The Design and Analysis of Algorithms

Lecture 6 Greedy Algorithms I

Zhenbo Wang

Department of Mathematical Sciences, Tsinghua University

Content

Interval Scheduling

Scheduling to Minimize Lateness

Dijkstra's Algorithm

Interval Scheduling

- Job j starts at s_j and finishes at f_j .
- Two jobs *compatible* if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

- Greedy template. Consider jobs in some natural order.
- Take each job provided it's compatible with the ones already taken.
- (a) [Earliest start time] Consider jobs in ascending order of s_i .
- (b) [Shortest interval] Consider jobs in ascending order of $f_j s_j$.
- (c) [Fewest conflicts] For each job j, count the number of conflicting jobs c_i . Schedule in ascending order of c_i .
- (d) [Earliest finish time] Consider jobs in ascending order of f_i .

Counterexamples for Greedy (a), (b) and (c)

Earliest-Finish-Time-First Algorithm

EARLIEST – FINISH – TIME – FIRST $(n, s_1, \dots, s_n, f_1, \dots, f_n)$

```
1: SORT jobs by finish time so that f_1 \le f_2 \le \cdots \le f_n.
```

2: *A* ← ∅

3: **for** j = 1 to n **do**

4: **if** job *j* is compatible with *A* **then**

5: $A \leftarrow A \cup \{j\}$.

6: end if

7: end for

8: return A.

 Proposition. Can implement earliest-finish-time first in O(n log n) time.

Keep track of job j^* that was added last to A.

Job k is compatible with A iff $s_k \ge f_{j^*}$.

Sorting by finish time takes $O(n \log n)$ time.

Analysis of Earliest-Finish-Time-First Algorithm

Theorem 1

The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]

Assume greedy is not optimal. Let i_1, i_2, \dots, i_k denote set of jobs selected by greedy.

Let j_1, j_2, \dots, j_m denote set of jobs in the optimal solution with $i_1 = j_1, i_2 = j_2, \dots, i_r = j_r$ for the largest possible value of r.

why not replace job j_{r+1} with iob i_{n+1}?

Scheduling to Minimize Lateness

Minimizing lateness problem.

Single resource processes one job at a time.

Job *j* requires t_i units of processing time and is due at time d_i .

If j starts at time s_j , it finishes at time $f_j = s_j + t_j$.

Lateness: $I_j = \max\{0, f_j - d_j\}$.

Goal: Schedule all jobs to minimize maximum lateness $L = max_j l_j$.

	1	2	3	4	5	6
† _j	3	2	1	4	3	2
dj	6	8	9	9	14	15

							1	ateness	= 2	late	eness = ()		max la	eness =	6
								Ţ			ţ				1	
d ₃ :	= 9	d ₂ = 8		d ₆ = 15		d_1	= 6		d_5	= 14			d ₄ = 9)		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	_

Minimizing Lateness: Greedy Algorithms

 Greedy template. Schedule jobs according to some natural order.

[Shortest processing time first] Schedule jobs in ascending order of processing time t_j .

[Smallest slack] Schedule jobs in ascending order of slack $d_j - t_j$.

[Earliest deadline first] Schedule jobs in ascending order of deadline d_i .

	1	2
† _j	1	10
dj	100	10

counterexample

	1	2
† _j	1	10
d_{j}	2	10

Minimizing Lateness: Earliest Deadline First

EARLIEST – DEADLINE – FIRST $(n, t_1, \dots, t_n, d_1, \dots, d_n)$

```
1: SORT jobs so that d_1 \le d_2 \le \cdots \le d_n.
```

2: *t* ← 0

3: **for** j = 1 to n **do**

4: Assign job *j* to interval $[t, t + t_i]$.

5: $s_j \leftarrow t$; $f_j \leftarrow t + t_j$

6: $t \leftarrow t + t_j$

7: end for

8: **return** Intervals $[s_1, f_1], [s_2, f_2], \dots, [s_n, f_n].$

- Observation 1. There exists an optimal schedule with no idle time.
- Observation 2. The earliest-deadline-first schedule has no idle time.

Minimizing Lateness: Inversions

- Def. Given a schedule S, an *inversion* is a pair of jobs i and j such that: $d_i < d_j$ but j scheduled before i.
 - Observation 3. The earliest-deadline-first schedule has no inversions.
 - Observation 4. If a schedule (with no idle time) has an inversion, it has a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Inversions

- Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.
 - Pf. Let *I* be the lateness before the swap, and let *I'* be it afterwards.

$$I'_k = I_k$$
 for all $k \neq i, j$.

$$I_i' \leq I_i$$
.

$$I'_j = f'_j - d_j = f_i - d_j \le f_i - d_i \le I_i$$
. \square

Analysis of Greedy Algorithm

Theorem 2

The earliest-deadline-first schedule S is optimal.

Pf. [by contradiction] Define S^* to be an optimal schedule that has the fewest number of inversions.

Can assume S^* has no idle time.

If S^* has no inversions, then $S = S^*$.

If S^* has an inversion, let i - j be an adjacent inversion.

Swapping *i* and *j*: Does not increase the max lateness, but strictly decreases the number of inversions.

This contradicts definition of S^* . \square

Shortest-Paths Problem

• *Problem.* Given a digraph G = (V, E), edge lengths $l_e \ge 0$, source $s \in V$, and destination $t \in V$, find the shortest directed path from s to t.

Cost of path s-2-3-5-t = 9 + 23 + 2 + 16 = 48.

Dijkstra's Algorithm

 Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from s to u.

Initialize $S = \{s\}$, d(s) = 0.

Repeatedly choose unexplored node *v* which minimizes

$$\pi(v) = \min_{e=(u,v): u \in S} d(u) + I_e,$$

add v to S, and set $d(v) = \pi(v)$.

Dijkstra's Algorithm: Proof of Correctness

• *Invariant*. For each node $u \in S$, d(u) is the length of the shortest $s \to u$ path.

Pf. [by induction on |S|]

Base case: |S| = 1 is easy since $S = \{s\}$ and d(s) = 0.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

Let v be next node added to S, and let (u, v) be the final edge.

The shortest $s \to u$ path plus (u, v) is an $s \to v$ path of length $\pi(v)$.

Dijkstra's Algorithm: Proof of Correctness-Con't

Consider any $s \to v$ path P. We show that it is no shorter than $\pi(v)$.

Let (x, y) be the first edge in P that leaves S, and let P' be the subpath to x.

P is already too long as soon as it reaches y.

$$I(P) \ge I(P') + I(x, y) \ge d(x) + I(x, y) \ge \pi(y) \ge \pi(v).\Box$$

Dijkstra's Algorithm

Dijkstra'sAlgorithm(G, I)

- 1: Let S be the set of explored nodes.
- 2: For each $u \in S$, we store a distance d(u).
- 3: Initially $S \leftarrow \{s\}$ and $d(s) \leftarrow 0$.
- 4: while $S \neq V$ do
- 5: Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v): u \in S} d(u) + l_e$ is as small as possible.
- 6: Add v to S and define $d(v) \leftarrow d'(v)$
- 7: end while
- 8: return S.

Theorem 3

Dijkstra's algorithm can find the shortest path in $O(n^2)$ time.

Homework

- Read Chapter 4 of the textbook.
- Exercises 4 & 6 in Chapter 4.

