www.math.jby.edu	nerochl/whent-shrower. f	74°
------------------	--------------------------	-----

	E Richl II
	Aim: daugrous in a great are automatically httpy coherent. reconceptualize Ed.
	Lost time: a honotopy coheert diagram of shape of is
	Cd -> Space re-or a + A my X + Space
	C.A(a,b) -> Map(Xa, Xb) Set (in a kan coply, perturante of invertible!), Today: Let 5 be any category enabled in square Kan complexes. "locally Kan retegores!
	Today 1.1 She males & society to combra
1	"locally Kan rategores!
	S. Simplicial Computads
	f: x -> y is about fit can't be factored (& unit idx).
	A relegacy a feely operated by a reflexive directed) gaph of about arrows) iff
1	
	every and what a compile factor uniquely into atomics.
	If (simplicial computad): A simplicial codegory A = (A=A=A=A=A= = all v) ob A
-	is a supplicial computed of
_	(i) each An is treety generated. (by taking namous")
	(i) each An is treety generated. (by taking n-amous") associated (ii) For each [n] -> [m] in A the function An -> An preserves
	oto 111 ES. reflexive directed T
	Prop: Ed is a complicial computed.
	proof 1 Cd = EFU
	Fu A Fru (Fu)2 A = (Fu)3 A
	- O arrows are strong of caposible merphans
	- abonic O-arrows are apple arrows.
	- 1 - arrows are " in 1 set of parantheses.
	$(f_3h)(k)(e)(mn)$
	- Atomic 2-ans-s have few (-string).
1	-in arous n-parathosized.
+	
+	-atonic : one over parameterses,
	& (i) - (in) dubling up in paratheses proper man of lane asingle paratheses in which

	Ex: ω= 0 - 1 - 2 - 3 ->
	by prop, Cw is a simplicial compreted, with
	· obeω = obω = [n = 0]
	· O-anow from ; to k, ; se (only interesting case) is a stony of
	composable arrows determined by a subset T"
	?3, κ3 € T @ € [jk]= 3 t εω j ≤ t ≤ k3
	of - army " in brackets gives by
	{j, k} < T² < T° < [j, k]
	bectus of stag of arrows parartheses.
	on - amou is an u-bridgefed sequence of composible arms
	ξjeβcTc-c T2 c T° c [je]
	7 ordelyting sexual
	rested seg. (ble puratheres need to be "well-ferred"
	In total, Cu (j,k) has 2k-j-1 vertices.
	,
	Fg., Cw(0,3) 30,1,3}.
	30,1,7,33
	Upshot $C\omega(j,k) = \begin{cases} \emptyset & k < j \\ * & j = k \end{cases}$ $\left(() k \right)^{k-j-1} k \geq j (*)$
	(V) (*)
1	Noxt, as atomic O-arrow is the case T° = Ej, k?
	" 1-am T1= 85.h]
	n-and The signal (location of the whe poundless.
9	-9; atmic n-arous contain the critical vetex is the order (t)

	S. Homotopy wherent realization and nene functors
	Inside a, have [n] = 0 -> 2 -> >n fill subretegay.
	then [[n] is the handopy wherest n-simplex.
	We have a functor & Cat
	$[n] \longrightarrow \mathcal{E}[n]$
	a De is left a diont to N.
	Dosin: Set (I) s Catos
	. .
	N scat "homsty cheet dag as
	Honstopy coherent neve (MS), = { (n) -> D of shope &
eall Whila, \$	Honotopy wherest neve (NS), := $\{[n] \rightarrow S\}$ of wherest diagrams of where S of where S $S = Ch(1, S)$. "wherest diagrams is the shop of a object?
	Honotopy observed reclization (not a std. none in the literature)
	is left kan externer /Yorld's enhadding [n] >> Dn.
	A Set wang. Est = E[n]
	CX:= colinn Elins (being mexplicit
	here)
	filembedding.
	Similarly 1 => Gt yields an advantage
	$[n] \longmapsto [n] = 0 \rightarrow 1 \rightarrow \rightarrow n$
	SSet 1 (at nerve of A has {[n] -> A} or its n-suplices.
	"nerve"
	RM: Last tire defred BG C Cet the usual sset BG is nove of BG as we defred it.
	Thin: C.A = CA. That is, for any category A, the free resolution
	is isomorphic to homotpy whent indigation of the nerve.
	Rmh: doesn't just toller for aix of [n] by "tolog colins" as then frety do, if progree some direct

	Use:
	Prop. (Dugger-Spivah): for anx X = SSet, RX ssako a simplicial competad, with
	- obeX = X.
	= atomic O-arrows are 1-similar v= 4
Moroner Moroner	- alomic 1-around are non-degenorale k-simplies x 12 y list
X C> Y sSeti	The state of the s
	hos. Fatomick n-arms are le-simples x + y k>n, along with
	(#) {0,1}=T & Th-1 & & + CT = [0,6], i.e., an abi
	n-arm in C. N. (o, k) thit's not in any face,
	(shoteh):
	proof or main thin: Both EA and EA have ob & as objects (in case of free resolution,
	by dol'n, to other rese of colerent recliration by above)
	oatonic 0-aires are morphism in $A = 1$ -simplices in none.
	· atomic 2-ans are k-romposible maphines (once atobachike) in A = a k-simplex
	de house,
	« atomic n-anons." " " + n-bradotings = a k-supex plus (A).
	[plus check face + degeneracies];
	(plus could foll + defounding 11)
	Cor: A homotopy wherest diagram of slap A in D is
	(i) CA -> S OR A -> NS (b/c & -1 N)
	Simplicial functor. Simplicial map (implicitly, "new of A")
	Cor: A homotopy wherest diagram of slap A in S is advantages (i) CA -> S OR A -> N S (b/c & -1 N). Simplicial functor. Simplicial map (implicitly, "news-f A").
	(ii) Gh (A, S) = (NS)# (e-g., tale internal hom in sSet from A to NS
	Thm: (Corder-Porter): If Sis a Kan complex encoded simplical cologogy, than MS is a
	gues: -category
	Proof: An Alt adjunction p (Nik) -> S p /h (2n) -> Maple
	1 X
	P(Nn) betreck PAN(On) IVan
	grassing with the state of the
	1 month of the second of the s

	Now, we by suplies & apply kan oplix properties.
	Thn: (Boardma - Vogt):
	Coh (A, S) « quari-cat-sf S & Kan color andod.
	Proof: Coh (A, I) = M & + quest-rate are expratal ideal
	(moone pupul of being a quasi-cet is inherted by mapping is)
	To explais slogar, & cat-enrubed is lear options, & X, then simplicial maps.
۲	s Set \times \times \longrightarrow \mathbb{N} \mathbb{S}
	§
	CX -> \$
	htopy otherst diagram of shope X.
	& b mak: every qCot is equivalent to a g-cat of the form NS.
	=) ever map of su-plicial sets is automotically "houstpy cheat."
	sset = Top Sing(Y) is a low capture
	1=0->1 notata cuplex Fostad, "50" or "It" = 0 => 1 8.0 => 10.
	Fortad, "50" or "IT" = 0 = 1 8.0 = 10
	& highe.

.