Mesure et Probabilités

Automne 2023

Travaux Dirigés 3

BUT. Tribus et mesures

Exercice 1. Vrai ou faux (justifier). Ci-dessous, (E, \mathcal{T}, μ) est un espace mesuré.

- a) L'union de deux tribus est une tribu.
- b) L'intersection de deux tribus est une tribu.
- c) Toute tribu est stable par lim inf et lim sup de ses éléments.
- d) Si $(A_n)_{n\in\mathbb{N}}$ est une suite décroissante d'éléments de \mathcal{T} telle que $\mu(A_{2023})<\infty$ alors

$$\mu\left(\bigcap_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n).$$

e) La mesure de comptage $\delta_{\mathbb{N}}$ sur \mathbb{N} est σ -finie.

Exercice 2. Démontrer que la fonction $f : \mathbb{R} \to \mathbb{R}$ définie par f(x) = 1/x si $x \neq 0$ et f(0) = 2023 est borélienne.

Exercice 3. Soit un ensemble quelconque Ω .

- a) Démontrer que les tribus engendrées respectivement par
 - i. les singletons
 - ii. les parties finies
 - iii. les parties dénombrables

coïncident. On note cette tribu A.

- b) Montrer que \mathcal{A} est l'ensemble des parties dénombrables ou de complémentaire dénombrable.
- c) A-t-on $\mathcal{A} = \mathcal{P}(\Omega)$ si Ω est fini, $\Omega = \mathbb{R}$ ou $\Omega = \mathbb{N}$?

Exercice 4. Soit f une application de E dans F et soit \mathcal{F} une tribu sur F. Démontrer que

$$\mathcal{G} = \left\{ f^{-1}(B) : B \in \mathcal{F} \right\}$$

est une tribu sur E.

- a) Prouver que \mathcal{G} est la plus petite tribu sur E rendant f mesurable.
- b) Soit $f: \{0,1,2\} \to \{1,2\}$ définie par f(0) = f(2) = 2 et f(1) = 1. On muni 1,2 de la tribu $\mathcal{P}(1,2)$. Quelle est la plus petite tribu sur $\{0,1,2\}$ rendant f mesurable?

Exercice 5. Soit $(\Omega, \mathcal{F}, \mu)$ un espace mesuré et $(A_n, n \in \mathbb{N})$ une suite dans \mathcal{F} .

a) Démontrer que

$$\sup_{n} \mu(A_n) \le \mu\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mu(A_n)$$

b) Démontrer que

$$0 \le \mu \left(\bigcap_{n=1}^{\infty} A_n\right) \le \inf \mu(A_n)$$

c) Démontrer que

$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right)=0$$
 si et seulement si $\mu(A_n)=0$, pour tou $n\in\mathbb{N}$.

Exercice 6. a) Si un espace Ω est muni d'une partition \mathcal{A} décrire la tribu engendrée par \mathcal{A} .

b) Montrer qu'une fonction $f:(\Omega, \sigma(A)) \to (\mathbb{R}, \mathcal{P}(\mathbb{R}))$ est mesurable si et seulement si elle est constante sur chaque partie A_n .

Exercice 7. Soit m une mesure et (A_n) dans \mathcal{F} tel que

$$\sum_{n\in\mathbb{N}} m(A_n) < \infty.$$

Montrez que $m(\limsup A_n) = 0$.