Système de Recommandation d'Antibiotiques

Rapport généré le 07/08/2025 à 22:11

Table des matières

- 1. Vue d'ensemble du système
- 2. Analyse des données ATLAS
- 3. Modèle d'arbre de décision
- 4. Recommandations d'antibiotiques
- 5. Cas cliniques de démonstration
- 6. Analyse des profils de résistance
- 7. Recommandations d'utilisation
- 8. Limitations et perspectives

1. Vue d'ensemble du système

Ce système de recommandation d'antibiotiques utilise un arbre de décision basé sur les données ATLAS pour recommander les antibiotiques dans l'ordre optimal d'efficacité. La céfidérocol est systématiquement placée en position de dernier recours, conformément aux bonnes pratiques de préservation des antibiotiques. Le système prend en compte trois paramètres principaux : • L'espèce bactérienne responsable de l'infection • La région ou le pays d'origine du patient • Le profil de résistance aux antibiotiques

2. Analyse des données ATLAS

Résumé des données utilisées :

Métrique	Valeur
Nombre total d'isolats	966,805
Nombre d'espèces	390
Nombre de pays	83
Période couverte	2004 - 2023
Antibiotiques analysés	48

Distribution des espèces bactériennes :

Distribution géographique :

Évolution temporelle des données :

3. Modèle d'arbre de décision

Le modèle utilise un arbre de décision pour recommander le premier antibiotique optimal basé sur les caractéristiques suivantes : • Espèce bactérienne (encodée) • Pays d'origine (encodé) • Année de collecte • Profils de résistance par classe d'antibiotiques L'arbre de décision a été entraîné sur 80% des données et testé sur 20%, avec une précision de 100% pour la prédiction du premier antibiotique recommandé.

4. Recommandations d'antibiotiques

Ordre optimal des antibiotiques (top 20) :

Rang	Antibiotique	Туре
1	Cefoperazone sulbactam	Standard
2	Gatifloxacin	Standard
3	Tetracycline	Standard
4	Metronidazole	Standard
5	Cefoxitin	Standard
6	Linezolid	Standard
7	Daptomycin	Standard
8	Ertapenem	Standard
9	Quinupristin dalfopristin	Standard
10	Teicoplanin	Standard
11	Tigecycline	Standard
12	Meropenem vaborbactam	Standard
13	Sulbactam	Standard
14	Ceftibuten	Standard
15	Vancomycin	Standard
16	Clarithromycin	Standard
17	Azithromycin	Standard
18	Ceftaroline avibactam	Standard
19	Doripenem	Standard
20	Ceftazidime avibactam	Standard

5. Cas cliniques de démonstration

Cas clinique	Espèce	Pays	Année
Infection urinaire à E. coli	Escherichia coli	France	2023
Pneumonie à Pseudomonas	Pseudomonas aeruginosa	Germany	2023
Bactériémie à Staphylococcus	Staphylococcus aureus	United States	2023
Infection à Klebsiella	Klebsiella pneumoniae	Italy	2023

6. Analyse des profils de résistance

Antibiotiques avec forte résistance par espèce :

Espèce	Antibiotique 1	Taux de résistance
Escherichia coli	Ampicillin	65.7%
Escherichia coli	Levofloxacin	36.7%
Escherichia coli	Ceftaroline	18.6%
Pseudomonas aeruginosa	Levofloxacin	28.1%
Pseudomonas aeruginosa	Piperacillin tazobactam	20.0%
Pseudomonas aeruginosa	Meropenem	19.2%
Staphylococcus aureus	Levofloxacin	32.6%
Staphylococcus aureus	Oxacillin	30.4%
Staphylococcus aureus	Erythromycin	29.2%
Klebsiella pneumoniae	Ampicillin	90.8%
Klebsiella pneumoniae	Levofloxacin	29.7%
Klebsiella pneumoniae	Cefepime	29.2%

7. Recommandations d'utilisation

Pour les cliniciens : • Valider les recommandations avec l'antibiogramme local • Tenir compte des allergies et contre-indications du patient • Monitorer l'efficacité et ajuster si nécessaire • Réserver la céfidérocol aux cas de résistance multiple Pour les microbiologistes : • Utiliser les seuils de résistance appropriés • Considérer les mécanismes de résistance sous-jacents • Surveiller les tendances de résistance • Collaborer étroitement avec les cliniciens

8. Limitations et perspectives

Limitations actuelles : • Le modèle est basé sur les données disponibles dans ATLAS • Les recommandations peuvent varier selon le contexte local • Les profils de résistance évoluent dans le temps • Nécessite une validation clinique avant utilisation Perspectives d'amélioration : • Intégration de données locales et récentes • Prise en compte des mécanismes de résistance • Adaptation aux spécificités régionales • Interface utilisateur plus intuitive

Conclusion

Ce système fournit un cadre pour la recommandation d'antibiotiques basé sur les données épidémiologiques. Il doit être utilisé comme un outil d'aide à la décision, en complément de l'expertise clinique et microbiologique. La céfidérocol est systématiquement positionnée comme option de dernier recours, contribuant ainsi à la préservation de cet antibiotique critique.