FLAC2D (Itasca C.G.)

From the website:

https://www.itascainternational.com/software/flac2d

Foundation Design and Soil-Structure Interaction:

FLAC2D's distinct features: ability to model complex geological structures, simulate nonlinear soil and rock behavior, and consider groundwater flow and pore pressure effects.

Retaining Walls and Excavation Support:

FLAC2D's distinct features: Ability to model complex geometry and reinforcement arrangements, simulate soil-structure interaction, analyze staged construction processes, and assess stability and

FLAC2D UPDATES

- · Itasca Windows 9.00 Update
- Itasca Linux 9.00 Update
- FLAC 8.10 Update

Please go to the website:

https://www.itascainternational.com/software/downloads/flac-8-10-update

Please download and install the program "flac810_490.msi".

and then run it (check if it starts).

Based on Jensen N. (2021):

Imperial ... -> SI !!!!!!!!!

Save

Generate -> Virtual -> Add Block

Generate -> Block

Coordinates -> On

Virtual -> Edit

Blocks -> Move Points

Blocks -> Split blocks (then click on the upper right edge of the 2x10m coordinates)

Move options

Move points (2nd point, 1.5, 1000)

Mesh

Use automated zoning off

Blocks -> Move points

Changing the Y coordinates of the left edge

Execute

Record -> Execute

Plot -> Model -> Grid

Copy text code to notepad

Console -> flac:

flac: table 15 -60,980 -41.5,980 -1.5,1000 21.5,990 24,990 44,980 70,980

RMB -> Tables

Refresh (top right icon, vertical bar)

Console -> flac: generate

flac: generate table 15

flac: model null region 1,14

flac: model null region 37, 14

Refresh


```
1
     flac: config gwflow ats dynamic extra 95
 2
      Special FLAC configuration:
 3
        groundwater flow
 4
        ats on
 5
     +++ Dynamic license not currently available
 6
     +++ Model may not cycle.
 7
        dynamic analysis
 8
        extra grid variables (for FISH)
9
     flac: ;Units: SI: meter-kilogram-second
10
     flac: set gravity 9.81 ; m/s2
11
     flac: grid 37,14
     flac: gen -60.0,970.0 -60.0,980.0 -1.5,980.0 -1.5,970.0 i=1,17 j=1,5
12
     flac: gen -1.5,970.0 -1.5,980.0 1.5,980.0 1.5,970.0 i=17,18 j=1,5
14
     flac: gen 1.5,970.0 1.5,980.0 70.0,980.0 70.0,970.0 i=18,38 j=1,5
     flac: gen -60.0,980.0 -60.0,1000.0 -1.5,1000.0 -1.5,980.0 i=1,17 j=5,15
15
16
     flac: gen -1.5,980.0 -1.5,1000.0 1.5,1000.0 1.5,980.0 i=17,18 j=5,15
     flac: gen 1.5,980.0 1.5,1000.0 70.0,1000.0 70.0,980.0 i=18,38 j=5,15
17
     flac: ; Define material models
18
19
     flac: model elastic i=1,16 j=1,4
20
     flac: model elastic i=17,17 j=1,4
     flac: model elastic i=18,37 j=1,4
21
     flac: model elastic i=1,16 j=5,14
22
23
    flac: model elastic i=17,17 j=5,14
24
     flac: model elastic i=18,37 j=5,14
25
     local> !auto=off
26
     flac: set plot giic
     flac: set filcolor 4
28
     flac: set plot giic
29
     flac: set filcolor 4
30
     flac: plot pen grid gnum num
     flac: table 15 -60,980 -41.5,980 -1.5,1000 21.5,990 24,990 44,980 70,980
31
32
     flac: generate table 15
33
     flac: model null region 1,14
34
     flac: model null region 37, 14
35
```

new

flac: config gwflow ats dynamic extra 95

```
Special FLAC configuration:
 groundwater flow
 ats on
+++ Dynamic license not currently available
+++ Model may not cycle.
 dynamic analysis
 extra grid variables (for FISH)
flac: ;Units: SI: meter-kilogram-second
flac: set gravity 9.81; m/s2
flac: grid 37,14
flac: gen -60.0,970.0 -60.0,980.0 -1.5,980.0 -1.5,970.0 i=1,17 j=1,5
flac: gen -1.5,970.0 -1.5,980.0 1.5,980.0 1.5,970.0 i=17,18 j=1,5
flac: gen 1.5,970.0 1.5,980.0 70.0,980.0 70.0,970.0 i=18,38 j=1,5
flac: gen -60.0,980.0 -60.0,1000.0 -1.5,1000.0 -1.5,980.0 i=1,17 j=5,15
flac: gen -1.5,980.0 -1.5,1000.0 1.5,1000.0 1.5,980.0 i=17,18 j=5,15
flac: gen 1.5,980.0 1.5,1000.0 70.0,1000.0 70.0,980.0 i=18,38 j=5,15
flac: ; Define material models
flac: model elastic i=1,16 j=1,4
flac: model elastic i=17,17 j=1,4
flac: model elastic i=18,37 j=1,4
flac: model elastic i=1,16 j=5,14
flac: model elastic i=17,17 j=5,14
flac: model elastic i=18,37 j=5,14
local> !auto=off
flac: set plot giic
flac: set filcolor 4
flac: set plot giic
flac: set filcolor 4
flac: plot pen grid gnum num
flac: table 15 -60,980 -41.5,980 -1.5,1000 21.5,990 24,990 44,980 70,980
flac: generate table 15
flac: model null region 1,14
```

flac: model null region 37, 14

Part 2

new

```
;Units: SI: meter-kilogram-second
set gravity 9.81; m/s2
set flow= off dyn= off echo= on
set small
water bulk=0
;water density=1.9379 ->>> SI units
water density=1000
pause
  ;Step 2: Mesh and Geometry
  ;++++ Mesh/Grid generation ++++
 grid 37,14
 gen -60.0,970.0 -60.0,980.0 -1.5,980.0 -1.5,970 i=1,17 j=1,5 ;Bot. let
 gen -1.5,970.0 -1.5,980.0 1.5,980.0 1.5,970 i=17,18 j=1,5
 gen 1.5,970.0 1.5,980.0 70.0,980.0 70.0,970 i=18,38 j=1,5 ;Bot. right
 gen -60.0,980.0 -60.0,1000.0 -1.5,1000.0 -1.5,980 i=1,17 j=5,15 ;Top ]
 gen -1.5,980.0 -1.5,1000.0 1.5,1000.0 1.5,980 i=17,18 j=5,15 ;Center t
 gen 1.5,980.0 1.5,1000.0 70.0,1000.0 70.0,980 i=18,38 j=5,15 ;Top right
                          temporarily make all elements elastic
 model elastic
 pause
  ;++++ Input geometry by using tables ++++
grid 37,14
gen -60.0,970.0 -60.0,980.0 -1.5,980.0 -1.5,970.0 i=1,17 j=1,5
gen -1.5,970.0 -1.5,980.0 1.5,980.0 1.5,970.0 i=17,18 j=1,5
gen 1.5,970.0 1.5,980.0 70.0,980.0 70.0,970.0 i=18,38 j=1,5
gen -60.0,980.0 -60.0,1000.0 -1.5,1000.0 -1.5,980.0 i=1,17 j=5,15
gen -1.5,980.0 -1.5,1000.0 1.5,1000.0 1.5,980.0 i=17,18 j=5,15
gen 1.5,980.0 1.5,1000.0 70.0,1000.0 70.0,980.0 i=18,38 j=5,15
; Define material models
model elastic
pause
```

```
pause
 ;++++ Input geometry by using tables ++++
table 1 delete
                                       ;'u/s shell'
table 1 -41.5,980 -1.5,1000 -8,980 -41.5,980
table 2 delete
                                        ;'d/s shell'
table 2 1.5,1000 21.5,990 24,990 44,980 8,980 1.5,1000
table 3 delete
                                        ; 'Core'
table 3 -1.5,1000 1.5,1000 8,980 1.5,975 -1.5,975 -8,980 -1.5,1000
table 4 delete
                                       ;'u/s foundation'
table 4 -60,975 -60,980 -8,980 -1.5,975 -60,975
table 5 delete
                                       ;'d/s foundation'
table 5 delete ;'d/s for table 5 1.5,975 8,980 70,980 70,975 1.5,975
                                       ; 'Bedrock'
table 6 delete
table 6 -60,970 -60,975 70,975 70,970 -60,970
table 1 delete; 'u/s shell'
table 1 -41.5,980 -1.5,1000 -8,980 -41.5,980
table 2 delete; d/s shell'
table 2 1.5,1000 21.5,990 24,990 44,980 8,980 1.5,1000
table 3 delete; 'Core'
table 3 -1.5,1000 1.5,1000 8,980 1.5,975 -1.5,975 -8,980 -1.5,1000
table 4 delete; 'u/s foundation'
table 4 -60,975 -60,980 -8,980 -1.5,975 -60,975
table 5 delete; 'd/s fundation'
table 5 1.5,975 8,980 70,980 70,975 1.5,975
table 6 delete; 'Bedrock'
table 6 -60,970 -60,975 70,975 70,970 -60,970
pause
flac: Call filename.txt
```

Plot -> Model

flac: continue

RMB ---> show Table

Refresh

```
pause
 ;++++ null out table above ground surface to make geometry ++++
table 141 delete
                                    ; Table for ground surface
table 141 -60,980 -41.5,980 -1.5,1000 1.5,1000 21.5,990 24,990 44,980 70,980
gen table 141
                        generate ground surface
                      ;null out zones above the ground surface on the u/s sid
mod null reg 1,14
                        ;null out zones above the ground surface on the d/s sid
mod null reg 37,14
pause
;+++ Make d/s bench look better, not necessary for performance +++
ini x 24.0 y 990 i 25 j 10 ; Moves i, j gridpt 25, 10 to x, y coord of 24, 990
ini x 21.5 y 990 i 24 j 10 ; Moves i, j gridpt 24, 10 to x, y coord of 21.5, 990
pause
 :-
;Step 3: Input initial properties
```

;++++ null out table above ground surface to make geometry

table 141 delete; Table for ground surface

table 141 -60,980 -41.5,980 -1.5,1000 1.5,1000 21.5,990 24,990 44,980 70,980

gen table 141; gen ground surface

mod null reg 1,14; null out zones an the u/s side

mod null reg 37,14; null out zones above d/s side

;++++ Make d/s bench look better

ini x 24.0 y 990 i 25 j 10; Moves i, j grd ...

ini x 21.5 y 990 i 24 j 10; Moves i, j grd ...

pause

Alter -> Shape

Mode -> Point

Flac: cont

```
;Step 3: Input initial properties
;++++ Input material properties for
;drained/initial static stress state +++++
group 'u/s shell' region table 1 model mohr group 'u/s shell'
                                                          ;'u/s shell'
                                                          ; model mohr
prop d=3.42 s=2.47e6 b=6.43e6 c=100 f=32 ten=160 &
                                                         ;prop's for the group
poros=.25 perm=5.26e-9 group 'u/s shell'
group 'd/s shell' region table 2
                                                         ;'d/s shell'
model mohr group 'd/s shell'
                                                         ; model mohr
prop d=3.42 s=2.47e6 b=6.43e6 c=100 f=32 ten=160 &
                                                         ;prop's for the group
poros=.25 perm=5.26e-9 group 'd/s shell'
group 'Core (sandy clay)' region table 3
                                                         ; 'Core (sandy clay)'
model mohr group 'Core (sandy clay)'
                                                         ; model mohr
prop d=3.42 s=3.85e6 b=1.01e7 c=300 f=28 ten=564 &
                                                         sprop's for the group
poros=.25 perm=5.26e-9 group 'Core (sandy clay)'
group 'u/s foundation' region table 4
                                                         ;'u/s foundation'
model mohr group 'u/s foundation'
                                                         ; model mohr
prop d=3.15 s=1.41e6 b=3.67e6 c=100 f=28 ten=188 &
                                                         sprop's for the group
poros=.39 perm=5.26e-9 group 'u/s foundation'
group 'd/s foundation' region table 5
                                                         :'d/s foundation'
model mohr group 'd/s foundation'
                                                         ; model mohr
prop d=3.15 s=1.41e6 b=3.67e6 c=100 f=28 ten=188 &
                                                         ;prop's for the group
poros=.39 perm=5.26e-8 group 'd/s foundation'
group 'Bedrock' region table 6
                                                           : 'Bedrock'
model mohr group 'Bedrock'
                                                          ; model mohr
 prop d=4.19 s=1.69e7 b=4.40e7 c=2000 f=36 ten=2753 &
                                                         sprop's for the
poros=.01 perm=5.26e-12 group 'Bedrock'
 /pause
 pause
```


Material	γ (dry) pcf	Saturation for unsat state	porosity (n)	y (unsat) pcf	γ (sat) pcf
u/s shell	110.0	0.90	0.25	124.0	125.6
d/s shell	110.0	0.90	0.25	124.0	125.6
Core	110.0	0.90	0.25	124.0	125.6
u/s foundation	101.5	1.00	0.39	125.8	125.8
d/s foundation	101.5	1.00	0.39	125.8	125.8
Bedrock	135.0	1.00	0.01	135.6	135.6

Material Vs (ft/sec)	Vp	G, unsat	G, sat	Poisson's ratio (v)		К,	К,	K, dynamic	
	Vs (ft/sec)	50000	shear modulus (psf)	shear modulus (psf)	v (Static)	v (Dyn)	& unsat (psf)	Drained saturated (psf)	bulk modulus (psf)
u/s shell	800	2280	2.47E+06	2.50E+06	0.330	0.430	6.43E+06	6.51E+06	1.70E+07
d/s shell	800	2280	2.47E+06	2.50E+06	0.330	0.430	6.43E+06	6.51E+06	1.70E+07
Core	1000	3050	3.85E+06	3.90E+06	0.330	0.440	1.01E+07	1.02E+07	3.11E+07
u/s foundation	600	2600	1.41E+06	1.41E+06	0.330	0.472	3.67E+06	3.67E+06	2.46E+07
d/s foundation	600	2600	1.41E+06	1.41E+06	0.330	0.472	3.67E+06	3.67E+06	2.46E+07
Bedrock	2000	3970	1.69E+07	1.69E+07	0.330	0.330	4.40E+07	4.40E+07	4.39E+07

Material	Drained S	trengths	Tensile	k (hydr. Cond.) (ft/sec)	
	cohesion (psf)	friction (deg)	strength (psf)		
u/s shell	100	32	160	3.28E-08	
d/s shell	100	32	160	3.28E-08	
Core	300	28	564	3.28E-10	
u/s foundation	100	28	188	3.28E-08	
d/s foundation	100	28	188	3.28E-08	
Bedrock	2000	36	2,753	3.28E-11	

Plot -> Model

Add -> grid

Add -> group

ОК

Plot -> Model -> Properties -> Plastic -> Mohr-Coulomb -> friction


```
:Step 4: Set up for initial static-solve
;++++ set initial saturation->sat. levels w/ no phreatic ++++
initial saturation 0.90
                                    ;Makes all gridpoints have sat = 0.90, then
initial saturation 1.0 i 1 38 j 1 5 /Bedrock and foundation grid points, sat=1.
pause
 ;Initial GWT at ground surface elevation of 980ft:
table 39 -60,980 70,980
water table 39
pause
 ;+++ Fixed BCs for static solve, will change for dyn. solve ++++
fix x y i 1 38 j 1
fix x i 1 j 2 5
fix x i 38 j 2 5
                        ;bottom
                         ;u/s end
                        /d/s end
pause
:++++ First solve, solve elastic, no reservoir or phreatic yet ++++
solve elastic
pause
```