

Foundations of Machine Learning African Master's of Machine Intelligence

Imperial College London

Linear Regression

Marc Deisenroth

Quantum Leap Africa African Institute for Mathematical Sciences, Rwanda

Department of Computing Imperial College London

♥ @mpd37 mdeisenroth@aimsammi.org

October 11, 2018

Reference

Mathematics for Machine Learning:

https://mml-book.com

Chapter 9

Overview

Problem Setting

Parameter Estimation

Maximum Likelihood

Maximum A Posteriori Estimation

Gaussian Identities

Bayesian Linear Regression

Regression Problems

Regression (curve fitting)

Given inputs x and corresponding observations y find a function f that models the relationship between x and y.

- ▶ Typically parametrize the function f with parameters θ
- ► Linear regression: Consider functions *f* that are **linear in the parameters**

Linear Regression Functions

► Straight lines

$$y = f(x, \boldsymbol{\theta}) = \theta_0 + \theta_1 x = \begin{bmatrix} \theta_0 & \theta_1 \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

Linear Regression Functions

► Straight lines

$$y = f(x, \boldsymbol{\theta}) = \theta_0 + \theta_1 x = \begin{bmatrix} \theta_0 & \theta_1 \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

▶ Polynomials

$$y = f(x, \boldsymbol{\theta}) = \sum_{m=0}^{M} \theta_m x^m = \begin{bmatrix} \theta_0 & \cdots & \theta_M \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ x^M \end{bmatrix}$$

Linear Regression Functions

► Straight lines

$$y = f(x, \theta) = \theta_0 + \theta_1 x = \begin{bmatrix} \theta_0 & \theta_1 \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

▶ Polynomials

$$y = f(x, \boldsymbol{\theta}) = \sum_{m=0}^{M} \theta_m x^m = \begin{bmatrix} \theta_0 & \cdots & \theta_M \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ x^M \end{bmatrix}$$

Radial basis function networks

$$y = f(x, \boldsymbol{\theta}) = \sum_{m=1}^{M} \theta_m \exp\left(-\frac{1}{2}(x - \mu_m)^2\right)$$

Linear Regression Model and Setting

$$y = \mathbf{x}^{\top} \mathbf{\theta} + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, \sigma^2)$

• Given a training set $(x_1, y_1), \dots, (x_N, y_N)$ we seek optimal parameters θ^*

Linear Regression Model and Setting

$$y = \mathbf{x}^{\top} \mathbf{\theta} + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, \sigma^2)$

- Given a training set $(x_1, y_1), \dots, (x_N, y_N)$ we seek optimal parameters θ^*
 - **▶** Maximum Likelihood Estimation
 - **▶** Maximum a Posteriori Estimation

Overview

Problem Setting

Parameter Estimation

Maximum Likelihood

Maximum A Posteriori Estimation

Gaussian Identities

Bayesian Linear Regression

- ▶ Define $X = [x_1, ..., x_N]^\top \in \mathbb{R}^{N \times D}$ and $y = [y_1, ..., y_N]^\top \in \mathbb{R}^N$
- ▶ Find parameters θ^* that maximize the likelihood

- ▶ Define $X = [x_1, ..., x_N]^\top \in \mathbb{R}^{N \times D}$ and $y = [y_1, ..., y_N]^\top \in \mathbb{R}^N$
- Find parameters θ^* that maximize the likelihood

$$p(y_1,\ldots,y_N|\mathbf{x}_1,\ldots,\mathbf{x}_N,\boldsymbol{\theta})=p(\mathbf{y}|\mathbf{X},\boldsymbol{\theta})=\prod_{n=1}^N \mathcal{N}(y_n\,|\,\mathbf{x}_n^\top\boldsymbol{\theta},\,\sigma^2)$$

- ▶ Define $X = [x_1, ..., x_N]^\top \in \mathbb{R}^{N \times D}$ and $y = [y_1, ..., y_N]^\top \in \mathbb{R}^N$
- ▶ Find parameters θ^* that maximize the likelihood

$$p(y_1,\ldots,y_N|\mathbf{x}_1,\ldots,\mathbf{x}_N,\boldsymbol{\theta}) = p(\mathbf{y}|\mathbf{X},\boldsymbol{\theta}) = \prod_{n=1}^N \mathcal{N}(y_n \mid \mathbf{x}_n^\top \boldsymbol{\theta}, \sigma^2)$$

► Log-transformation ➤ Maximize the log likelihood

- ▶ Define $X = [x_1, ..., x_N]^\top \in \mathbb{R}^{N \times D}$ and $y = [y_1, ..., y_N]^\top \in \mathbb{R}^N$
- ▶ Find parameters θ^* that maximize the likelihood

$$p(y_1,\ldots,y_N|x_1,\ldots,x_N,\boldsymbol{\theta})=p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta})=\prod_{n=1}^N\mathcal{N}(y_n\,|\,\boldsymbol{x}_n^\top\boldsymbol{\theta},\,\sigma^2)$$

► Log-transformation ➤ Maximize the log likelihood

$$\log p(y|X,\theta) = \sum_{n=1}^{N} \log \mathcal{N}(y_n | x_n^{\top} \theta, \sigma^2),$$

$$\log \mathcal{N}(y_n | x_n^{\top} \theta, \sigma^2) = -\frac{1}{2\sigma^2} (y_n - x_n^{\top} \theta)^2 + \text{const}$$

With

$$\log \mathcal{N}(y_n | x_n^{\top} \theta, \sigma^2) = -\frac{1}{2\sigma^2} (y_n - x_n^{\top} \theta)^2 + \text{const}$$

we get

$$\log p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta}) = \sum_{n=1}^{N} \log \mathcal{N}(\boldsymbol{y}_n \,|\, \boldsymbol{x}_n^{\top}\boldsymbol{\theta},\, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (\boldsymbol{y}_n - \boldsymbol{x}_n^{\top}\boldsymbol{\theta})^2 + \text{const}$$

With

$$\log \mathcal{N}(y_n \mid x_n^{\top} \theta, \sigma^2) = -\frac{1}{2\sigma^2} (y_n - x_n^{\top} \theta)^2 + \text{const}$$

we get

$$\log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \sum_{n=1}^{N} \log \mathcal{N}(\mathbf{y}_n \,|\, \mathbf{x}_n^{\top} \boldsymbol{\theta}, \, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (\mathbf{y}_n - \mathbf{x}_n^{\top} \boldsymbol{\theta})^2 + \text{const}$$
$$= -\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \text{const}$$

With

$$\log \mathcal{N}(y_n \mid x_n^{\top} \theta, \sigma^2) = -\frac{1}{2\sigma^2} (y_n - x_n^{\top} \theta)^2 + \text{const}$$

we get

$$\log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \sum_{n=1}^{N} \log \mathcal{N}(\mathbf{y}_n \,|\, \mathbf{x}_n^{\top} \boldsymbol{\theta}, \, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (\mathbf{y}_n - \mathbf{x}_n^{\top} \boldsymbol{\theta})^2 + \text{const}$$
$$= -\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \text{const}$$
$$= -\frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 + \text{const}$$

With

$$\log \mathcal{N}(y_n \mid x_n^{\top} \theta, \sigma^2) = -\frac{1}{2\sigma^2} (y_n - x_n^{\top} \theta)^2 + \text{const}$$

we get

$$\log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \sum_{n=1}^{N} \log \mathcal{N}(\mathbf{y}_n \,|\, \mathbf{x}_n^{\top} \boldsymbol{\theta}, \, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (\mathbf{y}_n - \mathbf{x}_n^{\top} \boldsymbol{\theta})^2 + \text{const}$$
$$= -\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \text{const}$$
$$= -\frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 + \text{const}$$

• Computing the gradient with respect to θ and setting it to 0 gives the maximum likelihood estimator (least-squares estimator)

$$\boldsymbol{\theta}^{\mathrm{ML}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

Making Predictions

$$y = \mathbf{x}^{\top} \mathbf{\theta} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Given an arbitrary input x_* , we can predict the corresponding observation y_* using the maximum likelihood parameter:

$$p(y_*|x_*, \boldsymbol{\theta}^{\mathrm{ML}}) = \mathcal{N}(y_*|x_*^{\mathsf{T}}\boldsymbol{\theta}^{\mathrm{ML}}, \sigma^2)$$

Example 1: Linear Functions

$$y = \theta_0 + \theta_1 x + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, \sigma^2)$

• At any query point x_* we obtain the mean prediction as

$$\mathbb{E}[y_*|\boldsymbol{\theta}^{\mathrm{ML}},x_*] = \theta_0^{\mathrm{ML}} + \theta_1^{\mathrm{ML}}x_*$$

Nonlinear Functions

$$y = \phi(x)^{\top} \theta + \epsilon = \sum_{m=0}^{M} \theta_m x^m + \epsilon$$

► Polynomial regression with features

$$\boldsymbol{\phi}(x) = [1, x, x^2, \dots, x^M]^\top$$

► Maximum likelihood estimator:

Nonlinear Functions

$$y = \phi(x)^{\top} \theta + \epsilon = \sum_{m=0}^{M} \theta_m x^m + \epsilon$$

Polynomial regression with features

$$\boldsymbol{\phi}(x) = [1, x, x^2, \dots, x^M]^\top$$

Maximum likelihood estimator:

$$\boldsymbol{\theta}^{\mathrm{ML}} = (\mathbf{\Phi}^{\top}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\top}\boldsymbol{y}$$

Figure: Training data

Figure: 2nd-order polynomial

Figure: 4th-order polynomial

Figure: 6th-order polynomial

Figure: 8th-order polynomial

Figure: 10th-order polynomial

Overfitting

► Training error decreases with higher flexibility of the model

Overfitting

- ► Training error decreases with higher flexibility of the model
- We are not so much interested in the training error, but in the generalization error: How well does the model perform when we predict at previously unseen input locations?

Overfitting

- ► Training error decreases with higher flexibility of the model
- We are not so much interested in the training error, but in the generalization error: How well does the model perform when we predict at previously unseen input locations?
- Maximum likelihood often runs into overfitting problems, i.e., we exploit the flexibility of the model to fit to the noise in the data

 Observation: Parametric models that overfit tend to have some extreme (large amplitude) parameter values

- Observation: Parametric models that overfit tend to have some extreme (large amplitude) parameter values
- Mitigate the effect of overfitting by placing a prior distribution p(θ) on the parameters
 - >> Penalize extreme values that are implausible under that prior

- Observation: Parametric models that overfit tend to have some extreme (large amplitude) parameter values
- Mitigate the effect of overfitting by placing a prior distribution p(θ) on the parameters
 - ▶ Penalize extreme values that are implausible under that prior
- Choose θ^* as the parameter that maximizes the (log) parameter posterior

$$\log p(\boldsymbol{\theta}|\boldsymbol{X}, \boldsymbol{y}) = \underbrace{\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\theta})}_{\text{log-likelihood}} + \underbrace{\log p(\boldsymbol{\theta})}_{\text{log-prior}} + \text{const}$$

- Observation: Parametric models that overfit tend to have some extreme (large amplitude) parameter values
- Mitigate the effect of overfitting by placing a prior distribution p(θ) on the parameters
 - ▶ Penalize extreme values that are implausible under that prior
- Choose θ^* as the parameter that maximizes the (log) parameter posterior

$$\log p(\theta|X,y) = \underbrace{\log p(y|X,\theta)}_{\text{log-likelihood}} + \underbrace{\log p(\theta)}_{\text{log-prior}} + \text{const}$$

► Log-prior induces a direct penalty on the parameters

- Observation: Parametric models that overfit tend to have some extreme (large amplitude) parameter values
- Mitigate the effect of overfitting by placing a prior distribution p(θ) on the parameters
 - ▶ Penalize extreme values that are implausible under that prior
- Choose θ^* as the parameter that maximizes the (log) parameter posterior

$$\log p(\boldsymbol{\theta}|\boldsymbol{X}, \boldsymbol{y}) = \underbrace{\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\theta})}_{\text{log-likelihood}} + \underbrace{\log p(\boldsymbol{\theta})}_{\text{log-prior}} + \text{const}$$

- ► Log-prior induces a direct penalty on the parameters
- ► Maximum a posteriori estimate (regularized least squares)

MAP Estimation (2)

- Gaussian parameter prior $p(\theta) = \mathcal{N}(\mathbf{0}, \alpha^2 \mathbf{I})$
- ► Log-posterior distribution:

$$\log p(\boldsymbol{\theta}|X, \boldsymbol{y}) = \frac{-\frac{1}{2\sigma^2}(\boldsymbol{y} - X\boldsymbol{\theta})^{\top}(\boldsymbol{y} - X\boldsymbol{\theta}) - \frac{1}{2\alpha^2}\boldsymbol{\theta}^{\top}\boldsymbol{\theta}}{-\frac{1}{2\sigma^2}\|\boldsymbol{y} - X\boldsymbol{\theta}\|^2 - \frac{1}{2\alpha^2}\|\boldsymbol{\theta}\|^2} + \text{const}$$

$$= \frac{-\frac{1}{2\sigma^2}\|\boldsymbol{y} - X\boldsymbol{\theta}\|^2 - \frac{1}{2\alpha^2}\|\boldsymbol{\theta}\|^2}{-\frac{1}{2\alpha^2}\|\boldsymbol{\theta}\|^2} + \text{const}$$

MAP Estimation (2)

- Gaussian parameter prior $p(\theta) = \mathcal{N}(\mathbf{0}, \alpha^2 \mathbf{I})$
- ► Log-posterior distribution:

$$\log p(\boldsymbol{\theta}|X, \boldsymbol{y}) = \frac{-\frac{1}{2\sigma^2}(\boldsymbol{y} - X\boldsymbol{\theta})^{\top}(\boldsymbol{y} - X\boldsymbol{\theta}) - \frac{1}{2\alpha^2}\boldsymbol{\theta}^{\top}\boldsymbol{\theta}}{-\frac{1}{2\sigma^2}\|\boldsymbol{y} - X\boldsymbol{\theta}\|^2 - \frac{1}{2\alpha^2}\|\boldsymbol{\theta}\|^2} + \text{const}$$

$$= \frac{-\frac{1}{2\sigma^2}\|\boldsymbol{y} - X\boldsymbol{\theta}\|^2 - \frac{1}{2\alpha^2}\|\boldsymbol{\theta}\|^2}{-\frac{1}{2\alpha^2}\|\boldsymbol{\theta}\|^2} + \text{const}$$

- Compute gradient with respect to θ , set it to 0
 - **▶** Maximum a posteriori estimate:

$$\boldsymbol{\theta}^{\mathrm{MAP}} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \frac{\sigma^2}{\alpha^2} \boldsymbol{I})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

Figure: Training data

Mean prediction:

$$\mathbb{E}[y_*|x_*,\boldsymbol{\theta}_{\text{MAP}}^*] = \boldsymbol{\phi}(x_*)^{\top}\boldsymbol{\theta}_{\text{MAP}}^*$$

18

Linear Regression Marc Deisenroth @AIMS Rwanda, October 11, 2018

Figure: 2nd-order polynomial

Mean prediction:

$$\mathbb{E}[y_*|x_*,\boldsymbol{\theta}_{\text{MAP}}^*] = \boldsymbol{\phi}(x_*)^{\top}\boldsymbol{\theta}_{\text{MAP}}^*$$

Figure: 4th-order polynomial

Mean prediction:

$$\mathbb{E}[y_*|x_*,\boldsymbol{\theta}_{\text{MAP}}^*] = \boldsymbol{\phi}(x_*)^{\top}\boldsymbol{\theta}_{\text{MAP}}^*$$

Figure: 6th-order polynomial

Mean prediction:

$$\mathbb{E}[y_*|x_*,\boldsymbol{\theta}_{\text{MAP}}^*] = \boldsymbol{\phi}(x_*)^\top \boldsymbol{\theta}_{\text{MAP}}^*$$

Figure: 8th-order polynomial

Mean prediction:

$$\mathbb{E}[y_*|x_*,\boldsymbol{\theta}_{\text{MAP}}^*] = \boldsymbol{\phi}(x_*)^{\top}\boldsymbol{\theta}_{\text{MAP}}^*$$

Linear Regression Marc Deisenroth @AIMS Rwanda, October 11, 2018 18

Figure: 10th-order polynomial

Mean prediction:

$$\mathbb{E}[y_*|x_*,\boldsymbol{\theta}_{\text{MAP}}^*] = \boldsymbol{\phi}(x_*)^{\top}\boldsymbol{\theta}_{\text{MAP}}^*$$

Generalization Error

- ► MAP estimation "delays" the problem of overfitting
- ► It does not provide a general solution
- ▶ Need a more principled solution

Overview

Problem Setting

Parameter Estimation

Maximum Likelihood

Maximum A Posteriori Estimation

Gaussian Identities

Bayesian Linear Regression

▶ Joint Gaussian distribution

$$p(x,y) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy} \end{bmatrix}\right)$$

▶ Joint Gaussian distribution

$$p(x,y) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy} \end{bmatrix}\right)$$

► Marginal:

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$
$$= \mathcal{N}(\boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}})$$

▶ Joint Gaussian distribution

$$p(x,y) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy} \end{bmatrix}\right)$$

► Marginal:

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$
$$= \mathcal{N}(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{xx})$$

► Conditional:

$$p(x|y) = \mathcal{N}(\mu_{x|y}, \Sigma_{x|y})$$

$$\mu_{x|y} = \mu_{x} + \Sigma_{xy} \frac{\Sigma_{yy}^{-1}}{\Sigma_{yy}} (y - \mu_{y})$$

$$\Sigma_{x|y} = \Sigma_{xx} - \Sigma_{xy} \frac{\Sigma_{yy}^{-1}}{\Sigma_{yy}} \Sigma_{yx}$$

Linear Transformation of Gaussian Random Variables

If
$$x \sim \mathcal{N}(x | \mu, \Sigma)$$
 and $z = Ax + b$ then

$$p(z) = \mathcal{N}(z \mid A\mu + b, A\Sigma A^{\top})$$

Product of Two Gaussians

 $x \in \mathbb{R}^D$. Then:

$$\mathcal{N}(x \mid a, A) \mathcal{N}(x \mid b, B) = Z \mathcal{N}(x \mid c, C)$$

$$C = (A^{-1} + B^{-1})^{-1}$$

$$c = C(A^{-1}a + B^{-1}b)$$

$$Z = (2\pi)^{-\frac{D}{2}} |A + B| \exp\left(-\frac{1}{2}(a - b)^{\top}(A + B)^{-1}(a - b)\right)$$

Product of Two Gaussians

 $x \in \mathbb{R}^D$. Then:

$$\mathcal{N}(x \mid a, A) \mathcal{N}(x \mid b, B) = Z \mathcal{N}(x \mid c, C)$$

$$C = (A^{-1} + B^{-1})^{-1}$$

$$c = C(A^{-1}a + B^{-1}b)$$

$$Z = (2\pi)^{-\frac{D}{2}} |A + B| \exp\left(-\frac{1}{2}(a - b)^{\top}(A + B)^{-1}(a - b)\right)$$

Product of two Gaussians is an unnormalized Gaussian

Product of Two Gaussians

 $x \in \mathbb{R}^D$. Then:

$$\mathcal{N}(x \mid a, A) \mathcal{N}(x \mid b, B) = Z \mathcal{N}(x \mid c, C)$$

$$C = (A^{-1} + B^{-1})^{-1}$$

$$c = C(A^{-1}a + B^{-1}b)$$

$$Z = (2\pi)^{-\frac{D}{2}} |A + B| \exp\left(-\frac{1}{2}(a - b)^{\top}(A + B)^{-1}(a - b)\right)$$

- Product of two Gaussians is an unnormalized Gaussian
- ▶ The "un-normalizer" Z has a Gaussian functional form:

$$Z = \mathcal{N}(a \mid b, A + B) = \mathcal{N}(b \mid a, A + B)$$

23

Note: This is not a distribution (no random variables)

$$p_1(x) = \mathcal{N}(x \mid a, A)$$

 $p_2(x) = \mathcal{N}(x \mid b, B)$

Then

$$\int p_1(x)p_2(x)\mathrm{d}x =$$

$$p_1(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mid \mathbf{a}, \mathbf{A})$$

 $p_2(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mid \mathbf{b}, \mathbf{B})$

Then

$$\int p_1(x)p_2(x)dx = Z = \mathcal{N}(a \mid b, A + B)$$

$$p_1(x) = \mathcal{N}(x \mid a, A)$$

 $p_2(x) = \mathcal{N}(x \mid b, B)$

Then

$$\int p_1(x)p_2(x)dx = Z = \mathcal{N}(a \mid b, A + B)$$

$$x \sim \mathcal{N}(x | \mu, \Sigma)$$
 and $p(z|x) = \mathcal{N}(z | Ax + b, Q)$. Then

$$p(z) = \int p(z|x)p(x)\mathrm{d}x$$

$$p_1(x) = \mathcal{N}(x \mid a, A)$$

 $p_2(x) = \mathcal{N}(x \mid b, B)$

Then

$$\int p_1(x)p_2(x)\mathrm{d}x = Z = \mathcal{N}\big(a\,|\,b,\,A+B\big)$$

$$x \sim \mathcal{N}\big(x\,|\,\mu,\,\Sigma\big) \text{ and } p(z|x) = \mathcal{N}\big(z\,|\,Ax+b,\,Q\big). \text{ Then}$$

$$p(z) = \int p(z|x)p(x)\mathrm{d}x$$

$$= \int \mathcal{N}\big(z\,|\,Ax+b,\,Q\big)\mathcal{N}\big(x\,|\,\mu,\,\Sigma\big)\mathrm{d}x$$

=??

▶ later

Overview

Problem Setting

Parameter Estimation

Maximum Likelihood

Maximum A Posteriori Estimation

Gaussian Identities

Bayesian Linear Regression

Bayesian Linear Regression

$$y = \boldsymbol{\phi}(x)^{\top} \boldsymbol{\theta} + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, \sigma^2)$

- Avoid overfitting by not fitting any parameters:
 - ▶ Integrate parameters out instead of optimizing them

Bayesian Linear Regression

$$y = \boldsymbol{\phi}(x)^{\top} \boldsymbol{\theta} + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, \sigma^2)$

- ► Avoid overfitting by not fitting any parameters:
 - ▶ Integrate parameters out instead of optimizing them
- ▶ Use a full parameter distribution $p(\theta)$ (and not a single point estimate θ^*) when making predictions:

$$p(y|x_*) = \int p(y|x_*, \theta)p(\theta)d\theta$$

- \blacktriangleright Prediction no longer depends on θ
- Predictive distribution reflects the uncertainty about the "correct" parameter setting

Example

- ► Light-gray: uncertainty due to noise (same as in MLE/MAP)
- ► Dark-gray: uncertainty due to parameter uncertainty

Example

- ► Light-gray: uncertainty due to noise (same as in MLE/MAP)
- Dark-gray: uncertainty due to parameter uncertainty
- Right: Plausible functions under the parameter distribution (every single parameter setting describes one function)

Model for Bayesian Linear Regression

Prior
$$p(\theta) = \mathcal{N}(m_0, S_0)$$
,
Likelihood $p(y|x, \theta) = \mathcal{N}(y | \phi^{\top}(x)\theta, \sigma^2)$

- Parameter θ becomes a latent (random) variable
- ► Prior distribution induces a distribution over plausible functions
- ► Choose a conjugate Gaussian prior
 - Closed-form computations
 - Gaussian posterior

▶ Prior $p(\theta) = \mathcal{N}(m_0, S_0)$ is Gaussian ▶ posterior is Gaussian: ▶ Derive this

$$p(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{y}) = \mathcal{N}(\boldsymbol{m}_{N}, \boldsymbol{S}_{N})$$

$$\boldsymbol{S}_{N} = (\boldsymbol{S}_{0}^{-1} + \boldsymbol{\sigma}^{-2}\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-1}$$

$$\boldsymbol{m}_{N} = \boldsymbol{S}_{N}(\boldsymbol{S}_{0}^{-1}\boldsymbol{m}_{0} + \boldsymbol{\sigma}^{-2}\boldsymbol{\Phi}^{\top}\boldsymbol{y})$$

▶ Prior $p(\theta) = \mathcal{N}(m_0, S_0)$ is Gaussian ▶ posterior is Gaussian:

$$p(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{y}) = \mathcal{N}(\boldsymbol{m}_{N}, \boldsymbol{S}_{N})$$

$$\boldsymbol{S}_{N} = (\boldsymbol{S}_{0}^{-1} + \boldsymbol{\sigma}^{-2}\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-1}$$

$$\boldsymbol{m}_{N} = \boldsymbol{S}_{N}(\boldsymbol{S}_{0}^{-1}\boldsymbol{m}_{0} + \boldsymbol{\sigma}^{-2}\boldsymbol{\Phi}^{\top}\boldsymbol{y})$$

29

• Mean m_N identical to MAP estimate

▶ Prior $p(\theta) = \mathcal{N}(m_0, S_0)$ is Gaussian ▶ posterior is Gaussian:

$$p(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{y}) = \mathcal{N}(\boldsymbol{m}_{N}, \boldsymbol{S}_{N})$$

$$\boldsymbol{S}_{N} = (\boldsymbol{S}_{0}^{-1} + \boldsymbol{\sigma}^{-2}\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-1}$$

$$\boldsymbol{m}_{N} = \boldsymbol{S}_{N}(\boldsymbol{S}_{0}^{-1}\boldsymbol{m}_{0} + \boldsymbol{\sigma}^{-2}\boldsymbol{\Phi}^{\top}\boldsymbol{y})$$

- Mean m_N identical to MAP estimate
- Assume a Gaussian distribution $p(\theta) = \mathcal{N}(m_N, S_N)$. Then

$$p(y|x) = \mathcal{N}(y \mid \boldsymbol{\phi}^{\top}(x)\boldsymbol{m}_N, \boldsymbol{\phi}^{\top}(x)\boldsymbol{S}_N\boldsymbol{\phi}(x) + \sigma^2)$$

▶ Prior $p(\theta) = \mathcal{N}(m_0, S_0)$ is Gaussian ▶ posterior is Gaussian:

$$p(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{y}) = \mathcal{N}(\boldsymbol{m}_N, \boldsymbol{S}_N)$$

$$\boldsymbol{S}_N = (\boldsymbol{S}_0^{-1} + \boldsymbol{\sigma}^{-2}\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-1}$$

$$\boldsymbol{m}_N = \boldsymbol{S}_N(\boldsymbol{S}_0^{-1}\boldsymbol{m}_0 + \boldsymbol{\sigma}^{-2}\boldsymbol{\Phi}^{\top}\boldsymbol{y})$$

- Mean m_N identical to MAP estimate
- Assume a Gaussian distribution $p(\theta) = \mathcal{N}(m_N, S_N)$. Then

$$p(y|x) = \mathcal{N}(y \mid \boldsymbol{\phi}^{\top}(x)\boldsymbol{m}_N, \boldsymbol{\phi}^{\top}(x)\boldsymbol{S}_N\boldsymbol{\phi}(x) + \sigma^2)$$

• $\phi^{\top}(x)S_N\phi(x)$: Contribution to uncertainty due to parameter distribution

More details → https://mml-book.com, Chapter 9

Marginal Likelihood

- Marginal likelihood can be computed analytically.
- With $p(\theta) = \mathcal{N}(\mu, \Sigma)$

$$p(y|X) = \int p(y|X, \theta)p(\theta)d\theta = \mathcal{N}(y \mid \Phi \mu, \Phi \Sigma \Phi^{\top} + \sigma^2 I)$$

Distribution over Functions

Consider a linear regression setting

$$y = f(x) + \epsilon = a + bx + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma_n^2)$$

 $p(a, b) = \mathcal{N}(\mathbf{0}, \mathbf{I})$

Sampling from the Prior over Functions

Consider a linear regression setting

$$y = f(x) + \epsilon = a + bx + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma_n^2)$$

 $p(a, b) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
 $f_i(x) = a_i + b_i x, \quad [a_i, b_i] \sim p(a, b)$

Sampling from the Posterior over Functions

Consider a linear regression setting

$$y = f(x) + \epsilon = a + bx + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$
 $p(a, b) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
 $\mathbf{X} = [x_1, \dots, x_N], \ \mathbf{y} = [y_1, \dots, y_N]$ Training inputs/targets

Linear Regression Marc Deisenroth @AIMS Rwanda, October 11, 2018

Sampling from the Posterior over Functions

Consider a linear regression setting

$$y = f(x) + \epsilon = a + bx + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma_n^2)$$
 $p(a, b) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
 $p(a, b|\mathbf{X}, \mathbf{y}) = \mathcal{N}(\mathbf{m}_N, \mathbf{S}_N)$ Posterior

Linear Regression Marc Deisenroth @AIMS Rwanda, October 11, 2018

Sampling from the Posterior over Functions

Consider a linear regression setting

$$y = f(x) + \epsilon = a + bx + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma_n^2)$$

 $[a_i, b_i] \sim p(a, b | \mathbf{X}, \mathbf{y})$
 $f_i = a_i + b_i x$

Fitting Nonlinear Functions

► Fit nonlinear functions using (Bayesian) linear regression: Linear combination of nonlinear features

Fitting Nonlinear Functions

- ► Fit nonlinear functions using (Bayesian) linear regression: Linear combination of nonlinear features
- ► Example: Radial-basis-function (RBF) network

$$f(\mathbf{x}) = \sum_{i=1}^{n} \theta_i \phi_i(\mathbf{x}), \quad \theta_i \sim \mathcal{N}(0, \sigma_p^2)$$

Fitting Nonlinear Functions

- ► Fit nonlinear functions using (Bayesian) linear regression: Linear combination of nonlinear features
- ► Example: Radial-basis-function (RBF) network

$$f(\mathbf{x}) = \sum_{i=1}^{n} \theta_i \phi_i(\mathbf{x}), \quad \theta_i \sim \mathcal{N}(0, \sigma_p^2)$$

where

$$\phi_i(x) = \exp\left(-\frac{1}{2}(x-\mu_i)^\top(x-\mu_i)\right)$$

for given "centers" μ_i

Illustration: Fitting a Radial Basis Function Network

$$\phi_i(\mathbf{x}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^\top(\mathbf{x} - \boldsymbol{\mu}_i)\right)$$

▶ Place Gaussian-shaped basis functions ϕ_i at 25 input locations μ_i , linearly spaced in the interval [-5,3]

Samples from the RBF Prior

$$f(x) = \sum_{i=1}^{n} \theta_i \phi_i(x), \quad p(\theta) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Samples from the RBF Posterior

$$f(x) = \sum_{i=1}^{n} \theta_i \phi_i(x), \quad p(\boldsymbol{\theta}|\boldsymbol{X}, \boldsymbol{y}) = \mathcal{N}(\boldsymbol{m}_N, \boldsymbol{S}_N)$$

39

Linear Regression Marc Deisenroth @AIMS Rwanda, October 11, 2018

RBF Posterior

Limitations

- Feature engineering (what basis functions to use?)
- ▶ Finite number of features:
 - ► Above: Without basis functions on the right, we cannot express any variability of the function

41

► Ideally: Add more (infinitely many) basis functions

- Instead of sampling parameters, which induce a distribution over functions, sample functions directly
 - ▶ Place a prior on functions
 - ▶ Make assumptions on the distribution of functions

- Instead of sampling parameters, which induce a distribution over functions, sample functions directly
 - ▶ Place a prior on functions
 - ▶ Make assumptions on the distribution of functions
- ► Intuition: function = infinitely long vector of function values
 - ▶ Make assumptions on the distribution of function values

- Instead of sampling parameters, which induce a distribution over functions, sample functions directly
 - ▶ Place a prior on functions
 - ▶ Make assumptions on the distribution of functions
- ► Intuition: function = infinitely long vector of function values
 - ▶ Make assumptions on the distribution of function values

- Instead of sampling parameters, which induce a distribution over functions, sample functions directly
 - ▶ Place a prior on functions
 - ▶ Make assumptions on the distribution of functions
- ► Intuition: function = infinitely long vector of function values
 - ▶ Make assumptions on the distribution of function values
- **→** Gaussian process

Summary

- ► Regression = curve fitting
- ► Linear regression = linear in the parameters
- Parameter estimation via maximum likelihood and MAP estimation can lead to overfitting
- Bayesian linear regression addresses this issue, but may not be analytically tractable
- Predictive uncertainty in Bayesian linear regression explicitly depends on uncertainty of parameters
- Distribution over parameters induces distribution over functions