תורת הקבוצות ⁻ תרגולים 4+5 קבוצות בנות מניה ולא בנות מניה, לכסון, חשבון עוצמות

תרגיל

 $x \cap y = \emptyset$ אז $x,y \in A$ כלשהם, וכמו כן אם $a,b \in \mathbb{R}$ עבור x = (a,b) מתקיים ש $x \in A$ מתקיים אזרים ב־ $x \in A$ אז עבור $x \in A$ כלשהם, וכמו כן אם $x \in A$ אז עבור $x \in A$ היא בת מניה.

.ע. אחח"ע. $f:A \to \mathbb{Q}$ שהיא חח"ע.

נשתמש בתכונה חשובה של \mathbb{Q} : הרציונליים **צפופים** ב־ \mathbb{R} . כלומר, לכל $a,b\in\mathbb{R}$ קיים $a,b\in\mathbb{R}$ קיים בתכונה חשובה של \mathbb{Q} : הרציונליים **צפופים** ב־ \mathbb{R} . כלומר, לכל $a,b\in\mathbb{R}$ קיים מחשיים.

 $x\in A$ מתאימה מספר רציונלי כלשהו שנמצא בתוך $x\in A$ שלכל קטע $f:A o\mathbb{Q}$ מתאימה מספר איונלי כלשהו שנמצא בתוך

החח"ע של A נובעת מכך שאם A זרים אז A איז A וגם A וונם A וונו A וונו A וונו A וונו A וונו A וונו

because of what? axiom of choice?

תרגיל

why?

תהא $\mathbb{Q}\setminus A=\mathbb{R}$ קבוצת המספרים האי־רציונליים. נרצה להוכיח כי A איננה בת מניה. נעשה זאת בשתי דרכים שונות.

בדרך הראשונה, נתבסס על כך שידוע כי $\mathbb{Q}=\mathbb{R}$ ונשתמש במשפט $|\mathbb{A}|=\mathbb{R}$, נניח בשלילה כי $|A|=\mathbb{R}$, נשים לב לכך ש־ $\mathbb{R}=\mathbb{Q}$ ונשתמש במשפט לפיו איחוד של מספר בן מניה של קבוצות בנות מניה הוא בן מניה. נקבל ש־ $\mathbb{R}=\mathbb{R}$ והגענו לסתירה.

איננה בת מניה. די להוכיח כי $B=A\cap(0,1)$ איננה בת איננה בת מניה. די להוכיח כי $B=A\cap(0,1)$ איננה בת $B=A\cap(0,1)$ בת מניה. על מנת לתרגל את טכניקת הלכסון של קנטור, נוכיח כעת באופן ישיר כי A איננה על, כלומר למצוא $B=A\cap(0,1)$ כך ש־A=C מניה. נתחיל באופן דומה להוכחת האלכסון של קנטור: תהא $B=A\cap(0,1)$ נרצה להוכיח כי A=C איננה על, כלומר למצוא $B=A\cap(0,1)$ עש של קנטור: תהא A=C עשרוניים אנו בוחרים את זה מביניהם שמסתיים בסדרה של אפסים).

 $d
eq r_n$ של קנטור הגדרנו $d = 0.d_0 d_1 d_2 \ldots$ אם נשתמש בהגדרה או כעת נקבל אמנם מספר $d = 0.d_0 d_1 d_2 \ldots$ בשיטת האלכסון של קנטור הגדרנו $d = 0.d_0 d_1 d_2 \ldots$ בשיטת האלכסון של קנטור הגדרנו $d = 0.d_0 d_1 d_2 \ldots$

לכל n, אבל לא מובטח לנו ש־ $d\in B$ כי ייתכן ש־d רציונלי. נזכור שמספר הוא רציונלי אם ורק אם הפיתוח העשרוני שלו הוא מחזורי החל ממקום לכל n>N לכל n>0 לכל n>0 לכל את האפשרות שדבר כזה יתרחש.

הפתרון הוא לנצל את בחירת הספרות של $d \neq r_n$ לשתי מטרות שונות. הספרות במקומות האי־זוגיים ישמשו כדי להבטיח ש־ $d \neq r_n$ לכל m הספרות במקומות הזוגיים ישמשו כדי להבטיח ש־d הוא אי רציונלי.

ראשית נשים לב לכך שהמספר הבא אינו רציונלי: $d=0.110100010000000\dots$ במספר הספרות שהם חזקות של 2 הן 1 ואילו יתר

נשים לב לכך שאין חשיבות לשאלה מה יש במקומות האי־זוגיים של המספר פרט לכך שלא מופיע שם 1. לכן אנחנו מסוגלים להגדיר את d באופן הבא שמשלב את שתי ההגדרות שהצענו:

$$d_n = \begin{cases} 1 & n = 2^t \\ 4 & n = 2k + 1 \land r_n^k = 3 \\ 3 & \text{else} \end{cases}$$

לכל k טבעי, $d \neq r_k$ ולכן $d_n \neq r_n^k$ כמבוקש. שימו לב שמכיוון שאנחנו קובעים את הספרה ה־n־ית של $d_n \neq r_n^k$ ולכן $d_n \neq r_n^k$ כמבוקש. שימו לב שמכיוון שאנחנו קובעים את הספרה ה־n-ית של $r_k \neq r_n$ למרות ש־ $n \neq r_n^k$ נסו להבהיר לעצמכם מדוע הגדרה שבודקת האם $r_k = r_n^k$ הייתה נכשלת. זו המחשה לכך שה"אלכסון" לא באמת נראה כמו אלכסוו ברוב המקרים.

תזכורת

ראינו כי ניתן להגדיר פעולות של חיבור, כפל וחזקה על עוצמות, באמצעות פעולות מתאימות על קבוצות. נניח כי A,B הן קבוצות כלשהן ונסמן את עוצמותיהן בי $A,B'=\kappa, |B|=\kappa, |B|=\kappa$, אז נגדיר:

. (המכפלה היחוד הוא איחוד לוודא האיחוד הוא איחוד הוא המכפלה הי $\{1\}$ וב־ $\{2\}$ וב־ $\{1\} \cup B \times \{2\}$

1

- $\kappa \cdot \lambda = |A \times B| \bullet$
 - $\kappa^{\lambda} = |A^B| \bullet$

הגדרות אלו תקפות גם לקבוצות סופיות (כלומר, למקרה שבו העוצמות הן מספרים טבעיים) ומקיימות את חוקי החשבון המוכרים לנו (חיבור וכפל מקיימים את חוקי הפילוג, הקיבוץ והחילוף).

נהוג לסמן $0 = |\mathbb{N}|$ ("אלף־אפס") ו־ $|\mathbb{N}| = |\mathbb{N}|$. ניתן להוכיח כי 0 = 0 + 0 ה $|\mathbb{N}| = 0$ ו־ $|\mathbb{N}| = 0$ או אור איז אור איז לסמן אור אוריא אור איז אור אוריים אור איז אוריא אוריים אוריים איז איז אוריים או

תרגיל

B שווה של טבעיים הסדרות האינסופיות של ממשיים א שווה לעוצמת קבוצת הסדרות האינסופיות של טבעיים והוכיחו

$$|A| = \aleph^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0} \le \aleph_0^{\aleph_0} = |B| \le |A|$$

קיבלנו שרשרת של אי־שוויונות שמתחילה ונגמרת באותו איבר ולכן כל המעברים הם שוויונות ממש.

תרגיל

נוכיח שחוקי חזקות המוכרים לנו מהמספרים השלמים מתקיימים גם כאן.

$$|A|=\kappa, |B|=\lambda, |C|=\mu$$
יהיו A,B,C יהיו

בהרצאה ראיתם ש- $\kappa^{\lambda+\mu}=\kappa^{\lambda}\cdot\kappa^{\mu}$ ובתרגיל הבית אתם מראים "בתרגיל (κ^{λ}) ובתרגיל בהרצאה ראיתם בהרצאה ובתרגיל הבית אתם מראים בהרצאה ובתרגיל הבית אתם מראים בהרצאה ראיתם בהרצאה ובתרגיל הבית אתם מראים בהרצאה הבית ש

$$(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$$
 .1

חשבון עוצמות נותן פתרון מיידי:

$$\kappa^{\mu} \leq \lambda^{\mu}$$
 איז $\kappa \leq \lambda$ אם .2

כדי להוכיח את החוקים הללו נציג במפורש פונקציות חח"ע ועל בין הקבוצות הרלוונטיות.

 $\Psi: (A imes B)^C o A^C imes B^C$ במקרה הראשון, אנו רוצים למצוא פונקציה חח"ע ועל

Aו והשני מ־Aו האחד מ־Aו ומחזירה איבר ב־Aו והשני מ־לנו פונקציה שמקבלת איבר ב־לנו מחזירה אינטואיציה: באגף שמאל ש

Bבאגף ימין יש לנו זוג פונקציות שמקבלות כל אחת איבר ב־C ומחזירות האחת איבר ב-בר והשניה איבר ב-בר

באופן כללי פונקציה $f\left(x
ight)=(f_{1}\left(x
ight),f_{2}\left(x
ight))$ באופן כללי פונקציה לתאר בתור זוג של בתור זוג של פונקציות:

ויבר על הרכיב ה־i מתאר את f_i מתאר את f_i ויך $f_i(x)=[f(x)]_2$ ויך $f_i(x)=[f(x)]_1$ את האיבר על הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ כאשר $f_i(x)=[f(x)]_1$ את האיבר על הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ כאשר $f_i(x)=[f(x)]_1$ מתאר את ההטלה של האיבר על הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ כאשר $f_i(x)=[f(x)]_1$ מתאר את ההטלה של האיבר על הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מתאר את ההטלה של האיבר על הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מתאר את ההטלה של האיבר על הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מתאר את ההטלה של האיבר על הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מתאר את ההטלה של האיבר על הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מתאר את ההטלה של האיבר על הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מתאר את ההטלה של האיבר על הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מתאר את ההטלה של הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מוער הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מוער הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מתאר את ההטלה של הרכיב ה־i שלו $f_i(x)=[f(x)]_1$ מוער הרכיב ה-i שלו i ש

 Ψ בבירור הפיכה: בהינתן (f_1,f_2) נגדיר פונקציה ונקציה (f_1,f_2) וקל לראות שהעתקה (f_1,f_2) נגדיר פונקציה Ψ

במקרה השני, נתון לנו ש $\lambda \in \Lambda$, כלומר כבר קיימת פונקציה חח"ע (לאו דווקא על) במקרה השני, נתון לנו ש $\kappa \leq \lambda$, כלומר כבר קיימת פונקציה חח"ע (לאו דווקא על) במקרה השני, נתון לנו ש φ במקרה של על הפונקציה שהתקבלה כקלט. כלומר, אם $\phi \in C \to B$ אז $\phi \in C \to B$ היא הפונקציה שמעניינת פורמלית, $\Phi : C \to B$ אותנו. פורמלית, $\Phi : C \to B$

נוכיח ש־ Ψ חח"ע: נניח כי $f_1\left(a\right)=f_2\left(a\right)$ כלומר $\varphi f_1=\varphi f_2$ יהא המבוקשת. ער כלומר $\Psi\left(f_1\right)=\Psi\left(f_2\right)$ כלומר $\Psi\left(f_1\right)=\Psi\left(f_2\right)$ מכיוון ש־ φ היא חח"ע קיבלנו את התוצאה המבוקשת. $\varphi\left(f_1\left(a\right)\right)=\varphi\left(f_2\left(a\right)\right)$

אז $A=\{4,1,17\}$ נתונה על ידי מיון אברי הקלט A ואולי חזרה אינסופית על האיבר האחרון (למשל, אם $f:\mathcal{P}\left(\mathbb{N}\right) \to \mathbb{N}^{\mathbb{N}}$ בכיוון אחד, $A \mapsto \{4,1,17\}$ נתונה על ידי מיון אברי הקלט $A \mapsto \{4,1,17\}$ נתונה על ידי מיון אברי הקלט.

בכיוון השני, $\mathcal{P}(\mathbb{N}) o \{p_n^a \mapsto \{p_n^a \mapsto \{p_n^a \mapsto \{p_n^{a_n+1} \mid n \geq 0\}\}$ בריוון השני, $g: \mathbb{N}^\mathbb{N} o \mathcal{P}(\mathbb{N}) \mapsto \{p_n^a \mapsto \{p_n^a \mapsto p_n^a \mid n \geq 0\}$ בריוון השני, $g: \mathbb{N}^\mathbb{N} \to \mathcal{P}(\mathbb{N}) \mapsto \{p_n^a \mid n \geq 0\}$ בריוון השני, ווא הראשוני

axiom of coice? there are many sets equivelent to that