Special Numbers ITT9131 Konkreetne Matemaatika

Chapter Six

Stirling Numbers

Eulerian Numbers

Harmonic Numbers

Harmonic Summation

Bernoulli Numbers

Fibonacci Numbers

Continuants

Contents

1 Fibonacci Numbers

- 2 Harmonic numbers
- 3 Mini-guide to other number series
 - Eulerian numbers
 - Bernoulli numbers

Next section

1 Fibonacci Numbers

- 2 Harmonic numbers
- 3 Mini-guide to other number series
 - Eulerian numbers
 - Bernoulli numbers

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter *n* months? How many of them will be adult, and how many will be babies?

Leonardo Fibonacci (1175–1235)

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months? How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

- On the first month, the two baby rabbits will have become adults.
- On the second month, the two adult rabbits will have produced a pair of baby rabbits.
- On the third month, the two adult rabbits will have produced another pair of baby rabbits, while the other two baby rabbits will have become adults.
- And so on, and so on . . .

Leonardo Fibonacci (1175–1235)

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months? How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

month	0	1	2	3	4	5	6	7	8	9	10
baby	1	0	1	1	2	3	5	8	13	21	34
adult	0	1	1	2	3	5	8	13	21	34	55
total	1	1	2	3	5	8	13	21	34	55	89

That is: at month n, there are f_{n+1} pair of rabbits, of which f_n pairs of adults, and f_{n-1} pairs of babies.

(Note: this seems to suggest $f_{-1} = 1$)

Leonardo Fibonacci (1175–1235)

Fibonacci Numbers: Main formulas

n	0	1	2	3	4	5	6	7	8	9 34	10
f_n	0	1	1	2	3	5	8	13	21	34	55

Formulae for computing

$$f_n = f_{n-1} + f_{n-2}$$
, with $f_0 = 0$ and $f_1 = 1$.

$$f_n = \frac{1}{\sqrt{5}} \left(\Phi^n - \hat{\Phi}^n \right)$$
 ("Binet form")

where $\Phi = \frac{1+\sqrt{5}}{2} = 1.618...$ is the golden ratio

Generating function

$$\sum_{n \geq 0} f_n z^n = \frac{z}{1 - z - z^2} = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \Phi z} - \frac{1}{1 - \hat{\Phi} z} \right) \ \forall z \in \mathbb{C} : |z| < \Phi^{-1}$$

where $\hat{\Phi} = \frac{1-\sqrt{5}}{2} = -0.618\ldots$ is the algebraic conjugate of Φ

Fibonacci Numbers: Main formulas

n	0	1	2	3	4	5	6	7	8	9	10 55
f_n	0	1	1	2	3	5	8	13	21	34	55

Formulae for computing:

- $f_n = f_{n-1} + f_{n-2}$, with $f_0 = 0$ and $f_1 = 1$.
- $f_n = \frac{1}{\sqrt{5}} \left(\Phi^n \hat{\Phi}^n \right)$ ("Binet form") where $\Phi = \frac{1+\sqrt{5}}{2} = 1.618...$ is the golden ratio.

Generating function

$$\sum_{n\geq 0} f_n z^n = \frac{z}{1-z-z^2} = \frac{1}{\sqrt{5}} \left(\frac{1}{1-\Phi z} - \frac{1}{1-\hat{\Phi} z} \right) \ \forall z \in \mathbb{C} : |z| < \Phi^{-1}$$

where $\hat{\Phi} = \frac{1-\sqrt{5}}{2} = -0.618...$ is the algebraic conjugate of Φ

Fibonacci Numbers: Main formulas

Formulae for computing:

- $f_n = f_{n-1} + f_{n-2}$, with $f_0 = 0$ and $f_1 = 1$.
- $f_n = \frac{1}{\sqrt{5}} \left(\Phi^n \hat{\Phi}^n \right)$ ("Binet form") where $\Phi = \frac{1+\sqrt{5}}{2} = 1.618...$ is the golden ratio.

Generating function

$$\sum_{n\geqslant 0}f_n\,z^n=\frac{z}{1-z-z^2}=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\varphi\,z}-\frac{1}{1-\hat{\varphi}\,z}\right)\ \forall z\in\mathbb{C}:\ |z|<\varphi^{-1}\,,$$

where $\hat{\Phi} = \frac{1-\sqrt{5}}{2} = -0.618...$ is the algebraic conjugate of Φ .

Cassini's Identity
$$f_{n+1}f_{n-1}-f_n^2=(-1)^n$$
 for all $n>0$

Cassini's Identity
$$f_{n+1}f_{n-1} - f_n^2 = (-1)^n$$
 for all $n > 0$

Ref: https://en.chessbase.com/post/a-mathematical-cheboard-paradox

Cassini's Identity
$$f_{n+1}f_{n-1}-f_n^2=(-1)^n$$
 for all $n>0$

Divisors f_n and f_{n+1} are relatively prime and f_k divides f_{nk} :

$$\gcd(f_n,f_m)=f_{\gcd(n,m)}$$

Cassini's Identity
$$f_{n+1}f_{n-1} - f_n^2 = (-1)^n$$
 for all $n > 0$

Divisors f_n and f_{n+1} are relatively prime and f_k divides f_{nk} :

$$gcd(f_n, f_m) = f_{gcd(n,m)}$$

Matrix Calculus If A is the 2×2 matrix $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, then

$$A^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix} , \qquad \text{for } n > 0.$$

Observe that this is equivalent to Cassini's identity.

Continued fractions

The continued fraction composed entirely of 1s equals the ratio of successive Fibonacci numbers:

$$a_{1} + \frac{1}{a_{2} + \frac{1}{a_{n-1} + \frac{1}{a_{n-1}}}} = \frac{f_{n+1}}{f_{n}},$$

where $a_1 = a_2 = \cdots = a_n = 1$.

For example

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}} = \frac{f_5}{f_4} = \frac{5}{3} = 1.(6)$$

Continued fractions

The continued fraction composed entirely of 1s equals the ratio of successive Fibonacci numbers:

$$a_{1} + \frac{1}{a_{2} + \frac{1}{a_{n-1} + \frac{1}{a_{n-1}}}} = \frac{f_{n+1}}{f_{n}},$$

where $a_1 = a_2 = \cdots = a_n = 1$.

For example

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}} = \frac{f_5}{f_4} = \frac{5}{3} = 1.(6)$$

- Let S_n denote the number of subsets of $\{1,2,\ldots,n\}$ that do not contain consecutive elements. For example, when n=3 the allowable subsets are $\emptyset, \{1\}, \{2\}, \{3\}, \{1,3\}$. Therefore, $S_3=5$. In general, $S_n=f_{n+2}$ for $n\geqslant 1$.
- 2 Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed? For example

Thus $D_n = f_{n+1}$ for n > 0

- 4 Compositions: Let B_n be the number of ordered compositions of the positive integer n into summands that are either 1 or 2. For example, 3=1+2=2+1=1+1+1 and 4=2+2=1+1+2=1+2+1=2+1+1=1+1+1+1+1. Therefore, $B_3=3$ and $B_4=5$. In general, $B_n=f_{n+1}$ for n>0.

- Let S_n denote the number of subsets of $\{1,2,\ldots,n\}$ that do not contain consecutive elements. For example, when n=3 the allowable subsets are $\emptyset,\{1\},\{2\},\{3\},\{1,3\}$. Therefore, $S_3=5$. In general, $S_n=f_{n+2}$ for $n\geqslant 1$.
- 2 Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed? For example

The number of possible placements D_n of dominoes with n dots, consider the rightmost dot in any such placement P. If this dot is not covered by a domino, then P minus the last dot determines a solution counted by D_{n-1} . If the last dot is covered by a domino, then the last two dots in P are covered by this domino. Removing this rightmost domino then gives a solution counted by D_{n-2} . Taking into account these two possibilities $D_n = D_{n-1} + D_{n-2}$ for $n \geqslant 3$ with $D_1 = 1$, $D_2 = 2$. Thus $D_n = f_{n+1}$ for n > 0.

- Compositions: Let T_n be the number of ordered compositions of the positive integer n into summands that are odd. For example,
- = 1+1+1+1+1. Therefore, T₄ = 3 and T₅ = 5. In general, T_n = f_n for n > 4.
 Compositions: Let B_n be the number of ordered compositions of the positive integer n into summands that are either 1 or 2. For example,

- Let S_n denote the number of subsets of $\{1,2,\ldots,n\}$ that do not contain consecutive elements. For example, when n=3 the allowable subsets are $\emptyset,\{1\},\{2\},\{3\},\{1,3\}$. Therefore, $S_3=5$. In general, $S_n=f_{n+2}$ for $n\geqslant 1$.
- 2 Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed? For example

Thus $D_n = f_{n+1}$ for n > 0.

- Let S_n denote the number of subsets of $\{1,2,\ldots,n\}$ that do not contain consecutive elements. For example, when n=3 the allowable subsets are $\emptyset,\{1\},\{2\},\{3\},\{1,3\}$. Therefore, $S_3=5$. In general, $S_n=f_{n+2}$ for $n\geqslant 1$.
- Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed? For example

Thus $D_n = f_{n+1}$ for n > 0.

- 4 Compositions: Let B_n be the number of ordered compositions of the positive integer n into summands that are either 1 or 2. For example, 3=1+2=2+1=1+1+1 and 4=2+2=1+1+2=1+2+1=2+1+1=1+1+1+1+1+1. Therefore, $B_3=3$ and $B_4=5$. In general, $B_n=f_{n+1}$ for n>0.

Observation

$$\lim_{n\to\infty}\widehat{\Phi}^n=0$$

Observation

$$\lim_{n\to\infty}\widehat{\Phi}^n=0$$

- $lacksquare f_n
 ightarrow rac{\Phi^n}{\sqrt{5}}$ as $n
 ightarrow \infty$
- $f_n = \left\lfloor \frac{\Phi^n}{\sqrt{5}} + \frac{1}{2} \right\rfloor$

Observation

$$\lim_{n\to\infty}\widehat{\Phi}^n=0$$

- $f_n o rac{\Phi^n}{\sqrt{5}}$ as $n o \infty$
- $f_n = \left\lfloor \frac{\Phi^n}{\sqrt{5}} + \frac{1}{2} \right\rfloor$

For example:

$$f_{10} = \left| \frac{\Phi^{10}}{\sqrt{5}} + \frac{1}{2} \right| = \left| 55.00364... + \frac{1}{2} \right| = \left\lfloor 55.50364... \right\rfloor = 55$$

$$f_{11} = \left\lfloor \frac{\Phi^{11}}{\sqrt{5}} + \frac{1}{2} \right\rfloor = \left\lfloor 88.99775... + \frac{1}{2} \right\rfloor = \left\lfloor 89.49775... \right\rfloor = 89$$

Observation

$$\lim_{n\to\infty}\widehat{\Phi}^n=0$$

- $f_n \to \frac{\Phi^n}{\sqrt{5}}$ as $n \to \infty$
- $f_n = \left| \frac{\Phi^n}{\sqrt{5}} + \frac{1}{2} \right|$
- $rac{f_n}{f_{n-1}} o \Phi$ as $n o \infty$

For example:

$$\frac{f_{11}}{f_{10}} = \frac{89}{55} \approx 1.61818182 \approx \Phi = 1.61803...$$

Fibonacci numbers with negative index: Idea

Question

What can f_n be when n is a negative integer?

We want the basic properties to be satisfied for every $n \in \mathbb{Z}$.

■ Defining formula:

$$f_n = f_{n-1} + f_{n-2}$$
.

Expression by golden ratio:

$$f_n = \frac{1}{\sqrt{5}} \left(\Phi^n - \hat{\Phi}^n \right).$$

Matrix form:

$$A^{n} = \begin{pmatrix} f_{n+1} & f_{n} \\ f_{n} & f_{n-1} \end{pmatrix} \text{ where } A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

(Consequently, Cassini's identity too.)

Note: For n = 0, the above suggest $f_{-1} = 1$...

Fibonacci numbers with negative index: Formula

Theorem

For every $n \geqslant 1$,

$$f_{-n} = (-1)^{n-1} f_n$$

Fibonacci numbers with negative index: Formula

Theorem

For every $n \geqslant 1$,

$$f_{-n} = (-1)^{n-1} f_n$$

Proof: As $(1 - \Phi z) \cdot (1 - \hat{\Phi} z) = 1 - z - z^2$, it is $\Phi^{-1} = -\hat{\Phi} = 0.618...$ Then for every $n \ge 1$,

$$f_{-n} = \frac{1}{\sqrt{5}} \left(\Phi^{-n} - \hat{\Phi}^{-n} \right)$$

$$= \frac{1}{\sqrt{5}} \left((-\hat{\Phi})^n - (-\Phi)^n \right)$$

$$= \frac{(-1)^{n+1}}{\sqrt{5}} \left(\Phi^n - \hat{\Phi}^n \right)$$

$$= (-1)^{n-1} f_n,$$

Fibonacci numbers with negative index: Formula

Theorem

For every $n \geqslant 1$,

$$f_{-n} = (-1)^{n-1} f_n$$

Proof: As $(1 - \Phi z) \cdot (1 - \hat{\Phi} z) = 1 - z - z^2$, it is $\Phi^{-1} = -\hat{\Phi} = 0.618...$ Then for every $n \ge 1$,

$$f_{-n} = \frac{1}{\sqrt{5}} \left(\Phi^{-n} - \hat{\Phi}^{-n} \right)$$

$$= \frac{1}{\sqrt{5}} \left((-\hat{\Phi})^n - (-\Phi)^n \right)$$

$$= \frac{(-1)^{n+1}}{\sqrt{5}} \left(\Phi^n - \hat{\Phi}^n \right)$$

$$= (-1)^{n-1} f_n.$$

Q.E.D.

Another proof is by induction with the defining relation in the form $f_{n-2} = f_n - f_{n-1}$, with initial conditions $f_1 = 1$, $f_0 = 0$.

Warmup: The generalized Cassini's identity

Theorem

For every $n, k \in \mathbb{Z}$,

$$f_{n+k} = f_k f_{n+1} + f_{k-1} f_n$$

Warmup: The generalized Cassini's identity

Theorem

For every $n, k \in \mathbb{Z}$,

$$f_{n+k} = f_k f_{n+1} + f_{k-1} f_n$$

Why generalization?

Because for k = 1 - n we get

$$f_1 = (-1)^{n-2} f_{n-1} f_{n+1} + (-1)^{n-1} f_n^2$$

which is Cassini's identity multiplied by $(-1)^n$.

Warmup: The generalized Cassini's identity

Theorem

For every $n, k \in \mathbb{Z}$,

$$f_{n+k} = f_k f_{n+1} + f_{k-1} f_n$$

Proof: For every $n \in \mathbb{Z}$ let P(n) be the following proposition:

$$\forall k \in \mathbb{Z}. f_{n+k} = f_k f_{n+1} + f_{k-1} f_n.$$

- For n = 0 we get $f_k = f_k \cdot 1 + 0$. For n = 1 we get $f_{k+1} = f_k \cdot 1 + f_{k-1} \cdot 1$.
- If $n \ge 2$ and P(n-1) and P(n-2) hold, then:

$$\begin{array}{lcl} f_{n+k} & = & f_{n-1+k} + f_{n-2+k} \\ & = & f_k f_n + f_{k-1} f_{n-1} + f_k f_{n-1} + f_{k-1} f_{n-2} \\ & = & f_k f_{n+1} + f_{k-1} f_n \,. \end{array}$$

• If n < 0 and P(n+1) and P(n+2) hold, then

$$\begin{array}{lcl} f_{n+k} & = & f_{n+2-k} - f_{n+1-k} \\ & = & f_k f_{n+3} + f_{k-1} f_{n+2} - f_k f_{n+2} - f_{k-1} f_{n+1} \\ & = & f_k f_{n+1} + f_{k-1} f_n \,. \end{array}$$

A note on generating functions for bi-infinite sequences

Question

Can we define f_n for every $n \in \mathbb{Z}$ via a single power series which depends from both positive and negative powers of the variable? (We can renounce such G(z) to be defined in z = 0.)

A note on generating functions for bi-infinite sequences

Question

Can we define f_n for every $n \in \mathbb{Z}$ via a single power series which depends from both positive and negative powers of the variable?

(We can renounce such G(z) to be defined in z=0.)

Answer: Yes, but it would not be practical!

A generalization of Laurent's theorem goes as follows:

Let f be an analytic function defined in an annulus $A = \{z \in \mathbb{C} \mid r < |z| < R\}$.

Then there exists a bi-infinite sequence $\langle a_n \rangle_{n \in \mathbb{Z}}$ such that:

- 1 the series $\sum_{n\geqslant 0} a_n z^n$ has convergence radius $\geqslant R$;
- 2 the series $\sum_{n\geqslant 1} a_{-n} z^n$ has convergence radius $\geqslant 1/r$;
- 3 for every $z \in A$ it is $\sum_{n \in \mathbb{Z}} a_n z^n = f(z)$.

We could set r=0, but the power series $\sum_{n\geqslant 1}a_{-n}z^n$ would then need to have infinite convergence radius! (i.e., $\lim_{n\to\infty}\sqrt[n]{|a_{-n}|}=0$.) However, $\lim_{n\to\infty}\sqrt[n]{|f_{-n}|}=\Phi$. Also, the intersection of two annuli can be empty: making controls on feasibility of operations much more difficult to check. (Not so for "disks with a hole in zero".)

Fibonacci numbers cheat sheet

■ Recurrence:

$$f_0 = 0; f_1 = 1;$$

 $f_n = f_{n-1} + f_{n-2} \quad \forall n \in \mathbb{Z}.$

Binet form:

$$f_n = \frac{1}{\sqrt{5}} \left(\Phi^n - \hat{\Phi}^n \right) \ \forall n \in \mathbb{Z}.$$

Generating function:

$$\sum_{n\geqslant 0}f_nz^n=\frac{z}{1-z-z^2}\ \forall z\in\mathbb{C}\,,\,|z|<\frac{1}{\varphi}\,.$$

Matrix form:

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)^n = \left(\begin{array}{cc} f_{n+1} & f_n \\ f_n & f_{n-1} \end{array}\right) \ \forall n \in \mathbb{Z}.$$

Generalized Cassini's identity:

$$f_{n+k} = f_k f_{n+1} + f_{k-1} f_n \ \forall n, k \in \mathbb{Z}.$$

Greatest common divisor:

$$\gcd(f_m, f_n) = f_{\gcd(m,n)} \ \forall m, n \in \mathbb{Z}.$$

Next section

- 1 Fibonacci Numbers
- 2 Harmonic numbers

- 3 Mini-guide to other number series
 - Eulerian numbers
 - Bernoulli numbers

Harmonic numbers

Definition

The harmonic numbers are given by the formula

$$H_n = \sum_{k=1}^n \frac{1}{k}$$
 for $n \geqslant 0$, with $H_0 = 0$

- \blacksquare H_n is the discrete analogue of the natural logarithm.
- The first twelve harmonic numbers are shown in the following table:

	n	0	1	2	3	4	5	6	7	8	9	10	11
F	H _n	0	1	<u>3</u>	<u>11</u>	25 12	137 60	4 <u>9</u>	363 140	761 280	7129 2520	7381 2520	83711 27720

n	0	1	2	3	4	5	6	7	8	9	10	11
H _n	0	1	$\frac{3}{2}$	<u>11</u>	25 12	137 60	4 <u>9</u> 20	363 140	761 280	7129 2520	7381 2520	83711 27720

Properties:

- Harmonic and Stirling cyclic numbers: $H_n = \frac{1}{n!} \begin{bmatrix} n+1 \\ 2 \end{bmatrix}$ for all $n \ge 1$;
- $\sum_{k=1}^{n} H_k = (n+1)(H_{n+1}-1) \text{ for all } n \geqslant 1;$
- $\sum_{k=1}^{n} {k \choose m} H_k = {n+1 \choose m+1} \left(H_{n+1} \frac{1}{m+1} \right) \text{ for every } n \geqslant 1;$
- $\blacksquare \lim_{n\to\infty} H_n = \infty;$
- $H_n \sim \ln n + \gamma + \frac{1}{2n} \frac{1}{12n^2} + \frac{\varepsilon_n}{120n^4}$ where $\gamma \approx 0.577215664901533$ denotes Euler's constant.

Approximation

- $H_{10} \approx 2.928968257896$
- $= H_{1000000} \approx 14.3927267228657236313811275$

Properties:

- Harmonic and Stirling cyclic numbers: $H_n = \frac{1}{n!} \begin{bmatrix} n+1 \\ 2 \end{bmatrix}$ for all $n \ge 1$;
- $\sum_{k=1}^{n} H_k = (n+1)(H_{n+1}-1) \text{ for all } n \geqslant 1;$
- $\sum_{k=1}^{n} {k \choose m} H_k = {n+1 \choose m+1} \left(H_{n+1} \frac{1}{m+1} \right) \text{ for every } n \geqslant 1;$
- $H_n \sim \ln n + \gamma + \frac{1}{2n} \frac{1}{12n^2} + \frac{\varepsilon_n}{120n^4}$ where $\gamma \approx 0.577215664901533$ denotes Euler's constant.

Approximation

- $H_{10} \approx 2.928968257896$
- $H_{1000000} \approx 14.3927267228657236313811275$

Generating function:

$$\frac{1}{1-z}\ln\frac{1}{1-z} = z + \frac{3}{2}z^2 + \frac{11}{6}z^3 + \frac{25}{12}z^4 + \dots = \sum_{n \geqslant 0} H_n z^n$$

Indeed,
$$\frac{1}{1-z}=\sum_{n\geqslant 0}z^n$$
, $\ln\frac{1}{1-z}=\sum_{n\geqslant 0}rac{z^n}{n}$, and

$$H_n = \sum_{k=1}^n \frac{1}{k} = \sum_{k=1}^n 1^{n-k} \frac{1}{k}$$

Generating function:

$$\frac{1}{1-z}\ln\frac{1}{1-z} = z + \frac{3}{2}z^2 + \frac{11}{6}z^3 + \frac{25}{12}z^4 + \dots = \sum_{n \geqslant 0} H_n z^n$$

Indeed, $\frac{1}{1-z}=\sum_{n\geqslant 0}z^n$, In $\frac{1}{1-z}=\sum_{n\geqslant 0}rac{z^n}{n}$, and

$$H_n = \sum_{k=1}^n \frac{1}{k} = \sum_{k=1}^n 1^{n-k} \frac{1}{k}$$

A general remark

If G(z) is the generating function of the sequence $\langle g_0,g_1,g_2,\ldots\rangle$, then G(z)/(1-z) is the generating function of the sequence of the *partial sums* of the original sequence:

if
$$G(z) = \sum_{n \geqslant 0} g_n z^n$$
 then $\frac{G(z)}{1-z} = \sum_{n \geqslant 0} \left(\sum_{k=0}^n g_k\right) z^n$

Harmonic numbers and binomial coefficients

Theorem $\sum_{k=0}^{n} \binom{k}{m} H_k = \binom{n+1}{m+1} \left(H_{n+1} - \frac{1}{m+1} \right)$

Harmonic numbers and binomial coefficients

Theorem

$$\sum_{k=0}^{n} \binom{k}{m} H_k = \binom{n+1}{m+1} \left(H_{n+1} - \frac{1}{m+1} \right)$$

Take $v(x) = \binom{x}{m+1}$: then

$$\Delta v(x) = \begin{pmatrix} x+1 \\ m+1 \end{pmatrix} - \begin{pmatrix} x \\ m+1 \end{pmatrix} = \frac{x^{\underline{m}}}{m!} \cdot \frac{x+1-(x-m)}{m+1} = \begin{pmatrix} x \\ m \end{pmatrix}$$

We can then sum by parts with $u(x) = H_x$ and get:

$$\sum {x \choose m} H_x \delta x = {x \choose m+1} H_x - \sum {x+1 \choose m+1} x^{-1} \delta x$$
$$= {x \choose m+1} \left(H_x - \frac{1}{m+1} \right) + C$$

Then
$$\sum_{k=0}^{n} {k \choose m} H_k = {x \choose m+1} \left(H_x - \frac{1}{m+1} \right) \Big|_{x=0}^{x=n+1} = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right)$$
, as desired.

Harmonic numbers and binomial coefficients

Theorem

$$\sum_{k=0}^{n} \binom{k}{m} H_k = \binom{n+1}{m+1} \left(H_{n+1} - \frac{1}{m+1} \right)$$

Corollary

For m = 0 we get:

$$\sum_{k=0}^{n} H_{k} = (n+1)(H_{n+1}-1) = (n+1)H_{n} - n$$

For m=1 we get:

$$\sum_{k=0}^n k H_k = \frac{n(n+1)}{2} \left(H_{n+1} - \frac{1}{2} \right) = \frac{n(n+1)}{2} H_{n+1} - \frac{n(n+1)}{4}$$

Harmonic numbers of higher order

Definition

For $n \geqslant 1$ and $m \geqslant 2$ integer, the *n*th harmonic number of order m is

$$H_n^{(m)} = \sum_{k=1}^n \frac{1}{k^m}$$

As with the "first order" harmonic numbers, we put $H_0^{(m)} = 0$ as an empty sum.

For $m \ge 2$ the quantities

$$H_{\infty}^{(m)} = \lim_{n \to \infty} H_n^{(m)}$$

exist finite: they are the values of the Riemann zeta function $\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$ for s = m.

Euler's γ constant

Euler's approximation of harmonic numbers

For every $n \geqslant 1$ the following equality holds:

$$H_n - \ln n = 1 - \sum_{m \geqslant 2} \frac{1}{m} \left(H_n^{(m)} - 1 \right)$$

Euler's γ constant

Euler's approximation of harmonic numbers

For every $n \ge 1$ the following equality holds:

$$H_n - \ln n = 1 - \sum_{m \ge 2} \frac{1}{m} \left(H_n^{(m)} - 1 \right)$$

For $k \ge 2$ we can write:

$$\ln \frac{k}{k-1} = \ln \frac{1}{1-\frac{1}{k}} = \sum_{m \geqslant 1} \frac{1}{m \cdot k^m}$$

As $\ln(a/b) = \ln a - \ln b$ and $\ln 1 = 0$, by summing for k from 2 to n we get:

$$\ln n = \sum_{k=2}^{n} \sum_{m \geqslant 1} \frac{1}{m \cdot k^m} = \sum_{m \geqslant 1} \sum_{k=2}^{n} \frac{1}{m \cdot k^m} = H_n - 1 + \sum_{m \geqslant 2} \left(H_n^{(m)} - 1 \right)$$

Euler's γ constant

Euler's approximation of harmonic numbers

For every $n \ge 1$ the following equality holds:

$$H_n - \ln n = 1 - \sum_{m \ge 2} \frac{1}{m} \left(H_n^{(m)} - 1 \right)$$

For $m \ge 2$, $H_n^{(m)}$ converges from below to $\zeta(m)$.

It turns out that $\zeta(s)-1\sim 2^{-s}$, therefore the series $\sum_{m\geqslant 2}\frac{1}{m}(\zeta(m)-1)$ converges.

The quantity

$$\gamma = 1 - \sum_{m \ge 2} \frac{1}{m} \left(\zeta(m) - 1 \right)$$

is called *Euler's constant*. The following approximation holds:

$$H_n = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^3}\right)$$

Next section

1 Fibonacci Numbers

- 2 Harmonic numbers
- 3 Mini-guide to other number series
 - Eulerian numbers
 - Bernoulli numbers

Next subsection

1 Fibonacci Numbers

- 2 Harmonic numbers
- 3 Mini-guide to other number series
 - Eulerian numbers
 - Bernoulli numbers

Don't mix up with Euler numbers!

$$E = \langle 1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, \dots \rangle \leftrightarrow \frac{1}{\sinh x} = \frac{2}{e^x + e^{-x}} = \sum_n \frac{E_n}{n!} x^n$$

Definition

Let $\pi = (\pi_1, \pi_2, \dots \pi_n)$ be a permutation of $\{1, 2, \dots, n\}$. An ascent of the permutation π is any index i ($1 \le i < n$) such that $\pi_i < \pi_{i+1}$. The Eulerian number $\binom{n}{k}$ is the number of permutations of $\{1, 2, \dots, n\}$ with exactly k ascents.

Definition

Let $\pi=(\pi_1,\pi_2,\dots\pi_n)$ be a permutation of $\{1,2,\dots,n\}$. An ascent of the permutation π is any index i $(1\leqslant i< n)$ such that $\pi_i<\pi_{i+1}$. The Eulerian number $\binom{n}{k}$ is the number of permutations of $\{1,2,\dots,n\}$ with exactly k ascents.

Examples

- The permutation $\pi=(\pi_1,\pi_2,\dots\pi_n)=(1,2,3,4)$ has three ascents since 1<2<3<4 and it is the only permutation in $S_4=\{1,2,3,4\}$ with three ascents; this is $\left\langle \frac{4}{3}\right\rangle=1$
- There are $\binom{4}{1} = 11$ permutations in S_4 with one ascent: (1,4,3,2), (2,1,4,3), (2,4,3,1), (3,1,4,2), (3,2,1,4), (3,2,4,1), (3,4,2,1), (4,1,3,2), (4,2,1,3), (4,2,3,1), and <math>(4,3,1,2).

Definition

Let $\pi=(\pi_1,\pi_2,\dots\pi_n)$ be a permutation of $\{1,2,\dots,n\}$. An ascent of the permutation π is any index i $(1\leqslant i< n)$ such that $\pi_i<\pi_{i+1}$. The Eulerian number $\binom{n}{k}$ is the number of permutations of $\{1,2,\dots,n\}$ with exactly k ascents.

n	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	$\langle n \\ 4 \rangle$	$\left\langle {n\atop 5}\right\rangle$
1	1					
2	1	1				
3	1	4	1			
4	1	11	11	1		
5	1	26	66	26	1	
6	1	57	302	302	57	1

Some identities:

•
$$\binom{n}{0} = \binom{n}{n-1} = 1$$
 for all $n \ge 1$;

Symmetry:
$$\binom{n}{k} = \binom{n}{n-1-k}$$
 for all $n \ge 1$;

Recurrency:
$$\binom{n}{k} = (k+1) \binom{n-1}{k} + (n-k) \binom{n-1}{k-1}$$
 for all $n \ge 2$;

•
$$\sum_{k=1}^{n-1} \binom{n}{k} = n!$$
 for all $n \ge 2$;

Worpitzky's identity:
$$x^n = \sum_{k=0}^{n-1} {n \choose k} {x+k \choose n}$$
 for all $n \ge 2$;

•
$$\binom{n}{k} = \sum_{i=0}^{k} (-1)^{j} \binom{n+1}{i} (k+1-j)^{n}$$
 for all $n \ge 1$;

Stirling numbers:
$${n \brace k} = \frac{1}{m!} \sum_{k=0}^{n-1} {n \brack k} {k \choose n-m}$$
 for all $n \ge m$ and $n \ge 1$;

Generating f-n:
$$\frac{1-x}{e^{(x-1)t}-x} = \sum_{n,m} \left\langle {n \atop m} \right\rangle x^m \frac{t^n}{n!}.$$

Next subsection

1 Fibonacci Numbers

- 2 Harmonic numbers
- 3 Mini-guide to other number series
 - Eulerian numbers
 - Bernoulli numbers

Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:

$$S_m(n) = 0^m + 1^m + \dots + (n-1)^m = \sum_{k=0}^{n-1} k^m = \sum_{k=0}^{n} x^m \delta x$$

Plotting an expansion with respect to n yields:

Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:

$$S_m(n) = 0^m + 1^m + \dots + (n-1)^m = \sum_{k=0}^{n-1} k^m = \sum_{k=0}^{n} x^m \delta x$$

Bernoulli observed the following regularities:

- The leading coefficient of S_m is always $\frac{1}{m+1} = \frac{1}{m+1} {m+1 \choose 0}$.
- The coefficient of n^m in S_m is always $-\frac{1}{2} = -\frac{1}{2} \cdot \frac{1}{m+1} \cdot \binom{m+1}{1}$.
- The coefficient of n^{m-1} in S_m is always $\frac{m}{12} = \frac{1}{6} \cdot \frac{1}{m+1} \cdot \binom{m+1}{2}$.
- The coefficient of n^{m-2} in S_m is always 0.
- The coefficient of n^{m-3} in S_m is always $-\frac{m(m-1)(m-2)}{720} = -\frac{1}{30} \cdot \frac{1}{m+1} \cdot \binom{m+1}{4}$.
- The coefficient of n^{m-4} in S_m is always 0.
- The coefficient of n^{m-5} in S_m is always $\frac{1}{42} \cdot \frac{1}{m+1} \cdot \binom{m+1}{6}$.
- And so on, and so on . . .

Bernoulli numbers

Definition

The kth Bernoulli number is the unique value B_k such that, for every $m \ge 0$,

$$S_m(n) = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose k} B_k n^{m+1-k}$$

Bernoulli numbers are also defined by the recurrence:

$$\sum_{k=0}^{m} {m+1 \choose k} B_k = [m=0]$$

Observe that the above is simply $S_m(1)$.

Bernoulli numbers and the Riemann zeta function

Theorem

For every $n \geqslant 1$,

$$\zeta(2n) = (-1)^{n-1} \frac{2^{2n-1} \pi^{2n} B_{2n}}{(2n)!}$$

In particular,

$$\zeta(2) = \sum_{n \geqslant 1} \frac{1}{n^2} = \frac{\pi^2}{6}$$

