Suggested solution, exam TMA4265, Stochastic Modeling, Aug 5, 2019

Task 1

a)

$$P(X_2 = 1 | X_0 = 1) = \sum_{k=1}^{3} P(X_1 = k, X_2 = 1 | X_0 = 1) = \sum_{k=1}^{3} P(X_1 = k | X_0 = 1) P(X_2 = 1 | X_1 = k)$$

Where the Markov property is used;

$$P(X_2 = 1 | X_1 = k, X_0 = 1) = P(X_2 = 1 | X_1 = k)$$
. This gives

$$P(X_2 = 1|X_0 = 1) = 0.6 \cdot 0.6 + 0.4 \cdot 0.3 + 0 \cdot 0 = 0.48$$

$$P(X_1 = 1 | X_0 = 1, X_2 = 1) = \frac{P(X_1 = 1, X_2 = 1 | X_0 = 1)}{P(X_2 = 1 | X_0 = 1)} = \frac{0.6 \cdot 0.6}{0.48} = 0.75$$

b)

Two possible realizations of the chains are visualized in Figure 1. The chain moves between state 1 and 3 before it gets absorbed in state 2, always from state 3.

The expected number of time steps to absorption $T = \min\{t; X_t = 2\}$, starting in state i is denoted $v_i = E(T|X_0 = i)$. By a first step analysis we get a system of equations:

$$v_1 = 1 + v_1 0.3 + v_3 0.7$$

 $v_2 = 0$
 $v_3 = 1 + v_1 0.5 + v_2 0.1 + v_3 0.4$

This simplifies to

$$v_1 = 1/0.7 + v_3$$

 $v_3 = 1 + (1/0.7 + v_3)0.5 + v_30.4$

Figure 1: Markov chain realizations of the Markov chain, plotted as a function of time.

With solution $v_3 = 17.1$ and $v_1 = 18.6$.

Task 2

This task is a random walk (gambler's ruin problem). See Pinsky and Karlin, Sect 3.5.3.

a)

Player A can move one up (Prob p) or one down (Prob q) at each time.

$$P(X_2 = i | X_0 = i) = P(X_2 = i, X_1 = i+1 | X_0 = i) + P(X_2 = i, X_1 = i-1 | X_0 = i)$$

 $P(X_2 = i | X_0 = i) = pq + qp = 2qp = 0.48$

In 4 time steps there are 6 combinations of moves that brings player A

back to state i. All have two down and two up (prob p^2q^2). This gives:

$$P(X_4 = i | X_0 = i) = 6p^2q^2 = 0.34$$

In 10 steps the player must take 5 steps up and 5 steps down. The combinatorial numbers of possible up/down moves getting back to i are $\binom{10}{5}$ = 252, giving

$$P(X_{10} = i | X_0 = i) = 252p^5q^5 = 0.20$$

The return probability is connected with calculations used for recurrence results. (See Pinsky and Karlin, Sect 4.3.3.)

b)

Define $\eta = q/p = 0.66$. $u_i = P(\text{Absorption in state 0})$, starting in $X_0 = i$. By a first step analysis:

$$u_0 = 1$$

$$u_i = pu_{i+1} + qu_{i-1}$$

$$u_N = 0$$

This means that $p(u_{i+1} - u_i) = q(u_i - u_{i-1})$. By summing all elements from 1 to i we have

$$u_i = 1 + (1 + \frac{q}{p} + \ldots + \frac{q^{i-1}}{p^{i-1}})(u_1 - 1)$$

and the formula for geometric series can be used, with kvotient $\eta = q/p$. But $u_N = 0$, and then we can solve for u_1 and subsequently for u_i getting

$$u_i = \frac{\eta^i - \eta^N}{1 - \eta^N}$$

(See also derivations in Sect 3.6 of Pinsky and Karlin book.)

 $\mathbf{c})$

By a fair game, we have chance of winning equal to $u_i = 1/2$. Solving for i we get

$$i = \frac{\log(\eta^{10} + 0.5(1 - \eta^{10}))}{\log(\eta)} = 1.63$$

Here $u_1 = 0.65$, $u_2 = 0.45$, so starting at i = 1 would favour player B, while starting at i = 2 or higher would favour player A.

Task 3

a)

Let N be the number of birds he sees; $N \sim \text{Poisson}(\mu)$. Let X be the number of birds he hits; $X|N \sim \text{Binomial}(N,p)$. Marginalizing over N gives

$$P(X = x) = \sum_{n} \frac{\mu^{n}}{n!} e^{-\mu} \binom{n}{x} p^{x} (1 - p)^{n - x}$$

$$P(X = x) = \frac{(\mu p)^x}{x!} e^{-\mu} \sum_{i} \frac{(\mu (1 - p))^i}{i!} = \frac{(\mu p)^x}{x!} e^{-\mu p}$$

which is a Poisson distribution with parameter μp . This means that the original number with intensity μ is thinned at random with probability p.

(See Example in Sect 2.1 of Pinsky and Karlin.)

b)

$$P(X(t) = 0) = \frac{(\lambda t)^0}{0!} e^{-\lambda t} = e^{-\lambda t}$$

We get $P(X(4) = 0) = e^{-0.75 \cdot 4} = 0.05$.

There are 4 hours from 8 to 12 and 2 hours from 8 to 12. The time intervals of the Poisson process are independent and intervals of equal length are equally likely to contain a single event. This means that one single event has chance 0.5 of happening in the first 2 hours. With two events this gives $P(X(2) = 2|X(4) = 2) = 0.5^2 = 0.25$.

The probability can also be derived from the formula of the Poisson distribution and assumption of independent increments in time intervals (see next point).

c)

The intensity is now inhomogeneous. X(2) is Poisson with parameter $\Lambda(2) = \int_0^2 (0.8 - 0.1t) dt = 0.8 \cdot 2 - 0.05 \cdot 2^2 = 1.4$, X(4) is Poisson with parameter $\Lambda(4) = \int_0^4 (0.8 - 0.1t) dt = 0.8 \cdot 4 - 0.05 \cdot 4^2 = 2.4$, and X(4) - X(2) is Poisson parameter $\Lambda(4) - \Lambda(2) = 1$ and independent of X(2).

From basic principles, using independent increments:

$$P(X(2) = 2|X(4) = 2) = \frac{P(X(2) = 2)P(X(4) - X(2) = 0)}{P(X(4) = 2)}$$

The probabilities are $P(X(2)=2)=\frac{1.4^2}{2}e^{-1.4}=0.24,\ P(X(4)=2)=\frac{2.4^2}{2}e^{-2.4}=0.26$ and $P(X(4)-X(2)=0)=\frac{1^0}{0!}e^{-1}=0.37.$ Then,

$$P(X(2) = 2|X(4) = 2) = \frac{0.24 \cdot 0.37}{0.26} = 0.34$$

Task 4

Figure 2: Transition diagram between the states, with rates indicated.

The long-term distribution, defined by probabilities $\pi_0, \pi_C, \pi_H, \pi_{CH}$ are

determined by setting long-term rates in and out of states equal:

$$\pi_{0}10 = \pi_{C}2 + \pi_{H}5$$

$$\pi_{C}(2+5) = \pi_{0}10 + \pi_{CH}5$$

$$\pi_{CH}(2+5) = \pi_{C}5$$

$$\pi_{H}5 = \pi_{CH}2$$

$$1 = \pi_{0} + \pi_{C} + \pi_{H} + \pi_{CH}$$

Here, $5\pi_H = 2\pi_{CH} = (10/7)\pi_C$, and the system is reduced to only two unknowns in 2 equations:

$$\pi_0 10 = \pi_C 2 + \pi_C (10/7)$$

$$1 = \pi_0 + \pi_C + (2/7)\pi_C + (5/7)\pi_C$$

The solution is

$$\pi_C = 1/((24/70) + 1 + (2/7) + (5/7)) = 0.43$$

and for the others $\pi_0 = 0.15$, $\pi_H = 0.12$ and $\pi_{CH} = 0.30$.

Task 5

Without knowing the price at t = 50, the joint distribution of X(25) and X(50) is Gaussian distributed with means equal to 9, $var(X(25)) = 0.05^225 = 0.0625$, $var(X(50)) = 0.05^250 = 0.125$ and cov(X(25), X(50)) = 0.0625. The conditional distribution is then Gaussian with mean

$$E(X(25)|X(50)) = 9 + (0.0625/0.125)(9.5 - 9) = 9.25$$
$$Var(X(25)|X(50)) = 0.0625 - (0.0625/0.125)0.0625 = 0.312 = 0.176^{2}$$

$$P(X(25) > 9|X(50) = 9.5) = 1 - \Phi((9 - 9.25)/0.176) = 0.922$$