This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

- 1. A liquid crystal display device comprising:
- a plurality of gate lines formed in parallel to each other;
- a plurality of source lines formed in parallel to each other and orthogonal to the gate lines;

an array of cells formed in rows and columns, each of the cells being formed near an intersection of one of the gate lines and one of the source lines;

a first transistor of each of the cells disposed at an N-th row and M-th column, N and M being integers, driven by an (N-2)-th gate line; and

a second transistor of the each of the cells driven by an N-th gate line.

- 2. The device of claim 1, each of the cells further comprising a capacitor formed between an electrode and the (N-2)-th gate line.
- 3. The device of claim 1, each of the cells further comprising a capacitor formed between an electrode and an (N-1)-th gate line.
- 4. The device of claim 1, each of the cells further comprising a first capacitor formed between an electrode and the (N-2)-th gate line, and a second capacitor formed between the electrode and an (N-1)-th gate line.
- 5. The device of claim 4, the first capacitor being charged to a first voltage level in response to a fist state of a signal transmitted on the (N-2)-th gate

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

line, and being discharged to a second voltage level in response to a second state of the signal transmitted on the (N-2)-th gate line.

6. The device of claim 5, an electrical potential at the electrode being pulled up to a third voltage level in response to a first state of a signal transmitted on the (N-1)-th gate line, and being pulled down to the second voltage level in response to a second state of the signal transmitted on the (N-1)-th gate line.

7. The device of claim 6, the first capacitor being charged from the second voltage level to the first voltage level in response to a first state of a signal transmitted on the N-th gate line.

8. A liquid crystal display device comprising:

a plurality of gate lines formed in parallel to each other;

a plurality of source lines formed in parallel to each other and orthogonal to the gate lines; and

an array of cells formed in rows and columns, each of the cells disposed near an intersection of an N-th gate line and an M-th source line, N and M being integers, further comprising:

a first capacitor formed between an electrode and an (N-2)-th gate line;

and

a second capacitor formed between the electrode and an (N-1)-th gate

line.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

9. The device of claim 8 further comprising a first transistor including a gate coupled to the (N-2)-th gate line, and a second transistor including a gate coupled to the N-th gate line.

10. The device of claim 9, the first transistor further comprising a first terminal coupled to the electrode, and a second terminal coupled to the M-th source line.

11. The device of claim 9, the second transistor further comprising a first terminal coupled to the electrode, and a second terminal coupled to the M-th source line.

12. The device of claim 8 wherein a signal transmitted on the M-th source line includes a first voltage level and a second voltage level.

13. The device of claim 12, the first capacitor being charged to a third voltage level between the first and second voltage levels after a selection period of the (N-2)-th gate line.

14. The device of claim 12, an electrical potential of the electrode being kept at a third voltage level between the first and second voltage levels after a selection period of the (N-1)-th gate line.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLL

15. The device of claim 12, the first capacitor being charged to the first voltage level after a selection period of the N-th gate line from a third voltage level between the first and second voltage levels.

16. A method of driving a liquid crystal display device comprising: providing a plurality of gate lines formed in parallel to each other; providing a plurality of source lines formed in parallel to each other and orthogonal to the gate lines;

forming an array of cells in rows and columns, each of the cells being disposed near an intersection of an N-th gate line and an M-th source line, N and M being integers;

forming a first transistor and a second transistor in the each of the cells; driving the first transistor through an (N-2)-th gate line; and driving the second transistor through the N-th gate line.

- 17. The method of claim 16 further comprising forming a first capacitor between an electrode and the (N-2)-th gate line, and a second capacitor between the electrode and an (N-1)-th gate line.
- 18. The method of claim 17 further comprising providing a signal including a first voltage level and a second voltage level from the M-th source line to the first and second transistors.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

19. The method of claim 18 further comprising selecting the (N-2)-th gate line, and charging the first capacitor to a third voltage level between the first and second voltage levels after a selection period of the (N-2)-th gate line.

20. The method of claim 18 further comprising selecting the (N-1)-th gate line, and keeping an electrical potential of the electrode at a third voltage level between the first and second voltage levels after a selection period of the (N-1)-th gate line.

21. The method of claim 18 further comprising selecting the N-th gate line, and charging the first capacitor to the first voltage level after a selection period of the N-th gate line from a third voltage level between the first and second voltage levels.

22. A method of driving a liquid crystal display device comprising: providing a plurality of gate lines formed in parallel to each other; providing a plurality of source lines formed in parallel to each other and orthogonal to the gate lines;

forming an array of cells in rows and columns, each of the cells being disposed near an intersection of a corresponding N-th gate line and a corresponding M-th source line, N and M being integers;

providing a signal including a first voltage level and a second voltage level from the M-th source line;

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

selecting an (N-2)-th gate line;

charging a first capacitor of the each of the cells to a third voltage level between the first and second voltage levels after a selection period of the (N-2)-th gate line;

selecting an (N-1)-th gate line;

keeping an electrical potential of a terminal of the first capacitor at the third voltage level after a selection period of the (N-1)-th gate line;

selecting the N-th gate line; and

charging the first capacitor to the first voltage level after a selection period of the N-th gate line from the third voltage level.

- 23. The method of claim 22 further comprising forming a first transistor and a second transistor in the each of the cells.
- 24. The method of claim 23 further comprising driving the first transistor through the (N-2) gate line.
- 25. The method of claim 23 further comprising driving the second transistor through the N-th gate line.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLL