Function Conv		Functions ex?		Proof							
$\mathbf{y} = \max(f_1, f_2)$ Yes, if f_1 and f_2 are		convex functions									
$\mathbf{y} = \min(f_1, f_2)$ $= \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m \}$	Not alv It is an affine set (all affi	ne set is a convex se	et)								
		$p \in \mathbb{N}_+$	$\ \theta\mathbf{x} + (1$	$\ \theta \mathbf{x} + (1 - \theta)\mathbf{y}\ \le \theta \ \mathbf{x}\ + (1 - \theta) \ \mathbf{y}\ $ (triangular inequality							
$\frac{f(g(\mathbf{x}))}{\text{Function}}$	Yes, if f, g a Domain	re convex	Code	omain	Comments						
em of linear equation: $\mathbf{b} = f(\mathbf{x}) = \mathbf{A}\mathbf{x}$	$D = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b} \in$	-	$=\{\mathbf{b}\in\mathbb{R}^m \mathbf{b}\}$	$= \mathbf{A}\mathbf{x}, \forall \mathbf{x} \in D \}$	If D is an affine set, so C is als affine set which, in turn, is a convex set.						
et Carrana hall		Sets	x?	Commens							
Convex hull: $\operatorname{conv} C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C, 0 \leq \theta_{i} \leq 1 \text{ for } i = 1, \cdots, k, 1^{T} \boldsymbol{\theta} = 1 \right\}$		Yes.		4 23 3 4							
				• A will be the smallest convex set that contains C.							
				• conv C will be a finite set as long as C is also finite.							
				also fillite.							
Affine hull: aff $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, 1^T \boldsymbol{\theta} = 1 \right\}$		Yes.		• A will be the smallest affine set that contains C .							
										• Different from the convex set, θ_i is not restricted between 0 and 1	
				ullet aff C will always be an infinite set. If aff C							
				contains the	e origin, it is also a subspace.						
Conic hull: $A = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i > 0 \text{ for } i = 1, \dots, k \right\}$		Yes.		 A will be the smallest convex conic that contains C. Different from the convex and affine sets, θ_i 							
										does not ne	ed to sum up 1.
						Hyperplane: $ \mathcal{H} = \left\{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \right\} $ $ \mathcal{H} = \left\{ \mathbf{x} \mid \mathbf{a}^T (\mathbf{x} - \mathbf{x}_0) = 0 \right\} $ $ \mathcal{H} = \mathbf{x}_0 + a^\perp $		Yes.			
 It is an infinite set Rⁿ⁻¹ ⊂ Rⁿ that divides the space into two halfspaces. a[⊥] = {v a^Tv = 0} is the set of vectors perpendicular to a. It passes through the origin. 											
										• a^{\perp} is offset from the origin by \mathbf{x}_0 , which is	
										any vector i	n \mathcal{H} .
Halfspace: $\mathcal{H}_{-} \text{ or } \mathcal{H}_{+} \left\{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq b \right\}$		Yes.									
				• They are in by \mathcal{H} .	afinite sets of the parts divided						
Euclidean ball:											
$B(\mathbf{x}_c, r) = \{\mathbf{x} \mid \ \mathbf{x} - \mathbf{x}_c\ _2 \le r\}$ $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T (\mathbf{x} - \mathbf{x}_c) \le r\}$ $B(\mathbf{x}_c, r) = \{\mathbf{x}_c + r \ \mathbf{u}\ \mid \ \mathbf{u}\ \le 1\}$		Yes									
				 B(x_c, r) as long as r < ∞. x_c is the center of the ball. 							
				• \mathbf{x}_c is the cer • r is its radii							
Ellipsoid:				7 15 165 1661							
$\mathcal{E} = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \right\}$ $\mathcal{E} = \left\{ \mathbf{x}_c + \mathbf{A} \mathbf{u} \mid \ \mathbf{u}\ \le 1 \right\}$		Yes			n l n						
					set as long as \mathbf{P} is a finite matrix. etric and positive definite, that						
				is, $\mathbf{P} = \mathbf{P}^{T}$							
					nter of the ellipsoid.						
				$\sqrt{\lambda_i}$.	s of the semi-axes are given by						
				• $A = P^{1/2}$.							
				\mathcal{E} is a degen	ble. When it is not, we say that erated ellipsoid (degenerated el-						
				lipsoids are	also convex).						
Norm cone: $C = \left\{ [x_1, x_2, \cdots, x_n, t]^T \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ _p \le t \right\} \subseteq \mathbb{R}^{n+1}$		Yes.									
					is named "Norm cone", it is a calar.						
				• The cone no in 1.	orm increases the dimension of x						
					t is called the second-order cone						
					one, Lorentz cone or ice-cream						
Polyhedra:											
$\mathcal{P} = \{ \mathbf{x} \mid \mathbf{a}_j^T \mathbf{x} \le b_j, j = 1, \dots, m, \mathbf{a}_j^T \mathbf{x} \\ \mathcal{P} = \{ \mathbf{x} \mid \mathbf{A} \mathbf{x} \le \mathbf{b}, \mathbf{C} \mathbf{x} \}$	$= \mathbf{d}$,	Yes.									
where $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots \\ \mathbf{a}_1 & \mathbf{c}_2 & \dots \end{bmatrix}$	$egin{array}{c} \mathbf{a}_m \end{bmatrix}^T$			-	is the intersection of m halfs-						
$\omega_1 \omega_2 = [c_1 c_2 \dots$	1			paces.The polyheories	dron may or may not be an infi-						
				nite set.							
					hyperplanes, lines, rays line seg- halfspaces are all polyhedra.						
					negative orthant, $\mathbb{R}^n_+ = \{0 \text{ for } i = 1, \dots n\}$						
					$i \leq 0$ for $i = 1,, n$ } = $\mathbf{x} \succeq 0$ }, is a special polyhe-						
				• Simplexes,	, are another family of polyhe-						
				dra, where dent set. It	$\{\mathbf{v}_m\}_{m=0}^k$ is a affinely independent orms a k-dimensional shape in						
					ing called k-dimensional simplex						
Simplex:											
$\mathcal{S} = \operatorname{conv} \left\{ \mathbf{v}_m \right\}_{m=0}^k = \left\{ \sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \right\}$	$\leq \theta \leq 1, 1^T \theta = 1$ $\{\mathbf{A}_{1\mathbf{X}} < 1 + 1^T \mathbf{A}_{2\mathbf{Y}_2}\}$										
• $S = \{ \mathbf{x} \mid \mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, \mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0, 1^T \mathbf{A}_1 \mathbf{x} \leq 1 + 1^T \mathbf{A}_1^T \mathbf{v}_0 \}$ • $S = \{ \mathbf{x} \mid \mathbf{A}_1 \mathbf{x} \prec \mathbf{b}, \mathbf{C} \mathbf{x} = \mathbf{d} \}$ (Polyhedra form), where $\mathbf{b} = \mathbf{A}_1 \mathbf{v}_0, \mathbf{C} = \mathbf{A}_2, \mathbf{d} = \mathbf{A}_2 \mathbf{v}_0$		Yes.		ı							
$\mathbf{x}_1, \mathbf{v}_0, \mathbf{v}_1 - \mathbf{x}_2, \mathbf{u}_1 - \mathbf{x}_2, \mathbf{v}_0$		Tes.		Also called	k-dimensional Simplex in \mathbb{R}^n .						
$C = A \cup B$		Not alw									
$C = A \cap B$		Yes, if A and B and	re convex sets	3.							

Functions

- All convex set is quasiconvex, but not all quasiconvex is convex.
- It is possible to solve quasiconvex functions, even if it is not convex (see Algorithm 4.1). But not all quasiconvex functions that are nonconvex can be solved(?).
- Superlevel set (a set) 3.3.6, all convex functions have all convex α sub-level set, but not all functions that have convex α sub-level set are convex (see slide 3.11).