

UNIVESIDADE FEDERAL DE SANTA MARIA TESE DE DOUTORADO

3-ALCOXI-4-HIDROXI PIRROLIDIN-2-ONAS, 2-METILSULFANIL
PIRIMIDINA, ENOILCARBAMATOS E 3-DIALCOXI FOSFORILOXI
TRIALOMETILADOS: SÍNTESE E POTENCIAL INIBITÓRIO SOBRE
A ATIVIDADE DA ENZIMA ACETILCOLINESTERASE

ADRIANA DORNELLES CARPES OBREGON

PPGQ

SANTA MARIA, RS, BRASIL. 2006

3-ALCOXI-4-HIDROXI PIRROLIDIN-2-ONAS, 2-METILSULFANIL PIRIMIDINA, ENOILCARBAMATOS E 3-DIALCOXI FOSFORILOXI TRIALOMETILADOS: SÍNTESE E POTENCIAL INIBITÓRIO SOBRE A ATIVIDADE DA ENZIMA ACETILCOLINESTERASE

Por

ADRIANA DORNELLES CARPES OBREGON

Tese de Doutorado apresentada ao Programa de Pós-Graduação em Química – área de concentração em Química Orgânica – da Universidade Federal de Santa Maria (RS), como requisito parcial para a obtenção do grau de Doutor em Química.

Santa Maria, RS – Brasil 2006

UNIVERSIDADE FEDERAL DE SANTA MARIA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

A COMISSÃO EXAMINADORA, ABAIXO ASSINADA, APROVA A TESE

3-ALCOXI-4-HIDROXI PIRROLIDIN-2-ONAS, 2-METILSULFANIL
PIRIMIDINA, ENOILCARBAMATOS E 3-DIALCOXI FOSFORILOXI
TRIALOMETILADOS: SÍNTESE E POTENCIAL INIBITÓRIO SOBRE
A ATIVIDADE DA ENZIMA ACETILCOLINESTERASE

ELABORADA POR ADRIANA DORNELLES CARPES OBREGON

COMO REQUISITO PARA A OBTENÇÃO DO GRAU DE DOUTORA EM QUÍMICA

COMISSÃO EXAMINADORA

Nilo Zanatto
Prof. Dr. Nilo Zanatta - Orientador – UFSM
ACTEC 20
Profa. Dra. Maria Rosa Chitolina Schetinger – UFSM
Earlo Dom Ban
Profa. Dra. Carla Denise Bonan – PUCRS
Municia
Prof. Dr. Welio/Gauze Bonacorso – UFSM
Lonard Lion Dolal
Profa. Dra. Ionara Dalcol - UFSM

Santa Maria, 20 de outubro de 2006

Dedico esta tese a todos os meus colegas de pesquisa que de uma forma ou outra colaboraram para a realização deste trabalho. Tenho na maioria deles mais que meros colegas, mas queridos amigos dos quais guardarei agradável lembrança.

Dedico também a minha família que durante o trabalho, soube compreender e estimular nas horas de desânimo.

Ao Mauro meu reconhecimento pelo exemplo de força de vontade.

A Lauriane pela presença sempre amiga e leal.

Ao Marcus Vinícius pela alegria contagiante. Aos meus pais, familiares e amigos que estiveram ao meu lado quando necessitei. Meu amor e agradecimento a vocês.

Ao prof. Dr. Nilo Zanatta serei sempre grata pela oportunidade que me concedeu em trabalhar no seu grupo.

Além disso, agradeço a orientação e principalmente a paciência, o carinho e o respeito com que sempre fui tratada.

Obrigada.

A profa. Dra. Maria Rosa Schetinger pela orientação, amizade e carinho que sempre pude contar.

Agradeço principalmente pelo incentivo que me destes nos momentos difíceis, me mostrando o valor do trabalho e acreditando nele.

Obrigada.

AGRADECIMENTOS

Inicialmente, agradeço a Universidade Federal de Santa Maria, a qual já proporcionou minha formação em Farmácia e Bioquímica e que novamente me proporciona crescimento.

A todos os meus colegas de laboratório de química e de bioquímica. Não quero citar nomes porque são muitos e temo esquecer alguém. Isso seria imperdoável, pois todos foram importantes.

Aos professores que ministraram as disciplinas e contribuíram para o acréscimo de novos conhecimentos, inclusive aos que causavam terror nas farmacêuticas. Especialmente aos professores Nilo Zanatta, Marcos Martins, Hélio Bonacorso e Ademir Morel, os quais sempre tiveram paciência redobrada nos esclarecimentos prestados.

Aos professores que gentilmente aceitaram compor minha banca de qualificação: Marcos Martins, Ionara Dalcol e Carla Bonan; pela contribuição positiva que trouxeram ao trabalho.

Aos funcionários do departamento de química, Valéria Velásquez e Ademir Sartori pela eficiência, presteza e educação com que sempre tratam os alunos.

Ao setor de bioquímica que sempre cedeu espaço e oportunidade para que meu trabalho pudesse ser realizado, em especial às professoras Maria Rosa Schetinger e Vera Morsch.

À Coordenação do Curso de Pós-Graduação em Química e órgãos fomentadores CNPq, CAPES, FAPERGS e FATEC.

RESUMO

3-ALCOXI-4-HIDROXI PIRROLIDIN-2-ONAS, 2-METILSULFANIL

PIRIMIDINA, **ENOILCARBAMATOS** E 3-DIALCOXI **FOSFORILOXI**

TRIALOMETILADOS: SÍNTESE E POTENCIAL INIBITÓRIO SOBRE A

ATIVIDADE DA ENZIMA ACETILCOLINESTERASE

Autora: Adriana Dornelles Carpes Obregon

Orientador: Prof. Dr. Nilo Zanatta

Co-orientadora: Profa. Dra. Maria Rosa Schetinger

Este trabalho apresenta um estudo de várias classes de compostos orgânicos:

enamino compostos, γ-aminoálcoois, oxazinonas, oxazinas, diidrofuranonas, pirrolidin-

2-metilsulfanil pirimidina, enoilcarbamatos e 3-dialcoxi

trialometilados sobre a atividade da enzima acetilcolinesterase. Também demonstra o

efeito per se de solventes orgânicos sobre a atividade da AChE em diferentes estruturas

cerebrais de rato. As 3-alcoxi-5-hidroxi-5-trifluormetil pirrolidin-2-onas N-alquiladas e

N-O-alquiladas e os enoilcarbamatos trifluormetilados mostraram efeito inibitório

significativo (p<0,05) sobre a atividade in vitro da AChE de estriado cerebral de rato, na

concentração de 1,0 mM. A dimetil-(2-metilsulfanil-4-triclorometil-6-pirimidinilme-

toxi)etil] amina mostrou efeito inibitório significativo (p<0,001) sobre a atividade in

vitro da AChE de estriado cerebral de rato na concentração de 0,1mM. O efeito in vivo

dessa pirimidina foi significativo (p<0,001) na concentração de 10 mg/Kg sobre a

atividade da AChE em estriado cerebral e membrana de eritrócitos de rato. Finalmente,

as 3-dietoxi-fosforiloxi carbamatos de etila trifluormetilados mostraram efeito inibitório

significativo (p<0.001) sobre a atividade da AChE purificada em concentrações a partir

de 0.001 mM.

UNIVERSIDADE FEDERAL DE SANTA MARIA

CURSO DE PÓS-GRADUAÇÃO EM QUÍMICA

Autora: Adriana Dornelles Carpes Obregon

Orientador: Prof. Dr. Nilo Zanatta

Co-orientadora: Profa. Dra. Maria Rosa Schetinger

Tese de Doutorado em Ouímica

Santa Maria, 20 de outubro de 2006.

ix

ABSTRACT

TRIHALOMETHYLATED 3-ALKOXY-4-HYDROXY PYRROLIDIN-2-ONES,

2-METHYLSULFANYL PYRIMIDINE, **ENOYLCARBAMATES** AND

DIALKOXY PHOSPHORYLOXY: **SYNTHESIS AND POTENTIAL**

INHIBITORY ACTIVITY ON THE ACETYLCHOLINESTERASE ENZYME

Author: Adriana Dornelles Carpes Obregon

Advisor: Prof. Dr. Nilo Zanatta

Co-advisor: Profa. Dra. Maria Rosa Schetinger

This work presents a study of the several organic compounds such as trihalomethylated enaminones, γ-amino alcohols, oxazinones, oxazines,

dihydrofuranones, pyrrolidin-2-ones, 2-methylsulfanyl pyrimidine, enoylcarbamates

and 3-dialkoxy phosphoryloxy on the acetylcholinesterase enzyme activity. Also, this

work shows the effect per se of organic solvents on the AChE of different cerebral

structures of rats. The N- and N-O-alkylated 3-alkoxy-5-hydroxy-trifluormethyl-

pyrrolidin-2-ones and trifluoromethylated enoylcarbamates showed in vitro inhibitory

effect of the AChE activity in the striatum cerebral of rat, at the concentration 1.0 mM.

The dimethyl-[(2-methylsulfanyl-4-trichloromethyl-6-pyrimidin-ylmethoxy)-ethyl]

amine showed significant inhibitory effect (p<0.001) in vitro on AChE activity of the

striatum cerebral of rat, in the concentration 0.1mM. The in vivo effect of this

pyrimidine was significant (p<0.001) in the concentration of 10mg/Kg in the AChE

activity in striatum and erythrocyte of rat. Finally, the trifluoromethylated 3-diethoxy-

phosphoryloxy ethyl carbamates show significant inhibitory effect (p<0.001) on the

purified AChE activity at the concentration of 0.001 mM.

FEDERAL UNIVERSITY OF SANTA MARIA

GRADUATE COURSE OF CHEMISTRY

AUTHOR: Adriana Dornelles Carpes Obregon

ADVISOR: Prof. Dr. Nilo Zanatta

CO-ADVISOR: Profa. Dra. Maria Rosa Schetinger

Doctoral Thesis in Chemistry

Santa Maria, 20th October 2006.

 \mathbf{X}

ÍNDICE

1. INTRODUÇÃO E OBJETIVOS	1
2. REVISÃO BIBLIOGRÁFICA	6
2.1. Sistema Colinérgico	7
2.2. A Acetilcolinesterase	9
2.3. Mecanismo de hidrólise da AChE	12
2.4. Inibidores clássicos da AChE	15
2.4.1. Organofosforados	16
2.4.1.1.Gases neurotóxicos	16
2.4.1.2. Inseticidas	17
2.4.1.3. Uso terapêutico	18
2.4.2. Carbamatos.	20
2.4.2.1.Inseticidas	20
2.4.2.2. Uso terapêutico	21
2.5. Análogos da Acetilcolina	22
2.6. Anticolinesterásicos de uso clínico	23
2.7. Efeito das pirrolidinonas sobre o sistema colinérgico	26
3. APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS QUÍMICOS	28
3.1. Síntese de enaminonas, aminoálcoois, oxazinona e oxazinas	29
3.2. Síntese de 3- <i>N</i> -alquil-aminometilenodiidrofuran-2-onas	31
3.3. Síntese das 3-alcoxi- 5-hidroxi- 5-trifluormetil pirrolidin-2-onas	31
3.4. Síntese das 3-alcoxi- 5-hidroxi- 5-trifluormetil pirrolidin-2-onas <i>N</i> -alquiladas alquiladas	
3.5. Síntese da (3,3-dietoxi-5-hidroxi-5-trifluormetil-4,5-dihidropirrolidir	
acetamida	
3.6. Síntese da dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidinilmet	
amina	
3.7. Síntese de enoilcarbamatos trifluormetilados	
3.8. Síntese dos 3-dialcoxi fosforiloxi trifluormetilados	

4.	APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS BIOLÓGICOS41
4.1.	Ensaio de atividade da enzima AChE
4.2.	Efeito per se dos solventes orgânicos sobre a atividade da AChE em diferentes
	estruturas cerebrais de rato
4.3.	Avaliação in vitro de enaminonas, aminoálcoois, oxazinona, oxazinas e
	diidrofuranonas sobre a atividade da AChE em estriado e hipocampo cerebral de
	ratos
4.4.	Avaliação in vitro de 3-alcoxi-5-hidroxi-5-trifluormetil pirrolidin-2-onas sobre a
	atividade da AChE em estriado cerebral de ratos
4.5.	Avaliação in vitro de 3-etóxi- 5-hidroxi- 5-trifluormetil pirrolidin-2-onas N
	alquiladas e N-O-alquiladas sobre a atividade da AChE em estriado cerebral de
	ratos
4.6.	Avaliação in vitro e in vivo da dimetil-(2-metilsulfanil-4-triclorometil-6
	pirimidinilmetoxi)etil] amina sobre a atividade da enzima AChE57
4.7.	Avaliação in vitro de enoilcarbamatos trifluormetilados sobre a atividade da enzima
	AChE em estriado cerebral de ratos
4.8.	Avaliação in vitro de 3-dialcoxi fosforiloxi trifluormetilados sobre a atividade da
	enzima AChE purificada65
5.	CONCLUSÕES73
6.	SUGESTÕES PARA CONTINUIDADE DO TRABALHO76
7.	PROCEDIMENTOS EXPERIMENTAIS78
7.1.	Secção de Procedimentos Biológicos
7.1.	1. Reagentes
7.1.	2. Equipamentos
7.1.	3. Amostra
7.1.	3.1. Animais experimentais80
7.1.	4. Preparações teciduais80
7.1.	4.1.Dissecação de tecido cerebral e determinação da atividade da AChE80
7.1.	4.2. Preparo das frações de membrana de eritrócitos (Ghost) e determinação da
	atividade da AChE81

7.1.4.3. Preparo da enzima AChE purificada e determinação de sua	atividade
específica	82
7.1.4.4. Protocolo para o ensaio in vivo com dimetil-(2-metilsulfanil-4-triclor	rometil-6-
pirimidinilmetoxi)etil] amina	83
7.1.4.5. Análise Estatística	84
7.2. Secção de Procedimentos Químicos	85
7.2.1. Reagentes e solventes purificados	85
7.2.2. Equipamentos	86
7.2.3. Procedimento para síntese de compostos	86
7.2.3.1.Reação de <i>O</i> -proteção da 5-hidroxi-5-trifluormetil-3-dietoxi pirrolidin-2	2-ona com
2,3-diidropirano	86
7.2.3.2. Reação de O-proteção da 5-hidroxi-5-trifluormetil-3-dietoxi pirroli	din-2-ona
com cloro trimetilsilano	86
7.2.3.3. Reação de alquilação da 5-hidroxi-5-trifluormetil-3-dietoxi pirrolidin-	-2-ona <i>O</i> -
protegida com cloroacetamida	87
7.2.3.4. Síntese de 6-bromometil-2-metilsulfanil-4-triclorometil pirimidina	87
7.2.3.5. Síntese de dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidinilm	etoxi)etil]
amina	88
7.2.3.6. Síntese dos (4,4,4-trifluor-1-alquil-3-oxo-1-but-1-enil)-carbamato de et	ila 88
7.2.3.7. Síntese dos [3-(álcoxi-fosforilóxi)-4,4,4-trifluor-1-alquil-butil) carba	amato de
etila	88
8. REFERÊNCIAS BIBLIOGRÁFICAS	90
9. ANEXO I	103
10. ANEXO II	114

LISTA DE TABELAS

TABELA 3.1. Nomenclatura dos enamino compostos, aminoálcoois, oxazinona, oxaz	inas
	30
TABELA 3.2. Nomenclatura 3- <i>N</i> -alquil-aminometilenodiidrofuran-2-onas	31
TABELA 3.3. Nomenclatura das 3-alcoxi-5-hidroxi-5-trifluormetil pirrolidin-2-onas	32
TABELA 3.4.1. Proporção das 3-alcoxi- 5-hidroxi- 5-trifluormetil pirrolidin-2-onas	. <i>N</i> -
alquiladas e N-O-alquiladas	33
TABELA 3.4.2. Nomenclatura das 3-alcoxi- 5-hidroxi- 5-trifluormetil pirrolidin-2-onas	s <i>N</i> -
alquiladas e N-O-alquiladas	34
TABELA 3.7. Nomenclatura dos Enoilcarbamatos trifluormetilados	38
TABELA 3.8. Nomenclatura dos 3-dialcoxi fosforiloxi trifluormetilados	39
TABELA 4.3.1. Efeito sobre a atividade da AChE em estriado de ratos	49
TABELA 4.3.2. Efeito sobre a atividade da AChE em hipocampo de ratos	50
TABELA 4.4. Efeito das 3-alcoxi-5-hidroxi-5-trifluormetil pirrolidin-2-onas sobr	e a
atividade da AChE em estriado cerebral de ratos.	51
TABELA 4.5. Efeito das pirrolidinonas 10a-d sobre a atividade da AChE em estri	iado
cerebral de ratos.	53
TABELA 4.6. Efeito sobre a atividade da AChE em estriado cerebral de ratos	57

LISTA DE ESQUEMAS E FIGURAS

ESQUEMA 3.1.	29
ESQUEMA 3.2.	31
ESQUEMA 3.3.	31
ESQUEMA 3.4.	33
ESQUEMA 3.5.1.	34
ESQUEMA 3.5.2.	35
ESQUEMA 3.5.3.	35
ESQUEMA 3.6.1.	36
ESQUEMA 3.6.2.	37
ESQUEMA 3.7.	38
ESQUEMA 3.8.	39
FIGURA 4.3. Estrutura química dos enamino compostos, aminoálcoois, oxazinona, ox	xazinas
	48
FIGURA 4.4.Estrutura química das 3-alcoxi-5-hidroxi-5-trifluormetil pirrol	lidin-2-
onas	51
FIGURA 4.5. Estrutura química das 3-alcoxi- 5-hidroxi- 5-trifluormetil pirrolidin-2-c	onas <i>N</i> -
alquiladas e N-O-alquiladas	52
FIGURA 4.7.1. Estrutura química dos Enoilcarbamatos trifluormetilados	62
FIGURA 4.7.2. Estrutura química dos Enoilcarbamatos trifluormetilados reduzidos	62
FIGURA 4.7.3. Estrutura química dos Enoilcarbamatos heterocíclicos trifluormetila	dos ou
oxazinanas	62
FIGURA 4.8. Derivados 3-dialcoxi fosforiloxi trifluormetilados	65

LISTA DE GRÁFICOS

GRÁFICO 4.2.1. Efeito do Álcool Metílico sobre a atividade da AChE em estriado cerebral
de ratos
GRÁFICO 4.2.2. Efeito do Álcool Etílico sobre a atividade da AChE em estriado cerebral
de ratos
GRÁFICO 4.2.3. Efeito do Álcool Isopropílico sobre a atividade da AChE em estriado
cerebral de ratos
GRÁFICO 4.2.4. Efeito do Álcool <i>t</i> -Butílico sobre a atividade da AChE em estriado cerebral
de ratos
GRÁFICO 4.2.5. Efeito da Acetona sobre a atividade da AChE em estriado cerebral de ratos
46
GRÁFICO 4.2.6. Efeito da Acetonitrila sobre a atividade da AChE em estriado cerebral de
ratos
GRÁFICO 4.2.7. Efeito do DMSO sobre a atividade da AChE em estriado cerebral de
ratos
GRÁFICO 4.5.1. Efeito das pirrolidinonas 10a sobre a atividade da AChE
GRÁFICO 4.5.2. Efeito das pirrolidinonas 10b sobre a atividade da AChE
GRÁFICO 4.5.3. Efeito das pirrolidinonas 10c sobre a atividade da AChE55
GRÁFICO 4.5.4. Efeito das pirrolidinonas 10d sobre a atividade da AChE
GRÁFICO 4.6.1. Efeito in vitro da dimetil- [(2-metilsulfanil-4-triclorometil-6-pirimidinil
metoxi) etil] amina sobre a atividade da AChE estriatal de ratos
GRÁFICO 4.6.2. Efeito in vivo da dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidini
metoxi)etil] amina sobre a atividade da AChE estriatal de ratos
GRÁFICO 4.6.3. Efeito in vivo da dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidini

metoxi)etil] amina sobre a atividade da AChE eritrocítica de ratos	60
GRÁFICO 4.7.1. Efeito do composto 22a sobre a atividade da AChE estriatal	63
GRÁFICO 4.7.2. Efeito do composto 22b sobre a atividade da AChE estriatal	64
GRÁFICO 4.7.3. Efeito do composto 22c sobre a atividade da AChE estriatal	64
GRÁFICO 4.8.1. Efeito do composto 25a sobre a atividade da AChE purificada	67
GRÁFICO 4.8.2. Efeito do composto 25b sobre a atividade da AChE purificada	67
GRÁFICO 4.8.3. Efeito do composto 25c sobre a atividade da AChE purificada	68
GRÁFICO 4.8.4. Efeito do composto 25d sobre a atividade da AChE purificada	68
GRÁFICO 4.8.5. Efeito do composto 25e sobre a atividade da AChE purificada	69
GRÁFICO 4.8.6. Efeito do composto 25f sobre a atividade da AChE purificada	69
GRÁFICO 4.8.7. Efeito do composto 25g sobre a atividade da AChE purificada	70
GRÁFICO 4.8.8. Efeito do composto 25h sobre a atividade da AChE purificada	70
GRÁFICO 4.8.9. Efeito do composto 25i sobre a atividade da AChE purificada	71

1. INTRODUÇÃO

A acetilcolina (ACh) é um dos maiores moduladores da função cerebral e é o principal neurotransmissor do sistema nervoso periférico.

Acetilcolina (ACh)

A regulação na liberação da ACh é crucial para a função do sistema nervoso. Além disso, a disfunção da transmissão colinérgica tem sido ligada a um amplo número de condições patológicas^{1,2,3}. A enzima colina acetiltransferase (ChAT) sintetiza a ACh, a qual é armazenada em vesículas sinápticas sendo liberada para transmitir o impulso colinérgico.

Esse impulso colinérgico é estreitamente regulado pela enzima acetilcolinesterase (AChE), a qual hidrolisa o neurotransmissor ACh em colina (Ch) e acetato, restaurando assim a polarização original da membrana pós-sináptica, tornando possível novamente o impulso nervoso⁴.

A enzima AChE foi classificada em diferentes formas moleculares: formas globulares e assimétricas. A forma globular existe como um monômero (G1), dímero (G2), e tetrâmero (G4) enquanto que as formas assimétricas são agregados de tetrâmeros^{5,6,7}. As formas globulares de AChE estão presentes no cérebro e tem sido

relatado que essas formas isoméricas da enzima estão distribuídas de forma distinta nos neurônios^{8,9,10}.

A AChE é um importante alvo terapêutico e atualmente inibidores reversíveis dessa enzima têm sido usado para o tratamento de desordens cognitivas como na Doença de Alzheimer (D.A.) e outras demências^{11,12,13}. Recentemente, com a ajuda de tomografia ou PET (positron emission tomography), alguns pesquisadores têm demonstrado um déficit colinérgico significativo nos pacientes com a D.A. e um nível diminuído da enzima AChE^{14,15}. Além disso, existe um envolvimento diferencial das isoformas moleculares da AChE no estresse e cognição¹⁶. Novos inibidores da AChE (AChEi) têm sido sintetizados e testados frente as diferentes isoformas da enzima, com o objetivo de descobrir drogas com maior afinidade e seletividade na ação farmacológica^{17,18}. Os AChEi também são empregados para combater desordens neuromusculares, tais como a *miastenia gravis* e o glaucoma¹⁹.

Assim como os inibidores reversíveis da AChE são amplamente utilizados na clínica para tratamento de várias patologias, os inibidores irreversíveis também possuem aplicação comercial como inseticidas e herbicidas^{20,21,22,23}. A AChE de insetos é o alvo primário de pesticidas organofosforados (OPs), os quais inibem irreversivelmente a enzima devido a uma ligação estável estabelecida entre um grupo hidroxila do sítio ativo da enzima com o átomo de fósforo desses compostos. A fosforilação da serina presente no sítio ativo leva a um acúmulo de acetilcolina, causando uma hiperestimulação colinérgica nos insetos com conseqüente hiperexcitabilidade, tremores, paralisia e morte²⁴.

Os carbamatos também podem ser empregados como pesticidas, porém inibem a enzima AChE de forma reversível e por isso são considerados menos tóxicos que os OPs. Os compostos derivados do ácido carbâmico são provavelmente os inseticidas com mais ampla atividade biocida. Eles interagem com a hidroxila do aminoácido serina presente no sítio ativo da enzima AChE levando a carbamilação desse grupo de forma reversível, sendo que a descarbamilação desse resíduo de aminoácido leva de 30 a 40 minutos para ocorrer²⁵.

Como os carbamatos são inibidores reversíveis da AChE e apresentam um alto grau de afinidade na ligação com a enzima, várias moléculas com o grupo carbamato foram sintetizadas nos últimos anos^{26,27,28}. A Rivastigmina (Exelon®) é o protótipo mais promissor dessa classe, produzido pelo laboratório farmacêutico Novartis e amplamente utilizado na clínica para tratamento da D.A.²⁹.

Rivastigmina

A Doença de Alzheimer é uma desordem neurodegenerativa caracterizada por deterioração dos neurônios colinérgicos, o que resulta em notável déficit do neurotransmissor ACh³⁰. Uma das primeiras tentativas de corrigir o déficit colinérgico presente na doença foi a produção de análogos da ACh. A intenção das pesquisas realizadas com compostos estruturalmente relacionados a ACh seria a de produzir candidatos capazes de aumentar os níveis cerebrais de colina (Ch) melhorando assim a biosíntese do neurotransmissor³¹. Porém, os resultados obtidos não foram satisfatórios devido à presença de efeitos colaterais indesejáveis.

No entanto, a terapia atual para melhorar a transmissão colinérgica ainda está baseada no uso de inibidores da AChE, pois esse caminho consagrou os melhores resultados nos testes clínicos, recuperando parcialmente os pacientes da perda de memória e déficit cognitivo^{32,33}.

Uma outra classe de compostos empregados no tratamento de déficit cognitivo são as pirrolidinonas. Estudo extensivo do modo de ação das pirrolidinonas tem revelado vários efeitos farmacológicos, sendo que a maioria delas influencia a função colinérgica^{34,35,36}. O Piracetam (2-(2-oxopirrolidin-1-il)acetamida), foi a primeira pirrolidinona a despertar atenção dos clínicos no início da década de 70³⁷ e desde então foi crescente o interesse da indústria farmacêutica na síntese de novos derivados pirrolidínicos^{38,39} para testes biológicos sobre a melhora da função cognitiva.

$$N$$
 O
 NH_2

Piracetam

Recentemente, o grupo Bayer patenteou uma série de pirrolidinonas trifluormetiladas⁴⁰ como melhoradores cognitivos, o que comprova a importância biológica dessa classe de heterociclos.

Considerando que carbamatos e organofosforados são clássicos inibidores da enzima AChE e que derivados pirrolidínicos apresentam ação sobre receptores colinérgicos; compostos dessas classes obtidos pelo grupo tornaram-se objetos de interesse para testes sobre a atividade da AChE. Sendo que a presença de grupos trialometilados é um fator importante para melhorar a lipossolubilidade de compostos e com isso o perfil farmacocinético. Quanto a dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidinilmetoxi) etil] amina (20), previamente obtida pelo grupo, a presença de um substituinte análogo à colina ligado na posição 6 do anel pirimidínico, a torna um possível bioisóstero da acetilcolina. Considerando também que uma ampla variedade de compostos são anualmente sintetizados pelo NUQUIME (Núcleo de Química de Heterociclos) e uma mínima percentagem deles são avaliados em testes de atividade biológica, o presente trabalho tem por objetivos:

- Descobrir as melhores condições de teste sobre a enzima AChE considerando as características físico-químicas de compostos sintetizados pelo grupo e suas solubilidades em diferentes solventes orgânicos.
- ◆ Avaliar o efeito de compostos heterocíclicos ou não-heterocíclicos, previamente sintetizados, sobre a atividade da enzima AChE.
- ◆ Obter um análogo sintético do 2-(2-oxopirrolidin-1-il) acetamida Piracetam; e avaliar seu efeito sobre a atividade da enzima AChE, bem como sobre a memória em ratos.
- ◆ Obter da dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidinilmetoxi) etil] amina (20) e avaliar seu efeito *in vitro* e *in vivo* sobre a atividade da enzima AChE.
- ◆ Avaliar o efeito *in vitro* de derivados enoilcarbamatos trifluormetilados (**22a-c**) sobre a atividade da enzima AChE.
- ◆ Avaliar o efeito in vitro de 3-dialcoxi fosforiloxi trifluormetilados (25a-i) como inibidores da enzima AChE purificada.

2. REVISÃO BIBLIOGRÁFICA

2.1 O SISTEMA COLINÉRGICO

Os terminais nervosos colinérgicos sintetizam e liberam o neurotransmissor acetilcolina (ACh). No neurônio pré-sináptico, a enzima colina acetiltransferase (ChAT) biossintetisa o neurotransmissor ACh, a partir de uma molécula de colina e acetil-CoenzimaA ou acetil-CoA – (esquema 2.1.1).

ESQUEMA 2.1.1.

O neurotransmissor assim sintetizado é armazenado em vesículas sinápticas via transporte vesicular de ACh. Frente a um potencial de ação a ACh é liberada na fenda sináptica e exerce seus efeitos mediados pela ativação de receptores específicos, designados como receptores colinérgicos, e subdivididos, conforme o alcalóide estimulante, em dois subgrupos: nicotínicos e muscarínicos 41 . Até o momento cinco subtipos de receptores muscarínicos foram identificados (M1 - M5), sendo que os receptores M1 e M2 estão presentes em neurônios do SNC e periférico, além de outros tecidos glanglionares 42 . Os receptores M2 estão localizados nos terminais de neurônios pré-sinápticos e parecem estar envolvidos no processo de recaptação de colina. São designados como nicotínicos os receptores estimulados pelo alcalóide nicotina, e localizam-se predominantemente nas sinapses ganglionares. São compostos por cinco subunidades conhecidas como: α_1 , α_2 , β , γ e δ^{43} .

Quando o neurotransmissor é liberado, liga-se aos receptores colinérgicos nicotínicos e/ou muscarínicos propagando assim o impulso nervoso colinérgico (figura 2.1.1).

FIGURA 2.1.1. Sistema colinérgico: Acetilcolina (ACh), receptor muscarínico do tipo 1 (M1), receptor muscarínico do tipo 2 (M2), acetilcolinesterase sináptica (AChE-S), colina acetiltransferase (ChAT), transporte vesicular de ACh (vAChT)⁵⁵. (Reproduzido de Soreq H., Seidman S. *Neuroscience*, **2001**, 2, 8).

As colinesterases são as enzimas que regulam o efeito desse neurotransmissor, pois se a ACh permanecesse ligada por longo tempo aos receptores causaria uma superestimulação do sistema colinérgico, levando a sinais como: agitação, fraqueza muscular, miose, hipersalivação, sudorese, insuficiência respiratória, inconsciência, confusão mental, convulsão e morte⁴⁴.

As colinesterases estão amplamente difundidas em tecidos colinérgicos e nãocolinérgicos, bem como no plasma e outros fluidos biológicos 45,46,47. Elas estão divididas em duas classes de acordo com a especificidade do substrato, comportamento na presença de excesso de substrato e a suscetibilidade a inibidores: a acetilcolinesterase (AChE) ou "colinesterase verdadeira" e a butirilcolinesterase (BuChE), também conhecida como "pseudocolinesterase", colinesterase não-específica ou simplesmente colinesterase. A AChE hidrolisa ACh mais rápido do que outros ésteres de colina, pois é mais específica para esse substrato. Por outro lado, a butirilcolinesterase age preferencialmente sobre a butirilcolina (BuCh), mas também hidrolisa a ACh^{46,47,48}. A inibição da AChE pelo excesso de substrato é uma das principais características que a distingue da BuChE. Esta última exibe ativação na presença de excesso de substrato^{49,50}. A AChE é inibida seletivamente pelo brometo de 1,5-bis (4-alildimetilaminopropil) pentan-3-ona (BW 264C51), enquanto que a BuChE é seletivamente inibida pelo 10-[2dietilaminopropil]-fenotiazida (etopropazina)⁵¹. A distribuição em tecidos específicos é também diferente entre essas duas enzimas: a AChE é abundante no cérebro, músculos e membrana de eritrócitos, enquanto que a BuChE tem maior atividade no figado, intestino, coração, rins e pulmão⁵². Muitas espécies tais como o humano, o cavalo e o camundongo exibem atividade elevada da BuChE em seu plasma, enquanto que o rato tem maior atividade da AChE em seu plasma quando comparada a atividade da BuChE⁴⁶.

A AChE e a BuChE mostram 65% de homologia na sequência de aminoácidos e apresentam formas moleculares similares e a estrutura do centro ativo é determinada por diferentes genes no cromossomo humano 7 (especificamente 7q22) e 3 (especificamente 3q22), respectivamente⁵³. A principal função da AChE é a hidrólise rápida do neurotransmissor ACh e ela é uma das enzimas de atividade catalítica mais rápida que se conhece⁵⁴.

A neurotransmissão mediada por ACh é fundamental para a função do sistema nervoso⁵⁵. Seu bloqueio total é letal e sua perda gradual, como na doença de Alzheimer⁵⁶, Atrofia Múltipla⁵⁷ e outras condições⁵⁸ estão associadas à deterioração progressiva das funções cognitivas, autonômicas e neuromusculares.

2.2. A ACETILCOLINESTERASE

A acetilcolinesterase (AChE, EC 3.1.1.7), é uma importante enzima regulatória que controla a transmissão do impulso nervoso colinérgico por hidrolisar o neurotransmissor

excitatório ACh, tanto nas sinapses colinérgicas cerebrais quanto nas neuromusculares⁵⁹. No entanto, o papel biológico da AChE não está limitado à transmissão colinérgica, já que essa proteína foi encontrada em níveis elevados em outros tecidos. Uma evidência adicional para o papel não-colinérgico dessa proteína, foi a comparação dos níveis de AChE e ChAT em neurônios não-colinérgicos que continham somente AChE^{60,61}.

Atualmente, existe o interesse no meio científico pelo papel não-catalítico dessa proteína, e alguns trabalhos têm demonstrado que variantes estruturais da AChE estão amplamente distribuídas pelos tecidos humanos participando de funções no crescimento e adesão celular⁶², neurogênese⁶³, sinaptogênese⁶⁴, hematopoiese⁶⁵, osteogênese⁶⁶; além de processos patológicos associados ao estresse^{67,68} e deterioração de neurônios colinérgicos^{69,70}.

Vários estudos sobre as propriedades catalíticas da AChE possibilitaram o conhecimento detalhado do sítio ativo dessa enzima^{71,72,73}. Um grande passo na compreensão do mecanismo catalítico da AChE e modo de ação dos inibidores, ocorreu em 1991 com a determinação da estrutura tridimensional da AChE dimérica de *Torpedo californica*⁷⁴. Mais tarde, a estrutura cristal da AChE de rato,⁷⁵ *Drosophila*⁷⁶ e do homem⁷⁷ foram obtidas e mostraram ser similares.

O sítio ativo da AChE situa-se na parte inferior de um estreitamento semelhante a uma garganta (gorge), a 20 Å de profundidade, alinhado com resíduos hidrofóbicos, os quais parecem ser importantes na orientação do substrato ao sítio ativo⁷⁴. O sítio compreende um subsítio esterásico, o qual contém a tríade catalítica (Ser-His-Glu) e um subsítio aniônico que liga o grupo amônio quaternário da ACh. Na borda ou superfície do "gorge", cerca de 14 Å do sítio ativo, situa-se um segundo sítio ligante de grupo amônio quaternário, o sítio aniônico periférico (Peripheral Anionic Sites- PAS), o qual é responsável pela inibição por substrato^{72,73}.

A AChE tem numerosos inibidores: alguns como os organofosforados ligam-se exclusivamente no sítio esterásico; outros contendo grupo amônio quaternário similar a acetilcolina ligam-se no sítio aniônico. Já os compostos bis ou tris-quaternários com mais de uma porção amônio, pode ligar-se em ambos os sítios. Outros ainda, como o propidium ou a fasciculina, ligam exclusivamente no sítio aniônico periférico – PAS⁷⁸.

Há um consenso que os inibidores do sítio ativo não afetam as funções secundárias da AChE^{79,80,81}. No entanto, vários autores têm observado que o BW284C51, um composto bis-quaternário ligante do PAS, inibe a diferenciação de

neurônios embriônicos em aves 80 , a regeneração neuronal em $Aplysia^{82}$ e a deposição amilóide na Doença de Alzheimer 83,84 .

A determinação do sítio ativo da AChE demonstrou a presença de uma tríade catalítica (fig. 2.2.1 - a) com os seguintes aminoácidos: histidina, serina e glutamato ou aspartato. O nucleófilo foi identificado como sendo um resíduo de serina, vizinho a esta está um resíduo de histidina aumentando a nucleofilicidade da serina⁸⁵. A figura 2.2.1 (b) ilustra a interação do substrato natural (acetilcolina – ACh) com o sítio esterásico da enzima AChE. É possível observar que existe uma interação eletrostática com o subsítio aniônico, o qual apresenta um aspartato ou glutamato, sendo que tanto um como o outro aminoácido apresenta átomos de oxigênio com pares de elétrons livres para interagiram com a carga positiva presente no grupo amônio quaternário da ACh. Essa interação eletrostática parece fundamental na orientação da porção éster da ACh para o sítio catalítico da enzima^{44,54,78}.

FIGURA 2.2.1. a) Ilustração do sítio esterásico contendo a tríade catalítica, externamente o sítio periférico aniônico (PAS)⁵⁵ (Reproduzido de Soreq H., Seidman S. *Neuroscience*, **2001**, 2, 8). **b)** Interação do substrato (ACh) com o sítio esterásico da AChE⁴⁴. (Reproduzido de Patrick GL. *An Introduction to Medicinal Chemistry*. Second Edition, Oxford, **2001**. Chap. 15, pp 470).

2.3 MECANISMO DE HIDRÓLISE DA ACHE

Os aminoácidos serina e histidina estão inteiramente envolvidos no mecanismo de hidrólise do substrato Acetilcolina, como será ilustrado detalhadamente nas figuras 2.3.1 a 2.3.7. O processo enzimático é extraordinariamente eficiente por causa da proximidade do nucleófilo serina e a catálise ácido/básica da histidina, sendo que uma molécula de ACh é hidrolisada em 100 microsegundos⁴⁴.

Quando uma molécula de acetilcolina aproxima-se do sítio ativo da AChE a serina age como um nucleófilo atacando o carbono eletrofílico da carbonila do estér. Essa adição nucleofilica abre o grupo carbonila (fig. 2.3.1).

FIGURA 2.3.1

Para estabilizar a carga positiva do oxigênio da serina, a histidina age como uma base capturando o próton desse oxigênio, com isso se estabelece a ligação do éster a serina (fig. 2.3.2);

FIGURA 2.3.2

Logo em seguida a histidina exerce uma catálise ácida, protonando a função éster do intermediário, tornando-o um bom grupo abandonador (fig. 2.3.3);

FIGURA 2.3.3

O grupo carbonila é recuperado e a porção álcool do éster (colina) é liberada. Nesse estágio da reação, uma molécula de água age como nucleófilo atacando o carbono eletrofílico do grupamento acetila (fig. 2.3.4). A colina liberada já pode ser recapturada e reutilizada na biossíntese de novas moléculas de ACh (fig. 2.1.1).

FIGURA 2.3.4

No passo subsequente, a histidina, por catálise básica, deprotona a água, aumentando o seu poder nucleofílico. Com isso estabiliza a ligação do oxigênio ao carbono do grupo acila, recuperando o grupo acetila (fig. 2.3.5).

FIGURA 2.3.5

A histidina então, novamente, exerce uma catálise ácida protonando o intermediário (oxigênio da serina) recuperando, em seguida, o grupo hidroxila do resíduo de serina (fig. 2.3.6);

$$\begin{array}{c} : \ddot{O} : \\ : \ddot{O} : \\ H_{3}C - C - OH \\ : O : H - N \oplus NH \\ \\ Serina \end{array}$$

FIGURA 2.3.6

Após a protonação do oxigênio da serina, a carbonila é recuperada e o grupo acetila torna-se um bom grupo abandonador. Com isso, o acetato deixa o sítio ativo e libera a enzima para o novo ciclo catalítico (fig. 2.3.7).

FIGURA 2.3.7

2.4. INIBIDORES CLÁSSICOS DA ACHE

Os compostos organofosforados e carbamatos são considerados inibidores clássicos da AChE com grau variado de toxicidade para o ser humano. Estas substâncias vêm sendo amplamente utilizadas como inseticidas, fungicidas e parasiticidas na agricultura, desde a II Guerra Mundial⁸⁶. Atualmente, são os inseticidas mais utilizados na agricultura e nos ambientes domésticos⁸⁷. Além do amplo emprego como pesticidas, alguns organofosforados têm potencial medicamentoso, com ações que os tornariam passíveis de serem utilizados no tratamento do glaucoma e da *miastenia gravis*, embora sejam subutilizados, por serem medicamentos de risco, tendo sua dose tóxica próxima à dose terapêutica. Estes compostos são ainda utilizados em saúde pública no controle de vetores, como o da malária⁸⁸ e vetores de outras doenças, como a dengue.

Até o final da década de cinqüenta os organoclorados eram os compostos mais usados como pesticidas. Entretanto, a partir deste ano, levando-se em consideração a persistência ambiental dos organoclorados, o reconhecido potencial inseticida e a menor persistência ambiental dos organofosforados; os organoclorados foram sendo substituídos pelos organofosforados e posteriormente, em parte pelos carbamatos⁸⁹. Atualmente, mais de 200 organofosforados diferentes e mais de 25 carbamatos são produzidos^{86,87,88,89,90} e comercializados, sendo a principal classe de pesticidas utilizada nos Estados Unidos e em todo o mundo, movimentando anualmente bilhões de dólares⁹¹.

2.4.1. ORGANOFOSFORADOS

2.4.1.1. GASES NEUROTÓXICOS

Em 1820, Lassaigne sintetizou o primeiro éster fosforado. Posteriormente, na Alemanha, o químico Michaelis evoluiu bastante a pesquisa destes compostos⁹¹. Embora um grande número de organofosforados tenham sido descobertos no início do século, o conhecimento de seus efeitos deletérios só foram relatados em 1932, quando Lang e Kreuger observaram efeitos tóxicos em ratos⁹⁰. A descoberta resultou em um grande número de novos usos potenciais para os compostos organofosforados, incluindo o seu uso como gases neurotóxicos, chamados de "gases dos nervos", os conhecidos gases de guerra sarin, soman e tabun, que foram usados na II Guerra Mundial. Na Guerra do Golfo, houve rumores sobre a ameaça da utilização destas armas químicas, o que motivou a distribuição de máscaras contra gases e atropina, para a população civil^{90,91,92} e os militares, por sua vez, portavam auto-injetores contendo atropina e Pralidoxima, para tratar a eventual exposição aos gases neurotóxicos^{91,92}. Recentemente, estes gases tornaram-se notórios, pelo seu uso como agentes de ataques terroristas, como o que ocorreu em 19 de março de 1995, no metrô de Tókio, no Japão, envolvendo o gás sarin. Esses agentes nervosos são inibidores irreversíveis da enzima acetilcolinesterase e seus efeitos letais são devido a hiperatividade do sistema colinérgico^{92,93}.

O Sarin (isopropil metilfosfofluoridato – \mathbf{I}), Tabun (etil N,N-dimetil fosforamidocianidato – \mathbf{II}), Soman (pinacolil metilfosfofluoridato – \mathbf{III}) e o Ciclosarian (cicloexil metilfosfofluoridato – \mathbf{IV}) são os exemplos mais importantes de agentes nervosos utilizados como armas químicas⁹².

$$Me - P - F$$

$$Me$$

2.4.1.2. INSETICIDAS

Os inseticidas organofosforados de maior interesse toxicológico e comercial são ésteres ou tióis derivados de ácido fosfórico, fosfônico, fosfínico ou fosforamídico. O sistema de classificação adotado para os pesticidas organofosforados mais usado comumente, baseia-se na identidade dos átomos ligados diretamente ao átomo de fósforo. O fósforo dos organofosforados é pentavalente e tetracoordenado. Três dos substituintes são ligados ao fósforo por ligações simples, sendo que a ligação entre o fósforo e o quarto substituinte é usualmente representada por uma dupla ligação ⁹⁴.

Na estrutura química básica (**V**), quando R¹ e R² são grupos aril ou alquil ligados diretamente ao átomo de fósforo, formam os fosfinatos; porém se esses mesmos grupos ligam-se ao átomo de fósforo através de oxigênio ou enxofre, formam-se os fosfatos ou tiofosfatos, respectivamente. Em outros casos, R¹ está diretamente ligado ao átomo de fósforo e R² a um oxigênio ou enxofre, formando os fosfonatos ou tiofosfonatos. Quando pelo menos desses grupos for amina (-NH₂), formam-se as fosforamidas. O átomo da dupla ligação com o fósforo é sempre oxigênio ou enxofre. Finalmente, o grupo X pode ser representado por diversos grupos: halogênio, alifático, aromático ou heterociclo. Independente de qual seja o grupo X, está ligado ao fósforo por oxigênio ou enxofre⁹⁵.

$$R^{1} - P - X$$

$$R^{2}$$

$$V$$

Os organofosfatos apresentam quatro oxigênios ligados ao fósforo; exemplo de fosfatos pesticidas inclui o Mevinfós® ou 2-metoxicarbonil-1-metilvinil dimetil fosfato; o Naled® ou 1,2-dibromo-2,2-dicloroetil dimetil fosfato; e o Paraoxon® ou dietil-*p*-nitrofenil fosfato (**VI**, **VII** e **VIII**, respectivamente).

Os organofosforados que apresentam enxofre fazendo dupla ligação com o fósforo possuem melhor ação inseticida, já que os insetos, diferente dos humanos, são capazes de metabolizar essas drogas por desulfurização oxidativa, ou seja; apresentam uma enzima que catalisa a substituição do enxofre por oxigênio⁴⁴.

O Parathion® ou *O,O*-dietil *O*-(4-nitrofenil) fosforotioato e o Malathion® ou *O,O*-dimetil ditiofosfoato de dietil mercaptosuccinato (**IX** e **X**, respectivamente), são dois exemplos de pró-drogas com ação inseticida e toxicidade relativamente baixa para humanos.

2.4.1.3. USO TERAPÊUTICO

O conhecimento do mecanismo de ação dos organofosforados sobre a enzima AChE permitiu a modificação sintética de moléculas já conhecidas a fim de se obter novas moléculas com efeito menos tóxico. Esse planejamento sintético levou a obtenção de um composto conhecido como Ecotiopato ou Iodeto de fosfolina ou iodeto de (2-dietoxifosfoniltioetil) trimetilamônio (**XI**). Esse fármaco apresenta ação miótica que inicia dentro de 10 a 30 minutos de sua aplicação oftálmica e pode persistir de 1 a 4

semanas, causando a redução da pressão intraocular. O uso clínico do Ecotiopato é feito quando corticóides ou β-bloqueadores não mostram sucesso terapêutico no tratamento da doença. O emprego prolongado deste fármaco pode levar a efeitos adversos indesejáveis devido a inibição sistêmica da AChE⁹⁶.

O Metrifonato é um organofosforado produzido pela Bayer (**XII**), que inicialmente foi empregado como inseticida e anti-helmíntico; recentemente foi descrito a eficiência dessa droga no tratamento do déficit cognitivo da Doença de Alzheimer⁹⁷.

O metrifonato foi bem tolerado pelos pacientes (91% completaram as 30 semanas de tratamento), sendo que os principais efeitos colaterais observados foram: diarréia, dores abdominais e náuseas⁹⁸. Morris e cols.⁹⁹ revelaram que além dos efeitos benéficos sobre a cognição, o metrifonato também contribuiu para melhorar o comportamento dos pacientes de Alzheimer. Esses resultados indicam que o Metrifonato tem um perfil de eficácia e tolerabilidade semelhante ao Donepezil, o qual é atualmente considerado um dos melhores fármacos para o tratamento da doença de Alzheimer¹⁰⁰. No entanto, sabese que o metrifonato tem como princípio ativo o 2,2,2-tricloro-1-hidroetildimetil fosfonato (*Dichlorvos*), e que este é usado como inseticida em vários tipos de cultura e é suspeito de causar neuropatia tardia, após intoxicação aguda grave¹⁰¹.

2.4.2. CARBAMATOS

2.4.2.1. INSETICIDAS

Os compostos derivados do ácido carbâmico são provavelmente os compostos com a faixa mais ampla de atividades biocidas²⁵. Na estrutura básica (**XIII**), X pode ser um átomo de oxigênio ou enxofre, R¹ e R² são usualmente substituintes orgânicos, mas podem ser também hidrogênio. Quando R¹ é metila e R² é hidrogênio, o carbamato exibe atividade inseticida, se R¹ é um grupo aromático os compostos são usados como herbicida, enquanto que atividade fungicida está presente se R¹ for imidazol. Já o substituinte em R³ é quase sempre um radical orgânico ou um metal⁹⁵.

$$\begin{array}{c|c}
R^1 & X \\
X & X - R^3
\end{array}$$

XIII

Os compostos Aldicarb® ou 2-metil-2-(metiltio)propionaldeido *O*-metilcarbamoiloxima - **XIV**; Sevin®, carbaril ou 1-naftil N-metilcarbamato - **XV**; Carbofuran® ou 2,3-diidro-2,2-dimetilbenzofuran-7-il metilcarbamato - **XVI**; e Primicarb® ou 2-dimetil-5,6-dimetilpirimidin-4-il *N*,*N*-dimetilcarbamato - **XVII**, são exemplos de carbamatos inseticidas.

$$\begin{array}{ccc}
CH_3 & O & & & O \\
CH_3SCCH = NO - CNHCH_3 & & & O - CNHCH_3 \\
CH_3 & & & & & & \\
XIV & & & & & & \\
XV & & & & & & \\
\end{array}$$

2.4.2.2. USO TERAPÊUTICO

Em 1864 foi descoberto um alcalóide natural, encontrado em sementes de uma planta venenosa no oeste da África. Mas, somente em 1925, a estrutura química desse alcalóide foi estabelecida e pode-se evidenciar a presença de um carbamato ligado a um sistema de anéis (XVIII), esse composto natural foi designado de fisostigmina ou eserina.

A fisostigmina tem uso limitado na medicina tanto pela ação inibitória rápida e fugaz sobre a atividade da AChE como pelos efeitos colaterais que apresenta. Atualmente, ela é empregada no tratamento do glaucoma e como antídoto em intoxicações por atropina (antagonista muscarínico). A importância da fisostigmina, é que esse composto serviu de protótipo para o planejamento e a síntese de análogos mais eficientes e menos tóxicos.

A neostigmina e a piridostigmina (**XIX** e **XX**, respectivamente), são análogos do alcalóide natural fisostigmina, os quais apresentam ação mais prolongada e eficiente que seu protótipo estrutural. Tanto a neostigmina como a piridostigmina são empregadas no tratamento da *miatenia gravis*, uma doença neuromuscular progressiva caracterizada por uma debilidade e fraqueza muscular generalizadas¹⁰². Essas drogas também são de utilidade clínica para reverter os efeitos de bloqueadores neuromusculares após processos cirúrgicos¹⁰³.

O primeiro carbamato sintético a encontrar aplicação clínica foi a miotina (**XXI**), assim denominado devido a sua atividade miótica¹⁰⁴. Atualmente esse composto está em desuso, mas serviu de protótipo para síntese de novas moléculas de interesse farmacêutico.

Weinstock e cols. 105 sintetizaram uma série de análogos da miotina com variações nos grupos alquil-substituintes ligados ao carbamato. Alguns desse compostos mostraram-se menos tóxicos que a fisostigmina. Além disso, os derivados disubstituídos mostraram um tempo de ação mais prolongado, sendo testados como candidatos potenciais para o tratamento da doença de Alzheimer. O derivado (+)S-N-etil-3-[(1-dimetilamino)etil]-n-metil fenilcarbamato, conhecido genericamente como rivastigmina (**XXII**) e comercializado pelo laboratório Novartis com o nome de Exelon®, mostrou afinidade 10 vezes maior pela forma G1 da AChE cerebral sobre as outras formas periféricas da enzima 106,107,108,109.

2.5. ANÁLOGOS DA ACETILCOLINA

Os análagos da acetilcolina são principalmente agonistas dos receptores colinérgicos, muscarínicos ou nicotínicos. Esses compostos mimetizam a ação da acetilcolina por interagirem com os receptores e produzirem efeito colinérgico. Porém a maioria deles apresentou efeitos colaterais indesejáveis, o que impossibilitou seu uso como fármacos. Alguns exemplos estão ilustrados abaixo; a metacolina ou cloreto de 2-(acetiloxi)-*N*,*N*,*N*-trimetil-1- propanamínio - **XXIII**, o carbacol ou cloreto de 2-

[(aminocarbonil)oxi]-*N*,*N*,*N*-trimetiletanamínio - **XXIV**, o betanecol ou cloreto de 2-[(aminocarbonil)oxi]-*N*,*N*,*N*-trimetil-1-propanamínio - **XXV** e o edrofônio - **XXVI**, são alguns dos exemplos de análogos da neurotransmissor natural.

Desses quatro compostos mostrados, apenas o edrofônio continua tendo aplicação farmacológica para o tratamento da *miastenia gravis*¹⁰⁹.

2.6. ANTICOLINESTERÁSICOS DE USO CLÍNICO

O uso clínico crescente de inibidores da enzima AChE como terapia de uma variedade de desordens do sistema nervoso central (SNC), como a Doença de Alzheimer¹¹⁰, Síndrome de Down¹¹¹, Injúria Traumática Cerebral¹¹² ou Delirium¹¹³ tornam cada vez maior o interesse das indústrias farmacêuticas na obtenção de moléculas que apresentem essa atividade¹¹⁴.

O primeiro inibidor da AChE (AChEi) aprovado pelo *United States Food and Drug Administration* (FDA) em 1993, foi o tetrahidroaminoacridine (THA), genericamente chamado de Tacrina (**XXVII**), o qual foi liberado para a comercialização com o nome de Cognex®¹¹⁵. Esse fármaco mostrou-se inconveniente por ter de ser administrado quatro vezes ao dia e estar associado a hepatotoxicidade e incidências de efeitos colaterais^{116,117}.

Usando tacrina como modelo estrutural, várias tentativas de síntese de análogos desse composto foram realizadas, com a intenção de produzir novas moléculas mais potentes e com reduzidos efeitos colaterais^{118,119,120,121}.

O mais potente inibidor, o ((*R*,*S*)-1-benzil-4-[(5,6-dimetoxi-1-indanon)2-il]metil piperidina (**XXVIII**), conhecido pelo nome trivial de Donepezil e comercializado como Aricept®, foi aprovado pelo FDA em 1996¹²². Esse composto é membro de uma família de inibidores da AChE baseados na estrutura N-benzilpiperidina, que foram desenvolvidos a partir de estudos de QSAR¹²³, sintetizados e testados, pela Eisai company, no Japão¹²⁴. Esse fármaco resultou do estudo e planejamento racional de drogas a partir do conhecimento do sítio ativo da enzima AChE e de suas interações químicas com os ligantes. Além disso, ele representa uma nova geração de AChEi que oferece a conveniência de ser administrado somente uma vez ao dia e com poucos efeitos colaterais¹²⁵.

XXVIII

No ano de 2000, o Hidrogênio tartarato de (+)-(*S*)-*N*-etil-3-[(1-dimetilamino) etil]-N-metil-fenilcarbamato (**XXII**), conhecido pelo nome genérico de Rivastigmina e comercializada como Exelon®, foi mais um fármaco AChEi aprovado pelo FDA para o tratamento de patologias com desordem cognitiva²⁹. Sendo que em maio de 2006, o FDA ampliou as indicações da rivastigmina para ser usada também no tratamento da Doença de Parkinson^{126,127}. Atualmente, outros inibidores da AChE também estão sendo avaliados em pacientes com Doença de Parkinson.

O último composto aprovado pelo FDA para o tratamento da doença de Alzheimer foi a galantamina (**XXIX**), em fevereiro de 2001; denominado comercialmente como Remynil® e produzido pelo laboratório Janssen Pharmaceutica. O alcalóide galantamina ou (4aS,6R,8aS)-4a,5,9,10,11,12-hexaidro-3-metoxi-11-metil-6H-benzofuro[3a,3,2,-ef] [2] benzazepin-6-ol foi inicialmente isolado de flores e bulbo da *Galanthus woronowii*, sendo posteriormente sintetizado 128,129.

XXIX

Além dos compostos mostrados acima, os quais já foram aprovados para serem comercializados; o Huperzine A (XXX), um alcalóide isolado de uma erva chinesa conhecida como *Huperzia serrata*, é um potente e seletivo inibidor da enzima AChE. Embora esse alcalóide não tenha sido aprovado para comercialização pelo FDA, é muito utilizado na medicina tradicional chinesa como fitoterápico e induz a uma significante melhora na memória dos pacientes de Alzheimer, sem nenhum efeito colateral noticiável até o momento¹³⁰. Uma observação importante é que o Huperzine A inibe preferencialmente a isoforma G4 da enzima¹³¹.

$$Me$$
 H_2N
 NH
 O

XXX

25

Devido ao interesse biológico sobre os compostos AChEi, seja para a aplicação na saúde humana, ou na agricultura como pesticidas; muitos pesquisadores continuam estudando, planejando, sintetizando e avaliando biologicamente novos compostos em diferentes países^{118,119,120,124,130,131}.

2.7. EFEITO DAS PIRROLIDINONAS SOBRE O SISTEMA COLINÉRGICO

As pirrolidinonas ou 2-oxopirrolidinas constituem uma classe de compostos que têm sido objeto de pesquisas por mais de três décadas. Os primeiros trabalhos clínicos e experimentais investigaram o efeito nootrópico, sendo posteriormente estudado como agentes neuroprotetores e anticonvulsivantes³⁸.

A primeira pirrolidinona a chamar a atenção dos clínicos foi o piracetam (**XXXI**) ou 2-(2-oxopirrolidin-1-il) acetamida, no início da década de 70, e desde então tem sido grande o interesse farmacêutico para essa classe de compostos³⁷. Extensivos estudos do modo de ação das pirrolidinonas^{132,133} têm revelado vários efeitos farmacológicos, com notáveis diferenças entre as drogas. A maioria, no entanto, influencia a função colinérgica estimulando a produção e recaptação de acetilcolina. Esses efeitos colinérgicos das pirrolidinonas parece ser devida a interações tanto com receptores nicotínicos quanto muscarínicos^{39,134}. Devido a grande homologia entre os receptores colinérgicos e a enzima AChE, é possível que esses compostos interajam com esta última.

$$\bigcap_{N \to 0} O$$
 NH_2

XXXI

Recentemente, o grupo Bayer registrou uma patente⁴⁰ da preparação de novas pirrolidinonas trifluormetiladas (**XXXII**) com comprovada atividade como melhoradores cognitivos.

$$R_1$$
 F_3C
 N
 AR_2

XXXII

Para o composto acima R₁= H, alquila ou CF₃, A= alquileno ou alquenileno e R₂= alcoxila, aminas ou sulfonila. A demonstração de que esses compostos melhoram a cognição encoraja a pesquisa na sua interação com a enzima AChE, já que inibidores da AChE são empregados na clínica para o tratamento do déficit cognitivo.

APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS QUÍMICOS

3. APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS QUÍMICOS

3.1. SÍNTESE DE ENAMINONAS (2a-c), AMINOÁLCOOIS (3a-d), OXAZINONA (4a), OXAZINAS (5a-b)

ESQUEMA 3.1.

A síntese dos enamino compostos **2a-c**, baseou-se em reações de substituição nucleofílica no carbono β das 4-etoxi-1,1,1-trifluor-3-alquen-2-ona, tendo com agente nucleofílico aminoácidos esterificados.

Os aminoálcoois **3a-d** foram obtidos pela redução dos enamino compostos empregando metodologia de hidrogenação catalítica com paládio/carbono 10%. A oxazinona **4a** foi obtida pela reação de ciclização do γ-aminoálcool **3b** com trifosgênio sob refluxo.

E finalmente as oxazinas **5a** e **5b** resultaram da reação de ciclização dos γ-aminoálcoois **3c** e **3d** com *p*-formaldeído, respectivamente, conforme esquema 3.1. Todos os procedimentos descritos sucintamente acima estão detalhadamente apresentados e discutidos em tese de doutorado da doutora Adriana Squizani¹³⁵, além disso, a metodologia para a obtenção de alguns desses compostos foi publicada por Zanatta e cols^{136,137}. Os dados espectroscópicos desses compostos encontram-se no anexo I desta tese.

TABELA 3.1. Nomenclatura dos enamino compostos, aminoálcoois, oxazinona, oxazinas

COMPOSTO	NOMENCLATURA	
2 a	2-[(E)-4,4,4-trifluor-3-oxo-1-butenilamino] acetato de metila	
2b	4-metil-2-[(E)-4,4,4-trifluor-3-oxo-1-butenilamino] pentanoato de metila	
2 c	3-metil-2-[(E)-4,4,4-trifluor-3-oxo-1-butenilamino] pentanoato de metila	
3a	2-(4,4,4-trifluor-3-hidroxibutilamino) acetato de metila	
3 b	4-metil-2-(4,4,4-trifluor-3-hidroxibutilamino) pentanoato de metila	
3 c	3-metil-2-(4,4,4-trifluor-3-hidroxibutilamino) pentanoato de metila	
3 d	3-fenil-2-(4,4,4-trifluor-3-hidroxibutilamino) propanoato de metila	
4 a	4-metil-2-(2-oxo-6-trifluormetil-1,3-oxazinan-3-il) pentanoato de metila	
5 a	3-metil-2-(6-trifluormetil-1,3-oxazinan-3-il) pentanoato de metila	
5b	3-fenil-2-(6-trifluormetil-1,3-oxazinan-3-il) propanoato de metila	

3.2. SÍNTESE DE 3-N-ALQUIL-AMINOMETILENODIIDROFURAN-2-ONAS (7a-b)

As 3-N-alquil-aminometilenodiidrofuran-2-onas 138 **7a-b** foi obtidas por reação de adição nucleofílica; tendo como precursor o 3-tricloroacetil-4,5-diidrofurano (6) e as aminas pirrolidina (C_4H_9N) e piperidina ($C_5H_{11}N$) como respectivos agentes nucleofílicos (Esquema 3.2.). Os dados espectroscópicos desses compostos encontramse no anexo I desta tese.

ESQUEMA 3.2.

$$\begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \begin{array}{c} C_{4}H_{9}N \\ CH_{2}Cl_{2}, 25^{\circ}, 1h \\ \hline \\ 92\% \\ \end{array} \begin{array}{c} O \\ O \\ \end{array} \begin{array}{c} 7a \\ \end{array}$$

TABELA 3.2. Nomenclatura 3-N-alquil-aminometilenodiidrofuran-2-onas

COMPOSTO	NOMENCLATURA	
7a	3-Pirrolidin-1-ilmetileno-dihidro-furan-2-ona	
7 b	3-Piperidin-1-ilmetileno-dihidro-furan-2-ona	

3.3. SÍNTESE DAS 3-ALCOXI- 5-HIDROXI- 5-TRIFLUORMETIL PIRROLIDIN-2-ONAS (9a-d)

ESQUEMA 3.3.

Uma série de 3-alcoxi-5-hidroxi-5-trifluormetil pirrolidin-2-onas (**9a-d**)¹³⁹ com diferentes substituintes na posição 3 foi sintetizada. Esses compostos foram obtidos a partir de reações de β-alcóxivinil trifluormetil cetonas (**8a-d**) dissolvidas em metanol ou etanol, onde foi adicionada uma solução aquosa de cianeto de sódio.

Os produtos foram formados devido, inicialmente, à adição de Michael do cianeto ao carbono β das cetonas, formando como intermediário não isolável β -ciano cetonas, seguido de hidrólise do grupo ciano para amina e do ataque intramolecular do nitrogênio da amida à carbonila das cetonas, formando os compostos **9a-d** em rendimentos moderados à bons. Os dados espectroscópicos desses compostos encontram-se no anexo I desta tese.

TABELA 3.3. Nomenclatura das 3-alcoxi-5-hidroxi-5-trifluormetil pirrolidin-2-onas

COMPOSTO	NOMENCLATURA		
9a	5-hidroxi-5-trifluormetil-3-etoxi pirrolidin-2-ona		
9b	5-hidroxi-5-trifluormetil-3,3-dimetoxi pirrolidin-2-ona		
9c	6-hidroxi-6-trifluormetil-hexahidro-furo[2,3-c] pirrol-4-ona		
9d	5-hidroxi-5-trifluormetil-3,3-dietoxi pirrolidin-2-ona		

O composto **9a**, obtido pela ciclização da 4-etoxi-1,1,1-trifluor-3-alquen-2-ona com cianeto de sódio¹⁴¹, apresenta um inconveniente: a formação de um par de enantiômeros e seus diasteroisômeros, portanto, quatro isômeros. Por isso, a alquilação da pirrolidinona **9d** ao invés da **9a**, resolveria em parte esse problema; já que resultaria em apenas um par de enantiômeros.

Além disso, a realização de uma síntese mais seletiva, a fim de produzir somente o produto *N*-alquilado permitiria a comparação dos efeitos obtidos com os produtos dialquilado e monolaquilado.

O procedimento para obtenção da 3,3-dietoxi-5-hidroxi-5-trifluormetil-4,5-dihidropirrolidin-2-ona (**9d**) já é conhecido¹⁴². A tentativa de alquilar seletivamente o nitrogênio do anel seria o passo subsequente.

3.4. SÍNTESE DAS 3-ALCOXI- 5-HIDROXI- 5-TRIFLUORMETIL PIRROLIDIN-2-ONAS N-ALQUILADAS E N-O-ALQUILADAS (10a-d)

A alquilação da 3-etoxi-5-hidroxi-5-trifluormetil-4,5-dihidropirrolidin-2-ona, **9a** foi realizada em acetonitrila, hidróxido de potássio e empregando como agentes alquilantes: iodeto de metila, brometo de etila, brometo de *n*-butila e cloreto de benzila. Essas reações de alquilação resultaram uma mistura de produtos *N*-alquilados e *N*,*O*-alquilados conforme mostra o esquema 3.4.1., exceto para a alquilação com iodeto de metila, a qual forneceu somente o produto *N*,*O*-alquilado. Com os demais agentes alquilantes, obteve-se o produto *N*,*O*-alquilado em maior proporção (tabela 3.4.1.). Os procedimentos empregados nessas reações são detalhadamente apresentados e discutidos em tese de doutorado da doutora Luciana S. Rosa¹⁴⁰. Os dados espectroscópicos desses compostos encontram-se no anexo I desta tese.

ESQUEMA 3.4.

TABELA 3.4.1. Proporção das 3-alcoxi- 5-hidroxi- 5-trifluormetil pirrolidin-2-onas N-alquiladas e N-O-alquiladas

Produto	Haleto de Alquila	Proporção dos Produtos	Rendimento (%)
10a	MeI		70
10b + 10b'	C_2H_5Br	3:1	52/23
10c + 10c'	n-C ₄ H ₉ Br	3,5:1	51/17
10d + 10d'	$C_6H_5CH_2Br$	5,5:1	41/10

TABELA 3.4.2. Nomenclatura das 3-alcoxi- 5-hidroxi- 5-trifluormetil pirrolidin-2-onas N-alquiladas e N-O-alquiladas

COMPOSTO	NOMENCLATURA	
40		
10a	3-etoxi-1-metil-5-meiose-5-trifluormetil-2-pirrolidinona	
10b	1-etil-3-etoxi-5-etoxi-5-trifluormetil-2-pirrolidinona	
10b'	3-etoxi-5-hidroxi-1-etil-5-trifluormetil-2-pirrolidinona	
10c	1-n-butil-5-butoxi-3-etoxi-5-trifluormetil-2-pirrolidinona	
10c'	1-n-butil-3-etoxi-5-hidroxi-5-trifluormetil-2-pirrolidinona	
10d	1-benzil-5-benziloxi-3-etoxi-5-trifluormetil-2-pirrolidinona	
10d'	1-benzil-3-etoxi-5-hidroxi-5-trifluormetil-2-pirrolidinona	

3.5. SÍNTESE DA (3,3-DIETOXI-5-HIDROXI-5-TRIFLUORMETIL-4,5-DIHIDROPIRROLIDIN-2-ONA) ACETAMIDA (15)

A *N*-alquilação de 3,3-dietoxi-5-hidroxi-trifluormetil-4,5-dihidropirrolidin-2-ona com cloro acetamida resultaria em um análogo sintético do Piracetam®. Um análogo desse fármaco poderia ser testado para uma ampla faixa de atividades biológicas.

A fim de obter o produto *N*-alquilado a partir do precursor **9d**; dois métodos de proteção da função álcool na posição 5 do anel foram testados. O primeiro utilizando 2,3-diidropirano e o segundo cloro trimetilsilano, conforme mostra o esquema 3.5.1 e 3.5.2, respectivamente.

ESQUEMA 3.5.1

ESQUEMA 3.5.2

Embora o método de proteção de álcoois com diidropirano seja bem conhecido, ¹⁴³ nossa tentativa de proteção por essa metodologia não foi bem sucedida. Os espectros de RMN de ¹H e ¹³C, não mostraram o sinal do próton ligado ao carbono do cetal que deveria ser formado após a proteção da hidroxila no composto **12**. No entanto, o segundo método de proteção da função álcool das pirrolidinonas empregando o cloro trimetilsilano ¹⁴⁴ como agente de proteção, foi bem sucedida e rendeu o produto **14** O-protegido com bons rendimentos. O sinal dos prótons das metilas do trimetilsilano ligado ao oxigênio é visto no espectro de RMN de ¹H como um sinal vizinho ao tetrametilsilano. Além disso, o sinal do próton ligado ao oxigênio da hidroxila desaparece após a reação de proteção.

O emprego das pirrolidinonas protegidas nas reações de alquilação pelo método já conhecido, o qual empregava acetonitrila, KOH e refluxo (mostrado no esquema 3.4.1.) resultou em quatro produtos finais: pirrolidinona protegida não alquilada, pirrolidinona protegida alquilada, pirrolidinona desprotegida alquilada e pirrolidinona desprotegida não-alquilada. É possível que o refluxo tenha contribuído para a perda da proteção pelo trimetilsilano.

Na tentativa de melhorar esses resultados empregou-se uma nova metodologia para as reações de alquilação, ¹⁴⁵ desta vez empregando BuLi como base a temperatura de -78°C, conforme esquema 3.5.3.

ESQUEMA 3.5.3

$$(CH_3)_3SiO$$

$$F_3C$$

$$N$$

$$O$$

$$EULi/THF/-78°C,2h$$

$$CICH_2CONH_2$$

$$16%$$

$$NH_2$$

$$O$$

$$NH_2$$

A reação mostrada no esquema 3.5.3 também resultou em mistura de produtos alquilados e não alquilados, com proporção inferior de produto *N*-alquilado (**15**). Nos espectros de RMN de ¹H os sinais dos prótons ligados ao carbono da acetamina apareceram como dois dubletos em 4,88 e 4,86 ppm.

Como o procedimento do esquema acima era realizado em duas horas, resolvemos aumentar o tempo de reação a fim de obter somente o produto **15**. Testamos tempos de 6, 16, 24 e 48 horas e o resultado não modificou. Então, foi realizada a purificação do produto em coluna de fluorisil com lavagem de solventes em graus crescentes de polaridade. Após a limpeza do cartucho e a aplicação do produto, foi eluído 2 ml de cada solvente na seguinte ordem; hexano, diclorometano, acetonitrila e metanol. As frações de cada solvente foram coletadas e evaporadas, amostras de RMN de ¹H de cada uma foram feitas; porém em nenhuma das frações coletadas foi encontrado o produto.

3.6. SÍNTESE DA DIMETIL-[(2-METILSULFANIL-4-TRICLOROMETIL-6-PIRIMIDINILMETOXI)ETIL] AMINA (20)

A síntese da dimetil-(2-metilsulfanil-4-triclorometil-6-pirimidinilmetoxi)etil] amina (17) foi realizada conforme procedimento adotado pela doutora Darlene Flores em seu trabalho de doutorado. 146

O esquema 3.6.1 apresenta o primeiro passo reacional para a obtenção do anel pirimidínico precursor da dimetil-[(2-metilsulfanil- 4-triclorometil-6-pirimidinilmetoxi) etil] amina - **20**, contendo metilsulfanil na posição 2 e bromo metil na posição 6 do anel pirimidínico. Após o tratamento da reação, o produto **18** (6-bromometil-2-metilsulfanil-4-triclorometil pirimidina) foi obtido como um óleo amarelo com bom rendimento.

ESQUEMA 3.6.1

O OCH₃ + [CH₃SC(=NH)NH₂]₂ . H₂SO₄ MeOH/H₂O HCl, refl.,48h
$$\sim$$
 Br SM6

16 17 Br

O esquema 3.6.2 apresenta a reação de substituição do bromo na posição 6 do anel pirimidínico pelo 2-dimetilamino etanol. O produto **20** é obtido facilmente como um sólido amarelo claro em ótimo rendimento.

ESQUEMA 3.6.2

Os detalhes experimentais a cerca das reações mostradas nos esquemas acima, estão na secção experimental.

3.7. SÍNTESE DE ENOILCARBAMATOS TRIFLUORMETILADOS

Os carbamatos **22a-c** foram obtidos a partir da reação de 4-alcoxi-1,1,1-trifluor-alqu-3-en-2-onas¹⁴⁷ com etil carbamato conforme demonstrado por Zanatta e col.¹⁴⁸ Os derivados **23a-c** foram obtidos pela redução da dupla da carbonila com boro hidreto de sódio em etanol. A reação de ciclização desses compostos reduzidos com trifosgênio levou a formação das oxazinonas correspondentes **24a-c**.

ESQUEMA 3.7.

TABELA 3.7. Nomenclatura dos Enoilcarbamatos trifluormetilados

COMPOSTO	NOMENCLATURA	
22a	(4,4,4-trifluor-3-oxo-1-but-1-enil) carbamato de etila	
22b	(4,4,4-trifluor-1-metil-3-oxo-1-but-1-enil) carbamato de etila	
22c	(4,4,4-trifluor-1- fenil-3-oxo-1-but-1-enil) carbamato de etila	
23a	(4,4,4-trifluor-3-hidroxi-butil) carbamato de etila	
23b	(4,4,4-trifluor-3-hidroxi-1-metil-butil) carbamato de etila	
23c	(4,4,4-trifluor-3-hidroxi-1-fenil-butil) carbamato de etila	
24a	2-oxo-6-trifluormetil-[1,3]oxazinana-3- carbamato de etila	
24b	2-oxo-4-metil-6-trifluormetil-[1,3]oxazinana-3- carbamato de etila	
24c	2-oxo-4-fenil-6-trifluormetil-[1,3]oxazinana-3- carbamato de etila	

3.8. SÍNTESE DOS 3-DIALCOXI FOSFORILOXI TRIFLUORMETILADOS

Os compostos organofosforados ou derivados fosforiloxi **25a-i** foram obtidos a partir de reação dos aminoálcoois (4,4,4-trifluor-3-hidroxi-but-1-il) etil carbamato (**23a-c**) com oxicloreto de fósforo em tolueno, na presença de piridina ou trietilamina, em atmosfera inerte, por 5 horas a temperatua ambiente. Os procedimento de síntese desses compostos fazem parte do trabalho de doutorado realizado pela colega Deise Borchhardt. Os dados espectroscópicos dos compostos **25a-i** estão no anexo I desta tese.

ESQUEMA 3.8.

TABELA 3.8. Nomenclatura dos 3-dialcoxi fosforiloxi trifluormetilados

COMPOSTO	NOMENCLATURA	
25a	[3-(dimetoxi-fosforiloxi)-4,4,4-trifluor-butil] carbamato de etila	
25b	[3-(dimetoxi-fosforiloxi)-4,4,4-trifluor-1-metil-butil] carbamato de	
	etila	
25c	[3-(dimetoxi-fosforiloxi)-4,4,4-trifluor-1-fenil-butil] carbamato de	

	etila
25d	[3-(dietoxi-fosforiloxi)-4,4,4-trifluor-butil] carbamato de etila
25e	[3-(dietoxi-fosforiloxi)-4,4,4-trifluor-1-metil-butil] carbamato de
	etila
25f	[3-(dietoxi-fosforiloxi)-4,4,4-trifluor-1-fenil-butil] carbamato de
	etila
25g	[3-(Bis-aliloxi-fosofriloxi)-4,4,4-trifluor-butil] carbamato de etila
25h	[3-(Bis-aliloxi-fosforiloxi)-4,4,4-trifluor-1-metil-butil] carbamato
	de etila
25i	[3-(Bis-aliloxi-fosofriloxi)-4,4,4-trifluor-1-fenil-butil] carbamato
	de etila

APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS BIOLÓGICOS

4. APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS BIOLÓGICOS

4.1. ENSAIO DE ATIVIDADE DA ENZIMA ACHE

Os ensaios de atividade biológica sobre a enzima AChE, dos compostos sintetizados pelo grupo, foi marcado por questões como: qual a solubilidade desses compostos em água? Os não solúveis em água, em que solvente seriam preparados? Qual a influência dos solventes orgânicos sobre a atividade enzimática? Qual a concentração ideal dos compostos para um ensaio *in vitro*? Que estruturas cerebrais seriam usadas como fonte de enzima? Quais as moléculas mais prováveis de apresentarem atividade sobre a AChE?

A partir disso, foram realizados vários testes de solubilidade em solventes orgânicos e testados a influência desses solventes sobre a atividade da enzima em diferentes estruturas cerebrais.

As enaminonas **2a-c** e os aminoálcoois **3a-d** foram os primeiros compostos candidatos ao ensaio de atividade. Esses compostos foram testados em quatro concentrações (1, 10, 100, 1000 µM). Desse ensaio preliminar ficou determinado que a maior concentração (1000 µM) seria a escolhida para as futuras triagens de atividade dos compostos.

Além disso, inicialmente cinco estruturas cerebrais de rato foram utilizadas: hipocampo, estriado, hipotálamo, cerebelo e córtex cerebral. Como o estriado é a estrutura cerebral que apresenta a maior atividade da enzima AChE, ficou estabelecido que essa seria a estrutura preferencial para a realização dos testes biológicos.

A atividade da AChE foi determinada pelo método de Elmann e col. (1961)¹⁴⁸ modificado por Rocha e col. (1993)¹⁴⁹. Tendo as estruturas cerebrais de ratos como fonte de enzima, acetiltiocolina (0,8 mM) como substrato, e um sistema contendo ácido 5,5'-ditiobis-2-nitrobenzóico (DTNB) como indicador da hidrólise da acetiltiocolina. O DTNB é usado para determinação colorimétrica de grupos tióis em amostras biológicas. A solução de DTNB é levemente amarelada, porém na presença de grupos tióis é convertido a ácido 5-mercapto-2-nitrobenzóico, de coloração amarela, o qual tem absorção máxima em 412 nm, sendo que o espectro de absorção do DTNB (420), não interfere com a detecção dos grupos tióis. A atividade específica da AChE nas estruturas cerebrais foi expressa como μmol ACSCh/H/mg proteína, em eritrócitos como mU/μmol Hb e na enzima purificada como U/ml/minuto.

O esquema abaixo mostra a reação entre o DTNB e as moléculas de tiocolina (RSH) resultantes da hidrólise produzida pela AChE.

HOOC
$$S$$
 S S $COOH$ RSH O_{2} $O_{2}N$ $O_{2}N$ $O_{2}N$ $O_{2}N$ $O_{2}N$ $O_{2}N$ $O_{3}N$ $O_{4}N$ $O_{5}N$ $O_{5}N$ $O_{6}N$ $O_{7}N$ $O_{8}N$ $O_{8}N$ $O_{8}N$ $O_{9}N$ $O_{1}N$ $O_{1}N$ $O_{2}N$ $O_{2}N$ $O_{3}N$ $O_{4}N$ $O_{5}N$ $O_{5}N$ $O_{6}N$ $O_{7}N$ $O_{8}N$ $O_{9}N$ $O_{1}N$ $O_{2}N$ $O_{1}N$ $O_{2}N$ $O_{2}N$ $O_{3}N$ $O_{4}N$ $O_{5}N$ $O_{5}N$ $O_{6}N$ $O_{7}N$ $O_{8}N$ $O_{9}N$ $O_{1}N$ $O_{1}N$ $O_{2}N$ $O_{1}N$ $O_{2}N$ $O_{1}N$ $O_{2}N$ $O_{2}N$ $O_{3}N$ $O_{4}N$ $O_{5}N$ $O_{5}N$

4.2. EFEITO per se DOS SOLVENTES ORGÂNICOS SOBRE A ATIVIDADE DA ACHE EM DIFERENTES ESTRUTURAS CEREBRAIS DE RATO

Um dado importante, foi a observação que alguns dos solventes empregados na solubilização dos compostos inibiam de forma significativa a atividade da AChE. Com isso surgiu a idéia de testar diferentes solventes sobre a atividade dessa enzima.

Os resultados ilustrados nos gráficos a seguir representam o efeito *per se* dos solventes sobre a atividade da AChE em estriado cerebral de ratos. Os solventes testados foram álcool metílico (CH₄O), álcool etílico (C₂H₆O), álcool isopropílico (C₃H₈O), álcool *terc*-Butílico (C₄H₁₀O), acetona (C₃H₆O), acetonitrila (C₂H₃N), e dimetil sulfóxido (DMSO; C₂H₆OS).

Além do estriado cerebral, o hipocampo, hipotálamo, cerebelo e córtex cerebral também foram usados como fonte de enzima AChE. No entanto, ilustramos somente os resultados do estriado cerebral, pois o trabalho resultante desse ensaio encontra-se na integra no anexo II desta tese. ¹⁵⁰

Para todos os compostos solubilizados em solvente orgânico nos ensaios com a AChE e apresentados nesta tese, a concentração de tais solventes no meio de reação com a enzima foi sempre de 2.5%, já que adicionava-se sempre 50 µL da solução contendo o composto para uma volume final de 2000 µL de mistura reacional.

GRÁFICO 4.2.1. Efeito do Álcool Metílico sobre a atividade da AChE em estriado cerebral de ratos

Resultados mostrados como média ± desvio padrão na tabela V do anexo II. Não houve diferença significativa entre as várias concentrações e o controle.

GRÁFICO 4.2.2. Efeito do Álcool Etílico sobre a atividade da AChE em estriado cerebral de ratos

Resultados mostrados como média ± desvio padrão na tabela V do anexo II. Não houve diferença significativa entre as várias concentrações e o controle.

GRÁFICO 4.2.3. Efeito do Álcool Isopropílico sobre a atividade da AChE em estriado cerebral de ratos

Resultados mostrados como média ± desvio padrão na tabela V do anexo II. Somente as concentrações de 5 e 10% diferiram significativamente de controle **(p< 0.01).

GRÁFICO 4.2.4. Efeito do Álcool *t*-Butílico sobre a atividade da AChE em estriado cerebral de ratos

Resultados mostrados como média \pm desvio padrão na tabela V do anexo II. As concentrações de 1.2, 1.8, 2.5 e 10% diferiram significativamente de controle *(p< 0.05) e **(p< 0.01).

GRÁFICO 4.2.5. Efeito da Acetona sobre a atividade da AChE em estriado cerebral de ratos

Resultados mostrados como média \pm desvio padrão na tabela V do anexo II. As concentrações de 1.2, 1.8, 2.5, 5 e 10% diferiram significativamente de controle *(p< 0.05), **(p< 0.01) e ***(p< 0.001).

GRÁFICO 4.2.6. Efeito da Acetonitrila sobre a atividade da AChE em estriado cerebral de ratos

Resultados mostrados como média \pm desvio padrão na tabela V do anexo II. As concentrações de 1.2, 1.8, 2.5, 5 e 10% diferiram significativamente de controle *(p< 0.05), **(p< 0.01) e ***(p< 0.001).

GRÁFICO 4.2.7. Efeito do DMSO sobre a atividade da AChE em estriado cerebral de ratos

Resultados mostrados como média \pm desvio padrão na tabela V do anexo II. As concentrações de 1.2, 1.8, 2.5, 5 e 10% diferiram significativamente de controle *(p< 0.05), **(p< 0.01) e ***(p< 0.001).

4.3. AVALIAÇÃO in vitro DE ENAMINONAS, AMINOÁLCOOIS, OXAZINONA, OXAZINAS e DIIDROFURANONAS SOBRE A ATIVIDADE DA ACHE EM ESTRIADO E HIPOCAMPO CEREBRAL DE RATOS

Os primeiros compostos testados frente à enzima AChE foram sintetizados pela doutora Adriana Squizani. 135,136,137. Como esses compostos não foram solúveis em água, optamos por solubilizá-los em DMSO 50% (dimetil sulfóxido/água – 1:1), sendo que a mesma concentração e volume desse solvente foi adicionado ao controle, a fim de desconsiderar seu efeito sobre a AChE. Como o DMSO foi diluído em água (50%), a concentração final desse solvente no meio de reação com a enzima foi de 1,25%.

As enaminonas **2a-c** e os aminoálcoois **3a-d** foram testados em hipotálamo, estriado, hipocampo, cerebelo e córtex cerebral. No entanto, para as diferentes estruturas cerebrais, observou-se o mesmo padrão de inibição enzimática. A partir dessas observações, foi possível definir um protocolo de ensaio ou *screening* dos futuros testes, o qual empregaria uma ou duas estruturas cerebrais: estriado ou estriado e hipocampo; e a concentração de 1000 µM do composto a ser testado.

As 3-*N*-alquil-aminometilenodiidrofuran-2-onas¹³⁸ **7a-b** foram sintetizaas pelo doutor Rosemário Barichello.¹⁴¹

FIGURA 4.3. Estrutura química dos enamino compostos, aminoálcoois, oxazinona, oxazinas testados sobre estriado carebral e hipocampo de ratos

4.3.1. ENAMINONAS

4.3.2. AMINOÁLCOOIS

HO
$$F_3C$$
 $3a$
 OMe
 F_3C
 $3b$
 OMe
 F_3C
 $3b$
 OMe
 OMe

4.3.3. OXAZINONA

4.3.4. OXAZINAS

$$F_3C^{\text{ph}}$$
 OMe F_3C^{ph} OMe F_3C^{ph} OMe

4.3.5. DIIDROFURANONAS

Nos resultados mostrados nas tabelas 4.3.1 e 4.3.2 somente estriado e hipocampo foram considerados. Essas tabelas apresentam o grau de inibição da AChE como média \pm desvio padrão quando 1000 μ M dos diferentes compostos foram adicionados ao meio de reação contendo a enzima.

TABELA 4.3.1. Efeito sobre a atividade da AChE em estriado de ratos

COMPOSTO	Atividade AChE	Atividade AChE
	Controle Solvente	1 mM Composto
2a	21.65±0.61	20.66 ± 0.66
2 b	21.65±0.61	21.02±0.53

2c	21.65±0.61	20.85±0.51
3a	19.36±0.91	16.42±2.026
3 b	19.59±0.96	19.95±1.101
3c	20.12±1.17	19.94±1.36
3d	21.73±1.84	20.55±2.32
4a	21.65±0.61	21.16±0.52
5a	21.65±0.61	20.71±0.55
5b	21.03±1.06	21.06±0.88
7a	22.61 ± 0.33	22.48±0.405
7b	23.91±2.26	23.74±3.307

Solvente para compostos **2a-c**, **3a-d**, **4a** e **5a-b** = DMSO 50%; para compostos **7a-b** = EtOH. Resultados mostrados como média ± desvio padrão, (n = 4).

TABELA 4.3.2. Efeito sobre a atividade da AChE em hipocampo de ratos

COMPOSTO	Atividade AChE	Atividade AChE
	Controle Solvente	1 mM Composto
_		
2a	4.08 ± 0.205	4.46 ± 0.16
2b	4.08±0.205	4.30 ± 0.32
2c	4.08 ± 0.205	4.34±0.46
3a	3.95 ± 0.62	3.10±1.11
3b	3.01 ± 0.23	3.07 ± 0.28
3c	3.89 ± 0.35	3.81 ± 0.44
3d	4.83±0.64	4.26 ± 0.29
4a	4.08 ± 0.205	4.11±0.33
5a	4.08 ± 0.205	4.41±0.38
5b	3.96 ± 0.71	4.05±0.73
7a	6.903 ± 0.68	6.30±0.81
7 b	6.45±0.36	5.78 ± 0.17

Solvente para compostos **2a-c**, **3a-d**, **4a** e **5a-b** = DMSO 50%; para compostos **7a-b** = EtOH. Resultados mostrados como média ± desvio padrão, (n = 4).

Nenhum dos compostos acima mostrou resultado significativo quando comparado à atividade enzimática do controle.

4.4. AVALIAÇÃO *in vitro* DE 3-ALCOXI-5-HIDROXI-5-TRIFLUORMETIL PIRROLIDIN-2-ONAS SOBRE A ATIVIDADE DA ACHE EM ESTRIADO CEREBRAL DE RATOS

Na segunda fase de testes realizados sobre a atividade da enzima AChE, uma série de pirrolidinonas^{139,140} com diferentes substituintes na posição 3 foram testadas (figura 4.4.1).

FIGURA 4.4. Estrutura química das 3-alcoxi-5-hidroxi-5-trifluormetil pirrolidin-2-onas (9a-d)

OEt

HO

$$CF_3$$
 H
 OMe
 OMe

A tabela 4.4.1 mostra os resultados obtidos quando 1000 µM dos compostos **9a-d** foram adicionados ao meio de reação.

TABELA 4.4. Efeito das 3-alcoxi-5-hidroxi-5-trifluormetil pirrolidin-2-onas sobre a atividade da AChE em estriado cerebral de ratos

COMPOSTO	Atividade AChE Controle EtOH	Atividade AChE 1 mM Composto
9a	19.42±1.15	18.84±0.34

9b	19.42±1.15	19.84±1.44
9c	19.42±1.15	19.38±1.10
9 d	19.42±1.15	18.83±1.06

Resultados mostrados como média \pm desvio padrão, (n = 4).

As pirrolidinonas **9a-d** não mostraram efeito inibitório significativo sobre a enzima AChE.

4.5. AVALIAÇÃO *in vitro* DE 3-ETÓXI- 5-HIDROXI- 5-TRIFLUORMETIL PIRROLIDIN-2-ONAS *N*-ALQUILADAS E *N-O*-ALQUILADAS SOBRE A ATIVIDADE DA ACHE EM ESTRIADO CEREBRAL DE RATOS

Juntamente com as 3-alcoxi-5-hidroxi-5-trifluormetil pirrolidin-2-onas, realizou-se um *screening* para pirrolidinonas alquiladas derivadas de **9a**¹⁴⁰. Os derivados alquilados continham mistura de produtos *N*-alquilado e *N-O*-alquilado. Contudo existia um excesso das pirrolidinonas *N-O*-alquiladas e por isso o produto *N*-alquilado foi considerado como impureza. Os ensaios *in vitro* sobre a atividade da enzima AChE de estriado cerebral de ratos com as pirrolidinonas *N-O*-alquiladas foram realizados a fim de fazer uma comparação com o resultado obtido para a 3-etoxi-5-hidroxi-5-trifluormetil-4,5-dihidropirrolidin-2-ona, **9a**.

A tabela 4.5.1 mostra os resultados obtidos quando 1000 µM das pirrolidinonas alquiladas; foram adicionadas ao meio de reação.

Todas as pirrolidinonas N-O-alquiladas, mas especialmente a **10b** e **10d**, mostraram efeito inibitório significativo sobre a atividade da AChE [F(1,6)=383.25,p<0.0001] e [F(1,6)=130.58,p<0.0001], respectivamente. O teste F para as amostras que continham os compostos mostrou diferença significante quando comparado ao controle.

FIGURA 4.5. Estrutura química das 3-alcoxi- 5-hidroxi- 5-trifluormetil pirrolidin-2-onas N-alquiladas e N-O-alquiladas

TABELA 4.5. Efeito das pirrolidinonas 10a-d sobre a atividade da AChE em estriado cerebral de ratos

COMPOSTO	Atividade AChE	Atividade AChE
	Controle EtOH	1 mM Composto
10a	19.85±0.75	16.88±0.82**
10b + 10b'	19.74 ± 0.62	8.37±0.98***
10c + 10c'	19.74 ± 0.62	16.09±0.79**
10d + 10d'	21.52±0.78	14.82±0.87***

Resultados mostrados como média ± desvio padrão; ** p<0.01 e *** p<0.001, (n = 5). A atividade da AChE é expressa como μmolACSCh/H/mg proteina.

Considerando os resultados preliminares obtidos, decidimos repetí-lo empregando concentrações de 0.01, 0.1, 1, 2, 5 e 10 mM sobre a AChE estriatal.

GRÁFICO 4.5.1. Efeito das pirrolidinonas 10a sobre a atividade da AChE estriatal

Resultados mostrados como média \pm desvio padrão, [EtOH = 17.36 \pm 1.65], [0.01mM = 15.56 \pm 1.67], [0.1mM = 16.44 \pm 1.38], [1mM = 14.76 \pm 1.49], [2mM = 13.88 \pm 1.44], [5mM = 11.82 \pm 0.89], [10mM = 7.75 \pm 1.04]; * p<0.05. Para **10a** [F(6,21)=21.883; p<0.05]

GRÁFICO 4.5.2. Efeito das pirrolidinonas 10b sobre a atividade da AChE estriatal

Resultados mostrados como média \pm desvio padrão, [EtOH = 17.26 \pm 1.51], [0.01mM = 16.92 \pm 1.53], [0.1mM = 16.03 \pm 1.49], [1mM = 7.34 \pm 1.27], [2mM = 0.51 \pm 0.21], [5mM = 0.45 \pm 0.11], [10mM = 0.06 \pm 0.069]; ***p<0.001. Para **10b** [F(6,21)=220.317; p<0.001].

GRÁFICO 4.5.3. Efeito das pirrolidinonas 10c sobre a atividade da AChE estriatal

Resultados mostrados como média \pm desvio padrão, [EtOH = 17.26 \pm 1.51], [0.01mM = 17.44 \pm 1.16], [0.1mM = 17.05 \pm 1.75], [1mM = 14.06 \pm 1.21], [2mM = 12.64 \pm 0.87], [5mM = 10.15 \pm 1.12], [10mM = 9.08 \pm 1.66]; *p<0.05, **p<0.01 e ***p<0.001. Para **10c** [F(6,21)=26.168; p<0.001]

GRÁFICO 4.5.4. Efeito das pirrolidinonas 10d sobre a atividade da AChE estriatal

Resultados mostrados como média \pm desvio padrão, [EtOH = 21.05 ± 1.67], [0.01mM = 20.50 ± 1.38], [0.1mM = 19.66 ± 1.45], [1mM = 14.16 ± 0.87], [2mM = 11.20 ± 0.72], [5mM = 1.63 ± 0.56], [10mM = 0.00 ± 0.00]; **p<0.01 e ***p<0.001. Para **10d** [F(6,21)=258.605; p<0.001].

Apesar das pirrolidinonas alquiladas apresentarem o inconveniente da mistura de produtos, pode-se considerar que os resultados obtidos para esses compostos da série **10a-d** foram animadores.

Acreditamos que esses resultados possam ser atribuídos as pirrolidinonas *N-O*-alquiladas, já que essas mostravam excesso quando comparado ao produto monoalquilado. Porém o efeito discreto do composto **10a** sobre a atividade da enzima AChE, o qual continha somente o produto dialquilado, nos instiga a questionar se o efeito observado para as pirrolidinonas **10b-b'** e **10d-d'** não seria garantido mais pela forma monoalquilada que pela forma dialquilada. De qualquer maneira a separação desses produtos ou uma *N*-alquilação seletiva é imprescindível para testarmos novamente e respondermos com convicção essa questão. Além disso, a alquilação da pirrolidinona **9d** ao invés da **9a**, levaria a um número reduzido de isômeros o que seria desejável para melhorar os ensaios.

4.6. AVALIAÇÃO *in vitro* E *in vivo* DA DIMETIL-[(2-METILSULFANIL-4-TRICLOROMETIL-6-PIRIMIDINILMETOXI)ETIL] AMINA (20) SOBRE A ATIVIDADE DA ENZIMA ACHE

O último composto a ser testado foi a dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidinilmetoxi)etil] amina. Esse composto despertou interesse para teste de atividade anticolinesterásica, porque o substituinte na posição 6 do anel pirimidínico é um análogo estrutural da colina, a qual faz parte da estrutura do substrato natural da enzima AChE.

A tabela 4.6.1 mostra que o derivado pirimidínico, em concentração 2 vezes menor que utilizada nos *screening* anteriores, inibiu em 50% a atividade da enzima AChE [F(1,6)=95.88,p<0.0001]. O teste F mostrou diferença significativa entre o composto (500 μM) quando comparado ao controle (MeOH).

TABELA 4.6. Efeito sobre a atividade da AChE em estriado cerebral de ratos

COMPOSTO	Atividade AChE	Atividade AChE
20	Controle MeOH	0,5 mM Composto
CCI ₃ N N SCH ₃	20.56±1.93	10.06±0.92***

Resultados mostrados como média ± desvio padrão; *** p<0.001, (n = 5).

O interesse biológico sobre essa molécula deve-se principalmente à similaridade estrutural com a colina presente na acetilcolina. Além dessa particularidade que torna o composto **20** uma molécula interessante para avaliação sobre a atividade da AChE; ele também apresenta uma proximidade estrutural com um inseticida comercializado com o nome de Primicarb® ou 2-dimetil-5,6-dimetilpirimidin-4-il *N,N*-dimetilcarbamato. Esse último composto é constituído de um anel pirimidínico e apresenta substituintes nas posições 2 e 6 do heterociclo que possuem propriedades químicas similares aos substituintes do composto **20**, nas mesmas posições.

A partir desses dados prévios, definiu-se um protocolo de ensaio *in vitro* que empregaria 10, 100 e 500 µM do composto em estriado cerebral de ratos.

Os resultados *in vitro* sobre a AChE de estriado cerebral de ratos mostrou efeito inibitório significativo nas duas maiores concentrações utilizadas [F(4,15)=25.22;

p<0.001]. O Post Hoc de Duncan mostrou diferença significativa entre as concentrações de 100 e 500 µM quando comparadas com o controle.

GRÁFICO 4.6.1. Efeito *in vitro* da dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidinilmetoxi)etil] amina sobre a atividade da AChE estriatal de ratos

Resultados mostrados como média \pm desvio padrão, [Controle = 20.06 ± 1.71], [MeOH = 20.56 ± 1.93], [0.01mM = 18.56 ± 1.96], [0.1mM = 15.28 ± 1.78], [0.5mM = 10.06 ± 0.92]; **p<0.01 e ***p<0.001, (n = 5).

A dimetil- [(2-metilsulfanil- 4-triclorometil-6-pirimidinilmetoxi) etil] amina **20**, foi o único composto testado sobre a AChE que mostrou solubilidade em água, sendo portanto o primeiro candidato a testes *in vivo* sobre a AChE.

A partir desses resultados foram calculadas as concentrações ideais a serem empregadas no ensaio *in vivo*.

O ensaio utilizou quatro grupos de animais, com sete animais em cada grupo. O grupo 1 era o grupo controle, onde os animais receberam água destilada diariamente por 10 dias. Os outros três grupos: grupo 2, grupo 3 e grupo 4, receberam diariamente soluções aquosas com dimetil- [(2-metilsulfanil- 4-triclorometil-6-pirimidinilmetoxi) etil] amina, nas concentrações de 1, 10 e 100 mg/Kg, respectivamente. Assim como o

grupo controle, os grupos tratados também continham sete ratos e foram gavados no mesmo período do dia (meio da tarde).

Após 10 dias de tratamento esses animais foram decapitados, seus cérebros foram retirados e cuidadosamente dissecados em estriado, hipocampo e córtex cerebral. Além disso, amostras de fígado e rim foram coletadas para análise histológica, a fim de verificar dano tecidual pela droga.

GRÁFICO 4.6.2. Efeito *in vivo* da dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidinilmetoxi)etil] amina sobre a atividade da AChE estriatal de ratos

Resultados mostrados como média \pm desvio padrão, [Controle = 19.88 \pm 2.18], [1mg/Kg = 18.60 \pm 2.30], [10mg/Kg = 11.61 \pm 2.28], [100mg/Kg = 11.65 \pm 1.32]; ***p<0.001, (n = 7).

O gráfico 4.6..2 mostra o efeito inibitório do composto **20** sobre a atividade da AChE de estriado cerebral de rato. É possível notar que a concentração de 1 mg/Kg já mostrou tendência à inibição da enzima, porém quando 10 e 100 mg/Kg da dimetil- [(2-metilsulfanil- 4-triclorometil-6-pirimidinilmetoxi) etil] amina foram administrados por via oral por 10 dias, um efeito inibitório significativo sobre a atividade da AChE foi observado, [F(3,24)=12.93; P<0.0001]. O post hoc de Duncan mostrou diferença significativa entre as concentrações de 10 e 100mg/Kg e o controle.

O gráfico 4.6.3 mostra o efeito do composto **20** sobre a atividade da enzima AChE em membrana de eritrócitos de rato. É interessante notar, que ao contrário do efeito observado em estriado, neste caso houve ativação na atividade da enzima AChE. Na concentração de 100mg/Kg [F(3,24)=6.50; p<0.0044]. O Post Hoc de Duncan mostrou diferença significativa entre a concentração de 100mg/Kg e todos os demais grupos, porém as concentrações de 1 e 10 mg/Kg não mostraram diferença significativa quando comparadas ao controle.

GRÁFICO 4.6.3. Efeito *in vivo* da dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidinilmetoxi)etil] amina sobre a atividade da AChE eritrocítica de ratos

Resultados mostrados como média \pm desvio padrão, [Controle = 92.91 \pm 5.76], [1mg/Kg = 112.09 \pm 8.07], [10mg/Kg = 105.98 \pm 6.71], [100mg/Kg = 135.06 \pm 8.69]; ***p<0.001, (n = 7).

Amostras sanguíneas de todos os animais foram coletadas e testes laboratoriais como dosagem de transaminases séricas, uréia e creatinina, foram realizados a fim de evidenciar hepato e nefrotoxicidade. O hemograma dos animais controle e tratados, também foi feito a fim de verificar possíveis discrasias sanguíneas determinadas pela presença da droga. Os resultados encontrados não mostraram diferença entre os grupos tratados e o controle, indicando assim que esse composto foi bem tolerado pelo organismo dos animais.

A análise das atividades cerebrais da enzima AChE, inicialmente nos provou algumas propriedades farmacocinéticas importantes: 1°) o composto administrado por via oral foi absorvido; 2°) foi distribuído, e principalmente; 3°) passou a barreira hematoencefálica, já que exerceu efeito inibitório significante sobre a AChE de estriado cerebral dos animais tratados quando comparado aos animais controle. Os parâmetros farmacocinéticos de absorção, distribuição e biodisponibilidade são fundamentais para que uma droga seja viável como um fármaco.

Sabe-se que compostos muito polares dificilmente exercem efeito sobre o sistema nervoso, justamente porque apresentam baixa lipossolubilidade dificultando o transporte e passagem através da membrana hematoencefálica. Com isso, a droga não chega ao local de ação que deveria para exercer o efeito farmacológico.

O resultado encontrado nos testes *in vivo* com a dimetil- [(2-metilsulfanil- 4-triclorometil-6-pirimidinilmetoxi) etil] amina foram muito animadores e nos incentivam a investigar novas atividades biológicas para esse composto.

Além disso, a análise de amostras sangüíneas por HPLC permitiria evidenciar a integridade da molécula e/ou seus metabólitos, a fim de avaliar se o efeito é garantido pela molécula que é administrada ou algum metabólito produzido no metabolismo de primeira passagem no figado.

É inquestionável que o composto **20** apresenta efeito sobre a atividade da enzima AChE. Quanto ao fato de apresentar efeito contrário em estriado cerebral e membrana de eritrócito, é coerente pensar que, trata-se de isoformas diferentes da enzima AChE; determinando com isso atividade igualmente diferente. Sabe-se que as isoformas de AChE prevalentes no cérebro são as do tipo G1 e G4, já a forma encontrada nos eritrócitos é principalmente, G2.⁸⁻¹⁰

Outro fator relevante a ser considerado é que, normalmente os efeitos colaterais dos inibidores da AChE empregados no tratamento em diversas patologias cognitivas, é determinado pela inibição de todas as formas da enzima. Portanto o efeito da dimetil-[(2-metilsulfanil- 4-triclorometil-6-pirimidinilmetoxi) etil] amina sobre membrana de eritrócitos possivelmente represente a possibilidade de atenuação de efeitos colaterais periféricos, já que na concentração de 10 mg/Kg, o composto inibe significativamente a AChE estriatal e não apresenta efeito significativo sobre a AChE de membrana eritrocítica.

Futuros testes deste composto sobre a atividade da enzima butirilcolinesterase devem ser investigados, já que a inibição conjunta da acetilcolinesterase e

butirilcolinesterase parece contribuir para a manifestação clínica de efeitos colaterais indesejáveis.

4.7. AVALIAÇÃO *in vitro* DE ENOILCARBAMATOS TRIFLUORMETILADOS SOBRE A ATIVIDADE DA ENZIMA ACHE EM ESTRIADO CEREBRAL DE RATOS

FIGURA 4.7.1. Estrutura química dos Enoilcarbamatos trifluormetilados

R
Н
Me
Ph

FIGURA 4.7.2. Estrutura química dos Enoilcarbamatos trifluormetilados reduzidos

R	
Н	
Me	
Ph	

FIGURA 4.7.3. Estrutura química dos Enoilcarbamatos heterocíclicos trifluormetilados ou oxazinonas

Composto	R	
24a	Н	
24b	Me	
24c	Ph	
240	ГП	

O ensaio biológico dos compostos **22a-c** para testar a inibição da enzima AChE, foi realizado em estriado cerebral de ratos empregando concentrações de 0.1, 1, 2, 5 e 10 mM; usando etanol como solvente no preparo das soluções.

Considerando a concentração de $1000~\mu\text{M}$, a qual foi empregada nos *screenings* inicias dos demais compostos, pode-se observar um efeito inibitório significativo pra os três compostos, sendo que esse efeito é dependente da concentração.

Para o composto **22a** [F(5,18)= 35.35; p<0.001], **22b** [F(5,18)= 117.67; p< 0.001] e **22c** [F(5,18)= 31.81; p< 0.001]. Sendo que para todos eles, o Post Hoc de Duncan mostrou diferença significatica entre os grupos 1, 2, 5 e 10 mM e o controle. Para o composto **22a**, a concentração de 0.1 mM também mostrou diferença significativa quando comparado ao controle.

Os gráficos 4.7.1., 4.7.2 e 4.7.3 mostram os resultados obtidos para os compostos **22a-c**.

GRÁFICO 4.7.1. Efeito do composto 22a sobre a atividade da AChE estriatal

Resultados mostrados como média \pm desvio padrão, [EtOH = 23.07 \pm 1.84], [0.1mM = 20.21 \pm 1.85], [1mM = 17.51 \pm 1.57], [2mM = 15.83 \pm 1.27], [5mM = 12.57 \pm 1.38], [10mM = 9.22 \pm 0.13]; *p<0.05, **p<0.01 e ***p<0.001, (n = 4).

GRÁFICO 4.7.2. Efeito do composto 22b sobre a atividade da AChE estriatal

Resultados mostrados como média \pm desvio padrão, [EtOH = 27.74 \pm 1.18], [0.1mM = 27.29 \pm 1.30], [1mM = 23.34 \pm 0.72], [2mM = 22.77 \pm 0.62], [5mM = 19.52 \pm 1.13], [10mM = 6.49 \pm 1.83]; **p<0.01 e ***p<0.001, (n = 4).

GRÁFICO 4.7.3. Efeito do composto 22c sobre a atividade da AChE estriatal


```
Resultados mostrados como média \pm desvio padrão, [EtOH = 22.26\pm2.72], [0.1mM = 21.31\pm2.26], [1mM = 16.89\pm1.98], [2mM = 14.43\pm1.75], [5mM = 9.55\pm1.07], [10mM = 6.37\pm1.40]; **p<0.01 e ***p<0.001, (n = 4).
```

A tentativa de testes com os produtos reduzidos **23a-c**, derivados dos compostos **22a-c** mostrados na figura 3.7.2 não obteve êxito, pois os mesmos apresentaram turvação no meio de reação resultando em leituras de absorbâncias irregulares. Por essa razão não puderam ser considerados. O mesmo impedimento ocorreu para os derivados heterocíclicos **24a-c**, mostrados na figura 3.7.3.

Os enoilcarbamatos **22a-c** assim como as pirrolidinonas alquiladas, apresentaram efeito significativo somente em concentrações elevadas (1 mM), exceto para o **22a** que mostrou efeito inibitório significativo na concentração de 0.1 mM. Essas concentrações ainda são consideradas elevadas para o efeito produzido.

4.8. AVALIAÇÃO *in vitro* DE 3-DIALCOXI FOSFORILOXI TRIFLUORMETILADOS SOBRE A ATIVIDADE DA ENZIMA ACHE PURIFICADA

Semelhante aos carbamatos, os compostos organofosforados também representam moléculas de interesse para testes de atividade sobre a enzima AChE. Os organofosforados inseticidas são inibidores clássicos dessa enzima. Sabe-se que os organofosforados ligam-se de forma irreversível ao sítio ativo das colinesterases, enquanto que os carbamatos ligam-se de forma reversível. O mecanismo de ação de organofosforados e carbamatos é bem estabelecido e tanto um como o outro liga-se ao sítio ativo, interagindo com a tríade catalítica da enzima. Além disso, alguns carbamatos, por apresentarem alta afinidade de ligação ao sítio ativo da AChE, são capazes de reverter a neuropatia tóxica induzida por organofosforado, reativando a propriedade catalítica da enzima.

Compostos organofosforados derivados dos carbamatos **22a-c** foram obtidos a partir de derivatização da hidroxila ligada no carbono α ao grupo trifluormetil. A estrutura química dos derivados **25a-i** são apresentadas na figura 4.8.1.

FIGURA 4.8. Derivados 3-dialcoxi fosforiloxi trifluormetilados

R	\mathbf{R}^{1}
Н	MeO
Me	MeO
Ph	MeO
H	EtO
Me	EtO
Ph	EtO
Н	Alil
Me	Alil
Ph	Alil
	H Me Ph H Me Ph H

Esses compostos constituem uma classe muito interessante para testes sobre colinesterases, pois existe a associação das funções: carbamato e organofosforado na mesma molécula. A expectativa em conhecer o efeito desses compostos é muito grande, já que não temos como mensurar o comportamento que moléculas dessa natureza podem obter frente a enzima. Um estudo preciso do mecanismo de ação de compostos que agrupem as funções carbamato e organofosforado na mesma molécula desperta grande interesse e representa uma área ampla de estudo a serem realizados.

O ensaio preliminar para esses compostos utilizou enzima AChE de estriado cerebral de ratos e a concentração de 10 mM dos compostos, porém não foi obtida leitura de absorbância porque nessa concentração os compostos inibiram 100% da atividade da enzima nessa estrutura. Como tínhamos pouca quantidade dos compostos para realizar o ensaio, decidimos realizá-los em enzima purificada e em várias concentrações dos organofosforados.

Dessa forma, investigamos o efeito dos organofosforados trifluormetilados sobre a atividade da enzima AChE purificada, empregando concentrações de 0.001, 0.01, 0.1, 1 e 10 mM para os nove compostos; a enzima foi utilizada na concentração de 0.025 unidades/ml.

Os resultados mostrados nos gráficos apresentam dois controles: o primeiro sem solvente e o segundo com a presença do solvente usado na preparação da solução dos compostos. Optamos por usar dois controles para saber o efeito do solvente sobre a atividade da enzima purificada, pois no trabalho anterior realizado para avaliar o efeito dos solventes orgânicos a enzima era de estrutura cerebral de ratos. Além disso, aquele trabalho não avaliou o efeito do álcool alílico o qual foi utilizado na preparação dos compostos 25g-i. Porém o resultado dos compostos foi comparado somente ao resultado do segundo controle na presença de solvente.

GRÁFICO 4.8.1. Efeito do composto 25a sobre a atividade da AChE purificada

Resultados mostrados como média \pm desvio padrão, [Controle = 24.77 ± 2.27], [MeOH = 24.66 ± 2.02], [0.001mM = 24.30 ± 1.71], [0.01mM = 24.85 ± 1.98], [0.1mM = 24.34 ± 2.39], [1mM = 19.24 ± 2.89], [10mM = 5.01 ± 1.25]; *p<0.05 e ***p<0.001. Para composto **25a** [F(6,21)=36.89; p<0.0001], (n = 4).

GRÁFICO 4.8.2. Efeito do composto 25b sobre a atividade da AChE purificada

Resultados mostrados como média \pm desvio padrão, [Controle = 24.26 \pm 3.50], [MeOH = 24.93 \pm 1.94], [0.001mM = 24.57 \pm 2.01], [0.01mM = 24.42 \pm 2.17], [0.1mM = 24.69 \pm 3.06], [1mM

= 22.46 ± 2.46], [10mM = 14.46 ± 2.47]; ** p<0.01. Para composto **25b** [F(6,21)=4.98; p<0.0063] , (n = 4).

GRÁFICO 4.8.3. Efeito do composto 25c sobre a atividade da AChE purificada

Resultados mostrados como média \pm desvio padrão, [Controle = 20.69 ± 1.58], [MeOH = 21.20 ± 1.80], [0.001mM = 20.88 ± 1.72], [0.01mM = 21.04 ± 1.22], [0.1mM = 18.89 ± 2.91], [1mM = 12.54 ± 1.36], [10mM = 0.00 ± 0.00]; **p<0.01 e ***p<0.001. Para composto **25c** [F(6,21)=63.36; p<0.0001], (n = 4).

GRÁFICO 4.8.4. Efeito do composto 25d sobre a atividade da AChE purificada

Resultados mostrados como média \pm desvio padrão, [Controle = 20.03 ± 0.37], [EtOH = 18.14 ± 0.17], [0.001mM = 15.12 ± 0.48], [0.01mM = 10.81 ± 0.91], [0.1mM = 14.42 ± 0.34], [1mM = 14.03 ± 0.47], [10mM = 6.26 ± 0.13]; ***p<0.001. Para composto **25d** [F(6,21)=273.13; p<0.0001], (n = 4).

GRÁFICO 4.8.5. Efeito do composto 25e sobre a atividade da AChE purificada

Resultados mostrados como média \pm desvio padrão, [Controle = 19.59 \pm 0.55], [EtOH = 17.87 \pm 0.53], [0.001mM = 17.24 \pm 0.48], [0.01mM = 17.83 \pm 1.36], [0.1mM = 18.38 \pm 0.31], [1mM = 15.36 \pm 0.13], [10mM = 9.40 \pm 0.20]; ***p<0.001. Para composto **25e** [F(6,21)=84.96; p<0.0001], (n = 4).

GRÁFICO 4.8.6. Efeito do composto 25f sobre a atividade da AChE purificada

Resultados mostrados como média \pm desvio padrão, [Controle = 17.99 \pm 0.35], [EtOH = 16.61 \pm 0.41], [0.001mM = 13.94 \pm 0.698], [0.01mM = 13.60 \pm 1.16], [0.1mM = 13.36 \pm 0.66], [1mM = 11.60 \pm 0.68], [10mM = 0.95 \pm 0.16]; ***p<0.001. Para composto **25f** [F(6,21)=211.55; p<0.0001], (n = 4).

GRÁFICO 4.8.7. Efeito do composto 25g sobre a atividade da AChE purificada

Resultados mostrados como média \pm desvio padrão, [Controle = 21.56 ± 1.56], [AlOH = 19.60 ± 4.19], [0.001mM = 19.02 ± 1.94], [0.01mM = 18.19 ± 1.29], [0.1mM = 17.68 ± 1.26], [1mM = 10.85 ± 1.53], [10mM = 0.76 ± 0.10]; ***p<0.001. Para composto **25g** [F(6,21)=33.02; p<0.0001], (n = 4).

GRÁFICO 4.8.8. Efeito do composto 25h sobre a atividade da AChE purificada

Resultados mostrados como média \pm desvio padrão, [Controle = 21.56 ± 2.19], [AIOH = 17.79 ± 2.86], [0.001mM = 17.32 ± 2.24], [0.01mM = 16.49 ± 2.17], [0.1mM = 16.02 ± 2.48], [1mM = 15.01 ± 2.75], [10mM = 6.74 ± 1.28]; ***p<0.001. Para composto **25h** [F(6,21)=10.68; p<0.0001], (n = 4).

GRÁFICO 4.8.9. Efeito do composto 25i sobre a atividade da AChE purificada

Resultados mostrados como média \pm desvio padrão, [Controle = 20.73 ± 1.30], [AlOH = 17.32 ± 0.69], [0.001mM = 17.91 ± 0.69], [0.01mM = 17.75 ± 1.81], [0.1mM = 17.44 ± 0.83], [1mM = 12.58 ± 0.27], [10mM = 1.84 ± 0.65]; ***p<0.001. Para composto **25i** [F(6,21)=124.80; p<0.0001], (n = 4).

Analisando os resultados encontrados para os 3-dialcoxi fosforiloxi trifluormetilados, é possível notar que os grupos R¹ ligados diretamente ao átomo de fósforo parecem interferir mais no efeito dos compostos sobre a atividade da AChE, que o grupo R vizinho à amina do carbamato. No entanto, quando R é metila os compostos exercem apenas um discreto efeito sobre a atividade da AChE, demonstrando que o grupo metila nessa posição desfavorece a atividade inibitória do composto.

Quanto à natureza de R¹, é possível notar que a presença do grupo etoxila ligado diretamente ao fósforo, mostrou os melhores efeitos inibitórios sobre a atividade da AChE, compostos **25d-f**. Sendo que quando R¹ são metoxila (**25a-c**), o efeito inibitório sobre a atividade da enzima AChE só é significativo em presença de alta concentração do composto. Para os compostos **25g-i** os efeitos sobre a atividade da enzima AChE foram similares aos encontrados para os compostos **25a-c**, com a diferença que nos

primeiros o solvente (álcool alílico) exerceu efeito inibitório significativo sobre a atividade da enzima.

Outro dado importante observado no ensaio dos 3-dialcoxi fosforiloxi trifluormetilados é que o etanol usado no segundo controle para os compostos **25d-f**, mostrou efeito inibitório sobre a atividade da enzima purificada, diferindo um pouco do observado no trabalho que testou o efeito *per se* dos solventes sobre a enzima cerebral de ratos. Porém com o metanol o efeito inibitório foi inexistente, conforme já havíamos constatado anteriormente. Para o álcool alílico, o qual foi empregado pela primeira vez nos ensaios, observou-se um efeito inibitório significativo (p<0.05) quando comparado ao controle sem solvente.

A apreciação de todos esses dados de atividade biológica tornam mais relevante a interação entre a síntese de compostos orgânicos e a avaliação dessas moléculas, abrindo uma nova possibilidade no desenvolvimento de pesquisa que interligue as áreas do conhecimento químico e biológico.

CONCLUSÕES

5. CONCLUSÕES

Após a realização, apresentação e discussão dos resultados e tendo como parâmetros os objetivos inicialmente propostos para o desenvolvimento deste trabalho, concluímos que:

- Foi possível determinar uma padronização dos ensaios para a enzima AChE devido a necessidade de avaliar compostos orgânicos pouco solúveis em água. Com isso, descobrimos quais os solventes que interferem significativamente sobre a atividade da enzima podendo definir agora aqueles mais apropriados para o emprego nos ensaios biológicos.
- Os primeiros grupos de compostos testados não demonstraram efeito sobre a atividade da AChE. Porém, os aminoálcoois 3a-d poderiam ser avaliados sobre os receptores colinérgicos, pois alguns aminoálcoois já são conhecidos como antagonistas muscarínicos.
- Os resultados encontrados para as pirrolidinonas N-alquiladas derivadas de 9a sustentam o interesse biológico em compostos dessa classe. A N-alquilação de 9d com cloro acetamida, teria o conveniente de produzir um produto com reduzido número de isômeros e potencial atividade anticonvulsivante, anticolinesterásica e/ou nootrópica.
- ◆ A avaliação in vitro e in vivo do composto 20 sobre a atividade da enzima AChE tornou essa molécula alvo de interesse para testes de atividade em outros sistemas biológicos. Além disso, esse composto apresenta uma rota sintética simples, originando o produto com bom grau de pureza e rendimento.
- ◆ Os enoilcarbamatos trifluormetilados **22a-c** inibiram significativamente a atividade da enzima AChE, porém as concentrações usadas são ainda elevadas.
- ◆ Dos 3-dialcoxi fosforiloxi trifluormetilados, o composto 25d e 25f mostraram efeito inibitório altamente significativo sobre a atividade da AChE, mesmo em baixas concentrações. Com isso concluímos que o grupo alcóxi ligado

diretamente ao átomo de fósforo é importante na determinação desse efeito e o substituinte alquil vizinho à amina do carbamato também interfere, porém de forma menos significativa. Para esses compostos torna-se importante a realização de ensaio cinético, a fim de demonstrar o tipo de inibição exercida sobre a atividade da AChE.

◆ Os resultados apresentados direcionam os estudos futuros para obtenção de novos compostos similares a dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidinilmetoxi)etil] amina 20, já que esta mostrou resultados promissores como inibidor da AChE *in vitro* e *in vivo*. Além disso, novos testes de atividade com a enzima butirilcolinesterase devem ser realizados para esses compostos.

6. SUGESTÕES PARA CONTINUIDADE DOTRABALHO

- ◆ Separação das pirrolidinonas **10b** e **10d** a fim de identificar qual dos produtos, se *N* ou *N*,*O*-alquiladas, é o responsável pelo efeito sobre a atividade da AChE.
- ◆ Ensaio cinético com as pirrolidinonas **10b** e **10d** a fim de identificar o tipo de inibição sobre a atividade da enzima AChE (ensaio preliminar indicou tipo de inibição mista) completando assim o trabalho dessa classe.
- Obtenção de outros heterociclos análogos ao composto 20, a fim de investigar o efeito do anel na atividade da enzima.
- ◆ Além disso, variações do agente nucleofílico (pseudotioúréia) a fim de produzir derivados de 20, com diferentes substituintes na posição 2 do anel pirimidínico.
- ♦ A síntese de análogos de **20**, porém na forma de sal de amônio quaternário, o que apresentaria maior similaridade ao substrato natural da enzima AChE.
- Ensaio cinético com as 3-dialcoxi fosforiloxi trifluormetilados 25d e 25f com o objetivo de investigar o tipo de inibição sobre a atividade da enzima AChE, já que essas moléculas apresentam tanto a função fosfato como a carbamato. Sendo que, quando em moléculas separadas, ambas funções interagem com a tríade catalítica da enzima.
- Avaliação do efeito inibitório sobre a atividade da enzima AChE para uma nova série de 14 compostos piridínicos, os quais foram sintetizados e devidamente purificados pela colega Liana S. Fernandes em seu trabalho de mestrado.

7. PROCEDIMENTOS EXPERIMENTAIS

7.1. SECÇÃO DE PROCEDIMENTOS BIOLÓGICOS

7.1.1. Reagentes

- ♦ Albumina bovina Sigma Chemical Co. (St. Louis, Mo, USA)
- ◆ Comassie Azul Brilhante Sigma Chemical Co. (St. Louis, Mo, USA)
- ◆ ácido orto fosfórico 85% Synth (Labsynth São Paulo)
- ♦ Álcool etílico C₂H₆O Synth (Labsynth São Paulo)
- ♦ Álcool metílico CH₄O Synth (Labsynth São Paulo)
- ♦ Álcool alílico C₃H₈O Synth (Labsynth São Paulo)
- ♦ Álcool *terc*-butila C₄H₁₀O Synth (Labsynth São Paulo)
- ◆ Dimetilsulfóxido C₂H₆OS ou DMSO Vetec do Brasil
- ◆ Acetonitrila C₂H₃N Vetec do Brasil
- ◆ Acetona C₃H₆O Vetec do Brasil
- ◆ Acetilcolina acetil hidrolase ou Acetilcolinesterase AChE E.C.3.1.1.7 Sigma Chemical Co. (St. Louis, Mo, USA)
- ◆ Iodeto de Acetitiolcolina C₇H₁₆NOS.I ou ACSCh Sigma Chemical Co. (St. Louis, Mo, USA)
- ★ Ácido-5-5'-ditio-bis-2-dinitrobenzóico DTNB Sigma Chemical Co. (St. Louis, Mo, USA)
- ♦ Fosfato de Potássio Monobásico KH₂PO₄
- ♦ Fosfato de Potássio Dibásico K₂HPO₄

Todos os reagentes utilizados foram de pureza analítica e o preparo das soluções foi realizado com água destilada.

7.1.2. Equipamentos

- ♦ Balança Ohaus AS 200
- ♦ Centrífuga
- ♦ Homogeneizador de tecidos Heidolph

- ♦ Espectrofotômetro U 2001 Hitachi
- ♦ Espectrofotômetro 800XI Femto
- ♦ Pipetas automáticas Socorex
- ♦ Vidraria volumétricas
- ♦ Cronômetros
- ♦ Banho-maria NT 248 Nova Técnica

7.1.3. AMOSTRA

7.1.3.1. Animais Experimentais

Os animais utilizados nos estudos experimentais, foram provenientes do Biotério Central da Universidade Federal de Santa Maria. Trata-se de ratos da raça Wistar, adultos machos, pesando entre de 200-300g, mantidos no Biotério do Departamento de Química, setor de Bioquímica, acondicionados sob ciclo claro-escuro (12h), com temperatura ambiente controlada (± 21°C). Os animais foram alimentados com ração apropriada a fase de crescimeto (Guabi) e água *ad libitum*, respectivamente.

7.1.4. PREPARAÇÕES TECIDUAIS

7.1.4.1. Dissecação de Tecido Cerebral e determinação da atividade da AChE

Os animais foram levemente anestesiados com éter em recipiente fechado, e decapitados por guilhotinamento. A caixa craniana foi aberta com instrumentação adequada e o cérebro exposto sobre placa de Petry refrigerada, sendo permeabilizado externamente com meio isosmótico – Médium I (sacarose 0.32 M; Tris 1.0 M; EDTA 0.1 mM em pH 7.5), para o procedimento de dissecação das estruturas anatômicas desejadas.

Cada estrutura cerebral devidamente separada foi homogeneizada na proporção de um grama de tecido para 10 ml de solução isosmótica.

A atividade da enzima acetilcolinesterase nos tecidos cerebrais, foi determinada de acordo com o método de Ellman et al (1961) modificado por Rocha et al. (1993). O método é baseado na mensuração da absorbância a 412 nm a 25°C, decorrentes da

formação de um íon amarelo originado a partir do ácido 5,5'-Ditiobis-2-nitrobenzóico – DTNB.

A atividade específica da AChE nas estruturas cerebrais foi calculada conforme fórmula a seguir e os resultados expressos como μmol ACSCh/h/mg proteina.

Sendo que:

 Δ = diferença de absorbância por minuto

Volume reagentes = volume total da mistura no tubo de reação (2 ml)

ε = coeficiente de extinção da AChE segundo Elmann (13.6 mM⁻¹ cm⁻¹)

Volume de enzima = 0.1 ml

[prot.] = Concentração de proteína no tecido em mg

7.1.4.2. Preparo das frações de Membrana de Eritrócitos (Ghost) e determinação da atividade da AChE

A atividade da AChE em eritrócitos foi determinada por Elmann et al (1961) modificado por Worek et al. (1999). Amostras de sangue total dos animais tratados com dimetil- (2-metilsulfanil- 4-triclorometil-6-pirimidinilmetoxi) etil] amina foram coletadas e preparadas adicionando 100 ul de sangue à 10 ml de tampão fosfato (0.1 mM), pH 7.4 contendo Triton X-100 (0.03%). A solução tampão com Triton X-100 promove a hemólise dos eritrócitos após cuidadosa agitação. Essas amostras hemolisadas foram separadas em alíquotas de 2 ml e congeladas imediatamente e assim conservadas até o ensaio de atividade da AChE. O ensaio empregou 500 ul do hemolisado preparado anteriormente, 1 ml de tampão fosfato (0.1 mM) pH 7.4, 50 ul de solução de DTNB (10 mM) e 10 ul de solução de etopropazine (6 mM), um inibidor seletivo da butirilcolinesterase. Após a pré-incubação dessa mistura à 37°C por 10 minutos, a reação foi iniciada pela adição de 25 ul de ACSCh (14 mM) e o desenvolvimento da cor foi medido pela leitura da absorbância em 436 nm. O

comprimento de onda de 436 nm reduz em 25% a interferência da hemoglobina presente no meio. A atividade da enzima foi corrigida da hidrólise espontânea do substrato e degradação de DTNB. A absorção do coeficiente de TNB $^{-}$ (ácido 5-mercapto-2-nitrobenzóico) em 436 nm (ϵ = 10.6 mM $^{-1}$ cm $^{-1}$) derivou do coeficiente de extinção em 412 nm (ϵ = 13.6 mM $^{-1}$ cm $^{-1}$), como originalmente apresentado por Elmann (1961).

A atividade específica da AChE em eritrócitos foi calculada do quociente entre a atividade da AChE e o conteúdo de hemoglobina e os resultados são expressos como mU/µmol Hb.

Os cálculos para a atividade da AChE em eritrócitos obedeceu as seguintes fórmulas:

$$AChE' = \frac{\Delta \times \text{Vol. reagentes}}{\epsilon}$$

AChE' x 1.58 x Vol. reagentes
$$AChE = [Hb]$$

Sendo que:

 Δ = diferença de absorbância por minuto

Volume reagentes = volume total da mistura no tubo de reação (1000 μl)

ε = coeficiente de extinção da AChE segundo Elmann (10.6 mM⁻¹ cm⁻¹)

[Hb] = Concentração de hemoglobina no sangue total

7.1.4.3. Preparo da enzima AChE purificada e determinação de sua atividade específica

A enzima Acetylcholine acetyl hydrolase (E.C.3.1.1.7) apresentava 301 unidades/mg sólido. Com isso ao pesar 3 mg e diluir com 903 μl de solução tampão fosfato pH 7.4, obteve-se uma solução com 1U/μl.

Essa solução de enzima purificada de 1U/µl foi diluída 1000 vezes, obtendo-se

uma solução de 0.001 U/μl. Porém somente 50 μl dessa solução foi incubada no meio

de reação resultando uma concentração final de 0.025 unidades de AChE/ml.

A atividade específica da enzima AChE purificada foi determinada de acordo

com o método de Ellman et al (1961) modificado por Rocha et al. (1993), conforme

descrito no item 1.4.1, sendo mudado apenas a temperatura de pré-incubação para 37°C.

A atividade específica da AChE purificada foi calculada conforme fórmula a

seguir e os resultados expressos como U/ml/minuto

 Δ x Vol. reagentes

ε x Vol. Enz. x U enz.

Sendo que:

 Δ = diferença de absorbância por minuto

Volume reagentes = volume total da mistura no tubo de reação (2 ml)

ε = coeficiente de extinção da AChE segundo Elmann (13.6 mM⁻¹ cm⁻¹)

Volume de enzima = $0.05 \mu l$

Unidade de enzima = 0.05 U

7.1.4.4. Protocolo para o ensaio in vivo com dimetil-[(2-metilsulfanil-4-

triclorometil-6-pirimidinilmetoxi)etil] amina

O modelo de protocolo para o ensaio in vivo, obedeceu ao procedimento descrito

abaixo:

Peso molecular do composto: 342,5 g/mol

Solvente: Água destilada

Modelo: Ratos machos adultos

Tratamento: 10 dias (sub-crônico)

Via de administração: Oral por gavagem

Doses: 1, 10 e 100 mg/kg

Volume administrado: aproximadamente 500 ul de solução

83

PREPARO DAS SOLUÇÕES:

TRATAMENTO 2 – 10 mg/Kg Pesado 100 mg composto 10 mg 20 ml de água 2 ml / 1000g Se o rato 200 g Então: 2 ml 1000g 200 g Se o rato 200 g Então: 0.4 ml 200 g

TRATAMENTO 3 – 100 mg/Kg				
Pesado 1000 mg compos 100 mg	sto	20 ml de água 2 ml / 1000g		
Se o rato 200 g Então:	2 ml 0.4 ml	1000g 200 g		

Para calcular o volume a ser administrado pegar o peso do rato multiplicar por 2 e dividir por 1000, já que se o rato tivesse 1000g receberia sempre 2 mL dos compostos.

7.1.5. ANÁLISE ESTATÍSTICA

Os dados foram analisados através da análise da variância (MANOVA) e (ONE-WAY) seguido pelo teste de Raio Múltiplo de Duncan, com o programa estatístico SPSS/PC 11.0 (Statistical Package for Social Sciences). As diferenças entre os grupos foram consideradas significativas quando p<0.05.

A grandeza F representa um índice de significância da diferença entre os grupos testados:

Variância entre as amostras de grupos diferentes

F = Variância média aritmética das amostras (ao acaso)

Quanto maior o valor de **F** significa que a variância entre as amostras de grupos diferentes foi maior que a variância das amostras dentro do mesmo grupo; portanto quanto maior o valor de **F** mais significativo é o resultado obtido para o efeito testado. Na representação:

$$F(X,Y) = N, p < Z$$

X = Refere-se ao número de grupos analisados menos um (X = g - 1).

Y = Refere-se ao número total de dados (n) usados na análise menos o número de grupos (g), ou seja, Y = n - g.

N = Valor encontrado no cálculo de F (fórmula apresentada acima para F).

p = Índice de significância da diferença entre os grupos.

Z = Para que seja significativo deve ser menor que 0.05.

7.2. SECÇÃO DE PROCEDIMENTOS QUÍMICOS

7.2.1. Reagentes e Solventes purificados

- ♦ Piridina: Merck. Destilado sobre KOH
- ◆ Diclometano: Synth. Seco em CaCl₂ over nigth, refluxado por 3 horas sobre
 P₂O₅ destilado e coletado sobre peneira molecular.
- ◆ Clorofórmio: Synth. Seco em CaCl₂ over nigth, refluxado por 3 horas sobre P₂O₅ destilado e coletado sobre peneira molecular.
- ♦ Acetona: Synth. Destilada uma vez e apó refluxada com P₂O₅ e coletada sobre peneira molecular.
- ◆ Acetonitrila: Synth. Seco em CaCl₂ over nigth, refluxado por 3 horas sobre P₂O₅ destilado e coletado sobre peneira molecular.
- ◆ CDCl₃ e DMSO-d₆ foram os solventes deuterados empregados para realização da análise espectroscópica das amostras

OBS: Os reagentes e solventes purificados e secos obedeceram normas usuais. 150

7.2.2. Equipamentos

- ◆ Espectrômetro BRUKER DPX 200 OU DPX 400 (frequências de 200 e 400 MHz, respectivamente)
- ◆ Espectrômetro BRUKER IFS 28 com FT (calibrado com filme de poliestireno de 0,05 mm de espessura com absorção a 1601cm⁻¹)
- ◆ Foss Heraeus VARIO EL Elementar Analysensysteme GmbH (análise elementar).
- Cromatógrafo gasoso HP 6890 acoplado a um detector de massa seletivo HP 5973 equipado com injetor split-splitless autosampler, coluna capilar cross-linked HP5 (espectroscopia de massa).
- ♦ Kofler REICHERT THERMOVAR com termômetro não aferido (ponto de fusão).

7.2.3. Procedimento para síntese de compostos

7.2.3.1. Reação de *O*-proteção da 5-hidroxi-5-trifluormetil-3-dietoxi pirrolidin-2-ona com 2,3-diidropirano (12)

A 5-hidroxi-5-trifluormetil-3-dietoxi pirrolidin-2-ona **9d** (9 mmoles) e THF tratado (10 mL) foram colocados em um balão de 25 mL e submetido a agitação. O 2,3-diidropirano (9.2 mmoles) foi então adicionado. Logo em seguida foi adicionado 0.09 mL de ácido clorídrico concentrado e foi mantido sob agitação a 25°C por aproximadamente 18 horas. Após esse tempo foi adicionado 0.02 g de hidróxido de potássio e agitado por mais 30 minutos. A mistura foi filtrada e o THF evaporado, houve a formação de um sólido branco. Esse sólido foi solubilizado em éter e extraído. Após a extração com éter e água destilada, a fase orgânica foi seca e evaporada. A amostra foi enviada para análise. Porém, os espectros de RMN de ¹H e ¹³C revelaram a presença do composto **9d**.

7.2.3.2. Reação de *O*-proteção da 5-hidroxi-5-trifluormetil-3-dietoxi pirrolidin-2-ona com cloro trimetilsilano (14)

A 5-hidroxi-5-trifluormetil-3-dietoxi pirrolidin-2-ona **9d** (2.5 mmoles), trietilamina tratada (3.0 mmoles), dimetilamino piridina – DMAP (0.25 mmoles) e THF tratado (10 mL) foram colocados em um balão de 50 mL (duas bocas) e submetido a agitação sob banho de gelo. Uma das bocas do balão continha um funil de adição e a outra estava conectada à linha de argônio. Por meio de um funil de adição, foi adicionado o cloro trimetilsilano (2.75 mmoles) lentamente. Após a adição, o banho de gelo foi retirado e a mistura permaneceu sob agitação a 25°C, overnight. Uma solução saturada de cloreto de sódio (15 mL) foi adicionada ao balão e extraída com éter etílico. A fase orgânica foi seca com sulfato de sódio, filtrada e evaporada. O produto foi obtido como um sólido amarelo claro parecido com o material de partida **9d**. Os espectros de RMN de ¹H e ¹³C revelaram a presença do produto **14**.

7.2.1.3. Reação de alquilação da 5-hidroxi-5-trifluormetil-3-dietoxi pirrolidin-2-ona *O*-protegida com cloroacetamida (15)

Um balão de duas bocas de 50 mL foi ligado em uma das entradas à linha de argônio, sendo que a outra entrada foi fechada com um septo de silicone. Este sistema foi devidamente flambado. Após resfriamento do sistema com banho de gelo seco, o composto 14 (2.0 mmoles) foi solubilizado em THF seco (5 mL) e rapidamente adicionado ao balão por meio de uma seringa. Essa mistura foi submetida à agitação e resfriada até -78°C. Então 3.0 mmoles de butil lítio, previamente titulado; foi adicionado com uma seringa. A adição da base escureceu a solução. Essa mistura permaneceu sob agitação por uma hora. A cloro acetamida (3 mmoles) foi solubilizada em THF seco (10 mL), adicionada ao balão com uma seringa e foi mantida agitação a -78°C por duas horas. Após esse tempo, uma solução saturada de cloreto de amônio (15 mL) foi colocada no balão e a extração foi realizada com éter etílico. A fase orgânica foi seca, filtrada e evaporada. A amostra foi devidamente analisada por os espectros de RMN de ¹H e ¹³C e MS, os dados mostraram apenas 16% da presença do produto **15**. Várias tentativas de otimização dessa reação foram feitas: 1°) testes com maior tempo de reação a -78°C até 6 horas; 2°) Após adição do alquilante, elevação da temperatura a 25°C por 6, 16 ou 24 horas e 3°) refluxo após adição do alquilante. Porém nenhuma das tentativas foi promissora.

7.2.1.4. Síntese de 6-bromometil-2-metilsulfanil-4-triclorometil pirimidina (18).

O composto 16 (10 mmoles), sulfato de 2-metil-2-tiopseudouréia 17 (20 mmoles), água destilada (10 mL) e metanol (25mL) foram adicionados a um balão de 100 ml sob vigorosa agitação. Após solubilização parcial do sólido (17), ácido clorídrico concentrado (3.5 ml) foi adicionado à mistura do balão, a qual foi mantida sob agitação e refluxo por 48 horas. Após esse tempo, o metanol foi evaporado e foi realizada uma extração utilizando clorofórmio e solução de carbonato de sódio 1M. A fase orgânica foi seca com sulfato de sódio, filtrada e evaporada. Foi obtido um óleo marrom escuro, o qual foi solubilizado em uma mistura de hexano/clorofórmio 2:1 e filtrado em sílica sob vácuo. Após a evaporação do solvente obteve-se um óleo amarelo claro com rendimento de 65%. A análise da amostra com espectros de RMN de ¹H e ¹³C foi realizada e os dados espectrais confirmaram a estrutura do produto 18.

7.2.1.5. Síntese de dimetil-[(2-metilsulfanil-4-triclorometil-6-pirimidinilmetoxi)etil] amina (20).

O 6-bromometil-2-metilsulfanil-4-triclorometil pirimidina **18** (3 mmoles) e *N,N*-dimetil-etanolamina **19** (6 mmoles) foram agitados em acetona tratada (10ml) por 16 horas a 25°C. O produto **20** precipitou na forma de um sólido amarelado, o qual foi filtrado sob vácuo (lavado com acetona gelada) e seco em dessecador sob pressão reduzida. O rendimento do produto obtido foi de 92%. Após secagem adequada do sólido obtido, foi realizada análise da amostra com espectros de RMN de ¹H e ¹³C. Os dados espectrais coincidiram com os dados já conhecidos para esse composto. A solubilidade do composto **20** foi testada e o mesmo mostrou boa solubilidade em álcoois e em água destilada.

7.2.1.6. Síntese dos (4,4,4-trifluor-1-alquil-3-oxo-1-but-1-enil)-carbâmico ácido etil ésteres (22a-c)

Os carbamatos **18a-c** foram obtidos a partir da reação de 4-alcoxi-1,1,1-trifluoralqu-3-en-2-onas¹⁴⁴ com etil carbamato conforme demonstrado por Zanatta e col.¹⁴⁵

O procedimento para síntese desses compostos foi realizado pela colega Deise Borchhardt em seu trabalho de mestrado.

7.2.1.7. Síntese dos [3-(álcoxi-fosforilóxi)-4,4,4-trifluor-1-alquil-butil) etil carbamatos (25a-i)

Os compostos organofosforados ou derivados fosforiloxi **25a-i** foram obtidos a partir de reação dos aminoálcoois (4,4,4-trifluor-3-hidroxi-but-1-il) etil carbamato (**23a-c**) com oxicloreto de fósforo em tolueno, na presença de piridina ou trietilamina, em atmosfera inerte, por 5 horas a temperatua ambiente. Os procedimento de síntese desses compostos fazem parte do trabalho de doutorado realizado pela colega Deise Borchhardt.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Vanderwolf, C.H. Int. Rev. Neurobiol. 1988, 30, 225.
- 2. Blockland A. Brain Res. Rev. 1996, 21, 285.
- **3.** Prado, M.A.M.; Reis, R.A.M.; Prado, V.F.; Mello, M.C.; Gomez, M.V.; Mello, F.G. *Neurochem. Int.* **2001**, 41, 291.
- 4. Russell, R.W. Annu. Rev. Pharmacol. Toxicol. 1982, 22, 435.
- **5.** Çokuğraş NA. *Turk J. Biochem.* **2003**, 28(2), 54.
- 6. Das, A.; Dikshit, M.; Nath, C. Life Sci. 2001, 68, 1545.
- 7. Ogane, N.; Giacobini, E.; Messamore, E. J. Neurochem. 1992, 17, 489.
- **8.** Massoulie, J.; Pezzementi, I.; Bon, S.; Krejci, E.; Vallete, F.M. *Progress. Neurobiol.* **1993**, 41, 31.
- 9. Rieger, F.; Vigny, M. J. Neurochem. 1976, 27, 121.
- 10. Taylor, P.; Radic, Z. Annual Rev. Pharmacol. Toxicol. 1994, 34, 281.
- **11.** Siddiqui, M.F.; Levey, A.I. *Drugs of the future* **1999**, 24, 417.
- **12.** Talesa, V.N. Mech. ageing develop. **2001**, 1961.
- 13. Gray, J.A.; Enz, A.; Spiegel, R. T. Pharmacol. Sci. 1989, Suppl1, 85.
- **14.** Kuhl, D.E.; Koeppe, R.A.; Minoshima, S.; Snyder, S.E.; Ficaro, E.P.; Foster, N.L.; Frey, K.A.; Kilbourn, M.R. *Neurology* **1999**, 52(4), 691.

- **15.** Namba, H.; Iyo, M.; Fukushi, K.; Shinotoh, H.; Nagatsuka, S.; Suhara, T.; Sud, Y.; Suzuki, K.; Irie, T. *Eur. J. Nucl. Med.* **1999**, 26(2), 135.
- 16. Das, A.; Kapoor, K.; Dikshit, M.; Palit, G.; Nath, C. Pharmacol. Res. 2000.
- 17. Sanpe, M.F.; Misra, A.; Murray, T.K.; Souza, R.J.; Williams, J.L.; Cross, A.J. *Neuropharmacology* 1999, 38, 181.
- **18.** Skau, K.A.; Shipley, M.T. *Neuropharmacology* **1999**, 38, 691.
- **19.** Rotundo, R.L.; Rossi, S.G.; Kimbell, L.M.; Ruiz, C.; Marrero E. *Chem. Biol. interact.* **2005**, 157, 15.
- **20.** Ray, D.E. *Toxicol. Let.* **1998**, 102, 527.
- 21. Kato, Y.; Tanaka, T.; Miyata, T. Pest. Biochem. Physiol. 2004, 79, 64.
- **22.** Murray, A.; Rathbone, A.J.; Ray, D.E. *Environ. Toxicol. Pharmacol.* **2005**, 19, 451.
- **23.** Hurley, M.M.; Balboa, A.; Lushington, G.H.; Guo, J. *Chem. Biol. Interact.* **2005**, 157, 321.
- **24.** Ozmen, M.; Sener, S.; Mete, A.; Kucukbay, H. *Environ. Toxicol. Chem.* **1999**, 18, 241.
- **25.** Kuhr, R.J.; Dorough, H.W. *Carbamate insecticides: Chemistry, Biochemistry and Toxicology* **1976a**; CRC Press, Cleveland, OH, PP 41-70.
- 26. Martin, L.L.; Davis, L.; Klein, J.T.; Nemoto, P.; Olsen, G.E.; Bores, G.M.; Camacho, F.; Petko, W.; Rush, D.K.; Selk, D.; Smith, C.P.; Vargas, H.M.; Effland, R.; Fink, D. *Bioorg. Med. Chem. Let.* 1997, 7, 157.

- **27.** Mustazza, C.; Borioni, A.; Giudice, M.R.; Gatta, F.; Ferretti, R.; Meneguz, A.; Volpe, M.T.; Lorenzini, P. *Eur. J. Med. Chem.* **2002**, 37, 91.
- 28. Ogane, N.; Giacobini, E.; Messamore, E. J. Neurochem. 1992, 17, 489.
- 29. Polinski, R. J. Clin. Therap. 1998, 20, 634.
- **30.** Whitehouse, P.J.; Price, D.L.; Struble, R.G.; Clark, A.W.; Coyle, J.T.; Delon, M.R. *Science* **1982**, 215, 1237.
- **31.** Alcaro, S.; Scipione, L.; Ortuso, F.; Posca, S.; Rispoli, V.; Rotiroti, D. *Bioorg. Med. Chem. Let.* **2002**, 12, 2899.
- 32. Bartus, R.T.; Dean, R.L.; Beer, B.; Lippa, A.S. Science 1982, 30, 408.
- **33.** Andres, C.; Beeri, R.; Huberman, T.; Shani, M.; Soreq H. *Progress Brain Res.* **1996**, 109, 265.
- **34.** Hitzenberger, G.; Rameis, H.; Maniglei, C. CNS Drugs **1998**, 9, 19.
- **35.** Flicker, L.; Evans, G. J. *The Cochrane Library* **1999**, 1, 1-43.
- **36.** Croisile, B.; Trillet, M.; Fondarai, J.; Laurent, B.; Mauguiere, F.; Billardon, M. *Neurology* **1993**, 43, 301.
- **37.** Sara, S.J.; Lefevre, D. *Psychopharmacology* **1972**, 25, 32.
- **38.** Shorvon, S. New drug classes. *Lancet* **2001**, 358, 1885.
- **39.** Oyaizu, M.; Narahashi, T. *Brain Res.* **1999**, 822, 72.
- **40.** Lui, N.; Baasner, B. Chem. Abst. **1996**, No 9, 125, 1159.
- **41.** Caufield, M.P.; Birdsall, N.J.M. *Pharmacol. Rev.* **1998**, 50, 279.

- **42.** Bonner, T.I. Suppl. T. Pharmacol. Sci. **1989**, 11.
- 43. Role, L.W;. Curr. Opin. Neurobiol. 1992, 2, 254.
- **44.** Patrick, GL. *An Introduction to Medicinal Chemistry*. Second Edition, Oxford, **2001**. Chap. 15, 432.
- **45.** Massouliè, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Valette, F.M. *Neurobiology* **1992**, 41, 31.
- **46.** Chatonnet, A.; Lockridge, O. J. Biochem. **1989**, 260, 625.
- 47. Ryhänen, R.J.J. Gen. Pharmacol. 1983, 14, 459.
- **48.** Ekholm, M. *Theor. Chem.* **2001**, 572, 25.
- **49.** Tougu, V. Curr. Med. Chem. **2001**, 1, 155.
- **50.** Masson, P.; Xie, W.; Froment, M.T.; Lockridge, O. *Biochem. Bioph. Acta* **2001**, 1544, 166.
- **51.** Radic, Z.; Pickering, N.A.; Vellom, D.C.; Camp, S.; Taylor, P. *Biochem.* **1993,** 32, 12074.
- **52.** Dave, K.R.; Syal, A.R.; Katyare, S.S. Z. Naturforsch **2000**, 55c,:100.
- **53.** Allderdice, P.W.; Garner, H.A.R.; Galutira, D.; Lockridge, O.; LaDu, B.N.; McAlpines, J. *Genomics* **1991**, 11, 452.
- **54.** Quin, D.M. Chem. Rev. **1987**, 87, 955.
- **55.** Soreq, H.; Seidman, S. *Neuroscince* **2001**, 2, 8.

- **56.** Wright, C.I.; Geula, C.; Mesulam, M.M. Ann. Neurol. **1993**, 34, 373.
- **57.** Polinsky, R.J.; Holmes, K.V.; Brown, R.T.; Weise, V. *Neurology* **1989**, 39, 40.
- **58.** Ohno, K. Ann. Neurol. **2000**, 47, 162.
- **59.** Taylor, P.; Radic, Z. Ann. Rev. Pharmacol. Toxicol. **1994**, 34, 281.
- 60. Levey, A.I.; Wainer, B.H.E.J.; Mesulam, M.M. Neuroscience 1983, 9, 9.
- **61.** Reiss, Y.; Kroger, S.; Grassi, J.; Tsim, K.M.; Willbold, E.; Layer, P.G. *Cell. Tissue Res.* **1996**, 286, 13.
- **62.** Darboux, I.; Barthalay, Y.; Piovant, M.; Hipeau-Jacquote, R. *EMBO J.* **1996**, 15, 4835.
- **63.** Layer, P.G. *Bioessays* **1990**, 12, 415.
- **64.** Layer, P.G. Cell. Mol. Neurobiol. **1991**, 11, 7.
- **65.** Lev-Lehman, E.; Ginzberg, D.; Hornreich, G.; Ehrlich, G.; Meshorer, A.; Eckstein, F.; Soreq, H.; Zakut, H. *Gene Therap.* **1994**, 1, 127.
- **66.** Grisaru, D.; Lev-Lehman, E.; Shapira, M.; Chaikin, E.; Lessing, J.B.; Eldor, A.; Eckstein, F.; Soreq, H. *Mol. Cell. Biol.* **1999**, 19, 788.
- **67.** Sapolsky, R. *Science* **1997**, 273, 749.
- **68.** McEwen, B. *Mol. Psych.* **1997**, 2, 255.
- 69. Coyle, J.T.; Price, D.L.; DeLong, M.R. Science 1983, 219, 1184.
- **70.** Winkler, J.; Thal, L.; Gage, F.; Fisher, L. J. Mol. Med. **1998**, 76, 555.

- **71.** Shafferman, A. J. Biol. Chem. **1992**, 267, 17640.
- **72.** Ripoll, D.R.; Faerman, C.H.; Axelsen, P.H.; Silman, I.; Sussman, J.L. *Proc. Natl. Acad. Sci.* **1993**, 90, 5128.
- **73.** Radic Z., Kirchhoff P.D., Quin D.M., McCammon J.A., Taylor P. *J. Biol. Chem.* **1997**, 272, 23265.
- **74.** Sussman, J.L. *Science* **1991**, 253, 872.
- 75. Bourne, Y.; Taylor, P.; Marchot, P. Cell 1995, 83, 503.
- 76. Harel, M. Protein Sci. 2000, 9, 1063.
- 77. Kryger, G. Acta Crystallogr D Biol. Crystalogr. 2000, 56, 1385.
- **78.** Jonhson, G.; Moore, S.W. *Biochem. Bioph. Res. Comm.* **1999**, 258, 758.
- **79.** Layer, P.G.; Weikert, T.; Alber, R. Cell Tissue Res. **1993**, 273, 219.
- 80. Small, D.H.; Reed, G.; Whitefield, B.; Nurcombe, V. J. Neurosci. 1995, 15, 144.
- **81.** Jones, S.A.; Holmes, C.; Budd, T.C.; Greenfield, S.A. *Cell Tissue Res.* **1995**, 279, 323.
- **82.** Srivatsan, M.; Peretz, B. *Neuroscience* **1997**, 77, 921.
- **83.** Alvarez, A.; Opazo, C.; Alarcon, R.; Garrido, J.; Inestrosa, N.C. *J. Mol. Biol.* **1997**, 272, 348.
- **84.** Inestrosa, N.C.; Alvarez, A.; Perz, C.A.; Moreno, R.D.; Vicente, M.; Linker, C.; Casanueva, O.I.; Soto, C. *Neuron* **1996**, 16, 881.
- **85.** Sussman, J.; Kriger, G.M.; Silman, I. J. Physiol. **1998**, 92,191.

- 86. Ecobichon, D.J. Toxic effects of pesticides. in: Casarett, L.J., Klassen, L. Doulls, P. Toxicology the basic science of poisons. 5^a ed. United States of American: McGraw-Hill, 1996.
- 87. Singh, S. Int. J. clin. Pharmacol. Therap. 1995, 33 (11), 628.
- 88. Namba, T. Am. J. Med. 1971, 50, 475.
- **89.** Gallo, M.; Lawryk, N. *Organic Phosphorus Pesticides*. In Hayes, W.J, Laws, E. R. Handbook of Pesticide Toxicology. San Diego, California, USA. Academic Press, Inc. **1991**, 2, 917-1124.
- **90.** Rosati, J.L.R.; Dutra, A.A.M.; Moraes, A.C.L.; Ferreira, M.C.L.; Rocha, L.F.R. *J. Bras. Med.* **1995**, 69(3), 73.
- **91.** Carlton, F.B.; Simpson, W.M.; Haddad, L.M. The Organophosphate and Other Insecticides. Clinical Management of Poisoning and Drug Overdose, Philadelphia, Pensylvania, USA. WB Saunders Company, 3^a ed., **1998**, 836.
- 92. Shih, T.; Kan, R.K.; McDonough, J.H. Chem. Biol. Interact. 2005, 157(8), 293.
- **93.** Munro, N.B.; Talmage, S.S.; Griffin, G.D.; Waters, L.C.; Watson, A.P.; King, J.F.; Hauschild, V. *Environ. Health Perspect.* **1999**, 107, 933.
- **94.** Chambers, H. W. Organophosphorus compounds: An overview. In organophosphorus chemistry, fate and effects. Academic Press, San Diego, **1992**, 3.
- 95. Sogorb, M.A.; Vilanova, E. Toxicol. Let. 2002, 128, 215.
- 96. Migdai, C. Ophthalmology 1994, 101, 1651.

- 97. Becker, R.E.; Colliver, J.A.; Markwell, S.J.; Unni, L.K.; Vicari, S. *Alzheimer Disease Assoc. Dis.* 1998, 12, 54.
- **98.** Cummings, J.L.; Cyrus, P.A.; Bieber, F. *Neurology* **1998**, 50, 1222.
- **99.** Morris, J.H. *Alzheimer's disease. The neuropathology of dementia.* Cambridge: Cambridge University Press, **1997**, 70.
- **100.** Burns, A.; Rossor, M.; Hecker, J.; Gauthier, S.; Petit, H.; Möller, H.J.; Rogers, S.L.; Friedhoff, L.T. *Dement Geriat. Cognit. Dis.* **1999**,10, 237.
- **101.** Johnson, M.K. *Biochem. Toxicol.* **1982**, 4, 141.
- **102.** Breyer-Pfaff, U.; Maier, U.; Brinkmann, A.M.; Schumm, F. *Clin. Pharmacol. Therap.* **1985**, 37, 495.
- **103.** Fisher, D.M. Am. J. Health System Pharmacol. **1999**, 56(11 Supl. 1), 4.
- **104.** Stedam, E. J. Pharmacol Exp Ther. **1937**, 60, 198.
- 105. Weinstock, M.; Razin, M.; Chorev, M.; Tashma, Z. *Advances in Behavioral Biology* (Fisher et al), Plenun Press, NY, 1986, 539.
- **106.** Bar-On, P.; Millard, C.B.; Harel, M.; Dvir, H.; Enz, A.; Sussman, J.L.; Silman, I. *Biochemistry* **2002**, 41, 3555.
- **107.** Greenblatt, H.M.; Dvir, H.; Silman, I.; Sussman, J. *J. Mol. Neurosci.* **2003**, 20, 369.
- **108.** Mustazza, C.; Borioni, A.; Giudice, M.R.; Gatta, F.; Ferretti, R.; Meneguz, A.; Volpe, M.T.; Lorenzini, P. *Eur. J. Med. Chem.* **2002**, 37, 91.
- **109.** Scherer, A. J. Am. Med. Assoc. **2005**, 293, 1906.

- **110.** Talesa, V.N. *Mech. Ageing Develop.* **2001**, 122, 1961.
- **111.** Kishnani, P.S.; Sullivan, J.A.; Walter, B.K.; Spiridigliozzi, G.A.; Doraiswamy, P.M.; Krishnan, K.R. *Lancet* **1999**, 353, 1064.
- **112.** Taverni, J.P.; Seliger, G.; Lichtam, S.W. *Brain Injury* **1998**, 12, 77.
- **113.** Fischer, P. J. Clin. Psychopharmacol. **2001**, 21, 118.
- **114.** Giacobini, E. *Pharmacol. Res.* **2004**, 50, 433.
- **115.** Davis, K.L.; Powchick, P. *Lancet* **1995**, 345, 625.
- **116.** Farlow, M.; Gracon, S.I.; Hersey, L.A.; Lewis, K.W.; Sadowsky, C.H. *J. Am. Med. Assoc.* **1992**, 268, 2523.
- **117.** Knapp, M.J.; Knopman, D.S.; Solomon, P.R.; Pendlebury, W.W.; David, C.S.; Gracon, S.I. *J. Am. Med. Assoc.* **1994**, 271, 985.
- **118.** Gregor, V.E.; Emmerling, M.R.; Lee, C.; Moore, C. *Bioorg.Med. Chem. Let.* **1992**, 2, 861.
- **119.** Smith, L.; Kiselyov, A.S. *Tetrahedron Lett.* **1999**, 40, 5643.
- 120. Degen, S.J.; Mueller, K.L.; Shen, H.C.; Mulder, J.A.; Golding, G.M.; Wei, L.; Zificsak, C.A.; Eckwall, A.N.; Hsung, R.P. Bioorg. Med. Chem. Lett. 1999, 9, 973.
- 121. Savini, L.; Campini, G.; Gaeta, A.; Pellerano, C.; Fattorusso, C.; Chiasserini, L.; Fedorko, J.M.; Saxena, A. *Bioorg. Med. Chem. Lett.* 2001, 11, 1779.
- **122.** Nightingale, S.L. *J. Am. Med. Assoc.* **1997**, 277, 10.

- **123.** Cardozo, M.G.; Imura, Y.; Sugimoto, H.; Yamanishi, Y.; Hopfinger, A.J. *J. Med. Chem.* **1992**, 35, 584.
- **124.** Kawakami, Y.; Inoue, A.; Kawai, T.; Wakita, M.; Sugimoto, H.; Hopfinger, A.J. *Bioorg. Med. Chem.* **1996**, 4, 1429.
- **125.** ...Kryger, G.; Silman, I.; Sussman, J.L. *Strucutre* **1999**, 7, 297.
- **126.** Emre, M. New Engl. J. Med. **2004**, 351, 29.
- 127. Kieburtz, K.; Hughes, M.D.; Olson, S.F.; Sacco, R.L. CENTER FOR DRUG EVALUATION AND RESEARCH CDER- Food and Drug Administration FDA. *Peripheral and Central Nervous System Drugs Advisory Committee*. May 17, 2006.
- **128.** Sanchez, I.H.; Soria, J.J.; Lopez, F.J.; Larraza, M.I.; Flores, H.J. *J. Org. Chem.* **1984**, 49, 157.
- **129.** Czollner, L.; Treu, M.; Froehlic, J.; Kueenburg, B.; Jordis, U. *ARKIVOC*, **2001**, 191.
- **130.** Tang, X.C.; Han, Y.F. *CNS Drug Rev.* **1999**, 5, 281.
- **131.** Zhao, Q.; Tang, X.C. Eur. J.f Pharmacol. **2002**, 455, 101.
- **132.** Gouliaev, A.H.; Senning, A. *Brain Res. Rev.* **1994**, 19, 180.
- **133.** Takeo, S.; Hayashi, H.; Miyake, K. *Br. J. Pharmacol.* **1997**, 121, 477.
- **134.** Takeo, S.; Kato, T.; Mori, K.; Takano, E.; Watabe, S.; Nabeshima, T. *Neuroscience Lett.* **1998**, 246, 69.

- 135. Squizani, A. M. C. Síntese de 1,3-oxazinas e 1,3-oxazinonas a partir de 4-alcoxi-1,1,1-trialo-3-alcen-2-onas. Tese de doutorado, PPGQ, Depto de Química, Universidade Federal de Santa Maria UFSM/RS, 2001.
- **136.** Zanatta, N.; Squizani, A.M.C.; Fantinel, L.; Nachtingall, F.M.; Bonacorso, H.G.; Martins, M.A.P. *Synthesis* **2002**, 16, 2409.
- **137.** Zanatta, N.; Squizani, A.M.C.; Fantinel, L.; Nachtingall, F.M.; Borchhardt, D.M.; Bonacorso, H.G.; Martins, M.A.P. *J. Braz. Chem. Soc.* **2005**, 16, 1255.
- **138.** Zanatta, N.; Barichello, R.; Pauletto, M.M.; Bonacorso, H.G.; Martins, M.A.P. *Tetrahedron Lett.* **2003**, 44, 961.
- **139.** Zanatta, N.; Rosa, L.S.; Loro, E.; Bonacorso, H.G.; Martins, M.A.P. *J. Fluor. Chem.* **2001**, 107, 149.
- 140. Rosa, L.S.;. Reações de β-alcoxivinil trialometil cetonas com cianeto de sódio e sua aplicação na síntese de 2-pirrolidinonas.. Tese de doutorado, PPGQ, Depto de Química, Universidade Federal de Santa Maria UFSM/RS, 2003.
- **141.** Zanatta, N.; Rosa, L.S.; Cortelini, F.M.; Beux, S.; Santos, A.P.D.; Bonacorso, H.G.; Martins, M.A.P. *Synthesis* **2002**, 16, 2404.
- Martins, M.A.P.; Pereira, C.M.P.; Zimmermann, N.E.K.; Cunico, W.; Moura, S.; Beck, P.; Zanatta, N.; Bonacorso, H.G. J. Fluor. Chem. 2003, 123, 261.
- **143.** Bernardy, K.F.; Floyd, M.B.; Poletto, J.F.; Weiss, J.J. *J. Org. Chem.* **1979**, 44, 1438.
- **144.** Corey, E.J.; Pan, B.C.; Hua, D.H.; Deardorff, D.R. *J. Am. Chem. Soc.* **1982**, 104, 6816.

- **145.** Ezquerra, J.; Pietro, L.; Avendano, C.; Martos, J.L.; Cuesta, E. *Tetrahedron Lett.* **1999**, 40,1575.
- **146.** Zanatta, N.; Flores, D.C.; Madruga, C.C.; Flores, A.F.C.; Bonacorso, H.G.; Martins, M.A.P. *Tetrahedron Lett.* **2006**, 47, 573.
- **147.** Colla, A.; Clar, G.; Martins, M.A.P.; Krimmer, S.; Fischer, P. *Synthesis* **1991**, 483.
- **148.** Zanatta, N.; Borchhardt, D.; Alves, S.H.; Coelho, H.S.; Squizani, A.; Marchi, T.; Bonacorso, H.G.; Martins, M.A.P. *Bioorg. Med. Chem.* **2006**.
- **149.** Obregon, A.D.C.; Schetinger, M.R.C.; Correa, M.M.; Morsch, V.M.; Silva, J.E.P.; Martins, M.A.P.; Bonacorso, H. G.; Zanatta, N. *Neurochem. Res.* **2005**, 30, 379.
- **150.** Perrin, D.D.; Armarego, L.F. *Purification of Laboratory Chemicals*. 3^a Edição.

ANEXO I
9. Dados Espectroscópicos

9. DADOS ESPECTROSCÓPICOS

2-[4,4,4-trifluor-3-oxo-1-butenilamino] acetato de metila – (2a)

¹H NMR (200 MHz, CDCl₃) δ = 3,78 (s, 3H, -OCH₃); 4,09 (d, 2H, ³J_{H6H5} = 6,0 Hz, H-6); 5,44 (d, 1H, ³J_{H3H4} = 7,2 Hz, H-3); 7,06 (d/d, 1H, ³J_{H4H3} = 13,4 Hz; ³J_{H4H5} = 7,2 Hz, H-4); 10,13 (sl, 1H, H-5); ¹³C NMR (50 MHz, CDCl₃) δ = 49,7 (C6); 52,6 (C8); 88,4 (C3); 117,0 (¹J_{C-F} = 289,0 Hz, C1); 157,9 (C4); 168,6 (C7); 174,2 (²J_{C-F} = 33,5 Hz, C2); v (KBr, cm⁻¹), 1748 (C=O) 3234 (N-H); Fórmula Molecular = C₇H₈F₃NO₃, Massa Molecular = 211,14; Análise Elementar Calc: C = 39,82 %; H = 3,82, N = 6,63 %; Experimental: C = 39,89 %; H = 3,75 %; N = 6,38 %.

4-metil-2-[4,4,4-trifluor-3-oxo-1-butenilamino] pentanoato de metila – (2b)

¹H NMR (200 MHz, CDCl₃) δ = 0,94 (d, 3H, ³J_{H9H8} = 3,8 Hz, H-9); 0,97 (d, 3H, ³J_{H9H8} = 3,8 Hz, H-9'); 1,74^a (m, 3H, H-8, H-7); 3,77 (s, 3H, -OCH₃); 3,99 – 4,10 (m, 1H, H-6); 5,43 (d, 1H, ³J_{H3H4} = 7,2 Hz, H-3); 7,14 (d/d, 1H, ³J_{H4H3} = 13,4 Hz; ³J_{H4H5} = 7,2 Hz, H-4); 10,24 (sl, 1H, H-5); ¹³C NMR (100 MHz, CDCl₃) δ = 21,3 (C9'); 22,3 (C9); 24,3 (C7); 41,6 (C8); 52,7 (C6); 60,0 (C11); 87,8 (C3); 117,1 (¹J_{C-F} = 288,2 Hz, C1); 156,2 (C4); 171,7 (C10); 178,6 (²J_{C-F} = 33,6 Hz, C2); ν (Filme, cm⁻¹), 1746 (C=O), 3325 (N-H); Fórmula Molecular = C₁₁H₁₆F₃NO₃, Massa Molecular = 267,24; Análise Elementar Calc: C = 49,44 %; H = 6,03%, N = 5,24 %; Experimental: C = 49,05 %; H = 5,92 %; N = 5,07 %.

3-metil-2-[4,4,4-trifluor-3-oxo-1-butenilamino] pentanoato de metila – (2c)

¹H NMR (200 MHz, CDCl₃) δ = 0,89 - 0,99^a (m, 6H, H-9, H-9'); 1,18 – 1,26 (m, 1H, H-8); 1,43 – 1,49 (m, 1H, H-8); 1,97 – 2,00 (m, 1H, H-7); 3,78 (s, 3H, -OCH₃); 3,78 – 3,88^a (m, 1H, H-6); 5,42 (d, 1H, ${}^{3}J_{H3H4}$ = 7,2 Hz, H-3); 7,08 (d/d, 1H, ${}^{3}J_{H4H3}$ = 13,4 Hz; ${}^{3}J_{H4H5}$ = 7,2 Hz, H-4); 10,38 (sl, 1H, H-5); ${}^{13}C$ NMR (100 MHz, CDCl₃) δ = 11,3 (C9'); 14,8 (C9); 24,7 (C8); 38,4 (C7); 52,6 (C6); 67,2 (C11); 88,0 (C3); 117,2 (${}^{1}J_{C-F}$ = 288,5 Hz, C1); 157,2 (C4); 170,4 (C10); 178,6 (${}^{2}J_{C-F}$ = 33,6 Hz, C2); ν (Filme, cm⁻¹), 1744 (C=O), 3329 (N-H); Fórmula Molecular = C₁₁H₁₆F₃NO₃, Massa Molecular = 267,24; Análise Elementar Calc: C = 49,44 %; H = 6,03%, N = 5,24 %; Experimental: C = 49,05 %; H = 5,92 %; N = 5,07 %.

2-(4,4,4-trifluor-3-hidroxibutilamino) acetato de metila – (3a)

¹H NMR (200 MHz, CDCl₃) δ = 1,76 – 1,95 (m, 2H, H-3); 2,80 – 3,33 (m, 2H, H-4); 3,44 (s, 2H, H-6); 3,74 (3, 3H, -OCH₃); 4,19 (ws, 3H, H-2, OH, NH); ¹³C NMR (100 MHz, CDCl₃) δ = 27,4 (C8); 46,0 (C3); 49,6 (C4); 51,9 (C6); 70,5 (²J_{C - F} = 31,0Hz, C2); 125,0 (¹J_{C - F} = 281,5Hz, C1); 171,7 (C7); ν (Filme, cm⁻¹), 1266 (=C-O), 3325 (O-H); Fórmula Molecular = C₇H₁₂F₃NO₃, Massa Molecular = 215,17; Análise Elementar Calc: C = 39,07 %; H = 5,62 %; N = 6,51 %; Experimental: C = 38,78 %; H = 5,12 %; N = 6,64 %.

4-metil-2-(4,4,4-trifluor-3-hidroxibutilamino) pentanoato de metila – (3b)

¹H NMR (200 MHz, CDCl₃) δ = 0,90 (s, 3H, H-9), 0,93 (s, 3H, H-9); 1,45 – 1,53 (m, 2H, 2H-8); 1,64-1,85 (m, 8H, 2H-3, 2H-7); 2,51-3,25 (m, 4H, 2H-4); 3,33-3,39 (m, 2H, 2H-6); 3,74 (s, 6H, 2 – OCH₃); 4,14-4,24 (m, 2H, 2H-2); 4,33 (ws, 6H, 2H-2, 2-OH, 2-NH); ¹³C NMR (100 MHz, CDCl₃) δ = 21,7; 21,8 (C9'); 22,5; 22,6 (C9); 24,7; 24,7 (C7); 26,8; 27,5 (C3); 42,0; 42,3 (C8); 44,8; 45,7 (C4); 51,9; 51,9 (C6); 59,0; 59,0 (C11); 71,0, 71,1 (${}^{2}J_{C-F}$ = 31,0Hz; ${}^{2}J_{C-F}$ = 31,3Hz, C2); 125,0, 125,1 (${}^{1}J_{C-F}$ =281,0 Hz; ${}^{1}J_{C-F}$ = 282,0Hz, C1); 174,9; 174,9 (C10); v (Filme, cm⁻¹), 1265 (=C-O), 3309 (O-H); Fórmula Molecular = C₁₁H₂₀F₃NO₃, Massa Molecular = 271,27; Análise Elementar Calc: C = 48,70 %; H = 7,43 %; N = 5,16 %; Experimental: C = 48,43 %; H = 7,00 %; N = 5,13 %.

3-metil-2-(4,4,4-trifluor-3-hidroxibutilamino) pentanoato de metila – (3c)

¹H NMR (200 MHz, CDCl₃) δ = 0,90 (s, 3H, H-9), 0,93 (s, 3H, H-9'); 1,07 – 1,54 (m, 4H, 2H-8); 1,71-1,87 (m, 6H, 2H-7, 2H-3); 2,51-3,03 (m, 4H, 2H-4); 3,14 (d,1H, ³J_{H6H7} = 5,7Hz, H-6); 3,21 (d,1H, ³J_{H6H7} = 5,4Hz, H-6); 3,74 (s, 6H, 2-OCH₃); 4,22 (ws, 6H, 2H-2, 2OH, 2NH); ¹³C NMR (100 MHz, CDCl₃) δ = 11,2; 11,5 (C9'); 15,6; 15,7 (C9); 25,2; 25,3 (C8); 27,5; 27,6 (C3); 37,9; 38,1 (C7); 45,4; 46,7 (C4); 51,7; 52,0 (C6); 65,3; 66,3 (C11); 72,0, 72,2 (²J_{C - F} = 31,1Hz; ²J_{C - F} = 31,3Hz, C2); 124,6, 124,8 (¹J_{C - F} = 280,0 Hz; ¹J_{C - F} = 281,0 Hz, C1); 173,2; 174,2 (C10); v (Filme, cm⁻¹), 1265 (=C-O), 3398 (O-H); Fórmula Molecular = C₁₁H₂₀F₃NO₃, Massa Molecular = 271,27; Análise Elementar Calc: C = 48,70 %; H = 7,43 %; N = 5,16 %; Experimental: C = 48,40 %; H = 7,12 %; N = 5,00 %.

4-metil-2-(2-oxo-6-trifluormetil-1,3-oxazinan-3-il) pentanoato de metila – (4a)

¹H NMR (400 MHz, CDCl₃) δ = 0,96 (s, 3H, H-10); 0,99 (s, 3H, H-10'); 1,49 - 1,56 (m, 1H, H-9); 1,75 (t, 2H, ³JH₇H₈H₉ = 6,7 Hz, H-8); 2,11 – 2,37 (m, 2H, H-3); 3,32 – 3,54 (m, 2H, H-4); 3,73 (s, 3H, -OCH₃); 4,64 – 4,74 (m, 1H, H-2); 5,05 (t, 1H, ³JH₇H₈H_{8'} = 7,8 Hz, H-7); ¹³C NMR (100 MHz, CDCl₃) δ = 20,9 (C3); 21,1 (C10); 23,1 (C10'); 24,8 (C9); 36,8 (C8); 38,7 (C4); 52,3 (C12); 57,0 (C7); 73,4 (²J_{C - F} = 34,3 Hz, C2); 123,0 (¹J_{C - F} = 280,0 Hz, C1); 151,4 (C6); 171,7 (C11); ν (Filme, cm⁻¹), 1265 (=C-O), 1716 (C=O); Fórmula Molecular = C₁₂H₁₈F₃NO₄, Massa Molecular = 297,27; Análise Elementar Calc: C = 48,48 %; H = 6,10 %; N = 4,71 %; Experimental: C = 48,89 %; H = 6,49 %; N = 5,37 %.

3-metil-2-(6-trifluormetil-1,3-oxazinan-3-il) pentanoato de metila – (5a)

¹H NMR (400 MHz, CDCl₃) δ = 0,84 (2d, 6H, ³JH₁₁H₈ = 6,6 Hz, 2H-11); 0,88 (2t, 6H, ³JH₁₀H₉ = 7,4 Hz, 2H-10); 1,06 – 1,18 (m, 2H, 2H-9); 1,47 (d/d, 1H, J_{H - H} = 2,3 Hz; ³JH₃H₄ = 13,0 Hz, H-3); 1,55 (d/d, 1H, J_{H - H} = 2,4 Hz; ³JH₃H₄ = 13,0 Hz, H-3); 1,63 – 1,69 (m, 2H, 2H-9); 1,82 – 2,02 (m, 4H, 2H-3, 2H-8); 2,85 – 2,93 (m, 2H, 2H-4); 3,02 (d, 1H, J_{H - H} = 10,2 Hz, H-7); 3,11 (d, 1H, J_{H - H} = 9,8 Hz, H-7); 3,15 – 3,18 (m, 2H, 2H-4); 3,70 (s, 3H, OCH₃); 3,71 (s, 3H, -OCH₃); 3,82 – 3,88 (m, 2H, 2H-2); 4,20 (d, 1H, J_{H - H} = 9,6 Hz, H-6); 4,33 (d, 1H, J_{H - H} = 10,0 Hz, H-6); 4,64 (d, 1H, J_{H - H} = 9,6 Hz, H-6); 4,70 (d, 1H, J_{H - H} = 10,0 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃) δ = 10,4; 10,5 (C10); 15,1; 15,2 (C11); 21,6; 22,4 (C3); 25,0; 25,1 (C9); 32,8; 33,5 (C8); 45,6; 46,3 (C4); 51,3 (C12); 68,3; 69,1 (C7); 74,6; 74,7 (²J_{C - F} = 32,2 Hz, C2); 82,5; 82,7 (C6); 123,6 (¹J_{C - F} = 279,0 Hz, C1); 172,5; 173,2 (C11); v(Filme, cm⁻¹), 1266 (=C-O), 1718 (C=O); Fórmula Molecular = C₁₂H₂₀F₃NO₃, Massa Molecular = 283,29; Análise Elementar Calc: C = 50,88 %; H = 7,12 %; N = 4,94 %; Experimental: C = 49,83 %; H = 6,85 %; N = 4,39 %.

3-fenil-2-(6-trifluormetil-1,3-oxazinan-3-il) propanoato de metila – (5b)

¹H NMR (200 MHz, CDCl₃) δ = 1,55-1,59(m, 2H, 2H-3); 1,93 – 2,00 (m, 2H, 2H-3); 2,89 – 3,01^a (m, 6H, 2H-4, 4H-10); 2,89 – 3,28^a (m, 2H, 2H-4); 3,55 (s, 3H, -OCH₃); 3,59 (s, 3H, -OCH₃); 3,62 – 3,71 (m, 2H, 2H-7); 3,80 – 3,90 (m, 2H, 2H-2); 4,28 (d, 1H, ²JH₆H₆ = 9,8 Hz, H-6); 4,35 (d, 1H, ²JH₆H₆ = 10,3 Hz, H-6); 4,73 (d, 1H, ²JH₆H₆ = 9,8 Hz, H-6); 4,80 (d, 1H, ²JH₆H₆ = 10,3 Hz, H-6); 7,14 – 7,30 (m, 10H, 2Ph); ¹³C NMR

(50 MHz, CDCl₃) δ = 21,3; 22,2 (C3); 36,4; 36,8 (C10); 46,0; 46,1 (C4); 51,3; 51,4 (C9); 65,3; 65,6 (C7); 74,0; 74,5 (${}^{2}J_{C-F}$ = 32,0 Hz, C2); 82,0; 82,4 (C6); 123,2; 123,6 (${}^{1}J_{C-F}$ = 286,5 Hz, C1); 126,5; 126,6 (C13); 128,0; 128,3 (C12); 128,9; 129,0 (C14); 137,0; 137,2 (C11); 172,1; 172,6 (C8); v(Filme, cm⁻¹), 1265 (=C-O), 1733 (C=O); Fórmula Molecular = C₁₅H₁₈F₃NO₃, Massa Molecular = 317,30; Análise Elementar Calc: C = 56,78 %; H = 5,72 %; N = 4,41 %; Experimental: C = 55,53 %; H = 5,47 %; N = 4,54 %.

3-Pirrolidin-1-ilmetileno-dihidro-furan-2-ona (7a)

¹H NMR (200 MHz, CDCl₃): δ = 1,92 (t, J = 6,4 Hz, 4H, H-8); 3,15 (t, J = 7,6 Hz, 2H, H-4); 3,56 (t, J = 6,4 Hz, 4H, H-7); 4,24 (t, J = 7,6 Hz, 2H, H-5); 7,37 (s, 1H, H-6). ¹³C NMR (50 MHz, CDCl₃): δ = 25,2 (C-4); 25,6 (C-8); 49,9 (C-7); 64,6 (C-5); 87,4 (C-3); 143,2 (C-6); 175,3 (C-2). Fórmula Molecular = C₉H₁₃NO₂; Massa Molecular = 167,20.; MS EI (70ev): m/z (%)= 167 (M⁺, 86); 139 (23); 122 (100); 108 (25); 94 (29); 81 (39); 54 (21).

3-Piperidin-1-ilmetileno-dihidro-furan-2-ona (7b)

¹H NMR (200 MHz, CDCl₃): δ = 1,64 (m, 6H, H-9, H-8); 3,03 (t, J = 7,6 Hz, 2H, H-4); 3,38 (t, J = 6,4 Hz, 4H, H-7); 4,25 (t, J = 7,6 Hz, 2H, H-5); 7,13 (s, 1H, H-6). ¹³C NMR (50 MHz, CDCl₃): δ = 23,8 (C-9); 25,9 (C-4); 26,1 (C-8); 50,9 (C-7); 64,4 (C-5); 85,6 (C-3); 145,5 (C-6); 175,9 (C-2). Fórmula Molecular = C₁₀H₁₅NO₂; Massa Molecular = 181,23.; MS EI (70ev): m/z (%)= 181 (M⁺, 60); 153 (21); 136 (100); 122 (35); 108 (23); 94 (26); 80 (34); 67 (25); 55 (32)..

5-hidroxi-5-trifluormetil-3-etoxi pirrolidin-2-ona (9a) – Ver referência 139

5-hidroxi-5-trifluormetil-3,3-dimetoxi pirrolidin-2-ona (9b) – Ver referência 139

6-hidróxi-6-trifluormetil-hexahidro-furo[2,3-c] **pirrol-4-ona (9c)** – Ver referência 139

5-hidroxi-5-trifluormetil-3,3-dietoxi pirrolidin-2-ona (9d) – Ver referência 142

3-etóxi-1-metil-5-metóxi-5-trifluormetil-2-pirrolidinona (10a)

¹H NMR (200 MHz, CDCl₃): δ = 1,16 (t, 3H, ³ J_{H8-H7} = 6,8 H-8); 2,05; 2,58 (d/d, 1H, ² J_{H4} .

H₄ = 15,4, ³ $J_{H4^{2}-H3}$ = 5,9, H-4, H-4²); 2,76 (s, 3H, N-CH₃); 3,19 (s, 3H, O-CH₃); 3,60-3,65 (m, 2H, H-7); 4,00 (t, 1H, ³ $J_{H3-H4(4^{2})}$ = 5,9; H-3). ¹³C NMR (100 MHz, CDCl₃): δ = 14,6 (C-8); 37,0 (C-4); 49,3 (N-CH₃); 65,8 (O-CH₃); 66,4 (C-7); 73,5 (C-3); 90,82 (q, ² J_{CF} = 32,0, C-5); 122,9 (q, ¹ J_{C-F} = 284,2; CF₃); 173,27 (C-2). Fórmula Molecular = C₉H₁₄F₃NO₃; Massa Molecular = 241,21.; MS EI (70ev): m/z (%)= 197 (31); 167 (23); 128(100).

1-etil-3-etóxi-5-etóxi-5-trifluormetil-2-pirrolidinona (10b)

¹H NMR (200 MHz, CDCl₃): δ = 1,21 (t, 9H, ³ $J_{\text{H-H}}$ = 6,8; H-8; H-10; H-13); 2,00; 3,00 (m, 2H, H-4, H-4'); 3,30-3,50 (m, 2H, H-9); 3,50-3,70 (m, 2H, H-7); 3,80-4,00 (m, 2H, H-12); 4,05 (t, 1H, ³ $J_{\text{H3-H4(4')}}$ = 7,8; H-3) ¹³C NMR (100 MHz, CDCl₃): δ = 12,1 (C-10); 15,1 (C-8, C-13); 35,0 (C-4); 58,3 (C-9); 66,7 (C-7); 73,6 (C-3); 90,5 (q, ² $J_{\text{C-F}}$ = 32,5, C-5); 123;3 (q, ¹ $J_{\text{C-F}}$ = 284,0, CF₃); 173.2 (C-2). Fórmula Molecular = C₁₁H₁₈F₃NO₃; Massa Molecular = 269,26; MS EI (70ev): m/z (%)= 225 (56); 196(24); 181(87); 156 (100); 128 (77); 112 (67).

3-etóxi-5-hidróxi-1-etil-5-trifluormetil-2-pirrolidinona (10b')

¹H NMR (200 MHz, CDCl₃): δ = 1,21 (t, 9H, ³ $J_{\text{H-H}}$ = 6,8 H-8; H-10); 2,00, 3,00 (m, 2H, H-4 e H-4'); 3,30-3,50 (m, 2H, H-9); 3,50-3,70 (m, 2H, H-7); 4,29 (t, 1H, ³ $J_{\text{H3-H4(4')}}$ = 7,8 H-3). ¹³C NMR (100 MHz, CDCl₃): δ = 12,6 (C-10); 14,7 (C-8); 35,2 (C-4); 58,0 (C-9); 66,3 (C-7); 73,6 (C-3); 91,0 (q, ² $J_{\text{C-F}}$ = 32,5 C-5); 122,6 (q, ¹ $J_{\text{C-F}}$ = 284,0 CF₃); 173,6 (C-2). Fórmula Molecular = C₉H₁₄F₃NO₃; Massa Molecular = 241,21; MS EI (70ev): m/z (%)= 171 (100), 110(35),82 (81), 69 (37).

1-n-butil-5-butóxi-3-etóxi-5-trifluormetil-2-pirrolidinona (10c)

¹H NMR (200 MHz, CDCl₃): δ = 0,86-0,88 (m, 6H, H-12 e H-17); 1,00; 1,15 (m, 7H, H-8, H-11, H-16); 1,20-1,40 (m, 2H, H-10); 1,40-1,60 (m, 2H, H-15); 1,90-2,90 (m, 2H, H-4); 3,10-3,30 (m, 2H, H-9); 3,40-3,50 (m, 2H, H-14); 3,50-3,80 (m, 2H, H-7); 3,99 (t, 1H, ${}^{3}J_{\text{H3-H4}}$ = 5,6 H-3). ¹³C NMR (100 MHz, CDCl₃): δ = 13,4 (C-11); 15,0 (C-17); 15,1 (C-8); 18,6 (C-11); 19,6 (C-16); 28,6 (C-10); 30,61 (C-15); 37,4 (C-4); 61,7 (C-9); 64,9 (C-14); 65,3 (C-7); 74,8 (C-3); 90,0 (q, ${}^{2}J_{\text{C-F}}$ = 30,8, C-5); 124,38 (q, ${}^{1}J_{\text{C-F}}$ = 297,0,

CF₃); 173,44 (C-2). Fórmula Molecular = $C_{15}H_{26}F_3NO_{3}$; Massa Molecular = 325,37; MS EI (70ev): m/z (%)= 281 (17); 167 (57); 156 (100); 57 (43).

1-n-butil-3-etóxi-5-hidróxi-5-trifluormetil-2-pirrolidinona (10c')

¹H NMR (200 MHz, CDCl₃): δ = 0,86-0,88 (m, 3H, H-12); 1,00-1,15 (m, 5H, H-8, H-11); 1,20-1,40 (m, 2H, H-9); 1,90-2,90 (m, 2H, H-4); 2,80-3,10 (m, 2H, H-9); 3,50-3,60 (m, 2H, H-7); 4,12 (t, 1H, ${}^{3}J_{\text{H3-H4}}$ = 5,6 H-3). ¹³C NMR (100 MHz, CDCl₃): δ = 13,5 (C-11); 15,1 (C-8); 18,6 (C-11); 28,6 (C-10); 36,5 (C-4); 61,5 (C-9); 65,1 (C-7); 72,7 (C-3); 83,4 (q, ${}^{2}J_{\text{C-F}}$ = 32,6; C-5); 123,9 (q, ${}^{1}J_{\text{C-F}}$ = 284,0; CF₃); 172,7 (C-2). Fórmula Molecular = C₁₁H₁₈F₃NO₃; Massa Molecular = 269,26; MS EI (70ev): m/z (%)= 225 (100); 182 (51); 168 (9); 156 (89).

1-benzil-5-benzilóxi-3-etóxi-5-trifluormetil-2-pirrolidinona (10d)

¹H NMR (200 MHz, CDCl₃): δ = 1,20-1,30 (m, 3H, H-8); 2,00-3,.00 (m, 2H, H-4, H4'); 3,60-4,10 (m, 2H, H-7); 4,10-4,30 (m, 1H, H-3); 4,50-4,70 (s, 4H, H-9); 7,20-7,50 (m, 5H, Ph). ¹³C NMR (100 MHz, CDCl₃): δ = 15,2 (C-8); 31,8 (C-4); 42,2 (C-9); 64,8 (C-7, C-11); 73,4 (C-3); 123,2 (${}^{1}J_{\text{C-F}}$ = 284,0, CF₃); 126-130 (Ph); 173,8 (C-2). Fórmula Molecular = C₂₁H₂₂F₃NO₃; Massa Molecular = 393,41; MS EI (70ev): m/z (%)=349 (4); 243 (22); 152 (12); 106 (19); 91 (100).

1-benzil-3-etóxi-5-hidróxi-5-trifluormetil-2-pirrolidinona (10d')

¹H NMR (200 MHz, CDCl₃): δ = 1,20-1,30 (m, 3H, H-8); 2,00-3,00 (m, 2H, H-4, H4'); 3,60-4,10 (m, 2H, H-7); 4,10-4,30 (m, 1H, H-3); 4,50-4,70 (s, 4H, H-9); 7,20-7,50 (m, 5H, Ph). ¹³C NMR (100 MHz, CDCl₃): δ = 15,1 (C-8); 36,3 (C-4); 43,8 (C-9); 66,9 (C-7); 73,3 (C-3); 122,8 (${}^{1}J_{\text{C-F}}$ = 270,0; CF₃); 126,0-130,0 (Ph); 174,3 (C-2). Fórmula Molecular = C₁₄H₁₆F₃NO₃; Massa Molecular = 303,28; MS EI (70ev): m/z (%)= 258 (1); 189 (99); 91 (100).

6-bromometil-2-metilsulfanil-4-triclorometil pirimidina (18) – Ver referência 146

dimetil-(2-metilsulfanil-4-triclorometil-6-pirimidinilmetoxi)etil] amina (20) – Ver referência 146

(4,4,4-trifluor-3-oxo-1-but-1-enil) carbamato de etila (22a) – Ver referência 148

(4,4,4-trifluor-1-metil-3-oxo-1-but-1-enil) carbamato de etila (22b) — Ver referência 148

(4,4,4-trifluor-1- fenil-3-oxo-1-but-1-enil) carbamato de etila (22c) — Ver referência 148

[3-(dimetoxi-fosforiloxi)-4,4,4-trifluor-butil] carbamato de etila (25a)

¹H NMR (200 MHz, CDCl₃): δ = 1,23 (t, 3H, J_{H8-H7} = 7,0 Hz, H-8); 1,84 – 1,91 (m, 1H, H-3); 2,08 – 2,10 (m, 1H, H-3); 3,17 – 3,20 (m, 1H, H-4); 3,55 – 3,63 (m, 1H, H-4); 3,81 (d, 3H, J_{H9-P} = 11,6 Hz, H-9); 3,83 (d, 3H, J_{H9-P} = 11,2 Hz, H-9'); 4,11 (q, 2H, J_{H7-H8} = 7,0 Hz, H-7); 4,71 – 4,76 (m, 1H, H-2); 5,66 (sl, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ = 14,25 (C-8); 29,31 (C-3); 35,42 (C-4); 54,66 (C-9); 60,54 (C-7); 72,42 (J_{C-P} = 32,7 Hz, J_{C-P} = 3,6 Hz, C-2); 123,34 (J_{C-F} = 278,7 Hz, J_{C-P} = 6,4 Hz, CF₃); 156,60 (C-6). ¹⁹F NMR (100 MHz, CDCl₃): δ = -77,78. ³¹P NMR (100 MHz, CDCl₃): δ = 0,92. Fórmula Molecular = $C_9H_{17}F_3NO_6P$; Massa Molecular = 323,21; Análise Elementar Calc: C = 33,45 %; H = 3,30 %; N = 4,33 %; Experimental: C = 33,45 %; H = 3,50 %; N = 4,33 %. MS EI (70ev): m/z (%) = 278 (7); 127 (100); 109 (18).

[3-(dimetoxi-fosforiloxi)-4,4,4-trifluor-1-metil-butil] carbamato de etila (25b)

¹H NMR (200 MHz, CDCl₃): δ = 1,23 (t, 3H, $J_{\text{H8-H7}}$ = 7,4 Hz, H-8); 1,26 (d, 3H, $J_{\text{CH3-H4}}$ = 6,2 Hz, CH₃); 1,83 – 1,92 (m, 1H, H-3); 2,04 – 2,11 (m, 1H, H-3); 3,77 (d, 3H, $J_{\text{H9-P}}$ = 11,0 Hz, H-9); 3,79 (d, 3H, $J_{\text{H9'-P}}$ = 10,8 Hz, H-9'); 3,85 – 3,97 (m, 1H, H-4); 4,10 (q, 2H, $J_{\text{H7-H8}}$ = 7,0 Hz, H-7); 4,71 – 4,79 (m, 1H, H-2); 5,00 (sl, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ = 14,36 (C-8); 19,97 (CH₃); 36,26 (C-3); 43,14 (C-4); 54,12 ($J_{\text{C-P}}$ = 5,5 Hz, C-9); 54,59 ($J_{\text{C-P}}$ = 6,3 Hz, C-9); 60,51 (C-7); 72,54 ($J_{\text{C-F}}$ = 33,0 Hz, $J_{\text{C-P}}$ = 5,0 Hz, C-2); 123,39 ($J_{\text{C-F}}$ = 279,3 Hz, $J_{\text{C-P}}$ = 5,9 Hz, CF₃); 155,80 (C-6). ¹⁹F NMR (100 MHz, CDCl₃): δ = -77,94. ³¹P NMR (100 MHz, CDCl₃): δ = -0,22. Fórmula Molecular = C₁₀H₁₉F₃NO₆P; Massa Molecular = 337,23 Análise Elementar Calc: C = 35,62 %; H = 5,68 %; N = 4,15 %; Experimental: C = 35,63 %; H = 5,71 %; N = 4,06 %. MS EI (70ev): m/z (%)= 292 (7); 249 (2); 211 (5); 127 (100); 109 (21); 96 (15); 70 (26).

[3-(dimetoxi-fosforiloxi)-4,4,4-trifluor-1-fenil-butil] carbamato de etila (25c)

¹H NMR (200 MHz, CDCl₃): δ = 120 (t, 3H, J_{H8-H7} = 7,0 Hz, H-8); 2,28 – 2,48 (m, 2H, H-3); 3,77 (d, 3H, J_{H9-P} = 11,2 Hz, H-9); 3,84 (d, 3H, J_{H9-P} = 11,2 Hz, H-9'); 4,08 (q, 2H, J_{H7-H8} = 7,0 Hz, H-7); 4,46 – 4,60 (m, 1H, H-2); 4,88 (q, 1H, J_{H4-NH} = 7,6 Hz, H-4); 5,63 (d, 1H, J_{NH-H4} = 7,2 Hz, NH); 7,28 – 7,36 (m, 5H, Ph). ¹³C NMR (100 MHz, CDCl₃): δ = 14,38 (C-8); 36,33 (C-3); 51,67 (C-4); 54,64 (J_{C-P} = 6,4 Hz, C-9); 54,80 (J_{C-P} = 5,6 Hz, C-9'); 60,82 (C-7); 72,46 (J_{C-F} = 33,0 Hz, J_{C-P} = 4,8 Hz, C-2); 126,66; 128,07; 128,92; 140,10 (6C, Ph); 123,4 (J_{C-F} = 280,0 Hz, J_{C-P} = 5,7 Hz, CF₃); 155,72 (C-6). ¹⁹F NMR (100 MHz, CDCl₃): δ = -77,98. ³¹P NMR (100 MHz, CDCl₃): δ = -0,19. Fórmula Molecular = $C_{19}H_{25}F_{3}NO_{6}P$; Massa Molecular = 451,38; Análise Elementar Calc: C = 45,12 %; H = 5,30 %; N = 3,51 %; Experimental: C = 45,14 %; H = 5,33 %; N = 3,39 %. MS EI (70ev): m/z (%)= 399 (M⁺, 2); 273 (16); 244 (100); 200 (68); 77 (29).

[3-(dietoxi-fosforiloxi)-4,4,4-trifluor-butil] carbamato de etila (25d)

¹H NMR (200 MHz, CDCl₃): δ = 1,23 (t, 3H, $J_{\text{H8-H7}}$ = 7,2 Hz, H-8); 1,37 (dt, 3H, $J_{\text{H10-H9}}$ = 7,0 Hz, $J_{\text{H10-P}}$ = 1,2 Hz, H-10); 1,39 (dt, 3H, $J_{\text{H10'-H9'}}$ = 7,0 Hz, $J_{\text{H10'-P}}$ = 1,2 Hz, H-10'); 1,84 – 1,93 (m, 1H, H-3); 2,05 – 2,18 (m, 1H, H-3); 3,15 – 3,22 (m, 1H, H-4); 3,60 – 3,66 (m, 1H, H-4); 4,09 – 4,25 (m, 6H, H-7, H-9, H-9'); 4,63 – 4,82 (m, 1H, H-2); 5,80 (sl, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ = 15,60 (C-8); 15,95 ($J_{\text{C-P}}$ = 7,1 Hz, C-10); 29,20 (C-3); 35,48 (C-4); 60,71 (C-7); 63,52 ($J_{\text{C-P}}$ = 5,6 Hz, C-9); 64,73 ($J_{\text{C-P}}$ = 6,6 Hz, C-9'); 72,27 ($J_{\text{C-F}}$ = 32,4 Hz, $J_{\text{C-P}}$ = 4,9 Hz, C-2); 123,52 ($J_{\text{C-F}}$ = 278,8 Hz, $J_{\text{C-P}}$ = 6,3 Hz, CF₃); 156,66 (C-6). ¹⁹F NMR (100 MHz, CDCl₃): δ = -77,68. ³¹P NMR (100 MHz, CDCl₃): δ = -1,16. Fórmula Molecular = $C_{11}H_{21}F_3NO_6P$; Massa Molecular = 351,26; Análise Elementar Calc: C = 37,61 %; H = 6,03 %; N = 3,99 %; Experimental: C = 37,81 %; H = 6,01 %; N = 3,74 %. MS EI (70ev): m/z (%)= 306 (10); 278 (5); 250 (17); 155 (100); 127 (57).

[3-(dietoxi-fosforiloxi)-4,4,4-trifluor-1-metil-butil] carbamato de etila (25e)

¹H NMR (200 MHz, CDCl₃): δ = 1,23 (t, 3H, J_{H8-H7} = 6,8 Hz, H-8); 1,26 (d, 3H, J_{CH3-H4} = 6,4 Hz, CH₃); 1,34 (dt, 3H, J_{H10-H9} = 7,2 Hz, J_{H10-P} = 0,8 Hz, H-10); 1,37 (dt, 3H, $J_{H10'-H9'}$ = 7,2 Hz, $J_{H10'-P}$ = 0,8 Hz, H-10'); 1,86 – 1,90 (m, 1H, H-3); 2,05 – 2,12 (m, 1H, H-3); 3,90 – 3,93 (m, 1H, H-4); 4,10 (q, 2H, J_{H7-H8} = 6,8 Hz, H-7); 4,07 – 4,22 (m,

6H, H-7, H-9, H-9'); 4,70 - 4,75 (m, 1H, H-2); 5,01 (sl, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): $\delta = 14,49$ (C-8); 15,91 ($J_{C-P} = 7,8$ Hz, C-10); 16,03 ($J_{C-P} = 6,1$ Hz, C-10); 20,43 (CH₃); 36,39 (C-3); 43,42 (C-4); 60,66 (C-7); 63,56 ($J_{C-P} = 5,7$ Hz, C-9); 64,57 ($J_{C-P} = 6,7$ Hz, C-9'); 72,31 ($J_{C-F} = 33,0$ Hz, $J_{C-P} = 4,8$ Hz, C-2); 123,55 ($J_{C-F} = 278,8$ Hz, $J_{C-P} = 6,3$ Hz, CF₃); 155,82 (C-6). ¹⁹F NMR (100 MHz, CDCl₃): $\delta = -77,86$. ³¹P NMR (100 MHz, CDCl₃): $\delta = -1,76$. Fórmula Molecular = $C_{12}H_{23}F_3NO_6P$; Massa Molecular = 365,28; Análise Elementar Calc: C = 39,46 %; H = 6,35 %; N = 3,83 %; Experimental: C = 39,46 %; H = 6,35 %; N = 3,83 %. MS EI (70ev): m/z (%)= 320 (10); 292 (3); 250 (14); 155 (100); 127 (42); 70 (25).

[3-(dietoxi-fosforiloxi)-4,4,4-trifluor-1-fenil-butil] carbamato de etila (25f)

¹H NMR (200 MHz, CDCl₃): δ = 1,20 (t, 3H, J_{H8-H7} = 7,0 Hz, H-8); 1,33 (t, 3H, J_{H10-H9} = 7,0 Hz); 1,37 (t, 3H, $J_{H10^{\circ}-H9^{\circ}}$ = 7,0 Hz); 2,28 – 2,39 (m, 2H, H-3); 4,03 – 4,23 (m, 6H, H-7, H-9, H-9°); 4,48 – 4,62 (m, 1H, H-2); 4,90 (q, 1H, J_{H4-NH} = 7,6 Hz, H-4); 5,71 (d, 1H, J_{NH-H4} = 7,2 Hz, NH); 7,28 – 7,41 (m, 5H, Ph). ¹³C NMR (100 MHz, CDCl₃): δ = 14,42 (C-8); 15,81 (J_{C-P} = 7,2 Hz, C-10); 15,99 (J_{C-P} = 6,4 Hz, C-10°); 36,52 (C-3); 51,75 (C-4); 60,85 (C-7); 63,55 (J_{C-P} = 5,5 Hz, C-9); 64,61 (J_{C-P} = 6,4 Hz, C-9°); 72,20 (J_{C-F} = 32,5 Hz, J_{C-P} = 4,8 Hz, C-2); 126,39 (J_{C-F} = 230,9 Hz, J_{C-P} = Hz, CF₃); 126,59; 127,99; 128,88; 140,44 (6C, Ph); 155,76 (C-6). ¹⁹F NMR (100 MHz, CDCl₃): δ = -77,89. ³¹P NMR (100 MHz, CDCl₃): δ = -0,99. Fórmula Molecular = C₁₇H₂₅F₃NO₆P; Massa Molecular = 427,35; Análise Elementar Calc: C = 47,78 %; H = 5,90 %; N = 3,28 %; Experimental: C = 47,40 %; H = 5,22 %; N = 3,87 %. MS EI (70ev): m/z (%)= 427 (M^+ , 4); 382 (2); 272 (16); 244 (100); 200 (66); 155 (97); 127 (36); 77 (22).

[3-(Bis-aliloxi-fosofriloxi)-4,4,4-trifluor-butil] carbamato de etila (25g)

¹H NMR (200 MHz, CDCl ₃): δ = 1,20 (t, 3H, J_{H8-H7} = 6,6 Hz, H-8); 1,74 – 1,88 (m, 1H, H-3); 1,97 – 2,10 (m, 1H, H-3); 3,16 – 3,29 (m, 1H, H-4); 3,46 – 3,57 (m, 1H, H-4); 4,06 – 4,16 (m, 2H, H-7); 4,47 – 4,63 (m, 4H, H-9); 4,66 – 4,76 (m, 1H, H-2); 5,16 – 5,43 (m, 4H, H-11); 5,84 – 6,02 (m, 2H, H-10). Fórmula Molecular = $C_{13}H_{21}F_3N_3O_6P$; Massa Molecular = 375,28; Análise Elementar Calc: C = 41,61 %; H = 5,64 %; N = 3,73 %. MS EI (70ev): m/z (%)= 330 (6); 318 (6); 179 (100); 124 (22); 110 (10).

[3-(Bis-aliloxi-fosforiloxi)-4,4,4-trifluor-1-metil-butil] carbamato de etila (25h)

¹H NMR (200 MHz, CDCl₃): δ = 1,23 (t, 6H, J_{H8-H7} = 7,0 Hz, H-8, CH₃); 1,83 – 1,94 (m, 1H, H-3); 2,02 – 2,17 (m, 1H, H-3); 3,89 – 3,92 (m, 1H, H-4); 4,10 (q, 2H, J_{H7-H8} = 7,0 Hz, H-7); 4,53 – 4,64 (m, 4H, H-9); 4,69 – 4,81 (m, 1H, H-2), 5,23 – 5,44 (m, 4H, H-11); 5,86 – 6,03 (m, 2H, H-10). ¹³C NMR (100 MHz, CDCl₃): δ = 14,20 (C-8); 19,90 (CH₃); 36,08 (C-3); 43,09 (C-4); 60,22 (C-7); 67,93 (J_{C-P} = 4,9 Hz, C-9); 68,58 (J_{C-P} = 6,3 Hz, C-9'); 72,65 (J_{C-F} = 33,7 Hz, J_{C-P} = 5,1 Hz, C-2); 117,15 (J_{C-P} = 4,2 Hz, C-11); 118,42 (J_{C-P} = 6,9 Hz, C-11); 123,29 (J_{C-F} = 278,2 Hz, J_{C-P} = 6,0 Hz, CF₃); 131,63 (J_{C-P} = 4,0 Hz, C-10); 132,06 (J_{C-P} = 6,9 Hz, C-10); 155,80 (C-6). Fórmula Molecular = C₁₄H₂₃F₃NO₆P; Massa Molecular = 389,31; Análise Elementar Calc: C = 43,19 %; H = 5,95 %; N = 3,60 %. MS EI (70ev): m/z (%)= 344 (6); 179 (100); 211 (15); 139 (36); 124 (39).

[3-(Bis-aliloxi-fosofriloxi)-4,4,4-trifluor-1-fenil-butil] carbamato de etila (25i)

¹H NMR (200 MHz, CDCl₃): δ = 1,12 (t, 3H, J_{H8-H7} = 7,2 Hz, H-8); 2,16 – 2,37 (m, 2H, H-3); 4,01 (q, 2H, J_{H7-H8} = 7,2 Hz, H-7); 4,09 – 4,16 (m, 1H, H-4); 4,36 – 4,63 (m, 5H, H-9, H-2); 5,13 – 5,44 (m, 4H, H-11); 5,81 – 6,00 (m, 2H, H-10); 7,19 – 7,63 (5H, Ph). ¹³C NMR (100 MHz, CDCl₃): δ = 14,40 (C-8); 36,44 (C-3); 44,51 (C-4); 60,97 (C-7); 68,15 (J_{C-P} = 3,4 Hz, C-9); 68,87 (J_{C-P} = 5,6 Hz, C-9'); 72,47 (J_{C-F} = 33,10 Hz, J_{C-P} = 4,8 Hz, C-2); 118,25 (J_{C-P} = Hz, C-11); 118,78 (J_{C-P} = 7.0 Hz, C-11'); 123,40 (J_{C-F} = 280,00 Hz, J_{C-P} = 6,2 Hz, CF₃); 126,58; 128,05; 128,93 (Ph); 131,85 (J_{C-P} = 7,0 Hz, C-10); 132,29 (J_{C-P} = 6,2 Hz, C-10'); 140,36 (Ph); 155,83 (C-6). Fórmula Molecular = C₁₉H₂₅F₃NO₆P; Massa Molecular = 451,38; Análise Elementar Calc: C = 50,56 %; H = 5,58 %; N = 3,10 %. MS EI (70ev): m/z (%)= 451 (M⁺, 3); 272 (29); 244 (100); 200 (76); 179 (63); 79 (32); 57 (12).