Cálculo diferencial e integral I Ayudantía 17

Teorema 1. Todo número positivo admite una raíz cuadrada positiva, es decir, si $\alpha \in \mathbb{R}$ cumple $\alpha > 0$, entonces existe $x \in \mathbb{R}$ tal que $x^2 = \alpha$.

Demostración. Consideremos la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2$. Ya sabemos que f es continua en \mathbb{R} . Demostraremos que existe $x \in \mathbb{R}$ tal que $f(x) = \alpha$. Tenemos que

$$f(a+1) = a^2 + 2a + 1 > a > 0 = f(0),$$

y como f es continua en [0, a+1], a partir del Teorema del Valor Intermedio se sigue que existe $x \in (0, a+1)$ tal que f(x) = a, esto es, x > 0 y $x^2 = a$. Esto termina la demostración.

Observación 2. Notemos que el Teorema 1 se puede extender aún más:

Teorema de existencia de raíces n-ésimas. Sean $n \in \mathbb{N}$ y $\alpha \in \mathbb{R}$.

- (I) Si $\alpha > 0$, entonces existe $x \in \mathbb{R}$ con x > 0 tal que $x^n = \alpha$, es decir, existe una raíz n-ésima positiva de α .
- (II) Si n es impar, entonces existe una raíz n-ésima de α para toda $\alpha \in \mathbb{R}$.

Notemos que la prueba del inciso (I) es totalmente análoga a la realizada para demostrar el Teorema 1. Por otro lado, para demostrar el inciso (II) usamos el inciso (I): el caso $\alpha \geq 0$ es considerado en el primer inciso; ahora supongamos que $\alpha < 0$, entonces $-\alpha > 0$, por lo cual, existe $x \in \mathbb{R}$ tal que $x^n = -\alpha$, así que

$$(-x)^n = (-1)^n x^n = (-1)(-\alpha) = \alpha$$

porque n es impar (justo aquí es donde se necesita la hipótesis de que n es impar).

El siguiente resultado generaliza aún más el teorema anterior.

Teorema 3. Si $n \in \mathbb{N}$ es impar, entonces cualquier ecuación de la forma

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_0 = 0$$

admite una raíz.

Demostración. Observe que queremos demostrar que existe $x_0 \in \mathbb{R}$ tal que

$$x_0^n + a_{n-1}x^{n-1} + \dots + a_0 = 0.$$

Como es de esperarse, utilizaremos una función auxiliar y trataremos de aplicar el Teorema del Valor Intermedio en un intervalo adecuado. Sin mayor sorpresa, consideremos $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$. Ahora, notemos que para $x \neq 0$ se cumple que

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 = x^n \left(1 + \frac{a_{n-1}}{x^{n-1}} + \dots + \frac{a_0}{x^n}\right),$$

lo cual nos sugiere utilizar la información que tenemos sobre la función $g(x) = x^n$ que cuando n es impar toma valores positivos y valores negativos.

Notemos que por la desigualdad del triángulo y las propiedades del valor absoluto se cumple que

$$\left| \frac{a_{n-1}}{x^{n-1}} + \dots + \frac{a_0}{x^n} \right| \le \frac{|a_{n-1}|}{|x^{n-1}|} + \dots + \frac{|a_0|}{|x^n|}$$

de donde parece buena idea acotar cada término. Notemos que sin pérdida de generalidad podemos suponer que $a_k \neq 0$ para toda $k \in \{0, \dots, n-1\}$, ya que si para alguna k_0 se tiene que $a_{k_0} = 0$, entonces $\frac{|a_{k_0}|}{|x|} = 0 < \frac{1}{2n}$ para toda $x \neq 0$. Entonces, consideremos $x \in \mathbb{R}$ tal que

$$|x| > 1, 2n |a_{n-1}|, \dots, 2n |a_0|,$$
 (1)

entonces para cada $k \in \{0, ..., n-1\}$ se cumple que $|x^k| > |x|$ (¿por qué?) y también

$$\frac{|a_{n-k}|}{|x^k|} < \frac{|a_{n-k}|}{|x|} < \frac{|a_{n-k}|}{2n |a_{n-k}|} = \frac{1}{2n}.$$

Por lo tanto,

$$\left| \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \right| < \underbrace{\frac{1}{2n} + \dots + \frac{1}{2n}}_{n \text{ términos}} = \frac{1}{2},$$

de donde

$$-\frac{1}{2} < \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} < \frac{1}{2}$$

y al sumar 1 a cada lado de la primera desigualdades obtiene que

$$\frac{1}{2} < 1 + \frac{a_{n-1}}{r} + \dots + \frac{a_0}{r^n}. \tag{2}$$

A continuación, si $x_1 > 0$ cumple (1), entonces $x_1^n > 0$, así que al multiplicar cada lado de la desigualdad (2) obtenemos que

$$\frac{x_1^n}{2} < x_1^n \left(1 + \frac{a_{n-1}}{x_1} + \dots + \frac{a_0}{x_1^n} \right) = f(x_1),$$

esto es, $f(x_1) > 0$. Por otro lado, si $x_2 < 0$ cumple (1), entonces $x_2^n < 0$ porque n es impar, de donde, al multiplicar cada lado de la desigualdad (2) se sigue que

$$\frac{x_2^n}{2} > x_2^n \left(1 + \frac{a_{n-1}}{x_2} + \dots + \frac{a_0}{x_2^n} \right) = f(x_2),$$

es decir, $f(x_2) < 0$.

Finalmente, como f es continua en $[x_2, x_1]$ y $f(x_2) < 0 < f(x_1)$, por el Teorema del Valor Intermedio existe $x_0 \in (x_2, x_1)$ tal que $f(x_0) = 0$. Así, $x_0 \in \mathbb{R}$ cumple lo deseado y esto termina la prueba.

Observación 4. De manera natural se esperaría tener un resultado análogo al Teorema 3 en el caso n par, sin embargo ello no es posible: basta considerar $x^2 + 1 = 0$ que no admite ninguna raíz en R.

En virtud de la observación anterior, ¿qué podemos hacer? "Geométricamente" sabemos que hay una solución cuando la gráfica de la función $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$, con n par, interseca al eje X, por lo cual transformamos la primera pregunta en la siguiente: ¿cuándo ocurre tal intersección? Como veremos en el siguiente teorema, se cumple que siempre existe un valor mínimo, el cual nos permite conocer si habrá dicha intersección o no. Más aún, nos dará una familia de ecuaciones que tendrán solución y una familia de ecuaciones que no la tendrán (ver Teorema 6).

Teorema 5. Si $n \in \mathbb{N}$ es par $y f : \mathbb{R} \to \mathbb{R}$ está dada por $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$, entonces existe $y \in \mathbb{R}$ tal que $f(y) \leq f(x)$ para toda $x \in \mathbb{R}$.

Demostración. De manera análoga a la construcción realizada en la prueba del Teorema 3, si

$$M = \max \{1, 2n |a_{n-1}|, \dots, 2n |a_0|\},\$$

entonces para toda $x \in \mathbb{R}$ tal que |x| > M se cumple que

$$\frac{1}{2} \le 1 + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n}.$$

Ya que n es par, $x^n > 0$ para toda $x \neq 0$, por lo cual

$$\frac{x^n}{2} < x^n \left(1 + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \right) = f(x)$$

cuando |x| > M. Usaremos 0 y f(0) para iniciar las comparaciones. Consideremos

$$b = \max \{2(|f(0)| + 1), M + 1\}$$

y notemos que esto implica que

$$b^n > 2^n (|f(0)| + 1)^n > 2 (|f(0)| + 1) > 2 |f(0)| > 2f(0)$$

y b > M. Por lo anterior, si $x \ge b$, entonces

$$f(x) \ge \frac{x^n}{2} \ge \frac{b^n}{2} \ge f(0).$$

De manera análoga, si $x \leq -b$, entonces

$$f(x) \ge \frac{x^n}{2} \ge \frac{(-b)^n}{2} = \frac{b^n}{2} \ge f(0).$$

Las dos desigualdades anteriores implican que si $x \ge b$ o $x \le -b$, entonces $f(x) \ge f(0)$.

Ahora, f es continua en [-b,b], así que por el Teorema de existencia de mínimos y máximos, existe $y \in [-b,b]$ tal que $f(y) \le f(0)$ si $x \in [-b,b]$. En particular, $f(y) \le f(0)$, por lo cual, si $x \ge b$ o $x \le -b$ entonces $f(x) \ge f(0) \ge f(y)$. En conclusión, para toda $x \in \mathbb{R}$ se cumple que $f(x) \ge f(y)$. Esto termina la prueba.

Teorema 6. Sea $n \in \mathbb{N}$ un número par. Para cada $c \in \mathbb{R}$ consideremos la ecuación

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_0 = c. (3)$$

Entonces existe $m \in \mathbb{R}$ tal que (3) admite una solución para $c \geq m$ y no tiene solución para c < m.

Demostración. Consideremos $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$. Por el Teorema 5 existe $y \in \mathbb{R}$ tal que $f(y) \leq f(x)$ para toda $x \in \mathbb{R}$. Proponemos m = f(y). Observamos que si c < m, entonces (3) no tiene solución porque $f(x) \geq f(y) = m > c$ para toda $x \in \mathbb{R}$. Ahora, si c = m, entonces y es una solución de (3). Finalmente, supongamos que c > m. De manera análoga a la construcción hecha en la prueba del Teorema 5, consideremos

$$b = \max \{2(|c|+1), M+1, y+1\}$$

con M como en la mencionada prueba. Entonces, b > y y también

$$b^{n} \ge 2^{n} (|c|+1)^{n} > 2 (|c|+1) \ge 2 |c| \ge 2c$$

por lo cual

$$f(b) \ge \frac{b^n}{2} > c.$$

Por lo tanto, como f es continua en [y,b] y f(y) < c < f(b), por el Teorema del Valor Intermedio existe $x_0 \in (y,b)$ tal que $f(x_0) = c$, por lo cual x_0 es una solución de (3) en este caso. Esto termina la prueba.

Observación 7. Note que el teorema anterior nos dice que "subiendo" o "bajando" lo suficiente la gráfica de f, la ecuación (3) correspondiente tendrá, o no, soluciones.

