Review

Theorem (Fundamental Theorem of Calculus). Let F, f be functions. Fix $a \in \mathbb{R}$. If f is continuous on [a, b], then the following holds.

$$F(x) = \int_{a}^{x} f(t)dt \Longrightarrow F'(x) = f(x)$$

We may equivalently express the above as such.

$$f(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt$$

Theorem (Integration by Parts). Let u, v be functions. Then we have the following.

$$\int udv = uv - \int vdu$$

Questions

- 1. True or False.
 - (i) We can use the fundamental theorem of calculus to conclude that the following holds.

$$\int_{-1}^{1} \frac{1}{x^2} dx = \frac{1}{x} \Big|_{-1}^{1} = -2$$

FALSE. For starters, let us observe a plot of the function $\frac{1}{x^2}$. Notice that for all nonzero $x \in \mathbb{R}$, $\frac{1}{x^2} > 0$. Consequently, from a geometric perspective we can reason that the signed area should be a positive number, which is not the case here.

More formally, however, the fundamental theorem of calculus requires our function f to be continuous on the interval of integration. Notably, $\frac{1}{x^2}$ has a vertical asymptote at x=0, which implies the function is not continuous on [-1,1].

- (ii) Let f be a function, such that f(x) is defined for x > 0. Let a, b > 0. Assume that f is integrable on [a, b].
 - * If $\int_a^\infty f(x)dx$ converges, then $\int_b^\infty f(x)dx$ converges.
 - * If $\int_a^\infty f(x)dx$ diverges, then $\int_b^\infty f(x)dx$ diverges.

TRUE. Recall that for real numbers a, b, c we have the following.

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

Similarly, we have the following relationship between $\int_a^\infty f(x)dx$ and $\int_b^\infty f(x)dx$.

$$\int_{a}^{\infty} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{\infty} f(x)dx$$

Since f is integrable on [a,b], we know that $\int_a^b f(x)dx$ evaluates to some real number R.

Firstly, if $\int_a^\infty f(x)dx$ converges, then we can say that $\int_a^\infty f(x)dx$ evaluates to some real number S. This would imply that $\int_b^\infty f(x)dx = S - R$, which is a real number. Equivalently, this means that $\int_b^\infty f(x)dx$ must converge.

$$S = \int_{a}^{\infty} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{\infty} f(x)dx = R + \int_{b}^{\infty} f(x)dx \Longrightarrow S - R = \int_{b}^{\infty} f(x)dx$$

Secondly, if $\int_a^\infty f(x)dx$ diverges, then we can say that $\int_a^b f(x)dx + \int_b^\infty f(x)dx$ also diverges. However, we know that the integral $\int_a^b f(x)dx$ evaluates to R. Consequently, it must be that $\int_b^\infty f(x)d(x)$ diverges for the expression $\int_a^b f(x)dx + \int_b^\infty f(x)dx$ to diverge.

2. Compute the following indefinite integral, $\int e^x \cos x dx$ using recursive integration by parts.

Theorem (Integration by Parts). Let u, v be functions. Then we have the following.

$$\int udv = uv - \int vdu$$

FIRST ITERATION.

Fix $u = \cos x$, $v = e^x$. This implies that $du = -\sin x dx$, $dv = e^x dx$. Using integration by parts, we have the following.

$$\int e^x \cos x dx = \int u dv = uv - \int v du = e^x \cos x - \int (-e^x \sin x) dx = e^x \cos x + \int e^x \sin x dx$$

SECOND ITERATION.

Fix $u = \sin x$, $v = e^x$. This implies that $du = \cos x dx$, $dv = e^x dx$. Using integration by parts, we have the following.

$$\int e^x \sin x dx = e^x \sin x - \int e^x \cos x dx$$

Notice that we have re-obtained our initial integral of interest, $\int e^x \cos x dx$. Therefore, we have the following.

$$\int e^x \cos x dx = e^x \cos x + \int e^x \sin x dx \qquad \qquad \text{Integration by Parts.}$$

$$= e^x \cos x + \left(e^x \sin x - \int e^x \cos x dx \right) \qquad \text{Integration by Parts.}$$

$$2 \int e^x \cos x dx = e^x \cos x + e^x \sin x \qquad \qquad \text{Cancellation Property.}$$

$$\int e^x \cos x dx = \frac{1}{2} e^x (\cos x + \sin x) \qquad \qquad \text{Multiplicative Inverse.}$$

Hence, we have determined using integration by parts that the indefinite integral is given by $\int e^x \cos x dx = \frac{1}{2}e^x(\cos x + \sin x)$, as needed.

3. Consider the following limit.

$$\lim_{n \to \infty} \left(\sum_{k=0}^{n-1} \frac{e^{-(4+k/n)}}{n} \right)$$

(i) Find a definite integral that represents the limit.

Recall the definition of definite integral given by the left Riemann sum.

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=0}^{n-1} f(x_k) \Delta x_k = \lim_{n \to \infty} \sum_{k=0}^{n-1} f\left(a + \frac{k}{n}\right) \frac{b-a}{n}$$

Notice that we may express the limit as follows.

$$\lim_{n \to \infty} \left(\sum_{k=0}^{n-1} \frac{e^{-(4+k/n)}}{n} \right) = \lim_{n \to \infty} \left(\sum_{k=0}^{n-1} e^{-4-(0+k/n)} \frac{1-0}{n} \right)$$

Therefore, by fixing $f(x) = e^{-4-x}$, a = 0, b = 1, we obtain a definite integral to present the limit.

$$\int_0^1 e^{-4-x} dx = \int_a^b f(x) dx = \lim_{n \to \infty} \sum_{k=0}^{n-1} f\left(a + \frac{k}{n}\right) \frac{b-a}{n} = \lim_{n \to \infty} \left(\sum_{k=0}^{n-1} \frac{e^{-(4+k/n)}}{n}\right)$$

Notably, we may also fix $f(x) = e^{-x}$, a = 4, b = 5.

(ii) Evaluate the integral.

$$\int_0^1 e^{-4-x} dx = -e^{-4-1} - (-e^{-4-0}) = -e^{-5} + e^{-4}$$