Прогнозирование временных рядов

Содержание

- Примеры задач
- Модель авторегрессии
- Модель скользящего среднего
- Модель ARMA
- ARIMA интегрированная ARMA
- Подбор параметров модели.
 Авторегрессионный спектр

Примеры задач

Динамика цен на нефть Brent (ICE.Brent, USD за баррель)

Динамика кросс-курса евро к доллару США (EUR/USD)

Тиковые данные

Потребление электроэнергии

Скорость движения автомобилей в разные дни недели с 15:00 до 21:00

Авторегрессионная модель

• Случайный процесс называется стационарным, если случайное распределение значений функции зависит только от предыдущих значений и расстояния по времени до них, но не от самих значений времени

$$X_t = c + \sum_{i=1}^p a_i X_{t-i} + \varepsilon_t,$$

Авторегрессионная модель

- Реализации стационарного случайного процесса могут быть периодическими Пример: процесс X(t)=sin(t+s), где s равномерно распределенная на [0;2π] случайная величина
- $X(t) = X(t-2\pi)$

Авторегресионный процесс первого порядка AR(1)

- Стационарный процесс марковский, если значение зависит только от ближайшего предыдущего значения
- Пример: случайное блуждание

$$X_t = c + rX_{t-1} + \varepsilon_t$$

Поиск коэффициентов авторегрессии

• Метод наименьших квадратов:

$$\hat{y}_{t+1}(w) = \sum_{j=1}^{n} w_j y_{t-j+1},$$

$$F_{\ell \times n} = \begin{pmatrix} y_{t-1} & y_{t-2} & y_{t-3} & \cdots & y_{t-n} \\ y_{t-2} & y_{t-3} & y_{t-4} & \cdots & y_{t-n-1} \\ \dots & \dots & \dots & \dots & \dots \\ y_n & y_{n-1} & y_{n-2} & \cdots & y_1 \\ y_{n-1} & y_{n-2} & y_{n-3} & \cdots & y_0 \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_t \\ y_{t-1} \\ \dots \\ y_{n+1} \\ y_n \end{pmatrix}$$

$$Q_t(w, X^{\ell}) = \sum_{i=n}^{r} (\hat{y}_i(w) - y_i)^2 = ||Fw - y||^2 \to \min_{w}$$

ΙU

Модель скользящего среднего (Moving Average - MA)

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \cdots + \theta_q \varepsilon_{t-q}$$

Модель ARMA (autoregressive moving average)

$$X_t = c + \varepsilon_t + \sum_{i=1}^p \alpha_i X_{t-i} + \sum_{i=1}^q \beta_i \varepsilon_{t-i}.$$

ARIMA - интегрированная модель авторегрессии скользящего среднего (Box-Jenkins model)

Временной ряд называется интегрированным порядка k, если разности ряда порядка k являются стационарными

$$riangle^d X_t = c + \sum_{i=1}^p a_i riangle^d X_{t-i} + \sum_{j=1}^q b_j arepsilon_{t-j} + arepsilon_t$$

 \rightarrow AR filter \rightarrow Integration filter \rightarrow MA filter \rightarrow ϵ_{t}

(long term) (stochastic trend) (short term) (white noise error)

ARIMA (2,0,1)
$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + b_1 \varepsilon_{t-1}$$

ARIMA (3,0,1)
$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + a_3 y_{t-3} + b_1 \varepsilon_{t-1}$$

ARIMA (1,1,0)
$$\Delta y_{t=} a_1 \Delta y_{t-1} + \varepsilon_t$$
, where $\Delta y_t = y_t - y_{t-1}$

ARIMA (2,1,0)
$$\Delta yt = a_1 \Delta y_{t-1} + a_2 \Delta y_{t-2} + \epsilon_t$$
 where $\Delta yt = yt - yt - 1$

ARIMA

Общий план решения задачи предсказания

- Подготовка данных сведение к стационарному случайному процессу
- Определение типа модели
- Оценка параметров
- Предсказание

Модели с трендом и сезонным эффектом

Моделирование с помощью ARIMA(p,d,q)

- Стационарность определение правильного d, исключение сезонности
- Подбор р и q, используя ACF, PACF и unit root тесты
- Проверка расчет оценки качества
- Оценка невязки является ли она белым шумом?
- Предсказание

Авторы Бокс и Дженкинс предлагают схему:

Стационарность

- Процесс из разностей какого порядка является стационарным?
- Исключить сезонность, используя
 - сезонные добавки/множители к среднему значению за этот сезон
 - сезонную ARIMA(p,d,q)x(P,D,Q) модель, например ARIMA(0,0,0)x(0,1,0): $\hat{Y}_t = Y_{t-12} + \mu$

Автокорреляция (ACF)

- Корреляция между значениями процесса, с зафиксированным расстоянием по времени между ними
- Частичная автокорреляция (РАСГ) -"часть корреляции между Y_t и Y_{t-k}, которая не обясняется промежуточными корреляциями". Коэффициент в АRмодели

Признаки AR модели

- Процесс стремится вернуться к некоторому среднему значению
- АСF убывает плавно,
 PACF резко

Признаки МА модели

- Похожа на белый шум
- ACF убывает резко,
 PACF постепенно

AR или MA

- Все зависит от порядка d дифференцирования процесса
- Исходный процесс обычно похож на AR
- После вычисления нескольких разностей он превращается в МАпроцесс
- Не нужно дифференцировать слишком много раз – это переобучение

Пример

Original series: nonstationary 1st difference: AR signature

2nd difference: MA signature

Пример ARIMA(1,1,0)

Пример ARIMA(0,2,1)

Подбор параметров модели

Сезонная ARIMA-модель

Original series: nonstationary Seas. diff: need AR(1) & SMA(1) Both diff: need MA(1) & SMA(1)