Binary Decision Diagrams

Rémi Hutin & Joshua Peignier

6 Mai 2016

1 BDD et forme normale if-then-else

Question 1 Soient φ une formule, x une variable et V une valuation. Remarquons que, par définition, $\varphi \uparrow^x \equiv (x \land \varphi[1/x]) \lor (\neg x \land \varphi[0/x])$.

Voici donc la table de vérité de $\varphi \uparrow^x$ en fonction des valeurs de x et de φ pour chaque valuation (on ne remplit que les cases nécessaires).

x	φ	$\varphi[1/x]$	$x \wedge \varphi[1/x]$	$\varphi[0/x]$	$\neg x \wedge \varphi[0/x]$	$\varphi \uparrow^x$
0	0		0	0	0	0
0	1		0	1	1	1
1	0	0	0		0	0
1	1	1	1		0	1

Il suffit alors de remarquer que les colonnes de φ et $\varphi \uparrow^x$ sont égales.

Question 2 On va procéder par récurrence sur le nombre de variables intervenant dans φ . Notre hypothèse de récurrence est la propriété P(n): "toute formule de la logique propositionnelle contenant exactement n variables est équivalente à une formule INF".

Si φ ne contient qu'une unique variable x, alors on peut directement calculer les valeurs de $\varphi[1/x]$ et de $\varphi[0/x]$, et remplacer celles-ci par leurs valeurs respectives, 0 ou 1. On peut alors utiliser la question précédente pour écrire que $\varphi \equiv \varphi \uparrow^x = x \to \varphi[1/x], \varphi[0/x]$.

Si on se donne maintenant $n \in \mathbb{N}$ et qu'on suppose que toute formule à n variables est équivalente à une formule INF, alors soit φ une formule à n+1 variables. Soit x une des variables de φ , choisie arbitrairement. Remarquons que $\varphi[0/x]$ et $\varphi[1/x]$ sont des formules à n variables. On peut donc leur appliquer l'hypothèse de récurrence. Alors il existe des formules INF ψ_0 et ψ_1 telles que $\varphi[0/x] \equiv \psi_0$ et $\varphi[1/x] \equiv \psi_1$. Il suffit alors d'écrire que $\varphi \equiv x \to \psi_1, \psi_0$. L'hypothèse de récurrence permet d'assurer que ψ_1 et ψ_0 ne sont écrites qu'à l'aide de formules INF et de constantes. La formule que nous venons de construire respecte aussi cette propriété. D'où on déduit l'hérédité.