

Chương 2: Chế độ xác lập hằng trong mạch phi tuyến.

- I. Khái niệm chung.
- II. Phương pháp đồ thị.
- III. Phương pháp dò.
- IV. Phương pháp lặp

Bài tập: 1, 4, 5, 6, 8, 9, 10, 17, 18 + bài thêm

Chương 2: Chế độ xác lập hằng trong mạch phi tuyến.

- I. Khái niệm chung.
- II. Phương pháp đồ thị.

III. Phương pháp dò.

IV. Phương pháp lặp

CuuDuongThanCong.com

I. Khái niệm chung

- > Xét mạch phi tuyến có kích thích hằng, vậy đáp ứng trong mạch có 2 trạng thái:
 - ❖ Dao động chu kỳ (tự dao động phi tuyến). → Không xét
 - ❖ Trạng thái hằng (dừng).

$$\begin{cases} x_1 = f_1(x_1, x_2, \dots x_n, t) \\ x_2 = f_2(x_1, x_2, \dots x_n, t) \\ \dots \\ x_n = f_n(x_1, x_2, \dots x_n, t) \end{cases}$$

$$t = 0, \frac{d}{dt} = 0$$

$$\begin{cases} f_1(x_1, x_2, \dots x_n) = 0 \\ f_2(x_1, x_2, \dots x_n) = 0 \\ \dots \\ f_n(x_1, x_2, \dots x_n) = 0 \end{cases}$$

$$\text{Hệ phương trình vi tích phân phi tuyến}$$

- Mạch phi tuyến ở chế độ xác lập hằng là mạch phi tuyến thuần trở.
- > Phương pháp giải: Phương pháp đồ thị, phương pháp dò, phương pháp lặp.

Chương 2: Chế độ xác lập hằng trong mạch phi tuyến.

- I. Khái niệm chung.
- II. Phương pháp đồ thị.

III. Phương pháp dò

IV. Phương pháp lặp

II. Phương pháp đồ thị

> Sử dụng các phép đồ thị để giải hệ phương trình đại số phi tuyến.

➤ Nội dung:

- ❖ Biểu diễn các quan hệ hàm dưới dạng đồ thị
- * Thực hiện các phép đại số (cộng, trừ) các quan hệ hàm.
- ❖ Thực hiện phép cân bằng các quan hệ hàm.

> Uu, nhược điểm:

- ❖ Cho kết quả nhanh.
- ❖ Sai số nghiệm lớn.
- ❖ Chỉ thực hiện đối với các bài toán đơn giản.

II. Phương pháp đồ thị

Vi~du~2.1: Cho mạch phi tuyến ở chế độ xác lập hằng. Đặc tính phi tuyến của điện trở phi tuyến cho như hình vẽ. Tìm dòng điện, điện áp trên các phần tử. $\mathbf{R}=\mathbf{10}\Omega$

 $Gi \dot{a}i$: Lập phương trình mạch: $E = U_R + U(I) = R.I + U(I)$

Phương pháp trừ đồ thị:

1.
$$E - R.I = U(I) \rightarrow 30 - 10I = U(I)$$

- 2. Điểm cắt: M(0.85A; 21V)
- 3. Sai số: $E^* = 0.85.10 + 21 = 29.5(V)$

$$\varepsilon\% = \left| \frac{E^* - E}{E} \right| = \left| \frac{29.5 - 30}{30} \right|.100\% = 1,667\%$$

II. Phương pháp đồ thị

 $Vi~d\mu~2.1$: Cho mạch phi tuyến ở chế độ xác lập hằng. Đặc tính phi tuyến của điện trở phi tuyến cho như hình vẽ. Tìm dòng điện, điện áp trên các phần tử. $\mathbf{R}=\mathbf{10}\Omega$

 $Gi \dot{a}i$: Lập phương trình mạch: $E = U_R + U(I) = R.I + U(I)$

Phương pháp cộng đồ thị:

1.
$$E = R.I + U(I) \rightarrow 30 = 10.I + U(I)$$

2. Điểm cắt: N(0.85A; 30V)

> Nhận xét:

Trong trường hợp này, phương pháp trừ đồ thị cho kết quả chính xác hơn phương pháp cộng đồ thị.

II. Phương pháp đồ thị

Ví dụ 2.2: Cho mạch phi tuyến ở chế độ xác lập hằng. Đặc tính phi tuyến của các điện trở phi tuyến cho như hình vẽ. Tìm dòng điện, điện áp trên các phần tử.

Giải: Phương pháp cộng đồ thị

$$\blacktriangleright \text{ Lập phương trình mạch: } \begin{cases} I_1 = I_2 + I_3 \\ U_1 + U_{ab} = E \\ U_2 = U_3 = U_{ab} \end{cases}$$

$$ightharpoonup$$
 Cộng dòng: $I_1(U_{ab}) = I_2(U_{ab}) + I_3(U_{ab})$

$$ightharpoonup$$
 Cộng áp: $E = U_1(I_1) + U_{ab}(I_1)$

➤ Đọc kết quả:

$$\begin{cases} I_1 = 1.15(A) \\ U_{ab} = 61(V) \\ U_1 = 17(V) \end{cases} \rightarrow \begin{cases} I_2 = 0.9(A) \\ I_3 = 0.25(A) \end{cases}$$

II. Phương pháp đồ thị

Ví dụ 2.3: Cho mạch điện như hình vẽ biết đặc tính phi tuyến của điện trở phi tuyến

R₂ và R₃ cho như hình vẽ. Tính dòng điện các nhánh theo phương pháp đồ thị

Giải:

$$ightharpoonup$$
 Lập phương trình mạch:
$$\begin{cases} I_1 = I_2 + I_3 \\ E = RI_1 + U_{AB} \end{cases}$$

$$ightharpoonup$$
 Cộng dòng: $I_1(U_{ab}) = I_2(U_{ab}) + I_3(U_{ab})$

$$ightharpoonup$$
 Trừ áp: $U_{ab}(I_1) = E - RI_1 = 12 - 3I_1$

➤ Đọc kết quả:

$$\begin{cases} I_1 = 2,5(A) \\ U_{ab} = 4,2(V) \end{cases} \rightarrow \begin{cases} I_2 = 2,1(A) \\ I_3 = 0.25(A) \end{cases}$$

Chương 2: Chế độ xác lập hằng trong mạch phi tuyến.

- I. Khái niệm chung.
- II. Phương pháp đồ thị.

III. Phương pháp dò.

IV. Phương pháp lặp

III. Phương pháp dò

> Thuật toán:

Uu, nhược điểm:

- ❖ Phù hợp với mạch phức tạp nối dạng xâu chuỗi.
- * Tính nhanh, cho phép tính đến sai số nhỏ tùy ý.
- ❖ Có thể sử dụng máy tính để tính nghiệm (sử dụng hệ "chuyên gia").

III. Phương pháp dò

Ví dụ 2.4: Cho mạch điện biết đặc tính phi tuyến của điện trở phi tuyến R_2 và R_3 cho như hình vẽ. Tính dòng điện các nhánh theo dò

Các bước dò:

$$ightharpoonup$$
 Tính $I_1 = I_2 + I_3$; $E_{tinh} = R_1 \cdot I_1 + U_{ab}$

 \clubsuit So sánh E_{tinh} và $E_{cho} = 12V$

Kết quả dò:

n	Uab	\mathbf{I}_2	I_3	$\mathbf{I_1}$	$\mathbf{E}_{tinh} = \mathbf{R}_1 \cdot \mathbf{I}_1 + \mathbf{U}_{ab}$
1	3V	1.95A	0.2A	2.15A	9.45V
2	6V	2.45A	0.5A	2.95A	14.85V
3	4.5V	2.2A	0.25A	2.45A	11.85V

Sai số:

 $\varepsilon\% = \frac{11,85-12}{12}100\% = 1,25\%$

III. Phương pháp dò

 $Vi \ d\mu \ 2.5$: Cho mạch điện: $R_1 = R_2 = 4\Omega$, $R_3 = 8\Omega$, $R_4 = 10\Omega$, E = 15V. Tính dòng I_5 theo phương pháp dò.

Cách 1: Dò trực tiếp từ sơ đồ mạch

Cho
$$I_5 \xrightarrow{\operatorname{Tra} U_5(I_5)} U_5 \longrightarrow I_4 = \frac{U_5}{R_4} \longrightarrow I_3 = I_4 + I_5 \longrightarrow U_3 = I_3 R_3 \longrightarrow U_{AC} = U_3 + U_5$$

$$\longrightarrow I_2 = \frac{U_{AC}}{R_2} \longrightarrow I_1 = I_2 + I_3 \longrightarrow E_{tinh} = R_1 I_1 + U_{AC}$$

n	I_5	U_5	I_4	I_3	U_3	U_{AC}	I_2	I_1	$E_{\it tinh}$
1	0.4	3	0.3	0.7	5.6	8.6	2.15	2.85	20V > 15V
2	0.2	2.5	0.25	0.45	3.6	6.1	1.53	1.98	14V < 15V
3	0.25	2.6	0.26	0.51	4.08	6.68	1.67	2.18	15.4V

CuuDuongThanCong.com

Sai số:
$$\varepsilon\% = \frac{15.4 - 15}{15}100\% = 2,67\%$$

III. Phương pháp dò

 $Vi\ d\mu\ 2.5$: Cho mạch điện: $R_1=R_2=4\Omega,\ R_3=8\Omega,\ R_4=10\Omega,\ E=15V$. Tính dòng I_5 theo phương pháp dò.

Cách 2:

$$ightharpoonup$$
 Biến đổi mạch theo sơ đồ Thevenil: $R_v = R_4 / / \left[\left(R_1 / / R_2 \right) + R_3 \right] \rightarrow R_v = 5\Omega$

$$\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3 + R_4}\right) \varphi_A = \frac{E}{R_1} \to \varphi_A = 6.75V \to E_{h\mathring{o}} = \frac{\varphi_A}{R_3 + R_4} R_4 = 3.75V$$

$$ightharpoonup$$
 Lập phương trình: $E_{h\vec{\sigma}} = R_v I + U_5(I_5)$

Cho
$$I_5 \xrightarrow{\operatorname{Tra} U_5(I_5)} U_5 \longrightarrow E_{tinh} = R_{v}I_5 + U_5(I_5)$$

CuuDuongThanCong.com

n	I_5	U_5	E_{tinh}
1	0.4A	3V	5V > 3.75V
2	0.2A	2.5V	3.5V < 3.75V
3	0.25A	2.6V	3.85V > 3.75V

$$\varepsilon\% = \frac{3.85 - 3.75}{3.75}100\% = 2,67\%$$

III. Phương pháp dò

Ví dụ 2.6: Cho mạch điện b 20V (1 chiều), $R = 30\Omega$. M \hat{so} : $A_{11} = 1.1$; $A_{12} = 20$; A_2 phi tuyến có đặc tính cho theo bảng:

biết $J = 12A$ (1 chiều), $E = M$ ạng 2 cửa thuần trở có bộ $_{21} = 0.5$; $A_{22} = 10$. Phần tử	$ \begin{array}{c c} I_{1A} \\ \hline V_{1A} \end{array} $	A	I_{2A} U_{2A} $U(I)$	E
neo hảng:				

I(A)	0	0.5	1	1.5	2	2.2
U(V)	0	7	10	14	20	25

Tính dòng chảy qua điện trở phi tuyên.

Giải:

➤ Biến đổi mạng 2 cửa + nguồn dòng → sơ đồ Thevenil

$$R_{vao} = -\frac{U_{2A}}{I_{2A}}\bigg|_{I_1=0} = \frac{A_{22}}{A_{21}} = \frac{10}{0.5} = 20\Omega \qquad E_{th} = U_{2ho} = \frac{I_1}{A_{21}}\bigg|_{I_2=0} = \frac{J_1}{A_{21}} = \frac{12}{0.5} = 24(V)$$

$$E_{TD} = \frac{\frac{E_{th}}{R_{vao}} + \frac{E}{R}}{\frac{1}{R_{vao}} + \frac{1}{R}} = \frac{\frac{24}{20} + \frac{20}{30}}{\frac{1}{20} + \frac{1}{30}} = 22,4(V)$$

$$R_{TD} = \frac{R_{th}.R}{R_{th} + R} = \frac{20.30}{20 + 30} = 12\Omega$$

$$Co số kỹ thuật điện 2$$
Co số kỹ thuật điện 2

III. Phương pháp dò

I(A)	0	0.5	1	1.5	2	2.2
U(V)	0	7	10	14	20	25

ightharpoonup Phương trình dò: $E_{TD} = R_{TD}.I + U(I)$

I(A)	R _{TD} .I	$\mathbf{E}_{tinh} = \mathbf{R}_{TD} \cdot \mathbf{I} + \mathbf{U}(\mathbf{I})$
0.5	6	13V < 22.4V
1	12	22 < 22.4V
1.5	18	32 > 22.4V

 $E_{TD} = 22,4(V)$ $R_{TD} = 12\Omega$

$$R_{TD} = 12\Omega$$

Áp dụng công thức nội suy tuyến tính:

$$I = 1.5 + (22.4 - 32).\frac{1.5 - 1}{32 - 22} = 1.02(A)$$

 \triangleright Vậy dòng điện chảy qua điện trở phi tuyến là: I = 1.02(A)

Chương 2: Chế độ xác lập hằng trong mạch phi tuyến.

- I. Khái niệm chung.
- II. Phương pháp đồ thị.

III. Phương pháp dò

IV. Phương pháp lặp.

III. Phương pháp lặp

- > Nội dung phương pháp:
 - ❖ Biểu diễn quá trình mạch Kirhoff theo phương trình phi tuyến dạng:

$$x = \varphi(x)$$

- **�** Cho một giá trị của $x_0 \rightarrow$ tính giá trị $x_1 = \varphi(x_0)$
- ***** Thay giá trị x_1 để tính giá trị $x_2 = \varphi(x_1)$
- \clubsuit Quá trình tính lặp dừng khi x_n x_{n-1} nhỏ hơn sai số cho trước.

III. Phương pháp lặp

Nội dung phương pháp:

$$x = \varphi(x)$$

- ❖ Nghiệm là hoành độ giao điểm:
 - \triangleright Đường thẳng y = x
 - \triangleright Đường cong $y = \varphi(x)$

CuuDuongThanCong.com

Điều kiện hội tụ: Trong miền các giá trị lặp x^k , trị tuyệt đối độ dốc đường $y = \varphi(x)$ nhỏ hơn độ dốc đường y = x.

$$|\varphi'(x)| < 1$$

III. Phương pháp lặp

> Thuật toán:

Uu, nhược điểm:

- ❖ Cần kiểm tra điều kiện hội tụ của phép lặp.
- * Tính nhanh, cho phép tính đến sai số nhỏ tùy ý.
- ❖ Có thể lập trình cho máy tính để tính nghiệm tự động.

III. Phương pháp lặp

 $Vi \ du \ 2.7$: Cho mạch điện gồm điện dẫn tuyến tính g = 0.2(Si) mắc nối tiếp với phần tử phi tuyến có đặc tính $u(i) = 2i^2$. Nguồn cung cấp một chiều E = 10V. Dùng phương pháp lặp để tính các giá trị dòng áp trong mạch.

Giải: Lập phương trình mạch: $u = u(i) + u_g$

CuuDuongThanCong.com

$$ightharpoonup$$
 Chọn biến lặp i: $u = Ri + 2i^2$ \rightarrow $10 = 5i + 2i^2$ \rightarrow $i = -0.4i^2 + 2$

➤ Kết quả lặp:

k	i_k	$i_{k+1} = 2 - 0.4.i_k^2$	$ \Delta i_k = i_{k+1} - i_k $
0	1(A)	1,6(A)	0,6(A)
1	1,6(A)	0,976(A)	0,624(A)
2	0,976(A)	1,619(A)	0,643(A)
3	1,619(A)	0,952(A)	0,667(A)
4	0,952(A)		

➤ Điều kiện hội tụ:

$$\left| \frac{d\varphi}{dx} \right| = \left| -0.8i \right| < 1$$

$$\rightarrow 0 < i < 1,25$$

Không hội tụ

III. Phương pháp lặp

 $Vi \ du \ 2.7$: Cho mạch điện gồm điện dẫn tuyến tính g = 0.2(Si) mắc nối tiếp với phần tử phi tuyến có đặc tính $u(i) = 2i^2$. Nguồn cung cấp một chiều E = 10V. Dùng phương pháp lặp để tính các giá trị dòng áp trong mạch.

Giải: Lập phương trình mạch: $u = u(i) + u_g$

> Chọn biến lặp
$$u_1$$
: $u = u_1 + 2i^2 \rightarrow 10 = u_1 + 2(u_1/R)^2 \rightarrow u_1 = 10 - 0.08$. u_1^2

➤ Kết quả lặp:

k	$\mathbf{u}_{\mathbf{k}}$	$u_{k+1} = 10 - 0.08 \cdot u_k^2$	$ \Delta \mathbf{u}_{\mathbf{k}} = \mathbf{u}_{\mathbf{k}+1} - \mathbf{u}_{\mathbf{k}} $
0	6(V)	7,12(V)	1,12(V)
1	7,12(V)	5,945(V)	1,176(V)
2	5,945(V)	7,173(V)	1,228(V)
3	7,173(V)	5,884(V)	1,289(V)
4	5,884(V)		

➤ Điều kiện hội tụ:

$$\left| \frac{d\varphi(x)}{dx} \right| = \left| -0.16u_1 \right| < 1$$

$$\to 0 < u_1 < 6.25$$

Không hội tụ

III. Phương pháp lặp

Giải: Lập phương trình mạch: $u = u(i) + u_g$

> Chọn biến lặp
$$u$$
:
$$\begin{cases} u = Ri + u(i) \\ u = 2i^2 \rightarrow i = \sqrt{\frac{u}{2}} \end{cases} \rightarrow 10 = 5\sqrt{\frac{u}{2}} + u \rightarrow u = 10 - 5\sqrt{\frac{u}{2}}$$
> Kết quả lặp:

➤ Kết quả lặp:

k	$\mathbf{u}_{\mathbf{k}}$	$u_{k+1} = 10 - 5.\text{sqrt}(u_k/2)$	$ \Delta \mathbf{u}_{\mathbf{k}} = \mathbf{u}_{\mathbf{k}+1} - \mathbf{u}_{\mathbf{k}} $
0	3,2(V)	3,67(V)	0,47(V)
1	3,67(V)	3,23(V)	0,44(V)
2	3,23(V)	3,65(V)	0,42(V)
3	3,65(V)	3,24(V)	0,41(V)
4	3,24(V)	3,64(V)	0,40(V)
5	3,64(V)	3,25(V)	0,39(V)
6	3,25(V)	3,63(V)	0,38(V)
7	3,63(V)	3,26(V)	0,37(V)

Hội tụ