WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

(11) International Publication Number:

WO 91/19727

C07H 19/00

A1

(43) International Publication Date:

26 December 1991 (26.12.91)

(21) International Application Number:

PCT/US91/04362

(22) International Filing Date:

19 June 1991 (19.06.91)

(30) Priority data:

540,353

19 June 1990 (19.06.90)

US

(71) Applicant: SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH [US/US]; 1275 York Avenue, New York, NY 10021 (US).

(72) Inventors: KRAYEVSKY, Alexander, A.; Profsoyuznaya Street 132, Building 4, Apt. 11, Moscow, 117321 (SU). TARUSSOVA, Natalie, B.; Zhivopisnaya Street 50, Apt. 40, 193754 Moscow (SU). MATULIC-ADAMIC, Jasenka; 12-33 York Avenue, Apt. 6J, New York, NY 10021 (US). WATANABE, Kyoichi, A.; 28 Wilton Road, Rye Brook, NY 10573 (US).

(74) Agent: WHITE, John, P.; Cooper & Dunham, 30 Rockefeller Plaza, New York, NY 10112 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European pa-

Published

With international search report.

(54) Title: 5'-HYDROGENPHOSPHONATES AND 5'-METHYLPHOSPHONATES OF SUGAR MODIFIED NUCLEO-SIDES, COMPOSITIONS AND USES THEREOF

(57) Abstract

The present invention concerns compounds having one of the structures (I), (II), (III), wherein R is (a) or (b), R1 is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, R2 is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, R³ is hydrogen or an alkyl group of one to four carbons, X is a hydroxy, a thiol, or an amino group, Y is hydrogen, a halogen or an alkyl group of one to four carbons, and Z is a hydrogen, hydroxy, or an amino group. The present invention also provides pharmaceutical compositions comprising a pharmaceutically effective amount of a compound according to the subject invention and a pharmaceutically acceptable carrier. Finally, the invention provides methods to suppress viral infection.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	Fl	Finland	ML.	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece ·	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	1T	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE.	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korca	SU	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
cs	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	us	United States of America
DK	Denmark	MC	Мопасо		

WO 91/19727 -1- PCT/US91/04362

5'-Hydrogenphosphonates and 5'-Methyl phosphonates of Sugar Modified Nucleosides. Compositions and Uses Thereof

The invention described herein was made in the course of work under Grant Nos. CA-08748 and AI-26056 from the National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services.

Background Of The Invention

The only clinically available agent for the treatment of 10 acquired immune deficiency syndrome (AIDS) in the United States is 3'-azido-3'-deoxythymidine (AZT). [Mitsuya et al., Proc. Nat Acad. Sci., USA, 1985 82, 7096] Several 2',3'-dideoxynucleosides are also reported [Mitsuya et al., Proc. Nat. Acad. Sci., USA, 1986, 83, 1911] as active 15 against human immune deficiency virus (HIV), the responsible pathogen that causes AIDS. These nucleosides are converted into their corresponding 5'-mono-nucleotides by the action of cellular nucleoside kinase(s) followed by stepwise phosphorylation catalyzed by cellular nucleotide kinases to 20 their corresponding 5'-triphosphates. These nucleoside 5'triphosphates inhibit proviral DNA synthesis catalyzed by HIV reverse transcriptase (RT) by incorporation to the 3' position of the growing DNA terminal.

25

30

5

Many nucleosides are poor substrates for deoxynucleoside kinase(s) due to rather restricted structural requirement of the enzyme(s). Conversion of the 5'-monophosphate of these nucleosides into their corresponding 5'-triphosphates usually occurs readily in the cell. Nucleoside-5'-monophosphates cannot be used for treatment of AIDS, because they can hardly penetrate the cell membrane due to strong acidic nature. Nucleoside-5'-hydrogenphosphonates, weak acidic compounds, however, may penetrate cell membrane and

may be oxidized to their corresponding phosphates and then further converted into the corresponding triphosphates in the cell, or the 5'-hydrogen-phosphonates may serve as substrates for nucleotide kinases forming the triphosphate analogues, pyrophosphorylhydrogenphosphonates, which then inhibit the viral DNA synthesis catalyzed by the reverse transcriptase.

Date: Linett Carlos Coll

COLORED LANGET SECTION MORSELES.

10

5

15

20

25

Summary Of The Invention

The present invention provides a compound having the structure:

5

10

wherein R is

or N

ZINT

. 15

R¹ is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R² is hydrogen, halogen, an azido, an amino er an alkyl group of one to four carbons,

R³ is hydrogen or an alkyl group of one to four carbons,

20

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons, and

Z is a hydrogen, a hydroxy, or an amino group.

25

The present invention also provides a compound having the structure:

II

X N Or

10

5

R³ is hydrogen or an alkyl group of one to four carbons,

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons, and

15

Z is a hydrogen, a hydroxy, or an amino group

20

17

25

Further, the present invention provides a compound having the structure:

III

R³ is hydrogen or an alkyl group of one to four carbons,

X is a hydroxy, a thicl, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons, and

Z is a hydrogen, a hydroxy, or an amino group.

20

25

The present invention provides a compound having the structure:

5

10

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons,

15

R1 is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R² is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, and

R is hydrogen or an alkyl group of one to four carbons.

20

Also, the invention provides a compound having the structure:

25

30

X is a hydroxy, a thiol, or an amino group,
Y is hydrogen, a halogen or an alkyl group of one to four carbons,

The property of the comment of the c

R¹ is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R² is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, and

R is hydrogen or an alkyl group of one to four carbons.

Further, the invention provides a compound having the structure:

10

5

16

25

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons,

R¹ is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R² is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, and

R is hydrogen or an alkyl group of one to four

carbons.

The present invention also provides pharmaceutical compositions comprising a pharmaceutically effective amount of a compound according to the subject invention and a pharmaceutically acceptable carrier. Finally, the invention provides methods for treating viral infections.

Detailed Description Of The Invention

The present invention provides a compound having the structure:

5

10

R1 is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

20 -

R2 is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R3 is hydrogen or an alkyl group of one to four carbons,

25

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one four carbons, and to

Z is a hydrogen, a hydroxy, or an amino group.

35

The present invention also provides a compound having the structure:

R³ is hydrogen or an alkyl group of one to four carbons,

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons, and

Z is a hydrogen, a hydroxy, or an amino group.

Further, the present invention provides a compound having 20 the structure:

R¹ is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,
 R² is hydrogen, halogen, an azido, an amino or an

alkyl group of one to four carbons, R3 is hydrogen or an alkyl group of one to four carbons,

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons, and

Z is a hydrogen, hydroxy, or an amino group.

The present invention also provides a compound of structures I, II or III wherein R is:

10

5

O N N Y

wherein X is a hydroxy, a thicl, or an amino
group,
Y is hydrogen, halogen or an alkyl

Y is hydrogen halogen or an alkyl group of one to four carbons.

20

25

The present invention provides a compound having the structure: χ

5

10

I

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons,

R¹ is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R² is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, and

R is hydrogen or an alkyl group of one to four carbons.

20

Also, the invention provides a compound having the structure:

25

30

X is a hydroxy, a thiol, or an amino group, Y is hydrogen, a halogen or an alkyl group of one

35 to four carbons,

R¹ is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R² is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, and

R is hydrogen or an alkyl group of one to four carbons.

der 20115.

Further, the invention provides a compound having the structure:

10

5

15

25

35

The state of the state of the state of the state of

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons,

R¹ is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R² is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, and

R is hydrogen or an alkyl group of one to four carbons.

Compounds of structures I, II or III may be used to suppress viral replication and treat infection.

The following compounds are examples of compounds useful in accordance with the present invention:

1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-8-D-glyceropentofuranosyl) cytosine,

- 1-(2,3-Dideoxy-5'-3-hydrogenphosphonyl-B-D-glycero-pentofuranosyl) thymine,
- 1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-8-D-glycero-pentofuranosyl) uracil,
- 1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-8-D-lyxofuranosyl)-5-fluorouracil,
- 1-(2,3-Anhydro-5'-O-hydrogenphosphonyl-B-D-lyxofuranosyl)-5-fluorouracil,
- 1-(3-Azido-2,3-dideoxy-5'-0-hydrogenphosphonyl-β-D-erythro-pentofuranosyl) thymine,
- 10 1-(3-Azido-2,3-dideoxy-5'-0-hydrogenphosphonyl-β-D-erythro-pentofuranosyl) uracil,
 - 1-(3-Azido-2,3-dideoxy-5'-0-hydrogenphosphonyl-β-D-erythropentofuranosyl) cytosine,
 - 1-(2,3-Dideoxy-3-fluoro-5'-0-hydrogenphosphonyl-β-D-erythro-pentofuranosyl) thymine,
 - 1-(2,3-Dideoxy-3-fluoro-5'-0-hydrogenphosphonyl-β-D-<u>erythro</u>-pentofuranosyl) uracil,
 - 1-(2,3-Dideoxy-3-fluoro-5'-0-hydrogenphosphonyl-8-D-<u>erythro</u>-pentofuranosyl) cytosine,
- 20 1-(2,3-Dideoxy-2-fluos-5'-0-hydrogenphosphonyl-β-D-threo-pentofuranosyl) thymine,
 - 1-(2,3-Dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-8-D-threo-pentofuranosyl) uracil,
 - 1-(2,3-Dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-8-D-
- 25 <u>threo</u>- pentofuranosyl) cytosine,
 - 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-β-D-arabinofuranosyl) thymine,
 - 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-ß-D-arabinofuranosyl) uracil,
- 30 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-8-D-arabinofuranosyl) cytosine,
 - 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-8-D-arabinofuranosyl)-5-fluorouracil.
- 35 The following compounds are still further examples of

20

- compounds of the present invention:
- 1-(2,3-Dideoxy-2,3-didehydro-5'-0-hydrogen-phosphonyl-8-D-glycero-pentofuranosyl) cytosine,
- 1-(2,3-Dideoxy-2,3-didehydro-5'-0-hydrogen-phosphonyl-8-D-glycero-pentofuranosyl) thymine,
- 5 1-(2,3-Dideoxy-2,3-didehydro-5'-0-hydrogen-phosphonyl-β-D-glycero-pentofuranosyl) uracil,
 - 1-(2,3-Anhydro-5'-0-hydrogenphosphonyl-8-D-lyxofuranosyl) cytosine,
 - 1-(2,3-Anhydro-5'-0-hydrogenphosphonyl-8-D-lyxofuranosyl) thymine,
 - 1-(2,3-Anhydro-5'-0-hydrogenphosphonyl-8-D-lyxofuranosyl) uracil.
 - 1-(2,3-Dideoxy-5'-0-methylphosphonyl-8-D-glyceropentofuranosyl) cytosine,
- 15 l-(2,3-Dideoxy-5'-0-methylphosphonyl-8-D-glycero-pentofuranosyl) thymine,
 - 1-(2,3-Didecxy-5'-0-methylphosphonyl-8-D-glyceropentofuranosyl) uracil,
 - 1-(2,3-Dideoxy-5'-0-methylphosphonyl-B-D-lyxofuranosyl)-5-fluorouracil,
 - 1-(3-Azido-2,3-dideoxy-5'-0-methylphosphonyl-β-D-erythropentofuranosyl) thymine,
 - 1-(3-Azido-2,3-dideoxy-5'-0-methylphosphonyl-8-D-erythro-pentofuranosyl) uracil,
- 25 1-(3-Azido-2,3-dideoxy-5'-0-methylphosphonyl-B-D-erythro-pentofuranosyl) cytosine,
 - 1-(2,3-Dideoxy-3-fluoro-5'-0-methylphosphonyl-8-D-erythro-pentofuranosyl) thymine,
 - 1-(2,3-Dideoxy-3-fluoro-5'-0-methylphosphonyl-β-D-erythro-pentofuranosyl) uracil,
 - 1-(2,3-Dideoxy-3-fluoro-5'-0-methylphosphonyl-8-D-erythro-pentofuranosyl) cytosine,
 - 1-(2,3-Dideoxy-3-fluoro-5'-0-methylphosphonyl-8-D-threo-pentofuranosyl) thymine,
- 35 1-(2,3-Dideoxy-3-fluoro-5'-0-methylphosphonyl-8-D-threo-

20

pentofuranosyl) uracil,

- 1-(2,3-Dideoxy-3-fluoro-5'-0-methylphosphonyl-8-D-threo-pentofuranosyl) cytosine,
- 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methyl-phosphonyl-B-D-arabinofuranosyl) thymine,
- 5 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methyl-phosphonyl-β-D-arabinofuranosyl) uracil,
 - 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methyl-phosphonyl-β-D-arabinofuranosyl) cytosine,
 - 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methyl-phosphonyl-β-D-arabinofuranosyl)-5-fluorouracil.
 - 1-(2,3-Dideoxy-2,3-didehydro-5'-0-methyl-phosphonyl-β-D-glycero-pentofuranosyl) cytosine,
 - 1-(2,3-Dideoxy-2,3-didehydro-5'-0-methyl-phosphonyl-β-D-glycero-pentofuranosyl) thymine,
- 15 1-(2,3-Dideoxy-2,3-didehydro-5'-0-methyl-phosphonyl-6-D-glycero-pentofuranosyl) uracil,
 - 1°(2,3~Anhydro-5'-0-methylphosphonyl-8-D-lyxofuranosyl)
 cytosine,
 - 1-(2,3-Anhydro-5'-0-methylphosphonyl-8-D-lyxofuranosyl) thymine,
 - 1-(2,3-Anhydro-5'-0-methylphosphonyl-B-D-lyxofuranosyl) uracil.
 - The subject invention also provides a pharmaceutical composition which comprises a pharmaceutically effective amount of a compound of structures I, II or III or a pharmaceutically acceptable metal addition salt thereof and a pharmaceutically acceptable carrier.
 - The term "pharmaceutically acceptable carrier" encompasses any of the standard pharmaceutical carriers such as sterile solutions, tablets, coated tablets and capsules. Typically such carriers, contain excipients such as starch, milk, sugar, certain types of clay, gelatin, steric acid, talc, vegetable fats or oils, gums, glycols, or other known

10

... **20**

25

30

Server Spring Englished

excipients. Such carriers may also include flavor and color additives or other ingredients. Compositions comprising such carriers are formulated by well known conventional methods. However, the compositions comprising the compound of structures I, II or III or a metal salt thereof, are previously unknown.

This invention further concerns a method of treating a viral infection so as to render the infection incapable of viral replication which comprises contacting the viral infection with an effective amount of a compound of structure I, II or III.

The amount of the compound required will vary considerably depending upon conditions. However, these amounts are readily determinable by one skilled in the art.

Additionally, this invention provides a method of treating a viral infection which comprises contacting the viral infection with an effective amount of the pharmaceutical composition described above, i.e. 1 to 200 mg/kg of body weight of a subject.

This invention also provides a method of treating a subject which comprises administering to the subject an effective amount of the pharmaceutical composition described above.

In this method, the administration of the compound may be effected by any of the well known methods, including but not limited to oral, intravenous, intramuscular, and subcutaneous. The method of delivery, the amount to be and the frequency of delivery, are expected to vary according to the situation, the carrier used, and result desired. However, those variables are readily determinable by one skilled in the art.

10

The term "subject" includes but is not limited to domestic animals and human beings.

This invention further provides a method of treating a subject having a viral infection which comprises administering to the subject an effective amount of the compound to suppress the viral replication. A subject may be any warm-blooded animal, preferably human. The viral infection may be any viral infection, including but not limited to human immunodeficiency virus, hepititis virus or cytomegalo virus.

The following Experimental Detail Section and Examples are set forth to aid in an understanding of the invention.

These sections are not intended to, and should not be construed to, limit in any way the invention set forth in the claims which follow thereafter.

20

and the strong with a strip of the strip of the

25

engalara diberia di Periodia di Seria

Experimental Details

SYNTHESIS OF NUCLEOSIDE-5'-HYDROGENPHOSPHONATES. solution of nucleoside (0.2 mmol) in a solvent (2 mL) are added 0.6 M solution of phosphorous acid tri-n-butylammonium 5 salt in pyridine (0.5 mL) and N,N'-dicyclohexyl-carbodiimide The mixture is stirred at room temperature. (0.6 mmol). The reaction is monitored by thin layer chromatography on a silica gel plate using isopropanol: 25% ammonium hydroxide : water (7:1:2 v/v) (system 1) as the solvent. 10 After all the nucleoside is consumed, the mixture is centrifuged for 10 minutes. The supernatant is removed by decantation. solid is twice washed with water. The product is isolated by preparative layer chromatography on a silica gel plates using system 1.

SYNTHESIS OF NUCLEOSIDE-5'-METHYLPHOSPHONATES. solution of nucleoside in a solvent mixture are added at 0 45. °C successively dichloro-methylphosphoryl oxide and 1,2,4-13 The mixture is stirred at 0 °C for 1 hour and tetrazole. 20 then at room temperature. After completion of the reaction as judged by thin layer chromatography on a silica gel plate in system 1, the mixture is cooled to 0 °C, and the reaction is quenched by addition of triethylamine and water. mixture is stirred for 2 hours at 4 °C, and then is 25 concentrated in vacuo. The nucleoside-5'-methylphosphonates are isolated by preparative layer chromatography on silica gel plates using system 1.

30 The following examples are illustrated of the process and products of the present invention, but are not to be construed as limiting.

10

20

25

30

Example 1

To a solution 3'-azido-3'-deoxythymidine (53 mg, 0.2 mmol) in pyridine (2 mL) are added 0.6 M solution of phosphorous acid tri-n-butylammonium salt in pyridine (0.5 mL) and N,N'dicyclohexyl-carbodiimide (125 mg, 0.6 mmol). The mixture is stirred for 4 hours at room temperature, and then is centrifuged for 10 minutes. The supernatant is removed by The solid is twice washed by dispersion in decantation. water (1 mL each) followed by centrifugation. The combined supernatants are concentrated to dryness in vacuo. The residue is dissolved in a minimal amount of pyridine and applied to a silica gel plate (20 \times 20 \times 0.15 cm), and the plate is developed in system 1. The UV absorbing band corresponding to the nucleoside-5'-phosphonate is scraped, and then extracted with system 1 (30 mL). The solvent is removed by evaporation in vacuo, and the residue is reevaporated with water (2 mL). The residue is dried azeotropically by evaporation with ethanol (2 mL \times 2) in 1-(3-azido-3-deoxy-5-0-hydrogen-phosphonyl-8-Derythro-pentofuranosyl)thymine (58 84% yield) mq, obtained as colorless foam.

By following the same procedure but using the corresponding nucleosides instead of 3'-azido-3'-deoxythymidine, the following nucleoside-5'-hydrogenphosphonates are prepared:

- 1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-8-D-glyceropentofuranosyl) cytosine,
- 1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-8-D-glycero-pentofuranosyl) thymine,
- 1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-8-D-glycero-pentofuranosyl) uracil,
- 1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-8-D-lyxofuranosyl)-5-fluorouracil,
- 35 1-(2,3-Anhydro-5'-0-hydrogenphosphonyl-8-D-lyxofuranosyl)-5-

fluorouracil,

- 1-(3-Azido-2,3-dideoxy-5'-0-hydrogenphosphonyl-8-D-erythro-pentofuranosyl) thymine,
- 1-(3-Azido-2,3-dideoxy-5'-0-hydrogenphosphonyl-8-D-erythro-pentofuranosyl) uracil,
- 5 1-(3-Azido-2,3-dideoxy-5'-0-hydrogenphosphonyl-B-D-erythro-pentofuranosyl) cytosine,
 - 1-(2,3-Dideoxy-3-fluoro-5'-0-hydrogenphosphonyl-β-D-<u>erythro</u>-pentofuranosyl) thymine,
 - 1-(2,3-Dideoxy-3-fluoro-5'-0-hydrogenphosphonyl-β-D-erythro-pentofuranosyl) uracil,
 - 1-(2,3-Dideoxy-3-fluoro-5'-0-hydrogenphosphonyl-8-D-erythropentofuranosyl) cytosine,
 - 1-(2,3-Dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-8-D-threo-pentofuranosyl) thymine,
- 15 1-(2,3-Dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-8-D-threopentofuranosyl) uracil,
 - 1-(2,3-Dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-8- D threo- pentofuranosyl) cytosine,
 - 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-8-D-arabinofuranosyl) thymine,
 - 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-β-D-arabinofuranosyl) uracil,
 - 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-8-D-arabinofuranosyl) cytosine,
- 25 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-8-D-arabinofuranosyl)-5-fluorouracil.

Example 2

- To a solution of 1-(2,3-Dideoxy-2,3-didehydro-8-D-glycero-pentofuranosyl) thymine (45 mg, 0.2 mmol) in trimethylphosphate (2 mL)) are added 0.6 M solution of phosphorous acid tri-n-butyl-ammonium salt in pyridine (0.5 mL) and N,N'-dicyclohexyl carbodimide (125 mg, 0.6 mmol).
- 35 The mixture is stirred for 8 hours at room temperature, and

then is centrifuged for 10 minutes. The supernatant is removed by decantation. The solid is twice washed by dispersion in water (1 mL each) followed by centrifugation. The combined supernatants are concentrated to dryness in The residue is dissolved in a minimal amount of pyridine and applied to a silica gel plate (20 \times 20 \times 0.15 cm), and the plate is developed in system 1. absorbing band corresponding to the nucleoside-5'phosphonate is scraped, and then extracted with system 1 (30 The solvent is removed by evaporation in vacuo, and the residue is reevaporated with water (2 mL). The residue is dried azeotropically be evaporation with ethanol (2 mL x 2) vacuo. 1-(2,3-Dideoxy-2,3-didehydro-5-0hydrogenphosphonyl-&-D-glycero-pentofuranosyl) thymine (25 mg, 42% yield) is obtained as colorless foam.

15

10

5

By following the same procedure but using the corresponding nucleosides instead of 1-(2,3,-Dideoxy-2,3-didehydro-B-D-glycero-pentofuranosyl) thymine, the following nucleoside-5'-hydrogen phosphonates were prepared:

20

1-(2,3-Dideoxy-2,3-didehydro-5'-0-hydrogen-phosphonyl-8-D-glycero-pentofuranosyl) cytosine,

1-(2,3-Dideoxy-2,3-didehydro-5'-0-hydrogen-phosphonyl-8-D-glycero-pentofuranosyl) thymine,

25

1-(2,3-Dideoxy-2,3-didehydro-5'-0-hydrogen-phosphonyl-8-D-glycero-pentofuranosyl) uracil,

- 1-(2,3-Anhydro-5'-0-hydrogenphosphonyl-B-D-lyxofuranosyl) cytosine,
- 1-(2,3-Anhydro-5'-0-hydrogenphosphonyl-8-D-lyxofuranosyl) thymine, and
- 1-(2,3-Anhydro-5'-0-hydrogenphosphonyl-8-D-lyxofuranosyl) uracil.

20

30

35

Table 1 lists the reaction conditions, yields and chromatogaphic and UV characteristics for some representative nucleoside-5'-hydrogen-phosphonates.

Table 3 lists the ¹H NMR parameters for some representative nucleoside-5'-hydrogenphosphonates.

Table 5 lists the ³²P NMR data for some representative nucleoside-5'-phosphonates

10 Example 3

To a solution of 1-(2,3 dideoxy-B-D-glycero-pentofuranosyl) cytosine (43 mg, 0.2 mmol) in trimethylphosphate (2.0 mL) are added at 0 °C successively dichloromethylphosphoryl oxide (80 mg, 0.6 mmol) and 1,2,4-tetrazele (20 mg). The mixture is stirred at 0 °C for 1 hour and then at room temperature for 4 hours. The mixture is cooled to 0 °C, and the reaction is quenched by addition of triethylamine (0.2 mL) and water (0.2 mL). The mixtrue is stirred for 2 hours at 4 °C, and then is concentrated in vacuo. 1-(2,3-dideoxy-5-0-methylphosphonyl-B-D-glycero-pentofuranosyl) cytosine is isolated by preparative layer chromatography on a silica gel plate as Example 1 (29 mg, 42% yield, as a colorless foam).

- 25 By following the same procedure but using the corresponding nucleosides instead of 1-(2',3'-dideoxy-B-D-glycero-pentofuranosyl)cytosine, the following nucleoside-5'-methylphosphonates are prepared:
 - 1-(2,3-Dideoxy-5'-0-methylphosphonyl-8-D-glyceropentofuranosyl) cytosine,
 - 1-(2,3-Dideoxy-5'-0-methylphosphonyl-8-D-glycero-pentofuranosyl) thymine,
 - 1-(2,3-Dideoxy-5'-0-methylphosphonyl-B-D-glycero-pentofuranosyl) uracil,
 - 1-(2,3-Dideoxy-5'-0-methylphosphonyl-8-D-

lyxofuranosyl)-5-fluorouracil, 1-(3-Azido-2,3-dideoxy-5'-0-methylphosphonyl-8-Derythro-pentofuranosyl) thymine, 1-(3-Azido-2,3-dideoxy-5'-0-methylphosphonyl-8-Derythro-pentofuranosyl) uracil, 1-(3-Azido-2,3-dideoxy-5'-0-methylphosphonyl-B-D-5 <u>erythro</u>-pentofuranosyl) cytosine, 1-(2,3-Dideoxy-3-fluoro-5'-0-methylphosphonyl-8erythro-pentofuranosyl) thymine, 1-(2,3-Dideoxy-3-fluoro-5'-0-methylphosphonyl-8erythro-pentofuranosyl) uracil, 1-(2,3-Dideoxy-3-fluoro-5'-0-methylphosphonyl-8erythro-pentofuranosyl) cytosine, 1-(2,3-Dideoxy-3-fluoro-5'-0-methylphosphonyl-8threo-pentofuranosyl) thymine, 1-(2,3-Dideoxy-3-fluore-5'-0-methylphosphonyl-8-D- threo-pentofuranosyl) uracil, 1-(2,3-Dideoxy-3-fluoro-5,-0-methylphosphonyl-8threo-pentofuranosyl) cytosine, 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methyl-20 phosphonyl-B-D-arabinofuranosyl) thymine, 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methylphosphonyl-8-D-arabinofuranosyl) uracil, 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methylphosphonyl-B-D-arabinofuranosyl) cytosine, 25 and 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methylphosphonyl-8-D-arabinofuranosyl)-5fluorouracil.

30

35

Example 4

To a solution of 1-(2,3-anhydro-8-D-lyxopentofuranosyl) cytosine (45 mg, 0.2 mmol) in trimethylphosphate (1.0mL) are added at 0°C successively dichloromethyl phosphoryl oxide

20

25

(80 mg, 0.6 mmol) and 1,2,4-tetrazole (20 mg). The mixture is stirred at 0 °C for 1 hour and then at room temperature for 14 hours. The mixture is cooled to 0 °C, and the reaction is quenched by addition of triethylamine (0.2 mL) and water (0.2 mL). The mixture is stirred for 2 hours at 4 °C, and then is concentrated in vacuo. 1-(2,3-Anhydro-5-0-methylphosphonyl-6-D-lyxofuranosyl) cytosine is isolated by preparative layer chromatography on a silica gel plate as Example 1 (28 mg, 46% yield, as a colorless foam).

By following the same procedure but using the corresponding nucleosides instead of 1-(2,3-anhydro-B-D-lyxopentofuranosyl)cytosine, the following nucleoside-5'-methylphosphonates are prepared:

1-(2,3-Dideoxy-2,3-didehydro-5'-0-methyl-phosphonyl-8-D-glycero-pentofuranosyl) cytosine,

1-(2,3-Dideoxy-2,3-didehydro-5'-0-methyl-phosphonyl-8-D-glycero-pentofuranosyl) thymine,

1-(2,3-Dideoxy-2,3-didehydro-5'-0-methyl-phosphonyl-8-D-glycero-pentofuranosyl) uracil,

1-(2,3-Anhydro-5'-0-methylphosphonyl-8-D-lyxofuranosyl) cytosine,

1-(2,3-Anhydro-5'-0-methylphosphonyl-8-D-lyxofuranosyl) thymine, and

1-(2,3-Anhydro-5'-0-methylphosphonyl-β-D-lyxofuranosyl) uracil.

30 Table 2 lists the reaction conditions, yields and chromatographic and UV characteristics of some of these nucleoside-5'-methyl-phosphonates that are synthesized by the above procedure.

35 Table 4 lists the ¹H NMR parameters for some of these

nucleoside-5'-methylphosphonates.

Tab	le 1.	EXI	oer in	ental cond	tions	for	the syl	nthesis of 5'-h	Table 1. Experimental conditions for the synthesis of 5'-hydrogenphosphonates (I, R=H)	ates ((I, R=	H)
				801	solvent	-	time	yield	chromatography	3	UV absorption	ption
×	×	- ¤	R ²	(ML)		(hrs)	€	solvent 1	Bolvent 2 Rf		in H ² 0 (nm) max min ph	(nn) Hq n
0	Æ	Ħ	ß.	pyridine (2)	(2)	-	84	0.88	0.80	266	234	7.0
0	He	z.	<u> </u>	pyridine (2)	(2)	c	92	0.80	0.80	266	234	7.0
0	We w	z"	Ħ	pyridine (2)	(2)	12	79	0.68	0.55	266	234	7.0
0	Me	=	=	MeCN (2)*1		38	61	0.70	0.66	268	234	7.0
0	Me	Ç _{E4}	H	pyridine (2)	(2)	ø	78	9.62	0.56	266	234	7.0
•	=	=	=	MeCN (2)*2		8.3	36	9.54	0.48	270	247	7.0
NH ₂	H	H	×	pyridine (2)		12	47	0.76	0.74	261	230	7.0

•

Table 1 (cont'd)

			89	solvent		time	yield	chromatography UV absorption	w yhc	absor	ption
×	Y R	R ²	(mr)		(hrs)	(%	solvent 1 Rf	solvent 2 Rf	in H ² 0 (nm) max min		Hď
Exp	erimental	Experimental conditions for the	ons for	the	synthesis	20	synthesis of 5'-hydrogenphosphonates (II, R	phonates (II,	R = H)		
NH ₂ H	H	(Me0) ₃ P0 (2)	(2)	4.3	36		0.73	0.73	270	247	7.0
٠									277	238	1.0
0	Me	(Me0) ₃ P0 (2)	(2)	8	0	9		09.0	266	234	7.0
0	H Mech	H HeCN (1)/(Me0)3P0(0.5) 4	3P0 (0.5	4 0	W)	25	0.54	0.53	261	230	7.0
Exp	erimenta]	Experimental conditions for the	ons for	the	synthesis	of 5	synthesis of 5'-hydrogenphosphonates (III,	phonates (III	, R = H)	₽	
0	E	(He0) ₃ P0 (0.5)	(0.5)	12	52	2	6 6	0.54	261	230	7.0
0	(k .	(HeO) ₃ PO (0.5)	(0.5)	12		6	O. A. O.	0.45	268	234	7.0
NH ₂	×	(HeO) ₃ PO (1)	(1)	14	46	10	0.37	0.34	270	247	7.0
			-						277	238	1.0
*	vith 0.4	* with 0.4 mL of N-methylimidazole	ethylin	idaz	ole						

*2 with 0.5 mL of (Me0)₃P0

*3 beyond this time, side reactions take place

Tab	le 2.	H	Table 2. Experimental conditions for the synthesis of 5'-methylphosphonates (I, $R = He$)	1 cond	itions	for the	synthesis	of 5'-1	ethylphos	phonates	(I, R	ž = Z	~
×	*	- 8	R ² ((MeO) ₃ PO: MeCN (ML) (ML)	O:Mecn (ml)	time (hr) 0°C	time (hr) rt*	yield (%)	chromes solvent (1)	chromatography lvent solvent 1) (2)	2	UV absorption in H²o (nm) ix min pH	nie) PH
0	×	Ħ	Н	0.5	2	14	•	ъ. 4	0.73	0.70	261	232	7.0
0	Æ	×	**	~	0	ન	• • . • .	9	0.53	0.50	266	234	7.0
NH ₂	=	X	H 1	1.5	0	18	•	47	0.56	0.52	270	247	7.0
0	T O	<u> </u>	2	0.2	8	14	y	. **	0.73	0.70	277	238 232	1.0
0	Æ	ž	, o	0.3	-	9	 R	78	0.85	0.75	566	234	7.0
0	Æ	=	0	0.3	-	v	€	57	0.65	0.54	265	234	7.0
0	Me	z	ñ.	0.3	N	14		58	0.87	0.75	265	235	7.0

Table 2 (cont'd)

time (hr) (%) solvent solvent in H ² O (r 0°C rt* (1) (2) max min ynthesis of 5°-methylphosphonates (II, r = Me) 1 4 42 0.71 0.68 270 247 7 277 238 1 14 0 67 0.50 0.46 261 232 7 ynthesis of 5°-methylphosphonates (III, R = Me) 6 12 52 0.42 0.40 270 247 7 21 18 46 0.87 0.80 269 234 7															
ynthesis of 5'-methylphosphonates (II, r = Me) 1	×	Y R¹		0) 3PQ	:MeC (mL)	4 0	はらだ。		yield (%)	chrc 80lven (1)	at		S un a	H ² 0	na)
1 4 4 42 0.71 0.68 270 247 14 0 67 0.50 0.46 261 232 1 4 85 0.70 0.68 266 234 ynthesis of 5*-methylphosphonates (III, R = Me) 6 12 52 0.42 0.40 270 247 21 18 46 0.87 0.80 269 234	Ехре	rimental	conditions	for	the	synthesis	of 5'	nethy	1phosp	honates	(II. r	# Mo	- 1		
14 0 67 0.50 0.46 261 232 1 4 85 0.70 0.68 266 234 ynthesis of 5*-methylphosphonates (III, R = Me) 6 12 52 0.42 0.40 270 247 21 18 46 0.87 0.80 269 234	NH2	Ħ	7		0	1	-		22	0.71	0.68	27(4	47	7.0
14 0 67 0.50 0.46 261 232 1 4 85 0.70 0.68 266 234 ynthesis of 5*-methylphosphonates (III, R = Me) 6 12 52 0.42 0.40 270 247 21 18 46 0.87 0.80 269 234												277		38	1.0
le 1.5 0 1 4 85 0.70 0.68 266 234 Imental conditionf for the synthesis of 5'-methylphosphonates (III, R = Me) 1.5 0 6 12 52 0.42 0.40 270 247 277 238 0.5 0 21 18 46 0.87 0.80 269 234	· 👝	Ħ	0.0		0	14	•		•	0.50	0.46	261		32	ر د
ynthesis of 5'-methylphosphonates (III, R = Me) 6 12 52 0.42 0.40 270 247 21 18 46 0.87 0.80 269 234	0	Me	S		0	~	•			0,70	8				
6 12 52 0.42 0.40 270 247 21 18 46 0.87 0.80 269 234	Expe	rimental	condition	for	the	synthesis	of 5.	-Bethy	Inhoent			707		- 1	9:
1.5 0 6 12 52 0.42 0.40 270 247 277 238 0.5 0 21 18 46 0.87 0.80 269 234		2						T	decide	Jonates	(TTT) K	= Me)			
277 238 0 21 18 46 0.87 0.80 269 234	2	5	1.5		0	v	12	6		0.42	0.40	270	l	l	7.0
0 21 18 46 0.87 0.80 269		ı										277		38	1.0
		Ča,	0.5	•	•	21	18	9		0.87	0.80	269		7	0

X Y R ¹ R ² H1' H2' H3' H6', 5" H-5 H-6 5Ne H-P 0 Me H F 6.11dt 5.6-5.0m 4.50m 4.05m 7.68s 1.89d 6.79d 0 Me N; F 6.18t 5.34dt 4.58m 4.14m 7.62s 1.87d 6.29d 0 Me N; H 6.21t 2.46t 4.63t 3.88s 4.20m 7.65d 1.87d 6.29d 0 Me F H 6.21t 2.46t 4.63t 5.06t 4.15t 7.62d 1.88d 6.80d 0 Me F H 6.21t 4.56m 5.06t 4.15t 7.78d 1.24d 6.80d 0 Me H H 6.40 2.3-2.1m 4.42m 4.06m 7.78d 1.74d 6.80d 0 H H H 6.65 2.17m 3.36m 4.60m 4.0	× O O	~	?					Application of the last of the				
Me H F 6.11dt 5.6-5.0m 4.50m 4.50m 4.05m 7.62g Me N ₃ F 6.18t 5.34dt 4.58m 4.14m 7.62g Me N ₃ H 6.21t 2.46t 4.63t 3.88s 4.20m 7.62d Me F H 6.21t 4.56m 5.63t 5.06t 4.15t 7.62d Me F H 6.21t 4.56m 5.63t 5.06t 4.15t 7.62d H H 6.40 2.3-2.1m 4.42m 4.06m 7.91d H H 6.08dd 2.17m 3.52dd 4.20m 3.99m 6.60 6.61 H H 6.4m 2.15m 3.52dd 4.20m 3.99m 6.60 6.61 H H 6.4m 2.15m 3.52dd 4.20m 3.99m 6.60 6.61 H H 6.4m 2.15m 3.52dd 4.20m 3.99m<	0.0		¥	H1.	H2.	Н3•	. 78	H5',5"	H-5	9-H	5Me	H-D
He N ₃ F 6.18t 5.34dt 4.58m 4.14m 7.62s (6.2) (6.2) (5.6, 5.1) 3.88s 4.20m 7.65d (0.5) (6.6) (6.2) (5.45) 5.06t 4.15t 7.62d (0.5) (1.1) (0		<u> </u>	ta.] -	.0.	4.50%	4.05m		7.688	1.89d	5.79d
Me N ₃ H 6.21t 2.46t 4.63t 3.88s 4.20m 7.65d (6.5) (6.6) (6.2) (5.45) 5.06t 4.15t (0.5) (7.62d (4.7) (8.2) (8.2) (4.9) (1.1) (7.8d (4.7) (6.6) (6.6) (6.6) (6.6) (6.8, 6.0) (10.7, 10.7) (10.7, 10.7) (10.7, 10.7)		zī o	ßie,	<u>:</u> بر:		, 1	4. 8. 8. 8.	4.14m		7.628	1.874	637.7 5.29d
Me F H 6.21t 4.56m 5.63t 5.06t 4.15t (4.7) (8.2) (8.2) (4.9) (6.6)	X O		=	6.21t (6.6)	2.46t	5.1) 4.63t	3.888	4.20m		7.65d	0.7) (6. 1.87d 7	19.4)
He H H 6.40 2.3-2.1m 4.42m 4.06m (6.6) H H H G.08dd 2.17m 3.36m 4.60m 4.02m 5.86d (6.8, 6.0) H H H G.08dd 2.15m 3.52dd 4.20m 3.99m (6.6)	ž		=	6.21¢	4.56m	5.63t	5.06t	4.15t		(0.5) (7.62d	0.8) (63 1.88d 6	17.5)
H H H 6.08dd 2.17m 3.36m 4.60m 4.02m 5.86d (6.8, 6.0) H H H 6.4m 2.15m 3.52dd 4.20m 3.99m (6.6) (Ä		X	(4.7) 6.40		(8.2)	(8.2) 4.42B	(4.9) 4.06m		(1.1) (1.78d)	0.8) (63 1.74d 6	9.7)
H H H 6.4m 2.15m 3.52dd 4.20m 3.99m (6.6) (6.6) (6 (10.7, 10.7) (6.20m 3.99m (6.6) (6.6) (6.6) (6.6) (6.6) (6.6) (6.6) (6.6) (6.6) (6.6) (6.6) (6.6) (6.6) (6.6)	H 0	Ħ	×		~	3.36m	4.60m	4.02m	5.86d	(1.1) (; 7.91d	1.1) (63 6	6.3)
		=	=	6.4	2.15m (10.7	3.52dd	4.20m		(6.6)	(6.6) 8.04d (7.7)	(63)	7.5) .71d 9.81

6.48d (638.3) 6.74d (637.7) 6.45d (7.3) 4.1-4.m 3.7-3.6m 4.4-4.0m 3.62q (6.55) 4.5-4.3m 5.03t (10.7)) .98m 6.0-4.5m (5.0) 6.1-6.0m 6.95t

Table 3 (cont'd)

The state of the s

	•						·				
×	Y R ¹	R.	H1.	Н2	НЭ 1	H4 c	H5',5"	H-5	H-6	5Ме	H-1
				1H NMR pa	1H NMR parameters for 5° -hydrogenphosphonates in D_2° (III, R = H)	SPaydr	odenphos	honates	in D ₂ 0 (I	II, R	H =
•	×		6.25m	4.5-	4.5	10			8.03d		6.780
•	, Sta		6.208	9.	5.94.0m 4.3-4.2m	· •	4.2m	(6.6)	(641.1) 7.86d		6.75
NH ₂ H	æ		6.208	4.2		16. 2		(8.2) 6.08d (7.7)	(645.3) 7.85d (7.7)	9	7.14d
•	Chemica		Chemical shifts in non		The state of the s	1 - 4 - 4 - 4					

Chemical shifts in ppm (6). signal description by apparent shape (e.g., t or q). Coupling constants in Hz in () right below chemical shifts first order.

For HP(0) (0H)2, 6 6.88d (672.0 Hz).

R=Me)
(I,
D20
=
5'-methylphosphonates
for
parameters 1
NAR
Н ₂
÷
able

X X	R¹	R ²	H1*	H2 '	Н3 г	#	H5',5'	HS	H-6	5Me	Me-P
HZHN	Ħ	Ħ	6.05m	1.78m	3.58d	4.12m	4.02m		8.58d		1.314
O Me	×	×	6.25m	2.03m	(10.7) 3.12m	5.02m	4.0-3.8m	(7.7) 8.13s	1.41d	(16.5) 1.29d	
H O	E	Ħ	_	2.13m	3.12m	5.02m	4.1-3.5m	5.86d	7.91d	(1.1)	(16.5 1.27d
O Me	ß.	=	104) 104)	4.53	5.72d	5.16m	3.7-2m	(8.2)	7.758	(14.5) 1.938	1.33d
O Me	z _w	=		2.80t	4.48m	3.88d	4.4-4.3m		7.99d	2.21d	(16.2 1.22d
O Me	=	<u>Su</u>		(6.9)		(3.4)		7.68d	(1.1) 1.89d	(0.5) 1.36d	(16.1
O Me	N ₃	<u>.</u>	(9 (9	5.72t (8.4)	4.78m	3.54t (7.40	4.5-4.4m	(1.2)	(1.2) 7.97d (1.2)	(13.2) 2.23d (1.2)	1.69d (16.4)
			¹H NMR paramet	ers	for 5'-me	thylphos	5'-methylphosphonates ir	in D ₂ O (I	Ke		
NH ₂	=		6.93	5.0	5.98m	3.965	9.88t	34	7.79d		1.16d
O Me			6.94m 4	. 53	4.94t	3.98m	(10.4) 3.61M		(8.5) 6.59d	1.87d	(16.5) 1.16d
О Н	İ		6.81m 5	(10.4) 5.83m	6.50m	4.78m	4.01t	(1.0) 6.53d	(1.0) 7.30d	(16.4)	1.22d
							0000		 		(c.or)

_
T
•
u
È
Ö
ŭ
$\overline{}$
-
•
-
0
Τ,
_
_
Д
65
H
5

			-			
						Coupling
	X	7 - PU		1.36d (16.5)	1.29d (16.5)	or q).
	5Ma	REKO				1.g., t
	H-6	DO (III		8.09d (6.6)	8.75d (8.5)	shape (e
	`` ``*\\$\$	ates in			6.15d	apparent s first
	E	phon		22 1	(S:8)	by shife
	H5',5'	r 5'-methylphosphonates in D.O (III REMA)		3.5		secription chemical
	H4.	for 5'-				Signal de
	H3 •	eters		. 6		().
	H2 ' H3 '	param				mdd u
	H1.	H NMR parameters for	6.25t	6.198		Chemical shifts in ppm (). Signal description by apparent shape (e.g., t or q). constants in Hz in () right below chemical shifts first order.
•	ž					mical stant
•	K Y R' R'			=		Co
	*		P. C	₽		

A CONTRACTOR OF THE PARTY OF TH

0,0
in
5'-phosphonates
S
for
parameters
MMR
a D
ъ.
ble

Structure	*	×	. ≪	R1	R2	Chemical shift ppm (6)	Chemical shift Coupling constants ppm (Hz)
1	NH ₂	Ħ	H	×	×	5.65m	929.9, 422.4,207.5
_	NH,	=	He He	Ħ	=	19.18m	541.4,302.2
	0	¥	=	×	Ħ	6.16d	637.0
	0	=	Me	×	Ħ	24.46m	551.7,305.0
	NH ₂	×	×	ß.	=	6.13d	634.4
	NH ₂	×	Же	£,	I	5.59	619.5
	0	Æ	Же	×	#	6.29	637.2
_	•	Me	Me	Ĉ.	×	26.72	636.6, 429.3, 214.6
III	NH,	×	=			6.16m	634.3, 416.6, 208.1

10

Example 5

Anti-HIV-1 activities of the compounds Anti-HIV-1 Assay. were tested in MT4 cells. The cells were infected with HIV-1 at 200 TCID50 viruses per 106 cells. After an absorption period of one hour at 37°C unabsorbed viruses were removed by washing with fresh medium without fetal calf serum. cells were suspended in fresh medium and distributed into 12-well microculture plates (106 cells 5/3ml/well). various concentrations of test compounds were added. cell cultures were incubated at 37° in a humidified atmosphere of 5% CO2 HIV-1 P24 core antigen and RT activity in the supernatants of the test cell cultures were detected on day-4. Anti-HIV-1 effects of compounds were evaluated by the inhibitory concentration was calculated by the median-15 effect plot using a computer software.

Cytotoxicity Assay. The Cytotoxicity of the compounds was determined in MT4 cells in 96-well microplates by XTTmicroculture tetrazolium assay.

20

Table 7 lists the Anti-Hiv-1 effect and cytotoxicity of hydrogen-phosphates of pyrimidine nucleosides in MT4 cells.

Table 8 lists the Anti-Hiv-1 effect and cytotoxicity of hydrogen-phosphates of pyrimidine nucleosides in MT4 cells. 25

Table 9 lists the Anti-Hiv-1 Activity of AZT-HP, FLT-HP and ddt-HP based on Reversetranscriptase assay on day-4 in MT4 cells.

30

Table 10 lists the Dose-Effect relationships of inhibiting HIV-1 replication in MT4 cells.

hety

Table 6. Resindirect immu	Results of initial screeingunofluorescence assay are summarized.	nitial s cence as:	creening say toget	of gome nu her with E	cleoside	5'-phospl ad by the	honates in ELISA meti	Results of initial screening of some nucleoside 5'-phosphonates in H9 cells using the maunofluorescence assay together with EC56 obtained by the ELISA method and cytotoxicitare summarized.	th
Compound*	Percent 100µM	Inhibition 10µM 1µM	tion 1 µM	Anti-HIV activity	EC ₅₀ * 1 ; H (ME4)	IC,0*2 mM(MT4)	IC,0*2 mM (NT4)	EC ₅₀ /IC ₅₀ *3 (WI4 cells)	
AZT-HPO	80	50	0	‡		>>5			
AZT-MePo	0	0	•		,				
FLT-HPO	66	86	80	+++	2.	12.62	>>5	5,736	
FLT-MePo	66	66	9	+++	0.30	4.60	ຣ.ຮ	15,333	
LaFu-HPO	0	0	0	+		>>5			
Lafu-MePo	24	24	0	+		6.61			
LaC-HPO	100	70	07	‡		1.28			
LaC-MePo .	66	66	0	+++		3.25			
ddC-HPO	. 04	40	•	+		2.32			
ddc-MePo	100	70		‡	1 m 1 m	7.44			
ddT-HPO	30	0	•			3.41			
ddt-MePo	10	0	07	+	`·.;	9.32			
ddU-HPO	66	20	•	‡	5.43 5.43	63.84	7.6	11,757	
AdU-HPO	80	64	50	+++		>>1	28.9		
AdU-MePo	0	•	•	•		>> 1	3.7		
ddU-MePo	80	20	24 +	· •	2.7	3.58	25.0	1,326	

P
'n
돗
ၓ
_
9
0
る
<u>a</u>
-

学 (藤)

Compound*	Percent 100µM	Inhibit 10µM	ition . 1 µM	Anti-HIV activity	EC ₅₀ *1 ? H (MT4)	IC ₅₀ *2 mM(MT4)	EC ₅₀ *1 IC ₅₀ *2 IC ₅₀ *2 (M (MT4) mM (MT4)	EC ₅₀ /IC ₅₀ *3 (MT4 cells)
д4с-нРо	66	70	40	+++		8.10		
d4C-MePO	07	74	9			>>5		
AŻT	100	88	70		0.005	0.21	0.52	42.000
FLt	66	67	33		0.004	0.19	0.02	47,500
ddc	100	100	100		ି ନ ୍ଦ	0.28	0.023	1,000

5-(H-phosphonate), MePO = 5'(Methylphosphonate) 3'azido-3'-deoxythymidine AZT

3'-deoxythymidine FLT

= 1-(2,30anhydro-8-D-Lyxofuranosyl)-5-fluorouracil 1-(2, Janhydro-6-DOLyxofuranosyl) cytosine Lac m LaFU

2'3'-dideoxycytidine ddc

3'-deosythymidine ddT

3'-azido-2,3'-dideoxyuridine 2,3'-dideosyuridine ddu Adu

d4c

2',3'-dihehydro-2',3'-dideosycytidine (cytidinene)

"Concentration necessary to inhibit 50% of viral replication. **Concentration required to inhibit 50% of cell growth

"Therapeutic indeces.

Compande	•	-cell Growth	a
	(MM) OCOG	1C20 (MH)	IC50/EC50
AZT-HP	0.072	7,800	34 700
PLT-HP	0.135	>5.000	000 664
ddHP	0.084		40,500
d4T-HP	11.98	V. 5.000	0000
F-d4T-HP	> 50	000	1
ddc-HP	40°E		
d4c-HP	24.2	000 . N	050
LAC-HP	38.1	0000	017
ddy-HP	> 50	000 **	7
d4A-HP	12.25	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	> 410
dH-npp	5.34	>5 000	> 920
d4U-HP	51.0	2,300	7
Adu-HP	10.65	000 8	V 470
Lau-HP	>100	>5,000	
Lafu-HP	>100	V5,000	!!
ddT	88.		
200	9 6		> 2,660
755	0 · 73	2,280	7,860
	5.04	1,493	300
AZT	0.005	45 4	30,800
177	0.004	061.	47.500

50% effective concentration of inhibiting HIV-1 replication, based on P24-ELISA.

50% inhibitory concentration of MT4 cell growth, based on XTTmicroculture tetrazolium assay.

	Y of 5'-Methyl-	
,	of	
Effect and Cutotonia	phates of Pyrimiding william	18081068
Anti-HIV-1	phosphates	•
Table 8.	•	

the	Anti-HIV-1 Effect phosphates of Pyrimi	Anci-Hiv-1 Effect and Cytotoxicity of phosphates of Pyrimidine Nucleosides in MT4	of 5'-Methyl- T4 cells
Compounds	Anti-HIV • EC50 (µM)	Anti-cell Growth b	
AZT-HeP	123		1C50/EC50
F-AZT-Map	177	000	\ \ \ \
FLT-MeP	70.7	000°s	>1.873
ddT-MeD	70.7	4,600	1.756
Fd4T-Web	0017	>5,000	
dd?-Met)) (∀5,000	
AAC-Men	10.03	000	004
	16.1	A. 000	ስ (የ (
- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	>100	C SC P	2 310
d4A-Mep	1.73		< 33
ddu-Mep	2.7		647
Adu-Hep		300	1,326
Lafu-Mep	\$100 	900 A	> 143
		000 ° 6 *	
ddī	1.88	S S S S S S S S S S S S S S S S S S S	
	0.29		>2,660
ddA	70	0873	7,862
AZT	400°C	[1] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	296
FLT	0.00	40	30,800
		061	47,500

See footnote a. in Table 1.

See footnote b. in Table 1

Table 9.	Table 9. Anti-HIV-1 Activity of AZT-HP, FLT-HP and ddT-HP Dased on RT assay on day 4 in MT4 cells	MAZT-HP, FLT-HP and c MT4 cells	1dT-hP based on
Compound	Anti-HIV EC50 (µM)	Anti-cell Growth IC50 (µM) ^b	ICSO/ECSO
AZT-HP PLT-HP	0.2763	>8,500	9,050 >28,100
AZT FLT ddt	0.0139 0.0082 5.523	154 190 >5,000	11,079 23,170 > 900
•	50% effective concentration of inhibiting HIV-1 based on RT	n of inhibiting HIV	-1 based on RT

50% inhibitory concentration of MT4 cell growth based on XTT-microculture tetrazolium assay.

Table 10. Dose-Effect Relationships of Imhibiting HIV-1 Replication in MT4 Cells

,	,	1 Inhibition		Med	lan-eff	ect	Median-effect Plot Parameters
Combonnd (nm)	(mm)	P-24 ELISA	RT Assay	P-:	P-24 ELISA		RT Assay
AZT:	0.1	99:20	97.89	G	7800 0	•	, , , ,
	0.05	97 79	3 6 6) · · · ·	•	\$10.0
		• (84.90		80·2	•	1.98
	0.025	91.71	72.32	H	0.994	. •	000
	0.0125	74,86	50.50			•	666.0
	0.00625	37.76	15.02				
-	0.00312	7.34	4.64				
AZT-HP	1.25	99.42			620	•	,
	1) (7.00		7/0.0	•	9/7/0
	0.625	97.90	94.18	A	1.80	. ••	3.17
	0.312	94.58	81.28	ì	700	•	
	0.156	73.99	-	•	P \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	0.00
	0.078	57.13					
575		1					
FLT-HP	n	99.17	98.13	Da	0.135	••	0.177
	N	98.06	93.59	E	2.36	•	2 05
	~	88.38	•	.	989		
	0.156	57.67	42.70)))	•	0000
	0.078	11.35	16.54	•			

(m=1,>1, and <1, indicate hyperbolic, signoidal, and negatively sigmoidal shapes, respectively; r (linear correlation co-efficient) determines the conformity of the dose-effect data to the median-effect dose, e.g. ED50) m (slope) signifies the shape of the dose-effect curve **Dm (obtained from X-intercept) signifies the potentcy (the median-effect** principle of the mass-action law. All parameters are calculated by using a computer software for IBM-PC

10

EXPERIMENTAL DISCUSSION

Representative compounds are tested for their inhibitory effects against human immunodeficiency virus in H-9 cells using 3'-azido-3'-deoxythymidine, 3'-deoxy-3'fluorothymidine and 2',3'-dideoxy-cytidine as standards. The results are summarized in Table 1-(2,3-Dideoxy-5-0-[hydrogenphosphonyl]-B-D-erythro-pentofuranosyl)uracil and 1-(2,3-dideoxy-2,3-didehydro-5-0-[hydrogen-phosphonyl]-6-Dglycero-pentofuranosyl) thymine and inhibit replication of HIV at 10 micromolar concentration. Even at 1.0 micromolar concentration, these compounds inhibit HIV replication to a significant extent. The cytotoxicity of these compounds against uninfected cells is much less than that of the nucleosides used for standard.

The inventors have found that several compounds were found to be potent and selective inhibitors of HIV-1 replication. 20 Among all of the active compounds, AZT-HP, FLT-HP and ddT-HP exhibited the most potent anti-HIV-1 activity. AZT-HP gave EC50 (50% antiviral effective concentration) of 0.072 μM and IC50 (50% inhibitory concentration of cell growth) of 2,500 A selectively index of 34,700 was achieved. щM. 25 showed EC50 of 0.135 μM and IC50 of >5,000 μM . Its selectively index was >37,000. The EC50 and IC50 of ddT-HP were 0.084 μM and 3410 μM , respectively, with a selectivity index of 40,000. As control compounds, AZT, FLT and ddT gave their ED50, IC50 and selectively index as following: 30 AZT, 0.005 μ M, 154 μ M and 30,800; FLT, 0.004 μ M, 190 μ M and 47,500; and ddT 1.88 μ M and >5,000 μ M and >2,660. Although AZT-HP and FLT-HP shows lower anti-HIV-1 activity than that of AZT and FLT, their selectivity indices were close to that of AZT and FLT. Their selectivity indices were close to 35 that of AZT and FLT because of their low cytotoxicity. Anti-

-43-

viral activity of ddT-HP was more than 20-folds higher than ddT and it still shows low cytotoxicity. Thus ddT-HP gives a good selectivity index.

What is claimed is:

5 1. A compound having the structure:

10

wherein R is

or

15

20

R¹ is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

 ${\mathbb R}^2$ is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

 \mathbb{R}^3 is hydrogen or an alkyl group of one to four carbons,

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons, and

Z is a hydrogen, a hydroxy, or an amino group.

30

2. A compound having the structure:

5

10

wherein R is

or

e · · ·

R³ is hydrogen or an alkyl group of one to four carbons,

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons, and

Z is a hydrogen, a hydroxy, or an amino group.

25

20

3. A compound having the structure:

5

III

10

wherein R is

ر المراقب المراقب

or

R³ is hydrogen or an alkyl group of one to four carbons,

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons, and

Z is a hydrogen, a hydroxy, or an amino group.

4. A compound of claim 1, 2 or 3 wherein R is:

25

wherein X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, halogen or an alkyl group of one to four carbons.

5. A compound having the structure:

5

R D O R D R T

10

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons,

R¹ is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R² is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, and

R is hydrogen or an alkyl group of one to four carbons.

6. A compound having the structure:

25

20

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons,

R1 is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R² is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, and

R is hydrogen or an alkyl group of one to four carbons.

7. A compound having the structure:

10

a setting the production of the second control of The Bent Browning Strategies in the contract of the second section of the
20

25

30

X is a hydroxy, a thiol, or an amino group,

Y is hydrogen, a halogen or an alkyl group of one to four carbons,

R1 is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons,

R² is hydrogen, halogen, an azido, an amino or an alkyl group of one to four carbons, and

R is hydrogen or an alkyl group of one to four carbons.

8.	A compound of claim 4 selected from the group
	consisting of:
5	1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-8-D-
	glycero-pentofuranosyl) cytosine,
	1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-8-D-
	glycero-pentofuranosyl) thymine,
	1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-B-D-
10	glycero-pentofuranosyl) uracil,
	1-(2,3-Dideoxy-5'-0-hydrogenphosphonyl-8-D-
•	lyxofuranosyl)-5-fluorouracil,
	1-(2,3-Anhydro-5'-O-hydrogenphosphonyl-8-D-
	lyxofuranosyl)-5-fluorouracil,
15	1-(3-Azido-2,3-dideoxy-5'-0-hydrogenphosphonyl-8-
	D-erythro-pentofuranosyl) thymine,
	1-(3-Azido-2,3-dideoxy-5'-0-hydrogenphosphonyl-8-
ř	D- <u>erythro</u> -pentofuranosyl) uracil,
*	1-(3-Azido-2,3-dideoxy-5'-0-hydrogenphosphonyl-8-
20	D- <u>ervthro</u> -pentofuranosyl) cytosine,
-	1-(2,3-Dideoxy-3-fluoro-5'-0-hydrogenphosphonyl-
	β- D- <u>erythro</u> -pentofuranosyl) thymine,
	1-(2,3-Dideoxy-3-fluoro-5'-0-hydrogenphosphonyl-
	B- D- <u>erythro</u> -pentofuranosyl) uracil,
25	1-(2,3-Dideoxy-3-fluoro-5'-0-hydrogenphosphonyl-
	B- D- <u>erythro</u> -pentofuranosyl) cytosine,
	1-(2,3-Dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-
	B- D- <u>threo</u> -pentofuranosyl) thymine,
-	1-(2,3-Dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-
30	8- D- <u>threo</u> -pentofuranosyl) uracil,
	1-(2,3-Dideoxy-2-fluoro-5'-0-hydrogenphosphonyl-
	B- D-threo-pentofuranosyl) cytosine,

	1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-
	hydrogenphosphonyl-8-D-arabinofuranosyl)
5	thymine,
	1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-
	hydrogenphosphonyl-8-D-arabinofuranosyl)
	uracil,
	1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-
10	hydrogenphosphonyl-B-D-arabinofuranosyl)
	cytosine, and
	1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-
	hydrogenphosphonyl-B-D-arabinofuranosyl)-5-
	fluorouracil.
15 Jan 19 1 100	Typi myregyddegilaegyde g
	A compound of claim 4 selected from the group
". (. (*) . (consisting of:
	1-(2,3-Dideoxy-2,3-didehydro-5'-0-hydrogen-
	phosphonyl-B-D-glycero-pentofuranosyl)
20	cytosine,
	1-(2,3-Dideoxy-2,3-didehydro-5'-0-hydrogen-
	phosphonyl-B-D-glycero-pentofuranosyl) thymine,
	1-(2,3-Dideoxy-2,3-didehydro-5'-0-hydrogen-
25	phosphonyl-B-D-glycero-pentofuranosyl) uracil,
	1-(2,3-Anhydro-5'-0-hydrogenphosphonyl-8-D-
·	lyxofuranosyl) cytosine,
	1-(2,3-Anhydro-5'-0-hydrogenphosphonyl-8-D-
30	lyxofuranosyl) thymine, and
	1-(2,3-Anhydro-5'-0-hydrogenphosphonyl-8-D-
	lyxofuranosyl) uracil.

	10.	A co	mpound	of	claim	4	select	ed	from	the	group
		cons	isting	of:							
5		1-(2	,3-Dide	оху-	-5 ' -0-n	etì	nylphos	phor	yl-B-	D-gl	<u>ycero-</u>
	•	•	pentof	urar	nosyl)	су	tosine,	,			
		1-(2	,3-Dide	оху-	-5'-0-n	eti	ylphos	phor	1 y1- 8-	D- <u>gl</u>	<u>ycero-</u>
			pentof	urar	nosyl)	thy	ymine,				
	•	1-(2	,3-Dide	oxy-	-5'-0-m	eti	nylphos	phor	1 y1- B-	D-gl	<u>ycero-</u>
10	•	4	pentof	urar	osyl)	ura	acil,				
		1-(2	2,3-Di	deo	xy-5'-	- 0 -	methy	lph	ospho	nyl	-B-D-
			lyxofu	ranc	osyl)-5	-f	luorour	aci	1,		
		1-(3	-Azido-	2,3-	-dideox	y-5	5'-0-me	thyl	.phosp	hony:	1-8-D-
			erythr	<u>o</u> −p∈	entofur	and	osyl) t	hym	ine,		
15		1-(3	-Azido-	2,3-	-dideox	y-5	:-0-me	thyl	.phosp	hony.	L-6-D-
`. · <u>.</u>	न् व्यक्तिकारी जात	3.737	ervthr	ō-be	entofur	anc	osyl) u	Tac.	11,	. 7	
Ĭ.		1-(3	-Azido-	2,3-	-dideox	y-5	i-o-ne	thyl	phosp	hony.	L-B-D-
			erythr	o-pe	entofur	and	osyl) c	yto	sine,		
		1-(2	,3-Dide	оху-	-3-fluo	ro-	-5 ¹ -0-m	ethy	ylpho	sphor	ıyl-B-
20	D.	D-	erythr	o-be	entofur	and	osyl) t	hym	ine,		
		1-(2	,3-Dide	оху-	-3-fluo	ro-	-5'-0-m	ethy	ylpho:	sphor	nyl-B-
		D -	erythr	0- Þ€	entofur	and	osyl) u	rac	il,		
		1-(2	,3-Dide	оху-	-3-fluo	ro-	-5'-0-m	ethy	ylpho	sphor	1 71- 8-
		D -	erythr	o-be	ntofur	anc	osyl) c	yto	sine,		
25		1-(2	,3-Dide	оху-	3-fluo	ro-	-5'-0-m	ethy	ylpho	sphor	1 71- 8-
		D⇒	threo-	pent	ofuran	osy	(1) thy	mine	₽,		
		1-(2	,3-Dide	оху-	3-fluo	ro-	-5!-0-m	ethy	ylpho	sphor	yl-B-
		D-	threo-	pent	ofuran	osy	(1) ura	cil,	,		
		1-(2	,3-Dide	оху-	3-fluo	ro-	-5'-0-m	ethy	ylpho	sphor	yl-B-
30		D -	threo-	pent	ofuran	osy	(1) cyt	osi	ne,		
		1-(3	-Azido-	•		_					_
			nhoenh	nnvl	-8-D-a	rah	inofur	anos	evl\ 4	-hvmi	ne

5	1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methyl-phosphonyl-B-D-arabinofuranosyl) uracil, 1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methyl-phosphonyl-B-D-arabinofuranosyl) cytosine, and
10	1-(3-Azido-2,3-dideoxy-2-fluoro-5'-0-methyl-phosphonyl-B-D-arabinofuranosyl)-5-fluorouracil.
11.	A compound of claim 4 selected from group consisting of:
%	1-(2,3-Dideoxy-2,3-didehydro-5'-0-methyl-
saatijaaga va yig	phosphonyl-8-D-glycero-pentofuranosyl) cytosine, 1-(2,3-Dideoxy-2,3-didehydro-5'-0-methyl-
ति । वैञ्चार १०००चित्र राजनात्र १८८४	phosphonyl-8-D-glycero-pentofuranosyl)
· · · · · · · · · · · · · · · · · · ·	thymine,
20 🌞 -	1-(2,3-Dideoxy-2,3-didehydro-5'-0-methyl-phosphonyl-B-D-glycero-pentofuranosyl) uracil,
	1-(2,3-Anhydro-5'-0-methylphosphonyl-β-D-lyxofuranosyl) cytosine,
25	1-(2,3-Anhydro-5'-0-methylphosphonyl-8-D-lyxofuranosyl) thymine, and
	1-(2,3-Anhydro-5'-0-methylphosphonyl-8-D-lyxofuranosyl) uracil.

- 12. A pharmaceutical composition which comprises a pharmaceutically effective amount of a compound of claims 1, 2, 3, 4, 5, 6 or 7 or pharmaceutically acceptable metal salt therof and a pharmaceutically acceptable carrier.
- 13. A method of treating a viral infection which comprises contacting the viral infection with an amount of the compound of claims 1, 2, 3, 4, 5, 6, or 7 effective to suppress viral replication.
- 14. A method of claim 13, wherein the infection is caused by human immunodeficiency virus.

the fighteen on the property of the contract o

- 15. A method of claim 13, wherein the viral infection is caused by heptitis virus.
- 20
 16. A method of claim 13, wherein the viral infection is caused by cytomegalo virus.
- 17. A method of treating a subject afflicted with a viral infection which comprises administering to the subject an amount of the composition of claim 9 to effective suppress viral replication.
- 18. A method of claim 17, wherein the subject is a domestic animal.

-54-

19. A method of claim 17, wherein the subject is a human being.

10

5

via ja kaliferaki listiji jaka lippersterikejakirjet kiristaki kali

20

25

30

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/04362

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 6				
According to International Patent Classification (IPC) or to both National Classification and IPC				
IFC(5): 007H 19/00 U.S.Cl: 536/23, 27, 28, 29; 514/49, 50				
II FIELDS SEARCHED				
Minimum Documentation Searched 7				
Classification System Classification Syn			lassification Symbols	
U.S. 536/23, 27, 28, 29; 514/49,50				
Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched ⁸				
Data bases searched: APS, CAS on line				
III. DOCUMENTS CONSIDERED TO BE RELEVANT 9				
Category • Citation of Document, 11 with indication, where appropriate, of the relevant passages 12				Relevant to Claim No. 13
Y	US, A, 4,816,570 (FARQUHAR) 28 March 1989, see the entire 1-19 document.			
Y	Y Journal of Experimental Medicine, volume 166, issued October 1987, USA, D.R. Richman et al., "Failure of dideoxynocleosides to Inhibit Human Immunodeficiency Virus Replication in Cultured Human Macrophages," pages 1144-1149, see entire document.			
	bases	1144-1149, see entire document.	The second type of	
*				
. ,				
		·		
	.	•		
:	ŀ			
	ļ			
,	İ			}
	ŀ	,	•	
		·		
	[•		
* Special categories of cited documents: 10 "A" document defining the general state of the art which is not considered to be of particular relevance "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention				
were earlier document but published on or after the international way document of particular relevance; the claimed inven				
filing date "L" document which may throw doubts on priority claim(s) or involve an inventive step				
which is cited to establish the publication date of another "y" document of particular relevance; the Claimed Invention cannot be considered to involve an inventive step when the				
"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such combination being obvious to a person skilled				
other means "P" document published prior to the international filing date but later than the priority date claimed "A" document member of the same patent family				
IV. CERTIFICATION				
Date of the Actual Completion of the International Search Date of Mailing of this International Search Report				
05	Septembe	er 1991	10001 1991	
International Searching Authority			Signature of Authorized Officer Senne Monie fi	L
ISA/US			James O. Wilson	