

AGENDA

- Esquema de aprendizaje de la Regresión Logística
- RAnalyticFlow Regresión Logística

- Esquema de aprendizaje de la Árbol de Clasificación
- RAnalyticFlow Árbol de Clasificación
 - Caso de negocio: Incorporación de modelo de venta en campaña de adquisición de clientes en seguros salud

FOCO DEL PROBLEMA

Manejar la incertidumbre si un cliente nos compra o no según sus características del cliente

Conozco

del cliente

características

Reg. Logistica

Reducir el error

ALGORITMO REGRESIÓN LOGÍSTICA

Data histórica

El problema

Para el ejemplo visual definamos:

Variable Y

Representación gráfica

X1: Ingresos

$$L(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^{\tau} \mathbf{x}.$$

QUÉ MATEMÁTICA-ESTADÍSTICA HAY DETRÁS?

APRENDER DE TODA LA HISTORIA CON REGRESION LINEAL

$$Y_i = \beta_0 + \beta_1 \dot{X}_i + \epsilon_i$$
Linear component Random Error component

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$

Sueldo de un cliente

APRENDER DE TODA LA HISTORIA CON REGRESION LINEAL - CLASIFICACIÓN

REGRESIÓN LOGÍSTICA TÉRMINOS DE NEGOCIO

- 1. Cada cliente solo tiene 2 opciones de decisión y sigue una distribución Binomial
- 2. La decisión de cada cliente son Independientes entre si
- 3. Se relaciona la ponderación de las variables del cliente y la probabilidad de compra

FUNCIÓN SIGMOIDE LOGIT

Cliente compra o no?

Conozco característic del cliente

OTRAS FUNCIONES SIGMOIDE

OTRAS FUNCIONES SIGMOIDE

Se puede interpretar la suma ponderada de características del cliente?

$$\beta_0 + \beta_1 x$$

$$p(X) = \frac{e^{(\beta_o + \beta_1 x)}}{e^{(\beta_o + \beta_1 x)} + 1}$$

$$p(e^{(\beta_o + \beta_1 x)} + 1) = e^{(\beta_o + \beta_1 x)}$$

$$p.e^{(\beta_o + \beta_1 x)} + p = e^{(\beta_o + \beta_1 x)}$$

$$p = e^{(\beta_o + \beta_1 x)} - p.e^{(\beta_o + \beta_1 x)}$$

$$p = e^{(\beta_o + \beta_1 x)} (1 - p)$$

$$\frac{p}{1 - p} = e^{(\beta_o + \beta_1 x)}$$

$$\ln(\frac{p}{1 - p}) = \beta_0 + \beta_1 x$$

EVALUACIÓN DE LA REGRESION LOGISTICA

Criterio de AIC

Akaike Information Criteria

Indicador importante de evaluación de modelo similar a

R-ajustado

Evita el sobre ajuste

$$SSE = \sum_{i} (y_{exp}(t_i) - y_{mod}(t_i))^2$$

AIC =
$$n_t \cdot \ln \left(\frac{\text{SSE}}{n_t} \right) + 2 \cdot (n_p + 1) + \frac{2 \cdot (n_p + 1) \cdot (n_p + 2)}{n_t - n_p - 2}$$

Matriz de confusión

Tabla cruzada entre pronósticos

y decisiones reales de los clientes. Se derivan métricas como: Precisión

	1 (Predicted)	0 (Predicted)
1 (Actual)	True Positive	False Negative
0 (Actual)	False Positive	True Negative

ROC

Probabilidad de acierto del modelo evitando falsas alarmas

ALGORTIMO ARBOL DE DECISION

Resultado de creditos otorgados

Impureza inicial: 0.25

Clientes morosos: 46 (51%)

Tamaño de muestra: 100%

Bondad de Ajuste de cortes:

 $= 0.25 - (30\% \ 0.07 + 0\% \ 0 + 40\% \ 0.24)$

= 0.13

Monto de crédito > 35 mil soles

Si /

No

Impureza R3: 0.07

No Default

Default

Clientes morosos: 25 (93%)

Tamaño de muestra: 30%

Periodo de pago > 1.6 años

Si

No

Impureza R2: 0

Clientes morosos: 0 (0%)

Tamaño de muestra: 31%

Impureza R3: 0.24

Clientes morosos: 21 (58%)

Tamaño de muestra: 40%

QUÉ MATEMÁTICA-ESTADÍSTICA HAY DETRÁS?

ALGORTIMO ARBOL DE DECISION

Reducir la impureza

Medición Error de clasificación o Bayes

$$\phi(p) = \min(p, 1 - p),$$

Medición Entropia

$$\phi(p) = -p \log(p) - (1-p) \log(1-p),$$

Medición Indice de diversidad Gini

$$\phi(p) = p(1-p),$$

Impureza de 1 nodo

$$Gini(t) = 1 - \sum_{i=0}^{c-1} [p(i \mid t)]^2$$

ALGORTIMO ARBOL DE DECISION

	Nro Cliente	Porcentaje
Compra	6	50%
No Compra	6	50%
	12	100%

Variable sueldo

Opción de corte A Sueldo>1500

CRITERIO DE CORTE CON GINI

	Nro Cliente	Porcentaje
Compra	6	50%
No Compra	6	50%
	12	100%

$$Gini(t) = 1 - \sum_{i=0}^{c-1} [p(i \mid t)]^2$$

	Parent		Gini:
C0	6		$1 - (6/12)^2 - (6/12)^2$
C1	6	/	= 0.5
Gir	ni = 0.5		

ALGORTIMO ARBOL DE DECISION

	Nro Cliente	Porcentaje	
Compra	6	50%	
No Compra	6	50%	
	12	100%	

Variable sueldo

Opción de corte A Sueldo>1500

CRITERIO DE CORTE CON GINI

Example:

Suppose there are two ways (A and B) to split the data into smaller subset.

CRITERIO DE CORTE CON GINI

Weighted Average of Gini Index:

 $[(7/12) \times 0.4898] + [(5/12) \times 0.480]$ = 0.486

Gain, $\Delta = 0.5 - 0.486 = 0.014$

Weighted Average of Gini Index:

 $[(5/12) \times 0.320] + [(7/12) \times 0.4082]$ = 0.3715

Gain, $\Delta = 0.5 - 0.3715 = 0.1285$

177

CRITERIO DE COMPLEJIDAD DEL ARBOL

Tene un arbol que En cada corte identifica Grupos homogenous de clientes

Que tan complejo?

CRITERIO DE COMPLEJIDAD DEL ARBOL

ERRO DE MALA CLASIFICACION

Reducir el error

CRITERIO DE COMPLEJIDAD DEL ARBOL

Profundidad del arbol

size of tree

Parametro complejidad

$$R_{\alpha}(\mathcal{T}) = R(\mathcal{T}) + \alpha |\mathcal{T}|$$

CROSS VALIDATION 5 FOLDS

