Chapitre 5

Séries et familles sommables

Exercices: tout le chapitre

Donner si possible un exercice sur les séries et un exercice sur les familles sommables

Cours:

- 3. Notion de dénombrabilité
- 4. Familles sommables

Bien connaître:

- Le théorème de sommation par paquets pour des réels positifs (4.1.d)
- Le théorème de Fubini pour les suites doubles de réels positifs (4.3.a)

Les démos à connaître (en rouge les plus conséquentes)

<u>3</u>

 \mathbb{Q} et \mathbb{D} sont dénombrables.

4.1.b

Propriété:

Soient $(u_i)_{i \in I}$ et $(v_i)_{i \in I}$ deux familles de réels positifs avec $(v_i)_{i \in I}$ sommable.

Si $\forall i \in I: \ u_i \leqslant v_i, \ \text{alors la famille} \ (u_i)_{i \in I} \ \text{est sommable et} \ \sum_{i \in I} u_i \leqslant \sum_{i \in I} v_i$

4.1.c

Propriété:

Soient $\lambda \in \mathbb{R}_+$ et $(u_i)_{i \in I}$ et $(v_i)_{i \in I}$ deux familles sommables de réels positifs.

Alors la famille $(\lambda u_{\scriptscriptstyle i} + v_{\scriptscriptstyle i})_{\scriptscriptstyle i \in I}$ est sommable $\sum_{\scriptscriptstyle i \in I} (\lambda u_{\scriptscriptstyle i} + v_{\scriptscriptstyle i}) = \lambda \sum_{\scriptscriptstyle i \in I} u_{\scriptscriptstyle i} + \sum_{\scriptscriptstyle i \in I} v_{\scriptscriptstyle i}$

4.3.a

Théorème de Fubini pour les familles doubles de réels positifs

Soit $(a_{{\boldsymbol m},{\boldsymbol n}})_{({\boldsymbol m},{\boldsymbol n})\in\mathbb{N}^2}$ une famille de réels positifs.

Alors $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ est sommable si et seulement si on a conjointement :

- \clubsuit pour tout $n\in\mathbb{N}\left(\text{fix\'e}\right),$ la série $\sum_{m}a_{\scriptscriptstyle m,n}$ converge
- lacktriangle la série $\sum \left(\sum_{m=0}^{+\infty} a_{m,n}\right)$ converge

$$\text{Dans ce cas}: \sum_{(m,n) \in \mathbb{N}^2} a_{m,n} = \sum_{n=0}^{+\infty} \biggl(\sum_{m=0}^{+\infty} a_{m,n} \biggr) = \sum_{m=0}^{+\infty} \biggl(\sum_{n=0}^{+\infty} a_{m,n} \biggr)$$

4.4.b

Théorème sur les produits de Cauchy

Soient $\sum u_n$ et $\sum v_n$ deux séries complexes <u>absolument convergentes</u>.

Alors leur produit de Cauchy $\sum w_{\scriptscriptstyle n}$ est absolument convergent

$$\text{et} \quad \sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \times \left(\sum_{n=0}^{+\infty} v_n\right)$$