Representation of polynomials in MATLAB Since most practical *z*-transforms are a ratio of polynomials, we start by explaining how MATLAB handles polynomials. In MATLAB polynomials are represented by *row* vectors containing the coefficients of the polynomial in decreasing order. For example, the polynomial

$$B(z) = 1 + 2z^{-1} + 3z^{-3}$$

is entered as b=[1,2,0,3]. We stress that even though the coefficient of the z^{-2} term

How to compute the roots of a polynomial?

```
b = [1 1.5 2]

b = 1×3

1.0000 1.5000 2.0000

z = roots(b)
```

z = 2×1 complex -0.7500 + 1.1990i -0.7500 - 1.1990i

Example 3.10 Partial fraction expansion using residuez

The following expansion:

$$X(z) = \frac{6 - 10z^{-1} + 2z^{-2}}{1 - 3z^{-1} + 2z^{-2}} = 1 + \frac{2}{1 - z^{-1}} + \frac{3}{1 - 2z^{-1}},$$
 (3.45)

is obtained by calling residuez with b=[6,-10,2] and a=[1,-3,2]. The reverse operation can be done using the same function as: [b,a]=residuez(A,p,C).