

AXP15060 Datasheet

PMIC for multi-core high-performance system

Version History

Version	Modify Time	Description
V 0.1	2018.04.10	Initial version

Declaration

THIS DOCUMENTATION IS THE ORIGINAL WORK AND COPYRIGHTED PROPERTY OF X-POWERS. REPRODUCTION IN WHOLE OR IN PART MUST OBTAIN THE WRITTEN APPROVAL OF X-POWERS AND GIVE CLEAR ACKNOWLEDGEMENT TO THE COPYRIGHT OWNER.

THE PURCHASED PRODUCTS, SERVICES AND FEATURES ARE STIPULATED BY THE CONTRACT MADE BETWEEN X-POWERS AND THE CUSTOMER. PLEASE READ THE TERMS AND CONDITIONS OF THE CONTRACT AND RELEVANT INSTRUCTIONS CAREFULLY BEFORE USING, AND FOLLOW THE INSTRUCTIONS IN THIS DOCUMENTATION STRICTLY. X-POWERS ASSUMES NO RESPONSIBILITY FOR THE CONSEQUENCES OF IMPROPER USE(INCLUDING BUT NOT LIMITED TO OVERVOLTAGE, OVERCLOCK, OR EXCESSIVE TEMPERATURE).

THE INFORMATION FURNISHED BY X-POWERS IS PROVIDED JUST AS A REFERENCE OR TYPICAL APPLICATIONS. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENT DO NOT CONSTITUTE A WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. X-POWERS RESERVES THE RIGHT TO MAKE CHANGES IN CIRCUIT DESIGN AND/OR SPECIFICATIONS AT ANY TIME WITHOUT NOTICE.

NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THE THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLICATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF X-POWERS. THIRD PARTY LICENCES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT. CUSTOMERS SHALL BE SOLELY RESPONSIBLE TO OBTAIN ALL APPROPRIATELY REQUIRED THIRD PARTY LICENCES. X-POWERS SHALL NOT BE LIABLE FOR ANY LICENCE FEE OR ROYALTY DUE IN RESPECT OF ANY REQUIRED THIRD PARTY LICENCE. X-POWERS SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT TO MATTERS COVERED UNDER ANY REQUIRED THIRD PARTY LICENCE.

1. Overview	6
2. Feature	7
3. Typical Application	8
4. Pin Map	9
5. Pin List	10
6. Absolute Ratings	
7. Electrical Characteristics	13
8. Block Diagram	20
9. Control and Operation	21
9.1 Power On/Off & Reset	21
9.2 Multi-Power Outputs	
9.3 Multi-Function Pin Description	24
9.4 Interrupt	25
10. Register	
10.1 Register List	LAND P
10.2 Register Description	
REG 00: Power ON source indication	
REG 04-07: 4 Data Buffers	
REG 10: Output power on-off control 1	
REG 11: Output power on-off control 2	27
REG 12: Output power on-off control 3	
REG 13: DC/DC 1 voltage control	28
REG 14: DC/DC 2 voltage control	
REG 15: DC/DC 3 voltage control	28
REG 16: DC/DC 4 voltage control	28
REG 17: DC/DC 5 voltage control	28
REG 18: DC/DC 6 voltage control	29
REG 19: ALDO1 voltage control	29
REG 1A: DCDC mode control 1	29
REG 1B: DCDC mode control 2	29
REG 1E: Output monitor control & Discharge	30
REG 1F: IRQ & PWROK & VOFF setting	30
REG 20: ALDO2 voltage control	30
REG 21: ALDO3 voltage control	31
REG 22: ALDO4 voltage control	31
REG 23: ALDO5 voltage control	31
REG 24: BLDO1 voltage control	31
REG 25: BLDO2 voltage control	31
REG 26: BLDO3 voltage control	32
REG 27: BLDO4 voltage control	32
REG 28: BLDO5 voltage control	32

	REG 29:	CLDO1 voltage control	32
	REG 2A:	CLDO2 voltage control	. 32
	REG 2B:	CLDO3 voltage control & CLDO3 /GPIO1/Wakeup control	. 33
	REG 2C:	CLDO4/GPIO2	. 33
	REG 2D:	CLDO4 voltage control	. 33
	REG 2E:	CPUSLDO voltage control	. 33
	REG 31:	Power wakeup CTRL	. 34
	REG 32:	Power disable & Power down sequence	. 34
	REG 36:	POK setting	. 35
	REG 40:	IRQ Enable1	. 35
	REG 41:	IRQ Enable2	. 35
	REG 48:	IRQ Status1	. 36
	REG 49:	IRQ Status2	. 36
11 Pac	kage		37

1. Overview

AXP15060 is a highly integrated power management IC targeting at applications that require multi-channel power conversion outputs. It provides an easy and flexible power management solution for multi-core processors to meet the complex and accurate requirements of power control.

AXP15060 supports 23 channel power outputs(including 6 channel DCDC). To ensure the security and stability of the power system, AXP15060 integrates protection circuits such as over-voltage protection(OVP), under-voltage protection(UVP) and over-temperature protection(OTP).

AXP15060 provides a fast interface(Two Wire Serial Interface, TWSI) for system to dynamically adjust output voltages, enable power outputs and configure interrupt condition.

AXP15060 is available in 6mm x 6mm 52-pin QFN package.

Applications

• VR, Tablet, Smartphone, Smart TV

• UMPC-like, Student Computer

2. Feature

6 DCDCs

DCDC1: 1.5~3.4V, 0.1V/step, IMAX=2A

DCDC2: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM

DCDC3: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM

DCDC4: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=2.5A, DVM

DCDC5: 0.8~1.12V, 10mV/step, 1.14~1.84V, 20mV/step, IMAX=2.5A, DVM

DCDC6: 0.5~3.4V, 0.1V/step, IMAX=2.5A

DCDC2 &DCDC3 can be set to dual-phase; DCDC4 & DCDC6 can be set to dual-phase.

DVM(Dynamic Voltage scaling Management) ramp rate: 1step/15.625us and 1step/31.250us.

16 LDOs, 1 Switch

RTCLDO: 1.8V/3.3V, for RTC power, 100mA, always enable, input is ALDOIN

ALDO1: 0.7~3.3V, 0.1V/step, IMAX=600mA, input is ALDOIN

ALDO2: 0.7~3.3V, 0.1V/step, IMAX=300mA, input is ALDOIN

ALDO3: 0.7~3.3V, 0.1V/step, IMAX=200mA, input is ALDOIN

ALDO4:0.7~3.3V, 0.1V/step, IMAX=300mA, input is ALDOIN

ALDO5: 0.7~3.3V, 0.1V/step, IMAX=300mA, input is ALDOIN

BLDO1: 0.7~3.3V, 0.1V/step, IMAX=300mA, input is BLDOIN

BLDO2: 0.7~3.3V, 0.1V/step, IMAX=500mA, input is BLDOIN

BLDO3: 0.7~3.3V, 0.1V/step, IMAX=300mA, input is BLDOIN

BLDO4: 0.7~3.3V, 0.1V/step, IMAX=400mA, input is BLDOIN

BLDO5: 0.7~3.3V, 0.1V/step, IMAX=600mA, input is BLDOIN.

CLDO1: 0.7~3.3V, 0.1V/step, IMAX=200mA, input is CLDOIN

CLDO2: 0.7~3.3V, 0.1V/step, IMAX=200mA, input is CLDOIN

CLDO3: 0.7~3.3V, 0.1V/step, IMAX=300mA, input is CLDOIN

CLDO4: 0.7~4.2V, 0.1V/step, IMAX=200mA, input is CLDOIN

LDO: for CPUs, NMOS LDO, V_{DDR}/2(source /sink), 0.7~1.4V, 50mV/step, IMAX=200mA, input is DCDC5.

Switch: 0.1ohm switch, input is DCDC1, IMAX=1A, soft turn on.

- Two wire serial interface (SCK/SDA) supporting standard mode (100KHz) and quick mode (400KHz), the slave address is 0x36(7 bits)
- Internal temperature sensor and protection
- Monitor DCDCs output voltage, send interrupt and over temperature protection
- Customization for start up sequence and default voltage
- QFN6*6-52P-EP-0.4Pitch

3. Typical Application

Figure 3-1 AXP15060 Typical Application

4. Pin Map

Figure 4-1 AXP15060 Pin Map

5. Pin List

NO.	Name	Туре	Condition	Description				
1	ALDO5	РО		Output pin of ALDO5				
2	ALDOIN	PI		ALDO input source and internal analog power				
3	ALDO3	PO		Output pin of ALDO5				
4	RTCLDO	РО		RTC power output				
5	PWROK	DO		Power good indication output				
6	PWRON	10		Power On-Off key input,Internal 100k pull up to VINT				
7	VREF	AIO		Internal reference voltage				
8	GND	G		GND for internal analog circuit				
9	SDA	DIO		Data pin for serial interface, need a 2.2KΩ Pull High.				
10	SCK	DI		Clock pin for serial interface, need a 2.2KΩ Pull High.				
11	SWOUT	PO		DCDC1 Switch output pin				
12	DCDC1	PI		DCDC1 feedback pin and Switch input source				
13	IRQ	PIO		IRQ output				
14	GND	G		GND for internal analog circuit				
15	VIN1	PI		DCDC1 input source				
16	LX1	PIO @		Inductor pin for DCDC1				
				GND for DCDC2FB				
17	FROND	AL		1.DCDC2 remote feedback signal GND, line connect to the				
17	FBGND	Al		DCDC2 loading GND.				
				2.If not used, just be floating.				
18	DCDC2	Al		DCDC2 feedback pin				
19、20	LX2	PIO		Inductor pin for DCDC2				
21	VIN2	PI		DCDC2 input source				
22、23	VIN3	PI		DCDC3 input source				
24、25	LX3	PIO		Inductor pin for DCDC3				
26	DCDC3	Al		DCDC3 feedback pin				
27	CLDO4/GPIO2	PO/GPIO	REG 2CH[2:0]	Output pin of CLDO4 or GPIO2 configured by REG 2CH				
28	CLDO3/GPIO1	PO/GPIO	REG 2BH[6:5]	Output pin of CLDO3 or GPIO1 or WAKEUP input pin				
20	/WAKEUP	ro/drio	KEG ZBIT[0.5]	configured by REG 2BH				
29	CLDO2	PO		Output pin of CLDO2				
30	CLDO1	PO		Output pin of CLDO1				
31	CLDOIN	PI		CLDO input source				
32	DC5SET	Al		Setting DCDC5 Output Voltage				
33	VIN5	PI		DCDC5 input source				
34	LX5	PIO		Inductor pin for DCDC5				
35	DCDC5	PI		DCDC5 feedback pin and CPUSLDO input source				
36	VCPUS	РО		Output pin of CPUSLDO				
37	GND	G		GND for internal analog circuit				

38	BLDO2	РО	Output pin of BLDO2			
39	BLDOIN	PI	BLDO input source			
40	BLDO4	PO	Output pin of BLDO4			
41	BLDO3	PO	Output pin of BLDO3			
42	BLDO1	PO	Output pin of BLDO1			
43	BLDO5	PO	Output pin of BLDO5			
44	DCDC6	Al	DCDC6 feedback pin			
45	LX6	PIO	Inductor pin for DCDC6			
46	VIN6	PI	DCDC6 input source			
47	VIN4	PI	DCDC4 input source			
48	LX4	PIO	Inductor pin for DCDC4			
49	DCDC4	Al	DCDC4 feedback pin			
50	ALDO1	PO	Output pin of ALDO1 and RTC input source			
51	ALDO2	PO	Output pin of ALDO2			
52	ALDO4	PO	Output pin of ALDO4			
EP	EP	PG	Exposed Pad, need to be connected to system ground			

6. Absolute Ratings

Table 6-1 Absolute ratings

SYMBOL	DESCRIPTION	VALUE	UNITS
ALDOIN/BLDOIN/CLDOIN			
/VIN1/VIN2/VIN3/VIN4/	Input Voltage	-0.3 ~ 7.5	V
VIN5/VIN6			
Та	Operating Temperature Range	-40~85	$^{\circ}$
T _J	Junction Temperature Range	-40 ~ 125	$^{\circ}$
Ts	Storage Temperature Range	-40 ~150	\mathbb{C}
T _{LEAD}	Maximum Soldering Temperature (at leads, 10sec)	300	$^{\circ}$
V _{ESD}	Maximum ESD stress voltage, Human Body Model	>2000	V

7. Electrical Characteristics

 V_{IN} =5V, T_A = 25 $^{\circ}$ C

SYMBOL	DESCRIPTION	CONDI	TIONS	MIN	ТҮР	MAX	UNITS
PMIC Unde	er Voltage						
V _{OFF}	PMIC Under Voltage Power off			2.6		3.0	V
Off Mode	Current						
I _{OFF}	OFF Mode Current	ALDOI	N=5V		30		μΑ
Logic				•			
V _{IL}	Logic Low Input Voltage				0.3		V
V _{IH}	Logic High Input Voltage				1.2		V
TWSI							
V _{CC}	Input Supply Voltage				3.3		V
ADDRESS	TWSI Slave Address (7 bits)				0x36	4	
f _{SCK}	Clock Operating Frequency				400	4	kHZ
t _f	Clock Data Fall Time	2.2Koh	m Pull High		60		ns
t _r	Clock Data Rise Time	2.2Koh	m Pull High	1	100		ns
DCDC	•	•	1	A			•
fosc	Oscillator Frequency	Defaul	£ 7 L.		3		MHz
DCDC1	8		741			•	
V _{IN1}	VIN1 Input Voltage	1		V _{OFF}		5.5	V
I _{VIN1}	Input Current	PFM N			50		μΑ
I _{DC1OUT}	Available Output Current	1001			2000		mA
V _{DC1OUT}	Output Voltage Range			1.5		3.4	V
V _{DC1_STEP}	Output Voltage Step				100		mV/step
		PFM M	lode	-30		+30	mV
V _{DC1_RIPPLE}	Output Voltage Ripple	PWM	Mode	-10		+10	mV
			V _{DC1OUT} <=1V	-20		+40	mV
		PFM	V _{DC1OUT} >1V	-2%		+4%	
$V_{\text{DC1_ACC}}$	Output Voltage Accuracy		V _{DC1OUT} <=1V	-30		+30	mV
		PWM	V _{DC1OUT} >1V	-3%		+3%	
V _{DC1_OVP}	Over Voltage Protection		ı		120%*		V
_					V _{DC1OUT}		
V _{DC1_UVP}	Under Voltage Protection				85%*		V
					V _{DC1OUT}		
DCDC2							
V _{IN2}	VIN2 Input Voltage			V _{OFF}		5.5	V
I _{VIN2}	Input Current	PFM Mode			E0.		μΑ
		I _{DC2OUT}	=0		50		
I _{DC2OUT}	Available Output Current				3500		mA
V _{DC2OUT}	Output Voltage Range			0.5		1.54	V

	T	T		T THUI	T	T	<u> </u>
V _{DC2_STEP}	Output Voltage Step		=0.5~1.2V		10		mV/step
		1	V _{DC2OUT} =1.22~1.54V		20		mV/step
V _{DC2_RIPPLE}	Output Voltage Ripple	PFM N		-30		+30	mV
	and a second	PWMI	Mode	-10		+10	mV
		PFM	V _{DC2OUT} <=1V	-20		+40	mV
V_{DC2_ACC}	Output Voltage Accuracy		V _{DC2OUT} >1V	-2%		+4%	
	,	PWM	V _{DC2OUT} <=1V	-30		+30	mV
			V _{DC2OUT} >1V	-3%		+3%	
V_{DC2_OVP}	Over Voltage Protection				130%*		V
.,					V _{DC2OUT}		.,
V_{DC2_UVP}	Under Voltage Protection				85%*		V
DCDC3					V _{DC2OUT}		
DCDC3	VIN2 Input Voltage	1		1,7		5.5	V
V _{IN3}	VIN3 Input Voltage	PFM M	lada	V _{OFF}		5.5	
I _{VIN3}	Input Current	I _{DC3OUT}			50	1	uA
I _{DC3OUT}	Available Output Current				3500		mA
V_{DC3OUT}	Output Voltage Range			0.5		1.54	V
	Outout Valtage Stage	V _{DC3OU1}	=0.5~1.2V		10		mV/step
V_{DC3_STEP}	Output Voltage Step	V _{DC3OUT} =1.22~1.54V			20		mV/step
V	Outrout Valta an Binala	PFM N	1ode	-30		+30	mV
V _{DC3_RIPPLE}	Output Voltage Ripple	PWM I	Mode	-10		+10	mV
	Output Voltage Accuracy	PFM	V _{DC3OUT} <=1V	-20		+40	mV
V		PFIVI	V _{DC3OUT} >1V	-2%		+4%	
V _{DC3_ACC}		PWM	V _{DC3OUT} <=1V	-30		+30	mV
		r vv ivi	V _{DC3OUT} >1V	-3%		+3%	
$V_{\text{DC3}_\text{OVP}}$	Over Voltage Protection				130%*		V
					V _{DC3OUT}		
V_{DC3_UVP}	Under Voltage Protection				85%*		V
					V _{DC3OUT}		
DCDC4	T	1					_
V _{IN4}	VIN4 Input Voltage			V _{OFF}		5.5	V
I _{VIN4}	Input Current	PFM M			50		uA
		I _{DC3OUT} =0					
I _{DC4OUT}	Available Output Current				2500		mA
V _{DC4OUT}	Output Voltage Range			0.5		1.54	V
V_{DC4_STEP}	Output Voltage Step	V _{DC4OU1}	=0.5~1.2V		10		mV/step
V DC4_STEP	Output voitage step	V _{DC4OUT} =1.22~1.54V			20		mV/step
	Output Voltage Biople	PFM N	PFM Mode			+30	mV
V _{DC4_RIPPLE}	Output Voltage Ripple	PWM I	Mode	-10		+10	mV
V _{DC4_ACC}	Output Voltage Accuracy	PFM	V _{DC4OUT} <=1V	-20		+40	mV

		<u> </u>	ı	1	T Tight	<u> </u>	1
			V _{DC4OUT} >1V	-2%		+4%	
		PWM	V _{DC4OUT} <=1V	-30		+30	mV
			V _{DC4OUT} >1V	-3%		+3%	
V_{DC4_OVP}	Over Voltage Protection				130%*		V
					V _{DC4OUT}		
V_{DC4_UVP}	Under Voltage Protection				85%*		V
					V _{DC4OUT}		
DCDC5	1 .				1		
V _{IN5}	VIN5 Input Voltage			V _{OFF}		5.5	V
I_{VIN5}	Input Current	PFM N	lode		50		uA
		I _{DC3OUT}	=0				
I _{DC5OUT}	Available Output Current				2500		mA
V_{DC5OUT}	Output Voltage Range			0.8		1.84	V
\ /	Output Valtage Chair	V _{DC5OUT}	=0.8~1.12V		10	4	mV/step
V_{DC5_STEP}	Output Voltage Step	V _{DC5OUT}	=1.14~1.84V		20	4	mV/step
		PFM N	lode	-30	46	+30	mV
V _{DC5_RIPPLE}	Output Voltage Ripple	PWM1	Mode	-10		+10	mV
			V _{DC5OUT} <=1V	-20		+40	mV
	Output Voltage Accuracy	PFM	V _{DC5OUT} >1V	-2%		+4%	
V_{DC5_ACC}			V _{DC5OUT} <=1V	-30		+30	mV
		PWM	V _{DC5OUT} >1V	-3%		+3%	
V _{DC5_OVP}	Over Voltage Protection	7			130%*		V
_					V _{DC5OUT}		
V _{DC5_UVP}	Under Voltage Protection	47			85%*		V
					V _{DC5OUT}		
DCDC6		•		•	•	•	•
V _{IN6}	VIN6 Input Voltage			V _{OFF}		5.5	V
I _{VIN6}	Input Current	PFM N	lode				uA
		I _{DC3OUT}	=0		50		
І _{рс6оит}	Available Output Current				2500		mA
V _{DC6OUT}	Output Voltage Range			0.5		3.4	V
V _{DC6_STEP}	Output Voltage Step				100		mV/step
<u> </u>		PFM N	lode	-30		+30	mV
$V_{\text{DC6_RIPPLE}}$	Output Voltage Ripple	PWM1		-10		+10	mV
		. ******	V _{DC6OUT} <=1V	-20		+40	mV
		PFM	V _{DC6OUT} <=1V V _{DC6OUT} >1V	-2%		+4%	1111V
$V_{\text{DC6_ACC}}$	Output Voltage Accuracy		V _{DC6OUT} <=1V	-30		+30	mV
		PWM	V _{DC6OUT} <=1V V _{DC6OUT} >1V	-3%		+3%	1111V
V	Over Voltage Protection		1	-3/0	130%*	13/0	V
V_{DC6_OVP}	Over Voltage Protection	V DC6OUT	V _{DC6OUT} <1.5V		V _{DC6OUT}		\ \ \
		V.	~1 5V	1	120%*		
	1	V _{DC6OUT}	~1.3V		120%		

				-	
Under Voltage Protection					V
Shaci voltage i lotection					
			• 00001		1
Output Voltage	Into vec=1mA	-1%	1.8	1%	V
Output voltage	IRIC_VCC=IIIIA	170	3.0	170	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Output Current			100		mA
		ı	1		
ALDOIN Input Voltage		V _{OFF}		5.5	V
Output Voltage Range	I _{ALDO1} =1mA	0.7		3.3	V
Output Voltage Step			100		mV/step
Output Voltage Accuracy			±1%		
Output Current			600	. 4	mA
Quiescent Current			120	10	μΑ
Power Supply Rejection Ratio	V _{in} =3.7V, I _{ALDO1} =10mA, 1KHz		70		dB
Output Noise,0-80KHz			40		μV_{RMS}
					1
Output Voltage Range	I _{ALDO2} =1mA	0.7		3.3	V
Output Voltage Step			100		mV/step
Output Voltage Accuracy			±1%		
Output Current	/		300		mA
Quiescent Current	/		70		μΑ
Power Supply Rejection Ratio	V _{in} =3.7V, I _{ALDO2} =10mA, 1KHz		70		dB
Output Noise,0-80KHz			40		μV _{RMS}
	1	1	1	1	1
Output Voltage Range	I _{ALDO3} =1mA	0.7		3.3	V
Output Voltage Step			100		mV/step
Output Voltage Accuracy			±1%		
Output Current			200		mA
Quiescent Current			70		μΑ
Power Supply Rejection Ratio	V _{in} =3.7V, I _{ALDO3} =10mA, 1KHz		70		dB
+		1	40		μV _{RMS}
Output Noise,0-80KHz		1			1
Output Noise,0-80KHz					•
Output Noise,0-80KHz Output Voltage Range	I _{ALDO4} =1mA	0.7		3.3	V
	I _{ALDO4} =1mA	0.7	100	3.3	V mV/step
	ALDOIN Input Voltage Output Voltage Range Output Voltage Step Output Voltage Accuracy Output Current Quiescent Current Power Supply Rejection Ratio Output Noise,0-80KHz Output Voltage Range Output Voltage Step Output Voltage Accuracy Output Current Quiescent Current Power Supply Rejection Ratio Output Voltage Accuracy Output Current Output Noise,0-80KHz Output Noise,0-80KHz Output Voltage Range Output Voltage Range Output Voltage Range Output Voltage Accuracy Output Voltage Accuracy Output Current Quiescent Current	Under Voltage Protection Output Voltage	Under Voltage Protection Output Voltage Output Current ALDOIN Input Voltage Output Voltage Range Output Voltage Step Output Voltage Accuracy Output Current Quiescent Current Power Supply Rejection Ratio Output Voltage Range I ALDOI=1mA O.7 Output Noise,0-80KHz Output Noise,0-80KHz Output Voltage Range Output Voltage Accuracy Output Current Quiescent Current Power Supply Rejection Ratio Vin=3.7V, IALDOI=10mA, 1KHz Output Noise,0-80KHz Output Voltage Range Output Voltage Accuracy Output Voltage Accuracy Output Voltage Accuracy Output Voltage Range Output Voltage Accuracy Output Current Quiescent Current Power Supply Rejection Ratio Vin=3.7V, IALDOI=10mA,	Voccour Voccour S5%* Voccour	Under Voltage Protection

I _{ALDO4}	Output Current			300		mA
IQ	Quiescent Current			70		μΑ
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{ALDO4} =10mA, 1KHz		70		dB
e _N	Output Noise,0-80KHz			40		μV_{RMS}
ALDO5		•	•			
V _{ALDO5}	Output Voltage Range	I _{ALDO5} =1mA	0.7		3.3	V
V _{ALDO5_STEP}	Output Voltage Step			100		mV/step
V _{ALDO5_ACC}	Output Voltage Accuracy			±1%		
I ALDO5	Output Current			300		mA
IQ	Quiescent Current			70		μΑ
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{ALDO5} =10mA, 1KHz		70		dB
e _N	Output Noise,0-80KHz			40		μV_{RMS}
BLDO			•		W	4)
V _{BLDOIN}	BLDOIN Input Voltage		V _{OFF}	416	5.5	V
BLDO1						•
V _{BLDO1}	Output Voltage Range	I _{BLDO1} =1mA	0.7	1	3.3	V
V _{BLDO1_STEP}	Output Voltage Step			100		mV/step
V _{BLDO1_ACC}	Output Voltage Accuracy	1/2		±1%		
I _{BLDO1}	Output Current			300		mA
Iq	Quiescent Current			70		μΑ
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{BLDO1} =10mA, 1KHz		70		dB
e _N	Output Noise,0-80KHz			40		μV_{RMS}
BLDO2		•	•		•	
V _{BLDO2}	Output Voltage Range	I _{BLDO2} =1mA	0.7		3.3	V
V _{BLDO2_STEP}	Output Voltage Step			100		mV/step
V _{BLDO2_ACC}	Output Voltage Accuracy			±1%		
I BLDO2	Output Current			500		mA
IQ	Quiescent Current			80		μΑ
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{BLDO2} =10mA, 1KHz		70		dB
e _N	Output Noise,0-80KHz			40		μV_{RMS}
BLDO3	•	•	•	•		
V _{BLDO3}	Output Voltage Range	I _{BLDO3} =1mA	0.7		3.3	V
V _{BLDO3_STEP}	Output Voltage Step			100		mV/step
V _{BLDO3_ACC}	Output Voltage Accuracy			±1%		
I _{BLDO3}	Output Current			300		mA

	1	- I	T	1		1
IQ	Quiescent Current			70		μΑ
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{BLDO3} =10mA, 1KHz		70		dB
e _N	Output Noise,0-80KHz			40		μV_{RMS}
BLDO4	1		•	1		•
V _{BLDO4}	Output Voltage Range	I _{BLDO4} =1mA	0.7		3.3	V
V _{BLDO4_STEP}	Output Voltage Step			100		mV/step
V _{BLDO4_ACC}	Output Voltage Accuracy			±1%		
I _{BLDO4}	Output Current			400		mA
ΙQ	Quiescent Current			70		μΑ
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{BLDO4} =10mA, 1KHz		70		dB
e _N	Output Noise,0-80KHz			40		μV _{RMS}
BLDO5			•		44	C
V _{BLDO5}	Output Voltage Range	I _{BLDO5} =1mA	0.7		3.3	V
V _{BLDO5_STEP}	Output Voltage Step			100		mV/step
V _{BLDO5_ACC}	Output Voltage Accuracy			±1%		
I BLDO5	Output Current			600		mA
ΙQ	Quiescent Current			90		μΑ
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{BLDO5} =10mA,		70		dB
		1KHz				
e _N	Output Noise,0-80KHz			40		μV_{RMS}
CLDO						
V _{CLDOIN}	CLDOIN Input Voltage	<i>y</i>	V _{OFF}		5.5	V
CLDO1				_		
V _{CLDO1}	Output Voltage Range	I _{CLDO1} =1mA	0.7		3.3	V
V _{CLDO1_STEP}	Output Voltage Step			100		mV/step
V _{CLDO1_ACC}	Output Voltage Accuracy			±1%		
I _{CLDO1}	Output Current			200		mA
IQ	Quiescent Current			70		μΑ
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{CLDO1} =10mA, 1KHz		70		dB
e _N	Output Noise,0-80KHz			40		μV _{RMS}
CLDO2						
V _{CLDO2}	Output Voltage Range	I _{CLDO2} =1mA	0.7		3.3	V
V _{CLDO2_STEP}	Output Voltage Step			100		mV/step
V _{CLDO2_ACC}	Output Voltage Accuracy			±1%		
I CLDO2	Output Current			200		mA
IQ	Quiescent Current			70		μΑ

					<u> </u>	
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{CLDO2} =10mA, 1KHz		70		dB
e _N	Output Noise,0-80KHz			40		μV_{RMS}
CLDO3						
V _{CLDO3}	Output Voltage Range	I _{CLDO3} =1mA	0.7		3.3	V
V _{CLDO3_STEP}	Output Voltage Step			100		mV/step
V_{CLDO3_ACC}	Output Voltage Accuracy			±1%		
I _{CLDO3}	Output Current			300		mA
IQ	Quiescent Current			70		μΑ
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{CLDO3} =10mA, 1KHz		70		dB
e _N	Output Noise,0-80KHz			40		μV_{RMS}
CLDO4						
V _{CLDO4}	Output Voltage Range	I _{CLDO4} =1mA	0.7		4.2	V
V _{CLDO4_STEP}	Output Voltage Step			100	NY	mV/step
V _{CLDO4_ACC}	Output Voltage Accuracy			±1%		
I _{CLDO4}	Output Current			200		mA
IQ	Quiescent Current			70		μΑ
PSRR	Power Supply Rejection Ratio	V _{in} =3.7V, I _{CLDO4} =10mA, 1KHz		70		dB
e _N	Output Noise,0-80KHz			40		μV_{RMS}
CPUSLDO			,	•	1	•
		As reference of V _{DDR}		V _{DDR} /2		
V _{CPUS}	Output Voltage	As General Purpose LDO, I _{CPUS} =1mA	0.7		1.4	V
V _{CPUS_STEP}	Output Voltage Step	As General Purpose		50		mV/step
V _{CPUS_ACC}	Output Voltage Accuracy			±1%		
		As reference of V _{DDR}		30		mA
I _{CPUS}	Output Current	As General Purpose		200		mA
Iq	Quiescent Current	As General Purpose		70		μΑ
PSRR	Power Supply Rejection Ratio	V _{DC5OUT} =1.84V, I _{CPUS} =10mA, 1KHz		60		dB
e _N	Output Noise,0-80KHz			40		μV _{RMS}
SWOUT	1	•	1	1	1	I
R _{SWOUT}	Internal Ideal Resistance	PIN to PIN		100		mΩ
	1				1	

8. Block Diagram

Figure 8-1. Block Diagram

9. Control and Operation

When AXP15060 is powered on, SCK/SDA pin of TWSI (two wire serial interface) will be pulled up to IO Power and then Host can adjust and monitor AXP15060 with rich feedback information.

Remarks: "Host" here refers to system processor.

9.1 Power On/Off & Reset

PMIC has power off and power on status. When at off state, all voltage outputs are turned off except RTCLDO and VREF. At this time, the total power consumption is typically 30uA.

Power on-off Key (POK)

EN/PWRON pin can be configured as PWRON pin or EN pin by customization. The default is PWRON pin. The Power on-off Key (POK) can be connected between PWRON pin and GND of AXP15060. AXP15060 can automatically identify the four status(Long-press ,Short-press ,Negative edge, Positive edge) and then correspond respectively.

Power on

- 1. When EN/PWRON pin is configured as PWRON pin, power on sources include:
- (1).POK. AXP15060 can be powered on by pressing and holding POK for a period of time that longer than "ONLEVEL".
- (2).ALDOINGOOD low go high. The function can be configured by customization.
- (3).IRQ Low level. When REG1FH[7]=1 and IRQ pin is low level for more than 16ms, AXP15060 will be powered on
- 2.When EN/PWRON pin is used as EN pin, AXP15060 can be powered on by EN pin from low go high(0.6V).

After power on, DC-DC and LDO will be soft booted in preset timing sequence.

Power Off

- 1.When EN/PWRON pin is configured as PWRON pin, power off sources include:
- (1).POK. AXP15060 can be powered off by pressing and holding POK for a period of time that longer than "OFFLEVEL". The function can be configured by REG36H[3] and REG36H[2] decides whether the PMIC auto turns on or not when it shuts down after OFFLEVEL POK.
- (2).Write "1" to REG32H[7].
- (3).ALDOINGOOD high go low. When ALDOIN<VOFF or ALDOIN>5.8V, AXP15060 will be powered off. The default of VOFF is 2.6V which can be configured by REG1FH[5:3].
- (4). The output voltage of DCDC is 15% lower than the setting value. The function can be configured by REG1EH[6:1].
- (5). The output voltage of DCDC is much larger than their setting. The function can be configured by REG1EH[0].
- (6). Die temperature is over the warning level2(125 $^{\circ}$ C) $_{\circ}$ The function can be configured by REG32H[1].

Sleep and wakeup

When the running system needs to enter Sleep mode, Maybe one or several power outputs should be disabled or changed to other voltage. Wakeup can be initiated by the following sources:

- 1.Software wakeup (REG31H[5] is set to 1)
- 2.POK negative edge IRQ(EN/PWRON pin is configured as PWRON pin and REG41H[3] is set to 1)
- 3.POK long press IRQ(EN/PWRON pin is configured as PWRON pin and REG41H[0] is set to 1)
- 4.IRQ pin wakeup(REG1FH[7]=1 and IRQ pin is low level for more than 16ms)
- 5.Wakeup pin input(REG2BH[6:5]=11 and the active level is detected; the active level can be configured by REG2BH[7])

These sources will make the all PMIC power outputs resume to the default voltage or the setting voltage, which is configured by REG31H[6], and all shutdown powers will resume by the startup sequence.

See the control process under sleep and wakeup modes as below:

Reset

The PMIC has system reset and power on reset.

System reset

System reset means the registers will be reset when PMIC is powered on. When at system reset state, all voltage

outputs are turned off except RTCLDO and VREF. There are two ways of system reset.

(1).PWROK drive low.

The PWROK pin can be used as the reset signal of application system. During AXP15060 startup, PWROK outputs low level, which will be pulled up to startup the system after output voltage reaches the regulated value.

When application system works normally, If the PWROK pin is driven low by external key or other reasons, the PMIC will be restarted. The function can be configured by REG32H[4].

(2).Write "1" to REG32H[6] to restart the PMIC.

Power on reset

Power on reset means the registers will be reset when PMIC is powered up. When at power on reset state, all voltage outputs are turned off including RTCLDO and VREF.

9.2 Multi-Power Outputs

The following table has listed the multi-power outputs and their functions of AXP15060.

Outrout Both	Time	Default Valtage	Startup	A sister of the sister of	Load
Output Path	Туре	Default Voltage	Sequence	Application Suggestion	Capacity(Max)
DCDC1	BUCK	3.3V	2	IO/USB	2000mA
DCDC2	BUCK	0.9V	2	СРИ	3500mA
DCDC3	BUCK	0.9V	1	GPU	3500mA
DCDC4	BUCK	0.9V	1	SYS	2000mA
DCDC5	BUCK	1.1V/DC5SET	1	DDR	2000mA
DCDC6	виск	OFF	OFF	LDO	2000mA
ALDO1	LDO	OFF	OFF	N/A	600mA
ALDO2	LDO	1.8V	2	N/A	300mA
ALDO3	LDO	1.8V	2	N/A	200mA
ALDO4	LDO	3.3V	2	N/A	300mA
ALDO5	LDO	2.5V	1	N/A	300mA
BLDO1	LDO	OFF	OFF	N/A	300mA
BLDO2	LDO	OFF	OFF	N/A	500mA
BLDO3	LDO	OFF	OFF	N/A	300mA
BLDO4	LDO	OFF	OFF	N/A	400mA
BLDO5	LDO	1.8V	2	N/A	600mA
CLDO1	LDO	OFF	OFF	N/A	200mA
CLDO2	LDO	3.3V	2	N/A	200mA
CLDO3	LDO	OFF	OFF	N/A	300mA
CLDO4	LDO	OFF	OFF	N/A	200mA
VCPUS	LDO	0.9V	1	CPUs/Reference of DDR	200mA
RTC-LDO	LDO	1.8V	Always on	RTC	100mA
DC1SW	Switch	OFF	OFF	N/A	1000mA

AXP15060 includes six synchronous step-down DCDCs, sixteen LDOs and one switch. The work frequency of DC-DC is 3MHz. External small inductors and capacitors can be connected. In addition, 6-ch DCDCs can be set in fixed PWM mode or auto mode (automatically switchable according to the load). See register REG1BH.

DCDC2/3/4/5 has DVM enable option. In DVM mode, when there is a change in the output voltage, DCDC will change to the new targeted value step by step. It supports two kinds of DVM slope:1step/15.625us and 1step/31.250us. The slope can be chosen by REG1AH[5].

DCDC2 and DCDC3 as well as DCDC4 and DCDC6 can be configured as dual phase DCDC to meet the high current requirement. When DCDC2/3 and DCDC4/6 are working as dual phase DCDC, the parameter setting is only controlled by the registers of DCDC2 and DCDC4.

DCDC5 voltage configuration is depended on the DC5SET pin and customization. When the DC5SET pin is connected to 1.8V, the default output is 1.5V. When a resistor(Rs) is connected between the DC5SET pin and GND, the default output is 1.1V. When DC5SET pin is connected to GND, the default output is 1.2V. When the DC5SET pin is floating, the default output is depended on customization.

DC5SET	GND	1.8V	Rs (20K~200K)	floating
Default voltage of DCDC5	1.2V	1.5V	1.1V	Customization, default is 1.36V

AXP15060 can configure the default voltage, the startup sequence and other control of all power output.

Startup sequence: The startup sequence has eight levels from 0 to 7. When the sequence is 0, it means the output is booted at the first step. When the sequence code is 1, it means the output is booted at the second step. When the sequence is 7, it means the output is not booted.

Default voltage setting: The default voltage of each channel can be set to each step within the output range.

9.3 Multi-Function Pin Description

EN/PWRON

EN/PWRON can be configured as EN pin or PWRON PIN by customization. When it is configured as PWRON pin, a Power on-off Key (POK) can be connected between PWRON pin and GND. When it is configured as EN pin, it can be used for dial switch.

CLDO4/GPIO2

It can be configured as LDO or GPIO. Please refer to REG2CH[2:0] Instruction for details.

CLDO3/GPIO1/WAKEUP

It can be configured as LDO or GPIO or WAKEUP pin. Please refer to REG2BH[6:5] Instruction for details.

9.4 Interrupt

PMIC Interrupt Controller monitors the trigger events such as over voltage, PWRON pin signal, over temperature and so on. When the events occur and their IRQ enable bits are set to 1 (Refer to registers REG40H and REG41H), corresponding IRQ status will be set to 1 (Refer to registers REG48H and REG49H), and IRQ pin (open drain) will be pulled down. When host detects triggered IRQ signal, host will scan through the IRQ Status registers and respond accordingly. Meanwhile, Host will reset the IRQ status by writing "1" to status bit.

The input edge IRQ of GPIO will only function when CLDO3/GPIO1/WAKEUP and CLDO4/GPIO2 are set as GPIO.

Bit	IRQ	DESCRIPTION
REG48_[7]	IRQ1	DCDC6 under voltage
REG48_[6]	IRQ2	DCDC5 under voltage
REG48_[5]	IRQ3	DCDC4 under voltage
REG48_[4]	IRQ4	DCDC3 under voltage
REG48_[3]	IRQ5	DCDC2 under voltage
REG48_[2]	IRQ6	DCDC1 under voltage
REG48_[1]	IRQ7	IC temperature over level2
REG48_[0]	IRQ8	IC temperature over level1
REG49_[5]	IRQ9	GPIO2 IRQ
REG49_[4]	IRQ10	POK positive edge
REG49_[3]	IRQ11	POK negative edge
REG49_[2]	IRQ12	GPIO1 IRQ
REG49_[1]	IRQ13	POK short press
REG49_[0]	IRQ14	POK long press

10. Register

10.1 Register List

Address	Description	R/W	Default
00	Power ON Source	R	
04-07	4 data buffers	R/W	00H
10	on-off control1	R/W	37H
11	on-off control2	R/W	62H
12	on-off control3	R/W	18H
13	DCDC1 Voltage control	R/W	12H
14	DCDC2 Voltage control	R/W	3CH
15	DCDC3 Voltage control	R/W	3CH
16	DCDC4 Voltage control	R/W	00H
17	DCDC5 Voltage control	R/W	2CH
18	DCDC6 Voltage control	R/W	06H
19	ALDO1 Voltage control	R/W	00H
1A	DCDC mode control1	R/W	00H
1B	DCDC mode control2	R/W	00H
1E	output monitor control & off discharge	R/W	81H
1F	IRQ & PWROK & Voff setting	R/W	07H
20	ALDO2 Voltage control	R/W	17H
21	ALDO3 Voltage control	R/W	00H
22	ALDO4 Voltage control	R/W	00H
23	ALDO5 Voltage control	R/W	00Н
24	BLDO1 Voltage control	R/W	ОВН
25	BLDO2 Voltage control	R/W	ОВН
26	BLDO3 Voltage control	R/W	00H
27	BLDO4 Voltage control	R/W	00H
28	BLDO5 Voltage control	R/W	00Н
29	CLDO1 Voltage control	R/W	00H
2A	CLDO2 Voltage control	R/W	04H
2B	CLDO3 voltage control & CLDO3/GPIO1/Wakeup control	R/W	1AH
2C	CLDO4/GPIO2 control	R/W	00H
2D	CLDO4 Voltage control	R/W	00H
2E	CPUSLDO Voltage control	R/W	00H
31	power wakeup CTRL	R/W	00H
32	power disable & power down sequence	R/W	24H
36	POK setting	R/W	59H
40	IRQ Enable1	R/W	03H

Address	Description	R/W	Default
41	IRQ Enable2	R/W	03H
48	IRQ Status1	R/W	00H
49	IRQ Status2	R/W	00H

10.2 Register Description

REG 00: Power ON source indication

Reset: system reset

Bit	Description	R/W
7-6	Reserved	R
5	Startup by ALDOINGOOD from L go H when EN is High	R
4	Startup by EN from L go H when ALDOINGOOD is High	R
3	Startup by IRQ pin	R
2	Startup by PWRON Press	R
1	Reserved	R
0	Startup by ALDOIN from L go H	R

REG 04-07: 4 Data Buffers

Default: 00H

Reset: Power on reset

REG 10: Output power on-off control 1

Default: 37H

Reset: system reset

Bit	Description		R/W	Default
7-6	Reserved		RW	0
5	DCDC-6 on-off control	0-off; 1-on	RW	1
4	DCDC-5 on-off control	0-off; 1-on	RW	1
3	DCDC-4 on-off control	0-off; 1-on	RW	0
2	DCDC-3 on-off control	0-off; 1-on	RW	1
1	DCDC-2 on-off control	0-off; 1-on	RW	1
0	DCDC-1 on-off control	0-off; 1-on	RW	1

REG 11: Output power on-off control 2

Default: 62H

Bit	Description		R/W	Default
7	BLDO3 on-off control	0-off; 1-on	RW	0
6	BLDO2 on-off control	0-off; 1-on	RW	1
5	BLDO1 on-off control	0-off; 1-on	RW	1
4	ALDO5 on-off control	0-off; 1-on	RW	0

3	ALDO4 on-off control	0-off; 1-on	RW	0
2	ALDO3 on-off control	0-off; 1-on	RW	0
1	ALDO2 on-off control	0-off; 1-on	RW	1
0	ALDO1 on-off control	0-off; 1-on	RW	0

REG 12: Output power on-off control 3

Default: 18H

Reset: system reset

Bit	Description		R/W	Default
7	Switch on-off control	0-off; 1-on	RW	0
6	CPUSLDO on-off control	0-off; 1-on	RW	0
5	CLDO4 on-off control	0-off; 1-on	RW	0
4	CLDO3 on-off control	0-off; 1-on	RW	1
3	CLDO2 on-off control	0-off; 1-on	RW	1
2	CLDO1 on-off control	0-off; 1-on	RW	0
1	BLDO5 on-off control	0-off; 1-on	RW	0
0	BLDO4 on-off control	0-off; 1-on	RW	0

REG 13: DC/DC 1 voltage control

Default: 12H

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	DCDC-1 voltage setting bit4-0, default is 3.3V:	RW	10010
	1.5~3.4V,100mV/step,20steps		

REG 14: DC/DC 2 voltage control

Default: 3CH

Reset: system reset

Bit	Description	R/W	Default
7	Reserved	RW	0
6-0	DCDC-2 voltage setting bit6-0, default is 1.1V:	RW	0111100
	0.5~1.2V,10mV/step,71steps		
	1.22~1.54V,20mV/step,17steps		

REG 15: DC/DC 3 voltage control

Default: 3CH

	•		
Bit	Description	R/W	Default
7	Reserved	RW	0
6-0	DCDC-3 voltage setting bit6-0, default is 1.1V:	RW	0111100
	0.5~1.2V,10mV/step,71steps		
	1.22~1.54V,20mV/step,17steps		

REG 16: DC/DC 4 voltage control

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
7	Reserved	RW	0
6-0	DCDC-4 voltage setting bit6-0, default is 0.5V:	RW	0000000
	0.5~1.2V, 10mV/step, 71steps		
	1.22~1.54V, 20mV/step, 17steps		

REG 17: DC/DC 5 voltage control

Default: 2CH

Reset: system reset

Bit	Description		R/W	Default
7	Reserved		RW	0
6-0	DCDC-5 voltage setting bit6-0, default is 1.36V:		RW	0101100
	0.8~1.12V,10mV/step,33steps	. 4		
	1.14~1.84V,20mV/step,36steps	411		

REG 18: DC/DC 6 voltage control

Default: 06H

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	DCDC-6 voltage setting bit4-0, default is 1.1V:	RW	00110
	0.5~3.4V,100mV/step,30steps		

REG 19: ALDO1 voltage control

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	ALDO1 voltage setting bit4-0, default is 0.7V:	RW	00000
	0.7~3.3V, 100mV/step, 27steps		

REG 1A: DCDC mode control 1

Default: 00H

Bit	Description		R/W	Default
7	DCDC 4&6 poly-phase control		RW	0
	0: no poly-phase; 1: poly-phase			
6	DCDC 2&3 poly-phase control		RW	0
	0: no poly-phase; 1: poly-phase			
5	DCDC DVM voltage ramp control	0: 1step/15.625us	RW	0

		1: 1step/31.250us		
4	Reserved		RW	0
3	DCDC-5 DVM on-off control	0: disable	RW	0
2	DCDC-4 DVM on-off control	1: enable	RW	0
1	DCDC-3 DVM on-off control		RW	0
0	DCDC-2 DVM on-off control		RW	0

REG 1B: DCDC mode control 2

Default: 00H

Reset: system reset

Bit	Description		R/W	Default
7-6	Reserved		RW	0
5	DCDC-6 PFM/PWM control	0: auto switch	RW	0
4	DCDC-5 PFM/PWM control	1: always PWM	RW	0
3	DCDC-4 PFM/PWM control		RW	0
2	DCDC-3 PFM/PWM control		RW	0-
1	DCDC-2 PFM/PWM control		RW	0
0	DCDC-1 PFM/PWM control		RW	0

REG 1E: Output monitor control & Discharge

Default: 81H

Reset: Power on reset

Bit	Description		R/W	Default
7	Internal off-Discharge ena	able for Buck & LDO & SWITCH	RW	1
	0: disable	1: enable		
6	DCDC-6 85% low voltage	turn off PMIC function	RW	0
	0: disable	1: enable		
5	DCDC-5 85% low voltage	turn off PMIC function	RW	0
- "	0: disable	1: enable		
4	DCDC-4 85% low voltage	turn off PMIC function	RW	0
	0: disable	1: enable		
3	DCDC-3 85% low voltage	turn off PMIC function	RW	0
	0: disable	1: enable		
2	DCDC-2 85% low voltage	turn off PMIC function	RW	0
	0: disable	1: enable		
1	DCDC-1 85% low voltage	turn off PMIC function	RW	0
	0: disable	1: enable		
0	If voltage of DCDC is over	120%(130%) than their setting, the PMIC shutdown	RW	1
	or not. (OVP)			
	0: not shutdown	1: shutdown		

REG 1F: IRQ & PWROK & VOFF setting

Default: 07H

Reset: Power on reset

Bit	Description	R/W	Default
7	IRQ pin turn on or wakeup AXP15060 function enable.	RW	0
	0: disable 1: enable		
6	Reserved	RW	0
5-3	VOFF setting bit2-0:	RW	000
	2.6~3.3V, 0.1V/step, 8steps		
2	Enable for 4ms delay when PMIC power off normally	RW	1
	0: disable 1: enable		
1-0	Delay time between PWROK signal and power good time	RW	11
	00: 8ms; 01: 16ms; 10: 32ms; 11: 64ms		

REG 20: ALDO2 voltage control

Default: 17H

Reset: system reset

Bit	Description		R/W	Default
7-5	Reserved		RW	0
4-0	ALDO2 voltage setting bit4-0, default is 3.0V:		RW	10111
	0.7~3.3V,100mV/step,27steps	1 MAW		

REG 21: ALDO3 voltage control

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	ALDO3 voltage setting bit4-0, default is 0.7V:	RW	00000
	0.7~3.3V,100mV/step,27steps		

REG 22: ALDO4 voltage control

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	ALDO4 voltage setting bit4-0, default is 0.7V:	RW	00000
	0.7~3.3V,100mV/step,27steps		

REG 23: ALDO5 voltage control

Default: 00H

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	ALDO5 voltage setting bit4-0, default is 0.7V:	RW	00000
	0.7~3.3V, 100mV/step, 27steps		

REG 24: BLDO1 voltage control

Default: OBH

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	BLDO1 voltage setting bit4-0, default is 1.8V:	RW	01011
	0.7~3.3V, 100mV/step, 27steps		

REG 25: BLDO2 voltage control

Default: OBH

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	BLDO2 voltage setting bit4-0, default is 1.8V:	RW	01011
	0.7~3.3V,100mV/step,27steps	~4	4

	0.7~3.3V,100mV/step,27steps	-11		
REG 26	REG 26: BLDO3 voltage control			
Default	: 00H			
Reset:	system reset			
Bit	Description	R/W	Default	
7-5	Reserved	RW	0	
4-0	BLDO3 voltage setting bit4-0, default is 0.7V:	RW	00000	
	0.7~3.3V,100mV/step,27steps			

REG 27: BLDO4 voltage control

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	BLDO4 voltage setting bit4-0, default is 0.7V:	RW	00000
	0.7~3.3V,100mV/step,27steps		

REG 28: BLDO5 voltage control

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	BLDO5 voltage setting bit4-0, default is 0.7V:	RW	00000
	0.7~3.3V, 100mV/step, 27steps		

REG 29: CLDO1 voltage control

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	CLDO1 voltage setting bit4-0, default is 0.7V:	RW	00000
	0.7~3.3V, 100mV/step, 27steps		

REG 2A: CLDO2 voltage control

Default: 04H

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	0
4-0	CLDO2 voltage setting bit4-0, default is 1.1V:	RW	00100
	0.7~3.3V,100mV/step,27steps		

REG 2B: CLDO3 voltage control & CLDO3 /GPIO1/Wakeup control

Default: 1AH

Reset: system reset

Bit	Description	R/W	Default
7	When REG2B[6:5]= 11, the active level:	RW	0
	0: low active		
	1: high active		
6-5	CLDO3/GPIO1/Wakeup pin function control:	RW	00
	00: CLDO3		
	01: GPIO1, Output low		
	10: GPIO1, Output high, high level set by REG2B[4:0],1.25V~3.3V		
	11: Wakeup, Input, threshold voltage is 1.2V		
4-0	CLDO3 voltage setting(GPIO1 high level) bit4-0, default is 3.3V:	RW	11010
	0.7~3.3V, 100mV/step, 27steps		

REG 2C: CLDO4/GPIO2

Default: 00H

Reset: bit[2] power on reset, others system reset

Bit	Description	R/W	Default
7-4	Reserved	RW	0
3	When REG2C[2:0]=011, the GPIO2 input edge trigger IRQ setting	RW	0
	0: the negative edge		
	1: high positive edge		
2-0	CLDO4/GPIO2 pin function control:	RW	000
	000: CLDO4		
	001: GPIO2, Output low		
	010: GPIO2, Output high, high level set by REG2D[5:0], 1.25V~3.3V		
	011: GPIO2, Input, threshold voltage is 1.2V		
	100~101: Reserved		
	110~111: floating		

REG 2D: CLDO4 voltage control

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
7-6	Reserved	RW	0
5-0	CLDO4 voltage setting (GPIO2 high level) bit5-0, default is 0.7V:	RW	000000
	0.7~4.2V, 100mV/step, 36steps		

REG 2E: CPUSLDO voltage control

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
7-4	Reserved	RW	0
3-0	CPUSLDO voltage setting bit3-0, default is 0.7V:	RW	0000
	0.7~1.4V, 50mV/step, 15steps;	~40	
	Vddr/2, 0b'1111.		

REG 31: Power wakeup CTRL

Default: 00H

Reset: bit[3] is System reset, the others is Power on reset

Bit	Description	R/W	Default
7	PWROK drive low or not when Power wake up and REG31[3]=1.	RW	0
	0: not drive low 1: drive low in wake up period		
6	Voltage recovery control when AXP15060 wakeup	RW	0
	0: recovery to the default		
	1: Do nothing to the voltage		
5	Soft Power wakeup, write 1 to this bit, the output power will be wake up, and	RW	0
	this bit will clear itself		
4	Control bit for IRQ output and wake up trigger when reg31[3] is 1	RW	0
	0 : IRQ pin is masked and IRQ can wake up AXP15060		
	1: IRQ pin is normal and IRQ can not wake up AXP15060		
3	Enable bit for the function that output power be waked up by REG31_[5] \	RW	0
	POKNIRQ、POKLIRQ、or IRQ pin is Low.		
	0: Wakeup function Off		
	1: Wakeup function On		
	It self-clear after wakeup		
2-0	Reserved	RW	0

REG 32: Power disable & Power down sequence

Default: 24H

Reset: bit [7:6] is System reset, the others is Power on reset

Bit	Description	R/W	Default
7	Power disable control. Write 1 to this bit will power off the PMIC, and this bit	RW	0

	will clear itself			
6	Host restart the PMIC and cle	RW	0	
5	Enable for PMIC to monitor	the status of PWROK pin to judge whether PMIC	RW	1
	starts up normally			
	0: disable 1	1: enable		
4	Enable for restart the PMIC b	by PWROK drive low	RW	0
	0: disable 1	1: enable		
3	Output power down sequence	ce control	RW	0
	0: at the same time			
	1: the reverse of the start up	sequence		
2	Die temperature detect enab	ole	RW	1
	0 : disable 1	: enable		
1	The PMIC shut down or not v	when die temperature is over the warning level 2	RW	0
	0: not shutdown 1	: shutdown		
0	Enable for 16s POK shut the PMIC		RW	0
	0: disable	1: enable	-11	7

	0: disable	1: enab	le		~4		
Default:	REG 36: POK setting Default: 59H Reset: bit3 is System reset, the others is Power on reset						
Bit	Description	@			R/W	Default	
7-6	ONLEVEL setting				RW	01	
	00: 128ms	01: 1s	10: 2s	11: 3s			
5-4	IRQLEVEL setting				RW	01	
	00: 1s	01: 1.5s	10: 2s	11: 2.5s			
3	Enable bit for the f	unction which w	vill shut down the I	PMIC when POK is larger	RW	1	
	than OFFLEVEL						
	0: disable	1: enable	2				
2	The PMIC auto turn	on or not when	it shut down after	OFFLEVEL POK	RW	0	
	0: not turn on	1: auto 1	turn on				
1-0	OFFLEVEL setting				RW	01	
	00: 4s	01: 6s	10: 8s	11: 10s			

REG 40: IRQ Enable1

Default: 03H

Bit	Description	R/W	Default
7	Voltage of DCDC-6 is under 85% of setting IRQ enable	RW	0
6	Voltage of DCDC-5 is under 85% of setting IRQ enable	RW	0
5	Voltage of DCDC-4 is under 85% of setting IRQ enable	RW	0
4	Voltage of DCDC-3 is under 85% of setting IRQ enable	RW	0
3	Voltage of DCDC-2 is under 85% of setting IRQ enable	RW	0
2	Voltage of DCDC-1 is under 85% of setting IRQ enable	RW	0

1	Die temperature is over the warning level 2 IRQ enable	RW	1
0	Die temperature is over the warning level 1 IRQ enable	RW	1

REG 41: IRQ Enable2

Default: 03H

Reset: System reset

Bit	Description	R/W	Default
7-6	Reserved	RW	0
5	GPIO2 IRQ enable	RW	0
4	POKPIRQ enable	RW	0
3	POKNIRQ enable	RW	0
2	GPIO1 IRQ enable	RW	0
1	POKSIRQ enable	RW	1
0	POKLIRQ enable	RW	1

0	POKLIRQ enable	RW	1
Default:	IRQ Status1 00H System reset	er	5
Bit	Description	R/W	Default
7	Voltage of DCDC-6 is under 85% of setting, write 1 to this bit or the output rise to normal will clear it	RW	0
6	Voltage of DCDC-5 is under 85% of setting, write 1 to this bit or the output rise to normal will clear it	RW	0
5	Voltage of DCDC-4 is under 85% of setting, write 1 to this bit or the output rise to normal will clear it	RW	0
4	Voltage of DCDC-3 is under 85% of setting, write 1 to this bit or the output rise to normal will clear it	RW	0
3	Voltage of DCDC-2 is under 85% of setting, write 1 to this bit or the output rise to normal will clear it	RW	0
2	Voltage of DCDC-1 is under 85% of setting, write 1 to this bit or the output rise to normal will clear it	RW	0
1	Die temperature is over the warning level 2 Write 1 to it or temperature drop to level 2 will clear it	RW	0
0	Die temperature is over the warning level 1 Write 1 to it or temperature drop to level 1 will clear it	RW	0

REG 49: IRQ Status2

Default: 00H

Bit	Description	R/W	Default
7-6	Reserved	RW	0
5	GPIO2 IRQ, write 1 to it will clear it	RW	0
4	POKPIRQ, write 1 to it will clear it	RW	0

3	POKNIRQ, write 1 to it will clear it	RW	0
2	GPIO1 IRQ, write 1 to it will clear it	RW	0
1	POKSIRQ,write 1 to it will clear it	RW	0
0	POKLIRQ, write 1 to it will clear it	RW	0

11. Package

AXP15060 package is QFN6*6, 52-pin.

SYMBOL.	MILLIMETER		
SYMBOL	MIN	NOM	MAX
A	0.70	0.75	0.80
A1		0.035	0.05
b	0.15	0. 20	0. 25
c	0.18	0. 20	0. 25
D	5. 90	6.00	6.10
D2	4.40	4. 50	4.60
е	0. 40BSC		
Nd	4. 80BSC		
Е	5. 90	6.00	6.10
E2	4. 40	4. 50	4. 60
Ne	4. 80BSC		
L	0.35	0.40	0.45
L1	0.31	0.36	0.41
L2	0.13	0.18	0. 23
h	0. 25	0.30	0.35
L/F载体尺寸 (mil)	185*185		

Marking information:

The first five stand for LOT, as long as the first five number is same, then the lot is same. The six and seven stand for IC version, the last four is related to package information.

Tray Information:

Tray Package Information:

Item	Color	Size
Aluminum foil bags	Silvery white	540mm x 300mm x 0.14mm
Pearl cotton cushion(Vacuum bag)	White	12mm x 680mm x 185mm
Pearl cotton cushion (The Gap between vacuum bag and inside box)	White	Left-Right:12mm x 180mm x 85mm Front-Back:12mm x 350mm x 70mm
Inside Box	White	396mm x 196mm x 96mm
Outside Box	White	420mm x 410mm x 320mm

Order Information:

Туре	Quantity	Part Number
Tray	490pcs/Tray 10trays/Package	AXP15060

Mounting Conditions:

QTI typical SMT reflow profile conditions (for reference only)		
Step	Reflow condition	
N2 purge reflow usage (yes/no)	Yes, N2 purge used	
If yes, O2 ppm level	O2 < 1500 ppm	
Preheat ramp up temperature range	25℃ -> 150℃	
Preheat ramp up rate	1.5~2.5 ℃/sec	
Soak temperature range	150℃ -> 190℃	
Soak time	80~110 sec	
Liquidus temperature	217℃	
Time above liquidus	60-90 sec	
Peak temperature	240-250℃	
Cool down temperature rate	≤4°C/sec	
	Step N2 purge reflow usage (yes/no) If yes, O2 ppm level Preheat ramp up temperature range Preheat ramp up rate Soak temperature range Soak time Liquidus temperature Time above liquidus Peak temperature	