Introduction to Artificial Neural Network Models

Definition

Neural Network

A broad class of models that mimic functioning inside the human brain

There are various classes of NN models.

They are different from each other depending on

- □ Problem types
 Prediction, Classification, Clustering
- ☐ Structure of the model
- Model building algorithm

For this discussion we are going to focus on Feed-forward Back-propagation Neural Network (used for Prediction and Classification problems)

A bit of biology . . .

Most important functional unit in human brain – a class of cells called – **NEURON**

Source: heart.cbl.utoronto.ca/ ~berj/projects.html

Schematic

- Dendrites Receive information
 Cell Body Process information
 - Axon Carries processed information to other neurons
- Synapse Junction between Axon end and Dendrites of other Neurons

An Artificial Neuron

- Receives Inputs $X_1 X_2 ... X_p$ from other neurons or environment
- Inputs fed-in through connections with 'weights'
- Total Input = Weighted sum of inputs from all sources
- Transfer function (Activation function) converts the input to output
- Output goes to other neurons or environment

Transfer Functions

There are various choices for Transfer / Activation functions

$$f(x) = (e^x - e^{-x}) / (e^x + e^{-x})$$

Logistic

$$f(x) = e^{x} / (1 + e^{x})$$

Threshold

$$f(x) = \begin{cases} 1 & \text{if } x >= 1 \\ 0 & \text{if } x < 0 \end{cases}$$

(Perceptron)

Linearly and non-linearly separable

Linearly separable – OR / AND Linearly inseparable - XOR

Single layer perceptron

Output space for AND gate

AND

Input 1

Input 2

- Output space for XOR gate
- Demonstrates need for hidden layer

ANN - Feed-forward Network

A collection of neurons form a 'Layer'

Input Layer

 Each neuron gets ONLY one input, directly from outside

Hidden Layer

Connects Input and Output layers

Output Layer

Output of each neuron directly goes to outside

ANN - Feed-forward Network

Number of hidden layers can be **None One More**

ANN – Feed-forward Network

Couple of things to note

- •Within a layer neurons are NOT connected to each other.
- •Neuron in one layer is connected to neurons ONLY in the NEXT layer. (Feed-forward)
- Jumping of layer is NOT allowed

One particular ANN model

What do we mean by 'A particular Model '?

Input: $X_1 X_2 X_3$ Output: Y Model: $Y = f(X_1 X_2 X_3)$

For an ANN: Algebraic form of f(.) is too complicated to write down.

However it is characterized by

- # Input Neurons
- # Hidden Layers
- # Neurons in each Hidden Layer
- # Output Neurons
- WEIGHTS for all the connections

'Fitting 'an ANN model = Specifying values for all those parameters

One particular Model – an Example **Model:** $Y = f(X_1 X_2 X_3)$ Input: $X_1 X_2 X_3$ Output: Y **Parameters Example** # Input Neurons 0.6 -0.1 # Hidden Layers 0.7 0.5 # Hidden Layer Size # Output Neurons 0.1 -0.2 Weights **Specified** Decided by the structure Free parameters of the problem # Input Nrns = # of X's # Output Nrns = # of Y's

Prediction using a particular ANN Model

Input: $X_1 X_2 X_3$

0.2

f(0.2) = 0.55

Output: Y

f(0.9) = 0.71

0.71

Model: $Y = f(X_1 X_2 X_3)$

$$X_1 = 1$$
 $X_2 = -1$ $X_3 = 2$ 0.6 -0.1 0.1 0.7

$$0.2 = 0.5 * 1 - 0.1*(-1) - 0.2 * 2$$

$$f(0.2) = e$$

$$f(x) = e^x / (1 + e^x)$$

 $f(0.2) = e^{0.2} / (1 + e^{0.2}) = 0.55$

0.55

Predicted Y = 0.478

 $\begin{array}{c}
-0.087 \\
f(-0.087) = 0.478 \\
\hline
0.478
\end{array}$

Suppose Actual Y = 2

Then Prediction Error = (2-0.478) = 1.522