COMPUTER ARITHMETIC

- Arithmetic with Signed-2's Complement Numbers
- Multiplication and Division
- Floating-Point Arithmetic Operations
- Decimal Arithmetic Unit
- Decimal Arithmetic Operations

SIGNED MAGNITUDEADDITION AND SUBTRACTION

Addition: A + B; A: Augend; B: Addend

Subtraction: A - B: A: Minuend; B: Subtrahend

	Add	Subtract Magnitude					
Operation	Magnitude	When A>B	When A <b< td=""><td>When A=B</td></b<>	When A=B			
(+A) + (+B)	+(A + B)						
(+A) + (- B)	,	+(A - B)	- (B - A)	+(A - B)			
(- A) + (+B)		+(A - B) - (A - B)	- (B - A) +(B - A)	+(A - B)			
(- A) + (- B)	- (A + B)						
(+A) - (+B)		+(A - B)	- (B - A)	+(A - B)			
(+A) - (- B)	+(A + B)						
(- A) - (+B)	- (A + B)						
(- A) - (- B)		- (A - B)	+(B - A)	+(A - B)			

SIGNED 2'S COMPLEMENT ADDITION AND SUBTRACTION

3

Algorithm

MULTIPLICATION

Multiplication: B * A; B: Multiplicand; A: Multiplier; P: Partial Product

Multiplication of Unsigned Positive Numbers

 $A = A_{n-1}A_{n-2} \dots A_0$

$$B = B_{n-1}^{n-1}B_{n-2}^{n-2} ... B_{0}^{n-2}$$

$$P = B * A$$

$$= B * (\sum_{i=0}^{n-1} 2^{i} * A_{i})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= B * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-2}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-1}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-1}}) + ... + A_{0} * (\underline{B2^{0}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-1}}) + ... + A_{0} * (\underline{B2^{n-1}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-1}}) + ... + A_{0} * (\underline{B2^{n-1}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-1}}) + ... + A_{0} * (\underline{B2^{n-1}})$$

$$= A_{n-1} * (\underline{B2^{n-1}}) + A_{n-2} * (\underline{B2^{n-1}}) + ... + A_{0} * (\underline{B2^{n-1}})$$

Or

[3] Partial Product does not change when the multiplier bit is identical to the previous bit

8

BOOTH ALGORITHM FOR SIGNED 2'S COMPLEMENT

B - 10111

EXAMPLE OF BOOTH MULTIPLIER

B'+1=01001	AC			
	70	Q	Q_{-1}	SC
Initial	00000	10011	0	101
Subtract B	01001			
	01001			
ashr	00100	11001	1	100
ashr	00010	01100	1	011
Add B	10111			
	11001			
ashr	11100	10110	0	010
ashr	11110	01011	0	001
Subtract B	01001			
	00111			
ashr	00011	10101	1	000
	Subtract B ashr ashr Add B ashr ashr Subtract B	Subtract B 01001 ashr 00100 ashr 00010 Add B 10111 11001 ashr 11100 ashr 11110 Subtract B 01001 00111	Subtract B 01001 / 01001 ashr 00100 / 01100 ashr 00010 / 01100 Add B 10111 / 11001 ashr 11100 / 10110 ashr 11110 / 01011 Subtract B 01001 / 00111	Subtract B

 C_3

 C_0

Division

DIVISION

A/B = Q + R

A: Dividend; B: Divisor; Q: Quotient; R: Remainder

Divisor B = 10001, B'+ 1 = 01111

	Е	Α	Q	SC
Dividend:		01110	00000	5
shl EAQ	0	11100	00000	
add B'+1		01111		
E=1	1	01011		
Set Q ₀ =1	1	01011	00001	4
Set Q ₀ =1 shl EAQ	0	10110	00010	
Add B'+1		01111		
E=1	1	00101		
Set Q ₀ =1	1	00101	00011	3
shl EAQ	0	01010	00110	
add B'+1		01111		
E=0; Q ₀ =0	0	11001	00110	
add B "		10001		
restore remainder	1	01010		2
shI EAQ	0	10100	01100	
add B'+1		01111		
E=1	1	00011		
	1	00011	01101	1
Set Q ₀ =1 shl EAQ	0	00110	11010	
add B'+1	_	01111		
E=0; Q ₀ =0	0	10101	11010	
add B		10001		
restore remainder	1	00110	11010	0
neglect E				
remainder in A		00110		
quotient in Q		_	11010	

FLOWCHART OF DIVIDE OPERATION

FLOATING POINT ARITHMETIC OPERATIONS

 $F = m \times r^e$

where m: Mantissa

r: Radix

e: Exponent

Registers for Floating Point Arithmetic

 B_s В b BR **Parallel Adder Parallel Adder** Ε and Comparator $A_s A_1$ Α AC a Q_s Q QR q

FLOATING POINT ADD AND AUBTRACT

Computer Architecture

B. R. Ghimire

FLOATING POINT MULTIPLICATION

17

FLOATING POINT DIVISION

Rinary Sum

BCD Sum

BCD ADD

BCD digit < 10 BCD digit + BCD digit + carry =< 19

	DIII	<u> </u>	<u>uiii</u>		BCD Sum					
K	Z8	Z 4	Z2	Z1	С	S8	S4	S2	S 1	Decimal
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

BCD ADDER

If we can convert *Binary Sums* to *BCD Sum*, we can use a binary adder to add two BCD numbers

SUM =< 9

BCD Sum = Binary Sum

BCD Carry = Binary Carry

<u>19 >= SUM > 9</u>

BCD Sum = Binary Sum + 0110 BCD Carry = Carry(Binary Sum + 0110)

DECIMAL ARITHMETIC OPERATIONS

Addition

- Identical to the BCD addition
- 9's complement and 10's complement are identical to 1's complement and 10's complement, respectively