Tutorium: Diskrete Mathematik

Vorbereitung der Bonusklausur am 26.11.2011

Steven Köhler

mathe@stevenkoehler.de mathe.stevenkoehler.de

Entscheide für die folgenden Abbildungen, ob sie injektiv, surjektiv oder bijektiv sind. Gib in jedem Fall eine (kurze) Begründung.

a)
$$\mathbb{Z} \to \mathbb{Z}$$
, $f(n) = (n-2)^2$

b)
$$\mathbb{Z} \to \mathbb{Z}$$
, $g(n) = 42n - 23$

c)
$$\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
, $h(n) = ((n-2)^2, n^2)$

d)
$$\mathbb{N} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
, $u(a,b) = (ab, 2a + 1)$

e)
$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
, $v(n,m) = 5n - m$

f)
$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$$
, $f(x,y) = (xy^2, xy^2 + 5y - 1, (y^2 - 2)x)$

Es sei $M = \{a, b\}$. Welche der folgenden Aussagen sind wahr? Welche sind falsch?

- (i) $a \in \mathcal{P}(M)$
- (ii) $b \subseteq \mathcal{P}(M)$
- (iii) $\{a,b\} \in \mathcal{P}(M)$
- (iv) $\{a, b\} \subseteq \mathcal{P}(M)$
- (v) $\{a, \{a\}\} \in \mathcal{P}(M)$
- (vi) $\{\{a\},\{b\}\}\in\mathcal{P}(M)$
- (vii) $\{\{a\},\{b\}\}\subseteq \mathcal{P}(M)$

Beweise durch vollständige Induktion!

- a) Für alle $n \in \mathbb{N}$ gilt: $47 \mid (7^{2n} 2^n)$.
- b) Für alle $n \in \mathbb{N}$ gilt: $\sum_{i=1}^{n} (4i 1) = 3 + 7 + 11 + \ldots = 2n^2 + n$.
- c) Für alle $n \in \mathbb{N}$ gilt: $\sum_{i=0}^{n} 2^{i} = 2^{n+1} 1$.
- d) Für alle $n \in \mathbb{N}$ mit $n \ge 3$ gilt: $n^2 2n 1 > 0$.
- e) Für alle $n \in \mathbb{N}$ gilt: $\sum_{i=0}^{n} {n \choose i} = 2^n$.

Wahr oder falsch? Gib jeweils eine kurze Begründung.

- a) $17 \equiv 47 \pmod{15}$
- b) $23 \equiv 42 \pmod{7}$
- c) $101 \equiv 202 \pmod{47}$
- $d) -21 \equiv 312 \pmod{3}$
- e) $29 \equiv 57 \pmod{23}$

Beweise oder widerlege.

- a) Die Zahlen 177 und 557 sind teilerfremd.
- b) Die Zahlen 247 und 299 sind teilerfremd.

Es seien A und B Mengen mit |A| = 5 und |B| = 7.

- a) Wie viele Abbildungen $A \to B$ gibt es?
- b) Wie viele dieser Abbildungen sind injektiv?
- c) Wie viele dieser Abbildungen sind surjektiv?
- d) Wie viele dieser Abbildungen sind injektiv, wenn zusätzlich $f(a_1) \neq f(a_2)$ gelten soll (mit $a_1, a_2 \in A$)?
- e) Wie viele dieser Abbildungen sind injektiv, wenn zusätzlich $f(a_1) \neq f(a_2)$ sowie $f(a_1) \neq f(a_3)$ gelten soll (mit $a_1, a_2, a_3 \in A$)?
- f) Wie viele Abbildungen gibt es, für die $f(a_1) \neq f(a_2)$ sowie $f(a_1) \neq f(a_3)$ gilt? (mit $a_1, a_2, a_3 \in A$)?

Aufgabe 7 a-c

- a) In einer Urne befinden sich 10 unterscheidbare Kugeln. Es wird 5 mal gezogen. Wie viele mögliche Ergebnisse gibt es, wenn
 - (i) die Reihenfolge der gezogenen Kugeln berücksichtigt wird?
 - (ii) die Reihenfolge der gezogenen Kugeln egal ist?
- b) Wie viele Möglichkeiten gibt es, im Lotto exakt 5 richtige Gewinnzahlen anzukreuzen?
- c) Wie viele Möglichkeiten gibt es, im Lotto mindestens 5 richtige Gewinnzahlen anzukreuzen?

Aufgabe 7 d-f

- d) Wie viele sinnvolle oder sinnlose Wörter lassen sich aus den Buchstaben des Wortes MASSACHUSETTS bilden?
- e) Für $k, n \in \mathbb{N}$, $n \geq 2k$: Wie viele Möglichkeiten gibt es, insgesamt n Bonbons auf k Kinder derart zu verteilen, dass jedes Kind mindestens zwei Bonbons erhält?
- f) Welchen Koeffizienten besitzt $x^2yz^4w^3$ in $(x+y+z+w)^{10}$?

Unterlagen auf mathe.stevenkoehler.de

ALA-Vorkurs 2011 – Teil 4:

- Abbildungen & Funktionen

Mathe-Vorkurs 2011/12 - Teil 3:

- Beweistechniken

Vielen Dank für die Aufmerksamkeit & Viel Erfolg bei der Bonusklausur ©