RESONANCE COMPENSATION STUDIES AT THE FNAL RECYCLER RING

Ву

Cristhian Gonzalez-Ortiz

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Physics—Doctor of Philosophy

2024

ABSTRACT

Copyright by CRISTHIAN GONZALEZ-ORTIZ 2024

ACKNOWLEDGEMENTS

Your acknowledgements here.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS	vi
CHAPTER 1: SINGLE PARTICLE DYNAMICS	1 1 1
1.3: Resonances in Circular Accelerators	1
CHAPTER 2: THE FNAL RECYCLER RING	2
2.1: General Specifications	2
2.2: Tune Diagram and Resonances2.3: High Intensity and Tune Footprint	2 2
2.3. Tright intensity and functionprint	_
CHAPTER 3: COMPENSATION OF THIRD-ORDER RESONANCES AT LOW	
INTENSITIES	3
3.1: Global RDTs and Lattice Model	3
3.2: Measurement of Third Order RDTs	3
3.3: Compensation of RDTs	3
3.4: Optimization of Compensation Currents	3
3.5: Experimental Verification of Compensation	3
CHAPTER 4: RESONANCE COMPENSATION STUDIES AT THE CERN PS BOOSTER	4
4.1: General specifications	4
4.2: Tune Diagram and Operation	4
4.3: Optimization Algorithms for Resonance Compensation	4
4.4: Experimental Verification of Compensation	4
CHAPTER 5: HIGH INTENSITY STUDIES	5
5.1: Global RDTs and Intensity-Dependent Effects	5
5.2: Space Charge Tune Shift	5
5.3: Measurement of Tune Shift	5
5.4: Static Tune Scans at Different Intensities	5
CHAPTER 6: CONCLUSIONS AND FUTURE WORK	6
BIBLIOGRAPHY	7
APPENDIX YOUR APPENDIX	8

LIST OF ABBREVIATIONS

MSU Michigan State University

FNAL Fermilab National Accelerator Laboratory

RR Recycler Ring

MI Main Injector

RDTs Resonance Driving Terms

SINGLE PARTICLE DYNAMICS

The most basic element of a particle accelerator can be thought of as a black box. This black box takes some initial transverse coordinates x_0, x'_0, y_0, y'_0 , as defined in a Frenet-Serret coordinate system, and maps them to some final coordinates x_f, x'_f, y_f, y'_f . For simplicity, any longitudinal effect will not be taken into account for this analysis [1] [2] [3] [4].

- 1.1 Basic Accelerator Elements
- 1.2 Normal Form
- 1.3 Resonances in Circular Accelerators
- 1.4 Resonance Driving Terms

THE FNAL RECYCLER RING

The Fermilab Recycler Ring (RR) is one of the circular accelerators located .

- 2.1 General Specifications
- 2.2 Tune Diagram and Resonances
- 2.3 High Intensity and Tune Footprint

COMPENSATION OF THIRD-ORDER RESONANCES AT LOW INTENSITIES

- 3.1 Global RDTs and Lattice Model
- 3.2 Measurement of Third Order RDTs
- 3.3 Compensation of RDTs
- 3.4 Optimization of Compensation Currents
- 3.5 Experimental Verification of Compensation
- 3.5.1 Dynamic Loss Map
- 3.5.2 Static Tune Scans

RESONANCE COMPENSATION STUDIES AT THE CERN PS BOOSTER

- 4.1 General specifications
- 4.2 Tune Diagram and Operation
- 4.3 Optimization Algorithms for Resonance Compensation
- 4.4 Experimental Verification of Compensation

HIGH INTENSITY STUDIES

- 5.1 Global RDTs and Intensity-Dependent Effects
- **5.2** Space Charge Tune Shift
- **5.3** Measurement of Tune Shift
- **5.4** Static Tune Scans at Different Intensities

CONCLUSIONS AND FUTURE WORK

BIBLIOGRAPHY

- [1] Robert Ainsworth et al. "High intensity operation using proton stacking in the Fermilab Recycler to deliver 700 kW of 120 GeV proton beam". In: *Phys. Rev. Accel. Beams* 23 (12 Dec. 2020), p. 121002. DOI: 10.1103/PhysRevAccelBeams.23.121002. URL: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.121002.
- [2] R. Ainsworth et al. "High intensity space charge effects on slip stacked beam in the Fermilab Recycler". In: *Phys. Rev. Accel. Beams* 22 (2 Feb. 2019), p. 020404. DOI: 10.1103/PhysRevAccelBeams.22.020404. URL: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.020404.
- [3] Andrzej Wolski. *Beam Dynamics in High Energy Particle Accelerators*. 2nd. WORLD SCIENTIFIC, 2023. DOI: 10.1142/13333. eprint: https://www.worldscientific.com/doi/pdf/10.1142/13333. URL: https://www.worldscientific.com/doi/abs/10.1142/13333.
- [4] M. Ball et al. *The PIP-II Conceptual Design Report*. Tech. rep. FERMILAB-TM-2649-AD-APC1516858. Fermilab, Mar. 2017. DOI: 10.2172/1346823. URL: https://www.osti.gov/biblio/1346823.

APPENDIX

YOUR APPENDIX