

Towns

Columbia

Middletown

Harrisburg

Newport

Lewistown

Hollidaysburg

Johnstown

Blairsville

Pittsburgh

Dunnsburg

Williamsport

Northumberland

Berwick

Easton

New Hope

Bristol

Philadelphia

Paoli

Parkesburg

Lancaster

Variables

Corn

Wheat

Flour

Whiskey

Groceries

Dry Goods

Total Variance Explained

	Initial Eigenvalues				Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	% of Va	ariance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulativ e %
1	2.533	-	42.211	42.211	2.533	42.211	42.211	1.887	31.452	31.452
2	1.565	:	26.084	68.295	1.565	26.084	68.295	1.880	31.328	62.780
3	1.504	:	25.073	93.368	1.504	25.073	93.368	1.835	30.587	93.368
4	.174	_	2.901	96.269						
5	.119		1.988	98.257						
6	.105		1.743	100.000						

Extraction Method: Principal Component Analysis.

In this case, 3 components contain 93.368% of the variation of the 6 original variables. Note that there are as many components as original input variables.

Component 1 explains 42.211% of the variation, component 2 explains 26.084%, and component 3 explains 25.073%.

The remaining 3 components explain only 6.632%.

A scree plot graphs the amount of variation explained by each component.

Rotated Component Matrix (a)

	Component						
	1	2	3				
Corn	065	.936	.214				
Wheat	104	.952	057				
Groceries	.962	092	086				
Dry Goods	.963	074	092				
Flour	126	097	.954				
Whiskey	057	.275	.927				

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 4 iterations.

Highest Component Loading

Component 1: Groceries and dry goods.

Component 2: Corn and wheat.

Component 3: Flour and whiskey.

Component Plot in Rotated Space

Note how the variables that make up each component fall close to each other in the 3-dimensional sample space.

What do these components mean (how do we interpret them)?

- Component 1 (groceries and dry goods) these two items are highly processed and value added.
- Component 2 (corn and wheat) these two items are not processed (raw) and have no value added.
- Component 3 (flour and whiskey) these two items are moderately processed and value added.

It appears that the components are indicators of either the amount of processing or value adding (or both). The most challenging part of PCA is interpreting the components.

- 1. The higher the component loadings, the more important that variable is to the component.
- 2. Combinations of positive and negative loadings are interpreted as 'mixed'.
- 3. The specific sign of the is <u>not important</u>.
- 4. ALWAYS use the ROTATED component matrix!!

Component score: the new variable value based on the observation's component loading and the standardized value of the original variable, summed over all variables.

$$Score_{ik} = \sum D_{ij} L_{jk}$$

where D_{ij} is the standardized value for observation i on variable j and L_{ik} is the loading of variable j on component k.

Examining the component scores for each town may give some clues as to the interpretation of the components.

Scoring highly on a single component simply means that the original variable values for these locations are overwhelmingly explained by a single component.

In this case, it means that the variation among ALL of the variables for Philadelphia (for example) is more completely explained by a single component composed of groceries and dry goods.

Rotated Component Matrix

	Component					
	1	2	3			
Corn	065	.936	.214			
Wheat	104	.952	057			
Groceries	.962	092	086			
Dry Goods	.963	074	092			
Flour	126	097	.954			
Whiskey	057	.275	.927			

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 4 iterations.

Town Component Scores

Town	Component 1	Component 2	Component 3	3
Columbia	0.31989	-0.44216	-0.44369	
Middletown	-0.37101	-0.24531	-0.47020	← Middletown is a 'mixed'
Harrisburg	-0.00974	-0.06105	0.32792	town because it loads on
Newport	-0.38678	0.40935	-0.62996	all components equally.
Lewistown	-0.33132	1.27318	-0.52170	an components equally.
Hollidaysburg	-0.44018	-0.49770	-0.59722	
Johnstown	-0.44188	-0.48447	-0.63736	
Blairsville	-0.42552	-0.38759	-0.51107	
Pittsburgh	-0.13834	-0.75021	1.05942	
Dunnsburg	-0.42728	0.03072	-0.73622	
Williamsport	-0.28812	-0.47716	-0.62453	
Northumberland	-0.00398	3.82169	0.09538	
Berwick	-0.36503	-0.46398	-0.60501	
Easton	-0.02349	-0.00587	3.28970	
New Hope	-0.40354	-0.42291	-0.25891	
Bristol	0.60267	-0.32311	-0.50086	
Philadelphia	4.08309	-0.14799	-0.24733	Philly is a 'processed
Paoli	-0.41174	-0.35103	-0.38109	goods 'town.
Parkesburg	-0.25890	0.05125	0.92910	
Lancaster	-0.27880	-0.52566	1.46363	
			_	

Component 1: Processed Goods

The *green* town were producers of <u>processed goods</u>, while the *red* towns were consumers of those goods.

Component 2: Non-Processed Goods

The *green* town were producers of <u>non-processed</u> goods, while the *red* towns were consumers of those goods.

Component 3: Partially Processed Goods

The *green* town were producers of <u>partially processed</u> goods, while the *red* towns were consumers of those goods.

What information did PCA provide concerning the goods exported by the canal towns?

- The goods fell into recognizable categories (highly processed, moderately processed, not processed).
- A small number of towns were responsible for exporting most of these goods.
- The location of these towns relative to the goods they produced make sense.
 - Industrial towns on the Columbia railroad exported finished goods.
 - Small farming towns on the canal exported produce.
 - Midsize towns exported moderately processed goods.

Without the use of Principal Component Analyses these associations would be difficult to determine.

Principal Component Analyses is also used to remove correlation among independent variables that are to be used in multivariate regression analysis.

Correlation Matrix

		Corn	Wheat	Groceries	DryGoods	Flour	Whiskey
Correlation	Corn	1.000	.812	163	160	.108	.450
	Wheat	.812	1.000	183	157	096	.198
	Groceries	163	183	1.000	.883	191	164
	DryGoods	160	157	.883	1.000	198	163
	Flour	.108	096	191	198	1.000	.806
	Whiskey	.450	.198	164	163	.806	1.000

Correlation

 Dry Goods
 Groceries
 PCA 2
 PCA 3

 PCA 1
 0.963
 0.962
 0.000
 0.000

Note that PCA1 is highly correlated to dry goods and groceries, but uncorrelated to PCA2 and PCA3.