Vyhodnocování IR a RA spekter

Úvod

- Vzorky, u kterých neznáme ani přibližné složení, lze pomocí IR a RA spektroskopie analyzovat s využitím databází spekter.
- Pokud máme alespoň přibližnou představu o struktuře vzorku, lze spektra využít pro potvrzení nebo vyvrácení přítomnosti funkčních skupin a pro kontrolu čistoty reaktantů a produktů.

Rozdělení oblastí spekter

- NIR (0,7 2,5 μm; 14 000 4 000 cm⁻¹) infračervená spektroskopie v blízké oblasti – převážně overtony a kombinační vibrace. Intenzita pásů je nižší než v MIR oblasti a pásy se často překrývají.
- MIR (2,5 25 μm; 4 000 400 cm⁻¹) infračervená spektroskopie ve střední oblasti – základní vibrace molekul.
- FIR (25 − 1000 μm; 400 − 10 cm⁻¹) infračervená spektroskopie ve vzdálené oblasti – vibrace vazeb kov-halogen, deformační vibrace skeletu molekul.

Databáze spekter

- Pokud známe předpokládané složení vzorku, je možné využít databáze spekter a provést srovnání spektra naše vzorku s tabelovaným spektrem.
- Je vhodné, aby byla obě spektra naměřená stejnou technikou.
- Databáze jsou často placené nástroje, které umožňují vyhledávání a srovnávání spekter.
- Databáze dostupné bez poplatku umožňují zpravidla pouze prohlížení spekter.

Databáze spekter

sdbs.riodb.aist.go.jp/sdbs/cgi-bin/cre_index.cgi

Databáze spekter

sdbs.riodb.aist.go.jp/sdbs/cgi-bin/cre_index.cgi

Databáze spekter

http://webbook.nist.gov/chemistry/

Databáze spekter

http://webbook.nist.gov/chemistry/

Základní pravidla pro interpretaci vibračních spekter

- 1. Pokud známe alespoň přibližnou strukturu vzorku, je možné provést interpretaci s využitím charakteristických frekvencí funkčních skupin.
- Předpokládáme, že poloha absorpčního pásu dané skupiny je minimálně ovlivněna zbytkem molekuly a nalézá se vždy ve stejné oblasti.

Základní pravidla pro interpretaci vibračních spekter

- 1. Nejprve se podívejte na oblast vyšších vlnočtů ($>1500~{\rm cm}^{-1}$) a hledejte výrazné pásy.
- 2. Pro každý významný pás si připravte seznam možných přiřazení.
- 3. Oblast nižších vlnočtů použijte pro potvrzení nebo vyvrácení přítomnosti funkčních skupin.
- 4. Nesnažte se přiřadit každý pás ve spektru.
- 5. Pokud je to možné, hledejte pro každou funkční skupinu více pásů, např. aldehydy by měly mít pás okolo 1730 cm⁻¹ a zároveň i pás v oblasti 2900-2700 cm⁻¹. Pokud některý z pásů chybí, skupina pravděpodobně ve struktuře přítomna není.
- 6. Intenzity pásů berte v úvahu pouze orientačně.
- 7. V závislosti na technice měření a stavu vzorku (kapalný, pevný, roztok) může docházet k malým změnám v poloze pásů.
- 8. Pozor na pásy náležející rozpouštědlu.

- ▶ 4000-2500 cm⁻¹ oblast valenčních vibrací X-H
- ▶ 2500-2000 cm⁻¹ oblast trojných vazeb
- ightharpoonup 2000-1500 cm $^{-1}$ oblast dvojných vazeb
- ▶ 1500-600 cm⁻¹ oblast otisku prstu (fingerprint)

Sloučenina	Skupina	Vlnočet [cm ⁻¹]
Allcany	C—H	2850-3000
Alkany	C—C	800-1000
Aromátu	C—H	3000-3100
Aromáty	C=C	1450-1600
Allcony	C—H	3080-3140
Alkeny	C=C	1630-1670
Allama	C—H	3300-3320
Alkyny	C≡C	2100-2140
Alleabale	O-H	3300-3600
Alkoholy	C-O	1050-1200
A II o my	C-H	3300-3320
Alkyny	C≡C	2100-2140
Aldehydy	C=0	1720-1740
	C—H	2700-2900
	C=0	1700-1725
Karboxylové kyseliny	O-H	2500-3300
	C-O	1100-1300

- Absorpční pásy v oblasti 3200–2700 cm⁻¹ prokazují přítomnost alifatických (pod 3000 cm⁻¹) nebo aromatických (nad 3000 cm⁻¹) C-H vazeb.
- 2. Absorpční pásy v oblasti 3650–3250 cm⁻¹ prokazují přítomnost O–H a N–H vazeb.
- Absorpční pásy v oblasti 1850–1650 cm⁻¹ prokazují přítomnost C=O vazeb. V této oblasti může docházet k interferenci s vazbami C=N a N=N, např. v purinech a azo- sloučeninách.
- 4. Absorpční pásy v oblasti $1670-1620~{\rm cm}^{-1}$ prokazují přítomnost alifatických, nenasycených C=C vazeb. Zároveň by měl být přítomen absorpční pás o vlnočtu vyšším než $3000~{\rm cm}^{-1}$.
- Absorpční pásy v oblasti 1615–1495 cm⁻¹, společně s absorpčním pásem o vlnočtu vyšším než 3000 cm⁻¹ prokazují přítomnost aromatických vazeb.
- Absorpční pásy v oblasti 2300–1990 cm⁻¹, ukazují na přítomnost kumulovaných násobných vazeb mezi uhlíkem nebo dusíkem, např. kyanatanů, isokyanatanů, apod.

Vibrace	Vlnočet [cm ⁻¹]
C-H arom. valenční	3100-3000
C—H alif. valenční	3000-2900
Kombinační, overtony	2000-1700
C=C	1650-1430
C–H deformační v rovině kruhu	1275-1000
C–H deformační mimo rovinu kruhu	900-690

Anorganické sloučeniny

- Spektra anorganických sloučenin zpravidla obsahují méně pásů, ty jsou širší a nalézáme je i na nižších vlnočtech, často až ve FIR oblasti.
- Látky obsahující pouze iontovou vazbu, např. NaCl, neposkytují IR spektrum v MIR oblasti. Pozorovatelné jsou pouze mřížkové vibrace.
- Stupeň hydratace sloučeniny ovlivňuje vzhled spektra.

Anorganické sloučeniny

lon	Vlnočet [cm ⁻¹]
CO^{2-}_3	1450-1410
CO_3	880-800
SO ₄ ²⁻	1130-1080
$ $ 30_4	680-610
NO_3^-	1410-1340
100_3	860-800
PO_{4}^{3-}	1100-950
SiO_4^{4-}	1100-900
NH ₄ ⁺	3335-3030
11114	1485-1390
MnO-	920-890
MnO_4^-	850-840
M-H	2250-1700
101-11	800-600
M-X	750-100
M=O	1010-850
M=N	1020-875

Vibrace	Vlnočet [cm ⁻¹]		
$ \begin{array}{c} \nu(S=O) \\ \nu(S-O) \end{array} $	1500–1000		
$\nu(S-F)$	900-600		
$\delta(O-S-O)$	700–400		
$\nu(S-Cl)$	600–400		
$\nu(S-Br)$	400-300		
$\nu(P=O)$	1500-1200		
$\nu(P-O)$	1200-900		
$\nu(P-F)$	1000-700		
$\nu(P-Cl)$	600–400		
$\delta(O-P-O)$	650-300		
$\delta(F-P-F)$	600–350		
$\delta(Cl-P-Cl)$	300–150		
$\delta(Br - P - Br)$	200-50		

Anorganické sloučeniny

Faktory ovlivňující polohu absorpčního pásu

- Vodíkové vazby.
- Izotopická substituce.
- Hmotnost atomů tvořících vazbu.

Vodíkové vazby

- Přítomnost intra-i intermolekulárních vodíkových vazeb ovlivňuje sílu vazby a tím i polohu odpovídajícího pásu ve spektru.
- ➤ Tímto způsobem může rozpouštědlo ovlivnit vzhled spektra, např. voda, diethylether, chloroform, atd.
- Se vzrůstající teplotou dochází k oslabování vodíkových vazeb a tím k posunu odpovídajících pásů k vyšším hodnotám vlnočtu.

Tabulka: Závislost vlnočtu vibrace OH skupiny fenolu na koncentraci dioxanu v $\operatorname{CCl_4}^1$

Konc. dioxanu [%]	ν_{OH}	$ u_{OH}$ fenol-dioxan	$\Delta \nu$
0,0	3611	-	-
2,3	3612	3377	234
22,1	3610	3365	246
72,5	-	3347	264
100,0	-	3338	273

¹ J. Am. Chem. Soc., **1963**, 85 (4), 371–380

Izotopická substituce

- Izotopická substituce usnadňuje interpretaci vibračních spekter
- Nedochází ke změně geometrie molekuly, ale změní se hmotnost atomů a tím i poloha absorpčních pásů

$$\nu = \frac{1}{2\pi} \sqrt{k \frac{(m_1 + m_2)}{m_1 m_2}}$$

- k silová konstanta vazby
- m_1, m_2 hmotnosti atomů
- Těžší izotop způsobuje posun pásu k nižším vlnočtům

¹Anal. Biochem, **1997**, 248 (2), 234–245

Halogenované sloučeniny

- Se vzrůstající hmotností halogenu klesá hodnota vlnočtu vazby C–X.
- $\blacktriangleright \ \tilde{\nu} = \frac{1}{2\pi c} \sqrt{k \frac{(m_1 + m_2)}{m_1 m_2}}$
 - k silová konstanta vazby
 - $lackbox{ } m_1,m_2$ hmotnosti atomů
- V tabulce jsou shrnuty vibrace vazeb C-X u alifatických uhlovodíků a vazeb B-X v molekulách MeBX₂.

Vazba	Vlnočet [cm ⁻¹]	Vazba	Vlnočet [cm ⁻¹]
C-F	1150-1000	B-F	1365
C-CI	800-700	B-Cl	1018
C-Br	700-600	B-Br	965
C—I	600-500		

NIR

- ▶ Oblast 700-2500 nm, tj. 14 000-4 000 cm⁻¹.
- V této oblasti jsou převážně kombinační vibrace a overtony (vyšší harmonické). Ty poskytují málo intenzivní, široké pásy, které se často překrývají.
- Výhodou je jednodušší instrumentace (lze využít skleněnou nebo křemennou optiku), citlivější detektory.
- Voda v této oblasti absorbuje relativně málo, takže ji lze použít jako rozpouštědlo.
- Využití v lékařství a zdravotní diagnostice, potravinářském a jiném průmyslu, astronomii, ...
- Jako měřící techniky se využívají:
 - transmisní technika
 - difuzně-reflexní technika
 - transflexe

NIR

NIR

NIR spektrum kapalného ethanolu

Ramanova spektroskopie

- Komplementární metoda k IR spektroskopii
- Principem je nepružný rozptyl LASERového záření na vzorku
- Vhodnější pro nepolární sloučeniny
- Lze použít vodu jako rozpouštědlo
- Zpravidla užší pásy než v IR spektrech
- Jednoduchá příprava vzorku
- Měření může komplikovat fluorescence vzorku
- Dražší hardware

Ramanova spektroskopie

- Pomocí Ramanovy spektroskopie lze studovat kvalitu grafenu a určit počet vrstev vzorku
- Pás D (1350 cm⁻¹) odpovídá poruchám ve struktuře grafenu.
- Pás G (1583 cm⁻¹) odpovídá valenčním vibracím vazeb C-C, najdeme ve všech systémech s sp² uhlíky.
- V případě nečistot nebo výskytu náboje na povrchu grafenu, najdeme v blízkosti pásu G i méně intenzivní pás D' (1620 cm⁻¹).
- Pás G' v oblasti 2500-2800 cm⁻¹ se označuje jako 2D-pás, nalezneme ho u všech systému s sp² uhlíky.

- lacksquare Lambert-Beerův zákon $A_{\lambda}=\epsilon_{\lambda}lc$
 - $ightharpoonup A_{\lambda}$ absorbance vzorku při vlnové délce λ
 - $m{\epsilon}_{\lambda}$ absorpční koeficient při vlnové délce λ . Je charakteristický pro každou sloučeninu.
 - ▶ I délka kyvety
 - c molární koncentrace vzorku
- Pro stanovení koncentrace se využívá kalibrační křivka.
- Pás zvolený pro analýzu musí splňovat několik požadavků:
 - Vysoký molární absorpční koeficient
 - Neměl by se překrývat s jinými pásy
 - Měl by být symetrický
 - Závislost absorbance na koncentraci by měla být lineární

Stanovení koncentrace kofeinu v roztoku

Stanovení koncentrace kofeinu v roztoku

Koncentrace [mg.cm ⁻³]	Absorbance při 1656 cm ⁻¹
0	0.000
5	0.105
10	0.190
15	0.265
20	0.333

SDBS Information

SDBS No.: 2958

Compound Name: urea

Molecular Formula: CH4N2O

Molecular Weight: 60.1

CAS Registry No.: 57-13-6

Spectral Code:

Mass:

13C NMR: in DMSO-d6

¹H NMR: parameter in acetone+DMSO+tetramethylurea

1H NMR: in DMSO-d6 IR: nuiol mull IR : KBr disc

Raman: 4880 A,200 M,powder

Chemical Information:

Return to Search: Return to Result:

URL for this Compound:

https://sdbs.db.aist.go.ip/sdbs/cgibin/landingpage?sdbsno=2958

External Information:

SDBS Information

SDBS No.: 2958

Compound Name: urea

Molecular Formula: CH4N2O

Molecular Weight: 60.1

CAS Registry No.: 57-13-6

Spectral Code:

Mass:

13C NMR: in DMSO-d6

¹H NMR: parameter in acetone+DMSO+tetramethylurea

H NMR: in DMSO-d6

IR: nujol mull IR: KBr disc

Raman: 4880 A,200 M,powder

Chemical Information:

Return to Search:

Return to Result:

URL for this Compound: https://sdbs.db.aist.go.ip/sdbs/cgibin/landingpage?sdbsno=2958

External Information: external link displays in a separate page

3438 3340	23 26	1699 1463	25 12	789 722	79 68
2922 2864	4 7	1377	25 38	557 550	42
2853	6	1151	44	488	49
2012	84 30	1002	60 62		

Literatura a odkazy

- 1. STUART, Barbara. *Infrared spectroscopy: fundamentals and applications*. Hoboken, NJ: J. Wiley, 2004. ISBN 9780470854280.
- COATES, John. Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry [online]. Chichester, UK: John Wiley & Sons, 2006 [cit. 2017-05-18]. DOI: 10.1002/9780470027318.a5606. ISBN 0470027312. Dostupné z: http://doi.wiley.com/10.1002/9780470027318.a5606
- Spectral Database for Organic Compounds http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/cre_index.cgi
- 4. NIST Webbook Chemistry http://webbook.nist.gov/chemistry/

Děkuji za pozornost

Zdeněk Moravec hugo@chemi.muni.cz