69. Saddle points at (0,0) and (-2,2); local max at (0,2); local min at (-2, 0) 71. Abs. min: -1 = f(1, 1) = f(-1, -1); abs. max: 49 = f(2, -2) = f(-2, 2)

73. Abs. min:
$$-\frac{1}{2} = f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
; abs. max: $\frac{1}{2} = f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

75. Abs. min:
$$\frac{23}{2} = f\left(\frac{1}{3}, \frac{5}{6}\right)$$
 abs. max: $\frac{29}{2} = f\left(\frac{5}{3}, \frac{7}{6}\right)$;

77. Abs. min:
$$-\sqrt{6} = f\left(-\frac{\sqrt{6}}{6}, -\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{6}\right)$$
;

abs. max:
$$\sqrt{6} = f\left(\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3}, -\frac{\sqrt{6}}{6}\right)$$

79.
$$\frac{2a^2}{\sqrt{a^2+b^2}}$$
 by $\frac{2b^2}{\sqrt{a^2+b^2}}$

81.
$$x = \frac{1}{2} + \frac{\sqrt{10}}{20}, y = \frac{3}{2} + \frac{3\sqrt{10}}{20} = 3x, z = \frac{1}{2} + \frac{\sqrt{10}}{2} = \sqrt{10}x$$

CHAPTER 16

Section 16.1 Exercises, pp. 1015-1017

1.
$$\int_0^2 \int_1^3 xy \, dy \, dx$$
 or $\int_1^3 \int_0^2 xy \, dx \, dy$ **3.** $\int_{-2}^4 \int_1^5 f(x, y) \, dy \, dx$ or

$$\int_{1}^{5} \int_{-2}^{4} f(x, y) dx dy$$
 5. 48 **7.** 4 **9.** $\frac{32}{3}$ **11.** 4 **13.** $\frac{224}{9}$

15.
$$10 - 2e$$
 17. $\frac{1}{2}$ **19.** $e^2 + 3$ **21.** $\frac{1}{2}$ **23.** $10\sqrt{5} - 4\sqrt{2} - 14$

$$\int_{1}^{5} \int_{-2}^{4} f(x, y) dx dy$$
 5. 48 7. 4 9. $\frac{32}{3}$ 11. 4 13. $\frac{224}{9}$ 15. $10 - 2e$ 17. $\frac{1}{2}$ 19. $e^{2} + 3$ 21. $\frac{1}{2}$ 23. $10\sqrt{5} - 4\sqrt{2} - 14$ 25. $\frac{117}{2}$ 27. $\frac{\pi^{2}}{4} + 1$ 29. $\frac{4}{3}$ 31. $\frac{9 - e^{2}}{2}$ 33. $\frac{4}{11}$ 35. $\frac{1}{4}$

37. 136 **39.** 3 **41.**
$$e^2 - 3$$
 43. $e^{16} - 17$ **45.** $\ln \frac{5}{3}$ **47.** $\frac{1}{2 \ln 2}$

49. $\frac{8}{3}$ **51. a.** True **b.** False **c.** True **53. a.** 1475 **b.** The sum of products of population densities and areas is a Riemann sum.

55. $\int_c^d \int_a^b f(x) dy dx = (c - d) \int_a^b f(x) dx$. The integral is the area of the cross section of *S*. **57.** $a = \pi/6$, $5\pi/6$ **59.** $a = \sqrt{6}$

61. a.
$$\frac{1}{2}\pi^2 + \pi$$
 b. $\frac{1}{2}\pi^2 + \pi$ c. $\frac{1}{2}\pi^2 + 2$

63.
$$f(a,b) - f(a,0) - f(0,b) + f(0,0)$$

Section 16.2 Exercises, pp. 1024-1027

3. dx dy **5.** $\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} f(x, y) dy dx$ **7.** 4 **9.** $\int_{0}^{2} \int_{x^{3}}^{4x} f(x, y) dy dx$

11. 2 **13.**
$$\frac{8}{3}$$
 15. 0 **17.** $e - 1$ **19.** $\frac{\ln^3 2}{6}$

21. 2 **23.** $\frac{\pi}{2}$ - 1 **25.** 0 **27.** π - 1

 $\int_{0}^{1} \int_{0}^{-2x+2} f(x, y) \, dy \, dx$ **31.** *y*

 $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} f(x, y) \, dy \, dx$

 $\int_{-\infty}^{(y+9)/3} f(x,y) \, dx \, dy$

 $\int_{1}^{4} \int_{0}^{4-y} f(x, y) dx dy$ **37.**

 $\int_0^{23} \int_{(y-3)/2}^{(y+7)/3} f(x, y) \, dx \, dy$ 39.

41. $\int_0^1 \int_0^{2-y} f(x,y) dx dy$ **43.** 2 **45.** 12 **47.** 5 **49.** 14 **51.** 32 **53.** $\frac{9}{8}$ **55.** $\frac{1}{4} \ln 2$

57.
$$\int_0^4 \int_{y/2}^{\sqrt{y}} f(x, y) \, dx \, dy \quad 59. \int_0^{\ln 2} \int_{1/2}^{e^{-x}} f(x, y) \, dy \, dx$$

61.
$$\int_0^{\pi/2} \int_0^{\cos x} f(x, y) \, dy \, dx$$
 63. $\frac{1}{2} (e - 1)$ **65.** 0 **67.** $\frac{2}{3}$

 $\int_{1}^{e} \int_{-\ln x}^{\ln x} f(x, y) \, dy \, dx$

71.
$$\frac{11}{12}$$
 73. $\frac{32}{3}$ 75. 12π 77. $\frac{43}{6}$ 79. $\frac{2}{3}$ 81. 16 83. $4a\pi$

85.
$$\frac{32}{3}$$
 87. 1 **89.** $\frac{140}{3}$ **91. a.** False **b.** False **c.** False

93. 30 **95.**
$$\frac{a}{3}$$
 97. a.

b.
$$\frac{15}{4} + 4 \ln 2$$
 c. $2 \ln 2 - \frac{5}{64}$ **99.** $\frac{3}{8e^2}$ **101.** 1

Section 16.3 Exercises, pp. 1033-1036

1. It is called a polar rectangle because r and θ vary between two constants.

5. Evaluate the integral $\int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} r \, dr \, d\theta$.

11.
$$\frac{64\pi}{3}$$
 13. $(8 - 24e^{-2})\pi$ 15. $\frac{7\pi}{2}$ 17. $\frac{9\pi}{2}$ 19. $\frac{37\pi}{3}$ 21. 128π 23. 0 25. $(2 - \sqrt{3})\pi$ 27. $2\pi/5$ 29. $\frac{14\pi}{3}$

21.
$$128\pi$$
 23. 0 **25.** $(2-\sqrt{3})\pi$ **27.** $2\pi/5$ **29.** $\frac{14\pi}{3}$

31.
$$\frac{81\pi}{2}$$
 33. π **35.** 8π **37.** 81π **39.** $\frac{2\pi}{3}(7\sqrt{7}-15)$

41.
$$\int_0^{2\pi} \int_0^{1+\frac{1}{2}\cos\theta} g(r,\theta) r \, dr \, d\theta$$

47.
$$3\pi/2$$
 49. π **51.** $\frac{3\pi}{2} - 2\sqrt{2}$ **53.** $2a/3$

55. a. False **b.** True **c.** True **57.** The hyperboloid
$$\left(V = \frac{112\pi}{3}\right)$$
 59. a. $R = \{(r, \theta): -\pi/4 \le \theta \le \pi/4 \text{ or } 3\pi/4 \le \theta \le 5\pi/4\}$

59. a.
$$R = \{(r, \theta): -\pi/4 \le \theta \le \pi/4 \text{ or } 3\pi/4 \le \theta \le 5\pi/4\}$$

b.
$$\frac{a^4}{4}$$
 61. $\frac{32}{9}$ **63.** $2\pi \left(1 - 2 \ln \frac{3}{2}\right)$ **65.** 1 **67.** $\pi/4$ **69. a.** $\frac{16\pi}{3}$ **b.** 2.78 **71.** $30\pi + 42$

67.
$$\pi/4$$
 69. a. $\frac{16\pi}{3}$ b. 2.78 **71.** $30\pi + 42$

73. c.
$$\sqrt{\pi}/2$$
, 1/2, and $\sqrt{\pi}/4$ 75. a. $I = \frac{\sqrt{2}}{2} \tan^{-1} \frac{\sqrt{2}}{2}$

b.
$$I = \frac{\sqrt{2}}{4} \tan^{-1} \frac{\sqrt{2}a}{2} + \frac{a}{2\sqrt{a^2 + 1}} \tan^{-1} \frac{1}{\sqrt{a^2 + 1}}$$
 c. $\frac{\sqrt{2}\pi}{8}$

Section 16.4 Exercises, pp. 1043-1047

3.
$$\int_{-9}^{9} \int_{-\sqrt{81-x^2}}^{\sqrt{81-x^2}} \int_{-\sqrt{81-x^2-y^2}}^{\sqrt{81-x^2-y^2}} f(x, y, z) \, dz \, dy \, dx$$

5. $\int_0^1 \int_0^{\sqrt{1-z^2}} \int_0^{\sqrt{1-z^2-x^2}} f(x, y, z) dy dx dz$ 7. 24 9. 8 11. $\frac{2}{\pi}$

13. 0 **15.** 8 **17.** $\frac{16}{3}$ **19.** 1 - ln 2

21.
$$\frac{2\pi(1+19\sqrt{19}-20\sqrt{10})}{3}$$
 23. $\frac{27\pi}{2}$ 25. 12π

27.
$$\frac{5}{12}$$
 29. 8 **31.** $\int_0^1 \int_y^1 \int_0^{2\sqrt{1-x^2}} f(x, y, z) dz dx dy$

33.
$$\int_0^1 \int_0^{2\sqrt{1-x^2}} \int_0^x f(x, y, z) \, dy \, dz \, dx$$

35.
$$\int_0^1 \int_0^{2\sqrt{1-y^2}} \int_y^{\frac{1}{2}\sqrt{4-z^2}} f(x, y, z) dx dz dy$$

37.
$$\int_{0}^{1} \int_{0}^{2} \int_{0}^{1-y} dz \, dx \, dy, \quad \int_{0}^{2} \int_{0}^{1} \int_{0}^{1-z} dy \, dz \, dx, \quad \int_{0}^{1} \int_{0}^{2} \int_{0}^{1-z} dy \, dx \, dz,$$
$$\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{2} dx \, dz \, dy, \quad \int_{0}^{1} \int_{0}^{1-z} \int_{0}^{2} dx \, dy \, dz \quad 39. \quad \frac{256}{9} \quad 41. \quad \frac{2}{3}$$

43.
$$(10\sqrt{10}-1)\frac{\pi}{6}$$
 45. $\frac{3 \ln 2}{2} + \frac{e}{16} - 1$

47.
$$\int_0^4 \int_{y/4-1}^0 \int_0^5 dz \, dx \, dy = 10$$
 49.
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2}} dz \, dy \, dx = \frac{2}{3}$$

51.
$$\frac{8}{\pi}$$
 53. $\frac{10}{3}$ **55. a.** False **b.** False **c.** False **57.** 2

59. 1 **61.**
$$\frac{16}{3}$$
 63. $\frac{16}{3}$ **65.** $a = 2\sqrt{2}$ **67.** $V = \frac{\pi r^2 h}{3}$

69.
$$V = \frac{\pi h^2}{3} (3R - h)$$
 71. $V = \frac{4\pi abc}{3}$ **73.** $\frac{1}{24}$

Section 16.5 Exercises, pp. 1059-1063

1. r measures the distance from the point to the z axis, θ is the angle that the segment from the point to the z-axis makes with the positive xz-plane, and z is the directed distance from the point to the xy-plane. 3. A cone 5. It approximates the volume of the cylindrical wedge formed by the changes Δr , $\Delta \theta$, and Δz .

7.
$$\int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} \int_{G(r,\theta)}^{H(r,\theta)} w(r,\theta,z) r \, dz \, dr \, d\theta$$
 9. Cylindrical coordinates

Solid bounded by cone and plane

15. 2π **17.** $4\pi/5$ **19.** $\pi(1-e^{-1})/2$ **21.** $9\pi/4$

23. 560π **25.** 396π **27.** The paraboloid $(V = 44\pi/3)$

29.
$$\frac{20\pi}{3}$$
 31. $\frac{(16+17\sqrt{29})\pi}{3}$ **33.** $\frac{1}{3}$

35. Hollow ball

Sphere of radius r = 2, centered at (0, 0, 2)

39. a. (3960, 0.74, -2.13), (-1426.85, -2257.05, 2924.28) **b.** (3960, 0.84, 0.22), (2877.61, 637.95, 2644.62) **c.** 5666 mi

41.
$$\frac{\pi}{2}$$
 43. $4\pi \ln 2$ **45.** $\pi \left(\frac{188}{9} - \frac{32\sqrt{3}}{3} \right)$ **47.** $\frac{32\pi\sqrt{3}}{9}$

49.
$$\frac{5\pi}{12}$$
 51. $\frac{8\pi}{3}$ **53.** $\frac{8\pi}{3}$ (9 $\sqrt{3}$ – 11) **55. a.** True **b.** True

57. $z = \sqrt{x^2 + y^2 - 1}$; upper half of a hyperboloid of one sheet **59.** $\frac{8\pi}{3} (1 - e^{-512}) \approx \frac{8\pi}{3}$ **61.** 32π

59.
$$\frac{8\pi}{3}(1-e^{-512}) \approx \frac{8\pi}{3}$$
 61. 32π

$$\int_0^{2\pi} \int_0^{\sqrt{2}} \int_r^{\sqrt{4-r^2}} g(r,\theta,z) \, r \, dz \, dr \, d\theta,$$

$$\int_0^{2\pi} \int_0^{\sqrt{2}} \int_0^z g(r,\theta,z) \, r \, dr \, dz \, d\theta$$

$$+ \int_0^{2\pi} \int_{\sqrt{2}}^2 \int_0^{\sqrt{4-z^2}} g(r,\theta,z) \, r \, dr \, dz \, d\theta,$$

$$\int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^2}} \int_{0}^{2\pi} g(r,\theta,z) r d\theta dz dr$$

$$\int_{\pi/6}^{\pi/2} \int_0^{2\pi} \int_{\csc \varphi}^2 g(\rho, \varphi, \theta) \rho^2 \sin \varphi \, d\rho \, d\theta \, d\varphi,$$

$$\int_{\pi/6}^{\pi/2} \int_{\csc \varphi}^{2} \int_{0}^{2\pi} g(\rho, \varphi, \theta) \rho^{2} \sin \varphi \, d\theta \, d\rho \, d\varphi$$
67. $32\sqrt{3}\pi/9$ **69.** $2\sqrt{2}/3$ **71.** $7\pi/2$ **73.** 95.6036

67.
$$32\sqrt{3}\pi/9$$
 69. $2\sqrt{2}/3$ **71.** $7\pi/2$ **73.** 95.6036

77.
$$V = \frac{\pi r^2 h}{3}$$
 79. $V = \frac{\pi}{3} (R^2 + rR + r^2)h$

81.
$$V = \frac{\pi R^3 (8r - 3R)}{12r}$$

Section 16.6 Exercises, pp. 1070-1072

- 1. The pivot should be located at the center of mass of the system.
- 3. Use a double integral. Integrate the density function over the region occupied by the plate. 5. Use a triple integral to find the mass of the object and the three moments.

object and the three moments.

7.
$$\frac{3}{1100} = \frac{10}{100} = \frac{27}{13}$$

9. Mass is $2 + \pi$; $\bar{x} = \frac{\pi}{2}$

- **11.** Mass is $\frac{20}{3}$; $\bar{x} = \frac{9}{5}$ **13.** Mass is 10; $\bar{x} = \frac{8}{3}$

- **21.** $(\frac{7}{3}, 1)$; density increases to the right. **23.** $(\frac{16}{11}, \frac{16}{11})$; density increases toward the hypotenuse of the triangle.
- **25.** $(0, \frac{16 + 3\pi}{16 + 12\pi}) \approx (0, 0.4735)$; density increases away from the *x*-axis.

- **33.** $\left(\frac{7}{3}, \frac{1}{2}, \frac{1}{2}\right)$ **35.** $\left(0, 0, \frac{198}{85}\right)$ **37.** $\left(\frac{2}{3}, \frac{7}{3}, \frac{1}{3}\right)$ **39. a.** False
- **b.** True **c.** False **d.** False **41.** $\bar{x} = \frac{\ln(1 + L^2)}{2 \tan^{-1} L}, \lim_{L \to \infty} \bar{x} = \infty$
- **43.** $\left(0, \frac{8}{9}\right)$ **45.** $\left(0, \frac{8}{3\pi}\right)$ **47.** $\left(\frac{5}{6}, 0\right)$ **49.** $\left(\frac{128}{105\pi}, \frac{128}{105\pi}\right)$ **51.** On the line of symmetry, $2a/\pi$ units above the diameter
- 53. $\left(\frac{2a}{3(4-\pi)}, \frac{2a}{3(4-\pi)}\right)$ 55. h/4 units 57. h/3 units, where h is the height of the triangle 59. 3a/8 units

b.
$$a = \frac{1}{2} \left(-1 + \sqrt{1 + \frac{16}{3\pi - 4}} \right) \approx 0.4937$$

63. Depth =
$$\frac{40\sqrt{10} - 4}{333}$$
 cm ≈ 0.3678 cm

65. a.
$$(\bar{x}, \bar{y}) = \left(\frac{-r^2}{R+r}, 0\right)$$
 (origin at center of large circle);

$$(\bar{x}, \bar{y}) = \left(\frac{R^2 + Rr + r^2}{R + r}, 0\right)$$
 (origin at common point of the circles) **b.** *Hint:* Solve $\bar{x} = R - 2r$.

Section 16.7 Exercises, pp. 1082-1084

- **1.** The image of *S* is the 2 × 2 square with vertices at (0,0), (2,0), (2,2), and (0,2). **3.** $\int_0^1 \int_0^1 f(u+v,u-v) \, 2 \, du \, dv$
- **5.** The rectangle with vertices at (0,0), (2,0), $(2,\frac{1}{2})$, and $(0,\frac{1}{2})$
- 7. The square with vertices at (0,0), $(\frac{1}{2},\frac{1}{2})$, (1,0), and $(\frac{1}{2},-\frac{1}{2})$
- **9.** The region above the *x*-axis and bounded by the curves
- $y^2 = 4 \pm 4x$ 11. The upper half of the unit circle

17. -9 **19.**
$$-4(u^2 + v^2)$$
 21. -1 **23.** $x = (u + v)/3, y = (2u - v)/3; -1/3$ **25.** $x = -(u + 3v), y = -(u + 2v); -1$

25.
$$x = -(u + 3v), y = -(u + 2v); -1$$

27. a. y

b.
$$0 \le u \le 1, 0 \le v \le 1$$

c. J(u, v) = -2 **d.** 0

b. $0 \le u \le 1, 0 \le v \le 1 - u$ **c.** J(u, v) = 2 **d.** $256\sqrt{2}/945$

31. $4\sqrt{2}/3$

33. 3844/5625

 $\frac{15 \, \ln 3}{2}$ 35.

37. 2 **39.** $2w(u^2 - v^2)$ **41.** 5 **43.** $1024\pi/3$

45. a. True b. True c. True

 $|\sin\varphi\cos\theta-\rho\cos\varphi\cos\theta|$ $-\rho \sin \varphi \sin \theta$ **47.** Hint: $J(\rho, \varphi, \theta) = |\sin \varphi \sin \theta|$ $\rho\cos\varphi\sin\theta$ $\rho \sin \varphi \cos \theta$ 0 $\cos \varphi$

49. $a^2b^2/2$ **51.** $(a^2 + b^2)/4$ **53.** $4\pi abc/3$

55. $(\bar{x}, \bar{y}, \bar{z}) = \left(0, 0, \frac{3c}{8}\right)$ **57. a.** $x = a^2 - \frac{y^2}{4a^2}$

b. $x = \frac{y^2}{4b^2} - b^2$ **c.** $J(u, v) = 4(u^2 + v^2)$ **d.** $\frac{80}{3}$ **e.** 160

f. Vertical lines become parabolas opening downward with vertices on the positive y-axis, and horizontal lines become parabolas opening upward with vertices on the negative y-axis. **59. a.** S is stretched in the positive u- and v-directions but not in the w-direction. The amount of stretching increases with u and v. **b.** J(u, v, w) = ad

11. $\frac{\sqrt{17} - \sqrt{2}}{2}$

c. Volume =
$$ad$$
 d. $\left(\frac{a+b+c}{2}, \frac{d+e}{2}, \frac{1}{2}\right)$

Chapter 16 Review Exercises, pp. 1084-1088

1. a. False **b.** True **c.** False **d.** False **3.** $\frac{26}{3}$

5.
$$\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) \, dx \, dy$$
 7.
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} f(x, y) \, dy \, dx$$

13.
$$8\pi$$
 15. $\frac{2}{7\pi^2}$ 17. $\frac{1}{5}$

21. $6\pi - 16$

23. 2 **25.**
$$\int_0^1 \int_{2y}^2 \int_0^{\sqrt{z^2-4y^2}/2} f(x,y,z) \, dx \, dz \, dy$$
 27. $\pi - \frac{4}{3}$

29.
$$8 \sin^2 2 = 4(1 - \cos 4)$$
 31. $\frac{848}{9}$ **33.** $\frac{8}{15}$ **35.** $\frac{16}{3}$

37.
$$\frac{128}{3}$$
 39. $\frac{\pi}{6} - \frac{\sqrt{3}}{2} + \frac{1}{2}$ 41. $\frac{1}{3}$ 43. $\frac{1}{3}$ 45. π

47.
$$4\pi$$
 49. $\frac{28\pi}{3}$ **51.** $\frac{2048\pi}{105}$

$$(\bar{x}, \bar{y}) = \left(\frac{\pi}{2}, \frac{\pi}{8}\right)$$

55.

$$(\bar{x}, \bar{y}) = \left(0, \frac{56}{9\pi}\right)$$

57. $(\bar{x}, \bar{y}, \bar{z}) = (0, 0, 24)$ **59.** $(\bar{x}, \bar{y}, \bar{z}) = \left(0, 0, \frac{63}{10}\right)$

61.
$$\frac{h}{3}$$
 63. $\left(\frac{4\sqrt{2}a}{3\pi}, \frac{4(2-\sqrt{2})a}{3\pi}\right)$ **65. a.** $\frac{4\pi}{3}$ **b.** $\frac{16Q}{3}$

67. $R = \{(x, y): 0 \le x \le 1, 0 \le y \le 1\}$

69. The parallelogram with vertices (0,0), (3,1), (4,4), and (1,3)

71. 10 **73.** 6

b.
$$0 \le u \le 2, 0 \le v \le 3$$
 c. $J(u, v) = 1$ **d.** $\frac{63}{2}$

77. a.

b.
$$u \le v \le 1 - u, 0 \le u \le \frac{1}{2}$$
 c. $J(u, v) = 2$ **d.** $\frac{1}{60}$

79. 42

81.
$$-\frac{7}{16}$$

CHAPTER 17

Section 17.1 Exercises, pp. 1096-1098

1. $\mathbf{F} = \langle f, g, h \rangle$ evaluated at (x, y, z) is the velocity vector of an air particle at (x, y, z) at a fixed point in time. 3. At selected points (a, b), plot the vector $\langle f(a, b), g(a, b) \rangle$. 5. It shows the direction in which the temperature increases the fastest and the amount of increase.

