Cryptanalyse — 4TCY902U Responsable : G. Castagnos

Examen — mardi 15 décembre 2020

Durée 3h Documents non autorisés Les exercices sont indépendants

I Soit $a, b, K, M \in \mathbb{N}^*$, des entiers positifs non nuls tels que a < M et b < M. On considère le réseau \mathscr{L} de \mathbb{R}^3 de base donnée par les lignes de la matrice suivante

$$\begin{pmatrix} 1 & 0 & Ka \\ 0 & 1 & Kb \end{pmatrix}.$$

- (a) Soit $w = (w_1, w_2, w_3)$ un vecteur de \mathcal{L} . Montrer que si w_3 est non nul alors $||w|| \ge K$.
- **(b)** Soit b_1 le premier vecteur d'une base LLL réduite. On rappelle que $||b_1|| \le \sqrt{2}||w||$ pour tout $w \in \mathcal{L}$. Montrer que $||b_1|| \le 2M$.
- (c) On suppose K > 2M. En utilisant le fait que la réduction agit sur la base du réseau par des opérations élémentaires, montrer que la base LLL réduite de $\mathscr L$ est de la forme

$$\begin{pmatrix} x_1 & x_2 & 0 \\ u & v & \pm Kg \end{pmatrix}$$

où $g = \operatorname{pgcd}(a, b) = \pm (ua + vb)$.

2 Soit $f(X) \in \mathbb{F}_2[X]$ un polynôme de degré ℓ avec $f(X) = 1 + c_1 X + \dots + c_\ell X_\ell$. On considère un automate constitué d'un registre de ℓ bits et produisant une suite de bits. On note $S^{(t)} = (S_0^{(t)}, S_1^{(t)}, \dots, S_{\ell-1}^{(t)})$ l'état du registre à l'instant $t \geqslant 0$. À l'instant t, on sort le bit d'indice 0 du registre, $S_0^{(t)}$, et on met à jour l'état du registre de la façon suivante (calculs dans \mathbb{F}_2):

$$S_i^{(t+1)} = S_{i+1}^{(t)} + c_{i+1} S_0^{(t)}$$
, pour $0 \le i \le \ell - 2$ et $S_{\ell-1}^{(t+1)} = c_\ell S_0^{(t)}$

Le polynôme f(X) est son polynôme de rétroaction. On représente l'automate par le schéma suivant :

- (a) Donner les 5 premiers bits produits par cet automate dans le cas $\ell=3$, avec le polynôme de rétroaction $1+X+X^3$ de registre initial $S^{(0)}=(S_0^{(0)},S_1^{(0)},S_2^{(0)})=(1,1,0)$.
- (b) On considère maintenant le cas général. Pour tout entier t, on désigne par $S^{(t)}(X)$ le polynôme de $\mathbf{F}_2[X]$ de degré au plus $\ell-1$ correspondant au registre au temps t: c'est à dire $S^{(t)}(X) = S_0^{(t)} + S_1^{(t)}X + \cdots + S_{\ell-1}^{(t)}X^{\ell-1}$. On note z_t le bit sorti au temps t (c'est à dire $S_0^{(t)}$). Montrer que pour tout entier $t \ge 0$, $X \times S^{(t+1)}(X) = S^{(t)}(X) + z_t \times f(X)$.
- (c) On note $Z^{(0)}(X) = 0$ et pour tout $t \ge 1$, $Z^{(t)}(X) := z_0 + z_1 X + \dots + z_{t-1} X^{t-1}$. Montrer que pour tout $t \ge 0$, $S^{(0)}(X) = f(X) \times Z^{(t)}(X) + X^t \times S^{(t)}(X)$.
- (d) On note Z(X) la série génératrice de la suite produite par cet automate, c'est à dire que $Z(X) = \sum_{t \geqslant 0} z_t X^t$. Déduire de la question précédente que $Z(X) = S^{(0)}(X)/f(X)$. Montrer que toute suite récurrente linéaire produite par un LFSR peut l'être par cet automate et réciproquement.
- (e) Soit $z = (z_t)_{t \ge 0}$ la suite produite par cet automate avec les paramètres de la question (a). Quel LFSR permet de produire la même suite z? Avec quelle initialisation? Réciproquement, soit $s = (s_t)_{t \ge 0}$ la suite produite par un LFSR de longueur 4, de polynôme de rétroaction $1+X^3+X^4$, initialisé par (1,1,1,1). Quel polynôme de rétroaction et quelle initialisation choisir pour que l'automate de cet exercice produite la même suite s?
- (f) Pour des implantations matérielles on préfère parfois représenter les LFSR comme introduit dans cet exercice plutôt qu'en mode classique. Pourquoi?

③ On considère un chiffrement par bloc itératif. Il chiffre des blocs de 64 bits. L'état interne est également de 64 bits, vus comme 8 octets, chaque octet étant identifié avec un entier de l'ensemble $I := \{0,1,\dots,255\}$. Si x est un bloc de 64 bits, on note $x^{(1)},x^{(2)},\dots,x^{(8)}$ ces 8 octets. Le tour i avec $1 \le i \le 6$ fait intervenir deux sous clefs k_{2i-1} et k_{2i} , de 64 bits. L'addition des clefs avec l'état interne se fait au niveau de chacun des 8 octets, soit par ou exclusif, noté ⊕, soit par l'addition modulo 256, notée m. On désigne par m0 une permutation fixée de l'ensemble m1, et par m2 la fonction de m3 l × m4.

$$(a,b) \mapsto (L_1(a,b), L_2(a,b)) := (2a+b \mod 256, a+b \mod 256).$$

Cette fonction prend donc deux octets en entrée et ressort deux octets. On la schématise par

Le tour i transforme un bloc de 64 bit x_i en un bloc de 64 bits x_{i+1} par le schéma suivant :

On note u_i le bloc de 64 bits après l'application des fonctions S, c'est à dire $u_i^{(1)} = S(x_i^{(1)} \oplus k_{2i-1}^{(1)})$, $u_i^{(2)} = S(x_i^{(2)} \boxplus k_{2i-1}^{(2)})$, ... De même, on note z_i le bloc de 64 bits après l'ajout de la clef k_{2i} , c'est à dire $z_i^{(1)} = k_{2i}^{(1)} \boxplus u_i^{(1)}$, $z_i^{(2)} = k_{2i}^{(2)} \oplus u_i^{(2)}$, ...

Le chiffrement complet prend en entrée un message clair $m=x_1$ de 64 bits et retourne un chiffré c de 64 bits obtenu en effectuant 6 tours comme ci dessous avec des clefs $k_1, k_2, \ldots, k_{11}, k_{12}$, puis on ajoute à x_7 une clef k_{13} de la même façon que les clefs d'indice impair k_{2i-1} sont ajoutées dans le tour i: $c^{(1)}=x_7^{(1)}\oplus k_{13}^{(1)}, c^{(2)}=x_7^{(2)}\boxplus k_{13}^{(2)}, \ldots$

- (a) Du point de vue de la sécurité, quel est le but des fonctions S? Quel est celui des trois rangées de fonctions L?
- **(b)** Montrer que $z_i^{(3)} + z_i^{(4)} \equiv x_{i+1}^{(3)} + x_{i+1}^{(4)} \pmod{2}$, pour $1 \le i \le 6$.

On suppose dans les deux questions suivantes que $\Pr_{a \in I}[a \equiv S(a) \pmod{2}] = \frac{1}{2} + \epsilon$, avec $0 < \epsilon < \frac{1}{2}$.

(c) En considérant les clefs de tours fixées, et en faisant varier $x_i^{(3)}$ et $x_i^{(4)}$, quelle est la probabilité que $x_i^{(3)} + x_i^{(4)} \equiv z_i^{(3)} + z_i^{(4)} \pmod{2}$, pour $1 \le i \le 6$?

- (d) En considérant toujours les clefs de tours fixées, quelle est la probabilité que lors d'un chiffrement, $u_1^{(3)} + u_1^{(4)} \equiv c^{(3)} + c^{(4)} \pmod{2}$. En déduire une attaque à clairs connus sur ce chiffrement.
- (e) On définit la fonction S comme la fonction S: $I \to I$, $a \mapsto (45^a \mod 257) \mod 256$. On admet que S est bien une permutation de l'ensemble I. Montrer que $S(a + 128) \equiv S(a) + 1 \pmod{2}$, pour tout $a \in I$. L'attaque est elle possible avec ce choix pour S?

[4] Construction de fonctions de compression

Dans cet exercice, on note comme d'habitude par $\|$ la concaténation de deux chaînes de bits, et par \oplus l'addition bit à bit modulo 2 de deux chaînes de bits. On note dans la suite de l'exercice, $\operatorname{Encrypt}_{sk}(m) = c$ un chiffrement par bloc prenant en entrée un clair m de n bits et une clef sk de k bits et produisant un chiffré c de n bits.

- (a) Montrer que les trois fonctions de compression f_1, f_2 et f_3 suivantes ne sont pas à sensunique:
 - f_1 qui a une chaîne de bits $m \in \{0,1\}^k$ et une chaîne de bits $z \in \{0,1\}^n$ associe $f_1(m||z) = \text{Encrypt}_m(z)$
 - f_2 qui a une chaîne de bits $m \in \{0,1\}^n$ et une chaîne de bits $z \in \{0,1\}^n$ associe $f_2(m||z) = \text{Encrypt}_z(m) \oplus z$, en supposant n = k
 - f_3 qui a une chaîne de bits $m \in \{0,1\}^n$ et une chaîne de bits $z \in \{0,1\}^n$ associe $f_3(m||z) = \text{Encrypt}_z(z) \oplus m$, en supposant n = k
- (b) Ces fonctions sont elles résistantes aux collisions?
- (c) On considère maintenant la fonction de compression f qui a une chaîne de bits m ∈ {0,1}ⁿ et une chaîne de bits z ∈ {0,1}^k associe f(m||z) = Encrypt_z(m) ⊕ m. On note pour toute chaîne de bits x, x̄ = x ⊕ (11 ... 1), la chaîne de bits de même longueur que x constituée des bits complémentaires de ceux de x. On suppose de plus que le chiffrement par bloc vérifie la propriété suivante : Encrypt_z(m) = Encrypt_z(m) pour tout m ∈ {0,1}ⁿ et z ∈ {0,1}^k. Montrer que f n'est pas résistante aux collisions.