Theory Assignment 1

Question 1

Spin Lock

Safety property:

No.

in θ_1 x is set before a and before checking a so θ_1 must be at the beginning of the loop if b == 0 when b:=x is executed in θ_2 and in θ_2 , y is set before b and before checking b so θ_2 must be at the beginning of the loop if a == 0 when a:=y is executed in θ_1 , and since θ_1 cannot set a and also be at the beginning of the loop it is impossible.

Deadlock:

Yes.

because if the programs execute like this:

$ heta_1$	$ heta_2$
x := 1	y := 1
a := y	b := x
if a==0	
	if b==0

Then the program would be deadlocked.

Liveness property:

Yes, given that local variables don't automatically reflect shared variables, as each thread checks a local variable, and that variable is not updated it could be possible for θ_1 to enter CS_1 at least once while θ_2 does not:

$ heta_1$	$ heta_2$
x := 1	
a := y	
if a==0	
CS_1	
	y := 1
	b := x
x:= 0	if b == 0
x := 1	
a := y	
if a==0	

Non-Spin Lock

Safety property:

No.

The same argument for Spin Lock applies for Non-Spinlock

Deadlock:

No as when ever the spinlock version would deadlock, the non-spin lock version is able to loop again and check the shared variable again.

Liveness property:

Yes, per below its possible for θ_1 to get access to CS_1 and θ_2 to not get access to CS_2 if the two threads don't execute exactly in the same time.

$ heta_1$	$ heta_2$
x := 1	
a := y	
if a==0	y := 1
CS_1	b := x

$ heta_1$	$ heta_2$
x:= 0	if b == 0
x := 1	y := 0
a := y	
if a==0	y := 1
Repeat	Repeat

Question 2

Methods:

- enqueue (enq)
- dequeue (deq)

States:

• Initial State = $\{\emptyset, \emptyset\}$

Rules:

Enqueue:

$$\begin{array}{l} \bullet \quad \{\emptyset,\emptyset\} \xrightarrow{enq(a,true)} \{\{a\},\emptyset\} \\ \bullet \quad \{\{a,\dots\},\emptyset\} \xrightarrow{enq(a,true)} \{\{a,\dots\},\{a\}\} \\ \bullet \quad \{\{b,\dots\},\{c,\dots\}\} \xrightarrow{enq(a,true)} \{\{a,b,\dots\},\{c,\dots\}\} \text{ if } a \neq b \\ \bullet \quad \{\{a,\dots\},\{b,\dots\}\} \xrightarrow{enq(a,true)} \{\{a,\dots\},\{a,b,\dots\}\} \text{ if } a \neq b \\ \bullet \quad \{\{a,\dots\},\{a,\dots\}\} \xrightarrow{enq(a,false)} \{\{a,\dots\},\{a,\dots\}\} \end{array}$$

Dequeue:

•
$$\{\{a,b,\ldots\},\{a,\ldots\}\} \xrightarrow{deq(a,head)} \{\{b,\ldots\},\{a,\ldots\}\}$$

$$ullet \ \{\{c,\ldots\},\{a,b,\ldots\}\} \xrightarrow{deq(a,tail)} \{\{c,\ldots\},\{b,\ldots\}\}$$

 $ullet \ \{\{c,\dots\},\{b,\dots\}\} \xrightarrow{deq(a,false)} \{\{c,\dots\},\{b,\dots\}\} ext{ if } b
eq a
eq c$