Groupe IPESUP Année 2022-2023

TD 12: Études locales et asymptotiques

Connaître son cours:

- Soit f une fonction de classe \mathscr{C}^n sur un intervalle réel I et $a \in I$. Donner l'expression de la formule de Taylor-Young et proposer une démonstration par récurrence sur le degré n de régularité de la fonction f.
- Montrer qu'en cas d'existence, la liste des coefficients d'un développement limité est unique.
- Donner un développement limité de la fonction tan en 0 puis en $\frac{\pi}{4}$ à l'ordre 5.
- Donner un développement limité de la fonction $(x \mapsto \sqrt{1+x})$ en 0 à l'ordre 5.
- Calculer le développement limité à l'ordre 5 en 0 de la fonction composée $(x \mapsto e^{\sin(x)})$.
- Calculer successivement les développements en 0 à l'ordre 5 de $\left(x \mapsto \frac{1}{\cos(x)}\right)$ et de la fonction sin. Retrouver le développements en 0 à l'ordre 5 de la fonction tan.
- Soit f une fonction admettant un développement limité à l'ordre n en a de partie régulière P_n . Montrer que toute primitive F de f admet un développement limité à l'ordre n+1 en a et donner son expression.

Relations de comparaison et développements limités :

Exercice 1. (*)

Soient f et g deux fonctions définies au voisinage d'un réel a ou de $a=\pm\infty$. Montrer que $e^f \sim_a e^g \iff \lim_a (f - g) = 0.$

A-t-on $f \sim_a g \implies e^f \sim_a e^g$?

Exercice 2. (*)

Déterminer les développements limités des fonctions suivantes:

- 1. $\frac{1}{1+x+x^2}$ à l'ordre 4 en 0
- 2. $\frac{\cos x 1}{\sin x + 1}$ à l'ordre 2 en 0
- 3. $\frac{\ln(1+x)}{\sin x}$ à l'ordre 3 en 0

Exercice 3. (*)

Calculer les développements limités suivants :

- 1. $\ln\left(\frac{\sin x}{x}\right)$ à l'ordre 4 en 0
- 2. $\exp(\sin x)$ à l'ordre 4 en 0
- 3. $(\cos x)^{\sin x}$ à l'ordre 5 en 0

Exercice 4. (*)

Calculer les développements limités suivants :

- 1. $\frac{1}{x}$ à l'ordre 3 en 2 2. $\ln(x)$ à l'ordre 3 en 2 3. e^x à l'ordre 3 en 1 4. $\cos(x)$ à l'ordre 3 en $\frac{\pi}{3}$
- 5. \sqrt{x} à l'ordre 3 en 2

Exercice 5. (*)

Calculer les développements limités suivants :

- 1. $\arccos x$ à l'ordre 5 en 0
- 2. $\int_0^x e^{t^2} dt$ à l'ordre 5 en 0.

Exercice 6. (**)

Soit $f(x) = \frac{x}{1-x^2}$. Calculer $f^{(n)}(0)$ puis $f^{(n)}(x)$ pour

Exercice 7. (**)

Trouver un équivalent simple de $\arccos x$ en 1. Indication : faire un développement limité d'ordre 0 à gauche et utiliser la fonction sinus

Exercice 8. (**)

Calculer les développements limités suivants :

1.
$$\frac{\sqrt{x+2}}{\sqrt{x}}$$
 à l'ordre 3 en $+\infty$
2. $\ln(x+\sqrt{1+x^2}) - \ln x$ à l'ordre 4 en $+\infty$

Exercice 9. (**)

Calculer, à l'ordre 100, le développement limité en 0 de la fonction $\left(x \mapsto \ln\left(\sum_{k=0}^{99} \frac{x^k}{k!}\right)\right)$.

Exercice 10. (**)

Pour $x \in \mathbb{R}$, on pose $f(x) = x \exp(x^2)$.

- 1. Montrer que f réalise une bijection de \mathbb{R} sur \mathbb{R} .
- 2. Justifier que f^{-1} admet un développement limité à l'ordre 4 en 0.
- 3. Donner ce développement limité.

Exercice 11. (**)

Calculer
$$\ell = \lim_{x \to +\infty} \left(\frac{\ln(x+1)}{\ln x} \right)^x$$
. Donner un équivalent de $\left(\frac{\ln(x+1)}{\ln x} \right)^x - \ell$ lorsque $x \to +\infty$.

Exercice 12. (**)

Donner un développement limité à l'ordre 2 de $f(x) = \frac{\sqrt{1+x^2}}{1+x+\sqrt{1+x^2}} \text{ en 0. En déduire un développement à l'ordre 2 en } +\infty. \text{ Calculer un développement à l'ordre 1 en } -\infty.$

Exercice 13. (**)

Soit a un nombre réel et $f:]a, +\infty[\to \mathbb{R}$ une application de classe C^2 . On suppose f et f'' bornées; on pose $M_0 = \sup_{x>a} |f(x)|$ et $M_2 = \sup_{x>a} |f''(x)|$.

- 1. En appliquant une formule de Taylor reliant f(x) et f(x+h), montrer que, pour tout x>a et tout h>0, on a : $|f'(x)| \le \frac{h}{2}M_2 + \frac{2}{h}M_0$.
- 2. En déduire que f' est bornée sur $a, +\infty$.

Exercice 14. (**)

Donner des équivalents simples pour les fonctions suivantes :

1.
$$2e^x - \sqrt{1+4x} - \sqrt{1+6x^2}$$
, en 0

2.
$$(\cos x)^{\sin x} - (\cos x)^{\tan x}$$
, en 0

3.
$$\sqrt{x^2+1} - 2\sqrt[3]{x^3+x} + \sqrt[4]{x^4+x^2}$$
, en $+\infty$

Applications et développements asymptotiques :

Exercice 15. (*)

Calculer les limites suivantes

$$1. \lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2}$$

2.
$$\lim_{x \to 0} \frac{\cos x - \sqrt{1 - x^2}}{x^4}$$

Exercice 16. (**)

Étudier au voisinage de 0 la fonction définie par $f(x) = \frac{1}{x} - \frac{1}{\arcsin x}$. Est-elle prolongeable par continuité? Dérivable en 0? Trouver une tangente à la courbe en 0.

Exercice 17. (*)

Donner un développement asymptotique à la précision $\frac{1}{n^3}$ (ordre 3) de $u_n = \frac{1}{n!} \sum_{k=0}^n k!$.

Exercice 18. (**)

Donner un développement asymptotique :

- 1. En 0 de $\frac{1}{x(e^x-1)} \frac{1}{x^2}$ à la précision x^2 .
- 2. En $+\infty$ de $x \ln(x+1) (x+1) \ln x$ à la précision $\frac{1}{x^3}$.

Exercice 19. (*)

Etudier l'existence et la valeur éventuelle des limites suivantes

1.
$$\lim_{x \to \pi/2} (\sin x)^{1/(2x-\pi)}$$

$$2. \lim_{x \to \pi/2} |\tan x|^{\cos x}$$

3.
$$\lim_{n \to +\infty} \left(\cos\left(\frac{n\pi}{3n+1}\right) + \sin\left(\frac{n\pi}{6n+1}\right) \right)^n$$

4.
$$\lim_{x\to 0}(\cos x)^{\ln|x|}$$

5.
$$\lim_{x \to \pi/2} \cos x \cdot e^{1/(1-\sin x)}$$

6.
$$\lim_{x \to \pi/3} \frac{2\cos^2 x + \cos x - 1}{2\cos^2 x - 3\cos x + 1}$$

7.
$$\lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \tanh x} \right)^{1/\sin x}$$

8.
$$\lim_{x \to e^-} (\ln x)^{\ln(e-x)}$$

9.
$$\lim_{x \to 1^+} \frac{x^x - 1}{\ln(1 - \sqrt{x^2 - 1})}$$

10.
$$\lim_{x \to 0^+} \frac{(\sin x)^x - x^{\sin x}}{\ln(x - x^2) + x - \ln x}$$

11.
$$\lim_{x \to 1/\sqrt{2}} \frac{(\arcsin x)^2 - \frac{\pi^2}{16}}{2x^2 - 1}$$

Exercice 20. (***)

- 1. Montrer que l'équation $\tan x = x$ possède une unique solution x_n dans $\left]n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2}\right[$ $(n \in \mathbb{N}).$
- 2. Quelle relation lie x_n et $arctan(x_n)$?
- 3. Donner un DL de x_n en fonction de n à l'ordre 0 pour $n \to \infty$.
- 4. En reportant dans la relation trouvée en 2, obtenir un DL de x_n à la précision $\frac{1}{n^2}$.

Exercice 21. (***)

Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n \sim_{+\infty} v_n$. On pose

$$U_n = \sum_{k=1}^n u_k \text{ et } V_n = \sum_{k=1}^n v_k,$$

et on suppose de plus que $V_n \to +\infty$.

Démontrer que $U_n \sim_{+\infty} V_n$.

Exercice 22. (**)

Déterminer :

1.
$$\lim_{x \to -\infty} \sqrt{x^2 + 3x + 2} + x$$

2.
$$\lim_{x\to 0^+} (\arctan x)^{\frac{1}{x^2}}$$

3.
$$\lim_{x\to 0} \frac{(1+3x)^{\frac{1}{3}}-1-\sin x}{1-\cos x}$$

Exercice 23. (***)

Soit $u_0 \in]0, \frac{\pi}{2}]$. Pour $n \in \mathbb{N}$, on pose

$$u_{n+1} = \sin(u_n)$$

- 1. Montrer brièvement que la suite u est strictement positive et converge vers 0.
- 2. (a) Déterminer un réel α tel que la suite $u_{n+1}^{\alpha} u_n^{\alpha}$ ait une limite finie non nulle.
 - (b) En utilisant le lemme de CESARO, déterminer un équivalent simple de u_n .

Exercice 24. (***)

"Série harmonique et constante d'Euler "

On pose

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

- 1. Prouver que $H_n \sim_{+\infty} \ln n$.
- 2. On pose $u_n = H_n \ln n$, et $v_n = u_{n+1} u_n$. Étudier la nature de la série $\sum_n v_n$. En déduire que la suite (u_n) est convergente.

On notera γ sa limite.

3. Soit
$$R_n = \sum_{k=n}^{+\infty} \frac{1}{k^2}$$
.

Donner un équivalent de R_n .

4. Soit w_n tel que $H_n = \ln n + \gamma + w_n$, et soit $t_n = w_{n+1} - w_n$.

Donner un équivalent du reste $\sum_{k>n} t_k$.

En déduire que

$$H_n = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$