On Valency Problems of Saxl Graphs

Hong Yi Huang

Southern University of Science and Technology

November 26, 2020

Joint work with Jiyong Chen

Outline

Preliminaries

Our Results

Problems

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| < \infty$.

- Base: $\Delta \subset \Omega$ such that the point-wise stabiliser $G_{(\Delta)} = 1$.
- Base size: minimal cardinality of bases, denoted by b(G).
- Base size set: a base Δ such that $|\Delta| = b(G)$.

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| < \infty$.

- Base: $\Delta \subset \Omega$ such that the point-wise stabiliser $G_{(\Delta)} = 1$.
- Base size: minimal cardinality of bases, denoted by b(G).
- Base size set: a base Δ such that $|\Delta| = b(G)$.

With the natural actions,

- $b(S_n) = n 1$;
- $b(A_n) = n 2;$
- $b(GL_n(q)) = n$, and a base size set is exactly a basis of \mathbb{F}_q^n over \mathbb{F}_q .

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| < \infty$.

- Base: $\Delta \subset \Omega$ such that the point-wise stabiliser $G_{(\Delta)} = 1$.
- Base size: minimal cardinality of bases, denoted by b(G).
- Base size set: a base Δ such that $|\Delta| = b(G)$.

With the natural actions,

- $b(S_n) = n 1$;
- $b(A_n) = n 2$;
- $b(GL_n(q)) = n$, and a base size set is exactly a basis of \mathbb{F}_q^n over \mathbb{F}_q .

Suppose G is transitive.

- G is regular $\iff b(G) = 1$.
- If G is Frobenius then b(G) = 2.
- If G is sharply k-transitive then b(G) = k.

Primitive Groups

Recall that $G \leq \operatorname{Sym}(\Omega)$ is called primitive if

- G is transitive, and
- G_{α} is maximal in G.

Primitive Groups

Recall that $G \leq \operatorname{Sym}(\Omega)$ is called primitive if

- G is transitive, and
- G_{α} is maximal in G.

Theorem (O'Nan-Scott).

Let G be a primitive group. Then G is of one of the following types: HA, AS, HS, HC, PA, TW, SD, CD.

Primitive Groups

Recall that $G \leq \operatorname{Sym}(\Omega)$ is called primitive if

- G is transitive, and
- G_{α} is maximal in G.

Theorem (O'Nan-Scott).

Let G be a primitive group. Then G is of one of the following types: HA, AS, HS, HC, PA, TW, SD, CD.

Li-Zhang 2011: Classified all primitive groups with soluble stabilisers.

Almost Simple Groups

Theorem (Classification of Finite Simple Groups).

Let G be a non-abelian finite simple group. Then G is isomorphic to one of the following:

- an alternating group A_n with $n \ge 5$;
- a group of Lie type;
- one of 26 sporadic groups.

Almost Simple Groups

Theorem (Classification of Finite Simple Groups).

Let G be a non-abelian finite simple group. Then G is isomorphic to one of the following:

- an alternating group A_n with $n \ge 5$;
- a group of Lie type;
- one of 26 sporadic groups.

Theorem (Schreier Conjecture).

The outer automorphism group of a finite simple group is soluble.

Almost Simple Groups

Theorem (Classification of Finite Simple Groups).

Let G be a non-abelian finite simple group. Then G is isomorphic to one of the following:

- an alternating group A_n with $n \ge 5$;
- a group of Lie type;
- one of 26 sporadic groups.

Theorem (Schreier Conjecture).

The outer automorphism group of a finite simple group is soluble.

A group G is called almost simple if

$$soc(G) = T \cong Inn(T) \lesssim G \lesssim Aut(T)$$

for some non-abelian simple group T.

Bases for Primitive Groups

Let $G \leq \operatorname{Sym}(\Omega)$ be an almost simple primitive group.

- Cameron-Kantor 1993: Conjectured $b(G) \le c$ if G is non-standard.
- Liebeck-Shalev 1999: c exists.
- Burness-Liebeck-Shalev 2009: c = 7 is optimal (M₂₄).
- Burness 2018: Determined groups with b(G) = 6.

Bases for Primitive Groups

Let $G \leq \operatorname{Sym}(\Omega)$ be an almost simple primitive group.

- Cameron-Kantor 1993: Conjectured $b(G) \le c$ if G is non-standard.
- Liebeck-Shalev 1999: c exists.
- Burness-Liebeck-Shalev 2009: c = 7 is optimal (M₂₄).
- Burness 2018: Determined groups with b(G) = 6.

Let $G \leq \operatorname{Sym}(\Omega)$ be primitive with soluble stabiliser.

- Seress 1996: $b(G) \le 4$ if G is also soluble.
- Burness 2020+: $b(G) \le 5$.

Saxl Graphs

Saxl first proposed determining all primitive groups G with b(G)=2. Burness-Giudici 2020: Saxl graph $\Sigma(G)$:

- Vertex set Ω;
- $\alpha \sim \beta$ if $\{\alpha, \beta\}$ is a base.

Saxl Graphs

Saxl first proposed determining all primitive groups G with b(G)=2. Burness-Giudici 2020: Saxl graph $\Sigma(G)$:

- Vertex set Ω;
- $\alpha \sim \beta$ if $\{\alpha, \beta\}$ is a base.

We have

- $b(G) \ge 3 \implies \Sigma(G)$ empty;
- b(G) = 1 and G transitive $\implies \Sigma(G)$ complete.

First Observations

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G.

- **1** $\Sigma(G)$ is G-vertex-transitive.

- **4** $\Sigma(G)$ is *G*-arc-transitive if *G* is 2-transitive.
- **5** $\Sigma(G)$ is G-arc-semiregular.

Indeed, $\Sigma(G)$ is the union of all regular orbital graphs of G.

Burness-Giudici Conjecture

Conjecture (Burness-Giudici 2020).

Let G be primitive and b(G) = 2. Then any two vertices in $\Sigma(G)$ has a common neighbour.

Note that if $\operatorname{val}(\Sigma(G)) > \frac{1}{2}|\Omega|$ then the conjecture is verified. This gives a motivation to study the valency problems.

$val(\Sigma(G)) = r|H|$

Proposition.

Suppose G is transitive with b(G)=2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has valency r|H|, where H is the point stabiliser and r is the number of regular suborbits of G. In particular, $\Sigma(G)$ is G-arc-transitive if and only if r=1.

$val(\Sigma(G)) = r|H|$

Proposition.

Suppose G is transitive with b(G)=2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has valency r|H|, where H is the point stabiliser and r is the number of regular suborbits of G. In particular, $\Sigma(G)$ is G-arc-transitive if and only if r=1.

$val(\Sigma(G)) = r|H|$

Proposition.

Suppose G is transitive with b(G)=2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has valency r|H|, where H is the point stabiliser and r is the number of regular suborbits of G. In particular, $\Sigma(G)$ is G-arc-transitive if and only if r=1.

By val(G, H) we mean the valency of the Saxl graph of G with stabiliser H. In particular, |H| divides val(G, H).

Let
$$G=A_5$$
 and $H=\langle (123),(23)(45)\rangle\cong S_3$. Then
$$|\Omega|=10 \text{ and } b(G)=2 \implies \text{val}(G,H)=6 \text{ and } r=1$$

$$\implies \Sigma(G) \text{ is } G\text{-arc-transitive}$$

$$\implies \overline{\Sigma(G)} \text{ is Petersen.}$$

Let
$$G=A_5$$
 and $H=\langle (123),(23)(45)\rangle\cong S_3$. Then
$$|\Omega|=10 \text{ and } b(G)=2 \implies \text{val}(G,H)=6 \text{ and } r=1$$

$$\implies \underline{\Sigma(G)} \text{ is } G\text{-arc-transitive}$$

$$\implies \overline{\Sigma(G)} \text{ is Petersen.}$$

Indeed, $H \cap H^g = 1$ if and only if $g \in HS$, where

$$S = \{(345), (354), (12345), (12354), (13452), (235)\}.$$

Hence, $\Sigma(G)$ is isomorphic to the coset graph Cos(G, H, HSH).

Outline

Preliminaries

Our Results

Problems

The Strategy

Let $G \leq \operatorname{Sym}(\Omega)$ be transitive with stabiliser $H = G_{\alpha}$.

- \mathcal{I} : possible arc stabilisers $H \cap H^g$ up to conjugacy in H.
- $\delta(A) := \{ g \in G \mid H \cap H^g = A \} \text{ for } A \in \mathcal{I}.$
- $\Delta(A) := \{ g \in G \mid H \cap H^g \ge A \} \text{ for } A \in \mathcal{I}.$

Our aim is to determine $|\delta(1)|$, and so val $(G, H) = \frac{|\delta(1)|}{|H|}$.

The Strategy

Let $G \leq \operatorname{Sym}(\Omega)$ be transitive with stabiliser $H = G_{\alpha}$.

- \mathcal{I} : possible arc stabilisers $H \cap H^g$ up to conjugacy in H.
- $\delta(A) := \{ g \in G \mid H \cap H^g = A \} \text{ for } A \in \mathcal{I}.$
- $\Delta(A) := \{g \in G \mid H \cap H^g \ge A\}$ for $A \in \mathcal{I}$.

Our aim is to determine $|\delta(1)|$, and so val $(G, H) = \frac{|\delta(1)|}{|H|}$.

Lemma.

We have

$$|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|,$$

where $\eta(A, B) = |\{B^h \mid B^h \ge A\}|$.

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations.

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations.

• Ordering \mathcal{I} : if $C_i \leq C_j$ then $i \leq j$.

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations.

- Ordering \mathcal{I} : if $C_i \leq C_j$ then $i \leq j$.
- $M = [\eta(C_i, C_j)]$ is upper-triangular and unipotent.

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations.

- Ordering \mathcal{I} : if $C_i \leq C_j$ then $i \leq j$.
- $M = [\eta(C_i, C_j)]$ is upper-triangular and unipotent.
- $\Delta := [|\Delta(C_1)|, \ldots, |\Delta(C_n)|]^T$, $n := |\mathcal{I}|$.
- $\delta := [|\delta(C_1)|, \ldots, |\delta(C_n)|]^T$.
- $\Delta = M\delta$ and so $\delta = M^{-1}\Delta$.

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations.

- Ordering \mathcal{I} : if $C_i \leq C_j$ then $i \leq j$.
- $M = [\eta(C_i, C_j)]$ is upper-triangular and unipotent.
- $\Delta := [|\Delta(C_1)|, \ldots, |\Delta(C_n)|]^T$, $n := |\mathcal{I}|$.
- $\delta := [|\delta(C_1)|, \ldots, |\delta(C_n)|]^T$.
- $\Delta = M\delta$ and so $\delta = M^{-1}\Delta$.
- It suffices to find Δ . Indeed, we have

$$|\Delta(A)| = \sum_{B \in S \cap A^G} \frac{|H||N_G(B)|}{|N_H(B)|} = |H||N_G(A)| \sum_{B \in S \cap A^G} \frac{1}{|N_H(B)|},$$

where S is the set of subgroups of H up to conjugacy.

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations.

- Ordering \mathcal{I} : if $C_i \leq C_j$ then $i \leq j$.
- $M = [\eta(C_i, C_j)]$ is upper-triangular and unipotent.
- $\Delta := [|\Delta(C_1)|, \ldots, |\Delta(C_n)|]^T$, $n := |\mathcal{I}|$.
- $\delta := [|\delta(C_1)|, \ldots, |\delta(C_n)|]^T$.
- $\Delta = M\delta$ and so $\delta = M^{-1}\Delta$.
- It suffices to find Δ . Indeed, we have

$$|\Delta(A)| = \sum_{B \in \mathcal{S} \cap A^G} \frac{|H||N_G(B)|}{|N_H(B)|} = |H||N_G(A)| \sum_{B \in \mathcal{S} \cap A^G} \frac{1}{|N_H(B)|},$$

where S is the set of subgroups of H up to conjugacy.

We only need to find ${\cal I}$ and normalisers. This is generally very difficult!

Let $G = \mathsf{PSL}_2(17)$ and $H = \langle x \rangle : \langle y \rangle \cong D_{16}$. Then $H \cap H^g \cong 1, \mathbb{Z}_2, \mathbb{Z}_2^2$ or H. Indeed,

$$\mathcal{I} = \{1, \langle y \rangle, \langle xy \rangle, \langle x^4, y \rangle, \langle x^4, xy \rangle, H\}.$$

Let $G = \mathsf{PSL}_2(17)$ and $H = \langle x \rangle : \langle y \rangle \cong D_{16}$. Then $H \cap H^g \cong 1, \mathbb{Z}_2, \mathbb{Z}_2^2$ or H. Indeed,

$$\mathcal{I} = \{1, \langle y \rangle, \langle xy \rangle, \langle x^4, y \rangle, \langle x^4, xy \rangle, H\}.$$

Note that all involutions in G are conjugate. It follows that

- $|\Delta(1)| = |G| = 2448$;
- $|\Delta(\langle y \rangle)| = |H||N_G(\langle y \rangle)|(\frac{1}{|N_H(\langle x^4 \rangle)|} + \frac{1}{|N_H(\langle y \rangle)|} + \frac{1}{|N_H(\langle xy \rangle)|}) = 144;$
- $|\Delta(\langle xy \rangle)| = |H||N_G(\langle xy \rangle)|(\frac{1}{|N_H(\langle x^4 \rangle)|} + \frac{1}{|N_H(\langle y \rangle)|} + \frac{1}{|N_H(\langle xy \rangle)|})| = 144;$
- $|\Delta(\langle x^4, y \rangle)| = \frac{|H||N_G(\langle x^4, y \rangle)|}{|N_H(\langle x^4, y \rangle)|} = \frac{|H||S_4|}{|D_8|} = 48;$
- $\bullet \ |\Delta(\langle x^4, xy\rangle)| = \frac{|H||N_G(\langle x^4, xy\rangle)|}{|N_H(\langle x^4, xy\rangle)|} = \frac{|H||S_4|}{|D_8|} = 48;$
- $|\Delta(H)| = |H| = 16$.

Finally,

$$\delta = M^{-1}\Delta = \begin{bmatrix} 1 & 4 & 4 & 2 & 2 & 1 \\ & 1 & 0 & 1 & 0 & 1 \\ & & 1 & 0 & 1 & 1 \\ & & & 1 & 0 & 1 \\ & & & & 1 & 1 \\ & & & & & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2448 \\ 144 \\ 144 \\ 48 \\ 48 \\ 16 \end{bmatrix},$$

which implies $|\delta(1)| = 1536$ and so val(G, H) = 96.

Prime Valency

Proposition (Burness-Giudici 2020).

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has prime valency p if and only if G is one of the following:

- ② $G = S_3$, p = 2 and $\Sigma(G) \cong K_3$.
- **3** $G = \mathsf{AGL}_1(2^f)$, where $p = 2^f 1$ is a Mersenne prime and $\Sigma(G) \cong \mathcal{K}_{p+1}$.

Prime-power Valency

Theorem (Chen-H. 2020+).

Suppose G is almost simple primitive with b(G) = 2 stabiliser H. Then the Saxl graph $\Sigma(G)$ has prime-power valency if and only if (G, H) is one of the following:

- **1** $(G, H) = (M_{10}, 8:2)$ and val(G, H) = 32.
- ② $(G, H) = (PGL_2(q), D_{2(q-1)})$, where $q \ge 17$ is a Fermat prime or q = 9, $\Sigma(G)$ is isomorphic to the Johnson graph J(q+1,2) and val(G, H) = 2(q-1).

Frobenius Group

Recall that a group H is called Frobenius if there exists a non-trivial proper subgroup L < H such that $L \cap L^h = 1$ for any $h \in H \setminus L$.

- Frobenius complement: L.
- Frobenius kernel: the subgroup K consisting the identity element and those elements that are not in any conjugate of L.

Frobenius Group

Recall that a group H is called Frobenius if there exists a non-trivial proper subgroup L < H such that $L \cap L^h = 1$ for any $h \in H \setminus L$.

- Frobenius complement: L.
- Frobenius kernel: the subgroup K consisting the identity element and those elements that are not in any conjugate of L.
- H = K:L.
- If *K* is cyclic, then so does *L*.

Frobenius Groups with Cyclic Kernel

Theorem (Chen-H. 2020+).

Suppose G is a finite primitive permutation group with stabiliser H, where H=K:L is Frobenius with cyclic kernel K. Write $L=\langle y\rangle$. Then

$$\mathsf{val}(G, H) = |G: H| + |K| - 1 + \frac{|K|}{|L|} \sum_{1 \neq d||L|} \mu(d) |N_G(\langle y^{\frac{|L|}{d}} \rangle)|,$$

where μ is the Möbius function.

Alternating and Symmetric Groups

This can be applied to various problems. For example

Corollary.

Let $G=S_p$ and $H=\mathsf{AGL}_1(p)\cong \mathbb{Z}_p{:}\mathbb{Z}_{p-1}$ with $p\geq 5$ a prime. Then

$$val(G, H) = (p-2)! + p - 1 + p \sum_{1 \neq d \mid (p-1)} \mu(d)\phi(d)d^{\frac{p-1}{d}-1} \left(\frac{p-1}{d} - 1\right)!.$$

Corollary.

Let $G=A_p$ and $H=\mathsf{AGL}_1(p)\cap A_p\cong \mathbb{Z}_p{:}\mathbb{Z}_{(p-1)/2}$ with $p\geq 5$ a prime and $p\neq 7,11,17,23$. Then

$$val(G, H) = (p-2)! + p - 1 + p \sum_{1 \neq d \mid \frac{p-1}{2}} \mu(d) \phi(d) d^{\frac{p-1}{d}-1} \left(\frac{p-1}{d} - 1 \right)!.$$

Alternating and Symmetric Groups

Theorem (Chen-H. 2020+).

Let G be an almost simple primitive group with socle A_n and soluble stabiliser H. If b(G) = 2, then (G, H, val(G, H)) is listed in the following.

G	Н	val(G, H)
A_5	<i>S</i> ₃	6
M_{10}	$AGL_1(5)$	20
M_{10}	8:2	32
$PGL_2(9)$	D_{16}	16
A_9	$ASL_2(3)$	432
A_p	$\mathbb{Z}_p:\mathbb{Z}_{(p-1)/2}$	See above
S_p	$AGL_1(p)^{n}$	See above

Odd Valency

Proposition (Burness-Giudici 2020).

Let G be an almost simple primitive group with stabiliser H and b(G) = 2. If val(G, H) is odd then one of the following holds:

- $(G, H) = (M_{23}, 23:11).$
- ② $(G, H) = (A_p, \mathbb{Z}_p : \mathbb{Z}_{(p-1)/2})$, where $p \equiv 3 \pmod{4}$ is a prime and (p-1)/2 is composite.
- **3** soc(G) = $L_r^{\epsilon}(q)$ and $H \cap \text{soc}(G) = \mathbb{Z}_a$: \mathbb{Z}_r , where r is an odd prime, $a = \frac{q^r \epsilon}{(q \epsilon)(r, q \epsilon)}$ and $G \neq \text{soc}(G)$.

Odd Valency

Case (2) can be easily shown impossible by above. Moreover, we analysis the case when $G = \mathsf{PGL}_r^\epsilon(q)$. These lead the following.

Theorem (Chen-H. 2020+).

Let G be an almost simple primitive group with stabiliser H and b(G) = 2. Then val(G, H) is odd only if one of the following holds:

- **1** $G = M_{23}$ and H = 23:11.
- ② $G = L_r^{\epsilon}(q).O \leq \mathsf{P}\Gamma L_r^{\epsilon}(q)$ with r prime and $O \leq \mathsf{Out}(L_r^{\epsilon}(q))$, but $G \not\leq \mathsf{P}\mathsf{G}L_r^{\epsilon}(q)$, with $H = \mathbb{Z}_a:\mathbb{Z}_r.O$, where $a = \frac{q^r \epsilon}{(q \epsilon)(r, q \epsilon)}$.

Outline

Preliminaries

Our Results

Problems

Conjectures

To calculate the valency we need to determine all possible arc stabilisers $G_{(\alpha,\alpha^g)}$ for $g\in G$. This leads the following conjecture, which may be of independent interest.

Conjecture.

Let G be a finite primitive permutation group with stabiliser G_{α} . Then for any $g \notin G_{\alpha}$, either $G_{(\alpha,\alpha^g)}=1$ or $G_{(\alpha,\alpha^g)}$ is not normal in G_{α} .

The conjecture is verified when:

- $G_{(\alpha,\alpha^g)} < G_{\{\alpha,\alpha^g\}}$;
- $|\Omega| \le 4095$;
- $G_{(\alpha,\alpha^g)}$ has odd order.

Conjectures

The only known genuine example of almost simple primitive group with odd valency is M_{23} with stabiliser 23:11. Is there any more?

Conjecture.

Let G be an almost simple primitive group with stabiliser H. Then val(G, H) is odd if and only if $G = M_{23}$ and H = 23:11.

Connectivity

 How to characterise the connectivity of Saxl graphs of transitive permutation groups? We know that

G primitive
$$\Longrightarrow \Sigma(G)$$
 connected.

The converse? Simple quasi-primitive groups?

Connectivity

 How to characterise the connectivity of Saxl graphs of transitive permutation groups? We know that

G primitive
$$\implies \Sigma(G)$$
 connected.

The converse? Simple quasi-primitive groups?

• The Burness-Giudici Conjecture.

Connectivity

 How to characterise the connectivity of Saxl graphs of transitive permutation groups? We know that

G primitive
$$\Longrightarrow \Sigma(G)$$
 connected.

The converse? Simple quasi-primitive groups?

- The Burness-Giudici Conjecture.
- When does val(G, H) = |H|? That is, there is exactly one regular suborbit, especially when G is primitive.

Example.

When $(G, H) = (PGL_2(q), D_{2(q-1)})$ for $q \ge 5$ we have val(G, H) = |H|.

Automorphisms

• We have $G \leq \operatorname{Aut}(\Sigma(G))$. When we have $G = \operatorname{Aut}(\Sigma(G))$?

- When $(G, H) = (\operatorname{Sp}_{2m}(2), S_{2m+2})$ with $m \geq 6$ even, $G = \operatorname{Aut}(\Sigma(G))$.
- When $(G, H) = (PGL_2(q), D_{2(q-1)})$ with $q \ge 13$ odd, we have $\Sigma(G) \cong J(q+1, 2)$ and so $G < \operatorname{Aut}(\Sigma(G)) \cong S_{q+1}$.

Automorphisms

• We have $G \leq \operatorname{Aut}(\Sigma(G))$. When we have $G = \operatorname{Aut}(\Sigma(G))$?

- When $(G, H) = (\operatorname{Sp}_{2m}(2), S_{2m+2})$ with $m \ge 6$ even, $G = \operatorname{Aut}(\Sigma(G))$.
- When $(G, H) = (PGL_2(q), D_{2(q-1)})$ with $q \ge 13$ odd, we have $\Sigma(G) \cong J(q+1, 2)$ and so $G < \operatorname{Aut}(\Sigma(G)) \cong S_{q+1}$.
- To what extent does $\Sigma(G)$ determine G up to permutation isomorphism?

Automorphisms

• We have $G \leq \operatorname{Aut}(\Sigma(G))$. When we have $G = \operatorname{Aut}(\Sigma(G))$?

Example.

- When $(G, H) = (\operatorname{Sp}_{2m}(2), S_{2m+2})$ with $m \geq 6$ even, $G = \operatorname{Aut}(\Sigma(G))$.
- When $(G, H) = (PGL_2(q), D_{2(q-1)})$ with $q \ge 13$ odd, we have $\Sigma(G) \cong J(q+1, 2)$ and so $G < \operatorname{Aut}(\Sigma(G)) \cong S_{q+1}$.
- To what extent does $\Sigma(G)$ determine G up to permutation isomorphism?
- When is $\Sigma(G)$ Cayley? That is, when $\operatorname{Aut}(\Sigma(G))$ has a regular subgroup?

- When $(G, H) = (M_{10}, 8:2)$, $\Sigma(G)$ is not Cayley.
- ▶ When $(G, H) = (S_7, AGL_1(7))$, $\Sigma(G)$ is Cayley.

Cycles

• Euler cycle? The conjecture above on odd valency.

Cycles

- Euler cycle? The conjecture above on odd valency.
- Hamiltonian cycle? Note that $\Sigma(G)$ is G-vertex-transitive.

Lemma.

All the known examples of vertex-transitive non-Hamiltonian graphs of order at least 3 are cubic, and hence not Saxl graphs of transitive groups.

Other Problems

• When is a vertex-transitive graph the Saxl graph of a transitive group?

- Most vertex-transitive graphs with prime valency are not.
- The Johnson graph J(q+1,2) for any prime-power $q \ge 5$ is isomorphic to the Saxl graph of $PGL_2(q)$ with stabiliser $D_{2(q-1)}$.

Other Problems

• When is a vertex-transitive graph the Saxl graph of a transitive group?

Example.

- Most vertex-transitive graphs with prime valency are not.
- The Johnson graph J(q+1,2) for any prime-power $q \ge 5$ is isomorphic to the Saxl graph of $PGL_2(q)$ with stabiliser $D_{2(q-1)}$.
- General primitive groups with prime-power valency?

- $ightharpoonup val(PSU_3(2), Q_8) = 8.$
- val($M_{10} \wr C_2$, (8:2) $\wr C_2$) = 512 = 2⁹, while val($M_{10} \wr C_4$, (8:2) $\wr C_4$) = 786432 = 2¹⁸ · 3.

Other Problems

• When is a vertex-transitive graph the Saxl graph of a transitive group?

Example.

- Most vertex-transitive graphs with prime valency are not.
- The Johnson graph J(q+1,2) for any prime-power $q \ge 5$ is isomorphic to the Saxl graph of $PGL_2(q)$ with stabiliser $D_{2(q-1)}$.
- General primitive groups with prime-power valency?

- $ightharpoonup val(PSU_3(2), Q_8) = 8.$
- val $(M_{10} \wr C_2, (8:2) \wr C_2) = 512 = 2^9$, while val $(M_{10} \wr C_4, (8:2) \wr C_4) = 786432 = 2^{18} \cdot 3$.
- Other invariants of graphs:
 - chromatic number;
 - total domination number;
 - independence number.

Thank you for your attention!