Gedankenaufschrieb zur Logik-Klausur WS 14/15

Bei Kebekus

Gedankenaufschrieb zur Logik-Klausur WS 14/15 bei Kebekus

Anmerkung

Dies ist ein Gedankenaufschrieb. Keine Garantie für Richtigkeit der Aufgaben (obwohl ich mir doch ziemlich sicher bin). Die Klausur dauerte 2 Stunden. Ein handschriftlicher DIN-A4-Zettel war als Hilfsmittel erlaubt.

Aufgabe 1 (4 Punkte)

- a) Bringen Sie die folgende Formel in KNF.
- b) Bringen Sie die folgende Formel in DNF.

$$((A \lor B) \leftrightarrow ((B \land C) \rightarrow A))$$

Aufgabe 2 (4 Punkte)

Welche der folgenden Formeln sind erfüllbar? Welche sind allgemeingültig? Begründen Sie Ihre Antwort.

a)
$$((A \to \neg B) \to \neg (C \land \neg A))$$

b)
$$((\neg(\neg A \lor B) \land \neg A) \to C)$$

c)
$$((\neg(\neg A \land B) \lor \neg C) \to A)$$

d)
$$((\neg A \to C) \leftrightarrow \neg (C \lor A))$$

Aufgabe 3 (4 Punkte)

Sei A_i eine aussagenlogische Variable, Φ_i eine aussagenlogische Formel, die wie folgt rekursiv definiert ist:

$$\Phi_0 = a_0$$

$$\Phi_n = \begin{cases} A_n \wedge \Phi_{n-1} & n_gerade \\ A_n \vee \Phi_{n-1} & n_ungerade \end{cases}$$

Und sei $\Gamma = \{\Phi_i, i \in \mathcal{N}\}$. Zeigen Sie, dass Γ erfüllbar ist.

Aufgabe 4 (4 Punkte)

Seien Φ und Ψ zwei semantisch äquivalente, aussagenlogische Formeln. Sei $\mathcal E$ eine weitere Formel. Sei A eine Variable. Sei $\mathcal E(A|\Psi)$ eine Formel, in der jedes A in $\mathcal E$ durch Ψ ersetzt wird, analog für $\mathcal E(A|\Phi)$. Zeigen Sie, dass $\mathcal E(A|\Phi)$ semantisch äquivalent ist zu $\mathcal E(A|\Psi)$. Hinweis: Dies können Sie z.B. induktiv über den Aufbau von $\mathcal E$ tun.

Aufgabe 5 (6 Punkte)

Sind die folgenden Mengen Turing-berechenbar? Sind Sie rekursiv aufzählbar? Begründen Sie Ihre Antwort.

- a) $\{a_i | a_i \in \mathcal{N}\}$, wobei a_i rekursiv definiert wie folgt: $a_0 = 2$

 - $a_1 = 3$

$$a_{n+1} = a_n * a_{n-1}$$

- b) $\{P(t)|P \text{ ist ein Python-Skript, das auf die Eingabe } t \text{ nicht stoppt } \}$.
- c) $\{(P, t, t')|P(t) \text{ stoppt und } P(t') \text{ stoppt } \}$

Aufgabe 6 (5 Punkte)

Sei $L = \{ \odot, c, \prec \}$ eine Sprache mit dem zweistelligen Funktionssymbol \odot , dem zweistelligen Prädikatensymbol \prec und der Konstanten c. Außerdem gibt es die 3 Strukturen:

$$A_1 = (\mathcal{Z}, +, 0, <)$$

$$A_2 = (\mathcal{N}, +, 0, <)$$

$$A_3 = (\mathcal{Z}, *, 2, <)$$

Beweisen Sie, dass die Menge der geraden natürlichen Zahlen inklusive der 0 durch jede der drei Strukturen definiert werden kann.

Beweisen Sie außerdem, dass A_1 nicht isomorph ist zu A_2 .

Aufgabe 7 (8 Punkte)

 $Sei\ L = \{P, f, c, Q, R\}$ eine Sprache mit dem einstelligen Funktionssymbol f, dem einstelligen Prädikatensymbol P, der Konstanten c und den beiden zweistelligen Prädikatensymbolen Q und R. Außerdem gibt es die Formelmenge $\Gamma = \{ \forall x (P(x) \land Q(x,c)), \forall x (R(x,f(x))) \}$

- a) Finden Sie eine L-Formel Φ , s.d. $\nvdash \Phi$ und $\nvdash \neg \Phi$.
- b) Finden Sie zwei nicht-isomorphe L-Strukturen, die Γ erfüllen.
- c) Sind folgende L-Formeln allgemeingültig? Sind Sie Tautologien? Begründen Sie Ihre Antwort.
 - $\Phi_1 = (\forall x P(x) \lor \forall x Q(x,c))$
 - $\Phi_2 = ((\forall x P(x) \land \forall x Q(x,c)) \to \forall x Q(x,c)$
 - $\Phi_3 = ((\forall x P(x) \land \forall x Q(x,c)) \to Q(x,c)$
 - $\Phi_4 = (\exists x R(f(x), x))$