Algebra

Tim Jaschik

May 13, 2025

Abstract. – ...

Contents

1	Ringe	2
2	Ringe Basics	2
	2.1 Definition	2
	2.2 Example	2
	2.3 Proposition	3
	2.4 Lemma	3
	2.5 Remark	3
3	Potenzreihenringe und Polynomringe	3
	3.1 Definition	3
	3.2 Example	3
	3.3 Proposition	4
	3.4 Lemma	
	3.5 Remark	4
4	Ideale und Quotienten	4
	4.1 Definition	4
	4.2 Example	5
	4.3 Proposition	5
	4.4 Corollar	
	4.5 Lemma	
	4.6 Remark	5
5	Moduln	ϵ
6	Moduln Grundlagen	6

1 Ringe

2 Ringe Basics

2.1 Definition

Definition A-1-03-16 (Ringhomomorphismus).

Definition A-1-03-2 (Ring ohne Eins).

Definition A-1-03-21 (R-Linearkombination in Ringen).

Definition A-1-03-22 (Unterring eines Ringes).

Definition A-1-03-24 (Einheiten in Ringen).

Definition A-1-03-3 (Kommutativer Ring).

Definition A-1-03-30 (Schiefkörper als Ring mit Einheitsgruppe R ohne 0).

Definition A-1-03-31 (Körper als abelscher Schiefkörper).

2.2 Example

Example A-1-03-18 (Pullback-Ringhomomorphismus).

Example A-1-03-19 (Einschränkung als Pullback der Inklusion).

Example A-1-03-20 (Auswertungshomomorphismus für Punkt-Inklusion).

Example A-1-03-23 (Bild von Ringhomomorphismen ist ein Unterring).

Example A-1-03-26 (Einheitengruppe von ganzen Zahlen).

Example A-1-03-27 (Einheitengruppe von Gruppenringe).

Example A-1-03-28 (Einheiten von Matrizenringe mit Koeffizienten in Körper).

Example A-1-03-32 (Quaternionen als nichtkommutativer Schiefkörper).

Example A-1-03-4 (Körper sind Ringe).

Example A-1-03-5 $((\mathbb{Z}, +, *)$ kommutaiver Ring).

Example A-1-03-6 (Ring der Funktionen).

Example A-1-03-7 (Matrizenringe über Körper).

Example A-1-03-8 (($End_k(V), +, \circ$) Ring).

Example A-1-03-9 (Matrizenring über Ring).

2.3 Proposition

Proposition A-1-03-25 (Einheitsgruppe: Menge der Einheiten in Ringen sind Gruppe bzgl. Multiplikation in R).

Proposition A-1-03-29 (Ringhomomorphismen bilden Einheiten auf Einheiten ab und induzieren G-Hom auf Einheitsgruppen).

2.4 Lemma

Lemma A-1-03-14 (Rechenregeln für Ringe mit Eins).

Lemma A-1-03-15 (Wenn Ring mit 0 = 1, dann Nullring).

2.5 Remark

Remark A-1-03-13 (Eins eines Ringes mit Eins ist eindeutig).

Remark A-1-03-17 (Ringhomomorphismen induzieren Gruppenhomomorphismen zwischen abelschen Gruppen).

Example A-1-03-10 (Nullring).

Example A-1-03-11 (Produktring).

Example A-1-03-12 (Gruppenring mit Koeffizienten aus Körper).

Definition A-1-03-1 (Ring mit Eins).

3 Potenzreihenringe und Polynomringe

3.1 Definition

Definition A-1-04-15 (Symmetrisches Polynom).

Definition A-1-04-2 (Polynomring mit Koeffizienten in Ring als Unterring von Potenzreihenring).

3.2 Example

Example A-1-04-16 (Elementarsymmetrische Polynom in n-Variablen).

Example A-1-04-8 (Auswertungshomomorphismus für Abbildung von Körper in Matrzenring).

Example A-1-04-9 (Auswertungshomomorphismus für Abbildung von Körper in Abbildungsring der End_V).

3.3 Proposition

Proposition A-1-04-17 (Vieta-Formel).

Proposition A-1-04-18 (Jedes symmetrische Polynom ist ein Polynom in den elementarsymmetrischen Polynomen).

Proposition A-1-04-7 (Universelle Eigenschaft des Polynomringes: Auswertungs-Ringhomomorphismus).

3.4 Lemma

Lemma A-1-04-14 (Gruppenhomomorphismus zwischen Symmetrische Gruppe und Gruppe der Ring-Automorphismen des Polynomringes in n-Variablen).

3.5 Remark

Remark A-1-04-12 (Multiindex-Schreibweise).

Remark A-1-04-13 (Induzierter Ringautomorphismus auf Polynomring durch Permutation).

Remark A-1-04-3 (Eindeutige Darstellung in Polynomringen).

Remark A-1-04-4 (Polynomring als Unterring der R-Linearkombinationen).

Remark A-1-04-5 (Eigenschaften der Gradfunktion von Leitkoeffizienten).

Remark A-1-04-6 (Identifikation von R als Unterring von Polynomring mit Koeff in R).

Lemma A-1-04-11 (Eindeutige Darstellung in Polynomringen in n-Variablen).

Definition A-1-04-1 (Potenzreihenring mit Koeffizienten in Ring).

Definition A-1-04-10 (Polynomring in n-Variablen mit Koeffizienten aus Ring).

4 Ideale und Quotienten

4.1 Definition

Definition A-1-05-10 (Erzeugendensysteme von Ideale).

Definition A-1-05-17 (Quotienten für Ideale in Ringen mit Quotientenabbildung).

Definition A-1-05-2 (Ideal eines Ringes).

Definition A-1-05-7 (Von Teilmengen erzeugte Ideale).

4.2 Example

Example A-1-05-11 (nZ).

Example A-1-05-12 ($\{0\}$ und $\{1\}$ in jedem Ring sind Ideale).

Example A-1-05-13 $((2, X) \text{ im Polynomring } \mathbb{Z}(X)).$

Example A-1-05-24 (Komplexen Zahlen isomorph zu Faktorring des Polynomringes in reellen Zahlen $\text{Mod } (X^2 + 1)$).

Example A-1-05-4 (Rx sind Ideale von R).

4.3 Proposition

Proposition A-1-05-15 (Faktorring als Quotientenring bzgl. Ideale).

Proposition A-1-05-18 (Faktorringe für Ideale mit kanonischer Projektion sind Quotienten).

Proposition A-1-05-20 (Urbild von Idealen längs R-Homs ist Ideal).

Proposition A-1-05-21 (Bilder von Idealen längs surjektiven R-Homs sind Ideale).

Proposition A-1-05-22 (Homomorphisatz).

Proposition A-1-05-25 (Erster Isomorphiesatz).

Proposition A-1-05-26 (Zweiter Isomorphiesatz).

Proposition A-1-05-5 (Kern eines R-Homs ist ein Ideal).

Proposition A-1-05-6 (R-Hom ist injektiv gdw Kern = 0).

4.4 Corollar

Corollar A-1-05-16 (Jedes Ideal ist Kern eines geeigneten R-Homs).

4.5 Lemma

Lemma A-1-05-14 (Vereinigung von aufsteigend inkludierten Idealen sind Ideale).

Lemma A-1-05-3 (Charakterisierung von Idealen).

Lemma A-1-05-9 (Schnitte von Idealen sind Ideale).

4.6 Remark

Remark A-1-05-1 (Kern von Ringhomomorphismen nicht i.A. Unterring).

Remark A-1-05-19 (Quotientenabbildung ist surjektiv).

Remark A-1-05-23 (Struktur von Faktorring bestimmen durch raten eines Isomorphismus zw S und R/I und I = ker(f)).

Remark A-1-05-8 (Warum ist die Menge der erzeugten R-Linearkombinationen eine Ideal?).

- 5 Moduln
- 6 Moduln Grundlagen