Logic Popositional Logic Semantics ('truth tables'

Syntax ('proof')

Theorems

Semantics ('storder')

Theorems

Semantics ('storder')

Formal Deduction

Gidel's

Then,

Set theory

1. Propositional Logic 1.1 Propositional Formulas. Proposition = Statement either True (T)
or Take (F) Combine basic propositions using connectives (1.1.1) Connectives + truth toucker rules. P, q, -.. statements. Connectives P (7P) Negation サード ナ (7P)

Conjunction ('and') (P19) has value T (=) P19 have value T Disjunction ('or') (pvq) has value T (=) at least one of P.9 has value T Implication (p > q) (p-79) has value F only when phas value I and q has value F. Biconditional (PC) Value T precisely when P, q have the same value.

Summary :

P	9	(pra)	(pvq)	(P-79)
T	T	7	てて	T
トド	T	F	T	ī
	1=	F	F	T

(4.1.2) Def. A propositional ((
formular is obtained from Not
propositional variables P1/P2/P3/"
and connectives in the following
way:

(i) Any prop. var. is a formula

(ii) If ϕ , ψ are formulas

then $(\neg \phi)$ $(\phi \wedge \psi)$ $(\phi \rightarrow \psi)$ $(\phi \vee \psi)$ $(\phi \leftarrow)$ ψ) are formulas

(iii) Any formula arises in (4)

this way.

Formulas

P1 P2 (-P2) (p, → (¬p,)) $((P_1 \rightarrow (-P_2)) \rightarrow P_2)$ Not formulas

PIAP2

(missing brackets)

(7 Pq

Remarks! D' Because of the brackets, every formula is either a prop. variable or is built from 'shorter' formulas in a unique way.

(2) Any assignment of truth values to the variables in a formula of Determines the the truth value of of in a unique way, using (1.1.1) 型中·((P·→(¬P≥))→Pi)/ P. | P2 | ¬P2 | (P, 7 (7 P2)) | \$ (1.1.3) Def. Let nE X a A truth function of u variables is a function f: {T, F}" -> {T, F}

(where $\{T_iF_i^N=\{(x_1,\dots,x_n)^n, S\}$)

each x_i is T or F

[Ex: How many!] (2) Suppose à is a formula whose variables are amongst Pir...pn. Obtain a touth function Fp: {T,F} whose value at (x1).-yxn) is the truth value of of when Pi has value xi, When computed according to (41.1) -For is the touth function of of [Eg. n=2 $F_p((F,T)) = F$.]