K-NEAREST NEIGHBORS

1. IMPORT LIBRARY

```
import pandas as pd
from sklearn.utils import shuffle
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
```

2. READ DATASET (CSV)

```
data = pd.read csv('ruspini.csv')
```

3. SPLIT DATA 80% FOR TRAINING AND 20% FOR TESTING

train1=data[0:16]
test1=data[16:20]
train2=data[20:34]
test2=data[34:37]
train3=data[37:55]
test3=data[55:60]
train4=data[60:72]
test4=data[72:75]

Data train1					Data test1				
[75	row #	s x	4 co Y	lumns]>	16	# 17	X 30	Y 52	CLASS 1
0	í	4	53	1	17	18	31	60	1
1	2	5	63	1	18	19	32	61	1
2	3	10	59	1	19	20	36	72	1
3	4	9	77	1					
4	5	13	49	1					
5	6	13	69	1					
6	7	12	88	1					
7	8	15	75	1					
8	9	18	61	1					
9	10	19	65	1					
10	11	22	74	1					
11	12	27	72	1					
12	13	28	76	1					
13	14	24	58	1					
14	15	27	55	1					
15	16	28	60	1					

4. COMBINE DATA TRAIN AND DATA TEST 5. SHUFFLE DATA TRAIN AND DATA TEST

train=train1.append([train2,train3,train4]) test=test1.append([test2, test3, test4])

_ []			HIGH				Julu	1031		H
	#	X	Y	CLASS		#	X	Y	CLASS	H
0	1	4	53	1	16	17	30	52	1	H
1	2	5	63	1	17	18	31	60	1	H
2	3	10	59	1	18	19	32	61	1	P
3	4	9	77	1	19	20	36	72	1	H
4	5	13	49	1	34	58	111	126	2	
5	6	13	69	1	35	59	115	117	2	Н
6	7	12	88	1	36	60	117	115	2	H
7	8	15	75	1	55	39	52	152	3	P
6 8	9	18	61	1	56	40	55	155	3	H
9	10	19	65	1	57	41	54	124	3	
10	11	22	74	1	58	42	60	136	3	H
11	1 12	27	72	1	59	43	63	139	3	H
12	2 13	28	76	1	72	73	76	27	4	A
7 13	3 14	24	58	1	73	74	72	31	4	H
14	15	27	55	1	74	75	64	30	4	
15	5 16	28	60	1						H
20	44	86	132	2						
21	1 45	85	115	2						H
22	2 46	85	96	2						Н
23	3 47	78	94	2						
24	4 48	74	96	2						H

train=shuffle(train) test=shuffle(test)

Data train						D	ata i	test	
	#	X	Y	CLASS		#	Х	Y	CLASS
65	66	78	16	4	73	74	72	31	4
9	10	19	65	1	16	17	30	52	1
8	9	18	61	1	17	18	31	60	1
63	64	61	15	4	57	41	54	124	3
25	49	97	122	2	18	19	32	61	1
43	27	38	145	3	55	39	52	152	3
71	72	61	25	4	35	59	115	117	2
48	32	44	149	3	58	42	60	136	3
47	31	44	156	3	56	40	55	155	3
69	70	69	21	4	72		76		4
23	47	78	94	2		73		27	
50	34	46	142	3	19	20	36	72	1
40	24	33	154	3	36	60	117	115	2
51	35	47	149	3	74	75	64	30	4
24	48	74	96	2	59	43	63	139	3
11	12	27	72	1	34	58	111	126	2
49	33	44	143	3			4/ 1/	/ 47	J 7 / _ /
46	30	34	141	3	1/				
33	57	108	116	2					
70	71	66	23	4					
15	16	28	60	1					
0	1	4	53	1					

6. REMOVE LABEL FROM DATA TRAIN AND

DATA TEST FOR INPUT

```
train_in = train.drop(columns=['CLASS','#'])
test_in = test.drop(columns=['CLASS','#'])
```

Input data train Input data test 1.0

7. REMOVE LABEL FROM DATA

TRAIN AND DATA TEST FOR OUTPUT

```
train_out = train['CLASS']
test_out = test['CLASS']
```


7. KNN CLASSIFIER (K=5)

```
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(train in, train out)
```

8. PREDICT DATA TEST USING KNN

```
pred_out = classifier.predict(test_in)
```

The predict data test

[1 3 1 4 3 3 1 1 3 4 2 2 3 4 2]

Rea	l Output	dat	a test
	16	1	
////	55	3	
	18	1	
467	73	4	
	59	3	
	58	3	
	17	1	
	19	1	
	56	3	
	74	4	
	34	2	
	36	2	
	57	3	
	72	4	
	35	2	

9. CLASSIFICATION REPORT

print(classification_report(test_out, pred_out))

The predict data test									
	precision	recall	fl-score	support					
1	1.00	1.00	1.00	4					
2	1.00	1.00	1.00	3					
3	1.00	1.00	1.00	5					
4	1.00	1.00	1.00	3					
accuracy			1.00	15					
macro avg	1.00	1.00	1.00	15					
weighted avg	1.00	1.00	1.00	15					

ANALYSIS OF KNN (K=5)

After using KNN with K=5, the result is

- Label "1" precision 100%, recall 100% and f1-score 100%
- Label "2" precision 100%, recall 100% and f1-score 100%
- Label "3" precision 100%, recall 100% and f1-score 100%
- Label "4" precision 100%, recall 100% and f1-score 100%

The result of using KNN with K=5 in this case is excellent, there is no error of each labels. This happens because the dataset for training is good.

However, not all cases can produce a great result with K equals 5 or bigger because the optimum value of K is different each cases