Отказоустойчивость

Мельников В.М., 2011

Содержание

- 1. Понятие отказоустойчивости, fail-fast модули
- 2. Отказоустойчивость для аппаратного обеспечения
- 3. Отказоустойчивость для систем хранения данных
- 4. Отказоустойчивость для процессов
- 5. Отказоустойчивость при передачи данных

"Правило самолета"

- Самолет с двуми двигателями имеет в два раза больше проблем
- Отказоустойчивость ключевой компонент
- Маскируем и восстанавливаем ошибки

Надежность – ЭТО ...

- Достоверность (reliability)
- Целостность (integrity)
- Доступность (availability)
- Безопасность (security)
- MTTF / (MTTF + MTTR)

Как часто происходят ошибки

1,383 института опрошены (6/84 - 7/85)

7,517 отказов, MTTF ~ 10 недель, средняя длительность ~ 90 минут

Тенденции

Сдвиг в сторону ПО (62%) и операций(15%)

Ключевые идеи обеспечения отказоустойчивости

Архитектура ПО Распределен ие

Маскирует

Ошибки аппаратуры Ошибки окружения Ошибки поддержки

- Программное обеспечение устраняет/автоматизирует выполнение операций
- Все проблемы граничат с ошибками программного обеспечения и дизайна
- Откозоустойчивость программного обеспечения ключ к НАДЕЖНОЙ СИСТЕМЕ!

Техники обеспечения отказоустойчивости

FAIL FAST MODULES: работай или остановись

SPARE MODULES: короткое время восстановления

INDEPENDENT MODULE FAILS путем дизайна

MTTF_{Pair} ~ MTTF²/ MTTR

MESSAGE BASED OS: Изоляция ошибок, нет разделяемой памяти

SESSION-ORIENTED COMM: Достоверные сообщения (обнаружение

пропавших и дублирующихся сообщений)

PROCESS PAIRS: Маскирование проблем аппартного и

программного обеспечения

TRANSACTIONS: предоставление A.C.I.D. свойств (простая модель обработки ошибок)

Fail-fast модули

- Короткое время обнаружения ошибки
- Основная задача состоит в улучшении MTTF и MTTR

Аппаратное обеспечение. Мультиплексирование

- Стратегии голосования
 - Fail-fast ошибка, если не работает любой
 - Fail-soft ошибка, если не работают все

Аппаратное обеспечение. Рекурсивное построение

Аппаратное обеспечение. Запасная пара

Доступность модуля без восстановления

work

Доступность модуля с восстановлением

Доступность модуля с восстановлением

Availability estimates 1 year MTTF modules 12-hour MTTR			Mequa T tion T
SIMPLEX	1 year	MTTF	1
DUPLEX:	~0.5	≈мттг/2	2+ε
FAIL FAST	years		
DUPLEX: FAIL SOFT	~1.5	≈ _{MTTF} (3/2)	2+ε
	years		
TRIPLEX:	.8 year	≈MTTF(5/6)	3+ε
FAIL FAST			
TRIPLEX:	1.8	≈1.8мттғ	3+ε
FAIL SOFT	year		
Pair and spare:	~.7	≈ _{MTTF} (3/4)	4+ε
FAIL-FAST	year		
TRIPLEX WITH REPAIR	>105	$MTTF^3/3MTTR^2$	3+ε

Серверные решения

- Дублирование питания
- Дублирование сетевых карт
- Дублирование на уровне модулей;

Отказоустойчивость для систем хранении данных

- Операции READ/WRITE
- Параметры
 - Адрес блока (цилиндр, поверхность, дорожка, сектор)
 - Содержимое (набор байт)
- Ошибки
 - Нарушение целостности
 - Ошибка адресации
 - Физическое повреждение

Необходимая избыточность

- Для данных
 - Контрольная сумма
 - Адрес вместе с данными
 - Копия данных
- В логике
 - Скрытое контрольное чтение после записи
 - Скрытое восстановление во время чтения

Redundancy Array of Inexpensive/Independent Disks

- RAID 0 нет дублирования, параллельные операции
- RAID 1 зеркалирование данных
- RAID 2 избыточный код для восстановления
- RAID 3,4 контроль четности
- RAID 5 чередующийся блок четности
- RAID 6 двойной блок четности
- RAID 01, 10, 03, 30, 53 комбинированные схемы

Дисковый массив с чередованием без отказоустойчивости/чётности

• Зеркалирование

 Массив с использованием помехоустойчивого кода Хемминга (ЕСС память)

Отказоустойчивый массив с битовым чередованием и чётностью

 Отказоустойчивый массив с блочным чередованием и чётностью

 Дисковый массив с чередованием и распределённой чётностью

• Кобинированная схема

Отказоустойчивость программного обеспечения

- Обязательно хорошее и корректное проектирование, кодирование и тестирование
- Техники обеспечения отказоустойчивости:
 - Модульность (изоляция, ограничение распространения ошибок)
 - Разнородный дизайн
 - Программирование N-версий (разная реализация)
 - Защитное программирование (проверка параметров и данных)
 - Аудитор: Проверка структур данных в фоновом режиме
 - Транзакции (восстановление состояния после ошибки)
- Необходимо fail-fast программное обеспечение

Отказоустойчивость программного обеспечения

- Процессы с хранением состояния
- Пара процессов

- Состояние процесса:
 - Локальные и глобальные переменные
 - Содержимое стека
 - Регистры
 - Текущая выполняемая команда
- Постоянная запись состояния во внешную память
- Считывания состояния при перезапуске
- Перезапуск при сбое

Печать лотерийных билетов if (restart) read (f, i); else i = 1;while (i < =N) { write (f, i); PRINT_TICKET(i); i = i + 1;

Печать лотерийных билетов if (restart) read (f, i); else i = 0; while (i < N)i = i + 1;write (f, i); PRINT_TICKET(i);

- Достоинства
 - Простая реализация
- Недостатки
 - Медленная работа
 - Проблема синхронизации логики приложения с последним состоянием

Пара процессов

ОСНОВНОЙ + ЗАПАСНОЙ = ЛОГИЧЕСКИЙ ПРОЦЕСС

- Как обнаружить сбой?
- Как продолжить работу?

Блок схема работы процессов

Пара процессов

- Достоинства
 - Высокая скорость переключения
 - Возможно масшабирование
- Недостатки
 - Высокая нагрузка на сеть

Отказоусточивость систем. Общая концепция

- Программы, д анные,процессы реплицируются в 2-х узлах
- Пара ведет себя как единая система
- Система становится логической концепцией как процесс
- Сохранение журнала транзакций на Backup узле
- Переключение на Васкир в случае сбоя

RedHat Cluster Suite

- Global File System
- Cluster Logical Volume Manager
- Global Network Block Device
- Linux Virtual Server

RedHat Cluster Suite

Надежная передача данных

- Общая схема работы
- Протоколы ТСР, IРХ

Нумерация пакетов

- Узел А, Узел В
 - Номер последнего переданного пакета
 - Номер последнего подтвержденного пакета
 - Номер последнего полученного пакета

Отправление пакета

Неподтверждение пакета

Возможная оптимизация

- Выборочное подтверждение
 - "Не получены 1,6,7 пакет"
- Групповое подтверждение
 - "Получены все пакеты до 5-го включительно"
- Динамическое изменение окна протокола (кол-во неподтвержденных пакетов до ожидания)

Протокол ТСР

Вопросы?