

Assessment Blueprint - Unit 3 Two-Variable Statistics

Unit 3 Overview and Readiness (prerequisite skill assessment)

Item	TEKS
1	Math 8.11(C) contrast bivariate sets of data that suggest a linear relationship with bivariate sets of data that do not suggest a linear relationship from a graphical representation
2	Math 8.11(D) construct a scatterplot and describe the observed data to address questions of association such as linear, non-linear, and no association between bivariate data
3	Math 8.4(C) use data from a table or graph to determine the rate of change or slope and <i>y</i> -intercept in mathematical and real-world problems (<i>given the equation</i>) A3(C) graph linear functions on the coordinate plane and identify key features, including <i>x</i> -intercept, <i>y</i> -intercept, zeros, and slope, in mathematical and real-world problems (<i>from Unit 1</i>)

Unit 3 Section A

Item	TEKS
1	A4(C) write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems
2	A4(C) write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems
3	A4(C) write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems
4	A3(C) graph linear functions on the coordinate plane and identify key features, including x -intercept, y -intercept, zeros, and slope, in mathematical and real-world problems
5	A3(C) graph linear functions on the coordinate plane and identify key features, including x -intercept, y -intercept, zeros, and slope, in mathematical and real-world problems

Unit 3 Section B

Item	TEKS
1	A4(A) calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the

	linear association
2	A4(A) calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association
3	A4(A) calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association
4	A4(B) compare and contrast association and causation in real-world problems
5	A4(B) compare and contrast association and causation in real-world problems

Unit 3 Quiz

Item	TEKS
1	A4(C) write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems
2	A4(B) compare and contrast association and causation in real-world problems
3	A4(C) write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems
4	A4(A) calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association
5	A4(A) calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association
6	A4(A) calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association
7	A4(C) write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems

Unit 3 STAAR Review

Item	TEKS
1	A4(A) calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association
2	A4(C) write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems

3	A4(B) compare and contrast association and causation in real-world problems
4	A4(C) write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems
5	A4(B) compare and contrast association and causation in real-world problems
6	A5(B) solve linear inequalities in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides
7	A3(H) graph the solution set of systems of two linear inequalities in two variables on the coordinate plane
8	A2(I) write systems of two linear equations given a table of values, a graph, and a verbal description
9	A5(A) solve linear equations in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides
10	A3(C) graph linear functions on the coordinate plane and identify key features, including x -intercept, y -intercept, and slope, in mathematical and real-world problems

Unit 3 Project

TEKS

A4(A) calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association.

A4(B) compare and contrast association and causation in real-world problems.

A4(C) write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems.