

Forecasting Car Prices with Data Science

LAB A137 - Group 6

Sky Lim En Xing - U2223731A Thomas Tan Keat Hao - U2221472J Chermine Cheah Xue Min - U22222126F

CAR PRICES ARE RISING ACROSS THE WORLD

Can regular joes still afford cars? How to maximise *value*?

car_sales.csv

DATASET USED

Data Card Code (5) Discussion (0)

About Dataset

Context

This data contains data related to Car Sales

INTRODUCTION

RAW DATATYPES

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	Model
0	BMW	4200.0	sedan	277	2.0	Petrol	yes	1991	320
1	Mercedes-Benz	7900.0	van	427	2.9	Diesel	yes	1999	Sprinter 212
2	Mercedes-Benz	13300.0	sedan	358	5.0	Gas	yes	2003	S 500
3	Audi	23000.0	crossover	240	4.2	Petrol	yes	2007	Q7
4	Toyota	18300.0	crossover	120	2.0	Petrol	yes	2011	Rav 4

Brand	object
Price	float64
Body	object
Mileage	int64
EngineV	float64
Engine Type	object
Registration	object
Year	int64
Model	object
dtype: object	NET/d

DATASET FEATURES

(Predictors)

CATEGORICAL

- Brand
- Model
- Body (Sedan/Van/Hatchback)
- Registration (Year of registration)
- Engine Type (Petrol/Gas/Diesel)

NUMERICAL

- Mileage
- Year (Year of manufacturing
- **EngineV** (Engine version of Car))

(Response)

Price (Numerical)

Distribution of Numerical FTs

- Note skewness of each variable
- Distributed over a large range of values for each variable
- Issue of scale

Relationship between other Numeric features & Prices

- Only moderately strong relationships b/w numerical predictors and response Price
- Later the year of production ,
 Price
- ▼ Mileage, ▲ Price
- Very weak r/s b/w EngineV & Year

Distribution of Categorical Features

- Sedans most popular
- Most cars sold registered
- **Diesel** is preferred
- Buyer tendency towards
 Volkswagen and Mercedes-Benz

Distribution of Categorical Features

- More data points clustered @ Price <20,000
 - dataset has cheaper cars on avg
- Renault and Mitsubishi sells more cheaper cars
- Van, Vagon, Hatch Body generally have more cheaper cars
- Gas Engine Types cars tends to be cheaper

DATA-PREPROCESSING

DATA ENGINEERING

= Collecting, cleaning, and transforming raw data (Preparation)

FEATURE ENGINEERING

= Transforming raw data into meaningful features

DATA ENGINEERING

- Remove *NULL* values
- Remove *Outliers*
- Appropriate Data Type

FEATURE ENGINEERING

- O Data Encoding for *Categorical* data
- Scaling *Numeric* data

DATA ENCODING (CATEGORICAL)

ONE HOT

ENCODING

For Brands, Body, Engine Type and Model

Engine Type	is_Gas	is_Petrol	is_Diesel
Gas	1	0	0
Petrol	0	1	0
Diesel	0	0	1

Example of One-hot encoding for Engine Type

LABEL ENCODING

For **Registration**

Registration	Registration
Yes	 1
No	0

Example of Label encoding for Registration

FEATURE ENGINEERING

Scaling *Numeric* data

Using StandardScaler() from sklearn to scale numerical features

MACHINE LEARNING

Problem Type

- Reponse: Price, (continuous variable)
- ⇒ Regression problem

Models Used

- Linear Regression
- Lasso
- Elastic Net
- Ridge Regression

Performance Measure

- R-squared (R²) score
- Mean Squared Error (MSE) score
- Root Mean Squared Error (RMSE)

1. Linear Regression Model

- → A regression model used to predict continuous numerical values (car price) based on one or more independent feature.
- → Finds linear relationship between the independent variables and the dependent variable (car price)
- → Estimates the values of the coefficients that multiply each independent variable, such that the sum of the product of these coefficients and independent variables, along with an intercept term, results in the predicted value of the dependent variable (car price).

R ²	MSE	RMSE
0.8417	14073181	3751

R²	MSE	RMSE
-4.2488e+20	4.3812	209314725481944

- → A regression model that can be used for predicting car prices based on different factors.
- → Finds a linear relationship between the independent variables and the dependent variable (i.e. car price)
- → Minimizes the sum of the squared errors between the predicted and actual values As well as adding a penalty term to the loss function (multiple of the sum of the absolute values of the coefficients). This penalty term encourages the model to keep only the important features and reduce the effect of irrelevant features.

R²	MSE	RMSE
0.8384	14366139	3790

R ²	MSE	RMSE
0.7909	21559213	4643

3. Gradient Boosting Regressor Model

- → A regression model that uses an ensemble method that combines multiple decision trees to form a strong predictive model.
- The algorithm works by iteratively adding decision trees to the model, each one correcting the errors of the previous tree, hence improving the predictions of the previous trees.

R²	MSE	RMSE
0.9086	8131409	2852

R ²	MSE	RMSE
0.8757	12821857	3581

4. Ridge Regression Model

- A regression model that identifies the most important factors for predicting the car prices and to estimate the effect of each factor on the car prices.
- Minimizes the sum of the squared errors between the predicted and actual values As well as adding a penalty term to the loss function (multiple of the sum of the absolute values of the coefficients). This penalty term encourages the model to keep only the important features and reduce the effect of irrelevant features.

R²	MSE	RMSE
0.8336	14792064	3846

R ²	MSE	RMSE
0.7912	21527686	4640

Tuning Hyperparameters with **GridSearchCV**

Hyperparameters for different models:

Linear Regression

```
{'copy_X': True, 'fit_intercept': True, 'n_jobs': None, 'positive': False}
```

<u>Lasso</u>

```
{'alpha': 1.0,
  'copy_X': True,
  'fit_intercept': True,
  'max_iter': 1000,
  'positive': False,
  'precompute': False,
  'random_state': 128,
  'selection': 'cyclic',
  'tol': 0.0001,
  'warm start': False}
```

Ridge Regression

```
{'alpha': 1.0,
  'copy_X': True,
  'fit_intercept': True,
  'max_iter': None,
  'positive': False,
  'random_state': None,
  'solver': 'auto',
  'tol': 0.0001}
```

GBR

```
{'alpha': 0.9,
 'ccp alpha': 0.0,
 'criterion': 'friedman mse',
 'init': None,
 'learning rate': 0.1,
 'loss': 'squared error',
 'max depth': 3,
 'max features': None,
 'max leaf nodes': None,
 'min impurity decrease': 0.0,
 'min samples leaf': 1,
 'min samples split': 2,
 'min weight fraction leaf': 0.0,
 'n estimators': 100,
 'n iter no change': None,
 'random state': None,
 'subsample': 1.0,
 'tol': 0.0001.
 'validation fraction': 0.1,
 'verbose': 0.
 'warm start': False}
```

MACHINE LEARNING

Re-training with Tuned Hyperparameters

Model	R-squared (R2)	Mean Squared Error (MSE)	Root Mean Squared Error (RMSE)
Linear regression	0.8328	14865860	3855
Lasso	0.8384	14366139	3790
Gradient Regressor Booster	0.9456	4833325	2198
Ridge Regression	0.8336	14792063	3846

.....

Train

	Model	R-squared (R*)	Mean Squared Error (MSE)	Root Mean Squared Error (RMSE)
	Linear regression	0.7211	28751536	5362
	Lasso	0.7909	21559213	4643
	Gradient Regressor Booster	0.8984	10472153	3236
	Ridge Regression	0.7912	21527686	4639

Test

CONCLUSION

Summary of Findings

- Successfully predicted car price based on its features at a high accuracy
- Gradient Boosting Regressor is the best available model

Limitations

- Overfitting
- Models fit to the noise present in training data
- Hence unable to generalise as well to new and unseen test data.

Improvements

- Ensemble methods (bootstrap aggregating, stacking)
- Trains multiple sub-models, combines sub-results, giving more accurate final answer

THANK YOU