计算机组成原理

第十一讲

刘松波

哈工大计算学部 模式识别与智能系统研究中心

第8章 CPU 的结构和功能

- 8.1 CPU 的结构
- 8.2 指令周期
- 8.3 指令流水
- 8.4 中断系统

六、流水线结构

8.3

1. 指令流水线结构

完成一条指令分6段, 每段需一个时钟周期

若 流水线不出现断流

1 个时钟周期出 1 结果

不采用流水技术

6 个时钟周期出 1 结果

理想情况下, 6级流水的速度是不采用流水技术的6倍

2. 运算流水线

8.3

完成 浮点加减 运算 可分对阶、尾数求和、规格化 三段

分段原则 每段操作时间尽量一致

8.4 中断系统

一、概述

- 1. 引起中断的各种因素
 - (1) 人为设置的中断

如 转管指令

- (2) 程序性事故 溢出、操作码不能识别、除法非法
- (3) 硬件故障
- (4) I/O 设备
- (5) 外部事件 用键盘中断现行程序

2022/9/29

2. 中断系统需解决的问题

8.4

- (1) 各中断源 如何 向 CPU 提出请求?
- (2) 各中断源 同时 提出 请求 怎么办?
- (3) CPU 什么 条件、什么 时间、以什么 方式 响应中断?
- (4) 如何保护现场?
- (5) 如何寻找入口地址?
- (6) 如何恢复现场,如何返回?
- (7) 处理中断的过程中又 出现新的中断 怎么办? 硬件 + 软件

二、中断请求标记和中断判优逻辑

8.4

1. 中断请求标记 INTR

一个请求源 一个 INTR 中断请求标记触发器

多个INTR 组成 中断请求标记寄存器

INTR 分散 在各个中断源的 接口电路中

INTR 集中在 CPU 的中断系统内

2022/9/29

2. 中断判优逻辑

8.4

- (1) 硬件实现(排队器)
 - ① 分散 在各个中断源的 接口电路中 链式排队器 参见第五章
 - ②集中在CPU内

INTR₁、INTR₂、INTR₃、INTR₄ 优先级 按 降序 排列

硬件 在 CPU 内或在接口电路中 (链式排队器)

(2) 软件实现(程序查询)

8.4

A、B、C 优先级按 降序 排列

三、中断服务程序入口地址的寻找

8.4

1. 硬件向量法

向量地址 12H、13H、14H

入口地址 200、300、400

2. 软件查询法

8.4

八个中断源 1, 2, ... 8按降序排列

中断识别程序(入口地址 M)

地址	指 令	说明
M	SKP DZ 1# JMP 1# SR SKP DZ 2# JMP 2# SR	1# D=0跳(D为完成触发器) 1# D=1转1#服务程序 2# D=0跳 2# D=1转2#服务程序
	SKP DZ 8 [#] JMP 8 [#] SR	8# D=0跳 8# D=1转8#服务程序

13

四、中断响应

- 1. 响应中断的条件 允许中断触发器 EINT=1
- 2. 响应中断的时间

指令执行周期结束时刻由CPU 发查询信号

3. 中断隐指令

8.4

(1) 保护程序断点

断点存于特定地址(0号地址)内 断点进栈

(2) 寻找服务程序入口地址

向量地址 — PC (硬件向量法)

中断识别程序 入口地址 $M \longrightarrow PC$ (软件查询法)

(3) 硬件 关中断

INT 中断标记

EINT 允许中断

R-S触发器

五、保护现场和恢复现场

8.4

1. 保护现场 {

断点

中断隐指令完成

寄存器 内容

中断服务程序 完成

2. 恢复现场 中断服务程序 完成

中断服务程序

保护现场

PUSH

其它服务程序

视不同请求源而定

恢复现场

POP

中断返回

IRET

六、中断屏蔽技术

8.4

1. 多重中断的概念

程序断点 k+1, l+1, m+1

2. 实现多重中断的条件

8.4

- (1) 提前 设置 开中断 指令
- (2) 优先级别高 的中断源 有权中断优先级别低 的中断源

3. 屏蔽技术

8.4

(1) 屏蔽触发器的作用

MASK = 0 (未屏蔽)

INTR 能被置 "1"

 $MASK_i = 1$ (屏蔽)

 $INTP_i = 0$ (不能被排队选中)

2022/9/29

8

(2) 屏蔽字

8.4

16个中断源 1, 2, 3, … 16 按 降序 排列

优先级	屏 蔽 字
1	11111111111111
2	011111111111111
3	001111111111111
4	0001111111111111
5	0000111111111111
6	0000011111111111
:	•
15	0 0 0 0 0 0 0 0 0 0 0 0 1 1
16	0 0 0 0 0 0 0 0 0 0 0 0 0 1

(3) 屏蔽技术可改变处理优先等级

8.4

响应优先级不可改变

处理优先级

可改变 (通过重新设置屏蔽字)

中断源	原屏蔽字	新屏蔽字
A	1 1 1 1	1 1 1 1
В	0 1 1 1	0 1 0 0
C	0 0 1 1	0 1 1 0
D	0 0 0 1	0 1 1 1

响应优先级 $A \rightarrow B \rightarrow C \rightarrow D$ 降序排列

处理优先级 $A \rightarrow D \rightarrow C \rightarrow B$ 降序排列

(3) 屏蔽技术可改变处理优先等级

8.4

CPU 执行程序轨迹(原屏蔽字)

(3) 屏蔽技术可改变处理优先等级

CPU 执行程序轨迹(新屏蔽字)

(4) 屏蔽技术的其他作用

可以人为地屏蔽某个中断源的请求

便于程序控制

(5) 新屏蔽字的设置

8.4

单重中断和多重中断的服务程序流程 单重 多重 取指令 取指令 执行指令 执行指令 否 否 中断否? 中断否? 是 是 中 中 中断响应 中断响应 断隐指令 断 中 中 程序断点进栈 隐指令 断 程序断点进栈 断 周 关中断 周 关中断 期 期 向量地址 \rightarrow PC 向量地址 \rightarrow PC 保护现场 保护现场 中断服务程序 中断服务程序 开中断 设备服务 设备服务 恢复现场 恢复现场 开中断 中断返回 中断返回 2022/9//29

8.4

4. 多重中断的断点保护

(1) 断点进栈

- 中断隐指令 完成
- (2) 断点存入"0"地址 中断隐指令 完成

中断周期 $0 \longrightarrow MAR$

命令存储器写

PC → MDR 断点 → MDR

(MDR) → 存入存储器

- 三次中断,三个断点都存入"0"地址
- ? 如何保证断点不丢失?

(3) 程序断点存入"0"地址的断点保护8.4

地址	内容	说明
0 5	XXXX JMP SERVE	存程序断点 5 为向量地址
SERVE	STA SAVE	保护现场
置屏蔽字	LDA 0 STA RETURN	} 0 地址内容转存
	ENI •	开中断
		
	LDA SAVE	恢复现场
SAVE	JMP @ RETURN	间址返回 左进入CC 中容
RETURN 2022/9/29	$\times \times $	存放 ACC 内容 转存 0 地址内容