(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2003—82117

(P2003-82117A)

(43)公開日 平成15年3月19日(2003.3.19)

						144 -
	_					(参考)
C08J	5/04	•	CEZ		4F072	
D03D	1/00			Α	4L032	
	15/12			Z	4L033	
D06M	15/53				4L048	
	15/55					•
查請求 未請求	請求	項の数23	OL	(全16]	頁) 最終買	ぼに続く しんこうしん かいかい かいかい かいかい かいかい かいかい かいかい かいかい かい
5065) (71) <u>E</u>	出願人	0000031	59			
		東レ株式	代会社			
		東京都中	中央区日.	本橋室町	72丁目2番	1号
(72) 3	è明者	和田原	英輔			
3263)		愛媛県信	尹郡松	前町大字	哈井1515番 :	地 東
	レ株式会社愛媛工場内					
(72) 3	è明者	西村 明	月			· .
			尹郡松	前町大字	≥筒井1515番:	地 東
		レ株式会	会社愛媛	工場内		
(72) 3	è明者	堀部 有	75天			
, , ,		愛媛県信	尹予郡松	前町大字	2 筒井1515番:	地 東
					, ,	_ ,
		レ株式会	会任愛媛	工場内	最終買	รีเว
	D03D D06M 查請求 未請求 6065) (71)日 (72)多 3263) (72)多	C08J 5/04 D03D 1/00 15/12 D06M 15/53 15/55 查請求 未請求 請求 (71)出願人	C08J 5/04 D03D 1/00 15/12 D06M 15/53 15/55 査請求 未請求 請求項の数23 (71)出願人 0000031 東レ株式 東京都等 (72)発明者 和田原 受媛県信 レ株式会 (72)発明者 西村 明 愛媛県信	C08J 5/04 CEZ D03D 1/00 15/12 D06M 15/53 15/55 査請求 未請求 請求項の数23 O L 6065) (71)出願人 000003159 東レ株式会社東京都中央区日 (72)発明者 和田原 英輔愛媛県伊予郡松レ株式会社愛媛 (72)発明者 西村 明愛媛県伊予郡松レ株式会社愛媛 (72)発明者 堀部 郁夫愛媛県伊予郡松 (72)発明者 堀部 郁夫愛媛県伊予郡松	C08J 5/04 CEZ D03D 1/00 A 15/12 Z D06M 15/53 15/55 査請求 未請求 請求項の数23 OL (全16) 6065) (71)出願人 000003159 東レ株式会社 東京都中央区日本橋室町 (72)発明者 和田原 英輔 愛媛県伊予郡松前町大学 レ株式会社愛媛工場内 (72)発明者 西村 明 愛媛県伊予郡松前町大学 レ株式会社愛媛工場内 (72)発明者 堀部 郁夫	C08J 5/04 CEZ 4F072 D03D 1/00 A 4L032 15/12 Z 4L033 D06M 15/53 4L048 15/55 査請求 未請求 請求項の数23 OL (全16頁) 最終頁 6065) (71)出願人 000003159 東レ株式会社 東京都中央区日本橋室町2丁目2番 (72)発明者 和田原 英輔 愛媛県伊予郡松前町大字筒井1515番・レ株式会社愛媛工場内 (72)発明者 西村 明 愛媛県伊予郡松前町大字筒井1515番・レ株式会社愛媛工場内 (72)発明者 堀部 郁夫 愛媛県伊予郡松前町大字筒井1515番・レ株式会社愛媛工場内 (72)発明者 堀部 郁夫

(54) 【発明の名称】炭素繊維強化基材、それからなるプリフォームおよび複合材料

(57)【要約】

【課題】樹脂の含浸性が良好で、力学特性に優れる複合材料を生産性よく得られるだけでなく、優れた取扱性を有する炭素繊維強化基材、およびそれを積層してなるプリフォーム、ならびにプリフォームに樹脂を含浸してなる複合材料を提供する。

【解決手段】少なくとも連続した炭素繊維22を用いてなる布帛と、第1の樹脂24とからなる炭素繊維強化基材21であって、用いる炭素繊維の引張弾性率が210GPa以上かつ破壊歪エネルギーが40MJ/m³以上であり、第1の樹脂が布帛100重量部に対して1~20重量部の範囲内で布帛に接着していることを特徴とする。

-

【特許請求の範囲】

【請求項1】 少なくとも、連続した炭素繊維を用いてなる布帛と、第1の樹脂とからなる炭素繊維強化基材であって、用いる炭素繊維の引張弾性率が210GPa以上、かつ破壊歪エネルギーが40MJ/m³以上であり、第1の樹脂が布帛100重量部に対して1~20重量部の範囲内で布帛に接着していることを特徴とする炭素繊維強化基材。

【請求項2】 第1の樹脂が布帛100重量部に対して 1~10重量部の範囲内で布帛に接着していることを特 10 徴とする請求項1に記載の炭素繊維強化基材。

【請求項3】 第1の樹脂が布帛の表面に偏在して接着 していることを特徴とする請求項1または2に記載の炭 素繊維強化基材。

【請求項4】 前記炭素繊維の引張弾性率が280を超え500GPa未満であり、かつ破壊歪エネルギーが53MJ/ m^3 以上であることを特徴とする請求項 $1\sim3$ のいずれかに記載の炭素繊維強化基材。

【請求項 5 】 布帛が一方向性織物、二方向性織物または一方向性シートであり、その目付が $50\sim500$ g / 20 m^2 の範囲内で、かつ厚みが 0. $1\sim0$. 8 m の範囲内であることを特徴とする請求項 $1\sim4$ のいずれかに記載の炭素繊維強化基材。

- 【請求項6】 布帛が一方向性織物または一方向性シートであり、その通気性が $10\sim200\,\mathrm{cm}^\mathrm{s}/\mathrm{cm}^\mathrm{t}$ ・ s e cの範囲内であることを特徴とする請求項 $1\sim5$ のいずれかに記載の炭素繊維強化基材。

【請求項7】 第1の樹脂が布帛の表面に点在し、その 点の直径が1mm以下であることを特徴とする請求項1 ~6のいずれかに記載の炭素繊維強化基材。

【請求項8】 第1の樹脂が布帛の表面に不連続状に存在していることを特徴とする請求項1~6のいずれかに記載の炭素繊維強化基材。

【請求項9】 第1の樹脂が布帛の表面に接着しており、その第1の樹脂の平均厚さが $5\sim250\mu$ m以下であることを特徴とする請求項 $1\sim8$ のいずれかに基材の炭素繊維強化基材。

【請求項10】 第1の樹脂の融点または流動開始温度 が50~150℃の範囲内であることを特徴とする請求 項1~9のいずれかに記載の炭素繊維強化基材。

【請求項11】 第1の樹脂の主成分が熱硬化性樹脂であることを特徴とする請求項1~10のいずれかに記載の炭素繊維強化基材。

【請求項12】 第1の樹脂の主成分が熱可塑性樹脂であることを特徴とする請求項1~10のいずれかに記載の炭素繊維強化基材。

【請求項13】 熱可塑性樹脂が第1の樹脂の70~100重量%の範囲内であることを特徴とする請求項12に記載の炭素繊維強化基材。

【請求項14】 第1の樹脂の主成分がエポキシ、ポリ 50 複合材料に関するものである。

アミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルスルフォンおよびフェノキシから選ばれる少なくとも1種であることを特徴とする請求項1~13のいずれかに記載の炭素繊維基材。

【請求項15】 第1の樹脂よりも融点または流動開始 温度が高い第2の樹脂が、布帛100重量部に対して1 ~10重量部の範囲内で布帛に接着していることを特徴 とする請求項1~14のいずれかに記載の炭素繊維強化 基材。

【請求項16】 第1の樹脂の融点もしくは流動開始温度において溶解しないまたは流動しない第2の樹脂が、布帛100重量部に対して1~10重量部の範囲内で布帛に接着していることを特徴とする請求項1~14のいずれかに記載の炭素繊維強化基材。

【請求項17】 第2の樹脂が、第1の樹脂により布帛の表面に接着されていることを特徴とする請求項15または16に記載の炭素繊維強化基材。

【請求項18】 第2の樹脂が、平均粒子直径が1~5 00μmの範囲内の粒子であることを特徴とする請求項 15~17のいずれかに記載の炭素繊維強化基材。

【請求項19】 第2の樹脂の主成分が熱可塑性樹脂であることを特徴とする請求項15~18のいずれかに記載の炭素繊維強化基材。

【請求項20】 第2の樹脂の主成分がガラス転移点が30~280℃の範囲内のポリアミド、ポリアミドイミド、ポリエーテルイミドおよびポリエーテルスルフォンから選ばれる少なくとも1種の熱可塑性樹脂であることを特徴とする請求項15~19のいずれかに記載の炭素繊維強化基材。

30 【請求項21】 少なくとも請求項1~20のいずれかに記載の炭素繊維強化基材が、少なくとも2層以上積層されてなるプリフォームであって、炭素繊維強化基材同士が、第1の樹脂または第2の樹脂により接着して一体化していることを特徴とするプリフォーム。

【請求項22】 少なくとも請求項21に記載のプリフォームと、第3の樹脂とからなる複合材料であって、プリフォームに第1の樹脂と異なる第3の樹脂が含浸したものであることを特徴とする複合材料。

【請求項23】 複合材料の用途が、航空機、自動車、 40 または船舶の輸送機器における一次構造部材、二次構造 部材、外装部材、内装部材もしくはそれらの部品の内の いずれかであることを特徴とする請求項22に記載の複 合材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、炭素繊維を強化繊維とするプリフォームおよびそれからなる力学特性に優れる複合材料が生産性良く得られると共に、優れた取り扱い性を有する炭素繊維強化基材、プリフォームおよび複合材料に関するものである。

3

【0002】より詳しくは、例えば航空機や自動車等の構造部材で強く要求される衝撃付与後の圧縮強度または湿熱処理後の高温圧縮強度等の力学特性に優れ、かつ樹脂の含浸性が良好で複合材料を生産性よく得られるだけでなく、基材のコシ、形態安定性、賦型性、積層する際のタック性等に優れた取り扱い性を有する炭素繊維強化基材、それを積層してなるプリフォーム、およびプリフォームに樹脂を含浸してなる複合材料に関するものである。

[0003]

【従来の技術】従来より、炭素繊維を強化繊維とした複合材料は、優れた力学特性、軽量化等の要求特性を満たすことから主に航空、宇宙、スポーツ用途に用いられてきた。これらの代表的な製造方法としては、オートクレーブ成形法が知られている。かかる成形法では、一方向に引きそろえられた炭素繊維シートに炭素繊維にマトリックス樹脂を予め含浸させたプリプレグを、成形型に積み重ねてオートクレーブにて加熱・加圧して複合材料を成形する。ここで用いる基材としてのプリプレグは、それを用いると極めて信頼性の高い複合材料が得られる利20点があるが、コシが強すぎて賦形しにくいこと、製造に高いコストがかかること、生産性が低いことに問題があった。

【0004】一方、複合材料の生産性に優れる成形法としては、例えばレジン・トランスファー・モールディング成形法 (RTM) 等の注入成形が挙げられる。かかるRTMでは、マトリックス樹脂が予備含浸されていない(ドライな)炭素繊維からなる基材を複雑な成形型の中に配置して、液状(低粘度)のマトリックス樹脂を注入することにより炭素繊維中にマトリックス樹脂を含浸させてを成形する。

【0005】ところがこの注入成形は、複合材料の生産性には優れるが、用いる基材(例えばドライな織物等)が目ズレし易い(形態不安定)、基材にコシがなさすぎるため容易に折れ曲がる、積層した時に基材同士を接着できない(タック性がない)等の基材の取り扱い性に関する問題があった。この他にも、マトリックス樹脂が低粘度である必要があるため、例えばプリプレグに用いられる高粘度のものに比べて力学特性が低い等の問題等があり、これらの諸問題により炭素繊維本来の特性を十分 40 発現できずに、複合材料の力学特性を損なう問題を引き起こしていた。

【0006】上記問題に対し、例えば米国特許第5,071,711号明細費等では、強化繊維布帛に熱可塑ライクな樹脂を布帛に付与し、基材としてのドライな織物の取り扱い性の向上、注入成形に用いるプリフォーム形態安定化に関する技術が提案されている。

【0007】また、James C. SeferisらはJournal of A dvanced Materials, Volume32, No. 3, July 2000, P27-34、Composites part A, Volume32, 2001, P721-725等で、エポ 50

キシ樹脂とエラストマー粒子またはポリアミド6とを配合した樹脂を織物上に塗布することにより、注入成形によって得られるCFRPの力学特性 (Model, IIの層間破壊靭性等) が向上することを報告している。

【0008】しかしながら、以上の提案では、基材の取り扱い性は向上するものの、力学特性は向上しない、または向上が不十分なものであった。つまり、例えば航空機の一次構造部材に要求されるレベルの極めて高い力学特性は、織物等に樹脂を塗布するだけで達成できず、使用する炭素繊維自体が必要な特性を有していない場合には、かかる複合材料もまた必要な力学特性(特に衝撃付与後の圧縮強度)を発現できないのである。

【0009】また、以上の提案で記載されている注入成形では、単に一方向に配列した炭素繊維シートは、ドライな状態では繊維配向を維持したまま取り扱いできないため、二方向性織物を用いている。しかしながら、例えば航空機の一次構造部材においては、非常に高い力学特性(特に、衝撃付与後の圧縮強度、湿熱処理後の高温圧縮強度)が要求される。二方向性織物では、炭素繊維を二方向に織組織するため、それぞれ一方向における強化繊維量は本質的に半分となること、たて糸とよこ糸とがほぼ同じ繊度であるため、たて糸とよこ糸の交錯点では炭素繊維の大きな屈曲(クリンプ)が発生することにより、一方向に炭素繊維を配列したプリプレグの半分レベルの力学特性しか発現しなかった。

【0010】すなわち、用いる炭素繊維に必要な特性や、それを用いる布帛形態が、高い力学特性を発現するために特に重要な要因であるにも関わらず、そのことに関する記載は上記提案では全く開示されておらず、本発明の課題を満たす技術が渇望されていた。

[0011]

【発明が解決しようとする課題】本発明は、かかる従来技術の問題点の解決を目的とするものであり、具体的には含浸性が良好で、衝撃付与後または湿熱処理後の圧縮強度等の力学特性に優れる複合材料を生産性良く得られるだけでなく、基材のコシ、形態安定性、賦型性、タック性等に優れた取り扱い性を有する炭素繊維強化基材、それからなるプリフォームおよび複合材料を提供せんとするものである。

0 [0012]

【課題を解決するための手段】本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の炭素繊維強化基材は、少なくとも、連続した炭素繊維を用いてなる布帛と、第1の樹脂とからなる炭素繊維強化基材であって、用いる炭素繊維の引張弾性率が210GPa以上、かつ破壊歪エネルギーが40MJ/m³以上であり、第1の樹脂が布帛100重量部に対して1~20重量部の範囲内で布帛に接着していることを特徴とする。

【0013】また、本発明のプリフォームは、かかる炭

素繊維強化基材が少なくとも2層以上積層され、それぞれの炭素繊維強化基材同士が第1の樹脂または第2の樹脂により接着されていることを特徴とする。

【0014】更に、本発明の複合材料は、かかるプリフォームに第1の樹脂と同一または異なる第3の樹脂が含浸されてなることを特徴とする。

[0015]

【発明の実施の形態】本発明の炭素繊維強化基材は、少なくとも、連続した炭素繊維を用いてなる布帛と、第1の樹脂とからなる炭素繊維強化基材であって、用いる炭 10素繊維の引張弾性率が210GPa以上かつ破壊歪エネルギーが40MJ/m³以上であり、第1の樹脂が布帛100重量部に対して1~20重量部の範囲内で布帛に接着しているものである。

【0016】本発明の構成要素の布帛は、連続した炭素 繊維を用いてなる。ここで連続した炭素繊維とは、布帛 の中において炭素繊維が実質的に連続であることを指 す。

【0017】本発明に用いる炭素繊維としては、引張弾性率が210GPa以上かつ破壊歪エネルギーが40M 20 J/m³以上である。より好ましい引張弾性率は250を超え600GPa未満、とりわけ290を超え400GPa-未満であるのが好ましい。かかる引張弾性率が210GPa未満であると、複合材料の力学特性が充分でなく、炭素繊維を用いる意味が希薄になってしまう。上記の引張弾性率は、JIS R 7601に準拠して測定される値を指し、単位はGPaである。

【0018】また、特に衝撃付与後の常温圧縮強度 (Co mpression After Impact 、以下CAIと記す)等の優 れた力学特性を得るには、より好ましい破壊歪エネルギ ーは45MJ/m³以上、更に好ましくは53MJ/m³ 以上、とりわけ56MJ/m³以上であるのが好まし い。なお、破壊歪エネルギーは高ければ高いほどよく、 その上限値はないが、80MJ/m³以下であるのが一 般的である。かかる破壊歪エネルギーが40MJ/m³ 未満であると、衝撃を受けた場合に炭素繊維が容易に破 断してしまうため、特に一方向性の布帛にて疑似等方積 層構成を有する複合材料において、CAIに著しく劣 り、力学特性に優れる複合材料を得ることができない。 つまり、本発明のような高い破壊歪エネルギーを有する 炭素繊維である場合に限り、衝撃を受けた場合に炭素繊 維が容易には破断せずに連続繊維の状態を保てるため に、優れた力学特性(特にCAI)を達成できるのであ る。なお、かかるCAIは、輸送機器(特に航空機)の 構造(特に一次構造)部材として用いる場合に非常に重 視される力学特性であり、複合材料の用途が前記用途で ある場合はその必要性は一層高いと言える。

【0019】上記の破壊歪エネルギー(W) は、JIS R 7601に準拠して測定された引張強度(σ)、

引張弾性率 (E) としたとき、 (W) = $(\sigma)^2/2 \times$ (E) で定義される値を指し、単位は MJ/m^3 (10 6 × J/m^3) である。

【0020】本発明に用いる第1の樹脂は、上述したとおり、布帛100重量部に対して1~20重量部の範囲内で、より好ましくは1~10重量部の範囲内で布帛に接着している。かかる第1の樹脂は、布帛の内部に接着していてもその表面に偏在して接着していてもよい。すなわち、本発明において偏在とは、第1の樹脂の70体積%以上、好ましくは80体積%以上、更に好ましくは90体積%以上が表面に存在している状態のことを言う。上記範囲内で第1の樹脂が布帛に接着していると、炭素繊維強化基材を積層してプリフォームを得る際の基材同士のタック性(接着性)が付与できる。更に、布帛に適度なコシが生じさせるだけでなく、布帛が織物等の場合には目ズレを防止する等の布帛の形態安定効果をも発現し、取り扱い性に優れた炭素繊維強化基材が得られる。

【0021】また、この他にも本発明の最大の特徴として、第1の樹脂が、炭素繊維強化基材を積層して得られる複合材料において、クラックストッパーになること、成形時の残留応力を緩和すること等により、特に衝撃を受けた時に炭素繊維強化基材の層間の損傷を抑制でき、優れた力学特性(特にCAI、引張強度、圧縮強度)を達成できるという効果(高靭性化効果)を発現する。本発明は、かかる第1の樹脂による高靭性化効果が、上記の破壊歪エネルギーを有する炭素繊維と組み合わせて使用してこそ発現されることを見出したものである。すなわち、本発明の炭素繊維を用いない場合は、第1の樹脂による高靭性化効果は無視できるレベルに低いものとなるし、逆に本発明の炭素繊維を用いても、第1の樹脂が接着していないとその高靭性化効果は本質的に発現しない

【0022】更に、上記高靭性化効果以外にも、特に布帛の表面に第1の樹脂が偏在して接着していると、布帛を積層した場合にそれがスペーサーとなって布帛間にスペースを確保できる効果(スペーサー効果)により、特に後述のマトリックス樹脂である第3の樹脂を用いて注入成形に供した際には、そこが第3の樹脂の流路となり、含浸が容易になるだけでなく、その速度も速くなり複合材料の生産性にも優れる。それだけでなく、上記高靭性化効果が複合材料の基材層間に集中して発現するため、より一層高くその効果を発現する(層間強化効果)といった予想外の効果をも発現する場合がある。

【0023】かかる効果の面から、かかる第1の樹脂は、実質的に布帛の表面に偏在して接着しているのが本発明における好ましい態様といえる。この場合、単層布帛においては、布帛片面に偏在して接着していてもよいし、布帛の両面に偏在して接着していてもよいが、より 低コストに第1の樹脂を接着する場合は前者が好まし

く、布帛の表裏の使い分けをしたくない場合は後者が好ましい。「多層布帛においては、その表層だけに第1の樹脂を接着してもよいが、各層の表面にそれぞれ接着しておくと、より高い効果を発現するため好ましい。

【0024】本発明の上記の好ましい態様のものにおい ては、第1の樹脂が実質的にドライな布帛の表面に偏在 して接着しており、表面以外には存在していない処に特 徴を有しているものであるが、例えば特公平6-945 15号公報、特開平5-337936号公報等に開示さ れている技術のように、オートクレーブ成形法を前提と 10 しているプリプレグの表面に微粒子や織物を配置してい る技術とは明らかに異なるものである。すなわち、生産 性高く複合材料を得るという本発明の課題は、オートク レーブ成形法では達成が困難である。また、基材のコ シ、賦型性に関する取り扱い性については、上記従来技 術によるプリプレグでは解決できているとはいえない。 更には、プリプレグには既に粘着性を有したマトリック ス樹脂(本発明の第3の樹脂に相当)が含浸されている ため、その上に粒子等を配置、接着することは容易であ るが、本発明のドライで粘着性を有していない布帛上に 20 粒子等を配置するためは、全く新しい技術思想が必要で ⁻ ある。本発明と上述のプリプレグに関する技術は、一見 似ているようにみえるが、それらの課題を解決したより 高度な技術といえる。

【0025】本発明の内容をより具体的に図面を参照して説明する。

【0026】図1は、本発明の炭素繊維強化基材11の一態様を示す平面模式図である。図1において、12、13はいずれも連続した炭素繊維の単糸が複数本集束してなるたて糸束とよこ糸束であり、平織組織の布帛(二 30方向性織物)にされている。14は、第1の樹脂であり、上記布帛表面に散点状に点在して接着されて、本発明の炭素繊維強化基材11を形成している。

【0027】図2は、図1とは異なる態様の本発明の炭素繊維強化基材21の一態様を示す平面模式図である。この態様では、炭素繊維を用いてなるたて糸東22を用いる点と第1の樹脂24を用いる点は図1のものと同じであるが、補助よこ糸東23として、たて糸東に用いる炭素繊維よりも細い補助繊維を用いる点、および第1の樹脂24が不連続状に存在している点が異なっている。したがって、この布帛はいわゆる一方向性織物である。

【0028】図3は、本発明の炭素繊維強化基材31の一態様を示す断面模式図である。この態様のものにおいても、炭素繊維を用いてなるたて糸束32およびよこ糸束33から構成される布帛(二方向性織物)に、第1の樹脂34が表面に偏在して接着している。

【0029】図4は、図3とは異なる態様の本発明の炭 素繊維強化基材41の一態様を示す断面模式図である。 この態様のものにおいても、炭素繊維を用いてなるたて 糸束42と、補助繊維を用いてなる補助よこ糸43とか 50

ら構成される布帛(一方向性織物)に、第1の樹脂44 が表面に偏在している。

【0030】ここで、第1の樹脂14は、図1に示すよ うに布帛の表面に点在して接着していてもよいし、図2 に示すように第1の樹脂24が不連続状に布帛表面を覆 うように接着していてもよい。ここで、例えばフィルム 状のように全面的に布帛を覆って接着している場合、後 述の第3の樹脂の含浸(特に積層面の垂直方向) を著し く妨げるため好ましくない。また、第1の樹脂が吸水し 易い場合、フィルム状以外の形態でもフィラメント状や 不織布状のように連続的である場合には、湿熱処理によ り第1の樹脂を経由して広範囲に吸水の影響が及んでし まうため好ましくない。かかる観点から、第1の樹脂は 点状または不連続状に接着しているのが好ましい。特 に、図1に示すように布帛の表面に点在して接着してい る場合、その点の平均直径(楕円形の場合は平均短径) は小さければ小さいほど均一に布帛表面に分散させるこ とが可能となるため、1mm以下、より好ましく は25 $0 \mu m$ 以下、更に好ましくは $5 0 \mu m$ 以下である。

【0031】また、第1の樹脂が布帛の表面に偏在して接着した炭素繊維強化基材を積層する場合、隣り合う炭素繊維強化基材に第1の樹脂の凹凸が大きく、それが転写すると、炭素繊維が屈曲して常温圧縮強度(Compression Strength、以下CSと記す)や湿熱処理後の高温圧縮強度(Compression at Hot/Wet、以下CHWと記す)等、複合材料の圧縮特性を特に損なう場合がある。一方、第1の樹脂が少な過ぎると本発明の効果が発現しない。かかる観点から、布帛上の第1の樹脂の平均厚さは $5\sim250\mu$ mの範囲内であるのが好ましい。より好ましくは $10\sim100\mu$ m、更に好ましくは $15\sim60\mu$ mの範囲内である。

【0032】本発明のに用いる第1の樹脂の付着量は、 布帛100重量部に対して1~20重量部の範囲内であ る。より好ましい付着量は1~10重量部、更に好まし くは3~7重量部、とりわけ4~6重量部の範囲内であ るのが好ましい。第1の樹脂が1重量部未満であると炭 素繊維強化基材のコシ、形態安定性、賦型性、積層する 際のタック性等の取り扱い性に劣り、力学特性の向上効 果も小さいため本発明の課題を解決できない。また、2 0 重量部を超えると、力学特性、特にCHWに優れる複 合材料が得られなかったり、複合材料の炭素繊維配合率 が低くなり過ぎるだけでなく、複合材料を得る際に炭素 繊維強化基材またはプリフォームへのマトリック ス樹脂 である後述の第3の樹脂の含浸を妨げる場合がある。ま た、特に上限値が10重量部であると、複合材料の層間 を狭く、かつ平滑にできるため、CHWやCSの圧縮特 性を更に高く発現するので好ましい。

【0033】かかる布帛の形態は、連続した炭素繊維から構成されるものから適宜選択することができ、 例えば 織物(一方向性、二方向性、三次元性等)、編物、組 g

物、一方向に引き揃えられたシート(以下、一方向性シ ートと記す)、一方向性シートを2層以上重ね合わせた 多軸シート等が挙げられ、これら布帛はステッチ糸、結 節糸、樹脂 (不連続フィルム、不織布、バインダー等) 等による各種接合手段により複数のものを一体化したも のであってもよい。特に輸送機器の構造部材として用い る場合には、一方向性織物、二方向性織物、一方向性シ ートまたは多軸シート(特にステッチ接合したもの)で あるのが好ましい。中でも、航空機の一次構造部材で は、非常に高い力学特性(特に、CAI、CHW)が要 10 求されるが、二方向性織物では炭素繊維を二方向に織組 織すること、たて糸束とよこ糸束との交錯点での炭素繊 維のクリンプが大きくなること、図3に示すように第1 の樹脂がたて糸束と32とよこ糸束33との交錯点の間 に存在しない場合があることにより、要求に耐え得る力 学特性が発現しにくい場合がある。つまり、かかる問題 が確実に解消できる点で、本発明で使用する布帛として は、一方向性織物または一方向性シートであるのが好ま しい。更に、マトリックス樹脂の含浸の面を考慮する と、ストランド間に補助よこ糸束の交絡による小さいク 20 リンプが形成されている一方向性織物がとりわけ好まし `い。かかるクリンプはマトリックス樹脂の含浸流路とな り、格段に含浸性を向上させる効果を奏し、本発明にお - ける最適な布帛といえる。

【0034】かかる一方向性織物をより具体的に説明する。図5は、本発明の一方向性織物の一態様を示す斜視図である。一方向性織物51は、一方向に互いに平行に配列された炭素繊維を用いてなるたて糸束52と、それと直交する補助繊維を用いてなる補助よこ糸束53とが、互いに交錯して平織組織をなしたものである。

【0035】かかる一方向性織物において、たて糸束52は5千本~50千本(より好ましくは10千本~25千本)の範囲内のフィラメントを有するものが好ましい。別の視点からは、たて糸束52は300~5000texの範囲内であるものが好ましい。かかる範囲より小さいと、織物での交錯点が多すぎ、クリンプが大きくなるだけでなくその数も多くなり、力学特性に劣る場合がある。一方、かかる範囲より大きいと、織物での交錯点が少なすぎ、形態安定性に劣る場合がある。

【0036】また、補助よこ糸束53を構成する補助繊 40 維は、たて糸束52と補助よこ糸束53との交錯点でのたて糸束52の屈曲 (クリンプ)を小さくして本発明の炭素繊維の特性を最大限に発現させるために、たて糸束52に用いる炭素繊維の繊度の1/5以下、より好ましくは1/10以下であるのが好ましい。その具体的な繊度は、用いる炭素繊維および補助繊維の種類、織物目付により異なるが、例えば炭素繊維として800texのものを用いて200g/ m^i の織物とする場合、補助繊維の好ましい繊度は10~100tex、より好ましくは20~50texの範囲内である。かかる補助よこ糸50

23の織密度は、布帛の形態安定、クリンプの影響の最小限化のため、 $0.3\sim6$ 本/cmの範囲内であるのが好ましく、より好ましくは $1\sim4$ 本/cmの範囲内である。

【0037】また、補助繊維の種類は任意のものが使用 できるが、布帛密度の安定性の面から成形時の加熱等に より収縮しにくいものが好ましく、例えば炭素繊維やガ ラス繊維や、アラミド、ポリアミド(特にPOY) 、P BO、PVA、PE等の有機繊維等を単独または組み合 わせて使用することができ、これらは合糸加工、 撚加 工、ウーリ加工、倦縮加工等の二次加工がされた もので もよい。更に、たて糸束や補助よこ糸束は、織組織を固 定するために、接着機能を有する成分と組み合わせて用 いることもできる。かかる接着機能を有する成分 として は、例えば、ナイロンやポリエステル等の熱可塑性樹 脂、エポキシや不飽和ポリエステルやフェノール等の熱 硬化性樹脂等を用いることができる。また、その形態と しては繊維状、粒子状、エマルジョン状、ディスパージ ョン状等の任意の形態でたて糸束や補助よこ糸束 と組み 合わせることができる。その中でも繊維状のもの を補助 繊維と撚加工、カバーリング加工して、補助よこ 糸束と して用いると、織組織の固定効果が高いため好ま しい。 【0038】本発明に用いる一方向性織物としては、図 5に示した平織組織以外にも綾織組織や朱子織組織もを 含まれるが、図6に示すノンクリンプ構造も含まれる。 図6は、本発明の一方向性織物の一態様を示す斜視図で ある。一方向性織物61は、炭素繊維を用いてなるたて 糸束62と平行に配列された補助繊維を用いてなる補助 たて糸束64と、それと直交する補助繊維を用いてなる 30 補助よこ糸束63群とが、互いに交錯してたて糸束62 が一体に保持された構造(ノンクリンプ構造)の織物で ある。かかるノンクリンプ構造によると、平織組織より も更にクリンプを小さくできるため、本発明の炭 素繊維 の特性を更に高く発現させることができる。また、 樹脂 含浸の面からも、補助繊維の存在により含浸流路 は確保 されており、非常に優れた含浸性を発現する。

【0039】かかる布帛が一方向性織物、二方向性織物または一方向性シートである場合、炭素繊維強化基材またはプリフォームへの後述の第3の樹脂の含浸の面や、力学特性の面から、その目付は $50\sim500\,\mathrm{g/m^2}$ 、より好ましくは $100\sim350\,\mathrm{g/m^2}$ 、更に好ましくは $150\sim250\,\mathrm{g/m^2}$ の範囲内である。また、その厚みは $0.1\sim0.8\,\mathrm{mm}$ 、より好ましくは $0.15\sim0.7\,\mathrm{mm}$ 、更に好ましくは $0.2\sim0.6\,\mathrm{mm}$ の範囲内であるのが好ましい。

【0040】一方、布帛が多軸シートである場合、 その目付は $150\sim1500$ g/ m^2 、より好ましくは 300 ~1000 g/ m^2 、更に好ましくは 400 ~800 g/ m^2 の範囲内である。一方向性織物等よりも目 付が大きくてもよい理由は、特に厚み方向に例えばス テッチ

糸等がある場合には、厚み方向の樹脂流路が確保される ため含浸がより容易になることや、目付が小さいと多層 にする意味合いが希薄になるためである。

【0041】かかる布帛は、樹脂の含浸性の面から、その通気性は $10\sim200\,\mathrm{cm^3/cm^2}$ ・seco範囲内、より好ましくは $12\sim120\,\mathrm{cm^3/cm^2}$ ・secoの範囲内であるのが好ましい。かかる通気性が $10\,\mathrm{cm^3/cm^2}$ ・secoの範囲内であるのが好ましい。かかる通気性が $10\,\mathrm{cm^3/cm^2}$ ・secoを意味するため好ましくない。また、通気性が $200\,\mathrm{cm^3/cm^2}$ ・secoを意味するため好ましくない。また、通気性が $200\,\mathrm{cm^3/cm^2}$ ・secoを越えると含浸性には優れるが、逆に布帛の隙間が大きくなりすぎ、複合材料にした場合に構脂リッチ部分を多く形成することによる力学特性の低下、サーマルクラックの発生等が起こるため好ましくない。なお、かかる通気性とは、 $JISL1096\,\mathrm{cm^3/cm^3}$ とによっ力学も低下、サーマルクラックの発生等が起こるため好ましくない。なお、かかる通気性とは、 $JISL1096\,\mathrm{cm^3}$ とに、本発明では大栄科学精器製作所製AP-360を用いて測定した。

【0042】また、本発明では第1の樹脂を布帛に塗布 するため、その脱落を最小限に抑え、かつ炭素繊維自体 20 の特性を最大限に発現させるため、布帛のカバーファク ターは90%以上であるのが好ましい。より好ましくは 97%以上、更に好ましくは99%以上である。かかる ・カバーファクターとは、平面状にした布帛をその垂線方 向から見て、100mm×100mmの単位面積におけ る布帛中の炭素繊維(場合によっては補助糸やステッチ 糸や結節糸等)が存在しない(カバーできていない)開 口部分の百分率を指し、カバーファクター(%)=開口 部分の合計面積(mm¹)/10000により算出され る。本発明では、かかる測定を任意の箇所で少なくとも 5回行い、その平均値を用いた。かかる開口部分に関し ては、CCDカメラやスキャナー等により光学的に取り 込まれた画像を元に画像処理を行い、合計面積を算出す る。

【0043】この様な形態を呈する布帛としては、炭素繊維束が4mm以上、好ましくは5mm以上、より好ましくは6mm以上の幅を有した扁平状で布帛化された扁平炭素繊維布帛を挙げることができ、本発明で用いる最も好ましい布帛であるといえる。かかる扁平炭素繊維布帛は更に、圧縮気体、ローラー、圧子等を用いた各種手40段による開繊処理を施すと織物厚みを小さく(複合材料の炭素繊維配合率を高く)することができるため、かかる布帛を用いるのがとりわけ好ましい。特に布帛が織物である扁平炭素繊維織物に関しては、例えば特許第295145号公報、特開平11-1840号公報等により詳しい記載がある。なお、用いる炭素繊維は、マトリックス樹脂の含浸の面や力学特性の発現率の面から、実質的に無撚のものであるのが好ましい。

【OO44】本発明に用いる第1の樹脂の融点または流 する触媒等を含むもの)、環状オリゴマー(ポリカーボ 動開始温度は、炭素繊維強化基材を積層する際のタック 50 ネート樹脂、ポリブチレンテレフタレート樹脂 等を形成

発現のための加工温度の面から50~150℃の範囲内 であるのが好ましい。より好ましくは $70\sim140$ $^{\circ}$ 、 更に好ましくは90~120℃の範囲内である。 ここで 融点とは、示差走査熱量計 (DSC) から計測される樹 脂の溶解温度を指し、DSCにて融点を示す樹脂はその 融点を基準とする。融点を示さない樹脂は、粘弾性測定 (島津製フローテスターCFT500D、昇温速度1. 5℃/分)から計測される流動開始温度を基準とする。 【0045】本発明の第1の樹脂の23℃、50%RH の吸水率は3重量%以下であるのが好ましい。より好ま しくは2.2重量%以下、更に好ましくは1.8重量% 以下、とりわけ1.4重量%以下であるのが好ましい。 平衡吸水率が3重量%を超えると、力学特性(特にCH W) に優れる複合材料が得られない場合がある。 かかる 吸水率とは、ASTM D 570に準拠して測定され る値を指す。

【0046】本発明で使用する第1の樹脂は、炭素繊維強化基材の取り扱い性を向上させ、それを用いて得られる複合材料の力学特性を向上させる樹脂であればとくに限定されず、熱硬化性樹脂および/または熱可塑性樹脂を適宜選択して使用することができる。

【0047】熱硬化性樹脂としては、例えばエポキシ、フェノール、ポリベンゾイミダゾール、ベンゾオキサジン、シアネートエステル、不飽和ポリエステル、 ビニルエステル、ユリア、メラミン、ビスマレイミド、 ポリイミド、ポリアミドイミド等や、これらの共重合体、変性体および2種類以上ブレンドした樹脂、更にエラストマーやゴム成分、硬化剤、硬化促進剤、触媒等を添加した樹脂等を使用することができる。

【0048】熱可塑性樹脂としては、例えばポリエステ ル、ポリオレフィン、スチレン系樹脂、ポリオキシメチ レン、ポリアミド、ポリウレタン、ポリウレア、 ポリジ シクロペンタジエン、ポリカーボネート、ポリメ チレン メタクリレート、ポリ塩化ビニル、ポリフェニ レンスル フィド、ポリフェニレンエーテル、ポリエーテルレイミ ド、ポリスルホン、ポリアリレート、ポリエーテルスル ホン、ポリケトン、ポリエーテルケトン、ポリエーテル エーテルケトン、ポリエーテルケトンケトン、ポリアリ レート、ポリエーテルニトリル、ポリイミド、ポリアミ ドイミド、フェノール、フェノキシ、ポリテトラフルオ ロエチレンなどのフッ素系樹脂、更にエラストマー(好 ましくはブタジエン・アクリロニトリル、その カルボン 酸またはアミン変性体、フルオロエラストマー、 ポリシ ロキサンエラストマー、)、ゴム(ブタジエン、 スチレ ン・ブタジエン、スチレン・ブタジエン・スチ レン、ス チレン・イソプレン・スチレン、天然ゴム等)、 RIM 用樹脂 (例えばポリアミド6、ポリアミド12、 ポリウ レタン、ポリウレア、ポリジシクロペンタジエンを形成 する触媒等を含むもの)、環状オリゴマー(ポリカーボ

する触媒等を含むもの)等や、これらの共重合体、変性 体、および2種類以上ブレンドした樹脂等を使用するこ とができる。

【0049】前述の熱硬化性樹脂を第1の樹脂の主成分 として用いる場合には、エポキシ、不飽和ポリエステ ル、フェノールから選ばれる少なくとも1種であるのが 好ましく、その中でもとりわけエポキシが好ましい。エ ポキシを使用すると、接着性が高いため基材の取り扱い 性に優れるだけでなく、特に後述の第3の樹脂としてエ ポキシ樹脂を用いた場合に高い力学特性を発現すること 10 ができるため好ましい。エポキシを第1の樹脂の主成分 とする場合は、硬化剤や硬化触媒等を含んでもよいし、 含まなくてもよいが、第1の樹脂のライフの面から、後 者の方が好ましい。前者の場合でも潜在性の高い硬化剤 や硬化触媒であれば、特に大きな問題とはならない。

【0050】前述の熱可塑性樹脂を第1の樹脂の主成分 として用いる場合には、ポリアミド、ポリスルフォン、 ポリエーテルスルフォン、ポリエーテルイミド、ポリフ エニレンエーテル、ポリイミド、ポリアミドイミド、フ ェノキシから選ばれる少なくとも1種のであるのが好ま 20 しく、その中でもポリアミド、ポリエーテルイミド、ポ ゛リフェニレンエーテル、ポリエーテルスルフォン、フェ ノキシがとりわけ好ましい。

【0051】かかる熱可塑性樹脂は、第1の樹脂の主成 分となり、その配合量が70~100重量%の範囲内で あることが好ましい。より好ましくは75~97重量 %、更に好ましくは80~95重量%の範囲内である。 かかる配合量が70重量%未満であると本発明の課題で ある力学特性に優れた複合材料を得にくいため好ましく ない。ここで、熱可塑性樹脂を主成分とした場合、布帛 への接着性や接着加工性が劣る場合があるため、少量の 粘着付与剤、可塑剤等を配合するのが好ましい。

【0052】本発明に用いる炭素繊維強化基材は、第1 の樹脂(より好ましくは後述の第3の樹脂)よりも融点 もしくは流動開始温度の高い第2の樹脂が、更に布帛に 布帛100重量部に対して1~10重量部の範囲内で接 着しているものであると、本発明の課題である力学特性 (特にCAI、CHW) をより一層高く発現できるため 好ましい。かかる第2の樹脂の好ましい融点または流動 開始温度としては150℃以上、より好ましくは180 ℃以上、更に好ましくは210℃以上である。

【0053】別の視点からは、第2の樹脂は、第1の樹 脂の融点もしくは流動開始温度において、融解しないま たは流動しないものであればよく、第2の樹脂は融点も 流動開始温度を有さないもの(融解または流動よりも先 に分解が生じるもの)でもよい。

【0054】上記特性を有する第2の樹脂が接着してい る(好ましくは表面に偏在して接着している)ことによ り、第1の樹脂よりも更に優れた高靭性化効果や層間強

複合材料の力学特性(特にCAI)を著しく高く するこ とができる。第2の樹脂が第1の樹脂よりも前記効果を 高く発現し得る理由は、第1の樹脂よりも高い融点もし くは流動開始温度を有する点、または第1の樹脂が融解 もしくは流動する温度で溶解も流動もしない点が挙げら れるが、それ以外にも、既に接着機能を有する第 1 の樹 脂が存在していることにより、第2の樹脂自体が接着機 能を有することが必ずしも必要でなく、例えば、 靭性が 高いが接着機能が発現しない樹脂、または基材の取り扱 い性を損なうような樹脂をも使用することができ、第2 の樹脂の種類および形態について、その選択の幅が第1 の樹脂よりも格段に広くできる点も挙げられる。 つま り、比較的低温で接着性を発現し、かつ力学特性を少な くとも低下させない (好ましくは力学特性を向上 させ る) 第1の樹脂にて、力学特性を一層高く発現させる第 2の樹脂を、ドライな布帛に接着することにより 本発明 の効果を一層高く発現できるのである。すなわち、第2 の樹脂の存在によると、第1の樹脂より格段に優れた本 発明の効果が発現するのである。

【0055】かかる第2の樹脂は、布帛の内部に接着し ていても、その表面に偏在して接着していてもよいが、 上記効果の発現を効率的に発現するためには、第 1 の樹 脂の場合と同様に、実質的に布帛の表面に偏在して接着 しているのが好ましい。

【0056】本発明の第2の樹脂の付着量は、布 帛10 0 重量部に対して1~10重量部の範囲内である のが好 ましい。より好ましい付着量は布帛100重量部に対し て2~9重量部、更に好ましくは3~7重量部、 とりわ け4~6重量部の範囲内であるのが好ましい。第2の樹 脂の付着量が1重量部未満であると最大のメリットであ る力学特性の向上効果も小さいため好ましくない。ま た、10重量部を超えると、特に湿熱処理後のCHWに 優れる複合材料が得られなかったり、複合材料の炭素繊 維配合率が低くなり過ぎるいだけでなく、複合材料を得 る際に炭素繊維強化基材へのマトリックス樹脂である後 述の第3の樹脂の含浸を妨げる場合がある。

【0057】この第2の樹脂を設ける意味を、より具体 的に図面を参照して説明する。図7は、本発明の炭素繊 維強化基材71の一態様を示す断面模式図である。図7 に示すように、この態様のものは、炭素繊維を用いてな るたて糸束72およびよこ糸束73により布帛 (二方向 性織物)が構成されている点では上記図3の態様のもの と同じであるが、第1の樹脂74の他に更に粒子状の第 2の樹脂75が布帛表面に偏在して接着している点が異 なっている。

【0058】図8は、図7とは異なる態様の本発明の炭 素繊維基材81の一態様を示す断面模式図である。 図8 に示すように、この態様のものは、炭素繊維を用いてな ・るたて糸束82と、補助繊維を用いてなる補助よこ糸束 化効果を発現し、炭素繊維強化基材を積層して得られる 50 83とにより布帛(一方向性織物)が構成されている点

で、上記図4の態様と同じものであるが、第1の樹脂8 4の他に更に粒子状の第2の樹脂85が布帛表面に偏在 して接着している点が異なっている。

【0059】かかる第2の樹脂は、第1の樹脂により布 帛に接着されていても、第2の樹脂が単独で布帛に接着 していてもよいが、第1の樹脂により布帛に接着されて いるのが好ましい。つまり、第2の樹脂は、第1の樹脂 と一体化した状態で布帛に接着していても、第1の樹脂 とは一体化せずに各々単独で布帛に接着していてもよい が、前者の形態であるのが好ましい。このような接着形 10 態ををとることにより、第2の樹脂を確実に布帛の表面 に接着することができる。また、第2の樹脂自体で布帛 に接着しようとすると、第1の樹脂を接着させる温度よ り高い温度にすることが必要となるが、第1の樹脂で接 着させることにより、より低い温度での接着が可能とな るため製造効率の面からも好ましい。また、第2の樹脂 が接着機能を有する必要がなくなるため、第2の樹脂の 種類および形態の選択の幅が広くなり、より力学特性を 高く発現するものを選択することができるようになる。 ここで、一体化とは、それぞれが分離していない状態を 20 指し、例えば、第1の樹脂と第2の樹脂とを各々単独で 混合(ドライブレンド)したものは、それぞれが分離し ているため一体化しているとはいわない。

【0060】第2の樹脂が、第1の樹脂と一体化して接着している場合は、第2の樹脂と第1の樹脂とが実質的に相溶しないものであると、第1の樹脂と第2の樹脂との化学的反応性が最小限に抑制されることにより、第1の樹脂と第2の樹脂とを溶融状態で混合して一体化する場合にも高粘度化を極力抑制することができる。また、第2の樹脂の種類および形態の選択に制約を受けにくく30なるため、その選択の幅が広がり、得られる複合材料の力学特性(特にCAI)をより一層向上させることもできるメリットもある。かかる視点からは、第2の樹脂は第1の樹脂に実質的に相溶しないものが好ましい。

【0061】上述のように、第1の樹脂と第2の樹脂とが一体化している場合、第2の樹脂の表面の少なくとも一部分(好ましくは表面積の50%以上、更に好ましくは90%以上)が第1の樹脂にて被覆されて一体化している形態のものが好ましい。かかる形態で第1の樹脂および第2の樹脂が布帛に接着していると、それぞれを単 40純に混合したもの(一体化していないもの)に較べて、より確実に第2の樹脂を第1の樹脂により布帛に接着できる。

【0062】ここで、第1の樹脂と第2の樹脂とを一体 化する方法としては、両者を予め溶融混合して所望の形態にしてもよいし、両者が溶解する溶媒を用いて混合して脱溶媒して所望のの形態にしてもよいが、作業環境の面から溶融混合が好ましい。溶融混合する場合は、単軸または2軸押出機、バンバリミキサー、ニーダー、3本ロール等から適切な装置を選択して使用することができ 50

る。

【0063】第2の樹脂の形態としては特に制限はなく、フィラメント状や、例えば織物、編物、不織布、マット等の布帛状、粒子状、不連続状等の任意の形態をとることができ、これらを組み合わせて使用することもできる。これらの形態は複合材料の使用目的によって使い分けるのが好ましいが、ミクロ的な均一性の面、力学特性の向上効果の面、吸水の抑制の面から粒子状(好ましくは球状)または不連続状であるのが最も好ましい。

【0064】第2の樹脂が粒子状の形態である場合、均一に布帛表面に分散させるために、その平均粒子直径が $1\sim500\mu$ mの範囲内、より好ましくは $1\sim150\mu$ m、更に好ましくは $3\sim100\mu$ mの範囲内であるのが好ましい。 1μ m未満であると布帛を構成する炭素繊維の間に入り込むものが多くなり、表面に接着させる粒子の量がばらつく。また、 150μ mを超えると、粒子直径が大きくなるので、所定の粒子散布重量に対して、接着させる粒子の数が少なくなり、均一な散布が困難な場合がある。なお、平均粒子直径はレーザー回折・散乱法にて測定した D_{50} とし、本測定はセイシン企業製 LMS -24にて行った。

【0065】第2の樹脂の23℃、50RHの吸水率は2.5重量%以下であるのが好ましい。より好ましくは1.8重量%以下、更に好ましくは1.5重量%以下、とりわけ1.1重量%以下であるのが好ましい。かかる吸水率が2.5重量%を超えると、力学特性(特にCHW)に優れる複合材料が得られない場合がある。かかる吸水率とは、ASTM D 570に順って測定される値を指す。

【0066】かかる第2の樹脂も、第1の樹脂と同様に本発明の課題を解決する樹脂であればとくに限定されないが、その主成分は靭性の高い熱可塑性樹脂であるのが好ましく、上述の第1の樹脂の例に挙げられるものが使用できる。その中でもポリアミド、ポリイミド、ポリアミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルスルフォン、ポリフェニレンエーテル、ポリエーテルストンおよびポリエーテルケトンケトンから選ばれる少なくとも1種であるのがよく、特にポリアミド、ポリアミド、ポリエーテルイミド、ポリエーテルスルフォンから選ばれる少なくとも1種であると上記の効果を容易に発現することができる。

【0067】第2の樹脂の主成分としてポリアミドを使用する場合は、少なくともポリアミド6、ポリアミド66、ポリアミド12、ポリアミド610、ポリアミド612、イソフタル酸やテレフタル酸やパラキシレンジアミンやメタキシレンジアミン等の芳香族のジカルボン酸またはジアミン、ジメチルビス(p-アミノシクロヘキシル)メタン等の脂環式のジカルボン酸またはジアミンから選ばれる少なくとも1種の成分からなるホモポリアミドまたは共重合ポリアミドであるのが好ましい。第2

の樹脂に適するポリアミドの市販品としては、例えば、 東洋紡製透明ナイロンT-714EやT-714HやT -600、ダイセル・ヒュルス製トロガミドT5000 やCX7323、EMS-CHEMIE製グリルアミド TR55、TR90、東レ製SP500(粒子状)、ク ラレ製ジェネスタ等が挙げられるが、これに制限される ものではない。これらポリアミドのDSCにより測定さ れるガラス転移点は100℃以上、好ましくは125℃ 以上、更に好ましくは150℃以上であると、複合材料 の成形時に対する耐熱性が充分であり、上述の第2の樹 10 脂を用いる効果(特にCAI)を一層高めることができ るため好ましい。但し、例えばポリアミド12は、ガラ ス転移点が100℃未満だが高いCAIの向上効果を発 現する。すなわち、融点を有するポリアミドに関して は、ガラス転移点は30℃~280℃の範囲内であるの が好ましい。

【0068】かかる熱可塑性樹脂を第2の樹脂として用いる場合は、第1の樹脂としてエポキシ等の熱硬化性樹脂を用い、第1の樹脂と第2の樹脂とを一体化して接着すると、非常に高いレベルでCAIとCHWとの両立を20実現できる。また、第1の樹脂として低融点ポリアミド等の低融点熱可塑性樹脂を用いて一体化して接着すると、CAIに関してはとりわけ高いレベルを実現できる。

【0069】また、第2の樹脂は、その副成分として熱 硬化性樹脂を含むのが好ましく、上述の第1の樹脂の例 に挙げられるものが使用できる。その中でもエポキシま たはフェノールであるのが好ましく、この副成分により 第2の樹脂の主成分が被覆されていたり、少なくとも部 分的(好ましくは全面的)にポリマーアロイ(好ましく は相互侵入網目構造(IPN))化されていると、後述 の第3の樹脂との化学的相互作用を制御できることによ り、上述の第2の樹脂を用いる効果(特にCAI)を一 層高めることができるため好ましい。また、第2の樹脂 の耐薬品性や耐熱性の向上、吸水の抑制の面からも好ま しい効果を発現する。かかる効果は、特に第2の樹脂と して熱可塑性樹脂(特にポリアミド)を用いる場合に顕 著に発現する。ここで、副成分として熱硬化性樹脂を含 む場合(特にIPN化した場合)は、融点も流動開始温 度も有さなくなる場合があるが、第1の樹脂の融点また 40 は流動開始温度において、融解または流動しないもので あればよい。

【0070】本発明のプリフォームは、かかる炭素繊維強化基材が少なくとも2層以上積層され、それぞれの炭素繊維強化基材同士が上述の第1の樹脂または第2の樹脂により接着して一体化しているものである。ここでいう接着しているとは、全面的に接着していると逆に取り扱い性が劣ったり、マトリックス樹脂の含浸を阻害することがあるため、一体化する程度に少なくとも部分的に接着しているのが好ましい。ここで、炭素繊維強化基材50

としては、布帛に第1の樹脂または第2の樹脂の接着されている量が異なるものを積層してもよい。特に雄型と 雌型とを用いるRTMや、雄型または雌型のいずれか一 方と、バッグ材とにより形成されるキャビティを減圧 し、大気圧との差圧を利用して樹脂注入する真空圧成形 に用いるプリフォームの場合、積極的に接着されている 量が異なるものを用い、後述の第3の樹脂の流路を確保 かつ制御することは本発明の好ましい態様の一つだとい える。

【0071】このことをより具体的に図面を参照して説明する。図9は、本発明のプリフォーム91の好ましい一態様を示す断面模式図である。図9において、連続した炭素繊維を用いてなる布帛92は、第1の樹脂93および第2の樹脂94がその表面に偏在して接着している状態で図9では4層に積層されており、第1の樹脂93または第2の樹脂94により布帛92同士が接着されてプリフォーム91を形成している。かかる形態で接着されていることにより、ドライなプリフォームの高高さを最小限に抑制して一体化することができ、その取り扱い性にも優れるものにすることができる。

【0072】本発明の複合材料は、図9のプリフォーム91に、マトリックス樹脂として第1の樹脂93と異なる第3の樹脂102が含浸したものである。なお、第3の樹脂は含浸した後に固化(硬化または重合)して複合材料となる。

【0073】このことをより具体的に図面を参照 して説

明する。図10は、本発明の複合材料101の好ましい 一態様を示す断面模式図である。図10において、連続 した炭素繊維を用いてなる図9の布帛92、第1の樹脂 93、第2の樹脂94からなるプリフォーム91の隙間 に、第3の樹脂102が含浸し、更に硬化または重合す ることにより固化して複合材料101を形成している。 【0074】かかる第3の樹脂102は、第1の樹脂と 同様に本発明の課題を解決する樹脂であれば特に 限定さ れないが、その成形性、力学特性の面から熱硬化性樹脂 であるのが好ましく、上述の第1の樹脂の例に挙げられ るものが使用できる。但し、第1の樹脂と異なる点は、 注入成形に供する場合は、注入温度では液状であ る必要 があることである。かかる特性を有する熱硬化性樹脂と しては、エポキシ、フェノール、ビニルエステル、不飽 和ポリエステル、シアネートエステル、ビスマレイ ミド ベンゾオキサジンから選ばれる少なくとも1種であると 本発明の課題を容易に解決できるため好ましい。 更にエ ラストマーやゴム、硬化剤、硬化促進剤、触媒等 を添加 した樹脂も使用することができる。中でも、例えば航空 機の一次構造部材で要求される非常に高い力学特性(特

【0075】ここで、第3の樹脂と第1の樹脂とは、そ・

キシが好ましい。

に、CAI、CHW)を達成するためには、エポキシま

たはビスマレイミドであるのが好ましく、とりわ けエポ

の役割がそれぞれ異なることから、少なくとも一部でも 異なるものを用いるのがよい。すなわち、第3の樹脂は 含浸性に優れ (注入温度で樹脂粘度が低く、ゲル化時間 が長い)、かつ力学特性に優れるものを、第1の樹脂は 布帛の取り扱い性を向上し、かつ高い力学特性を付与す るものをそれぞれ選択して使用するべきである。もちろ ん、第1の樹脂と第3の樹脂とが、その一部に同一成分 を使用することに何ら制限はなく、両者の相性の面から は好ましい形態といえる。

【0076】かかる第3の樹脂102を後述の注入成形 10 にてプリフォーム91に含浸する場合は、第3の樹脂は その粘度が低いと含浸が容易なため、成形サイクルを短 くできるため好ましい。より具体的には注入温度におい て400mPa・s以下、より好ましくは200mPa ・ s 以下の粘度である。また、注入温度は100℃以下 であると設備が簡易なものにできるため好ましい。

【0077】かかる複合材料は、例えば注入成形(RT M、RFI、RIM、真空圧成形等)、プレス成形等の 各種成形方法およびそれらを組み合わせた成形方法にて 成形されることができる。より好ましい成形方法として 20 は、生産性の高い注入成形が挙げられ、中でもRTM (例えば、雄型および雌型により形成したキャビティ中 に樹脂を加圧して注入する成形法。好ましくは、キャビ - ティを減圧して樹脂注入する。)、真空圧成形(例え ば、雄型または雌型のいずれか一方とフィルム等のバッ グ材(例えば、ナイロンフィルム、シリコンラバー等) により形成したキャビティを減圧し、大気圧との差圧に て樹脂注入する成形法。好ましくは、キャビティ内のプ リフォームに樹脂拡散媒体(メディア)を配置して樹脂 含浸を促進し、成形後に複合材料からメディアを分離す 30 る。)がより成形コストの面から好ましく用いられる。

【0078】本発明の複合材料の用途として特に限定は ないが、優れた力学特性(特にCAI、CHW)を有し ているため、特に航空機、自動車、船舶等の輸送機器に おける一次構造部材、二次構造部材、外装部材、内装部 材もしくはそれらの部品の内に用いられると、その効果 を最大限に発現することができるため好ましい。

【0079】図11は航空機111の一次構造部材を示 す概略斜視図である。図において、主翼112、床支持 桁113、胴体114、垂直尾翼115、水平尾翼11 40 6等の各構造部材に本発明の炭素繊維強化基材からなる プリフォームを成形した複合材料を使用すると、優れた 力学特性(特にCAI、CHW)を発現するだけでな く、高い生産性で製造できるため、これら航空機の一次 構造部材は本発明の複合材料の特に好ましい用途といえ

【0080】図12、図13は、それぞれ本発明の構造 要素121、131としての実施例を示す概略斜視図で ある。従来はスキン材122、132,桁材123、1 33, リブ材124、134を別々に成形し、これをリ 50 部、三井化学ファイン製3, 3'ージアミノジフェニル

ベットや接着剤にて接合していたが、本発明の複合材料 によれば、スキン材と桁材やリブ材とを一体成形するこ とが可能となり、成形コストを大幅に低減することがで

[0081]

【実施例】以下、実施例によって本発明を更に詳細に説 明する。なお、原料は以下のものを使用した。

【0082】炭素繊維束A:PAN系、フィラメント数 24千本、1000tex、引張強度5830MPa、 引張弾性率294GPa、破壊歪エネルギー58MJ/ m³.

【0083】炭素繊維束B:PAN系、フィラメント数 12千本、800tex、引張強度4900MPa、引 張弾性率235GPa、破壊歪エネルギー52M J/m

【0084】炭素繊維束C:PAN系、フィラメント数 6千本、396 t e x、引張強度3530MPa、引張 弾性率235GPa、破壊歪エネルギー27MJ/

【0085】ガラス繊維束:ECE225 1/0 1 Z、22.5tex、バインダータイプ"DP" (日東 紡製)。

【0086】第1の樹脂A:ポリエーテルスルフォン樹 脂(住友化学工業製スミカエクセル5003Pの微粉砕 品) 60重量%とエポキシ樹脂(日本化薬製AK-60 1) 40重量%とを2軸押出機にて溶融混練して相溶さ せた樹脂組成物 [ガラス転移点75℃]

第1の樹脂B:エポキシ樹脂「ジャパンエポキシ レジン 社製エピコート1004AF、流動開始温度10 0℃] 第1の樹脂C:エポキシ樹脂[3M社製PT500] 第2の樹脂 :ポリアミド樹脂 (EMS昭和電工社製グ リルアミドTR55、ガラス転移点=162℃) 90重 量%と、エポキシ樹脂および硬化剤10重量%とをポリ マーアロイ化(IPN化)した球状粒子。レーザー回折 ・散乱法による平均粒子径 (D₅₀) が13μm。

【0087】第3の樹脂 :予め70℃に加熱した次の 主液100重量部に硬化液を32重量部加え、均一にな るまで撹拌した液状エポキシ樹脂組成物 [70℃におけ るE型粘度計による粘度が250mPa・s]。

【0088】主液:エポキシ樹脂として、Vantic o社製"アラルダイト"MY-721を30重量部、ジ ャパンエポキシレジン製"エピコート"825を20重 量部、日本化薬製AK-601を20重量部、大日本イ ンキ化学工業製"エピクロン" HP-7200L を30 重量部、および硬化促進剤としてp-トルエンスルホン 酸ーnープロピル1.4重量部をそれぞれ計り取り、1 00℃において均一になるまで攪拌したもの。

【0089】硬化液:芳香族ポリアミンとして、 ジャパ ンエポキシレジン製"エピキュア"Wを18.1 重量

スルホンを 7. 2 重量部、住友化学工業製"スミキュ ア"Sを7.2重量部をそれぞれ計り取り、90℃にお いて均一になるまで撹拌したもの。

【0090】 (実施例1) 第1の樹脂Aを冷凍粉砕し て、粒子状にした (D₅₀が124μm)。

【0091】実質的に連続した炭素繊維束Aをたて糸と し、ガラス繊維束を補助よこ糸として一方向性織物A (平織、織物厚み0.33mm、炭素繊維目付295g /m²、たて糸密度2.8本/cm、よこ糸密度3本/ cm) を製織した。かかる一方向性織物Aは、たて糸で 10 ある炭素繊維束の幅が3.5mm、幅と厚みの比が10 以上であり、扁平状の織物であった(製織前の炭素繊維 東Aは5.8mm幅、0.15mm厚)。

【0092】かかる一方向性織物A上に粒子状の第1の 樹脂Aを、エンボスロールとドクタープレードにて計量 しながら自然落下させ、振動ネットを介して均一に分散 させながら、織物100重量部に10重量部を塗布し た。更に、遠赤外線ヒーターにて180~200℃に加 熱しながら、離型処理を施した金属ニップローラーにて 加圧して、粒子状の第1の樹脂Aを一方向性織物Aに接 20 着し、冷却して巻き取って炭素繊維強化基材Aを得た。 なお、本実施例では、製織工程から冷却工程まで、織機 とオンラインで連続して行った。なお、かかる炭素繊維 ・強化基材Aの通気性は23.7cm³/cm²・sec、 カバーファクターは99%であった。

【0093】(実施例2)第1の樹脂B50重量部と、 第2の樹脂50重量部とを、ニーダーを用いて170℃ にて溶融混練した後に冷凍粉砕して、両者が一体化した 粒子 (Dsoが38μm。第2の樹脂は、第1の樹脂Bの 流動開始温度では融解も流動もせず、両者は相溶してい 30 ないもの)を得た。

【0094】次に、実施例1で製織した一方向性織物A 上に前記粒子を、ノードソン社製トリボIIガンにて帯電 させながら圧縮空気にて均一分散させながら、織物10 0 重量部に14 重量部を塗布した。更に、ホットプレス ローラーにて140~160℃に加熱しながら、前記の 一体化した粒子を一方向性織物Aに接着し、冷却して巻 き取りって炭素繊維強化基材Bを得た。なお、本実施例 では、製織工程と塗布・接着・冷却工程とは、オフライ ンで不連続に行った。なお、粒子は、実施例1よりも更 40 に均一に一方向性織物A上に分散しており、本実施例2 の塗布、接着方法は、実施例1の方法より一層優れてい た。

【0095】(実施例3)使用する織物を、実質的に連 続した炭素繊維束Aをたて糸とし、ガラス繊維束に低融 点ナイロン糸(東レ(株)製エルダー6 tex)をカバ リング加工した補助よこ糸として一方向性織物C(平 織、織物厚み0.26mm、炭素繊維目付193g/m ¹、たて糸密度1.8本/cm、よこ糸密度3本/c

以外は実施例1と同様にして炭素繊維強化基材Cを得 た。なお、一方向性織物Cは、たて糸である炭素繊維束 の幅が 5. 5 mm、幅と厚みの比が 20以上であり、一 方向性織物Aよりも更に扁平状の織物であった。 通気性 は $72.0 \text{ cm}^3 / \text{ cm}^2 \cdot \text{sec}$ 、カバーファクターは 93%であった。

【0096】(実施例4)使用する織物を、実質的に連 続した炭素繊維束Bをたて糸およびよこ糸として製織し た二方向性織物D(平織、織物厚みO.19mm、炭素 繊維目付193g/m²、たて糸密度1.21本/c m、よこ糸密度1.21本/cm)に、粒子状の第1の 樹脂Aを織物100重量部に5重量部を塗布した以外 は、実施例1と同様にして炭素繊維強化基材Dを得た。 なお、通気性は15.6 c m³/c m²・s e c 、カバー ファクターは99%であった。

【0097】(実施例5)炭素繊維強化基材A、Bを長 さ340mm、幅340mmにカットし、積層構成が [-45°/0°/+45°/90°]を二回繰り返し たものを2組用意し、それを90°層を向かい合わせて 対称積層になるように貼り合わせた。かかる積層 したも のを、それぞれ平面型に配置し、シーラントとバッグ材 (ポリアミドフィルム) にて減圧吸引口を設けて密閉し てキャビティを形成した。減圧吸引口から真空ポンプに よってキャビティ内を吸引して、真空に減圧し、賦形型 を80℃に温調した。かかる状態で1時間保持し、室温 に冷却してから吸引を中止して、疑似等方プリフォーム A、Bのそれぞれを得た。

【0098】(実施例6)炭素繊維強化基材C、Dを用 いて、実施例5と同様の積層構成を三回繰り返したもの を2組み用意し、対称積層になるよう貼り合わせた。か かる積層したものを賦形型を用いてプレス機で1 30℃ で150kPaの圧力を加えて5分保持し、引き続き加 圧したまま室温に冷却してから放圧し、疑似等方プリフ オームC、Dを得た。

【0099】(実施例7) 炭素繊維基材A、Bは積層構 成が [0°]を4層、炭素繊維強化基材Cは6層貼り合 わせた以外は、実施例5と同様にして一方向プリ フォー ムA~Cを得た。

【0100】(実施例8)疑似等方プリフォーム A~D および一方向プリフォームA~Cを、それぞれ80℃の 成形型に配置し、プリフォーム上に樹脂拡散媒体 (34 メッシュ金網)を配置して、シーラントとバッグ材(ポ リアミドフィルム)にて樹脂注入口と減圧吸引口 を設け て密閉してキャビティを形成した。減圧吸引口から真空 ポンプによってキャビティ内を吸引して真空に減圧し、 成形型および各プリフォームを80℃に温調した。次い で、事前に調合・真空脱泡した第3の樹脂を80℃に保 ちながら、樹脂注入口から大気圧を利用して注入した。 第3の樹脂が減圧吸引口に到達した時に樹脂注入口を閉 m)を用い、織物100重量部に14重量部を塗布した 50 じて、樹脂注入を停止した。それ以降は、減圧吸引口か ら真空ポンプにより減圧を続けながら180℃で2時間 保持して、各プリフォームに含浸した第3の樹脂を硬化 させ、疑似等方平板A~Dおよび一方向平板A~Cを得 た。

【0101】かかる疑似等方平板A~Dの炭素繊維含有率(Vf)はそれぞれ54、56、55、53体積%、かかる一方向平板A~CのVfはそれぞれ55、56、56体積%であった。かかる複合材料は、どこにもピンホールやボイドが見当たらず、良好な成形が行われていることが実証された。

【0102】得られた疑似等方平板A~Dを、長152 mm×幅102mmに切り出し、クーポンを得た。そのクーポンの中心に5.44kg(12ポンド)の錘を落下させて6.67kJ/m(1500in・lb/in)の落錘衝撃を与えた後、常温圧縮強度(CAI)を測定した。

【0103】また、得られた一方向平板A~Cから、SACMASRM1R-94に準拠したクーポンを得た。そのクーポンを70℃の温水中に14日間浸漬し(湿熱処理)、直ちに高温(82℃)0°圧縮強度(C20HW)を測定した。また、一方向平板A、Cについては、湿熱処理をせずに常温にて0°圧縮強度(CS)を測定した。

【0104】更に、一方向平板A~Cから、SACMA SRM 4R-94に準拠して室温0°引張強度(T S)を測定した。

【0105】(比較例1) 第1の樹脂Aを接着しない以外は実施例1と同様にして一方向性織物Aをそのまま炭素繊維強化基材Eとして用いた。

【0106】(比較例2)実質的に連続した炭素繊維束 Cをたて糸とし、ガラス繊維束を補助よこ糸として一方 向性織物F(平織、織物厚み0.2mm、炭素繊維目付 193g/m¹、たて糸密度4.87本/cm、よこ糸 密度3本/cm)に、第1の樹脂Cを織物100重量部 10 に5重量部を塗布した以外は、実施例1と同様にして炭 素繊維強化基材Fを得た。

【0107】(比較例3) 炭素繊維強化基材E、Fを用いる以外はそれぞれ炭素繊維強化基材A、Cと同様にして疑似等方プリフォームE、Fおよび一方向プリフォームE、Fを得た。

【0108】(比較例4) 疑似等方プリフォーム E、F および一方向プリフォームE、Fを用いる以外は実施例8と同様にして疑似等方平板E、Fおよび一方向平板E、Fを成形し、測定に供した。かかる疑似等方平板FのVfはそれぞれ59、56体積%、一方向平板E、Fの厚みはVfはそれぞれ60、56体積%であった。

【0109】以上の結果を表1に示す。

[0110]

【表1】

	炭素繊維 の特性	第1の御職	第2の樹脂	基材の 収録性	CAI	CHW	C S	TS
炭素繊維強化基材A	294GPa 58MJ/m	10重量部	なし	0	248MPa (36ksi)	972MPa (141ksl)	1428MPa (207ksi)	2766MPa (401ks i)
炭素繊維強化基材 B	2946Pa 58MJ/m,	7重量部	7重量部	0	276MPa (40ksi)	1828MPa (149ksi)	-	2808MPm (407ks i)
炭素繊維強化基材C	284GPa 58MJ/m	14黨量部	なし	0	282EPa (41ksi)	952MPa (138ksi)	1421MPa (206ksi)	2946EPa (430ks 1)
炭素繊維強化基材 D	235GPa 53MJ/m	5葉量部	なし	0	232MPa (34ksi)	-	_	_
炭素繊維強化基材E	294GPa 58MJ/m;	なし	なし	×	165MPa (24ksi)	1041MPa (151ksi)	_	2738MPa (397ks I)
炭素繊維強化基材 F	235GPa 27MJ/m;	5重量部	なし	0	109MPa (16ksi)	996MPa (144ksi)	-	_

【0111】表1から明らかなように、炭素繊維強化基材A~DおよびFは、織物上に接着した第1の樹脂により、プリプレグより弱く扱い易い基材のコシ、織物の目ズレ・蛇行等が生じない形態安定性、持ち運び性、賦形性等の取り扱い性に非常に優れた。また、プリフォーム化する際に優れたタック性を発現し、積層した炭素繊維強化基材が剥がれない(バラバラにならない)強固にバルク化されたプリフォームを得ることができた。一方、第1の樹脂が接着していない炭素繊維強化基材Eは、その取り扱い性に劣るだけでなく、タック性がないため、各層がバラバラになり、バルク化されたプリフォームを得ることができなかった。50

【0112】力学特性の面からは、本発明の炭素繊維を用いた炭素繊維強化基材A~Dは、第1の樹脂を接着してない炭素繊維強化基材Eに較べてCAIは著しく向上しているにも関わらず、CHW、TSは同等またはそれ以上を発現している。一方、炭素繊維強化基材Fは、本発明の炭素繊維を用いていないため、第1の樹脂を用いているにも関わらず特にCAIに著しく劣り、構造部材等の高い力学特性が要求される用途には不適であった。即ち、本発明は、布帛に用いる炭素繊維と、それに接着させる樹脂とが組み合わさった時にのみ高い力学特性を発現するものである。

50 [0113]

【発明の効果】本発明によれば、マトリックス樹脂の含 浸性が良好で、特に衝撃付与後または湿熱処理後の圧縮 強度等の力学特性に優れる複合材料を生産性よく得られるだけでなく、基材のコシ、形態安定性、賦型性、積層 する際のタック性等の優れた取扱い性を有する炭素繊維 強化基材、それを積層してなるプリフォームおよびプリフォームにマトリックス樹脂を含浸してなる複合材料が 得られる。

【0114】このようにして得られた複合材料は、航空機、自動車、船舶等の輸送機器における構造部材、内層 10部材または外層部材などの各部材をはじめ、幅広い分野に適するが、特に航空機の構造部材に好適である。

【図面の簡単な説明】

【図1】本発明の炭素繊維強化基材の一態様を示す平面 模式図である。

【図2】本発明の炭素繊維強化基材の一態様を示す平面 模式図である。

【図3】本発明の炭素繊維強化基材の一態様を示す断面 模式図である。

【図4】本発明の炭素繊維強化基材の一態様を示す断面 20 模式図である。

【図 5 】本発明の一方向性織物の一態様を示す斜視図で ある。

-【図6】本発明の一方向性織物の一態様を示す斜視図である。

【図7】本発明の炭素繊維強化基材の一態様を示す断面 模式図である。

【図8】本発明の炭素繊維強化基材の一態様を示す断面 模式図である。

【図9】本発明のプリフォームの好ましい一態様を示す 30 断面模式図である。

【図10】本発明の複合材料の好ましい一態様を示す断 面模式図である。 【図11】 航空機の一次構造部材を示す概略斜視 図である。

【図12】本発明の構造要素としての実施例を示す概略 斜視図である。

【図13】本発明の構造要素としての別の実施例を示す 概略斜視図である。

【符号の説明】

11、21、31、41、71、81: 炭素繊維強化基 **

10 12、22、32、42、52、62、72、82:炭 素繊維を用いてなるたて糸束

13、33、73:炭素繊維を用いてなるよこ糸束

14, 24, 34, 44, 74, 84, 93, 103;

第1の樹脂

23、43、53、63、83:補助繊維を用いてなる 補助よこ糸束

51、61:一方向性織物

64:補助繊維を用いてなる補助たて糸束

75、85,94、104:第2の樹脂

20 91:プリフォーム

92、102:連続した炭素繊維を用いてなる布帛

101:複合材料

105:第3の樹脂

111: 航空機

112:主翼

113:床支持桁

114:胴体

115:垂直尾翼

116: 水平尾翼

121、131:構造要素

122、132:スキン材

123、133:桁材

124、134:リブ材

[図1] 【図2】 【図5】

BEST AVAILABLE GOPY

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

15/59

15/63

17/08

C08L101:00

テーマコード(参考

15/59

15/63

17/08

.

// C08L101:00

Fターム(参考) 4F072 AA04 AA07 AA08 AA09 AB10

AB28 AD23 AD42 AD44 AD45

AD46 AG03 AG16 AG20 AH24

AJ03 AJ11 AK05 AK14 AL02

4L032 AA08 AB02 AC05 AC06 BA04

BA08 BB01 BC01 BD01 BD03

EA06

4L033 AA09 AB05 AC11 AC15 CA48

CA49 CA55 CA56 CA58

4L048 AA03 AA05 AA48 AA51 AB07

AC09 AC12 BA01 BA02 CA01

CA04 CA11 DA41