Week 7

Paired t Procedures and t Procedures for Two Independent Populations

ST 314
Introduction to Statistics for Engineers

Independence & Dependence

- * Populations are assumed to be <u>independent</u> if sampled or experimental units are from different, unrelated populations.
- * Populations are considered to be <u>dependent or paired</u> if more than one measurement is taken on a single experimental unit or if experimental units are *paired* by a common factor.
 - * Common examples
 - * Before + after experiments or studies
 - * Testing thins or genetically identical subjects * splitting a sample to impose more than one treatment on a single unit

Independence & Dependence

Which study has independent populations and which has a dependent populations?

Study 1 - To study the change in attitude towards statistics over the course of the semester, a professor selects a simple random sample of students. She administers a questionnaire to the students at the beginning of the semester and then again at the end of the semester.

Dependent

Study 2 - At the end of a term a statistics professor would like to compare the general attitudes towards statistics of students that are science based majors versus non-science based majors. The professor selects a simple random sample of students from each population and administers a questionnaire to each sample of students.

Independence & Dependence

The following are the before and after term attitude towards statistics scores for 13 randomly sampled

students.

Student	A	В	C	D	E	F	G	Н	I	J	K	L	M
before	1	3	7	8	6	9	5	7	6	7	1	3	7
after	5	8	6	8	9	10	6	8	8	7	5	3	6
difference (after-													
before)	4	5	-1	0	3	1	1	1	2	0	4	0	-1

Performing an independent test on dependent data will increase the chance of Type II error and will overall decrease in information.

Matched Pairs t Procedures

Four random samples of a ferrous-type substance are used to determine if there is a difference between a laboratory chemical analysis and an X-ray fluorescence analysis in measuring the iron content of the substance. Each sample is split and analyzed using both methods.

The iron content measured by the two methods for 4 random samples

Sample	1	2	3	4
Chemical	2.1	2.5	2.3	2.5
X-ray	2.0	2.3	2.1	2.4
Difference	0.1	0.2	0.2	0.1

When data are paired we can make comparisons by analyzing the differences between in each pair.

- * Observed differences: $diff \leftarrow c(0.1, 0.2, 0.2, 0.1)$
- * Average of the sampled differences:

$$\mathcal{I}_{diff} = \frac{0.1 + 0.2 + 0.2 + 0.1}{4} = 0.15$$

* Sample standard deviation of the observed differences:

$$S_{diff} = sd(diff) = 0.058$$

* Number of pairs or differences: No

Matched Pairs t Confidence Interval

- * When to use: want to estimate the average difference between two paired populations
- * Conditions for inference:
 - -Representative sample # of pairs
 - sufficiently large sample (CLT)
 - Pair ed observations
- * The confidence interval for estimating the difference between population means is:

Matched Pairs Confidence Interval Example

The iron content measured by the two methods for 4 random samples. Assume the differences between the Chemical and X-ray analyses come from a Normal distribution

Sample	1	2	3	4
Chemical	2.1	2.5	2.3	2.5
X-ray	2.0	2.3	2.1	2.4
Difference	0.1	0.2	0.2	0.1

Estimate the average difference between iron content of the different measuring methods with a 90% confidence interval.

We are 90% confident that the average difference between the two methods is between 0.082 and 0.218 with a point 7 estimate of 0.15.

Matched Pairs t Test

- * When to use: test the average difference between paired data

 * Conditions required for inference:

* Null & Alternative hypotheses: Ho: Waiff

* Test statistic:

Matched Pairs t Test Example

The iron content measured by the two methods for 4 random samples. Assume the differences between the Chemical and X-ray analyses come from a Normal distribution

Sample	1	2	3	4
Chemical	2.1	2.5	2.3	2.5
X-ray	2.0	2.3	2.1	2.4
Difference	0.1	0.2	0.2	0.1

Test whether there is evidence the two methods 2* pt(-5.196,3) measure a different amount of iron in the same substance. Use a significance level of 0.1.

$$t = 0.15 - 0 = 5.196$$
 0.058
 0.74

Matched Pairs t Test Example

The iron content measured by the two methods for 4 random samples. Assume the differences between the Chemical and X-ray analyses come from a Normal distribution

Sample	1	2	3	4
Chemical	2.1	2.5	2.3	2.5
X-ray	2.0	2.3	2.1	2.4
Difference	0.1	0.2	0.2	0.1

Test whether there is evidence the two methods measure a different amount of iron in the same substance. Use a significance level of 0.1. P-value = 0.0138

Reject the null hypothesis that the average difference between the two methods is 0.

There is convincing/suggestive evidence that the average difference between the two methods is not 0.

Comparing Population Means

Suppose a business manager needs access to a server. Server A is supposedly faster than server B, but an account on A is more expensive. She would like to compare the speeds of the two servers to see if server A is worth the extra cost.

Two Sample t Confidence

* When to use:

* Conditions for inference:

* The confidence interval for the difference in population means is:

Satterthwaite Approximate t Distribution

- * Satterthwaite degrees of freedom:
 - * Used in an "unpooled" t procedure
 - * Used when we do not want to assume the population standard deviations of the two populations of interest are equal (most of the time)

- * Conservative degrees of freedom:
 - * Satterthwhaite can be tedious by hand. Sometimes "conservative" degrees of freedom is used.

Confidence Interval Example

Suppose a business manager needs access to a server. To compare the speed in minutes between two servers A and B, a computer algorithm is executed 30 times on server A and 30 times on server B.

Random samples from Server A and B

	$\overline{\mathcal{X}}$	S	n
Server A	6.5	0.5	30
Server B	7.3	1.3	30

Calculate a 95% confidence interval for $\mu_A - \mu_B$.

Two Sample t Test

- * When to use:
- * Conditions required for inference:

* Null & Alternative hypotheses:

* Test statistic:

Distribution of the Two Sample Test Statistic

The two sample t test statistic is:

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

The distribution of this statistic follows:

Two Sample t Test Example

Suppose a business manager needs access to a server. Server A is supposedly faster than server B, but an account on A is more expensive. She would like to compare the speeds of the two servers to see if server A is worth the extra cost.

Random samples from Server A and B

	$\overline{\mathcal{X}}$	S	n
Server A	6.5	0.5	30
Server B	7.3	1.3	30

Determine the hypotheses needed for this test and check the conditions.

Two Sample t Test Example

Suppose a business manager needs access to a server. Server A is supposedly faster than server B, but an account on A is more expensive. She would like to compare the speeds of the two servers to see if server A is worth the extra cost.

Random samples from Server A and B

	$\overline{\mathcal{X}}$	S	n
Server A	6.5	0.5	30
Server B	7.3	1.3	30

Using a significance level of 0.05, calculate the test statistic, the degrees of freedom, and p-value.

Make a conclusion.

Avoid Pooled t Procedures

- * You may come across resources that use "pooled" procedures.
- * A pooled test assumes $\sigma_1 = \sigma_2$.
- * Consider the two populations below, both have the same mean but different variances. If we use an $\alpha = 0.05$, given the means are the same we should reject the null, just by chance, about 5% of the time.

 $\sigma_1 = 10 \neq \sigma_2 = 1$

Because the assumption of equal variance is violated, the test breaks down and rejects the null hypothesis more frequently than it should. This increases