Attilio Meucci

FACTORS ON DEMAND

Building a Platform for Portfolio Managers Risk Managers and Traders

ESTIMATION VERSUS ATTRIBUTION

STANDARD APPROACH TO FACTOR MODELING

RATIONALE OF FACTORS ON DEMAND

IMPLEMENTATION OF FACTORS ON DEMAND

APPLICATIONS OF FACTORS ON DEMAND

REFERENCES

Appendix: factor models pitfalls

 $N \times 1$ \mathbf{R} Returns of N securities from today to investment horizon

 $N \times 1$ | W Weights of N securities in portfolio

 $R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$ Portfolio return from today to investment horizon

Estimation (RM) versus Attribution (PM)

N imes 1 Returns of N securities from today to investment horizon

 $N \times 1$ | W Weights of N securities in portfolio

 $R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$ Portfolio return from today to investment horizon

RISK MANAGEMENT: ESTIMATION

Compute risk of portfolio return $R_{\mathbf{w}}$

Returns covariances

$$(\operatorname{SDev} \{R_{\mathbf{w}}\})^2 = \mathbf{w}' \overset{\downarrow}{\Sigma}_R \mathbf{w} :$$

N imes 1 Returns of N securities from today to investment horizon

 $N \times 1$ | W Weights of N securities in portfolio

 $R_{\mathbf{w}} = \mathbf{w}'\mathbf{R}$ Portfolio return from today to investment horizon

RISK MANAGEMENT: ESTIMATION

Compute risk of portfolio return $R_{\mathbf{w}}$

Returns covariances

$$(\operatorname{SDev}\{R_{\mathbf{w}}\})^2 = \mathbf{w}' \overset{\downarrow}{\Sigma}_R \mathbf{w} :$$

PORTFOLIO MANAGEMENT: ATTRIBUTION

Express portfolio return $R_{\mathbf{w}}$ as factors + residual :

$$R_{\mathbf{w}} = \sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}$$
 factor k

ESTIMATION VERSUS ATTRIBUTION

STANDARD APPROACH TO FACTOR MODELING

RATIONALE OF FACTORS ON DEMAND

IMPLEMENTATION OF FACTORS ON DEMAND

APPLICATIONS OF FACTORS ON DEMAND

REFERENCES

Appendix: factor models pitfalls

Standard Approach to Factor Modeling

BUILDING BLOCKS:

 \mathbf{R} $N \times 1$ Returns of securities

1) Structure R_n return of n-th

RISK MANAGEMENT: ESTIMATION

security

Compute risk of portfolio return $R_{\rm w}$

Returns covariances

$$(\operatorname{SDev}\{R_{\mathbf{w}}\})^2 = \mathbf{w}' \overset{\downarrow}{\Sigma}_R \mathbf{w} :$$

PORTFOLIO MANAGEMENT: ATTRIBUTION

Express portfolio return $R_{\mathbf{w}}$ as factors + residual :

$$R_{\mathbf{w}} = \sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}$$
 factor k

Standard Approach to Factor Modeling

BUILDING BLOCKS:

1) Structure R_i

RISK MANAGEMENT: ESTIMATION

Compute risk of portfolio return $R_{
m w}$

Returns covariances

$$(\operatorname{SDev} \{R_{\mathbf{w}}\})^2 = \mathbf{w}' \overset{\bullet}{\Sigma}_R \mathbf{w}$$

PORTFOLIO MANAGEMENT: ATTRIBUTION

Express portfolio return $R_{\mathbf{w}}$ as factors + residual :

$$R_{\mathbf{w}}$$
 = $\sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}$ factor k

Standard Approach to Factor Modeling

BUILDING BLOCKS:

1) Structure
$$R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n$$
 $N \times 1$ Returns of securities $N \times K$ Exposures of returns to factors $N \times K$ Systematic factors $N \times K$ Returns of securities $N \times K$ Exposures of returns to factors $N \times K$ Systematic factors $N \times K$ Returns of securities $N \times K$ Exposures of returns to factors $N \times K$ Systematic factors $N \times K$ Returns of securities

exposure of security n to shock for n-th systematic factor k

idiosyncratic

security

 \mathbf{R} $N \times 1$ Returns of securities

RISK MANAGEMENT: ESTIMATION

Compute risk of portfolio return $R_{\rm w}$ **Returns covariances**

$$(\operatorname{SDev} \{R_{\mathbf{w}}\})^2 = \mathbf{w}' \overset{\bullet}{\Sigma}_R \mathbf{w} :$$

PORTFOLIO MANAGEMENT: ATTRIBUTION

Express portfolio return $R_{\mathbf{w}}$ as factors + residual:

$$R_{\mathbf{w}} = \sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}$$
 factor k

Standard Approach to Factor Modeling

BUILDING BLOCKS:

1) Structure $R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n$ $\begin{cases} \mathbf{D} & N \times K \\ \mathbf{D} & N \times K \end{cases}$ Exposures of returns to factors $\mathbf{Z} & K \times 1 \\ \mathbf{\eta} & N \times 1 \end{cases}$ Idiosyncratic shocks

 \mathbf{R} $N \times 1$ Returns of securities

2) Structure is supported by Arbitrage Pricing Theory

RISK MANAGEMENT: ESTIMATION

Compute risk of portfolio return $R_{\mathbf{w}}$

Returns covariances

$$(\operatorname{SDev}\{R_{\mathbf{w}}\})^2 = \mathbf{w}' \overset{\downarrow}{\Sigma}_R \mathbf{w}$$

PORTFOLIO MANAGEMENT: ATTRIBUTION

Express portfolio return $R_{\mathbf{w}}$ as factors + residual:

$$R_{\mathbf{w}} = \sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}$$
 factor k

Standard Approach to Factor Modeling

BUILDING BLOCKS:

1) Structure
$$R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n$$

1) Structure $R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n$ $Returns of securities <math>\mathbf{Z} = K \times 1$ Systematic factors $\mathbf{Z} = K \times 1$ Systematic factors $\mathbf{Z} = K \times 1$ Independent $\mathbf{Z} = K \times 1$ Independent

- 2) Structure is supported by Arbitrage Pricing Theory
- 3) Structure implies efficient estimate of return distribution

Standard Approach to Factor Modeling

BUILDING BLOCKS:

1) Structure
$$R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n$$
 $Returns of securities $\mathbf{D} \ N \times K$ Exposures of returns to factors $\mathbf{Z} \ K \times 1$ Systematic factors $\mathbf{n} \ N \times 1$ Independent $\mathbf{n} \ N \times 1$ Independent$

$$\mathbf{R}$$
 $N \times 1$ Returns of securities

$$\mathbb{D}$$
 $N \times K$ Exposures of returns to factors

$${f Z}$$
 $K imes 1$ Systematic factors

$$\eta$$
 $N \times 1$ Idiosyncratic shocks

- 2) Structure is supported by Arbitrage Pricing Theory
- 3) Structure implies efficient estimate of return distribution

RISK MANAGEMENT: ESTIMATION

Compute risk of portfolio return $R_{\rm w}$

$$\left(\mathrm{SDev}\left\{ R_{\mathbf{w}}
ight\} \right)^2 = \mathbf{w}' \mathbf{\Sigma}_R \mathbf{w} :$$

$$\underbrace{ \left[\mathbf{D} \mathbf{\Sigma}_Z \mathbf{D}' + \mathrm{diag}\left(\boldsymbol{\sigma}_{\eta}^2 \right) \right]}$$

PORTFOLIO MANAGEMENT: ATTRIBUTION

Express portfolio return $R_{
m w}$ as factors + residual

Standard Approach to Factor Modeling

RISK MANAGEMENT: ESTIMATION

Compute risk of portfolio return $R_{\mathbf{w}}$

$$\begin{split} \left(\mathrm{SDev} \left\{ R_{\mathbf{w}} \right\} \right)^2 &= \mathbf{w}' \mathbf{\Sigma}_R \mathbf{w} : \\ & \underbrace{\mathbf{D} \mathbf{\Sigma}_Z \mathbf{D}' + \mathrm{diag} \left(\boldsymbol{\sigma}_{\eta}^2 \right)}_{} \end{split}$$

PORTFOLIO MANAGEMENT: ATTRIBUTION

Express portfolio return $R_{\mathbf{w}}$ as factors + residual

ESTIMATION VERSUS ATTRIBUTION

STANDARD APPROACH TO FACTOR MODELING

RATIONALE OF FACTORS ON DEMAND

IMPLEMENTATION OF FACTORS ON DEMAND

APPLICATIONS OF FACTORS ON DEMAND

REFERENCES

Appendix: factor models pitfalls

BUILDING BLOCKS:

1) Structure
$$R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n$$

1) Structure
$$R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n$$
 $Returns of securities $\mathbf{D} \ N \times K$ Exposures of returns to factors $\mathbf{Z} \ K \times 1$ Systematic factors $\mathbf{n} \ N \times 1$ Independent $\mathbf{n} \ N \times 1$ Independent$

- 2) Structure is supported by Arbitrage Pricing Theory
- 3) Structure implies efficient estimate of return distribution

BUILDING BLOCKS:

1) Structure $R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n$ $Returns of securities <math>\mathbf{Z} = K \times 1$ $\mathbf{X} \times 1$ Returns of securities $\mathbf{Z} = K \times 1$ Systematic factors $\mathbf{Z} = K \times 1$ Systematic factors $\mathbf{Z} = \mathbf{Z} \times 1$ Independent

2) Structure is supported by Arbitrage Pricing Theory

BUILDING BLOCKS:

3) Structure implies efficient estimate of return distribution

QUEST FOR INVARIANCE:

Risk drivers X determine returns distribution

Rationale of Factors on Demand

QUEST FOR INVARIANCE:

Risk drivers X determine returns distribution

SYSTEMATIC + IDIOSYNCRATIC RETURNS

1) Structure
$$R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n$$
 $\begin{cases} \mathbf{R} & N \times 1 & \text{Returns of securities} \\ \mathbf{D} & N \times K & \text{Exposures of returns to factors} \\ \mathbf{Z} & K \times 1 & \text{Systematic factors} & \hline & \text{Independent} \\ \boldsymbol{\eta} & N \times 1 & \text{Idiosyncratic shocks} \end{cases}$

- 2) Structure is supported by Arbitrage Pricing Theory
- 3) Structure implies efficient estimate of return distribution

DOMINANT + RESIDUAL RISK DRIVERS

1) Risk drivers X determine returns distribution

2) Structure
$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n egin{cases} \mathbf{X} & N imes 1 & \mathrm{Risk} \ \mathbf{B} & N imes K & \mathrm{Loadings} \ \mathbf{F} & K imes 1 & \mathrm{Dominant} \ \mathbf{U} & N imes 1 & \mathrm{Residuals} \end{cases}$$

3) Structure implies efficient estimate of risk drivers distribution

Rationale of Factors on Demand

A - QUEST FOR INVARIANCE

Estimate dominant factors + residual for risk drivers
$$\mathbf{X}$$

$$X_n = \sum_{k=1}^{K} b_{n,k} F_k + U_n$$

B-NON-LINEAR PRICING

From risk-drivers ${f X}$ to returns ${f R}$

C - AGGREGATION

From securities returns ${f R}$ to portfolio return $R_{f w}$

Rationale of Factors on Demand

A - QUEST FOR INVARIANCE

Estimate dominant factors + residual for risk drivers \boldsymbol{X}

$$X_n = \sum_{k=1}^{K} b_{n,k} F_k + U_n$$

B - NON-LINEAR PRICING

From risk-drivers ${f X}$ to returns ${f R}$

C - AGGREGATION

From securities returns ${f R}$ to portfolio return $R_{f w}$

D-RISK MANAGEMENT

Compute risk of portfolio return $R_{\mathbf{w}}$

E - PORTFOLIO MANAGEMENT

Attribute portfolio return $R_{
m w}$ to dominant factors + residual

$$R_{\mathbf{w}} = \sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}$$

Conditional link

Rationale of Factors on Demand

A - QUEST FOR INVARIANCE

$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n$

Estimation Factor Model

B - NON-LINEAR PRICING

From risk-drivers X to returns R

C - AGGREGATION

From securities returns ${f R}$ to portfolio return $R_{f w}$

D-RISK MANAGEMENT

Compute risk of portfolio return $R_{
m w}$

E - PORTFOLIO MANAGEMENT

Attribute portfolio return $R_{\rm w}$ to dominant factors + residual

Conditional link

1 of 3

$$R_{\mathbf{w}} = \sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}$$
 Attribution Factor Model

Rationale of Factors on Demand

A - QUEST FOR INVARIANCE

Estimate dominant factors + residual for risk drivers \boldsymbol{X}

$$X_n = \sum_{k=1}^{K} b_{n,k} F_k + U_n$$

B-NON-LINEAR PRICING

From risk-drivers ${f X}$ to returns ${f R}$

C - AGGREGATION

From securities returns ${f R}$ to portfolio return $R_{f w}$

D-RISK MANAGEMENT

Compute risk of portfolio return $R_{
m w}$

Conditional link

2 of 3

E - PORTFOLIO MANAGEMENT

Attribute portfolio return $R_{
m w}$ to dominant factors + residual

$$R_{\mathbf{w}} = \sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}$$

Rationale of Factors on Demand

A - QUEST FOR INVARIANCE

Estimate dominant factors + residual for risk drivers \boldsymbol{X}

$$X_n = \sum_{k=1}^{K} b_{n,k} F_k + U_n$$

B - NON-LINEAR PRICING

From risk-drivers ${f X}$ to returns ${f R}$

C - AGGREGATION

From securities returns ${f R}$ to portfolio return $R_{f w}$

D-RISK MANAGEMENT

Compute risk of portfolio return $R_{\mathbf{w}}$

E - PORTFOLIO MANAGEMENT

Attribute portfolio return $R_{\mathbf{w}}$ to dominant factors + residual

Conditional link

Bottom-up (from securities to portfolio)

3 of 3

Top-down

(portfolio specific)

ESTIMATION VERSUS ATTRIBUTION

STANDARD APPROACH TO FACTOR MODELING

RATIONALE OF FACTORS ON DEMAND

IMPLEMENTATION OF FACTORS ON DEMAND

APPLICATIONS OF FACTORS ON DEMAND

REFERENCES

Appendix: factor models pitfalls

Implementation Steps of Factors on Demand

STAGE A: RISK MANAGEMENT

1: Risk drivers (e.g. changes of impl. vol.) Estimation

$$\mathbf{X}$$
 $J \times S$ scenarios $f_{\mathbf{x}} \iff \mathcal{X}$

 \mathcal{S}

Implementation Steps of Factors on Demand

STAGE A: RISK MANAGEMENT

1: <u>Risk drivers</u> (e.g. changes of impl. vol.) Estimation

$$\mathbf{X}$$
 $J \times S$ scenarios $f_{\mathbf{X}} \iff \mathcal{X}$

2: Pricing (e.g. Black-Scholes formula)

$$R_n = g_n(X_1, \dots, X_S)$$

$$f_{\mathbf{R}} \iff \mathcal{R} \smile_{J \times N \text{ scenarios}}$$

joint scenario of N securities returns

Implementation Steps of Factors on Demand

STAGE A: RISK MANAGEMENT

1: <u>Risk drivers</u> (e.g. changes of impl. vol.) Estimation

$$\mathbf{X}$$
 $f_{\mathbf{X}} \Leftrightarrow \mathcal{X}$ scenarios

2: Pricing (e.g. Black-Scholes formula)

$$R_n = g_n(X_1, \dots, X_S)$$

$$f_{\mathbf{R}} \iff \mathcal{R} \searrow_{J \times N \text{ scenarios}}$$

3: Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R} \int_{J \times 1} \text{ scenarios}$$

$$f_{R_{\mathbf{w}}} \Leftrightarrow \mathcal{R}_{\mathbf{w}}$$

STAGE A: RISK MANAGEMENT

1: <u>Risk drivers</u> (e.g. changes of impl. vol.) Estimation

$$\mathbf{X}$$
 $f_{\mathbf{x}} \Leftrightarrow \mathcal{X}$ scenarios

2: Pricing (e.g. Black-Scholes formula)

$$R_n = g_n (X_1, \dots, X_S)$$

 $f_{\mathbf{R}} \iff \mathcal{R} \smile_{J \times N} \text{ scenarios}$

3: Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R} \int_{J \times 1} \text{ scenarios}$$
 $f_{R_{\mathbf{w}}} \Leftrightarrow \mathcal{R} \mathbf{w}$

SDev, VaR, CVaR, Contributions, ...

STAGE A: RISK MANAGEMENT

1: Risk drivers (e.g. changes of impl. vol.) **Estimation**

$$f_{\mathbf{x}} \Leftrightarrow \mathcal{X}$$
 scenarios

2: Pricing (e.g. Black-Scholes formula)

$$R_n = g_n (X_1, \dots, X_S)$$

$$f_{\mathbf{R}} \iff \mathcal{R} \smile J \times N \text{ scenarios}$$

3: Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R} \int_{J \times 1} \text{ scenarios}$$

$$f_{R_{\mathbf{w}}} \iff \mathcal{R}_{\mathbf{w}}$$

SDev, VaR, CVaR, Contributions, ...

Implementation Steps of Factors on Demand

STAGE B: PORTFOLIO MANAGEMENT

4: Attribution factors **Conditional link**

(e.g. fundamental factors)

 $f_{\mathbf{Z}|\mathbf{x}}$

 $J \times K$ conditional scenario $\mathcal{Z}|_{\mathcal{X}}.$

STAGE A: RISK MANAGEMENT

1: Risk drivers (e.g. changes of impl. vol.) Estimation

$$f_{\mathbf{X}} \iff \mathcal{X}$$
 scenarios

2: <u>Pricing</u> (e.g. Black-Scholes formula)

$$R_n = g_n (X_1, \dots, X_S)$$

$$f_{\mathbf{R}} \iff \mathcal{R} \smile J \times N \text{ scenarios}$$

3: Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R} \int_{J \times 1} \text{ scenarios}$$
 $f_{R_{\mathbf{w}}} \iff \mathcal{R} \mathbf{w}$

SDev, VaR, CVaR, Contributions, ...

Implementation Steps of Factors on Demand

STAGE B: PORTFOLIO MANAGEMENT

4: <u>Attribution factors</u> (e.g. fundamental factors)

Conditional link

$$\mathbf{Z}$$
 $f_{\mathbf{Z}|\mathbf{x}}$
 $\Rightarrow \mathcal{Z}|_{\mathcal{X}}$

5: Attribution

$$\begin{aligned} \mathbf{d_w} &\equiv \mathop{\mathrm{argmin}}_{\mathbf{d} \in \mathcal{C}} \mathrm{E} \left\{ \left(R_\mathbf{w} - \mathbf{d}' \mathbf{Z} \right)^2 \right\} \\ & \text{top-down exposures} \\ R_\mathbf{w} &\equiv \sum_{k=1}^K d_{\mathbf{w},k} Z_k + \eta_\mathbf{w} \end{aligned}$$

STAGE A: RISK MANAGEMENT

1: Risk drivers (e.g. changes of impl. vol.) **Estimation**

$$\mathbf{X}$$
 $f_{\mathbf{X}} \Leftrightarrow \mathcal{X}$ $J \times S$ scenarios

2: Pricing (e.g. Black-Scholes formula)

$$R_n = g_n (X_1, \dots, X_S)$$
 $f_{\mathbf{R}} \iff \mathcal{R} \smile J \times N \text{ scenarios}$

3: Aggregation

$$R_{\mathbf{w}} = \mathbf{w}'\mathbf{R}$$
 $J \times 1$ scenarios $f_{R_{\mathbf{w}}} \iff \mathcal{R}\mathbf{w}$ SDev, VaR, CVaR, Contributions, ...

Implementation Steps of Factors on Demand

STAGE B: PORTFOLIO MANAGEMENT

4: Attribution factors (e.g. fundamental factors) **Conditional link**

 $f_{\mathbf{Z}|\mathbf{x}}$

5: Attribution

STAGE A: RISK MANAGEMENT

1: <u>Risk drivers</u> (e.g. changes of impl. vol.) **Estimation**

$$\mathbf{X}$$
 $f_{\mathbf{X}} \Leftrightarrow \mathcal{X}$ scenarios

2: <u>Pricing</u> (e.g. Black-Scholes formula)

$$R_n = g_n (X_1, \dots, X_S)$$

$$f_{\mathbf{R}} \iff \mathcal{R} \smile J \times N \text{ scenarios}$$

3: Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R} \int_{J \times 1} \text{ scenarios}$$
 $f_{R_{\mathbf{w}}} \iff \mathcal{R} \mathbf{w}$

SDev, VaR, CVaR, Contributions, ...

Implementation Steps of Factors on Demand

STAGE B: PORTFOLIO MANAGEMENT

4: Attribution factors
Conditional link

(e.g. fundamental factors)

 $J \times K$ conditiona scenarios

5: Attribution

top-down exposures

$$\mathbf{d_{w}} \equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\mathbf{E}} \left[(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d})^{2} \right] \right\}$$

$$R_{\mathbf{w}} \equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_{k} + \eta_{\mathbf{w}}$$

STAGE A: RISK MANAGEMENT

1: Risk drivers (e.g. changes of impl. vol.) Estimation

$$f_{\mathbf{X}} \iff \mathcal{X}$$
 scenarios

2: <u>Pricing</u> (e.g. Black-Scholes formula)

$$R_n = g_n (X_1, \dots, X_S)$$

$$f_{\mathbf{R}} \iff \mathcal{R} \smile J \times N \text{ scenarios}$$

3: Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$$
 $J \times 1$ scenarios $f_{R_{\mathbf{w}}} \Leftrightarrow \mathcal{R} \mathbf{w}$

SDev, VaR, CVaR, Contributions, ...

Implementation Steps of Factors on Demand

STAGE B: PORTFOLIO MANAGEMENT

4: Attribution factors
Conditional link

 $f_{\mathbf{z}|\mathbf{x}}$

(e.g. fundamental factors)

 $J \times K$ conditional scenarios

5: Attribution

$$\begin{aligned} \mathbf{d_{w}} &\equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\mathbf{E}} \left[(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d})^{2} \right] \right\} \\ R_{\mathbf{w}} &\equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_{k} + \eta_{\mathbf{w}} \end{aligned}$$

Exposures, Hedging, Contributions from factors, ...

Implementation Steps of Factors on Demand

Risk drivers (e.g. changes of impl. vol.)
Estimation

 \mathbf{X}

$$f_{\mathbf{X}} \Leftrightarrow \mathcal{X}$$

Attribution factors
Conditional link

(e.g. fundamental factors)

 \mathbf{Z}

$$f_{\mathbf{Z}|\mathbf{x}}$$

Risk drivers (e.g. changes of impl. vol.)

Estimation – Dimension reduction

$$\mathbf{X} \equiv \mathbf{BF} + \mathbf{U}$$
 (e.g. PCA)

$$f_{\mathbf{X}} \iff \mathcal{X} \equiv \mathcal{F}\mathbf{B}' + \mathcal{U}$$

Implementation Steps of Factors on Demand

Attribution factors Conditional link

(e.g. fundamental factors)

$$f_{\mathbf{Z}|\mathbf{x}} = f_{\mathbf{Z}|\mathbf{f}} \iff \mathcal{Z}|_{\mathcal{X}} = \mathcal{Z}|_{\mathcal{F}}$$
:

high quality conditional copula matched scenarios

Implementation Steps of Factors on Demand

STAGE A: RISK MANAGEMENT

STAGE B: PORTFOLIO MANAGEMENT

1: <u>Risk drivers</u> (e.g. changes of impl. vol.) <u>Estimation – Dimension reduction</u>

(e.g. PCA)

 $f_{\mathbf{X}} \iff \mathcal{X} \equiv \mathcal{F}\mathbf{B}' + \mathcal{U}$ estimation FM

4: <u>Attribution factors</u> (e.g. fundamental factors)
Conditional link

 \mathbf{Z}

 $f_{\mathbf{Z}|\mathbf{x}} = f_{\mathbf{Z}|\mathbf{f}} \iff \mathcal{Z}|_{\mathcal{X}} = \mathcal{Z}|_{\mathcal{F}}$

2: Pricing (e.g. Black-Scholes formula)

 $R_n = g_n (X_1, ..., X_S)$ $f_{\mathbf{R}} \iff \mathcal{R}$ 5: Attribution

 $\frac{\mathbf{d_w} \equiv \mathop{\mathrm{argmin}}_{\mathbf{d} \in \mathcal{C}} \left\{ \overset{\wedge}{\mathbf{E}} \left[(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d})^2 \right] \right\}}{R_\mathbf{w} \equiv \sum_{k=1}^K d_{\mathbf{w},k} Z_k + \eta_\mathbf{w}} \text{ attribution FM}$

Exposures, Hedging, Contributions from factors, ...

3: Aggregation

 \mathbf{X}

 $R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$ $f_{R_{\mathbf{w}}} \Leftrightarrow \mathcal{R} \mathbf{w}$

SDev, VaR, CVaR, Contributions, ...

STAGE A: RISK MANAGEMENT

1: Risk drivers (e.g. changes of impl. vol.)
Estimation – Dimension reduction
(e.g. PCA)

$$f_{\mathbf{X}} \iff \mathcal{X} \equiv \mathcal{F}\mathbf{B}' + \mathcal{U}$$

2: <u>Pricing</u> (e.g. Black-Scholes formula)

$$R_n = g_n (X_1, ..., X_S)$$

 $f_{\mathbf{R}} \iff \mathcal{R}$

3: Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$$

 $f_{R_{\mathbf{w}}} \Leftrightarrow \mathcal{R} \mathbf{w}$

Implementation Steps of Factors on Demand

STAGE B: PORTFOLIO MANAGEMENT

4: <u>Attribution factors</u> (e.g. hedging instruments)
Conditional link

$$\mathbf{Z}$$

$$f_{\widetilde{\mathbf{Z}}|\mathbf{x}} = f_{\widetilde{\mathbf{Z}}|\mathbf{f}} \iff \widetilde{\mathcal{Z}}|_{\mathcal{X}} = \widetilde{\mathcal{Z}}|_{\mathcal{F}}$$

5: Attribution

$$\begin{split} & \underbrace{\tilde{\mathbf{d}}_{\mathbf{w}} \equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\mathbf{E}} \left[(\mathcal{R}\mathbf{w} - \widetilde{\mathcal{Z}}\mathbf{d})^2 \right] \right\}}_{\mathbf{d} \in \mathcal{C}} \\ & R_{\mathbf{w}} \equiv \sum_{k=1}^{K} \widetilde{d}_{\mathbf{w},k} \widetilde{Z}_k + \widetilde{\eta}_{\mathbf{w}} \end{split}$$

Exposures, Hedging,
Contributions from factors, ...

ESTIMATION VERSUS ATTRIBUTION

STANDARD APPROACH TO FACTOR MODELING

RATIONALE OF FACTORS ON DEMAND

IMPLEMENTATION OF FACTORS ON DEMAND

APPLICATIONS OF FACTORS ON DEMAND

REFERENCES

Appendix: factor models pitfalls

Applications – General Framework

Risk drivers

$$X \equiv BF + U$$

Pricing

$$R_n = g_n (X_1, \dots, X_S)$$

Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$$

Risk management

Vol, VaR, CVaR, Contributions, ...

Attribution factors

 \mathbf{Z}

Attribution

$$\mathbf{d_{w}} \equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\mathbf{E}} \left[(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d})^{2} \right] \right\}$$

$$R_{\mathbf{w}} \equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_{k} + \eta_{\mathbf{w}}$$

Portfolio management

Exposures, Hedging, Contributions from factors, ...

Applications – Risk Mgmt. vs. Portfolio Mgmt.

Risk drivers

$$X \equiv BF + U$$

Principal component analysis - Random matrix theory

Pricing

$$R_n = g_n (X_1, \dots, X_S)$$

Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$$

Risk management

Vol, VaR, CVaR, Contributions, ...

Risk drivers

$$X \equiv BF + U$$

Principal component analysis - Random matrix theory

Risk management

$$\sigma = \sum_{n=1}^{N} w_n \frac{\partial \sigma}{\partial w_n}$$

Applications – Risk Mgmt. vs. Portfolio Mgmt.

Attribution factors

 \mathbf{Z}

GICS Industry index returns

Attribution

$$\begin{aligned} \mathbf{d_{\mathbf{w}}} &\equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\mathbf{E}} \left[(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d})^2 \right] \right\} \\ R_{\mathbf{w}} &\equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}} \end{aligned}$$

Portfolio management

Exposures, Hedging, Contributions from factors, ...

Attribution factors

 \mathbf{Z}

GICS Industry index returns

Portfolio management

$$\sigma = \sum_{k=1}^{K+1} d_k \frac{\partial \sigma}{\partial d_k}$$

Risk drivers

$$X \equiv BF + U$$

Principal component analysis - Random matrix theory

Attribution factors

 \mathbf{Z}

GICS Industry index returns

Portfolio management analysis consistent with risk management numbers

Risk drivers

Granular regional equity factor model

Applications – Global vs. Regional Equity Model

Risk drivers

Granular regional equity factor model

$$\mathbf{R}^{(\alpha)} \equiv \mathbf{B}^{(\alpha)} \mathbf{F}^{(\alpha)} + \mathbf{U}^{(\alpha)}$$

$$(e.g. \text{ US financial,} \text{ US utilities,...})$$

$$\mathbf{R}^{(\omega)} \equiv \mathbf{B}^{(\omega)} \mathbf{F}^{(\omega)} + \mathbf{U}^{(\omega)}.$$

$$(e.g. \text{ UK financial,} \text{ UK utilities,...})$$

Attribution factors

Coarse global factors

(e.g. global financial, _ global utilities,...)

Applications – Global vs. Regional Equity Model

Risk drivers

Granular regional equity factor model

Attribution factors

Coarse global factors

$$= \mathbf{B}^{(\omega)} \mathbf{F}^{(\omega)} + \mathbf{U}^{(\omega)}$$

$$= \mathbf{B}^{(\omega)} \mathbf{F}^{(\omega)} + \mathbf{U}^{(\omega)} + \mathbf{U}^{(\omega)}$$

$$= \mathbf{B}^{(\omega)} \mathbf{F}^{(\omega)} + \mathbf{U}^{(\omega)} + \mathbf{U}^$$

Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$$

Attribution

Coarse global factor equity factor model

$$R_{\mathbf{w}} \equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}$$

No need for inconsistent estimates of regional and global models

Applications – Point in Time Style Analysis

Risk drivers

$$X \equiv BF + U$$

Arbitrary estimation criterion

Pricing

$$R_n = g_n (X_1, \dots, X_S)$$

Aggregation

$$R_{\mathbf{w}}^{t} = \mathbf{w}_{t}^{\prime} \mathbf{R}$$
Portfolio at current time t

Applications – Point in Time Style Analysis

Risk drivers

$$X \equiv BF + U$$

Arbitrary estimation criterion

Pricing

$$R_n = g_n (X_1, \dots, X_S)$$

Aggregation

$$R_{\mathbf{w}}^{t} = \mathbf{w}_{t}^{\prime} \mathbf{R}$$

$$\uparrow \qquad \uparrow$$
Portfolio at current time t

Attribution factors

 \mathbf{Z}

Returns of style indices

Attribution

$$\begin{aligned} \mathbf{d_{w}} &\equiv \underset{\mathbf{d}/\mathbf{1} = 1, \mathbf{d} \geq \mathbf{0}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\mathbf{E}} \left[(\mathcal{R}\mathbf{w_t} - \mathcal{Z}\mathbf{d})^2 \right] \right\} \\ &= \underbrace{\sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}} \end{aligned}$$
 Sum-to-one, long-only

Applications – Point in Time Style Analysis

Risk drivers

$$X \equiv BF + U$$

Arbitrary estimation criterion

Attribution factors

 \mathbf{Z}

Returns of style indices

Pricing

$$R_n = g_n(X_1, \dots, X_S)$$

Attribution

Aggregation

$$R_{\mathbf{w}}^{t} = \mathbf{w}_{t}^{\prime} \mathbf{R}$$

Portfolio at current time t

$$\begin{aligned} \mathbf{d_w} &\equiv \underset{\mathbf{d}/\mathbf{1} = \mathbf{1}, \mathbf{d} \geq \mathbf{0}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\mathbf{E}} \left[\left(\mathcal{R} \mathbf{w_t} - \mathcal{Z} \mathbf{d} \right)^2 \right] \right\} \\ &= \underbrace{\sum_{k=1}^{K} d_{\mathbf{w},k} Z_k + \eta_{\mathbf{w}}} \end{aligned}$$
 Sum-to-one, long-only

Point-in-time, non-lagging, non spurious style analysis

Applications – Risk Attribution to Portfolios

Risk drivers

$$X \equiv BF + U$$

Arbitrary estimation criterion

Pricing

$$R_n = g_n (X_1, \dots, X_S)$$

Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$$

Attribution factors

$$\mathbf{Z} \equiv (\mathbf{R}'\mathbf{w}_1, \dots, \mathbf{R}'\mathbf{w}_K)'$$

Returns of basis of portfolios

Attribution

$$\begin{aligned} \mathbf{d_{w}} &\equiv \underset{\mathbf{d}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\mathbf{E}} \left[(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d})^{2} \right] \right\} \\ &\downarrow \qquad \qquad \mathbf{Unconstrained} \\ R_{\mathbf{w}} &\equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_{k} + \eta_{\mathbf{w}} \end{aligned}$$

Applications – Risk Attribution to Portfolios

Risk drivers

$$X \equiv BF + U$$

Arbitrary estimation criterion

Attribution factors

$$Z \equiv (\mathbf{R}'\mathbf{w}_1, \dots, \mathbf{R}'\mathbf{w}_K)'$$

Returns of basis of portfolios

Pricing

$$R_n = g_n (X_1, \dots, X_S)$$

Attribution

Aggregation

$$R_{\mathbf{w}} = \mathbf{w}'\mathbf{R}$$

$$\mathbf{d_{w}} = \left(\mathbf{W}'\widehat{\boldsymbol{\Sigma}}\mathbf{W}\right)^{-1}\mathbf{W}'\widehat{\boldsymbol{\Sigma}}\mathbf{w}$$

$$R_{\mathbf{w}} \equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_{k} + \eta_{\mathbf{w}}$$

Risk attribution to basis of portfolios

Greeks approximation becomes inadequate for long investment horizons

Applications – No-Greek Hedging

Risk drivers

$$X \equiv BF + U$$

Arbitrary estimation criterion

Attribution factors

 \mathbf{Z}

Returns of hedging instruments

Pricing

$$R_n = g_n(X_1, \dots, X_S)$$

Attribution

Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$$

$$\begin{aligned} \mathbf{d_{w}} &\equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\mathbf{E}} \left[(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d})^{2} \right] \right\} \\ R_{\mathbf{w}} &\equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_{k} + \eta_{\mathbf{w}} \end{aligned}$$

Optimal no-Greek hedges

Applications - No-Greek Hedging

Risk drivers

$$X \equiv BF + U$$

Arbitrary estimation criterion

Attribution factors

 \mathbf{Z}

Returns of hedging instruments

Pricing

$$R_n = g_n (X_1, \dots, X_S)$$

Aggregation

$$R_{\mathbf{w}} = \mathbf{w}' \mathbf{R}$$

Attribution

$$\mathbf{d_{w}} \equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \widehat{CVaR} \left[\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d} \right] \right\}$$

$$\mathbf{d_{w}} \equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \widehat{E} \left[\left(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d} \right)^{2} \right] \right\}$$

$$R_{\mathbf{w}} \equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_{k} + \eta_{\mathbf{w}}$$

Optimal no-Greek hedges that promote upside

Applications – No-Greek Hedging

Risk drivers

 $X \equiv BF + U$

Arbitrary estimation criterion

e.g.

- compounded return of one underlying
- compounded returns of vol. surf

Attribution factors

 \mathbf{Z}

Returns of hedging instruments

e.g.

- linear return of one underlying

Units of underlying to hedge one call option

_	100 days	150 days	200 days	$250~\mathrm{days}$	300 days
FOD	5.8	5.3	5.0	4.9	4.8
BS	5.7	5.4	5.2	5.1	5.0

Applications – Best Pool on Demand

Risk drivers

$$X \equiv BF + U$$

Arbitrary estimation criterion

Attribution factors

 \mathbf{Z}

Returns of hedging instruments

Pricing

$$R_n = g_n (X_1, ..., X_S)$$

Aggregation

$$R_{\mathbf{w}} = \mathbf{w}'\mathbf{R}$$

Attribution

$$\mathbf{d_{w}} \equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\operatorname{CVaR}} \left[\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d} \right] \right\}$$

$$\mathbf{d_{w}} \equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\operatorname{E}} \left[(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d})^{2} \right] \right\}$$

$$\mathbf{d_{w}} \equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\operatorname{E}} \left[(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d})^{2} \right] \right\}$$

$$\mathbf{ncludes \ cardinality \ constraint}$$

$$R_{\mathbf{w}} \equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_{k} + \eta_{\mathbf{w}}$$

Best pool of hedges that promote upside

Applications – Best Pool on Demand

Risk drivers

$$X \equiv BF + U$$

Arbitrary estimation criterion

Attribution factors

 \mathbf{Z}

GICS Industry index returns

Pricing

$$R_n = g_n(X_1, \dots, X_S)$$

Attribution

Aggregation

$$R_{\mathbf{w}} = \mathbf{w}'\mathbf{R}$$

$$\begin{aligned} \mathbf{d_{w}} &\equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmin}} \left\{ \overset{\wedge}{\mathbf{E}} \left[(\mathcal{R}\mathbf{w} - \mathcal{Z}\mathbf{d})^{2} \right] \right\} \\ R_{\mathbf{w}} &\equiv \sum_{k=1}^{K} d_{\mathbf{w},k} Z_{k} + \eta_{\mathbf{w}} \end{aligned}$$

Best portfolio-specific factor model

ESTIMATION VERSUS ATTRIBUTION

STANDARD APPROACH TO FACTOR MODELING

RATIONALE OF FACTORS ON DEMAND

IMPLEMENTATION OF FACTORS ON DEMAND

APPLICATIONS OF FACTORS ON DEMAND

REFERENCES

Appendix: factor models pitfalls

A. MEUCCI - Factors on Demand References

> Article:

Attilio Meucci - "Factors on Demand"

Risk, July 2010, p 84-89

available at http://ssrn.com/abstract=1565134

> MATLAB examples:

MATLAB Central Files Exchange (see above article)

> This presentation:

www.symmys.com > Teaching > Talks

APPENDIX: FACTOR MODELS PITFALLS

FINANCIAL THEORY

QUEST FOR INVARIANCE

NATURE OF RESIDUAL

A. MEUCCI - Factors on Demand Factor Models Pitfalls - Financial Theory

$$R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n \qquad \begin{cases} \mathbf{R} & N \times 1 & \text{Returns of securities} \\ \mathbf{D} & N \times K & \text{Exposures of returns to factors} \\ \mathbf{Z} & K \times 1 & \text{Systematic factors} \\ \boldsymbol{\eta} & N \times 1 & \text{Idiosyncratic shocks} \end{cases} \qquad \text{Independent}$$

Supported by Arbitrage Pricing Theory

APT: if
$$\mathbf{R} = \mathbf{D}\mathbf{Z} + \boldsymbol{\eta}$$
 \Rightarrow $\mathrm{E}\left\{\mathbf{R}\right\} = \xi_0 \mathbf{1} + \mathbf{D}\boldsymbol{\xi}$

APPENDIX: FACTOR MODELS PITFALLS

FINANCIAL THEORY

QUEST FOR INVARIANCE

NATURE OF RESIDUAL

total returns
$$H_t \equiv \frac{P_t}{P_{t-1}}$$
 (3.9)

linear returns

 $R_t \equiv \frac{P_t}{P_{t-1}} - 1 \quad {\tiny (3.10)}$

 \Leftrightarrow

compounded returns

$$C_t \equiv \ln \left(\frac{P_t}{P_{t-1}} \right)$$
 (3.11)

 $C_t(K, E)$ price at time t of call with strike K expiring at time E

$$R_{t} \equiv \frac{C_{t}\left(K,E\right)}{C_{t-1}\left(K,E\right)} - 1$$
 return

$$R_{t} \equiv \frac{C_{t}\left(K,E\right)}{C_{t-1}\left(K,E\right)} - 1$$

Invariants: compounded returns

$$\epsilon_t \equiv \ln S_t - \ln S_{t-1}$$

price at time t of call with strike K expiring at time E

$$C_{BS}(t, S, \sigma; K, E) \equiv S\Phi(d_1) - Ke^{-r(E-t)}\Phi(d_2)$$

$$d_1 \equiv \frac{-\ln\left(\frac{K}{S}\right) + (E-t)\left(r + \frac{\sigma^2}{2}\right)}{\sqrt{\sigma^2(E-t)}}$$

$$d_2 \equiv \frac{-\ln\left(\frac{K}{S}\right) + (E-t)\left(r - \frac{\sigma^2}{2}\right)}{\sqrt{\sigma^2(E-t)}}$$

Invariants: compounded returns

$$\epsilon_t \equiv \ln S_t - \ln S_{t-1}$$

theory > price:

$$C_t(K, E) = C_{BS}(t, S_t, \sigma; K, E)$$

$$(t, K, E) \mapsto \sigma_t(K, E)$$

A. MEUCCI - Factors on Demand Factor Models Pitfalls - Quest for Invariance - Derivatives

Invariants: compounded returns

$$\epsilon_t \equiv \ln S_t - \ln S_{t-1}$$

$$C_t(K, E) = C_{BS}(t, S_t, \sigma; K, E)$$

implied volatility surface

$$(t, K, E) \mapsto \sigma_t(K, E)$$

invariant coordinates

$$(t,m,v)\mapsto \sigma_t\left(m,v
ight)$$
 moneyness \int time to expiry

volatility surface $\sigma_t(m, v)$

A. MEUCCI - Factors on Demand Factor Models Pitfalls - Quest for Invariance - Derivatives

Invariants: compounded returns

$$\epsilon_t \equiv \ln S_t - \ln S_{t-1}$$

$$C_t(K, E) = C_{BS}(t, S_t, \sigma; K, E)$$

implied volatility surface

$$(t, K, E) \mapsto \sigma_t(K, E)$$

invariant coordinates volatility slice

$$(t, m, v) \mapsto \sigma_t(m, v) \Leftrightarrow \sigma_t$$

volatility surface $\sigma_t(m, v)$

A. MEUCCI - Factors on Demand Factor Models Pitfalls - Quest for Invariance - Derivatives

Invariants: compounded returns

$$\epsilon_t \equiv \ln S_t - \ln S_{t-1}$$

theory > price:

$$C_t(K, E) = C_{BS}(t, S_t, \sigma; K, E)$$

implied volatility surface

$$(t, K, E) \mapsto \sigma_t(K, E)$$

invariant coordinates volatility slice

$$(t, m, v) \mapsto \sigma_t(m, v) \Leftrightarrow \sigma_t$$

Invariants: compounded returns of volatility slice

$$X_t \equiv \ln \sigma_t - \ln \sigma_{t-1}$$

A. MEUCCI - Factors on Demand Factor Models Pitfalls - Quest for Invariance - Derivatives

Invariants: compounded returns

$$\epsilon_t \equiv \ln S_t - \ln S_{t-1}$$

$$C_t(K, E) = C_{BS}(t, S_t, \sigma; K, E)$$

implied volatility surface

$$(t, K, E) \mapsto \sigma_t(K, E)$$

invariant coordinates

$$(t, m, v) \mapsto \sigma_t(m, v)$$

Invariants: compounded returns of volatility slice

$$X_t \equiv \ln \sigma_t - \ln \sigma_{t-1}$$

A. MEUCCI - Factors on Demand Factor Models Pitfalls - Quest for Invariance

Returns R are fully determined by risk drivers / invariants X

Estimation must be performed on risk-drivers/invariants, not on returns

A. MEUCCI - Factors on Demand

APPENDIX: FACTOR MODELS PITFALLS

FINANCIAL THEORY

QUEST FOR INVARIANCE

NATURE OF RESIDUAL

$$R_n = \sum_{k=1}^{K} d_{n,k} Z_k + \eta_n.$$

$$R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n$$

$$\begin{cases} \mathbf{R} & N \times 1 & \text{Returns of securities} \\ \mathbf{D} & N \times K & \text{Exposures of returns to factors} \\ \mathbf{Z} & K \times 1 & \text{Systematic factors} \\ \boldsymbol{\eta} & N \times 1 & \text{IdioSyncratic shocks} \end{cases}$$
 Independent

Independent

$$R_n = \sum_{k=1}^{K} d_{n,k} Z_k + \eta_n.$$

$$R_n = \sum_{k=1}^K d_{n,k} Z_k + \eta_n \\ \begin{cases} \mathbf{R} & N \times 1 \\ \mathbf{D} & N \times K \end{cases} \text{ Exposures of returns to factors} \\ \mathbf{Z} & K \times 1 \\ \mathbf{\eta} & N \times 1 \end{cases} \text{ Idiosyncratic shocks} \\ \\ \begin{matrix} \mathbf{R} & N \times 1 \\ \mathbf{R} & \mathbf{R} \\ \mathbf{R} & \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} & \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} & \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} & \mathbf{R} \\ \mathbf{R} \\$$

...more in general ...

$$X_n = \sum_{k=1}^{K} b_{n,k} F_k + U_n$$

$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n$$
 $\begin{cases} \mathbf{X} & N imes 1 & \mathsf{Risk drivers} \\ \mathbf{B} & N imes K & \mathsf{Loadings} \\ \mathbf{F} & K imes 1 & \mathsf{Risk factors} \\ \mathbf{U} & N imes 1 & \mathsf{Residuals idiosyncratic} \end{cases}$ Independent

risk drivers exposure of drivers to factors factors shocks for risk driver
$$\begin{pmatrix} X_1 \\ \vdots \\ X_n \\ \vdots \\ X_N \end{pmatrix} = \begin{pmatrix} b_{1,1} & \cdots & b_{1,k} & \cdots & b_{n,K} \\ \vdots & & \vdots & & \vdots \\ b_{n,1} & \cdots & b_{n,k} & \cdots & b_{n,K} \\ \vdots & & & \vdots & & \vdots \\ b_{N,1} & \cdots & b_{N,k} & \cdots & b_{N,K} \end{pmatrix} \begin{pmatrix} F_1 \\ \vdots \\ F_k \\ \vdots \\ F_K \end{pmatrix} + \begin{pmatrix} U_1 \\ \vdots \\ U_n \\ \vdots \\ U_N \end{pmatrix}$$

$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n$$
 $\begin{cases} \mathbf{X} & N imes 1 & \mathsf{Risk drivers} \\ \mathbf{B} & N imes K & \mathsf{Loadings} \\ \mathbf{F} & K imes 1 & \mathsf{Risk factors} \\ \mathbf{U} & N imes 1 & \mathsf{Residuals} \end{cases}$ Independent

risk drivers exposure of drivers to factors factors shocks for risk driver
$$\begin{pmatrix} X_1 \\ \vdots \\ X_n \\ \vdots \\ X_N \end{pmatrix} = \begin{pmatrix} b_{1,1} & \cdots & b_{1,k} & \cdots & b_{n,K} \\ \vdots & & \vdots & & \vdots \\ b_{n,1} & \cdots & b_{n,k} & \cdots & b_{n,K} \\ \vdots & & & \vdots & & \vdots \\ b_{N,1} & \cdots & b_{N,k} & \cdots & b_{N,K} \end{pmatrix} \begin{pmatrix} F_1 \\ \vdots \\ F_k \\ \vdots \\ F_K \end{pmatrix} + \begin{pmatrix} U_1 \\ \vdots \\ U_n \\ \vdots \\ U_N \end{pmatrix}$$

$$X_n = \sum_{k=1}^{K} b_{n,k} F_k + U_n$$

$$\mathbf{B}:N imes K$$
 Loadings

$$\mathbf{F}^- K imes 1$$
 Risk factors

$$\mathbf{U}^{-}N\! imes\!1$$
 Residuals

$$K \ll N$$

$${f X}$$
 $N imes 1$ Risk drivers with known distribution $f_{f X}$

$$\mathbf{B}^{:}_{\cdot} N imes K$$
 Loadings

$$\mathbf{F}^{-}K imes 1$$
 Risk factors

$$\mathbf{U}$$
 $N \times 1$ Residuals

$$K \ll N$$

$$\operatorname{Cor}\left\{\mathbf{F},\mathbf{U}\right\}=\mathbf{0}_{K imes N},$$

$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n$$
 $egin{dcases} \mathbf{X} & N imes 1 & \mathrm{Risk \, drivers \, with \, known \, distribution} & f_{\mathbf{X}} \\ \mathbf{B} & N imes K & \mathrm{Loadings} \\ \mathbf{F} & K imes 1 & \mathrm{Risk \, factors} \\ \mathbf{U} & N imes 1 & \mathrm{Residuals} \end{cases}$

$${f X}$$
 $N imes 1$ Risk drivers with known distribution $f_{f X}$

$$\mathbf{B}^{:} N imes K$$
 Loadings

$$\mathbf{F}^- K imes 1$$
 Risk factors

$$\mathbf{U}^{-}N \times 1$$
 Residuals

$$K \ll N$$

$$Cor\{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N}$$

$$U$$
 "small" $\Leftrightarrow R^2\{X,BF\}$ large

$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n$$
 $egin{dcases} \mathbf{X} & N imes 1 & \mathrm{Risk \, drivers \, with \, known \, distribution} & f_{\mathbf{X}} \\ \mathbf{B} & N imes K & \mathrm{Loadings} \\ \mathbf{F} & K imes 1 & \mathrm{Risk \, factors} \\ \mathbf{U} & N imes 1 & \mathrm{Residuals} \end{cases}$

$${f X}$$
 $N imes 1$ Risk drivers with known distribution $f_{f X}$

$$\mathbf{B}^{:}_{\cdot} N imes K$$
 Loadings

$$\mathbf{F}^- K imes 1$$
 Risk factors

$$\mathbf{U}^{-}N imes 1$$
 Residuals

Optimality Criteria

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

$$\mathbf{U}$$
 "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

U idiosyncratic

F.B. Exogenous

 ${f F}$ Exogenous ${f B}$ Optimized $||{f B}$ Exogenous, ${f F}$ Optimized

 $\mathbf{F}_{\mathbf{B}}$ Optimized

Optimality Criteria

$$K \ll N$$

$$Cor\{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N}$$

$$U$$
 "small" $\Leftrightarrow R^2\{X,BF\}$ large

U idiosyncratic

$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n \begin{tabular}{c} $\mathbf{X} \ N \times 1$ & Risk drivers with known distribution $f_{\mathbf{X}}$ \\ $\mathbf{B} \ N \times K$ & Loadings, known \\ $\mathbf{F} \ K \times 1$ & Risk factors, known distributions $f_{\mathbf{F}}$, $f_{\mathbf{X},\mathbf{F}}$ \\ $\mathbf{U} \ N \times 1$ & Residuals \\ \end{tabular}$$

F.B. Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized $|| {f B}$ Exogenous, ${f F}$ Optimized

 $\mathbf{F}_{\mathbf{B}}$ Optimized

"Residual" approach

X Bond returns e.g.

B Key rate durations

Changes in key rates

$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n \begin{tabular}{l} & \mathbf{X} & N \times 1 & \mathsf{Risk drivers with known distribution } f_{\mathbf{X}} \\ & \mathbf{B} \\ N \times K & \mathsf{Loadings, known} \\ & \mathbf{F} & K \times 1 & \mathsf{Risk factors, known distributions } f_{\mathbf{F}} \\ & \mathbf{J} & N \times 1 & \mathsf{Residuals} \\ \end{tabular}$$

F.B. Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized $|| {f B}$ Exogenous, ${f F}$ Optimized

 $\mathbf{F}_{\mathbf{B}}$ Optimized

"Residual" approach

X Bond returns e.g.

B Key rate durations

Changes in key rates

Optimality Criteria

$$\checkmark K \ll N$$

$$\checkmark$$
 $K \ll N$ \times $\text{Cor} \{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N}.$

$$igwedge U$$
 "small" \Leftrightarrow $R^2\left\{X,BF\right\}$ large

X U idiosyncratic

$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n \begin{tabular}{c} & \mathbf{X} & N \times 1 & \mathsf{Risk drivers with known distribution } f_{\mathbf{X}} \\ & \mathbf{B} : N \times K & \mathsf{Loadings} \\ & \mathbf{F} & K \times 1 & \mathsf{Risk factors, known distributions } f_{\mathbf{F}} \mathsf{,} f_{\mathbf{X},\mathbf{F}} \\ & \mathbf{U} & N \times 1 & \mathsf{Residuals} \\ \end{tabular}$$

F, B Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized

F,B Optimized

"Time series" approach (misnomer)

X stock returns e.g.

B "betas"

industry indices, ...

$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n \begin{tabular}{c} & \mathbf{X} & N \times 1 & \mathsf{Risk drivers with known distribution } f_{\mathbf{X}} \\ & \mathbf{B} : N \times K & \mathsf{Loadings} \\ & \mathbf{F} & K \times 1 & \mathsf{Risk factors, known distributions } f_{\mathbf{F}} \mathsf{,} f_{\mathbf{X},\mathbf{F}} \\ & \mathbf{U} & N \times 1 & \mathsf{Residuals} \\ \end{tabular}$$

F, B Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized

F,B Optimized

"Time series" approach (misnomer)

e.g. X stock returns

B "betas"

F - S&P index return, industry indices, ...

$$\mathbf{B}_r \equiv \underset{\mathbf{B}}{\operatorname{argmax}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\}$$
$$= \operatorname{E} \left\{ \mathbf{XF}' \right\} \operatorname{E} \left\{ \mathbf{FF}' \right\}^{-1}$$

$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n \begin{tabular}{c} & \mathbf{X} & N \times 1 & \text{Risk drivers with known distribution } f_{\mathbf{X}} \\ & \mathbf{B} : N \times K & \text{Loadings} \\ & \mathbf{F} & K \times 1 & \text{Risk factors, known distributions } f_{\mathbf{F}} \text{ , } f_{\mathbf{X},\mathbf{F}} \\ & \mathbf{U} & N \times 1 & \text{Residuals} \\ \end{tabular}$$

F, B Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized

F,B Optimized

"Time series" approach (misnomer)

e.g. X stock returns

B "betas"

 ${f F}$ - S&P index return, industry indices, ...

$$\mathbf{B}_r \equiv \underset{\mathbf{B}}{\operatorname{argmax}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\}$$
$$= \mathbf{E} \left\{ \mathbf{XF}' \right\} \mathbf{E} \left\{ \mathbf{FF}' \right\}^{-1}$$

Optimality Criteria

$$\checkmark K \ll N$$

$$\checkmark K \ll N$$
 $\checkmark \text{ Cor } \{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N},$

$$ightharpoonup$$
 "small" $\Leftrightarrow R^2\{X,BF\}$ large

X U idiosyncratic

$$X_n = \sum_{k=1}^K b_{n,k} F_k + U_n$$

 $X_n = \sum_{k=1}^K b_{n,k} F_k + U_n \begin{tabular}{l} & \mathbf{X} & N \times 1 & \mathsf{Risk drivers with known distribution } f_{\mathbf{X}} \\ & \mathbf{B} : N \times K & \mathsf{Loadings} \\ & \mathbf{F} \mapsto \begin{pmatrix} 1 \\ \mathbf{F} \end{pmatrix} & \mathsf{Risk factors, known distributions } f_{\mathbf{F}} \mathsf{J}_{\mathbf{X},\mathbf{F}} \\ & \mathbf{U} & N \times 1 & \mathsf{Residuals} \\ \end{tabular}$

F, B Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized

F,B Optimized

"Time series" approach (misnomer)

- e.g. X stock returns
 - B "betas"
 - ${f F}$ S&P index return, industry indices, ...

$$\mathbf{B}_r \equiv \underset{\mathbf{B}}{\operatorname{argmax}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\}$$
$$= \mathbf{E} \left\{ \mathbf{XF}' \right\} \mathbf{E} \left\{ \mathbf{FF}' \right\}^{-1}$$

$$\checkmark K \ll N$$

✓
$$K \ll N$$
✓ $\operatorname{Cor} \{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N}$

- \sim U "small" $\Leftrightarrow R^2 \{X, BF\}$ large
- X U idiosyncratic

F.B. Exogenous

 ${f F}$ Exogenous ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized

 \mathbf{F}, \mathbf{B} Optimized

"Cross section" approach

X stock returns e.g.

B. GICS 1/0 industry partition

industry factors

F.B. Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized

 \mathbf{F}, \mathbf{B} Optimized

"Cross section" approach

e.g. X stock returns

B. GICS 1/0 industry partition

industry factors

$$\begin{aligned} \mathbf{F}_c &\equiv \operatorname*{argmax}_{\mathbf{F} \equiv \mathbf{A}' \mathbf{X}} R^2 \left\{ \mathbf{X}, \mathbf{B} \mathbf{F} \right\} \\ &= \left(\mathbf{B}' \mathbf{B} \right)^{-1} \mathbf{B}' \mathbf{X} \end{aligned}$$

F.B. Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized

 \mathbf{F}, \mathbf{B} Optimized

"Cross section" approach

e.g. X stock returns

B. GICS 1/0 industry partition

industry factors

$$\begin{aligned} \mathbf{F}_c &\equiv \operatorname*{argmax}_{\mathbf{F} \equiv \mathbf{A}' \mathbf{X}} R^2 \left\{ \mathbf{X}, \mathbf{B} \mathbf{F} \right\} \\ &= \left(\mathbf{B}' \mathbf{B} \right)^{-1} \mathbf{B}' \mathbf{X} \end{aligned}$$

Optimality Criteria

$$\checkmark K \ll N$$

$$\checkmark$$
 $K \ll N$ \times $\text{Cor}\{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N},$

$$ightharpoonup$$
 "small" $\Leftrightarrow R^2\{X,BF\}$ large

X U idiosyncratic

F, B Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized

F,B Optimized

Principal component analysis

e.g. X yield curve changes

B. market / slope / butterfly

parallel shift / tilt / twist

F, B Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized ${f B}$

F,B Optimized

Principal component analysis

e.g. X yield curve changes

B. market / slope / butterfly

parallel shift / tilt / twist

$$\begin{split} (\mathbf{B}_p, \mathbf{A}_p) &\equiv \operatorname*{argmax}_{\mathbf{B}, \mathbf{A}} R^2 \left\{ \mathbf{X}, \mathbf{B} \mathbf{A}' \mathbf{X} \right\} \\ \mathbf{A} &= \mathbf{B} = \mathbf{E}_K \longleftarrow \left\{ \mathbf{Cov} \left\{ \mathbf{X} \right\} \equiv \mathbf{E} \Lambda \mathbf{E}' \right\} \\ \mathbf{E}_K &\equiv \left(\mathbf{e}^{(1)}, \dots, \mathbf{e}^{(K)} \right) \longleftarrow \end{split}$$

F, B Exogenous

 ${f F}$ Exogenous ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized ${f F}$, ${f B}$ Optimized

Principal component analysis

- e.g. X yield curve changes
 - B. market / slope / butterfly
 - ${f F}$ parallel shift / tilt / twist

$$\begin{split} (\mathbf{B}_p, \mathbf{A}_p) &\equiv \operatorname*{argmax}_{\mathbf{B}, \mathbf{A}} R^2 \left\{ \mathbf{X}, \mathbf{B} \mathbf{A}' \mathbf{X} \right\} \\ \mathbf{A} &= \mathbf{B} = \mathbf{E}_K \longleftarrow \left[\operatorname{Cov} \left\{ \mathbf{X} \right\} \equiv \mathbf{E} \Lambda \mathbf{E}' \right] \\ \mathbf{E}_K &\equiv \left(\mathbf{e}^{(1)}, \dots, \mathbf{e}^{(K)} \right) \longleftarrow \end{split}$$

Optimality Criteria

$$\checkmark K \ll N$$

$$\checkmark$$
 $K \ll N$ \checkmark $\operatorname{Cor} \{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N},$

$$\checkmark$$
 U "small" \Leftrightarrow $R^2\{X,BF\}$ large

X U idiosyncratic

F, B Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized

F,B Optimized

Factor analysis

- e.g. X stock returns
 - B statistical loadings
 - hidden factors

F, B Exogenous

 ${f F}$ Exogenous, ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized

F,B Optimized

Factor analysis

- e.g. X stock returns
 - B statistical loadings
 - hidden factors

$$\mathrm{Cov}\left\{ \mathbf{X}
ight\} pprox \mathbf{B}\mathbf{B}' + oldsymbol{\Delta}$$
 diagona

F, B Exogenous

 ${f F}$ Exogenous ${f B}$ Optimized ${f B}$ Exogenous, ${f F}$ Optimized ${f B}$

F,B Optimized

Factor analysis

- e.g. X stock returns
 - B statistical loadings
 - hidden factors

$$\mathrm{Cov}\left\{ \mathbf{X}
ight\} pprox \mathbf{BB'} + oldsymbol{\Delta}$$
 diagonal

Optimality Criteria

$$\checkmark K \ll N$$

$$\checkmark$$
 $K \ll N$
 \checkmark Cor $\{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N}$.

$$igwedge U$$
 "small" \Leftrightarrow $R^2\left\{ {{
m X},{
m BF}} \right\}$ large

U idiosyncratic

F, B Exogenous

 \mathbf{F} Exogenous \mathbf{B} Optimized $||\mathbf{B}$ Exogenous, \mathbf{F} Optimized $||\mathbf{B}||$

F,B Optimized

Factor analysis

- e.g. X stock returns
 - B statistical loadings
 - hidden factors

$$\mathrm{Cov}\left\{ \mathbf{X}
ight\} pprox \mathbf{B}\mathbf{B}' + oldsymbol{\Delta}$$
 diagonal

$$\checkmark K \ll N$$

$$\checkmark$$
 $K \ll N$
 \checkmark Cor $\{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N}$.

$$igwedge U$$
 "small" \Leftrightarrow $R^2\left\{ {{
m X,BF}} \right\}$ large