

HSBA8074A

N-Ch 80V Fast Switching MOSFETs

Description

The HSBA8074A is the high cell density SGT N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous rectification applications.

The HSBA8074A meet the RoHS and Halogen-Free compliant product requirement, 100% EAS guaranteed with full function reliability approved.

- 100% EAS Guaranteed
- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

Product Summary

V _{DS}	80	V
RDS(ON),typ	2.3	mΩ
ID	100	Α

PRPAK5X6 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	80	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	100	А	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	95	Α	
I _{DM}	Pulsed Drain Current ²	250	А	
EAS	Single Pulse Avalanche Energy ³	784	mJ	
I _{AS}	Avalanche Current	56	Α	
P _D @T _C =25°C	Total Power Dissipation ⁴	126	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter		Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹		55	°C/W
R _{θJC}	Thermal Resistance Junction-Case ¹		1	°C/W

HSBA8074A

N-Ch 80V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage V _{GS} =0V , I _D =250uA		80			V	
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		2.3	3	mΩ	
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2	2.8	4	V	
less	Drain-Source Leakage Current	V_{DS} =64V , V_{GS} =0V , T_J =25 $^{\circ}$ C			1		
I _{DSS}	Diain-Source Leakage Current	V _{DS} =64V , V _{GS} =0V , T _J =55°C			5	uA	
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA	
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.4		Ω	
Qg	Total Gate Charge (10V)			104			
Qgs	Gate-Source Charge	VDS=64V , VGS=10V , ID=20A		24		nC	
Qgd	Gate-Drain Charge			29			
Td(on)	Turn-On Delay Time			22			
Tr	Rise Time	VDD=40V , VGS=10V , RG=3 Ω ,		16		ne	
Td(off)	Turn-Off Delay Time	ID=20A		51		ns	
Tf	Fall Time			16			
Ciss	Input Capacitance			6580			
Coss	Output Capacitance	VDS=45V , VGS=0V , f=1MHz		1101		pF	
Crss	Reverse Transfer Capacitance			50			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			100	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =A , T _J =25°C			1.2	V

Note:

^{1.} The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

^{3.} The EAS data shows Max. rating . The test condition is V_{DD} =50V, V_{GS} =10V, L=0.5mH, I_{AS} =56A

^{4.}The power dissipation is limited by 150°C junction temperature

^{5.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

^{6.} The maximum current rating is package limited.

HSBA8074A

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized $V_{\text{GS(th)}}$ vs. T_{J}

N-Ch 80V Fast Switching MOSFETs

Fig.2 On-Resistance vs G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs. T_J

N-Ch 80V Fast Switching MOSFETs

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

N-Ch 80V Fast Switching MOSFETs

Ordering Information

Part Number	Package code	Packaging	
HSBA8074A	PRPAK5*6	3000/Tape&Reel	

SYMBOLS	MILLIMETERS			INCHES		
OTWIDOLO	MIN	NOM	MAX	MIN	MIN NOM	
А	0.80		1.20	0.031		0.047
В	0.30		0.51	0.012		0.020
С	0.15		0.35	0.006		0.014
D	4.80		5.30	0.189		0.209
D2	3.61		4.35	0.142		0.171
E	5.90		6.35	0.232		0.250
E2	5.42		5.90	0.213		0.232
E3	3.23		3.90	0.127		0.154
E4	3.69		4.55	0.145		0.179
L	0.61		1.80	0.024		0.071
L2	0.05		0.36	0.002		0.014
е		1.27			0.050	