Optimizing Decision-Making in Multi-Agent RL with CPT

Sheyan Lalmohammed, Khush Gupta, Alok Shah

Introduction

- Investigating Multi-Agent Reinforcement Learning (MARL) under Cumulative Prospect Theory (CPT)
- Motivation: Aligning autonomous agents with human decision-making biases
- Key Questions:
 - Do CPT-trained agents adhere to their utility and probability distortion functions?
 - How do CPT-guided agents optimize strategies in multi-agent games compared to those using traditional utility functions?
 - To what extent do agents adapt their strategies based on the utility functions of counterparties? What emergent dynamics arise in mixed populations of agents?

Background on CPT - Prospect Theory

Developed by Daniel Kahneman and Amos Tversky in 1979, Prospect Theory explains decision-making under risk and uncertainty:

- Loss Aversion: People tend to avoid losses more than acquiring equivalent gains.
- Relative Evaluation: Decisions are made based on relative differences rather than absolute outcomes.
- **Reference-Dependent:** Evaluations are based on outcomes relative to a reference point.

Background on CPT - Development of CPT

Cumulative Prospect Theory (CPT) extends the original framework to better handle multiple outcome probabilities:

- **Probability Weighting Function**: Captures the tendency to overweight small probabilities and underweight large probabilities.
- Value Function: Typically concave for gains and convex for losses, reflecting human risk preferences.

Implementation Strategy

Technical Approach & PyTorch Implementation

- Policy Gradient Optimization with CPT:
 - Integrates CPT-adjusted rewards and probability distortions.
 - Employs model-free learning using policy gradients.
- Implementation Workflow:
 - i. Design a neural network for policy representation.
 - ii. Transform rewards using CPT functions.
 - iii. Compute policy gradients via automatic differentiation.
 - iv. Optimize policies using gradient ascent.

CPT-Adjusted Rewards

(1)

$$C(X) \ = \ \int_{-\infty}^0 w^+ig(P(u(X)>z)ig)\,dz \ - \ \int_0^\infty w^-ig(P(u(X)>z)ig)\,dz.$$

(2)

$$\max_{\pi \in \Pi_{M,N}} \ C\Bigl(\sum_{t=0}^{H-1} r_t\Bigr).$$

- C: The CPT value capturing the decision-maker's distortion in perceiving gains and losses.
- $\pi \in \Pi_{M,N}$: A policy π chosen from the set $\Pi_{M,N}$ (e.g., all feasible memory-based policies).

Algorithms + Policy Gradient

Below is the Policy Gradient that we use to optimize the policy and solve our optimization problem.

$$egin{aligned}
abla_
ho J &= \mathbb{E}\Big[\, \xi\!ig(\sum_ au r_ au ig) \,
abla_
ho \, \mu_ au\!ig(a_ au \mid Q_ au(s_ au, a_ au; n) ig) \,
abla_{a_ au} \, Q_ au\!ig(s_ au, a_ au; n ig) \Big]. \ &\xi(V) &= \int_0^{\max(V,0)} w^+\! \Big(\, P\!ig(u\!ig(\sum_ au r_ au ig) > z ig) \, dz \, - \, \int_0^{\max(-V,0)} w^-\! \Big(\, P\!ig(u\!ig(\sum_ au r_ au ig) > z ig) ig) \, dz. \end{aligned}$$

The algorithm we use is the Multi Agent Deep Deterministic Policy Gradient (MADDPG)

Competitive Environment - Overview

PettingZoo's **Simple Tag** Environment is a basic Multi-Agent Particle Environment (MPE) designed for competition between agents

- **Objective**: Predators work to "tag" or catch the prey, while the prey's goal is to evade capture.
- **Rewards**: Rewards are structured so that predators gain rewards when they successfully tag the prey, and the prey receives a penalty when caught.

Competitive Environment - Rewards

Cooperative Environment - Overview

PettingZoo's **Simple Spread** Environment is a basic Multi-Agent Particle Environment (MPE) designed for semi-collaboration between agents

- **Objective**: The agents work cooperatively to cover all the landmarks. Their goal is to position themselves so that each landmark is "covered" by at least one agent, maximizing overall performance.
- Rewards: Rewards encourage efficient coverage of landmarks while also penalizing agents for collisions with one another, which promotes coordinated movement and spacing.

Cooperative Environment - Rewards

Extreme CPT

Cooperative Environment - Visualization of MPE

Cooperative Environment - Dynamic

Cooperative Environment - Testing

Seeing - Risk Averse and Risk Seeking

Not Seeing

Next Steps & Challenges

Planned Improvements

- Optimizing CPT Integration
 - Attempt to try new probability weighting and value distortions
 - See the effect of new estimation methods for the value functions and integral
- Implementing Discrete Competitive Environments
 - Try the effect of the CPT-driven policy on an environment like Poker
 - Attempt to induce more interpretable CPT effects driven by Behavioral Economics Studies

Conclusion

Thank You! Questions?