Deep Learning

Jérôme Pasquet

December 12, 2019

Les sous graphes de TF

- tf.GraphKeys.TRAINABLE_VARIABLES
- tf.GraphKeys.GLOBAL_VARIABLES
- ...

Contient des sous-ensembles des variables présentes dans le graphe de Tensorflow.

 $tf.get_collection(\mathbf{G})$: retourne une liste contenant toutes les variables dans \mathbf{G} .

tf.get_collection(G, C): retourne une liste contenant toutes les
variables dans G contenant le nom C.

Exemple

```
n1. k1 = 64. 5
conv1 = tf.layers.conv2d(
      inputs=data.
      filters=n1.
      kernel size=k1.
      padding="same",
      activation=tf.nn.relu, name='truc')
all_ = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
kernel_ = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIA
    , 'truc/kernel')[0]
bias = tf.get collection(tf.GraphKeys.TRAINABLE VARIABL
    , 'truc/bias')[0]
```

Autoencodeur

Objectif:

- Projeter un vecteur $x \in \mathcal{X}$ en entrée dans un autre domaine de représentation \mathcal{Y} via une fonction non linéaire notée F.
- Construire une fonction G capable de reprojeter un vecteur $y \in \mathcal{Y}$ dans \mathcal{X} .

$$y = F(x)$$
$$\hat{x} = G(y)$$

Afin d'entrainer un tel model nous cherchons à minimiser la fonction de coût suivante : $\mathcal{L} = ||\hat{x} - x||_2$

Nomenclature:

- F est l'encodeur
- G est le décodeur
- ullet y est le code faisant partie de la représentation latente ${\cal Y}$

Autoencodeur

Que se passe-t-il si $|\mathcal{Y}| \ge |\mathcal{X}|$? Et dans le cas inverse ?

Autoencodeurs empilés (Stacked Autoencoder)

Deux manières d'effectuer cet apprentissage !

Autoencodeur et CNN

Des strides qui augmentent la taille des cartes de caractéristiques?!

La déconvolution

Opération transposée de la convolution !	

Sub pixel

De nombreuses autres méthodes basées sur de l'interpolation existent

Sub pixel

De nombreuses autres méthodes basées sur de l'interpolation existent...

Autoencodeur Débruiteur

Objectif:

ullet Obtenir une représentation robuste dans ${\mathcal Y}$ du vecteur $x\in {\mathcal X}$

Requis:

• Bruiter / corrompre le vecteur d'entrée $x \to x'$

$$y = F(x')$$

$$\hat{x} = G(y)$$

Afin d'entrainer un tel model nous cherchons à minimiser la fonction de coût suivante : $\mathcal{L} = ||\hat{x} - x||_2$