Was ist ein Basiswechsel?

Betrachten wir einen Vektor \mathbf{v} im Koordinatenraum \mathbb{R}^2 .

Beispielsweise $\mathbf{v} := \begin{pmatrix} 9 \\ 5 \end{pmatrix}$.

Betrachten wir einen Vektor \mathbf{v} im Koordinatenraum \mathbb{R}^2 .

Beispielsweise $\mathbf{v} := \begin{pmatrix} 9 \\ 5 \end{pmatrix}$.

Bezüglich einer Basis $A=(\pmb{\alpha}_1,\pmb{\alpha}_2)$ besitzt der Vektor eine andere Darstellung.

Bezüglich einer Basis $A = (\mathbf{a}_1, \mathbf{a}_2)$ besitzt der Vektor eine andere Darstellung.

Sei z. B. $\mathbf{a}_1 := \binom{4}{1}$ und $\mathbf{a}_2 := \binom{1}{3}$.

Bezüglich einer Basis $A = (\mathbf{a}_1, \mathbf{a}_2)$ besitzt der Vektor eine andere Darstellung.

Sei z. B. $\mathbf{a}_1 := \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ und $\mathbf{a}_2 := \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.

$$\mathbf{v} = 2\mathbf{a}_1 + 1\mathbf{a}_2 = x\mathbf{a}_1 + y\mathbf{a}_2.$$

$$\mathbf{v} = 2\mathbf{a}_1 + 1\mathbf{a}_2 = x\mathbf{a}_1 + y\mathbf{a}_2.$$

Das Tupel $\mathbf{v}_A = (x, y)$ nennen wir *Koordinatenvektor* zum Vektor \mathbf{v} bezüglich Basis A.

$$\mathbf{v} = 2\mathbf{a}_1 + 1\mathbf{a}_2 = x\mathbf{a}_1 + y\mathbf{a}_2.$$

Das Tupel $\mathbf{v}_A = (x, y)$ nennen wir *Koordinatenvektor* zum Vektor \mathbf{v} bezüglich Basis A.

Angenommen, es gibt nun noch eine weitere Basis $B = (\mathbf{b}_1, \mathbf{b}_2)$. Z. B. $\mathbf{b}_1 := \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ und $\mathbf{b}_2 := \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

$$\mathbf{v} = 2\mathbf{a}_1 + 1\mathbf{a}_2 = x\mathbf{a}_1 + y\mathbf{a}_2.$$

Das Tupel $\mathbf{v}_A = (x, y)$ nennen wir *Koordinatenvektor* zum Vektor \mathbf{v} bezüglich Basis A.

Angenommen, es gibt nun noch eine weitere Basis $B = (\mathbf{b}_1, \mathbf{b}_2)$. Z. B. $\mathbf{b}_1 := \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ und $\mathbf{b}_2 := \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Wie findet man dann den Koordinatenvektor $\mathbf{v}_B = (x', y')$ mit

$$\mathbf{v} = x'\mathbf{b}_1 + y'\mathbf{b}_2?$$

Trick: Wir ordnen der Basis $A = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix}$) die Matrix

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

zu.

Trick: Wir ordnen der Basis $A = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix}$) die Matrix

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

zu. Dann gilt nämlich

$$\mathbf{v} = x\mathbf{a}_{1} + y\mathbf{a}_{2} = x \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} + y \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix}$$
$$= \begin{pmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = A\mathbf{v}_{A}.$$

Für die Basis B gilt diese Überlegung ebenfalls. Daher ist

$$\mathbf{v} = B\mathbf{v}_B = A\mathbf{v}_A.$$

Für die Basis B gilt diese Überlegung ebenfalls. Daher ist

$$\mathbf{v} = B\mathbf{v}_B = A\mathbf{v}_A$$
.

Weil B eine Basis ist, ist $det(B) \neq 0$, womit B eine inverse Matrix B^{-1} besitzt. Multiplizieren wir beide Seiten der Gleichung von links mit B^{-1} , erhalten wir

$$\mathbf{v}_B = B^{-1}B\mathbf{v}_B = B^{-1}A\mathbf{v}_A.$$

Das ist der gesuchte Koordinatenvektor.

Bemerkung. Für eine beliebige Matrix

$$B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

mit $0 \neq \det(B) = b_{11}b_{22} - b_{12}b_{21}$ gibt es die Formel

$$B^{-1} = \frac{1}{\det(B)} \begin{pmatrix} b_{22} & -b_{12} \\ -b_{21} & b_{11} \end{pmatrix}.$$

Anders ausgedrückt ist $B\mathbf{v}_B = A\mathbf{v}_A$ ein lineares Gleichungssystem in $\mathbf{v}_B = (x', y')$.

Anders ausgedrückt ist $B\mathbf{v}_B = A\mathbf{v}_A$ ein lineares Gleichungssystem in $\mathbf{v}_B = (x', y')$. Das ist

$$\begin{pmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{pmatrix}\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}\alpha_{11}&\alpha_{12}\\\alpha_{21}&\alpha_{22}\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}.$$

Anders ausgedrückt ist $B\mathbf{v}_B = A\mathbf{v}_A$ ein lineares Gleichungssystem in $\mathbf{v}_B = (x', y')$. Das ist

$$\begin{pmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{pmatrix}\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}.$$

Im Beispiel ist

$$\begin{pmatrix} 7 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 9 \\ 5 \end{pmatrix}.$$

Anders ausgedrückt ist $B\mathbf{v}_B = A\mathbf{v}_A$ ein lineares Gleichungssystem in $\mathbf{v}_B = (x', y')$. Das ist

$$\begin{pmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{pmatrix}\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}.$$

Im Beispiel ist

$$\begin{pmatrix} 7 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 9 \\ 5 \end{pmatrix}.$$

Das macht x' = 1 und y' = 2.

Woher ist eigentlich die Darstellung \mathbf{v}_A bekannt?

Woher ist eigentlich die Darstellung \mathbf{v}_A bekannt?

Die bekommen wir auf die gleiche Art. Die Gleichung

$$\mathbf{v} = A\mathbf{v}_A$$

müssen wir dazu bloß nach \mathbf{v}_A umformen. Man erhält $\mathbf{v}_A = A^{-1}\mathbf{v}$.

Woher ist eigentlich die Darstellung \mathbf{v}_A bekannt?

Die bekommen wir auf die gleiche Art. Die Gleichung

$$\mathbf{v} = A\mathbf{v}_A$$

müssen wir dazu bloß nach \mathbf{v}_A umformen. Man erhält $\mathbf{v}_A = A^{-1}\mathbf{v}$.

Anders ausgedrückt liegt ein lineares Gleichungssystem in $\mathbf{v}_{\mathcal{A}}$ vor.

Bemerkung. Man beachte

$$\mathbf{v} = \begin{pmatrix} 9 \\ 5 \end{pmatrix} = 9 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 9\mathbf{e}_1 + 5\mathbf{e}_2.$$

Bemerkung. Man beachte

$$\mathbf{v} = \begin{pmatrix} 9 \\ 5 \end{pmatrix} = 9 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 9\mathbf{e}_1 + 5\mathbf{e}_2.$$

Die Matrix zur Standardbasis $E = (\mathbf{e}_1, \mathbf{e}_2)$ ist die Einheitsmatrix

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Bemerkung. Man beachte

$$\mathbf{v} = \begin{pmatrix} 9 \\ 5 \end{pmatrix} = 9 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 9\mathbf{e}_1 + 5\mathbf{e}_2.$$

Die Matrix zur Standardbasis $E = (\mathbf{e}_1, \mathbf{e}_2)$ ist die Einheitsmatrix

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Daher gilt $\mathbf{v} = E\mathbf{v}_E = \mathbf{v}_E$. Das heißt, ein Koordinatenvektor ist sein eigener Koordinatenvektor.

Kurze Pause

Nun tauschen wir \mathbb{R}^2 gegen einen abstrakten Vektorraum V aus. Damit ist gemeint, dass nun nicht mehr a priori ein absolutes Koordinatensystem vorliegt.

Nun tauschen wir \mathbb{R}^2 gegen einen abstrakten Vektorraum V aus. Damit ist gemeint, dass nun nicht mehr a priori ein absolutes Koordinatensystem vorliegt.

Dies zieht einige Konsequenzen nach sich. Zum einen existiert für ${\bf v}$ keine absolute Darstellung mehr. Zudem sind auch die Basisvektoren davon betroffen.

Nun tauschen wir \mathbb{R}^2 gegen einen abstrakten Vektorraum V aus. Damit ist gemeint, dass nun nicht mehr a priori ein absolutes Koordinatensystem vorliegt.

Dies zieht einige Konsequenzen nach sich. Zum einen existiert für ${\bf v}$ keine absolute Darstellung mehr. Zudem sind auch die Basisvektoren davon betroffen.

Da die Matrizen A und B jeweils aus der absoluten Darstellung ihrer Basisvektoren aufgebaut sind, existieren auch diese nicht mehr.

Vektorraum \mathbb{R}^2

Vektorraum V

Was allerdings existiert, ist die Matrix

$$T^A_B:=B^{-1}A.$$

Was allerdings existiert, ist die Matrix

$$T_B^A := B^{-1}A.$$

Diese Matrix nennen wir Transformations matrix. Sie wandelt die Koordinaten von \mathbf{v} bezüglich Basis A in die Koordinaten bezüglich Basis B um.

Was allerdings existiert, ist die Matrix

$$T_B^A := B^{-1}A.$$

Diese Matrix nennen wir Transformations matrix. Sie wandelt die Koordinaten von \mathbf{v} bezüglich Basis A in die Koordinaten bezüglich Basis B um.

Als Formel:

$$\mathbf{v}_B = T_B^A \mathbf{v}_A.$$

Wie bekommt man nun aber die Transformationsmatrix, wenn lediglich eine Beziehung zwischen den Basisvektoren vorliegt? Gegeben sei die Beziehung

$$\mathbf{a}_1 = s_{11}\mathbf{b}_1 + s_{21}\mathbf{b}_2,$$

$$\mathbf{a}_2 = s_{12}\mathbf{b}_1 + s_{22}\mathbf{b}_2.$$

Wie bekommt man nun aber die Transformationsmatrix, wenn lediglich eine Beziehung zwischen den Basisvektoren vorliegt? Gegeben sei die Beziehung

$$\mathbf{a}_1 = s_{11}\mathbf{b}_1 + s_{21}\mathbf{b}_2,$$

 $\mathbf{a}_2 = s_{12}\mathbf{b}_1 + s_{22}\mathbf{b}_2.$

Dies lässt sich in Kurzform schreiben als

$$\mathbf{a}_i = \sum_{j=1}^2 s_{ji} \mathbf{b}_j.$$

Betrachten wir zur Hilfe kurz noch einmal den \mathbb{R}^2 . Da muss gelten

$$a_{ki} = \sum_{j=1}^{2} s_{ji} b_{kj}.$$

Betrachten wir zur Hilfe kurz noch einmal den \mathbb{R}^2 . Da muss gelten

$$a_{ki} = \sum_{j=1}^{2} s_{ji} b_{kj}.$$

Aber das ist doch eine Matrizenmultiplikation. Nämlich

$$A^T = S^T B^T$$

mit

$$S = \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix}.$$

Transposition auf beiden Seiten der Gleichung bringt

$$A = (S^T B^T)^T = BS.$$

Transposition auf beiden Seiten der Gleichung bringt

$$A = (S^T B^T)^T = BS.$$

Infolge gilt $S = B^{-1}A$.

Transposition auf beiden Seiten der Gleichung bringt

$$A = (S^T B^T)^T = BS.$$

Infolge gilt $S = B^{-1}A$.

Schließlich gelangen wir zu $T_B^A = S$.

Dies verbleibt auch dann gültig, wenn der Vektor ${\bf v}$ nicht in den Koordinatenraum \mathbb{R}^2 eingebettet ist.

Dies verbleibt auch dann gültig, wenn der Vektor ${\bf v}$ nicht in den Koordinatenraum \mathbb{R}^2 eingebettet ist.

Beweis. Laut der Beziehung zwischen den Basen gilt

$$\mathbf{v} = \sum_{i=1}^{2} (\mathbf{v}_{A})_{i} \mathbf{\alpha}_{i} = \sum_{i=1}^{2} (\mathbf{v}_{A})_{i} \sum_{j=1}^{2} s_{ji} \mathbf{b}_{j} = \sum_{j=1}^{2} \left(\sum_{i=1}^{2} s_{ji} (\mathbf{v}_{A})_{i} \right) \mathbf{b}_{j},$$

und somit

$$(\mathbf{v}_B)_j = \sum_{i=1}^2 s_{ji}(\mathbf{v}_A)_i.$$

Dies verbleibt auch dann gültig, wenn der Vektor ${\bf v}$ nicht in den Koordinatenraum \mathbb{R}^2 eingebettet ist.

Beweis. Laut der Beziehung zwischen den Basen gilt

$$\mathbf{v} = \sum_{i=1}^{2} (\mathbf{v}_{A})_{i} \mathbf{\alpha}_{i} = \sum_{i=1}^{2} (\mathbf{v}_{A})_{i} \sum_{j=1}^{2} s_{ji} \mathbf{b}_{j} = \sum_{j=1}^{2} \left(\sum_{i=1}^{2} s_{ji} (\mathbf{v}_{A})_{i} \right) \mathbf{b}_{j},$$

und somit

$$(\mathbf{v}_B)_j = \sum_{i=1}^2 s_{ji}(\mathbf{v}_A)_i.$$

Kurz $\mathbf{v}_B = S\mathbf{v}_A$. Demzufolge gilt $T_B^A = S$. \square

Bemerkung. Auf die folgende Weise kann man den Beweis in kompakter Form ohne Indexrechnungen durchführen.

Bemerkung. Auf die folgende Weise kann man den Beweis in kompakter Form ohne Indexrechnungen durchführen.

Zwar gibt es die Matrizen A,B nicht mehr, wir können aber dennoch die linearen Abbildungen Φ_A,Φ_B mit

$$\mathbf{v} = \Phi_B(\mathbf{v}_B) = \Phi_A(\mathbf{v}_A)$$

betrachten. Man beachte, dass $\mathbf{a}_k = \Phi_A(\mathbf{e}_k)$ und $\mathbf{b}_k = \Phi_B(\mathbf{e}_k)$ gilt. Die Beziehung ist damit kompakt notierbar als

$$\Phi_A = \Phi_B \circ S.$$

Bemerkung. Auf die folgende Weise kann man den Beweis in kompakter Form ohne Indexrechnungen durchführen.

Zwar gibt es die Matrizen A,B nicht mehr, wir können aber dennoch die linearen Abbildungen Φ_A,Φ_B mit

$$\mathbf{v} = \Phi_B(\mathbf{v}_B) = \Phi_A(\mathbf{v}_A)$$

betrachten. Man beachte, dass $\mathbf{a}_k = \Phi_A(\mathbf{e}_k)$ und $\mathbf{b}_k = \Phi_B(\mathbf{e}_k)$ gilt. Die Beziehung ist damit kompakt notierbar als

$$\Phi_A = \Phi_B \circ S$$
.

Demzufolge gilt

$$\Phi_B(\mathbf{v}_B) = \Phi_A(\mathbf{v}_A) = (\Phi_B \circ S)(\mathbf{v}_A) = \Phi_B(S\mathbf{v}_A).$$

Weil Φ_B invertierbar ist, darf man Φ_B^{-1} auf beide Seiten anwenden. Man erhält wieder $\mathbf{v}_B = S\mathbf{v}_A$.

Wurde eine ähnliche Rechnung nicht bereits mit Matrizen durchgeführt?

Wurde eine ähnliche Rechnung nicht bereits mit Matrizen durchgeführt?

Das ist kein Zufall. Bei Einbettung in den Koordinatenraum gilt

$$\Phi_A = A$$
,

$$\Phi_B = B$$
.

Das heißt, die Rechnung mit Φ_A , Φ_B ist lediglich eine abstrakte Form der bereits zuvor durchgeführten Rechnung mit A, B.

Umgekehrt ist mit der Einsicht $S = B^{-1}A$ die Beziehung für das betrachtete Beispiel ermittelbar. Mit

$$S = \begin{pmatrix} 7 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 7 & -1 \\ 3 & 20 \end{pmatrix}$$

findet man

$$\mathbf{a}_1 = \frac{7}{13}\mathbf{b}_1 + \frac{3}{13}\mathbf{b}_2,$$

 $\mathbf{a}_2 = \frac{-1}{13}\mathbf{b}_1 + \frac{20}{13}\mathbf{b}_2.$

Ende.

Juni 2021

Creative Commons CC0 1.0