

TEORÍA DE LA INFORMACIÓN Fuentes de Información (5)

Fuentes markovianas ¿qué se puede calcular en la aleatoriedad?

- La probabilidad de emitir cada símbolo s_i de la fuente F
 - \circ en distintos instantes (V_t, t = 1, 2,)
 - en estado estacionario (V*)
 - o en *t+n*, conocida la emisión en *t*
 - o en *t+n por primera vez,* conocida la emisión en *t*
- El "tiempo medio de espera" entre sucesivas emisiones de s_i
- Indicadores de "acople" en la secuencia de símbolos de F o entre fuentes

La emisión de símbolos de una fuente es un *proceso estocástico* (hay aleatoriedad, no certezas) \rightarrow se pueden obtener probabilidades y estimaciones

Indicadores: media y desvío

Para una fuente F que emite símbolos de un conjunto $\{s_i\}$, en cada t o en estado estacionario:

Media:
$$\langle S(t) \rangle = \sum_{i} s_{i} . P(S(t) = s_{i})$$
 Probabilidades marginales

Desviación estándar: $\sigma(t) = \sqrt{\sum_{i} (s_{i} - \langle S(t) \rangle)^{2} . P(S(t) = s_{i})}$

Ejemplo

Obtener la media y desvío para el símbolo emitido por F en V_0 , V_1 , V_2 , V_3 y en estado estacionario:

0	
1	
2	

Media

	V _o	V ₁	V_2	V_3		V *
	1	0	11/24	0,257	:	8/25
	0	1/2	7/24	0,389		9/25
ı	0	1/2	1/4	0,354		8/25
):	0	1,5	0,792	1,097	•••	1

Desvío St.	esvío S	St.
------------	---------	-----

0	0,5	0,815	0,775	•••	0,8
---	-----	-------	-------	-----	-----

Indicadores: media y desvío

Otro ejemplo

En **Procesamiento de Imágenes** (una imagen puede tratarse como una fuente de información)

- MEDIA: representa el promedio de los valores de intensidad de los pixeles de una imagen (o región)
- DESVÍO: medida de la dispersión o variación de los valores de píxeles alrededor de su media

Imagen de 256 tonos de gris

Imagen original

Imagen procesada - variaciones de media y desvío estándar

La MEDIA es uno de los filtros para "suavizado" de imágenes (reducción del efecto del "ruido")

Indicadores: autocorrelación

Para una fuente F que emite símbolos de un conjunto {s_i}, entre dos instantes t₁ y t₂, se puede calcular :

Autocorrelación:
$$R(t_1, t_2) = \langle S(t_1) S(t_2) \rangle = \sum_i \sum_j s_i s_j P(S(t_1) = s_i, S(t_2) = s_j)$$

conjuntas

Autocovarianza:
$$C(t_1, t_2) = \langle S(t_1) S(t_2) \rangle - \langle S(t_1) \rangle \langle S(t_2) \rangle$$

Coeficiente de autocorrelación:
$$r(t_1, t_2) = \frac{C(t_1, t_2)}{\sigma(t_1)\sigma(t_2)}$$

Nota: La emisión de símbolos de F en cada instante t se comporta como una variable aleatoria

Indicadores: autocorrelación

Cuando la fuente markoviana está en estado estacionario:

- los vectores de estado son estables a lo largo del tiempo: V*= M.V*
- la media y la desviación estándar son constantes:

$$\langle S(t)\rangle = \overline{S} \quad y \quad \sigma(t) = \overline{\sigma} , \forall t$$

• la autocorrelación, autocovarianza y factor de correlación sólo dependen del intervalo de tiempo transcurrido au (y no de los instantes específicos):

Autocorrelación:
$$R(t_1, t_{1+\tau}) = R(t_2, t_{2+\tau}) = R(\tau)$$

Autocovarianza:
$$C(t_1, t_{1+\tau}) = C(t_2, t_{2+\tau}) = C(\tau)$$

Coeficiente de autocorrelación:
$$r(t_1,t_{1+\tau})=r(t_2,t_{2+\tau})=r(\tau)$$
 , $\forall t_1,t_2$

Autocorrelación por muestreo computacional

Simular una secuencia de símbolos emitidos por la fuente markoviana estacionaria y acumular los productos de símbolos sucesivos emitidos a distancia au

Autocorrelación (τ):

Autocorrelación por muestreo computacional

Simular una secuencia de símbolos emitidos por la fuente markoviana estacionaria y acumular los productos de símbolos sucesivos emitidos a distancia au

Autocorrelación (τ):

Autocorrelación por muestreo computacional

Simular una secuencia de símbolos emitidos por la fuente markoviana estacionaria y acumular los productos de símbolos sucesivos emitidos a distancia au

Indicadores cruzados

Permiten cuantificar el grado de interdependencia o acople entre dos fuentes de información X y Y:

Correlación cruzada:

$$R_{XY}(t_1, t_2) = \langle X(t_1) Y(t_2) \rangle$$

X(t) Y(t) t1 t2

Covarianza cruzada:

$$C_{XY}(t_1, t_2) = \langle X(t_1)Y(t_2) \rangle - \langle X(t_1) \rangle \langle Y(t_2) \rangle$$

Coeficiente de correlación cruzada:
$$r_{XY}(t_1, t_2) = \frac{C_{XY}(t_1, t_2)}{\sigma_X(t_1)\sigma_Y(t_2)}$$

Indicadores cruzados

Cuando las fuentes markovianas son estacionarias, los indicadores cruzados sólo dependen del intervalo de tiempo transcurrido τ (y no de los instantes específicos):

Correlación cruzada: $R_{XY}(t_1,t_{1+\tau})=R_{XY}(t_2,t_{2+\tau})=R_{XY}(\tau)$

Covarianza cruzada: $C_{XY}(t_1, t_{1+\tau}) = C_{XY}(t_2, t_{2+\tau}) = C_{XY}(\tau)$

Coeficiente de correlación cruzada: $r_{XY}(t_1,t_{1+\tau}) = r_{XY}(t_2,t_{2+\tau}) = r_{XY}(\tau)$, $\forall t_1,t_2$

Indicadores cruzados

 Permiten analizar el grado de relación entre dos fuentes de información (señales, imágenes, ...) → Valores altos de correlación indican mayor acople

Aplicaciones:

- Reconocimiento de patrones
- Registración de imágenes (seguimiento satelital, fusión de imágenes,...)
- Identificación biométrica (por huellas dactilares, por el iris, señal de voz, ...)
- Análisis de procesos económicos, sociales, ambientales, etc.

Bibliografía

Chiang C.L. **An introduction to stochastic processes and their applications,** Ed. R. E. Krieger, 1980

Gonzalez R., Woods R. **Digital Image Processing**, 2nd ed. Prentice Hall, 2002

Papoulis A., **Probability Random Variables and Stochastic Processes**, McGraw-Hill, 1991