Poznámky

24. září 2021

1 Rekapitulace

Máme hamiltonián

$$\hat{H}_D = (1 - \xi)\hat{n} - \frac{\xi}{N - 1}\hat{W}_D^2 - \epsilon\hat{D}_x,$$

kde změna parametru ξ odpovídá přechodu mezi dvěma rovnovážnými polohami molekuly v řetízku a ϵ udává sílu poruchy (elmag. pole). Zajímají nás OTOCy různých kombinací operátorů.

Podobným hamiltoniánem, sestaveným z operátorů tvořící stejnou algebru a podalgebry, lze popsat typ Bose-Einsteinova plazmatu. Místo kreace a anihilace vibronových stavů ve směrech x a y (resp. + a -) mluvíme o kreaci kladných a záporných bosonů v kondenzátu s celkovým počtem N bosonů.

2 OTOCy

2.1 Mikrokanonický OTOC

Zatím jsme OTOCy počítaly jako stopu přes celý operátor

$$C(t) = \text{Tr}([W(t), V(0)]^{\dagger}[W(t), V(0)]).$$

Implementovali jsme ještě výpočet mikrokanonických OTOCů. Mějme bázi $\{|n\rangle\}$, mikrokanonický OTOC $c_n(t)$ je dán jako

$$\begin{split} c_n(t) &= \langle n | \left[W(t), V(0) \right]^\dagger \left[W(t), V(0) \right] | n \rangle = \langle n | \left[W(t), V(0) \right]^\dagger \sum_i |i\rangle \left\langle i | \left[W(t), V(0) \right] | n \right\rangle \\ &= \sum_i \left\langle i | \left[W(t), V(0) \right] | n \right\rangle \left\langle i | \left[W(t), V(0) \right] | n \right\rangle^\dagger \end{split}$$

2.2 Oscilace

Vzhledem k tomu, že by oscilace OTOCů mohly mít spojitost s chaosem, Fourierovou transformací převádíme mikrokanonické OTOCy na jednotlivé frekvence. Míru rozpliznutí OTOCU v prostoru frekvencí (v prostoru s diskrétními frekvencemi je reprezentován vektorem $\vec{c} = \sum_f a_f \vec{f}$) indikujeme pomocí vztahu

$$D(c) = \frac{\sum_f a_f^4}{(\vec{c} \cdot \vec{c})^2},$$

kde jmenovatel slouží k normalizaci vektoru OTOCu. Pak platí $D(c) \in \langle 0, 1 \rangle$, kde 0 odpovídá úplně delokalizovanému signálu (všechny frekvence jsou stejně zastoupeny) a 1 odpovídá signálu s jedinou frekvencí. Praktičtější by mohla být ještě transformovaná hodnota

$$\bar{D}(c) = \ln(D(c)^{-1}),$$

u které platí $\bar{D}(c) \in (0, \infty)$ - jde od úplně lokalizovaného k delokalizovanému signálu.

Na následujících dvou obrázcích je ukázka. Jedná se o OTOC $[n(t), W^2(0)]$. V obou případech mikrokanonický OTOC na 400. energetické hladině.

Obrázek 1: Mikrokanonický OTOC $[n(t), W^2(0)]$ na 400. energetické hladině. Na horním grafu je mikrokanonický OTOC c(t) a na spodní je jeho Fourierova transformace (normovaná). Parametry jsou uvedeny nad prvním obrázkem (ξ je špatně označeno jako chi). Míra D(c) je uvedena nad druhým obrázkem.

Obrázek 2: Mikrokanonický OTOC $[n(t), W^2(0)]$ na 400. energetické hladině. Na horním grafu je mikrokanonický OTOC c(t) a na spodní je jeho Fourierova transformace (normovaná). Parametry jsou uvedeny nad prvním obrázkem. Míra D(c) je uvedena nad druhým obrázkem.

2.3 Energetická závislost OTOCů

Energerickou závislost OTOCů jsme určovali pomocí dvou ukazatelů. Prvním je delokalizace ve frekvenční bázi \bar{D} a druhým je střední hodnota (časová) a odchylka OTOCu v dlouhých časech (v následujících ukázkách děláme střední hodnotu z posledních 1000 bodů c(t)).

Oba ukazatelé vykazují obecně zvláštní závisloti na energii a to sice výzarné oscilace. Vedlejší energetické hladiny vykazují často výrazný skok v těchto ukazatelích.

Obrázek 3: Energetický závislost mikrokanonického OTOCu. Na ose x je pořadí hladin a na ose y je delokalizace OTOCu středovaného přes příslušnou hladinu ve frekvenční bázi \bar{D} . Parametry $\xi=0.5, \epsilon=0.0, N=35$. Na spodním grafu je zhlazení přes deset bodů.

Obrázek 4: Energetický závislost mikrokanonického OTOCu. Na ose x je pořadí hladin a na ose y je delokalizace OTOCu středovaného přes příslušnou hladinu ve frekvenční bázi \bar{D} . Parametry $\xi=0.5, \epsilon=0.25, N=35$. Na spodním grafu je zhlazení přes deset bodů.

Ještě zajímavější závislost na energii vykazuje střední hodnota OTOCů v dlouhých časech.

Obrázek 5: Závislost střední hodnoty s odchylkou mikrokanonického OTOCu $[n(t), W^2(0)]$ na energii. Na ose x je pořadí hladiny. Parametry jsou $\xi=0.75, \epsilon=0.0, N=15$

Obrázek 6: Závislost střední hodnoty s odchylkou mikrokanonického OTOCu $[n(t), W^2(0)]$ na energii. Na ose x je pořadí hladiny. Parametry jsou $\xi=0.75, \epsilon=0.03, N=15$

Obrázek 7: Závislost střední hodnoty s odchylkou mikrokanonického OTOCu $[n(t), W^2(0)]$ na energii. Na ose x je pořadí hladiny. Parametry jsou $\xi = 0.75, \epsilon = 10.0, N = 15$

Obecně na grafech střední hodnoty OTOCů vidíme struktury, které na sebe přechází při změnách parametrů ξ a ϵ . V krajních hodnotách parametrů vidíme pravidelné struktury (obr. 5 a 7), kterou jsou posunem parametrů narušovány.

Vzhledem ke složitým obrazcům se energetická škála nezdá být vhodnou charakteristikou míry oscilací ani středních hodnot OTOCů.

2.4 Fockovská báze

Zkusíme mikrokanonické OTOCy počítat ve fockovské bázi $\{|N, n_+, n_-\rangle\}$, kde n_+ je počet vibronů kreovaných operátorem τ_+ a obdobně n_- . N je celkový počet částic. Zajímavá je i interpretace pomocí Bose-Einsteinova plazmatu, kde n_+ je počet kladných bosonů, n_- záporných a N je celkový počet bosonů včetně těch neutrálních.

Střední hodnoty mikrokanonických otoků ve fockovské bázi lze znázornit na heatmapě, kde na ose x je n_+ a na ose y je n_- . Vzhledem k fixnímu počtu N je tak zaplněna oblast (nenulové hodnoty) grafu jen pod diagonálou, jak bude vidět na následujících grafech.

Časové střední hodnoty a delokalizace \bar{D} OTOCů z grafů na obrázcích 5 a 6 ve fockovské bázi jsou na následujících grafech.

Obrázek 8: Časová střední hodnota mikrokanonických OTOCů ve fockovské bázi. Na ose x je počet kladných bosonů a na ose y je počet záporných bosonů. První graf je pro parametry $\xi=0.75, \epsilon=0.0, N=15$. Druhý graf je pro parametry $\xi=0.75, \epsilon=0.03, N=15$

Obrázek 9: Delokalizace \bar{D} mikrokanonických OTOCů ve fockovské bázi. Na ose x je počet kladných bosonů a na ose y je počet záporných bosonů. První graf je pro parametry $\xi=0.75, \epsilon=0.0, N=15$. Druhý graf je pro parametry $\xi=0.75, \epsilon=0.03, N=15$

Ve fockovské bázi vidíme lokalizované oblasti s vysokými a nízkými hodnotami obou ukazatelů. U některých OTOCů je to ještě výraznější. Na následujících grafech jsou výsledky z OTOCů $[\hat{n}_+(t), \hat{n}_+(0)]$. Postupně zvyšujeme poruchu z $\epsilon = 0.0$ na $\epsilon = 0.05$

Obrázek 10: Časová střední hodnota mikrokanonických OTOCů ve fockovské bázi. Na ose x je počet kladných bosonů a na ose y je počet záporných bosonů. Parametry $\xi = 0.75, \epsilon = 0.0 - 0.05, N = 30$.

Vidíme, že se maxima časových středních hodnot po grafu přímo pohybují v závislosti na síle poruchy.

Obrázek 11: Delokalizace mikrokanonických OTOCů ve fockovské bázi. Na ose x je počet kladných bosonů a na ose y je počet záporných bosonů. Parametry $\xi = 0.75, \epsilon = 0.0 - 0.05, N = 30$.

Zdá se, že OTOCy různých skupin operátorů (operátory počtů částic, operátory D, operátory P a Q) se

liší právě v podobě heatmap použitých indikátorů. Je to zatím jen vágní představa, ale různým skupinám zdá se odpovídají různé obrazce na heatmapách, u kterých vidíme buď pohyb maxim jako v předchozích grafech, nebo rozplývání jako na následujících grafech časových středních hodnot OTOCů operátorů $[n(t), W^2(0)]$.

Obrázek 12: Časová střední hodnota mikrokanonických OTOCů $[n(t), W^2(0)]$ ve fockovské bázi. Na ose x je počet kladných bosonů a na ose y je počet záporných bosonů. Parametry $\xi = 0.75, \epsilon = 0.0 - 0.5, N = 15$.