PAPER ANALYSIS

Presented by Yannis He

_

Conference: ECCV 2020

Authors: Liming Jiang, Changxu Zhang, Mingyang Huang, Chunxiao Liu, Jianping Shi, Chen Change Loy

- Nanyang Technological University
- University of California, Berkeley
- I SenseTime Research

https://arxiv.org/abs/2007.12072

https://github.com/EndlessSora/TSIT

INTRODUCTION

- Background:
 - Image-to-image translation aims at translating one image representation to another
 - Generative Adversarial Networks (GANs) have made remarkable success in various of such tasks
 - Previous studies usually present specialized solutions for a specific from of applications, such as
 - arbitrary style transfer in unsupervised setting
 - Semantic images synthesis in supervised setting
- Goals:
 - Devise a general and unified framework that is applicable to different image-to-image translation tasks without degradation in synthesis quality
 - This is challenging, since it's difficult to cross-use these especially designed components from each specific task or integrate them into a unified framework
 - Certain conditional image synthesis tasks (e.g. arbitrary style transfer) do not have paired data available
 - In this unsupervised settings, translation task demands constraints on cycle consistency, semantic features, pixel gradients, or pixel values.
 - Semantic image synthesis (e.g. translation from segmentation labels to images) is more data-dependent and typically needs losses to minimize per-pixel distance between the generated sample and ground truth
 - Specialized structures are usually required to maintain spatial coherence and resolution

INTRODUCTION (CONT')

- Contribution: Two-Stream Image-to-image Translation (TSIT) framework.
 - A simple and versatile framework for image-to-image translation.
 - For unsupervised arbitrary style transfer: diverse scenarios can be handled (e.g. natural images, real-world, art paint)
 - For supervised semantic image synthesis: robust to different scenes (e.g. outdoor, street scenes, indoor).
 - Provided a two-stream generative model with newly proposed feature transformations in a coarse-to-fine fashion.

outdoor (mask -> image)

- Allows multi-scale semantic structure information and style representation to be effectively captured and fused by the network
- Permitting the proposed method to scale to various tasks in both unsupervised and supervised settings.
- No additional condition (e.g. cycle consistency) are needed, contributing a clean and simple method
- Possible to work with multi-modal image synthesis with arbitrary style control

indoor (mask -> image)

controllable styles by a single model (sunny -> diverse weathers/times)

street scene (mask -> image)

INTRODUCTION (CONT')

- Contribution (cont'):
 - Differentiation:
 - Instead of only consider either semantic structure or style representation, both the structure and style in multi-scale feature levels are factorized, via a symmetrical two-stream network
 - The two streams jointly influence the new image generation in a coarse-to-fine manner via a consistent feature transformation scheme
 - The content spatial structure is preserved by an element-wise feature adaptive denormalization (FADE) from the content stream
 - While the style information is exerted by feature adaptive instance normalization (FAdaIN) from the style stream
 - Standard loss functions such as adversarial loss and perceptual loss are used
 - No need additional constraints like cycle consistency
 - Pipeline is applicable to both unsupervised and supervised settings, easing the preparation of data

RELATED WORK

- Image-to-image translation:
 - Existing methods can be classified into two categories
 - 1. Unsupervised
 - Unsupervised image-to-image translation problem is inherently ill-posed*, where additional constraints are needed.
 - **2**. Supervised
 - More data-depended, requiring well-annotated paired training samples
 - O Limited by learning only one-to-one mapping between two domains, some GAN-based methods suffer from generating images with low diversity
 - Multi-domain translation and multi-modal translation significantly increase generation diversity.
 - Multi-mapping translation is defined in recent work. E.g. DMIT is designed to capture the multi-modal image nature in each domain
 - Existing methods lack the scalability to adapt to different tasks under diverse difficult settings
 - Which lead to suboptimality for cross-using these components due to either degradation in quality or introduction of additional constraints
- Arbitrary style transfer
 - O Aim at retaining the content structure of an image, while manipulating its style representation adopted from others
 - O Classical methods now can process in real-time as well as transfer multiple styles during inference
 - O Many studies improve stylization via wavelet transform, graph cuts, or iterative error-correction
 - Some GAN-based methods show impressive results
- * ill-posed: inverse of well-posed

RELATED WORK (CONT')

- Semantic image synthesis
 - O Aim at synthesizing a photorealistic image from a semantic segmentation mask
 - A special form of supervised image-to-image translation
 - The domain gap for this tasks is large
 - Keeping effective semantic information to enhance fidelity without losing diversity is challenging
 - Pix2pix first adopts conditional GAN in the semantic image synthesis task.
 - o pix2pixHD contains a multi-scale generator and multi-scale discriminators to generate high-resolution images
 - O SPADE takes a noise map as input, and resizes the semantic label map for modulating the activations in normalization layers by a learned affine transformation
 - o Etc.

^{*} ill-posed: inverse of well-posed

METHODOLOGY - OVERVIEW

- Consider 3 key requirements in formulating a robust and scalable method to line various tasks:
 - Both semantic structure information and style representation should be considered and fused adaptively
 - The content and style information should be learned by networks in feature level instead of in image level to fit the nature of diverse semantic tasks
 - The network structure and loss functions should be simple for easy training without additional constraints
- The methodology will be introduced in the following 3 sub-sections
 - Network structure
 - Feature transformation scheme
 - 3. Objective functions

METHODOLOGY - NETWORK STRUCTURE (COMPONENT LEVEL)

- As shown in the image, TSIT consists 4 component: content stream, style stream, generator, and discriminators (omitted)
 - First 3 components are fully convolutional and symmetrically designed
- Submodules (content residual block, style residual block, FAD residual block, FAD model in FAD residual block) are
 - discussed in the next page
- Content / Style Stream:
 - Based on residual block
 - O Two-stream network
 - Symmetrical with the same network structure
 - Aiming at extracting corresponding feature representations in different level
 - To extract features and feed them to the corresponding feature transformation layers in the generator.
 - Multi-scale content/style

representation can be Learned by the stream, adaptively fitting different feature transformations

METHODOLOGY - NETWORK STRUCTURE (COMPONENT LEVEL)

Generator:

- Generator has a inverse structure w.r.t. The content/style stream.
- O Designed to consistently match the level of semantic abstraction at different feature scales.
- O A noise map is sampled from a Gaussian distribution as the latent input
- Feature maps from corresponding layers in content/style stream are taken as multi-scale feature inputs
- The feature transformation are implemented by a FADE residual block
 - The FADE module, which is replaced the batch normalization layer in the FADE residual block, perform element-wise denormalization by modulating the normalized activation using a learned affine transformation defined by the modulation parameters γ and β
 - The FAdaIN module is used to exert style information through feature adaptive instance normalization
- O The entire generation process is performed in a coarse-to-fine manner.
 - Mutli-scale content/style features are injected to refine the generated image constantly from high-level latent code to low-level image representation
 - Semantic structure and style information are learnable and effectively fused in an end-to-end training

• Descriminators:

- o 3 regular discriminators with an identical architecture are included to discriminate images at different scales.
- o Patch-based training allows the discriminator operating at the coarsest scale to have the largest receptive field
 - Capturing global information of the image
- O Multi-scale patch-based discriminators further improve the robustness of our method for image-to-image translation task in different resolutions
- O The discriminators also serve as feature extracts fro the generator to optimize the feature matching loss

METHODOLOGY - NETWORK STRUCTURE (COMPONENT LEVEL)

Generator:

- Generator has a inverse structure w.r.t. The content/style stream.
- Designed to consistently match the level of semantic abstraction at different feature scales.
- A noise map is sampled from a Gaussian distribution as the latent input
- Feature maps from corresponding layers in content/style stream are taken as multi-scale feature inputs
- The feature transformation are implemented by a FADE residual block
 - The FADE module, which is replaced the batch normalization layer in the FADE residual block, perform element-wise denormalization by modulating the normalized activation using a learned affine transformation defined by the modulation parameters γ and β
 - The FAdaIN module is used to exert style information through feature adaptive instance normalization
- The entire generation process is performed in a coarse-to-fine manner.
 - Mutli-scale content/style features are injected to refine the generated image constantly from high-level latent code to low-level image representation
 - Semantic structure and style information are learnable and effectively fused in an end-to-end training

METHODOLOGY - NETWORK STRUCTURE (SUBMODULE LEVEL)

- Content/Style residual blocks:
 - Each block has three convolutional layers, one of which is designed for the learned skip connection
 - Leaky ReLU is used as the activation function
- Feature transformation:
 - Implemented by a FADE residual block and a FAdaIN module

METHODOLOGY - FEATURE TRANSFORMATION

- Overview:
 - \circ A new feature transformation scheme is proposed
 - considering both semantic structure information and style representation
 - And fuse them adaptively
- Feature Adaptive Denormalization (FADE):
 - Inspired by spatially adaptive denormalization (SPADE)
 - Differentiation:
 - SPADE resize a semantic masks as its input, whereas we generalize the input to multi-scale feature representation of the content image
 - I.e. we can fully exploit semantic information captured by the content stream
 The denomalization operation is element-wise, and the parameter, γ and β , are learned by one-layer convolutions
 - from the feature representation in the FADE module

 FADE experience more perceptible influence from coarse-to-fine feature representations
 - To it can better preserve companie structure information
 - I.e. it can better preserve semantic structure information.
- Feature Adaptive Instance Normalization (FAdaIN):
 - Used to better fuse style representation
 - o Inspired by adaptive instance normalization (AdaIN), with a generalization to enable the style stream SS to learn multi-scale feature-level style representation of the style image more effectively
 - Through FAdaIN, coarse-to-fine style features at different layers can be fused adaptively with the corresponding semantic structure features learned by FADE
 - Allowing the framework to be trained end-to-end and versatile to different tasks
 - Multi-modal image synthesis is made possible with arbitrary style control

METHODOLOGY - OBJECTIVE

- Standard losses are used in the objective function
- For generator: we applied hinge-based adversarial loss, perceptual loss, and feature matching loss
 - Perceptual loss minimized the difference between the feature representation extracted by VGG-19 network
 - Feature matching loss matches the intermediate features at different layers of multi-scale discriminator
- For multi-scale discriminators, only hinge-based adversarial loss is used to distinguish whether the image is real or fake
- The generator and discriminator are trained alternately to play a min-max game
- Due to the simple objective functions, our framework is stable and easy to train
- Because of the two-stream network, the typical KL loss for multi-modal image synthesis becomes optional

Fig. 4. Yosemite summer \rightarrow winter season transfer results compared to baselines.

Fig. 5. BDD100K day \rightarrow night time translation results compared to baselines.

Fig. 6. Photo \rightarrow art style transfer results compared to baselines.

 $\textbf{Table 1.} \ \textbf{The FID and IS scores of our method compared to state-of-the-art methods in}$ arbitrary style transfer tasks. A lower FID and a higher IS indicate better performance.

	$\mathrm{summer} \to \mathrm{winter}$		$day \rightarrow night$		$photo \rightarrow art$	
Methods	FID ↓	IS ↑	FID ↓	IS ↑	FID ↓	IS ↑
MUNIT [14]	118.225	2.537	110.011	2.185	167.314	3.961
DMIT [50]	87.969	2.884	83.898	2.156	166.933	3.871
Ours	80.138	2.996	79.697	2.203	165.561	4.020

Fig. 7. Semantic image synthesis results compared to baselines.

Table 2. The mIoU, pixel accuracy (accu) and FID scores of our method compared to state-of-the-art methods in semantic image synthesis tasks. A higher mIoU, a higher pixel accuracy (accu) and a lower FID indicate better performance.

	Cityscapes			ADE20K		
Methods	mIoU ↑	accu ↑	FID ↓	mIoU ↑	accu ↑	FID ↓
CRN [4]	52.4	77.1	104.7	22.4	68.8	73.3
SIMS [35]	47.2	75.5	49.7	N/A	N/A	N/A
pix2pixHD [42]	58.3	81.4	95.0	20.3	69.2	81.8
SPADE [34]	62.3	81.9	71.8	38.5	79.9	33.9
CC-FPSE [29]	65.5	82.3	54.3	43.7	82.9	31.7
Ours	65.9	82.7*	59.2	38.6	80.8	31.6

Fig. 9. Cross validation of ineffectiveness of task-specific methods in inverse settings.