___ -

数据结构与算法

第六章 树和图

图的定义和术语

图的存储结构

图的遍历

生成树

拓扑排序

关键路径

最短路径

6.1 图的定义和术语

☑ 图(Graph)——图G是由两个集合V(G)和E(G)组成的,记 为G=(V,E)。其中:

V(G)是顶点的非空有限集

E(G)是边的有限集合,边是顶点的无序对或有序对

📮 有向图——有向图G是由两个集合V(G)和E(G)组成的

其中: V(G)是顶点的非空有限集

E(G)是有向边(也称弧)的有限集合,弧是顶点的

有序对,记为<v,w>,v,w是顶点,v为弧尾,w为弧头

D 无向图——无向图G是由两个集合V(G)和E(G)组成的

其中: V(G)是顶点的非空有限集

E(G)是边的有限集合, 边是顶点的无序对, 记为

(v,w) 或 (w,v), 并且 (v,w)=(w,v)

图的例子

例1

$$E(G1) = \{ <1,2>, <2,1>, <2,3>, <2,4>, <3,5>, <5,6>, <6,3> \}$$

例2

$$E(G1)=\{(1,2), (1,3), (2,3), (2,4), (2,5), (5,6), (5,7)\}$$

数据结构

图的定义和术语

- □ 有向完备图——n个顶点的有向图最大边数是n(n-1) 👫
- □ 无向完备图——n个顶点的无向图最大边数是n(n-1)/2
- □ 权——与图的边或弧相关的数叫权
- □ 网——带权的图叫网
- □ 子图——如果图G(V,E)和图G'(V',E'),满足:
 - $\blacksquare V'\subset V$
 - E'⊆E 则称G`为G的子图
- □ 顶点的度
 - 无向图中,<mark>顶点的度为与每个顶点相连的</mark>边数
 - 有向图中,顶点的度分成入度与出度
 - ♦入度:以该顶点为头的弧的数目
 - →出度:以该顶点为尾的弧的数目

- □ 路径: 路径是顶点的序列V={V_{i0},V_{i1},.....V_{in}}, 满足 (V_{ij-1},V_{ij})∈E 或 <V_{ij-1},V_{ij}>∈E,(1<j≤n)</p>
- □ 路径长度:沿路径边的数目或沿路径各边权值之和
- □ 回路:第一个顶点和最后一个顶点相同的路径叫~
- □ 简单路径: 序列中顶点不重复出现的路径叫~
- □ 简单回路:除了第一个顶点和最后一个顶点外,其余顶点不 重复出现的回路叫~
- □ 连通:从顶点V到顶点W有一条路径,则说V和W是连通的
- ☑ 连通图:图中任意两个顶点都是连通的叫~
- □ 连通分量: 非连通图的每一个连通部分叫~
- □ 强连通图:有向图中,如果对每一对V_i, V_j∈V, V_{i≠}V_j, 从V_i 到V_i和从V_i到 V_i都存在路径,则称G是~

数据结构

路径: 1, 2, 3, 5, 6, 3 路径长度: 5 简单路径: 1, 2, 3, 5 回路: 1, 2, 3, 5, 6, 3, 1 简单回路: 3, 5, 6, 3

路径: 1, 2, 5, 7, 6, 5, 2, 3 路径长度: 7 简单路径: 1, 2, 5, 7, 6 回路: 1, 2, 5, 7, 6, 5, 2, 1 简单回路: 1, 2, 3, 1

例 2 4 5 连通图 例 (5)

例 2 4 5 非连通图 连通分量

6.2 图的存储结构

- □ 多重链表
- □ 邻接矩阵
- □ 关联矩阵
- □ 邻接表

图的存储结构-多重链表

□ 多重链表

图的存储结构-邻接矩阵

- □ 邻接矩阵——表示顶点间相联关系的矩阵
- □ 定义: 设G=(V,E)是有n≥1个顶点的图, G的邻接矩阵A是具有以下

■特点:

- ◆<mark>无向图的邻接矩阵对称</mark>,可压缩存储;有n个顶点的无 向图需存储空间为n(n+1)/2
 - ⋄有向图邻接矩阵不一定对称;有n个顶点的有向图需存储空间为n²
- ◆无向图中顶点Vi的度TD(Vi)是邻接矩阵A中第i行元素

之和

- **令有向图中**,
 - ?顶点Vi的出度是A中第i行元素之和
 - ?顶点Vi的入度是A中第i列元素之和
- → 网络的邻接矩阵可定义为:

$$A[i,j] = \begin{cases} \omega_{ij}, \Xi(v_i, v_j) \vec{x} < v_i, v_j > \in E(G) \\ 0, \quad \cancel{I}$$
它

图的存储结构-关联矩阵

- □ 关联矩阵——表示顶点与边的关联关系的矩阵
 - 定义: 设G=(V,E)是有n≥1个顶点,e≥0条边的图,G的关联矩

阵A是具有以下性质的n×e阶矩阵

$$1,i$$
顶点与 j 边相连,且 i 为尾有向图: $A[i,j] = \begin{cases} 0,i$ 顶点与 j 边不相连 $-1,i$ 顶点与 j 边相连,且 i 为头

无向图:
$$A[i,j] = \begin{cases} 1, i 顶点与j 边相连 \\ 0, i 顶点与j 边不相连 \end{cases}$$

L0

G2

	1		_	4	5	6
		1			0	
В	0	0	-1	1	1	0
C	0	0	0	0	-1	1
D	_ 1	-1	0	-1	0	-1_

□ 特点

- <mark>关联矩阵每列只有两个非零元素</mark>,是稀疏矩阵;n越 大,零元素比率越大
- 无向图中顶点Vi的度TD(Vi)是关联矩阵A中第i行元素 之和
- 有向图中,
 - → 顶点Vi的出度是A中第i行中"1"的个数
 - ◆ 顶点Vi的入度是A中第i行中"-1"的个数

邻接表

□ 实现: 为图中每个顶点建立一个单链表,第i个单链表中的结点表示依附于顶点\i的边(有向图中指以\i为尾的弧)

```
#define MAX VERTEX NUM 20
typedef struct ArcNode {
 int adjvex; //邻接点域, 存放与V;邻接的点在表头数组中的位置
 struct ArcNode *nextarc; //链域, 指示下一条边或弧
 InfoType *info;
                                    adjvex | nextarc | info
}ArcNode;
typedef struct VNode { //表头接点
 VertexType data; //存放顶点信息
 ArcNode *firstarc; //指示第一个邻接点
                                          vexdata firstarc
VNode, AdjList[MAX VERTEX NUM];
typedef struct {
 AdjList vertices;
 int vexnum, arcnum;
 int kind; //图的种类标识
} ALGraph;
```


(d)

 \wedge

 \wedge

d

e

特点

- 无向图中顶点V_i的度为第i个单链表中的结点数
- ■有向图中
 - → 顶点V_i的出度为第i个单链表中的结点个数
 - ♦ 顶点V_i的入度为整个单链表中邻接点域值是i的结点个数
 - ◇逆邻接表:有向图中对每个结点建立以V_i为头的弧的单链表

有向图的十字链表表示法

```
#define MAX_VERTEX_NUM 20
 typedef struct ArcBox { //弧结点
   int tailvex, headvex; //弧尾、弧头在表头数组中位置
   struct ArcBox *hlink, *tlink; //分别指向弧头、狐尾相同的下一条弧
   InfoType *info;
 }ArcBox;
                                     headvex
                                             hlink
                              tailvex
                                                  tlink
                                                        info
typedef struct VexNode { //顶点结点
  VertexType data; //存与顶点有关信息
 ArcBox *firstin, *firstout; //分别指向该顶点第一条入弧和出弧
} VexNode;
                                           firstin
                                      data
                                                  firstout
typedef struct {
  VexNode xlist[MAX VERTEX NUM];
 int vexnum, arcnum;
} OLGraph;
                            数据结构
```


无向图的邻接多重表表示法

```
#define MAX VERTEX NUM 20
#define enum {unvisited, visited} VisitIf;
typedef struct EBox { //边结点
  VisitIf mark; //标志域
 int ivex, jvex; //该边依附的两个顶点在表头数组中位置
 struct EBox *ilink, *jlink; //分别指向依附于ivex和jvex的下一条边
  InfoType *info;
                                  ilink
                                        jvex
                       mark
                             ivex
                                              ilink
}EBox;
typedef struct VexNode { //顶点结点
  VertexType data; //存与顶点有关的信息
  EBox *firstedge; //指向第一条依附于该顶点的边
\ \texBox;
                                 firstedge
                            data
typedef struct {
  VexBox adjmulist[MAX VERTEX NUM];
  int vexnum, edgenum;
} AMLGraph;
                           数据结构
```


6.3 图的遍历

- □ 深度优先遍历(DFS)
 - 从图的某一顶点Vo出发,访问此顶点;然后依次从Vo的未被访问的邻接点出发,深度优先遍历图,直至图中所有和Vo相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中一个未被访问的顶点作起点,重复上述过程,直至图中所有顶点都被访问为止

深度遍历: $V1 \Rightarrow V2 \Rightarrow V4 \Rightarrow V8 \Rightarrow V5 \Rightarrow V3 \Rightarrow V6 \Rightarrow V7$

深度遍历: $V1 \Rightarrow V2 \Rightarrow V4 \Rightarrow V8 \Rightarrow V5 \Rightarrow V6 \Rightarrow V3 \Rightarrow V7$

深度遍历: $V1 \Rightarrow V2 \Rightarrow V4 \Rightarrow V8 \Rightarrow V3 \Rightarrow V6 \Rightarrow V7 \Rightarrow V5$

深度优先遍历算法

图的遍历

□ 广度优先遍历(BFS)

■ 从图的某一顶点V0出发,访问此顶点后,依次访问V₀的各个未曾 访问过的邻接点;然后分别从这些邻接点出发,广度优先遍历图, 直至图中所有已被访问的顶点的邻接点都被访问到;若此时图中 尚有顶点未被访问,则另选图中一个未被访问的顶点作起点,重 复上述过程,直至图中所有顶点都被访问为止

广度遍历: $V1 \Rightarrow V2 \Rightarrow V3 \Rightarrow V4 \Rightarrow V5 \Rightarrow V6 \Rightarrow V7 \Rightarrow V8$

广度遍历: $V1 \Rightarrow V2 \Rightarrow V3 \Rightarrow V4 \Rightarrow V5 \Rightarrow V6 \Rightarrow V7 \Rightarrow V8$

广度遍历:
$$V1 \Rightarrow V2 \Rightarrow V3 \Rightarrow V4 \Rightarrow V5 \Rightarrow V6 \Rightarrow V7 \Rightarrow V8$$

广度遍历: $V1 \Rightarrow V2 \Rightarrow V3 \Rightarrow V4 \Rightarrow V6 \Rightarrow V7 \Rightarrow V8 \Rightarrow V5$

广度优先遍历算法

数据结构

6.4 生成树

- □ 所有顶点均由边连接在一起,但不存在回路的图深度优先 生成树与广度优先生成树
- □ 生成森林: 非连通图每个连通分量的生成树一起组成非连通图的~
- → 说明 一个图可以有许多棵不同的生成树
 - 所有生成树具有以下共同特点:
 - **◆生成树的顶点个数与图的顶点个数相同**
 - **◆生成树是图的极小连通子图**
 - →一个有n个顶点的连通图的生成树有n-1条边
 - ◆生成树中任意两个顶点间的路径是唯一的
 - **◆在生成树中再加一条边必然形成回路**
 - 含n个顶点n-1条边的图不一定是生成树

最小生成树

13

□ 问题提出

要在n个城市间建立通信联络网,

顶点——表示城市

权——城市间建立通信线路所需花费代价

希望找到一棵生成树,它的每条边上的权值之和(即建立

该通信网所需花费的总代价)最小——最小代价生成树。

□ 问题分析

n个城市间,最多可设置n(n-1)/2条线路

n个城市间建立通信网,只需n-1条线路

问题转化为:如何在可能的线路中选择n-1条,能把所有城

市(顶点)均连起来,且总耗费(各边权值之和)最小。

🔁 构造最小生成树方法

■方法一: 普里姆(Prim)算法

◆算法思想:设N=(V,{E})是连通网,TE是N上最小生 成树中边的集合

?初始令U={u0},(u0∈V), TE=Φ

?在所有u∈U,v∈V-U的边(u,v)∈E中,找一条代价最小

的边(u0,v0)

?将(u0,v0)并入集合TE,同时v0并入U

₹ 重复上述操作直至U=V为止,则T=(V,{TE})为N的最

小生成树

♦算法实现: 图用邻接矩阵表示

◆算法描述

◆算法评价: T(n)=O(n²)

□ 方法二:克鲁斯卡尔(Kruskal)算法

- 算法思想:设连通网N=(V,{E}),令最小生成树
- ?初始状态为只有n个顶点而无边的非连通图T=(V,{Φ}),每个顶点自成一个连通分量
- ?在E中选取代价最小的边,若该边依附的顶点落在T中不同
 - 的连通分量上,则将此边加入到T中;否则,舍去此边,选 取下一条代价最小的边
 - ?依此类推,直至T中所有顶点都在同一连通分量上为止

◆算法实现:

- 0) 用顶点数组和边数组存放顶点和边信息
- 1)初始时,令每个顶点的jihe互不相同;每个边的flag为0
- 2) 选出权值最小且flag为0的边
- 3) 若该边依附的两个顶点的jihe值不同,即非连通,则令该边的flag=1,选中该边;再令该边依附的两顶点的jihe以及两集合中所有顶点的jihe 相同,若该边依附的两个顶点的jihe值相同,即连通,则令该边的flag=2,即舍去该边
 - 4) 重复上述步骤,直到选出n-1条边为止

◆算法描述: Ch6_30.txt

6.5 拓扑排序

□ 问题提出: 学生选修课程问题

顶点——表示课程

有向弧——表示先决条件,若课程i是课程j的先决条件,则图中有弧

<i,j>

学生应按怎样的顺序学习这些课程,才能无矛盾、顺利地完成学业——拓扑排序

□ 定义

- AOV网——用顶点表示活动,用弧表示活动间优先关系的有向图 称为顶点表示活动的网(Activity On Vertex network),简称 AOV网
- 若<vi,vj>是图中有向边,则vi是vj的直接前驱;vj是vi的直接后继
- AOV网中不允许有回路, 即栗项活动以自己为先决条件

- 拓扑排序——把AOV网络中各顶点按照它们相互之间的优 先关系排列成一个线性序列的过程叫~
 - →检测AOV网中是否存在环方法:对有向图构造其顶点的拓扑有序序列,若网中所有顶点都在它的拓扑有序序列中,则该AOV网必定不存在环
- 拓扑排序的方法
 - **◆在有向图中选一个没有前驱的顶点且输出之**
 - →从图中删除该顶点和所有以它为尾的弧
 - ◆重复上述两步,直至全部顶点均已输出;或者当图中不 存在无前驱的顶点为止

课程代号	课程名称	先修棵
C1	程序设计基础	无
C2	离散数学	C1
C3	数据结构	C1,C2
C4	汇编语言	C1
C5	语言的设计和分析	ЛС3,C4
C6	计算机原理	C11
C7	编译原理	C3.C5
C8	操作系统	C3,C6
C9	高等数学	无
C10	线性代数	C9
C11	普通物理	C9
C12	数值分析	C1,C9,C10

拓扑序列: C1--C2--C3--C4--C5--C7--C9--C10--C11--C6--C12--C8 或 : C9--C10--C11--C6--C1--C12--C4--C2--C3--C5--C7--C8

一个AOV网的拓扑序列不是唯一的

■ 算法实现

- **♦以邻接表作存储结构**
- **◇把邻接表中所有入度为0的顶点进栈**
- ◇栈非空时,输出栈顶元素V_j并退栈;在邻接表中查找V_j 的直接后继V_k,把V_k的入度减1;若V_k的入度为0则进 栈
- ◆重复上述操作直至栈空为止。若栈空时输出的顶点个数不是n,则有向图有环;否则,拓扑排序完毕

■算法描述

数据结构

■ 算法分析

建邻接表: T(n)=O(e)

搜索入度为0的顶点的时间: T(n)=O(n)

拓扑排序: T(n)=O(n+e)

6.6 关键路径

〕问题提出

把工程计划表示为有向图,用顶点表示事件,弧表示活动; 每个事件表示在它之前的活动已完成,在它之后的活动可以开始

例 设一个工程有11项活动,9个事件

事件 V1——表示整个工程开始

事件V9——表示整个工程结束

问题: (1) 完成整项工程至少需要多少时间?

(2) 哪些活动是影响工程进度的关键?

相关定义与术语

- □ AOE网(Activity On Edge)——也叫边表示活动的网。 AOE网是一个带权的有向无环图,其中顶点表示事件,弧 表示活动,权表示活动持续时间
- □ 路径长度——路径上各活动持续时间之和
- □ 关键路径——路径长度最长的路径叫~
- □ Ve(j)——表示事件Vi的最早发生时间
- □ VI(j)——表示事件V_i的最迟发生时间
- □ e(i)——表示活动ai的最早开始时间
- □ l(i)——表示活动a_i的最迟开始时间
- □ I(i)-e(i)——表示完成活动a_i的时间余量
- □ 关键活动——关键路径上的活动叫~,即l(i)=e(i)的活动

■ 问题分析

→如何找e(i)=l(i)的关键活动?

(1)从Ve(1)=0开始向前递推

$$Ve(j) = Max\{Ve(i) + dut(< i, j >)\}, < i, j > \in T, 2 \le j \le n$$

其中T是所有以j为头的弧的集合

(2)从Vl(n)=Ve(n)开始向后递推

$$Vl(i) = Min\{Vl(j) - dut(\langle i, j \rangle)\}, \langle i, j \rangle \in S, 1 \le i \le n-1$$

其中S是所有以i为尾的弧的集合

��Ve(i)

⇒ 求VI(j)

◆**求**e(i)

⇒求l(i)

♦ 计算I(i)-e(i)

顶点	Ve	Vl	
	• • • • • • • • • • • • • • • • • • • •	V 1	
V1	0	0	
V2	6	6	
V3	4	6	
V4	5	8	
V5	7	7	
V6	7	10	
V7	16	16	
V8	14	14	
V9	18	18	

al=6	2	2/29	(7) a1	<i>9</i> ≥2
1) 22		(5) a8=	7	(9)
83/	(3) 25 1		(8) a)	1=4
		29/1	*	
	(4) $a6=2$	(6)		
	<u>∵</u> ∷±=+	1	1	7

	活动	e	1	l-e
	a1	0	0	0 🗸
	a2	0	2	2
	a3	0	3	3
	a4	6	6	0 🗸
	a5	4	6	2
	a6	5	-8-	3
	a7	7	7	0 🗸
	a8	7	7	0 🗸
	a9	7	10	3
	a10	16	16	0 🗸
据	结构 1	14	14	0 🗸

数

■ 算法实现

- **♦以邻接表作存储结构**
- - Ve[i]
- → 从汇点Vn出发,令VI[n]=Ve[n],按逆拓扑序列求其余
 各顶点的VI[i]

■ 算法描述

- ◆輸入顶点和弧信息,建立其邻接表
- ♦计算每个顶点的入度
- **◇对其进行拓扑排序**
 - [字排序过程中求顶点的Ve[i]
 - ?将得到的拓扑序列进栈
- ◇按逆拓扑序列求顶点的VI[i]
- ⇒计算每条弧的e[i]和l[i],找出e[i]=l[i]的关键活动

6.7 最短路径

□问题提出

用带权的有向图表示一个交通运输网,图中:

顶点——表示城市

边——表示城市间的交通联系

权——表示此线路的长度或沿此线路运输所花的时间或费用等

问题:从某顶点出发,沿图的边到达另一顶点所经过的路径中,

各边上权值之和最小的一条路径——最短路径

□ 从某个源点到其余各顶点的最短路径

最短路径	长度
<v0,v1></v0,v1>	13
<v0,v2></v0,v2>	8
A 10 A 10 A 10.	1.2
<v0,v2,v3></v0,v2,v3>	13
<v0,v2,v3,v4></v0,v2,v3,v4>	19
<v0,v2,v3,v4,v5></v0,v2,v3,v4,v5>	21
	20
<v0,v1,v6></v0,v1,v6>	20

迪杰斯特拉(Dijkstra)算法思想

按路径长度递增次序产生最短路径算法:

把V分成两组:

(1) S: 已求出最短路径的顶点的集合

(2) V-S=T: 尚未确定最短路径的顶点集合

将T中顶点按最短路径递增的次序加入到S中,

保证: (1) 从源点V0到S中各顶点的最短路径长度都不大于 从V0到T中任何顶点的最短路径长度

(2) 每个顶点对应一个距离值

S中顶点:从V0到此顶点的最短路径长度

T中顶点:从V0到此顶点的只包括S中顶点作中间

顶点的最短路径长度

依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的 直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和 (反证法可证)

◆ 求最短路径步骤

?初使时令 S={V0},T={其余顶点},T中顶点对应的 距离值

⇒若存在<V0,Vi>,为<V0,Vi>弧上的权值

◆若不存在<V0,Vi>,为∞

?从T中选取一个其距离值为最小的顶点W,加入S

②对T中顶点的距离值进行修改:若加进W作中间顶点, 从VO到Vi的距离值比不加W的路径要短,则修改此距

离值

②重复上述步骤,直到S中包含所有顶点,即S=V为止

◆算法实现

[?图用带权邻接矩阵存储ad[][]

「字数组dist[]存放当前找到的从源点V0到每个终点的 最短路径长度, 其初态为图中直接路径权值

[?数组pre[]表示从VO到各终点的最短路径上,此顶

点的前一顶点的序号;若从VO到某终点无路径,则

用0作为其前一顶点的序号

◆算法描述

◆算法分析: T(n)=O(n²)

■ 每一对顶点之间的最短路径

→ 方法一:每次以一个顶点为源点,重复执行Dijkstra算法
n次—— T(n)=O(n³)

◆方法二: 弗洛伊德(Floyd)算法

[?]算法思想:逐个顶点试探法

?求最短路径步骤

◇初始时设置一个n阶方阵,令其对角线元素为0, 若存在弧<Vi,Vj>,则对应元素为权值;否则为∞

◆逐步试着在原直接路径中增加中间顶点,若加入中间点后路径变短,则修改之;否则,维持原值

♦所有顶点试探完毕,算法结束

	AB	AC
BA		BC
CA		

例 6 A 4 B 3 11 2

加入V1:	0	4	11)
ルロノヘVI・	6	0	2
	3	7	0

DA / 7 .		AB	AC
路径:	BA		BC
J	CA	CAB	

	$\bigcirc 0$		6
加入V2:	6	0	2
	3	7	0

	AB	ABC
BA		BC
CA	CAB	

路径:

	0	4	6
加入V3:	5	0	2
		7	

ロケノフ .		AB	ABC
路径:	BCA		BC
	CA	CAB	

◆算法实现

?图用邻接矩阵存储

[?|length[][]存放最短路径长度

?path[i][j]是从以到!/j的最短路径上Vj前一顶点序号

length=
$$\begin{bmatrix} 0 & 4 & 11 \\ 6 & 0 & 2 \\ 3 & \infty & 0 \end{bmatrix}$$
 path= $\begin{bmatrix} 0 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 0 & 0 \end{bmatrix}$

加入V1:
length=
$$\begin{bmatrix} 0 & 4 & 11 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$
 path= $\begin{bmatrix} 0 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 0 \end{bmatrix}$

加入V2: length= $\begin{bmatrix} 0 & 4 & 6 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$ path= $\begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 2 \\ 3 & 1 & 0 \end{bmatrix}$

加入V3:

浮算法分析:
$$T(n)=O(n^3)$$
 length= $\begin{bmatrix} 0 & 4 & 6 \\ 5 & 0 & 2 \end{bmatrix}$ path= $\begin{bmatrix} 0 & 1 & 2 \\ 3 & 0 & 2 \\ \hline 3 & 1 & 0 \end{bmatrix}$