National Purpose of Stallards

Library, N. W. Bldg. NOV 1 6 1949

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON, D. C.

DETERMINATION OF EFFICIENCY OF MICROWAVE BOLOMETER MOUNTS FROM IMPEDANCE DATA

BY DAVID M. KERNS

Report No. CRPL-9-6

NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON 25, D. C.

DETERMINATION OF EFFICIENCY OF MICROWAVE BOLOMETER

MOUNTS FROM IMPEDANCE DATA

By David M. Kerns

ABSTRACT

An impedance method of determining the input-to-bolometer-element power-transfer efficiency of bolometer mounts of the type used in microwave power measurements is formulated, and the theoretical basis of the method is outlined. The method stems from the consideration of the bolometer mount as a transducer. Under certain conditions, which are discussed, this transducer is representable as a two terminal-pair network and its parameters can be determined, essentially as in the case of ordinary networks, from observation of input impedance (in waveguide or coaxial line) as a function of load impedance (bolometer resistance). Convenient formulas are given for the calculation of power-transfer efficiency from such impedance data.*

^{*}Note: Inasmuch as experimental work on this method is continuing, the theoretical portion of the material is issued now as a CRFL report. It is hoped that this material, together with experimental results, can eventually be published.

1. INTRODUCTION

Bolometric methods, employing fine platinum wires or bead thermistors as bolometers, have received wide use in power measurement at microwave and lower frequencies. The bolometer is mounted in a waveguide structure (Fig. 1) whose function is to enable the bolometer to absorb radio-frequency power from a source whose output is to be measured. The bolometer is also connected into a direct-current (or low-frequency alternating-current) network whose functions are to detect or measure changes of bolometer resistance, and to supply bias power to the bolometer. Thus radio-frequency power may be measured in terms of the change in bolometer resistance produced by the application of the power to be measured, or it may be measured by the change in bias power required to keep the resistance constant. Both methods are used; the details, however, are not needed for the purpose of this paper, which is concerned only with what may be called the efficiency of bolometer mounts.

Bolometer mounts are ordinarily arranged to present very nearly a reflectionless load to the waveguide to which they are connected. If there is reflection, however, the net radio-frequency input power consists of that

Throughout this paper the term <u>waveguide</u> is used in a somewhat general sense, in that two-conductor systems, such as coaxial line, are included within the meaning of the term. It is immaterial to the discussion whether the input waveguide is of a type which does or does not support a principal mode.

²See, for example, "Technique of Microwave Measurements", Vol. 11, Radiation Laboratory Series, McGraw-Hill Book Co., New York, 1947, chap. 3.

corresponding to an incident wave less that corresponding to a reflected wave. Let P₁ denote the net power input to the bolometer mount at a conveniently located terminal surface in the input waveguide. Let P₂ denote the radio-frequency power absorbed by the bolometer element itself. Then the efficiency of the bolometer mount is defined as

$$\eta = P_{O}/P_{\eta}. \tag{1}$$

Since P₂ may be considered to be the useful output; the efficiency is simply the ratio of output power to input power. P₂ is of course less than P₁, the difference being ordinarily accounted for largely by skineeffect losses on the metal surfaces constituting the interior surface of the bolometer mount.

A knowledge of bolometer-mount efficiency is not particularly important if a bolometric instrument is to be used only for relative measurements, or if it is to be used merely as a transfer instrument to be calibrated by some other means. If one is interested in attempting to establish absolute values of power (or of voltage or current in cases where these quantities are useful) by means of bolometric measurements, a knowledge of the efficiency of the mount used is important. Nevertheless, it appears that not much work has been done on the determination of the efficiency of bolometer mounts. It has in fact rather generally been assumed that the mount losses could be neglected in routine applications, even when absolute power is at least of nominal interest. But the neligibility of mount losses obviously depends not only on the actual value of the losses, but also upon the accuracy of measurement toward which one is working.

Unfortunately, it is rather difficult to determine the efficiency of a bolometer mount - at least when the determination is based upon power measurements. Comparison of two mounts can at best yield only the ratio of their efficiencies. Direct calorimetric measurements are handicapped by the fact that the powers involved are small, of the order of a few milliwatts, and by the fact that the heating effect of the losses gets distributed throughout a relatively large mass. Calorimetric measurements are somewhat easier to accomplish at higher power levels, but then one has the problem of attenuating the measured level by an accurately known amount down to the level at which bolometers are ordinarily used. The situation is, in short, that accurate measurement of microwave or UHF power at the milliwatt level is a difficult task. Bolometer mount efficiency, however, is a power ratio - an attenuation, in fact - and does not fundamentally require power measurements for its determination.

The method of determining mount efficiency to be described stems from the consideration of the bolometer mount as a transducer. Under certain conditions, which will be discussed, this transducer becomes a four-pole (representable as a two terminal-pair network) and its parameters can be determined, essentially as in the case of ordinary networks, from observation of input impedance as a function of load impedance. (In this case the load impedance is varied by varying the bias power supplied to the bolometer.)

Once the parameters of the four-pole are found, the power-transfer efficiency can of course be calculated for any desired value of load impedance.

The formulation is based upon field concepts. As is to be expected, the formulas eventually obtained are formally the same as those for the same type of problem in conventional network theory. Thus the more basic portion of the development may be considered as an example of the reduction of what is in detail a problem described by field equations to a problem described by equations of the form of network equations, and the essential concepts and conditions on the basis of which the reduction is accomplished are those which in general underlie the treatment of waveguide and circuit problems by means of network equations. This paper is intended to be reasonably complete and self-contained; however, a much more elaborate discussion of the fundamentals is contained in a previous paper by the author.

2. FORMULATION OF THE METHOD

consider a bolometer mount, a structure of the general form indicated in Fig. 1, as a transducer. The terminal surfaces, through which radio-frequency power enters or leaves the system considered, are the surfaces S_1 and S_2 . S_1 is a transverse surface in the input waveguide. This waveguide may be of any type or cross-section (including, in particular, co-axial line); it is necessary merely that there exist a section which may be

^{3&}lt;sup>n</sup>Basis of the Application of Network Equations to Waveguide Problems", CRPL Report No. 9-5; June 30, 1948 (to be published). (This reference is of a general nature and contains no discussion specifically directed to the bolometer problem.)

Fig. 1. - Bolometer mount schematized.

Fig. 2.- Illustrating terminal surface S2. (Cross-hatching indicates protective dielectric enclosure.)

considered uniform and lossless. The terminal surface Sp encloses the region occupied by the bolometer element. This surface is drawn as shown in Fig. 2a or 2b for a bolometer consisting of a fine wire or of a bead thermistor, respectively. So is thus pierced by conductors which carry not only radio-frequency current but also bias current. (The bias current comes into consideration only insofar as it serves to establish the operating resistance of the bolometer.) If, as is ordinarily the case, the electromagnetic field of the transducer is effectively limited to a finite region by sufficiently thick metal walls, the interior of the transducer is (by definition) the region R bounded by the surface \$ + S + S, as illustrated in Fig. 1. So is drawn outside the metallic walls of the structure, and the field may be assumed to be zero on this surface. It is, however, by no means necessary to assume that the transducer field is confined to a finite region. If the bolometer mount does not form a closed metallic structure, so that the electromagnetic field can extend to infinity, the surface S and the region R would be chosen somewhat differently. But the subsequent argument would not be altered, so that it is not necessary to consider this case explicitly.

The whole structure within R, which may include auxiliary tuning devices, joints, bends, etc., may be counted simply as a (decidedly) non-homogeneous medium. This medium is to be linear, i.e., such that Maxwell's equations become linear equations, and is to contain no sources. The electromagnetic field within R is then uniquely determined by the values of the tangential components of either the electric or the magnetic field on the boundary of R. (It is necessary to consider only the case in which all field quantities

vary harmonically with time at a given frequency ω . The time dependence will be represented implicitly by a factor $\exp(j\omega t)$.) On the surface S_0 the boundary condition is simply that the field shall vanish; the fields on S_1 and S_2 will be specified in the manner outlined in the following two paragraphs.

In practice, only one waveguide mode need be considered in specifying the field on the waveguide terminal-surface S_1 . The transverse components \underline{E}_1 , \underline{H}_1 of the field on this surface may then be written

$$\underline{\mathbf{E}}_{1} = \mathbf{V}_{1} \, \underline{\mathbf{E}}_{01},$$

$$\underline{\mathbf{H}}_{1} = \mathbf{I}_{1} \, \underline{\mathbf{H}}_{01},$$
(2)

where \underline{E}_{ol} , \underline{H}_{ol} are suitable two-component vector functions of coordinates in the transverse plane. V_l , I_l are numbers, in general complex, which are respectively linear measures of \underline{E}_l , \underline{H}_l . It is convenient to choose \underline{E}_{ol} , \underline{H}_{ol} as that field which corresponds to a waveguide field consisting solely of an incident wave, of unit power. The integral of the complex Poynting's vector $\frac{1}{2}$ (\underline{E}_{ol} x \underline{H}_{ol}^*) taken over the surface S_l becomes

$$\frac{1}{2} \int_{S_1}^{\cdot} \mathbf{E}_{01} \times \mathbf{H}_{01}^{*} \cdot \mathbf{n} dS = 1 \text{ watt}, \qquad (3)$$

where \underline{n} is the unit normal vector on S_1 directed into the transducer. The complex power input to the transducer at terminal surface S_1 is then, for

The rationalized meter-kilogram-second system of units is used.

arbitrary values of V,, I,,

$$W_{1} = \frac{1}{2} \int_{S_{1}}^{\cdot} \underline{E}_{1} \times \underline{E}_{1}^{*} \cdot \underline{n} dS = V_{1} I_{1}^{*}$$
 (4)

The looking-in impedance of the field on S₁ is defined as the ratio

$$z = V_1/I_1. (5)$$

This impedance, which will be called the input impedance, can be determined by means of standing-wave measurements in the input waveguide.

It is assumed that the tangential components of the field on the surface S_2 , which encloses the bolometer element, can be represented in the form (2):

$$\underline{\mathbf{E}}_{2} = \mathbf{V}_{2} \, \underline{\mathbf{E}}_{02},$$

$$\underline{\mathbf{H}}_{2} = \mathbf{I}_{2} \, \underline{\mathbf{H}}_{02},$$
(6)

where $\underline{\mathbf{E}}_{o2}$, $\underline{\mathbf{H}}_{o2}$ denote suitable vector functions of coordinates designating points on S_2 . The assumption (6) is justifiable if, in particular, the condition kd<<1 is satisfied, where d is a representative linear dimension of the region enclosed by S_2 , and k is the wave-number $\omega \sqrt{\mu \varepsilon}$ in the medium (of permeability μ , dielectric constant ε) immediately surrounding the bolometer element. For sufficiently small values of kd, equations of the form

Typical dimensions for a platinum-wire bolometer are roughly 0.00015 centimeter in diameter by 0.25 centimeter in length; a typical bead thermistor has a bead diameter of roughly 0.03 centimeter. At a frequency of 10,000 megacycles per second, the value of k for air is approximately 2.0 per centimeter.

(6) will hold, with V_2 and I_2 equal (or proportional) to conventional voltage and current, respectively, at the bolometer terminals. Existence of voltage and current, however, is a sufficient but not a necessary condition. Validity of (6) insures formal validity of the method being set up; existence of voltage and current on S_2 is not essential in this respect (any more than existence of voltage and current on S_1 is essential). But for application to practical cases, the most favorable condition for knowing that (6) will hold to a good approximation occurs when voltage and current do in fact exist to a good approximation.

It is convenient to assume that $\underline{\mathbf{E}}_{02}$, $\underline{\mathbf{H}}_{02}$ satisfy the normalizing condition

$$\frac{1}{2}\int_{S_2} E_{O2} \times H_{O2} \cdot ndS = 1 \text{ watt,}$$

where \underline{n} is here the unit normal on S_2 directed into the transducer. The complex power input to the transducer at terminal surface S_2 is then

$$W_2 = \frac{1}{2} \int_{S_2} \mathbf{E}_2 \times \mathbf{H}_2^* \cdot \mathbf{n} dS = \nabla_2 \mathbf{I}_2^*. \tag{7}$$

The looking-in impedance on S_2 is defined as the ratio V_2/I_2 ; the load impedance w is defined as the negative of the same ratio:

$$W = -V_2/I_2. \tag{8}$$

It is essential for the practical application of the method being formulated that the load impedance be known and variable through known (but not necessarily prescribed) values. The load impedance certainly can be varied by varying the bias power and hence the direct-current resistance of the bolometer; since the load impedance cannot be directly measured (except perhaps at

sufficiently low frequencies), the essential problem is to relate it to the direct-current resistance in an adequate fashion. If, in addition to the previous condition kd <<1, the skin-depth $\sqrt{2/\mu\omega}$ (permeability μ , conductivity o) is not less than the diameter of wire for a fine-wire bolometer or not less than bead-diameter for a bead thermistor, 6 it is reasonable to expect the radio-frequency load impedance to be approximately equal to the direct-current resistance of the bolometer. The assumption of this equality is equivalent to the assumption that the current distribution in the bolometer is substantially independent of frequency from zero up to the radio-frequency considered. When the above-mentioned conditions are fulfilled, the use of the value of the direct-current resistance as an approximation to the value of the load impedance naturally suggests itself. This approximation is favored by the following facts (to be demonstrated later): (a) when the angle of the load impedance is small, the error in the determination of power-transfer efficiency caused by neglecting the angle and using real values for the load impedance tends to be small of the second order. (b) No error in the determination of efficiency is caused by the use

For bolometers of the materials and dimensions mentioned in footnote 5, the skin-depth becomes comparable to the respective dimensions in the two cases for frequencies in the neighborhood of 10,000 megacycles per second.

A condition of this kind is also important in assuring that radiofrequency power and direct-current power have equivalent heating effects in a bolometer. This question is of course basic in the measurement of absolute values of power by the bolometric method.

of an arbitrary constant real multiple of the load impedance in place of the load impedance itself - the magnitude of the load impedance may indeed remain undefined to the extent of a constant real factor. This discussion outlines what appear to be the principal factors involved in judging the usefulness of the type of approximation considered.

The bolometer mount, as a transducer, is characterized by the relations that it imposes upon its four terminal variables V_1 , I_1 , V_2 , I_2 . Precisely two such relations must exist, since, by the uniqueness theorem mentioned above, the transducer field is determined by the boundary conditions, which in turn are fixed by fixing two of the four terminal variables. Since Maxwell's equations are, by hypothesis, linear and homogeneous in the interior of the transducer, it follows that the relations among V_1 , I_1 , V_2 , I_2 must also be linear and homogeneous. The transducer is thus a linear, source-free four-pole, and its equations may be written

$$V_{1} = Z_{11} I_{1} + Z_{12} I_{2},$$

$$V_{2} = Z_{21} I_{1} + Z_{22} I_{2}.$$
(9)

The Z's are constants in that they do not depend upon V's and I's, but they of course do depend upon frequency. Equations (9) can be interpreted and could be derived on the basis of the following remarks. If, for example, the boundary conditions

$$\underline{\underline{H}}_1 = 0$$
, $\underline{\underline{H}}_2 = \underline{\underline{I}}_2 \underline{\underline{\underline{H}}}_{02}$

are prescribed, the corresponding field is determined and is proportional to I_2 . Thus, in particular, the corresponding $\underline{\mathbf{E}}_1$ and $\underline{\mathbf{E}}_2$ are proportional

to I_2 , so that V_1 and V_2 are proportional to I_2 , the factors of proportionality being Z_{12} and Z_{22} , respectively. The interpretation with $I_1 \neq 0$ and $I_2 = 0$ is similar; equations (9) express the general case with I_1 and I_2 both different from zero.

For the present purpose it is expedient to write equations (9) in a different form, viz.,

$$V_1 = a V_2 + b \overline{I}_2,$$

$$I_1 = c V_2 + d \overline{I}_2,$$
(10)

where $\overline{I}_2 = -I_2$ is used for convenience. The new parameters a,b,c,d are of course related in a simple manner to the Z's appearing in (9). These relations will not be written down, since they will not be needed explicitly.

Under the assumptions that have been made, the reciprocity condition will apply. Reciprocity is vital to the present problem, since it is not possible to turn the transducer end-for-end and make radio-frequency measurements at either end of the transducer. The expression of the reciprocity condition is that $Z_{12} = Z_{21}$, or, equivalently, that the determinant of the coefficients in equations (10) is equal to unity:

$$ad - bc = 1.$$
 (11)

This equation, together with three further equations which are determined by measurement, provides the necessary number of equations to determine the four parameters a, b,c, d.

A reciprocity theorem in a form adapted to the present application is derived in reference 3.

In accordance with equations (10), input impedance z is given as a function of load impedance w by a so-called linear fractional transformation,

$$z = \frac{aw + b}{cw + d} \tag{12}$$

It is noted that this equation may be written in the form

$$wa + b - wzc - zd = 0.$$
 (12a)

Suppose that, for any three distinct values of load impedance w₁,w₂,w₃, the corresponding values of input impedance z₁, z₂, z₃ are measured. Then, apart from a common constant multiplier, the values of a,b,c,d are determined by three simultaneous equations of the type (12), which may be written

$$w_1a + b - w_1z_1c - z_1d = 0,$$

 $w_2a + b - w_2z_2c - z_2d = 0,$ (13)
 $w_3a + b - w_3z_3c - z_3d = 0.$

If now these equations are solved by Cramer's rule for three of the parameters, say a,b,c, in terms of the remaining one, and if the resulting expressions are used to eliminate a,b,c,d from equation (12a), it may be seen that the final result is expressed by

(This equation may indeed be written down directly, by recognizing that it is the necessary condition that the system of four equations, consisting of

equations (13) and equation (12a), shall form a compatible system for values of a,b,c,d not all zero.) Equation (14) gives the relation between general values of z and w, as determined by three pairs of measured values of z and w. The equation may be reduced to

$$\frac{(z-z_1) (z_2-z_2)}{(z-z_1) (z_2-z_2)} = \frac{(w-w_1) (w_2-w_1)}{(w-w_1) (w_2-w_2)}$$
(15)

It should be observed that there exists a transformation of the form (12), determined by (14) or (15), which will transform any three given distinct w-values into any three given z-values. Thus, in order to obtain a check on the consistency of experimental data, as well as on the validity of the method itself, it is necessary to observe more than three pairs of corresponding values of z and w, and to note whether all the data are represented by a transformation determined by just three pairs of corresponding values. A check of this kind does not directly check the validity of the reciprocity condition, since the transformation of w depends only on the ratios of the values of a,b,c,d. But the reciprocity theorem applies rigorously, provided merely that the form of the description of the terminal fields (equations (2) and (6)) is valid. Equation (12) is a rather direct consequence of (2) and (6): insofar as a verification of the existence of an equation of the form (12) verifies the basic equations (2) and (6), it at the same time verifies the applicability of the reciprocity theorem.

Explicit formulas for the values of a,b,c,d will now be obtained. As an abbreviation let

$$\gamma = \frac{(w_2 - w_1)(z_3 - z_2)}{(z_2 - z_1)(w_3 - w_2)},$$

and solve (15) for z:

$$z = \frac{(z_3 - \gamma z_1)w + (\gamma z_1 w_3 - z_3 w_1)}{(1 - \gamma) w + (\gamma w_3 - w_1)}.$$

By comparison with (12),

$$a = \alpha(z_3 - \gamma z_1),$$
 $b = \alpha(\gamma z_1 w_3 - z_3 w_1),$
 $c = \alpha(1 - \gamma),$ $d = \alpha(\gamma w_3 - w_1),$ (16)

where α is a constant which must be determined with the aid of the reciprocity condition (11). This condition yields

ad - bc =
$$\alpha^2 \gamma$$
 (w₃ - w₁) (z₃ - z₁) = 1,

$$\alpha = \left[\gamma (w_3 - w_1) (z_3 - z_1) \right]^{\frac{1}{2}}.$$
 (17)

Equations (16) and (17) together determine the values of a,b,c,d corresponding to the measured pairs of values of z and w.

Once a,b,c,d are known for a given bolometer mount, the power-transfer efficiency for a given load impedance can easily be calculated. Using the four-pole equations in the form (10), with load impedance wo, one finds

$$V_1 = (a + b/w_0) V_2,$$

$$I_1 = (cw_0 + d) \bar{I}_2.$$

Hence the complex power input W_1 and the complex power output \overline{W}_2 (=- W_2) are related by

$$W_1 = (a + b/w_0)(cw_0 + d)^*\overline{W}_2.$$

Let $(a + b/w_0)(cw_0 + d)^* = N \exp(j\theta)$, with N and θ real; and let $\overline{W}_2 = |\overline{W}_2| \exp(j\phi)$ (ϕ is the angle of the load impedance w_0). Then the efficiency η_0 is

 $\eta_{O} = \frac{\operatorname{Re}(\overline{W}_{2})}{\operatorname{Re}(\overline{W}_{1})} = \frac{\cos \phi}{\operatorname{N} \cos (\Theta + \phi)}. \tag{18}$

On the basis of the foregoing formulas, the two supplementary facts invoked in the discussion of load impedance (p. 9) may be demonstrated. The formulas (16), (17), (18) enable one to calculate the parameters a,b,c,d and the efficiency η_0 with load w_0 for a four-pole which transforms w_i into z_i (i=1,2,3). Suppose that the load impedance is erroneously assumed to be $w'=m^2w$, where m^2 is a constant, and that the parameters a', b', c', d' and the efficiency η_0^* with load impedance $w_0^*=m^2w_0$ are calculated for a fictitious four-pole which transforms $w_i^*=m^2w_i$ into z_i (i=1,2,3). Using equations (16), (17) one obtains

$$a' = a/n$$
, $b' = mb$,
 $c' = c/n$, $d' = md$.

Defining δ by writing the constant m^2 in the form $m^2 = |m|^2 \exp(j\delta)$, and using (18), one obtains

$$\eta_{O}^{i} \cos \phi = \eta_{O} \cos \phi^{i}, \qquad (19)$$

where $\phi' = \phi + \delta$ is the angle of w'_0 . Since |m| does not enter into (19), any constant real multiple of the load impedance may be used in place of the load impedance itself without affecting the calculated efficiency η'_0 .

If wo is real and o is small,

$$\eta_0^* = \eta_0/\cos\phi$$

$$\cong \eta_0(1 + \phi^2/2).$$

Hence, under the stated conditions, the difference $\eta_0^* - \eta_0^*$ is of the second order (and is positive). Thus the statements (b) and (a) (p. 9) are proved.

A bolometer mount (which may in particular include auxiliary tuning equipment in addition to the mount proper) is preferably and frequently arranged so that, with the bolometer at its desired operating resistance, there is substantially no reflected wave at the waveguide input. The corresponding value of input impedance is unity, according to the choice of an arbitrary real factor tacitly made in setting up the definitions of V_1 , I_1 (equations (2) et seq.). Further, when the load impedance is considered real, the arbitrary factor contained in this quantity may be chosen so that the normal operating load impedance is also represented by the value unity. These two conditions lead to useful, simplified formulas for the calculation of efficiency. Since input impedance z = 1 corresponds to load impedance z = 1, the parameters a,b,c,d must satisfy the relation

Thus the efficiency for load impedance w = 1, obtained by the appropriate specialization of (18), is given by

$$1/\eta = N = |a + b|^2 = |c + d|^2$$
. (20)

The efficiency can of course be expressed directly in terms of w_i, z_i (i = 1,2,3), so that efficiency may be calculated without first calculating the four-pole parameters. It is convenient to incorporate the condition

that w = 1 is transformed into z = 1 by taking w_3 , z_3 , say, as 1,1. Then, using equations (16), (17) and the associated definition of γ to evaluate $|c + d|^2$, it is readily found that

$$\eta = \frac{\left| \frac{(1-z_1) (1-z_2) (w_2 - w_1)}{(1-w_1) (1-w_2) (z_2 - z_1)} \right|}{(21)}$$

While equations (20) and (21) are useful for the purpose intended, it should be remembered that they are based upon special conditions.

A number of measurements have been made, on the basis of the method described, at frequencies in the range 300 to 3000 megacycles per second on bolometer mounts having coaxial-line inputs and at approximately 9000 megacycles per second on mounts having rectangular-waveguide inputs. Values of efficiency calculated from the data range from 0.7 to 0.95 for different mounts, which included auxiliary tuning equipment in all cases and additional components in some cases. In all measurements made so far, it has been found that for suitably located input terminal surfaces, the four-pole could be represented in terms of real parameters. In the 9000-megacycle measurements, bolometers of the types and dimensions mentioned in footnote 5 were used, so that a moderate test of the approximations that have been discussed was provided. It was found that an equation of the form (12) represents these experimental data rather well.

The author is indebted to Dr. Harold Lyons, Chief of the Microwave Standards Section, National Bureau of Standards, for the opportunity to do this work and for encouragement in the preparation of this paper.

