F. Méot, Dec. 2016

Effect of snakes on tunes and chromas, at injection

Contents

 $\overline{}$

• RHIC 4-module snakes are simulated using Ramesh's two 3D OPERA maps of respectively right-handed and left-handed modules.

• Tunes and chromas, snakes off or on, $G\gamma = 45.5$.

Note: inkection optics should be used, collision is, instead, for now (optical functions plots in slied # 5). Snakes change the focusing in IR regions, this may have substantial effect on tune. This has to be updated with proper optics.

SNAKES ON SNAKES OFF Reference, before change of frame (part # Reference, before change of frame (part # 1) : 0. -4.56024376E-06 6.31737633E-06 -1.55944093E-06 3.37854334E-05 3.83384968E+05 1.27982854E+01 0. -3.46581390E-06 -1.18678295E-05 0. 0. 3.83384557E+05 1.27982715E+01 TWISS parameters, periodicity of 1 is assumed TWISS parameters, periodicity of 1 is assumed - COUPLED -- COUDLED -Beam matrix (beta/-alpha/-alpha/qamma) and periodic dispersion (MKSA units) Beam matrix (beta/-alpha/-alpha/gamma) and periodic dispersion (MKSA units) 1.936703 0.050666 0.000000 0.000000 0.000000 0.000149 1.949062 0.058889 0.000000 0.000000 0.000000 0.001580 0.050666 0.517667 0.000000 0.000000 0.000000 0.000000 0.058889 0.514847 0.000000 0 000000 0 002030 0.000000 0.000000 2.007300 -0.332127 0.000000 -0.000119 0.000000 0.000000 2.059936 -0.027239 0.000000 0.000000 0.000000 -0.332127 0.553135 0.000000 -0.001162 0.000000 -0.027239 0.485812 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Betatron tunes (Q1 Q2 modes) Betatron tunes (01 02 modes) NU Y = 0.68194766 NU Z = 0.73614756 NU Y = 0.68499553 $NU_Z = 0.67299602$ - EDWARDS AND TENG'S PARAMETRIZATION -- EDWARDS AND TENG'S PARAMETRIZATION -MODE 1 MODE 2 MODE 2 FRACTIONAL PART OF THE BETATRON TUNES IN THE DECOUPLED FRAME: 0.67299602 FRACTIONAL PART OF THE BETATRON TUNES IN THE DECOUPLED FRAME: 0.68194766 0.73614756 EDWARDS-TENG'S PARAMETERS: -0.05888897 - ALPHA: 0.02723900 - ALPHA: 1.94906212 2.05993600 1.93670259 2.00729961 - GAMMA: 0.51484655 0.48581216 - GAMMA: 0.51766702 0.55313533 HAMILTONIAN PERTURBATION PARAMETERS: HAMILTONIAN PERTURBATION PARAMETERS: - DISTANCE FROM THE NEAREST DIFFERENCE LINEAR RESONANCE: - DISTANCE FROM THE NEAREST DIFFERENCE LINEAR RESONANCE: - COUPLING STRENGTH OF THE DIFFERENCE LINEAR RESONANCE: 0.00000000 - COUPLING STRENGTH OF THE DIFFERENCE LINEAR RESONANCE: - DISTANCE FROM THE NEAREST SUM LINEAR RESONANCE: 0 00000000 - DISTANCE FROM THE NEAREST SUM LINEAR RESONANCE: 0.41809522 - UNPERTURBED HORIZONTAL TUNE: - UNPERTURBED HORIZONTAL TUNE: 0.68202142 - UNPERTURBED VERTICAL TUNE: - UNPERTURBED VERTICAL TUNE: 0.73607380 Momentum compaction : Momentum compaction : dL/L / dp/p = 1.78866203E-03dL/L / dp/p = 1.78676165E-03(dp = 1.000000E-04 $L(0) = 3.83385E+05 \text{ cm}, L(0)-L(-dp) = 6.85822E-02 \text{ cm}, L(0)-L(+dp) = -6.85669E-0 \frac{1}{2} \text{ cm}$ $L(0) = 3.83385E+05 \text{ cm}, \quad L(0)-L(-dp) = 6.85099E-02 \text{ cm}, \quad L(0)-L(+dp) = -6.84936E-02 \text{ cm})$ (dp = 1.000000E-04)Transition gamma = 2.36448115E+01Transition gamma = 2.36573823E+01Chromaticities : Chromaticities : $dNu \ v \ / \ dp/p = 2.00068579E+00$ $dNu \ v \ / \ dp/p = 3.82686455E+00$ dNu z / dp/p = 1.99970750E+00dNu z / dp/p = 3.96685338E+00

• From left to right, tunes change from

uncoupled, $NU_Y = 0.68499553$ $NU_Z = 0.67299602$ to, weakly coupled, Q1 = 0.68194766 Q2 = 0.73614756

and chromas increase by 1.9 unit, from 2 to 3.9.

• SNAKES OFF

HORIZONTAL:

• Just to show that residual orbits in these simulations are negligible :

Initial vertical conditions zero remain zero.

• SNAKES ON

HORIZONTAL:

VERTICAL:

• Shows Y and Z orbit excursions in the two snakes :

SNAKE 1:

SNAKE 2:

• Optical functions (G.gamma = 45.5 - with collision optics (!)) :

• SNAKES OFF

Optical functions, from zgoubi.TWISS.out

• SNAKES ON

Optical functions, from zgoubi.TWISS.out

