Executive Summary

Overall objective is to maximize performance (final velocity) and minimize cost of the first stage of a rocket.

- Final Velocity will be determined from a 2D simulation of a rocket traveling through the atmosphere.
- Cost will be based off of historical data relating thrust at sea level to cost of engines and data relating the dry mass of rockets to cost of manufacturing.
- Design variables will include:
 - area ratio (ratio between the cross sectional area of the throat and the cross sectional area of the nozzle).
 - propellent mass flow (amount of propellent flowing through the engine)
 - dry mass (mass of rocket minus the fuel and payload)

Background

Rocket companies are constantly trying to squeeze performance out of their designs due to high costs associated with launching payloads into orbit.

- Stakeholders:
 - private launch companies
 - governments
- needs:
 - lower costs to increase profits
 - higher performing designs to expand launch capabilities

Formulation

The basic multi-objective optimization problem is:

- minimize cost, maximize final velocity
- wrt: area ratio, propellent mass flow, dry mass
- constraints: none (this might change depending on the initial results of the simulation)

Simulation

There are hundreds of variables that go into determing the final velocity of a first stage booster. I am making the following variables constant to simplify the simulation:

phsyical shape of the rocket (diameter, length, nosecone)

- mass of payload and second stage
- fuel mass and type (assuming homogenous fuel with constant flow rate)
- thrust profile
- gravity

The follwing free body shows the forces I am considering:

I am assuming the rocket will be a point mass so that a changing thrust vector will not produce torque. I am also assuming that the drag force will always be anti-parallel to the direction of the thrust.

There will be several equations to determine the drag force and thrust. I have not finalized these equations, but I have included some of the examples I am currently working with:

Thrust =
$$F = \dot{m} V_e + (p_e - p_0) A_e$$

Cost will be determined by a mix of historical data and external models. I have found a few examples in my research but have not finalized what equations/data I will use.

In general, there will be a tradeoff between reducing the complexity and getting more realistic/interesting results.

Optimization

I am currently aiming towards using monte carlo simulations to generate a series of results. There should be a distinct pareto frontier I can analyze to draw conclusions from the project.

Results / Conclusion

I am hoping to have several designs that fall along the pareto frontier that I can analyze in further detail and relate to historical launch vehicles

• There will likely be unrealistic trends in my data due to some of the simplifications I made in