

Procesory

Mgr. Rostislav Fojtík, PhD.
Katedra informatiky a počítačů
Přírodovědecká fakulta
Ostravská univerzita v Ostravě

Řadič

- určuje pořadí, ve kterém jsou prováděny instrukce
- dekóduje instrukce a případně je modifikuje
- vysílá do ostatních částí počítače řídící signály potřebné pro provádění instrukcí

Typy procesorů

- MCU (Micro Controller Unit)
- CPU (Central Processor Unit)
- DSP (Digital Signal Processor)

Typy procesorů

- CISC (Complete Instruction Set Computing)
 - plná instrukční sada
 - mikrokód
- RISC (Reduced Instruction Set Computing)
 - redukovaná instrukční sada
 - instrukce řešeny obvodově

Historie mikroprocesorů

- i4004 Intel 1971, 4 bitový
- i8080 8 bitový, adresace 64 KB paměti
- i8086 16 bitový, 29 000 tranzistorů

i8086

- Pracoval ve dvou režimech:
 - minimální (jako i8080)
 - maximální adresace 1 MB paměti
- Bus Interface Unit, Execution Unit
- 14 registrů (16b)
 - AX, BX, CX, DX
 - SP, BP, SI, DI
 - CS, DS, SS, ES
 - IP, F

i80386

- 32 bitový režim
- adresace paměti $2^{32} => 4.10^9 B = 4 GB$
- real mode
- protected mode

Real mode i80386

- Využívá jen 20 adresovacích vodičů -> 2²⁰
 => 1 MB paměti
- fyzická adresa = (segmentová adresa * 16)+ (offsetová adresa)

Protected mode i80386

- Využívá jen 32 adresovacích vodičů -> 2³²
 => 4 GB paměti
- GDT globální tabulka deskriptorů
- LDT lokální tabulka deskriptorů
- IDT tabulka deskriptorů přerušení
- multitasking
- swapping

Protected mode i80386

FPU

- Jednotka pro výpočty s čísly s pohyblivou řadovou čárkou
- i80 486

Kombinace RISC a CISC

- Jádro procesoru RISC
- Vůči okolnímu systému se tváří procesor jako CISC

 Dekodér - dekóduje CISC instrukce na RISC mikroinstrukce jádra

Pipelining

Zřetězené zpracování instrukcí

Superskalární architektura

 Více prováděcích jednotek - více instrukcí najednou

Out - of - order

 Provádění instrukcí v jiném pořadí než je v instrukční frontě

Speculative execution

 spekulativní provádění instrukcí - např. odhad vyhodnocení podmínky

- Hyperthreading
- Speed Step

Procesory s více jádry

Podpora multithreadingu a multitaskingu

Procesory s více jádry

Intel Core i7

Intel Core i7

- 730 miliónů tranzistorů
- 45 nm, 263 mm²
- hyperthreading (4 jádra, 8 vláken)
- instrukční sada 64 bit
- max paměť 32 GB
- cache 6 MB
- speed step

Multithreading

 Proces (task) se může skládat z více relativně samostatných vláken (threads)

Multithreading

Příklad aplikace s více vláky

RISC

ARM - pro mobilní zařízení

Komunikace procesu s okolím

- pomocí sběrnice
- pomocí systému přerušení (IRQ)
- přes kanály přímého přístupu do paměti (DMA)

Komunikace procesoru s okolím

- procesor v pravidelných časových intervalech prochází všechna zařízení
- systém přerušení
 - každá operace má číslo přerušení

Mechanismus přerušení

- 1. Zařízení, které potřebuje obsluhu vyvolá přerušení. To může být hardwarové nebo softwarové. Procesor dokončí probíhající instrukci a uloží si dosažené hodnoty a číslo následující instrukce do paměti.
- 2. Vektor přerušení spustí na příslušné adrese v paměti program pro obsluhu přerušení. Pro zpracování přerušení je určen speciální obvod - interrupt controler (řadič přerušení).
- 3. Po obsluze zařízení, které vyvolalo přerušení, se z paměti se vezmou dočasné hodnoty a následující instrukce přerušeného programu a pokračuje se v jeho provádění.

...děkuji za pozornost

Mgr. Rostislav Fojtík, PhD.
Katedra informatiky a počítačů
Přírodovědecká fakulta
Ostravská univerzita v Ostravě