INTRODUCTION

Three datasets were provided for analysis. Prescription, Drugs and Medical Practice csv files. These datasets are related and consists of information on how drugs are prescribed by medical practices in Bolton.

PART 1

Database creation

I created the database PrescriptionsDB using the CREATE DATABASE statement. Used the USE statement to make use of the Prescription database.

Figure 1: Creation of Database

```
1 CREATE DATABASE PrescriptionsDB;
2 USE PrescriptionsDB;
4 GO
5
```

Table Creation

I created the tables for the PrescriptionsDB database by importing the flat files into my SSMS interface. Right clicked on the database on the object explorer, then clicking on Task then import flat files.

Figure 2: Importing flat files

After clicking on the import file the windows below **(Figure 3)** popped up, showing the introduction page

Figure 3: Introduction page

Medical_Practice

I clicked on next which then led me to the specify input file page. I clicked the browse button which allowed me to locate the file path of the files I imported. I also imputed the name of my tables and left the table schema as default(dbo).

Figure 4: Specify input file

After specifying the filepath for Medical_Practice as the file to import. Then clicked on next and was led to the Preview data page. Here I was able to preview the first 50 rows of the Medical Practice data, view the data types and have an idea of the length of the character of the various columns.

Figure 5: Preview Data

I modified the columns in my data, PRACTICE_CODE contains unique characters for each row with no repetition, hence I made it the primary key.

I left ADDRESS_2, ADDRESS_3, ADDRESS_4 as NULL because they are used to collect secondary address information so they are not compulsory since the primary information in ADDRESS_1 and POSTCODE is filled and this is enough information.

I changed the data type of both the PRACTICE_CODE and POSTCODE from nvarchar(50) to nvarchar(10) because the length of the characters of these columns do not require that much storage.

Figure 6: Modifying Columns

Clicked on next and my file was imported successfully.

Figure 7: Result of files imported

DRUGS

I clicked the browse button in **Figure 8** which allowed me to locate the Drugs filepath. Imputed the Drugs as the name of my table and left the table schema as default(dbo).

Figure 8: Specify Input file

After specifying the Drugs as the file to import. Then clicked on next and was led to the Preview data page. Here I was able to preview the first 50 rows of the Drugs data, view the data types and have an idea of the length of the character of the various columns.

< Previous

Next >

Cancel

Figure 9: Preview of the Drugs dataset

Clicked on next and on this screen I modified the columns in my data. I made BNF_CODE the primary key has this contains unique characters for each row with no repetition. I changed the data type of both the CHEMICAL_SUBSTANCE_BNF_DESCR and BNF_CHAPTER_PLUS_CODE from nvarchar(50) to nvarchar(100) because the length of the characters of these columns requires more storage.

Figure 10: Modify columns

Clicked on next and my file was imported successfully.

Figure 11: Results showing a successful importation

PRESCRIPTION

I clicked the browse button which allowed me to locate the Prescription file path. Imputed the Prescriptions as the name of my table and left the table schema as default(dbo).

Figure 12: Specify Input File

After specifying the Prescription as the file to import. Then clicked on next and was led to the Preview data page. Here I was able to preview the first 50 rows of the Prescription data, view the data types and have an idea of the length of the character of the various columns.

Figure 13: Preview Data

Clicked on next and on this screen I modified the columns in my data. I made PRESCRIPTION_CODE the primary key has this contains unique characters for each row with no repetition and used the data type INT because the column contains whole numbers only.

The PRACTICE_CODE and BNF_CODE has the data type nvarchar because both columns contains both numbers and letters in their characters.

The data type numeric() was used for the column QUANTITY because it contains both whole and decimal numbers.

Item column has the data type small int because they contain whole numbers which are too large to be stores in tinyint but not large enough for small int.

The last column ACTUAL_COST has the data type money because it contains the amount the item costs.

Figure 14: Modify Column

Clicked on next and my file was imported successfully.

Figure 15: Results showing a successful import of data

After successfully importing all three tables I added the foreign key constraint to PRACTICE CODE and BNF_CODE column in the Prescription table using the ALTER statement as shown in Figure 17 below;

```
6 PALTER TABLE [dbo].[Prescriptions]

7 ADD CONSTRAINT fk_Medical_Practice FOREIGN KEY (PRACTICE_CODE) REFERENCES

8 Medical_Practice (PRACTICE_CODE);

9 GO

10

11

12 PALTER TABLE [dbo].[Prescriptions]

13 ADD CONSTRAINT fk_Drugs FOREIGN KEY (BNF_CODE) REFERENCES Drugs (BNF_CODE);

14 GO
```

Figure 16

Figure 17: A Database Diagram showing the relationship between the tables

PART 2

Assuming that every drug that is a tablet or capsule has these words in the BNF_DESCRIPTION column.

```
FSELECT *
FROM dbo.Drugs
WHERE [BNF_DESCRIPTION] LIKE '%tablet%' or [BNF_DESCRIPTION] LIKE '%capsule%';
GO
```

Figure 18

I used the SELECT statement to select rows in each column FROM the DRUGS table where BNF_DESCRIPTION had the word tablets and capsules within its sentences.

Results Messag	es		
BNF_CODE	CHEMICAL_SUBSTANCE_BNF_DESCR	BNF_DESCRIPTION	BNF_CHAPTER_PLUS_CODE
1 0101010I0AAAEAE	Magnesium oxide	Magnesium oxide 100mg tablets	01: Gastro-Intestinal System
2 0101010I0BEAAA0	Magnesium oxide	Oromag 160 capsules	01: Gastro-Intestinal System
3 0101010R0AAAAA	A Simeticone	Simeticone 100mg capsules	01: Gastro-Intestinal System
4 0101010R0AAAHA	H Simeticone	Simeticone 125mg capsules	01: Gastro-Intestinal System
5 0101010R0BHAAA	A Simeticone	WindSetlers 100mg capsules	01: Gastro-Intestinal System
6 010102100BBAQA	Compound alginates and proprietary indigestion p	Rennie Peppermint chewable tablets	01: Gastro-Intestinal System
7 010102100BBARA	Compound alginates and proprietary indigestion p	Rennie Spearmint chewable tablets	01: Gastro-Intestinal System
8 0101021B0BEAQA	Alginic acid compound preparations	Gaviscon Advance Mint chewable tablets (Reckitt	01: Gastro-Intestinal System
9 0101021B0BEARA	Alginic acid compound preparations	Gaviscon Double Action chewable tablets mint	01: Gastro-Intestinal System
10 0101021B0BEAUA	R Alginic acid compound preparations	Gaviscon Peppermint chewable tablets	01: Gastro-Intestinal System
11 0101021B0BEAW	R Alginic acid compound preparations	Gaviscon Strawberry chewable tablets	01: Gastro-Intestinal System

Figure 19: Result of Query in Figure 18

Table 1 above shows the first 11 rows of the result of query in figure 18. Every row in BNF_DESCRIPTION has the either the word tablet, tablets, capsule or capsules

PART 3

I wrote the query in Figure 20 to get the total quantity of each prescription. In the query.

Using the SELECT statement I retrieved PRESCITION_CODE, ITEMS and QUANTITY FROM the PRESCRITIONS table.

To return the total quantity I performed an arithmetic operation multiply the ITEMS and QUANTITY columns. I also used ROUND(), stating zero(0) as the parameter so as to round the total quantity up to the nearest the integer value.

SELECT PRESCRIPTION_CODE, ROUND ((items * Quantity),0) AS total_quantity FROM [dbo].[Prescriptions]

Figure 20

Figure 21: Result of Query in Figure 20

The result in figure 21 shows the prescription code and the total quantity of each prescription.

PART 4

The SELECT DISTINCT statement is used to retrieve a distinct list of chemical substances in the CHEMICAL_SUBSTANCE_BNF_DESCR column.

```
SELECT DISTINCT(CHEMICAL_SUBSTANCE_BNF_DESCR)
FROM dbo.Drugs
ORDER BY CHEMICAL_SUBSTANCE_BNF_DESCR
```

Figure 22

Figure 23: Results of the guery in Figure 22

I used the ORDER BY clause to sort the list alphabetically.

PART 5

The query in figure 21 below uses the SELECT statement to return the BNF_CHAPTER_PLUS_CODE.

I used the function COUNT() to retrieve the total number of prescription, AVG() the retrieve the average cost of prescription from the ACTUAL_COST, MIN() to retrieve the minimum cost of prescription from the ACTUAL_COST, MAX() to retrieve the maximum cost of prescription from the ACTUAL_COST

```
| SELECT d.BNF_CHAPTER_PLUS_CODE, COUNT(*) AS No_of_Prescription,
| AVG(p.ACTUAL_COST) AS Avg_Cost_Prescription, MIN(p.ACTUAL_COST) AS Min_Cost_Prescription,
| MAX(p.ACTUAL_COST) AS Max_Cost_Prescription
| FROM [dbo].[Prescriptions] p
| JOIN dbo.Drugs d
| on p.BNF_CODE = d.BNF_CODE
| GROUP BY d.BNF_CHAPTER_PLUS_CODE
| ORDER BY d.BNF_CHAPTER_PLUS_CODE;
```

I joined the Prescriptions and Drugs table on their BNF_CODE column to be able to access the column I needed in both tables.

I used the GROUP BY the BNF_CHAPTER_PLUS_CODE column together. Finally I ordered it by the BNF_CHAPTER_PLUS_CODE.

Figure 24

⊞ Results				
BNF_CHAPTER_PLUS_CODE	No_of_Prescription	Avg_Cost_Prescription	Min_Cost_Prescription	Max_Cost_Prescription
1 01: Gastro-Intestinal System	8777	35.1252	0.1405	2777.6906
2 02: Cardiovascular System	19186	35.9956	0.1311	11094.7521
3 03: Respiratory System	7057	75.873	0.1498	4161.8103
4 04: Central Nervous System	28866	28.3994	0.1311	2765.623
5 05: Infections	4657	21.2474	0.1966	1262.2079
6 06: Endocrine System	12462	61.1661	0.1685	3490.7024
7 07: Obstetrics, Gynaecology and Urinary-Tract Di	3999	25.4563	0.1498	803.4917
8 08: Malignant Disease and Immunosuppression	754	54.9382	0.29	2197.1551
9 09: Nutrition and Blood	7944	41.8156	0.1405	4250.4384
10 10: Musculoskeletal and Joint Diseases	3634	16.2459	0.2713	1476.6376
11 11: Eye	2676	21.4403	1.34	434.7997

Figure 25: Result of query from Figure 24

PART 6

In this query I used the SELECT statement to return the PRATICE_CODE, and used the aggregate function MAX() on the ACTUAL_COST column FROM the Prescriptions table.

I used GROUP BY the PRACTICE_CODE column.

The HAVING column is used to filter out any row where the maximum ACTUAL_COST is greater £4000.

Finally I ordered the table by the maximum cost from lowest to highest

```
SELECT PRACTICE_CODE, MAX(ACTUAL_COST) AS Maximum_cost
FROM dbo.Prescriptions
GROUP BY PRACTICE_CODE
HAVING MAX(ACTUAL_COST)>4000
ORDER BY MAX(ACTUAL_COST) DESC;
```

Figure 26

The

	PRACTICE_CODE	Maximum_cost
1	P82015	21570.9208
2	P82643	11031.5885
3	P82003	8659.596
4	P82007	7313.581
5	Y03079	6069.7747
6	P82016	4626.9594
7	P82023	4377.6525
8	P82607	4250.4384
9	P82010	4031.9573

Figure 27: Result of the Query in Figure 26

PART 7a

The query below was used to get the total number of chemical substance used by each practice.

The SELECT statement returns the PRACTICE_NAME from the Medical_Pratice table and it counts the number of CHEMICAL_SUBSTANCE_BNF_DESCR used from the Drugs table.

```
SELECT m.PRACTICE_NAME,

COUNT(d.CHEMICAL_SUBSTANCE_BNF_DESCR) AS NO_OF_CHEMICAL_SUBSTANCE
FROM dbo.Prescriptions p

JOIN dbo.Drugs d

ON p.BNF_CODE = d.BNF_CODE

JOIN dbo.Medical_Practice m

ON p.PRACTICE_CODE= m.PRACTICE_CODE

GROUP BY m.PRACTICE_NAME

ORDER BY COUNT(d.CHEMICAL_SUBSTANCE_BNF_DESCR) DESC
```

Figure 28

Medical_Practice and Drugs table have no foreign keys connecting them together, Using JOIN I combined Prescriptions and Drugs tables on the BNF_CODE column. Then used the JOIN statement to join Medical_Practice to Prescriptions table on the PRACTICE_CODE column which is present in.

I used GROUP BY clause to group the number of chemical substance by the PRACTICE_NAME. Then used ORDER BY to get the practice which uses the most chemical substance.

	PRACTICE_NAME	NO_OF_CHEMICAL_SUBSTANCE
1	UNSWORTH GROUP PRACTICE	4977
2	BOLTON COMMUNITY PRACTICE	4355
3	KEARSLEY MEDICAL CENTRE	4189
4	STONEHILL MEDICAL CENTRE	3920
5	KILDONAN HOUSE	3821
6	THE DUNSTAN PARTNERSHIP	3695
7	HARWOOD MEDICAL CENTRE	3676
8	DR MALHOTRA & PARTNERS	3479
9	HEATON MEDICAL CENTRE	3377
10	PIKES LANE 1	3173
11	SWAN LANE MEDICAL CENTRE	3058

Figure 29

PART 7b

The query below shows the total cost of prescription used by medical practice in Farnworth or Halliwell. It is assumed that the Adress_1 and postcode column is are enough to determine the address

Figure 30

Using the SELECT statement to retrieve the ADDRESS_1, POSTCODE and ACTUAL_COST, used the SUM function on ACTUAL_COST to the get Total_Cost.

Used JOIN to combine Medical_Practice and Prescriptions tables on PRACTICE_CODE to be able to retrieve this columns.

GROUP BY the ADDRESS 3, ADDRESS 1 and POSTCODE column.

Using HAVING to filter out rows that have Farnworth or Halliwell as their ADRESS 3.

The result shows that both Farnworth or Halliwell spent the same amount on prescription.

PART 7C

The query below shows a distinct list of ADDRESS_1 in the Medical_Practice table.

SELECT DISTINCT statement to retrieve the distinct addresses in the ADRESS_1 column from Medical_Practice table.

Figure 31

The result shows that there are 47 distinct address in the ADDRESS_1 column.

To sort it I used ORDER by ADDRESS_1 in ascending order.

PART 7D

This guery shows the top ten Presciption and their BNF_Description.

the SELECT statement to retrieves the BNF_Description.

I used the function COUNT() to retrieve the total number of prescription, and TOP() to retrieve the first ten rows

I joined the Prescriptions and Drugs table on their BNF_CODE column to be able to access the column I needed in both tables.

GROUP BY the BNF_Description column and using ORDER BY to sort the table by the Prescription_Count in the order of highest to lowest.

Figure 32

The result shows that Zapain 30mg/500mg tablets is the highest prescription count with 548 counts.

PART 7e

This query retrieves the all drugs and its prescription details

Using SELECT statement to retrieve all the rows FROM Prescriptions JOIN Drugs ON BNF_CODE column.

Figure 33

CONCLUSION

In conclusion, using SQL I was able to get insight in making analysis from the three csv files provided. This was achieved using system function, SELECT statement, GROUPBY, ORDER BY, WHERE. I was able to see trends and patterns within the datasets. This helped understands how drugs are been prescribed by medical practice in Bolton