# 基于 RGB-D 图像的三维物体识别算法的研究与 实现

李勇奇 指导教师: 陈启军

2018年3月19日

同济大学,控制科学与工程系

#### Table of contents

- 1. Introduction
- 2. Dual RGB-D Camera
- 3. 3D-MRAI Algorithm
- 4. Application: Bin-picking
- 5. Conclusion

# Introduction

#### **Problem**

## Problem



#### **Problem**

2D Detection



# Where to pick?



# Where to pick?



RGB Image





Depth Map

**RGB** Image





3D Detection Results



Depth Map

**Dual RGB-D Camera** 

# Problem & Key

#### Problem & Key

Problem: SR300 相机对反光物体在某些角度下深度信息有严重的缺失



#### Problem & Key

Problem: SR300 相机对反光物体在某些角度下深度信息有严重的缺失



Key: 改变相机的拍摄角度



## Structure of Dual RGB-D Camera

#### Structure of Dual RGB-D Camera



对偶 RGB-D 相机物理结构

#### Structure of Dual RGB-D Camera



对偶 RGB-D 相机物理结构



对偶 RGB-D 相机内部原理图



■ 将深度图与彩色图对齐



- 将深度图与彩色图对齐
- 通过双目匹配算法 (ELAS) 形成一张新的 深度图



- 将深度图与彩色图对齐
- 通过双目匹配算法 (ELAS) 形成一张新的 深度图
- 融合三张深度图





$$\frac{M'}{M} \times 100\%$$





# 3D-MRAI Algorithm

#### 3D-MRAI

#### 3D-MRAI

#### 3D-MRAI (3D Mask R-CNN with Angle-fixed-4PCS and ICP)



## **Detection Module**

#### **Detection Module**



Based on Faster R-CNN

#### **Detection Module**



Based on Faster R-CNN



Based on Mask R-CNN



Original Mask R-CNN



Mask BBox Class mask branch FCN fixed size feature map STN RoIAlign layer feature map RPN Convolutional Backbone RGB HHA

Original Mask R-CNN

Mask R-CNN Detection Module



■ 引入 HHA, 有效利用三维信息, 解决原算法难以检测纹理缺少的 物体

#### Mask R-CNN Module





Original Mask R-CNN Mask R-CNN Detection Module

- 引入 HHA, 有效利用三维信息, 解决原算法难以检测纹理缺少的 物体
- 在网络中增加 STN(Spatial Transformer Network),使得提取的特 征具有旋转不变性、增加了算法检测准确度

## **Detection Module**

## **Detection Module**







Height above ground frame







HHA frame

## **Detection Module**



Horizontal disparity frame



Height above ground frame



Angle with gravity frame



HHA frame



## **Detection Module Results**

#### **Detection Module Results**

表 1: APC 数据集上的精确度

|                                   | input     | output | AP    | $AP_{0.5}$ | $AP_{0.75}$ |
|-----------------------------------|-----------|--------|-------|------------|-------------|
| Faster R-CNN                      | RGB       | bbox   | 33.26 | 56.29      | 34.03       |
| Our method(based on Faster R-CNN) | RGB + HHA | bbox   | 34.55 | 57.99      | 34.69       |
| Mask R-CNN                        | RGB       | mask   | 32.34 | 55.78      | 33.12       |
| Our method(based on Mask R-CNN)   | RGB+HHA   | mask   | 33.94 | 56.45      | 33.99       |

#### **Detection Module Results**

表 1: APC 数据集上的精确度

|                                   | input     | output | AP    | AP <sub>0.5</sub> | AP <sub>0.75</sub> |
|-----------------------------------|-----------|--------|-------|-------------------|--------------------|
| Faster R-CNN                      | RGB       | bbox   | 33.26 | 56.29             | 34.03              |
| Our method(based on Faster R-CNN) | RGB + HHA | bbox   | 34.55 | 57.99             | 34.69              |
| Mask R-CNN                        | RGB       | mask   | 32.34 | 55.78             | 33.12              |
| Our method(based on Mask R-CNN)   | RGB + HHA | mask   | 33.94 | 56.45             | 33.99              |

表 2: workpiece 数据集上的精确度

|                                   | input     | output | AP    | $AP_{0.5}$ | $AP_{0.75}$ |
|-----------------------------------|-----------|--------|-------|------------|-------------|
| Faster R-CNN                      | RGB       | bbox   | 18.78 | 37.49      | 19.46       |
| Our method(based on Faster R-CNN) | RGB + HHA | bbox   | 32.39 | 56.37      | 33.54       |
| Mask R-CNN                        | RGB       | mask   | 16.12 | 35.95      | 18.74       |
| Our method(based on Mask R-CNN)   | RGB + HHA | mask   | 30.98 | 53.74      | 32.19       |



去除 4PCS 算法中角度 不相等的基,减少了算 法运算时间



- 去除 4PCS 算法中角度 不相等的基,减少了算 法运算时间
- 通过增加滤波和 ICP 算法,增加了匹配精度





4PCS 存在的问题





4PCS 存在的问题



目标 3D 模型转化的点云



从 BBox 裁剪得到的点云

## **Matching Module Results**

## **Matching Module Results**



$$E = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \min_{p_j \in T(P)} \|q_i - p_j\|^2}$$

## **Matching Module Results**



5

4

$$E = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \min_{p_j \in T(P)} \|q_i - p_j\|^2}$$

 $d\uparrow$  , the size of point cloud  $\downarrow$ 

Our method

- LD-RANSAC

20

## **Combine Everything**



## **Combine Everything**

#### 

13

14 return Res

```
Input: RGB Image I, Depth Map
          D. CAD Models M
  Output: Set of Pose and Class Res

    Res ← Ø:

2 P ← Ø:
3 forall M_i ∈ M do
4 | P←
      \{P, CAD2PointCloud(M_i)\};
5 H = Depth2HHA(D);
6 Q = Depth2PointCloud(D):
7 Mask, Class \leftarrow DetectModule(I, H);
8 forall m_i \in Mask, c_i \in Class do
    Q_i \leftarrow Crop(Q, m_i);
   P_i \leftarrow P(c_i):
   T_i, S_i \leftarrow MatchModule(P_i, Q_i);
    if S_i > S_{min} then
       Res \leftarrow \{Res, [T_i, c_i]\};
```















| <i>k<sub>m</sub></i> [%] | 5     | 7     | 9     | 11    | 13    | 15     |
|--------------------------|-------|-------|-------|-------|-------|--------|
| Hinterstorisser et al.   | 75.63 | 83.84 | 89.13 | 93.48 | 96.83 | 98.12  |
| 3D-MRAI                  | 95.12 | 97.35 | 98.10 | 98.69 | 99.22 | 100.00 |







| <i>k</i> <sub>m</sub> [%] | 5     | 7     | 9     | 11    | 13    | 15     |
|---------------------------|-------|-------|-------|-------|-------|--------|
| Hinterstorisser et al.    | 75.63 | 83.84 | 89.13 | 93.48 | 96.83 | 98.12  |
| 3D-MRAI                   | 95.12 | 97.35 | 98.10 | 98.69 | 99.22 | 100.00 |









| k <sub>m</sub> [%]     | 5     | 7     | 9     | 11    | 13    | 15     |
|------------------------|-------|-------|-------|-------|-------|--------|
| Hinterstorisser et al. | 75.63 | 83.84 | 89.13 | 93.48 | 96.83 | 98.12  |
| 3D-MRAI                | 95.12 | 97.35 | 98.10 | 98.69 | 99.22 | 100.00 |

$$m = \underset{\mathbf{x} \in M}{\operatorname{avg}} \| (R\mathbf{x} + t) - (\tilde{R}\mathbf{x} + \tilde{t}) \|$$

如果  $m < k_m d$ ,算法输出位姿正确



**Application: Bin-picking** 

## **System Structure**

## **System Structure**



硬件架构

## **System Structure**





硬件架构

软件架构

## **Design Example**

#### **Design Example**



## **Experiment**

## **Experiment**



实验环境

## **Experiment**





实验环境物料箱

|      | 成功率 R | 响应时间 $T_r$ | 抓取时间 T <sub>1</sub> | 放置时间 T <sub>2</sub> | 工作周期 T |
|------|-------|------------|---------------------|---------------------|--------|
| 1    | 100%  | 711ms      | 7.6s                | 4.2s                | 11.9s  |
| 2    | 100%  | 729ms      | 6.8s                | 4.2s                | 11.0s  |
| 3    | 100%  | 708ms      | 6.5s                | 4.2s                | 10.7s  |
| 4    | 100%  | 701ms      | 8.1s                | 4.2s                | 12.3s  |
| 5    | 100%  | 713ms      | 9.3s                | 4.2s                | 13.5s  |
| 6    | 100%  | 722ms      | 6.6s                | 4.2s                | 10.8s  |
| 7    | 100%  | 693ms      | 7.9s                | 4.2s                | 12.1s  |
| 8    | 100%  | 732ms      | 9.1s                | 4.2s                | 13.3s  |
| 9    | 100%  | 718ms      | 8.9s                | 4.2s                | 13.1s  |
| 10   | 100%  | 723ms      | 6.9s                | 4.2s                | 11.1s  |
| Avg. | 100%  | 715ms      | 7.77s               | 4.20s               | 11.98s |

|      | 成功率 R | 响应时间 $T_r$ | 抓取时间 T <sub>1</sub> | 放置时间 T <sub>2</sub> | 工作周期 T |
|------|-------|------------|---------------------|---------------------|--------|
| 1    | 100%  | 711ms      | 7.6s                | 4.2s                | 11.9s  |
| 2    | 100%  | 729ms      | 6.8s                | 4.2s                | 11.0s  |
| 3    | 100%  | 708ms      | 6.5s                | 4.2s                | 10.7s  |
| 4    | 100%  | 701ms      | 8.1s                | 4.2s                | 12.3s  |
| 5    | 100%  | 713ms      | 9.3s                | 4.2s                | 13.5s  |
| 6    | 100%  | 722ms      | 6.6s                | 4.2s                | 10.8s  |
| 7    | 100%  | 693ms      | 7.9s                | 4.2s                | 12.1s  |
| 8    | 100%  | 732ms      | 9.1s                | 4.2s                | 13.3s  |
| 9    | 100%  | 718ms      | 8.9s                | 4.2s                | 13.1s  |
| 10   | 100%  | 723ms      | 6.9s                | 4.2s                | 11.1s  |
| Avg. | 100%  | 715ms      | 7.77s               | 4.20s               | 11.98s |

$$T = T_1 + \max(T_r, T_2)$$



# Conclusion

■ 对偶 RGB-D 相机结构相比单个 RGB-D 相机有更高的填充率,更低的噪声,但对精度的提升不明显

- 对偶 RGB-D 相机结构相比单个 RGB-D 相机有更高的填充率,更 低的噪声,但对精度的提升不明显
- 3D-MRAI 算法相比传统算法表现出了较高的检测准确率,估计的 位姿精度也更高,但 FPS 较低

- 对偶 RGB-D 相机结构相比单个 RGB-D 相机有更高的填充率,更 低的噪声,但对精度的提升不明显
- 3D-MRAI 算法相比传统算法表现出了较高的检测准确率,估计的 位姿精度也更高,但 FPS 较低
- 基于 3D-MRAI 算法设计的 Bin-Picking 视觉系统具有更高的抓取 成功率、更快的响应速度,以及更低的成本

**Questions?**