79. Soit la fonction $y = \ln(x + \sqrt{1 + x^2})$ La différentielle de y vaut :

1.
$$dy = \frac{x^2 - 1}{1 + \sqrt{1 + x}} dx$$
 3. $\frac{dx}{\sqrt{1 + x^2}}$ 5. $\frac{1}{x + \ln \sqrt{1 + x^2}}$
2. $dy = \frac{1 + x}{x + \sqrt{1 + x^2}}$ 4. $dy = \frac{x dx}{x + \ln x}$ (M. 93)

80. Soit la fonction $f(x) = \frac{\ln x}{x}$. Le domaine E dont les points vérifient :

80. Soit la fonction
$$f(x) = \frac{1}{x}$$
. Le doinaine E dont les points verifient $1 \le x \le e$ et $0 \le y \le f(x)$ vaut :

1.
$$\frac{e^4 - 1}{2}$$
 2. $\frac{e^2 + 3}{3}$ 3. $\frac{1}{2}$ 4. 0 5. 2 (M. 94)

81.
$$\int_0^{\frac{\pi}{2}} (e^{3\cos 2x} \cdot \sin 2x) dx =$$
 www.ecoles-rdc.net
1. $\frac{e^4 - 1}{3}$ 2. $\frac{\sinh 3}{3}$ 3. $\frac{e^2}{2}$ 4. 0 5. 1/2 (M. 94)

82. Soit la fonction y = x arc tg $x - 1/2 \ln(1 + x)$. La différentielle de y

Solt la fonction
$$y = x$$
 arc $tg(x - 1/2) \ln(1 + x)$. La differentierie de vaut :

1. $dy = \frac{1}{1 + x} dx$

1.
$$dy = \frac{1}{x + \sqrt{1 + 2x^2}} dx$$
 4. $dy = arc tg x dx$

2.
$$dy = \frac{x + \sqrt{x^2 + 1}}{\ln(1 + x)} dx$$

3. $dy = \frac{\bar{x}\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} dx$
(M.-95)

83.
$$\int_0^{\pi/4} \sin^4 x \, dx = 1$$

1.
$$\frac{1}{8} \left(3 + \frac{3\pi}{2} \right)$$
 3. $\frac{1}{8} \left(-2 + \frac{3\pi}{4} \right)$ 5. $\frac{1}{8} \left(5 + \frac{\pi}{3} \right)$ (B.-96)