Computational Mathematics for Learning and Data Analysis: Introduction to the course

Antonio Frangioni

Department of Computer Science
University of Pisa
https://www.di.unipi.it/~frangio

mailto:frangio@di.unipi.it

Computational Mathematics for Learning and Data Analysis Master in Computer Science – University of Pisa

A.Y. 2022/23

Outline

Logistic

Motivation

Contents

Wrap up

- ▶ 1 course (9 CFU/ECTS)
- ▶ 1 program
- ▶ 1 exam
- ▶ 2 related but \neq areas of computational mathematics \implies 2 lecturers:

Federico Poloni (Numerical methods)

Dipartimento di Informatica, room 343 050 2213143, mailto:federico.poloni@unipi.it https://www.di.unipi.it/~fpoloni Office hours (ricevimento): upon request

Antonio Frangioni (Optimization)

Dipartimento di Informatica, room 327 050 2212789, mailto:frangio@di.unipi.it https://www.di.unipi.it/~frangio Office hours (ricevimento): Tuesday 9:00 - 11:00 Basic information 2

- ► Course Schedule
 - ► Wed 16:15 18:00 (Fib. C)
 - ► Thu 9:00 11:00 (Fib. C)
 - ► Fri 11:00 13:00 (Fib. C)
- ▶ Web page: https://elearning.di.unipi.it/course/view.php?id=307
- ► Team for lectures: https://teams.microsoft.com/l/team/19% 3aRWlQjgwH67w-hqttkLXv6nqXSMoIsciPP9nqJDxD_Hg1%40thread.tacv2/conversations?groupId=5d8c2945-bf87-4ecb-97c8-6ce69f73b692&tenantId=c7456b31-a220-47f5-be52-473828670aa1
- ► Exam: project (groups of 2) + oral exam

 Projects either "ML" or "no-ML", but no difference in work and grading

Outline

Logistic

Motivation

Contents

Wrap uj

Why this course 3

Huge amounts of data is generated and collected, but one has to make sense of it in order to use it: learn (from) it

- ► Take something big (data) and therefore unwieldy and produce something small and nimble that can be used in its stead ("actionable")
- ► That's a (mathematical) model
- ► Word comes from "modulus", diminutive from "modus" = "measure": "small measure", "measure in the small" (small is good)
- ► Known uses in architecture: proving beforehand that the real building won't collapse (e.g., Filippo Brunelleschi for the Cupola of the Cathedral of Florence)
- ► Countless many physical models afterwards (planes, cars, ...), but mathematics is cheaper than bricks / wood / iron ...
- Yet, mathematical problems can be difficult, too, for various reasons (and, of course, only truly viable after computers)
- ► And most of them remain (likely) difficult for quantum computers, too, https://www.smbc-comics.com/comic/the-talk-3

- ► How a mathematical model should be:
 - 1. accurate (describes well the process at hand)
 - 2. computationally inexpensive (gives answers rapidly)
 - 3. general (can be applied to many different processes)

Typically impossible to have all three!

- ► Two fundamentally different model building approaches:
 - analytic: model each component of the system separately + their interactions,
 (≈)accurate but hard to construct (need system access + technical knowledge)
 - 2. data-driven / synthetic: don't expect the model to closely match the underlying system, just to be simple and to (\approx)accurately reproduce its observed behaviour
- ► All models are approximate (the map is not the world), but for different reasons
- ► Analytic models: flexible shape, (relatively) few "hand-chosen" parameters
- ► Synthetic models: rigid shape, (very) many automatically chosen parameters
- Fitting: find the parameters of the model that best represents the phenomenon, clearly some sort of optimization problem (often a computational bottleneck)
- ► However, ML ≫ fitting: fitting minimizes training error ≡ empirical risk, but ML aims at minimizing test error ≡ risk ≡ generalization error!

- A phenomenon measured by one number y is believed to depend on a vector $x = [x_1, \dots, x_n]$ of other numbers
- ▶ Available (hopefully, large) set of observations $(y^1, x^1), \ldots, (y^m, x^m)$
- Horribly optimistic assumption: the dependence is linear, i.e.,

$$y = \sum_{i=1}^{n} w_i x_i + w_0 = wx + w_0$$

for fixed $n+1$ real parameters $w = [w_0, w_+ = [w_1, \dots, w_n]]$

- ▶ But $y^h = w_+ x^h + w_0$ for all h = 1, ..., m is not really true for any w and w_0
- Find the w for which it is less untrue (Linear Least Squares):

$$y = \begin{bmatrix} y^1 \\ \vdots \\ y^m \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x^1 \\ \vdots & \vdots \\ 1 & x^m \end{bmatrix}, \quad \min_{w} \mathcal{L}(w) = ||y - Xw||$$

- ▶ Minimize loss function $\mathcal{L}(w) = ||y Xw|| \equiv \text{empirical risk} \equiv \text{how much}$ the model fails the predict the phenomenon on the available observations
- ► Simple closed formula: $XX^Tw = X^Ty \implies w = (XX^T)^{-1}X^Ty$

Linear Estimation (cont.d)

6

- ► In Matlab, this is just c = y / X
- ► Trade-off: very simple fitting for exceedingly crude model ⇒ high risk
- ► Then, of course Nonlinear Estimation . . .

- ▶ A (large, sparse) matrix $M \in \mathbb{R}^{n \times m}$ describes a phenomenon depending on pairs (e.g., objects chosen from customers)
- Find "tall and thin" $A \in \mathbb{R}^{n \times k}$ and "fat and large" $B \in \mathbb{R}^{k \times m}$ ($k \ll n, m$) s.t. $M \approx AB \equiv$ find a few features that describe most of users' choices

- ▶ Minimize loss $\mathcal{L}(A, B) = ||M AB|| \equiv$ "amount of unexplained choices"
- Many applications (neural networks, community analysis, ...)
- \blacktriangleright A, B can be obtained from eigenvectors of M^TM and MM^T ...

- ▶ A (large, sparse) matrix $M \in \mathbb{R}^{n \times m}$ describes a phenomenon depending on pairs (e.g., objects chosen from customers)
- ▶ Find "tall and thin" $A \in \mathbb{R}^{n \times k}$ and "fat and large" $B \in \mathbb{R}^{k \times m}$ $(k \ll n, m)$ s.t. $M \approx AB \equiv$ find a few features that describe most of users' choices

- ▶ Minimize loss $\mathcal{L}(A, B) = ||M AB|| \equiv$ "amount of unexplained choices"
- Many applications (neural networks, community analysis, . . .)
- \blacktriangleright A, B can be obtained from eigenvectors of M^TM and MM^T ...
 - ... but that's a huge, possibly dense matrix
- Efficiently solving this problem requires:
 - 1. low-complexity computation (of course)
 - 2. avoiding ever explicitly forming M^TM and MM^T (too much memory)
 - 3. exploiting structure of M (sparsity, similar columns, ...)
 - 4. ensuring the solution is numerically stable

Original (512
$$\times$$
 512)

$$k = 1$$

$$k = 10$$

$$k = 25$$

$$k = 50$$

$$k = 1$$

$$k = 10$$

k = 1

k = 10

Original (512 \times 512)

k = 25

k = 1

k = 10

$$k = 50$$

- Want to linearly separate the two sets (diagnose the next patient)
- Countless many applications (medical diagnosis, OCR, spam filtering, fraud detection, marketing, image processing . . .)

- Want to linearly separate the two sets (diagnose the next patient)
- ► Countless many applications (medical diagnosis, OCR, spam filtering, fraud detection, marketing, image processing . . .)
- But which hyperplane do we choose?

- Want to linearly separate the two sets (diagnose the next patient)
- ► Countless many applications (medical diagnosis, OCR, spam filtering, fraud detection, marketing, image processing . . .)
- But which hyperplane do we choose?
- ▶ Intuitively, the margin is important (and theory supports the intuition)

- Want to linearly separate the two sets (diagnose the next patient)
- Countless many applications (medical diagnosis, OCR, spam filtering, fraud detection, marketing, image processing . . .)
- But which hyperplane do we choose?
- Intuitively, the margin is important (and theory supports the intuition)
- ► Larger margin ⇒ more "robust" classification

- ▶ Distance of // hyperplanes (w_+ , w_0) and (w_+ , w_0') is $|w_0 w_0'| / ||w_+||$
- We can always take the hyperplane in "the middle" + scale w $\implies w_+x^h+w_0 > 1$ if $y^h=1$, $w_+x^h+w_0 < -1$ if $y^h=-1$
- The maximum margin separating hyperplane is the solution of $\min_{w} \{ || w_{+} ||^{2} : y^{h}(w_{+}x^{h} + w_{0}) \geq 1 \quad h = 1, \dots, m \}$ (margin = $2 / || w_{+} ||$, "2" because I say so), assuming any exists
- ► What if it does not? Support Vector Machine

(SVM-P)
$$\min_{w} ||w_{+}||^{2} + C\mathcal{L}(w) = \sum_{h=1}^{m} \max\{1 - y^{h}(w_{+}x^{h} + w_{0}), 0\}$$

C weighs loss (of separation) against margin = regularization R(w) (how?)

 \triangleright \mathcal{L} convex but nondifferentiable: reformulation

(SVM-P)
$$\min_{w,\xi} ||w_+||^2 + C \sum_{h=1}^m \xi_h$$

 $y^h(w_+ x^h + w_0) \ge 1 - \xi_h$, $\xi_h \ge 0$ $h = 1, \dots, m$

"complex" but smooth (linear) constraints

► Equivalently, one can solve the dual problem (??? what ???)

$$\begin{aligned} \text{(SVM-D)} \quad & \max_{\alpha} \; \sum_{h=1}^{m} \alpha_h - \frac{1}{2} \sum_{h=1}^{m} \sum_{k=1}^{m} \alpha_h \langle \, x^h \,, \, x^k \, \rangle \alpha_k \\ & \sum_{i=1}^{m} y^h \alpha_h = 0 \\ & 0 \leq \alpha_h \leq C \\ & h = 1, \ldots, m \end{aligned}$$

a convex constrained quadratic program, but with "simple constraints"

- Solve one problem by solving an apparently different one: α^* optimal for (SVM-D) $\implies w_+^* = \sum_{h=1}^m \alpha_h^* y^h x^h$ optimal for (SVM-P)
- ▶ Dual formulation \implies kernel trick: input space \rightsquigarrow (larger) feature space $\langle x^h, x^k \rangle \rightsquigarrow \langle \phi(x^h), \phi(x^k) \rangle$

where points are hopefully "more linearly separable"

- ► Feature space can be infinite-dimensional, provided that scalar product can be (efficiently) computed
 - ► Efficient algorithms: (SVM-P) or (SVM-D) (or both), complexity, ...

Outline

Logistic

Motivation

Contents

Wrap up

▶ ... of Computational Mathematics for Learning and Data Analysis

... of Computational Magic for Learning and Data Analysis

- ► There are two main quests in the course:
 - get a general understanding of several different classes of numerical algorithms and their underlying mathematical principles
 - 2. be able to actually implement, debug, and tune a few of them
- ► Algorithms are mathematical objects ⇒ reasoning about algorithms often is proving theorems (+ some hand-waving)
- ▶ All the more when the algorithms deal with nontrivial mathematical objects
- ► This is (mostly) done in the optional "Mathematically speaking" slides
- Learning theorems' proofs by heart is not a subject of the exam, not even the few (very simple) ones we'll actually see in details during lectures
- ▶ But you will have a lot more fun if you face side quests seriously
- Exercises are there for the same reason

Syllabus 14

- Linear algebra and calculus background
- Unconstrained optimization and systems of equations
- ▶ Direct and iterative methods for linear systems and least-squares
- ▶ Numerical methods for unconstrained optimization
- ▶ Iterative methods for computing eigenvalues
- ► Constrained optimization and systems of equations
- ▶ Duality (Lagrangian, linear, quadratic, conic, ...)
- ► Numerical methods for constrained optimization
- ▶ Software tools for numerical computations (Matlab, Octave, ...)
- ► Sparse hints to AI/ML applications

15

- Slides prepared by the lecturers + recording of lectures
- Matlab programs + data

Course material

- L.N. Trefethen, D. Bau Numerical Linear Algebra, SIAM, 1997
- ▶ J. Demmel Applied Numerical Linear Algebra, SIAM, 1996
- S. Boyd, L. Vandenberghe Convex optimization, Cambridge Un. Press, 2008 (http://web.stanford.edu/~boyd/cvxbook/)
- L. Eldén Matrix Methods in Data Mining and Pattern Recognition, SIAM, 2007
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty Nonlinear programming: theory and algorithms, Wiley & Sons, 2006
- D.G. Luenberger, Y. Ye Linear and Nonlinear Programming, Springer International Series in Operations Research & Management Science, 2008
- J. Nocedal, S. Wright Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2006
- Lecture notes in preparation, maybe available before the end of the course

Outline

Logistic

Motivation

Contents

Wrap up

- ► Learning as a computational, hence mathematical, process
- ► Mathematical foundations of many important learning processes

 ≡ nonlinear optimization and numerical analysis techniques
- ► Easy problems (linear, quadratic, conic, convex) or local optima, because size is huge (hard because large, not hard because hard)
- ▶ Besides, in ML the global optimal solution can be bad!
- ▶ Emphasis on what can be done by linear algebra
- Focus on methods and software tools, theory only as needed to understand
- ▶ Applications to be seen in "Machine Learning" and/or "Data Mining" (in parallel, you can/are supposed to do it, we talk to each other)