Machine Learning Project Report Problem A

Data Ingestion

- Data Consist of 1525 Rows and 10 Columns
- Data consists of **Duplicate** rows 8 duplicate rows
- Data does not consist of Missing Values Null Value check
- Data consist of **70%** votes in favour of **Labour** and 30% in Conservative
- There 5 types of categories of economic cond national and Political growth

Data Visualization

Maximum data is present for category of Type 2 of Political knowledge

Maximum data is present for Type 3 of Economic condition house hold

We can observe the data has high value of attitude wrt to European intergation

From the below plot we can understand the how the vote very to the 2 parties 0-Conservative and 1 - labour on based on the political knowledge and gender 0 -Female, 1- male.

We can clearly see that maximum population is of political knowledge = 2 Where as in

- political knowledge = 0 is of male and have voted for labour
- political knowledge = 1 is very sparsely populated
- political knowledge = 2 has almost balance voting tending towards Labour
- political knowledge = 3 has voted for Labour

The count of votes given according to the political knowledge

Highest attitude of respondents to European Integration can be seen in males and females of **Political knowledge 1**

Lowest attitude of respondents to European Integration can be seen in males and females of **Political knowledge 3**

In the below graph, x axis is the political knowledge of people while y axis is the age. The hue shows the vote given

Heat Map

Correlation between the features of the data is shown by the heat map:

We can conclude there is **no positive correlation** between the features of the data and **negative 0.50 correlation between Hague and Vote** .

With increase in attitude (Europe) Vote for conservative party has increased

Displot with hue as votes

- We can interpret that age is bimodal whereas national and household economic conditions are multimodal
- Also with increase in national economic conditions, maximum vote tends to go in favour to labour

• As the attitude of respondents to European Integration increases we can see the vote going in favor of Conservative party.

Treatment of Outliers | Section | S

We can observer outliers in economic national and household features of the table. We can treat that by finding the IQR and reducing the range by replacing it.

Scaling

As data is Categorical scaling is not required.

This can be proved by implementing Logistic Regression with scaled data .

There was no significant difference in AUC score or confusion matrix of the scaled and unscaled data. Hence Scaling is not necessary in this case.

Data Encoding and Spliting

This needs to be done in order to convert Object datatype to int. Spliting is required to as to not over fit the model.

Logistic Regression and LDA

LDA

		one design			
	or Test Data				
	or Train Data				
	Test	LDA SMOT	E Model		
[[108 21]					
[49 278]]	PERSONAL PROPERTY OF	US025002.20	0200000000000		
	precision	recall	f1-score	support	
9	0.69	0.84	0.76	129	
1	0.93	0.85	0.89	327	
accuracy			0.85	456	
	0.81	0.84	57.550		
	0.86				
mergineed die	0.00	0.05	0.05	430	
	Train	LDA SMO	TE Model		
[[609 121]					
[138 592]]					
	precision	recall	f1-score	support	
9	0.82	0.83	0.82	730	
1	0.83	0.81	0.82	730	
accuracy			0.82	1460	
	0.82	0.82	0.82	1460	
weighted avg					

Logistic Regression

Model Scor	e for	Test Data	0.84649	1228070175	4
Model Scor	e for	Train Dat	a 0.8226	0273972602	74
		Test	LR SMOTE	Model	
[[108 21]					
[49 278]]				
	p	recision	recall	f1-score	support
	0	0.69	0.84	0.76	129
	1	0.93	0.85	0.89	327
accura	cy			0.85	456
macro a	vg	0.81	0.84	0.82	456
weighted a	vg	0.86	0.85	0.85	456
		Trai	n LR SMOT	E Model	
[[607 123] [136 594]					
		recision	recall	f1-score	support
	0	0.82	0.83	0.82	730
	1	0.83	0.81	0.82	730
accura	cy			0.82	1460
	Vσ	0.82	0.82	0.82	1460
macro a					

LDA Train Test AUC score

LR Smote Train and Test - AUC score

LDA Train and Test - AUC score

When comparing both the models, we can understand

- With **SMOTE** data, precision, accuracy, auc score of test as well as train data is **nearly** same for both
- While general data we can analysis, auc score of LDA test data is comparatively better than Logistic Regression
- The AUC score was drastically increased with SMOTE

Naive Bayes

We can see a significant increase in AUC score when used NB with SMOTE data

Model Score f	or Train Dat			
[[94 35] [38 289]]	Test	Naive Da	yes Model-	
	precision	recall	f1-score	support
0	0.71	0.73	0.72	129
1	0.89	0.88	0.89	327
accuracy			0.84	456
macro avg	0.80	0.81	0.80	456
weighted avg	0.84	0.84	0.84	456
[[232 99] [90 640]]	Trai	n Naive B	ayes Mo <mark>de</mark> l	
	precision	recall	f1-score	support
0	0.72	0.70	0.71	331
1	0.87	0.88	0.87	730
accuracy			0.82	1061
macro avg	0.79	0.79	0.79	1061
weighted avg	0.82	0.82	0.82	1061

Naive Bayes

Naive Bayes SMOTE

KNN KNN

Model Score for Test Data 0.8026315789473685 Model Score for Train Data 0.8482563619227145 ------Test KNN Model------

[[83 46] [44 283]]		want meme		
[44 205]]	precision	recall	f1-score	support
0	0.65	0.64	0.65	129
1	0.86	0.87	0.86	327
accuracy			0.80	456
macro avg	0.76	0.75	0.76	456
weighted avg	0.80	0.80	0.80	456
	Trai	n KNN Mod	lel	
[[237 94] [67 663]]				

[[237 94] [67 663]]	,,,,,,	T KIN TIO		
	precision	recall	f1-score	support
0	0.78	0.72	0.75	331
1	0.88	0.91	0.89	730
accuracy			0.85	1061
macro avg	0.83	0.81	0.82	1061
weighted avg	0.85	0.85	0.85	1061

KNN - SMOTE

Model Score for Test Data 0.7828947368421053 Model Score for Train Data 0.8821917808219178

[74 253]]		11	C4	
	precision	recall	f1-score	support
0	0.58	0.81	0.68	129
1	0.91	0.77	0.84	327
accuracy			0.78	456
macro avg	0.75	0.79	0.76	456
eighted avg	0.82	0.78	0.79	456

[[685 45] [127 603]]	Trai	n KNN Mod	lel SMOTE	
	precision	recall	f1-score	support
0	0.84	0.94	0.89	730
1	0.93	0.83	0.88	730
accuracy			0.88	1460
macro avg	0.89	0.88	0.88	1460
weighted avg	9.89	9.88	0.88	1469

KNN -Train Test AUC

KNN -Train Test AUC - SMOTE

SVM

SVM SMOTE

odel Score f odel Score f	or Train Dat	a 0.8265	7869934024	51	Model Score f Model Score f	or Train Dat	ta 0.7924	6575342465	75
[95 34] [29 298]]		341111000			[[95 34] [29 298]]	163	. SVII HOUG	1 31011	
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.77	0.74	0.75	129	0	0.58	0.81	0.68	129
1	0.90	0.91	0.90	327	1	0.91	0.77	0.84	327
accuracy			0.86	456	accuracy			0.78	456
macro avg	0.83	0.82	0.83	456 456	macro avg		0.79		456
eighted avg	0.86	0.86	0.86	456	weighted avg	0.82	0.78	0.79	456
	Trai	n SVM Mod	lel			Tra:	in SVM Mod	del SMOTE	
[221 110]					[[501 229]				
[74 656]]	precision	recall	f1-score	support	[74 656]]	precision	recall	f1-score	support
	No.			643 983.688		2722	22720		
0	0.75 0.86	0.67		331 730	0	0.87 0.74	0.69		730 730
1	0.80	0.50	0.00	750		23.7000			
accuracy			0.83	1061	accuracy		0.70	0.79	
macro avg eighted avg	0.80	0.78		1061 1061	macro avg weighted avg	0.81			1460 1460
					0.8 -				
								SVM - Train auc-	=0.7831519264991
/		4:		823874546618306	0.0	0.2	0.4	0.6	0.8 1
0.0	0.2 0.4	0	0.6 0.	8 10	10 -	35053	36,28,6,0	3.3538 	
.8 -					0.8 -				
					0.6 -				
).6 -	/	C104 C11C			0.0				
0.4 -	/ =	SVM SMOTE - 1	rain , auc=0.79246	55/5342465/5	0.4 -				
1.2 -					0.2 -				
					0.0 -		— s	VM - SMOTE Test ,	auc=0.82387454661
0.0 -									

Random Forest

[[90 39] [33 294]]

AdaBoost

[[93 36] [28 299]]

Compare - Find the best Model

The maximum AUC Score is for LDA and Logistic Regression with Smote AUC = 0.844

Hence we can use them for our prediction.

Problem 2

- The number of sentences Roosevelt= 69, Kennedy =55, Nixon =70
- Number of words Roosevelt= 1328, Kennedy =1359, Nixon =1783
- Number of Characters Roosevelt= 6146, Kennedy =6152, Nixon =8106
- Removed all the stopwords from all the three speeches
- Which word occurs the most number of times in his inaugural address for each president?
 Mention the top three words.
- Roosevelt= know , us , sprit
- Kennedy = let, us, new
- Nixon = us, let, new