Схема курса на 7 семестр + МКР и МКЭ для уравнения диффузии

Ануприенко Денис Валерьевич

6 сентября 2024 года

О чем курс

Основной предмет – уравнение диффузии

$$\frac{\partial u}{\partial t} + \operatorname{div}\left(-\mathbb{D}\nabla u\right) = f$$

Что в него входит?

- ▶ и основная неизвестная (концентрация вещества)
- ightharpoonup $\mathbb{D} = \mathbb{D}^T > 0$ тензор диффузии
- ▶ f источниковый член

Курс посвящен **численному решению** задач для уравнения диффузии

Аналогичные уравнения

Основной предмет – уравнение диффузии

$$\frac{\partial u}{\partial t} + \operatorname{div}(-\mathbb{D}\nabla u) = f$$

Некоторые сферы применения:

- **диффузия** в растворах: биологические ткани, подземные воды и др.
- **фильтрация** подземных вод, нефти, газа: \mathbb{D} тензор фильтрации, u давление
- ightharpoonup теплоперенос: $\mathbb D$ тензор телопроводности, u температура
- ▶ экономика: D ..., u цена опциона

О тензоре диффузии

$$\mathbb{D} = \begin{bmatrix} d_{\mathsf{x}} & d_{\mathsf{x}\mathsf{y}} \\ d_{\mathsf{x}\mathsf{y}} & d_{\mathsf{y}} \end{bmatrix}$$

Для изотропного материала обычно

$$\mathbb{D} = egin{bmatrix} d & 0 \ 0 & d \end{bmatrix} = d\mathbb{I}$$

Полный тензор возникает для сложно анизотропных материалов

Связь с уравнением Лапласа

Если уравнение диффузии

$$\frac{\partial u}{\partial t} + \operatorname{div}(-\mathbb{D}\nabla u) = f$$

рассмотреть в стационарном случае для изотропного материала с единичным тензором, получим

$$\operatorname{div}\left(-\nabla u\right)=f,$$

то есть уравнение Лапласа

$$-\Delta u = f$$

Краевая задача Дирихле для стационарного уравнения

$$egin{cases} \operatorname{\mathsf{div}} ig(-\mathbb{D}
abla uig) = f & \mathrm{B} & \Omega \in \mathbb{R}^2, \ u|_{\partial \Omega} = g_D \end{cases}$$

Наши первые шаги:

- Граничные условия исключительно Дирихле
- Область Ω единичный квадрат
- lacktriangle Тензор диагональный: $\mathbb{D} = diag\{d_x, d_y\}$

МЕТОД КОНЕЧНЫХ РАЗНОСТЕЙ

Квадратные сетки

Структурированная квадратная сетка $\omega_h = \{ih, jh\}, \;\; h = 1/N$

МКР: основные положения

Численное решение – набор значений в узлах:

$$u_{ij}^h \approx u(x_i, y_j)$$

Уравнение раскрывается до выражений с **производными**:

$$\mathsf{div}\left(-\mathbb{D}\nabla u\right)=f$$

$$\psi$$

$$-d_{x}\frac{\partial^{2} u}{\partial x^{2}} - d_{y}\frac{\partial^{2} u}{\partial y^{2}} = f$$

Производные заменяются на конечные разности

Аппроксимации на 5-точечном шаблоне

$$\frac{\partial^2 u}{\partial x^2}(x_i, y_j) = \frac{u_{i+1,j}^h - 2u_{i,j}^h + u_{i-1,j}^h}{h^2} + \mathcal{O}(h^2)$$
$$\frac{\partial^2 u}{\partial y^2}(x_i, y_j) = \frac{u_{i,j+1}^h - 2u_{i,j}^h + u_{i,j-1}^h}{h^2} + \mathcal{O}(h^2)$$

МКР: граничные условия

Значения в граничных точках известны из граничных условий. Уравнения в них не записываются

МКР: итоговая система уравнений

МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ

Пример практической необходимости

 Необходимо рассчитать диффузию в реальном объекте сложной формы

- Струкутрированная сетка не годится, но можно построить **треугольную сетку**
- ▶ Метод конечных элементов один из подходящих методов дискретизации

МКЭ: история

- Основа методы решения операторных уравнений
- ▶ Вариационно-проекционные методы (Ритца, Бубнова-Галеркина, ...) – конец XIX – начало XX вв.

218 убно в

▶ Кусочные функции в качестве базисных – середина XX в.

МКЭ: краткая схема метода Ритца

1. Операторное уравнение в гильбертовом пространстве:

$$Au = f$$
, $A = A^* : H \to H$

2. Решение в конечномерном подпространстве:

$$u\approx u^h=\sum_{i=1}^N c_i\varphi_i\in H_N\subset H$$

3. Коэффициенты разложения c_1, \ldots, c_N ищутся из условий, приводящих к линейной системе:

$$(\mathcal{A}u^h, \varphi_i) = (f, \varphi_i), \qquad i = 1, \dots, N$$

$$\downarrow$$
 $Ac = b, \quad A_{ij} = (\mathcal{A}\varphi_i, \varphi_j), \quad b_i = (f, \varphi_i)$

МКЭ: как метод Ритца наконец стал практичным

- ▶ Первоначальный выбор базиса в инженерных приложениях: тригонометрия
- Возникали плотные матрицы, что непрактично
- 1940-е: выбор кусочных функций

- lacktriangle Для большинства i,j выходит $(\mathcal{A} arphi_i, arphi_j) = 0$
- Разреженные матрицы, как в МКР!

МКЭ: общие положения

- ▶ Как и в МКР, ищутся значения в узлах
- ▶ В отличие от МКР, можно найти решение и вне узлов!
- Работа на треугольных сетках
- Разреженные матрицы, как и в МКР

План курса

Темы:

- 1. МКР на квадратных сетках
- 2. МКЭ на треугольных сетках
- 3. МКО на многоугольных сетках
- 4. Дискретизация по времени

Оценки:

- 3 задания по любым двум пунктам
- 4 задания по любым трем пунктам
- 5 задания по всем пунктам

Правила сдачи заданий:

- Код в репозиторий
- Отчет в LATEX

Советы по написанию кода

Сверьте результаты с аналитическим решением

- 1. Посмотрите теорию: как должны убывать нормы ошибки решения? Обычно 1-й или 2-й порядок
- 2. Проверьте, получается ли нужный порядок сходимости в вашем коде

Советы по написанию кода

Вы написали код, формирующий линейную систему и решающий ее. С чего начать его проверку?

- 1. Подайте нулевую правую часть. Решение должно тоже получаться нулем. Убедитесь, что линейный решатель сходится к нулевому решению с разных начальных приближений
- 2. Подставьте линейное решение. Многие методы дискретизации точны на линейных решениях. Если у вас не так где-то в коде ошибка
- 3. Переходите к более сложным решениям