CS-E4340: Cryptography

I-II 2022/2023

Exercise 7: Introduction to Lattice-based Cryptography

Deadline: 11:30 on November 7, 2022 via MyCourses as a single pdf file

Abstract

This exercise is designed to help students to ...

- understand modular arithmetic,
- understand the short integer solution (SIS) and learning with errors (LWE) assumptions,
- understand the leftover hash lemma in the lattice setting,
- be able to apply the above definitions and lemma to prove security of cryptographic schemes, and
- learn the notion of hiding and binding commitment.

Question 1 (Modular Arithmetic, Dual-Regev Encryption, and Linear Homomorphism).

Answer Part (a) and choose between answering either Part (b) or Part (c).

- (a) Consider \mathbb{Z}_{13} (integers with arithmetic modulo 13) represented by $\{-6, \ldots, -1, 0, 1, \ldots, 6\}$. Calculate the following (writing down just the answer): (i) $4+5 \mod 13$, (ii) $-5 \times 2 \mod 13$, and (iii) $6^{-1} \mod 13$, i.e. the element $x \in \mathbb{Z}_{13}$ such that 6x = 1.
- (b) Let $n, m, \log p, \log q \in \mathsf{poly}(\lambda)$ with p < q and χ be the uniform distribution over \mathbb{Z}_{β} for some $\log \beta \in \mathsf{poly}(\lambda)$ with $\beta < q$. In the following, we recall a slight generalisation of the dual-Regev encryption scheme with message space \mathbb{Z}_p :

- (i) Show that the scheme is correct when $q > m \cdot p \cdot \beta^2$ and $m \cdot \beta^2 \ge 2\beta + 2$. You can use the fact that for any $x, y \in \mathbb{Z}$ we have $|x+y| \le |x| + |y|$ and $|x \cdot y| \le |x| \cdot |y|$. Furthermore, you may want to use the fact that $\left|\frac{p}{q} \cdot \left\lfloor\frac{q}{p}\right\rfloor 1\right| \le \frac{1}{q}$. [Hint: Note that decryption is correct when $\left|\frac{p}{q} \cdot \bar{x} x\right| < \frac{1}{2}$. Read the proof of correctness of the (primal-)Regev encryption scheme in the lecture notes.]
- (ii) Let $m \ge n \cdot \log_{\beta} q + \omega(\log n)$. Prove via a reduction that the scheme is IND-CPA-secure under the LWE_{n,m+1,q,\chi}} assumption. [Hint: Read the proof of IND-CPA-security of the (primal-)Regev encryption scheme in the lecture notes. Follow the level of details of the lecture notes. The level of detail of the answer should be on a similar level as the lecture notes.]

- (c) In this question, we study the linearly homomorphic property of the dual-Regev encryption scheme, which is useful for understanding Lecture 9. You may assume that $m \cdot \beta^2 \geq 2\beta + 2$. [Hint: Read hint of Question 1 (b) (i)]
 - (i) Let $(\mathsf{pk}, \mathsf{sk}) \in \mathsf{KGen}(1^\lambda), x, x' \in \mathbb{Z}_p$, $\mathsf{ctxt} \coloneqq (\mathbf{c}_0, c_1) \in \mathsf{Enc}(\mathsf{pk}, x)$, and $\mathsf{ctxt}' \coloneqq (\mathbf{c}_0', c_1') \in \mathsf{Enc}(\mathsf{pk}, x')$. Consider $\mathsf{ctxt}'' \coloneqq (\mathbf{c}_0 + \mathbf{c}_0' \bmod q, c_1 + c_1' \bmod q)$. Derive a lower bound $\underline{q}(m, p, \beta)$ of q so that $\mathsf{Dec}(\mathsf{sk}, \mathsf{ctxt}'') = x + x'$ whenever $x + x' \in \mathbb{Z}_p$ and $q > \underline{q}(m, p, \beta)$.
 - (ii) Generalising, let $\ell \in \mathbb{N}$, $(\mathsf{pk}, \mathsf{sk}) \in \mathsf{KGen}(1^\lambda)$, $\mathbf{a} \in \mathbb{Z}_p^\ell$, $\mathbf{x} \in \mathbb{Z}_p^\ell$, and $\mathsf{ctxt}_i \in \mathsf{Enc}(\mathsf{pk}, x_i)$ for all $i \in [\ell]$. Consider $\mathsf{ctxt} \coloneqq \sum_{i=1}^\ell a_i \cdot \mathsf{ctxt}_i \bmod q$. Derive a lower bound $\underline{q}'(\ell, m, p, \beta)$ of q so that $\mathsf{Dec}(\mathsf{sk}, \mathsf{ctxt}'') = \langle \mathbf{a}, \mathbf{x} \rangle$ whenever $\langle \mathbf{a}, \mathbf{x} \rangle \in \mathbb{Z}_p$ and $q > \underline{q}'(\ell, m, p, \beta)$.

Question 2 (Normal-Form of LWE, Lindner-Peikert Encryption). In this question, we study the "normal form" of the LWE assumption and use it to prove the security of the Lindner-Peikert encryption scheme. We first recall the ordinary LWE assumption and then state the normal-form variant.

Definition (Decision-Learning with Errors (LWE) Assumption). Let $n, m, \log q \in \mathsf{poly}(\lambda)$ with $n \leq m$ and χ be a distribution over $\mathbb Z$ parametrised by λ . The Decision-LWE $_{n,m,q,\chi}$ assumption states that for any PPT adversary $\mathcal A$

$$\left| \Pr \left[b = 1 \middle| \begin{array}{l} \mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m} \\ \mathbf{s} \leftarrow \mathbb{Z}_q^n, \ \mathbf{e} \leftarrow \mathbb{Z}_q^m, \ \mathbf{e} \leftarrow \mathbb{Z}_q^m \\ \mathbf{b}^\mathsf{T} \coloneqq \mathbf{s}^\mathsf{T} \cdot \mathbf{A} + \mathbf{e}^\mathsf{T} \bmod q \\ b \leftarrow \mathcal{A}(\mathbf{A}, \mathbf{b}) \end{array} \right| - \Pr \left[b = 1 \middle| \begin{array}{l} \mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m} \\ \mathbf{b} \leftarrow \mathbb{Z}_q^m \\ b \leftarrow \mathcal{A}(\mathbf{A}, \mathbf{b}) \end{array} \right] \le \mathsf{negl}(\lambda).$$

Definition (Normal-Form Decision-Learning with Errors (LWE) Assumption). Let $n, m, \log q \in \mathsf{poly}(\lambda)$ with $n \leq m$ and χ be a distribution over $\mathbb Z$ parametrised by λ . The Normal-Form Decision-LWE $_{n,m,q,\chi}$ assumption states that for any PPT adversary $\mathcal A$

$$\left| \Pr \left[b = 1 \middle| \begin{matrix} \mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m} \\ \mathbf{s} \leftarrow \mathbb{S} \chi^n, \ \mathbf{e} \leftarrow \mathbb{S} \chi^m \\ \mathbf{b}^\mathsf{T} \coloneqq \mathbf{s}^\mathsf{T} \cdot \mathbf{A} + \mathbf{e}^\mathsf{T} \bmod q \\ b \leftarrow \mathcal{A}(\mathbf{A}, \mathbf{b}) \end{matrix} \right] - \Pr \left[b = 1 \middle| \begin{matrix} \mathbf{A} \leftarrow \mathbb{S} \mathbb{Z}_q^{n \times m} \\ \mathbf{b} \leftarrow \mathbb{S} \mathbb{Z}_q^m \\ b \leftarrow \mathcal{A}(\mathbf{A}, \mathbf{b}) \end{matrix} \right] \right| \le \mathsf{negl}(\lambda).$$

Note that in the normal-form variant the LWE secret s is also drawn from the error distribution χ .

Next, let n, $\log p$, $\log q \in \mathsf{poly}(\lambda)$ with p < q, and χ be the uniform distribution over \mathbb{Z}_{β} , for some $\log \beta \in \mathsf{poly}(\lambda)$ with β being odd and $\beta < q$. We introduce the Lindner-Peikert encryption scheme:

$KGen(1^\lambda)$	$Enc(pk, x \in \mathbb{Z}_p)$	Dec(sk,ctxt)
$\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times n}$	$\overline{Parse\ (\mathbf{A},\mathbf{v})} \leftarrow pk$	$Parse\;(\mathbf{c}_0, c_1) \leftarrow ctxt$
$\mathbf{s}, \mathbf{e} \leftarrow \$ \chi^n$	$\mathbf{r},\mathbf{e}_0 \leftarrow \hspace{-0.5em} \ast \chi^n$	$\mathbf{s} \leftarrow sk$
$\mathbf{b}^{\mathtt{T}} \coloneqq \mathbf{s}^{\mathtt{T}} \cdot \mathbf{A} + \mathbf{e}^{\mathtt{T}} \bmod q$	$e_1 \leftarrow \$ \chi$	$\bar{x} \coloneqq c_1 - \mathbf{s}^{T} \cdot \mathbf{c}_0 \bmod q$
$pk\coloneqq (\mathbf{A},\mathbf{b})$	$\mathbf{c}_0 \coloneqq \mathbf{A} \cdot \mathbf{r} + \mathbf{e}_0 \bmod q$	return $\left \frac{p}{a} \cdot \bar{x} \right $
$sk \coloneqq \mathbf{s}$	$c_1 \coloneqq \mathbf{b}^{\mathtt{T}} \cdot \mathbf{r} + e_1 + \left\lfloor \frac{q}{n} \right\rfloor \cdot x \bmod q$	
return (pk, sk)	$\lfloor p \rfloor$	$/\!\!/$ rounding to nearest integer
	$ctxt \coloneqq (\mathbf{c}_0, c_1)$	
	return ctxt	

Choose between answering either Part (a), or answering the two Parts (b) and (c).

- (a) Let q be prime, $m \ge n + \lambda$, and χ be symmetric about 0, i.e. $\chi = -\chi$. Prove via a reduction that if the Decision-LWE_{n,m,q,χ} assumption holds then the Normal-Form Decision-LWE_{$n,m-n,q,\chi$} assumption holds. [Hint: The analysis of normal-form SIS in the lecture notes. The level of detail of the answer should be on a similar level as the lecture notes.]
- (b) Show that the Lindner-Peikert encryption scheme is correct when $q > 2 \cdot n \cdot p \cdot \beta^2$ and $n \cdot \beta^2 \ge \beta + 1$. [Hint: Read hint of Question 1 (b) (i)]
- (c) Prove via a reduction that the Lindner-Peikert encryption scheme is IND-CPA-secure under the Normal-Form Decision-LWE_{$n,n+1,q,\chi$} assumption. [Hint: Read hint of Question 1 (b) (ii). The level of detail of the answer should be on a similar level as the lecture notes.]

Question 3 (SIS Commitments). In this question, we study a basic lattice-based commitment scheme. First, we introduce the concept of commitments.

Definition (Commitments). A commitment scheme for message space \mathcal{X} is a tuple of PPT algorithms $\Gamma = (\mathsf{Setup}, \mathsf{Com})$ with the following syntax:

- $pp \leftarrow Setup(1^{\lambda}, 1^{\ell})$: The setup algorithm inputs the security parameter $\lambda \in \mathbb{N}$ and a length parameter $\ell \in \mathbb{N}$. It outputs the public parameters pp (also known as the commitment key).
- $com \leftarrow Com(pp, \mathbf{x} \in \mathcal{X}^{\ell}; r)$: The commitment algorithm inputs the public parameters pp, a message $\mathbf{x} \in \mathcal{X}^{\ell}$, and some randomness r (from some randomness space). It outputs a commitment com. By default, the randomness r is assumed to be sampled uniformly at random from the randomness space, and is omitted from the input.

A commitment scheme could satisfy the hiding and binding properties defined as follows:

(Statistically) Hiding For any $\ell \in \mathbb{N}$, any $\mathbf{x}, \mathbf{y} \in \mathcal{X}^{\ell}$, the statistical distance between the following distributions are negligible in λ :

$$\left\{ (\mathsf{pp},\mathsf{com}) : \begin{matrix} \mathsf{pp} \leftarrow \mathsf{Setup}(1^\lambda,1^\ell) \\ \mathsf{com} \leftarrow \mathsf{Com}(\mathsf{pp},\mathbf{x}) \end{matrix} \right\} \qquad \text{ and } \qquad \left\{ (\mathsf{pp},\mathsf{com}) : \begin{matrix} \mathsf{pp} \leftarrow \mathsf{Setup}(1^\lambda,1^\ell) \\ \mathsf{com} \leftarrow \mathsf{Com}(\mathsf{pp},\mathbf{y}) \end{matrix} \right\}.$$

(Computationally) Binding For any $\ell \in \mathbb{N}$ and any PPT adversary \mathcal{A} , it holds that

$$\Pr \begin{bmatrix} \mathsf{Com}(\mathsf{pp},\mathbf{x};r) = \mathsf{Com}(\mathsf{pp},\mathbf{y};s) & \mathsf{pp} \leftarrow \mathsf{Setup}(1^{\lambda},1^{\ell}) \\ \wedge \ \mathbf{x} \neq \mathbf{y} & ((\mathbf{x},r),(\mathbf{y},s)) \leftarrow \mathcal{A}(\mathsf{pp}) \end{bmatrix} \leq \mathsf{negl}(\lambda).$$

Let $n, m, \log p, \log q = \mathsf{poly}(\lambda)$ with p < q. Consider the following commitment scheme construction for the message space \mathbb{Z}_p :

- (a) Prove that the above commitment scheme is statistically hiding if $m > n \cdot \log_p q + \omega(\log n)$. The level of detail of the answer should be on a similar level as the lecture notes.
- (b) Prove that the above commitment scheme is computationally binding under the $\mathsf{SIS}_{n,m+\ell,p,q}$ assumption. The level of detail of the answer should be on a similar level as the lecture notes.