

Periodic Table of the Elements

18	$\mathop{He}\limits^{2}_{\text{helium}\atop\text{4.0026}}$	$\mathop{\overset{10}{Neon}}_{\overset{neon}{20.18}}$	18 Ar argon 39.8775	36 K r krypton 83.798	54 Xe xenon 131.29	$\mathop{Rn}\limits_{{}^{radon}^{(222)}}$	$\mathop{Og}_{\mathop{oganesson}\atop{(294)}}^{118}$
	71	9 Huorine 18.998	17 C1 chlorine 35.4515	$\frac{35}{\mathbf{Br}}$ bromine	53 I iodine 126.9	$\mathop{\mathrm{At}}_{\text{(210)}}$	TT Tennessine (294)
	16	8 O oxygen 15.9995	16 Sulfar 32.0675	Se selenium 78.971	$\prod_{\substack{\text{tellurium}\\127.6}}^{52}$	Po polonium	$\sum_{(293)}^{116}$
	15	$\sum_{\substack{nitrogen \\ 14.007}}^{7}$	15 P	AS arsenic 74.922	Sb antimony 121.76	Bi bis muth 208.98	MC moscovium (290)
	4	6 Carbon 12.0105	Si silicon 28.085	$\overset{32}{Ge}_{germanium}$	50 Sn tin 118.71	$\Pr_{\text{lead}\atop 207.2}$	114 \overline{FI} flerovium (289)
	13	5 B boron 10.8135	$\mathop{AI}_{\substack{\text{aluminium}\\26.982}}$	$\overset{31}{\operatorname{Ga}}$	$\lim_{\substack{\text{indium}\\114.82}}$	81 T1 thallium 204.385	$\overset{\text{II3}}{\underset{\text{nihonium}}{\text{NL}}}$
			12	$\sum_{{ m zinc}\atop{ m 65.38}}^{30}$	Cd cadmium 112.41	80 Hg mercury 200.59	$\mathop{C_{n}}\limits_{\text{(285)}}^{\text{112}}$
			E	$\overset{29}{\text{Cu}}_{\text{copper}}$	$\mathop{\mathrm{Ag}}_{\mathrm{silver}}^{47}$	$\mathop{\mathrm{Au}}_{\mathop{\mathrm{gold}}}^{79}$	$\mathop{Rg}_{\text{roentgenium}\atop (282)}$
			01	$\overset{28}{\overset{\text{nickel}}{\overset{\text{nickel}}{\overset{\text{58.693}}{\overset{\text{58.693}}{\overset{\text{60}}}}{\overset{\text{60}}{\overset{\text{60}}{\overset{\text{60}}{\overset{60}}{\overset{\text{60}}{\overset{60}}{\overset{60}{\overset{60}}{\overset{60}}{\overset{60}}{\overset{60}{\overset{60}}{\overset{60}}{\overset{60}}{\overset{60}{\overset{60}}}}{\overset{60}}{\overset{60}}{\overset{60}}{\overset{60}{\overset{60}}{\overset{60}}{\overset{60}}{\overset{60}}{\overset{60}}}{\overset{60}}}{\overset{60}}}}{\overset{60}}{\overset{60}}{\overset{60}}{\overset{60}}{\overset{60}}}}{\overset{60}}}}{\overset{60}}}{\overset{60}}}}{\overset{60}}}}{\overset{60}}}}}}}}}}$	46 Pd palladium 106.42	78 Pt platinum 195.08	DS darmstadtium (281)
			6	27 C0 cobalt 58.933	$\mathop{Rh}\limits_{{}^{\text{rhodium}}_{102.91}}$	$\prod_{iridium}^{77}$	$\overset{109}{\mathop{\rm Mt}}_{\overset{\text{meitnerium}}{(278)}}$
			∞	$\overset{26}{Fe}_{\overset{iron}{55.845}}$	$\mathop{Ru}_{\text{ruthenium}}^{44}$	OS osmium 190.23	HS hassium (269)
		Z: atomic number Sy: symbol element: element name saw: standard atomic weight†	7	$\overset{25}{\mathrm{Mn}}_{\mathrm{manganese}}$	TC technetium (97)	Re rhenium	$\underset{\text{bohrium}}{\text{Bh}}$
		Z: atomic number Sy: symbol element: element name saw: standard atomic w	9	$\displaystyle \mathop{CI}_{\text{chromium}}^{24}$	MO molybdenum 95.95	74 W tungsten 183.84	Sg seaborgium (269)
		$\sum_{\substack{Z\\ \text{element}\\ \text{saw}}}$	5	$\sum_{\text{vanadium}}^{23}$	ND niobium 92.906	Γ_a^{73} tantalum 180.95	Db dubnium (268)
			4	$\prod_{titanium}^{22}$	$\sum_{\text{zirconium}\atop 91.224}^{40}$	72 Hf hafnium 178.49	$\underset{\text{rutherfordium}}{Rf}$
			3	Sc scandium 44.956	39 Y	**	六十 actinides
	7	Be beryllium 9.0122	$\stackrel{12}{\mathrm{Mg}}_{\text{magnesium}}$	$\overset{20}{\mathrm{Ca}}_{\mathrm{a}}$	Sr strontium 87.62	S6 Barium 137.33	88 Ra radium (226)
Group 1	H hydrogen 1.008	$\frac{3}{\text{Lithium}}$ lithium 6.9675	Na sodium 22.99	For the second s	Rb rubidium 85.468	CS caesium 132.91	87 Fr francium (223)
	1	7	3	4	٠,	9	7

$\mathop{Lu}_{{\text{lutetium}}\atop{174.97}}$	103
$\sum_{\text{ytterbium}}^{70}$	NO nobelium (259)
69 Tm thulium 168.93	$\stackrel{\text{101}}{\text{Md}}_{\text{mendelevium}}$
68 $\mathbf{E}_{\mathbf{r}}$ erbium 167.26	$\stackrel{ ext{100}}{Fm}_{\stackrel{ ext{fermium}}{(257)}}$
67 HO holmium 164.93	$\mathop{Es}\limits_{\text{(252)}}$
$\mathop{Dy}_{\text{dysprosium}}$	$\mathop{Cf}_{\tiny{\text{californium}}\atop{(251)}}$
$\prod_{\substack{terbium\\terbium\\158.93}}$	$\underset{(247)}{Bk}$
$\overset{\text{64}}{\text{Gd}}_{\text{gadolinium}}$	$\mathop{can'um}\limits_{(247)}$
$_{ m Eu}^{ m 63}$ europium	$\mathop{Am}\limits_{\stackrel{\text{americium}}{(243)}}$
$\mathop{\rm Sm}_{ m samarium}$	$\Pr_{\text{plutonium}\atop{(244)}}$
$\Pr_{promethium\atop(145)}^{61}$	$\sum_{\substack{p_3\\ \text{neptunium}\\ (237)}}^{93}$
$\underset{neodymium}{holomium}$	92 U uranium 238.03
$\Pr_{\text{praseodymium}}^{59}$	$\Pr_{23.04}^{91}$
58 Cerium 140.12	90 Th thorium 232.04
$\mathop{La}\limits_{\substack{\text{lanthanum}\\138.91}}$	$\mathop{Ac}\limits_{actinium\atop(227)}^{89}$
*	* *

†Standard atomic weights (average terrestrial atomic weight) taken from the Commission on Isotopic Abundances and Atomic Weights (http://www.ciaaw.org/abridged-atomic-weights.htm). If CIAAW indicates a range for the standard atomic weight of the arithmetic mean of the boundaries of the range. Elements with atomic weight in parentheses (e.g., Francium (223)) have no known stable isotopes and it is therefore impossible to propose a standard atomic weight. For these elements, the mass of a representative isotope is provided. Inspired by Van Griffmis BJRZ Periodic Table. Brigkode is released under the MIT open source license. Final product (this Table) is released under creative commons attribution/share-alike copyright terms. ©000 2022. Paul N. Danese

Abbreviations:

- atm: atmosphere
- g, mg: gram, milligram
- K: Kelvin
- L, mL: liter, milliliter
- M: Molar / molarity
- mmHg: millimeters of mercury
- mol: mole

Concentration equations:

- $\%(m/m) = \frac{\text{mass of solute}}{\text{mass of solution}} \times 100$
- $\%(v/v) = \frac{\text{volume of solute}}{\text{volume of solution}} \times 100$
- %(m/v) = $\frac{\text{mass of solute in grams}}{\text{volume of solution in mL}} \times 100$
- Molarity = $\frac{\text{number of moles of solute}}{\text{number of Liters of solution}}$

Moles, conversion, pH, and other stuff:

- 1 mole = 6.0221×10^{23} things
- Kelvin = ${}^{\circ}\text{C} + 273.15$
- ${}^{\circ}F = 1.8 \times {}^{\circ}C + 32$
- ${}^{\circ}C = \frac{({}^{\circ}F 32)}{1.8}$
- $pH = -1 \times log[H_3O^+]$
- $1000 \, \text{mL} = 1 \, \text{L}$
- 1000 g = 1 kg
- $1 \, \text{mL} = 1 \, \text{cm}^3$
- 1000 cal = 1 kcal
- density = $\frac{\text{mass}}{\text{volume}}$

Gas equations:

- Boyle's Law: $P_1V_1 = P_2V_2$
- Charles's Law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$
- Gay-Lussac's Law: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$
- Combined gas Law: $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$
- Avogadro's Law: $\frac{V_1}{n_1} = \frac{V_2}{n_2}$
- Universal gas constant: $R = \frac{0.0821 Latm}{mol K}$
- Ideal gas Law: PV = nRT

Mole Conversions:

- number of grams \Rightarrow number of moles: take number of grams \div molar mass
- number of moles \Rightarrow number of grams: take number of moles \times molar mass
- number of moles \Rightarrow number of atoms (or molecules): take number of moles \times 6.0221×10^{23}
- number of atoms (or molecules) \Rightarrow number of moles: take number of atoms (or molecules) \div (6.0221× 10^{23})

Organic:

- 1. meth
- 2. eth
- 3. prop
- 4. but
- 5. pent

- 6. hex
- 7. hept
- 8. oct
- 9. non
- 10. dec