

CS & IT Engineering

Compiler Design

Syntax Directed Translations

Lecture:

Deva sir

Topics to be covered:


```
> What is SDT?
> Use of SDT?
> Lexical Vs Syntax Vs Semantic Vs SDT
>> Concepts of SDT
        -> Attributes of SDT
        > Definitions of SDT
        -> Evaluations of SDT
```


SDT = Syntax + Translation

SDT Applications:

- The can be used to perform i) semantic analysis

 ii) Syntax Tree generate

 iii) Intermediate code generate

 iv) Generating Parke Tree

 V) Any meaningful activity
- The can be used to translate expressions

 (Infiniprefix postfix infulprefix)

 It can be used to translate numbers

 (Binary | Decimal olky Bin | Decimal olker)

 It (an evaluate expressions.

$$E \rightarrow E + E = {Translating}$$

$$E \rightarrow a = {Translating}$$

Type Che(Kin)

to in expression ty in functions

Hurrof variable

Marking Construction Constructi

More powerful Ikan

Compiler

Structures

Declaration syntax

The Syntax

The Syntax

The Syntax

-> loop syntail -> Function Systaic -> Expression syntaic

Syntax Directed Translation: (SDT)

3) Evaluations

 $S \rightarrow a \left[S.x = a.val \right]$

What is CFG?

What is Translation?

what is Attobate of the source of the source

What is Definition".

What is Evaluation?

$S \rightarrow AaB$

Parent Child Sibling

Production Tree

S: parent of A, a, B

A: child of S, but left sibling of a and B

a: child of S, Right sibling of A, left sibling of B

B: child of S, Right sibling of A, and a.

E -> T + F & E.x=T.y * F.z }

E is computed by depending its children Tand F. (D&isnment)

D) E,T, and F

Attributes:

(1) Inherited Attribute:

Is inherited allibrate Computation depends on parent/siblings.

S -> AB JA. x = B.y }

(2) Synthesized Attoibute: Andepende on sibling

-> Computation depends on children.

E->a & E.x= a.vois

Identify the type of attribute.

1) OF
$$\rightarrow E_1 + E_2$$
 of $E_1 \times = E_1 \times + E_2 \times 7$
depend on children

Legends on child

X Jattérouxu Val

- Q1) In Rule I, type is inhanted attribute
- Q2) In Rule II, type is syntherited attailment
- 93) In Rule III, type is inherited attribute Q4) In whole SDT, type is <u>Neither inharited</u> yor synthetited

3) $S \rightarrow S_1 S_2 \qquad S_2 \qquad S_3 S_3 = S_3 Count + S_2 Count$ $S \rightarrow (S_1) \qquad S_3 S_3 Count = S_4 Count + 1$

$$S \rightarrow \epsilon$$

count is <u>Synkehited</u> Attaibute in above SDT.

4)
$$S \rightarrow Aa$$
 $S.x=A.x; A.y=S.x$ $A.y=S.x$ $A.y=1000$ $A.y=1000$ $A.y=1000$

5) E->T+F &E.z=T.y;F.y=E.x+2;E.y=F.y-1]

T-> id f[T.x=10; [T.y=id.val]

F-> id dF-x=id.val; F-y=20}

- ai) or is syntkesitely
- Q2) y is <u>neilker inherited</u> nor synlketited (Sometimes inherited and sometimes synlketited)

Summary

Types of attaibutes in SDT

