ECE 322L Electronics 2

02/20/20- Lecture 9
Amplifiers with active loads
Multi-stage amplifiers

Updates and overview

- > Homework 4 is online
- ➤ Lab 5: practice lab for your design-project
- ➤ Single-stage IC MOSFET amplifiers-Amplifiers with active loads (Neamen 4.7.4)
 - Multi-stage MOSFET amplifiers (Neamen 4.8.1).

NMOS amplifier with enhancement load

Possible issues with this configuration??

NMOS amplifier with enhancement load

- Q-point is not stable against temperature and variation of transistor parameters
- Gain is limited as it is not practical to make transistors very different in size on the same chip

Current source: IC Implementation

- In ICs the current source is implemented by a current mirror
- \succ r_o is then the output resistance of the current mirror as seen by Q₁

Small-signal Model of the Current Mirror

Equivalently, the small-signal PMOS model is:

Thus for v_{as2} =0 , the small-signal model becomes:

Or, simplifying further:

ECE 322L, Spring 2020, Lecture 9

$$A_o = -g_{m1}(r_{o1} || r_{o2})$$

Note this result is far different (i.e., larger) than the result when using the enhancement load for R_D :

$$A_{vo} = -\sqrt{\frac{K_1}{K_2}}$$

However, we find that the **output** and **input** resistances of this amplifier are the **same** as with the enhancement load:

It can be any FET based network which fixes a current

Why do we need them?

Type	Circuit Model	Gain Parameter	Ideal Characteristics
Voltage Amplifier	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Open-Circuit Voltage Gain $A_{vo} \equiv \frac{v_o}{v_i} \bigg _{i_o = 0} (V/V)$	$R_i = \infty$ $R_o = 0$

Common Source

Large A_v < 0

- Infinite R_{in}
- Moderate R_o

Common Gate

- Large A_v > 0
- Small R_{in}
- Moderate R_o

Source Follower

- $0 < A_{v} \le 1$
- Infinite R_{in}
- Small R_o

All the amplifiers that we know of have at least one attractive feature but also at least one sub-optimal feature

Multi-stage amplifiers combine basic designs in such a way that they take advantage of the attractive characteristic and compensate for the sub-optimal features of each design.

It is important to understand which basic configurations to select per each stage, and how placing two basic configurations in series affects their performance.

Cascade amplifier

In-class problem

4.68 The transistor parameters in the circuit in Figure P4.68 are $V_{TN1} = 0.6 \text{ V}$, $V_{TP2} = -0.6 \text{ V}$, $K_{n1} = 0.2 \text{ mA/V}^2$, $K_{p2} = 1.0 \text{ mA/V}^2$, and $\lambda_1 = \lambda_2 = 0$. The circuit parameters are $V_{DD} = 5 \text{ V}$ and $R_{\text{in}} = 400 \text{ k}\Omega$. (a) Design the circuit such that $I_{DQ1} = 0.2 \text{ mA}$, $I_{DQ2} = 0.5 \text{ mA}$, $V_{DSQ1} = 2 \text{ V}$, and $V_{SDQ2} = 3 \text{ V}$. The voltage across R_{S1} is to be 0.6 V. (b) Determine the small-signal voltage gain $A_v = v_o/v_i$.

Figure P4.68

In addition determine the input and output resistance.

At home compare the characteristics of the two stages as isolated with the characteristics of the cascade amplifier

In-class problem, solution

In-class problem, solution

Overview of lecture 10

- Cascode amplifiers (Neamen 4.8.2)
- ➤ The Bipolar Junction Transistor (BJT):

 Structure, Operating regions, DC analysis,

 Load lines (Neamen-From 5.1.1 to 5.1.5)