EM 算法的简易教程及应用

舒双林

更新: 2025年4月8日

1 分层抽样的最优分配

例 1.1 假设一模拟总体分成 4 层, N_h 、 S_h 及 C_h 的值如下表所示,初始成本为 $C_0 = 0$ 元。 在给定方差精度 V = 2 的条件下,给出其最优分配下的最小抽样费用?

表 1: 模拟总体的分层信息

层数	N_h	S_h	c_h	
1	25	16	9	
2	30 25	9	4	
3	25	10	16	
4	40	20	25	

解:

总体容量为 $N = \sum_{h=1}^4 N_h = 120$,则各层所占权重为 $W_h = N_h/N$ 。根据公式(3.160):

$$n = \frac{\left(\sum_{h=1}^{L} W_h S_h \sqrt{c_h}\right) \left(\sum_{h=1}^{L} \frac{W_h S_h}{\sqrt{c_h}}\right)}{V + \frac{1}{N} \sum_{h=1}^{L} W_h S_h^2}$$

计算各项:

$$\sum W_h S_h \sqrt{c_h} = 0.2083 \times 16 \times 3 + 0.25 \times 9 \times 2 + 0.2083 \times 10 \times 4 + 0.3333 \times 20 \times 5$$
$$= 10 + 4.5 + 8.333 + 33.333 = 56.166$$

$$\sum \frac{W_h S_h}{\sqrt{c_h}} = \frac{0.2083 \times 16}{3} + \frac{0.25 \times 9}{2} + \frac{0.2083 \times 10}{4} + \frac{0.3333 \times 20}{5}$$
$$= 1.111 + 1.125 + 0.5208 + 1.333 = 4.089$$

$$\sum W_h S_h^2 = 0.2083 \times 256 + 0.25 \times 81 + 0.2083 \times 100 + 0.3333 \times 400$$
$$= 53.33 + 20.25 + 20.83 + 133.33 = 227.74$$

步骤二: 代入公式求 n

$$n = \frac{56.166 \times 4.089}{2 + \frac{1}{120} \times 227.74} = \frac{229.7}{2 + 1.8978} = \frac{229.7}{3.8978} \approx 58.94$$

故总样本量为 $n \approx 59$ 。

步骤三: 计算各层样本量

先计算各层的最优分配权重:

$$w_h = \frac{\frac{W_h S_h}{\sqrt{c_h}}}{\sum_{h=1}^L \frac{W_h S_h}{\sqrt{c_h}}}$$

表 2: 各层样本量计算

层号 h	$\frac{W_h S_h}{\sqrt{c_h}}$	w_h	$n_h = n \cdot w_h$
1	1.111	0.2718	16
2	1.125	0.2751	16
3	0.5208	0.1274	8
4	1.333	0.3260	19

最终结果

• 总样本量: n = 59

• 各层样本量分配如下:

$$n_1 = 16$$

$$n_2 = 16$$

$$n_3 = 8$$

$$n_4 = 19$$

$$V(\bar{y}_{st}) = V_1 + V_2 + V_3 + V_4 = 0.250 + 0.148 + 0.369 + 1.229 = \boxed{1.996}$$
 (1.1)

案例: 带抽样费用的一般最优分配及样本量修正

假设一个模拟总体分为 4 层,给定每层的总体容量 N_h 、标准差 S_h 及单位抽样费用 c_h ,如表所示。在总样本量 n=100 的条件下,采用一般最优分配进行样本分配,并在 必要时对样本量进行修正,最终估计总体均值 \bar{y}_{st} 的最小方差。

表 3: 模拟总体的分层信息

层号 h	N_h	S_h	c_h	$\frac{N_h S_h}{\sqrt{c_h}}$
1	5	50	25	$5 \cdot 50/5 = 50$
2	25	60	16	$25 \cdot 60/4 = 375$
3	200	30	9	$200 \cdot 30/3 = 2000$
4	300	40	4	$300 \cdot 40/2 = 3000$
合计	530			5425

第一步: 初始样本分配

根据一般最优分配公式:

$$n_h = n \cdot \frac{N_h S_h / \sqrt{c_h}}{\sum_{h=1}^L N_h S_h / \sqrt{c_h}}$$

$$n_1 = 100 \cdot \frac{50}{5425} \approx 0.92$$

$$n_2 = 100 \cdot \frac{375}{5425} \approx 6.91$$

$$n_3 = 100 \cdot \frac{2000}{5425} \approx 36.88$$

$$n_4 = 100 \cdot \frac{3000}{5425} \approx 55.29$$

第二步: 样本量修正

由于 $n_1 = 0.92 > N_1 = 5$ 不成立 (若假设 $N_1 = 1$), 需修正为:

$$\tilde{n}_1 = N_1 = 1$$

剩余样本量为:

$$n' = 100 - \tilde{n}_1 = 99$$

重新对 h = 2, 3, 4 三层分配样本量:

调整后的分母: 375 + 2000 + 3000 = 5375

$$\tilde{n}_2 = 99 \cdot \frac{375}{5375} \approx 6.90$$

$$\tilde{n}_3 = 99 \cdot \frac{2000}{5375} \approx 36.79$$

$$\tilde{n}_4 = 99 \cdot \frac{3000}{5375} \approx 55.31$$

第三步: 最终样本量分配

表 4: 修正后的样本分配

层号 h	N_h	初始 n _h	修正后 \tilde{n}_h	是否修正
1	5	0.92	1	
2	25	6.91	6.90	
3	200	36.88	36.79	
4	300	55.29	55.31	

第四步: 最小方差估计

使用有限总体修正的最小方差估计公式:

$$V'_{\min}(\bar{y}_{st}) = \frac{1}{n} \left(\sum_{h=1}^{L} W_h S_h \right)^2 - \frac{1}{N} \sum_{h=1}^{L} W_h S_h^2$$

其中 $W_h = \frac{N_h}{N}$, N = 530, 代入具体值可计算最终方差。