Internetowe bazy danych

Projektowanie i programowanie systemów internetowych I

mgr inż. Krzysztof Rewak

16 kwietnia 2018

Wydział Nauk Technicznych i Ekonomicznych Państwowa Wyższa Szkoła Zawodowa im. Witelona w Legnicy

Plan prezentacji

- SELECT * FROM definitions;
- 2. SELECT * FROM models;
- 3. SELECT * FROM models WHERE name = "flat";
- 4. SELECT * FROM models WHERE name = "hierarchical";
- 5. SELECT * FROM models WHERE name = "relational";
- 6. SELECT * FROM models WHERE name = "object-oriented";
- 7. SELECT * FROM models WHERE name = "nosql";
- 8. Podsumowanie

SELECT * FROM definitions;

Definicje

Czym są dane?

W ujęciu informatycznym jest to sekwencja symboli, która po pewnej interpretacji może zostać uznana za informację.

Definicje

Czym są w takim razie bazy danych?

Uporządkowane w pewien sposób zbiory danych.

Definicje

DBMS?

Jest to system zarządzania bazą danych (ang. *Database Management System*), czyli system pozwalający między innymi na pobieranie i modyfikowanie danych w bazie danych.

SELECT * FROM models;

Systematyka

Modele baz danych możemy podzielić na kilka typów:

- NoSQL
 - klucz/wartość
 - dokumentowe (?)
 - grafowe
- obiektowe
- relacyjne
- hierarchiczne
- kartotekowe
- oraz wiele innych

Dla odmiany zaczniemy omawianie od końca listy.

Systematyka

Rysunek 1: Liczba DBMS wg kategorii wg https://db-engines.com/en/ranking_categories

Systematyka

Rysunek 2: Popularność DBMS wg kategorii wg https://db-engines.com/en/ranking_categories

SELECT * FROM models

WHERE name = "flat";

Kartotekowe modele bazodanowe

```
year; month; income; gain; currency; 2018; 01; 567432.43; 243854.04; PLN; 2018; 02; 785395.28; 387104.54; PLN; 2018; 03; 599482.41; 295859.16; PLN; 2018; 04; 257179.91; 104950.32; PLN;
```

Kartotekowe modele bazodanowe

Co można zrobić?

- przesortować,
- przeszukać.

Czego nie można zrobić?

- zazwyczaj wymusić typu przechowywanych danych;
- połączyć z inna bazą danych;
- korzystać z indeksów, kluczy.

Kartotekowe modele bazodanowe

Zalety?

- prostota obsługi,
- często system-agnostic,
- zrozumiałe nawet po bezpośrednim otwarciu.

Jak można utworzyć?

- w edytorze tekstu,
- w arkuszu kalkulacyjnym,
- w innym programie do tego przeznaczonym.

WHERE name = "hierarchical";

SELECT * FROM models

Hierarchiczne modele bazodanowe

```
authors:
id; name;
1; Richard K. Morgan
2: Walter Jon Willians
3; Dan Simmons
books:
id; title;
                         author id
1; Praxis;
                         2
2; Rozpad;
                         2
3; Wojna;
   Modyfikowany wegiel;
4;
5; Upadle anioly;
                         1
6; Zbudzone furie;
7; Hyperion;
                         3
8; Upadek Hyperiona;
                         3
9; Endymion
                         3
10; Triumf Endymiona;
                         3
```

Hierarchiczne modele bazodanowe

Co można zrobić?

- połączyć rekordy z kilku tabel w drzewiastej strukturze,
- sortować po rekordach natywnych i zależnych,
- przeszukiwać po rekordach natywnych i zależnych.

Czego nie można zrobić?

- stworzyć relacji typu ma wiele,
- stworzyć relacji typu wiele do wielu.

Hierarchiczne modele bazodanowe

Zalety?

- prostota obsługi;
- czytelność schematu bazy;
- szybkie w porównaniu do klasycznej relacyjnej bazy danych.

7astosowania?

- rejestr Windows,
- bankowość,
- telekomunikacja.

WHERE name = "relational";

SELECT * FROM models

Co można zrobić?

- połączyć rekordy z kilku tabel w relacyjnej strukturze,
- sortować po rekordach natywnych i zależnych,
- przeszukiwać po rekordach natywnych i zależnych,
- ustanowić klucze obce, co może zabezpieczyć integralność danych,
- ustanowić indeksy, które pomogą przy przeszukiwaniu i sortowaniu tabel,
- relatywnie łatwo rozproszyć w pionie lub poziomie,
- korzystać z transakcji.

ACID, czyli

- atomicity niepodzielność
- consistency spójność
- isolation izolacja
- durability trwałość

Są to cechy gwarantujące poprawne przetwarzanie transakcji w (relacyjnych) bazach danych.

Relacyjne bazy danych są obecnie najpopularniejszym modelem wykorzystywanym praktycznie wszędzie: od małych prywatnych projektów studenckich, przez produkty startupów i systemy obsługujące duże firmy, aż po korporacyjne rozwiązania.

Apr 2018 Mar 2017 Apr 2017 DBMS 1. 1. 1. Oracle : 2. 2. MySQL : 3. 3. Microsoft SQL Server : 4. 4. 4. PostgreSQL : 5. 5. MongoDB :		-2.46 -1 -9.28 -1 -3.88 + +0.89 +	138.22 109.26 +33.69
2. 2. MySQL : 3. 3. Microsoft SQL Server : 4. 4. 4. PostgreSQL :	Relational DBMS 1226.40 Relational DBMS 1095.51 Relational DBMS 395.47 Document store 341.41 Relational DBMS 188.95	-2.46 -1 -9.28 -1 -3.88 + +0.89 +	138.22 109.26 +33.69 +15.98
3. 3. Microsoft SQL Server 3. 4. 4. PostgreSQL 3.	Relational DBMS 1095.51 Relational DBMS 395.47 Document store 341.41 Relational DBMS 188.95	-9.28 -1 -3.88 + +0.89 +	109.26 +33.69 +15.98
4. 4. PostgreSQL :	Relational DBMS 395.47 Document store 341.41 Relational DBMS 188.95	-3.88 + +0.89 +	+33.69 +15.98
	Document store 341.41 Relational DBMS 188.95	+0.89 +	+15.98
5. 5. MongoDB 🚼	Relational DBMS 188.95		
		+2.28	12.20
6. 6. 6. DB2 🚻	Relational DBMS 132.22		+2.29
7. 7. Microsoft Access		+0.27	+4.04
8. ♠9. ♠11. Elasticsearch ↔	Search engine 131.36	+2.81 +	+25.69
9. ↓ 8. 9. Redis 🚹	Key-value store 130.11	-1.12 +	+15.75
10. 10. ↓ 8. Cassandra 🗄	Wide column store 119.09	-4.40	-7.10
11. 11. ↓ 10. SQLite 🗄	Relational DBMS 115.99	+1.17	+2.19
12. 12. Teradata	Relational DBMS 73.68	+1.21	-2.88
13. 13. ↑ 17. Splunk	Search engine 65.06	-0.61	+9.55
14. ↑ 15. ↑ 18. MariaDB 🚼	Relational DBMS 64.56	+1.45 +	+15.83
15. ↓ 14. ↓ 14. Solr	Search engine 63.21	-1.60	-1.16
16. 16. ↓ 13. SAP Adaptive Server 😷	Relational DBMS 61.63	-0.99	-5.83
17. 17. ↓ 15. HBase ↔	Wide column store 59.69	-1.24	+1.22
18. 18. ↑ 20. Hive 🚼	Relational DBMS 57.40	+0.39 +	+15.75
19. 19. ↓ 16. FileMaker	Relational DBMS 55.00	-0.12	-2.17
20. 20. ↓ 19. SAP HANA 🚼	Relational DBMS 48.90	+0.37	+0.75
21. 21. ♠ 22. Amazon DynamoDB 🚼	Multi-model 🔞 43.14	+0.69 +	+11.08
22. 22. ↓ 21. Neo4j 🗄	Graph DBMS 40.90	-0.00	+5.99

SELECT * FROM models

SEEECT TROWTHOUGH

WHERE name =

"object-oriented";

```
ObjectContainer oc = Db4o.openFile("database.db4o");
Author author = new Author("Cixin Liu");
Book book = new Book("Ciemny las", author);
oc.store(author);
oc.store(book);
oc.close();
```

Jak działają?

- są zbiorem obiektów wedle definicji obiektu wykorzystywanego języka programowania z wszystkimi tego wadami i zaletami,
- są przetrzymywane w formie zserializowanej lub zapisanej w inny sposób, co likwiduje potrzebę mapowania danych,
- są wygodne w użyciu dla progamistów znających dany język programowania,
- nie są szczególnie popularne przez konkurencję ze strony systemów ORM.

	Rank				Score	
Apr 2018	Mar 2018	Apr 2017	DBMS	Database Model	Apr Mar 2018 2018	Apr 2017
94.	1 00.	1 96.	mSQL	Relational DBMS	1.89 +0.01	+0.14
95.	4 90.	4 76.	Amazon SimpleDB	Key-value store	1.89 -0.50	-0.84
96.	4 92.	4 90.	Percona Server for MySQL	Relational DBMS	1.85 -0.40	-0.03
97.	1 02.	4 91.	Virtuoso	Multi-model 🔟	1.80 -0.02	-0.06
98.	4 94.	4 89.	CloudKit	Document store	1.74 -0.44	-0.18
99.	4 96.	4 97.	OpenTSDB	Time Series DBMS	1.70 -0.32	+0.18
100.	4 97.	↓ 73.	Teradata Aster	Relational DBMS	1.66 -0.28	-1.16
101.	1 04.	1 13.	RocksDB	Key-value store	1.57 -0.15	+0.56
102.	4 98.	4 94.	Datomic	Relational DBMS	1.51 -0.42	-0.29
103.	103.	1 06.	jBASE	Multivalue DBMS	1.43 -0.39	+0.23
104.	1 07.	4 103.	VoltDB	Relational DBMS	1.40 -0.26	+0.08
105.	1 08.	4 99.	MonetDB 🚹	Relational DBMS	1.35 -0.13	-0.14
106.	4 101.	4 84.	IBM dashDB	Relational DBMS	1.34 -0.49	-0.78
107.	4 105.	4 95.	IMS	Navigational DBMS	1.33 -0.36	-0.42
108.	4 106.	1 04.	EnterpriseDB 🚹	Relational DBMS	1.32 -0.35	+0.05
109.	1 115.	4 107.	Red Brick	Relational DBMS	1.23 +0.08	+0.04
110.	1 113.	4 102.	Db4o	Object oriented DBMS	1.21 -0.01	-0.23
111.	4 109.	4 108.	GridGain	Key-value store	1.21 -0.24	+0.06
112.	↑ 133.	1 54.	Google Cloud Spanner	Relational DBMS	1.18 +0.22	+0.66
113.	4 110.	4 101.	Datameer	Document store	1.17 -0.20	-0.28
114.	4 111.	↓ 110.	Tibero	Relational DBMS	1.12 -0.21	+0.09
115.	1 22.	1 22.	Versant Object Database	Object oriented DBMS	1.08 +0.03	+0.19

Dlaczego więc w ogóle warto o nich wspominać?

Przede wszystkim dlatego, że są wygodne w użyciu i zasada ich działania pokrywa się z zasadą działania systemów mapujących relacje na obiekty. Ale o tym na następnym wykładzie.

SELECT * FROM models

WHERE name = "nosql";

SELECT FROM IIIOU

Opracowano wiele podejść do NoSQL-owych baz danych, a do najpopularniejszych należą:

- key-value
- document-oriented
- graph
- column
- multi-model

Model klucz-wartość, często wykorzystywany jako cache, korzysta z mapy, słownika lub asocjacyjnej tablicy:

```
novel:54:author  // Walter Jon Williams
novel:54:originaltitle  // The Praxis
novel:54:pages  // 8
novel:54:readdatefrom  // 2018-02-07
novel:54:readdateto  // 2018-02-17
novel:54:readtitle  // Praxis
novel:54:releaseyear  // 2002
```

Co jest istotne?

- każdy klucz może pojawić się tylko raz,
- wykorzystywany chociażby przy procesach zakupowych lub systemach cache,
- łatwo znaleźć dane po kluczu, a (zazwyczaj) niekoniecznie po ich wartości,
- idealne do skalowania.

NoSQL-owe bazy mogą przetrzymywać ustrukturyzowane dokumenty:

```
"author": {
    "firstname": "Walter Jon",
    "lastname": "Williams",
    "language": {
      "name": "angielski",
      "code": "en",
    }
  },
  "originaltitle": "The Praxis",
  "pages": 384,
  "readdatefrom": "2018-02-07",
  "readdateto": "2018-02-17",
  "readtitle": "Praxis",
  "releasevear": "2002",
  "uuid": "a41b2bd7-1729-4c0d-b6a0-721ddad0a5ef",
}
```

Co jest istotne?

- pliki mogą być zapisane jako JSON, XML lub dowolny innych format,
- każdy dokument powinien mieć swój unikalny identyfikator,
- ze względu na strukturę, dane mogą być bardzo elastycznie (nie)porządkowane,
- łatwo skalowalne i przeznaczone do przechowywania ogromnych ilości danych.

Kolumnowe bazy składają się z plików, które przechowują po trzy zmienne: nazwę kolumny, jej wartość oraz znacznik czasowy:

```
{
    fame: "author",
        value: "Walter Jon Williams",
        timestamp: 1523819873
    },
    {
        name: "pages",
        value: 384,
        timestamp: 1523819873
    },
}
```

Podsumowanie

HDD?

Najważniejsze jest zinterpretowanie potrzeb danego systemu i dobranie do nich odpowiedniego narzędzia. Żadną filozofią nie jest ślepe podążanie za trendami i próbowanie implementacji popularnych silników bazodanowych do systemów, które wcale nie potrzebują grafowego lub kolumnowego podejścia.

HDD?

Bazy NoSQL-owe kończą przeżywać swój złoty wiek. Zaczynają być wykorzystywane w miejscach, w których powinny być wykorzystywane, a nie praktycznie wszędzie bez żadnego uzasadnienia.

W bramży istnieje żartobliwe określenie HDD - hype driven development - które oznacza wykorzystywanie technologii, które są akurat *na fali*. Przestrzegam i nie polecam takiego podejścia w warunkach komercyjnych. A w prywatnych - czemu nie?

Bibliografia i ciekawe źródła

- https://db-engines.com/en/ranking
- http://www.javaexpress.pl/article/show/DB40__Object_ Database
- https://www.mongodb.com/compare/mongodb-mysql
- https://blog.daftcode.pl/ hype-driven-development-3469fc2e9b22

Kod prezentacji dostępny jest w repozytorium git pod adresem https://bitbucket.org/krewak/pwsz-ppsi

Wszystkie informacje dot. kursu dostępne są pod adresem http://pwsz.rewak.pl/kursy/4

