跟涛哥一起学嵌入式 26:深入浅出计算机编码、乱码问题

文档说明	作者	日期
来自微信公众号: 宅学部落(armLinuxfun)	wit	2020.3.8
嵌入式视频教程淘宝店: <u>https://wanglitao.taobao.com/</u>		
联系微信: brotau(宅学部落)		

跟涛哥一起学嵌入式 26:深入浅出计算机编码、乱码问题

- 1. 世界三大字母
- 2. GB2312编码
- 3. GBK标准
- 4. Unicode编码
- 5. UTF-8编码
- 6. 文件编码实验
- 7. 小结

很多新手在编写程序、使用软件打开文档或者浏览网页时,经常遇到乱码显示、全角半角的问题。

```
#include "led.h"
//�������Αχ'ΦãΦδ���������� �����������κ���;
//ALIENTEK mini@SSTM32@ @@@@@
//LED22
       222222
//PPPPPPP@ALIENTEK
//�����:www.openedv.com
//PPPPPP:2012/9/2
//�汾��V1.0
//Copyright(C) ��������������� 2009-2019
//All rights reserved
//00°00PB500PE5Ï00000.00°000000 000.10°00
//LED IO00'00
void LED_Init(void)
GPIO InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOD, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
                                               //LED0-->PA.8 ♦ ♦♦
GPIO_InitStructure.GPIO_Mode = GPIO Mode Out PP;
                                               //222222
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
                                               //I0���₫♥Ï50MHz
GPIO_Init(GPIOA, &GPIO InitStructure);
                                               //00000趨000000,00
GPIO_SetBits(GPIOA,GPIO Pin 8);
                                               //PA.8 22222
GPIO InitStructure.GPIO Pin = GPIO Pin 2;
                                               //LED1-->PD.2 • ••
GPIO_Init(GPIOD, &GPIO InitStructure);
                                               //0000000 00IO0004
GPIO_SetBits(GPIOD,GPIO Pin 2);
                                               //PD.2 2222
```

网上也有很多解决的方法,大部分都是跟编码有关:比如Unicode、UTF-8、ASCII码、GB2312...,令人眼花缭乱,今天就给大家理一理它们之间的关系。

计算机只认识0和1这两个数字,我们输入的程序代码、文字都要经过编码,然后才能被计算机识别、解析和存储。早期的计算机环境是主要是英文,我们对构成英文的这些基本字母:拉丁字母编码就可以了,比如ASCII码。

ASCII码使用一个8位的单字节数据来编码电脑中常用的各种字符,如

拉丁字母: A、B、...、Z, a、b、...、z
数字: 1、2、3、4、5、6、7、8、9
标点符号: 逗号、句号、省略号

• 控制字符:回车符、换行符、空格符、制表符等

二进制	十进制	十六进制	图形	二进制	十进制	十六进制	图形	二进制	十进制	十六进制	图形
0010 0000	32	20	(空格)(50)	0100 0000	64	40	@	0110 0000	96	60	10.5
0010 0001	33	21	1	0100 0001	65	41	Α	0110 0001	97	61	а
0010 0010	34	22		0100 0010	66	42	В	0110 0010	98	62	b
0010 0011	35	23	#	0100 0011	67	43	С	0110 0011	99	63	С
0010 0100	36	24	\$	0100 0100	68	44	D	0110 0100	100	64	d
0010 0101	37	25	%	0100 0101	69	45	E	0110 0101	101	65	е
0010 0110	38	26	&	0100 0110	70	46	F	0110 0110	102	66	f
0010 0111	39	27	- 1	0100 0111	71	47	G	0110 0111	103	67	g
0010 1000	40	28	(0100 1000	72	48	Н	0110 1000	104	68	h
0010 1001	41	29)	0100 1001	73	49	1	0110 1001	105	69	ì
0010 1010	42	2A	*	0100 1010	74	4A	J	0110 1010	106	6A	j
0010 1011	43	28	+	0100 1011	75	4B	K	0110 1011	107	6B	k
0010 1100	44	2C	ν.	0100 1100	76	4C	L	0110 1100	108	6C	-1
0010 1101	45	2D	2	0100 1101	77	4D	М	0110 1101	109	6D	m
0010 1110	46	2E	4	0100 1110	78	4E	N	0110 1110	110	6E	n
0010 1111	47	2F	1	0100 1111	79	4F	0	0110 1111	111	6F	0
0011 0000	48	30	0	0101 0000	80	50	Р	0111 0000	112	70	р
0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	r
0011 0011	51	33	3	0101 0011	83	53	S	0111 0011	115	73	s
0011 0100	52	34	4	0101 0100	84	54	Т	0111 0100	116	74	t
0011 0101	53	35	5	0101 0101	85	55	U	0111 0101	117	75	и
0011 0110	54	36	6	0101 0110	86	56	٧	0111 0110	118	76	٧
0011 0111	55	37	7	0101 0111	87	57	W	0111 0111	119	77	W
0011 1000	56	38	8	0101 1000	88	58	Х	0111 1000	120	78	Х
0011 1001	57	39	9	0101 1001	89	59	Υ	0111 1001	121	79	У
0011 1010	58	ЗА		0101 1010	90	5A	Z	0111 1010	122	7A	z
0011 1011	59	3B	1	0101 1011	91	5B	[0111 1011	123	78	{
0011 1100	60	3C	<	0101 1100	92	5C	- 1	0111 1100	124	7C	- 1
0011 1101	61	3D	=	0101 1101	93	5D]	0111 1101	125	7D	}
0011 1110	62	3E	>	0101 1110	94	5E	А	0111 1110	126	7E	~
0011 1111	63	3F	?	0101 1111	95	5F	_		0.5		

ASCII码使用单字节的 bit0 ~ bit7 ,可以表示128个英文常用的拉丁字母和各种控制字符,这在英文环境下足够用了,随着计算机的普及,每个国家或地区都有自己个文字,这就给计算机的显示的麻烦,计算机中没有其他文字的编码,遇到这些文字,肯定没办法解析和显示了,显示的可能是一片乱码。

1. 世界三大字母

为了显示各国语言文字,我们需要对世界上各种语言做些分类。世界上的语言很多,主要可分为两类:象形型文字和字母型文字。象形型文字如汉字,除此之外,绝大部分语言文字都是字母型文字,基本上都是基于以下三大字母表去构建的。

- 拉丁字母:英语、法语、德语、意大利语、荷兰语、西班牙语、汉语拼音
- 阿拉伯字母:阿拉伯语、波斯语、维吾尔文
- 斯拉夫字母:俄语、乌克兰语、波兰语、白俄罗斯语、吉尔吉斯、乌兹别克、新蒙古语

古希腊作为欧洲文明的起源,拉丁字母和斯拉夫字母都起源于希腊字母。希腊字母广泛用于数学、物理、生物、化学、天文等学科,如大家熟悉的 α (Alpha)、 β (Beta)、 Ω (Omega)、 Δ (delta)。后期经东正传教士传播到斯拉夫民族区并加以改造,就变成了斯拉夫字母。罗马人引进希腊字母后,稍加改变就成了拉丁字母。拉丁字母是世界上最流行,英语、法语、德语、西班牙语,甚至我们使用的汉语拼音都是使用拉丁字母,再加上早期的计算机主要在欧美,所以早期的计算机字符编码使用拉丁字母也就不奇怪了。

由于希腊字母在很多科研领域中的广泛应用,为了显示这些希腊字符,ASCII码进行了扩展了字符集,由原来的128个扩展到了256个:增加了希腊字母、特殊的拉丁符号以及一些表格符号、计算符号等。

ASCII编码简单点理解,其实就是一个字符集,每个字符通过编码,可以很方便地在计算机上被识别和存储。ASCII码的缺陷是使用单字节存储,最多也就知道编码256个字符,容量有限,尤其是各国都有自己的语言文字,比如中文,常用的就有近3000个汉字。再使用单字节编码存储肯定不行,需要扩充这些字符集。

2. GB2312编码

以微软操作系统为例,基本上世界各国都在使用它,都要显示自己的文字,比如我们要使用中文版的操作系统,要显示中文,怎么办?微软采用的方案是:各国采用各自的编码方案。以中文为例,我们有上万的汉字需要编码、存储,采用的是GB2312编码:0~127单字节编码表示原来的拉丁字母A~Z、a~z等,从127往后,每两个字节表示一个汉字。高低字节的编码方式可以编码6000多个常用汉字,除此之外,还把数学符号、罗马希腊字母、阿拉伯字母、俄文字母、日文的平假名、片假名都编进去了,就连ASCII表中原有的数字、字母、标点符号都使用双字节重新编码,这就是我们平常所说的全角字符,127号以下的那些单字节字符叫半角字符。GB2312编码可以看作是对ASCII的扩展。

3. GBK标准

中文除了简体,还有繁体字,也需要对这些繁体字进行编码。早期台湾地区使用BIG5编码对繁体字进行编码,也是采用双字节存储。随着电脑的普及,国内少数民族也要使用电脑,各个民族也有自己的语言系统。为此,GB2312字符集不断扩充,不断加入新的字符编码,于是就产生了GDB编码,并逐渐成为中文编码的标准。根据这个标准,可以将不同汉字进行编码构成字库,计算机想显示汉字,根据编码到字库去查就可以了。早期的计算机内存、存储资源有限,将字库固化到硬件ROM中,插到计算机上就可以了,这就是汉卡。《征途》老板史玉柱,当年就是靠这个汉卡起家的,赚得第一桶金,登上人生巅峰。现在的计算机一般不适用汉卡了,改用软件字库代替,直接存放到硬盘就可以了。

4. Unicode编码

各国都使用自己的编码方案,搞出一套自己的编码标准。用户在安装好Windows系统后,设置成本国语言就可以正常使用Windows了,可以正常显示本国的文字。在Windows系统中,简体操作系统使用的GBK,繁体操作系统使用的是BIG5,各个地区的本地编码方案作为不同语言版本的Windows的ANSI编码标准。但这种编码方案很容易出问题,随着互联网兴起,各国网民使用浏览器浏览网页时,浏览他国的网页时,如果本地字库没有编码这些网页的外语字符就很容易乱码。为了解决这个问题,ISO国际标准化组织废除了所有的地区性编码方案,重新搞了一套包括地球上所有语言、字母、字符的编码:Universal Multiple-Octet Coded Character Set,简称Unicode编码,又叫国际码。

Unicode编码使用双字节来编码字符,一共可以编码65536个字符,这足以容纳地球上所有的语言文字和字符了,而且可以把所有的语言都编进去,全世界通用,多好!

5. UTF-8编码

Unicode编码作为国际码,解决了各国编码冲突问题,但是缺陷还是有的:浪费存储空间。比如原来的英文字符编码,单字节就可以了,现在是双字节,编码后的文件体积足足增大了一倍,不利于网络传输。为此,基于Unicode编码标准,UTF-8编码在存储上做了改进:采用变长字节(1~6个字节)来存储Unicode字符,原来的ASCII码采用单字节存储;希腊字母、斯拉夫字母采用2字节存储;汉字采用3字节存储。Linux环境下一般采用UTF-8编码存储文件,采用UTF-8编码存储的文件一般在文件头会有3个字节的UTF-8编码标记。而在Windows下,一般使用UTF-16编码来存储Unicode字符,文件头有2个字节的UTF-16编码标记。

6. 文件编码实验

我们在Windows下创建一个文本文件,输入4个汉字:宅学部落。保存文件分别保存为不同的编码格式:ANSI、Unicode、UTF-8,查看文件大小,分别为8字节、10字节、15字节。如果输入英文字符:wang,再分别保存并查看各个文件大小,大小分别为:4字节、10字节、7字节。

通过实验我们可以看到,使用UTF-8编码汉字,每个汉字3个字节,生成的文件体积比较大。因此很多中文操作系统下,经常还是有很多人使用GBK标准编码的。为了区分各种编码,一般在文件头会有几个字节说明该文件的编码方式,比如UTF-8文件编码存储的文件头部会有3个隐藏字节(0xEF 0xBB 0xBF)标记UTF-8编码,UTF-16文件头有2个字节(FE FF或FF FE)用来标记UTF-16编码方式,这种标记数据一般称为BOM头。

在Windows下使用记事本,如果采用Unicode存储,默认是自动给文件添加BOM头的。而在Linux下的文本文件虽然默认使用UTF-8标准,但是编码生成的文件一般是不带BOM头的,这也是很多新手在Windows下用记事本编写程序或者脚本,然后拷贝到Linux系统中运行,发现总是错误的原因。现在高级点的文本编辑器,如sublime、UltraEdit、notepad++等,都支持"UTF-8 无BOM"保存方式,编辑保存的文件更适合跨平台保存和运行。

7. 小结

以上给大家分享了不同语言文字、各种程序源文件、各种文本文档在计算机中如何编码和保存的小知识。不同的操作系统、不同的软件在存储字符到文本文件时,不仅编码方式不同,而且还会有BOM头的差异。理解了这些基本原理和细节后,大家在以后的编程中再遇到类似的问题,就迎刃而解了。

注嵌入式、Linux精品教程: https://wanglitao.taobao.com/

嵌入式技术教程博客:http://zhaixue.cc/

联系 QQ: 3284757626

嵌入式技术交流QQ群: 475504428

微信公众号:宅学部落(armlinuxfun)

