ĐẠI HỌC QUỐC GIA TP. HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KỸ THUẬT MÁY TÍNH

SINH VIÊN THỰC HIỆN

TRẦN NGỌC ÁNH

22520077

THIẾT KẾ LUẬN LÍ SỐ BÁO CÁO THỰC HÀNH 3: THIẾT KẾ MẠCH TỔ HỢP TÍNH TOÁN

GIẢNG VIÊN HƯỚNG DẪN: *Ths. Hồ Ngọc Diễm* MÃ LỚP: CE118.P15

TP. HÒ CHÍ MINH, 2024

I. BÀI TẬP THỰC HÀNH:

Sinh viên thực hiện thiết kế và mô phỏng một ALU có 2 toán hạng (4 bit) và các phép toán **cộng, cộng 1, trừ, trừ 1, and, or, nand, xor** theo đúng thứ tự tương ứng với tín hiệu điều khiển (Opcode) từ 0 đến 7.

Hình 1: Minh hoạ ALU 16-bit

Thiết kế thêm một ngõ ra Overflow báo hiệu tràn. Lệnh Add (cộng) và Subtract (trừ) được thực hiện trên 2 số có dấu 4-bit A và B. Kết quả sẽ được biểu diễn trong số có dấu 4-bit (R). Cờ báo add_sub_overflow sẽ được bật lên 1 khi mạch phát hiện có overflow xảy ra.

1. Tổng quan chức năng của khối ALU:

S2	S1	S0	ALU operation
0	0	0	Addititon
0	0	1	Increament
0	1	0	Subtract
0	1	1	Decreament
1	0	0	AND
1	0	1	OR
1	1	0	NAND
1	1	1	XOR

2. Thiết kế ALU trên phần mềm Quartus:

a. Bộ MUX2to1 1-bit:

b. Bộ MUX2to1 4-bit:

c. Thiết kế khối Full Adder:

d. Thiết kế khối Half Adder:

e. Thiết kế mạch cộng 4-bit:

f. Thiết kế mạch cộng với 1:

g. Thiết kế mạch trừ 4-bit:

h. Thiết kế mạch trừ đi 1:

i. Thiết kế mạch AND 4-bit:

j. Thiết kế mạch OR 4-bit:

k. Thiết kế mạch NAND 4-bit:

1. Thiết kế mạch NOR 4-bit:

m. Mạch ALU hoàn chỉnh:

Sau khi đóng gói, ta thiết kế được một mạch ALU với đầy đủ các chức năng như yêu cầu:

3. Chạy mô phỏng (waveforms) trên phần mềm Quartus II:

- A và B là hai số 4-bit được nhập vào, cho giá trị S (S2, S1, S0) bất kì.
- Quan sát output Y, kết quả của đầu ra Y phụ thuộc vào 3 giá trị S2, S1, S0 để ALU thực hiện phép tính phù hợp đối với A và B.

II. BÀI TẬP THÊM:

Sinh viên thực hiện một mạch nhân hai số 4 bit với kết quả ngõ ra lưu trong 8 bit. Gợi ý: sử dụng các bộ dịch và bộ cộng để thực hiện mạch nhân này.

1. Thiết kế bộ Full-Adder:

2. Sơ đồ mạch trên phần mềm Quartus II:

