dm25s1

Topic 04: Exploratory Data Analysis

Part 02: EDA Pass2

Dr Bernard Butler

Department of Computing and Mathematics, WIT. (bernard.butler@setu.ie)

Autumn Semester, 2025

Outline

- Feature and target distributions
- Plotting
- After EDA Pass 2

Data Mining (Week 4)

EDA Pass2 — Summary

1. Introduction

- 2. A Selection of Statistical Visualisations and Metrics
- 2.1 Categorical Features
- 2.2 Numerical Features

3. Summary

Acknowledgment

A big thanks to Dr Kieran Murphy, who provided many of the slides for today's lecture.

Introducing EDA Pass2

A Selection of Statistical Visualisations and Metrics

Categorical Variables

The Ideal

- Each level equally likely.
- Not too many levels: 2–12(ish).

Tools

- nunique, unique, value_counts.
- sns.countplot shows the counts of observations in each categorical level using bars.

- If size was the target, then most models will train towards the majority class (size=2).
- If size was a feature, then quality of predictor could vary greatly depending on the feature categorical level.
- Consider merge/drop rare category levels.

pd.crosstab(columns=df.Sex, index=df.Survived, margins=True, normalize='columns') \
.style.format("{:.2%}").background_gradient(cmap='summer_r')

sex Female		Male	All
smoker			
No	62.07%	61.78%	61.89%
Yes	37.93%	38.22%	38.11%

No relationship between sex and smoker

Sex	female	male	All
Survived			
0	25.80%	81.11%	61.62%
1	74.20%	18.89%	38.38%

Strong relationship between Sex and Survived

sns.countplot(x="Size", data=df);

 Shows the counts of observations in each categorical level using bar (height/width). sns.catplot(x="Size", y="a4", data=df, kind='bar');

sns.countplot(x="Size", data=df);

 Shows the counts of observations in each categorical level using bar (height/width). sns.catplot(x="Size", y="a4", data=df, kind='bar');

- Shows the average level (mean) and uncertainty (std)
 of the numerical target (a4) in each categorical level
 of the categorical variable.
- Vertical bar shows 95% confidence interval.

sns.countplot(x="Size", data=df);

 Shows the counts of observations in each categorical level using bar (height/width).

Is it usable?

sns.catplot(x="Size", y="a4", data=df, kind='bar');

- Shows the average level (mean) and uncertainty (std)
 of the numerical target (a4) in each categorical level
 of the categorical variable.
- Vertical bar shows 95% confidence interval.

Is it useful?

The option kind in catplot can be:

• bar and point show essentially the same information, but point is more compact when comparing multiple categorical features to a continuous target on the same plot.

The option kind in catplot can be:

- bar and point show essentially the same information, but point is more compact when comparing multiple categorical features to a continuous target on the same plot.
- strip shows individual observations useful (as in this case) to show that the larger uncertainty in Size="small" observations is mainly due to two outliers.

spring summer autumn winter Season

df.groupby("Season")["a1"].agg(["mean","count","std"])

	mean	count	std
Season	\bar{x}	n	σ
spring	16.649057	53	23.093786
summer	16.038636	44	17.920798
autumn	17.745000	40	21.611203
winter	17.498361	61	22.568256

Example — Dataset: Algae Blooms, Feature: Season, Target: a1

df.groupby("Season")["a1"].agg(["mean","count","std"])

	mean	count	std
Season	\bar{x}	\overline{n}	σ
spring	16.649057	53	23.093786
summer	16.038636	44	17.920798
autumn	17.745000	40	21.611203
winter	17.498361	61	22.568256

- Countplot shows no issues with feature Season all levels approximately
 equally represented.
- Catplots show slightly less spread in a1 for Season="summer" observations.
 (strip shows smaller range, point shows smaller standard deviation).
- \Rightarrow Mean levels of **a1** for different levels of **Season** are well within the 95% confidence intervals $(\bar{x} \pm \sigma 1.96/\sqrt{n})$, so no/weak relationship between categorical feature and numerical target.

Example — Dataset: Algae Blooms, Feature: Size, Target: a1

df.groupby("Size")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Size			\bar{x}	n	σ
small	0.0	89.8	27.255714	70	24.895426
medium	0.0	86.6	11.267857	84	17.163124
large	0.0	56.8	11.611364	44	16.556123

Example — Dataset: Algae Blooms, Feature: Size, Target: a1

df.groupby("Size")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	st
Size			\bar{x}	n	
small	0.0	89.8	27.255714	70	24.89542
medium	0.0	86.6	11.267857	84	17.16312
large	0.0	56.8	11.611364	44	16.55612

- Countplot shows no issues with feature Size.
- Catplot (point) shows that levels of a1 are higher for Size="small" observations.
- ⇒ Confidence interval for Size="small" observations do not overlap with CI for other levels, so significant relationship between categorical feature and numerical target.

Numerical Variables

Things here are more complicated as a numerical variable could follow many different distributions. Here we look at data following the standard normal distribution. To start we generate 10,000 values and put in to new DataFrame, df2.

```
rv = stats.norm()
data = rv.rvs(size=10_000)
df2 = pd.DataFrame(data, columns=["x"])
df2.head(5)
```

```
0 -1.915795
1 0.641175
2 0.040114
3 0.725531
4 0.252675
```

Numerical Variables

Things here are more complicated as a numerical variable could follow many different distributions. Here we look at data following the standard normal distribution. To start we generate 10,000 values and put in to new DataFrame, df2.

```
rv = stats.norm()
data = rv.rvs(size=10_000)
df2 = pd.DataFrame(data, columns=["x"])
df2.head(5)
```


Numerical Variables

Things here are more complicated as a numerical variable could follow many different distributions. Here we look at data following the standard normal distribution. To start we generate 10,000 values and put in to new DataFrame, df2.

```
rv = stats.norm()
data = rv.rvs(size=10_000)
df2 = pd.DataFrame(data, columns=["x"])
df2.head(5)
```


- Histogram is useful in depicting location, spread and shape.
- Curve, is estimate of shape given infinite data and infinite number of bins.
- Boxplots also depicts location, spread and shape, but uses median for estimate of centre. and quartiles for spread.

- Histogram is useful in depicting location, spread and shape.
- Curve, is estimate of shape given infinite data and infinite number of bins.
- Boxplots also depicts location, spread and shape, but uses median for estimate of centre. and quartiles for spread.
- Half the data is within the box. data points outside the whiskers (lines) are possible outliers, denoted by circles.

sns.ecdfplot(data=df2, x="x");

sns.ecdfplot(data=df2, x="x");

 Represents the proportion of observations less than or equal to given value.

sns.ecdfplot(data=df2, x="x");

 Represents the proportion of observations less than or equal to given value. import pingouin as pg
pg.qqplot(df2.x);

sns.ecdfplot(data=df2, x="x");

 Represents the proportion of observations less than or equal to given value. import pingouin as pg
pg.qqplot(df2.x);

• Plot of observed quantiles against theoretical (assumed normal) quantiles. If both sets of quantiles came from the same distribution, the points lie on a line (approx.).

Example — Dataset: Tips, Feature: total_bill

total hill

df.total_bill.describe()

244.000000 count 19.785943 mean std 8.902412 min 3.070000 25% 13.347500 50% 17.795000 75% 24.127500 50.810000 max

Name: total_bill, dtype: float

Example — Dataset: Tips, Feature: total_bill

df.total_bill.describe()

244.000000 count 19.785943 mean std 8.902412 min 3.070000 13.347500 25% 50% 17.795000 75% 24.127500 50.810000 max Name: total_bill, dtype: float

- Data is bell curve shaped, but right skewed (data is more spread out to the right).
- Outliers to the right.
- QQ-Plot indicate that data is not normal, but we could transform it to be more closer to normal.

Example — Dataset: Titanic, Feature: Fare

Fare

df.Fare.describe()

891.000000 count 32.204208 mean std 49,693429 min 0.000000 25% 7.910400 50% 14.454200 75% 31.000000 512.329200 max Name: Fare, dtype: float64

Example — Dataset: Titanic, Feature: Fare

 This variable is more skewed and dominated by its outliers which need to be resolved.

Warning — Plot Output Depends on Data Assumptions

```
df = pd.read_csv("data/train.csv")
sns.catplot(data=df, x="Fare", y="Survived");
```


Warning — Plot Output Depends on Data Assumptions

df = pd.read_csv("data/train.csv")
sns.catplot(data=df, x="Fare", y="Survived");

df = pd.read_csv("data/train.csv")
df.Survived = df.Survived.astype(str)
sns.catplot(data=df, x="Fare", y="Survived");

Warning — Plot Output Depends on Data Assumptions

df = pd.read csv("data/train.csv") df = pd.read_csv("data/train.csv") df.Survived = df.Survived.astvpe(str) sns.catplot(data=df, x="Fare", y="Survived"); sns.catplot(data=df. x="Fare", v="Survived"); 1.0 seaborn tries to infer the correct 0.8 graph based on the data values/type, but it does not always Survived get it correct. Survived stores 0 and 1 and has dtype **int**. • Converting to a Categorical 0.2 The Co. with numeric levels is not enough. 0.0 astype(str) converts 0 and 1 to "0" and "1". Fare 200 400 Fare

• After reading in the data, exploratory data analysis begins

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data
 - Are the column names descriptive and short, or do we need to rename them?

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data
 - Are the column names descriptive and short, or do we need to rename them?
 - What datatype is each column are there any surprises there?

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data
 - Are the column names descriptive and short, or do we need to rename them?
 - What datatype is each column are there any surprises there?
 - Mow are missing values handled, and can we standardise this?

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data
 - Are the column names descriptive and short, or do we need to rename them?
 - What datatype is each column are there any surprises there?
 - Mow are missing values handled, and can we standardise this?
- Pass 2 examines the data more closely, in a repeatable fashion

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data
 - Are the column names descriptive and short, or do we need to rename them?
 - What datatype is each column are there any surprises there?
 - Mow are missing values handled, and can we standardise this?
- Pass 2 examines the data more closely, in a repeatable fashion
 - How are (subsets of) the features and target(s) distributed?

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data
 - Are the column names descriptive and short, or do we need to rename them?
 - What datatype is each column are there any surprises there?
 - Mow are missing values handled, and can we standardise this?
- Pass 2 examines the data more closely, in a repeatable fashion
 - How are (subsets of) the features and target(s) distributed?
- Pandas and seaborn offer easy-to-use ways of visualising columns, noting

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data
 - Are the column names descriptive and short, or do we need to rename them?
 - What datatype is each column are there any surprises there?
 - Mow are missing values handled, and can we standardise this?
- Pass 2 examines the data more closely, in a repeatable fashion
 - How are (subsets of) the features and target(s) distributed?
- Pandas and seaborn offer easy-to-use ways of visualising columns, noting
 - their datatype

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data
 - Are the column names descriptive and short, or do we need to rename them?
 - What datatype is each column are there any surprises there?
 - Mow are missing values handled, and can we standardise this?
- Pass 2 examines the data more closely, in a repeatable fashion
 - How are (subsets of) the features and target(s) distributed?
- Pandas and seaborn offer easy-to-use ways of visualising columns, noting
 - their datatype
 - their cardinality

- After reading in the data, exploratory data analysis begins
- Pass 1 is all about assessing the structure and cleanliness of the data
 - Are the column names descriptive and short, or do we need to rename them?
 - What datatype is each column are there any surprises there?
 - Mow are missing values handled, and can we standardise this?
- Pass 2 examines the data more closely, in a repeatable fashion
 - How are (subsets of) the features and target(s) distributed?
- Pandas and seaborn offer easy-to-use ways of visualising columns, noting
 - their datatype
 - their cardinality
 - the visualisation objective: observe distributions or relationships within a column