Homotopía

Rafael Villarroel

2021-02-09 16:00 -0500

Sea $I = [0, 1] \subseteq \mathbb{R}$ con la topología usual.

2 | 9

Homotopía

Sean X, Y dos espacios topológicos. Sean $f, g: X \to Y$ dos funciones continuas. Una homotopía entre f y g es una función continua $H: X \times I \to Y$ tal que:

• H(x, 0) = f(x) para todos $x \in X$,

Homotopía

Sean X,Y dos espacios topológicos. Sean $f,g\colon X\to Y$ dos funciones continuas. Una homotopía entre f y g es una función continua $H\colon X\times I\to Y$ tal que:

- H(x, 0) = f(x) para todos $x \in X$,
- H(x, 1) = g(x) para todos $x \in X$. Si existe una homotopía entre f y g, decimos que f, g son homotópicas, y escribimos $f \simeq g$.

Observación

Para cada $t_0 \in I$ fijo, tenemos que $x \mapsto H(x, t_0)$ es una función continua de X en Y. La definición de homotopía entonces exige que haya una manera de cambiar continuamente desde la función f hasta la función g.

Teorema

La relación de homotopía es una relación de equivalencia en el conjunto de funciones continuas de X a Y. (No lo vamos a demostrar, pero como ejercicio se deja demostrar que es reflexiva y simétrica).

Sean X, Y dos espacios y $f: X \to Y$ una función continua. Decimos que f es una equivalencia homotópica si existe $g: Y \to X$ continua tal que $g \circ f \simeq 1_X$ y $f \circ g \simeq 1_Y$. Si existe una equivalencia homotópica entre X y Y, decimos que X, Y son homotópicos, o bien que tienen el mismo tipo de homotopía, y lo denotamos $X \simeq Y$.

Ejemplo

Si dos espacios son homeomorfos, entonces son homotópicos.

Sea X un espacio, y sea $Y \subseteq X$ un subespacio. Sea $D: X \times I \to X$ continua tal que:

• D(x, 0) = x para todo $x \in X$,

Sea X un espacio, y sea $Y \subseteq X$ un subespacio. Sea $D: X \times I \to X$ continua tal que:

- D(x, 0) = x para todo $x \in X$,
- $D(x, 1) \in Y$ para todo $x \in X$.

Sea X un espacio, y sea $Y \subseteq X$ un subespacio. Sea $D: X \times I \to X$ continua tal que:

- D(x, 0) = x para todo $x \in X$,
- $D(x, 1) \in Y$ para todo $x \in X$.
- D(y, t) = y para todos $y \in Y$, $t \in I$. Decimos que D define un retracto fuerte por deformación de X en Y.

Teorema

Si D es un retracto fuerte por deformación de X en Y, se tiene que $X \simeq Y$.

Sea $f: X \to Y$ dada por f(x) = D(x, 1). Sea $g: Y \to X$ dada por la inclusión (es decir, g(y) = y). Entonces:

Si y ∈ Y, tenemos que
 (f ∘ g)(y) = f(g(y)) = f(y) = D(y, 1) = y. Es decir
 f ∘ g = 1y.

Sea $f: X \to Y$ dada por f(x) = D(x, 1). Sea $g: Y \to X$ dada por la inclusión (es decir, g(y) = y). Entonces:

- Si y ∈ Y, tenemos que
 (f ∘ g)(y) = f(g(y)) = f(y) = D(y, 1) = y. Es decir
 f ∘ g = 1y.
- Si x ∈ X, tenemos que
 (g ∘ f)(x) = g(f(x)) = g(D(x, 1)) = D(x, 1). Observemos que
 D es una homotopía entre 1x y g ∘ f, pues:

Sea $f: X \to Y$ dada por f(x) = D(x, 1). Sea $g: Y \to X$ dada por la inclusión (es decir, g(y) = y). Entonces:

- Si y ∈ Y, tenemos que
 (f ∘ g)(y) = f(g(y)) = f(y) = D(y, 1) = y. Es decir
 f ∘ g = 1_Y.
- Si $x \in X$, tenemos que $(g \circ f)(x) = g(f(x)) = g(D(x, 1)) = D(x, 1)$. Observemos que D es una homotopía entre 1_X y $g \circ f$, pues:
 - $D(x, 0) = x = 1_X(x)$,

Sea $f: X \to Y$ dada por f(x) = D(x, 1). Sea $g: Y \to X$ dada por la inclusión (es decir, g(y) = y). Entonces:

- Si y ∈ Y, tenemos que
 (f ∘ g)(y) = f(g(y)) = f(y) = D(y, 1) = y. Es decir
 f ∘ g = 1_Y.
- Si $x \in X$, tenemos que $(g \circ f)(x) = g(f(x)) = g(D(x, 1)) = D(x, 1)$. Observemos que D es una homotopía entre 1_X y $g \circ f$, pues:
 - $D(x, 0) = x = 1_X(x)$,
 - $D(x, 1) = (g \circ f)(x)$.