Correlation

pearson Cors coeff

$$f_1 \quad Y \rightarrow -1 \leftrightarrow +1 \rightarrow 1$$

A Strong positive inverse input output linear linear linear relationship relationship

 $f_1 \quad f_2 \quad f_3 - \cdots \quad f_n \quad Y$
 $f_1 \rightarrow Y$
 $f_2 \rightarrow Y$
 $f_3 \rightarrow Y$
 $f_3 \rightarrow Y$
 $f_4 \rightarrow Y$
 $f_4 \rightarrow Y$
 $f_5 \rightarrow Y$
 f_6

full collinear $f_1 \rightarrow f_2 \rightarrow 0.9$
 $f_1 \rightarrow f_3 \rightarrow f_4 \rightarrow 0.85$

- Linearity Assumption & correlation measures the linear relationship between two reariables. It does not capture mon-linear relationships null of a relationship is mon-linear, the correlation coefficient can be misleading.
 - Doesn't <u>Rapture</u> <u>Compless Relationship</u>: Correlationship only measures the relationship between two variables at a time of may not capture complex relationships involving more than two variables. J. 12 [f. f. 2 13] -> y
- 3. Threshold Determination: Just like Vaciance the Moreshold, definity what level of correlation is considered "high" can be subjected and is considered "high" can be subjected and may vary depending on the specific problem of data set.
- 4. Sensitive to Outliers? Correlation in sensitive to outliers. A few entreme values can correlation cofficient.

4. Anova

1. Numerical -> Categorical

Categorical

More than 2 Classes

2.

numerical

.

numerical

		5. E		
Source of Vortation	Sum of squares (SS)	Degru of trudoni(d.t)		
Between samply	m, (x, - x,)2+ mx(x+x)2	(k-1)	SS between (K-1)	Ms bet Ms within
or categories	Σ(X11-X1)2+Σ(X0-1x)*	(m-k)	95 with	
categoris	i=1,2,3		•	
Total	$\sum_{i,j=1,2,3} (\chi_{i,j} - \overline{\chi})^2$	(m-1)		

n= sous

k = categoriu

f-statistic -> p-value -> +=> y

1 S 1 2 3 2 L 4 5 7 3 W $\frac{3}{\sqrt{5}} - 6 - 8$ $\frac{3}{\sqrt{5}} + \frac{3}{\sqrt{5}} + \frac{3}{$	_ f1	4	ラ	_S_	1	N	41
SSW SSW $(1-x_s)^2 + (4-x_s^2)^2 + 3-x_s^2$ $+(2-x_s^2)^2 + (5-x_s^2)^2 + (6-x_s^2)^2$ $+(3-x_w)^2 + (7-x_w)^2 + (9-x_w)^2$ ofter calculate SSW = 50 $(x_s - \bar{x})^2 + 4(x_s - \bar{x})^2 + 3(x_s - \bar{x})^2$ $+2(x_s - \bar{x})^2 + 5(x_s - \bar{x}) + 6(x_s - \bar{x})^2$ $\frac{SSw}{k-1} = f-\lambda atio$ $\frac{SSw}{n-k} \longrightarrow dist \rightarrow f-dist$ $f-value$	1	_ S		t .	2	3	
SSW SSW $(1-x_s)^2 + (4-x_s^2)^2 + 3-x_s^2$ $+(2-x_s^2)^2 + (5-x_s^2)^2 + (6-x_s^2)^2$ $+(3-x_w)^2 + (7-x_w)^2 + (9-x_w)^2$ ofter calculate SSW = 50 $(x_s - \bar{x})^2 + 4(x_s - \bar{x})^2 + 3(x_s - \bar{x})^2$ $+2(x_s - \bar{x})^2 + 5(x_s - \bar{x}) + 6(x_s - \bar{x})^2$ $\frac{SSw}{k-1} = f-\lambda atio$ $\frac{SSw}{n-k} \longrightarrow dist \rightarrow f-dist$ $f-value$, 2	L		4	5	7	
SSW SSW $(1-x_s)^2 + (4-x_s^2)^2 + 3-x_s^2$ $+(2-x_s^2)^2 + (5-x_s^2)^2 + (6-x_s^2)^2$ $+(3-x_w)^2 + (7-x_w)^2 + (9-x_w)^2$ ofter calculate SSW = 50 $(x_s - \bar{x})^2 + 4(x_s - \bar{x})^2 + 3(x_s - \bar{x})^2$ $+2(x_s - \bar{x})^2 + 5(x_s - \bar{x}) + 6(x_s - \bar{x})^2$ $\frac{SSw}{k-1} = f-\lambda atio$ $\frac{SSw}{n-k} \longrightarrow dist \rightarrow f-dist$ $f-value$	3	N	tuch (1)	3	- 6	- 8	
SSW SSW (1- χ_s) ² + (4- χ_s) ² + 3- χ_s) ³ +(2- χ_t) ² + (5- χ_s) ² + (6- χ_s) +(3- χ_w) ² + (7- χ_w) ² + (8- χ_w) after calculate SSW = 50 SSW 1 (χ_s - $\bar{\chi}$) ² + 4(χ_s - $\bar{\chi}$) ² + 3(χ_s - $\bar{\chi}$) ² + 2(χ_t - $\bar{\chi}$) ² + χ_t (χ_t - $\bar{\chi}$) + 6(χ_s - $\bar{\chi}$) SSW K-1 = f- χ_t atio SSbeth χ_t - χ_t	4	رد ترین ک	13 %	\overline{X}_{s}	Xe	Xw	
Grand Mean $(1-\chi_{5})^{2} + (4-\chi_{5}^{2})^{2} + 3-\chi_{5}^{2}f$ $+(2-\chi_{5}^{2})^{2} + (5-\chi_{5}^{2})^{2} + (6-\chi_{5}^{2})^{2}$ $+(3-\chi_{6})^{2} + (7-\chi_{6})^{2} + (7-\chi_{6})^{2} + (7-\chi_{6})^{2} + (7-\chi_{6})^{2} + (7-\chi_{6})^{2}$ $+(3-\chi_{6})^{2} + (7-\chi_{6})^{2} + 3(\chi_{5}-\bar{\chi})^{2}$ $+(3-\chi_{6})^{2} + 4(\chi_{5}-\bar{\chi})^{2} + 3(\chi_{5}-\bar{\chi})^{2}$ $+(3-\chi_{6})^{2} + 4(\chi_{5}-\bar{\chi})^{2} + 3(\chi_{5}-\bar{\chi})^{2}$ $+(3-\chi_{6})^{2} + 4(\chi_{5}-\bar{\chi})^{2} + 3(\chi_{5}-\bar{\chi})^{2}$ $+(3-\chi_{6})^{2} + 3(\chi_{5}-\bar{\chi})^{2} + 3(\chi_{5}-\bar{\chi})^{2}$ $+(3-\chi_{6})^{2} + (7-\chi_{6})^{2} + 3(\chi_{5}-\bar{\chi})^{2}$ $+(3-\chi_{6})^{2} + (7-\chi_{6})^{2} + ($. January	hat the		l ja	ior su	our M
	= x, g,	and	1		T AND DEP	X3)+ 3-	tix
after calculate $SSN = 50$ $3Sb = 1(x_s - \bar{x})^2 + 4(x_s - \bar{x})^2 + 3(x_s - \bar{x})^2 + 2(x_e - \bar{x})^2 + 5(x_e - \bar{x}) + 6(x_s - \bar{x})^2$ $\frac{SSN}{k-1} = f - \lambda atio$ $\frac{SSbetn}{n-k} \longrightarrow dist \rightarrow f - dist$ $f - \lambda atue$	1 N J	in 1944 .	Laugas +	(2-X2)2	+ (5	- xs)2+ (e-xg.
$\frac{35b}{1(x_s - \bar{x})^2} + 4(x_s - \bar{x})^2 + 3(x_s - \bar{x})^2$ $+ 2(x_e - \bar{x})^2 + 3(x_e - \bar{x}) + 6(x_s - \bar{x})$ $\frac{35b}{k-1} = f - xatio$ $\frac{35bctn}{n-k} \longrightarrow dist \rightarrow f - dist$ $f - value$		Louis ja	,t	(3- ×w)2	+ (-	7-Xw)2 +	(8 - Xm)
$\frac{SS_{NO}}{k-1} = F-xatio$ $\frac{SS_{betn}}{n-k} \longrightarrow \frac{SS_{betn}}{N-k}$ $\frac{SS_{betn}}{N-k} \longrightarrow \frac{SS_{betn}}{N-k}$ $\frac{SS_{betn}}{N-k} \longrightarrow \frac{SS_{betn}}{N-k}$	Park 1	after					
$\frac{SS_{NO}}{k-1} = f-\text{Natio}$ $\frac{SS_{betn}}{n-k} \longrightarrow \text{dist} \rightarrow f-\text{dist}$ $\rho-\text{Value}$	828		· †	4C 7s-	$(\bar{\lambda})^2$	+ 3 (X)	ر الم
$\frac{SS_{10}}{k-1} = f-\lambda atio$ $\frac{SS_{betn}}{n-k} \longrightarrow dist \rightarrow f-dist$ $\rho-value$		+ 2 / 1/2- \$	1)2 +	3()	(e-\bar{\bar{x}})	t 6 L	ر چَ- عَمر
P-value	k-1	1996	Shylyade	rin Ur Teitle			10.0√ 1.009 1.009
fi -> y => No relation	m-			V	L		
reject Nul typomin > 0:05 \$ Pralue	fi-)		1	el typosh	un	1 1777/11 0:05 > PV	alni

Disadvantage "

- 1. Assumption of Normality: ANOVA assumes that the data for each group follow a normal distribution. This assumption may not hold true for all datasets, especially those with skewed whiteibution.
- 2. Assumption of turningeneity of Varience:

 ANOVA assumes that the variances of the adifferent groups are equal. This is the assumption of homogeneity of variance (also known as homoscedasticity). If this assumption is violeted, it may lead to incorrect results.
- Independence of Observations: ANOVA assumed that the Observations are independent of each other. This might not be the case in radiasets where observations are related (eg, time series, nested data).

" BUT ON KILL

4) Effect of Outliers? - ANOVA is sensitive to Outliers. A single outlier can significantly affect the f-startistic leading to a potentially erroneous conclusion.

5) Doesn't Account for Puteractions: Just like other renivariate feature selection methods.

ANOVA does not consider interactions beto features.

f. 13

longitude latitude

(1,M) = 500 = 500

() [- 1 / 2 change ind ...

1000

Chi-squared stat =
$$\left(\frac{\text{Observed value} - \text{experted value}}{\text{experted value}}\right)^2$$

$$= \left(\frac{468 - (93)^2}{193} + \left(\frac{109 - 355}{355}\right)^2 + \left(\frac{81 - 120}{120}\right)^2$$

$$= \left(\frac{233 - 291}{120}\right)^2$$
let
$$= \frac{15}{120}$$
Pract reject 1.12 wife

let

Chi-squard = 15

Proper

Proper

Proper

Proper

Crasul T

Pralue Vil = Crazy T T

Disadvantage

- 1. lategorical Data Only: The Chi-square test can only be rued with categorical variables. It is not suitable for continous variables ruless they have been discretized into categories, which can lead to loss of information
- chi-square 2. Independence of Observations: The fest assumes that the observation night independent of each other. This not be the case in datasets series data, Observations are related (eg, time nested Idata)

3. Sufficient Cample size! - Chi- square test requires a sufficiently large sample size. The result may not be reliable. If the sample size is too small or if the frequency court in any category is too law typically less

4. No variable interaction: - Chi-square fest, like other univariate feature selection methods, does not consider interaction between feature. It night miss out identifying important feature that are significant in combination voitu other featheres. [fi f2]

The three has not return the to mot at a sort was a resident an interest

Mi sundania do manuadante

dupin int. with the street of the surjective

worden a transformer see which will ad the see that

Advantage and disadvantage

Advantage

- 1. Simplicity: filter mothers are generally straight forward and lary feature and selectly the top features based on this statistics.
- 2. Speed: These methods are resulty computionally efficient. Because the evaluate because they evaluate each feature independently, they can be much faster from wrapper methods on embedded methods, which need to train a model to evaluate freature importance.
- 3. Scalablity: Filter methods can handle a large number of features effectively because they don't involve any learning methods.

 This makes them suitable for higher dimensione doctasets.
- 4. Pre-processing step: They can serve as a pre-processing step for other feature selection methods. Por instance, you could use a filter

method to servous irrelevant features before applying a more computationally expensive method.

Disadvantage

- 1. Lack of feature Interaction: Fiele method

 treat earn feature individual and breme do

 not consider the interaction between teature.

 They might miss out on identifying imported

 features that doesn't appear significant individual
 but are significant in combination with

 other feature
- 2. Model Agnostic :- Filter method are agnostic to the marrier learning model that will be used for the prediction. This means that the selected feature meight not mecessarily contribute to the accuracy of the specific model you want to use.
- 3. Statistical Measures Unitation: The statistical measure used in these methods have their onen limitation. For enample,

correlation is the measure of the linear relationship and might not capture monlinear relationship effectively. Similarly, variance based methods might keep feature mith high roaniance but low predictive power.

Thrushold determination: for some methods, determining the thrushold to relact feature an be a bit subjective. for enample, what constitutes "low" vantance or "high" correlation might differ depending on the content or the specific dataset.

when I'm the same and the same and the same of the

entropy of the first term of the second of the second of

allow the total to enter the floring bear