Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie

Projekt zespołu 05 na przedmiot Symulacja Systemów Dyskretnych

> Łukasz Łabuz Dawid Małecki Mateusz Mazur

29 listopada 2023

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie

└ Postępy prac

Postępy prac

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie
Postepy prac

Prace wykonane na rzecz projektu w okresie od ostatniego spotkania

Drugie dwa tygodnie pracy:

- Kontynuacja prac nad modelem formalnym
- Dalsza analiza materiałów źródłowych pod kątem implementacji

Zestawienie osób i wykonanych przez nie zadań

Zadanie	Łukasz Łabuz	Dawid Małecki	Mateusz Mazur
Kontynuacja prac nad modelem formalnym	✓	✓	√
Dalsza analiza materiałów źródłowych pod kątem implementacji			\checkmark

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie

Kontynuacja prac nad modelem formalnym

Kontynuacja prac nad modelem formalnym

Przypomnienie celu projektu

Celem projektu jest stworzenie modelu symulacyjnego ruchu drogowego na rondzie Grunwaldzkim w krakowie.

Rysunek 1: Obszar symulacji. Źródło: Google My Maps

Materiały źródłowe

Kwerenda literaturowa naszego projektu została podzielona na dwie sekcje - główną oraz pomocniczą.

Materiały z sekcji głównej będą stanowiły podstawę do stworzenia modelu formalnego, natomiast materiały z sekcji pomocniczej będą stanowiły dodatkowe źródła informacji, które mogą okazać się przydatne w trakcie tworzenia modelu formalnego i implementacji.

Główne materiały źródłowe

- Gora P. Adaptacyjne planowanie ruchu drogowego [1]
- Rasouli A. Pedestrian Simulation: A Review [2]

Skale oraz technika symulacji

W materiale [2] przedstawione zostały definicje różnych skal oraz technik symulacji.

W naszym projekcie wykorzystujemy następujące:

Techniki symulacji

Model komórkowy - model polegający na dyskretyzacji obszarów, na których poruszają się symulowane jednostki. Według założenia, każda z nich może zajmować jedną komórkę na siatce w danym momencie. W każdym kroku symulacji, jednostki mogą zmienić swoją pozycję na sąsiednią komórkę.

Skale symulacji

Agent-Based - skala, w której każda jednostka jest rozróżnialna, ma własne, zdefiniowane statystyki oraz zbiór możliwych do podjęcia decyzji. Na jej zachowanie ma wpływ otoczenie, infrastruktura czy też inne jednostki.

Entity-Based - skala, w której jednostki są z założenia nierozróżnialne. Nie wyróżniają się niczym. Zachowują się według ściśle ustalonych reguł. Nie mają wpływu na otoczenie.

Elementy modelu formalnego

Automat komórkowy

Rozpoczęcie formalizacji naszego modelu zaczynamy od definicji automatu komórkowego przedstawionej w [1] - rysunek 2.

Definicja 1.3.1. Automat komórkowy to krotka:

$$CA = \langle T, C, N, S, S_0, F \rangle,$$
 (1.1)

gdzie:

- T Przedział czasu, w którym odbywa się ewolucja automatu (T = {0,1,2,...,T_{MAX}}, gdzie T_{MAX} ∈ N ∪ {∞})
- C Zbiór komórek
- $N: C- > \mathcal{P}(C)$ Funkcja, która każdej komórce ze zbioru C przyporządkowuje jej otoczenie
- S Zbiór możliwych stanów komórek
- S₀: C− > S Początkowa konfiguracja komórek (stan komórek w chwili t = 0)
- F: T × C− > S Regula przejścia, taka że ∀_{c∈C}∀_{t∈T} c_{t+1} = F(t, c), gdzie c_t stan komórki c w chwili t ∈ T.

Rysunek 2: Definicja Automatu komórkowego przedstawiona w [1]

Kontynuacja prac nad modelem formalnym

Jednostki

Następnie rozważamy algorytmy zachowania jednostek, które wchodzą w skład naszego modelu. W naszym przypadku przedstawiają je następujące rysunki:

- pojazdy rysunek 3
- piesi rysunek 4
- sygnalizacja świetlna rysunek 5.

Algorithm 2 Algorytm ruchu pojazdu car w kroku t

```
Require: G = (V, E), t \in T, car \in CARS(t), turnPenalty, crossroadPenalty, prob
  increaseVelocity(car, t);
  if stopOnSignal(car, t) then
    reduceVelocityOnSignal(car,t)
  else
    if turnOnCrossroad(car, t) then
       reduceVelocity(car, t, turnParameter);
    else
      if crossroad(car, t) then
         reduceVelocity(car, t, crossroadParameter);
      end if
    end if
 end if
  if shouldChangeLane(car, t) then
    changeLane(car, t);
  end if
  safeReduceVelocity(car, t)
  with probability prob: reduceVelocity(car, t);
  makeMove(car, t):
```

Rysunek 3: Algorytm ruchu pojazdów przedstawiony w [1]

Kontynuacja prac nad modelem formalnym

Rysunek 4: Algorytm ruchu pieszych przedstawiony w [2]

Kontynuacja prac nad modelem formalnym

```
Algorithm 1 Algorytm przejścia dla sygnalizacji świetlnej s w kroku t
```

```
Require: s \in SIGNALS(G), t \in T
Ensure: state(s, t + 1) \in \{GREEN, RED\}
  if t_{change}(s) > 0 then
     t_{change}(s) := t_{change}(s) - 1
     state(s, t + 1) := state(s, t)
     return state(s, t+1)
  else
     if state(s, t) = RED then
        t_{change}(s) := t_{green}(s)
        state(s, t + 1) := GREEN
     else
        t_{change}(s) := t_{red}(s)
        state(s, t + 1) := RED
     end if
     return state(s, t + 1)
  end if
```

Rysunek 5: Algorytm działania sygnalizacji świetlnej przedstawiony w [1]

Podsumowanie

Praca [1], oprócz wyżej wymienionych definicji i algorytmów (Rysunki 2, 3, 5), zawiera również szerokie opisy poszczególnych elementów modelu oraz ich zachowań.

Praca [2] zawiera krótki, ale konkretny opis algorytmu ruchu pieszych oraz ich zachowania.

Model formalny

Nasz model będzie połączeniem elementów z obu prac. Dzięki obszernym opisom z pracy [1] łatwo zrozumieć, jak poszczególne elementy modelu powinny ze sobą współpracować oraz jak, do modelu przedstawionego przez jego autora, dodać symulację pieszych z pracy [2]. Stworzenie aplikacji symulacyjnej na podstawie tak przygotowanego modelu nie powinno zatem stanowić problemu.

Dalsza analiza materiałów źródłowych pod kątem implementacji

Dalsza analiza materiałów źródłowych pod kątem implementacji

Dalsza analiza materiałów źródłowych pod kątem implementacji

Minione zadanie - Próba implementacji prostego modelu NaSch

Cztery tygodnie temu postanowiliśmy spróbować zaimplementować prosty model NaSch, aby lepiej zapoznać się z biblioteką *CellPyLib* oraz problematyką projektu.

— Daisza ananza matenaiow zrouiowych pou kątem impiementacji

Model Nagela-Schreckenberga (w skrócie: model NaSch) służy do symulacji ruchu pojazdów na prostym odcinku drogi. [...]

Wyjaśnia autor we wstępie do pracy [1]. Rysunek 6 obrazuje model.

Rysunek 6: Automat komórkowy w modelu NaSch. Źródło: [1]

Wyniki

Do tej pory implementowaliśmy modele będące lub bazujące na przykładach dostarczanych przez autorów biblioteki *CellPyLib*.

Próba implementacji modelu NaSch była więc naszą pierwszą próbą stworzenia własnego modelu. W symulacji brały udział 2 samochody. Wyniki zadania przedstawiają rysunki 7, 8 oraz 9.

Zaimplementowany model działa w większości przypadków poprawnie, jednakże niestety czasami zdarzają się błędy.

Rysunek 7: Klatka z animacji symulacji 2 samochodów

Rysunek 8: Inna klatka z animacji symulacji 2 samochodów

Rysunek 9: Klatka z animacji innej symulacji 2 samochodów

Na rysunkach 7, 8, 9 samochody przedstawione zostały na niebiesko, ulica na czarno, a otoczenie na szaro.

Wnioski

Wyniki zadania pokazały, że implementacja modelu NaSch nie jest trudna.

Niestety, w naszym przypadku, zaimplementowany model nie działa poprawnie w każdym przypadku. Wynika to z faktu, biblioteka *CellPyLib* nie nadawała się idealnie do implementacji tego typu modelu.

Dalsza analiza materiałów źródłowych i znajomość problemów, z którymi zmagaliśmy się podczas implementacji modelu NaSch, utwierdziła nas w przekonaniu, że biblioteka *CellPyLib* nie będzie dobrym wyborem do implementacji naszego modelu.

Rezygnujemy zatem z jej dalszego wykorzystania.

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie L Pytania

Pytania

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie

Dziękujemy za uwagę

Dziękujemy za uwagę

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie \sqcup Bibliografia

Bibliografia

Bibliografia

- [1] Gora, P. 2010. Adaptacyjne planowanie ruchu drogowego. Uniwersytet Warszawski, Wydział Matematyki, Informatyki i Mechaniki.
- [2] Rasouli, A. 2021. Pedestrian simulation: A review. arXiv preprint arXiv:2102.03289. (2021).