Logistic regression lab4

Eng: Samar Shaban

Problem: Recognizing cat pictures.

Algorithm: Logistic Regression with neural network mindset

Performance matrix: Accuracy

Mathematical expression of the algorithm:

For one example $x^{(i)}$:

$$z^{(i)} = w^{T} x^{(i)} + b$$

$$\hat{y}^{(i)} = a^{(i)} = sigmoid(z^{(i)})$$

$$\mathcal{L}(a^{(i)}, y^{(i)}) = -y^{(i)} \log(a^{(i)}) - (1 - y^{(i)}) \log(1 - a^{(i)})$$

The cost is then computed by summing over all training examples:

$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(a^{(i)}, y^{(i)})$$

Forward Propagation:

- You get X
- You compute $A = \sigma(w^T X + b) = (a^{(1)}, a^{(2)}, \dots, a^{(m-1)}, a^{(m)})$
- You calculate the cost function: $J=-\frac{1}{m}\sum_{i=1}^m y^{(i)}\log(a^{(i)})+(1-y^{(i)})\log(1-a^{(i)})$

Here are the two formulas you will be using:

$$\frac{\partial J}{\partial w} = \frac{1}{m} X (A - Y)^T$$
$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (a^{(i)} - y^{(i)})$$

optimization function:

The goal is to learn $\underline{\mathbf{w}}$ and $\underline{\mathbf{b}}$ by minimizing the cost function $\underline{\mathbf{J}}$. For a parameter $\underline{\mathbf{\theta}}$, the update rule

$$\underline{\Theta} = \underline{\Theta} - \underline{\alpha} \ \underline{d\Theta}$$

where $\underline{\alpha}$ is the learning rate.

function	parameters	Returned values
load_dataset()		train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
initialize()	dim	w, b
Propagate()	w, b, X, Y	grads = {"dw": dw,
optimize()	w, b, X, Y, num_iterations, learning_rate, print_cost = False	params = {"w": w,
Predict()	w, b, X	Y_prediction
model()	X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False	<pre>d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train": Y_prediction_train, "w": w, "b": b, "learning_rate": learning_rate, "num_iterations": num_iterations}</pre>

Notes:

- Training accuracy is close to 100%. The model has high enough capacity to fit the training data. Test accuracy is 70%;
 It is actually not bad for this simple model. <u>Overfitting</u>
- cost decreasing -->the parameters are being learned.
- The learning rate α determines how rapidly we update the parameters.

 Different learning rates give different costs and thus different predictions results.

Implement:

Apply logistic regression
 as explained on
 <u>Titanic Passengers Dataset.</u>

Score: 8 of 10

Give me some analytical indicators
 About the Dataset.

Score 2

