Contributions to the theoretical study of variational inference and robustness

Badr-Eddine Chérief-Abdellatif CREST - ENSAE - Institut Polytechnique de Paris

PhD Defense June 23, 2020

- Consistency of variational inference
 - Variational inference
 - Theoretical results
 - Examples
- 2 Online variational inference algorithms
 - Bayes & online learning
 - Online variational inference
 - Simulations
- Robust MMD-based estimation
 - Robustness in statistics
 - MMD-based estimation
 - MMD-Bayes estimator

- Consistency of variational inference
 - Variational inference
 - Theoretical results
 - Examples
- 2 Online variational inference algorithms
 - Bayes & online learning
 - Online variational inference
 - Simulations
- Robust MMD-based estimation
 - Robustness in statistics
 - MMD-based estimation
 - MMD-Bayes estimator

Notations

Assume that we observe X_1, \ldots, X_n i.i.d from $P_0 = P_{\theta_0}$ in a model $\{P_{\theta}, \theta \in \Theta\}$ with likelihood $L_n(\theta)$. Prior π on Θ .

The posterior

$$\pi_n(\mathrm{d}\theta) \propto L_n(\theta)\pi(\mathrm{d}\theta).$$

The tempered posterior - $0 < \alpha < 1$

$$\pi_{n,\alpha}(\mathrm{d}\theta) \propto [L_n(\theta)]^{\alpha} \pi(\mathrm{d}\theta).$$

Notations

Assume that we observe X_1, \ldots, X_n i.i.d from $P_0 = P_{\theta_0}$ in a model $\{P_{\theta}, \theta \in \Theta\}$ with likelihood $L_n(\theta)$. Prior π on Θ .

The posterior

$$\pi_n(\mathrm{d}\theta) \propto L_n(\theta)\pi(\mathrm{d}\theta).$$

The tempered posterior - $0 < \alpha < 1$

$$\pi_{n,\alpha}(\mathrm{d}\theta) \propto [L_n(\theta)]^{\alpha} \pi(\mathrm{d}\theta).$$

Computation of the posterior

The classical MCMC algorithms may be slow when both the model dimension and the sample size are large. A more and more popular alternative: variational inference.

Idea of VB: chose a family \mathcal{Q} of probability distributions on Θ and approximate $\pi_{n,\alpha}$ by a distribution in \mathcal{Q} :

$$\tilde{\pi}_{\mathbf{n},\alpha} := \operatorname{arg\,min}_{\mathbf{q} \in \mathcal{Q}} \mathit{KL}(\mathbf{q},\pi_{\mathbf{n},\alpha}).$$

 \bullet $\pi_{n,\alpha}$

Idea of VB: chose a family Q of probability distributions on Θ and approximate $\pi_{n,\alpha}$ by a distribution in Q:

$$\tilde{\pi}_{\mathbf{n},\alpha} := \operatorname{arg\,min}_{\mathbf{q} \in \mathcal{Q}} \mathit{KL}(\mathbf{q}, \pi_{\mathbf{n},\alpha}).$$

 $\pi_{n,\alpha}$

Idea of VB: chose a family \mathcal{Q} of probability distributions on Θ and approximate $\pi_{n,\alpha}$ by a distribution in \mathcal{Q} :

$$\tilde{\pi}_{\mathbf{n},\alpha} := \operatorname{arg\,min}_{\mathbf{q} \in \mathcal{Q}} \mathit{KL}(\mathbf{q},\pi_{\mathbf{n},\alpha}).$$

Idea of VB: chose a family \mathcal{Q} of probability distributions on Θ and approximate $\pi_{n,\alpha}$ by a distribution in \mathcal{Q} :

$$\tilde{\pi}_{\mathbf{n},\alpha} := \operatorname{arg\,min}_{\mathbf{q} \in \mathcal{Q}} \mathit{KL}(\mathbf{q},\pi_{\mathbf{n},\alpha}).$$

Examples of sets Q:

ullet parametric $(\Theta\subset\mathbb{R}^d)$:

$$\{\mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^d, \Sigma \in \mathcal{S}_d^+\}$$
.

• mean-field ($\Theta = \Theta_1 \times \Theta_2$) :

$$q(d\theta) = q_1(d\theta_1) \times q_2(d\theta_2).$$

- Consistency of variational inference
 - Variational inference
 - Theoretical results
 - Examples
- 2 Online variational inference algorithms
 - Bayes & online learning
 - Online variational inference
 - Simulations
- Robust MMD-based estimation
 - Robustness in statistics
 - MMD-based estimation
 - MMD-Bayes estimator

Tools for the consistency of VB

The α -Rényi divergence for $\alpha \in (0,1)$

$$D_{\alpha}(P,R) = \frac{1}{\alpha - 1} \log \int (\mathrm{d}P)^{\alpha} (\mathrm{d}R)^{1-\alpha}.$$

For $1/2 \le \alpha$, link with Hellinger and Kullback :

$$\mathcal{H}^2(P,R) \leq D_{\alpha}(P,R) \xrightarrow[\alpha \nearrow 1]{} \mathsf{KL}(P,R).$$

Tools for the consistency of VB

The α -Rényi divergence for $\alpha \in (0,1)$

$$D_{\alpha}(P,R) = \frac{1}{\alpha - 1} \log \int (\mathrm{d}P)^{\alpha} (\mathrm{d}R)^{1-\alpha}.$$

For $1/2 \le \alpha$, link with Hellinger and Kullback :

$$\mathcal{H}^2(P,R) \leq D_{\alpha}(P,R) \xrightarrow[\alpha \nearrow 1]{} \mathsf{KL}(P,R).$$

Consistency at rate r_n

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_0})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right] \leq r_n \xrightarrow[n \to \infty]{} 0.$$

Technical condition for posterior consistency

Prior mass condition for consistency of tempered posteriors

The rate (r_n) is such that

$$\pi[\mathcal{B}(r_n)] \geq e^{-nr_n}$$

where $\mathcal{B}(r) = \{\theta \in \Theta : KL(P_{\theta_0}, P_{\theta}) \leq r\}.$

Prior mass condition for consistency of Variational Bayes

The rate (r_n) is such that there exists $q_n \in \mathcal{Q}$ such that

$$\int \mathit{KL}(P_{\theta_0},P_{\theta})q_n(\mathrm{d}\theta) \leq r_n, \ \ \mathsf{and} \ \ \mathit{KL}(q_n,\pi) \leq \mathit{nr}_n.$$

Consistency of the approximate posterior

Theorem

Under the prior mass condition, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_{\mathbf{0}}}) \pi_{n,\alpha}(\mathrm{d}\theta)\right] \leq \frac{1+\alpha}{1-\alpha} r_{n}.$$

Theorem

Under the extended prior mass condition, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_{\mathbf{0}}}) \tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right] \leq \frac{1+\alpha}{1-\alpha} r_{n}.$$

Misspecified case

Theorem

Under the extended prior mass condition, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta},P_{\theta_{0}})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right]\leq \frac{1+\alpha}{1-\alpha}r_{n}.$$

Misspecified case

Theorem

Under the extended prior mass condition, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta},P_{\theta_0})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right] \leq \frac{1+\alpha}{1-\alpha}r_n.$$

Assume now that X_1, \ldots, X_n i.i.d $\sim P_0 \notin \{P_\theta, \theta \in \Theta\}$.

Misspecified case

Theorem

Under the extended prior mass condition, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta},P_{\theta_0})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right] \leq \frac{1+\alpha}{1-\alpha}r_n.$$

Assume now that X_1, \ldots, X_n i.i.d $\sim P_0 \notin \{P_\theta, \theta \in \Theta\}$.

Theorem

Under a similar condition, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{0}) \widetilde{\pi}_{\textbf{\textit{n}}, \alpha}(\mathrm{d}\theta)\right] \leq \frac{\alpha}{1-\alpha} \inf_{\theta} \textit{KL}(P_{0}, P_{\theta}) + \frac{1+\alpha}{1-\alpha} r_{\textbf{\textit{n}}}.$$

- Consistency of variational inference
 - Variational inference
 - Theoretical results
 - Examples
- 2 Online variational inference algorithms
 - Bayes & online learning
 - Online variational inference
 - Simulations
- Robust MMD-based estimation
 - Robustness in statistics
 - MMD-based estimation
 - MMD-Bayes estimator

Nonparametric regression & Deep Neural Networks

Nonparametric regression

- $X_i \sim \mathcal{U}([-1,1]^d)$,
- $\bullet Y_i = f_0(X_i) + \zeta_i,$
- $\zeta_i \sim \mathcal{N}(0, \sigma^2)$.

Deep neural networks

- Depth $L \ge 3$, width $D \ge d$, sparsity $S \le T$.
- Parameter $\theta = \{(A_1, b_1), ..., (A_L, b_L)\}.$
- $f_{\theta}(x) = A_{L}\rho(A_{L-1}...\rho(A_{1}x + b_{1}) + ... + b_{L-1}) + b_{L}$

ReLU Deep Neural Networks : convergence rates

Theorem

Chose spike-and-slab prior and variational set on θ . Then :

$$\mathbb{E}\left[\int \|f_{\theta} - f_{0}\|_{2}^{2} \widetilde{\pi}_{n,\alpha}(d\theta)\right]$$

$$\leq \frac{2}{1-\alpha} \inf_{\theta^{*}} \|f_{\theta^{*}} - f_{0}\|_{2}^{2} + \frac{2}{1-\alpha} \left(1 + \frac{\sigma^{2}}{\alpha}\right) r_{n}^{S,L,D},$$

with $r_n^{S,L,D} \sim \frac{S \log(nL/S)}{n} \vee \frac{LS \log D}{n}$.

ReLU Deep Neural Networks : convergence rates

Theorem

Chose spike-and-slab prior and variational set on θ . Then :

$$\mathbb{E}\left[\int \|f_{\theta} - f_{0}\|_{2}^{2} \tilde{\pi}_{n,\alpha}(d\theta)\right]$$

$$\leq \frac{2}{1-\alpha} \inf_{\theta^{*}} \|f_{\theta^{*}} - f_{0}\|_{2}^{2} + \frac{2}{1-\alpha} \left(1 + \frac{\sigma^{2}}{\alpha}\right) r_{n}^{S,L,D},$$

with $r_n^{S,L,D} \sim \frac{S \log(nL/S)}{n} \vee \frac{LS \log D}{n}$.

If f_0 β -Hölder for suitable (S, L, D): $\tilde{\mathcal{O}}(n^{-\frac{2\beta}{2\beta+d}})$.

Related publications

B.-E. C.-A., P. Alquier. Consistency of Variational Bayes Inference for Estimation and Model Selection in mixtures. *Electronic Journal of Statistics*, 2018.

B.-E. C.-A. Consistency of ELBO Maximization for Model Selection. *Proceedings of AABI*, 2019.

B.-E. C.-A. Convergence Rates of Variational Inference in Sparse Deep Learning. *Accepted at ICML*, 2020.

- Consistency of variational inference
 - Variational inference
 - Theoretical results
 - Examples
- 2 Online variational inference algorithms
 - Bayes & online learning
 - Online variational inference
 - Simulations
- Robust MMD-based estimation
 - Robustness in statistics
 - MMD-based estimation
 - MMD-Bayes estimator

Online learning

Objective

Make sure that we learn to predict well as fast as possible.

Online learning

Objective

Make sure that we learn to predict well as fast as possible. Keep, without stochastic assumptions on the data, as small as possible for any \mathcal{T} :

$$\sum_{t=1}^T \ell(x_t; \theta_t).$$

The regret

$$R_T = \sum_{t=1}^T \ell(x_t; \theta_t) - \inf_{\theta \in \Theta} \sum_{t=1}^T \ell(x_t; \theta).$$

Online learning

Objective

Make sure that we learn to predict well as fast as possible. Keep, without stochastic assumptions on the data, as small as possible for any \mathcal{T} :

$$\sum_{t=1}^T \ell(x_t; \theta_t).$$

The regret

$$R_T = \sum_{t=1}^T \ell(x_t; \theta_t) - \inf_{\theta \in \Theta} \sum_{t=1}^T \ell(x_t; \theta).$$

What strategy can lead to a low regret?

• Learning rate α .

- Learning rate α .
- Loss $\ell_t(\theta) := \ell(x_t; \theta)$.

- Learning rate α .
- Loss $\ell_t(\theta) := \ell(x_t; \theta)$.
- Initialize θ_1 .

- Learning rate α .
- Loss $\ell_t(\theta) := \ell(x_t; \theta)$.
- Initialize θ_1 .
- Update $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \ell_t(\theta_t)$.

- Learning rate α .
- Loss $\ell_t(\theta) := \ell(x_t; \theta)$.
- Initialize θ_1 .
- Update $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \ell_t(\theta_t)$.
- θ_{t+1} is the solution of :

$$\min_{\theta} \left\{ \theta^T \sum_{s=1}^t \nabla_{\theta} \ell_s(\theta_s) + \frac{\|\theta - \theta_1\|^2}{2\alpha} \right\}$$

- Learning rate α .
- Loss $\ell_t(\theta) := \ell(x_t; \theta)$.
- Initialize θ_1 .
- Update $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \ell_t(\theta_t)$.
- θ_{t+1} is the solution of :

$$\min_{ heta} \left\{ \sum_{s=1}^{t} \ell_s(heta) \right\}$$

- Learning rate α .
- Loss $\ell_t(\theta) := \ell(x_t; \theta)$.
- Initialize θ_1 .
- Update $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \ell_t(\theta_t)$.
- θ_{t+1} is the solution of :

$$\min_{\theta} \left\{ \sum_{s=1}^{t} \ell_s(\theta) + \frac{\|\theta - \theta_1\|^2}{2\alpha} \right\}$$

- Learning rate α .
- Loss $\ell_t(\theta) := \ell(x_t; \theta)$.
- Initialize θ_1 .
- Update $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \ell_t(\theta_t)$.
- θ_{t+1} is the solution of :

$$\min_{\theta} \left\{ \theta^{\mathsf{T}} \sum_{s=1}^{t} \nabla_{\theta} \ell_{s}(\theta_{s}) + \frac{\|\theta - \theta_{1}\|^{2}}{2\alpha} \right\}$$

- Learning rate α .
- Loss $\ell_t(\theta) := \ell(x_t; \theta)$.
- Initialize θ_1 .
- Update $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \ell_t(\theta_t)$.
- θ_{t+1} is the solution of :

$$\min_{\theta} \left\{ \theta^T \sum_{s=1}^t \nabla_{\theta} \ell_s(\theta_s) + \frac{\|\theta - \theta_1\|^2}{2\alpha} \right\}$$

Online gradient algorithm (OGA)

- Learning rate α .
- Loss $\ell_t(\theta) := \ell(x_t; \theta)$.
- Initialize θ_1 .
- Update $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \ell_t(\theta_t)$.
- θ_{t+1} is the solution of :

$$\min_{\theta} \left\{ \theta^T \sum_{s=1}^t \nabla_{\theta} \ell_s(\theta_s) + \frac{\|\theta - \theta_1\|^2}{2\alpha} \right\}$$

and

$$\min_{\theta} \left\{ \theta^{\mathsf{T}} \nabla_{\theta} \ell_{t}(\theta_{t}) + \frac{\|\theta - \theta_{t}\|^{2}}{2\alpha} \right\}.$$

Bayesian inference / EWA :

$$\pi_{t+1,\alpha}(\mathrm{d}\theta) \propto \exp\bigg(-\alpha\sum_{s=1}^t \ell_s(\theta_s)\bigg)\pi(\mathrm{d}\theta).$$

Bayesian inference / EWA :

$$\pi_{t+1,\alpha}(\mathrm{d}\theta) \propto \exp\bigg(-\alpha\sum_{s=1}^t \ell_s(\theta_s)\bigg)\pi(\mathrm{d}\theta).$$

Online formula for EWA :

$$\pi_{t+1,\alpha}(\mathrm{d}\theta) \propto \exp\left(-\alpha \ell_t(\theta_t)\right) \pi_{t,\alpha}(\mathrm{d}\theta).$$

Bayesian inference / EWA :

$$\pi_{t+1,\alpha}(\mathrm{d}\theta) \propto \exp\bigg(-\alpha\sum_{s=1}^t \ell_s(\theta_s)\bigg)\pi(\mathrm{d}\theta).$$

Online formula for EWA :

$$\pi_{t+1,\alpha}(\mathrm{d}\theta) \propto \exp\left(-\alpha \ell_t(\theta_t)\right) \pi_{t,\alpha}(\mathrm{d}\theta).$$

Not tractable so resort to VI :

$$\begin{split} \tilde{\pi}_{t+1,\alpha} &= \arg\min_{q \in \mathcal{Q}} \mathit{KL}(q,\pi_{t+1,\alpha}) \\ &= \arg\min_{q \in \mathcal{Q}} \left\{ \sum_{s=1}^t \mathbb{E}_{\theta \sim q} \big[\ell_s(\theta) \big] + \frac{\mathit{KL}(q,\pi)}{\alpha} \right\}. \end{split}$$

Bayesian inference / EWA :

$$\pi_{t+1,\alpha}(\mathrm{d}\theta) \propto \exp\bigg(-\alpha\sum_{s=1}^t \ell_s(\theta_s)\bigg)\pi(\mathrm{d}\theta).$$

Online formula for EWA :

$$\pi_{t+1,\alpha}(\mathrm{d}\theta) \propto \exp\left(-\alpha \ell_t(\theta_t)\right) \pi_{t,\alpha}(\mathrm{d}\theta).$$

Not tractable so resort to VI :

$$\begin{split} \tilde{\pi}_{t+1,\alpha} &= \arg\min_{q \in \mathcal{Q}} \mathit{KL}(q,\pi_{t+1,\alpha}) \\ &= \arg\min_{q \in \mathcal{Q}} \left\{ \sum_{s=1}^t \mathbb{E}_{\theta \sim q} \big[\ell_s(\theta) \big] + \frac{\mathit{KL}(q,\pi)}{\alpha} \right\}. \end{split}$$

Equivalent online formulation for VI?

Theorem

If the loss is bounded by B:

$$\sum_{t=1}^{T} \mathbb{E}_{\theta \sim \pi_{t,\alpha}}[\ell_t(\theta)] \leq \inf_{q} \left\{ \sum_{t=1}^{T} \mathbb{E}_{\theta \sim q}[\ell_t(\theta)] + \frac{\alpha B^2 T}{8} + \frac{KL(q,\pi)}{\alpha} \right\}.$$

$\mathsf{Theorem}$

If the loss is bounded by B:

$$\sum_{t=1}^{T} \mathbb{E}_{\theta \sim \pi_{t,\alpha}}[\ell_t(\theta)] \leq \inf_{q} \left\{ \sum_{t=1}^{T} \mathbb{E}_{\theta \sim q}[\ell_t(\theta)] + \frac{\alpha B^2 T}{8} + \frac{KL(q,\pi)}{\alpha} \right\}.$$

Under similar assumptions than in the batch case, that is, the prior gives enough mass to relevant θ , and $\alpha \sim 1/\sqrt{T}$,

$$\sum_{t=1}^T \mathbb{E}_{\theta \sim \pi_{t,\alpha}}[\ell_t(\theta)] \leq \inf_{\theta} \sum_{t=1}^T \ell_t(\theta) + \mathcal{O}\big(\sqrt{dT\log(T)}\big)$$

Theorem

If the loss is bounded by B:

$$\sum_{t=1}^{T} \mathbb{E}_{\theta \sim \pi_{t,\alpha}}[\ell_t(\theta)] \leq \inf_{q} \left\{ \sum_{t=1}^{T} \mathbb{E}_{\theta \sim q}[\ell_t(\theta)] + \frac{\alpha B^2 T}{8} + \frac{KL(q,\pi)}{\alpha} \right\}.$$

Under similar assumptions than in the batch case, that is, the prior gives enough mass to relevant θ , and $\alpha \sim 1/\sqrt{T}$,

$$\sum_{t=1}^{T} \mathbb{E}_{\theta \sim \pi_{t,\alpha}}[\ell_t(\theta)] \leq \inf_{\theta} \sum_{t=1}^{T} \ell_t(\theta) + \mathcal{O}\big(\sqrt{dT \log(T)}\big)$$

Equivalent regret bounds for VI?

- Consistency of variational inference
 - Variational inference
 - Theoretical results
 - Examples
- Online variational inference algorithms
 - Bayes & online learning
 - Online variational inference
 - Simulations
- Robust MMD-based estimation
 - Robustness in statistics
 - MMD-based estimation
 - MMD-Bayes estimator

Variational approximations of EWA

B.-E. C.-A., P. Alquier & M. E. Khan. A Generalization Bound for Online Variational Inference. *Proceedings of ACML*, 2019.

Variational approximations of EWA

B.-E. C.-A., P. Alquier & M. E. Khan. A Generalization Bound for Online Variational Inference. *Proceedings of ACML*, 2019.

Parametric variational approximation:

$$Q = \{q_{\mu}, \mu \in M\}$$
.

Objective : propose a way to update $\mu_t \to \mu_{t+1}$ so that q_{μ_t} leads to similar performances as $\pi_{t,\alpha}$ in EWA...

SVA and SVB strategies

• SVA (Sequential Variational Approximation) :

$$\mu_{t+1} = \arg\min_{\mu \in M} \left\{ \sum_{s=1}^t \qquad \mathbb{E}_{\theta \sim q_\mu}[\ell_s(\theta)] + \frac{\mathit{KL}(q_\mu, \pi)}{\alpha} \right\}.$$

SVB (Streaming Variational Bayes) :

SVA and SVB strategies

• SVA (Sequential Variational Approximation) :

$$\mu_{t+1} = \arg\min_{\mu \in M} \left\{ \mu^{\mathsf{T}} \sum_{s=1}^{t} \nabla_{\mu = \mu_{s}} \mathbb{E}_{\theta \sim q_{\mu}} [\ell_{s}(\theta)] + \frac{\mathit{KL}(q_{\mu}, \pi)}{\alpha} \right\}.$$

SVB (Streaming Variational Bayes) :

SVA and SVB strategies

• SVA (Sequential Variational Approximation) :

$$\mu_{t+1} = \arg\min_{\mu \in M} \bigg\{ \mu^T \sum_{s=1}^t \nabla_{\mu = \mu_s} \mathbb{E}_{\theta \sim q_\mu} [\ell_s(\theta)] + \frac{\mathit{KL}(q_\mu, \pi)}{\alpha} \bigg\}.$$

SVB (Streaming Variational Bayes) :

$$\mu_{t+1} = \arg\min_{\mu \in M} \Biggl\{ \mu^T \nabla_{\mu = \mu_t} \mathbb{E}_{\theta \sim q_\mu} [\ell_t(\theta)] + \frac{\mathit{KL}(q_\mu, q_{\mu_t})}{\alpha} \Biggr\}.$$

An example : SVB with Gaussian approximations

As an example, assume that $\theta \in \mathbb{R}^d$, the prior is $\pi = \mathcal{N}(0, s^2 I)$ and that we use the variational approximation

family :
$$q_{\mu} = q_{m,\sigma} = \mathcal{N}\left(m, \left(egin{array}{ccc} \sigma_1^2 & \dots & 0 \ dots & \ddots & dots \ 0 & \dots & \sigma_d^2 \end{array}
ight)
ight).$$

An example : SVB with Gaussian approximations

As an example, assume that $\theta \in \mathbb{R}^d$, the prior is $\pi = \mathcal{N}(0, s^2 I)$ and that we use the variational approximation

family :
$$q_{\mu} = q_{m,\sigma} = \mathcal{N}\left(m, \begin{pmatrix} \sigma_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_d^2 \end{pmatrix}\right)$$
.

In this case, the update in SVB is :

$$m_{t+1} = m_t - \alpha \sigma_t^2 \odot \nabla_{m=m_t} \mathbb{E}_{\theta \sim q_{m,\sigma_t}} [\ell_t(\theta)]$$

$$\sigma_{t+1} = \sigma_t \odot h \left(\frac{\alpha \sigma_t \nabla_{\sigma=\sigma_t} \mathbb{E}_{\theta \sim q_{m_t,\sigma}} [\ell_t(\theta)]}{2} \right)$$

where \odot means "componentwise multiplication" and $h(x) = \sqrt{1 + x^2} - x$ is also applied componentwise.

Theorem

Assume that the expected loss $\mu \to \mathbb{E}_{\theta \sim q_{\mu}}[\ell_{t}(\theta)]$ is *L*-Lipschitz and convex.

Theorem

Assume that the expected loss $\mu \to \mathbb{E}_{\theta \sim q_{\mu}}[\ell_{t}(\theta)]$ is *L*-Lipschitz and convex. (this is for example the case as soon as the loss $\ell_{t}(\theta)$ is convex in θ and *L*-Lipschitz, and μ is a location-scale parameter).

Theorem

Assume that the expected loss $\mu \to \mathbb{E}_{\theta \sim q_{\mu}}[\ell_{t}(\theta)]$ is *L*-Lipschitz and convex. Assume that $\mu \mapsto \mathit{KL}(q_{\mu},\pi)$ is γ -strongly convex. Then SVA satisfies :

$$\sum_{t=1}^{T} \mathbb{E}_{\theta \sim q_{\mu_t}}[\ell_t(\theta)] \leq \inf_{q_{\mu}} \left\{ \sum_{t=1}^{T} \mathbb{E}_{\theta \sim q_{\mu}}[\ell_t(\theta)] + \frac{\alpha L^2 T}{\gamma} + \frac{KL(q_{\mu}, \pi)}{\alpha} \right\}.$$

Theorem

Assume that the expected loss $\mu \to \mathbb{E}_{\theta \sim q_{\mu}}[\ell_{t}(\theta)]$ is *L*-Lipschitz and convex. Assume that $\mu \mapsto \mathit{KL}(q_{\mu}, \pi)$ is γ -strongly convex. Then SVA satisfies :

$$\sum_{t=1}^{T} \mathbb{E}_{\theta \sim q_{\mu_t}}[\ell_t(\theta)] \leq \inf_{q_{\mu}} \left\{ \sum_{t=1}^{T} \mathbb{E}_{\theta \sim q_{\mu}}[\ell_t(\theta)] + \frac{\alpha L^2 T}{\gamma} + \frac{KL(q_{\mu}, \pi)}{\alpha} \right\}.$$

Application to Gaussian approximation leads to :

$$\sum_{t=1}^T \mathbb{E}_{\theta \sim q_{\mu_t}}[\ell_t(\theta)] \leq \inf_{\theta} \sum_{t=1}^T \ell_t(\theta) + (1+o(1)) \frac{2L}{\gamma} \sqrt{dT \log(T)}.$$

For SVB: some results in the Gaussian case.

- Consistency of variational inference
 - Variational inference
 - Theoretical results
 - Examples
- 2 Online variational inference algorithms
 - Bayes & online learning
 - Online variational inference
 - Simulations
- Robust MMD-based estimation
 - Robustness in statistics
 - MMD-based estimation
 - MMD-Bayes estimator

Test on the Forest Cover Type dataset

Figure – Average cumulative losses on different datasets for classification and regression tasks with OGA (yellow), OGA-EL (red), SVA (blue), SVB (purple) and NGVI (green).

Test on the Boston Housing dataset

Figure – Average cumulative losses on different datasets for classification and regression tasks with OGA (yellow), OGA-EL (red), SVA (blue), SVB (purple) and NGVI (green).

- Consistency of variational inference
 - Variational inference
 - Theoretical results
 - Examples
- 2 Online variational inference algorithms
 - Bayes & online learning
 - Online variational inference
 - Simulations
- Robust MMD-based estimation
 - Robustness in statistics
 - MMD-based estimation
 - MMD-Bayes estimator

A robust estimator $\hat{\theta}_n$ must be such that, for some distance d on probability distributions,

A robust estimator $\hat{\theta}_n$ must be such that, for some distance d on probability distributions,

lacksquare when the model is well specified, that is, $P_0=P_{ heta_0}$,

$$\mathbb{E}\left[d(P_{\hat{\theta}_n},P_0)\right] \leq r_n(\Theta) \xrightarrow[n \to \infty]{} 0.$$

A robust estimator $\hat{\theta}_n$ must be such that, for some distance d on probability distributions,

lacksquare when the model is well specified, that is, $P_0=P_{ heta_0}$,

$$\mathbb{E}\left[d(P_{\hat{\theta}_n}, P_0)\right] \leq r_n(\Theta) \xrightarrow[n \to \infty]{} 0.$$

② in the misspecified case $P_0 = (1 - \varepsilon)P_{\theta_0} + \varepsilon Q$, for any Q,

$$\mathbb{E}\left[d(P_{\hat{\theta}_n}, P_0)\right] \leq c.\underbrace{d(P_0, P_{\theta_0})}_{\underset{s \to 0}{\longleftarrow} 0} + \underbrace{r_n(\Theta)}_{\underset{n \to \infty}{\longrightarrow} 0}.$$

A robust estimator $\hat{\theta}_n$ must be such that, for some distance d on probability distributions,

1 when the model is well specified, that is, $P_0 = P_{\theta_0}$,

$$\mathbb{E}\left[d(P_{\hat{\theta}_n},P_0)\right] \leq r_n(\Theta) \xrightarrow[n \to \infty]{} 0.$$

② in the misspecified case $P_0 = (1 - \varepsilon)P_{\theta_0} + \varepsilon Q$, for any Q,

$$\mathbb{E}\left[d(P_{\hat{\theta}_n}, P_0)\right] \leq c.\underbrace{d(P_0, P_{\theta_0})}_{\underset{s \to 0}{\longleftarrow} 0} + \underbrace{r_n(\Theta)}_{\underset{n \to \infty}{\longrightarrow} 0}.$$

Many popular estimators in statistics such as MLE do not satisfy these requirements in some settings.

A typical example

Yatracos' skeleton estimate $\hat{\theta}_n^Y$:

$$\mathbb{E}\left[d_{TV}(P_{\hat{\theta}_n^Y}, P_0)\right] \leq 3d_{TV}(P_0, P_{\theta_0}) + C.\sqrt{\frac{\dim(\Theta)}{n}}$$

where

$$d_{TV}(P,Q) = \sup_{E} |P(E) - Q(E)|.$$

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov's entropy. *Annals of Statistics*.

A typical example

Yatracos' skeleton estimate $\hat{\theta}_n^Y$:

$$\mathbb{E}\left[d_{TV}(P_{\hat{\theta}_n^Y}, P_0)\right] \leq 3d_{TV}(P_0, P_{\theta_0}) + C.\sqrt{\frac{\dim(\Theta)}{n}}$$

where

$$d_{TV}(P,Q) = \sup_{E} |P(E) - Q(E)|.$$

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov's entropy. *Annals of Statistics*.

But it cannot be computed in practice.

A typical example

Yatracos' skeleton estimate $\hat{\theta}_n^Y$:

$$\mathbb{E}\left[d_{TV}(P_{\hat{\theta}_n^Y}, P_0)\right] \leq 3d_{TV}(P_0, P_{\theta_0}) + C.\sqrt{\frac{\dim(\Theta)}{n}}$$

where

$$d_{TV}(P,Q) = \sup_{E} |P(E) - Q(E)|.$$

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov's entropy. *Annals of Statistics*.

But it cannot be computed in practice.

Additional requirement : an estimator must be tractable!!!

- Consistency of variational inference
 - Variational inference
 - Theoretical results
 - Examples
- 2 Online variational inference algorithms
 - Bayes & online learning
 - Online variational inference
 - Simulations
- Robust MMD-based estimation
 - Robustness in statistics
 - MMD-based estimation
 - MMD-Bayes estimator

Maximum Mean Discrepancy

We consider a bounded p.d. kernel : $0 \le k(x, y) \le 1$.

Maximum Mean Discrepancy

We consider a bounded p.d. kernel : $0 \le k(x, y) \le 1$.

Kernel mean embedding $\mu_k(P) = \mathbb{E}_{X \sim P} \left[k(\cdot, X) \right] \in \mathcal{H}_k.$

Maximum Mean Discrepancy

We consider a bounded p.d. kernel : $0 \le k(x, y) \le 1$.

The kernel k is characteristic (i.e. $\mu_k(\cdot)$ is injective).

Example : $k(x, y) = \exp(-\frac{||x-y||^2}{\gamma^2})$ is a characteristic kernel.

Maximum Mean Discrepancy

We consider a bounded p.d. kernel : $0 \le k(x, y) \le 1$.

Kernel mean embedding

$$\mu_k(P) = \mathbb{E}_{X \sim P}[k(\cdot, X)] \in \mathcal{H}_k.$$

The kernel k is characteristic (i.e. $\mu_k(\cdot)$ is injective).

Example : $k(x, y) = \exp(-\frac{||x-y||^2}{\gamma^2})$ is a characteristic kernel.

Definition: the MMD distance

$$\mathbb{D}_k(P,Q) = \|\mu_k(P) - \mu_k(Q)\|_{\mathcal{H}_k}.$$

MMD-based estimator

 X_1, \ldots, X_n be i.i.d in \mathcal{X} from a probability distribution P_0 , model $\{P_{\theta}, \theta \in \Theta\}$, bounded p.d. kernel $0 \le k(x, y) \le 1$.

Definition - MMD based estimator

$$\hat{\theta}_n = \operatorname*{arg\,min} \mathbb{D}_k \left(P_{\theta}, \hat{P}_n \right) \text{ where } \hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

MMD-based estimator

 X_1, \ldots, X_n be i.i.d in \mathcal{X} from a probability distribution P_0 , model $\{P_{\theta}, \theta \in \Theta\}$, bounded p.d. kernel $0 \le k(x, y) \le 1$.

Definition - MMD based estimator

$$\hat{\theta}_n = \operatorname*{arg\,min} \mathbb{D}_k \left(P_{\theta}, \hat{P}_n \right) \ \ \text{where} \ \ \hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

Theorem

$$\forall P_0, \quad \mathbb{E}\left[\mathbb{D}_k\left(P_{\hat{\theta}_n}, P_0\right)\right] \leq \underbrace{\inf_{\substack{\theta \in \Theta}} \mathbb{D}_k(P_{\theta}, P_0)}_{P_0 = (1 - \varepsilon)P_{\theta_0} + \varepsilon Q} + \frac{2}{\sqrt{n}}.$$

How to compute $\hat{\theta}_n^{MMD}$?

We actually have (up to a constant)

$$\mathbb{D}_k^2(P_{\theta}, \hat{P}_n) = \mathbb{E}_{X, X' \sim P_{\theta}}[k(X, X')] - \frac{2}{n} \sum_{i=1}^n \mathbb{E}_{X \sim P_{\theta}}[k(X_i, X)]$$

How to compute $\hat{\theta}_n^{MMD}$?

We actually have (up to a constant)

$$\mathbb{D}_k^2(P_{\theta}, \hat{P}_n) = \mathbb{E}_{X, X' \sim P_{\theta}}[k(X, X')] - \frac{2}{n} \sum_{i=1}^n \mathbb{E}_{X \sim P_{\theta}}[k(X_i, X)]$$

and so

$$egin{aligned} &
abla_{ heta} \mathbb{D}_{k}^{2}(P_{ heta}, \hat{P}_{n}) \ &= 2\mathbb{E}_{X,X'\sim P_{ heta}} \left\{ \left[k(X,X') - rac{1}{n} \sum_{i=1}^{n} k(X_{i},X)
ight]
abla_{ heta} [\log p_{ heta}(X)]
ight\} \end{aligned}$$

that can be approximated by sampling from P_{θ} .

Example: Gaussian mean estimation

Example: the model is given by $P_{\theta} = \mathcal{N}(\theta, \sigma^2)$ for $\theta \in \mathbb{R}$.

Example: Gaussian mean estimation

Example: the model is given by $P_{\theta} = \mathcal{N}(\theta, \sigma^2)$ for $\theta \in \mathbb{R}$.

Using a Gaussian kernel $k(x, y) = \exp(-(x - y)^2/2)$, from the previous theorem and from the equality

$$\mathbb{D}_k^2\left(P_{ heta},P_{ heta'}
ight) = \sqrt{2}\left[1-\exp\left(-rac{(heta- heta')^2}{4\sigma^2}
ight)
ight]$$

we obtain

$$\mathbb{E}\left[(\hat{\theta}_n - \theta_0)^2\right] \leq 16\sigma^2\left(\varepsilon^2 + \frac{1}{n}\right).$$

(for
$$\varepsilon^2 + \frac{1}{n} \leq \frac{1}{4\sqrt{2}}$$
).

Example: Gaussian mean estimation, simulations

Model : $\mathcal{N}(\theta, 1)$, and X_1, \ldots, X_n i.i.d $\mathcal{N}(\theta_0, 1)$, n = 100 and we repeat the experiment 200 times.

	$\hat{ heta}_n^{MLE}$	$\hat{\theta}_n^{MMD}$
mean absolute error	0.0722	0.0838

Example: Gaussian mean estimation, simulations

Model : $\mathcal{N}(\theta, 1)$, and X_1, \ldots, X_n i.i.d $\mathcal{N}(\theta_0, 1)$, n = 100 and we repeat the experiment 200 times.

	$\hat{ heta}_n^{MLE}$	$\hat{\theta}_n^{MMD}$
mean absolute error	0.0722	0.0838

Now, $\varepsilon = 2\%$ of the observations drawn from a Cauchy.

mean absolute error	0.2349	0.0953

Example: Gaussian mean estimation, simulations

Model : $\mathcal{N}(\theta, 1)$, and X_1, \ldots, X_n i.i.d $\mathcal{N}(\theta_0, 1)$, n = 100 and we repeat the experiment 200 times.

	$\hat{ heta}_n^{MLE}$	$\hat{ heta}_n^{MMD}$
mean absolute error	0.0722	0.0838

Now, $\varepsilon = 2\%$ of the observations drawn from a Cauchy.

mean absolute error	0.2349	0.0953

Now, $\varepsilon = 1\%$ are replaced by 1000.

mean absolute error 10.018 0.0903

- Consistency of variational inference
 - Variational inference
 - Theoretical results
 - Examples
- 2 Online variational inference algorithms
 - Bayes & online learning
 - Online variational inference
 - Simulations
- Robust MMD-based estimation
 - Robustness in statistics
 - MMD-based estimation
 - MMD-Bayes estimator

Bayesian MMD-based estimation

Given a prior $\pi(\theta)$ we propose the following pseudo-posterior :

$$\pi_n^eta(d heta) \propto \exp\left(-eta \mathbb{D}_k^2(P_ heta,\hat{P}_n)
ight)\pi(d heta).$$

$\mathsf{Theorem}$

Let $\mathcal{B} = \{\theta \in \Theta/\mathbb{D}_k (P_{\theta_0}, P_{\theta}) \leq 1/\sqrt{n}\}$. Assume (π, β) satisfies the prior mass condition : $\pi(\mathcal{B}) \geq e^{-\beta/\sqrt{n}}$. Then :

$$\mathbb{E}\left[\int \mathbb{D}_{k}^{2}\left(P_{\theta},P_{0}\right)\pi_{n}^{\beta}(\mathrm{d}\theta)\right]\leq 8\inf_{\theta\in\Theta}\mathbb{D}_{k}^{2}\left(P_{\theta},P_{0}\right)+\frac{16}{n}.$$

We also prove similar results for variational approximations, that can be computed by stochastic gradient descent :

$$q_{\beta} = \operatorname*{arg\,min}_{q \in \mathcal{Q}} \left\{ \mathbb{E}_{\theta \sim q} \left[\mathbb{D}_k^2 \left(P_{\theta}, \hat{P}_{n} \right) \right] + \frac{\mathsf{KL}(q, \pi)}{\beta} \right\}.$$

Related publications

B.-E. C.-A., P. Alquier. Finite sample properties of parametric MMD estimation : robustness to misspecification and dependence. *Preprint ArXiv*, 2019.

B.-E. C.-A., P. Alquier. MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy. *Proceedings of AABI*, 2020.

Robustness in statistics MMD-based estimation MMD-Bayes estimator

Thank you!