Содержание

1	Ура	авнени	ия первого порядка	2
	1.1	Определения		2
		1.1.1	Обыкновенные дифференциальные уравнения первого	
			порядка	2
		1.1.2	Частное решение обыкновенного дифференциального	
			уравнения первого порядка	2
		1.1.3	Общее решение обыкновенного дифференциального урав-	
			нения первого порядка	2
		1.1.4	Общий интеграл дифференциального уравнения пер-	
			вого порядка	2
		1.1.5	Уравнение с разделяющимися переменными первого	
			порядка	3
		1.1.6	Обыкновенное дифференциальное уравнение первого	
			порядка в симметричной форме	3
		1.1.7	Линейное дифференциальное уравнение первого порядка	3
		1.1.8	Задача Коши для дифференциального уравнения пер-	
			вого порядка	3
	1.2	Теоремы и алгоритмы		4
		1.2.1	Алгоритм решения уравнений с разделяющимися пе-	
			ременными первого порядка	4

1 Уравнения первого порядка

1.1 Определения

1.1.1 Обыкновенные дифференциальные уравнения первого порядка

Определение обыкновенного дифференциального уравнения первого порядка

Обыкновенным дифференциальным уравнением первого порядка называется уравнение вида

$$F(x, y, y') \equiv 0$$

1.1.2 Частное решение обыкновенного дифференциального уравнения первого порядка

Определение частного решения обыкновенного дифференциального уравнения первого порядка

(1) $F(x,y,y') \equiv 0$ — обыкновенное дифференциальное уравнение первого порядка.

Частным решением обыкновенного дифференциального уравнения первого порядка называется непрерывно дифференцируемая функция $\varphi(x)$, при подстановки которой в уравнение (1) получим тождество

$$\varphi^{'}(x) \equiv f(x, \varphi(x))$$

1.1.3 Общее решение обыкновенного дифференциального уравнения первого порядка

Определение общего решения обыкновенного дифференциального уравнения первого порядка

Множество всех решений обыкновенного дифференциального уравнения первого порядка называется его общим решением.

1.1.4 Общий интеграл дифференциального уравнения первого порядка

Пусть $y^{'} = f(x,y)$ — дифференциальное уравнение первого порядка.

Определение общего интеграла дифференциального уравнения первого порядка:

Общее решение уравнения (1) в неявном виде

$$F(x,y) = C$$

называется общим интегралом уравнения (1).

1.1.5 Уравнение с разделяющимися переменными первого порядка

Определение уравнения сразделяющимися переменными первого порядка

Дифференциальным уравннием с разделяющимися переменными первого порядка называется уравнение вида

$$y' = f_1(x)f_2(y),$$

где $f_1(x)$ и $f_2(y)$ — заданные функции.

1.1.6 Обыкновенное дифференциальное уравнение первого порядка в симметричной форме

Определение обыкновенного дифференциального уравнения первого порядка в симметричной форме

Обыкновенное дифференциальное уравнение первого порядка в симметрицной форме имеет вид

$$A(x,y)dx + B(x,y)dy = 0,$$

где A и B — заданные функции двух переменных, причём переменные x и y равноправны.

1.1.7 Линейное дифференциальное уравнение первого порядка

Определение линейного дифференциального уравнения первого порядка

Линейным дифференциальным уравнением первого порядка называется уравнение вида

$$a_0(x)Y' + a_1(x)y = f(x),$$

где x — неизвестнвя пееменная, y=y(x) — неизывестная функция, $a_0(x)$ и $a_1(x)$ — известные непрерывные функции.

1.1.8 Задача Коши для дифференциального уравнения первого порядка

Определение задачи Коши для дифференциального уравнения первого порядка

Пусть $y^{'}=f(x,y)$ — дифференциальное уравнение первого порядка и $y(x_0)=y_0$ — его начальное условие. Тогда задача Коши для него имеет вид

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

где x_0, y_0 — заданные числа.

1.2 Теоремы и алгоритмы

1.2.1 Алгоритм решения уравнений с разделяющимися переменными первого порядка

1. Переходим к дифференциалам:

$$y' = \frac{dy}{dx}$$
 $\frac{dy}{dx} = f_1(x)f_2(y);$

2. Делим переменные:

$$\frac{dy}{dx} = f_1(x)f_2(y) \quad | \cdot dx \frac{1}{f_2(y)}$$

$$\frac{dy}{f_2(y)} = f_1(x)dx$$

3. Вычисляем интегралы:

$$\int \frac{dy}{f_2(y)} = \int f_1(x)dx + C,$$

где $C \in R$ и $\int \frac{dy}{f_2(y)} = F_2(y), \ \int f_1(x) dx = F_1(x).$

Получим:

(3)
$$F_2(y) = F_1(x) + C$$

4. Разрешаем последнее уравнение относительно у:

(4)
$$y = \varphi(x, C), C \in R$$

где $\varphi(x,C)$ — общее решение.

5. Other: $\varphi(x,C)$.