HOMEWORK 5: COUNTABILITY AND SEPARATIONS DUE: OCTOBER 19

- 1) Show that if (X, τ) is second countable, then any basis \mathcal{B} contains a subset \mathcal{B}' which is countable and still a basis for τ .
- 2) Let $f: X \to Y$ be a continuous open map. Show that if X is first (or second)-countable, then so is f(X).
- 3) Let $Y \subset \mathbb{R}^{\mathbb{N}}$ with the box topology be the set of sequences (x_1, x_2, \ldots) such that $x_n = 0$ for $n \geq N$ for some N, and $x_i \in \mathbb{Q}$. Show that Y has closed points. Find which separation axioms T(1-3) Y possesses. Is it T4 (for extra credit)?
- 4) Given a metric space (X, d) and a closed subset $Z \subseteq X$, show that the function $f(x) = d(x, Z) = \inf\{d(x, z) \mid z \in Z\}$

is a continuous function $f: X \to \mathbb{R}$. Furthermore, show that f(x) = 0 if and only if $x \in \mathbb{Z}$.

- 5) Use the previous problem to show that every metric space is T4/normal.
- 6) Given $\tau \subseteq \tau'$, it is easy enough to check that if X_{τ} is Hausdorff then so is also $X_{\tau'}$. Is the same true for T3 and T4? Justify your answer.
- 7) If Y is Hausdorff and $f,g:X\to Y$ are continuous maps, show that $Z=\{x\in X\mid f(x)=g(x)\}$ is a closed set.²
- 8) Let $p: X \to Y$ be a continuous, closed, surjective map. Show that if X is normal, then so is Y.

¹Note this is not a statement about Y.

²Note we cannot subtract in a generic topological space, though this generalizes such an idea.