The Standard Incomplete Markets (SIM) Model

Matthew Rognlie

NBER Heterogeneous-Agent Macro Workshop, 2025

Individual household problem

The "standard incomplete markets" model (steady state)

* Individual household i optimizes

$$\max_{\{a_{it},c_{it}\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it})$$

subject to period-by-period budget constraint and borrowing constraint

$$a_{it} + c_{it} = (1 + r)a_{i,t-1} + Ze_{it}$$
 $a_{it} \ge \underline{a}$

- * Exogenous income state e_{it} follows Markov chain, which we'll usually normalize to 1, Z scales aggregate after-tax income
- * Initial assets $a_{i,-1}$ taken as given, standard assumptions on u (CRRA)

Can convert sequential form to Bellman equation

$$\max_{\{a_{it},c_{it}\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it})$$

$$a_{it} + c_{it} = (1 + r)a_{i,t-1} + Ze_{it}$$
$$a_{it} \ge \underline{a}$$

$$V(e, a) = \max_{c,a'} u(c) + \beta \mathbb{E}[V(e', a') | e]$$

s.t.
$$a' + c = (1 + r)a + Ze$$

$$a' \ge \underline{a}$$

Solved by **policies** a'(e, a) and c(e, a) in two state variables, **exogenous** income state e and **endogenous** asset state a

Solving the Bellman equation

* Policies a'(e, a) and c(e, a) satisfy standard first-order condition

$$u'(c) \ge \beta \mathbb{E}[V_a(e', a') | e]$$

with equality unless borrowing constraint binds, and envelope condition

$$V_a(e, a) = (1 + r)u'(c)$$

- * Combined, same as sequential Euler equation $u'(c_{it}) \ge \beta(1+r)\mathbb{E}_t[u'(c_{i,t+1})]$
- * Can use first-order and envelope conditions to iterate backward on V_a and policies
 - * Best way: interpolation and "endogenous gridpoints" (Carroll 2006)
 - * Iterating until convergence gives V_a and steady-state policies on a grid

See computation supplement (on GitHub) for more!

```
def backward_iteration(Va, Pi, a_grid, y, r, beta, eis):
    # step 1: discounting and expectations
    Wa = (beta * Pi) @ Va
    # step 2: solving for asset policy using the first-order condition
    c_{endog} = Wa**(-eis)
    coh = y[:, np.newaxis] + (1+r)*a_grid
    a = np.empty_like(coh)
    for e in range(len(y)):
        a[e, :] = np.interp(coh[e, :], c_endog[e, :] + a_grid, a_grid)
    # step 3: enforcing the borrowing constraint and backing out consumption
    a = np.maximum(a, a_grid[0])
    c = coh - a
    # step 4: using the envelope condition to recover the derivative of the value function
    Va = (1+r) * c**(-1/eis)
    return Va, a, c
```

Basic backward
iteration takes just 9
lines of standard
Python code

Consolidated in

sim_steady_state.py,

GitHub links to

supplementary

notebook, video

lectures, and also 2x

sped-up version

Distribution of households

Solved household problem, now aggregate

- * We've solved problem facing individual household
- * Now aggregate into economies with a continuum of such households
 - * Soon will put in general equilibrium ...
 - * But for now interested in properties of "partial equilibrium" model, i.e. taking return *r* as given

- * This is a heterogeneous-agent economy
 - * Has a **distribution** of households across the two states, *e* and *a*

What is distribution of households?

- * In principle, it's a measure μ
- * If finitely many e, then can define $\mu(e, \mathbb{A})$ separately for each e, as measure on subsets \mathbb{A} of the asset space
- * Law of motion

$$\mu_{t+1}(e', \mathbb{A}) = \sum_{e} \mu_t (e, (a')^{-1}(e, \mathbb{A})) \cdot P(e, e')$$

where P(e,e') is transition probability, $(a')^{-1}(e,\cdot)$ is inverse of policy $a'(e,\cdot)$

* Measure of A today is sum of measures yesterday that send you there today

Why measure?

- * You might want some nice density function ...
 - * But if $\beta(1+r) < 1$, there will be a positive mass at borrowing constraint
 - * (If $\beta(1+r) \ge 1$, can show everyone's assets will diverge to ∞ , so we generally don't consider that case...)
 - * If finitely many *e*, this implies **discrete distribution** with only mass points!
 - * Countably many histories of *e* since last time hitting constraint.
- * So for generality, we assume an arbitrary measure over assets
 - * Will revisit much later when we build a "smoother" model

Calculating distribution in practice

```
def get_lottery(a, a_grid):
    # step 1: find the i such that a' lies between gridpoints a_i and a_(i+1)
    a_i = np.searchsorted(a_grid, a) - 1

# step 2: obtain lottery probabilities pi
    a_pi = (a_grid[a_i+1] - a)/(a_grid[a_i+1] - a_grid[a_i])

    return a_i, a_pi

@numba.njit
def forward policy(D, a_i, a_pi):
```

```
def forward_policy(D, a_i, a_pi):
    Dend = np.zeros_like(D)
    for e in range(a_i.shape[0]):
        for a in range(a_i.shape[1]):
            # send pi(e,a) of the mass to gridpoint i(e,a)
            Dend[e, a_i[e,a]] += a_pi[e,a]*D[e,a]

# send 1-pi(e,a) of the mass to gridpoint i(e,a)+1
            Dend[e, a_i[e,a]+1] += (1-a_pi[e,a])*D[e,a]
```

return Dend

Approximate distribution by point masses on finite grid; when asset policy a'(e, a) lies between two gridpoints, convert it to "lottery" between gridpoints with same expectation

Also in sim_steady_state.py, notebook, and videos.

Steady state of aggregate model

What is a steady state of model?

- * Consists of:
 - * policy functions a'(e, a) and c'(e, a) that solve Bellman equation
 - * **distribution** $\mu(e, A)$ that satisfies steady-state law of motion

$$\mu(e', \mathbb{A}) = \sum_{s} \mu\left(e, (a')^{-1}(e, \mathbb{A})\right) \cdot P(e, e')$$

- * Can show such a "stationary distribution" exists and is unique if $\beta(1+r) < 1$
- * Aggregate assets and consumption:

$$A = \int ad\mu = \int a'(e, a)d\mu \qquad C = \int cd\mu$$

Nice features of model

- * Captures key features of consumption-saving problem with risk
 - * income smoothing, precautionary savings, etc.
- * Endogenously generates wealth distribution (of assets a)
- * Consistent with high marginal propensities to consume (MPCs) out of cash on hand, here $mpc(e, a) \equiv (\partial c(e, a)/\partial a)/(1 + r)$
- * Unlike representative-agent model, steady-state **asset demand not infinitely elastic** in *r*, so *r* can be endogenous
- * Easy to extend: other shocks, preference heterogeneity, endogenous labor, life-cycle structure, other assets...

Consumption functions: increasing, concave

Buffer-stock behavior for each household

Rich asset distribution, endogenous wealth inequality

Calibration of model

What parameters do we need to calibrate?

- * Calibrate to quarterly frequency
- * Income process e:

[usually normalize average e to 1, entire ss scales in Z]

- * calibrate as discrete approximation of lognormal AR(1)
- * annual persistence $\rho=0.91$, cross-sectional sd $\sigma=0.92$ (IKC paper), rough approximation of pretax income process in US
- * 11-point Rouwenhorst approximation (see supplement for details)
- * Real rate r to 2% annually, borrowing constraint \underline{a} to 0, utility to $u(c) = \log c$
- * One parameter remains: discount factor β

Two common strategies for calibrating β

- * Calibrate to hit target for aggregate assets, taken from data
 - * Our Ann Rev calibration: assets A at 500% of GDP, given after-tax labor income Z of 70% of GDP, following US
 - * (Some others target lower A, interpreted as some notion of "liquid" assets)
- * Calibrate to average marginal propensity to consume, also taken from data
 - * Our Ann Rev calibration: average income-weighted quarterly MPC of 0.2
- * Problem: **tradeoff** between two, β that matches one fails other

Asset-MPC tradeoff as we vary β

Our solution: \(\beta \) heterogeneity

- * By mixing different β , we can target both aggregate assets and MPCs
- * Exogenous state is now (β, e) , can make β either permanent or stochastic
 - * Stochastic limits polarization into "spenders" vs. "savers"
- * We'll be inspired by Annual Review stochastic β process (independent of e):
 - * Four equispaced β s with equal shares, each household gets fresh β draw 1% of time
 - * Loosely interpret as new draw of preferences every "generation" (25 years)
 - * Calibrate to hit both asset (500% of GDP) and income-weighted MPC (0.2) targets
 - * Calibrated quarterly β s: approximately 0.955 (impatient) and 0.998 (patient)

New vs. old asset-MPC tradeoff

Untargeted moment: Lorenz curve vs. US data

Model not bad at all since distribution is untargeted, but overstates "middle-class" wealth (50th to 90th percentiles), understates wealth in upper tail (difficult to match without other features)

Partial equilibrium dynamics

Time-varying aggregate inputs to household problem

* Revisit individual household problem [ignoring β process for notational simplicity]

$$\max_{\{a_{it},c_{it}\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it})$$

allowing returns r_t^p and aggregate after-tax income Z_t to vary over time

$$a_{it} + c_{it} = (1 + r_t^p)a_{i,t-1} + Z_t e_{it}$$
 $a_{it} \ge \underline{a}$

- * Add p to emphasize that r_t^p is **ex-post** return from t-1 to t, determined at date t
- * Assume distribution of $a_{i,-1}$ is steady state, perfect foresight over $\{r_t^p, Z_t\}_{t=0}^{\infty}$ from date 0 onward ("MIT shock")

Solution uses similar iterations to steady state

1. Start with $V_{aT} = V_{a,ss}$ and iterate backward T times, using timevarying r_t^p and Z_t to obtain policies $a_t'(e,a)$, $c_t(e,a)$ at t=0,...,T-1

- 2. Start with distribution $\mu_0 = \mu_{ss}$ and iterate forward T-1 times, using time-varying policy function $a_t'(e,a)$ to get $\mu_t(e,\cdot)$ at each t
- 3. Aggregate policies $a_t'(e, a)$, $c_t(e, a)$ against $\mu_t(e, \cdot)$ at each t to get A_t , C_t

Key observation: r_t^p and Z_t determine everything

- * Given sequences of ex-post returns r_t^p and aggregate after-tax income Z_t :
 - * We can solve for time-varying policy functions $a'_t(e, a)$ and $c_t(e, a)$
 - * These imply a time-varying distribution $\mu_t(e, \cdot)$
 - * And together these imply time-varying A_t and C_t
- * Hence, we can think of A_t and C_t as being functions of $\{r_s^p\}_{s=0}^{\infty}$ and $\{Z_s\}_{s=0}^{\infty}$
 - * These are sequence-space functions $\mathcal{A}_t(\{r_s^p, Z_s\})$ and $\mathcal{C}_t(\{r_s^p, Z_s\})$
 - * Plot around steady-state; later, compute derivatives ("sequence-space Jacobians")

Response to $0.1\% Z_s$ shocks at different dates s

Elevated spending out of income at other dates as well (will call these "intertemporal MPCs")

Response to -1 pp r_s^p shocks at different dates s

Consumption increases in anticipation of falling returns, but less than standard Euler equation

If s = 0 then it's a surprise negative return ("capital loss"). Implied MPC out of loss is only 0.01, very low but persistent

Conclusion

Conclusion

- * Introduced standard incomplete markets model
- * Nice features: concave consumption functions, buffer-stock behavior, endogenous wealth distribution
- * Resolve steady-state "asset-MPC tradeoff" by introducing β heterogeneity

- * Aggregate dynamics a function of $\{r_s^p, Z_s\}$ path
- * Elevated consumption in period of income shock, some before and after too
- * Consumption response to r smaller than rep agent; MPC out of cap gains still low