CS 4495 Computer Vision

Frequency and Fourier Transforms

Aaron Bobick
School of Interactive Computing

Administrivia

- Project 1 is (still) on line get started now!
- Readings for this week: FP Chapter 4 (which includes reviewing 4.1 and 4.2)

Salvador Dali

"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Decomposing an image

- A basis set is (edit from to Wikipedia):
 - A basis B of a <u>vector space</u> V is a <u>linearly independent</u> subset of V that <u>spans</u> V.
 - In more detail:suppose that $B = \{ v_1, ..., v_n \}$ is a finite subset of a vector space V over a <u>field</u> F (such as the <u>real</u> or <u>complex numbers</u> R or C). Then B is a basis if it satisfies the following conditions:
 - the *linear independence* property:
 - for all $a_1, ..., a_n \in \mathbf{F}$, if $a_1v_1 + ... + a_nv_n = 0$, then necessarily $a_1 = ... = a_n = 0$;
 - and the spanning property,
 - for every x in V it is possible to choose $a_1, ..., a_n \in \mathbf{F}$ such that $x = a_1v_1 + ... + a_nv_n$.
 - Not necessarily orthogonal....
- If we have a basis set for images, could perhaps be useful for analysis – especially for linear systems because we could consider each basis component independently. (Why?)

Images as points in a vector space

- Consider an image as a point in a NxN size space can rasterize into a single vector $[x_{00}x_{10}x_{20}...x_{(n-1)0}x_{10}...x_{(n-1)(n-1)}]^T$
- The "normal" basis is just the vectors:

$$[0\ 0\ 0\ 0...01\ 0\ 0\ 0...\ 0]^T$$

- Independent
- Can create any image
- But not very helpful to consider how each pixel contributes to computations.

A nice set of basis

Teases away fast vs. slow changes in the image.

This change of basis has a special name...

Jean Baptiste Joseph Fourier (1768-

1830)

- Had crazy idea (1807):
 - Any periodic function can be rewritten as a weighted sum of sines and cosines of different frequencies.
- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!
- But it's true!
 - Called Fourier Series

A sum of sines

- •Our building block:
- $A\sin(\omega x + \phi)$
- •Add enough of them to get any signal f(x) you want!
- •How many degrees of freedom?
- •What does each control?
- •Which one encodes the coarse vs. fine structure of the signal?

Time and Frequency

• example : $g(t) = \sin(2p f t) + (1/3)\sin(2p (3f) t)$

Time and Frequency

• example : $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

• example : $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

Usually, frequency is more interesting than the phase for CV because we're not reconstructing the image

Fourier *Transform*

We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of x:

$$f(x) \longrightarrow \begin{bmatrix} Fourier \\ Transform \end{bmatrix}^{A\sin(\omega x + \phi)} \longrightarrow F(\omega)$$

For every ω from 0 to inf (actually –inf to inf), $F(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine

• How can *F* hold both? Complex number trick!

Recall:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$ (or j)

Matlab sinusoid demo...

Fourier Transform

We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of x:

$$f(x) \longrightarrow \begin{array}{|c|c|c|c|c|}\hline Fourier & A \sin(\omega x + \phi) \\ \hline Transform & F(\omega) \\ \hline \end{array}$$

For every ω from 0 to inf, (actually –inf to inf), $F(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine

• How can *F* hold both? Complex number trick!

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$

$$F(\omega) = R(\omega) + iI(\omega)$$

$$\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$
Even Odd

And we can go back:

Computing FT: Just a basis

 The infinite integral of the product of two sinusoids of different frequency is zero. (Why?)

$$\int_{-\infty}^{\infty} \sin(ax + \phi) \sin(bx + \varphi) dx = 0, \text{ if } a \neq b$$

 And the integral is infinite if equal (unless exactly out of phase):

$$\int_{-\infty}^{\infty} \sin(ax + \phi) \sin(ax + \varphi) dx = \pm \infty$$

If ϕ and ϕ not exactly pi/2 out of phase (sin and cos).

Computing FT: Just a basis

So, suppose f(x) is a cosine wave of freq ω:

$$f(x) = \cos(2\pi\omega x)$$

Then:

$$C(u) = \int_{-\infty}^{\infty} f(x) \cos(2\pi u x) dx$$

Is infinite if u is equal to ω (or - ω) and zero otherwise:

Computing FT: Just a basis

- We can do that for all frequencies u.
- But we'd have to do that for all phases, don't we???
- No! Any phase can be created by a weighted sum of cosine and sine. Only need each piece:

$$C(u) = \int_{-\infty}^{\infty} f(x) \cos(2\pi u x) dx$$
$$S(u) = \int_{-\infty}^{\infty} f(x) \sin(2\pi u x) dx$$

• Or...

Fourier Transform – more formally

Represent the signal as an infinite weighted sum of an infinite number of sinusoids

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi ux} dx$$

Again:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$

Spatial Domain
$$(x)$$
 \longrightarrow Frequency Domain $(u \text{ or } s)$ (Frequency Spectrum $F(u)$)

Inverse Fourier Transform (IFT) – add up all the sinusoids at x:

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux} du$$

Frequency Spectra – Even/Odd

Frequency actually goes from –inf to inf. Sinusoid example:

Frequency Spectra

Extension to 2D

2D Examples – sinusoid magnitudes

2D Examples – sinusoid magnitudes

2D Examples – sinusoid magnitudes

Linearity of Sum

Extension to 2D – Complex plane

Both a Real and Im version

Examples

B.K. Gunturk

Man-made Scene

Where is this strong horizontal suggested by vertical center line?

Fourier Transform and Convolution

Let
$$g = f * h$$

Then
$$G(u) = \int_{-\infty}^{\infty} g(x)e^{-i2\pi ux}dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)h(x-\tau)e^{-i2\pi ux}d\tau dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[f(\tau)e^{-i2\pi u\tau}d\tau \right] h(x-\tau)e^{-i2\pi u(x-\tau)}dx$$

$$= \int_{-\infty}^{\infty} \left[f(\tau)e^{-i2\pi u\tau}d\tau \right] \int_{-\infty}^{\infty} \left[h(x')e^{-i2\pi ux'}dx' \right]$$

$$= F(u)H(u)$$

Convolution in spatial domain

Fourier Transform and Convolution

Spatial Domain
$$(x)$$
 Frequency Domain (u)

$$g = f * h \qquad \longleftrightarrow \qquad G = FH$$

$$g = fh \qquad \longleftrightarrow \qquad G = F * H$$

So, we can find g(x) by Fourier transform

Example use: Smoothing/Blurring

• We want a smoothed function of f(x)

$$g(x) = f(x) * h(x)$$

Let us use a Gaussian kernel

$$h(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \frac{x^2}{\sigma^2}\right]$$

h(x) σ χ Fat Gaussian in space

The Fourier transform of a Gaussian is a Gaussian

$$H(u) = \exp \left[-\frac{1}{2} (2\pi u)^2 \sigma^2 \right]$$

Example use: Smoothing/Blurring

• We want a smoothed function of f(x)

$$g(x) = f(x) * h(x)$$

Let us use a Gaussian kernel

$$h(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \frac{x^2}{\sigma^2}\right]$$

Convolution in space is multiplication in freq:

$$G(u) = F(u)H(u)$$

H(u) attenuates high frequencies in F(u) (Low-pass Filter)!

2D convolution theorem example

Low and High Pass filtering

Properties of Fourier Transform

-	Spatial Domain (x)	Frequency Domain (u)	
Linearity	$c_1 f(x) + c_2 g(x)$	$c_1F(u)+c_2G(u)$	
Scaling	f(ax)	$\frac{1}{ a }F\left(\frac{u}{a}\right)$	
Shifting	$f(x-x_0)$	$e^{-i2\pi ux_0}F(u)$	
Symmetry	F(x)	f(-u)	
Conjugation	$f^*(x)$	$F^*(-u)$	
Convolution	f(x)*g(x)	F(u)G(u)	
Differentiation	$\frac{d^n f(x)}{dx^n}$	$(i2\pi u)^n F(u)$	

Fourier Pairs (from Szeliski)

Name	Signal		Transform		
impulse		$\delta(x)$	\Leftrightarrow	1	
shifted impulse		$\delta(x-u)$	\Leftrightarrow	$e^{-j\omega u}$	
box filter		box(x/a)	⇔	$a\mathrm{sinc}(a\omega)$	→
tent		tent(x/a)	⇔	$a\mathrm{sinc}^2(a\omega)$	<u> </u>
Gaussian		$G(x;\sigma)$	\Leftrightarrow	$\frac{\sqrt{2\pi}}{\sigma}G(\omega;\sigma^{-1})$	<u>.</u>
Laplacian of Gaussian		$(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})G(x;\sigma)$	\Leftrightarrow	$-\frac{\sqrt{2\pi}}{\sigma}\omega^2G(\omega;\sigma^{-1})$	
Gabor		$\cos(\omega_0 x)G(x;\sigma)$	\Leftrightarrow	$\frac{\sqrt{2\pi}}{\sigma}G(\omega \pm \omega_0; \sigma^{-1})$	
unsharp mask		$(1+\gamma)\delta(x) - \gamma G(x;\sigma)$	\Leftrightarrow	$\frac{(1+\gamma)-}{\frac{\sqrt{2\pi}\gamma}{\sigma}G(\omega;\sigma^{-1})}$	
windowed sinc		$\frac{\operatorname{rcos}(x/(aW))}{\operatorname{sinc}(x/a)}$	⇔	(see Figure 3.29)	

Fourier Transform smoothing pairs

Spatial domain

Frequency domain

Fourier Transform Sampling Pairs

FT of an "impulse train" is an impulse train

$$\frac{1}{2}j\left[-\delta\left(\xi-\omega_{0}\right)+\delta\left(\xi+\omega_{0}\right)\right]$$

Sampling and Aliasing

Sampling and Reconstruction

Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - write down the function's values at many points

Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
 - amounts to "guessing" what the function did in between

1D Example: Audio

Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - how can we be sure we are filling in the gaps correctly?

Sampling and Reconstruction

Simple example: a sign wave

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - aliasing: signals "traveling in disguise" as other frequencies

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Aliasing in images

What's happening?

x = 0:.05:5; imagesc(sin((2.^x).*x))

Alias!
Not enough samples

Antialiasing

- What can we do about aliasing?
- Sample more often
 - Join the Mega-Pixel craze of the photo industry
 - But this can't go on forever
- Make the signal less "wiggly"
 - Get rid of some high frequencies
 - Will loose information
 - But it's better than aliasing

Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - choose lowest frequency in reconstruction (disambiguate)

(Anti) Aliasing in the Frequency Domain

Impulse Train

■ Define a *comb* function (impulse train) in 1D as follows

$$comb_{M}[x] = \sum_{k=-\infty}^{\infty} \delta[x - kM]$$

where *M* is an integer

Impulse Train in 2D (bed of nails)

$$comb_{M,N}(x, y) \triangleq \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x - kM, y - lN)$$

Fourier Transform of an impulse train is also an impulse train:

$$\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x-kM, y-lN) \Leftrightarrow \frac{1}{MN} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta\left(u-\frac{k}{M}, v-\frac{l}{N}\right)$$

$$comb_{M,N}(x, y)$$

$$comb_{\frac{1}{M}, \frac{1}{N}}(u, v)$$

As the comb samples get further apart, the spectrum samples get closer together!

Impulse Train in 1D

Scaling f(ax)

 $\frac{1}{a}F\left(\frac{u}{a}\right)$

Sampling low frequency signal

Multiply:

Convolve:

B.K. Gunturk

Sampling low frequency signal

Sampling low frequency signal

If there is no overlap, the original signal can be recovered from its samples by low-pass filtering.

Sampling high frequency signal

 $f(x)comb_{M}(x)$

 $F(u)*comb_{\frac{1}{M}}(u)$ = ncy

Overlap: The high frequency energy is folded over into low frequency. It is "aliasing" as lower frequency energy. And you cannot fix it once it has happened.

Sampling high frequency signal

$$[f(x)*h(x)]comb_{M}(x) \qquad \Longleftrightarrow \qquad U$$

B.K. Gunturk

Sampling high frequency signal

Without anti-aliasing filter:

$$f(x)comb_{M}(x)$$

With anti-aliasing filter:

$$[f(x)*h(x)]comb_{M}(x)$$

Aliasing in Images

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a half-sized version?

Image sub-sampling

1/8

1/4

/Δ

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Aliasing! What do we do?

Gaussian (lowpass) pre-filtering

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian pre-filtering

Gaussian 1/2

G 1/4

G 1/8

Compare with...

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Campbell-Robson contrast sensitivity curve

The higher the frequency the less sensitive human visual system is...

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT) on 8x8

Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies, the bottom right – high frequencies

Image compression using DCT

- DCT enables image compression by concentrating most image information in the low frequencies
- Loose unimportant image info (high frequencies) by cutting B(u,v) at bottom right
- The decoder computes the inverse DCT IDCT
 - Quantization Table

```
11 13 15
      11 13 15 17 19
     13
        15 17
  13 15 17 19
13
  15
     17 19 21
15
  17 19
         21
            23
               25
  19 21 23 25 27
19
  21
     23
         25
            27
```

JPEG compression comparison

89k 12k

Maybe the end?

Or not!!!

• A teaser on pyramids...

Image Pyramids

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

Band-pass filtering

Gaussian Pyramid (low-pass images)

These are "bandpass" images (almost).

Laplacian Pyramid

 How can we reconstruct (collapse) this pyramid into the original image?

Computing the Laplacian Pyramid

What can you do with band limited imaged?

Apples and Oranges in bandpass

 L_2

Coarse L₄

Reconstructed

(j)

What can you do with band limited imaged?

Really the end...