Lista 2 - Sequências Análise Real - verão 2025

Prof. Lucas Nacif lucas.nacif@ime.usp.br

- 1. Seja (a_n) uma sequência e suponha que $(a_n) \to 0.0001$. Mostre que apenas um número finito de elementos da sequência é negativo.
- 2. Prove usando a definição de limite.

(a)
$$(a_n) \to 7$$
, onde $a_n = 7 - \frac{1}{\sqrt{n}}$;

(b)
$$(a_n) \to \frac{2}{5}$$
, onde $a_n = \frac{2n-2}{5n-1}$;

- 3. Dê um exemplo de uma sequência (a_n) onde $a_n < 0, \forall n \in \mathbb{N}$ e $(a_n) \to 0$
- 4. Seja (x_n) uma sequência tal que as subsequências (x_{2n}) e (x_{2n-1}) ambas convergem para L. Mostre que (x_n) converge para L.
- 5. Sejam (a_n) e (b_n) duas sequências tais que (a_n) é limitada e (b_n) converge para 0. Mostre que a sequência (a_nb_n) converge para 0
- 6. Dê um exemplo ou mostre que não existe
 - (a) Uma sequência (x_n) tal que $2 < x_n < 3$, para todo n, que possui uma subsequência convergindo para 6 e outra para 7
 - (b) Uma sequência (a_n) tal que para todo natural k existe subsequência de (a_n) convergindo para 1/k
 - (c) Uma sequência (a_n) tal que para todo $x \in \mathbb{R}$ existe subsequência convergindo para x
- 7. Sejam (a_n) e (b_n) sequências. Mostre que
 - (a) Se $(a_n) \to L$ e $a_n \le m$ para todo n, exceto por uma quantidade finita de naturais, então $L \le M$
 - (b) Se $a_n \leq b_n$ para todo $n \in (a_n) \to L \in (b_n) \to M$ então $L \leq M$

8. Seja $(a_n) \to a$ e defina

$$b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Mostre que $\lim b_n = a$.

- 9. Seja (a_n) uma sequência de números não negativos. Mostre que se $(a_n) \to L$ então $(\sqrt{a_n}) \to \sqrt{L}$.
- 10. Seja (a_n) a sequência descrita recursivamente por $a_1 = 1$ e para cada n > 1 $a_n = a_{n-1} + 1/n^2$. Esta sequência converge para $\pi^2/6$. use este fato para mostrar que a sequência (b_n) descrita por $b_1 = 1$ e $b_n = b_{n-1} + 1/n^3$ converge. Dica: use indução para mostrar que $b_n < a_n$, para todo n.

Exercício Guiado: Mostre que a sequência $((1+1/n)^n)$ é crescente limitada.

Considere a fórmula do binômio

$$(a+b)^n = \sum_{k=0}^n \frac{n!}{(n-k)!k!} a^{n-k} b^k$$

e conclua que

$$(a+b)^n \le \sum_{k=0}^n \frac{n^k}{2^{k-1}} a^{n-k} b^k$$

Subistitua a = 1, b = 1/n e conclua que $0 < \left(1 + \frac{1}{n}\right)^n \le 3$ para todo n.

Resta apenas mostrar que a sequência é crescente, isto é, que

$$\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n+1}\right)^{n+1}$$

Vamos encontrar uma desigualdade equivalente.

Note que

$$\left(1 + \frac{1}{n}\right)^{n} < \left(1 + \frac{1}{n+1}\right)^{n+1}$$

$$\iff 1 < \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^{n}}$$

$$\iff \frac{1}{1 + \frac{1}{n}} < \left(\frac{1 + \frac{1}{n+1}}{1 + \frac{1}{n}}\right)^{n+1}$$

Use a Desigualdade de Bernoulli.