Electromagnetismo I

S13 - Fuentes de Campo magnético

Josue Meneses Díaz

Universidad de Santiago de Chile

Fuerza magnética sobre un conductor

Fuerza magnética que actúa sobre un conductor que transporta corriente

Consideremos un segmento recto de alambre de longitud S y sección transversal A, que lleva una corriente I Ken un campo magnético uniforme \vec{B} .

$$\begin{split} \vec{F}_B &= Q_{\mathrm{Tot}} \vec{v}_d \times \vec{B} \\ &= qn A s(\vec{v}_d \times \vec{B}) \\ &= I(\vec{s} \times \vec{B}) \end{split}$$

Con $I=qnv_dA$ y \vec{s} es el vector longitud de magnitud s dirigido a lo largo de la dirección de la corriente eléctrica.

Consideremos ahora un segmento de alambre de forma arbitraria con sección transversal uniforme en un campo magnético.

$$d\vec{F}_B = I d\vec{s} \times \vec{B}.$$

$$\left| \vec{F}_B = \int_a^b I d\vec{s} \times \vec{B} \right|$$

Usando la Ecuación anterior y que el campo magnético es uniforme:

$$\vec{F}_B = I \int_a^b d\vec{s} \times \vec{B} = I \left(\int_a^b d\vec{s} \right) \times \vec{B} = I \vec{L} \times \vec{B}$$

donde \vec{L} es el vector longitud desde a hasta b. Si el alambre forma un lazo cerrado de forma arbitraria, entonces:

$$\oint d\vec{s} = 0.$$

Y por lo tanto, la fuerza magnética sobre un lazo de corriente cerrado es $\vec{F}_{R}=\vec{0}$:

$$\vec{F}_B = I\left(\oint d\vec{s} \right) \times \vec{B} = \vec{0}, \quad (\vec{B} \text{ uniforme}).$$

Ejemplo (Loop SemiCircular)

Considere un loop semicircular cerrado en el plano xy con una corriente I en sentido antihorario. Se aplica un campo magnético uniforme que apunta en la dirección +y. Encontrar la fuerza magnética que actúa sobre el segmento recto y el arco semicircular.

::: {.content-hidden unless-meta=added.notes}

Fuentes de Campo Magnético

Campo magnético de una carga en movimiento

El campo magnético generado por una carga puntual q que se mueve con velocidad constante \vec{v} . Aunque los campos magnéticos en aplicaciones prácticas, como los de un solenoide, resultan de numerosas partículas cargadas moviéndose como una corriente, entender el campo debido a una carga puntual es el primer paso para calcular campos de corrientes más complejas.

De forma experimental se ha encontrado:

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$

Notar la similitud con el campo eléctrico $ec{E}$ estudiado al inicio del curso.

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

Ley de Biot-Savart

Las corrientes, que surgen debido al movimiento de las cargas, son la fuente de los campos magnéticos. Cuando las cargas se mueven en un hilo conductor y producen una corriente I, el campo magnético en cualquier punto P debido a la corriente puede calcularse sumando las contribuciones del campo magnético, $d\vec{B}$:

$$d\vec{\mathbf{B}} = \frac{\mu_0}{4\pi} \frac{I d\vec{\mathbf{s}} \times \hat{\mathbf{r}}}{r^2}$$

donde μ_0 es una constante llamada permeabilidad en el vacio

$$\mu_0 = 4\pi \times 10^{-7} \quad [\, {\rm Tm/A}]$$

La suma de estas contribuciones para encontrar el campo magnético en el punto P requiere integrar sobre la fuente de corriente,

$$\vec{B} = \int_{cable} d\vec{B} = \frac{\mu_0}{4\pi} \int_{cable} \frac{Id\vec{s} \times \hat{r}}{r^2}$$

Esta integral es una integral vectorial, lo que significa que la expresión de \vec{B} son tres integrales, una para cada componente de \vec{B} . La naturaleza vectorial de esta integral aparece en el producto cruzado $Id\vec{s}\times\vec{r}$. Entender cómo evaluar este producto cruzado y luego realizar la integral será la clave para aprender a usar la ley de Biot-Savart.

Ejemplos

Ejemplo

Considere un anillo de radio r y una corriente constante I en sentido antihorario. Encontrar el campo magnético en el centro del anillo.

Ejemplo (Campo magnético debido a un alambre recto finito)

Un cable delgado y recto que transporta una corriente I se coloca a lo largo del eje x. Encontrar el campo magnético en el punto P. Notar el supuesto que los cables a los extremos del cable hacen contribuciones anuladas al campo magnético neto en el punto P.

Ejemplo (Campo magnético debido a un bucle de corriente circular) Un anillo circular de radio R en el plano xy lleva una corriente constante I. ¿Cuál es el campo magnético en un punto P en el eje del anillo, a una distancia z del centro?

Ejemplo (Fuerza magnética entre dos conductores paralelos)

Encontrar la fuerza \vec{F}_{12} que experimenta un cable debido a la corriente I que circula en un cable paralelo como se muestra en la figura

Resumen

Resumen

Referencia ______

Referencia

- Freedman, Young, y S. Zemansky. 2009. «27 CAMPO MAGNÉTICO Y FUERZAS MAGNÉTICAS. 27.6 Fuerza Magnética Sobre Un Conductor Que Transporta Corriente. 27.7 Fuerza y Torca En Una Espira de Corriente». En *Física Universitaria*.
- Serway, Raymond A., y John W. Jewett. 2005a. «29 Campos Magnéticos. 29.1 Campos y Fuerzas Magnéticas. 29.2 Movimiento de Una Partícula Con Carga En Un Campo Magnético Uniforme. 29.3 Aplicaciones Del Movimiento de Partículas Con Carga En Un Campo Magnético.» En *Física Para Ciencias e Ingeniería Con Física Moderna*, 7ma ed. Vol. 2. CENGAGE learning.
- ----. 2005b. «30 Fuentes Del Campo Magnético. 30.1 Ley de Biot-Savart. 30.2 Fuerza Magnética
 Entre Dos Conductores Paralelos». En Física Para Ciencias e Ingeniería Con Física Moderna,
 7ma ed. Vol. 2. CENGAGE learning.