Sarthak Sastare Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

- 12. Let S =(0,1) ∪ (1,2) ∪ (3,4) and T = {0,1, 2,3}. Then which of the following statements is(are) true?
 [JEE Advanced 2023]
 - (A) There are infinitely many functions from S to T
 - (B) There are infinitely many strictly increasing function from S to T
 - (C) The number of continuous functions from S to T is at most 120
 - (D) Every continuous function from S to T is differentiable

 $d^2 f$

- 9. The domain of the definition of the function $f(x) = \frac{1}{4-x^2} + \log_{10}(x^3 x)$ is [JEE Main 2019]
 - (A) (-1,0) \cup (1,2) \cup (3,∞)
- (B) (-2, -1) ∪ (-1,0) ∪ (2, ∞)
- (C) (-1,0) ∪ (1,2) ∪ (2, ∞)
- (D) $(1,2) \cup (2,\infty)$
- 8. Let $f(x) = x^2 + \frac{1}{x^2}$ and $g(x) = x \frac{1}{x}$, $x \in R \{-1,0,1\}$.
 - If $h(x) = \frac{f(x)}{g(x)}$, then the local minimum value of h(x) is

[JEE - Main 2018]

- (A) -3
- (B) $-2\sqrt{2}$
- (C) 2√2

.. 1

- (D) 3
- Let f: R → R and g: R → R be two non-constant differentiable functions.
 - If $f'(x) = (e^{(f(x))-g(x)})g'(x)$ for all $x \in R$, and f(1) = g(2) = 1, then which of the following statement(s) is (are) TRUE? [JEE Ad. 2018]
 - (A) $f(2) < 1 \log_e 2$

(B) $f(2) > 1 - \log_e 2$

(C) $g(1) > 1 - \log_e 2$

- (D) $g(1) < 1 \log_e 2$
- 8. Let f(x) = (x + 1)(x + 2)(x + 3)(x + 4) + 5 where x ∈ [-6,6]. If the range of the function is [a, b] where a, b ∈ N then find the value of (a + b).

Vector:

The set of values of x for which the angle between the vectors $\vec{a} = x\hat{i} - 3\hat{j} - \hat{k}$ and 24. $\vec{b} = 2x \,\hat{i} + x \hat{j} - \hat{k}$ acute and the angle between the vector \vec{b} and the axis of ordinates is obtuse, is

(A) 1 < x < 2

(B) x > 2

(C) x < 1

(D) $x \le 0$

If a vector \vec{a} of magnitude 50 is collinear with vector $\vec{b} = 6\hat{i} - 8\hat{j} - \frac{1.7}{2}\hat{k}$ and makes an acute 25. angle with positive z-axis then:

(A) $\vec{a} = 4\vec{b}$

(B) $\vec{a} = -4\vec{b}$

(C) $\vec{b} = 4\vec{a}$ (D) none

Let \bar{a} and \bar{b} be two non-zero and non-collinear vectors then which of the following is/are 23. always correct?

(A) $\vec{a} \times \vec{b} = [\vec{a} \vec{b} \hat{i}] \hat{i} + [\vec{a} \vec{b} \hat{j}] + [\vec{a} \vec{b} \hat{k}] \hat{k}$

(B) $\vec{a}.\vec{b} = (\vec{a}.\hat{i})(\vec{b}.\hat{i}) + (\vec{a}.\hat{j})(\vec{b}.\hat{j}) + (\vec{a}.\hat{k})(\vec{b}.\hat{k})$

(C) if $\vec{u} = \hat{a} - (\hat{a} \cdot \hat{b}) \hat{b}$ and $\vec{v} = \hat{a} \times \hat{b}$ then $|\vec{u}| = |\vec{v}|$

(D) if $\vec{c} = \vec{a} \times (\vec{a} \times \vec{b})$ and $\vec{d} = \vec{b} \times (\vec{a} \times \vec{b})$ then $\vec{c} + \vec{d} = \vec{0}$

COMPREHENSION TYPE

Paragraph for questions nos. 24 to 26

Consider three vectors $\vec{p} = \hat{i} + \hat{j} + \hat{k}$, $\vec{q} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\vec{r} = \hat{i} + \hat{j} + 3\hat{k}$ and let \vec{s} be a unit vector, then

Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors which are pairwise non-collinear. If $\vec{a} + 3\vec{b}$ is collinear 9. with \ddot{c} and $\ddot{b} + 2\ddot{c}$ is collinear with \ddot{a} , then $\ddot{a} + 3\ddot{b} + 6\ddot{c}$ is: [AIEEE-2011]

(1) $\vec{a} + \vec{c}$

 $(2) \vec{a}$

(3) c

 $(4) \bar{0}$

 $|OX \times OY| =$ 18.

(A) sin (Q + R)

(B) sin 2R

 $(C) \sin (P + R)$

(D) sin (P + Q)