2. Ý nghĩa tham số radius, min sample trong thuật toán dbscan? Nếu chỉ số lớn, nhỏ ảnh hưởng thế nào tới thuật toán?

Radius: Một giá trị khoảng cách được sử dụng để xác định *vùng lân cận radius* của bất kỳ điểm dữ liêu nào.

Nếu Radius được chọn quá nhỏ, một phần lớn dữ liệu sẽ không được phân cụm và được xem là *nhiễu*; trong khi đối với giá trị Radius quá cao, các cụm sẽ hợp nhất và phần lớn các điểm sẽ nằm trong cùng một cụm.

Min sample: Là một ngưỡng số điểm dữ liệu tối thiểu được nhóm lại với nhau nhằm xác định một *vùng lân cận radius* có mật độ cao. Số lượng Min sample không bao gồm điểm ở tâm.

Nếu Min sample thấp có nghĩa là nó sẽ xây dựng nhiều cụm hơn từ là tiếng ồn(Min sample ít nhất là 3), trong khi Min sample cao có nghĩa nó có thể bao gồm tất cả các điểm trong tập dữ liệu(nên chọn Min sample = 2* dim, dim là chiều của dữ liệu, còn đối với dữ liệu 2 chiều nên chọn Min sample = 4).

3. So sánh ba thuật toán: kmean, GMM, dbscan. Khi nào nên sử dụng thuật toán nào? cho ví dụ?

Model	Pros	Cons	Use Cases	Example
K-mean	+) Quickest centroid	+) Suffers when there is noise	Even cluster size,	+)Segmentation
	based algorithm	in the data	flat geometry, not	of customers in
	+) Very lucid and can	+) Outliers can never be	too many clusters	business
	scale up for large amount	identified	and general-	+) Image
	of dataset	+) Even though it reduces	purpose	segmentation
	+) Reduces intra-cluster	intra-cluster variance, it faces		+) Genetic
	variance measure	local mimimum problem		analysis in
		+) Not ideal for datasets of		medicine
		non-convex shapes		+) Anomaly
		+) Complicated to predict		detection.
		best K value		
DBSCAN	+) Resistant to outliers	+) Highly sensitive to the	Uneven cluster	+) Face
	+) Can handle clusters of	two-parameters: Radius and	sizes and non-flat	clustering
	different shapes and	Min sample	geometry	
	sizes	+) DBSCAN cannot cluster		
	+) Not required to specify	datasets well with large		
	the number of cluster	variances in densities		
GMM	+) Robust to outliers	The algorithm is highly	Good for density	+) Clustering of
	+) Provides the BIC score	complex and can be slow	estimation and flat	homogeneous
	for selecting parameters		geometry	bacterial
	+) Converges fast given			colonies to
	good initialization			estimate their
				size