Advanced Encryption Standard

[Slide courtesy: Cryptography and network security by Bahrouz Fourozan]

AES

- Published by NIST (National Institute of Standards and Technology) in December 2001
 - First AES candidate conference
 - 15 out of 21 algorithms selected
 - Second AES candidate conference
 - 5 out of 15 selected as finalists
 - MARS, RC6, Rijndael, Serpent and Twofish
 - Third AES candidate conference
 - NIST announced Rijndael as the AES

AES...

- The criteria defined by NIST for selecting AES fall into three areas:
 - Security
 - Cost
 - Implementation

AES...

- AES is a non-Feistel cipher that encrypts and decrypts a data block of 128 bits.
- It uses 10, 12, or 14 rounds.
- The key size, which can be 128, 192, or 256 bits, depends on the number of rounds.
 - But the round keys are always 128 bits

AES (General Design)...

AES (Data Units)...

$$S \longrightarrow \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} \longrightarrow \begin{bmatrix} w_0 & w_1 & w_2 & w_3 \end{bmatrix}$$
State

AES (Data Units)...

AES (Data Units)...

Changing plaintext to states

Structure of each round

AES Transformations

- Four types
 - Substitution
 - Permutation
 - Mixing
 - Key-adding

Substitution

- AES, like DES, uses substitution. AES uses two invertible transformations.
- SubBytes
 - The first transformation, SubBytes, is used at the encryption site.
 - To substitute a byte, we interpret the byte as two hexadecimal digits.
 - The SubBytes operation involves 16 independent byte-to-byte transformations.

 Table 7.1
 SubBytes transformation table

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	63	7C	77	7в	F2	6B	6F	C5	30	01	67	2В	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	в7	FD	93	26	36	3F	F7	CC	34	Α5	E5	F1	71	D8	31	15
3	04	С7	23	С3	18	96	05	9A	07	12	80	E2	EB	27	В2	75
4	09	83	2C	1A	1в	6E	5A	A0	52	3В	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	В1	5В	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8

Table 7.1 SubBytes transformation table (continued)

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
7	51	А3	40	8F	92	9D	38	F5	ВС	В6	DA	21	10	FF	F3	D2
8	CD	0 C	13	EC	5F	97	44	17	С4	Α7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0В	DB
A	ΕO	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	СВ	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	ΑE	08
C	ВА	78	25	2E	1C	A6	В4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3 E	В5	66	48	03	F6	ΟE	61	35	57	В9	86	C1	1D	9E
E	E1	F8	98	11	69	D9	8E	94	9В	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	OF	В0	54	ВВ	16

8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	В4	E6	73
9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1c	75	DF	6E
A	47	F1	1A	71	1D	29	C5	89	6F	в7	62	0E	AA	18	BE	1в
В	FC	56	3E	4B	С6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
C	1F	DD	A8	33	88	07	С7	31	В1	12	10	59	27	80	EC	5F
D	60	51	7F	Α9	19	В5	4A	0D	2D	E5	7A	9F	93	С9	9C	EF
E	ΑO	E0	3В	4D	ΑE	2A	F5	в0	С8	EB	ВВ	3 C	83	53	99	61
F	17	2В	04	7E	ВА	77	D6	26	E1	69	14	63	55	21	0C	7D

Example

SubBytes and InvSubBytes processes

SubBytes and InvSubBytes processes...

Example

 Let us show how the byte 0C is transformed to FE by subbyte routine and transformed back to 0C by the invsubbyte routine.

1. subbyte:

- a. The multiplicative inverse of 0C in $GF(2^8)$ field is B0, which means **b** is (10110000).
- b. Multiplying matrix **X** by this matrix results in $\mathbf{c} = (10011101)$
- c. The result of XOR operation is $\mathbf{d} = (111111110)$, which is FE in hexadecimal.

2. invsubbyte:

- a. The result of XOR operation is $\mathbf{c} = (10011101)$
- b. The result of multiplying by matrix X^{-1} is (11010000) or B0
- c. The multiplicative inverse of B0 is 0C.

SubBytes and InvSubBytes processes...

Algorithm 7.1 Pseudocode for SubBytes transformation

```
SubBytes (S)
   for (r = 0 \text{ to } 3)
     for (c = 0 \text{ to } 3)
                S_{r,c} = subbyte (S_{r,c})
subbyte (byte)
                                            // Multiplicative inverse in GF(2^8) with inverse of 00 to be 00
   a \leftarrow byte^{-1}
    ByteToMatrix (a, b)
    for (i = 0 \text{ to } 7)
          \mathbf{c}_{i} \leftarrow \mathbf{b}_{i} \oplus \mathbf{b}_{(i+4) \mod 8} \oplus \mathbf{b}_{(i+5) \mod 8} \oplus \mathbf{b}_{(i+6) \mod 8} \oplus \mathbf{b}_{(i+7) \mod 8}
          \mathbf{d}_{i} \leftarrow \mathbf{c}_{i} \oplus \text{ByteToMatrix} (0x63)
    MatrixToByte (d, d)
     byte \leftarrow d
```

Exercise

- 1. Can you prove formally that the subbyte and invsubbyte are inverses of each other?
- 2. Can you prove that the subbyte transformation is nonlinear?

- Exercise- solution
 - 1. Can you prove formally that the subbyte and invsubbyte are inverses of each other?

subbyte:
$$\rightarrow \mathbf{d} = \mathbf{X} (\mathbf{s}_{r,c})^{-1} \oplus \mathbf{y}$$

invsubbyte: $\rightarrow [\mathbf{X}^{-1}(\mathbf{d} \oplus \mathbf{y})]^{-1} = [\mathbf{X}^{-1}(\mathbf{X} (\mathbf{s}_{r,c})^{-1} \oplus \mathbf{y} \oplus \mathbf{y})]^{-1} = [(\mathbf{s}_{r,c})^{-1}]^{-1} = \mathbf{s}_{r,c}$

It is the inverse operation, that makes the whole transformation nonlinear

Permutation

ShiftRows

• In the encryption, the transformation is called ShiftRows.

Permutation...

- InvShiftRows
 - In the decryption, the transformation is called InvShiftRows and the shifting is to the right.

Algorithm 7.2 Pseudocode for ShiftRows transformation

Permutation...

Example

Mixing

- An interbyte transformation that changes the bits inside a byte, based on the bits inside the neighboring bytes.
 - We need to mix bytes to provide diffusion at the bit level.

 Constant matrices used by MixColumns and InvMixColumns

- MixColumns
 - operates at the column level
 - transforms each column of the state to a new column.

- InvMixColumns
 - basically the same as the MixColumns transformation but the inverse

Algorithm 7.3 Pseudocode for MixColumns transformation

```
MixColumns (S)
       for (c = 0 \text{ to } 3)
              mixcolumn (\mathbf{s}_c)
mixcolumn (col)
    CopyColumn (col, t) // t is a temporary column
      \mathbf{col}_0 \leftarrow (0x02) \bullet \mathbf{t}_0 \oplus (0x03 \bullet \mathbf{t}_1) \oplus \mathbf{t}_2 \oplus \mathbf{t}_3
      \mathbf{col}_1 \leftarrow \mathbf{t}_0 \oplus (0\mathbf{x}02) \bullet \mathbf{t}_1 \oplus (0\mathbf{x}03) \bullet \mathbf{t}_2 \oplus \mathbf{t}_3
      \operatorname{col}_2 \leftarrow \mathbf{t}_0 \oplus \mathbf{t}_1 \oplus (0x02) \bullet \mathbf{t}_2 \oplus (0x03) \bullet \mathbf{t}_3
      \mathbf{col}_3 \leftarrow (0x03 \bullet \mathbf{t}_0) \oplus \mathbf{t}_1 \oplus \mathbf{t}_2 \oplus (0x02) \bullet \mathbf{t}_3
```

Example

 how a state is transformed using the MixColumns transformation. The figure also shows that the InvMixColumns transformation creates the original one.

Key Adding

- AddRoundKey
 - AddRoundKey proceeds one column at a time.
 - AddRoundKey adds a round key word with each state column matrix
 - the operation in AddRoundKey is matrix addition.

Key Adding...

Algorithm 7.4 Pseudocode for AddRoundKey transformation

```
AddRoundKey (S)

{

for (c = 0 \text{ to } 3)

s_c \leftarrow s_c \oplus w_{\text{round} + 4c}
}
```

Key Expansion

- To create round keys for each round, AES uses a key-expansion process.
- If the number of rounds is Nr, the keyexpansion routine creates Nr + 1 128-bit round keys from one single 128-bit cipher key.

Key Expansion...

 Table 7.3
 Words for each round

Round		,	Words	
Pre-round	\mathbf{w}_0	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
1	\mathbf{w}_4	\mathbf{w}_5	\mathbf{w}_6	\mathbf{w}_7
2	\mathbf{w}_8	\mathbf{w}_9	\mathbf{w}_{10}	\mathbf{w}_{11}
N_r	\mathbf{w}_{4N_r}	\mathbf{w}_{4N_r+1}	\mathbf{w}_{4N_r+2}	\mathbf{w}_{4N_r+3}

Making of t_i (temporary) words $i = 4 N_r$

 Table 7.4
 RCon constants

Round	Constant (RCon)	Round	Constant (RCon)
1	(01 00 00 00) ₁₆	6	(<u>20</u> 00 00 00) ₁₆
2	(<u>02</u> 00 00 00) ₁₆	7	(<u>40</u> 00 00 00) ₁₆
3	(<u>04</u> 00 00 00) ₁₆	8	(<u>80</u> 00 00 00) ₁₆
4	(<u>08</u> 00 00 00) ₁₆	9	(<u>1B</u> 00 00 00) ₁₆
5	(<u>10</u> 00 00 00) ₁₆	10	(<u>36</u> 00 00 00) ₁₆

• The key-expansion routine can either use the above table when calculating the words or use the GF(2⁸) field to calculate the leftmost byte dynamically, as shown below (prime is the irreducible polynomial):

RC_1	$\rightarrow x^{1-1}$	$=x^{0}$	mod prime	= I	\rightarrow 00000001	\rightarrow 01 ₁₆
RC_2	$\rightarrow x^{2-1}$	$=x^1$	mod prime	=x	\rightarrow 00000010	$\rightarrow 02_{16}$
RC_3	$\rightarrow x^{3-1}$	$=x^2$	mod prime	$=x^2$	\rightarrow 00000100	$\rightarrow 04_{16}$
RC_4	$\rightarrow x^{4-1}$	$=x^3$	mod prime	$=x^3$	\rightarrow 00001000	\rightarrow 08 ₁₆
RC ₅	$\rightarrow x^{5-1}$	$=x^4$	mod prime	$=x^4$	$\rightarrow 00010000$	$\rightarrow 10_{16}$
RC ₆	$\rightarrow x^{6-1}$	$=x^{3}$	mod prime	$=x^3$	\rightarrow 00100000	\rightarrow 20 ₁₆
RC ₇	$\rightarrow x^{7-1}$	$=x^{6}$	mod prime	$=x_{-}^{6}$	\rightarrow 01000000	$\rightarrow 40_{16}$
RC ₈	$\rightarrow x^{8-1}$	=x'	mod prime	$=x^{\prime}$	$\rightarrow 10000000$	\rightarrow 80 ₁₆
RC ₉	$\rightarrow x^{9-1}$	$=x^8$	mod prime	$=x^4 + x^3 + x + 1$	\rightarrow 00011011	$\rightarrow 1B_{16}$
RC_{10}	$\rightarrow x^{10-1}$	$=x^9$	mod prime	$= x^5 + x^4 + x^2 + x$	\rightarrow 00110110	\rightarrow 36 ₁₆

An illustration

how the keys for each round are calculated assuming that the 128-bit cipher key agreed upon by Alice and Bob is (24 75 A2 B3 34 75 56 88 31 E2 12 00 13 AA 54 87)₁₆.

 Table 7.5
 Key expansion example

Round	Values of t's	First word in the round	Second word in the round	Third word in the round	Fourth word in the round
_		$w_{00} = 2475 \text{A}2 \text{B}3$	$w_{01} = 34755688$	$w_{02} = 31E21200$	$w_{03} = 13AA5487$
1	AD20177D	w_{04} = 8955B5CE	$w_{05} = BD20E346$	$w_{06} = 8CC2F146$	$w_{07} = 9$ F68A5C1
2	470678DB	$w_{08} = CE53CD15$	$w_{09} = 73732E53$	$w_{10} = \mathtt{FFB1DF15}$	$w_{11} = 60D97AD4$
3	31DA48D0	$w_{12} = FF8985C5$	$w_{13} = 8$ CFAAB96	$w_{14} = 734B7483$	$w_{15} = 2475 \text{A2B3}$
4	47AB5B7D	w_{16} = B822deb8	$w_{17} = 34$ D8752E	$w_{18} = 479301$ AD	$w_{19} = 54010$ FFA
5	6C762D20	$w_{20} = D454F398$	$w_{21} = E08C86B6$	$w_{22} = A71F871B$	$w_{23} = F31E88E1$
6	52C4F80D	$w_{24} = 86900B95$	$w_{25} = 661$ C8D23	$w_{26} = C1030A38$	$w_{27} = 321 D82 D9$
7	E4133523	$w_{28} = 62833 \text{EB}6$	$w_{29} = 049$ FB395	w_{30} = C59CB9AD	$w_{31} = F7813B74$
8	8CE29268	$w_{32} = \text{EE61ACDE}$	$w_{33} = \text{EAFE1F4B}$	$w_{34} = 2F62A6E6$	$w_{35} = D8E39D92$
9	0A5E4F61	$w_{36} = E43FE3BF$	$w_{37} = 0$ EC1FCF4	$w_{38} = 21$ A35A12	$w_{39} = F940C780$
10	3FC6CD99	$w_{40} = DBF92E26$	$w_{41} = D538D2D2$	$w_{42} = F49B88C0$	$w_{43} = 0$ DDB4 F4 0

- Each round key in AES depends on the previous round key.
- The dependency, however, is nonlinear because of SubWord transformation.
- The addition of the round constants also guarantees that each round key will be different from the previous one.
- An illustration

```
Cipher Key 1: 12 45 A2 A1 23 31 A4 A3 B2 CC AA 34 C2 BB 77 23
```

Cipher Key 2: 12 45 A2 A1 23 31 A4 A3 B2 CC AB 34 C2 BB 77 23

Table 7.6 Comparing two sets of round keys

R.		Round key	is for set I			Round key	s for set 2		B. D.
	1245A2A1	2331A4A3	B2CCAA34	C2BB7723	1245A2A1	2331A4A3	B2CCAB34	C2BB7723	01
1	F9B08484	DA812027	684D8 <u>A</u> 13	AAF6F <u>D</u> 30	F9B08484	DA812027	684D8 <u>B</u> 13	AAF6F <u>C</u> 30	02
2	B9E48028	6365A00F	0B282A1C	A1DED72C	B9008028	6381A00F	0BCC2B1C	A13AD72C	17
3	A0EAF11A	C38F5115	C8A77B09	6979AC25	3D0EF11A	5E8F5115	55437A09	F479AD25	30
4	1E7BCEE3	DDF49FF6	1553E4FF	7C2A48DA	839BCEA5	DD149FB0	8857E5B9	7C2E489C	31
5	EB2999F3	36DD0605	238EE2FA	5FA4AA20	A2C910B5	7FDD8F05	F78A6ABC	8BA42220	34
6	82852E3C	B4582839	97D6CAC3	C87260E3	CB5AA788	B487288D	430D4231	C8A96011	56
7	82553FD4	360D17ED	A1DBDD2E	69A9BDCD	588A2560	EC0D0DED	AF004FDC	67A92FCD	50
8	D12F822D	E72295C0	46F948EE	2F50F523	0B9F98E5	E7929508	4892DAD4	2F3BF519	44
9	99C9A438	7EEB31F8	38127916	17428C35	F2794CF0	15EBD9F8	5D79032C	7242F635	51
10	83AD32C8	FD460330	C5547A26	D216F613	E83BDAB0	FDD00348	A0A90064	D2EBF651	52

What about weak keys for AES???

Pre-round:	00000000	00000000	00000000	00000000
Round 01:	62636363	62636363	62636363	62636363
Round 02:	9B9898C9	F9FBFBAA	9B9898C9	F9FBFBAA
Round 03:	90973450	696CCFFA	F2F45733	0B0FAC99
Round 10:	B4EF5BCB	3E92E211	23E951CF	6F8F188E

The cipher

Analysis

 The result of encryption when the plaintext is made of all 0s.

```
      Plaintext:
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
```

Analysis...

The avalanche effect.

```
      Plaintext 1:
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
```

Analysis...

 The effect of using a cipher key in which all bits are 0s.

```
      Plaintext:
      00
      04
      12
      14
      12
      04
      12
      00
      0c
      00
      13
      11
      08
      23
      19
      19

      Cipher Key:
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      <td
```