Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Розрахунково-графічна робота з дисципліни «Комп'ютерна схемотехніка»

Виконав: студент ННІКІТ групи СП-225 Клокун Владислав Перевірив: Іскренко Ю. Ю.

Київ 2018

1 Завдання

Завданням розрахунково-графічної роботи є розробка алгоритму виконання вказаної в завданні операції та синтезу функціональної схеми керуючого автомата.

Табл. 1: Завдання на розрахунково-графічну роботу

Параметр	Значення		
N⁰	16		
Тип операції	Додавання		
Початковий код операндів	ДК		
Розрядність операндів	16		
КВМСМ	МДК		
Структура ОБ	ЗМО		
Тип автомата	Мілі		
Пам'ять автомата	D		
OP	P		
ЛО	NAND		

З завдання на розрахунково-графічну роботу (табл. 1) видні такі характеристики цільового арифметико-логічного пристрою:

- 1. Тип арифметичної операції додавання двійкових чисел.
- 2. Початковий код подання операндів доповняльний.
- 3. Розрядність операндів 16 біт.
- 4. Код виконання операції у суматорі доповняльний модифікований.
- 5. Структура операційного блока із закріпленими мікроопераціями.
- 6. Тип керуючого блока автомат Мілі з пам'яттю на *D*-тригерах.
- 7. Схема логічної ознаки парності молодшого байту.

2 Хід роботи

2.1 Розробка алгоритму

Алгоритм додавання двійкових чисел можна словесно описати так:

1. У першому і другому машинних тактах із вхідної шини паралельним кодом записуються операнди A і B у відповідні регістри RGA і RGB. Зчитування операндів здійснюється ЦПК.

- 2. Протягом одного машинного такту виконується мікрооперація додавання.
- 3. Якщо розрядна сітка не переповнилась, результат записується у регістр *RGC*.
- 4. Якщо розрядна сітка переповнилась, результат не фіксується, і в ЦПК подається сигнал переповнення «ПП».

2.2 Розробка функціональної схеми для виконання додавання

Розроблюємо функціональну схему для виконання додавання двох двійкових чисел (рис. 1), яка містить:

- 1. Регістри *RGA*, *RGB* для приймання і подальшого зберігання першого і другого операндів із вхідної шини *Ш1*.
- 2. Паралельний комбінаційний суматор з додатковим старшим розрядом знака Π для створення модифікованого доповняльного коду.
- 3. Регістр результату *RGC*, дані з якого пересилаються в оперативну пам'ять по вихідній шині *Ш2*.
- 4. Схеми електронних ключів SW1 і SW2.
- 5. Схему вироблення ознак переповнення ОР.
- 6. Схему диз'юнкторів OR для виконання операцій порозрядного логічного додавання кодів операндів A і B.

Рис. 1: Функціональна схема для додавання чисел

Після закінчення операції керуючий автомат аналізує ознаки результату і встановлює значення відповідних тригерів ознак. Ознаки результату обчислюються за допомогою булевих виразів:

```
arphi_1 = \Pi \wedge \overline{SM}[n] — додатний результат (знаки 00),  arphi_2 = \Pi \wedge SM[n] — від'ємний результат (знаки 11),  arphi_3 = \overline{\Pi} \wedge SM \vee \Pi \wedge \overline{SM}[n] — переповнення розрядної сітки (знаки 01 чи 10),  arphi_4 = \bigwedge_{i=1}^{n+1} \overline{SM}[i] — нульовий результат.
```

Ознака переповнення перевіряється до закінчення операції і за її наявності виконання програми переривається. Перевірка ознаки *OR* реалізується за допомогою восьми логічних 2-входових елементів «АБО» за співвідношенням:

$$F_i = A_i \vee B_i, \quad i = \{1, \dots, 8\},$$

де F_i — i-й вихід вузла логічного додавання. Ця операція виконується автоматично незалежно від коду команди.

2.3 Розробка мікропрограми додавання

За словесним алгоритмом додавання двійкових чисел у доповняльних кодах запишемо мікропрограму (алг. 1). Отримана мікропрограма дозволяє скласти змістовний граф мікропрограми (рис. 2). В свою чергу отриманий змістовний граф мікропрограми кодується та розмічуюється. В результаті отримуємо закодований граф мікропрограми (рис. 3).

```
Алгоритм 1: Додавання двійкових чисел
```

```
/*K[1] — однорозрядний код команди додавання */
1 якщо K[1] то
                                             /* Приймання першого операнда */
2
      RGA := A;
      RGB := B;
                                               /* Приймання другого операнда */
3
                                                                  /* Додавання */
      SM := A + B;
4
      якщо \varphi_3 то
         T_\Pi\coloneqq\Pi\Pi;
                      /* Тригеру переповнення T_{\Pi} присвоюється ознака \Pi\Pi */
 6
      інакше
7
         RGC := SM;
                                                      /* Присвоєння результату */
8
         III2 := RGC;
                                                      /* Пересилання в пам'ять */
 9
      кінець
10
11 інакше
      Чекати;
13 кінець
```


Рис. 2: Змістовний граф мікропрограми додавання

Рис. 3: Закодований граф мікропрограми додавання

2.4 Розробка схеми модуля операційного блока

Отримані дані дозволили розробити модуль операційного блока (рис. 4).

Рис. 4: Схема модуля операційного блока

Розроблений модуль операційного блока складається з таких елементів:

- 1. Регістри для зберігання операндів.
- 2. Мікросхеми логічного АБО для реалізації порозрядної диз'юнкції над кодами операндів A і B.
- 3. Мікросхеми логічного І для підключення виходів регістрів до входів суматора.
- 4. Мікросхеми логічного виключного АБО для створення старшого знакового розряду суматора і логічної ознаки $\varphi_3 = x_1$ та $\overline{x_1}$.
- 5. Вихідний регістр для приймання результату додавання та його передачі на вихідну шину.
- 6. Суматори для виконання операції додавання.

2.5 Проектування керуючого блоку

Із закодованого графа мікропрограми видно, що максимальна кількість станів автомата L=8, тому для реалізації необхідно $n=\left\lceil \log_2 8 \right\rceil=3$ D-тригери. Закодуємо стани автомата значеннями виходів D-тригерів за принципом кодування Грея:

$$\begin{split} z_1 &= \overline{Q_1 Q_2 Q_3}, \quad z_2 &= \overline{Q_1 Q_2} Q_3, \quad z_3 &= \overline{Q_1} Q_2 Q_3, \quad z_4 &= \overline{Q_1} Q_2 \overline{Q_1}, \\ z_5 &= Q_3 Q_2 \overline{Q_1}, \quad z_6 &= Q_3 Q_2 Q_1, \quad z_7 &= Q_3 \overline{Q_2} Q_1, \quad z_8 &= Q_3 \overline{Q_2} \overline{Q_1}. \end{split}$$

На основі отриманих даних складаємо граф автомата Мілі (рис. 5).

Рис. 5: Граф автомата Мілі для мікропрограми додавання

Отриманий граф автомата Мілі для мікропрограми додавання двох двійкових чисел у доповняльних кодах дозволяє скласти структурну таблицю переходів автомату Мілі (табл. 2), яка знадобиться для подальших обчислень і є більш наочною.

Табл. 2: Структурна таблиця переходів автомата Мілі

z_i	$k(z_i)$	z_j	$k(z_j)$	$\{x_i\}$	$\{y_i\}$	D_1	D_2	D_3
$\overline{z_1}$	000	z_1	000	$\overline{eta_1}$		0	0	0
z_1	000	z_2	001	1	y_1	0	0	1
z_2	001	z_3	011	1	y_2	0	1	1
z_3	011	z_4	010	1	y_3	0	1	0
z_4	010	z_5	110	1	y_4	1	1	0
z_5	110	z_6	111	1	y_5	1	1	1
z_6	111	z_7	101	1	y_6	1	0	1
z_7	101	z_1	000	x_1	y_9	0	0	0
z_7	101	z_8	100	$\overline{x_1}$	y_7	1	0	0
z_8	100	z_1	000	1	y_8	0	0	0

На підставі даних структурної таблиці переходів автомату Мілі для мікропрограми додавання записуємо системи логічних рівнянь. Для функцій збудження входів D-тригерів:

$$D_1 = z_4 \lor z_5 \lor z_6 \lor z_7 \overline{z_2}, \quad D_2 = z_2 \lor z_3 \lor z_4 \lor z_5, \quad D_3 = z_1 \lor z_2 \lor z_5 \lor z_6.$$

Перетворимо отримані функції до заданого елементного базису «І—НЕ»:

$$\begin{split} D_1 &= z_4 \vee z_5 \vee z_6 \vee z_7 \overline{x_2} = \overline{z_4} \,\overline{\wedge}\, \overline{z_5} \,\overline{\wedge}\, \overline{z_6} \,\overline{\wedge}\, (z_7 \,\overline{\wedge}\, x_2)\,, \\ D_2 &= z_2 \vee z_3 \vee z_4 \vee z_5 = \overline{z_2} \,\overline{\wedge}\, \overline{z_3} \,\overline{\wedge}\, \overline{z_4} \,\overline{\wedge}\, \overline{z_5}, \\ D_3 &= z_1 \vee z_2 \vee z_5 \vee z_6 = \overline{z_1} \,\overline{\wedge}\, \overline{z_2} \,\overline{\wedge}\, \overline{z_5} \,\overline{\wedge}\, \overline{z_6}. \end{split}$$

Рівняння для вихідних сигналів:

$$y_1 = z_1,$$
 $y_2 = z_2,$ $y_3 = z_3,$
 $y_4 = z_4,$ $y_5 = z_5,$ $y_6 = z_6,$
 $y_7 = z_7\overline{x_1},$ $y_8 = z_8,$ $y_9 = z_7x_1.$

В результаті розробили функціональну схему керуючого автомату (рис. 6).

3 Висновок

Під час виконання даної розрахунково-графічної роботи ми навчились розробляти мікропрограми для виконання арифметично-логічних операцій, синтезувати за розробленим алгоритмом відповідні керуючі автомати та реалізовувати синтезовані автомати у вигляді функціональних схем.

Рис. 6: Функціональна схема керуючого автомата