AD-A071 736 CORNELL UNIV ITHACA N Y SCHOOL OF ELECTRICAL ENGINEERING F/G 20/12
A METHOD TO OVERCOME THE PROBLEM OF SERIES RESISTANCE IN THE CA--ETC(U)
JUN 79 A CHANDRA
UNCLASSIFIED

0110270021 22

OF | AD A07/736

DATE FILMED 8-79

The capacitance meter used for C-V characterization usually measures capacitance by phase sensitive detection. Under conditions of constant bias, the a.c. equivalent circuit between the Schottky and ohmic contacts consists of a capacitance C in parallel with a leakage a.c. conductance G, this combination being in series with the resistance R (Fig. 2). The admittance Y between the ohmic and the Schottky contacts at $\omega/2\pi$ hertz can be expressed as

 $Y = G' + j\omega C'$

(1)

where 1

)Amitabh

79 07 16 154

9 8 850 PUBLIC RELEASE; DISTRIBUTION UNLIMITED

sel

DDC FILE COPY

$$G' = [GH + \omega^2 RC^2]/[H^2 + \omega^2 R^2 C^2],$$
 (2)

and

$$C' = C/[H^2 + \omega^2 R^2 C^2]$$
 (3)

and where

$$H = RG + 1 . (4)$$

A small signal a.c. voltage $\vec{V} = V_0 e^{j\omega t}$ (typically 15 mV at 1 MHz) is superimposed on the d.c. bias. By detecting the current 90° out of phase with \vec{V} , the capacitance meter essentially measures C'. For Schottky barriers on GaAs, G is usually very small. Under the conditions RG << 1 and $\omega^2 RC^2 >> G$, Eqs. (2) and (3) become

$$G' = \omega^2 R C^2 / (1 + \omega^2 R^2 C^2)$$
 (5)

$$C' = C/(1 + \omega^2 R^2 C^2) . (6)$$

For high purity (n⁻) GaAs layers about 10 microns thick, doped in the low 10^{14} cm⁻³ range, and grown on semi-insulating substrates, the sheet resistance can be of the order of 10^4 ohms/ \square . For 0.030" diameter Schottky barrier contacts, the zero bias capacitance is typically in the range 10 - 30 pf. Using ω = 2π x 10^6 sec⁻¹, C = 15 pf and R = 10^4 ohms gives ω CR ~ 1. Thus the error in the measurement of C can be quite significant, leading to an even larger error in the estimation of N_D - N_A .

Solution

The problem of series resistance may be overcome if in addition to measuring C' the instrument also obtains G' (by detecting the current in phase with \vec{V} on a second phase sensitive detector). Then C may be extracted from C' and G' as

$$C = C' + \frac{{G'}^2}{\omega^2 C'}$$
 (7)

A simple substitution of Eqs. (5) and (6) into the R.H.S. of (7) proves this identity. Using suitable calibrations, the outputs C' and G'/ω can be made available as analog voltages. The squaring, division and addition operations can all be accomplished by appropriate analog circuitry² to yield an analog output representing C.

The extent of the error made in assuming RG << 1 can be determined by substituting Eqs. (2) and (3) into the R.H.S. of Eq. (7). This gives upon simplification the elegant equation (see Appendix)

$$C' + \frac{G'^2}{\omega^2 C'} = C + \frac{G^2}{\omega^2 C}$$
 (8)

3

Thus even if RG is not << 1, Eq. (7) will still hold provided $\omega C >> G$.

Acces	sion For	
NTIS	GFW&I	X
DOC T	AB	
Unoun	ounced	
Justi	fication_	
By	ibution/	
	lability	Codes
	Avail and	l/or
list.	specia:	
^		
H		
11		
-	1	

Appendix - Derivation of Equation (8)

$$C' + \frac{G'^2}{\omega^2 C'} = \frac{C}{H^2 + \omega^2 R^2 C^2} + \frac{(GH + \omega^2 RC^2)^2 / (H^2 + \omega^2 R^2 C^2)^2}{\omega^2 C / (H^2 + \omega^2 R^2 C^2)}$$
$$= \frac{\omega^2 C^2 + G^2 H^2 + 2GH\omega^2 RC^2 + \omega^4 R^2 C^4}{\omega^2 C (H^2 + \omega^2 R^2 C^2)}$$

Expanding the third term in the numerator gives

numerator =
$$\omega^2 C^2 [1 + 2GR + G^2 R^2 + \omega^2 R^2 C^2]$$

+ $\omega^2 C^2 G^2 R^2 + G^2 H^2$.
= $(\omega^2 C^2 + G^2)(H^2 + \omega^2 C^2 R^2)$.

Thus

$$C' + \frac{G^{2}}{\omega^{2}C'} = \frac{\omega^{2}C^{2} + G^{2}}{\omega^{2}C} = C + \frac{G^{2}}{\omega^{2}C}$$
.

References

- 1. A.M. Goodman, J. Appl. Phys., 34, 329 (1963).
- 2. J.G. Graeme, G.E. Tobey, L.P. Huelsman (editors), Operational Amplifiers, McGraw-Hill Co., New York.

Figure Captions

- Fig. 1. Reverse biased Schottky barrier on epilayer.
- Fig. 2. A.C. equivalent circuit of reverse biased Schottky barrier.

List of Symbols

```
C
          Capacitance across Schottky depletion region (a.c.)
C
          Equivalent capacitance seen across circuit (a.c.)
G
           Leakage conductance across Schottky depletion
           region (a.c.)
G'
          Equivalent conductance seen across circuit (a.c.)
H
          RG + 1
            V=1
j
N_D - N_A
          Net donor density
R
          Resistance in series with Schottky barrier
          Time
           Applied d.c. bias voltage
\vec{\mathbf{v}}
           Small signal a.c. modulation voltage
           Amplitude of \vec{V}.
           A.C. admittance of circuit
Y
           Angular frequency of \vec{V}.
w
```