2020

MATHEMATICS — GENERAL

Paper: GE/CC-3

Full Marks: 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

১। নিম্নলিখিত প্রশ্নগুলির উত্তর দাও ঃ

>×>0

(ক)
$$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$
 -এর মান হল

(আ)
$$1$$
 (আ) $\frac{1}{4}$ (ই) π (ই) π (ই) $\frac{\pi}{4}$ । (খ) $h=1$ ধরে $\Delta\left(\frac{1}{x-1}\right)$ -এর মান হল

- (আ) $\frac{1}{x}$ (আ) $\frac{1}{x-1}$ (ই) $\frac{1}{x} + \frac{1}{x-1}$ (ই) $\frac{1}{x} \frac{1}{x-1}$

(গ)
$$\int_{-\pi}^{\pi} \sin^7 x \, dx$$
 -এর মান হল

- (আ) π (আ) 2π (ই) $\frac{\pi}{2}$
- (**河**) 0 |

(ঘ)
$$\int\limits_{-\infty}^{\infty}e^{-x^2}dx$$
 -এর মান হল

- (আ) $\sqrt{\pi}$ (আ) $-\sqrt{\pi}$ (ই) $\frac{\pi}{2}$
- (7) 01
- (৬) যদি 0.87654 থেকে 0.87652 বিয়োগ করা হয়, তবে যতগুলি সার্থক অঙ্কের ক্ষতি হবে, তা হল
 - (অ) 5
- (আ) 1
- **(ই**) 4
- (7) 01

T(3rd Sm.)-Mathematics-G(GE/CC-3)/CBCS

(2)

- (চ) f(x) = 0 সমীকরণটি সমাধান করার ক্ষেত্রে Newton–Raphson পদ্ধতি ব্যর্থ হবে, যখন

- (a) f'(x) = -2 (b) f'(x) = 0 (c) $(\overline{x}) f''(x) = 0$ (d) $(\overline{x}) f''(x) = 1$
- (ছ) কোনো রৈখিক প্রোগ্রামিং সমস্যাতে (LPP) যার চরম বা অবম মান নির্ণয় করা হয়, তা হল
 - (অ) শর্ত সীমাবদ্ধতা (Constraints)
- (আ) বিষয়াত্মক অপেক্ষক

(ই) চলরাশি

- (ঈ) এদের কোনোটিই নয়।
- (জ) $2x_1 5x_2 + x_3 + 2x_4 = 4$, $3x_1 10x_2 + 2x_3 + 4x_4 = 14$ সহসমীকরণ-এর মৌল চলরাশির সংখ্যা হল

- (ই) 4।

(ঝ) কোনটি উত্তল নয় পরীক্ষা করো ঃ

(অ)
$$X = \{(x,y) | x^2 + y^2 \ge 1$$
 এবং $x^2 + y^2 \le 2 \}$

(আ)
$$X = \{(x, y) | 4x^2 + 9y^2 \le 36\}$$

$$(\overline{2}) \quad X = \left\{ (x, y) \mid y^2 \ge 4x \right\}$$

$$(\overline{\aleph}) \quad X = \{(x, y) \mid x \ge 2, y \le 3, x, y \ge 0\}$$

- (এঃ) $S = \{(x, y) | x^2 + y^2 \le 25\}$ সেট্টির প্রান্তবিন্দুগুলি হল
 - (অ) বৃত্তটির ভিতরের বিন্দু
- (আ) বৃত্তটির ওপরের বিন্দ

(ই) বৃত্তটির বাইরের বিন্দু

(ঈ) বৃত্তটির ব্যাসের ওপরের বিন্দু।

ইউনিট - ১

(সমাকলন বিদ্যা)

২। *যে-কোনো তিনটি* প্রশ্নের উত্তর দাও ঃ

কে) দেখাও যে $\int_{0}^{\pi/2} \log \sin x \, dx = \frac{\pi}{2} \log \left(\frac{1}{2} \right)$

E

(খ) যদি
$$I_n=\int\limits_0^{\pi\over 4} an^n x \ dx$$
 হয়, তবে দেখাও যে $I_{n+1}-I_{n-1}=rac{1}{n}$ ।

এই সম্পর্কটি ব্যবহার করে মান নির্ণয় করো ঃ
$$\int\limits_0^{\pi/4} an^8 x \, dx$$

9+2

T(3rd Sm.)-Mathematics-G(GE/CC-3)/CBCS

(গ) মান নির্ণয় করো
$$2 \lim_{n \to \infty} \left\{ \left(1 + \frac{1^2}{n^2} \right) \left(1 + \frac{2^2}{n^2} \right) ... \left(1 + \frac{n^2}{n^2} \right) \right\}^{\frac{1}{n}}$$

(ঘ) Beta-অপেক্ষক-এর সংজ্ঞা প্রয়োগ করে প্রমাণ করো যে
$$\int\limits_0^{\pi/2}\cos^4x\ dx=rac{3\pi}{16}$$
।

(ঙ) মান নির্ণয় করো
$$\varepsilon$$
 $\int\limits_0^1 \frac{dx}{\left(1-x^6\right)^{\frac{1}{6}}}$ ।

ইউনিট - ২

(সাংখ্যিক পদ্ধতি))

৩। *যে-কোনো চারটি* প্রশ্নের উত্তর দাওঃ

&×3

(ক)
$$h=1$$
 ধরে দেখাও যে $\left(\frac{\Delta^2}{E}\right) x^3=6x$ ।

- (খ) $0, \frac{1}{6}, \frac{1}{2}$ বিন্দুগুলির সাহায্যে $y = \sin \pi x$ অপেক্ষকের জন্য অন্তঃমান-বহুপদী রাশিমালাটি নির্ণয় করো।
- (গ) f(-2) = 7, f(0) = 1, f(3) = 7 হলে f(10)-এর মান কত?
- ্ঘে) Simpson-এর এক-তৃতীয়াংশ নিয়মে ছয়টি উপঅন্তরাল নিয়ে তিন দশমিক স্থান পর্যন্ত আসন্নমানে সমাকলন করো ঃ

$$\int_{0}^{1} \frac{dx}{(1+x)^2}$$

(ঙ) নিউটনের পশ্চাদসারি অন্তঃমান নির্ণয়ের সূত্রের সাহায্যে নিম্নলিখিত সারণি থেকে y-এর মান নির্ণয় করো, যখন x=7 ঃ

x	2	4	6	8
y	5	17	39	58

- (চ) Newton–Raphson পদ্ধতি ব্যবহার করে এবং $x_0=2$ ধরে সমীকরণ $x^3-2x-5=0$ –এর তিন সার্থক অঙ্ক পর্যন্ত একটি ধনাত্মক বীজ নির্ণয় করো।
- (ছ) সমদ্বিখণ্ডন (Bisection) পদ্ধতি ব্যবহার করে $e^x = 4 \sin\! x$ সমীকরণের ক্ষুদ্রতম ধনাত্মক বীজ (চার দশমিক স্থান পর্যস্ত) নির্ণয় করো।

Please Turn Over

(4)

ইউনিট - ৩

(রৈখিক প্রোগ্রামিং)

- ৪। *যে-কোনো চারটি* প্রশ্নের উত্তর দাওঃ
 - (ক) প্রমাণ করো দুটি উত্তল সেটের প্রতিচ্ছেদও (intersection) একটি উত্তল সেট। এই সিদ্ধান্ত (result) কি দুটি উত্তল সেটের সংযোগের ক্ষেত্রেও সত্যি ? যুক্তি দাও।

æ

œ

8+5

(খ) লেখচিত্রের সাহায্যে সমাধান করো ঃ

চরম
$$Z = x_1 + 0.5x_2$$
 মেখানে
$$3x_1 + 2x_2 \le 12$$

$$5x_1 = 10$$

$$x_1 + x_2 \ge 8$$

$$-x_1 + x_2 \ge 4$$

$$x_1, x_2 \ge 0$$

- (গ) প্রমাণ করো যে একটি রৈখিক প্রোগ্রামিং সমস্যাতে বিষয়াত্মক অপেক্ষকটি চরম মান গ্রহণ করে ওই সমীকরণ সমূহের কার্যকর সমাধান দ্বারা গঠিত উত্তল সেটের প্রান্তিক বিন্দু।
- (ঘ) (2, 1, 3) হল নিম্নলিখিত সমীকরণ সমূহের একটি কার্যকর সমাধান ঃ

$$4x_1 + 2x_2 - 3x_3 = 1,$$

$$6x_1 + 4x_2 - 5x_3 = 1$$

ওই কার্যকর সমাধানকে মৌল কার্যকর সমাধানে রূপান্তরিত করো।

(৬) নিম্নলিখিত রৈখিক প্রোগ্রামিং সমস্যাটি Penalty পদ্ধতির সাহায্যে সমাধান করো ঃ

চরম
$$Z=3x_1-x_2$$
 যেখানে
$$2x_1+x_2\geq 2$$

$$x_1+3x_2\leq 3$$

$$x_2\leq 4 \ \text{এবং } x_1,\ x_2\geq 0$$

(চ) নিম্নলিখিত পরিবহন সমস্যাটির চরম সমাধান এবং সংশ্লিষ্ট পরিবহন খরচ নির্ণয় করো ঃ

	D_1	D_2	D_3	a_i
O_1	10	9	8	8
O_2	10	7	10	7
O_3	11	9	7	9
O_4	12	14	10	4
b_{j}	10	10	8	

(ছ) নিম্নলিখিত আরোপ সমস্যাটির অনুকূল নিয়োগ (optimal assignment) নির্ণয় করো এবং সর্বনিম্ন খরচ নির্ণয় করো ঃ 8+5

	I	II	III	IV
\boldsymbol{A}	5	3	1	8
В	7	9	2	6
C	6	4	5	7
D	5	7	7	6

[English Version]

The figures in the margin indicate full marks.

1. Answer *all* the questions:

 1×10

- (a) Value of $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ is
 - (i) 1

- (ii) $\frac{1}{4}$ (iii) π (iv) $\frac{\pi}{4}$.
- (b) Value of $\Delta\left(\frac{1}{x-1}\right)$ taking h=1 is

- (i) $\frac{1}{x}$ (ii) $\frac{1}{x-1}$ (iii) $\frac{1}{x} + \frac{1}{x-1}$ (iv) $\frac{1}{x} \frac{1}{x-1}$.
- (c) The value of $\int_{-\pi}^{\pi} \sin^7 x \, dx$ is
 - (i) π
- (ii) 2π
- (iii) $\frac{\pi}{2}$
- (iv) 0.

- (d) The value of $\int_{-\infty}^{\infty} e^{-x^2} dx$ is
 - (i) $\sqrt{\pi}$
- (ii) $-\sqrt{\pi}$
- (iii) $\frac{\pi}{2}$
- (iv) 0.
- (e) If 0.87652 is subtracted from 0.87654, then the loss of significant figure is
 - (i) 5
- (ii) 1
- (iii) 4
- (iv) 0.

Please Turn Over

- (f) Newton–Raphson method fails for solving f(x) = 0 when
 - (i) f'(x) = -2
- (ii) f'(x) = 0
- (iii) f''(x) = 0 (iv) f''(x) = 1.
- (g) In an LPP, we have to optimize the
 - (i) constraints

(ii) objective function

(iii) variables

- (iv) none of these.
- (h) Number of basic variables of the system of equations

$$2x_1 - 5x_2 + x_3 + 2x_4 = 4$$
, $3x_1 - 10x_2 + 2x_3 + 4x_4 = 14$ is

- (iii) 3
- (iv) 4.

(i) Examine which is not convex:

(i)
$$X = \{(x,y) \mid x^2 + y^2 \ge 1 \text{ and } x^2 + y^2 \le 2 \}$$

(ii)
$$X = \{(x, y) | 4x^2 + 9y^2 \le 36 \}$$

(iii)
$$X = \{(x, y) | y^2 \ge 4x \}$$

(iv)
$$X = \{(x, y) | x \ge 2, y \le 3, x, y \ge 0\}$$
.

- (j) The extreme points of the set $S = \{(x, y) | x^2 + y^2 \le 25\}$ are the points:
 - (i) inside the circle

(ii) on the circle

(iii) outside the circle

(iv) on the diameter.

Unit - 1

(Integral Calculus)

2. Answer any three questions:

(a) Show that
$$\int_{0}^{\pi/2} \log \sin x \, dx = \frac{\pi}{2} \log \left(\frac{1}{2} \right).$$

5

- (b) If $I_n = \int_{0}^{\frac{\pi}{4}} \tan^n x \, dx$, show that $I_{n+1} I_{n-1} = \frac{1}{n}$.
 - Using this relation find the value of $\int_{0}^{\pi/4} \tan^8 x \, dx$.

T(3rd Sm.)-Mathematics-G(GE/CC-3)/CBCS

- (c) Find the value: $\lim_{n \to \infty} \left\{ \left(1 + \frac{1^2}{n^2} \right) \left(1 + \frac{2^2}{n^2} \right) \dots \left(1 + \frac{n^2}{n^2} \right) \right\}^{\frac{1}{n}}$ 5
- (d) Using the definition of Beta function, prove that $\int_{0}^{\pi/2} \cos^4 x \, dx = \frac{3\pi}{16}.$
- (e) Find the value : $\int_{0}^{1} \frac{dx}{\left(1 x^{6}\right)^{\frac{1}{6}}}.$

Unit - 2

(Numerical Methods)

3. Answer any four questions:

 5×4

- (a) Show that $\left(\frac{\Delta^2}{E}\right)x^3 = 6x$, taking h = 1.
- (b) Find the interpolation polynomial for the function $y = \sin \pi x$, by choosing the points $0, \frac{1}{6}, \frac{1}{2}$.
- (c) If f(-2) = 7, f(0) = 1, f(3) = 7, find f(10).
- (d) Use Simpson's one-third rule to evaluate $\int_{0}^{1} \frac{dx}{(1+x)^2}$ taking six subintervals, correct up to 3 decimal places.
- (e) Use Newton's Backward interpolation formula to find the value of y when x = 7 from the following table:

x	2	4	6	8
у	5	17	39	58

- (f) Using Newton-Raphson method find a positive root of the equation $x^3 2x 5 = 0$, correct up to three significant figures by choosing the initial approximation $x_0 = 2$.
- (g) Find the smallest positive root of the equation $e^x = 4\sin x$, correct to four decimal places by Bisection method.

Please Turn Over

Unit - 3

(Linear Programming))

- 4. Answer any four questions:
 - (a) Prove that intersection of two convex sets is also a convex set. Is the result true for union of two convex set? Justify.

 3+2

(b) Solve graphically: Max.
$$Z = x_1 + 0.5x_2$$
 subject to $3x_1 + 2x_2 \le 12$
$$5x_1 = 10$$

$$x_1 + x_2 \ge 8$$

$$-x_1 + x_2 \ge 4$$

$$x_1, x_2 \ge 0$$

- (c) Prove that the objective function of an LPP assumes its optimal value at an extreme point of the convex set of feasible solutions.
- (d) (2, 1, 3) is a feasible solution of the set of equations :

$$4x_1 + 2x_2 - 3x_3 = 1,$$

$$6x_1 + 4x_2 - 5x_3 = 1$$

Reduce it to a basic feasible solution of the set.

(e) Solve the LPP by the method of Penalty:

Maximize
$$Z = 3x_1 - x_2$$

subject to $2x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 3$
 $x_2 \le 4$ and $x_1, x_2 \ge 0$.

(f) Find the optimal solution and the corresponding cost of the transportation problem given by: 4+1

	D_1	D_2	D_3	a_i
O_1	10	9	8	8
O_2	10	7	10	7
O_3	11	9	7	9
O_4	12	14	10	4
b_{j}	10	10	8	

(g) Find the optimal assignments to find the minimum cost for the assignment problem with the cost matrix:

	Ι	II	III	IV
\boldsymbol{A}	5	3	1	8
В	7	9	2	6
C	6	4	5	7
D	5	7	7	6

Also find the minimum cost.

4+1

5