Machine Learning Final Report

● 題目: DengAI: Predicting Disease Spread

• Team name:

NTU_b03505027_隨便不 care

Members:

劉亦浚 李育嘉 曾耕森 楊其昇

Work division:

劉亦浚 楊其昇負責 DengAI: Predicting Disease Spread 李育嘉 曾耕森負責 Pump it Up: Data Mining the Water Table

• Preprocessing/Feature Engineering

在 dengue_features_train.csv 中,先將 sj 與 iq 兩城市的 features 分別存成 sj_train 與 iq_train 兩個 array(皆不包含 city、year、week_strat_date 的資料),因考慮到時間的連續性,我們覺得遇到空格時,則取前一個有資料的值來填入,其效果也比採用取平均填入還要更好。比較特別的是,在 sj_train 裡,我們 drop 掉了 ndvi_ne 的 feature,原因為空格太多,不丟掉會影響最後的結果。

在 dengue_labels_train.csv 中,也將 sj 與 iq 兩城市的 labels 分別存成 sj_label 與 iq_label 兩個 array,再來對兩城市的 features、label 做標準化。最後,我們覺得登革熱在爆發時,會有一段潛伏期(也就是跟之前的 features 會有相關),所以我們決定將前三周的 features 併入當周的 features 來做預測,也就是一次取四周來預測,此時 sj_train 與 iq_train 的 features 維度分別為 80、84

(sj_train 中有拿掉四周的 $ndvi_ne$,因此維度會比 iq_train 的維度少 4),取 features 的概念如下圖所示。

2	73.36571	12.42	14.01286	2.628571	25.44286	6.9	29.4	20	16	4
3	77.36857	22.82	15.37286	2.371429	26.71429	6.371429	31.7	22.2	8.6	5
4	82.05286	34.54	16.84857	2.3	26.71429	6.485714	32.2	22.8	41.4	1
5	80.33714	15.36	16.67286	2.428571	27.47143	6.771429	33.3	23.3	4	2
6	80.46	7.52	17.21	3.014286	28.94286	9.371429	35	23.9	5.8	3
7	79.89143	9.58	17.21286	2.1	28.11429	6.942857	34.4	23.9	39.1	6
8	82	3.48	17.23429	2.042857	27,41429	6.771429	32.2	23.3	29.7	2
9	83.37571	151.12	17.97714	1.571429	28.37143	7.685714	33.9	22.8	21.1	4
10	82.76857	19.32	17.79	1.885714	28.32857	7.385714	33.9	22.8	21.1	5
11	81.28143	14.41	18.07143	2.014286	28.32857	6.514286	33.9	24.4	1.1	10

• Model Description

以下列出三種 model:

Model1:城市 sj (XGBRegressor)、城市 iq (XGBRegressor)

Model2:城市 sj (GradientBoostingRegressor)、城市 iq (BaggingRegressor)

Model3:城市 sj (ExtraTreesRegressor)、城市 iq (ExtraTreesRegressor)

Model1 : 兩者 XGBRegressor 的參數皆為 n_estimators = 250, subsample = 0.4, max_depth = 5, colsample_bytree = 0.7。

下兩張圖為 Model1 validation data 的 predict 與真實 label 的比較:

(城市 sj 切了最後 104 筆當作 validation data;城市 iq 則為 52 筆。)

Validation data 的 mae 為 13.49(兩個城市合併),在 sj 的 mae 較大,由圖 也可看出 sj 在真實高峰時,會達到 170 左右,但預估的值約在 75,低估了許多 也造成很大的誤差,在較低的值時,也是預測高估了真實許多,造成誤差;在 iq 則 mae 較小,沒有高峰,預估的趨勢與真實也滿符合。

Model2 : GradientBoostingRegressor 的參數為 loss = 'huber', learning_rate = 0.1,

n_estimators = 1000, max_depth = 5, criterion = 'mae'; BaggingRegressor 的參數為

n_estimators = 100, max_features = 0.6, max_samples = 0.6 °

下兩張圖為 Model2 validation data 的 predict 與真實 label 的比較:

(城市 sj 切了最後 104 筆當作 validation data;城市 iq 則為 52 筆。)

Validation data 的 mae 為 14.78(兩個城市合併),依然是 sj 的 mae 較大,預估高峰的值約在 75,低估了真實許多,在較低的值預估約為 70,則是高於真實;在 iq 也是 mae 較小,沒有高峰,預估的趨勢與真實也滿符合。

Model3:兩者 ExtraTreesRegressor 的參數皆為 n_estimators = 2000, criterion = 'mae', max_depth = 3。

下兩張圖為 Model3 validation data 的 predict 與真實 label 的比較: (城市 sj 切了最後 104 筆當作 validation data;城市 iq 則為 52 筆。)

Validation data 的 mae 為 12.76(兩個城市合併),整體的預估線較為平緩,且值比起前面的 model 偏低一點,在 sj 中,雖然預估高峰的值約在 50,低估了真實許多,但在預估較低的值時,與真實 label 較為相近,也是 mae 比前面的 model 較低的原因;在 iq 中,雖預估的趨勢與真實沒那麼吻合,但因為真實的值都沒有很大,所以對 mae 的誤差影響並不大。

總和上述三個 model,可發現 ExtraTreesRegressor 所預估出的值較低,且浮動沒有很劇烈;在 GradientBoostingRegressor、 BaggingRegressor、 XGBRegressor中,預估的值較高,且改變會較劇烈。了解這些 model 特性後,在 ensemble 中是非常有用的,我們可以先用某一個 model 看出 test prediction 的大致分布(local peak 值的大小、趨勢的波動程度),再決定哪些區段適合用甚麼 model 來做 ensemble,如 local peak 的值偏低時(下圖的第一個 peak), ExtraTreesRegressor 預估的值就可以佔較高的比例;若 local peak 的值適中時(下圖的第二、四個 peak),ExtraTreesRegressor 與其他 Regressor 所預估的值,兩者佔的比例可大約相等;若 local peak 的值偏高時(下圖的第三、五個 peak),ExtraTreesRegressor 預估的值估的比例可較低,或者甚至不包含在 ensemble 中。藉此來調整每一個區段所需的 model,將不同 model 的優點運用 在恰當的地方,可以大大的提升準確率。

Experiments and Discussion

實驗我們採用 ExtraTreesRegressor 和 XGBRegressor 兩種 model,分別觀察不同 max_depth、n_estimators、shift(預測值的位移)在 validation data 上的表現差異。

實驗一:max_depth

在 ExtraTreesRegressor 上,決策樹的深度愈深,預測結果反而不好,我們估計 是 overfitting 的緣故。在 XGBRegressor 上,決策樹稍微有點深度,結果仍然會不錯,最好的情況發生在 $\max_{depth=7}$ 。

實驗二:n_estimators

由這張圖可觀察出,在只改變 n_e stimators 的參數下,同一個 model 的 MAE 與該 model 的平均相差不超過 0.1,所以這個參數影響算是非常小,唯一影響大的地方應該是在 training 所花的時間,而且 ExtraTreesRegressor 的表現比 XGBRegressor 略好。

以上四張圖是 ExtraTreesRegressor 和 XGBRegressor 分別在城市 sj 和 iq 的 validation 上的預測結果,可看出每張圖上,除了 label 以外的四條曲線,重疊程度相當高。

由於我們發現,sj 城市的預測波形,local peak 出現的位置普遍都會比 label 後面一點點,於是我們決定在預測結果上再做一個 shift 的動作。此圖表橫軸代表我們將 output 向後 shift 多少週,負值則是向前 shift,由於預測 output 的 peak 比 label 晚出現,所以理論上將 output 向前 shift 的結果會比較好,圖表也證實了這個說法,shift 為正值的時候 MAE 會略大(差異幅度並非像實驗二一樣小到可以忽略)。然而我們在 platform rank deadline 前發現 testing data 上,往後 shift 的結果較完全不 shift 的結果好,於是我們選擇 shift = 2。然而死線之後,我們才發現這個現象,而將 shift 改為 -2 之後,drivendata 上的成績更由 22.6202 進步到 21.4471,算是一個非常大的進步,對於我們無法提早觀察到此現象,我們感到非常可惜。