МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Построение и анализ алгоритмов»

Тема: Поиск с возвратом

Студент гр. 3343	Атоян М.А.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург

2025

Цель работы.

Решение классической задачи квадрирования квадрата (с заданными относительно размера ограничениями) посредством программы, основанной на алгоритме поиска с возвратом (англ. backtracking).

Задание.

У Вовы много квадратных обрезков доски. Их стороны (размер) изменяются от 1 до N–1, и у него есть неограниченное число обрезков любого размера. Но ему очень хочется получить большую столешницу - квадрат размера N. Он может получить ее, собрав из уже имеющихся обрезков(квадратов).

Например, столешница размера 7×7 может быть построена из 9 обрезков.

Внутри столешницы не должно быть пустот, обрезки не должны выходить за

пределы столешницы и не должны перекрываться. Кроме того, Вова хочет использовать минимально возможное число обрезков.

Входные данные

Размер столешницы - одно целое число $N \ (2 \le N \le 40)$.

Выходные данные

Одно число K, задающее минимальное количество обрезков(квадратов), из которых можно построить столешницу(квадрат) заданного размера N. Далее должны идти K строк, каждая из которых должна содержать три целых числа x, y и w..., задающие координаты левого верхнего угла $(1 \le x, y \le N)$ и длину стороны соответствующего обрезка(квадрата).

Пример входных данных

7

Соответствующие выходные данные

9

1 1 2

1 3 2

3 1 1

4 1 1

3 2 2

5 1 3

444

153

341

Вариант 2р. Рекурсивный бэктрекинг. Исследование времени выполнения от размера квадрата

Описание функций и структур данных.

Класс Square

Структура, описывающая квадрат:

- x, y координаты левого верхнего угла квадрата
- *size* длина стороны квадрата
- *right*, *bottom* вычисляемые координаты правой и нижней границ квадрата

Класс BacktrackState

Основной класс, реализующий алгоритм поиска с возвратом:

- *squares* список размещенных квадратов
- occupied_area занятая площадь
- *current_count* текущее количество квадратов
- *start_x*, *start_y* начальные координаты для поиска места
- *grid_size* размер основного квадрата
- best_count, best_solution лучшее найденное решение

Методы:

- $is_overlapping(x, y)$ проверяет, пересекается ли точка с существующими квадратами
- *backtrack()* основной рекурсивный метод поиска с возвратом
- $calculate_max_size(x, y)$ вычисляет максимальный размер квадрата для данной точки
- $try_place_squares(x, y, max_size)$ пробует разместить квадраты разных размеров
- *should_skip()* проверяет, стоит ли пропускать текущую ветвь поиска
- *update_best_solution()* обновляет лучшее решение

Вспомогательные функции

- 1. *initialize_initial_squares(grid_size)* создает начальное разбиение для оптимизации
- 2. find_max_square_size(grid_size) находит максимальный делитель для оптимизации

Основная функция

main() - считывает входные данные, инициализирует поиск и выводит результат

Алгоритм работы

Инициализация:

- Считывается размер квадрата N
- Находится оптимальный размер для разбиения
- Создается начальное разбиение (оптимизация)

Поиск с возвратом:

- Рекурсивно перебираются возможные размещения квадратов
- На каждом шаге проверяется возможность улучшения текущего решения
- При нахождении полного покрытия проверяется его оптимальность

Оптимизации:

- Для четных N используется разбиение на 4 равных квадрата
- Для чисел вида $N = 2^r-1$ применяется специальный шаблон разбиения
- Используется отсечение ветвей, которые заведомо не приведут к улучшению

Сложность алгоритма

- **Пространственная сложность**: O(N^2) для хранения информации о размещенных квадратах
- Временная сложность:
- O(1) для четных N и специальных случаев (например, N=7)
- Экспоненциальная в худшем случае для произвольных N

Исследование.

С помощью функции *BenchmarkSolve(b *testing.B)* замерено время выполнения программы для каждого размера ребра квадрата в диапазоне

от 2 до 20.

Благодаря оптимизациям алгоритм крайне эффективно справляется с чётными числами и числом 7 = 2**3-1. В остальных случаях наблюдается повышенное время исполнения, так как приходится делать полный перебор по площади квадрата.

Тестирование.

Входные данные	Выходные данные	Комментарий
----------------	-----------------	-------------

7	9	Оптимизация 3)
	1 1 4	Результат верный
	153	
	5 1 3	
	6 4 2	
	462	
	662	
	5 4 1	
	4 5 1	
	5 5 1	
15	12 1 1 8	Оптимизация 4)
	197	Результат верный
	917	
	8 12 4	
	12 12 4 10 8 2	
	8 10 2	
	10 10 2	
	981	
	891 991	
16	4	
10	118	Оптимизация 1)
	198	Результат верный
	918	y
	998	
19	13	Оптимизация 2)
	1 1 10	
	1119	Результат верный
	11 1 9	
	11 10 3 14 10 6	
	10 11 1	
	10 11 1	
	10 13 4	
	14 16 1	

15 16 1	
16 16 4	
10 17 3	
13 17 3	

Выводы.

В соответствии с заданным условиям была написана программа, осуществляющая покрытие квадрата меньшими квадратами посредством поиска с возвратом. В ходе изучения поставленной задачи были выявлены и применены оптимизации, обеспечивающие значительное сокращение перебираемых решений.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Файл main.py

```
class Square:
    def __init__(self, x, y, size):
        self.x = x
        self.y = y
        self.size = size
        self.right = x + size
        self.bottom = y + size
class BacktrackState:
    def init (self, squares, occupied area, current count, start x,
start y, grid size, best count, best solution):
        self.squares = squares.copy()
        self.occupied area = occupied area
        self.current count = current count
        self.start x = start x
        self.start y = start y
        self.grid size = grid size
        self.best count = best count
        self.best solution = best solution
    def is overlapping (self, x, y):
        for square in self.squares:
            if (x \ge square.x and x < square.right) and (y \ge square.y
and y < square.bottom):</pre>
                return True
        return False
    def backtrack(self):
        if self.occupied area == self.grid size * self.grid size:
            if self.current count < self.best count[0]:</pre>
                self.best count[0] = self.current count
                self.best solution[:] = self.squares.copy()
            return
        for x in range(self.start x, self.grid size):
            for y in range (self.start y, self.grid size):
                if self.is overlapping (x, y):
```

continue

```
max size = self.calculate max size(x, y)
            if max size <= 0:</pre>
                continue
            self.try place squares(x, y, max size)
        self.start y = 0
def calculate max size(self, x, y):
    max size = min(self.grid size - x, self.grid size - y)
    for square in self.squares:
        if square.right > x and square.y > y:
            max size = min(max size, square.y - y)
        elif square.bottom > y and square.x > x:
            \max \text{ size} = \min (\max \text{ size, square.x - x})
    return max size
def try place squares(self, x, y, max size):
    for size in range(max_size, 0, -1):
        new square = Square(x, y, size)
        new_occupied_area = self.occupied_area + size * size
        if self.should skip(new occupied area, x, y, size):
            continue
        self.squares.append(new square)
        if new occupied_area == self.grid_size * self.grid_size:
            self.update best solution()
            self.squares.pop()
            continue
        if self.current count + 1 < self.best count[0]:</pre>
            new state = BacktrackState(
                self.squares,
                new occupied area,
                self.current count + 1,
                х,
                У,
                self.grid size,
                self.best count,
```

```
self.best solution
                )
                new state.backtrack()
            self.squares.pop()
    def should skip(self, new occupied area, x, y, size):
        remaining area = self.grid size * self.grid size -
new_occupied_area
        if remaining area > 0:
            max possible size = min(self.grid size - x, self.grid size
- y)
            if max possible size == 0:
                return True
            min squares needed = (remaining area + (max possible size
** 2 - 1)) // (max possible size ** 2)
            if (self.current count + 1 + min squares needed) >=
self.best count[0]:
                return True
        return False
    def update best solution(self):
        if self.current count + 1 < self.best count[0]:</pre>
            self.best count[0] = self.current count + 1
            self.best_solution[:] = self.squares.copy()
def initialize initial squares(grid size):
    half size = (grid size + 1) // 2
    small size = grid size // 2
    return [
        Square (0, 0, half size),
        Square(0, half size, small size),
        Square(half size, 0, small size)
    ]
def find_max_square_size(grid_size):
    max divisor = 1
    for i in range(grid_size // 2, 0, -1):
        if grid size % i == 0:
            max divisor = i
            break
    return max divisor, grid size // max divisor
def main():
```

```
grid size = int(input().strip())
   square size, new grid size = find max square size(grid size)
   best count = [2 * new grid size + 1]
   initial squares = initialize initial squares(new grid size)
   best solution = []
    initial occupied area = initial squares[0].size ** 2 + 2 *
initial squares[1].size ** 2
    start x = initial squares[2].bottom
    start y = initial_squares[2].x
   state = BacktrackState(
        initial squares,
        initial occupied area,
        3,
        start x,
        start_y,
        new grid size,
       best count,
        best_solution
    )
   state.backtrack()
   print(best count[0])
   for square in best solution:
        print(f"{1 + square.x * square_size} {1 + square.y *
square size} {square.size * square size}")
if __name__ == "__main__":
   main()
```