Leçon 158 : Matrices symétriques réelles, matrices hermitiennes.

Développements :

Homéomorphisme de l'expo, Points extrémaux de la boule unité.

Bibliographie:

Gourdon Alg, FGN Alg 3, H2G2 T1

Plan

E est un K-ev de dimension finie avec K=R ou bien C.

1 Généralités

1.1 Définitions et premières propriétés

Définition 1 (Gou p.118). Matrices symétriques, antisymétriques, hermitiennes

Exemple 2.

Remarque 3 (Gou p.225). H_n est un R-ev mais pas un C-ev

Proposition 4 (Gou p.224-225). Dimension

Proposition 5 (Gou p.224,225). Somme directe

Proposition 6 (FGN p.165). Spectre (attention ne mettre que le sens qui n'utilise pas le thm spectral)

Définition 7. S_n^+ et S_n^{++} et H_n^+ et H_n^{++} .

Proposition 8 (FGN p.165). Spectre (attention ne mettre que le sens qui n'utilise pas le thm spectral)

1.2 Lien avec les endomorphismes, les formes bilinéaires symétriques et les formes hermitiennes

Définition 9 (Gou p.223). Forme bilinéaire symétrique

Définition 10 (Gou p.226). Forme sesquilinéaire hermitienne

Exemple 11.

Définition 12 (Gou p.224). Lien matrice et forme

Proposition 13 (Gou p.224-225). Matrice sym ssi forme sym //hermit

Exemple 14. Différentielle seconde

Proposition 15 (Gou p.224). Changement de base

Définition 16 (Gou p.225). Forme quadratique +forme polaire

Définition 17 (Gou p.226). Forme hermitienne +forme polaire

Remarque 18 (Gou p.225-226). matrice

Définition 19 (Gou p.239). Adjoint

Proposition 20 (Gou p.239). Involution

Définition 21 (Gou p.239). Auto-adjoint

Proposition 22 (Gou p.239). *Matrice de* f^* .

Proposition 23 (Gou p.240). Ainsi, les matrices des endomorphismes autoadjoints sont exactement les matrices symétriques (resp hermitiennes), et on a un isomorphisme entre ces deux espaces.

2 Théorie spectrale et réduction

2.1 Théorèmes spectraux

Théorème 24 (Gou p.240). Thm spectral et matriciellement

Théorème 25 (Gou p.240). This spectral sur \mathbb{C} et matriciellement

Corollaire 26 (Gou p.241+demo p.165 FGN). S_n^+ ssi dans S_n et $Sp \subset R^+$ et pour S_n^{++} .

Contre-exemple 27 (FGN p.233). Une matrice symétrique complexe n'est pas forcément diagonalisable

Application 28. Homéomorphisme de l'expo

2.2 Classification des formes quadratiques

Théorème 29 (Gou p.241). Diagonalisation d'une forme quadratique

Définition 31. Rang d'une forme quadratique

Théorème 32 (H2G2 p.299). Thm d'inertie de Sylvester sur C

Théorème 33 (H2G2 p.299). Thm d'inertie de Sylvester sur R +signature

Proposition 34 (H2G2 p.272). lien entre signature et signe des valeurs propres

Exemple 35 (FGn p.217). Un calcul de signature 3

Corollaire 36 (H2G2 p.299). une matrice symétrique/hermitienne est positive ssi sa forme quadratique réelle/hermitienne associée est de signature (n, 0).

Exemple 37 (FGN p.216). Un calcul de signature 1

Proposition 38 (FGN p.206). Caractérisation définie positive par les mineurs

Contre-exemple 39 (FGN p.115). Faux pour les positives tout court

Corollaire 40 (FGN p.206). S_n^{++} est un ouvert de S_n .

2.3 Une conséquence du théorème spectral : pseudoréduction simultanée

Théorème 41 (Gou p.241 ou FGN p.219). Pseudo-réduction simultanée et version matricielle

Contre-exemple 42 (FGN p. 219 -> ex 3.34). En général il n'est pas possible de trouver une base orthogonale simul

Application 43 (FGN p.222). Convexité logarithmique et ellispoïde de John-Loewner

3 Décompositions

3.1 Racine carrée

Proposition 44 (FGN p.107+p.173). Racine carrée d'une matrice symétrique/hermitienne positive

Exemple 45.

Application 46 (FGN p.108). Si A et B sont sym positives, et si en plus A est def pos, Alors AB est diagonalisable et son spectre est contenu dans R^+

3.2 Décomposition polaire

Théorème 47 (Gou p.246 ou FGN p.128). Décomposition polaire

Application 48 (FGN p.130). Points extrémaux de la boule unité

Corollaire 49 (H2G2 p.351). Norme 2 et rayon spectral

Corollaire 50 (H2G2 p.351). Maximalité du groupe orthogonal

3.3 Décomposition de Choleski

Proposition 51 (FGN p.131). Choleski

Application 52 (FGN p.133). Inégalite d'Hadamard pour une matrice symétrique positive

Application 53. problèmes de moindres carrés OU en probabilités construction d'un vecteur gaussien de matrice de covariance donnée à partir d'un vecteur gaussien de matrice de covariance identité