

What is VR?

- A high-end user interface that involves realtime simulation and interaction through multiple sensorial channels.
 - Vision
 - Sound
 - Touch
 - Smell
 - Taste

Object

K

Input Devices for VR

- Trackers
 - mechanical, magnetic, optical, ultrasound, hybrid inertial, vision-based
- Navigation interfaces
 - cubic mouse, trackball, 3D probe
- Gesture interfaces
 - pinch glove, data glove, cyberGlove

4

Tracker Characteristics

- Measurement accuracy (errors)
- Sensor noise and drift
- Sensing latency
- Update rate Readings/sec
- Measurement repeatability
- Tethered or wireless
- Work envelope
- Sensing degradation

Dr. Y. Hu

Accuracy Resolution Tracker measurements of object position Dr. Y. Hu

Mechanical Trackers - Pros + Cons

- Measure position using imbedded sensors
- Have extremely low latency
- Be immune to interference from magnetic fields
- Constrain the user's freedom of motion

Dr. Y. Hu

• Can be heavy if worn on the body

16

Magnetic Trackers TRANSMITTER • A magnetic field RS232 To produced by a stationary Electronic Interface TRANSMITTER to ON/OFF RESE determine the realtime position of a Opto-Electronic Optical Fibers Interface moving RECEIVER element. RECEIVER Wrist Position and Orientation AC + DC trackers. 17 Dr. Y. Hu

8

Accuracy Degradation

- Errors in position and orientation
- Size of errors growing from source outwards

Magnetic Tracker Errors

• Due to ambient noise:

$$e_{ambient} = K_n (d_{transmitter-receiver})^4$$

• Due to metal:

$$e_{\text{metal}} = \frac{K_r (d_{\text{transmitter-receiver}})^4}{(d_{\text{transmitter-metal}})^3 \times (d_{\text{metal-receiver}})^3}$$

19

18

Magnetic Trackers - Pros + Cons

- Measurement in 6 DOF ← low-frequency magnetic fields
- Fields ← a fixed transmitter
- A tracked object ← the receiver
- Larger work envelop → larger transmitter
- Distance → the voltages induced in the receiver (coils) → calibration...

20

Compa	arison - Tracke	ers: AC	vs. DC
		AC	DC
	magnetic metals m, brass, stainless	affected	immune
`	gnetic metals (mild rite) and copper	affected	affected
Resolution	and accuracy	better	OK
Work enve	lop	smaller	OK
15			Pr. Y. Hu

		SPECIFICATION	FASTRACK	FLOCK OF BUILDS
		Operation radius		
Tı	rackers:	ostral	8.75 m (36°) 2.25 m (90°)	1.2 m (48° 3 m (120°
	C vs. DC	Angelat targe	all-attitubes	±180°Azimuth&Rol ±90°Ukvatos
	O V3. DO	Treed, mousey	11.63 RMS	0.179,845
		Total resolution Augulat accuracy	0.15*RMS	0.07'RMS 6.07'RMS
		Angelor repolation	0.02251M5	0.1°RMS at 13°
		Update rate (measurements see)	120 time reversary off (two toolessess) 30 (fear receivers)	144 Tup so 30 reservess
		Lateries (mure) (single receiver)	8.5 (nu (Maring)	7.5 (no filtering)
		Monal briesferences	Formin Mild Stort Copper Stamboo soor! Russs Abanisman	Ferni Mild Steet Copper
		herefore	RS-232 (selen, found) rates to 115/200 or HHE-448 up up 100 librard sees	RS-232 (selec. huns rates to 115/200 or RS-422/463 (selec. hund rate to 500,000
		Data Savnat	ASCILorBissey	Brun
26		Modes	Point or stress.	Point or stream

	Magnetic and C	Optical Tra	ackers
		Magnetic	Optical
	Degrees of freedom	6	3,3(interpret)
	Metal effects	yes	no
	"Light-in-sight"	no	yes
	Sampling rate and accuracy	<150sets/s ~1.0 mm	>500sets/s ~0.5 mm
31	Work envelop	small	large

Ultrasonic Trackers (Pros + Cons)

- Position ← low-frequency ultrasound
- Sound ← a fixed triangular source (speakers)
- A tracked object ← a triangular receiver
- Larger work envelope → more sources
- Distance → the sound time of flight
- Accuracy → air temperature and noise sources
- Tracking → "direct line of sight"

34

Dr. Y. Hu

Hybrid Trackers

- Combining 2 or more technologies to track object better than a single technology would allow
- Inertial / ultrasonic
- Inertial / vision
- Inertial trackers: self-contained sensors that measure the rate of angular change in an object orientation
 - Gyros

35

Inertial / Ultrasonic Trackers (Pros + Cons)

- Metallic objects + magnetic fields ← no interference
- Tracking ← large-volume + full room
- Orientation tracking ← "source-less"
- Accelerometer errors → decreased accuracy
- Time elapses → errors grow
- Gyroscope errors + position errors → worse, calibration

38

Performa	nce (omn	arison	
Citotilla	iice c	Joinp	ai 13011	
	Mell Prices			
ADCURACY (mm*)	85ANGE 690	(MES 10 ^{mb})	OFBATE BUCK!	
0.0000	Best pech		5,960	
money.	25-000	Finit	1984	
OREIF Foliada	12.7 × 12.2 19.500	newi	# New Trend	
1929 beerblikti	feet1089	two trusts	240 (0.00 percent)	
SAS Physiatrics	102 Logitalis	lead title	14,000	
4/02 (6.400)	TIVEREDS.	NAME OF THE PARTY.	3.419930	
4763. Toda	105 Foliah	S.S. Fetreit	FleshBEEDS	
2004 2-0000	341 R001	15-Nile	Cornel.	
	NV.	15	70 Fash	
NAT Marked	hterio.2	GHH G-1.		

Navigation Inputs Dr. Y. Hu

Navigation Input Devices

- Allow the interactive change of the view to the virtual environment and the exploration through the selection and manipulation of a virtual object of interest.
 - Position/velocity control of virtual objects
 - Either absolute or relatives coordinates
 - Cubic Mouse, Trackball, 3D probe

Gesture Input Devices

- Allow dextrous control of virtual objects and interaction in real time through gesture recognition
 - Larger work envelope than trackballs, 3D probes
 - Calibration for user's hand needed
 - Sensing gloves: Pinch Glove, 5DT Data Glove, DG5 glove, CyberGlove

47

Comparison of Gloves 5DT Data DG5 Glove CyberGlove Specification **Pinch Glove Glove DG5 VHand** Number of 7 / glove 5 or 14 / glove 5 / glove 18 or 22 / glove (1 glove) sensors (2 gloves) (1 glove) (1 glove) Sensor type Electrical Fiber-optic Ink film Strain gauge Record/sec N/A 100(5DT 5W), 100 150(unfiltered) 200(5DT 5) 112(filtered) 25 (VHand) Sensor 1 bit 8 bits 10 bits 0.5° resolution (2 points) (256 points) (1024 points) Communication Wired Wired(19.2kb), Wired(19.2kb) Wired Wireless (VHand) rates (19.2 kb) Wireless(9.6kb) (115kb) Wrist sensors None Pitch Accelerometers Pitch and yaw (5DT 5) (VHand) 53 Dr. Y. Hu

Conclusion + Recap

- All input devices aim at capturing the user's input in real time and transmitting the input to the host computer running simulation.
- Trackers
- Navigation interfaces
- Gesture interfaces

54