TITULACIÓN: GIM

DPT. CCIA

2018-19

Ejercicios de Matemática Discreta

HOJA₁

1.Teoría de Grafos

Ejercicio1: Para los grafos G y H,

- a) Calcula la matriz de adyacencia A.
- b) ¿Cómo calculas el grado del vértice v₃, d(v₃), en A/G?
- c) Calcula la matriz de incidencia M.

$$H = (V_2, E_2)$$

Ejercicio2:

- a) M representa la matriz de incidencia de un grafo ¿dirigido o no dirigido? ¿Simple?
- b) ¿Existe algún bucle en el grafo? Si: indica vértice, No: explica porqué
- c) ¿Por qué la suma de las columnas da como resultado cero?

M	e ₁	e ₂	e ₃	e_4	e_5
х	1	0	0	-1	0
У	0	1	2	0	1
Z	-1	e ₂ 0 1 -1	0	1	-1

Ejercicio3: Define grafos isomorfos y las propiedades necesarias que deben tener los grafos para que lo

sean. Comprueba si los grafos a) G y H, b) T y U lo son.

.

 $T = (V_1, E_1)$

 $U = (V_2, E_2)$

Ejercicio4: Comprueba si los grafos T y U son bipartidos.

HOJA 1. EJERCICIOS. TEORÍA DE GRAFOS

Ejercicio5: Consideramos los siguientes grafos para estudiar la conexión entre vértices:

- a) Escribe una cadena simple que no sea camino
- b) Escribe un camino que no sea cadena simple
- c) ¿Toda cadena simple es un camino?
- d) ¿Todo camino es una cadena simple?
- e) ¿Una cadena cerrada puede ser un camino?
- f) ¿Un camino puede ser una cadena cerrada?
- g) ¿Toda cadena cerrada es un ciclo?
- h) ¿Todo ciclo es una cadena cerrada?
- i) Escribe los vértices a los que alcanza cada uno.
- j) ¿Están conectados los vértices v₁ y v₅?
- k) ¿Cualquier par de vértices está conectado?
- I) ¿Son grafos conexos?

Ejercicio6: Sea A matriz de adyacencia de un grafo G = (V,E), $V = \{v_1, v_2, v_3, v_4\}$

- a) Usando los conjuntos $\Gamma^{p+1}(v_i)$ calcula los vértices a los que alcanza el vértice v_1 mediante una cadena de longitud 2.
- b) ¿Cuál es la longitud máxima que existe entre los vértices de este grafo para determinar el alcance de cada uno?
- c) Calcula la $CC(v_1)$.
- d) Según el resultado de c) ¿puedes decir si el grafo es conexo?

Ejercicio7: Comprueba si el grafo Z es conexo.

Ejercicio8 Calcula la CC del vértice v₁ de un grafo G cuya matriz de accesibilidad es R, haciendo el producto $R(v_1) \otimes Q(v_1)$

$$R = \left[\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array} \right]$$