Welcome to the documentation of singletCode!

singletCode (link to preprint) uses cell barcoding technology to identify **true singlets** in scRNAseq data. In our preprint, we used singletCode to benchmark existing doublet detection methods and train a classifier to detect singlets in non-barcoded datasets as well of the same cell type.

doublets in sequencing

- · How do doublets form?
- · Downstream impact of doublets

How do doublets form?

Single-cell RNA sequencing (scRNA-seq) datasets contain true single cells, or singlets, in addition to cells that randomly coalesce during the protocol, or doublets. Sometimes, there are higher rates of doublets which can be attributed to cellular physiology and experimental protocols can lead to cell clumping. Doublet percentage in a sample be as high as 40%. Doublets can be two very transcriptionally different cells captured together (heterotypic) or two transcriptionally similar cells captured together (homotypic). Doublets are difficult to identify because just because two cells are captured together does not mean there is simply more absolute RNA fragments present or sequenced in doublet cases, and cells exist on a transcriptional continuum, making identification of valid singlet cells difficult, especially if cells are in a transitioning or reprogrammed state.

Schematic of how cells with lineage barcodes appear in the single-cell sequencer where droplets add a unique cell ID. The singlet depicted is one reaction droplet with a single cell such that there is a 1:1:1 mapping of a cell to a barcode to a cell ID. Alternatively, an example of a doublet is when one droplet has two or more cells, each having a unique barcode.

Downstream impact of doublets

Doublets are problematic because they can impact the conclusions of scRNA-seq downstream functional analyses. We found that doublets confound downstream analyses when we tested common downstream scRNA-seq data analysis protocols (differential expression, cell trajectory, clustering stability, and cell-cell communication) on datasets of various doublet percentages. A schematic for how these datasets were generated and examples of our results for differential expressionatic of datasets generated for all functional analyses. The dataset is first processed to have 40% doublets and undergo standard Seurat processing with Leiden clustering, where cluster labels here are represented in different colors in UMAP space (second box, left), and doublet labels are represented by different shades of blue in UMAP space (second box, right). Then, doublets are removed to achieve 20%, 10% and 0% doublet datasets. The 0%, 10%, 20% and 40% doublet rate datasets are generated for each dataset used in benchmarking except for Smart-seq3 to evaluate doublet impact on various downstream analyses: cell trajectory, cell-cell communication,

clustering tability, and differential expression.

droplets add a unique cell ID. The singlet depicted is one reaction droplet with a single cell such that there is a 1:1:1 mapping of a cell to a barcode to a cell ID. Alternatively, an example of a doublet is when one droplet has two or more cells, each having a unique barcode.

Downstream impact of doublets

Doublets are problematic because they can impact the conclusions of scRNA-seq downstream functional analyses. We found that doublets confound downstream analyses when we tested common downstream scRNA-seg data analysis protocols (differential expression, cell trajectory, clustering stability, and cell-cell communication) on datasets of various doublet percentages. A schematic for how these datasets were generated and examples of our results for differential expression are below. \dot{p} rocessed to have 40% doublets and undergo standard Seurat processing with Leiden clustering, where cluster labels here are represented in different solors in UMAP space singlets (second box, left), and doublet labels are represented by diffgrent shades of blue in UMAP space (second box, right). Then, doublets are removed to achieve 20%, 10% and 0% doublet datasets. The 0%, 10%, 20% and 40% doublet rate datasets are generated for each dataset used in benchmarking except for Smart-seq3 to evaluate doublet cluster label impact on various downstream analyses: cell trajectory, cell-cell communication, clustering tability, and differential expression. differential express on Differential expression used to identify the genes that are differentially expressed between cells was riging to different additions. The genes identified could be used to explain the phenotype observed or examine pathways involved. Our results indicated that increasing doublet rate decreases the precision, recall, and true negative rate (TNR) for the datasets when compared to the differentially

expressed genes inferred from the clean singlets-only dataset, with a higher

cellifeatory expression analysis results for all datasets using MAST (purple, left) and lwireasibudoughet oateveauardothie traisesterusterdeniatriausekolusien theetraisesterus is that tere fresent has be sent in select northy with a set so and dither new extresional least ve following the which educates a contract of the contract of t what sig singlet Code Ading dataset without doublets. P-values between variable doublet rate datasets are calculated with a paired Wilcoxon signed-rank test.

the clean singlets only datasets alter details about our results, see pur paper p-value < 10-3 \(\begin{array}{c} 20\% \\ 40\% \end{array}

n and recall for communication pathways identified when compared to

singletCode is a framework to extract true singlets from barcoded scRNA-seq data. Our pipeline identified barcoded singlets from 10 different publications and Bustering experimental scRNA-seq samples generated in this study, encompassing Flustering is are only reconstilling to the constilling of the constil eichiag Gelles, When the arum 584,5740 chilet 504 ere in 58,9386 bahe brechebilit wef extrine the 293,1918 shipper of actinolies are degree and other might lead to use unious SHISTER ON A WELLING SUB-type of cells not being identified as a distinct group. For details about our results, see our paper.

p-value < 10-3 \(\begin{array}{c} 20 \) \(\text{40} \) \(\text{40} \)

Cell-cell communication

Cell-cell communication inference can provide information about intercellular communication networks. This can be used to understand the role of cell-cell interactions in biological processes. Increasing the doublet rate decreases the precision and recall for communication pathways identified when compared to doublet rate the clean singlets only datasets a bout our results, see our paper 10% p-value < 10 3 L 40%

cellificiental expression analysis results for all datasets using MAST (purple, left) and limited builded on two authority brings with a left of the substitution of t

singletCode is a framework to extract true singlets from barcoded scRNA-seq data. Our pipeline identified barcoded singlets from 10 different publications and sufficient publications and sufficient is sufficient in this study, encompassing sufficient is an early set of sufficient in this study, encompassing sufficient in this study, encompassing sufficient in the suffic

Singlet identification

singletCode leverages the fact that the lineage barcodes are present within the cell before sequencing. As a result of multiplicity of infection, singletCode identifies cells which meet any of the following conditions as a true singlet:

- 1. 1 barcode/1 cell ID
- 2. >1 barcode per 1 cell ID, but 1 barcode has significantly more UMI counts than the other barcodes within the same cell
- 3. M barcodes per 1 cell ID, but the same combination of M barcodes are found in other cells in the same sample
- 4. M barcodes per 1 cell ID, but the same combination of M barcodes are found in other cells across samples within the same experimental design (common in barcoding studies)

How swell divestibly performan compared to other doublet detection methods as measured by AUPRC. Each dot represents the average AUPRC score of a doublet Webeldiened stypifically drigheiv AUPRC sean (k. Advilly) OThe aid search in wild be signed to the width of the compared by all the violation of either ALV RRC search for which the between the bods.

Classifying doublets in non-barcoded datasets

Although barcoding experiments are becoming increasingly prevalent, they are still relatively uncommon. Therefore, we sought to train a doublet classifier on barcoded data that could detect doublets in non-barcoded data. We trained a classifier on cell samples from melanoma, mouse brain, leukemia, and hone

Howtswell dies dit werforman compared to other doublet detection methods as measured by AUPRC. Each dot represents the average AUPRC score of a doublet Wite a extrieved of the original things and the control of the con comparant that the virthen of either ALL ARC beauth from the addition that the children than the comparant that the children of either the children and the children of either than the children of ei

Classifying doublets in non-barcoded datasets

Although barcoding experiments are becoming increasingly prevalent, they are still relatively uncommon. Therefore, we sought to train a doublet classifier on barcoded data that could detect doublets in non-barcoded data. We trained a classifier on cell samples from melanoma, mouse brain, leukemia, and bone marrow/leukemia using true singlet labels from singletCode and successfully identified doublets in a similar cell sample without needing barcoding data. Further, we integrated all the data from mouse and human samples together, split it in half, and it to train a classifier that was then tested on individual sample components of the opposite half. This, too, proved to outperform other doublet detection methods.

Schematic of training a doublet classifier on barcoded data from 1 experiment and using that classifier to identify doublets in a biological replicate, experiment 2.

Non-barcoded datasets

As barcoded scRNA-seq data becomes more abundant, experimenters can train a lfithe flat a jeann to the fredered the jet or matter than the from eiveletigny, a nere tillhe bernessed using a classifier at sined on harripled ad taterom a different experiment using the cell type of interest. Find more information about

this in the classifier page here. Implementing singletCode on your data benchmarking doublet detection methods

singletCode is a framework that can be extended to most scRNA-seq or even Simulation datasets ately identify singlets.

Barcoded datasets benchmarking, we randomly selected the gene expression counts data from two cells that were found to be true singlets by singletCode. We Weraged the sount by from these two solls to generate simulated doublets and rreate detasets with various doublet percentages for her chmarking ample information, and UMI counts for each barcode. You can find more information to

use it here

Non-barcoded datasets

As barcoded scRNA-seq data becomes more abundant, experimenters can train a liabs flat specific tentreflectify is formed and trained on the state of the sequence of the seque

this in the classifier page here implementing singletCode on your data benchmarking doublet detection methods

singletCode is a framework that can be extended to most scRNA-seq or even **Simulation datasets** ately identify singlets.

Barcoded datasets benchmarking, we randomly selected the gene expression counts data from two cells that were found to be true singlets by singletCode. We were seed the sound by from the category safely the simulated doublet hand firetrade. The swifth parious deal by sevent with the category sample

information, and UMI counts for each barcode. You can find more information to

Workflow schematic of how raw data is processed to generate true singlets based on a barcode UMI cutoff and doublet removal based on singletCode specifications, followed by the simulation of doublets for benchmarking doublet detection methods.

Benchmarking

We used these datasets to benchmark four doublet detection methods:

- 1. scDblFinder,
- 2. DoubletFinder,
- 3. Scrublet and
- 4. Hybrid

We evaluated the AUPRC, AUROC, TNR, and doublet scores and calls of the four wetbodhand free classified parents are parents and calls of the four wetbodhand free classified parents are parents and methods. With an average similarity score of 0.28 all datasets and methods, we observed variability in doublet detection.

Pairwise similarity score between all benchmarked methods. A score of 1 indicates perfect identity and a 0 indicates complete disagreement. Average similarity score across all methods and datasets is 0.66.

We further evaluated doublet detection on ensemble doublet detection methods (hybrid, Chord) and across sequencing technologies (10X Genomics, Smart-seq3). For a more detailed evaluation of our results, refer to our paper.

Heterogeneity effects

We wanted to know whether heterogeneity of a dataset affects the performance of doublet detection methods. Because heterogeneity can be impacted by many properties of a dataset, such as experimental design and data processing, we made conclusions based on heterogeneity within a sample. We did this by subsampling singlets and doublets within a single PC cluster for a sample (less heterogeneous, low Euclidean distance), and across all clusters for a sample (more heterogeneity, higher Euclidean distance).

dataset information

barcoding technologies assessed

7 different barcoding technologies We incorporated datasets using FateMap, ClonMapper, SPLINTR, LARRY, CellTag-multi, Watermelon, and TREX barcodes. Each have their own recovery and analysis specifications that we outline in Box 1 of our paper.

SPLINTR		0.3	0.8 (1.2)					
Gvatermelor	T FM@@ bp	Melanoma patient resistant cell line	Homo Sapiens	Skin-derived	WM989 A6-G3	BRAF - V600E	Targeted therapy	4
CellTag-mu	lti 28 bp / 37 bp	Melanoma	0.08					
Goyal et al. 2 ClonMappe		patient resistant cell line	Homo gapiens	Skin-derived	WM989 A6-G3	BRAF - V600E	Targeted therapy	4
nddyabeesdebit co	tructure of different linea loiFiRach barcode contains as the barcode, and a poly	s an expressed fluores	ceht protein, d	ว น ย์ผู้เ ผลderived	WM989 A6-G3	BRAF - V600E	Targeted therapy	2
	are shown as scale bars, a to their diversity and cold FM04 S	Breast cancer patient resistant cell line	rescent protei Homo sapiens		MDA-MB- 231-D4 and non-barcoded	BRAF - G464V, KRAS - G13D, TERT - c.1- 124C>T, TP53 - R280K datasets	Chemotherapy, cytotoxic	2
Bataset Name	AliasdD	Melanoma Samble type	Urganism	Tissug erived	Celvine?	Genotype	Treatment	₹otal sa
Goyar et ar. 30	11.100	resistant cell	sapiens	SMITT CELIVEU	A6-G3	V600E	therapy	25.31.50
Goyal et al. 6	barcoded scRNA-seq datasets FM06	Melanoma patient untreated cell line	Homo sapiens	Skin-derived	WM989 A6-G3	BRAF - V600E	No treatment	2
Goyal et al. 8	FM08	Primary melanocytes	Homo sapiens	Skin-derived	FOM230-1	WT	No treatment	2
Jiang et al.	non_cancer	HIPS differentiation	Homo sapiens	PBMCs	PENN123i- SV20	WT	Cardiac differentiation signal	2
Jain et al.	Biorxiv	Stem cell reprogramming	Homo sapiens	Fibroblasts	hiF-T	WT	OKSM	6
TREX	TREX	neuroepithelial progenitor cells differentiation	Mus musculus	Neural	CD-1	•	No treatment	4
LARRY	LARRY, LK	pan-myeloid differentiation	Mus musculus	Blood	Lin-Kit+	•	cytokines and growth factors	18
LARRY	LARRY, LSK	pan-myeloid differentiation	Mus musculus	Blood	Lin- Kit+Sca-1+	•	cytokines and growth factors	15
SPLINTR	SPLINTR_chemo	Acute myeloid leukaemia	Mus musculus	Bone marrow	C57BL/6	MLL-AF9 + KrasG12D	chemotherapy	10
Dataset Name	Alias ID	Sample type	Organism	Tissue	Cell line	MLL-AF9, Genotype	Treatment	Total sa
SPLINTR Smart-seq3	SPLINTR_clone Smart-seq3	Acute myeloid leukeepithelial progenitor cells differentiation	Mus musculus Mus musculus	Bone marrow Neural	C57BL/6 CD-1	KrasG12D, MLL-AF9 + Flt3ITD	No treatment No treatment	4 2
SPLINTR	nonbarcoded sc-RNA Sed-Batasetgemoretrans	Acute myeloid leukaemia	Mus musculus	Bone marrow and spleen	C57BL/6	MLL-AF9 + KrasG12D	No treatment	1
non-barcoded Watermelon	hm-12k Watermelon	Byeanlemncer Batiset resistant cell line	Homo sapiens, Mହାନ୍ତୀତ ନ୍ୟ ା ଞ୍ଚିଆ୍ୟିus	Human ইটেক্ডি; Murine গান্তপানিক্যি gland	НЕК293Т, <u>Ы</u> Ц-БТ3	PIK3CA - W1047R; Tp53 - L194F	No treatment therapy	1 6
non-barcoded CellTag-multi	hm-6k CellTag-multi_d	Synthereage differentiation (hematopoiesis)	Homo sapiens, Mus museulus	Human kidney, Murine hprsb/lastsow	НЕК293Т, ГУН/3Т3	WT	No treatment growth factors	1 3
non-barcoded CellTag-multi	HMEC-orig-MULTI CellTag-multi_B4	HMECs iEP reprogramming	Homo Mgiens musculus	mammary gland embryo	HMEC C57BL/6J	WT	No treatment EGF	1
non-barcoded	HMEC-rep-MULTI	HMECs	Homo sapiens	mammary gland	HMEC	WT	No treatment	1
ClonMapper	ClonMapper	CLL resistant	Homo	blood	HG3	•	Chemotherapy	4
non-barcoded	HEK-HMEC-MULTI	cell lines Synthetic dataset	sapiens Homo sapiens	Human kidney, mammary	HEK293T, HMEC	WT	No treatment	1

Dataset Name	Alias ID	Sample type Acute myeloid	Organism Mus	Tissue	Cell line	Genotype +	Treatment	Total
SPLINTR	SPLINTR_clone	Reuk Render in Acute myelold	musculus Mus	Bone marrow	C57BL/6	KrasG12D,	No treatment	4
Smart-seq3	Smart-seq3	progenitor cells differentiation	Mus musculus	Neural	CD-1	MLL-AF9 + Flt3ITD	No treatment	2
SPLINTR	nonbarcoded sc-RNA Sed Watasetsemoretrans	Acute myeloid leukaemia	Mus musculus	Bone marrow and spleen	C57BL/6	MLL-AF9 + KrasG12D	No treatment	1
non-barcoded Watermelon	hm-12k Watermelon	Synthesencer Battiset resistant cell line	Homo sapiens, Mହନ୍ତo ନବଦ୍ଧାର	Human Richast; Murine fishoonsis gland	HEK293T, 刊478J ³	PIK3CA - W1047R; Tp53 - L194F	No treatment therapy	1 6
non-barcoded CellTag-multi	hm-6k CellTag-multi_d	Synthetisge determination (hematopoiesis)	Homo sapiens, Mus museulus	Human kidney, Murine hbrshastow	НЕК293Т, ŊЫЫЗТ3	WT	No treatment growth factors	1 3
non-barcoded CellTag-multi	HMEC-orig-MULTI CellTag-multi_B4	HMECs iEP reprogramming	Homo Mgjens musculus	mammary gland embryo	HMEC C57BL/6J	WT	No treatment EGF	1 1
non-barcoded	HMEC-rep-MULTI	HMECs	Homo sapiens	mammary gland	HMEC	WT	No treatment	1
ClonMapper	ClonMapper	CLL resistant cell lines	Homo sapiens	blood	HG3	•	Chemotherapy	4
non-barcoded	HEK-HMEC-MULTI	Synthetic dataset	Homo sapiens	Human kidney, mammary gland	HEK293T, HMEC	WT	No treatment	1
non-barcoded	mkidney-ch	Mouse kidney cells	Mus musculus	Mouse kidney	C57BL/6J	WT	No treatment	1
non-barcoded	pbmc-2ctrl-dm	Patient PBMCs	Homo sapiens	Systemic lupus erythematosus (SLE) PBMCs	Patient- derived	Patient- derived	No treatment	1
non-barcoded	pbmc-2stim-dm	Patient PBMCs	Homo sapiens	Systemic lupus erythematosus (SLE) PBMCs	Patient- derived	Patient- derived	No treatment	1
non-barcoded	cline-ch	Human HEK, K562, KG1, and THP1	Homo sapiens	blood	human - derived	human - derived	No treatment	1
non-barcoded	pbmc-ch	Human PBMCs	Homo sapiens	blood	human - derived	human - derived	No treatment	1
non-barcoded	pdx-MULTI	Synthetic dataset	Homo sapiens, Mus musculus	Human breast cancer, mouse immue	PDX mouse model	PDX mouse model	No treatment	1
non-barcoded	nuc-MULTI	Synthetic dataset	Homo sapiens, Mus musculus	nuclei	•	•	No treatment	1
Stacked bar cha	Multiome datasets rt of cell types in all datase	ts. Each distinct cold	or corresponds	to one				
Appest to lightes	portions of different cell ty t) MatsepaleneMUtiven ica provide a visualization of the	patient linesistadiacent to	Homo the _s beregart,	skeinahenary	MCF7	GATA3 - D336G; PIK3CA - E545K	Targeted therapy	6

sitigypt€ode PyPI package

Stacked bar chart of cell types in all datasets. Each distinct color corresponds to one				
study, with the proportions of different cell type বিশ্বনাধিক প্রত্তি দিলে most to least prevalent, Homo (de Dest to lightest) প্রারম্ভিত করিব দিলে দিলে দিলে দিলে দিলে দিলে দিলে দিলে	MCF7	GATA3 - D336G; PIK3CA - E545K	Targeted therapy	6

sitigypt€ode PyPI package

How do I use it?

1. Installation

It can be installed from PyPI using the following in the terminal:

```
pip3 install singletCode
from singletCode import check_sample_sheet, get_singlets
```

2. Preparing the input sample sheet.

The input sample sheet is a .csv file that contains the information about cell ID (added while sequencing), lineage barcode, and sample name. Each row should be repeated n times where n is the number of UMIs associated with that barcode and cell ID combination. For creating the input, you can read the .csv file in as a pandas dataframe.

```
import pandas as pd
df = pd.read_csv("path/to/csv/file.csv")
```

1. Installation

It can be installed from PyPI using the following in the terminal:

```
pip3 install singletCode
from singletCode import check sample sheet, get singlets
```

2. Preparing the input sample sheet.

The input sample sheet is a .csv file that contains the information about cell ID (added while sequencing), lineage barcode, and sample name. Each row should be repeated n times where n is the number of UMIs associated with that barcode and cell ID combination. For creating the input, you can read the .csv file in as a pandas dataframe.

```
import pandas as pd
df = pd.read_csv("path/to/csv/file.csv")
```

You can check if the format and the column names are valid for running singletCode using check sample sheet() function.

```
check sample sheet(df)
```

It will either return an error with information about how to modify the sample sheet to make it a valid input or will print the message, "The sample sheet provided can be used as input to get_singlets to get a list of singlets identified", in which case you can move to the next step.

3. Running get_singlets() to get an assignment of singlet status for each cell ID and barcode combination.

This is the step where singlet identification is done using the singletCode framework. You can read more about the parameters for get_singlets() below. In this example, default values are used.

```
cellLabelList, stats = get_singlets(df, dataset_name = "Sample1")
```

cellLabelList is a pandas dataframe that contains 5 rows: cellID, barcode, sample, nUMI and label. Label is whether the particular cell ID

Detailed information about the parameters for the functions in the package To get a dataframe containing just the singlets, you can run this:

get_singlets

```
singletList = cellLabelList[cellLabelList["label"] == "Singlet"]
```

get_singlets(sample_sheet, output_path=None, dataset_name=None, save_all_singlet_categories=False, save_plot_umi=False, umi_cutoff_method='ratio', $umi_cutoff_ratio=7.5e-06, umi_cutoff_percentile=None, min_umi_cutoff=2,$ umi_diff_threshold=50, umi_dominant_threshold=10)

total cells, total number of singlets, number of singlets recovered from Function that inputs the sample sheet and other parameters and runs it different categories of singlets (such as single-barcode singlets, mulithrough count doublets to get a list of singlets in the sample. If a row is barcode singlets, dominant-UMI singlets), number of cells removed due repeated, it is assumed to reflect the UMI associated with a barcode in this cell to low barcode UMI counts for the barcode and number of (identified by the cellID), indeterminate cells since singletCode can identify only truly singlet cells

Parametres be certain julie herete (Doct life are d) + I/A rolat as in growth that contains 3 columns: cellID, barcode, sample.

You can save that is the list of the this to be the being each category of singulary day is staticity bavia_talle single to categories (ples amount be to TRUF. column in the singlet_stats sheet returned.

> • output_path (str, optional) - The path to store any output files, including plots to show UMI distribution and what the umi_cutoff used is, csv files containing singlets of different categories. If None, then the list of singlets will

Detailed information about the parameters for the functions in the package To get a dataframe containing just the singlets, you can run this:

get_sing<mark>lets</mark>

```
singletList = cellLabelList[cellLabelList["label"] == "Singlet"]
```

get_singlets(sample_sheet, output_path=None, dataset_name=None, $save_all_singlet_categories = False, save_plot_umi = False, umi_cutoff_method = 'ratio',$ umi_cutoff_ratio=7.5e-06, umi_cutoff_percentile=None, min_umi_cutoff=2, umi_diff_threshold=50, umi_dominant_threshold=10) [source]

total cells, total number of singlets, number of singlets recovered from Function that inputs the sample sheet and other parameters and runs it different categories of singlets (such as single-barcode singlets, mulithrough count doublets to get a list of singlets in the sample. If a row is barcode singlets, dominant-UMI singlets), number of cells removed due repeated, it is assumed to reflect the UMI associated with a barcode in this cell to low barcode UMI counts for the barcode and number of (identified by the cellID), indeterminate cells since singletCode can identify only truly singlet cells

Parametrest be certain julie hehelete (Doct life are e) with rolat as freguest hat contains 3 columns: cellID, barcode, sample.

You can save that single trained (st.e). ± XTH fellon and the this total as bit losing each category of singlety step statistic bavie_table single to categories sples amount be to TRUE. column in the singlet_stats sheet returned.

- output_path (str, optional) The path to store any output files, including plots to show UMI distribution and what the umi_cutoff used is, csv files containing singlets of different categories. If None, then the list of singlets will be returned but it won't contain information about what category of singlet each cell is. Defaults to None.
- save_all_singlet_categories (bool, optional) If true, then singlets of each category are saved separately in csv files along with all singlets and all non-singlets. Defaults to
- save_plot_umi (bool, optional) If true, then plots showing UMI distribution indicating the UMI cutoff used will be saved for each sample. Defaults to False.
- umi_cutoff_method (str, optional) Specify if quality control for barcodes using UMI counts should be based on "ratio" or "percentile". Defaults to 'ratio'.
- umi_cutoff_ratio (float, optional) The ratio used to determine the umi_cutoff if umi_cutoff_method is "ratio". Defaults to 3/4e5.
- umi_cutoff_percentile (float, optional) If umi_cutoff_method is "percentile", then the umi_cutoff will be the minimum UMI count required to be in the top umi_cutoff_percentile'th percentile. There is no default and if umi_cutoff_method is set to "percentile", then manually set this parameter.
- min_umi_cutoff (int, optional) This is the absolute minimum number of UMIs that need to be associated

tuple tuple the barcode for it to be considered a barcode. Return type check_sample_sheet ... However, the actual umi_cutoff used will be the greater of min_umi_cutoff and the cutoff calculated using

Defaults to 2.

check_sample_sheet(data_frame) [source] old (int, optional) - The minimum

Function to check if the data manuscript because the description to check if the data manuscript because the data of the data function. It checks if the three doto has potential about a standard management and the checks if the three doto has potential and the checks if the three doto has potential and the checks if the three doto has potential and the checks if the three doto has potential and the checks if the three doto has potential and the checks if the three doto has potential and the checks if present and in same Orderult this 10 taframe can be used for get_singlets function, then a statement diffilt breshold (Irto optional) that is is the minimum

Parameters

difference between UMI counts associated with a sample sheet – A dataframe that contains your sample sheet. potential dominant barcode present within a cell and the None median UMI count of all barcodes associated with the

command line interface as only one dominant barcode, it will be counted. Defaults to 50.

Availablisty

A 2-tuple containing:

The source code for the companded in a tradition of the compan (repo). You can clone the reposique toelld Deanthbacoded worthbinations in the data along with singlet assignment to each cell ID.

git clone https://github.com/coyaPataFrame:A dataframe which contains the statistics for total singlets, different categories of singlets, and cells removed due to low UMI counts.

Return type tup with a barcode for it to be considered a barcode.

check_sample_sheet.
of min_umi_cutoff and the cutoff calculated using

Defaults to 2

check_sample_sheet(data_frame) [source] old (int, optional) - The minimum

Function to check if the that winthe barabous attends without barget different be function. It checks if the three dots when post to it based on the present and in same of the wife this that arrane can be used for get_singlets function, then a state which is the minimum.

Parameters difference between UMI counts associated with a sample sheet – A data frame that contains your sample sheet. potential dominant barcode present within a cell and the None median UMI count of all barcodes associated with the

command line interface only one dominant barcode, it will be counted. Defaults to 50.

Availablisty

A 2-tuple containing:

The source code for the companded in the transmit of the companded in the companded in the companded in the companded in the code of the c

git clone https://github.com/coyallab/singlerCode horizone which contains the statistics for total singlets, different categories of singlets, and cells removed due to low UMI counts.

Using the interface

Navigating to commandLineTools folder, you will find 3 files and you will need to run singletCodeCommandLine.py. There are 2 modules available, one to run singletCode and the other to create a sample sheet if you have used Watermelon barcoding technology using the fastq sequenced files from MISEQ.

Detailed information about the modules in the command line interface

Description:

This script contains two modules: - Count Module: Generates the singlet files for the input data sheet. - Watermelon Module: Uses the MiSeq dial-out files to create the cell ID, barcode, and sample file. These outputs can then be used as input for the singlet code module.

Usage:

For the Count Module:

python singletCode.py count -i /path/to/input.txt -o /path/to/output

For the Wander Manage in the path to the sample sheet in .csv format that contains sample name and sample number. This should match the names of pythofastorials (e.g., Samplind _81_k001_eRd_001/fastorieg)/fastor/files -o path/to/save/csy/file -s.path/sample/sheet -use10X_False_-input10X -path/to/save/csy/file -s.path/sample/sheet -use10X_False_-input10X -path/to/shectoriegy the path to save the output CSV file containing the barcode, cell ID information.

- -outputName: Specify the name of the output CSV file.
- -use10X: Specify if a 10X object is provided which has the same cells as
 Options for Count Module:
 Count Module:
 The fast of the fas
 - ជុះទៅមានប្រើប្រាស់ path to the input barcode file.

 - IP,S-force: Force overwrite if the output file already exists.

Authors:, -cutoff: UMI cutoff ratio.

- d, -umi_diff_threshold: Minimum difference in UMI between UMI count
- · Ziyang Zhang (Gharles) median UMI count.
- Keerthana M: Arun - m, - min_umi_good_data_cutoff: Minimum UMI count for a barcode to be

Vignette to use singletCode Command Line tool to analyse single cells data with watermelon barcodes

Options for Watermelon Module:

• -i, -inputFolder: Specify the path to the folder containing the fastq folders The baচনেপ্রকাশেপ্রকাশে সাম্ভর্জাল to be amplified using Illumina MiSeq.

All the data for this vignette and the files output from it can be downloaded here.

For the While Repeat Name of the path to the sample sheet in .csv format that contains sample name and sample number. This should match the names of path of a step files (e.gs, Sommbling 1.81 vb.001 e.q. 001./matty (gg)/fastq/files -o path/to/save/csy/file -s.path/somple/sheet -use10X_False -input10X -path/to/save/csy/file -s.path/somple/sheet -use10X_False -input10X -path/to/save/csy/file containing the barcode, cell ID information.

- -outputName: Specify the name of the output CSV file.
- -use10X: Specify if a 10X object is provided which has the same cells as
 Options for Count Module:
 those in lastq. If provided, cells in the fastq file will be filtered out if not
 - ศุรุ**ธสุด** คนเกาส์ he รื่อ อัง คนาม path to the input barcode file.
 - =ช่าคนน์ใช้มีนะ Patento \$ hedray and esate view two baur pole patents which contains cell
 - IPs-force: Force overwrite if the output file already exists.

Authors:, -cutoff: UMI cutoff ratio.

- -d, -umi_diff_threshold: Minimum difference in UMI between UMI count
- · Ziyang Zhang (Gharles) median UMI count.
- Keerthana M.Arun • -m, -min_umi_good_data_cutoff: Minimum UMI count for a barcode to be

Vignette to use singletCode Command Line tool to analyse simile cells data with watermelor barcodes

Options for Watermelon Module:

• -i, -inputFolder: Specify the path to the folder containing the fastq folders The barager from in the sequence of the barager from the sequence of the sequ

All the data for this vignette and the files output from it can be downloaded here. It contains inputFiles and the outputFiles (it contains a test folder which has the expected output files). This vignette can be downloaded as a jupyter notebook from the singletCode Tools repo.

Installing singletCode Command line tool

To use the singletCode command line tool, clone the repository from GitHub. Let the Path to the folder you are running this command be **Path**. We can also install other packages needed to run the tool.

```
!git clone https://github.com/GoyalLab/singletCodeTools
Path = "path/to/singletCodeTools/repo"
%conda install scipy tqdm matplotlib biopython python-levenshtein pandas
```

Next step is to understand the samples present in the FASTQ files.

The sample fastq files are in the inputFolder. We can identify the sample name and number from the FASTQ file. For example, sampleName_S1_L001_R1_001.fastq.gz means that the sample name is sampleName and sample number is 1.Make sure that both read 1 and read 2 for each sample are present in the same folder (R1 and

R2) hputFiles/ 2. **outputFolder** will be p/outputFiles/ 3. **sampleSheet** will be p/inputFiles/sampleSheet.csv

Creating sample sheet for these two samples.

```
import subprocess
import pandas as pd
command = [
    'python',
    f'{Path}/commandLine/singletCodeCommandLine.py',
    'watermelon',
p = 'path/tb/dB\driBRUBU$ABAB\unzipped/data"
    '-o', f'{p}/outputFiles',
    '-s', f'{p}/inputFiles/sampleSheet.csv',
    '--outputName', 'watermelonBarcodeUmi.csv'
]
sampleSheet = pd.read_csv(f"{p}/inputFiles/sampleSheet.csv")
5ampleSheet.csv"(command)
```

```
ArgumeanpleName.sampleNumber

OsampleName.termelpn

1 other SampleName 2
home.teerthana/Goyal_Lab/websiteToolData/thingsToAddToWebsite/watermelonVignel
Now_utp_rutpitie watermelon module of singletCodeTools, you need to run this
cohmanteer watermelon module of singletCodeTools, you need to run this
samplesheet:
then uncluder contrining account of the state of the samplesheet.
then uncluder watermelonBarcodeUmi.csv
use10X: False
```

hputFiles/ 2. outputFolder will be p/outputFiles/ 3. sampleSheet will be p/inputFiles/sampleSheet.csv

Creating sample sheet for these two samples.

```
import subprocess
import pandas as pd
command = [
    'python',
    f'{Path}/commandLine/singletCodeCommandLine.py',
    'watermelon',
p = ^np\delta h/t\delta/delwid188\delta\delta/dela\delta/mnzipped/data"
    '-o', f'{p}/outputFiles',
    '-s', f'{p}/inputFiles/sampleSheet.csv',
    '--outputName', 'watermelonBarcodeUmi.csv'
]
sampleSheet = pd.read_csv(f"{p}/inputFiles/sampleSheet.csv")
\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\del
```

```
ArgumeanspleName:sampleNumber

OsampleNametermelpn

1 other and filme 2
/ home Keerthana/Goyal_Lab/websiteToolData/thingsToAddToWebsite/watermelonVignet
Now to the home 2
/ home Keerthana/Goyal_Lab/websiteToolData/thingsToAddToWebsite/watermelonVignet
Now to the home Are yearned of singletCodeTools, you need to run this
contracted the are yearned of the tribe of the
```

```
result = subprocess.run([
    'python',
    f'{Path}/commandLine/singletCodeCommandLine.py',
    'watermelon',
    '-i', f'{p}/inputFiles/'
    '-o', f'{p}/outputFiles/',
    '-s', f'{p}/inputFiles/sampleSheet.csv',
    '--outputName', 'watermelonBarcodeUmiWith10X.csv',
    '--USe10X'
    '--input10X', f'{p}/inputFiles/barcodes.tsv'
], capture_output=True, text=True)
# Check if the command was successful
if result.returncode == 0:
    print("Command executed successfully")
    print("Output:\n", result.stdout)
else:
    print("Command failed")
    print("Error:\n", result.stderr)
```

```
Command executed successfully
Չሐ୭ፀ⊬ቲ∶subprocess
Arguments received:
resammandsubatesmesonun([
  inputEndder
/home/kpathhaga/MayalihabsyrgseteJageBaha/abingsTgAddToWebsite/watermelonVignet
 outeutFelder:
/home/keertmapa/60ypdttab/webattemeodPBta/tbiogsWoAddTQWebaite/watermelonVignet
  sampleSheetp}/outputFiles/watermelon
]ἡουαρκαρετοαυράθαγελε|Αυρένευτε σοοΙρατα/thingsToAddToWebsite/watermelonVignet
  outputName: watermelonBarcodeUmiWith10X.csv
# URELQXifTEME command was successful
ifiP09410Xreturncode == 0:
/homp/knertbanmaGevekebabewebaiteTeppleata/thingsToAddToWebsite/watermelonVignet
All besigns for the semmends and will proceed with creating the baseode sheet for all the samples in the sheet.
Filtpredtrowsmaandataframe; 791
Filtgredtrowsrof: datafreselt639derr)
```

```
Command executed successfully
Output:

Arguments received:
command: count
input_file:
/home/keerthana/Goyal_Lab/websiteToolData/thingsToAddToWebsite/watermelonVignet
out_prefix:
/home/keerthana/Goyal_Lab/websiteToolData/thingsToAddToWebsite/watermelonVignet
umi_cutoff_ratio: 7.5e-06
umi_diff_threshold: 50
```

```
COMMUNICIO EXECUTEN 20006221 NTTA
Չሐ∳ፀ⊬ቲ:subprocess
 Arguments received:
resammandsuWafeceeslopun([
  inputEndder:
/home/keathhana/mawalihabswahsiteTootDaha/ahingsToAddToWebsite/watermelonVignet
  outgythelder
/home/keerthapa/GoyplttabewehatteTeolPBta/tbiogsToAddowebsite/watermelonVignet
  sampleSheetp}/outputFiles/watermelon
jhomaρkare<u>t</u>bampúθωγριωμαξέως μεθτέως σου Data/things To Add To Website/water melon Vigner
  outputName: watermelonBarcodeUmiWith10X.csv
# BARRXifTEME command was successful
ifipeyt10%returncode == 0:
/homp/knertbanadGayakebabewebsiteTgolData/thingsToAddToWebsite/watermelonVignet
All phenipputspfer he permandseaguralid and will proceed with creating the
baseode sheet for all the samples in the sheet.
Filtpredtrowsmaandataframe; 791
Filtpredt(owsrof:datafrage1t639derr)
```

```
Command executed successfully
Output:
Arguments received:
 command: count
 input_file:
/home/keerthana/Goyal_Lab/websiteToolData/thingsToAddToWebsite/watermelonVignet
 out prefix:
/home/keerthana/Goyal_Lab/websiteToolData/thingsToAddToWebsite/watermelonVignet
 umi cutoff ratio: 7.5e-06
 umi_diff_threshold: 50
 dominant threshold: 10
 min_umi_good_data_cutoff: 2
INFO: Raw data counts
sampleNum
sampleName
                   693
otherSampleName
                   524
Name: count, dtype: int64
INFO: Using raio based filtering.
Current Sample Adjusted UMI cutoff: 2
Total cells: 45
Sample sampleName singlet: 43
Total Singlets: 43
Total Multiplets: 1
All singlets identified are unique? True
Total Singlets: 43
Total Multiplets: 1
INFO: Using raio based filtering.
Current Sample Adjusted UMI cutoff: 2
Total cells: 22
Sample otherSampleName singlet: 22
Total Singlets: 22
Total Multiplets: 0
All singlets identified are unique? True
Total Singlets: 22
Total Multiplets: 0
All singlets identified are unique? True
```


In the above plot, you see that the original data had 569 cells that were removed due to low barcode UMI count, 43 singlets with a single-barcode associated with them and 1 multiplet (singletCode could not determine if it was a singlet for sure.)

In the above plot, you see that the original data had 569 cells that were removed due to low barcode UMI count, 43 singlets with a single-barcode associated with them and 1 multiplet (singletCode could not determine if it was a singlet for sure.)

Looking at the scRNAseq data associated

Since this data has both scRNAseq and barcodes for the same cells, we can analyse them together

Installing and importing scanpy package to do this

```
#Install scanpy for further single-cell RNAseq analysis
# %conda install -c conda-forge scanpy python-igraph leidenalg
#Import scanpy
import scanpy as sc
```

In case there are version conflicts during this installation or while importing scanpy, we found %conda update -all to be an useful command that fixed the version conflict previously. Reading in the 10X h5ad object associated with the same watermelon data

```
adata = sc.read_h5ad(f"{p}/inputFiles/watermelonScRnaSeqData.h5ad")
adata
```

```
AnnData object with n_obs × n_vars = 1093 × 27264
```

Identifying the cells that were below the barcode UMI threshold and were filtered **Read** in the output files to identify cells as being singlets, multiplets or being removed for low barcode UMI threshold

```
lowUmicells = cellidBarcodeUMI[-
FirstIndadingdinetNe[cellID:barcode(stM|IsNeetSengerated]earlier with additional
filter using scRNAseq data
cellidBarcodeUMI['cellID'].isin(otherSampleNameSinglets[0]) |

cellidBarcodeUMI['cellID'].isin(sampleNameMultiplets[0]))]
cellidBarcodeUMI =
pd.read_csv(f'{p}/outputFiles/watermelonBarcodeUmiWith10X.csv')

Annotating the cells in adata with these labels
```

Reading in all the singlets and multiplets identified in the two samples. There might not always be the difference there there see if there are any lift that us'] = 'singlet' example there are no multiplets in other sample names inglets[0]), 'singlet status'] = 'singlet' adata.obs.loc[adata.obs.index.isin(sampleNameMultiplets[0]), samp@NameSinglets = mpdttpadtcsv(f" aparauobstfoc[adata.obs.index.isin(sampleNameMultiplets[0]), samp@NameSinglets = pd.read_csv(f" aparauobstfoc[adataeobslondexmpsendewing@Als[adaltxD"])headengeNone)us'] other sampleNameSinglets = pd.read_csv(f" {p}/outputFiles/watermelon_other sampleName_multiplets_all.txt", header = None) sampleNameMultiplets = pd.read_csv(f" {p}/outputFiles/watermelon_sampleName_multiplets.txt", header = None)

Annoaca object with 11_0b3 × 11_var3 = 1035 × 27204

Identifying the cells that were below the barcode UMI threshold and were filtered

Read singtheodytput files to identify cells as being singlets.

Reading the ocutput files to identify cells as being singlets, multiplets or being removed for low barcode UMI threshold

```
lowUmiCells = cellidBarcodeUMI[-
FirstlieadingdontMe[cellIDFbarcode(sliM|lsheetsengerated]earlier with additional
filter using scRNAsed data
cellidBarcodeUMI['cellID'].isin(otherSampleNameSinglets[0]) |

cellidBarcodeUMI['cellID'].isin(sampleNameMultiplets[0]))]
cellidBarcodeUMI =
pd.read_csv(f'{p}/outputFiles/watermelonBarcodeUmiWith10X.csv')
```

Annotating the cells in adata with these labels

```
Reading in all the singlets and multiplets identified in the two samples. There might notatively be notatively circumstrated in the two samples. There might notatively be notatively considered and the third is a singlet considered and the third is a singlet considered and in the third is a singlet considered and conside
```

Note that in this vignette we are not doing any actual QC - but in actual analysis, it would need to be done.

```
sc.pp.calculate_qc_metrics(adata, inplace=True)
```

Calculating PCA and UMAP for visualization

```
#Calculating PCA for the data and plotting variance ratio
sc.tl.pca(adata)
sc.pl.pca_variance_ratio(adata, n_pcs=20)
```

```
variance ratio

0.6 - 2

0.7 - 0.8 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 -
```

singletStatus

SingletStatus low UMI multiplet singlet

Saving the final adata

```
adata.write(f"{p}/outputFiles/watermelonScRNA.h5ad")
```

Vignette to use singletCode package

The input needed to run singletCode is a .csv file that contains the information about cell ID (added while sequencing), lineage barcode, and sample name. Each row should be repeated n times where n is the number of UMIs associated with that barcode and cell ID combination. You can download a sample input sheet need in input sheet from Jiang Et al and details about it are described in the singletCode paper in detail. The folder also contains expected output files in the test folder within the output Files folder. This vignette can be downloaded as a jupert pands as not the singletCode Tools reported.

pathToInputSheet = f"{path}/inputFiles/JiangEtAlSubset_InputSheet.csv"

Install singletCode package

```
!pip3 install singletCode
Check formatting of input sheet
```

Import necessary functions from it

from singletCode import check_sample_sheet, get_singlets
The sample sheet provided can be used as input to get_singlets to get a list of singlets identified.

The sample sheet provided can be used as input to get_singlets to get a list of singlets identified.

Identify singlets from input sheet

```
Read in input sheet
need in the
singletCode paper in detail. The folder also contains expected output files in the
test-folder within the output Files folder. This vignette can be downloaded as a
jumper pands as not the singletCode Tools repo
path of pands as not the singletCode Tools repo
path of pands as not the singlet Code Tools repo
path of pands as not the singlet Code Tools repo
path of pands as not the singlet Code package

!pip install singletCode package

!pip3 install singletCode
Check formatting of input sheet

!pip3 install singletCode

!pip3 install singletCode
The code input sheet

!pip3 install singletCode
The sample sheet provided can be used as input to get_singlets to get a list
of singlets identified.
```

The sample sheet provided can be used as input to get_singlets to get a list of singlets identified.

Identify singlets from input sheet

```
outputPath = "path/to/output/folder"
cellLabelList, stats = get_singlets(df, dataset_name= "JiangEtAlSubset",
save_all_singlet_categories = True, output_path=outputPath)
```

```
INFO: Raw data counts:
sample
1 1306
Name: count, dtype: int64
Total cells for sample 1: 39
INFO: Using ratio based filtering.
Current Sample Adjusted UMI cutoff: 2
```

```
All singlets identified with multiple barcodes are unique? True
Total Singlets: 10
Total Multiplets: 9
```


The above plet shows that the data we had contained different kind of singlets: 6 single-barcode cells, 2 cells which had more than one barcode but with same combination being present in more than one cell, 2 cells that had one dominant

harcode. The data also contained 9 cells which singletCode could not determine

The above plot shows that the data we had contained different kind of singlets: 6 single-barcode cells, 2 cells which had more than one barcode but with same combination being present in more than one cell, 2 cells that had one dominant barcode. The data also contained 9 cells which singletCode could not determine as being truly singlets and 20 cells whose barcode UMI counts were below the set

Understanding the output files

Onderstanding the output mes

To understand some of the files in the output, we can look at cell IDs and their data in the original input sheet

For the dominant_umi_singlets, there are two cell IDs. One of them is TGTAAGCGTCTCGCGA. If we look at that entry in the input sheet and count the number of UMI associated with each barcode, we see that one barcode has 99 UMI counts while the second highest UMI count is 7. So, the cell most likely has only one barcode associated with it and hence, a singlet.

```
import pandas as pd
df[df['cellID'] == 'TGTAAGCGTCTCGCGA'].groupby(['cellID', 'barcode',
    'sample']).size().reset_index(name='count').sort_values('count',
    ascending=False).reset_index(drop=True)
```

	cellID	barcode	sample	count
0	TGTAAGCGTCTCGCGA	ATTGTTGTTGCAGATGCAGTTGATGCTGATGAAGTTGTACAAGGTC	1	99
1	TGTAAGCGTCTCGCGA	ATTCGACTTGATCTTCTAGAACATGGTGAACTAGCAGGTGCTGATC	1	7
2	TGTAAGCGTCTCGCGA	ATACTAGCTCAAGCAGTACTACTTCGTCTTCATGCAGAACAAC	1	6
3	TGTAAGCGTCTCGCGA	ATAGATGCACTTGGTGGTCGAGTTCTAGTTGTAGCTGATCGTCCAG	1	6
4	TGTAAGCGTCTCGCGA	ATTCGACCAGAACCACATGCAGTTCAACGTGTTCGAGGTGTAGATG	1	6
	cellID	barcode s	aṃple c	oৣunt
92	ADDOTOTOCKARDOP	AASGACTACTECTECTECTICACCACCACCACCECTCCCCCCCCCC	1 1	3
82	A DDDOTDTDDDDAADDA	ATASAGAGAGAATGGASTATATATTATCIAGGACAGTAGAACATAC 1	1 2	1
86	RNASEG CHATECGCGA	ATAGTACATGGTGGACCTGGACTTCGAGATGGAGCTCTTGTTCCTG	1	1
85	TGTAAGCGTCTCGCGA	ATAGGAGTAGTTGGTGATGGTCTACCAGAAGGTGAAGGTGGAGAAG	1	1
86	HTGTAAGEGTII KAGCGA	GGTGCTGAACTTCTRGATGTAGTTGTAGTTGATGTTGGACGTCATC	1	1

RAGAWation FollmsingletCode output

Next II Yand am book at mply that can be singlets clipt nase than a ylips: AGGCTGCTCTTTCCGG and GAGGGATGTAACATCC. If we look at the barcodes with greater than 2 UMI counts, we see that they have the same combination. The only way this can occur is if a cell receives multiple barcode initially and then divides.

```
imgotop8capeve4si8c, 'barcode', 'sample'])
.size()
.reset_index(name='count')
.sort_values('count', ascending=False)

Readling the SCRNAsed input data in h5ad format
.reset_index(drop=True)
)
#Reading the scRNAseg data in h5ad format
```

3	TGTAAGCGTCTCGCGAATAGATGCACTTGGTGGTCGAGTTCTAGTTGTAGCTGATCGTCCAG	1	6
4	TGTAAGCGTCTCGCGA ATTCGACCAGAACCACATGCAGTTCAACGTGTTCGAGGTGTAGATG	1	6
	cellID barcode s		ount
92	TECHARGOCTOTCCCCA/AAAGAACTACOTGGTTGATGGTTGATGAACAACCTACAAGGTGAAGGTAGAACAACAA	1	13
83	TECHALAGUCTUTCGGGAJATABAAGATGAAUTGBAATTATAATTATCHAGTACAACTAGBACATAC 1	1 2	21
86	RYNASEG CIRCLEGGGA ATAGTACATGGTGGACCTGGACTTCGAGATGGAGCTCTTGTTCCTG	1	1
85	TGTAAGĈGTCTCGCGA ATAGGAGTAGTTGGTGATGGTCTACCAGAAGGTGAAGGTGGAGAAG	1	1
86	TGT-SAGG-STATEGGGGALGGTGCTGAAGTTCTTGATGTAGTTGATGTTGGACGTCATC	1	1

ลิสิร์คฟล์เจ้า frollmsกรูletCode output

Next was am look at mply to barcorde singlets. The related was applied in the barcodes and GAGGGATGTAACATCC. If we look at the barcodes with greater than 2 UMI counts, we see that they have the same combination. The only way this can occur is if a cell receives multiple barcode initially and then divides.

```
### Total Company Company
### Total Company
```

```
AnnData object with n_obs × n_vars = 39 × 36601
var: 'gene_ids', 'feature_types'
```

Making copies of singletCode input/output to use them along with scRNAseq data. The -1 is added to cell IDs to match the cell IDs seen in 10x format data. NOTE: It may not be needed for your actual data.

```
singleCellDf = df.copy()
singleCellDf['cellID'] = singleCellDf['cellID'] + "-1"
singleCellDf = singleCellDf.drop_duplicates(subset = 'cellID')
cellLabelListSingleCell = cellLabelList.copy()
cellLabelListSingleCell['cellID'] = cellLabelListSingleCell['cellID'] + "-1"
cellLabelListSingleCell =
cellLabelListSingleCell.drop_duplicates(subset='cellID').reset_index(drop = True)
```

Calculating total counts and genes identified per cell.

Identifying cells that were thresholded by singletCode as low UMI by identifying cells that were in the original list provided to singletCode but not labeled as either singlet or undetermined. Then creating a list of annotations of

Identifying cells that were thresholded by singletCode as low UMI by identifying cells that were in the original list provided to singletCode but not labeled as either singlet or undetermined. Then creating a list of annotations of singletStatus(singlet, multiplet, low UMI) for all cells

```
umiCutoff = pd.DataFrame(
singleCellDf.loc[~singleCellDf['cellID'].isin(cellLabelListSingleCell['cellID']
'cellID']
   .drop_duplicates()
   .reset_index(drop=True),
   columns=['cellID']
)
umiCutoff['label'] = "Low UMI"
```

```
cellIDLabels = cellLabelListSingleCell.drop(columns = ['barcode', 'sample',
   'nUMI']).drop_duplicates().reset_index(drop = True)
```

```
#Creating a list of cell IDs with annotation of whether singlet, multiplet
or low UMI.
labelID = pd.concat([umiCutoff, cellIDLabels]).reset_index(drop=True)
labelID = labelID.set_index(labelID['cellID']).drop(columns = ['cellID'])
#Adding the labels to cells in the adata to visualise it
adata.obs["singletStatus"] = labelID
```

Visualising the cells in PCA space

```
sc.pl.umap(
sc.pl.data,
cl.pca,
color=cl.pca,
color=cl.pca,
color=cl.pca,
size=250
}

}
```



```
sc.pl.umap(

adata,
c.pl.ucai
continues
contin
```


Saving the AnnData

```
adata.write(f"{outputPath}/JiangEtAlSubset.h5ad")
```

questions? contact us!

Do you have a doublet detection method that you would like use with singletCode? Do you have a question about how to use singletCode? Do you have a suggestion for how to improve singletCode? Please contact us!

For more information or questions, please contact Yogesh Goyal at yogesh.goyal@northwestern.edu

repositories

GitHub repository for analyses performed in our paper here.

 $\label{lem:command} \mbox{GitHub repository for singletCode tools (command line interface and python package) here.}$