Системы типизации лямбда-исчисления

Лекция 12. Рекурсивные типы и типы-пересечения

Денис Москвин

22.05.2011

CS Club при ПОМИ РАН

Рекурсивные типы: предварительные замечания

Хотим в λ_{\rightarrow} определить списки, деревья и пр.

Идея: предзаданный контекст

$$\Gamma_0 \equiv \mathbf{I}: \top$$
, PAIR: $\sigma \rightarrow \tau \rightarrow \sigma \times \tau$, INJL: $\sigma \rightarrow \sigma + \tau$, INJR: $\tau \rightarrow \sigma + \tau$

Тогда конструкторы списка

NIL
$$\equiv$$
 INJL I
NIL : $\top + ???$ (= List)
CONS el \equiv INJR (PAIR el)
CONS el : $??? + \sigma \times \text{List}$ (= List)

Имеем рекурсивное уравнение на типы:

List
$$\approx \top + \sigma \times \text{List}$$

List $\equiv \mu \alpha . \top + \sigma \times \alpha$

Рекурсивные типы: система λμ

Задаётся отношение эквивалентности между типами ≈

Если $M:\sigma$ и $\sigma\approx\tau$, то $M:\tau$, и наоборот.

Например, рекурсивный тип $\sigma_0 pprox \sigma_0 \! o \! \sigma_0$

$$x: \sigma_0 \vdash x: \sigma_0 \rightarrow \sigma_0$$

$$x: \sigma_0 \vdash xx: \sigma_0$$

$$\vdash \lambda x: \sigma_0. xx: \sigma_0 \rightarrow \sigma_0$$

$$\vdash \lambda x: \sigma_0. xx: \sigma_0$$

$$\vdash (\lambda x: \sigma_0. xx) (\lambda x: \sigma_0. xx): \sigma_0$$

(подходит для типизации любого терма $M \in \Lambda$)

Оператор μ для конструирования: $\sigma_0 \equiv \mu \alpha$. $\alpha \rightarrow \alpha$

Система λμ: формальности

Термы: $\Lambda ::= V \mid \Lambda \Lambda \mid \lambda V. \Lambda$

Типы: $\mathbb{T} ::= \mathbb{V} \mid \mathbb{T} \to \mathbb{T} \mid \mu \mathbb{V} . \mathbb{T}$

Для $\sigma \in \mathbb{T}$ определяют **дерево типа** $\mathsf{T}(\sigma)$:

$$T(\alpha) = \alpha$$

$$T(\sigma \rightarrow \tau) = \rightarrow$$

$$T(\sigma) \qquad T(\tau)$$

$$T(\mu\alpha. \alpha) = \bot$$

$$T(\mu\alpha. \mu\beta_1. \dots \mu\beta_n. \alpha) = \bot$$

$$T(\mu\alpha. \sigma) = T(\sigma[\alpha := \mu\alpha. \sigma])$$

Эквивалентность: $\sigma \approx \tau \Leftrightarrow T(\sigma) = T(\tau)$

Система λμ: присваивание типов

$$\begin{array}{ll} \text{(начальное правило)} & \frac{(x : \sigma) \in \Gamma}{\Gamma \vdash x : \sigma} \\ \\ \text{(удаление} \to) & \frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma \vdash (M \, N) : \tau} \\ \\ \text{(введение} \to) & \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x . \, M) : \sigma \to \tau} \\ \\ \text{(\approx-правило)} & \frac{\Gamma \vdash M : \sigma \qquad \sigma \approx \tau}{\Gamma \vdash M : \tau} \end{array}$$

Система λμ: пример

Для $\tau \equiv \mu \alpha$. $\alpha \to \gamma$ имеем по правилу $T(\mu \alpha. \sigma) = T(\sigma[\alpha := \mu \alpha. \sigma])$ дерево

Эквивалентность $\tau \approx \tau \to \gamma$ следует по определению из равенства деревьев.

Система λμ: свойства подстановки

Утверждение. Для любых о выполняется:

$$\mu\alpha. \ \sigma \approx \sigma[\alpha := \mu\alpha. \ \sigma]$$

Док-во: Для $\sigma \neq \mu \beta_1 \dots \mu \beta_n . \alpha$ следует из

$$T(\mu\alpha. \sigma) = T(\sigma[\alpha := \mu\alpha. \sigma])$$

Если же $\sigma \equiv \mu \beta_1 \dots \mu \beta_n$. α , то так и так \perp .

Примеры:

$$\mu\alpha. \alpha \rightarrow \gamma \approx (\mu\alpha. \alpha \rightarrow \gamma) \rightarrow \gamma \approx ((\mu\alpha. \alpha \rightarrow \gamma) \rightarrow \gamma) \rightarrow \gamma \approx \dots$$

 $\mu\alpha. \alpha \rightarrow \alpha \approx (\mu\alpha. \alpha \rightarrow \alpha) \rightarrow (\mu\alpha. \alpha \rightarrow \alpha) \approx \dots$

Система $\lambda\mu$: пример с \perp

Для $\sigma \equiv (\mu \alpha. \alpha \rightarrow \gamma) \rightarrow \mu \delta. \mu \beta. \beta$ имеем дерево

Здесь $\tau \equiv \mu \alpha$. $\alpha \rightarrow \gamma$ и использовалось правило $T(\mu \alpha. \alpha) = \bot$.

Система λμ: типизируем Υ-комбинатор

Рассмотрим произвольный σ.

Пусть $\tau \equiv \mu \alpha$. $\alpha \rightarrow \sigma$, тогда $\tau \approx \tau \rightarrow \sigma$ и

$$\mathbf{Y} \equiv \lambda f. (\lambda x. f(xx))(\lambda x. f(xx)) : (\sigma \rightarrow \sigma) \rightarrow \sigma$$

Докажите, что в $\lambda\mu$ верно $\Omega \equiv (\lambda x. xx)(\lambda x. xx) : \sigma$

Система $\lambda \mu$: редукция субъекта и SN

Теорема о редукции субъекта

Пусть $M woheadrightarrow_{eta} N$. Тогда

$$\Gamma \vdash_{\lambda\mu} M: \sigma \Rightarrow \Gamma \vdash_{\lambda\mu} N: \sigma$$

Поскольку в системе типизируемы все термы SN не имеет места.

Система λμ: проблемы разрешимости

3 Π **T** \vdash $M:\sigma$?

Разрешима. (Следует из разрешимости $\mathsf{T}(\sigma) = \mathsf{T}(\tau)$)

3CT ⊢ M:?

Тривиально разрешима: каждый терм имеет тип.

3OT ⊢ ?: σ

Тривиально разрешима: все типы населены.

Типы-пересечения

Идея: разрешить терму иметь два типа σ и τ одновременно:

 $x : \sigma \cap \tau$

Это порождает *специальный (ad hoc) полиморфизм*, в отличие от *параметрического полиморфизма* λ2.

На множестве типов задают предпорядок: Если M: σ и $\sigma \preccurlyeq \tau$, то M: τ .

Например, x: σ ∩ τ и σ ∩ τ \preccurlyeq σ , откуда x: σ .

Система л∩: формальности

Типы:
$$\mathbb{T}$$
 $::=$ \mathbb{T} $\mid \mathbb{V} \mid \mathbb{T} {
ightarrow} \mathbb{T} \mid \mathbb{T} \cap \mathbb{T}$

Определение отношения *«является подтипом»* ≼

$$\begin{array}{ll} (\text{refl}) & \sigma \preccurlyeq \sigma \\ (\text{trans}) & \sigma \preccurlyeq \tau, \tau \preccurlyeq \rho \Rightarrow \sigma \preccurlyeq \rho \\ (\text{incl}) & \sigma \cap \tau \preccurlyeq \sigma & \sigma \cap \tau \preccurlyeq \tau \\ (\text{glb}) & \sigma \preccurlyeq \tau, \sigma \preccurlyeq \tau' \Rightarrow \sigma \preccurlyeq \tau \cap \tau' \\ (\top) & \sigma \preccurlyeq \top \\ (\top \rightarrow) & \top \preccurlyeq \top \rightarrow \top \\ (\rightarrow \cap) & (\sigma \rightarrow \tau) \cap (\sigma \rightarrow \tau') \preccurlyeq \sigma \rightarrow \tau \cap \tau' \\ (\rightarrow) & \sigma' \preccurlyeq \sigma, \tau \preccurlyeq \tau' \Rightarrow \sigma \rightarrow \tau \preccurlyeq \sigma' \rightarrow \tau' \end{array}$$

Можно ввести эквивалентность: $\sigma \sim \tau \Leftrightarrow \sigma \preccurlyeq \tau \land \tau \preccurlyeq \sigma$

Система л∩: свойства ≼

Поскольку $\top \preccurlyeq \top \rightarrow \top$ и $\sigma \preccurlyeq \top$, то

$$\top \sim \top \longrightarrow \top$$

то есть «выше» ⊤ иерархия не поднимается.

Покажите, что

$$(\sigma \rightarrow \tau) \cap (\sigma' \rightarrow \tau) \preccurlyeq \sigma \cap \sigma' \rightarrow \tau$$

Система λ ∩: присваивание типов

$$(удаление \cap) \qquad \frac{\Gamma \vdash M : \sigma \cap \tau}{\Gamma \vdash M : \sigma} \qquad \frac{\Gamma \vdash M : \sigma}{\Gamma \vdash M : \tau}$$
 (введение \cap)
$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash M : \sigma} \qquad \frac{\Gamma \vdash M : \tau}{\Gamma \vdash M : \tau}$$
 (\leftrightarrow - правило)
$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash M : \tau} \qquad \frac{\sigma \preccurlyeq \tau}{\Gamma \vdash M : \tau}$$

Начальное правило, введение и удаление o опущены.

Система л∩: примеры

Для самоприменения $\lambda x. xx$ имеем

Очевидно, что

 $\mathbf{\Omega}: \top$

Утверждение. Терм M не имеет заголовочной NF тогда и только тогда, когда \top является единственным типом для M.

Система λ ∩: конверсия субъекта

Теорема о редукции субъекта

Пусть $M woheadrightarrow_{eta} N$. Тогда

$$\Gamma \vdash_{\lambda \cap} M : \sigma \Rightarrow \Gamma \vdash_{\lambda \cap} N : \sigma$$

Более того для λ∩, верна и **Т**арама с мочвором верна и

Теорема о конверсии субъекта

Пусть
$$M = \beta N$$
. Тогда

$$\Gamma \vdash_{\lambda \cap} M : \sigma \Rightarrow \Gamma \vdash_{\lambda \cap} N : \sigma$$

Система λ ∩: экспансия субъекта

Пусть
$$P \equiv \dots x \dots x \dots x$$
 и
$$\vdash P[x := Q] : \tau \qquad \vdash \dots Q \dots Q \dots Q \dots : \tau$$

Каждое вхождение Q может требовать своего типа σ_1 , σ_2 , σ_3 Но мы можем приписать λx . P тип $\sigma_1 \cap \sigma_2 \cap \sigma_3 \to \tau$ То есть β -экспансия $(\lambda x$. P) Q тоже будет иметь тип τ .

Если же вхождений x в P нет, то мы можем приписать λx . P тип $T \rightarrow \tau$ (пустое пересечение); но по-прежнему

$$\vdash (\lambda x. P) Q : \tau$$

Система $\lambda \cap$: экспансия субъекта (пример)

Хотя
$$\mathbf{S}\mathbf{K} op_{\beta}\mathbf{K}_*$$
, но $\vdash_{\lambda_{\to}} \mathbf{S}\mathbf{K} : (\sigma \to \tau) \to \sigma \to \sigma$, а $\mathbf{K}_* : \tau \to \sigma \to \sigma$

В $\lambda \cap$ ситуацию можно исправить: $\vdash_{\lambda \cap}$ **S K** : $\tau \rightarrow \sigma \rightarrow \sigma$

«Потеря» типа в $\lambda_{
ightarrow}$ в редукции $\lambda g\,z.\,(\lambda y.\,z)\,(g\,z)
ightarrow_{eta}\,\lambda g\,z.\,z$

Сравним вывод в $\lambda \rightarrow \mu \lambda \cap :$

$$\frac{[y:\tau]^{1} [z:\sigma]^{2}}{\lambda y. z:\tau \to \sigma} 1 \quad \frac{[z:\sigma]^{2} [g:\sigma \to \tau]^{3}}{gz:\tau} \qquad \frac{[y:\tau]^{1} [z:\sigma]^{2} [g:\tau]^{3}}{\lambda y. z:\tau \to \sigma} 1 \quad \frac{gz:\tau}{gz:\tau}$$

$$\frac{(\lambda y. z) (gz) : \sigma}{\lambda z. (\lambda y. z) (gz) : \sigma \to \sigma} 2 \qquad \frac{(\lambda y. z) (gz) : \sigma}{\lambda z. (\lambda y. z) (gz) : \sigma \to \sigma} 2$$

$$\frac{\lambda z. (\lambda y. z) (gz) : \sigma \to \sigma}{\lambda gz. (\lambda y. z) (gz) : \tau \to \sigma \to \sigma} 3$$

$$\frac{[y:T]^{1} [z:\sigma]^{2} [g:\tau]^{3}}{\lambda y. z:T \to \sigma} 1 \frac{gz:T}{gz:T}$$

$$\frac{(\lambda y. z) (gz):\sigma}{\lambda z. (\lambda y. z) (gz):\sigma \to \sigma} 2$$

$$\frac{\lambda gz. (\lambda y. z) (gz):\tau \to \sigma \to \sigma}{\lambda gz. (\lambda y. z) (gz):\tau \to \sigma \to \sigma} 3$$

Система *λ*∩: **SN**

Поскольку в системе $\lambda \cap$ типизируемы все термы SN не имеет места.

Однако для системы $\lambda \cap^- (\lambda \cap \text{ без типовой константы } \top)$ верна **Теорема [van Bakel, Krivine]**

M может быть типизирован в $\lambda \cap^- \Leftrightarrow M$ сильно нормализуем

Система λ ∩: проблемы разрешимости

3 Π **T** \vdash M: σ ?

Неразрешима. $\vdash_{\lambda\cap} \mathbf{I}: \alpha \to \alpha$, несложно показать, что $\not\vdash_{\lambda\cap} \mathbf{K}: \alpha \to \alpha$. То есть множество

$$\{M \mid \vdash_{\lambda \cap} M : \alpha \rightarrow \alpha \}$$

нетривиально и замкнуто относительно $=_{\beta}$. Тогда оно нерекурсивно (теорема Скотта).

3CT ⊢ M:?

Тривиально разрешима: каждый терм имеет тип (\top) . $(Для <math>\lambda \cap \overline{\ }$ неразрешима, из-за эквивалентности SN)

3OT ⊢ ?:σ

Неразрешима. Доказали в конце 1990-х.

Домашнее задание

Постройте дерево типа для

- $\qquad \tau \equiv \mu \alpha. \ \alpha \rightarrow \alpha$
- $\qquad \tau \equiv \mu \alpha. \ \alpha \rightarrow \alpha \rightarrow \alpha$
- $\qquad \tau \equiv \mu \alpha. \ \alpha \rightarrow \gamma \rightarrow \alpha$
- $\qquad \tau \equiv \mu \alpha. \ \alpha \rightarrow (\mu \beta. \ \beta \rightarrow \gamma)$

Докажите, что для $\mathbf{\Omega} \equiv (\lambda x.\, x\, x)(\lambda x.\, x\, x)$ и произвольного σ выполняется $\vdash_{\lambda\mu} \mathbf{\Omega}:\sigma$

Литература (1)

LCWT гл. 4

Henk Barendregt, Lambda calculi with types, Handbook of logic in computer science (vol. 2), Oxford University Press, 1993

TAPL гл. 20,21

Benjamin C. Pierce, Types and Programming Languages, MIT Press, 2002

http://www.cis.upenn.edu/~bcpierce/tapl

Литература (2)

ATTAPL гл. 2

Benjamin C. Pierce, editor.

Advanced Topics in Types and Programming Languages, MIT, 2005