

DEEP LEARNING

A Modern Approach to Artificial Intelligence

Yliess HATI
PHD Student - Computer Science
yliess.hati@devinci.fr

|00 INTRODUCTION

Perceptron

Rosenblatt 1958

Perceptrons

Minsky & Seymour 1958

Boltzmann Machine

Hinton 1985

CNN

LeCun 1989

Contrastive Divergence

Hinton 2002

GAN

Goodfellow 2014

1959

Hubel & Wiesel

Cat Visual Cortex

1979

Fukushima

NeoCognitron

Hinton **RBM**

1986

Smolenski

Harmonium

Rumelhart, Hinton &

Williams

MLP

Jordan

RNN

1997

Hochreiter & Schmidhuber

LSTM

Schuster & Paliwal

BRNN

2012 Hinton

Dropout

2017

Sabour, Frosst & Hinton

Capsule Network

|00 INTRODUCTION

AlexNet

Krizhevsky, Sutskever & Hinton **2012**

ResNet

He, Zhang, Ren & Sun **2015**

ResNetXt

Xie, Girshick et al. **2019**

2014

Simonyan & Zisserman

VGG

Google

Inception Network

2016

Huang et al.

DenseNet

PERCEPTRON

The Beginning and the End

|01 PERCEPTRON

$$\hat{y} = f(wx+b)$$

$$f(x) = egin{cases} 1 & ext{if } x \geq 0 \ 0 & ext{else} \end{cases}$$

|01 PERCEPTRON

MULTILAYER PERCEPTRON

$$\hat{y}=f(w_2h+b_2)$$

$$h=f(w_1x+b_1)$$

$$f(x) = egin{cases} 1 & ext{if } x \geq 0 \ 0 & ext{else} \end{cases}$$

01 PERCEPTRON

ACTIVATION FUNCTIONS

Step

 $f(x) = egin{cases} 1 & ext{if } x \geq 0 \ 0 & ext{else} \end{cases}$

Sigmoid

$$\sigma(x)=rac{1}{1+e^{-x}}$$

Tanh

$$anh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$$

ReLU

$$anh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}} \qquad \qquad relu(x)=max(0,x)=x^+$$

|01 PERCEPTRON

ACTIVATION FUNCTIONS

Softmax

$$p_i = rac{e^{x_i}}{\sum_j e^{x_j}}$$

CONVOLUTION

Signal Processing 101

|02 CONVOLUTION

CONVOLUTION CROSS CORRELATION

$$(fst g)(x)=\int_{-\infty}^{+\infty}f(x)g(x-t)dt$$

Weight Sharing

|02 CONVOLUTION

POOLING

Dimensionality Reduction

|02 CONVOLUTION

CONVOLUTIONAL NEURAL NETWORK

RECURRENT

Backprop Through Time

RECURRENT CELLS

Weight Sharing & Backprop Through Time

$$egin{aligned} a_t &= g_1(W_{aa}a_{t-1} + W_{ax}x_t + b_a) \ & \ y_t &= g_2(W_{ya}a_t + b_y) \end{aligned}$$

ARCHITECTURES

One to One

Traditional Neural Network

ARCHITECTURES

One to Many

Music Generation

ARCHITECTURES

Many to One

Sentiment Classification

ARCHITECTURES

Many to Many

Name Entity Recognition

ARCHITECTURES

Many to Many

Machine Translation

ADVANTAGES

Infinite Input Length
Model Size Invariant
Historical Information
Weight Sharing Through Time

DRAWBACKS

Computationally Slow
Long Time Dependency Lost Over Time
Future Input not Considered
Vanishing/Exploding Gradient

LSTM

Gates I/O

Forget Gate Previous Input
Update Gate Cell State
Output Gate Output State

Still **Suffers** from **Exploding Gradient**

STACKED

BIDIRECTIONAL

AUTO-ENCODER

Hierarchical Compression is Key

|04 AUTO-ENCODER|

AUTO-ENCODER

$$z=e(x)$$
 $\hat{y}=d(z)$

$$loss = rac{1}{N} \sum_{i}^{N} (\hat{y}_i - y_i)^2$$

04 AUTO-ENCODER

VARIATIONAL AUTO-ENCODER

$$egin{aligned} <\mu,\sigma>&=e(x)\ z=\mu\cdot\epsilon+\sigma & \epsilon \sim \mathcal{N}(0,1)\ \hat{y}&=d(z) \end{aligned}$$

$$loss = rac{1}{N} \sum_{i}^{N} (\hat{y}_i - y_i)^2 + KL(\mathcal{N}(\mu_i, \sigma_i) || \mathcal{N}(0, 1))$$

GENERATIVE ADVERSARIAL NETWORK

Min Max for the Win

| 05 GENERATIVE ADVERSARIAL NETWORK

GENERATIVE ADVERSARIAL NETWORK

$$\min_{G} \max_{D} = \mathbb{E}_{x \sim p_r}[log(D(x))] + \mathbb{E}_{x \sim p_g}[1 - log(D(x))]$$

| 05 GENERATIVE ADVERSARIAL NETWORK

WASSERSTEIN

$$W_{(p_r,p_g)} = \inf_{\gamma \sim \pi(p_r,p_g)} \mathbb{E}_{(x,y) \sim \gamma}[\|x-y\|]$$

ATTENTION

It is All You Need

