

LAST NAME:FIRST NAME:

Solution

**THEORY OF COMPUTATION****CSCI 320, course # 44287****TEST # 1****March 19, 2014**

instructor: Bojana Obrenić

**NOTE:** It is the policy of the Computer Science Department to issue a failing grade in the course to any student who either gives or receives help on any test.

Your ability and readiness to follow the test protocol described below is a component of the technical proficiency evaluated by this test. If you violate the test protocol you will thereby indicate that you are not qualified to pass the test.

this is a **closed-book** test, to which it is **forbidden** to bring anything that functions as: paper, calculator, hand-held organizer, computer, telephone, voice or video recorder or player, or any device other than pencils (pens), erasers and clocks;

**answers** should be written only in the space marked "**Answer:** " that follows the statement of the problem (unless stated otherwise);

**scratch** should never be written in the answer space, but may be written in the enclosed scratch pad, the content of which *will not be graded*;

any problem to which you give **two or more (different) answers** receives the **grade of zero** automatically;

**student name** has to be written **clearly** on each page of the problem set and on the first page of **scratch** pad the during the **first five minutes of the test**—there is a penalty of **at least 1 point** for each missing name;

when requested, **hand in** the problem set together with the scratch pad;

**once you leave** the classroom, you cannot come back to the test;

your **handwriting** must be legible, so as to leave no ambiguity whatsoever as to what exactly you have written.

You may work on as many (or as few) problems as you wish.

**time:** 75 minutes.

each **fully solved problem:** 16 points.

full credit: 80 points.

C: 44 points.

Good luck.

|          |    |    |    |    |    |    |    |              |
|----------|----|----|----|----|----|----|----|--------------|
| problem: | 01 | 02 | 03 | 04 | 05 | 06 | 07 | total: [ % ] |
| grade:   |    |    |    |    |    |    |    |              |

**Problem 1** Let:  $\Sigma = \{a, b, c, d\}$  and let  $L$  be the language defined by the regular expression:

$$(a \cup b \cup c)(b \cup c \cup d)(\lambda \cup a)$$

State the cardinality of each of the following sets. (For a finite set, state the exact number. For an infinite set, state that it is infinite and specify whether it is countable or not.)

**Note:** If you are to receive any credit for this problem, the number of your correct answers must exceed the number of incorrect ones. In other words, every incorrect answer cancels out the credit earned by one correct answer; a missing answer is neither correct nor incorrect. If the score on this problem is negative, a score of zero is assigned for this problem.

1. set of all strings over  $\Sigma$  with length equal to 3

Answer: 64

2. set of all subsets of  $\Sigma$  with exactly 3 elements

Answer: 4

3. set of all languages over  $\Sigma$  that contain exactly 3 strings

Answer: infinite and countable

4. set of all strings in  $L$  whose length is equal to 3

Answer: 9

5. set of all regular expressions over  $\Sigma$

Answer: infinite and countable

6. set of all context-free grammars over  $\Sigma$

Answer: infinite and countable

7. set of all finite subsets of  $\Sigma^*$

Answer: infinite and countable

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

8. set of all infinite subsets of  $\Sigma^*$

Answer:

infinite and uncountable

9.  $L$

Answer: 18

10.  $L^*$

Answer: infinite and countable

11.  $\bar{L}$  (complement of  $L$  in  $\Sigma^*$ )

Answer:

infinite and countable

→ ~~10~~ set whose regular expression is  $\lambda \cup \emptyset \cup a$

Answer: 11 3 2  
not.

13. set whose regular expression is  $\lambda^* \emptyset^* a b$

Answer: 1

14. set whose regular expression is  $\lambda \emptyset a$

Answer: 0

15. set whose regular expression is  $\lambda^* \cup \emptyset^* \cup a \cup b$

Answer: 3

**Problem 2** Let  $L_1$  be the language represented by the regular expression:

$$a^*d^*b^*c^*$$

Let  $L_2$  be the language generated by the context-free grammar  $G_2 = (V, \Sigma, P, S_2)$ , where  $\Sigma = \{a, b, c, d\}$ ,  $V = \{S_2\}$ , and the production set  $P$  is:

$$S_2 \rightarrow aS_2cc \mid ddS_2b \mid \lambda$$

(a) Write 6 distinct strings that belong to  $L_1$  but do not belong to  $L_2$  (belong to  $L_1 \setminus L_2$ ). If such strings do not exist, state it and explain why.

Answer:

a, d, b, c, ab, ac

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

(c) Write 6 distinct strings that belong to  $L_1$  and  $L_2$  (belong to  $L_1 \cap L_2$ ). If such strings do not exist, state it and explain why.

Answer:

$\lambda, acc, ddcc, addbcc, adddddbbcc,$

aaddbcccc

(d) Write 6 distinct strings over alphabet  $\{a, b, c, d\}$  that do not belong to  $L_1$  and do not belong to  $L_2$  (belong to  $\overline{L_1} \cap \overline{L_2}$ ). If such strings do not exist, state it and explain why.

Answer:

ca, ba, da, bd, cd, bdd

(b) Write 6 distinct strings that belong to  $L_2$  but do not belong to  $L_1$  (belong to  $L_2 \setminus L_1$ ). If such strings do not exist, state it and explain why.

Answer:

ddaccb, ddaccccb,

ddddaccbb, ddddaaccbb,

ddddd a a a c c c c b b b b,

dddd d d d d a c c b b b b

(e) Write 6 distinct strings that belong to  $L_2^*$  but do not belong to  $L_2$ . If such strings do not exist, state it and explain why.

Answer:

accacc, dd b dd b, accddb,

dbacc, addbccacc, ddaccbddd

**Problem 2** Let  $L_1$  be the language represented by the regular expression:

$$b^*d^*a^*c^*$$

Let  $L_2$  be the language generated by the context-free grammar  $G_2 = (V, \Sigma, P, S_2)$ , where  $\Sigma = \{a, b, c, d\}$ ,  $V = \{S_2\}$ , and the production set  $P$  is:

$$S_2 \rightarrow bS_2cc \mid ddS_2a \mid \lambda$$

(a) Write 6 distinct strings that belong to  $L_1$  but do not belong to  $L_2$  (belong to  $L_1 \setminus L_2$ ). If such strings do not exist, state it and explain why.

Answer:

- ① bdac
- ② bdacc
- ③ bbdacc
- ④ bbbdacc
- ⑤ a
- ⑥ c

(b) Write 6 distinct strings that belong to  $L_2$  but do not belong to  $L_1$  (belong to  $L_2 \setminus L_1$ ). If such strings do not exist, state it and explain why.

Answer:

- ① dd bcc a
- ② dd bbcccc a
- ③ dd bbbccccc a
- ④ dd dd bcc a a
- ⑤ ddd ddd bcc a a a
- ⑥ dd dd bbcccc a a

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

(c) Write 6 distinct strings that belong to  $L_1$  and  $L_2$  (belong to  $L_1 \cap L_2$ ). If such strings do not exist, state it and explain why.

Answer:

- ①  $\lambda$
- ② bcc
- ③ dda
- ④ bddacc
- ⑤ bbcccc
- ⑥ dd dacc

(d) Write 6 distinct strings over alphabet  $\{a, b, c, d\}$  that do not belong to  $L_1$  and do not belong to  $L_2$  (belong to  $\overline{L_1} \cap \overline{L_2}$ ). If such strings do not exist, state it and explain why.

Answer:

- ① cb
- ② ca
- ③ cd
- ④ ad
- ⑤ ab
- ⑥ db

(e) Write 6 distinct strings that belong to  $L_2^*$  but do not belong to  $L_2$ . If such strings do not exist, state it and explain why.

Answer:

- ① bcc bcc
- ② dd a ddc
- ③ bddacc bddacc
- ④ dd bcc a dd bcc a
- ⑤ bcccc bcccc
- ⑥ ddd a a ddd dacc

**Problem 2** Let  $L_1$  be the language represented by the regular expression:

$$d^*a^*b^*c^*$$

Let  $L_2$  be the language generated by the context-free grammar  $G_2 = (V, \Sigma, P, S_2)$ , where  $\Sigma = \{a, b, c, d\}$ ,  $V = \{S_2\}$ , and the production set  $P$  is:

$$S_2 \rightarrow ddS_2c \mid aS_2bb \mid \lambda$$

(a) Write 6 distinct strings that belong to  $L_1$  but do not belong to  $L_2$  (belong to  $L_1 \setminus L_2$ ). If such strings do not exist, state it and explain why.

Answer:

d  
a  
b  
c  
db  
ac

(b) Write 6 distinct strings that belong to  $L_2$  but do not belong to  $L_1$  (belong to  $L_2 \setminus L_1$ ). If such strings do not exist, state it and explain why.

Answer:

add<sub>1</sub>cbb  
add<sub>2</sub>ddc<sub>2</sub>bb  
add<sub>3</sub>dd<sub>3</sub>dd<sub>3</sub>cc<sub>3</sub>bb  
add<sub>4</sub>dd<sub>4</sub>dd<sub>4</sub>dd<sub>4</sub>cc<sub>4</sub>bb  
add<sub>5</sub>dd<sub>5</sub>dd<sub>5</sub>dd<sub>5</sub>dd<sub>5</sub>cc<sub>5</sub>bb  
add<sub>6</sub>dd<sub>6</sub>dd<sub>6</sub>dd<sub>6</sub>dd<sub>6</sub>dd<sub>6</sub>cc<sub>6</sub>bb

LAST NAME:

FIRST NAME:

(c) Write 6 distinct strings that belong to  $L_1$  and  $L_2$  (belong to  $L_1 \cap L_2$ ). If such strings do not exist, state it and explain why.

Answer:

ddc  
abb  
ddabbc  
λ  
ddaabbbbc  
ddaaabb<sub>2</sub>bbbc

(d) Write 6 distinct strings over alphabet  $\{a, b, c, d\}$  that do not belong to  $L_1$  and do not belong to  $L_2$  (belong to  $\overline{L_1} \cap \overline{L_2}$ ). If such strings do not exist, state it and explain why.

Answer:

ad  
bd  
cd  
ca  
cb  
ba

(e) Write 6 distinct strings that belong to  $L_2^*$  but do not belong to  $L_2$ . If such strings do not exist, state it and explain why.

Answer:

ddcddc  
abbabb  
addcbbaddcbb  
ddcddcddc  
abbabbabb  
abbabbabbabb

**Problem 2** Let  $L_1$  be the language represented by the regular expression:

$$c^* d^* b^* a^*$$

Let  $L_2$  be the language generated by the context-free grammar  $G_2 = (V, \Sigma, P, S_2)$ , where  $\Sigma = \{a, b, c, d\}$ ,  $V = \{S_2\}$ , and the production set  $P$  is:

$$S_2 \rightarrow ccS_2a \mid dS_2bb \mid \lambda$$

(a) Write 6 distinct strings that belong to  $L_1$  but do not belong to  $L_2$  (belong to  $L_1 \setminus L_2$ ). If such strings do not exist, state it and explain why.

Answer: 1) c

2) cd

3) d

4) cdbb

5) cdd

6) cddd

(b) Write 6 distinct strings that belong to  $L_2$  but do not belong to  $L_1$  (belong to  $L_2 \setminus L_1$ ). If such strings do not exist, state it and explain why.

Answer: 1) dccaabb

2) d cccaaabb

3) d ccccccaabb

4) dcccccccccaaaaabb

5) dcccccccccccaaaaabb

6) dcccccccccccaaaaabb

LAST NAME:

FIRST NAME

(c) Write 6 distinct strings that belong to  $L_1$  and  $L_2$  (belong to  $L_1 \cap L_2$ ). If such strings do not exist, state it and explain why.

Answer: 1) ccdbba

2)  $\lambda$

3) ccddbbba

4) ccdddbbbba

5) ccdddbbbba

6) dbb

(d) Write 6 distinct strings over alphabet  $\{a, b, c, d\}$  that do not belong to  $L_1$  and do not belong to  $L_2$  (belong to  $\overline{L_1 \cap L_2}$ ). If such strings do not exist, state it and explain why.

Answer: 1) cad

2) dab

3) bad

4) a d

5) ac

6) ab

(e) Write 6 distinct strings that belong to  $L_2^*$  but do not belong to  $L_2$ . If such strings do not exist, state it and explain why.

Answer: 1) ccadbba

2) cca cca

3) ~~ddbbdbb~~

4) cca cca dbb

5) ccadbba cca

6) dbb cca dbb

**Problem 2** Let  $L_1$  be the language represented by the regular expression:

$$c^*d^*b^*a^*$$

Let  $L_2$  be the language generated by the context-free grammar  $G_2 = (V, \Sigma, P, S_2)$ , where  $\Sigma = \{a, b, c, d\}$ ,  $V = \{S_2\}$ , and the production set  $P$  is:

$$S_2 \rightarrow ccS_2a \mid dS_2bb \mid \lambda$$

(a) Write 6 distinct strings that belong to  $L_1$  but do not belong to  $L_2$  (belong to  $L_1 \setminus L_2$ ). If such strings do not exist, state it and explain why.

Answer:

a, b, c, d, ad, ab

(b) Write 6 distinct strings that belong to  $L_2$  but do not belong to  $L_1$  (belong to  $L_2 \setminus L_1$ ). If such strings do not exist, state it and explain why.

Answer:

dcabb  
dccccaaabb  
ddccabb  
ddccccaaabb  
dddc  
ddccccaaabb

LAST NAME:

FIRST NAME

(c) Write 6 distinct strings that belong to  $L_1$  and  $L_2$  (belong to  $L_1 \cap L_2$ ). If such strings do not exist, state it and explain why.

Answer:

ccaa  
dbb  
ccdbba  
ccccaa  
ddbbbb  
ccccdbba

(d) Write 6 distinct strings over alphabet  $\{a, b, c, d\}$  that do not belong to  $L_1$  and do not belong to  $L_2$  (belong to  $\overline{L_1 \cap L_2}$ ). If such strings do not exist, state it and explain why.

Answer:

ab  
ac  
ad  
abc  
abd  
abcd

(e) Write 6 distinct strings that belong to  $L_2^*$  but do not belong to  $L_2$ . If such strings do not exist, state it and explain why.

Answer:

ccadbb  
dbbcc  
ccadbbca  
dbbccabbb  
ccabbbdbb  
dbbcca

**Problem 2** Let  $L_1$  be the language represented by the regular expression:

$$d^*a^*b^*c^*$$

Let  $L_2$  be the language generated by the context-free grammar  $G_2 = (V, \Sigma, P, S_2)$ , where  $\Sigma = \{a, b, c, d\}$ ,  $V = \{S_2\}$ , and the production set  $P$  is:

$$S_2 \rightarrow ddS_2c \mid aS_2bb \mid \lambda$$

(a) Write 6 distinct strings that belong to  $L_1$  but do not belong to  $L_2$  (belong to  $L_1 \setminus L_2$ ). If such strings do not exist, state it and explain why.

Answer:

dabc

bc

d

a

b

c

(b) Write 6 distinct strings that belong to  $L_2$  but do not belong to  $L_1$  (belong to  $L_2 \setminus L_1$ ). If such strings do not exist, state it and explain why.

Answer:

\*  $\lambda \in L_1$  No.

addcbb

aaddcbbb

aaaaddcbbb

aaaaaddcbbb

aaaaaddcbbb

LAST NAME:

FIRST NAME:

(c) Write 6 distinct strings that belong to  $L_1$  and  $L_2$  (belong to  $L_1 \cap L_2$ ). If such strings do not exist, state it and explain why.

Answer:

ddc  
abb  
ddddcc  
aabb  
dddddccc  
aaabb

(d) Write 6 distinct strings over alphabet  $\{a, b, c, d\}$  that do not belong to  $L_1$  and do not belong to  $L_2$  (belong to  $\overline{L_1 \cap L_2}$ ). If such strings do not exist, state it and explain why.

Answer:

ad  
cd  
bd  
bcd  
bcad  
cabd

(e) Write 6 distinct strings that belong to  $L_2^*$  but do not belong to  $L_2$ . If such strings do not exist, state it and explain why.

Answer:

ddcdddc  
abbabb  
ddcddcddc  
abbabbabb  
ddcddcddcddc  
abbabbabbabb

**Problem 2** Let  $L_1$  be the language represented by the regular expression:

$$a^*d^*b^*c^*$$

Let  $L_2$  be the language generated by the context-free grammar  $G_2 = (V, \Sigma, P, S_2)$ , where  $\Sigma = \{a, b, c, d\}$ ,  $V = \{S_2\}$ , and the production set  $P$  is:

$$S_2 \rightarrow aS_2cc \mid ddS_2b \mid \lambda$$

(a) Write 6 distinct strings that belong to  $L_1$  but do not belong to  $L_2$  (belong to  $L_1 \setminus L_2$ ). If such strings do not exist, state it and explain why.

Answer:

• ac, a, cc, aaa, ad, db

LAST NAME:

FIRST NAME

(c) Write 6 distinct strings that belong to  $L_1$  and  $L_2$  (belong to  $L_1 \cap L_2$ ). If such strings do not exist, state it and explain why.

Answer:

addbcc,

\* ||| dbb, ddb ✓  
addbcc

aaccc  
aaacccccc

(d) Write 6 distinct strings over alphabet  $\{a, b, c, d\}$  that do not belong to  $L_1$  and do not belong to  $L_2$  (belong to  $\overline{L_1} \cap \overline{L_2}$ ). If such strings do not exist, state it and explain why.

Answer:

dbca  
cccc  
ba  
ca  
da  
bd

(b) Write 6 distinct strings that belong to  $L_2$  but do not belong to  $L_1$  (belong to  $L_2 \setminus L_1$ ). If such strings do not exist, state it and explain why.

Answer:

addaccbcc,  
addaddbccbcc,  
addaddaccbccbcc,  
addaddaddaccbccbccbcc,  
addaddaddaccbccbccbccbcc  
addaddaddaddaccbccbccbccbcc

(e) Write 6 distinct strings that belong to  $L_2^*$  but do not belong to  $L_2$ . If such strings do not exist, state it and explain why.

Answer:

addaccbcc addaccbcc  
accaccacc  
ddb ddb  
ddb dd b ddb  
a a c c c a a c c c  
dd ddb b dd dd bb

**Problem 2** Let  $L_1$  be the language represented by the regular expression:

$$c^*d^*b^*a^*$$

Let  $L_2$  be the language generated by the context-free grammar  $G_2 = (V, \Sigma, P, S_2)$ , where  $\Sigma = \{a, b, c, d\}$ ,  $V = \{S_2\}$ , and the production set  $P$  is:

$$S_2 \rightarrow ccS_2a \mid dS_2bb \mid \lambda$$

(a) Write 6 distinct strings that belong to  $L_1$  but do not belong to  $L_2$  (belong to  $L_1 \setminus L_2$ ). If such strings do not exist, state it and explain why.

Answer:

ccdd  
Cbb  
Cd  
ba  
bba  
bbba

(b) Write 6 distinct strings that belong to  $L_2$  but do not belong to  $L_1$  (belong to  $L_2 \setminus L_1$ ). If such strings do not exist, state it and explain why.

Answer:

dcabbb  
ddccabbbbb  
dddcacabbbbbb  
dccccaaabb  
dccccccaaabb  
dcccccccaabb

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

(c) Write 6 distinct strings that belong to  $L_1$  and  $L_2$  (belong to  $L_1 \cap L_2$ ). If such strings do not exist, state it and explain why.

Answer:

ccdbba  
ccddbbba  
ccaa  
dbb

(d) Write 6 distinct strings over alphabet  $\{a, b, c, d\}$  that do not belong to  $L_1$  and do not belong to  $L_2$  (belong to  $\overline{L_1} \cap \overline{L_2}$ ). If such strings do not exist, state it and explain why.

Answer:

ac  
bd  
dc  
acac  
bdcc  
dca

(e) Write 6 distinct strings that belong to  $L_2^*$  but do not belong to  $L_2$ . If such strings do not exist, state it and explain why.

Answer:

ccacca  
d b b d b b  
cc d b b a c c d b b a  
cc d d b b b b a d b b  
cc d d b b b a c c a  
d d b b b c c a

**Problem 2** Let  $L_1$  be the language represented by the regular expression:

$$c^*d^*b^*a^*$$

Let  $L_2$  be the language generated by the context-free grammar  $G_2 = (V, \Sigma, P, S_2)$ , where  $\Sigma = \{a, b, c, d\}$ ,  $V = \{S_2\}$ , and the production set  $P$  is:

$$S_2 \rightarrow ccS_2a \mid dS_2bb \mid \lambda$$

(a) Write 6 distinct strings that belong to  $L_1$  but do not belong to  $L_2$  (belong to  $L_1 \setminus L_2$ ). If such strings do not exist, state it and explain why.

Answer:

cc aa  
dd bb  
ccdd bbba  
ca  
db  
cb

(b) Write 6 distinct strings that belong to  $L_2$  but do not belong to  $L_1$  (belong to  $L_2 \setminus L_1$ ). If such strings do not exist, state it and explain why.

Answer:

d ccabb  
ddccabbbb

cccc aabb  
cc dcabba

cc dcabbabb a

cccc d ccabb aa

LAST NAME:

FIRST NAME

(c) Write 6 distinct strings that belong to  $L_1$  and  $L_2$  (belong to  $L_1 \cap L_2$ ). If such strings do not exist, state it and explain why.

Answer:

ccdbba.

7

cca  
dbb  
cccc aa  
dd bbbb

(d) Write 6 distinct strings over alphabet  $\{a, b, c, d\}$  that do not belong to  $L_1$  and do not belong to  $L_2$  (belong to  $\overline{L_1} \cap \overline{L_2}$ ). If such strings do not exist, state it and explain why.

Answer:

ac  
ab  
ad  
bd  
bc  
dc

(e) Write 6 distinct strings that belong to  $L_2^*$  but do not belong to  $L_2$ . If such strings do not exist, state it and explain why.

Answer:

ccacca  
dbdbbb  
ccacccca  
dbbcca dbb  
ccdbba ccdbba  
dcabbb dbb

**Problem 3** Let  $L$  be the language defined by the regular expression:

$$((aa \cup bb)^* d \cup c^* d)^* ab (ccc \cup ba^*)$$

(a) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

Answer:



(b) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, S, P)$$

$$\Sigma = \{a, b, c, d\}$$

$$V = \{S, A, J, K, B, T\}$$

P:

$$S \rightarrow AabB$$

$$A \rightarrow AA \mid Jd \mid Kd \mid \lambda$$

$$J \rightarrow JJ \mid aq \mid bb \mid \lambda$$

$$K \rightarrow KK \mid c \mid \lambda$$

$$B \rightarrow ccc \mid bT$$

$$T \rightarrow aT \mid \lambda$$

**Problem 3** Let  $L$  be the language defined by the regular expression:

$$((\underline{cc} \cup \underline{dd})^* a \cup \underline{b}^* a)^* cd (aaa \cup dc^*)$$

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

(a) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

Answer:



(b) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = \{ V, \Sigma, P, S \}, \Sigma = \{ a, b, c, d \}$$

$$V = \{ S, A, B, C, H, F \}$$

$$P: S \rightarrow AcdB$$

$$A \rightarrow HA \mid FA \mid AA \mid \lambda$$

$$H \rightarrow CCH \mid ddH \mid \lambda$$

$$F \rightarrow bF \mid \lambda$$

$$B \rightarrow aaa \mid dC,$$

$$C \rightarrow Cc \mid \lambda$$

**Problem 3** Let  $L$  be the language defined by the regular expression:

$$((aa \cup bb)^* d \cup c^* d)^* ab (ccc \cup ba^*)$$

(a) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

Answer:



(b) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, S, P) \quad \Sigma = \{a, b, c, d\}$$

$$V = \{S, A, D, E, B, M\}$$

$$S \rightarrow AabB$$

$$A \rightarrow AA \mid Dd \mid Ed \mid \lambda$$

$$D \rightarrow DD \mid aa \mid bb \mid \lambda$$

$$E \rightarrow EE \mid c \mid \lambda$$

$$B \rightarrow ccc \mid bM$$

$$M \rightarrow MM \mid a \mid \lambda$$

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

**Problem 3** Let  $L$  be the language defined by the regular expression:

$$((cc \cup dd)^* a \cup b^* a)^* cd (aaa \cup dc^*)$$

(a) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

Answer:



(b) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b, c, d\}$$

$$V = \{S, A, B, D, E, F, H\}$$

$$P: S \rightarrow AcdB$$

$$A \rightarrow \lambda \mid D \mid E \mid AA$$

$$D \rightarrow Fa$$

$$F \rightarrow \lambda \mid cc \mid dd \mid FF$$

$$E \rightarrow a \mid bE$$

$$B \rightarrow aaa \mid dH$$

$$H \rightarrow \lambda \mid cH$$

**Problem 3** Let  $L$  be the language defined by the regular expression:

$$((bb \cup cc)^*a \cup b^*a)^* bc (ccc \cup db^*)$$

(a) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

Answer:



(b) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b, c, d\}$$

$$P: \quad \begin{matrix} S \rightarrow A \quad b \in B \\ A \rightarrow D \quad a \in A \end{matrix} \quad \begin{matrix} A \rightarrow E \quad a \in A \\ E \rightarrow \lambda \quad E \in E \end{matrix} \quad \begin{matrix} D \rightarrow bb \quad c \in C \\ D \rightarrow cc \quad c \in C \\ D \rightarrow \lambda \quad D \in D \end{matrix} \quad \begin{matrix} D \rightarrow DD \\ D \rightarrow \lambda \end{matrix}$$

$$S \rightarrow A \quad b \in B$$

$$A \rightarrow D \quad a \in A \quad A \rightarrow A \quad a \in A$$

$$D \rightarrow bb \quad c \in C \quad D \rightarrow cc \quad c \in C \quad D \rightarrow \lambda \quad D \in D$$

$$E \rightarrow \lambda \quad E \in E$$

$$B \rightarrow cc \quad c \in C \quad B \rightarrow dk$$

$$K \rightarrow \lambda \quad b \in B$$

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

**Problem 4** Let  $L_1$  be a language over the alphabet  $\{a, b, c, d, e\}$ , defined as follows:

$$L_1 = \{a^m d^{2m} e^{3\ell} c^{4\ell} b^{5j} \text{ where } m, \ell, j \geq 0\}$$

Let  $L_2$  be a language over the alphabet  $\{a, b, c, d, e\}$ , defined as follows:

$$L_2 = \{b^{m+1} c^{\ell+2} d^{j+3} a^{j+4} e^{\ell+5} \text{ where } m, \ell, j \geq 0\}$$

✓ (a) Write a complete formal definition of a context-free grammar that generates  $L_1$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G_1 = (V_1, \Sigma, P_1, S_1)$$

$$\Sigma = \{a, b, c, d, e\}$$

$$V_1 = \{S_1, A, B, D\}$$

$$P_1: S_1 \rightarrow ABD$$

$$A \rightarrow \lambda \mid aAdd$$

$$B \rightarrow \lambda \mid eeeBcccc$$

$$D \rightarrow \lambda \mid bbbbbD$$

✓ (b) Write a complete formal definition of a context-free grammar that generates  $L_2$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G_2 = (V_2, \Sigma, P_2, S_2)$$

$$\Sigma = \{a, b, c, d, e\}$$

$$V_2 = \{S_2, E, F, H\}$$

$$P_2: S_2 \rightarrow EF$$

$$E \rightarrow b \mid bE$$

$$F \rightarrow ccHeeeee \mid cFe$$

$$H \rightarrow dddaaaa \mid dHa$$

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

✓ (c) Write a complete formal definition of a context-free grammar that generates  $L_1 L_2$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b, c, d, e\}$$

$$V = \{S_1, A, B, D, S_2, E, F, H, S\}$$

$$P: S \rightarrow S_1 S_2$$

$$S_1 \rightarrow ABD$$

$$A \rightarrow \lambda \mid aAdd$$

$$B \rightarrow \lambda \mid eeeBcccc$$

$$D \rightarrow \lambda \mid bbbbbD$$

$$S_2 \rightarrow EF$$

$$E \rightarrow b \mid bE$$

$$F \rightarrow ccHeeeee \mid cFe$$

$$H \rightarrow dddaaaa \mid dHa$$

✓ (d) Write a complete formal definition of a context-free grammar that generates  $L_1^*$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b, c, d, e\}$$

$$V = \{S_1, A, B, D, S\}$$

$$P: S \rightarrow \lambda \mid S_1 \mid SS$$

$$S_1 \rightarrow ABD$$

$$A \rightarrow \lambda \mid aAdd$$

$$B \rightarrow \lambda \mid eeeBcccc$$

$$D \rightarrow \lambda \mid bbbbbD$$

**Problem 4** Let  $L_1$  be a language over the alphabet  $\{a, b, c, d, e\}$ , defined as follows:

$$L_1 = \{ \underbrace{a^m}_{\text{1st}} \underbrace{d^{2\ell}}_{\text{2nd}} \underbrace{e^{3\ell}}_{\text{3rd}} \underbrace{c^{4j}}_{\text{4th}} \underbrace{b^{5j}}_{\text{5th}} \text{ where } m, \ell, j \geq 0 \}$$

Let  $L_2$  be a language over the alphabet  $\{a, b, c, d, e\}$ , defined as follows:

$$L_2 = \{ \underbrace{b^{m+1}}_{\text{1st}} \underbrace{c^{\ell+2}}_{\text{2nd}} \underbrace{d^{\ell+3}}_{\text{3rd}} \underbrace{a^{m+4}}_{\text{4th}} \underbrace{e^{j+5}}_{\text{5th}} \text{ where } m, \ell, j \geq 0 \}$$

(a) Write a complete formal definition of a context-free grammar that generates  $L_1$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S_1) \quad \Sigma = \{a, b, c, d, e\}$$

$$V = \{S_1, A, B, D\}$$

$$S_1 \rightarrow ABD$$

$$A \rightarrow \lambda \mid aA$$

$$B \rightarrow \lambda \mid ddBeee$$

$$D \rightarrow \lambda \mid ccccDbbbbbb$$

(b) Write a complete formal definition of a context-free grammar that generates  $L_2$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S_2) \quad \Sigma = \{a, b, c, d, e\}$$

$$V = \{S_2, E, F, G\}$$

$$S_2 \rightarrow EF$$

$$F \rightarrow eeeee \mid eF$$

$$E \rightarrow bGaaaa \mid bEa$$

$$G \rightarrow cddd \mid cGd$$

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

(c) Write a complete formal definition of a context-free grammar that generates  $L_1^*$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S_3) \quad \Sigma = \{a, b, c, d, e\}$$

$$V = \{S_3, S_1, A, B, D\}$$

$$S_3 \rightarrow \lambda \mid S_1 S_3 \quad \checkmark$$

$$S_1 \rightarrow ABD$$

$$A \rightarrow \lambda \mid aA$$

$$B \rightarrow \lambda \mid ddBeee$$

$$D \rightarrow \lambda \mid ccccDbbbbbb$$

(d) Write a complete formal definition of a context-free grammar that generates  $L_1 L_2$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S_4) \quad \Sigma = \{a, b, c, d, e\}$$

$$V = \{S_4, S_1, S_2, A, B, D, E, F, G\}$$

$$S_4 \rightarrow S_1 S_2 \quad \checkmark$$

$$S_1 \rightarrow ABD$$

$$A \rightarrow \lambda \mid aA$$

$$B \rightarrow \lambda \mid ddBeee$$

$$D \rightarrow \lambda \mid ccccDbbbbbb$$

$$S_2 \rightarrow EF$$

$$F \rightarrow eeeee \mid eF$$

$$E \rightarrow bGaaaa \mid bEa$$

$$G \rightarrow cddd \mid cGd$$

**Problem 4** Let  $L_1$  be a language over the alphabet  $\{a, b, c, d, e\}$ , defined as follows:

$$L_1 = \{a^m d^{2\ell} e^{3\ell} c^{4j} b^{5j} \text{ where } m, \ell, j \geq 0\}$$

$\underbrace{\quad}_{\Sigma} \quad \underbrace{\quad}_{A} \quad \underbrace{\quad}_{B}$

Let  $L_2$  be a language over the alphabet  $\{a, b, c, d, e\}$ , defined as follows:

$$L_2 = \{b^{m+1} c^{\ell+2} d^{\ell+3} a^{m+4} e^{j+5} \text{ where } m, \ell, j \geq 0\}$$

$\underbrace{\quad}_{\Sigma} \quad \underbrace{\quad}_{F} \quad \underbrace{\quad}_{D} \quad \underbrace{\quad}_{Z}$

(a) Write a complete formal definition of a context-free grammar that generates  $L_1$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S_1)$$

$$\Sigma = \{a, b, c, d, e\}$$

$$V = \{S_1, A, B, E\}$$

P:

$$S_1 \rightarrow EA\beta$$

$$A \rightarrow ddAeee \mid \beta$$

$$B \rightarrow cccBbbb \mid \beta$$

$$E \rightarrow aE \mid \beta$$

(b) Write a complete formal definition of a context-free grammar that generates  $L_2$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S_2)$$

$$\Sigma = \{a, b, c, d, e\}$$

$$V = \{S_2, A, B, D, E, F, Z\}$$

P:

~~$$S_2 \rightarrow AB$$

$$A \rightarrow ddAeee \mid \beta$$

$$B \rightarrow cccBbbb \mid \beta$$

$$E \rightarrow cEd \mid ccddd$$

$$D \rightarrow bDa \mid bFaaaa$$

$$F \rightarrow cFd \mid ccddd$$

$$Z \rightarrow eZ \mid eeeee$$~~

$$S_2 \rightarrow DZ$$

$$D \rightarrow bDa \mid bFaaaa$$

$$F \rightarrow cFd \mid ccddd$$

$$Z \rightarrow eZ \mid eeeee$$

LAST NAME:

FIRST NAME:

(c) Write a complete formal definition of a context-free grammar that generates  $L_1^*$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b, c, d, e\}$$

$$V = \{S, S_1, A, B, E\}$$

P:

$$S \rightarrow \lambda \mid SS \mid S_1 \quad \checkmark$$

$$S_1 \rightarrow EA\beta$$

$$A \rightarrow ddAeee \mid \beta$$

$$B \rightarrow cccBbbb \mid \beta$$

$$E \rightarrow aE \mid \beta$$

(d) Write a complete formal definition of a context-free grammar that generates  $L_1 L_2$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b, c, d, e\}$$

$$V = \{S, S_1, S_2, E, A, B, D, Z\}$$

P:

$$S \rightarrow S_1 S_2$$

$$S_1 \rightarrow EA\beta$$

$$S_2 \rightarrow DZ$$

$$A \rightarrow ddAeee \mid \beta$$

$$B \rightarrow cccBbbb \mid \beta$$

$$E \rightarrow aE \mid \beta$$

$$D \rightarrow bDa \mid bFaaaa$$

$$F \rightarrow cFd \mid ccddd$$

$$Z \rightarrow eZ \mid eeeee$$

**Problem 4** Let  $L_1$  be a language over the alphabet  $\{a, b, c, d, e\}$ , defined as follows:

$$L_1 = \{a^m \underline{d^{2\ell}} e^{3\ell} \underline{c^{4j}} b^{5j} \text{ where } m, \ell, j \geq 0\}$$

Let  $L_2$  be a language over the alphabet  $\{a, b, c, d, e\}$ , defined as follows:

$$L_2 = \{b^{m+1} \underline{c^{\ell+2}} d^{\ell+3} a^{m+4} e^{j+5} \text{ where } m, \ell, j \geq 0\}$$

(a) Write a complete formal definition of a context-free grammar that generates  $L_1$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\begin{array}{ll} P: & S \rightarrow ABD \\ & A \rightarrow AA | a | \lambda \\ & B \rightarrow ddBeee | \lambda \\ & D \rightarrow ccccDbbb | \lambda \end{array}$$

(b) Write a complete formal definition of a context-free grammar that generates  $L_2$ . If such a grammar does not exist, state it and explain why.

Answer:

$$\begin{array}{ll} P: & S \rightarrow FE \\ & F \rightarrow bFa | bHaaaa \\ & H \rightarrow cHd | ccddd \\ & E \rightarrow eE | eeeee \end{array}$$

LAST NAME:

FIRST NAME:

(c) Write a complete formal definition of a context-free grammar that generates  $L_1^*$ . If such a grammar does not exist, state it and explain why.

Answer:

$$\begin{array}{l} G = (V, \Sigma, P, S) \\ \Sigma = \{a, b, c, d, e\} \\ V = \{S, S_1, A, B, D\} \end{array}$$

$$\begin{array}{l} S \rightarrow SS | S_1 | \lambda \\ P: \quad S_1 \rightarrow ABD \\ A \rightarrow AA | a | \lambda \\ B \rightarrow ddBeee | \lambda \\ D \rightarrow ccccDbbb | \lambda \end{array}$$

(d) Write a complete formal definition of a context-free grammar that generates  $L_1 L_2$ . If such a grammar does not exist, state it and explain why.

Answer:

$$\begin{array}{ll} P: & S \rightarrow S_1 S_2 \\ & S_1 \rightarrow ABD \\ & A \rightarrow AA | a | \lambda \\ & B \rightarrow ddBeee | \lambda \\ & D \rightarrow ccccDbbb | \lambda \\ & S_2 \rightarrow FE \\ & F \rightarrow bFa | bHaaaa \\ & H \rightarrow cHd | ccddd \\ & E \rightarrow eE | eeeee \end{array}$$

**Problem 4** Let  $L_1$  be a language over the alphabet  $\{a, b, c, d, e\}$ , defined as follows:

$$L_1 = \{ \underbrace{a^{5m}}_A \underbrace{d^{4m}}_B \underbrace{e^{3\ell}}_C \underbrace{c^{2\ell}}_D \underbrace{b^j}_E \text{ where } m, \ell, j \geq 0 \}$$

Let  $L_2$  be a language over the alphabet  $\{a, b, c, d, e\}$ , defined as follows:

$$L_2 = \{ \underbrace{b^{m+5}}_A \underbrace{c^{\ell+4}}_B \underbrace{d^{j+3}}_C \underbrace{a^{j+2}}_D \underbrace{e^{\ell+1}}_E \text{ where } m, \ell, j \geq 0 \}$$

(a) Write a complete formal definition of a context-free grammar that generates  $L_1$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S) \quad V = \{S, A, B, D\}$$

$$\Sigma = \{a, b, c, d, e\}$$

$$P: S \rightarrow ABD$$

$$A \rightarrow aaaaa \quad A \rightarrow ddd \quad \lambda$$

$$B \rightarrow eee \quad B \rightarrow ccc \quad \lambda$$

$$D \rightarrow DD \quad D \rightarrow b \quad \lambda$$

(b) Write a complete formal definition of a context-free grammar that generates  $L_2$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S) \quad \Sigma = \{a, b, c, d, e\}$$

$$V = \{S, A, B, D\}$$

$$P: S \rightarrow AB$$

$$A \rightarrow bA \quad b \rightarrow bbbbb$$

$$B \rightarrow cBe \quad c \rightarrow ccc \quad Be \rightarrow De$$

$$D \rightarrow dDa \quad d \rightarrow ddd \quad Da \rightarrow a$$

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

(c) Write a complete formal definition of a context-free grammar that generates  $L_2 L_1$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S) \quad V = \{S, E, F, G, H, J, K, L\}$$

$$\Sigma = \{a, b, c, d, e\}$$

$$P: S \rightarrow FE$$

$$E \rightarrow GHJ$$

$$G \rightarrow aaaa \quad G \rightarrow bbbb \quad \lambda$$

$$H \rightarrow eeee \quad H \rightarrow cccc \quad \lambda$$

$$J \rightarrow JJ \quad J \rightarrow b \quad \lambda$$

$$F \rightarrow KL$$

$$K \rightarrow bK \quad b \rightarrow bbbb$$

$$L \rightarrow cLc \quad c \rightarrow cccc \quad M \rightarrow M \quad M \rightarrow dMa \quad d \rightarrow ddd \quad M \rightarrow Ma \quad M \rightarrow a$$

(d) Write a complete formal definition of a context-free grammar that generates  $L_2^*$ . If such a grammar does not exist, state it and explain why.

Answer:  $G = (V, \Sigma, P, S) \quad V = \{S, A, B, D\}$

$$S \rightarrow AB \quad S \rightarrow SS \quad \lambda \quad \Sigma = \{a, b, c, d, e\}$$

$$A \rightarrow bA \quad b \rightarrow bbbb$$

$$B \rightarrow cBe \quad c \rightarrow ccc \quad Be \rightarrow De$$

$$D \rightarrow dDa \quad d \rightarrow ddd \quad Da \rightarrow a$$

1. aa

**Problem 5** Let  $L$  be the set of all strings over the alphabet  $\{a, b\}$  whose length is divisible by 2 or 9.

(a) Write a regular expression that represents the language  $L$ . If such a regular expression does not exist, state it and explain why.

Answer:

$$((a\cup b)(a\cup b))^*$$

U

$$a\cup b)(a\cup b)(a\cup b)(a\cup b)(a\cup b)(a\cup b)(a\cup b)(a\cup b)(a\cup b)(a\cup b)$$

LAST NAME:

FIRST NAME:

(c) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = \{V, \mathcal{E}, S, P\} \quad \mathcal{E} = \{a, b\}$$

$$V = \{S, A, B, Z\}$$

P:

$$S \Rightarrow A \mid B$$

$$A \Rightarrow ZZ \mid \lambda$$

$$B \Rightarrow ZZZZZZZZ \mid \lambda$$

$$\begin{matrix} za \\ al \\ b \end{matrix}$$

(b) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

Answer:



**Problem 5** Let  $L$  be the set of all strings over the alphabet  $\{a, b\}$  whose length is divisible by 2 or 9.

(a) Write a regular expression that represents the language  $L$ . If such a regular expression does not exist, state it and explain why.

Answer:

$$((a \cup b)(a \cup b))^*$$

U

$$((a \cup b)(a \cup b))$$

✓

\*

P:

$$S \rightarrow A \mid B$$

$$A \rightarrow AA \mid ZZ \mid \lambda$$

$$B \rightarrow BB \mid ZZZZZZZZZZ \mid \lambda$$

$$Z \rightarrow a \mid b$$

✓

(b) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

Answer:



LAST NAME:

FIRST NAME:

(c) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b\} \quad V = \{S, A, B, Z\}$$

\*

P:

$$S \rightarrow A \mid B$$

$$A \rightarrow AA \mid ZZ \mid \lambda$$

$$B \rightarrow BB \mid ZZZZZZZZZZ \mid \lambda$$

$$Z \rightarrow a \mid b$$

✓

**Problem 5** Let  $L$  be the set of all strings over the alphabet  $\{a, b\}$  whose length is divisible by 2 or 9.

(a) Write a regular expression that represents the language  $L$ . If such a regular expression does not exist, state it and explain why.

Answer:

$$((a \cup b)(a \cup b))^* \cup \\ ((a \cup b)(a \cup b)(a \cup b)(a \cup b)(a \cup b)(a \cup b))^{*}$$

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

(c) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = \{V, \Sigma, P, S\}$$

$$V = \{S, A, B, D\}$$

$$S \rightarrow A \mid B$$

$$A \rightarrow AA \mid DD \mid \lambda$$

$$D \rightarrow a/b$$

$$B \rightarrow BB \mid DDDDDDDDDDD \mid \lambda$$

(b) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

Answer:



**Problem 5** Let  $L$  be the set of all strings over the alphabet  $\{a, b\}$  whose length is divisible by 3 or 8.

(a) Write a regular expression that represents the language  $L$ . If such a regular expression does not exist, state it and explain why.

Answer:

Let  $\Sigma = (a \cup b)$ , then the regular expression that represents  $L$  is:

$$(\Sigma\Sigma\Sigma)^* \cup (\Sigma\Sigma\Sigma\Sigma\Sigma\Sigma\Sigma\Sigma)^*$$

LAST NAME: \_\_\_\_\_

FIRST NAME: \_\_\_\_\_

(c) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b\}$$

$$V = \{S, S_1, S_2, \Sigma\}$$

$$P: S \rightarrow S_1 \mid S_2$$

$$\Sigma \rightarrow a \mid b$$

$$S_1 \rightarrow \lambda \mid \Sigma\Sigma \mid S_1 S_1$$

$$S_2 \rightarrow \lambda \mid \Sigma\Sigma\Sigma\Sigma\Sigma\Sigma\Sigma \mid S_2 S_2$$

(b) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

Answer:



**Problem 6** Let  $L$  be the set of all strings over the alphabet  $\{a, b, c\}$  which satisfy all of the following conditions:

1. contains an even number of  $c$ 's;
2. contains at least one  $a$ .

(a) Write 5 distinct strings that belong to  $L$ . If such strings do not exist, state it and explain why.

**Answer:**

a  
ab  
abb  
acc  
abcc

(b) Write a regular expression that represents the language  $L$ . If such a regular expression does not exist, state it and explain why.

Answer:

Let  $Z = (a \cup b)^*$ , then the regular expression that represents  $L^T S$ :

$(\Sigma c \Sigma c \Sigma)^* \Sigma a (\Sigma c \Sigma c \Sigma)^*$

$(\Sigma^c \Sigma^c \Sigma)^* \Sigma^c \Sigma^c a (\Sigma^c \Sigma^c \Sigma)^* \Sigma^c \Sigma$

(c) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

Answer:



LAST NAME:

FIRST NAME:

(d) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b, c\}$$

$$V = \{S, E, D, Z, A\}$$

$$P = S \rightarrow EAE \mid DaB$$

$$z \rightarrow \lambda |a|b|zz$$

$A \rightarrow \lambda | zczcz | AA$

$E \rightarrow A\bar{\chi}$

D → AZCZ

**Problem 6** Let  $L$  be the set of all strings over the alphabet  $\{a, b, c\}$  which satisfy all of the following conditions:

1. contains an even number of  $c$ 's;
2. contains at least one  $b$ .

(a) Write 5 distinct strings that belong to  $L$ . If such strings do not exist, state it and explain why.

**Answer:**

(b) Write a regular expression that represents the language  $L$ . If such a regular expression does not exist, state it and explain why.

**Answer:**

(c) Draw a state-transition graph of a finite automaton that accepts the language  $L$ . If such an automaton does not exist, state it and explain why.

**Answer:**



LAST NAME: \_\_\_\_\_

FIRST NAME: Schud~~o~~rn

(d) Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

**Answer:**

**Problem 7** Let  $L$  be the set of all strings over the alphabet  $\{a, b, c\}$  which satisfy all of the following properties.

1. the length of the string is an odd number greater than 3;
2. the middle letter is not  $c$ ;
3. the first letter is equal to the second letter;
4. the last letter is different from the next-to-last letter.

Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

**Answer:**

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b, c\}$$

$$V = \{S, A, B, D\}$$

$$P: S \rightarrow BAD$$

$$A \rightarrow a/b \mid \lambda$$

$$\lambda \rightarrow a/b/c$$

$$B \rightarrow aa/bb/cc$$

$$D \rightarrow ab/ac/ba/bc/ca/cb$$

LAST NAME:

FIRST NAME:

**Problem 7** Let  $L$  be the set of all strings over the alphabet  $\{a, b, c\}$  which satisfy all of the following properties.

1. the length of the string is an odd number greater than 3;
2. the middle letter is not  $a$ ;
3. the first letter is equal to the second letter;
4. the last letter is different from the next-to-last letter.

Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

Answer:

$$G = \{V, S, P\} \quad \Sigma = \{a, b, c\}$$

$$V = \{S, A, Z, T, J, K\}$$

P:

$$S \rightarrow A$$

$$A \rightarrow TZJ$$

$$Z \rightarrow KZK \mid b \mid c$$

$$T \rightarrow aa \mid bb \mid cc$$

$$J \rightarrow ab \mid ac \mid bc \mid ba \mid cb \mid ca$$

$$K \rightarrow ab \mid bc$$

LAST NAME:

FIRST NAME:

**Problem 7** Let  $L$  be the set of all strings over the alphabet  $\{a, b, c\}$  which satisfy all of the following properties.

LAST NAME:

FIRST NAME:

1. the length of the string is an odd number greater than 3;
2. the middle letter is not  $a$ ;
3. the first letter is different from the second letter;
4. the last letter is equal to the next-to-last letter.

Write a complete formal definition of a context-free grammar that generates the language  $L$ . If such a grammar does not exist, state it and explain why.

**Answer:**

$$G = (V, \Sigma, S, P)$$

$$\begin{array}{l} V = S, L, M, R, \bar{E} \\ \Sigma = \{a, b, c\} \\ P: \end{array}$$

$\text{S} \Rightarrow \text{OLMR}$

$$L \Rightarrow ab|ac|bc|ba|ca|cb$$

$$M \Rightarrow aMa|aMb|aMc|bMa|bMb|bMc|cMa|cMb|cMc|\bar{E}$$

$$E \Rightarrow b|c$$

$$R \Rightarrow aa|bb|cc$$

