-		N		-		
-		Blu	0		Order No.	1
-	2 nd	1st			Colour of the line	1
	295		2 nd	1st	Vernier No.	
	295° 20 1	115°20	292° 20'	1st = 20.	Main scale (M)	Surroy county
	w 1	57	0 14	40	Vernier (V)	
	295° 32′ 20″ (=b ₁)	115° 38′ 40″	29 2° 33′ 20″ (-b ₁)	112° 33′ 20″ (= a ₁)	Left Tot	Table 2 Determination of the angles of diffraction for the
	2 %	104° 40'	287°401	107°20'	with the telescope at the al Main scale (M)	gles of diffra
104	300	ی	25	36	he Right Vernier (V)	Table 2
	285° 10′ 0″ (=b ₂)	104° 54′ 20″ (= a ₂)	287° 48' 20'1	107° 32' (= a ₂)	Total (T=M+V)	lines of different colour and order
	(b ₁ ~b ₂) (=b)	(a ₁ ~ a ₂) (=a)	(b ₁ -b ₂)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Difference between the left and right readings of vernier (20)	ur and order
		100 33 20		4. 23,19"	Mean (20) $\left(\frac{a+b}{2}\right)$	
		5. 16 40"		2° 26' 35"	Angle of Diffraction (θ)	
5				3	-b	w CamScann

	2		-	Order No.		
	Gree	n		Colour of the line		
CONTRACTOR OF THE PARTY OF THE		Charles of the latest states o		Vernier No.		
296°20	1st	293		Main scale (M)		
いけ	G	31	Ø	Vernier (V)		
296° 31′ 40″	(= a ₁)	293 10 20" (=b ₁)	(= a ₁)	To (T=N		
283° 40	163" 40"	ر الا الا	106 40	with the telescope at the Main [+V] scale (M)		
5	40	40	50 %	Right Vernier (V)		
283° 55'	103° 53' 20' (= a ₂)	287° 14′20″ (=b ₂)	106 59 20" (= a ₂)	t Total (T=M+V)		
(b ₁ ~b ₂) (b ₁ ~b ₂) (=b)	1 2° 31 40 (a ₁ -a ₂) (=a)	(b ₁ -b ₂) (=b)	6° 2′ 20″ (a ₁ - a ₂) (=a)	between the left and right readings of vernier (28)		
The second secon			5 59 10	$\frac{(2\theta)}{(\frac{a+b}{2})}$		
			2° 59' 35"	Diffraction (θ)		

105

Diffraction Grating

10.	e line	Yo.		Readings for the diffracted images with the telescope at the				Difference between the	Mean	Angle of	
Z	5	1			eft	121 (12)	Rig	ht	left and	(2θ)	Diffraction (θ)
Order No.	Colour of the line	Vernier No.	Main scale (M)	Vernier (V)	Total (T=M+V)	Main scale (M)	Vernier (V)	Total (T=M+V)	right readings of vernier (2θ)	$(\frac{a+b}{2})$	
1	Yellow	1st	113° 20′	2	(= a ₁)	106°40'	3	106° 41' (= a ₂)	6° 39'40" (a _{1~} a ₂)		
2		2 nd	293 20	9	293° 23¹ (=b ₁)	286 40	49	286 56 20" (=b ₂)	(=a) 6°26'40' (b ₁ ~b ₂) (=b)		3° 16′ 35′
		1st	116° 40′	15	(= a ₁)	103°20′	25	103° 28° 20° (= a ₂)	(a _{1~} a ₂) (=a)		0 /
	-	2 nd	296° 40'	13	296° 44'20"	283° 20'	19	283° 26 20"		_ \3° 17'26	6 38 40

106

Diffraction and Results

Table 3

Determination of wavelength of unknown lines

no. of lines per cm of the grating surface (N) (given)	Colour of the line	Order no. (n)	Angle of diffraction (θ) (From Table 2)	Wavelength of the spectral line(λ) (Å)	Mean λ (Å)
		1	2° 26' 35"	4330.8	4501.8
	Blue	2	5 16 40"	4672.8	
984	11 /2 100	1	2° 59′35″	5305	5433
	Green	2	6° 17' 5"	5561	300
	(1)	1	3° 16′ 35″	5806.7	5842.3
	Yellow	2	6 38 40"	5877.9	

Table 4

Determination of Resolving power and dispersive power of the grating

Colour of the line	Order No.	Angle of diffraction θ (from Table 2)	No. of grating lines illuminated by the collimator (N)	Resolving power of the grating = nN	Angular dispersion of the grating = $\frac{nN}{2.54\cos\theta}$
		1 _1	2500	2500	985.147
Blue	1	2° 26′ 35″	7500	5000	1976.885
	2	5° 16' 40"	2500	2500	985.596
Green	1	2° 59′ 35″	2500	5000	1980.406
	2	6 17 5"		2500	985.863
Yellow	1 2	3° 16' 35"	2500	5000	1981. 815

Error carculation

The wavelength of unknown spectral line is determined from the relation:

$$\lambda = \frac{\sin \theta}{nN}$$

Therefore, the maximum proportional error in the determination of λ is

$$\frac{\delta \lambda}{\lambda} = \frac{\cos \theta}{\sin \theta} \frac{\delta \theta}{\sin \theta}$$

$$\frac{\delta \lambda}{\lambda} = \frac{\delta \theta}{\tan \theta} \qquad \dots (A)$$

 2θ measured from the difference between two readings corresponding to two positions of the telescope. Hence $\delta\theta$ is equal to the value of one vernier constant (in radian). Substituting the measured values of θ and the value of $\delta\theta$ in eqn. (A) and multiplying by 100, the maximum percentage error in λ can be calculated. $\delta\theta = 96.96 \times 16^{-6}$

Maximum percentage ennon in value of & in different casear.

1st onder:
$$\frac{\delta \lambda}{\lambda} \times 100 = \frac{96.96 \times 10^{-6} \times 100}{0.043} = 0.227\%$$

2nd Orden:
$$\frac{\delta \lambda}{\lambda}$$
 x100 = 96.96 x16-6 x100 = 0.105%

Gneen

1st onder:
$$\frac{\delta \lambda}{\lambda} \times 100 = 96.96 \times 10^{-6} \times 100 = 0.185\%$$

2nd Onder:
$$\frac{d\lambda}{\lambda}$$
 x100 = $\frac{96.96 \times 10^{-6} \times 100}{0.110} = 0.088\%$

Yellow

1 st Onder :
$$\frac{d\lambda}{\lambda}$$
 x100 = $\frac{96.96 \times 10^{-6} \times 100}{0.057}$ = 0.169%.
2nd Order: $\frac{d\lambda}{\lambda}$ x100 = $\frac{96.96 \times 10^{-6} \times 100}{0.116}$ = 0.083%.