1. **a.** If $a \equiv 3 \pmod{7}$, then

$$a^2 \equiv 3^2 \pmod{7} \equiv 9 \pmod{7} \equiv 2 \pmod{7}$$

$$5a \equiv 5 \cdot 3 \pmod{7} \equiv 15 \pmod{7} \equiv 1 \pmod{7}$$

Adding the two, we get

$$a^2 + 5a \equiv (2+1) \pmod{7} \equiv 3 \pmod{7}$$

Thus, it is <u>true</u> that, $\forall a \in \mathbb{Z}$, if $a \equiv 3 \pmod{7}$, then $(a^2 + 5a) \equiv 3 \pmod{7}$.

b. We can split modulo 7 into 7 equivalence classes for all $a \in \mathbb{Z}$, [0], [1], [2], [3], [4], [5], [6], [7]. Plugging all of these into $a^2 + 5a \pmod{7}$, we get

$$[0]: 0^2 + 5 \cdot 0 \pmod{7} \equiv 0 \pmod{7}$$

$$[1]: 1^2 + 5 \cdot 1 \pmod{7} \equiv 6 \pmod{7}$$

$$[2]: 2^2 + 5 \cdot 2 \pmod{7} \equiv 14 \pmod{7} \equiv 0 \pmod{7}$$

$$[3]: 3^2 + 5 \cdot 3 \pmod{7} \equiv 24 \pmod{7} \equiv 3 \pmod{7}$$

$$[4]: 4^2 + 5 \cdot 4 \pmod{7} \equiv 36 \pmod{7} \equiv 1 \pmod{7}$$

$$[5]: 5^2 + 5 \cdot 5 \pmod{7} \equiv 50 \pmod{7} \equiv 1 \pmod{7}$$

$$[6]: 6^2 + 5 \cdot 6 \pmod{7} \equiv 66 \pmod{7} \equiv 3 \pmod{7}$$

From this, we see that $a^2 + 5a \equiv 3 \pmod{7}$ when $a \in [3] \vee [6]$. Thus, it is <u>false</u> that if $(a^2 + 5a) \equiv 3 \pmod{7}$, then $a \equiv 3 \pmod{7}$ as $a \equiv 6 \pmod{7}$ is also possible.

2. Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{Z}$. Let $a \equiv a \pmod{n}$.

$$a \equiv a \pmod{n}$$
$$a - a \equiv a - a \pmod{n}$$
$$0 \equiv 0 \pmod{n}$$

This is true, so \sim is reflexive. Let $a \sim b$.

$$a \equiv b \pmod{n}$$

$$a - a \equiv b - a \pmod{n}$$

$$-1 \cdot 0 \equiv -1 \cdot (b - a) \pmod{n}$$

$$0 \equiv a - b \pmod{n}$$

$$b \equiv a \pmod{n}$$

Thus, \sim is symmetric. Let $a \sim b$ and $b \sim c$.

$$a \equiv b \pmod{n}$$
$$b \equiv c \pmod{n}$$
$$a + b \equiv b + c \pmod{n}$$
$$a + b - b \equiv b + c - b \pmod{n}$$
$$a \equiv c \pmod{n}$$

Thus, $a \sim c$ and \sim is transitive. Since \sim is reflexive, symmetric, and transitive, \sim is an equivalence relation.

3. Let $x \sim y$.

$$|x| + |y| = 10$$

If we reorganize, we get

$$|y| + |x| = 10$$

Thus, if $x \sim y$, then $y \sim x$, meaning that R is symmetric.

If R is reflexive, then $3 \sim 3$. Let us check this by plugging in:

$$|x| + |y| = 10$$

$$|3| + |3| = 10$$

$$3 + 3 = 10$$

$$6 = 10$$

This means $3 \not\sim 3$, thus R is not reflexive.

Plugging in, we see that $4 \sim 6$ and $6 \sim -4$ is true.

$$|4| + |6| = 10$$

$$4 + 6 = 10$$

$$10 = 10$$

$$|6| + |-4| = 10$$

$$6 + 4 = 10$$

$$10 = 10$$

If R is transitive, then $4 \sim -4$. Let's check this.

$$|4| + |-4| = 10$$

$$4 + 4 = 10$$

$$8 = 10$$

Obviously, $8 \neq 10$ meaning $4 \not\sim -4$, so R is not transitive, by contradiction.

- **4. a.** Let $a,b,c \in \mathbb{R}$ such that $\sin(a) = \sin(b) = \sin(c)$. Obviously, $\sin(a) = \sin(a)$, so f(a) = f(a), and $a \sim a$, meaning R is reflexive. Since $\sin(a) = \sin(b)$, $\sin(b) = \sin(a)$, so f(a) = f(b) and f(b) = f(a), thus $a \sim b$ and $b \sim a$, meaning R is symmetric. Since $\sin(a) = \sin(b) = \sin(c)$, $\sin(a) = \sin(b)$, $\sin(b) = \sin(c)$, and $\sin(a) = \sin(c)$, so $a \sim b$, $b \sim c$, and $a \sim c$, meaning R is transitive. Since R is reflexive, symmetric, and transitive, it is an equivalence relation.
 - **b**. $[\pi] = \{k\pi | k \in \mathbb{Z}\}$
- 5. **a.** $[(3,4)] = \{c, d \in \mathbb{R} | c^2 + d^2 = 25\}$
 - **b.** The equivalence class [(a,b)], where $a,b \in \mathbb{Z}$, can, generally, be represented as a circle whose radius is $\sqrt{a^2 + b^2}$ and whose center is the origin.