DA-Final-6) Page rank & Link analysis

1. Page rank

1-1. Page rank 정의

Early Search Engines and Term Spam

- Search query =>
 - (1) find pages/with the terms/using inverted index (ollyw))
 - (2) rank according to term frequency in header, body, etc.
- How to trick?

Google's two innovations: Listen to what others say about him rather than what he says about himself

- Rank using the terms/near the links to that page () The page linking ke page) => spammers often do not control over the pages/that link to their own page
- How about counting # of in-links? => "spam farm" problem
- PageRank: Random surfers, starting at a random page and follow a randomly chosen outlinks => frequently visited pages are more important than rarely visited pages

Why PageRank works?

- Users tend to place links to pages/they think are good or useful
- · Random surfer tends to visit such pages

• Starting probability $V_0 = \left[\frac{1}{n}, \dots\right]$

- What are probabilities that the surfer will next be at each of the pages?

in/outlinkell and uniform-dist

- $V_1 = M * V_0$
- $V_2 = M^2 * V_0$
- $V_i = M^i * V_0$

$$\begin{array}{c} V_{6} \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \longrightarrow \begin{pmatrix} \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} \\ \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} \\ \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} \end{pmatrix} \longrightarrow \cdots$$

- The graph is strongly connected (reachable from any to any)
- <u>V</u> is an eigenvector of <u>M</u>. Twersion 개比 亚(Willer)
 - $M * V = \lambda * V$ (λ : eigenvalue)
 - Because *M* is stochastic, i.e., its columns add up to 1, *V* is the principal eigenvector (its eigenvalue is 1, the largest)
 - The principal eigenvector of *M* tells us where the surfer is most likely to be after a long time
 - 50-75 iterations from V_0 are sufficient to converge in practice

[1/4]	[9/24]	[15/48]	[11/32]		[3/9]	
1/4	5/24	11/48	7/32		2/9	
1/4	5/24	11/48	7/32		2/9	
$\lfloor 1/4 \rfloor$	[5/24]	[11/48]	7/32		2/9]	

$$\bullet \ M = \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

- V_0 = column vector of [1/n, ... 1/n]
- $V_1 = M * V_0$
- $V_2 = M^2 * V_0$
- $V_i = M^i * V_0$

1-2. EX) Structure of the Web

- In-component: reach SCC but not reachable from SCC
- Out-component: reachable from SCC/but not reach SCC
- Tendrils, Tubes, Isolated components
- Surfers will wind up in either the outcomponent and tendrils => In-component or SCC are not important? X

1-3. Dead ends 배제

1-3-(1). Dead ends를 recursively drop

Recursively drop dead ends

$$M = \begin{bmatrix} 0 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 1/2 & 1/2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 1/6 \\ 3/6 \\ 5/12 \\ 1/2 \end{bmatrix} \begin{bmatrix} 5/24 \\ 11/24 \\ 8/24 \end{bmatrix} \dots \begin{bmatrix} 2/9 \\ 4/9 \\ 3/9 \end{bmatrix}$$

1-3-(2), Taxation

Taxation

Crandom Jump; Uniform • $V' = \beta * M * V + (1 - \beta) * e/n$

- β is constant (0.8~0.9)
- e is vector of 1
- n is # of nodes
- With probability $1 \beta /$ the surfer moves to a random page

[1/4]	[9/60]	[41/300]	543/4500	1	15/148
1/4	13/60	53/300	707/4500		19/148
1/4	25/60	153/300	2543/4500	22.	95/148
1/4	13/60	53/300	707/4500		19/148

- Let
 - \underline{D} be the set of all Web pages

 - |O(q)| be the total number of links going out of page q (outlinks)
- The PageRank score of page p, denoted by PR(p), is

$$PR(p) = d \left[\sum_{q \in l(p)} \frac{PR(q)}{|O(q)|} \right] + (1 - d) \frac{1}{|D|}$$

$$p_{2} \text{ for } p_{3}$$

2. Link spam

2-1. Link spam structure

- Architecture of a Spam Farm
 - Inaccessible pages: cannot be affected by spammer
 - Accessible pages: can be affected but not controlled by spammer
 - Own pages: can be controlled by spammer

2-2. Trust rank & Spam mass - Link spam 방지

- Detect & eliminate the structure/where one page links to many pages with links back to it
 - => Spammer develop different structure, a variation
 - => War between spammer and search engine
- Modify the definition of PageRank/to lower the rank of link-spam
- TrustRank: a variation of topic-sensitive PageRank (trustable pages random Jump)
- Spam mass: a calculation to identify spam-like pages
- TrustRank
 - Similar to topic-sensitive PageRank where topic is a set of pages believed to be trustworthy
 - Select "topic" from the top list of PageRank
 - Pick a controlled domain such as ".edu"
- Spam Mass = (PageRank TrustRank) / PageRank

Node	PageRank	TrustRank	Spam Mass
A	3/9	54/210	0.229
B	2/9	59/210	-0.264
C	2/9	38/210	0.186
D	2/9	59/210	-0.264

3. HITS (Hyperlink-induced topic search)

- Authorities: valuable pages providing information about a topic (e.g. course page)
- Hubs: valuable pages/providing links to Authorities (e.g. course list page) → cheating → 24 (২৫)

 "A page is a good hub/if it links to good authorities, and a page is a good authority if it is linked by good hubs"
- Compute h (hubbiness) and a (authority) scores iteratively
- h: hubbiness score, a: authority score
- Start with h, a vector of all 1's

- $a = L^T h$ and scale so the largest component to 1
- h = La (outhority \leftarrow hub)
- Repeat until the changes are small

$$L^{\mathrm{T}} = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{array} \right]$$

s row: outlink Column: Inlink

s row: mlink Column: outlink

$$L = \left[\begin{array}{ccccc} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

$$L^{\mathrm{T}} = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{array} \right.$$

$$\begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix} & \begin{bmatrix} 1\\2\\2\\1\\1 \end{bmatrix} & \begin{bmatrix} 1/2\\1\\1\\1\\2 \end{bmatrix} & \begin{bmatrix} 1/2\\1/2\\2\\1/2 \end{bmatrix} & \begin{bmatrix} 1/2\\1/2\\2/2\\1/2 \end{bmatrix} \\ \begin{bmatrix} 1/2\\1/2\\2/2\\1/2 \end{bmatrix} & \begin{bmatrix} 1/2\\1/2\\2/2\\1/2 \end{bmatrix} \\ \begin{bmatrix} 1/2\\5/3\\3\\2\\1/2\\1/6 \end{bmatrix} & \begin{bmatrix} 3/10\\1\\1\\6/5\\1\\1/10\\2\\0 \end{bmatrix} & \begin{bmatrix} 29/10\\6/5\\1\\1/29\\1/29\\1/29\\1/29\\1/29\\1/29\\0 \end{bmatrix} & \begin{bmatrix} 1\\12/29\\1/29\\1/29\\1/29\\1/29\\0 \end{bmatrix} \\ L^{\rm T}h \qquad a \qquad La \qquad h \\ \end{bmatrix}$$

$$\begin{split} \mathbf{h} &= ... L L^T \, \mathbf{h} \\ \mathbf{a} &= ... L^T \, \mathbf{h} \\ \mathbf{a} &= ... L^T \, \mathbf{h} \end{split} \qquad \mathbf{h} = \begin{bmatrix} 1 \\ 0.3583 \\ 0 \\ 0.7165 \\ 0 \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} 0.2087 \\ 1 \\ 1 \\ 0.7913 \\ 0 \end{bmatrix} \\ L L^T &= \begin{bmatrix} 3 & 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{split}$$