Recurrent neural network

Hung-Hsuan Chen

Most slides are taken from Fei-Fei Li @Stanford

Sequential pattern mining

- The current output depends on the neighboring (e.g., previous or next) outputs
 - Stock market: today's price is dependent on yesterday's price
 - Grammar parser: the POS (Part-of-Speech) of a word depends on the POS of its neighboring words

Sequential pattern mining by SVM/logistic regression/decision

- The "sequential" In the feature manually
- E.g.,
 - Stock market: use the price of yesterday, last 3 days,
 last week, etc. as the features to predict today's price
 - Grammar parser: use the predicted POS of the next word and the predicted POS of the previous word as the features to predict the POS of the current word

"Vanilla" Neural Network

"Vanilla" neural network (based on the definition in "The Elements of Statistical Learning")

- A single hidden layer backpropagation network
- a.k.a., single layer perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 11 May 4, 2017

e.g. Image Captioning image -> sequence of words

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 12 May 4, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 13 May 4, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 14 May 4, 2017

e.g. Video classification on frame level

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 15 May 4, 2017

Recurrent Neural Network

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

new state

old state input vector at some time step

some function

with parameters W

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 20 May 4, 2017

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector h:

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 22 May 4, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 29 May 4, 2017

RNN: Computational Graph: Many to One

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 30 May 4, 2017

RNN: Computational Graph: One to Many

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 31 May 4, 2017

Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input sequence in a single vector

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 32 May 4, 2017

Sequence to Sequence: Many-to-one + one-to-many

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 33 May 4, 2017

Example: Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 35 May 4, 2017

Example: character-level Language Model – training

- Vocabulary: ['h', 'e', 'l', 'o']
- Training sequence: "hello"
- At training-time, even if is incorrect, the correct is used as

Example: character-level Language Model – test

- Vocabulary: ['h', 'e', 'l', 'o']
- At test-time, sample and use is used as
 - E.g., given 'h' and 'e',
 the network predicts
 'o' (incorrect), which is
 used as the next input

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^{T})

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 91 May 4, 2017

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Computing gradient of h₀ involves many factors of W (and repeated tanh)

If we ignore tanh function:

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 92 May 4, 2017

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Largest singular value < 1:

Vanishing gradients

Fei-Fei Li & Justin Johnson & Serena Yeung

factors of W

(and repeated tanh)

Lecture 10 - 93 May 4, 2017

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 94 May 4, 2017

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Computing gradient of h₀ involves many factors of W (and repeated tanh)

Largest singular value > 1: **Exploding gradients**

Largest singular value < 1: Vanishing gradients

Change RNN architecture

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 95 May 4, 2017

LSTM:

Long Short Term Memory (LSTM)

Vanilla RNN: Vanilla RNN: Maintain one hidden state, for

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

every time step

Fei-Fei Li & Justin Johnson & Serena Yeung

Maintain one hidden state and one cell state for every time step:

- represents short-term state
- represents long-term state

- : combining information from and
- : forget gate
- : input gate
- : output gate

- : combining information from and
- : forget gate
- : input gate
- : output gate

Long term state :

- Go through a forget gate to drop some memories
- Add some memory through addition operation, which adds memories selected by an *input gate*

Short term state :

 Long term state is squashed by a tanh function
 Further filtered via an output gate

Backprop from to only elementwise multiplication by , which depends partially on and . So backprop contains no direct matrix multiplication by

② Uninterrupted gradient flow:

Gated recurrent unit (GRU)

- Merge cell state and hidden state into one state
- : forget-and-input (update) gate
- : reset gate: when off (i.e., equals zero), as if it is reading the first

Bidirectional RNN

- For certain tasks, seeing "future" inputs is reasonable
 - E.g., when translating from English to Chinese, we don't translate word-by-word; we read the entire sentence (or paragraph) and translate
 - "Previous" words and "future words" together influence the selection of the current word
- Bidirectional RNN
 - Run a RNN from left to right
 - Run another RNN from right to left
 - Combine (e.g., concatenate) their outputs at each time step

Bidirectional RNN

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 89 May 4, 2017

WaveNet

WaveNet structure

- Stacked 1D convolution layers
- Doubling the dilation rate (how spread apart each neuron's inputs are) at each layer
 - 1st convolutional layer gets 2 time steps
 - 2nd convolutional layer gets 4 time steps
 - 3rd convolutional layer gets 8 time steps
- Overall, lower layers learn short-term patterns; higher layers learn long-term patterns
- Efficiently process large sequences

Beam search

- Greedily output the most likely word at every time step may not be an optimal result
- Beam search keeps track of a short list of the most promising candidates (is called the "beam width")
 - Extend each candidate by one token and keep the most promising candidate for each extension
 - Keep only the most promising candidates out of the candidates
 - Repeat the above two steps

Example: French to English translation

- Jane visite l'Afrique en septembre
- Steps
 - 1. Out of 10,000 possible English words as the beginning, select the top 3
 - [In, Jane, September]
 - 2. Extend each candidate's top 3 candidates
 - [In [September, the, this]]
 - [Jane [is, wants, will]]
 - [September [is, seems, will]]
 - 3. Select top 3 among them
 - [In September], [Jane is], [Jane will]

The example is taken from https://medium.com/@dhartidhami/beam-search-in-seg2seq-model-7606d55b21a5

Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don't work very well
- Common to use LSTM or GRU: their additive interactions improve gradient flow
- Backward flow of gradients in RNN can explode or vanish.
 Exploding is controlled with gradient clipping. Vanishing is controlled with additive interactions (LSTM)
- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 - 104 May 4, 2017