## **CMKT2207**

## SURFACE MOUNT COMPLEMENTARY SILICON TRANSISTORS





www.centralsemi.com

## **DESCRIPTION:**

The CENTRAL SEMICONDUCTOR CMKT2207 consists of one 2222A NPN transistor and an individually isolated complementary 2907A PNP transistor, manufactured by the epitaxial planar process and epoxy molded in an SOT-363 surface mount package. This ULTRAmini™ device has been designed for small signal general purpose and switching applications.

**MARKING CODE: K70** 

| MAXIMUM RATINGS: (T <sub>A</sub> =25°C)    | SYMBOL                            | NPN (Q1) | PNP (Q2) | UNITS |
|--------------------------------------------|-----------------------------------|----------|----------|-------|
| Collector-Base Voltage                     | $V_{CBO}$                         | 75       | 60       | V     |
| Collector-Emitter Voltage                  | VCEO                              | 40       | 60       | V     |
| Emitter-Base Voltage                       | V <sub>EBO</sub>                  | 6.0      | 5.0      | V     |
| Continuous Collector Current               | lc                                | 60       | 00       | mA    |
| Power Dissipation                          | $P_{D}$                           | 35       | 50       | mW    |
| Operating and Storage Junction Temperature | T <sub>J</sub> , T <sub>stg</sub> | -65 to   | +150     | °C    |
| Thermal Resistance                         | $\Theta_{JA}$                     | 35       | 57       | °C/W  |

# **ELECTRICAL CHARACTERISTICS PER TRANSISTOR:** (T<sub>A</sub>=25°C unless otherwise noted)

|                       | NPN (Q1)                                          |     | PI  | PNP (Q2) |     |       |
|-----------------------|---------------------------------------------------|-----|-----|----------|-----|-------|
| SYMBOL                | TEST CONDITIONS                                   | MIN | MAX | MIN      | MAX | UNITS |
| I <sub>CBO</sub>      | V <sub>CB</sub> =60V                              | -   | 10  | -        | -   | nA    |
| I <sub>CBO</sub>      | V <sub>CB</sub> =50V                              | -   | -   | -        | 10  | nA    |
| I <sub>CBO</sub>      | V <sub>CB</sub> =60V, T <sub>A</sub> =125°C       | -   | 10  | -        | -   | nA    |
| I <sub>CBO</sub>      | V <sub>CB</sub> =50V, T <sub>A</sub> =125°C       | -   | -   | -        | 10  | nA    |
| I <sub>EBO</sub>      | V <sub>EB</sub> =3.0V                             | -   | 10  | -        | -   | nA    |
| ICEV                  | $V_{CE}=60V$ , $V_{EB(OFF)}=3.0V$                 | -   | 10  | -        | -   | nA    |
| ICEV                  | V <sub>CE</sub> =30V, V <sub>EB(OFF)</sub> =500mV | -   | -   | -        | 50  | nA    |
| BVCBO                 | I <sub>C</sub> =10μA                              | 75  | -   | 60       | -   | V     |
| BVCEO                 | I <sub>C</sub> =10mA                              | 40  | -   | 60       | -   | V     |
| $BV_{EBO}$            | I <sub>E</sub> =10μA                              | 6.0 | -   | 5.0      | -   | V     |
| VCE(SAT)              | I <sub>C</sub> =150mA, I <sub>B</sub> =15mA       | -   | 0.3 | -        | 0.4 | V     |
| VCE(SAT)              | I <sub>C</sub> =500mA, I <sub>B</sub> =50mA       | -   | 1.0 | -        | 1.6 | V     |
| VBE(SAT)              | I <sub>C</sub> =150mA, I <sub>B</sub> =15mA       | 0.6 | 1.2 | -        | 1.3 | V     |
| V <sub>BE</sub> (SAT) | I <sub>C</sub> =500mA, I <sub>B</sub> =50mA       | -   | 2.0 | -        | 2.6 | V     |
| h <sub>FE</sub> ` ´   | $V_{CE}$ =10V, $I_{C}$ =0.1mA                     | 35  | -   | 75       | -   |       |
| h <sub>FE</sub>       | $V_{CE}$ =10V, $I_{C}$ =1.0mA                     | 50  | -   | 100      | -   |       |
| h <sub>FE</sub>       | V <sub>CE</sub> =10V, I <sub>C</sub> =10mA        | 75  | -   | 100      | -   |       |
| h <sub>FE</sub>       | V <sub>CE</sub> =10V, I <sub>C</sub> =150mA       | 100 | 300 | 100      | 300 |       |
| h <sub>FE</sub>       | V <sub>CE</sub> =1.0V, I <sub>C</sub> =150mA      | 50  | -   | -        | -   |       |
| h <sub>FE</sub>       | $V_{CE}$ =10V, $I_{C}$ =500mA                     | 40  | -   | 50       | -   |       |
| fT                    | $V_{CE}$ =20V, $I_{C}$ =20mA, f=100MHz            | 300 | -   | -        | -   | MHz   |
| fT                    | $V_{CE}$ =20V, $I_{C}$ =50mA, f=100MHz            | -   | -   | 200      | -   | MHz   |
| C <sub>ob</sub>       | $V_{CB}$ =10V, $I_{E}$ =0, f=1.0MHz               | -   | 8.0 | -        | 8.0 | pF    |
| C <sub>ib</sub>       | $V_{EB}$ =0.5V, $I_{C}$ =0, f=1.0MHz              | -   | 25  | -        | -   | pF    |

R4 (13-January 2010)

## **CMKT2207**





**ELECTRICAL CHARACTERISTICS PER TRANSISTOR - Continued:**  $(T_A = 25^{\circ}C)$ 

|                   |                                                                                           | NPN  | l (Q1) | PNP (Q2) |     |                   |
|-------------------|-------------------------------------------------------------------------------------------|------|--------|----------|-----|-------------------|
| SYMBOL            | TEST CONDITIONS                                                                           | MIN  | MAX    | MIN      | MAX | UNITS             |
| C <sub>ib</sub>   | $V_{EB}$ =2.0V, $I_C$ =0, f=1.0MHz                                                        | -    | -      | -        | 30  | рF                |
| h <sub>ie</sub>   | V <sub>CE</sub> =10V, I <sub>C</sub> =1.0mA, f=1.0kHz                                     | 2.0  | 8.0    | -        | -   | kΩ                |
| h <sub>ie</sub>   | V <sub>CE</sub> =10V, I <sub>C</sub> =10mA, f=1.0kHz                                      | 0.25 | 1.25   | -        | -   | kΩ                |
| h <sub>re</sub>   | V <sub>CE</sub> =10V, I <sub>C</sub> =1.0mA, f=1.0kHz                                     | -    | 8.0    | -        | -   | x10 <sup>-4</sup> |
| h <sub>re</sub>   | V <sub>CE</sub> =10V, I <sub>C</sub> =10mA, f=1.0kHz                                      | -    | 4.0    | -        | -   | x10 <sup>-4</sup> |
| h <sub>fe</sub>   | V <sub>CE</sub> =10V, I <sub>C</sub> =1.0mA, f=1.0kHz                                     | 50   | 300    | -        | -   |                   |
| h <sub>fe</sub>   | V <sub>CE</sub> =10V, I <sub>C</sub> =10mA, f=1.0kHz                                      | 75   | 375    | -        | -   |                   |
| h <sub>oe</sub>   | V <sub>CE</sub> =10V, I <sub>C</sub> =1.0mA, f=1.0kHz                                     | 5.0  | 35     | -        | -   | μS                |
| h <sub>oe</sub>   | V <sub>CE</sub> =10V, I <sub>C</sub> =10mA, f=1.0kHz                                      | 25   | 200    | -        | -   | μS                |
| rb'C <sub>C</sub> | $V_{CB}$ =10V, $I_E$ =20mA, f=31.8MHz                                                     | -    | 150    | -        | -   | ps                |
| NF                | $V_{CE}$ =10V, $I_{C}$ =100 $\mu$ A, $R_{S}$ =1.0 $k\Omega$ , f=1.0 $kHz$                 | -    | 4.0    | -        | -   | dB                |
| t <sub>on</sub>   | V <sub>CC</sub> =30V, V <sub>BE</sub> =0.5V, I <sub>C</sub> =150mA, I <sub>B1</sub> =15mA | -    | -      | -        | 45  | ns                |
| <sup>t</sup> d    | V <sub>CC</sub> =30V, V <sub>BE</sub> =0.5V, I <sub>C</sub> =150mA, I <sub>B1</sub> =15mA | -    | 10     | -        | 10  | ns                |
| t <sub>r</sub>    | V <sub>CC</sub> =30V, V <sub>BE</sub> =0.5V, I <sub>C</sub> =150mA, I <sub>B1</sub> =15mA | -    | 25     | -        | 40  | ns                |
| <sup>t</sup> off  | V <sub>CC</sub> =6.0V, I <sub>C</sub> =150mA, I <sub>B1</sub> =I <sub>B2</sub> =15mA      | -    | -      | -        | 100 | ns                |
| $t_S$             | V <sub>CC</sub> =30V, I <sub>C</sub> =150mA, I <sub>B1</sub> =I <sub>B2</sub> =15mA       | -    | 225    | -        | -   | ns                |
| $t_S$             | V <sub>CC</sub> =6.0V, I <sub>C</sub> =150mA, I <sub>B1</sub> =I <sub>B2</sub> =15mA      | -    | -      | -        | 80  | ns                |
| t <sub>f</sub>    | V <sub>CC</sub> =30V, I <sub>C</sub> =150mA, I <sub>B1</sub> =I <sub>B2</sub> =15mA       | -    | 60     | -        | -   | ns                |
| <sup>t</sup> f    | V <sub>CC</sub> =6.0V, I <sub>C</sub> =150mA, I <sub>B1</sub> =I <sub>B2</sub> =15mA      | -    | -      | -        | 30  | ns                |

# **SOT-363 CASE - MECHANICAL OUTLINE**







| DIMENSIONS |       |       |             |      |  |  |
|------------|-------|-------|-------------|------|--|--|
|            | INC   | HES   | MILLIMETERS |      |  |  |
| SYMBOL     | MIN   | MAX   | MIN         | MAX  |  |  |
| Α          | 0.004 | 0.010 | 0.10        | 0.25 |  |  |
| В          | 0.005 | -     | 0.12        | -    |  |  |
| С          | 0.000 | 0.004 | 0.00        | 0.10 |  |  |
| D          | 0.031 | 0.043 | 0.80        | 1.10 |  |  |
| Е          | 0.071 | 0.087 | 1.80        | 2.20 |  |  |
| F          | 0.051 |       | 1.30        |      |  |  |
| G          | 0.026 |       | 0.65        |      |  |  |
| Н          | 0.075 | 0.091 | 1.90        | 2.30 |  |  |
| J          | 0.043 | 0.055 | 1.10        | 1.40 |  |  |
| K          | 0.006 | 0.012 | 0.15        | 0.30 |  |  |

SOT-363 (REV: R2)

## LEAD CODE:

- 1) Emitter Q1
- 2) Base Q1
- 3) Collector Q2
- 4) Emitter Q2
- 5) Base Q2
- 6) Collector Q1

# MARKING CODE: K70

R4 (13-January 2010)

### **OUTSTANDING SUPPORT AND SUPERIOR SERVICES**



#### PRODUCT SUPPORT

Central's operations team provides the highest level of support to insure product is delivered on-time.

- Supply management (Customer portals)
- · Inventory bonding
- · Consolidated shipping options

- · Custom bar coding for shipments
- · Custom product packing

#### **DESIGNER SUPPORT/SERVICES**

Central's applications engineering team is ready to discuss your design challenges. Just ask.

- Free guick ship samples (2<sup>nd</sup> day air)
- Online technical data and parametric search
- SPICE models
- · Custom electrical curves
- · Environmental regulation compliance
- · Customer specific screening
- · Up-screening capabilities

- Special wafer diffusions
- PbSn plating options
- Package details
- Application notes
- · Application and design sample kits
- Custom product and package development

#### REQUESTING PRODUCT PLATING

- 1. If requesting Tin/Lead plated devices, add the suffix "TIN/LEAD" to the part number when ordering (example: 2N2222A TIN/LEAD).
- 2. If requesting Lead (Pb) Free plated devices, add the suffix "PBFREE" to the part number when ordering (example: 2N2222A PBFREE).

#### **CONTACT US**

## Corporate Headquarters & Customer Support Team

Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA

Main Tel: (631) 435-1110 Main Fax: (631) 435-1824

Support Team Fax: (631) 435-3388

www.centralsemi.com

Worldwide Field Representatives: www.centralsemi.com/wwreps

**Worldwide Distributors:** 

www.centralsemi.com/wwdistributors

For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: <a href="https://www.centralsemi.com/terms">www.centralsemi.com/terms</a>

www.centralsemi.com (001)

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Central Semiconductor: CMKT2207 CMKT2207 TR