Rendu DM3 Optimisation Convexe

Yoann Pradat

November 12, 2018

1. Let's derive the dual of the LASSO problem in the variable $w \in \mathbf{R}^d$.

$$\min_{w \in \mathbf{R}^d} \frac{1}{2} ||Xw - y||_2^2 + \lambda ||w||_1 \tag{1}$$

where $\lambda \in \mathbf{R}$, $X \in \mathbf{R}^{n \times d}$ and $y \in \mathbf{R}^n$ are fixed. The LASSO problem is equivalent to the constrained problem over $(v, w) \in \mathbf{R}^{n \times d}$

$$\min_{(v,w)\in\mathbf{R}^{n\times d}} \frac{1}{2} ||v||_2^2 + \lambda ||w||_1$$
s.t $Xw - y = v$

Let $f_0: (v, w) \mapsto f_1(v) + f_2(w)$ be the objective function with $f_1: v \mapsto \frac{1}{2} \|v\|_2^2$ and $f_2: w \mapsto \lambda \|w\|_1$. Let's compute the conjugage of f_0 , it will be useful in the formulation of the dual problem. First notice that f_1 and f_2 are convex and that f_0 is a function of two variables but that these variables are separated. Consequently, the conjugate of f_0 is the sum of the conjugates of f_1 and f_2 i.e $f_0^*(s,t) = f_1^*(t) + f_2^*(s)$.

The conjugate of f_1 is $f_1^*(t) = \frac{1}{2} ||t||_{*,2}^2$ where $||t||_{*,2} = \sup\{t^T v | ||v||_2 \le 1\}$. Indeed let $t \in \mathbf{R}^n$. Then

$$\forall v \in \mathbf{R}^n \quad t^T v \le ||t||_{*,2} ||v||_2$$

$$\implies t^T v - \frac{1}{2} ||v||_2^2 \le ||t||_{*,2} ||v||_2 - \frac{1}{2} ||v||_2^2$$

$$\implies t^T v - \frac{1}{2} ||v||_2^2 \le \frac{1}{2} ||t||_{*,2}^2$$

as the left-hand side on the second line is a quadratic function of $||v||_2$ with maximum $\frac{1}{2}||t||_{*,2}^2$. Therefore, $f_1^*(t) \leq \frac{1}{2}||t||_{*,2}^2$. Now, let $v \in \mathbf{R}^n$ be such that $t^Tv = ||t||_{*,2}||v||_2$. We can scale v so that $||v||_2 = ||t||_{*,2}$. Then $t^Tv - \frac{1}{2}||v||_2^2 = \frac{1}{2}||t||_{*,2}^2$. As a consequence $f_1^*(t) \geq \frac{1}{2}||t||_{*,2}^2$ and eventually $f_1^*(t) = \frac{1}{2}||t||_{*,2}^2$.

The conjugate of f_2 is

$$f_2^*(s) = \begin{cases} 0 & \|\lambda s\|_{*,1} \le 1\\ \infty & \text{otherwise} \end{cases}$$

Let $s \in \mathbf{R}^d$. If $\|\lambda s\|_{*,1} > 1$, by definition of the dual norm there exists $w \in \mathbf{R}^d$ with $\|w\|_1 \le 1$ and $\lambda s^T w > 1$. Taking z = aw and letting $a \to \infty$ we have

$$\lambda s^T z - \|z\|_1 = a(\lambda s^T w - \|w\|_1) \to \infty$$

If $\|\lambda s\|_{*,1} \leq 1$, it is easy to show that $\lambda s^T w - \|w\|_1$ is bounded above by 0 and 0 is attained for w = 0.

Let's now compute the dual of the problem (2). For $\nu \in \mathbf{R}^n$ we have

$$g(\nu) = \inf_{(v,w) \in \mathbf{R}^{n \times d}} \left(f_1(v) + f_2(w) + \nu^T (Xw - y - v) \right)$$

= $-f_1^*(\nu) - f_2^*(-X^T\nu) - \nu^T y$

Given the previous calculations, ν is dual feasible if and only if $\|\lambda X^T \nu\|_{*,1} \leq 1$. The dual norm of the l_2 -norm is the l_2 -norm and the dual norm of the l_1 -norm is the l_{∞} -norm. Therefore, the dual of problem (2) is

$$\max_{\nu \in \mathbf{R}^n} -\frac{1}{2} \|\nu\|_2^2 - \nu^T y$$
s.t
$$\|\lambda X^T \nu\|_{\infty} \le 1$$
(3)

that is to say

$$\min_{v \in \mathbf{R}^n} \frac{1}{2} v^T v + v^T y$$
s.t $X^T v \leq \frac{1}{\lambda}$ (4)

The dual problem is thus obtained as a QP problem

$$\min_{v \in \mathbf{R}^n} v^T Q v + v^T p$$
s.t $A^T v \leq b$ (5)

where
$$Q = \frac{1}{2}I_n$$
, $p = y$, $A = X^T$ and $b = \frac{1}{\lambda}$.

2. We are now going to solve the dual problem (5) using a barrier method. Given $(v_0, t_0, \mu, \epsilon)$

Barrier method Repeat

- 1. Centering step. Compute $v^*(t)$ by minimizing $f(v) = \left[t(v^TQv + v^Tp) \sum_{i=1}^d \log(b_i a_i^Tv)\right]$ with a_i^T is the i^{th} line of A.
- 2. Update $v := v^*(t)$
- 3. Stopping criterion stop if $m/t < \epsilon$
- 4. Increase t. $t := \mu t$.

The centering step is going to be solved using Newton method with backtracking line search that is to say

Centering step

Repeat

- 1. $\Delta v_{nt} := -\nabla^2 f(v)^{-1} \nabla f(v)$.
- 2. $\lambda^2 = \nabla f(v)^T \nabla^2 f(v)^{-1} \nabla f(v)$
- 3. Quit if $\frac{\lambda^2}{2} < \epsilon$
- 4. Choose step size s by backtrack line search.

5. Update $v := v + s\Delta v_{nt}$.

For fixed $t \in \mathbf{R}_{++}$, the gradient and the hessian of f are

$$\nabla f(v) = t(2Qv + p) + \sum_{i=1}^{d} \frac{a_i}{b_i - a_i^T v}$$

$$\nabla^2 f(v) = 2tQ + \left[\sum_{i=1}^{d} \frac{a_{ik} a_{il}}{(b_i - a_i^T v)^2} \right]_{k,l \in [1,n]^2}$$

For given $\alpha \in (0, \frac{1}{2}), \beta \in (0, 1)$, the backtrack search is solved by

Backtrack search

- 1. Start at s=1
- 2. Repeat $s := \beta s$ until $f(v + s\Delta v) < f(v) + \alpha s \nabla f(v)^T \Delta v$.

Figure 1 – Results barrier method on the dual of LASSO for random X and y, $\lambda = 10$

The constrained formulation of LASSO (2) is a convex problem for which Slater condition is satisfied. Therefore we have strong duality. Solving the dual problem, we have a dual feasible ν^* point for (5). Then, if (v^*, w^*) is the unique solution of

$$\min_{(v,w)} \left(f_1(v) + f_2(w) + (\nu^*)^T (Xw - y - v) \right) \tag{6}$$

and (v^*, w^*) is primal feasible, it is primal optimal.

The l_1 -norm is not differentiable on any $w \in \mathbf{R}^d$ that has at least 1 null coordinate but is differentiable everywhere else. It is not obvious how to derive w after having solved the dual problem . . .