DOWNLOAD THIS FREE AT

www.vturesource.com

USN

10EC55

Fifth Semester B.E. Degree Examination, June/July 2016 Information Theory & Coding

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Define self information, entropy of the long independent messages, information rate symbol rate and mutual information. (05 Marks)
 - b. The output of an information source consists of 128 symbols, 16 of which occur with a probability of $\frac{1}{32}$ and the remaining occur with a probability of $\frac{1}{224}$. The source emits 1000 symbols per second. Assuming that the symbols are chosen independently, find the average information rate of this source. (05 Marks)
 - c. For the Markov source model shown in Fig. Q1 (c):
 - i) Compute the state probabilities.
 - ii) Compute the entropy of each state.
 - iii) Compute the entropy of the source.

(10 Marks)

Fig. Qi (c)

2 a. State the properties of en copy.

(04 Marks)

- b. A source emits one of the 5 symbols A, B, C, D & E with probabilities $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ and
 - $\frac{5}{16}$ respectively in an independent sequence of symbols. Using Shannon's binary encoding algorithm, find all the code words for the each symbol. Also find coding efficiency and redundancy. (08 Marks)
- Construct a Shannon-Fano ternary code for the following ensemble and find code efficiency and redundancy. Also draw the corresponding code tree.
 S = {S₁, S₂, S₃, S₄, S₅, S₆, S₇}; P = {0.3, 0.3, 0.12, 0.12, 0.06, 0.06, 0.04} with X = {0, 1, 2} (08 Marks)
- 3 a. Show that $H(X,Y) = H(Y) + H\left(\frac{X}{Y}\right)$. (05 Marks)
 - b. The noise characteristics of a non-symmetric binary channel is given in Fig. Q3 (b).

 (10 Marks)

- Receive i) Find H(X), H(Y), H $\left(\frac{X}{Y}\right)$ and H $\left(\frac{Y}{X}\right)$. Given $P(x_1) = \frac{1}{4}$, $P(x_2) = \frac{3}{4}$, $\alpha = 0.75$, $\beta = 0.9$
 - ii) Also find the capacity of the channel with $r_s = 1000$ symbols/sec.

1 of 2

10EC55

- A source has an alphabet consisting of seven symbols A, B, C, D, E, F & G with probabilities of $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{8}$, $\frac{1}{8}$, $\frac{1}{16}$ and $\frac{1}{16}$ respectively. Construct Huffman Quarternery code. Find coding efficiency. (05 Marks)
- State Shannon-Hartley theorem and explain its implications. (08 Marks) b. A Gaussian channel has a bandwidth of 4 kHz and a two-side noise power spectral density

 $\frac{\eta}{2}$ of 10^{-14} watts/Hz. The signal power at the receiver has to be maintained at a level less

than or equal to $\frac{1}{10}$ of milliwatt. Calculate the capacity of this channel. (06 Marks)

Explain the properties of mutual information.

(06 Marks)

- What are the types of errors and types of codes in error control coding? (04 Marks)
 - b. Consider a (6, 3) linear code whose generator matrix is, G =
 - Find all code vectors.
 - Find all the Hamming weights.
 - iii Find minimum weight parity check matrix.

iv) Draw the encoder circuit for the above codes. (10 Marks)

c. The parity check bits of a (7, 4) Hamming code are generated by, $C_5 = d_1 + d_3 + d_4;$ $C_6 = d_1 + d_2 + d_3$ whe. d1, d2, d3 & d4 are the message bits:

- i) Find generator matrix and parity check matrix.
- ii) Prove that $GH^T = 0$.

(06 Marks)

- 6 a. Define Binary cyclic codes. Explain the properties of cyclic codes.
 - b. A (15, 5) linear cyclic code has a generator polynomial,

 $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$

- i) Draw the block diagram of an encoder for this code $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$
- ii) Find the code vector for the message polynomial $D(x) = 1 + x^2 + x^4$ in systematic form. iii) Is $V(x) = 1 + x^4 + x^6 + x^8 + x^{14}$ a code polynomial? (12 Marks)
- Write short notes on:
 - BCH codes.
 - RS codes.
 - Golay codes.
 - Brust error correcting codes.

(20 Marks)

- What are convolutional codes? Explain encoding of convolutional codes using transform domain approach.
 - Consider the (3, 1, 2) convolutional code with $g^{(1)} = (1 \ 1 \ 0)$, $g^{(2)} = (1 \ 0 \ 1)$ and
 - Draw the encoder block diagram.
 - ii) Find the generator matrix.
 - iii) Find the code word corresponding to the information sequence (1 I 1 0 1) using time domain approach. (12 Marks)

2 of 2