Data collection, Analysis and Inference

Subject Code: CPE-RPE,

May 2021, SRM Univeristy-AP, Andhrapradesh

Lecture- 3: Basic Statistical Distributions and their applications: Normal Distribution, Weibull Distribution.

Aim: To be able recognize systems of continuous variable nature and their probability distributions.

- Recall...
 - ► We defined sample space, events
 - ► Looked at three definitions of probability
 - ➤ Defined random variables and started to see events in terms of random variables
 - Narrowed down our focus to "discrete" random variables and defined expectation of a (discrete) random variable.
- Looked at four types of random variables Bernoulli, binomial, Poisson, and geometric.

- "Discrete" random variables random variables which takes on finite or countably many values
- We can even have random variables which can take uncountably many values
- Typical examples -
 - ► various times like service time, installation time, download time, failure time, and
 - ▶ physical measurements like weight, height, distance, velocity, temperature, and connection speed etc.

Probability density function

If X is a continuous random variable, then there exists a non-negative function f, called **probability density function**, defined for all real $x \in (-\infty, \infty)$, having the property that for any set B of real numbers,

$$P\left\{X\in B\right\} = \int\limits_B f(x)\,\mathrm{d}x$$

 $\int_{a}^{b} f(x) dx$

Area under the graph of f(x) over the interval [a, b]

Total probability must be 1

$$\implies P\left\{-\infty < X < \infty\right\} = \int_{-\infty}^{\infty} f(x) dx = 1$$

If we let B = [a, b], then

$$P(a \le X \le b) = \int_a^b f(x) dx$$

If we let a = b in the above equation,

$$P\left\{X=a\right\}=\int\limits_{a}^{a}f(x)\,\mathrm{d}x=0$$

That is, p(a) = P{X = a} = 0 for every real number a
 Hence the probability mass function does not carry
 any information in the case of continuous random
 variables!

Basis for Normal, t-dist tables

By the Fundamental Theorem of Calculus,

$$\int_a^b f(x)dx = F(b) - F(a) = P\{a \le x \le b\}$$

Summary

Distribution	Discrete	Continuous		
We use	p.m.f $p(x) = P\{X = x\}$	p.d.f f(x) (p.d.f)		
Computing probabilities	$P\{X \in A\} = \sum_{x \in A} p(x)$	$P\{X\in A\}=\int_A f(x)dx$		
Cumulative				
distribution	$F(a) = \sum_{x \leq a} p(x)$	$F(a) = \int_{-\infty}^{a} f(x) dx$		
function	x≤a			
Total probability	$\sum_{x} p(x) = 1$	$\int_{-\infty}^{\infty} f(x) dx = 1$		

Exercise: Compute Var(X) if X has a density function given by

$$f(x) = \begin{cases} \frac{1}{4}xe^{-x/2}, & x > 0\\ 0 & \text{otherwise} \end{cases}$$

Normal random variable

We say that X is a **normal random variable**, or simply that X is normally distributed, with parameters μ and σ^2 if the density of X is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}, \quad -\infty < x < \infty$$

Transmission electron microscopy image and the particle size distribution for Ag/Cts/PEG

Central Limit Theorem

Standard normal random variable.

- If $Z = (X \mu)/\sigma$, then Z is a normal random variable with parameters 0 and 1
- A normal random variable with parameters 0 and 1 is called a standard normal random variable.
- The alphabet Z is usually reserved for the standard normal random variable

$$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2} \qquad \phi_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}, \quad -\infty < z < \infty$$

30 limits

Source for Normal Tables

Normal vs Standard Normal

$$P\{\mu - \sigma < X < \mu + \sigma\} = 0.682$$

$$P\{\mu - 2\sigma < X < \mu + 2\sigma\} = 0.954$$

$$P\{\mu - 3\sigma < X < \mu + 3\sigma\} = 0.997$$

$$P\{-2 < Z < 2\} = 0.954$$

$$P\{-3 < Z < 3\} = 0.997$$

• Question: How do we compute P {a < Z < b} for any a and b?

For instance, P $\{-1.75 < Z < 0.62\} = ?$

• We use the distribution function Φ

P
$$\{-1.75 < Z < 0.62\} = \Phi(0.62) - \Phi(-1.75)$$

Where,

$$\Phi(0.62) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0.62} e^{-x^2/2} dx$$

$$\Phi(-1.75) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-1.75} e^{-x^2/2} dx$$

Here comes the use of Standard Normal tables.

		525
ı	10 300	25
ı	200	de
5	3	128
	100	
ı	4.3	
=	3	数
5	=	5
ı	300	
		100
	=	100
ı	BURN	633
	2000	
	3	22
ı	10000	
8		32
	3	56
	-	
	100	
		180
		期
	3800	
	15000	200
	3	
	10000	96
	200	
	=	
	100000	22
8		\$
		65
	358	
6		2
		195
	-	5
	200	
	2000	3
		14
	1000	43
	\$ 743	4
	1000	1
	200	900
Ī		100
		4
	ALC: UNKNOWN	
		100
	200	
		36
-		183

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Table entries give $\Phi(z)$ for postive values of z. $\Phi(0.62) = 0.7324$

z	.00	.01	.02	.03	.04	.05	.06	.07
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790
6								

What about negative values of z?

$$\Phi(-1.75)$$
?

Recall: $P{Z < z} = 1 - P(Z < -z)$ for any z.

That is, $\Phi(z) = 1 - \Phi(-z)$.

Thus,
$$\Phi(-1.75) = 1 - \Phi(1.75)$$

=1 - 0.9599 = 0.0401

For any normal variable X with parameters μ and σ

• How do we find $P\{c \le X \le d\}$?

Trick: Transform it to standard form!

$$P\{c \le X \le d\} = P\left\{\frac{c - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le \frac{d - \mu}{\sigma}\right\} = P\left\{a \le Z \le b\right\}$$

where
$$a = \frac{c-\mu}{\sigma}$$
 and $b = \frac{d-\mu}{\sigma}$

Example: If X is a normal random variable with parameters $\mu = 3$ and $\sigma^2 = 9$, find

(a)
$$P{2 < X < 5}$$
, (b) $P{X > 0}$

Solution: $Z = \frac{X-3}{3}$ (a)

$$P\{2 < X < 5\} = P\left\{\frac{2-3}{3} < \frac{X-3}{3} < \frac{5-3}{3}\right\}$$

$$= P\left\{-\frac{1}{3} < Z < \frac{2}{3}\right\}$$

$$= \Phi\left(\frac{2}{3}\right) - \Phi\left(-\frac{1}{3}\right)$$

$$= \Phi\left(\frac{2}{3}\right) - \left[1 - \Phi\left(\frac{1}{3}\right)\right] \quad \text{(since } \Phi(-x) = 1 - \Phi(x)\text{)}$$

$$\approx 0.7486 - (1 - 0.6293) \quad \text{(standard normal table)}$$

$$= 0.3779$$

Example: The systolic blood pressure in the population is usually modeled by a normal distribution with mean 120 mmHg (millimeters of mercury) and standard deviation 8 mmHg.

- (a) Below which blood pressure do we find one third of the population?
- (b) Above which blood pressure do we find 5% of the population?

Solution: Let X be the systolic blood pressure of a randomly selected individual.

Given that, X is a normal random variable with parameters 120 and 8²

• Let Z = (X - 120)/8. Then Z is the standard normal random variable.

(a) Below which blood pressure do we find one third of the population?

We need to find c such that $P\{X < c\} = \frac{1}{3}$

$$\implies P\left\{Z < \frac{c-120}{8}\right\} = \frac{1}{3}$$

$$\implies \Phi\left(\frac{c-120}{8}\right) = \frac{1}{3}$$

$$\implies 1 - \Phi(-\frac{c-120}{8}) = \frac{1}{3}$$
 (as $\Phi(x) = 1 - \Phi(-x)$)

$$\implies \Phi\left(-\frac{c-120}{8}\right) = \frac{2}{3}$$

$$\implies -\frac{c-120}{8} \approx 0.43$$
 (from the standard normal table)

$$\implies c \approx 116.56$$

In words, one third of the population has a blood pressure below 116.56 mmHg.

Weibull distribution

• This is to describe a particle size distribution of a powder or granular material.

The probability density function of a Weibull random variable is:

$$f(x) = egin{cases} rac{k}{\lambda} \left(rac{x}{\lambda}
ight)^{k-1} e^{-(x/\lambda)^k} & x \geq 0 \ 0 & x < 0 \end{cases}$$

The cumulative distribution function is

$$F(x;k,\lambda)=1-e^{-(x/\lambda)^k}$$

for $x \ge 0$, and $F(x; k; \lambda) = 0$ for x < 0.

Mean $\lambda \Gamma(1+1/k)$

Variance $\lambda^2 \left[\Gamma \left(1 + rac{2}{k}
ight) - \left(\Gamma \left(1 + rac{1}{k}
ight)
ight)^2
ight]$

#