Understanding Vector Database

Introduction

- Semantic search and retrieval-augmented generation (RAG) applications require
 systems to be able to save lots of embedding vectors and also be able to retrieve the
 most relevant vectors with low latency. This requirement has resulted in emergence of
 kind of databases called vector databases.
- **Need for vector database**: Vector databases are designed to efficiently store and search for data based on its vector representation. This makes them ideal for applications that require similarity search, such as:
 - Product recommendation systems Image search
 - Natural language processing Fraud detection
 - Recommendation systems

Vector Embedding

- An embedding vector is a form of representation that converts objects (like words, items, users, images, etc.) into vectors of real numbers in a lower-dimensional space.
- Vectors capture the essential and meaningful relationships between the objects .
- A basic example Word Embeddings: These are used to map words or phrases from the vocabulary to vectors of real numbers. Examples of word embedding models include Word2Vec, GloVe.
- For instance, the embedding might capture relationships like "king" "man" + "woman" ≈ "queen".

Embedding model

- Vector databases use embedding models as a key component for translating data into vector formats optimized for similarity search and pattern analysis.
- The embedding models produce the vector representations that vector databases are built to store, query and analyze.

Vector database

- A vector database is a type of database that stores data as high-dimensional vectors.
- Each vector represents a single entity, such as a text, image, or audio clip.
- The vectors are usually generated by applying some kind of transformation or embedding function to the raw data.
- This function can be based on various methods, such as ML Embedding models, word embeddings, or feature extraction algorithms.

Comparing Vector DBs to other DBs:

Adduite	Vester Detakes	Dalatia wal Datahasa	NaCOL Database	Oneula Detakasa	
Attribute	Vector Database	Relational Database	NoSQL Database	Graph Database	
			Key-value pairs, Documents,		
Data Structure	Vectors	Tables	Wide-column, Graph	Graph	
			Various models depending on		
Data Model	Vector Space Model	Relational Model	the type	Graph Model	
Query	Similarity-based			Graph query languages (e.g., Cypher	
Language	queries	SQL	Specific to the database	for Neo4j)	
			Schema-less or flexible		
Schema Type	Schema-less	Schema-based	schema	Schema-less or flexible schema	
Data		Defined by			
Relationships	Not available	relations/foreign keys	Not available	Modeled using edges and nodes	
	Similarity search,				
	Recommendation	Traditional business		Social networks, Fraud detection,	
	systems, Machine	applications,	Big data, Real-time	Recommendation engines,	
Use Cases	learning	Transactional systems	applications, Unstructured data		

ML pipeline with vector database used to store embeddings

Retrieval Augmented Generation (RAG)

Comparing Vector DBs:

Common evaluation criteria include :

- Managed vs Self-Hosted
- Performance
- Existing MLOps
- Developer experience
- Reliability
- Security
- Cost

Comparing Vector DBs: Chroma Milyus Pinecone

Scalability, Various

vector types support,

Open source, Python

Free and Paid, -Capacity-optimized on Zilliz cloud: \$450/month

Cost optimized:

Performance optimized:

Self-hosted and Cloud

\$300/month -

\$1.375/month

managed

locally

SDK, Takes resources

Туре	Open Source	Open Source & Paid	Commercial	Open Source
	High performance and scalability, based on	• •	Designed for enterprise applications, providing high performance, scalability, security, and compliance	New but balanced between performance and simplicity, high performance
		High performance,		Open source, Excellent

metrics

1,751 Up to 200

Managed in Cloud

High performance, Scalability, Security and compliance,

Integration with various data sources, All major distance

Starter: Free (Limited to one index and one project) -

index on one s1 pod for 30 days at \$0.144/hour)

Standard: \$70/month (Est. for one index on one s1 pod for 30

days at \$0.096/hour) - Enterprise: \$104/month (Est. for one

Free

Support variety of

indexing, Real-time

query processing

Data not available

Self-hosted

vector data, Distributed

Attribute

Key Features

Pricing

second)

Hosting

QPS (Queries per

Storage optimized: \$280/month - Not storage optimized: \$820/month

Self-hosted and Cloud

managed

300

Self-hosted: Free. -

Qdrant

documentation.

with smaller

community

Intuitive API, High

performance, New