

PATENT COOPERATION TREATY

PCT

NOTIFICATION OF ELECTION
(PCT Rule 61.2)

From the INTERNATIONAL BUREAU

To:

Commissioner
US Department of Commerce
United States Patent and Trademark
Office, PCT
2011 South Clark Place Room
CP2/5C24
Arlington, VA 22202
ETATS-UNIS D'AMERIQUE

in its capacity as elected Office

Date of mailing: 12 April 2001 (12.04.01)	
International application No.: PCT/JP00/06667	Applicant's or agent's file reference: PH-1073-PCT
International filing date: 27 September 2000 (27.09.00)	Priority date: 01 October 1999 (01.10.99)
Applicant: OGITA, Haruhisa et al	

1. The designated Office is hereby notified of its election made:

in the demand filed with the International preliminary Examining Authority on:

16 February 2001 (16.02.01)

in a notice effecting later election filed with the International Bureau on:

2. The election was

was not

made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO
34, chemin des Colombettes
1211 Geneva 20, Switzerland

Facsimile No.: (41-22) 740.14.35

Authorized officer:

J. Zahra
Telephone No.: (41-22) 338.83.38

特許協力条約

PCT

国際予備審査報告

(法第12条、法施行規則第56条)
[PCT36条及びPCT規則70]

RECEIVED
REG'D 22 MAR 2002
WIPO SEP 6 2002
RECEIVED
TECH CENTER 1600 2000

出願人又は代理人 の書類記号 H 734-PCT	今後の手続きについては、国際予備審査報告の送付通知（様式PCT/IPEA/416）を参照すること。	
国際出願番号 PCT/JP00/06677	国際出願日 (日.月.年) 27.09.00	優先日 (日.月.年) 28.09.99
国際特許分類 (IPC) Int. C17F02D29/02, F02D13/02, F02D43/00, F02P5/15		
出願人（氏名又は名称） トヨタ自動車株式会社		

1. 国際予備審査機関が作成したこの国際予備審査報告を法施行規則第57条（PCT36条）の規定に従い送付する。

2. この国際予備審査報告は、この表紙を含めて全部で 3 ページからなる。

この国際予備審査報告には、附属書類、つまり補正されて、この報告の基礎とされた及び／又はこの国際予備審査機関に対して訂正を含む明細書、請求の範囲及び／又は図面も添付されている。
(PCT規則70.16及びPCT実施細則第607号参照)
この附属書類は、全部で _____ ページである。

3. この国際予備審査報告は、次の内容を含む。

- I 国際予備審査報告の基礎
- II 優先権
- III 新規性、進歩性又は産業上の利用可能性についての国際予備審査報告の不作成
- IV 発明の単一性の欠如
- V PCT35条(2)に規定する新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるための文献及び説明
- VI ある種の引用文献
- VII 国際出願の不備
- VIII 国際出願に対する意見

国際予備審査の請求書を受理した日 28.03.01	国際予備審査報告を作成した日 07.03.02
名称及びあて先 日本特許庁 (IPEA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 所村 陽一 印 電話番号 03-3581-1101 内線 3355 3G 9718

I. 国際予備審査報告の基礎

1. この国際予備審査報告は下記の出願書類に基づいて作成された。(法第6条(PCT14条)の規定に基づく命令に応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。PCT規則70.16, 70.17)

 出願時の国際出願書類

<input type="checkbox"/>	明細書 第	ページ、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの
<input type="checkbox"/>	明細書 第	ページ、	
<input type="checkbox"/>	明細書 第	ページ、	
<input type="checkbox"/>	請求の範囲 第	項、	出願時に提出されたもの PCT19条の規定に基づき補正されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの
<input type="checkbox"/>	請求の範囲 第	項、	
<input type="checkbox"/>	請求の範囲 第	項、	
<input type="checkbox"/>	請求の範囲 第	項、	
<input type="checkbox"/>	図面 第	ページ/図、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの
<input type="checkbox"/>	図面 第	ページ/図、	
<input type="checkbox"/>	図面 第	ページ/図、	
<input type="checkbox"/>	明細書の配列表の部分 第	ページ、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの
<input type="checkbox"/>	明細書の配列表の部分 第	ページ、	
<input type="checkbox"/>	明細書の配列表の部分 第	ページ、	

2. 上記の出願書類の言語は、下記に示す場合を除くほか、この国際出願の言語である。

上記の書類は、下記の言語である _____ 語である。

国際調査のために提出されたPCT規則23.1(b)にいう翻訳文の言語
 PCT規則48.3(b)にいう国際公開の言語
 国際予備審査のために提出されたPCT規則55.2または55.3にいう翻訳文の言語

3. この国際出願は、ヌクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際予備審査報告を行った。

この国際出願に含まれる書面による配列表
 この国際出願と共に提出された磁気ディスクによる配列表
 出願後に、この国際予備審査(または調査)機関に提出された書面による配列表
 出願後に、この国際予備審査(または調査)機関に提出された磁気ディスクによる配列表
 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった
 書面による配列表に記載した配列と磁気ディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。

4. 補正により、下記の書類が削除された。

明細書 第 _____ ページ
 請求の範囲 第 _____ 項
 図面 図面の第 _____ ページ/図

5. この国際予備審査報告は、補充欄に示したように、補正が出願時における開示の範囲を越えてされたものと認められるので、その補正がされなかつたものとして作成した。(PCT規則70.2(c) この補正を含む差し替え用紙は上記1.における判断の際に考慮しなければならず、本報告に添付する。)

V. 新規性、進歩性又は産業上の利用可能性についての法第12条（PCT35条(2)）に定める見解、それを裏付ける文献及び説明

1. 見解

新規性 (N)	請求の範囲 1 - 7	有
	請求の範囲	無
進歩性 (IS)	請求の範囲 1 - 7	有
	請求の範囲	無
産業上の利用可能性 (IA)	請求の範囲 1 - 7	有
	請求の範囲	無

2. 文献及び説明 (PCT規則70.7)

文献1 : J P 10-47118, A (株式会社ユニシアジエックス), 1998. 0
 2. 17

文献2 : J P 10-339205, A (日産自動車株式会社), 1998. 12. 2
 2

文献3 : J P 11-62660, A (本田技研工業株式会社), 1999. 03.
 05

請求の範囲1 - 7

スロットル開度予測値に基づいて所定時間経過後の将来における目標バルブタイミングの予測値を算出するとともに、目標バルブタイミング予測値に基づいて所定時間経過後の将来における実際の機関バルブタイミングを予測し、スロットル弁開度予測値と、バルブタイミング予測値に基づいて所定時間経過後の将来における機関吸入空気量を予測する点が国際調査報告に引用されたいずれの文献にも記載されておらず、当業者にとって自明なものではない。

47
Translation
10/089/202

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

RECEIVED
JUL 24 2002
TECH CENTER 1600
RPO

Applicant's or agent's file reference PH-1073-PCT	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)
International application No. PCT/JP00/06667	International filing date (day/month/year) 27 September 2000 (27.09.00)	Priority date (day/month/year) 01 October 1999 (01.10.99)
International Patent Classification (IPC) or national classification and IPC C07C 271/28, 271/60, 275/42, 335/22, C07D 317/66, 307/66, 333/36, 307/52, 333/40, 295/12, 317/68, 319/18, 213/80, 307/68, 213/75, 211/58, 211/46, 213/75, 213/40, 309/14, A61K 31/245, 31/36, 31/66, 31/341, 31/381, 31/351, 31/5375, 31/443, 31/4402, 31/445, 31/4406, 31/4409, 31/357, A61P 43/00, 9/10, 3/10, 17/00		
Applicant JAPAN ENERGY CORPORATION		

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.

2. This REPORT consists of a total of 3 sheets, including this cover sheet.

This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of _____ sheets.

3. This report contains indications relating to the following items:

- I Basis of the report
- II Priority
- III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
- IV Lack of unity of invention
- V Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- VI Certain documents cited
- VII Certain defects in the international application
- VIII Certain observations on the international application

Date of submission of the demand 16 February 2001 (16.02.01)	Date of completion of this report 21 November 2001 (21.11.2001)
Name and mailing address of the IPEA/JP	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/JP00/06667

I. Basis of the report

1. With regard to the elements of the international application:*

 the international application as originally filed the description:

pages _____, as originally filed

pages _____, filed with the demand

pages _____, filed with the letter of _____

 the claims:

pages _____, as originally filed

pages _____, as amended (together with any statement under Article 19)

pages _____, filed with the demand

pages _____, filed with the letter of _____

 the drawings:

pages _____, as originally filed

pages _____, filed with the demand

pages _____, filed with the letter of _____

 the sequence listing part of the description:

pages _____, as originally filed

pages _____, filed with the demand

pages _____, filed with the letter of _____

2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item. These elements were available or furnished to this Authority in the following language _____ which is:

 the language of a translation furnished for the purposes of international search (under Rule 23.1(b)). the language of publication of the international application (under Rule 48.3(b)). the language of the translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).

3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:

 contained in the international application in written form. filed together with the international application in computer readable form. furnished subsequently to this Authority in written form. furnished subsequently to this Authority in computer readable form. The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished. The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.4. The amendments have resulted in the cancellation of: the description, pages _____ the claims. Nos. _____ the drawings, sheets/fig _____5. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**

* Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to this report since they do not contain amendments (Rule 70.16 and 70.17).

** Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.
PCT/JP 00/06667

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)

Claims 1-18 YES

Claims _____ NO

Inventive step (IS)

Claims 1-18 YES

Claims _____ NO

Industrial applicability (IA)

Claims 1-18 YES

Claims _____ NO

2. Citations and explanations

None of the documents cited in the international search report discloses a compound having the following basic structure, common to compounds of general formula (1) in the present application.

Therefore, Claims 1-18 are not disclosed in any of the documents cited in the international search report, nor could they be deduced easily by a person skilled in the art from disclosures in these documents.

特許協力条約

REC'D 07 DEC 2001

WIPO

PCT

国際予備審査報告

(法第12条、法施行規則第56条)
〔PCT36条及びPCT規則70〕

出願人又は代理人 の書類記号 PH-1073-PCT	今後の手続きについては、国際予備審査報告の送付通知（様式PCT/IPEA/416）を参照すること。	
国際出願番号 PCT/JPOO/06667	国際出願日 (日.月.年) 27.09.00	優先日 (日.月.年) 01.10.99
国際特許分類 (IPC) Int.C1' C07C271/28, 271/60, 275/42, 335/22, C07D317/66, 307/66, 333/36, 307/52, 333/40, 295/12, C07D317/68, 319/18, 213/80, 307/68, 213/75, 211/58, 211/46, 213/75, 213/40, 309/14, A61K31/245, 31/36, (最終頁に続く)		
出願人（氏名又は名称） 株式会社ジャパンエナジー		

1. 国際予備審査機関が作成したこの国際予備審査報告を法施行規則第57条（PCT36条）の規定に従い送付する。

2. この国際予備審査報告は、この表紙を含めて全部で 4 ページからなる。

この国際予備審査報告には、附属書類、つまり補正されて、この報告の基礎とされた及び／又はこの国際予備審査機関に対して訂正を含む明細書、請求の範囲及び／又は図面も添付されている。
(PCT規則70.16及びPCT実施細則第607号参照)
この附属書類は、全部で _____ ページである。

3. この国際予備審査報告は、次の内容を含む。

- I 国際予備審査報告の基礎
- II 優先権
- III 新規性、進歩性又は産業上の利用可能性についての国際予備審査報告の不作成
- IV 発明の單一性の欠如
- V PCT35条(2)に規定する新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるための文献及び説明
- VI ある種の引用文献
- VII 国際出願の不備
- VIII 国際出願に対する意見

国際予備審査の請求書を受理した日 16.02.01	国際予備審査報告を作成した日 21.11.01
名称及びあて先 日本国特許庁 (IPEA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 星野 純呂英 印 電話番号 03-3581-1101 内線 3443
	4H 8217

I. 国際予備審査報告の基礎

1. この国際予備審査報告は下記の出願書類に基づいて作成された。（法第6条（PCT14条）の規定に基づく命令に応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。PCT規則70.16, 70.17）

 出願時の国際出願書類

<input type="checkbox"/> 明細書	第 _____	ページ、	出願時に提出されたもの
<input type="checkbox"/> 明細書	第 _____	ページ、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 明細書	第 _____	ページ、	付の書簡と共に提出されたもの
<input type="checkbox"/> 請求の範囲	第 _____	項、	出願時に提出されたもの
<input type="checkbox"/> 請求の範囲	第 _____	項、	PCT19条の規定に基づき補正されたもの
<input type="checkbox"/> 請求の範囲	第 _____	項、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 請求の範囲	第 _____	項、	付の書簡と共に提出されたもの
<input type="checkbox"/> 図面	第 _____	ページ/図、	出願時に提出されたもの
<input type="checkbox"/> 図面	第 _____	ページ/図、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 図面	第 _____	ページ/図、	付の書簡と共に提出されたもの
<input type="checkbox"/> 明細書の配列表の部分	第 _____	ページ、	出願時に提出されたもの
<input type="checkbox"/> 明細書の配列表の部分	第 _____	ページ、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 明細書の配列表の部分	第 _____	ページ、	付の書簡と共に提出されたもの

2. 上記の出願書類の言語は、下記に示す場合を除くほか、この国際出願の言語である。

上記の書類は、下記の言語である _____ 語である。

- 國際調査のために提出されたPCT規則23.1(b)にいう翻訳文の言語
- PCT規則48.3(b)にいう国際公開の言語
- 国際予備審査のために提出されたPCT規則55.2または55.3にいう翻訳文の言語

3. この国際出願は、ヌクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際予備審査報告を行った。

- この国際出願に含まれる書面による配列表
- この国際出願と共に提出されたフレキシブルディスクによる配列表
- 出願後に、この国際予備審査（または調査）機関に提出された書面による配列表
- 出願後に、この国際予備審査（または調査）機関に提出されたフレキシブルディスクによる配列表
- 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった
- 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。

4. 補正により、下記の書類が削除された。

- 明細書 第 _____ ページ
- 請求の範囲 第 _____ 項
- 図面 図面の第 _____ ページ/図

5. この国際予備審査報告は、補充欄に示したように、補正が出願時における開示の範囲を越えてされたものと認められるので、その補正がされなかつたものとして作成した。（PCT規則70.2(c) この補正を含む差し替え用紙は上記1.における判断の際に考慮しなければならず、本報告に添付する。）

V. 新規性、進歩性又は産業上の利用可能性についての法第12条（PCT35条(2)）に定める見解、それを裏付ける文献及び説明

1. 見解

新規性 (N)

請求の範囲 1-18 有
請求の範囲 _____ 無

進歩性 (I S)

請求の範囲 1-18 有
請求の範囲 _____ 無

産業上の利用可能性 (I A)

請求の範囲 1-18 有
請求の範囲 _____ 無

2. 文献及び説明 (PCT規則70.7)

国際調査報告で引用された何れの文献にも、本願一般式（1）の化合物が共通に有する下記骨格をもつ化合物については記載されていない。

したがって、請求の範囲 1～18 は、国際調査報告で引用されたいずれの文献に記載されたものではなく、また、それら文献の記載から当業者にとって自明なものでもない。

補充欄（いずれかの欄の大きさが足りない場合に使用すること）

第 欄の続き

国際特許分類 (IPC) の続き
A61K31/366, 31/341, 31/381, 31/351, 31/5375, 31/443, 31/4402, 31/445, 31/4406,
A61K31/4409, 31/357, A61P43/00, 9/10, 3/10, 17/00

特許協力条約に基づく国際出願願書
原本（出願用） - 印刷日時 2000年09月27日 (27.09.2000) 水曜日 12時57分21秒

0	受理官庁記入欄 国際出願番号。	
0-2	国際出願日	27.9.00
0-3	(受付印)	受領印
0-4 0-4-1	様式-PCT/R0/101 この特許協力条約に基づく国 際出願願書は、 右記によって作成された。	PCT-EASY Version 2.91 (updated 01.07.2000)
0-5	申立て 出願人は、この国際出願が特許 協力条約に従って処理されるこ とを請求する。	
0-6	出願人によって指定された受 理官庁	日本国特許庁 (R0/JP)
0-7	出願人又は代理人の書類記号	PH-1073-PCT
1	発明の名称	新規なジアリールアミド誘導体及びその医薬用途
II	出願人 II-1 II-2 II-4ja II-4en II-5ja	出願人である (applicant only) 米国を除くすべての指定国 (all designated States except US) 株式会社ジャパンエナジー JAPAN ENERGY CORPORATION 105-8407 日本国 東京都 港区 虎ノ門二丁目10番1号 10-1, Toranomon 2-chome Minato-ku, Tokyo 105-8407 Japan
II-5en	Address:	
II-6 II-7	国籍 (国名) 住所 (国名)	日本国 JP 日本国 JP
III-1 III-1-1	その他の出願人又は発明者 この欄に記載した者は	出願人及び発明者である (applicant and inventor) 米国のみ (US only)
III-1-2 III-1-4ja III-1-4en III-1-5ja	右の指定国についての出願人で ある。 氏名(姓名) Name (LAST, First) あて名:	荻田 晴久 OGITA, Haruhisa 335-8502 日本国 埼玉県戸田市 新曾南三丁目17番35号
III-1-5en	Address:	株式会社ジャパンエナジー内 c/o JAPAN ENERGY CORPORATION 17-35, Niizominami 3-chome Toda-shi, Saitama 335-8502 Japan
III-1-6 III-1-7	国籍 (国名) 住所 (国名)	日本国 JP 日本国 JP

特許協力条約に基づく国際出願願書

原本(出願用) - 印刷日時 2000年09月27日 (27.09.2000) 水曜日 12時57分21秒

III-2 III-2-1	その他の出願人又は発明者 この欄に記載した者は	出願人及び発明者である (applicant and inventor) 米国のみ (US only)
III-2-2	右の指定国についての出願人で ある。 氏名(姓名) Name (LAST, First)	磯部 義明 ISOBE, Yoshiaki 335-8502 日本国 埼玉県戸田市 新曾南三丁目17番35号 株式会社ジャパンエナジー内 c/o JAPAN ENERGY CORPORATION 17-35, Niizominami 3-chome Toda-shi, Saitama 335-8502 Japan
III-2-4ja III-2-4en III-2-5ja	あて名:	
III-2-5en	Address:	
III-2-6 III-2-7	国籍 (国名) 住所 (国名)	日本国 JP 日本国 JP
III-3 III-3-1	その他の出願人又は発明者 この欄に記載した者は	出願人及び発明者である (applicant and inventor) 米国のみ (US only)
III-3-2	右の指定国についての出願人で ある。 氏名(姓名) Name (LAST, First)	高久 春雄 TAKAKU, Haruo 335-8502 日本国 埼玉県戸田市 新曾南三丁目17番35号 株式会社ジャパンエナジー内 c/o JAPAN ENERGY CORPORATION 17-35, Niizominami 3-chome Toda-shi, Saitama 335-8502 Japan
III-3-4ja III-3-4en III-3-5ja	あて名:	
III-3-5en	Address:	
III-3-6 III-3-7	国籍 (国名) 住所 (国名)	日本国 JP 日本国 JP
IV-1	代理人又は其の代表者、通 知のあて名 下記の者は国際機関において右 記のごとく出願人のために行動 する。 氏名(姓名) Name (LAST, First)	代理人 (agent) 平木 祐輔 HIRAKI, Yusuke 105-0001 日本国 東京都 港区 虎ノ門一丁目17番1号 虎ノ門5森ビル 3F Toranomon No.5 Mori Building Third Floor, 17-1, Toranomon 1-chome Minato-ku, Tokyo 105-0001 Japan 03-3503-8637
IV-1-1ja IV-1-1en IV-1-2ja	あて名:	
IV-1-2en	Address:	
IV-1-3 IV-1-4	電話番号 ファクシミリ番号	03-3503-0414

特許協力条約に基づく国際出願願書
原本(出願用) - 印刷日時 2000年09月27日 (27.09.2000) 水曜日 12時57分21秒

IV-2	その他の代理人	筆頭代理人と同じあて名を有する代理人 (additional agent(s) with same address as first named agent) 石井 貞次 ISHII, Sadaji
IV-2-1ja IV-2-1en	氏名 Name(s)	
IV-3 IV-3-1ja IV-3-1en IV-3-2ja	その他の代理人 氏名(姓名) Name (LAST, First) あて名:	代理人 (agent) 島村 直己 SHIMAMURA, Naomi 331-0852 日本国 埼玉県 大宮市桜木町 二丁目327番地 327, Sakuragicho 2-chome Omiya-shi, Saitama 331-0852 Japan
IV-3-2en	Address:	
V V-1	国の指定 広域特許 (他の種類の保護又は取扱いを求める場合には括弧内に記載する。)	Designation of States EP: AT BE CH&LI CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE 及びヨーロッパ特許条約と特許協力条約の締約国である他の国
V-2	国内特許 (他の種類の保護又は取扱いを求める場合には括弧内に記載する。)	AU CA JP NZ US
V-5	指定の確認の宣言 出願人は、上記の指定に加えて規則4.9(b)の規定に基づき、特許協力条約のもとで認められる他の全ての国の指定を行う。ただし、V-6欄に示した国の指定を除く。出願人は、これらの追加される指定が確認を条件としていること、並びに優先日から15月が経過する前にその確認がなされない指定は、この期間の経過時に、出願人によって取り下げられたものとみなされることを宣言する。	
V-6	指定の確認から除かれる国	なし (NONE)
VI-1 VI-1-1 VI-1-2 VI-1-3	先の国内出願に基づく優先権主張 先の出願日 先の出願番号 国名	Priority Claim 1999年10月01日 (01.10.1999) 特願平11-281271 日本国 JP
VI-2 VI-2-1 VI-2-2 VI-2-3	先の国内出願に基づく優先権主張 先の出願日 先の出願番号 国名	1999年10月13日 (13.10.1999) 特願平11-290789 日本国 JP
VI-3	優先権証明書送付の請求 上記の先の出願のうち、右記の番号のものについては、出願書類の認証謄本を作成し国際事務局へ送付することを、受理官庁に対して請求している。	VI-1, VI-2
VII-1	特定された国際調査機関 (ISA)	日本国特許庁 (ISA/JP)

特許協力条約に基づく国際出願願書
原本（出願用） - 印刷日時 2000年09月27日 (27.09.2000) 水曜日 12時57分21秒

	用紙の枚数	添付された電子データ
VIII-1 照合欄 願書	5	-
VIII-2 明細書	187	-
VIII-3 請求の範囲	4	-
VIII-4 要約	1	abst1073.txt
VIII-5 図面	0	-
VIII-7 合計	197	
	添付	添付された電子データ
VIII-8 添付書類 手数料計算用紙	✓	-
VIII-9 別個の記名押印された委任状	✓	-
VIII-16 PCT-EASYディスク	-	フレキシブルディスク
VIII-17 その他	納付する手数料に相当する特許印紙を貼付した書面	-
VIII-17 その他	国際事務局の口座への振込を証明する書面	-
VIII-18 要約書とともに提示する図の番号		
VIII-19 国際出願の使用言語名:	日本語 (Japanese)	
IX-1 提出者の記名押印		平木 祐輔
IX-1-1 氏名(姓名)		
IX-2 提出者の記名押印		石井 貞次
IX-2-1 氏名(姓名)		
IX-3 提出者の記名押印		島村 直己
IX-3-1 氏名(姓名)		

受理官庁記入欄

T0-1	国際出願として提出された書類の実際の受理の日	
T0-2 10-2-1 10-2-2	図面： 受理された 不足図面がある	
T0-3	国際出願として提出された書類を補完する書類又は図面であつてその後期間内に提出されたものの実際の受理の日（訂正日）	
T0-4	特許協力条約第11条(2)に基づく必要な補完の期間内の受理の日	
T0-5	出願人により特定された国際調査機関	ISA/JP

特許協力条約に基づく国際出願願書

原本（出願用） - 印刷日時 2000年09月27日 (27.09.2000) 水曜日 12時57分21秒

10-6	調査手数料未払いにつき、国 際調査機関に調査用写しを送 付していない
------	--

国際事務局記入欄

11-1	記録原本の受理の日
------	-----------

PATENT COOPERATION TREATY

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

From the INTERNATIONAL BUREAU

To:

HIRAKI, Yusuke
 Toranomon No.5 Mori Building
 Third Floor
 17-1, Toranomon 1-chome
 Minato-ku, Tokyo 105-0001
 JAPON

Date of mailing (day/month/year) 12 April 2001 (12.04.01)
--

Applicant's or agent's file reference PH-1073-PCT	IMPORTANT NOTICE
--	------------------

International application No. PCT/JP00/06667	International filing date (day/month/year) 27 September 2000 (27.09.00)	Priority date (day/month/year) 01 October 1999 (01.10.99)
---	--	--

Applicant JAPAN ENERGY CORPORATION et al

1. Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this Notice:
AU,US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:
CA,EP,JP,NZ

The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

3. Enclosed with this Notice is a copy of the international application as published by the International Bureau on 12 April 2001 (12.04.01) under No. WO 01/25190

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Facsimile No. (41-22) 740.14.35

Authorized officer

J. Zahra

Telephone No. (41-22) 338.83.38

特許協力条約

PCT

国際予備審査報告

(法第12条、法施行規則第56条)
[PCT36条及びPCT規則70]

出願人又は代理人 の書類記号 PH-1073-PCT	今後の手続きについては、国際予備審査報告の送付通知（様式PCT/IPEA/416）を参照すること。	
国際出願番号 PCT/JPOO/06667	国際出願日 (日.月.年) 27.09.00	優先日 (日.月.年) 01.10.99
国際特許分類 (IPC) Int.C1' C07C271/28, 271/60, 275/42, 335/22, C07D317/66, 307/66, 333/36, 307/52, 333/40, 295/12, C07D317/68, 319/18, 213/80, 307/68, 213/75, 211/58, 211/46, 213/75, 213/40, 309/14, A61K31/245, 31/36, (最終頁に続く)		
出願人（氏名又は名称） 株式会社ジャパンエナジー		

1. 国際予備審査機関が作成したこの国際予備審査報告を法施行規則第57条（PCT36条）の規定に従い送付する。

2. この国際予備審査報告は、この表紙を含めて全部で 4 ページからなる。

この国際予備審査報告には、附属書類、つまり補正されて、この報告の基礎とされた及び／又はこの国際予備審査機関に対して訂正を含む明細書、請求の範囲及び／又は図面も添付されている。
(PCT規則70.16及びPCT実施細則第607号参照)
この附属書類は、全部で ページである。

3. この国際予備審査報告は、次の内容を含む。

- I 国際予備審査報告の基礎
- II 優先権
- III 新規性、進歩性又は産業上の利用可能性についての国際予備審査報告の不作成
- IV 発明の単一性の欠如
- V PCT35条(2)に規定する新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるための文献及び説明
- VI ある種の引用文献
- VII 国際出願の不備
- VIII 国際出願に対する意見

国際予備審査の請求書を受理した日 16.02.01	国際予備審査報告を作成した日 21.11.01
名称及びあて先 日本国特許庁 (IPEA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 星野 紹英 印 電話番号 03-3581-1101 内線 3443
	4H 8217

I. 国際予備審査報告の基礎

1. この国際予備審査報告は下記の出願書類に基づいて作成された。(法第6条(PCT14条)の規定に基づく命令に応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。PCT規則70.16, 70.17)

 出願時の国際出願書類

<input type="checkbox"/>	明細書 第 _____	ページ、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの
<input type="checkbox"/>	明細書 第 _____	ページ、	
<input type="checkbox"/>	明細書 第 _____	ページ、	
<input type="checkbox"/>	請求の範囲 第 _____	項、	出願時に提出されたもの PCT19条の規定に基づき補正されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの
<input type="checkbox"/>	請求の範囲 第 _____	項、	
<input type="checkbox"/>	請求の範囲 第 _____	項、	
<input type="checkbox"/>	請求の範囲 第 _____	項、	
<input type="checkbox"/>	図面 第 _____	ページ/図、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの
<input type="checkbox"/>	図面 第 _____	ページ/図、	
<input type="checkbox"/>	図面 第 _____	ページ/図、	
<input type="checkbox"/>	明細書の配列表の部分 第 _____	ページ、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの
<input type="checkbox"/>	明細書の配列表の部分 第 _____	ページ、	
<input type="checkbox"/>	明細書の配列表の部分 第 _____	ページ、	

2. 上記の出願書類の言語は、下記に示す場合を除くほか、この国際出願の言語である。

上記の書類は、下記の言語である _____ 語である。

- 国際調査のために提出されたPCT規則23.1(b)にいう翻訳文の言語
- PCT規則48.3(b)にいう国際公開の言語
- 国際予備審査のために提出されたPCT規則55.2または55.3にいう翻訳文の言語

3. この国際出願は、ヌクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際予備審査報告を行った。

- この国際出願に含まれる書面による配列表
- この国際出願と共に提出されたフレキシブルディスクによる配列表
- 出願後に、この国際予備審査(または調査)機関に提出された書面による配列表
- 出願後に、この国際予備審査(または調査)機関に提出されたフレキシブルディスクによる配列表
- 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった
- 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。

4. 補正により、下記の書類が削除された。

- 明細書 第 _____ ページ
- 請求の範囲 第 _____ 項
- 図面 図面の第 _____ ページ/図

5. この国際予備審査報告は、補充欄に示したように、補正が出願時における開示の範囲を越えてされたものと認められるので、その補正がされなかったものとして作成した。(PCT規則70.2(c) この補正を含む差し替え用紙は上記1.における判断の際に考慮しなければならず、本報告に添付する。)

V. 新規性、進歩性又は産業上の利用可能性についての法第12条（PCT35条(2)）に定める見解、それを裏付ける文献及び説明

1. 見解

新規性 (N)

請求の範囲 1-18
請求の範囲 有無

進歩性 (I S)

請求の範囲 1-18
請求の範囲 有無

産業上の利用可能性 (I A)

請求の範囲 1-18
請求の範囲 有無

2. 文献及び説明 (PCT規則70.7)

国際調査報告で引用された何れの文献にも、本願一般式(1)の化合物が共通に有する下記骨格をもつ化合物については記載されていない。

したがって、請求の範囲1～18は、国際調査報告で引用されたいずれの文献に記載されたものではなく、また、それら文献の記載から当業者にとって自明なものでもない。

補充欄（いずれかの欄の大きさが足りない場合に使用すること）

第 欄の続き

国際特許分類 (IPC) の続き

A61K31/366, 31/341, 31/381, 31/351, 31/5375, 31/443, 31/4402, 31/445, 31/4406,
A61K31/4409, 31/357, A61P43/00, 9/10, 3/10, 17/00

E P

U S

P C T

特許協力条約

国際調査報告

(法8条、法施行規則第40、41条)
[PCT18条、PCT規則43、44]

出願人又は代理人 の書類記号 PH-1073-PCT	今後の手続きについては、国際調査報告の送付通知様式(PCT/ISA/220)及び下記5を参照すること。		
国際出願番号 PCT/JP00/06667	国際出願日 (日.月.年)	27.09.00	優先日 (日.月.年)
出願人(氏名又は名称) 株式会社ジャパンエナジー			

国際調査機関が作成したこの国際調査報告を法施行規則第41条(PCT18条)の規定に従い出願人に送付する。
この写しは国際事務局にも送付される。

この国際調査報告は、全部で 3 ページである。

この調査報告に引用された先行技術文献の写しも添付されている。

1. 国際調査報告の基礎

a. 言語は、下記に示す場合を除くほか、この国際出願がされたものに基づき国際調査を行った。
 この国際調査機関に提出された国際出願の翻訳文に基づき国際調査を行った。

b. この国際出願は、ヌクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際調査を行った。
 この国際出願に含まれる書面による配列表

この国際出願と共に提出されたフレキシブルディスクによる配列表

出願後に、この国際調査機関に提出された書面による配列表

出願後に、この国際調査機関に提出されたフレキシブルディスクによる配列表

出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった。

書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。

2. 請求の範囲の一部の調査ができない(第I欄参照)。

3. 発明の單一性が欠如している(第II欄参照)。

4. 発明の名称は 出願人が提出したものを承認する。

次に示すように国際調査機関が作成した。

5. 要約は

出願人が提出したものを承認する。

第III欄に示されているように、法施行規則第47条(PCT規則38.2(b))の規定により国際調査機関が作成した。出願人は、この国際調査報告の発送の日から1カ月以内にこの国際調査機関に意見を提出することができる。

6. 要約書とともに公表される図は、

第_____図とする。 出願人が示したとおりである。

なし

出願人は図を示さなかった。

本図は発明の特徴を一層よく表している。

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' C07C271/28, 271/60, 275/42, 335/22, C07D317/66, 307/66, 333/36, 307/52, 333/40, 295/12, 317/68, 319/18, C07D213/80, 307/68, 213/75, 211/58, 211/46, 213/75, 213/40, 309/14, A61K31/245, 31/36, 31/366, 31/341, A61K31/381, 31/351, 31/5375, 31/443, 31/4402, 31/445, 31/4406, 31/4409, 31/357, A61P43/00, 9/10, 3/10, 17/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C07C271/28, 271/60, 275/42, 335/22, C07D317/66, 307/66, 333/36, 307/52, 333/40, 295/12, 317/68, 319/18, C07D213/80, 307/68, 213/75, 211/58, 211/46, 213/75, 213/40, 309/14, A61K31/245, 31/36, 31/366, 31/341, A61K31/381, 31/351, 31/5375, 31/443, 31/4402, 31/445, 31/4406, 31/4409, 31/357

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS(STN)

REGISTRY(STN)

C. 関連すると認められる文献

引用文献の カテゴリーエ	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO, 97/31900, A1 (キッセイ薬品工業株式会社), 4. 9月. 1997 (04. 09. 97) &AU, 9718113, A	1~18
A	WO, 97/9301, A1 (キッセイ薬品工業株式会社), 13. 3月. 1997 (13. 03. 97) &AU, 9668370, A &EP, 855837, A1 &NO, 9800955, A	1~18

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日 13.12.00	国際調査報告の発送日 26.12.00	
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 星 里子 系召 英 印	4H 8217

電話番号 03-3581-1101 内線 3443

C(続き) 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO, 97/29744, A1 (キッセイ薬品工業株式会社), 21. 8月. 1997 (21. 08. 97) &AU, 9716713, A &CZ, 9802585, A3 &NO, 9803719, A &EP, 894496, A1 &CN, 1211182, A &BR, 9707514, A &HU, 9902191, A &KR, 99082523, A	1~18
A	JP, 9-3019, A (テルモ株式会社), 7. 1月. 1997 (07. 01. 97) (ファミリーなし)	1~18

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2001年4月12日 (12.04.2001)

PCT

(10) 国際公開番号
WO 01/25190 A1

(51) 国際特許分類7:
C07C 271/28,
271/60, 275/42, 335/22, C07D 317/66, 307/66, 333/36,
307/52, 333/40, 295/12, 317/68, 319/18, 213/80, 307/68,
213/75, 211/58, 211/46, 213/75, 213/40, 309/14, A61K
31/245, 31/36, 31/366, 31/341, 31/381, 31/351, 31/5375,
31/443, 31/4402, 31/445, 31/4406, 31/4409, 31/357, A61P
43/00, 9/10, 3/10, 17/00

(21) 国際出願番号: PCT/JP00/06667

(22) 国際出願日: 2000年9月27日 (27.09.2000)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願平11/281271 1999年10月1日 (01.10.1999) JP
特願平11/290789

1999年10月13日 (13.10.1999) JP

(71) 出願人(米国を除く全ての指定国について): 株式会社 ジャパンエナジー (JAPAN ENERGY CORPORATION) [JP/JP]; 〒105-8407 東京都港区虎ノ門二丁目10番1号 Tokyo (JP).

(72) 発明者; および
(75) 発明者/出願人(米国についてのみ): 萩田晴久 (OGITA, Haruhisa) [JP/JP]. 磯部義明 (ISOBE, Yoshiaki) [JP/JP]. 高久春雄 (TAKAKU, Haruo) [JP/JP]; 〒335-8502 埼玉県戸田市新曾南三丁目17番35号 株式会社 ジャパンエナジー内 Saitama (JP).

(74) 代理人: 平木祐輔, 外 (HIRAKI, Yusuke et al.); 〒105-0001 東京都港区虎ノ門一丁目17番1号 虎ノ門5森ビル3F Tokyo (JP).

(81) 指定国(国内): AU, CA, JP, NZ, US.

(84) 指定国(広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類:
— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: NOVEL DIARYLAMIDE DERIVATIVES AND USE THEREOF AS MEDICINES

(54) 発明の名称: 新規なジアリールアミド誘導体及びその医薬用途

is oxygen or sulfur.

(57) Abstract: Diaryl amide derivatives represented by general formula (I) or salts thereof, and pharmaceutical compositions containing the derivatives or the salts as the active ingredient, wherein A and B are each an aromatic ring such as benzene ring; COY and NHCOX are adjacent to each other and bonded to carbon atoms constituting A; X is alkylene, alkyleneoxy, or a single bond; Y is alkyl, alkoxy, hydroxyl, or optionally substituted amino; R¹ is hydrogen, halogeno, hydroxyl, alkyl, or the like, with the proviso that when A is a benzene ring, R¹ is not hydrogen; R² is hydrogen, halogeno, hydroxyl, alkyl, or the like; R³ and R⁴ are each optionally substituted imino, oxygen, or a single bond; R⁵ is alkyl, optionally substituted phenyl, or the like; and Z

WO 01/25190 A1

[緒葉有]

(57) 要約:

本発明は、式(1) :

(式中、A及びBはベンゼン環等の芳香環；COYとNHCOXは隣接して存在し、芳香環A内でこれらの置換基が結合しているのは炭素であり；Xはアルキレン、アルキレンオキシ又は単結合；Yはアルキル、アルコキシ、水酸基又は置換もしくは非置換のアミノ基；R¹は水素、ハロゲン、水酸基、アルキル等であり、但しAがベンゼン環の場合、R¹は水素でなく；R²は水素、ハロゲン、水酸基、アルキル等；R³及びR⁴は置換もしくは非置換のイミノ基、酸素原子又は単結合；R⁵はアルキル又は置換もしくは非置換のフェニル等；Zは酸素又はイオウである。)で表されるジアリールアミド誘導体又はその塩、並びに該化合物を有効成分とする薬学的組成物に関する。

明 紹 書

新規なジアリールアミド誘導体及びその医薬用途

技術分野

本発明は、医薬品として有用なジアリールアミド誘導体、更に詳しくは、異常な細胞増殖に対する阻害作用を有するジアリールアミド誘導体及びその薬学的に許容される塩に関するものである。

背景技術

血管平滑筋細胞などの種々の細胞の増殖においては、インスリン、上皮細胞成長因子あるいは血小板由来成長因子 (platelet-derived growth factor、以下 PDGF と略す) などの成長因子が重要な役割を果たしており、中でも PDGF は強力な細胞増殖因子として細胞の増殖・分化の調節に関わっていることが知られている (Cell, 46, 155 (1986))。例えば、経皮的冠動脈形成術や冠動脈バイパス形成術後の再狭窄、メサンジウム細胞増殖性腎炎などの疾患においては、病態部位の細胞に PDGF や PDGF 受容体の異常産生が生じており、これらの疾患においては病態箇所での細胞の異常増殖が観察される。

トラニラスト ((E)-2-(3,4-ジメトキシシンナモイルアミノ) 安息香酸) は PDGF による血管平滑筋細胞の増殖を阻害し、臨床試験においても経皮的冠動脈形成術後の再狭窄を防止することが示されている (Am. Heart. J., 134 (4), 712 (1997))。しかしながら、トラニラストの *in vitro* 試験における血管平滑筋細胞増殖抑制作用は弱いため (WO 97/09301 では自然発症高血圧ラット胸部大動脈血管平滑筋細胞増殖抑制作用において $IC_{50}=231 \mu M$ と記載されている。)、臨床試験においては有効性を発揮する投与量において肝毒性が高頻度に現れるという問題点がある。

メサンジウム細胞増殖性腎炎は腎臓のメサンジウム細胞が異常増殖するために起こる疾患であり、特開平 10-306024 号公報にトラニラストが増殖阻害作用を示すことが報告されている。

また WO 97/29744 や Br. J. Pharmacol., 122 (6), 1061-1066 (1997)において、トラニラストは培養ヒト皮膚微小血管内皮細胞の血管内皮増殖因子による増殖を阻害し、マウス *in vivo* 血管新生モデルにおいても用量依存的に血管新生を阻害することで増殖性糖尿病性網膜症、老人性円板状黄斑部変性症、未熟児性網膜症、鎌状赤血球網膜症、網膜静脈閉塞症、角膜移植又は白内障手術に伴う血管新生、血管新生緑内障、虹彩ルベオーシス、リウマチ性関節炎、乾癬、浮腫性硬化症、各種腫瘍、粥状動脈硬化単外膜の異常毛細血管網、コンタクトレンズ長期装用による角膜内の血管新生などの血管新生性疾患の改善に有用であると報告されている。

この他、白血病、癌、乾癬、糸球体疾患、臓器線維症、関節リウマチ、動脈硬化症、心筋梗塞、脳梗塞、糖尿病などの疾患や病態においても、病態部位に PDGF や PDGF 受容体の異常産生が生じている。従来公知の PDGF で惹起される細胞増殖の阻害剤として、J. Med. Chem., 37, 2627 (1994) で示される 3-アリールキノリン誘導体、Cancer Research, 54, 6106 (1994) で示されるキノキサリン誘導体、WO 92/20642 で示されるビスモノ-及び二環式アリール及びヘテロアリール誘導体などが挙げられる。

発明の開示

前記状況に鑑み、本発明の目的は、血管平滑筋細胞、血管内皮細胞、表皮細胞などの増殖を、より低濃度で阻害する薬物を探索することにより、動脈硬化症、血管再閉塞疾患、腎炎、糖尿病性網膜症、乾癬、老人性円板状黄斑部変性症などの細胞増殖性疾患の予防又は治療に対して有用な新規化合物又はその薬学的に許容される塩を提供することにある。

かかる背景から、本発明者らは、前記の目的を達成するために、銳意研究を重ねた結果、特定の構造を有するジアリールアミド誘導体が細胞増殖を低濃度で阻害することを見いだし、本発明を完成するに至った。

即ち、本発明は以下の発明を包含する。

(i) 一般式 (1) :

(式中、Aはベンゼン環、ピリジン環、チオフェン環、フラン環及びナフタレン環から選択される芳香環であり；

COY で表される置換基と NHCOX で表される置換基は隣接して存在し、該芳香環内でこれらの置換基が結合しているのは炭素原子であり；

Xは炭素数1～4のアルキレン基、炭素数1～4のアルキレンオキシ基又は単結合であり；

Yは炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、水酸基及び $\text{N}(\text{R}^6)(\text{R}^7)$ から選択され、 R^6 及び R^7 は同一でも異なっていてもよく、それぞれ水素原子、炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、炭素数3～9のシクロアルキル基、炭素数4～9のシクロアルキルーアルキル基、炭素数5～8のモルホリノーN-アルコキシ基、炭素数3～9のアルケニル基、フェニル基、ピリジル基及びアラルキル基から選択され、該フェニル基及びピリジル基、並びにアラルキル基の芳香環は炭素数1～4のアルキル基、炭素数1～4のアルコキシ基及びハロゲン原子から選択される1～3個の置換基で置換されていてもよく；

R^1 は水素原子、ハロゲン原子、水酸基、炭素数1～4のアルキル基、炭素数3～9のシクロアルキル基、炭素数4～9のシクロアルキルーアルキル基、炭素数1～4のアルコキシ基、炭素数3～9のシクロアルキルオキシ基、炭素数4～9のシクロアルキルーアルコキシ基、アラルキルオキシ基、炭素数1～4のアシル基及びニトロ基から選択され、Aの任意の位置に1～4個存在しており、それ同一でも異なっていてもよく、また R^1 が2個存在する場合には両者が一緒になって炭素数1～4のアルキレンジオキシ基を形成してもよく、但しAがベンゼ

ン環の場合、R¹は水素原子でなく；

Bはベンゼン環、ピリジン環又はチオフェン環であり；

R²は水素原子、ハロゲン原子、水酸基、炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、炭素数1～4のアルキルチオ基、炭素数1～4のヒドロキシアルコキシ基、炭素数3～9のシクロアルキルオキシ基、炭素数4～9のシクロアルキルーアルコキシ基、アラルキルオキシ基、炭素数1～4のアシル基、シアノ基、炭素数5～8のモルホリノーN-アルコキシ基、及び炭素数1～4のアルキル基でモノ又はジ置換されていてもよいアミノ基から選択される置換基であり、任意の位置に1～4個存在しており、それぞれ同一でも異なっていてもよく；

R³及びR⁴はYが炭素数1～4のアルキル基以外の場合、酸素原子又はNR⁸であり、R⁸はそれぞれ水素原子及び炭素数1～4のアルキル基から選択され、それぞれ同一でも異なっていてもよく、またYが炭素数1～4のアルキル基の場合、R³は酸素原子又はNR⁸、R⁴は酸素原子、NR⁸又は単結合であり；

R⁵は炭素数1～8のアルキル基、炭素数2～4のアルケニル基、炭素数3～9のシクロアルキル基、炭素数4～9のシクロアルキルーアルキル基、テトラヒドロピラニル基、アラルキル基、インダニル基、芳香族アシル基、フェニル基、ピリジル基、フリル基及びチエニル基から選択され、該アラルキル基、インダニル基及び芳香族アシル基の芳香環、フェニル基、ピリジル基、フリル基並びにチエニル基はハロゲン原子、水酸基、シアノ基、炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、炭素数1～4のアルキルチオ基、炭素数2～5のアルコキカルボニル基、カルボキシリ基、炭素数1～4のアシル基、芳香族アシル基、炭素数1～4のアシロキシ基、トリフルオロメチル基、フェニル基、フェノキシリ基、フェニルチオ基、ピリジル基、モルホリノ基、アラルキルオキシ基、ニトロ基、メチルスルホニル基、アミノスルホニル基、及び炭素数1～4のアルキル基又は炭素数1～4のアシル基でモノ又はジ置換されていてもよいアミノ基から選択される1～5個の置換基を有していてもよく、また隣接する2個の置換基が両者で炭素数1～4のアルキレンジオキシ基となって環を形成してもよく；

Zは酸素原子又はイオウ原子である。)

で表されるジアリールアミド誘導体又はその薬学的に許容される塩。

(ii) 一般式 (1)において、X が炭素数 1～4 のアルキレン基である前記(i)に記載の化合物。

(iii) 一般式 (1)において、X が単結合である前記(i)に記載の化合物。

(iv) 一般式 (1)において、A 及び B が同一でも異なっていてもよく、それぞれベンゼン環又はピリジン環である前記(i)～(iii)のいずれかに記載の化合物。

(v) 一般式 (1)において、A 及び B がベンゼン環である前記(i)～(iv)のいずれかに記載の化合物。

(vi) 一般式 (1)において、Y が無置換のアミノ基、水酸基又は炭素数 1～4 のアルコキシ基である前記(i)～(v)のいずれかに記載の化合物。

(vii) 一般式 (1)において、Y が炭素数 1～4 のアルキル基である前記(i)～(v)のいずれかに記載の化合物。

(viii) 一般式 (1)において、R²が水素原子又は炭素数 1～4 のアルコキシ基である前記(i)～(vii)のいずれかに記載の化合物。

(ix) 一般式 (1)において、R⁵がベンジル基、フェニル基、ピリジル基又はピリジルメチル基であり、該ベンジル基及びピリジルメチル基の芳香環、並びにフェニル基及びピリジル基はハロゲン原子、炭素数 1～4 のアルキル基、炭素数 1～4 のアルコキシ基、炭素数 2～5 のアルコキシカルボニル基、炭素数 1～4 のアシル基、トリフルオロメチル基、炭素数 1～4 のアルキルチオ基、及び炭素数 1～4 のアルキル基で置換されたアミノ基から選択される 1～5 個の置換基を有してもよい前記(i)～(viii)のいずれかに記載の化合物。

(x) 一般式 (1)において、R⁵が炭素数 1～4 のアルキル基、炭素数 2～4 のアルケニル基又は炭素数 3～6 のシクロアルキル基である前記(i)～(ix)のいずれかに記載の化合物。

(xi) 一般式 (1)において、R³及び R⁴が NH である前記(i)～(x)のいずれかに記載の化合物。

(xii) 一般式 (1)において、R³が NH、R⁴が酸素原子である前記(i)～(x)のいずれかに記載の化合物。

(xiii) 前記(i)～(xii)のいずれかに記載の化合物又はその薬学的に許容される塩を有効成分とする薬学的組成物。

(xiv) 前記(i)～(xi)のいずれかに記載の化合物又はその薬学的に許容される塩を有効成分とする血管平滑筋細胞の異常増殖を原因とする疾患の予防又は治療に使用可能な薬学的組成物。

(xv) 前記(i)～(xi)のいずれかに記載の化合物又はその薬学的に許容される塩を有効成分とする経皮的冠動脈形成術もしくは冠動脈バイパス形成術後の再狭窄又はアテローム性動脈硬化症の予防又は治療に使用可能な薬学的組成物。

(xvi) 前記(i)～(xi)のいずれかに記載の化合物又はその薬学的に許容される塩を有効成分とするメサンジウム細胞の異常増殖を原因とする疾患の予防又は治療に使用可能な薬学的組成物。

(xvii) 前記(i)～(xi)のいずれかに記載の化合物又はその薬学的に許容される塩を有効成分とする血管内皮細胞又は表皮細胞の異常増殖を原因とする疾患の予防又は治療に使用可能な薬学的組成物。

(xviii) 前記(i)～(xi)のいずれかに記載の化合物又はその薬学的に許容される塩を有効成分とする乾癬、糖尿病性網膜症又は老人性円板状黄斑部変性症の予防又は治療に使用可能な薬学的組成物。

本発明の化合物を更に詳細に説明する。本発明の化合物は前記一般式(1)で示されるものであり、前記式(1)中のR¹、R²、R³、R⁴、R⁵、X、Y、Z、環A及び環Bは前記の定義のとおりである。本明細書における下記の置換基を更に具体例を挙げて詳細に説明すると次のとおりである。

ハロゲン原子：フッ素、塩素、臭素、ヨウ素を例示することができる。

炭素数1～4のアルキル基：メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基を例示することができる。

炭素数3～9のシクロアルキル基：シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシリル基、シクロヘプチル基などを例示することができる。

炭素数4～9のシクロアルキル-アルキル基：シクロペンチルメチル基、シクロヘキシリルメチル基、シクロペンチルエチル基、シクロヘキシリルエチル基などを例示することができる。

炭素数2～4のアルケニル基：アリル基、ビニル基、イソプロペニル基、1-ブロペニル基、2-ブロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニ

ル基、1-メチル-1-プロペニル基、2-メチル-1-プロペニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基などを例示することができる。

炭素数3～9のアルケニル基：アリル基、イソプロペニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-メチル-1-プロペニル基、2-メチル-1-プロペニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、1-ペンテニル基、3-ペンテニル基、4-ペンテニル基、3-メチル-2-ブテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基などを例示することができる。

炭素数1～4のアルコキシ基：メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、*s*-ブトキシ基、*t*-ブトキシ基を例示することができる。

炭素数3～9のシクロアルキルオキシ基：シクロプロポキシ基、シクロブトキシ基、シクロペントキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基などを例示することができる。

炭素数4～9のシクロアルキルーアルコキシ基：シクロペンチルメトキシ基、シクロヘキシルメトキシ基、シクロペンチルエトキシ基、シクロヘキシルエトキシ基などを例示することができる。

アラルキルオキシ基：ベンジルオキシ基、1-ナフチルメトキシ基、2-ナフチルメトキシ基、2-フェニルエトキシ基、1-フェニルエトキシ基、3-フェニルプロポキシ基、4-フェニルブトキシ基、5-フェニルペントキシ基、6-フェニルヘキシルオキシ基などを例示することができる。

炭素数1～4のアシリル基：ホルミル基、アセチル基、プロピオニル基、ブチリル基などを例示することができる。

芳香族アシリル基：ベンゾイル基、トルオイル基、ナフトイル基などを例示することができる。

炭素数1～4のアルキル基でモノ置換されたアミノ基：メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、*s*-ブチル基、*t*-ブチルアミノ基を例示することができる。

炭素数1～4のアルキル基でジ置換されたアミノ基：ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基などを例示することができる。

炭素数2～5のアルコキシカルボニル基：メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、*s*-ブトキシカルボニル基、*t*-ブトキシカルボニル基を例示することができる。

炭素数1～4のアルキレンジオキシ基：メチレンジオキシ基、エチレンジオキシ基などを例示することができる。

炭素数1～4のヒドロキシアルコキシ基：ヒドロキシメトキシ基、ヒドロキシエトキシ基、ヒドロキシプロポキシ基、ヒドロキシブトキシ基などを例示することができる。

炭素数5～8のモルホリノーN-アルコキシ基：モルホリノーN-メトキシ基、モルホリノーN-エトキシ基、モルホリノーN-プロポキシ基、モルホリノーN-ブトキシ基などを例示することができる。

アラルキル基（複素芳香族置換アルキル基を含む）：ベンジル基、1-ナフチルメチル基、2-ナフチルメチル基、2-フェニルエチル基、1-フェニルエチル基、3-フェニルプロピル基、4-フェニルブチル基、5-フェニルペンチル基、6-フェニルヘキシル基、メチルベンジル基、1-メチルフェネチル基、ジメチルベンジル基、1-ジメチルフェネチル基、1-エチルベンジル基、ジエチルベンジル基、チエニルメチル基、チエニルエチル基、フリルメチル基、フリルエチル基、ピリジルメチル基、ピリジルエチル基などを例示することができる。

炭素数1～4のアルキレン基：メチレン基、エチレン基、トリメチレン基、テトラメチレン基などを例示することができる。

炭素数1～4のアルキレンオキシ基：メチレンオキシ基、エチレンオキシ基、トリメチレンオキシ基、テトラメチレンオキシ基などを例示することができる。

炭素数1～4のアシロキシ基：アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基などを例示することができる。

炭素数1～4のアルキルチオ基：メチルチオ基、エチルチオ基、プロピルチオ基、

イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、*s*-ブチルチオ基、*t*-ブチルチオ基などを例示することができる。

前記一般式（1）で表される本発明のジアリールアミド誘導体においてAで示される芳香環は前記したとおりであるが、その中でもベンゼン環及びピリジン環が好ましく、ベンゼン環が更に好ましい。

Xで示される基としては、単結合（直接結合）、メチレン基及びエチレン基が好ましく、特にはエチレン基が好ましい。

Yで示される置換基は前記したとおりであるが、その中でもアミノ基、水酸基、炭素数1～4のアルコキシ基及び炭素数1～4のアルキル基が好ましく、アミノ基、メトキシ基、エトキシ基及びメチル基が更に好ましい。

R¹で示される置換基は前記したとおりであるが、その中でも炭素数1～4のアルコキシ基、ニトロ基及びハロゲン原子から選択される置換基が1又は2個存在することが好ましく、これらの置換基はメトキシ基、エトキシ基、メチレンジオキシ基又はフッ素であることが更に好ましい。R¹の結合位置は、A環がベンゼン環の場合は、NHCOXで表される置換基に対して4位又は5位のモノ置換、あるいは4位と5位のジ置換が好ましい。

Bで示される環は前記したとおりであるが、その中でもベンゼン環が好ましい。

R²としては、水素原子、又は炭素数1～4のアルコキシ基のモノ置換が好ましい。

R³及びR⁴としては、R³及びR⁴がともにNHか、又はR³がNHで、R⁴は酸素原子が好ましい。

R⁵としては、ベンジル基、フェニル基、ピリジル基又はピリジルメチル基が好ましく、該ベンジル基及びピリジルメチル基の芳香環、並びにフェニル基及びピリジル基はハロゲン原子、炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、炭素数2～5のアルコキシカルボニル基、炭素数1～4のアシル基、トリフルオロメチル基、炭素数1～4のアルキルチオ基、及び炭素数1～4のアルキル基でジ置換されたアミノ基から選択される1～5個の置換基を有していてよい。

Zとしては、酸素が好ましい。

本発明の化合物は、例えば下記の方法によって合成することができるが、本発明の化合物の製造方法はこれらに限定されるものではないことはいうまでもない。

本発明の化合物は、いずれも文献未記載の新規化合物であるが、文献記載の公知の方法又はそれと類似した方法で製造することができる。文献の例を挙げると、オーガニック・ファンクショナル・グループ・プレパレーションズ (Organic Functional Group Preparations), S. R. サンドラーら著、アカデミック・プレス・インコーポレイテッド (Academic Press Inc.) (New York and London) (1968)、シンセティック・オーガニック・ケミストリー (Synthetic Organic Chemistry), S. R. ワーグナーら著、(John Wiley) (1961)、コンプリヘンシブ・オーガニック・トランスフォーメーションズ (Comprehensive Organic Transformations), R. C. ラロック著 (1989)、エンサイクロペディア・オブ・レージェント・フォー・オーガニック・シンセシス (Encyclopedia of Reagents for Organic Synthesis), L. A. パケット著 (1995)、コンベンジアム・オブ・オーガニック・シンセシス・メソッド (Compendium of Organic Synthetic Methods), M. B. スミス著 (1995) などが挙げられる。また、本発明の化合物の類似化合物として、前記式 (1)において A がベンゼン環、R¹ が水素原子、X が単結合であるものの合成が報告されており、それと類似の方法を使っても合成することができる。報告例をあげると、Indian. J. Chem., Sect. B (1987), 26B (12), 1133-9、特公平 02-24825 号公報、Acta Chim. Acad. Sci. Hung. (1981), 107 (1), 57-66、Tetrahedron (1968), 24 (16), 5529-45、Acta Chim. Acad. Sci. Hung. (1966), 48 (1), 77-87、J. Org. Chem. (1967), 32 (2), 462-3、Acta Vet. (Brno) (1971), 40 (2), 209-14、J. Org. Chem. (1974), 39 (13), 1931-5、J. Chem. Eng. Data (1968), 13 (4), 577-9 が挙げられる。なお、前記文献に同化合物の生理活性に関する記述はない。なお、製法に際して用いる原料化合物としては、市販されているものを用いても、又は必要に応じて常法により製造してもよい。以下に製法の例を示す。

[製法 1]

前記一般式 (1)において R³ が NH である化合物は以下の反応工程に従い製造することができる。

(式中、 R^1 、 R^2 、 R^4 、 R^5 、 X 、 Y 、 Z 、環A及び環Bは前記定義のとおりである。)

出発原料である化合物(2)は市販品を購入するか、文献記載の公知の方法又はそれと類似した方法で製造することができる。例えばA環がベンゼン環の場合、下記の化合物を原料として製造することができる。

前記一般式(6)で示されるアントラニル酸誘導体をジシクロヘキシリカルボジイミド等のカルボジイミド試薬を用いてアミン化合物と縮合させて、 Y が $\text{N}(\text{R}^6)$ (R^7)である化合物を製造することができる。また、前記一般式(7)で示されるニトロ安息香酸誘導体を塩化チオニルなどで処理した後にアルコール化合物又はアミン化合物と不活性溶媒中、塩基の存在下に反応させたり、一般式(6)の場合と同様の処理をした後に、文献記載の公知の方法又はそれと類似した方法でニトロ基をアミノ基に変換することで、 Y が炭素数1～4のアルキル基、炭素数1

～4のアルコキシ基又はN(R^6)(R^7)である化合物を製造することができる。また、前記一般式(8)で示されるニトリル誘導体を文献記載の公知の方法又はそれと類似した方法でニトリル基を加水分解することで、Yが水酸基である化合物を合成できる。

前記一般式(4)で示される化合物は、文献記載の公知の方法又はそれと類似した方法である、前記一般式(2)で示されるアミン誘導体と前記一般式(3)で示されるカルボン酸誘導体の縮合反応によって製造することができる。本縮合反応は、各種の縮合剤の存在下に行うことができる。縮合剤としては、例えばジシクロヘキシリカルボジイミドなどのカルボジイミド試薬、カルボニルジイミダゾール、2-クロロ-1-メチルピリジニウムヨウ化物塩などを用いることができる。また前記一般式(3)で示されるカルボン酸化合物を、塩化チオニル等のハロゲン化試薬と反応させて、対応する酸ハライドに変換するか、又は例えばp-トルエンスルホン酸クロリドなどにより反応活性体である酸無水物に変換した後、前記一般式(2)で示されるアミン誘導体と反応させることにより縮合反応を行うこともできる。また本縮合反応は、不活性な溶媒、例えばテトラヒドロフランなどのエーテル類、トルエンなどの芳香族炭化水素類、シクロヘキサンなどの炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、アセトニトリルなどのニトリル類、酢酸エチルなどのエステル類、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどから選択される適当な溶媒を用いることができる。反応は0℃～溶媒の還流温度で行うことができる。

前記一般式(5)で示される化合物は、前記一般式(4)で示されるアミド誘導体のニトロ基を文献記載の公知の方法又はそれと類似した方法によりアミノ基へ変換することで製造することができる。例えば、メタノール、エタノールなどのアルコール性溶媒中でパラジウム炭素、鉄、すず粉末などの触媒の存在下に水素添加反応を行うことによって製造することができる。反応は0℃～溶媒の還流温度で行うことができる。

前記一般式(1)で示される化合物は、R⁴がNHである場合、前記一般式(5)で示される化合物と、公知の方法で得られるイソシアネート(R^5NCO)又はイソチオシアネート(R^5NCS)とを、必要により、例えばトリエチルアミン、ピリジン、ジ

メチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウム *t*-ブトキシドなどの金属アルコキシドなどの塩基の存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒又はこれらの混合溶媒中、-20°C～用いた溶媒の沸点の温度で、10分～48時間反応させることで製造することができる。また、イソシアネートの代わりにトリホスゲン又はカルボニルジイミダゾールと対応するアミン類からイソシアネート等価体を別途調製して反応に用いて合成することもできる。

前記一般式(1)で示される化合物は、R⁴が酸素原子である場合、前記一般式(5)で示される化合物と公知の方法で得られるハロゲン化カルバミド酸(R⁵OCOX)を必要により、例えばトリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウム *t*-ブトキシドなどの金属アルコキシドなどの塩基存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタンなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒もしくはこれらの混合溶媒中、-20°C～用いた溶媒の沸点の間の温度で、10分～48時間反応させることで製造することができる。また、ハロゲン化カルバミド酸の代わりにトリホスゲン又はカルボニルジイミダゾールと対応するアルコール類からハロゲン化カルバミド酸等価体を別途調製して反応に用いて合成することもできる。

前記一般式(1)で示される化合物は、R⁴がNR⁸であって、R⁸が炭素数1～4のアルキル基である場合、前記一般式(5)で示される化合物と、公知の方法で得られるR⁴R⁵NCZClで表されるカルバモイルクロリド又はチオカルバモイルクロリドと、必要により、例えばトリエチルアミン、ピリジン、ジメチルアミノピリ

ジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウム *t*-ブトキシドなどの金属アルコキシドなどの塩基の存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒又はこれらの混合溶媒中、-20°C～用いた溶媒の沸点の温度で、10分～48時間反応させることで製造することができる。

前記一般式(1)で示される化合物は、R⁴が単結合である場合、必要により例えば文献記載の公知の方法又はそれと類似した方法で前記一般式(5)で示される化合物と R⁵CO₂H で示されるカルボン酸誘導体の縮合反応によって製造することができる。本縮合反応は、各種の縮合剤の存在下に行うことができる。縮合剤としては、例えばジシクロヘキシルカルボジイミドなどのカルボジイミド試薬、カルボニルジイミダゾール、2-クロロ-1-メチルピリジニウムヨウ化物塩などを用いることができる。また R⁵CO₂H で示されるカルボン酸化合物を、塩化チオニル等のハロゲン化試薬と反応させて、対応する酸ハライドに変換するか、又は例えば p-トルエンスルホン酸クロリドなどにより反応活性体である酸無水物に変換した後、前記一般式(5)で示されるアミノ化合物と反応させることにより行うこともできる。また本縮合反応は、不活性な溶媒、例えばテトラヒドロフランなどのエーテル類、トルエンなどの芳香族炭化水素類、シクロヘキサンなどの炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、アセトニトリルなどのニトリル類、酢酸エチルなどのエステル類、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどから選択される適当な溶媒を用いることができる。反応は0°C～溶媒の還流温度で行うことができる。

[製法2]

化合物(1)において R³ が NR⁸ である化合物は、以下の反応工程に従い製造することができる。

(式中、R¹、R²、R⁴、R⁵、R⁸、X、Y、Z、環A及び環Bは前記定義のとおりである。)

前記一般式(10)で示される化合物は、文献記載の公知の方法又はそれと類似した方法である、前記一般式(2)で示されるアミン誘導体と前記一般式(9)で示されるカルボン酸誘導体の縮合反応によって製造することができる。本縮合反応は、縮合剤の存在下に行うことができる。縮合剤としては、例えばジシクロヘキシリカルボジイミドなどのカルボジイミド試薬、カルボニルジイミダゾール、2-クロロ-1-メチルピリジニウムヨウ化物塩などを用いることができる。また本縮合反応は、不活性な溶媒、例えばテトラヒドロフランなどのエーテル類、トルエンなどの芳香族炭化水素類、シクロヘキサンなどの炭化水素類、ジクロロメタンなどのハロゲン化炭化水素類、アセトニトリルなどのニトリル類、酢酸エチルなどのエステル類、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどから選択される適当な溶媒を用いることができる。反応は0°C～溶媒の還流温度で行うこと

ができる。

前記一般式(1)で示される化合物は、R⁴がNHである場合、前記一般式(10)で示される化合物と、公知の方法で得られるイソシアネート(R⁵NCO)又はイソチオシアネート(R⁵NCS)とを、必要により、例えばトリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムt-ブトキシドなどの金属アルコキシドなどの塩基の存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒又はこれらの混合溶媒中、-20℃～用いた溶媒の沸点の温度で、10分～48時間反応させることで製造することができる。

前記一般式(1)で示される化合物は、R⁴がNR⁸であってR⁸が炭素数1～4のアルキル基である場合、前記一般式(10)で示される化合物と公知の方法で得られるR⁸R⁵NCZClで表されるカルバモイルクロリド又はチオカルバモイルクロリドとを、必要により例えば、トリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムt-ブトキシドなどの金属アルコキシドなどの塩基存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒もしくはこれらの混合溶媒中、-20℃～用いた溶媒の沸点の間の温度で、10分～48時間反応させることで製造することができる。

[製法3]

化合物(1)においてR³がNR⁸である化合物は以下の反応工程に従い製造することができる。

(式中、R¹、R²、R⁴、R⁵、R⁸、X、Y、Z、環A及び環Bは前記定義のとおりであり、L1は水素原子、又は保護基、例えばベンジル基、アルキル基を表す。)

前記一般式(12)で示される化合物は、R⁴がNHである場合、前記一般式(11)で示される化合物と、公知の方法で得られるイソシアネート(R⁵NCO)又はイソチオシアネート(R⁵NCS)とを、必要により、例えばトリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムt-ブトキシドなどの金属アルコキシドなどの塩基の存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒又はこれらの混合溶媒中、-20°C～用いた溶媒の沸点の温度で、10分～48時間反応させることで製造することができる。

前記一般式(12)で示される化合物は、R⁴がNR⁸であってR⁸が炭素数1～4のアルキル基である場合、前記一般式(11)で示される化合物と、公知の方法で得られ

る R^8R^5NCZCl で表されるカルバモイルクロリド又はチオカルバモイルクロリドとを、必要により、例えばトリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウム *t*-ブトキシドなどの金属アルコキシドなどの塩基の存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒又はこれらの混合溶媒中、-20°C～用いた溶媒の沸点の温度で、10分～48時間反応させることで製造することができる。

前記一般式(1)で示される化合物は、文献記載の公知の方法又はそれと類似した方法である、前記一般式(2)で示されるアミン誘導体と前記一般式(12)で示される化合物又は脱保護反応を施した前記一般式(12)で示される化合物との縮合反応によって製造することができる。本縮合反応は、縮合剤の存在下に行うことができる。縮合剤としては、例えばジシクロヘキシリカルボジイミドなどのカルボジイミド試薬、カルボニルジイミダゾール、2-クロロ-1-メチルピリジニウムヨウ化物塩などを用いることができる。また本縮合反応は、不活性な溶媒、例えばテトラヒドロフランなどのエーテル類、トルエンなどの芳香族炭化水素類、シクロヘキサンなどの炭化水素類、ジクロロメタンなどのハロゲン化炭化水素類、アセトニトリルなどのニトリル類、酢酸エチルなどのエステル類、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどから選択される適当な溶媒を用いることができる。

[製法4]

化合物(1)において R^3 が酸素原子である化合物は以下の反応工程に従い製造することができる。

(式中の R¹、R²、R⁴、R⁵、X、Y、Z、環 A 及び環 B は前記定義のとおりで、L² は水素原子又は保護基を表す。)

前記一般式（14）で示される化合物は、文献記載の公知の方法又はそれと類似した方法である前記一般式（2）で示されるアミン誘導体と前記一般式（13）で示されるカルボン酸誘導体の縮合反応によって製造することができる。本縮合反応は、各種の縮合剤の存在下に行うことができる。縮合剤としては、例えばジシクロヘキシリカルボジイミドなどのカルボジイミド試薬、カルボニルジイミダゾール、2-クロロ-1-メチルピリジニウムヨウ化物塩などを用いることができる。また前記一般式（13）で示されるカルボン酸化合物を、塩化チオニル等のハロゲン化試薬と反応させて、対応する酸ハライドに変換するか、又は例えば p-トルエンスルホン酸クロリドなどにより反応活性体である酸無水物に変換した後、前記一般式（2）で示されるアミノ化合物と反応させることにより行うこともできる。また本縮合反応は、不活性な溶媒、例えばテトラヒドロフランなどのエーテル類、トルエンなどの芳香族炭化水素類、シクロヘキサンなどの炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、アセトニトリ

ルなどのニトリル類、酢酸エチルなどのエステル類、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどから選択される適当な溶媒を用いることができる。反応は0℃～溶媒の還流温度で行うことができる。

前記一般式(1)で示される化合物は、R⁴がNHである場合、前記一般式(5)で示される化合物と公知の方法で得られるイソシアネート(R⁵NCO)又はイソチオシアネート(R⁵NCS)とを、必要により例えば、トリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムt-ブトキシドなどの金属アルコキシドなどの塩基存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタンなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒もしくはこれらの混合溶媒中、-20℃～用いた溶媒の沸点の間の温度で、10分～48時間反応させることで製造することができる。また、イソシアネートの代わりにトリホスゲン又はカルボニルジイミダゾールと対応するアミン類からイソシアネート等価体を別途調製して反応に用いて合成することもできる。

前記一般式(1)で示される化合物は、R⁴=NR⁸、R⁸≠Hの場合、前記一般式(5)で示される化合物と公知の方法で得られるR⁸R⁵NCZClで表されるカルバモイルクロリド又はチオカルバモイルクロリドとを、必要により例えば、トリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムt-ブトキシドなどの金属アルコキシドなどの塩基存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒もしくはこれらの混合溶媒中、-20℃～用いた溶媒の沸点の間の温度で、10分～48時間反応させることで製造することができる。

前記の製造方法において定義した基が実施方法の条件下で変化するか又は方法を実施するのに不適切な場合、有機合成化学で常用される保護基の導入及び脱離方法（例えばプロテクティブ・グループス・イン・オーガニック・シンセシス（Protective Groups of Organic Synthesis），グリーン著，（John Wiley）（1981）参照）等を用いることにより目的化合物を得ることができる。また化合物（I）の中には、これを合成中間体として更に新規な誘導体（I）に導くことができるものもある。

前記の各製造方法における中間体及び目的化合物は、有機合成化学で常用される精製手段、例えば中和、濾過、抽出、洗浄、乾燥、濃縮、再結晶、各種クロマトグラフィーなどに付して単離精製することができる。また、中間体においては、特に精製することなく、次の反応に供することも可能である。

また化合物（I）の中には、異性体が存在しうるものがあるが、本発明はこれらを含めて全て可能な異性体及びそれらの混合物を含む。

化合物（I）の塩を取得したいとき、化合物（I）が塩の形で得られる場合には、そのまま精製すればよく、また遊離の形で得られる場合には、適当な有機溶媒に溶解又は懸濁させ、酸又は塩基を加えて通常の方法により塩を形成させればよい。薬学的に許容される塩として、例えば塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸などの鉱酸との酸付加塩、ギ酸、酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、プロピオン酸、クエン酸、コハク酸、酪酸、シュウ酸、マロン酸、マレイン酸、乳酸、リンゴ酸、炭酸、グルタミン酸、アルパラギン酸などの有機酸との酸付加塩、ナトリウム塩、カリウム塩、カルシウム塩などの無機塩基との塩、モルホリン、ピペリジンなどの有機アミン、アミノ酸との塩を挙げることができる。

また化合物（I）及びその薬学的に許容される塩は、水あるいは各種溶媒との付加物の形で存在することもあるが、これらの付加物も本発明に含まれる。

前記製造方法によって得られる化合物（I）の具体例を表1～表8に示す。本発明の化合物がこれらに限定されるものではないことはいうまでもない。

表 1

化合物番号	R ¹	Y	X	Z	R ²	ウレア位置	R ⁵
1	4,5-(OMe) ₂	OEt	-	O	H	4'	Ph
2	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Me-Ph
3	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Me-Ph
4	4,5-(OMe) ₂	OEt	-	O	H	4'	2-Me-Ph
5	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Et-Ph
6	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Et-Ph
7	4,5-(OMe) ₂	OEt	-	O	H	4'	2-Et-Ph
8	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Pr-Ph
9	4,5-(OMe) ₂	OEt	-	O	H	4'	4- ⁿ Bu-Ph
10	4,5-(OMe) ₂	OEt	-	O	H	4'	4-CF ₃ -Ph
11	4,5-(OMe) ₂	OEt	-	O	H	4'	4- ^t Bu-Ph
12	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Ac-Ph
13	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Ac-Ph
14	4,5-(OMe) ₂	OEt	-	O	H	4'	4-CO ₂ Et-Ph
15	4,5-(OMe) ₂	OEt	-	O	H	4'	3-CO ₂ Et-Ph
16	4,5-(OMe) ₂	OEt	-	O	H	4'	4-CO ₂ Me-Ph
17	4,5-(OMe) ₂	OEt	-	O	H	4'	4-CO ₂ ⁿ Bu-Ph
18	4,5-(OMe) ₂	OEt	-	O	H	4'	4-SMe-Ph
19	4,5-(OMe) ₂	OEt	-	O	H	4'	4-F-Ph
20	4,5-(OMe) ₂	OEt	-	O	H	4'	3-F-Ph
21	4,5-(OMe) ₂	OEt	-	O	H	4'	2-F-Ph
22	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Cl-Ph
23	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Cl-Ph
24	4,5-(OMe) ₂	OEt	-	O	H	4'	2-Cl-Ph
25	4,5-(OMe) ₂	OEt	-	O	H	4'	4-NO ₂ -Ph
26	4,5-(OMe) ₂	OEt	-	O	H	4'	3-NO ₂ -Ph
27	4,5-(OMe) ₂	OEt	-	O	H	4'	2-NO ₂ -Ph
28	4,5-(OMe) ₂	OEt	-	O	H	4'	4-NH ₂ -Ph
29	4,5-(OMe) ₂	OEt	-	O	H	4'	3-NH ₂ -Ph
30	4,5-(OMe) ₂	OEt	-	O	H	4'	2-NH ₂ -Ph
31	4,5-(OMe) ₂	OEt	-	O	H	4'	4-NHAc-Ph
32	4,5-(OMe) ₂	OEt	-	O	H	4'	4-NMe ₂ -Ph

33	4,5-(OMe) ₂	OEt	-	O	H	4'	3-NMe ₂ -Ph
34	4,5-(OMe) ₂	OEt	-	O	H	4'	2-NMe ₂ -Ph
35	4,5-(OMe) ₂	OEt	-	O	H	4'	4-OMe-Ph
36	4,5-(OMe) ₂	OEt	-	O	H	4'	3-OMe-Ph
37	4,5-(OMe) ₂	OEt	-	O	H	4'	2-OMe-Ph
38	4,5-(OMe) ₂	OEt	-	O	H	4'	4-OEt-Ph
39	4,5-(OMe) ₂	OEt	-	O	H	4'	4-NEt ₂ -Ph
40	4,5-(OMe) ₂	OEt	-	O	H	4'	4-OAc-Ph
41	4,5-(OMe) ₂	OEt	-	O	H	4'	3-OAc-Ph
42	4,5-(OMe) ₂	OEt	-	O	H	4'	2-OAc-Ph
43	4,5-(OMe) ₂	OEt	-	O	H	4'	4-OH-Ph
44	4,5-(OMe) ₂	OEt	-	O	H	4'	3-OH-Ph
45	4,5-(OMe) ₂	OEt	-	O	H	4'	2-OH-Ph
46	4,5-(OMe) ₂	OEt	-	O	H	4'	4-OBn-Ph
47	4,5-(OMe) ₂	OEt	-	O	H	4'	4-PhCO-Ph
48	4,5-(OMe) ₂	OEt	-	O	H	4'	4-CO ₂ H-Ph
49	4,5-(OMe) ₂	OEt	-	O	H	4'	3-CO ₂ H-Ph
50	4,5-(OMe) ₂	OEt	-	O	H	4'	4-CN-Ph
51	4,5-(OMe) ₂	OEt	-	O	H	4'	4-morpholino-Ph
52	4,5-(OMe) ₂	OEt	-	O	H	4'	4-(2-Py)-Ph
53	4,5-(OMe) ₂	OEt	-	O	H	4'	2,4-(OMe) ₂ -Ph
54	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Cl-6-NH ₂ -Ph
55	4,5-(OMe) ₂	OEt	-	O	H	4'	2-Cl-4-NO ₂ -Ph
56	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Cl-6-CF ₃ -Ph
57	4,5-(OMe) ₂	OEt	-	O	H	4'	2,4-F ₂ -Ph
58	4,5-(OMe) ₂	OEt	-	O	H	4'	2,4-Cl ₂ -Ph
59	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Cl-6-NO ₂ --Ph
60	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Cl-6-Me-Ph
61	4,5-(OMe) ₂	OEt	-	O	H	4'	2-Cl-4-NH ₂ -Ph
62	4,5-(OMe) ₂	OEt	-	O	H	4'	2,5-(OMe) ₂ -Ph
63	4,5-(OMe) ₂	OEt	-	O	H	4'	2,5-F ₂ -Ph
64	4,5-(OMe) ₂	OEt	-	O	H	4'	2,5-Cl ₂ -Ph
65	4,5-(OMe) ₂	OEt	-	O	H	4'	2,5-CF ₃ -Ph
66	4,5-(OMe) ₂	OEt	-	O	H	4'	2,5-CO ₂ Me-Ph
67	4,5-(OMe) ₂	OEt	-	O	H	4'	3,5-(OMe) ₂ -Ph
68	4,5-(OMe) ₂	OEt	-	O	H	4'	3,5-Me ₂ -Ph
69	4,5-(OMe) ₂	OEt	-	O	H	4'	3,5-(CF ₃) ₂ -Ph
70	4,5-(OMe) ₂	OEt	-	O	H	4'	3,5-F ₂ -Ph
71	4,5-(OMe) ₂	OEt	-	O	H	4'	3,5-Cl ₂ -Ph
72	4,5-(OMe) ₂	OEt	-	O	H	4'	3,5-(NO ₂) ₂ -Ph
73	4,5-(OMe) ₂	OEt	-	O	H	4'	3,4-Me ₂ -Ph
74	4,5-(OMe) ₂	OEt	-	O	H	4'	3,4-(CF ₃) ₂ -Ph
75	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Cl-5-NO ₂ -Ph
76	4,5-(OMe) ₂	OEt	-	O	H	4'	3,4-F ₂ -Ph
77	4,5-(OMe) ₂	OEt	-	O	H	4'	3,4-Cl ₂ -Ph
78	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Cl-5-CF ₃ -Ph
79	4,5-(OMe) ₂	OEt	-	O	H	4'	indane-5-yl
80	4,5-(OMe) ₂	OEt	-	O	H	4'	1,3-benzodioxole-5-yl
81	4,5-(OMe) ₂	OEt	-	O	H	4'	1,4-benzodioxane-6-yl
82	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Cl-4-Me-Ph
83	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Cl-4-F-Ph
84	4,5-(OMe) ₂	OEt	-	O	H	4'	3-NO ₂ -4-Me-Ph
85	4,5-(OMe) ₂	OEt	-	O	H	4'	3,4-(OMe) ₂ -Ph
86	4,5-(OMe) ₂	OEt	-	O	H	4'	2,6-Pr ₂ -Ph

87	4,5-(OMe) ₂	OEt	-	O	H	4'	2,6-F ₂ -Ph
88	4,5-(OMe) ₂	OEt	-	O	H	4'	2,6-Cl ₂ -Ph
89	4,5-(OMe) ₂	OEt	-	O	H	4'	2-Cl-6-Me-Ph
90	4,5-(OMe) ₂	OEt	-	O	H	4'	2,3-(OMe) ₂ -Ph
91	4,5-(OMe) ₂	OEt	-	O	H	4'	5-Cl-6-OMe-Ph
92	4,5-(OMe) ₂	OEt	-	O	H	4'	2,3-Cl ₂ -Ph
93	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Cl-5-NH ₂ -Ph
94	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Cl-6-OMe-Ph
95	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Cl-4,6-(OMe) ₂ -Ph
96	4,5-(OMe) ₂	OEt	-	O	H	4'	4,5-Me ₂ -2-NO ₂ -Ph
97	4,5-(OMe) ₂	OEt	-	O	H	4'	2,4,5-F ₃ -Ph
98	4,5-(OMe) ₂	OEt	-	O	H	4'	2,3,6-F ₃ -Ph
99	4,5-(OMe) ₂	OEt	-	O	H	4'	2,4,6-F ₃ -Ph
100	4,5-(OMe) ₂	OEt	-	O	H	4'	2,3,4-F ₃ -Ph
101	4,5-(OMe) ₂	OEt	-	O	H	4'	3,4,5-(OMe) ₃ -Ph
102	4,5-(OMe) ₂	OEt	-	O	H	4'	c-Pen
103	4,5-(OMe) ₂	OEt	-	O	H	4'	c-Hex
104	4,5-(OMe) ₂	OEt	-	O	H	4'	c-Hep
105	4,5-(OMe) ₂	OEt	-	O	H	4'	tetrahydropyran-2-yl
106	4,5-(OMe) ₂	OEt	-	O	H	4'	2-propenyl
107	4,5-(OMe) ₂	OEt	-	O	H	4'	ⁿ Bu
108	4,5-(OMe) ₂	OEt	-	O	H	4'	ⁿ Pr
109	4,5-(OMe) ₂	OEt	-	O	H	4'	^l Pr
110	4,5-(OMe) ₂	OEt	-	O	H	4'	^l Bu
111	4,5-(OMe) ₂	OEt	-	O	H	4'	Me
112	4,5-(OMe) ₂	OEt	-	O	H	4'	Bn
113	4,5-(OMe) ₂	OEt	-	O	H	4'	4-F-Bn
114	4,5-(OMe) ₂	OEt	-	O	H	4'	3-F-Bn
115	4,5-(OMe) ₂	OEt	-	O	H	4'	2-F-Bn
116	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Cl-Bn
117	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Cl-Bn
118	4,5-(OMe) ₂	OEt	-	O	H	4'	2-Cl-Bn
119	4,5-(OMe) ₂	OEt	-	O	H	4'	4-OMe-Bn
120	4,5-(OMe) ₂	OEt	-	O	H	4'	3-OMe-Bn
121	4,5-(OMe) ₂	OEt	-	O	H	4'	2-OMe-Bn
122	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Me-Bn
123	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Me-Bn
124	4,5-(OMe) ₂	OEt	-	O	H	4'	2-Me-Bn
125	4,5-(OMe) ₂	OEt	-	O	H	4'	4-NO ₂ -Bn
126	4,5-(OMe) ₂	OEt	-	O	H	4'	4-NH ₂ -Bn
127	4,5-(OMe) ₂	OEt	-	O	H	4'	4-NMe ₂ -Bn
128	4,5-(OMe) ₂	OEt	-	O	H	4'	4-SO ₂ Me-Bn
129	4,5-(OMe) ₂	OEt	-	O	H	4'	4-SO ₂ NH ₂ -Bn
130	4,5-(OMe) ₂	OEt	-	O	H	4'	4-CN-Bn
131	4,5-(OMe) ₂	OEt	-	O	H	4'	4- ^l Bu-Bn
132	4,5-(OMe) ₂	OEt	-	O	H	4'	piperonyl
133	4,5-(OMe) ₂	OEt	-	O	H	4'	3,4-(OMe) ₂ -Bn
134	4,5-(OMe) ₂	OEt	-	O	H	4'	3,4-Cl ₂ -Bn
135	4,5-(OMe) ₂	OEt	-	O	H	4'	(CH ₂) ₂ -(4-Cl-Ph)
136	4,5-(OMe) ₂	OEt	-	O	H	4'	(CH ₂) ₂ -(3,4-(OMe) ₂ -Ph)
137	4,5-(OMe) ₂	OEt	-	O	H	4'	(CH ₂) ₂ -Ph
138	4,5-(OMe) ₂	OEt	-	O	H	4'	(CH ₂) ₃ -Ph
139	4,5-(OMe) ₂	OEt	-	O	H	4'	(CH ₂) ₄ -Ph
140	4,5-(OMe) ₂	OEt	-	O	H	4'	COPh

141	4,5-(OMe) ₂	OEt	-	O	H	4'	1-Nap
142	4,5-(OMe) ₂	OEt	-	O	H	4'	2-Nap
143	4,5-(OMe) ₂	OEt	-	O	H	4'	CH ₂ -(1-Nap)
144	4,5-(OMe) ₂	OEt	-	O	H	4'	CH ₂ -(2-Nap)
145	4,5-(OMe) ₂	OEt	-	O	H	4'	2-Py
146	4,5-(OMe) ₂	OEt	-	O	H	4'	3-Py
147	4,5-(OMe) ₂	OEt	-	O	H	4'	4-Py
148	4,5-(OMe) ₂	OEt	-	O	H	4'	CH ₂ -(2-Py)
149	4,5-(OMe) ₂	OEt	-	O	H	4'	CH ₂ -(3-Py)
150	4,5-(OMe) ₂	OEt	-	O	H	4'	CH ₂ -(4-Py)
151	4,5-(OMe) ₂	OEt	-	O	H	4'	(CH ₂) ₂ -(2-Py)
152	4,5-(OMe) ₂	OEt	-	O	H	4'	furan-3-yl
153	4,5-(OMe) ₂	OEt	-	O	H	4'	thiophene-3-yl
154	4,5-(OMe) ₂	OEt	-	O	H	4'	CH ₂ -(thiophene-3-yl)
155	4,5-(OMe) ₂	OEt	-	O	H	4'	CH ₂ -(furan-3-yl)
156	4,5-(OMe) ₂	OEt	-	O	H	4'	CH ₂ -(thiophene-2-yl)
157	4,5-(OMe) ₂	OEt	-	O	H	4'	(CH ₂) ₂ -(thiophene-2-yl)
158	4,5-(OMe) ₂	NH ₂	-	O	H	4'	Ph
159	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Me-Ph
160	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Me-Ph
161	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-Me-Ph
162	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Et-Ph
163	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Et-Ph
164	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-Et-Ph
165	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4- ^t Pr-Ph
166	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4- ⁿ Bu-Ph
167	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-CF ₃ -Ph
168	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4- ^t Bu-Ph
169	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Ac-Ph
170	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Ac-Ph
171	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-CO ₂ Et-Ph
172	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-CO ₂ Et-Ph
173	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-CO ₂ Me-Ph
174	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-CO ₂ ⁿ Bu-Ph
175	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-SMe-Ph
176	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-F-Ph
177	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-F-Ph
178	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-F-Ph
179	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Cl-Ph
180	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Cl-Ph
181	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-Cl-Ph
182	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-NO ₂ -Ph
183	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-NO ₂ -Ph
184	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-NO ₂ -Ph
185	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-NH ₂ -Ph
186	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-NH ₂ -Ph
187	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-NH ₂ -Ph
188	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-NHAc-Ph
189	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-NMe ₂ -Ph
190	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-NMe ₂ -Ph
191	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-NMe ₂ -Ph
192	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-OMe-Ph
193	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-OMe-Ph
194	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-OMe-Ph

195	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-OEt-Ph
196	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-NEt ₂ -Ph
197	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-OAc-Ph
198	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-OAc-Ph
199	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-OAc-Ph
200	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-OH-Ph
201	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-OH-Ph
202	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-OH-Ph
203	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-OBn-Ph
204	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-PhCO-Ph
205	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-CO ₂ H-Ph
206	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-CO ₂ H-Ph
207	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-CN-Ph
208	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-morpholino-Ph
209	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-(2-Py)-Ph
210	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,4-(OMe) ₂ -Ph
211	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Cl-6-NH ₂ -Ph
212	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-Cl-4-NO ₂ -Ph
213	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Cl-6-CF ₃ -Ph
214	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,4-F ₂ -Ph
215	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,4-Cl ₂ -Ph
216	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Cl-6-NO ₂ -Ph
217	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Cl-6-Me-Ph
218	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-Cl-4-NH ₂ -Ph
219	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,5-(OMe) ₂ -Ph
220	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,5-F ₂ -Ph
221	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,5-Cl ₂ -Ph
222	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,5-CF ₃ -Ph
223	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,5-CO ₂ Me-Ph
224	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,5-(OMe) ₂ -Ph
225	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,5-Me ₂ -Ph
226	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,5-(CF ₃) ₂ -Ph
227	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,5-F ₂ -Ph
228	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,5-Cl ₂ -Ph
229	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,5-(NO ₂) ₂ -Ph
230	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,4-Me ₂ -Ph
231	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,4-(CF ₃) ₂ -Ph
232	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Cl-5-NO ₂ -Ph
233	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,4-F ₂ -Ph
234	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,4-Cl ₂ -Ph
235	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Cl-5-CF ₃ -Ph
236	4,5-(OMe) ₂	NH ₂	-	O	H	4'	indane-5-yl
237	4,5-(OMe) ₂	NH ₂	-	O	H	4'	1,3-benzodioxole-5-yl
238	4,5-(OMe) ₂	NH ₂	-	O	H	4'	1,4-benzodioxane-6-yl
239	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Cl-4-Me-Ph
240	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Cl-4-F-Ph
241	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-NO ₂ -4-Me-Ph
242	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,4-(OMe) ₂ -Ph
243	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,6-Pr ₂ -Ph
244	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,6-F ₂ -Ph
245	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,6-Cl ₂ -Ph
246	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-Cl-6-Me-Ph
247	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,3-(OMe) ₂ -Ph
248	4,5-(OMe) ₂	NH ₂	-	O	H	4'	5-Cl-6-OMe-Ph

249	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,3-Cl ₂ -Ph
250	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Cl-5-NH ₂ -Ph
251	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Cl-6-OMe-Ph
252	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Cl-4,6-(OMe) ₂ -Ph
253	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4,5-Me ₂ -2-NO ₂ -Ph
254	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,4,5-F ₃ -Ph
255	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,3,6-F ₃ -Ph
256	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,4,6-F ₃ -Ph
257	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2,3,4-F ₃ -Ph
258	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,4,5-(OMe) ₃ -Ph
259	4,5-(OMe) ₂	NH ₂	-	O	H	4'	c-Pen
260	4,5-(OMe) ₂	NH ₂	-	O	H	4'	c-Hex
261	4,5-(OMe) ₂	NH ₂	-	O	H	4'	c-Hep
262	4,5-(OMe) ₂	NH ₂	-	O	H	4'	tetrahydropyran-2-yl
263	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-propenyl
264	4,5-(OMe) ₂	NH ₂	-	O	H	4'	ⁿ Bu
265	4,5-(OMe) ₂	NH ₂	-	O	H	4'	ⁿ Pr
266	4,5-(OMe) ₂	NH ₂	-	O	H	4'	'Pr
267	4,5-(OMe) ₂	NH ₂	-	O	H	4'	'Bu
268	4,5-(OMe) ₂	NH ₂	-	O	H	4'	Me
269	4,5-(OMe) ₂	NH ₂	-	O	H	4'	Bn
270	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-F-Bn
271	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-F-Bn
272	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-F-Bn
273	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Cl-Bn
274	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Cl-Bn
275	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-Cl-Bn
276	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-OMe-Bn
277	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-OMe-Bn
278	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-OMe-Bn
279	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Me-Bn
280	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Me-Bn
281	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-Me-Bn
282	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-NO ₂ -Bn
283	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-NH ₂ -Bn
284	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-NMe ₂ -Bn
285	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-SO ₂ Me-Bn
286	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-SO ₂ NH ₂ -Bn
287	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-CN-Bn
288	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-'Bu-Bn
289	4,5-(OMe) ₂	NH ₂	-	O	H	4'	piperonyl
290	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,4-(OMe) ₂ -Bn
291	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3,4-Cl ₂ -Bn
292	4,5-(OMe) ₂	NH ₂	-	O	H	4'	(CH ₂) ₂ -(4-Cl-Ph)
293	4,5-(OMe) ₂	NH ₂	-	O	H	4'	(CH ₂) ₂ -(3,4-(OMe) ₂ -Ph)
294	4,5-(OMe) ₂	NH ₂	-	O	H	4'	(CH ₂) ₂ -Ph
295	4,5-(OMe) ₂	NH ₂	-	O	H	4'	(CH ₂) ₃ -Ph
296	4,5-(OMe) ₂	NH ₂	-	O	H	4'	(CH ₂) ₄ -Ph
297	4,5-(OMe) ₂	NH ₂	-	O	H	4'	COPh
298	4,5-(OMe) ₂	NH ₂	-	O	H	4'	1-Nap
299	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-Nap
300	4,5-(OMe) ₂	NH ₂	-	O	H	4'	CH ₂ -(1-Nap)
301	4,5-(OMe) ₂	NH ₂	-	O	H	4'	CH ₂ -(2-Nap)
302	4,5-(OMe) ₂	NH ₂	-	O	H	4'	2-Py

303	4,5-(OMe) ₂	NH ₂	-	O	H	4'	3-Py
304	4,5-(OMe) ₂	NH ₂	-	O	H	4'	4-Py
305	4,5-(OMe) ₂	NH ₂	-	O	H	4'	CH ₂ -(2-Py)
306	4,5-(OMe) ₂	NH ₂	-	O	H	4'	CH ₂ -(3-Py)
307	4,5-(OMe) ₂	NH ₂	-	O	H	4'	CH ₂ -(4-Py)
308	4,5-(OMe) ₂	NH ₂	-	O	H	4'	(CH ₂) ₂ -(2-Py)
309	4,5-(OMe) ₂	NH ₂	-	O	H	4'	furan-3-yl
310	4,5-(OMe) ₂	NH ₂	-	O	H	4'	thiophene-3-yl
311	4,5-(OMe) ₂	NH ₂	-	O	H	4'	CH ₂ -(thiophene-3-yl)
312	4,5-(OMe) ₂	NH ₂	-	O	H	4'	CH ₂ -(furan-3-yl)
313	4,5-(OMe) ₂	NH ₂	-	O	H	4'	CH ₂ -(thiophene-2-yl)
314	4,5-(OMe) ₂	NH ₂	-	O	H	4'	(CH ₂) ₂ -(thiophene-2-yl)
315	4,5-(OMe) ₂	OEt	-	S	H	4'	Ph
316	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Me-Ph
317	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Me-Ph
318	4,5-(OMe) ₂	OEt	-	S	H	4'	2-Me-Ph
319	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Et-Ph
320	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Et-Ph
321	4,5-(OMe) ₂	OEt	-	S	H	4'	2-Et-Ph
322	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Pr-Ph
323	4,5-(OMe) ₂	OEt	-	S	H	4'	4- ⁿ Bu-Ph
324	4,5-(OMe) ₂	OEt	-	S	H	4'	4-CF ₃ -Ph
325	4,5-(OMe) ₂	OEt	-	S	H	4'	4- ^t Bu-Ph
326	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Ac-Ph
327	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Ac-Ph
328	4,5-(OMe) ₂	OEt	-	S	H	4'	4-CO ₂ Et-Ph
329	4,5-(OMe) ₂	OEt	-	S	H	4'	3-CO ₂ Et-Ph
330	4,5-(OMe) ₂	OEt	-	S	H	4'	4-CO ₂ Me-Ph
331	4,5-(OMe) ₂	OEt	-	S	H	4'	4-CO ₂ ⁿ Bu-Ph
332	4,5-(OMe) ₂	OEt	-	S	H	4'	4-SMe-Ph
333	4,5-(OMe) ₂	OEt	-	S	H	4'	4-F-Ph
334	4,5-(OMe) ₂	OEt	-	S	H	4'	3-F-Ph
335	4,5-(OMe) ₂	OEt	-	S	H	4'	2-F-Ph
336	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Cl-Ph
337	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Cl-Ph
338	4,5-(OMe) ₂	OEt	-	S	H	4'	2-Cl-Ph
339	4,5-(OMe) ₂	OEt	-	S	H	4'	4-NO ₂ -Ph
340	4,5-(OMe) ₂	OEt	-	S	H	4'	3-NO ₂ -Ph
341	4,5-(OMe) ₂	OEt	-	S	H	4'	2-NO ₂ -Ph
342	4,5-(OMe) ₂	OEt	-	S	H	4'	4-NH ₂ -Ph
343	4,5-(OMe) ₂	OEt	-	S	H	4'	3-NH ₂ -Ph
344	4,5-(OMe) ₂	OEt	-	S	H	4'	2-NH ₂ -Ph
345	4,5-(OMe) ₂	OEt	-	S	H	4'	4-NHAc-Ph
346	4,5-(OMe) ₂	OEt	-	S	H	4'	4-NMe ₂ -Ph
347	4,5-(OMe) ₂	OEt	-	S	H	4'	3-NMe ₂ -Ph
348	4,5-(OMe) ₂	OEt	-	S	H	4'	2-NMe ₂ -Ph
349	4,5-(OMe) ₂	OEt	-	S	H	4'	4-OMe-Ph
350	4,5-(OMe) ₂	OEt	-	S	H	4'	3-OMe-Ph
351	4,5-(OMe) ₂	OEt	-	S	H	4'	2-OMe-Ph
352	4,5-(OMe) ₂	OEt	-	S	H	4'	4-OEt-Ph
353	4,5-(OMe) ₂	OEt	-	S	H	4'	4-NEt ₂ -Ph

354	4,5-(OMe) ₂	OEt	-	S	H	4'	4-OAc-Ph
355	4,5-(OMe) ₂	OEt	-	S	H	4'	3-OAc-Ph
356	4,5-(OMe) ₂	OEt	-	S	H	4'	2-OAc-Ph
357	4,5-(OMe) ₂	OEt	-	S	H	4'	4-OH-Ph
358	4,5-(OMe) ₂	OEt	-	S	H	4'	3-OH-Ph
359	4,5-(OMe) ₂	OEt	-	S	H	4'	2-OH-Ph
360	4,5-(OMe) ₂	OEt	-	S	H	4'	4-OBn-Ph
361	4,5-(OMe) ₂	OEt	-	S	H	4'	4-PhCO-Ph
362	4,5-(OMe) ₂	OEt	-	S	H	4'	4-CO ₂ H-Ph
363	4,5-(OMe) ₂	OEt	-	S	H	4'	3-CO ₂ H-Ph
364	4,5-(OMe) ₂	OEt	-	S	H	4'	4-CN-Ph
365	4,5-(OMe) ₂	OEt	-	S	H	4'	4-morpholino-Ph
366	4,5-(OMe) ₂	OEt	-	S	H	4'	4-(2-Py)-Ph
367	4,5-(OMe) ₂	OEt	-	S	H	4'	2,4-(OMe) ₂ -Ph
368	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Cl-6-NH ₂ -Ph
369	4,5-(OMe) ₂	OEt	-	S	H	4'	2-Cl-4-NO ₂ -Ph
370	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Cl-6-CF ₃ -Ph
371	4,5-(OMe) ₂	OEt	-	S	H	4'	2,4-F ₂ -Ph
372	4,5-(OMe) ₂	OEt	-	S	H	4'	2,4-Cl ₂ -Ph
373	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Cl-6-NO ₂ -Ph
374	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Cl-6-Me-Ph
375	4,5-(OMe) ₂	OEt	-	S	H	4'	2-Cl-4-NH ₂ -Ph
376	4,5-(OMe) ₂	OEt	-	S	H	4'	2,5-(OMe) ₂ -Ph
377	4,5-(OMe) ₂	OEt	-	S	H	4'	2,5-F ₂ -Ph
378	4,5-(OMe) ₂	OEt	-	S	H	4'	2,5-Cl ₂ -Ph
379	4,5-(OMe) ₂	OEt	-	S	H	4'	2,5-CF ₃ -Ph
380	4,5-(OMe) ₂	OEt	-	S	H	4'	2,5-CO ₂ Me-Ph
381	4,5-(OMe) ₂	OEt	-	S	H	4'	3,5-(OMe) ₂ -Ph
382	4,5-(OMe) ₂	OEt	-	S	H	4'	3,5-Me ₂ -Ph
383	4,5-(OMe) ₂	OEt	-	S	H	4'	3,5-(CF ₃) ₂ -Ph
384	4,5-(OMe) ₂	OEt	-	S	H	4'	3,5-F ₂ -Ph
385	4,5-(OMe) ₂	OEt	-	S	H	4'	3,5-Cl ₂ -Ph
386	4,5-(OMe) ₂	OEt	-	S	H	4'	3,5-(NO ₂) ₂ -Ph
387	4,5-(OMe) ₂	OEt	-	S	H	4'	3,4-Me ₂ -Ph
388	4,5-(OMe) ₂	OEt	-	S	H	4'	3,4-(CF ₃) ₂ -Ph
389	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Cl-5-NO ₂ -Ph
390	4,5-(OMe) ₂	OEt	-	S	H	4'	3,4-F ₂ -Ph
391	4,5-(OMe) ₂	OEt	-	S	H	4'	3,4-Cl ₂ -Ph
392	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Cl-5-CF ₃ -Ph
393	4,5-(OMe) ₂	OEt	-	S	H	4'	indane-5-yl
394	4,5-(OMe) ₂	OEt	-	S	H	4'	1,3-benzodioxole-5-yl
395	4,5-(OMe) ₂	OEt	-	S	H	4'	1,4-benzodioxane-6-yl
396	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Cl-4-Me-Ph
397	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Cl-4-F-Ph
398	4,5-(OMe) ₂	OEt	-	S	H	4'	3-NO ₂ -4-Me-Ph
399	4,5-(OMe) ₂	OEt	-	S	H	4'	3,4-(OMe) ₂ -Ph
400	4,5-(OMe) ₂	OEt	-	S	H	4'	2,6-Pr ₂ -Ph
401	4,5-(OMe) ₂	OEt	-	S	H	4'	2,6-F ₂ -Ph
402	4,5-(OMe) ₂	OEt	-	S	H	4'	2,6-Cl ₂ -Ph
403	4,5-(OMe) ₂	OEt	-	S	H	4'	2-Cl-6-Me-Ph
404	4,5-(OMe) ₂	OEt	-	S	H	4'	2,3-(OMe) ₂ -Ph

405	4,5-(OMe) ₂	OEt	-	S	H	4'	5-Cl-6-OMe-Ph
406	4,5-(OMe) ₂	OEt	-	S	H	4'	2,3-Cl ₂ -Ph
407	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Cl-5-NH ₂ -Ph
408	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Cl-6-OMe-Ph
409	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Cl-4,6-(OMe) ₂ -Ph
410	4,5-(OMe) ₂	OEt	-	S	H	4'	4,5-Me ₂ -2-NO ₂ -Ph
411	4,5-(OMe) ₂	OEt	-	S	H	4'	2,4,5-F ₃ -Ph
412	4,5-(OMe) ₂	OEt	-	S	H	4'	2,3,6-F ₃ -Ph
413	4,5-(OMe) ₂	OEt	-	S	H	4'	2,4,6-F ₃ -Ph
414	4,5-(OMe) ₂	OEt	-	S	H	4'	2,3,4-F ₃ -Ph
415	4,5-(OMe) ₂	OEt	-	S	H	4'	3,4,5-(OMe) ₃ -Ph
416	4,5-(OMe) ₂	OEt	-	S	H	4'	c-Pen
417	4,5-(OMe) ₂	OEt	-	S	H	4'	c-Hex
418	4,5-(OMe) ₂	OEt	-	S	H	4'	c-Hep
419	4,5-(OMe) ₂	OEt	-	S	H	4'	tetrahydropyran-2-yl
420	4,5-(OMe) ₂	OEt	-	S	H	4'	2-propenyl
421	4,5-(OMe) ₂	OEt	-	S	H	4'	"Bu
422	4,5-(OMe) ₂	OEt	-	S	H	4'	"Pr
423	4,5-(OMe) ₂	OEt	-	S	H	4'	'Pr
424	4,5-(OMe) ₂	OEt	-	S	H	4'	'Bu
425	4,5-(OMe) ₂	OEt	-	S	H	4'	Me
426	4,5-(OMe) ₂	OEt	-	S	H	4'	Bn
427	4,5-(OMe) ₂	OEt	-	S	H	4'	4-F-Bn
428	4,5-(OMe) ₂	OEt	-	S	H	4'	3-F-Bn
429	4,5-(OMe) ₂	OEt	-	S	H	4'	2-F-Bn
430	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Cl-Bn
431	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Cl-Bn
432	4,5-(OMe) ₂	OEt	-	S	H	4'	2-Cl-Bn
433	4,5-(OMe) ₂	OEt	-	S	H	4'	4-OMe-Bn
434	4,5-(OMe) ₂	OEt	-	S	H	4'	3-OMe-Bn
435	4,5-(OMe) ₂	OEt	-	S	H	4'	2-OMe-Bn
436	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Me-Bn
437	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Me-Bn
438	4,5-(OMe) ₂	OEt	-	S	H	4'	2-Me-Bn
439	4,5-(OMe) ₂	OEt	-	S	H	4'	4-NO ₂ -Bn
440	4,5-(OMe) ₂	OEt	-	S	H	4'	4-NH ₂ -Bn
441	4,5-(OMe) ₂	OEt	-	S	H	4'	4-NMe ₂ -Bn
442	4,5-(OMe) ₂	OEt	-	S	H	4'	4-SO ₂ Me-Bn
443	4,5-(OMe) ₂	OEt	-	S	H	4'	4-SO ₂ NH ₂ -Bn
444	4,5-(OMe) ₂	OEt	-	S	H	4'	4-CN-Bn
445	4,5-(OMe) ₂	OEt	-	S	H	4'	4-'Bu-Bn
446	4,5-(OMe) ₂	OEt	-	S	H	4'	piperonyl
447	4,5-(OMe) ₂	OEt	-	S	H	4'	3,4-(OMe) ₂ -Bn
448	4,5-(OMe) ₂	OEt	-	S	H	4'	3,4-Cl ₂ -Bn
449	4,5-(OMe) ₂	OEt	-	S	H	4'	(CH ₂) ₂ -(4-Cl-Ph)
450	4,5-(OMe) ₂	OEt	-	S	H	4'	(CH ₂) ₂ -(3,4-(OMe) ₂ -Ph)
451	4,5-(OMe) ₂	OEt	-	S	H	4'	(CH ₂) ₂ -Ph
452	4,5-(OMe) ₂	OEt	-	S	H	4'	(CH ₂) ₃ -Ph
453	4,5-(OMe) ₂	OEt	-	S	H	4'	(CH ₂) ₄ -Ph
454	4,5-(OMe) ₂	OEt	-	S	H	4'	COPh
455	4,5-(OMe) ₂	OEt	-	S	H	4'	1-Nap

456	4,5-(OMe) ₂	OEt	-	S	H	4'	2-Nap
457	4,5-(OMe) ₂	OEt	-	S	H	4'	CH ₂ -(1-Nap)
458	4,5-(OMe) ₂	OEt	-	S	H	4'	CH ₂ -(2-Nap)
459	4,5-(OMe) ₂	OEt	-	S	H	4'	2-Py
460	4,5-(OMe) ₂	OEt	-	S	H	4'	3-Py
461	4,5-(OMe) ₂	OEt	-	S	H	4'	4-Py
462	4,5-(OMe) ₂	OEt	-	S	H	4'	CH ₂ -(2-Py)
463	4,5-(OMe) ₂	OEt	-	S	H	4'	CH ₂ -(3-Py)
464	4,5-(OMe) ₂	OEt	-	S	H	4'	CH ₂ -(4-Py)
465	4,5-(OMe) ₂	OEt	-	S	H	4'	(CH ₂) ₂ -(2-Py)
466	4,5-(OMe) ₂	OEt	-	S	H	4'	furan-3-yl
467	4,5-(OMe) ₂	OEt	-	S	H	4'	thiophene-3-yl
468	4,5-(OMe) ₂	OEt	-	S	H	4'	CH ₂ -(thiophene-3-yl)
469	4,5-(OMe) ₂	OEt	-	S	H	4'	CH ₂ -(furan-3-yl)
470	4,5-(OMe) ₂	OEt	-	S	H	4'	CH ₂ -(thiophene-2-yl)
471	4,5-(OMe) ₂	OEt	-	S	H	4'	(CH ₂) ₂ -(thiophene-2-yl)
472	4,5-(OMe) ₂	NH ₂	-	S	H	4'	Ph
473	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Me-Ph
474	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Me-Ph
475	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-Me-Ph
476	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Et-Ph
477	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Et-Ph
478	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-Et-Ph
479	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4- ^t Pr-Ph
480	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4- ⁿ Bu-Ph
481	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-CF ₃ -Ph
482	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4- ^t Bu-Ph
483	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Ac-Ph
484	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Ac-Ph
485	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-CO ₂ Et-Ph
486	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-CO ₂ Et-Ph
487	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-CO ₂ Me-Ph
488	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-CO ₂ ⁿ Bu-Ph
489	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-SMe-Ph
490	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-F-Ph
491	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-F-Ph
492	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-F-Ph
493	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Cl-Ph
494	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Cl-Ph
495	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-Cl-Ph
496	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-NO ₂ -Ph
497	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-NO ₂ -Ph
498	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-NO ₂ -Ph
499	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-NH ₂ -Ph
500	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-NH ₂ -Ph
501	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-NH ₂ -Ph
502	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-NHAc-Ph
503	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-NMe ₂ -Ph
504	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-NMe ₂ -Ph
505	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-NMe ₂ -Ph
506	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-OMe-Ph

507	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-OMe-Ph
508	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-OMe-Ph
509	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-OEt-Ph
510	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-NEt ₂ -Ph
511	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-OAc-Ph
512	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-OAc-Ph
513	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-OAc-Ph
514	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-OH-Ph
515	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-OH-Ph
516	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-OH-Ph
517	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-OBn-Ph
518	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-PhCO-Ph
519	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-CO ₂ H-Ph
520	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-CO ₂ H-Ph
521	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-CN-Ph
522	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-morpholino-Ph
523	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-(2-Py)-Ph
524	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,4-(OMe) ₂ -Ph
525	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Cl-6-NH ₂ --Ph
526	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-Cl-4-NO ₂ -Ph
527	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Cl-6-CF ₃ --Ph
528	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,4-F ₂ -Ph
529	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,4-Cl ₂ -Ph
530	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Cl-6-NO ₂ --Ph
531	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Cl-6-Me-Ph
532	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-Cl-4-NH ₂ -Ph
533	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,5-(OMe) ₂ -Ph
534	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,5-F ₂ -Ph
535	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,5-Cl ₂ -Ph
536	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,5-CF ₃ -Ph
537	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,5-CO ₂ Me-Ph
538	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,5-(OMe) ₂ -Ph
539	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,5-Me ₂ -Ph
540	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,5-(CF ₃) ₂ -Ph
541	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,5-F ₂ -Ph
542	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,5-Cl ₂ -Ph
543	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,5-(NO ₂) ₂ -Ph
544	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,4-Me ₂ -Ph
545	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,4-(CF ₃) ₂ -Ph
546	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Cl-5-NO ₂ -Ph
547	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,4-F ₂ -Ph
548	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,4-Cl ₂ -Ph
549	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Cl-5-CF ₃ -Ph
550	4,5-(OMe) ₂	NH ₂	-	S	H	4'	indane-5-yl
551	4,5-(OMe) ₂	NH ₂	-	S	H	4'	1,3-benzodioxole-5-yl
552	4,5-(OMe) ₂	NH ₂	-	S	H	4'	1,4-benzodioxane-6-yl
553	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Cl-4-Me-Ph
554	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Cl-4-F-Ph
555	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-NO ₂ -4-Me-Ph
556	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,4-(OMe) ₂ -Ph
557	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,6- ⁱ Pr ₂ -Ph

558	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,6-F ₂ -Ph
559	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,6-Cl ₂ -Ph
560	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-Cl-6-Me-Ph
561	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,3-(OMe) ₂ -Ph
562	4,5-(OMe) ₂	NH ₂	-	S	H	4'	5-Cl-6-OMe-Ph
563	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,3-Cl ₂ -Ph
564	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Cl-5-NH ₂ -Ph
565	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Cl-6-OMe-Ph
566	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Cl-4,6-(OMe) ₂ -Ph
567	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4,5-Me ₂ -2-NO ₂ -Ph
568	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,4,5-F ₃ -Ph
569	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,3,6-F ₃ -Ph
570	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,4,6-F ₃ -Ph
571	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2,3,4-F ₃ -Ph
572	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,4,5-(OMe) ₃ -Ph
573	4,5-(OMe) ₂	NH ₂	-	S	H	4'	c-Pen
574	4,5-(OMe) ₂	NH ₂	-	S	H	4'	c-Hex
575	4,5-(OMe) ₂	NH ₂	-	S	H	4'	c-Hep
576	4,5-(OMe) ₂	NH ₂	-	S	H	4'	tetrahydropyran-2-yl
577	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-propenyl
578	4,5-(OMe) ₂	NH ₂	-	S	H	4'	ⁿ Bu
579	4,5-(OMe) ₂	NH ₂	-	S	H	4'	^t Pr
580	4,5-(OMe) ₂	NH ₂	-	S	H	4'	^t Pr
581	4,5-(OMe) ₂	NH ₂	-	S	H	4'	^t Bu
582	4,5-(OMe) ₂	NH ₂	-	S	H	4'	Me
583	4,5-(OMe) ₂	NH ₂	-	S	H	4'	Bn
584	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-F-Bn
585	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-F-Bn
586	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-F-Bn
587	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Cl-Bn
588	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Cl-Bn
589	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-Cl-Bn
590	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-OMe-Bn
591	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-OMe-Bn
592	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-OMe-Bn
593	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Me-Bn
594	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Me-Bn
595	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-Me-Bn
596	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-NO ₂ -Bn
597	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-NH ₂ -Bn
598	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-NMe ₂ -Bn
599	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-SO ₂ Me-Bn
600	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-SO ₂ NH ₂ -Bn
601	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-CN-Bn
602	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4- ^t Bu-Bn
603	4,5-(OMe) ₂	NH ₂	-	S	H	4'	piperonyl
604	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,4-(OMe) ₂ -Bn
605	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3,4-Cl ₂ -Bn
606	4,5-(OMe) ₂	NH ₂	-	S	H	4'	(CH ₂) ₂ -(4-Cl-Ph)
607	4,5-(OMe) ₂	NH ₂	-	S	H	4'	(CH ₂) ₂ -(3,4-(OMe) ₂ -Ph)
608	4,5-(OMe) ₂	NH ₂	-	S	H	4'	(CH ₂) ₂ -Ph

609	4,5-(OMe) ₂	NH ₂	-	S	H	4'	(CH ₂) ₃ -Ph
610	4,5-(OMe) ₂	NH ₂	-	S	H	4'	(CH ₂) ₄ -Ph
611	4,5-(OMe) ₂	NH ₂	-	S	H	4'	COPh
612	4,5-(OMe) ₂	NH ₂	-	S	H	4'	1-Nap
613	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-Nap
614	4,5-(OMe) ₂	NH ₂	-	S	H	4'	CH ₂ -(1-Nap)
615	4,5-(OMe) ₂	NH ₂	-	S	H	4'	CH ₂ -(2-Nap)
616	4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-Py
617	4,5-(OMe) ₂	NH ₂	-	S	H	4'	3-Py
618	4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Py
619	4,5-(OMe) ₂	NH ₂	-	S	H	4'	CH ₂ -(2-Py)
620	4,5-(OMe) ₂	NH ₂	-	S	H	4'	CH ₂ -(3-Py)
621	4,5-(OMe) ₂	NH ₂	-	S	H	4'	CH ₂ -(4-Py)
622	4,5-(OMe) ₂	NH ₂	-	S	H	4'	(CH ₂) ₂ -(2-Py)
623	4,5-(OMe) ₂	NH ₂	-	S	H	4'	furan-3-yl
624	4,5-(OMe) ₂	NH ₂	-	S	H	4'	thiophene-3-yl
625	4,5-(OMe) ₂	NH ₂	-	S	H	4'	CH ₂ -(thiophene-3-yl)
626	4,5-(OMe) ₂	NH ₂	-	S	H	4'	CH ₂ -(furan-3-yl)
627	4,5-(OMe) ₂	NH ₂	-	S	H	4'	CH ₂ -(thiophene-2-yl)
628	4,5-(OMe) ₂	NH ₂	-	S	H	4'	(CH ₂) ₂ -(thiophene-2-yl)
629	5-NO ₂	NH ₂	-	O	H	4'	Ph
630	4-OCH ₂ Ph	NH ₂	-	O	H	4'	Ph
631	4-OMe	NH ₂	-	O	H	4'	Ph
632	4-OH	NH ₂	-	O	H	4'	Ph
633	4-Me	NH ₂	-	O	H	4'	Ph
634	4-Br	NH ₂	-	O	H	4'	Ph
635	5-Cl	NH ₂	-	O	H	4'	Ph
636	5-Cl	NH ₂	-	O	H	3'	Ph
637	5-Cl	NH ₂	-	O	H	2'	Ph
638	5-Cl	NH ₂	-	O	H	4'	4-F-Ph
639	5-Cl	NH ₂	-	O	H	4'	4-Ac-Ph
640	5-Cl	NH ₂	-	O	H	4'	4-OMe-Ph
641	5-Cl	NH ₂	-	O	H	4'	4-Me-Ph
642	5-Cl	NH ₂	-	O	H	4'	3,4,5-(OMe) ₃ -Ph
643	4,5-F ₂	NH ₂	-	O	H	4'	Ph
644	4,5-F ₂	NH ₂	-	O	H	3'	Ph
645	4,5-F ₂	NH ₂	-	O	H	2'	Ph
646	4,5-F ₂	NH ₂	-	O	H	4'	4-F-Ph
647	4,5-F ₂	NH ₂	-	O	H	4'	4-Ac-Ph
648	4,5-F ₂	NH ₂	-	O	H	4'	4-OMe-Ph
649	4,5-F ₂	NH ₂	-	O	H	4'	4-Me-Ph
650	4,5-F ₂	NH ₂	-	O	H	4'	3,4,5-(OMe) ₃ -Ph
651	4-Br, 5-NO ₂	NH ₂	-	O	H	4'	Ph
652		NH ₂	-	O	H	4'	Ph
653		NH ₂	-	O	H	3'	Ph

654		NH ₂	-	O	H	2'	Ph
655		NH ₂	-	O	H	4'	4-F-Ph
656		NH ₂	-	O	H	4'	4-Ac-Ph
657		NH ₂	-	O	H	4'	4-OMe-Ph
658		NH ₂	-	O	H	4'	4-Me-Ph
659		NH ₂	-	O	H	4'	3,4,5-(OMe) ₃ -Ph
660	5-NO ₂	OEt	-	O	H	4'	Ph
661	4-OCH ₂ Ph	OEt	-	O	H	4'	Ph
662	4-OMe	OEt	-	O	H	4'	Ph
663	4-OH	OEt	-	O	H	4'	Ph
664	4-Me	OEt	-	O	H	4'	Ph
665	4-Br	OEt	-	O	H	4'	Ph
666	5-Cl	OEt	-	O	H	4'	Ph
667	5-Cl	OEt	-	O	H	3'	Ph
668	5-Cl	OEt	-	O	H	2'	Ph
669	5-Cl	OEt	-	O	H	4'	4-F-Ph
670	5-Cl	OEt	-	O	H	4'	4-Ac-Ph
671	5-Cl	OEt	-	O	H	4'	4-OMe-Ph
672	5-Cl	OEt	-	O	H	4'	4-Me-Ph
673	5-Cl	OEt	-	O	H	4'	3,4,5-(OMe) ₃ -Ph
674	4,5-F ₂	OEt	-	O	H	4'	Ph
675	4,5-F ₂	OEt	-	O	H	3'	Ph
676	4,5-F ₂	OEt	-	O	H	2'	Ph
677	4,5-F ₂	OEt	-	O	H	4'	4-F-Ph
678	4,5-F ₂	OEt	-	O	H	4'	4-Ac-Ph
679	4,5-F ₂	OEt	-	O	H	4'	4-OMe-Ph
680	4,5-F ₂	OEt	-	O	H	4'	4-Me-Ph
681	4,5-F ₂	OEt	-	O	H	4'	3,4,5-(OMe) ₃ -Ph
682	4-Br, 5-NO ₂	OEt	-	O	H	4'	Ph
683		OEt	-	O	H	4'	Ph

684		OEt	-	O	H	3'	Ph
685		OEt	-	O	H	2'	Ph
686		OEt	-	O	H	4'	4-F-Ph
687		OEt	-	O	H	4'	4-Ac-Ph
688		OEt	-	O	H	4'	4-OMe-Ph
689		OEt	-	O	H	4'	4-Me-Ph
690		OEt	-	O	H	4'	3,4,5-(OMe) ₃ -Ph
691	4,5-(OMe) ₂	OEt	-	O	H	3'	Ph
692	4,5-(OMe) ₂	OEt	-	O	H	2'	Ph
693	4,5-(OMe) ₂	OEt	-	O	3'-OMe	4'	Ph
694	4,5-(OMe) ₂	OEt	-	O	4'-OMe	3'	Ph
695	4,5-(OMe) ₂	OEt	-	O	4'-OH	3'	Ph
696	4,5-(OMe) ₂	OEt	-	O	3'-O-n-Bu	4'	Ph
697	4,5-(OMe) ₂	OEt	-	O	5'-F	3'	Ph
698	4,5-(OMe) ₂	OEt	-	O	5'-F	4'	Ph
699	4,5-(OMe) ₂	OEt	-	O	2'-OMe	4'	Ph
700	4,5-(OMe) ₂	OEt	-	O	2'-OH	4'	Ph
701	4,5-(OMe) ₂	OEt	-	O	6'-OMe	2'	Ph
702	4,5-(OMe) ₂	OEt	-	O	6'-OH	2'	Ph
703	4,5-(OMe) ₂	OEt	-	O	2'-Me, 5'-OMe	4'	Ph
704	4,5-(OMe) ₂	OEt	-	O	2'-Me, 5'-OH	4'	Ph
705	4,5-(OMe) ₂	OEt	-	O	4'-SMe	3'	Ph
706	4,5-(OMe) ₂	OEt	-	O	3'-SMe	4'	Ph
707	4,5-(OMe) ₂	OEt	-	O	3',5'-Me ₂	4'	Ph
708	4,5-(OMe) ₂	OEt	-	O	2',5'-Me ₂	4'	Ph
709	4,5-(OMe) ₂	OEt	-	O	3',5'-Cl ₂	4'	Ph
710	4,5-(OMe) ₂	OEt	-	O	2',5'-Cl ₂	3'	Ph
711	4,5-(OMe) ₂	OEt	-	O	3'-Me	4'	Ph
712	4,5-(OMe) ₂	OEt	-	O	4'-Me	3'	Ph
713	4,5-(OMe) ₂	OEt	-	O	4'-Cl	3'	Ph

714	4,5-(OMe) ₂	OEt	-	O	4'-O(CH ₂) ₂ - N-morpholinyl	3'	Ph
715	4,5-(OMe) ₂	OEt	CH ₂	O	H	4'	Ph
716	4,5-(OMe) ₂	OEt	CH ₂	O	H	3'	Ph
717	4,5-(OMe) ₂	OEt	CH ₂	O	H	2'	Ph
718	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	Ph
719	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	Ph
720	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	Ph
721	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	Ph
722	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	Ph
723	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	Ph
724	4,5-(OMe) ₂	NH ₂	-	O	H	3'	Ph
725	4,5-(OMe) ₂	NH ₂	-	O	H	2'	Ph
726	4,5-(OMe) ₂	NH ₂	-	O	3'-OMe	4'	Ph
727	4,5-(OMe) ₂	NH ₂	-	O	4'-OMe	3'	Ph
728	4,5-(OMe) ₂	NH ₂	-	O	4'-OH	3'	Ph
729	4,5-(OMe) ₂	NH ₂	-	O	3'-O-n-Bu	4'	Ph
730	4,5-(OMe) ₂	NH ₂	-	O	5'-F	3'	Ph
731	4,5-(OMe) ₂	NH ₂	-	O	5'-F	4'	Ph
732	4,5-(OMe) ₂	NH ₂	-	O	2'-OMe	4'	Ph
733	4,5-(OMe) ₂	NH ₂	-	O	2'-OH	4'	Ph
734	4,5-(OMe) ₂	NH ₂	-	O	6'-OMe	2'	Ph
735	4,5-(OMe) ₂	NH ₂	-	O	6'-OH	2'	Ph
736	4,5-(OMe) ₂	NH ₂	-	O	2'-Me , 5'- OMe	4'	Ph
737	4,5-(OMe) ₂	NH ₂	-	O	2'-Me , 5'-OH	4'	Ph
738	4,5-(OMe) ₂	NH ₂	-	O	4'-SMe	3'	Ph
739	4,5-(OMe) ₂	NH ₂	-	O	3'-SMe	4'	Ph
740	4,5-(OMe) ₂	NH ₂	-	O	3',5'-Me ₂	4'	Ph
741	4,5-(OMe) ₂	NH ₂	-	O	2',5'-Me ₂	4'	Ph
742	4,5-(OMe) ₂	NH ₂	-	O	3',5'-Cl ₂	4'	Ph
743	4,5-(OMe) ₂	NH ₂	-	O	2',5'-Cl ₂	3'	Ph
744	4,5-(OMe) ₂	NH ₂	-	O	3'-Me	4'	Ph
745	4,5-(OMe) ₂	NH ₂	-	O	4'-Me	3'	Ph
746	4,5-(OMe) ₂	NH ₂	-	O	4'-Cl	3'	Ph
747	4,5-(OMe) ₂	NH ₂	-	O	4'-O(CH ₂) ₂ - N-morpholinyl	3'	Ph
748	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	4'	Ph
749	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	3'	Ph
750	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	2'	Ph
751	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	Ph
752	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	Ph
753	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	Ph
754	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	Ph
755	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	Ph
756	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	Ph
757	4,5-(OMe) ₂	NHMe	-	O	H	4'	Ph
758	4,5-(OMe) ₂	NMe ₂	-	O	H	4'	Ph

759	4,5-(OMe) ₂	OMe	-	O	H	4'	Ph
760	4,5-(OMe) ₂	OH	-	O	H	4'	Ph
761	4,5-(OMe) ₂		-	O	H	4'	Ph
762	4,5-(OMe) ₂		-	O	H	4'	Ph
763	4,5-(OMe) ₂	OEt	-	O	H	3'	3-Py
764	4,5-(OMe) ₂	OEt	-	O	H	3'	3,4,5-(OMe) ₃ -Ph
765	4,5-(OMe) ₂	OEt	-	O	H	3'	4-Ac-Ph
766	4,5-(OMe) ₂	OEt	-	O	H	3'	4-NH ₂ -Ph
767	4,5-(OMe) ₂	OEt	-	O	3-OMe	4'	3-Py
768	4,5-(OMe) ₂	OEt	-	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
769	4,5-(OMe) ₂	OEt	-	O	3-OMe	4'	4-Ac-Ph
770	4,5-(OMe) ₂	OEt	-	O	3-OMe	4'	4-NH ₂ -Ph
771	4,5-(OMe) ₂	OEt	CH ₂	O	H	3'	3-Py
772	4,5-(OMe) ₂	OEt	CH ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
773	4,5-(OMe) ₂	OEt	CH ₂	O	H	3'	4-Ac-Ph
774	4,5-(OMe) ₂	OEt	CH ₂	O	H	3'	4-NH ₂ -Ph
775	4,5-(OMe) ₂	OEt	CH ₂	O	3-OMe	4'	3-Py
776	4,5-(OMe) ₂	OEt	CH ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
777	4,5-(OMe) ₂	OEt	CH ₂	O	3-OMe	4'	4-Ac-Ph
778	4,5-(OMe) ₂	OEt	CH ₂	O	3-OMe	4'	4-NH ₂ -Ph
779	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	3-Py
780	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
781	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	4-Ac-Ph
782	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
783	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	3-OMe	4'	3-Py
784	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
785	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	3-OMe	4'	4-Ac-Ph
786	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	3-OMe	4'	4-NH ₂ -Ph
787	4,5-(OMe) ₂	NH ₂	-	O	H	3'	3-Py
788	4,5-(OMe) ₂	NH ₂	-	O	H	3'	3,4,5-(OMe) ₃ -Ph
789	4,5-(OMe) ₂	NH ₂	-	O	H	3'	4-Ac-Ph
790	4,5-(OMe) ₂	NH ₂	-	O	H	3'	4-NH ₂ -Ph
791	4,5-(OMe) ₂	NH ₂	-	O	3-OMe	4'	3-Py
792	4,5-(OMe) ₂	NH ₂	-	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
793	4,5-(OMe) ₂	NH ₂	-	O	3-OMe	4'	4-Ac-Ph
794	4,5-(OMe) ₂	NH ₂	-	O	3-OMe	4'	4-NH ₂ -Ph
795	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	3'	3-Py
796	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
797	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	3'	4-Ac-Ph
798	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	3'	4-NH ₂ -Ph
799	4,5-(OMe) ₂	NH ₂	CH ₂	O	3-OMe	4'	3-Py
800	4,5-(OMe) ₂	NH ₂	CH ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
801	4,5-(OMe) ₂	NH ₂	CH ₂	O	3-OMe	4'	4-Ac-Ph
802	4,5-(OMe) ₂	NH ₂	CH ₂	O	3-OMe	4'	4-NH ₂ -Ph
803	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	3-Py
804	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph

805	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	4-Ac-Ph
806	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
807	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	3-OMe	4'	3-Py
808	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
809	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	3-OMe	4'	4-Ac-Ph
810	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	3-OMe	4'	4-NH ₂ -Ph
811	4,5-F ₂	OEt	-	O	H	3'	3-Py
812	4,5-F ₂	OEt	-	O	H	3'	3,4,5-(OMe) ₃ -Ph
813	4,5-F ₂	OEt	-	O	H	3'	4-Ac-Ph
814	4,5-F ₂	OEt	-	O	H	3'	4-NH ₂ -Ph
815	4,5-F ₂	OEt	-	O	3-OMe	4'	3-Py
816	4,5-F ₂	OEt	-	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
817	4,5-F ₂	OEt	-	O	3-OMe	4'	4-Ac-Ph
818	4,5-F ₂	OEt	-	O	3-OMe	4'	4-NH ₂ -Ph
819	4,5-F ₂	OEt	CH ₂	O	H	3'	3-Py
820	4,5-F ₂	OEt	CH ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
821	4,5-F ₂	OEt	CH ₂	O	H	3'	4-Ac-Ph
822	4,5-F ₂	OEt	CH ₂	O	H	3'	4-NH ₂ -Ph
823	4,5-F ₂	OEt	CH ₂	O	3-OMe	4'	3-Py
824	4,5-F ₂	OEt	CH ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
825	4,5-F ₂	OEt	CH ₂	O	3-OMe	4'	4-Ac-Ph
826	4,5-F ₂	OEt	CH ₂	O	3-OMe	4'	4-NH ₂ -Ph
827	4,5-F ₂	OEt	(CH ₂) ₂	O	H	3'	3-Py
828	4,5-F ₂	OEt	(CH ₂) ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
829	4,5-F ₂	OEt	(CH ₂) ₂	O	H	3'	4-Ac-Ph
830	4,5-F ₂	OEt	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
831	4,5-F ₂	OEt	(CH ₂) ₂	O	3-OMe	4'	3-Py
832	4,5-F ₂	OEt	(CH ₂) ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
833	4,5-F ₂	OEt	(CH ₂) ₂	O	3-OMe	4'	4-Ac-Ph
834	4,5-F ₂	OEt	(CH ₂) ₂	O	3-OMe	4'	4-NH ₂ -Ph
835	4,5-F ₂	NH ₂	-	O	H	3'	3-Py
836	4,5-F ₂	NH ₂	-	O	H	3'	3,4,5-(OMe) ₃ -Ph
837	4,5-F ₂	NH ₂	-	O	H	3'	4-Ac-Ph
838	4,5-F ₂	NH ₂	-	O	3-OMe	4'	4-NH ₂ -Ph
839	4,5-F ₂	NH ₂	-	O	3-OMe	4'	3-Py
840	4,5-F ₂	NH ₂	-	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
841	4,5-F ₂	NH ₂	-	O	3-OMe	4'	4-Ac-Ph
842	4,5-F ₂	NH ₂	-	O	3-OMe	4'	4-NH ₂ -Ph
843	4,5-F ₂	NH ₂	CH ₂	O	H	3'	3-Py
844	4,5-F ₂	NH ₂	CH ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
845	4,5-F ₂	NH ₂	CH ₂	O	H	3'	4-Ac-Ph
846	4,5-F ₂	NH ₂	CH ₂	O	H	3'	4-NH ₂ -Ph
847	4,5-F ₂	NH ₂	CH ₂	O	3-OMe	4'	3-Py
848	4,5-F ₂	NH ₂	CH ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
849	4,5-F ₂	NH ₂	CH ₂	O	3-OMe	4'	4-Ac-Ph
850	4,5-F ₂	NH ₂	CH ₂	O	3-OMe	4'	4-NH ₂ -Ph
851	4,5-F ₂	NH ₂	(CH ₂) ₂	O	H	3'	3-Py
852	4,5-F ₂	NH ₂	(CH ₂) ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
853	4,5-F ₂	NH ₂	(CH ₂) ₂	O	H	3'	4-Ac-Ph
854	4,5-F ₂	NH ₂	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
855	4,5-F ₂	NH ₂	(CH ₂) ₂	O	3-OMe	4'	3-Py
856	4,5-F ₂	NH ₂	(CH ₂) ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
857	4,5-F ₂	NH ₂	(CH ₂) ₂	O	3-OMe	4'	4-Ac-Ph
858	4,5-F ₂	NH ₂	(CH ₂) ₂	O	3-OMe	4'	4-NH ₂ -Ph

859		OEt	-	O	H	3'	3-Py
860		OEt	-	O	H	3'	3,4,5-(OMe) ₃ -Ph
861		OEt	-	O	H	3'	4-Ac-Ph
862		OEt	-	O	H	3'	4-NH ₂ -Ph
863		OEt	-	O	3-OMe	4'	3-Py
864		OEt	-	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
865		OEt	-	O	3-OMe	4'	4-Ac-Ph
866		OEt	-	O	3-OMe	4'	4-NH ₂ -Ph
867		OEt	CH ₂	O	H	3'	3-Py
868		OEt	CH ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
869		OEt	CH ₂	O	H	3'	4-Ac-Ph
870		OEt	CH ₂	O	H	3'	4-NH ₂ -Ph
871		OEt	CH ₂	O	3-OMe	4'	3-Py
872		OEt	CH ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph

873		OEt	CH ₂	O	3-OMe	4'	4-Ac-Ph
874		OEt	CH ₂	O	3-OMe	4'	4-NH ₂ -Ph
875		OEt	(CH ₂) ₂	O	H	3'	3-Py
876		OEt	(CH ₂) ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
877		OEt	(CH ₂) ₂	O	H	3'	4-Ac-Ph
878		OEt	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
879		OEt	(CH ₂) ₂	O	3-OMe	4'	3-Py
880		OEt	(CH ₂) ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
881		OEt	(CH ₂) ₂	O	3-OMe	4'	4-Ac-Ph
882		OEt	(CH ₂) ₂	O	3-OMe	4'	4-NH ₂ -Ph
883		NH ₂	-	O	H	3'	3-Py
884		NH ₂	-	O	H	3'	3,4,5-(OMe) ₃ -Ph
885		NH ₂	-	O	H	3'	4-Ac-Ph
886		NH ₂	-	O	H	3'	4-NH ₂ -Ph

887		NH ₂	-	O	3-OMe	4'	3-Py
888		NH ₂	-	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
889		NH ₂	-	O	3-OMe	4'	4-Ac-Ph
890		NH ₂	-	O	3-OMe	4'	4-NH ₂ -Ph
891		NH ₂	CH ₂	O	H	3'	3-Py
892		NH ₂	CH ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
893		NH ₂	CH ₂	O	H	3'	4-Ac-Ph
894		NH ₂	CH ₂	O	H	3'	4-NH ₂ -Ph
895		NH ₂	CH ₂	O	3-OMe	4'	3-Py
896		NH ₂	CH ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
897		NH ₂	CH ₂	O	3-OMe	4'	4-Ac-Ph
898		NH ₂	CH ₂	O	3-OMe	4'	4-NH ₂ -Ph
899		NH ₂	(CH ₂) ₂	O	H	3'	3-Py
900		NH ₂	(CH ₂) ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph

901		NH ₂	(CH ₂) ₂	O	H	3'	4-Ac-Ph
902		NH ₂	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
903		NH ₂	(CH ₂) ₂	O	3-OMe	4'	3-Py
904		NH ₂	(CH ₂) ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
905		NH ₂	(CH ₂) ₂	O	3-OMe	4'	4-Ac-Ph
906		NH ₂	(CH ₂) ₂	O	3-OMe	4'	4-NH ₂ -Ph

表 2

化合物番号	A	X	Y	Z	R ²	ウレア位置	R ⁵
907	a: b:	-	OEt	O	H	4'	Ph
908	a: b:	-	OEt	O	H	4'	Ph
909	a: b:	-	OEt	O	H	4'	Ph
910	a: b:	-	OEt	O	H	4'	Ph
911	a: b:	-	NH ₂	O	H	3'	Ph
912	a: b:	-	NH ₂	O	H	3'	Ph
913	a: b:	-	NH ₂	O	H	3'	Ph

914	a b 	-	NH ₂	O	H	3'	Ph
915	a b 	-	NH ₂	O	H	4'	Ph
916	a b 	-	NH ₂	O	H	4'	Ph
917	a b 	-	NH ₂	O	H	4'	Ph
918	a b 	-	NH ₂	O	H	4'	Ph
919	a b 	-	OEt	O	H	3'	Ph
920	a b 	-	OEt	O	H	3'	Ph
921	a b 	-	OEt	O	H	3'	Ph
922	a b 	-	OEt	O	H	3'	Ph
923	a b 	-	OEt	O	H	3'	3-Py
924	a b 	-	OEt	O	H	3'	3,4,5-(OMe) ₃ -Ph

925		-	OEt	O	H	3'	4-Ac-Ph
926		-	OEt	O	H	3'	4-NH ₂ -Ph
927		-	OEt	O	3-OMe	4'	3-Py
928		-	OEt	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
929		-	OEt	O	3-OMe	4'	4-Ac-Ph
930		-	OEt	O	3-OMe	4'	4-NH ₂ -Ph
931		CH ₂	OEt	O	H	3'	3-Py
932		CH ₂	OEt	O	H	3'	3,4,5-(OMe) ₃ -Ph
933		CH ₂	OEt	O	H	3'	4-Ac-Ph
934		CH ₂	OEt	O	H	3'	4-NH ₂ -Ph
935		CH ₂	OEt	O	3-OMe	4'	3-Py

936		CH ₂	OEt	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
937		CH ₂	OEt	O	3-OMe	4'	4-Ac-Ph
938		CH ₂	OEt	O	3-OMe	4'	4-NH ₂ -Ph
939		(CH ₂) ₂	OEt	O	H	3'	3-Py
940		(CH ₂) ₂	OEt	O	H	3'	3,4,5-(OMe) ₃ -Ph
941		(CH ₂) ₂	OEt	O	H	3'	4-Ac-Ph
942		(CH ₂) ₂	OEt	O	H	3'	4-NH ₂ -Ph
943		(CH ₂) ₂	OEt	O	3-OMe	4'	3-Py
944		(CH ₂) ₂	OEt	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
945		(CH ₂) ₂	OEt	O	3-OMe	4'	4-Ac-Ph
946		(CH ₂) ₂	OEt	O	3-OMe	4'	4-NH ₂ -Ph

947		-	NH ₂	O	H	3'	3-Py
948		-	NH ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
949		-	NH ₂	O	H	3'	4-Ac-Ph
950		-	NH ₂	O	H	3'	4-NH ₂ -Ph
951		-	NH ₂	O	3-OMe	4'	3-Py
952		-	NH ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
953		-	NH ₂	O	3-OMe	4'	4-Ac-Ph
954		-	NH ₂	O	3-OMe	4'	4-NH ₂ -Ph
955		CH ₂	NH ₂	O	H	3'	3-Py
956		CH ₂	NH ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
957		CH ₂	NH ₂	O	H	3'	4-Ac-Ph

958		CH ₂	NH ₂	O	H	3'	4-NH ₂ -Ph
959		CH ₂	NH ₂	O	3-OMe	4'	3-Py
960		CH ₂	NH ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
961		CH ₂	NH ₂	O	3-OMe	4'	4-Ac-Ph
962		CH ₂	NH ₂	O	3-OMe	4'	4-NH ₂ -Ph
963		(CH ₂) ₂	NH ₂	O	H	3'	3-Py
964		(CH ₂) ₂	NH ₂	O	H	3'	3,4,5-(OMe) ₃ -Ph
965		(CH ₂) ₂	NH ₂	O	H	3'	4-Ac-Ph
966		(CH ₂) ₂	NH ₂	O	H	3'	4-NH ₂ -Ph
967		(CH ₂) ₂	NH ₂	O	3-OMe	4'	3-Py
968		(CH ₂) ₂	NH ₂	O	3-OMe	4'	3,4,5-(OMe) ₃ -Ph

969	 a b	(CH ₂) ₂	NH ₂	O	3-OMe	4'	4-Ac-Ph
970	 a b	(CH ₂) ₂	NH ₂	O	3-OMe	4'	4-NH ₂ -Ph

表 3

表 3

化合物番号	B	X	Z	R ¹	R ⁵
971		-	O	4,5-(OMe) ₂	Ph
972		-	O	4,5-(OMe) ₂	Ph
973		-	O	4,5-(OMe) ₂	Ph
974		-	O	4,5-(OMe) ₂	Ph
975		-	O	4,5-(OMe) ₂	Ph

表 4

化合物 番号	R ¹	X	R ³	R ⁴	R ²	ウレア 位置	R ⁵
976	4,5-(OMe) ₂	-	Me	H	H	4'	Ph
977	4,5-(OMe) ₂	-	H	Me	H	4'	Ph
978	4,5-(OMe) ₂	-	Me	Me	H	4'	Ph

表 5

化合物番号	R ¹	X	Y	R ²	ウレア位置	R ⁵
979	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	4'	Ph
980	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	4'	3,4,5-(OMe) ₃ -Ph
981	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	4'	4-Ac-Ph
982	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	4'	4-NH ₂ -Ph
983	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	4'	3-Py
984	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	3'	Ph
985	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	3'	3,4,5-(OMe) ₃ -Ph
986	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	3'	4-Ac-Ph
987	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	3'	4-NH ₂ -Ph
988	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	3'	3-Py
989	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	4'	Ph
990	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	4'	3,4,5-(OMe) ₃ -Ph
991	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	4'	4-Ac-Ph
992	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	4'	4-NH ₂ -Ph
993	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	4'	3-Py
994	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	3'	Ph
995	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	3'	3,4,5-(OMe) ₃ -Ph
996	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	3'	4-Ac-Ph
997	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	3'	4-NH ₂ -Ph
998	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	3'	3-Py
999	4,5-F ₂	a-OCH ₂ -b	OEt	H	4'	Ph
1000	4,5-F ₂	a-OCH ₂ -b	OEt	H	4'	3,4,5-(OMe) ₃ -Ph
1001	4,5-F ₂	a-OCH ₂ -b	OEt	H	4'	4-Ac-Ph
1002	4,5-F ₂	a-OCH ₂ -b	OEt	H	4'	4-NH ₂ -Ph
1003	4,5-F ₂	a-OCH ₂ -b	OEt	H	4'	3-Py
1004	4,5-F ₂	a-OCH ₂ -b	OEt	H	3'	Ph
1005	4,5-F ₂	a-OCH ₂ -b	OEt	H	3'	3,4,5-(OMe) ₃ -Ph
1006	4,5-F ₂	a-OCH ₂ -b	OEt	H	3'	4-Ac-Ph
1007	4,5-F ₂	a-OCH ₂ -b	OEt	H	3'	4-NH ₂ -Ph
1008	4,5-F ₂	a-OCH ₂ -b	OEt	H	3'	3-Py
1009	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	4'	Ph
1010	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	4'	3,4,5-(OMe) ₃ -Ph
1011	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	4'	4-Ac-Ph

1012	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	4'	4-NH ₂ -Ph
1013	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	4'	3-Py
1014	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	3'	Ph
1015	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	3'	3,4,5-(OMe) ₃ -Ph
1016	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	3'	4-Ac-Ph
1017	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	3'	4-NH ₂ -Ph
1018	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	3'	3-Py
1019		a-OCH ₂ -b	OEt	H	4'	Ph
1020		a-OCH ₂ -b	OEt	H	4'	3,4,5-(OMe) ₃ -Ph
1021		a-OCH ₂ -b	OEt	H	4'	4-Ac-Ph
1022		a-OCH ₂ -b	OEt	H	4'	4-NH ₂ -Ph
1023		a-OCH ₂ -b	OEt	H	4'	3-Py
1024		a-OCH ₂ -b	OEt	H	3'	Ph
1025		a-OCH ₂ -b	OEt	H	3'	3,4,5-(OMe) ₃ -Ph
1026		a-OCH ₂ -b	OEt	H	3'	4-Ac-Ph
1027		a-OCH ₂ -b	OEt	H	3'	4-NH ₂ -Ph
1028		a-OCH ₂ -b	OEt	H	3'	3-Py
1029		a-OCH ₂ -b	NH ₂	H	4'	Ph
1030		a-OCH ₂ -b	NH ₂	H	4'	3,4,5-(OMe) ₃ -Ph

1031		a-OCH ₂ -b	NH ₂	H	4'	4-Ac-Ph
1032		a-OCH ₂ -b	NH ₂	H	4'	4-NH ₂ -Ph
1033		a-OCH ₂ -b	NH ₂	H	4'	3-Py
1034		a-OCH ₂ -b	NH ₂	H	3'	Ph
1035		a-OCH ₂ -b	NH ₂	H	3'	3,4,5-(OMe) ₃ -Ph
1036		a-OCH ₂ -b	NH ₂	H	3'	4-Ac-Ph
1037		a-OCH ₂ -b	NH ₂	H	3'	4-NH ₂ -Ph
1038		a-OCH ₂ -b	NH ₂	H	3'	3-Py

表 6

化合物番号	X	Y	R ²	ウレア位置	R ⁵
1039	a-OCH ₂ -b	OEt	H	4'	Ph
1040	a-OCH ₂ -b	OEt	H	4'	3,4,5-(OMe) ₃ -Ph
1041	a-OCH ₂ -b	OEt	H	4'	4-Ac-Ph
1042	a-OCH ₂ -b	OEt	H	4'	4-NH ₂ -Ph
1043	a-OCH ₂ -b	OEt	H	4'	3-Py
1044	a-OCH ₂ -b	OEt	H	3'	Ph
1045	a-OCH ₂ -b	OEt	H	3'	3,4,5-(OMe) ₃ -Ph
1046	a-OCH ₂ -b	OEt	H	3'	4-Ac-Ph
1047	a-OCH ₂ -b	OEt	H	3'	4-NH ₂ -Ph
1048	a-OCH ₂ -b	OEt	H	3'	3-Py
1049	a-OCH ₂ -b	NH ₂	H	4'	Ph
1050	a-OCH ₂ -b	NH ₂	H	4'	3,4,5-(OMe) ₃ -Ph
1051	a-OCH ₂ -b	NH ₂	H	4'	4-Ac-Ph
1052	a-OCH ₂ -b	NH ₂	H	4'	4-NH ₂ -Ph
1053	a-OCH ₂ -b	NH ₂	H	4'	3-Py
1054	a-OCH ₂ -b	NH ₂	H	3'	Ph
1055	a-OCH ₂ -b	NH ₂	H	3'	3,4,5-(OMe) ₃ -Ph
1056	a-OCH ₂ -b	NH ₂	H	3'	4-Ac-Ph
1057	a-OCH ₂ -b	NH ₂	H	3'	4-NH ₂ -Ph
1058	a-OCH ₂ -b	NH ₂	H	3'	3-Py

表 7

化合物番号	R ¹	Y	X	Z	R ²	ウレア位置	R ⁵
1059	4,5-(OMe) ₂	OEt	CH ₂	O	H	4'	3-Py
1060	4,5-(OMe) ₂	OEt	CH ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1061	4,5-(OMe) ₂	OEt	CH ₂	O	H	4'	4-Ac-Ph
1062	4,5-(OMe) ₂	OEt	CH ₂	O	H	4'	4-NH ₂ -Ph
1063	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	4'	3-Py
1064	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1065	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	4'	4-Ac-Ph
1066	4,5-(OMe) ₂	NH ₂	CH ₂	O	H	4'	4-NH ₂ -Ph
1067	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	3-Py
1068	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1069	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	4-Ac-Ph
1070	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
1071	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	3-Py
1072	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1073	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	4-Ac-Ph
1074	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
1075		OEt	-	O	H	4'	3-Py
1076		OEt	CH ₂	O	H	4'	3-Py
1077		OEt	CH ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1078		OEt	CH ₂	O	H	4'	4-Ac-Ph

1079		OEt	CH ₂	O	H	4'	4-NH ₂ -Ph
1080		NH ₂	CH ₂	O	H	4'	3-Py
1081		NH ₂	-	O	H	4'	3-Py
1082		NH ₂	CH ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1083		NH ₂	CH ₂	O	H	4'	4-Ac-Ph
1084		NH ₂	CH ₂	O	H	4'	4-NH ₂ -Ph
1085		OEt	(CH ₂) ₂	O	H	4'	3-Py
1086		OEt	(CH ₂) ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1087		OEt	(CH ₂) ₂	O	H	4'	4-Ac-Ph
1088		OEt	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
1089		NH ₂	(CH ₂) ₂	O	H	4'	3-Py
1090		NH ₂	(CH ₂) ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1091		NH ₂	(CH ₂) ₂	O	H	4'	4-Ac-Ph
1092		NH ₂	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph

1093	4,5-F ₂	OEt	CH ₂	O	H	4'	3-Py
1094	4,5-F ₂	OEt	-	O	H	4'	3-Py
1095	4,5-F ₂	OEt	CH ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1096	4,5-F ₂	OEt	CH ₂	O	H	4'	4-Ac-Ph
1097	4,5-F ₂	OEt	CH ₂	O	H	4'	4-NH ₂ -Ph
1098	4,5-F ₂	NH ₂	-	O	H	4'	3-Py
1099	4,5-F ₂	NH ₂	CH ₂	O	H	4'	3-Py
1100	4,5-F ₂	NH ₂	CH ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1101	4,5-F ₂	NH ₂	CH ₂	O	H	4'	4-Ac-Ph
1102	4,5-F ₂	NH ₂	CH ₂	O	H	4'	4-NH ₂ -Ph
1103	4,5-F ₂	OEt	(CH ₂) ₂	O	H	4'	3-Py
1104	4,5-F ₂	OEt	(CH ₂) ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1105	4,5-F ₂	OEt	(CH ₂) ₂	O	H	4'	4-Ac-Ph
1106	4,5-F ₂	OEt	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
1107	4,5-F ₂	NH ₂	(CH ₂) ₂	O	H	4'	3-Py
1108	4,5-F ₂	NH ₂	(CH ₂) ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1109	4,5-F ₂	NH ₂	(CH ₂) ₂	O	H	4'	4-Ac-Ph
1110	4,5-F ₂	NH ₂	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph

表 8

化合物番号	A	X	Y	Z	R ²	ウレア位置	R ⁵
1111	a b 	CH ₂	OEt	O	H	4'	3-Py
1112	a b 	CH ₂	OEt	O	H	4'	3,4,5-(OMe) ₃ -Ph
1113	a b 	CH ₂	OEt	O	H	4'	4-Ac-Ph
1114	a b 	CH ₂	OEt	O	H	4'	4-NH ₂ -Ph
1115	a b 	(CH ₂) ₂	OEt	O	H	4'	3-Py
1116	a b 	(CH ₂) ₂	OEt	O	H	4'	3,4,5-(OMe) ₃ -Ph
1117	a b 	(CH ₂) ₂	OEt	O	H	4'	4-Ac-Ph

1118		(CH ₂) ₂	OEt	O	H	4'	4-NH ₂ -Ph
1119		CH ₂	NH ₂	O	H	4'	3-Py
1120		CH ₂	NH ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1121		CH ₂	NH ₂	O	H	4'	4-Ac-Ph
1122		CH ₂	NH ₂	O	H	4'	4-NH ₂ -Ph
1123		(CH ₂) ₂	NH ₂	O	H	4'	3-Py
1124		(CH ₂) ₂	NH ₂	O	H	4'	3,4,5-(OMe) ₃ -Ph
1125		(CH ₂) ₂	NH ₂	O	H	4'	4-Ac-Ph
1126		(CH ₂) ₂	NH ₂	O	H	4'	4-NH ₂ -Ph

表 9

化合物番号	R ¹	Y	X	R ⁴	R ²	ウレア位置	R ⁵
1127	4,5-(OMe) ₂	OEt	-	O	H	4'	Bn
1128	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	2-Py
1129	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	3-Py
1130	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	4-Py
1131	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
1132	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
1133	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
1134	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
1135	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
1136	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
1137	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
1138	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
1139	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	
1140	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	
1141	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	
1142	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	
1143	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
1144	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	4'	4-OH-Ph
1145	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	2-Py
1146	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	3-Py
1147	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	4-Py
1148	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
1149	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
1150	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
1151	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
1152	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
1153	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
1154	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py

1155	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
1156	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
1157	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	
1158	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	
1159	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	
1160	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	
1161	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	(CH ₂) ₅ OH
1162	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	4'	4-OH-Ph
1163	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	2-Py
1164	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	3-Py
1165	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	4-Py
1166	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	4-NH ₂ -Ph
1167	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
1168	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
1169	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
1170	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
1171	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
1172	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
1173	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
1174	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
1175	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	
1176	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	
1177	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	
1178	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	
1179	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
1180	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	4-OH-Ph
1181	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	2-Py
1182	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	3-Py
1183	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	4-Py
1184	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
1185	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
1186	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
1187	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
1188	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
1189	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
1190	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
1191	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
1192	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
1193	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	

1194	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	
1195	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	
1196	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	
1197	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	
1198	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	
1199	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1200	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1201	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1202	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1203	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1204	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1205	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1206	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1207	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1208	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1209	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1210	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1211	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1212	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1213	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1214	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1215	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1216	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	4'	
1217	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1218	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1219	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1220	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1221	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1222	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1223	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1224	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1225	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1226	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1227	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1228	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1229	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1230	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1231	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	

1232	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	
1233	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
1234	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	4'	4-OH-Ph
1235	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	2-Py
1236	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	3-Py
1237	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	4-Py
1238	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
1239	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	4-NO ₂ -Ph
1240	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	3-NH ₂ -Ph
1241	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	3-NO ₂ -Ph
1242	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	2-NH ₂ -Ph
1243	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
1244	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
1245	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
1246	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
1247	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	
1248	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	
1249	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	
1250	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	
1251	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
1252	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	4'	4-OH-Ph
1253	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	2-Py
1254	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	3-Py
1255	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	4-Py
1256	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
1257	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
1258	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
1259	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
1260	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
1261	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
1262	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
1263	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
1264	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
1265	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	
1266	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	
1267	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	
1268	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	
1269	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
1270	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	4'	4-OH-Ph
1271	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	2-Py
1272	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	3-Py

1273	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	4-Py
1274	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	4-NH ₂ -Ph
1275	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
1276	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
1277	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
1278	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
1279	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
1280	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
1281	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
1282	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
1283	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	
1284	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	
1285	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	
1286	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	
1287	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
1288	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	4'	4-OH-Ph
1289	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	2-Py
1290	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	3-Py
1291	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	4-Py
1292	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
1293	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
1294	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
1295	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
1296	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
1297	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
1298	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
1299	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
1300	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
1301	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	
1302	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	
1303	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	
1304	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	
1305	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	(CH ₂) ₅ OH
1306	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	4-OH-Ph
1307	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	2-Py
1308	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	3-Py
1309	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	4-Py
1310	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
1311	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	4-NO ₂ -Ph
1312	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	3-NH ₂ -Ph
1313	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	3-NO ₂ -Ph
1314	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	2-NH ₂ -Ph

1315	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph CH ₂ -2-Py
1316	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
1317	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
1318	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
1319	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	
1320	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	
1321	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	
1322	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	
1323	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
1324	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	4'	4-OH-Ph
1325	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	2-Py
1326	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	3-Py
1327	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	4-Py
1328	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
1329	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
1330	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
1331	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
1332	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
1333	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
1334	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
1335	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
1336	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
1337	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	
1338	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	
1339	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	
1340	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	
1341	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
1342	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	4'	4-OH-Ph
1343	4,5-(OMe) ₂	OEt	-	O	H	3'	Bn
1344	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	2-Py
1345	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	3-Py
1346	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	4-Py
1347	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
1348	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
1349	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
1350	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
1351	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
1352	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
1353	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
1354	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
1355	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	

1356	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	
1357	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	
1358	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	
1359	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	
1360	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	
1361	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1362	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1363	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1364	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1365	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1366	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1367	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1368	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1369	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1370	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1371	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1372	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1373	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1374	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1375	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1376	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1377	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1378	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	3'	
1379	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1380	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1381	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1382	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1383	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1384	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1385	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1386	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1387	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1388	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1389	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1390	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1391	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1392	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1393	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	

1394	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	
1395	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
1396	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3'	4-OH-Ph
1397	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	2-Py
1398	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	3-Py
1399	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	4-Py
1400	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
1401	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
1402	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
1403	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
1404	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
1405	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
1406	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
1407	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
1408	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
1409	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	
1410	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	
1411	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	
1412	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	
1413	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
1414	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3'	4-OH-Ph
1415	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	2-Py
1416	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	3-Py
1417	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	4-Py
1418	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
1419	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
1420	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
1421	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
1422	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
1423	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
1424	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
1425	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
1426	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
1427	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	
1428	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	
1429	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	
1430	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	
1431	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
1432	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	3'	4-OH-Ph
1433	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	2-Py
1434	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	3-Py

1435	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	4-Py
1436	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
1437	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
1438	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
1439	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
1440	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph
1441	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
1442	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
1443	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
1444	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
1445	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	
1446	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	
1447	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	
1448	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	
1449	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
1450	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	4-OH-Ph
1451	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	2-Py
1452	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	3-Py
1453	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	4-Py
1454	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
1455	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
1456	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
1457	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
1458	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
1459	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
1460	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
1461	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
1462	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
1463	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	
1464	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	
1465	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	
1466	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	
1467	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
1468	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	3'	4-OH-Ph
1469	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	2-Py
1470	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	3-Py
1471	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	4-Py
1472	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
1473	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
1474	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
1475	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
1476	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph

1477	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
1478	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
1479	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
1480	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
1481	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	
1482	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	
1483	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	
1484	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	
1485	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
1486	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	3'	4-OH-Ph
1487	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	2-Py
1488	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	3-Py
1489	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	4-Py
1490	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	4-NH ₂ -Ph
1491	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
1492	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
1493	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
1494	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
1495	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
1496	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
1497	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
1498	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
1499	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	
1500	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	
1501	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	
1502	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	
1503	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
1504	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	4-OH-Ph
1505	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	2-Py
1506	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	3-Py
1507	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	4-Py
1508	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
1509	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
1510	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
1511	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
1512	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
1513	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
1514	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
1515	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
1516	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
1517	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	

1518	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	
1519	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	
1520	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	
1521	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
1522	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	4-OH-Ph
1523	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	2-Py
1524	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	3-Py
1525	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	4-Py
1526	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
1527	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
1528	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
1529	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
1530	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
1531	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
1532	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
1533	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
1534	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
1535	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	
1536	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	
1537	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	
1538	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	
1539	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
1540	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	3'	4-OH-Ph
1541	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	2-Py
1542	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	3-Py
1543	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	4-Py
1544	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
1545	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
1546	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
1547	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
1548	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph
1549	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
1550	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
1551	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
1552	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
1553	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	
1554	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	
1555	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	

1556	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	
1557	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
1558	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	3'	4-OH-Ph
1559	4,5-(OMe) ₂	OEt	-	O	H	2'	Bn
1560	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	2-Py
1561	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	3-Py
1562	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	4-Py
1563	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
1564	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
1565	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
1566	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
1567	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
1568	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
1569	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
1570	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
1571	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	
1572	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	
1573	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	
1574	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	
1575	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
1576	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2'	4-OH-Ph
1577	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	2-Py
1578	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	3-Py
1579	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	4-Py
1580	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
1581	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
1582	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
1583	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
1584	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
1585	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
1586	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
1587	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
1588	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
1589	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	
1590	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	
1591	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	
1592	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	
1593	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
1594	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	4-OH-Ph
1595	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	2-Py
1596	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	3-Py

1597	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	4-Py
1598	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	4-NH ₂ -Ph
1599	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
1600	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
1601	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
1602	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
1603	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
1604	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
1605	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
1606	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
1607	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	
1608	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	
1609	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	
1610	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	
1611	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
1612	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	4-OH-Ph
1613	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	2-Py
1614	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	3-Py
1615	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	4-Py
1616	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
1617	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
1618	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
1619	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
1620	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
1621	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
1622	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
1623	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
1624	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
1625	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	
1626	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	
1627	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	
1628	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	
1629	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
1630	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	4-OH-Ph
1631	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	2-Py
1632	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	3-Py
1633	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	4-Py
1634	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
1635	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
1636	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
1637	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
1638	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph

1639	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
1640	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
1641	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
1642	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
1643	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	
1644	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	
1645	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	
1646	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	
1647	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
1648	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	H	2'	4-OH-Ph
1649	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	2-Py
1650	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	3-Py
1651	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	4-Py
1652	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
1653	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
1654	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
1655	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
1656	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
1657	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
1658	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
1659	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
1660	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
1661	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	
1662	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	
1663	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	
1664	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	
1665	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
1666	4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	2'	4-OH-Ph
1667	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	2-Py
1668	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	3-Py
1669	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	4-Py
1670	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
1671	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
1672	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
1673	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
1674	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph
1675	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
1676	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
1677	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
1678	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
1679	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	

1680	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	
1681	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	
1682	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	
1683	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	
1684	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	O	H	2'	4-OH-Ph
1685	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	2-Py
1686	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	3-Py
1687	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	4-Py
1688	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
1689	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
1690	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
1691	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
1692	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
1693	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
1694	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
1695	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
1696	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
1697	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	
1698	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	
1699	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	
1700	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	
1701	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	
1702	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	O	H	2'	4-OH-Ph
1703	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	2-Py
1704	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	3-Py
1705	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	4-Py
1706	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	4-NH ₂ -Ph
1707	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
1708	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
1709	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
1710	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
1711	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
1712	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
1713	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
1714	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
1715	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	
1716	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	
1717	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	

1718	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	
1719	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
1720	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	4-OH-Ph
1721	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	2-Py
1722	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	3-Py
1723	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	4-Py
1724	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
1725	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
1726	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
1727	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
1728	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
1729	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
1730	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
1731	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
1732	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
1733	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	
1734	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	
1735	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	
1736	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	
1737	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
1738	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	4-OH-Ph
1739	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	2-Py
1740	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	3-Py
1741	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	4-Py
1742	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
1743	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
1744	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
1745	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
1746	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph
1747	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
1748	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
1749	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
1750	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
1751	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	
1752	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	
1753	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	
1754	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	
1755	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
1756	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	O	H	2'	4-OH-Ph
1757	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	2-Py
1758	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	3-Py

1759	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	4-Py
1760	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
1761	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
1762	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
1763	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
1764	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
1765	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
1766	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
1767	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
1768	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
1769	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	
1770	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	
1771	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	
1772	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	
1773	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
1774	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	O	H	2'	4-OH-Ph
1775	4-OMe-5-OH	OEt	-	O	H	4'	Bn
1776	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	2-Py
1777	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	3-Py
1778	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	4-Py
1779	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
1780	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
1781	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
1782	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
1783	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
1784	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
1785	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
1786	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
1787	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	
1788	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	
1789	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	
1790	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	
1791	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
1792	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	4-OH-Ph
1793	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	2-Py
1794	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	3-Py
1795	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	4-Py
1796	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
1797	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
1798	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
1799	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
1800	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph

1801	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
1802	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
1803	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
1804	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
1805	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	
1806	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	
1807	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	
1808	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	
1809	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	(CH ₂) ₅ OH
1810	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	4'	4-OH-Ph
1811	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	2-Py
1812	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	3-Py
1813	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	4-Py
1814	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	4-NH ₂ -Ph
1815	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
1816	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
1817	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
1818	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
1819	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
1820	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
1821	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
1822	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
1823	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	
1824	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	
1825	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	
1826	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	
1827	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
1828	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	4-OH-Ph
1829	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	2-Py
1830	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	3-Py
1831	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	4-Py
1832	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
1833	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
1834	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
1835	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
1836	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
1837	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
1838	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
1839	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
1840	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
1841	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	

1842	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	
1843	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	
1844	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	
1845	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	(CH ₂) ₅ OH
1846	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	4-OH-Ph
1847	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	2-Py
1848	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	3-Py
1849	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	4-Py
1850	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
1851	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	4-NO ₂ -Ph
1852	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	3-NH ₂ -Ph
1853	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	3-NO ₂ -Ph
1854	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	2-NH ₂ -Ph
1855	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
1856	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
1857	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
1858	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
1859	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	
1860	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	
1861	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	
1862	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	
1863	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
1864	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	4'	4-OH-Ph
1865	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	2-Py
1866	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	3-Py
1867	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	4-Py
1868	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
1869	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
1870	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
1871	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
1872	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
1873	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
1874	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
1875	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
1876	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
1877	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	
1878	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	
1879	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	

1880	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	
1881	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
1882	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	4'	4-OH-Ph
1883	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	2-Py
1884	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	3-Py
1885	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	4-Py
1886	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
1887	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	4-NO ₂ -Ph
1888	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	3-NH ₂ -Ph
1889	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	3-NO ₂ -Ph
1890	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	2-NH ₂ -Ph
1891	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
1892	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
1893	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
1894	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
1895	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	
1896	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	
1897	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	
1898	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	
1899	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
1900	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	4'	4-OH-Ph
1901	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	2-Py
1902	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	3-Py
1903	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
1904	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
1905	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
1906	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
1907	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
1908	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
1909	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
1910	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
1911	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
1912	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	
1913	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	
1914	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	
1915	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	
1916	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	
1917	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
1918	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	4'	4-OH-Ph
1919	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	4'	2-Py
1920	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	4'	3-Py

1921	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-Py
1922	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-NH ₂ -Ph
1923	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-NO ₂ -Ph
1924	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	3-NH ₂ -Ph
1925	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	3-NO ₂ -Ph
1926	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	2-NH ₂ -Ph
1927	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	2-NO ₂ -Ph
1928	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	CH ₂ -2-Py
1929	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	CH ₂ -3-Py
1930	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	CH ₂ -4-Py
1931	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
1932	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
1933	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
1934	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
1935	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	$(\text{CH}_2)_5\text{OH}$
1936	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-OH-Ph
1937	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	2-Py
1938	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	3-Py
1939	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-Py
1940	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-NH ₂ -Ph
1941	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-NO ₂ -Ph
1942	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	3-NH ₂ -Ph
1943	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	3-NO ₂ -Ph
1944	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	2-NH ₂ -Ph
1945	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	2-NO ₂ -Ph
1946	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	CH ₂ -2-Py
1947	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	CH ₂ -3-Py
1948	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	CH ₂ -4-Py
1949	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
1950	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
1951	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
1952	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
1953	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	$(\text{CH}_2)_5\text{OH}$
1954	4-OMe-5-OH	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-OH-Ph
1955	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	O	H	4'	2-Py
1956	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	O	H	4'	3-Py
1957	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	O	H	4'	4-Py
1958	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	O	H	4'	4-NH ₂ -Ph
1959	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	O	H	4'	4-NO ₂ -Ph
1960	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	O	H	4'	3-NH ₂ -Ph
1961	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	O	H	4'	3-NO ₂ -Ph
1962	4-OMe-5-OH	CH_3	$(\text{CH}_2)_2$	O	H	4'	2-NH ₂ -Ph

1963	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
1964	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
1965	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
1966	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
1967	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	4'	
1968	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	4'	
1969	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	4'	
1970	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	4'	
1971	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
1972	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	4'	4-OH-Ph
1973	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	2-Py
1974	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	3-Py
1975	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	4-Py
1976	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
1977	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
1978	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
1979	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
1980	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
1981	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
1982	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
1983	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
1984	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
1985	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	
1986	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	
1987	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	
1988	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	
1989	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
1990	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	4'	4-OH-Ph
1991	4-OMe-5-OH	OEt	-	O	H	3'	Bn
1992	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	2-Py
1993	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	3-Py
1994	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	4-Py
1995	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
1996	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
1997	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
1998	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
1999	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
2000	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
2001	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
2002	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
2003	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	

2004	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	
2005	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	
2006	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	
2007	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	
2008	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	3'	
2009	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2010	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2011	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2012	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2013	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2014	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2015	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2016	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2017	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2018	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2019	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2020	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2021	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2022	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2023	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2024	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2025	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2026	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	3'	
2027	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2028	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2029	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2030	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2031	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2032	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2033	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2034	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2035	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2036	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2037	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2038	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2039	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2040	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2041	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	

2042	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	
2043	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
2044	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	3'	4-OH-Ph
2045	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	2-Py
2046	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	3-Py
2047	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	4-Py
2048	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
2049	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
2050	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
2051	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
2052	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
2053	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
2054	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
2055	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
2056	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
2057	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	
2058	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	
2059	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	
2060	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	
2061	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
2062	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	4-OH-Ph
2063	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	2-Py
2064	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	3-Py
2065	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	4-Py
2066	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
2067	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
2068	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
2069	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
2070	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
2071	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
2072	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
2073	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
2074	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
2075	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	
2076	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	
2077	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	
2078	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	
2079	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
2080	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	3'	4-OH-Ph
2081	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	2-Py
2082	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	3-Py

2083	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	4-Py
2084	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
2085	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
2086	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
2087	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
2088	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph
2089	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
2090	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
2091	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
2092	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
2093	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	
2094	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	
2095	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	
2096	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	
2097	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
2098	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	3'	4-OH-Ph
2099	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	2-Py
2100	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	3-Py
2101	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	4-Py
2102	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
2103	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
2104	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
2105	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
2106	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
2107	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
2108	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
2109	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
2110	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
2111	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	
2112	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	
2113	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	
2114	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	
2115	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
2116	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	3'	4-OH-Ph
2117	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	2-Py
2118	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	3-Py
2119	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	4-Py
2120	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
2121	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
2122	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
2123	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
2124	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph

2125	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
2126	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
2127	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
2128	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
2129	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	
2130	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	
2131	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	
2132	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	
2133	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
2134	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	3'	4-OH-Ph
2135	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	2-Py
2136	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	3-Py
2137	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	4-Py
2138	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	4-NH ₂ -Ph
2139	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
2140	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
2141	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
2142	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
2143	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
2144	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
2145	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
2146	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
2147	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	
2148	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	
2149	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	
2150	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	
2151	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
2152	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	4-OH-Ph
2153	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	2-Py
2154	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	3-Py
2155	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	4-Py
2156	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
2157	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
2158	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
2159	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
2160	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
2161	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
2162	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
2163	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
2164	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
2165	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	

2166	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	
2167	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	
2168	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	
2169	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	<u>(CH₂)₅OH</u>
2170	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	4-OH-Ph
2171	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	2-Py
2172	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	3-Py
2173	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	4-Py
2174	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
2175	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
2176	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
2177	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
2178	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
2179	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
2180	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
2181	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
2182	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
2183	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	
2184	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	
2185	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	
2186	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	
2187	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	<u>(CH₂)₅OH</u>
2188	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	3'	4-OH-Ph
2189	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	2-Py
2190	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	3-Py
2191	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	4-Py
2192	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
2193	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
2194	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
2195	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
2196	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph
2197	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
2198	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
2199	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
2200	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
2201	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	
2202	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	
2203	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	

2204	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	
2205	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
2206	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	3'	4-OH-Ph
2207	4-OMe-5-OH	OEt	-	O	H	2'	Bn
2208	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	2-Py
2209	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	3-Py
2210	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	4-Py
2211	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
2212	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
2213	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
2214	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
2215	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
2216	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
2217	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
2218	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
2219	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	
2220	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	
2221	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	
2222	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	
2223	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
2224	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	2'	4-OH-Ph
2225	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	2-Py
2226	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	3-Py
2227	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	4-Py
2228	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
2229	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
2230	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
2231	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
2232	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
2233	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
2234	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
2235	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
2236	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
2237	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	
2238	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	
2239	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	
2240	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	
2241	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
2242	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	4-OH-Ph
2243	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	2-Py
2244	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	3-Py

2245	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	4-Py
2246	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	4-NH ₂ -Ph
2247	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
2248	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
2249	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
2250	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
2251	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
2252	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
2253	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
2254	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
2255	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	
2256	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	
2257	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	
2258	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	
2259	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
2260	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	2'	4-OH-Ph
2261	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	2-Py
2262	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	3-Py
2263	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	4-Py
2264	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
2265	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
2266	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
2267	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
2268	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
2269	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
2270	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
2271	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
2272	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
2273	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	
2274	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	
2275	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	
2276	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	
2277	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
2278	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	4-OH-Ph
2279	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	2-Py
2280	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	3-Py
2281	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	4-Py
2282	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
2283	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
2284	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
2285	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
2286	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph

2287	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
2288	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
2289	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
2290	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
2291	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	
2292	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	
2293	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	
2294	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	
2295	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
2296	4-OMe-5-OH	OEt	(CH ₂) ₂	O	H	2'	4-OH-Ph
2297	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	2-Py
2298	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	3-Py
2299	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	4-Py
2300	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
2301	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
2302	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
2303	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
2304	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
2305	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
2306	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
2307	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
2308	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
2309	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	
2310	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	
2311	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	
2312	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	
2313	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
2314	4-OMe-5-OH	OEt	(CH ₂) ₃	O	H	2'	4-OH-Ph
2315	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	2-Py
2316	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	3-Py
2317	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	4-Py
2318	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
2319	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
2320	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
2321	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
2322	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph
2323	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
2324	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
2325	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
2326	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
2327	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	

2328	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	
2329	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	
2330	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	
2331	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	
2332	4-OMe-5-OH	NH ₂	(CH ₂) ₂	O	H	2'	
2333	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2334	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2335	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2336	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2337	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2338	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2339	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2340	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2341	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2342	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2343	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2344	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2345	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2346	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2347	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2348	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2349	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2350	4-OMe-5-OH	NH ₂	(CH ₂) ₃	O	H	2'	
2351	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2352	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2353	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2354	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2355	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2356	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2357	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2358	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2359	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2360	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2361	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2362	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2363	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2364	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2365	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	

2366	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	
2367	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
2368	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	4-OH-Ph
2369	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	2-Py
2370	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	3-Py
2371	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	4-Py
2372	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
2373	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
2374	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
2375	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
2376	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
2377	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
2378	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
2379	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
2380	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
2381	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	
2382	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	
2383	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	
2384	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	
2385	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
2386	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2'	4-OH-Ph
2387	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	2-Py
2388	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	3-Py
2389	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	4-Py
2390	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
2391	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
2392	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
2393	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
2394	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph
2395	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
2396	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
2397	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
2398	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
2399	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	
2400	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	
2401	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	
2402	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	
2403	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
2404	4-OMe-5-OH	CH ₃	(CH ₂) ₂	O	H	2'	4-OH-Ph
2405	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	2-Py
2406	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	3-Py

2407	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	4-Py
2408	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
2409	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
2410	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
2411	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
2412	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
2413	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
2414	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
2415	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
2416	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
2417	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	
2418	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	
2419	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	
2420	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	
2421	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
2422	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	H	2'	4-OH-Ph
2423	4-OMe-5-(2-N-morpholinoethoxy)	OEt	-	O	H	4'	Bn
2424	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	2-Py
2425	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	3-Py
2426	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	4-Py
2427	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
2428	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
2429	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
2430	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
2431	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
2432	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
2433	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
2434	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
2435	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	
2436	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	
2437	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	
2438	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	
2439	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
2440	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	4'	4-OH-Ph
2441	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	2-Py
2442	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	3-Py
2443	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	4-Py
2444	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
2445	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
2446	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
2447	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
2448	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph

2449	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
2450	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
2451	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
2452	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
2453	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	
2454	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	
2455	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	
2456	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	
2457	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	(CH ₂) ₅ OH
2458	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	4'	4-OH-Ph
2459	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	2-Py
2460	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	3-Py
2461	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	4-Py
2462	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	4-NH ₂ -Ph
2463	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
2464	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
2465	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
2466	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
2467	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
2468	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
2469	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
2470	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
2471	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	
2472	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	
2473	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	
2474	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	
2475	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
2476	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	4'	4-OH-Ph
2477	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	2-Py
2478	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	3-Py
2479	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	4-Py
2480	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
2481	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
2482	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
2483	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
2484	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
2485	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
2486	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
2487	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
2488	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
2489	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	

2490	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	
2491	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	
2492	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	
2493	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	
2494	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	
2495	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2496	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2497	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2498	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2499	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2500	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2501	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2502	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2503	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2504	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2505	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2506	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2507	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2508	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2509	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2510	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2511	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2512	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	4'	
2513	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2514	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2515	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2516	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2517	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2518	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2519	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2520	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2521	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2522	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2523	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2524	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2525	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2526	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2527	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	

2528	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	
2529	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
2530	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	4'	4-OH-Ph
2531	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	2-Py
2532	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	3-Py
2533	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	4-Py
2534	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
2535	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	4-NO ₂ -Ph
2536	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	3-NH ₂ -Ph
2537	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	3-NO ₂ -Ph
2538	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	2-NH ₂ -Ph
2539	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
2540	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
2541	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
2542	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
2543	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	
2544	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	
2545	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	
2546	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	
2547	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
2548	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	4'	4-OH-Ph
2549	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	2-Py
2550	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	3-Py
2551	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	4-Py
2552	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
2553	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
2554	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
2555	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
2556	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
2557	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
2558	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
2559	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
2560	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
2561	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	
2562	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	
2563	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	
2564	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	
2565	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
2566	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	4'	4-OH-Ph
2567	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	4'	2-Py
2568	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	4'	3-Py

2569	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-Py
2570	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-NH ₂ -Ph
2571	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-NO ₂ -Ph
2572	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	3-NH ₂ -Ph
2573	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	3-NO ₂ -Ph
2574	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	2-NH ₂ -Ph
2575	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	2-NO ₂ -Ph
2576	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	CH ₂ -2-Py
2577	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	CH ₂ -3-Py
2578	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	CH ₂ -4-Py
2579	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
2580	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
2581	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
2582	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
2583	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	$(\text{CH}_2)_5\text{OH}$
2584	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-OH-Ph
2585	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	2-Py
2586	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	3-Py
2587	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-Py
2588	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-NH ₂ -Ph
2589	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-NO ₂ -Ph
2590	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	3-NH ₂ -Ph
2591	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	3-NO ₂ -Ph
2592	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	2-NH ₂ -Ph
2593	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	2-NO ₂ -Ph
2594	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	CH ₂ -2-Py
2595	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	CH ₂ -3-Py
2596	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	CH ₂ -4-Py
2597	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
2598	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
2599	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
2600	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
2601	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	$(\text{CH}_2)_5\text{OH}$
2602	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-OH-Ph
2603	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	O	H	4'	2-Py
2604	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	O	H	4'	3-Py
2605	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	O	H	4'	4-Py
2606	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	O	H	4'	4-NH ₂ -Ph
2607	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	O	H	4'	4-NO ₂ -Ph
2608	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	O	H	4'	3-NH ₂ -Ph
2609	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	O	H	4'	3-NO ₂ -Ph
2610	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(\text{CH}_2)_2$	O	H	4'	2-NH ₂ -Ph

2611	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
2612	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
2613	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
2614	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
2615	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	4'	
2616	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	4'	
2617	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	4'	
2618	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	4'	
2619	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
2620	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	4'	4-OH-Ph
2621	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	2-Py
2622	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	3-Py
2623	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	4-Py
2624	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
2625	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
2626	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
2627	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
2628	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
2629	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
2630	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
2631	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
2632	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
2633	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	
2634	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	
2635	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	
2636	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	
2637	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
2638	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	4'	4-OH-Ph
2639	4-OMe-5-(2-N-morpholinoethoxy)	OEt	-	O	H	3'	Bn
2640	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	2-Py
2641	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	3-Py
2642	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	4-Py
2643	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
2644	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
2645	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
2646	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
2647	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
2648	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
2649	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
2650	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
2651	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	

2652	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	
2653	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	
2654	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	
2655	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
2656	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	4-OH-Ph
2657	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	2-Py
2658	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	3-Py
2659	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	4-Py
2660	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
2661	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
2662	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
2663	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
2664	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
2665	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
2666	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
2667	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
2668	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
2669	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	
2670	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	
2671	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	
2672	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	
2673	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
2674	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	3'	4-OH-Ph
2675	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	2-Py
2676	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	3-Py
2677	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	4-Py
2678	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	4-NH ₂ -Ph
2679	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
2680	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
2681	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
2682	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
2683	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
2684	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
2685	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
2686	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
2687	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	
2688	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	
2689	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	

2690	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	
2691	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
2692	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	3'	4-OH-Ph
2693	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	2-Py
2694	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	3-Py
2695	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	4-Py
2696	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
2697	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
2698	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
2699	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
2700	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
2701	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
2702	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
2703	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
2704	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
2705	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	
2706	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	
2707	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	
2708	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	
2709	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
2710	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	3'	4-OH-Ph
2711	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	2-Py
2712	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	3-Py
2713	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	4-Py
2714	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
2715	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
2716	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
2717	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
2718	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
2719	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
2720	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
2721	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
2722	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
2723	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	
2724	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	
2725	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	
2726	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	
2727	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
2728	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	3'	4-OH-Ph
2729	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	2-Py
2730	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	3-Py

2731	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	4-Py
2732	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
2733	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
2734	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
2735	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
2736	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph
2737	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
2738	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
2739	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
2740	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
2741	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	
2742	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	
2743	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	
2744	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	
2745	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
2746	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	3'	4-OH-Ph
2747	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	2-Py
2748	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	3-Py
2749	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	4-Py
2750	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
2751	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
2752	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
2753	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
2754	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
2755	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
2756	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
2757	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
2758	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
2759	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	
2760	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	
2761	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	
2762	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	
2763	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
2764	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	3'	4-OH-Ph
2765	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	2-Py
2766	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	3-Py
2767	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	4-Py
2768	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
2769	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
2770	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
2771	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
2772	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph

2773	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
2774	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
2775	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
2776	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
2777	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	
2778	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	
2779	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	
2780	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	
2781	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
2782	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	3'	4-OH-Ph
2783	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	2-Py
2784	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	3-Py
2785	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	4-Py
2786	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	4-NH ₂ -Ph
2787	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
2788	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
2789	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
2790	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
2791	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
2792	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
2793	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
2794	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
2795	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	
2796	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	
2797	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	
2798	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	
2799	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
2800	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	3'	4-OH-Ph
2801	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	2-Py
2802	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	3-Py
2803	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	4-Py
2804	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
2805	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
2806	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
2807	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
2808	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
2809	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
2810	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
2811	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
2812	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
2813	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	

2814	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	
2815	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	
2816	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	
2817	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	<chem>(CH2)5OH</chem>
2818	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	3'	<chem>4-OH-Ph</chem>
2819	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>2-Py</chem>
2820	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>3-Py</chem>
2821	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>4-Py</chem>
2822	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>4-NH2-Ph</chem>
2823	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>4-NO2-Ph</chem>
2824	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>3-NH2-Ph</chem>
2825	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>3-NO2-Ph</chem>
2826	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>2-NH2-Ph</chem>
2827	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>2-NO2-Ph</chem>
2828	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>CH2-2-Py</chem>
2829	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>CH2-3-Py</chem>
2830	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>CH2-4-Py</chem>
2831	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	
2832	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	
2833	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	
2834	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	
2835	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>(CH2)5OH</chem>
2836	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	3'	<chem>4-OH-Ph</chem>
2837	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>2-Py</chem>
2838	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>3-Py</chem>
2839	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>4-Py</chem>
2840	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>4-NH2-Ph</chem>
2841	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>4-NO2-Ph</chem>
2842	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>3-NH2-Ph</chem>
2843	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>3-NO2-Ph</chem>
2844	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>2-NH2-Ph</chem>
2845	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>2-NO2-Ph</chem>
2846	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>CH2-2-Py</chem>
2847	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>CH2-3-Py</chem>
2848	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	<chem>CH2-4-Py</chem>
2849	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	
2850	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	
2851	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	

2852	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	
2853	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
2854	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	3'	4-OH-Ph
2855	4-OMe-5-(2-N-morpholinoethoxy)	OEt	-	O	H	2'	Bn
2856	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	2-Py
2857	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	3-Py
2858	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	4-Py
2859	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
2860	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
2861	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
2862	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
2863	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
2864	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
2865	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
2866	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
2867	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	
2868	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	
2869	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	
2870	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	
2871	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
2872	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	4-OH-Ph
2873	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	2-Py
2874	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	3-Py
2875	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	4-Py
2876	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
2877	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
2878	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
2879	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
2880	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
2881	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
2882	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
2883	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
2884	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
2885	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	
2886	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	
2887	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	
2888	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	
2889	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
2890	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	4-OH-Ph
2891	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	2-Py
2892	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	3-Py

2893	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	4-Py
2894	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	4-NH ₂ -Ph
2895	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
2896	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
2897	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
2898	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
2899	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
2900	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
2901	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
2902	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
2903	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	
2904	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	
2905	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	
2906	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	
2907	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
2908	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	4-OH-Ph
2909	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	2-Py
2910	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	3-Py
2911	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	4-Py
2912	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
2913	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
2914	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
2915	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
2916	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
2917	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
2918	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
2919	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
2920	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
2921	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	
2922	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	
2923	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	
2924	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	
2925	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
2926	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	4-OH-Ph
2927	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	2-Py
2928	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	3-Py
2929	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	4-Py
2930	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
2931	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
2932	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
2933	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
2934	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph

2935	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
2936	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
2937	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
2938	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
2939	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	
2940	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	
2941	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	
2942	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	
2943	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
2944	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	H	2'	4-OH-Ph
2945	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	2-Py
2946	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	3-Py
2947	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	4-Py
2948	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
2949	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
2950	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
2951	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
2952	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
2953	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
2954	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
2955	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
2956	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
2957	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	
2958	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	
2959	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	
2960	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	
2961	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
2962	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	O	H	2'	4-OH-Ph
2963	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	2-Py
2964	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	3-Py
2965	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	4-Py
2966	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
2967	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
2968	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
2969	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
2970	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph
2971	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
2972	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
2973	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
2974	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
2975	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	

2976	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	
2977	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	
2978	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	
2979	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	<chem>(CH2)5OH</chem>
2980	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	O	H	2'	<chem>4-OH-Ph</chem>
2981	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>2-Py</chem>
2982	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>3-Py</chem>
2983	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>4-Py</chem>
2984	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>4-NH2-Ph</chem>
2985	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>4-NO2-Ph</chem>
2986	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>3-NH2-Ph</chem>
2987	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>3-NO2-Ph</chem>
2988	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>2-NH2-Ph</chem>
2989	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>2-NO2-Ph</chem>
2990	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>CH2-2-Py</chem>
2991	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>CH2-3-Py</chem>
2992	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>CH2-4-Py</chem>
2993	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	
2994	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	
2995	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	
2996	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	
2997	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>(CH2)5OH</chem>
2998	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	O	H	2'	<chem>4-OH-Ph</chem>
2999	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>2-Py</chem>
3000	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>3-Py</chem>
3001	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>4-Py</chem>
3002	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>4-NH2-Ph</chem>
3003	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>4-NO2-Ph</chem>
3004	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>3-NH2-Ph</chem>
3005	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>3-NO2-Ph</chem>
3006	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>2-NH2-Ph</chem>
3007	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>2-NO2-Ph</chem>
3008	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>CH2-2-Py</chem>
3009	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>CH2-3-Py</chem>
3010	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>CH2-4-Py</chem>
3011	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	
3012	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	
3013	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	

3014	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	
3015	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
3016	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	H	2'	4-OH-Ph
3017	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	2-Py
3018	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	3-Py
3019	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	4-Py
3020	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
3021	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
3022	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
3023	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
3024	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
3025	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
3026	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
3027	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
3028	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
3029	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	
3030	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	
3031	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	
3032	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	
3033	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
3034	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	4-OH-Ph
3035	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	2-Py
3036	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	3-Py
3037	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	4-Py
3038	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
3039	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
3040	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
3041	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
3042	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph
3043	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
3044	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
3045	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
3046	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
3047	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	
3048	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	
3049	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	
3050	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	
3051	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
3052	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	O	H	2'	4-OH-Ph
3053	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	2-Py
3054	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	3-Py

3055	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	4-Py
3056	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
3057	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
3058	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
3059	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
3060	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
3061	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
3062	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
3063	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
3064	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
3065	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	
3066	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	
3067	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	
3068	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	
3069	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
3070	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	H	2'	4-OH-Ph
3071	4-OH-5-OMe	OEt	-	O	H	4'	Bn
3072	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	2-Py
3073	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	3-Py
3074	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	4-Py
3075	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
3076	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
3077	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
3078	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
3079	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
3080	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
3081	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
3082	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
3083	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	
3084	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	
3085	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	
3086	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	
3087	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
3088	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	4-OH-Ph
3089	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	2-Py
3090	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	3-Py
3091	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	4-Py
3092	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
3093	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
3094	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
3095	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
3096	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph

3097	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
3098	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
3099	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
3100	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
3101	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	
3102	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	
3103	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	
3104	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	
3105	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	(CH ₂) ₅ OH
3106	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	4-OH-Ph
3107	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	2-Py
3108	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	3-Py
3109	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	4-Py
3110	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	4-NH ₂ -Ph
3111	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
3112	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
3113	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
3114	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
3115	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
3116	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
3117	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
3118	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
3119	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	
3120	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	
3121	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	
3122	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	
3123	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
3124	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	4-OH-Ph
3125	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	2-Py
3126	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	3-Py
3127	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-Py
3128	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
3129	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
3130	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
3131	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
3132	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
3133	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
3134	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
3135	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
3136	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
3137	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	

3138	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	
3139	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	
3140	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	
3141	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	
3142	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-OH-Ph
3143	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	2-Py
3144	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	3-Py
3145	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	4-Py
3146	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
3147	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	4-NO ₂ -Ph
3148	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	3-NH ₂ -Ph
3149	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	3-NO ₂ -Ph
3150	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	2-NH ₂ -Ph
3151	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
3152	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
3153	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
3154	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
3155	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	
3156	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	
3157	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	
3158	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	
3159	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	
3160	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	4'	4-OH-Ph
3161	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	2-Py
3162	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	3-Py
3163	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	4-Py
3164	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
3165	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
3166	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
3167	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
3168	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
3169	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
3170	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
3171	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
3172	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
3173	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	
3174	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	
3175	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	

3176	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	
3177	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
3178	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	4'	4-OH-Ph
3179	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	2-Py
3180	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	3-Py
3181	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	4-Py
3182	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
3183	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	4-NO ₂ -Ph
3184	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	3-NH ₂ -Ph
3185	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	3-NO ₂ -Ph
3186	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	2-NH ₂ -Ph
3187	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
3188	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
3189	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
3190	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
3191	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	
3192	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	
3193	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	
3194	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	
3195	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
3196	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	4-OH-Ph
3197	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	2-Py
3198	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	3-Py
3199	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	4-Py
3200	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
3201	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
3202	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
3203	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
3204	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
3205	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
3206	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
3207	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
3208	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
3209	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	
3210	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	
3211	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	
3212	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	
3213	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
3214	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	4-OH-Ph
3215	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	2-Py
3216	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	3-Py

3217	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-Py
3218	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-NH ₂ -Ph
3219	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-NO ₂ -Ph
3220	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	3-NH ₂ -Ph
3221	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	3-NO ₂ -Ph
3222	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	2-NH ₂ -Ph
3223	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	2-NO ₂ -Ph
3224	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	CH ₂ -2-Py
3225	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	CH ₂ -3-Py
3226	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	CH ₂ -4-Py
3227	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
3228	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
3229	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
3230	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	
3231	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	$(\text{CH}_2)_5\text{OH}$
3232	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	NH	H	4'	4-OH-Ph
3233	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	2-Py
3234	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	3-Py
3235	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-Py
3236	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-NH ₂ -Ph
3237	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-NO ₂ -Ph
3238	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	3-NH ₂ -Ph
3239	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	3-NO ₂ -Ph
3240	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	2-NH ₂ -Ph
3241	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	2-NO ₂ -Ph
3242	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	CH ₂ -2-Py
3243	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	CH ₂ -3-Py
3244	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	CH ₂ -4-Py
3245	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
3246	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
3247	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
3248	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	
3249	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	$(\text{CH}_2)_5\text{OH}$
3250	4-OH-5-OMe	CH_3	$(\text{CH}_2)_3$	NH	H	4'	4-OH-Ph
3251	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	O	H	4'	2-Py
3252	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	O	H	4'	3-Py
3253	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	O	H	4'	4-Py
3254	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	O	H	4'	4-NH ₂ -Ph
3255	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	O	H	4'	4-NO ₂ -Ph
3256	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	O	H	4'	3-NH ₂ -Ph
3257	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	O	H	4'	3-NO ₂ -Ph
3258	4-OH-5-OMe	CH_3	$(\text{CH}_2)_2$	O	H	4'	2-NH ₂ -Ph

3259	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
3260	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
3261	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
3262	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
3263	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	
3264	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	
3265	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	
3266	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	
3267	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
3268	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	4-OH-Ph
3269	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	2-Py
3270	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	3-Py
3271	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	4-Py
3272	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
3273	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
3274	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
3275	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
3276	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
3277	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
3278	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
3279	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
3280	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
3281	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	
3282	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	
3283	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	
3284	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	
3285	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
3286	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	4-OH-Ph
3287	4-OH-5-OMe	OEt	-	O	H	3'	Bn
3288	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	2-Py
3289	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	3-Py
3290	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	4-Py
3291	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
3292	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
3293	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
3294	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
3295	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
3296	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
3297	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
3298	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
3299	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	

3300	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	
3301	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	
3302	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	
3303	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	
3304	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	
3305	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3306	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3307	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3308	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3309	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3310	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3311	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3312	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3313	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3314	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3315	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3316	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3317	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3318	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3319	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3320	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3321	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3322	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3323	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3324	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3325	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3326	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3327	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3328	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3329	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3330	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3331	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3332	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3333	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3334	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3335	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3336	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3337	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	

3338	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3339	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
3340	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	4-OH-Ph
3341	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	2-Py
3342	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	3-Py
3343	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	4-Py
3344	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
3345	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
3346	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
3347	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
3348	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
3349	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
3350	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
3351	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
3352	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
3353	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	
3354	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	
3355	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	
3356	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	
3357	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
3358	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	4-OH-Ph
3359	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	2-Py
3360	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	3-Py
3361	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	4-Py
3362	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
3363	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
3364	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
3365	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
3366	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
3367	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
3368	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
3369	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
3370	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
3371	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	
3372	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	
3373	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	
3374	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	
3375	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
3376	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	3'	4-OH-Ph
3377	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	2-Py
3378	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	3-Py

3379	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	4-Py
3380	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
3381	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
3382	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
3383	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
3384	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph
3385	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
3386	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
3387	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
3388	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
3389	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	
3390	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	
3391	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	
3392	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	
3393	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
3394	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	3'	4-OH-Ph
3395	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	2-Py
3396	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	3-Py
3397	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	4-Py
3398	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
3399	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
3400	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
3401	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
3402	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
3403	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
3404	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
3405	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
3406	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
3407	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	
3408	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	
3409	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	
3410	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	
3411	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
3412	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	4-OH-Ph
3413	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	2-Py
3414	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	3-Py
3415	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	4-Py
3416	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
3417	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
3418	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
3419	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
3420	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph

3421	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
3422	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
3423	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
3424	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
3425	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	
3426	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	
3427	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	
3428	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	
3429	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
3430	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	4-OH-Ph
3431	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	2-Py
3432	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	3-Py
3433	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	4-Py
3434	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	4-NH ₂ -Ph
3435	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
3436	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
3437	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
3438	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
3439	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
3440	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
3441	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
3442	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
3443	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	
3444	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	
3445	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	
3446	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	
3447	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
3448	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	4-OH-Ph
3449	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	2-Py
3450	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	3-Py
3451	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	4-Py
3452	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
3453	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
3454	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
3455	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
3456	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
3457	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
3458	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
3459	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
3460	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
3461	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	

3462	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	
3463	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	
3464	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	
3465	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
3466	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	4-OH-Ph
3467	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	2-Py
3468	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	3-Py
3469	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	4-Py
3470	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
3471	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
3472	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
3473	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
3474	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
3475	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
3476	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
3477	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
3478	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
3479	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	
3480	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	
3481	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	
3482	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	
3483	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
3484	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	4-OH-Ph
3485	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	2-Py
3486	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	3-Py
3487	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	4-Py
3488	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
3489	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
3490	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
3491	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
3492	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph
3493	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
3494	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
3495	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
3496	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
3497	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	
3498	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	
3499	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	

3500	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	
3501	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
3502	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	4-OH-Ph
3503	4-OH-5-OMe	OEt	-	O	H	2'	Bn
3504	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	2-Py
3505	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	3-Py
3506	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	4-Py
3507	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
3508	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
3509	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
3510	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
3511	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
3512	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
3513	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
3514	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
3515	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	
3516	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	
3517	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	
3518	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	
3519	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
3520	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	4-OH-Ph
3521	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	2-Py
3522	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	3-Py
3523	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	4-Py
3524	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
3525	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
3526	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
3527	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
3528	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
3529	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
3530	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
3531	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
3532	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
3533	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	
3534	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	
3535	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	
3536	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	
3537	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
3538	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	4-OH-Ph
3539	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	2-Py
3540	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	3-Py

3541	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	4-Py
3542	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	4-NH ₂ -Ph
3543	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
3544	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
3545	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
3546	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
3547	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
3548	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
3549	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
3550	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
3551	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	
3552	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	
3553	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	
3554	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	
3555	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
3556	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	4-OH-Ph
3557	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	2-Py
3558	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	3-Py
3559	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	4-Py
3560	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
3561	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
3562	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
3563	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
3564	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
3565	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
3566	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
3567	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
3568	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
3569	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	
3570	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	
3571	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	
3572	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	
3573	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
3574	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	4-OH-Ph
3575	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	2-Py
3576	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	3-Py
3577	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	4-Py
3578	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
3579	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
3580	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
3581	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
3582	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph

3583	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
3584	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
3585	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
3586	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
3587	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	
3588	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	
3589	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	
3590	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	
3591	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
3592	4-OH-5-OMe	OEt	(CH ₂) ₂	O	H	2'	4-OH-Ph
3593	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	2-Py
3594	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	3-Py
3595	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	4-Py
3596	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
3597	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
3598	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
3599	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
3600	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
3601	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
3602	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
3603	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
3604	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
3605	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	
3606	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	
3607	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	
3608	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	
3609	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
3610	4-OH-5-OMe	OEt	(CH ₂) ₃	O	H	2'	4-OH-Ph
3611	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	2-Py
3612	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	3-Py
3613	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	4-Py
3614	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
3615	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
3616	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
3617	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
3618	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph
3619	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
3620	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
3621	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
3622	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
3623	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	

3624	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	
3625	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	
3626	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	
3627	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
3628	4-OH-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	4-OH-Ph
3629	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	2-Py
3630	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	3-Py
3631	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	4-Py
3632	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
3633	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
3634	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
3635	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
3636	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
3637	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
3638	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
3639	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
3640	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
3641	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	
3642	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	
3643	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	
3644	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	
3645	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
3646	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	4-OH-Ph
3647	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	2-Py
3648	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	3-Py
3649	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	4-Py
3650	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	4-NH ₂ -Ph
3651	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
3652	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
3653	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
3654	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
3655	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
3656	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
3657	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
3658	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
3659	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	
3660	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	
3661	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	

3662	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	
3663	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
3664	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	4-OH-Ph
3665	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	2-Py
3666	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	3-Py
3667	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	4-Py
3668	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
3669	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
3670	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
3671	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
3672	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
3673	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
3674	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
3675	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
3676	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
3677	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	
3678	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	
3679	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	
3680	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	
3681	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
3682	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	4-OH-Ph
3683	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	2-Py
3684	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	3-Py
3685	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	4-Py
3686	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
3687	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
3688	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
3689	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
3690	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph
3691	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
3692	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
3693	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
3694	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
3695	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	
3696	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	
3697	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	
3698	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	
3699	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
3700	4-OH-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	4-OH-Ph
3701	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	2-Py
3702	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	3-Py

3703	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	4-Py
3704	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
3705	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
3706	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
3707	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
3708	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
3709	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
3710	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
3711	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
3712	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
3713	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	
3714	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	
3715	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	
3716	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	
3717	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
3718	4-OH-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	4-OH-Ph
3719	4-(2-N-morpholinoethoxy)-5-OMe	OEt	-	O	H	4'	Bn
3720	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	2-Py
3721	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	3-Py
3722	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	4-Py
3723	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
3724	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
3725	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
3726	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
3727	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
3728	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
3729	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
3730	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
3731	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	
3732	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	
3733	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	
3734	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	
3735	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
3736	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	4'	4-OH-Ph
3737	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	2-Py
3738	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	3-Py
3739	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	4-Py
3740	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
3741	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
3742	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
3743	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
3744	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph

3745	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
3746	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
3747	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
3748	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
3749	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	
3750	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	
3751	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	
3752	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	
3753	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	(CH ₂) ₅ OH
3754	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	4'	4-OH-Ph
3755	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	2-Py
3756	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	3-Py
3757	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	4-Py
3758	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	4-NH ₂ -Ph
3759	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
3760	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
3761	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
3762	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
3763	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
3764	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
3765	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
3766	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
3767	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	
3768	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	
3769	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	
3770	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	
3771	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
3772	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	4-OH-Ph
3773	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	2-Py
3774	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	3-Py
3775	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-Py
3776	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
3777	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
3778	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
3779	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
3780	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
3781	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
3782	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
3783	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
3784	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
3785	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	

3786	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	
3787	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	
3788	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	
3789	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	(CH ₂) ₅ OH
3790	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-OH-Ph
3791	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	2-Py
3792	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	3-Py
3793	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	4-Py
3794	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
3795	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	4-NO ₂ -Ph
3796	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	3-NH ₂ -Ph
3797	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	3-NO ₂ -Ph
3798	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	2-NH ₂ -Ph
3799	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
3800	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
3801	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
3802	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
3803	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	
3804	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	
3805	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	
3806	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	
3807	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
3808	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	4'	4-OH-Ph
3809	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	2-Py
3810	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	3-Py
3811	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	4-Py
3812	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
3813	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
3814	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
3815	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
3816	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
3817	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
3818	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
3819	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
3820	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
3821	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	
3822	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	
3823	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	

3824	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	
3825	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
3826	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	4'	4-OH-Ph
3827	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	2-Py
3828	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	3-Py
3829	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	4-Py
3830	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
3831	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	4-NO ₂ -Ph
3832	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	3-NH ₂ -Ph
3833	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	3-NO ₂ -Ph
3834	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	2-NH ₂ -Ph
3835	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
3836	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
3837	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
3838	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
3839	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	
3840	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	
3841	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	
3842	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	
3843	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
3844	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	4'	4-OH-Ph
3845	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	2-Py
3846	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	3-Py
3847	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	4-Py
3848	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
3849	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
3850	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
3851	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
3852	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
3853	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
3854	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
3855	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
3856	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
3857	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	
3858	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	
3859	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	
3860	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	
3861	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
3862	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	4'	4-OH-Ph
3863	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	2-Py
3864	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	3-Py

3865	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	4-Py
3866	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	4-NH ₂ -Ph
3867	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
3868	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	3-NH ₂ -Ph
3869	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
3870	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
3871	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
3872	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
3873	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	CH ₂ -3-Py
3874	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	CH ₂ -4-Py
3875	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	
3876	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	
3877	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	
3878	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	
3879	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	(CH ₂) ₅ OH
3880	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	4'	4-OH-Ph
3881	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	2-Py
3882	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	3-Py
3883	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	4-Py
3884	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
3885	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
3886	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
3887	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
3888	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
3889	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
3890	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
3891	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
3892	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
3893	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	
3894	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	
3895	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	
3896	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	
3897	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	(CH ₂) ₅ OH
3898	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	4-OH-Ph
3899	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	2-Py
3900	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	3-Py
3901	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	4-Py
3902	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	4-NH ₂ -Ph
3903	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	4-NO ₂ -Ph
3904	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	3-NH ₂ -Ph
3905	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	3-NO ₂ -Ph
3906	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	2-NH ₂ -Ph

3907	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	2-NO ₂ -Ph
3908	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -2-Py
3909	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -3-Py
3910	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	CH ₂ -4-Py
3911	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	
3912	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	
3913	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	
3914	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	
3915	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	(CH ₂) ₅ OH
3916	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	4'	4-OH-Ph
3917	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	2-Py
3918	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	3-Py
3919	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	4-Py
3920	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	4-NH ₂ -Ph
3921	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	4-NO ₂ -Ph
3922	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	3-NH ₂ -Ph
3923	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	3-NO ₂ -Ph
3924	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	2-NH ₂ -Ph
3925	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	2-NO ₂ -Ph
3926	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -2-Py
3927	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -3-Py
3928	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	CH ₂ -4-Py
3929	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	
3930	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	
3931	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	
3932	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	
3933	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	(CH ₂) ₅ OH
3934	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	4'	4-OH-Ph
3935	4-(2-N-morpholinoethoxy)-5-OMe	OEt	-	O	H	3'	Bn
3936	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	2-Py
3937	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	3-Py
3938	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	4-Py
3939	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
3940	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
3941	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
3942	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
3943	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
3944	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
3945	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
3946	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
3947	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	

3948	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	
3949	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	
3950	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	
3951	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
3952	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	4-OH-Ph
3953	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	2-Py
3954	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	3-Py
3955	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	4-Py
3956	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
3957	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
3958	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
3959	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
3960	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
3961	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
3962	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
3963	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
3964	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
3965	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3966	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3967	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3968	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	
3969	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
3970	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	4-OH-Ph
3971	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	2-Py
3972	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	3-Py
3973	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	4-Py
3974	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	4-NH ₂ -Ph
3975	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
3976	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
3977	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
3978	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
3979	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
3980	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
3981	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
3982	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
3983	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3984	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3985	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	

3986	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	
3987	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
3988	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	4-OH-Ph
3989	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	2-Py
3990	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	3-Py
3991	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	4-Py
3992	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
3993	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
3994	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
3995	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
3996	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
3997	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
3998	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
3999	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
4000	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
4001	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	
4002	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	
4003	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	
4004	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	
4005	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
4006	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3'	4-OH-Ph
4007	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	2-Py
4008	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	3-Py
4009	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	4-Py
4010	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
4011	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
4012	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
4013	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
4014	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
4015	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
4016	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
4017	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
4018	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
4019	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	
4020	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	
4021	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	
4022	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	
4023	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
4024	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	3'	4-OH-Ph
4025	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	2-Py
4026	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	3-Py

4027	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	4-Py
4028	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
4029	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
4030	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
4031	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
4032	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph
4033	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
4034	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
4035	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
4036	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
4037	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	
4038	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	
4039	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	
4040	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	
4041	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
4042	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	3'	4-OH-Ph
4043	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	2-Py
4044	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	3-Py
4045	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	4-Py
4046	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
4047	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
4048	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
4049	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
4050	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
4051	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
4052	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
4053	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
4054	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
4055	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	
4056	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	
4057	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	
4058	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	
4059	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
4060	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	3'	4-OH-Ph
4061	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	2-Py
4062	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	3-Py
4063	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	4-Py
4064	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
4065	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
4066	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
4067	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
4068	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph

4069	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
4070	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
4071	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
4072	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
4073	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	
4074	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	
4075	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	
4076	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	
4077	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
4078	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	3'	4-OH-Ph
4079	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	2-Py
4080	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	3-Py
4081	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	4-Py
4082	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	4-NH ₂ -Ph
4083	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
4084	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
4085	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
4086	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	2-NH ₂ -Ph
4087	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
4088	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
4089	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
4090	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -4-Py
4091	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	
4092	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	
4093	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	
4094	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	
4095	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
4096	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	4-OH-Ph
4097	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	2-Py
4098	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	3-Py
4099	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	4-Py
4100	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
4101	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
4102	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
4103	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
4104	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
4105	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
4106	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
4107	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
4108	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -4-Py
4109	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	

4110	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	
4111	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	
4112	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	
4113	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
4114	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	4-OH-Ph
4115	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	2-Py
4116	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	3-Py
4117	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	4-Py
4118	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	4-NH ₂ -Ph
4119	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	4-NO ₂ -Ph
4120	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	3-NH ₂ -Ph
4121	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	3-NO ₂ -Ph
4122	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	2-NH ₂ -Ph
4123	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	2-NO ₂ -Ph
4124	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -2-Py
4125	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -3-Py
4126	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	CH ₂ -4-Py
4127	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	
4128	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	
4129	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	
4130	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	
4131	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	(CH ₂) ₅ OH
4132	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	3'	4-OH-Ph
4133	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	2-Py
4134	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	3-Py
4135	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	4-Py
4136	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	4-NH ₂ -Ph
4137	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	4-NO ₂ -Ph
4138	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	3-NH ₂ -Ph
4139	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	3-NO ₂ -Ph
4140	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	2-NH ₂ -Ph
4141	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	2-NO ₂ -Ph
4142	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -2-Py
4143	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -3-Py
4144	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	CH ₂ -4-Py
4145	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	
4146	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	
4147	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	

4148	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	
4149	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	(CH ₂) ₅ OH
4150	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	3'	4-OH-Ph
4151	4-(2-N-morpholinoethoxy)-5-OMe	OEt	-	O	H	2'	Bn
4152	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	2-Py
4153	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	3-Py
4154	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	4-Py
4155	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
4156	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
4157	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
4158	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
4159	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
4160	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
4161	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
4162	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
4163	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	
4164	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	
4165	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	
4166	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	
4167	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
4168	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	2'	4-OH-Ph
4169	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	2-Py
4170	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	3-Py
4171	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	4-Py
4172	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
4173	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
4174	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
4175	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
4176	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
4177	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
4178	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
4179	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
4180	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
4181	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	
4182	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	
4183	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	
4184	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	
4185	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
4186	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	4-OH-Ph
4187	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	2-Py
4188	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	3-Py

4189	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	4-Py
4190	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	4-NH ₂ -Ph
4191	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
4192	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	3-NH ₂ -Ph
4193	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
4194	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
4195	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
4196	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
4197	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -3-Py
4198	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	CH ₂ -4-Py
4199	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	
4200	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	
4201	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	
4202	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	
4203	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
4204	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	4-OH-Ph
4205	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	2-Py
4206	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	3-Py
4207	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	4-Py
4208	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
4209	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
4210	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
4211	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
4212	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
4213	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
4214	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
4215	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
4216	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
4217	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	
4218	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	
4219	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	
4220	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	
4221	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
4222	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	4-OH-Ph
4223	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	2-Py
4224	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	3-Py
4225	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	4-Py
4226	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
4227	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
4228	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
4229	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
4230	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph

4231	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
4232	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
4233	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
4234	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
4235	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	
4236	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	
4237	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	
4238	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	
4239	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
4240	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	O	H	2'	4-OH-Ph
4241	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	2-Py
4242	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	3-Py
4243	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	4-Py
4244	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
4245	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
4246	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
4247	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
4248	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
4249	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
4250	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
4251	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
4252	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
4253	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	
4254	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	
4255	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	
4256	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	
4257	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
4258	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	H	2'	4-OH-Ph
4259	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	2-Py
4260	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	3-Py
4261	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	4-Py
4262	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
4263	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
4264	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
4265	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
4266	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph
4267	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
4268	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
4269	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
4270	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
4271	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	

4272	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	
4273	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	
4274	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	
4275	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	<chem>(CH2)5OH</chem>
4276	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	O	H	2'	<chem>4-OH-Ph</chem>
4277	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>2-Py</chem>
4278	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>3-Py</chem>
4279	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>4-Py</chem>
4280	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>4-NH2-Ph</chem>
4281	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>4-NO2-Ph</chem>
4282	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>3-NH2-Ph</chem>
4283	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>3-NO2-Ph</chem>
4284	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>2-NH2-Ph</chem>
4285	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>2-NO2-Ph</chem>
4286	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>CH2-2-Py</chem>
4287	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>CH2-3-Py</chem>
4288	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>CH2-4-Py</chem>
4289	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	
4290	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	
4291	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	
4292	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	
4293	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>(CH2)5OH</chem>
4294	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	H	2'	<chem>4-OH-Ph</chem>
4295	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>2-Py</chem>
4296	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>3-Py</chem>
4297	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>4-Py</chem>
4298	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>4-NH2-Ph</chem>
4299	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>4-NO2-Ph</chem>
4300	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>3-NH2-Ph</chem>
4301	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>3-NO2-Ph</chem>
4302	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>2-NH2-Ph</chem>
4303	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>2-NO2-Ph</chem>
4304	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>CH2-2-Py</chem>
4305	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>CH2-3-Py</chem>
4306	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	<chem>CH2-4-Py</chem>
4307	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	
4308	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	
4309	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	

4310	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	
4311	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
4312	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	4-OH-Ph
4313	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	2-Py
4314	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	3-Py
4315	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	4-Py
4316	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	4-NH ₂ -Ph
4317	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
4318	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
4319	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
4320	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
4321	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
4322	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
4323	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
4324	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
4325	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	
4326	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	
4327	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	
4328	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	
4329	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	(CH ₂) ₅ OH
4330	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	4-OH-Ph
4331	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	2-Py
4332	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	3-Py
4333	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	4-Py
4334	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	4-NH ₂ -Ph
4335	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	4-NO ₂ -Ph
4336	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	3-NH ₂ -Ph
4337	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	3-NO ₂ -Ph
4338	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	2-NH ₂ -Ph
4339	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	2-NO ₂ -Ph
4340	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -2-Py
4341	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -3-Py
4342	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	CH ₂ -4-Py
4343	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	
4344	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	
4345	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	
4346	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	
4347	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	(CH ₂) ₅ OH
4348	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	O	H	2'	4-OH-Ph
4349	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	2-Py
4350	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	3-Py

4351	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	4-Py
4352	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	4-NH ₂ -Ph
4353	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	4-NO ₂ -Ph
4354	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	3-NH ₂ -Ph
4355	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	3-NO ₂ -Ph
4356	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	2-NH ₂ -Ph
4357	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	2-NO ₂ -Ph
4358	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -2-Py
4359	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -3-Py
4360	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	CH ₂ -4-Py
4361	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	
4362	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	
4363	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	
4364	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	
4365	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	(CH ₂) ₅ OH
4366	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	O	H	2'	4-OH-Ph

表 10

化合物番号	R ¹	Y	X	R ⁴	R ²	ウレア位置	R ⁵
4367	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	2-Py
4368	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	3-Py
4369	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	4-Py
4370	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	4-NH ₂ -Ph
4371	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	4-NO ₂ -Ph
4372	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	3-NH ₂ -Ph
4373	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	3-NO ₂ -Ph
4374	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	2-NH ₂ -Ph
4375	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	2-NO ₂ -Ph
4376	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	CH ₂ -(4-NH ₂ -Ph)
4377	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	CH ₂ -(4-NO ₂ -Ph)
4378	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	CH ₂ -(3-NH ₂ -Ph)
4379	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	CH ₂ -(3-NO ₂ -Ph)
4380	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	CH ₂ -(2-NH ₂ -Ph)
4381	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	CH ₂ -(2-NO ₂ -Ph)
4382	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	CH ₂ -2-Py
4383	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	CH ₂ -3-Py
4384	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	CH ₂ -4-Py
4385	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	
4386	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	
4387	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	
4388	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	
4389	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	(CH ₂) ₅ OH
4390	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	4-OH-Ph
4391	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	2-Py
4392	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	3-Py
4393	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	4-Py

4394	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	4-NH ₂ -Ph
4395	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	4-NO ₂ -Ph
4396	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	3-NH ₂ -Ph
4397	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	3-NO ₂ -Ph
4398	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	2-NH ₂ -Ph
4399	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	2-NO ₂ -Ph
4400	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	CH ₂ -2-Py
4401	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	CH ₂ -3-Py
4402	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	CH ₂ -4-Py
4403	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	
4404	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	
4405	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	
4406	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	
4407	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	(CH ₂) ₅ OH
4408	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	4-OH-Ph
4409	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	2-Py
4410	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	3-Py
4411	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	4-Py
4412	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	4-NH ₂ -Ph
4413	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	4-NO ₂ -Ph
4414	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	3-NH ₂ -Ph
4415	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	3-NO ₂ -Ph
4416	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	2-NH ₂ -Ph
4417	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	2-NO ₂ -Ph
4418	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	CH ₂ -(4-NH ₂ -Ph)
4419	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	CH ₂ -(4-NO ₂ -Ph)
4420	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	CH ₂ -(3-NH ₂ -Ph)
4421	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	CH ₂ -(3-NO ₂ -Ph)
4422	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	CH ₂ -(2-NH ₂ -Ph)
4423	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	CH ₂ -(2-NO ₂ -Ph)
4424	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	CH ₂ -2-Py
4425	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	CH ₂ -3-Py
4426	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	CH ₂ -4-Py
4427	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	
4428	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	
4429	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	
4430	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	
4431	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	(CH ₂) ₅ OH
4432	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	3'	4-OH-Ph
4433	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	2-Py
4434	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	3-Py
4435	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	4-Py

4436	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	4-NH ₂ -Ph
4437	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	4-NO ₂ -Ph
4438	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	3-NH ₂ -Ph
4439	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	3-NO ₂ -Ph
4440	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	2-NH ₂ -Ph
4441	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	2-NO ₂ -Ph
4442	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	CH ₂ -2-Py
4443	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	CH ₂ -3-Py
4444	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	CH ₂ -4-Py
4445	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	
4446	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	
4447	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	
4448	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	
4449	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	(CH ₂) ₅ OH
4450	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	3'	4-OH-Ph
4451	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	2-Py
4452	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	3-Py
4453	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	4-Py
4454	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	4-NH ₂ -Ph
4455	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	4-NO ₂ -Ph
4456	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	3-NH ₂ -Ph
4457	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	3-NO ₂ -Ph
4458	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	2-NH ₂ -Ph
4459	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	2-NO ₂ -Ph
4460	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	CH ₂ -(4-NH ₂ -Ph)
4461	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	CH ₂ -(4-NO ₂ -Ph)
4462	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	CH ₂ -(3-NH ₂ -Ph)
4463	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	CH ₂ -(3-NO ₂ -Ph)
4464	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	CH ₂ -(2-NH ₂ -Ph)
4465	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	CH ₂ -(2-NO ₂ -Ph)
4466	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	CH ₂ -2-Py
4467	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	CH ₂ -3-Py
4468	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	CH ₂ -4-Py
4469	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	
4470	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	
4471	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	
4472	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	
4473	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	(CH ₂) ₅ OH
4474	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	2'	4-OH-Ph
4475	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	2-Py
4476	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	3-Py
4477	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	4-Py

4478	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	4-NH ₂ -Ph
4479	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	4-NO ₂ -Ph
4480	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	3-NH ₂ -Ph
4481	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	3-NO ₂ -Ph
4482	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	2-NH ₂ -Ph
4483	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	2-NO ₂ -Ph
4484	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	CH ₂ -2-Py
4485	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	CH ₂ -3-Py
4486	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	CH ₂ -4-Py
4487	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	
4488	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	
4489	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	
4490	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	
4491	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	(CH ₂) ₅ OH
4492	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	2'	4-OH-Ph

表1～表10において、Pyはピリジル基、Phはフェニル基、Meはメチル基、Etはエチル基、ⁿPrはノルマルプロピル基、Acはアセチル基、ⁿBuはノルマルブチル基、Bnはベンジル基、c-Penはシクロペンチル基、c-Hexはシクロヘキシリル基、c-Hepはシクロヘプチル基、ⁱPrはイソプロピル基、Napはナフチル基をそれぞれ表す。

本発明のジアリールアミド誘導体を有効成分とする薬学的組成物、即ち医薬組成物は、錠剤、カプセル剤、散剤、顆粒剤などの経口剤をはじめ、静脈内、皮下、筋肉内などの注射剤、外用剤など種々の剤形で投与することができる。例えば、本発明のジアリールアミド誘導体とラクトース、澱粉などの賦形剤、ステアリン酸マグネシウム、タルクなどの滑沢剤、その他常用の添加剤を混合し、錠剤とすることができる。また、蒸留水、生理食塩水、アルコールなどを用いて注射剤とすることもできる。必要に応じて緩衝剤、等張剤、防腐剤、安定剤などを添加してもよい。

本発明のジアリールアミド誘導体の用量は、患者の性別、年齢、体重、疾患の種類、症状などに応じて適宜定めるものであるが、経口投与する場合、概ね1日当たり0.1～100mg/kgの範囲、好ましくは1～10mg/kgの範囲で、単回又は数回に分けて投与することができる。

本明細書は、本願の優先権の基礎である特願平11-281271号及び特願平11-290789号の明細書に記載された内容を包含する。

発明を実施するための最良の形態

本発明の内容を以下の参考例、実施例及び処方例で更に詳細に説明するが、本発明はその内容に限定されるものではない。

実施例1

N-フェニル-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル]フェニル}ウレア (化合物番号1)

0.75gの4,5-ジメトキシ-2-ニトロ安息香酸をエタノール100mlに溶かした後に濃硫酸3mlを加えて還流下18時間攪拌した。5%水酸化ナトリウム水溶液で

中和後、析出した固体を吸引濾取、水洗後乾燥し、0.53 g の白色固体を得た。引き続き 0.30 g のこの固体と 60 mg の 5% Pd/C をエタノール 20 ml に加え、水素雰囲気下、室温で 14 時間攪拌した。反応液を濾過し、濾液を濃縮することで 0.27 g の 2-アミノ-4,5-ジメトキシ安息香酸エチルエステルを白色固体として得た。

引き続き 0.26 g のこの固体をジクロロメタン 20 ml に溶かした後に 0.27 g の 4-ニトロ安息香酸クロリドと 0.5 ml のトリエチルアミンを加えて室温で 30 分攪拌した。反応液を飽和重曹水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをメタノールで洗浄後乾燥し、0.36g の黄色固体を得た。

引き続き 0.36 g のこの固体と 50 mg の 5%Pd/C をメタノール 100 ml に加えた後に水素雰囲気下、室温で 32 時間攪拌した。反応液を濾過し、濾液を濃縮して 0.28 g の 2-(4-アミノフェニル)-カルボニルアミノ-4,5-ジメトキシ安息香酸エチルエステルを黄色固体として得た。

引き続き 90 mg のこの固体、0.24 g のフェニルイソシアネート、0.12 g のトリエチルアミンをトルエン 20 ml に加えた後に還流下 18 時間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒ジクロロメタン：酢酸エチル=10:1→ジクロロメタン：メタノール= 30 : 1）、白色固体として、表記化合物を 80 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H) , 3.80 (s, 3H) , 3.88 (s, 3H) , 4.37 (q, J = 7.2 Hz, 3H) , 6.99 (t, J = 7.3 Hz, 1H) , 7.30 (m, 3H) , 7.48 (d, J = 7.5 Hz, 2H) , 7.48 (s, 1H) , 7.67 (d, J = 7.3 Hz, 2H) , 7.90 (d, J = 8.9 Hz, 2H) , 8.45 (s, 1H) , 9.05 (s, 1H) , 9.31 (s, 1H) , 11.75 (s, 1H)

実施例 2

N-(4-ニトロフェニル)-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル]ウレア(化合物番号 25)

実施例 1 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H)、3.80 (s, 3H)、3.88 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、7.48 (s, 1H)、7.71 (m, 4H)、7.92 (d, J = 8.9 Hz, 2H)、8.22 (d, J = 9.2 Hz, 2H)、8.43 (s, 1H)、9.40 (s, 1H)、9.65 (s, 1H)、11.76 (s, 1H)

実施例 3

N-(4-アミノフェニル)-N'-[4-[4, 5-ジメトキシ-2-エトキシカルボニルフェニル]アミノカルボニル]フェニル}ウレア(化合物番号 28)

実施例 2で合成した化合物 90 mg、5%Pd/C 20 mg をエタノール 10 ml に加えた後に水素雰囲気下、室温で 14 時間攪拌した。反応液を濾過、濾液を濃縮し、残査をシリカゲルカラムクロマトグラフィーによって精製し(溶出溶媒ジクロロメタン:メタノール= 50:1)、淡桃色固体として、表記化合物を 50 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H)、3.80 (s, 3H)、3.87 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、4.80 (s, 2H)、6.52 (d, J = 8.1 Hz, 2H)、7.10 (d, J = 8.9 Hz, 2H)、7.48 (s, 1H)、7.63 (d, J = 8.9 Hz, 2H)、7.87 (d, J = 8.9 Hz, 2H)、8.22 (d, J = 9.2 Hz, 2H)、8.42 (s, 1H)、8.45 (s, 1H)、9.03 (s, 1H)、11.74 (s, 1H)

実施例 4

N-(4-フルオロフェニル)-N'-[4-[4, 5-ジメトキシ-2-エトキシカルボニルフェニル]アミノカルボニル]フェニル}ウレア(化合物番号 19)

2-(4-アミノフェニル)-カルボニルアミノ-4, 5-ジメトキシ安息香酸エチルエステル 60 mg、0.11 g の 4-フルオロフェニルイソシアネート、70 mg の 4-ジメチルアミノピリジンをテトラヒドロフラン 20 ml に加えた後に 70°C で 5 時間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し(溶出溶媒ジクロロメタン:酢酸エチル=10:1→ジクロロメタン:メタノール= 30:1)、白色固体として、表記化合物を 60 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J=7.2Hz, 3H)、3.80 (s, 3H)、3.88 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、7.14 (t, J = 6.2 Hz, 2H)、7.48 (s, 1H)、7.49 (dd, J = 3.8, 8.6 Hz, 2H)、7.67 (d, J = 8.6 Hz,

2H)、7.89 (d, J = 8.9 Hz, 2H)、8.44 (s, 1H)、9.12 (s, 1H)、9.34 (s, 1H)、11.75 (s, 1H)

実施例 5

N-(4-エトキシカルボニルフェニル)-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル]ウレア(化合物番号 14)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.32 (m, 6H)、3.80 (s, 3H)、3.88 (s, 3H)、4.33 (m, 4H)、7.48 (s, 1H)、7.62 (d, J = 8.4 Hz, 2H)、7.68 (d, J = 8.6 Hz, 2H)、7.91 (m, 4H)、8.44 (s, 1H)、9.29 (s, 1H)、9.34 (s, 1H)、11.76 (s, 1H)

実施例 6

N-(4-アセチルフェニル)-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル]ウレア(化合物番号 12)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H)、3.80 (s, 3H)、3.88 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、7.48 (s, 1H)、7.62 (d, J = 8.9 Hz, 2H)、7.68 (d, J = 8.9 Hz, 2H)、7.93 (m, 4H)、8.44 (s, 1H)、9.34 (s, 1H)、9.38 (s, 1H)、11.76 (s, 1H)

実施例 7

N-(4-メトキシフェニル)-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル]ウレア(化合物番号 35)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H)、3.73 (s, 3H)、3.80 (s, 3H)、3.88 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、6.89 (d, J = 9.2 Hz, 2H)、7.38 (d, J = 8.6 Hz, 2H)、7.48 (s, 1H)、7.65 (d, J = 8.9 Hz, 2H)、7.89 (d, J = 8.9 Hz, 2H)、8.45 (s, 1H)、8.73 (s, 1H)、9.11 (s, 1H)、11.75 (s, 1H)

実施例 8

N-(2-メトキシフェニル)-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニル

フェニル)アミノカルボニル]フェニル}ウレア(化合物番号 37)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H)、3.80 (s, 3H)、3.88 (s, 3H)、3.89 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、7.00 (m, 3H)、7.48 (s, 1H)、7.66 (d, J = 8.4 Hz, 2H)、7.90 (d, J = 8.9 Hz, 2H)、8.13 (dd, J = 1.6, 7.3 Hz, 1H)、8.41 (s, 1H)、8.45 (s, 1H)、9.75 (s, 1H)、11.76 (s, 1H)

実施例 9

N-(3-メトキシフェニル)-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 36)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H)、3.74 (s, 3H)、3.80 (s, 3H)、3.88 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、6.58 (dd, J = 2.4, 8.1 Hz, 1H)、6.96 (d, J = 9.5 Hz, 1H)、7.20 (m, 2H)、7.48 (s, 1H)、7.66 (d, J = 8.6 Hz, 2H)、7.90 (d, J = 8.9 Hz, 2H)、8.44 (s, 1H)、8.97 (s, 1H)、9.21 (s, 1H)、11.75 (s, 1H)

実施例 10

N-(3, 4, 5-トリメトキシフェニル)-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 101)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H)、3.61 (s, 3H)、3.76 (s, 6H)、3.80 (s, 3H)、3.88 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、6.83 (s, 2H)、7.48 (s, 1H)、7.67 (d, J = 8.4 Hz, 2H)、7.90 (d, J = 8.9 Hz, 2H)、8.44 (s, 1H)、8.93 (s, 1H)、9.19 (s, 1H)、11.74 (s, 1H)

実施例 11

N-(3-ピリジル)-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 972)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H)、3.80 (s, 3H)、

3.88 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、7.34 (m, 1H)、7.48 (s, 1H)、
 7.69 (d, J = 8.6 Hz, 2H)、7.90 (d, J = 8.9 Hz, 2H)、7.97 (d, J = 8.9
 Hz, 1H)、8.20 (d, J = 4.3 Hz, 1H)、8.44 (s, 1H)、8.66 (s, 1H)、9.50
 (s, 1H)、9.70 (s, 1H)、11.75 (s, 1H)

実施例 12

N-ベンジル-N'-[4-(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 112)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.34 (t, J = 7.2 Hz, 3H)、3.80 (s, 3H)、
 3.87 (s, 3H)、4.37 (m, 4H)、6.99 (t, J = 6.5 Hz, 1H)、7.28 (m, 5H)、
 7.47 (s, 1H)、7.61 (d, J = 8.6 Hz, 2H)、7.84 (d, J = 8.9 Hz, 1H)、
 8.44 (s, 1H)、9.18 (s, 1H)、11.72 (s, 1H)

実施例 13

N-シクロヘキシリル-N'-[4-(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 103)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.20 (m, 6H)、1.34 (t, J = 7.2Hz, 3H)、
 1.65 (m, 4H)、3.48 (m, 1H)、3.79 (s, 3H)、3.87 (s, 3H)、4.37 (m,
 4H)、6.42 (d, J = 7.8 Hz, 1H)、7.47 (s, 1H)、7.57 (d, J = 8.9 Hz,
 2H)、7.83 (d, J = 8.9 Hz, 1H)、8.45 (s, 1H)、8.88 (s, 1H)、11.72 (s,
 1H)

実施例 14

N-ノルマルブチル-N'-[4-(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 107)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 0.90 (t, J = 6.7 Hz, 3H)、1.27 (m, 4H)、
 1.34 (t, J = 7.2 Hz, 3H)、3.10 (q, J = 5.7 Hz, 2H)、3.80 (s, 3H)、
 3.87 (s, 3H)、4.37 (m, 4H)、6.45 (t, J = 5.4 Hz, 1H)、7.47 (s, 1H)、
 7.59 (d, J = 8.9 Hz, 2H)、7.83 (d, J = 8.6 Hz, 1H)、8.45 (s, 1H)、

8.98 (s, 1H)、11.72 (s, 1H)

実施例 15

N-フェニル-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}チオウレア(化合物番号 315)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H)、3.80 (s, 3H)、3.88 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、7.14 (t, J = 6.8 Hz, 1H)、7.35 (m, 3H)、7.48 (m, 3H)、7.76 (d, J = 8.9 Hz, 2H)、7.91 (d, J = 8.9 Hz, 2H)、8.44 (s, 1H)、10.21 (s, br, 2H)、11.80 (s, 1H)

実施例 16

N-フェニル-N'-[3-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 691)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.34 (t, J = 7.2 Hz, 3H)、3.81 (s, 3H)、3.89 (s, 3H)、4.36 (q, J = 7.2 Hz, 2H)、6.99 (t, J = 7.3 Hz, 1H)、7.29 (t, J = 8.3 Hz, 2H)、7.49 (m, 5H)、7.23 (m, 1H)、8.08 (s, 1H)、8.42 (s, 1H)、8.92 (s, 1H)、9.13 (s, 1H)、11.76 (s, 1H)

実施例 17

N-フェニル-N'-[2-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 692)

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H)、3.80 (s, 3H)、3.88 (s, 3H)、4.37 (q, J = 7.2 Hz, 2H)、6.96 (t, J = 7.3 Hz, 1H)、7.16 (t, J = 7.8 Hz, 1H)、7.26 (t, J = 7.3 Hz, 2H)、7.51 (m, 4H)、7.80 (d, J = 7.0 Hz, 1H)、8.12 (s, 1H)、8.20 (d, J = 5.7 Hz, 2H)、9.61 (s, 1H)、9.79 (s, 1H)、11.47 (s, 1H)

実施例 18

N-フェニル-N'-[4-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 158)

0.66g の 4, 5-ジメトキシ-2-ニトロ安息香酸と 5 ml の塩化チオニルをクロロホルム 40 ml に加えて還流下 6 時間攪拌し後に濃縮した。残さをジクロロメタン 20 ml に溶かした後に、氷浴下アンモニア水 20 ml を加えた後、室温下で 10 分間激しく攪拌した。有機層を分取して濃縮し、残さと 0.20 g の 5% Pd/C をメタノール 50 ml に加え、水素雰囲気下、室温で 19 時間攪拌した。反応液を濾過し、濾液を濃縮することで 0.55 g の 2-アミノ-4, 5-ジメトキシベンズアミドを白色固体として得た。

引き続き 0.55g のこの固体をジクロロメタン 50 ml に溶かした後に 2.00 g の 4-ニトロ安息香酸クロリドと 2 ml のトリエチルアミンを加えて室温で 6 時間攪拌した。反応液を飽和重曹水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをメタノールで洗浄し、乾燥することで 0.72 g の 2- (4-ニトロフェニル) -カルボニルアミノ-4, 5-ジメトキシベンズアミドを黄土色固体として得た。

引き続き 0.68g のこの固体と 0.10 g の 5% Pd/C をメタノール 50 ml に加えた後に水素雰囲気下、室温で 40 時間攪拌した。反応液を濾過、濾液を濃縮し 0.35 g の 2- (4-アミノフェニル) -カルボニルアミノ-4, 5-ジメトキシベンズアミドを黄色固体として得た。

引き続き 0.12 g のこの固体、0.14 g のフェニルイソシアネート、0.10 g の 4-ジメチルアミノピリジンをテトラヒドロフラン 30 ml に加えた後に 70°C で 4 時間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒ジクロロメタン：酢酸エチル=20:1→ジクロロメタン：メタノール= 30 : 1）、白色固体として、表記化合物を 80 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.81 (s, 3H) 、 3.84 (s, 3H) 、 7.00 (t, J = 8.1 Hz, 1H) 、 7.30 (t, J = 8.4 Hz, 2H) 、 7.44 (s, 1H) 、 7.47 (d, J = 7.9 Hz, 2H) 、 7.64 (m, 3H) 、 7.87 (d, J = 8.6 Hz, 2H) 、 8.31 (s, 1H) 、 8.53 (s, 1H) 、 8.87 (s, 1H) 、 9.13 (s, 1H) 、 13.21 (s, 1H)

実施例 19

N-フェニル-N' - [4- [(4, 5-ジメトキシ-2-カルバモイルフェニル) アミノカルボ

ニル] フェニル} -N'-メチルウレア (化合物番号 976)

2-(4-アミノフェニル)-カルボニルアミノ-4,5-ジメトキシベンズアミド 40 mg、60 mg のヒドロキシベンズトリアゾール (HOt)、50 mg のトリエチルアミン、70 mg の 4-メチルアミノ安息香酸を DMF に加えて 30 分間攪拌した後に、80 mg の 1-エチル-3-[3-(ジメチルアミノ)プロピル]-カルボジイミド塩酸塩 (WSCl) を氷浴下加えた後、室温に戻し 50 時間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し (溶出溶媒ジクロロメタン：酢酸エチル=30:1→ジクロロメタン：メタノール= 50 : 1)、80mg の白色固体を得た。

引き続き 30 mg のこの固体、60 mg のフェニルイソシアネート、30 mg の 4-ジメチルアミノピリジンをテトラヒドロフラン 10 ml に加えた後に 70°C で 6 時間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し (溶出溶媒ジクロロメタン：酢酸エチル=30:1→ジクロロメタン：メタノール= 30 : 1)、白色固体として、表記化合物を 20 mg 得た。

¹H-NMR (DMSO-d₆、270MHz) δ ppm: 3.35 (s, 3H)、3.81 (s, 3H)、3.85 (s, 3H)、6.97 (t, J = 8.5 Hz, 1H)、7.25 (t, J = 8.4 Hz, 2H)、7.45 (m, 5H)、7.68 (s, 1H)、7.94 (d, J = 8.1 Hz, 2H)、8.33 (s, 1H)、8.53 (s, 1H)、8.59 (s, 1H)、13.32 (s, 1H)

実施例 20

N-フェニル-N'-[3-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-4-ピリジル} ウレア (化合物番号 971)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆、270MHz) δ ppm: 3.82 (s, 3H)、3.85 (s, 3H)、7.02 (t, J = 7.3 Hz, 1H)、7.32 (m, 3H)、7.46 (s, 1H)、7.51 (d, J = 5.1 Hz, 2H)、7.69 (dd, J = 1.9, 5.1 Hz, 1H)、8.12 (s, 1H)、8.25 (d, J = 2.4 Hz, 1H)、8.47 (d, J = 5.4 Hz, 1H)、8.57 (s, 1H)、9.33 (s, 1H)、9.83 (s, 1H)、13.33 (s, 1H)

実施例 21

N-フェニル-N'-[4-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-2-ピリジル]ウレア(化合物番号 972)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.82 (s, 3H)、3.84 (s, 3H)、7.04 (t, J = 7.3 Hz, 1H)、7.33 (t, J = 7.8 Hz, 3H)、7.46 (s, 1H)、7.54 (d, J = 7.0 Hz, 2H)、7.73 (s, 1H)、7.79 (d, J = 8.9 Hz, 1H)、8.21 (dd, J = 2.4, 8.6Hz, 1H)、8.36 (s, 1H)、8.48 (s, 1H)、8.83 (d, J = 2.1 Hz, 1H)、9.86 (s, 1H)、10.20 (s, 1H)、13.35 (s, 1H)

実施例 22

N-フェニル-N'-[4-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-3-メトキシフェニル]ウレア(化合物番号 726)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.81 (s, 3H)、3.84 (s, 3H)、3.99 (s, 3H)、6.99 (t, J = 7.3 Hz, 1H)、7.31 (t, J = 8.1 Hz, 2H)、7.46 (s, 1H)、7.49 (m, 2H)、7.58 (s, 1H)、7.73 (s, 1H)、8.33 (s, 1H)、8.36 (s, 1H)、8.56 (d, J = 3.5 Hz, 2H)、9.49 (s, 1H)、13.29 (s, 1H)

実施例 23

N-フェニル-N'-[3-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-4-メトキシフェニル]ウレア(化合物番号 727)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.81 (s, 3H)、3.84 (s, 3H)、3.98 (s, 3H)、6.98 (t, J = 7.3 Hz, 1H)、7.19 (d, J = 8.4 Hz, 1H)、7.30 (t, J = 7.8 Hz, 1H)、7.44 (s, 1H)、7.46 (t, J = 7.8 Hz, 2H)、7.60 (dd, J = 2.1, 8.1 Hz, 1H)、7.63 (s, 1H)、8.29 (s, 1H)、8.38 (s, 1H)、8.53 (s, 1H)、8.79 (d, J = 2.4 Hz, 2H)、9.37 (s, 1H)、13.14 (s, 1H)

実施例 24

N-フェニル-N'-[4-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニルメチル]フェニル]ウレア(化合物番号 748)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆、 270MHz) δ ppm : 3.59 (s, 2H)、 3.76 (s, 3H)、 3.77 (s, 3H)、 6.95 (t, J = 8.1 Hz, 1H)、 7.24 (m, 9H)、 7.56 (s, 1H)、 8.16 (s, 1H)、 8.28 (s, 1H)、 8.76 (s, 2H)、 12.13 (s, 1H)

実施例 25

N-フェニル-N' - [4- [(4, 5-ジメトキシ-2-カルバモイルフェニル) アミノカルボニルエチル] フェニル] ウレア (化合物番号 751)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆、 270MHz) δ ppm : 2.61 (t, J = 7.6 Hz, 2H)、 2.87 (t, J = 8.4 Hz, 2H)、 3.78 (s, 6H)、 6.94 (t, J = 7.6 Hz, 1H)、 7.15 (d, J = 8.4 Hz, 2H)、 7.26 (t, J = 8.4 Hz, 2H)、 7.35 (s, 1H)、 7.36 (d, J = 8.4 Hz, 2H)、 7.44 (d, J = 7.8 Hz, 2H)、 7.56 (s, 1H)、 8.17 (s, 1H)、 8.29 (s, 1H)、 8.73 (s, 1H)、 8.77 (s, 1H)、 12.12 (s, 1H)

実施例 26

N-[4- [(4, 5-ジメトキシ-2-カルバモイルフェニル) アミノカルボニル] フェニル] -N' -メチル-N' -フェニルウレア (化合物番号 977)

2- (4-アミノフェニル) -カルボニルアミノ-4, 5-ジメトキシベンズアミド 0.11 g を THF10 ml に溶かした後に 0.50 g の N-フェニル-N-メチルカルバモイルクロリドと 1 ml のジイソプロピルエチルアミン加え、還流下 16 時間攪拌した。反応液を水にあけてジクロロメタン抽出を行い、無水硫酸マグネシウムで乾燥後、濃縮した。残さをメタノールで洗浄し、乾燥することで 50 mg の白色固体を得た。
¹H-NMR (DMSO-d₆、 270MHz) δ ppm : 3.29 (s, 3H)、 3.81 (s, 3H)、 3.83 (s, 3H)、 7.27 (t, J = 6.8 Hz, 1H)、 7.44 (m, 5H)、 7.63 (m, 3H)、 7.80 (d, J = 8.9 Hz, 2H)、 8.30 (s, 1H)、 8.52 (s, 1H)、 8.53 (s, 1H)、 13.18 (s, 1H)

実施例 27

N-[4- [(4, 5-ジメトキシ-2-カルバモイルフェニル) アミノカルボニル] フェニル] -N, N' -ジメチル-N' -フェニルウレア (化合物番号 978)

実施例 26 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 3.12 (s, 3H)、3.18 (s, 3H)、3.81 (s, 3H)、3.83 (s, 3H)、7.00 (m, 3H)、7.12 (m, 4H)、7.44 (s, 1H)、7.68 (m, 3H)、8.32 (s, 1H)、8.49 (s, 1H)、13.18 (s, 1H)

実施例 28

N-(3, 4, 5-トリメトキシフェニル)-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]-3-メトキシフェニル} ウレア (化合物番号 792)

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 3.61 (s, 3H)、3.76 (s, 6H)、3.81 (s, 3H)、3.84 (s, 3H)、3.98 (s, 3H)、6.81 (s, 2H)、7.53 (m, 3H)、7.74 (s, 1H)、8.33 (m, 2H)、8.51 (s, 1H)、8.55 (s, 1H)、9.49 (s, 1H)、13.28 (s, 1H)

実施例 29

N-フェニル-N'-[4-[(4-メチル-2-カルバモイルフェニル)アミノカルボニル]フェニル} ウレア (化合物番号 633)

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 2.32 (s, 3H)、6.99 (t, J = 8.1 Hz, 1H)、7.37 (m, 3H)、7.48 (d, J = 7.3 Hz, 2H)、7.66 (m, 6H)、8.36 (s, 1H)、8.59 (d, J = 8.9 Hz, 2H)、9.00 (s, 1H)、9.26 (s, 1H)、12.73 (s, 1H)

実施例 30

N-フェニル-N'-[4-[(6-カルバモイル-3, 4-メチレンジオキシフェニル)アミノカルボニル]フェニル} ウレア (化合物番号 652)

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 6.12 (s, 2H)、6.99 (t, J = 7.3 Hz, 1H)、7.30 (t, J = 7.3 Hz, 2H)、7.47 (d, J = 7.9 Hz, 2H)、7.50 (s, 1H)、7.63 (d, J = 8.9 Hz, 2H)、7.71 (s, 1H)、7.86 (d, J = 8.4 Hz, 2H)、8.21 (s, 1H)、8.36 (s, 1H)、8.91 (s, 1H)、9.18 (s, 1H)、13.28 (s, 1H)

実施例 31

N-フェニル-N' - [4- [(2-カルバモイル-4-メトキシフェニル)アミノカルボニル]フェニル} ウレア (化合物番号 631)

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆、 270MHz) δ ppm : 3.89 (s, 3H) 、 6.99 (t, J = 8.1 Hz, 1H) 、 7.30 (t, J = 7.8 Hz, 2H) 、 7.45 (m, 4H) 、 7.64 (m, 3H) 、 7.97 (s, 1H) 、 8.13 (d, J = 8.7 Hz, 2H) 、 8.92 (s, 1H) 、 9.14 (s, 1H) 、 12.37 (s, 1H)

実施例 32

N-(4-エトキシカルボニルフェニル)-N' - [4- [(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]フェニル} ウレア (化合物番号 171)

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆、 270MHz) δ ppm : 1.32 (t, J = 7.3 Hz, 3H) 、 3.81 (s, 3H) 、 3.84 (s, 3H) 、 4.33 (q, J = 7.3 Hz, 2H) 、 7.45 (s, 1H) 、 7.65 (m, 5H) 、 7.89 (m, 4H) 、 8.32 (s, 1H) 、 8.53 (s, 1H) 、 9.46 (s, 1H) 、 9.51 (s, 1H) 、 13.22 (s, 1H)

実施例 33

N-フェニル-N' - [3- [(2-カルバモイルチエニル)アミノカルボニル]フェニル} ウレア (化合物番号 916)

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆、 270MHz) δ ppm : 7.00 (t, J = 7.3 Hz, 1H) 、 7.30 (t, J = 8.4 Hz, 2H) 、 7.48 (d, J = 7.8 Hz, 2H) 、 7.78 (m, 7H) 、 8.11 (d, J = 5.4 Hz, 1H) 、 8.93 (s, 1H) 、 9.23 (s, 1H) 、 12.31 (s, 1H)

実施例 34

N-フェニル-N' - [4- [(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-3-メチルフェニル} ウレア (化合物番号 744)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆、 270MHz) δ ppm : 2.34 (s, 3H) 、 3.81 (s, 3H) 、 3.84 (s, 3H) 、 6.99 (t, J = 7.3 Hz, 1H) 、 7.31 (t, J = 7.3 Hz, 2H) 、 7.44 (s, 1H) 、 7.49 (d, J = 7.6 Hz, 2H) 、 7.75 (m, 3H) 、 8.16 (d, J = 7.8 Hz, 1H) 、 8.33 (s, 2H) 、 8.54 (s, 1H) 、 9.38 (s, 1H) 、 13.22 (s, 1H)

実施例 35

N-フェニル-N'-[3-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-4-メチルフェニル}ウレア (化合物番号 745)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 2.33 (s, 3H)、3.81 (s, 3H)、3.84 (s, 3H)、6.97 (t, J = 7.3 Hz, 1H)、7.37 (m, 7H)、7.66 (s, 1H)、8.30 (s, 1H)、8.38 (s, 1H)、8.45 (s, 1H)、8.54 (s, 1H)、9.35 (s, 1H)、13.21 (s, 1H)

実施例 36

N-フェニル-N'-[4-クロル-3-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]フェニル}ウレア (化合物番号 746)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 3.82 (s, 3H)、3.85 (s, 3H)、7.01 (t, J = 7.3 Hz, 1H)、7.31 (t, J = 8.1 Hz, 2H)、7.54 (m, 4H)、7.68 (d, J = 8.1 Hz, 2H)、8.34 (s, 1H)、8.50 (s, 1H)、8.69 (s, 1H)、8.78 (d, J = 1.8 Hz, 1H)、9.67 (s, 1H)、13.34 (s, 1H)

実施例 37

N-フェニル-N'-[3-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-4-ヒドロキシフェニル}ウレア (化合物番号 728)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 3.81 (s, 3H)、3.84 (s, 3H)、6.97 (m, 2H)、7.29 (t, J = 7.8 Hz, 2H)、7.46 (m, 4H)、7.60 (s, 1H)、8.26 (s, 1H)、8.32 (s, 1H)、8.54 (s, 1H)、8.71 (d, J = 2.2 Hz, 1H)、9.34 (s, 1H)、13.22 (s, 1H)

実施例 38

N-フェニル-N'-[3-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-4-(2-(N-モルホリニル)エトキシ)フェニル}ウレア (化合物番号 747)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 3.81 (s, 3H)、3.84 (s, 3H)、3.70 (m,

12H)、6.99(t, J = 7.3 Hz, 1H)、7.27(m, 3H)、7.50(m, 4H)、7.64(s, 1H)、8.23(s, 1H)、8.29(s, 1H)、8.53(s, 1H)、8.75(d, J = 2.4 Hz, 1H)、9.43(s, 1H)、13.15(s, 1H)

実施例 39

N-フェニル-N'-[4-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-2-チエニル]ウレア (化合物番号 975)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.81(s, 3H)、3.83(s, 3H)、6.92(s, 1H)、6.99(t, J = 8.1 Hz, 1H)、7.30(t, J = 8.1 Hz, 2H)、7.46(m, 4H)、8.62(s, 1H)、8.31(s, 1H)、8.46(s, 1H)、9.00(s, 1H)、10.28(s, 1H)、13.02(s, 1H)

実施例 40

N-トルイyl-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]-フェニル]ウレア (化合物番号 2)

実施例 1 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35(t, J = 7.0 Hz, 3H)、2.25(s, 3H)、3.80(s, 3H)、3.88(s, 3H)、4.37(q, J = 7.0 Hz, 2H)、7.10(d, J = 8.4 Hz, 2H)、7.38(d, J = 8.4 Hz, 2H)、7.48(s, 1H)、7.67(d, J = 8.9 Hz, 2H)、7.89(d, J = 8.9 Hz, 2H)、8.45(s, 1H)、9.09(s, 1H)、9.43(s, 1H)、11.75(s, 1H)

実施例 41

N-フェニル-N'-[3-[(4, 5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニルメトキシ]フェニル]ウレア (化合物番号 994)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.79(s, 3H)、3.80(s, 3H)、4.63(s, 2H)、6.67(m, 1H)、6.96(t, J = 7.0 Hz, 1H)、7.04(d, J = 8.9 Hz, 1H)、7.24(m, 4H)、7.38(s, 1H)、7.47(d, J = 7.8 Hz, 2H)、7.61(s, 1H)、8.18(s, 1H)、8.43(s, 1H)、9.01(s, 1H)、9.08(s, 1H)、12.84(s, 1H)

実施例 42

N-(4-アセトキシフェニル)-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニルエチル]フェニル}ウレア (化合物番号 1073)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆、270MHz) δ ppm : 2.62 (t, J = 7.3 Hz, 2H)、2.88 (t, J = 7.3 Hz, 2H)、3.78 (s, 6H)、7.17 (d, J = 8.4 Hz, 2H)、7.36 (m, 3H)、7.57 (m, 3H)、7.89 (d, J = 8.9 Hz, 2H)、8.18 (s, 1H)、8.29 (s, 1H)、8.86 (s, 1H)、9.21 (s, 1H)、12.13 (s, 1H)

実施例 43

N-(3-ピリジル)-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニルエチル]フェニル}ウレア (化合物番号 1071)

実施例 19 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆、270MHz) δ ppm : 2.62 (t, J = 7.3 Hz, 2H)、2.88 (t, J = 7.3 Hz, 2H)、3.78 (s, 6H)、7.17 (d, J = 8.4 Hz, 2H)、7.33 (m, 4H)、7.56 (s, 1H)、7.91 (m, 1H)、8.17 (m, 2H)、8.29 (s, 1H)、8.59 (d, J = 2.4 Hz, 1H)、8.81 (s, 1H)、8.91 (s, 1H)、12.13 (s, 1H)

実施例 44

N-(3-ピリジル)-N'-[4-[(4,5-ジフルオロ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア (化合物番号 1094)

実施例 1 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆、270MHz) δ ppm : 1.34 (t, J = 7.2 Hz, 3H)、4.37 (q, J = 7.2 Hz, 2H)、7.34 (m, 1H)、7.69 (d, J = 8.6 Hz, 2H)、7.97 (m, 4H)、8.21 (m, 1H)、8.64 (m, 2H)、9.31 (s, 1H)、9.55 (s, 1H)、11.59 (s, 1H)

実施例 45

N-(4-アミノフェニル)-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニルエチル]フェニル}ウレア

実施例 3 と同様の方法で合成した。

¹H-NMR (DMSO-d₆、270MHz) δ ppm : 1.32 (t, J = 7.0 Hz, 3H)、2.67 (t, J =

7.3 Hz, 2H)、2.87 (t, J = 7.3 Hz, 2H)、3.77 (s, 3H)、3.81 (s, 3H)、4.31 (q, J = 7.3 Hz, 2H)、4.75 (s, 2H)、6.49 (d, J = 8.9 Hz, 2H)、7.05 (d, J = 8.6 Hz, 2H)、7.14 (d, J = 8.1 Hz, 2H)、7.32 (d, J = 8.4 Hz, 2H)、7.39 (s, 1H)、8.12 (s, 1H)、8.14 (s, 1H)、8.43 (s, 1H)、10.74 (s, 1H)

実施例 46

N-(4-ニトロフェニル)-N-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.32 (t, J = 7.0 Hz, 3H)、2.69 (t, J = 7.3 Hz, 2H)、2.90 (t, J = 7.3 Hz, 2H)、3.77 (s, 3H)、3.82 (s, 3H)、4.31 (q, J = 7.0 Hz, 2H)、7.19 (d, J = 8.4 Hz, 2H)、7.38 (s, 1H)、7.40 (d, J = 8.9 Hz, 2H)、7.69 (d, J = 9.1 Hz, 2H)、8.14 (s, 1H)、8.18 (d, J = 9.1 Hz, 2H)、9.12 (s, 1H)、9.70 (s, 1H)、10.74 (s, 1H)

実施例 47

N-(2-アミノフェニル)-N-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 3 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.32 (t, J = 7.3 Hz, 3H)、2.67 (t, J = 7.8 Hz, 2H)、2.87 (t, J = 7.8 Hz, 2H)、3.77 (s, 3H)、3.81 (s, 3H)、4.31 (q, J = 7.3 Hz, 2H)、4.78 (s, 2H)、6.56 (t, J = 6.8 Hz, 1H)、6.71 (d, J = 6.8 Hz, 1H)、6.80 (t, J = 6.8 Hz, 1H)、7.39 (m, 4H)、7.95 (s, 1H)、8.14 (s, 1H)、8.94 (s, 1H)、10.74 (s, 1H)

実施例 48

N-(2-ニトロフェニル)-N-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 4 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.32 (t, J = 7.3 Hz, 3H)、2.69 (t, J = 7.8 Hz, 2H)、2.89 (t, J = 7.8 Hz, 2H)、3.77 (s, 3H)、3.81 (s, 3H)、

4.31 (q, $J = 7.3$ Hz, 2H)、7.20 (m, 3H)、7.39 (m, 3H)、7.69 (t, $J = 7.3$ Hz, 1H)、8.09 (dd, $J = 1.1, 8.4$ Hz, 1H)、8.14 (s, 1H)、8.28 (d, $J = 8.4$ Hz, 1H)、9.63 (s, 1H)、9.82 (s, 1H)、10.74 (s, 1H)

実施例 49

N-(3-アミノフェニル)-N'-{4-[$(4, 5\text{-ジメトキシ-2-エトキシカルボニルフェニル)$ アミノカルボニルエチル]フェニル}ウレア

実施例 3 と同様の方法で合成した。

$^1\text{H-NMR}$ (DMSO-d₆, 270MHz) δ ppm : 1.32 (t, $J = 7.0$ Hz, 3H)、2.67 (t, $J = 7.3$ Hz, 2H)、2.88 (t, $J = 7.3$ Hz, 2H)、3.77 (s, 3H)、3.82 (s, 3H)、4.30 (q, $J = 7.3$ Hz, 2H)、5.01 (s, 2H)、6.17 (d, $J = 9.5$ Hz, 1H)、6.54 (d, $J = 8.6$ Hz, 1H)、6.76 (s, 1H)、6.87 (t, $J = 7.8$ Hz, 1H)、7.15 (d, $J = 8.1$ Hz, 2H)、7.34 (d, $J = 8.1$ Hz, 2H)、7.39 (s, 1H)、8.14 (s, 1H)、8.40 (s, 1H)、8.55 (s, 1H)、10.74 (s, 1H)

実施例 50

N-(3-ニトロフェニル)-N'-{4-[$(4, 5\text{-ジメトキシ-2-エトキシカルボニルフェニル)$ アミノカルボニルエチル]フェニル}ウレア

実施例 4 と同様の方法で表記化合物を合成した。

$^1\text{H-NMR}$ (DMSO-d₆, 270MHz) δ ppm : 1.32 (t, $J = 7.0$ Hz, 3H)、2.69 (t, $J = 7.3$ Hz, 2H)、2.90 (t, $J = 7.3$ Hz, 2H)、3.77 (s, 3H)、3.82 (s, 3H)、4.31 (q, $J = 7.3$ Hz, 2H)、7.18 (d, $J = 8.4$ Hz, 2H)、7.41 (m, 3H)、7.55 (t, $J = 8.4$ Hz, 1H)、7.72 (d, $J = 9.2$ Hz, 1H)、7.80 (dd, $J = 1.9, 7.8$ Hz, 1H)、8.14 (s, 1H)、8.56 (m, 1H)、9.04 (s, 1H)、9.48 (s, 1H)、10.74 (s, 1H)

実施例 51

N-(4-ピペリジノ)-N'-{4-[$(4, 5\text{-ジメトキシ-2-エトキシカルボニルフェニル)$ アミノカルボニルエチル]フェニル}ウレア

トリホスゲン 60 mg をテトラヒドロフラン 10 mL に加えた後に、窒素雰囲気、室温下、4-アミノ-N-t-ブチロキシカルボニルピペリジン 110 mg、ジイソプロピルエチルアミン 80 mg の THF 溶液を滴下した後 60°Cで一時間攪拌した。その反

応液に 2-(4-アミノフェニル)エチルカルボニルアミノ-4,5-ジメトキシ安息香酸エチルエステル 110 mg、4-ジメチルアミノピリジン 30 mg を加えたのちに 60°Cで 3 時間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒ジクロロメタン：酢酸エチル=30:1→ジクロロメタン：メタノール= 50 : 1）、白色固体を 120 mg 得た。引き続き、4 N 塩化水素・ジオキサン溶液 20 ml に加え、室温で 3 時間攪拌し、析出固体を濾別、真空乾燥することで白色固体として表記化合物を 90 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.32 (t, J = 7.0 Hz, 3H)、1.52 (m, 2H)、1.92 (m, 2H)、3.00 (m, 8H)、3.51 (m, 1H)、3.76 (s, 3H)、3.81 (s, 3H)、4.30 (q, J = 7.0 Hz, 2H)、6.47 (d, J = 7.3 Hz, 1H)、7.09 (t, J = 8.6 Hz, 2H)、7.27 (d, J = 8.6 Hz, 2H)、7.34 (s, 1H)、8.14 (s, 1H)、8.35 (s, 1H)、10.74 (s, 1H)

実施例 52

N-フェニル-N'-(4-[(2-エトキシカルボニル-5-ヒドロキシ-4-メトキシフェニル)アミノカルボニルエチル]フェニル)ウレア

2.00 g のバニリンを 20 ml の DMF に溶かした後に、4.00 g の塩化ベンジル、2.20 g の炭酸カリウムを加えて 55°Cで 7 時間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮し、3.82 g の無色透明液体を得た。

引き続き、得られた液体を冰浴下 30 分かけて 60 ml の濃硝酸に加えた後、室温下 2 時間攪拌した。反応液を氷にあけて析出した固体を濾別し水で洗った後に真空乾燥し、2.00 g の黄色固体を得た。

引き続き、得られた固体を 40 ml のアセトンに溶かし、1.80 g の過マンガン酸カリウムを 30 ml の水に溶かした反応液に 80°Cの油浴下ゆっくりと滴下した。そのまま 2 時間攪拌した後に反応液を濾過し、濾液を濃縮した。残さを水にあけジクロロメタン抽出した後、水層を塩酸で pH 4 に調整した。ジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮し、0.50 g の黄色液体を得た。

引き続き、得られた液体を 30 ml のクロロホルムに加えた後、5 ml の塩化チオニルを加え、還流下 5 時間攪拌した。溶媒を減圧留去し、残さに 20 ml のエタノールを加えて 3 時間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮し、残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒ジクロロメタン）、0.12 g の白色固体を得た。

引き続きこの固体と 30 mg の 5%Pd/C をメタノール 100 ml に加えたのちに水素雰囲気下、室温で 16 時間攪拌した。反応液を濾過し、濾液を濃縮し残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒ジクロロメタン）、0.05 g の白色固体を得た。

引き続き、得られた固体をジクロロメタン 10 ml に溶かした後に 0.04 g の 4-ニトロシンナモイルクロリドと 0.2 ml のジイソプロピルエチルアミンを加えて室温で 2 時間攪拌した。反応液を飽和重曹水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さと 20 mg の 5%Pd/C をエタノール 20 ml に加えたのちに水素雰囲気下、室温で 16 時間攪拌した。反応液を濾過し、濾液を濃縮して 0.08 g の黄色固体を得た。

引き続き、得られた固体、0.08 g のフェニルイソシアネート、0.03 g のジメチルアミノピリジンをテトラヒドロフラン 10 ml に加えたのちに還流下 8 時間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒ジクロロメタン：メタノール=100:1→10:1）、白色固体として、表記化合物を 90 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.31 (t, J = 7.0 Hz, 3H) , 2.64 (t, J = 7.3 Hz, 2H) , 2.87 (t, J = 7.3 Hz, 2H) , 3.75 (s, 3H) , 4.28 (q, J = 7.3 Hz, 2H) , 6.95 (t, J = 7.6 Hz, 1H) , 7.15 (d, J = 8.4 Hz, 2H) , 7.26 (t, J = 7.8 Hz, 2H) , 7.35 (d, J = 8.9 Hz, 2H) , 7.43 (s, 1H) , 7.44 (d, J = 7.8 Hz, 2H) , 8.00 (s, 1H) , 8.62 (m, 2H) , 10.30 (s, 1H) , 10.75 (s, 1H)

実施例 53

N-フェニル-N'-[4-[(2-エトキシカルボニル-4-メトキシ-5-(N-モルホリノ-2-エトキシ)-フェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 52 で合成した化合物 60 mg を DMF10 ml に溶かした後に 0.44 g の炭酸カリウム、0.38 g の N-(2-クロロエチル)モルホリン塩酸塩を加え、室温下 16 時間攪拌した。溶媒を減圧留去後、残さを水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し(溶出溶媒ジクロロメタン：メタノール=100:1→30:1)、白色固体として、表記化合物を 60 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.32 (t, J = 7.0 Hz, 3H)、2.66 (m, 4H)、2.87 (t, J = 7.3 Hz, 2H)、3.30 (m, 2H)、3.57 (t, J = 4.3 Hz, 2H)、3.77 (s, 3H)、4.12 (t, J = 5.9 Hz, 2H)、4.30 (q, J = 7.3 Hz, 2H)、6.94 (t, J = 7.6 Hz, 1H)、7.15 (d, J = 8.6 Hz, 2H)、7.26 (t, J = 8.1 Hz, 2H)、7.37 (d, J = 8.9 Hz, 2H)、7.39 (s, 1H)、7.45 (d, J = 7.8 Hz, 2H)、8.13 (s, 1H)、8.96 (s, 1H)、9.01 (s, 1H)、10.70 (s, 1H)

実施例 54

N-(4-アミノフェニル)-N'-[4-[(2-エトキシカルボニル-4-メトキシ-5-(N-モルホリノ-2-エトキシ)-フェニル)アミノカルボニルエチル]フェニル]ウレア

0.50 g のバニリンを 20 ml の DMF に溶かした後に、1.23 g の N-(2-クロロエチル)モルホリン塩酸塩、1.38 g の炭酸カリウムを加えて 69°C で 10 時間攪拌した。溶媒を減圧留去し、残さを水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮し、0.93 g の柿色液体を得た。

引き続き、得られた液体を冰浴下 30 分かけて 40 ml の濃硝酸に加えた後、更に 3 時間攪拌した。反応液を冰にあけて析出した固体を濾別し水で洗った後に真空乾燥し、0.51 g の黄色固体を得た。

引き続き、得られた固体を 20 ml のアセトンに溶かし、2.00 g のスルファミン酸、2.00 g の亜塩素酸の 10 ml の水溶液を反応液に室温下ゆっくりと滴下した。そのまま 80 時間攪拌した後に反応液を半分に濃縮した。残さを水酸化ナトリウム水溶液で pH 10 に調整した後にジクロロメタン抽出した。水層を濃縮し、残さと 5.00 g の炭酸カリウム、7 ml のヨウ化エチルを 50 ml の DMF に加え室温

下 14 時間攪拌した。溶媒を減圧留去、残さを水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒ジクロロメタン：メタノール=100:1→50:1）、0.40 g の黄色タールを得た。

引き続き、得られたタールと 0.24 g の 5%Pd/C をエタノール 30 ml に加えたのちに水素雰囲気下、室温で 86 時間攪拌した。反応液を濾過し、濾液を濃縮し残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒溶出溶媒ジクロロメタン：メタノール=100:1→50:1）、0.19 g の白色固体を得た。

引き続き、得られた固体をジクロロメタン 10 ml に溶かした後に 0.14 g の 4-ニトロシンナモイルクロリドと 0.4 ml のジイソプロピルエチルアミンを加えて室温で 2 時間攪拌した。反応液を飽和重曹水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮し、残さをメタノール洗浄、真空乾燥することで 0.28g の黄色固体を得た。この固体と 50 mg の 5%Pd/C をエタノール 50 ml に加えたのちに水素雰囲気下、室温で 18 時間攪拌した。反応液を濾過し、濾液を濃縮し、残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒溶出溶媒ジクロロメタン：メタノール=50:1→30:1）、0.20 g の黄色タールを得た。

引き続き、0.07 g の得られた固体、0.04 g の 4-ニトロフェニルイソシアネートをテトラヒドロフラン 10 ml に加えたのちに 69°C で 30 分間攪拌した。反応液濃縮し、残さをメタノール洗浄後真空乾燥することで 0.08 g の白色固体を得られた固体と 50 mg の 5%Pd/C をエタノール 30 ml に加えたのちに水素雰囲気下、室温で 14 時間攪拌した。反応液を濾過し、濾液を濃縮し、残さをメタノール洗浄後真空乾燥することで 0.02 g の黄色タールを得た。

赤色固体として、表記化合物を 20 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.32 (t, J = 7.0 Hz, 3H) 、 2.66 (m, 4H) 、 2.87 (t, J = 7.3 Hz, 2H) 、 3.30 (m, 2H) 、 3.57 (t, J = 4.3 Hz, 2H) 、 3.77 (s, 3H) 、 4.12 (t, J = 5.9 Hz, 2H) 、 4.30 (q, J = 7.3 Hz, 2H) 、 4.74 (s, 2H) 、 6.49 (d, J = 7.6 Hz, 2H) 、 7.05 (d, J = 8.4 Hz, 2H) 、 7.09 (d, J = 8.1 Hz, 2H) 、 7.33 (d, J = 8.1 Hz, 2H) 、 7.39 (s, 1H) 、 8.13

(s, 1H)、8.27 (s, 1H)、8.57 (s, 1H)、10.70 (s, 1H)

実施例 55

N-(2-ニトロフェニル)-N'-{4-[2-カルバモイル-4, 5-ジメトキシフェニル]アミノカルボニルエチル}フェニルウレア

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.69 (t, J = 7.8 Hz, 2H)、2.89 (t, J = 7.8 Hz, 2H)、3.78 (s, 6H)、7.20 (m, 3H)、7.39 (m, 4H)、7.56 (s, 1H)、7.69 (t, J = 7.3 Hz, 1H)、8.09 (dd, J = 1.1, 8.4 Hz, 1H)、8.14 (s, 1H)、8.28 (d, J = 8.4 Hz, 1H)、9.63 (s, 1H)、9.82 (s, 1H)、10.74 (s, 1H)

実施例 56

N-(3-ニトロフェニル)-N'-{4-[2-カルバモイル-4, 5-ジメトキシフェニル]アミノカルボニルエチル}フェニルウレア

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.69 (t, J = 7.3 Hz, 2H)、2.90 (t, J = 7.3 Hz, 2H)、3.77 (s, 6H)、7.18 (d, J = 8.4 Hz, 2H)、7.41 (m, 4H)、7.55 (m, 2H)、7.72 (d, J = 9.2 Hz, 1H)、7.80 (dd, J = 1.9, 7.8 Hz, 1H)、8.14 (s, 1H)、8.56 (m, 1H)、9.04 (s, 1H)、9.48 (s, 1H)、10.74 (s, 1H)

実施例 57

N-(3, 4, 5-トリメトキシフェニル)-N'-{4-[2-カルバモイル-4, 5-ジメトキシフェニル]アミノカルボニル}-3-メトキシフェニルウレア

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.62 (s, 3H)、3.77 (s, 6H)、3.81 (s, 3H)、3.84 (s, 3H)、3.99 (s, 3H)、6.81 (s, 2H)、7.54 (m, 3H)、7.74 (s, 1H)、8.33 (d, J = 8.1 Hz, 1H)、8.51 (s, 1H)、8.55 (s, 1H)、9.49 (s, 1H)、13.28 (s, 1H)

実施例 58

N-フェニル-N'-{3-[2-カルバモイル-4, 5-ジフルオロフェニル]アミノカルボニ

ル] フェニル|ウレア

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 6.99 (t, J = 7.3 Hz, 1H) , 7.48 (m, 4H) , 7.73 (m, 1H) , 8.04 (m, 3H) , 8.46 (s, 1H) , 8.78 (m, 12H) , 9.03 (s, 1H) , 13.11 (s, 1H)

実施例 59

N-フェニル-N'-[3-[(6-カルバモイル-2-ピリジル)アミノカルボニルメトキシ]フェニル]ウレア

実施例 18 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 4.80 (s, 2H) , 6.63 (dd, J = 1.9, 8.4 Hz, 1H) , 7.00 (m, 2H) , 7.25 (m, 5H) , 7.44 (d, J = 7.3 Hz, 2H) , 7.86 (s, 1H) , 8.19 (dd, J = 1.4, 7.8 Hz, 1H) , 8.33 (s, 1H) , 8.49 (dd, J = 1.9, 9.9 Hz, 1H) , 8.70 (s, 1H) , 8.77 (s, 1H) , 11.98 (s, 1H)

実施例 60

N-フェニル-N'-[3-[(2-カルバモイル-4,5-ジアセトキシフェニル)アミノカルボニルメトキシ]フェニル]ウレア

0.50 g の 2-アミノ-4,5-ジメトキシフェニルカルボキサミドをジクロロメタン 20 ml に溶かし、イソプロパノール・ドライアイス浴下、2ml の 3 臭化ホウ素・10 ml のジクロロメタンの混合溶液を滴下した。その後室温下 16 時間攪拌した。反応液を水にあけ酢酸エチル抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮し、0.54 g の黒色固体を得た。得られた固体を 20 ml の DMF に溶かした後に 0.56 g の無水酢酸、0.56 g のトリエチルアミンを加え室温下 7 時間攪拌した。溶媒を減圧留去後、残さを水にあけ析出固体を濾別し、濾液を水で洗浄後真空乾燥することで 0.35 g のクリーム色の固体を得た。得られた固体と 0.08 g の 5% Pd/C をメタノール 50 ml に加え、水素雰囲気下、室温で 19 時間攪拌した。反応液を濾過し、濾液を濃縮し、残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒溶出溶媒ジクロロメタン：メタノール=100：1→50：1）、0.17 g の淡黄色固体を得た。

以後は実施例 18 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 2.31 (s, 3H)、2.32 (s, 3H)、4.68 (s, 2H)、6.68 (dd, J = 2.1, 8.1 Hz, 1H)、6.97 (t, J = 7.3 Hz, 1H)、7.05 (d, J = 7.8 Hz, 1H)、7.25 (m, 4H)、7.45 (d, J = 7.8 Hz, 2H)、7.79 (s, 1H)、7.88 (s, 1H)、8.29 (s, 1H)、8.56 (s, 1H)、8.76 (s, 1H)、8.83 (s, 1H)、12.66 (s, 1H)

実施例 61

N-フェニル-N'-[3-[(2-カルバモイル-4,5-ジメトキシフェニル)アミノカルボニルメチル]フェニル]ウレア

実施例 18 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 3.62 (s, 2H)、3.76 (s, 3H)、3.77 (s, 3H)、6.95 (m, 2H)、7.34 (m, 7H)、7.56 (s, 1H)、8.16 (s, 1H)、8.29 (s, 1H)、8.81 (s, 1H)、8.86 (s, 1H)、12.19 (s, 1H)

実施例 62

N-フェニル-N'-[3-[(5-カルバモイル-4-メチル-2-チエニル)アミノカルボニル]フェニル]ウレア

実施例 18 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 2.41 (s, 3H)、6.72 (s, 1H)、6.99 (t, J = 7.3 Hz, 1H)、7.30 (t, J = 8.1 Hz, 2H)、7.47 (m, 3H)、7.72 (m, 2H)、8.04 (s, 1H)、8.75 (s, 1H)、9.01 (s, 1H)、12.99 (s, 1H)

実施例 63

ベンジル-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル]カルバマート

2-(4-アミノフェニル)カルボニルアミノ-4,5-ジメトキシ安息香酸エチルエステル 60 mg、0.5 ml のベンジルオキシカルボニルクロリド、30 mg の 4-ジメチルアミノピリジンをテトラヒドロフラン 20 ml に加えたのちに室温下 30 分間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをエタノール洗浄し真空乾燥することで白色固体として、表記化合物を 60 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.33 (t, J = 7.0 Hz, 3H)、3.80 (s, 3H)、

3.87 (s, 3H)、4.36 (q, J = 7.3 Hz, 4H)、5.19 (s, 2H)、7.41 (m, 6H)、
7.67 (d, J = 8.6 Hz, 2H)、7.89 (d, J = 8.9 Hz, 2H)、8.41 (s, 1H)、
10.20 (s, 1H)、11.72 (s, 1H)

実施例 64

(4-ピリジルメチル) [4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル) アミノカルボニルエチル] フェニル] カルバマート

0.32 g の 1,1-カルボニルジイミダゾールを 3 ml のテトラヒドロフラン (THF) に溶かした後に 0.22 g の 4-ピリジンメタノールを加え室温下 1 時間攪拌した。0.35 g の 4-アミノハイドロ桂皮酸、0.60 g の DBU (1,8-ジアザビシクロ [4.3.0] ウンデカ-7-エン)、0.5 ml のトリエチルアミンを 10 ml のテトラヒドロフランに加え室温下 1 時間攪拌したものにこの反応液に加え、そのまま 18 時間攪拌した。溶媒を減圧留去し残さを水にあけ 1 N 塩酸で pH 6 に調整した。析出した固体を濾別し真空乾燥することで 0.08 g の桃色固体として (4-ピリジルメチル) (4-ヒドロキシカルボニルエチルフェニル) カルバマートを得た。得られた固体を 20 ml のトルエンに加えた後 0.1ml のオキサリルクロリド、DMFO.01ml を加え、室温下 5 時間攪拌した。析出した固体を濾別しトルエン、次いでエーテルで洗浄した。0.05 g の 2-アミノ-4,5-ジメトキシ安息香酸エチルエステルを 10 ml のジクロロメタンに溶かし、得られた固体と 0.5 ml のトリエチルアミンを加え室温下 1 時間攪拌した。反応液を飽和重曹水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し (溶出溶媒ジクロロメタン：メタノール= 100 : 1 → 40 : 1)、更にメタノールで洗浄後、乾燥し、30 mg の白色固体として表記化合物を得た。

¹H-NMR (DMSO-d₆、270MHz) δ ppm : 1.31 (t, J = 7.0 Hz, 3H)、2.67 (t, J = 7.5 Hz, 2H)、2.88 (t, J = 7.5 Hz, 2H)、3.76 (s, 3H)、3.81 (s, 3H)、4.29 (q, J = 7.3 Hz, 4H)、5.19 (s, 2H)、7.18 (d, J = 8.4 Hz, 2H)、7.37 (m, 5H)、8.12 (s, 1H)、8.57 (dd, J = 1.9, 4.3 Hz, 2H)、9.80 (s, 1H)、10.71 (s, 1H)

実施例 65

N-エチル-N'-[4-[(2-アセチル-4,5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]ウレア

0.60 g の 2-アミノ-4,5-ジメトキシアセトフェノンを THF 30 ml に溶かした後に 0.75 g の 4-ニトロシンナモイルクロリドと 0.45 g のトリエチルアミンを加えて還流下で 1.5 時間攪拌した。反応液の溶媒を減圧留去し、残さをメタノールで洗浄後、乾燥し、1.22 g の黄色固体を得た。

引き続きこの固体と 90 mg の 5%Pd/C をエタノール 100 ml 及び THF 30 ml の混合溶媒に加えたのちに水素雰囲気下、室温で 32 時間攪拌した。反応液を濾過し、濾液を濃縮して 0.92 g の 2-(4-アミノフェニル)カルボニルアミノエチル-4,5-ジメトキシアセトフェノンを白色固体として得た。

引き続き、70 mg の得られた固体、0.11 g のエチルイソシアネート、20 mg の 4-ジメチルアミノピリジンをテトラヒドロフラン 20 ml に加えたのちに 70°C で 5 時間攪拌した。反応液を濃縮し、残さをシリカゲルカラムクロマトグラフィーによって精製し（溶出溶媒ジクロロメタン：メタノール = 100 : 1 → 30 : 1）、残さをメタノール洗浄し真空乾燥することで白色固体として、表記化合物を 50 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.03 (t, J = 7.0 Hz, 3H)、2.60 (s, 1H)、2.65 (t, J = 7.3 Hz, 2H)、2.85 (t, J = 7.3 Hz, 2H)、3.10 (s, J = 7.0 Hz, 2H)、3.82 (s, 1H)、6.03 (t, 1H)、7.09 (d, J = 8.4 Hz, 2H)、7.27 (d, J = 8.4 Hz, 2H)、7.43 (s, 1H)、8.23 (s, 1H)、8.30 (s, 1H)、11.65 (s, 1H)

実施例 66

N-フェニル-N'-[4-[(2-アセチル-4,5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 65 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.60 (s, 1H)、2.67 (t, J = 7.6 Hz, 2H)、2.89 (t, J = 7.6 Hz, 2H)、3.82 (s, 6H)、6.95 (t, J = 7.3 Hz, 1H)、7.16 (d, J = 8.4 Hz, 2H)、7.27 (t, J = 8.1 Hz, 2H)、7.35 (d, J = 8.4 Hz, 2H)、7.43 (s, 1H)、7.44 (d, J = 8.4 Hz, 2H)、8.24 (s, 1H)、8.59

(s, 1H)、8.64 (s, 1H)、11.67 (s, 1H)

実施例 67

N-(4-アミノフェニル)-N'-[4-[(2-アセチル-4,5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 3と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.60 (s, 3H)、2.66 (t, J = 7.6 Hz, 2H)、2.87 (t, J = 7.3 Hz, 2H)、3.82 (s, 6H)、4.57 (s, 2H)、6.49 (d, J = 8.4 Hz, 2H)、7.05 (d, J = 8.1 Hz, 2H)、7.13 (d, J = 8.6 Hz, 2H)、7.32 (d, J = 8.6 Hz, 2H)、7.43 (s, 1H)、8.10 (s, 1H)、8.24 (s, 1H)、9.40 (s, 1H)、11.67 (s, 1H)

実施例 68

N-(4-ニトロフェニル)-N'-[4-[(2-アセチル-4,5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 65と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.51 (s, 3H)、2.68 (t, J = 7.6 Hz, 2H)、2.90 (t, J = 7.3 Hz, 2H)、3.85 (s, 6H)、7.19 (d, J = 7.3 Hz, 2H)、7.40 (m, 3H)、7.68 (d, J = 9.5 Hz, 2H)、8.20 (m, 3H)、8.86 (s, 1H)、9.42 (s, 1H)、11.68 (s, 1H)

実施例 69

N-(2-アミノフェニル)-N'-[4-[(2-アセチル-4,5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 3と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.60 (s, 3H)、2.67 (t, J = 7.3 Hz, 2H)、2.88 (t, J = 7.3 Hz, 2H)、3.82 (s, 6H)、4.76 (s, 2H)、6.56 (dt, J = 1.4, 7.3 Hz, 1H)、6.72 (dd, J = 1.4, 7.8 Hz, 1H)、6.83 (dt, J = 1.4, 7.8 Hz, 1H)、7.15 (d, J = 8.4 Hz, 2H)、7.36 (m, 3H)、7.43 (s, 1H)、7.71 (s, 1H)、8.24 (s, 1H)、8.69 (s, 1H)、11.66 (s, 1H)

実施例 70

N-(2-ニトロフェニル)-N'-[4-[(2-アセチル-4,5-ジメトキシフェニル)アミノ

カルボニルエチル]フェニル]ウレア

実施例 65 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.60 (s, 3H)、2.68 (t, J = 7.3 Hz, 2H)、2.90 (t, J = 7.3 Hz, 2H)、3.82 (s, 6H)、7.16 (m, 3H)、7.40 (m, 3H)、7.69 (dt, J = 1.6, 8.4 Hz, 1H)、8.09 (dd, J = 1.4, 8.4 Hz, 1H)、8.25 (s, 1H)、8.31 (d, J = 8.4 Hz, 1H)、9.58 (s, 1H)、9.79 (s, 1H)、11.69 (s, 1H)

実施例 71

N-(3-アミノフェニル)-N-[4-[(2-アセチル-4,5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 3 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.60 (s, 3H)、2.67 (t, J = 7.3 Hz, 2H)、2.88 (t, J = 7.3 Hz, 2H)、3.82 (s, 6H)、5.01 (s, 2H)、6.17 (d, J = 9.5 Hz, 1H)、6.54 (d, J = 8.6 Hz, 1H)、6.76 (s, 1H)、6.87 (t, J = 7.8 Hz, 1H)、7.15 (d, J = 8.1 Hz, 2H)、7.34 (d, J = 8.1 Hz, 2H)、7.39 (s, 1H)、8.14 (s, 1H)、8.40 (s, 1H)、8.55 (s, 1H)、11.67 (s, 1H)

実施例 72

N-(3-ニトロフェニル)-N-[4-[(2-アセチル-4,5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 65 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.60 (s, 3H)、2.69 (t, J = 7.3 Hz, 2H)、2.90 (t, J = 7.3 Hz, 2H)、3.82 (s, 6H)、7.19 (d, J = 8.9 Hz, 2H)、7.40 (m, 3H)、7.56 (t, J = 8.1 Hz, 1H)、7.69 (d, J = 8.4 Hz, 1H)、7.80 (dd, J = 1.9, 8.4 Hz, 1H)、8.24 (s, 1H)、8.56 (m, 1H)、8.78 (s, 1H)、9.20 (s, 1H)、11.68 (s, 1H)

実施例 73

N-(4-ピペリジノ)-N-[4-[(2-アセチル-4,5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]ウレア

実施例 51 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.76 (m, 4H)、2.59 (s, 3H)、3.00 (m, 8H)、3.60 (m, 1H)、3.82 (s, 6H)、6.54 (d, J = 7.3 Hz, 1H)、7.09 (d, J = 8.4 Hz, 2H)、7.27 (d, J = 8.9 Hz, 2H)、7.43 (s, 1H)、8.23 (s, 1H)、8.40 (s, 1H)、8.56 (s, 1H)、11.66 (s, 1H)

実施例 74

N-(3, 4, 5-トリメトキシフェニル)-N'-(4-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニルエチル]フェニル)ウレア

実施例 65 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 2.51 (s, 3H)、2.67 (t, J = 7.6 Hz, 2H)、2.89 (t, J = 7.6 Hz, 2H)、3.60 (s, 3H)、3.74 (s, 6H)、3.82 (s, 6H)、6.78 (s, 2H)、7.15 (d, J = 8.4 Hz, 2H)、7.35 (d, J = 8.4 Hz, 2H)、7.43 (s, 1H)、8.24 (s, 1H)、8.54 (s, 1H)、8.60 (s, 1H)、11.68 (s, 1H)

実施例 75

N-(4-ピリジル)-N'-(4-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニルエチル]フェニル)ウレア

実施例 65 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 2.60 (s, 3H)、2.68 (t, J = 7.3 Hz, 2H)、2.90 (t, J = 7.3 Hz, 2H)、3.82 (s, 6H)、7.19 (d, J = 8.4 Hz, 2H)、7.40 (m, 5H)、8.24 (s, 1H)、8.34 (d, J = 6.5 Hz, 2H)、8.83 (s, 1H)、9.11 (s, 1H)、11.66 (s, 1H)

実施例 76

N-(4-ピペリジノメチル)-N'-(4-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニルエチル]フェニル)ウレア

実施例 51 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.77 (m, 5H)、2.60 (s, 3H)、3.00 (m, 8H)、3.60 (m, 2H)、3.82 (s, 6H)、6.28 (t, J = 7.3 Hz, 1H)、7.09 (d, J = 8.0 Hz, 2H)、7.27 (d, J = 7.8 Hz, 2H)、7.43 (s, 1H)、8.23 (s, 1H)、8.44 (s, 1H)、11.66 (s, 1H)

実施例 77

N-フェニル-N'-[2-[(2-アセチル-4, 5-ジメトキシフェニル) アミノカルボニルエチル] フェニル] ウレア

実施例 65 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.60 (s, 1H) , 2.67 (t, J = 7.6 Hz, 2H) , 2.89 (t, J = 7.6 Hz, 2H) , 3.82 (s, 6H) , 7.00 (m, 2H) , 7.25 (m, 4H) , 7.45 (m, 3H) , 7.76 (d, J = 7.3 Hz, 1H) , 8.02 (s, 1H) , 8.25 (s, 1H) , 8.99 (s, 1H) , 11.71 (s, 1H)

実施例 78

N-(4-アミノフェニル)-N'-[2-[(2-アセチル-4, 5-ジメトキシフェニル) アミノカルボニルエチル] フェニル] ウレア

実施例 3 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.60 (s, 3H) , 2.70 (t, J = 7.6 Hz, 2H) , 2.93 (t, J = 7.3 Hz, 2H) , 3.82 (s, 6H) , 4.76 (s, 2H) , 6.49 (d, J = 8.6 Hz, 2H) , 6.97 (dt, J = 1.1, 7.3 Hz, 2H) , 7.14 (m, 4H) , 7.43 (s, 1H) , 7.80 (m, 2H) , 8.25 (s, 1H) , 8.50 (s, 1H) , 11.70 (s, 1H)

実施例 79

N-(4-ニトロフェニル)-N'-[2-[(2-アセチル-4, 5-ジメトキシフェニル) アミノカルボニルエチル] フェニル] ウレア

実施例 65 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.57 (s, 3H) , 2.72 (t, J = 7.6 Hz, 2H) , 2.96 (t, J = 7.6 Hz, 2H) , 3.80 (s, 6H) , 7.08 (dt, J = 0.8, 7.3 Hz, 1H) , 7.20 (m, 2H) , 7.29 (s, 1H) , 7.68 (m, 3H) , 8.19 (m, 3H) , 8.34 (s, 1H) , 9.77 (s, 1H) , 11.70 (s, 1H)

実施例 80

N-フェニル-N'-[4-[(2-アセチル-4, 5-ジメトキシフェニル) アミノカルボニルプロピル] フェニル] ウレア

実施例 65 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.90 (m, 2H) , 2.38 (t, J = 7.3 Hz, 2H) ,

2.51 (t, J = 7.3 Hz, 2H)、2.62 (s, 3H)、3.82 (s, 6H)、6.95 (t, J = 7.3 Hz, 3H)、7.12 (d, J = 8.9 Hz, 2H)、7.26 (t, J = 7.8 Hz, 2H)、7.37 (d, J = 8.4 Hz, 2H)、7.44 (s, 1H)、7.45 (d, J = 8.4 Hz, 2H)、8.27 (s, 1H)、8.80 (s, 1H)、8.85 (s, 1H)、11.68 (s, 1H)

実施例 81

N-(4-アミノフェニル)-N'-(4-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニルプロピル]フェニル)ウレア

実施例 3 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.89 (m, 2H)、2.37 (t, J = 7.3 Hz, 2H)、2.56 (t, J = 7.3 Hz, 2H)、2.62 (s, 3H)、3.82 (s, 6H)、4.76 (s, 2H)、6.49 (d, J = 7.3 Hz, 2H)、7.11 (m, 4H)、7.33 (d, J = 8.9 Hz, 2H)、7.44 (s, 1H)、8.13 (s, 1H)、8.27 (s, 1H)、8.43 (s, 1H)、11.68 (s, 1H)

実施例 82

N-(4-ニトロフェニル)-N'-(4-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニルプロピル]フェニル)ウレア

実施例 65 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.91 (m, 2H)、2.38 (t, J = 7.3 Hz, 2H)、2.59 (t, J = 7.3 Hz, 2H)、2.61 (s, 3H)、3.82 (s, 6H)、7.15 (d, J = 8.4 Hz, 2H)、7.42 (m, 3H)、7.69 (d, J = 9.2 Hz, 2H)、8.18 (d, J = 9.1 Hz, 2H)、8.27 (s, 1H)、9.02 (s, 1H)、9.60 (s, 1H)、11.68 (s, 1H)

実施例 83

N-フェニル-N'-(3-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニル]フェニル)ウレア

実施例 65 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.70 (s, 3H)、3.87 (s, 3H)、3.90 (s, 3H)、6.99 (t, J = 7.3 Hz, 1H)、7.30 (t, J = 7.8 Hz, 2H)、7.51 (m, 5H)、7.75 (d, J = 7.3 Hz, 2H)、8.05 (s, 1H)、8.54 (s, 1H)、8.82 (s, 1H)、9.02 (s, 1H)、12.77 (s, 1H)

実施例 84

(4-ピリジルメチル) [4-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]カルバマート

実施例 64 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.59 (s, 1H)、2.66 (t, J = 7.6 Hz, 2H)、2.88 (t, J = 7.6 Hz, 2H)、3.82 (s, 6H)、5.19 (s, 2H)、7.17 (d, J = 8.4 Hz, 2H)、7.39 (m, 5H)、8.22 (s, 1H)、8.57 (dd, J = 1.4, 4.3 Hz, 2H)、9.82 (s, 1H)、11.65 (s, 1H)

実施例 85

(4-ピリジルメチル) [4-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニルプロピル]フェニル]カルバマート

実施例 64 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.89 (m, 2H)、2.37 (t, J = 7.3 Hz, 2H)、2.56 (t, J = 7.3 Hz, 2H)、2.62 (s, 3H)、3.82 (s, 6H)、5.19 (s, 2H)、7.17 (d, J = 8.4 Hz, 2H)、7.39 (m, 5H)、8.22 (s, 1H)、8.57 (dd, J = 1.4, 4.3 Hz, 2H)、9.82 (s, 1H)、11.65 (s, 1H)

実施例 86

(5-ヒドロキシペンチル) [4-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]カルバマート

0.04 g のトリホスゲンを 5 ml のテトラヒドロフラン (THF) に溶かしたところに、0.08 g の 5-ベンジルオキシペンチルアルコール、0.06 g のジイソプロピルエチルアミンを 10 ml の THF に溶かしたもの室温下ゆっくり滴下し、その後 60°C で 1 時間攪拌した。そこに 0.07 g の 2-(4-アミノフェニル)カルボニルアミノエチル-4, 5-ジメトキシアセトフェノンと 30 mg のジメチルアミノピリジンを加え 69°C で 2 時間攪拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し (溶出溶媒ジクロロメタン: メタノール = 100 : 1 → 40 : 1)、更にメタノールで洗浄後、乾燥し、0.13 g の淡黄色固体を得た。引き続き、得られた固体と 5%Pd/C 50 mg をメタノール 40 ml に加えたのちに水素雰囲気下、室温で 22 時間攪拌した。反応液を濾過、濾液を濃縮し、残査

をメタノールで洗浄、真空乾燥することで白色固体として、表記化合物を 40 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 1.42 (m, 4H) , 1.61 (m, 2H) , 2.51 (s, 1H) , 2.63 (t, J = 7.3 Hz, 2H) , 2.87 (t, J = 7.6 Hz, 2H) , 3.40 (t, J = 5.7 Hz, 2H) , 3.82 (s, 6H) , 4.05 (t, J = 6.8 Hz, 2H) , 4.37 (t, J = 5.1 Hz, 2H) , 7.15 (d, J = 8.4 Hz, 2H) , 7.39 (d, J = 8.4 Hz, 2H) , 7.42 (s, 1H) , 8.22 (s, 1H) , 9.50 (s, 1H) , 11.65 (s, 1H)

実施例 87

[4-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニルエチル]フェニルフェニルカルバマート

1.1 g の 3-(4-ヒドロキシフェニル)プロピオン酸を 30 ml の THF に溶かした後に、0.82 g の無水酢酸、0.83 g のピリジンを加え室温で 16 時間攪拌した。溶媒を減圧留去し、残さに 5 %クエン酸を加え析出固体を濾別し濾液を水洗後真空乾燥することで 0.80 g の白色固体を得た。得られた固体と 10 ml の塩化チオニルを 30 ml のクロロホルムに加え、還流下 2 時間攪拌した。溶媒を減圧留去後 30 ml の THF に溶かした後に 0.59 g の 2-アミノ-4, 5-ジメトキシアセトフェノンと 0.61 g のトリエチルアミンを加えて還流下 3 時間攪拌した。溶媒を減圧留去後、残さと 0.20 g の水酸化ナトリウムを 10ml のメタノール、30ml の水の混合溶媒に加え室温で 16 時間攪拌した。溶媒を半分減圧留去し、塩酸で中和をした。析出固体を濾別しジクロロメタン・メタノール混合溶媒で洗浄、真空乾燥することで 0.56g の白色固体を得た。0.11 g の得られた固体、90 mg のフェニルイソシアナート、60 mg のトリエチルアミンを 10 ml の THF に加え室温下 16 時間攪拌した。析出固体を濾別することで白色固体として表記化合物を 58 mg 得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 2.60 (s, 1H) , 2.74 (t, J = 7.3 Hz, 2H) , 2.96 (t, J = 7.3 Hz, 2H) , 3.82 (s, 6H) , 7.04 (t, J = 7.3 Hz, 1H) , 7.13 (d, J = 8.6 Hz, 2H) , 7.31 (m, 4H) , 7.43 (s, 1H) , 7.49 (d, J = 7.8 Hz, 2H) , 8.24 (s, 1H) , 10.18 (s, 1H) , 11.69 (s, 1H)

実施例 88

[4-[(2-アセチル-4, 5-ジメトキシフェニル)アミノカルボニルエチル]フェニル]

4-ニトロフェニルカルバマート

実施例 87 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 2.60 (s, 3H)、2.77 (t, J = 7.3 Hz, 2H)、2.97 (t, J = 7.3 Hz, 2H)、3.82 (s, 6H)、7.18 (d, J = 8.4 Hz, 2H)、7.33 (d, J = 8.9 Hz, 2H)、7.43 (s, 1H)、7.73 (d, J = 9.1 Hz, 2H)、8.24 (s, 1H)、8.25 (d, J = 9.1 Hz, 2H)、10.90 (s, 1H)、11.69 (s, 1H)

実施例 89

[4-[(2-アセチル-4, 5-ジメトキシフェニル) アミノカルボニルエチル] フェニル] 4-アミノフェニルカルバマート

実施例 3 と同様の方法で合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 2.60 (s, 3H)、2.73 (t, J = 7.3 Hz, 2H)、2.95 (t, J = 7.3 Hz, 2H)、3.82 (s, 6H)、4.85 (s, 2H)、6.50 (d, J = 8.1 Hz, 2H)、7.10 (m, 4H)、7.28 (d, J = 8.4 Hz, 2H)、7.43 (s, 1H)、8.24 (s, 1H)、9.66 (s, 1H)、11.69 (s, 1H)

実施例 90

[4-[(2-アセチル-4, 5-ジメトキシフェニル) アミノカルボニルエチル] フェニル] 4-ピリジルカルバマート

実施例 87 と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm : 2.60 (s, 3H)、2.65 (t, J = 7.3 Hz, 2H)、2.82 (t, J = 7.3 Hz, 2H)、3.82 (s, 6H)、7.19 (dd, J = 1.6, 5.9 Hz, 2H)、6.65 (d, J = 8.6 Hz, 2H)、7.03 (d, J = 8.4 Hz, 2H)、7.43 (s, 1H)、7.95 (d, J = 6.2 Hz, 2H)、8.40 (s, 1H)、9.16 (s, 1H)、11.65 (s, 1H)

試験例 1 PDGF-BB 刺激平滑筋細胞増殖抑制試験

ヒト冠血管平滑筋細胞（初代培養）を 96 穴 microplate (50000 cells/well) に撒き、24 時間培養した。細胞が集密的 (confluent) になったことを確認した後、0.4 又は 2 μM の化合物を添加した無血清培地 (20 ng/ml PDGF-BB を含む) で 24 時間培養した。³H-チミジン (1 μCi/well) を添加し、4 時間培養した。細胞をフィルターに回収した後、クレアゾール (Creasol) (4ml/vial) を添加し、

シンチレーションカウンターで ^3H -チミジンの取り込み量を測定した。なお、被験化合物の増殖抑制活性は、無処置群（PDGF-BB 不添加）に対し、50%阻害を示す濃度（IC₅₀）で表した。対照化合物としてトラニラスト及び参考例 1（WO 97/09301 に記載されている実施例 4、化合物 17 の化合物）をおいた。その結果は表 11 に示すとおりである。

表 11

化合物名	PDGF-BB 刺激平滑筋 細胞増殖抑制 IC ₅₀ (μM)
実施例 1	0.28
実施例 3	0.10
実施例 4	0.40
実施例 5	0.23
実施例 6	0.33
実施例 8	0.15
実施例 9	0.20
実施例 10	0.44
実施例 11	0.19
実施例 13	0.34
実施例 14	0.23
実施例 15	0.57
実施例 16	0.14
実施例 17	0.75
実施例 18	0.40
実施例 20	0.27
実施例 23	0.72
実施例 24	0.24
実施例 25	0.07
実施例 28	0.25
実施例 32	0.36
実施例 33	0.56
実施例 34	0.64
実施例 36	0.55
実施例 37	0.57
実施例 38	0.82

実施例 39	0. 65
実施例 41	0. 20
実施例 43	0. 15
実施例 45	0. 0001
実施例 46	0. 057
実施例 47	0. 011
実施例 48	0. 008
実施例 49	0. 015
実施例 50	<0. 08
実施例 53	<0. 0032
実施例 54	0. 20
実施例 55	0. 014
実施例 56	0. 028
実施例 57	0. 28
実施例 61	0. 67
実施例 62	0. 34
実施例 63	0. 3
実施例 64	<0. 0032
実施例 66	<0. 016
実施例 67	0. 020
実施例 68	0. 026
実施例 69	0. 061
実施例 70	0. 045
実施例 71	0. 061
実施例 72	0. 039
実施例 74	0. 31
実施例 75	0. 16
実施例 77	0. 20
実施例 80	0. 05
実施例 81	0. 06
実施例 82	0. 002
実施例 83	0. 31
実施例 84	0. 044
実施例 85	0. 079
実施例 86	0. 49
実施例 87	0. 083
実施例 88	<0. 016
実施例 89	0. 31
実施例 91	0. 22
実施例 92	0. 39
実施例 93	0. 011
実施例 94	0. 037

実施例 96	0.17
トラニラスト	24.5
参考例 1	6.3

試験例 2 PDGF-BB 刺激メサンギウム細胞増殖抑制試験

ヒト・メサンギウム細胞（初代培養）を 96 穴 microplate (27000 cells/well) に撒き、24 時間培養した。細胞が集密的 (confluent) になったことを確認した後、0.016、0.08 又は 0.4 μ M の被験化合物を添加した無血清培地 (20 ng/ml PDGF-BB を含む) で 24 時間培養した。 3 H-チミジン (1 μ Ci/well) を添加し、4 時間培養した後、細胞をフィルターに回収し、シンチレーションカウンターで 3 H-チミジンの取り込み量を測定した。なお、被験化合物の増殖抑制活性は、PDGF-BB 刺激による 3 H-チミジンの取り込み量の増加 (PDGF-BB 添加の control から PDGF-BB 未添加の control を差し引いた値) を 50% 阻害する濃度 (IC_{50}) で表した。対照化合物としてトラニラストをおいた。その結果は表 1 2 に示すとおりである。

表 12

化合物名	PDGF-BB 刺激メサンギウム 細胞増殖抑制 IC_{50} (μM)
実施例 1	0.81
実施例 3	1.72
実施例 5	0.87
実施例 6	0.33
実施例 8	0.95
実施例 9	2.3
実施例 16	0.29
実施例 17	1.80
実施例 18	1.27
実施例 24	0.58
実施例 25	0.17
実施例 39	0.51

トラニラスト (78% 阻害濃度) : $10 \mu M$

試験例 3 ヒト臍帯静脈内皮細胞 (HUVEC) 増殖

Clonetics 社 (San Diego) より購入した HUVEC を EGM-2 培地で 5 % CO_2 存在下 37 °C で培養した。 3×10^3 cells / $100 \mu l/well$ となるように HUVEC を U 底 の 96 穴プレート (Falcon) に撲き込み、37 °C で 24 時間培養後、EGM-2 培地 で 2 倍濃度に調製した化合物溶液 $100 \mu l$ を添加し、更に 3 日間培養した。1 $\mu Ci / 20 \mu l/well$ の [$methyl-^3H$] thymidine (Amersham) を添加し、4 時間後 に TopCount 用セルハーベスターにて 96 穴グラスフィルター (UniFilter-GF/C, パッカードジャパン) に細胞をトラップした。シンチレーションカクテル (MICROSCINT-20, パッカードジャパン) を $20 \mu l/well$ となるように添加し、TopCount (パッカードジャパン) にて放射活性を測定し、各種化合物の細胞増殖 阻害能を求めた。対照として、試験例 1 と同様に、トラニラスト、トラニラスト 誘導体 (WO 97/09301 に記載されている実施例 4、化合物 17 の化合物) をおい た。その結果を表 13 に示す。

表 1 3

化合物名	ヒト臍帯血管内皮細胞 増殖抑制 IC_{50} (μM)
実施例 4	1. 2
実施例 6	3. 6
実施例 15	2. 1
実施例 18	0. 5
実施例 45	0. 0002
実施例 48	0. 05
実施例 53	0. 05
実施例 55	0. 28
実施例 64	0. 03
実施例 66	0. 05
実施例 67	0. 20
実施例 68	0. 0006
実施例 74	1. 3
実施例 75	0. 16
実施例 77	1. 7
実施例 82	0. 0008
実施例 93	0. 04
実施例 94	0. 88
トラニラスト	10. 0
参考例 1	>10

製剤例

常法により次の組成からなる錠剤を作成した。

実施例 1 の化合物 100mg

ラクトース 120mg

馬れいしょ澱粉 30mg

ヒドロキシプロピルセルロース 5mg

カルボキシメチルセルロースナトリウム 7 mg

ステアリン酸マグネシウム 0. 5mg

本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。

産業上の利用の可能性

本発明のジアリールアミド誘導体は、PDGF による細胞増殖に対する阻害作用を有し、動脈硬化症、血管再閉塞疾患、腎炎などの細胞増殖性疾患の予防又は治療に有用である。

請求の範囲

1. 一般式(1) :

(式中、Aはベンゼン環、ピリジン環、チオフェン環、フラン環及びナフタレン環から選択される芳香環であり；

C₀Yで表される置換基とNHCOXで表される置換基は隣接して存在し、該芳香環内でこれらの置換基が結合しているのは炭素原子であり；

Xは炭素数1～4のアルキレン基、炭素数1～4のアルキレンオキシ基又は単結合であり；

Yは炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、水酸基及びN(R⁶)(R⁷)から選択され、R⁶及びR⁷は同一でも異なっていてもよく、それぞれ水素原子、炭素数1～4のアルキル基、炭素数1～4のアルコキシ基、炭素数3～9のシクロアルキル基、炭素数4～9のシクロアルキルーアルキル基、炭素数5～8のモルホリノーN-アルコキシ基、炭素数3～9のアルケニル基、フェニル基、ピリジル基及びアラルキル基から選択され、該フェニル基及びピリジル基、並びにアラルキル基の芳香環は炭素数1～4のアルキル基、炭素数1～4のアルコキシ基及びハロゲン原子から選択される1～3個の置換基で置換されていてもよく；

R¹は水素原子、ハロゲン原子、水酸基、炭素数1～4のアルキル基、炭素数3～9のシクロアルキル基、炭素数4～9のシクロアルキルーアルキル基、炭素数1～4のアルコキシ基、炭素数3～9のシクロアルキルオキシ基、炭素数4～9のシクロアルキルーアルコキシ基、アラルキルオキシ基、炭素数1～4のアシリル基

及びニトロ基から選択され、A の任意の位置に 1 ~ 4 個存在しており、それぞれ同一でも異なっていてもよく、また R¹ が 2 個存在する場合には両者が一緒になって炭素数 1 ~ 4 のアルキレンジオキシ基を形成してもよく、但し A がベンゼン環の場合、R¹ は水素原子でなく；

B はベンゼン環、ピリジン環又はチオフェン環であり；

R² は水素原子、ハロゲン原子、水酸基、炭素数 1 ~ 4 のアルキル基、炭素数 1 ~ 4 のアルコキシ基、炭素数 1 ~ 4 のアルキルチオ基、炭素数 1 ~ 4 のヒドロキシアルコキシ基、炭素数 3 ~ 9 のシクロアルキルオキシ基、炭素数 4 ~ 9 のシクロアルキルーアルコキシ基、アラルキルオキシ基、炭素数 1 ~ 4 のアシル基、シアノ基、炭素数 5 ~ 8 のモルホリノーN-アルコキシ基、及び炭素数 1 ~ 4 のアルキル基でモノ又はジ置換されていてもよいアミノ基から選択される置換基であり、任意の位置に 1 ~ 4 個存在しており、それぞれ同一でも異なっていてもよく；

R³ 及び R⁴ は Y が炭素数 1 ~ 4 のアルキル基以外の場合、酸素原子又は NR⁸ であり、R⁸ はそれぞれ水素原子及び炭素数 1 ~ 4 のアルキル基から選択され、それぞれ同一でも異なっていてもよく、また Y が炭素数 1 ~ 4 のアルキル基の場合、R³ は酸素原子又は NR⁸、R⁴ は酸素原子、NR⁸ 又は単結合であり；

R⁵ は炭素数 1 ~ 8 のアルキル基、炭素数 2 ~ 4 のアルケニル基、炭素数 3 ~ 9 のシクロアルキル基、炭素数 4 ~ 9 のシクロアルキルーアルキル基、テトラヒドロピラニル基、アラルキル基、インダニル基、芳香族アシル基、フェニル基、ピリジル基、フリル基及びチエニル基から選択され、該アラルキル基、インダニル基及び芳香族アシル基の芳香環、フェニル基、ピリジル基、フリル基並びにチエニル基はハロゲン原子、水酸基、シアノ基、炭素数 1 ~ 4 のアルキル基、炭素数 1 ~ 4 のアルコキシ基、炭素数 1 ~ 4 のアルキルチオ基、炭素数 2 ~ 5 のアルコキカルボニル基、カルボキシリ基、炭素数 1 ~ 4 のアシル基、芳香族アシル基、炭素数 1 ~ 4 のアシロキシ基、トリフルオロメチル基、フェニル基、フェノキシリ基、フェニルチオ基、ピリジル基、モルホリノ基、アラルキルオキシ基、ニトロ基、メチルスルホニル基、アミノスルホニル基、及び炭素数 1 ~ 4 のアルキル基又は炭素数 1 ~ 4 のアシル基でモノ又はジ置換されていてもよいアミノ基から選択される 1 ~ 5 個の置換基を有していてもよく、また隣接する 2 個の置換基が両

者で炭素数 1 ~ 4 のアルキレンジオキシ基となって環を形成してもよく；

Z は酸素原子又はイオウ原子である。)

で表されるジアリールアミド誘導体又はその薬学的に許容される塩。

2. 一般式（1）において、X が炭素数 1 ~ 4 のアルキレン基である請求の範囲第 1 項に記載の化合物。

3. 一般式（1）において、X が単結合である請求の範囲第 1 項に記載の化合物。

4. 一般式（1）において、A 及び B が同一でも異なっていてもよく、それぞれベンゼン環又はピリジン環である請求の範囲第 1 項に記載の化合物。

5. 一般式（1）において、A 及び B がベンゼン環である請求の範囲第 1 項に記載の化合物。

6. 一般式（1）において、Y が無置換のアミノ基、水酸基又は炭素数 1 ~ 4 のアルコキシ基である請求の範囲第 1 項に記載の化合物。

7. 一般式（1）において、Y が炭素数 1 ~ 4 のアルキル基である請求の範囲第 1 項に記載の化合物。

8. 一般式（1）において、R² が水素原子又は炭素数 1 ~ 4 のアルコキシ基である請求の範囲第 1 項に記載の化合物。

9. 一般式（1）において、R⁵ がベンジル基、フェニル基、ピリジル基又はピリジルメチル基であり、該ベンジル基及びピリジルメチル基の芳香環、並びにフェニル基及びピリジル基はハロゲン原子、炭素数 1 ~ 4 のアルキル基、炭素数 1 ~ 4 のアルコキシ基、炭素数 2 ~ 5 のアルコキシカルボニル基、炭素数 1 ~ 4 のアシル基、トリフルオロメチル基、炭素数 1 ~ 4 のアルキルチオ基、及び炭素数 1 ~ 4 のアルキル基でジ置換されたアミノ基から選択される 1 ~ 5 個の置換基を有していてもよい請求の範囲第 1 項に記載の化合物。

10. 一般式（1）において、R⁵ が炭素数 1 ~ 4 のアルキル基、炭素数 2 ~ 4 のアルケニル基又は炭素数 3 ~ 6 のシクロアルキル基である請求の範囲第 1 項に記載の化合物。

11. 一般式（1）において、R³ 及び R⁴ が NH である請求の範囲第 1 項に記載の化合物。

12. 一般式（1）において、R³ が NH、R⁴ が酸素原子である請求の範囲第 1 項

に記載の化合物。

1 3 . 請求の範囲第 1 項に記載の化合物又はその薬学的に許容される塩を有効成分とする薬学的組成物。

1 4 . 請求の範囲第 1 項に記載の化合物又はその薬学的に許容される塩を有効成分とする血管平滑筋細胞の異常増殖を原因とする疾患の予防又は治療に使用可能な薬学的組成物。

1 5 . 請求の範囲第 1 項に記載の化合物又はその薬学的に許容される塩を有効成分とする経皮的冠動脈形成術もしくは冠動脈バイパス形成術後の再狭窄又はアテローム性動脈硬化症の予防又は治療に使用可能な薬学的組成物。

1 6 . 請求の範囲第 1 項に記載の化合物又はその薬学的に許容される塩を有効成分とするメサンジウム細胞の異常増殖を原因とする疾患の予防又は治療に使用可能な薬学的組成物。

1 7 . 請求の範囲第 1 項に記載の化合物又はその薬学的に許容される塩を有効成分とする血管内皮細胞又は表皮細胞の異常増殖を原因とする疾患の予防又は治療に使用可能な薬学的組成物。

1 8 . 請求の範囲第 1 項に記載の化合物又はその薬学的に許容される塩を有効成分とする乾癬、糖尿病性網膜症又は老人性円板状黄斑部変性症の予防又は治療に使用可能な薬学的組成物。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/06667

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl' C07C271/28, 271/60, 275/42, 335/22, C07D317/66, 307/66, 333/36, 307/52, 333/40, 295/12, 317/68, 319/18, C07D213/80, 307/68, 213/75, 211/58, 211/46, 213/75, 213/40, 309/14, A61K31/245, 31/36, 31/366, 31/341, A61K31/381, 31/351, 31/5375, 31/443, 31/4402, 31/445, 31/4406, 31/4409, 31/357, A61P43/00, 9/10, 3/10, 17/00
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl' C07C271/28, 271/60, 275/42, 335/22, C07D317/66, 307/66, 333/36, 307/52, 333/40, 295/12, 317/68, 319/18, C07D213/80, 307/68, 213/75, 211/58, 211/46, 213/75, 213/40, 309/14, A61K31/245, 31/36, 31/366, 31/341, A61K31/381, 31/351, 31/5375, 31/443, 31/4402, 31/445, 31/4406, 31/4409, 31/357

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAPLUS (STN)
REGISTRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO, 97/31900, A1 (KISSEI PHARMACEUTICAL CO., LTD.), 04 September, 1997 (04.09.97) & AU, 9718113, A	1~18
A	WO, 97/9301, A1 (KISSEI PHARMACEUTICAL CO., LTD.), 13 March, 1997 (13.03.97) & AU, 9668370, A & EP, 855837, A1 & NO, 9800955, A	1~18
A	WO, 97/29744, A1 (KISSEI PHARMACEUTICAL CO., LTD.), 21 August, 1997 (21.08.97) & AU, 9716713, A & CZ, 9802585, A3 & NO, 9803719, A & EP, 894496, A1 & CN, 1211182, A & BR, 9707514, A & HU, 9902191, A & KR, 99082523, A	1~18
A	JP, 9-3019, A (Terumo Corporation), 07 January, 1997 (07.01.97) (Family: none)	1~18

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
13 December, 2000 (13.12.00)Date of mailing of the international search report
26 December, 2000 (26.12.00)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

4

5

6

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.C1' C07C271/28, 271/60, 275/42, 335/22, C07D317/66, 307/66, 333/36, 307/52, 333/40, 295/12, 317/68, 319/18, C07D213/80, 307/68, 213/75, 211/58, 211/46, 213/75, 213/40, 309/14, A61K31/245, 31/36, 31/366, 31/341, A61K31/381, 31/351, 31/5375, 31/443, 31/4402, 31/445, 31/4406, 31/4409, 31/357, A61P43/00, 9/10, 3/10, 17/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.C1' C07C271/28, 271/60, 275/42, 335/22, C07D317/66, 307/66, 333/36, 307/52, 333/40, 295/12, 317/68, 319/18, C07D213/80, 307/68, 213/75, 211/58, 211/46, 213/75, 213/40, 309/14, A61K31/245, 31/36, 31/366, 31/341, A61K31/381, 31/351, 31/5375, 31/443, 31/4402, 31/445, 31/4406, 31/4409, 31/357

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS(STN)
REGISTRY(STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO, 97/31900, A1 (キッセイ薬品工業株式会社), 4. 9月. 1997 (04. 09. 97) &AU, 9718113, A	1~18
A	WO, 97/9301, A1 (キッセイ薬品工業株式会社), 13. 3月. 1997 (13. 03. 97) &AU, 9668370, A &EP, 855837, A1 &NO, 9800955, A	1~18

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

13. 12. 00

国際調査報告の発送日

26.12.00

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) / 星野 純英 印

4H 8217

電話番号 03-3581-1101 内線 3443

C (続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO, 97/29744, A1 (キッセイ薬品工業株式会社), 21. 8月. 1997 (21. 08. 97) &AU, 9716713, A &CZ, 9802585, A3 &NO, 9803719, A &EP, 894496, A1 &CN, 1211182, A &BR, 9707514, A &HU, 9902191, A &KR, 99082523, A	1~18
A	JP, 9-3019, A (テルモ株式会社), 7. 1月. 1997 (07. 01. 97) (ファミリーなし)	1~18