Tabela Hash - PBL03

Curso: Engenharia de software

Disciplina: Resolução de Problemas Estruturados em Computação – TDE 03

Professor(a): Marina de Lara

Alunos: Vitor Vieira Machado, Matheus Muller, Murilo Regnier

Título do Projeto: Implementação e Análise Comparativa de Tabelas Hash com

Diferentes Funções Hash

Data: 31/10/2025

1. Introdução

O presente relatório apresenta a implementação e análise de desempenho de duas **tabelas hash** desenvolvidas em **Java**, com o objetivo de comparar a eficiência de diferentes funções hash: o **método da divisão** e o **método da multiplicação**.

O trabalho faz parte da disciplina *Resolução de Problemas Estruturados em Computação* e visa aplicar conceitos de **estruturas de dados** e **programação orientada a objetos (POO)** no contexto de **distribuição de chaves e tratamento de colisões**.

2. Objetivo

O objetivo central é comparar o desempenho entre as funções hash, considerando:

- O número de colisões ocorridas;
- O tempo médio de inserção e busca;
- A distribuição das chaves nas posições da tabela.

Essas métricas permitem avaliar a **eficiência e dispersão** de cada função hash no tratamento de dados.

3. Descrição do Projeto

O projeto foi implementado em **Java**, utilizando **classes abstratas e herança** para estruturar o código conforme os princípios da Programação Orientada a Objetos. O programa lê um arquivo female_names.txt contendo **5000 nomes**, insere-os em duas tabelas hash (uma por função hash) e, em seguida, realiza testes comparativos de desempenho.

4. Estrutura do Sistema

4.1. Diretórios e Componentes

src/
models/
HashTable.java
HashTableDivision.java
HashTableMultiplication.java
Node.java
reports/
PerformanceAnalyzer.java
utils/
FileReader.java
Main.java

4.2. Descrição dos Componentes

- HashTable.java: classe abstrata base para definição de operações genéricas.
- HashTableDivision.java: implementação da função hash pelo método da divisão.
- **HashTableMultiplication.java:** implementação da função hash pelo método da multiplicação (proporção áurea).
- Node.java: estrutura de encadeamento para colisões.
- PerformanceAnalyzer.java: executa medições de desempenho e imprime relatórios.
- FileReader.java: responsável pela leitura dos 5000 nomes.
- Main.java: controla o fluxo principal do programa, desde a leitura até os relatórios finais.

5. Metodologia

O programa segue as etapas definidas no enunciado da atividade

TDE - PBL Tabela Hash

•

- 1. Leitura dos dados: leitura do arquivo female_names.txt.
- 2. **Inicialização:** criação de duas tabelas hash com capacidade máxima de 32 posições.
- 3. Inserção dos elementos: todos os 5000 nomes são inseridos nas tabelas.
- 4. **Medição de desempenho:** cálculo de colisões, tempos de inserção e busca, e distribuição das chaves.

5. **Geração do relatório:** comparação e exibição dos resultados no console.

O método de tratamento de colisões utilizado foi o encadeamento (listas ligadas).

6. Resultados Obtidos

6.1. Método da Divisão

Função hash: hash(key) = key % tableSize
 Total de elementos inseridos: 4999

• **Colisões:** 4968

• Taxa de colisão: 99,38%

• **Tempo de inserção:** 5,781 ms

• Tempo de busca (10%): 0,187 ms

• Maior encadeamento: 182 elementos

• Tamanho médio de encadeamento: 156,22

• Taxa de ocupação: 100% (32 posições utilizadas)

6.2. Método da Multiplicação

• Função hash: hash(key) = floor(m * ((key * A) mod 1)), com A = $(\sqrt{5} - 1)/2$

• Total de elementos inseridos: 4999

• **Colisões:** 4968

• Taxa de colisão: 99,38%

• Tempo de inserção: 6,771 ms

• Tempo de busca (10%): 0,073 ms

• Maior encadeamento: 193 elementos

• Tamanho médio de encadeamento: 156,22

• Taxa de ocupação: 100% (32 posições utilizadas)

6. Análise Comparativa

```
=== SISTEMA DE TABELAS HASH ===
```

Total de nomes lidos: 5000

=== INICIANDO TESTES ===

>>> TABELA 1: Método da Divisão <<<

Função Hash: Divisão

1. ESTATÍSTICAS GERAIS:

- Total de elementos inseridos: 4999

- Total de colisões: 4968

- Taxa de colisão: 99,38%

2. TEMPOS DE EXECUÇÃO:

- Tempo de inserção: 5,781 ms

- Tempo de busca (10% dos elementos): 0,187 ms

3. DISTRIBUIÇÃO DAS CHAVES:

- Posições vazias: 0/32
- Posições ocupadas: 32
- Taxa de ocupação: 100,00%
- Maior encadeamento: 182 elementos
- Tamanho médio de encadeamento: 156,22

4. COLISÕES POR POSIÇÃO:

Posição	Colisões	Elementos
		160
1	170	171
2	160	161
2 3 4	145	146
4	149	150
5 6	148	149
6	166	167
7	158	159 164
8	163	
9	149 148 166 158 163 145 154 148 175 149 181 147 138 145 161 159 147 151 157 158 146 147 156 146 159 158 176	146
10	154	155
11	148	149
12	175	176
13	149	150
14	181	182
15	147	148 139
16	138	
17	145	146
18	161	162
19	159	160
20	147	148
21	151	152
22	157	158
23	158	159
24	146	147
25	147	147
26	156	157
27	146	147 160 159
28	159	160
29	158	
30	176	177
31	147	148

>>> TABELA 2: Método da Multiplicação <<<

Função Hash: Multiplicação

1. ESTATÍSTICAS GERAIS:

- Total de elementos inseridos: 4999

Total de colisões: 4968Taxa de colisão: 99,38%

2. TEMPOS DE EXECUÇÃO:

- Tempo de inserção: 6,771 ms

- Tempo de busca (10% dos elementos): 0,073 ms

3. DISTRIBUIÇÃO DAS CHAVES:

- Posições vazias: 0/32

- Posições ocupadas: 32

- Taxa de ocupação: 100,00%

- Maior encadeamento: 193 elementos

- Tamanho médio de encadeamento: 156,22

4. COLISÕES POR POSIÇÃO:

Posição 	Colisões 	Elementos
0		163
1		152
2		145
2 3 4	152	153
4	159	160
5	151	152 143
6	142	143
7	143	144
8		156
9	152	153
10	192	193 147
11	146	147
12		168
13		133
14	175	176
15	134	135 155
16	154	155
17		157
18	172	173
19	136	137
20	179	180 138
21		
22		163 150
23 24		
24 25		
26	162	146 163
27	102	146
28		193
28 29		143
30		167
31		159
- 51	130	133

8. Discussão dos Resultados

Apesar de ambas as funções apresentarem **alta taxa de colisão (≈99%)**, a **função de multiplicação** apresentou **melhor desempenho na busca**, indicando que, mesmo com distribuição semelhante, sua dispersão interna favorece a localização rápida dos elementos.

Já o **método da divisão** teve **menor tempo de inserção**, o que pode estar relacionado à simplicidade do cálculo e menor custo computacional.

A escolha da **capacidade reduzida (32 posições)** em relação ao grande volume de dados (5000 nomes) foi proposital, para evidenciar a ocorrência de colisões e permitir análise comparativa.

9. Conclusão

O projeto demonstrou com sucesso a aplicação prática das **tabelas hash** e a influência da **função hash escolhida** no desempenho da estrutura.

- Ambas as funções obtiveram resultados semelhantes em distribuição e colisões.
- O **método da divisão** se mostrou mais eficiente em **inserção**, enquanto o **método da multiplicação** teve desempenho superior em **buscas**.

•	Em aplicações reais, a escolha entre uma ou outra dependerá do equilíbrio entre velocidade de inserção e eficiência de acesso desejada.		