Exercice 1 diodes:

On va prendre en compte que la Diode D1 et considérer qu'elle est bloquée

Si R_{lN} est très grand on peut considérer que l=0. Ceci implique que $U_{Rg}=0$ et que $U_{lN}(t)=U_g(t)$.

En appliquant la loi des mailles on trouve que : $U_{IN}(t) = U_{II}(t) = 5V + U_{ID}(t)$

 $U_{p}(t) = U_{q}(t) - 5V \le Uj$ pour que la diode soit bloquée -> $U_{q}(t) \le 5V + Uj$

On va prendre en compte que la Diode D2 et considérer qu'elle est bloquée

Si R_{IN} est très grand on peut considérer que I=0. Ceci implique que $U_{Rg} = 0$ et que $U_{IN}(t) = U_{g}(t)$.

En appliquant la loi des mailles on trouve que : $U_{IN}(t) = U_{G}(t) = -[5V + U_{D}(t)]$

 $U_D(t) = -U_D(t) - 5V \le Uj$ pour que la diode soit bloquée -> $-U_D(t) = U_D(t) + 5V \ge -Uj$ -> $U_D(t) \ge -(5V + Uj)$

Dessinez $u_{IN}(t)$:

Exercice 2 diodes:

Si D1 est bloquée :

$$\begin{split} &U_{_{\mathrm{D}}}(t)=U_{_{1}}(t)-U_{_{\mathrm{R}}}(t)=U_{_{1}}(t)< Uj\\ &\text{et alors }U_{_{\mathrm{R}}}(t)=0 \end{split}$$

Si D1 est ouverte:

 $U_{D}(t) = U_{1}(t) - U_{R}(t) \ge Uj$ et alors $U_{R}(t) = U_{1}(t) - Uj$

Dessinez uR(t):

D1 empêche une tension négative d'atteindre R en cas d'inversion de polarité.

D2 bloque les tensions négative de -Uj (parasites) et plus provenant de R

Exercice transistors:

On désire commander une LED de signalisation à l'aide d'un microcontrôleur. Ce dernier est capable de fournir par sa sortie numérique une tension de 3 V et un courant maximum de 0.2 mA.

La LED est de couleur blanche avec les caractéristiques suivantes : 3.6 V et 20 mA. Une alimentation de 5 V capable de fournir jusqu'à 100 mA est aussi disponible sur la carte du microcontrôleur.

Complétez le schéma ci-dessous et dimensionnez les éventuelles résistances utilisées :

Donnez aussi le type et les caractéristiques du transistor utilisé.

Transistor bipolaire NPN : β min = 200, I > 20 mA, Uce > 5 V

Autre solution:

$$R_D = \frac{5 - U_{LED}}{I_{LED}} = \frac{5 - 3.6}{20 \text{ mA}} = 70 \Omega$$

 $Rg = 1 \text{ k}\Omega$ uniquement présente en cas de court-circuit pour limiter le courant dans la grille

Transistor MOS canal P : I > 20 mA, U_{DS} > 5 V

Exercice CMOS:

Une fonction logique est réalisée selon le schéma CMOS suivant :

С	В	Α	P1	N1	P2	N2	S
0	0	0	1	ı	ı	ı	1
0	0	1	1	-	-	-	1
0	1	0	1	-	-	-	1
0	1	1	-	0	-	-	0
1	0	0	1	-	-	0	0
1	0	1	-	-	-	0	0
1	1	0	-	-	-	0	0
1	1	1	-	0	-	-	0

Remplir la table de vérité par des 0 (GND), 1 (V+) ou - (si flottant). Px : réseau P, Nx : réseau N, Sx : réseaux Px et Nx, S : S1 et S2

Est-ce que ce schéma semble correct ?

Oui, car il y a aucune contradiction entre les colonnes Px, Nx et aucun cas qui reste flottant.

Quel fonction logique réalise-t-il?

$$S = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C}$$

$$S = \overline{B}\overline{C} + \overline{A}\overline{C} = \overline{C}(\overline{A} + \overline{B})$$