

목차

₩ BigData, BigData 구성요소

02 빌데이터시스템

빅데이터시스템, 하둡, MongoDB

03우리가 할 일

로드맵, AI비서

04 전달 사항

학습목표, 학습내용, 교재, 실습환경, 학사일정, 강의일정, 수업방식, 수업진행, 수업도구, 평가항목 및 배점

1. 빅데이터

BigData

- 빅데이터의 의의
 - 기존의 DataBase 를 넘어서는 대량의 정보를 찾고 결과를 분석하는 기술
 - 정해진 규칙만으로 존재하는 데이터가 아닌 비정형으로 수시로 가치창출

1. 빅데이터

▼ BigData 구성요소 (6V)

※ 기업에게는, 빅데이터가 생산성향상, 비용절감, 고객서비스개선, 수익증대, 혁신, 빠른시장대응 등의 경영상 중요정보 제공

2. 빅데이터시스템

፮ 빅데이터시스템

- 시스템의 필요성
 - 인터넷을 통해 기하급수적으로 데이터 생산(하루에 25억 기가바이트)
 - 많은 데이터를 활용하여 수집하고, 분석하여 비즈니스 가치를 생성할 필요
 - 데이터를 중심으로 모든 생활 기반 사업들이 4차 산업혁명을 주도
 - 기업들은 데이터전략을 만들고 이를 활용하기 위한 전문가 양성에 박차
- 시스템의 종류

구 분	구글	하둡생태계
대용량분산처리	Map/Reduce(2004)	Hadoop(2006)
배치	Sawzall(2005)	Pig, Hive(2008)
키/밸류 엔진	BigTable(2006)	HBase(2008)
온라인쿼리	Dremel(2010)	Impala(2012)
대용량파일시스템	-	Hadoop 2.0(2013)

출처:빅데이터시스템(제이펍, 황세규)

2. 빅데이터시스템

፮하둡(Hadoop: High-Availability Distributed Object-Oriented Platform)

- 하둡이란
 - 빅데이터 처리를 위해 최적화된 플랫폼 제공
 - Java 언어로 개발
 - 클러스터에서 사용할 수 있는 분산파일시스템과 분산처리시스템을 제공
 - 아파치 소프트웨어 재단의 오픈 소스 프레임워크
 - 하둡생태계를 통해 다양한 기능 확장

■ 장단점

장 점	단 점
 오픈소스로 라이선스에 대한 비용 부담이 적음 시스템을 중단하지 않고, 장비의 추가가 용이(Scale Out) 일부 장비에 장애가 발생하더라도 전체 시스템 사용성에 영향이 적음(Fault tolerance) 저렴한 구축 비용과 비용대비 빠른 데이터 처리 오프라인 배치 프로세싱에 최적화 	 HDFS에 저장된 데이터를 변경불가 실시간 데이터 분석 같이 신속하게 처리해야 하는 작업에는 부적합 너무 많은 버전과 부실한 서포트 설정의 어려움

2. 빅데이터시스템

■ MongoDB

- ※ NoSQL(Not Only SQL): 관계형 데이터베이스가 아닌 다른 형태의 데이터 저장 기술
- ※ Document Oriented: 키식별자와 밸류 형식의 데이터 저장 방식을 사용

- 몽고DB란
 - 빅데이터 처리를 위해 NoSQL 타입의 도큐먼트지향 데이터베이스 시스템
 - Json 형태로 데이터를 저장
 - 스키마를 자주 변경 해야 하는 대량의 데이터를 처리하는 데 강한 특징
 - 뉴욕시에 기반을 둔 10gen(현재는 MongoDB)에서 만든 자유-오픈 소스 DB
 - 응답속도와 안정성 측면에서 우수

■ 장단점

장 점	단 점
 사용방법이 쉬움 스키마 리스 구조로 데이터 모델 변경 및 필드 확장이 용이하고 다양한 형태의 데이터를 저장 쿼리 프로세싱이 단순화 되어 있어 대용량데이터 처리 성능이 향상 대용량 데이터 저장이 가능 	 많은 인텍스 사용 시 메모리 가용성 확보 필요 데이터 중복에 의해 데이터 일관성이 저하되고 용량이 증가 트랜잭션 지원이 RDBMS 대비 미약 스키마에 대한 메타 데이터가 없어 스키마 확보를 위해 전체 도큐먼트를 조사할 필요가 있음

3. 우리가 할 일

RoadMap

Hadoop설치

- ✓ VM 셋업
- ✓ JDK
- ✓ Python
- ✓ Hadoop Engine
- ✓ Spark Engine
- ✓ Zeppelin

빅데이터분석

- ✓ 빅데이터 산업의 이해
- ✓ 파이썬 프로그래밍
- ✓ 크롤링
- ✔ 통계분석
- ✓ 텍스트빈도분석
- ✓ 지리정보분석
- ✓ 회귀분석/분류분석
- ✓ 텍스트마이닝

AI 비서학습

- ✓ 챗봇 데이터 수집
- ✓ Flask 웹서버
- ✓ Nodejs API 연동
- ✓ KoGPT2 환경구성
- ✓ Colab을 이용한 학습
- ✓ 말풍선생성기 활용
- ✓ MySQL
- ✓ 챗봇 비서 만들기

3. 우리가 할 일

☑ AI 비서 시스템 구성 AI 학습 Colab Front-End Web Server Back-End Web Server AI 비서 (아이) 자전거는 여러 유형에 따라 분류할 수 있습니다 각기 다른 용도와 환경에 따라 설계되었습니다. 1. 로드 바이크: 라이딩 속도를 최적화하기 위해 만들어진 자전거로, 대부분의 경주용 자전거가 여기 API API KoGPT2 에 속합니다. 가벼운 프레임, 좁은 타이어, 드롬 핸들바를 특징으로 합니다. API 마운틴 바이크: 오프로드 라이딩에 적합하게 만들어진 자전거입니다.
 강인한 프레임, 넓은 타이어, 전후방 서스펜션을 가지고 있어 다양한 지형에서 운전할 수 있습니다. Gate Gate ΑI **JSON** 5. 하이브리드 바이크: 도로와 권가, 산약을 오가며 사용하기 적합하게 잘 조합된 자전거로, 로드 바이크의 속도와 마운틴 바이크의 안정성을 가지고 있습니다. Engine Way Way 4. BMX 바이크: 국단적인 스포즈 라이딩에 사용되는 작고 강력한 자전거입니다. 점프와 높은 총격에 대응하는 디자인이 특징입니다. 투어링 바이크: 장거리 주맹에 목화된 디자인을 가진 자전거입니다. 편안한 라이딩 포지션, 강한 프레임, 캐리어 등을 장작할 수 있는 기능 등이 있습니다. 6. 릭시드 기어 자전거: 가장 간단한 형태의 자전거로, 뒤바퀴는 한 방향으로만 움직이고, 브레이크도 Python Nodejs Flask log DB MySQL

학습 목표

- 빅데이터를 구성하는 시스템과 빅데이터 분석에 대한 이해와 실습을 통한 정확한 문제의 정의와 창 의적 능력을 도출
- 데이터 분석의 기초를 이해하고 이를 활용하여 서비스를 구축하는 데 필요한 요건과 해결방안을 학습하는 능력 배양
- 데이터분석에 필요한 서비스 플랫폼 구축에 따른 원리에 대하여 기본적 이해와 관련 솔루션을 활용 한 운용 기술 습득

학습 내용

- 하둡설치 (VM 셋업, JDK, Python, Hadoop Engine, Spark Engine, Zeppelin)
- 빅데이터분석 (빅데이터 산업의 이해, 파이썬 프로그래밍, 크롤링, 통계분석, 텍스트빈도분석 등)
- AI 비서 학습 (챗봇 데이터 수집, Flask 웹서버, Nodejs API 연동, KoGPT2 환경구성, Colab 등)

교재

주교재

- PowerPoint 로 만든 pdf 자료

- 데이터 과학 기반의 파이썬 빅데이터 분석 (이지영 지음, 한빛아카데미)

부교재

- 필요 시, 영상 공유

🏂 학사 일정

- 3/6 : 1학기 개강
- 3/2 ~ 3/3 : 신입생 오리엔테이션
- 4/24 ~ 4/28 (8주차) : 중간고사
- 5/4 : JEIU 축제
- 6/12 ~ 6/16 (15주차) : 보강주
- 6/17 : 개교기념일
- 6/19 ~ 6/23 (16주차) : 기말고사
- 6/26: 하계방학

- 9/4: 2학기 개강
- 9/4 ~ 9/15 : 수강신청 정정기간
- 10/23 ~ 10/27(8주차) : 중간고사
- 10/27 : JEIU 체육대회
- 12/11 ~ 12/15(15주차) : 보강주
- 12/18 ~ 12/22(16주차) : 기말고사
- 12/25 : 동계방학

수업 방식

- 주간 : 대면 수업이 원칙 (비대면 수업 불가, 보강도 대면)
- 전일제 : 비대면 수업으로 진행 하되, 중간평가, 기말평가 중 1회 이상 대면수업(시험) 그외 대면 수업 필요 시, 학생 의견 반영

수업 진행

- 대면 : 일반적인 강의, 실습
- 비대면 : Zoom 회의(저번주 복습, 수업내용 개략 설명) + 동영상 강의 + 실습(집 PC 활용)
 - ※ 출석인정 : 동영상시청 (Zoom실시간 수업 참여)
 - ※ 질문사항은 Zoom 회의나 오픈 채팅방 이용
 - ※ 영상은 수업시간 50% 이상

상 강의 일정 (1/3)

			반 구분			
일자 (월 / 일)	교육 내용	A / B 반		C 반		비고
(= / = /		대면	비대면	대면	비대면	
9 / 8	본 강의에 대한 오리엔테이션4차 산업혁명과 데이터과학* 4차산업혁명의 이해, 4차 산업혁명을 실현하는 데이터 과학 등	V			0	1주차
9 / 15	 - 빅데이터의 이해와 활용 * 빅데이터의 이해, 빅데이터의 활용 - 하둡(Hadoop 설치) 과 Mongo DB * 빅데이터시스템에 대한 기초 사항을 숙지하고 환경 설정 	V			Ο	2주차
9 / 22	- 데이터 과학 기반의 빅데이터 분석 * 빅데이터 산업의 이해, 빅데이터 분석 방법과 접근법 등	V			0	3주차
9 / 29 (보강주순연)	- 추석연휴	\checkmark			0	4주차 휴무보강
10 / 6	- 데이터 분석을 위한 파이썬 프로그래밍 * 변수와 객체, 자료형과 연산자, 조건문과 반복문, 함수, 파일처리 - 파이썬 플라스크(Flask)를 활용한 웹서버 구축	√			0	5주차

상 강의 일정 (2/3)

			반 구분			
일자 (월 / 일)		A / B 반		C 반		비고
(= / = /		대면	비대면	대면	비대면	
10 / 13	- 파이썬 크롤링 – API 이용 * 네이버 API를 이용한 크롤링, 공공데이터 API 기반 크롤링	V			0	6주차
10 / 20	- 파이썬 크롤링 – 라이브러리 이용 * 정적 웹 페이지 크롤링, 동적 웹 페이지 크롤링 - Nodejs 를 활용한 웹서버와 플라스크 연동 API 응용	√			Ο	7주차
10 / 27	- 중간 평가	\checkmark		√		8주차
11 / 3	- 빅데이터 분석을 위한 인공지능 챗봇 비서 구현 * KoGPT2 를 활용한 챗봇 환경 구축	V			Ο	9주차
11 / 10	- 통계 분석 : 기술통계분석과 그래프, 상관분석과 히트맵 - Colab 을 활용한 인공지능 챗봇 비서 학습 데이터 수집 및 학습	V			0	10주차
11 / 17	- 텍스트 빈도 분석 : 영문분석/한글분석 및 워드클라우드 - 말풍선 생성기 활용	V			Ο	11주차

상 강의 일정 (3/3)

			반 구분			
일자 (월 / 일)	교육 내용	A / B 반		C 반		비고
(= / =/		대면	비대면	대면	비대면	
11 / 24	지리정보 분석* 주소데이터분석 및 지오맵, 행정구역별 데이터분석 및 블록맵인공지능 챗봇 비서 강화 학습	V			0	12주차
12 / 1	- 회귀분석 * 선형 회귀분석 및 그래프, 회귀분석 및 그래프 - 인공지능 챗봇 비서 질의/응답 자동화를 위한 DB 환경 구축	√			Ο	13주차
12 / 8	- 분류분석 * 로지스틱 회귀분석, 결정 트리 분석 - 인공지능 챗봇 비서 활용-I	√			0	14주차
12 / 15 (보강주)	- 텍스트 마이닝 * 감성분석 및 토픽 모델링, 감성분석 및 바차트 - 인공지능 챗봇 비서 활용-II	√			0	15주차
12 / 22	- 기말 평가	√		V		16주차

수업 도구

- 교과목 카톡방 : 공지사항, Zoom URL 안내, 출석, 질의응답 등
- Zoom : 비대면 출석 체크, 수업
- LMS : 교과목 공지사항, 자료 업로드/다운로드, 동영상 시청, 과제 제출 등

출석 인정

- 대면수업주차는 실제 출석, 비대면수업주차는 동영상 시청(zoom실시간수업)

과제

- 과제의 종류에 따라, 다음 대면 수업 시, 과제 발표 또는 제출 시점까지 제출
- 실습과제 내용 제출 시기 : 기말고사 이전까지 (기말고사 이후 제출 시, 미인정)

평가항목 및 배점

출석	중간평가	기말평가	기타(과제/태도)
20	30	30	20

- 1회 결석 시 -5점, 4회 결석이면 F - 강의실에서 대면평가

- 대면수업 주차 : 실제 출석 및 지각 체크
- 비대면수업 주차 : 학기말에 주차별 동영상 시청 여부

- 과제에 따라, 수시점수부여
- 실습과제는 기말고사전,제출한 과제 확인 후,점수 부여

참고 자료

- 자바와 파이썬으로 만드는 빅데이터시스템(제이펍, 황세규)
- 위키독스(https://wikidocs.net/22654)
- 네이버블로그(https://blog.naver.com/classmethodkr/222822485338)
- 데이터분석과 인공지능 활용 (NOSVOS, 데이터분석과인공지능활용편찬위원회 편)

QnA