EXPERIMENT-5:

Working with Loops/Iterations

<u>**Objective:**</u> To understand the concepts of Looping with Iterations; applying while, do-while and for constructs.

List of Lab Activities:

Write algorithm and C program, compile, execute and test the code using Linux C compiler with suitable test cases.

outdole test eases.			
1.	Given positive number 'n', generate all the Armstrong numbers between 1 and n.[Hint: A	and n.[Hint: A 3-	
	digit number (Ex. 153) is an Armstrong number if the sum of cube of each digit	11111	
	$(1^3+5^3+3^3)$ is equal to 153]		
2	Multiple two given numbers without using the arithmetic binary multiplication operator	22222	
۷.	using for loop.	33333	
	using for roop.		

44444

55555

- 3. Find the sum of digits of a number using while loop.
- 4. Given value of 'n', find the sum of the series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{n}$.
- 5. Print the given pattern using nested for loop.

List of Practice Activities:

Write algorithm and C program, compile, execute and test the code using Linux C compiler with suitable test cases.

- 1. Generate the first 'n' terms of a Fibonacci sequence. [Hint: The first and second terms of a Fibonacci sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence.]
- 2. Print numbers which are divisible by 3 and 5 from the first 'n' natural numbers.
- 3. Generate all the prime numbers between 1 and n, where n is a value supplied by the user.
- 4. Reverse the digits of a given number and check if given number is a Palindrome or not using do-while.
- 5. Using a menu driven control, print the given patterns as per user choice.

