第 1 問

図のように正方形 ABCD があり、辺 BC 上に点 E をとる。さらに、図のように三角形 AEF が正三角形になるように点 F をとったところ、 \angle ABF = 105° となった。このとき、BF: DE を求めよ。

作問者:negi_0613_

次のように、三角形 ABG が正三角形となるように点 G をとる。

このとき, \triangle AFB と \triangle AEG について,

$$\begin{cases} AF = AE \\ AB = AG \\ \angle FAB = \angle EAG = 60^{\circ} - \angle BAE \end{cases}$$

が成り立つので、 $\triangle FAB \equiv \triangle EAG$ が成り立つ。よって、

$$\angle AGE = \angle ABF = 105^{\circ}$$

これより、 ∠GEC を計算すれば、

$$\angle GEC = \angle BGE + \angle GBE$$

= $30^{\circ} + 45^{\circ}$
= 75°

このことから 3 点 D, G, E は同一直線上にあることがわかる。 今, BF = GE であるから, BF : DE = 1 : 2 である。