

Université Ibn Tofail Ecole Nationale des Sciences Appliquées, Kénitra.

Travaux Dirigés de traitement d'images

Filières: RST & GE-SE

Exercice 1:

Soit I une image à niveaux de gris de taille 8×8 pixels codée sur 4 bits. L'image I représente une forme rectangulaire sur un fond.

	13	13	12	12	12	11	11	11
	13	(12)	12	12	11	11	11	10
	12	12	8	7	6	5.	10	10
	12	12	7	6	5	4	10	10
	12	11	6	5	4	3	10	9
	11	11	Ś		3	2	9	9
-	11	11	10	10	10	9	9	9
	11	10	10	10	9	9	9	8 .

1. Soit $\mathbf{H_1}$ et $\mathbf{H_2}$ les filtres de convolution définis respectivement par les noyaux suivants:

$$H_1 = egin{array}{c|c|c} -1 & -1 & 0 & \ -1 & 0 & 1 & \ \hline 0 & 1 & 1 & \ \end{array}$$

$$H_2 = \frac{1}{10} \times \begin{array}{|c|c|c|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 2 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

A quel type de filtres correspondent les filtres H1 et H2?

- 2. Lequel de ces deux filtres faut-il utiliser pour effectuer une détection de contours sur l'image I? Citer les différentes étapes nécessaires afin de réaliser cette détection le plus précisément possible ?
- 3. Quels sont les résultats de la convolution du filtre H₁ sur les pixels de l'image I de coordonnées: (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,5) et (5,2)? Que constatez-vous? Quel filtre faudrait-il associer à H₁ pour améliorer le résultat?
- 4. Appliquer le filtre H₂ sur le pixel de l'image I de coordonnées (2,2) ainsi qu'un filtre médian de taille 3×3 puis comparer et discuter les résultats de ces deux filtres.
- 5. En analysant l'image I et son histogramme, binariser correctement l'image de façon à séparer la forme rectangulaire du fond. Donner la valeur du seuil choisi et représenter l'image binaire par des 0 et des 1.

Exercice 2:

L'image de la figure ci-dessous est une image à niveaux de gris de taille 10×10 pixels codée sur 4 bits. Cette image représente un cercle su un fond sombre.

6	5	4	3	2	2	3	4	5	6
				1	1	2	3	4	5
5	4	3	2	1	1	-	-		+
4	3	2	1	14	14	1	2	3	4
3	2	1	14	12	12	14	1	2	3
2	1	14	12	8	8	12	14	1	2
2	1	14	12	8	8	12	14	1	2
3	2	1	14	12	12	14	1	2	3
4	3	2	1	14	14	1	2	3	4
5	4	3	2	1	1	2	3	4	5
6	5	4	3	2	2	3	4 ·	5	6

Un bruit impulsionnel est ajouté à cette image tel que :

I(1,1)=0	
I(6,3)=0	
I(4,4)=0	
I(8,4)=0	
I(1,5)=15	
I(5,5)=15	
I(3,6)=15	
I(8,8)=15	

- 1. Appliquer le filtre moyenneur de taille 3×3 sur les points : I(1,1), I(6,3), I(4,4), I(8,4), I(1,5), I(5,5), I(3,6), I(8,8), I(4,1), I(8,1), I(2,8), I(5,8). Quel est l'effet de ce filtre ?
- 2. Appliquer un filtre médian de taille 3×3 sur les points : I(1,1), I(6,3), I(4,4), I(8,4), I(1,5), I(5,5), I(3,6), I(8,8), I(4,1), I(8,1), I(2,8), I(5,8). Quel est l'effet de ce filtre ?
- 3. Quel est le résultat d'un filtrage moyenneur sur le bord en haut à gauche avec les 2 méthodes : zero-padding et duplication ? Conclure.