

 $\int_{2}^{2} z = f(x) y \left[x = e^{u} + e^{v} \right] y = e^{u} + e^{v} \int_{2}^{2} f(x) dx = x dx - y dx$ $\int_{2}^{2} z = f(x) y \left[x = e^{u} + e^{v} \right] y = e^{u} + e^{v} \int_{2}^{2} f(x) dx = x dx - y dx$ $\int_{2}^{2} z = f(x) y \left[x = e^{u} + e^{v} \right] y = e^{u} + e^{v} \int_{2}^{2} f(x) dx = x dx - y dx$ Here, we do not have expression for 2: we keep it as $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}$ [HS = d2 -d2 = d2.e + d2.e - d2.e - d2.e. Is $f = f(e^{x-y}, e^{y-2}, e^{x-x})$ $P.T = \partial u + \partial u + \partial u = 0$ $\partial x + \partial y + \partial z = 0$ Si. Let $P = e^{x-y}$, $Q = e^{y-z}$, $R = e^{2-x}$ i. u = f(P, Q, R) u = (Flowchart) $\partial u = \partial u \cdot \partial l + \partial u \cdot \partial Q + \partial l u \cdot \partial R - \partial x$ e^{x} , e^{y-2} , e^{y-2} , e^{y-2} , e^{x-2}) e^{x-2} , e^{x-2} i. u = f(P, Q, R) e^{x} e^{x} e^{x-2} , e^{y-2} , e^{x-2} e^{x-2} i. u = f(P, Q, R) e^{x} e^{x} e^{x-2} e^{x-2} e^{x-2} e^{x-2} i. u = f(P, Q, R) e^{x} e^{x} e^{x-2} e^{x dy dP dx dQ dx dR dy du = du . dP + du . dQ + du . dR 22 dP dz dQ dz dR dz $\frac{\partial z}{\partial x} \frac{\partial u}{\partial r} = \frac{\partial u}{\partial r} \left(e^{x-y} \right) + \frac{\partial u}{\partial u} \left(0 \right) + \frac{\partial u}{\partial r} \left(e^{z-x} \right)$ (3) $\frac{1}{2} \frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} (0) + \frac{\partial u}{\partial x} (e^{2x}) + \frac{\partial u}{\partial x} (e^{2x})$

Q4. 9/2=f(x,y), x=e cos v & y=e sinv du dx du dy du dx (e m) $\frac{1}{x} \frac{\partial u}{\partial x} \frac{\partial x}{\partial x} \frac{\partial u}{\partial x} \frac{\partial y}{\partial x} \frac{\partial y}{\partial x} \frac{\partial z}{\partial x} \left(-\frac{u}{x} \sin x \right) + \frac{\partial z}{\partial y} \left(\frac{u}{x} \cos x \right)$ (i) LHS=x dx + y dz = x dz |-ex We know, x = e cosv y = e sinv $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot x + \frac{\partial z}{\partial z} \cdot y$ & $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} (-y) + \frac{\partial z}{\partial y} (x)$ (i) LHS = x dz +y dz = x dz + zy dz + dv du dz dz dy $= -xy \frac{\partial z}{\partial x} + x^2 \frac{\partial z}{\partial y} + xy \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y}$ $= (e^{x} + y) \frac{\partial z}{\partial y} + \frac{1}{\partial z}$ $= (e^{x})^{2} \left[\sin^{2} x + \cos^{2} x \right] \frac{\partial z}{\partial y}$ =(x2+y2) 22 = e24. dz = RHS

277

(ii) LHS =
$$\begin{pmatrix} \frac{1}{2} & \frac$$