IoT challenges

State of the art

Aghiles DJOUDI

Paris-Est University

March 22, 2019

- 1. Introduction
- State of the art
- Conclusion

Figure 1: The IoT Platform

- Connect sensors to the gateway.
- Connect the gateway to the infrastructure.
- Store & Analyze sensors data.

1. Introduction | 1. Context 1/7

Problematic

Introduction

Figure 2: The IoT problematics

- How to communicate sensors efficiently
 - → IEEE 802.15.4, 6LowPAN
 - Throughput, Delay, Jitter, Loss rate and Availability.
- How to communicate sensors with the infrastructure efficiently
 - → LPWAN, LoraWan
 - Heterogeneity ?
- How to extract knowledge from sensors data.
 - Data mining: Classification, Clustering
 - → Deep learning: Machine learning

1. Introduction | 2. Problematic 2/7

Problematic

Introduction

Figure 2: The IoT problematics

- How to communicate sensors efficiently
 - → IEEE 802.15.4, 6LowPAN
 - Throughput, Delay, Jitter, Loss rate and Availability.
- How to communicate sensors with the infrastructure efficiently
 - → LPWAN, LoraWan
 - Heterogeneity ?
- How to extract knowledge from sensors data.
 - Data mining: Classification, Clustering
 - → Deep learning: Machine learning

1. Introduction | 2. Problematic 2/7

- 1. Introduction
- 2. State of the art
- 3. Conclusion

- Introduction
- 2. State of the art
- 3. Conclusion

- 1. Heterogeneity
- 2. Security

- Introduction
- 2. State of the art
- Conclusion

- 1. Heterogeneity
- 2. Security

Literature review

Related work

- [1] Many studies have identified SDN as a potential solution to the WSN challenges, as well as a model for heterogeneous integration.
- [1] This shortfall can be resolved by using the SDN approach.
- [2] SDN also enhances better control of heterogeneous network infrastructures.
- [2] Anadiotis et al. define a SDN operating system for IoT that integrates SDN based WSN (SDN-WISE). This experiment shows how heterogeneity between different kinds of SDN networks can be achieved.
- [2] In cellular networks, OpenRoads presents an approach of introducing SDN based heterogeneity in wireless networks for operators.
- [3] There has been a plethora of (industrial) studies synergising SDN in IoT. The major characteristics of IoT are low latency, wireless access, mobility and heterogeneity.
- [3] Thus a bottom-up approach application of SDN to the realisation of heterogeneous IoT is suggested.
- [3] Perhaps a more complete IoT architecture is proposed, where the authors apply SDN principles in IoT heterogeneous networks.
- [4] it provides the SDWSN with a proper model of network management, especially considering the potential of heterogeneity in SDWSN.
- [4] We conjecture that the SDN paradigm is a good candidate to solve the heterogeneity in IoT.

2. State of the art | 1. Heterogeneity 3/7

Figure 3: Architecture and technology abstraction.

- Introduction
- 2. State of the art
- 3. Conclusion

- 1. Heterogeneity
- 2. Security

Security in SDN

related work

WSN OSI Layer	SDN Plane	Threat		
		Poor Authentication and Control		
	Application	Fraudulent flows rules insertion		
Amplication		Poor access control and accountability		
Application		Malicious Application		
		DoS		
		Northbound Interface (API) attack		
Transport	Control	Threats from applications		
Transport		DoS		
Network		Unauthorised access		
		Scalability & Unavailability		
		Faulty or Malicious controller		
		Unauthorised access		
Data Link		Fraudulent rules		
Data Link		Forged/False traffic flows		
		Flooding, Spoofing		
Physical	Data	Southbound Interface (API) attack		
		Jamming, Tampering		
		Sybil		
		Compromised/hi-jacked controller		
		Malicious node		

Table: SDN vs OSI layer

SDN based sensor network

Management architecture	Management feature	Controller configuration	Traffic Control	Configuration and monitoring	Scapability and localization	Communication management
[5] Sensor Open Flow	SDN support protocol	Distributed	in/out- band	✓	1	1
[6] SDWN	Duty sycling, aggregation, routing	Centralized	in-band	1		
[7] SDN-WISE	Programming simplicity and aggregation	Distributed	in-band		/	
[8] Smart	Efficiency in resource allocation	Distributed	in-band		/	
SDCSN	Network reliability and QoS	Distributed	in-band		/	
TinySDN	In-band-traffic control	Distributed	in-band		✓	
Virtual Overlay	Network flexibility	Distributed	in-band		✓	
Context based	Network scalability and performance	Distributed	in-band		1	
CRLB	Node localization	Centralized	in-band			
Multi-hope	Traffic and energy control	Centralized	in-band			✓
Tiny-SDN	Network task measurement	-	in-band			

Table 1: SDN-based network and topology management architectures. [3]

2. State of the art | 2. Security 6

- Introduction
- State of the ar
- 3. Conclusion

Conclusion

- Heterogeneity is a big challenge in IoT environment, like mobility, scalability, QoS and security.
- I propose to use SDN (SDN-WISE) to manage heterogeneity.

3. Conclusion 7/7

Conclusion

- Heterogeneity is a big challenge in IoT environment, like mobility, scalability, QoS and security.
- → I propose to use SDN (SDN-WISE) to manage heterogeneity.

Thank you!

3. Conclusion 7/7

References

[3]

[6]

- [1] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkalasubramanian, * A Software Defined Networking Architecture for the Internet-of-Things,* in 2014 IEEE Network Operations and Management Symposium (NOMS), 00250, Krakow, Poland: IEEE, May 2014, pp. 1–9.
- [2] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, * A Survey on Software-Defined Wireless Sensor Networks: Challenges and Design Requirements," IEEE Access, vol. 5, pp. 1872–1899, 2017, 00124.
 - M. Ndiaye, G. Hancke, and A. Abu-Mahlouz, * Software Defined Networking for Improved Wireless Sensor Network Management: A Survey," Sensors, vol. 17, no. 5, p. 1031, May 4, 2017.
- [4] S. Bera, S. Misra, and A. V. Vasilakos, * Software-Defined Networking for Internet of Things: A Survey, * IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1994–2008, Dec. 2017, 00053.
- [5] T. Luo, H.-P. Tan, and T. Q. S. Quek, "Sensor OpenFlow: Enabling Software-Defined Wireless Sensor Networks," IEEE Communications Letters, vol. 16, no. 11, pp. 1896–1899, Nov. 2012, 00339.
 - S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, * Software Defined Wireless Networks (SDWN): Unbridling SDNs., p. 25, 00000.
- [7] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, * SDN-WISE: Design, Prototyping and Experimentation of a Stateful SDN Solution for Wireless SEnsor Networks, in 2015 IEEE Conference on Computer Communications (INFOCOM), 00170, Kowloon, Hong Kong: IEEE, Apr. 2015, pp. 513–521.
- [8] A. De Gante, M. Aslan, and A. Matrawy, * Smart Wireless Sensor Network Management Based on Software-Defined Networking,* in 2014 27th Blennial Symposium on Communications (QBSC), 00135, Kingston, ON, Canadas: IEEE, Jun. 2014, pp. 71–75.