INTERRO DE COURS 11

Exercice 1 – On considère la fonction f définie par

$$f(x) = \frac{x^3}{x - 1},$$

et on note C_f sa courbe représentative.

1. Donner le domaine de définition de f.

Solution : f est une fraction rationnelle donc $D_f = \mathbf{R} \setminus \{V.I.\}$. Par ailleurs, on a $x-1=0 \iff x=1$ donc il n'y a qu'une seule valeur interdite : x=1. Ainsi $D_f = \mathbf{R} \setminus \{1\}$.

2. Calculer les limites de f en $-\infty$, 1^- , 1^+ et $+\infty$.

Solution: On a $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^3}{x} = \lim_{x \to -\infty} x^2 = +\infty.$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^3}{x} = \lim_{x \to +\infty} x^2 = +\infty.$ $\lim_{x \to 1^-} x^3 = 1 \quad \text{et} \quad \lim_{x \to 1^-} x - 1 = 0^- \quad \text{donc par quotient,} \quad \lim_{x \to 1^-} f(x) = -\infty.$ $\lim_{x \to 1^+} x^3 = 1 \quad \text{et} \quad \lim_{x \to 1^+} x - 1 = 0^+ \quad \text{donc par quotient,} \quad \lim_{x \to 1^+} f(x) = +\infty.$

3. Montrer que pour tout $x \neq 1$, on a

$$f'(x) = \frac{x^2(2x-3)}{(x-1)^2}.$$

Solution : Posons $u(x) = x^3$ et v(x) = x - 1. On a $u'(x) = 3x^2$ et v'(x) = 1, donc

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{3x^2(x-1) - x^3}{(x-1)^2}$$
$$= \frac{3x^3 - 3x^2 - x^3}{(x-1)^2} = \frac{2x^3 - 3x^2}{(x-1)^2} = \frac{x^2(2x-3)}{(x-1)^2}.$$

4. En déduire le tableau de variation complet de f. On prendra notamment soin d'y faire figurer les limites calculées à la question 2.

Solution : On a $2x - 3 = 0 \iff x = \frac{3}{2}$. On en déduit le tableau de signes suivant.

	x	$-\infty$	1	$\frac{3}{2}$	+∞
	x^2	+	+		+
	2x-3	_	-	0	+
	$(x-1)^2$	+	0 +		+
	f'(x)	_	_	0	+
	f	+∞ -~	+∞	* 27/4	+∞

5. Calculer l'équation de la tangente $\mathcal T$ à la courbe au point d'abscisse 0.

Solution : L'équation de la tangente à \mathcal{C}_f en le point d'abscisse a est donnée par la formule

$$y = f'(a)(x - a) + f(a).$$

Ici, a=0. On a f(0)=0 et f'(0)=0 donc l'équation de la tangente en 0 est y=0.

6. Sur un même graphique, tracer la courbe \mathcal{C}_f ainsi que la tangente $\mathcal{T}.$

