Introduction to Computational Science, Practical Work

Report must be send by mail (guillaume.fuhr@univ-amu.fr) before March 3rd, 2014 in pdf format

Contents

1	1D	equation	2
	1.1	Diffusion	2
	1.2	Advection	3
	1.3	Advection-Diffusion	3
2	Hea	at equation in 2D	4
	2.1	Preliminary work	4
	2.2	Explicit scheme	4
	2.3	Implicit and Cranck-Nicholson schemes	5
	2.4	Conclusions	6
3	App	pendices	6
	3.1	Analytical results	6
		3.1.1 General solution of heat equation on a finite domain	6
	3.2	Numerical schemes	6
		3.2.1 Derivates	7
		3.2.2 explicit Euler	7
		3.2.3 implicit Euler	7
		3.2.4 Cranck-Nicholson	7
		3.2.5 Runge-Kutta 4	7
	3.3	Code AdvDiff1D	7
		3.3.1 download source and compile	7
		3.3.2 Initial Conditions	8
	3.4	H2D code	9
		3.4.1 Download	9
		3.4.2 Compilation	9
		3.4.3 I/O	9
	3.5	usefull commands	11

Introduction

The aim of this work will be to study numerical methods and results obtained for an advection-diffusion equation. This equation can be expressed as:

$$\frac{\partial u(x,t)}{\partial t} + V\nabla u(x,t) = C\nabla^2 u(x,t) \tag{1}$$

with

$$\nabla \to \left\{ \begin{array}{l} \partial_x \\ \partial_y \\ \partial_z \end{array} \right.$$

assuming for domain dimensions: $[L_x \times L_y \times L_z] = [2\pi \times 2\pi \times 2\pi]$ For all the simulations, choose wisely values of Δt and Δx such that time resolved is at least 15 times the typical time scale of the considered dynamics.

Diffusion time scale : $T_D = L^2/C$ Advection time scale : $T_A = L/V$

Aim of this practical work is to analyse/compare different typical schemes used in finite difference to study an diffusion-advection equation, for example impact of discretization used, stepsize.... Schemes which will be used:

- Explicit Euler scheme, 1st order
- Implicit Euler scheme, 1st order
- Runge-Kutta 4, 4th order explicit scheme

1 1D equation

1.1 Diffusion

Considering only diffusive part in 1D:

$$\frac{\partial u(x,t)}{\partial t} = C \frac{\partial^2 u(x,t)}{\partial x^2} \tag{2}$$

- 1. Substite centered finite difference in diffusion equation
- 2. Write down equation in matrix form for implicit and explicit Euler method.
- 3. Derivate stability criterion in both cases.
- 4. Assuming that $u(0,t) = u(L_x,t) = 0$ and $u(X,O) = u_0(x)$ derivate the analytical solution of the equation.
- 5. Resolve numerically previous equation. Using the plots of output datas, what kind of boundary conditions are used? How is it implemented in the code?
- 6. How does system evolves when $C\Delta t/\Delta x^2$ is $<1/2,=1/2-\epsilon,=1/2,=1/2+\epsilon,>1/2$
- 7. When $C\Delta t/\Delta x^2 < 1/2$, is the radial structure of u(x,t) modified? How to demonstrate the result analitycally?

- 8. Calculate numerical growth rate and compare it with the analytical one, are they equals?
- 9. Run same simulations using RK4 scheme and answers questions 6 and 7.
- 10. If you fix Δx , do you observe a limit on time step for numerical stability? Compare this value to Δt corresponding to explicit Euler scheme.
- 11. Theorically, there is no constraint on time step with implicit schemes, is it verified numericaly? Justify?

1.2 Advection

This time we consider only advection:

$$\frac{\partial u(x,t)}{\partial t} + V \frac{\partial u(x,t)}{\partial x} = 0$$

- 1. Write down equation in matrix form for implicit and explicit Euler method
 - using backward finite difference
 - using centered finite difference
- 2. Which one is implemented in the code?
- 3. Modify the code to use the other scheme.
- 4. What is the physical definition of an advection? Does it correspond to you results?
- 5. Is there any difference in the simulations depending on used time scheme?
 - if a sin function is used for $u_0(x)$
 - in the case of an heavyside function used for $u_0(x)$
- 6. Is there any benefit to use Runge-Kutta scheme?
- 7. How does the system evolves when $C\Delta t/\Delta x$ is $<1, \simeq 1, =1, >1$
- 8. For a fixed Δx is there a limit on time step with RK4? Compare this value with the one corresponding to explicit Euler scheme.

1.3 Advection-Diffusion

Now we consider the full equation:

$$\frac{\partial u(x,t)}{\partial t} + V \frac{\partial u(x,t)}{\partial x} = C \frac{\partial^2 u(x,t)}{\partial x^2}$$

- 1. Substite centered finite difference on the system
- 2. What is the equivalent differential equation to this scheme?
- 3. What kind of derivate is used for advection with implicit Euler scheme implemented?
- 4. Write down equation in matrix form. Can you expressed the result as a sum of 2 matrix, one for advection and one for diffusion?

- 5. Calculate numerically diffusive growth rate from simulations. Is your result in agreement with expected value?
- 6. Runs simulations with centered or backward difference for advection. Calculate growth rate, is it linked to diffusion coefficient?
- 7. In previous sections, it has been shown that stability criterions exists for diffusion and advection, what happend if we choose parameters which verifies only one of these criterions?

2 Heat equation in 2D

In this part, we consider only diffusion term in 2D case with a source.

$$\frac{\partial u(x,y,t)}{\partial t} = S(x,y) + C \frac{\partial^2 u(x,y,t)}{\partial x^2} + C \frac{\partial^2 u(x,y,t)}{\partial y^2}$$

2.1 Preliminary work

- 1. If we want to consider an infinite domain in y direction, how can this be done numerically (give 2 possibilities)?
- 2. Using Discrete Fourier Transform (DFT) in y,

$$u(x, y, t) \to \sum_{m=0}^{M} u_m(x, t) \exp(\mathrm{i}mk_y y)$$

rewrite equation.

- 3. From a physical point of view what changes in that case?
- 4. Supposing S(x,y) = 0, Choose a function $u_0(x,y)$ such that growth rate can be calculated analytically (avoid trivial case like $u_0(x,y) = Constant$). Can we do the same analysis if we consider the Fourier form previously used?
- 5. Calculate growth rate in both cases.

2.2 Explicit scheme

We will consider only explicit schemes here,

- Explicit Euler
- Runge-Kutta 4
- 1. Obtain discret form of the equation
- 2. Calculate the numerical stability condition when laplacian is expressed in real space. Same question if we consider Fourier transformation in y direction.
- 3. If we increase number of points/modes, does the two methods give the same results? Which one is the most precised? why?
- 4. If we change $u_0(x,y)$, are the previous results modified? Why?

- 5. Estimate error on numerical solution with parameters you have used.
- 6. For one set on inputs parameters, plot computation time spent from t to t+1 for the following resolutions: $8\times 8,16\times 16,32\times 32,64\times 64,128\times 128,\ 256\times 256.$ Is it linear with respect to resolution?
- 7. What are boundary conditions immplmented? Implement in the code a function null_bc in file boundary.c which correspond to following condition in y:

$$\partial_u u(x,0,t) = 0, \quad \partial_u u(x,Ly,t) = 0$$

8. Does it change obtained solution? Why?

2.3 Implicit and Cranck-Nicholson schemes

Now we consider only implicit/semi-explicit schemes,

- Implicit Euler
- Cranck-Nicholson
- 1. Express amplification factor for 1D diffusion equation 1D for implicit Euler and Cranck-Nicholson schemes.
- 2. Compared to explicit Euler, is there a numerical stability condition?
- 3. What changes between implicit euler and Cranck-Nicholson schemes?
- 4. Give matrix form of the discrete equation for both 1D and 2D cases with implicit Euler. Result should be expressed like:

$$AU^{t+1} = S + BU^t$$

- 5. What are the differences concerning matrix obtained in the 2 cases?
- 6. Does boundary conditions modify the coefficients? If yes, which ones?
- 7. Which coefficients should be modified if we want to use Von Neumann like boundaries?
- 8. And if we consider Fourier modes in y direction?
- 9. Which methods do you know to resolve system of linear equations?
- 10. In the source code, considering *euli* function, how U^{t+1} is obtained from U^t ? What is the name of this method?
- 11. Typically, matrix inversion complexity is proportional to N^3 . Plot computational time from t to t+1 for the following resolutions: $8\times8,16\times16,32\times32,64\times64,128\times128,$ 256×256 .
- 12. Is it proportionnal to N^3 in that case? conclusion?
- 13. Same question if Fourier transformation is considered with a relaxation method.
- 14. Using a well choosen initial condition, compare relative error between numerical and theorical solution in function of time.

2.4 Conclusions

1. Using previous results, if you can choose only one method to resolve 2D heat equation, which one will you choose and why.

3 Appendices

3.1 Analytical results

3.1.1 General solution of heat equation on a finite domain

1D case

$$\partial_t u(x,t) = C\partial_x^2 u(x,t) + Du(x,t) + S(x) \tag{3}$$

Domaine:
$$0 \le x \le Lx$$
 (4)

$$u(x,0) = u_0(x) (5)$$

$$u(0,t) = 0 (6)$$

$$u(0, Lx) = 0 (7)$$

$$u(x,t) = \int_0^{Lx} u_0(x)G(x,\xi,t)d\xi + \int_0^t \int_0^{Lx} S(\xi)G(x,\xi,t-\tau)d\xi d\tau$$
 (8)

$$G(x,\xi,t) = \frac{2}{Lx}e^{(Dt)}\sum_{n=1}^{\infty}\sin\left(\frac{n\pi x}{Lx}\right)\sin\left(\frac{n\pi\xi}{Lx}\right)\exp\left(-\frac{Cn^2\pi^2t}{Lx^2}\right)$$
(9)

(10)

2D case

$$\partial_t u(x, y, t) = C \partial_x^2 u(x, t) + C \partial_y^2 u(x, y, t) + S(x, y)$$
(11)

Domaine:
$$0 \le x \le Lx$$
 (12)

$$-\infty \le y \le \infty \tag{13}$$

$$u(x, y, 0) = u_0(x, y) (14)$$

$$u(0,y,t) = 0 (15)$$

$$u(Lx, y, t) = 0 (16)$$

$$u(x,t) = \int_{-\infty}^{\infty} \int_{0}^{Lx} u_0(\xi,\eta) G(x,y,\xi,\eta,t) d\xi d\eta$$
 (17)

$$+ \int_{0}^{t} \int_{0}^{Lx} \int_{-\infty}^{\infty} S(\xi, \eta) G(x, y, \xi, \eta, t - \tau) d\xi d\eta d\tau$$
 (18)

$$G(x,\xi,t) = G_1(x,\xi,t)G_2(y,\eta,t)$$
 (19)

$$G_1(x,\xi,t) = \frac{2}{Lx} \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{Lx}\right) \sin\left(\frac{n\pi \xi}{Lx}\right) \exp\left(-\frac{an^2\pi^2 t}{Lx^2}\right)$$
(20)

$$G_2(y,\eta,t) = \frac{1}{2\sqrt{\pi Ct}} \left[\exp\left(-\frac{(y-\eta)^2}{4Ct}\right) - \exp\left(-\frac{(y+\eta)^2}{4Ct}\right) \right]$$
(21)

3.2 Numerical schemes

Supposing this convention for discretisation:

$$f(x,t) \to f(x_i,t_j) \to f(x+i\Delta x,t+j\Delta t) \to f_{t+i}^{x+j}$$

3.2.1Derivates

And considering an equation expressed as

$$\frac{\partial f(x,t)}{\partial t} = L(t, f(x,t)) \tag{22}$$

Forward difference :
$$\partial_t f(t) = \frac{f^{t+1} - f^t}{\Delta t}$$

Backward difference : $\partial_t f(t) = \frac{f^t - f^{t-1}}{\Delta t}$
Centered difference : $\partial_t f(t) = \frac{f^{t+1} - f^{t-1}}{2\Delta t}$ (23)

explicit Euler 3.2.2

$$\frac{f^{t+1} - f^t}{\Delta t} = L(t, f^t)$$

$$f^{t+1} = f^t + \Delta t L(t, f^t)$$
(24)

$$f^{t+1} = f^t + \Delta t L(t, f^t) \tag{25}$$

3.2.3 implicit Euler

$$\frac{f^{t+1} - f^t}{\Delta t} = L(t + \Delta t, f^{t+1})$$

$$f^{t+1} = f^t + \Delta t L(t + \Delta t, f^{t+1})$$
(26)

$$f^{t+1} = f^t + \Delta t L(t + \Delta t, f^{t+1}) \tag{27}$$

3.2.4Cranck-Nicholson

$$\frac{f^{t+1} - f^t}{\Delta t} = \frac{1}{2}L(t, f^t) + \frac{1}{2}L(t + \Delta t, f^{t+1})$$
(28)

$$f^{t+1} = f^t + \Delta t \left(\frac{1}{2} L(t, f^t) + \frac{1}{2} L(t + \Delta t, f^{t+1}) \right)$$
 (29)

3.2.5 Runge-Kutta 4

$$f^{t+1} = f^t + \frac{\Delta t}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right) \tag{30}$$

with
$$(31)$$

$$k_1 = \Delta t L(t, f^t) \tag{32}$$

$$k_2 = \Delta t L(t + \frac{\Delta t}{2}, f^t + \frac{1}{2}k_1)$$
 (33)

$$k_3 = \Delta t L(t + \frac{\Delta t}{2}, f^t + \frac{1}{2}k_2)$$
 (34)

$$k_4 = \Delta t L(t + \Delta t, f^t + k_3) \tag{35}$$

(36)

3.3 Code AdvDiff1D

download source and compile

 $Source\ code\ can\ be\ download\ at:\ \mathbf{https://github.com/GFuhr/MF_FCM6/zipball/master}$ Source code is in folder TP1.

how to compile

- On linux, this program can be compiled via the **make** command.
- On Windows, with any IDE editor such as VisualStudio or Code::Blocks, loading files advdiff.c and advdiff.h.

3.3.2 Initial Conditions

Time

$$\begin{array}{c|cc} & advection & diffusion \\ \hline t = 0 & u^0(x) & u^0(x) \end{array}$$

Space

Initial Fields

$$u^{0}(x) \mid A \sin(\sigma \frac{\pi}{L_{x}}(x - x_{0})) \mid$$

$$u^{0}(x) \mid A \exp(-(x - x_{0})^{2}/\sigma^{2}) \mid$$

$$u^{0}(x) \mid \begin{cases} A \text{ si } x \in [x_{0} - \sigma/2; x_{0} + \sigma/2] \\ 0 \text{ sinon} \end{cases}$$

I/O Inputs:

Initial parameters must be entered when you run the program.

• "Nx=?": number of points in radial direction

• "Npas=?" : number of iterations

• "Nout=?": every Nout iterations, u(t, x) will be write in a file

• "C=?" : diffusion coefficient

• "V=?" : advection coefficient

• "A=?" : Amplitude of the initial field described in 3.3.2

• "x0=?": parameter x_0 defined in 3.3.2

• "sigma=?" parameter σ defined in 3.3.2

• "Dx=?" : radial step Δx

• "Dt=?": time step Δt

Outputs:

Everytime you run the program, another outputfile will be generated **out_XXXX.dat**. This file is coded in text (ASCII) contains Npas/Nout lines and Nx columns with values of $u(t_i, x_i)$.

3.4 H2D code

3.4.1 Download

Code is in the same archive as previous one:

https://github.com/GFuhr/MF_FCM6/zipball/master,

H2D code is in folder TP2.

3.4.2 Compilation

- on linux, with make command
- on windows, a "project" file usable with Code::Blocks and a "solution" file for Visual Studio can be found in folder TP2/H2D/

3.4.3 I/O

Inputs:

Initial parameters must be put in file params/params.h. Following parameters can be modified:

- "C" : diffusion coefficient
- "NX": number of points in x direction
- "NY": number of points in y direction
- "DT": time step
- "ITER" : nombre d'itérations en temps
- "LX" : Box size in x direction
- "LY": Box size in y direction
- "discret": spacial discretisation used, can be "real" or "fourier"
- "scheme" : numerical scheme used

"eule" : explicit Euler "euli" : implicit Euler

"eulis": implicit Euler with relaxations

"rk4" : Runge-Kutta 4 "cn" : Cranck-Nicholson

Initial fields/source can be modified in file params/functions.c

Outputs:

Two files will be generated at each runs: $\mathbf{H2D_GPLOT_XXXX}$.dat and $\mathbf{H2D_OCT_XXXX}$.dat. The only difference is that (fichiers $_OCT_$) can be used with octave and (fichiers $_GPLOT_$) with gnuplot.

Files $_OCT_-$, contain Ny lines de Nx columns with values of u(x, y, t). Files $_GPLOT_-$ contain Nx * Ny lines and Nx columns with values of u(x, y, t).

Output format $u(x_i, y_j) \rightarrow u_{i,j}$:

Case where "discret=real", files GPLOT:

Case where "discret=fourier", files GPLOT:

$$\begin{cases} x_{0} & m_{0} & \Re(u_{i,j}) \\ x_{1} & m_{0} & \Re(u_{i,j}) \\ \vdots & \vdots & \vdots \\ x_{Nx-1} & m_{0} & \Re(u_{Nx-1,Ny-1}) \\ x_{0} & m_{1} & \Re(u_{0,1}) \\ \vdots & \vdots & \vdots \\ x_{Nx-1} & m_{Ny-1} & \Re(u_{Nx-1,Ny-1}) \\ x_{0} & m_{0} & \Im(u_{i,j}) \\ x_{1} & m_{0} & \Im(u_{i,j}) \\ \vdots & \vdots & \vdots \\ x_{Nx-1} & m_{0} & \Im(u_{Nx-1,Ny-1}) \\ x_{0} & m_{1} & \Im(u_{0,1}) \\ \vdots & \vdots & \vdots \\ x_{Nx-1} & m_{Ny-1} & \Im(u_{Nx-1,Ny-1}) \end{cases}$$

$$(38)$$

Case where "discret=real", files OCT:

Ny lines, Nx columns
$$\begin{cases} u_{0,0} & u_{1,0} & \cdots & u_{Nx-1,0} \\ u_{0,1} & u_{1,1} & \cdots & u_{Nx-1,1} \\ \vdots & \vdots & \vdots \\ u_{0,Ny-1} & u_{1,Ny-1} & \cdots & u_{Nx-1,Ny-1} \end{cases}$$
(39)

Case where "discret=fourier", files OCT:

$$2*Ny lines, Nx columns
\begin{cases}
\Re(u_{0,0}) & \Re(u_{1,0}) & \cdots & \Re(u_{Nx-1,0}) \\
\Re(u_{0,1}) & \Re(u_{1,1}) & \cdots & \Re(u_{Nx-1,1}) \\
\vdots & \vdots & \vdots & \vdots \\
\Re(u_{0,Ny-1}) & \Re(u_{1,Ny-1}) & \cdots & \Re(u_{Nx-1,Ny-1}) \\
\Im(u_{0,0}) & \Im(u_{1,0}) & \cdots & \Im(u_{Nx-1,0}) \\
\Im(u_{0,1}) & \Im(u_{1,1}) & \cdots & \Im(u_{Nx-1,1}) \\
\vdots & \vdots & \vdots & \vdots \\
\Im(u_{0,Ny-1}) & \Im(u_{1,Ny-1}) & \cdots & \Im(u_{Nx-1,Ny-1})
\end{cases}$$
(40)

3.5 usefull commands

• to measure computation time, command **time** is used : time ./bin/h2d_gcc.exe

<u>Remark</u> : time measure can be considered reliable only if it's at least 10 seconds.

 \bullet How to plot 3D data with gnuplot. In following, we suppose NX=64 and NY=64

```
gnuplot> set dgrid3d 64,64
gnuplot> set hidden3d
gnuplot> splot "H2D_0000.dat" u 1:2:3 with lines
```

- with Octave
 - to read datas use function load
 - to plot datas u(x,y), use function surf
 octave> data=load('H2D_0000.dat');
 octave> surf(data)