Python Project: Germany New Cars Data Analysis & Visualization

Importing Libraries

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go

Loading the data in the dataframe

In [32]: df = pd.read_csv("Germany New Car Data.csv", encoding='ISO-8859-1')
In [33]: # Display the first few rows
df.head()

Out[33]:	Purchase ID	Customer Name	Age	Gender	City	Car Brand	Car Model	Fuel Type	Transmission	Purchase Date	Price	Loan Taken	Down Payment	Loan Provider	Annual Income	Previous Car Owned	Customer Satisfaction Score
	0 PUR100000	Laura	28	Male	Munich	BMW	C-Class	Petrol	Automatic	10/6/2021	□ 15,725.19	Yes	□ 5,004.00	Commerzbank	□ 62,770.00	Yes	2
	1 PUR100001	Tim	54	Female	Stuttgart	BMW	A3	Electric	Automatic	7/10/2021	□ 37,264.71	Yes	□ 11,930.00	Commerzbank	□ 53,283.00	No	4
	2 PUR100002	Lukas	42	Male	Hamburg	Opel	Octavia	Petrol	Manual	9/13/2021	□ 48,946.14	No	□ 8,263.00	Commerzbank	□ 78,976.00	Yes	4
	3 PUR100003	Sophie	26	Female	Berlin	Audi	Golf	Petrol	Manual	9/5/2021	□ 23,009.41	No	□ 12,359.00	Commerzbank	□ 84,191.00	No	4
	4 PUR100004	Lukas	40	Female	Berlin	Audi	C-Class	Diesel	Manual	8/18/2021	□ 12,942.71	No	□ 3,635.00	Volksbank	□ 30,924.00	No	3

In [34]: # To Confirm there's no null values in the dataset.
df.info()

Q1. What is the distribution of car purchases by city?

```
In [9]: # Group and count purchases by city
city_count = df['city'].value_counts().reset_index()
city_count.columns = ['City', 'Number of Purchases']

# Create interactive bar chart
fig = px.bar(
    city_count,
    x='city',
    y='Number of Purchases',
    title='Interactive: Distribution of Car Purchases by City',
    labels=('Number of Purchases': 'Number of Purchases'),
    text='Number of Purchases'
)

# Save the interactive chart as PNG
fig.write_image("Car Purchases By City.png", width=1000, height=600, scale=2)

# Show chart
fig.show()
```

Interactive: Distribution of Car Purchases by City

Q2. Which car brands are most popular?

```
In [8]: # Count car brand popularity
brand_count = df['Car Brand'].value_counts().reset_index()
brand_count.columns = ['Car Brand', 'Number of Purchases']

# Create interactive bar chart
fig = px.bar(
    brand_count,
    x='Car Brand',
    y='Number of Purchases',
    title='Interactive: Most Popular Car Brands in Germany',
    text='Number of Purchases',
    color='Number of Purchases')

# Save the interactive chart
fig.write_image("Top Popular Car Brands.png", width=1000, height=600, scale=2)

# Show chart
fig.show()
```

Interactive: Most Popular Car Brands in Germany

Q3. What is the trend of car purchases over time?

```
In [13]: # Convert 'Purchase Date' to datetime
         df['Purchase Date'] = pd.to_datetime(df['Purchase Date'], errors='coerce')
         # Create a new column with just the month
         df['Purchase Month'] = df['Purchase Date'].dt.to_period('M').astype(str)
         # Group by month and count
         monthly_counts = df['Purchase Month'].value_counts().reset_index()
         monthly_counts.columns = ['Purchase Month', 'Number of Purchases']
         monthly_counts = monthly_counts.sort_values(by='Purchase Month')
         # Plot with Plotly
         fig = px.line(
             monthly_counts,
             x='Purchase Month',
             y='Number of Purchases',
             title='Interactive: Monthly Trend of Car Purchases in Germany',
             markers=True
         fig.write_image("Monthly Car Purchase Trend.png", width=1000, height=600, scale=2)
         # Show plot
         fig.show()
```

Interactive: Monthly Trend of Car Purchases in Germany

Q4. Loan Analysis: How many people took a car loan?

```
In [21]: # Count Loan status
loan_counts = df['Loan Taken'].value_counts().reset_index()
loan_counts.columns = ['Loan Taken', 'Number of Customers']

# Create interactive pie chart
fig = px.pie(
    loan_counts,
    names='Loan Taken',
    values='Number of Customers',
    title='Interactive: Car Loan Distribution Among Customers',
    hole=0.4 # donut-style
)

# Save the chart
fig.write_image("Loan Taken Pie Chart.png", width=800, height=600, scale=2)

# Show chart
fig.show()
```

Interactive: Car Loan Distribution Among Customers

Q5. Gender-wise car brand preference:

```
In [47]: # Group by Car Brand and Gender
         gender_brand = df.groupby(['Car Brand', 'Gender']).size().reset_index(name='Count')
         # Create an interactive grouped bar chart using Plotly
        fig = px.bar(
            gender_brand,
            x='Car Brand',
            y='Count',
            color='Gender',
            barmode='group',
            title='Interactive: Gender-wise Car Brand Preference',
            text='Count'
                                  # Show count values on bars
        # Save as high-res PNG
        fig.write_image("Gender-Wise Car Brand Preference.png", width=1000, height=600, scale=2)
        # Display the Visual
        fig.show()
```

Interactive: Gender-wise Car Brand Preference

Q6. Age-wise customer segmentation:

```
In [55]: # Define bins and labels for age segmentation
         bins = [17, 30, 45, 60, df['Age'].max()] # use 17 to include 18 and use max age dynamically
         labels = ['18-30', '31-45', '46-60', '60+']
         # Create a new column 'Age Group' based on bins
         df['Age Group'] = pd.cut(df['Age'], bins=bins, labels=labels, include_lowest=True)
         # Count customers in each age group
         age_group_counts = df['Age Group'].value_counts().sort_index().reset_index()
         age_group_counts.columns = ['Age Group', 'Number of Customers']
         fig = px.bar(
             age_group_counts,
             x='Age Group',
             y='Number of Customers',
             title='Interactive: Age-wise Customer Segmentation',
             text='Number of Customers',
             color='Number of Customers'
         fig.write_image("Age-wise Customer Segmentation.png", width=900, height=600, scale=2)
         # Show the Visual
         fig.show()
```

Interactive: Age-wise Customer Segmentation

Q7. Customer satisfaction distribution:

```
In [61]: # Pivot the data: Satisfaction vs Gender
heat_data = df.pivot_table(
    index='Customer Satisfaction Score',
    columns='Gender',
    aggfunc='size',
    fill_value=0
)

plt.figure(figsize=(6, 4))
sns.heatmap(heat_data, annot=True, cmap='YlGnBu', fmt='d')

plt.title("Heatmap: Satisfaction Score by Gender")
plt.tight_layout()

#Save the visual
plt.savefig("Heatmap Satisfaction By Gender.png", dpi=300)

# Show the visual
plt.show()
```


In []: