

Detecting Chickens From Social Media Data

Brad Cooley, Arpan Ojha School of Informatics, Computing, and Engineering at Indiana University **Myrna Cadena**, School of Veterinary Medicine, University of California, Davis

1. Motivation

- Out-of-the-box computer vision models (ResNet10, ResNet50, etc.) tend to have a hard time classifying different breeds of the same species
- This problem becomes increasingly more pronounced with data scraped from various social media sources (Twitter, Craigslist, etc.)
- We propose a way to use state-of-the-art (SOTA)
 computer vision models to accurately label different
 breeds of the same species (in our case, Chickens)
- We utilize ConvNeXt and transfer learning to achieve breed specific classification where possible

Using ConvNeXt and transfer learning, our implementation achieves breed-specific labeling and, when not available, differentiation between game fowl and domestic fowl.

2. Challenges

There are times that our model didn't classify images even remotely correct. For example, the middle image was classified as a lapdog.

3. Initial Modeling of Chicken Body Shape

- Given two broad categories of chicken game and farm
- Estimate social media websites for chicken data
- Also, jointly estimate
 type of chicken, game or
 farm based for diseased
 protection and isolation

Visual depiction of game versus farm fowl

- Need to identify contours and feather data properly
- Deeper layers perform better with more expressive details documented
- Model needs to be as discriminative as possible, so we train against similar looking animals (e.g. squirrels)
- Handle different species, color, and orientation of chickens including texture of feathers.
- Solve limited data issues with stitching, translation, and warping
- Model needs to be of the "chickens versus the world" type, where chickens are classified against other animals / observable items in the world.

4. Experiments

- We experimented with four different models:
 - Baseline CNN, horrible classification when other animals were introduced (10-15%).
 - ResNet50, decent classification, but not good enough to be breed specific
 - ConvNeXt, good breed specific classification and excellent species classification(90% top5)
 - ViT, mediocre species classification(~35%)

5. Results

ConvNeXt SOTA performance on farm vs game fowl. Green border indicates correct classification whereas red border indicates incorrect classification. Train/Test images obtained from Kaggle, Reddit, and Google.

Method	Layers/epochs	Parameters (Million)	Optimizer / Loss Function
CNN (baseline)	3/25	0.001	adam/Binary Cross entropy
VGG-19	19/20	138	adam/Cross entropy
ResNET-50	50/9	23	adam/Cross entropy
ConvNext	-/2(90 actual)	350	adamw/Cross entropy
ViT	12/20	87	adam/Cross entropy

Based on results, ConvNeXt is best suited for our purpose. It has the lowest false positives and negatives. Test detection time needs to reduced.

Above: Model complexity. All images use adam and cross entropy loss

Pight: Comparison to various

entropy loss

Right: Comparison to various models in terms of top 1 test, training accuracy and time to detect.

1	Method	Top 1 Accuracy	Train Accuracy	Time to train/detect(s)		
5	Neural Networks					
	CNN(Baseline)	75	95.8	240/60		
5	VGG-19	87	89	28800/720		
,	ResNET-50	98	99	3600/300		
)	ConvNext	94	99	60/30		
	Transformers					
!	ViT	35	45	600/5		

6. Future Work

- Refinement of ConvNeXt labeling techniques
- Applying ConvNeXt to video as compared to images
- More broad data collection strategies and sources
- Try DeiT and other modern transformers.