PARTIAL TRANSLATION OF JP 55-19242 B

Publication Date: May 24, 1980

Title of the Invention: Process for producing saponified ethylene-vinyl

acetate copolymer with extremely reduced heat deterioration

Patent Application Number: Sho 49-124050

Filing Date: October 28, 1974

Unexamined Patent Publication Number: Sho 51-49294

Publication Date: April 28, 1976

Inventor: Kiyoshi Yonezu and Kenji Sato

Applicant: Kuraray Co.,Ltd

Claim:

1. A process for producing a saponified ethylene-vinyl acetate copolymer with extremely reduced heat deterioration, characterized in that

an acid that is a 0.1 mol% solution, having a pH of 2 to 8 at 25°C, of a sodium salt is added to a saponified ethylene-vinyl acetate copolymer having an ethylene content of 20 to 80 mol% and a degree of saponification of not less than 85 mol% and containing sodium acetate to convert a part of the sodium acetate to a sodium salt in the acid, so that the remaining sodium acetate is substantially 0.001 to 0.1 % with respect to the saponified ethylene-vinyl acetate copolymer and an acetic acid contained in the ethylene-vinyl acetate copolymer is 0.001 to 0.3 % with respect to the copolymer.

報 (B2) 昭55-19242 許 公

Int.Cl.3 C 08 F 8/12 C 08 L 23/08 29/02 5/09 C 08 K

75

庁内整理番号 識別記号

❷❸公告 昭和55年(1980) 5月24日

7823-4J 7133-4J 7919-4J

発明の数 1

(全6頁)

1

図熱劣化性の少ないエチレン一酢酸ビニル共重合 体ケン化物の製造法

②特 願 昭49-124050

願 昭49(1974)10月28日 1300

開 昭51-49294 公

43昭51(1976)4月28日

79発 明 者 米建潔

岡山市福島 380 番地の 1

佐藤賢司 79発 明 者

岡山市福島 290番地の1

人 株式会社クラレ 願 砂出

倉敷市酒津1621番地

弁理士 本多堅 個代 理

の特許請求の範囲

1 エチレン含有率20ないし80モルラ、ケン 化度85モル多以上で酢酸ソーダを含有するエチ レン一酢酸ビニル共重合体ケン化物に、ナトリウ ム塩の 0.1 モル水溶液が 2 5℃で pH 2~ 8 であ る酸を添加して酢酸ソーダの一部をその酸のナト リウム塩として、実質的に該共重合体ケン化物中 の残存酢酸ソーダを 0.001 だいし 0.1%とし、 さらに酢酸を該共重合体ケン化物当り 0.0 0 1 な の極めて少ないエチレン一酢酸ビニル共重合体ケ ン化物の製造法。

発明の詳細な説明

本発明は熱劣化性の極めて少ないエチレン一酢 酸ビニル共重合体ケン化物を製造する方法に関す 30 が85モル多以上で、実質的に酢酸ソーダを含有 るものである。

該共重合体ケン化物は、エチレン一酢酸ピニル 共重合体をアルコールまたはアルコールを含む溶 媒の溶液中に苛性アルカリまたはアルカリ金属ア るが、このようにして得られた該共重合体ケン化 物は熱劣化性が大きく熱分解しやすいため、溶融 成形、あるいは溶融成膜時に熱劣化が起こり、溶 融成形物、成膜品を繰返し溶融使用すると、溶融 粘度が著るしく低下し、また激しい着色を生じ、 使用に耐えない。

2

- このような熱劣化性や着色性は該樹脂を水で充 **分洗滌したり、酸を添加、あるいは酸溶液に浸漬** することにより、ある程度改良されることは例え ば特公昭46-37664号公報、特開昭48-25048号公報に記載されている。
- しかしながら、これらの方法は1回の溶融成形 では有効であるが、繰返し溶融成形時には、溶融 粘度の低下あるいは逆に著しい上昇によるゲル化、 着色等を生じ、有効な手段とはなり得ない。

しかるに本発明者らは種々検討る重ねた結果、

15 エチレン含有率20ないし80モル多のエチレン 一酢酸ピニル共重合体に苛性ソーダを加えてケン 化してケン化度85モル多以上とした酢酸ソーダ を含有する該ケン化物に対し、ナトリクム塩の 0.1 モル水溶液が25℃でpH 2~8である酸を 20 添加して、酢酸ソーダの一部をその酸のナトリウ ム塩として、実質的にポリマー中の残存酢酸ソー ダを 0.001~0.1%、好ましくは 0.005~ 0.05%とし、かつ酢酸を0.001~0.3%、好 ましくは0.01~0.2岁共存させることにより、 いし 0.3 分共存させることを特徴とする熱劣化性 25 熱劣化性が極めて改良されることを見出し、繰返 し溶融成形可能なエチレン一酢酸ピニル共重合体 ケン化物の製造方法を完成するに至つた。

本発明によつて使用される樹脂は前記のとおり、 エチレン含有率が20~80モルダで、ケン化度 するエチレンー酢酸ヒニル共重合体ケン化物であ

エチレン含有率が80モル男を越えると、本発 明の改良効果は余り顕著でなく、従来の方法と大 ルコラートを加えてケン化することにより得られ 35 差ない。一方エチレン含有率が20モル多未満で は樹脂の融点が高くなり、分解温度に接近するた め成形が困難となる。またケン化度が85モルラ

未満では、本発明の方法によつても熱劣化性が悪 30.2 多含まれることが必要である。前述の通り酸 く、繰返し溶融成形が困難である。

本発明によつて使用できる酸は、そのナトリウ ム塩の 0.1 モル水溶液の pH が 2 5 ℃ で 2 ~ 8 で に安定であればよく、有機酸、無機酸の別を問わ ない。多塩基酸の場合には水素の部分的なナトリ ウム置換体も含まれ、例えばHaPO4 の場合には、 ナトリウムの一置換体である NaH₂ PO₄ の 0.1 モ ル水溶液は 2 5 ℃ で pH 4.5 であり、従つて H₃PO。も本発明によつて使用出来る酸である。 本発明によつて使用できる酸を例示すれば、塩酸、 硫酸、硝酸、リン酸等の無機酸、およびクエン酸、 コハク酸、シユウ酸、酒石酸、フタル酸等の有機 酸である。

そのナトリウム塩の 0.1 モル水溶液の pH が 25℃で2未満又は8を越える酸では熱劣化性が 改良されず、使用できない。但し多塩基酸の場合 には、水素の部分的なナトリウム鼠換体が一つで も pH 2~8の範囲内であれば、本発明によつて 20 実施例 1 使用できる酸となり得る。

酸の添加量は、樹脂中の酢酸ソーダが添加した 酸のナトリウム塩に一部変換し、実質的にポリマ 一当りの残存酢酸ソーダが 0.0 0 1 ~ 0.1 **多**好ま り決定される。従つて酸添加前のポリマー中又は ポリマーを含む系に含有する酢酸ソーダ量によつ て、酸添加量は決定される。ポリマー中の酢酸ソ ーダが上記範囲外になると、樹脂の熱劣化性は余 り改良されず、繰返し溶融成形は困難となる。

従来よりポリビニルアルコールの製造において、 酢酸の含有率は各々0.04%、0.15%であつた。 酢酸が着色の原因になることは知られており、エ チレン一酢酸ピニル共重合体ケン化物においても、 酢酸ソーダを除くことが溶融時の熱安定性、およ び着色防止に有効であることは容易に類推できるo35 で I φ× 1 0 至のノズル使用) 、およびペレット しかし該ケン化物中の酢酸ソーダが 0.001 多以 下になると、逆に熱劣化性が悪化することは予想 外であつた。

さらに本発明の構成条件として、ポリマー中に 酢酸が0.001~0.3%、好ましくは0.01~※40

の添加により、酢酸ソーダが添加した酸のナトリ ウム塩に一部変換すると酢酸を生ずることになる が、これによつて生じた酢酸も含めて、必要であ あり、かつそのナトリウム塩が樹脂の溶融成形時 5 れば新たに酢酸を添加して、実質的に酢酸をポリ マー当り 0.0 0 1 ~ 0.3 %、好ましくは 0.0 1 ~ 0.2%にする必要がある。

> 酢酸の割合がこの範囲外であると、酢酸ソーダ の割合が上記必要条件即ちポリマー当り 0.001 10~0.1%にあつても、熱劣化性は余り改良されず、 繰返し溶融成形は困難である。

上記酸の添加方法、および酢酸の添加方法は、 樹脂に均一に付着されうる方法であれば特に制限 はなく、ポリマー溶液又はスラリー中に上記酸、 15 および酢酸を添加して混合する方法、あるいはポ リマーを上記酸、および酢酸の水溶液中に浸漬す る方法等採用できる。

次に実施例をあげて、本発明の方法を更に説明 する。

エチレン含有率30モル第のエチレン一酢酸ピ ニル共重合体40部をメタノール60部に溶解し、 これに108NaOHメタノール溶液16部を加え 60℃で2時間ケン化を行つた。冷却後500部 しくは 0:0 0 5 ~ 0.0 5 多になるような条件によ 25 の水に投入して樹脂を析出させ、脱液し、さらに 500部の水に投入し1時間浸漬して洗滌した。 水100部に0.1 N硫酸2部、酢酸0.2部を添加 した液へ 洗滌後脱液した樹脂を投入し、2時間 浸漬後、脱液、乾燥した。得られた該共重合体ケ 30 ン化物のケン化度は98.5モル多で酢酸ソーダ、

> これを 2 3 0 ℃の押出機にかけて成形用ペレッ トを得て、ペレットの流出速度(高化式フロテス ターで230℃、1時間保持後、荷重10kg/cd の黄色度(JIS K-7103に準じて測定) を測定し、この操作を繰返して、繰返し押出し回 数と流出速度、黄色度の関係を測定した結果、奏 -1のようになつた。

表 - 1

繰返し 押出回数	流出速度 (cm/scc)	黄色度	繰返し 押出回数	流出速度 (cnl/scc)	黄色度
1	6.2×10 ⁻⁴	1 1.2	6	5.2×10 ⁻⁴	1 2.3

5

繰返し 押出回数	流出速度 (cm/scc)	黄色度	操返し 押出回数	流出速度 (cm/scc)	黄色度
2	5.8×10 ⁻⁴	1 2.1	8	4.9×10 ⁻⁴	1 2.5
3	5.7	1 1.5	10	5.1	1 2.7
4	5.5	1 2.0	·		• .
5	5.6	1 2.2		·.	

対照例 1~8

• 欄に示した条件で洗滌、酸処理し、表一 2 右欄に 実施例1と同様にケン化、析出、脱液したエチ 示した分析値をもつた樹脂を得た。

レン一酢酸ピニル共重合体ケン化物を、表一2左+10

表 一 2

		分析值			
対照例低	洗滌、酸処理条件	ケン化度 (%)	酢酸ソーダ	酢 酸	
1	500部の水に1時間浸漬、脱液(2回 繰返し)	9 8. 5	(%) 0.1 2	(%)	
2	500部の水に1時間浸漬、脱液後、水 100部、01N硫酸5部の水溶液に2 時間浸漬、脱液	9 8. 5	0.0 0 0 8	0.0009	
3	500部の水に1時間浸漬、脱液後水 100部、0.1N硫酸2部の水溶液に2 時間浸漬、脱液	, 9 8.5	0.0 4 9	0.0006	
4	500部の水に1時間浸漬、脱液後、水 100部、01N硫酸2部、酢酸2部の 水溶液に2時間浸漬、脱液	9 8. 5	0.042	0.37	
5	500部の水に1時間浸渍、脱液後、水 100部、酢酸02部の水溶液に2時間 浸漬、脱液	9 8. 5	0.1 5	0.1 5	
6	500部の水に1時間浸漬、脱液後、水 100部、01N硫酸5部、酢酸02部 の水溶液に2時間浸漬、脱液	9 8. 5	0.0008	0.1 6	
7	500部の水に1時間浸漬脱液後、水 100部、0.1N硫酸5部、酢酸2部の 水溶液に2時間浸漬、脱液	9 8. 5	0.0007	0.3 5	
8	500部の水に1時間浸漬、脱液後、水 100部、酢酸2部の水溶液に2時間浸 漬、脱液	9 8.5	0.1 4	0.3 6	

これら8種の樹脂について実施例1と同様に繰40 表一3および4の結果を得た。 返し押出回数と流出速度、黄色度の関係を測定し

流出速度(単位×10⁻⁴ cd/秒)

<u> </u>					
対照例施	1 回	2 回	3 🗇	4 🗈	5 @
1	流出量大測定不能				
2	1 0.2	7. 1	4.3	0. 2	流出せず
3	1 1.5	3 2.1	5 1 0		
4	5. 1	0. 1	流出せず	 	<u> </u>
5	9. 8	7. 5	2 6. 1	650	
6	3. 9	0.07	流出せず		
7	流出せず				
8	6. 5	4.9	1 5.1	6 2.5	9 4 0

対照例派	1 回	2 🗇	3 回	4 🗇	5 🗇
. 1	4 5. 2				
2	2 6.3	3 9.5	6 1. 3	6 9.1	7 0.3
3	2 9.6	3 8. 5	5 1. 2		
4:	2 5.8	2 9. 3	3 5. 4	٠.	
5	1 9.2	2 4.8	2 9. 6	5 0.8	
6	2 7. 4	3 0.0	3 4.8	* +4	
7	3 2 6		÷ *:		
8	1 8.8	2 1.6	2 8.4	3 9.6	4 9. 1

エチレン含有率40モル多のエチレンー酢酸ヒ ニル共重合体45部をメタノール55部に溶解し、30 載した条件で酸処理後、乾燥し、表一5の右欄に これに5多NaOHメタノール溶液30部を加え、 60℃で4時間ケン化を行つた。冷却後1000 部の水に投入して樹脂を析出させ、脱液後、更に・

◆500部の水へ投入して2時間浸漬、洗滌した。

このようにして得られた樹脂を表一5左欄に記 示した分析値をもつエチレン一酢酸ビニル共重合 体ケン化物を得た。

		分 析 値		
実施例/%	酸処理条件	ケン化度 (%)	酢酸ソーダ (%)	酢酸 (%)
2	水100部、0.1 N硝酸2部、酢酸 0.1 5 部の水溶液に2時間浸漬後、 脱液	9 8. 0	0.025	0.14
3	水100部、 0.1 Nりん酸 5 部酢酸 0.1 5 部の水溶液に 2 時間浸漬後、 脱液	9 8.0	0. 0 3 1	0. 1 3

9

10

実施例 %	·	分 析 値		
	酸処理条件	ケン化度 (%)	酢酸ソーダ (%)	作酸(%)
4	水100部、0.1 Nシュウ酸 3.5 部 酢酸 0.1 5 部の水溶液に 2 時間浸漬、 脱液	9 8.0	0.035	0. 1 4
5	水100部、0.1 N酒石酸 4 部酢酸 0.1 5 部の水溶液に 2 時間浸漬、脱 液	9 8.0	0.041	0. 1 5

これらの樹脂について、実施例 1 と同様に繰返 ☆表 6 の結果を得た。(但し、押出機温度、硫出速 し押出回数と硫出速度、黄色度の関係を測定し、☆ 度測定温度は 2 1 0 ℃とした)。

表一6

実施例 %	繰返し押出 回数	2	4	6	8
2	流出速度(cnl/秒)	6.2×10 ⁻⁴	5.5×10 ⁻⁴	5.1×10 ⁻⁴	5.0×10 ⁻⁴
	黄 色 度	1 1.1	1 1.2	1 2.1	1 3.34
3	流出速度(cnl/秒)	5.9×10 ⁻⁴	5.8×10 ⁻⁴	5.9×10 ⁻⁴	4.9×10 ⁻⁴
	黄 色 度	1 0.7	1 1. 1	1 1.3	1 2.9
4	流出速度(cnl/秒)	7.4×10 ⁻⁴	6.3×10 ⁻⁴	5.9×10 ⁻⁴	5.1×10 ⁻⁴
	黄 色 度	1 1.2	1 2.6	1 3. 1	1 4.0
5	流出速度(cnl/秒)	6.9×10 ⁻⁴	7.1×10 ⁻⁴	6.8×1.0 ⁻⁴	5.2×10 ⁻⁴
	黄 色 度	1 0.8	1 1.1	1 2.7	1 3.1

対照例 9~12

実施例2~5と同様の方法により表-7左欄に を用い押出機より制 記載した条件でエチレン一酢酸ビニル共重合体ケ 流出速度、黄色度と ン化物を酸処理した後、乾燥し同表の右欄に記載* 8のようになつた。

*した分析値を持つた樹脂を得た。次いでこの樹脂を用い押出機より繰返し押出を行ないその回数と 流出速度、黄色度との関係を測定したところ表ー 8のようになつた。

表一7

			分 析	値
対照例 %	酸処理条件	ケン化度 (%)	酢酸ソータ (%)	酢 酸 (46)
9	水100部、0.1 N硝酸6部、酢酸 0.1 5部の水溶液に2時間浸漬脱液	9 8. 0	0.0007	0.16
1 0	水100部、0.1 Nりん酸1部、酢酸0.15部の水溶液に2時間浸漬、 脱液	9 8.0	0. 1 2	0.13
1 1	水100部、 0.1 N シュウ酸 3.5 部、 酢酸 0.00 1 部の水溶液に 2 時間浸 漬、脱液	9 8.0	0.037	0.0 0 0 8
1 2	水100部、 0.1 N 酒石酸 4部、酢酸 2 部の水溶液 K 2 時間浸漬、脱液	9 8. 0	0.039	0.32

表一8

対照例%	繰返し押出回数	. 1	2	3
9	流出速度(cnl/秒)	4.1×10 ⁻⁴	0.1 1×10 ⁻⁴	流出せず
	黄 色 度	2 5. 2	3 1.6	4 0.1
10	流出速度(")	11.6×10 ⁻⁴	1 2.1×10 ⁻⁴	49.0×10 ⁻⁴
	黄 色 度	1 8. 9	2 6.3	3 9.7
11	流出速度(//)	1 0.8×1 0 ⁻⁴	41.6×10 ⁻⁴	750×10 ⁻⁴
	黄 色 度	2 8. 8	4 1. 7	6 2. 6
12	流出速度(")	4.7×10 ⁻⁴	0.08×10 ⁻⁴	流出せず
12	黄 也 度	2 3. 6	2 7. 8	3 1. 5

実施例 6~8

★一酢酸ビニル共重合体ケン化物を表ー9の左欄に

エチレン含有率 5 5 モルダ、ケン化度 9 7 モル 15 記載した条件で酸処理を行い、乾燥して表一 9 の ダで、残存酢酸ソーダ 0.2 ダを含有するエチレン★ 右欄に記載したような分析値を有する樹脂を得た。

表一9

実施例 <i>低</i>	,	分析値		
	酸処理条件	酢酸ソータ (%)	能 (多)	
5	水100部、 0.1 N塩酸 2.5 部、酢酸 0.1 3 部の水溶液に 4 時間浸漬、脱液	0.028	0.072	
7	水100部、0.1 Nクエン酸 6 部、酢酸 0.1 2 部の水溶液に 4 時間浸漬、脱液	0.042	0.063	
8	水100部、0.1 Nピロりん酸5部、 酢酸0.1 4部の水溶液に4時間浸漬、 脱液	0.045	0.074	

これらの樹脂について、実施例1と同様に繰返 * (但し押出機の温度、流出速度、測定温度は185 し押出しを行ない、押出回数と流出速度、黄色度 でとした。) の関係を測定したところ表-10のようになつた。*

表一10

	繰返し押出回数				
実施例/%		2	4	6	8
6	流出速度(cnl/秒)	11.2×10 ⁻⁴	1 0.8×1 0 ⁻⁴	1 0.1×10 ⁻⁴	9.7×10 ⁻⁴
	黄 色 度	9. ?	1 0.1	1 0. 2	1 1.4
7	流出速度(")	1 1.6×10 ⁻⁴	1 0.7×10 ⁻⁴	9.8×10 ⁻⁴	9.2×10 ⁻⁴
	黄 色 废	1 0.6	1 1. 2	1 1.8	1 2. 2
8	流出速度(//)	1 0.9×1 0 ⁻⁴	9.8×10 ⁻⁴	9.5×10 ⁻⁴	9.1×10 ⁻⁴
	黄 色 废	9. 5	9. 9	1 0.4	1 0.7