Algèbre linéaire avancée II printemps 2021

Série 12

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Soit
$$A = \begin{pmatrix} 7 & 1 & -8 & -1 \\ 0 & 3 & 0 & 0 \\ 4 & 2 & -5 & -1 \\ 0 & -4 & 0 & -1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$
. Soit $T : \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ l'application

linéaire associée à cette matrice A. Trouver des sous-espaces $V_1, V_2 \subseteq \mathbb{R}^4$ qui satisfont les conditions du Lemme 5.20, c-à-d $\mathbb{R}^4 = V_1 \oplus V_2$, $T(V_i) \subseteq V_i$ et $T_{|V_i|} = N_i + \lambda_i I$, où $N_i \colon V_i \to V_i$ est nilpotente, pour i = 1, 2.

Exercice 2. Compléter la preuve du théorème 5.22: Montrer que les orbites de

$$x_1,\ldots,x_{i-1},y,x_{i+1},\ldots,x_\ell$$

engendrent encore V. (Où les x_i et y sont les mêmes que dans le démonstration du théorème 5.22).

Exercice 3. Soit $T: V \to V$ un endomorphisme et soit $V_1, ..., V_k$ une décomposition de V tel que $V = V_1 \oplus \cdots \oplus V_k$, $T(V_i) \subseteq V_i$ et $T_{|V_i|} = N_i + \lambda_i I$, où $N_i: V_i \to V_i$ est nilpotente. Montrez que :

- a) $V_i\subseteq \ker(T-\lambda_iI)^{a_i}$ pour un entier a_i tel que $N_i^{a_i}=0$.
- b) Les $\lambda_1, ..., \lambda_k$ sont des valeurs propres (pas forcément distinctes) de T. (Indice: Prendre $v_i \in V_i$ bien choisi).
- c) Le polynôme $f(x) = \prod_{i=1}^k (x \lambda_i)^{a_i}$ annule T. (In dice: Montrer que f(T)(v) = 0 pour tout $v \in V$ en utilisant la décomposition de V et le premier point).
- d) En déduire que l'ensemble $\{\lambda_1, ..., \lambda_k\}$ contient toutes les valeurs propres de T (Indice: Si $v \neq 0$ est un vecteur propre de T de valeur propre λ , exprimer f(T)(v) en fonction de f, λ , et v).

e) En déduire que les valeurs sur la diagonale de n'importe quelle forme normale de Jordan de T constituent l'ensemble des valeurs propres de T.

Exercice 4. Vrai ou faux:

- a) Si J est la forme normale de Jordan pour une matrice A, J^2 est la forme normale de Jordan pour A^2 .
- b) Si A et B sont deux matrices $\in \mathbb{C}^{n \times n}$, les matrices AB et BA ont les mêmes formes normales de Jordan.

Exercice 5. Donner la forme normale de Jordan J pour la matrice

$$A = egin{pmatrix} 9 & 4 & 5 \ -4 & 0 & -3 \ -6 & -4 & -2 \end{pmatrix} \,.$$

Exercice 6. Soit J un bloc Jordan de taille $k \times k$ avec λ sur la diagonale. Montrer que

- a) Le polynôme caractéristique de J est $p_J(t) = (\lambda t)^k$.
- b) J possède λ comme seule valeur propre.
- c) Le polynôme minimal de J est $m_J(t) = (\lambda t)^k$.
- d) La multiplicité géométrique de λ est 1.

Exercice 7. Soit $V = \mathbb{F}_3^3$ muni de la forme bilinéaire standard. Soit $W = \text{span}\{(1,1,1)^T\}$.

- i) Montrer que $W\subseteq W^{\perp}$.
- ii) Montrer q'il existe $0 \neq u \in V \setminus (W + W^{\perp})$.

Cela montre que pour une forme bilinéaire non-dégénérée, on a pas nécessairement $W\oplus W^\perp=V.$

Exercice 8. (*) On considère un système différentiel x'=Ax et on suppose que A est une matrice nilpotente, si bien que $A^m=0$ pour un certain entier m>0. Montrer que, dans une solution $x(t)=\begin{pmatrix} x_1(t)\\ \vdots\\ x_n(t) \end{pmatrix}$, chaque fonction $x_i(t)$ est un polynôme en t et qu'il est de degré au plus m-1.