Notes

October 3, 2014

if $\lim \inf x_n = L$ then there exists $\{x_{n_k}\}$ such that $\lim x_{n_k} = L$ $l = \liminf_{n \to \infty} x_n = \lim \left(\inf \left\{ \underbrace{x_{n_1}, x_{n_2}, x_{n_3}, \dots}_{c_n} \right\} \right)$

why not just let c_n be the subsequence? because c_n may not be equal to any of the x_k in the sequence $c_n = \inf\{x_{n_1}, x_{n_2}, \dots\}$ give $\varepsilon = 2^{-n}$ there exists $x_{n_k} \in \{x_{n_1}, x_{n+1}, x_{n+2}, \dots\}$ such that $|c_n - x_{n_k}| < 2^{-n}$ by def of infinum

we has a sequence $\{c_n\}$ given $\varepsilon > 0$ there exists N such that $|c_n - L| < \varepsilon$ if $n \ge N$, we approximate each c_n by some x_{n_k} from the original sequence sutch that

convergence test for series

first we talk about series with positive terms $\sum_{k=1}^{\infty} a_k$, $s_n = \sum_{k=1}^{n} a_k$. So if s_n is bounded about then the series

is convergent. and if not, it is divergent. $\text{geometric series } \sum_{n=0}^{\infty} r^n \text{ is convergent if } |r| < 1. \ s_n = \sum_{k=0}^{\infty} n r^k = 1 + r + r^2 + \dots + r^n, r s_n = r + r^2 + r^3 + \dots, sn - r Sn = 1 - r^{n+1}$ $s_n = \frac{1 - r^{n+1}}{1 - r} \rightarrow \frac{1}{1 - r}$

comparison test

if $\forall n, |a_n| \leq b_n$

- if $\sum_{n=1}^{\infty} b_n$ is convergent then $\sum_{n=1}^{\infty} a_n$ is convergent,
- if $\sum a_n$ is divergent, so is $\sum b_n$.

3.2.b

show that if $(|a_n|)_{n=1}^{\infty}$ is summable then so is $(a_n)_{n=1}^{\infty}$.

$$\sum_{k=n+1}^{m} |a_k| < \varepsilon \text{ for all } N \le n \le m \text{ because is is summable}$$

$$\left| \sum_{k=n+1}^{m} a_k \right| \le \sum_{k=n+1}^{m} |a_k| < \varepsilon$$

so then $\sum a_k$ is also cauchy and summable

cauchy-schwartz inequality

$$\sum_{k=1}^{n} a_k b_k \leq \left(\sum_{k=1}^{n} a_k^2\right)^{1/2} \left(\sum_{k=1}^{n} b_k^2\right)^{1/2}$$

3.2.f

leibniz test for alternating series

if $\{a_n\}$ is a monotone decreasing sequence of positive terms with the $\lim a_n = 0$ then $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent

note!

a sequence my have the property $\lim |a_n - a_{n+1}| = 0$ but not be cauchy

3.2.h

Show that if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with $b_n \ge 0$ such that $\limsup_{n \to \infty} < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$, then the series $\sum_{n=1}^{\infty} a_n$ converges.

$$\begin{split} \left| \left(\sup_{k \ge n} \frac{|a_k|}{b_k} \right) - L \right| &< \varepsilon \\ \left(\sup_{k \ge n} \frac{|a_k|}{b_k} \right) &< L + \varepsilon \\ \frac{|a_k|}{b_k} &< L \varepsilon \\ |a_k| &< (L + \varepsilon) b_k \end{split}$$

3.2.j

 $\liminf \frac{a_n+1}{a_n} \leq \liminf a_n^{\frac{1}{n}} \leq \limsup a_n^{\frac{1}{n}} \leq \limsup \frac{a_n+1}{a_n}.$

step 1

if $x \ge r$ for all r > b then x is a lower bound for the set $\{r \in \mathbb{R} : r > b\}$, $x \le \inf\{r \in \mathbb{R} : r > b\} = b$ we will show that if $\limsup \frac{a_n}{b_n} < r$ then $\limsup a_n^{\frac{1}{n}} \le r$ and then apply step one. let $r > \limsup \frac{a_{n+1}}{a_n}$ then $\exists N$ such that $r > \frac{a_{n+1}}{a_n} \forall n \ge N$

$$a_{N+1} < ra_{N}$$

$$a_{N+2} < ra_{N+1} \le r^{2}a_{N}$$

$$a_{N+K} < r^{k}a_{N}$$

$$a_{N+k}^{\frac{1}{N+k}} < (r^{k}a_{N})^{\frac{1}{N+k}}$$

quiz from 10/1/2014

 $L_k \to L$ then $\{x_n\}$ such that $\forall k, \exists$ a subsequence of $\{x_n\}$ converging to L_k . prove that $\{x_n\}$ has a subsequence converging to L.

given
$$\varepsilon > 0 \exists N_0$$
 such that $|L_k - L| < \varepsilon$ if $k \ge N_0$ $|x_{N_k} - L| \le |x_{N_k} - L_k| + |L_k - L| < 2\varepsilon$

example

let $A, B \subseteq \mathbb{R}$, prove that sup $A \leq \inf B$, if $\forall a \in A, b \in B, a \leq b$

3.3.5

any rearrangement of an absolutely convergent series converges to the same limit

proof

let $\sum a_n = L < \infty$. We know $\sum |a_n|$ is convergent (not necessarily to L). by th cauchy riterion for series $\forall \varepsilon > 0 \exists N \text{ such that } \left(\sum_{n=N+1}^{\infty} |a_n|\right) < \varepsilon$

$$\pi: \mathbb{N} \to \mathbb{N}$$
 is bijective, the rearranged series is $\sum_{n=1}^{\infty} a_{\pi(n)}$ and $\{a_1 \dots a_N\} \subseteq \{a_{\pi(1)1} \dots a_{\pi(M)}\}$

3.3.7 rearrangement theorem

let
$$\sum a_n=L<\infty$$
 and define $b_n=(a_n\geq 0)?a_n:0$ and $c_n=(a_n<0)?a_n:0$ consider the series $\sum b_n$ and $\sum |c_n|$

case 1

both convergent

 $\sum |a_n| = \sum b_n + \sum |c_n|$ which is convergent, which contradicts the fact that a_n is conditionally convergent

case 2

one convergent, one divergent

assume $\sum |c_n| = A < \infty$ and $\sum b_n$ is divergent to $+\infty$

given any $R \in \mathbb{N}$ big, $\exists N$ such that $\sum_{n=1}^{N} b_n > R + A$, then we pick M big enough so that $\{b_1, \ldots, b_N\} \subseteq$

 $\{a_1, a_2, \dots, a_M\}$ and $\sum_{n=1}^M a_n \ge \sum_{n=1}^N b_n - \sum |c_n| > R$ so $\sum a_n$ is divergent, which is a contradiction.

case 3

both divergent

chapter 4

 $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n), x_i \in \mathbb{R}\}$, vector space (or point in *n*-space). with the coordinate wise sum and the product by real numbers (scalars).

$$(x_1, \dots x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$
$$\lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$
$$x^{\rightarrow} = (x_1, \dots, x_n) = x$$

euclidean norm

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}$$

distance from x to y

$$||x-y||$$

cauchy-schwarz

$$\begin{vmatrix} \sum_{i=1}^n a_j b_j \end{vmatrix} \le \left(\sum_{i=1}^n a_j^2\right)^{1/2} \left(\sum_{i=1}^n b_j^2\right)^{1/2} \\ |a \cdot b| \le ||a|| ||b||$$

dot product

$$a \cdot b = \sum a_i b_i$$

triangle inequality

$$||x + y|| \le ||x||| + ||y||$$

proof

$$||x+y||^{2} = \sum (x_{i} + y_{i})^{2}$$

$$= (x+y) \cdot (x+y)$$

$$= x \cdot x + 2x \cdot y + y \cdot y$$

$$= ||x||^{2} + 2x \cdot y + ||y||^{2}$$

$$\leq ||x||^{2} + 2||x||||y|| + ||y||^{2}$$

$$= (||x|| + ||y||)^{2}$$

standard orthogonal base of \mathbb{R}^n

$$e_1 = <1, 0, ..., 0>$$
 $e_2 = <0, 1, ..., 0>$
 \vdots
 $e_n = <0.0, ..., 1>$

4.2 convergence in \mathbb{R}^n

definition: a sequence $\{x^i\}$ of parts in \mathbb{R}^n converge to $c \in \mathbb{R}^n$ if $\forall \varepsilon > 0 \exists N = N(\varepsilon) \in \mathbb{N}$, such that $||x^i - c|| < \epsilon$ if $i \geq N$ we say $\lim x^i = c$.

4.2.2 lemma

 $\lim x^i = a$ if and only if $\lim ||x^i - a|| = 0$.

4.2.3 lemma

 $\lim x^i = a$ if and only if $\forall j = 1, \dots, n, \lim x^i_j = a_j$