Szeregowanie zadań Wykład nr 4

dr Hanna Furmańczyk

Minimalizacja łącznego czasu zakończenia zadania $\sum C_j$. Zadania niezależne

 Obserwacja: krótkie zadania umieszczamy na początku reguła SPT (ang. Shortest Processing Time)

Minimalizacja łącznego czasu zakończenia zadania $\sum C_j$. Zadania niezależne

- Obserwacja: krótkie zadania umieszczamy na początku reguła SPT (ang. Shortest Processing Time)
- trzeba jeszcze znaleźć optymalne przypisanie zadań do procesorów

• Przyjmij, że liczba zadań dzieli się przez *m* (ew. wprowadź zadania puste).

- Przyjmij, że liczba zadań dzieli się przez *m* (ew. wprowadź zadania puste).
- Uporządkuj je wg SPT.

- Przyjmij, że liczba zadań dzieli się przez m (ew. wprowadź zadania puste).
- Uporządkuj je wg SPT.
- Przypisuj kolejne m-ki zadań do maszyn (dowolnie).

- Przyjmij, że liczba zadań dzieli się przez *m* (ew. wprowadź zadania puste).
- Uporządkuj je wg SPT.
- 3 Przypisuj kolejne *m*-ki zadań do maszyn (dowolnie).

Przykład: m = 2, n = 5, p = (2, 5, 3, 1, 3)

- Przyjmij, że liczba zadań dzieli się przez *m* (ew. wprowadź zadania puste).
- Uporządkuj je wg SPT.
- 3 Przypisuj kolejne *m*-ki zadań do maszyn (dowolnie).

Przykład: m = 2, n = 5, $\mathbf{p} = (2, 5, 3, 1, 3)$ $SPT: Z_0 \quad Z_4 \quad Z_1 \quad Z_3 \quad Z_5 \quad Z_2$ $p_i \quad 0 \quad 1 \quad 2 \quad 3 \quad 3 \quad 5$

- Przyjmij, że liczba zadań dzieli się przez m (ew. wprowadź zadania puste).
- Uporządkuj je wg SPT.
- Przypisuj kolejne m-ki zadań do maszyn (dowolnie).

Przykład:
$$m = 2$$
, $n = 5$, $\mathbf{p} = (2, 5, 3, 1, 3)$
 $SPT: Z_0 \quad Z_4 \quad Z_1 \quad Z_3 \quad Z_5 \quad Z_2$
 $p_i \quad 0 \quad 1 \quad 2 \quad 3 \quad 3 \quad 5$

$M_{_1}$	Z_{4} Z_{1}				Z ₂					
M_{2}	Z ₃					$Z_{_{5}}$				
0	1		2	3	4	5	6	7	8	

- Przyjmij, że liczba zadań dzieli się przez *m* (ew. wprowadź zadania puste).
- Uporządkuj je wg SPT.
- Przypisuj kolejne m-ki zadań do maszyn (dowolnie).

Przykład:
$$m = 2$$
, $n = 5$, $\mathbf{p} = (2, 5, 3, 1, 3)$
 $SPT: Z_0 \quad Z_4 \quad Z_1 \quad Z_3 \quad Z_5 \quad Z_2$
 $p_i \quad 0 \quad 1 \quad 2 \quad 3 \quad 3 \quad 5$

$M_{_{1}}$	$Z_{_4}$		Z ₁	Z_{2}						
M_{2}		$Z_{_3}$			Z_{5}					
0	1		2 3	4	5	6	7	8		

M_{1}	$Z_{_4}$		$Z_{_3}$			Z_2						
M_{2}	Z	1		$Z_{_{5}}$								
이	1	2	3	4	5	6	7	8	9			

- Przyjmij, że liczba zadań dzieli się przez m (ew. wprowadź zadania puste).
- Uporządkuj je wg SPT.
- Przypisuj kolejne m-ki zadań do maszyn (dowolnie).

Przykład:
$$m = 2$$
, $n = 5$, $\mathbf{p} = (2, 5, 3, 1, 3)$
 $SPT: Z_0 \quad Z_4 \quad Z_1 \quad Z_3 \quad Z_5 \quad Z_2$
 $p_i \quad 0 \quad 1 \quad 2 \quad 3 \quad 3 \quad 5$

$M_{_{1}}$	Z_{4} Z_{1}			Z_{2}						
M_{2}	Z ₃					Z_{5}				
0	1		2	3	4	5	6	7	8	

$M_{_{1}}$	$Z_{_4}$		$Z_{_3}$			Z_{2}					
M_{2}	Z	7 1		Z_{5}							
o	1	2	3	4	5	6	7	8	9		

$$\sum C_j = 21$$

Minimalizacja łącznego ważonego czasu zakończenia zadania $\sum w_j C_j$. Zadania niezależne, niepodzielne

Problem $P2||\sum w_i C_i (P2|pmtn|\sum w_i C_i)$ jest NP-trudny.

Minimalizacja łącznego ważonego czasu zakończenia zadania $\sum w_j C_j$. Zadania niezależne, niepodzielne

Problem $P2||\sum w_i C_i (P2|pmtn|\sum w_i C_i)$ jest NP-trudny.

$$1||\sum w_j C_j$$
 - alg. optymalny $O(n \log n)$

Reguła Smitha - uogólnienie SPT:

ullet ustaw zadania w kolejności niemalejących p_j/w_j

• przypadki NP-trudne: $1|prec|\sum C_i$,

• przypadki NP-trudne: $1|prec|\sum C_i,\ P2|prec,\ p_j=1|\sum C_j,$

• przypadki NP-trudne: $1|prec|\sum C_i$, P2|prec, $p_j=1|\sum C_j$, P2|chains, $pmtn|\sum C_i$

- przypadki NP-trudne: $1|prec|\sum C_i$, P2|prec, $p_j=1|\sum C_j$, P2|chains, $pmtn|\sum C_j$
- przypadki wielomianowe: $P|out tree, p_j = 1| \sum C_j$ (adaptacja alg. Hu)

- przypadki NP-trudne: $1|prec|\sum C_i$, P2|prec, $p_j=1|\sum C_j$, P2|chains, $pmtn|\sum C_j$
- przypadki wielomianowe: $P|out tree, p_j = 1| \sum C_j$ (adaptacja alg. Hu)
- wersja ważona: Problem $1|prec, p_j = 1|\sum w_j C_j$ jest NP trudny

• Aby opóźnienie $L_i = C_i - d_i$ zadania Z_i w harmonogramie było określone, zadania muszą być wyposażone w oczekiwane terminy zakończenia d_i .

- Aby opóźnienie $L_i = C_i d_i$ zadania Z_i w harmonogramie było określone, zadania muszą być wyposażone w oczekiwane terminy zakończenia d_i .
- Spóźnienie zadania $T_i = \max\{L_i, 0\}$ nie bierze pod uwagę wykonania się zadań przed terminem.

- Aby opóźnienie $L_i = C_i d_i$ zadania Z_i w harmonogramie było określone, zadania muszą być wyposażone w oczekiwane terminy zakończenia d_i .
- Spóźnienie zadania $T_i = \max\{L_i, 0\}$ nie bierze pod uwagę wykonania się zadań przed terminem.
- Wniosek: $T_{\max} = \max\{L_{\max}, 0\}$. Dlatego kryterium T_{\max} nie rozważamy osobno harmonogram L_{\max} -optymalny jest też T_{\max} -optymalny.

- Aby opóźnienie $L_i = C_i d_i$ zadania Z_i w harmonogramie było określone, zadania muszą być wyposażone w oczekiwane terminy zakończenia d_i .
- Spóźnienie zadania $T_i = \max\{L_i, 0\}$ nie bierze pod uwagę wykonania się zadań przed terminem.
- Wniosek: $T_{\max} = \max\{L_{\max}, 0\}$. Dlatego kryterium T_{\max} nie rozważamy osobno harmonogram L_{\max} -optymalny jest też T_{\max} -optymalny.
- kryterium L_{\max} jest uogólnieniem C_{\max} , zagadnienia NP-trudne dla C_{\max} pozostaną takie w przypadku L_{\max}

 mając do wykonania wiele prac z różnymi oczekiwanymi terminami zakończenia spóźnimy się "najmniej" zaczynając zawsze od "najpilniejszej" pracy,

- mając do wykonania wiele prac z różnymi oczekiwanymi terminami zakończenia spóźnimy się "najmniej" zaczynając zawsze od "najpilniejszej" pracy,
- inaczej: w różnych wariantach stosujemy regułę EDD (ang. Earliest Due Date) wybieraj zadania Z_j w kolejności niemalejących oczekiwanych terminów zakończenia d_j

- mając do wykonania wiele prac z różnymi oczekiwanymi terminami zakończenia spóźnimy się "najmniej" zaczynając zawsze od "najpilniejszej" pracy,
- inaczej: w różnych wariantach stosujemy regułę EDD (ang. Earliest Due Date) wybieraj zadania Z_j w kolejności niemalejących oczekiwanych terminów zakończenia d_j
- problem zadań niepodzielnych na jednej maszynie (1 $||L_{max})$ rozwiązuje właśnie szeregowanie według EDD.

$1|r_i, pmtn|L_{max}$

Algorytm Liu $O(n^2)$ - oparty na regule EDD

- Spośród dostępnych zadań przydziel maszynę temu, które ma najmniejszy wymagany termin zakończenia.
- 2 Jeśli zadanie zostało zakończone lub przybyło nowe wróć do punktu 1.

$1|r_i, pmtn|L_{max}$

Algorytm Liu $O(n^2)$ - oparty na regule EDD

- Spośród dostępnych zadań przydziel maszynę temu, które ma najmniejszy wymagany termin zakończenia.
- 2 Jeśli zadanie zostało zakończone lub przybyło nowe wróć do punktu 1.

Przykład - osobne slajdy

Minimalizacja L_{max} - zadania niezależne, niepodzielne

- Niektóre przypadki NP-trudne: $P2||L_{\text{max}}, 1|r_j|L_{\text{max}}$
- Przypadki wielomianowe:
 - ullet zadania jednostkowe: $P|p_j=1,r_j|L_{\sf max},\;Q|p_j=1|L_{\sf max}$
 - $1||L_{\text{max}}$ (wg EDD) rozw. optymalne

Minimalizacja L_{max} - zadania zależne, podzielne

$1|pmtn, prec, r_j|L_{max}$ - zmodyfikowany alg. Liu $O(n^2)$

Określ zmodyfikowane terminy zakończenia zadań:

$$d_j^* = \min\{d_j : \min\{d_i : Z_j \prec Z_i\}\}$$

- Szereguj według EDD dla nowych d^{*}_j z wywłaszczaniem zadania, gdy pojawia się nowe, wolne, z mniejszym zmodyfikowanym terminem zakończenia
- Powtarzaj 2 aż do uszeregowania wszystkich zadań.

Minimalizacja L_{max} - zadania zależne, podzielne

$1|pmtn, prec, r_j|L_{\text{max}}$ - zmodyfikowany alg. Liu $O(n^2)$

Określ zmodyfikowane terminy zakończenia zadań:

$$d_j^* = \min\{d_j : \min\{d_i : Z_j \prec Z_i\}\}$$

- Szereguj według EDD dla nowych d^{*}_j z wywłaszczaniem zadania, gdy pojawia się nowe, wolne, z mniejszym zmodyfikowanym terminem zakończenia
- O Powtarzaj 2 aż do uszeregowania wszystkich zadań.

Przykład - osobne slajdy.

Minimalizacja L_{max} - zadania zależne, niepodzielne

Trochę faktów

• Problem $P|p_j = 1$, out $- tree|L_{max}$ jest NP-trudny.

Minimalizacja L_{max} - zadania zależne, niepodzielne

Trochę faktów

- Problem $P|p_i = 1$, out $tree|L_{max}$ jest NP-trudny.
- ullet algorytm wielomianowy dla $P2|\mathit{prec},\mathit{p_j}=1|\mathit{L}_{\mathsf{max}}$

Minimalizacja L_{max} - zadania zależne, niepodzielne

Trochę faktów

- Problem $P|p_i = 1$, out $-tree|L_{max}$ jest NP-trudny.
- algorytm wielomianowy dla $P2|prec, p_j = 1|L_{max}|$
- algorytm Bruckera dla $P|p_j = 1, in tree|L_{max} O(n \log n)$

Algorytm Bruckera - $P|p_j=1, in-tree|L_{\sf max}|$

next(j) - bezpośredni następnik zadania Z_j

wylicz zmodyfikowane terminy zakończenia zadań:

$$d_{root}^* = 1 - d_{root}$$

$$d_k^* = \max\{1 + d_{next(k)}^*, 1 - d_k\}$$

② szereguj zadania dostepne podobnie jak w alg. Hu (tu: lista tworzona jest wg nierosnących wartości d_j^*)

Przykład - osobne slajdy

Szeregowanie zadań na procesorach dedykowanych - kolejne wykłady