A Generative Model For Category Text Generation

Yang Li, Quan Pan, Suhang Wang, Tao Yang, Erik Cambria

Information Sciences

March, 2018

Presenter: Anchit Bhattacharya Arizona State University

Why?

- Deep learning architecture works better with more labelled data
 - Tends to overfits when training data is small
 - Unable to capture category information
- There is a gap between importance of large data sets and difficulty in obtaining such data
- GAN is an exciting generative architecture to produce new samples, but mostly explored in Image generation
- Most text generation approaches using GAN's produces unlabelled data, so not suitable for data augmentation for classifiers.
- Novel problem of generating labeled sentences with GANs for Data Augmentation

Sentence Generation Models

- Using an RNN/LSTM model to generate sentence.
- Add a discriminator to play min-max game to update generator
- Use sentence generation as a RL problem, where next token is generated to maximise the long term reward based on a policy.

CS-GAN Model

Generator - Generate Category Synthetic Sentence

Discriminator - To determine the sentence validity

Classifier - Determine Category Accuracy

Generator

- LSTM is used as a generator
- Category Information is added at each generating step

Modified LSTM:-

$$\begin{split} f_t &= \sigma \left(W_f[x_t; \, z; \, c] + U_f \, h_{t-1} + b_f \right) \\ i_t &= \sigma \left(W_i[x_t; \, z; \, c] + U_i h_{t-1} + b_i \right) \\ o_t &= \sigma \left(W_o[x_t; \, z; \, c] + U_o h_{t-1} + b_o \right) \\ c_t &= f_t \, c_{t-1} + it \, \sigma \left(Wc[x_t; \, z; \, c] + U_c h_{t-1} + b_c \right) \\ h_t &= o_t \, relu(c_t) \end{split}$$

Generator(Contd)

 Reinforcement Learning for choosing next token based on long term Reward $\boldsymbol{D}_{\boldsymbol{\theta}\boldsymbol{d}}$ - probability that the sentence is real

 $\boldsymbol{D}_{\boldsymbol{\theta}\boldsymbol{c}}$ - probability that the sentence is in right category

$$J(\theta g) = E[R_T | w0, c, \theta g] = \sum_{dq \in W} G_{\theta q} (d_q | w_0, c) Q^{G\theta g} (w_0, d_q),$$

 $G_{\theta g}$ - Generated results based on LSTM - $p_{G}(d_{g}|w_{0}, z, c)$

$$Q^{G\theta g} (w_{0, d_g}) = (2D_{\theta d}D_{\theta c})/D_{\theta d} + D_{\theta c}$$

 $Q^{G\theta g}$ ($w_{0, g}^{G\theta g}$) - Action Value function during the selection process

Descriptor

 Discriminator and Classifier are CNNs used for Sentence Classification

Classifier Loss:-

LC = Loss(
$$<$$
 C(dr; θ c), sr $>$) + Loss($<$ C(G(z; θ g); θ c), ϕ (c) $>$)

Discriminator:-

```
\begin{split} & LD = HEdg^{\sim}(c,z) + HEdr^{\sim}data \\ & HEdg^{\sim}(c,z) = Edg^{\sim}(c,z)[-log(1-D(G(\phi(c),\,z,\,\theta g)),\,\theta d\,)] \\ & HEdr^{\sim}data = Edr^{\sim}data[-log(D(sr,\,dr,\,\theta d\,))] \end{split}
```

SST	POSITIVE This is really lead movie. You take the one better.	NEGATIVE As film and day waste. This movie is mess.
Emotion	LOVE Love the warm Oh thank you my dear	EMPTY Is telling a story? Read the book boring
	RELIEF Read the book Thanks	ANGER I hate the hat Jest the boy
	SURPRISE Weather today is a gift to us I hate that happend	NEUTRAL Have a tea please. So the heat is here
	HAPPINESS haha Enjoy the game	SADNESS I hate it No body is at eating
	FUN Yeah Have the fun	ENTHUSIAMSM Love the health Love the eat
NEWS	SPORT Ball center with two teams In a race, the man wade in river	BUSINESS There is a flat race on euro It is easy a pricing ran in tea
	ENTERTAINMENT We see it ease a strong man Not a keen actor	US U.S. tears a ratar in the u.s. Japan for a real anneal stress
	WORLD Hear the trade war end Europe end this under the stress	HEALTH Done in a dead spar Argue a 1 star new rush
	SCI-TEC Tale in fick nart ear at bet Nets play and in Brate	

Results on Classification

Table 3
The classification results on the different size dataset.

Model name	Amazon-5000	Amazon-30000	
CNN	84.83%	89.55%	
CS-GAN w/o RL&GAN	85.60%	89.67%	
CS-GAN w/o RL	86.18%	89.54%	
CS-GAN	86.43%	89.34%	
Model name	Emotion-15000	NEWS-15000	
CNN	40.75%	72.08%	
CS-GAN w/o RL&GAN	39.32%	72.31%	
CS-GAN w/o RL	40.14%	72.09%	
CS-GAN	41.52%	74.33%	

Fig. 6. The results of the losses from CS-GAN using different numbers of generated data as training data, and β is the generation ratio.

(b) Yelp

Text Generation Results

Fig. 4. The results of NLL from model CS-GAN, CS-GAN without RL and CS-GAN without RL & GAN in text data generation.

Conclusion

- The proposed model performs well in supervised learning tasks, especially in multicategory datasets.
- However, the advantage can be weakened when there is large amount of data with little category information.
- Shows, better performance for small labeled dataset with small sentence length.