```
import numpy as np
In [1]:
          import pandas as pd
          import os
In [2]:
          os.getcwd()
         '/Users/abhinavkumar/Desktop/python/risk model'
Out[2]:
In [6]:
          loan data backup = pd.read csv('loan data 2007 2014.csv')
         /Applications/anaconda3/lib/python3.8/site-packages/IPython/core/interactivesh
         ell.py:3146: DtypeWarning: Columns (20) have mixed types. Specify dtype option
         on import or set low memory=False.
           has raised = await self.run ast nodes(code ast.body, cell name,
          loan_data_backup
In [7]:
                  Unnamed:
Out[7]:
                                   id member_id loan_amnt funded_amnt funded_amnt_inv
                                                                                             term
                          0
                                                                                               36
               0
                                                      5000
                          0
                             1077501
                                         1296599
                                                                    5000
                                                                                    4975.0
                                                                                           months
                                                                                               6(
               1
                             1077430
                                         1314167
                                                       2500
                                                                    2500
                                                                                   2500.0
                                                                                           months
                                                                                               36
                                                       2400
                                                                    2400
               2
                              1077175
                                         1313524
                                                                                   2400.0
                                                                                           months
                                                                                               36
               3
                          3
                             1076863
                                         1277178
                                                      10000
                                                                   10000
                                                                                   10000.0
                                                                                           months
                                                                                               60
                             1075358
                                         1311748
                                                      3000
                                                                    3000
               4
                                                                                   3000.0
                                                                                           months
                                                                      ...
                                                                                                ..
                                                                                               6(
         466280
                    466280
                             8598660
                                         1440975
                                                      18400
                                                                   18400
                                                                                   18400.0
                                                                                           months
                                                                                               60
         466281
                     466281
                             9684700
                                        11536848
                                                     22000
                                                                   22000
                                                                                  22000.0
                                                                                           months
                                                                                               6(
         466282
                    466282
                             9584776
                                        11436914
                                                     20700
                                                                   20700
                                                                                   20700.0
                                                                                           months
                                                                                               36
         466283
                                                                                   2000.0
                    466283
                             9604874
                                        11457002
                                                      2000
                                                                    2000
                                                                                           months
                                                                                               36
         466284
                    466284
                             9199665
                                        11061576
                                                      10000
                                                                   10000
                                                                                    9975.0
                                                                                           months
        466285 rows × 75 columns
          loan data = loan data backup.copy()
In [8]:
          #information about data
In [9]:
          loan data
                  Unnamed:
Out[9]:
                                   id member_id loan_amnt funded_amnt funded_amnt_inv
                                                                                             term
                                                                                               36
               0
                          0
                             1077501
                                         1296599
                                                      5000
                                                                    5000
                                                                                    4975.0
                                                                                           months
```

term	funded_amnt_inv	funded_amnt	loan_amnt	member_id	id	Unnamed: 0	
6(months	2500.0	2500	2500	1314167	1077430	1	1
36 months	2400.0	2400	2400	1313524	1077175	2	2
36 months	10000.0	10000	10000	1277178	1076863	3	3
6(months	3000.0	3000	3000	1311748	1075358	4	4
••							•••
6(months	18400.0	18400	18400	1440975	8598660	466280	466280
6(months	22000.0	22000	22000	11536848	9684700	466281	466281
6(months	20700.0	20700	20700	11436914	9584776	466282	466282
36 months	2000.0	2000	2000	11457002	9604874	466283	466283
36 months	9975.0	10000	10000	11061576	9199665	466284	466284

466285 rows × 75 columns

In [10]:	pd.options.display.max_columns = None												
In [11]:	loan_data.head()												
Out[11]:	Unnamed: id		member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_r					
	o 0	1077501	1296599	5000	5000	4975.0	36 months	10					
	1 1	1077430	1314167	2500	2500	2500.0	60 months	1ξ					
	2 2	1077175	1313524	2400	2400	2400.0	36 months	15					
	3 3	1076863	1277178	10000	10000	10000.0	36 months	13					

Unnamed:
0 id member_id loan_amnt funded_amnt funded_amnt_inv term int_r

4 4 1075358 1311748 3000 3000 3000.0 60 12

In [12]: loan_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 466285 entries, 0 to 466284

Data columns (total 75 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	466285 non-null	int64
1	id	466285 non-null	int64
2	member id	466285 non-null	int64
3	loan_amnt	466285 non-null	int64
4	funded amnt	466285 non-null	int64
5	funded_amnt_inv	466285 non-null	float64
6	term	466285 non-null	object
7	int_rate	466285 non-null	float64
8	installment	466285 non-null	float64
9	grade	466285 non-null	object
10	sub_grade	466285 non-null	
11	emp_title	438697 non-null	object
12	emp_length	445277 non-null	object
13	home_ownership	466285 non-null	object
14	annual_inc	466281 non-null	float64
15	verification_status	466285 non-null	object
16	issue_d	466285 non-null	object
17	loan_status	466285 non-null	object
18	<pre>pymnt_plan</pre>	466285 non-null	object
19	url	466285 non-null	object
20	desc	125983 non-null	object
21	purpose	466285 non-null	object
22	title	466265 non-null	object
23	zip_code	466285 non-null	object
24	addr_state	466285 non-null	object
25	dti	466285 non-null	float64
26	delinq_2yrs	466256 non-null	float64
27	earliest_cr_line	466256 non-null	object
28	inq_last_6mths	466256 non-null	float64
29	mths_since_last_delinq	215934 non-null	float64
30	mths_since_last_record	62638 non-null	float64
31	open_acc	466256 non-null	float64
32	pub_rec	466256 non-null	
33	revol_bal	466285 non-null	
34	revol_util	465945 non-null	
35	total_acc	466256 non-null	
36	initial_list_status	466285 non-null	_
37	out_prncp	466285 non-null	
38	out_prncp_inv	466285 non-null	float64
39	total_pymnt	466285 non-null	float64
40	total_pymnt_inv	466285 non-null	float64
41	total_rec_prncp	466285 non-null	float64
42	total_rec_int	466285 non-null	float64
43	total_rec_late_fee	466285 non-null	float64
44	recoveries	466285 non-null	float64
45	collection_recovery_fee	466285 non-null	float64
46	last_pymnt_d	465909 non-null	object
47	last_pymnt_amnt	466285 non-null	float64
48	next_pymnt_d	239071 non-null	object
49	last_credit_pull_d	466243 non-null	object

```
50 collections 12 mths ex med
                                           466140 non-null float64
          51 mths_since_last_major_derog 98974 non-null
                                                           float64
          52 policy code
                                           466285 non-null
                                                           int64
          53 application_type
                                           466285 non-null object
                                           0 non-null
          54 annual_inc_joint
                                                           float64
                                           0 non-null
          55 dti joint
                                                           float64
          56 verification_status_joint
                                          0 non-null
                                                           float64
          57 acc_now_delinq
                                          466256 non-null float64
          58 tot coll amt
                                          396009 non-null float64
          59 tot cur bal
                                          396009 non-null float64
          60 open_acc_6m
                                          0 non-null
                                                           float64
          61 open il 6m
                                          0 non-null
                                                           float64
          62 open_il_12m
                                         0 non-null
                                                           float64
          63 open il 24m
                                         0 non-null
                                                           float.64
             mths since rcnt il
                                       0 non-null
0 non-null
                                                           float.64
          65 total_bal_il
                                                           float.64
          66 il util
                                         0 non-null
                                                           float64
                                                           float64
          67 open rv 12m
                                         0 non-null
          68 open_rv_24m
                                                           float64
                                         0 non-null
                                                           float64
          69 max bal bc
                                         0 non-null
          70 all_util
                                         0 non-null
                                                           float64
                                       396009 non-null float64
          71 total_rev_hi_lim
                                                           float64
          72 ing fi
                                          0 non-null
                                                           float64
          73 total_cu_tl
                                           0 non-null
                                                           float64
          74 inq last 12m
                                           0 non-null
         dtypes: float64(46), int64(7), object(22)
         memory usage: 266.8+ MB
         #preprocessing of data
In [13]:
          #To see the values that emp length takes
          loan_data['emp_length'].unique()
Out[13]: array(['10+ years', '< 1 year', '1 year', '3 years', '8 years', '9 years', '4 years', '5 years', '6 years', '2 years', '7 years', nan],
               dtype=object)
          loan data['emp length int'] = loan data['emp length'].str.replace('\+ years',
In [14]:
          loan data['emp length int'] = loan data['emp length int'].str.replace('< 1 ye</pre>
          loan data['emp length int'] = loan data['emp length int'].str.replace('n/a', ')
          loan data['emp length int'] = loan data['emp length int'].str.replace(' years
          loan data['emp length int'] = loan data['emp length int'].str.replace(' year'
In [15]: #string type
          type(loan data['emp length int'][0])
Out[15]: str
In [16]:
          #Converts a series into numeric type
          loan data['emp length int'] = pd.to numeric(loan data['emp length int'])
         type(loan_data['emp_length_int'][0])
In [17]:
Out[17]: numpy.float64
          loan data['term'].unique()
In [18]:
Out[18]: array([' 36 months', ' 60 months'], dtype=object)
          loan data['term int'] = loan data['term'].str.replace(' months', '')
In [19]:
          loan_data['term_int'] = loan_data['term_int'].str.replace(' ', '')
          type(loan data['term int'][0])
In [20]:
```

```
Out[20]: str
          loan data['term int'] = pd.to numeric(loan data['term int'])
In [21]:
          type(loan data['term int'][0])
In [22]:
Out[22]: numpy.int64
          loan data['earliest cr line']
In [23]:
                    Jan-85
Out[23]:
                    Apr-99
          1
                    Nov-01
          2
                    Feb-96
          3
                    Jan-96
          466280
                    Apr-03
          466281
                    Jun-97
          466282
                    Dec-01
          466283
                    Feb-03
          466284
                    Feb-00
         Name: earliest cr line, Length: 466285, dtype: object
          loan data['earliest cr line date'] = pd.to datetime(loan data['earliest cr li
In [24]:
          #%b indicates first 3 letters of the month, %y indicates last 2 digits of the
In [25]:
          type(loan_data['earliest_cr_line_date'][0])
Out[25]: pandas._libs.tslibs.timestamps.Timestamp
          pd.to_datetime('2017-12-01') - loan_data['earliest_cr_line_date']
In [26]:
                   12022 days
Out[26]:
          1
                    6819 days
          2
                    5874 days
          3
                    7974 days
                    8005 days
          466280
                    5358 days
          466281
                    7488 days
          466282
                    5844 days
          466283
                    5417 days
          466284
                    6513 days
         Name: earliest cr line date, Length: 466285, dtype: timedelta64[ns]
          loan_data['mths_since_earliest_cr_line'] = round(pd.to_numeric((pd.to_datetime)))
In [27]:
In [28]:
          #Descriptive statistics
          loan data['mths since earliest cr line'].describe()
                   466256.000000
Out[28]: count
         mean
                      239.482430
                       93.974829
         std
         min
                     -612.000000
                      183.000000
         25%
          50%
                      225.000000
          75%
                      285.000000
                      587.000000
         Name: mths since earliest cr line, dtype: float64
          loan data.loc[: , ['earliest cr line', 'earliest cr line date', 'mths since e
In [29]:
                  earliest_cr_line earliest_cr_line_date mths_since_earliest_cr_line
Out[29]:
```

	earliest_cr_line	earliest_cr_line_date	mths_since_earliest_cr_line
1580	Sep-62	2062-09-01	-537.0
1770	Sep-68	2068-09-01	-609.0
2799	Sep-64	2064-09-01	-561.0
3282	Sep-67	2067-09-01	-597.0
3359	Feb-65	2065-02-01	-566.0
•••			
464003	Jan-68	2068-01-01	-601.0
464260	Jul-66	2066-07-01	-583.0
465100	Oct-67	2067-10-01	-598.0
465500	Sep-67	2067-09-01	-597.0
465655	Jan-56	2056-01-01	-457.0

1169 rows × 3 columns

```
loan_data['mths_since_earliest_cr_line'][loan_data['mths_since_earliest_cr_line']
In [30]:
         <ipython-input-30-60169add49d1>:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user guide/indexing.html#returning-a-view-versus-a-copy
           loan_data['mths_since_earliest_cr_line'][loan_data['mths_since_earliest_cr_l
         ine'] < 0] = loan data['mths since earliest cr line'].max()</pre>
          #cleaning data variable
In [31]:
          loan data['issue d']
                    Dec-11
Out[31]:
         0
                    Dec-11
                    Dec-11
         2
         3
                    Dec-11
                    Dec-11
         466280
                    Jan-14
         466281
                    Jan-14
         466282
                    Jan-14
         466283
                    Jan-14
         466284
                    Jan-14
         Name: issue d, Length: 466285, dtype: object
In [32]:
          loan data['issue d date'] = pd.to datetime(loan data['issue d'], format = '%b'
          type(loan data['issue d date'][0])
In [33]:
Out[33]: pandas._libs.tslibs.timestamps.Timestamp
          pd.to datetime('2017-12-01') - loan data['issue d date']
In [34]:
         0
                   2192 days
Out[34]:
         1
                   2192 days
         2
                   2192 days
         3
                   2192 days
                   2192 days
         466280
                   1430 days
```

```
466281
                   1430 days
          466282
                   1430 days
          466283
                   1430 days
          466284
                   1430 days
          Name: issue_d_date, Length: 466285, dtype: timedelta64[ns]
          loan data['mths since issue d date'] = round(pd.to numeric((pd.to datetime('2
In [35]:
In [36]:
          loan_data['mths_since_issue_d_date'].describe()
Out[36]: count
                   466285.000000
          mean
                       51.255187
          std
                        14.340154
          min
                       36.000000
          25%
                       41.000000
          50%
                       47.000000
          75%
                       57.000000
          max
                      126.000000
          Name: mths since issue d date, dtype: float64
          # working on discrete variable
In [37]:
          pd.get_dummies(loan_data['grade'])
                     B C D E F G
Out[37]:
               0
                  0
                      1
                         0
                            0
                               0
                                  0
                                     0
                  0
                     0
                         1
                            0
                                     0
                  0
                      0
                            0
                         1
                               0
                                  0
                                     0
               3
                  0
                     0
                            0
                                     0
                         1
                               0
                                  0
                  0
                      1
                         0
                            0
                               0
                                  0
                                     0
                           ...
                              ...
                        ...
          466280
                  0
                     0
                         1
                            0
                                     0
          466281
                  0
                     0
                         0
                            1
                               0
                                  0
                                     0
          466282
                  0
                     0
                         0
                            1
                               0
                                  0
                                     0
          466283
                  1
                     0
                         0
                            0
                               0
                                  0
                                     0
          466284
                  0
                     0
                         0
                                    0
```

466285 rows × 7 columns

3]: p	d.get_	_dummies(loan_data	['grade']	, prefix	= 'Grade	', prefi	x_sep = '
3]:		Grade : A	Grade : B	Grade : C	Grade : D	Grade : E	Grade : F	Grade : G
	0	0	1	0	0	0	0	0
	1	0	0	1	0	0	0	0
	2	0	0	1	0	0	0	0
	3	0	0	1	0	0	0	0
	4	0	1	0	0	0	0	0
	•••							
46	6280	0	0	1	0	0	0	0
40	66281	0	0	0	1	0	0	0
46	6282	0	0	0	1	0	0	0

	Grade : A	Grade : B	Grade : C	Grade : D	Grade : E	Grade : F	Grade : G
466283	1	0	0	0	0	0	0
466284	0	0	0	1	0	0	0

466285 rows × 7 columns

```
In [39]:
                        loan_data_dummies = [pd.get_dummies(loan_data['grade'], prefix = 'Grade', pre
                                                                           pd.get dummies(loan data['sub grade'], prefix = 'sub grade']
                                                                           pd.get dummies(loan data['home ownership'], prefix = 'hou
                                                                           pd.get_dummies(loan_data['verification_status'], prefix
                                                                           pd.get dummies(loan data['loan status'], prefix = 'loan status']
                                                                           pd.get dummies(loan data['purpose'], prefix = 'purpose',
                                                                           pd.get dummies(loan data['addr state'], prefix = 'addr s
                                                                           pd.get dummies(loan data['initial list status'], prefix
                        #Converting list into a dataframe
In [40]:
                        loan data dummies = pd.concat(loan data dummies, axis = 1)
                        type(loan data dummies)
In [41]:
Out[41]: pandas.core.frame.DataFrame
                        #Appending this dataframe to the original one
In [42]:
                         loan data = pd.concat([loan data, loan data dummies], axis = 1)
                        loan_data.columns.values
In [43]:
Out[43]: array(['Unnamed: 0', 'id', 'member_id', 'loan_amnt', 'funded_amnt',
                                        'funded_amnt_inv', 'term', 'int_rate', 'installment', 'grade', 'sub_grade', 'emp_title', 'emp_length', 'home_ownership', 'annual_ing', 'confident', 'annual_ing', 'confident', 'annual_ing', 'confident', 'annual_ing', 'confident', 'confident
                                        'annual_inc', 'verification_status', 'issue_d', 'loan_status',
                                        'pymnt_plan', 'url', 'desc', 'purpose', 'title', 'zip_code', 'addr_state', 'dti', 'delinq_2yrs', 'earliest_cr_line',
                                        'inq_last_6mths', 'mths_since_last_delinq',
                                        'mths_since_last_record', 'open_acc', 'pub_rec', 'revol_bal',
'revol_util', 'total_acc', 'initial_list_status', 'out_prncp',
                                        'out_prncp_inv', 'total_pymnt', 'total_pymnt_inv',
                                        'total_rec_prncp', 'total_rec_int', 'total_rec_late_fee',
                                        'recoveries', 'collection_recovery_fee', 'last_pymnt_d',
                                        'last_pymnt_amnt', 'next_pymnt_d', 'last_credit_pull_d',
                                        'collections_12_mths_ex_med', 'mths_since_last_major_derog',
                                        'policy_code', 'application_type', 'annual_inc_joint', 'dti_joint',
                                        'verification_status_joint', 'acc_now_delinq', 'tot_coll_amt', 'tot_cur_bal', 'open_acc_6m', 'open_il_6m', 'open_il_12m', 'open_il_24m', 'mths_since_rcnt_il', 'total_bal_il', 'il_util',
                                       'open_rv_12m', 'mths_since_rcht_ii', total_bar_ii', ir_dtr

'open_rv_12m', 'open_rv_24m', 'max_bal_bc', 'all_util',

'total_rev_hi_lim', 'inq_fi', 'total_cu_tl', 'inq_last_12m',

'emp_length_int', 'term_int', 'earliest_cr_line_date',

'mths_since_earliest_cr_line', 'issue_d_date',
                                        'mths_since_issue_d_date', 'Grade : A', 'Grade : B'
'Grade : D', 'Grade : E', 'Grade : F', 'Grade : G',
                                                                                                                                        'Grade : B', 'Grade : C',
                                        'sub_grade: A1', 'sub_grade: A2', 'sub_grade: A3'
'sub_grade: A4', 'sub_grade: A5', 'sub_grade: B1'
'sub_grade: B2', 'sub_grade: B3', 'sub_grade: B4'
'sub_grade: B5', 'sub_grade: C1', 'sub_grade: C2'
                                        'sub_grade : C3', 'sub_grade : C4', 'sub_grade : C5'
                                        'sub_grade : D1', 'sub_grade : D2', 'sub_grade : D3'
                                        'sub_grade : D4', 'sub_grade : D5', 'sub_grade : E1'
                                        'sub_grade: E2', 'sub_grade: E3', 'sub_grade: E4', 'sub_grade: E5', 'sub_grade: F1', 'sub_grade: F2', 'sub_grade: F3', 'sub_grade: F4', 'sub_grade: F5',
```

```
'sub_grade : G1', 'sub_grade : G2', 'sub_grade : G3',
'sub_grade : G4', 'sub_grade : G5', 'home_ownership : ANY',
'home_ownership : MORTGAGE', 'home_ownership : NONE',
'home_ownership : OTHER', 'home_ownership : OWN',
'home_ownership : RENT', 'verification_status : Not Verified',
'verification_status : Source Verified',
'verification_status : Verified', 'loan_status : Charged Off',
'loan_status : Current', 'loan_status : Default',
'loan status : Does not meet the credit policy. Status: Charged Off',
'loan status : Does not meet the credit policy. Status: Fully Paid',
'loan_status : Fully Paid', 'loan_status : In Grace Period',
'loan status : Late (16-30 days)',
'loan status : Late (31-120 days)',
                                                         'purpose : car',
'purpose : credit_card', 'purpose : debt_consolidation', 'purpose : educational', 'purpose : home_improvement',
 'purpose : house', 'purpose : major_purchase', 'purpose : medical',
 purpose : moving', 'purpose : other',
 purpose : renewable_energy', 'purpose : small_business',
 purpose : vacation', 'purpose : wedding', 'addr state : AK',
'addr_state : AL', 'addr_state : AR', 'addr_state : AZ',
'addr_state : AL', addr_state : AR', addr_state : AZ',
'addr_state : CA', 'addr_state : CO', 'addr_state : CT',
'addr_state : DC', 'addr_state : DE', 'addr_state : FL',
'addr_state : GA', 'addr_state : HI', 'addr_state : IA',
'addr_state : ID', 'addr_state : IL', 'addr_state : IN',
'addr_state : KS', 'addr_state : KY', 'addr_state : LA',
'addr_state : MA' 'addr_state : MB' 'addr_state : MB'
'addr_state : MA',
                             'addr_state : MD',
                                                            'addr_state : ME',
'addr_state : MI',
                             addr_state : MN',
                                                            'addr_state : MO',
'addr_state : MS', 'addr_state : MT',
                                                            'addr_state : NC',
'addr_state : NE', 'addr_state : NH',
                                                            'addr_state : NJ',
'addr_state : NM', 'addr_state : NV',
                                                            'addr_state : NY',
'addr_state : NM', addr_state : NV', addr_state : NI',
'addr_state : OH', 'addr_state : OK', 'addr_state : OR',
'addr_state : PA', 'addr_state : RI', 'addr_state : SC',
'addr_state : SD', 'addr_state : TN', 'addr_state : TX',
'addr_state : UT', 'addr_state : VA', 'addr_state : VT',
'addr_state : WA', 'addr_state : WI', 'addr_state : WV',
'addr_state : WY', 'initial_list_status : f',
'initial list status : w'], dtype=object)
```

```
In [44]: #finding missing value and preposseing
loan_data.isnull()
```

Out[44]:

Unnamed: id member_id loan_amnt funded_amnt funded_amnt_inv term int_

0	False	ŀ						
1	False	F						
2	False	F						
3	False	F						
4	False	F						
•••				•••				
466280	False	F						
466281	False	F						
466282	False	F						
466283	False	F						
466284	False	F						

466285 rows × 207 columns

```
#number of missing values in all columns
In [45]:
           pd.options.display.max rows = None
           loan data.isnull().sum()
Out[45]: Unnamed: 0
                                                                                         0
                                                                                         0
          id
          member id
                                                                                         0
          loan amnt
                                                                                         0
          funded amnt
                                                                                         0
          funded_amnt_inv
                                                                                         0
                                                                                         0
          term
                                                                                         0
          int rate
          installment
                                                                                         0
                                                                                         0
          grade
          sub grade
                                                                                         0
          emp title
                                                                                     27588
          emp length
                                                                                     21008
          home ownership
                                                                                         0
          annual inc
                                                                                         4
                                                                                         0
          verification status
                                                                                         0
          issue d
          loan status
                                                                                         0
                                                                                         0
          pymnt plan
          url
                                                                                         0
                                                                                    340302
          desc
                                                                                         0
          purpose
                                                                                        20
          title
          zip code
                                                                                         0
          addr state
                                                                                         0
          dti
                                                                                         0
                                                                                        29
          delinq_2yrs
          earliest_cr_line
                                                                                        29
          inq_last_6mths
                                                                                        29
                                                                                    250351
          mths_since_last_delinq
          mths since last record
                                                                                    403647
          open acc
                                                                                        29
                                                                                        29
          pub rec
          revol bal
                                                                                         0
          revol util
                                                                                       340
          total acc
                                                                                        29
          initial list status
                                                                                         0
          out prncp
                                                                                         0
          out prncp inv
                                                                                         0
          total pymnt
                                                                                         0
          total pymnt inv
                                                                                         0
          total rec prncp
                                                                                         0
          total rec int
                                                                                         0
          total rec late fee
                                                                                         0
          recoveries
                                                                                         0
          collection recovery fee
                                                                                         0
          last pymnt d
                                                                                       376
          last pymnt amnt
          next pymnt d
                                                                                    227214
          last credit pull d
                                                                                        42
          collections 12 mths ex med
                                                                                       145
          mths since last major derog
                                                                                    367311
          policy_code
          application type
                                                                                         0
          annual inc joint
                                                                                    466285
          dti joint
                                                                                    466285
          verification status joint
                                                                                    466285
          acc now deling
                                                                                        29
          tot coll amt
                                                                                     70276
          tot_cur bal
                                                                                     70276
          open_acc 6m
                                                                                    466285
                                                                                    466285
          open il 6m
```

	Untitled
open il 12m	466285
open_il_24m	466285
mths_since_rcnt_il	466285
total bal il	466285
il_util	466285
open_rv_12m	466285
open_rv_24m	466285
max bal bc	466285
all util	466285
total_rev_hi_lim	70276
inq_fi	466285
total_cu_tl	466285
inq_last_12m	466285
emp_length_int	21008
term_int	0
earliest_cr_line_date	29
mths_since_earliest_cr_line	29
issue_d_date	0
mths_since_issue_d_date	0
Grade : A	0
Grade : B	0
Grade : C	0
Grade : D	0
Grade : E	0
Grade : F	0
Grade : G	0
sub_grade : A1	0
sub_grade : A2	0
sub_grade : A3	0
sub_grade : A4	0
sub_grade : A5	0
sub_grade : B1	0
sub_grade : B2	0
sub_grade : B3	0
sub_grade : B4	0
sub_grade : B5	0
sub_grade : C1	0
sub_grade : C2	0
sub_grade : C2 sub grade : C3	0
sub_grade : C3 sub grade : C4	0
sub_grade : C4 sub_grade : C5	
	0
sub_grade : D1	0
sub_grade : D2	0
sub_grade : D3	0
sub_grade : D4	0
sub_grade : D5	0
sub_grade : E1	0
sub_grade : E2	0
sub_grade : E3	0
sub_grade : E4	0
sub_grade : E5	0
sub_grade : F1	0
sub_grade : F2	0
<pre>sub_grade : F3</pre>	0
sub_grade : F4	0
sub_grade : F5	0
<pre>sub_grade : G1</pre>	0
<pre>sub_grade : G2</pre>	0
<pre>sub_grade : G3</pre>	0
sub_grade : G4	0
sub_grade : G5	0
home_ownership : ANY	0
home_ownership : MORTGAGE	0
home_ownership : NONE	0
home_ownership : OTHER	0
home_ownership : OWN	0
home ownership : RENT	0
verification status : Not Verified	0
verification_status : Source Verified	0
_	

```
verification status : Verified
                                                                              0
loan status : Charged Off
                                                                              0
loan status : Current
                                                                              0
loan status : Default
                                                                              0
loan_status : Does not meet the credit policy. Status: Charged Off
                                                                              0
loan_status : Does not meet the credit policy. Status:Fully Paid
                                                                              0
loan_status : Fully Paid
                                                                              0
                                                                              0
loan_status : In Grace Period
                                                                              0
loan status: Late (16-30 days)
                                                                              0
loan status: Late (31-120 days)
                                                                              0
purpose : car
purpose : credit card
                                                                              0
purpose : debt consolidation
                                                                              0
purpose : educational
                                                                              0
purpose : home improvement
                                                                              Λ
purpose : house
                                                                              Λ
                                                                              Λ
purpose: major purchase
                                                                              0
purpose : medical
                                                                              0
purpose : moving
                                                                              0
purpose : other
                                                                              0
purpose : renewable energy
purpose : small business
                                                                              0
purpose : vacation
                                                                              0
purpose : wedding
                                                                              0
addr state : AK
                                                                              0
addr_state : AL
                                                                              0
addr_state : AR
                                                                              0
addr_state : AZ
                                                                              0
addr_state : CA
                                                                              0
addr_state : CO
                                                                              0
addr_state : CT
                                                                              0
addr_state : DC
                                                                              0
addr_state : DE
                                                                              0
addr_state : FL
                                                                              0
addr_state : GA
                                                                              0
addr_state : HI
                                                                              0
addr_state : IA
                                                                              0
addr_state : ID
                                                                              0
addr state : IL
                                                                              0
addr state : IN
                                                                              0
addr state : KS
                                                                              0
addr state : KY
                                                                              0
addr state : LA
                                                                              0
addr state : MA
                                                                              0
addr state : MD
                                                                              0
addr state : ME
                                                                              0
addr state : MI
                                                                              0
addr state : MN
                                                                              0
addr state : MO
                                                                              0
addr state : MS
                                                                              0
addr state : MT
                                                                              0
addr state : NC
                                                                              0
addr state : NE
                                                                              0
addr state : NH
                                                                              0
addr state : NJ
                                                                              0
addr state : NM
                                                                              0
addr state : NV
                                                                              0
addr state : NY
                                                                              0
addr state : OH
                                                                              0
addr state : OK
                                                                              0
addr state : OR
                                                                              0
addr state : PA
                                                                              0
addr state : RI
                                                                              0
addr state : SC
                                                                              0
                                                                              0
addr state : SD
                                                                              0
addr state : TN
                                                                              0
addr state : TX
addr state : UT
                                                                              0
addr state : VA
```

```
0
         addr_state : VT
         addr_state : WA
                                                                                     0
         addr_state : WI
                                                                                     0
         addr_state : WV
                                                                                     0
         addr_state : WY
                                                                                     0
         initial_list_status : f
                                                                                     0
                                                                                     0
         initial_list_status : w
         dtype: int64
          #filling missing values with the funded amount in the same place (variable)
In [46]:
          loan data['total rev hi lim'].fillna(loan data['funded amnt'], inplace = True
In [47]:
          loan_data['total_rev_hi_lim'].isnull().sum()
Out[47]: 0
In [48]:
          loan data['annual inc'].isnull().sum()
Out[48]: 4
In [49]:
          mean annual income = loan data['annual inc'].mean()
          loan data['annual inc'].fillna(mean annual income, inplace = True)
In [50]:
          loan data['annual inc'].isnull().sum()
Out[50]: 0
          loan_data['mths_since_earliest_cr_line'].fillna(0, inplace = True)
In [51]:
          loan data['acc now deling'].fillna(0, inplace = True)
          loan data['total acc'].fillna(0, inplace = True)
          loan data['pub rec'].fillna(0, inplace = True)
          loan data['open acc'].fillna(0, inplace = True)
          loan data['inq last 6mths'].fillna(0, inplace = True)
          loan data['deling 2yrs'].fillna(0, inplace = True)
          loan data['emp length int'].fillna(0, inplace = True)
          loan data['mths since earliest cr line'].isnull().sum()
In [52]:
Out[52]: 0
          loan data['acc now deling'].isnull().sum()
In [53]:
Out[53]: 0
          loan_data['pub_rec'].isnull().sum()
In [54]:
Out[54]: 0
In [55]:
          loan data['open acc'].isnull().sum()
Out[55]: 0
          loan data['inq last 6mths'].isnull().sum()
In [56]:
Out[56]: 0
          loan_data['delinq_2yrs'].isnull().sum()
In [57]:
Out[57]: 0
```

07/09/2021, 16:50 loan data['emp length int'].isnull().sum() In [58]: Out[58]: 0 In [59]: **#PD MODELS** In [60]: loan data['loan status'].unique() In [61]: Out[61]: array(['Fully Paid', 'Charged Off', 'Current', 'Default', 'Late (31-120 days)', 'In Grace Period', 'Late (16-30 days)', 'Does not meet the credit policy. Status: Fully Paid', 'Does not meet the credit policy. Status: Charged Off'], dtype=object) #Number of people with each loan status In [62]: loan data['loan status'].value counts() Out[62]: Current 224226 Fully Paid 184739 Charged Off 42475 Late (31-120 days) 6900 In Grace Period 3146 Does not meet the credit policy. Status: Fully Paid 1988 Late (16-30 days) 1218 Default 832 Does not meet the credit policy. Status: Charged Off 761 Name: loan status, dtype: int64 #Ratio of each counts In [63]: loan data['loan status'].value counts() / loan data['loan status'].count() Out[63]: Current 0.480878 Fully Paid 0.396193 Charged Off 0.091092 Late (31-120 days) 0.014798 In Grace Period 0.006747 Does not meet the credit policy. Status: Fully Paid 0.004263 0.002612 Late (16-30 days) Default 0.001784 Does not meet the credit policy. Status: Charged Off 0.001632 Name: loan_status, dtype: float64 In [64]: #Applying loan default and non-default definition #Where works like if, else #isin checks if values are in a list #2nd arg (0): if condition is True, returns 0, else 1 (3rd arg) loan data['good bad'] = np.where(loan data['loan status'].isin(['Charged Off' 'Late (31-120 pd.options.display.max rows = 10 In [65]: loan data['good bad'] 1 Out[65]: 0 0 1 2 1 3 1 1 . . 466280 1 0 466281 466282 1

1

466283

```
466284
                        1
            Name: good bad, Length: 466285, dtype: int64
            from sklearn.model selection import train test split
In [66]:
            loan data inputs train, loan data inputs test, loan data targets train, loan
In [67]:
            loan data inputs train.shape
In [68]:
Out[68]: (349713, 207)
             loan data targets train.shape
In [69]:
Out[69]: (349713,)
            loan data inputs test.shape
In [70]:
Out[70]: (116572, 207)
In [71]:
             loan data targets test.shape
Out[71]: (116572,)
             loan data inputs train, loan data inputs test, loan data targets train, loan
In [72]:
                  loan data.drop('good bad', axis = 1), loan data['good bad'], test size =
             loan_data_inputs_train, loan_data_inputs_test, loan_data_targets_train, loan_
In [73]:
                  loan data.drop('good bad', axis = 1), loan data['good bad'], test size =
            loan data inputs train.shape
In [74]:
Out[74]: (373028, 207)
In [75]:
            loan data targets train.shape
Out[75]: (373028,)
In [76]:
             loan data targets test.shape
Out[76]: (93257,)
            loan_data_inputs_test.shape
In [77]:
Out[77]: (93257, 207)
In [78]:
            df inputs prepr = loan data inputs train
             df targets prepr = loan data targets train
In [79]:
            df inputs prepr.columns.values
Out[79]: array(['Unnamed: 0', 'id', 'member_id', 'loan_amnt', 'funded_amnt', 'funded_amnt_inv', 'term', 'int_rate', 'installment', 'grade', 'sub_grade', 'emp_title', 'emp_length', 'home_ownership', 'annual_inc', 'verification_status', 'issue_d', 'loan_status', 'pymnt_plan', 'url', 'desc', 'purpose', 'title', 'zip_code', 'addr_state', 'dti', 'delinq_2yrs', 'earliest_cr_line',
                     'inq_last_6mths', 'mths_since_last_delinq',
                     'mths_since_last_record', 'open_acc', 'pub_rec', 'revol_bal',
                     'revol_util', 'total_acc', 'initial_list_status', 'out_prncp',
```

```
'out_prncp_inv', 'total_pymnt', 'total_pymnt_inv',
                                                  'total_rec_prncp', 'total_rec_int', 'total_rec_late_fee',
                                                  'recoveries', 'collection_recovery_fee', 'last_pymnt_d',
                                                  'collections_12_mths_ex_med', 'mths_since_last_major_derog',
                                                  'policy_code', 'application_type', 'annual_inc_joint', 'dti_joint',
                                                 'verification_status_joint', 'acc_now_deling', 'tot_coll_amt', 'tot_cur_bal', 'open_acc_6m', 'open_il_6m', 'open_il_12m', 'open_il_24m', 'mths_size_non_il_'total_bal_il_'islatil'
                                                 'open_il_24m', 'mths_since_rcnt_il', 'total_bal_il', 'il_util', 'open_rv_12m', 'open_rv_24m', 'max_bal_bc', 'all_util', 'total_rev_hi_lim', 'inq_fi', 'total_cu_tl', 'inq_last_12m', 'emp_length_int', 'term_int', 'earliest_cr_line_date', 'mths_since_parliest_cr_line', 'issue_d_date'
                                                  'mths since earliest cr line', 'issue d date',
                                                 'mths_since_issue_d_date', 'Grade : A', 'Grade : B', 'Grade : C',
'Grade : D', 'Grade : E', 'Grade : F', 'Grade : G',
                                                'Grade: D', 'Grade: E', 'Grade: F', 'Grade: G',

'sub_grade: A1', 'sub_grade: A2', 'sub_grade: A3',

'sub_grade: A4', 'sub_grade: A5', 'sub_grade: B1',

'sub_grade: B2', 'sub_grade: B3', 'sub_grade: B4',

'sub_grade: B5', 'sub_grade: C1', 'sub_grade: C2',

'sub_grade: C3', 'sub_grade: C4', 'sub_grade: C5',

'sub_grade: D1', 'sub_grade: D2', 'sub_grade: D3',

'sub_grade: D4', 'sub_grade: D5', 'sub_grade: E1',

'sub_grade: E2', 'sub_grade: E3', 'sub_grade: E4',

'sub_grade: E5', 'sub_grade: F1', 'sub_grade: F2',

'sub_grade: F3', 'sub_grade: F4', 'sub_grade: F5',

'sub_grade: G1', 'sub_grade: G2', 'sub_grade: G3',

'sub_grade: G4', 'sub_grade: G5', 'home_ownership: ANY',

'home_ownership: MORTGAGE', 'home_ownership: NONE',
                                                 'home ownership : MORTGAGE', 'home ownership : NONE',
                                                 'home_ownership : OTHER', 'home_ownership : OWN', 'home_ownership : RENT', 'verification_status : Not Verified',
                                                 'verification_status : Source Verified',
                                                 'verification_status : Verified', 'loan status : Charged Off',
                                                 'loan status : Current', 'loan status : Default',
                                                 'loan status : Does not meet the credit policy. Status: Charged Off',
                                                 'loan status : Does not meet the credit policy. Status: Fully Paid',
                                                 'loan status : Fully Paid', 'loan status : In Grace Period',
                                                 'loan status : Late (16-30 days)',
                                                 'loan status : Late (31-120 days)', 'purpose : car',
                                                 'purpose : credit_card', 'purpose : debt_consolidation', 'purpose : educational', 'purpose : home_improvement',
                                                  'purpose : house', 'purpose : major_purchase', 'purpose : medical',
                                                  'purpose : moving', 'purpose : other',
                                                  'purpose : renewable energy', 'purpose : small business',
                                                  'purpose : vacation', 'purpose : wedding', 'addr state : AK',
                                                 'purpose : vacation', 'purpose : wedding', 'addr_state : 'addr_state : AL', 'addr_state : AR', 'addr_state : AZ', 'addr_state : CA', 'addr_state : CO', 'addr_state : CT', 'addr_state : DC', 'addr_state : DE', 'addr_state : FL', 'addr_state : GA', 'addr_state : HI', 'addr_state : IA', 'addr_state : ID', 'addr_state : IL', 'addr_state : IN', 'addr_state : KS', 'addr_state : KY', 'addr_state : LA', 'addr_state : MA', 'addr_state : MD', 'addr_state : ME', 'addr_state : MI', 'addr_state : MO', 'addr_state : MS', 'addr_state : MT', 'addr_state : NC', 'addr_state : NE', 'addr_state : NI', 'addr_state :
                                                 'addr_state : NE', 'addr_state : NH', 'addr_state : NJ',
                                                 'addr_state : NE', 'addr_state : NH', 'addr_state : NJ',
'addr_state : NM', 'addr_state : NV', 'addr_state : NY',
'addr_state : OH', 'addr_state : OK', 'addr_state : OR',
'addr_state : PA', 'addr_state : RI', 'addr_state : SC',
'addr_state : SD', 'addr_state : TN', 'addr_state : TX',
'addr_state : UT', 'addr_state : VA', 'addr_state : VT',
'addr_state : WA', 'addr_state : WI', 'addr_state : WV',
'addr_state : WY', 'initial_list_status : f',
                                                 'initial list status : w'], dtype=object)
                             df inputs prepr['grade'].unique()
In [80]:
Out[80]: array(['A', 'C', 'D', 'B', 'E', 'F', 'G'], dtype=object)
                             pd.options.display.max columns = 5
```

```
df1 = pd.concat([df_inputs_prepr['grade'], df_targets_prepr], axis = 1)
df1.head()
```

```
grade good_bad
Out[81]:
                                   1
            427211
                        Α
           206088
                        С
                                   1
           136020
                                   1
           412305
                       D
                                  0
            36159
                       С
                                  0
```

```
In [82]: df1.groupby(df1.columns.values[0], as_index=False)[df1.columns.values[1]].cou
```

```
grade good_bad
Out[82]:
           0
                          59759
                   Α
            1
                   В
                         109730
           2
                   С
                         100245
           3
                   D
                          61498
           4
                   Ε
                          28612
                   F
           5
                          10530
           6
                  G
                           2654
```

In [83]: df1.groupby(df1.columns.values[0], as_index=False)[df1.columns.values[1]].mea

```
Out[83]:
               grade good_bad
                       0.961044
                   Α
            1
                       0.921015
                   В
           2
                   С
                       0.885770
           3
                  D
                       0.846304
           4
                       0.805257
                   Ε
           5
                   F
                       0.754416
           6
                  G
                       0.727958
```

In [85]: df1

Out[85]: grade good_bad grade good_bad 0.961044 0 Α 59759 Α 1 В 109730 В 0.921015 2 С 100245 0.885770 3 D 61498 0.846304 0.805257 Е 28612 Ε

grade good_bad grade good_bad

```
5
                 F
                        10530
                                       0.754416
           6
                 G
                         2654
                                  G
                                      0.727958
           #Renaming column names
In [86]:
           df1 = df1.iloc[:, [0,1,3]]
           df1.columns = [df1.columns.values[0], 'n obs', 'prop good']
           df1
             grade
                     n_obs prop_good
Out[86]:
           0
                     59759
                              0.961044
           1
                    109730
                              0.921015
           2
                    100245
                              0.885770
                 С
           3
                 D
                     61498
                             0.846304
           4
                 Ε
                     28612
                              0.805257
                 F
           5
                     10530
                              0.754416
           6
                 G
                      2654
                              0.727958
           #Calculating proportion of observations
In [87]:
           df1['prop_n_obs'] = df1['n_obs'] / df1['n_obs'].sum()
           df1
In [88]:
Out[88]:
             grade
                     n_obs prop_good prop_n_obs
           0
                     59759
                              0.961044
                 Α
                                          0.160200
           1
                    109730
                              0.921015
                                          0.294160
                 В
           2
                   100245
                              0.885770
                 С
                                          0.268733
           3
                             0.846304
                 D
                     61498
                                          0.164862
           4
                 Ε
                     28612
                              0.805257
                                          0.076702
                 F
           5
                     10530
                              0.754416
                                          0.028228
           6
                 G
                      2654
                              0.727958
                                          0.007115
           #Calculating number of good and bad borrowers for each grade
In [89]:
           pd.options.display.max columns = None
           df1['n_good'] = df1['prop_good'] * df1['n_obs']
           df1['n bad'] = (1 - df1['prop good']) * df1['n obs']
           df1
             grade
                     n_obs
                            prop_good prop_n_obs
                                                    n_good
                                                             n_bad
Out[89]:
           0
                     59759
                              0.961044
                                          0.160200
                                                    57431.0
                                                             2328.0
                 Α
           1
                    109730
                              0.921015
                                          0.294160
                                                   101063.0
                                                             8667.0
                 В
           2
                   100245
                              0.885770
                                          0.268733
                                                    88794.0
                                                            11451.0
           3
                 D
                     61498
                              0.846304
                                          0.164862
                                                    52046.0
                                                             9452.0
           4
                 Ε
                     28612
                              0.805257
                                          0.076702
                                                    23040.0
                                                             5572.0
```

10530

0.754416

0.028228

7944.0

2586.0

F

5

```
        grade
        n_obs
        prop_good
        prop_n_obs
        n_good
        n_bad

        6
        G
        2654
        0.727958
        0.007115
        1932.0
        722.0
```

```
In [90]: #Calculating proportion of good and bad
    df1['prop_n_good'] = df1['n_good'] / df1['n_good'].sum()
    df1['prop_n_bad'] = df1['n_bad'] / df1['n_bad'].sum()
    df1
```

```
grade
                       n_obs
                              prop_good prop_n_obs
                                                         n_good
                                                                  n_bad prop_n_good prop_n_bad
Out[90]:
           0
                       59759
                                0.961044
                                             0.160200
                                                         57431.0
                                                                  2328.0
                                                                               0.172855
                                                                                            0.057090
            1
                   В
                      109730
                                 0.921015
                                             0.294160
                                                        101063.0
                                                                  8667.0
                                                                               0.304178
                                                                                            0.212541
           2
                      100245
                                0.885770
                                             0.268733
                                                        88794.0
                                                                  11451.0
                                                                               0.267251
                                                                                            0.280813
                                0.846304
           3
                                                                               0.156647
                                                                                            0.231792
                  D
                       61498
                                             0.164862
                                                        52046.0
                                                                  9452.0
           4
                   Ε
                       28612
                                0.805257
                                             0.076702
                                                        23040.0
                                                                              0.069345
                                                                                            0.136642
                                                                  5572.0
                       10530
           5
                   F
                                0.754416
                                             0.028228
                                                          7944.0
                                                                  2586.0
                                                                               0.023910
                                                                                            0.063417
           6
                   G
                        2654
                                0.727958
                                              0.007115
                                                          1932.0
                                                                   722.0
                                                                               0.005815
                                                                                            0.017706
```

```
In [91]: #Calculating Weight of evidence
    df1['WOE'] = np.log(df1['prop_n_good'] / df1['prop_n_bad'])
    df1
```

Out[91]:		grade	n_obs	prop_good	prop_n_obs	n_good	n_bad	prop_n_good	prop_n_bad	
	0	А	59759	0.961044	0.160200	57431.0	2328.0	0.172855	0.057090	1.1
	1	В	109730	0.921015	0.294160	101063.0	8667.0	0.304178	0.212541	0.3
	2	С	100245	0.885770	0.268733	88794.0	11451.0	0.267251	0.280813	-0.04
	3	D	61498	0.846304	0.164862	52046.0	9452.0	0.156647	0.231792	-0.3
	4	Е	28612	0.805257	0.076702	23040.0	5572.0	0.069345	0.136642	-0.6
	5	F	10530	0.754416	0.028228	7944.0	2586.0	0.023910	0.063417	-0.9
	6	G	2654	0.727958	0.007115	1932.0	722.0	0.005815	0.017706	-1.1

```
In [92]: df1 = df1.sort_values(['WOE'])
    df1 = df1.reset_index(drop=True)
    df1
```

Out[92]:		grade	n_obs	prop_good	prop_n_obs	n_good	n_bad	prop_n_good	prop_n_bad	
	0	G	2654	0.727958	0.007115	1932.0	722.0	0.005815	0.017706	-1.1
	1	F	10530	0.754416	0.028228	7944.0	2586.0	0.023910	0.063417	-0.9
	2	Е	28612	0.805257	0.076702	23040.0	5572.0	0.069345	0.136642	-0.6
	3	D	61498	0.846304	0.164862	52046.0	9452.0	0.156647	0.231792	-0.3
	4	С	100245	0.885770	0.268733	88794.0	11451.0	0.267251	0.280813	-0.04
	5	В	109730	0.921015	0.294160	101063.0	8667.0	0.304178	0.212541	0.3
	6	Α	59759	0.961044	0.160200	57431.0	2328.0	0.172855	0.057090	1.1

```
In [93]: #Calculating the difference between rows (above - below)
df1['diff_prop_good'] = df1['prop_good'].diff().abs()
```

```
df1['diff_WOE'] = df1['WOE'].diff().abs()
df1
```

```
grade
                     n_obs
                            prop_good prop_n_obs
                                                    n_good
                                                             n_bad prop_n_good prop_n_bad
Out[93]:
          0
                 G
                      2654
                              0.727958
                                          0.007115
                                                     1932.0
                                                              722.0
                                                                        0.005815
                                                                                     0.017706
                                                                                               -1.1
           1
                 F
                     10530
                              0.754416
                                          0.028228
                                                     7944.0
                                                             2586.0
                                                                        0.023910
                                                                                     0.063417
                                                                                              -0.9
          2
                 Ε
                     28612
                              0.805257
                                          0.076702
                                                    23040.0
                                                             5572.0
                                                                        0.069345
                                                                                     0.136642
                                                                                              -0.6
          3
                 D
                     61498
                             0.846304
                                          0.164862
                                                    52046.0
                                                             9452.0
                                                                        0.156647
                                                                                     0.231792
                                                                                              -0.3
          4
                 C
                    100245
                              0.885770
                                          0.268733
                                                            11451.0
                                                                        0.267251
                                                                                     0.280813
                                                    88794.0
                                                                                              -0.04
          5
                 R
                    109730
                              0.921015
                                          0.294160
                                                   101063.0
                                                             8667.0
                                                                        0.304178
                                                                                     0.212541
                                                                                               0.3
          6
                     59759
                              0.961044
                                          0.160200
                                                    57431.0
                                                             2328.0
                                                                         0.172855
                                                                                     0.057090
                                                                                                1.1
           #Calculating Information Value (IV)
In [94]:
           df1['IV'] = (df1['prop_n_good'] - df1['prop_n_bad']) * df1['WOE']
           df1['IV'] = df1['IV'].sum()
           df1
             grade
                     n obs
                            prop_good prop_n_obs
                                                    n_good
                                                             n_bad
                                                                    prop_n_good prop_n_bad
Out[94]:
          0
                 G
                      2654
                              0.727958
                                          0.007115
                                                     1932.0
                                                              722.0
                                                                        0.005815
                                                                                     0.017706
                                                                                               -1.1
                 F
           1
                     10530
                              0.754416
                                          0.028228
                                                     7944.0
                                                             2586.0
                                                                        0.023910
                                                                                     0.063417
                                                                                              -0.9
          2
                     28612
                              0.805257
                                          0.076702
                                                    23040.0
                                                             5572.0
                                                                        0.069345
                 F
                                                                                     0.136642
                                                                                              -0.6
          3
                 D
                     61498
                             0.846304
                                          0.164862
                                                    52046.0
                                                             9452.0
                                                                        0.156647
                                                                                     0.231792
                                                                                              -0.3
          Δ
                 C
                    100245
                              0.885770
                                          0.268733
                                                    88794.0
                                                            11451.0
                                                                        0.267251
                                                                                     0.280813 -0.04
          5
                 В
                    109730
                              0.921015
                                          0.294160
                                                   101063.0
                                                             8667.0
                                                                        0.304178
                                                                                     0.212541
                                                                                               0.3
          6
                     59759
                              0.961044
                                          0.160200
                                                    57431.0
                                                             2328.0
                                                                         0.172855
                                                                                     0.057090
                                                                                                1.1
In [95]:
           def woe discrete(df, discrete variable name, good bad variable df):
               df = pd.concat([df[discrete variable name], good bad variable df], axis=1
               df = pd.concat([df.groupby(df.columns.values[0], as_index=False)[df.columns.values[0], as_index=False)
                                df.groupby(df.columns.values[0], as index=False)[df.column
               df = df.iloc[:, [0,1,3]]
               df.columns = [df.columns.values[0], 'n obs', 'prop good']
               df['prop n obs'] = df['n obs'] / df['n obs'].sum()
               df['n_good'] = df['prop_good'] * df['n_obs']
               df['n_bad'] = (1 - df['prop_good']) * df['n_obs']
               df['prop_n_good'] = df['n_good'] / df['n_good'].sum()
               df['prop n bad'] = df['n bad'] / df['n bad'].sum()
               df['WOE'] = np.log(df['prop_n_good'] / df['prop_n_bad'])
               df = df.sort values(['WOE'])
               df = df.reset index(drop=True)
               df['diff prop good'] = df['prop good'].diff().abs()
               df['diff_WOE'] = df['WOE'].diff().abs()
               df['IV'] = (df['prop_n_good'] - df['prop_n_bad']) * df['WOE']
               df['IV'] = df['IV'].sum()
               return df
           df_temp = woe_discrete(df_inputs_prepr, 'grade', df_targets_prepr)
In [96]:
           df_temp
             grade
                                                             n_bad prop_n_good prop_n_bad
Out[96]:
                     n_obs prop_good prop_n_obs
                                                    n_good
```

2654

0.727958

0.007115

1932.0

722.0

0.005815

0

G

-1.1

0.017706

	grade	n_obs	prop_good	prop_n_obs	n_good	n_bad	prop_n_good	prop_n_bad	
1	F	10530	0.754416	0.028228	7944.0	2586.0	0.023910	0.063417	-0.9
2	Е	28612	0.805257	0.076702	23040.0	5572.0	0.069345	0.136642	-0.6
3	D	61498	0.846304	0.164862	52046.0	9452.0	0.156647	0.231792	-0.3
4	С	100245	0.885770	0.268733	88794.0	11451.0	0.267251	0.280813	-0.04
5	В	109730	0.921015	0.294160	101063.0	8667.0	0.304178	0.212541	0.3
6	А	59759	0.961044	0.160200	57431.0	2328.0	0.172855	0.057090	1.1

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
```

```
In [98]: def plot_by_woe(df_WOE, rotation_of_x_axis_labels = 0):
    #converting the independent variable categories into strings and making a.
    x = np.array(df_WOE.iloc[:,0].apply(str))
    y = df_WOE['WOE']
    #width = 18 inches, height = 6 inches
    plt.figure(figsize = (18,6))
    plt.plot(x, y, marker = 'o', linestyle = '--', color = 'k') #marker='o':
    plt.xlabel(df_WOE.columns[0])
    plt.ylabel('Weight of Evidence')
    plt.title(str('Weight of Evidence by ' + df_WOE.columns[0]))
    plt.xticks(rotation = rotation_of_x_axis_labels)
```

```
In [99]: plot_by_woe(df_temp)
```


Out[100		home_ownership	n_obs	prop_good	prop_n_obs	n_good	n_bad	prop_n_good	prop_i
	0	OTHER	137	0.795620	0.000367	109.0	28.0	0.000328	0.0
	1	NONE	40	0.850000	0.000107	34.0	6.0	0.000102	0.0
	2	RENT	150599	0.873870	0.403720	131604.0	18995.0	0.396099	0.4
	3	OWN	33295	0.892536	0.089256	29717.0	3578.0	0.089442	0.0
	4	MORTGAGE	188956	0.903835	0.506546	170785.0	18171.0	0.514026	0.44
	5	ANY	1	1.000000	0.000003	1.0	0.0	0.000003	0.00

```
In [101... plot_by_woe(df_temp)
```



```
df_inputs_prepr['home_ownership : RENT_OTHER_NONE_ANY'] = sum([df_inputs_prep
In [102...
          df inputs prepr['home ownership : OTHER'], df inputs prepr['home ownership :
          df inputs prepr['addr state'].unique()
In [103...
                                                     'NC',
                                                           'NY',
Out[103... array(['SC',
                      'NJ',
                            'GA', 'MA', 'CA',
                                               'IL',
                                                                  'TX',
                                                                        'CT',
                                         'WI',
                                                     'CO',
                                               'MI',
                       'UT',
                                                           'TN', 'IN',
                             'AZ', 'MD',
                                                                        'AL', 'NV',
                      'RI',
                                         'KS', 'AK', 'PA',
                                                           'OH', 'WA', 'KY', 'OK',
                            'OR', 'MN',
                                               'VT', 'AR', 'DC', 'SD', 'NH', 'WY',
                      'NM', 'HI', 'WV', 'LA',
                      'DE', 'IA', 'NE', 'ID', 'ME'], dtype=object)
          pd.options.display.max rows = None
In [104...
          df temp = woe discrete(df inputs prepr, 'addr state', df targets prepr)
          df temp
```

/Applications/anaconda3/lib/python3.8/site-packages/pandas/core/algorithms.py:
1977: RuntimeWarning: invalid value encountered in subtract
 out arr[res indexer] = arr[res indexer] - arr[lag indexer]

		_		prop_n_obs	-		prop_n_good	prop_n_bad
0	NE	13	0.461538	0.000035	6.0	7.0	0.000018	0.000172
1	IA	13	0.769231	0.000035	10.0	3.0	0.000030	0.000074
2	NV	5221	0.864585	0.013996	4514.0	707.0	0.013586	0.017338
3	FL	25211	0.875808	0.067585	22080.0	3131.0	0.066456	0.076782
4	HI	2001	0.877061	0.005364	1755.0	246.0	0.005282	0.006033
5	AL	4671	0.877328	0.012522	4098.0	573.0	0.012334	0.014052
6	NM	2075	0.883373	0.005563	1833.0	242.0	0.005517	0.005935
7	VA	11366	0.883864	0.030470	10046.0	1320.0	0.030236	0.032370
8	NY	32211	0.883984	0.086350	28474.0	3737.0	0.085701	0.091643
9	ОК	3284	0.884287	0.008804	2904.0	380.0	0.008740	0.009319
10	TN	4845	0.884623	0.012988	4286.0	559.0	0.012900	0.013708
11	МО	6017	0.884660	0.016130	5323.0	694.0	0.016021	0.017019
12	LA	4359	0.885295	0.011685	3859.0	500.0	0.011615	0.012262
13	MD	8771	0.885418	0.023513	7766.0	1005.0	0.023374	0.024646
14	NC	10204	0.885633	0.027355	9037.0	1167.0	0.027199	0.028618
15	CA	57199	0.885645	0.153337	50658.0	6541.0	0.152470	0.160405
16	UT	2756	0.887155	0.007388	2445.0	311.0	0.007359	0.007627
17	KY	3587	0.887650	0.009616	3184.0	403.0	0.009583	0.009883

Out[104...

	addr_state	n_obs	prop_good	prop_n_obs	n_good	n_bad	prop_n_good	prop_n_bad
18	AZ	8645	0.888259	0.023175	7679.0	966.0	0.023112	0.023689
19	NJ	14385	0.888286	0.038563	12778.0	1607.0	0.038459	0.039409
20	AR	2760	0.889855	0.007399	2456.0	304.0	0.007392	0.007455
21	MI	9191	0.890436	0.024639	8184.0	1007.0	0.024632	0.024695
22	PA	13090	0.890451	0.035091	11656.0	1434.0	0.035082	0.035166
23	ОН	12135	0.890894	0.032531	10811.0	1324.0	0.032539	0.032468
24	MN	6526	0.891358	0.017495	5817.0	709.0	0.017508	0.017387
25	RI	1647	0.893139	0.004415	1471.0	176.0	0.004427	0.004316
26	MA	8858	0.893543	0.023746	7915.0	943.0	0.023822	0.023125
27	DE	1064	0.893797	0.002852	951.0	113.0	0.002862	0.002771
28	SD	801	0.893883	0.002147	716.0	85.0	0.002155	0.002084
29	IN	5210	0.894050	0.013967	4658.0	552.0	0.014020	0.013537
30	GA	11960	0.896990	0.032062	10728.0	1232.0	0.032289	0.030212
31	WA	8372	0.897157	0.022443	7511.0	861.0	0.022606	0.021114
32	OR	4814	0.897590	0.012905	4321.0	493.0	0.013005	0.012090
33	WI	4740	0.899789	0.012707	4265.0	475.0	0.012837	0.011648
34	MT	1103	0.901179	0.002957	994.0	109.0	0.002992	0.002673
35	TX	29158	0.903800	0.078166	26353.0	2805.0	0.079317	0.068787
36	IL	14833	0.904874	0.039764	13422.0	1411.0	0.040397	0.034602
37	СТ	5775	0.905455	0.015481	5229.0	546.0	0.015738	0.013390
38	KS	3360	0.908036	0.009007	3051.0	309.0	0.009183	0.007578
39	SC	4448	0.909173	0.011924	4044.0	404.0	0.012172	0.009907
40	СО	7823	0.909242	0.020972	7113.0	710.0	0.021409	0.017411
41	VT	727	0.910591	0.001949	662.0	65.0	0.001992	0.001594
42	AK	1003	0.911266	0.002689	914.0	89.0	0.002751	0.002183
43	MS	980	0.912245	0.002627	894.0	86.0	0.002691	0.002109
44	WV	1926	0.920042	0.005163	1772.0	154.0	0.005333	0.003777
45	NH	1830	0.921858	0.004906	1687.0	143.0	0.005078	0.003507
46	WY	919	0.928183	0.002464	853.0	66.0	0.002567	0.001619
47	DC	1129	0.934455	0.003027	1055.0	74.0	0.003175	0.001815
48	ME	2	1.000000	0.000005	2.0	0.0	0.000006	0.000000
49	ID	10	1.000000	0.000027	10.0	0.0	0.000030	0.000000

In [105... plot_by_woe(df_temp)


```
#set all values of the state ND to 0 if there is no such column, else pass
if ['addr_state : ND'] in df_inputs_prepr.columns.values:
    pass
else:
    df_inputs_prepr['addr_state : ND'] = 0
```

```
In [107... #Plotting without first 2 and last 2 states
    plot_by_woe(df_temp.iloc[2:-2, :])
```



```
In [108... plot_by_woe(df_temp.iloc[6:-6, :])
```



```
In [109... #Creating the actual dummy variables
    df_inputs_prepr['addr_state : ND_NE_IA_NV_FL_HI_AL'] = sum([df_inputs_prepr['df_inputs_prepr['addr_state : IA'], df_inputs_prepr['addr_state : NV'], df_inputs_prepr['addr_state : HI'], df_inputs_prepr['addr_state : AL']])

df_inputs_prepr['addr_state : NM_VA'] = sum([df_inputs_prepr['addr_state : NM_VA'])

df_inputs_prepr['addr_state : OK_TN_MO_LA_MD_NC'] = sum([df_inputs_prepr['addr_state : NM_VA'])
```

```
df_inputs_prepr['addr_state : TN'], df_inputs_prepr['addr_state : MO'], df_in
df inputs prepr['addr state : MD'], df inputs prepr['addr state : NC']])
df inputs prepr['addr state : UT KY AZ NJ'] = sum([df inputs prepr['addr state
df inputs prepr['addr state : AZ'], df inputs prepr['addr state : NJ']])
df inputs prepr['addr state : AR MI PA OH MN'] = sum([df inputs prepr['addr s
df inputs prepr['addr state : PA'], df inputs prepr['addr state : OH'], df in
df inputs prepr['addr state : RI MA DE SD IN'] = sum([df inputs prepr['addr s
df inputs prepr['addr state : DE'], df inputs prepr['addr state : SD'], df in
df inputs prepr['addr state : GA WA OR'] = sum([df inputs prepr['addr state :
df inputs prepr['addr state : OR']])
df inputs prepr['addr state : WI MT'] = sum([df inputs prepr['addr state : WI
df inputs prepr['addr state : IL CT'] = sum([df inputs prepr['addr state : IL
df_inputs_prepr['addr_state : KS_SC_CO_VT_AK_MS'] = sum([df_inputs_prepr['add
df inputs prepr['addr_state : SC'], df_inputs_prepr['addr_state : CO'], df_in
df inputs prepr['addr state : AK'], df inputs prepr['addr state : MS']])
df inputs prepr['addr state : WV_NH_WY_DC_ME_ID'] = sum([df_inputs_prepr['add
df inputs prepr['addr state : NH'], df inputs prepr['addr state : WY'], df in
df inputs prepr['addr state : ME'], df inputs prepr['addr state : ID']])
```

verification_status n_obs prop_good prop_n_obs n_good n_bad prop_n_good prop Out[110... 0 134414 Verified 0.872781 0.360332 117314.0 17100.0 0.353090 0 1 Source Verified 120030 0.895918 0.323663 0.321772 107537.0 12493.0 0. 2 118584 0.905679 0.317896 107399.0 Not Verified 11185.0 0.323248 \cap

```
In [111... plot_by_woe(df_temp)
```


Out[112		purpose	n_obs	prop_good	prop_n_obs	n_good	n_bad	prop_n_good	pro
	0	small_business	5582	0.786098	0.014964	4388.0	1194.0	0.013207	С
	1	educational	333	0.801802	0.000893	267.0	66.0	0.000804	(
	2	moving	2392	0.839465	0.006412	2008.0	384.0	0.006044	(

	purpose	n_obs	prop_good	prop_n_obs	n_good	n_bad	prop_n_good	prop
3	house	1830	0.860109	0.004906	1574.0	256.0	0.004737	С
4	other	18884	0.862264	0.050624	16283.0	2601.0	0.049008	С
5	renewable_energy	281	0.864769	0.000753	243.0	38.0	0.000731	С
6	medical	3684	0.868350	0.009876	3199.0	485.0	0.009628	(
7	wedding	1887	0.881823	0.005059	1664.0	223.0	0.005008	0
8	vacation	1991	0.882471	0.005337	1757.0	234.0	0.005288	С
9	debt_consolidation	219183	0.886884	0.587578	194390.0	24793.0	0.585071	С
10	home_improvement	21238	0.900697	0.056934	19129.0	2109.0	0.057574	
11	major_purchase	7837	0.905449	0.021009	7096.0	741.0	0.021357	
12	car	4325	0.909595	0.011594	3934.0	391.0	0.011840	0
13	credit_card	83581	0.913102	0.224061	76318.0	7263.0	0.229701	


```
In [114... df_inputs_prepr['purpose : SB_ED'] = sum([df_inputs_prepr['purpose : small_bustown df_inputs_prepr['purpose : HO_OT_RE_ME'] = sum([df_inputs_prepr['purpose : hotelinputs_prepr['purpose : med df_inputs_prepr['purpose : wedding df_inputs_prepr['purpose : debt_consolidation']])
df_inputs_prepr['purpose : HI_MP_CA_CC'] = sum([df_inputs_prepr['purpose : hotelinputs_prepr['purpose : car'], df_inputs_prepr['purpose : credit_card']])
```

In [115... df_temp = woe_discrete(df_inputs_prepr, 'initial_list_status', df_targets_prepring df_temp

initial_list_status n_obs prop_good prop_n_obs n_bad prop_n_good Out[115... n_good prop_ 0 242514 0.879694 0.650123 213338.0 29176.0 0.642101 0.7 130514 0.911105 0.349877 118912.0 1 11602.0 0.357899 0.2

```
In [116... plot_by_woe(df_temp)
```



```
In [117...
          def woe_ordered_continuous(df, discrete_variable_name, good_bad_variable_df):
              df = pd.concat([df[discrete_variable_name], good_bad_variable_df], axis=1
              df = pd.concat([df.groupby(df.columns.values[0], as_index=False)[df.columns.values[0]]
                              df.groupby(df.columns.values[0], as index=False)[df.columns
              df = df.iloc[:, [0,1,3]]
              df.columns = [df.columns.values[0], 'n obs', 'prop good']
              df['prop n obs'] = df['n obs'] / df['n obs'].sum()
              df['n_good'] = df['prop_good'] * df['n_obs']
              df['n_bad'] = (1 - df['prop_good']) * df['n_obs']
              df['prop_n_good'] = df['n_good'] / df['n_good'].sum()
              df['prop_n_bad'] = df['n_bad'] / df['n_bad'].sum()
              df['WOE'] = np.log(df['prop_n_good'] / df['prop_n_bad'])
              df['diff_prop_good'] = df['prop_good'].diff().abs()
              df['diff WOE'] = df['WOE'].diff().abs()
              df['IV'] = (df['prop n good'] - df['prop n bad']) * df['WOE']
              df['IV'] = df['IV'].sum()
              return df
```

```
In [118... df_temp = woe_ordered_continuous(df_inputs_prepr, 'term_int', df_targets_prepr
df_temp
```

Out[118		term_int	n_obs	prop_good	prop_n_obs	n_good	n_bad	prop_n_good	prop_n_bad	
	0	36	270419	0.902995	0.724929	244187.0	26232.0	0.73495	0.643288	
	1	60	102609	0.858239	0.275071	88063.0	14546.0	0.26505	0.356712	

```
In [119... plot_by_woe(df_temp)
```

