

Chapter 13: RNA and Protein Synthesis

TABLE OF CONTENTS

13.1 — RNA

The Role of RNA

Comparing RNA and DNA

Functions of RNA

RNA Synthesis

Transcription

Promoters

RNA Editing

13.2 — Ribosomes & Protein Synthesis

The Genetic Code

Reading Codons

Start and Stop Codons

Translation

The Molecular Basis of Heredity

13.3 — Mutations

Types of Mutations

Gene Mutations

Chromosomal Mutations

Effects of Mutations

Mutagens

Harmful & Helpful Mutations

13.4 — Gene Regulation & Expression

Prokaryotic Gene Regulation

Promoters and Operators

Eukaryotic Gene Regulation

Transcription Factors

Cell Specialization
RNA Interference

Genetic Control of Development

Homeotic Genes

Homeobox and Hox Genes

Environmental Influences

13.1 — RNA

The Role of RNA

DNA could be copied with its two strands.

- One is a template
- The other strand is copied by **DNA polymerase**

RNA (Ribonucleic Acid) → nucleic acid with a long chain of nucleotides

Genes contain coded DNA.

• Tell the ribosomes how to build proteins

Comparing RNA and DNA

- 1. RNA has a **ribose** sugar
- 2. RNA is **single**-stranded
- 3. RNA contains uracil in place of thymine

DNA has to stay in the nucleus while RNA can go outside the nucleus to the ribosomes.

Functions of RNA

RNA functions as a disposable copy of DNA.

Main Purpose: protein synthesis

Messenger RNA (mRNA): RNA molecules that carry copies of genetic instructions for assembling proteins

Ribosomal RNA (rRNA): components of the subunits of ribosomes where proteins are synthesized

Transfer RNA (tRNA): RNA molecules that transfer each amino acid to the ribosome as it is specified by the genetic code

RNA Synthesis

Transcription

Transcription → segments of DNA serve as templates to produce complementary DNA molecules

- Prokaryotes: produced in the cytoplasm
- Eukaryote: produced in the nucleus (cytoplasm for protein synthesis)

Transcription requires the use of **RNA polymerase** (an enzyme).

 Binds to a strand of DNA and makes a complementary strand using the present nucleotides

Promoters

RNA polymerase binds to promoters.

- **Promoters:** regions of DNA with specific base sequence
 - Show where to begin making DNA
 - Also show where to stop making DNA

RNA Editing

RNA molecules can have some bits taken out.

- Introns: portions that are cut out and discarded
- Exons: remaining portions that are spliced back together to form the final mRNA

RNA editing allows for **one** gene to make **multiple** mRNA molecules.

13.2 — Ribosomes & Protein Synthesis

The Genetic Code

Proteins are made by joining amino acids into **polypeptides** (long chains).

Order → shape, chemical properties, function of a protein

Genetic Code: language of [A], [T], [C], and [G]

- Read three letters at a time
- "Word" → three bases (codon)

Reading Codons

There are **64** possible codons.

 Multiple codons can code for the same amino acid

Start and Stop Codons

Methionine (AUG) → start codon

• Three stop codons

Start and stop codons begin and end protein synthesis.

Translation

Ribosomes assemble **amino acids** into **polypeptides**.

- Translation: the decoding of an mRNA message into a protein
- 1. Messenger RNA enters the cytoplasm
- 2. Translation begins at AUG (methionine / the start codon)
- 3. tRNA anticodons match up to the mRNA codons
- 4. tRNA brings a corresponding amino acids
- 5. Next codon is read
- 6. Next tRNA anticodon is found
- 7. Previous tRNA leaves but amino acid stays
- 8. Peptide bond forms
- 9. Continues until stop codon
- 10. Polypeptide is broken off

The Molecular Basis of Heredity

Central Dogma of Molecular Biology: Information → DNA → RNA → protein

• **Gene Expression:** the way in which DNA, RNA & proteins are involved in putting genetic information into action

13.3 — Mutations

Types of Mutations

Mutations: heritable changes in genetic information

- Gene Mutations: mutations that change a single gene
- Chromosomal Mutations: mutations that change a whole chromosome

Gene Mutations

Point Mutations: gene mutations that involved changes in a few nucleotides (occur at a single point in the DNA sequence)

- Substitution → one base is changed to a different base
- Frameshift Mutations → shift the "reading frame" of the genetic message
 - Insertions → a base is added
 - Deletions → a base is removed

Frameshift mutations can alter a protein so much that it is unable to perform its normal functions.

Chromosomal Mutations

Changes in the number or structure of chromosomes

Deletion → loss of a part of a chromosome

Duplication → an extra copy of a part of a chromosome

Inversion → reversed direction of parts of a chromosome

Translocation → one part of a chromosome breaks off and attaches to another

Effects of Mutations

Mutations can occur due to natural or artificial means.

Mostly harmless

Mutagens

Mutagens: chemical or physical agents in the environment (ex. specific pesticides, natural plant alkaloids)

Harmful & Helpful Mutations

• Some mutations have no effect & some disrupt gene function completely

Mutations are the source of genetic variability in organisms.

Polyploidy: the condition in which an organism has extra sets of chromosomes

13.4 — Gene Regulation & Expression

Prokaryotic Gene Regulation

Prokaryotes only use the genes necessary for survival.

DNA-binding proteins in prokaryotes regulate genes by controlling transcription

· Switch genes on and off

Operon: a group of genes that are regulated together

- Genes have related functions
- Ex. lac operon → E.coli's 3 genes that must be turned on together to use lactose as food

Promoters and Operators

Promoters (P): sites where RNA polymerase can bind to begin transcription

Operators (O): sites where DNA-binding protein can bind to DNA

- Lac Repressor → binds to the O region and prevents the gene's transcription
 - Has a binding site for lactose, which turns off the repressor and allows for transcription

Eukaryotic Gene Regulation

Most eukaryotic genes are controlled individually.

TATA Box: a short region of [T] and [A] bases that signal RNA polymerase to begin transcription before a gene

Transcription Factors

Multiple transcription factors affect transcription.

 Ex. opening up chromatin, attracting RNA polymerase, blocking access to genes

Some transcription factors are activated by **chemical signaling**.

Ex. steroid hormones

Cell Specialization

Complex gene regulation allows for different cells to perform different functions.

RNA Interference

microRNA (miRNA) → small, interfering RNA molecules

• Produced by transcription and form loops

- Dicer enzyme splits them apart
- Attach to a silencing complex
 - Destroys any mRNA with a complementary sequence

microRNA stops some mRNA from producing proteins.

Shuts down the expression of a gene

RNA Interference (RNAi): blocking gene expression by means of an *miRNA* silencing complex

 Can allow scientists to turn on and off certain genes (even for virus and cancer cells)

Genetic Control of Development

Differentiation: becoming specialized in structure and function

Regulated by transcription factors and repressors

Homeotic Genes

Edward B. Lewis \rightarrow found that some specific genes control specific body part identities

• **Homeotic Genes:** a set of master control genes that regulate organ development in specific parts of the body

Homeobox and Hox Genes

Homeobox Genes → code for transcription factors that activate other genes important in cell development & differentiation

Expressed in certain regions of the body

Hox Genes → determine the identities of each segment a fly's body

Group of homeobox genes

• Similar groups in humans that show traits in order (head to toe)

Environmental Influences

The environment can also be a factor in cell development in differentiation.

• Ex. warmer temperature can speed up metamorphosis in tadpoles