Synchronous Sequential Logic Part I

Logic and Digital System Design - CS 303
Sabancı University

Sequential Logic

- Digital circuits we have learned, so far, have been combinational
 - no memory,
 - outputs are entirely defined by the "current" inputs
- However, many digital systems encountered everyday life are sequential (i.e., they have memory)
 - the memory elements remember past inputs
 - outputs of sequential circuits are not only dependent on the current input but also the state of the memory elements.

Sequential Circuits Model

Current state is a function of past inputs and initial state

Classification 1/2

Two types of sequential circuits

1. Synchronous

- Signals affect the memory elements at discrete instants of time.
- Discrete instants of time requires synchronization.
- Synchronization is usually achieved through the use of a common <u>clock</u>.
- A "clock generator" is a device that generates a <u>periodic train of pulses</u>.

Classification 2/2

1. Synchronous

- The state of the memory elements are updated with the arrival of each pulse
- This type of logical circuit is also known as <u>clocked sequential</u> circuits.

2. Asynchronous

- No clock
- behavior of an asynchronous sequential circuits depends upon the input signals at any instant of time and the order in which the inputs change.
- Memory elements in asynchronous circuits are regarded as time-delay elements

Clocked Sequential Circuits

• Memory elements are **flip-flops** which are logic devices, each of which is capable of storing one bit of information.

Clocked Sequential Circuits

- The outputs of a clocked sequential circuit can come from the combinational circuit, from the outputs of the flip-flops or both.
- The state of the flip-flops can change only during a clock pulse transition
 - i.e. low-to-high and high-to-low
 - clock edge
- When the clock maintains its value, the flip-flop output does not change
- The transition from one state to the next occurs at the clock edge.

Latches

- The most basic types of memory elements are not flip-flops, but latches.
- A latch is a memory device that can maintain a binary state indefinitely.
- Latches are, in fact, asynchronous devices and they usually do not require a clock to operate.
- Therefore, they are not directly used in clocked synchronous sequential circuits.
- They rather be used to construct flip-flops.

SR-Latches with NAND Gates

made of cross-coupled NAND (NOR) gates

Undefined State of SR-Latch

- S = R = 0 may result in an undefined state
 - the next state is <u>unpredictable</u> when both S and R goes to 1 at the same time after the undefined state.
 - It may <u>oscillate</u>
 - Or the outcome state depend on which of S and R goes to 1 first.

SR-Latch with Control Input

• Control inputs allow the changes at S and R to change the state of the latch.

D-Latch

- SR latches are seldom used in practice because the indeterminate state may cause instability
- Remedy: D-latches

This circuit guarantees that the inputs to the S'R'-latch is always complement of each other when C = 1.

D-Latch

C	D	Next state of Q
0	X	No change
1	0	Q = 0; reset state
1	1	Q = 1; set state

• We say that the D input is sampled when C = 1

D-Latch as a Storage Unit

- D-latches can be used as temporary storage
- The input of D-latch is transferred to the Q output when C = 1
- When C = 0 the binary information is retained.
- We call latches <u>level-sensitive</u> devices.
 - So long as C remains at logic-1 level, any change in data input will change the state and the output of the latch.
 - Level sensitive latches may suffer from a serious problem.
- Memory devices that are sensitive to the rising or falling edge of control input is called flip-flops.

Need for Flip-Flops 1/2

• Outputs may keep changing so long as C = 1

Need for Flip-Flops 2/2

- Another issue (related to the first one)
 - The states of the memory elements must change synchronously
 - memory elements should respond to the changes in input at certain points in time.
 - This is the very characteristics of synchronous circuits.
 - To this end, we use flip-flops that change states during a signal transition of control input (clock)

Edge-Triggered D Flip-Flop

• An edge-triggered D flip-flop can be constructed using two D latches

Positive Edge-Triggered D Flip-Flop

Symbols for D Flip-Flops

Positive edge-triggered D Flip-Flop

Negative edge-triggered D Flip-Flop

Setup & Hold Times 1/2

- Timing parameters are associated with the operation of flip-flops
- Recall Q gets the value of D in clock transition

Setup & Hold Times 2/2

- Setup time, t_s
 - The change in the input D must be made before the clock transition.
 - Input D must maintain this new value for a certain minimum amount time.
 - If a change occurs at D less than t_s second before the clock transition, then the output may not acquire this new value.
 - It may even demonstrate unstable behavior.
- Hold time, t_h,
 - Similarly the value at D must be maintained for a minimum amount of time (i.e. t_h) after the clock transition.

Propagation Time

- Even if setup and hold times are achieved, it takes some time the circuit to propagate the input value to the output.
- This is because of the fact that flip-flops are made of logic gates that have certain propagation times.

D Flip-Flop

Positive edge-triggered D Flip-Flop

- Characteristic equation
 - Q(t+1) = D

D	Q(t+1)		
0	0		
1	1		

Characteristic Table

Example

Characteristic equation Q(t+1) = D

Positive edge-triggered D Flip-Flop

Other Flip-Flops

- D flip-flop is the most common
 - since it requires the fewest number of gates to construct.
- Two other widely used flip-flops
 - JK flip-flops
 - T flip-flops
- JK flip-flops
 - Three FF operations
 - 1. Set
 - 2. Reset
 - 3. Complement

J	K	Q(t+1)	next state	
0	0	Q(t)	no change	
0	1	0	Reset	
1	0	1	Set	
1	1	Q'(t)	Complement	

Characteristic Table

- Characteristic equation
 - Q(t+1) = JQ'(t) + K'Q(t)

Characteristic Equations

- The logical properties of a flip-flop can be expressed algebraically using characteristic equations
- D flip-flop
 - Q(t+1) = D
- JK flip-flop
 - Q(t+1) = JQ' + K'Q
- T flip-flop
 - Q(t+1) = T ⊕ Q

Asynchronous Inputs of Flip-Flops

- They are used to force the flip-flop to a particular state independent of the clock
 - "Preset" (direct set) set FF state to 1
 - "Clear" (direct reset) set FF state to 0
- They are especially useful at startup.
 - In digital circuits when the power is turned on, the state of flip-flops are unknown.
 - Asynchronous inputs are used to bring all flip-flops to a known "starting" state prior to clock operation.

Asynchronous Inputs

Analysis of Clocked Sequential Circuits

Goal:

- to determine the behavior of clocked sequential circuits
- "Behavior" is determined from
 - Inputs
 - Outputs
 - State of the flip-flops
- We have to obtain
 - Boolean expressions for output and next state
 - output & state equations
 - (state) table
 - (state) diagram

State Equations

- Also known as "transition equations"
 - specify the next state as a function of the present state and inputs
- Example

Output and State Equations

- $A(t+1) = x(A \oplus B)$
- B(t+1) = xB'
- y = xAB

Flip Flop Input Equations

- Flip-Flop input (excitation) equations
- Same as the state equations in D flip-flops

Example: State (Transition) Table

 $A(t+1) = x(A \oplus B)$

B(t+1) = xB'

y = xAB

Present state		input	Next state		output
А	В	x	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

A sequential circuit with m FFs and n inputs needs 2^{m+n} rows in the transition table

Example: State Diagram

State diagram provides the same information as state table

Mealy and Moore Models

- There are two models for sequential circuits
 - Mealy
 - Moore
- They differ in the way the outputs are generated
 - Mealy:
 - output is a function of both present states and inputs
 - Moore
 - output is a function of present state only

Example: Mealy and Moore Machines

- External inputs, x and y, can be asynchronous
- Thus, outputs may have momentary (incorrect) values
- Inputs must be synchronized with clocks
- Outputs must be sampled only during clock edges

Example: Moore Machines

- Outputs are already synchronized with clock.
- They change synchronously with the clock edge.