REVISED VERSION

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 26 May 2005 (26.05.2005)

PCT

(10) International Publication Number WO 2005/048223 A1

G09F 9/30. (51) International Patent Classification⁷: H05B 33/14, H01L 29/786, 21/288, 21/3205

(21) International Application Number:

PCT/JP2004/016809

(22) International Filing Date:

5 November 2004 (05.11.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 2003-386022

14 November 2003 (14.11.2003) JP

- (71) Applicant (for all designated States except US): SEMI-CONDUCTOR ENERGY LABORATORY CO., LTD. [JP/JP]; 398, Hase, Atsugi-shi, Kanagawa 2430036 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KANNO, Yohei [JP/JP]; c/o SEMICONDUCTOR ENERGY LABORA-TORY CO., LTD., 398, Hase, Atsugi-shi, Kanagawa 2430036 (JP). FUJII, Gen [JP/JP]; c/o SEMICONDUC-TOR ENERGY LABORATORY CO., LTD., 398, Hase, Atsugi-shi, Kanagawa 2430036 (JP).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN. CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

- (88) Date of publication of the revised international search 11 August 2005 report:
- (15) Information about Correction: see PCT Gazette No. 32/2005 of 11 August 2005, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME

(57) Abstract: Especially in case that a light-emitting element composed of layers containing organic compounds or inorganic compounds is driven by a thin film transistor (TFT), a structure having at least two transistors installed with a drive TFT is required to prevent irregularities of ON current of a switching TFT provided to a pixel region. Hence, the simplification of a semiconductor element structure and a process for manufacturing a semiconductor element becomes an urgent task as a large substrate is frequently used. According to the present invention, after that a source region and a drain region are formed, an insulating film serving as a channel protective film is formed to cover a portion for serving as a channel region, then, an island-like semiconductor film is formed. Accordingly, a semiconductor element can be manufactured by using only a metallic mask without forming a resist mask, and so the process can be simplified.