算法分析与设计

Analysis and Design of Algorithm

第13次课

课程回顾

- 适用对象: 求解搜索问题和优化问题
- 搜索空间: 树,结点对应部分解向量,可行解在树叶上
- 搜索过程:采用系统的方法隐含遍历搜索树
- 搜索策略:深度/宽度优先、函数优先、宽深结合
- 剪枝方法: 约束函数、限界函数
- 结点分支判定条件:
 - 不满足剪枝条件—分支扩张解向量
 - 满足剪枝条件—回溯到该结点的父结点
- 存储: 当前路径

课程回顾

问题	解性质	解描述向量	搜索空间	搜索方式	约束条件
n皇后	可行解	〈x ₁ , x ₂ , ··· , x _n 〉 x _i : 第 i 行列号	n叉树	深度优先搜索	彼此不攻击
0-1背包	最优解	$\langle x_1, x_2, \cdots, x_n \rangle$ $x_i \in \{0,1\}$	子集树	深度优先搜索	不超过 总重量
旅行商	最优解	$\langle k_1, k_2, \cdots, k_n angle$ 1,2, \cdots , n 的排列	排列树	深度优先搜索	选没有经过 的城市

特点	搜索解	向量,不断扩 张部分向量	树	跳跃式遍历	约束条件,回溯判定
----	-----	-----------------	---	-------	-----------

回溯法的几个应用

装载问题

装载问题及其应用

• 有一批共n个集装箱要装上2艘载重量分别为 c_1 和 c_2 的轮船,其中集装箱i的重量为 w_i ,且

$$w_1 + w_2 + \dots + w_n \le c_1 + c_2$$

装载问题要求确定是否有一个合理的装载方案 可将这个集装箱装上这2艘轮船。如果有,找 出一种装载方案。

装载问题的求解思路

- \blacksquare 输入:物品重量W,旅行箱载重 c_1, c_2
 - 首先将第一个旅行箱尽可能装满;
 - 将剩余的物品装上第二个旅行箱。
 - 将第一个旅行箱尽可能装满等价于选取全体物品的一个子集,使该子集中物品重量之和最接近。

$$\max \sum_{i=1}^{n} w_i x_i$$

$$\text{s.t.} \sum_{i=1}^{n} w_i x_i \le c_1$$

$$x_i \in \{0,1\}, 1 \le i \le n$$

装载问题的解空间树

■ 一棵二叉树(子集树)

实例

- 物品重量 $W = \langle 90,65,40,30,20,12,10 \rangle$
- $c_1 = 152, c_2 = 130$
- 最优解:〈1,0,1,0,0,1,1〉

装载问题的剪枝函数

- 可行性约束函数
- ■限界函数
 - 有用的变量
 - 当前旅行箱内重量: cw
 - 当前最优解: bestw
 - 上界函数:剩余物品的重量 $r = w_{i+1} + w_{i+2} + \cdots + w_n$
 - ■剪枝条件:
 - 若 $cw + r \leq bestw$,则剪枝

装载问题的剪枝函数

■ 实例

■物品重量

$$W = \langle 90,65,40,30,20,12,10 \rangle$$

- $c_1 = 152, c_2 = 130$
- 最优解:〈1,0,1,0,0,1,1〉
- *bestw*=152

 $cw + r \le bestw$

-cw=0

剪枝!

r=40+30+20+12+10=112

装载问题的算法实现

```
void backtrack (int i)
{// 搜索第i层结点
   if (i > n)
        更新最优解bestx,bestw;return;
                                       到达叶结点
    r -= w[i];
    if (cw + w[i] \le c) {
                             搜索左子树
        x[i] = 1;
        cw += w[i];
        backtrack(i + 1);
        cw -= w[i];
    if (cw + r > bestw)
        x[i] = 0;
        backtrack(i + 1);
    r += w[i];
```

批处理作业调度问题

批处理作业调度及其应用

- 给定*n*个作业的集合{*J*₁,*J*₂,...,*J_n*}。每个作业必须先由机器1处理,然后由机器2处理。
 - t_{ii} 是作业 J_i 需要机器j的处理时间。
 - F_i 是作业i的完成时间。
- 目标: 求最佳作业调度方案使作业完成时间和最小

Web服务器调度

网络交换机的流调度

批处理作业调度问题的解空间

■ 实例:

梅园打印店每天要处理很多打 印任务,分两步:

- 将文件拷贝至电脑
- 在打印机打印

问题:给定一系列任务, 且任务的拷贝和打印时间 已知,请找出这些任务先 后顺序,使所有任务的总 完成时间最短。

t _{ji}	拷贝	打印
网络作业	2	1
概率作业	3	1
算法作业	2	3

批处理作业调度问题的解空间

■ 问题的解

可行解	(1,2,3)	(1,3,2)	(2,1,3)	(2,3,1)	(3,1,2)	(3,2,1)
完成时间	19	18	20	21	19	19

	任务	拷贝	打印
1	网络作业	2	1
2	概率作业	3	1
3	算法作业	2	3

批处理作业调度问题的解空间树

■ 实例

	任务	拷贝	打印
1	网络作业	2	1
2	概率作业	3	1
3	算法作业	2	3

- 排列树(n=3)
- ■剪枝函数
 - 当前方案的执行时间>最优解

批处理作业调度问题的算法实现

```
void Backtrack(int i)
       if (i > n) {
          for (int j = 1; j <= n; j++)
到达叶
              bestx[i] = x[i];
          bestf = f;
       else
           for (int j = i; j <= n; j++) {
               f1+=M[x[i]][1];
当前方案的
               f2[i] = ((f2[i-1]>f1)?f2[i-1]:f1)+M[x[i]][2];
执行时间
               f+=f2[i];
               if (f < bestf) {
                                        M.
                                               // 各作业所需的处理时间
                   Swap(x[i], x[j]);
                                               // 当前作业调度
                                        Χ,
  若不被剪枝
                  Backtrack(i+1);
                                               // 当前最优作业调度
                                        bestx.
                   Swap(x[i], x[j]); }
                                        f2.
                                               // 机器2完成处理时间
               f1 - =M[x[\dot{1}], 1];
                                               // 机器1完成处理时间
                                        f1.
               f - = f2[i];
                                               // 完成时间和
                                        f,
                                               // 当前最优值
                                        bestf.
                                               // 作业数
                                        N
```

两个核心问题小结

- 定义解空间
 - 解向量为 $\langle x_1, x_2, ..., x_n \rangle$
 - 确定 x_i 的取值集合为 X_i
 - 子集树、排列树、*n*叉树

- ■定义剪枝函数
 - ■可行性约束函数
 - ■限界函数

回溯法的剪枝技巧

两种剪枝函数

1

可行性约束函数

2

限界函数

两种剪枝函数

1

可行性约束函数

2

限界函数

图着色问题及其应用(回顾)

- 给定无向连通图G=(V,E),是否可k种颜色对G中顶点着色,可使任意两个顶点着色不同。
 - 是与否的判定问题
 - 解向量: $\langle x_1, x_2, \dots, x_n \rangle$, x_i 表示顶点i所着颜色

地图着色

程序编译器的寄存器分配算法

实例: 给中国地图着色

图的m着色问题的解空间树

■3着色问题——三叉树

■剪枝函数

■ 可行性约束函数

解空间有3⁵=243个结点, 而回溯只搜了其中14个结 点就找到了解。

两种剪枝函数

1

可行性约束函数

2

限界函数

回溯法与组合优化问题(回顾)

例如: 0-1背包问题

最大化
$$x_1 + 3x_2 + 5x_3 + 10x_4$$

最大化价值

满足约束条件

$$\begin{cases} 2x_1 + 3x_2 + 6x_3 + 7x_4 \le 10 & \text{ 重量约束} \\ x_i \in \{0,1\}, \ i = 1, 2, 3, 4 & \text{定义域约束} \end{cases}$$

- 组合优化问题
 - 目标函数(极大化或极小化)
 - 约束条件(解满足的条件)
 - 可行解: 搜索空间满足约束条件的解
 - 最优解: 使目标函数达极大(或极小)的可行解

- 代价函数的计算位置
 - 搜索树的结点
- 代价函数的值

- 对于极大化问题,以该点为根的子树所有可行解的值的上界(极小化问题为下界)
- 代价函数的性质
 - 对于极大化问题, 父结点代价不小于子结点的代价(极小化问题相反)

回溯法的界

■ 界的含义

当前得到可行解的目标函数的最大值(极小化问题相反)

■ 界的初值

■ 极大化问题初值为0(极小化问题为最大值)

■ 界的更新

■ 得到更好的可行解时

回溯法的剪枝函数

■剪枝函数

- 不满足约束条件(可行性约束函数)
- 代价函数值不优于当前的界(限界函数)

■ 界的更新

对于极大化问题,如果一个新的可行解的优化函数值大于(极小化问题为小于)当前的界,则把界更新为该可行解的值

回溯法剪枝的实例

- 0-1背包问题
 - \blacksquare 4种物品,重量 w_i 和价值 v_i 分别为
 - $v_1 = 1, v_2 = 3, v_3 = 5, v_4 = 10$
 - $w_1 = 2, w_2 = 3, w_3 = 6, w_4 = 7$
 - 背包重量限制为10

例如: 0-1背包问题

最大化
$$x_1 + 3x_2 + 5x_3 + 10x_4$$

满足约束条件

$$\begin{cases} 2x_1 + 3x_2 + 6x_3 + 7x_4 \le 10 \\ x_i \in \{0,1\}, & i = 1, 2, 3, 4 \end{cases}$$

通常的回溯法做法

代价函数的设定

• 按 v_i/w_i 从大到小排序, $i=1,2,\cdots,n$

■ 假设位于结点 $\langle x_1, x_2, \cdots, x_k \rangle$

- 代价函数=已装入价值+Δ
 - Δ : 还可继续装入最大价值的上界
 - Δ =背包剩余重量× v_{k+1}/w_{k+1} (可装)
 - △=0 (不可装)

实例: 0-1背包问题

最大化
$$x_1 + 3x_2 + 5x_3 + 10x_4$$

满足约束条件
$$\begin{cases} 2x_1 + 3x_2 + 6x_3 + 7x_4 \le 10 \\ x_i \in \{0,1\}, i = 1,2,3,4 \end{cases}$$

- 对元素重新排序使得 $\frac{v_i}{w_i} \ge \frac{v_{i+1}}{w_{i+1}}$
- 排序后

最大化
$$10x_1 + 3x_2 + 5x_3 + x_4$$

满足约束条件
$$\begin{cases} 7x_1 + 3x_2 + 6x_3 + 2x_4 \le 10 \\ x_i \in \{0,1\}, \ i = 1,2,3,4 \end{cases}$$

实例: 代价函数

- 结点 $\langle x_1, x_2, \cdots, x_k \rangle$ 的代价函数
 - 代价函数=已装入价值+Δ
 - Δ: 还可继续装入最大价值的上界

- $F(X) = \sum_{i=1}^{k} v_i x_i + (b \sum_{i=1}^{k} w_i x_i) v_{k+1} / w_{k+1}$ 若对某个j > k有 $b - \sum_{i=1}^{k} w_i x_i \ge w_j$ (即放得下某个物品)
- $F(X) = \sum_{i=1}^{k} v_i x_i$ 否则(即放不下剩下的任一物品)

b: 背包容量

w_i: 物品 /重量

 v_i : 物品 i价值

实例: 改进的回溯法

最大化 $10x_1 + 3x_2 + 5x_3 + x_4$ 满足 $7x_1 + 3x_2 + 6x_3 + 2x_4 \le 10$; $x_i \in \{0,1\}$, i = 1, 2, 3, 4

圆排列问题

- ■问题定义
 - 给定n个大小不等的圆
 - 排进一个矩形框中,各圆与矩形框的底边相切
 - 目标: 求有最小长度的圆排列

圆排列问题的解空间

- 实例
 - 给出三个圆1,2,3
 - 半径为1,2,4

- 问题的可行解
 - 圆的所有排列
 - 如〈1,2,3〉,〈1,3,2〉

圆排列问题的解空间树

- 实例
 - 给出三个圆1,2,3
 - 半径为1,2,4

- 限界函数
 - 界: 当前最短长度 的圆排列
 - 代价函数?

• r_i : 第i个圆的半径

• d_k : 第k-1个圆和第k个圆的圆心距离

■ x_k : 原点到第k个圆的圆心距离

 l_k : 前k个圆排列的长度

- 前k个圆排列的长度: $l_k = x_k + r_k + r_1$
- 排列长度: $l_n = x_k + d_{k+1} + d_{k+2} + \dots + d_n + r_1 + r_n$

$$d_k = \sqrt{(r_{k-1} + r_k)^2 - (r_{k-1} - r_k)^2} = 2\sqrt{r_k r_{k-1}}$$

估算排列长度:

$$l_n = x_k + d_{k+1} + d_{k+2} + \dots + d_n + r_1 + r_n$$

$$= x_k + 2\sqrt{r_k r_{k+1}} + 2\sqrt{r_{k+1} r_{k+2}} + \dots + 2\sqrt{r_{n-1} r_n} + r_1 + r_n$$

$$\geq x_k + 2(n-k)r_{min} + r_{min} + r_1$$

$$r_{min} \colon r_k, r_{k+1}, \dots r_n$$
 中的最小值 $d_k = 2\sqrt{r_k r_{k-1}}$

代价函数:

$$x_k = x_{k-1} + d_k$$

 $F(X) = x_k + 2(n-k)r_{min} + r_{min} + r_1$

剪枝条件:

$$F(X) \ge \text{bestLength}$$

最大团问题及其应用

- 最大团问题(Maximum Clique Problem)
 - 图论中经典的组合优化问题
 - 完全图: 图中任意两顶点都有边相连
 - 子图: 若U是G的子图,则G含U中所有顶点和边
 - 目标: 找出图中顶点最多的所有完全子图

社会网络中的聚类分析

计算机视觉

最大团问题的解空间

- 实例
 - 6个顶点, 11条边

- 问题的解
 - 顶点2,3,4,5构成最大团
 - 解的表示⟨0,0,1,1,1,1)⟩

最大团问题的解空间树

最大团问题的剪枝函数

- ■可行性约束函数
 - 剪枝条件: 当前的解不是团
- 假设顶点数为n, 在第i层
- ■限界函数
 - 界:已找到的最大团的顶点数(bestn)
 - 代价函数:

当前解的顶点数(cn)+未检查的顶点的数目(n-i)

■ 剪枝条件: *cn+n-i < bestn*

剪枝之可行性约束函数

剪枝之限界函数

最大团问题的运行实例(1)

最大团问题的运行实例(2)

最大团问题的运行实例(3)

最

最大团问题的运行实例(4)

最大团问题的

最大团问题的运行实例(5)

最大团问题的运行实例(6)

最大团问题的运行实例(7)

最大团问题的运行实例(8)

-

最大团问题的运行实例(9)

最大团问题的运行实例(9)


```
void Clique::Backtrack(int i) {
   if (i > n) {
      for (int j = 1; j \le n; j++) bestx[j] = x[j];
      bestn = cn;
      return;
                   否还有更好的剪枝策略?
   int OK = 1;
   for (int j = 1; j < i; j++)
      if (x[j] \&\& a[i][j] == 0) {OK = 0; break;}
   if
         复杂度分析
   if
           人团问题的回溯算法backtrack所需的计
        算时间为O(n2^n)。
```


最大独立集问题(最大团问题的推广)

- 最大独立集问题(Maximal Independent Set Problem)
 - 独立集: 任意两顶点都没边相连的顶点集合
 - 目标: 找出图中最大的独立集

最大独立集问题的求解思路

■问题的解

■ 顶点2, 3, 4, 5构成最大独立集

■ 解的表示⟨0,0,1,1,1,1)

■求解思路

等价于补图的最大团问题

提高回溯法效率的技巧

- 对输入的序列排序
 - 0-1背包(按单位价值由重自轻)
 - 最大团(按度数排)

- 设计精确的代价函数
 - 圆排列问题(数学推导)

本章小结

- 回溯法的概念
 - 一种通用的求解解法
 - 具有剪枝函数的深度优先生成法
- 回溯法的核心问题
 - 构造解空间树(子集树、排列树、n叉树)
 - 设计剪枝函数(可行性约束函数、限界函数)
- 回溯法的应用
 - 装载问题; 批处理作业调度; n后问题; 0-1背包问题; 最大团问题; 图的m着色问题; 旅行商问题、圆排列问题