Integrais definidas e o Teorema Fundamental do Cálculo

17.1 A integral definida

Seja y = f(x) uma função contínua em um intervalo fechado [a, b].

Subdividamos o intervalo [a,b] através de n+1 pontos $x_0,x_1,x_2,\ldots,x_{n-1},x_n$, tais que

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

O conjunto de pontos $\wp = \{x_0 = \alpha, x_1, x_2, \dots, x_{n-1}, x_n = b\}$ constitui uma *subdivisão* ou *partição* do intervalo $[\alpha, b]$.

Tomemos ainda n pontos $c_1, c_2, c_3, \ldots, c_{n-1}, c_n$ em [a, b], tais que

$$c_1 \in [x_0, x_1] = [a, x_1], c_2 \in [x_1, x_2], \ldots, c_i \in [x_{i-1}, x_i], \ldots, c_n \in [x_{n-1}, x_n].$$

Sejam

$$\Delta x_1 = x_1 - x_0$$
, $\Delta x_2 = x_2 - x_1$, ..., $\Delta x_i = x_i - x_{i-1}$, ..., $\Delta x_n = x_n - x_{n-1}$

E formemos a soma

$$S = f(c_1)\Delta x_1 + f(c_2)\Delta x_2 + \dots + f(c_n)\Delta x_n = \sum_{i=1}^n f(c_i)\Delta x_i$$

Esta é uma soma integral de f, no intervalo [a,b], correspondente à partição \wp , e à escolha de pontos intermediários c_1,\ldots,c_n .

Note que, quando f(x) > 0 em [a,b], a soma integral de f, $S = \sum_{i=1}^n f(c_i) \Delta x_i$, é a soma das áreas de n retângulos, sendo o i-ésimo retângulo, para $1 \le i \le n$, de base Δx_i e altura $f(c_i)$. Isto é ilustrado na figura 17.1.

Figura 17.1. Se f(x) > 0 em [a,b] a soma integral $\sum_{i=1}^{n} f(c_i) \Delta x_i$ é a soma das áreas dos retângulos destacados.

Seja Δ o maior dos números $\Delta x_1, \Delta x_2, \ldots, \Delta x_n$. Escrevemos

$$\Delta = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_n\} = \max \Delta x_i$$

Tal Δ é também chamado de norma da partição \wp .

É possível demonstrar que, quando consideramos uma sucessão de subdivisões $a=x_0 < x_1 < \cdots < x_n=b$, do intervalo [a,b], fazendo com que $\Delta=\max\Delta x_i$ torne-se mais e mais próximo de zero (e o número n, de sub-intervalos, torne-se cada vez maior), as somas integrais S, correspondentes a essas subdivisões (independentemente dos pontos intermediários c_1,\ldots,c_n considerados em cada partição), vão tornando-se cada vez mais próximas de um número real γ , chamado integral definida de f, no intervalo [a,b] e denotado por $\int_a^b f$, ou por $\int_a^b f(x)\,dx$.

Em outras palavras, quando formamos uma sequência de partições \wp_1 , \wp_2 , ..., \wp_k , ..., do intervalo $[\alpha, b]$, de normas respetivamente iguais a Δ_1 , Δ_2 , ..., Δ_k , ...,

associando a cada partição um conjunto de pontos intermediários (os c_i 's), e formando então uma sequência de somas integrais $S_1, S_2, \ldots, S_k, \ldots$, sendo $\lim_{k \to +\infty} \Delta_k = 0$, teremos $\lim_{k \to +\infty} S_k = \gamma = \int_a^b f$, para algum número real γ .

Escrevendo de modo mais simplificado, a integral definida de f, de α até b (ou no intervalo $[\alpha, b]$) é o número real

$$\gamma = \int_a^b f(x) dx = \lim_{\Delta \to 0} S = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(c_i) \Delta x_i$$

Observação 17.1. Se f(x) > 0 no intervalo [a,b], quando $\max \Delta x_i \to 0$, o número n, de sub-intervalos tende a ∞ .

Os retângulos ilustrados na figura 17.1 tornam-se cada vez mais estreitos e numerosos à medida que $\max \Delta x_i$ torna-se mais e mais próximo de 0.

Neste caso, $\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(c_i) \Delta x_i$ definirá a área compreendida entre a curva y = f(x), o eixo x, e as retas verticais x = a, x = b.

Sumarizando,

Se $f(x) \ge 0$ em [a,b], temos

$$\int_{a}^{b} f(x) dx = \text{área sob o gráfico de f, para } a \le x \le b$$

Observação 17.2. Por outro lado, se f(x) < 0 para todo $x \in [a, b]$, teremos $\int_a^b f(x) dx = -A$, sendo A a área (positiva) da região plana compreendida entre o eixo x, o gráfico de f, e as retas x = a e x = b.

Note que, neste caso, feita uma subdivisão $\alpha = x_0 < x_1 < x_2 < \dots < x_n = b$, e escolhidos os pontos c_1, c_2, \dots, c_n , com $c_i \in [x_{i-1}, x_i]$, para $i = 1, 2, \dots, n$, teremos

$$\sum_{i=1}^n f(c_i) \Delta x_i < 0$$

pois $f(c_i) < 0$ para cada i, e $\Delta x_i > 0$ para cada i.

Observação 17.3. Se o gráfico de f, no intervalo [a,b], é como o gráfico esboçado na figura 17.2, então, sendo A_1 , A_2 , A_3 e A_4 as áreas (positivas) indicadas na figura, teremos

$$\int_{a}^{b} f(x) dx = A_1 - A_2 + A_3 - A_4$$

Observação 17.4. Se, para uma função g, definida em [a,b], não necessariamente contínua, existir o limite $\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n g(c_i) \Delta x_i$ (x_i 's e c_i 's tal como antes), dizemos que g é integrável em [a,b], e definimos, tal como antes,

$$\int_a^b g(x) dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n g(c_i) \Delta x_i$$

Exemplo 17.1. Sendo $f(x) = x^2$, calcular $\int_0^1 f(x) dx$, ou seja, determinar a área compreendida entre a parábola $y = x^2$ e o eixo x, no intervalo $0 \le x \le 1$.

Para calcular a integral pedida, vamos primeiramente subdividir o intervalo [0,1] em n sub-intervalos de comprimentos iguais a $\Delta x = 1/n$, ou seja, tomaremos

$$x_0 = 0$$
, $x_1 = 1/n$, $x_2 = 2/n$, ..., $x_{n-1} = (n-1)/n$ e $x_n = n/n = 1$.

Neste caso, $\Delta x_1 = \Delta x_2 = \cdots = \Delta x_n = 1/n$.

Tomaremos ainda $c_i = x_i = i/n$, para i = 1, 2, ..., n.

Teremos a soma integral

$$\begin{split} S &= \sum_{i=1}^n f(c_i) \Delta x_i = \sum_{i=1}^n f(i/n) \cdot \frac{1}{n} \\ &= \sum_{i=1}^n \left(\frac{i}{n}\right)^2 \cdot \frac{1}{n} = \sum_{i=1}^n \frac{i^2}{n^3} \\ &= \frac{1}{n^3} \sum_{i=1}^n i^2 = \frac{1^2 + 2^2 + \dots + n^2}{n^3} \end{split}$$

Pode ser demonstrado que $1^2+2^2+\cdots+n^2=\frac{1}{6}n(n+1)(2n+1)$, fato que usaremos aqui.

Assim, como $\Delta x \to 0$ se e somente se $n \to \infty$, temos

$$\int_0^1 f(x) dx = \int_0^1 x^2 dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(c_i) \Delta x_i$$

$$= \lim_{n \to \infty} \frac{1^2 + 2^2 + \dots n^2}{n^3}$$

$$= \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3} = \frac{2}{6} = \frac{1}{3}$$

A área procurada é igual a 1/3 (de unidade de área).

No espírito das ideias apresentadas no exemplo 17.1, para uma função f contínua no intervalo $[\alpha,b]$ podemos definir a integral $\int_a^b f$ considerando uma sequência de partições $\wp_n = \{x_0,x_1,\ldots,x_n\},\ n\geq 1$, com os pontos $x_0=\alpha,x_1,x_2,\ldots,x_n=b$ igualmente espaçados, ou seja, com $\Delta x_1=\Delta x_2=\cdots=\Delta x_n=(b-\alpha)/n$, tomando ainda como pontos "intermediários", $c_i=x_i$ para $i=1,2,\ldots,n$. Neste caso teremos $x_i=c_i=\alpha+i\cdot\frac{b-\alpha}{n}$, para $i=1,2,\ldots,n$.

Para cada partição \wp_n , teremos uma soma integral

$$S_n = \sum_{i=1}^n f(c_i) \Delta x_i = \sum_{i=1}^n f\left(\alpha + i \cdot \frac{b-a}{n}\right) \cdot \frac{b-a}{n}$$

e então

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(a + i \cdot \frac{b - a}{n}\right) \cdot \frac{b - a}{n}$$

Proposição 17.1. Se f é contínua no intervalo [a,b], sendo $m \in M$ os valores máximo e mínimo de f, respectivamente, no intervalo [a,b], então

$$m \cdot (b - a) \le \int_a^b f(x) dx \le M \cdot (b - a)$$

Abaixo, faremos uma demonstração da proposição 17.1. Antes porém, daremos uma interpretação geométrica dessa proposição, no caso em que f > 0 em [a,b]. Da figura 17.3, em que m e M são, respectivamente, os valores mínimo e máximo de f(x) para $x \in [a,b]$, temos

área $ABB'A' \le ($ área sob o gráfico de f, no intervalo $[a,b]) \le$ área ABB''A''.

Daí,

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

Demonstração. Demonstração da proposição 17.1. Tomando-se uma subdivisão qualquer de [a, b],

$$a = x_0 < x_1 < \cdots < x_n = b$$

Figura 17.3. Interpretação geométrica de que $m(b-\alpha) \leq \int_{\alpha}^{b} f \leq M(b-\alpha)$.

e tomando-se pontos $c_i \in [x_{i-1}, x_i]$, para $i = 1, 2, \dots, n$, temos

$$\sum_{i=1}^n f(c_i) \Delta x_i \le \sum_{i=1}^n M \Delta x_i$$

pois $f(c_i) \le M$, e $\Delta x_i > 0$, para cada i. Daí,

$$\sum_{i=1}^{n} f(c_i) \Delta x_i \leq \sum_{i=1}^{n} M \Delta x_i = M \sum_{i=1}^{n} \Delta x_i = M(b-\alpha)$$

pois

$$\sum_{i=1}^n \Delta x_i = \Delta x_1 + \Delta x_2 + \dots + \Delta x_n = b-a$$

Logo,

$$\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(c_i) \Delta x_i \leq M \big(b-\alpha\big)$$

e portanto

$$\int_a^b f(x) dx \le M(b-a)$$

Analogamente, deduzimos que $\int_a^b f(x) dx \ge m(b-a)$.

Assumiremos sem demonstração as seguintes propriedades.

Proposição 17.2. Se f e g são contínuas em $[\alpha, b]$, então, sendo k uma constante e $\alpha < c < b$,

1.
$$\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

- 2. $\int_a^b k \cdot f(x) dx = k \cdot \int_a^b f(x) dx$
- 3. $\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$
- 4. se $f(x) \le g(x)$, para todo $x \in [a,b]$, então $\int_a^b f(x) dx \le \int_a^b g(x) dx$

Observação 17.5. Sendo f contínua em [a,b], são adotadas as seguintes convenções (definições).

(i)
$$\int_a^a f(x) dx = 0$$

(ii)
$$\int_b^a f(x) dx = -\int_a^b f(x) dx$$

Adotadas essas convenções, a proposição 17.2, acima enunciada, continua verdadeira qualquer que seja a ordem dos limites de integração α , b e c, podendo ainda dois deles (ou os três) coincidirem.

Teorema 17.1 (Teorema do valor médio para integrais). Se f é contínua no intervalo [a,b], existe $c \in [a,b]$ tal que

$$\int_{a}^{b} f(x) dx = f(c) \cdot (b - a)$$

Adiante faremos a demonstração deste teorema. Uma interpretação geométrica do teorema do valor médio para integrais, no caso em que f(x) > 0 em [a,b], é feita na figura 17.4.

Para demonstrarmos o teorema do valor médio para integrais, usaremos o Teorema do valor intermediário.

Teorema 17.2 (Teorema do valor intermediário). Seja f uma função contínua no intervalo [a,b]. Para cada y_0 , tal que $f(a) \le y_0 \le f(b)$, existe $x_0 \in [a,b]$ tal que $f(x_0) = y_0$.

Ilustramos geometricamente o teorema do valor intermediário na figura 17.5.

Como consequência do teorema do valor intermediário, temos o *teorema do anulamento*, já explorado na aula 7, à página 76:

Figura 17.4. Interpretação geométrica do Teorema do valor médio para integrais: $\int_a^b f(x) dx = (\text{área sob o gráfico de f para } a \le x \le b) = (\text{área } ABB'A') = f(c) \cdot (b-a)$.

Figura 17.5. Interpretação geométrica do Teorema do valor intermediário. Se f é contínua em [a,b], para cada y_0 , tal que $f(a) \le y_0 \le f(b)$, existe $x_0 \in [a,b]$ tal que $f(x_0) = y_0$.

(Teorema do anulamento) Sendo a < b, e f contínua em [a,b], se f(a) < 0 e f(b) > 0 (ou se f(a) > 0 e f(b) < 0), então a função f possui uma raiz no intervalo [a,b].

Demonstração. Como f(a) < 0 < f(b) (ou f(b) < 0 < f(a)), pelo teorema do valor intermediário, existe $x_0 \in [a,b]$ tal que $f(x_0) = 0$.

Demonstração. Demonstração do teorema 17.1 Sendo f contínua no intervalo [a,b], pelo teorema de Weierstrass, página 81, aula 8, existem $m,M\in\mathbb{R}$ tais que m=1

 $\min\{f(x) \mid x \in [a,b]\}\ e\ M = \max\{f(x) \mid x \in [a,b]\}\$. Além disso, existem pontos $x_1, x_2 \in [a,b]$ tais que $f(x_1) = m$ e $f(x_2) = M$.

Pela proposição 17.1,

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

Daí,

$$m \le \frac{1}{b-a} \int_0^b f(x) dx \le M$$

Sendo $\alpha = \frac{1}{b-a} \int_a^b f(x) \, dx$, como $f(x_1) = m \le \alpha \le M = f(x_2)$, pelo teorema do valor intermediário, existe $c \in [\alpha, b]$ (c entre x_1 e x_2) tal que $f(c) = \alpha$. Logo,

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx$$

e portanto

$$\int_a^b f(x) dx = f(c)(b - a)$$

17.2 O teorema fundamental do cálculo

Teorema 17.3 (Teorema fundamental do cálculo, primeira versão). Seja f uma função contínua no intervalo $[\alpha, b]$. Para cada $x \in [\alpha, b]$, seja

$$\varphi(x) = \int_{a}^{x} f(t) dt$$

Então

$$\varphi'(x) = f(x), \quad \forall x \in [a, b]$$

Uma das consequências imediatas do teorema fundamental do cálculo é que

Toda função contínua f, em um intervalo [a,b], possui uma primitiva (ou antiderivada) em [a,b], sendo ela a função ϕ , definida por $\phi(x) = \int_a^x f(t) \, dt$, para cada $x \in [a,b]$.

Demonstração. Demonstração do teorema fundamental do cálculo, primeira versão

Para x em [a, b], e $\Delta x \neq 0$, com $x + \Delta x$ em [a, b], temos

$$\Delta \varphi = \varphi(x + \Delta x) - \varphi(x) = \int_{\alpha}^{x + \Delta x} f(t) dt - \int_{\alpha}^{x} f(t) dt$$
$$= \int_{\alpha}^{x + \Delta x} f(t) dt + \int_{x}^{\alpha} f(t) dt = \int_{x}^{x + \Delta x} f(t) dt$$

(Veja figuras 17.6a e 17.6b.)

Figura 17.6. (a) Interpretação geométrica de $\varphi(x)$, $x \in [a,b]$. (b) Interpretação geométrica de $\Delta \varphi$, para $\Delta x > 0$.

Pelo teorema do valor médio para integrais, existe w entre x e $x + \Delta x$ tal que

$$\int_{x}^{x+\Delta x} f(t) dt = f(w) \cdot [(x + \Delta x) - x]$$

Assim sendo,

$$\Delta \varphi = \varphi(x + \Delta x) - \varphi(x) = f(w)\Delta x$$

o que implica

$$\frac{\Delta \phi}{\Delta x} = f(w)$$
, para algum w entre $x \in x + \Delta x$

Temos $w \to x$ quando $\Delta x \to 0$. Como f é contínua,

$$\varphi'(x) = \lim_{\Delta x \to 0} \frac{\Delta \varphi}{\Delta x} = \lim_{\Delta x \to 0} f(w) = \lim_{w \to x} f(w) = f(x)$$

Assim sendo, o teorema fundamental do cálculo nos enuncia que, mesmo uma função de expressão complicada como $f(x)=\sqrt[3]{3-x}+\arctan(2+x^2)$, que é uma função contínua em $\mathbb R$, mas da qual não temos a menor ideia de como seja uma primitiva, tem uma primitiva ou antiderivada, a saber a função $F(x)=\int_0^x\sqrt[3]{3-t}+\arctan(2+t^2)\,dt$.

Como consequência do teorema fundamental do cálculo, primeira versão, temos a sua segunda versão, também chamada *fórmula de Newton-Leibniz*. Ele estabelece uma conexão mágica entre as integrais indefinidas e as integrais definidas.

Teorema 17.4 (Teorema fundamental do cálculo, segunda versão). *Sendo* f *uma função contínua no intervalo* [a,b],

se
$$\int f(x) dx = F(x) + C$$
 então $\int_a^b f(x) dx = F(b) - F(a)$

Demonstração. Pelo teorema fundamental do cálculo, primeira versão, temos que a função $\varphi(x)=\int_a^x f(t)\,dt$, $a\leq x\leq b$, é uma primitiva de f(x) no intervalo [a,b], ou seja, $\varphi'(x)=f(x)$.

Se $\int f(x) dx = F(x) + C$, temos também F'(x) = f(x). Logo, pela proposição 15.1 existe uma constante k tal que

$$\varphi(x) = F(x) + k$$
, para todo x em $[a, b]$

Agora, $\varphi(\alpha) = \int_{\alpha}^{\alpha} f(t) dt = 0$. Logo, $F(\alpha) + k = 0$, de onde então $k = -F(\alpha)$.

Assim sendo,

$$\int_{\alpha}^{x} f(t) dt = \varphi(x) = F(x) - F(\alpha)$$

Quando x = b, temos

$$\int_a^b f(x) dx = F(b) - F(a)$$

É costume denotar $[F(x)]_a^b = F(x)|_a^b = F(b) - F(a)$. Ou seja, sendo $\int f(x) dx = F(x) + C$, temos $\int_a^b f(x) dx = F(x)|_a^b = F(b) - F(a)$.

Exemplo 17.2. Calcular a área compreendida entre a curva y = sen x e o eixo x, para $0 \le x \le \pi$.

Solução. Como $\operatorname{sen} x \geq 0$ quando $0 \leq x \leq \pi$, temos que a área a ser calculada é dada pela integral $A = \int_0^\pi \operatorname{sen} x \, dx$.

Temos $\int \sin x \, dx = -\cos x + C$.

Logo, $A = \int_0^{\pi} \sin x \, dx = [-\cos x]_0^{\pi} = (-\cos \pi) - (-\cos 0) = 1 + 1 = 2$ (unidades de área).

17.2.1 Integração definida, com mudança de variável

Veremos agora que, quando fazemos mudança de variável (integração por substituição), no caso de uma integral definida, podemos finalizar os cálculos com a nova variável introduzida, sem necessidade de retornar à variável original.

Para tal, ao realizarmos a mudança de variável, trocamos adequadamente os limites de integração.

Suponhamos que y=f(x) define uma função contínua em um intervalo I, com $a,b\in I$, e que $x=\phi(t)$ é uma função de t derivável em um certo intervalo $J\subset \mathbb{R}$, satisfazendo

- 1. $f(\phi(t)) \in I$ quando $t \in J$.
- 2. $\varphi(\alpha) = \alpha$, $\varphi(\beta) = b$, para certos $\alpha, \beta \in J$;
- 3. $\varphi'(t)$ é contínua em J;

Sendo F(x) uma primitiva de f(x) em I, temos $\int f(x) dx = F(x) + C$, e como vimos, tomando $x = \varphi(t)$, teremos $dx = \varphi'(t) dt$, e

$$\int f(\varphi(t))\varphi'(t) dt = F(\varphi(t)) + C.$$

Então, Pelo teorema fundamental do cálculo,

$$\int_{a}^{b} f(x) dx = F(x)|_{\alpha}^{b} = F(b) - F(\alpha) = F(\phi(\beta)) - F(\phi(\alpha))$$
$$= F(\phi(t))|_{\alpha}^{\beta} = \int_{\alpha}^{\beta} f(\phi(t)) \cdot \phi'(t) dt$$

Exemplo 17.3. Calcular $\int_{-1}^{1} x \sqrt{1 + x^2} \, dx$.

Pela substituição $u = 1 + x^2$, calculamos $\int x\sqrt{1 + x^2} dx = \frac{1}{3}\sqrt{(1 + x^2)^3} + C$.

Pelo teorema fundamental do cálculo,

$$\int_{-1}^{1} x \sqrt{1 + x^2} \, dx = \left. \frac{1}{3} \sqrt{(1 + x^2)^3} \right|_{-1}^{1} = \frac{\sqrt{8}}{3} - \frac{\sqrt{8}}{3} = 0.$$

Por outro lado, poderíamos ter trocado os limites de integração, ao realizar a mudança de variável. O resultado seria:

para
$$x = -1$$
, $u = 2$; e para $x = 1$, $u = 2$ (!). Então
$$\int_{-1}^{1} x \sqrt{1 + x^2} \, dx = \int_{2}^{2} \sqrt{u} \cdot \frac{1}{2} du = 0.$$

Exemplo 17.4. Calcular a área delimitada pela circunferência de equação $x^2 + y^2 = a^2$.

Para calcular a área A desse círculo, basta calcular a área sob o semi-círculo $y = \sqrt{\alpha^2 - x^2}$, acima do eixo x, entre os pontos $x = -\alpha$ e $x = \alpha$, ou seja, calcular

$$A/2 = \int_{-a}^{a} \sqrt{a^2 - x^2} \, dx$$

Faremos a substituição $x = a \operatorname{sen} t$, $-\pi/2 \le t \le \pi/2$.

Para $t = -\pi/2$, $x = -\alpha$; para $t = \pi/2$, $x = \alpha$.

Teremos então $dx = a \cos t \, dt$, $a^2 - x^2 = a^2 \cos^2 t$ e, como $\cos t \ge 0$ no intervalo $[-\pi/2, \pi/2]$, $\sqrt{a^2 - x^2} = a \cos t$.

Logo,
$$\int_{-a}^{a} \sqrt{a^2 - x^2} dx = \int_{-\pi/2}^{\pi/2} a^2 \cos^2 t dt$$
.

Temos $\cos^2 t + \sin^2 t = 1$ e $\cos^2 t - \sin^2 t = \cos 2t$, logo $\cos^2 t = \frac{1}{2}(1+\cos 2t)$.

Assim,

$$A/2 = \int_{-\alpha}^{\alpha} \sqrt{\alpha^2 - x^2} \, dx = \int_{-\pi/2}^{\pi/2} \alpha^2 \cos^2 t \, dt$$

$$= \frac{\alpha^2}{2} \int_{-\pi/2}^{\pi/2} (1 + \cos 2t) \, dt$$

$$= \frac{\alpha^2}{2} \left[t + \frac{1}{2} \sin 2t \right]_{-\pi/2}^{\pi/2}$$

$$= \frac{\alpha^2}{2} \left[\frac{\pi}{2} + \frac{1}{2} \sin \pi \right] - \frac{\alpha^2}{2} \left[-\frac{\pi}{2} + \frac{1}{2} \sin(-\pi) \right] = \frac{\pi \alpha^2}{2}$$

E portanto a área do círculo é $A = \pi a^2$.

17.2.2 Integração definida, por partes

Suponhamos que u = u(x) e v = v(x) são funções deriváveis no intervalo [a,b], com as derivadas u'(x) e v'(x) contínuas em [a,b].

Temos $(u \cdot v)' = u' \cdot v + u \cdot v' = uv' + vu'$, e então

$$\int_{a}^{b} [u(x)v(x)]' dx = \int_{a}^{b} u(x)v'(x) dx + \int_{a}^{b} v(x)u'(x) dx.$$

Pelo teorema fundamental do cálculo, $\int_a^b [u(x)v(x)]' dx = u(x)v(x)|_a^b$. Portanto $\int_a^b u(x)v'(x) dx = u(x)v(x)|_a^b - \int_a^b v(x)u'(x) dx$.

Em notação abreviada.

$$\int_a^b u \, dv = uv \Big|_a^b - \int_a^b v \, du$$

Exemplo 17.5. Calcular $\int_{\pi}^{3\pi} x \cdot \sin x \, dx$.

Para integrar por partes fazemos u = x, $dv = \sin x \, dx$, e então du = dx, $v = -\cos x$.

Então

$$\int_{\pi}^{3\pi} u \, dv = uv \Big|_{\pi}^{3\pi} - \int_{\pi}^{3\pi} v \, du = (-x \cos x) \Big|_{\pi}^{3\pi} - \int_{\pi}^{3\pi} (-\cos x) \, dx$$
$$= -3\pi \cos 3\pi + \pi \cos \pi + (\sin x) \Big|_{\pi}^{3\pi}$$
$$= 3\pi - \pi + 0 = 2\pi$$

17.3 Problemas

17.3.1 Usando o teorema fundamental do cálculo, segunda versão

Usando o teorema 17.4 calcule as integrais definidas indicadas nos problemas 1 a 11.

1.
$$\int_{-1}^{1} \frac{dx}{1+x^2}$$
. Resposta. $\pi/2$.

2.
$$\int_0^{\sqrt{2}/2} \frac{dx}{\sqrt{1-x^2}}$$
. Resposta. $\pi/4$.

3.
$$\int_0^{\pi/3} \operatorname{tg} x \, dx$$
. Resposta. $\ln 2$.

4.
$$\int_{1}^{x} \frac{dt}{t}$$
. Resposta. $\ln x$.

5.
$$\int_0^x \operatorname{sent} dt$$
. Resposta. $1 - \cos x$.

6.
$$\int_0^{\pi/2} \sin x \cos^2 x \, dx$$
. Resposta. 1/3.

7.
$$\int_0^{\pi/2} \frac{dx}{3 + 2\cos x}$$
. Resposta. $\frac{2}{\sqrt{5}} \operatorname{arctg} \frac{1}{\sqrt{5}}$.

Sugestão. Use a identidade $\cos x = \frac{1 - tg^2 \frac{x}{2}}{1 + tg^2 \frac{x}{2}}$, faça $u = tg \frac{x}{2}$, e $\frac{x}{2} = arctg u$.

8.
$$\int_{1}^{4} \frac{x \, dx}{\sqrt{2+4x}}$$
. Resposta. $3\sqrt{2}/2$.

9.
$$\int_{-1}^{1} \frac{dx}{(1+x^2)^2}$$
. Resposta. $\frac{\pi}{4} + \frac{1}{2}$. Sugestão. Faça $x = tg u$.

10.
$$\int_{1}^{5} \frac{\sqrt{x-1}}{x} dx$$
. Resposta. 4 – 2 arctg 2.

11.
$$\int_0^{\pi/2} \frac{\cos x \, dx}{6 - 5 \sin x + \sin^2 x}$$
. Resposta. $\ln \frac{4}{3}$.

12. Calcule a integral $\int_0^t \sqrt{\alpha^2 - x^2} \, dx$, para $0 \le t \le \alpha$, sem usar antiderivadas, interpretando-a como área sob a curva (semicírculo) $y = \sqrt{\alpha^2 - x^2}$, e acima do eixo x, no intervalo [0,t], esboçada na figura ao lado.

Resposta. $\frac{t}{2}\sqrt{\alpha^2-t^2}+\frac{\alpha^2}{2} \arcsin \frac{t}{\alpha}$. Subdivida a área a ser calculada em duas regiões, como sugere a figura.

17.3.2 Aplicando o teorema fundamental do cálculo, primeira versão

Encontre as derivadas das seguintes funções, dadas por integrais definidas, usando o teorema 17.3.

13.
$$f(x) = \int_0^x e^{-t^2} dt$$
. Resposta. e^{-x^2} .

14.
$$g(x) = \int_{\pi/2}^{x} \frac{\sin t}{t} dt$$
 $(x > 0)$. Resposta. $\frac{\sin x}{x}$.

15.
$$f(x) = \int_x^3 \cos(\ln t) dt$$
 $(x > 0)$. Resposta. $-\cos(\ln x)$. Sugestão. $\int_x^3 = -\int_3^x dt$

16.
$$g(x) = \int_0^{x^2} \sqrt{1 + t^3} dt$$
. Resposta. $2x\sqrt{1 + x^6}$.

Sugestão. Considere $F(u) = \int_0^u \sqrt{1+t^3} \, dt$. Pelo teorema fundamental do cálculo, primeira versão, $F'(u) = \sqrt{1+u^3}$. Temos $g(x) = F(x^2)$. Por derivação em cadeia, $g'(x) = F'(u) \cdot u'$, com $u = x^2$.

17.
$$f(x) = \int_{2x}^{x^2} \sqrt{3 + \ln t} \, dt$$
 $(x \ge 1)$. Resposta. $2x\sqrt{3 + 2\ln x} - 2\sqrt{3 + \ln 2x}$. Sugestão. $\int_{2x}^{x^2} = \int_{2x}^{\alpha} + \int_{\alpha}^{x^2} = \int_{\alpha}^{x^2} - \int_{\alpha}^{2x}$, sendo $\alpha \ge 1$ um número real qualquer.

18.
$$g(x) = \int_{x^2}^{x^3} \frac{1}{\ln t} dt$$
 (x > 0). Resposta. $\frac{x^2 - x}{\ln x}$.

Sugestão. Tome um número real α , $\alpha > 0$, e use a estratégia sugerida no problema anterior.