MTH 411, Fall 2018, Quiz 2 (Tuesday Short Quiz/6 pts)

- 1. (1 points) Fix $n \in \mathbb{Z}^+$. Define the equivalence relation on \mathbb{Z} known as congruence modulo n.
 - Solution. Denote the equivalence relation by \sim . For $a, b \in \mathbb{Z}$, $a \sim b$ if a b is divisible by n.
- 2. (1 points) Fix $n \in \mathbb{Z}^+$. Define U_n . Next, write out all the elements that belong to U_3 .
 - Solution. $U_n := \{z \in \mathbb{C} : z^n = 1\}$ and $U_3 = \{1, e^{i2\pi/3}, e^{i4\pi/3}\}$. Comments: Note that it can be proved¹ that

$$U_n = \left\{ \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right) : k \in \{0, 1, 2, \dots, n-1\} \right\}.$$

By Euler's formula $(e^{ix} = \cos(x) + i\sin(x))$, we can also write this as

$$U_n = \left\{ e^{i(\frac{2\pi k}{n})} : k \in \{0, 1, 2, \dots, n-1\} \right\}$$

- 3. (1 points) Fix $n \in \mathbb{Z}^+$. Define \mathbb{Z}_n . Next, write out all the elements that belong to \mathbb{Z}_3 .
 - Solution. $\mathbb{Z}_n := \{0, 1, 2, \dots, n-1\} \text{ and } \mathbb{Z}_3 := \{0, 1, 2\}.$
- 4. (1 points) Define a binary operation \star on a set S.
 - Solution. A binary operation \star on a set S is a map from $S \times S$ to S, i.e.

$$\star: S \times S \to S$$
$$(x, y) \mapsto x \star y$$

- 5. (1 points) Define what it means for a binary operation \star on a set S to be commutative.
 - Solution. A binary operation \star on a set S is commutative if for all $x, y \in S$ we have that

$$x \star y = y \star x$$
.

- 6. (1 points) Define what it means for a binary operation \star on a set S to be associatative.
 - Solution. A binary operation \star on a set S is associative if for all $x, y, z \in S$ we have that

$$x \star (y \star z) = (x \star y) \star z .$$

¹Fraleigh says on p.18: "Using the technique of Examples 1.6 and 1.7, we see that the elements of this set are ...". This is an invitation to the reader to prove this fact for themselves.