Question Number	Scheme	Marks
9.	(a) (i) $(1+x)^{-1} = 1 + (-1)x + \frac{(-1)(-2)}{1 \times 2}x^2 + \frac{(-1)(-2)(-3)}{1 \times 2 \times 3}x^3 \dots$	M1
	$=1-x+x^2-x^3\cdots$	A1
	(ii) $(1-2x)^{-1} = 1 - (-2x) + (-2x)^2 - (-2x)^3 \cdots$	M1
	$= 1 + 2x + 4x^2 + 8x^3 \cdots$	A1
	(b) $\frac{2}{1-2x} + \frac{1}{1+x} = \frac{2(1+x) + (1-2x)}{(1-2x)(1+x)}$	M1
	$= \frac{3}{(1-2x)(1+x)}$ so $A = 0$ and $B = 3$	A1
	(c) (i) $\frac{1}{(1-2x)(1+x)}$	
	$= \frac{1}{3} \left(\frac{2}{1 - 2x} + \frac{1}{1 + x} \right) or (1 + 2x + 4x^2 + 8x^3 \cdots)(1 - x + x^2 - x^3 \cdots)$	M1
	$= \frac{1}{3} \Big(2(1+2x+4x^2+8x^3\cdots) + (1-x+x^2-x^3\cdots) \Big)$	M1dep
	$or 1-x+x^2+2x-2x^2+4x^2\cdots$	
	$=\frac{1}{3}(3+3x+9x^2\cdots)$	
	$=1+x+3x^2\cdots$	A1
	(ii) valid when $ x < \frac{1}{2}$	B1
	(d) $\int_{0.1}^{0.2} \frac{1}{(1-2x)(1+x)} dx \approx \int_{0.1}^{0.2} (1+x+3x^2) dx$	
	$= \left[x + \frac{1}{2}x^2 + x^3 \right]_{0.1}^{0.2}$	M1 A1
	= (0.2 + 0.02 + 0.008) - (0.1 + 0.005 + 0.001) $= 0.122$	M1dep A1 (14)

Notes for Question 9

(a)(i) M1 for attempting the binomial expansion. Must have 1 and denominators 2! or 2 (with x^2) and 3! or 6 (with x^3)

2! or 2 (with x) and 3! or
for
$$1-x+x^2-x^3$$

(ii) M1 for replacing x with $\pm 2x$ in the expansion obtained in (a) **OR** use the binomial expansion again - rules as above and $(\pm 2x)^k$ k > 0 in at least one term.

A1 for
$$1+2x+4x^2+8x^3$$

(b)

M1 for adding the two fractions to form a single fraction

A1 for
$$A = 0$$
, $B = 3$

A1

(c)(i)

M1 for either $\frac{1}{(1-2x)(1+x)} =$ (product of their expansions from (a))

or
$$\frac{1}{3} \left(\frac{2}{1-2x} + \frac{1}{1+x} \right)$$
 (allow if $\frac{1}{3}$ missing, as long as it appears later)

M1dep for multiplying **their** expansions from (a) - min 5 terms, no simplification yet, or adding 2×10^{-2}

their expansion of $(1 - 2x)^{-1}$ to **their** expansion of $(1 + x)^{-1}$ (allow if $\frac{1}{3}$ missing, as long as it appears later)

A1 for $1+x+3x^2$ or $\frac{1}{3}(3+3x+9x^2)$ Ignore higher powers.

(ii) B1 for
$$|x| < \frac{1}{2}$$
 oe use of \leq gets B0

(d)M1 for integrating their expansion from (c)-minimum 2 terms

A1ft for correct integration of **their** expansion

M1dep for substituting the correct limits in their result

A1cso for 0.122 **must** be 3 dp.

NB: Use of calculator for (d):

If the correct results have been obtained in (c) and (d), award 4/4 for (d)

If either the expansion in (c) or the result in (d) is incorrect, award 0/4. (No part marks when insufficient working is shown.)