aselsan

GPU Based Resolution and Contrast Enhancement for Infrared Cameras

Toygar Akgün and Murat Gevrekci ASELSAN - Micro-electronics Guidence and Electro-Optics Division (MGEO)

1. Abstract

A massively multi-threaded CUDA implementation of spatial resolution and dynamic range enhancement technique is presented. A Bayesian technique is adopted with fixed step size in super-resolution (SR) reconstruction. A speed up of **6x** is achieved in super-resolution image formation and a speed up factor of **3x** is achieved for contrast limited adaptive histogram equalization (CLAHE). The implementation obtained by combining the multi-threaded super-resolution and CLAHE blocks runs at approximately 15 frames per second, resulting in near real-time performance. Potential improvements to further cut down the overall execution time, such as using asynchronous calls to pipeline these blocks, are currently under development.

2. Motivation

- Spatial resolution and dynamic range of imagery are both dependent on camera parameters and ambient conditions.
- Enhanced resolution is critical for tracking and recognizing small size targets with infrared imagery.

- Typically, once a system is deployed, it is not possible to upgrade sensor and lens systems on demand.
- Local contrast enhancement is also important since flares can severely reduce the acquired dynamic range and cripple any detection/tracking algorithms in infrared imagery.

Post-processing based resolution and contrast enhancement is required.

- Kepler GPU architecture provides increased perf/watt making it possible to use low-end, low-power GPUs to off-load pixel homogeneous post-processing tasks. All results in this work are based on GT640 compared against Core i5-2400.
- Massively multi-threaded GPU implementation can reduce the overall execution time per frame, allowing near real-time performance.
- Furthermore, reduced frame processing times allow us to increase the number of frames to be used in resolution enhancement, achieving better resolution improvement.

3. Super-resolution

Iterated back-projection method starts with an initial estimate of super resolution x(k) and modifies the super resolution estimate using forward (H) and backward (H^T) projections. Projection step is composed of warp, blur and decimate blocks. Contribution of residuals coming from each image is weighted by fixed step size. It is possible to use a gradient descent method for estimating the step size.

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \gamma \sum_{i} \mathbf{H}_{i}^{T} \mathbf{W}_{i} (\mathbf{g}_{r_{i}}(\mathbf{z}_{i}) - \mathbf{H}_{i} \mathbf{x}^{(k)})$$

Super resolution image formation is highly parallel as shown below:

4. Super-resolution CUDA Mapping

- Forward imaging model: MOTION WARP → BLUR FILTER → DECIMATION
- Backward imaging model: UPSAMPLE → BLUR FILTER → INV MOTION WARP
- Computational bottleneck is gradient computation. Inner most loop + heavy compute
- Bilinear upscale for initial estimate computation. Implemented by texture filtering.
- Affine motion warp is simply resampling the image on mapped grid coordinates. As such it is a very good fit for texture filtering.
- 5x5 2D blur filter is separable and implemented as two-pass global memory based convolution using shared memory caching.
- Decimation and upsampling are handled during surface reads and writes. These are augmented into the processing kernels.

BILINEAR UPSCALE			
Thread configuration	[32,32]		
Register usage	17		
Shared memory usage	0 B		
Bank conflicts	N/A		
Mem. BW efficiency (R/W)	100%		
Occupancy	0,877		
Time on GPU	161 us		

AFFINE WARP				
Thread configuration	[32,32]			
Register usage	16			
Shared memory usage	0 B			
Bank conflicts	N/A			
Mem. BW efficiency (R/W)	100%			
Occupancy	0,773			
Time on GPU	245 us			

SEPARABLE 2D BLUR - ROWS			
Thread configuration	[32,4]		
Register usage	22		
Shared memory usage	5248 B		
Bank conflicts	0 %		
Mem. BW efficiency (R/W)	100%		
Occupancy	0,957		
Time on GPU	120 us		

SEPARABLE 2D BLUR - COLS				
Thread configuration	[32,8]			
Register usage	32			
Shared memory usage	3072 B			
Bank conflicts	0 %			
Mem. BW efficiency (R/W)	100%			
Occupancy	0,476			
Time on GPU	140 us			

5. CLAHE Algorithm

Contrast Limited Adaptive Histogram Equalization (CLAHE)

Acquire images Divide image into

 Initialize per tile processing blocks

Process tiles

 Compute local histograms.

- Clip histograms Create mappings for all tiles
- Interpolate mappings
- For each input pixel find four neighbor mappings.
- Bi-linearly interpolate the results coming from neighboring mappings
- Locally adaptive contrast enhancement method. Adaptation is achieved by dividing the image into 32x32 blocks and extracting local histograms from each patch.
- Every pixel is mapped based on a combined map that is obtained as a bilinear interpolation of the four closest patch maps.
- Histogram clipping performed on local histograms avoids over-amplification of noise.
- Histogram equalization is not a perfect match for GPU due to random write collisions during pixel count updates and the corresponding need for atomic add.
- However, unlike the global histogram case, CLAHE is inherently local and does not require combining the locally computed histograms.
- There is also some additional parallelizable computation where an output pixel is computed as a linearly weighted version of the outputs of the closest four tiles.

6. CLAHE CUDA Mapping

- Must have 256 bin histograms for the local tile histograms. 32x32 tile size means 1024 elements max per bin.
- Histogram clipping and per tile mapping computation has three modes based on the type of distribution being used: Uniform, Exponential and Rayleigh.
- Layered 2D textures with bilinear filtering would be an ideal match to perform the final CLAHE operation. Unfortunately, the additional copy (DeviceToDevice) that is required to move mapping data to a 2D CUDA array kills the overall performance.

COMPUTE TILE H	HISTS	COMPUTE TILE MAPS		EXECUTE CLAHE	
Thread configuration	[32,8]	Thread configuration	[256]	Thread configuration	[32,32]
Register usage	10	Register usage	10	Register usage	13
Shared mem.	8KB	Shared mem.	0 B	Shared mem.	0 B
Bank conflicts	1.5%	Bank conflicts	N/A	Bank conflicts	N/A
Mem. BW eff. (R/W)	96/97 %	Mem. BW eff. (R/W)	100 %	Mem. BW eff. (R/W)	7/90 %
Occupancy	71.6%	Occupancy	87.4%	Occupancy	74.2%
Time on GPU	79 us	Time on GPU	28 us	Time on GPU	261 us

7. Results and Conclusions

- GT640 @ 900 MHz with 2GB DDR3 V.S. Core i5 -2400 @ 3.1GHz with 8 GB RAM
- For super-resolution our CUDA implementation achieved an overall speed up factor of ~6. The total execution time per frame is about 60 ms for 2X resolution enhancement factor using 5 frames of size 384x256.
- For CLAHE our CUDA implementation achieved an overall speed-up factor of ~3. The total execution time per frame is about 1.5 ms for 384x256 input frames.

Bilinear interpolation result

Super-resolution result

Super-resolution + CLAHE result

Super-resolution + CLAHE result

8. References

- Murat Gevrekci, Bahadir K. Gunturk "Super Resolution under Photometric Diversity of Images ", EURASIP Journal On Applied Signal Processing, Special Issue on Superresolution Enhancement of Digital Video, May 15 2007.
- S.M. Pizer, E.P. Amburn, J. D. Austin, et al. "Adaptive Histogram Equalization and its Variations", Computer Vision, Graphics, and Image Processing 39 (1987) 355-368.
- NVIDIA CUDA Programming Guide www.nvidia.com

9. Acknowledgements

This work is supported by EU-CIG project "POCS Based Depth Super-resolution" with grant number 267107.