

Projet d'économétrie appliquée

Comparaison de l'algorithme de Box et Jenkins aux méthodes de prévision traditionnelles pour la prévision de deux matières premières : le blé et le nickel

> Mosse Joseph - Rubira Pierre M1 - MBFA - ARB

> > Sous la direction de : Seyte Françoise

Résumé

Sommaire

Τ	1.1 1.2	Présentation des deux matières premières								
	1.3	Analyse technique								
2	Ana	Analyse de la saisonnalité et de la tendance								
	2.1	Détection de saisonnalité et de tendance32.1.1 Analyse graphique32.1.2 Analyse de la variance et test de Fisher4								
	2.2	Désaisonnalisation de l'échantillon 2016-2021 du nickel								
		2.2.2 Désaisonnalisation de l'échantillon par méthode Census								
3	Pré	vision par le méthodes traditionnelles								
	3.1	Échantillon 2016-2019								
		3.1.1 Prévision pour 2020								
		3.1.2 Choix de la meilleure méthode								
	3.2	3.1.3 Prévision pour 2022								
	ა.∠	3.2.1 Prévision pour 2022								
		3.2.2 Choix de la meilleure méthode								
4	Pré	Prévision selon la méthodologie de Box & Jenkins 10								
	4.1	Présentation de la méthode								
	4.2	Test de racine unitaire								
		4.2.1 Echantillon 2016-2019								
	4.0	4.2.2 Echantillon 2016-2021								
	4.3	Identification des processus								
	4.4	Prévision pour 2023								
A		lyse des séries chronologiques 20								
		Stabilité de la variance								
		Analyse graphique								
	A.3	Analyse de la variance								
		A.3.1 Tableau de Buys-Ballot								
	A.4	Désaisonnalisation de l'échantillon (2016-2021) du Nickel								
	л.4	Desaisonnansation de l'échantinon (2010-2021) du Nickei								
\mathbf{B}		vision traditionnelle 25								
	B.1	Échantillon 2016-2019								
		B.1.1 Extrapolation d'une droite de tendance								
		B.1.2 Lissage exponential double								
		D.1.0 LASSAGE EXPONENTIEL DE HOU-WILLEL								

	B.2		tillon 2016-2021	
			Lissage exponentiel double	
			Lissage exponentiel de Holt-Winter	
\mathbf{C}			O .	34
	C.1	Test d	e racine unitaire	34
		C.1.1	Echnatillon 2016-2019	34
1	A	duct naly: ickel	se technique et macroéconomique du blé et d	lu
1.1	. 1	Préser	ntation des deux matières premières	
1.2	2 1	Analy	se macroéconomique	
1.3	3	Analy	se technique	

2 Analyse de la saisonnalité et de la tendance

Les méthodes traditionnelles de prévision, reposent sur la décomposition des différentes composantes d'une série temporelle. Ici il s'agira donc ici d'analyser ces différentes composantes (c'est à dire la tendance et la saisonnalité).

Afin de pouvoir travailler sur la série, il est nécessaire de réduire les fluctuations importantes de la série. Pour cela des test ARCH sont fait sur les séries initiales afin de déterminer si il y a homoscédasticité dans la distribution. L'hypothèse nulle et alternative sont :

 H_0 : Homoscédasticité H_1 : Hétéroscédasticité

Statistique de test:

$$LM = n \times R^2 \sim \chi_{0.95}^2 \left(p \right)$$

La statistique du multiplicateur de Lagrange est comparée au quantile à 95% de la distribution du khi-deux ayant pour degrés de liberté 41. Dans le cas suivant :

2016 -2019 2016 -2021

Table 1: Résultats du test ARCH

	2016	2016 -2019		-2021
	Blé	Blé Nickel		Nickel
\overline{LM}	27,3072	21,4090	54,1014	49,9604
$\chi^2_{0,95}(7)$	14,067	14,067	14,067	

Ici, pour toutes les séries, la statistique LM est supérieur au seuil, l'hypothèse H_0 est rejetée au risque de 5%. Les cours du blé et du nickel présentent donc de l'hétéroscédasticité. Afin d'amoindrir ces fluctuations importantes, une transformation logarithmique est faite sur chacune des séries. Les séries transformées serviront donc pour le reste du travail.

2.1 Détection de saisonnalité et de tendance

2.1.1 Analyse graphique

Dans un premier temps, une étude intuitive peut être faite. Il s'agira donc ici d'analyser graphiquement chacune des chroniques afin de déterminer de façon préliminaire, si les cours du blé et du nickel sont sujet à de la saisonnalité, et/ou de la tendance.

Pour le cours du blé, il est possible de déceler légère une tendance a la hausse de 2016 à 2019. Cette tendance s'accentue si 2020 et 2021 sont inclus. Pour ce qui est de la saisonnalité, il semble impossible de déterminer que la série possède une quelconque saisonnalité (figure ?? p. 21).

Dans le cas du nickel, une tendance haussière se démarque (tout échantillon confondu). Quant à la saisonnalité, sur l'échantillon 2016-2019, la série ne semble pas saisonnière. Cependant sur l'échantillon 2016-2021, la série peut sembler saisonnière par périodes de

un an. (figure ?? p. 21).

Les deux séries semblent donc se comporter de manière similaire : faible tendance haussière, ainsi que non saisonnières.

2.1.2 Analyse de la variance et test de Fisher

Afin de confirmer les intuitons développées en 2.1 une analyse de la variance et le test de Fisher sur la tendance et de saisonnalité doivent être menés. La détection de la saisonnalité est essentielle, car les méthodes de prévision traditionnelles ne peuvent être que menées sur des séries non saisonnières ou bien désaisonnalisées.

L'analyse de la variance est basée sur les moyennes calculées dans le tableau de Buys Ballot. En effet afin d'analyser la saisonnalité, il reviendra a étudier l'influence du facteur colonne (variance des mois) et pour la tendance, l'influence du facteur ligne (variance des années). Après calculs (Cf-A.3.2 p.22), les différentes variances sont affichées dans le tableau ci-dessous.

2016-2019 2016-2021 Blé Nickel Blé Nickel Désignation Variance période 0,0086 0,0129 0,0023 0.0243 Variance année 0,2746 0,3723 0,0661 0,6502 Variance résidus 0,0048 0,0286 0,0033 0,0098

Table 2: Analyse de la variance

Enfin grace aux variances, le test de fisher peut être effectué.

Test de Fisher de détection de saisonnalité

Il s'agira ici de tester l'influence du facteur colonne en comparant la variance période à la variance résiduelle, afin de déterminer si les séries sont saisonnières.

 H_0 : Pas d'influence du facteur colonne (pas de saisonnalité)

 H_1 : Influence du facteur colonne (saisonnalité)

Statistique de test pour un niveau $\alpha = 5\%$:

$$F_c = \frac{V_P}{V_R} \sim F_{0,95}((n-1), (n-1)(p-1))$$

Règle de décision : La statistique calculée (F_c) est ensuite comparée au quantile à 95% de la distribution F de Fisher avec comme degrés de liberté (p-1) et (n-1)(p-1), où n représente le nombre d'année et p le nombre de périodes. Si la statistique empirique est supérieure au quantile, alors H_0 est rejetée, la série est saisonnière. Après calculs :

Table 3: Test de Fisher (saisonnalité)

	2016 -2019		2016 -2021	
	Blé Nickel		Blé	Nickel
$\overline{F_c}$	0,6986 0,4505 2,0933 2,0933		1,7906	2,4772
$F_{0,95}$			1,9675	1,9675
ddl	(11;33)	(11;33)	(11;55)	(11;55)

Ici, les statistique calculée sont toutes inférieures au seuil, sauf pour l'échantillon (2016-2021) du nickel. Ainsi, l'hypothèse H_0 est acceptée au risque de 5% pour les deux échantillons du blé et pour l'échantillon (2016-2019) du nickel. En revanche elle est rejetée pour l'échantillon (2016-2021) du nickel.

Pour ses deux échantillons, la série du blé n'est donc pas saisonnière, il en est de même pour le premier échantillon de la série du nickel. Par contre, l'échantillon (2016-2021) du nickel est lui saisonnier, il faudra donc à la suite déterminer son type de saisonnalité (déterministe ou aléatoire), puis son type de schéma de décomposition (additif ou multiplicatif) et finalement désaisonnaliser la série afin de pouvoir utiliser les méthodes de prévision.

Test de Fisher de détection de tendance

De manière analogue, il revient à comparer la variance année à la variance résiduelle afin de déterminer si les séries possèdent une tendance.

 H_0 : Pas d'influence du facteur ligne (pas de tendance)

 H_1 : Influence du facteur ligne (tendance)

Statistique de test pour un niveau $\alpha = 5\%$:

$$F_c = \frac{V_A}{V_R} \sim F_{0,95}((p-1), (n-1)(p-1))$$

Règle de décision : Comme pour le test précédent, si la statistique calculée est supérieure au quantile à 95% de la distribution de Fisher ayant pour dll : (n-1) et (n-1)(p-1) , alors H_0 est rejetée, la série possède une tendance.

Table 4: Test de Fisher (tendance)

	2016 -2019		2016 -2021	
	Blé Nickel		Blé	Nickel
$\overline{F_c}$	20,1576 12,9965 2,8916 2,8916		56,8388	66,2263
$F_{0,95}$			2,3828	2,3828
ddl	(3;33)	(3;33)	(5;55)	(3;55)

Ici dans tous les cas, le Fisher empirique est supérieur au Fisher théorique, H_0 est rejetée au risque de 5% pour toutes les séries.

Les deux séries et leurs échantillons possèdent donc une tendance. Il à remarquer que la probabilité de rejeter H_0 est bien plus supérieure sur les échantillons (2016-2021) que sur les échantillons (2016-2019), cela confirme l'intuition dégagée de l'analyse graphique.

2.2 Désaisonnalisation de l'échantillon 2016-2021 du nickel

Comme vu précédemment l'échantillon (2016-2021) du Nickel possède de la saisonnalité, il est donc indispensable d'étudier, puis de corriger la saisonnalité.

2.2.1 Type de saisonnalité et sélection du schéma de décomposition

Dans un premier temps le type de saisonnalité doit être défini, en effet la saisonnalité peut être déterministe ou bien aléatoire. Pour cela chaque ligne du tableau de Buys-Ballot de l'échantillon concerné est classée par ordre croissant. De plus pour faciliter la lecture, chaque mois s'est vu attribué une couleur appartenant à un gradient rouge ($tableau\ A.11\ p.23$). Il est donc rapidement possible de remarquer que la saisonnalité n'est pas répétitive, elle est donc aléatoire. Il faudra donc désaisonnaliser la série par méthode Census.

Il est par la suite nécessaire de selection le schéma de décomposition de la chronique, un test de Buys-Ballot est donc fait. Le test se base sur les résultats du tableau de Buys-ballot (tableau ??), le test consiste à tester la significativité de la pente du modèle suivant : $\sigma_{i.} = \beta x_{i.} + \alpha + \varepsilon_{i}$

Les hypothèses du test sont :

 $H_0: H_0: \beta = 0$ Le schéma de décomposition est additif.

 $H_1: H_1: \beta \neq 0$ Le schéma de décomposition est multiplicatif.

Statistique de test pour un niveau $\alpha = 5\%$:

$$t_c = \frac{\hat{\beta}}{\hat{\sigma}_{\hat{\beta}}} \sim t_{0,975}(n-2)$$

Règle de décision : Si la statistique calculée en valeur absolue est inférieure au quantile à 97,5% de la distribution bilatérale de Student avec comme degrés de liberté n-2=4. Après calculs (tableau A.12 p. 24) :

$$|t_c| = 0,7701$$
 $t_{0.975}(4) = 2,7764$

Ici la statistique calculée est inférieure au Student lu dans la table de la distribution théorique, H_0 est donc rejetée au risque de 5%. Le schéma de décomposition de la série est un schéma additif. L'échantillon (2016-2021) du nickel peut être modélisé de la sorte : $x_t = E_t + S_t + R_t$.

2.2.2 Désaisonnalisation de l'échantillon par méthode Census

Maintenant que le type de saisonnalité, ainsi que le schéma de décomposition de la série sont connus, la série doit être corrigée des variations saisonnières. La désaisonnalisation

vise à supprimer la composante saisonnière sans impacter les autres composantes de la série. Ici, la saisonnalité étant aléatoire, la méthode Census est utilisée.

La première itération de la méthode Census, à été développée par l'économiste J.Shiskin alors qu'il était chercheur au Bureau of Census. La méthode à par la suite été largement améliorée au cours du temps, pour arriver aujourd'hui à la version X-13-ARIMA. Cette méthode consiste en une itération de moyennes mobiles permettant d'estimer les différentes composantes d'une série.

Ici la méthode X-13 est utilisée et les coefficients saisonniers sont calculés et soustraits à la série de base par le logiciel EViews (tableau ??). La série désaisonnalisée (SLNICKEL 21) sera donc utilisée pour le reste du travail.

3 Prévision par le méthodes traditionnelles

Une fois que toutes les séries ont été amplement analysées, transformées, et si besoin, corrigées des variations saisonnières, il alors est possible d'appliquer des méthodes de prévision traditionnelles. Le choix d'une méthode de prévision depend du caractère déterministe (ou aléatoire) de l'extra-saisonnalité et de la saisonnalité de la série a prévoir.

Dans le cadre de l'étude du cours du blé et du nickel, il a précédemment été montré que les deux échantillons du blé, ainsi que l'échantillon 2016-2019 du nickel ne présentaient pas de saisonnalité, pour ces séries là donc, seule la nature de la composante extra-saisonnière est à prendre en compte. Concernant cette dernière, elle est déterministe pour les trois séries citées étant donné qu'elles possèdent toutes une tendance. Dans ce cas là, en théorie la méthode de prévision a utiliser serait l'extrapolation par une droite de tendance.

Concernant l'échantillon 2019-2021 du nickel, malgré une composante saisonnière aléatoire, ce dernière possède comme les autres échantillons, une tendance. La méthode de prévision adéquate serait donc aussi l'extrapolation d'une droite de tendance.

Cependant, afin de ne mettre aucun élément d'analyse de côté, en plus de l'extrapolation, des méthodes de prévision par lissage exponentiel de composantes seront utilisées. Parmi ces méthodes, le lissage exponentiel double (LED) et le lissage exponentiel de Holt-Winters sont choisis.

Afin de prévoir le cours en 2023, il est nécessaire de sélectionner la méthode ayant le meilleurs score de prévision sur des données passées. Pour les deux matières premières le choix de la meilleure méthode se fera en deux grandes étapes :

- 1. Prévision des cours en 2020 grace aux échantillons 2016-2019, la prévision minimisant le critère MSE sur 2020 sera retenue et prolongée jusqu'à fin 2022.
- 2. Prévision des cours en 2022 grace aux échantillons 2016-2021, comparaison des MSE avec les MSE de la méthode retenue pour 2020, la prévision minimisant le critère sera retenue et utilisée pour prévoir les cours de 2023

3.1 Echantillon 2016-2019

3.1.1 Prévision pour 2020

Extrapolation d'une droite de tendance

La prévision par extrapolation d'une droite est la méthode la plus adéquate pour estimer les tendances déterministes, elle consiste à modéliser la série par une droite. Cette droite s'écrit telle que :

$$x_t = \beta t + \alpha + \varepsilon_t$$

Où x_t est une série temporelle non saisonnière et t le temps. Par la suite, les paramètres $\hat{\alpha}$ et $\hat{\beta}$ sont estimés grace à la méthode des MCO (Moindres Carrés Ordinaires). Avant de prévoir, il est nécessaire de procéder aux tests sur les paramètres de la regression afin de valider le modèle.

Le test est le même pour les deux séries :

 $H_0: \beta = 0$ Non significativité du paramètre

 $H_1: \beta \neq 0$ Significativité du paramètre

Statistique de test pour un niveau $\alpha = 5\%$:

$$t_c = \frac{\hat{\beta}}{\hat{\sigma}_{\hat{\beta}}} \sim t_{0,975}(46)$$

Règle de décision : la statistique de student calculée en valeur absolue est comparée au quantile à 97,5%, de la distribution bilatérale de Student avec comme degrés de liberté 46. Si elle est inférieure alors la pente du modèle n'est pas significative, elle est en revanche significative si la statistique est supérieure au seuil.

Ici, les deux statistiques calculées (B.1 B.2) H_0 sont supérieures au seuil (1,96). H_0 est donc acceptée au risque de 5%, les pentes des deux modèles sont significatives. Il en est de même pour les constantes du modèle, la probabilité critique d'accepter l'hypothèse nulle étant 0. Les paramètres du modèles sont donc significatifs. Les valeurs pour 2020 du blé et du nickel peuvent être calculées en extrapolant les droites.

Table 5: Prévision du cours du blé et du nickel en 2020 par extrapolation linéaire

	Blé (€)		Nicke	l (\$)
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2020	192,49	191,00	15312,42	12850,00
02-2020	193,34	187,50	15483,91	12255,00
03-2020	194,20	196,25	15657,33	11484,00
04-2020	195,06	195,75	15832,68	12192,00
05-2020	195,92	188,25	16010,00	12324,00
06-2020	196,79	180,50	16189,31	12805,00
07-2020	197,66	182,75	16370,62	13786,00
08-2020	198,54	187,75	16553,96	15367,00
09-2020	199,41	197,75	16739,36	14517,00
10-2020	200,30	205,25	16926,83	15156,00
11-2020	201,18	210,25	17116,41	16033,00
12-2020	202,07	213,25	17308,10	16613,00

Lissage exponentiel double (LED)

Les techniques de lissage exponentiel ont été introduites par Holt et Brown. Un lissage exponentiel double consiste à effectuer deux lissage sur une série temporelle non saisonnière. Dans un premier temps donc il est nécessaire d'effectuer un lissage exponentiel simple (LES) sur la série. Le LES considère qu'une chronique peut être décrite comme une combinaison linéaire des valeurs passées pondérées par un poids qui décroît plus les observations sont anciennes.

Afin de matérialiser ce poids, une constante de lissage λ comprise entre 0 et 1 est utilisée.

En fonction de sa valeur, λ donnera un poids plus ou moins important au passé. Si λ est proche de 0, alors la mémoire du phénomène est dite forte, la prévision dépend beaucoup des observations passées. En revanche, si la constante est proche de 1, alors la mémoire du phénomène est faible, le lissage est plus réactif aux observations récentes.

Dans le cas du blé et du nickel, le programme d'optimisation calcule $\lambda=0,43$ pour le blé et $\lambda=0,47$ pour le nickel. Les deux constantes sont proches de 0,45, cela veut dire que pour les deux séries, la prévision par lissage apportera très légèrement plus d'importance au passé que au présent.

Table 6: Prévision du cours du blé et du nickel en 2020 par lissage exponentiel double

	Blé (€)		Nicke	l (\$)
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2020	189,45	191,00	13817,13	12850,00
02-2020	192,02	187,50	13484,34	12255,00
03-2020	194,64	196,25	13159,58	11484,00
04-2020	197,28	195,75	12842,63	12192,00
05-2020	199,97	188,25	12533,32	12324,00
06-2020	202,69	180,50	12231,45	12805,00
07-2020	205,45	182,75	11936,86	13786,00
08-2020	208,24	187,75	11649,36	15367,00
09-2020	211,07	197,75	11368,79	14517,00
10-2020	213,95	205,25	11094,98	15156,00
11-2020	216,86	210,25	10827,75	16033,00
12-2020	219,81	213,25	10566,97	16613,00

Lissage exponentiel de Holt-Winters

La prévision par lissage exponentiel de Holt-Winters est une méthode de prévision de séries chronologiques saisonnières. La méthode consiste à effectuer un LED de Holt sur la partie non saisonnière, c'est à dire la moyenne et la tendance, et un lissage exponentiel saisonnier sur la composante saisonnalité. Ici, les deux échantillons du blé, ainsi que l'échantillon 2016-2019 du nickel étant non saisonniers, la méthode revient à un LED sur deux paramètres pour ces échantillons.

Comme pour le LED, les différentes constantes de lissage (α, β) sont calculées via une minimisation de la somme des carrés des résidus et sont trouvés dans le tableau ci dessous.

Table 7: Constantes de lissage de la méthode HW

	Blé	Nickel
α β	0,78 0,00	0,89 0,00

Ainsi la prévision pour 2020 peut être faite :

Table 8: Prévision du cours du blé et du nickel en 2020 par lissage de Holt-Winters

	Blé (€)		Nickel (\$)	
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2020	187,26	191,00	14272,31	12850,00
02-2020	186,99	187,50	13306,19	12255,00
03-2020	186,72	196,25	11664,18	11484,00
04-2020	186,46	195,75	11825,33	12192,00
05-2020	186,19	188,25	12081,62	12324,00
06-2020	185,93	180,50	12792,85	12805,00
07-2020	185,66	182,75	13731,23	13786,00
08-2020	185,40	187,75	14456,35	15367,00
09-2020	185,14	197,75	14663,90	14517,00
10-2020	184,87	205,25	14916,73	15156,00
11-2020	184,61	210,25	14698,81	16033,00
12-2020	184,35	213,25	16106,49	16613,00

3.1.2 Choix de la meilleure méthode

Il désormais nécessaire de sélectionner la meilleure méthode de prévision pour chacun des cours. En effet, la meilleure méthode sera ensuite utilisée pour prévoir les cours de l'année 2022. Pour ce faire, le critère de comparaison utilisé est le MSE, ce dernier est calculé comme la moyenne des erreurs quadratiques. la prévision minimisant le MSE sera sélectionnée.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)$$

Où n est le nombre de périodes prévues (ici 12), Y_i , les valeurs réelles et \hat{Y}_i , les valeurs prévues. Il est également possible de calculer le critère RMSE tel que : RMSE = $\sqrt{\text{MSE}}$, ce dernier permettant de mieux évaluer la distance moyenne entre les valeurs prévues et les données empiriques.

Table 9: Critère MSE et RMSE pour la prévision des cours du blé et du nickel en 2020

	В	lé	Nic	kel
Méthode	MSE	RMSE	MSE	RMSE
Extrapolation	78,19	8,84	7501793	2738,94
LED	161,02	12,69	9445216	3073,31
Holt-Winter	192,20	13,86	525124	724,65

Ici, pour le blé, la meilleure méthode de prévision d'après le critère MSE est la prévision par extrapolation d'une droite de tendance. Pour le nickel la meilleure méthode est celle du lissage de Holt-Winters. Ces deux méthodes sont sélectionnées.

3.1.3 Prévision pour 2022

Les méthodes retenues sont donc utilisées sur les échantillons 2019-2016 du blé et du nickel pour prévoir les cours de 2022. L'objectif ici étant de prévoir 2022 avec des échantillons ne comportant pas la période de crise sanitaire liée à la pandémie de Covid-19.

Table 10: Prévision du cours du blé et du nickel en 2022 avec échantillons ante-Covid-19

	Blé (€)		Nicke	l (\$)
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2022	214,01	266,00	22595,97	22328,00
02-2022	214,96	322,50	23029,39	24282,00
03-2022	215,91	369,50	23471,11	32107,00
04-2022	216,87	400,75	23921,31	31771,00
05-2022	217,83	392,25	24380,15	28392,00
06-2022	218,79	350,25	24847,78	22698,00
07-2022	219,76	343,00	25324,39	23619,00
08-2022	220,73	332,25	25810,14	21411,00
09-2022	221,71	356,75	26305,20	21107,00
10-2022	222,69	352,25	26809,76	21809,00
11-2022	223,68	326,50	27324,00	26987,00
12-2022	224,67	309,25	27848,10	30048,00
MSE	16645,29		198163	354,21

A FINIR

3.2 Échantillon 2016-2021

La démarche emprunté ici est la même que celle de la sous-partie précédente. L'objectif est de prévoir les cours du blé et du nickel pour l'année 2022, les échantillons utilisés seront les échantillons couvrant 2016 jusqu'à 2021. Prévoir grace à ces échantillons, permet d'intégrer à la modélisation la période de crise liée à la pandémie de Covid-19. La situation conjoncturelle n'ayant pas réellement connue d'accalmie en raison du changement climatique et en particulier de la guerre en Ukraine, l'ajout de la période Covid-19 permettra potentiellement aux différentes méthodes de mieux intégrer les variations importantes.

3.2.1 Prévision pour 2022

De manière analogue, les trois méthodes traditionnelles utilisées sont l'extrapolation d'une droite de tendance, le lissage exponentiel double, et le lissage exponentiel de Holt-Winters. Elles seront par la suite comparées entre elles ainsi qu'à la prévision faite pour 2022 dans la partie précédente par le biais du critère MSE.

Extrapolation d'une droite de tendance

Les paramètres de la droite de tendance sont estimés grace à la méthode des MCO, ils sont pour le blé et le nickel tous significativement différents de 0. les résidus des droites sont pour les deux matières premières soumis à de l'hétéroscédasticité ainsi que à de l'autocorrélation, malgré cela ils sont normalement distribués. Les résidus du blé et du nickel ne suivent donc pas un bruit blanc, cependant le modèle est quand même utilisé pour prévoir 2022, les paramètres étant tout de même significatifs.(annexe)

Lissage exponential double (LED)

Les constantes de lissage pour les séries de blé et de nickel sont calculés et minimisent la somme des carrés des écarts prévisionnels. Pour le ble $\lambda=0,37$, cela veut dire que la mémoire du phénomène est forte, une plus grand pondération est appliquée aux observations passées. Pour le nickel, $\lambda=0,5$, cela veut dire que la mémoire n'est ni forte, ni faible, la prévision accorde autant d'importance au passé que au présent.(annexe)

Lissage exponentiel de Holt-Winters

Ici, le lissage de Holt-Winters pour le blé revient à un led sur deux paramètres : la moyenne et la tendance. Les constantes de lissages sont calculées de la même façon que pour un LED :

$$\alpha = 0,73 \qquad \beta = 0$$

En revanche, l'échantillon 2016-2021 du nickel présente de la saisonnalité additive, dans ce cas là l'échantillon «brut» (non corrigé des variations saisonnières) est utilisé, et la composante saisonnière est donc lissée par un lissage exponentiel saisonnier de Winters. Les constantes de lissage sont :

$$\alpha = 0, 9$$
 $\beta = 0$ $\gamma = 0$

Les valeurs prévues du cours du blé en 2020 par les trois méthodes sont calculées et dans le tableau ci dessous :

Table 11: Prévisions du cours du blé en 2022 par différentes méthodes de prévision

<i>(en €)</i> Mois	Valeurs prévues par Extrapolation	Valeurs prévues par LED	Valeurs prévues par HW	Valeurs Réelles
01-2022	234,33	292,14	280,78	266,00
02-2022	235,80	301,04	282,51	322,50
03-2022	237,28	310,20	284,25	369,50
04-2022	238,76	319,65	286,00	400,75
05-2022	240,26	329,38	287,76	392,25
06-2022	241,76	339,41	289,53	350,25
07-2022	243,28	349,75	291,31	343,00
08-2022	244,80	360,40	293,11	332,25
09-2022	246,33	371,37	294,91	356,75
10-2022	247,88	382,68	296,73	352,25
11-2022	249,43	394,33	298,55	326,50
12-2022	250,99	406,34	300,39	309,25

Il est dans un premier temps ici facilement remarquable que les modèles traditionnels ont relativement du mal a prévoir l'année 2022, hautement volatile dû à l'invasion Russe en Ukraine, le critère MSE permettra donc de discriminer la meilleure méthode.

Les valeurs du nickel sont pareillement calculées et dans le tableau ci dessous :

Table 12: Prévisions du cours du nickel en 2022 par différentes méthodes de prévision

(en \$) Mois	Valeurs prévues par Extrapolation	Valeurs prévues par LED	Valeurs prévues par HW	Valeurs Réelles
01-2022	18780,42	21472,00	21039,45	22328,00
02-2022	19149,75	22376,20	21558,85	24282,00
03-2022	17740,34	21185,63	20351,32	32107,00
04-2022	18229,36	22248,81	20923,61	31771,00
05-2022	18230,73	22740,26	20797,59	28392,00
06-2022	19132,73	24390,70	21631,74	22698,00
07-2022	20504,99	26715,48	23198,64	23619,00
08-2022	21845,07	29087,93	24336,37	21411,00
09-2022	20485,09	27877,46	23365,18	21107,00
10-2022	21129,49	29387,35	23984,39	21809,00
11-2022	20272,23	28815,69	23297,93	26987,00
12-2022	20883,14	30337,46	23608,95	30048,00

L'analyse tacite est similaire à celle de la prévision du blé, le critère MSE permettra de choisir la meilleure méthode. Il reste cependant à remarquer que pour les deux matières premières, l'extrapolation d'une droite de tendance semble être la moins bonne méthode.

3.2.2 Choix de la meilleure méthode

Afin de sélectionner les meilleures de prévisions pour le blé et le nickel en 2022, les critères MSE des différentes méthodes sont comparées. La prévision minimisant le critère sera choisie pour prévoir 2023.

Table 13: Critère MSE et RMSE pour la prévision des cours du blé et du nickel en 2022

	Ble	é	Nicl	kel
Méthode	MSE	RMSE	MSE	RMSE
LED	11427,19	106,90	57040109	7552,49
Holt-Winter	2609,42	51,08	35361885	5946,59
Extrapolation	4069,21	63,79	33115542	5754,61
Prévision (2016-2019)	16645,29	129,02	19816354	4451,56

Pour le blé, la méthode qui minimise le critère RMSE est celle du lissage exponentiel de Holt-Winters. Pour le nickel, c'est la méthode de Holt-Winters sur l'échantillon 2016-2019 qui minimise le MSE. L'ajout de la période de pandémie de Covid-19 aura été utile pour prévoir le cours du blé, mais pas le cours du nickel.

Les méthodes et échantillons choisis sont donc :

- Blé : Lissage exponentiel de Holt-Winter sur l'échantillon 2016-2021.
- Nickel: Lissage exponentiel de Holt-Winter sur l'échantillon 2016-2019.

En effet les prévisions des cours en 2022 (grace aux méthodes sélectionnées) seront par la suite comparées à une autre famille de méthodes, les processus aléatoires (ARMA).

4 Prévision selon la méthodologie de Box & Jenkins

4.1 Présentation de la méthode

Lors de des prévisions faites grace aux méthodes traditionnelles, il a été possible de montrer que les résidus des prévisions n'étaient pas des bruits blancs. En effet, les méthodes traditionnelle s'avèrent le plus souvent inefficaces lors de prévisions de chroniques économiques, en particulier financières. Une partie des informations est donc perdue, mal modélisée par les lissages ou extrapolations. Une autre classe de méthodes de modélisation de séries temporelles peut donc être utilisée pour modéliser le cours du blé et du nickel : les processus aléatoires ARMA.

La démocratisation de l'utilisation des processus aléatoires dans le domaine de la modélisation économique remonte aux années 1970. A cette époque, deux statisticiens, George Box et Gwilym Jenkins mettent au point une méthode itérative de prévision de séries temporelles basée sur les processus aléatoires ARMA.

La première étape de cet algorithme est de transformer la série de base, c'est à dire procéder a une transformation logarithmique en cas de forte variations, corriger les variations saisonnières en cas de saisonnalité, et finalement corriger la tendance si il y en à une. Cette étape de transformation vise donc à rendre stationnaire une série temporelle pour que ses caractéristiques se rapprochent le plus à celles d'un processus ARMA. En effet, la méthodologie de Box et Jenkins est bâtie sur la modélisation de chroniques stationnaires, or les séries économiques ou financières sont rarement la réalisation de de processus aléatoires stationnaires. Il faut donc réaliser un test de racine unitaire afin de déterminer si la série est stationnaire ou non, et si oui alors quel est son type de non-stationnarité.

Les types de processus non-stationnaires les plus fréquents sont :

- Les processus DS (Differency Stationary) représentent la non-stationnarité aléatoire, forme la plus commune des chroniques financières.
- Les processus TS (*Trend Stationary*) représentent la non-stationnarité déterministe.

Si la série est un DS, il faut appliquer un filtre aux différences pour corriger la stationnarité. Au contraire si c'est un TS, la stationnarité est corrigée par la méthode des moindres carrés ordinaires.

Lorsque la série est stationnaire, vient alors l'étape d'identification. Les caractéristiques des fonctions d'autocorrélation et autocorrélation partielle de la chronique sont comparées à celles de processus ARMA théoriques, ceci permet d'identifier l'ordre du processus ARMA sous-jacent.

La troisième étape est l'étape de d'estimation, les paramètres du processus ARMA identifié sont estimés par la méthode des MCO. Pour rappel, un ARMA(p,q) est une combinaison linéaire de processus autorégressif à l'ordre p AR(p) et de processus moyenne mobile à

l'ordre q MA(q) tel que :

$$x_t = \varepsilon_t + \sum_{i=1}^p \phi_i x_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$$

Une fois que les paramètres du modèle ont été estimés, s'en suit l'étape de tests de validation du modèle. En effet, si le modèle ne répond pas aux critères attendus d'un bon modèle ARMA, alors il faut revenir à l'étape d'identification afin d'identifier si possible, un meilleur modèle. Ces critères peuvent être classés de la sorte :

- Minimisation des critères d'information construits pour les ARMA.
- Stationnarité de la partie AR et inversibilité de la partie MA.
- Significativité des paramètres estimés et du coefficient de détermination.
- Les résidus suivent un bruit blanc gaussien.
- Respect du principe de parcimonie.

Si le modèle estimé respecte la majorité des éléments de la liste, il alors est possible de passer à la cinquième et dernière étape : la prévision. Une fois la prévision faite, il est nécessaire de recolorer la chronique, c'est à dire re-transformer la chronique à son état d'origine.

Maintenant que les étapes de l'algorithme ont été explicités, ce dernier est utilisé afin de prévoir les valeurs des cours du blé et du nickel. La stratégie est sensiblement la même que celle de la partie 3, c'est à dire : une prévision pour 2022 grace aux échantillons 2016-2019, puis une prévision pour 2022 grace aux échantillons 2016-2021, les échantillons utilisés étant ceux ayant été transformés logarithmiquement et corrigés des variations saisonnières si besoin. Les meilleurs modèles seront par la suite comparés aux méthodes traditionnelles afin de déterminer la méthode a utiliser pour prévoir 2023.

4.2 Test de racine unitaire

La type de non-stationnarité revêt une grande importance lorsqu'il s'agit de traiter des données statistiques d'une série temporelle. Pour cela qu'il est primordial d'identifier si la chronique est un DS ou un TS, une mauvaise stationnarisation pouvant grandement fausser les résultats. Plusieurs tests permettent de répondre à cette problématique, ce sont les tests de recherche de racine unitaire, parmi eux, le premier à avoir été mis au point est celui de Dickey-Fuller. Pour ce travail, le test de Philip-Perron est utilisé, il s'agit d'une extension de celui de Dickey-Fuller qui permet de permet de prendre en compte les erreurs hétéroscédastiques et/ou autocorrélées.

La stratégie de test de Philip-Perron est la même que celle du test de Dickey-Fuller augmenté, elle consiste en une estimation séquentielle de trois modèles : un AR(1) avec tendance et constante, un AR(1) avec constante, et un AR(1) simple. A chacune des étapes deux tests sont fait :

- Un test de présence de racine unitaire H_0 (l'hypothèse alternative H_1 étant station-narité de la chronique).
- Un test d'hypothèse jointe, permettant de valider la présence de racine unitaire et de différencier TS et DS.

4.2.1 Echantillon 2016-2019

Dans un premier temps, la stratégie de test de racine unitaire est fait sur les échantillons 2016-2019 des cours du blé et du nickel.

Le blé

Le troisième modèle est estimé, c'est un AR(1) avec tendance et constante :

$$x_t = c + bt + \phi_1 x_{t-1} + a_t$$

L'hypothèse de présence de racine unitaire est ensuite testée :

 H_0 : Présence de racine unitaire. $(\phi_1 = 1)$

 H_1 : Stationnarité du processus.

Statistique de test:

$$t_c = \frac{\tilde{\phi}_1 - 1}{\hat{\sigma}_{\tilde{\phi}_1}}$$

Pour un niveau de test à 5%, la statistique de student calculée est ensuite comparée au seuil critique trouvée dans la table de Dickey-Fuller (annexe). Si la statistique calculée est supérieure au seuil, alors l'hypothèse nulle de présence de racine unitaire est acceptée. Après calculs :

$$t_c = 0,25 > t_{ajuste} = -3,5$$

L'hypothèse H_0 est donc acceptée au risque de 5\%, il y a présence de racine unitaire.

Il faut a présent tester l'hypothèse jointe, cette dernière est formulé de la sorte :

$$H_0^3:(c;b;\phi_1)=(0;0;1)$$

 H_1^3 : Au moins un des paramètres est différent.

Statistique de test:

$$F_3 = \frac{(SCR_c^3 - SCR_3)/2}{SCR_3/(n-3)}$$

Où SCR_3 est la somme des carrés des résidus du modèle 3 et SCR_c^3 la somme des carrés des résidus du modèle 3 contraint sous l'hypothèse H_0^3 . Si F_3 est inférieur à la valeur critique lue dans la table de Dickey-Fuller pour un niveau de test à 5%, alors H_0^3 est acceptée. D'où :

$$F_3 = \frac{(0,100994 - 0,087023)/2}{0,087023/(47 - 3)} = 3,53 < 6,73$$

 H_0^3 Est donc acceptée au risque de 5%

Le nickel

4.2.2 Echantillon 2016-2021

Le blé

Le nickel

- 4.3 Identification des processus
- 4.4 Prévision pour 2023

Conclusion

faire par sous périodes

A Analyse des séries chronologiques

A.1 Stabilité de la variance

Table A.1: Test ARCH pour la série Blé

Heteroskedasticity Test: ARCH		Echantillon	2016-2019	
F-statistic	9.401617	Prob. F(7,33)		0.0000
Obs*R-squared	27.30724	Prob Chi-Square(7)		0.0003
Heteroskedasticity Test: ARCH		Echantillon	2016-2021	
F-statistic	40.42172	Prob. F(7,57)		0.0000
Obs*R-squared	54.10140	Prob Chi-Square(7)		0.0000

Table A.2: Test ARCH pour la série Nickel

Heteroskedasticity Test: ARCH		Echantillon	2016-2019	
F-statistic	5.151741	Prob. F(7,33)		0.0005
Obs*R-squared	21.40896	Prob. Chi-Square(7)		0.0032
Heteroskedasticity Test: ARCH		Echantillon	2016-2021	
F-statistic	27.04986	Prob. F(7,57)		0.0000
Obs*R-squared	49.96036	Prob Chi-Square(7)		0.0000

A.2 Analyse graphique

Figure A.1: Cours du blé (en logarithme)

Figure A.2: Cours du nickel (en logarithme)

A.3 Analyse de la variance

A.3.1 Tableau de Buys-Ballot

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct.	Nov.	Déc.	x_i .	σ_i .
2016	5.0983	4.9921	5.0288	5.0206	5.1044	5.0483	5.1120	5.0418	5.0783	5.1105	5.0876	5.1240	5.0706	0.0428
2017	5.1090	5.1489	5.1029	5.1255	5.1165	5.1733	5.1255	5.0483	5.1120	5.0876	5.0720	5.0689	5.1075	0.0350
2018	5.0642	5.1165	5.0983	5.1255	5.2081	5.1846	5.3095	5.3218	5.3058	5.2908	5.3045	5.3144	5.2203	0.0986
2019	5.3193	5.2640	5.2244	5.2109	5.2217	5.1943	5.1634	5.1014	5.1634	5.1818	5.2231	5.2404	5.2090	0.0552
$x_{\cdot j}$	5.1477	5.1304	5.1136	5.1206	5.1627	5.1501	5.1776	5.1283	5.1649	5.1677	5.1718	5.1869	<i>x</i>	σ
$\sigma_{\cdot j}$	0.1160	0.1118	0.0813	0.0779	0.0608	0.0685	0.0906	0.1317	0.1003	0.0914	0.1115	0.1111	5.1519	0.0881

Table A.3: Tableau de Buys-Ballot du blé (échantillon 2016-2019)

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct.	Nov.	Déc.	x_i .	σ_{i} .
2016	5.0983	4.9921	5.0288	5.0206	5.1044	5.0483	5.1120	5.0418	5.0783	5.1105	5.0876	5.1240	5.0706	0.0428
2017	5.1090	5.1489	5.1029	5.1255	5.1165	5.1733	5.1255	5.0483	5.1120	5.0876	5.0720	5.0689	5.1075	0.0350
2018	5.0642	5.1165	5.0983	5.1255	5.2081	5.1846	5.3095	5.3218	5.3058	5.2908	5.3045	5.3144	5.2203	0.0986
2019	5.3193	5.2640	5.2244	5.2109	5.2217	5.1943	5.1634	5.1014	5.1634	5.1818	5.2231	5.2404	5.2090	0.0552
2020	5.4250	5.5013	5.3730	5.5520	5.3648	5.3435	5.4083	5.5164	5.5530	5.6463	5.6330	5.6294	5.4955	0.1105
2021	5.2338	5.2794	5.2768	5.2378	5.1957	5.2081	5.2351	5.2870	5.3242	5.3483	5.3625	5.4250	5.2845	0.0691
$x_{\cdot j}$	5.2083	5.2170	5.1840	5.2120	5.2019	5.1920	5.2256	5.2194	5.2561	5.2775	5.2805	5.3003	<i>x</i>	σ
$\sigma_{\cdot j}$	0.1433	0.1745	0.1296	0.1832	0.0936	0.0941	0.1160	0.1887	0.1768	0.2070	0.2076	0.2060	5.2312	0.1552

Table A.4: Tableau de Buys-Ballot du blé (échantillon 2016-2021)

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct	Nov.	Déc.	x_i .	σ_{i} .
2016	9.0618	9.0502	9.0466	9.1532	9.0401	9.1532	9.2714	9.1866	9.2662	9.2567	9.3281	9.2123	9.1689	0.1013
2017	9.2058	9.3038	9.2128	9.1538	9.1016	9.1474	9.2316	9.3759	9.2591	9.4169	9.3156	9.4541	9.2649	0.1110
2018	9.5178	9.5317	9.4955	9.5215	9.6304	9.6091	9.5490	9.4572	9.4415	9.3501	9.3237	9.2771	9.4754	0.1105
2019	9.4319	9.4765	9.4715	9.4093	9.3941	9.4486	9.5812	9.7926	9.7439	9.7199	9.5230	9.5486	9.5451	0.1371
$x_{\cdot j}$	9.3043	9.3406	9.3066	9.3094	9.2916	9.3396	9.4083	9.4530	9.4277	9.4359	9.3726	9.3730	<i>x</i>	σ
$\sigma_{\cdot j}$	0.2084	0.2166	0.2154	0.1858	0.2736	0.2282	0.1822	0.2532	0.2271	0.2004	0.1004	0.1554	9.3636	0.1885

Table A.5: Tableau de Buys-Ballot du nickel (échantillon 2016-2019)

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct.	Nov.	Déc.	x_{i} .	σ_i .
2016	9.0618	9.0502	9.0466	9.1532	9.0401	9.1532	9.2714	9.1866	9.2662	9.2567	9.3281	9.2123	9.1689	0.1013
2017	9.2058	9.3038	9.2128	9.1538	9.1016	9.1474	9.2316	9.3759	9.2591	9.4169	9.3156	9.4541	9.2649	0.1110
2018	9.5178	9.5317	9.4955	9.5215	9.6304	9.6091	9.5490	9.4572	9.4415	9.3501	9.3237	9.2771	9.4754	0.1105
2019	9.4319	9.4765	9.4715	9.4093	9.3941	9.4486	9.5812	9.7926	9.7439	9.7199	9.5230	9.5486	9.5451	0.1371
2020	9.4611	9.4137	9.3487	9.4085	9.4193	9.4576	9.5314	9.6400	9.5831	9.6262	9.6824	9.7179	9.5242	0.1227
2021	9.7808	9.8297	9.6846	9.7798	9.8044	9.8099	9.8808	9.8806	9.7946	9.8755	9.8983	9.9406	9.8300	0.0691
$x_{\cdot j}$	9.4099	9.4343	9.3766	9.4044	9.3983	9.4376	9.5076	9.5555	9.5147	9.5409	9.5118	9.5251	$x_{\cdot \cdot}$	σ
$\sigma_{\cdot j}$	0.2510	0.2579	0.2256	0.2369	0.2951	0.2583	0.2362	0.2635	0.2315	0.2382	0.2393	0.2738	9.4681	0.2371

Table A.6: Tableau de Buys-Ballot du nickel (échantillon 2016-2021)

A.3.2 ANOVA

Somme des carrés	Degrés de liberté	Désignation	Variance
0.0252	11	Variance période	0.0023
0.1984	3	Variance année	0.0661
0.1082	33	Variance résidu	0.0033

Table A.7: Tableau d'analyse de la variance du blé (2016-2019)

Somme des carrés	Degrés de liberté	Désignation	Variance
0.0951	11	Variance période	0.0086
1.3728	5	Variance année	0.2746
0.2657	55	Variance résidu	0.0048

Table A.8: Tableau d'analyse de la variance du blé (2016-2021)

Somme des carrés	Degrés de liberté	Désignation	Variance
0.1420	11	Variance période	0.0129
1.1170	3	Variance année	0.3723
0.9454	33	Variance résidu	0.0286

Table A.9: Tableau d'analyse de la variance du nickel (2016-2019)

Somme des carrés	Degrés de liberté	Désignation	Variance
0.2675	11	Variance période	0.0243
3.2508	5	Variance année	0.6502
0.5399	55	Variance Résidus	0.0098

Table A.10: Tableau d'analyse de la variance du nickel (2016-2021)

A.4 Désaisonnalisation de l'échantillon (2016-2021) du Nickel

Table A.11: Tableau de Buys-Ballot classé du Nickel (2019-2021)

2016	Mai	Mars	Fev.	Jan.	Avr.	Juin	Aout	Dec.	Oct.	Sep.	Jui.	Nov.
2017	Mai	Juin	Avr.	Jan.	Mars	Jui.	Sep.	Fev.	Nov.	Aout	Oct.	Dec.
2018	Dec.	Nov.	Oct.	Sep.	Aout	Mars	Jan.	Avr.	Fev.	Jui.	Juin	Mai
2019	Mai	Avr.	Jan.	Juin	Mars	Fev.	Nov.	Dec.	Jui.	Oct.	Sep.	Aout
2020	Mars	Avr.	Fev.	Mai	Juin	Jan.	Jui.	Sep.	Oct.	Aout	Nov.	De c.
2021	Mars	Avr.	Jan.	Sep.	Mai	Juin	Fev.	Oct.	Aout	Jui.	Nov.	De c.

Table A.12: Estimation par les MCO du test de Buys-Ballot sur le Nickel (2019-2021)

Dependent Variable: σ_i . Method: Least Squares Included observations: 6

Variable	Coefficient	Std. Error	t-Statistic	Prob.
x_i .	-0.035433 0.444098	0.046008 0.435722	-0.770138 1.019224	0.4842 0.3657
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.129131 -0.088586 0.023947 0.002294 15.09423 0.593113 0.484180	Mean depen S.D. depend Akaike info Schwarz crit Hannan-Qui Durbin-Wat	lent var criterion terion inn criter.	0.108617 0.022952 -4.364743 -4.434157 -4.642611 1.361545

Table A.13: Coefficients saisonniers prévisionnels pour 2022 du nickel

D 10.A Final seasonal component forecasts							
	From 2022.Jan to 2022.Dec						
Observations 12							
Jan Jul		Feb Aug	Mar Sep	Apr Oct	May Nov	Jun Dec	AVGE
	100.1 100.4	100.2 101	99.3 100.2	99.5 100.4	99.4 99.9	99.8 100.1	100

B Prévision traditionnelle

B.1 Échantillon 2016-2019

B.1.1 Extrapolation d'une droite de tendance

Table B.1: Estimation par les MCO de l'échantillon 2016-2019 du blé

Dependent Variable: LBLE_19

Method: Least Squares Sample: 2016M01 2019M12 Included observations: 48

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.004416	0.000674	6.548293	0.0000
C	5.048073	0.018398	274.3878	0.0000
R-squared	0.482449	Mean depen	dent var	5.151855
Adjusted R-squared	0.471198	S.D. dependent var		0.089014
S.E. of regression	0.064730	Akaike info criterion		-2.596423
Sum squared resid	0.192736	Schwarz criterion		-2.518457
Log likelihood	64.31416	Hannan-Quinn criter.		-2.566960
F-statistic	42.88014	Durbin-Watson stat		0.524474
$Prob(F ext{-statistic})$	0.000000			

Table B.2: Estimation par les MCO de l'échantillon 2016-2019 du nickel

Dependent Variable: LNICKEL 19

Method: Least Squares Sample: 2016M01 2019M12 Included observations: 48

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.011137	0.001153	9.657298	0.0000
С	9.101828	0.031460	289.3131	0.0000
R-squared	0.669691	Mean depen	dent var	9.363555
Adjusted R-squared	0.662510	S.D. dependent var		0.190534
S.E. of regression	0.110688	Akaike info criterion		-1.523421
Sum squared resid	0.563589	Schwarz criterion		-1.445454
Log likelihood	38.56209	Hannan-Quinn criter.		-1.493957
F-statistic	93.26340	Durbin-Watson stat		0.674312
Prob(F-statistic)	0.000000			

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.731	0.731	27.257	0.00
		2	0.647	0.242	49.069	0.00
	1	3	0.444	-0.207	59.582	0.00
		4	0.315	-0.078	64.989	0.00
		5	0.117	-0.187	65.757	0.00
		6	-0.114	-0.342	66.499	0.00
		7	-0.312	-0.236	72.208	0.00
		8	-0.460	-0.120	84.894	0.00
		9	-0.531	-0.019	102.27	0.00
		10	-0.585	-0.040	123.85	0.00
		11	-0.554	0.068	143.80	0.00
		12	-0.535	-0.066	162.88	0.00
		13	-0.411	0.019	174.45	0.00
		14	-0.280	0.037	179.97	0.00
1		15	-0.174	-0.164	182.16	0.00
		16	-0.035	-0.052	182.26	0.00
		17	0.104	0.068	183.10	0.00
1		18	0.178	-0.160	185.65	0.00
		19	0.240	-0.105	190.40	0.00
		20	0.240	-0.086	195.33	0.00

Figure B.1: Corrélograme des résidus des MCO de l'échantillon 2016-2019 du blé

Figure B.2: Histogramme des résidus des MCO de l'échantillon 2016-2019 du blé

Table B.3: Test ARCH sur les résidus des MCO de l'échantillon 2016-2019 du blé

Heteroskedasticity	Test: ARCH		
F-statistic	3.103962	Prob. F(7,33)	0.0125
Obs*R-squared	16.27762	Prob. Chi-Square(7)	0.0227

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Sample (adjusted): 2016M08 2019M12 Included observations: 41 after adjustments

B.1.2 Lissage exponential double

Table B.4: Constante de lissage LED blé (2016-2019)

Sample: 2016M01 2019M12	
Included observations: 48	
Method: Double Exponential	
Original Series: LBLE_19	
Forecast Series: LBLE_19_LED	
Parameters: Alpha	0.4280
Sum of Squared Residuals	0.104149
Root Mean Squared Error	0.046581

Table B.5: Constante de lissage LED nickel (2016-2019)

Sample: 2016M01 2019M12	
Included observations: 48	
Method: Double Exponential	
Original Series: LNICKEL 19	
Forecast Series: LNICKEL_19_LED	
Parameters: Alpha	0.4700
Sum of Squared Residuals	0.467077
Root Mean Squared Error	0.098645

B.1.3 Lissage exponentiel de Holt-Winter

Table B.6: Constantes de lissage HW blé (2016-2019)

Sample: 2016M01 2019M12						
Included observations: 48						
Method: Holt-Winters No Seasonal						
Original Series: LBLE_19						
Forecast Series: LBLE_19_HW						
Parameters: Alpha	0.7800					
Beta	0.0000					
Sum of Squared Residuals	0.095621					
Root Mean Squared Error	0.044633					

Table B.7: Constantes de lissage HW nickel (2016-2019)

Sample: 2016M01 2019M12 Included observations: 48 Method: Holt-Winters No Seasonal Original Series: LNICKEL_19 Forecast Series: LNICKEL_19_HW	
Parameters: Alpha	0.8900
Beta	0.0000
Sum of Squared Residuals	0.378752
Root Mean Squared Error	0.088829

B.2 Échantillon 2016-2021

B.2.1 Extrapolation d'une droite de tendance

Table B.8: Estimation par les MCO de l'échantillon 2016-2021 du blé

Dependent Variable: LBLE_21 Method: Least Squares

Sample: 2016M01 2021M12 Included observations: 72

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.006244	0.000471	13.24514	0.0000
C	5.007174	0.019392	258.2090	0.0000
R-squared	0.714791	Mean depen	dent var	5.228833
Adjusted R-squared	0.710716	S.D. dependent var		0.154562
S.E. of regression	0.083132	Akaike info criterion		-2.109399
Sum squared resid	0.483760	Schwarz criterion		-2.046159
Log likelihood	77.93838	Hannan-Quinn criter.		-2.084223
F-statistic	175.4338	Durbin-Watson stat		0.473428
$Prob(F ext{-statistic})$	0.000000			

Figure B.3: Corrélograme des résidus des MCO de l'échantillon 2016-2021 du blé

Figure B.4: Histogramme des résidus des MCO de l'échantillon 2016-2021 du blé

Table B.9: Test ARCH sur les résidus des MCO de l'échantillon 2016-2021 du blé

Heteroskedasticity	Test: ARCH		
F-statistic	8.190606	Prob. F(7,57)	0.0000
Obs*R-squared	32.59501	Prob. Chi-Square(7)	0.0000

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Sample (adjusted): 2016M08 2021M12 Included observations: 65 after adjustments

Table B.10: Estimation par les MCO de l'échantillon 2016-2021 du nickel

Dependent Variable: SLNICKEL 21

Method: Least Squares Sample: 2016M01 2021M12 Included observations: 72

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.009946	0.000625	15.91309	0.0000
C	9.114432	0.025711	354.5001	0.0000
R-squared	0.783434	Mean depen	dent var	9.467514
Adjusted R-squared	0.780340	S.D. depend	lent var	0.235170
S.E. of regression	0.110219	Akaike info	criterion	-1.545304
Sum squared resid	0.850382	Schwarz crit	erion	-1.482063
Log likelihood	57.63093	Hannan-Qui	nn criter	-1.520127
F-statistic	253.2265	Durbin-Wat	son stat	0.466778
$Prob(F ext{-statistic})$	0.000000			
rion(i -statistic)	0.000000			

Figure B.5: Corrélograme des résidus des MCO de l'échantillon 2016-2021 du nickel

Figure B.6: Histogramme des résidus des MCO de l'échantillon 2016-2021 du nickel

Table B.11: Test ARCH sur les résidus des MCO de l'échantillon 2016-2021 du nickel

Heteroskedasticity	Test: ARCH		
F-statistic	4.383482	Prob. F(7,57)	0.0006
Obs*R-squared	22.74618	Prob. Chi-Square(7)	0.0019

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Sample (adjusted): 2016M08 2021M12 Included observations: 65 after adjustments

B.2.2 Lissage exponential double

Table B.12: Constante de lissage LED blé (2016-2021)

Sample: 2016M01 2021M12			
Included observations:	72		
Method: Double Expon	ential		
Original Series: LBLE	21		
Forecast Series: LBLE	_21_LED		
Parameters: Alpha		0.3720	
Sum of Squared Residu	als	0.236817	
Root Mean Squared Er	ror	0.057351	
End of Period Levels:	Mean	5.647243	
	Trend	0.029996	

Table B.13: Constante de lissage LED nickel (2016-2021)

Sample: 2016M01 2021M12 Included observations: 72 Method: Double Exponential Original Series: SLNICKEL 21 Forecast Series: SLNICKEL 21 LED Alpha Parameters: 0.5040 Sum of Squared Residuals 0.472073 Root Mean Squared Error 0.080973 End of Period Levels: Mean 9.932757 Trend 0.031719

B.2.3 Lissage exponentiel de Holt-Winter

Table B.14: Constantes de lissage HW blé (2016-2021)

Sample: 2016M01 2021M12 Included observations: 72	
included observations. 12	
Method: Holt-Winters No Seasonal	
Original Series: LBLE 21	
Forecast Series: LBLE_21_HW	
Parameters: Alpha	0.7300
Beta	0.0000
Sum of Squared Residuals	0.209799
Root Mean Squared Error	0.053980

Table B.15: Constantes de lissage HW nickel (2016-2021)

Sample: 2016M01 2021M12	
Included observations: 72	
Method: Holt-Winters Additive Seasonal	
Original Series: LNICKEL 21	
Forecast Series: LNICKEL_21_HW	
Parameters: Alpha	0.9000
Beta	0.0000
Gamma	0.0000
Sum of Squared Residuals	0.381191
Root Mean Squared Error	0.072762
<u> </u>	

C Prévision selon la méthodologie de Box-Jenkins

C.1 Test de racine unitaire

C.1.1 Echnatillon 2016-2019

Table C.1: Estimation du modèle 3 pour le blé (2016-2019)

Null Hypothesis: LBLE 19 has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-2.671980	0.2524
Test critical values:	1% level	-4.165756	
	5% level	-3.508508	
	10% level	-3.184230	

Phillips-Perron Test Equation
Dependent Variable: D(LBLE 19)

Method: Least Squares

Sample (adjusted): 2016M02 2019M12 Included observations: 47 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LBLE_19(-1)	-0.268617	0.101366	-2.649965	0.0111
С	1.355316	0.511357	2.650430	0.0111
@TREND("2016M01")	0.001295	0.000658	1.967975	0.0554
R-squared	0.138331	Mean depend	dent var	0.003023
Adjusted R-squared	0.099164	S.D. depend	ent var	0.046856
S.E. of regression	0.044473	Akaike info d	criterion	-3.326190
Sum squared resid	0.087023	Schwarz crite	erion	-3.208095
Log likelihood	81.16545	Hannan-Quir	nn criter	-3.281750
F-statistic	3.531847	Durbin-Wats	on stat	2.151360
$Prob(F ext{-statistic})$	0.037800			

Table C.2: Estimation du modèle 3 contraint sous H_0^3 pour le blé (2016-2019)

Dependent Variable: D(LBLE_19)

Method: Least Squares

Sample (adjusted): 2016M02 2019M12 Included observations: 47 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.003023	0.006835	0.442306	0.6603
R-squared	0.000000	Mean depen	dent var	0.003023
Adjusted R-squared	0.000000	S.D. depend	lent var	0.046856
S.E. of regression	0.046856	Akaike info	criterion	-3.262412
Sum squared resid	0.100994	Schwarz crit	erion	-3.223047
Log likelihood	77.66668	Hannan-Qui	nn criter	-3.247599
Durbin-Watson stat	2.480204			

Table C.3: Estimation du modèle 2 pour le blé (2016-2019)

Null Hypothesis: LBLE 19 has a unit root

Exogenous: Constant

Bandwidth: 0 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-1.731845	0.4090
Test critical values:	1% level	-3.577723	
	5% level	-2.925169	
	10% level	-2.600658	

Phillips-Perron Test Equation
Dependent Variable: D(LBLE 19)

Method: Least Squares

Sample (adjusted): 2016M02 2019M12 Included observations: 47 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LBLE_19(-1)	-0.131600	0.075988	-1.731845	0.0902
C	0.680760	0.391395	1.739315	0.0888
R-squared	0.062486	Mean depend	dent var	0.003023
Adjusted R-squared	0.041652	S.D. depende	ent var	0.046856
S.E. of regression	0.045870	Akaike info d	criterion	-3.284382
Sum squared resid	0.094683	Schwarz crite	erion	-3.205653
Log likelihood	79.18298	Hannan-Quir	nn criter	-3.254756
F-statistic	2.999285	Durbin-Wats	on stat	2.300599
Prob(F-statistic)	0.090152			

Table C.4: Estimation du modèle 1 pour le blé (2016-2019)

Null Hypothesis: LBLE_19 has a unit root

Exogenous: None

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		0.509824	0.8221
Test critical values:	1% level	-2.615093	
	5% level	-1.947975	
	10% level	-1.612408	

Phillips-Perron Test Equation
Dependent Variable: D(LBLE 19)

Method: Least Squares

Sample (adjusted): 2016M02 2019M12 Included observations: 47 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LBLE_19(-1)	0.000548	0.001327	0.413147	0.6814
R-squared	-0.000540	Mean dependent var		0.003023
Adjusted R-squared	-0.000540	S.D. dependent var		0.046856
S.E. of regression	0.046869	Akaike info criterion		-3.261872
Sum squared resid	0.101049	Schwarz criterion		-3.222507
Log likelihood	77.65399	Hannan-Quinn criter.		-3.247058
Durbin-Watson stat	2.480284			