Planche 1.

Exercice 1. Soit A une partie fermée non bornée convexe de \mathbb{R}^n . Montrer que A contient une demi-droite.

Exercice 2. Soit $A \in M_n(\mathbb{R})$. On pose $f(M) = \sum_{1 \leq i,j \leq n} (a_{i,j} - m_{i,j})^2$ sur $S_n(\mathbb{R})$. Trouver le minimum de f.

Planche 2.

Exercice 0. Dans un evn. Soient A fermée et B compacte. Montrer que A+B est fermée.

Exercice 1. On pose $f_n(x) = \frac{1}{n+n^2x^2}$. Étudier la suite de fonctions sur $]0, +\infty[$ et trouver un équivalent en $+\infty$.

Exercice 2. Soient (u_1, \ldots, u_p) une famille de veteurs de \mathbb{R}^n vérifiant $\langle u_i, u_j \rangle < 0$ pour tout $i \neq j$.

- 1. Montrer que p-1 vecteurs parmi eux forment toujours une famille libre de \mathbb{R}^n .
- 2. Montrer que l'on ne peut trouver plus de n+1 vecteurs réunissant ces conditions.
- 3. Montrer que l'on peut en trouver n+1.

Planche 3.

Exercice 1. Calculer $h(x) = \int_0^{+\infty} \exp(-(t^2 + x^2/t^2))dt$.

Exercice 2. Soit $A \in M_n(\mathbb{R})$ telle que $A^3 = A + I_n$. Montrer que $\det(A) > 0$.

Solutions - Planche 1.

Question de cours.

Exercice 1.

Exercice 2.

Solutions - Planche 2.

Question de cours.

Exercice 1.

Exercice 2.

Solutions - Planche 3.

Question de cours.

Exercice 1.

Exercice 2.