P147

(1) 逻辑地址空间为 8 页, 2^3 ,每页 1024 字节, 2^{10} 则逻辑地址有 13 位;而物理地址有 32 块,即 2^5 块,则物理地址空间至少为 15 位。

(2) LRU

	3	4	2	1	4	3	1	4	3	1	4	5
Head	3	3	3	4	2	1	4	3	1	4	3	1
		4	4	2	1	4	3	1	4	3	1	4
			2	1	4	3	1	4	3	1	4	5
	F	F	F	F		F						F

缺页6次

(3) 物理内存 64KB, 16 块, 即块号长度 4, 块内地址 4KB, 即 12 位, 物理地址位 16 位长度;

页号 0, 块 2, 起始地址为 2000H

页号 1, 块 4, 起始地址为 4000H

页号 2, 块 1, 起始地址为 1000H

页号 3, 块 6, 起始地址为 6000H

对于逻辑地址[0,100]——2064H,[1,50]——4032H,[2,0]——1000H,[3,60]——603CH

(4)

段表								
段号	段长	内存起始地址	状态					
0	200	600	0					
1	50	850	0					
2	100	1000	0					
3	150	-	1					

[0, 65]: 600+65=665

[1,55]:850+55=905,越界错误!

[2, 90]: 1000+90=1090

[3,20]:段3不在主存,因此需要装入

当前地址情况为

0: 600-800

1: 850-900

2: 1000—1100

段 3,段长 150,不在主存,需要重新调度,可以将段 0 换出,得到地址为 620

补充作业 1: 使用 OPT、FIFO、LRU、简单时钟四种方法,比较如下执行序列的性能。假设采用固定分配策略,进程可分页框总数为 3 个,执行中所引用到的页面总数为 5 个,执行序列为:

 $2 \ \ 3 \ \ 2 \ \ 1 \ \ 5 \ \ 2 \ \ 4 \ \ 5 \ \ 3 \ \ 2 \ \ 5 \ \ 2$

解答

OPT

	2	3	2	1	5	2	4	5	3	2	5	2
块1	2	2	2	2	2	2	4	4	4	2	2	2
块 2		3	3	3	3	3	3	3	3	3	3	3
快 3				1	5	5	5	5	5	5	5	5
	F	F		F	F		F			F		

缺页6次,换页4次

FIFO

	2	3	2	1	5	2	4	5	3	2	5	2
块1	2	2	2	2	5	5	5	5	3	3	3	3
块 2		3	3	3	3	2	2	2	2	2	5	5
快 3				1	1	1	4	4	4	4	4	2
	F	F		F	F	F	F		F		F	F

缺页 9 次,换页 6次

LRU

	2	3	2	1	5	2	4	5	3	2	5	2
块1	2	2	2	2	2	2	2	2	3	3	3	3
块 2		3	3	3	5	5	5	5	5	5	5	5
快 3				1	1	1	4	4	4	2	2	2
	F	F		F	F		F		F	F		

缺页7次,换页4次

简单时钟:*表示 used,@表示指针位置

2	3	2	1	5	2	4	5	3	2	5	2
2*	2*	2*	2*@	5*	5	5@	5*@	3*	3*	3*@	3*@
@	3*	3*	3*	3@	2*	2*	2*	2@	2*@	2	2*
	@	@	1*	1	1@	4*	4*	4	4	5*	5*
F	F		F	F	F	F		F		F	

缺页8次,换页5次

补充作业 2: 请求分页管理系统中,假设某进程的页表内容如下表所示:

页号	页框号	有效位
0	101H	1
1	-	0
2	254H	1

页面大小为 4KB,一次内存的访问时间是 100ns,一次快表(TLB)的访问时间是 10ns,处理一次缺页的平均时间是 10⁸ns(已含更新 TLB 表和页表的时间),进程的驻留集大小固定为 2,采用最近最久未使用置换算法(LRU)和局部淘汰策略。假设:

- (1) TLB 初始为空
- (2) 地址转换时先访问 TLB, 若 TLB 未命中, 再访问页表(忽略访问页表之后的 TLB 更新时间)
- (3)有效位为 0 表示页面不在内存,产生缺页中断,缺页中断处理后,返回到产生缺页中断的指令处重新执行。设有虚地址访问序列 2362H,1565H,25A5H,请问:
- (1) 依次访问上述三个虚地址,各需多少时间?给出计算过程。
- (2) 基于上述访问序列,虚地址 1565H 的物理地址是多少?请说明理由

解答:在这里,页面大小为 212,故页内地址 12 位。

(1) **2362H**,需要访问页号为 2 的地址,其过程为:访问 tlb 不中 10ns,读取页表 100ns,发现其在主存中,故更新 tlb,此时间被忽略,并访问地址 100ns,则花费时间为 210ns.

1565H,需要访问页号为 1 的地址,访问 tlb 不中 10ns,读取页表 100ns,发现其不在主存,发起一次缺页处理 10⁸ns,再次访问块表 10ns,访问内存 100ns,则花费时间为 10⁸+220ns。

25A5H,特别的,由于采用了 LRU 算法,因此 0 号页被换出,2 号页仍然在主存内。需要访问的页号为 2,不受缺页调度影响,而且 2 号页已经在 tlb 中,故花销为 110ns.

(2) 1565H 占用的页框起始地址为 101H, 而页内地址为 565H, 故整个地址为 101565H

补充讲解:

设某计算机的逻辑地址空间和物理地址空间均为 64KB,按字节编址。若某进程最多需要 6 页数据存储空间,页的大小为 1KB。操作系统采用固定分配局部置换策略为此进程分配 4 个 页框(Page frame),如下表所示。

页号	页框号	装入时刻	访问位
0	7	130	1
1	4	230	1
2	2	200	1
3	9	160	1

当该进程执行到 260 时刻时,要访问逻辑地址为 17CAH 的数据,请回答下列问题:

- (1) 该逻辑地址对应的页号是多少?
- (2) 若采用先进先出(FIFO) 置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程。
- (3) 若采用时钟(CLOCK)置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程。(设搜索下一页的指针沿顺时针方向移动,且当前指向2号页框,如图所示)。

解答

- (1) 因为 17ACH=(0001 0111 1100 1010)2,由于采用固定分配局部置换策略,所以该进程只能占用 4 个页框。页大小为 1KB=210B,所以页内偏移量为 10 位,于是前 6 位为页号,对应的页号为 5。
- (2) 页面走向是: 0, 3, 2, 1, 5。采用 FIFO 置换算法时的页面置换情况如下表(需要替换装入时间最早的页面),从中看到被置换的页面所在的页框为 7, 所以 17ACH 对应的物理地址为(000111 11 1100 1010)2=1FCAH。

页面走向	0	3	2	1	5
物理块 2			2	2	2
物理块 4				1	1
物理块 7	0	0	0	0	5
物理块 9		3	3	3	3
缺页否	٧	٧	٧	٧	٧

(3)根据 CLOCK 算法,如果当前指针所指页框的使用位为 0,则替换该页;否则将使用位清零,并将指针指向下一个页框,继续查找。根据题设和示意图,将从 2 号页框开始,前 4 次查找页框的顺序为 2→4→7→9,并将对应页框的使用位清零。在第 5 次查找中,指针指向 2 号页框,因 2 号页框的使用位为 0,故淘汰 2 号页框对应的 2 号页面,把 5 号页面装入 2 号页框中,并将对应使用位设置为 1,所以对应的物理地址为 00010 11 11001010B,换算成十六进制为 0BCAH