Curso de Métodos Numéricos DEMAT, Universidad de Guanajuato

Clase 7: Métodos directos de solución de ecuaciones lineales

- Factorización LU.
- Método de Doolittle.
- Cálculo de la inversa y del determinante.
- Lectura y escritura de archivos binarios.
- Factorización LU mediante la librería GSL.

MAT-251

Dr. Joaquín Peña Acevedo CIMAT A.C.

e-mail: joaquin@cimat.mx

Elim. Gaussiana mediante producto de matrices (I)

Sea A la matriz

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix},$$

y definamos

$$\mathbf{L}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -l_{21} & 1 & 0 & 0 \\ -l_{31} & 0 & 1 & 0 \\ -l_{41} & 0 & 0 & 1 \end{bmatrix}, \qquad l_{i1} = \frac{\alpha_{i1}}{\alpha_{11}}, \quad i = 2, 3, 4.$$

Entonces

$$\mathbf{L}_{1}\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & a'_{32} & a'_{33} & a'_{34} \\ 0 & a'_{42} & a'_{43} & a'_{44} \end{bmatrix}$$

Elim. Gaussiana mediante producto de matrices (II)

Si definimos

$$\mathbf{L}_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -l_{32} & 1 & 0 \\ 0 & -l_{42} & 0 & 1 \end{bmatrix}, \qquad l_{i2} = \frac{\alpha'_{i2}}{\alpha'_{22}}, \ i = 3, 4.$$

entonces
$$\mathbf{L}_2 \mathbf{L}_1 \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & 0 & a''_{33} & a''_{34} \\ 0 & 0 & a''_{43} & a''_{44} \end{bmatrix}$$

$$\mathbf{L}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -l_{43} & 1 \end{bmatrix} \quad \Longrightarrow \quad \mathbf{L}_{3} \mathbf{L}_{2} \mathbf{L}_{1} \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & 0 & a''_{33} & a''_{34} \\ 0 & 0 & 0 & a'''_{44} \end{bmatrix}$$

con $l_{43} = a_{43}^{\prime\prime}/a_{33}^{\prime\prime}$.

Elim. Gaussiana mediante producto de matrices (III)

- A las matrices \mathbf{L}_i se les llama matrices triangulares inferiores elementales
- El proceso de eliminación Gaussiana es una reducción a una forma triangular por medio de matrices triangulares inferiores elementales.

En general, tenemos que

$$L_{n-1}\cdots L_2L_1A=U$$

donde ${\it U}$ es una matriz triangular superior.

 Como los elementos de la diagonal de cada matriz L_i es diferente de cero, L_i es no singular.

- Como los elementos de la diagonal de cada matriz L_i es diferente de cero, L_i es no singular.
- El producto $L_{n-1} \cdots L_2 L_1$ es no singular, de modo que

$$\mathbf{L}_{n-1}\cdots\mathbf{L}_2\mathbf{L}_1=\mathbf{L}^{-1}$$

- Como los elementos de la diagonal de cada matriz L_i es diferente de cero, L_i es no singular.
- El producto $L_{n-1} \cdots L_2 L_1$ es no singular, de modo que

$$L_{n-1} \cdots L_2 L_1 = L^{-1}$$

• Tenemos entonces que

$$L^{-1}A = U \implies A = LU$$

- Como los elementos de la diagonal de cada matriz L_i es diferente de cero, L_i es no singular.
- El producto $L_{n-1} \cdots L_2 L_1$ es no singular, de modo que

$$\mathbf{L}_{n-1}\cdots\mathbf{L}_2\mathbf{L}_1=\mathbf{L}^{-1}$$

• Tenemos entonces que

$$L^{-1}A = U \implies A = LU$$

• La matriz L es triangular inferior,

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ l_{21} & 1 & \cdots & 0 & 0 \\ l_{31} & l_{32} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ l_{n-1,1} & l_{n-1,2} & \cdots & 1 & 0 \\ l_{n1} & l_{n2} & \cdots & l_{n,n-1} & 1 \end{bmatrix}$$

Solución del sistema lineal de ecuaciones

De esta forma, el método de eliminación Gaussiana calcula la descomposición *LU* de la matriz.

Supongamos que A tiene una factorización LU. Entonces para resolver

$$Ax = b$$

hacemos lo siguiente. Tenemos que

$$LUx = b$$

Definimos y = Ux y entonces resolvemos

Solución del sistema lineal de ecuaciones

De esta forma, el método de eliminación Gaussiana calcula la descomposición *LU* de la matriz.

Supongamos que A tiene una factorización LU. Entonces para resolver

$$Ax = b$$

hacemos lo siguiente. Tenemos que

$$LUx = b$$

Definimos y = Ux y entonces resolvemos

Ly = b (usando sustitución hacia adelante)

Ux = y (usando sustitución hacia atrás)

• Hay que notar que si **D** es una matriz diagonal no singular, entonces

$$\mathbf{A} = \mathbf{L}\mathbf{U} = \mathbf{L}\mathbf{D}\mathbf{D}^{-1}\mathbf{U} = (\mathbf{L}\mathbf{D})(\mathbf{D}^{-1}\mathbf{U})$$

• Hay que notar que si **D** es una matriz diagonal no singular, entonces

$$\mathbf{A} = \mathbf{L}\mathbf{U} = \mathbf{L}\mathbf{D}\mathbf{D}^{-1}\mathbf{U} = (\mathbf{L}\mathbf{D})(\mathbf{D}^{-1}\mathbf{U})$$

 ${\it LD}$ es triangular inferior y ${\it D}^{-1}{\it U}$ es triangular superior, por lo que podemos tener varias descomposiciones.

Hay que notar que si D es una matriz diagonal no singular, entonces

$$\mathbf{A} = \mathbf{L}\mathbf{U} = \mathbf{L}\mathbf{D}\mathbf{D}^{-1}\mathbf{U} = (\mathbf{L}\mathbf{D})(\mathbf{D}^{-1}\mathbf{U})$$

LD es triangular inferior y $D^{-1}U$ es triangular superior, por lo que podemos tener varias descomposiciones.

 Hacemos el convenio de que por factorización LU nos referimos a la factorización en la que la matriz L es triangular inferior y que los elementos de su diagonal son iguales a 1.

Hay que notar que si D es una matriz diagonal no singular, entonces

$$\mathbf{A} = \mathbf{L}\mathbf{U} = \mathbf{L}\mathbf{D}\mathbf{D}^{-1}\mathbf{U} = (\mathbf{L}\mathbf{D})(\mathbf{D}^{-1}\mathbf{U})$$

LD es triangular inferior y $D^{-1}U$ es triangular superior, por lo que podemos tener varias descomposiciones.

 Hacemos el convenio de que por factorización LU nos referimos a la factorización en la que la matriz L es triangular inferior y que los elementos de su diagonal son iguales a 1.

Proposición.

Si ${\bf A}$ es no singular y tiene una factorización LU, entonces la factorización es única.

Existencia de la factorización LU

Aun cuando ${\bf A}$ sea no singular, la matriz podría no tener una factorización LU. Por ejemplo,

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Existencia de la factorización LU

Aun cuando ${m A}$ sea no singular, la matriz podría no tener una factorización LU. Por ejemplo,

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Si la matriz $\bf A$ es singular y tiene una factorización LU, ésta puede no ser única. Por ejemplo,

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 - \lambda \end{bmatrix}$$

es una factorización LU para cualquier λ .

Método de Doolittle (I)

Tenemos que si $\mathbf{A} = \mathbf{L}\mathbf{U}$, entonces

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{31} & l_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

Para que se cumpla la igualdad se debe cumplir

$$a_{ij} = \begin{cases} \sum_{k=1}^{i-1} l_{ik} u_{kj} + u_{ij} & i \le j \\ \sum_{k=1}^{j} l_{ik} u_{kj} & i > j \end{cases}$$

Hacemos el convenio de que si i = 1 la suma en el primer caso es cero.

Método de Doolittle (II)

Fijamos j = 1. Entonces para i = 1,

$$u_{11} = a_{11}$$
,

y para i = 2, 3, ..., n tenemos que

$$a_{i1} = l_{i1}u_{11} \longrightarrow l_{i1} = \frac{a_{i1}}{u_{11}}$$

Fijamos j = 2. Entonces

$$u_{12} = a_{12}, \qquad u_{22} = a_{22} - l_{21}u_{12}$$

y para i = 3, 4, ..., n,

$$a_{i2} = l_{i1}u_{12} + l_{i2}u_{22} \longrightarrow l_{i2} = \frac{a_{i2} - l_{i1}u_{12}}{u_{22}}$$

Podemos continuar de esta manera para j = 3, ..., n. En general, se tiene que

Método de Doolittle (III)

Para j = 1, 2, ..., n, hacemos los siguientes dos pasos

• Para i = 1, 2, ..., j calculamos

$$u_{ij} = \alpha_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}.$$

• Para i = j + 1, j + 2, ..., n, calculamos

$$l_{ij} = \frac{1}{u_{jj}} \left(\alpha_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right)$$

A este procedimiento se le conoce como el método de Doolittle.

Observaciones

• Otras factorizaciones parecidas a LU se obtienen con el método de Crout, en el que la matriz triangular superior tiene 1's en la diagonal y la matriz triangular inferior no le impone alguna condición.

Observaciones

- Otras factorizaciones parecidas a LU se obtienen con el método de Crout, en el que la matriz triangular superior tiene 1's en la diagonal y la matriz triangular inferior no le impone alguna condición.
- En caso de que matriz **A** requiera pivoteo parcial, entonces podemos encontrar una matriz de permutación **P** tal que

PA = LU.

Observaciones sobre la factorización LU

 Para resolver el sistema Ax = b hay que considerar realizar pivoteo parcial:

$$PAx = Pb \implies LUx = Pb$$

Observaciones sobre la factorización LU

 Para resolver el sistema Ax = b hay que considerar realizar pivoteo parcial:

$$PAx = Pb \implies LUx = Pb$$

• Para pivoteo total, entonces

$$PAQ = LU$$
.

donde **P** y **Q** son matrices de permutación.

• Para la factorización de Doolittle tenemos que calcular n^2 valores

```
\frac{n(n+1)}{2} \text{ valores para } u_{ij} \text{ con } i \leq j \frac{n(n+1)}{2} - n \text{ valores para } l_{ij} \text{ con } i > j
```

• Para la factorización de Doolittle tenemos que calcular n^2 valores

```
\frac{n(n+1)}{2} \text{ valores para } u_{ij} \text{ con } i \leq j
\frac{n(n+1)}{2} - n \text{ valores para } l_{ij} \text{ con } i > j
```

• Fijo j, en el algoritmo de Doolittle calculamos u_{ij} y l_{ij} , y no se vuelve a requerir los valores de a_{ij} .

• Para la factorización de Doolittle tenemos que calcular n^2 valores

```
\frac{n(n+1)}{2} \text{ valores para } u_{ij} \text{ con } i \leq j
\frac{n(n+1)}{2} - n \text{ valores para } l_{ij} \text{ con } i > j
```

- Fijo j, en el algoritmo de Doolittle calculamos u_{ij} y l_{ij} , y no se vuelve a requerir los valores de a_{ij} .
- Se pueden almacenar los valores u_{ij} y l_{ij} en la matriz del sistema **A**.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \longrightarrow \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ l_{21} & u_{22} & u_{23} & \cdots & u_{2n} \\ l_{31} & l_{32} & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & u_{nn} \end{bmatrix}$$

• Para la factorización de Doolittle tenemos que calcular n^2 valores

```
\frac{n(n+1)}{2} \text{ valores para } u_{ij} \text{ con } i \leq j \frac{n(n+1)}{2} - n \text{ valores para } l_{ij} \text{ con } i > j
```

- Fijo j, en el algoritmo de Doolittle calculamos u_{ij} y l_{ij} , y no se vuelve a requerir los valores de a_{ij} .
- Se pueden almacenar los valores u_{ij} y l_{ij} en la matriz del sistema **A**.
- Esto destruye la matriz A.

```
\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \longrightarrow \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ l_{21} & u_{22} & u_{23} & \cdots & u_{2n} \\ l_{31} & l_{32} & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & u_{nn} \end{bmatrix}
```

Almacenamiento en memoria de la matrices

Supongamos que tenemos una matriz $m \times n$,

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Queremos reservar memoria para almacenar las entradas de la matriz, de manera que sea compatible con la forma en que la librería GSL almacena la información.
- También queremos que se pueda accesar mediante un arreglo bidimensional, para facilitar la forma en que accesan a las entradas de la matriz.

$$a_{ij} \quad \rightleftarrows \quad a[i][j]$$

Cálculo de la inversa de la matriz

Supongamos que tenemos una matriz \boldsymbol{A} de tamaño n y su factorización LU:

$$A = LU$$
.

Sea x_i el vector solución del sistema lineal

$$\mathbf{A}\mathbf{x}_i = \mathbf{L}\mathbf{U}\mathbf{x}_i = \mathbf{e}_i$$
.

para i=1,...,n, donde \mathbf{e}_i es el i'esimo vector canónico. Si $\mathbf{X}=[\mathbf{x}_1 \cdots \mathbf{x}_n]$, entonces

$$AX = [Ax_1 \cdots Ax_n] = [e_1 \cdots e_n] = I.$$

Esto es, X es la inversa de A. Así, si tenemos la factorización LU de matriz, solo tenemos que resolver n sistemas de ecuaciones lineales para obtener las columnas de la matriz inversa.

Cálculo del determinante de la matriz

Supongamos que tenemos una matriz \boldsymbol{A} de tamaño n y su factorización LU:

$$A = LU$$
.

Entonces por propiedades del determinante

$$\det \mathbf{A} = \det(\mathbf{L}\mathbf{U}) = \det \mathbf{L} \det \mathbf{U}.$$

Como las matrices \boldsymbol{L} y \boldsymbol{U} son triangulares, su determinante es igual al producto de los elementos de su diagonal. Además, para la factorización de Doolittle, se debe tener que det $\boldsymbol{L}=1$, por lo que

$$\det \mathbf{A} = \det \mathbf{U} = \prod_{i=1}^{n} u_{ii}.$$

Lectura y escritura de archivos binarios

- Para probar los algoritmos que operan con matrices y vectores conviene leer esta información de archivos en vez de tener que capturarla manualmente.
- Para no introducir más errores y usar menos espacio en disco, conviene usar archivos binarios en la que las entradas de vectores y matrices son del tipo double.
- Para que todos puedan leer la información de los archivos, hay que establecer un formato.

Almacenamiento en memoria de matrices

Supongamos que tenemos una matriz $m \times n$,

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Queremos reservar memoria para almacenar las entradas de la matriz, de manera que sea compatible con la forma en que la librería GSL almacena la información.
- También queremos que se pueda accesar mediante un arreglo bidimensional, para facilitar la forma en que accesan a las entradas de la matriz.

$$a_{ij} \quad \rightleftarrows \quad a[i][j]$$

Convención para almacenamiento de datos

Para matrices:

- El archivo debe comenzar con dos enteros, *m* y *n*. El primero, *m*, debe indicar el número de filas de la matriz, y el segundo, *n*, debe indicar el número de columnas.
- El resto del archivo debe contener mn valores, que corresponden a las entradas de la matriz, almacenadas por filas: los primeros n valores corresponden a la primer fila, los siguientes n valores corresponden a la segunda fila, etc.

Para vectores:

- El archivo debe comenzar con un entero, m, que indica la dimensión del vector.
- El resto del archivo debe contener *m* valores, que corresponden a las entradas del vector.

Creación de la matriz a partir de un archivo

Para conseguir lo anterior, el procedimiento sería el siguiente:

- Abrir el archivo y leer las dimensiones de la matriz.
- Creamos de manera dinámica un arreglo de apuntadores, tantos como filas tenga la matriz.
- Oreamos un bloque de memoria de tamaño mn para almacenar todas las entradas.
- Macemos que el primer apuntador apunte a esta posición de memoria.
- Hacemos que el resto de los apuntadores apunten a las posiciones del bloque de memoria reservada en donde empiezan cada fila de la matriz.
- 6 Leemos los elementos de la matriz del archivo.

Los pasos 2–5 son realizados por la función *createMatrix()*, vista en la sección anterior. De modo que solo se explican el resto de los pasos.

Paso 1: Lectura de las dimensiones de la matriz

La función que lee los datos de un archivo binario es:

```
double **readMatrix(char *cfile, int *nr, int *nc) {
   double **mat;
   FILE *f1 = fopen(cfile, "rb"):
   if(!f1) return(NULL);
   // Lectura del tamaño de la matriz
   fread(nr, sizeof(int), 1, f1);
   fread(nc, sizeof(int), 1, f1);
   // Reservamos memoria
   mat = createMatrix(*nr, *nc);
   // Lectura de los datos
   fread(mat[0], sizeof(double), (*nr)*(*nc), f1);
   fclose(f1):
   return(mat);
```

La opcion "rb" hace que se habra el archivo de nombre cfile para lectura y especifica que el archivo es binario.

Paso 6: Lectura de los elementos de la matriz

```
double **readMatrix(char *cfile, int *nr, int *nc) {
   double **mat:
   FILE *f1 = fopen(cfile, "rb");
   if(!f1) return(NULL);
   // Lectura del tama no de la matriz
   fread(nr, sizeof(int), 1, f1);
   fread(nc, sizeof(int), 1, f1);
   // Reservamos memoria
   mat = createMatrix(*nr, *nc);
   // Lectura de los datos
   fread(mat[0], sizeof(double), (*nr)*(*nc), f1);
   fclose(f1):
   return(mat);
```

Se lee todos los elementos de la matriz y los almacena en el bloque de memoria al que hace referencia mat[0].

Lo que resta de la función es la parte que cierra el archivo y devuelve el apuntador mat.

Escritura de datos binarios

La función siguiente escribe las entradas de una matriz en el formato acordado:

```
int writeMatrix(double **mat, int nr, int nc, char *cfile) {
   FILE *f1 = fopen(cfile, "wb");

   if(!f1) return(1);
   fwrite(&nr, sizeof(int), 1, f1);
   fwrite(&nc, sizeof(int), 1, f1);
   fwrite(mat[0], sizeof(double), nr*nc, f1);
   fclose(f1);
   return(0);
}
```

```
double *readVector(char *cfile, int *nr) {
   double *vec:
   FILE *f1 = fopen(cfile, "rb");
   if(!f1) return(NULL);
   fread(nr, sizeof(int), 1, f1);
   vec = (double *) malloc( (*nr)*sizeof(double));
   if(vec==NULL) return(NULL);
   fread(vec, sizeof(double), *nr, f1);
   fclose(f1);
   return(vec):
Para usarla:
int nr;
double *vec = readVector(nombre_archivo, &nr):
```

Ejemplo

Hay que compilar el programa lecturaBinarios.c. En la línea de comandos se especifica el nombre del archivo de la matriz y el nombre del archivo de un vector (en ese orden). Ejemplo:

./lecturaBinarios matA1.bin vecb1.bin

Como el programa imprime el contenido de los archivos en la pantalla, hay que probarlo con matrices pequeñas.

Ejemplo

Hay que compilar el programa lecturaBinarios.c. En la línea de comandos se especifica el nombre del archivo de la matriz y el nombre del archivo de un vector (en ese orden). Ejemplo:

./lecturaBinarios matAl.bin vecbl.bin

Como el programa imprime el contenido de los archivos en la pantalla, hay que probarlo con matrices pequeñas.

Conversión de archivos de texto a binario

- Para probar los programas, se les proporciona datos (arreglos 1D y 2D) en archivos binarios para no perder precisión.
- Para generar estos archivos binarios a partir de un archivo de texto, puede usar como referencia el código:
 - vecTxt2Bin.c Convertir un archivo de texto que contiene un arreglo 1D a un archivo binario
 - matTxt2Bin.c Convertir un archivo de texto que contiene un arreglo 2D a un archivo binario

Librería GSL

- El código está desarrollado en C.
- Tiene funciones para resolver todos los temas que están descritos en el temario y más.
- En el manual de referencia vienen la descripción de las funciones y ejemplos de como usarlas.
- Es importante notar que dependiendo de las funciones que se quieran usar hay que incluir ciertos archivos de encabezado.

 gsl_vector es una estructura con 5 componentes.

```
typedef struct {
    size_t size;
    size_t stride;
    double *data;
    gsl_block *block;
    int owner;
} gsl_vector;
```

El rango válido de índices es de 0 a size-1. El apuntador data da la posición del primer elemento del arreglo.

```
gsl_vector *gsl_vector_alloc(size_t n);
void gsl_vector_free(gsl_vector *v);
double gsl_vector_get(gsl_vector *v, size_t i);
void gsl_vector_set(gsl_vector *v, size_t i, double x);
```

gsl_matrix es una estructura con 6 componentes.

```
typedef struct {
    size_t size1;
    size_t size2;
    size_t tda;
    double *data;
    gsl_block *block;
    int owner;
} gsl_matrix;
```

El número de filas es *size*1 y el de columnas es *size*2. El apuntador data da la posición del primer elemento del arreglo. Los datos están almacenadas por filas.

Para crear y liberar memoria, se usan las funciones:

```
gsl_matrix *gsl_matrix_alloc(size_t n1, size_t n2);
void gsl_matrix_free(gsl_matrix *m);
```

Solución de un SEL en GSL

- El código luGsl.c muestra como usar la librería GSL para resolver un sistema de ecuaciones lineales usando factorización LU.
- La función *gsl_linalg_LU_decomp* que calcula la factorización contempla el intercambio de fila, de modo que además de la factorización devuelve la permutación.
- El código *luGsl2.c* lee la información de los archivos con las funciones vistas en la clase anterior y muestra como pasar esta información a las estructuras de GSL sin tener que duplicar la memoria.