Development of Non-Invasive Glucose Monitoring System

Integration of Spectroscopy, IoT, and Machine Learning for Real-Time Heath Insight

Supervisor: Vihtori Virta

Razib Hasan, Jinjing Yang

Background & Motivation

Diabetes affects over 800 million people 🔵 globally

Glucose monitoring is essential but current methods are invasive

This project explores a **non-invasive**, real-time solution using <u>infrared sensing + IoT + machine learning</u>

Glucose Monitoring Methods

- Invasive: Finger pricks (accurate but painful)
- Minimally invasive: CGMs (continuous but costly)
- Non-invasive (optical): Promising but needs improvement on accurancy
- Challenges: weak glucose signals, water interference, skin variability

Objective

Build a low-cost, portable glucose sensor

 Use infrared light, ML, and mobile integration

Wavelength	Function
940 nm	Deep tissue reference
1410 nm	Hydration interference compensation
1550 / 1610 nm	Glucose- specific absorption

Multi-Wavelength Proposal

- ▶ 940 nm
 - ▶ NIR region (700-1400 nm)
- ▶ 1410, 1550, and 1610 nm
 - ► SWIR range (1400-2500 nm)

- Improves accuracy and robustness
- Combines reference, correction, and signal detection

System Design

- ► Two-unit architecture:
 - Arduino: LED control, signal sampling
 - ESP32: Wireless transmission
- Sensing path: IR LED → finger → photodiode
- ▶ 40-second sensing cycle per session

System Design Diagram

Components Used

- All components chosen for biomedical compatibility and safety
- Ensured skin safety with:
 - Limited current (20-30 mA)
 - Pulse-mode emission
 - Matte black enclosure

Component	Function
IR LEDs (4)	Emit specific wavelengths
Photodiode	Detect transmitted light
Optical filter	Block ambient light
TIA Circuit	Convert current to voltage
Env Sensor	Record temperature & humidity
ESP32	Send data wirelessly

Components Used

Arduino mega & ESP32

Photodiode

THD Sensor

Op-amp

Long cut optical filter

IR LEDs and Env-sensor

Transimpedance Amplifier (TIA)

Circuit Diagram

Initial System Testing

Improved Signal Accuracy via Optical Isolation and Filtering Average Voltage per Condition

□ Open → Black Box: 98.89% □ Black Box → Filter: 100.00% ☐ Open → Filter: 100.00%

∏ Min & Max Voltage Observed (mV): - Open Light (No Shielding):

Min = 215.05 mVMax = 288.37 mV

- Inside Black Box: Min = 0.00 mV

Max = 24.44 mV- With Optical Filter:

Min = 0.00 mV

Max = 0.00 mV

Black Box Enclosure

Web Dashboard (hosted on ESP32)

: user-friendly data collection

Start/stop measurement

Countdown timer

Live voltage, temp, humidity

Non-Invasive Glucose Monitoring

Start Measuremen

00:00

Voltage	Temp (°C)	Humidity (%)
0.06V	21.6C	61.5%
0.00V	21.6C	61.5%
0.01V	21.6C	61.5%
0.00V	21.6C	61.5%
0.00V	21.6C	61.5%
0.07V	21.6C	61.5%
3.28V	21.6C	61.5%
2.071/	~~~	C4 F8/

Mobile App (Flutter)

- User settings
- BLE device pairing
- Real-time glucose animation
- Trend analysis

Machine Learning Plan

System-Captured Raw Data:

- Voltage from 4 wavelengths
- User data (age, weight, skin tone, meal state)
- Environmental data (temp, humidity)

Engineered Features:

- Ratio: V₁₆₁₀ / V₉₄₀
- Subtraction: V₁₅₅₀ V₁₄₁₀

Real-World Considerations

Human tissue = more complex:

- Scattering, absorption, motion
- Need better signal processing and correction

Factors to monitor:

- Water absorption
- Temperature/humidity
- Skin type differences

Future Work

Test on real tissue or blood Test Train ML model with real human data Train Integrate into wearable device (e.g. finger clip or Integrate ring)

Thank you!