Algorithms Handbook

Vladimir Bolshakov

Contents

Binary search	3
Binary search	3
Steps:	3
Time Complexity:	4
Interval search	5
Interval search	5
Linear search	6
Linear search	6
Ternary search	6
Ternary search	6
Bubble sort	6
Bubble sort	6
Insertion sort	7
Insertion sort	7
TypeScript	7
Java	7
Selection sort	9
Selection sort	9
Quick sort	11
Quicksort	11

Merge sort	13
Merge sort Java	13
Interpolation search	14
Interpolation search	14
Diffie hellman algorithm	15
Diffie hellman algorithm	15
Binary tree in order traversal	16
Binary tree in order traversal	16
Binary tree postorder traversal	17
Binary tree postorder traversal	17
Binary tree preorder traversal	18
Binary tree preorder traversal	18
Graph adjacency list	19
Graph adjacency list	19
Graph adjacency matrix	20
Graph adjacency matrix	20

Binary search

Binary search

Binary search

Time complexity

Best case: O(1)
Worst case: O(log(n))
Average case O(log(n))

Space complexity

Recursive approach: O(log(n)) Iterative approach: O(1)

Steps:

- Step 1 Read the search element from the user.
- Step 2 Find the middle element in the sorted list.
- Step 3 Compare the search element with the middle element in the sorted list.
- Step 4 If both are matched, then display "Given element is found!!!" and terminate the function.

- Step 5 If both are not matched, then check whether the search element is smaller or larger than the middle element.
- Step 6 If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 for the left sublist of the middle element.
- Step 7 If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the right sublist of the middle element.
- Step 8 Repeat the same process until we find the search element in the list or until sublist contains only one element.
- Step 9 If that element also doesn't match with the search element, then returns -1;

Time Complexity:

```
Worst case: O(log n)
Average case: O(log n)
Best case: O(1)
```

```
function binarySearch(nums: number[], target: number): number {
  let left: number = 0;
  let right: number = nums.length - 1;

while (left <= right) {
   const mid: number = Math.floor((left + right) / 2);

  if (nums[mid] === target) return mid;
   if (target < nums[mid]) right = mid - 1;
   else left = mid + 1;
}

return -1;
}</pre>
```

```
class Solution {
   private static int binarySearch(int[] array, int target) {
    int low = 0;
    int high = array.length - 1;

   while(low <= high) {
      int middle = low + (high - low) / 2;
      int value = array[middle];

    if(value < target) {
        low = middle + 1;
    } else if(value > target) {
        high = middle - 1;

    } else {
        return middle;
    }
}
```

```
return -1;
    }
def binary_search(list, item):
    low = 0
    high = len(list) - 1
    while low <= high:</pre>
        mid = (low+high)/2
        guess = list[mid]
        if guess == item:
            return mid
        if guess > item:
            high = mid - 1
        else:
            low = mid +1
    return None
my_list = [1, 3, 5, 7, 9]
res = binary_search(my_list, 3)
print(my_list[res])
```

Interval search

Interval search

```
type Interval = [number, number];
function intervalSearch(intervals: Interval[], queryInterval: Interval): number[] {
  const result: number[] = [];

  for (let i = 0; i < intervals.length; i++) {
    const [start, end] = intervals[i];
    const [queryStart, queryEnd] = queryInterval;

    if (start <= queryEnd && end >= queryStart) {
      result.push(i);
    }
  }
  return result;
}
```

Linear search

Linear search

```
function linearSearch(arr: number[], target: number): number {
  for (let i = 0; i < arr.length; i++) {
    if (arr[i] === target) {
      return i;
    }
  }
  return -1;
}</pre>
```

Ternary search

Ternary search

```
function ternarySearch(func: (x: number) => number, left: number, right: number, epsilon: number): numb
  while (right - left > epsilon) {
    const mid1 = left + (right - left) / 3;
    const mid2 = right - (right - left) / 3;

    const value1 = func(mid1);
    const value2 = func(mid2);

    if (value1 < value2) {
        left = mid1;
    } else {
        right = mid2;
    }
}

    return (left + right) / 2;
}</pre>
```

Bubble sort

Bubble sort

```
function bubbleSort(array: number[] | string[]) {
  for (let i = 0; i < array.length; i++) {
    for (let j = 0; j < array.length - 1 - i; j++) {
        if (array[j] > array[j + 1]) {
```

```
[array[j], array[j + 1]] = [array[j + 1], array[j]];
}

return array;
}

console.log(bubbleSort([2,5,2,6,7,2,22,5,7,9,0,2,3]))
```

Insertion sort

Insertion sort

TypeScript

```
function insertionSort(array: number[] | string[]) {
    for (let i = 1; i < array.length; i++) {
        let curr = array[i];
        let j = i - 1;
        for (j; j >= 0 && array[j] > curr; j--) {
            array[j + 1] = array[j];
        }
        array[j + 1] = curr;
    }
    return array;
}

console.log(insertionSort([1, 4, 2, 8, 345, 123, 43, 32, 5643, 63, 123, 43, 2, 55, 1, 234, 92]));
```

Java

```
class Solution {
   void insertionSort (int[] arr) {
    int n = arr.length;
   for(int i = 1; i < n; i++) {</pre>
```

```
int current = arr[i];
int position = i - 1;
while(position >= 0 && arr[position] > current) {
         arr[position + 1] = arr[position];
         position--;
}
arr[position + 1] = current;
}
}
```

Selection sort

Selection sort

Selection sort


```
function selectionSort(array: any[]) {
  for (let i = 0; i < array.length - 1; i++) {</pre>
    let min = i;
    for (let j = i + 1; j < array.length; j++) {
      if (array[min] > array[j]) min = j;
    [array[i], array[min]] =[array[min], array[i]]
  }
 return array;
}
console.log(selectionSort([1, 4, 2, 8, 345, 123, 43, 32, 5643, 63, 123, 43, 2, 55, 1, 234, 92]));
    public static void selectionSort(int[] array) {
        for(int i = 0; i < array.length - 1; i++) {</pre>
            int min = i;
            for(int j = i + 1; j < array.length; j++) {
                if(array[min] > array[j]) {
                    min = j;
                }
            }
            int temp = array[i];
            array[i] = array[min];
            array[min] = temp;
    }
print('This is selection sort')
def find_smallest(arr):
    smallest = arr[0]
    smallest_index = 0
    for i in range(1, len(arr)):
        if arr[i] < smallest:</pre>
            smallest = arr[i]
            smallest_index = i
    return smallest_index
def selection sort(arr):
    newArr = []
    for i in range(len(arr)):
        smallest = find_smallest(arr)
        newArr.append(arr.pop(smallest))
    return newArr
print(selection_sort([5,4,6,2,1,123, 2, 3,1,23 ,1,1,]))
```

Quick sort

Quicksort

```
class Solution {
    int makePartition(int [] arr, int low, int high) {
        int pivot = arr[high];
        int currentIndex = low - 1;
        for(int i = low; i < high; i++) {</pre>
            if(arr[i] < pivot) {</pre>
                currentIndex++;
                int temp = arr[i];
                arr[i] = arr[currentIndex];
                arr[currentIndex] = temp;
            }
        }
        int temp = arr[high];
        arr[high] = arr[currentIndex + 1];
        arr[currentIndex + 1] = temp;
        return currentIndex + 1;
    }
    void quicksort(int[] arr, int low, int high) {
        if(low < high) {</pre>
            int pivot = makePartition(arr, low, high);
            quicksort(arr, low, pivot - 1);
            quicksort(arr, pivot + 1, high);
    }
    void quickSort (int[] arr) {
        int n = arr.length;
        quicksort(arr, 0, n - 1);
}
def quicksort(arr):
    if len(arr) < 2:
        return arr
    else:
        pivot = arr[len(arr)/2]
        less = [i for i in arr[1:] if i <= pivot]</pre>
        greater = [i for i in arr[1:] if i > pivot]
        return quicksort(less) + [pivot] + quicksort(greater)
print(quicksort([10,2,3,1,5,4]))
class Solution {
    static void swap(int[] array, int i, int j) {
```

```
int temp = array[i];
    array[i] = array[j];
    array[j] = temp;
}
private static void quickSort(int[] array, int start, int end) {
    if(end <= start) return; // base case</pre>
    int pivot = partition(array, start, end);
    quickSort(array, start, pivot -1);
    quickSort(array, pivot + 1, end);
}
private static int partition(int[] array, int start, int end) {
    int pivot = array[end];
    int i = start - 1;
    for(int j = start; j \le end -1; j++) {
        if(array[j] < pivot) {</pre>
            i++;
            swap(array, i, j);
        }
    }
    i++;
    swap(array, i, end);
    return i;
}
```

```
function quicksort(arr: number[]): number[] {
  if (arr.length < 2) {
    return arr;
} else {
    const pivot = arr[Math.floor(arr.length / 2)];
    const less = arr.slice(1).filter((i) => i <= pivot);
    const greater = arr.slice(1).filter((i) => i > pivot);
    return [...quicksort(less), pivot, ...quicksort(greater)];
}
```

• Go back

Merge sort

Merge sort

Java

```
class Solution {
    void merge(int[] arr, int low, int mid, int high) {
        int subArr1Size = mid - low + 1;
        int subArr2Size = high - mid;
        int [] subArr1 = new int[subArr1Size];
        int [] subArr2 = new int[subArr2Size];
        for (int i = 0; i < subArr1Size; i++) {</pre>
           subArr1[i] = arr[low + i];
           for (int i = 0; i < subArr2Size; i++) {</pre>
           subArr2[i] = arr[mid + 1 + i];
        int i = 0, j = 0, k = low;
        while(i < subArr1Size && j < subArr2Size) {</pre>
            if(subArr1[i] <= subArr2[j]) {</pre>
                 arr[k] = subArr1[i];
                 i++;
            } else {
                arr[k] = subArr2[j];
                j++;
            }
            k++;
        while(i < subArr1Size) {</pre>
            arr[k++] = subArr1[i++];
        while (j < subArr2Size) {</pre>
           arr[k++] = subArr2[j++];
    }
    void mergesort(int[] arr, int low, int high){
        if(high > low) {
            int mid = (high + low) / 2;
            mergesort(arr, low, mid);
            mergesort(arr, mid + 1, high);
            merge(arr, low, mid, high);
        }
    }
    void mergeSort (int[] arr) {
        int n = arr.length;
```

```
mergesort(arr, 0, n - 1);
    }
function mergeSort(arr: number[]): number[] {
  if (arr.length <= 1) {</pre>
    return arr;
  }
  const middle = Math.floor(arr.length / 2);
  const left = arr.slice(0, middle);
  const right = arr.slice(middle);
  return merge(mergeSort(left), mergeSort(right));
}
function merge(left: number[], right: number[]): number[] {
  let result: number[] = [];
  let leftIndex = 0;
  let rightIndex = 0;
  while (leftIndex < left.length && rightIndex < right.length) {</pre>
    if (left[leftIndex] < right[rightIndex]) {</pre>
      result.push(left[leftIndex]);
      leftIndex++;
    } else {
      result.push(right[rightIndex]);
      rightIndex++;
    }
  }
  return result.concat(left.slice(leftIndex)).concat(right.slice(rightIndex));
}
```

Interpolation search

Interpolation search

```
class Solution {
   private static int interpolationSearch(int[] array, int value) {
     int low = 0;
     int high = array.length - 1;

     while(value >=array[low] && value <= array[high] && low <= high) {
        int probe = low + (high - low) * (value - array[low]) / (array[high] - array[low]);
     if(array[probe] == value) {
          return probe;
     } else if(array[probe] > value) {
          low = probe + 1;
     }
}
```

```
} else {
        high = probe -1;
}

return -1;
}
```

```
function interpolationSearch(array: number[], value: number): number {
  let low = 0;
  let high = array.length - 1;

while (value >= array[low] && value <= array[high] && low <= high) {
    const probe = low + ((high - low) * (value - array[low])) / (array[high] - array[low]);
    const roundedProbe = Math.floor(probe);

  if (array[roundedProbe] === value) {
    return roundedProbe;
  } else if (array[roundedProbe] < value) {
    low = roundedProbe + 1;
  } else {
    high = roundedProbe - 1;
  }
}

return -1;
}</pre>
```

Diffie hellman algorithm

Diffie hellman algorithm

```
function power(a: any, b: any, p: any) {
   if(b === 1) {
      return 1
   } else {
      return Math.pow(a,b) % p
   }
}

function DiffieHellman() {
   let P, G, x, a, y, b, ka, kb;
   P = 23
```

```
console.log("The value of P :", P);

G = 9;

console.log("The value of G :", G);

a = 4;

console.log("The private key a for Alice : ", a);

x = power(G,a,P);

b = 3;

console.log("The private key a for Bob : ", b);

y = power(G,b,P);

ka = power(y, a, P);
kb = power(x, b, P);

console.log("Secret key for the Alice is : ", ka);
console.log("Secret key for the Bob is : ", kb);
}
DiffieHellman()
```

Binary tree in order traversal

Binary tree in order traversal

```
class Solution {
   List<Integer> getInOrderTraversal(Node root) {
      List<Integer> list = new ArrayList<Integer>();
      Stack<Node> stack = new Stack<>();
      Node node = root;

   while(node != null || !stack.isEmpty()) {
      while(node != null) {
            stack.push(node);
            node = node.left;
      }
      list.add(stack.peek().data);
      node = stack.pop().right;
   }
}
```

```
return list;
    }
class TreeNode {
  data: number;
  left: TreeNode | null;
  right: TreeNode | null;
  constructor(data: number) {
    this.data = data;
    this.left = null;
    this.right = null;
}
function getInOrderTraversal(root: TreeNode | null): number[] {
  const list: number[] = [];
  const stack: TreeNode[] = [];
  let node: TreeNode | null = root;
  while (node !== null || stack.length > 0) {
    while (node !== null) {
      stack.push(node);
      node = node.left;
    }
    list.push(stack[stack.length - 1].data);
    node = stack.pop()!.right;
  return list;
```

Binary tree postorder traversal

Binary tree postorder traversal

```
class Solution {
    void utility(Node root, List<Integer> traversal) {
        if(root == null) {
            return;
        }
        utility(root.left, traversal);
        utility(root.right, traversal);
        traversal.add(root.data);
}
```

```
List<Integer> getPostorderTraversal(Node root) {
        List<Integer> traversal = new ArrayList<Integer>();
        utility(root, traversal);
        return traversal;
class Node {
  data: number;
  left: Node | null;
  right: Node | null;
  constructor(data: number) {
   this.data = data;
    this.left = null;
    this.right = null;
  }
}
function utility(root: Node | null, traversal: number[]): void {
  if (root === null) {
    return;
  utility(root.left, traversal);
  utility(root.right, traversal);
  traversal.push(root.data);
}
function getPostorderTraversal(root: Node | null): number[] {
  const traversal: number[] = [];
  utility(root, traversal);
  return traversal;
```

Binary tree preorder traversal

Binary tree preorder traversal

```
class Solution {
    void utility(Node root, List<Integer> traversal) {
        if(root == null) {
            return;
        }

        traversal.add(root.data);
        utility(root.left, traversal);
        utility(root.right, traversal);
}
```

```
List<Integer> getPreorderTraversal(Node root) {
        List<Integer> traversal = new ArrayList<Integer>();
        utility(root, traversal);
        return traversal;
    }
class Node {
  data: number;
  left: Node | null;
  right: Node | null;
  constructor(data: number) {
    this.data = data;
    this.left = null;
    this.right = null;
  }
}
function utility(root: Node | null, traversal: number[]): void {
  if (root === null) {
    return;
  traversal.push(root.data);
  utility(root.left, traversal);
  utility(root.right, traversal);
function getPreorderTraversal(root: Node | null): number[] {
  const traversal: number[] = [];
  utility(root, traversal);
  return traversal;
}
```

Graph adjacency list

Graph adjacency list

```
public class GraphList {
    ArrayList<LinkedList<Node>> alist;

    GraphList() {
        alist = new ArrayList<>();
    }

    public void addNode(Node node) {
```

```
LinkedList<Node> currentList = new LinkedList<>();
    currentList.add(node);
    alist.add(currentList);
}
public void addEdge(int src, int dst) {
   LinkedList<Node> currentList = alist.get(src);
    Node dstNode = alist.get(dst).get(0);
    currentList.add(dstNode);
}
public boolean checkEdge(int src, int dst) {
    LinkedList<Node> currentList = alist.get(src);
   Node dstNode = alist.get(dst).get(0);
   for(Node node: currentList) {
        if(node == dstNode) {
            return true;
    }
    return false;
}
public void print() {
    for(LinkedList<Node> currentList : alist) {
        for(Node node: currentList) {
            System.out.print(node.data + " -> ");
        System.out.println();
   }
}
```

Graph adjacency matrix

Graph adjacency matrix

```
public class Graph {
   ArrayList<Node> nodes;
   int[][] matrix;

   Graph(int size) {
      nodes = new ArrayList<>();
      matrix = new int[size][size];
   }

   public void addNode(Node node) {
      nodes.add(node);
   }
}
```

```
public void addEdge(int src, int dst) {
    matrix[src][dst] = 1;
}
public boolean checkEdge(int src, int dst) {
    if(matrix[src][dst] == 1) {
        return true;
    } else {
        return false;
    }
}
public void print() {
    System.out.print(" ");
    for(Node node : nodes) {
        System.out.print(node.data + " ");
    System.out.println();
    for(int i = 0; i < matrix.length; i++) {</pre>
        System.out.print(nodes.get(i).data + " ");
        for(int j =0; j < matrix[i].length; j++) {</pre>
            System.out.print(matrix[i][j] + " ");
        System.out.println();
    }
}
```