Función de Correlación de Tres Puntos (3PCF), su **estimación** y utilidad.

Fidel Sosa Nuñez

Universidad de Guanajuato, Campus León

July 16, 2020

Contenido

- Introducción
 - Modelo del Big Bang
 - Datos Correlacionados
- Punciones de Correlación
 - Definiciones
 - Contrastando Datos Discretos
 - Histogramas
 - Estimadores para la 2PCF y la 3PCF
 - Isotropía y Anisotropía
 - 2PCF Anisotrópica
- Algoritmos para las Funciones de Correlación
 - Algoritmo de Fuerza Bruta (BFA)
 - BFA para la 2PCF
 - BFA para la 3PCF
 - Histograma para la 2PCF Isotrópica
- Ejemplos y Aplicaciones de las CF.
 - Señal de BAO

Modelo del Big Bang

Datos Correlacionados

Estimación de Correlaciones en una muestra de datos

Distribuciones de Galaxias

Estimación de Correlaciones en una muestra de datos

Funciones de Correlación de Dos y Tres Puntos

$$dP_{12} = \rho^2 dV_1 dV_2 [1 + \xi(\mathbf{r}_{12})]$$

$$dP_{123} = \rho^3 dV_1 dV_2 dV_3 [1 + \xi(\mathbf{r}_{12}) + \xi(\mathbf{r}_{13}) + \xi(\mathbf{r}_{23}) + \zeta(\mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}_{23})]$$

Funciones de Correlación de Dos y Tres Puntos

$$dP_{12} = \rho^2 dV_1 dV_2 [1 + \xi(\mathbf{r}_{12})]$$

$$dP_{123} = \rho^3 dV_1 dV_2 dV_3 [1 + \xi(\mathbf{r}_{12}) + \xi(\mathbf{r}_{13}) + \xi(\mathbf{r}_{23}) + \zeta(\mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}_{23})]$$

Funciones de Correlación de Dos y Tres Puntos

$$dP_{12} = \rho^2 dV_1 dV_2 [1 + \xi(\mathbf{r}_{12})]$$

$$dP_{123} = \rho^3 dV_1 dV_2 dV_3 [1 + \xi(\mathbf{r}_{12}) + \xi(\mathbf{r}_{13}) + \xi(\mathbf{r}_{23}) + \zeta(\mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}_{23})]$$

Definición Infinitesimal.

Funciones de Correlación de Dos y Tres Puntos

$$dP_{12} = \rho^2 dV_1 dV_2 [1 + \xi(\mathbf{r}_{12})]$$

$$dP_{123} = \rho^3 dV_1 dV_2 dV_3 [1 + \xi(\mathbf{r}_{12}) + \xi(\mathbf{r}_{13}) + \xi(\mathbf{r}_{23}) + \zeta(\mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}_{23})]$$

- Definición Infinitesimal.
- Trabajaremos con Muestras Discretas.

Archivos de Posiciones

Contrastando Datos con Pares (distancias)

Histogramas

DD, DR y RR

Contrastando Datos con Tripletes (triángulos)

Histogramas

DDD, DDR, DRR, y RRR

Estimación de la 2PCF y la 3PCF

Estimadores de la 2PCF

$$\xi_{LS}^{(2)} = \frac{DD - 2DR + RR}{RR}$$

$$\xi_{HAM}^{(2)} = \frac{DD[RR]}{[DR]^2} - 1$$

Estimación de la 2PCF y la 3PCF

Estimadores de la 2PCF

$$\xi_{LS}^{(2)} = \frac{DD - 2DR + RR}{RR}$$

$$\xi_{HAM}^{(2)} = \frac{DD[RR]}{[DR]^2} - 1$$

Estimadores de la 3PCF

$$\xi_{SS}^{(3)} = \frac{DDD - 3DDR + 3DRR - RRR}{RRR}$$

$$\xi_{JB}^{(3)} = \frac{DDD[RRR]^2}{[DRR]^3} - 3\frac{DDR\ RRR}{[DRR]^2} + 2$$

Funciones de Correlación Isotrópicas y Anisotrópicas

- 2PCF isotrópica.
 - **1** Es caracterizada por un solo parámetro (distancias, r_{ij}).
 - 4 Histogramas unidimensionales.
- 2PCF anisotrópica.
 - ① Es caracterizada por dos parámetros (distancias y orientación, $\{r_{ij}, \theta_{ij}\}$).
 - 4 Histogramas bidimensionales.
- 3PCF isotrópica.
 - Es caracterizada tres parámetros (3 distancias, $\{r_{12}, r_{13}, r_{23}\}$).
 - Wistogramas tridimensionales.
- 3PCF anisotrópica.
 - La caracterizaremos más adelante con más de tres parámetros

2PCF Anisotrópica

Algoritmos.

• Algoritmos de Fuerza Bruta.

- Algoritmos de Fuerza Bruta.
- Algoritmos de Malla.

- Algoritmos de Fuerza Bruta.
- Algoritmos de Malla.
- Algoritmos de Vecinos Cercanos.

- Algoritmos de Fuerza Bruta.
- Algoritmos de Malla.
- Algoritmos de Vecinos Cercanos.
- Algoritmos de Árbol.

BFA para la 2PCF

Algorithm 1 BFA (2PCF isotrópica)

```
Require: L = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}: Lista de puntos.
    d_{max}: Distancia maxima requerida.
    dl: Lista vacía para guardar los datos del histograma .
    d: Variable para la distancia (se puede prescindir de estas variables.)
 1: for 1 \le i < N do
      for i < j < N do
    d = ||\mathbf{x}_i - \mathbf{x}_i||
    if d < d_{max} then
        dl.append(d)
        end if
      end for
 8: end for
 9: return dl
```

BFA para la 3PCF

Algorithm 2 BFA(3PCF isotrópica)

```
Require: L = \{x_1, ..., x_N\}: Lista de puntos.
    d<sub>max</sub>: Distancia maxima requerida.
    dl: Lista vacía para guardar los datos del histograma (tripletes).
    d<sub>1</sub>, d<sub>2</sub>, d<sub>3</sub>: Variables las distancia (se puede prescindir de estas variables.)
 1: for 1 ≤ i < N − 1 do</p>
      for i \le j < N do
     d_1 = ||\mathbf{x}_i - \mathbf{x}_i||
     if d_1 < d_{max} then
            for j < k \le N do
               d_2 = ||\mathbf{x}_i - \mathbf{x}_k||
              d_3 = ||\mathbf{x}_i - \mathbf{x}_k||
               if d_2 < d_{max} and d_3 < d_{max} then
                  dl.append(\{d_1, d_2, d_3\})
               end if
10:
             end for
11:
          end if
12:
       end for
14: end for
15: return dl
```

Construcción de Histogramas para la 2PCF Isotrópica

- n equi-particiones $\{x_0 = 0, x_1, x_2, x_3, \dots, x_{n-1}, x_n = d_{max}\}$ del intervalo $[0, d_{max}]$.
- Sub-intervalos de igual tamaño

$$x_{i+1}-x_i=\frac{d_{max}}{n}, \qquad i=0,1,2,\ldots,n-1.$$

• Cada sub-intervalos $(x_i, x_{i+1}]$ puede ser caracterizada por su punto medio

$$x_{i,i+1}^{(m)} = (i+1/2)\frac{d_{max}}{n}, \qquad i=0,1,2,\ldots,n-1.$$

Señal isotrópica de las Oscilaciones Acústicas de Bariones.

6 Crocce et al.

Señal anisotrópica de las Oscilaciones Acústicas de Bariones.

Comparación de Modelos de Gravedad usando la 3PCF.

