A Book of Abstract Algebra | (2nd Edition)

		oblem	
Prove each of the following	ng:		
The line $ax + by + c = 0$ i	s constructible if a,b	$c, c \in \mathbb{D}$	
	Step-by-s	tep solution	
	Step ⁻	1 of 4	
Here, objective is to prov	e that the line $ax + by$	+c=0 is constructib	le, if $a,b,c \in D$.
Consider $a \in D$ if and o	nly if the point $(a,0)$ is	constructible from {(0,1}
Comment			
	Step 2	2 of 4	

A line is constructible if it is passing through two constructible points..

Comment

Step 3 of 4

Find the two points on the line:

Consider the line ax + by + c = 0

put
$$x = 0$$

$$by + c = 0$$

$$y = -\frac{c}{b}$$

put
$$y = 0$$

$$ax + c = 0$$

$$x = -\frac{c}{a}$$

So, the line ax + by + c = 0 is passing through $\left(0, -\frac{c}{b}\right), \left(-\frac{c}{a}, 0\right)$

Comment

Step 4 of 4

The two points $\left(0, -\frac{c}{b}\right), \left(-\frac{c}{a}, 0\right)$ are constructible if and only if $a, b, c \in D$

If the two points $\left(0, -\frac{c}{b}\right), \left(-\frac{c}{a}, 0\right)$ are constructible, then the line ax + by + c = 0 is also constructible

Therefore,, the line ax + by + c = 0 is constructible, if $a, b, c \in D$.

Hence, proved

Comment

COMPANY

About Chegg
Chegg For Good
College Marketing
Corporate Development
Investor Relations
Jobs
Join Our Affiliate Program
Media Center
Site Map

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Chegg Coupon Sell Textbooks Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Flashcards Digital Access Codes Learn Chegg Money Chegg Math Solver

CHEGG NETWORK

EasyBib Customer Service
Internships.com Give Us Feedback
Thinkful Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy

CUSTOMER SERVICE