A curve C has the equation	
$x^3 + 2xy - x - y^3 - 20 = 0$	
(a) Find $\frac{dy}{dx}$ in terms of x and y.	
dx	(5)
(b) Find an equation of the tangent to C at the point $(3, -2)$, giving your an	swer in the
form $ax + by + c = 0$, where a, b and c are integers.	(2)

2.	The curve C has equation	
	$x^2 - 3xy - 4y^2 + 64 = 0$	
	(a) Find $\frac{dy}{dx}$ in terms of x and y.	(5)
	(b) Find the coordinates of the points on C where $\frac{dy}{dx} = 0$	
	(Solutions based entirely on graphical or numerical methods are not acceptable.)	(6)

3.	The curve C has equation	
	$2x^2y + 2x + 4y - \cos(\pi y) = 17$	
	(a) Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.	(5)
	The point P with coordinates $\left(3, \frac{1}{2}\right)$ lies on C .	. ,
	The normal to C at P meets the x -axis at the point A .	
	(b) Find the x coordinate of A, giving your answer in the form $\frac{a\pi + b}{c\pi + d}$, where a, b, c and d are integers to be determined.	(4)

The c	urve C has equation
	$4x^2 - y^3 - 4xy + 2^y = 0$
The p	oint P with coordinates $(-2, 4)$ lies on C .
(a) F	ind the exact value of $\frac{dy}{dx}$ at the point P .
The n	ormal to C at P meets the y -axis at the point A .
	ind the y coordinate of A, giving your answer in the form $p + q \ln 2$, where p and q re constants to be determined.
	(3)

$16y^3 + 9x^2y - 54x = 0$	
(a) Find $\frac{dy}{dx}$ in terms of x and y.	(5)
(b) Find the coordinates of the points on C where $\frac{dy}{dx} = 0$.	(7)

6.	In this question you must show all stages of your working.	
	Solutions relying on calculator technology are not acceptable.	
	A curve has equation	
	$x^3 + 2xy + 3y^2 = 47$	
	(a) Find $\frac{dy}{dx}$ in terms of x and y	
	dx	(4)
	The point $P(-2, 5)$ lies on the curve.	
	(b) Find the equation of the normal to the curve at P , giving your answer in the form $ax + by + c = 0$, where a , b and c are integers to be found.	(2)
		(3)

7.	A curve is described by the equation	
	$x^2 + 4xy + y^2 + 27 = 0$	
	(a) Find $\frac{dy}{dx}$ in terms of x and y.	(5)
	A point Q lies on the curve.	
	The tangent to the curve at Q is parallel to the y -axis.	
	Given that the x coordinate of Q is negative,	
	(b) use your answer to part (a) to find the coordinates of Q .	(7)

8.	The curve C has equation	
	$px^3 + qxy + 3y^2 = 26$	
7	where p and q are constants.	
((a) Show that	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{apx^2 + bqy}{qx + cy}$	
	where a , b and c are integers to be found.	(4)
(Given that	
•	Former (2, 1) not on o	
	• the normal to C at P has equation $19x + 26y + 123 = 0$	
((b) find the value of p and the value of q .	(5)

9. The curve C has equation			
$x^2 \tan y = 9 \qquad 0 < y < \frac{\pi}{2}$			
(a) Show that			
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-18x}{x^4 + 81}$			
(b) Prove that C has a point of inflection at $x = \sqrt[4]{27}$	(4)		