Natural Language Processing

Lecture 01

Dirk Hovy

dirk.hovy@unibocconi.it

Text is an exploding data source

Exabytes = 1M TB

120_[

- You read ~9000 words per day
- = 200.000.000 words in a lifetime
- \bullet = 0.4 GB of data

60

44 billion GB of new data each day

60-80% GROWTH/YEAR

UNSTRUCTURED DATA

STRUCTURED DATA

Bocco2017

NLP is booming

Svl	a		S
	Tonic		

Lesson	Topic	
1	Intro 1	
2	Intro 2	
3	Representations	
4	Embeddings	
5	Information retrieval 1	
6	Information retrieval 2	
7	Language models 1	
8	Language models 2	
9	Topic models 1	
10	Topic models 2	
11	Dimensionality reduction and Clustering	
12	Visualization	
13	Retrofitting	
14	Midterm Project Presentations	
15	Text classification	
16	Application: Sentiment Analysis	
17	Improving classification performance	
18	Application: Author attribute prediction	
19	Neural networks basics	
20	Multilayer Perceptron	
21	Sequence models	
22	RNNs and Bi-LSTMs	
23	Final Project Presentations	o o =
24	Final Project Presentations	COI

Class structure

- Thursdays: intuition, theory, math (slides)
- Fridays: exercises and practice (Jupyter Notebooks)

Grading

- 1. *Individual* midterm project (50%): Exploration and visualization
- 2. Final *group* project (50%): Data annotation, exploration, visualization, and prediction

- Both projects are to be handed in as Jupyter Notebooks
- Graded on data set size, annotation quality, correctness of implementations, performance of prediction
- No point changes, only complete regrades (total can go down)!

How do I succeed?

- Code well
- Pay attention
- Code some more

What to do with a problem

- 1. Google it. stackoverflow.com is your friend
- 2. Talk to your classmates
- 3. Ask the TA, Tommaso Fornaciari fornaciari@unibocconi.it
- 4. Make an appointment

WARNING:

For any question we can solve with a Google search, we deduct points!

Let's start!

Today's Goals

- Understand where NLP comes from
- Learn about the different steps of preprocessing
- Understand the use of
 - parts of speech,
 - parsing, and
 - named entities

So, what's NLP anyway?

The two sides of NLP

informed linguistic hypotheses large-scale statistical analysis

A very Brief History of NLP

Symbolic Processing

Handwritten rules and logic

for input,

output,

and processing

Epoch 1

Statistical NLP

Engineered input

Defined output,

Automatic processing

Epoch 2

Deep Learning for NLP

Defined input and output,

Deep Learned representations

end-to-end processing

Epoch 3

approx. 1980s

Statistical

revolution

2015

Structure of NLP

Extract information from text: topics, trends

Classify text sentiment, content type, author profile

Generate text: translations, automated responses

Two Uses of NLP

Linguistic Analysis

Examples of Analysis

Pre-processing

```
<div id="text">I've been in New York
in 2011, but didn't like it. I
preferred Los Angeles.</div>
```

GOAL: MINIMIZE VARIATION

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

I've been in New York in 2011, but didn't like it. I preferred Los Angeles.

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

```
I've been in New York in 2011, but didn't like it.
```

I preferred Los Angeles.

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

I 've been in New York in 2011, but did n't like it.

I preferred Los Angeles .

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

```
i 've been in new york in 0000, but did n't like it.
```

i preferred los angeles .

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

```
i have be in new york in 0000, but do not like it.
```

i prefer los angeles.

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

i new york 0000, like.

i prefer los angeles .

- Remove formatting (e.g. HTML)
- Segment sentences

new york 0000 like

Tokenize words

prefer los angeles

- Normalize words
 - numbers
 - lemmas vs. stems

CONTENT = (NOUN, VERB, NUM)

- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

new york 0000 like

prefer los angeles

```
<div id="text">I've been in New York
in 2011, but didn't like it. I
preferred Los Angeles.</div>
```


"BAG OF WORDS"

new york 0000 like

prefer los_angeles

Parts of Speech

Grassfed highland Chianina beef with handcut fries and 29,—seasonal micro greens

Rich, tender, golden-brown beef with crisp 18,—fries and tender greens

Savory beef with delicious fries 12,—and tasty salad

ADJs = price?

Open class words	Closed class words	Other		
ADJ adjectives: awesome, red	ADP adpositions: over, before	PUNCT punctuation marks: !, ?, –		
ADV adverbs: quietly, where, never	Aux auxiliary/modal verbs: have (been), could (do), will (change)	SYM symbols: %, \$, :)		
INTJ interjections: ouch, shhh	CCONJ coordinating conjunctions: <i>and, or, but</i>	x other: pffffrt		
Noun nouns: book, war	DET determiners: a, they, which			
	NUM numbers. Exactly what you would think it is			
VERB full verbs: (she) codes, (they) submitted	PART particles: 's			
	PRON pronouns: you, her, myself			
33	SCONJ subordinating conjunctions: <i>since, if, that</i>	Rocconi		

show {VERB, NOUN}

```
PART Show
Show
Show
Show
```

```
show show show show
```

Structured prediction: depends on the POS of a previous word

Parsing

Dependency Parsing

Facebook eventually acquire (Facebook, acquired WhatsApp after WhatsApp) hard negotiations.

WhatsApp was acquired acquire(Facebook,
by Facebook.
WhatsApp)

Facebook subsidiary acquire (WhatsApp, WhatsApp to acquire new look) look.

Dependency Parsing

Dependency Parsing

acl: adjectival clause

advc1: adverbial clause modifier

advmod: adverbial modifier
amod: adjectival modifier
appos: appositional modifier

aux: auxiliary

case: case marking

cc: coordinating conjunction **ccomp**: clausal complement

clf: classifier

compound: compound

conj. conjunct cop: copula

csubj: clausal subject

dep: unspecified dependency

det: determiner

dislocated: dislocated elements

dobj: direct object
exp1: expletive

fixed: fixed multiword expression

flat: flat multiword expression

goeswith: goes with iobj: idirect object

list: list marker

nmod: nominal modifier
nsubj nominal subject
nummod: numeric modifier

obl: oblique nominal
orphan: orphan

parataxis: parataxis
punct: punctuation

reparandum: overridden disfluency

root: Dot

vocative: vocative

38**xcomp**: open clausal complement

Nancy gave Don a cold Big Mac

root

Lifestyle

Search jobs Sign in Search The International edition Guardian

News Opinion Sport Culture

More∽

Travel ► UK Europe US

Observer spring breaks City breaks

18888888888

Jane Dunford, Chris Moss, Mary Novakovich, Cella Topping

Mon 4 Feb 2019 11.00 GMT

Spring breaks: 5 of the best cities in Europe

Places:

```
{'Ada',
 'Antigone',
 'Belgrade',
 'Berlin',
 'Constitución',
 'Danube',
 'Florence',
 'France',
 'Mikser',
 'Rome',
 'Santa Cruz',
 'Savamala',
 'Schlachtensee',
 'Serbia',
 'Spain',
 'Tezga',
 'Ville',
 'Wannsee'}
```


NE	Example
PERSON	
NORP (Nationality OR Religious or Political group)	
FAC (facility)	
ORG (organization)	
GPE (GeoPolitical Entity)	
LOC (locations, such as seas or mountains)	
PRODUCT	
EVENT (in sports, politics, history, etc.)	
WORK_OF_ART	
LAW	
LANGUAGE	
DATE	
TIME	
PERCENT	
MONEY	
QUANTITY	
ORDINAL	
© ARDINAL (numbers)	Bocconi

Wrapping up

Take Home Points

- NLP is a subfield of AI, using ML on linguistic problems to explore, predict, and generate text
- Preprocessing removes noise and unwanted variation
- Parts of speech (POS) denote a word's grammatical category
- Parsing denotes a word's grammatical function
- Named entities categorize a noun's semantic type

