Cancer detection using deep Convolutional Neural Networks

Prithvi Shetty prithvi1@uw.edu ASTRO 598

Index:

- I. Abstract
- II. Data
- III. Code run through
 - 1) Importing libraries.
 - 2) Reading the data.
 - 3) Sampling the data for balanced classes and splitting into train and validation.
 - 4) Creating the directories for training, test and validation images.
 - 5) Data augmentation of images and conversion to tensors.
 - 6) Move the images to the appropriate folders.
 - 7) Model compilation and training
 - 8) Prediction on test set

- **I. Abstract :** To detect metastatic cancer in small image patches taken from larger digital pathology scans using deep learning.
- **II. Data**: The data for this competition is a slightly modified version of the PatchCamelyon (PCam) (https://github.com/basveeling/pcam). There are total of 220,000 images in .tif format which are labeled as '1'(tumor) or '0'(non-tumor).

Tumor image example:

Non-tumor image example:

III. Code run through:

1. Importing libraries.

The libraries used in the code are: **Keras, TensorFlow, sci-kit learn, shutil, os, itertools, matplotlib, pandas, numpy, re**

2. Reading the data.

Id: Indicates the name of the image (in .tif format)

Label '1': Indicates 'tumor'

Label '0': Indicates 'not tumor'

3. Sampling the data for balanced classes and splitting into train and validation.

Sampling the data so as to get 50% of tumorous and 50% of non-tumorous images for unbiased classification results.

```
not_tumor=df[df.label==0].sample(85000)

not_tumor.shape
tumor.shape
(85000, 2)
(85000, 2)

new_df=pd.concat([not_tumor,tumor],axis=0).reset_index(drop=True)
```

Splitting the data with stratified sampling so that the same proportion of labels is maintained in test as well as validation.

4. Creating directories for training and validation

This step is to make the image data augmentation and the train/test process very convenient.

```
train_directory = os.path.join(root, 'train_images')
os.mkdir(train_directory)

val_directory = os.path.join(root, 'val_images')
os.mkdir(val_directory)

#For training images
not_tumor = os.path.join(train_directory, 'not_tumor')
os.mkdir(not_tumor)
tumor = os.path.join(train_directory, 'tumor')
os.mkdir(tumor)

#For validation images
not_tumor2 = os.path.join(val_directory, 'not_tumor')
os.mkdir(not_tumor2)
tumor2 = os.path.join(val_directory, 'tumor')
os.mkdir(tumor2)
```

5. Move the images in the appropriate folders

After creating the directories for the train, test and validation, the images are moved in the appropriate folders.

```
for index,row in val_data.iterrows():
    old_destination2=os.path.join(extract,row.id)
    new_destination2=os.path.join(val_directory,row.label_text, row.id)
    shutil.copyfile(old_destination2, new_destination2)

print(len(os.listdir("C:\\Users\\shett\\Cancer_data\\train_images\\not_tumor")))
72250
```

6. Data augmentation of images and conversion to tensors:

The data was augmented by the following features:

- a) Rescaling by a factor of 255.
- b) Rotating it by 40 degrees.
- c) Scaling the width by 20%
- d) Scaling the height by 20%
- e) Shear angle in counter-clockwise direction in degrees.
- f) Zoomed by 20%

g) Flipping the image horizontally.

```
train_datagen = ImageDataGenerator(rescale=1./255,
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
fill_mode='nearest')
val_datagen = ImageDataGenerator(rescale=1./255,
      rotation_range=40,
      width_shift_range=0.2,
height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255,
      rotation_range=40,
width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
```

7. Model compilation and training:

Model summary: I adapted the rough structure of my model

from: https://www.kaggle.com/fmarazzi/baseline-keras-cnn-roc-fast-5min-0-8253-lb

Layer (type)	Output	Shape	Param #
conv2d_4 (Conv2D)	(None,	94, 94, 32)	896
conv2d_5 (Conv2D)	(None,	92, 92, 32)	9248
conv2d_6 (Conv2D)	(None,	90, 90, 32)	9248
max_pooling2d_2 (MaxPooling2	(None,	45, 45, 32)	0
dropout_1 (Dropout)	(None,	45, 45, 32)	0
conv2d_7 (Conv2D)	(None,	43, 43, 64)	18496
conv2d_8 (Conv2D)	(None,	41, 41, 64)	36928
conv2d_9 (Conv2D)	(None,	39, 39, 64)	36928
max_pooling2d_3 (MaxPooling2	(None,	19, 19, 64)	0
dropout_2 (Dropout)	(None,	19, 19, 64)	0
conv2d_10 (Conv2D)	(None,	17, 17, 128)	73856
conv2d_11 (Conv2D)	(None,	15, 15, 128)	147584
conv2d_12 (Conv2D)	(None,	13, 13, 128)	147584
max_pooling2d_4 (MaxPooling2	(None,	6, 6, 128)	0
dropout_3 (Dropout)	(None,	6, 6, 128)	0
flatten_1 (Flatten)	(None,	4608)	0
dense_1 (Dense)	(None,	256)	1179904
dropout_4 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	2)	514
Total params: 1,661,186 Trainable params: 1,661,186 Non-trainable params: 0			

Dropout: 25% used after every Convolutional layer to avoid overfitting.

Activation: Rectified Linear Unit (for every Convolutional layer)

Pooling used: Maxpooling2D to select the maximum of the image feature maps.

Output layer: The output layer used is softmax for this problem to get the probabilistic values of each class.

Convolution layer size: 32, 64 and 128

The model is compiled with Adam's optimizer for weight optimization (Learning rate of 0.0001 and decay rate of 10^-6. The decay rate ensures that the learning rate decreases over time as the training progresses.)

The loss used is: Binary_crossentropy as there are two classes to be predicted.

Epochs: The training goes for 5 epochs and checkpoint ensures that the model is saved which has the best accuracy overall.

8. Prediction on test set images:

Final test accuracy: 87.46%

ROC score: 0.958 Final F1-score: 87%

Examples of predicted images:

A) Images classified as tumor

plt.imshow(plt.imread("{}\\test\\0
<matplotlib.image.AxesImage at 0x18</pre>

B) Images classified as non-tumor

plt.imshow(plt.imread("{}\\test\\fff
<matplotlib.image.AxesImage at 0x188</pre>

