Join minimization examples

Let R be a relation over attributes ABC.

(i) Simplify the following conjunctive SQL query, knowing that it is applied only to relations R satisfying the set of FDs $F = \{AC \to B, B \to C, C \to A\}$ (use pattern minimization and the chase):

select
$$t_1.A, t_2.B, t_4.C$$

from R t_1, R t_2, R t_3, R t_4
where $t_3.A = t_4.A$ and $t_2.B = t_3.B$ and $t_1.C = t_2.C$ and $t_3.B = t_4.C$

(ii) Redo (i) for the query:

select
$$t_1.A, t_2.B, t_4.C$$

from R t_1, R t_2, R t_3, R t_4
where $t_2.C = 5$ and $t_3.A = t_4.A$ and $t_2.B = t_3.B$ and $t_1.C = t_2.C$ and $t_4.A = 8$

Solution

(i) The pattern P corresponding to the query is

We now chase the pattern with $F = \{AC \to B, B \to C, C \to A\}$. The steps are as follows:

- 1. we first consider $AC \to B$. However, there is no violation of this FD at this point.
- 2. we consider $B \to C$, which is violated by rows (2) and (3). Chasing leads us to identify the in (3) with c_1 , yielding:

3. we consider $C \to A$, which is violated by rows (1),(2),(3). Chasing leads us to identify a, the - in (2), and a_1 , which all become equal to a. Note that this includes the a_1 in row (4), which is the same a_1 as in row (3). This yields:

4. we are not yet done, because now $AC \to B$ is violated by rows (1) and (2). Chasing turns the - in (1) into b, yielding:

The above pattern satisfies F, so the chase is done.

Eliminating duplicate rows from $CHASE_F(P)$ yields the following pattern, which is minimal:

and the minimal SQL query is:

select
$$t_1.A$$
, $t_1.B$, $t_2.C$
from R t_1 , R t_2
where $t_1.A = t_2.A$ and $t_1.B = t_2.C$

(ii) The pattern P corresponding to the query is

Chasing with respect to $F = \{AC \to B, B \to C, C \to A\}$ yields (after eliminating duplicate rows):

$$CHASE_F(P) = \begin{array}{c|cccc} R & A & B & C \\ \hline & 8 & b & 5 \\ 8 & - & c \end{array} \quad \begin{array}{c|ccccc} \text{answer} & A & B & C \\ \hline & 8 & b & 5 \\ \hline & 8 & b & c \end{array}$$

This pattern is minimal, and a corresponding SQL query with minimum number of joins is

select
$$t_1.A, t_1.B, t_2.C$$

from R t_1 , R t_2
where $t_1.A = 8$ and $t_2.A = 8$ and $t_1.C = 5$