$$y = 32.783+ 0.2001 \times /40$$

$$(y'-y)^2 = 0.635209$$

$$(2)$$
 $y = 32.783 + 0.2001 \times 155$

weight	Height	(y-y1)2	SSR	Predicted value
140	60	0.635	53.919	66.797
155	62	3.235		63.7985
154	67	5.765		64.5989
179	70	G.0408		68.6009
192	71	6.041		71.2022
200	72	0.645		72.803
212	75	0.42		75.2012
		SSE = 12.69		

 $SSR = \sum (y' - \overline{y})^2$ Solited mean of height. $\overline{y} = 68.1428$

92= SSR SST

SST=SSR7SSE

tach neuron is doing 1) Agregation 2) Applying Some non-linear function to it. Effetivation] $\left(\sum_{i=1}^{n} \int_{i}^{\infty} dx \right)$ $Z_2 = w_{21} X_1 + w_{22} X_2$ (χ_2) + W23 X3+ W24 X4 + 6 $\left(\frac{1}{2}\right)$

 $Z' = \begin{bmatrix} Z_1' \\ Z_2' \\ Z_3' \end{bmatrix}$ Total no. of neights seq. = n²-ixni -> Making the weight matrix
either n'-1xn' or n'xn'-1 -> no of bias = no $\mathcal{S} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ -> Binary Class => | neuron Multicless -> k newons for k class.

$$Z_{2} = \begin{bmatrix} Z_{1}^{2} \\ Z_{1}^{2} \\ Z_{2} \end{bmatrix} = \begin{bmatrix} w_{11}^{2} & w_{12}^{2} & w_{13}^{2} \\ w_{21}^{2} & w_{22}^{2} & w_{23}^{2} \end{bmatrix} \begin{bmatrix} a_{1}^{2} \\ a_{2}^{2} \\ a_{3}^{2} \end{bmatrix}$$

$$= \begin{bmatrix} 2 \times 3 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \times \\ 3 \end{bmatrix} + \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix}$$

$$-\int_{i=1}^{3} w_{1i}^{2} a_{i}^{2} + b_{1}$$

$$\sum_{j=1}^{3} w_{2i}^{2} a_{i}^{2} + b_{2}$$

$$\frac{3}{2} w_{1i} a_{1i}^{2} + b_{1i}$$

$$\frac{3}{2} w_{2i} a_{1i}^{2} + b_{2i}$$

$$\frac{3}{2} w_{2i} a_{1i}^{2} + b_{2i}$$

$$W' = 12$$

$$B' = 1$$

$$W^2 = 9$$

$$B^2 = 1$$

$$W' = 6$$

$$B' = 1$$

$$\begin{array}{cccc}
\begin{pmatrix}
1 & (\ddot{y} - \dot{y})^2 \\
2 & (\ddot{y} - \dot{y})^2
\end{pmatrix} & \ddot{y} = \mathbf{T}(z) \\
z = wx+b \\
\hline
z = wx+b
\end{pmatrix}$$

$$\begin{array}{cccc}
\nabla (wx+b) \\
\hline
\partial w
\end{array}$$

 $(y'-y)\sigma(z)(1-\sigma(z))x$

 $y^{2}-y^{2}$ y^{2} y^{2}

IJ