KIẾM TRA HỌC KÌ 2 - 2022-2023

KIỂM TRA HỌC KÌ 2 - 2022-2023 — ĐỀ 1

LỚP TOÁN THÂY PHÁT

Thời gian làm bài: 90 phút, không kể thời gian phát đề

- $\frac{1}{2} \ln^2 x + \ln x + C$.
- $\mathbf{B} \ x + \frac{1}{2} \ln^2 x + C.$ $\mathbf{D} \ x + \ln^2 x + C.$
- $\mathbf{\widehat{C}} \ln^2 x + \ln x + C.$

CÂU 2. Cho tích phân $I = \int (x+1) \ln x dx = \frac{e^2 + a}{b}$ với a, b là những số nguyên dương.

Giá trị của biểu thức T = a + b tương ứng bằng

- (A) 8.
- **(B)** 10.
- $(\mathbf{D}) 9.$

CÂU 3. Cho hàm số f(x) có f(0) = 0 và $f'(x) = x \sin x, \forall x \in \mathbb{R}$. Khi đó $\int f(x) dx$ bằng

- (\mathbf{A}) -1.
- $\bigcirc 2 \frac{\pi}{2}.$

CÂU 4. Trong không gian Oxyz, cho hai điểm A(2;1;0) và B(0;-1;4). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là

(A) 2x + y - 2 = 0.

(C) x + y - 2z + 3 = 0.

CÂU 5. Nếu $\int_a^a \ln x \, dx = 1 + 2a$ với a > 1 thì a thuộc khoảng nào sau đây?

- (A) (18; 21).
- **(B)** (1; 4).
- **(C)** (11; 14).

CĂU 6. Trong không gian Oxyz, biết mặt phẳng ax + by + cz - 24 = 0 qua A(1;2;3) và vuông góc với hai mặt phẳng (P): 3x-2y+z+4=0, (Q): 5x-4y+3z+1=0. Giá trị a+b+c bằng

- (A) 8.
- **(B)** 9.
- (C) 10.

CÂU 7.

Cho hình phẳng (H) giới hạn bởi các đường y = f(x), y = g(x), y = h(x) có đồ thị biểu diễn như hình vẽ. Diện tích hình phẳng giới hạn bởi hình (H) tính theo công thức

(A)
$$S = \int_{1}^{4} [f(x) - h(x)] dx + \int_{4}^{7} [h(x) - g(x)] dx$$
.

B
$$S = \int_{0}^{4} [f(x) - g(x)] dx + \int_{0}^{7} [g(x) - h(x)] dx.$$

©
$$S = \int_{1}^{4} [h(x) - g(x)] dx + \int_{1}^{7} [f(x) - g(x)] dx.$$

(D)
$$S = \int_{1}^{4} [f(x) - h(x)] dx + \int_{1}^{7} [g(x) - h(x)] dx.$$

ĐIỂM:

Be yourself; everyone else is already taken.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠

•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	٠

QUICK N	QUICK N	
•	_	

CÂU 8. Cho số phức z thỏa mãn |z-2-3i|+|z+1+i|=5. Gọi giá trị lớn nhất và giá trị nhỏ nhất của biểu thức T=|z-2| tương ứng là a và b. Giá trị biểu thức T=a+bbằng

$$\sqrt{10} + \frac{9}{5}$$
.

B
$$\sqrt{13} + \sqrt{3}$$
.

(c)
$$1 + \sqrt{5}$$
.

$$(\mathbf{D}) 2 + \sqrt{10}.$$

CÂU 9. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y-z-3=0 và hai điểm M(1;1;1), N(-3;-3;-3). Mặt cầu (S) đi qua hai điểm M, N và tiếp xúc với mặt phẳng (P) tại điểm Q. Biết rằng Q luôn thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó.

$$\mathbf{B} R = \frac{2\sqrt{33}}{3}.$$

$$\bigcirc R = 6.$$

CÂU 10. Diện tích phần hình phẳng gạch chéo trong hình vẽ được tính theo công thức nào dưới đây?

B
$$\int_{-1}^{1} (2x^3 - 2x) dx$$
.

$$\int_{-1}^{1} (2x - 2x^3) \, \mathrm{d}x.$$

CÂU 11. Tìm độ dài đường kính của mặt cầu (S) có phương trình $x^2+y^2+z^2-2y+4z+2=$

$$(c)$$
 1.

$$\bigcirc 2\sqrt{3}.$$

CÂU 12. Trong không gian Oxyz, phương trình mặt phẳng đi qua M(3; -1; 2), N(4; -1; -1), P(2;0;2) là

$$(A) 3x + 3y - z + 8 = 0.$$

B
$$3x - 2y + z - 8 = 0$$
.

$$(\mathbf{D}) 3x + 3y - z - 8 = 0.$$

CẦU 13. Hình (H) giới hạn bởi các đường y = f(x), x = a, x = b (a < b) và trục Ox. Khi quay (H) quanh trục Ox ta được một khối tròn xoay có thể tích tính bằng công thức

$$\mathbf{A} V = \pi \int_{a}^{b} |f(x)| \, \mathrm{d}x.$$

$$\mathbf{B} V = \pi \int_{a}^{b} f(x) dx.$$

$$\mathbf{D} V = \int_{a}^{b} f(x) dx.$$

CÂU 14. Cho hàm số F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a;b]. Tích phân $\int f(x) dx$ bằng

$$\bigcirc f(b) - f(a).$$

CÂU 15. Cho số phức z = 5 + 3i. Số phức liên hợp của z là

$$\bigcirc$$
 -5 + 3*i*.

B
$$-5 - 3i$$
.

©
$$5-3i$$
.

D
$$5i - 3$$

CÂU 16. $\int 5x^4 dx$ bằng

(A)
$$20x^3 + C$$
.

B
$$\frac{1}{5}x^5 + C$$
.

©
$$5x^5 + C$$
.

CÂU 17. Cho hai số phức z_1 , z_2 thỏa mãn điều kiện $z_1 + (2+3i)z_2 = 1-3i$; $(1-i)z_1 + (2+3i)z_2 = 1-3i$ $(1+i)z_2=2$. Giá trị của biểu thức $T=|z_1+iz_2|$ bằng

$$\bigcirc$$
 $\sqrt{2}$.

$$\bigcirc$$
 1.

CÂU 18. Câu 35Cho số phức z thỏa mãn iz = 5 + 4i. Số phức liên hợp của z là

$$\mathbf{B}) \, \overline{z} = 4 - 5i.$$

$$\mathbf{\widehat{C}} \ \overline{z} = -4 + 5i.$$

$$(\overline{\mathbf{D}}) \, \overline{z} = -4 - 5i$$

(A) (3; 1; -2).

(B) (1;2;0).

 (\mathbf{C}) (-1; 3; -2).

CÂU 20. Trong không gian tọa độ Oxyz, cho hai đường thẳng $\Delta_1 : \frac{x-1}{5} = \frac{y-3}{-2} = \frac{z+3}{1}$

và đường thẳng Δ_2 : $\frac{x-3}{-5}=\frac{y+1}{2}=\frac{z-1}{-1}$. Nhận xét đúng về vị trí tương đối của hai đường thẳng $\Delta_1, \, \Delta_2$ là

 $(\mathbf{A}) \Delta_1 /\!\!/ \Delta_2.$

 $(\mathbf{B}) \Delta_1 \operatorname{cắt} \Delta_2.$

 $\langle \mathbf{C} \rangle \Delta_1 \equiv \Delta_2.$

 $(\mathbf{D}) \Delta_1$ chéo Δ_2 .

CÂU 21.

Trong mặt phẳng phức, cho z = 1 + i điểm nào dưới đây biểu diễn đúng số phức iz?

 (\mathbf{A}) Điểm A. (\mathbf{B}) Điểm B.

 (\mathbf{C}) Điểm C.

 (\mathbf{D}) Điểm D.

CÂU 22. Họ tất cả nguyên hàm của hàm số $f(x) = \frac{1}{x} \left(1 + \frac{x}{\cos^2 x} \right)$ với $x \in (0; +\infty) \setminus$ $\left\{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\}$ là

 $\mathbf{B}) \ln x + \tan x + C.$

 $(\mathbf{D}) \ln x - \tan x + C.$

CÂU 23. Họ nguyên hàm $F(x) = \int \ln x dx$, là

 $(\mathbf{A}) F(x) = x \ln x - 1.$

 $(\mathbf{C}) F(x) = x(\ln x - 1) + C.$

CÂU 24. Cho tích phân $I=\int x^2\sqrt{4-x^2}\,\mathrm{d}x$, nếu ta dùng một phép đổi biến số đặt

 $x=2\sin u$ thì sẽ thu được tích phân tương ứng là

(A) $\int_{0}^{\frac{\pi}{6}} 4 \sin^{2} 2u \, du$. (B) $\int_{0}^{\frac{\pi}{2}} 2 \sin^{2} 2u \, du$. (C) $\int_{0}^{\frac{\pi}{6}} 4 \sin^{2} u \, du$. (D) $\int_{0}^{\frac{\pi}{6}} 16 \sin^{2} 2u \, du$.

CÂU 25. Câu 36Tập nghiệm của bất phương trình $\log_3 (31 - x^2) \ge 3$ là

(A) $(-\infty; 2]$.

 $(\mathbf{B}) (0; 2].$

 (\mathbf{C}) $(-\infty; -2] \cup [2; +\infty).$

 $(\mathbf{D})[-2;2].$

CÂU 26. Tìm họ nguyên hàm F(x) của hàm số $f(x) = \frac{x-1}{r^2}, x \neq 0$.

 $(A) F(x) = \ln x + \frac{1}{x} + C.$

© $F(x) = -\ln|x| + \frac{1}{x} + C$.

B $F(x) = \ln|x| - \frac{1}{x} + C.$ **D** $F(x) = \ln|x| + \frac{1}{x} + C.$

CÂU 27. CÂU 28. Gọi z_1, z_2 là hai nghiệm phức của phương trình $z^2 + z + 2 = 0$. Khi đó $|z_1| + |z_2|$ bằng

(**A**) 2.

(B) $2\sqrt{2}$.

(**c**) $\sqrt{2}$.

CÂU 29. Trong không gian Oxyz, cho mặt phẳng (α) : 2x - y + 3z + 5 = 0. Véc-tơ nào dưới đây là một véc-tơ pháp tuyến của (α) ?

(A) $\vec{n}_3 = (-2; 1; 3)$. (B) $\vec{n}_4 = (2; 1; -3)$. (C) $\vec{n}_2 = (2; -1; 3)$. (D) $\vec{n}_1 = (2; 1; 3)$.

CÂU 30. Tất cả các giá trị thực m thỏa mãn $\int (2x+1) \, \mathrm{d}x < 2$ là

(A) m < -2.

(B) -2 < m < 1.

(D) m > 2.

CÂU 31. Tính thể tích khối tròn xoay sinh ra khi quay quanh trục Ox hình phẳng giới hạn bởi hai đồ thị $y = x^2 - 4x + 6$, $y = -x^2 - 2x + 6$.

<u>\bigsigma} = 1 </u>	Ç	<u> </u>			_	_	_		_	_	_		_			_	_	_								_	
				6	j)	Ų)	K		Ì	\		9		I	=									
	•		_		•		_	•	•	•	•	•	•	•	•	_	_	•	•	•	•	•	•	•	_	-	(
	• •	٠.	٠		•	•		•	•	•	•	•	•	•	•			•	•	•	•	•	•			•	c
		٠.		٠.																							
	٠.																										
	٠.																			•							
																											(
																											b
																											(
																											E
			•		•			•	•		•	•	•	•	•			•	•	•	•	•	•				
• • •	• •	• •	•		•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	
	• •	• •	•	٠.	•	•		•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	
	• •	• •	•	٠.	•	•		•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	(
• • •	• •	٠.	•	٠.	٠	•		•	•	•	•	•	•	•	•			•	•	•	•			•		•	
• • •	• •	٠.	•	٠.	•	•		•	•	•	•				•			•	•	•	•					•	
• • •	٠.	٠.	•		•	•			•									•									
	٠.																										
	٠.																										
	٠.																			•							
																											(
	٠.																										t
																											p
																											1
																	•	-									
	• •	• •	•		•	•		•	•	•	•	•	•	•	•			•	•	•	•	•				•	
	• •	• •	•		•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	(
• • •	• •	٠.	•	٠.	٠	•		٠	•	•	٠	•	•	•	•			•	٠	•	•	•	•	•		•	•

(A) 3π .

(B) $\pi - 1$.

 $(\mathbf{C}) \pi$.

(D) 2π .

CÂU 32. Gọi \overline{z} là số phức liên hợp của số phức z=-3+4i. Tìm phần thực và phần ảo ửa số phức \overline{z} .

- (A) Số phức \overline{z} có phần thực bằng -3 và phần ảo bằng 4.
- (**B**) Số phức \overline{z} có phần thực bằng 3 và phần ảo bằng 4.
- (**C**) Số phức \overline{z} có phần thực bằng -3 và phần ảo bằng -4.
- (\mathbf{D}) Số phức \overline{z} có phần thực bằng 3 và phần ảo bằng -4.

CÂU 33. Cho hai số phức $z_1=2+2i$ và $z_2=2-i$. Mô-đun của số phức $w=z_1+iz_2$

(**A**) 3.

(B) 5.

(**C**) $\sqrt{5}$.

CÂU 34. Câu 29Cho hàm số f(x) có đạo hàm xác định trên $\mathbb R$ và thỏa mãn

$$f'(x) + \cos x \cdot f(x) = \sin 2x, \forall x \in \mathbb{R}.$$

Biết f(0)=-1. Giá trị tích phân $I=\int\limits_0^{\frac{\pi}{2}}f(x)\cdot\cos x\,\mathrm{d}x$ bằng $\mathbf{A}-\frac{\mathrm{e}+1}{\mathrm{e}}. \qquad \mathbf{B}\,\frac{2\mathrm{e}-1}{2\mathrm{e}}. \qquad \mathbf{C}-\frac{2\mathrm{e}+3}{6\mathrm{e}}. \qquad \mathbf{D}-\frac{\mathrm{e}+2}{2\mathrm{e}}.$

CÂU 35. Cho a < b < c, $\int_{a}^{b} f(x) dx = 5$ và $\int_{a}^{b} f(x) dx = 2$. Tính $\int_{a}^{c} f(x) dx$.

 $\hat{\mathbf{C}} \int f(x) \, \mathrm{d}x = 1.$

CÂU 36. Câu 13Cho số phức z thỏa mãn $(1+2i)z=5(1+i)^2$. Tổng bình phương phần thực và phần ảo của số phức $w = \overline{z} + iz$ bằng

(A) 2.

(B) 4.

 (\mathbf{D}) 8.

CÂU 37. Trong hình vẽ bên, điểm M biểu diễn số phức z, số ohức z là

(A) 1 - 2i.

(B) 1+2i. **(C)** 2-i.

CÂU 38. Cho $\int_{0}^{3} f(x) dx = 9$. Giá trị của tích phân $\int_{0}^{1} f(3x) dx$ bằng

(A) 11.

 (\mathbf{D}) 6.

CÂU 39. Trong không gian Oxyz, cho hai điểm A(1;1;-2), B(3;-4;1). Tọa độ của véc-tơ

(A) (-2;5;-3).

(B) (2; 5; 3).

CÂU 40. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ : $\begin{cases} y = 1 + t \\ z = 1 + 2t \end{cases}$. Điểm

nào sau đây thuộc Δ ?

(A) M(2;2;3).

(B) M(1;1;2).

 $(\mathbf{C}) M(2;2;2).$

 $(\mathbf{D}) M(2; 2; -3).$

CÂU 41. Biết $\int_{\frac{1}{2}}^{1} x f(x) dx = \frac{1}{2}$. Tính $I = \int_{\frac{\pi}{6}}^{\pi} \sin 2x f(\sin x) dx$.

CÂU 42. Cho số phức z thỏa mãn |z-i|=|z-1+2i|. Tập hợp các điểm biểu diễn số phức w = (2-i)z + 1 trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó.

(A)
$$x - 7y - 9 = 0$$
. **(B)** $x + 7y - 9 = 0$. **(C)** $x + 7y + 9 = 0$. **(D)** $x - 7y + 9 = 0$.

CÂU 43. Trong không gian Oxyz cho đường thẳng $\Delta: \frac{x-1}{2} = \frac{y-2}{2} = \frac{z+3}{1}$. Véctơ nào dưới đây là một véctơ chỉ phương của đường thẳng Δ

$$(\mathbf{A}) \ \vec{u} = (2; 2; 1).$$

$$(\vec{\mathbf{B}}) \ \vec{u} = (1; 2; -3).$$

$$\vec{\mathbf{C}}$$
 $\vec{u} = (-1; -2; 3)$. $\vec{\mathbf{D}}$ $\vec{u} = (2; -2; 1)$.

$$(\mathbf{D}) \ \vec{u} = (2; -2; 1).$$

CÂU 44. Cho hai số phức $z_1 = 1 - 3i$ và $z_2 = 3 + i$. Số phức $z_1 - z_2$ bằng

$$\bigcirc$$
 2 - 4*i*.

(B)
$$2-4i$$
.

$$(\mathbf{C}) - 2 + 4i$$

$$(\mathbf{D})^{2} + 4i.$$

CÂU 45. Diện tích hình phẳng giới hạn bởi các đường $y = 7 - 2x^2$, $y = x^2 + 4$ bằng

$$(c)$$
 4.

$$\bigcirc 5$$

CÂU 46. Trong không gian Oxyz, phương trình đường trung tuyến AM của tam giác ABCvới A(3;1;2), B(-3;2;5), C(1;6;-3) là

$$\begin{cases} x = 1 + t \\ y = -1 - 3t \\ z = 8 - 4t \end{cases}$$

$$\begin{cases} x = 1 - 4t \\ y = -3 + 3t. \end{cases}$$

$$\begin{cases} x = 3 - 4t \\ y = 1 + 3t \\ z = 2 - t \end{cases}$$

CÂU 47. Cho số phức z = i(1+2i). Tìm điểm biểu diễn của số phức đó trên mặt phẳng toa đô.

$$(A)$$
 $M(-2; 1).$

B
$$M(1; -2)$$
.

$$\bigcirc$$
 $M(1; 2).$

$$\bigcirc$$
 $M(2; 1).$

CÂU 48. Trong không gian với hệ tọa độ Oxy cho hai đường thẳng d_1 : $\frac{x-1}{2} = \frac{y}{1} = \frac{z+2}{-2}$, d_2 : $\frac{x+2}{-2} = \frac{y-1}{-1} = \frac{z}{2}$. Xét vị trí tương đối của hai đường thẳng đã cho.

(**B**) Trùng nhau.

© Song song.

(**D**) Cắt nhau.

CÂU 49. Tổng mô-đun các nghiệm phức của phương trình $z^2 + 4z + 5 = 0$ bằng

(A) $\sqrt{5}$.

(B) $\sqrt{3}$.

(**c**) $2\sqrt{5}$.

CÂU 50. Họ nguyên hàm của hàm số $f(x) = 3x^2 + \sin x$ là

B
$$\int (3x^2 + \sin x) dx = x^3 + \sin x + C.$$

(A)
$$\int (3x^2 + \sin x) dx = x^3 + \cos x + C$$
.
(B) $\int (3x^2 + \sin x) dx = x^3 + \sin x + C$.
(C) $\int (3x^2 + \sin x) dx = x^3 - \cos x + C$.
(D) $\int (3x^2 + \sin x) dx = 3x^3 - \sin x + C$.

-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ᆕ
٠	•	•	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

 	• • • • • • • • • • • • • • • • • • • •

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

٠.									•								•
٠.	•																•
٠.																	

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

ĐIỂM:

Be yourself; everyone else is already taken.

QUICK	NOTE

Ngày làm đề:/...../

KIẾM TRA HOC KÌ 2 - 2022-2023 KIỂM TRA HOC KÌ 2 - 2022-2023 — ĐỀ 2

LỚP TOÁN THÂY PHÁT

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CẦU 1. Câu 6Xét f(x), g(x) là các hàm số có đạo hàm liên tục trên \mathbb{R} . Phát biểu nào sau

$$(\mathbf{B}) \int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx.$$

$$(c) \int (f(x))^2 dx = \left(\int f(x) dx \right)^2.$$

CÂU 2. Câu 15Họ tất cả các nguyên hàm của hàm số f(x) = 2x + 5 là

(A)
$$x^2 + 5x + C$$
. **(B)** $2x^2 + 5x + C$.

B
$$2x^2 + 5x + C$$

$$\bigcirc$$
 Oz .

$$\bigcirc$$
 $x^2 + C$

CÂU 3. Câu 14Họ các nguyên hàm $\int \frac{1}{\sqrt{x}} dx$ bằng

$$\mathbf{c}$$
 $\frac{2}{\sqrt{x}} + \epsilon$

CÂU 4. Cho hàm số $f(x) = x^2 + 1$. Khẳng định nào dưới đây đúng?

(A)
$$\int f(x) dx = x^3 + x + C$$
.
(B) $\int f(x) dx = \frac{x^3}{3} + x + C$.
(C) $\int f(x) dx = x^2 + x + C$.
(D) $\int f(x) dx = 2x + C$.

$$\int f(x) \, \mathrm{d}x = 2x + C.$$

CÂU 5. Họ nguyên hàm $F(x) = \int \frac{\cos x}{4 - \sin^2 x} dx$ tương ứng là

(A)
$$F(x) = \frac{1}{4} \ln \frac{2 - \sin x}{2 + \sin x} + C$$

B
$$F(x) = \frac{1}{4} \ln \frac{2 + \sin x}{2 - \sin x} + C.$$

(D)
$$F(x) = \frac{1}{2} \ln \frac{2 - \sin x}{2 + \sin x} + C.$$

CÂU 6. Họ nguyên hàm $F(x) = \int e^{\sqrt{x}} dx$ là

B
$$F(x) = 2e^{\sqrt{x}} (\sqrt{x} - 1) + C.$$

$$\mathbf{C} F(x) = e^{\frac{2}{3}x\sqrt{x}} + C.$$

$$\mathbf{D} F(x) = e^{\sqrt{x}} \left(\sqrt{x} + 2 \right) + C.$$

CÂU 7. Câu 35 Biết $\int f(x) dx = 4$. Giá trị của $\int [5f(x) - 1] dx$ bằng

$$\bigcirc$$
 -22.

CÂU 8. Nếu $\int_{-\infty}^{\infty} \frac{f(x)}{3} dx = 4 \text{ thì } \int_{-\infty}^{\infty} f(x) dx \text{ bằng:}$

$$\bigcirc$$
 4.

$$\bigcirc$$
 3⁴.

$$\bigcirc$$
 $\frac{4}{3}$.

CÂU 9. Câu 35

CÂU 9. Hình phẳng S gồm hai phần được đánh dấu trong hình vẽ bên. Diện tích hình S được tính theo công thức nào dưới đây?

(A)
$$S = -\int_{-2}^{0} f(x) dx - \int_{0}^{3} f(x) dx$$
.

$$\mathbf{B} S = \int_{0}^{0} f(x) dx - \int_{0}^{3} f(x) dx.$$

(**D**)
$$S = -\int_{-2}^{0} f(x) dx + \int_{0}^{3} f(x) dx$$
.

CÂU 10. Cho tích phân $I=\int\limits_0^{\frac{\pi}{4}}\frac{1+\sin^2x}{2+\cos^2x}\,\mathrm{d}x$, nếu ta dùng một phép đổi biến số đặt

 $t=\tan x$ thì sẽ thu được tích phân tương ứng là

(A)
$$I = \int_{0}^{1} \frac{(2t^{1} + 1) dt}{2t^{3} + 3} dt$$
.

B
$$I = \int_{0}^{1} \frac{(2t^2 + 2) dt}{(2t^2 + 3)(t^2 + 3)}.$$

$$(D) I = \int_{0}^{1} \frac{(2t^2 + 1) dt}{(2t^2 + 3)(t^2 + 1)}.$$

CÂU 11. Tích phân $I = \int_0^\pi \cos^3 x \sin x \, \mathrm{d}x$ bằng

$$igatharpoonup -rac{1}{4}\pi^4.$$

B
$$-\frac{1}{4}$$
.

$$\bigcirc$$
 $-\pi^4$.

CÂU 12. Cho f(x) có đạo hàm trên [1;2] thỏa $\begin{cases} f(1)=0\\ f(2)=2 \end{cases}$ và $\int\limits_1^2 f(x)\,\mathrm{d}x=1, \text{ khi đó } \int\limits_1^2 x\cdot$

f'(x) dx bằng

- **A** 2.
- **B** $\frac{1}{2}$.
- $\mathbf{c} \frac{8}{3}$.
- **D** 3.

CÂU 13. Biết $\int_0^1 (2x+1)e^x dx = a+be$ với $a, b \in \mathbb{R}$. Giá trị của biểu thức a^3+b bằng

- **(A)** 25.
- **B** 2.
- **(C**) 9.
- **(D)** 17.

CÂU 14. Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số $y=x^2-2x, y=0, x=-1, x=2$ quanh trực Ox bằng

- **B** $\frac{17\pi}{5}$.
- $\bigcirc \frac{18\pi}{5}$.

CÂU 15. Diện tích S của hình phẳng giới hạn bởi các đường $y=2x^2, y=-1, x=0$ và x=1 được tính bởi công thức nào sau đây?

(A)
$$S = \pi \int_0^1 (2x^2 + 1) dx$$
.

B
$$S = \int_0^1 (2x^2 - 1) dx$$
.

$$\mathbf{C}$$
 $S = \int_0^1 (2x^2 + 1)^2 dx$.

CÂU 16. Diện tích hình phẳng được gạch chéo trong dưới đây bằng

•	•	•	•						•	•	•	•	•	•						•	

$$(\mathbf{A}) \int_{-1}^{2} \left(\frac{1}{2} x^4 - x^2 - \frac{3}{2} x - 1 \right) \, \mathrm{d}x.$$

CÂU 17. Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số $y=x^2$ và y=x+2 được tính theo công thức

(A)
$$S = \int_{-1}^{2} (x^2 - x - 2) dx$$
.

B
$$S = \int_{-1}^{2} (-x^2 + x + 2) dx$$
.
D $S = \pi \int_{-1}^{2} (-x^2 + x + 2) dx$.

(c)
$$S = \pi \int_{-1}^{2} (x^2 - x - 2) dx$$
.

(D)
$$S = \pi \int_{-1}^{2} (-x^2 + x + 2) dx.$$

CÂU 18. Thể tích của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số $y = x^2 - x$ và trực hoành quanh trực hoành là

$$\stackrel{\bullet}{\mathbf{B}} \frac{\pi}{30}$$
.

$$\bigcirc \frac{\pi}{15}$$
.

CÂU 19. Số phức liên hợp của 3+i bằng

(A)
$$3 - i$$
.

B
$$i - 3$$
.

$$\bigcirc$$
 -3 - i.

$$\bigcirc$$
 $3i$

CÂU 20. Cho số phức z = 1 - 2i. Tìm phần ảo của số phức \bar{z} .

$$\bigcirc$$
 -2

$$(c)$$
 -1.

$$\bigcirc$$
 1

CÂU 21. Trong mặt phẳng Oxy, số phức z = -2 + 4i được biểu diễn bởi điểm nào trong các điểm ở hình vẽ dưới đây?

 (\mathbf{A}) Điểm C.

(**B**) $\overrightarrow{\text{Diem}} D$.

 (\mathbf{C}) Điểm A.

(**D**) $\overrightarrow{\text{Diem}} B$.

QUICK NOTE

CÂU 22. Số phức z = a + bi $(a, b \in \mathbb{R})$ có điểm biểu diễn như hình vẽ bên dưới. Tìm a và

$$(A)$$
 $a = -4, b = 3.$

(B)
$$a = 3, b = 4.$$

$$a = 3, b = -4$$

(C)
$$a = 3, b = -4.$$
 (D) $a = -4, b = -3.$

CÂU 23. Cho số phức $z=a+bi\,(a,b\in\mathbb{R})$ thỏa mãn $z-2\bar{z}=-1+6i$. Giá trị a+bbằng

(**A**) 3.

(B) -3.

 $(\mathbf{C}) 2.$

CÂU 24. Điểm biểu diễn của số phức z là M(1;2). Toạ độ của điểm biểu diễn số phức $w = z - 2\bar{z}$ là

(A) (2;3).

(B) (2;1).

 $(\mathbf{C})(-1;6).$

 $(\mathbf{D})(2;-3).$

CÂU 25. Cho số phức $z_1 = 1 - 2i$; $z_2 = 3 + 4i$. Tìm phần ảo của số phức $w = 2z_1 + 3z_2$.

CÂU 26. Cho số phức z thỏa mãn (1-2i)z=-2-11i. Tính số phức liên hợp của số phức

(A) $\bar{z} = 4 + 3i$.

(**C**) $\bar{z} = -4 - 3i$.

CÂU 27. Cho số phức z = 2 + 3i. Tìm số phức $w = (3 + 2i) z + 2\bar{z}$.

(B) w = 5 + 7i.

(**C**) w = 7 + 4i.

CÂU 28. Câu 35Cho số phức z thỏa mãn iz = 5 + 4i. Số phức liên hợp của z là

(A) $\bar{z} = 4 + 5i$.

(B) $\bar{z} = 4 - 5i$.

(**C**) $\bar{z} = -4 + 5i$.

(D) $\bar{z} = -4 - 5i$.

CÂU 29. Môđun của số phức $\omega=z+z^2$, với z là số phức thỏa mãn $(2+i)z+\frac{1-i}{1+i}=5-i$

(A) $2\sqrt{2}$.

(B) $4\sqrt{2}$.

(**c**) $5\sqrt{2}$.

(D) $3\sqrt{2}$.

CÂU 30. Cho số phức z thỏa mãn phương trình (2-3i)z = 5+11i. Phần thực của số phức z bằng

23

 \bigcirc $\frac{23}{13}$

CĂU 31. Cho số phức z thỏa mãn |(1+2i)z-5|=|(2-i)z-10|. Trên mặt phẳng tọa độ Oxy tập hợp điểm biểu diễn số phức z là

(A) đường thẳng 3x - 4y - 7 = 0.

(**B**) đường thẳng 2x + y - 1 = 0.

(**C**) đường thẳng 6x - 8y - 13 = 0.

(**D**) đường thẳng 6x + 8y - 15 = 0.

CÂU 32. Gọi z_1, z_2 là các nghiệm phức của phương trình $2z^2 - 2z + 5 = 0$ với phần ảo lần lượt là dương và âm. Số phức liên hợp của số phức $w = 4 - z_1^2 + z_2^2$ là

(A) $\overline{w} = 4 - 3i$.

(B) $\overline{w} = 4 + 3i$.

(C) $\overline{w} = -4 + 3i$.

CÂU 33. Căn bậc hai của số phức z=4 là hai số phức

(B) ± 1 .

(**C**) ± 4 .

CÂU 34. Câu 15Trong không gian Oxyz, cho hai điểm A(2;-1;3), B(3;2;-4). Véc-tơ \overrightarrow{AB} có toa đô là

(A) (1; -3; -7).

(B) (1;3;-7).

 $(\mathbf{C})(-1;3;-7).$

(**D**) (-1; -3; -7).

CÂU 35. Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình $x^2 + y^2 + z^2 - 4x + 2my + 6z + 13 = 0$ là phương trình của mặt cầu.

(B) $m \neq 0$.

(**C**) $m \in \mathbb{R}$.

(D) m < 0.

		_
വ	/ NI	
ລແ	$\langle N \rangle$	

GOICK NOIE	dưới đây là một véc-tơ p	-	mang (α) . $5x + 2y = -1$	12 1 = 0. VCC-10 Hao
	_		$ \mathbf{\hat{c}} $ $ \vec{n}_1 = (3; -4; 1). $	$ \vec{\mathbf{D}} \ \vec{n}_4 = (3; 2; -4). $
	CÂU 37. Câu 10Trong		o mặt phẳng (P) : x –	2y+z-5=0. Điểm
	nào dưới đây thuộc (P) $\bigcirc Q(2:-1:5)$		\bigcirc $M(1;1;6).$	$(\mathbf{D}) N(-5:0:0)$
	CÂU 38. Trong không	_	_	
	B(1;1;1), C(2;3;0) là	gian $Oxyz$, phuong	rının mar phang di q	ua ba diem 71(1, 0, 2),
			B $x - y - z + 1 = 0$ D $x + y - 2z - 3 = 0$).
			<u> </u>	
	CÂU 39. Trong không đồng thời vuông góc với			
	\bigcirc 2x + y - 3z - 14	=0.	B $4x - 5y - 3z - 19$ D $4x + 5y - 3z + 29$	2 = 0.
	CÂU 40. Câu 7Trong	không gian $Oxyz$, cho	o đường thẳng $d \colon \frac{x - x}{x}$	$\frac{2}{z} = \frac{y-1}{z} = \frac{z+3}{z}$.
	Véc-tơ nào dưới đây là 1			1 2 1
			$ \mathbf{c} \vec{u}_3 = (-1; 2; 1). $	
	CÂU 41. Trong không	gian toa đô $Oxyz$, cho	hai đường thẳng Δ_1 :	$\frac{x-1}{2} = \frac{y+2}{1} = \frac{z-1}{2}$
	và đường thẳng $\Delta_2 \colon \frac{x}{x}$			$0 \qquad 1 \qquad -2$
	và dương tháng Δ_2 . — đường thẳng Δ_1 , Δ_2 là	$\frac{1}{4} - \frac{1}{-1} - \frac{1}{2}$. Migii xet dung ve vi	tii tuong doi cua nai
		cắt nhau tại $A(4; -1; -1; -1; -1; -1; -1; -1; -1; -1; -1$	-1).	
		cắt nhau tại $A(1;0;-3)$	<i>'</i>	
	Hai đường thẳng	chéo nhau.		
	D Hai đường thẳng	song song với nhau.		
			,	x = t
	CÂU 42. Trong không	gian với hệ tọa độ Ox	yz . Đường thăng d : \langle	y = 1 - t đi qua điểm
	nào sau đây?		(z=z+t
	l ~ *	B $E(1;1;2)$.	\bullet $H(1;2;0).$	D $F(0;1;2)$.
	CÂU 43. Trong không	gian $Oxyz$, viết phươn	g trình đường thẳng d	đi qua điểm $M(1;2;3)$,
	đồng thời vuông góc với	hai véc-to $\vec{a} = (2; 3; 0)$	$\vec{b} = (3; 4; 0).$	(1
	$\begin{cases} x = 1 + t \\ y = 2 + t \end{cases}$	$\int_{u=2}^{x=1}$	$\sum_{u=2}^{x=t}$	$\sum_{u=t}^{x=1}$
	$\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 3 + t \end{cases}$	$\begin{cases} y-z \\ z=3-t \end{cases}$	$ \begin{cases} y - 2 \\ z = 3 + t \end{cases} $	$\int_{z=3}^{y-v}$
	CÂU 44. Trong không	•	•	•
	$\frac{z+3}{2}$ và mặt phẳng (P		0. Với giá trị nào của	m thì đường thắng d
	vuông góc mặt phẳng (x	P)?	€ m − 1	\bigcirc m -0
	$\mathbf{A}) m = 2.$	m = -1.	$(\mathbf{c}) m = 1.$	\mathbf{D}) $m=0$.
	vuong goc mạt phang (\mathbf{A}) $m=2$. CÂU 45. Giá trị của tí	I_{ch} phân $I = \int_{0}^{3} \cos x \ln x$	$a(\sin x) dx$ tương ứng b	oằng
		$\int_{\frac{\pi}{6}}$	(*% **	0
	$\mathbf{A} \frac{\sqrt{3}}{2} - 1.$	•	B $\frac{\sqrt{3} \ln 3 + (2 - 2\sqrt{3})}{4}$	$\sqrt{3}$) $(\ln 2 + 1)$
			4	
	$\mathbf{c} \frac{3\sqrt{3}-2}{4}$.		$\mathbf{D} \sqrt{3} \ln 3 - 2 \ln 2 +$	1.
		$\sqrt{2}$	0 0	
	CÂU 46. Cho tích phá	$\lim I = \int \frac{\mathrm{d}x}{x(x^3+1)}$	$= \frac{a}{b} \ln 2 - \frac{c}{d} \ln 3; \text{ với}$	a,b,c,d là những số
		1		
	nguyên dương và các ph	$\frac{1}{b}$, $\frac{1}{d}$ to gian. G	na trị của biểu thực I	-a+b+c+a tuong

(B) 10.

(C) 11.

(**D**) 12.

CÂU 47. Cho hàm số f(x) có đạo hàm liên tục và xác định trên $\mathbb R$ và thỏa mãn

 $f(x+1)+f(x+2)=\mathrm{e}^x(x^2-1)$. Giá trị của tích phân $I=\int\limits_{1}^{\infty}f(x)\,\mathrm{d}x$ tương ứng bằng

CÂU 48. Cho số phức z thỏa mãn |z-2-3i|+|z+1+i|=5. Gọi giá trị lớn nhất và giá trị nhỏ nhất của biểu thức T=|z-2| tương ứng là a và b. Giá trị biểu thức T=a+b

 $(A) \sqrt{10} + \frac{9}{5}.$

B $\sqrt{13} + \sqrt{3}$.

 $(\mathbf{C}) 1 + \sqrt{5}.$

(D) $2 + \sqrt{10}$.

CÂU 49. Trong không gian với hệ tọa độ Oxyz, cho điểm H(a;b;c) với a,b,c>0. Mặt phẳng (P) chứa điểm H và lần lượt cắt các trục Ox, Oy, Oz tại A, B, C thỏa mãn H là trực tâm của tam giác ABC. Phương trình của mặt phẳng (P) là \mathbf{A} $\frac{x}{a^2} + \frac{y}{b^2} + \frac{z}{c^2} = \frac{ab+bc+ca}{abc}$. \mathbf{B} $\frac{x}{a} + \frac{y}{b} + \frac{z}{b^2}$ \mathbf{C} $ax+by+cz-a^2-b^2-c^2=0$.

B $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3.$ **D** $a^2x + b^2y + c^2z - a^3 - b^3 - c^3 = 0.$

CÂU 50. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu $(S): (x-1)^2 + (y-3)^2 + (y-3)^2$ $(z-m)^2=16$. Gọi X là tập hợp chứa tất cả các giá trị thực của tham số m để mặt cầu (S)tiếp xúc với đường thẳng $d: \frac{x}{2} = \frac{y}{3} = \frac{z-1}{1}$. Tổng tất cả các phần tử của tập X là $\mathbf{A} - \frac{48}{13}$. $\mathbf{B} \frac{13}{48}$. $\mathbf{C} \frac{48}{13}$.

•		•	•											•	•	•	•	•	•										
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

ĐIỂM:

Be yourself; everyone else

is already taken.
QUICK NOTE

Ngày làm đề:/..../.....

KIÊM TRA HOC KÌ 2 - 2022-2023

KIÊM TRA HOC KÌ 2 - 2022-2023 — ĐÊ 3

LỚP TOÁN THÂY PHÁT

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CÂU 1. Cho hàm số $f(x) = e^{3x-1}$. Trong các khẳng định sau, khẳng định nào đúng?

$$\int f(x) dx = \frac{1}{3}e^{3x-1} + C.$$

CÂU 2. Câu 15Cho hàm số $f(x) = \frac{1}{\sin^2 x}$. Trong các khẳng định sau, khẳng định nào đúng?

$$\int f(x) \, \mathrm{d}x = -\tan x + C.$$

CÂU 3. Họ nguyên hàm của hàm số $f(x) = (2 + e^{3x})^2$ là

$$(A) 4x + \frac{4}{3}e^{3x} + \frac{1}{6}e^{6x} + C.$$

CÂU 4. Nếu $\int f(x) dx = \frac{x^4}{4} + \ln x + C$ thì f(x) bằng

(A)
$$x^3 + \frac{1}{x}$$
.

$$\mathbf{B} x^3 + \ln x$$

$$\mathbf{c}$$
 $\frac{x^4}{3} + \frac{1}{x}$

(A)
$$x^3 + \frac{1}{x}$$
. **(B)** $x^3 + \ln x$. **(C)** $\frac{x^4}{3} + \frac{1}{x}$. **(D)** $\frac{x^4}{12} + \ln x$.

CÂU 5. Họ nguyên hàm $F(x) = \int \frac{1}{x^2 - 16} dx$ là

(A)
$$F(x) = \frac{1}{8} \ln \left| \frac{x-4}{x+4} \right| + C.$$

$$\mathbf{B} F(x) = \frac{1}{8} \ln \left| \frac{x+4}{x-4} \right| + C$$

©
$$F(x) = \frac{1}{2} \ln \left| \frac{x-4}{x+4} \right| + C$$

CÂU 6. Họ nguyên hàm $F(x) = \int (3x-1)e^x dx$ là

$$\mathbf{B} F(x) = (3x - 4)e^x + C$$

$$\mathbf{C}$$
 $F(x) = \frac{1}{3}(3x+1)e^x + C$

(A)
$$F(x) = (3x - 1)e^x + C$$
.
(B) $F(x) = (3x - 4)e^x + C$.
(C) $F(x) = \frac{1}{3}(3x + 1)e^x + C$.
(D) $F(x) = \left(\frac{3}{2}x^2 - x\right)e^x + C$.

CÂU 7. Câu 32. Cho hàm số f(x) có đạo hàm liên tục trên đoạn
 [1;3] thỏa mãn f(1)=2và f(3) = 9. Tính $I = \int_{1}^{3} f'(x) dx$.

$$\bigcirc I = 7.$$

(B)
$$I = 18$$

$$\bigcirc I = 2.$$

D
$$I = 11$$
.

CÂU 8. Câu 10Nếu $\int_{-1}^{3} f(x) dx = 3 \text{ và } \int_{3}^{5} f(x) dx = 2 \text{ thì } \int_{-1}^{5} f(x) dx \text{ bằng}$

$$\bigcirc -5.$$

$$(c)$$
 -1

CÂU 9. Câu 32Cho hàm số f(x), biết f(0)=4 và $f'(x)=2\cos^2 x+1, \ \forall x\in\mathbb{R}$. Khi đó $\int_{0}^{\infty} f(x) \, \mathrm{d}x \, \text{bằng}$

(A)
$$\frac{\pi^2 + 4}{16}$$
.

B
$$\frac{\pi^2 + 14\pi}{16}$$

$$\bigcirc \frac{\pi^2 + 16\pi + 4}{16}$$

(A)
$$\frac{\pi^2 + 4}{16}$$
. (B) $\frac{\pi^2 + 14\pi}{16}$. (C) $\frac{\pi^2 + 16\pi + 4}{16}$. (D) $\frac{\pi^2 + 16\pi + 16}{16}$.

QUICK NOTE

CÂU 10. Cho tích phân $\int_{-1}^{1} f(2x) dx = \frac{5}{2}$ và $\int_{-1}^{3} f(x) dx = -2$. Tính tích phân $\int_{-1}^{3} f(x) dx$.

 $(\mathbf{C}) - 10.$

CÂU 11. Cho hàm số f(x) có $f(0) = \frac{1}{2}$ và $f'(x) = \frac{2x-1}{(x+1)^3}, \forall x > -1$. Khi đó $\int f(x) dx$

bằng

 $\frac{7}{4} - 2 \ln 2$.

B $1 - 2 \ln 2$. **C** $-\frac{1}{2}$.

CÂU 12. Cho hai số thực a và b thỏa a < b và $\int_a^b x \sin x \, dx = \pi$, đồng thời $a \cos a = 0$ và

 $b\cos b = -\pi$. Khi đó $\int_a^b \cos x \, dx$ bằng

 (\mathbf{D}) 0.

CÂU 13. Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1], thỏa mãn $\int f(x) \, \mathrm{d}x = 3$ và

f(1) = 4. Tích phân $\int_{0}^{1} x f'(x) dx$ có giá trị là

 $\bigcirc -\frac{1}{2}$.

(**D**) -1.

CAU 14. Cho hình phẳng (D) giới hạn bởi các đường $y = \sin x; y = 0; x = 0; x = \pi$. Thể tích khối tròn xoay sinh bởi hình (D) quay xung quanh Ox bằng

CÂU 15. Diện tích S của hình phẳng giới hạn bởi các đường $y=2\sin x,\ y=3,\ x=1$ và x=2 được tính bởi công thức nào dưới đây?

 $\mathbf{\hat{C}} S = \int (3 - 2\sin x)^2 \, \mathrm{d}x.$

CÂU 16. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y = g(x) liên tục trên đoạn [a;b] và hai đường thẳng x=a, x=b được xác định theo công thức

 $\mathbf{D} S = \int_{a}^{b} \left[\left| f(x) \right| - \left| g(x) \right| \right] dx.$

CÂU 18. Câu 34Gọi (H) là hình phẳng giới hạn bởi các đồ thị $y=x^2-2x,\,y=0$ trong mặt phẳng Oxy. Quay hình (H) quanh trục hoành ta được một khối tròn xoay có thể tích bằng

 $\mathbf{B} \ \pi \int \left| x^2 - 2x \right| \mathrm{d}x.$

 $\mathbf{c} \pi \int (x^2 - 2x)^2 \, \mathrm{d}x.$

CÂU 19. Cho hai số phức $z_1 = 5 - 2i$ và $z_2 = 2 + 3i$. Điểm biểu diễn cho số phức $z_1 - z_2$

(A) M(3; -5).

(B) M(-3;5).

(**C**) M(3;5).

(D) M(-3;-5).

GV VŨ NGỌC PHÁT — ĐT: 0962.940.819

QUICK NOTE		o của số phức $z = 2 - 3$		
	(A) 3.	(B) 2.	(C) $-3i$.	(D) -3 .
	CÂU 21. Trên mặ (A) (5; 7).	ất phẳng tọa độ, điểm b $(-5;7)$.	oiểu diễn số phức $5-76$ \bigcirc $(-5;-7)$.	có tọa độ là (\mathbf{D}) $(5; -7)$.
	CÂU 22. Trên mặ	ít phẳng tọa độ, điểm b	piểu diễn số phức $z=-$	
	A $(0; -3)$.	B $(-3;0)$.	© $(0;3)$.	(3;0).
		số phức $z_1 = 1 + 2i$	và $z_2 = 2 - 3i$. Phần	ảo của số phức liên hợp
	$z = 3z_1 - 2z_2 \text{ là}$ $12.$	(B) -12 .	(C) 1.	\bigcirc -1 .
	_	<u> </u>		
	Xác định số phức l		n trong mạt phang tọa	độ Oxy là điểm $M(3; -5)$.
		$. \qquad \mathbf{B} \ \overline{z} = 5 + 3i.$	$\bigcirc \overline{z} = 3 + 5i.$	$\bigcirc \overline{\mathbf{D}} \ \overline{z} = 3 - 5i.$
	CÂU 25. Cho hai	số phức $z = 3 - 4i$ và	w = 5 + i. Số phức $z + i$	w là
	A $2 + 5i$.			D $8 - 3i$.
	CÂU 26. Câu 300	Cho hai số phức $z_1 = 1$	$+i \text{ và } z_2 = -1 - 3i. \text{ Ph}$	ần thực của số phức $z_1 \cdot \overline{z_2}$
	bằng	_	_	
	igwedge -2.	B 2.	\bigcirc -4.	(D) 4.
	_	số phức $z = 3 - 4i$ và u	_	
	ig(A ig) -1 -7i.	B $1 - 10i$.	(C) $7 + 2i$.	(D) $-1 - 10i$.
	CÂU 28. Cho hai	số phức $z_1 = 1 + 3i$ và	$z_2=2i-3$. Số phức $\frac{z_2}{z_2}$	bằng
	$(\mathbf{A}) \frac{-3-11i}{}.$	B $-\frac{3-11i}{13}$.	$(\mathbf{c}) \frac{3+11i}{3}$.	$(\mathbf{D}) \frac{3-11i}{3-11i}$.
	10	19	19	19
	CAU 29. Cho sô p z bằng	phức z thỏa mãn phươr	$\operatorname{ng tr} (2-i)z + 1 = i$	3 <i>i</i> . Phần thực của số phức
	$\mathbf{A} = -2.$	B -1 .	© 2.	(D) 1.
	CÂU 30. Số phức	z thỏa mãn $iz = 6 + 5$	i. Số phức liên hợp của	z là
		B $\bar{z} = -5 + 6i$.		$\mathbf{\bar{D}}\ \bar{z} = -5 - 6i.$
	CÂU 31. Cho số 1		_	iểm biểu diễn số phức z là
	một đường tròn có	phương trình tương ứn		ioni sion dion so pinae s ia
	$(x-6)^2 + y^2$		B $(x+3)^2 + (y+3)^2 + $	
	$(x-3)^2 + (y-3)^2 + (y-3$	$(y+3)^2 = 8.$	D $(x-1)^2 + (y-1)^2 + $	$-1)^2 = 4.$
		$z_1;\ z_2$ là hai nghiệm	phức của phương trìn	h $3z^2 - z + 1 = 0$. Tính
	$P = z_1 + z_2 .$	\bigcirc 2	\sim $\sqrt{3}$	$\sim 2\sqrt{3}$
	$(\mathbf{A}) P = \frac{\mathbf{V}^{11}}{3}.$		(c) $P = \frac{\sqrt{3}}{3}$.	(D) $P = \frac{2\sqrt{3}}{3}$.
	CÂU 33. Gọi $z_1,$	z_2 là hai nghiệm phức	của phương trình $2z^2$ +	$-\sqrt{3}z+3=0$. Giá trị của
	biểu thức $z_1^2 + z_2^2$ b	0		
	$\frac{3}{18}$.	B $\frac{-9}{8}$.	© 3.	$\bigcirc \frac{-9}{4}$.
	CÂU 34. Trong kl	hông gian với hệ trục tọ	a độ $Oxyz$ cho hai điểm	A(-2;3;-4), B(4;-3;3).
	Tính độ dài đoạn t	hång AB .		
		$\mathbf{(B)}\ AB = (6; -6$	(7). C $AB = 7$.	
				$z^2 + y^2 + z^2 + 2x - 4z - 1 = 0.$
	ig Độ dài đoạn OI (v $ig $ $ig $ Δ) 5.	ới O là gốc tọa độ) bằn $\stackrel{\bullet}{(\mathbf{B})}\sqrt{5}$.	\mathbf{C} $\sqrt{6}$.	(D) 6.
		hông gian $Oxyz$, cho m tuyến của mặt phẳng (+2 = 0. Vectơ nào sau đây
	_	(3; 1). (B) $\vec{n} = (-2; -3)$	· ′ ~	$(\mathbf{D}) \ \vec{n} = (2; 3; 2).$

CÂU 37. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ :

nào sau đây thuộc Δ ?

- (A) M(2;2;3).
- **(B)** M(1;1;2).
- $(\mathbf{C}) M(2; 2; 2).$
- **(D)** M(2; 2; -3).

CĂU 38. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;0;2), B(-1;2;0) và mặt phẳng (P): x-2y-2=0. Phương trình mặt phẳng (Q) đi qua A, B và vuông góc với (P)

- **(A)**<math>2x + y 3z + 12 = 0.
- **(B)** 2x + y 3z = 0.

(c) 2x - y + z - 2 = 0.

CÂU 39. Trong không gian Oxyz, cho điểm M(2;0;1). Gọi A,B lần lượt là hình chiếu của M trên trực Ox và trên mặt phẳng (Oyz). Viết phương trình mặt phẳng trung trực của

(A) 4x - 2z - 3 = 0.

(B) 4x - 2y - 3 = 0.

(C) 4x - 2z + 3 = 0.

CÂU 40. Trong không gian Oxyz cho đường thẳng $\Delta: \frac{x-1}{2} = \frac{y-2}{2} = \frac{z+3}{1}$. Véctơ nào dưới đây là một véc
tơ chỉ phương của đường thẳng Δ

- (A) $\vec{u} = (2; 2; 1)$.
- **(B)** $\vec{u} = (1; 2; -3).$
- **(C)** $\vec{u} = (-1; -2; 3)$. **(D)** $\vec{u} = (2; -2; 1)$.

CÂU 41. Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng $d_1 \colon \frac{x-1}{-2} = \frac{y-2}{1} = \frac{z+2}{m}$ và đường thẳng $d_2 \colon \frac{x-2}{3} = \frac{y}{-3} = \frac{z-3}{1}$. Để hai đường thẳng này vuông góc với nhau thì

- **(A)** $m \in \{9\}.$
- **(B)** m = 3.

CÂU 42. Trong không gian Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z+1}{-1}$. Điểm nào sau đây thuộc d?

- (A) P(1;2;-1).
- **(B)** M(-1; -2; 1). **(C)** N(2; 3; -1).
- $(\mathbf{D}) Q(-2; -3; 1).$

CÂU 43. Câu 33Trong không gian Oxyz, cho các điểm A(1;2;0), B(2;0;2), C(2;-1;3), D(1;1;3).

$$\begin{cases} x = -2 - 4 \\ y = -2 - 3 \\ z = 2 - t \end{cases}$$

CÂU 44. Trong không gian Oxyz, cho đường thẳng d:

3y + z - 2 = 0. Khẳng định nào sau đây là đúng?

- (**A**) Đường thẳng d cắt mặt phẳng (α) .
- (**B**) Đường thẳng d nằm trên mặt phẳng (α) .
- (**C**) Đường thẳng d vuông góc với mặt phẳng (α) .
- (**D**) Đường thẳng d song song với mặt phẳng (α) .

CÂU 45. Cho tích phân $\int \sin(\ln x) dx = \frac{e^{\frac{\pi}{2}} + a}{b}$; với a, b là những số nguyên dương. Giá

trị của biểu thức T = a + b tương ứng bằng

- **(A)** 3.

- **(D)** 9.

CÂU 46. Tích phân $I=\int\limits_{.}^{2}\frac{(3x-2)^{2019}}{x^{2021}}\,\mathrm{d}x$ tương ứng bằng

- (A) $\frac{4^{2020}-1}{2020}$. (B) $\frac{2^{2019}-1}{4038}$. (C) $\frac{2^{2020}-1}{4040}$.

CÂU 47. Cho hàm số f(x) có đạo hàm liên tục và xác định trên đoạn [0;1] và thỏa mãn

 $x \cdot f''(x) \, \mathrm{d}x = -1; \, f'(1) = f(1).$ Giá trị của f(0) bằng

QUICK NOTE
QUICK NOTE
••••
•••••

_	
	- 4
(\mathbf{A})	-1

 \bigcirc 2.

 (\mathbf{D}) 0.

CÂU 48. Gọi M là điểm biểu diễn số phức $z_1 = a + (a^2 - 2a + 2)i$ và N là điểm biểu diễn số phức z_2 biết $|z_2-2-i|=|\overline{z}-6-i|$. Tìm độ dài ngắn nhấn của đoạn MN.

CÂU 49. Trong không gian hệ trực tọa độ Oxyz, cho hai đường thẳng là $d_1: \frac{x-1}{a} = \frac{y}{2} =$ $\frac{z-2}{-2}$ và đường thẳng d_2 : $\frac{x-3}{1}=\frac{y}{2}=\frac{z}{1}$. Với a là tham số thực. Biết rằng tồn tại mặt phẳng (P) có phương trình ax+by+cz+d=0 chứa cả hai đường thẳng d_1 và d_2 . Giá trị của T = a + b + c + d bằng

- **(A)** 12.

- $(\mathbf{D}) 10.$

CÂU 50. Trong không gian với hệ tọa độ Oxyz viết phương trình mặt phẳng tiếp xúc