Audition MCF 78

Alexandre Vigny

https://alexandre-vigny.github.io/mcf78.pdf

May 11, 2023

Presentation

Alexandre Vigny

- \rightarrow 31 years old, born in 1992.
- \rightarrow PhD defense September 2018 (5 years ago).
- \rightarrow Living in Bremen, Germany.
- → Master in University Paris Diderot, 2015.
 Logique Mathématique et Fondement de l'Informatique (LMFI).
- → PhD in University Paris Diderot. (3 years)
 With Arnaud Durand & Luc Segoufin
- → Post-doc in Warsaw. (1 year) With Szymon Toruńczyk & Mikołaj Bojańczyk
- → Post-doc in Bremen. (3 years)
 With Sebastian Siebertz

Summary

Area of Research

- → Graph theory
- → Logic
- → Distributed computing

Highlights

- → Publication in J.ACM
- → 2 Upcoming journal papers
- → 9 Conference papers
- → Co-organizer of a workshop

PODC-DARe: Distributed Algorithms on

REalistic network models

Summary

Area of Research

- → Graph theory
- → Logic
- \rightarrow Distributed computing

Highlights

- → Publication in J.ACM
- → 2 Upcoming journal papers
- → 9 Conference papers
- ightarrow Co-organizer of a workshop

PODC-DARe: Distributed Algorithms on

REalistic network models

Teaching

- \rightarrow In Paris (3 years) \sim 180h
- \rightarrow In Bremen (3 years) $\sim 270 \text{h}$

Highlights

- → Creation of syllabuses
- → Responsible for two courses
- → All level bachelor to master
- → Both in French and English

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

 \rightarrow Is G planar?

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

- \rightarrow Is G planar?
- \rightarrow Does G have a k-dominating set?

Given a graph G and a property P: "Does G satisfy P?"

- \rightarrow Is G planar?
- \rightarrow Does G have a k-dominating set?
- \rightarrow Is G connected?

Goal: Efficient algorithms ...

... at least for restricted graph classes and/or simple properties.

Logic

First-order (FO) logic

- \rightarrow Can express k-independent set: There are k vertices, that are not adjacent $\exists x_1 \ldots \exists x_k \bigwedge_{i < i} (\neg E(x_i, x_j) \land x_i \neq x_j)$
- → Cannot express : connectivity, planarity, 2-colorability, ...

Logic

First-order (FO) logic

- \rightarrow Can express k-independent set: There are k vertices, that are not adjacent $\exists x_1 \ldots \exists x_k \ \bigwedge_{i < i} (\neg E(x_i, x_j) \land x_i \neq x_j)$
- \rightarrow Cannot express : connectivity, planarity, 2-colorability, ...

Monadic second-order (MSO) logic

- \rightarrow More general than FO
- → Can express : 3-colorability: $\exists X_1 \exists X_2 \exists X_3 \ (\forall x \bigvee_{i < 3} x \in X_i) \land (\forall x \forall y \ E(x, y) \rightarrow \bigwedge_{i < 3} (x \notin X_i \lor y \notin X_i))$

Distributed computing

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

Distributed computing

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

Distributed computing

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

→ Can you decide locally?

Logic & Meta theorems

Problems can be expressed in logic. (FO, MSO,...)

The \mathcal{L} , \mathcal{C} model-checking problem: Given $\varphi \in \mathcal{L}$ and $G \in \mathcal{C}$, does $G \models \varphi$?

Goal: fixed parameter tractable algorithms $O(f(\varphi) \cdot |G|^c)$

Problems can be expressed in logic. (FO, MSO,...)

The \mathcal{L} , \mathcal{C} model-checking problem: Given $\varphi \in \mathcal{L}$ and $G \in \mathcal{C}$, does $G \models \varphi$?

Goal: fixed parameter tractable algorithms $O(f(\varphi) \cdot |G|^c)$

Courcelle's Theorem (1990):

for $\varphi \in MSO$ and treewidth $(G) \leq k$, in time $O(f(\varphi, k) \cdot |G|)$

→ Generalize many known results, ex: Arnborg, Proskurowski 1989: independent sets, dominating sets, graph coloring, Hamiltonian, ... are linear on partial k-tree.

Result overview

Result overview

· ENUMERATION FO QUERIES

-> PODS 2018 SAC11 2022

Result overview

· ENUMERATION FO QUERIES

-> PODS 2018 SACH 2022

• DISTRIBUTED DOMINATION ON SPARSE GRAPH CLASSES

ON SPARSE GRAPH CLASSES

-> SÍROCCO ZOZZ/ZOZZ

-> EUR. J. COMB.

(TO APPEAR)

· ENUMERATION FO QUERIES

-> (PODS 2018 SACH 2022

DISTRIBUTED DOMINATION ON SPARSE GRAPH CLASSES

-> SIROCCO ZOZZ/ZOZZ

-> EUR. J. COMB.

PARAMETERIZED DISTRIBUTED COMPLEXITY THEORY:

A LOGICAL APPROACH

-> ARXIV

GENERALITY

GENERALITY

GENERALITY

FO + conn

Focus 0000

Schirrmacher, Siebertz, Vigny '21 and Bojanczyk '21

Syntax

 \rightarrow Uses: FO and conn_k (x, y, z_1, \dots, z_k)

Meaning

 $\rightarrow x$ and y are connected after the deletion of z_1, \ldots, z_k .

Expressive power of FO + conn

→ connectivity

$$\forall x \forall y \text{ conn}_0(x, y)$$

→ cycle

$$\varphi_{cycle} := \exists x \exists y \exists z (E(x,y) \land E(y,z) \land z \neq x \land conn_1(z,x,y))$$

→ Not expressible planarity, bipartiteness, Hamiltonicity, ...

Main result

Theorem: Pilipczuk, Schirrmacher, Siebertz, Torunczyk, Vigny

- \rightarrow Model-checking for properties in FO + conn over graph classes excluding a topological minor is solvable in time FPT.
- → Model-checking is not FPT for more general graph classes. Under complexity assumptions

Research project

First (short term) goal: new logics

Beyond FO + conn

- → What can be added?
- → What do we want to express?
- ightarrow Example: a path of even length, using only blue nodes, ...

Keeping in mind algorithmic applications

DENSITY

Characterization of graph classes

Direction on edges

- → More general
- → Problems are harder E.g. Directed Dominating Set is NP-complet on DAGs
- → Some problems do not care about orientation

Reconfiguration problems

- → No need to find a set
- → Here, the orientation matters!

Distributed computing & Certification

Local computing

- → Other notion of efficient
- → Still looking for meta theorems

Complexity classes

- → Hard problems may not be equally hard
- ightarrow Define complexity classes through logic

Compact certification

- → Feuilloley, Bousquet, Pierron What Can Be Certified Compactly? Compact local certification of MSO properties in tree-like graphs. In PODC'22
- → Fraigniaud, Montealegre, Rapaport, Todinca A Meta-Theorem for Distributed Certification. In SIROCCO'22

Axe MAAD : Modèles et Algorithmes de l'Aide à la Décision Algorithmics, Graphs, Complexity

- → M. Kanté, JF. Raymont, L. Nourine, B. Guillon
- → Workshop Generalized coloring numbers (JF. Raymont)
- → ANR GraphEn (M. Kanté, L. Nourine)
- → Create a logic working group with B. Guillon and M. Kanté
- → Distributed computing is new.
- → Compact certification vs Labelling scheme (M. Kanté)

Past teaching in Paris

Around 180h

- → Mainly Bachelor level
- → Similar to topics in ISIMA

Subject	Years	Level	Activity
Initiation à la Programmation	2015-2016	L1	TP
Langages et Automates	2015-2016	L2	TD
Éléments d'Algorithmique	2016-2017	L2	TD
Base de données	2016-2017 2017-2018	L3 M1	TP & TD
Concepts Informatique	2017-2018	L1	TD

Past teaching in Bremen

Around 250h

- → Master level
- → Creation of syllabuses
- → Fully in charge of a lecture

Subject	Years	Level	Activity
Finite Model Theory	2019-2020	Master	TD
Sparsity	2019-2020	Master	TD
Parametrized Complexity	2019-2020	Master	TD
Set and Model Theory	2020-2021	Master	TD
Databases, Graphs, Algorithms	2020-2021 2021-2022	Master	Cours & TD
Set and Model Theory	2021-2022	Master	Cours & TD

Highlight

Various settings

- → In French, in English
- → All levels
- → Physical and remote

Various responsibilities

- → Creation of the content
- \rightarrow Fully in charge of a lecture

Takeaway

- \rightarrow Polls
- → Online white boards

Future

Possible lectures

- → Most introductory lectures
- → Système de gestion de base de données
- → Willing to learn new theme
- $\rightarrow \dots$

Future

Possible lectures

- → Most introductory lectures
- → Système de gestion de base de données
- → Willing to learn new theme
- $\rightarrow \dots$

Responsibilities

- → Responsable d'années
- \rightarrow Stages
- \rightarrow ..

Thank you!

- → 2019-2023: Postdoc, University of Bremen. With Sebastian Siebertz
- → 2018-2019: Postdoc, University of Warsaw. With Szymon Toruńczyk & Mikołaj Bojańczyk
- → 2015-2018: Thesis, University Paris Diderot. With Arnaud Durand & Luc Segoufin

Info:

- → 1 Journal: J.ACM (TOCL & Eur. J. Comb. to appear)
- → 9 Conferences: ICDT, PODS, MFCSx2, SIROCCOx2, ISSAC, CSL, ICALP.
- → 1 Workshop (co-organizer): https://podc-dare.github.io/.
- → 1 Popularization: La gazette du GDR-IM.

tinyurl.com/short-polls

√ back