- (0) Annie and Alvie have agreed to meet between 5:00 pm and 6:00 pm. for dinner at a local health-tood restraint. Let X= annie's arrival time and Y= Alvie's arrival time. Suppose Yand Y are independent with each unitormly distributed on interval [5,6].
 - (a) what is joint paf of X and Y?

 (b) what is probability that they both arrive blue 5:15 and 5:45?
 - (a) If the first one to arrive will wait only 10 min before leaving to eat elsewhere, what

	> what is the expected amount of time that the one who arrives first must waith for other = E(1x-Y1) =? Page Page
·Lie	is the prob that they have dinner at
	health-tood restraunt?
	DE 104 EUDUNTRICT DUST ALT LANK MILES
->	First doubt, why continuous?
	cause X can take values 5.00, 5.01, 5.59, 6:00
197	and y can take values 5:00,5:01, 559,606
	Instead of doing for all such we can consider
183	it as continuous i.e. XE[5,6], NE[5,6].
1.18	anoth utilidada don Stilling att Oct 1
0	It is given it tollows uniform distribution
	=) continuous.
	MAN HOLDER CARRIES (AIR) VAN
->	Now since two variables given
	=) joint palf numerical.
101	Sibon and lattering a flower distribution
(4)	Since each tollows uniform distribution
1	=) $f_{X}(x) = \begin{cases} /6-5, & x \in [5.6] \end{cases}$
	o otherwise.
	o otherwise.
	=) fy(y) = } /65, 4 = [5,6]
70	o otherwise.
10	Later track brok-Atlant for to to
	$f(x,y) = f(x) \times f(x)$
1	Penuse geven they are independent
12/1	
7	= (I)(I), XE [5,6]
	(alxa) otherwise
The last	(O)x(O) otherwise.

Id (alwate
$$P(5.2 \le x \le 5.7)$$

 5.7
 $= \int fy(y) dy$
 5.7
 $= \int I dy = (5.7) - (5.2) = 0.5$
 5.7
 $= \int fx(x) dx$
 5.7
 $= \int I dx = 5.7 - 5.2 = 0.5$
 5.7
 $= \int I dx = 5.7 - 5.2 = 0.5$
 5.7
 (0) If $f(x,y) = \int 24xy xe(0.1) ye(0.1) x+y < 1$
 0 , otherwise
 (0) If $f(x,y) = \int 24xy xe(0.1) ye(0.1) x+y < 1$
 (0) If $f(x,y) = \int 24xy xe(0.1) ye(0.1) x+y < 1$
 (0) If $f(x,y) = \int 24xy dy = 1)x(1-x)^2 xe(0.1)$
 $f(0)$ If $f(0)$ $f(0)$

