

Testes Não Paramétricos

CAC (Coeficientes de Associação e Correlação)

Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ viali@mat.ufrgs.br

Em muitas situações é necessário saber se dois conjuntos de dados estão relacionados e com que intensidade ocorre esta relação. Medidas destinadas a determinar o grau de relacionamento entre duas ou mais variáveis são denominadas medidas de associação (variáveis qualitativas) ou correlação (variáveis quantitativas).

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Prof. Lori Viali, Dr. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Conceito

O coeficiente de contingência C é uma medida associação entre dois conjuntos de atributos. É útil quando se dispõem apenas de dados apresentados em escala nominal em um ou nos dois conjuntos de atributos.

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Para determinar esta medida não é necessário dispor as variáveis em uma determinada maneira. Não importa quem seja linha e quem seja coluna, o valor obtido será o mesmo.

Para calcular o coeficiente de contingência C os dados devem ser apresentados em uma tabela de contingência como a ilustrada a seguir. Os dados podem ser divididos em qualquer número de categorias, isto é, a tabela pode ser do tipo kxr, onde k = número de colunas e r = número de linhas.

Prof. Lori Vall. Dr. – UFRGS – Instituto de Matemática - Oxpartamento de Estatística – Curso de Es

	\mathcal{A}_1	\mathcal{B}_2		\mathcal{B}_{k}	Total
\mathcal{B}_1	X ₁₁	χ_{12}	•••	χ_{1k}	s _{1.}
\mathcal{B}_2	X ₂₁	\mathcal{X}_{22}	•••	\mathcal{X}_{2k}	s _{2.}
R_1]	····/\			R
\mathcal{B}_r	χ_{r1}	\mathcal{X}_{r2}	•••	χ_{rk}	S _{r.}
a					

O coeficiente de contingência pode, então, ser obtido através da seguinte expressão:

$$C = \sqrt{\frac{\chi^2}{n + \chi^2}}$$

Onde

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^k \frac{\left(O_{ij} - \mathcal{E}_{ij}\right)^2}{\mathcal{E}_{ij}}$$

é o qui-quadrado calculado conforme já visto.

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

E x e m p l o

Considere-se os valores os valores da tabela como sendo o resultado das variáveis: "Grau de instrução" (coluna) e "Procedência" (linha). Determinar o grau de associação entre as duas variáveis.

rof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatistica – Curso de Estatistica

	Prim. Grau	Seg. Grau	Superior	Total
Capital	4	5	6	15
Interior	11	4	3	18
Outra	2	3	2	<i>7</i>
Total	17	12	11	40

$$\chi^2 = \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{(O_{ij} - \mathcal{E}_{ij})^2}{\mathcal{E}_{ij}} = 5,0989$$

O coeficiente de contingência será:

$$C = \sqrt{\frac{\chi_2}{n + \chi_2}} = \sqrt{\frac{5,0989}{40 + 5,0989}} = 0,34$$

O teste de significância para o coeficiente de contingência

Uma vez observado uma relação entre dois conjuntos de atributos em amostras, quer-se determinar se é plausível concluir pela associação desses mesmos atributos na população de onde foram retiradas as amostras.

Prof. Lori Viali, Dr. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Ao se testar a significância de uma medida de associação, está-se na realidade testando a hipótese de nulidade de que não existe associação na população, isto é, que o valor observado poderia ter ocorrido aleatoriamente entre as amostras mesmo que as populações não apresentam qualquer relação.

Para testar a hipótese de nulidade, determinase a distribuição amostral da estatística, neste caso, a medida de associação, sob \mathcal{H}_0 . Utiliza-se, então, uma prova estatística adequada para determinar, a um nível de significância pré-fixado, se o valor observado pela estatística considerada pode ter provavelmente ocorrido sob \mathcal{H}_0 .

Embora, muitas estatísticas de associação possam ser determinadas por este método o coeficiente de contingência C, constitui um caso especial. Uma das razões por que não se pode utilizar a distribuição amostral de C para testar um determinado valor observado, reside na considerável complexidade matemática de tal procedimento.

Outra razão é que no desenvolvimento do cálculo de C, já se calcula de forma intermediária uma estatística que constituí uma indicação simples e adequada da significância de C.

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Oepartamento de Estatística – Curso de Estatística

Prof. Lori Viali. Dr. – UFRCS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Tal estatística é o χ^2 . Pode-se determinar se um valor de C difere significativamente de um valor causal simplesmente determinando se um valor de χ^2 é significativo.

Para qualquer tabela de contingência $k \chi r$ pode-se determinar a significância do grau de associação pela estatística C, determinando a probabilidade de ocorrência, sob H_0 , de valores tão grandes quanto o valor observado de χ^2 , com gl = (k-1)(r-1).

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Se essa probabilidade não supera α , podese rejeitar a hipótese de nulidade, àquele nível. Se o qui-quadrado baseado nos valores amostrais é significativo, pode-se concluir que, na população, a associação entre os dois conjuntos é diferente de zero.

Exemplo

No exemplo anterior foi determinado que o coeficiente de associação entre as variáveis: escolaridade e procedência é C=0,34. Para chegar a este valor foi utilizado o valor $\chi^2=5,0989$. É este valor que vai ser usado para testar a significância de C.

A significância do resultado encontrado, isto é, 5,0989 é 27,73%.

Assim não é possível afirmar que existe associação na população.

Prof. Lori Viali, Or. – VFRGS – Instituto de Matemática - Oepartamento de Estatistica – Curso de Estatistica

A grande aplicabilidade e a determinação relativamente fácil de C podem dar a entender que se trata de uma medida ideal de associação. Este não é o caso, no entanto, em razões das limitações desta estatística.

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Em geral, pode-se dizer que um coeficiente de associação (correlação) deve apresentar pelo menos as seguintes características:

Quando as variáveis são completamente dependentes entre si, isto é, estão perfeitamente relacionadas o coeficiente deve ser igual a 1.

O coeficiente C tem a primeira destas características, mas não a segunda. Ele é zero quando não existe associação, mas não atinge o valor um, quando a relação é perfeita, sendo esta a primeira limitação do coeficiente de contingência C.

O limite superior de C é uma função do número de categorias. Quando k = r, o limite superior de C, isto é, o valor que deveria ocorrer se as variáveis tivessem uma relação perfeita é:

$$\sqrt{\frac{k-1}{k}}$$

Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Por exemplo, o limite superior de C para uma tabela 2x2 é igual a 0,71. Para uma tabela 3x3, o máximo que C pode atingir é um valor de 0,82.

O fato de o valor máximo de C, depender de **k** e **r** é uma segunda limitação, pois dois coeficientes de contingência só serão comparáveis se provierem de tabelas com o mesmo número de linhas e colunas.

Prof. Lori Viali, Or. – UPRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Cori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de E

Uma terceira limitação de C é que os dados devem se prestar para o cálculo do χ^2 antes que C possa ser convenientemente utilizado, isto é, o cálculo de C sofre das mesmas limitações do cálculo do qui-quadrado.

Uma última limitação de C é que ele não é diretamente comparável com nenhuma outra medida de associação (correlação), como por exemplo, o coeficiente de Pearson, o de Spearman ou o de Kendall.

A despeito destas limitações o coeficiente de contingência é uma medida útil pela sua larga aplicabilidade, pois não exige suposições sobre a forma da população de escores, não exige continuidade da variável em estudo e requer apenas mensuração nominal.

Isto faz do coeficiente de contingência uma medida que pode ser aplicada em situações em que nenhuma outra pode ser aplicada.

Resolva o exercício um do Laboratório Sete.

O Coeficiente V de Crámer

Considerações

Apesar de sua popularidade o coeficiente de contingência tem a desvantagem de que o número de linhas e colunas influencia o resultado. A alternativa é utilizar o coeficiente V (de Cramer), definido por:

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Exercício

Prof. Lori Vali, Or. – VFRGS – Instituto de Matemática - Organiamento de Estatóstica – Curso de Estatóstica

Considerações

Dentre todas as estatísticas com base em postos, o coeficiente de correlação de Spearman foi a que surgiu primeiro e é talvez a mais conhecida hoje. A sua principal vantagem é não exigir normalidade dos dados.

Esta estatística, por vezes designada "rho" (ρ) , é representada, aqui por r_S . É uma medida de associação que exige que as duas variáveis tenham mensuração pelo menos ordinal para que os postos possam ser determinados.

Determinação

Suponha que existam n pares ordenados por postos representando duas variáveis. Por exemplo, um grupo de estudantes ordenado de acordo com suas notas no vestibular de uma universidade e também de acordo com sua classificação ao fim do primeiro ano.

Representando os escores do vestibular $X_1, X_2, ..., X_n$ e os escores da classificação ao final do primeiro ano por: Y_1 , Y_2 , ..., Y_n pode-se utilizar uma medida de correlação por postos para determinar o relacionamento entre as duas variáveis.

Suponha que o aluno A tenha obtido o

primeiro lugar no vestibular, mas ao fim do

primeiro ano esteja em sexto lugar. Neste caso, d

A correlação entre a classificação no vestibular e a classificação ao fim do primeiro ano seria perfeita se e somente se $X_i + Y_i = C =$ Constante, para todo "i". Portanto, parece lógico usar as diversas diferenças: $d_i = X_i - Y_i$ como indicativo da diferença entre os dois conjuntos de postos.

= 1 - 6 = -5. Um aluno B, por outro lado, ficou em nono lugar no vestibular e agora, ao final do primeiro ano, é o segundo colocado. O valor de d

O valor das diversas diferenças "d" fornece uma ideia do relacionamento entre as duas variáveis. Se a relação entre os dois conjuntos de postos fosse perfeita, todos os valores de "d" seriam zero. Quanto maiores os diversos valores de "d", menor será a associação entre as duas variáveis.

A utilização direta das diferenças (d) para o cálculo do coeficiente de correlação acarreta dificuldades. Por exemplo, os valores negativos e positivos se cancelam se forem somados. Por isso é utilizado o valor de d ao quadrado, d², para eliminar esta dificuldade.

A expressão para o cálculo do coeficiente de correlação de Spearman é baseada no cálculo do coeficiente de Pearson (estatística paramétrica) r, onde:

Onde:
$$x = X - \overline{X}$$

 $y = Y - \overline{Y}$

Mas quando X e Y são postos, $r = r_S$ e a soma de n inteiros: 1, 2, ..., n é dada por:

Prof. Lorí Viali. Dr. – UFRGS – Instituto de Matemática - Devartamento de Estatistica – Curso de Estatis

 $\sum X = \sum Y = \frac{n(n+1)}{2}$

E a soma dos quadrados dos postos, isto é, $1^2 + 2^2 + ... + n^2$ é dada por:

$$\sum X^2 = \sum Y^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum X^2 = \sum \Upsilon^2 = \frac{n(n+1)(2n+1)}{\epsilon}$$

 $\sum X = \sum Y = \frac{n(n+1)}{2}$

 $\sum x^2 = \sum (X - \overline{X})^2 = \sum X^2 - \frac{(\sum X)^2}{n} = \sum X^2 - n\overline{X}$

Como: $\chi = X - \overline{X}$, então:

 $\sum X^2 = \sum Y^2 = \frac{n(n+1)(2n+1)}{6}$

$$\sum x^2 = \sum x^2 - \frac{(\sum x)^2}{n} = \frac{n(n+1)(2n+1)}{6} - \frac{n^2(n+1)^2}{4n} =$$
$$= \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)^2}{4} = \frac{n^3 - n}{12} = \sum y^2$$

$$\mathcal{M}as: d = \chi - y.$$

Então
$$d^2 = (x - y)^2 = x^2 + y^2 - 2xy$$

Assim:

$$\Sigma d^2 = \Sigma (x - y)^2 = \Sigma x^2 + \Sigma y^2 - 2\Sigma xy$$

Pela expressão do cálculo do coeficiente

de correlação de Pearson, tem-se:

$$r = \frac{\sum xy}{\sqrt{\sum x^2 \sum y^2}} = r_S$$

Substituindo Σx^2 e Σy^2 na expressão e simplificando, tem-se: $r_S = 1 - \frac{6\Sigma d^2}{n^3 - n}$

Determinar o coeficiente de correlação de Spearman para as variáveis:

X e Y do exercício três do laboratório sete.

	X	Υ
1	5	6
2	9	16
3	17	18
4	1	1
5	2	3
6	21	21
7	3	7
8	29	20
9	7	15
10	100	22

	X	Y	$\mathcal{P}_{\mathcal{X}}$	$arPsi_{\Upsilon}$	d_i
1	5	6	4	3	1
2	19	16	6	6	0
3	17	18	7	7	0
4	1	1	1	1	0
5	2	3	2	2	0
6	21	21	8	9	-1
7	3	7	3	4	-1
8	29	20	9	8	1
9	7	15	5	5	0
10	100	22	10	10	0
Total					0

O valor do coeficiente de correlação será então:

$$r_S = 1 - \frac{6.4}{10^3 - 10} = 0,9760$$

Empates

Ocasionalmente podem ocorrer empates entre os escores de dois valores na mesma variável. Quando isto ocorre, a cada um deles é atribuído a média dos postos que seriam atribuídos caso o empate não ocorresse, isto é, adota-se o procedimento usual.

Prof. Lori Viali, Dr. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Quando a proporção de empates é grande torna-se necessário a utilização de um fator de correção.

O efeito de postos empatados na variável X ou Y, reduz a soma dos quadrados. Portanto, quando houver empates é necessário corrigir a soma dos quadrados.

Prof. Lori Wali, Dr. – UFRGS – Instituto de Matemática - Opportamento de Estatística – Curso de Estatíst

Onde t = número de observações empatadas em determinado posto.

A soma dos quadrados corrigida será então:

$$\sum \chi^2 = \frac{n^3 - n}{12} - \sum T_X$$
 $e \sum y^2 = \frac{n^3 - n}{12} - \sum T_Y$

Prof. Lori Viali. Dr. – VFRGS – Instituto de Matemática - Ospartamento de Estatística – Curso de Estat

 $\sum T$, onde a soma de T indica o somatório sobre os vários valores de T para todos os grupos de observações empatadas.

Assim se o número de empates for considerável o cálculo do coeficiente de correlação de Spearman deve ser realizado por:

$$r_{S} = \frac{\sum x^{2} + \sum y^{2} - \sum d^{2}}{2\sqrt{\sum x^{2} \sum y^{2}}}$$

Onde:

$$\sum \chi^2 = \frac{n^3 - n}{12} - \sum T_X$$
 $e \qquad \sum y^2 = \frac{n^3 - n}{12} - \sum T_Y$

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Oxpartamento de Estatística – Curso de

Se as amostras utilizadas no cálculo do coeficiente de correlação de Spearman foram selecionadas aleatoriamente, então pode-se utilizar os seus valores para testar se as variáveis correspondentes estão associadas na população, isto se r_s pode ser considerado diferente de zero.

Pequenas Amostras

Suponha verdadeira a hipótese de nulidade, isto é, suponha-se que $\rho_S = 0$. Se as amostras são aleatórias, então para uma dada ordem dos escores de X, todas as ordens possíveis dos escores Y tem a mesma probabilidade.

Para n valores existem n! ordenações possíveis dos escores X que podem ocorrer com qualquer ordenação dos escores Y. Como essas igualmente prováveis, ordenações são probabilidade de ocorrência de determinada ordenação dos escores X conjuntamente com dada ordenação dos escores Y é 1 / n!.

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Es

A cada uma das possíveis ordenações de Y está associado um valor de r_s. A probabilidade de ocorrência, sob \mathcal{H}_0 , de cada valor de r_S é então proporcional ao número de permutações que originam aquele valor.

Aplicando a fórmula do cálculo do r_s podese perceber que:

Se n = 2, então r_S só pode assumir os valores -1 e +1. Cada um destes valores tem probabilidade 1/2.

Se n = 3, então os possíveis valores de r_s são -1, -1/2, +1/2 e +1. Cada um destes valores tem probabilidade de ocorrência, sob Ho, respectivamente de: 1/6, 1/3, 1/3 e 1/6.

Prof. Lori Viali, Dr. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de E

A tabela P (Siegel, pg. 315) fornece os valores críticos unilaterais de r_S , obtidos por este método. Para n variando de 4 a 30, a tabela fornece o valor de r_S com a probabilidade associada, sob \mathcal{H}_0 , para p=0,05, e p=0,01.

Suponha que 12 pares das variáveis X e Y forneceram um coeficiente de correlação $r_S=0.82$. Verifique se é possível afirmar que esse valor é significativamente maior do que zero a uma probabilidade de 1%.

Grandes Amostras

Quando n é 10 ou mais, a significância de um valor obtido de r_{S} , sob a hipótese de nulidade, pode ser comprovado através de (Kendall, 1948):

$$t_{n-2} = r_{\mathcal{S}} \sqrt{\frac{n-2}{1-r_s^2}}$$

Conceito

O coeficiente de correlação por postos de Kendall, \(\tau\)) é uma medida de associação para variáveis ordinais. Neste caso, \u03c4 dará uma medida do grau de associação entre os dois conjuntos de postos.

A distribuição amostral de τ , sob \mathcal{H}_0 é conhecida e pode, portanto ser testada. Uma vantagem de τ sobre o coeficiente r_s é que τ pode ser generalizado para um coeficiente de correlação parcial que será posteriormente.

Suponha-se que se peça a dois juízes X e Y, para atribuir postos a quatro objetos. Por exemplo, poderíamos solicitar que classificassem quatro ensaios por

Represente-se os quatro ensaios por a, b, c e d. Os postos obtidos foram:

Ensaio	a	6	С	d
Juiz X	3	4	2	1
Juiz Y	3	1	4	2

Reordenando os ensaios, de forma que os postos atribuídos pelo juiz X apareçam na ordem natural (1, 2, ..., n), tem-se:

Ensaio	а	6	С	ď
Juiz X	1	2	3	4
Juiz Y	2	4	3	1

Temos agora condições de determinar o grau de correspondência entre os julgamentos de X e de Y. Os postos atribuídos pelo juiz X já estando na ordem natural, passa-se a determinar quantos pares de postos atribuídos pelo juiz Y se acham em sua ordem correta (natural) em relação ao outro.

Considera-se primeiro todos os pares de postos em que figura o posto 2 do juiz Y - o posto mais à esquerda em seu conjunto. O primeiro par, 2 e 4, está na ordem correta, isto é, 2 precede 4. Como a ordem é "natural", atribui-se o escore +1 a este par.

Os postos 2 e 3 constituem o segundo par, que também está na ordem correta (o 2 vem antes do 3), recebendo, assim, também o escore +1. O terceiro par consiste dos postos 2 e 1.

Esses escores não estão na ordem "natural", pois 2 não vem antes do 1.

Atribui-se então ao par o escore -1. O total dos escores de todos os pares de postos que incluem o posto 2 é: +1 + 1 - 1 = 1.

Considera-se, em seguida, todos os pares possíveis de postos que incluem o posto 4 (segundo posto do juiz Y a contar da esquerda) e um outro posto que o segue. Um par é o 4 e 3 cujos elementos não estão em ordem, recebendo, por isso, o escore -1. O total destes escores é: -1 -1 = -2.

Considerando agora o posto 3 e os seguintes, obtém-se um único par: 3 e 1, cujos elementos não estão em ordem natural; o par recebe o escore -1. O total de todos os escores assim atribuídos é: 1 - 2 -1 = -2.

Qual é o total máximo possível que se pode obter para os escores atribuídos a todos os pares de postos do juiz Y?

Obter-se-ia o total máximo se os postos dos juízes X e Y tivessem apresentado perfeita concordância, porque então, colocados os postos de X em sua ordem natural, cada par de postos do juiz Y se apresentaria também na ordem natural, recebendo, assim, o escore +1.

O grau de relacionamento entre os dois conjuntos de postos é dado pela razão do total efetivo de escores + 1 e -1, para o total máximo possível.

rof. Lori Viali, Dr. – VFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

O coeficiente de correlação por postos de Kendall é a razão:

$$\tau = (total \ efetivo) / (total \ máximo \ possível) = -2 / 6 = -0.33.$$

Isto é, $\tau = -0.33$ é uma medida da concordância entre os postos atribuídos aos ensaios pelos juízes X e Y.

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Oepartamento de Estatística – Curso de Estatística

Pode-se considerar τ como função do número mínimo de inversões ou permutas entre elementos vizinhos, necessário para transformar um posto em outro. Este coeficiente é uma espécie de coeficiente de desordenamento.

Viu-se que:

 $\tau = (total\ efetivo) / (total\ máximo\ possível)$ Em geral, o escore máximo possível $será: \qquad \qquad \binom{n}{n(n-1)}$

Anotando por S a soma dos escores +1 e -1 para todos os pares, tem-se:

$$\tau = \frac{S}{\frac{n(n-1)}{2}} = \frac{2S}{n(n-1)}$$

O cálculo de S pode ser abreviado da seguinte forma:

Após colocados em sua ordem natural os postos do juiz X, os postos correspondentes do Juiz Y se apresentam na seguinte ordem:

Į

Pode-se determinar o valor de S partindo do primeiro número à esquerda e contando o número de postos à sua direita que são superiores. Deste número subtrai-se o número de postos à direita que são inferiores. Procedendo desta forma para todos os postos e somando os resultados se obtém S.

Assim, para os valores acima, os postos à direta de 2 e superiores a 2 são 3 e 4, e o 1 é inferior. O posto 2 contribuí, então, com 2 - 1 = 1 para o valor de S.

rof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

O total destas contribuições é então de:

$$1 - 2 - 1 = -2 = S$$
.

Conhecido S pode-se aplicar a expressão para o cálculo do coeficiente τ para os postos atribuídos pelos dois juízes:

$$\tau = \frac{S}{\frac{n(n-1)}{2}} = \frac{2S}{n(n-1)} = \frac{2(-2)}{4(4-1)} = \frac{-4}{12} = -0.33$$

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatistica

Abaixo as variáveis autoritarismo e aspirações de status social para 12 estudantes.

Calcular o valor de τ para os dados.

1	2	3	4	5	6	7	8	9	10	11	12
3	4	2	1	8	11	10	6	7	12	5	9
3	6	5	1	10	9	8	3	4	12	7	11

Prof. Cori Viali. Dr. – DFRGS. – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Para calcular τ vamos reordenar os estudantes de modo que o primeiro conjunto de postos se apresente na ordem natural:

1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12
1	5	2	6	7	3	4	10	11	8	9	12

Dispostos em sua ordem natural os postos de X, determinamos o valor de S para os postos de Y:

$$S = (11 - 0) + (7 - 3) + (9 - 0) + (6 - 2) + (5 - 2) + (6 - 0) + (5 - 0)(2 - 2) + (1 - 2) + (2 - 0) + (1 - 0) = 44$$

Prof. Lorí Viali, Dr. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

O posto relativo a autoritarismo mais à esquerda é 1. Este posto tem 11 postos superiores a sua direita e nenhum que lhe seja inferior. Sua contribuição para S é, pois, (11 - 0). O posto 5 contribui com (7 - 3) para S, pois a sua direita existem 7 superiores e a sua esquerda estão 3 postos que lhe são inferiores. E assim por diante.

Sabido que S = 44 e n = 12, aplica-se então a expressão do cálculo do coeficiente.

$$\tau = \frac{S}{\frac{n(n-1)}{2}} = \frac{2S}{n(n-1)} = \frac{2.44}{12(12-1)} = \frac{88}{132} = 0,67$$

Esse valor representa o grau de relacionamento entre o autoritarismo e as aspirações de status social dos 12 estudantes.

Prof. Lori Viali, Dr. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Empates

Quando há empate entre duas ou mais observações de X ou de Y, atribui-se as observações empatadas a média dos postos que lhes caberiam se não houvesse empate.

O efeito dos empates consiste em modificar o denominador da fórmula de t.

Prof. Lori Viali, Or. – VFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Festatístic

Assim, a expressão para o cálculo do coeficiente quando ocorrem empates é:

$$\tau = \frac{S}{\sqrt{\frac{1}{2}n(n-1) - T_x}\sqrt{\frac{1}{2}n(n-1) - T_y}}$$

Onde
$$T_X = \frac{1}{2} \sum t(t-1) e T_Y = \frac{1}{2} \sum t(t-1)$$
,

onde t é o número de observações empatadas em cada grupo de empates nas variáveis X e Y.

Se uma amostra aleatória for extraída de uma população em que X e Y não estão relacionados e se atribuem aos elementos da amostra postos relativos à X e Y, então, para uma dada ordem de postos de X todas as ordens possíveis de postos de Y são igualmente verossímeis.

Isto é, para uma dada ordem dos postos de qualquer ordem de Y tem a mesma probabilidade de ocorrência que qualquer outra ordem. Suponhamos os valores de X dispostos na ordem natural 1, 2, 3, ..., n.

Para tal ordenação dos postos de X, todas as n! ordens possíveis dos postos de Y são igualmente prováveis sob \mathcal{H}_o . Portanto, qualquer ordenação em particular dos postos de Y tem probabilidade 1/n! de ocorrência, sob \mathcal{H}_o .

Probabilidades de τ , sob \mathcal{H}_0 para n=4.

Valor de τ	Frequência de ocorrência sob H ₀	Probabilidade de ocorrência sob H _o
-1,00	1	1/14
-0,67	3	3/14
-0,33	5	5/24
0,00	6	6/24
0,33	3	5/24
0,67	5	3/24
<i>1,00</i>	1	1/24

A cada uma das n! disposições possíveis de postos de Y acha-se associado um valor de T. Esses valores possíveis do índice variarão de +1 a - 1 e podem ser dispostos em uma distribuição de frequências.

Por exemplo, para n = 4, há 4! = 24ordenações possíveis dos postos de Y e a cada uma delas está associado um valor de t. A tabela anterior fornece a frequência de ocorrência sob \mathcal{H}_0 . A medida que n cresce é cada vez mais trabalhoso construir as distribuições.

A medida que n cresce a distribuição de T

$$\sigma_{\tau} = \sqrt{\frac{2(2n+5)}{9n(n-1)}}$$

Quando se observa uma correlação entre duas variáveis existe sempre a possibilidade de que tal correlação seja devida à associação de cada uma das duas variáveis com uma terceira variável.

Por exemplo, em um grupo de pessoas de diversas idades, pode-se verificar uma alta correlação entre a amplitude do vocabulário e a altura.

Tal correlação, entretanto, pode não refletir um relacionamento verdadeiro ou direto entre as duas variáveis mas resultado do fato de que tanto a amplitude do vocabulário quanto a altura estão relacionados com uma terceira variável a idade.

Problemas deste tipo podem ser abordados através da determinação de um coeficiente de correlação parcial. Na correlação parcial os efeitos de uma terceira variável Z sobre as variáveis X e Y são controlados mantendo-a constante.

Ao planejar o experimento, pode-se adotar dois caminhos. Introduzir controles experimentais com o propósito de eliminar a influência da terceira variável ou utilizar métodos estatísticos para eliminar tal influência.

Por exemplo, para se estudar a relação entre a capacidade de memorização e a capacidade para resolver certos tipos de problemas será necessário controlar o efeito das diferenças de inteligência.

Uma alternativa é escolher pessoas com o mesmo nível de inteligência. Se isto não for possível, pode-se aplicar então o controle estatístico.

Com a correlação parcial o efeito da inteligência sobre a relação entre memorização e capacidade de resolução de problemas poderá ser determinada de forma direta ou não-contaminada.

Suponha que os postos de 4 pessoas em relação a 3 variáveis X, Y e Z foram obtidos.

Deseja-se determinar a correlação entre X e Y quando Z é controlada.

Pessoas	a	<i>6</i>	С	ď
Posto de Z	1	2	3	4
Posto de X	3	1	2	4
Posto de Y	2	1	3	4

Prof. Lori Viali, Dr. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatistica

Para cada uma das variáveis sabe-se que há $\binom{4}{2}$ pares de postos possíveis. Colocados os postos de Z em sua ordem natural, observa-se cada par de postos possível em X, Y e Z. Atribuí-se o sinal + aos pares em que o posto mais baixo precede o posto mais alto e um sinal

Suponha que os postos de 4 pessoas em relação a 3 variáveis X, Y e Z foram obtidos.

Deseja-se determinar a correlação entre X e Y quando Z é controlada.

Par	(a, b)	(a, c)	(a, d)	(b, c)	(b, d)	(c, d)
$\boldsymbol{\mathcal{Z}}$	+	+	+	+	+	+
Х	-	-	+	+	+	+
Y	-	+	+	+	+	+

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

As informações obtidas são resumidas em uma tabela 2x2.

Sinal do Par	+	- 37
+	(+, +)	(+, -)
-	(-, +)	(-, -)

No primeiro par (a, b) tanto X quanto Y discordam do sinal de Z então a frequência vai para a célula D (-, -). No segundo par (c, d) Y concorda com Z mas X não. A frequência é registrada na célula C (-, +).

Os pares restantes apresentam todos o mesmo sinal e portanto a frequência vai para a célula A (+, +). Em resumo, tem-se:

Sinal do Par	R.+	Mali-	Total
+	4	0	4
-	1	1	2
Total	5	1	6

O coeficiente de correlação por postos de Kendall entre duas variáveis (X, Y) considerando constante uma terceira variável (Z) é dado então por:

$$\tau_{XY,Z} = \frac{\mathcal{A}\mathcal{D} - \mathcal{B}\mathcal{C}}{\sqrt{(\mathcal{A} + \mathcal{D})(\mathcal{C} + \mathcal{D})(\mathcal{A} + \mathcal{C})(\mathcal{B} + \mathcal{D})}}$$

Para os dados sendo analisados, tem-se:

$$\tau_{XY.Z} = \frac{\mathcal{A}\mathcal{D} - \mathcal{B}C}{\sqrt{(\mathcal{A} + \mathcal{D})(C + \mathcal{D})(\mathcal{A} + C)(\mathcal{B} + \mathcal{D})}} =$$

$$= \frac{4.1 - 0.1}{\sqrt{(4 + 0)(1 + 1)(4 + 1)(0 + 1)}} =$$

$$= \frac{4}{\sqrt{4.2.5.1}} = \frac{4}{\sqrt{40}} = \sqrt{0.4} = 0.6325$$

Prof. Lori Viali, Dr. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

A correlação entre X e Y, com o efeito de Z constante é então: $\tau_{XY,Z}=0,63$. Se fosse calculado a correlação entre X e Y sem considerar Z o resultado seria: $\tau=4/6=0,67$.

Prof. Lori Viali, Dr. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

A expressão para o cálculo do coeficiente de correlação parcial por postos de Kendall é algumas vezes denominada de "Coeficiente Phi" e pode-se mostrar que:

$$\tau_{XY.Z} = \sqrt{\frac{\chi^2}{n}}$$

A maneira de calcular o CCPPK não é prática quando n é grande. Nesse caso, podese utilizar a seguinte expressão alternativa devida a Kendall:

$$\tau_{XY,Z} = \frac{\tau_{XY} - \tau_{XZ}\tau_{YZ}}{\sqrt{(1 - \tau_{XZ}^2)(1 - \tau_{YZ}^2)}}$$

Prof. Lori Viali, Dr. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

X_i Y_j	1	2	T	R	Total
— 1	f_{11}	f_{12}		f_{1k}	<i>r</i> ₁
2	f_{21}	f_{22}		f_{2k}	r ₂
🙊			l		
l	f_{l1}	f_{l2}	•••	f_{lr}	r_{ℓ}
Total	<i>c</i> ₁	c_2		Ck	W

O qui-quadrado de Mantel-Haenszel também denominado de teste qui-quadrado de associação linear por linear é uma medida de significância para variáveis ordinais. Ele é utilizado para testar a significância do relacionamento linear entre duas variáveis ordinais, porque é mais poderoso do que o qui-quadrado de Pearson.

O qui-quadrado de Mantel-Haenzel não é adequado para variáveis nominais. Se ele for significativo então é possível dizer que o aumento de uma variável está associado com o aumento (ou decréscimo, para relacionamentos negativos) da outra variável.

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

Como outras estatísticas que utilizam o qui-quadrado ele não deve ser utilizado com valores baixos de frequências.

O teste de associação linear de Mantel-Haenszel é dado por:

$$X^2_{\mathcal{MH}} = (W-1)r^2$$

onde r é o coeficiente de correlação de Pearson definido conforme o apresentado a seguir. O grau de liberdade da estatística é 1.

Prof. Lori Viali, Or. – UFRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatistica

Prof. Lori Viali, Dr. – UPRGS – Instituto de Matemática - Departamento de Estatística – Curso de Estatística

O algoritmo para o cálculo do coeficiente de correlação de Pearson para uma tabela de contingência é dado por:

$$r = \frac{cov(X, Y)}{\sqrt{S_X S_Y}}$$

- SA:	1	2	3	Total
1	4	5	6	15
2	11	4	3	18
3	2	3	2	7
Total	17	12	11	40

Onde:	
$Cov(X,Y) = \sum_{i} \chi_{i} y_{j} f_{ij} - \left(\sum_{i=1}^{l} \chi_{i} r_{i} \right) \left(\sum_{j=1}^{k} y_{j} j \right) / \mathcal{W} = -3,20$	
e:	

$$S_X = \sum_{i=1}^{l} x_i^2 r_i - \left(\sum_{i=1}^{l} x_i r_i\right)^2 / \mathcal{W} = 20,40$$

$$S_X = \sum_{j=1}^{k} y_j^2 c_j - \left(\sum_{j=1}^{k} y_j c_j\right)^2 / \mathcal{W} = 27,10$$

http://www.statsguides.bham.ac.uk/
Guias do SPSS 9, 10 e Minitab 12.
http://www.uc.edu/sashtml/proc/zompmeth.htm

Fórmulas de vários tipos de coeficientes
http://www.nyu.edu/its/socsci/Docs/correlate.html
Correção de empates para o cc de Spearman
http://www.uc.edu/sashtml/stat/chap28/sect20.htm
SHESKIN, David J. Handbook, of Parametric and
Nonparametric Statistical Procedures. 4th ed. Boca Raton
(FL): Chapman & Hall/CRC, 2007.