TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2072 Kartik

Exam.	New Back (2066 & Later Batch)				
Level	BE	Full Marks	80		
Programme	BCE, BME, BGE	Pass Marks	32 3 hrs.		
Year / Part	I/I	Time			

Subject: - Fundamentals of Thermodynamics and Heat Transfer (ME402)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- The figures in the margin indicate Full Marks.
- Necessary tables are attached herewith.
- Assume suitable data if necessary.
- 1. Explain different types of thermodynamic systems with examples.

- [4]
- 2. Differentiate between heat transfer and work transfer. Derive the mathematical expression for work transfer for an ideal gas undergoing isothermal process.
- [4]

[4]

- 3. Define quality and moisture content. Derive an expression for specific volume of a two phase mixture in terms of quality.
- 4. Differentiate between steady state work applications and steady state flow applications with examples. Also write the functions and governing equations for an adiabatic turbine and adiabatic nozzle.
- [6]
- 5. Define heat engine and heat pump. Explain how first law and second law of thermodynamics can be applied to analyze the performance of a heat pump.
- [6] [6]
- 6. Sketch an ideal otto cycle on P-v and T-s diagram. Derive the expression for compression ratio interms of cylinder dimension. 7. Derive an expression for overall heat transfer coefficient for a hollow cylinder subjected
- [6]
- to convection medium on both sides. Three pressure gauges are connected to a container consisting of two compartments as
- shown in figure below. If the local barometer reads 760 mm of Hg and pressure gauges A and B read 250 kPa and 150 kPa respectively. Determine the absolute pressure in each compartment and reading of pressure gauge C. [Take $\rho_{Hg} = 13600 \text{ kg/m}^3$ and $g = 9.81 \text{ m/s}^2$
- [6]

[8]

- 9. A rigid vessel having a volume of 0.4 m³ contains 2.0 kg of liquid water and water vapor mixture in equilibrium at a pressure of 250 kPa. Calculate:
 - i) The volume and mass of liquid
 - ii) The volume and mass of vapour
 - iii) Temperature
 - iv) Enthalpy
 - v) If it is heated until its pressure reached to 350 kPa, what will be its quality?

[Refer the attached table for properties of water]

10. Air enters a compressor operating at steady state at 100 kPa, 300 K and leaves at 1000 kPa, 400 K. The volumetric flow rate of air at the exit is 1.5 m³/min. The work consumed by the compressor is 250 kJ per kg of air. Neglecting the effects of potential and kinetic energy, determine the heat transfer rate, in kW. [Take R = 287 J/kgK and Cp = 1005 J/kgK]

[8]

11. A heat pump heats a house in the winter and then reverses to cool it in the summer. The room temperature should be 22°C in the winter and 26°C in the summer. Heat transfer through the walls and ceilings is estimated to be 3000 kJ/h per degree temperature difference between the inside and outside.

[8]

- Determine the power required to run it in the winter which when the outside temperature decrease to 0°C.
- ii) If the unit is run by the same power as calculate in (i) throughout the year, determine
 the maximum outside summer temperature for which the house can be maintained at
 26°C
- 12. Air enters the compressor of an ideal Brayton cycle at 100 kPa, 290 K with a volumetric flow rate of 4 m³/s. The pressure ratio for cycle is 10 and the maximum temperature during the cycle is 1500 K. Determine:

[8]

- i) The thermal efficiency of the cycle
- ii) The fraction of work output that is consumed by the compressor and
- iii) The net power output

[Take Cp = 1005 J/kg.K, $\gamma = 1.4$]

13. A 2 m long steel plate (k = 50 W/mK) is well insulated on its sides, while its left section is maintained at 120°C and the right section is exposed to ambient air at 40°C. Under steady state conditions, a thermocouple inserted at the middle of the plate gives a temperature of 100°C. Determine the value of convection heat transfer coefficient for convection heat transfer between the right section of the plate and air.

[6]

Properties of SATURATED WATER - Pressure Table

P	T °C	V ₁	V _{lz} m³/kg	v _k m³/kg	u _i kJ/kg	u _{le} kJ/kg	u _e kJ/kg	h _i kJ/kg	h _{ie} kJ/kg	h _z kJ/kg	s _t kJ/kg.K	kJ/kg.K	s _e kJ/kg.K	
kPa		m³/kg		6.2048	271.97	2190.3	2462.3	271.99	2345.4	2617:4	0.8933	6.9365	7.8298	
25	64.980	0.001020	6.2038	5.2298	289.27	2178.4	2467.7	289.30	2335.3	2624.6	0.9441	6.8231	7.7672	
30	69.114	0.001022	5.2288	4,5262	304.28	2168.0	2472.3	304.32	2326.4	2630.7	0.9878	6.7266	7.7144	
35	72.700	0.001024	4.5252	3,9940	317.59	2158.8	2476.4	317.64	2318.5	2636.1	1.0261	6.6427	7.6688	
40	75.877	0.001025	3.9930			2150.4		329,62	2311.3	2640.9	1.0603		7.6287	
	78,736		3,5759		340.49	101428	2483-3	340 54	2304.8	2645.3	1.0912	6.5016	7.5928	
		0.001030				4146.0	0.08KG	Control of the Control	2293.1	2653:0	1,1454	6.3856	- 75310	E.
		0.001033	EAL IN WILLIAM CODAY A. S.	2.7324	7027.04	212914	27/01/0	376.75	2282.9	2659.6	1,1920	6.2869	7.4789	ij
70	89.956	0.001036	2,3644	2.3654		2117.3	- 4424.U		- 2273.6	2665.3	1	6:2009	7.4339	1
71,80	23,511	0.001038	2.0866		September 19 at 12 at 1	2106.7		11 -	2265.3		1.2696			
90	96.713	0.001041	1.8688	1.8698	405.11	2097.1	2502.2	417.51	2257.6		1,3027	6.0562	7.3589	,
100	99.632	0.001043	1.6933	1.6943	417.41	2088.3	2505.7	419.06	2256.6		1.3069	6.0476	7.3545	
101.32	100.00	0.001043	1.6727	1.6737	418.96		2506.1		2240.7		1.3741		7.2841	
125	105.99	0.001048	1.3742	1.3752	444.25		,				1.4338			2
150	111.38	0.001053	1.1584	- 1.1595	467.02			467.18			11 300000			
175	116.07	-0.001057	1.0027	1 0038		2037.8	2524.7		2213.3	2700.4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Control of the	7. 15.	- 00
The second second	120.24	0.001060	0.8848.	0.8859	504.59	2024.8	2529,4			2706.5	11 6			50
of the second	124.01		0.7923			2012.9				2712.0	N		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
A STATE OF THE PERSON OF	127.44	0.001067	0.7177	1 0.7188	535.22		2537.1	4		2716.8		Lut	fr	70
· · · · · · · · · · · · · · · · · · ·	130:61		0.6563	0.6574	548.73	1991.8	2540,5	549.02		27213				
300				0,60,59	11				2163.7		11	1		
325	136.31	0.001076		0.5620	573.04	1973.3	2546,3	573.39	2155.6					Ŧ.
				0.5243		1964.8	2548.9	584.48	2147.9	2732.4	1.727			
350 375		0.001081		0.4914			2551.3	594.96	2140.0	5 2735.6	1.753	1 5.164	6 6.917	7