Applied Statistical Analysis I/
Quantitative Methods I
POP77003/77051
Fall 2024

Week 9

Yao (Sara) HAN

hany3@tcd.ie

Department of Political Science

Trinity College Dublin

6 November, 2024

Today's Agenda

- (1) Lecture recap
- (2) Tutorial exercises

What is the t-test for individual coefficients?

What is the t-test for individual coefficients?

- Null and alternative hypotheses:
 - there is no association between X and Y, $\beta = 0$ (H_0)
 - there is an association between X and Y, $\beta \neq 0$ (H_1)
- Test statistic: "measures the number of standard errors between the estimate and the H_0 value" (Agresti and Finlay 2009, 192).

$$t = \frac{\textit{Estimate of parameter} - \textit{Null hypothesis value of parameter}}{\textit{Standard error of estimate}}$$

$$t=rac{\hat{eta}-eta_{H_0}}{\hat{\sigma}_{\hat{eta}}}=rac{\hat{eta}}{\hat{\sigma}_{\hat{eta}}}$$
, H_0 assumes $eta=0$

- Is there an association between house selling price and size (Agresti and Finlay 2009, 278–279)? Price = 50,926.2 + 126.6 * Size
- $t = \frac{\hat{\beta}}{\hat{\sigma}_{\hat{\beta}}} = \frac{126.6}{8.47} = 14.95$
- How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

What is the conclusion? P-value < 0.05, We can reject H_0 with an error probability (p-value) of essentially 0%. \rightarrow There is an association between house selling price and size

Table 3.5 Regression Output for Supervisor Performance Data

Variable	Coefficient	s.e.	$t ext{-Test}$	p-value
Constant	10.787	11.5890	0.93	0.3616
X_1	0.613	0.1610	3.81	0.0009
X_2	-0.073	0.1357	-0.54	0.5956
X_3	0.320	0.1685	1.90	0.0699
X_4	0.081	0.2215	0.37	0.7155
X_5	0.038	0.1470	0.26	0.7963
X_6	-0.217	0.1782	-1.22	0.2356
n = 30	$R^2 = 0.73$	$R_a^2 = 0.66$	$\hat{\sigma} = 7.068$	df = 23

Table 3.2 Description of Variables in Supervisor Performance Data

Variable	Description				
Y	Overall rating of job being done by supervisor				
X_1	Handles employee complaints				
X_2	Does not allow special privileges				
X_3	Opportunity to learn new things				
X_4	Raises based on performance				
X_5	Too critical of poor performance				
X_6	Rate of advancing to better jobs				

(Chatterjee and Hadi 2015, 59)

General set-up: Test whether reduced model (RM) is adequate (H_0) or full model (FM) is adequate (H_1).

The reduced model is nested within the full model \rightarrow compare "the goodness of fit that is obtained when using the full model, to the goodness of fit that results using the reduced model".

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$$

(Chatterjee and Hadi 2015, 71–72)

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$$

- * Sum of squared errors (SSE), denotes lack of $fit \rightarrow SSE(RM) SSE(FM)$ "represents the increase in the residual sum of squares due to fitting the reduced model".
- * We use the ratio, weighted by "respective degrees of freedom to compensate for the different number of parameters involved in the two models".
- * p=number of IVs full model, n=number of observations, k=number of parameters reduced model

(Chatterjee and Hadi 2015, 71–72)

Two versions of the F-test

- 1. "All the regression coefficients are zero".
- 2. "Some of the regression coefficients are zero".

(Chatterjee and Hadi 2015, 71)

What is the F-test for all coefficients?

"All the regression coefficients are zero."

- * Reduced model (RM): $Y = \beta_0 + \epsilon$ all slopes are equal to zero, $\beta_k = 0$ (H_0) \to the null model performs better
- * Full model (FM): $Y = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p \epsilon$ at least one slope is different from zero, $\beta_p \neq 0$ (H_1) \rightarrow the full model performs better

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)} = \frac{[SST - SSE]/p}{SSE/(n-p-1)} = \frac{SSR/p}{SSE/(n-p-1)}$$

"Because the least squares estimate of β_0 in the reduced model is \bar{y} , the residual sum of squares from the reduced model is SSE(RM)=SST." "reduced model has one regression parameter and the full model has p+1 regression parameter". "Because SST=SSR+SSE, we can replace SST-SSE by SSR"

(Chatterjee and Hadi 2015, 73)

Table 3.5 Regression Output for Supervisor Performance Data

Variable	Coefficient	s.e.	$t ext{-Test}$	p-value
Constant	10.787	11.5890	0.93	0.3616
X_1	0.613	0.1610	3.81	0.0009
X_2	-0.073	0.1357	-0.54	0.5956
X_3	0.320	0.1685	1.90	0.0699
X_4	0.081	0.2215	0.37	0.7155
X_5	0.038	0.1470	0.26	0.7963
X_6	-0.217	0.1782	-1.22	0.2356
n = 30	$R^2 = 0.73$	$R_a^2 = 0.66$	$\hat{\sigma} = 7.068$	df = 23

Table 3.7 Supervisor Performance Data: Analysis of Variance (ANOVA) Table

Source	Sum of Squares	df	Mean Square	F-Test	
Regression	3147.97	6	524.661	10.5	
Residuals	1149.00	23	49.9565		

$$F = \frac{SSR/p}{SSE/(n-p-1)} = \frac{3147.97/6}{1149.00/23} = 10.50$$

How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

(Chatterjee and Hadi 2015, 75)

What is the conclusion? P-value < 0.05, We can reject H_0 with an error probability (p-value) of essentially 0%. \rightarrow The full model performs better, "not all β 's can be taken as zero"

(Chatterjee and Hadi 2015, 75).

What is the F-test for some coefficients?

"Some of the regression coefficients are zero".

- * Reduced model (RM): $Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \epsilon$ subset of slopes is equal to zero, $\beta_k = 0$ (H_0) \rightarrow the reduced model performs better
- * Full model (FM): $Y = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p \epsilon$ at least one slope in the subset is different from zero, $\beta_p \neq 0$ $(H_1) \rightarrow$ the full model performs better

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$$

(Chatterjee and Hadi 2015, 77)

Table 3.5 Regression Output for Supervisor Performance Data

Variable	Coefficient	s.e.	$t ext{-Test}$	p-value
Constant	10.787	11.5890	0.93	0.3616
X_1	0.613	0.1610	3.81	0.0009
X_2	-0.073	0.1357	-0.54	0.5956
X_3	0.320	0.1685	1.90	0.0699
X_4	0.081	0.2215	0.37	0.7155
X_5	0.038	0.1470	0.26	0.7963
X_6	-0.217	0.1782	-1.22	0.2356
n = 30	$R^2 = 0.73$	$R_a^2 = 0.66$	$\hat{\sigma} = 7.068$	df = 23

Table 3.7 Supervisor Performance Data: Analysis of Variance (ANOVA) Table

Source	Sum of Squares	df	Mean Square	F-Test	
Regression	3147.97	6	524.661	10.5	
Residuals	1149.00	23	49.9565		

(Chatterjee and Hadi 2015, 75)

Table 3.8 Regression Output from the Regression of Y on X_1 and X_3

		ANOVA Table		
Source	Sum of Squares	df	Mean Square	F-Test
Regression	3042.32	2	1521.1600	32.7
Residuals	1254.65	27	46.4685	
	Co	efficients Table		
Variable	Coefficient	s.e.	t-Test	p-value
Constant	9.8709	7.0610	1.40	0.1735
X_1	0.6435	0.1185	5.43	< 0.0001
X_3	0.2112	0.1344	1.57	0.1278
n = 30	$R^2 = 0.708$	$R_a^2 = 0.686$	$\hat{\sigma}=6.817$	df = 27

$$F = \frac{[1254.65 - 1149]/4}{1149/23} = 0.0528$$

How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

(Chatterjee and Hadi 2015, 76)

What is the conclusion? P-value > 0.05, We cannot reject H_0 . \rightarrow The reduced model performs better. "The variables X_1 and X_3 together explain the variation in Y as adequately as the full set of six variables" (Chatterjee and Hadi 2015, 77).

Categorical explanatory variables

What is the reference category?

Environmental Performance_i = $\alpha + \beta_1 * Regime Type_i$

Dummy variables should take value 0 and 1 for easy interpretation \rightarrow Re-code existing variables.

```
# Import data from Quality of Government dataset
qog_data <- read.csv("qog_bas_cs_jan21.csv")

# Generate dummy variable for regime type as factor variable - democracy
wdem_polyarchy ranges between 0 and 1; cutoff at 0.7

# Countries with score equal or above 0.7 are democracies, those below autocracies
qog_data$democracy <- factor(ifelse(qog_data$vdem_polyarchy >= 0.7, 1, 0))

# Define levels of democracy in factor variable
levels(qog_data$democracy) <- c("Autocracy", "Democracy")

# Summarize generated dummy variable
summary(qog_data$democracy)</pre>
```

```
## Autocracy Democracy NA's ## 119 54 21
```

```
# Generate dummy variable for regime type as factor variable — autocracy qog_data$autocracy <— factor(ifelse(qog_data$vdem_polyarchy < 0.7, 1, 0))

# Define levels of autocracy in factor variable levels(qog_data$autocracy) <— c("Democracy", "Autocracy")

# Print first 10 rows in dataset head(qog_data[c("democracy", "autocracy")], 10)
```

```
democracy
                          autocracy
    O Autocracy
                         1 Autocracy
1
    O Autocracy
                         1 Autocracy
3
    0 Autocracy
                         1 Autocracy
    <NA>
4
                         <NA>
5
    O Autocracy
                         1 Autocracy
6
    <NA>
                         <NA>
    0 Autocracy
                         1 Autocracy
8
    1 Democracy
                         O Democracy
9
    1 Democracy
                         0 Democracy
10
    1 Democracy
                         0 Democracy
```

What happens if we run:

Environmental Performance_i = $\alpha + \beta_1 Democracy_i + \beta_2 Autocracy_i + \epsilon_i$

Environmental Performance_i = $\alpha + \beta_1 Democracy_i + \beta_2 Auocracy_i + \epsilon_i$

```
1 # Fit regression model
2 ml_trap <- lm(epi_epi ~ democracy + autocracy, data = qog_data)
4 # Print results
5 summary (m1_trap)
  lm(formula = epi_epi ~ democracy + autocracy, data = qog_data)
  Residuals:
      Min
              10 Median
                                    Max
  -34.107 -8.860 -0.610 9.293 26.190
  Coefficients: (1 not defined because of singularities)
             Estimate Std. Error t value Pr(>|t|)
  (Intercept)
              39.610
                          1.138
                                  34.80
                                        <2e-16 ***
  democracy1
                          2.002
                                 11.04
               22.098
                                        <2e-16 ***
                   NA
                             NA
                                    NA
                                             NA
  autocracy1
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Violates assumption of no perfect multicollinearity (essentially a data problem) \rightarrow One category needs to be excluded = reference category. Interpretation of the model is relative to the reference category.

Binary Explanatory Variables

How to include binary explanatory variables in multiple linear regression?

Environmental Performance_i = $\alpha + \beta_1 * Regime Type_i + \beta_2 * Income_i$

```
## Call:
## lm(epi_epi ~ democracy + income, data = qog_data)
## Residuals:
      Min
               1Q Median
                               30
                                      Max
## -53.563 -6.502 0.498 6.773 20.198
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                  1.1269 31.327 < 2e-16 ***
                     35.3027
## democracy
                     16.5270
                                  1.8409 8.978 9.08e-16 ***
                     3.5793
                                  0.4266 8.390 2.92e-14 ***
## income
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.982 on 154 degrees of freedom
## (37 observations deleted due to missingness)
## Multiple R-squared: 0.6175, Adjusted ## R-squared: 0.6126
## F-statistic: 124.3 on 2 and 154 DF, p-value: < 2.2e-16
```

In comparison to autocracies (= reference category), democracies have a 16.5270 scale point higher score on the Environmental Performance Index, under control of income.

$$\hat{Y}_i = \alpha + \beta_1 * Regime Type_i + \beta_2 * Income_i$$

Model for Autocracies:

$$\hat{Y}_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 35.303 + (16.527 * 0) + (3.579 * Income_i)$
 $\hat{Y}_i = 35.303 + (3.579 * Income_i)$

Model for Democracies:

$$\hat{Y}_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 35.303 + (16.527 * 1) + (3.579 * Income_i)$
 $\hat{Y}_i = 51.83 + (3.579 * Income_i)$

Categorical Explanatory Variables

How to select the reference category?

How to select the reference category?

```
# Run regression model with democracy variable
ml_dem <- lm(epi_epi ~ income + democracy, data = qog_data)

# Run regression model with autocracy variable
ml_aut <- lm(epi_epi ~ income + autocracy, data = qog_data)

# Get regression table with stargazer
stargazer(ml_dem, ml_aut)</pre>
```

	Dependent variable:			
	er	oi_ <mark>e</mark> pi		
	(1)	(2)		
income	3.579***	3.579***		
	(0.427)	(0.427)		
democracy1	16.527***			
	(1.841)			
autocracy1	Section of Co.	-16.527***		
011.01.01.11.11.11.11.31.3220.0		(1.841)		
Constant	35.303***	51.830***		
	(1.127)	(1.892)		
Observations	157	157		
R^2	0.618	0.618		
Adjusted R ²	0.613	0.613		
F Statistic (df = 2; 154)	124.331***	124.331***		
	* **			

Note: *p<0.1; **p<0.05; ***p<0.01

How to select the reference category?

Model 1 for Autocracies:

$$\hat{Y}_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 35.303 + (16.527 * 0) + (3.579 * Income_i)$
 $\hat{Y}_i = 35.303 + (3.579 * Income_i)$

Model 2 for Autocracies:

$$\hat{Y}_i = 51.830 + (-16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 51.830 + (-16.527 * 1) + (3.579 * Income_i)$
 $\hat{Y}_i = 35.303 + (3.579 * Income_i)$

→ Mathematically identical models.

How do we select the reference category?

How to select the reference category?

```
# Run regression model with democracy variable
m1 <- Im(epi_epi ~ income + democracy, data = qog_data)

# Get regression table with stargazer
stargazer(m1)</pre>
```

	Dependent variable:
	epi_epi
democracy1	16.527***
	(1.841)
ncome	3.579***
	(0.427)
onstant	35.303***
	(1.127)
servations	157
2	0.618
djusted R ²	0.613
Statistic (df $= 2$; 154)	124.331***
ote:	*p<0.1; **p<0.05; ***p

In comparison to autocracies (= reference category), democracies have a 16.5270 scale point higher score on the Environmental Performance Index, under control of income.

Categorical Explanatory Variables

How to include categorical explanatory variables with more than two levels?

Country	X_{region}		Country	X_{region}		Country	X_{Asia}	X_{EE}	X_{LA}	X_{MENA}	$X_{Sub-Saharan}$
Afghanistan	Asia	Alban Algeri Argen	Afghanistan	2	Afghanistan	1	0	0	0	0	
Albania	EE		Albania	3	-	Albania	0	1	0	0	0
Algeria	MENA		Algeria	5		Algeria	0	0	0	1	0
Argentina	LA		Argentina	4		Argentina	0	0	1	0	0
Australia	Advanced		Australia	1	Australia	0	0	0	0	0	
;	;		:	:		:	:	:	:	:	:

School enrollment rate = $\alpha + \beta_1 Democracy_i + \beta_2 Region_{EE} + \beta_3 Region_{LA} + \beta_4 Region_{MENA} + \beta_5 Region_{Sub-Saharan} + \epsilon_i$

- → Include binary/dummy variables for all levels minus one (=reference category).
- α (intercept): expected value of Y when $X_k = 0$
- β (coefficient): expected change in Y for X=1, in comparison to reference category

→ Convert into factor variable, then R automatically generates dummy variables, with first level as reference category (or change with relevel-function).

```
1 # Code dummy variables on the fly
2 # specify region Sub-Saharan Africa = reference category
3 \text{ Im} \leftarrow \text{Im}(\text{primary\_ser} \sim \text{democracy} + \text{relevel}(\text{as.factor}(\text{region}), \text{ref=}"Sub-Saharan")
         Africa"), data = paglayan2021)
4
5 # Print model output
6 summary (lm)
  Call:
  lm(formula = primary_ser ~ democracy + relevel(as.factor(region),
      ref = "Sub-Saharan Africa"), data = paglayan2021)
  Coefficients:
                                                                Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                                                                 48.060
                                                                              1.796 26.754 < 2e-16 ***
                                                                             1.351 30.557 < 2e-16 ***
                                                                 41,291
  democracy
  ref = "Sub-Saharan Africa") Advanced Economies
                                                                  3.063
                                                                              2.143 1.429 0.153007
  ref = "Sub-Saharan Africa") Asia and the Pacific
                                                                 -9.101
                                                                             2.437 -3.734 0.000192 ***
  ref = "Sub-Saharan Africa")Eastern Europe
                                                                 12.991
                                                                              2.825 4.599 4.46e-06 ***
  ref = "Sub-Saharan Africa")Latin America and the Caribbean -13.090
                                                                              2.073 -6.315 3.20e-10 ***
  ref = "Sub-Saharan Africa")Middle East and North Africa
                                                                  4.389
                                                                              2.695 1.629 0.103515
```

Under control of regime type, Eastern Europe has a student enrollment rate of 12.991 percentage points higher than Sub-Saharan Africa.

References I

- Agresti, Alan, and Barbara Finlay. 2009. Statistical methods for the social sciences. Essex: Pearson Prentice Hall.
- Chatterjee, Samprit, and Ali S. Hadi. 2015. *Regression analysis by example.* Somerset: Wiley.