ECOLES PRIVEES ERRAIA

Ilot L - Près de l'Etat Major de la Garde Nationale

مدارس الرجاء الحرة حى ل _ قرب قيادة أركان الحرس الوطن

7D DEVOIR DE MATHS

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

EXERCICE 1 (3 POINTS)

Le plan complexe est rapporté à un repère orthonormé (O; u, v).

- 1) Résoudre dans \mathbb{C} les équations : $z^2 \neq 2z + 5 = 0$ et $z^2 6z + 10 = 0$
- 2) Pour tout nombre complexe z tel que $z \ne 1 + 2i$ on pose : $f(z) = \frac{z 3 i}{z + 1 + 2i}$
- a) Calculer le nombre $\alpha = f(1+3i)$ puis l'écrire sous formes algébrique et trigonométrique.
- b) On considère les deux points A et B d'affixes respectives $z_A = 1 + 2i$ et $z_B = 3 + i$.

Déterminer et représenter dans le même repere les ensembles $\Gamma_{\mathbf{k}}$ des points \mathbf{M} du plan d'affixe \mathbf{z} dans chacun des cas suivants :

 Γ_1 tel que |f(z)| = 1.

 Γ_2 tel que f(z) soit imaginaire pur. Γ_4 tel que $|f(z)-1| = \sqrt{5}$.

 Γ_3 tel que f(z) soit réel.

3) Déterminer et représenter dans le repère précédent le point C tel que le quadrilatère OABC soit un parallélogramme.

EXERCICE 2 (3 POINTS)

Une étude médicale a montré que 2% d'une population sont atteint d'une maladie M.

Un échantillon de n individus $(n \ge 2)$ a été choisi d'une façon aléatoire dans cette population pour être soumis à des testes de dépistage relatifs à la maladie M (on suppose l'équiprobabilité).

Soit X la variable aléatoire égale au nombre d'individus, de cet ensemble atteints de la maladie M.

- 1. Déterminer la loi de probabilité de X.
- 2. Calculer en fonction de n la probabilité de chacun des événements suivants :
 - A «Aucun individu de cet ensemble n'est atteint de la maladie M»
 - B « Un seul individu de cet ensemble est atteint de la maladie M »
 - C « Au moins un individu de cet ensemble est atteint de la maladie M ».
- 3. Soit p la probabilité d'avoir au moins un individu de cet échantillon atteint de la maladie Mdonc

 $p_n = p(C)$.

- a) Calculer lim p et interpréter le résultat.
- b) Quel est le plus petit nombre n'd'individus à tester afin d'avoir $p_n \ge 0.95$?

EXERCICE 3 (4 POINTS)

On considère la suite numérique (U_n) définie par:

$$\begin{cases} U_1 = 1 \\ U_{n+1} = 3 - \frac{2n}{3(n+1)} (3 - U_n), \ \forall n \in IN^* \end{cases}$$

- 1) Vérifier que $U_2 = \frac{7}{2}$ puis calculer U_3 ; U_4 .
- 2.a) Démontrer par récurrence que la suite (U_n) est majorée par 3.
- b) Montrer que pour tout n de \mathbb{IN}^* on a : $\mathbb{U}_{n+1} \mathbb{U}_n = \frac{n+3}{3(n+1)}(3-\mathbb{U}_n)$. En déduire le sens de variation de la suite (U_n) .

- 3) Déduire que la suite (U_n) est convergente.
- 4) On pose pour tout n de IN^* : $V_n = n(3-U_n)$.
- a) Calculer V_1 ; V_2 et montrer que (V_n) est une suite géométrique. Déterminer sa raison.
- b) exprimer V_n puis U_n en fonction de n.
- c) Montrer que la suite (V_n) est convergente et calculer sa limite. En déduire la limite de (U_n) .
- d) Calculer par une deuxième méthode la limite de (U_n).
- 5) Calculer en fonction de n la somme : $S_n = U_1 + 2U_2 + 3U_3 + \cdots + nU_n$.

EXERCICE 4 (5 POINTS)

On considère la fonction numérique f définie par $f(x) = 2x - 3 + e^x$.

Soit (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$ d'unité 1cm.

- 1.a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
 - b) Calculer et donner une interprétation graphique de : $\lim_{x \to -\infty} (f(x) (2x 3))$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
- 2. Dresser le tableau de variation de f.
- 3. Montrer que f réalise une bijection de R sur un intervalle J que l'on déterminera.
- 4. Montrer que l'équation f(x) = 0 admet une unique solution α puis vérifier que $0.5 < \alpha < 0.6$.
- 5. Construire les courbes (C) et (C') représentant respectivement la fonction f et sa réciproque f^{-1} dans le repère $(O; \vec{i}, \vec{j})$.
- 6. On considère la fonction numérique g définie par : $g(x) = \ln(2x-3+e^x)$.
 - a) Déterminer l'ensemble de définition de g. b) Dresser le tableau de variation de g.
 - c) Construire la courbe (Γ) de g dans un nouveau repère orthonormé $(0; \vec{i}, \vec{j})$.

EXERCICE 5 (5 POINTS)

On considère la fonction f définie sur $]0;+\infty[$ par : $f(x)=x-3-\frac{\ln x}{x}$. On note (C) sa courbe dans un repère orthonormé (0;i,j) d'unité 2 cm.

- 1. Démontrer chacun des résultats suivants et en donner une interprétation géométrique.
- a) $\lim_{x\to 0^+} f(x) = +\infty$;
- b) $\lim_{x\to +\infty} f(x) = +\infty$;
- c) $\lim_{x \to +\infty} (f(x) (x-3)) = 0$.
- 2.a) Montrer que pour tout x de l'intervalle $]0;+\infty[$ on a : $f'(x) = \frac{x^2-1+\ln x}{x^2}$.
- b) Vérifier que : $\begin{cases} x \ge 1 \Rightarrow f'(x) \ge 0 \\ 0 < x \le 1 \Rightarrow f'(x) \le 0 \end{cases}$
- c) Dresser le tableau de variation de $\,f\,$.
- 3.a) Montrer que l'équation f(x) = 0 admet dans l'intervalle $]0;+\infty[$ exactement deux solutions α et β . Vérifier que : $0,37 < \alpha < 0,38$ et $3,36 < \beta < 3,37$.
- b) Déterminer un point de (C) où la tangente est parallèle à la droite d'équation y = x et déterminer une équation de cette tangente.
- c) Construire la courbe (C).
- d) Discuter graphiquement le nombre de solutions de l'équation lnx=mx où m est un paramètre réel. BONUS :PRESENTATION ET REDACTION : 2 POINTS

Fin.