

# **SQL - Capstone Project**

The Capstone Project aims to gain insights into Amazon sales data and understand the factors affecting sales across different branches.

**(a)** by sanjay nayak

# **Product Analysis**



#### **Product Lines**

Identify the different product lines and their performance.

#### **Top Performers**

Analyze the best-performing product lines.

#### **Areas for Improvement**

Identify product lines that need improvement.

# **Product Analysis**

**Explore Unique Product Lines:** 

Identify distinct product lines in the dataset.

SELECT DISTINCT product\_line FROM amazon;

Sales Performance by Product Line:

Analyze total sales and profit for each product line.

SELECT product\_line, SUM(total) AS total\_sales, SUM(gross\_income) AS total\_profit FROM amazon GROUP BY product\_line ORDER BY total\_sales DESC;

# **Sales Analysis**

1 — Sales Trends

Analyze sales trends to measure strategy effectiveness.

**2** — Strategy Effectiveness

Evaluate the effectiveness of each sales strategy.

**3** — Modifications

Identify necessary modifications for increased sales.



# **Sales Analysis**

#### **Monthly Sales Trends:**

# Analyze sales trends on a monthly basis.

SELECT

MONTHNAME(str\_to\_date(date,' %d-%m-%y')) AS month,

SUM(total) AS monthly\_sales

FROM amazon GROUP BY month

ORDER BY monthly\_sales DESC;

#### **Time of Day Sales Analysis:**

# **Explore sales trends based on the time of day.**

SELECT timeofday, COUNT(\*) AS sales\_occurrences FROM amazon GROUP BY timeofday ORDER BY sales\_occurrences DESC:

# **Branch-wise Sales Comparison:**

# **Compare sales performance across different branches.**

SELECT branch, SUM(total) AS branch\_sales FROM amazon GROUP BY branch ORDER BY branch\_sales DESC;



# **Customer Analysis**

#### **Customer Segments**

Identify and profile different customer segments.

#### **Purchase Trends**

Analyze trends in customer purchases.

#### **Profitability**

Measure the profitability of each customer segment.

# **Customer Analysis:**

#### **Customer Segmentation:**

Identify different customer segments based on the type of customer.

SELECT customer\_type, COUNT(\*)
AS customer\_count FROM
amazon GROUP BY
customer\_type;

# **Purchase Trends by Customer Type:**

# Analyze purchase trends and profitability for each customer segment.

SELECT customer\_type, COUNT(\*)
AS purchase\_count, SUM(total)
AS total\_purchase FROM amazon
GROUP BY customer\_type
ORDER BY total\_purchase DESC;

#### **Customer Rating Analysis:**

# **Explore average ratings given** by different customer segments.

SELECT customer\_type,
AVG(rating) AS average\_rating
FROM amazon GROUP BY
customer\_type;

# **Feature Engineering**

1

2

3

#### **Insight of Sales**

Add a new column named timeofday to give insight of sales in the Morning, Afternoon and Evening. This will help answer the question on which part of the day most sales are made.

#### days of the week

Add a new column named dayname that contains the extracted days of the week on which the given transaction took place (Mon, Tue, Wed, Thur, Fri). This will help answer the question on which week of the day each branch is busiest.

#### months of the year

Add a new column named monthname that contains the extracted months of the year on which the given transaction took place (Jan, Feb, Mar).

Help determine which month of the year has the most sales and profit.

# **Feature Engineering Code**

#### Add the column "timeofday" in existing table amazon.

**ALTER TABLE amazon** 

ADD COLUMN timeofday VARCHAR(10);

SET SQL\_SAFE\_UPDATES = 0; -- Disable safe update mode temporarily

**UPDATE** amazon

SET timeofday = CASE

WHEN HOUR(time) >= 5 AND HOUR(time) < 12 THEN 'Morning'

WHEN HOUR(time) >= 12 AND HOUR(time) < 17 THEN 'Afternoon'

WHEN HOUR(time) >= 17 AND HOUR(time) < 24 THEN 'Evening'

ELSE 'Night'

**END** 

WHERE 1=1

LIMIT 1000;

SET SQL\_SAFE\_UPDATES = 1; -- Enable safe update mode back

### Add the column "dayname" in existing table amazon.

ALTER TABLE amazon ADD COLUMN dayname VARCHAR(10); SET SQL SAFE UPDATES = 0;

UPDATE amazon SET dayname = CASE

WHEN DAYNAME(STR\_TO\_DATE(date, '%d-%m-%Y')) = 'Monday' THEN 'mon'

WHEN DAYNAME(STR\_TO\_DATE(date, '%d-%m-%Y')) = 'Tuesday' THEN 'tue'

WHEN DAYNAME(STR\_TO\_DATE(date, '%d-%m-%Y')) = 'Wednesday' THEN 'wed'

WHEN DAYNAME(STR\_TO\_DATE(date, '%d-%m-%Y')) = 'Thursday' THEN 'thru'

WHEN DAYNAME(STR\_TO\_DATE(date, '%d-%m-%Y')) = 'Friday'
THEN 'fir'

WHEN DAYNAME(STR\_TO\_DATE(date, '%d-%m-%Y')) =
'Saturday' THEN 'sat' ELSE 'sunday' END WHERE 1=1 LIMIT
1000

SET SQL\_SAFE\_UPDATES = 1;



```
# Add the column "monthname" in existing table amazon.
ALTER TABLE amazon
ADD COLUMN monthname VARCHAR(10);
SET SQL_SAFE_UPDATES = 0;
UPDATE amazon
SET monthname = CASE
  WHEN MONTHNAME(STR_TO_DATE(date, '%d-%m-%Y')) = 'january' THEN 'Jan'
  WHEN MONTHNAME(STR_TO_DATE(date, '%d-%m-%Y')) = 'febuary' THEN 'Feb'
  ELSE 'Mar'
END
WHERE 1=1
LIMIT 1000
SET SQL_SAFE_UPDATES = 1;
```

## **Business Questions To Answer:**

#### 1) What is the count of distinct cities in the dataset?

SELECT count(DISTINCT city) AS distinct\_city\_count FROM amazon;

-- select distinct city, count(\*) as count\_is from amazon group by city;

#### 2) For each branch, what is the corresponding city?

SELECT branch, city FROM amazon;

#### 3) What is the count of distinct product lines in the dataset?

SELECT COUNT(DISTINCT product\_line) AS distinct\_product\_line\_count FROM amazon;

#### 4) Which payment method occurs most frequently?

SELECT payment,count(\*) AS payment\_frequency FROM amazon GROUP BY payment ORDER BY payment\_frequency DESC LIMIT 1;

#### 5) Which product line has the highest sales?

SELECT product\_line, SUM(total) AS highest\_sales FROM amazon GROUP BY product\_line ORDER BY highest\_sales DESC LIMIT 1;

### 6) How much revenue is generated each month?

SELECT MONTHNAME(str\_to\_date(date,'%d-%m-%y')) AS month\_name, SUM(total) AS monthly\_revenue FROM amazon GROUP BY month\_name ORDER BY monthly\_revenue DESC;

7) In which month did the cost of goods sold reach its peak?

SELECT MONTHNAME(str\_to\_date(date,'%d-%m-%y')) AS peak\_month, MAX(cogs) AS peak\_cogs FROM amazon GROUP BY peak\_month LIMIT 1;

### 8) Which product line generated the highest revenue?

SELECT product\_line, SUM(total) AS total\_revenue FROM amazon GROUP BY product\_line ORDER BY total\_revenue DESC LIMIT 1;

### 9) In which city was the highest revenue recorded?

SELECT city, SUM(total) AS total\_revenue FROM amazon GROUP BY city ORDER BY total\_revenue DESC LIMIT 1;

#### 10) Which product line incurred the highest Value Added Tax?

SELECT product\_line, MAX(VAT) AS highest\_VAT FROM amazon GROUP BY product\_line ORDER BY highest\_VAT desc;

#### 11) For each product line, add a column indicating "Good" if its sales are above average, otherwise "Bad."

SELECT product\_line,total, CASE WHEN total>(SELECT AVG(total) from amazon) THEN 'GOOD' ELSE 'BAD' END AS sales\_status from amazon;

#### 12) Identify the branch that exceeded the average number of products sold

SELECT branch FROM amazon GROUP BY branch HAVING AVG(Quantity)>(select AVG(quantity) FROM amazon);

#### 13) Which product line is most frequently associated with each gender?

SELECT product\_line,gender, COUNT(\*) AS frequency FROM amazon GROUP BY gender,product\_line ORDER BY frequency DESC;

### 14) Calculate the average rating for each product line.

SELECT product\_line,AVG(rating) AS average\_rating From amazon GROUP BY product\_line

### 15) Count the sales occurrences for each time of day on every weekday.

SELECT DAYNAME(str\_to\_date(date,'%d-%m-%y')) AS day, timeofday,count(\*) AS sales\_occurrences FROM amazon GROUP BY day, timeofday ORDER BY day, sales\_occurrences DESC;

### 16) Identify the customer type contributing the highest revenue.

SELECT customer\_type, SUM(total) AS highest\_revenue FROM amazon GROUP BY customer\_type ORDER BY highest\_revenue DESC LIMIT 1;

### 17) Determine the city with the highest VAT percentage.

SELECT city, AVG(VAT/total)\*100 AS VAT\_percentage FROM amazon GROUP BY city ORDER BY VAT\_percentage DESC LIMIT 1;

### 18) Identify the customer type with the highest VAT payments.

SELECT customer\_type, SUM(VAT) AS total\_VAT\_payments FROM amazon GROUP BY customer\_type ORDER BY total\_VAT\_payments DESC LIMIT 1;

### 19) What is the count of distinct customer types in the dataset?

SELECT COUNT(DISTINCT customer\_type) AS distinct\_customer\_type\_count FROM amazon;

### 20) What is the count of distinct payment methods in the dataset?

SELECT count(DISTINCT payment) AS distinct\_payment FROM amazon;

# 21) Which customer type occurs most frequently?

SELECT customer\_type, COUNT(\*) AS customer\_type\_count FROM amazon GROUP BY customer\_type ORDER BY customer\_type\_count DESC LIMIT 1;

## 22) Identify the customer type with the highest purchase frequency.

purchase\_frequency DESC LIMIT 1; 23) Determine the predominant gender among customers.

SELECT customer\_type, COUNT(\*) AS purchase\_frequency FROM amazon GROUP BY customer\_type ORDER BY

### SELECT gender, COUNT(\*) AS gender\_count FROM amazon GROUP BY gender ORDER BY gender\_count DESC

LIMIT 1; 24) Examine the distribution of genders within each branch.

### SELECT branch, gender, COUNT(\*) AS gender\_count FROM amazon GROUP BY branch, gender ORDER BY

DESC LIMIT 1;

branch, gender\_count DESC; 25) Identify the time of day when customers provide the most ratings.

### SELECT timeofday, COUNT(\*) AS rating\_count FROM amazon GROUP BY timeofday ORDER BY rating\_count

26) Determine the time of day with the highest customer ratings for each branch.

# SELECT branch, timeofday, AVG(rating) AS average\_rating FROM amazon GROUP BY branch, timeofday ORDER

BY branch, average\_rating DESC;

### 27) Identify the day of the week with the highest average ratings.

SELECT DAYNAME(str\_to\_date(date,'%d-%m-%y')) AS day, AVG(rating) AS average\_rating FROM amazon GROUP BY day ORDER BY average\_rating DESC LIMIT 1;

# 28) Determine the day of the week with the highest average ratings for each branch.

SELECT branch, DAYNAME(str\_to\_date(date, '%d-%m-%y')) AS day, AVG(rating) AS average\_rating FROM amazon GROUP BY day, branch ORDER BY average\_rating DESC LIMIT 3;

# Thank You