Datasheet

MM32SPIN0x

32-bit Micro controller based on ARM Cortex M0

Ver: 1.04_n

Content

1	intro	auctioi		1
	1.1	Descri	ption	1
	1.2	Produc	ct Features	1
2	Spec	cificatio	on	3
	2.1	Device	contrast	3
	2.2	Summa	ary	3
		2.2.1	ARM® Cortex TM -M0 and SRAM	3
		2.2.2	Memory	4
		2.2.3	SRAM	4
		2.2.4	Clocks and startup	4
		2.2.5	Nested vectored interrupt controller (NVIC)	5
		2.2.6	Extended interrupt/event controller (EXTI)	6
		2.2.7	Boot modes	6
		2.2.8	Power supply schemes	6
		2.2.9	Power supply supervisors	6
		2.2.10	Voltage regulator	6
		2.2.11	Low-power modes	7
		2.2.12	Direct memory access controller (DMA)	7
		2.2.13	Backup register (BKP)	7
		2.2.14	Timers and watchdogs	7
		2.2.15	Universal asynchronous receiver/transmitter (UART)	10
		2.2.16	I2C interface	10
		2.2.17	Serial peripheral interface (SPI)	10
		2.2.18	Controller area network (CAN)	10
		2.2.19	General-purpose inputs/outputs (GPIO)	10
		2.2.20	Analog-to-digital converter (ADC)	11
		2.2.21	Temperature sensor	11
		2.2.22	Serial single line SWD debug port (SW-DP)	11
		2.2.23	Comparator (COMP)	11
3	Pin d	definitio	on	14
4	Mem	nory ma	pping	23
5	Elec	trical c	haracteristics	25
	5.1	Param	eter conditions	25
		5.1.1	Minimum and maximum values	25
		5.1.2	Typical values	25
		5.1.3	Typical curves	25
		5.1.4	Loading capacitor	
		5.1.5	Pin input voltage	
		5.1.6	Power supply scheme	
		5.1.7	Current consumption measurement	
	5.2	Absolu	ite maximum ratings	

8	Revi	sion hi	story	65
7	Orde	ering in	formation	64
	6.4	TSSOF	P20 Package information	62
	6.3	QFN32	Package information	60
	6.2	LQFP3	32 Package information	58
	6.1	LQFP4	8 Package information	56
6	Pack	kage inf	formation	56
		5.3.17	Comparator characteristics	54
			Temperature sensor characteristics	
			12-bit ADC characteristics	
			CAN (controller area network) interface	
			Communication interfaces	
			Timer characteristics	
		5.3.11	NRST pin characteristics	43
			I/O port characteristics	
		5.3.9	Absolute Maximum (Electrical Sensitivity)	39
		5.3.8	EMC characteristics	38
		5.3.7	Memory characteristics	37
		5.3.6	Internal clock source characteristics	36
		5.3.5	External clock source characteristics	34
		5.3.4	Supply current characteristics	30
		5.3.3	Embedded reset and power control block characteristics	29
		5.3.2	Operating conditions at power-up/power-down	29
		5.3.1	General operating conditions	28
	5.3	Operat	ing conditions	28

List of Figures

1	Clock tree	5
2	Block diagram	12
3	Clock tree	13
4	LQFP48 packet pinout	14
5	LQFP32 packet pinout	15
6	QFN32 packet pinout	16
7	TSSOP20 packet pinout	16
8	Pin loading conditions	25
9	Pin input voltage	26
10	Power supply scheme	26
11	Current consumption measurement scheme	27
12	Typical current consumption in standby mode vs. temperature at V_{DD} = 3.3V	31
13	Typical current consumption in stop mode vs. temperature at V_{DD} = 3.3V	32
14	High-speed external clock source AC timing diagram	34
15	Typical application with an 8 MHz crystal	36
16	I/O AC characteristics	43
17	Recommended NRST pin protection	44
18	I2C bus AC waveform and measurement $circuit^{(1)}$	46
19	SPI timing diagram-slave mode and CPHA = 0	48
20	SPI timing diagram-slave mode and CPHA = 1 ⁽¹⁾	49
21	SPI timing diagram-master $mode^{(1)}$	50
22	Typical connection diagram using the ADC	53
23	Power supply and reference power supply decoupling circuit	54
24	LQFP48 - 48-pin low-profile quad flat package outline	56
25	LQFP32 - 32-pin low-profile quad flat package outline	58
26	QFN32 - 32-pin quad flat no-leads package outline	60
27	TSSOP20 - 20-lead thin shrink small outline package outline	62
28	Ordering information scheme	64

List of Tables

1	MM32SPIN0x device features and peripheral counts	3
2	Timer feature comparison	8
3	Pin definitions	17
4	Alternate functions for port A	21
5	Alternate functions for port B	21
6	Alternate functions for port C and D	22
7	Memory mapping	23
8	Voltage characteristics	27
9	Current characteristics	27
10	Thermal characteristics	28
11	General operating conditions	28
12	Operating conditions at power-up/power-down	29
13	Embedded reset and power control block characteristics	
14	Typical and maximum current consumption in stop and standby modes ⁽²⁾	31
15	Typical current consumption in Run mode, code executing from Flash	32
16	Typical current consumption in sleep mode, code executing from Flash or RAM	
17	On-chip peripheral current consumption ⁽¹⁾	
18	High-speed external user clock characteristics	
19	HSE oscillator characteristics ⁽¹⁾⁽²⁾	
20	HSI oscillator characteristics ⁽¹⁾⁽²⁾	36
21	LSI oscillator characteristics ⁽¹⁾	
22	Low-power mode wakeup timings	
23	Flash memory characteristics	
24	Flash memory endurance and data retention ⁽¹⁾⁽²⁾	
25	EMS characteristics	
26	ESD characteristics	40
27	I/O static characteristics	40
28	Output voltage characteristics	41
29	I/O AC characteristics ⁽¹⁾	
30	NRST pin characteristics	43
31	TIMx ⁽¹⁾ characteristics	44
32	I2C characteristics	45
33	SPI characteristics ⁽¹⁾	46
34	ADC characteristics	
35	Maximum R_{AIN} at f_{ADC} = 15MHz ⁽¹⁾	
36	ADC Accuracy - Limit Test Conditions $^{(1)(2)}$	
37	Temperature sensor characteristics (3)(4)	
38	Comparator characteristics	
39	LQFP48 mechanical data	
40	LQFP32 mechanical data	
41	QFN32 mechanical data	
42	TSSOP20 mechanical data	

43	Document revision history	<i>.</i>	 	 									 			 			65
	Boodinoni roviolon motor		 	 							•	•		•	•		•		0.0

Introduction

Introduction

1.1 Description

MM32SPIN0xn(named as "the device" throughout this document) is ARM® CortexTM-M0 32-bit RISC core based micro controller family. The device has high speed embedded memory and the CPU, memory and AHB bus subsystem speed can attain up to 96MHz. The device also has integrated with extensive range of enhanced I/Os, two APB buses peripherals, 1 12-bit ADC, 2 Comparators, 1 general purpose 16-bit timer, 1 general purpose 32-bit timer, 3 Basic timers, 1 Advanced 16-bit timer, and standard communication interfaces device: 1 I2C, 2 SPIs, 1 CAN, and 2 UARTs.

The device works between 2.0V to 5.5V range. The normal temperature for the device is -40°C to +85°C and -40°C to +105°C extended temperature range devices are also available upon ordering. A comprehensive set of power-saving mode allows the design of low-power applications.

The devices are available in 4 different packages: LQFP48, LQFP32, QFN32 and TSSOP20. Depending on the device chosen, different sets of peripherals are included.

The abundant peripheral configurations enable the device to fit wide range of applications in difference industries, Few examples are as follows:

- Motor drive and application control
- · Healthcare and fitness equipment
- · PC peripherals, gaming, GPS equipment
- Industrial Applications: Programmable Controllers (PLCs), Inverters, Printers and Scanners
- · Alarm system, wired and wireless sensors, video intercom

1.2 Product Features

- · Core and system
 - ARM® CortexTM-M0 CPU
 - Maximum operating frequency is up to 96MHz
- Memories
 - 128K Bytes of Flash memory
 - 8K Bytes of SRAM
 - Boot loader support Chip Flash and ISP (In-System Programming)

- · Clock, reset and power management
 - 2.0V to 5.5V application supply
 - Power-on/Power-down reset (POR/PDR), Programmable voltage detector (PVD)
 - External 2 to 24MHz high speed crystal oscillator
 - Embedded factory-tuned 48MHz high speed oscillator
 - Embedded 40KHz low speed oscillator
 - PLL supports CPU running at 96MHz
- · Low-power
 - Sleep, Stop and Standby modes
- 1 12-bit ADC, 1µS A/D converters (up to 10 channels)
 - Conversion range: 0 to V_{DDA}
 - Support sampling time and resolution configuration
 - On-chip temperature sensor
- · 2 Comparators
- · 5 DMA controller
 - Supported peripherals: Timer, UART, I2C, SPI and ADC
- Up to 39 fast I/Os:
 - All mappable on 16 external interrupt vectors
 - Almost all can work on 5V
- · Debug mode
 - Serial wire debug (SWD)
- · Up to 9 timers
 - 1 16-bit 4-channel advanced-control timer for 4 channels PWM output, with deadtime generation and emergency stop
 - 1 16-bit timer and 1 32-bit timer, with up to 4 IC/OC, usable for IR control decoding
 - 2 16-bit timer, with 1 IC/OC, 1 OCN, deadtime generation and emergency stop and modulator gate for IR control
 - 1 16-bit timer, with 1 IC/OC
 - 2 watchdog timers (independent and window type)
 - SysTick timer: 24-bit downcounter
- · Up to 6 Communication interfaces
 - 2 UARTs
 - 1 I2C
 - 2 SPIs
 - 1 CAN
- 96-bit unique ID (UID)
- Packages LQFP48, LQFP32, QFN32 and TSSOP20

For more information about the complete product, refer to Section 2.2 of the data sheet. The relevant information about the CortexTM-M0, please refer to CortexTM-M0 technical reference manual.

Specification

Specification

2.1 Device contrast

Table 1. MM32SPIN0x device features and peripheral counts

	Device	MM32SPIN05/06/07PF	MM32SPIN05PT	MM32SPIN05/06NT	MM32SPIN05TV						
Peripheral											
Flash n	nemory -K Bytes	32/64/128	32	32/64	32						
SR	AM -K Bytes	4/8/8	4	4/8	4						
Timers	General purpose (16 bit)	4	4	4	4						
	General purpose (32 bit)	1	1	1	1						
	Advanced control	1	1	1	1						
Common	UART	2	2	2	2						
interfaces	I2C	1	1	1	1						
interraces	SPI	2	1	1	1						
	CAN	0/0/1	0	0/0	0						
	GPIOs	39	25	27	16						
1	12-bit ADC		1		1						
(numb	er of channels)		10 channels		9 channels						
C	omparators		2								
Max CPU frequency		72/96/96 MHz	72/96 MHz	72 MHz							
Ope	rating voltage	2.0V ~ 5.5V									
	Packages	LQFP48	TSSOP20								

2.2 Summary

2.2.1 ARM® CortexTM-M0 and SRAM

The ARM® CortexTM-M0 is a generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementa-

tion, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM® CortexTM-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an ARM core, with memory sizes usually associated with 8- and 16-bit devices.

The devices have embedded ARM core and are compatible with all ARM tools and software.

2.2.2 Memory

128K Bytes of embedded Flash memory.

2.2.3 SRAM

8K Bytes of embedded SRAM.

2.2.4 Clocks and startup

When the system is powered up, the default clock is from PLL with the resource from HSE 48 MHz oscillator. An external 2 \sim 24 MHz clock can also be configured to monitor the system during power up phases.

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 96MHzz.Refer to figure 3 for the clock drive block diagram.

Figure 1. Clock tree

2.2.5 Nested vectored interrupt controller (NVIC)

The device embeds a nested vectored interrupt controller and is able to handle up to 68 maskable interrupt channels (not including the 16 interrupt lines of Cortex[™]-M0) with 16 priority levels.

- · Closely coupled NVIC gives low latency interrupt processing
- · Interrupt entry vector table address passed directly to the core
- · Closely coupled NVIC core interface
- · Allows early processing of interrupts
- · Processing of late arriving higher priority interrupts
- · Support for tail-chaining
- · Processor state automatically saved
- · Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal inter-

rupt latency.

2.2.6 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of many edge detector lines are used to generate interrupt/event requests for waking up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal APB2 clock period. All GPIOs can be connected to the 16 external interrupt lines.

2.2.7 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:

- · Boot from User Flash memory
- · Boot from System Memory
- · Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using UART1.

2.2.8 Power supply schemes

- V_{DD} = 2.0V ~ 5.5V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 2.0V \sim 5.5V: external analog power supply for reset blocks, oscillators and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} .

2.2.9 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 1.8V. The device remains in reset mode when the monitored supply voltage is below a specified threshold $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when VDD drops below the V_{PVD} threshold and/or when VDD is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.2.10 Voltage regulator

The voltage regulator converts the external voltage to the internal digital logic and it is always enabled after reset.

2.2.11 Low-power modes

The device support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources.

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. the HSI and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

Standby mode

Standby mode achieves the lowest power consumption of the system. This mode turns off the voltage regulator in CPU deep sleep mode. The entire 1.5V power supply area is powered down. PLL HSI and HSE oscillators are also powered down. SRAM and register contents are missing. Only the backup registers and standby circuits remain powered.

2.2.12 Direct memory access controller (DMA)

The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: UART、I2C、SPI、CAN、ADC general-purpose and advanced-control timers TIMx.

2.2.13 Backup register (BKP)

The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. They are still powered by V_{BAT} . They are also not reset when the system is woken up in standby mode, or when the system is reset or power is reset.

2.2.14 Timers and watchdogs

Medium capacity device include 1 advanced control 5 general-purpose timers 2 watchdog timers and 1 SysTick timer.

The following table compares the features of the different timers:

Table 2. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/- compare channels	Complem -entary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	Yes
General	TIM2	32-bit	Up, down, up/down	integer from 1 to $2^{32} - 1$	Yes	4	No
purpose	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	No
basic	TIM14	16-bit	Up	integer from 1 to 65536	Yes	1	No
54010	TIM16 / TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	Yes

Advanced-control timer (TIM1)

The advanced-control timer can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- · Input capture
- · Output compare
- PWM generation (edge or center-aligned modes)
- · One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0 \sim 100%).

In debug mode, the counter can be frozen and the PWM output is disabled to cut off the switches controlled by these outputs.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are 5 synchronizable general-purpose timers (TIM2, TIM3).

General-purpose timers 32-bit

The timer is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The feature is 4 independent channels each for input capture/output compare, PWM or one-pulse mode output.

General-purpose timers 16-bit

TIM3

'The timer is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. The feature is 4 independent channels each for input capture/output compare, PWM or one-pulse mode output.

The timer can work together or with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Their counter can be frozen in debug mode.

TIM16/TIM17

Every timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. They each have a single channel for input capture/output compare, PWM or one-pulse mode output. TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation. Their counters can be frozen in debug mode.

Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 KHz internal oscillator and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free

running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- · Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

2.2.15 Universal asynchronous receiver/transmitter (UART)

UART provides hardware management of the CTS, RTS.

Support LIN master-slave function.

All UART interface can be served by the DMA controller.

2.2.16 I2C interface

The I2C interface can operate in multimaster or slave modes. It can support Standard mode, and Fast Mode.

It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask).

2.2.17 Serial peripheral interface (SPI)

The SPI interface, in slave or master mode, can be configured to $1 \sim 32$ bits per frame.

All SPI interface can be served by the DMA controller.

2.2.18 Controller area network (CAN)

The CAN is compliant with specifications 2.0 A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

2.2.19 General-purpose inputs/outputs (GPIO)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.2.20 Analog-to-digital converter (ADC)

The one 12-bit analog-to-digital converters is embedded into microcontrollers and the ADC shares up to 10 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller.

The analog watchdog function allows very precise monitoring of all the way, multiple or all selected channels, and an interruption occurs when the monitored signal exceeds the preset threshold. The events generated by the general-purpose timers (TIMx) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger to allow the application to synchronize A/D conversion and timers.

2.2.21 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The temperature sensor is internally connected to the input channel which is used to convert the sensor output voltage into a digital value.

2.2.22 Serial single line SWD debug port (SW-DP)

Built-in ARM two-wire serial debug port (SW-DP).

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

2.2.23 Comparator (COMP)

The devices embed 2 general purpose comparators. that can be used either as standalone devices (all terminal are available on I/Os) or combined with the timers. The comparators can be used for a variety of functions including:

- · Wake-up from low-power mode triggered by an analog signal,
- · Analog signal conditioning,
- Cycle-by-cycle current control loop when combined with the PWM output from a timer.
- · Rail-to-rail comparators
- Each comparator has positive and configurable negative inputs used for flexible voltage
- Selection:
 - Reusable I/O pins
 - Internal comparison voltage CRV selects the voltage divider value of AVDD or internal reference voltage
- · Programmable hysteresis
- · Programmable speed/consumption
- The outputs can be redirected to an I/O or to timer inputs for triggering:
 - Capture events
 - OCref_clr events (for cycle-by-cycle current control)

- Break events for fast PWM shutdowns

Figure 2. Block diagram

Figure 3. Clock tree

Pin definition

Pin definition

Figure 4. LQFP48 packet pinout

Figure 5. LQFP32 packet pinout

Figure 6. QFN32 packet pinout

Figure 7. TSSOP20 packet pinout

Table 3. Pin definitions

	Pin n	umber				.,,		A16	A.1.114
LQFP	LQFP	QFN	TSSOP	Pin name	$Type^{(1)}$	I/O		Alternate	Additional
48	32	32	20			structu	refunction	functions	functions
1	-	-	-	NC	S	-	NC	-	-
2	-	-	-	PC13	I/O	-	PC13	-	-
3	-	-	-	PC14	I/O	-	PC14	-	-
4	-	-	-	PC15	I/O	-	PC15	-	-
5	2	2	2	PD0- OSC_IN	I/O	-	OSC_IN	I2C_SDA	OSC_IN
6	3	3	3	PD1- OSC_OUT	I/O	-	OSC_OUT	I2C_SCL	OSC_OUT
7	4	4	4	NRST	I/O	-	NRST	ı	-
8	16	0	-	VSSA	S	-	VSSA	-	-
9	5	5	5	VDDA	S	-	VDDA	-	-
10	6	6	6	PA0	I/O	-	PA0	TIM2_CH1_ETR/ UART2_CTS/ ADC_IN0/	WKUP/ COMP1_INP[0]/ COMP1_INM[6]/
								COMP1_OUT	COMP2_INP[0]
11	7	7	7	PA1	I/O	-	PA1	TIM2_CH2/ UART2_RTS/ ADC_IN1	COMP1_INP[1]/ COMP2_INP[1]
12	8	8	8	PA2	I/O	-	PA2	TIM2_CH3/ UART2_TX/ ADC_IN2/ COMP2_OUT	COMP1_INP[2]/ COMP2_INP[2]/ COMP2_INM[6]
13	9	9	9	PA3	I/O	-	PA3	TIM2_CH4/ UART2_RX/ ADC_IN3	COMP1_INP[3]/ COMP2_INP[3]
14	10	10	10	PA4	I/O	-	PA4	SPI1_NSS/ TIM14_CH1/ ADC_IN4	COMP1_INP[4]/ COMP1_INM[4]/ COMP2_INP[4]/ COMP2_INM[4]
15	11	11	11	PA5	I/O	-	PA5	SPI1_SCK/ TIM2_CH1_ETR/ ADC_IN5	ADC_VIN[5]/ COMP1_INP[5]/ COMP1_INM[5]/ COMP2_INP[5]/ COMP2_INM[5]

Pin number					I/O	Main	Alternate	Additional		
LQFP	LQFP	QFN	TSSOP	Pin name	Type ⁽¹⁾		refunction	functions	functions	
48	32	32	20			Structu	retunction	lunctions	lunctions	
								SPI1_MISO/		
								TIM3_CH1/	COMP1_INP[6]/	
16	12	12	12	PA6	I/O		PA6	TIM16_CH1/	COMP1_INM[7]/	
10	12	12	12	1 70	1/0	_	1 70	TIM1_BKIN/	COMP2_INP[6]/	
								ADC_IN6/	COMP2_INM[7]	
								COMP1_OUT		
								TIM1_CH1N/		
								SPI1_MOSI/		
								TIM3_CH2/	COMP1_INP[7]/	
17	13	13	13	PA7	I/O	-	PA7	TIM14_CH1/	COMP2_INP[7]	
								TIM17_CH1/		
								ADC_IN7/		
								COMP2_OUT		
								TIM3_CH3/		
18	14	14	-	PB0	I/O	-	PB0	TIM1_CH2N/	-	
								ADC_IN8		
								TIM3_CH4/		
19	15	15	14	PB1	I/O	_	PB1	TIM14_CH1/	_	
.0	.0				0			TIM1_CH3N/		
								ADC_IN9		
20	-	16	-	PB2	I/O	FT	PB2	-		
								I2C_SCL/		
21	-	-	-	PB10	I/O	FT	PB10	TIM2_CH3/	-	
								SPI2_SCK		
22	_	_	_	PB11	I/O	FT	PB11	I2C_SDA/	_	
					0			TIM2_CH4		
23	16	-	-	VDD	S	-	VDD	-	-	
24	17	-	-	VDD	S	-	VDD	-	-	
								SPI2_NSS/		
								SPI2_SCK/		
25	-	-	-	PB12	I/O	FT	PB12	TIM1_BKIN/	-	
								SPI2_MOSI/		
								SPI2_MISO		

	Pin number					1/0	Main	Altamata	Additional			
LQFP	LQFP	QFN	TSSOP	Pin name	Type ⁽¹⁾	I/O Main structure function		Alternate				
48	32	32	20			structu	refunction	functions	functions			
_								SPI2_SCK/				
								SPI2_MISO/				
26				PB13	1/0	СТ	DD12	TIM1_CH1N/				
20	-	-	-	PDIS	PB13 I/O FT PB13		PDIS	SPI2_NSS/	-			
								SPI2_MOSI/				
								I2C_SCL				
								SPI2_MISO/				
								SPI2_MOSI/				
27				PB14	I/O	FT	PB14	TIM1_CH2N/				
21	-	-	-	FD14	1/0	ГІ	PD14	SPI2_SCK/	-			
								SPI2_NSS/				
								I2C_SDA				
								SPI2_MOSI/				
								SPI2_NSS/				
28	-	-	-	PB15	I/O	FT	PB15	TIM1_CH3N/	-			
								SPI2_MISO/				
								SPI2_SCK				
29	18	18		PA8	I/O	FT	PA8	TIM1_CH1/				
	10	10	-	FAO	1/0	ГІ	FAO	MCO	-			
								UART1_TX/				
								TIM1_CH2/				
30	19	19	-	PA9	I/O	FT	PA9	UART1_RX/	-			
								I2C_SCL/				
								MCO				
								UART1_RX/				
								TIM1_CH3/				
31	20	20	-	PA10	I/O	FT	PA10	UART1_TX/	-			
								TIM17_BKIN/				
								I2C_SDA				
								UART1_CTS/				
32	21	21	17	PA11	I/O	FT	PA11	TIM1_CH4/				
32	21	21	17	IAII	1/0	' '	IAII	I2C_SCL/	-			
								COMP1_OUT				
								UART1_RTS/				
33	22	22	10	PA12	I/O	FT	DA 12	TIM1_ETR/	_			
33		22	18			FI	T PA12	I2C_SDA/	-			
								COMP2_OUT				

	Pin n	umber						A.1.	A -1-11411		
LQFP	LQFP	QFN	TSSOP	Pin name	Type ⁽¹⁾	I/O		Alternate	Additional		
48	32	32	20			structu	refunction	functions	functions		
34	23	23	19	PA13	I/O	FT	PA13	SWDIO	-		
35	ı	-	-	PD2	I/O	FT	PD2	-	-		
36	-	-	-	PD3	I/O	FT	PD3	-	-		
37	24	24	20	PA14	I/O	FT	PA14	SWCLK/			
	24	24	20	1714	1/0	1 1	1714	UART2_TX	<u>-</u>		
								TIM2_CH1_ETR/			
38	25	25	-	PA15	I/O	FT	PA15	SPI1_NSS/	-		
								UART2_RX			
20	26	26		DD2	1/0	ГТ	DD2	TIM2_CH2/			
39	26	26	-	PB3	I/O	FT	PB3	SPI1_SCK	-		
								TIM3_CH1/			
40	27	27	-	PB4	I/O	FT	PB4	SPI1_MIS/	-		
								TIM17_BKIN			
								TIM3_CH2/			
41	28	28	-	PB5	I/O	FT	PB5	SPI1_MOS/	-		
								TIM16_BKIN			
								UART1_TX/			
42	29	29	-	PB6	I/O	FT	PB6	I2C_SCL/	-		
								TIM16_CH1N			
								UART1_RX/			
43	30	30	-	PB7	I/O	FT	PB7	I2C_SDA/	-		
								TIM17_CH1N			
44	31	31	1	воото	I	-	воото	-	-		
								I2C_SCL/			
45	-	32	1	PB8	I/O	FT	PB8	TIM16_CH1/	-		
								CAN_RX			
								I2C_SDA/			
40				DDO	1/0		DDO	TIM17_CH1/			
46	-	-	-	PB9	I/O	FT	PB9	CAN_TX/	-		
								SPI2_NSS			
47	32	0	15	VDD	S	- VDD -		-			
48	1	1	16	VDD	S	-	VDD	-			

^{1.} I = input, O = output, S = power supply, HiZ = high resistance.

^{2.} FT: 5V tolerant, Input signal should be between VDD and 5V.

Table 4. Alternate functions for port A

Pin	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0		UART2_CTS	TIM2_CH1_					COMP1_OUT
PAU	-	UARIZ_CIS	ETR	-	-	-	-	COMPT_OUT
PA1	-	UART2_RTS	TIM2_CH2	-	-	-	-	-
PA2	-	UART2_TX	TIM2_CH3	-	-	-	-	COMP2_OUT
PA3	-	UART2_RX	TIM2_CH4	-	-	-	-	-
PA4	SPI1_NSS	-	-	-	TIM14_CH1	-	-	-
DAE	CDI4 CCV		TIM2_CH1_					
PA5	SPI1_SCK	-	ETR	-	-	-	-	-
PA6	SPI1_MISO	TIM3_CH1	TIM1_BKIN	-	-	TIM16_CH1	-	COMP1_OUT
PA7	SPI1_MOSI	TIM3_CH2	TIM1_CH1N	-	TIM14_CH1	TIM17_CH1	-	COMP2_OUT
PA8	MCO	-	TIM1_CH1	-	-	-	-	-
PA9	-	UART1_TX	TIM1_CH2	UART1_RX	I2C_SCL	MCO	-	-
PA10	TIM17_BKIN	UART1_RX	TIM1_CH3	UART1_TX	I2C_SDA	-	-	-
PA11	-	UART1_CTS	TIM1_CH4	-	CAN_RX	I2C_SCL	-	COMP1_OUT
PA12	-	UART1_RTS	TIM1_ETR	-	CAN_TX	I2C_SDA	-	COMP2_OUT
PA13	SWDIO	-	-	-	-	-	-	-
PA14	SWDCLK	UART2_TX	-	-	-	-	-	-
PA15	SPI1_NSS	UART2_RX	TIM2_CH1_					
	SFII_NSS	UAR12_RX	ETR	<u>-</u>	-	-	-	_

Table 5. Alternate functions for port B

Pin	AF0	AF1	AF2	AF3	AF4	AF5
PB0	-	TIM3_CH3	TIM1_CH2N	-	-	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	-	-	-
PB2	-	-	-	-	-	-
PB3	SPI1_SCK	-	TIM2_CH2	-	-	-
PB4	SPI1_MISO	TIM3_CH1	-	-	-	TIM17_BKIN
PB5	SPI1_MOSI	TIM3_CH2	TIM16_BKIN	-	-	-
PB6	UART1_TX	I2C_SCL	TIM16_CH1N	-	-	-
PB7	UART1_RX	I2C_SDA	TIM17_CH1N	-	-	-
PB8	-	I2C_SCL	TIM16_CH1	-	CAN_RX	-
PB9	-	I2C_SDA	TIM17_CH1	-	CAN_TX	SPI2_NSS
PB10	-	I2C_SCL	TIM2_CH3	-	-	SPI2_SCK
PB11	-	I2C_SDA	TIM2_CH4	-	-	-
PB12	SPI2_NSS	SPI2_SCK	TIM1_BKIN	SPI2_MOSI	SPI2_MISO	-
PB13	SPI2_SCK	SPI2_MISO	TIM1_CH1N	SPI2_NSS	SPI2_MOSI	I2C_SCL
PB14	SPI2_MISO	SPI2_MOSI	TIM1_CH2N	SPI2_SCK	SPI2_NSS	I2C_SDA
PB15	SPI2_MOSI	SPI2_NSS	TIM1_CH3N	SPI2_MISO	SPI2_SCK	-

Table 6. Alternate functions for port C and D

Pin	AF0	AF1	AF2	AF3	AF4	AF5
PC13	-	-	-	-	-	-
PC14	-	-	-	-	-	-
PC15	-	-	-	-	-	-
PD0	-	I2C_SDA	-	-	-	-
PD1	-	I2C_SCL	-	-	-	-
PD2	-	-	-	-	-	-
PD3	-	-	-	-	-	-

Memory mapping

Memory mapping

Table 7. Memory mapping

Bus	Boundaryaddress	Size	Peripheral	Notes
			Main flash memory, system	
	0x0000 0000 -0x0001 FFFF	128 KB	memory, or SRAM, depends on	
			the configuration of BOOT	
	0x0002 0000 -0x07FF FFFF	~ 128 MB	Reserved	
	0x0800 0000 -0x0801 FFFF	128 KB	Main Flash memory	
	0x0802 0000 -0x 1FFDFFFF	~ 256 MB	Reserved	
Flash	0x1FFE 0000 -0x1FFE 01FF	0.5 KB	Reserved	
	0x1FFE 0200 -0x1FFE 0FFF	3 KB	Reserved	
	0x1FFE 1000 -0x1FFE 1BFF	3 KB	Reserved	
	0x1FFE 1C00 -0x1FFF F3FF	~ 256 MB	Reserved	
	0x1FFF F400 -0x1FFF F7FF	1 KB	System memory	
	0x1FFF F800 -0x1FFF F80F	16 B	Option bytes	
	0x1FFF F810 -0x1FFF FFFF	~2 KB	Reserved	
SRAM -	0x2000 0000 -0x2000 1FFF	8 KB	SRAM	
SKAW	0x2000 2000 -0x2FFF FFFF	~ 512 MB	Reserved	
	0x4000 0000 -0x4000 03FF	1 KB	TIM2	
	0x4000 0400 -0x4000 07FF	1 KB	TIM3	
	0x4000 0800 -0x4000 0BFF	8 KB	Reserved	
	0x4000 2800 -0x4000 2BFF	1 KB	ВКР	
	0x4000 2C00 -0x4000 2FFF	1 KB	WWDG	
	0x4000 3000 -0x4000 33FF	1 KB	IWDG	
	0x4000 3400 -0x4000 37FF	1 KB	Reserved	
APB1	0x4000 3800 -0x4000 3BFF	1 KB	SPI2	
	0x4000 4000 -0x4000 43FF	1 KB	Reserved	
	0x4000 4400 -0x4000 47FF	1 KB	UART2	
	0x4000 4800 -0x4000 4BFF	3 KB	Reserved	
	0x4000 5400 -0x4000 57FF	1 KB	I2C	
	0x4000 5800 -0x4000 5BFF	1 KB	Reserved	
	0x4000 5C00 -0x4000 5FFF	1 KB	Reserved	
	0x4000 6000 -0x4000 63FF	1 KB	Reserved	

Bus	Boundaryaddress	Size	Peripheral	Notes
	0x4000 6400 -0x4000 67FF	1 KB	CAN	
	0x4000 6800 -0x4000 6BFF	1 KB	Reserved	
APB1	0x4000 6C00 -0x4000 6FFF	1 KB	Reserved	
	0x4000 7000 -0x4000 73FF	1 KB	PWR	
	0x4000 7400 -0x4000 FFFF	35 KB	Reserved	
	0x4001 0000 -0x4001 03FF	1 KB	SYSCFG	
	0x4001 0400 -0x4001 07FF	1 KB	EXTI	
	0x4001 0800 -0x4001 23FF	7 KB	Reserved	
	0x4001 2400 -0x4001 27FF	1 KB	ADC	
	0x4001 2800 -0x4001 2BFF	1 KB	Reserved	
	0x4001 2C00 -0x4001 2FFF	1 KB	TIM1	
APB2	0x4001 3000 -0x4001 33FF	1 KB	SPI1	
	0x4001 3400 -0x4001 37FF	1 KB	DBGMCU	
	0x4001 3800 -0x4001 3BFF	1 KB	UART1	
	0x4001 3C00 -0x4001 3FFF	1 KB	COMP	
	0x4001 4000 -0x4001 43FF	1 KB	TIM14	
	0x4001 4400 -0x4001 47FF	1 KB	TIM16	
	0x4001 4800 -0x4001 4BFF	1 KB	TIM17	
	0x4001 4C00 -0x4001 7FFF	13 KB	Reserved	
	0x4002 0000 -0x4002 03FF	1 KB	DMA	
	0x4002 0400 -0x4002 0FFF	3 KB	Reserved	
	0x4002 1000 -0x4002 13FF	1 KB	RCC	
	0x4002 1400 -0x4002 1FFF	3 KB	Reserved	
	0x4002 2000 -0x4002 23FF	1 KB	Flash interface	
	0x4002 2400 -0x4002 5FFF	15 KB	Reserved	
AHB	0x4002 6000 -0x4002 63FF	1 KB	Reserved	
	0x4002 6400 -0x47FF FFFF	~ 128 MB	Reserved	
	0x4800 0000 -0x4800 03FF	1 KB	GPIOA	
	0x4800 0400 -0x4800 07FF	1 KB	GPIOB	
	0x4800 0800 -0x4800 0BFF	1 KB	GPIOC	
	0x4800 0C00 -0x4800 0FFF	1 KB	GPIOD	
	0x4800 1000 -0x5FFF FFFF	~ 384 MB	Reserved	

Electrical characteristics

Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed with an ambient temperature at $T_A = 25$ °C, $V_{DD} = 3.3$ V.

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25^{\circ}C$ and $V_{DD} = 3.3V$. They are given only as design guidelines and are not tested.

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The load conditions used for pin parameter measurement are shown in the figure below.

Figure 8. Pin loading conditions

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is shown in the figure below.

Figure 9. Pin input voltage

5.1.6 Power supply scheme

The power supply design scheme is shown in the figure below.

Figure 10. Power supply scheme

5.1.7 Current consumption measurement

The measurement of the current consumption on the pin is shown in the figure below.

Figure 11. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Tables (Table 8. Table 9. Table 10) may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Voltage characteristics

Symbol	Symbol Definition		Max	Unit	
V _{DD} - V _{SS}	External main supply	- 0.3	5.5		
VDD - VSS	voltage(including V_{DDA} and $V_{\text{SSA}})^{(1)}$	- 0.3	5.5	V	
V	Input voltage on FT and FTf pins ⁽²⁾	V _{SS} - 0.3	5.5	v	
V _{IN}	Input voltage on other $pins^{(2)}$	V _{SS} - 0.3	5.5		
1 . 17	Variations between different V _{DD}		50		
$ \vartriangle V_{DDx} $	power pins		50	mV	
177 77 1	Variations between all the different		50	1110	
$ V_{SSx} - V_{SS} $	$ x - V_{\rm SS} $ ground pins		50	1	

- 1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.
- 2. V_{IN} maximum must always be respected. Refer to Table below for maximum allowed injected current values.

Table 9. Current characteristics

Symbol	Definition		Unit
I _{VDD}	Total current into sum of all V_{DD}/V_{DDA} power lines(source) ⁽¹⁾	120	mA
I _{vss}	Total current out of sum of all V _{SS} ground lines(sink) ⁽¹⁾	120	mA

Symbol	Definition		Unit
I _{IO}	Output current sunk by any I/O and control pin		mA
I _{IO}	Output current source by any I/O and control pin	-18	mA
I _{INJ(PIN)} (2)(3)	Injected current on NRST pins	±5	mA
I _{INJ(PIN)} (2)(3)	Injected current on OSC_IN pin of HSE and OSC_IN pin of LSE	±5	mA
I _{INJ(PIN)} (2)(3)	Injected current on other pins ⁽⁴⁾	±5	mA
$\Sigma I_{\text{INJ(PIN)}}^{(2)}$	Total injected current(sum of all I/O and control pins) ⁽⁵⁾	±25	mA

- 1. All main power(V_{DD}, V_{DDA}) and ground(V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.
- 2. This current consumption must be properly distributed to all I/O and control pins. The total output current must not be poured/pulled between the two consecutive power supply pins of the reference high pin count LQFP package.
- 3. Negative injection disturbs the analog performance of the device.
- 4. When $V_{IN} > V_{DD}$, there is a forward injection current; when $V_{IN} < V_{SS}$, there is a reverse injection current.Do not exceed $I_{INJ(PIN)}$.
- 5. When several inputs are submitted to a current injection, the maximum $I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 10. Thermal characteristics

Symbol Definition		Max	Unit	
T _{STG}	Storage temperature range	- 45 ~ + 150	°C	
т.	Maximum junction	125	°C	
I J	temperature	125		

5.3 Operating conditions

5.3.1 General operating conditions

Table 11. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock		0	72	MHz
'HCLK	frequency		0 7 0 f _H	12	IVII IZ
£	Internal APB1 clock		0	£	MHz
f _{PCLK1}	frequency		0	f _{HCLK}	IVIIIZ
•	Internal APB2 clock		0	£	MHz
f _{PCLK2}	frequency		0	f _{HCLK}	IVITZ
	Standard operating		2.0	F. F.	
V _{DD}	voltage		2.0	5.5	V

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC not used)	Must be the same voltage as $V_{ extsf{DD}}$	2.0	5.5	V
	Analog operating voltage (ADC used)	wast be the same voltage as v _{DD}	2.5	5.5	
	Ambient temperature:	temperature: Maximum power dissipation		85	°C
T _A	T _A =85°C ⁽²⁾	Low power dissipation ⁽³⁾	-25	105	

- 1. It is recommended to use the same power supply for V_{DD} and V_{DDA} , the maximum permissible difference between V_{DD} and V_{DDA} is 300mVduring power up and normal operation.
- 2. If T_A is low, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (See subsec 5.1).
- 3. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (See subsec 5.1).

5.3.2 Operating conditions at power-up/power-down

The parameters given in the table below are based on tests under normal operating conditions.

Table 12. Operating conditions at power-up/power-down

Symbol	Parameter	Conditions	Min	Max	Unit
4	V _{VDD} rise time rate	T - 27°C	300	∞	μS/V
l∨DD	V _{VDD} fall time rate	$T_A = 27^{\circ}C$	300	∞	

5.3.3 Embedded reset and power control block characteristics

The parameters given in the table below are based on the ambient temperature and the V_{DD} supply voltage listed in Table 11.

Table 13. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[3: 0]=0000 (Rising edge)		1.82		V
		PLS[3: 0]=0000 (Falling edge)		1.71		V
	Level selection of	PLS[3: 0]=0001 (Rising edge)		2.12		V
V_{PVD}	programmable voltage detectors	PLS[3: 0]=0001 (Falling edge)		2.00		V
V PVD		PLS[3: 0]=0010 (Rising edge)		2.41		V
		PLS[3: 0]=0010 (Falling edge)		2.30		V
		PLS[3: 0]=0011 (Rising edge)		2.71		V
		PLS[3: 0]=0011 (Falling edge)		2.60		V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{PVD}	Level selection of programmable voltage detectors	PLS[3: 0]=0100 (Rising edge)		3.01		V
		PLS[3: 0]=0100 (Falling edge)		2.90		V
		PLS[3: 0]=0101 (Rising edge)		3.31		V
		PLS[3: 0]=0101 (Falling edge)		3.19		V
		PLS[3: 0]=0110 (Rising edge)		3.61		V
		PLS[3: 0]=0110 (Falling edge)		3.49		V
		PLS[3: 0]=0111 (Rising edge)		3.91		V
		PLS[3: 0]=0111 (Falling edge)		3.79		V
		PLS[3: 0]=1000 (Rising edge)		4.21		V
		PLS[3: 0]=1000 (Falling edge)		4.09		V
		PLS[3: 0]=1001 (Rising edge)		4.51		V
		PLS[3: 0]=1001 (Falling edge)		4.39		V
		PLS[3: 0]=1010 (Rising edge)		4.81		V
		PLS[3: 0]=1010 (Falling edge)		4.69		V
V _{PVDhyst} (2)	PVD hysteresis			110		mV
$V_{POR/PDR}$	Power on/down	Falling edge	1.63 ⁽¹⁾	1.66	1.68	V
	reset threshold	Rising edge		1.75		V
V _{PDRhys} ⁽²⁾	PDR hysteresis			90.9		mV
T _{RSTTEMPO} ⁽²⁾	Reset duration			0.61		ms

- 1. The product behavior is guaranteed by design down to the minimum value V_{POR/PDR}.
- 2. Guaranteed by design, not tested in production.

Note: The reset duration is measured from power-on (POR reset) to the time when the user application code reads the first instruction.

5.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

All Run-mode current consumption measurements given in this section are performed with a reduced code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode, and are connected to a static level V_{DD} or V_{SS} (no load)
- · All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} (0 ~ 24 MHz is 0 waiting period , 24 ~ 48 MHz is 1 waiting period, 48 ~ 72 MHz is 2 waiting period).

The instruction prefetching function is on. When the peripherals are enabled:
 f_{PCLK1} = f_{HCLK}.

Note: The instruction prefetching function must be set before setting the clock and bus divider.

Table 14. Typical and maximum current consumption in stop and standby modes⁽²⁾

Symbol	Parameter	Conditions	Max ⁽¹⁾ T _A =25°C	Unit
	Supply current in Stop mode	Enter the stop mode after reset	6	
I_{DD}	Supply current in Standby	Enter the standby made after reset	0.4	μΑ
	mode	Enter the standby mode after reset	0.4	

- 1. Maximum values are tested at $T_A = 25^{\circ}C$.
- 2. Data based on characterization results, not tested in production. The IO state is an analog input.

Figure 12. Typical current consumption in standby mode vs. temperature at V_{DD} = 3.3V

Figure 13. Typical current consumption in stop mode vs. temperature at V_{DD} = 3.3V

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input configuration, and are connected to a static level V_{DD} or V_{SS} (no load).
- · All the peripherals are closed, unless otherwise specified.
- The Flash memory access time is adjusted to the f_{HCLK} (0 \sim 24 MHz is 0 waiting period , 24 \sim 48 MHz is 1 waiting period, 48 \sim 72 MHz is 2 waiting period).
- ullet The ambient temperature and V_{DD} supply voltage conditions are summarized in Table 11.
- The instruction prefetching function is on. When the peripherals are enabled:
 f_{PCLK1} = f_{HCLK}.

Note: The instruction prefetch function must be set before the clock is set and the bus is divided.

Table 15. Typical current consumption in Run mode, code executing from Flash

				Тур			
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled	All peripherals	Unit	
		Internal clock e	72MHz	20.52	12.19		
	Supply current		48MHz	14.71	9.13		
I_{DD}	I _{DD}		36MHz	11.76	7.58	mA	
	in operating mode		24MHz	6.158	1.544		
			8MHz	2.176	0.962		

1. The typical value is tested at T_A = 25°Cand V_{DD} = 3.3V.

Table 16. Typical current consumption in sleep mode, code executing from Flash or RAM

Symbol P				Тур		
	Parameter	Conditions	f _{HCLK} ⁽²⁾	All peripherals enabled	All peripherals disabled	Unit
Supply current in sleep mode		72MHz				
		Internal clock	48MHz	9.84	6.12	mA
	in sieep mode		8MHz	2.17	1.55	

- 1. The typical value is tested at T_A = 25°Cand V_{DD} = 3.3V.
- 2. External clock is 8MHz, when $f_{HCLK} > 8MHz$ choose HSI48 or HSI72.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in Table 17. The MCU is placed under the following conditions:

- All I/O pins are in analog input mode, and are connected to a static level —- V_{DD} or V_{SS} (no load).
- All peripherals are disabled except when explicitly mentioned.
- The given value is calculated by measuring the current consumption.
 - with all peripherals clocked OFF
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions V_{DD} summarized in Table 11.

Table 17. On-chip peripheral current consumption⁽¹⁾

Peripheral		Typical consumption at 25 °C	Unit	Peripheral		Peripheral		Typical consumption at 25 °C	Unit
	HWDIV	2.17			SPI	7.92			
	GPIOD	0.75		APB2	TIM1	17.04	uA/MHz		
	GPIOC	0.58	uA/MHz	AFBZ	ADC	1.54			
AHB	GPIOB	0.71			SYSCFG	0.37			
	GPIOA	0.71			PWR	0.79			
	CRC	1.00			I2C	9.58			
	DMA	4.38			WWDG	5.96			
	PWM	1.75		APB1	TIM3	8.83			
APB2	TIM17	3.29			TIM2	0.50			
APB2	TIM16	3.17			UART2	5.96	1		
	TIM14	3.17			UART2				

1. $f_{HCLK} = 72MHz$, $f_{APB1} = f_{HCLK}/2$, $f_{APB2} = f_{HCLK}$, the prescale coefficient for each device is the default value.

5.3.5 External clock source characteristics

High-speed external user clock generated from an external source

The characteristic parameters given in the following table are measured using a highspeed external clock source, ambient temperature and power supply voltage meet the conditions of General operating conditions.

Table 18. High-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	User external clock source		2	8	24	MILIT
f _{HSE_ext}	frequency ⁽¹⁾		2	8	24	MHz
	OSC_IN input pin high level		0.7\/		V	
V_{HSEH}	voltage		0.7V _{DD}		V _{DD}	V
	OSC_IN input pin low level		W		0.3V _{DD}	V
V_{HSEL}	voltage		V_{SS}			
$t_{w(HSE)}$	OSC_IN high or low time(1)		16			
$t_{r(HSE)}$	OSC IN rise or fall time ⁽¹⁾				20	nS
$t_{f(HSE)}$	OOO_IIV HISC OF TAIL UITIC				20	
$C_{\text{in}(HSE)}$	OSC_IN input capacitance ⁽¹⁾			5		pF
$DuCy_{(HSE)}$	Duty cycle		45		55	%
Ι _L	OSC_IN input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$			±1	uA

1. Guaranteed by design, not tested in production.

Figure 14. High-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with an 2 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy...).

Table 19. HSE oscillator characteristics (1)(2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency		2	8	24	MHz
R _F	Feedback resistor	$R_S = 30\Omega$		1000		kΩ
C _{L1} C _{L2} ⁽³⁾	The proposed load capacitance corresponds to the crystal serial impedance $\left(R_{S}\right)^{(4)}$	$V_{DD} = 3.3V$ $V_{IN} = V_{SS}$ 30pF load		30		pF
l ₂	HSE current consumption	Startup			4.5	mA
g _m	Oscillator transconductance	V _{DD} is stabilized		8.5		mA/V
t _{SU(HSE)} (5)	Startup time	$R_S = 30\Omega$		2		mS

- 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer characteristics Parameter.
- 2. Guaranteed by design, not tested in production.
- 3. For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (Typ.) , designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .
- 4. The relatively low value of the RF resistance can be used to avoid problems arising from the use of wet conditions to provide protection, this environment resulting in leakage and bias conditions have changed. However, if the MCU is applied in bad wet conditions, the design needs to take this parameter into account.
- t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 15. Typical application with an 8 MHz crystal

5.3.6 Internal clock source characteristics

The characteristic parameters given in the table below are measured using ambient temperature and supply voltage in accordance with general operating conditions.

High-speed internal (HSI) oscillator

Table 20. HSI oscillator characteristics⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency			72		MHz
ACC _{HSI}	Accuracy of the HSI oscillator	T _A = -40°C ~ 105°C	-3		3	%
ACC _{HSI}	Accuracy of the HSI oscillator	T _A = -10°C ~ 85°C	-2		2	%
ACC _{HSI}	Accuracy of the HSI oscillator	$T_A = 0^{\circ}C \sim 70^{\circ}C$	-1		1	%
ACC _{HSI}	Accuracy of the HSI oscillator	T _A = 25	-1		1	%
t _{SU(HSI)}	HSI oscillator startup time			10		μS
I _{DD(HSI)}	HSI oscillator power consumption			200		μА

- 1. V_{DD} = 3.3V, T_A = -40°C \sim 105°C, unless otherwise specified.
- 2. Guaranteed by design, not tested in production.

Low-speed internal (LSI) oscillator

Table 21. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI} ⁽²⁾	Frequency		31	40	75	KHz
t _{SU(LSI)} (2)	LSI oscillator startup time				100	μS

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD(LSI)} (3)	LSI oscillator power			1 1	1.7	μA
	consumption			1.1	1.7	μΛ

- 1. V_{DD} = 3.3V, T_A = -40°C \sim 105°C, Unless otherwise stated
- 2. Comprehensive assessment, not tested in production.
- 3. Guaranteed by design, not tested in production.

Wake-up times from low power mode

The wake-up times listed in the table below are measured during the wake-up phase of the internal clock HSI. The clock source used when waking up depends on the current operating mode:

- · Stop or Standby mode: The clock source is the oscillator
- · Sleep mode: The clock source is the clock used when entering sleep mode

All times are measured using ambient temperature and supply voltage in accordance with common operating conditions.

Table 22. Low-power mode wakeup timings

Symbol	Parameter	Conditions	Max	Unit
t _{wusleep} (1)	Wakeup from Sleep mode	HSI clock wakeup	4.2	μS
t _{wustop} (1)	Wakeup from Stop mode	Stop HSI clock wakeup < 2μS		μS
twustdby ⁽¹⁾	Wakeup from Standby mode	HSI clock wakeup < 2μS The regulator wakes up from the off mode < 30μS	230	μS

1. The wake-up time is measured from the start of the wake-up event to the user program to read the first instruction.

5.3.7 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40^{\circ}C \sim 105^{\circ}$ Cunless otherwise specified.

Table 23. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{prog}	8-bit programming time			6	7.5	μS
t _{ERASE}	Page (512K bytes) erase time			4	5	mS

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{ME}	Mass erase time			30	40	mS
	Supply current	Read mode		9		mA
I_{DD}		Write mode			7	mA
		Erase mode			2	mA
V_{prog}	Programming voltage			1.5		V

Table 24. Flash memory endurance and data retention⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Endurance					
	(Annotation:					
NEND	Erase		20			K cycle
	number of					
	times)					
t _{RET}	Data	T _A = 105°C	20			Voor
	retention	T _A = 25°C	100			Year

- 1. Guaranteed by design, not tested in production.
- 2. Cycle tests are carried out in the whole temperature range.

5.3.8 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports), the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in the following table. They are based on the EMS levels and classes defined in application note.

Table 25. EMS characteristics

Symbol	Parameter	Conditions	Level/Class
	Fast transientvoltage burst		
	limits to be applied through	$V_{DD} = 3.3V, T_A = +25^{\circ}C,$	
V_{EFT}	100 pF on V_{DD} and V_{SS}	f _{HCLK} =48MHz.Conformingto	2A
	pinsto induce a functional	IEC 1000-4-4	
	disturbance		

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors.

5.3.9 Absolute Maximum (Electrical Sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD78A IC latch-up standard.

Table 26. ESD characteristics

Symbol	Parameter	Conditions	Max	Unit	
V	Electrostatic discharge voltage	$T_A = +25^{\circ}C$, Conforming to	6000		
$V_{ESD(HBM)}$	(Human body model)	JESD22-A114	8000	V	
	Electrostatic discharge voltage	T _A = +25°C, Conforming to	500		
$V_{ESD(CDM)}$	(Charging device model)	JESD22-C101	500		
	Lateb a	T _A = +25°C, Conforming to		A	
I _{LU}	Latch-up current	JESD78A	200	mA	

5.3.10 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in Table 8 are derived from tests.

Table 27. I/O static characteristics

Symbol Parameter		Conditions	Min	Тур	Max	Unit
V _{IL} (Hysteresis open)	Low level input voltage	CMOS Port	0.16V _{DD}		0.2V _{DD}	V
V _{IH (Hysteresis open)}	High level input voltage	CMOS Port	0.8V _{DD}		0.84V _{DD}	V
V _{IL (Hysteresis close)}	Low level input voltage	CMOS Port	0.33V _{DD}		0.37V _{DD}	V
V _{IH (Hysteresis close)}	High level input voltage	CMOS Port	0.58V _{DD}		0.62V _{DD}	V
V _{hys (Hysteresis open)}	Schmitt trigger hysteresis ⁽¹⁾		1.2	3	3.3	V
V _{hys (Hysteresis close)}	Schmitt trigger hysteresis ⁽¹⁾		0.5	1.2	1.4	V
I _{Ikg}	Input leakage current(2)				±1	μА
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	V _{IN} = V _{SS}	28.7	36	47.9	$\mathbf{k}Ω$
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = V _{DD}	25	31.2	40	$\mathbf{k}Ω$
C _{IO}	I/O pin capacitance			5		pF

- Schmitt Trigger switching hysteresis voltage level. Data based on design simulation only. Not tested in production.
- 2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins.

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (10% order).

All I/Os are CMOS (no software configuration required). Their characteristics cover more than the strict CMOS-technology.

- For V_{IH}:
 - If V_{DD} is between [2.50V \sim 3.08V]; use CMOS features.
 - If V_{DD} is between [3.08V \sim 3.60V]; include CMOS.
- For V_{IL}:
 - Use CMOS features.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ±20mA.

n the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in 5.2:

- The sum of the currents obtained from V_{DD} for all I/O ports, plus the maximum operating current that the MCU obtains on V_{DD} , cannot exceed the absolute maximum rating I_{VDD} .
- The sum of the currents drawn by all I/O ports and flowing out of V_{SS}, plus the maximum operating current of the MCU flowing out on V_{SS}, cannot exceed the absolute maximum rating I_{VSS}.

Output voltage levels

Unless otherwise stated, the parameters listed in the table below are measured using the ambient temperature and V_{DD} supply voltage in accordance with the condition of Table 11. All I/O ports are CMOS compatible.

Table 28. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin,when 8 pins absorb current	CMOS Port, I_{IO} = +8mA 2V < V_{DD} < 5.5V		0.4	V
V _{OH}	Output high level voltage for an I/O pin,when 8 pins output current	CMOS Port, I_{IO} = +8mA 2V < V_{DD} < 5.5V	V _{DD} -0.4		V
V _{OL}	Output low level voltage for an I/O pin,when 8 pins absorb current	I_{IO} = +20mA 2V < V_{DD} < 5.5V		0.4	V
V_{OH}	Output high level voltage for an I/O pin,when 8 pins output current	I_{IO} = +20mA $2V < V_{DD} < 5.5V$	V _{DD} -0.4		V

Input/output AC characteristics

The definitions and values of the input and output AC characteristics are given in figure 16 and Table 29, respectively.

Unless otherwise stated, the parameters listed in Table 29 are measured using the ambient temperature and supply voltage in accordance with the condition Table 8.

Table 29. I/O AC characteristics⁽¹⁾

MODEx[1:0]	Symbol	Parameter	Conditions	Min	Max	Unit
		Maximum	C _L = 50pF,			
00	f _{max(IO)out}	frequency ⁽²⁾	$V_{DD} = 2V \sim 5.5V$		2	MHz
		2	C _L = 50pF,			
00	t _{f(IO)out}	Output fall time	V_{DD} = 2V ~ 5.5 V		125	nS
00	4	Output rice time	C _L = 50pF,		125	
00	t _{r(IO)out}	Output rise time	V_{DD} = 2V ~ 5.5 V		125	nS
40	f	Maximum	C _L = 50pF,		20	MHz
10	f _{max(IO)out}	frequency ⁽²⁾	V_{DD} = 2V ~ 5.5 V		20	IVITIZ
10	$t_{f(IO)out}$	Output fall time	C _L = 50pF,		25	nS
10	나(IO)out	Output fail time	V_{DD} = 2V ~ 5.5		25	110
10	t	Output rise time	$C_L = 50pF,$		25	nS
10	$t_{r(IO)out}$	Output rise time	V_{DD} = 2V ~ 5.5		25	110
11		Maximum fra quan qu(2)	C _L = 30pF,		50	MHz
11	$f_{max(IO)out}$	Maximum frequency ⁽²⁾	V_{DD} = 2V ~ 5.5 V			1011 12
11	f	Maximum frequency ⁽²⁾	$C_L = 50pF,$		30	MHz
11	f _{max(IO)out}	Maximum frequency	V_{DD} = 2V ~ 5.5 V		30	IVITZ
11			$C_L = 30pF,$		5	nS
11	t _{f(IO)out}	Output fall time	V_{DD} = 2V ~ 5.5 V			110
11	4(10)0ut		$C_L = 50pF,$		8	nS
11			V_{DD} = 2V ~ 5.5 V			110
11			$C_L = 30pF,$		5	nS
11	t _{r(IO)out}	Output rise time	V_{DD} = 2V ~ 5.5 V		J	113
11	*I (IO)out		$C_L = 50pF,$		8	nS
11			V_{DD} = 2V ~ 5.5 V			113
		Pulse width of external				
	t _{EXTIDW}			10		nS
	. k					
11	t _{EXTIPW}	Pulse width of external signals detected by the EXTI controller		10	3	3

- 1. The speed of the I/O port can be configured via MODEx[1:0]. See the description of the GPIO Port Configuration Register in this chip reference manual.
- 2. The maximum frequency is defined in figure 16.

Figure 16. I/O AC characteristics

5.3.11 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, R_{PU} .

Unless otherwise stated, the parameters listed in the table below are measured using the ambient temperature and V_{DD} supply voltage in accordance with the condition of Table 11.

Table 30. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage		-0.5		0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST input high level		2		V_{DD}	V
$V_{\text{hys}(\text{NRST})}$	NRST Schmitt trigger voltage hysteresis			0.2V _{DD}		V
R _{PU} Weak pull-up equivalent resistor ⁽²⁾		V _{IN} = V _{SS}		50		kΩ
V _{NF(NRST)} ⁽¹⁾	NRST input not filtered pulse		300			ns

- 1. Data based on design simulation only. Not tested in production.
- 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (10% order).

Figure 17. Recommended NRST pin protection

- 1. The reset network is to prevent parasitic reset
- 2. The user must ensure that the potential of the NRST pin is below the maximum $V_{\text{IL}(\text{NRST})}$ listed in Table 30, otherwise the MCU cannot be reset.

5.3.12 Timer characteristics

The parameters given in the following tables are guaranteed by design.

For details on the characteristics of the I/O multiplexing function pins (output compare, input capture, external clock, PWM output), see subsubsec 5.3.10.

Table 31. TIMx⁽¹⁾ characteristics

Symbol	Parameter	Conditions	Min	Max	Unit	
$t_{res(TIM)}$	Timer resolution time		1		t _{TIMxCLK}	
$t_{\text{res}(TIM)}$	Timer resolution time	f _{TIMXCLK} = 72MHz	10.4		nS	
£	Timer external clock		0	f _{TIMxCLK}	MHz	
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 72MHz	0	72	IVII IZ	
Res _{TIM}	Timer resolution			16	Bit	
+	16-bit timer		1	65536	t _{TIMxCLK}	
tcounter	maximum period	f _{TIMxCLK} 72MHz	0.0139	910	μS	
+	The maximum possible count			65536 × 65536	$t_{TIMxCLK}$	
t _{MAX_COUNT}	The maximum possible count	f _{TIMxCLK} 72MHz		59.6	S	

1. TIMx is a generic name, representing TIM1,2,3,14,16,17.

5.3.13 Communication interfaces

I2C interface characteristics

Unless otherwise specified, the parameters given in Table 32 are derived from tests performed under the ambient temperature, f_{PCLK1} frequency and supply voltage conditions summarized in Table 11: General operating conditions.

The I2C interface conforms to the standard I2C communication protocol, but has the following limitations: SDA and SCL are not true pins. When configured as open-drain output, the PMOS transistor between the pin and V_{DD} Was closed but still exists.

The I2C I/Os characteristics are listed in Table 32, the alternate function characteristics of I/Os (SDA and SCL) refer to subsubsec 5.3.10.

Table 32. I2C characteristics

0	Damanatan	Standa	rd I2C ⁽¹⁾	Fast I20	C (1)(2)	11!4
Symbol	Parameter	Min	Max	Min	Max	Unit
t _{w(SCLL)}	SCL clock fall time	4.7		1.3		μ\$
t _{w(SCLH)}	SCL clock rise time	4.0		0.6		μ\$
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0(3)		0(4)	900(3)	, no
$t_{r(SDA)} t_{r(SDL)}$	SDA and SCL rise time		1000	2.0+0.1C _b	300	ns
$t_{f(SDA)} t_{f(SDL)}$	SDA and SCL fall time		300		300	
t _{h(STA)}	Start condition hold time	4.0		0.6		
t _{su(STA)}	Start condition setup time	4.7		0.6		
t _{su(STO)}	Stop condition setup time	4.0		0.6		μS
t _{w(STO:STA)}	Time from Stop condition to	4.7		4.0		
	Start condition	4.7		1.3		
C _b	Capacitive load of each bus		400		400	pF

- 1. Guaranteed by design, not tested in production.
- 2. f_{PCLK1}must be at least 3MHz to achieve standard mode I2C frequencies. It must be at least 12MHz to achieve fast mode I2C frequencies.
- 3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.
- 4. In order to span the undefined area of the falling edge of SCL, it must ensure that the SDA signal has a hold time of at least 300nS.

Figure 18. I2C bus AC waveform and measurement circuit⁽¹⁾

1. Measurement point is set to the CMOS level: $0.3V_{DD}$ and $0.7V_{DD}$.

SPI characteristics

Unless otherwise specified, the parameters given in Table 33 are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in Table 11.

Refer to subsubsec 5.3.10 for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Table 33. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f 1/4	CDI alook froguanay	Master mode	0	36	MHz
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	0	18	IVITIZ
$t_{r(SCK)}$	SPI clock rise and fall	Load canacitance: C = 20nE		8	no
$t_{\text{f}(\text{SCK})}$	time	Load capacitance: C = 30pF		0	ns
$t_{su(NSS)}^{(2)}$	NSS setup time	Slave mode	4t _{PCLK}		ns
$t_{h(NSS)}^{(2)}$	NSS hold time	Slave mode	73		ns

Symbol	Parameter	Conditions	Min	Max	Unit
$\begin{array}{c} & t_{\text{w(SCKH)}}^{(2)} \\ & t_{\text{w(SCKL)}}^{(2)} \end{array}$	SCK high and low time	Master mode, f _{PCLK} = 36MHz, prescale coefficient = 4	50	60	ns
$t_{su(SI)}^{(2)}$	Data input setup time, Slave mode		1		ns
t _{h(SI)} (2)	Data input hold time, Slave mode		3		ns
$t_{a(SO)}^{(2)(3)}$	Data output access time	Slave mode, f _{PCLK} = 36MHz, prescale coefficient = 4	0	55	
		Slave mode, f _{PCLK} = 24MHz		4t _{PCLK}	
$t_{\text{dis}(\text{SO})}{}^{(2)}$	Data output disable time	Slave mode	10		
$t_{v(SO)}^{(2)(1)}$	Data output valid time	Slave mode (after enable edge)		25	ns
t _{v(MO)} (2)(1)	Data output valid time	Master mode (after enable edge)		3	
	Data autout bald time	Slave mode (after enable edge)	25		
t _{h(MO)} (2)	Data output hold time	Master mode (after enable edge)	4		

- 1. Data based on characterization results. Not tested in production.
- 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
- 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

Figure 19. SPI timing diagram-slave mode and CPHA = 0

Figure 20. SPI timing diagram-slave mode and CPHA = $\mathbf{1}^{(1)}$

1. Measurement points are done at CMOS levels: $0.3\mbox{V}_{\mbox{\scriptsize DD}}$ and $0.7\mbox{V}_{\mbox{\scriptsize DD}}.$

Figure 21. SPI timing diagram-master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

5.3.14 CAN (controller area network) interface

Refer to subsubsec 5.3.10 for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

5.3.15 12-bit ADC characteristics

Unless otherwise specified, The parameters in the table below are measured using the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage in accordance with the conditions of Table 11.

Note: It is recommended to perform a calibration after each power-up

Table 34. ADC characteristics

Symbol	Parameter	Conditions	Min	Туре	Max	Unit
V_{DDA}	Supply voltage		2.0	3.3	5.5	V
V_{REF+}	Positive reference voltage		2.0		V_{DDA}	V
f _{ADC}	ADC clock frequency				15 ⁽¹⁾	MHz
f _S ⁽²⁾	Sampling rate				1	MHz
f _{TRIG} (2)	External trigger	$f_{ADC} = 15MHz$			823	KHz
'TRIG`	frequency				1/17	1/f _{ADC}
$V_{\text{AIN}}^{(2)}$	Conversion voltage range ⁽³⁾		$0 (V_{SSA} \text{ or } V_{REF}\text{-connected}$ to ground)		V_{REF^+}	V
R _{AIN} ⁽²⁾	External sample and hold capactor		See For	kΩ		
R _{ADC} ⁽²⁾	Sampling switch resistance				1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor			10		pF
t _S (2)	Compling time	f _{ADC} = 15MHz	0.1		16	μ\$
LS (2)	Sampling time		1.5		239.5	1/f _{ADC}
t _{STAB} (2)	Stabilization time			1		μ\$
	Total conversion	f _{ADC} = 15MHz	1		16.9	μ\$
$t_{conv}^{(2)}$	time (including Sampling time)		15 ~ 253 (sampling t_{S^+}) stepwise approximation 13.5			1/f _{ADC}

- 1. Guaranteed based on test during characterization. Not tested in production.
- 2. Guaranteed by design. Not tested in production.
- 3. In this series of products, V_{REF+} is internally connected to $_{DDA}$, V_{REF-} is internally connected to $_{SSA}$.

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times In(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 35. Maximum R_{AIN} at f_{ADC} = 15MHz⁽¹⁾

T _S (cycles)	t _S (μs)	\mathbf{R}_{AIN} max (k Ω)
1.5	0.1	1.2
7.5	0.5	30
13.5	0.9	57

T _S (cycles)	t _S (μs)	\mathbf{R}_{AIN} max (k Ω)
28.5	1.9	123
41.5	2.76	180
55.5	3.7	240
71.5	4.77	312
239.5	16.0	1050

1. Guaranteed by design. Not tested in production.

Table 36. ADC Accuracy - Limit Test Conditions $^{(1)(2)}$

Symbol	Parameter	Test Conditions	Туре	Max	Unit
ET	Comprehensive error		±10	±14	
EO	Offset error	$f_{PCLK2} = 60MHz, f_{ADC} =$	±4	±10	
EG	Gain error	$15 MHz, R_{AIN} < 10 K\Omega, V_{DDA}$	±6	±8	LSB
ED	Differential linearity error	= 5V,T _A = 25°C	±2	±4	
EL	Integral linearity error		±4	±6	

- 1. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current.
 - Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in subsubsec 5.3.11 does not affect the ADC accuracy.
- 2. Guaranteed based on test during characterization. Not tested in production.
- ET = Total unadjusted error: The maximum deviation between the actual and ideal transmission curves.
- EO = Offset error: The deviation between the first actual conversion and the first ideal conversion.
- EG = Gain error: The deviation between the last ideal transition and the last actual transition.
- ED = Differential linearity error: The maximum deviation between the actual step and the ideal value.
- EL = Integral linearity error: The maximum deviation between any actual conversion and the associated line of the endpoint.

Figure 22. Typical connection diagram using the ADC

- 1. See Table 36 for the values of R_{AIN} , R_{ADC} and C_{ADC} .
- 2. $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

PCB design recommendations

The power supply must be connected as shown below. The 10nFcapacitor in the figure must be a ceramic capacitor (good quality), and they should be as close as possible to the MCU chip.

Figure 23. Power supply and reference power supply decoupling circuit

5.3.16 Temperature sensor characteristics

Table 37. Temperature sensor characteristics (3)(4)

Symbol	Parameter	Min	Туре	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with respect to				.00
	temperature		±5		°C
Avg_Slope ⁽¹⁾	Average slope	4.571	4.801	5.984	mV/°C
$V_{25}^{(1)}$	Voltage at 25°C	1.433	1.451	1.467	V
t _{start} (2)	Setup time			10	μs
T _{S_temp} (2)	ADC sampling time when	10			0
	reading temperature	10			μS

- 1. Guaranteed based on test during characterization. Not tested in production.
- 2. Guaranteed by design. Not tested in production.
- 3. The shortest Sampling time can be determined by the application through multiple iterations.
- 4. $V_{DD} = 3.3V$.

5.3.17 Comparator characteristics

Table 38. Comparator characteristics

Symbol	Parameter	Register configuration	Min	Туре	Max	Unit
HYST	Hysteresis	00		0		mV
HYST	Hysteresis	01		15		mV
HYST	Hysteresis	10		30		mV

Symbol	Parameter	Register configuration	Min	Туре	Max	Unit
HYST	Hysteresis	11		90		mV
OFFSET	Offset voltage	00	0.091	0.213	0.358	mV
OFFSET	Offset voltage	01	3.23	7.51	12.08	mV
OFFSET	Offset voltage	10	9.79	15	20.8	mV
OFFSET	Offset voltage	11	34.25	47.4	62.22	mV
DELAY ⁽¹⁾	Propagation delay	00		80		nS
DELAY ⁽¹⁾	Propagation delay	01		51		nS
DELAY ⁽¹⁾	Propagation delay	10		26		nS
DELAY ⁽¹⁾	Propagation delay	11		9		nS
$I_q^{(2)}$	Operating current mean	00		4.5		uA
$I_q^{(2)}$	Operating current mean	01		4.4		uA
$I_q^{(2)}$	Operating current mean	10		4.4		uA
$I_q^{(2)}$	Operating current mean	11		4.4		uA

- 1. The output flips 50% of the time and the time difference between the input and the flip.
- 2. Total current consumption, operating current.

6

Package information

Package information

6.1 LQFP48 Package information

Figure 24. LQFP48 - 48-pin low-profile quad flat package outline

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 39. LQFP48 mechanical data

0		Millimeters	
Symbol	Min	Тур	Мах
A			1.60
A1	0.05		0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18		0.27
b1	0.17	0.20	0.23
С	0.13		0.18
c1	0.12	0.127	0.134
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
е		0.50	
L	0.45	0.60	0.75
L1		1.00REF	
L2		0.25BSC	
R1	0.08		
R2	0.08		0.20
S	0.20		
N		Number of pins = 48	

6.2 LQFP32 Package information

Figure 25. LQFP32 - 32-pin low-profile quad flat package outline

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 40. LQFP32 mechanical data

Cumbal		Millimeters	
Symbol	Min	Тур	Max
A			1.60
A1	0.05		0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.32		0.43
b1	0.31	0.35	0.39
С	0.13		0.18
c1	0.12	0.127	0.134

O		Millimeters			
Symbol	Min	Тур	Max		
D	8.80	9.00	9.20		
D1	6.90	7.00	7.10		
E	8.80	9.00	9.20		
E1	6.90	7.00	7.10		
е		0.80			
L	0.45	0.60	0.75		
L1		1.00REF			
L2		0.25BSC			
R1	0.08				
R2	0.08		0.20		
S	0.20				
N	Number of pins = 32				

6.3 QFN32 Package information

Figure 26. QFN32 - 32-pin quad flat no-leads package outline

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 41. QFN32 mechanical data

Cymhal		Millimeters	
Symbol	Min	Тур	Max
А	0.7	0.75	0.80
A1	0.00	0.02	0.05
A2	0.50	0.55	0.60
A3		0.20REF	
b	0.20	0.25	0.30
D	4.90	5.00	5.10
Е	4.90	5.00	5.10
D2	3.40	3.50	3.60

Or mark at	Millimeters		
Symbol	Min	Тур	Max
E2	3.40	3.50	3.60
е		0.5	
Н	0.30REF		
K	0.35REF		
L	0.35	0.40	0.45
R	0.09		
c1		0.08	
c2		0.08	
N	Number of pins = 32		

6.4 TSSOP20 Package information

Figure 27. TSSOP20 - 20-lead thin shrink small outline package outline

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Table 42. TSSOP20 mechanical data

O. mala al		Millimeters				
Symbol	Min	Тур	Max			
A			1.20			
A1	0.05		0.15			
A2	0.8	1.00	1.05			
b	0.19		0.30			
С	0.09		0.20			
D	6.40	6.50	6.60			
Е	6.25	6.40	6.55			
E1	4.30	4.40	4.50			

Symbol	Millimeters			
	Min	Тур	Max	
е		0.65		
L	0.45	0.60	1	
L1	0.45		0.75	
N	Number of pins = 20			

7

Ordering information

Ordering information

Figure 28. Ordering information scheme

8

Revision history

Revision history

Table 43. Document revision history

Revision	Changes	Date
Rev1.04	Modify the package parameters.	2019/3/11
Rev1.03	Modify ADC electrical parameters.	2019/1/7
Rev1.02	Modify electrical parameters.	2018/10/11
Rev1.01	Modify the pin definition.	2018/9/25
Rev1.00	Initial release.	2018/9/20