

TEST REPORT

Report No.: E20190305644901-5-G1 Application No.: E20190305644901 Applicant: GL Technologies (HongKong) Limited Address: Unit 210D, 2/F, Enterprise Place Hong Kong SciencePark, ShaTin, N.T. Hong Kong, China Sample Description: Bluetooth & ZigBee Module Model: GL-EFR32S Adding Model: GL-EFR32H FCC ID: 2AFIW-SH32BZ Test Specification: FCC 47 CFR Part 15 Subpart C Test Date: 2019-03-28 to 2019-04-10 Issue Date: 2019-05-08 Test Result: PASS Prepared By: Reviewed By: Approved By: Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08 Other Aspects: Date: 2019-05-08 Date: 2019-05-08								
Address: Unit 210D, 2/F, Enterprise Place Hong Kong SciencePark, ShaTin, N.T. Hong Kong, China Sample Description: Bluetooth & ZigBee Module Model: GL-EFR32S Adding Model: GL-EFR32H FCC ID: 2AFIW-SH32BZ Test Specification: FCC 47 CFR Part 15 Subpart C Test Date: 2019-03-28 to 2019-04-10 Issue Date: 2019-05-08 Test Result: PASS Prepared By: Reviewed By: Approved By: Tony Han / Manager Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08	Report No.:	E20190305	5644901-5-G1	Application No.:	E20190305644901			
Address: Unit 210D, 2/F, Enterprise Place Hong Kong SciencePark, ShaTin, N.T. Hong Kong, China Sample Description: Bluetooth & ZigBee Module Model: GL-EFR32S Adding Model: GL-EFR32H FCC ID: 2AFIW-SH32BZ Test Specification: FCC 47 CFR Part 15 Subpart C Test Date: 2019-03-28 to 2019-04-10 Issue Date: 2019-05-08 Test Result: PASS Prepared By: Reviewed By: Approved By: Tony Han / Manager Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08								
Address: Kong, China Sample Description: Bluetooth & ZigBee Module Model: GL-EFR32S Adding Model: GL-EFR32H FCC ID: 2AFIW-SH32BZ Test Specification: FCC 47 CFR Part 15 Subpart C Test Date: 2019-03-28 to 2019-04-10 Issue Date: 2019-05-08 Test Result: PASS Prepared By: Reviewed By: Approved By: Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08	Applicant:	GL Technologies (HongKong) Limited						
Description: Bluetooth & ZigBee Module Model: GL-EFR32S Adding Model: GL-EFR32H FCC ID: 2AFIW-SH32BZ Test Specification: FCC 47 CFR Part 15 Subpart C Test Date: 2019-03-28 to 2019-04-10 Issue Date: 2019-05-08 Test Result: PASS Prepared By: Reviewed By: Approved By: Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date:2019-05-08 Date:2019-05-08 Date:2019-05-08	Address:		-	Place Hong Kong S	ciencePark, ShaTin, N.T. Hong			
Adding Model: GL-EFR32H FCC ID: 2AFIW-SH32BZ Test Specification: FCC 47 CFR Part 15 Subpart C Test Date: 2019-03-28 to 2019-04-10 Issue Date: 2019-05-08 Test Result: PASS Prepared By: Reviewed By: Approved By: Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08	_	Bluetooth &	& ZigBee Modul	e				
FCC ID: 2AFIW-SH32BZ Test Specification: FCC 47 CFR Part 15 Subpart C Test Date: 2019-03-28 to 2019-04-10 Issue Date: 2019-05-08 Test Result: PASS Prepared By: Reviewed By: Approved By: Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08	Model:	GL-EFR32	S					
Test Specification: FCC 47 CFR Part 15 Subpart C Test Date: 2019-03-28 to 2019-04-10 Issue Date: 2019-05-08 Test Result: PASS Prepared By: Reviewed By: Approved By: Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08	Adding Model:	GL-EFR32	Н					
Test Date: 2019-03-28 to 2019-04-10 Issue Date: 2019-05-08 Test Result: PASS Prepared By: Reviewed By: Approved By: Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08	FCC ID:	2AFIW-SI	H32BZ					
Issue Date: 2019-05-08 Test Result: PASS Prepared By: Approved By: Approved By: Tony Han / Manager Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08	Test Specification:	FCC 47 Cl	FR Part 15 Subpa	art C				
Test Result: PASS Prepared By: Reviewed By: Approved By: Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08	Test Date:	2019-03-28	3 to 2019-04-10					
Prepared By: Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Tony Han / Manager Date: 2019-05-08 Date: 2019-05-08 Date: 2019-05-08	Issue Date:	2019-05-08	3					
Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager Darry Wu / Test Engineer Eve Wang / Technical Manager Tony Han / Manager	Test Result:	PASS						
Darry un Eve. Wavy Torry Han Date: 2019-05-08 Date: 2019-05-08	Prepared By:				T T			
Date:2019-05-08 Date:2019-05-08 Date:2019-05-08	Darry Wu / Test Eng	ineer	Eve Wang /Tec	hnical Manager	Tony Han / Manager			
	Dary un		Eve. V	Daug	Torry Han			
Other Aspects:	Date:2019-05-08		Date:2019-05-0	Date:2019-05-08				
	Other Aspects:							

Abbreviations: ok/P = passed; fail/F = failed; n.a./N = not applicable

Tel:+86-755-61180008

The test result in this test report refers exclusively to the presented test sample. This report shall not be reproduced except in full, without the written approval of GRGT.

GRG METROLOGY & TEST (SHENZHEN) CO., LTD

Address: No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua District Shenzhen, 518110, People's Republic of China

Email: szgrgt@grgtest.com

http://www.grgtest.com

Identifying code: 457180

DIRECTIONS OF TEST

Report No.: E20190305644901-5-G1

- 1. This company carries out test task according to the national regulation of verifications which can be traced to National Primary Standards and BIPM.
- 2. The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.
- 3. If there is any objection concerning the test, the client should inform the laboratory within 15 days from the date of receiving the test report.

TABLE OF CONTENTS

	TEST RESULT SUMMARY	
2. (GENERAL DESCRIPTION OF EUT	
2.1.		
2.2.	MANUFACTURER	5
2.3.		5
2.4.	BASIC DESCRIPTION OF EQUIPMENT UNDER TEST	5
2.5.	TEST OPERATION MODE	6
2.6.	LOCAL SUPPORTIVE	6
3. I	LABORATORY AND ACCREDITATIONS	7
3.1.	LABORATORY	7
3.2.	ACCREDITATIONS	
3.3.	MEASUREMENT UNCERTAINTY	
4. I	LIST OF USED TEST EQUIPMENT AT GRGT	8
	ANTENNA REQUIREMENT	
6. (CONDUCTED EMISSION MEASUREMENT	10
6.1.		
6.2.		
6.3.		
6.4.		
6.5.		
	RADIATED SPURIOUS EMISSIONS	
7.1.		
7.2.		
7.3.	· · · · · · · · · · · · · · · · · · ·	
7.4.		
7.5.		
	6DB BANDWIDTH	
8.1.		
8.2.		
8.3.		
8.4.		
	MAXIMUM PEAK OUTPUT POWER	
9.1		
9.2		
9.3		
9.4		
	POWER SPECTRAL DENSITY	
10.1		
10.1		
	TEST FROCEDURES	
10.3		
	CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS	
11.2		
11.3		
11.4		
11.5		
	RESTRICTED BANDS OF OPERATION	
12.1		
12.2		
12.3		
12.4	4 TEST RESULTS	41

Report No.: E20190305644901-5-G1

1. TEST RESULT SUMMARY

Section B of FCC Part 15.247:2012								
Standard	Item	Limit / Severity	Result					
	Antenna Requirement	§15.203	PASS					
	Conducted Emissions	§15.207 (a)	PASS					
	Radiated Spurious Emission	§15.247(d)	PASS					
FCC Part 15,Subpart C	6 dB Bandwidth	§15.247 (a)(2)	PASS					
(15.247)	Maximum Peak Output Power	§15.247(b)(3)	PASS					
	Power Spectral Density	§15.247(e)	PASS					
	Conducted band edges and Spurious Emission	§15.247(d)	PASS					
	Restricted bands of operation	§15.205	PASS					

2. GENERAL DESCRIPTION OF EUT

2.1. APPLICANT

Name: GL Technologies (HongKong) Limited

Address: Unit 210D, 2/F, Enterprise Place Hong Kong SciencePark, ShaTin, N.T.

Hong Kong, China

2.2. MANUFACTURER

Name: GL Technologies (HongKong) Limited

Address: Unit 210D, 2/F, Enterprise Place Hong Kong SciencePark, ShaTin, N.T.

Hong Kong, China

2.3. FACTORY

Name: Shenzhen Guanglianzhitong Technology co. LTD

Address: Room 305, 306, Skyworth digital building, Songbai Road, Shiyan Street,

Baoan District, Shenzhen, China

2.4. BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

Equipment: Bluetooth & ZigBee Module

Model No.: GL-EFR32S

Adding Model: GL-EFR32H

Model The models are identical to each other except for ports and components

Discrepancy: position front and back.

Trade Name: GL.iNET

Power supply: DC 3.3V power supplied by notebook

Frequency 2402 ~ 2480 MHz

Range:

Transmit 16.06 dBm

Power:

Modulation GFSK for 1Mbps

type:

Channel space: 2MHz

Antenna PCB Antenna with -0.042dBi gain (Max)

Specification:

Temperature $0\sim75^{\circ}$ C

Range:

Hardware V1.0

Version:

Software V1.0

Version:

Note: /

2.5. TEST OPERATION MODE

Report No.: E20190305644901-5-G1

Test Item	Mode No.	Description of the modes
	1	BLE(GL-EFR32S)
Candystad Emission	2	BLE(GL-EFR32H)
Conducted Emission	3	Zigbee(GL-EFR32S)
	4	Zigbee(GL-EFR32H)
Radiated Emission	1	Continuously Transmitting

2.6. LOCAL SUPPORTIVE

Name of Equipment	Manufacturer	Model	Serial Number	Note
Notebook	ACER	MS2392	NXMPGCN0155031 1F8C6600	/
Adapter(Notebook)	/	A13-45N2A	F258341423005687	/
AC1300 Home Gat eway PCB Mainboard	GL Technologies (HongKong) Limited	GL-S1300	/	/
Cable				
AC Cable	/	/	/	Unshielded,1.50m
DC Cable	/	/	/	Shielded,1.80m
USB Cable	/	/	/	Unshielded,0.80m
AC Cable	/	/	/	Unshielded,0.50m

Test software:

Software version	Test level
BGTool	40

3. LABORATORY AND ACCREDITATIONS

3.1. LABORATORY

The tests and measurements refer to this report were performed by EMC Laboratory of GRG METROLOGY & TEST (SHENZHEN) CO., LTD

Add. : No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua

District Shenzhen, 518110, People's Republic of China

Telephone: +86-755-61180008

Fax : /

3.2. ACCREDITATIONS

A2LA	Certificate Number 2861.01	
------	----------------------------	--

3.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement		Frequency	Uncertainty
	Horizontal	30MHz~1000MHz	4.8dB
Radiated	Horizontai	1GHz∼26.5GHz	5.8dB
Emission	Vertical	30MHz~1000MHz	4.8dB
	vertical	1GHz∼26.5GHz	5.9dB
Conducted E	mission	9kHz~30MHz	3.5dB

This uncertainty represents an expanded uncertainty factor of k=2.

4. LIST OF USED TEST EQUIPMENT AT GRGT

Report No.: E20190305644901-5-G1

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Conducted Emissions									
EMI TEST Receiver	ROHDE&SCHWARZ	ESCI	100783	2020-01-10					
LISN(EUT)	ROHDE&SCHWARZ	ENV216	101543	2020-01-10					
Hygrothermograph	VICTOR	HTC-1	N/A	2019-12-25					
Test S/W	FARAD	EZ	Z-EMC/ CCS-3A	1-CE					
Radiated Spurious En	nission& Restricted ban	ds of operatio	n						
ESPI Test Receiver	ROHDE&SCHWARZ	ESPI	101026	2020-01-09					
EXA signal analyzer	Agilent	N9010A	MY52221469	2020-01-10					
Bilog Antenna	Schwarzbeck	VULB 9160	9160-3401	2019-12-21					
Horn Antenna	Schwarzbeck	BBHA9120	D286	2019-12-21					
Board-Band Horn Antenna	Schwarzbeck	BBHA9170	9170-497	2020-01-15					
Active Loop Antenna	COM-POWER	AL-130	121044	2019-12-27					
Amplifier	EM Electronics Corporation	EM330	060661	2019-12-21					
High Noise Amplifier	Agilent	8449B	3008A02060	2019-12-21					
Hygrothermograph	VICTOR	HTC-1	NA	2019-12-24					
Test SW	FARAD	EZ	Z-EMC/ CCS-3A	1-CE					
6 dB Bandwidth									
EXA signal analyzer	Agilent	N9010A	MY52221469	2020-01-10					
Maximum Peak Outp	ut Power								
EXA signal analyzer	Agilent	N9010A	MY52221469	2020-01-10					
Conducted band edge	es and Spurious Emissio	n							
EXA signal analyzer	Agilent	N9010A	MY52221469	2020-01-10					
Power Spectral Densi	Power Spectral Density								
EXA signal analyzer	Agilent	N9010A	MY52221469	2020-01-10					

5. ANTENNA REQUIREMENT

Report No.: E20190305644901-5-G1

The EUT has one antenna. The antenna is PCB antenna.

The max gain of antenna is -0.042dBi . which accordance 15.203. is considered sufficient to comply with the provisions of this section

6. CONDUCTED EMISSION MEASUREMENT

6.1. LIMITS

Evoquoney range	Limits (dBµV)				
Frequency range	Quasi-peak	Average			
150kHz \sim 0.5MHz	66~56	56~46			
$0.5~\mathrm{MHz}\sim5~\mathrm{MHz}$	56	46			
$5\mathrm{MHz}\sim30\mathrm{MHz}$	60	50			

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range of 150 kHz to 0.5MHz.

6.2. TEST PROCEDURES

Procedure of Preliminary Test

Report No.: E20190305644901-5-G1

Test procedures follow ANSI C63.4:2014.

For measurement of the disturbance voltage the equipment under test (EUT) is connected to the power supply mains and any other extended network via one or more artificial network(s). An EUT, whether intended to be grounded or not, and which is to be used on a table is configured as follows:

- Either the bottom or the rear of the EUT shall be at a controlled distance of 40 cm from a reference ground plane. This ground plane is normally the wall or floor of a shielded room. It may also be a grounded metal plane of at least 2 m by 2 m. This is physically accomplished as follows:
- 1) place the EUT on a table of non-conducting material which is at least 80 cm high. Place the EUT so that it is 40 cm from the wall of the shielded room, or
- 2) place the EUT on a table of non-conducting material which is 40 cm high so that the bottom of the EUT is 40 cm above the ground plane;
- All other conductive surfaces of the EUT shall be at least 80 cm from the reference ground plane;
- The EUT are placed on the floor that one side of the housings is 40 cm from the vertical reference ground plane and other metallic parts;
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth forming a bundle 30 cm to 40 cm long, hanging approximately in the middle between the ground plane and the table.
- I/O cables that are connected to a peripheral shall be bundled in the centre. The end of the cable may be terminated if required using correct terminating impedance. The total length shall not exceed 1 m.

The test mode(s) described in Item 2.4 were scanned during the preliminary test. After the preliminary scan, we found the test mode described in Item 2.4 producing the highest emission level. The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test. A scan was taken on both power lines, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

6.3. TEST SETUP

6.4. DATA SAMPLE

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
X.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor

Limit = Limit stated in standard

Margin = Result (dBuV) – Limit (dBuV)

6.5. TEST RESULTS

Pre-test Mode 1 to Mode 4, found that Mode 3 are the worst case.

Model No.	GL-EFR32S	RBW,VBW	9 kHz
Environmental Conditions	23.4°C, 50%RH	Test Mode	Mode 3
Tested By	Sam Zeng	Line	L
Tested Date	2019-03-28	Test Voltage	AC120V/60Hz

(The chart below shows the highest readings taken from the final data.)

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
0.1860	21.57	15.27	19.63	41.20	34.90	64.21	54.21	-23.01	-19.31	Pass
0.2500	21.04	19.26	19.62	40.66	38.88	61.75	51.76	-21.09	-12.88	Pass
0.3700	16.52	9.21	19.57	36.09	28.78	58.50	48.50	-22.41	-19.72	Pass
0.5180	15.87	-2.90	19.54	35.41	16.64	56.00	46.00	-20.59	-29.36	Pass
1.2180	19.75	7.34	19.59	39.34	26.93	56.00	46.00	-16.66	-19.07	Pass
12.0940	26.36	14.78	20.09	46.45	34.87	60.00	50.00	-13.55	-15.13	Pass

REMARKS: $L = Live\ Line$

Model No.	GL-EFR32S	RBW,VBW	9 kHz
Environmental Conditions	23.4°C, 50%RH	Test Mode	Mode 3
Tested By	Sam Zeng	Line	N
Tested Date	2019-03-28	Test Voltage	AC120V/60Hz

(The chart below shows the highest readings taken from the final data.)

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
0.1860	20.40	14.01	19.63	40.03	33.64	64.21	54.21	-24.18	-20.57	Pass
0.2500	19.23	17.06	19.62	38.85	36.68	61.75	51.76	-22.90	-15.08	Pass
0.3700	15.72	8.50	19.57	35.29	28.07	58.50	48.50	-23.21	-20.43	Pass
0.5940	14.77	0.01	19.57	34.34	19.58	56.00	46.00	-21.66	-26.42	Pass
1.3220	18.97	5.57	19.60	38.57	25.17	56.00	46.00	-17.43	-20.83	Pass
12.1660	24.64	13.07	20.09	44.73	33.16	60.00	50.00	-15.27	-16.84	Pass

REMARKS: N = Neutral Line.

7. RADIATED SPURIOUS EMISSIONS

7.1. LIMITS

Report No.: E20190305644901-5-G1

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Frequency (MHz)	Quasi-peak(μV/m)	Measurement distance(m)	Quasi-peak(dBµV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	53.8~88.5
0.490-1.705	24000/F(kHz)	30	43~53.8
1.705-30.0	30	30	49.5
30 ~ 88	100	3	40
88~216	150	3	43.5
216 ~ 960	200	3	46
Above 960	500	3	54

NOTE: (1) The lower limit shall apply at the transition frequencies.

7.2. TEST PROCEDURES (please refer to measurement standard)

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

Report No.: E20190305644901-5-G1

- --- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

Report No.: E20190305644901-5-G1

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

Report No.: E20190305644901-5-G1

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

NOTE: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).

7.3. TEST SETUP

Figure 1. 9KHz to 30MHz radiated emissions test configuration

Figure 2. 30MHz to 1GHz radiated emissions test configuration

Figure 3. Above 1GHz radiated emissions test configuration

Application No.: E20190305644901 FCC ID: 2AFIW-SH32BZ

7.4. DATA SAMPLE

Report No.: E20190305644901-5-G1

30MHz to 1GHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	37.06	-15.48	21.58	40.00	-18.42	QP	Vertical

Above 1 GHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	65.45	-11.12	54.33	74.00	-19.67	peak	Vertical
XXX	XXX	63.00	-11.12	51.88	54.00	-2.12	AVG	Vertical

Frequency (MHz) = Emission frequency in MHz

Ant.Pol. (H/V) = Antenna polarization

 $\begin{array}{ll} Reading \ (dBuV) & = Uncorrected \ Analyzer \ / \ Receiver \ reading \\ Correction \ Factor \ (dB/m) & = Antenna \ factor + Cable \ loss - Amplifier \ gain \\ Result \ (dBuV/m) & = Reading \ (dBuV) + Correction \ Factor \ (dB/m) \\ \end{array}$

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Remark Result (dBuV/m) – Limit (dBuV/m)

Peak = Peak Reading

QP = Quasi-peak Reading AVG = Average Reading

Date: 2019-03-28

7.5. TEST RESULTS

Report No.: E20190305644901-5-G1

30MHz to 1GHz:

Pre-scan all modes and recorded the worst case results in this report (BT LE (Low Channel)

GL-EFR32S

Mode: TX

Lowest channel (2402MHz)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	49.4000	37.56	-18.15	19.41	40.00	-20.59	QP	Vertical
2	137.6700	39.09	-15.99	23.10	43.50	-20.40	QP	Vertical
3	263.7700	32.96	-16.67	16.29	46.00	-29.71	QP	Vertical
4	408.3000	35.28	-12.96	22.32	46.00	-23.68	QP	Vertical
5	455.8300	37.55	-11.14	26.41	46.00	-19.59	QP	Vertical
6	664.3800	33.95	-7.23	26.72	46.00	-19.28	OP	Vertical

Mode: TX

Lowest channel (2402MHz) Date: 2019-03-28

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	120.2100	43.99	-17.38	26.61	43.50	-16.89	QP	Horizontal
2	215.2700	37.44	-17.67	19.77	43.50	-23.73	QP	Horizontal
3	312.2700	38.48	-15.63	22.85	46.00	-23.15	QP	Horizontal
4	551.8600	36.59	-9.95	26.64	46.00	-19.36	QP	Horizontal
5	647.8900	32.46	-7.65	24.81	46.00	-21.19	QP	Horizontal
6	664.3800	33.32	-7.23	26.09	46.00	-19.91	QP	Horizontal

GL-EFR32H

Mode: TX

Lowest channel (2402MHz) Date: 2019-03-28

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	137.6700	37.09	-15.99	21.10	43.50	-22.40	QP	Vertical
2	408.3000	34.28	-12.96	21.32	46.00	-24.68	QP	Vertical
3	455.8300	35.55	-11.14	24.41	46.00	-21.59	QP	Vertical
4	551.8600	31.68	-9.95	21.73	46.00	-24.27	QP	Vertical
5	664.3800	32.95	-7.23	25.72	46.00	-20.28	QP	Vertical
6	696.3900	29.70	-6.40	23.30	46.00	-22.70	QP	Vertical

Mode: TX

Lowest channel (2402MHz) Date: 2019-03-28

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	120.2100	42.49	-17.38	25.11	43.50	-18.39	QP	Horizontal
2	312.2700	38.48	-15.63	22.85	46.00	-23.15	QP	Horizontal
3	504.3300	32.49	-10.90	21.59	46.00	-24.41	QP	Horizontal
4	551.8600	36.09	-9.95	26.14	46.00	-19.86	QP	Horizontal
5	664.3800	31.82	-7.23	24.59	46.00	-21.41	QP	Horizontal
6	744.8900	28.84	-6.93	21.91	46.00	-24.09	QP	Horizontal

Remark:

- No emission found between lowest internal used/generated frequency to 30MHz.
- Radiated emissions measured in frequency range from 9 kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 The IF bandwidth of Receiver between 30MHz to 1GHz was 120 kHz.

Above 1GHz: GL-EFR32S Mode: TX

Lowest channel (2402MHz) Date: 2019-03-28

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1603.000	54.72	-4.72	50.00	74.00	-24.00	peak	Vertical
2	2647.000	45.20	-0.61	44.59	74.00	-29.41	peak	Vertical
3	3340.000	42.81	0.92	43.73	74.00	-30.27	peak	Vertical
4	3907.000	44.01	1.47	45.48	74.00	-28.52	peak	Vertical
5	4807.000	48.85	2.35	51.20	74.00	-22.80	peak	Vertical
6	5572.000	41.46	3.90	45.36	74.00	-28.64	peak	Vertical
7	1342.000	54.67	-5.76	48.91	74.00	-25.09	peak	Horizontal
8	1594.000	53.04	-4.77	48.27	74.00	-25.73	peak	Horizontal
9	2827.000	44.19	0.16	44.35	74.00	-29.65	peak	Horizontal
10	3349.000	43.35	0.92	44.27	74.00	-29.73	peak	Horizontal
11	4807.000	44.61	2.35	46.96	74.00	-27.04	peak	Horizontal
12	6013.000	40.64	5.28	45.92	74.00	-28.08	peak	Horizontal

Mode: TX Middle channel (2440 MHz)

Frequency Result Margin Remark Pole Reading Correct Limit (MHz) (dBuV/m) Factor(dB/m) (dBuV/m) (dBuV/m) (dB) 1594.000 -23.24 Vertical 1 55.53 -4.77 50.76 74.00 peak 2 1792.000 48.22 -3.59 44.63 74.00 -29.37 peak Vertical 3 2521.000 45.37 -1.15 44.22 74.00 -29.78 peak Vertical 4 3214.000 43.56 0.92 44.48 74.00 -29.52 Vertical peak 5 41.62 2.34 74.00 4393.000 43.96 -30.04 Vertical peak 4879.000 48.35 2.31 50.66 74.00 -23.34 Vertical 6 peak 57.75 7 -5.56 1414.000 52.19 74.00 -21.81 Horizontal peak 8 1594.000 52.25 -4.77 47.48 74.00 -26.52 peak Horizontal 9 2818.000 44.95 0.13 45.08 74.00 -28.92 Horizontal peak 10 43.64 1.31 44.95 74.00 3790.000 -29.05 Horizontal peak 11 4879.000 47.73 2.31 50.04 74.00 -23.96 Horizontal peak 12 6031.000 41.12 5.31 46.43 74.00 -27.57 Horizontal peak

Date: 2019-03-28

Mode: TX

Highest channel (2480MHz) Date: 2019-03-28

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1594.000	55.82	-4.77	51.05	74.00	-22.95	peak	Vertical
2	1792.000	49.62	-3.59	46.03	74.00	-27.97	peak	Vertical
3	2557.000	45.53	-0.99	44.54	74.00	-29.46	peak	Vertical
4	3187.000	43.60	0.91	44.51	74.00	-29.49	peak	Vertical
5	3799.000	42.46	1.32	43.78	74.00	-30.22	peak	Vertical
6	4960.000	48.26	2.26	50.52	74.00	-23.48	peak	Vertical
7	1333.000	55.40	-5.78	49.62	74.00	-24.38	peak	Horizontal
8	1603.000	53.36	-4.72	48.64	74.00	-25.36	peak	Horizontal
9	2170.000	46.06	-1.97	44.09	74.00	-29.91	peak	Horizontal
10	3052.000	42.88	0.91	43.79	74.00	-30.21	peak	Horizontal
11	3754.000	42.19	1.25	43.44	74.00	-30.56	peak	Horizontal
12	4960.000	52.04	2.26	54.30	74.00	-19.70	peak	Horizontal
13	4960.000	47.63	2.26	49.89	54.00	-4.11	AVG	Horizontal

GL-EFR32S Mode: TX

Lowest channel (2402MHz) Date: 2019-03-28

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1099.000	51.62	-6.40	45.22	74.00	-28.78	peak	Vertical
2	1315.000	50.81	-5.83	44.98	74.00	-29.02	peak	Vertical
3	1603.000	53.22	-4.72	48.50	74.00	-25.50	peak	Vertical
4	2647.000	44.20	-0.61	43.59	74.00	-30.41	peak	Vertical
5	3907.000	43.51	1.47	44.98	74.00	-29.02	peak	Vertical
6	4807.000	46.85	2.35	49.20	74.00	-24.80	peak	Vertical
7	1342.000	53.17	-5.76	47.41	74.00	-26.59	peak	Horizontal
8	1594.000	51.54	-4.77	46.77	74.00	-27.23	peak	Horizontal
9	1891.000	46.42	-3.00	43.42	74.00	-30.58	peak	Horizontal
10	2827.000	43.69	0.16	43.85	74.00	-30.15	peak	Horizontal
11	3214.000	42.94	0.92	43.86	74.00	-30.14	peak	Horizontal
12	4807.000	43.11	2.35	45.46	74.00	-28.54	peak	Horizontal

Mode: TX

Middle channel (2440 MHz) Date: 2019-03-28

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1099.000	52.98	-6.40	46.58	74.00	-27.42	peak	Vertical
2	1333.000	51.47	-5.78	45.69	74.00	-28.31	peak	Vertical
3	1594.000	54.03	-4.77	49.26	74.00	-24.74	peak	Vertical
4	2521.000	45.37	-1.15	44.22	74.00	-29.78	peak	Vertical
5	2809.000	43.96	0.09	44.05	74.00	-29.95	peak	Vertical
6	4879.000	47.35	2.31	49.66	74.00	-24.34	peak	Vertical
7	1081.000	54.79	-6.45	48.34	74.00	-25.66	peak	Horizontal
8	1414.000	56.25	-5.56	50.69	74.00	-23.31	peak	Horizontal
9	1594.000	50.75	-4.77	45.98	74.00	-28.02	peak	Horizontal
10	2647.000	44.35	-0.61	43.74	74.00	-30.26	peak	Horizontal
11	3790.000	43.64	1.31	44.95	74.00	-29.05	peak	Horizontal
12	4879,000	46.73	2.31	49.04	74.00	-24.96	peak	Horizontal

Application No.: E20190305644901 FCC ID: 2AFIW-SH32BZ

Mode: TX

Report No.: E20190305644901-5-G1

Highest channel (2480MHz) Date: 2019-03-28

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1072.000	54.61	-6.47	48.14	74.00	-25.86	peak	Vertical
2	1594.000	54.32	-4.77	49.55	74.00	-24.45	peak	Vertical
3	1792.000	48.12	-3.59	44.53	74.00	-29.47	peak	Vertical
4	2557.000	44.03	-0.99	43.04	74.00	-30.96	peak	Vertical
5	4492.000	42.54	2.53	45.07	74.00	-28.93	peak	Vertical
6	4960.000	47.26	2.26	49.52	74.00	-24.48	peak	Vertical
7	1063.000	53.61	-6.49	47.12	74.00	-26.88	peak	Horizontal
8	1333.000	54.40	-5.78	48.62	74.00	-25.38	peak	Horizontal
9	1603.000	52.36	-4.72	47.64	74.00	-26.36	peak	Horizontal
10	2539.000	45.39	-1.07	44.32	74.00	-29.68	peak	Horizontal
11	4519.000	41.71	2.53	44.24	74.00	-29.76	peak	Horizontal
12	4960.000	50.04	2.26	52.30	74.00	-21.70	peak	Horizontal
13	4960.000	47.75	2.26	50.01	54.00	-3.99	AVG	Horizontal

Remark:

- 1 Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2 Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3 Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

8. 6DB BANDWIDTH

Report No.: E20190305644901-5-G1

8.1. LIMITS

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2. TEST PROCEDURES

- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Set resolution bandwidth (RBW) = 100kHz.Set the video bandwidth (VBW) ≥ 3 x RBW. Detector = Peak. Trace mode = max hold. Sweep = auto couple. Allow the trace to stabilize, record 6dB bandwidth value.
- 3) Repeat above procedures until all frequencies measured were complete.

8.3. TEST SETUP

8.4. TEST RESULTS

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Test Result
Lowest	2402	775.1		PASS
Middle	2440	771.9	>500	PASS
Highest	2480	767.4		PASS

Middle channel (2440 MHz)

9. MAXIMUM PEAK OUTPUT POWER

9.1 LIMITS

The maximum Peak output power measurement is 1W

9.2 TEST PROCEDURES

Report No.: E20190305644901-5-G1

- 1) Place the EUT on a bench and set it in transmitting mode.
- 2) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI Test Receiver.
- 3) The spectrum analyzer resolution bandwidth that is ≤EBW. So we test the Maximum Conducted Output Power ——Integrated band power method.
- 4) Set the analyzer span ≥ 1.5 x DTS bandwidth. Set the RBW = 1 MHz. Set the VBW ≥ 3 MHz. Sweep time = auto couple. Detector = peak. Allow trace to fully stabilize.

9.3 TEST SETUP

9.4 TEST RESULTS

Channel	Frequency (MHz)	Measured Channel Power (dBm)	Limit	Peak/ Average	Result
Lowest	2402	16.06			Pass
Middle	2440	15.47		Peak	Pass
Highest	2480	15.10	1W		Pass
Lowest	2402	12.10	(30dBm)		Pass
Middle	2440	11.48		Average	Pass
Highest	2480	11.14			Pass

10. POWER SPECTRAL DENSITY

Report No.: E20190305644901-5-G1

10.1 LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

10.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3) Set the analyzer span to 1.5 times the DTS bandwidth. Set the RBW = 3 kHz. Set the VBW \geq 3 RBW. Detector = peak. Ensure that the number of measurement points in the sweep \geq 2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4) Repeat above procedures until all frequencies measured were complete.

10.3 TEST SETUP

10.4 TEST RESULTS

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Lowest	2402	-4.169		PASS
Middle	2440	-4.048	8	PASS
Highest	2480	-3.809		PASS

Middle channel (2440 MHz)

11. CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS

11.2. LIMITS

Report No.: E20190305644901-5-G1

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

11.3. TEST PROCEDURES

Test procedures follow KDB 558074 D01 DTS Measurement Guidance v03r01.

Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.

- 1) Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer: RBW =100KHz; VBW =300KHz, Span = 10MHz to 26GHz; Sweep = auto; Detector Function = Peak. Trace = Max, hold.
- 3) Measure and record the results in the test report.
- 4) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

11.4. TEST SETUP

11.5. TEST RESULTS

Report No.: E20190305644901-5-G1

Lowest channel (2402MHz) 0.01GHz-26.5GHz

2.31GHz-2.41GHz

Middle channel (2440 MHz) 0.01GHz-26.5GHz

Highest channel (2480MHz)

Report No.: E20190305644901-5-G1

STATUS

2.475GHz-2.5GHz

Report No.: E20190305644901-5-G1

Application No.: E20190305644901

12. RESTRICTED BANDS OF OPERATION

12.1.LIMITS

Section 15.247(d) In addition, Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 -	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.69525	960 - 1240	7.25 - 7.75
4.125 - 4.128	16.80425 -	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	16.80475	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	25.5 - 25.67	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	37.5 - 38.25	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	73 - 74.6	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	74.8 - 75.2	2200 - 2300	14.47 - 14.5
8.291 - 8.294	108 - 121.94	2310 - 2390	15.35 - 16.2
8.362 - 8.366	123 - 138	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	149.9 - 150.05	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.52475 -	3260 - 3267	23.6 - 24.0
12.29 - 12.293	156.52525	3332 - 3339	31.2 - 31.8
12.51975 -	156.7 - 156.9	3345.8 - 3358	36.43 - 36.5
12.52025	162.0125 - 167.17	3600 - 4400	
12.57675 -	167.72 - 173.2		
12.57725	240 - 285		
13.36 - 13.41	322 - 335.4		

12.2.TEST PROCEDURES

Test procedures follow KDB 558074 D01 DTS Meas Guidance v03r01.

- 1) The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - a) PEAK: RBW=1MHz / VBW=1MHz / Sweep=AUTO
 - b) AVERAGE: RBW=1MHz / VBW=1/T / Sweep=AUTO
- 5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

Application No.: E20190305644901 FCC ID: 2AFIW-SH32BZ

12.3.TEST SETUP

12.4.TEST RESULTS

Report No.: E20190305644901-5-G1

GL-EFR32S

Lowest Channel

No.	Frequency	Reading	Factor	Result	Limit	Margin	Remark	Pole
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	2390.000	55.10	-1.48	53.62	74.00	-20.38	Peak	Vertical
2	2402.200	110.98	-1.45		74.00		Peak	Vertical
1	2390.000	44.14	-1.48	42.66	54.00	-11.34	Average	Vertical
2	2401.900	110.19	-1.46		54.00		Average	Vertical

Lowest Channel

No.	Frequency	Reading	Factor	Result	Limit	Margin	Remark	Pole
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	2390.000	54.12	-1.48	52.64	74.00	-21.36	Peak	Horizontal
2	2401.600	108.96	-1.46		74.00	33.50	Peak	Horizontal
1	2390.000	44.02	-1.48	42.54	54.00	-11.46	Average	Horizontal
2	2401.900	108.15	-1.46		54.00		Average	Horizontal

No.	Frequency	Reading	Factor	Result	Limit	Margin	Remark	Pole
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	2479.625	107.98	-1.28		74.00		Peak	Vertical
2	2483.500	63.11	-1.27	61.84	74.00	-12.16	Peak	Vertical
1	2479.925	107.17	-1.28		54.00		Average	Vertical
2	2483.500	50.95	-1.27	49.68	54.00	-4.32	Average	Vertical

No.	Frequency	Reading	Factor	Result	Limit	Margin	Remark	Pole
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	2479.625	105.00	-1.28		74.00		Peak	Horizontal
2	2483.500	60.17	-1.27	58.90	74.00	-15.10	Peak	Horizontal
1	2479.950	104.21	-1.28		54.00		Average	Horizontal
2	2483.500	48.77	-1.27	47.50	54.00	-6.50	Average	Horizontal

GL-EFR32H

Lowest Channel

No.	Frequency	Reading	Factor	Result	Limit	Margin	Remark	Pole
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	2390.000	54.42	-1.48	52.94	74.00	-21.06	Peak	Vertical
2	2402.200	109.64	-1.45		74.00		Peak	Vertical
1	2390.000	43.75	-1.48	42.27	54.00	-11.73	Average	Vertical
2	2401.900	108.83	-1.46		54.00		Average	Vertical

Lowest Channel

No.	Frequency	Reading	Factor	Result	Limit	Margin	Remark	Pole
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	2390.000	55.23	-1.48	53.75	74.00	-20.25	Peak	Horizontal
2	2401.600	110.22	-1.46		74.00		Peak	Horizontal
1	2390.000	44.03	-1.48	42.55	54.00	-11.45	Average	Horizontal
2	2401.900	109.40	-1.46		54.00		Average	Horizontal

No.	Frequency	Reading	Factor	Result	Limit	Margin	Remark	Pole
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	2480.150	108.24	-1.28		74.00		Peak	Vertical
2	2483.500	61.22	-1.27	59.95	74.00	-14.05	Peak	Vertical
1	2479.925	107.44	-1.28		54.00		Average	Vertical
2	2483.500	51.38	-1.27	50.11	54.00	-3.89	Average	Vertical

Report No.: E20190305644901-5-G1

No.	Frequency	Reading	Factor	Result	Limit	Margin	Remark	Pole
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	2480.125	104.83	-1.28		74.00		Peak	Horizontal
2	2483.500	58.65	-1.27	57.38	74.00	-16.62	Peak	Horizontal
1	2479.900	104.03	-1.28		54.00		Average	Horizontal
2	2483.500	48.75	-1.27	47.48	54.00	-6.52	Average	Horizontal

Remark: Max field strength in 3m distance. No any other emission which falls in restricted bands can be detected and be reported.

APPENDIX A: PHOTOGRAPH OF THE TEST ARRANGEMENT CE

RSE (Below 1GHz)

RSE (Above 1GHz)

-----This is the last page of the report. -----