Министерство науки и высшего образования Российской Федерации

Калужский филиал федерального государственного бюджетного

образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУК «Информатика и управление»

КАФЕДРА <u>ИУК4 «Программное обеспечение ЭВМ, информационные</u> технологии»

ЛАБОРАТОРНАЯ РАБОТА №4

«Логические методы классификации многомерных объектов пересекающихся классов»

ДИСЦИПЛИНА: «Методы машинного обучения»

Выполнил: студент гр. ИУК4-62Б	(Подпись)	(<u>Калашников А.С.</u>) (Ф.И.О.)
Проверил:	(Подпись)	(<u>Кручинин И.И.</u>) (Ф.И.О.)
Дата сдачи (защиты):		
Результаты сдачи (защиты):		
- Балльна	я оценка:	
- Оценка:		

Цель работы: изучение основных процедур классификации многомерных объектов пересекающихся классов.

Вариант 2

Разработать логический классификатор с использованием алгоритмов «Кора», «ID3», «САRТ», «Бэггинг», «Бустинг», генетического алгоритма для классификации товаров супермаркета по категориям «Скидки - Heт» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-70% за пять дней.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
011	1							0.7	0.54	1	1	0.45	
012	0.77											1	
013													
014													
015													
016													
017													
018												0.15	
019	1		1				1			1		0.23	
020	0.58												

- 1). Для алгоритма Кора: выбрать частоту встречаемости конъюнкций MinNum= 4
- 2). Для генетического алгоритма выбрать: генную бинарную комбинацию 1101101
- 3). Для алгоритма CART в функции rpart выбрать параметр method = "anova"
- 4). Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 400, в функции train выбрать параметр method = "Adabag"
- 5). Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 300, параметр distribution = "bernoully", параметр bag.Fraction = 0.47
- 6). Результаты визуализировать и сравнить.

Листинг:

```
DATA <- read.csv2(file = "file.csv", header = TRUE, row.names = 1)
head(DATA)
number2binchar <- function(number, nBits) {
    paste(tail(rev(as.numeric(intToBits(number))), nBits),collapse =
"")
}</pre>
```

```
# Поиск конъюнкций по набору битовых масок
MaskCompare <- function (Nclass, KSize, BitMask, vec pos, vec neg, ColCom)
    nK <- sapply(BitMask, function(x) {</pre>
        if (sum(x == vec_neg) > 0) return (0)
        if (\min Num > (countK = sum(x == vec pos))) return(0)
        # Сохранение конъюнкции в трех объектах list
        Value.list[[length(Value.list) + 1]] <<-</pre>
            list(Nclass = Nclass, KSize = KSize, countK = countK, Bits
= X)
        ColCom.list[[length(ColCom.list) + 1]] <<- list(ColCom)</pre>
        RowList.list[[length(RowList.list) + 1]] <<-</pre>
            list(which(vec pos %in% x))
        return(countK) } )
DFace <- read.csv2(file = "file.csv", header = TRUE, row.names = 1)
maxKSize <- 4
minNum <- 4
# Списки для хранения результатов
Value.list <- list() # Nclass, KSize, BitMask, countK</pre>
ColCom.list <- list() # Наименования переменных ColCom
RowList.list <- list() # Номера индексов строк RowList
# Перебор конъюнкций разной длины
for (KSize in 2:maxKSize) {
    BitMask <- sapply(0:(2^KSize - 1), function(x) number2binchar(x,</pre>
KSize))
    cols <- combn(colnames(DFace[, -17]), KSize)</pre>
    for (i in 1:ncol(cols)) {
        SubArr <- DFace[, (names(DFace) %in% cols[, i])]</pre>
        vec1 <- apply(SubArr[DFace$Class == 1, ],1,function(x) paste(x,</pre>
collapse = ""))
        vec2 <- apply(SubArr[DFace$Class == 2,], 1, function(x) paste(x,</pre>
collapse = ""))
        MaskCompare(1, KSize, BitMask, vec1, vec2, cols[, i])
        MaskCompare(2, KSize, BitMask, vec2, vec1, cols[, i])
    }
}
# Создание результирующей таблицы
DFval = do.call(rbind.data.frame, Value.list)
nrow = length(Value.list)
DFvar <- as.data.frame(matrix(NA, ncol = maxKSize + 1, nrow = nrow,
dimnames = list(1:nrow, c(paste("L", 1:maxKSize, sep
""),"Объекты:"))))
for (i in 1:nrow) {
    Varl <- unlist(ColCom.list[[i]])</pre>
    DFvar[i, 1:length( Varl)] <- Varl</pre>
    Objl <- unlist(RowList.list[[i]])</pre>
    DFvar[i, maxKSize + 1] <- paste(Objl, collapse = " ")</pre>
DFout <- cbind(DFval, DFvar)</pre>
print("Конъюнкции класса 1")
DFout[DFout$Nclass == 1, ]
print("Конъюнкции класса 2")
DFout[DFout$Nclass == 2, ]
```

```
library(genalg)
library(ggplot2)
dataset <- read.csv2(file = "file.csv", header = TRUE, row.names = 1)</pre>
weightlimit <- 20
chromosome = c(1, 1, 0, 1, 1, 0, 1)
dataset[chromosome == 1, ]
evalFunc <- function(x) {</pre>
    current solution survivalpoints <- x %*% dataset$survivalpoints</pre>
    current solution weight <- x %*% dataset$weight</pre>
    if (current solution weight > weightlimit)
        return(0) else return(-current solution survivalpoints)
}
Dataset <- read.csv2(file = "file.csv", header = TRUE, row.names = 1)
library(rpart)
# grow tree
fit <- rpart(Dataset$Наименование ~ Dataset$коэффициент.понедельника +
Dataset$Эталонная.цена, method="anova", data=Dataset)
printcp(fit) # display the results
plotcp(fit) # visualize cross-validation results
summary(fit) # detailed summary of splits
# plot tree
plot(fit, uniform=TRUE, main="Classification Tree")
text(fit, use.n=TRUE, all=TRUE, cex=.8)
post(fit, title = "Classification Tree")
library(randomForest)
library(caret)
x <- read.csv2(file = "file.csv", header = TRUE, row.names = 1)
set.seed(101)
model <- randomForest(х$Наименование ~ х$Эталонная.цена, data=x,
ntree=400, mtry=9)
set.seed(101)
bag.al <- train(x, preProc = c('center', 'scale'),</pre>
                 method = 'Adabag', tuneGrid = expand.grid(.mtry =
ncol(x))
plot(ranfor.al$finalModel, col = "blue", lwd = 2)
plot(bag.a1$finalModel, col = "green", lwd = 2, add = TRUE)
legend("topright",
                     c("Bagging",
                                        "RandomForrest"),col
c("green","blue"), lwd = 2)
library(gbm)
x <- read.csv2(file = "file.csv", header = TRUE, row.names = 1)
set.seed(1)
xd \leftarrow cbind(a1 = x$Эталонная.цена, x)
boost.a1 = gbm(a1 ~ ., data = xd, distribution = "bernoully", n.trees =
300, interaction.depth = 3)
summary(boost.al, plotit = FALSE)
library(bst)
(boostFit.al <- train(al ~ ., data = xd, method = 'bstTree',
                      trControl = trainControl(method = "cv"), preProc
= c('center', 'scale')))
```

Результаты работы:

Classification Tree

Вывод: были изучены основные процедуры классификации многомерных объектов пересекающихся классов.