IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.: 10/579,075 Confirmation No.: 1578

First Named : Hubert KOCH

Inventor

Filed: November 3, 2004

TC/A.U. : 1736

Examiner : Brian D. Walck Docket No. : 056226.57663US

Customer No. : 23911

Title : Cast Aluminum Alloy

DECLARATION UNDER 37 C.F.R. § 1.132

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

- I, Blanka LENCZOWSKI, hereby declare as follows:
- 1. I am a citizen of Germany, residing at Kaiserstr. 2, D-85579 Neubiberg.
- 2. I attended Montan-University in the Czech Republic from 1982-1986 and received a degree in metallurgy from Montan-University in 1986. I also attended the University of Siegen in Germany from 1988-1992 and received a doctorate in engineering from the University of Siegen in 1992.
- 3. Prior to attending the University of Siegen, I was an engineer at a company in the Czech Republic. Since earning my doctorate degree, I have been employed by EADS Deutschland GmbH, the assignee of the above-identified U.S. Patent Application No. 10/579,075 ("the '075 application"), working in the area of Materials Technology. I currently hold the position of Senior Expert in Materials Technology at EADS Deutschland GmbH. My work at EADS Deutschland GmbH has involved and continues to involve aluminum alloys.
- 4. I am an author of many publications regarding aluminum alloys and have

given many presentations on aluminum alloys. A list of my publications and presentations is attached. I am also an inventor on various patent applications and patents directed to aluminum alloys. A list of my patent applications and patents is attached.

- 5. I am the inventor of '075 application and make this Declaration in support of the '075 application, which claims a cast aluminum alloy.
- 6. I have reviewed the Office Action dated May 20, 2011 ("Office Action") and U.S. Patent No. 3,619,181 ("Willey") and U.S. Patent No. 5,620,652 ("Tack et al.") cited in the Office Action. I understand that claims 17, 20-23, 26-29, 31-34, 36, and 37 of the '075 application stand rejected under 35 U.S.C. § 103(a) as obvious over Willey in view of Tack et al.
- 7. The present claims are directed to a cast aluminum alloy. The cast aluminum alloy comprises aluminum, 3.0-6.0 % by weight magnesium (Mg), > 1.0 4.0 % by weight silicon (Si), 0.01 < 0.5 % by weight scandium (Sc), 0.05-0.15 % by weight titanium (Ti), and at least 0.001 % by weight gadolinium (Gd). Other elements may be present in the cast aluminum alloy but are not required. The total amount of impurities in the cast aluminum alloy is not more than 0.5 % by weight and no single impurity in the cast aluminum alloy is present in an amount of more than 0.1 % by weight.
- 8. One of ordinary skill in the art, reading Willey as a whole, would understand that Willey is directed to wrought aluminum alloys. Wrought aluminum alloys are alloys produced in ingot or billet form and subsequently worked by any number of processes such as rolling, extruding, forging, drawing, or another metal working process. The working produces semi-finished products from which end-use products are subsequently made. While Willey does not explicitly state it is directed to wrought aluminum alloys, the following passages of Willey indicate to one of ordinary skill in the art that Willey is directed to wrought aluminum alloys:

Col. 2, lines 50-56	"Representative aluminum and
Coi. 2, illies 50-50	aluminum alloys to which scandium
	may be added according to my
	invention as identified by The
	Aluminum Association are 7075, 7079,
	7178, 7005, 7039, 6061, 6351, 6161,
	6063, 5005, 5050, 5052, 5083, 5454,
	5456, 3003, 3005, 2014, 2017, 2618,
	2219, 2020 and 2024." ¹
Col. 2, lines 65-66	"The resultant alloys were cast in
	ingot form and cold rolled to a
	reduction of 89 percent."
Col. 3, lines 5-15	"Similar effects are observed when a
	99.903 percent pure aluminum, the
	balance being 0.054 percent of iron
	and 0.043 percent of silicon, is alloyed
	with 1 percent by weight of
•	manganese and small amounts of
	scandium, cast in ingot form and then
	cold rolled to an 89 percent reduction."
Table IV	See footnotes.
Col. 5, lines 4-7	"What is said immediately above is
	generally illustrated in the following
	table V, where is shown the effect of
	aging after cold working of aluminum
	and of various aluminum alloys as
	herein defined."
Col. 6, lines 9-10	"In each case the cold worked metal,
	after having been given the indicated
	heat treatment for 30 minutes and
	then quenched in cold water was aged
	for 8 hours at about 285°-290°C."
Col. 8, lines 69-74	"Instances of the above are presented
	in the following table VII both in
	respect to previously mentioned alloys
	and additional alloys. In each case
	the cold worked metal, after having
	been given the indicated heat
	treatment was subjected to an aging
	operation under the indicated
	conditions of time and temperature."
Table VIII	See footnotes 2-5.

Wrought aluminum alloys are identified by a four digit number, as shown in the attached excerpt of Dr. John Datta, Key to Aluminum Alloys, 5th Edition, 1997. The excerpt lists most of these representative wrought aluminum alloys.

9. Tack et al. also shows that one of ordinary skill in the art, reading Willey as a whole, would understand Willey is directed to wrought aluminum alloys. Tack et al. discusses Willey at col. 1, lines 49-59:

"Among all alloying elements used to strengthen wrought aluminum alloys, scandium (Sc), despite its rare occurrence, has received significant attention. For instance, U.S. Pat. No. 3,619,181 to Willey discloses the addition of Sc to a wide range of binary, ternary, and multicomponent alloy systems. It is claimed that the aluminum alloys that can be strengthened with Sc additions include wrought aluminum alloys identified by the Aluminum Association such as 7075, 7079, 7178, 7005, 7039, 6061, 6351, 6161, 6063, 5005, 5050, 5052, 5083, 5454, 5456, 3003, 3005, 2014, 2017, 2618, 2219, 2020 and 2024." Emphasis added.

Tack et al. does not discuss Willey as disclosing aluminum alloys in general, including cast aluminum alloys. Rather, Tack et al. interprets Willey as being directed to wrought aluminum alloys.

- 10. Cast aluminum alloys and wrought aluminum alloys are significantly different. Unlike wrought aluminum alloys, cast aluminum alloys are not subjected to subsequent rolling, extruding, forging, drawing, or another metal working process. Rather, cast aluminum alloys refer to alloys that are used in parts cast to final or near-final shape and to the ingot form from which such castings are made.
- 11. The properties of aluminum alloys result from the processes by which they are made. Since cast aluminum alloys are not subjected to a working process, the properties of cast aluminum alloys depend on their chemical composition and the casting process. In contrast, the properties of wrought aluminum alloys depend on their chemical composition and the working process.

- 12. Due to these differences, one of ordinary skill in the art would not have had a rational reason and a reasonable expectation of success in utilizing the alloying elements disclosed in Willey in the amounts disclosed in Willey in a cast aluminum alloy. One of ordinary skill in the art would not have reasonably expected utilizing the alloying elements disclosed in Willey in the amounts disclosed in Willey would produce a cast aluminum alloy with properties the same as or similar to Willey's wrought aluminum alloys.
- 13. I hereby declare that all statements made herein of my own knowledge are true, and all statements made on information and belief are believed to be true, and further, these statements were made with the knowledge that willful false statements and the like, so made, are punishable by fine or imprisonment, or both, under §1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the above-identified patent application or any patent issued thereon.

Date: 0905. 2011

Dr. Blanka Lenczowski

Senior Expert – Materials Technology Metallic Technologies & Surface Engineering EADS Innovation Works 81663 Munich Germany

Tel.: +49-89/607 227 27 Fax.: +49-89/607 25408

Publications

- (1) Blanka Lenczowski: Das Verhalten von Mikrorissen bei Ermüdung von Werkstoffen, Dissertation 1992, ISBN 3-86111-160-8
- (2) Klaus Detert, Blanka Lenczowski: Das Verhalten von Mikrorissen bei der Wechselbeanspruchung; Z. Metallkunde 84, 1993/5, S. 307-312
- (3) B. Lenczowski, T. Pfannenmüller, U. Koch: Neue Aluminiumlegierungen für die Luftfahrt; Aluminium 73, 5/1997, S. 350-356
- (4) Robert Wiesheu, Blanka Lenczowski, Giulio Morteani: Scandium A Current Review of its Deposits, Reserves, Production and Technical Use, Erzmetall 50, 1997/10, S. 631-639
- (5) R. Rauh, T. Pfannenmüller, B. Lenczowski, F. Palm: Neue schweißbare Aluminiumlegierungen; Werkstoff-Kolloquium 11/97 bei DLR in Köln, S. 47-51
- (6) B. Lenczowski, R. Rauh, D. Wieser, G. Tempus, G. Fischer, J. Becker, K. Folkers, R. Braun, G. Lütjering: Neue schweißbare AlMgSc-Legierungen für die Verkehrstechnik; Werkstoffwoche 12.-15. Oktober 1998 in München, S. 327-332
- (7) B. Lenczowski, T. Hack, D. Wieser, G. Tempus, G. Fischer, J. Becker, K. Folkers, R.Braun, G. Lütjering: AlMgSc Alloys for Transportation Technology; The 7th International Conference on Aluminium Alloys, April 9-14, 2000 in Charlottesville, Virginia
- (8) T. Wirtz, G. Lütjering, A. Gysler, B. Lenczowski, R. Rauh: Fatigue Properties of the Aluminium Alloys 6013 and Al-Mg-Sc; The 7th International Conference on Aluminium Alloys, April 9-14, 2000 in Charlottesville, Virginia
- (9) R. Braun, B. Lenczowski, G. Tempus: Effect of Thermal Exposure on the Corrosion Properties of an Al-Mg-Sc Alloy Sheet; The 7th International Conference on Aluminium Alloys, April 9-14, 2000 in Charlottesville, Virginia
- (10) B. Lenczowski, R. Rauh, D. Wieser, G. Tempus, G. Fischer, J. Becker, K. Folkers, R. Braun, G. Lütjering: Weldable AlMgSc alloys for transportation technology; ALUMINIUM, 76. Jahrgang 2000/3, S. 200-203
- (11) B. Lenczowski: Aluminium in der Verkehrstechnik; Euroforum Aluminium Konferenz, 26.-27. Juni 2001, München

- (11) B. Lenczowski: New Light Alloys for Welded Aircraft Structure, 23rd
 International Congress of Areronautical Sciences (ICAS), Toronto Canada 813 September, 2002
- (12) S. Jambu, B. Lenczowski, R. Rauh, K. Juhl: Creep Forming of Al-Mg-Sc Alloys for Aeronautic and Space Applications, 23rd International Congress of Areronautical Sciences (ICAS), Toronto Canada 8-13 September, 2002
- (13) B. Lenczowski H. Koch, K. Eigenfeld, B. Plege, A. Franke, S. Klan: Neue Entwicklungen auf dem Gebiet derv warmfesten Aluminium-Gusswerkstoffen; Giesserei 08/2004, S. 32-38
- (14) K. Eigenfeld, A. Franke, S. Klan H. Koch, B. Lenczowski, B. Plege: New developments in heat resistant aluminum casting materials, Casting, Vol. 20 No. 4, 2004 December, pp 4-9
- (15) A. Franke, B. Lenczowski, H. Koch, B. Plege, M. Douaoui, K. Eigenfelden, S. Klan: New heat-resistant aluminum casting alloys, Proceedings of the 2nd International Light Metals Technology Conference 2005, pp 33-37
- (16) J. Stein, B. Lenczowski: Metal matrix composites containing carbon nanotubes: 14th European Conference on Composite Materials; 7-10 June 2010, Budapest, Hungary
- (17) Th. Hutsch, Weißgärber, B. Kieback, B. Lenczowski, Leonhardt, S. Hampel P, J. Freudenberg: Herstellung und mechanische Eigenschaften von Kohlenstoffnanoröhrchen/Metall Verbundwerkstoffen; DGM Verbundwerkstoffe 18. Symposium Verbundwerkstoffe und Werkstoffverbunde, 30. März-01. April 2011; Technische Universität Chemnitz

Presentations

- (1) B. Lenczowski, T. Pfannenmüller, U. Koch: Neue schweißbare Aluminiumlegierungen; Metall 99, 5/1996 in Ostrau/CZ
- (2) B. Lenczowski: Moderne Leichtmetalle und Leichtmetall-Technologien in der Verkehrstechnik, VDI-Arbeitskreis Werkstofftechnik, 11/1997 in München
- (3) B. Lenczowski, R. Rauh: Neue Leichtbau-Werkstoffe für innovative Bauweisenkonzepte in der Verkehrstechnik; 6/1998 TU Wien,
- (4) B. Lenczowski, R. Rauh, D. Wieser, G. Tempus, G. Fischer, J. Becker, K. Folkers, R. Braun, G. Lütjering:Neue schweißbare AlMgSc-Legierungen für die Verkehrstechnik; Werkstoffwoche 12.-15. Oktober 1998 in München
- (5) B. Lenczowski, T. Hack, D. Wieser, G. Tempus, G. Fischer, J. Becker, K. Folkers, R.Braun, G. Lütjering: AlMgSc Alloys for Transportation Technology; The 7th International Conference on Aluminium Alloys, April 9-14, 2000 in Charlottesville, Virginia

- (6) B. Lenczowski, R. Rauh, T. Pfannenmüller, F. Palm: Neue Leichtmetalle im Flugzeugbau; 1. Ranshofener Leichtmetalltage, 25-26. Mai 2000
- (7) B. Lenczowski: Aluminium in der Verkehrstechnik; Euroforum Aluminium Konferenz, 26.-27. Juni 2001, München
- (8) B. Lenczowski: New Light Alloys for Welded Aircraft Structure, 23rd
 International Congress of Areronautical Sciences (ICAS), Toronto Canada 813 September, 2002
- (9) B. Lenczowski: New Light weight Alloys for Welded Aircraft Structure, II International Scientific-Technical Conference, Zhukovsky, 8-12. October 2002, TsaGI
- (10) B. Lenczowski: Neue Leichtmetalle im Flugzeugbau, FH München, 13.11.2002
- (11) B. Lenczowski, H. Koch, K. Eigenfeld. B. Plege, A. Franke, S. Klan: Neue Entwicklungen auf dem Gebiet der warmfesten Al-Gusswerkstoffe, Giessereitag München 2004
- (12) A. Franke, B. Lenczowski, H. Koch, B. Plege, K. Eigenfeld, S. Klan, M. Douaoui: Neue warmfeste Aluminium-Gusswerkstoffe, W-W 2004 München
- (12) A. Franke, B. Lenczowski, H. Koch, B. Plege, M. Douaoui, K. Eigenfelden, S. Klan: New heat-resistant aluminum casting alloys, Proceedings of the 2nd Intarnational Light Metals Technology Conference 2005
- (13) B. Lenczowski: Einsatz von Aluminium in der Luftfahrt; EUROFORUM-Konferenz, 25-26. Januar 2006, Köln
- (14) A. Franke, B. Lenczowski, T. Pabel, P. Schumacher: Einfluß von Fe und Mn auf die Porositätsbildung in AlSi-Gusslegierungen; 50. Österreichische Giessereitagung, 27-28.4.2006 an der Montanuniversität Leoben
- (15) B. Lenczowski, G. Tempus, K. Juhl, J. Schumacher, A. Bürger, S. Spangel: Al-Mg-Sc Sheet for Advanced Aircraft Application, ILA in Berlin 17. Mai in Berlin
- (16) A. Bürger, S. Spangel. A. Heinz, N. Telioui, M. Knüwer, G. Tempus, K. Juhl, J. Schumacher; B. Lenczowski: Advanced AlMgSc Sheet Products for High Performance Aircraft Structures: Aeromatv 2006, May 15-18, Seattle
- (17) M. Hüller, B. Lenczowski, H.W. Höppel, M. Göken: High Strength Ultrafine-Grained AlMgScZr with Enhanced Thermal Stability, EUROMAT 2007 10-13 Sept. 2007 in Erlangen
- (18) B. Lenczowski: Innovation in Metallic Structures for Aerospace; EADS-Experts Training 9.5.2007, Aying

- (19) M. Hüller, B. Lenczowski, H.W. Höppel, M. Göken: High strength ultrafine-grained AlMgScZr with enhanced thermal stability; EUROMAT 2007, 10th September 2007, Nürmberg
- (20) B. Lenczowski, G.Tempus, C.Dalle Donne: Leichtbau in Aluminium in der Luftfahrt; MATERIALICA, 18.Oktober 2007, München
- (21) B. Lenczowski, E. Hombergsmeier, G.Kelifati: Magnesium for Aeronautical Application; 8th EASN Workshop, 25th-26th of October 2007, Warsaw in Poland
- (22) B. Lenczowski: Metallische Technologien aus der Luft- und Raumfahrt mit Transferpotenzial; Bayern Innovativ, 10. Jahreskongress Zulieferer Innovativ, Ingolstadt, 2. Juli 2008-07-04
- (23) B. Lenczowski: "Bionischer Guss (Leichtbauweise in der Luftfahrt)"; MATERIALICA, 15-16. Oktober 2008, München
- (24) B. Lenczowski: New Material technologies for Aerospace Applications; Recent Research and Design Progress in Aeronautical Engineering (RRPDAE) 2008, October 16-17 Brno University of Technology, Czech Republic
- (25) S. Spangel, A. Bürger, M. Miermeister, B. Lenczowski: Neue Al-Mg-Sc-werkstoffe für den Flugzeugbau-Eigenschaften und Potential; Werkstoff-Kolloquium 2008, 2.Dezember 2008, Köln
- (26) B. Lenczowski: Neue Hochleistungswerkstoffe mit Carbon NanoTubestechnologie; 04.-06.Mai 2010, Wehrtechnisches Symposium "Leichtbauwerkstoffe auf Nanobasis", WIWeB Erding
- (27) J. Stein, B. Lenczowski: Metal matrix composites containing carbon nanotubes: 14th European Conference on Composite Materials; 7-10 June 2010, Budapest, Hungary
- (28) B. Lenczowski: Fundamentals of Light Weight Structures & Materials; 1-5.11.2010, 1st Space Technology Course by CTU in Prague, CZ
- (29) B.Lenczowski: Dispersion of functionalised CNT in metal matrix composites (CarboMetal); 25th-27th January 2011, Inno.CNT annual conference on Carbon Nanotubes
- (30) B. Lenczowski: New High Performance Materials with Carbon Nanotube Technologies; JEC Show- 2nd Innovative International Composites Summit (I.I.S.A), March 29-31, 2011, Paris

Special Tasks:

Reviewer for "International Journal of Materials Research" Reviewer for "Advanced Engineering Materials"

Int. Ref.	Country	Country Official Ref.	Applicant	Filing Date
D12206/CA/1	CA	2306892	EADS Deutschland GmbH	14.08.1999
D12206/CN/1	S	998014141	EADS Deutschland GmbH	14.08.1999
D12206/DE/01	DE	19838017.8-09	EADS Deutschland GmbH	21.08.1998
D12206/DE/2	DE	59907283.0-08	EADS Deutschland GmbH	14.08.1999
D12206/FR/1	Ж	999524010	EADS Deutschland GmbH	14.08.1999
D12206/GB/1	GB	999524010	EADS Deutschland GmbH	14.08.1999
D12206/IT/1	느	35424/BE/2003	EADS Deutschland GmbH	14.08.1999
D12206/JP/1	<u>ح</u>	2000-566479	EADS Deutschland GmbH	14.08.1999
D12206/RU/1	RU	2000112644	EADS Deutschland GmbH	14.08.1999
D12206/US/1	SN	09/530068	EADS Deutschland GmbH	14.08.1999
D12207/CA/1	CA	2306912	Airbus Deutschland GmbH	10.08.1999
D12207/CN/1	N O	998012424	Airbus Deutschland GmbH	10.08.1999
D12207/DE/01	DE	19838018.6-09	Airbus Deutschland GmbH	21.08.1998
D12207/DE/2	DE	59912240.4-08	Airbus Deutschland GmbH	10.08.1999
D12207/EP/1	ЕЪ	99952347.5-2122	Airbus Deutschland GmbH	10.08.1999

D12207/RU/1	RO	2000112642	Airbus Deutschland GmbH	10.08.1999
D12207/US/1	SN	09/530007	Airbus Deutschland GmbH	10.08.1999
14 20 CC 10	+	0000 1 07000		0007
D12208/AT/1	ΑT	99952346.7-2309	Airbus Deutschland GmbH	10.08.1999
D12208/CA/1	CA	2306726	Airbus Deutschland GmbH	10.08.1999
D12208/CN/1	S	998011959	Airbus Deutschland GmbH	10.08.1999
D12208/DE/2	DE	59901293.5-08	Airbus Deutschland GmbH	10.08.1999
D12208/EP/1	Д.	99952346.7-2122	Airbus Deutschland GmbH	10.08.1999
D12208/ES/1	ES	99952346.7-2309	Airbus Deutschland GmbH	10.08.1999
D12208/FR/1	Ħ K	99952346.7-2309	Airbus Deutschland GmbH	10.08.1999
D12208/GB/1	GB	99952346.7-2309	Airbus Deutschland GmbH	10.08.1999
D12208/IT/1	<u> </u>	24063/BE/2002	Airbus Deutschland GmbH	10.08.1999

D12208/JP/1	م	2000-566481	Airbus Deutschland GmbH	10.08.1999
D12208/RU/1	RU	2000112645	Airbus Deutschland GmbH	10.08.1999
D12208/SE/1	SE	99952346.7-2309	Airbus Deutschland GmbH	10.08.1999
D12208/US/1	SN	290085/60	Airbus Deutschland GmbH	10.08.1999
P609505/CA/1	CA	2423566	Airbus Deutschland GmbH	25.08.2001
P609505/CN/1	N O	18155340	Airbus Deutschland GmbH	25.08.2001
P609505/DE/1	DE	10047491.8-14	Airbus Deutschland GmbH	26.09.2000
P609505/DE/2	DE	50104142.7-08	Airbus Deutschland GmbH	25.08.2001
P609505/EP/1	Ш С	01965216.3-2302	Airbus Deutschland GmbH	25.08.2001
P609505/ES/1	В	01965216.3-2302	Airbus Deutschland GmbH	25.08.2001
P609505/FR/1	R R	01965216.3-2302	Airbus Deutschland GmbH	25.08.2001
P609505/GB/1	GB	01965216.3-2302	Airbus Deutschland GmbH	25.08.2001
P609505/IT/1	느	34235/BE/2004	Airbus Deutschland GmbH	25.08.2001
P609505/JP/1	으	PCT/EP01/09821	Airbus Deutschland GmbH	25.08.2001
P609505/RU/1	RU	2003112217	Airbus Deutschland GmbH	25.08.2001
P609505/US/1	SN	10/381476	Airbus Deutschland GmbH	25.08.2001

P609699/CA/1	CA	2398667	EADS Deutschland GmbH	14.12.2001
P609699/CN/1	N O	18053572	EADS Deutschland GmbH	14.12.2001
P609699/DE/1	DE	50003940.2-08	EADS Deutschland GmbH	21.12.2000
P609699/EP/1	Д	00128050.2-2309	EADS Deutschland GmbH	21.12.2000
P609699/ES/1	ES	00128050.2-2309	EADS Deutschland GmbH	21.12.2000
P609699/FR/1	Ж	00128050.2-2309	EADS Deutschland GmbH	21.12.2000
P609699/GB/1	GB	00128050.2-2309	EADS Deutschland GmbH	21.12.2000
P609699/IT/1	⊢	35167/BE/2003	EADS Deutschland GmbH	21.12.2000
P609699/JP/1	ل	2002-551202	EADS Deutschland GmbH	14.12.2001
P609699/RU/1	RU	2003116892	EADS Deutschland GmbH	14.12.2001
P609699/US/1	SN	10/204658	EADS Deutschland GmbH	14.12.2001
P611054/DE/1	DE	10352932.2-24	EADS Deutschland GmbH	11.11.2003
P611054/EP/1	П	04802664.5-2122	EADS Deutschland GmbH	03.11.2004
P611054/AT/1	AT	04802664.5-2122	EADS Deutschland GmbH	38294
P611054/DE/2	DE	502004010622.6-(502004010622.6-0 EADS Deutschland GmbH	38294
P611054/ES/1	ES	04802664.5-2122	EADS Deutschland GmbH	38294

39930	102009018762.6-2 EADS Deutschland GmbH	102009018762.6	DE	2009P00282DE DE
39742	102008052604.5-2 EADS Deutschland GmbH	102008052604.5	DE	2008P00882DE
38294	EADS Deutschland GmbH	10/579075	SN	P611054/US/1
38294	EADS Deutschland GmbH	04802664.5-2122	S H	P611054/SE/1
38294	EADS Deutschland GmbH	04802664.5-2122	<u> </u>	P611054/IT/1
38294	EADS Deutschland GmbH	04802664.5-2122	GB	P611054/GB/1
38294	EADS Deutschland GmbH	04802664.5-2122	H.	P611054/FR/1

Title

Weldable, corrosion-resistant ALMG alloys, especially for manufacturing means of transportation

Weldable, corrosion-resistant ALMG alloys, especially for manufacturing means of transportation

Weldable, corrosion-resistant ALMG alloys, especially for manufacturing means of transportation

Weldable, corrosion-resistant ALMG alloys, especially for manufacturing means of transportation

Weldable, corrosion-resistant ALMG alloys, especially for manufacturing means of transportation

Weldable, corrosion-resistant ALMG alloys, especially for manufacturing means of transportation

Weldable, corrosion-resistant ALMG alloys, especially for manufacturing means of transportation

Weldable, corrosion-resistant ALMG alloys, especially for manufacturing means of transportation

Weldable, corrosion-resistant ALMG alloys, especially for manufacturing means of transportation

Weldable, corrosion-resistant ALMG alloys, especially for manufacturing means of transportation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Blanka LENCZOWSKI (16. Sept. 2011) List of Patents from Dr.

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Novel weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in automobiles

Method for shaping structures comprised of aluminum alloys

Non-hardenable aluminium alloy for semi-finished product for structures

Cast Aluminium Alloy

Fibre reinforced composite material as well as method for producing the same

A method of producing a metallic composite material with embedded carbon nanotubes and a method of producing a structural component comprising this metallic composite material