SAPIENZA Università di Roma – MSc. in Engineering in Computer Science

Artificial Intelligence & Machine Learning – Feb 24, 2025

Part 1 - Artificial Intelligence

(Time to complete the test: 2:00 hours)

Consider a simplified Pac-Man world consisting in a 3x3 grid, as shown below:

	A	B	C
1	3		
2		•	
3			

Besides Pac-Man, the grid contains: power pellets (●); obstacles (■); ghosts.

Consider the following formalization of the scenario:

Non-Fluents:

- Connected(c_1, c_2), denoting that cells c_1 and c_2 are connected: two cells are connected if they share an entire side (not just a corner); for instance, B1 is connected to C1 but not to C2; notice also that Connected is symmetrical, i.e., c_1 is connected to c_2 if and only if c_2 is connected to c_1 ; cells are not connected to themselves.
- ObstacleIn(c), denoting that cell c contains an obstacle.

Fluents:

- In(c), denoting that Pac-Man is in cell c.
- Pellet(c), denoting that cell c contains a power pellet.
- Super(), denoting that Pac-Man has superpowers.
- Alive(), denoting that Pac Man is alive.
- GhostIn(c), denoting that cell c contains a ghost (notice that ghosts are static).

Actions:

- *move*(*c*), which allows Pac-Man to move to cell *c*. The action can be done only if Pac-Man is alive, in a cell *c'* connected to *c*, and *c* contains no obstacles (it may contain a ghost, though). The effect is that: 1. if there are no ghosts in *c* or Pac-Man has superpowers then Pac-Man is in cell *c*; 2. any power pellet in *c* disappears; 3. if there is a power pellet in *c* then Pac-Man has superpowers (once obtained, superpowers last forever); 4. if there is a ghost in *c* and Pac-Man does not have superpowers, then Pac-Man is no longer alive and disappears from the grid.
- eatGhost(), which allows Pac-Man to eat a ghost. The action can be done only if Pac-Man has superpowers and is in a cell containing a ghost. The effect is that the ghost disappears from the cell.

Initial situation

Pac-Man is alive. Cells, connections, Pac-Man's initial position, power pellets, and ghosts are as in the figure above.

Exercise 1.

- 1. Formalize the above scenario as a Basic Action Theory.
- 2. Using regression, check whether the action sequence $\varrho = move(A2)$; move(A3); leads to a situation where Pac-Man has superpowers.

Exercise 2.

Considering goal $\gamma = In(C3)$,

- 1. Formalize the above scenario as a PDDL domain file and a PDDL problem file.
- 2. Draw the corresponding entire transition system;
- 3. Solve planning for achieving γ , using forward depth-first search (uninformed), reporting the steps of the forward search computation, and returning the resulting plan. **The search must be exhaustive**, i.e., all states must be visited.

Exercise 3.

- 1. Formalize the following sentences in First-Order Logic:
 - ϕ_1 : Every beverage is liquid
 - ϕ_2 : Not all liquids are beverages
 - ϕ_3 : Some liquids are dangerous
 - ϕ_5 : There exists exactly one dangerous beverage
- 2. Given the following formulas:
 - $\bullet \ \phi_1 = (\forall x. P(x) \supset Z(x)) \land (\forall x. Q(x) \supset Z(x))$
 - $\phi_2 = \forall x. (Z(x) \land P(x)) \supset \neg Q(x)$
 - $\phi_3 = \neg \exists x. P(x) \land Q(x)$

use the Tableaux method to check whether $\{\phi_1,\phi_2\} \models \phi_3$

Exercise 1.

- 1. Formalize the above scenario as a Basic Action Theory.
- 2. Using regression, check whether the action sequence $\varrho = move(A2)$; move(A3); leads to a situation where Pac-Man has superpowers.

PRECONDITIONS AXIONS

Poss (move (c), s) =
$$\exists c' : IN(c', s) \land GNNECTED(c', c) \land ALIVE(s)$$

 $\land \neg DBSTACLEIN(c, s)$
Poss (EAT GMOST(), s) = $\exists c : IN(c, s) \land GMOSTIN(c, s) \land SUPER(s)$

SULLESSOR STATE AXIONS

EFFECT AXIONS

$$α = MOVE(c) \supset (¬GHOSTIN(c, S) \supset IN(c, DO(a, S))) \land (SUPER(S) \supset IN(c, DO(a, S))) \land$$

$$¬PELLET(c, DO(α, S)) \land (PELLET(c, S) \supset SUPER(DO(a, S))) \land$$

$$(GHOSTIN(c, S) \land ¬SUPER(S) \supset ¬ALIVE(DO(a, S)) \land$$

$$(∀x IN(x, S) \supset ¬IN(x, DO(a, S))))$$

NORMALIZE

EXPLANATION CLOSURE

IN
$$(c, DO(a, S)) \equiv (a = MOVE(c) \land \neg GHOSTIN(c, S)) \lor (a = MOVE(c) \land SUPER(S))$$

$$\lor (in (c, S) \land \neg (∃_{c'}(a = MOVE(c) \land GHOSTIN(c', S))$$

$$\land \neg SUPER(S)))$$

```
ALIVE (DO (Q,S)) = (ALIVE (S) AT (3c. Q = MOVE (C) A GHOSTIN (C,S) A T SUPER (S)))
     GHOSTIN (C, DO(Q, S)) = (GHOSTIN (C, S) A TO: EATGHOST ())
 INITIAL SITUATION
   ALIVE (S.)
   CONNECTED (C., C2) = (C,=A, C2=B,).....
   IN (C,So) = (C=A,)
   PELLET (c,S.) = (C=A3)
   (405TIN (C, So) = (C= C2)
   OBSTACLES (c) = (c = \beta_2) (c= \beta_3)
\varrho = move(A2); move(A3);
 S, = DO (MOVE (A2) 50)
                                 DOUDUNA F R[SUPER(52)]
 52 : DO (MOVE (A3), S,)
 R[SUPER(52)] = R[SUPER(DO (MOVE (A3), S,))]=
 = R[3(, (nove (A3) = HOVE (c) A PELLET (c,S,)) V SUPER (S,)]=
 = R [ PELLET (S,)] V R [ SUPER (S,)]=
 R[PELLET (S,)] = R[PELLET (DO (HOVE (A2) So)) ?=
 = R [ PELLET ( L.So) A HOVE (A2) $ HOVE (L)]:
 = PELLET (4, So) A MOVE (A2) $ MOVE (c)
 R [SUPER (S.)] = R [SUPER (DO (MOVE (Az), S.))]=
 = R[3c.(HOVE (Az) = HOVE (c) A PELLET (c, So)) v SUPER (So)]=
 : R [FALSE] = FALSE
 R[SUPER(52)] = R[PELLET (S,)] V R[SUPER (S,)]
 TRUE FOR C = A3 -> P LEADS TO A SITUATION WHERE & IS SUPER /
```

Exercise 2.

Considering goal $\gamma = In(C3)$,

- 1. Formalize the above scenario as a PDDL domain file and a PDDL problem file.
- 2. Draw the corresponding entire transition system;
- 3. Solve planning for achieving γ , using forward depth-first search (uninformed), reporting the steps of the forward search computation, and returning the resulting plan. **The search must be exhaustive**, i.e., all states must be visited.

```
(DEFINE (DOMAIN PALLOOM)
    (: REQUIREMENTS : ADL)
    (: TYPES CELL)
     (: PREDICATES
         (CONNECTED ? C. ? C. - CELL)
          OBSTACLEIN ? L - CELL)
         (IN ?c - CELL)
          (PELLET ?L-CELL)
         (SUPER)
          (ALIVE)
         (MOSTIN ?c - CE4)
    (: ACTION HOVE
       : PARAMETERS ( ? C - CELL)
       : PRECONDITIONS (AND
                         (EXISTS (? C'- LELL) (IN ? C') (CONNECTED 9696)
                          (ALIVE) (NOT (OBSTACLEIN ? 2)))
      : EFFECT (AND
                 (WHEN (NOT (MOSTW ?c))(IN ?c))
(WHEN (SUPER)(IN ?c))
                  (NOT (PELLET ? L))
                  WHEN (PELLET 12) (SUPER))
                  (WHEN (AND (GHOSTIN ? L) (NOT (SUPER)))
                         (AND (NOT (ALIVE))
                               (FORALL (9x -CELL)
                                  (WHEN (IN ?x) (NOT (IN ?x))
    ); END OF HOVE
   (: ALTION EAT MOST
      : PARAHETERS ()
      : PRECONDITION (EXIST (? C-CELL) (AND (IN ? C) (HOSTIN ? C) (SUPER)))
: EFFECT (EXISTS (? C-CELL) (WHEN (CHOSTIN ? C) (NOT (CHOSTIN ? C))))
    ); END OF EAT GHOST
 ); END OF DEFINE DOT
```

عم)	FIN	E	(PR	ROB	LE	4	PAC	. P	Rol	B)((: 4	20)	۲A	IN	f	'A	١ ١	20	н)												
(: 06	358	<u> </u>	S	A,	A	,)	В	, е	3,	B ₃		۷	. د	2	۲,	-	ح و	3 LL	.)										
(: IN	IT	(A)LI\	JE)	(4	DNA	ĬΕC	ΞTE	و	A	, È	3,))			(i	N	A,)												
			(A (A	08 3	STA	CLE	:IN	B,	,)(08	ST	AC	ĿΕ	ΞIN	, E	33) (PE	LL	ET	f)3	(И	oz	T/A	, (٥,)			
(: 60	AL	(IN	C 3)																									
)																															
); E	ND	of	Þ	EF	PRO	98																									
	Ex	kercis	e 3.																												
		1. Fo	ormali	ze the	e foll	owing	sente	nces	in Fi	irst-C)rdei	r Log	ic:																		
			• <i>ф</i> 1	: Eve	rv be	verag	e is lic	hiur																							Ť

- ϕ_1 : Every beverage is liquid
- ϕ_2 : Not all liquids are beverages
- ϕ_3 : Some liquids are dangerous
- ϕ_5 : There exists exactly one dangerous beverage
- 2. Given the following formulas:
 - $\phi_1 = (\forall x. P(x) \supset Z(x)) \land (\forall x. Q(x) \supset Z(x))$
 - $\phi_2 = \forall x.(Z(x) \land P(x)) \supset \neg Q(x)$
 - $\phi_3 = \neg \exists x. P(x) \land Q(x)$

φ. · Vx. BEVERAGE (x) > LIQUID(x)

use the Tableaux method to check whether $\{\phi_1, \phi_2\} \models \phi_3$

$$\phi_2$$
. \exists_x . Liquid (*) \land 7 Beverage(x)

 ϕ_3 : \exists_x . Liquid (*) \land Dangerous (*)

 ϕ_4 : \exists_x . (Beverage (*) \land Dangerous (*)) \land \forall_y . (Beverage (y) \land Dangerous (y) \supset $y=x$)

