Stochastic Gradient Descent in Correlated Settings: A Study on Gaussian Processes

Hao Chen*1, Lili Zheng*1, Raed AL Kontar2, Garvesh Raskutti1

Department of Statistics, University of Wisconsin-Madison
 Department of Industrial and Operations Engineering, University of Michigan
 * Equal contribution

Past success of Stochastic Gradient Descent

minimize empirical loss

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \mathcal{E}(f(x_i), y_i)$$

Applied on deep learning:

zero training loss

good generalization power

How to Escape Saddle Points Efficiently

Chi Jin*

Rong Ge[†]

Praneeth Netrapalli[‡]

Sham M. Kakade[§]

Michael I. Jordan[¶]

ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GENERALIZATION GAP AND SHARP MINIMA

Nitish Shirish Keskar*

Northwestern University Evanston, IL 60208

keskar.nitish@u.northwestern.edu

Jorge Nocedal

Northwestern University
Evanston, IL 60208
j-nocedal@northwestern.edu

Ping Tak Peter Tang

Intel Corporation
Santa Clara, CA 95054
peter.tang@intel.com

Dheevatsa Mudigere

Intel Corporation
Bangalore, India

dheevatsa.mudigere@intel.com

Mikhail Smelyanskiy

Intel Corporation Santa Clara, CA 95054

mikhail.smelyanskiy@intel.com

Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data

Yuanzhi Li

Computer Science Department Stanford University Stanford, CA 94305 yuanzhil@stanford.edu

Yingyu Liang

Department of Computer Sciences University of Wisconsin-Madison Madison, WI 53706 yliang@cs.wisc.edu

Abstract

Neural networks have many successful applications, while much less theoretical understanding has been gained. Towards bridging this gap, we study the problem of learning a two-layer overparameterized ReLU neural network for multi-class classification via stochastic gradient descent (SGD) from random initialization. In the overparameterized setting, when the data comes from mixtures of well-separated distributions, we prove that SGD learns a network with a small generalization error, albeit the network has enough capacity to fit arbitrary labels. Furthermore, the analysis provides interesting insights into several aspects of learning neural

SGD for Gaussian Processes (GPs)

Figure adopted from [Rusmassen and Williams, 2005]

Can we copy the success of SGD from deep learning to GPs?

$$f \sim \mathcal{GP}(0, \sigma_f^2 k(\cdot, \cdot)), \quad \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \mathbb{P}$$

$$y_i = f(\mathbf{x}_i) + \epsilon_i, \quad \epsilon_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_\epsilon^2), \quad 1 \le i \le n.$$

Estimation for $\boldsymbol{\theta}^* = (\sigma_{\!f}^2, \sigma_{\!e}^2)^{\mathsf{T}}$

minimize marginal Gaussian log-likelihood $\mathscr{C}(m{ heta}; \mathbf{X}_n, \mathbf{y}_n)$

Approximation method utilizing GPU

Exact Gaussian Processes on a Million Data Points

Ke Alexander Wang^{1*} Geoff Pleiss^{1*} Jacob R. Gardner²
Stephen Tyree³ Kilian Q. Weinberger¹ Andrew Gordon Wilson^{1,4}
¹Cornell University, ²Uber AI Labs, ³NVIDIA, ⁴New York University

Abstract

Gaussian processes (GPs) are flexible non-parametric models, with a capacity that grows with the available data. However, computational constraints with standard inference procedures have limited exact GPs to problems with fewer than about ten thousand training points, necessitating approximations for larger datasets. In this paper, we develop a scalable approach for exact GPs that leverages multi-GPU parallelization and methods like linear conjugate gradients, accessing the kernel matrix only through matrix multiplication. By partitioning and distributing kernel matrix multiplies, we demonstrate that an exact GP can be trained on over a million points, a task previously thought to be impossible with current computing hardware, in less than 2 hours. Moreover, our approach is generally applicable, without constraints to grid data or specific kernel classes. Enabled by this scalability, we perform the first-ever comparison of exact GPs against scalable GP approximations on datasets with 10^4-10^6 data points, showing dramatic performance improvements.

Challenges

Our findings

Minimize Gaussian log-likelihood:

$$\mathcal{E}(\boldsymbol{\theta}; \mathbf{X}_n, \mathbf{y}_n) = \frac{1}{2n} [\mathbf{y}_n^{\mathsf{T}} \mathbf{K}_n^{-1}(\boldsymbol{\theta}) \mathbf{y}_n + \log | \mathbf{K}_n(\boldsymbol{\theta}) | + n \log(2\pi)]$$

$$\mathbf{K}_{n}(\boldsymbol{\theta}) = \theta_{1} \begin{pmatrix} k(x_{1}, x_{1}) & \cdots & k(x_{1}, x_{N}) \\ \vdots & & & \\ k(x_{1}, x_{1}) & \cdots & k(x_{1}, x_{N}) \\ \vdots & & & \\ k(X_{N}, x_{1}) & \cdots & k(X_{N}, x_{1}) \end{pmatrix} + \theta_{2}I_{n}$$

Strong correlations among samples
Highly non-linear w.r.t. data points
Stochastic gradients are **biased** for the full gradient
Non-convexity

K: number of iterations optimization error rate of strongly convex loss

m: mini batch size statistical error, vanishes as m

increases

Case studies

Dataset	Size	D	RMSE	Training Time (min)	Memory Usage (GB)
OTL Circuit	2,000,000	6	0.401 ± 0.000	33.43 ± 4.40	0.99 ± 0.00
Wing Weight	2,000,000	10	0.072 ± 0.004	78.78 ± 9.26	1.22 ± 0.00

Lower prediction error

Significant faster training

				RM	SE		Training Time (min)				
Dataset	Size	D	sgGP	EGP	SGPR	SVGP	sgGP	EGP	SGPR	SVGP	
Levy	10,000	4	0.265 ± 0.003	0.312 ± 0.003	0.564 ± 0.010	0.582 ± 0.013	$\textbf{0.51} \pm 0.00$	11.48 ± 1.28	4.04 ± 0.51	14.58 ± 0.07	
Griewank	10,000	6	0.071 ± 0.000	0.185 ± 0.073	0.132 ± 0.003	0.093 ± 0.005	$\textbf{0.61} \pm 0.01$	15.25 ± 3.72	1.93 ± 0.31	13.18 ± 0.58	
Bike	17,379	17	0.221 ± 0.002	0.228 ± 0.002	0.276 ± 0.004	0.250 ± 0.010	1.98 ± 0.03	31.48 ± 7.45	5.31 ± 2.05	25.26 ± 3.97	
Energy	19,735	27	0.786 ± 0.001	0.802 ± 0.007	0.843 ± 0.006	0.795 ± 0.005	3.15 ± 0.04	54.39 ± 8.01	5.41 ± 0.73	25.09 ± 5.50	
PM2.5	41,757	15	0.287 ± 0.002	0.286 ± 0.003	0.638 ± 0.005	0.540 ± 0.010	5.21 ± 0.04	385.51 ± 42.59	13.59 ± 2.30	52.46 ± 10.08	
Protein	45,730	9	0.663 ± 0.006	0.694 ± 0.004	0.715 ± 0.003	0.676 ± 0.004	3.40 ± 0.03	500.33 ± 65.62	19.55 ± 1.66	55.27 ± 13.09	
Query	100,000	4	0.053 ± 0.000		0.058 ± 0.002	0.061 ± 0.000	6.40 ± 0.10		20.73 ± 1.63	124.73 ± 22.25	
Borehole	1,000,000	8	0.172 ± 0.000	_	0.176 ± 0.000	0.173 ± 0.000	67.29 ± 13.39		857.60 ± 76.02	1380.86 ± 11.32	