

Winning Space Race with Data Science

Francesc 25/10/2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Methodology to analyze data:
 - Data collection using public Api and web scrapping
 - Exploratory data analysis(EDA), with data wrangling, data visualization and visual interactive data.
 - Machine learning prediction
- Summary of the results
 - EDA results
 - Interactive analytics visualization
 - Predictive analysis results

Introduction

SpaceY is a company that competes against SpaceX to launch rockets, which
needs to know from the existing data if its rockets are capable of landing in order
to save costs.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Api(https://Api.spacexdata.com/v4/launches/past)
 - Web Scrapping(https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches)
- Perform data wrangling
 - Data was processed using different methodologies
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - We make a different predictive analysis to know to evaluate different variables

Data Collection

To collect data we use a public Api and web scrapping from the Wikipedia.

- With Api rest, we make a request to the Api and format the response as Json and normalize the data, after we do some data clean and fill missing values.
- With web scrapping we extract the launch records from html table of Wikipedia page and convert this to data frame

Data Collection – SpaceX API

• LINK

Data Collection - Scraping

• LINK

Data Wrangling

- Initially some EDA was performed in the dataset
- Then the summaries launches per site, and many occurrences of the data were calculated.
- You need to present your data wrangling process using key phrases and flowcharts

EDA with Data Visualization

- To analyze the data we use some different plots such as scatterplots or barplots to visualize the relationship between pair and features.
- LINK

EDA with SQL

- List of the queries performed:
 - Name of the unique launch sites
 - Top 5 launch sites whose start with 'CCA'
 - Total payload mass carried by boosters launched by NASA (CRS)
 - Average payload mass carried by booster version F9 v1.1
 - Date of the first successful landing outcome in ground was achived
 - Name of the booster with a success drone ship landing with payload mass between 4000 and 6000 KG
 - Total number of successful and failure missions outcomes
 - Names of the booster versions wich have carried the maximum payload mass
 - Failed landing outcomes in drone ship, their booster versions, and launch sites names in year 2025
 - Rank of the count of landing outcomes between the date 2010-06-04 and 2017-03-20

Build an Interactive Map with Folium

- Markers, circles and marker cluster were used with Folium Maps
 - Markers indicate launch sites
 - Circles indicate highlighted areas around specific coordinates
 - Marker cluster indicates groups of events in each coordinate such as lunches in a launch site
 - Lines are used to indicate distances between two coordinates
- LINK

Build a Dashboard with Plotly Dash

- The following graphs and plots were used to visualize data:
 - Percentage of launches by site
 - Payload range
- This combination allowed to quickly analyze the relation between payloads and launch sites, helping to identify where is the best place to launch according to payloads.
- LINK

Predictive Analysis (Classification)

- Four classification models were compared: logistic regression, support vector machine, decision tree and k nearest neighbors
- LINK

Results

Exploratory data analysis results:

- Space X uses 4 different launch sites.
- The first launches were done to Space X itself and NASA.
- The average payload of F9 v1.1 booster is 2,928 kg.
- The first success landing outcome happened in 2015 fiver year after the first launch.
- Many Falcon 9 booster versions were successful at landing in drone ships having payload above the average.
- Almost 100% of mission outcomes were successful.
- Two booster versions failed at landing in drone ships in 2015: F9 v1.1 B1012 and F9 v1.1 B1015.
- The number of landing outcomes became as better as years passed.

Results

- Using interactive analytics was possible to identify that launch sites use to be in safety places, near sea, for example and have a good logistic infrastructure around.
- •Most launches happens at east cost launch sites.

Results

• Predictive Analysis showed that Decision Tree Classifier is the best model to predict successful landings, having accuracy over 87% and accuracy for test data over 94%.

Flight Number vs. Launch Site

- the best launch site nowadays is CCAF5 SLC 40, where most of recent launches were successful
- It's also possible to see that the general success rate improved over time.

Payload vs. Launch Site

- Payloads over 9,000kg have excellent success rate.
- Payloads over 12,000kg seems to be possible only on CCAFS SLC 40 and KSC LC 39A launch sites.

Success Rate vs. Orbit Type

- •The biggest success rates happens to orbits:
 - ES-L1
 - GEO
 - HEO
 - SSO
- •Followed by:
 - VLEO (near 80%)
 - LFO (near70%)

Flight Number vs. Orbit Type

- Apparently, success rate improved over time to all orbits;
- VLEO orbit seems a new business opportunity, due to recent increase of its frequency.

Payload vs. Orbit Type

- Apparently, there is no relation between payload and success rate to orbit GTO.
- ISS orbit has the widest range of payload and a good rate of success.
- There are few launches to the orbits SO and GEO.

Launch Success Yearly Trend

- Success rate started increasing in 2013 and kept until 2020;
- the first three years were used for adjusts and improvement of technology.

All Launch Site Names

- Search all unique launch site names
- Launch_Site
 - CCAFS LC-40
 - VAFB SLC-4E
 - KSC LC-39A
 - CCAFS SLC-40

Launch Site Names Begin with 'CCA'

• Search the five first elements where launch site name start wit CCA

Date	Time (UTC)	Booster_Vers ion	Launch_Site	Payload	PAYLOAD_M ASSKG_	Orbit	Customer	Mission_Out come	Landing_Out come
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- The result of sum all payload whose codes was Nasa CRS code
- total payload(Kg)
 - 45596

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- avg(PAYLOAD_MASS__KG_)
 - 2928.4

First Successful Ground Landing Date

- Search the lowest date were landig outcome is success in groud
- DATE
 - 2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

- boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
- Using distinct for unique values
- Booster version
 - F9 FT B1022
 - F9 FT B1026
 - F9 FT B1021.2
 - F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

Group by mission outcome and count the records

Mission_Outcome	count(*
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

Boosters Carried Maximum Payload

- First get the maximum payload and make other select to get witch booster carried this payload
- Booster version
 - F9 B5 B1048.4
 - F9 B5 B1049.4
 - F9 B5 B1051.3
 - F9 B5 B1056.4
 - F9 B5 B1048.5
 - F9 B5 B1051.4
 - F9 B5 B1049.5
 - F9 B5 B1060.2
 - F9 B5 B1058.3
 - F9 B5 B1051.6
 - F9 B5 B1060.3
 - F9 B5 B1049.7

2015 Launch Records

 failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

We have only to failed landing this year

Booster_Version Launch_Site
F9 v1.1 B1012 CCAFS LC-40
F9 v1.1 B1015 CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• We must be take "no attempt" in consideration

Landing_Outcome	count(*
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

Laucnh outcomes by site

color-labeled launch outcomes on the map

•Green markers indicate successful and red ones indicate failure.

Platform: CCAFS SLC-40

Distance of important points

Launch site CCAFS SLC-40has good logistics aspects, being near railroad and road and relatively far from inhabited areas.

launch success count for all sites

Launch Success Ratio for KSC LC-39A

Payload vs. Launch Outcome

Classification Accuracy

- Four classification models were tested, and their accuracies are plotted beside;
- The model with the highest classification accuracy is Decision Tree Classifier, which has accuracies over than 87%.

Confusion Matrix of Decision Tree Classifier

Confusion matrix of Decision Tree Classifier proves its accuracy by showing the same numbers.

Conclusions

- Different data sources were analyzed, refining conclusions along the process.
- The best launch site is KSC LC-39A;.
- Launches above 7,000kg are less risky.
- Although most of mission outcomes are successful, successful landing outcomes seem to improve over time, according the evolution of processes and rockets.
- Decision Tree Classifier can be used to predict successful landings and increase profits.

Appendix

• Folium didn't show maps on Github

