AJUSTE DE CURVAS. O MÉTODO DOS MÍNIMOS QUADRADOS.

CASO DISCRETO

Profa. Dra. Fernanda Paula Barbosa Pola

SUMÁRIO

- Introdução e contextualização;
- Objetivos;
- Ajuste de Curvas : O Método dos Mínimos Quadrados
 - Caso discreto
 - Ajuste linear Regressão linear
 - Ajuste Polinomial
- Considerações finais;
- Referências.

INTRODUÇÃO E CONTEXTUALIZAÇÃO

- Em geral, experimentos geram uma gama de dados que devem ser analisados para a criação de um modelo.
- Obter uma função matemática que represente (ou que ajuste) os dados permite fazer simulações do processo de forma confiável, reduzindo assim repetições de experimentos que podem ter um custo alto.

INTRODUÇÃO E CONTEXTUALIZAÇÃO

- Em geral usa-se aproximações de funções nas seguintes situações:
 - Quando se deseja extrapolar ou fazer previsões em regiões fora do intervalo considerado;
 - Quando os dados tabelados são resultados de experimentos, onde erros na obtenção destes resultados podem influenciar a sua qualidade;
 - Quando deseja-se substituir uma função conhecida f(x) por outra função g(x) que facilite cálculos como derivadas e integrais.

OBJETIVOS

- O objetivo é obter uma função que seja uma "boa aproximação" e que permita extrapolações com alguma margem de segurança.
- A escolha das funções pode ser feita observando o gráfico dos pontos tabelados, baseando-se em fundamentos teóricos dos experimentos que forneceu a tabela ou através de uma função já conhecida.

OBJETIVOS

- Os métodos utilizados buscam uma aproximação do que seria o valor exato. Dessa forma é inerente aos métodos trabalhar com a aproximação, levando-se em consideração os erros e os desvios.
- O Método dos Mínimos Quadrados é um método bastante utilizado para ajustar uma determinada quantidade de pontos e aproximar funções.

AJUSTE DE CURVAS - INTRODUÇÃO

Graficamente, a extrapolação e o ajuste por barras de erros são vistos na figura abaixo:

AJUSTE DE CURVAS - INTRODUÇÃO

- Temos que ajustar estas funções tabeladas por uma função que seja uma "boa aproximação" e que permita extrapolações com alguma margem de segurança.
- Dados os pontos $(x_1, f(x_1)), (x_2, f(x_2)), \dots, (x_m, f(x_m))$ num intervalo [a,b], devemos escolher funções $g_1(x), g_2(x), \dots, g_n(x)$, e constantes $\alpha_1(x), \alpha_2(x), \dots, \alpha_n(x)$ tais que a função

 $\varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \alpha_n g_n(x)$ se aproxime de f(x).

AJUSTE DE CURVAS - INTRODUÇÃO

- Este modelo é dito linear pois os coeficientes a determinar $\alpha_1(x)$, $\alpha_2(x)$,, $\alpha_n(x)$ aparecem linearmente.
- Note que as funções $g_1(x)$, $g_2(x)$,, $g_n(x)$ podem ser funções não lineares, por exemplo: $g_1(x) = e^x$, $g_2(x) = (1+x^2)$,

Como escolher as funções $g_1(x), g_2(x),, g_n(x)$

AJUSTE DE CURVAS – CASO DISCRETO

Podemos escolher as funções

$$g_1(x), g_2(x), \dots, g_n(x)$$

observando os pontos tabelados ou a partir de conhecimentos teóricos do experimento que nos forneceu a tabela. Portanto, dada uma tabela de pontos, devese primeiro colocar estes pontos num gráfico cartesiano. O gráfico resultante é chamado de diagrama de dispersão.

AJUSTE DE CURVAS – CASO DISCRETO

Seja a tabela

X											1.0
f(x)	2.05	1.153	0.45	0.4	0.5	0	0.2	0.6	0.512	1.2	2.05

• O diagrama de dispersão é dado por:

AJUSTE DE CURVAS – CASO DISCRETO

- Escolhemos $g_1(x) = x^2$ a partir da forma dos pontos no diagrama de dispersão.
- Procuramos a função que se aproxime ao máximo de f(x) que tenha a forma

$$\varphi(x) = \alpha_1 g_1(x) = \alpha x^2$$
(parábola passando pela origem)

• PROBLEMA 2: Qual o valor de α que gera melhor ajuste da parábola?

AJUSTE DE CURVAS – CASO CONTÍNUO

• Dada uma função f(x) contínua em [a,b] e escolhidas as funções $g_1(x), g_2(x),, g_n(x)$ todas contínuas em [a,b], devemos determinar as constantes $\alpha_1, \alpha_2,, \alpha_n$ de modo que a função

$$\varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \dots + \alpha_n g_n(x)$$

se aproxime ao máximo de f(x)

AJUSTE DE CURVAS – CASO CONTÍNUO

 Tanto no caso discreto como no caso contínuo o que significa ficar mais próxima?

• Ideia: A função $\varphi(x)$ é tal que o módulo da área sob a curva $|\varphi(x)-f(x)|$ seja mínimo!

• Objetivo: encontrar coeficientes α_j tais que a função

$$\varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \dots + \alpha_n(x) g_n(x)$$

se aproxime ao máximo de f(x)

Método dos Mínimos Quadrados

Consiste em escolher os α_j 's de modo que a soma dos quadrados dos desvios seja mínima.

- Desvio em x_k : $\mathbf{d}_k = f(x_k) \varphi(x_k)$
- Se a soma dos quadrados dos desvios

$$\sum_{k=1}^{m} \mathbf{d}_{k}^{2} = \sum_{k=1}^{m} (f(x_{k}) - \varphi(x_{k}))^{2}$$

é mínima, cada desvio $\mathbf{d}_k = f(x_k) - \varphi(x_k)$ será pequeno. Assim, α_j 's devem ser tais que minimizem a função

$$\mathbf{F}(\alpha_1, \alpha_2, \dots \alpha_n) = \sum_{k=1}^{m} [f(x_k) - \varphi(x_k)]^2$$

• Para obter um ponto mínimo devemos encontrar os números críticos, ou seja, α_j 's tais que

$$\left. \frac{\partial \mathbf{F}}{\partial \alpha_j} \right|_{(\alpha_1, \alpha_2, \dots, \alpha_n)} = 0, \quad j = 1, 2 \dots n$$

onde

$$\mathbf{F}(\alpha_{1}, \alpha_{2}, \dots \alpha_{n}) = \sum_{k=1}^{m} [f(x_{k}) - \alpha_{1}g_{1}(x_{k}) - \alpha_{2}g_{2}(x_{k}) - \dots - \alpha_{n}g_{n}(x_{k})]^{2}$$

Calculando as derivadas

$$\left. \frac{\partial \mathbf{F}}{\partial \alpha_j} \right|_{(\alpha_1, \alpha_2, \dots \alpha_n)} =$$

$$2\sum_{k=1}^{m} [f(x_k) - \alpha_1 g_1(x_k) - \alpha_2 g_2(x_k) - \dots - \alpha_n g_n(x_k)][-g_j(x_k)]$$

Igualando a zero,

$$\sum_{k=1}^{m} [f(x_k) - \alpha_1 g_1(x_k) - \alpha_2 g_2(x_k) - \dots - \alpha_n g_n(x_k)] [g_j(x_k)] = 0, j = 1, 2, \dots, n$$

Ou seja, temos um sistema linear a resolver

$$\sum_{k=1}^{m} [f(x_k) - \alpha_1 g_1(x_k) - \alpha_2 g_2(x_k) - \dots - \alpha_n g_n(x_k)][g_1(x_k)] = 0$$

$$\sum_{k=1}^{m} [f(x_k) - \alpha_1 g_1(x_k) - \alpha_2 g_2(x_k) - \dots - \alpha_n g_n(x_k)][g_2(x_k)] = 0$$

$$\vdots$$

$$\sum_{k=1}^{m} [f(x_k) - \alpha_1 g_1(x_k) - \alpha_2 g_2(x_k) - \dots - \alpha_n g_n(x_k)][g_n(x_k)] = 0$$

Reescrevendo o sistema,

$$\left[\sum_{k=1}^{m} g_{1}(x_{k})g_{1}(x_{k}) \right] \alpha_{1} + \dots + \left[\sum_{k=1}^{m} g_{n}(x_{k})g_{1}(x_{k}) \right] \alpha_{n} = \sum_{k=1}^{m} f(x_{k})g_{1}(x_{k})$$

$$\left[\sum_{k=1}^{m} g_{1}(x_{k})g_{2}(x_{k}) \right] \alpha_{1} + \dots + \left[\sum_{k=1}^{m} g_{n}(x_{k})g_{2}(x_{k}) \right] \alpha_{n} = \sum_{k=1}^{m} f(x_{k})g_{2}(x_{k})$$

$$\vdots$$

$$\left[\sum_{k=1}^{m} g_{1}(x_{k})g_{n}(x_{k}) \right] \alpha_{1} + \dots + \left[\sum_{k=1}^{m} g_{n}(x_{k})g_{n}(x_{k}) \right] \alpha_{n} = \sum_{k=1}^{m} f(x_{k})g_{n}(x_{k})$$

Sistema linear com n equações com n incógnitas

As equações desse sistemas linear são as chamadas equações normais.

• O sistema linear pode ser escrito na forma matricial $A\alpha = b$:

$$a_{11}\alpha_{1} + a_{12}\alpha_{2} + \dots + a_{1n}\alpha_{n} = b_{1}$$

$$a_{21}\alpha_{1} + a_{22}\alpha_{2} + \dots + a_{2n}\alpha_{n} = b_{2}$$

$$\dots$$

$$a_{n1}\alpha_{1} + a_{n2}\alpha_{2} + \dots + a_{nn}\alpha_{n} = b_{n}$$

- $a_{ij} = a_{ij}$, a matriz A é simétrica;
- Se o sistema tem uma única solução, esta solução é o ponto mínimo da função $F(\alpha_1,\alpha_2,...,\alpha_n)$

Caso Linear (Regressão Linear)

Aproximação através de uma função linear do tipo:

$$\phi(x) = \alpha_1 x_i + \alpha_0$$

Assim o objetivo é determinar o valor de α_0 e α_1 , que minimize:

$$E = \sum_{i=1}^{m} [y_i - (\alpha_1 x_i + \alpha_0)]^2$$

AJUSTE LINEAR

• Para que E seja mínimo é necessário que:

$$\frac{\partial E}{\partial \alpha_{\scriptscriptstyle 0}} = 0$$

$$\frac{\partial E}{\partial \alpha_{_{1}}} = 0$$

AJUSTE LINEAR

 As equações simplificam-se nas Equações Normais

$$\alpha_0 m + \alpha_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$

$$\alpha_0 \sum_{i=1}^m x_i + \alpha_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i$$

AJUSTE LINEAR

A solução para o sistema de equações é:

$$\alpha_{0} = \frac{\left(\sum_{i=1}^{m} x_{i}^{2}\right)\left(\sum_{i=1}^{m} y_{i}\right) - \left(\sum_{i=1}^{m} x_{i} y_{i}\right)\left(\sum_{i=1}^{m} x_{i}\right)}{m\left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}$$

$$\alpha_{1} = \frac{m\left(\sum_{i=1}^{m} x_{i} y_{i}\right) - \left(\sum_{i=1}^{m} x_{i}\right)\left(\sum_{i=1}^{m} y_{i}\right)}{m\left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}$$

Caso Linear (Regressão Linear)

Exemplo 1: Considerando os dados da Tabela 1, e através do gráfico gerado, pode-se definir que tipo de curva melhor se ajusta aos dados.

Tabela 1

x_i	1	2	3	4	5	6	7	8	9	10
y_i	1,3	3,5	4,2	5,0	7,0	8,8	10,1	12,5	13,0	15,6

Diagrama de Dispersão para os dados da Tabela 1

 Considerando a Tabela 1, e os dados necessários paras as equações normais, a Tabela 2 pode ser

construída:

i	x_i	y_i	x_i^2	$x_i y_i$
1	1	1,3	1	1,3
2	2	3,5	4	7,0
3	3	4,2	9	12,6
4	4	5,0	16	20,0
5	5	7,0	25	35,0
6	6	8,8	36	52,8
7	7	10,1	59	70,7
8	8	12,5	64	100,0
9	9	13,0	81	117,0
10	10	15,6	100	156,0
Σ	55	81	385	572,4

• Considerando os dados da Tabela 2, os parâmetros α_0 e α_1 podem ser calculados como:

$$\alpha_0 = -0.360$$

$$\alpha_1 = 1,538$$

 Assim a reta a ser ajustada é determinada por:

$$y = 1,538x - 0,360$$

Pode-se observar o ajuste através da reta:

Caso Linear (Regressão Linear)

Exemplo2: Encontre a reta de mínimos quadrados que melhor se ajusta aos pontos (2,1), (5,2), (7,3), (8,3). Calculemos para $g_1(x)=1$ e $g_2(x)=x$.

$$\sum_{k=1}^{4} 1_k \cdot 1_k \alpha_1 + \sum_{k=1}^{4} x_k \cdot 1_k \alpha_2 = \sum_{k=1}^{4} f(x_k) \cdot 1_k$$
$$\sum_{k=1}^{4} x_k \cdot 1_k \alpha_1 + \sum_{k=1}^{4} x_k \cdot x_k \alpha_2 = \sum_{k=1}^{4} f(x_k) \cdot x_k$$

Logo

$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}^{-1} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 142 & -22 \\ -22 & 4 \end{bmatrix} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}$$

$$\varphi(x) = \frac{2}{7} + \frac{5}{14}x$$

Caso Polinomial

O processo usado para o ajuste linear pode ser estendido para ajuste polinomial.

Assim, uma função polinomial de grau *n* é dada por:

$$P_n(x) = \alpha_n x^n + \alpha_{n-1} x^{n-1} + \dots + \alpha_1 x + \alpha_0$$

O objetivo é minimizar o erro:

$$E = \sum_{i=1}^{m} \left[y_i - P_n(x_i) \right]^2$$

Como no caso linear, para que E seja minimizado é necessário que:

$$\left| \frac{\partial E}{\partial \alpha_j} (\alpha_0, \alpha_1, \dots, \alpha_n) = 0 \right| \quad \text{para cada } j = 0, 1, \dots, n.$$

Isto fornece as n+1 equações normais nas n+1 incógnitas α_i :

$$\sum_{k=0}^{n} \alpha_{k} \sum_{i=1}^{m} x_{i}^{j+k} = \sum_{i=1}^{m} y_{i} x_{i}^{j} \quad \text{para cada } j = 0, 1, ..., n.$$

$$\alpha_0 m + \alpha_1 \sum_{i=1}^m x_i + \alpha_2 \sum_{i=1}^m x_i^2 + \dots + \alpha_n \sum_{i=1}^m x_i^n = \sum_{i=1}^m y_i$$

$$\alpha_0 \sum_{i=1}^m x_i + \alpha_1 \sum_{i=1}^m x_i^2 + \alpha_2 \sum_{i=1}^m x_i^3 + \dots + \alpha_n \sum_{i=1}^m x_i^{n+1} = \sum_{i=1}^m y_i x_i$$

$$\vdots$$

$$\vdots \\ \alpha_0 \sum_{i=1}^m x_i^n + \alpha_1 \sum_{i=1}^m x_i^{n+1} + \alpha_2 \sum_{i=1}^m x_i^{n+2} + \dots + \alpha_n \sum_{i=1}^m x_i^{2n} = \sum_{i=1}^m y_i x_i^n$$

Ajustar os dados da Tabela 3 com um polinômio de grau dois utilizando o método dos mínimos quadrados.

Tabela 3

i	x_i	y_i
1	0,00	1,0000
2	0,25	1,2840
3	0,50	1,6487
4	0,75	2,1170
5	1,00	2,7183

O MÉTODO DOS MÍNIMOS QUADRADOS

i	X_i	y_i	x_i^2	x_i^3	x_i^4	$x_i y_i$	$x_i^2 y_i$
1	0,00	1,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,25	1,2840	0,0625	0,1563	0,0039	0,3210	0,0803
3	0,50	1,6487	0,2500	0,1250	0,0625	0,8244	0,4122
4	0,75	2,1170	0,5625	0,4219	0,3164	1,5878	1,1908
5	1,00	2,7183	1,0000	1,0000	1,000	2,7183	2,7183
Σ	2,50	8,7680	1,875	1,5625	1,3828	5,4514	4,4015

O MÉTODO DOS MÍNIMOS QUADRADOS

Para este problema, n = 2, m = 5 e as três equações normais são:

$$5,0\alpha_0 + 2,5\alpha_1 + 1,875\alpha_2 = 8,7680$$

$$2,5\alpha_0 + 1,875\alpha_1 + 1,5625\alpha_2 = 5,4514$$

$$1,875\alpha_0 + 1,5625\alpha_1 + 1,3828\alpha_2 = 4,4015$$

Resolvendo o sistema, obtêm-se:

$$|\alpha_0 = 1,0051| |\alpha_1 = 0,8647| |\alpha_2 = 0,8432|$$

O MÉTODO DOS MÍNIMOS QUADRADOS

$$y = 1,0051 + 0,8647x + 0,8432x^2$$

O erro total

$$E = \sum_{i=1}^{5} [y_i - P(x_i)]^2 = 2,74 \times 10^{-4}$$

é o mínimo que pode ser obtido usando um polinômio com grau máximo 2

O MÉTODO DOS MÍNIMOS QUADRADOS CASO DISCRETO

Caso Polinomial

Exemplo 3: Seja o conjunto de pontos:

X		-0.75									
f(x)	2.05	1.153	0.45	0.4	0.5	0	0.2	0.6	0.512	1.2	2.05

Encontre a parábola através dos mínimos quadrados que melhor se ajusta aos pontos da tabela.

 Vimos pelo diagrama de dispersão que uma parábola pela origem seria uma boa escolha, logo seja,

$$g_1(x) = x^2 \Longrightarrow \varphi(x) = \alpha_1 x^2 = \alpha x^2$$

O MÉTODO DOS MÍNIMOS QUADRADOS CASO DISCRETO

Logo temos uma equação dada por,

$$[\sum_{k=1}^{11} g_1(x_k)g_1(x_k)]\alpha_1 = \sum_{k=1}^{11} f(x_k)g_1(x_k)$$

$$\Rightarrow \alpha_1 \sum_{k=1}^{11} [g_1(x_k)]^2 = \sum_{k=1}^{11} f(x_k)g_1(x_k)$$

$$\Rightarrow \alpha_1 \sum_{k=1}^{11} [(x_k)]^4 = \sum_{k=1}^{11} [(x_k)]^2 f(x_k)$$

O MÉTODO DOS MÍNIMOS QUADRADOS CASO DISCRETO

Calculando as somas:

x	-1	-0,75	-0,6	-0,5	-0,3	0	0,2	0,4	0,5	0,7	1	somas
x2.x2	1	0,3164	0,1296	0,0625	0,0081	0	0,0016	0,0256	0,0625	0,2401	1	2,8464
f(x).x2	2,05	0,6485	0,162	0,1	0,045	0	0,008	0,096	0,128	0,588	2,05	5,8756

Nossa equação é

$$2,8464\alpha = 5,8756$$

 $\alpha = 2,0642$

Então $\varphi(x) = 2.0642x^2$ é a parábola que melhor se aproxima, no sentido dos quadrados mínimos, da função tabelada.

- Existem casos, onde o diagrama de dispersão de uma função indica que os dados devem ser ajustados por uma função não linear.
- Ocasionalmente, é apropriado supor que os dados estejam relacionados exponencialmente.
- Exemplo: $\phi(x) = ae^{bx}$, para a e b constantes.
- A <u>dificuldade</u> de aplicação do método dos mínimos quadrados neste caso consiste na tentativa de <u>minimizar o erro.</u>

 Para estes casos, um Processo de Linearização deve ser empregado, para que seja possível aplicar o Método dos Mínimos Quadrados.

 Neste caso, podemos proceder da seguinte forma:

□ Caso I: Função Exponencial

$$\varphi(x) = y = ae^{bx}$$

□ Aplicando logaritmo em ambos os lados, obtêm-se:

$$\ln(y) = \ln(ae^{bx}) = \ln(a) + bx$$

□ Realizando as seguintes substituições:

$$\square$$
 Obtêm-se: $Y = \alpha_1 X + \alpha_0$

$$Y = \ln(y)$$

$$\alpha_0 = \ln(a)$$

$$\alpha_1 = b$$

$$X = x$$

□ Caso II: Função Logarítmica

$$y = a \ln(bx)$$

- \Box Expandindo: $y = a \ln(b) + a \ln(x)$
- □ Realizando as seguintes substituições:

$$Y = y$$

$$\alpha_0 = a \ln(b)$$

$$\alpha_1 = a$$

$$X = \ln(x)$$

$$\square$$
 Obtêm-se: $Y = \alpha_1 X + \alpha_0$

□ Caso III: Função Potencial

$$y = ax^b$$

□ Aplicando logaritmo em ambos os lados:

$$\ln(y) = \ln(ax^b) = \ln(a) + \ln(x^b) = \ln(a) + \ln(x)$$

□ Realizando as seguintes substituições:

$$\square$$
 Obtêm-se: $Y = \alpha_1 X + \alpha_0$

$$Y = \ln(y)$$

$$\alpha_0 = \ln(a)$$

$$\alpha_1 = b$$

$$X = \ln(x)$$

□ Caso IV: **Função Hiperbólica**

$$y = a + \frac{b}{x}$$

□ Realizando as seguintes substituições:

$$Y = y$$

$$\alpha_0 = a$$

$$\alpha_1 = b$$

$$X = x^{-1}$$

$$\Box$$
 Obtêm-se: $Y = \alpha_1 X + \alpha_0$

• Usa-se as equações de Ajuste Linear para obter α_0 e α_1

$$\alpha_0 m + \alpha_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$

$$\alpha_0 \sum_{i=1}^m x_i + \alpha_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i$$

LEMBRE-SE!

Após aplicar o método dos mínimos quadrados, é preciso fazer as <u>substituições</u>
 <u>necessárias</u> para encontrar os parâmetros
 <u>a</u> e <u>b</u> da função de aproximação original.

IMPORTANTE

 Observe que os parâmetros assim obtidos não são ótimos dentro do critério dos quadrados mínimos, porque ajustando o problema estamos

<u>linearizado</u> e não o problema <u>original.</u>

Exemplo:

Encontrar uma função que se ajusta aos valores da tabela abaixo:

x	y
-1,0	36,547
-0,7	17,267
-0,4	8,155
-0,1	3,852
0,2	1,82
0,5	0,86
0,8	0,406
1,0	0,246

 \square Como o ajuste será realizado por uma função exponencial é necessário calcular: $Y = \ln y$

i	x	y	Y = ln(y)	x_i^2	$x_i Y_i$
1	-1,0	36,547	3,599	1,00	-3,599
2	-0,7	17,264	2,849	0,49	-1,994
3	-0,4	8,155	2,099	0,16	-0,839
4	-0,1	3,852	1,349	0,01	-0,135
5	0,2	1,820	0,599	0,04	0,120
6	0,5	0,860	-0,151	0,25	-0,075
7	0,8	0,406	-0,901	0,64	-0,721
8	1,0	0,246	-1,402	1,00	-1,402
Σ	0,3	69,15	8,041	3,59	-8,645

$$\alpha_0 = 1,099$$

$$\alpha_0 = \ln(a)$$

$$\alpha_1 = -2, 5$$

$$\alpha_1 = -b$$

$$a = 3,001$$

$$b = 2, 5$$

$$y = 3,001e^{-2,5x}$$

Uma vez escolhida uma função não linear
em a, b, ... para ajustar uma função, uma
forma de verificar se a escolha foi razoável
é aplicar o <u>Teste de Alinhamento</u>

 Fazer a <u>linearização</u> da função não linear escolhida;

 Fazer o <u>diagrama de dispersão</u> dos novos dados;

 Se os pontos do diagrama estiverem alinhados, isto significará que a <u>função</u> <u>linear</u> foi uma "<u>boa escolha</u>".

Gráfico de x versus Y = ln y

i	X	y	Y = ln(y)
1	-1	36,547	3,599
2	-0,7	17,264	2,849
3	-0,4	8,155	2,099
4	-0,1	3,852	1,349
5	0,2	1,820	0,599
6	0,5	0,860	-0,151
7	0,8	0,406	-0,901
8	1	0,246	-1,402
Σ	0,3	69,15	8,041

Diagrama de dispersão dos novos dados ($Y = \ln y$).

- Exemplo:
- □ Usando o Método dos Mínimos Quadrados, ajustar uma curva do tipo $s = q t^p$ aos dados abaixo:

t	2,2	2,7	3,5	4,1
S	65	60	53	50

- \square Qual o valor de *s* quando t = 4,5?
- \square Qual o vaor de t quando s = 40?

□ Caso III: Função Potencial

$$s=qt^p$$

□ Aplicando logaritmo em ambos os lados:

$$\log s = \log q + p \log t$$

□ Realizando as seguintes substituições:

$$Y = \log s$$

$$\alpha_0 = \log q$$

$$\alpha_1 = p$$

$$X = \log t$$

 \square Obtêm-se: $\mathbf{Y} = \alpha_1 \mathbf{X} + \alpha_0$

□ Temos então:

i	t	S	X_i	Y_i	X_i^2	$X_i Y_i$
1	2,2	65	0,3424	1,8129	0,1172	0,6207
2	2,7	60	0,4314	1,7782	0,1861	0,7671
3	3,5	53	0,5441	1,7243	0,2960	0,9382
4	4,1	50	0,6128	1,6990	0,3755	1,0411
Σ			1,9307	7,0144	0,9748	3,3671

$$4\alpha_0 + 1,9307\alpha_1 = 7,0144$$

$$1,9307\alpha_0 + 0,9748\alpha_1 = 3,3671$$

$$\alpha_0 = 1,963$$
 $\alpha_0 = \log q$

$$\alpha_1 = -0,434$$
 $\alpha_1 = p$

$$q = 91,83$$

$$p = -0,434$$

$$s = 91,83t^{-0,434}$$

□ Se:

$$s = 91,83t^{-0,434}$$

 \Box então, para t = 4.5; $s \approx 48$, e para s = 40; $t \approx 6.8$.

CONSIDERAÇÕES FINAIS

- O ajuste de curvas é uma boa estratégia para avaliar a natureza de uma massa de dados;
- Ele mostra qual o comportamento da tabela, ou seja, ele busca por uma curva contínua, conhecida, que possa representar o comportamento da tabela.

REFERÊNCIAS

- M.A. Gomes Ruggiero, V. L. da Rocha Lopes.
 Cálculo Numérico Aspectos Teóricos e Computacionais, 2ª edição, Editora Pearson, 1997.
- M.C. Cunha. Métodos Numéricos. 2a edição, Editora da Unicamp, 2000.
- N.B. Franco. Cálculo Numérico. Pearson Prentice Hall, 2007.
- Richard L. Burden e J. Douglas Faires, Análise Numérica, Cengage Learning, Tradução da 8. Ed. Americana, 2008