

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

Skrivtid: 08:00–13:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Del A på tentamen utgörs av de tre första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De tre följande uppgifterna utgör del B och de tre sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

DEL A

- 1. Planet H_1 ges av ekvationen 3x + 2y + 2z = 0, och H_2 ges av ekvationen x + 2y 2z = 0. Linjen L är skärningen av H_1 och H_2 .
 - (a) Bestäm en bas för skärningslinjen L. (2 p)
 - (b) Avgör om linjen L är med i delrummet $V = \operatorname{Span}(\vec{u}, \vec{v}, \vec{w})$, där

$$\vec{u} = \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \quad \text{och} \quad \vec{w} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}.$$

(a) För att bestämma L löser vi ekvationssystemet

$$\begin{cases} x + 2y - 2z &= 0 \\ 3x + 2y + 2z &= 0 \end{cases} \Leftrightarrow \begin{cases} x + 2y - 2z &= 0 \\ -4y + 8z &= 0 \end{cases}.$$

Härav

$$\left[\begin{array}{c} x \\ y \\ z \end{array}\right] = t \left[\begin{array}{c} -2 \\ 2 \\ 1 \end{array}\right].$$

Alltså är $L=\operatorname{Span}\left(\left[\begin{array}{c} -2\\2\\1 \end{array}\right]\right)$. Därmed bildar vektorn $\vec{f}=\left[\begin{array}{c} -2\\2\\1 \end{array}\right]$ en bas för L.

(b) Linjen L är en del av delrummet $V = \operatorname{Span}(\vec{u}, \vec{v}, \vec{w})$ om och endast om basvektorn f ligger i V dvs om och endast om \vec{f} är en linjär kombination av vektorerna $(\vec{u}, \vec{v}, \vec{w})$. Ekvationen

$$x_1\vec{u} + x_2\vec{v} + x_3\vec{w} = \vec{f}$$

ger ekvationssystemet

$$\begin{cases} 4x_1 + 3x_2 + x_3 &= -2 \\ 2x_2 - 2x_3 &= 2 \\ x_1 + x_2 &= 1 \end{cases} \Leftrightarrow \begin{cases} x_1 + x_2 &= 1 \\ 2x_2 - 2x_3 &= 2 \\ 4x_1 + 3x_2 + x_3 &= -2 \end{cases}$$
$$\Leftrightarrow \begin{cases} x_1 + x_2 &= 1 \\ x_2 - x_3 &= 1 \\ -x_2 + x_3 &= -6 \end{cases} \Leftrightarrow \begin{cases} x_1 + x_2 &= 1 \\ x_2 - x_3 &= 1 \\ 0 &= -5. \end{cases}$$

Eftersom systemet saknar lösning ligger inte \vec{f} i V. Därmed är linjen L inte en del av delrummet V.

2. Klimatstatistiken visar att vintermedeltemperaturen i Stockholms län förändras enligt följande tabell (temperaturen är avrundat till heltal grader)

Period 0 (1961-1970) $-5^{\circ}C$

Period 1 (1971-1980) $-2^{\circ}C$

Period 2 (1981-1990) $-3^{\circ}C$

Period 3 (1991-2000) $-1^{\circ}C$

Period 4 (2001-2010) $-1^{\circ}C$

Bestäm en funktion på formen T(k)=Ak+B som stämmer bäst med dessa värden i minstakvadratmening. Här är k nummer av perioden och T(k) är medeltemperaturen i period k.

(4 p)

Vi substituerar mätdata i ekvationen Ak + B = T(k) och för följande ekvationssystem

$$0A + B = -5$$

 $1A + B = -2$
 $2A + B = -3$
 $3A + B = -1$
 $4A + B = -1$.

Detta kan skrivas på matrisformen

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} -5 \\ -2 \\ -3 \\ -1 \\ -1 \end{bmatrix}.$$

Normalekvationen fås genom att vi multiplicerar båda leden, från vänster, med systemmatrisens transponat. Dvs vi får

$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -5 \\ -2 \\ -3 \\ -1 \\ -1 \end{bmatrix}.$$

Detta ger oss

$$\begin{bmatrix} 30 & 10 \\ 10 & 5 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} -15 \\ -12 \end{bmatrix},$$

som har lösningen A = 9/10, B = -21/5.

Därmed blir $T(k) = \frac{9}{10}k - \frac{21}{5}$

3. Låt

$$A = \left[\begin{array}{rrr} 3 & -4 & 8 \\ 2 & -3 & 8 \\ 0 & 0 & 1 \end{array} \right].$$

- (a) Bestäm alla egenvärden och egenvektorer till matrisen A.
- (2 p)

- (b) Beräkna $A^{11}\vec{v}$ där $\vec{v} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$.
- (a) Egenvärdena får vi genom att lösa den karakteristiska ekvationen:

$$\det(A - \lambda I) = 0 \Rightarrow \begin{vmatrix} (3 - \lambda) & -4 & 8 \\ 2 & (-3 - \lambda) & 8 \\ 0 & 0 & (1 - \lambda) \end{vmatrix} = 0$$

$$\Rightarrow (1 - \lambda)(\lambda^2 - 1) = 0 \Rightarrow (1 - \lambda)(\lambda - 1)(\lambda + 1) = 0.$$

Alltså har matrisen A två egenvärden, $\lambda_1=1$ (dubbelrot till ekvationen) och $\lambda_2=-1$.

De egenvektorer som hör till egenvärdet $\lambda_1=1$ får vi genom att lösa $(A-\lambda_1 I)\vec{u}=\vec{0}$ dvs.

$$\begin{bmatrix} 2 & -4 & 8 \\ 2 & -4 & 8 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Detta gör systemet

$$\begin{cases} 2x - 4y + 8z &= 0 \\ 2x - 4y + 8z &= 0 \Leftrightarrow \begin{cases} x - 2y + 4z &= 0 \\ 0 &= 0 \end{cases} \\ 0 &= 0 \end{cases}$$

Härav

$$\left[\begin{array}{c} x \\ y \\ z \end{array}\right] = s \left[\begin{array}{c} 2 \\ 1 \\ 0 \end{array}\right] + t \left[\begin{array}{c} -4 \\ 0 \\ 1 \end{array}\right].$$

Egenvektorerna som hör till egenvärdet $\lambda_1 = 1$ är alla vektorer av typ $s \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} +$

$$t \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix} \operatorname{d\ddot{a}r} s \neq 0 \operatorname{eller} t \neq 0.$$

På samma sätt får vi de egenvektorer som hör till $\lambda_2 = -1$:

$$(A - \lambda_2 I)\vec{u} = \vec{0} \Leftrightarrow \begin{bmatrix} 4 & -4 & 8 \\ 2 & -2 & 8 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Detta gör systemet

$$\begin{cases} 4x - 4y + 8z &= 0 \\ 2x - 2y + 8z &= 0 \\ 2z &= 0 \end{cases} \Leftrightarrow \begin{cases} x - y + 2z &= 0 \\ 0 &= 0 \\ z &= 0 \end{cases}$$

Härav

$$\left[\begin{array}{c} x \\ y \\ z \end{array}\right] = t \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array}\right].$$

Egenvektorerna som hör till egenvärdet $\lambda_2=-1$ är alla vektorer av typ $t \left[egin{array}{c} 1 \\ 1 \\ 0 \end{array} \right]$ där $t \neq 0$.

(b) Först diagonaliserar vi matrisen A:

$$A = PDP^{-1} \operatorname{där} P = \begin{bmatrix} 2 & -4 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \operatorname{och} D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Härav $A^{11} = PD^{11}P^{-1}$, men eftersom

$$D^{11} = \begin{bmatrix} 1^{11} & 0 & 0 \\ 0 & 1^{11} & 0 \\ 0 & 0 & (-1)^{11} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = D$$

$$D^{11} = \begin{bmatrix} 1^{11} & 0 & 0 \\ 0 & 1^{11} & 0 \\ 0 & 0 & (-1)^{11} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = D$$
 har vi $A^{11} = PD^{11}P^{-1} = PDP^{-1} = A$. Därmed $A^{11}\vec{v} = A\vec{v} = \begin{bmatrix} 3 & -4 & 8 \\ 2 & -3 & 8 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 8 \\ 1 \end{bmatrix}$.

DEL B

4. Låt U vara lösningsmängden, i \mathbb{R}^3 , av ekvationen 2x+y=0. Låt $\vec{v}=\begin{bmatrix} 1 \\ 0 \\ 115 \end{bmatrix}$.

- (a) Bestäm en ortonormalbas β till U (2 p)
- (b) Utvidga basen β till en ortonormalbas för \mathbb{R}^3 . (1 p)
- (c) Bestäm vektorn $\operatorname{proj}_{U}(\vec{v})$. (1 p)
- (a) En parametrisering av planet ges av (x, y, z) = (1, -2, 0)t + (0, 0, 1)s. Dvs vektorerna $v_1 = (0, 0, 1), v_2 = (1, -2, 0)$ är en bas for U. Vi observerar direkt att $v_1 \cdot v_2 = 0$, dvs dessa är ortogonala. Det räcker nu att dela varje vektor med sin längd för att ortonormalisera detta. Svar:

$$u_1 = \frac{1}{\sqrt{5}}(1, -2, 0), \qquad u_2 = (0, 0, 1).$$

(b) För utvidgning till \mathbb{R}^3 behöver vi hitta ytterligare en vektor som är ortogonal till u_1,u_2 , dvs ortogonal mot planet. Detta ges av normalen till planet, dvs $v_3=(2,1,0)$, som kan då delas med sin längd för att få längd ett. Svar:

$$u_1 = \frac{1}{\sqrt{5}}(1, -2, 0), \qquad u_2 = (0, 0, 1), \qquad u_3 = \frac{1}{\sqrt{5}}(2, 1, 0),$$

(c) Projektionen ges av

$$\operatorname{Proj}_{U} v = (u_1 \cdot v)u_1 + (u_2 \cdot v)u_2,$$

där

$$u_1 \cdot v = \frac{1}{\sqrt{5}}(1, -2, 0) \cdot (1, 0, 115) = \frac{1}{\sqrt{5}}, \quad u_2 \cdot v = (0, 0, 1) \cdot (1, 0, 115) = 115$$

Vi får då

$$\operatorname{Proj}_{U} v = \frac{1}{\sqrt{5}} u_{1} + 115 u_{2} = \frac{1}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} (1, -2, 0) + 115 (0, 0, 1) = (\frac{1}{5}, \frac{-2}{5}, 115)$$

5. Finns det något värde på a för vilket de tre planen

$$ax + y - z = 1$$
, $y + 2z = 7$, $x + z = 2$,

har en rät linje gemensam? Bestäm i så fall för alla sådana a denna linjes ekvation på parameterform. (4 **p**)

Planens gemensamma punkter får vi genom att lösa ekvationssystemet

$$\begin{cases} ax + y - z &= 1\\ y + 2z &= 7\\ x + z &= 2. \end{cases}$$

Låt A vara systemets koefficientmatris. Då är

$$\det(A) = \begin{vmatrix} a & 1 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{vmatrix} = a + 3.$$

Om $det(A) \neq 0$ har systemet exakt en lösning och därmed har planen en gemensam punkt. Därför undersöker vi fallet

$$det(A) = 0 \Leftrightarrow a = -3.$$

För a = -3 har vi följande ekvationssystem

$$\begin{cases}
-3x + y - z &= 1 \\
y + 2z &= 7 \text{ (ekv1 och ekv3 byter plats)} \Leftrightarrow \begin{cases}
x + z &= 2 \\
y + 2z &= 7 \\
-3x + y - z &= 1
\end{cases}$$

$$(3*\text{ekv1} + \text{ekv3}) \Leftrightarrow \begin{cases} x+z &= 2\\ y+2z &= 7 \Leftrightarrow \\ y+2z &= 7 \end{cases} \Leftrightarrow \begin{cases} x+z &= 2\\ y+2z &= 7\\ 0 &= 0. \end{cases}$$

Härav z = t, y = 7 - 2t, x = 2 - t eller

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}.$$

Alltså, om a=-3, har de tre planen en gemensam linje vars ekvation på parameterform

- 6. Avbildningen $R: \mathbb{R}^3 \to \mathbb{R}^3$ är en rotation med följande egenskaper: rotationsaxeln l är linjen $x_1 = x_2 = x_3$; positiva x_1 -axeln avbildas till positiva x_2 -axeln; positiva x_2 -axeln avbildas till positiva x_1 -axeln.
 - (a) Bestäm matrisrepresentationen av avbildningen R i standardbas. (1 p)
 - (b) Bestäm alla egenvärdena och egenvektorer av avbildningen. (1 p)
 - (c) I planet som är vinkelrätt mot linjen l verkar avbildningen R som en rotation. Bestäm rotationsvinkeln. (2 p)

(a) Låt R beteckna avbildningen och A avbildningens matris. Då gäller

$$R(1,0,0) = (0,1,0),$$
 $R(0,1,0) = (0,0,1)$ $R(0,0,1) = (1,0,0).$

Ashildring and matrix in d8

Avbildningens matris är då

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

(b) Ekvationen

$$\det(A-\lambda I)=0 \Leftrightarrow \det \begin{bmatrix} -\lambda & 0 & 1 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda \end{bmatrix} = 0 \Leftrightarrow -\lambda^3+1=0$$

har en reell rot $\lambda=1$. Alltså har avbildningen ett egenvärde $\lambda=1$. För att få tillhörande egenvektorer löser vi ekvationen

$$(A - \lambda I)X = \mathbf{0} \Leftrightarrow \begin{bmatrix} -1 & 0 & 1\\ 1 & -1 & 0\\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

som ger egenvektorer $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \qquad t \neq 0$

(c) Betrakta en vektor i planet ortogonal mot linjen l. En sådan vektor ges av ex.vis v=(1,-1,0) som är vinkelrät mot normalen tip planet some ges av (1,1,1). Det räcker att bestämma vad R avbildar denna vektor till: R(1,-1,0)=(0,1,-1)=:u. För att bestämma vinkeln mellan dessa vektorer v,u så gäller det att bestämma $|u||v|\cos\theta=u\cdot v$, som ger $\sqrt{2}\sqrt{2}\cos\theta=-1$, alltså $\cos\theta=-1/2$ och $\theta=2\pi/3$.

DEL C

- 7. (a) Bestäm en 2×2 -matris A vars nollrum och kolonnrum överensstämmer. (2 p)
 - (b) Visa att det inte finns någon 3×3 -matris med ovanstående egenskap. (2 p)
 - (a) Anta att A är en matris vars nollrum och kolonnrum överensstämmer. Låt Null(A) och Col(A) beteckna matrisens nollrum resp. kolonnrum. Enligt antagandet är Null(A) = Col(A) och därmed dim(Null(A))=dim(Col(A)). Enligt dimensionssatsen för en 2×2 matris gäller dim(Null(A))+dim(Col(A))=2. Därför är dim(Null(A))=1 och dim(Col(A))=1.

Eftersom $\dim(\operatorname{Col}(A))=1$ har matrisen minst en kolonn skild från nollvektorn. Anta att $\begin{bmatrix} a \\ b \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ är matrisens första kolonn. Då har matrisen följande form

$$A = \left[\begin{array}{cc} a & ka \\ b & kb \end{array} \right], k \in \mathbb{R}.$$

Alltså vektorn är $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ en bas i $\operatorname{Col}(A)$. Vi ska bestämma k så att nollrum och kolonnrum överensstämmer. Eftersom $\operatorname{Null}(A) = \operatorname{Col}(A)$ ligger $\begin{bmatrix} a \\ b \end{bmatrix}$ i

Null(A). Därför gäller $A\vec{v} = \vec{0}$ eller

$$\left[\begin{array}{cc} a & ka \\ b & kb \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \Leftrightarrow \left[\begin{array}{c} a^2 + kab \\ ab + kb^2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right].$$

Härav

$$\begin{cases} a(a+kb) &= 0\\ b(a+kb) &= 0 \end{cases},$$

som ger $k = \frac{-a}{b}$ om $b \neq 0$. För detta k blir

$$A = \begin{bmatrix} a & \frac{-a^2}{b} \\ b & -a \end{bmatrix}, \text{ där } b \neq 0, \text{ och } \begin{bmatrix} a \\ b \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Några exempel på A:

1.
$$a = 0, b = 1 \text{ ger } A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
, där Null $(A) = \text{Col}(A) = \text{Span}(\begin{bmatrix} 0 \\ 1 \end{bmatrix})$.
2. $a = 1, b = 1 \text{ ger } A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$, där Null $(A) = \text{Col}(A) = \text{Span}(\begin{bmatrix} 1 \\ 1 \end{bmatrix})$.

Anmärkning. Vi kan anta att andra kollonen är skild från nollvektorn och upprepa resonemang. Då får vi

$$A = \begin{bmatrix} -b & a \\ -\frac{b^2}{a} & b \end{bmatrix} \text{ d\"ar } a \neq 0, \text{ och } \begin{bmatrix} a \\ b \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Exempelvis:

$$a=1,b=0$$
 ger $A=\left[egin{array}{cc} 0&1\\0&0 \end{array}
ight]$, där $\mathrm{Null}(A)=\mathrm{Col}(A)=\mathrm{Span}(\left[egin{array}{cc} 1\\0 \end{array}
ight]$).

(b) Notera att $\dim(\text{Null}(A))$ och $\dim(\text{Col}(A))$ är **icke negativa heltal.** Enligt dimensionssatsen för en 3×3 matris gäller

 $\dim(\text{Null}(A))+\dim(\text{Col}(A))=3.$ (*)

Om vi antar att Null(A) = Col(A) då är

 $\dim(\text{Null}(A)) = \dim(\text{Col}(A))$ (**)

Från (*) och (**) får vi att $\dim(\text{Null}(A)) = 1.5$ och $\dim(\text{Col}(A)) = 1.5$ som är omöjligt.

Detta visar att det inte finns någon 3×3-matris vars nollrum och kolonnrum överensstämmer.

8. Bestäm vilka samband mellan talen a, b, c som krävs för att matrisen

$$\begin{bmatrix} a & 1 & 2 \\ 0 & b & -1 \\ 0 & 0 & c \end{bmatrix}$$

blir diagonaliserbar.

(4 p)

Börja med matrisens egenvärden som vi får ur ekvationen $det(A - \lambda I) = 0$ dvs

$$\det\begin{bmatrix} a-\lambda & 1 & 2\\ 0 & b-\lambda & -1\\ 0 & 0 & c-\lambda \end{bmatrix} = (a-\lambda)(b-\lambda)(c-\lambda) = 0$$

som ger $\lambda_1 = a$, $\lambda_2 = b$, $\lambda_3 = c$. Frågan är för vilka värden för a, b, c vi kan få en bas av egenvektorer.

Låt A vara en kvadratisk matris av typ $n \times n$. Matrisen A är diagonaliserbar om och endast om matrisen har en uppsättning av n st linjärt oberoende egenvektorer.

Låt E_{λ_k} beteckna det egenrum som hör till egenvärdet λ_k . Eftersom egenvektorer som hör till olika egenvärde är oberoende kan vi formulera ovanstående sats på ekvivalent sätt: Matrisen A är diagonaliserbar om och endast om $\sum_k \dim(E_{\lambda_k}) = n$.

Den geometriska multipliciteten för λ_k är $\dim(E_{\lambda_k})$, där $E_{\lambda_k} = \operatorname{Null}(A - \lambda_k I)$. För ett egenvärde λ_k gäller alltid (den geometriska multipliciteten för λ_k) \leq (den algebraiska multipliciteten för λ_k).

Matrisen är diagonaliserbar om och endast om följande gäller:

- 1. Alla rötter till ekvationen $det(A \lambda I) = 0$ är reella och
- 2. Den geometriska multipliciteten är lika med den algebraiska multipliciteten för varje egenvärde λ_k .

Matrisen är **inte** diagonaliserbar om för minst ett egenvärde λ_k gäller (den geometriska

multipliciteten för λ_k) < (den algebraiska multipliciteten för λ_k), eftersom i detta fall kan vi inte finna n stycken lin. oberoende egenvektorer.

Anmärkning: Om λ är en enkel rot till $\det(A - \lambda I) = 0$ så är villkoret (den geometriska multipliciteten) = (den algebraiska multipliciteten) automatiskt uppfylld. Därför räcker det att undersöka de egenvärden som har algebraisk multiplicitet >1.

Fall 1: a, b, c är distinkta:

Enligt en sats i boken om egenvärdena a,b,c är distinkta så har vi linjärt oberoende egenvektorer som då blir en bas för \mathbb{R}^3 och därför är matrisen diagonaliserbar då a,b,c är skilda tal.

Fall 2: $a = b \neq c$

Om a=b och $a\neq c$ så är $\lambda_1=c$ en enkel rot och $\lambda_2=a$ en dubbel rot till ekvationen $\det(A-\lambda I)=0$. Alltså är $\lambda=a$ ett egenvärde med den algebraiska multipliciteten =2. Den geometriska multipliciteten för $\lambda=a$ är dimesionen av tillhörande egenrummet E_λ där $E_\lambda=\operatorname{Null}(A-\lambda I)$.

För $\lambda = a$ har vi

$$A - \lambda I = \begin{bmatrix} a - a & 1 & 2 \\ 0 & b - a & -1 \\ 0 & 0 & c - a \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & c - a \end{bmatrix}$$

Vi ser att kolonnrummet har dimensionen 2, dvs $\operatorname{rang}(A-\lambda I)=2$. Notera att enligt dimensionssatsen gäller $\operatorname{rang}(A-\lambda I)+\operatorname{dim}(\operatorname{Null}(A-\lambda I))=3$. Därför är den geometriska multipliciteten = $\operatorname{dim}(\operatorname{Null}(A-\lambda I))=3-2=1$. Eftersom (1=den geometriska multipliciteten) \neq (den algebraiska multipliciteten =2) är matrisen inte diagonaliserbar i detta fall.

Fall 3: $a = c \neq b$

Om $\lambda=a=c\neq b$ så är $\lambda=a$ ett egenvärde med den algebraiska multipliciteten =2. Vi har

$$A - \lambda I = \begin{bmatrix} a - a & 1 & 2 \\ 0 & b - a & -1 \\ 0 & 0 & c - a \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & b - a & -1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & \frac{-1}{b-a} \\ 0 & 0 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & (\frac{-1}{b-a} - 2) \\ 0 & 0 & 0 \end{bmatrix}$$

som ger oss två fall: $\frac{-1}{b-a} = 2$, eller $\frac{-1}{b-a} \neq 2$.

i) Om $\frac{-1}{b-a}=2$, dvs $b=a-\frac{1}{2}$, så är $\mathrm{rang}(A-\lambda I)=1$ och därmed är den geometriska multipliciteten = $\mathrm{dim}(\mathrm{Null}(A-\lambda I))=3-1=2$ = den algebraiska multipliciteten.Därmed är $\mathrm{dim}(E_a)$ + $\mathrm{dim}(E_b)$ =3. Alltså kan vi bilda en bas med totalt tre egenvektorer: två från egenrummet E_a och en basvektor från egenrummet E_b . Därmed är matrisen diagonaliserbar i det här fallet.

ii) Om $\frac{-1}{b-a} \neq 2$, så är rang $(A - \lambda I) = 2$ och därmed är den geometriska multipliciteten = dim $(\text{Null}(A - \lambda I)) = 3 - 2 = 1$. Eftersom (1=den geometriska multipliciteten) \neq (den algebraiska multipliciteten =2) är matrisen inte diagonaliserbar i detta fall.

Fall 4: $b = c \neq a$

Om $\lambda=b=c\neq b$ så är $\lambda=b$ ett egenvärde med den algebraiska multipliciteten =2. Vi har

$$A - \lambda I = \begin{bmatrix} a - b & 1 & 2 \\ 0 & b - b & -1 \\ 0 & 0 & c - b \end{bmatrix} = \{b = c\} = \begin{bmatrix} a - b & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Vi ser att $\operatorname{rang}(A-\lambda I)=2$. Därför är den geometriska multipliciteten = $\dim(\operatorname{Null}(A-\lambda I))=3-2=1$. Eftersom (1=den geometriska multipliciteten) \neq (den algebraiska multipliciteten =2) är matrisen inte diagonaliserbar i detta fall.

Fall 5: a = b = c

Om $\lambda=a=b=c$ så är $\lambda=a$ ett egenvärde med den algebraiska multipliciteten =3. Vi har

$$A - \lambda I = \begin{bmatrix} a - a & 1 & 2 \\ 0 & b - a & -1 \\ 0 & 0 & c - a \end{bmatrix} = \{a = b = c\} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Vi ser att $\operatorname{rang}(A - \lambda I) = 2$. Därför är den geometriska multipliciteten = $\dim(\operatorname{Null}(A - \lambda I)) = 3 - 2 = 1$. Eftersom (1=den geometriska multipliciteten) \neq (den algebraiska multipliciteten = 3) är matrisen inte diagonaliserbar i detta fall.

Sammanfattningsvis har vi följande fall som kan ge diagonalisering:

- 1. a, b, c skilda tal.
- 2. $a = c \neq b \text{ samt } \frac{-1}{b-a} = 2 \text{ (dvs } b = a \frac{1}{2}\text{)}.$
- 9. Låt V vara ett n-dimensionellt vektorrum och $L \colon V \to V$ en linjär avbildning som uppfyller att L(L(v)) = L(v) för alla $v \in V$.
 - (a) Visa att den enda vektor som ligger i både Range(L) och Null(L) är nollvektorn.

(2 p)

- (b) Visa att det finns en bas \mathcal{B} till V sådant att matrisrepresentationen av L m.a.p. basen \mathcal{B} är en diagonalmatris där alla diagonalelement är antingen 0 eller 1. (2 p)
- (a) Låt u vara en vektor som ligger i både Range(L) och Null(L). Då gäller

$$L(u) = 0_V. (1)$$

Dessutom finns det en vektor v i V sådan att

$$L(v) = u. (2)$$

Vi tillämpar L på båda sidor i (2) och får

$$L(L(v)) = L(u). (3)$$

Vi använder antagandet L(L(v)) = L(v) och ovanstående relationer 1, 2 och 3 och får

$$0_V = L(u) = L(L(v)) = L(v) = u.$$

Alltså är $u = 0_V$ V.S.V.

(b) Anta att $\dim(V) = n$. Låt $\{a_1, \ldots, a_p\}$ vara en bas i $\operatorname{Range}(L)$ och $\{b_1, \ldots, b_q\}$ en bas i $\operatorname{Null}(L)$. Enligt dimensionssatsen gäller p+q=n. Låt $\mathcal{B}=\{a_1, \ldots, a_p, b_1, \ldots, b_q\}$. Vi ska visa att vektorerna i \mathcal{B} är linjärt oberoende. Anta att

$$t_1a_1 + \ldots + t_pa_p + s_1b_1 + \ldots + s_qb_q = 0_V$$

eller

$$t_1a_1 + \ldots + t_pa_p = -(s_1b_1 + \ldots + s_qb_q).$$

Beteckna $w=t_1a_1+\ldots+t_pa_p=-(s_1b_1+\ldots+s_qb_q)$. Då ligger w i Range(L) (som en linjär kombination av vektorerna a_k) och i Null(L) (som en linjär kombination av vektorerna b_j). Enligt uppgiftens a-del är $w=0_V$. Från $t_1a_1+\ldots+t_pa_p=0_V$ får vi $t_1=0,\ldots,t_p=0$, eftersom basvektorerna a_1,\ldots,a_p är linjäroberoende. På samma sätt, från $s_1b_1+\ldots+s_qb_q=0_V$, får vi $s_1=0,\ldots,s_q=0$. Därför är vektorerna i $\mathcal B$ linjärt oberoende. Eftersom $\dim(V)=n$ och $\mathcal B$ består av n st. linjärt oberoende vektorer, är $\mathcal B$ en bas för vektorrummet V.

Om u är en vektor i $\operatorname{Range}(L)$, dvs om u = L(v) för en vektor $v \in V$, gäller L(u) = L(L(v)) = L(v) = u. Basvektorerna a_1, \ldots, a_p ligger i $\operatorname{Range}(L)$). Därför

$$L(a_k) = a_k$$

Motsvarande kolonn (nr k) i avbildningens matris har 1 på plats nummer k och alla andra element 0.

Basvektorerna b_1, \ldots, b_q ligger i Null(L). Därför

$$L(b_j) = 0_V.$$

Motsvarande kolonn i avbildningens matris har alla element = 0.

Därmed är matrisrepresentationen av L m.a.p. basen \mathcal{B} en diagonalmatris där alla diagonalelement är antingen 1 eller 0.