NOIP2023 模拟赛

题目信息

题目名称	数字游戏	过河卒Ⅱ	树图	异或区间
题目类型	传统题	传统题	传统题	传统题
可执行文件名	game	pawn	diagrams	chemistry
输入文件名	game.in	pawn.in	diagrams.in	chemistry.in
输出文件名	game.out	pawn.out	diagrams.out	chemistry.out
每个测试点时限	2.0 秒	1.0 秒	1.0 秒	1.0 秒
内存限制	512 MB	512 MB	512 MB	512 MB
子任务数目	20	7	3	20
子任务是否等分	是	否	否	是
是否开启捆绑测试	否	是	是	否

编译选项

对于 C++ 语言, -std=c++14 -02。

注意事项

- 1. 选手提交的源程序请直接放在个人目录下, 无需建立子文件夹。
- 2. 若无特殊说明, 结果比较方式为忽略行末空格、文末回车后的全文比较。
- 3. 程序可使用的栈空间大小与该题内存空间限制一致。
- 4. 若无特殊说明,每道题的代码大小限制为 100 KB。
- 5. 若无特殊说明,输入与输出中同一行的相邻整数、字符串等均使用一个空格分隔。
- 6. 输入文件中可能存在行末空格,请选手使用更完善的读入方式避免出错。
- 7. 请务必使用题面中规定的的编译参数,保证你的程序在本机能够通过编译。此外不允许在程序中手动开启其他编译选项,一经发现,本题成绩以 0 分处理。
- 8. 只提供 Linux 格式附加文件,同时评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

数字游戏

题目描述

给定n个正整数 a_i 。

接下来有q次询问,第j次询问给出正整数 p_j 。

每次询问时有一个可重集 S, S 初始为 a 的前 p_i 个数, 还有一个变量 c_i 初始为 0。

然后进行 n 次操作,第 k 次操作时,令 x 为 S 的最大值, c_j 加上 $(-1)^{k-1}x$,然后将 x 从 S 中删除,最后如果 $p_j+k\leq n$,则在 S 中插入数字 a_{p_j+k} 。

注意 S 中若有多个相同的 x, 那么只删除其中一个。

操作结束后回答 c_i 的值。

输入格式

第一行输入两个正整数 n, q。

第二行输入n个正整数 a_i 。

第三行输入q个正整数 p_j 。

输出格式

输出q行,每行一个整数 c_i 。

样例 1

输入

```
5 1
2 4 2 3 5
3
```

输出

6

解释

对于第1个询问:

S 初始为 $\{2,4,2\}$, c_1 初始为 0。

第 1 次操作, x = 4, c_1 加上 4, c_1 变成 4, S 删除 4, S 插入 3, S 变成 $\{2, 2, 3\}$ 。

第 2 次操作, x = 3, c_1 加上 -3, c_1 变成 1, S 删除 3, S 插入 5, S 变成 $\{2, 2, 5\}$ 。

第 3 次操作, x = 5, c_1 加上 5, c_1 变成 6, S 删除 5, S 不插入数字, S 变成 $\{2,2\}$ 。

第 4 次操作, x = 2, c_1 加上 -2, c_1 变成 4, S 删除 2, S 不插入数字, S 变成 $\{2\}$ 。

第 5 次操作, x=2, c_1 加上 2, c_1 变成 6, S 删除 2, S 不插入数字, S 变成 \varnothing 。

数据范围与提示

对于所有数据, $1 \le n \le 10^5, 1 \le q \le 2 \times 10^3, q \le n, 1 \le a_i, p_j \le n$ 。

- 对于 10% 的数据, $n \le 10$ 。
- 对于 30% 的数据, $n \leq 600$ 。
- 对于 50% 的数据, $n \le 10^4, q \le 10^3$ 。

过河卒||

题目描述

给出一个 n 行 m 列的网格, 行编号为 0 到 n-1, 列编号为 0 到 m-1。

记坐标 (x,y) 表示行编号为 x, 列编号为 y 的格子, 该格子上面写有自然数 $a_{x,y}$ 。

有k个特殊格子, 第i个特殊格子坐标为 (r_i, c_i) , 不存在两个坐标相同的特殊格子。

第i个特殊格子有以下四种选择周围格子的方式,每个特殊格子将执行其中一种可行的选择方式:

- 1. 选择 $(r_i, c_i), (r_i, c_i 1), (r_i + 1, c_i), (r_i 1, c_i)$ 这 4 个格子。
- 2. 选择 $(r_i, c_i), (r_i, c_i + 1), (r_i + 1, c_i), (r_i 1, c_i)$ 这 4 个格子。
- 3. 选择 $(r_i, c_i), (r_i, c_i + 1), (r_i, c_i 1), (r_i 1, c_i)$ 这 4 个格子。
- 4. 选择 $(r_i, c_i), (r_i, c_i + 1), (r_i, c_i 1), (r_i + 1, c_i)$ 这 4 个格子。
- 一种选择方式可行, 当且仅当该方式选择的 4 个格子均在网格内。

特别的,如果一个特殊格子不存在一种可行的选择方式,输出 No 即可。

当每个特殊格子都选择一种可行的选择方式后, 我们称这是一种方案。

一个方案是可行的,当且仅当每个格子(包括特殊格子)都被至多1个特殊格子选择。允许一个格子不被任何特殊格子选择。

定义一个可行的方案的权值是所有被选择的格子(包括特殊格子)的 $a_{x,y}$ 之和。

求出所有可行的方案的权值最大值。

特别的,如果不存在一种可行的方案,输出 No 即可。

输入格式

第一行输入两个正整数 n, m。

接下来 n 行, 每行读入 m 个自然数, 代表格子上写的数字 $a_{x,y}$ 。

第n+2 行读入一个正整数k。

接下来 k 行, 每行读入 2 个自然数 r_i, c_i 。

输出格式

输出一行一个字符串 No,或者输出一行一个整数表示所有可行的方案的权值最大值。

样例 1

输入

```
4 4
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
```

```
1 1
2 2
```

输出

20

解释

一种可行的方案是:

第 1 个特殊格子选择 (1,1),(1,0),(1,2),(0,1)。

第2个特殊格子选择(2,2),(2,1),(2,3),(3,2)。

该方案的权值为2+2+3+4+4+1+2+2=20。

样例 2

输入

```
1 1
0
1
0 0
```

输出

No

解释

唯一的一个特殊格子 (0,0) 不存在一种可行的选择方式,所以输出 No。

样例 3

输入

```
4 4
0 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
3
1 1
2 2
1 2
```

No

数据范围与提示

对于 100% 的数据,保证 $1 \le k \le nm \le 10^6, 0 \le a_{x,y} \le 10^3, 0 \le r_i < n, 0 \le c_i < m$,且不存在坐标相同的特殊格子。

子任 务编 号	k	特殊限制	分值
1	$\leq 10^3$	保证 $orall 1 \leq i < j \leq k, \max(r_i - r_j , c_i - c_j) > 2$ 。	5
2	$\leq 10^3$	保证 $orall 1 \leq i < j \leq k$,若 $\max(r_i - r_j , c_i - c_j) \leq 2$,则 (r_i, c_i) 和 (r_j, c_j) 是上下或左右相邻的格子。	10
3	$\leq 10^3$	保证 $orall 1 \leq i < j \leq k, \max(r_i - r_j , c_i - c_j) eq 2$ 。	10
4	$\leq 10^3$	保证 $orall 1 \leq i < j \leq k, r_i = r_{j^{\circ}}$	10
5	≤ 10		15
6	$\leq 10^3$		20
7			30

如果你对如何存储网格 a 有疑惑,可以使用:

```
std::vector<std::vector<int>>> a(n, std::vector<int>(m));
```

来创建一个 n 行 m 列的初始值为 0 网格 a,行的访问范围是 0 到 n-1,列的访问范围是 0 到 m-1。

树图

题目描述

有一棵 n 个点的树,每个点有状态 0/1/2,所有点初始状态为 0,第 i 条边连接点 u_i 和 v_i 。

定义树的边集的一个子集 S 合法,当且仅当在原树删去属于 S 的边形成的图中,不存在一个点 x 的状态为 1,另一个点 y 的状态为 2,且 x 与 y 连通。

定义当前树的权值是: 所有合法子集 8 中, 8 大小的最小值。

有q次修改点的状态,第j次修改的类型是 t_j ,修改的点是 x_j 。总共有三种类型的修改:

- $1.t_i = 1$, 将点 x_i 的状态修改为 1。保证此时点 x_i 的状态为 0。
- $2.t_i = 2$, 将点 x_i 的状态修改为 2。保证此时点 x_i 的状态为 0。
- 3. $t_i = 3$, 将点 x_i 的状态修改为 0。保证此时点 x_i 的状态不为 0。

在每次修改后, 求出当前树的权值。

输入格式

第一行输入一个正整数 n。

接下来 n-1 行,每行输入两个正整数 u_i, v_i 。

第n+1行输入一个正整数q。

接下来q行,每行输入两个正整数 t_j, x_j 。

输出格式

输出 q 行,每行输出一个整数表示当前树的权值。

样例1

输入

```
5
1 2
2 3
3 4
3 5
4
1 1
2 3
1 4
1 5
```

输出

0			
1			
2			
3			

解释

第一个询问选择 $S=\varnothing$ 即可,输出 0。

第二个询问选择 $S = \{(1,2)\}$ 即可,输出 1。

第三个询问选择 $S = \{(1,2),(3,4)\}$ 即可,输出 2。

第四个询问选择 $S=\{(1,2),(3,4),(3,5)\}$ 即可,输出 3。

数据范围与提示

对于 100% 的数据,保证 $1 \le n, q \le 100000, 1 \le u_i, v_i, x_j \le n, t_j \in \{1, 2, 3\}$ 。

子任务编号	分值	n	q
1	10	≤ 15	≤ 100
2	30	≤ 1000	≤ 1000
3	60	≤ 100000	≤ 100000

异或区间

题目描述

给出n个不交区间 $[l_i,r_i]$,令 $S=igcup_{i=1}^n([l_i,r_i]\cap\mathbb{Z})$ 。

给出正整数 k, 求出:

$$\left(\sum_{a \in S} \sum_{b \in S} \sum_{c \in S} [a < b < c][(a \oplus b) \leq k][(b \oplus c) \leq k][(c \oplus a) \leq k]\right) \pmod{(10^9 + 7)}$$

其中 [condition] 在条件 condition 为真时为 1, 否则为 0。

输入格式

第一行输入两个正整数 n, k。

接下来输入 n 行,每行输入两个自然数 l_i, r_i 。

输出格式

输出一行一个整数表示答案。

样例 1

输入

2 5

1 5

6 10

输出

11

解释

11 个可能的 a, b, c 分别是:

$$\substack{(1,2,3),(1,4,5),(2,3,6),(2,3,7),(2,6,7),(3,6,7),(4,5,6),(4,5,7),(4,6,7),(5,6,7),(8,9,10)}_{\circ}$$

数据范围与提示

对于 100% 的数据, 保证

$$1 \le n \le 20000, 0 \le l_i \le r_i \le 10^9, 1 \le k \le 10^9, \forall 1 \le i < n, r_i < l_{i+1\circ}$$

测试点编号	特殊限制
1	$\max(k,r_n) \leq 500$
2,3	$\max(k,r_n) \leq 10^4$

测试点编号	特殊限制
4,5	存在正整数 x ,使 $k=2^x-1$ 。
6, 7, 8, 9, 10	$\max(k,r_n) \leq 10^6$
11, 12, 13, 14, 15, 16	$n \leq 20$
17, 18, 19, 20	