

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

ELEKTRIESE TEGNOLOGIE

NOVEMBER 2016

PUNTE: 200

TYD: 3 uur

Hierdie vraestel bestaan uit 14 bladsye en 'n 2 bladsy-formuleblad.

INSTRUKSIES EN INLIGTING

- 1. Hierdie vraestel bestaan uit SEWE vrae.
- 2. Beantwoord AL die vrae.
- 3. Sketse en diagramme moet groot, netjies en volledig benoem wees.
- 4. Toon ALLE berekeninge en rond antwoorde korrek tot TWEE desimale plekke af.
- 5. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Toon die eenhede vir alle antwoorde van berekeninge.
- 8. 'n Formuleblad is aan die einde van hierdie vraestel aangeheg.
- 9. Skryf netjies en leesbaar.

VRAAG 1: BEROEPSGESONDHEID EN VEILIGHEID

1.6	Noem TWEE stappe wat gevolg moet word wanneer 'n risiko-analise gedoen word.	(2) [10]
1.5	Beskryf waarom voldoende ventilasie in 'n werkswinkel belangrik is.	(2)
1.4	Noem TWEE eerstehulpprosedures wat gevolg behoort te word wanneer 'n persoon brandwonde opgedoen het.	(2)
1.3	Gee TWEE voorbeelde van die tipe gedrag wat tot goeie werksetiek sal bydra.	(2)
1.2	Gee EEN voorbeeld van 'n gevaarlike praktyk in 'n werkswinkel.	(1)
1.1	Noem EEN onveilige handeling wat tot 'n ongeluk in 'n werkswinkel kan lei.	(1)

VRAAG 2: DRIEFASE-WS-OPWEKKING

- 2.1 Bepaal die waarde van die fasespanning in 'n deltaverbinde stelsel indien die lynspanning 380 V is. (2)
- 2.2 Teken 'n netjiese, benoemde spanningfasordiagram wat 'n driefasedeltaverbinde stelsel voorstel. (3)
- 2.3 'n Sterverbinde alternator wek 20 kVA op teen 'n arbeidsfaktor (af.) van 0,87 nalopend. Die lynspanning is 380 V.

Gegee:

S = 20 kVA $V_L = 380 \text{ V}$

af. = 0.87 nalopend

Bereken die:

- 2.3.1 Stroom wat teen vollas deur die alternator gelewer word (3)
- 2.3.2 Vermoëaanslag van die alternator (3)
- 2.4 Noem die funksie van 'n kilowatt-uur-meter. (2)
- 2.5 Noem TWEE metodes wat gebruik word om die arbeidsfaktor van 'n weerstands- induktiewe las te verbeter. (2)

2.6 Verwys na FIGUUR 2.1 en beantwoord die vrae wat volg.

Gegee:

 $P_1 = 120 W$ $P_2 = 50 W$

FIGUUR 2.1: TWEEWATTMETERMETODE

2.6.1 Bereken die drywing wat deur die las verbruik word. (3)

(2)

[20]

2.6.2 Noem TWEE voordele van die gebruik van die tweewattmetermetode wanneer die drywing gemeet word.

VRAAG 3: DRIEFASETRANSFORMATORS

- 3.1 Noem TWEE funksies van die olie wat in oliegevulde transformators gebruik word. (2)
- 3.2 Noem TWEE verliese wat in transformators voorkom. (2)
- 3.3 Noem TWEE voordele van 'n driefasetransformator bo 'n enkelfasetransformator. (2)
- 3.4 Verduidelik waarom 'n transformator nie drywing kan verhoog nie. (2)
- 3.5 Beskryf wat met die primêre stroom van 'n verlagingstransformator sal gebeur indien die las van die transformator verhoog word. (3)

3.6 'n 20 kVA-driefasetransformator het 'n deltaverbinde primêre wikkeling en 'n sterverbinde sekondêre wikkeling. Die primêre lynspanning is 6,6 kV en die sekondêre lynspanning is 380 V.

FIGUUR 3.1: DRIEFASETRANSFORMATOR

Bereken die:

3.6.1	Primêre lynstroom	(3)
3.6.2	Sekondêre fasespanning	(3)
3.6.3	Transformasieverhouding	(3) [20]

VRAAG 4: DRIEFASEMOTORS EN -AANSITTERS

4.1 Verwys na FIGUUR 4.1 en beantwoord die vrae wat volg.

FIGUUR 4.1: DRIEFASE-KOUROTOR-INDUKSIEMOTOR

- 4.1.1 Noem of daar 'n elektriese verbinding tussen die stator en die rotor is. (1)
- 4.1.2 Beskryf die werking van die motor. (7)
- 4.1.3 Beskryf wat met die motor sal gebeur indien een fase van die statorwikkeling 'n oop kring is. (3)
- 4.2 Noem TWEE voordele van 'n driefase-induksiemotor bo 'n enkelfase-induksiemotor. (2)
- 4.3 Beskryf waarom dit belangrik is om die isolasieweerstand tussen die statorwikkelinge na te gaan voordat 'n motor bekrag word. (3)
- 4.4 Noem EEN meganiese toets wat op 'n motor uitgevoer moet word voordat dit bekrag word. (1)
- 4.5 'n Driefase-induksiemotor word oor 'n 380 V/50 Hz-toevoer verbind. Die motor het 18 pole en 'n glip van 4%.

Gegee:

 V_L = 380 V f = 50 Hz p = 3 glip = 4%

Bereken die:

4.5.1 Sinkrone spoed (3)

4.5.2 Rotorspoed (3)

4.6 'n Driefase- deltaverbinde motor trek 'n stroom van 8,5 A wanneer dit aan 'n 380 V/50 Hz-toevoer verbind is. Die motor het 'n drywingsfaktor van 0,8 en 'n rendement van 95%.

Gegee:

 V_L = 380 V I_L = 8,5 A f = 50 Hz d.f. = 0,8 η = 95%

Bereken die:

- 4.6.1 Inset-kVA van die motor teen vollas (3)
- 4.6.2 Aktiewe kraglewering van die motor teen vollas (3)
- 4.7 Beskryf die funksie van 'n oorbelastingseenheid in 'n motoraansitter. (3)
- 4.8 FIGUUR 4.2 stel die beheerkring van 'n outomatiese sekwensiële aansitter voor.

FIGUUR 4.2: BEHEERKRING VAN 'N OUTOMATIESE SEKWENSIËLE AANSITTER

- 4.8.1 Noem EEN praktiese toepassing van die outomatiese sekwensiële aansitter. (1)
- 4.8.2 Beskryf wat met motor 1 (HK₁) sou gebeur het indien die kontak gemerk N/O HK₁ HOU IN foutief was en nie gesluit het nie. (2)
- 4.8.3 Beskryf die aansitvolgorde van die aansitter. (5)

 [40]

VRAAG 5: RLC

- 5.1 Onderskei tussen die *reaktansie* en *impedansie* in 'n RLC-kring. (4)
- 5.2 Verduidelik wat die fasehoek aandui. (2)
- 5.3 FIGUUR 5.1 toon die verhouding tussen die induktiewe reaktansie en die kapasitiewe reaktansie teenoor frekwensie in 'n RLC-seriekring. Beantwoord die vrae wat volg.

FIGUUR 5.1: FREKWENSIEKROMME ('FREQUENCY RESPONSE CURVE')

- 5.3.1 Verduidelik die uitwerking van frekwensie op die impedansie van die kring by punt A. (2)
- 5.3.2 Bereken die frekwensie by punt A indien die kring 'n 50 μF-kapasitor en 'n 0,1 H-induktor insluit.

Gegee:

$$C = 50 \mu F$$

 $L = 0.1 H$ (3)

NSS

5.4 Die seriekring in FIGUUR 5.2 bestaan uit 'n kapasitor met 'n kapasitiewe reaktansie van 20 Ω , 'n induktor met 'n induktiewe reaktansie van 40 Ω en 'n resistor/weerstand met 'n weerstand van 30 Ω wat oor 'n 240 V/50 Hz-toevoer verbind word.

FIGUUR 5.2: RLC-SERIEKRING

Gegee:

 X_{C} 20 Ω = 40 Ω = 30 Ω = 240 V= 50 Hz

Bereken die:

5.4.1 Impedansie van die kring

(3)

(3)

5.4.2 Fasehoek van die kring

5.5 'n Kapasitor met 'n kapasitansie van 1,47 µF word in parallel met 'n $1 k\Omega$ -weerstand oor 'n 20 V-WS-toevoer verbind. Bereken die toevoerfrekwensie indien die kapasitor 'n stroom van 10 mA trek.

Gegee:

C $= 1,47 \mu F$ R $= 1 k\Omega$ $V_S = 20 V$ = 10 mA

(3) [20]

VRAAG 6: LOGIKA

- 6.1 Identifiseer DRIE programmeringsmetodes wat in programmeerbare logikabeheerders (PLB's) gebruik word. (3)
 - (2)
- Noem TWEE insettoestelle wat aan die insetstadium van 'n PLB gekoppel kan word.
- 6.3 Noem DRIE nadele van 'n vastedraadstelsel in vergelyking met 'n PLB-stelsel. (3)
- 6.4 Verduidelik hoe laestroomtoestelle, soos transistors, deur die lewering van 'n PLB geaktiveer kan word. (2)
- 6.5 Skryf die vereenvoudigde Boole-vergelyking vir die vergelyking hieronder neer. Gebruik 'n vier-veranderlike-Karnaugh-kaart.

$$X = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} B \overline{C} \overline{D} + \overline{A} B \overline{C} D + \overline{A} B C D + \overline{A} B C \overline{D}$$
(11)

6.6 Vereenvoudig die volgende Boole-vergelyking deur Boole-algebra te gebruik:

$$Q = \overline{A} B C + A B \overline{C} + A B C + A B$$
 (5)

6.7 Verwys na FIGUUR 6.1.

FIGUUR 6.1: HEKNETWERK

Bepaal die lewering by die volgende punte:

6.7.1	W		(1)
-------	---	--	-----

6.8 Benoem die volgende leerlogikasimbole:

6.8.2

6.9 Verwys na FIGUUR 6.2 en beantwoord die vrae wat volg.

FIGUUR 6.2: DAL-AANSITTER

6.9.1 Teken die leerlogikadiagram wat dieselfde funksie in 'n PLB-stelsel sal uitvoer. (5)

6.9.2 Gee EEN voorbeeld waar die kring in FIGUUR 6.2 in 'n elektriese toepassing gebruik kan word. (1)

[40]

VRAAG 7: VERSTERKERS

7.1	Noem DRIE ideale eienskappe van 'n operasionele versterker (op-versterker)	
	buiten onvoorwaardelike stabiliteit.	(3)

- 7.2 Beskryf die term *onvoorwaardelike stabiliteit* met verwysing na 'n ideale op-versterker. (2)
- 7.3 Beskryf die term *positiewe terugvoer*. (3)
- 7.4 Noem die tipe op-versterkerkring wat positiewe terugvoer gebruik. (1)
- 7.5 Noem TWEE voordele van negatiewe terugvoer. (2)
- 7.6 Verwys na FIGUUR 7.1 en teken die lewering van die ideale op-versterker.

FIGUUR 7.1: OP-VERSTERKER

(3)

7.7 Verwys na FIGUUR 7.2 en beantwoord die vrae wat volg.

FIGUUR 7.2: OP-VERSTERKERKRING

7.7.1 Identifiseer die op-versterkerkring hierbo. (1)

7.7.2 Teken die insetsein en leweringsein op dieselfde assestelsel. (3)

- 7.7.3 Bereken die spanningswins indien die terugvoerweerstand 12 k Ω is en die insetweerstand 'n waarde van 2,2 k Ω het. (3)
- 7.7.4 Bereken die leweringspanning indien 'n insetsein van 5 V op die op-versterker toegepas word. (3)
- 7.7.5 Beskryf wat met die wins van die op-versterker gebeur indien die waarde van R_F afneem. (2)
- 7.8 Verwys na die sommeer-op-versterkerkring in FIGUUR 7.3 en beantwoord die vrae wat volg.

Gegee:

$$V_1 = 2 V$$

 $V_2 = -10 V$
 $V_3 = 5 V$
 $R_1 = R_2 = R_3 = R_F$

FIGUUR 7.3: SOMMEER-OP-VERSTERKERKRING

7.8.1 Beskryf die funksie van die sommeer-op-versterkerkring. (3)

7.8.2 Bereken die leweringspanning. (3)

7.9 Bestudeer die monostabiele multivibrator-op-versterkerkring in FIGUUR 7.4 en beantwoord die vrae wat volg.

FIGUUR 7.4: MONOSTABIELE MULTIVIBRATOR-OP-VERSTERKERKRING

- 7.9.1 Noem die funksie van die kring hierbo. (1)
- 7.9.2 Teken die insetsnellerpuls en teken direk daaronder die lewering om die korrekte tydreëling ten opsigte van die inset te toon. (7)
- 7.9.3 Bereken die tydvertraging indien $R_2 = 12 \text{ k}\Omega$ en $C_2 = 47 \mu\text{F}$. (3)
- 7.10 Bereken die ossilleerfrekwensie van 'n RC-ossillator met drie RC-netwerke. Die weerstande en kapasitors is identies en het onderskeidelik waardes van 10 k Ω en 250 pF. (3)
- 7.11 Beskryf die funksie van 'n op-versterker wanneer dit in 'n differensieerderkring gebruik word.
- 7.12 Beskryf hoe 'n op-versterker verpak word. (2) [50]

TOTAAL: 200

(2)

FORMULEBLAD

DRIEFASE-WS-OPWEKKING

Ster

$$V_L = \sqrt{3} V_F$$

$$I_L = I_F$$

Delta

$$I_{l} = \sqrt{3} I_{r}$$

$$S = \sqrt{3} V_L I_L$$

$$Q = \sqrt{3} V_L I_L \sin \theta$$

$$\cos \theta = \frac{P}{S}$$

$$P = \sqrt{3} \times V_{L} \times I_{L} \times Cos \, \theta \times \eta$$

$$V_P = I_P \times Z_P$$

Tweewattmetermetode

$$P = P_1 + P_2$$

RLC-KRINGE

$$X_{L} = 2\pi f L$$

$$X_c = \frac{1}{2\pi fC}$$

$$F_R = \frac{1}{2\pi\sqrt{LC}}$$

Serie

$$I_T = I_R = I_C = I_L$$

$$Z = \sqrt{R^2 + \left(X_L - X_C\right)^2}$$

$$V_1 = I X_1$$

$$V_C = I X_C$$

$$V_{\tau} = IZ$$

$$V_T = \sqrt{V_R^2 + (V_L - V_C)^2}$$

$$I_T = \frac{V_T}{Z}$$

$$Cos \theta = \frac{R}{Z}$$

$$Cos \; \theta = \frac{V_R}{V_T}$$

$$Q = \frac{X_L}{Z} = \frac{X_C}{Z} = \frac{V_L}{V_S} = \frac{V_C}{V_S} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

DRIEFASETRANSFORMATORS

Ster

$$V_{I} = \sqrt{3} V_{F}$$

$$I_{1} = I_{2}$$

Delta

$$I_{L} = \sqrt{3} I_{E}$$

$$V_{\scriptscriptstyle L} = V_{\scriptscriptstyle E}$$

$$P = \sqrt{3} \times V_L \times I_L \times Cos \, \theta \times \eta$$

$$V_T = V_R = V_C = V_L$$

$$I_R = \frac{V_R}{R}$$

$$I_{C} = \frac{V_{C}}{X_{C}}$$

$$I_{L} = \frac{V_{L}}{V}$$

$$I_{T} = \sqrt{I_{R}^{2} + \left(I_{L} - I_{C}\right)^{2}}$$

$$Cos \theta = \frac{I_R}{I_T}$$

$$S = \sqrt{3} V_L I_L$$

$$Q = \frac{X_L}{Z} = \frac{X_C}{Z} = \frac{V_L}{V_S} = \frac{V_C}{V_S} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$Q=\sqrt{3}\ V_{_L}\ I_{_L}\ Sin\ \theta$$

$$Cos\theta = \frac{P}{S}$$

$$\frac{V_{F(P)}}{V_{F(S)}} = \frac{N_P}{N_S} = \frac{I_{F(S)}}{I_{F(P)}}$$

DRIEFASEMOTORS EN -AANSITTERS

VERSTERKERS

Ster

$$V_L = \sqrt{3} \ V_F$$

$$I_{L} = I_{F}$$

Wins
$$A_V = \frac{V_{UIT}}{V_{IN}} = -\left(\frac{R_F}{R_{IN}}\right)$$

Wins
$$A_V = \frac{V_{UIT}}{V_{IN}} = 1 + \frac{R_F}{R_{IN}}$$

$$f_R = \frac{1}{2\pi\sqrt{LC}}$$

$$f_R = \frac{1}{2\pi\sqrt{6RC}}$$

Delta

$$I_L = \sqrt{3} I_f$$

$$V_L = V_f$$

$$V_1 = V_1$$

T = 5RC

$$V_{\text{UIT}} = -(V_1 + V_2 + V_3 +V_N)$$

Drywing

$$P = \sqrt{3} \times V_{L} \times I_{L} \times Cos \theta \times \eta$$

$$S=\sqrt{3}\ V_L\ I_L$$

$$Q = \sqrt{3} \ V_L \ I_L \ Sin \, \theta$$

Rendement
$$(\eta) = \frac{P_{IN} - verliese}{P_{IN}}$$

Spoed

$$n_{s} = \frac{60 \times f}{p}$$

$$Glip = \frac{n_S - n_R}{n_S}$$