基于 CUDA 的 MobileNetV2 推理优化

实现流程

Step1 网络架构分析

- 基于 PyTorch 实现 MobileNetV2, 对参考 ONNX 文件的网络架构进行还原
- 还原后的 ONNX 模型共有 5 种层:
 - ① 卷积层 Conv2d (#52)
 - ② 激活层 ReLU6 (#35)
 - ③ 残差层 ResidualAdd (#10)
 - ④全局平均池化层 GlobalAveragePool (#1)
 - ⑤ 线性层 Linear (#1)
- 分析:
 - ① 卷积层数量最多,推理性能瓶颈在卷积层
 - ② 激活层均出现在卷积层后,将两层的实现进行融合
 - ③包括3种类型的卷积+激活层
 - 1x1 Conv2d + ReLU6
 - 3x3 Conv2d (group) + ReLU6
 - 1x1 Conv2d

Input	Operator	$\mid t \mid$	c	$\mid n \mid$	s
$224^2 \times 3$	conv2d	_	32	1	2
$112^2 \times 32$	bottleneck	1	16	1	1
$112^2 \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^2 \times 32$	bottleneck	6	64	4	2
$14^{2} \times 64$	bottleneck	6	96	3	1
$14^{2} \times 96$	bottleneck	6	160	3	2
$7^2 \times 160$	bottleneck	6	320	1	1
$7^2 \times 320$	conv2d 1x1	-	1280	1	1
$7^2 \times 1280$	avgpool 7x7	-	-	1	_
$1 \times 1 \times 1280$	conv2d 1x1	-	k	-	

MobileNetV2 架构

Input	Operator	Output
$\begin{array}{c} h \times w \times k \\ h \times w \times tk \\ \frac{h}{s} \times \frac{w}{s} \times tk \end{array}$	1x1 conv2d, ReLU6 3x3 dwise s=s, ReLU6 linear 1x1 conv2d	$\begin{array}{ c c } \hline h \times w \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times k' \\ \hline \end{array}$

Bottleneck 模块(3 种卷积)

Step2 网络拓扑实现

- 基于 C++11 实现 MobileNetV2 拓扑结构, 分为 3 步:
 - ① 实现每种层的结构
 - 每种层都继承自基类 Layer,以便层间连接
 - 权重参数包括卷积层参数、线性层参数

Step2 网络拓扑实现

- ② 基于 ONNX Python API 解析层参数
 - 参数存储在 ONNX 模型的 initializer 中,即 initializers = onnx.load(input_path).graph.initializer
 - 包括权重 weight 、偏置 bias
 - 保存为文本文件,以便 C++ 网络读取
- ③ 实现层间连接,进而实现完整网络拓扑
 - 初始化网络各层,并加载上一步得到的参数
 - 在 PyTorch 实现逻辑的基础上,将网络各层按序连接

```
MobileNetV2
 0: Conv2d(3, 32, 3, 2, 1, 1)
1: ReLU6
2: Conv2d(1, 32, 3, 1, 1, 32)
3: ReLU6
 4: Conv2d(32, 16, 1, 1, 0, 1)
 5: Conv2d(16, 96, 1, 1, 0, 1)
 6: ReLU6
 7: Conv2d(1, 96, 3, 2, 1, 96)
8: ReLU6
9: Conv2d(96, 24, 1, 1, 0, 1)
10: Conv2d(24, 144, 1, 1, 0, 1)
11: ReLU6
12: Conv2d(1, 144, 3, 1, 1, 144)
13: ReLU6
14: Conv2d(144, 24, 1, 1, 0, 1)
15: ResidualAdd(Conv2d(96, 24, 1, 1, 0, 1))
```

•

```
85: ReLU6
86: Conv2d(1, 960, 3, 1, 1, 960)
87: ReLU6
88: Conv2d(960, 160, 1, 1, 0, 1)
89: ResidualAdd(ResidualAdd(Conv2d(576, 160, 90: Conv2d(160, 960, 1, 1, 0, 1)
91: ReLU6
92: Conv2d(1, 960, 3, 1, 1, 960)
93: ReLU6
94: Conv2d(960, 320, 1, 1, 0, 1)
95: Conv2d(320, 1280, 1, 1, 0, 1)
96: ReLU6
97: GlobalAveragePool
98: Linear(1280, 1000)
```

- 首先为每种算子编写 CUDA Kernel,并实现相应的 host 端运行的 wrapper 函数 ,单独设计测试用例
- 然后,基于 wrapper 函数、C++ 实现的网络拓扑,实现基于 CUDA Kernel 的网络推理

CUDA Kernel	对应的层
向量加 Add	ResidualAdd 层
卷积 Conv (Im2Col)	Conv2d + ReLU6 层
矩阵乘 Gemm	Linear 层
全局平均池化 Pool	GlobalAveragePool 层

向量加 Add

全局平均池化 Pool

矩阵乘 Gemm

• 经验证,将矩阵组织为 column-major 可以大幅缩减计算时间

卷积 Conv

- 卷积计算的常用方法: ① Im2Col + GEMM ② Winograd ③ FFT
 - Winograd 在该网络中存在一定局限性:实现较为复杂,不同参数的卷积实现有一定差别,且主要适用于 stride=1 的情况
 - FFT 主要适用于大卷积核,而网络中主要是 1x1 和 3x3 的卷积核

Step4 基于 CUDNN 的网络推理实现

· 封装 CUDNN 库函数,实现各种算子的 wrapper 函数,并单独设计测试用例

Wrapper 函数	对应的层	对应的 CUDNN 库函数
向量加函数	ResidualAdd 层	cudnnAddTensor
卷积函数	Conv2d + ReLU6 层	cudnnConvolutionBiasActivationForward 和 cudnnActivationForward
矩阵乘函数	Linear 层	cudnnConvolutionForward (看成 1x1 卷积) 或 cublasGemmEx (使用 CUBLAS)
全局平均池化函数	GlobalAveragePool 层	cudnnPoolingForward

- 基于封装好的 wrapper 函数、C++ 实现的网络拓扑,实现基于 CUDNN 的网络推理
- 作为基准,衡量基于我们编写的 CUDA Kernel 的网络推理性能

参考文献

- [1] Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." *Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)*. 2018.
- [2] NVIDIA Corporation. "NVIDIA cuDNN Documentation." available at: https://docs.nvidia.com/deeplearning/cudnn/api/index.html
- [3] NVIDIA Corporation. "NVIDIA cuBLAS Documentation." available at: https://docs.nvidia.com/cuda/cublas/index.html
- [4] Lavin, Andrew, and Scott Gray. "Fast algorithms for convolutional neural networks." *Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)*. 2016.
- [5] Mark Harris. "CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops." available at: https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
- [6] Mark Harris. "Optimizing Parallel Reduction in CUDA." available at: https://vuduc.org/teaching/cse6230-hpcta-fa12/slides/cse6230-fa12--05b-reduction-notes.pdf