

Basics of DEM

Hard-sphere:

- No deformation/overlap between particles are allowed
- Instantaneous and pair-wise contacts
- Applicable to dilute systems

Soft-sphere:

- Particles are allowed to have slight overlap
- Each contact may last for a period of time (processed for multiple time steps)
- A particle with multiple contacts is possible
- Applicable to dilute to dense system
- Adding LRF is straight forward

Basic Equations

• For each spherical particle *i*:

$$m_i \frac{d\vec{v}_i}{dt} = m_i \frac{d^2 \vec{x}_i}{dt^2} = \sum_{j \in CL_i} \vec{f}_{ij}^{p-p} + \vec{f}_i^{f-p} + m_i \vec{g}$$
 Newton's equation

Euler's equation

Linear Contact Force

Normal contact force:

$$\vec{f}_{ij}^n = \vec{f}_{el}^n + \vec{f}_{diss}^n = -(\underline{k}_n \delta_n) \vec{n}_{ij} - (\eta_n v_{rn}) \vec{n}_{ij}$$
• Tangential contact force:
$$\eta_n = \frac{-2 \ln e_n \sqrt{m_{eff} k_n}}{\sqrt{(\ln e_n)^2 + \sigma^2}}$$

 $\vec{f}_{ij}^t = \vec{f}_{el}^t + \vec{f}_{diss}^t = -(k_t \delta_t) \vec{t}_{ij} - (\eta_t v_{rt}) \vec{t}_{ij}$

• Friction:

$$\vec{f}_{ij}^{t} = -\mu \vec{f}_{ij}^{n} \operatorname{sgn}(\delta_{t}) \vec{t}_{ij}$$

$$ec{M}_{ij}^{r} = -\mu_{r}R_{e\!f\!f}\leftec{f}_{ij}^{n}
ightert\hat{\omega}_{ij}$$

Non-linear model

Normal contact force:

$$\vec{f}_{ij}^{n} = \vec{f}_{el}^{n} + \vec{f}_{diss}^{n} = \left(-\frac{4}{3} \underbrace{E_{eff}} \sqrt{R_{eff}} \delta_{n}^{3/2}\right) \vec{n}_{ij} - \left(\tilde{\eta}_{n} \delta_{n}^{1/4} v_{rn}\right) \vec{n}_{ij}$$

$$\tilde{\eta}_{n} = \frac{-2.2664 \ln e_{n} \sqrt{m_{eff}} \tilde{k}_{Hertz}}{\sqrt{\left(\ln e_{n}\right)^{2} + 10.1354}}$$
Tangential contact force:

Tangential contact force:

$$\vec{f}_{ij}^{t} = \vec{f}_{el}^{t} = -8 \underline{G_{eff}} \sqrt{R_{eff}} \delta_{n}^{1/2} \delta_{t} \vec{t}_{ij}$$

Friction

$$\vec{f}_{ij}^{t} = -\underline{\mu} \vec{f}_{ij}^{n} \operatorname{sgn}(\delta_{t}) \vec{t}_{ij} \qquad \qquad \vec{M}_{ij}^{r} = -\underline{\mu}_{r} R_{eff} \left| \vec{f}_{ij}^{n} \right| \hat{\omega}_{ij}$$

Simulation domain

Contact Search (2)

No Binary Search (NBS)

Figure 3.4 Discretized simulation domain and bounding sphere in 2D space

- DEM uses explicit integration
 - To avoid instabilities, the time step of integration should be less than period that it takes to transmit a wave from one particle to another

Linear model

$$\Delta t_{crit} \propto 2\pi \sqrt{\frac{m}{k}}$$

Non-Linear model

$$\Delta t_{crit} = \frac{\pi R_p}{\chi} \sqrt{\frac{\rho}{G}} \qquad \chi = 0.1631 v + 0.8766$$

- This requires integration time step around 1.0×10⁻⁶ and 1.0×10⁻⁵ s
 - This is achieved by **reduced** values of *k* or *Y*.

Time step should be a fraction of this critical time step

	Abbreviations	Force evaluations per time step	Extra variables ^a	Accuracy order	
Integration method				Position	Velocity
Single-step					
Forward Euler	FE	1	0	1	1
Modified Euler	ME	1	0	2	1
Taylor second order	TY2	1	0	2	1
Taylor third order	TY3	1	1	3	2
Taylor fourth order	TY4	1	2	4	3
Central difference	CD	1	0	2	2
Position Verlet	PV	1	0	2	2
Runge-Kutta fourth order	RK4	4	8	4	4
Multi-step					
Velocity Verlet	VE	1	1	3	2
Adams-Bashforth second order	AB2	1	2	2	2
Adams–Bashforth third order	AB3	1	4	3	3
Adams–Bashforth fourth order	AB4	1	6	4	4
Adams–Bashforth fifth order	AB5	1	8	5	5
Predictor-corrector					
Adams–Moulton third order	AB2AM3	1	5	3	3
Adams–Moulton fourth order	AB3AM4	1	7	4	4
Adams–Moulton fifth order	AB4AM5	1	9	5	5
Gear third order	Gear3	1	4	3	3
Gear fourth order	Gear4	1	5	4	4
Gear fifth order	Gear5	1	6	5	5

CFD-DEM with PhasicFlow

Integration of equations (3)

Having time step resolution (α)

$$\Delta t \leq \frac{1}{\alpha} \Delta t_{crit}$$