Research Summary & Plans

Yingsheng Huang January 14, 2021

Institute of High Energy Physics

1

Outlines

1 Operator Product Expansion for Atomic Wave Functions

2 Meson-meson scattering in 1+1 dimensional QCD

3 NRQCD Factorization for Fully-heavy Tetraquark Production

Operator Product Expansion for
Atomic Wave Functions

Motivation

- ☐ Logarithmic divergence appearing near the origin of Hydrogen wave functions given by Dirac equation
- ☐ Mentioned in textbooks, i.e.:

The Dirac wave functions with $j=\frac{1}{2}$ (l=0 or 1), unlike the other Dirac functions and all Schrödinger wave functions, are singular at the origin for all principal quantum numbers n. If $Z\alpha\approx Z/137$ is small, however, this singularity is a very weak one. Consider, for instance, the states with $j=\frac{1}{2}$ and l=0 (for any value of n). For small distances, $\varrho\ll 1$, the Schrödinger function $R(\varrho)$ is approximately equal to a constant R(0), but the Dirac function $g(\varrho)$ is given by

$$g(\varrho) \sim R(0) \varrho^{\gamma-1} \sim R(0) \exp\left[\frac{1}{2} (Z\alpha)^2 \log \frac{1}{\varrho}\right].$$

Thus $g(\varrho)$ is infinite at the origin but, at finite distances ϱ larger than $\exp(-1/Z^2\alpha^2)$, (g-R)/R is still only of order $\frac{1}{2}(Z\alpha)^2\log\varrho$. Only for exceedingly small distances, ϱ of the order of $\exp[-2(137/Z)^2]$, does (g-R)/R become of order unity or greater. For all but very large Z, this distance is well inside the nucleus. For the $j=\frac{1}{2}$, l=1 states, the singular term is smaller by a factor of order $(Z\alpha)^2$ than for the l=0 states. Since $R(\varrho)$ is proportional to ϱ for small ϱ if l=1, in this case (g-R)/R is of order $(Z\alpha)^2/\varrho$.

Figure 1: QM by Bethe & Salpeter

□ Universal behaviors in Coulombic wave functions, near-the-origin divergence in relativistic wave functions (i.e. Hydrogen atom, Taylor expanded):

$$R_{n0}^{\rm Schr}(r) \propto \begin{cases} 1 - \frac{r}{a_0} + \frac{1}{2} \frac{r^2}{a_0^2} + \cdots (n = 1) \\ 1 - \frac{r}{a_0} + \frac{3}{8} \frac{r^2}{a_0^2} + \cdots (n = 2) \\ 1 - \frac{r}{a_0} + \frac{19}{54} \frac{r^2}{a_0^2} + \cdots (n = 3) \\ 1 - \frac{r}{a_0} + \frac{11}{32} \frac{r^2}{a_0^2} + \cdots (n = 4) \end{cases} ,$$

$$R_{n0}^{\rm KG}(r) \propto \begin{cases} 1 - \frac{r}{a_0} + \frac{1}{2} \frac{r^2}{a_0^2} - Z^2 \alpha^2 \log \left(\frac{r}{a_0}\right) + Z^2 \alpha^2 \left(\frac{r}{a_0}\right) \log \left(\frac{r}{a_0}\right) + \cdots (n = 1) \\ 1 - \frac{r}{a_0} + \frac{3}{8} \frac{r^2}{a_0^2} - Z^2 \alpha^2 \log \left(\frac{r}{a_0}\right) + Z^2 \alpha^2 \left(\frac{r}{a_0}\right) \log \left(\frac{r}{a_0}\right) + \cdots (n = 2) \\ 1 - \frac{r}{a_0} + \frac{19}{54} \frac{r^2}{a_0^2} - Z^2 \alpha^2 \log \left(\frac{r}{a_0}\right) + Z^2 \alpha^2 \left(\frac{r}{a_0}\right) \log \left(\frac{r}{a_0}\right) + \cdots (n = 3) \\ 1 - \frac{r}{a_0} + \frac{11}{32} \frac{r^2}{a_0^2} - Z^2 \alpha^2 \log \left(\frac{r}{a_0}\right) + Z^2 \alpha^2 \left(\frac{r}{a_0}\right) \log \left(\frac{r}{a_0}\right) + \cdots (n = 4) \end{cases}$$

Motivation

☐ Universal behaviors in Coulombic wave functions, near-the-origin divergence in relativistic wave functions (i.e. Hydrogen atom, Taylor expanded):

$$R_{n0}^{\rm Schr}(r) \propto \begin{cases} 1 - \frac{r}{a_0} + \ \frac{1}{2} \frac{r^2}{a_0^2} + \cdots (n = 1) \\ 1 - \frac{r}{a_0} + \ \frac{3}{8} \frac{r^2}{a_0^2} + \cdots (n = 2) \\ 1 - \frac{r}{a_0} + \frac{19}{54} \frac{r^2}{a_0^2} + \cdots (n = 3) \\ 1 - \frac{r}{a_0} + \frac{11}{32} \frac{r^2}{a_0^2} + \cdots (n = 4) \end{cases}$$

$$R_{n0}^{\rm Dirac}(r) \propto \begin{cases} 1 - \frac{r}{a_0} + \frac{1}{2} \frac{r^2}{a_0^2} - \frac{1}{2} Z^2 \alpha^2 \log \left(\frac{r}{a_0}\right) + \frac{1}{2} Z^2 \alpha^2 \left(\frac{r}{a_0}\right) \log \left(\frac{r}{a_0}\right) + \cdots (n = 1) \\ 1 - \frac{r}{a_0} + \frac{3}{8} \frac{r^2}{a_0^2} - \frac{1}{2} Z^2 \alpha^2 \log \left(\frac{r}{a_0}\right) + \frac{1}{2} Z^2 \alpha^2 \left(\frac{r}{a_0}\right) \log \left(\frac{r}{a_0}\right) + \cdots (n = 2) \\ 1 - \frac{r}{a_0} + \frac{19}{54} \frac{r^2}{a_0^2} - \frac{1}{2} Z^2 \alpha^2 \log \left(\frac{r}{a_0}\right) + \frac{1}{2} Z^2 \alpha^2 \left(\frac{r}{a_0}\right) \log \left(\frac{r}{a_0}\right) + \cdots (n = 3) \\ 1 - \frac{r}{a_0} + \frac{11}{32} \frac{r^2}{a_0^2} - \frac{1}{2} Z^2 \alpha^2 \log \left(\frac{r}{a_0}\right) + \frac{1}{2} Z^2 \alpha^2 \left(\frac{r}{a_0}\right) \log \left(\frac{r}{a_0}\right) + \cdots (n = 3) \end{cases}$$

4

Question:

What caused the state-independent logarithmic divergences?
Hint:
- Logarithms from the wave functions appear at order- $lpha^2$,
\cdot anomalous dimensions of NRQCD also appear at order- α_s^2 ,
- Bethe-Salpeter wave function is defined as $\langle 0 \psi \Psi\rangle$ in QFT, state-independency implies operator properties
Treat the nucleus as an infinitely heavy field, similar to HQET
Natural assumption: the QFT correspondence of Dirac equation is QED
UV behavior of Dirac wave functions + operator behavior ⇒Operator product expansion (OPE)

5

Failed Attempt: OPE & QED

☐ QED + heavy nucleus effective theory (HNET):

$$\mathcal{L}_{\text{UV}} = \bar{\Psi}(i\not\!\!D - m)\Psi + N^{\dagger}iD_0N - \frac{1}{4}F_{\mu\nu}F^{\mu\nu},\tag{1}$$

 Ψ : QED electron field

N: nucleus field

F: photon field, only considering Coulomb potential

☐ Dirac wave function:

$$\Psi_{njm}(\mathbf{r}) \equiv \langle 0|\Psi(\mathbf{r})N(0)|njm\rangle, \tag{2}$$

Failed Attempt: OPE & QED

☐ Operator Product Expansion (OPE): The limit when product of local operators at different points approach each other.

$$T\phi(x)\phi(0) \sim \sum_{\mathcal{O}} C_{\mathcal{O}}(x^{\mu})[\mathcal{O}(0)]_R$$
 (3)

 \square Expand $\Psi(\mathbf{r})N(0)$ with OPE:

OPE relation in coordinate space (QED)

$$\Psi(\mathbf{r})N(\mathbf{0}) = (1 + \frac{Z\alpha}{\pi} \ln r) [\Psi N](\mathbf{0}) + \cdots$$

- \square Logarithms at order- α !
- □ Why?

The UV behavior of QED does not reflect the UV behavior of Dirac wave function.

7

The scales of an atom

- \square electron Compton wavelength is the IR scale of QED
- \square Desired OPE should probe the UV limit of an EFT whose effectiveness stays below $m_e.$

Attack the problem with OPE & EFT: Construct EFT

- ☐ Use non-relativistic QED (NRQED) for electron and heavy nucleus effective theory (HNET, similar to HQET) for nucleus.
- ☐ Lagrangian for non-relativistic atoms:

$$\mathcal{L} = \mathcal{L}_{\text{Max}} + \mathcal{L}_{\text{NRQED}} + \mathcal{L}_{\text{HNET}} + \delta \mathcal{L}_{\text{contact}}$$
(4)

where

$$\mathcal{L}_{\text{Max}} = -\frac{1}{4} d_{\gamma} F_{\mu\nu} F^{\mu\nu} + \cdots,,$$

$$\mathcal{L}_{\text{NRQED}} = \psi^{\dagger} \left\{ i D_0 + \frac{\mathbf{D}^2}{2m} + \frac{\mathbf{D}^4}{8m^3} + c_D e^{\left[\nabla \cdot \mathbf{E} \right]} + \cdots \right\},$$

$$\mathcal{L}_{\text{HNET}} = N^{\dagger} i D_0 N + \cdots,$$

$$\delta \mathcal{L}_{\text{contact}} = \frac{c_4}{m^2} \psi^{\dagger} \psi N^{\dagger} N + \cdots,$$

where $D^{\mu} = \partial^{\mu} + ieA^{\mu}$.

9

Attack the problem with OPE & EFT: Construct EFT

- ☐ Use non-relativistic QED (NRQED) for electron and heavy nucleus effective theory (HNET, similar to HQET) for nucleus, keep only Coulomb potential.
- ☐ Lagrangian for non-relativistic atoms:

$$\mathcal{L} = \mathcal{L}_{\text{Max.}} \mathcal{L}_{\text{Coul}} + \mathcal{L}_{\text{NRQED}} + \mathcal{L}_{\text{HNET}} + \delta \mathcal{L}_{\text{contact}}$$
(4)

where

$$\mathcal{L}_{\text{Coul}} = \frac{1}{2} \left(\nabla A^{0} \right)^{2},$$

$$\mathcal{L}_{\text{NRQED}} = \psi^{\dagger} \left\{ iD_{0} + \frac{\mathbf{D}^{2}}{2m} + \frac{\mathbf{D}^{4}}{8m^{3}} + c_{D}e^{\frac{\left[\nabla \cdot \mathbf{E}\right]}{8m^{2}}} + \cdots \right\},$$

$$\mathcal{L}_{\text{HNET}} = N^{\dagger}iD_{0}N + \cdots,$$

$$\delta \mathcal{L}_{\text{contact}} = c_{4} \psi^{\dagger}\psi N^{\dagger}N + \cdots,$$

where $D^{\mu} = \partial^{\mu} + ieA^{\mu}$.

9

Attack the problem with OPE & EFT: Renormalization of the local operator

☐ Use 4-point Green function as testing ground.

 \square The renormalization constant of $[\psi N](0)$:

$$[\psi N]_R = Z_{\mathcal{S}} \psi N \tag{5}$$

☐ The total divergence coming from the local operator (MS scheme)

$$Z_{\mathcal{S}} = 1 - \frac{Z^2 \alpha^2}{4\epsilon} + \cdots . \tag{6}$$

 \square The anomalous dimension of the operator ψN then reads

$$\gamma_{\mathcal{S}} \equiv \frac{d \ln Z_{\mathcal{S}}}{d \ln \mu} = \frac{Z^2 \alpha^2}{2}.$$
 (7)

Attack the problem with OPE & EFT: Renormalization of local operators

Figure 2: Representative diagrams for local operator renormalization. The cap represents the insertion of the operator ψN , cross stands for the ${\bf p^4}$ relativistic correction, solid square for the Darwin vertex, while empty square for spin-orbital vertex, which making vanishing contribution in this case. The empty circle represents the contact interaction. The last two diagrams are beyond the prescribed accuracy of $\mathcal{O}(Z^2\alpha^2)$.

Attack the problem with OPE & EFT: Wilson coefficients

Figure 3: Illustration of the OPE structure of the four-point Green functions through order $Z^2\alpha^2$. The first line is for the Wilson coefficient $\mathcal{C}^{(1)}(r)$, the two bottom lines for the Wilson coefficient $\mathcal{C}^{(2)}(r)$. The thick line indicates the corresponding loop momentum to be "hard" $(\sim \mathbf{q})$.

Attack the problem with OPE & EFT: OPE

Correct OPE relation in coordinate space

$$\psi(\mathbf{r})N(\mathbf{0}) = \left[1 - mZ\alpha r - \frac{Z^2\alpha^2}{2}\left(\ln \mu r + \text{const}\right) + \mathcal{O}(Z^3\alpha^3)\right][\psi N](\mathbf{0}) + \cdots$$

Correct OPE relation in momentum space

$$\widetilde{\psi}(\mathbf{q})N(\mathbf{0}) \equiv \int d^3 \mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \psi(\mathbf{r})N(\mathbf{0})$$

$$= \left[\frac{8\pi m Z\alpha + \mathcal{O}(Z^3\alpha^3)}{|\mathbf{q}|^4} - \frac{\pi^2 Z^2\alpha^2 + \mathcal{O}(Z^4\alpha^4)}{|\mathbf{q}|^3} \right] [\psi N](\mathbf{0}) + \cdots$$

 \square log r behavior is the same with the Dirac wave function.

Attack the problem with OPE & EFT: Resumming logarithms with RGE

☐ The l.h.s. of the OPE relation is scale independent.

☐ We can write down the renormalization group equation of the Wilson coefficient:

$$\mu \frac{\partial \mathcal{C}(r,\mu)}{\partial \mu} + \gamma_{\mathcal{S}} \mathcal{C}(r,\mu) = 0, \tag{8}$$

☐ Dimensional analysis leads to

$$r\frac{\partial \mathcal{C}}{\partial r} + \gamma_{\mathcal{S}}\mathcal{C} = 0. \tag{9}$$

 $\ \square$ We then recovers the leading logs:

$$C(r,\mu) = C(r_0,\mu) \left(\frac{r}{r_0}\right)^{-\frac{Z^2\alpha^2}{2}}.$$
 (10)

Recover the Dirac wave function

☐ Solution to Dirac equation expressed by Pauli spinor:

$$\Psi_{n\frac{1}{2}m}(\mathbf{r}) = \begin{pmatrix} F_n(r)\sqrt{\frac{1}{4\pi}}\,\xi_m \\ G_n(r)\sqrt{\frac{3}{4\pi}}\,\boldsymbol{\sigma}\cdot\hat{\mathbf{r}}\,\xi_m \end{pmatrix},\tag{11}$$

 $\hfill\square$ We only consider the upper component, whose asymptotic behavior is

$$F_n(r) \approx R_n^{\mathrm{Sch}}(0) \left(\frac{2r}{na_0}\right)^{-\frac{Z^2\alpha^2}{2}},$$
 (12)

 \square Set $r_0=rac{na_0}{2}$ for the nS hydrogen state, and $\mu_0=1/r_0$. The boundary condition is $\mathcal{C}(r=r_0;\mu=\mu_0)=1$.

$$\langle 0|[\psi N]_R(0;\mu_0)|nS_{1/2},m\rangle \approx \frac{1}{\sqrt{4\pi}}R_{n0}^{\rm Sch}(0)\,\xi_m,$$
 (13)

 \square We reproduced the asymptotic form of the wave function in (12).

Summary

We attempted to understand the divergence of Dirac hydrogen wave function near the origin with OPE & NREFT.
OPE + QED won't work.
NREFT (NRQED + HNET) shows anomalous dimension of the local operators at order- α^2 .
$\log r$ behavior is reproduced in the Wilson coefficient of the OPE.
Resummed leading logs with RGE to recover the asymptotic behavior of the wave function with exponents.

Meson-meson scattering in 1+1

dimensional QCD

't Hooft equation

- ☐ Large-N Expansion
- ☐ In 1+1-d, ONLY PLANAR DIAGRAM!!!

Steps:

- Obtain mesons' 't Hooft wave-functions with 't Hooft equation (Fig 4).
- Obtain effective meson-meson vertex function with Bethe-Salpeter equation (Fig 5).
- Calculate meson-meson scattering amplitude with said vertex functions and wave-functions.

Figure 4: The Dyson-Schwinger equation for the quark self-energy.

Figure 5: The Bethe-Salpeter equation for the $qar{q}$ bound state.

't Hooft equation

$$\mu^2 \varphi(x) = \left(\frac{\alpha_1}{x} + \frac{\alpha_2}{1-x}\right) \varphi(x) - P \int_0^1 dy \frac{\varphi(y)}{(x-y)^2}.$$
 (14)

 μ is the mass of the meson, α_i is rescaled quark mass, P marks principle value.

Results (No Indication of Tetraquark!!!)

(b) Amplitudes for the contact term in $A(c\bar{s}) + B(c\bar{s}) \to C(c\bar{s}) + D(c\bar{s}).$

 $A(c\bar{u}) + B(c\bar{d}) \rightarrow C(c\bar{u}) + D(c\bar{d}).$

 $A(car{d})+B(bar{s}) o C(bar{d})+D(car{s})$ with particle B moving backwards. No near-threshold enhancement.

(d) Amplitudes for the contact term in

 \sqrt{s} (GeV)

NRQCD Factorization for Fully-heavy Tetraquark Production

Factorization theorem for $T_{4c/b}$ production

- \Box LHCb discovered a narrow structure near 6.9 GeV in the di- J/ψ invariant mass spectrum (> 5σ): X(6900).
- ☐ Strong candidate for fully-charmed tetraquark.

 $\hfill \square$ QCD factorization theorem for fully-heavy tetraquark $(T_{4c/b})$ exclusive production at high- p_T

$$d\sigma \left(pp \to T_{4c/b} \left(p_{\rm T}\right) + X\right) = \sum_{i} \int_{0}^{1} dx_{a} \int_{0}^{1} dx_{b} \int_{0}^{1} dz \, f_{a/p}(x_{a}, \mu) f_{b/p}(x_{b}, \mu)$$

$$\times d\hat{\sigma}(ab \to i(p_{T}/z) + X, \mu) D_{i \to T_{4c/b}} \left(z, \mu\right) + \mathcal{O}(1/p_{T}). \tag{15}$$

 \square Dominate partonic channel is $gg \to gg$, rather than $gg \to q\bar{q}$.

Collins-Soper definition of fragmentation function:

$$\begin{split} D_{g \rightarrow T_{4c}}(z, \mu) &= \frac{-g_{\mu\nu}z^{d-3}}{2\pi k^{+} \left(N_{c}^{2} - 1\right)(d-2)} \int_{-\infty}^{+\infty} dx^{-} e^{-ik^{+}x^{-}} \\ &\times \sum_{X} \left\langle 0 \left| G_{c}^{+\mu}(0)\mathcal{E}^{\dagger}\left(0, 0, \mathbf{0}_{\perp}\right)_{cb} | T_{4c}(P) + X \right\rangle \left\langle T_{4c}(P) + X | \mathcal{E}\left(0, x^{-}, \mathbf{0}_{\perp}\right)_{ba} G_{a}^{+\nu}\left(0, x^{-}, \mathbf{0}_{\perp}\right) \right| 0 \right\rangle \end{split}$$

- $\hfill\Box$ c/b quarks are heavy enough such that Fock states with light quarks or gluons are suppressed
- ☐ Similar to quarkonium cases
- \square NRQCD factorization for $T_{4c/b}$ production:

$$D_{g \to T_{4c}}(z, \mu_{\Lambda}) = \frac{d_{3,3} \left[g \to cc\bar{c}\bar{c}^{(J)}\right]}{m^9} \langle 0|\mathscr{O}_{3,3}^{(J)}|0\rangle + \frac{d_{6,6} \left[g \to cc\bar{c}\bar{c}^{(J)}\right]}{m^9} \langle 0|\mathscr{O}_{6,6}^{(J)}|0\rangle + \frac{d_{3,6} \left[g \to cc\bar{c}\bar{c}^{(J)}\right]}{m^9} 2\text{Re} \left[\langle 0|\mathscr{O}_{3,6}^{(J)}|0\rangle\right] + \cdots, \tag{16}$$

Collins-Soper definition of fragmentation function:

$$\begin{split} D_{g \to T_{4c}}(z, \mu) &= \frac{-g_{\mu\nu}z^{d-3}}{2\pi k^{+} \left(N_{c}^{2} - 1\right)(d-2)} \int_{-\infty}^{+\infty} dx^{-} e^{-ik^{+}x^{-}} \\ &\times \sum_{X} \left\langle 0 \left| G_{c}^{+\mu}(0)\mathcal{E}^{\dagger}\left(0, 0, \mathbf{0}_{\perp}\right)_{cb} | T_{4c}(P) + X \right\rangle \left\langle T_{4c}(P) + X | \mathcal{E}\left(0, x^{-}, \mathbf{0}_{\perp}\right)_{ba} G_{a}^{+\nu}\left(0, x^{-}, \mathbf{0}_{\perp}\right) \right| 0 \right\rangle \end{split}$$

- □ c/b quarks are heavy enough such that Fock states with light quarks or gluons are suppressed
- ☐ Similar to quarkonium cases
- ☐ Vacuum saturation approximation to suppress extra intermediate states

$$\begin{split} & \mathcal{O}_{3,3}^{(J)} = \mathcal{O}_{\mathbf{\bar{3}} \otimes \mathbf{3}}^{(J)} \sum_{X} |T_{4c}^{J} + X\rangle \langle T_{4c}^{J} + X| \mathcal{O}_{\mathbf{\bar{3}} \otimes \mathbf{3}}^{(J)\dagger} \\ & \mathcal{O}_{6,6}^{(J)} = \mathcal{O}_{\mathbf{6} \otimes \bar{\mathbf{6}}}^{(J)} \sum_{X} |T_{4c}^{J} + X\rangle \langle T_{4c}^{J} + X| \mathcal{O}_{\mathbf{6} \otimes \bar{\mathbf{6}}}^{(J)\dagger} \\ & \mathcal{O}_{3,6}^{(J)} = \mathcal{O}_{\mathbf{\bar{3}} \otimes \mathbf{3}}^{(J)} \sum_{X} |T_{4c}^{J} + X\rangle \langle T_{4c}^{J} + X| \mathcal{O}_{\mathbf{6} \otimes \bar{\mathbf{6}}}^{(J)\dagger} \end{split}$$

☐ Local tetraquark operators:

$$\mathcal{O}_{\mathbf{\bar{3}}\otimes\mathbf{3}}^{(0)} = -\frac{1}{\sqrt{3}} [\psi_a^T(i\sigma^2)\sigma^i\psi_b] [\chi_c^{\dagger}\sigma^i(i\sigma^2)\chi_d^*] \, \mathcal{C}_{\mathbf{3}\otimes\mathbf{\bar{3}}}^{ab;cd},\tag{16a}$$

$$\mathcal{O}_{\mathbf{\bar{3}}\otimes\mathbf{3}}^{\alpha\beta;(2)} = [\psi_a^T(i\sigma^2)\sigma^m\psi_b][\chi_c^{\dagger}\sigma^n(i\sigma^2)\chi_d^*] \Gamma^{\alpha\beta;mn} \mathcal{C}_{\mathbf{3}\otimes\mathbf{\bar{3}}}^{ab;cd}, \tag{16b}$$

$$\mathcal{O}_{\mathbf{6}\otimes\bar{\mathbf{6}}}^{(0)} = [\psi_a^T(i\sigma^2)\psi_b][\chi_c^{\dagger}(i\sigma^2)\chi_d^*] \, \mathcal{C}_{\mathbf{6}\otimes\bar{\mathbf{6}}}^{ab;cd}, \tag{16c}$$

The rank-4 Lorentz tensor is given by

 $\Gamma^{lphaeta;mn}\equiv rac{1}{2}[g^{lpha m}g^{eta n}+g^{lpha n}g^{eta m}-rac{1}{2}g^{lphaeta}g^{mn}]$, and the rank-4 color tensors read

$$C_{\mathbf{3}\otimes\bar{\mathbf{3}}}^{ab;cd} \equiv \frac{1}{(\sqrt{2})^2} \epsilon^{abm} \epsilon^{cdn} \frac{\delta^{mn}}{\sqrt{N_c}} = \frac{1}{2\sqrt{3}} (\delta^{ac} \delta^{bd} - \delta^{ad} \delta^{bc}) \tag{17a}$$

$$C_{\bar{6}\otimes 6}^{ab;cd} \equiv \frac{1}{2\sqrt{6}} (\delta^{ac}\delta^{bd} + \delta^{ad}\delta^{bc}). \tag{17b}$$

☐ NRQCD factorization:

$$D_{g \to H}(z) = \sum_{n} d_n(z) \left\langle 0 \left| \mathcal{O}_n^H \right| 0 \right\rangle$$

- ☐ Perturbative matching to determine short distance coefficients.
- □ Use wave-function origin (S-wave) from potential models to determine long range matrix elements in order to yield a phenomenological result.
- ☐ More details in Jia-Yue Zhang's talk this afternoon.

Figure 6: A representative Feynman diagram for the fragmentation function of gluon into T_{4c} . The grey blob indicates the C-even tetraquark. Horizontal double line denotes the eikonal line.

Phenomenology for $T_{4c/b}$ production at LHC

Phenomenology for $T_{4c/b}$ production at LHC

2^{++} cross section is about 10 times larger than 0^{++} .
We obtain the yields of the accumulated event number for T_{4c} at HL-LHC are hundred million for 0^{++} and 8 hundreds million for 2^{++} (with integrated luminosity 3000 ${\rm fb}^{-1}$).
The prediction for ${\cal T}_{4b}$ is highly suppressed, mainly due to the relative larger bottom mass suppression.
The total cross section we obtained is unreliable mainly due to the fact that fragmentation only works at high- p_T , and our integration is done within approximately $15 \leq p_T \leq 60 {\rm GeV}$.

Summary & Outlook

Summary:

Production mechanism for fully-heavy tetraquark $T_{4c/b}$ hasn't been well
discussed on a QCD basis
We propose a framework for $T_{4c/b}$ production based on NRQCD factorization
We adopt fragmentation mechanism for $T_{4c/b}$ production @LHC
Calculate FF from QCD-based Collins-Soper definition, FF is factorized into SDCs
and NRQCD LDMEs
Defined LO NRQCD local operators and derived LO SDCs for $D_{g ightarrow T_{4c}}$
We use phenomenological wave functions at origin to obtain predictions of cross
sections

Outlook:

- $\hfill\Box$ Production at other experiments
- \square P-wave $T_{4c/b}$

Research Plans

☐ New projects: Anything QCD or EFT related
□ Old projects:
Three body OPE to the 1st order
• Fully reconstruct Schroedinger wave function with OPE (renormalization problem for QM)
P-wave tetraquark fragmentation function
Top loop Coulomb resummation

bottom versus charm

☐ Charm:

$$\alpha_s(4m_c) = 0.22, \ m_c = 1.5 \text{GeV}, \ R_{D_c}(0) = 0.523 \ \text{GeV}^{3/2}, \ R_{T_c}(0) = 2.902 \ \text{GeV}^{3/2}$$

☐ Bottom:

$$\alpha_s(4m_b) = 0.17, \ m_b = 4.8 \text{GeV}, \ \text{R}_{\text{D}_{\text{b}}}(0) = 0.703 \ \text{GeV}^{3/2}, \ \text{R}_{\text{T}_{\text{b}}}(0) = 5.579 \ \text{GeV}^{3/2}$$

☐ The ratio is

$$\left(\frac{\alpha_s(4m_c)}{\alpha_s(4m_b)}\right)^4 \left(\frac{m_c}{m_b}\right)^{-9} \left(\frac{R_{T_c}(0)}{R_{T_b}(0)}\right)^2 \left(\frac{R_{D_c}(0)}{R_{D_b}(0)}\right)^4$$

$$= \left(\frac{0.22}{0.17}\right)^4 \left(\frac{1.5}{4.8}\right)^{-9} \left(\frac{2.902}{5.579}\right)^2 \left(\frac{0.523}{0.703}\right)^4$$

$$\approx 10^4$$