Lab Report: Speed of light

Matthias Maile*

Korea Advanced Institute of Science and Technology

(Dated: September 26, 2022)

1

1

CONTENTS

- I. Introduction 1
 A. History 1
 B. Theory 1
 1. Deriving the speed of light from Maxwell's equations 1
 II. Procedure 1
- III. Results
- IV. Discussion 1
- V. Conclusion 1
 - References

I. INTRODUCTION

- A. History
- B. Theory
- 1. Deriving the speed of light from Maxwell's equations

The speed of light as a fundamental constant can be derived from Maxwell's equations [1]

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B} = \mu_{\text{abs}} \epsilon_{\text{abs}} \frac{\partial \mathbf{E}}{\partial t}.$$
 (1)

where $\mu_{\rm abs}$ and $\epsilon_{\rm abs}$ are the absolute permeability and permittivity of the medium. They can be related to the relative and vacuum constant for each size like

$$\epsilon_{\rm abs} = \varepsilon \varepsilon_0,$$
 (2)

$$\mu_{\rm abs} = \mu_r \mu_0. \tag{3}$$

In these equations ε_0 is called the vacuum permittivity and ε is a medium-specific relative permittivity. In a similar fashion, μ_0 is the vacuum permeability and μ_r the relative permeability.

By taking the first time derivative of either equation and plugging the result into the other, one can get a wave equation after the double curl has been reduced to a laplace operator. From the wave equation a speed of light of

$$c = \frac{1}{\sqrt{\varepsilon \varepsilon_0 \mu_0 \mu_r}}. (4)$$

Since ε_0 and μ_0 are physical constants they can be measured and their values are well known to be [2, 3]

$$\varepsilon_0 = 8.854 \times 10^{-12} \,\mathrm{Fm}^{-1}, \quad \mu_0 = 1.256 \times 10^{-6} \,\mathrm{NA}^{-2}.$$
 (5)

With the relative permeability and relative permittivity of a medium we can define the refractive index

$$n = \sqrt{\varepsilon \mu_r}$$
.

n depends, like μ_r , on the frequency of the light because of dispersion.

II. PROCEDURE

III. RESULTS

IV. DISCUSSION

V. CONCLUSION

D. J. Griffiths, Introduction to electrodynamics; 4th ed. (Pearson, Boston, MA, 2013) re-published by Cambridge University Press in 2017.

^[2] N. I. of Standarts and Technology, Codata value: vacuum

magnetic permeability (2022).

^[3] N. I. of Standarts and Technology, Codata value: vacuum electric permittivity (2022).

^{*} matthias.maile@kaist.ac.kr