Formelsammlung: Stochastik

1 Eleme	entare Wahrscheinlichkeitsrechnung	2
	fallsexperiment	
1.1.1	Rechnen mit Ereignissen	2
1.1.2	Elementare Rechenregeln für Wahrscheinlichkeiten	
1.1.3	Diskrete Gleichverteilung	2
1.1.4	Hauptsatz der Kombinatorik	3
1.1.5	Permutation ohne Wiederholung	3
1.1.6	Permutation mit Wiederholung	3
1.1.7	Kombinatorik mit Wiederholung	3
1.2 Be	edingte Wahrscheinlichkeit	4
1.2.1	Allgemeine Definition	
1.2.2	Satz der totalen Wahrscheinlichkeit	4
1.2.3	Unabhängige Ereignisse	4
1.2.4	Satz von Bayes	4
1.2.5	Berechnung von Zuverlässigkeit	5
1.3 Zu	fallsvariablen	5
1.3.1	Diskrete Zufallsvariablen	5
1.3.2	Verteilfunktion	5
1.3.3	Erwartungswert	5
1.3.4	Varianz und Standardabweichung	5
1.3.5	Die Binominalverteilung	6
1.3.6	Verteilung nach Poisson	6
1.4 St	etige Zufallsvariablen	7
1.4.1	Allgemeine Definition	7
1.4.2	Die Normalverteilung	7
1.4.3	Die Exponentialverteilung	8
1.4.4	Berechnung der Wahrscheinlichkeiten	8
1.4.5	Approximation der Binominalverteilung durch die Normalverteilung	8
1.5 M	ehrere Zufallsvariablen	9
1.5.1	Unabhängigkeit	9
1.5.2	Summen von Zufallsvariablen	9
2 Statis	tik	10

1 Elementare Wahrscheinlichkeitsrechnung

1.1 Zufallsexperiment

1.1.1 Rechnen mit Ereignissen

A oder B tritt ein	$A \cup B$
A und B treten ein	$A \cap B$
A zieht B nach sich	$A \subseteq B$
A und B schliessen sich aus	$A \cap B = \emptyset$
A tritt nicht ein	\overline{A}

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 Distributivgesetz

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
Gesetz von Morgan

$$\overline{A} = A$$

1.1.2 Elementare Rechenregeln für Wahrscheinlichkeiten

- 1) $0 \le p(A) \le 1$ für alle A
- 2) $p(\Omega) = 1$
- 3) sind A und B disjunkte Ereignisse, dann ist $p(A \cup B) = p(A) + p(B)$
- 4) $p(\overline{A}) = 1 p(A)$
- 5) aus $A \subseteq B$ folgt $p(A) \le p(B)$
- 6) sind A_1 , A_2 ,..., A_n paarweise disjunkten Ereignisse, dann gilt

$$p(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{k=1}^{n} p(A_k)$$

- 7) für zwei beliebige(sich nicht ausschliessende) Ereignisse A und B gilt $p(A \cup B) = p(A) + p(B) p(A \cap B)$
- 8) für drei beliebige(sich nicht ausschliessende) Ereignisse A, B und C gilt

$$p(A \cup B \cup C) = p(A) + p(B) + p(C) - p(A \cap B) - p(A \cap C) - p(B \cap C) + p(A \cap B \cap C)$$

1.1.3 Diskrete Gleichverteilung

$$p(E_i) = \frac{1}{n}$$
 E_i: Elementarereignis
$$p(A) = \frac{Anzahl.günstige.Fälle}{Anzahl.mögliche.Fälle}$$
 Laplace

1.1.4 Hauptsatz der Kombinatorik

Satz: Wir betrachten n aufeinanderfolgende Operationen, deren Reihenfolge vorgegeben ist. Wir nehmen an, die k-te Operation lasse sich auf genau m_k Arten durchführen. Die Anzahl der Möglichkeiten, alle n Operationen durchzuführen beträgt dann

$$m = m_1 * m_2 * m_3 * K * m_n$$

1.1.5 Permutation ohne Wiederholung

Satz: Sei M eine Menge mit n Elementen. Die Anzahl der Permutationen von M beträgt

$$P(n) = n!$$

1.1.6 Permutation mit Wiederholung

Satz: Gegeben sei eine Menge M mit n Elementen und eine natürliche Zahl r. Aus den Elementen von M sollen r-gliedrige Folgen gebildet werden, wobei sich jedes Element beliebig oft wiederholen darf. Die Anzahl solcher Folgen beträgt

$$P(n,r) = n^r$$

1.1.7 Kombinatorik mit Wiederholung

Satz: Gegeben ist eine Menge M mit n Elementen sowie eine natürliche Zahl k, wobei $0 \le k \le n$. Die Anzahl Möglichkeiten, aus M eine Teilmenge mit genau k Elementen auszuwählen, ist gegeben durch den Binominalkoeffizient

$$C(n,k) = \left(\frac{n}{k}\right)$$

1.2 Bedingte Wahrscheinlichkeit

1.2.1 Allgemeine Definition

Definition: Sei Ω die Ergebnismenge eines Zufallsexperiments. Wir nehmen an, dass jedem Ereignis A eine Wahrscheinlichkeit p(A) zugeordnet ist. Sei B ein Ereignis mit $p(B) \neq 0$. Dann heisst

$$p(A \mid B) = p_B(A) = \frac{p(A \cap B)}{p(B)}$$

die bedingte Wahrscheinlichkeit von A unter der Bedingung B.

1.2.2 Satz der totalen Wahrscheinlichkeit

Satz: Sind A und B Ereignisse von positiver Wahrscheinlichkeit, dann gilt

$$p(A \cap B) = p(A) * p(B | A) = p(B) * p(A | B)$$

Sind A und B Ereignisse und ist p(A) = 0 oder p(B) = 0, dann gilt

$$p(A \cap B) = 0$$

Satz: Seien A₁, A₂,..., A_n Ereignisse von positiver Wahrscheinlichkeit. Wir nehmen an, dass sie paarweise disjunkt sind, das heisst

$$A_i \cap A_k = \emptyset$$

und das

$$A_1 \cup A_2 \cup \mathsf{K} \cup A_n = \Omega$$

Für jedes Ereignis B gilt dann

$$p(B) = p(A_1) * p(B \mid A_1) + p(A_2) * p(B \mid A_2) + K + p(A_n) * p(B \mid A_n)$$

1.2.3 Unabhängige Ereignisse

Satz: Zwei Ereignisse A und B heissen stochastisch unabhängig, wenn

$$p(B) = p(B \mid A)$$

oder, was logisch gleichwertig ist, wenn

$$p(A \cap B) = p(A) * p(B)$$

1.2.4 Satz von Bayes

Satz: Seien A_1 , A_2 , ..., A_n Ereignis von positiver Wahrscheinlichkeit. Wir nehmen an, dass sie sich paarweise ausschliessen (d.h. $A_i \cap A_k = \emptyset$ für $i \neq k$) und dass $A_1 \cup A_2 \cup K \cup A_n = \Omega$. Dann gilt

$$p(A_k \mid B) = \frac{p(A_k) * p(B \mid A_k)}{p(A_1) * p(B \mid A_1) + p(A_2) * p(B \mid A_2) + K + p(A_n) * p(B \mid A_n)}$$

1.2.5 Berechnung von Zuverlässigkeit

Serielles System

$$R = p_1 * p_2 * K * p_n$$

Paralleles System

$$R = 1 - (1 - p_1) * (1 - p_2) * K * (1 - p_n)$$

1.3 Zufallsvariablen

1.3.1 Diskrete Zufallsvariablen

Definition: Eine diskrete Zufallsvariable X wird durch die folgende Angabe festgelegt:

1. eine endliche Liste L der Zahlwerte, welche X annehmen kann. In der Liste L darf kein Wert zweimal vorkommen. Gewöhnlich werden die Zahlen aufsteigend(oder absteigend) geordnet. Also

$$L = \{x_1, x_2 K, x_n\}$$
, wobei $x_1 < x_2 < K < x_n$

2. eine Liste $P = \{p_1, p_2, K, p_n\}$ der zugehörigen Wahrscheinlichkeiten p_k ist die relative Häufigkeit, mit welcher der Wert x_k angenommen wird.

1.3.2 Verteilfunktion

Definition: Sei X eine diskrete Zufallsvariable mit Wertemenge $L = \{x_1, x_2, K, x_n\}$ und Wahrscheinlichkeiten $P = \{p_1, p_2, K, p_n\}$. Für reelle Zahlen u setzt man $F(u) := P(X \le u)$, und man nennt die Zuordnung u a F(u) die Verteilfunktion von X.

1.3.3 Erwartungswert

Definition: Gegeben sei eine diskrete Zufallsvariable X mit Wertemenge $L = \{x_1, x_2, K, x_n\}$ und Wahrscheinlichkeiten $P = \{p_1, p_2, K, p_n\}$. Der Erwartungswert von X ist

$$E(X) = \overline{x} = \sum_{k=1}^{n} p_k * x_k$$

1.3.4 Varianz und Standardabweichung

Definition: Gegeben sei eine Zufallsvariable X mit Wertemenge $L = \{x_1, x_2, K, x_n\}$, mit Wahrscheinlichkeiten $P = \{p_1, p_2, K, p_n\}$ und mit Erwartungswert $\bar{x} = E(X)$.

$$Var(X) = \sigma^2 := \sum_{k=1}^{n} p_k * (x_k - \bar{x})^2$$

heisst die Varianz von X. Die Wurzel daraus,

$$\sigma = \sqrt{Var(X)}$$
,

σ heisst die Standardabweichung der Zufallsvariblen X.

1.3.5 Die Binominalverteilung

Definition: Eine Zufallsvariable X heisst binominal verteilt (mit Parametern n und p), wenn gilt

- die Wertemenge ist {0, 1, 2, 3, ..., n}
- die Wahrscheinlichkeiten sind gegeben durch

$$P(X=k) = p_k = \left(\frac{n}{k}\right) * p_k * (1-p)^{n-k}$$
 (für k = 0, 1, 2, ..., n)

Satz: Die Zufallsvariable X sei binominal verteilt mit Parametern n und p. Dann gilt

1.
$$E(X) = n * p$$

2.
$$Var(X) = n * p * (1 - p)$$

1.3.6 Verteilung nach Poisson

Definition: Eine Zufallsvariable X heisst poissonverteilt mit Parameter λ , wenn gilt

- die Wertemenge ist {0, 1, 2, ..., n, ...}
- die Wahrscheinlichkeit sind gegeben durch

$$P(X=k) = p_k = \frac{\lambda^k}{k!}e^{-\lambda}$$
 (für k = 0, 1, 2, ...)

Satz: Die Zufallsvariable X sei nach Poisson verteilt, mit Parameter λ . Dann gilt

3.
$$E(X) = \lambda$$

4.
$$Var(X) = \lambda$$

1.4 Stetige Zufallsvariablen

1.4.1 Allgemeine Definition

Definition: Eine stetige Zufallsvariable X ist gegeben durch eine so genannte Dichtefunktion

$$f: IR \rightarrow IR$$

welche die folgende Bedingungen erfüllt:

• $f(x) \ge 0$ für alle x

$$\bullet \qquad \int^{\infty} f(x) dx = 1$$

Die Wahrscheinlichkeit, dass der Wert von X in ein Intervall $a \le x \le b$ fällt, beträgt

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Definition: Gegeben sei eine stetige Zufallsvariable X mit Dichtefunktion f: IR → IR

1. Der Erwartungswert von X ist

$$E(X) = \bar{x} = \int_{-\infty}^{\infty} x * f(x) dx$$

2. Die Varianz von X ist gegeben durch

$$Var(X) = \int_{-\infty}^{\infty} (x - \bar{x})^2 * f(x) dx$$

3. Die Standardabweichung von X ist die Quadratwurzel der Varianz

$$\sigma(X) = \sqrt{Var(X)}$$

1.4.2 Die Normalverteilung

Definition: Eine stetige Zufallsvariable X mit der Dichtefunktion

$$y = f(x) = \frac{1}{\sigma\sqrt{2\pi}} * e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

heisst normalverteilt mit den Parametern μ und σ^2 . Man schreibt dafür auch

$$X \sim N(\mu, \sigma^2)$$

- Der Erwartungswert von X ist $E(X) = \mu$
- Die Varianz von X ist $Var(X) = \sigma^2$

1.4.3 Die Exponentialverteilung

Definition: Eine stetige Zufallsvariable X heisst exponential verteilt, wenn ihre Dichtefunktion die Form

$$y = f(x) = \lambda * e^{-\lambda x}$$
 falls $x \ge 0$

hat. Man rechnet leicht nach, dass

$$E(X) = \frac{1}{\lambda}$$
$$\sigma(X) = \frac{1}{\lambda}$$

1.4.4 Berechnung der Wahrscheinlichkeiten

Um die Wahrscheinlichkeit

$$P(a \le X \le b) = \frac{1}{\sigma\sqrt{2\pi}} * \int_{a}^{b} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

zu bestimmen, geht man über zur standardisierten Zufallsvariable $U \coloneqq \frac{X - \mu}{\sigma}$, insbesondere berechnet man die standardisierten Grenzen

$$u_1 = \frac{a-\mu}{\sigma}$$
, $u_2 = \frac{b-\mu}{\sigma}$

Dann ist

$$\frac{1}{\sigma\sqrt{2\pi}} * \int_{a}^{b} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx = \frac{1}{\sqrt{2\pi}} * \int_{u}^{u} e^{-\frac{u^{2}}{2}} du$$

Das letzte Integral kann mit eine Tabelle näherungweise ermittelt werden:

$$\frac{1}{\sqrt{2\pi}} * \int_{u_1}^{u_2} e^{-\frac{u^2}{2}} du = \Phi(u_2) - \Phi(u_1)$$

1.4.5 Approximation der Binominalverteilung durch die Normalverteilung

Definition: Eine Zufallsvariable X ist näherungsweise normal verteilt, sofern

- 1) sie sich darstellen lässt als Summe von vielen Zufallsvariablen(von viele "zufälligen Einflüssen")
- 2) diese einzelnen Zufallsvariablen voneinander unabhängig sind
- der Einfluss dieser einzelnen Summanden (also dieser zufälligen Einflüsse) geringfügig ist gegenüber der Wirkung der gesamten Summe.

Satz: Ist die Zufallsvariable X binomisch verteilt mit Erwartungswert E(X) = n * p und Varianz $\sigma^2 = n * p * (1-p)$, und ist ferner

$$n * p * (1-p) > 9$$

dann ist X näherungsweise normal verteilt, und es gilt

$$P(a \le X \le b) = \frac{1}{\sigma\sqrt{2\pi}} * \int_{a}^{b} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

1.5 Mehrere Zufallsvariablen

1.5.1 Unabhängigkeit

Definition: Zwei Zufallsvariablen X und Y sind stochastisch, wenn für jeden Teilbereich I der Wertemenge von X und jeden Teilbereich J der Wertemenge von Y gilt $P(X \in I \cap Y \in J) = P(X \in I) * P(Y \in J)$

1.5.2 Summen von Zufallsvariablen

Satz: Seien X₁ und X₂ zwei Zufallsvariablen, und sei

$$Y = a_1 * X_1 + a_2 * X_2$$
 wo $a_1, a_2 \in IR$

Dann gilt

$$E(Y) = a_1 * E(X_1) + a_2 * E(X_1)$$

Sind X₁ und X₂ unabhängig, dann gilt weiter

$$Var(Y) = a_1^2 * Var(X_1) + a_2^2 * Var(X_2)$$

2 Statistik

2.1 Stichproben

2.1.1 Das arithmetisches Mittel

Gegeben sei eine Folge von n reellen Zahlen a_1 , a_2 , ..., a_n . Das arithmetische Mittel dieser Zahl ist

$$\overline{a} = \frac{a_1 + a_2 + \mathsf{K} + a_n}{n}$$

In einer Folge von Dateien a_1 , a_2 , ..., a_n kann es natürlich vorkommen, dass sich einige Werte wiederholen. Wir nehmen an, a_1 komme m_1 -mal vor, a_2 komme m_2 -mal vor, ..., a_k komme m_k -mal vor. Das arithmetische Mittel dieser Zahl ist

$$\overline{a} = \frac{a_1 * m_1 + a_2 * m_2 + K + a_n * m_n}{m_1 + m_2 + K + m_n}$$

2.1.2 Das geometrische Mittel

Gegeben sei eine Folge von n reellen Zahlen $a_1, a_2, ..., a_n$. Wir setzen voraus, dass die Werte alle positiv sind. $a_k > 0$. Das geometrische Mittel der Zahl ist

$$\overline{a}_{geo} = \sqrt{a_1 + a_2 + \mathsf{K} + a_n}$$

2.1.3 Das harmonische Mittel

Gegeben sei eine Folge von n reellen, strikt positiven Zahlen a_1 , a_2 , ..., a_n . Wir nehmen an a_1 komme m_1 -mal vor, a_2 komme m_2 -mal vor, ..., a_k komme m_k -mal vor. Das harmonische Mittel dieser Zahl ist

$$\overline{a}_{har} = \frac{m_1 + m_2 + K + m_n}{\frac{m_1}{a_1} + \frac{m_2}{a_2} + L + \frac{m_n}{a_n}}$$

2.1.4 Der Median

Definition: Gegeben sei eine aufsteigende(oder absteigende) Folge von n reellen Zahlen:

$$a_1 \le a_2 \le a_3 \le \mathsf{K} \le a_n$$

Der Median ist

$$Md = a_{r+1}$$
 falls n = 2r+1 ungerade $Md = \frac{1}{2}(a_r + a_{r+1})$ falls n = 2r gerade ist

2.1.5 Quantile

Regel:

(1) Ist $n*_{\alpha}$ keine ganze Zahl, dann nimmt man die kleinste Zahl k, welche grösser als $n*_{\alpha}$ ist, und setzt $Q_{\alpha} = a_k$

(2) Ist $n*\alpha$ eine ganze Zahl, also $n*\alpha = k$, dann setzt man

$$Q_{\alpha} = \frac{1}{2}(a_k + a_{k+1})$$

Beispiele:

(a) Zahlenfolge: 1; 2; 2; 4; 5; 7; 9; 12; 15; 20; 21; 24; 27; 28 unteres Quartil: $Q_{1/4}$ = 4 oberes Quartil: $Q_{3/4}$ = 21

oberes Quartil: $Q_{3/4} = 21$ Media $Md = \frac{9+12}{2} = 10,5$

(b) Zahlenfolge: -5,1; -4,9; -4,7; -3,9; -3,0; -2,0; -1,9; -0,8; 1.2; 2,2; 3,0; 3,1

10%-Quantil: $Q_{1/10} = -4,9$

oberes Quartil: $Q_{3/4} = \frac{1,2+2,2}{2} = 1,7$

Median $Md = \frac{-2,0-1,9}{2} = 1,95$

2.1.6 Masse für die Streuung

Definition: Die empirische Varianz der Folge V ist

$$S_V^2 = \frac{\sum_{i=1}^{a} (v_i - \bar{v})^2}{n - 1}$$

Definition: Die empirische Standardabweichung ist

$$S_{V} = \sqrt{\frac{\sum_{i=1}^{a} (v_{i} - \overline{v})^{2}}{n-1}}$$

2.2 Korrelation

2.2.1 Kovarianz und Regressionsgerade

Gegeben seien n Punktpaare $(x_1|y_1), ..., (x_n|y_n)$. Es seien \bar{x} bzw. \bar{y} der Mittelwert und S_x^2 bzw. S_y^2 die empirische Varianz

1) Die Grösse

$$C_{xy} = \frac{1}{n-1} \sum_{k=1}^{a} (x_k - \bar{x})(y_k - \bar{y})$$

heisst die empirische Kovarianz der Stichprobe. Diese Grösse kann positiv oder negativ sein.

2) Die Gerade

$$g: y - \overline{y} = a \cdot (x - \overline{x})$$
, wo $a = \frac{C_{xy}}{S^2}$

heisst die erste Regressionsgerade(oder Ausgleichsgerade) der Stichprobe. Bei dieser Geraden nimmt die Summe der Quadrate der Abweichung der y-Werre den kleinstmöglichen Wert an. 3) Die Gerade

$$g^* = x - \bar{x} = a^* \cdot (y - \bar{y}),$$
 wo $a^* = \frac{C_{xy}}{S_y^2}$

heisst die zweite Regressionsgerade. Sie minimalisiert die Abweichungen der x-Werte.

Beide Regressionsgeraden gehen durch den Schwerpunkt $(\bar{x} \mid \bar{y})$ der Stichprobe.

2.3 Testen von Hypothesen

2.3.1 Vorgehen

Unsere Testregeln können aus zweierlei Gründen zu falschen Entscheiden führen:

- (1)Es kann vorkommen, dass die Hypothese H_0 richtig ist, und wir sie trotzdem verwerfen. Der Bereich V ist aber so gewählt, dass dies nur mit dem geringen Risiko von $\alpha = 4,1\%$ geschieht. Man nennt das einen Fehler der ersten Art.
- (2) Es kann auch vorkommen, dass wir die Hypothese H₀ als richtig anschauen, obwohl sie falsch ist. Man nennt das einen Fehler der zweiten Art. Das Risiko solcher Fehler ist im Allgemeinen schwer abzuschätzen.

Vorgehen zum Testen

- 1. Zuerst muss man sich darüber klar sein, welche Vermutung man bestätigen oder widerlegen will. Das geschieht indem man die so genannte Nullhypothese H₀ aufstellt.
- 2. Man plant ein Zufallsexperiment: Ziehen einer geeigneten Stichprobe
- 3. Nun wählt man das so genannte Signifikanzniveau α (in der Praxis meistens 5%, manchmal auch 1%). α ist die Wahrscheinlichkeit dafür, einen Fehler der ersten Art zu begehen (also die Hypothese H_0 fälschlicherweise zu verwerfen).
- 4. Nun muss man den Verwerfungsbereich V so festlegen, dass das Signifikanzniveau eingehalten wird.
- 5. Man führt das Experiment durch und entscheidet.

2.4 Parameterschätzung bei der Normalverteilung

2.4.1 Fall 1: σ^2 ist bekannt, μ ist unbekannt

Die beste Schätzfunktion (im Sinne des Maximum-Likelihood-Prinzips) ist der Mittelwert

$$\overline{X} = T_{\mu}(X_1, X_2, K, X_n) = \frac{X_1 + X_2 + K + X_n}{n}$$

Als Schätzung für μ nehmen wir also den Mittelwert

$$\overline{x} = \frac{x_1 + x_2 + \mathsf{K} + x_n}{n}$$

2.4.2 Fall 2: σ^2 ist unbekannt, μ ist bekannt

Das Maximum-Likelihood-Prinzip führt hier auf die Schätzfunktion

$$T = T_{\sigma^2}(X_1, X_2, K, X_n) = \frac{1}{n} \sum_{k=1}^{n} (X_k - \mu)^2$$

Als Schätzung für σ^2 nehmen wir die Grundgesamtheit Varianz also

$$\frac{1}{n} \sum_{k=1}^{n} (x_k - \mu)^2$$

2.4.3 Fall 3: σ^2 und μ sind unbekannt

In der Praxis ist das der geläufige Fall. Mit dem Maximum-Likelihood-Prinzip ergeben sich für die unbekannten μ und σ^2 die Schätzfunktionen

$$\overline{X} = T_{\mu}(X_1, X_2, K, X_n) = \frac{X_1 + X_2 + K + X_n}{n}$$

$$T = T_{\sigma^2}(X_1, X_2, K, X_n) = \frac{1}{n} \sum_{k=1}^{n} (X_k - \mu)^2$$

Zum Schätzen μ und σ^2 nehmen wir

Den Mittelwert

$$\overline{x} = \frac{x_1 + x_2 + \mathsf{K} + x_n}{n}$$

• die empirische Varianz

$$S_X^2 \frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x})^2$$

2.5 Prüfverteilungen

2.5.1 Definition

Sei X eine stetige Zufallsvariable mit Dichtefunktion f(x), und sei η eine Zahl mit $0 \le \eta \le 1.$ Das $\eta\text{-Quantil}$ von X ist die Zahl u, für die gilt

$$P(X \le u) = \int_{-\infty}^{u} f(x) dx = \eta$$

2.5.2 Die Chi-Quadrat-Verteilung

Gegeben seien n Zufallsvariablen X_1 , X_2 , ..., X_n von denen wir annehmen,

- dass sie unabhängig sind und
- dass sie alle standard normal verteilt sind (also μ =0 und σ =1) Nun bildet man die neue Zufallsvariable

$$Y := X_1^2 + X_2^2 + \mathbf{K} + X_n^2$$

Definition: Die Verteilung von Y heisst die χ^2 -Verteilung mit n Freiheitsgraden.

Satz: Die Zufallsvariablen Y hat den Erwartungswert E(Y) = n und die Varianz Var(Y) = 2n.

2.5.3 Die t-Verteilung (Student-Verteilung)

Gegeben seien zwei Zufallsvariablen X und Y. Wir setzen voraus

- dass X normal verteilt ist mit Erwartungswert 0 und Varianz und
- dass Y eine χ^2 -Verteilung mit n Freiheitsgraden hat.

Nun bildet man die neue Zufallsvariable

$$T := \frac{X}{\sqrt{\frac{Y}{n}}}$$

Definition: Die Verteilung von T heisst die t-Verteilung mit n Freiheitsgraden

Satz: Die Zufallsvariable T hat den Erwartungswert E(T)=0 und die

Varianz
$$Var(T) = \frac{n}{n-2}$$

2.6 Konfidenz-Schätzungen

2.6.1 Vertrauensintervalle für den Mittelwert bei bekannter Varianz

Bestimmung eines Konfidenzintervalls für den Mittelwert μ einer Normalverteilung bei bekannt Varianz σ^2

Schritt 1: Wahl eines Konfidenzniveaus γ (95%, 90%, 99% oder dergleichen)

Schritt 2: Man bestimmt u so, dass $\Phi(u) = \frac{1+\gamma}{2}$

Schritt 3: Man berechnet den Mittelwert \bar{x} der Stichprobe.

Schritt 4: Man berechnet $a := \frac{u * \sigma}{\sqrt{n}}$

Das Konfidenzintervall für den Mittelwert der Grundgesamtheit ist $\bar{x} - a \le \mu \le \bar{x} + a$

2.6.2 Vertrauensintervalle für die Varianz

Bestimmung eines Konfidenzintervalls für die Varianz σ^2 einer Normalverteilung

Schritt 1: Wahl eines Konfidenzniveaus γ (95%, 90%, 99% oder dergleichen)

Schritt 2: Mit Hilfe der Tabelle über χ^2 -Verteilung mit (n-1) Freiheitsgraden bestimmt man

$$v := \frac{1-\gamma}{2} - Quantil \text{ und } w := \frac{1+\gamma}{2} - Quantil$$

Schritt 3: Man berechnet die empirische Varianz s² der Stichprobe.

Das Konfidenzintervall für die Varianz der

Grundgesamtheit ist

$$\frac{(n-1)s^2}{w} \le \sigma^2 \le \frac{(n-1)s^2}{v}$$

- 2.6.3 Vertrauensinterballe für den Mittelwert bei unbekannter Varianz Bestimmung eines Konfidenz-Intervalls für den Mittelwert μ einer Normalverteilung unbekannter Varianz σ^2 .
 - Schritt 1: Wahl eines Konfidenzniveaus γ (95%, 90%, 99% oder dergleichen)
 - Schritt 2: In der Tabelle der t-Verteilung mit n-1 Freiheitsgraden (wobei n der Umfang der Stichprobe ist) sucht man $w:=\frac{1+\gamma}{2}-Quantil$
 - Schritt 3: Man berechnet den Mittelwert \bar{x} und die empirische Varianz s² der Stichprobe.
 - Schritt 4: Man berechnet $a := \frac{w * s}{\sqrt{n}}$

Das Konfidenzintervall für den Mittelwert μ ist

$$\bar{x} - a \le \mu \le \bar{x} + a$$