CHAPOTRE 12

STRUCTURES ALGÉBRIQUES

1. Groupes

Définition 1.1

Soit G un ensemble muni d'une loi **interne** notée *. On dit que (G,*) est un groupe si

- (1) * est associative;
- (2) * possède un élément neutre e dans G;
- (3) Tout élément de G possède un symétrique dans G.

Définition 1.2

Soit (G, *) un groupe. On dit que (G, *) est un groupe *commutatif* ou que c'est un groupe *abélien* si * est commutative.

Remarque 1.3

En général, les groupes sont notés multiplicativement : on note xy à la place de x * y, le neutre est noté 1_G , le symétrique de x est appelé inverse et noté x^{-1} .

En revanche, si G est abélien, on utilise plutôt une notation additive: la loi est notée +, le neutre 0_G , le symétrique de x est appelé opposé de x et noté -x.

Définition 1.4

Soit (G,*) un groupe d'élément neutre e et $H \subset G$. On dit que H est un sous-groupe de G si

- (1) $e \in H$;
- (2) $\forall x, y \in H, x * y \in H$;
- (3) $\forall x \in H, x^{-1} \in H$.

Proposition 1.5

Soit H un sous-groupe de (G, *). Alors (H, *) est un groupe.

Proposition 1.6

Soit (G,*) un groupe et $H \subset G$. Alors H est un sous-groupe de (G,*) si et seulement si H est non vide et $\forall x,y \in H, \ x*y^{-1} \in H$.

Définition 1.7

Soient (G, *) et (H, Δ) deux groupes, et $f: G \to H$ une application. On dit que f est un homomorphisme (ou plus simplement un morphisme) de groupes si

$$\forall x, y \in G, \ f(x * y) = f(x)\Delta f(y)$$

.

Proposition 1.8

Soient (G,*) et (H,Δ) deux groupes et $f:G\to H$ un morphisme de groupes. On note e le neutre de G et ε celui de H. Alors :

- (1) $f(e) = \varepsilon$;
- (2) $\forall x \in G, \ f(x^*) = f(x)^*.$

Remarque 1.9

Dans la proposition ci-dessus, $f(x)^*$ est le symétrique de f(x) pour la loi Δ , alors que x^* est le symétrique de x pour la loi *.

Proposition 1.10

La composée de deux morphismes de groupes est encore un morphisme de groupes.

Définition 1.11

Soit $f: G \to H$ un morphisme de groupes. On dit que f est un

- endomorphisme de groupes si H = G;
- *isomorphisme* de groupes si f est bijectif;
- automorphisme de groupes si f est à la fois un endomorphisme et un isomorphisme.

Notation 1.12

Soit G un groupe. On note Aut(G) l'ensemble des automorphismes de G.

Proposition 1.13

 $(\operatorname{Aut}(G), \circ)$ est un groupe.

Proposition 1.14

Soit $f:G\to H$ un morphisme de groupes, G' un sous-groupe de G et H' un sous-groupe de H. Alors

- (1) f(G') est un sous-groupe de H;
- (2) $f^{-1}(H')$ est un sous-groupe de G.

Définition 1.15

Soit $f:G\to H$ un morphisme de groupes. On note ε l'élément neutre de H. Le noyau de f est

$$\ker(f) = \{ x \in G \mid f(x) = \varepsilon \}$$

C'est un sous-groupe de G.

Théorème 1.16

Soit $f: G \to H$ un morphisme de groupes. On note e l'élément neutre de G. Alors f est injective si et seulement si $\ker(f) = \{e\}$.

2. Anneaux

Définition 2.1

Soit A un ensemble muni de deux lois de composition **internes** notées + et *. On dit que (A, +, *) est un anneau si

- (1) (A, +) est un groupe commutatif;
- (2) la loi * vérifie les propriétés suivantes :
 - (a) * est associative;
 - (b) * a un élément neutre 1_A dans A;
- (3) (a) $\forall (a, b, c) \in A^3$, a * (b + c) = (a * b) + (a * c);
 - (b) $\forall (a, b, c) \in A^3$, (a + b) * c = (a * c) + (b * c).

On dit que A est commutatif si * est commutative.

Remarque 2.2

Soit (A, +, *) un anneau. On utilise une notation additive pour +, donc le neutre de + est noté 0_A et le symétrique pour + d'un élément x est noté -x.

Proposition 2.3

Soit (A, +, *) un anneau. Alors 0_A est absorbant:

$$\forall x \in A, \ x * 0_A = 0_A * x = 0_A.$$

Définition 2.4

Soit (A, +, *) un anneau et $x \in A$. On dit que x est un diviseur de zéro s'il existe $y \in A \setminus \{0_A\}$ tel que $x * y = 0_A$.

Proposition 2.5

Un diviseur de zéro ne peut pas être inversible.

Définition 2.6

Un anneau est dit intègre si

- (1) $0_A \neq 1_A$;
- (2) $\forall (x,y) \in A^2$, $(x * y = 0_A \implies x = 0_A \text{ ou } y = 0_A)$.

Définition 2.7

Soit (A, +, *) un anneau et $B \subset A$. On dit que B est un sous-anneau de A si

- (1) B est un sous-groupe de (A, +);
- (2) $1_A \in B$;

(3) $\forall x, y \in B, \ x * y \in B.$

Proposition 2.8

Soit (A, +, *) un anneau et B un sous-anneau de A. Alors (B, +, *) est un anneau.

Proposition 2.9

Soient (A, +, *) et (B, +, *) deux anneaux, et $f: A \to B$ une application. On dit que f est un homomorphisme (ou plus simplement un morphisme) d'anneaux si

- (1) $\forall x, y \in A, f(x+y) = f(x) + f(y);$
- (2) $\forall x, y \in A, \ f(x * y) = f(x) * f(y);$
- (3) $f(1_A) = 1_B$.

Remarque 2.10

Dans la définition précédente, on a noté de la même façon les lois de A et de B mais il n'y a aucune raison que ce soient les mêmes!

Proposition 2.11

L'image directe ou réciproque d'un sous-anneau par un morphisme d'anneaux est pas un sous-anneau.

Définition 2.12

Soit $f:A\to B$ un morphisme d'anneaux. Le noyau de f est

$$\ker(f) = \{ x \in A \mid f(x) = 0_B \}.$$

Remarque 2.13

Le noyau d'un morphisme d'anneaux n'est pas un sous-anneau en général.

3. Corps

Définition 3.1

Soit K un ensemble muni de deux lois de composition **internes**. On dit que (K, +, *) est un corps si

- (1) $(\mathbb{K}, +, *)$ est un anneau commutatif;
- (2) $0_{\mathbb{K}} \neq 1_{\mathbb{K}}$;
- (3) tout élément non nul de K possède un inverse dans K.

Remarque 3.2

Soit $(\mathbb{K}, +, *)$ un corps. Alors $(\mathbb{K}, +)$ et $(\mathbb{K} \setminus \{0_A\}, *)$ sont des groupes abéliens.

Remarque 3.3

On peut trouver dans certains ouvrages une définition différente de la notion de corps : ils peuvent ne pas être commutatifs.

Définition 3.4

Soit $(\mathbb{K}, +, *)$ un corps et $\mathbb{L} \subset \mathbb{K}$. On dit que \mathbb{L} est un sous-corps de \mathbb{K} si

- (1) $\forall x, y \in \mathbb{L}, \ x y \in \mathbb{L};$
- (2) $\forall x, y \in \mathbb{L} \setminus \{0_{\mathbb{K}}\}, \ x * y^{-1} \in \mathbb{L}.$

Proposition 3.5

Soit \mathbb{L} un sous-corps de $(\mathbb{K}, +, *)$. Alors $(\mathbb{L}, +, *)$ est un corps.

Définition 3.6

Soient $(\mathbb{K}, +, *)$ et $(\mathbb{L}, +, *)$ deux corps, et $F : \mathbb{K} \to \mathbb{L}$ une application. On dit que f est un homomorphisme (ou plus simplement un morphisme) de corps si

- (1) $\forall x, y \in \mathbb{K}, \ f(x+y) = f(x) + f(y);$
- (2) $\forall x, y \in \mathbb{K}, \ f(x * y) = f(x) * f(y).$

Remarque 3.7

Un morphisme de corps est aussi un morphisme d'anneaux.

Proposition 3.8

Un morphisme de corps est toujours injectif.