MAP 583 - Feuille d'exercices 3

28 janvier 2014

Exercice 1 (inégalité de Kato-Seiler-Simon pour p=2). Soit $f \in L^2(\mathbb{R}^d, \mathbb{C})$ et $g \in L^2(\mathbb{R}^d, \mathbb{C})$. On note f(x) l'opérateur de multiplication par f en représentation position et g(p) l'opérateur de multiplication par g en représentation impulsion.

- **1a.** Calculer le noyau intégral de l'opérateur f(x)g(p).
- **1b.** Montrer que l'opérateur f(x)g(p) est dans $\mathfrak{S}_2(L^2(\mathbb{R}^3,\mathbb{C}))$ et que

$$||f(x)g(p)||_{\mathfrak{S}_2} \le ||f||_{L^2} ||g||_{L^2}.$$

1c. Déduire de la question précédente que si $V \in L^2(\mathbb{R}^3)$ (V à valeurs réelles), l'opérateur

$$H = -\frac{1}{2}\Delta + V,$$

de domaine $D(H)=H^2(\mathbb{R}^3)$ est auto-adjoint sur $L^2(\mathbb{R}^3)$ et que son spectre essentiel est $\sigma_{\rm ess}(H)=\mathbb{R}_+$.

Exercice 2 (formule de Trotter).

2a. Produit de Lie.

Soit A et B deux matrices de $\mathbb{R}^{N\times N}$. Soit $\|\cdot\|$ une norme d'algèbre quelconque sur $\mathbb{R}^{N\times N}$ (autrement dit une norme sur $\mathbb{R}^{N\times N}$ telle que $\|AB\| \leq \|A\| \|B\|$ pour tout A et B dans $\mathbb{R}^{N\times N}$). On pose

$$S = \exp(A+B), \quad S_n = (\exp(A/n)\exp(B/n))^n,$$

$$\sigma_n = \exp((A+B)/n), \quad \tau_n = \exp(A/n)\exp(B/n).$$

Vérifier que

$$S - S_n = \sigma_n^n - \tau_n^n = \sum_{k=0}^{n-1} \sigma_n^k (\sigma_n - \tau_n) \tau_n^{n-1-k}.$$

Montrer qu'il existe une constante C_0 dépendant que A et B, mais pas de n, telle que

$$\forall n \in \mathbb{N}^*, \quad \|\sigma_n - \tau_n\| \le C_0 n^{-2}.$$

En déduire qu'il existe une constante C_1 dépendant que A et B, mais pas de n, telle que

$$\forall n \in \mathbb{N}^*, \quad \|S - S_n\| \le C_1 n^{-1}.$$

1

2b. On reprend les hypothèses de la question précédente, et on pose

$$\widetilde{S}_n = \exp(B/(2n)) (\exp(A/n) \exp(B/n))^{n-1} \exp(A/(2n)).$$

Montrer qu'il existe un réel positif C_2 dépendant que A et B, mais pas de n, tel que

$$||S - \widetilde{S}_n|| \le C_2 n^{-2}.$$

On considère maintenant deux opérateurs auto-adjoints A et B sur un espace de Hilbert \mathcal{H} tels que A+B soit auto-adjoint sur $D=D(A)\cap D(B)$. Le but des questions suivantes est de montrer que

$$\operatorname{s-lim}_{n \to \infty} \left(e^{iA/n} e^{iB/n} \right)^n = e^{i(A+B)}. \tag{1}$$

2c. Soit C un opérateur auto-adjoint sur \mathcal{H} de domaine D(C). Montrer à l'aide du calcul fonctionnel que

$$\forall \phi \in D(C), \quad \lim_{s \to 0} s^{-1} (e^{isC} - 1)\phi = iC\phi.$$

- **2d.** Pour $s \in \mathbb{R}^*$, on pose $K_s = s^{-1} \left(e^{isA} e^{isB} e^{is(A+B)} \right)$. Déduire de la question précédente que pour tout $\psi \in D$, $K_s \psi$ converge vers 0 dans \mathcal{H} lorsque s tend vers 0.
- **2e.** Pour $\psi \in D$, on pose $\|\psi\|_D = \|\psi\| + \|(A+B)\psi\|$. Montrer que D, muni de la norme $\|\cdot\|_D$, est un espace de Banach.
- **2f.** En utilisant le théorème de la borne uniforme rappelé ci-dessous, monter qu'il existe une constante $C \in \mathbb{R}_+$ telle que

$$\forall s \in \mathbb{R}^*, \quad \forall \psi \in D, \quad ||K_s \psi|| \le C \, ||\psi||_D.$$

Théorème 1 (de la borne uniforme). Soit V un espace de Banach et W un espace vectoriel normé. Soit $(A_s)_{s\in\mathcal{S}}$ une famille d'opérateurs de $\mathcal{L}(V,W)$ telle que pour tout $v\in V$, $(\|A_sv\|_W)_{s\in\mathcal{S}}$ soit bornée. Alors $(\|A_s\|_{\mathcal{L}(V,W)})_{s\in\mathcal{S}}$ est bornée.

- **2g.** Soit X un sous-ensemble compact de D (muni de la norme $\|\cdot\|_D$). Montrer que $K_s\phi$ tend vers 0 dans \mathcal{H} uniformément sur X lorsque s tend vers 0.
- **2h.** Soit $\psi \in D$ et $X = \{e^{it(A+B)}\psi, t \in [-1,1]\}$. Montrer que X est un sous-ensemble compact de D (muni de la norme $\|\cdot\|_D$). En déduire que

$$s^{-1} \left(e^{isA} e^{isB} - e^{is(A+B)} \right) e^{it(A+B)} \psi \underset{s \to 0}{\longrightarrow} 0 \quad \text{dans } \mathcal{H},$$

uniformément pour $t \in [-1, 1]$.

2i. En adaptant la preuve de la formule du produit de Lie, montrer que pour tout $\psi \in D$,

2

$$\left(e^{iA/n}e^{iB/n}\right)^n\psi\underset{t\to 0}{\longrightarrow}e^{i(A+B)}\psi$$
 dans \mathcal{H} .

2j. En déduire la formule de Trotter (1).

Exercice 3 (théorème RAGE (Ruelle, Amrein et Georgescu, Enss)).

Partie I. Un théorème de Wiener.

Soit μ une mesure de probabilité sur \mathbb{R} . On note A_{μ} l'ensemble des atomes de μ . On pose

$$\widehat{\mu}(t) = \int_{\mathbb{R}} e^{-itx} \, d\mu(x).$$

3a. Vérifier que

$$\frac{1}{T} \int_0^T |\widehat{\mu}(t)|^2 dt = \frac{1}{2T} \int_{-T}^T |\widehat{\mu}(t)|^2 dt = \int_{\mathbb{R}^2} K_T(x - y) d\mu(x) d\mu(y)$$

où K_T est une fonction paire de $\mathbb R$ dans $\mathbb R$ que l'on précisera, et montrer que

$$\forall x \in \mathbb{R}, \quad \lim_{T \to +\infty} \int_{\mathbb{R}} K_T(x-y) \, d\mu(y) = \mu(\{x\}).$$

3b. En déduire que

$$\frac{1}{T} \int_0^T |\widehat{\mu}(t)|^2 dt = \sum_{x \in A_{\mu}} \mu(\{x\}).$$

Partie II. Soit H un opérateur auto-adjoint sur un espace de Hilbert \mathcal{H} .

3c. On suppose dans cette question (et dans cette question seulement) que $\sigma_p(H) = \emptyset$. Montrer que pour tout $\psi \in \mathcal{H}$,

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^T |\langle \psi | e^{-itH} \psi \rangle|^2 dt = 0,$$

puis que pour tout $(\phi, \psi) \in \mathcal{H} \times \mathcal{H}$,

$$\lim_{T\to +\infty} \frac{1}{T} \int_0^T |\langle \phi|e^{-itH}\psi\rangle|^2 \, dt = 0.$$

En déduire que pour tout opérateur compact $K \in \mathcal{K}(\mathcal{H})$ et tout $\psi \in \mathcal{H}$,

$$\lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \|Ke^{-itH}\psi\|^{2} dt = 0.$$

3d. On note \mathcal{H}_p l'espace de Hilbert engendré par tous les vecteurs propres de H et $\mathcal{H}_c = \mathcal{H}_p^{\perp}$. Montrer que \mathcal{H}_p et \mathcal{H}_c sont stables par H en ce sens que

$$D(H) = (\mathcal{H}_p \cap D(H)) \oplus (\mathcal{H}_p \cap D(H))$$

et que

$$\forall u \in \mathcal{H}_n \cap D(H), Hu \in \mathcal{H}_n$$
 et $\forall u \in \mathcal{H}_c \cap D(H), Hu \in \mathcal{H}_c$.

3

Vérifier que $\sigma_{\rm p}\left(H|_{\mathcal{H}_c}\right)=\emptyset$. A-t-on toujours $\sigma_{\rm c}\left(H|_{\mathcal{H}_p}\right)=\emptyset$?

3e. Montrer que tout opérateur compact $K \in \mathcal{K}(\mathcal{H})$ et tout $\psi \in \mathcal{H}_c$,

$$\lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \|Ke^{-itH}\psi\|^{2} dt = 0.$$

3f. Soit $K \in \mathcal{L}(\mathcal{H})$ un opérateur H-compact. Montrer que pour tout $\psi \in \mathcal{H}_c \cap D(H)$

$$\lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \|Ke^{-itH}\psi\|^{2} dt = 0.$$

Indication: remarquer que pour tout $\psi \in \mathcal{H}_c \cap D(H)$, $(H+i)\psi \in \mathcal{H}_c$.

Vérifier que le résultat reste vrai pour tout $\psi \in \mathcal{H}_c$.

Partie III. Un opérateur auto-adjoint H sur $L^2(\mathbb{R}^d)$ est dit localement compact si

$$\forall f \in L^{\infty}(\mathbb{R}^d), \text{ t.q. } \lim_{|x| \to +\infty} f(x) = 0, \ f(x)(z - H)^{-1} \in \mathcal{K}(L^2(\mathbb{R}^d))), \ \forall z \in \rho(H),$$
 (2)

autrement dit si pour toute fonction f (essentiellement) bornée et tendant vers 0 à l'infini, l'opérateur de multiplication par f est H-compact.

3g. Soit H un opérateur auto-adjoint sur $L^2(\mathbb{R}^d)$ tel qu'il existe deux constantes réelles positives a et b telles que

$$-\Delta < aH + b \tag{3}$$

(i.e. telles que pour tout $\phi \in D(H)$, $\|\nabla \phi\|_{L^2}^2 \le a \langle \phi | H | \phi \rangle + b \|\phi\|_{L^2}^2$). Montrer que H est localement compact.

3h. Soit $V \in L^2_{loc}(\mathbb{R}^d)$ une fonction telle que l'opérateur de multiplication par V soit $-\Delta$ -borné de borne relative égale à 0. Déduire de la question précédente que l'opérateur de Schrödinger $H = -\frac{1}{2}\Delta + V$ sur $L^2(\mathbb{R}^d)$ de domaine $H^2(\mathbb{R}^d)$ est localement compact. En déduire que l'Hamiltonien de l'atome d'Hydrogène

$$H = -\frac{1}{2}\Delta - \frac{1}{|x|} \quad \text{sur } L^2(\mathbb{R}^3)$$

est localement compact.

3i. Terminer la démonstration du théorème suivant.

Théorème 2 (RAGE). Soit H un opérateur auto-adjoint localement compact sur $L^2(\mathbb{R}^d)$. On note \mathcal{H}_p l'espace de Hilbert engendré par tous les vecteurs propres de H et $\mathcal{H}_c = \mathcal{H}_p^{\perp}$. Soit χ_{B_R} la fonction caractéristique de la boule $B_R = \{x \in \mathbb{R}^d \mid |x| < R\}$. On a

$$(\phi_0 \in \mathcal{H}_p) \Leftrightarrow \forall \epsilon > 0, \exists R > 0, \forall t \ge 0, \|(1 - \chi_{B_R})e^{-itH}\phi_0\|_{L^2} \le \epsilon;$$
 (4)

$$(\phi_0 \in \mathcal{H}_c) \Leftrightarrow \forall R > 0, \lim_{T \to +\infty} \frac{1}{T} \int_0^T \left\| \chi_{B_R} e^{-itH} \phi_0 \right\|_{L^2}^2 dt = 0.$$
 (5)