Mandatory Homework 8 - Stat 211 - V19

Due at the end of April 02

March 27, 2019

PROBLEM 8.1

Sunspots bd, Brockwell et al., 2016, p. 117, exercise 4.7. Let $\{X_t\}$ denote the sunspots data.

- a) Load and plot the sunspots data. Let $Y_t = X_t \overline{X}_n$.
- b) Plot the ACF and PACF of $\{Y_t\}$. Notice that the ACF tails off while the PACF cuts off after two lags.
- c) Fit an AR(2) model to $\{Y_t, t=1,\ldots,n\}$ and report $\widehat{\phi}_1$, $\widehat{\phi}_2$ and $\widehat{\sigma}^2$.
- d) Plot the periodogram.
- e) Plot a smoothed periodogram.
- f) Plot the spectral density of the fitted model, find the frequency which achieves its maximum value and mark on the plot. What is the corresponding period?
- g) Calulate the residuals and plot their ACF and PACF.
- h) Plot the periodogram and the spectral density for the residuals.
- i) Do an independence test of the residuals, i.e. a Ljung-Box test.
- j) Plot the marginal density for the residuals and compare it to a normal density.
- k) Simulate the estimated model. You may use the a normal approximation of the residual distribution. Alternatively it is possible to draw from the empirical residual distribution.
- 1) Plot yearly, monthly and daily sunspot data for the last 13 years.

PROBLEM 8.2

The spectral density for an AR(2) model is given by

$$f(\omega) = \frac{\sigma^2}{2\pi} \frac{1}{|\phi(\exp(-i\omega))|^2}, \quad \omega \in (-\pi, \pi], \qquad \phi(z) = 1 - \phi_1 z - \phi_2 z^2$$

In an example we use phi<-c(1.4, -0.90) and $\sigma^2 = 1$.

- a) Plot the spectral density for this AR(2) model.
- b) What happen with spectral density if ϕ_2 is changed to 0.95?
- c) Simulate this AR(2) model N<-100. Plot the time series. Plot the periodogram, a smoothed periodogram and a estimated spectral density from the model.
- d) Can you see a periodic structure of the plotted time series. Calculate the apparent period length from the true and from the estimated spectral density,
- e) Repeat the two previous point with N<-1000.

PROBLEM 8.3

Explain that the spectral density for an invertible and causal ARMA(p,q) process is continuous on $[-\pi, \pi]$ and with a minimum value strictly greather than zero.

Problem 8.4

Let $\{X_t, t = 1, ..., n\}$ be data from a time series. Suppose that $\{X_t\}$ is an invertible MA(q) process with respect to $\{Z_t\} \sim \text{IID}(0, \sigma^2)$. Argue that estimated $\widehat{\gamma}_{\text{ML}}$ does not fit $\widehat{\gamma}$, i.e. $\widehat{\gamma}_{\text{ML}}(h) \not\equiv \widehat{\gamma}_n(h)$ for $|h| \leq q$ in general.

PROBLEM 8.5

Let $\{X_t, t = 1, ..., n\}$ be data from a time series. Let $1 \le p < n$ and suppose that we fit an AR(p) to the data using the Yule Walker estimates of ϕ and σ^2 . Explain that $\widehat{\gamma}_{YW}(h) \equiv \widehat{\gamma}_n(h)$ for $|h| \le p$.

PROBLEM 8.6

Let $\{X_t\}$ be an MA(2) process;

$$X_t = \theta(B)Z_t = (1 - B\xi_1^{-1})(1 - B\xi_2^{-1})Z_t, \quad \{Z_t\} \sim WN(0, \sigma^2)$$

with $|\xi_j| < 1$, $\xi_j \in \mathbb{R}$ for j = 1, 2 and $\xi_1 \neq \xi_2$.

a) Find $\{\theta_j, j = 1, 2\}$ for the MA(2) process, i.e. $X_t = \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + Z_t$.

Let $\widetilde{\theta}(B) = (1 - z\xi_1)(1 - z\xi_2)$. Suppose that we can find $\{\widetilde{Z}_t\}$ so that

(1)
$$X_t = \widetilde{\theta}(B)\widetilde{Z}_t, \qquad \{\widetilde{Z}_t\} \sim WN(0, \widetilde{\sigma}^2).$$

- b) Find $\{\widetilde{\theta}_j, j = 1, 2\}$ for $X_t = \widetilde{\theta}_1 Z_{t-1} + \widetilde{\theta}_2 Z_{t-2} + \widetilde{Z}_t$.
- c) Find the filter $\widetilde{\psi}$ that fits (1) and show that

$$\widetilde{Z}_t = \widetilde{\psi}(B)Z_t = \sum_{j=0}^{\infty} \widetilde{\psi}_j Z_{t-j}, \qquad \widetilde{\sigma}^2 = \left[\prod_{j=1}^2 \xi_j^{-2}\right] \sigma^2 > \sigma^2.$$

d) Calculate $\{\widetilde{\theta}_j,\ j=1,2\}$, $\{\widetilde{\psi}_j,\ j\geq 0\}$ and $\widetilde{\sigma}^2$ when $\xi_1=1/2,\ \xi_2=1/3$ and $\sigma^2=1$.

REFERENCES

Peter J. Brockwell and Richard A. Davis. *Introduction to time series and forecasting*. Springer Texts in Statistics. Springer, [Cham], third edition, 2016. ISBN 978-3-319-29852-8; 978-3-319-29854-2. doi: 10.1007/978-3-319-29854-2. URL https://doi.org/10.1007/978-3-319-29854-2.