Aprendizagem estatística em altas dimensões

Florencia Leonardi

Conteúdo

- * Comparação de modelos
- * Decomposição do erro esperado "fora da amostra"
- * Seleção de modelos
- * Validação cruzada

Objetivos da aprendizagem estatística supervisionada

Formalização do problema de aprendizagem estatística supervisionada:

- * Uma função objetivo $f \colon \mathcal{X} \to \mathcal{Y}$ desconhecida
- * Um conjunto de dados (exemplos) $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- st Uma função de custo $L\colon \mathscr{Y} imes \mathscr{Y} o \mathbb{R}_{>0}$
- * Uma família de funções candidatas ${\mathscr G}$ (modelo)

O objetivo da aprendizagem estatística é "aprender" a função objetivo f a partir de um conjunto de dados observado $\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}$

Objetivos da aprendizagem estatística supervisionada

Como escolher g?

Objetivo: escolher $g \in \mathcal{G}$ que minimize $\mathbb{E}[L(y, g(x))]$

Lembrando:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 é um estimador de $\mathbb{E}(X)$ se x_1, \dots, x_n é uma amostra da variável X

Ideia: escolher
$$g \in \mathcal{G}$$
 que minimize $\frac{1}{n} \sum_{i=1}^{n} L(y_i, g(x_i))$

Esta ideia funciona bem quando a complexidade da família \mathcal{G} é a adequada para o problema, mas pode ser ruim em vários outros casos !

Tipos de erro

$$\widehat{E}_D(g) = \frac{1}{n} \sum_{i=1}^n L(y_i, g(x_i))$$
 Erro estimado "dentro da amostra"

$$E_D(g) = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n L(y_i,g(x_i))\right]$$
 Erro esperado "dentro da amostra"

$$E_F(g) = \mathbb{E}(L(y, g(x)))$$
 Erro esperado "fora da amostra"

$$\widehat{E}_F(g)$$
? Erro estimado "fora da amostra"

Função g fixa

Função g que minimiza $\widehat{E}_D(g)$

Função g fixa

Função g fixa

Função g fixa

E se o tamanho da amostra for maior ...?

 $\mathscr{G}=$ funções lineares

 $\mathcal{G}=$ modelo de splines de grau 12

Para cada $g \in \mathcal{G}$ nós definimos $E_F(g) = \mathbb{E}[L(y, g(x))]$

Mas nós queremos avaliar o erro esperado fora da amostra da função $g^{\mathscr{D}}$, escolhida minimizando $\widehat{E}_D(g)$!

Ou seja nós gostaríamos de saber quanto vale $E_F(g^{\mathcal{D}}) = \mathbb{E}(L(y, g^{\mathcal{D}}(x)))$

A esperança é calculada em relação a uma distribuição de probabilidade.... qual neste caso?

- * A distribuição dos dados ${\mathscr D}$ que são i.i.d com distribuição p(x,y)
- st A distribuição da observação de teste (x,y) que também tem distribuição p(x,y) e é independente de $\mathscr D$

Consideremos a função de custo quadrática $L(y,\hat{y})=(y-\hat{y})^2$ no caso de regressão

Dada $g \in \mathcal{G}$ podemos escrever:

$$E_F(g) = \mathbb{E}[(f(x) + \epsilon - g(x))^2] = \mathbb{E}[(f(x) - g(x))^2 + 2(f(x) - g(x))\epsilon + \epsilon^2]$$

$$= \mathbb{E}[(f(x) - g(x))^2] + \mathbb{E}[2(f(x) - g(x))\epsilon] + \mathbb{E}[\epsilon^2]$$

Como assumimos que as variáveis X e ϵ são independentes e ainda $\mathbb{E}[\epsilon]=0$, podemos verificar que

$$\mathbb{E}(2(f(x) - g(x))\epsilon) = 2\mathbb{E}[f(x) - g(x)]\mathbb{E}[\epsilon] = 0$$

Na formulação do modelo ainda assumimos que $\mathbb{E}[\epsilon^2] = \sigma^2$, logo obtemos que

$$E_F(g) = \mathbb{E}[(f(x) - g(x))^2] + \sigma^2$$

Consideremos agora o erro redutível

$$\mathbb{E}[(f(x) - g^{\mathcal{D}}(x))^2] = \mathbb{E}_{(x,y)}\mathbb{E}_{\mathcal{D}}[(f(x) - g^{\mathcal{D}}(x))^2]$$

Para um x fixo, podemos pensar em $g^{\mathcal{D}}(x)$ como um estimador de f(x)

Aqui, $g^{\mathcal{D}}$ é uma função obtida por um método qualquer, não necessariamente a que minimiza $\widehat{E}_D(g)$

Lembrando:

$$EQM(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2] = Vi\acute{e}s(\hat{\theta})^2 + Var(\hat{\theta})$$

$$\mathbb{E}_{\mathscr{D}}[(f(x) - g^{\mathscr{D}}(x))^2] = \text{Vi\'es}(g^{\mathscr{D}}(x))^2 + \text{Var}(g^{\mathscr{D}}(x))$$

$$\mathbb{E}_{\mathscr{D}}[(f(x) - g^{\mathscr{D}}(x))^2] = \text{Vi\'es}(g^{\mathscr{D}}(x))^2 + \text{Var}(g^{\mathscr{D}}(x))$$

$$\mathsf{Vi\acute{e}s}(g^{\mathscr{D}}(x))^2 = [\mathbb{E}_{\mathscr{D}}(g^{\mathscr{D}}(x)) - f(x)]^2$$

$$\mathsf{Var}(g^{\mathscr{D}}(x)) = \mathbb{E}_{\mathscr{D}}[(g^{\mathscr{D}}(x) - \mathbb{E}_{\mathscr{D}}[g^{\mathscr{D}}(x)])^2]$$

 $\bar{g}(x)$

Muitas vezes $\bar{g}(x)$ é a melhor aproximação de f dentro da classe $\mathcal G$

$$g^* = \inf_{g \in \mathcal{G}} \mathbb{E}_{x}[(f(x) - g(x))^2]$$

$$f: [-1,1] \to \mathbb{R}$$

$$f(x) = \sin(\pi x)$$

$$\epsilon = 0$$
 $y = f(x)$

Duas classes de modelos

$$\mathcal{G}_1 = \{ g(x) = \beta_0 \colon \beta_0 \in \mathbb{R} \}$$

$$\mathcal{G}_2 = \{ g(x) = \beta_0 + \beta_1 x \colon (\beta_0, \beta_1) \in \mathbb{R}^2 \}$$

Suponhamos que nosso conjunto de dados ${\mathscr D}$ só tem dois pontos:

$$\mathcal{G}_1 = \{g(x) = \beta_0 \colon \beta_0 \in \mathbb{R}\}\$$

$$\mathcal{G}_2 = \{ g(x) = \beta_0 + \beta_1 x \colon (\beta_0, \beta_1) \in \mathbb{R}^2 \}$$

Suponhamos que nosso conjunto de dados ${\mathscr D}$ só tem dois pontos:

$$\mathcal{G}_1 = \{g(x) = \beta_0 \colon \beta_0 \in \mathbb{R}\}$$

$$\mathcal{G}_2 = \{ g(x) = \beta_0 + \beta_1 x \colon (\beta_0, \beta_1) \in \mathbb{R}^2 \}$$

 $\mathcal{G}_2 = \{ g(x) = \beta_0 + \beta_1 x \colon (\beta_0, \beta_1) \in \mathbb{R}^2 \}$

 $\mathcal{G}_1 = \{ g(x) = \beta_0 \colon \beta_0 \in \mathbb{R} \}$

$$Viés^2 = 0,50$$

Variância = 0.25

$$\mathcal{G}_2 = \{ g(x) = \beta_0 + \beta_1 x \colon (\beta_0, \beta_1) \in \mathbb{R}^2 \}$$

$$Viés^2 = 0.21$$

Variância = 1,69

O custo benefício

Modelo "simples"

Modelo "complexo"

Curvas de erro

Modelo "simples"

Modelo "complexo"

Curvas de erro

O custo benefício

"A complexidade do modelo deve estar de acordo com os dados disponíveis, e não com a complexidade da função objetivo"

Yaser Abu Mostafa - Learning from data - MIT Online Course

Estimação do erro "fora da amostra"

Se nós tivermos acesso a uma amostra independente de \mathscr{D} , que denotamos por $\mathscr{D}_{T_{\rho}} = \{(x_1, y_1), ..., (x_K, y_K)\}$, podemos estimar

$$E_F(g) = \mathbb{E}(L(y,g))$$
 pela média empírica $\widehat{E}_F(g) = \frac{1}{K} \sum_{k=1}^K L(y_i,g(x_i))$

Neste caso, mesmo para $g = g^{\mathcal{D}}$ temos que

$$\mathbb{E}(\widehat{E}_F(g)) = E_F(g)$$

$$\operatorname{Var}(\widehat{E}_F(g)) = \frac{\operatorname{Var}[L(y,g(x))]}{K} = \frac{C}{K}$$

$$E_F(g) = \widehat{E}_F(g) \pm O_p\left(\frac{1}{\sqrt{K}}\right)$$

Estimação do erro "fora da amostra"

Escolhemos $g_i^{\mathcal{D}}$ tal que $\widehat{E}_F(g_i^{\mathcal{D}})$ é mínimo?

Escolhemos $g_i^{\mathcal{D}}$ tal que $\widehat{E}_F(g_i^{\mathcal{D}})$ é mínimo?

$$\widehat{E}_F(g_1), \widehat{E}_F(g_2) \sim \text{Uniforme}(0,1)$$

$$E_F(g_1) = E_F(g_2) = 0.5$$

$$g^{\mathcal{D}} = \arg\min(\widehat{E}_F(g_1), \widehat{E}_F(g_2))$$

$$\mathbb{E}[\widehat{E}_F(g^{\mathcal{D}})] < 0.5!$$

Quando um conjunto de dados de teste é utilizado para guiar a escolha do modelo, então ele passa a ser um conjunto de "validação"

Se \mathcal{G}_i é a classe que minimiza $\widehat{E}_F(g_i^{\mathcal{D}_{Tr}})$

Seleção de modelos por reamostragem (bootstrap)

O problema com o esquema treinamento/validação/teste é que temos pouca variabilidade na amostra de treinamento e validação (uma única amostra)

Seleção de modelos por reamostragem (bootstrap)

Se \mathcal{G}_i é a classe que minimiza $\widehat{E}_F(g_i^{\mathcal{D}_{Tr*}})$

Seleção de modelos por validação cruzada

Divisão da amostra em k lotes do mesmo tamanho

Em geral k = 5 ou k = 10

Seleção de modelos por validação cruzada

Se \mathcal{G}_i é a classe que minimiza $\widehat{E}_F(g_i^{\mathcal{D}_{Tr*}})$

