come first serve)

In progress Work

- Sensing is non-realistic (Not traditional to LTE)
- AP's are assumed synchronized, not realistic

Modeling Work

- Overall network throughput as nodes increase
- Interference characteristics
- User statistics
- Resource allocation modeling
- Smart scheduling
- Can sensing be done? Does it provide any advantage?

Scheduler Operation

Scheduler Operation

Demo

Demo

References

- http://lteuniversity.com/get_trained/expert_opinion1/b/ dhar/archive/2010/08/27/ one-millisecond-in-the-life-of-an-lte-ue.aspx
- http://mwrf.com/site-files/mwrf.com/files/uploads/2012/ 08/2_1.JPG
- http://www.citi.sinica.edu.tw/~rchang/BSC.bmp