Overview of Electronic Market¹

Jing Guo

Strats Associate, Goldman Sachs
PhD in Financial Engineering, Columbia University

November 28, 2017

¹Reference: Avellaneda (2011), Maglaras (2015)

Increasing Percentage of Algo Trading

- A third of all European Union and United States stock trades in 2006 were driven by automatic programs, or algorithms.
- As of 2009, studies suggested HFT firms accounted for 60-73% of all US equity trading volume, with that number falling to $\sim 50\%$ in 2012.
- ullet FX markets also have active algo trading ($\sim 25\%$ in 2006).
- \bullet Futures markets are considered fairly easy to integrate into algo trading, with $\sim 20\%$ of options volume by 2010.

Algo Trading in US Equity Market

• 2

US Equities markets: percentage of orders generated by algorithms

²Avellaneda (2011)

Simplified View of Trading

A few trading venues for US equity markets³

- ARCA-NYSE: electronic platform of NYSE (ex- Archipelago)
- BATS: (Kansas)
- BEX: Boston Equity Exchange
- CBSX: CBOE Stock Exchange
- CSXZ: Chicago Stock Exchange
- DRCTEDGE: Direct Edge (Jersey City, NJ)
- ISE: International Securities Exchange
- ISLAND: Acquired by Nasdaq in 2003
- LAVA: belongs to Citigroup
- NSX: National Stock Exchange (Chicago)
- NYSE: New York Stock Exchange
- TRACKECN: Track ECN

³Avellaneda (2011)

Electronic order-management and execution system (client-broker)

•

Modern US Equity Markets

- Electronic order-management and execution
- Decentralized/Fragmented
 - NYSE, NASDAQ, ARCA, BATS, Direct Edge, ...
- Exchanges (\sim 70%)
 - electronic limit order books (LOBs)
- Alternative venues (~30%)
 - ECNs, dark pools, internalization, OTC market makers, etc.
- Participants increasingly automated
 - institutional investors: algorithmic trading
 - market makers: high-frequency trading (${\sim}60\%$ average daily volume(ADV))
 - opportunistic/active (price sensitive) investors: aggressive/electronic
 - retail: manual (~5% ADV; small order sizes)

An Example

- How should you buy 250,000 shares of IBM stock between 12:30pm and 4:00pm?
 - Is this order "large"?
 - How fast should you trade? When to post orders?
 - How much will it cost you?
 - Who are you trading against?
- How is it done in practice?

Example Cont'd

- Forecasted Volume 12:30-4pm = 1,525,000 shares
 - Average spread = \$.04 (1.95bps)
 - \bullet Expected Market Impact (12:30-4pm) \approx 20bps \approx 40 pennies/share
 - \bullet Expected Market Impact (12:30-1:30pm) \approx 28bps \approx 56 pennies/share

Institutional Traders (Informed Traders)

- Institutional traders are usually informed traders.
- Investment decisions and trade execution are often separate processes.
- Institutional order flow typically has "mandate" to execute.
- Traders select brokers, algorithms, block venue, ...
 - (algorithm \approx optimization under trading constraints)
- Main considerations:
 - Best execution
 - Access to liquidity (larger orders)
 - Short-term alpha (discretionary investors)
 - Information leakage (large orders the spread over hours, days, weeks)
 - Commissions (soft dollar agreements)
 - Incentives (portfolio manager & trading desk; buy side & sell side)

Institutional Traders (Cont'd)

- Execution costs feedback affects:
 - Portfolio selection decisions
 - Hedge fund performance
- S&P 500:
 - ADV $\approx < 1\%$
 - Market capital $\approx .1\% \sim 2\%$
 - **Depth** (displayed, top of book) \approx .1% ADV
 - **Depth** (displayed, top of book) $\approx 10^{-6} \sim 10^{-5}$ of MktCap
- Orders need to be spread out over time.

Market Depth

CLIMBING THE MARKET

A price ladder or DOM displays market depth data.

CHARTING DEPTH

Market depth as an overlay on a price chart. The green bars represent interested buyers; the red bars show interested sellers.

Source: www.baranalyzer.com

Market Makers & HFT Participants

- Supply short-term liquidity and capture bid-ask spread
 - Mostly intraday flow
 - Limited overnight exposure
 - Small order sizes & depth
 - Short trade horizons/ holding periods
- ullet Profit pprox (Captured spread) (Adverse selection) (Trading cost)
- It is critical to model adverse selection.
 - Definition: Short-term price change conditional on a trade.
 - Essentially "uninformedness" price from information asymmetry.

Market Makers & HFT Participants (Cont'd)

- It is important to model short-term future prices ("alpha")
 - Microstructure signals (limit order book & instant price impact)
 - Time series modeling of prices (momentum Versus reversion)
 - Cross-asset signals (statistical arbitrage, ETF against underlying, ...)
 - News (NLP)
 - Detailed microstructure of market mechanism (human psycho reaction)
 - ...
- Position risks:
 - Adverse price movements
 - Flow toxicity
 - Accumulation of inventory & aggregate market exposure

Toxic Flows

- Types of Toxic Flows ⁵
 - Latency arbitrage or "picking-off" the feed
 - Trading on pricing engines of MM's that are slow in updating prices.
 - Slow-price reaction from inefficient technology/ unsophisticated model
 - Market impact of multiple orders
 - News Trading
- VPIN⁶: Volume-Synchronized Probability of Informed Trading, a measure of order toxicity.
 - Higher VPIN indicates that it is more likely that short-term momentum is due to informed trading.

⁵Aratovskaya (2016)

⁶Easley et al. (2012)

Algo Trading Systems: Typically Decomposed into 3 Steps

- Trade scheduling (macro-trader): splits parent order into \sim 5 min slices (Lecture 2)
 - Relevant time-scale: minutes-hours
 - Schedule follows user selected strategy (VWAP, POV, IS, ...)
 - Reflects urgency, alpha, risk/return tradeoff
 - Schedule updated during execution to reflect price/liquidity/...
- Optimal execution of a slice (micro-trader): further divides slice into child orders (Lecture 3)
 - Relevant time-scale: secondsminutes
 - Strategy optimizes pricing and placing of orders in the LOB
 - Execution adjusts to speed of LOB dynamics, price momentum, ...
- Order routing: decides where to send each child order (Lecture 4)
 - Relevant time-scale: $\sim 1-50$ ms
 - Optimizes fee/rebate tradeoff, liquidity/price, latency, etc

Algorithmic Trading Systems: basic building blocks

- forecasts for intra-day trading patterns
 - volume
 - volatility
 - bid-ask spread
 - **–** ...
- real-time market data analytics
- market impact model
- risk model
 - of the shelf risk models calibrated using EOD closing price data do not incorporate intra-day correlation structure
 - intra-day data? (tractable for liquid securities, e.g., S&P500 universe)
 - cross-asset liquidity model & market impact model

The May 6, 2010 Flash Crash

7

⁷Source: Joint CTFC SEC Report, 9/30/2010

References I

- Aratovskaya, A. (2016). What is toxic fx flow? https://www.financemagnates.com/forex/bloggers/what-is-toxic-fx-flow/.
- $\label{eq:avellaneda} A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ https://www.math.nyu.edu/faculty/avellane/QuantCongressUSA2011AlgoTrading. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview. \\ A vellaneda, M. \ (2011). \ Algorithmic and high-frequency trading: an overview trading: an overv$
- Easley, D., de Prado, M. L. and O'Hara, M. (2012). Flow toxicity and liquidity in a high frequency world, *Rev. Finan. Stud.* **25**(5): 1457–1493.
- Maglaras, C. (2015). Limit order book markets: a queueing systems perspective. https://www0.gsb.columbia.edu/faculty/cmaglaras/papers/IC-Lectures-2015.pdf.