Convergence dominée

Exercice 1

Montrer que

$$\lim_{n \to +\infty} \int_0^{+\infty} \left(1 + \frac{t^2}{n} \right)^{-n} dt = \int_0^{+\infty} e^{-t^2} dt$$

Exercice 2 ★★

On pose

$$f(x) = \int_0^{+\infty} \frac{t \ln t \, dt}{(1+t^2)^x}$$

- **1.** Déterminer le domaine de définition de f.
- **2.** Calculer f(2).
- 3. Déterminer la limite de f(x) lorsque x tend vers $+\infty$.

Exercice 3

Soit $n \in \mathbb{N}$. Montrer que pour tout $x \in [0, \sqrt{n}]$,

$$\left(1 - \frac{x^2}{n}\right)^n \le e^{-x^2}$$

En déduire que

$$\lim_{n \to +\infty} \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n dx = \int_0^{+\infty} e^{-x^2} dx$$

Exercice 4

Soit $f: [0,1] \to \mathbb{R}$ continue. Déterminer

$$\lim_{n \to +\infty} \int_0^1 nf(t)e^{-nt} dt$$

Exercice 5 ★★

CCP MP

On pose $f_n: x \mapsto n \cos^n(x) \sin(x)$ pour $n \in \mathbb{N}$.

- **1.** Étudier la convergence simple de la suite (f_n) sur \mathbb{R} .
- **2.** La suite (f_n) converge-t-elle uniformément sur $\left[0, \frac{\pi}{2}\right]$, sur $\left[a, \frac{\pi}{2}\right]$ où $a \in \left]0, \frac{\pi}{2}\right]$?
- 3. Soit g continue sur $\left[0, \frac{\pi}{2}\right]$. Montrer que

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t) g(t) dt = g(0)$$

Exercice 6

Mines-Télécom (hors Mines-Ponts) PSI 2019

Pour $n \in \mathbb{N}$, on pose $u_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}$.

- **1.** Pour quelles valeurs de *n* l'intégrale est-elle définie?
- **2.** Calculer la limite de la suite (u_n) .
- 3. Déterminer la nature de la série $\sum u_n$.
- **4.** Montrer que la série $\sum (-1)^n u_n$ converge et calculer sa somme S sous la forme d'une intégrale.
- 5. Calculer S.

Exercice 7

Mines-Télécom MP 2018

Convergence et somme de la série $\sum_{n\in\mathbb{N}} u_n$, où $u_n = \int_0^1 x^n \sin(\pi x) dx$. On pourra travailler sur les sommes partielles de la série.

Exercice 8 ★★

Soit f une application continue sur [0,1]. On pose $I_n = \int_0^1 f(t^n) dt$. Déterminer $\lim_{n \to +\infty} I_n$.

Exercice 9 ★★

Déterminer $\lim_{n \to +\infty} \int_0^{+\infty} e^{-t^n} dt$.

Exercice 10

Mines Télécom MP 2022

On pose
$$I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin^2(x)} dx$$
.

- 1. Montrer que I_n est bien définie.
- **2.** Montrer que $I_n \sim n \int_0^{+\infty} \frac{\sin^2 u}{u^2} du$.

Exercice 11

Soit f une application continue sur [0, 1]. Montrer que

$$\lim_{y \to +\infty} y \int_0^1 x^y f(x) \, \mathrm{d}x = f(1)$$

Intégration terme à terme

Exercice 12 Mines-Ponts MP

On définit une fonction f par $f(x) = \int_0^{+\infty} e^{-t} \operatorname{sh}(x\sqrt{t}) dt$.

- 1. Donner l'ensemble de définition de f.
- **2.** Montrer que *f* est développable en série entière au voisinage de 0 et déterminer ce développement en série entière.
- **3.** Exprimer f à l'aide des fonctions usuelles.

Exercice 13 ★

ENSEA/ENSIIE MP 2015

1. Montrer que

$$\forall x \in [-1, 1], \int_0^1 \frac{1 - t}{1 - xt^3} dt = \sum_{n=0}^{+\infty} \frac{x^n}{(3n+1)(3n+2)}$$

2. Calculer $\sum_{n=0}^{+\infty} \frac{1}{(3n+1)(3n+2)}$

Exercice 14 ★

CCINP (ou CCP) PSI 2019

Soit $\sum a_n$ une série complexe absolument convergente.

- 1. Calculer $I_n = \int_0^{+\infty} x^n e^{-x} dx$ pour $n \in \mathbb{N}$.
- 2. Déterminer le rayon de convergence de la série entière $\sum \frac{a_n}{n!} x^n$.
- 3. Pour x réel, on pose $f(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n$. Montrer que

$$\int_0^{+\infty} e^{-x} f(x) \, dx = \sum_{n=0}^{+\infty} a_n$$

Exercice 15 ★★

CCINP (ou CCP) MP 2021

- 1. Montrer que I = $\int_0^1 \ln(x) \ln(1-x) dx$ est bien définie.
- 2. Donner la décomposition en série entière de $x \mapsto \ln(1-x)$ et préciser son rayon de convergence.
- 3. Écrire I comme somme d'une série.
- **4.** Donner la valeur exacte de I sachant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Exercice 16 ★★

CCINP (ou CCP) MP 2021

Soit I = $\int_0^1 \frac{\ln(t) \ln(1-t)}{t} dt.$

- 1. Montrer que I converge.
- 2. Montrer que I = $\sum_{n=1}^{+\infty} \frac{1}{n^3}$.

Exercice 17 ★★

CCINP (ou CCP) MP 2018

Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^1 \frac{t^n}{1+t} dt$.

- 1. Donner le rayon de convergence R de la série entière $\sum a_n x^n$.
- **2.** Rappeler le théorème d'intégration terme à terme d'une série de fonctions sur un segment.
- 3. En déduire la valeur de $\sum_{n=0}^{+\infty} a_n x^n$ pour |x| < R.

Exercice 18 ★★

CCINP (ou CCP) MP 2019

- **1.** Montrer l'intégrabilité de $f: x \mapsto \frac{(\ln x)^2}{1+x^2}$ sur]0,1].
- **2.** Pour $n \in \mathbb{N}$, on pose $u_n : x \in]0,1] \mapsto x^{2n} (\ln x)^2$. Montrer l'intégrabilité de u_n sur [0,1] et calculer $\int_0^1 u_n(x) dx$.
- 3. Déterminer une expression de I = $\int_0^1 \frac{(\ln x)^2}{1+x^2} dx$ sous forme de somme.
- **4.** Soit $\varepsilon > 0$. Proposer une méthode de calcul de I à ε près.

Exercice 19

Mines Télécom MP 2022

Etablir l'égalité

$$\int_0^{+\infty} \frac{t \, dt}{e^t - 1} = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

Exercice 20

Mines-Télécom (hors Mines-Ponts) MP 2022

Montrer que

$$\int_0^{+\infty} \frac{\sin(t)}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$$

Exercice 21 ★★

CCINP (ou CCP) MP 2017

Soit $n \in \mathbb{N}$ et $x \ge 0$. On pose : $f_n(x) = \frac{e^{-x}}{(x+1)^n}$ et $J_n = \int_0^{+\infty} f_n(x) dx$.

- 1. Montrer que J_n est bien définie et étudier sa limite en $+\infty$.
- 2. Calculer $f'_n(x)$ et en déduire un équivalent de J_n .
- 3. a. Déterminer le rayon de convergence de la série entière $\sum_{n\geq 0} J_n z^n$.
 - **b.** Calculer la somme de cette série entière sous forme intégrale.

Exercice 22

CCINP MP 2024

- 1. Montrer que I = $\int_0^{+\infty} e^{-x} \cos(\sqrt{x}) dx$ converge.
- 2. Montrer que I = $\sum_{n=0}^{+\infty} \frac{(-1)^n n!}{(2n)!}$.

Continuité

Exercice 23 ***

On pose

$$f: x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{t^x(1+t)}$$
 et $g: x \mapsto \int_0^1 \frac{\mathrm{d}t}{t^x(1+t)}$

- 1. Déterminer le domaine de définition de f.
- **2.** Montrer que g est continue sur $]-\infty,1[.$
- 3. Montrer que

$$f(x) = \frac{1}{x \to 0^{+}} \frac{1}{x} + o(1)$$
 et $f(x) = \frac{1}{x \to 1^{-}} \frac{1}{1 - x} + o(1)$

Exercice 24 ★

Transformée de Fourier

Soit $f: \mathbb{R} \to \mathbb{C}$ intégrable sur \mathbb{R} . On pose

$$\hat{f}(x) = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$$

Justifier que \hat{f} est continue sur \mathbb{R} .

Dérivation

Exercice 25

Mines-Ponts MP 2018

Montrer que pour tout $x \in \mathbb{R}_+$,

$$\int_0^{+\infty} \frac{\arctan(x/t) dt}{1+t^2} = \int_0^x \frac{\ln(t) dt}{t^2 - 1}$$

Exercice 26

Mines-Ponts MP 2017

A toute fonction $h \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$, on associe la fonction R(h) définie par

$$\forall x \in \mathbb{R}_+, \ R(h)(x) = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} h(x \sin t) \ dt$$

A toute fonction $g \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$, on associe fonction S(g) définie par

$$\forall x \in \mathbb{R}_+, \ S(g)(x) = g(0) + x \int_0^{\frac{\pi}{2}} g'(x \sin t) dt$$

- **1.** Montrer que R et S sont des applications linéaires à valeurs dans $\mathcal{C}^0(\mathbb{R}_+,\mathbb{R})$.
- **2.** On pose $W_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$ pour $n \in \mathbb{N}$. Déterminer une relation entre W_n et W_{n+2} .
- **3.** Soit P un polynôme. Montrer que $S \circ R(P) = P$.
- **4.** Montrer que pour $g \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$, $S \circ R(g) = g$.

Exercice 27 ★★

On pose

$$f(x) = \int_0^{\frac{\pi}{2}} \ln(\cos^2 t + x^2 \sin^2 t) dt$$

- **1.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- **2.** Calculer f'(x) pour $x \in \mathbb{R}_+^*$ et en déduire f(x) pour $x \in \mathbb{R}_+^*$.

Exercice 28 CCP MP

On pose
$$g(x) = \int_0^{+\infty} \frac{e^{-tx}}{t+1} dt$$
.

- **1.** Montrer que g est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- 2. Donner une équation différentielle vérifiée par g sur \mathbb{R}_+^* .
- **3.** Donner un équivalent de g en $+\infty$.

Exercice 29 ★★

Mines Télécom MP 2016

Soit $F(x) = \int_0^{+\infty} \frac{1 - \cos(xt)}{t^2} e^{-t} dt$.

- **1.** Montrer que F est définie sur \mathbb{R} et paire.
- **2.** Montrer que $|\sin u| \le |u|$ pour tout $u \in \mathbb{R}$.
- **3.** Montrer que F est de classe C^2 sur \mathbb{R} et déterminer F".
- **4.** Déterminer la fonction F.

Exercice 30 ★★

Centrale MP 2011

Soit $f: x \mapsto \int_0^x e^{-t^2} dt$ et $g: x \mapsto \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$.

- 1. Montrer que $f^2 + g$ est constante. Quelle est sa valeur?
- 2. En déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Exercice 31 ★★

CCINP (ou CCP) MP 2021

On pose
$$f(x) = \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$$
.
On rappelle que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

- 1. **a.** Montrer que f est définie et continue sur \mathbb{R}_{+} .
 - **b.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- **2. a.** Montrer que f est solution de (E) : $y' y = -\frac{1}{2}\sqrt{\frac{\pi}{x}}$.
 - **b.** Déterminer la fonction f.

Exercice 32

Mines-Ponts MP

On pose $F(x) = \int_0^{+\infty} \frac{1 - e^{tx}}{t} e^{-t} dt$. Déterminer le domaine de définition de F et expliciter F(x).

Exercice 33 ★★★

Intégrale de Poisson

On pose pour $f(x) = \int_0^{\pi} \ln(x^2 - 2x \cos \theta + 1) d\theta$.

- **1.** Justifier que f est définie sur $D = \mathbb{R} \setminus \{-1, 1\}$.
- **2.** Montrer que pour tout $x \in D \setminus \{0\}$, $f(x) = f(1/x) + 2\pi \ln |x|$.
- **3.** Justifier que f est dérivable sur]-1,1[.
- **4.** Montrer que f' est nulle sur]-1,1[.
- **5.** En déduire la valeur de f(x) pour $x \in D$.

Exercice 34

CCINP (ou CCP) MP 2022

- **1.** Montrer que pour tout $u \in \mathbb{R}$, $|\arctan(u)| \le |u|$.
- **2.** On pose $F(x) = \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt$.
 - a. Domaine de définition de F?
 - **b.** Domaine de continuité de F?
 - **c.** Domaine de dérivabilité de F?
 - **d.** Déterminer F'.
 - e. En déduire F.

Exercice 35

Mines-Télécom (hors Mines-Ponts) MP 2023

On pose $F(x) = \int_0^{+\infty} \ln(t)e^{-xt} dt$.

- 1. Déterminer le domaine de définition de F.
- **2.** Montrer que F est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- **3.** Déterminer une équation différentielle dont F est solution sur \mathbb{R}_+^* , puis résoudre cette équation différentielle.

Exercice 36 ***

Théorème de Fubini

Soit φ : $[a,b] \times [c,d] \to \mathbb{R}$ continue. On souhaite démontrer le théorème de Fubini, à savoir que :

 $\int_{a}^{b} \left(\int_{c}^{d} \varphi(x, y) \, dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} \varphi(x, y) \, dx \right) dy$

Considérons pour cela les applications :

F:
$$t \in [a, b] \mapsto \int_{a}^{t} \left(\int_{c}^{d} \varphi(x, y) \, dy \right) dx$$

G: $t \in [a, b] \mapsto \int_{c}^{d} \left(\int_{a}^{t} \varphi(x, y) \, dx \right) dy$

- 1. Montrer que F est de classe C^1 sur [a, b] et calculer sa dérivée.
- **2.** Montrer que G est de classe \mathcal{C}^1 sur [a,b] et calculer sa dérivée.
- 3. Conclure.

Exercice 37

Mines-Ponts MP 2024

On pose pour $n \in \mathbb{N}^*$:

$$h_n: x \in \mathbb{R}_+^* \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{(t^2 + x^4)^n}$$

1. Montrer que h_n est dérivable sur \mathbb{R}_+^* et que

$$\forall x \in \mathbb{R}_+^*, \ h'_n(x) = -4nx^3 h_{n+1}(x)$$

2. Montrer qu'il existe une suite $(a_n)_{n\in\mathbb{N}^*}$ telle que

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}^*_+, \ h_n(x) = a_n x^{2-4n}$$

3. Déterminer $h_n(x)$ pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+^*$.

Exercice 38 Navale MP 2024

- **1.** Exprimer $g(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$ en fonction de $f(x) = \int_0^x e^{-t^2} dt$.
- 2. En déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Divers

Exercice 39 ***

Banque Mines-Ponts MP 2014

On pose
$$f: x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{t^x(1+t)}$$
.

- 1. Déterminer le domaine de définition de f.
- 2. Déterminer des équivalents simples de f aux bornes de son domaine de définition.

Exercice 40 **

On pose
$$f(x) = \int_{0}^{1} \frac{t^{x-1}}{1+t} dt$$
.

- 1. Déterminer le domaine de définition de f.
- 2. Déterminer un équivalent de f en $+\infty$.
- 3. Déterminer un équivalent de f en 0^+ .

Exercice 41 ***

Transformée de Laplace

Soit f continue par morceaux sur \mathbb{R}_+^* . On suppose qu'il existe $p \in \mathbb{R}$ tel que $t \mapsto f(t)e^{-pt}$ soit intégrable sur \mathbb{R}_+^* et on pose

$$\alpha = \inf\{p \in \mathbb{R}, t \mapsto f(t)e^{-pt} \text{ intégrable sur } \mathbb{R}_+\} \in \mathbb{R} \cup \{-\infty\}$$

Pour $p \in \mathbb{R}$, on pose $F(p) = \int_0^{+\infty} f(t)e^{-pt} dt$ lorsque cela est possible.

- 1. Justifier que F est définie sur $]\alpha, +\infty[$.
- **2.** Théorème de la valeur initiale. On suppose que $\lim_{0^+} f = \ell \in \mathbb{R}$. Montrer que $\lim_{p \to +\infty} p F(p) = \ell$.
- 3. Théorème de la valeur finale. On suppose $\lim_{+\infty} f = \ell \in \mathbb{R}$. Montrer que $\alpha \le 0$ et $\lim_{p \to 0^+} p F(p) = \ell$.