Szeregi o wyrazach nieujemnych

Kryterium porównawcze zbieżności szeregów

☐ Theorem

Jeżeli dla szeregu $\sum_{n=1}^\infty u_n$, gdzie $u_n \geq 0$, można wskazać taki szereg zbieżny $\sum_{n=1}^\infty v_n$, że począwszy od pewnego miejsca N (tzn. dla każdego $n \geq N$), zachodzi nierówność $u_{n \leq v_n}$, to szereg $\sum_{n=1}^\infty u_n$ jest również zbieżny.

Kryterium porównawcze rozbieżności szeregów

☐ Theorem

Jeżeli dla szeregu $\sum_{n=1}^\infty u_n$, można wskazać taki szereg rozbieżny $\sum_{n=1}^\infty v_n$, gdzie $v_n \geq 0$, że począwszy od pewnego miejsca N (tzn. dla każdego $n \geq N$), zachodzi nierówność $u_{n \geq v_n}$, to szereg $\sum_{n=1}^\infty u_n$ jest również rozbieżny.

Kryteria d'Alemberta zbieżności szeregów

Z kryteriów d'Alamberta wynikają następujące wnioski:

- **1.** \int Jeżeli $\lim_{n o\infty}rac{u_{n+1}}{u_n}=r<1$, to szereg $\sum_{n=1}^\infty u_n$ jest zbieżny.
- 2. \int Jeżeli $\lim_{n o\infty}rac{u_{n+1}}{u_n}=s>1$, to szereg $\sum_{n=1}^\infty u_n$ jest rozbieżny.
- 3. Jeżeli $\lim_{n o\infty}rac{u_{n+1}}{u_n}=1$, to przypadek jest wątpliwy.

Kryteria Cauchy'ego zbieżności szeregów

□ Z kryteriów Cauchy'ego wynikają następujące wnioski:

- **1.** \int Jeżeli $\lim_{n o\infty}\sqrt[n]{u_n}=r<1$, to szereg $\sum_{n=1}^\infty u_n$ jest zbieżny.
- **2**. $\Big|$ Jeżeli $\lim_{n o\infty}\sqrt[n]{u_n}=s>1$, to szereg $\sum_{n=1}^\infty u_n$ jest rozbieżny.
- 3. Seżeli $\lim_{n o\infty}\sqrt[n]{u_n}=1$, to przypadek jest wątpliwy.

Szeregi przemienne

☐ Theorem

Jeżeli $|u_{n+1}| <= |u_n| \; \wedge \; \lim_{n o \infty} u_{n=0}$, to szereg $\sum_{n=1}^\infty u_n$ jest zbieżny.

Kryterium bezwzględnej zbieżności szeregów

☐ Theorem

Jeżeli szereg $\sum_{n=1}^\infty |u_n|$, którego wyrazy są równe wartościom bezwzględnym wyrazów szeregu $\sum_{n=1}^\infty$, jest zbieżny, to i szereg $\sum_{n=1}^\infty u_n$ jest zbieżny.