Mech 305-306

Tutorial 2

TAs: Athena Liu

Jan 2019

Feedbacks from Tutorial 1 Report

- How many significant figures to keep? Check Section 2.2 in text.
- Don't just copy what MATLAB shows you!
- Uncertainties: almost always round to one significant figure
 - u_L = Resolution / 2 = 1mm/2 = 0.5 mm
 - Edge cases like u = 0.35, you may use 0.35 instead of 0.4
- Best Estimation: should be in the same decimal position as the uncertainty
 - Eg. Matlab gives you L = 12.3456mm, report L_best = 12.3mm
- Final report: x = x_best + u_x
 - L = (12.3 \pm 0.5) mm

Knowledge Checklist

- Random Number Generator (Q1 & Q2)
 - How it works
 - To use it in MATLAB
- Central Limit Theorem (Q1)
 - What it says
 - Prove it using MATLAB simulation
- Error Propagation Formula (Q2)
 - Use the formula to analyze "total" error analytically
 - Simulate error propagation using RNG

Random Number Generator in MATLAB

Z = rand(1, N)

returns a 1-by-N matrix containing pseudorandom values drawn from the standard uniform distribution on the open interval(0,1).

Z = randn(1, N)

returns a 1-by-N matrix containing pseudorandom values drawn from the standard normal distribution.

Z = poissrnd(lambda,1,N); % Poisson Distribution RNG

Z = binornd(N,p,1,NN); % Binomial Distribution RNG

Central Limit Theorem

Random variable:

$$z = x1 + x2 + x3 + ... xM$$

Where x_i are random variables, not necessarily normally distributed

If M is larrrrrge,

→ Then z is normally distributed

Trying to prove CLT: when M is large, epsilon becomes normally distributed!

Write a Matlab script to generate random "errors" according to

$$\varepsilon_i = \sum_{j=1}^M \delta_j$$
 ; $\delta_j = \pm \frac{s}{\sqrt{M}}$

Take s=1 and try M=1,4,16,32. Plot the histograms using "pdf" normalization such that the area under them is 1. For each value of M, use 1000 values of e_i to obtain the histogram.

Compare with a normal distribution with mean zero and standard deviation 1.

Question 1: Sample plot

Provide 4 plots like this, with different M values.

Comment on your findings.

(Did you prove CLT by these plots?)

Don't worry if your plots look different from the samples, because these are based on *randomly* generated numbers!

Suppose we wish to determine the Young's modulus E of wood by measuring the stiffness of a cantilever beam. We need to measure the beam length L, depth h, width b and deflection d for load F at the end. You know the relation:

$$\delta = \frac{FL^3}{3EI}$$

$$I = \frac{bh^3}{12}$$

Consider specific measurements given in the table below (next slide).

		Error in X (sigma)	
Parameter X	Measurement	dX/X*100	dX
L (m)	0.7	2	0.014
h (m)	0.03	10	0.003
b (m)	0.04	1	0.0004
F(N)	80	1	0.8
delta (m)	0.008	1	0.00008

Each of our measurements contain uncertainty, given below as a percent of the measured value, and as the absolute value (take dX in the table as σ).

- a. Use the error propagation formulas in the Background to estimate the uncertainty (σ_E) of E derived from the measurements. (Usage of MATLAB *optional* in this step.)
- b. Use the randn MATLAB function to generate 10,000 sets of simulated parameters L, h, b, δ, F that go into computing E. For each of these sets compute E using the beam formula and plot the histogram of E at the end. Compare this with the result from a.
- c. Suppose you wanted to improve your measurement of E. What measurements could be improved to give the biggest benefit? (Use your analysis from a, and test with simulations in b)

Question 2 (a): Error Propagation Formula

Suppose that y is related to n independent measured variables $\{X_1, X_2, ..., X_n\}$ by a functional representation:

$$y = f(X_1, X_2, \cdots, X_n)$$

Given the uncertainties of X's around some operating points:

$$\{\overline{x}_1 \pm \Delta x_1, \overline{x}_2 \pm \Delta x_2, \cdots, \overline{x}_n \pm \Delta x_n\}$$

The expected value of \overline{y} and its uncertainty Δy are:

$$\overline{y} = f(\overline{x}_1, \overline{x}_1, \dots, \overline{x}_n)$$

$$\Delta y = \sqrt{\left(\frac{\partial f}{\partial X_1} \Delta x_1\right)^2 + \left(\frac{\partial f}{\partial X_2} \Delta x_2\right)^2 + \dots + \left(\frac{\partial f}{\partial X_n} \Delta x_n\right)^2} \Big|_{(\overline{x}_1, \overline{x}_1, \dots, \overline{x}_n)}$$

- Let's do this on the white board!
- You can attach a scanned/photo of the hand-written solution to this sub question.

Question 2 (b)

```
%We start by estimating E based on the given parameters
L0=0.7;% beam length in m
h0=0.03;% beam depth in m
b0=0.04;% beam width in m
F0=80;% applied force at end of cantilever beam, N
delta0=0.008;% displacement at end

>> E0=F0*L0^3/3/delta0/(b0*h0^3/12)
E0 =
1.2704e+10
```

Question 2 (b) Cont'd

To simulate a new series of parameters, we need to consider the physically meaningful units (these are given to you in the table as dX:

```
sL=sLp*L0/100% same units as L (here sLp is the percentage error)
% or simpaly let sL = 0.014; this gives sigma(L)
sh=shp*h0/100
sb=sbp*b0/100
sF=sFp*F0/100
sdel=sdelp*delta0/100
```

As an example, this is how you can generate 10000 normally distributed samples of L based on the desired parameters:

```
N=10000;% number of trials
L=L0+sL*randn(1,N);
```

Question 2 Cont'd

To Now use the equation for E to calculate the new set (10000):

Question 2 Histograms

histogram (E/E0, 'Normalization', 'pdf', 'DisplayStyle', 'stairs');

Question 2 (c)

Suppose you wanted to improve your measurement of E. What measurements could

be improved to give the biggest benefit?

Hints:

Use your analysis from a, and test with simulations in b)