Name: Sneha Singh Batch: cometfwc008 Date: 26 march 2025

GATE Question Paper-2009

EC Question Number 36

If X = 1 in the logic equation:

$$\left[X+Z\left(\overline{Y}+(\overline{Z}+X\overline{Y})\right)\right]\left(\overline{X}+\overline{Z}(X+Y)\right)=1$$
 (A) $Y=Z$ (B) $Y=\overline{Z}$ (C) $Z=1$ (D) $Z=0$

Step-by-Step Solution:

Step 1: Understand the problem, We are given a logic equation and told that X=1. We need to find the condition on Y and Z that makes the equation true.

Step 2: Substitute X = 1 in the equation When X = 1, the equation becomes:

$$\left[1 + Z\left(\overline{Y} + (\overline{Z} + \overline{Y})\right)\right] \left(0 + \overline{Z}(1 + Y)\right) = 1$$

Since $\overline{1} = 0$, the equation simplifies to:

$$\left[1 + Z\left(\overline{Y} + (\overline{Z} + \overline{Y})\right)\right]\left(\overline{Z}(1 + Y)\right) = 1$$

Step 3: Simplify the first part, Using the property that 1 + (anything) = 1, we can simplify the first part:

$$1 \times \overline{Z}(1+Y) = 1$$

So, the equation reduces to:

$$\overline{Z}(1+Y) = 1$$

Step 4: Analyze the condition For $\overline{Z}(1+Y)=1$ to hold true, both conditions must be satisfied:

- $\overline{Z} = 1 \Rightarrow Z = 0$
- (1+Y)=1 is always true because anything ORed with 1 is 1.

Since both conditions must hold, the only solution is Z = 0.

Step 5: Why other options do not work

- If Z=1, then $\overline{Z}=0$, making the entire expression $0\times (1+Y)=0$, which does not satisfy the equation.
- Other conditions do not meet both requirements simultaneously.

Step 6: Conclusion

The only way this equation holds true is if Z = 0.

Final Answer: (D) Z = 0

Reducing the equation using karnaugh map:

$$\left[X + Z\left(\overline{Y} + (\overline{Z} + X\overline{Y})\right)\right] \left(\overline{X} + \overline{Z}(X + Y)\right) = 1$$

The above equation is multiplied and If X = 1 in the logic equation:

$$F = (X + Z\overline{Y} + \overline{Z} + X\overline{Y}Z)(\overline{X} + \overline{Z}(X + Y)) = 1$$

Step 1: We are given a logic equation and told that X = 1. We need to find the condition on Y and Z that makes the equation true.

Step 2: Substitute X = 1 in the equation. When X = 1, the equation becomes:

$$F = (1 + Z\overline{Y} + \overline{Z} + \overline{Y}Z)(\overline{1} + \overline{Z}(1 + Y))$$

Since $\overline{1} = 0$, the equation simplifies to:

$$F = (1 + Z)(\overline{Z}(1 + Y))$$

Step 3: Simplify the expression using Boolean algebra: 1 + Z = 1 (since 1 OR anything is 1)

So,

$$F = \overline{Z}(1+Y)$$

1 + Y = 1 (anything ORed with 1 is 1)

$$F = \overline{Z}$$

Step 4: Find the condition for F = 1 For F = 1, $\overline{Z} = 1$, which means:

$$Z = 0$$

Step 5: Final simplified expression using XOR. We observed through simplification that the function F can also be written as:

$$F = X \oplus Z$$

When X = 1, for F = 1 to hold, Z must be 0.

Expression:

$$F = X \oplus Z$$

Logic Gate Diagram:

X	Z	$F = X \oplus Z$
0	0	0
0	1	1
1	0	1
1	1	0

Table 1: XOR Gate Truth Table

Graph of XOR Operation $(F = X \oplus Z)$

Figure 1: Graph of XOR Logic $(F = X \oplus Z)$

Final Answer: (D) Z = 0