Examenul de bacalaureat național 2016

Proba E. c)

Matematică M pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{10} = 0.1, \ \frac{1}{100} = 0.01, \ \frac{1}{1000} = 0.001$	3p
	0.1 + 0.01 + 0.001 = 0.111	2p
2.	$f(x) \ge g(x) \Leftrightarrow 2x - 1 \ge x + 1$	2p
	$x \ge 2 \Leftrightarrow x \in [2, +\infty)$	3p
3.	$x^2 = 4x - 3 \Leftrightarrow x^2 - 4x + 3 = 0$	3p
	$x_1 = 1$ și $x_2 = 3$	2p
4.	$5\% \cdot x = \frac{x}{20}$, unde x este profitul anual al firmei	3 p
	$\frac{x}{20} = 5\ 000 \Rightarrow x = 100\ 000$ de lei	2p
5.	BC = 8 și lungimea înălțimii din A este 3	3p
	$\mathcal{A}_{\Delta ABC} = \frac{8 \cdot 3}{2} = 12$	2p
6.	$\sin 30^\circ = \frac{1}{2}$, $\cos 60^\circ = \frac{1}{2}$	2p
	$2\sin^2 30^\circ + 2\cos^2 60^\circ = 2 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} = 1$	3p

SUBIECTUL al II-lea (30 de puncte)

1.	$0 \circ (-3) = 0 \cdot (-3) + 3 \cdot 0 + 3 \cdot (-3) + 6 =$	2p
	=0+0-9+6=-3	3р
2.	$x \circ y = xy + 3x + 3y + 9 - 3 =$	2p
	= x(y+3)+3(y+3)-3=(x+3)(y+3)-3, pentru orice numere reale x şi y	3p
3.	$(-3) \circ x = ((-3)+3)(x+3)-3 =$	3p
	=0-3=-3, pentru orice număr real x	2p
4.	$x \circ (-2) = (x+3)((-2)+3)-3 = x+3-3 = x$	2p
	$(-2) \circ x = ((-2) + 3)(x + 3) - 3 = x + 3 - 3 = x$, pentru orice număr real x, deci $e = -2$ este	3 p
	element neutru al legii de compoziție "°"	
5.	$x \circ (-3) = -3$, pentru x număr real	2p
	$(-2016) \circ (-2015) \circ \circ (-3) = ((-2016) \circ (-2015) \circ \circ (-4)) \circ (-3) = -3$	3 p
6.	$x \circ x = (x+3)^2 - 3$, $x \circ x \circ x = (x+3)^3 - 3$	2p
	$(x+3)^3 - 3 = 5 \Leftrightarrow (x+3)^3 = 8 \Leftrightarrow x = -1$	3p

SUBIECTUL al III-lea (30 de puncte)

SUBII	SUBIECTUL al III-lea (30 de p	
	$\det A = \begin{vmatrix} 5 & 2 \\ 2 & 1 \end{vmatrix} = 5 \cdot 1 - 2 \cdot 2 =$	3 p
	=5-4=1	2p
2.	$= 5 - 4 = 1$ $A^{2} = A \cdot A = \begin{pmatrix} 29 & 12 \\ 12 & 5 \end{pmatrix}$	2p
	$A^{2} - 6A = \begin{pmatrix} 29 & 12 \\ 12 & 5 \end{pmatrix} - \begin{pmatrix} 30 & 12 \\ 12 & 6 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_{2}$	3 p
3.	$xA = \begin{pmatrix} 5x & 2x \\ 2x & x \end{pmatrix} \Rightarrow \det(xA) = \begin{vmatrix} 5x & 2x \\ 2x & x \end{vmatrix} = x^2$	3 p
	$x^2 = 4 \Leftrightarrow x_1 = -2 \text{ si } x_2 = 2$	2p
4.	$A^{2} - 6A + aI_{2} = \begin{pmatrix} a - 1 & 0 \\ 0 & a - 1 \end{pmatrix} \Rightarrow \det(A^{2} - 6A + aI_{2}) = \begin{vmatrix} a - 1 & 0 \\ 0 & a - 1 \end{vmatrix} =$	3р
	$=(a-1)^2 \ge 0$, pentru orice număr real a	2p
5.	$B = \begin{pmatrix} 6 & 2 \\ 2 & 2 \end{pmatrix}, \det B = \begin{vmatrix} 6 & 2 \\ 2 & 2 \end{vmatrix} = 8 \neq 0$	2p
	$B^{-1} = \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} \end{pmatrix}$	3р
6.	$\det X = \begin{vmatrix} a & b \\ b & a \end{vmatrix} = a^2 - b^2, \det A = 8 \Leftrightarrow a^2 - b^2 = 8 \Leftrightarrow (a - b)(a + b) = 8$	2p
	Cum a și b sunt numere întregi, obținem matricele $X = \begin{pmatrix} -3 & -1 \\ -1 & -3 \end{pmatrix}$, $X = \begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix}$, $X = \begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix}$, $X = \begin{pmatrix} -3 & 1 \\ 1 & 3 \end{pmatrix}$	3р