Learning Trajectory: Classical constructions

- 1. Elementary, single constuctions
 - (a) Equilateral Triangle
 - (b) Duplicate a line segment
 - (c) Perpendicular (bisector, through a point on/off the line)
 - (d) Bisect an angle
 - (e) Duplicate an angle
- 2. Triangle centers (perpendicular, bisectors, altitudes, medians)
- 3. Hexagon and square inscribed in a circle.

Equilateral triangle

1. Construct an equilateral triangle having one side on \overrightarrow{T} with each leg congruent to \overline{AB} . [Leave all construction marks.]

Perpendicular (bisector, through a point on/off the line)

2. Construct a perpendicular bisector the given line segment \overline{AB} . Label the midpoint of \overline{AB} as M. [Leave all construction marks.]

Angle bisector

3. Construct an angle bisector the given angle A. [Leave all construction marks.]

Triangle centers

4. Construct a perpendicular to \overline{AB} through C.

5. Construct the midpoint M of \overline{AC} by using the perpendicular bisector construction. Draw \overline{BM} , a median of $\triangle ABC$.

Spicy: Construct the other two medians, and hence, the centroid.

6. Using a compass and straightedge, construct the median to side \overline{AC} in $\triangle ABC$ below. (Leave all construction marks.)

7. In the circle below, \overline{AB} is a chord. Using a compass and straightedge, construct a perpendicular bisector of \overline{AB} , and hence, a diameter of the circle. [Leave all construction marks.]

8. Spicy: Given $\angle ABC$, construct duplicate $\angle CDE$. (Leave all construction marks.)

Triangle congruence $(\triangle \cong)$

- 9. Function notation: $A \to A'$ is pronounced "A gets mapped to A prime," or "A corresponds to A prime."
- 10. Given $\triangle ABC$, duplicate $\triangle ABC$ by duplicating each side. ("side-side" or "SSS")
 - (a) Construct \overrightarrow{A}' .
 - (b) Circle A' with radius AB.
 - (c) Intersection B'.
 - (d) Circle A' with radius AC.
 - (e) Circle B' with radius BC.
 - (f) Intersection C'.
 - (g) $\triangle ABC \cong \triangle A'B'C'$ by the SSS $\triangle \cong$ Postulate.

- 11. The Side-side triangle congruence postulate (SSS $\triangle \cong$). $\triangle ABC \cong \triangle A'B'C'$ iff $\overline{AB} \cong \overline{A'B'}, \overline{BC} \cong \overline{B'C'}, \text{ and } \overline{AC} \cong \overline{A'C'}$
- 12. Duplicate a given angle.

Construct an angle with vertex R and one leg the ray \overrightarrow{R} , congruent to $\angle A$. Show all construction marks.

Spicy: List the steps

13. Spicy: Construct the perpendicular bisectors of the legs of a triangle and, hence, the circumcenter.

14. Construct a perpendicular bisector the given line segment \overline{AB} . Label the midpoint of \overline{AB} as M. [Leave all construction marks.]

15. Spicy: Construct a perpendicular to \overline{AB} though C. Hint: Start with a circle centered on C.

Construct a triangle's circumcenter

16. Construct a perpendicular bisector of each of the legs of the triangle. Show their intersection, the circumcenter.

Hint: Circles should be centered at the triangle vertices, but should only be sufficiently large to intersect the other circles.

Construct a triangle's centroid

17. Bisect each leg of the triangle using only a compass and straightedge. Mark each midpoint, and draw a line (a *median*) connecting it to the opposite vertex. Show the medians' intersection, the centroid.

Hint: Circles should be centered at the triangle vertices, but should only be sufficiently large to intersect the other circles.

18. Construct a perpendicular to \overline{AB} though C.

Hint: Start with a circle centered on C that intersects \overrightarrow{AB} in two places.

Name:

Construct a triangle's orthocenter

19. Construct a perpendicular to each of the leg of the triangle from the opposite vertex. Show their intersection, the orthocenter. Hint: you may extend the triangle sides as has been done for you on one side.

Spicy: Construct a hexagon inscribed in a circle

20. Construct an equilateral triangle on \overline{AB} by drawing a circle centered on A. Continue with a second equilateral triangle on \overline{AC} by drawing a circle centered on C. Work around the circle B four more times to construct the hexagon.

