Chapter 3.3- Spanning Sets and Linear Independence

Learning Outcomes:

- Write a linear combination of a set of vectors in a vector space *V*.
- Determine whether a set S of vectors in a vector space V is a spanning set of V.
- Determine whether a set of vectors in a vector space *V* is linearly independent.

Definition of Linear Combination of Vectors

A vector \mathbf{v} in a vector space V is called a **linear** combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ in V if \mathbf{v} can be written in the form

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k$$

where $c_1, c_2, ..., c_k$ are scalars.

Examples:

a. For the set of vectors in \mathbb{R}^3 ,

$$S = \{(1, 3, 1), (0, 1, 2), (1, 0, -5)\},\$$

 \mathbf{v}_1 is a linear combination of \mathbf{v}_2 and \mathbf{v}_3 since

$$\mathbf{v}_1 = 3\mathbf{v}_2 + \mathbf{v}_3 = 3(0, 1, 2) + (1, 0, -5)$$

= (1, 3, 1).

b. For the set of vectors in $M_{2,2}$,

$$S = \left\{ \begin{bmatrix} 0 & 8 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix} \right\},$$

 \mathbf{v}_1 is a linear combination of \mathbf{v}_2 , \mathbf{v}_3 and \mathbf{v}_4

$$\mathbf{v}_1 = \mathbf{v}_2 + 2\mathbf{v}_3 - \mathbf{v}_4$$

$$= \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} + 2 \begin{bmatrix} -1 & 3 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 8 \\ 2 & 1 \end{bmatrix}.$$

Finding a Linear Combination

1. Write the vector $\mathbf{w} = (1, 1, 1)$ as a linear combination of vectors in the set S.

$$S = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$$

$$(1, 1, 1) = c_1(1, 2, 3) + c_2(0, 1, 2) + c_3(-1, 0, 1)$$

$$= (c_1 - c_3, 2c_1 + c_2, 3c_1 + 2c_2 + c_3).$$

$$c_1 - c_3 = 1$$

$$2c_1 + c_2 = 1$$

$$3c_1 + 2c_2 + c_3 = 1$$

$$c_1 = 1 + t, \quad c_2 = -1 - 2t, \quad c_3 = t.$$

where t is any real number.

Thus, w can be written as

$$\mathbf{w} = 2\mathbf{v}_1 - 3\mathbf{v}_2 + \mathbf{v}_3.$$

Finding a Linear Combination

2. Write the vector $\mathbf{w} = (1, -2, 2)$ as a linear combination of vectors in the set S.

$$S = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$$

$$(1, -2, 2) = c_1(1, 2, 3) + c_2(0, 1, 2) + c_3(-1, 0, 1)$$

$$= (c_1 - c_3, 2c_1 + c_2, 3c_1 + 2c_2 + c_3).$$

$$c_1 - c_3 = 1$$

$$2c_1 + c_2 = -2$$

$$3c_1 + 2c_2 + c_3 = 2.$$

The system has no solution.

Therefore, \mathbf{w} cannot be written as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

Spanning Sets

Definition:

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ be a subset of a vector space V. The set S is called a **spanning set** of V if *every* vector in V can be written as a linear combination of vectors in S. In such cases it is said that S **spans** V.

Examples:

1. The set $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ spans R^3 since any vector $\mathbf{u} = (u_1, u_2, u_3)$ in R^3 can be written as a linear combination of vectors in S, that is,

$$\mathbf{u} = u_1(1,0,0) + u_2(0,1,0) + u_3(0,0,1) = (u_1, u_2, u_3)$$

Spanning Sets

Examples:

2. The set $S = \{1, x, x^2\}$ spans P_2 (set of polynomials of degree 2 or less).

This is because any polynomial function

$$p(x) = a + bx + cx^2$$
 in P_2 can be written as

$$p(x) = a(1) + b(x) + c(x^2)$$

= $a + bx + cx^2$.

Note: The spanning sets in examples 1 and 2 are called the standard spanning sets of \mathbb{R}^3 and \mathbb{P}_2 , respectively.

More examples:

1. Show that set $S = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$ spans R^3 .

Solution: Let $\mathbf{u}=(u_1,u_2,u_3)$ be any vector in \mathbb{R}^3 . For S to span \mathbb{R}^3 , there must be scalars c_1,c_2 and c_3 such that

$$(u_1, u_2, u_3) = c_1(1, 2, 3) + c_2(0, 1, 2) + c_3(-2, 0, 1)$$

$$= (c_1 - 2c_3, 2c_1 + c_2, 3c_1 + 2c_2 + c_3).$$

$$c_1 - 2c_3 = u_1$$

$$2c_1 + c_2 = u_2$$

$$3c_1 + 2c_2 + c_3 = u_3.$$

It can be verified that the determinant of the coefficient matrix is nonzero, so the system has a unique solution. Thus, any vector in \mathbb{R}^3 can be written as a linear combination of the vectors in S.

Therefore, the set S spans R^3 .

2. Does the set $S = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$ span R^3 ?

Solution: For S to span R^3 , it must be that for any vector $\mathbf{u}=(u_1,u_2,u_3)$ in R^3 , there must be scalars c_1,c_2 and c_3 such that

$$(u_1, u_2, u_3) = c_1(1, 2, 3) + c_2(0, 1, 2) + c_3(-1, 0, 1)$$

$$= (c_1 - c_3, 2c_1 + c_2, 3c_1 + 2c_2 + c_3).$$

$$c_1 - c_3 = u_1$$

$$2c_1 + c_2 = u_2$$

$$3c_1 + 2c_2 + c_3 = u_3.$$

 $\mathbf{w} = (1, 1, 2)$ is in R^3 and cannot be written as a linear combination of the vectors in S.

Therefore, the set S does not span R^3 .

Definition of the Span of a Set

If $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is a set of vectors in a vector space V, then the **span of** S is the set of all linear combinations of the vectors in S,

$$span(S) = \{c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k \mid c_1, c_2, \dots, c_k \text{ are real numbers}\}$$

The span of *S* is denoted by

span(
$$S$$
) or span{ $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ }.

If span(S) = V, it is said that V is **spanned** by $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$, or that S **spans** V.

Theorem:

If $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is a set of vectors in a vector space V, then span(S) is a subspace of V. Moreover, span(S) is the smallest subspace of V that contains S, in the sense that every other subspace of V that contains S must contain span(S).

Proof:

Note that the zero vector is contained in span(S), so span(S) is nonempty. Now, we show that span(S) is closed under addition and scalar multiplication.

Let \mathbf{u} and \mathbf{v} be in span(S), that is,

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

$$\mathbf{v} = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \dots + d_k \mathbf{v}_k$$

where c_1, c_2, \dots, c_k and d_1, d_2, \dots, d_k are scalars.

Proof: (continuation)

Then

 $\mathbf{u}+\mathbf{v}=(c_1+d_1)\mathbf{v}_1+(c_2+d_2)\mathbf{v}_2+\cdots+(c_k+d_k)\mathbf{v}_k$ and for any scalar c,

$$c\mathbf{u} = (cc_1)\mathbf{v}_1 + (cc_2)\mathbf{v}_2 + \dots + (cc_k)\mathbf{v}_k$$

These show that $\mathbf{u} + \mathbf{v}$ and $c\mathbf{u}$ can be written as linear combinations of vectors in S, hence, $\mathbf{u} + \mathbf{v}$ and $c\mathbf{u}$ are in span(S). Thus, span(S) is a subspace of V.

Linear Dependence and Linear Independence

Definition:

A set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ in a vector space V is called **linearly independent** if the vector equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0}$$

has only the trivial solution, $c_1 = 0$, $c_2 = 0$, ..., $c_k = 0$.

If there are also nontrivial solutions, then S is called **linearly** dependent.

Examples:

(a) The set $S = \{(1, 2), (2, 4)\}$ in \mathbb{R}^2 is linearly dependent because -2(1, 2) + (2, 4) = (0, 0).

Linear Dependence and Linear Independence

Examples:

- (b) The set $S = \{(1,0), (0,1), (-2,5)\}$ in \mathbb{R}^2 is linearly dependent because 2(1,0) 5(0,1) + (-2,5) = (0,0).
- (c) The set $S = \{(0, 0), (1, 2)\}$ in \mathbb{R}^2 is linearly dependent because 1(0, 0) + 0(1, 2) = (0, 0).

Testing for Linear Dependence and Linear Independence

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ be a set of vectors in a vector space V. To determine whether S is linearly independent or linearly dependent, perform the following steps.

- 1. From the vector equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_k\mathbf{v}_k = 0$ write a homogeneous system of linear equations in the variables c_1, c_2, \ldots , and c_k .
- 2. Use Gaussian elimination to determine whether the system has a unique solution.
- 3. If the system has only the trivial solution, then the set S is linearly independent. If the system also has nontrivial solutions, then S is linearly dependent.

1. Determine whether the set of vectors in \mathbb{R}^3 is linearly independent or linearly dependent.

$$S = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$$

Find c_1 , c_2 , and c_3 such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}.$$

$$c_1(1, 2, 3) + c_2(0, 1, 2) + c_3(-2, 0, 1) = (0, 0, 0)$$

$$(c_1 - 2c_3, 2c_1 + c_2, 3c_1 + 2c_2 + c_3) = (0, 0, 0)$$

$$c_1 - 2c_3 = 0$$

$$2c_1 + c_2 = 0$$

$$3c_1 + 2c_2 + c_3 = 0$$

By Gaussian elimination, we can see that

$$c_1 = c_2 = c_3 = 0.$$

So, *S* is linearly independent.

2. Determine whether the set of vectors in P_2 is linearly independent or linearly dependent.

$$S = \{1 + x - 2x^{2}, 2 + 5x - x^{2}, x + x^{2}\}$$
Solution: $c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + c_{3}\mathbf{v}_{3} = \mathbf{0}.$

$$c_{1}(1 + x - 2x^{2}) + c_{2}(2 + 5x - x^{2}) + c_{3}(x + x^{2}) = 0 + 0x + 0x^{2}$$

$$(c_{1} + 2c_{2}) + (c_{1} + 5c_{2} + c_{3})x + (-2c_{1} - c_{2} + c_{3})x^{2} = 0 + 0x + 0x^{2}.$$

$$c_{1} + 2c_{2} = 0 \begin{bmatrix} 1 & 2 & 0 & 0 \\ 1 & 5 & 1 & 0 \\ -2c_{1} - c_{2} + c_{3} = 0 & -2 & -1 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Observe that the system has infinitely many solutions. So, S is linearly dependent.

3. Determine whether the set of vectors in $M_{2,2}$ is linearly independent or linearly dependent.

$$S = \left\{ \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \right\}$$

Solution:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$$

$$c_1 \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

So, S is linearly independent.

Theorem:

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}, k \geq 2$, is linearly dependent if and only if at least one of the vectors \mathbf{v}_j can be written as a linear combination of the other vectors in S.

Examples:

$$S = \{1 + x - 2x^{2}, 2 + 5x - x^{2}, x + x^{2}\}\$$

$$c_{1} + 2c_{2} = 0$$

$$c_{1} + 5c_{2} + c_{3} = 0$$

$$-2c_{1} - c_{2} + c_{3} = 0$$

$$\mathbf{v}_{2} = 2\mathbf{v}_{1} + 3\mathbf{v}_{3}$$

Corollary:

Two vectors \mathbf{u} and \mathbf{v} in a vector space V are linearly dependent if and only if one is a scalar multiple of the other.

1. The set

$$S = \{(1, 2, 0), (-2, 2, 1)\}$$

is linearly independent since \mathbf{v}_1 and \mathbf{v}_2 are not scalar multiples of each other.

2. The set

$$S = \{(4, -4, -2), (-2, 2, 1)\}$$

is linearly dependent since $\mathbf{v}_1 = -2\mathbf{v}_2$.

Assignment

- 1. Determine whether or not the set $S = \{(1, -2, 0), (0, 0, 1), (-1, 2, 0)\}$ spans R^3 . Justify your answer.
- 2. Given the matrices $A = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 5 \\ 1 & -2 \end{bmatrix}$. Show that the matrix $C = \begin{bmatrix} 6 & -19 \\ 10 & 7 \end{bmatrix}$ is a linear combination of matrices A and B.
- 3. For which value/s of t is the set $S = \{(t, 1, 1), (1, 0, 1), (1, 1, 3t)\}$ linearly independent?

