FMI, Info, Anul I Logică matematică și computațională

Examen
Nume:
Prenume:
Grupa:
Partea I. Probleme cu rezolvare clasică
Partea II. Probleme de tip grilă
(P1) [2 răspunsuri corecte] Fie următoarea mulțime de clauze
$\mathcal{S} = \{\{v_0, v_1, v_2\}, \{\neg v_0, v_1\}, \{v_0, \neg v_1\}, \{\neg v_2\}, \{\neg v_0, v_2\}, \{\neg v_1, v_2\}\}.$
Care dintre următoarele afirmații sunt adevărate? \square A: \mathcal{S} este satisfiabilă. \boxtimes B: \mathcal{S} este nesatisfiabilă. \boxtimes C: Rulând algoritmul Davis-Putnam pe \mathcal{S} vom obține $\square \in \mathcal{S}_{N+1}$, unde N este numărul de pași după care algoritmul se termină. \square D: Rulând algoritmul Davis-Putnam pe \mathcal{S} vom obține $\mathcal{S}_{N+1} = \emptyset$, unde N este numărul de pași după care algoritmul se termină. \square E: $\{v_0, v_1\}$ nu este rezolvent a două clauze din \mathcal{S} .
(P2) [2 răspunsuri corecte] Pentru orice formulă propozițională φ , definim mulțimea
$\Gamma_{\varphi} = \{ \varphi \to \psi \mid \psi \in Form \}.$
Care dintre următoarele afirmații sunt adevărate, pentru orice $\varphi \in Form$? \boxtimes A: Dacă φ este nesatisfiabilă, atunci orice evaluare e este model pentru Γ_{φ} . \boxtimes B: Dacă e este model pentru φ , atunci e nu este model pentru Γ_{φ} . \square C: $Mod(\varphi) = Mod(\Gamma_{\varphi})$. \square D: Dacă φ este satisfiabilă, atunci Γ_{φ} este nesatisfiabilă. \square E: Dacă φ este tautologie, atunci Γ_{φ} este satisfiabilă.

(P3) [1 răspuns corect] Fie \mathcal{L} un limbaj de ordinul întâi care conține două simboluri de relație de aritate 1, P și Q, și fie x, y, z, u variabile distincte două câte două. Considerăm următoare formulă a lui \mathcal{L} :

$$\varphi = \neg \forall x P(x) \land \neg \forall z Q(z) \rightarrow \exists x P(x) \lor \exists x Q(x).$$

Care dintre următoarele afirmații este adevărată?

- \boxtimes A: $\forall y \forall z \exists x (\neg P(y) \land \neg Q(z) \rightarrow P(x) \lor Q(x))$ este o formă normală prenex pentru φ .
- \square B: $\exists y \exists z \exists x (\neg P(y) \land \neg Q(z) \rightarrow P(x) \lor Q(x))$ este o formă normală prenex pentru φ .
- \square C: $\forall y \forall z \forall x \forall u (\neg P(y) \land \neg Q(z) \rightarrow P(x) \lor Q(u))$ este o formă normală prenex pentru φ .
- \square D: $\exists y \exists z \forall x \forall u (\neg P(y) \land \neg Q(z) \rightarrow P(x) \lor Q(u))$ este o formă normală prenex pentru φ
- \square E: $\exists y \exists z \exists x \exists u (\neg P(y) \land \neg Q(z) \rightarrow P(x) \lor Q(u))$ este o formă normală prenex pentru φ .

(P4) [2 răspunsuri corecte] Fie \mathcal{L} un limbaj de ordinul întâi care conține un simbol de relație de aritate 2, notat $\dot{<}$. Considerăm următoarea formulă a lui \mathcal{L}

$$\varphi = \exists x \forall y (y \stackrel{.}{<} x \rightarrow \exists z \neg (z = z)),$$

unde x,y,z sunt variabile distincte două câte două. Care dintre următoarele afirmații sunt adevărate?

- \square A: $\varphi \bowtie \exists x (\forall y (y < x) \rightarrow \exists z \neg (z = z)).$
- \boxtimes B: $(\mathbb{N}, <) \vDash \varphi$.
- \square C: $(\mathbb{Z}, <) \vDash \varphi$.
- \boxtimes D: $\varphi \vDash \exists x (\exists y (y < x) \rightarrow \exists y \neg (y = y)).$
- \square E: $\varphi \bowtie \exists x (\forall y (y < x) \rightarrow \exists y \neg (y = y)).$

(P5) [1 răspuns corect] Fie următoarea formulă propozițională:

$$\varphi = (v_0 \vee v_1) \to (v_2 \wedge v_3)$$

- \boxtimes A: $\varphi \sim (v_0 \to v_2 \wedge v_3) \wedge (v_1 \to v_2 \wedge v_3)$.
- \square B: $\varphi \sim (v_0 \to v_2 \land v_3) \lor (v_1 \to v_2 \land v_3)$.
- \square C: $(\neg v_0 \wedge \neg v_1) \vee \neg v_2 \vee \neg v_3$ este FND pentru $\varphi.$
- \square D: $(\neg v_0 \wedge \neg v_1) \vee \neg v_2 \vee \neg v_3$ este FNC pentru $\varphi.$
- \square E: $\varphi \sim (v_0 \to v_2) \wedge (v_1 \to v_3)$.

(P6) [1 răspuns corect] Fie \mathcal{L} un limbaj de ordinul întâi conținând două simboluri de relație P și Q, de aritate 2, respectiv 3. Fie următoarea formulă a lui \mathcal{L} :

$$\varphi = \exists x \forall y \forall z \exists u \forall v (P(x,v) \rightarrow Q(y,z,u)),$$

unde x,y,z,u,v sunt variabile distincte două câte două. În continuare, considerăm că c este un simbol nou de constantă, iar f și g sunt simboluri noi de funcție de aritate 2, respectiv 3. Care dintre următoarele afirmații este adevărată? $\Box \text{ A: } \forall y \forall z \forall v (P(c,v) \rightarrow Q(y,z,g(c,y,z))) \text{ este o formă normală Skolem pentru } \varphi. \\ \boxtimes \text{ B: } \forall y \forall z \forall v (P(c,v) \rightarrow Q(y,z,f(y,z))) \text{ este o formă normală Skolem pentru } \varphi. \\ \Box \text{ C: } \forall y \forall z \forall v (P(c,v) \rightarrow Q(y,z,g(y,z,v))) \text{ este o formă normală Skolem pentru } \varphi. \\ \Box \text{ D: } \exists x \forall y \forall z \forall v (P(x,v) \rightarrow Q(y,z,f(y,z))) \text{ este o formă normală Skolem pentru } \varphi. \\ \Box \text{ E: } \exists x \forall y \forall z \forall v (P(x,v) \rightarrow Q(y,z,f(x,y,z))) \text{ este o formă normală Skolem pentru } \varphi.$