Embeddings

Марк Блуменау, магистратура ИИ

Повторка 1: Receptive field

Multi-Scale Receptive Fields Convolutional Network for Action Recognition

Что вы уже знаете из ML

- 1) Токенизация
- 2) Bag of Words
- 3) TF-IDF
- 4) Стемминг
- 5) Лемматизация

Если не знаете – пересмотрите записи :)

Что вы узнаете сегодня

Any algorithm for solving a task

Word representation - vector (input for your model/algorithm)

Sequence of tokens

Text (your input)

https://lena-voita.github.io/nlp_course/word_e mbeddings.html

Токенизация (напоминание)

One hot или как не надо

https://lena-voita.github.io/nlp_course/wora_e mbeddings.html

Что такое эмбеддинг?

Now look how this word is used in different contexts:

A bottle of tezgüino is on the table.

Everyone likes tezgüino.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Can you understand what tezgüino means?

Восстановим слово по контексту

A bottle of tezgüino is on the table.

Everyone likes tezgüino.

Tezgüino is a kind of alcoholic beverage made from corn.

Tezgüino makes you drunk.

We make tezgüino out of corn.

With context, you can understand the meaning!

Запустим ваши нейронки в реалтайме

https://lilianweng.github.io/posts/20 17-10-15-word-embedding/

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$
Dot product: measures similarity of o and c
Larger dot product = larger probability

Normalize over entire vocabulary
to get probability distribution

3. sum all

4. get loss (for this one step)

5. evaluate the gradient, make an update

$$u_w := u_w - \alpha \frac{\partial J_{t,j}(\theta)}{\partial u_w} \ \forall \ w \in V$$

https://lena-voita.github.io/nlp_course/word_e mbeddings.html

Negative Sampling

Dot product of v_{cat} :

- with u_{cute} increase,
- with all other u decrease

Dot product of v_{cat} :

- with u_{cute} increase,
- with a subset of other u decrease

Parameters to be updated:

- · v_{cat}
- u_w for all w in the vocabulary

|V| + 1 vectors

Parameters to be updated:

- v_{cat}
- u_{cute} and u_w for $w \in K+2$ vectors in K negative examples

https://lena-voita.github.io/nlp_course/word_e mbeddings.html

Continuous Bag of Words aka CBOW

https://lena-voita.github.io/nlp_course/word_e mbeddings.html

Skip-gram

Skip-Gram: from central predict context (one at a time)

FastText

Conv for text

Почему так не всегда хорошо

- 1) Receptive field как бы не смотрит на весь текст
- 2) Как текст читают люди? А тут ведь не так...

Марковские модели

- 1) Наличие слова W обусловлено k словами до него
- 2) $p(w_1, ..., w_n) = p(w_1)p(w_2|w_1) ... p(w_n|w_{n-1}, ..., w_{n-k})$
- 3) А теперь оценим вероятность aka как часто слово W встречается после k слов до него
- 4) Profit

Как сделать лучше?

RNN Трансформер