Hierarchical Clustering

Hierarchical clustering - Centroid Linkage

Label the Points

a cusus

2.5

0.0

7.5

10.0

5.0 x1

Dendrogram

Distance: 0.71

Distance: 0.71

Distance: 1

Distance: 1

Distance: 1.41

Distance: 1.41

Distance: 2.24

Distance: 2.24

Distance: 5.06

Distance: 8.03

Distance: 8.03

Dendrogram

Linkages

Linkage	Description
Complete	Maximal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>largest</i> of these dissimilarities.
Single	Minimal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <u>smallest</u> of these dissimilarities. Single linkage can result in extended, trailing clusters in which single observations are fused one-at-a-time.
Average	Mean intercluster dissimilarity. Compute all <u>pairwise</u> dissimilarities between the observations in cluster A and the observations in cluster B, and record the <u>average</u> of these dissimilarities.
Centroid	Dissimilarity between the centroid for cluster A (a mean vector of length p) and the centroid for cluster B. Centroid linkage can result in undesirable <i>inversions</i> .

Example

You are given the following four pairs of observations: $x_1 = (1,0)$, $x_2 = (1,1)$, $x_3 = (2,1)$, and $x_4 = (5,10)$.

Calculate the intercluster dissimilarity between $\underbrace{x_1,x_2}$ and $\underbrace{x_4}$ with different linkages and Euclidean distance.

cluste, L

$$d(\{(x,x_4\}, \{x_2\})) = max(\sqrt{116}, \sqrt{97}) = \sqrt{116}$$

(x) Single linkage: $d = min(\sqrt{116}, \sqrt{97}) = \sqrt{97}$

(x) A veva se: $d = \sqrt{116 + \sqrt{97}}$

Centroid A:
$$\left(\frac{1+1}{2}, \frac{1+0}{2}\right) = \left(1, \frac{1}{2}\right)$$
 M

$$HN = \sqrt{(5-1)^2 + (10-\frac{1}{2})^2} = \dots$$

$$(5-1)^2 + (10-\frac{1}{2})^2 = \cdots$$