Concept Learning

TM Chapter 2

Outline

- Learning from examples
- General-to-specific ordering over hypotheses
- Version spaces and candidate elimination algorithm
- Picking new examples
- The need for inductive bias

Why Study Concept Learning?

- Simple (e.g., assumes error-free, noise-free data) and practically useless!
- Easier to fully understand and explain the general challenges, issues, and concepts in ML
- White-box model: Prediction is interpretable & explainable
- Relates well to your earlier modules: Discrete math (CS1231), logic, search (CS3243)
- Principled and rigorously grounded: Proofs, proofs, and more proofs!

What is Concept Learning?

- What is a concept? A boolean-valued function over a set of input instances (each comprising input attributes)
- Concept learning is a form of supervised learning. Infer an unknown boolean-valued function from training examples

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Positive (+ve) and negative (-ve) training examples for target concept *EnjoySport*

How to Represent a Hypothesis?

- Many possible hypothesis representations: Trade-off between expressive power vs. smaller hypothesis space
- Consider a simple representation: Hypothesis *h* is a conjunction of constraints on input attributes
- Each constraint can be
 - a specific value (e.g., "Water = Warm")
 - don't care (e.g., "*Water* = ?")
 - no value allowed (e.g., "Water = \emptyset ")

Sky AirTemp Humidity Wind Water Forecast (Sunny, ?, ?, Strong, ?, Same)

Concept Learning for EnjoySport

Given

- Input instances X: Each instance $x \in X$ is represented by the following input attributes describing the day:
 - *Sky* (with possible values *Sunny*, *Cloudy*, and *Rainy*)
 - AirTemp (with values Warm and Cold)
 - Humidity (with values Normal and High)
 - Wind (with values Strong and Weak)
 - Water (with values Warm and Cool)
 - Forecast (with values Same and Change)

Concept Learning for EnjoySport

Given

• Hypothesis space H: Each hypothesis $h \in H$ $(h: X \to \{0, 1\})$ is represented by a conjunction of constraints (see page 5) on input attributes (e.g., $\langle Sunny, ?, ?, Strong, ?, Same \rangle$).

Definition. An input instance $x \in X$ satisfies (all constraints of) a hypothesis $h \in H$ iff h(x) = 1.

In other words, h classifies x as a +ve example.

Concept Learning for EnjoySport

Given

- Unknown target concept/function *EnjoySport*: $c: X \rightarrow \{0, 1\}$
- Noise-free training examples D: +ve and –ve examples of the target function (e.g., $D = \{\langle x_k, c(x_k) \rangle\}_{k=1,...,n}$)

Determine a hypothesis $h \in H$ that is **consistent** with D

Definition. A hypothesis h is **consistent** with a set of training examples D iff h(x) = c(x) for all $\langle x, c(x) \rangle \in D$.

How is saying 'h is **consistent** with training example $\langle x, c(x) \rangle$ ' different from 'saying instance x **satisfies** h'? Implication?

Inductive Learning Assumption

Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

Concept Learning is Search

Goal. Search for a hypothesis $h \in H$ that is **consistent** with D

For EnjoySport task, H contains

- $5 \times 4 \times 4 \times 4 \times 4 = 5120$ syntactically distinct hypotheses
- $1+4\times3\times3\times3\times3\times3=973$ semantically distinct hypotheses
- Every hypothesis containing 1 or more Ø symbols represents an empty set of input instances, hence classifying every instance as a –ve example

In practice, hypothesis space *H* is much larger and possibly infinite, hence motivating the need to exploit structure for searching efficiently.

Exploit Structure in Concept Learning

Definition. h_j is more general than or equal to h_k (denoted by $h_j \ge_g h_k$) iff any input instance x that satisfies h_k also satisfies h_j :

$$\forall x \in X \ (h_k(x) = 1) \to (h_j(x) = 1) \ .$$

 \geq_g relation defines a partial order (reflexive, antisymmetric, transitive) over H& not total order (e.g., $h_1 \geq_g h_3$ and $h_3 \geq_g h_1$)

Exploit Structure in Concept Learning

Definition. h_j is more general than or equal to h_k (denoted by $h_j \ge_g h_k$) iff any input instance x that satisfies h_k also satisfies h_j :

$$\forall x \in X \ (h_k(x) = 1) \to (h_i(x) = 1) \ .$$

Definition. h_j is more general than h_k (denoted by $h_j >_g h_k$) iff $h_j \ge_g h_k$ and $h_k \not\ge_g h_j$.

Definition. h_j is more specific than h_k iff h_k is more general than h_j .

Definition. h_j is more specific than or equal to h_k iff h_k is more general than or equal to h_j .

FIND-S Algorithm

Idea. Start with most specific hypothesis. Whenever it wrongly classifies a +ve training example as -ve, "minimally" generalize it to satisfy its input instance.

- 1. Initialize h to most specific hypothesis in H
- 2. For each positive training instance *x*
 - For each attribute constraint a_i in h

If x satisfies constraint a_i in h

Then do nothing

Else replace a_i in h by the next more general constraint that is satisfied by x

3. Output hypothesis *h*

Hypothesis Space Search by FIND-S

Proposition 1. h is consistent with D iff every +ve training instance satisfies h and every –ve training instance does not satisfy h.

 $x_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle$, +

 $x_2 = \langle Sunny \ Warm \ High \ Strong \ Warm \ Same \rangle$, +

 $x_2 = \langle Rainy \ Cold \ High \ Strong \ Warm \ Change \rangle$, -

 $x_{\Lambda} = \langle Sunny \ Warm \ High \ Strong \ Cool \ Change \rangle$, +

 $h_0 = \langle \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing \rangle$

 $h_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle$

 $h_2 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$

 $h_2 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$

 $h_{\Lambda} = \langle Sunny \ Warm \ ? \ Strong \ ? \ ? \rangle$

Hypothesis Space Search by FIND-S

Proposition 2. Suppose that $c \in H$. Then, h_n is consistent with $D = \{\langle x_k, c(x_k) \rangle\}_{k=1,...,n}$.

 $x_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle, +$

 $x_2 = \langle Sunny \ Warm \ High \ Strong \ Warm \ Same \rangle$, +

 $x_3 = \langle Rainy \ Cold \ High \ Strong \ Warm \ Change \rangle$, -

 $x_{\Lambda} = \langle Sunny \ Warm \ High \ Strong \ Cool \ Change \rangle$, +

 $h_0 = \langle \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing \rangle$

 $h_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle$

 $h_2 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$

 $h_2 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$

 $h_{\Lambda} = \langle Sunny \ Warm \ ? \ Strong \ ? \ ? >$

Limitations of FIND-S

- Can't tell whether Find-S has learned target concept
- Can't tell when training examples are inconsistent (i.e., contain errors or noise)
- Picks a maximally specific *h* (why?)
- Depending on *H*, there might be several!

Version Spaces

Definition. The **version space** $VS_{H,D}$ wrt hypothesis space H and training examples D, is the subset of hypotheses from H consistent with D:

$$VS_{H,D} = \{h \in H \mid h \text{ is consistent with } D\}$$
.

- If $c \in H$, then a large enough D can reduce $VS_{H,D}$ to $\{c\}$
- If D is insufficient, then $VS_{H,D}$ represents the uncertainty of what the target concept is
- $VS_{H,D}$ contains all consistent hypotheses, including maximally specific hypotheses

LIST-THEN-ELIMINATE Algorithm

Idea. List all hypotheses in H. Then, eliminate any hypothesis found inconsistent with any training example.

- 1. $VersionSpace \leftarrow$ a list containing every hypothesis in H
- 2. For each training example $\langle x, c(x) \rangle$

Remove from *VersionSpace* any hypothesis h for which $h(x) \neq c(x)$

3. Output the list of hypotheses in VersionSpace

Limitation. Prohibitively expensive to exhaustively enumerate all hypotheses in finite H

Version Space for EnjoySport

Compact Representation of Version Space

Definition. The **general boundary** G of $VS_{H,D}$ is the set of maximally general members of H consistent with D:

 $G = \{g \in H \mid g \text{ consistent with } D \land (\neg \exists g' \in H \ g' >_g g \land g' \text{ consistent with } D)\}.$

Definition. The **specific boundary** S of $VS_{H,D}$ is the set of maximally specific members of H consistent with D:

 $S = \{s \in H \mid s \text{ consistent with } D \land (\neg \exists s' \in H \ s >_g s' \land s' \text{ consistent with } D)\}.$

Every member of version space lies between these boundaries:

Version space representation theorem (VSRT).

$$VS_{H,D} = \{ h \in H \mid \exists s \in S \ \exists g \in G \ g \ge_g h \ge_g s \} .$$

Proof of Version Space Representation Theorem

- \Leftarrow Every h satisfying RHS is in $VS_{H,D}$.
- 1. Choose arbitrary $g \in G$, $s \in S$, $h \in H$ s.t. $g \ge_g h \ge_g s$
- 2. Every +ve training instance satisfies s, by Def. of S and Prop. 1
- 3. Since $h \ge_g s$, every +ve training instance satisfies h
- 4. Every –ve training instance does not satisfy g, by Def. of G and Prop. 1
- 5. Since $g \ge_g h$, every –ve training instance does not satisfy h
- 6. h is consistent with D, by Prop. 1 and steps 3 and 5
- 7. $h \in VS_{H,D}$
- \Rightarrow Every member of $VS_{H,D}$ satisfies RHS. DIY.

CANDIDATE-ELIMINATION Algorithm

Idea. Start with most general and specific hypotheses. Each training example "minimally" generalizes S and specializes G to remove inconsistent hypotheses from version space.

- 1. $G \leftarrow$ maximally general hypotheses in H
- 2. $S \leftarrow$ maximally specific hypotheses in H

CANDIDATE-ELIMINATION Algorithm

- 3. For each training example *d*
 - If *d* is a +ve example
 - Remove from G any hypothesis inconsistent with d
 - For each $s \in S$ not consistent with d
 - Remove s from S
 - ▶ Add to S all minimal generalizations h of s s.t.
 h is consistent with d, and
 some member of G is more general than or equal to h
 - Remove from S any hypothesis that is more general than another hypothesis in S

CANDIDATE-ELIMINATION Algorithm

/* Influence of +ve and –ve examples on S and G are dual */

- If *d* is a –ve example
 - Remove from S any hypothesis inconsistent with d
 - For each $g \in G$ not consistent with d
 - \blacktriangleright Remove g from G
 - ▶ Add to G all minimal specializations h of g s.t.
 h is consistent with d, and
 some member of S is more specific than or equal to h
 - ▶ Remove from *G* any hypothesis that is more specific than another hypothesis in *G*

CANDIDATE-ELIMINATION Trace 1

- Remove from G any hypothesis inconsistent with d
- For each $s \in S$ not consistent with d
 - ightharpoonup Remove s from S
 - Add to S all minimal generalizations h of s s.t. h is consistent with d, and S_1 :

 some member of G is more general than or equal to h

$$G_0$$
, G_1 , G_2 : $\{,?,?,?,?,?\}$

Training examples:

- 1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
- 2 . <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

CANDIDATE-ELIMINATION Trace 2

- Remove from S any hypothesis inconsistent with d
- For each $g \in G$ not consistent with d
 - ightharpoonup Remove g from G
 - $lackbox{ }$ Add to G all minimal specializations h of g s.t.

h is consistent with d, and S some member of S is more specific than or equal to h

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

CANDIDATE-ELIMINATION Trace 3

- Remove from G any hypothesis inconsistent with d
- For each $s \in S$ not consistent with d
 - ightharpoonup Remove s from S
 - \blacktriangleright Add to S all minimal generalizations h of s s.t.

h is consistent with d, and some member of G is more general than or equal to h

S 3: {<Sunny, Warm, ?, Strong, Warm, Same>}

S 4: {<Sunny, Warm, ?, Strong, ?, ?>}

Training Example:

4.<Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes