Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A method of enciphering information constituted by a finite sequence $\{S_1, S_2, ..., S_N\}$ of N symbols $\{S_1, S_2, ..., S_N\}$ selected from an alphabet A, wherein there are defined both a secret convention (K) of \underline{p} key symbols $K_1, ..., K_p$ selected from a second alphabet B, and a multivariate function M having m+1 variables (m<=N): $M(X_{i1},...,X_{im},Y)$ operating $A^m \times B$ in A, $\{i_1,...,i_m\}$ being \underline{m} distinct indices in the range [1,N] and the function M being objective bijective relative to at least one (X_{i1}) of the \underline{m} variables of A, said enciphering method comprising:

initially placing the N symbols $(S_1, S_2, ..., S_N)$ constituting the information to be enciphered in the N positions of a shift register, and then

performing a succession of X turns of the shift register implementing a succession of X permutations on the sequences $\{S_1, S_2, ..., S_N\}$ such that where $\{S_1, S_2, ..., S_N\}$ is the sequence prior to the jth permutation, the sequence after the jth permutation is $\{S_2, S_3, ..., S_N, Zj\}$, where Zj is equal to $M(S_{i1}, ..., S_{im}, K_j)$, the enciphered information being constituted by the sequence $\{S'_1, S'_2, ..., S'_N\}$ contained in the shift register at the end of the Xth permutation resulting from the Xth turn of the shift register.

wherein the number X of permutations is greater than several times the length N of the sequences $\{S_1, S_2, ..., S_N\}$,

wherein the number <u>m</u> is equal to 3, the function M being defined by $\underline{M}(X_1,X_2,X_N,Y)$, and

wherein the function $M(X_1, X_2, X_N, Y)$ is calculated using the following steps:

 $\underline{\mathsf{U}}=\mathsf{t1}(\mathsf{X}_{\underline{\mathsf{1}}},\mathsf{X}_{\underline{\mathsf{N}}})$

V=t2(U,Y)

 $Z=t1(V,X_2)$

t1 and t2 being the functions associated with two Latin squares T1 and T2 of size equal to the number N.

Claims 2-7. (Canceled).

8. (Currently amended) A method of deciphering information enciphered using the enciphering method of claim [[7]] $\underline{1}$, wherein the symbols $(S'_1, S'_2, ..., S'_N)$ of the sequence $\{S'_1, S'_2, ..., S'_N\}$ constituting the enciphered information are reverse symbol by symbol $(S'_N, S'_{N-1}, ..., S'_1)$, $M(S_1, S_2, S_N, K_j) = Zj$ is calculated using a key symbol Kj beginning with the last key symbol to be used during enciphering, and so on in decreasing order ...Zj, Zj-1, ..., with $M(X_1, X_2, X_N, Y) = Z$ being calculated using the following steps:

$$V=t1^{-}(X_1,X_N)$$

$$Z=t1^{\square}(U,X_2)$$

the sequence obtained at the end of the X^{th} permutation reconstituting the information in the clear $\{S_1, S_2, ..., S_N\}$.