CENTRAL FAX CENTER @0002/0018

AUG 2 5 2009

PATENT Docket: CU-4590

Application Serial No. 10/560,220 Reply to office action of May 27, 2009

Amendments To The Claims

The listing of claims presented below will replace all prior versions, and listings, of claims in the application.

Listing of claims:

1. (currently amended) A rijndael block encryption apparatus having M-bit input data and N-bit input keys and encrypting the M-bit input data by repeating for a predetermined number of times a round operation that includes transforms of shift row. substitution, mixcolumn and add-round-key, the apparatus comprising:

a round operation unit including a round operation execution unit for processing the data in the unit of M/m bits (where m is 2, 3 or 4) at least in the transforms of substitution, mixcolumn and add-round-key, and a round key generation unit for generating round keys in order to provide the round keys in the transform of the addround-key;

a round operation control unit for controlling the round operation performed by the round operation unit; and

a data storage unit for storing M/m-bit intermediate data generated by the round operation unit at an intermediate stage of every round and M-bit data generated at an end stage of every round.

wherein the round keys generated in the add-round-key round key generation unit is added to an upper M/m input data in the round operation execution unit while simultaneously begin processing of a lower M/m input data in the round operation execution unit before the end stage of every round for the upper M/m input data in the

PATENT Docket: CU-4590

round operation execution unit at a same clock cycle without the upper M/m input data and the lower M/m input being processed in any one of a same transform of the transforms comprising of at least the substitution, mixcolumn and add-round-key,

wherein the end stage of every round indicates that the data in the unit of M/m bits (where m is 2, 3 or 4) have been processed in all of the at least transforms of the substitution, mixcolumn and add-round-key, and a round key generation in the round operation execution unit, and

wherein the processing of the upper M/m input data and the lower M/m input data are transformed in a same manner of a same circuit for each of the at least transforms of the substitution, mixcolumn and add-round-key.

- 2. (original) The apparatus as claimed in claim 1, wherein the data storage unit includes at least one register, and a total summed size of the register is equal to or larger than M(2m-1)/m bits.
- 3. (currently amended) A rijndael block decryption apparatus having M-bit input data and N-bit input keys and decrypting the M-bit input data by repeating for a predetermined number of times a round operation that includes transforms of inverse shift_row, inverse substitution, add-round-key and inverse mixcolumn, the apparatus comprising:

a round operation unit including a round operation execution unit for processing

PATENT Docket: CU-4590

the data in the unit of M/m bits (where m is 2, 3 or 4) at least in the transforms of inverse substitution, add-round-key and inverse mixcolumn, and a round key generation unit for generating round keys in order to provide the round keys in the transform of add-round-key;

a round operation control unit for controlling the round operation performed by the round operation unit; and

a data storage unit for storing M/m-bit intermediate data generated by the round operation unit at an intermediate stage of every round and M-bit data generated at an end stage of every round,

wherein the round keys generated in the add-round-key round key generation unit is added to an upper M/m input data in the round operation execution unit while simultaneously begin processing of a lower M/m input data in the round operation execution unit before the end stage of every round for the upper M/m input data in the round operation execution unit at a same clock cycle without the upper M/m input data and the lower M/m input being processed in any one of a same transform of the transforms comprising of at least the substitution, mixcolumn and add-round-key,

wherein the end stage of every round indicates that the data in the unit of M/m bits (where m is 2, 3 or 4) have been processed in all of the at least transforms of the substitution, mixcolumn and add-round-key, and a round key generation in the round operation execution unit, and

wherein the processing of the upper M/m input data and the lower M/m input data are transformed in a same manner of a same circuit for each of the at

20005/0018

AUG 2 5 2009

Application Serial No. 10/560,220 Reply to office action of May 27, 2009

PATENT Docket: CU-4590

least transforms of the substitution, mixcolumn and add-round-key.

- 4. (original) The apparatus as claimed in claim 3, wherein the data storage unit includes at least one register, and a total summed size of the register is equal to or larger than M (2m-1)/m bits.
- 5. (currently amended) A rijndael block cipher apparatus having M-bit input data and N-bit input keys, and encrypting the M-bit input data by repeating for a predetermined number of times a round operation for encryption that includes transforms of shift_row, substitution, mixcolumn and add-round-key or decrypting the M-bit input data by repeating for a predetermined number of times a round operation for decryption that includes transforms of inverse shift_row, inverse substitution, add-round-key and inverse mixcolumn, the apparatus comprising:

a round operation unit including a round operation execution unit for processing the data in the unit of M/m bits (where m is 2, 3 or 4) at least in the transforms of substitution, mixcolumn and add-round-key in an encryption mode and for processing the data in the unit of M/m bits (where m is 2, 3 or 4) at lease in the transforms of inverse substitution, add-round-key and inverse mixcolumn in a decryption mode, and a round key generation unit for generating round keys in order to provide the round keys in the transform of add-round-key;

a round operation control unit for controlling the round operation performed by the round operation unit; and

PATENT Docket: CU-4590

a data storage unit for storing M/m-bit intermediate data generated by the round operation unit at an intermediate stage of every round and M-bit data generated at an end stage of every round,

wherein the round keys generated in the add-round-key round key generation unit is added to an upper M/m input data in the round operation execution unit while simultaneously begin processing of a lower M/m input data in the round operation execution unit before the end stage of every round for the upper M/m input data in the round operation execution unit at a same clock cycle without the upper M/m input data and the lower M/m input being processed in any one of a same transform of the transforms comprising of at least the substitution, mixcolumn and add-round-key,

wherein the end stage of every round indicates that the data in the unit of M/m bits (where m is 2, 3 or 4) have been processed in all of the at least transforms of the substitution, mixcolumn and add-round-key, and a round key generation in the round eperation execution unit, and

wherein the processing of the upper M/m input data and the lower M/m input data are transformed in a same manner of a same circuit for each of the at least transforms of the substitution, mixcolumn and add-round-key.

6. (original) The apparatus as claimed in claim 5, wherein the round operation execution unit comprises:

a shift/inverse-shift_row operation means for performing the shift_row operation and the inverse shift_row operation of the data;

PATENT Docket: CU-4590

a substitution/inverse-substitution operation means for performing the substitution operation and the inverse substitution operation of the data;

a mixcolumn/inverse-mixcolumn operation means for performing the mixcolumn operation and the inverse mixcolumn operation of the data; and

an add-round-key operation means for performing the add-round-key operation of the data.

- 7. (original) The apparatus as claimed in claim 6, wherein the round operation execution unit further comprises a plurality of demultiplexing means for controlling a flow of the data among the substitution/inverse-substitution operation means, the mixcolumn/inverse-mixcolumn operation means and the add-round-key operation means so as to perform the round operation for the encryption or the round operation for the decryption according to an input of a mode signal that indicates the encryption or decryption mode.
- 8. (original) The apparatus as claimed in any one of claims 5 to 7, wherein the data storage unit includes at least one register, and a total summed size of the register is equal to or larger than M(2m-1)/m bits.
- 9. (currently amended) A rijndael block encryption method for receiving M-bit input data and N-bit input keys and performing a round operation of the input data for a predetermined number of times, the method comprising:

PATENT Docket: CU-4590

a round operation step of performing a round operation with respect to all m data of M/n bits, the round operation including sub-steps of a shift_row transform for performing a shift_row of the M-bit data from a previous round and outputting only M/m-bit (where m is 2, 3 and 4) data corresponding to a selection signal to a next step, a substitution transform for performing a substitution of the M/m-bit data, a mixcolumn transform for performing a mixcolumn of the M/m-bit data, and an add-round-key transform for performing an addition of round keys having the same size to the M/m-bit data, respectively; and

a round key generation step of generating the round keys in order to provide the round keys at the sub-step of the add-round-key transform,

wherein the round keys generated in the add-round-key round key generation unit is added to an upper M/m input data in the round operation execution unit while simultaneously begin processing of a lower M/m input data in the round operation execution unit before the end stage of every round for the upper M/m input data in the round operation execution unit at a same clock cycle without the upper M/m input data and the lower M/m input being processed in any one of a same transform of the transforms comprising of at least the substitution, mixcolumn and add-round-key,

wherein the end stage of every round indicates that the data in the unit of M/m bits (where m is 2, 3 or 4) have been processed in all of the at least transforms of the substitution, mixcolumn and add-round-key, and a round key generation in the round operation execution unit, and

wherein the processing of the upper M/m input data and the lower M/m

PATENT Docket: CU-4590

input data are transformed in a same manner of a same circuit for each of the at least transforms of the substitution, mixcolumn and add-round-key.

- 10. (original) The method as claimed in claim 9, wherein the data having the size of M/m bits can be processed through the steps of the shift_row transform, the substitution transform, the mixcolumn transform and the add-round-key transform, respectively, and a plurality of the M/m-bit data can be processed through the plural steps selected among the four steps at the same time according to a predetermined timing.
- 11. (currently amended) A rijndael block decryption method for receiving M-bit input data and N-bit input keys and performing a round operation of the input data for a predetermined number of times, the method comprising:

a round operation step of performing a round operation with respect to all m data of M/n bits, the round operation including sub-steps of an inverse shift_row transform for performing an inverse shift_row of the M-bit data from a previous round and outputting only M/m-bit (where m is 2, 3 and 4) data corresponding to a selection signal to a next step, an inverse substitution transform for performing an inverse substitution of the M/m-bit inverse-shift_row-transformed data, an add-round-key transform for performing an addition of round keys having the same size to the M/m-bit inverse-substitution-transformed data, respectively, and an inverse mixcolumn transform for performing an inverse mixcolumn of the M/m-bit add-round-key-transformed data; and

a round key generation step of generating the round keys in order to provide the

PATENT Docket: CU-4590

round keys at the sub-step of the add-round-key transform,

wherein the round keys generated in the add-round-key round key generation unit is added to an upper M/m input data in the round operation execution unit while simultaneously begin processing of a lower M/m input data in the round operation execution unit before the end stage of every round for the upper M/m input data in the round operation execution unit at a same clock cycle without the upper M/m input data and the lower M/m input being processed in any one of a same transform of the transforms comprising of at least the substitution, mixcolumn and add-round-key.

wherein the end stage of every round indicates that the data in the unit of M/m bits (where m is 2, 3 or 4) have been processed in all of the at least transforms of the substitution, mixcolumn and add-round-key, and a round key generation in the round operation execution unit, and

wherein the processing of the upper M/m input data and the lower M/m input data are transformed in a same manner of a same circuit for each of the at least transforms of the substitution, mixcolumn and add-round-key.

12. (original) The method as claimed in claim 11, wherein the data having the size of M/m bits can be processed through the steps of the inverse shift_row transform, the inverse substitution transform, the add-round-key transform and the inverse mixcolumn transform, respectively, and a plurality of the M/m-bit data can be processed through the plural steps selected among the four steps at the same time according to a predetermined timing.