

Model-based analysis of granulation and drying in continuous manufacturing

Prof. dr. ir. Ingmar Nopens

April 20, 2016

PSE Advanced Process Modelling Forum

Outline

- Introduction
- Tools for model-based analysis
- Examples of ConSigma
 - Twin screw wet granulation
 - Fluid bed drying
- Another promising tool

Why modelling?

Model-based ANALYSIS → build knowledge

Why modelling?

Model-based OPTIMISATION → optimise

One or more models?

Different objectives require different models

One single model to meet all objectives for a unit process or flow sheet does not exist!

BI@MATH

One or more models?

Models have a life cycle

Model building process

Tedious step-wise and iterative approach

Terminology

Calibration – verification - validation

Sensitivity analysis

- Select parameters for parameter estimation
- Model reduction
- Reducing model uncertainty
- Propose informative experiments
 - Model selection
 - Parameter estimation

Sensitivity analysis

- Local
 - 1 point in parameter space
 - Fast computation
- Global
 - "average" sensitivity in bounded parameter space
 - Computationally expensive

Local Sensitivity analysis

$$\frac{\partial y}{\partial \theta}$$

Finite difference approximation

$$\frac{\partial y(t)}{\partial \theta_j} = \lim_{\Delta \theta_j \to 0} \frac{y(t, \theta_j + \Delta \theta_j) - y(t, \theta_j)}{\Delta \theta_j}$$

Global Sensitivity analysis

- Standardised regression coefficients
- → Linear regression of Monte Carlo analysis

$$Y = \Theta \cdot B + E$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & \theta_{11} & \theta_{12} & \cdots & \theta_{1p} \\ 1 & \theta_{21} & \theta_{22} & \cdots & \theta_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \theta_{n1} & \theta_{n2} & \cdots & \theta_{np} \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

$$SRC_{\theta_i} = b_i \cdot \frac{\sigma_{\theta_i}}{\sigma_y}$$

Global Sensitivity analysis

Morris screening – Elementary effects

$$EE_{\theta_i} = \frac{y(\theta_i + \Delta) - y(\theta)}{\Delta}$$

Global Sensitivity analysis

Variance decomposition

$$\sigma_y^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_{12}^2 + \sigma_{13}^2 + \sigma_{23}^2 + \sigma_{123}^2$$
$$1 = S_1 + S_2 + S_3 + S_{12} + S_{13} + S_{23} + S_{123}$$

- FAST (Fourier Amplitude Sensitivity Test)
- Sobol indices
- Computationally expensive
 - Valid for non-linear models

Uncertainty analysis

Uncertainty analysis

Uncertainties in

- Model structure
- Model implementation
- Measurement error (calibration)
- Model input (predictive)
- Model parameters (uncertainty in estimation)

Uncertainty analysis

Linear approximation: differential analysis

$$y = f(x_1, x_2, \dots, x_n)$$
 \rightarrow $\sigma_y^2(t) = \sum_n \sigma_{x_i}^2 \left(\frac{\partial y(t)}{\partial x_i}\right)^2$

Output Cl

$$\delta_{y} = \pm t_{N-p}^{\alpha} \sigma_{y}$$

Uncertainty analysis

Statistics of Monte Carlo analysis

Outline

- Introduction
- Tools for model-based analysis
- Examples of ConSigma
 - Twin screw wet granulation
 - Fluid bed drying
- Another promising tool

The process under study: ConsiGmaTM-25

The system and its mechanisms:

Slide with breakdown in PBMs

Combination of aggregation and breakage

- → Kernel choice
- → parameters unknown

Tough optimisation problem

Local optimisation likely fails

Calibration requires global search algorithms:

Global Sensitivity Analysis

Which parameter in the PBM-kernels (breakage or aggregation) is sensitive

> Parameters to be calibrated

Global Optimisation Algorithms

Exploring the whole parameter space

Thousands of simulations

Impact of choice of objective function (RMSE, SSE, D43,...)

Simulation results with calibrated model parameters

Conceptualisation of reality:

1. Fast drying phase

$$\dot{m}_{v} = h_{D}(\rho_{v,s} - \rho_{v,\infty})A_{d}$$

2. Slow drying phase

$$\dot{m}_{v} = -\frac{8\pi\epsilon^{\beta_{1}e^{-\beta_{2}T_{g}}}D_{v,cr}M_{w}p_{g}}{\Re(T_{cr,s} + T_{wc,s})}In[\frac{p_{g} - p_{v,i}}{p_{g} - (\frac{\Re}{4\pi M_{w}h_{D}R_{p}^{2}}\dot{m}_{v} + \frac{p_{v,\infty}}{T_{g}})T_{p,s}}]$$

Global Sensitivity Analysis

Nr.	Factor	Nominal value
1	$\mathrm{T_{g}}$	55 °C
2	V_g	$200 \text{ m}^3/\text{h}$
3	$\mathbf{p_g}$	101000 Pa
4	$\mathbf{R}_{\mathbf{p}}$	$0.6\mathrm{mm}$
5	Humidity	9%
6	$T_{p,0}$	25 °C
7	ϵ	0.05
8	μ_{gas}	$0.00002\mathrm{kg/m/s}$
9	$ ho_{gas}$	$1.2\mathrm{kg/m^3}$
10	k_{gas}	$0.0285\mathrm{W/m/K}$
11	$c_{p,gas}$	$1009\mathrm{kg/m^3}$
${\bf 12}$	$\mathbf{M}\mathbf{w}$	$18.015\mathrm{e} ext{-}3\mathrm{kg/mol}$
13	$ ho_{ ext{liquid}}$	$1000\mathrm{kg/m^3}$
$\bf 14$	$\rho_{\mathbf{solid}}$	$1525\mathrm{kg/m^3}$
15	$k_{droplet}$	$0.07\mathrm{W/m/K}$
16	k_{liquid}	$0.63\mathrm{W/m/K}$
17	k_{solid}	$0.75\mathrm{W/m/K}$
18	$c_{p,s}$	$1252\mathrm{kg/m^3}$
19	TWC	$647.13\mathrm{K}$
20	ϵ_{rs}	0.8
21	$eta_{f 1}$	4912.4
22	β_{2}	-0.024282
23	$R_{w,0,fac}$	1.025

Global Sensitivity Analysis

Technique	k	N	Most sensitive factors
Morris screening	23	240	β_2 - T_g - β_1 - $R_{w,0,fac}$
CSM plot	10	400	β_2 - T_g
SRC	10	1000	-
SRRC	10	1000	β_2 - $R_{w,0,fac}$ - T_g - ρ_{solid}
S_i	10	1000	β_2 - T_g - β_1 -Mw
S_{Ti}	10	1000	eta_2 - T_g - eta_1 - $ ho_{liquid}$

Choose parameters to estimate
Check model robustness (uncertainty)

Uncertainty Analysis

Case	Parameter	Calibrated value	Range in uncertainty
1	ϵ	0.05	50%
1	$V_{ m g}$	200 m ³ /h	50%
1	R_p	$0.6 \times 10^{-3} \text{ m}$	50%
2	β_1	4.91×10^{3}	20%
2	β_2	2.43×10^{-2}	20%
3	ϵ	0.05	[0.03-0.06]
3	$V_{ m g}$	200 m ³ /h	20%
3	R_p	$0.6 \times 10^{-3} \text{ m}$	$[0.30-0.65 \times 10^{-3}]$
3	$\dot{\beta_1}$	4.91×10^{3}	20%
3	β_2	2.43×10^{-2}	[0.022-0.026]

Uncertainty Analysis

Uncertainty Analysis: model predictive power

Outline

- Introduction
- Tools for model-based analysis
- Examples of ConSigma
 - Twin screw wet granulation
 - Fluid bed drying
- Another promising tool

Optimal experimental design (OED)

Quality of parameter estimate

$$\left\{\boldsymbol{\theta} : J(\boldsymbol{\theta}) \leq c \times J(\hat{\boldsymbol{\theta}})\right\}$$

Optimal experimental design (OED)

How to improve quality of parameter estimate?

Optimal experimental design (OED)

How to improve quality of parameter estimate?

$$E\left[J\left(\hat{\theta} + \delta\theta\right)\right] = J\left(\hat{\theta}\right) + \delta\theta^{T} \left[\sum_{i=1}^{N_{data}} \left(\frac{\partial y}{\partial \theta}\right)_{i}^{T} Q_{i} \left(\frac{\partial y}{\partial \theta}\right)_{i}\right] \delta\theta$$

Fisher Information Matrix (FIM)

- Iterative procedure
 - Conduct exp, calibrate, propose new exp, etc
 - Reduction of # exp (vs. DOE)

Optimal experimental design (OED)

- How to improve quality of parameter estimate?
- Maximise FIM
 - D-optimal max [det(FIM)]

Conclusions

- Good modelling practice is important
- Use appropriate modelling tools to make choices
- E.g. calibration of complex models → use global methods
 - Computationally expensive
 - But yield a lot of information on the model and can assist in experimental data collection (Optimal Experimental Design)
- Techniques exist, we need to use them

Acknowledgment

prof. dr. Thomas De Beer

dr. ir. Séverine Mortier

dr. Ir. Ashish Kumar

ir. Michael Ghijs

ir. Daan Van Hauwermeiren

