attroduction
 PID
 Practical Session

 00
 0000
 0000000

Week 5: PID Controllers: Theory and Applications AE 315 - Systems and Control

Zeyad M. Manaa

Aerospace Engineering, King Fahd University of Petroleum and Minerals. Dhahran, Saudi Arabia.

September 25, 2023

- Introduction
- PID
- Practical Session
 - Step response
 - P controller
 - PD controller
 - PI controller
 - PID controller

- Introduction
- PID
- Practical Session
 - Step response
 - P controller
 - PD controller
 - PI controller
 - PID controller

Introduction

Figure: Block diagram of a process with feedback controller

- The three-term controller, i.e. proportional-integral-derivative (PID) controller, is a control loop feedback mechanism widely used in many industrial control systems.
- The PID controller algorithm's three parameters can be tuned to offer control action tailored to the needs of a particular process.

- Introduction
- PID
- Practical Session
 - Step response
 - P controller
 - PD controller
 - PI controller
 - PID controller

Basic control functions

Figure: Block diagram of feedback control system with PID controller

The input/output relation for a PID controller

$$u(t) = k_p \left[e(t) + \frac{1}{T_i} \int_0^t e(t)dt + T_d \frac{de(t)}{dt} \right]$$

$$= k_p e(t) + k_i \int_0^t e(t)dt + k_d \frac{de(t)}{dt}$$
(1)

- e(t) = r(t) y(t) is the error signal, u(t) is the control signal.
- ullet k_p is the proportional gain, T_i is the integral time, T_d is the derivative time
- ullet $k_i=rac{k_p}{T_i}$ is the integral gain, $k_d=k_pT_d$ is the derivative gain.

Basic control functions

The general transfer function of the PID can be written as

$$C(s) = \frac{U(s)}{E(s)} = k_p + \frac{k_i}{s} + k_d s$$
(2)

1 P Controller $(k_d = k_i = 0)$

$$C(s) = k_p$$

2 PI Controller $(k_d = 0)$

$$C(s) = k_p + \frac{k_i}{s}$$

3 PD Controller $(k_i = 0)$

$$C(s) = k_p + k_d s$$

Effects of the PID gain values

CL RESPONSE	RISE TIME	OVERSHOOT	SETTLING TIME	S-S ERROR
Кр	Decrease	Increase	Small Change	Decrease
Ki	Decrease	Increase	Increase	Eliminate
Kd	Small Change	Decrease	Decrease	Small Change

Figure: The effect of PID gains on the system's step response

- Introduction
- PID
- Practical Session
 - Step response
 - P controller
 - PD controller
 - PI controller
 - PID controller

 PID
 Practical Session

 0000
 0●0000

Solving ODEs Cont.

Example (Case Study)

Consider the mechanical system depicted in the figure. The input signal is given by the external force F(t)=u(t) N for $t\geq 0$ acting on the mass m=1 kg. The displacement x(t) of the mass is the output signal. The displacement is measured from the equilibrium position in the absence of the external force. Let k=5 N/m be the spring constant, c=2 Ns/m be the damping coefficient.

Figure: Mechanical system

Step response

Figure: Step response of the system

P controller

Effects of P controller

- Proportional term, P, causes a corrective control actuation proportional to the error.
- The system with P controller will usually have nonzero steady-state errors. As kp increases, then the static position error decreases. It is difficult to ensure both good transient response accuracy and steadystate performance.

Figure: P controller characteristics

PD Controller

- The derivative term, D, gives a predictive capability.
- ② Derivative action tends to have a stabilizing effect.
- PD controller damps the behaviour and reduces maximum overshoot
- It improves the transient response.

Figure: PD controller chs.

PI Controller

- The integral term, I, gives a correction *proportional to the integral* of the error.
- PI reduces the steady-state error as compared to P controller.
- The transient response may be slowed down as an effect of PI controller.

Figure: PI controller chs.

PID combined controller

- The features of each of the PI and PD controllers are utilized.
- Improves both steady-state errors as well as transient response specifications.
- The PID controller algorithm involves three separate constant parameters that need to be tuned.

Figure: PID controller Chs.