

Introduction to resampling methods

Tushar Shanker
Data Scientist

Resampling workflow

Why resample?

Advantages

- Simple implementation procedure.
- Applicable to complex estimators.
- No strict assumptions.

Drawbacks

Computationally expensive.

Types of resampling methods

Let's practice!

Bootstrapping

Tushar Shanker
Data Scientist

Easter eggs

Easter eggs

Bootstrapping Easter eggs

Bootstrapped distribution

Bootstrap - Good to know

- Run at least 5-10k iterations.
- Expect an approximate answer.
- Consider bias correction.

Let's practice!

Jackknife resampling

Tushar Shanker
Data Scientist

Easter eggs

Easter eggs

Jackknifing Easter eggs

Jackknife estimate

Jackknife Estimate

$$\hat{\theta}_{jackknife} = \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{i}$$

 $\hat{\theta}_{jackknife}$: Jackknife Estimate, $\hat{\theta}_i$: Estimate for each Jackknife Sample

Variance of Jackknife Estimate

$$Var(\hat{\theta}_{jackknife}) = \frac{n-1}{n} \Sigma (\hat{\theta}_i - \hat{\theta}_{jackknife})^2$$

 $\hat{\theta}_{jackknife}$: Jackknife Estimate $\hat{\theta}_i$: Estimate for each Jackknife Sample

Jackknife vs Bootstrap

Jackknife

- Mean Weight = 51g
- 95% CI = [33.36g, 68.64g]

Bootstrap

- Mean Weight = 50.8g
- 95% CI = [35g, 67.03g]

Let's practice!

Permutation testing

Tushar Shanker
Data Scientist

Steps involved

Steps involved

Discussion

ADVANTAGES

- Very flexible
- No strict assumptions
- Widely applicable

DRAWBACKS

- Computationally Expensive
- Custom coding required

Donation website

Donation Website

Design Comparison

Let's practice!