Δ (2420) 11/2⁺

$$I(J^P) = \frac{3}{2}(\frac{11}{2}^+)$$
 Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

Δ (2420) POLE POSITION

RFAI	PART
REAL	PARI

NEAL FAN I					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
2260 to 2400 (≈ 2330) OUR EST	IMATE				
$2454 \pm 4 \pm 11$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$	
2529	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN	
2300	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$	
2360 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
-2×IMAGINARY PART					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
350 to 750 (\approx 550) OUR ESTIMA	NTE .				
462± 8±50	¹ SVARC	14	L + P	$\pi N \rightarrow \pi N$	
621	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$	
620	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$	
420 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	

△(2420) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
20 to 40 (≈ 30) OUR ESTIMATE				
$30 \pm 1 \pm 7$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
33	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
39	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
18±6	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
PHASE θ				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
-60 to 20 (≈ -20) OUR ESTIM	MATE			
$11\pm \ 1\pm 8$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
-45	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
-60	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
-30 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

△(2420) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2300 to 2500 (≈ 2420) OUR ESTIN	MATE			
2633± 29	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
2400 ± 125	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2416± 17	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

Created: 5/30/2017 17:20

△(2420) BREIT-WIGNER WIDTH

VALUE (MeV) DOCUMENT ID	TECN	COMMENT
300 to 500 (≈ 400) OUR ESTIMATE		
692± 47 ARNDT 06	DPWA	$\pi N \rightarrow \pi N, \eta N$
450 ± 150 CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
340± 28 HOEHLER 79	IPWA	$\pi N \rightarrow \pi N$

△(2420) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\pi$	5–15 %

△(2420) BRANCHING RATIOS

$I(N\pi)/I_{total}$					l 1/l
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5 to 15 OUR ESTIMATE					
8.5 ± 0.8	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$	
8 ±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
8.0 ± 1.5	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	

△(2420) FOOTNOTES

△(2420) REFERENCES

PDG SVARC	14 14	CP C38 070001 PR C89 045205	K. Olive <i>et al.</i> A. Svarc <i>et al.</i>	(PDG Collab.)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	(GWU)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL)
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	` (KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

Created: 5/30/2017 17:20

 $^{^{1}\,\}mathrm{Fit}$ to the amplitudes of HOEHLER 79.