E.g. 7.3.13. Let \mathbb{R}^2 have the Euclidean inner product. Use the Gram-Schmidt algorithm to construct an orthonormal basis from $\{\mathbf{u}_1, \mathbf{u}_2\}$ where $\mathbf{u}_1 = (1, -3)$ and $\mathbf{u}_2 = (2, 2)$.

•
$$\chi_1 = \chi_1$$

• $\chi_2 - \text{proj}_{W_1} u_2$ where $W_1 = \text{span}\{\chi_1 3\}$
= $\chi_2 - \langle \chi_2, \chi_1 \rangle \chi_1$
= $(2,2) - (2,2) \cdot (1,-3) \cdot (1,-3) = \frac{4}{5}(3,1)$
so choose: $(-3) \cdot (1,-3)$

• Now normalise:

$$w_1 = \frac{V_1}{\|V_1\|} = \frac{1}{\sqrt{10}} (1, -3)$$

 $w_2 = \frac{V_2}{\|V_2\|} = \frac{1}{\sqrt{10}} (3, 1)$

Theorem 7.3.14. If V is a finite-dimensional inner product space, and W is a nonzero subspace of V, then $V = W \oplus W^{\perp}$.

Proof.

Since V is finite dimensional, so is W.

Since W is also nonzero, Th. 7.3.12 =>

W has an arthonormal baris. Th. 7.3.8 => every

yelv can be written as ye = w+w, where

weW & wie W & so V = W+W.

Since W I W by def., Th. 7.2.9 => W NW=103

and so the sum W+W is direct.

7.4 Least Squares (A&R §6.4)

We start with a geometric problem: Suppose W is a subspace of an inner product space V, and $\mathbf{b} \in V$. How do we find the vector in W which is closest to \mathbf{b} ?

Theorem 7.4.1 (Closest Point). *If* W *is a finite dimensional subspace of an inner product space* V *and* $\mathbf{b} \in V$, *then the point in* W *closest to* \mathbf{b} *is* $\operatorname{proj}_W \mathbf{b}$, *in the sense that*

$$d(\mathbf{b}, \operatorname{proj}_W \mathbf{b}) < d(\mathbf{b}, \mathbf{w})$$

for every vector $\mathbf{w} \in W$ different from $\operatorname{proj}_W \mathbf{b}$.

Proof.

For any
$$w \in W$$
 $(x - w) = ((x - proj_w t_c) + (proj_w t_c - w)$

with $proj_w t_c - w \in W$ & $(x - proj_w t_c \in W^{\perp})$

So $pythagoran \Rightarrow ||t_c - w||^2 = ||t_c - proj_w t_c||^2 + ||proj_w t_c - w|^2$

If $w + proj_w t_c + then ||proj_w t_c - w|^2 > 0$ by positive definiteness =

 $||t_c - w||^2 > ||t_c - proj_w t_c||^2 \Rightarrow ||t_c - w||^2 > 0$ by positive definiteness =

 $||t_c - w||^2 > ||t_c - proj_w t_c||^2 \Rightarrow ||t_c - w||^2 > 0$ by positive definiteness =

 $||t_c - w||^2 > ||t_c - proj_w t_c||^2 \Rightarrow ||t_c - w||^2 > 0$

In addition to being of geometric interest, Theorem 7.4.1 has a practical application to the least-squares problem.

Problem 7.4.2. Given a linear system $A\mathbf{x} = \mathbf{b}$ of m equations in n unknowns, find a vector \mathbf{x} that minimizes $\|\mathbf{b} - A\mathbf{x}\|$ with respect to the Euclidean inner product on \mathbb{R}^m . We call such an \mathbf{x} a **least squares solution** of the system, we call $\mathbf{b} - A\mathbf{x}$ the **least squares error** vector and $\|\mathbf{b} - A\mathbf{x}\|$ the **least squares error**.

Remark 7.4.3. The term "least squares solution" arises because the error vector $\mathbf{b} - A\mathbf{x} = (e_1, e_2, \dots, e_m)$, has squared length $\|\mathbf{b} - A\mathbf{x}\|^2 = e_1^2 + e_2^2 + \dots + e_m^2$. Since minimizing $\|\mathbf{b} - A\mathbf{x}\|$ is equivalent to minimizing $\|\mathbf{b} - A\mathbf{x}\|^2$, the least squares solution, as defined above, minimizes the "sum of the squares of the errors".

Theorem 7.4.4. Let W = col(A). Then \mathbf{x} is a least squares solution of $A\mathbf{x} = \mathbf{b}$ iff $A\mathbf{x} = proj_W \mathbf{b}$.

Proof. By def, $x \in \mathbb{R}^n$ is a least squares solo of Ax = G iff x minimized d(G, Ax). For any $x \in \mathbb{R}^n$, $Ax \in col(A)$. The 7.4.1 \Rightarrow projute in the closest pt in W to G. So d(G, Ax) is minimized iff x satisfies Ax = proju(G).

Theorem 7.4.5. A vector \mathbf{x} is a least squares solution to $A\mathbf{x} = \mathbf{b}$ iff it is a solution of the associated **normal system**

$$A^T A \mathbf{x} = A^T \mathbf{b}. \tag{7.5}$$

Moreover, the normal system is always consistent.

Proof. The 7.4.4
$$\Rightarrow$$
 x is a least squares sol of $Ax = C$ iff $Ax = Proj_{col(A)} C$.

• If
$$Ax = \text{projcolar} & \text{then}$$

 $& -Ax = & -\text{projcolar} & \text{e col}(A)^{\perp} = \text{nu}((A^{T}))$
 $\Rightarrow A^{T}(x - Ax) = Q \Rightarrow A^{T}Ax = A^{T}G$
In particular, since projcolar & e col(A)

the egf
$$Ax = projcolar b$$
 is consistent \Rightarrow $A^TAx = A^Tb$ is consistent.

• Conversely if ATAX = ATG then

$$A^{T}(Ax-b)=0$$
 \Rightarrow $Ax-b \in null(A^{T})=col(A)^{\perp}$

But
$$A \times \in col(A)$$
 $\forall \times \in \mathbb{R}^n \& b = A \times + (b - A \times)$

$$\Rightarrow Ax = \text{proj}_{col(A)} \subseteq Gy \quad Th^{m} 7.3.7$$

$$\Rightarrow x \text{ is a 'least squares sol'}$$

E.g. 7.4.6. Find all least squares solutions of Ax = b where

$$A = \begin{bmatrix} 1 & 3 \\ -2 & -6 \\ 3 & 9 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

$$A^{T}A = \begin{pmatrix} 14 & 42 \\ 42 & 126 \end{pmatrix} \qquad \& \quad A^{T}G = \begin{pmatrix} 4 \\ 12 \end{pmatrix}$$

$$\begin{pmatrix} 14 & 42 & | & 4 \\ 42 & 126 & | & 12 \end{pmatrix}$$
 \sim $\begin{pmatrix} 14 & 42 & | & 4 \\ 0 & 0 & | & 0 \end{pmatrix}$

$$\Rightarrow \chi = \begin{pmatrix} 2/7 \\ 0 \end{pmatrix} + \chi \begin{pmatrix} -3 \\ 1 \end{pmatrix} \qquad \forall \quad \chi \in \mathbb{R}$$

Error:
$$A \propto -6 = \begin{pmatrix} 2/7 \\ -4/7 \\ 6/7 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\Rightarrow \|Ax - \xi\| = \sqrt{6/7}$$