Second Mid-term Assessments Introduction to Machine Learning CLP3102 L

Problem

The MINIST handwritten recognition problem is a classic machine learning problem that involves recognizing handwritten digits from a dataset of images. The dataset, known as the MNIST dataset, consists of 70,000 grayscale images of size 28x28 pixels. Each image represents a single handwritten digit from 0 to 9.

0	0	0	0	0	O	O	0	0	0	0	0	0	0	0	0
1	l	1	1	ſ	/	/	(1	1	1	l	1	1	/	1
2	J	2	2	2	J	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	Ч	4	4	4	4	#	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	G	6	6	6	6	6	6	P	6	6	6	6	6	6	6
T	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	૧	9	9	9	9	9	9	9	P	9	9	9	9	9	9

The goal of the problem is to train a machine learning model that can accurately classify the handwritten digits in the dataset. The model must take an image of a handwritten digit as input and output the corresponding digit label (0 to 9) that represents the digit in the image.

About Dataset

The MNIST dataset provided in a easy-to-use CSV format.

The dataset consists of two files:

- mnist train.csv
- mnist_test.csv

The mnist_train.csv file contains the 60,000 training examples and labels. The mnist_test.csv contains 10,000 test examples and labels. Each row consists of 785 values: the first value is the label (a number from 0 to 9) and the remaining 784 values are the pixel values (a number from 0 to 255).

Requirements

- Successfully load the dataset.
- Implement one or two machine learning models such as **SVM** or **Neural Network** and compare their performance.
- If a single model is implemented, tune the hyper-parameters and analyze the performance with different settings to choose the best configuration.
- If two models are implemented, compare their performance.
- Calculate the accuracy of the training set and the test set.
- Write a 1-2 pages report explaining the analysis and work done, including
 - o Explain what you have done in the assignment.
 - o If one model was used, compare different settings and explain why the chosen setting produced better results.
 - o If two models were used, compare their final performances.
 - Other relevant findings can also be reported.

Submission Format

You need to submit your assignment in a 2-Midterm_StuID_YourName.zip file that includes the following files:

- 1. Code files.
- 2. A short report (a pdf file).

Deadline

Before 10.04.2023, Please send to my email: a.toleu@ kimep.kz