

sRGB nonlinearity

sRGB nonlinearity

inverse of sRGB nonlinearity

function

transfer function of headset

The goal of gamma correction is to make the displayed luminance proportional to the rendered value u_k .

$$L = h(s^{-1}(t(u_k)))$$

$$L_{max} = h(1)$$

$$h^*(x) = h(x)/L_{max}$$

$$L = L_{max} h^*(s^{-1}(t(u_k)))$$

The goal of gamma correction is to make the displayed luminance proportional to the rendered value u_k .

$$L = L_{max} h^*(s^{-1}(t(u_k)))$$
$$t(u_k) = s(h^{*-1}(u_k))$$

$$L = L_{max} u_k$$

We can set the post-processed value v_k using the unlit material.

$$u_k = s(m_k)$$

$$v_k = s^{-1}(t(u_k))$$

$$v_k = s^{-1}(s(m_k)) = m_k$$

tonemapping is specified via a cube of knot points in a .cube file

$$v_k = s^{-1}(t(u_k))$$

```
TITLE "linearize.cube"
LUT_3D_SIZE 32
DOMAIN MIN 0.0 0.0 0.0
DOMAIN_MAX 1.0 1.0 1.0
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.002028 0.000000 0.000000
0.006580 0.000000 0.000000
0.009645 0.000000 0.000000
0.016084 0.000000 0.000000
0.024487 0.000000 0.000000
0.034994 0.000000 0.000000
0.050486 0.000000 0.000000
0.071000 0.000000 0.000000
0.100853 0.000000 0.000000
0.140785 0.000000 0.000000
0.198981 0.000000 0.000000
0.281838 0.000000 0.000000
0.395382 0.000000 0.000000
0.561895 0.000000 0.000000
0.785285 0.000000 0.000000
1.121953 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
```