Rank-based Approach on Graphs with Structured Neighborhood

Benjamin Bergougnoux* and Mamadou Moustapha Kanté†

*IRIF, CNRS, Université Paris Diderot

† LIMOS, CNRS, Université Clermont Auvergne

October 11, 2018

An algorithm:

▶ take an input
⇒ two numbers, a graph, ...

An algorithm:

- ➤ take an input
 ⇒ two numbers, a graph, ...
- execute some simple instructionsadditions, loops, conditional stuff...

An algorithm:

- ➤ take an input
 ⇒ two numbers, a graph, ...
- ▶ execute some simple instructions⇒ additions, loops, conditional stuff...
- ► (may) terminate and return an output ⇒ yes, no, a number, ...

An algorithm:

- ▶ take an input
 ⇒ two numbers, a graph, ...
- ▶ execute some simple instructions ⇒ additions, loops, conditional stuff...
- ► (may) terminate and return an output ⇒ yes, no, a number, ...
- solves a problem

Computers are $\overline{EVERYWHERE}$ \Rightarrow we need efficient algorithms !

► Efficient = it uses few resources ⇒ time, memory,...

Computers are $\overline{EVERYWHERE}$ \Rightarrow we need efficient algorithms !

- ► Efficient = it uses few resources ⇒ time, memory,...
- ► Time is very important!

Computers are $EVERYWHERE \Rightarrow$ we need efficient algorithms!

- ► Efficient = it uses few resources ⇒ time, memory,...
- ► Time is very important!
- ▶ We measure running times in function of input size in the worst case

Computers are $EVERYWHERE \Rightarrow$ we need efficient algorithms!

- ► Efficient = it uses few resources ⇒ time, memory,...
- ► Time is very important!
- We measure running times in function of input size in the worst case
- ▶ In theory, constant factor does not matter.
 - \Longrightarrow We use big O notation

Seeking an element in a sequence: O(n)

11	6	78	1	0	54	7	25	42	42	33	9	
----	---	----	---	---	----	---	----	----	----	----	---	--

If the sequence is sorted: $O(\log(n))$

If the sequence is sorted: $O(\log(n))$

If the sequence is sorted: $O(\log(n))$

If the sequence is sorted: $O(\log(n))$

Some problems are harder than others!

Computing the GCD of two numbers. $\Rightarrow O(n^2)$ polynomial in the input size.

Some problems are harder than others!

- ► Computing the GCD of two numbers. $\implies O(n^2)$ polynomial in the input size.
- Finding the divisors of an integer N $\Longrightarrow O(\sqrt{N}) = O(2^{n/2})$ exponential in the input size.

Some problems are harder than others!

- ▶ Computing the GCD of two numbers. $\implies O(n^2)$ polynomial in the input size.
- Finding the divisors of an integer N $\Longrightarrow O(\sqrt{N}) = O(2^{n/2})$ exponential in the input size.

▶ Does a graph admit a Hamiltonian Cycle ? $\implies O(2^n \cdot n^2)$ exponential in the input size.

50 years of intensive research:

▶ No polynomial time algo. for the Hamiltonian Cycle problem.

50 years of intensive research:

- ▶ No polynomial time algo. for the Hamiltonian Cycle problem.
- ▶ No intensive research that such an algorithm does not exist.

50 years of intensive research:

- ▶ No polynomial time algo. for the Hamiltonian Cycle problem.
- ▶ No intensive research that such an algorithm does not exist.

Solution: comparing problem hardness:

50 years of intensive research:

- ▶ No polynomial time algo. for the Hamiltonian Cycle problem.
- ▶ No intensive research that such an algorithm does not exist.

- Solution: comparing problem hardness:
 - lacktriangle If we can solve A quickly, then we can solve B quickly too.

50 years of intensive research:

- ▶ No polynomial time algo. for the Hamiltonian Cycle problem.
- ▶ No intensive research that such an algorithm does not exist.

- Solution: comparing problem hardness:
 - lacktriangle If we can solve A quickly, then we can solve B quickly too.
 - Finding the divisors of an integer harder than computing the GCD.

NP-hardness

NP

Set of all decision (yes-no) problems whose solutions are easily checkable.

 \implies example: Hamiltonian Cycle problem.

NP-hardness

NP

Set of all decision (yes-no) problems whose solutions are easily checkable. \Rightarrow example: Hamiltonian Cycle problem.

NP-hard [Cook / Levin 70s]

A problem is NP-hard if it is at least as hard as every problem in NP:

- ▶ If it admits a polynomial time algorithm,
- then every problem in NP admits a polynomial time algorithm!

NP-hardness

NP

Set of all decision (yes-no) problems whose solutions are easily checkable.

⇒ example: Hamiltonian Cycle problem.

NP-hard [Cook / Levin 70s]

A problem is NP-hard if it is at least as hard as every problem in NP:

- ▶ If it admits a polynomial time algorithm,
- then every problem in NP admits a polynomial time algorithm!

Theorem (Karp 1972)

Hamiltonian Cycle is NP-hard!

A dead end?

Theorem (In particular: Garey and Johnson 1979)

Thousands of problems are NP-hard!

No one was able to design a polynomial time algorithm for one of them !

A dead end?

Theorem (In particular: Garey and Johnson 1979)

Thousands of problems are NP-hard!

No one was able to design a polynomial time algorithm for one of them !

Conjecture

 $P \neq NP$: No polynomial algorithms for NP-hard problems.

P vs NP problem: one of the biggest open questions in discrete math.

NP-hard problems everywhere!

- We cannot ignore them !
- \implies They have tons of applications in the real-world in many fields:
 - ► Computer Science,
 - ► Industries, enterprises⇒ Optimization, logistic, planning,...
 - ▶ Biology⇒ DNA sequencing,...
 - Chemistry
 - Social choice

► There exists efficient softwares for some NP-hard problems.

- ► There exists efficient softwares for some NP-hard problems.
- ► Wait... what ?

- ► There exists efficient softwares for some NP-hard problems.
- ► Wait... what ?
- ▶ These softwares are not efficient on all instances.
 - \implies Do not refute P \neq NP!

- ► There exists efficient softwares for some NP-hard problems.
- ► Wait... what ?
- ▶ These softwares are not efficient on all instances.
 - \implies Do not refute P \neq NP!
- ▶ NP-hard does not mean hard on every instances

- ► There exists efficient softwares for some NP-hard problems.
- ► Wait... what ?
- ▶ These softwares are not efficient on all instances.
 - \implies Do not refute P \neq NP!
- ▶ NP-hard does not mean hard on every instances
- Real-world instances are not arbitrary
 - \Longrightarrow They admit hidden structures

- There exists efficient softwares for some NP-hard problems.
- ▶ Wait... what ?
- ▶ These softwares are not efficient on all instances.
 - \implies Do not refute P \neq NP!
- ▶ NP-hard does not mean hard on every instances
- ► Real-world instances are not arbitrary
 - ⇒ They admit hidden structures

Question

Can the theory explain these good performances?

Can we characterize these hidden structures?

Classical approach

ightharpoonup Consider the instances of a problem $\mathcal P$ satisfying some property.

Classical approach

- ightharpoonup Consider the instances of a problem $\mathcal P$ satisfying some property.
- ▶ Design a polynomial time algorithm for these instances.

Classical approach

- ightharpoonup Consider the instances of a problem $\mathcal P$ satisfying some property.
- ▶ Design a polynomial time algorithm for these instances.
- $\triangleright \mathcal{P}$ is tractable on these instances!

Classical approach

- ightharpoonup Consider the instances of a problem ${\mathcal P}$ satisfying some property.
- ▶ Design a polynomial time algorithm for these instances.
- $ightharpoonup \mathcal{P}$ is tractable on these instances!
- Not very useful in practice

Classical approach

- ightharpoonup Consider the instances of a problem $\mathcal P$ satisfying some property.
- ▶ Design a polynomial time algorithm for these instances.
- $\triangleright \mathcal{P}$ is tractable on these instances!
- ► Not very useful in practice
- ▶ Real-world instances do not like nice mathematical properties

lacktriangle Consider some parameter on the instances of ${\cal P}$

- ightharpoonup Consider some parameter on the instances of $\mathcal P$
- ▶ Measure the running time in function of this parameter

- ightharpoonup Consider some parameter on the instances of ${\cal P}$
- Measure the running time in function of this parameter
- ► Try to design efficient algorithms:

- ightharpoonup Consider some parameter on the instances of ${\cal P}$
- Measure the running time in function of this parameter
- ► Try to design efficient algorithms:
 - ▶ FPT: $O(f(k) \cdot poly(n))$ for some function f.

- ightharpoonup Consider some parameter on the instances of $\mathcal P$
- Measure the running time in function of this parameter
- ► Try to design efficient algorithms:
 - ► FPT: $O(f(k) \cdot poly(n))$ for some function f.
 - ightharpoonup XP: $O(f(k) \cdot n^{g(k)})$ for some functions f and g

- ightharpoonup Consider some parameter on the instances of ${\cal P}$
- Measure the running time in function of this parameter
- ► Try to design efficient algorithms:
 - ► FPT: $O(f(k) \cdot poly(n))$ for some function f.
 - ightharpoonup XP: $O(f(k) \cdot n^{g(k)})$ for some functions f and g
- Distinguish different kind of NP-hard problems

- ightharpoonup Consider some parameter on the instances of ${\cal P}$
- Measure the running time in function of this parameter
- ► Try to design efficient algorithms:
 - ▶ FPT: $O(f(k) \cdot poly(n))$ for some function f.
 - ightharpoonup XP: $O(f(k) \cdot n^{g(k)})$ for some functions f and g
- ▶ Distinguish different kind of NP-hard problems
- ► Generalize many results of the classical approach

- ightharpoonup Consider some parameter on the instances of ${\cal P}$
- Measure the running time in function of this parameter
- ► Try to design efficient algorithms:
 - ► FPT: $O(f(k) \cdot poly(n))$ for some function f.
 - ightharpoonup XP: $O(f(k) \cdot n^{g(k)})$ for some functions f and g
- Distinguish different kind of NP-hard problems
- ► Generalize many results of the classical approach
- ► Good in practice!

► Introduced in the 90's by Downey and Fellows.

- ► Introduced in the 90's by Downey and Fellows.
- ▶ Now a mainstream topic of theoretical computer science.
 - \Longrightarrow Thousands of papers !

- ► Introduced in the 90's by Downey and Fellows.
- ▶ Now a mainstream topic of theoretical computer science.
 - \Longrightarrow Thousands of papers !
- Expansion in many directions.
 - ⇒ Approximation algorithms, Algebra: matroid,...

- ► Introduced in the 90's by Downey and Fellows.
- Now a mainstream topic of theoretical computer science. ⇒ Thousands of papers!
- Expansion in many directions.
 - ⇒ Approximation algorithms, Algebra: matroid,...
- Provide tools for designing efficient algorithms.

- ▶ Introduced in the 90's by Downey and Fellows.
- Now a mainstream topic of theoretical computer science. ⇒ Thousands of papers!
- Expansion in many directions.
 Approximation algorithms, Algebra: matroid,...
- Provide tools for designing efficient algorithms.
- ▶ But also tools for proving conditional lower bounds.
 ⇒ W[1]-hardness: no FPT.

- ▶ Introduced in the 90's by Downey and Fellows.
- Now a mainstream topic of theoretical computer science. ⇒ Thousands of papers!
- Expansion in many directions.
 Approximation algorithms, Algebra: matroid,...
- ▶ Provide tools for designing efficient algorithms.
- ▶ But also tools for proving conditional lower bounds.
 - \implies W[1]-hardness: no FPT.
 - \Longrightarrow Unless ETH fails, there is no $2^{o(k)} \cdot n^{O(1)}$ algorithm...

Graphs offer a wide range of parameters

maximum degree (the largest number of neighbors of a vertex),

Graphs offer a wide range of parameters

- maximum degree (the largest number of neighbors of a vertex),
- ▶ the diameter (the largest distance between two vertices),

Graphs offer a wide range of parameters

- maximum degree (the largest number of neighbors of a vertex),
- ▶ the diameter (the largest distance between two vertices),
- the degeneracy,

Graphs offer a wide range of parameters

- maximum degree (the largest number of neighbors of a vertex),
- ▶ the diameter (the largest distance between two vertices),
- the degeneracy,
- the genus, etc.

Graphs offer a wide range of parameters

- maximum degree (the largest number of neighbors of a vertex),
- ▶ the diameter (the largest distance between two vertices),
- the degeneracy,
- ► the genus, etc.

There exists some special kind of parameters: width measures!

► Divide and Conquer or Dynamic programming:

- ► Divide and Conquer or Dynamic programming:
 - Divide recursively main problem into subproblems

- ► Divide and Conquer or Dynamic programming:
 - Divide recursively main problem into subproblems
 - Stop when subproblems is easy

- ► Divide and Conquer or Dynamic programming:
 - Divide recursively main problem into subproblems
 - Stop when subproblems is easy
 - Solves all subproblems recursively (bottom-up)

Example: Hamiltonian Cycle

► How to use the simple boundary:

Example: Hamiltonian Cycle

- How to use the simple boundary:
 - Observe how partial solutions interact with it.

Example: Hamiltonian Cycle

- How to use the simple boundary:
 - Observe how partial solutions interact with it.
 - Bound the amount of information we need to store.

Certainly the most studied and famous graph parameter !

► Measure the tree-likeness.

Certainly the most studied and famous graph parameter !

- ► Measure the tree-likeness.
- Defined from tree-decomposition.

Certainly the most studied and famous graph parameter !

- ► Measure the tree-likeness.
- Defined from tree-decomposition.
- For many NP-hard problems : $f(tw) \cdot n$ time algorithm thanks to Courcelle's theorem.

Certainly the most studied and famous graph parameter !

- ► Measure the tree-likeness.
- Defined from tree-decomposition.
- For many NP-hard problems : $f(tw) \cdot n$ time algorithm thanks to Courcelle's theorem.
- ▶ Computable efficiently: $2^{O(\mathsf{tw})} \cdot n$ constant factor approximation.

Tree-width against NP-hard problems

For problems with a locally checkable property:

Dominating Set, Independent Set, Vertex Cover, Maximum Induced Matching,...

Tree-width against NP-hard problems

For problems with a locally checkable property:

- Dominating Set, Independent Set, Vertex Cover, Maximum Induced Matching,...
- Naive algorithm: $2^{O(\mathsf{tw})} \cdot n$.

Tree-width against NP-hard problems

For problems with a locally checkable property:

- Dominating Set, Independent Set, Vertex Cover, Maximum Induced Matching,...
- Naive algorithm: $2^{O(\mathsf{tw})} \cdot n$.
- Naive lower bound: $2^{o(\mathsf{tw})} \cdot n^{O(1)}$ unless ETH fails.

For problems with a locally checkable property:

- ▶ Dominating Set, Independent Set, Vertex Cover, Maximum Induced Matching,...
- Naive algorithm: $2^{O(\mathsf{tw})} \cdot n$.
- Naive lower bound: $2^{o(\mathsf{tw})} \cdot n^{O(1)}$ unless ETH fails.
- Being naive is not that bad for these problems!

Problems with a global constraint (connectivity, acyclicity):

► Feedback Vertex Set, Hamiltonian Cycle, Connected Vertex Cover, Connected Dominating Set,...

- ► Feedback Vertex Set, Hamiltonian Cycle, Connected Vertex Cover, Connected Dominating Set,...
- Naive algorithm: $tw^{O(tw)} \cdot n$.

- ► Feedback Vertex Set, Hamiltonian Cycle, Connected Vertex Cover, Connected Dominating Set,...
- Naive algorithm: $tw^{O(tw)} \cdot n$.
- ▶ We need to know the connected components of the partial solutions ⇒ Storing partitions of tw vertices.

- ► Feedback Vertex Set, Hamiltonian Cycle, Connected Vertex Cover, Connected Dominating Set,...
- Naive algorithm: $tw^{O(tw)} \cdot n$.
- ▶ We need to know the connected components of the partial solutions ⇒ Storing partitions of tw vertices.
- Naive lower bound: $2^{o(tw)} \cdot n^{O(1)}$ unless ETH fails.

- ► Feedback Vertex Set, Hamiltonian Cycle, Connected Vertex Cover, Connected Dominating Set,...
- Naive algorithm: $tw^{O(tw)} \cdot n$.
- ▶ We need to know the connected components of the partial solutions ⇒ Storing partitions of tw vertices.
- Naive lower bound: $2^{o(\mathsf{tw})} \cdot n^{O(1)}$ unless ETH fails.
- ▶ Being naive is not enough. ⇒ Can we have $2^{O(\mathsf{tw})} \cdot n^{O(1)}$ algorithm or $\mathsf{tw}^{O(\mathsf{tw})} \cdot n^{O(1)}$ is optimal ?

Surprisingly:

Theorem [Cygan et al. FOCS 2011]

Monte Carlo $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$ time algorithms for many connectivity problems.

Surprisingly:

Theorem [Cygan et al. FOCS 2011]

Monte Carlo $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$ time algorithms for many connectivity problems.

Theorem [Bodlaender et al. 2015]

Deterministic $2^{O(\mathsf{tw}(G))} \cdot n$ time algorithms for a wider range of connectivity problems.

Other width measures

Main drawback of tree-width : can be bounded only on sparse graph \implies cliques have tree-width n-1.

- ▶ Dense graphs can be simple too: cliques, distance hereditary graphs,...
- ▶ Many NP-hard problems are tractable on these dense graph classes.
- ► This can be explained through other width measures!
 ⇒ clique-width, rank-width, maximum induced matching width,...
- Most of these width measures are defined through the notion of rooted layout.

Rooted Layout

A rooted layout of a graph G is a pair (T, δ) with

- T a rooted tree,
- \blacktriangleright δ a bijection between the leaves of T and the vertices of G.

Each node x of T is associated with a vertex set V_x of G:

f-width

Given a set function $f: 2^{V(G)} \to \mathbb{N}$, we define the f-width of

- ▶ a rooted layout (T, δ) as $\max_{x \in V(T)} f(V_x)$,
- ▶ $f(G) := \min f(\mathcal{L})$ over the rooted layout \mathcal{L} of G.
- ▶ f is intend to measure the simplicity of a boundary

Rank-width

The rank-width of G is the rw-width of G where $\operatorname{rw}(A)$ is the rank of the adjacency matrix between A and \overline{A} .

Mim-width

The mim-width of G is the mim-width of G where $\min(A)$ is the size of a maximum induced matching of the bipartite graph between A and \overline{A} .

Let G be a graph and $A \subseteq V(G)$.

d-neighbor equivalence

For $d \in \mathbb{N}$, $X, Y \subseteq A$ are d-neighbor equivalent over A if for all $v \in \overline{A}$:

- $\blacktriangleright \ \min(d, |N(v) \cap X|) = \min(d, |N(v) \cap Y|).$
- ▶ (If d = 1, then $N(X) \cap \overline{A} = N(Y) \cap \overline{A}$.

X and Y are 2-neighbor equivalent but not 3-neighbor equivalent.

d-neighbor width

For every $A\subseteq V(G)$, $\mathrm{s\text{-}nec}_d(A)$ is the maximum between the number of equivalence classes of

- lacktriangle the d-neighbor equivalence relation over A,
- the d-neighbor equivalence relation over \overline{A} .

d-neighbor width

For every $A\subseteq V(G)$, $\operatorname{s-nec}_d(A)$ is the maximum between the number of equivalence classes of

- ▶ the *d*-neighbor equivalence relation over *A*,
- ▶ the d-neighbor equivalence relation over \overline{A} .

Given a rooted layout \mathcal{L} , we have the following upper bounds on s-nec(\mathcal{L})

Clique-width	Rank-width	Mim-width
$(d+1)^{cw(\mathcal{L})}$	$2^{d\cdot rw(\mathcal{L})^2}$	$n^{d \cdot mim(\mathcal{L})}$

Thanks to *d*-neighbor width, we obtained:

▶ the best (up to a constant in the exponent) algorithm

Thanks to d-neighbor width, we obtained:

- the best (up to a constant in the exponent) algorithm
- ▶ for problems with a locally checkable property

Thanks to d-neighbor width, we obtained:

- the best (up to a constant in the exponent) algorithm
- for problems with a locally checkable property
- parameterized by: tree-width, clique-width, rank-width, mim-width,...

Thanks to d-neighbor width, we obtained:

- the best (up to a constant in the exponent) algorithm
- for problems with a locally checkable property
- parameterized by: tree-width, clique-width, rank-width, mim-width,...

Thanks to d-neighbor width, we obtained:

- the best (up to a constant in the exponent) algorithm
- for problems with a locally checkable property
- parameterized by: tree-width, clique-width, rank-width, mim-width,...

We can design $\operatorname{s-nec}_d(\mathcal{L}) \cdot n^c$ time algorithm for some constants d and c.

What we do

Theorem [Bodlaender et al. 2015]

Deterministic $2^{O(\mathsf{tw}(G))} \cdot n$ time algorithms for a wider range of connectivity problems.

Bodlaender et al. introduced a technique call rank-based approach.

B. and Kanté 2018

We can use the rank-based approach with d-neighbor-width to design:

- ightharpoonup s-nec $_d(\mathcal{L}) \cdot n^c$ time algorithm
- ▶ for the connected variant of problem with locally checkable property
 ⇒ Connected Dominating Set, Connected Vertex Cover,...

Consequences

Corollary

We obtained algorithms with the following running times

Clique-width	Rank-width	Mim-width
$(d+1)^{cw(\mathcal{L})} \cdot n$	$2^{d \cdot rw(\mathcal{L})^2} \cdot n^{O(1)}$	$n^{d\cdot mim(\mathcal{L})}$

These running times match (up to a constant in the exponent) the best known running times for Vertex Cover and Dominating Set.

Extension to Acyclicity

B. and Kanté

We obtained algorithms with the following running times

Clique-width	Rank-width	Mim-width
$(d+1)^{cw(\mathcal{L})} \cdot n$	$2^{d \cdot rw(\mathcal{L})^2} \cdot n^{O(1)}$	$n^{d \cdot mim(\mathcal{L})}$

for the acyclic variant of problems with locally checkable property \implies Maximum Induced Tree, Feedback Vertex Set, Longest Induced Path,...

- ▶ We did not obtained s-nec_d(\mathcal{L}) · n^c time algorithm...
- ightharpoonup But we heavily rely on the d-neighbor equivalence relation!

Conclusion

- ► *d*-neighbor equivalence is incredibly useful.
- ► Not only for local problems.
- ► Works also for tree-width.
 - ⇒ Maximum matching width!