Calcul approché d'une intégrale

Dans tout le problème, le plan est rapporté à un repère orthonormé $(O; \vec{i}, \vec{j})$.

Partie I Etude d'une fonction

On note f la fonction définie sur \mathbb{R}^{+*} par : $f(x) = \frac{\ln x}{1+x^2}$.

On note C la courbe représentative de f.

- 1.a Justifier que f est C^{∞} sur \mathbb{R}^{+*} .
- 1.b Montrer que pour tout x > 0, f'(x) est du signe de $g(x) = 1 + x^2 2x^2 \ln x$.
- 1.c Etudier les variations de la fonction g. On montrera en particulier que l'équation g(x) = 0 admet une et une seule solution sur \mathbb{R}^{+*} , cette solution sera notée m.
- 2.a Dresser le tableau de variations de f.

 On calculera les limites de f en 0 et $+\infty$, et on montrera que $f(m) = \frac{1}{2m^2}$.
- 2.b Représenter dans un repère orthonormé la courbe d'équation y = f(x). On donnera une valeur approchée de m à 10^{-2} près en précisant la méthode utilisée.

Partie II Etude d'une fonction intégrale

On étudie dans cette partie la fonction F définie par : $\forall x > 0, F(x) = \int_1^x f(t) dt = \int_1^x \frac{\ln t}{1+t^2} dt$.

La courbe représentative de F sera notée Γ .

- 1.a Déterminer le signe de F sur \mathbb{R}^{+*} .
- 1.b Justifier la continuité et la dérivabilité de F sur \mathbb{R}^{+*} .
- 1.c Calculer F'(x) pour x > 0.
- 2. Montrer que : $\forall x > 0, F(x) = F\left(\frac{1}{x}\right)$.
- 3.a Soit φ la fonction définie sur \mathbb{R}^{+*} par : $\forall x > 0, \varphi(x) = \frac{\arctan x}{x}$. Montrer que φ est prolongeable par continuité en 0.
- 3.b Montrer que: $\forall x > 0, F(x) = \arctan x \ln x \int_{1}^{x} \varphi(t) dt$.
- 3.c En déduire que F est prolongeable par continuité en 0. La nouvelle fonction ainsi obtenue sera encore notée F. Que peut-on dire de F au voisinage de $+\infty$?
- 3.d Montrer que F n'est pas dérivable à droite en 0. Que peut-on dire de Γ au point d'abscisse 0?
- 4. Dans cette question, on cherche à calculer une valeur approchée de F(0).
- 4.a Pour $k \in \mathbb{N}$ et x > 0, calculer $I_k(x) = \int_1^x t^k \ln t \, dt$.
- 4.b Montrer que : $\forall n \in \mathbb{N}, \forall x > 0, \frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + (-1)^{n+1} \frac{x^{2n+2}}{1+x^2}$.

4.c En déduire, pour
$$n \in \mathbb{N}$$
 et $x \in]0,1[$, une majoration de $\left|F(x) - \sum_{k=0}^{n} (-1)^{k} I_{2k}(x)\right|$.

4.d On pose, pour
$$n \in \mathbb{N}$$
, $u_n = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)^2}$.

Montrer que : $|F(0) - u_n| \le \frac{1}{(2n+3)^2}$.

- 4.e Donner, en détaillant la méthode utilisée, une valeur approchée à $10^{-2}\,$ près de $\,F(0)\,$.
- 5. Tracer l'allure de la courbe Γ . On précisera le point d'inflexion.