

AOH3254

150V N-Channel MOSFET

General Description

Trench Power MV MOSFET technology

• Low R_{DS(ON)}

Low Gate Charge

Applications

Optimized for fast-switching applications

Product Summary

150V I_D (at V_{GS} =10V) 5A $R_{DS(ON)}$ (at V_{GS} =10V) < 63mΩ $R_{DS(ON)}$ (at V_{GS} =4.5V) $<77m\Omega$

100% UIS Tested 100% Rg Tested

Synchronus Rectification in DC/DC and AC/DC Converters

Industrial and Motor Drive applications

Bottom View Top View

Orderable Part Number	Package Type	Form	Minimun	Order Quantity	
AOH3254	SOT223	SOT223 Tape & Reel		2500	
Absolute Maximum Ratings T _A =25°	°C unless otherwise noted				
Parameter	Symbol	Maximum		Units	
Drain-Source Voltage	V _{DS}	150		V	
Gate-Source Voltage	V_{GS}	±20		V	

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	150	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain T _A =25°C		I_	5		
Current	T _A =70°C	¬'D	4	Α	
Pulsed Drain Current ^c		I _{DM}	20		
Avalanche Current ^C		I _{AS}	15	Α	
Avalanche energy L=0.3mH ^C		E _{AS}	34	mJ	
V _{DS} Spike	10µs	V _{SPIKE}	180	V	
	T _A =25°C	P _D	4.1	W	
Power Dissipation ^B	T _A =70°C]' D	2.6	V V	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	В	25	30	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	50	60	°C/W	
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	10	15	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS	•	•		•	•	
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		150			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =150V, V _{GS} =0V				1	
			T _J =55°C			5	μA
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$		1.7	2.15	2.7	V
		V _{GS} =10V, I _D =5A			52	63	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		102	123	
		V_{GS} =4.5V, I_D =2A			60	77	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =5A			17		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.72	1	V
Is	Maximum Body-Diode Continuous Cur	ode Continuous Current				5	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =75V, f=1MHz f=1MHz			675		pF
C _{oss}	Output Capacitance				78		pF
C _{rss}	Reverse Transfer Capacitance				4		pF
R_g	Gate resistance			1.4	2.9	4.4	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge				11.5	20	nC
Q _g (4.5V)	Total Gate Charge	\/ -10\/ \/ -75\/	-5A		5.5	10	nC
Q_{gs}	Gate Source Charge	V_{GS} =10V, V_{DS} =75V, I_{D} =5A			2		nC
Q_{gd}	Gate Drain Charge				2.5		nC
t _{D(on)}	Turn-On DelayTime				6		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =75V, R_L =15 Ω , R_{GEN} =3 Ω			3		ns
t _{D(off)}	Turn-Off DelayTime				20		ns
t _f	Turn-Off Fall Time				5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =5A, dI/dt=500A/μs			37		ns
Q _{rr}	Body Diode Reverse Recovery Charge	l _F =5A, dl/dt=500A/μs			210		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev.1.0: May 2015 www.aosmd.com Page 2 of 5

initialT_J=25° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage

(Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Rev.1.0: May 2015 Page 4 of 5 www.aosmd.com

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Rev.1.0: May 2015 **www.aosmd.com** Page 5 of 5