IISER Kolkata Exercises

MA4202: Ordinary Differential Equations

Satvik Saha, 19MS154 February 11, 2023

Exercise 1 Let $x:[-1,1] \to \mathbb{R}$ be a continuous function satisfying

$$x(t) = x(0) + \int_0^t x(s) ds.$$

Show that

$$x^{2}(t) = x^{2}(0) + 2 \int_{0}^{t} x^{2}(s) ds.$$

Solution Observe that x'(t) = x(t), hence integrating by parts yields

$$\int_0^t x^2(s) \, ds = \int_0^t x(s)x'(s) \, ds = x^2(s) \Big|_0^t - \int_0^t x(s)x'(s) \, ds,$$

whence

$$2\int_0^t x^2(s) ds = x^2(t) - x^2(0).$$

Exercise 2 Consider the IVP

$$\dot{x} = x^2 + t^2, \qquad x(0) = 1.$$

Prove that for some b > 0, there is a solution defined on [0, b]. Also find c > 0 such that there is no solution on [0, c].

Solution Fix d=1, r=1. The map $(t,x) \mapsto x^2+t^2$ is bounded by M=5 on $[t_0-d,t_0+d] \times \overline{B_r(x_0)} = [-1,1] \times [0,2]$. Thus, Peano's Theorem guarantees a solution on the interval [0,b] with $b=\min(c,r/M)=1/5$.

Note that for any solution x, we must have

$$x'(t) \ge x^2(t), \qquad -\frac{d}{dt}\left(\frac{1}{x}\right) \ge 1,$$

whence

$$1-\frac{1}{x(t)} \geq t, \qquad x(t) \geq \frac{1}{1-t}.$$

Thus, there is no solution on [0, 1].

Exercise 3 Determine the maximal interval of existence for the following IVP.

$$\dot{x} = y\cos^2 x + \sin t\cos y + 1,$$
 $\dot{y} = \sin y + x,$ $x(0) = 0,$ $y(0) = 1.$

Solution Framing the system of equations as $\dot{x} = f(t, x)$ note that

$$|f(t, \boldsymbol{x})| \le |y\cos^2 y + \sin t \cos y + 1| + |\sin y + x| \le |y| + |x| + 3 \le 2|\boldsymbol{x}| + 3.$$

Furthermore, f is C^1 ; thus the maximal interval of existence for any solution of the given IVP is \mathbb{R} .

Exercise 4 Maximize the interval length in the Picard-Lindelöf Theorem for the solution of the IVP

$$\dot{x} = 5 + x^2, \qquad x(0) = 1.$$

Solution For r > 0, the maximum value of the map $(t, x) \mapsto 5 + x^2$ on $\mathbb{R} \times \overline{B_r(x_0)} = \mathbb{R} \times [1 - r, 1 + r]$ is $M = 5 + (1 + r)^2$. Also,

$$|f(t,x) - f(t,y)| = |x^2 - y^2| = |x + y||x - y| \le (2 + 2r)|x - y|,$$

hence L = (2 + 2r) is the Lipschitz constant for f. Thus, we must choose $h < \min(r/M, 1/L) = \min(r/(6 + 2r + r^2), 1/(2 + 2r))$. This is maximised at $r = \sqrt{6}$.

Exercise 5 Show that the sequence of Picard iterates of the IVP

$$\dot{x} = x^{1/3}, \qquad x(0) = 0$$

converges, but the IVP does not have a unique solution.

Solution It is clear that all Picard iterates of this IVP are identically zero, but we have a family of solutions $\{x_{\alpha}\}_{{\alpha}>0}$ described by

$$x_{\alpha}(t) = \begin{cases} 0, & \text{if } x \in [0, \alpha], \\ k(t - \alpha)^{3/2}, & \text{if } x \in [\alpha, \infty). \end{cases}$$

Exercise 6 Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function, and let $x: I \to \mathbb{R}$ be a solution of x' = f(x) for an interval I. Show that x is a monotone function.

Solution Suppose to the contrary that x'(a) > 0 and x'(b) < 0 for some $a, b \in I$. Without loss of generality, let a < b, $x(a) \le x(b)$. Pick $\tau \in (a, b)$ such that $x(\tau)$ is maximum, and let σ be the largest number in $[a, \tau]$ such that $x(\sigma) = x(b)$. Then, we must have all $x(t) \ge x(\sigma)$ for $t \in [\sigma, \tau]$, hence $x'(\sigma) \ge 0$. But,

$$0 \le x'(\sigma) = f(x(\sigma)) = f(x(b)) = x'(b) < 0,$$

a contradiction.

Exercise 7 Let T be a linear operator on \mathbb{R}^n that leaves a subspace $E \subseteq \mathbb{R}^n$ invariant. Show that e^T also leaves E invariant.

Solution Note that for any $x \in \mathbb{R}^n$, we have

$$e^T x = \lim_{n \to \infty} \sum_{k=1}^n \frac{T^k x}{k!}.$$

Each $T^n x \in E$, so each term in the limit is in E as well. Since linear subspaces of \mathbb{R}^n are closed, the limit $e^T x \in E$.

Exercise 8 Can the Arzela-Ascoli Theorem be applied to the sequence of functions $t \mapsto \sin(nt)$ on $[0, \pi]$?

Solution No; the given family is not equicontinuous. Suppose to the contrary that there exists $\delta > 0$ such that $|\sin(nt) - \sin(ns)| < 1/2$ for all $n \in \mathbb{N}$ whenever $|s - t| < \delta$. Then we can pick $N \in \mathbb{N}$ such that $\pi/2N < \delta$. Thus, $|\pi/2N - 0| < \delta$, but $|\sin(N \cdot \pi/2N) - \sin(0)| = 1 > 1/2$, a contradiction.