PROJET EIS - PX222

Guillemot MOUSSU et Rémi MAZZONE

2° semestre - 2022-2023

Table des matières

1	Séar	nce 0 - $21/03/2023$	2
	1.1	Notes prises au tableau	2
	1.2	Idées de plan de recherches	4
2	Séar	nce 1 - $05/04/2023$	3
	2.1	Reprise des éléments du semestre précédent	•
	2.2	Utilisation de Matlab	;
	2.3	Modélisation point par point du système	ţ
		2.3.1 Modélisation de l'amplificateur	٤
		2.3.2 Modélisation d'un régulateur PD	(
		2.3.3 Modélisation d'un régulateur PID	(
		2.3.4 Modélisation du système complet (PD)	۲
	2.4	Conclusions pour cette séance	7
3	Tra	vail entre les séance 1 et 2	7
	3.1	Correction des éléments de la séance précédente	-
		3.1.1 Matlab	-
		3.1.2 Modélisation point par point du système	-
	3.2	Simulation de l'amplificateur	8
4		liographie	ę
		liographie e des figures	g
			9
	able	e des figures	9
	able	e des figures Notes séance 0	6
	able	e des figures Notes séance 0	(
	able	e des figures Notes séance 0	() () () () () () () () () ()
	able 1 2 3 4	Notes séance 0	
	able 1 2 3 4 5	Notes séance 0 Modélisation de la bobine Bode obtenu Nyquist obtenu Schéma bloc du système Amplificateur à AOP Modélisation du bloc amplificateur	(
	1 2 3 4 5 6	Notes séance 0 Modélisation de la bobine Bode obtenu Nyquist obtenu Schéma bloc du système Amplificateur à AOP Modélisation du bloc amplificateur Régulateur PD	4. 4. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
	1 2 3 4 5 6 7	Notes séance 0 Modélisation de la bobine Bode obtenu Nyquist obtenu Schéma bloc du système Amplificateur à AOP Modélisation du bloc amplificateur Régulateur PD Modélisation du bloc régulateur (PD)	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4
	1 2 3 4 5 6 7 8	Notes séance 0 Modélisation de la bobine Bode obtenu Nyquist obtenu Schéma bloc du système Amplificateur à AOP Modélisation du bloc amplificateur Régulateur PD Modélisation du bloc régulateur (PD) Régulateur PID	
	1 2 3 4 5 6 7 8 9	Notes séance 0 Modélisation de la bobine Bode obtenu Nyquist obtenu Schéma bloc du système Amplificateur à AOP Modélisation du bloc amplificateur Régulateur PD Modélisation du bloc régulateur (PD) Régulateur PID Modélisation complète avec retour (PD)	6
	1 2 3 4 5 6 7 8 9 10 11 12	Notes séance 0 Modélisation de la bobine Bode obtenu Nyquist obtenu Schéma bloc du système Amplificateur à AOP Modélisation du bloc amplificateur Régulateur PD Modélisation du bloc régulateur (PD) Régulateur PID Modélisation complète avec retour (PD) Résulat idéal de la simulation	(
	1 2 3 4 5 6 7 8 9 10	Notes séance 0 Modélisation de la bobine Bode obtenu Nyquist obtenu Schéma bloc du système Amplificateur à AOP Modélisation du bloc amplificateur Régulateur PD Modélisation du bloc régulateur (PD) Régulateur PID Modélisation complète avec retour (PD)	6

1 Séance 0 - 21/03/2023

1.1 Notes prises au tableau

Figure 1 – Notes séance 0

1.2 Idées de plan de recherches

- Caractérisation de la bobine : mesure de la résistance et l'inductance de la bobine. Cela permettra de modéliser la bobine et de calculer le champ magnétique qu'elle produit
- Modélisation de la bobine : utilisation des valeurs mesurées pour construire un modèle électrique de la bobine, par exemple en utilisant l'équation de l'inductance d'une bobine. Pour une précision plus élevée, il peut être nécessaire d'inclure d'autres effets tels que la saturation du noyau de la bobine ou la résistance série équivalente
- Étude du champ magnétique de la bobine : calcul de la distribution du champ magnétique à l'aide d'un logiciel de simulation. Validation des résultats expérimentalement
- Choix d'un capteur de distance : choix d'un capteur de distance infrarouge adapté à la plage de mesure et à la précision requises. La fréquence de mesure et la plage de mesure peuvent influencer le résultat
- Calibration du capteur de distance : déterminer la relation entre la tension de sortie du capteur et la distance de la bille par rapport à la bobine
- Conception d'un correcteur : utiliser les données obtenues précédemment pour concevoir un correcteur proportionnel-intégral-dérivé (PID) ou un correcteur à avance de phase pour contrôler la position de la bille. C'est la partie clé de ce projet. Le correcteur PID est une méthode de contrôle classique qui est souvent utilisée pour les systèmes de positionnement. Un correcteur à avance de phase peut également être utilisé pour améliorer les performances.
- Implémentation du correcteur : test du correcteur via Matlab et Simulink
- **Étalonnage du système** : ajuster les paramètres du correcteur pour atteindre la précision et la stabilité requises
- Validation du système : tester le système dans différentes conditions et valider ses performances
- **Optimisation du système** : améliorer le système en optimisant les paramètres du correcteur et en utilisant des techniques avancées de contrôle, telles que le contrôle prédictif et le contrôle adaptatif

Il est important de noter que certains des points ont déjà été réalisés lors du premier semestre

2 Séance 1 - 05/04/2023

2.1Reprise des éléments du semestre précédent

Avec Hopkinson, nous avions obtenu un schéma équivalent de la bobine :

Figure 2 – Modélisation de la bobine

Nous avions trouvé que la fonction de transfert de la bobine est : $T_{BO} = \frac{Z}{I} = \frac{k_i}{k_z - mp^2}$

$$T_{BO} = \frac{Z}{I} = \frac{k_i}{k_z - mp^2}$$

Avec les valeurs suivantes :

$$I_0 = 2A, Z_0 = 22mm, L_1 = 6.73H, \alpha = 2.06, m = 35.8g$$

$$k_i = \frac{I_0 \cdot L_1 \cdot \alpha}{(1 + \alpha \cdot Z_0)^2}, k_z = \frac{I_0^2 \cdot L_1 \cdot \alpha^2}{(1 + \alpha \cdot Z_0)^3}$$

2.2Utilisation de Matlab

Nous avons donc notre fonction de transfert. Une idée qui nous est venue est d'adapter les scripts pour utiliser l'outil de M. Mendes que nous avons découvert en TP. Cela devrait nous permettre de calculer notre correcteur. Pour commencer, on a placé nos valeurs dans Matlab et tracé le bode obtenu. Cette étape est présente seulement pour nous faire une idée du système à l'heure actuelle

Code Matlab que nous avons utilisé :

```
10 = 2:
Z0 = 22 * 10^{-3}:
L1 = 6.73;
alpha = 2.06;
ki = (I0 * L1 * alpha) / (1 + alpha * Z0) ^2;
kz = -(I0 ^2 * L1 * alpha ^2) / (1 + alpha * Z0) ^3;
m = 35.8;
num = ki ;
den = [(-m) \ 0 \ kz];
sys = tf(num, den);
figure;
bode (sys)
grid on
figure;
nyquist (sys)
grid on
```

On obtient donc le bode suivant :

Figure 3 – Bode obtenu

On trace ensuite le diagramme de Nyquist :

Figure 4 – Nyquist obtenu

On remarque donc qu'il reste du travail avant d'avoir un résultat satisfaisant, mais nous reviendrons sur ce point ultérieurement

2.3 Modélisation point par point du système

L'objectif est de réaliser un circuit correspondant à ce schéma bloc :

 $Figure \ 5-Sch\'ema \ bloc \ du \ syst\`eme$

2.3.1 Modélisation de l'amplificateur

Nous avons en sortie d'un STM8 un signal de 5V, nous voulons que la bobine soit alimentée en 30V. Pour cela on utilise un amplificateur à AOP, en série avec un transistor bipolaire. On a le schéma classique d'un amplificateur à AOP :

Figure 6 – Amplificateur à AOP

Si on ajoute le transistor et la bobine au schéma, cela nous donne :

Figure 7 – Modélisation du bloc amplificateur

2.3.2 Modélisation d'un régulateur PD

On a le schéma classique d'un régulateur PD :

FIGURE 8 – Régulateur PD

Si on donne le schéma complet de ce bloc, cela nous donne :

Figure 9 – Modélisation du bloc régulateur (PD)

2.3.3 Modélisation d'un régulateur PID

Dans le cas où l'on souhaite finalement modéliser un régulateur PID, on doit ajouter un condensateur en parallèle de notre résistance :

Figure 10 – Régulateur PID

2.3.4 Modélisation du système complet (PD)

On choisit le régulateur PD pour représenter le système complet. On a vu qu'il suffira d'ajouter une capacité pour passer à un régulateur PID au besoin. On repère bien les blocs comparateur, amplificateur et régulateur

FIGURE 11 – Modélisation complète avec retour (PD)

2.4 Conclusions pour cette séance

On commence à avoir des pistes intéressantes. Les schémas que nous avons réalisés vont nous permettre de se faire une idée du système à concevoir, et nous avons perçu l'importance d'utiliser Matlab pour nous aider dans nos calculs

3 Travail entre les séance 1 et 2

3.1 Correction des éléments de la séance précédente

Nous avions manqué de temps pour terminer comme nous le souhaitions certains points de la séance précédente. Nous avons travaillé sur les points suivants :

3.1.1 Matlab

Pour plus de détails se référer à la section 2.2

Les schémas avaient étés rendus avec Octave, mais après comparaison des rendus, ceux de Matbab donnent d'autres résultats. Les figures 3 et 4 ont donc été mises à jour

3.1.2 Modélisation point par point du système

Pour plus de détails se référer à la section 2.3

La figure 5 est maintenant rendue en LATEX

Pour plus de clarté, les points 2.3.1, 2.3.2 et 2.3.3 ont été repris. Les figures 6, 8 et 10 ont été reprises en LATEX. Les figures 7 et 9 ont été reprises sur Fritzing, avec un bloc AOP mis à jour

Le point 2.3.4 a été séparé plus plus de clarté. La figure 11 y a été ajoutée

3.2 Simulation de l'amplificateur

On veut donc simuler notre bloc amplificateur. On rentre donc le modèle suivant dans LTSPICE : Dans l'idéal on devrait avoir le graphique suivant :

FIGURE 12 – Résulat idéal de la simulation

Figure 13 – Schéma LTSPICE de l'amplificateur

Et on obtient le résultat suivant :

Figure 14 – Simulation de l'amplificateur

Remarques:

- On a utilisé un AOP quelconque (le LT1001 en l'occurence)
- On a utilisé les mesures de la bobine du S1 ($R = 13.3\Omega$ et L = 0.98H)
- On a utilisé un transistor quelconque

On remarque que la simulation correspond au modèle théorique voulu. C'est bon signe pour la suite, il reste à le tester avec des composants réels

4 Bibliographie

Liste des sites utilisés pour la réalisation du projet :

- Overleaf, guide d'utilisation du $\mbox{\sc LAT}_{\mbox{\sc EX}}$
- ChatGPT, modèle de langage automatisé
- Manuel de Circuitikz