

Université Libre de Bruxelles

LABORATOIRES BIOMAR ET ESA

BING-F531

Recherche bibliographique sur le plastique et ses voies de biodégradation

Auteurs:
Rafael Colomer Martinez
Nicolas Piret

Professeur: Dr. Isabelle George

Table des matières

Liste des abréviations et acronymes				
1	Introduction			
2	Description du plastique			
3	Utilisation, production, sources de pollution et types d'environnements contaminés			
4	Dangers potentiels pour l'environnement			
5	Aspects législatifs			
6	Biorémédiation des milieux contaminés			
	6.1	Polyét 6.1.1 6.1.2 6.1.3 6.1.4	Méchanisme global de dégradation	4 6 6
	6.2	Polves	eters	7

Liste des abréviations et acronymes

BCA ou Pierce BCA - Méthode de dosage protéique colorimétrique basée sur

l'emploi d'acide bicinchonique

BPF/GMP Bonnes pratiques de fabrication ou Good Manufacturing Practices -

Notion d'assurance de qualité

CDU Casein Digestion Unit Analytical Method - Méthode spectroscopique de

détection d'acides aminés issus d'une dégradation enzymatique sur

substrat de caséine

CV Curriculum Vitae

PI Point isoélectrique

QC Contrôle qualité

SDS-PAGE Sodium Dodécyl Sulfate Polyacrylamide Gel Electrophoresis

TU Tyrosine Unit Analytical Method - Méthode spectroscopique de détection

d'acides aminés issus d'une dégradation enzymatique sur substrat de

cas'eine

UF Ultrafiltration

- 1 Introduction
- 2 Description du plastique
- 3 Utilisation, production, sources de pollution et types d'environnements contaminés
- 4 Dangers potentiels pour l'environnement
- 5 Aspects législatifs
- 6 Biorémédiation des milieux contaminés

6.1 Polyéthylène

Avec une production mondiale globale avoisinant les 80 millions de tonnes annuelles, le polyéthylène est considéré comme le plastique le plus répandu dans le monde [Piringer and Baner, 2008]. Dégrader ce composé devient un véritable challenge qui explique une littérature scientifique particulièrement fournie à ce sujet. On retrouve parmi les voies de dégradation du polymère, les voies de photodegradation, de thermo-oxidation et de biodégradation [Shah et al., 2008]. Cette dernière voie, inconnue il y a quelques années, a rencontré un essort considérable dans la littérature scientifique. L'efficacité de dégradation microbienne reste limitée mais présente les avantages d'être peu chère et surtout écologique [Shah et al., 2008].

Bien que les souches et types d'organismes concernés diffèrent avec les conditions du milieu, les mécanismes de dégradation restent relativement semblables. Les bactéries et les fungi étudiés dégradent les polymères par excrétion d'enzymes extracellulaires [Pometto et al., 1992; Iiyoshi et al., 1998]. Ces différentes enzymes possèdent des caractéristiques intrinsèques spécifiques aux facteurs chimiques et physiques du milieu (pH, température, substrat). En utilisant un groupe d'enzymes différentes, les organismes s'assurent une efficacité optimale dans une large gamme de conditions environnantes. Ces enzymes sont employées par les microorganismes dans un milieu naturel pour dégrader des polymères de lignine. Bien que la dégradation du polyéthylène par la même voie que la lignine reste hypothétique, une tendance similaire est prédite [Shah et al., 2008]. Ce complexe enzymatique extracellulaire est communément appelé le système ligninolytique [Crawford and Crawford, 1980]. Parmi ces enzymes, le mode d'action priviliégié demeure l'utilisation de péroxidases qui aboutit à la formation de peroxyde d'hydrogène, un puissant

oxydant. On retrouve aussi bien chez les bactéries que les fungi, l'emploi récurrent de lignine peroxidase (LiP), manganese peroxidase (MnP) (appelées les hèmes péroxidases) et également des phénols-oxydases, au méchanisme d'action sensiblement différent, tels que les laccases utilisant le cuivre comme cofacteur [Martínez et al., 2005].

6.1.1 Méchanisme global de dégradation

Le méchanisme global de dégradation de la lignine suit deux voies différentes. La première est non-enzymatique (non représentée dans la figure 1) et la deuxième est enzymatique, faisant intervenir, entre autres, les enzymes précédemment mentionnées [Dashtban et al., 2010].

Le méchanisme moléculaire précis agissant sur le polyéthylène demeure inconnu à ce jour, mais on peut supposer une dégradation polymérique globale semblable à celle étudiée sur la lignine. Chaque enzyme intervient à un moment précis de la dégradation et produit des radicaux qui servent parfois de substrats à d'autres enzymes. Ces dégradations coopératives contribuent au morcelement de longues molécules telles que des polymères [Dashtban et al., 2010].

FIGURE 1 – Diagramme schématique de la dégradation de la lignine par un basidiomycète (fungi à pourriture blanche) : les étapes principales et les enzymes concernées. Seule la partie enzymatique a été conservée [Dashtban et al., 2010]

6.1.2 Phenol oxidases (laccases)

Ces oxydo-réductases glycosylées utilisent de l'oxygène moléculaire pour oxyder des composés (non-)aromatiques tels que des phenols, des thiols, des arylamines, etc. La réduction de l'oxygène à travers cette réaction produit deux molécules d'eau. Les produits de cette oxydo-réduction sont des radicaux libres qui peuvent servir de substrats intermédiaires à d'autres enzymes [Baldrian, 2006; Claus, 2004; Ferraroni et al., 2007; Thurston, 1994].

6.1.3 Hème peroxidases

Cette famille d'enzymes comprend les LiP et les MnP précédemment décrites.

- LiP: glycoprotéines qui catalysent l'oxydation d'une série de composés non-phénoliques par l'intermédiaire de péroxyde d'hydrogène. Le substrat est dépolymérisé (les liens C-C et éther sont clivés) et forme des radicaux intermédiaires réactifs. Ces derniers subissent des réactions non-enzymatiques de dégradation et d'arrangement pour aboutir à la formation de nouveaux composés. Contrairement aux autres peroxidases de la même famille, les LiP sont capables également de dégrader certains composés sans intermédiaires grâce à un potentiel redox particulièrement élevé [Wong, 2009].
- MnP : glycoprotéines qui catalysent la réduction du substrat et l'oxydation de Mn(II) en Mn(III) qui agit par la suite comme médiateur rédox lorsqu'il est chélaté. Ce dernier peut alors oxyder des substrats phénoliques. Pour l'oxydation de substrats non-phénoliques par Mn(III), un second médiateur doit être formé en radical réactif [Wong, 2009; Dashtban et al., 2010].

6.1.4 Produits de dégradation

Les composés formés dépendent fortement du milieu de dégradation. Sous des conditions aérobies, du $\rm CO_2$, de l' $\rm H_2O$ et de la biomasse microbienne sont retrouvés. Sous des conditions anaérobies ou méthanogènes, du $\rm CO_2$, de l' $\rm H_2O$, du $\rm CH_4$ et de la biomasse microbienne sont retrouvés.

Conditions du milieu	Produits
Aérobie	CO_2 , H_2O , biomasse microbienne
Anaérobie	CO_2 , H_2O , CH_4 (conditions
	méthanogènes), H_2S (conditions
	sulfoniques), biomasse microbienne

Table 1 – Produits de dégradation du polyéthylène en fonction du milieu de culture [Arutchelvi et al., 2008]

6.2 Polyesters

Références

- Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S., and Uppara, P. V. (2008). Biodegradation of polyethylene and polypropylene.
- Baldrian, P. (2006). Fungal laccases occurrence and properties. *FEMS microbiology* reviews, 30(2):215–42.
- Claus, H. (2004). Laccases: Structure, reactions, distribution. In *Micron*, volume 35, pages 93–96.
- Crawford, D. L. and Crawford, R. L. (1980). Microbial degradation of lignin.
- Dashtban, M., Schraft, H., Syed, T. A., and Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin.
- Ferraroni, M., Myasoedova, N. M., Schmatchenko, V., Leontievsky, A. A., Golovleva, L. A., Scozzafava, A., and Briganti, F. (2007). Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. *BMC structural biology*, 7:60.
- Iiyoshi, Y., Tsutsumi, Y., and Nishida, T. (1998). Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. *Journal of wood science*, 44:222–229.
- Martínez, Á. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Martínez, M. J., Gutiérrez, A., and Del Río, J. C. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. In *International Microbiology*, volume 8, pages 195–204.

- Piringer, O. G. and Baner, A. L. (2008). Plastic Packaging: Interactions with Food and Pharmaceuticals, Second Edition.
- Pometto, A. L., Lee, B., and Johnson, K. E. (1992). Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species.
- Shah, A. A., Hasan, F., Hameed, A., and Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review.
- Thurston, C. F. (1994). The structure and function of fungal laccases.
- Wong, D. W. S. (2009). Structure and action mechanism of ligninolytic enzymes.