CLASSIFICATION PLOTS

Menu item	Module name	$Scope^{I}$	Plot description	Details (reference)
AFM (Irvine + Baragar 1971)	AFM	G	(Na ₂ O+K ₂ O) – FeOt – MgO ternary	AFM plot that serves to discriminate between calc-alkaline and tholeiitic subalkaline series (Irvine & Baragar, 1971).
SiO2 - FeOt/MgO (Miyashiro 1974)	Miyashiro	G	SiO ₂ vs. FeOt /MgO binary	Diagram of Miyashiro (1974) distinguishing between tholeiitic and calc-alkaline igneous rocks.
SiO2 - K2O (Peccerillo + Taylor 1976)	PeceTaylor	G	SiO2 vs. K2O binary	Diagram proposed by Peccerillo & Taylor (1976) to distinguish various series of tholeitic, calc-alkaline and shoshonitic rocks.
Co - Th (Hastie et al. 2007)	Hastie	G	Co vs. Th	Replacement for the previous plot of Peccerillo & Taylor (1976) using less mobile elements, designed by Hastie <i>et al.</i> (2007).
Molar Na2O – Al2O3 – K2O plot	NaAlK	G	Na ₂ O - Al ₂ O ₃ - K ₂ O ternary	Diagram to distinguish meta-/peraluminous from peralkaline rocks as well as potassic, sodic and ultrapotassic suites.
A/CNK - A/NK (Shand 1943)	Shand	G	Al ₂ O ₃ /(CaO+Na ₂ O+K ₂ O) vs. Al ₂ O ₃ /(Na ₂ O+K ₂ O) (mol. %)	Classic A/CNK vs A/NK plot of Shand (1943) discriminating metaluminous, peraluminous and peralkaline compositions.
TAS (Le Bas et al. 1986)	TAS	V	SiO ₂ vs. (Na ₂ O + K ₂ O) binary	The principal variation of the TAS diagram, as proposed by Le Bas <i>et al.</i> (1986) and codified by Le Maitre (1989). Dividing line between alkaline and subalkaline series is that of Irvine & Baragar (1971).
TAS (Cox et al. 1979)	CoxVolc CoxPlut	V P	SiO ₂ vs. (Na ₂ O + K ₂ O) binary	Variation of the TAS diagram proposed by Cox <i>et al.</i> (1979) and adopted by Wilson (1989) for plutonic rocks.
TAS (Middlemost 1994)	TASMiddlemostVolc TASMiddlemostPlut	V P	SiO ₂ vs. (Na ₂ O + K ₂ O) binary	Variation of the TAS diagram proposed by Middlemost (1994).
Jensen (1976)	Jensen	V	Al – (Fe ^t + Ti) – Mg ternary	Ternary plot of Jensen (1976).
R1-R2 (De la Roche et al. 1980)	LarocheVolc LarochePlut	V P	R ₁ –R ₂ binary (in millications).	Multicationic classification plot of De La Roche <i>et al.</i> (1980) (R ₁ : 4Si - 11(Na + K) – 2(Fe + Ti); R ₂ : 6Ca + 2Mg + Al).
Nb/Y - Zr/TiO2 (Winchester + Floyd 1977) Zr/TiO2 - SiO2 (Winchester + Floyd 1977)	WinFloyd1 WinFloyd2	V	log Nb/Y vs. log Zr/TiO ₂ log Zr/TiO ₂ vs. SiO ₂ binary	Diagrams proposed by Winchester & Floyd (1977) for classification of volcanic rocks using incompatible element ratios.
Nb/Y - Zr/Ti plot (modified by Pearce 1996)	Pearce1996	V	log Nb/Y vs. log Zr/Ti	The log Nb/Y vs. log Zr/TiO ₂ plot of Winchester & Floyd (1977) modified by Pearce (1996).
QAPF diagram (Streckeisen 1978)	QAPFVolc	V	QAPF – modal compositions	Modal QAPF diagram of Streckeisen (1978)
QAPF diagram (Streckeisen 1974)	QAPFPlut	P	QAPF – modal compositions	Modal QAPF diagram of Streckeisen (1974)

¹Scope: G: general diagram, V: designed for volcanic rocks, P: designed for plutonic rocks

$\textbf{CLASSIFICATION PLOTS} \ (\textit{CONTD.})$

Menu item	Module name	$Scope^{I}$	Plot description	Details (reference)
Feldspar triangle (O'Connor 1965)	OConnorVolc OConnorPlut	V P	Ternary plot Ab-An-Or	Classification diagram after O'Connor (1965) for silica-rich rocks (quartz > 10 %). It is based on CIPW-normative (volcanic, plutonic rocks) or modal (plutonic rocks) contents of albite, anorthite and K-feldspar.
P-Q (Debon + Le Fort 1983)	DebonPQ	P	P–Q binary (in millications)	Nomenclature diagram of Debon & Le Fort (1983). Its coordinates correspond to proportions of Kfs and Pl to Qtz (P: K - (Na + Ca), Q: Si/3 - (K + Na + 2Ca/3)).
B-A (Debon + Le Fort 1983)	DebonBA	P	B–A binary (in millications)	The B–A diagram (Debon & Le Fort 1983) defines six sectors (I - VI), reflecting alumina balance of samples (B: Fe + Mg + Ti, A: Al - (K + Na + 2Ca)).
B-A plot (modified by Villaseca et al. 1998)	Villaseca	P	B–A binary (in millications)	The B–A diagram (Debon & Le Fort 1983) with fields of various types of peralkaline rocks as outlined by Villaseca <i>et al.</i> (1998)
Middlemost (1985)	MiddlemostPlut	P	SiO ₂ vs. (Na ₂ O + K ₂ O) binary	Classification diagram of Middlemost (1985) for plutonic rocks.

¹Scope: G: general diagram, V: volcanic rocks, P: plutonic rocks

GEOTECTONIC PLOTS

Menu item	Module name	Scope ¹	Plot description	Details (reference)
Batchelor + Bowden (1985)	Batchelor	Gr	R ₁ –R ₂ binary (in millications)	R ₁ –R ₂ diagram (De La Roche <i>et al.</i> , 1980) with geotectonic implications after Batchelor & Bowden (1985). (R ₁ : 4Si - 11(Na + K) – 2(Fe + Ti); R ₂ : 6Ca + 2Mg + Al).
Maniar + Piccoli (1989)	Maniar	Gr	binary plots SiO ₂ vs. K ₂ O, Al ₂ O ₃ , and FeOt/(FeOt+MgO); MgO vs. FeOt; CaO vs. FeOt+MgO; A/CNK vs. A/NK	Major-element based geotectonic classification of granitoids (Maniar & Piccoli, 1989).
Frost et al. (2001)	Frost	Gr	binary plots SiO ₂ vs. FeOt/(FeOt+MgO); SiO ₂ vs. Na ₂ O+K ₂ O-CaO ASI vs. A/NK	Major-element based classification of granitoids (Frost et al., 2001).
A type granitoids (Whalen et al. 1987)	Whalen	Gr	binary plots Zr+Nb+Ce+Y vs. FeOt/MgO (Na ₂ O+K ₂ O)/CaO 10000*Ga/Al vs. (Na ₂ O+K ₂ O) (Na ₂ O+K ₂ O)/CaO, K ₂ O/MgO, FeOt/MgO, Zr, Nb, Ce, Y, Zn, Agpaitic index	Binary plots serving for distinction of A-type granitoid rocks after Whalen <i>et al.</i> (1987).
Pearce et al. (1984)	Pearce_granite	Gr	log(Y+Nb) vs. log Rb, log Y vs. log Nb, log(Ta+Yb) vs. log Rb, log Yb vs. log Ta	Trace-element based geotectonic classification of granitoids by Pearce <i>et al.</i> (1984).
Harris et al. (1986)	Harris	Gr	ternary plot Hf - Rb/30 - Ta*3	The diagram distinguishes among four types of collisional granites.
Sylvester (1989)	Sylvester	Gr	Al2O3+CaO)/(FeOt+Na2O+K2O) vs. 100*(MgO+FeOt+TiO2)/SiO2	Diagram proposed by Sylvester (1989) to distinguish the alkaline collision-related alkaline granites.
Schandl + Gorton (2002)	Schandl	Gr	log Ta/Yb vs. log Th/Ta Ta vs. Th Ta/Hf vs. Th/Hf Yb vs. Th/Ta	Discrimination of geotectonic environment of felsic volcanic rocks (rhyolites), proposed by Schandl & Gorton (2002). It is based on combination of four presumably little immobile trace elements (Ta, Yb, Th, Hf).
YbN vs. LaN/YbN (Martin 1986) TTG/adakite	LaYb	Gr	binary plot Ybn vs. Lan/Ybn	Diagram discriminating between adaktiic (or TTG) and "ordinary" calc-alkaline rocks (Martin, 1986).

GEOTECTONIC PLOTS (CONTD.)

		1	T	1
Menu item	Module name	Scope ¹	Plot description	Details (reference)
Verma et al. (2006) based on major elements	Verma	В	Suite of five diagrams based on log- transformed concentration ratios of major-element oxides	Discrimination of geotectonic environment of ultrabasic and basic rocks (SiO ₂ < 52 wt. %), proposed by Verma <i>et al.</i> (2006).
Agrawal et al. (2008), La, Sm, Yb, Nb, Th based	Agrawal	В	Suite of five diagrams based on log- transformed concentration ratios of La, Sm, Yb, Nb and Th	Discrimination of geotectonic environment of ultrabasic and basic rocks, proposed by Agrawal <i>et al.</i> (2008). It is based on log-transformed concentration ratios of five trace elements (La, Sm, Yb, Nb, and Th), i.e., using four ratios ln(La/Th), ln(Sm/Th), ln(Yb/Th), and ln(Nb/Th).
Meschede (1986) Zr/4-2Nb-Y	Meschede	В	Zr/4 – 2Nb – Y ternary	(Meschede, 1986)
Mullen (1983) 10MnO-TiO2-10P2O5	Mullen	В	10 MnO – TiO ₂ – 10 P ₂ O ₅	(Mullen, 1983)
Pearce + Cann (1973)	Pearce_and_Cann	В	Zr – Ti/100 – 3 Y ternary, Zr – Ti/100 – Sr/2 ternary, log Zr – log Ti binary	(Pearce & Cann, 1973)
Pearce + Norry (1979)	Pearce_and_Norry	В	log Zr vs. log Zr/Y	(Pearce & Norry, 1979)
Pearce et al. (1977) MgO-FeOt-Al2O3	Pearce_et_al_1977	В	MgO – FeOt – Al ₂ O ₃ ternary	(Pearce et al., 1977)
Pearce (1982)	Pearce_1982	В	log Zr vs. log. Ti	(Pearce, 1982)
Shervais (1982)	Shervais	В	log Ti/1000 vs. log V	(Shervais, 1982)
Wood (1980)	Wood	В	Th – Hf/3 – Ta Th – Hf/3 – Nb/16 Th – Zr/117 – Nb/16	(Wood, 1980)
Hollocher et al. (2012) La/Yb vs. Nb/La Hollocher et al. (2012) La/Yb vs. Th/Nb	Hollocher1 Hollocher2	В	La/Yb – Nb/La La/Yb – Th/Nb	(Hollocher et al., 2012)
Pearce (2008) Nb/Yb - Th/Yb		U	Nb/Yb - Th/Yb	(Pearce, 2008)
Pearce (2008) Nb/Yb - TiO2/Yb		U	Nb/Yb – TiO2/Yb	(Pearce, 2008)
Cabanis + Lecolle (1989) La/10-Y/15-Nb/8	Cabanis	U	La/10 – Y/15-Nb/8	(Cabanis & Lecolle, 1989)
Ross + Bedard (2009) Zr/Y-Th/Yb	Ross	U	Zr/Y – Th/Yb	(Ross & Bédard, 2009)

Müller et al. (1992) Potassic rocks binary	MullerKbinary	U		(Müller et al., 1992)
Müller et al. (1992) Potassic rocks ternary	MullerKternary	U		(Müller et al., 1992)
Ohta + Arai (2007) FMW weathering index	OhtaArai	U	Ternary plot F – M - W, see help	F-M-W diagram (Ohta & Arai, 2007) for chemical weathering in rocks.

¹Scope: Gr: granitoids, B: basaltoids, U: universal (appropriate for a range of compositions).

REFERENCES

- Agrawal S, Guevara M, Verma S (2008). Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements. *International Geology Review* **50**, 1057–1079.
- Batchelor, R. A. & Bowden, P. (1985). Petrogenetic interpretation of granitoid rock series using multicationic parameters. *Chemical Geology* 48, 43–55.
- Cabanis, B. & Lecolle, M. (1989). Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. *Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre* **309,** 2023–2029.
- Cox, K. G., Bell, J. D. & Pankhurst, R. J. (1979). The Interpretation of Igneous Rocks. George Allen & Unwin.
- De La Roche, H., Leterrier, J., Grandclaude, P. & Marchal, M. (1980). A classification of volcanic and plutonic rocks using R₁R₂-diagram and major element analyses its relationships with current nomenclature. *Chemical Geology* **29**, 183–210.
- Debon, F. & Le Fort, P. (1983). A chemical–mineralogical classification of common plutonic rocks and associations. *Transactions of the Royal Society of Edinburgh, Earth Sciences* **73,** 135–149.
- Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–2048.
- Harris N B W, Pearce J A, Tindle A G (1986) Geochemical characteristics of collision-zone magmatism. In: Coward M P, Ries A C (eds) Collision Tectonics. Geological Society London Special Publication 19, pp 67-81
- Hastie, A. R., Kerr, A. C., Pearce, J. A. & Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th Co discrimination diagram. *Journal of Petrology* **48**, 2341–2357.
- Hollocher, K., Robinson, P., Walsh, E. & Roberts, D. (2012). Geochemistry of amphibolite-facies volcanics and gabbros of the Storen Nappe in extensions west and southwest of Trondheim, western gneiss region, Norway: A key to correlations and paleotectonic settings. *American Journal of Science* **312**, 357–416.
- Irvine, T. N. & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–548.
- Jensen, L. S. (1976). A New Cation Plot for Classifying Subalkalic Volcanic Rocks. Ontario Geological Survey Miscellaneous Paper 66.
- Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali–silica diagram. *Journal of Petrology* 27, 745–750.
- Le Maitre, R. W. (1989). A Classification of Igneous Rocks and Glossary of Terms. Recommendations of the IUGS Commission on the Systematics of Igneous Rocks. Oxford: Blackwell.
- Maniar, P. D. & Piccoli, P. M. (1989). Tectonic discriminations of granitoids. Geological Society of America Bulletin 101, 635-643.
- Martin, H. (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14, 753-756.
- Meschede, M. (1986). A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. *Chemical Geology* **56**, 207–218.
- Middlemost, E. A. K. (1985). Magmas and Magmatic Rocks. London: Longman.
- Middlemost, E. A. K. (1985). Naming materials in the magma/igneous rock system. Earth-Sciences Reviews 37, 215–224.
- Miyashiro A. (1974). Volcanic rock series in island arcs and active continental margins. American Journal of Science 274, 321–355.
- Mullen, E. D. (1983). MnO/TiO₂/P₂O₅: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. *Earth and Planetary Science Letters* **62**, 53–62.
- Müller, D., Rock, N. M. S. & Groves, D. I. (1992). Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. *Mineralogy and Petrology* **46**, 259–289.
- O'Connor, J. T. (1965). A classification for quartz-rich igneous rocks based on feldspar ratios. In: US Geological Survey Professional Paper B525. USGS, 79–84.

- Ohta, T. & Arai, H. (2007) Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering. Chemical Geology 240,280–297v
- Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R.S. (ed.) Andesites: Orogenic Andesites and Related Rocks. John Wiley & Sons, Chichester, pp. 525-548, ISBN 0 471 28034 8
- Pearce, J. A. (1996). A user's guide to basalt discrimination diagrams. In: Wyman, D. A. (ed.) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes 12, 79–113.
- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos* 100, 14–48.
- Pearce, J. A. & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290–300.
- Pearce, J. A. & Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 33–47.
- Pearce, T. H., Gorman, B. E. & Birkett, T. C. (1977). The relationship between major element geochemistry and tectonic environment of basic and intermediate volcanic rocks. *Earth and Planetary Science Letters* **36**, 121–132.
- Pearce, J. A., Harris, N. W. & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. *Journal of Petrology* 25, 956–983.
- Peccerillo, A. & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology* **58**, 63–81.
- Ross, P. S. & Bédard, L. P. (2009). Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. *Canadian Journal of Earth Sciences* **46**, 823–839.
- Shand, S. J. (1943). Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. New York: John Wiley & Sons.
- Schandl, E. S. & Gorton, M. P. (2002). Application of high field strength elements to discriminate tectonic settings in VMS environments. *Economic Geology* **97**, 629–642.
- Shervais, J. W. (1982). Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101-118.
- Streckeisen, A. (1974). Classification and nomenclature of plutonic rocks. Geologische Rundschau 63, 773–786.
- Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks: Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks; recommendation and suggestions. *Neues Jahrbuch für Mineralogie, Abhandlungen* **134,** 1–14.
- Streckeisen, A. & Le Maitre, R. W. (1979). A chemical approximation to the modal QAPF classification of the igneous rocks. *Neues Jahrbuch für Mineralogie, Abhandlungen* **136**, 169–206.
- Sylvester P J (1989). Post-collisional alkaline granites. Journal of Geology 97, 261–280.
- Verma S P, Guevara M, Agrawal S (2006). Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. *Journal of Earth System Science* **115**, 485–528.
- Villaseca, C., Barbero, L. & Herreros, V. (1998). A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. *Transactions of the Royal Society of Edinburgh, Earth Sciences* **89**, 113–119.
- Whalen J, B., Currie K. L. & Chappell B. W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. *Contributions to Mineralogy and Petrology* **95**, 407-419.
- Wilson, M. (1989). Igneous Petrogenesis. London: Unwin Hyman.
- Winchester, J. A. & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. *Chemical Geology* **20**, 325–343.
- Wood, D. A. (1980). The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. *Earth and Planetary Science Letters* **50**, 11–30.