

Oracle® Developer

▼ Search

Updated: June

Q

2016

2.3 Underflow

Underflow occurs, roughly speaking, when the result of an arithmetic operation is so small that it cannot be stored in its intended destination format without suffering a rounding error that is larger than usual.

2.3.1 Underflow Thresholds

Table 11 shows the underflow thresholds for single, double, and double-extended precision.

Table 11 Underflow Thresholds

Destination Precision	Underflow Threshold	
single	smallest normal number largest subnormal number	1.17549435e-38 1.17549421e-38
double	smallest normal number largest subnormal number	2.2250738585072014e-308 2.2250738585072009e-308
quadruple	smallest normal number largest subnormal number	3.3621031431120935062626778′ 4932 3.3621031431120935062626778′ 4932
double- extended (x86)	smallest normal number largest subnormal number	3.36210314311209350626e-4932 3.36210314311209350590e-4932

The positive subnormal numbers are those numbers between the smallest normal number and zero. Subtracting two (positive) tiny numbers that are near the smallest normal number might produce a subnormal number. Or, dividing the smallest positive normal number by two produces a subnormal result.

The presence of subnormal numbers provides greater precision to flaating point calculations that involve small numbers although the

Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.