MA Math Camp Exam 2019 Solutions

Instructions:

- The exam is from 11:40 12:55 pm.
- You may use any results covered in the class directly without proofs.
- All answers must be justified
- The exam is closed book. Calculators are not allowed.
- 1. Consider the 2×2 matrix.

$$A = \begin{bmatrix} 0 & \frac{2}{3} \\ -\frac{1}{3} & 1 \end{bmatrix}$$

(a) (5 points) Find the eigen values of this matrix A

Solution : The eigen values are $\lambda = \frac{1}{3}, \frac{2}{3}$

(b) (3 points) Find a 2×2 invertible matrix P and a 2×2 diagonal matrix Λ s.t. $A = P\Lambda P^{-1}$

Solution: $P = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $\Lambda = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{2}{3} \end{bmatrix}$

(c) (2 points) Consider the quadratic form Q = x'Ax where A is the matrix given above. Determine whether Q is positive definite, negative definite or indefinite.

Solution: Positive definite since the eigen values are both positive.

2. (5 points) Define the kernel of a matrix A as:

$$ker(A) \equiv \{x \in \mathbb{R}^n | Ax = 0\}$$

Prove that the ker(A) is a subspace of \mathbb{R}^n i.e. it contains the 0 vector and is closed under addition and scalar multiplication.

Solution : (i) It contains **0** since A**0 = 0. (ii)** Closed under addition - Take $x, y \in ker(A)$. Then $x + y \in ker(A)$ since A(x + y) = Ax + Ay = 0. (iii) Take $x \in ker(A)$, then $\alpha x \in ker(A)$ since $A(\alpha x) = a(Ax) = 0$

3. (10 points) Solve the following system of equations:

$$x_1 + 2x_2 - x_3 = -1$$
$$2x_1 + 2x_2 + x_3 = 1$$
$$3x_1 + 5x_2 - 2x_3 = -1$$

Solution : $(x_1, x_2, x_3) = (4, -3, -1)$

- 4. State whether each of the following statements is true or false. If it is false, provide a counter-example. If true, give a sketch of a proof:
 - (a) (5 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a strictly concave function. If f is twice-differentiable at $x_0 \in \mathbb{R}$, then we must have $f''(x_0) < 0$

Solution : False. Take $f(x) = -x^4$

(b) (5 points) If A and B are compact sets in the metric space (X, d), then $A \cup B$ is a compact set.

Solution : True. To see this, take any sequence (x_n) in $A \cup B$. To show this is compact, we need to find a convergent subsequence of it. For the sequence (x_n) , either infinite terms lie in A or in B. WLOG, suppose it is in A. We can construct a subsequence (x_{n_k}) of (x_n) using only terms in A. Since A is compact, this implies there exists a convergent subsequence of (x_{n_k}) , say $(x_{n_{k_j}})$ which converges to a point in A. But $(x_{n_{k_j}})$ is also a subsequence of (x_n) and hence we have found a convergent subsequence of (x_n)

5. (10 points) Suppose \mathcal{D} is a convex open set of \mathbb{R}^n and let $f: \mathcal{D} \to \mathbb{R}$ be a concave function. Then show that the set of maximizers is a convex set i.e. show that :

$$M = \left\{ x \in \mathcal{D} | f(x) \ge f(x') \ \forall x' \in \mathcal{D} \right\}$$

is a convex set.

Solution: Take $x, y \in M$ which implies f(x) = f(y). We need to show that $\lambda x + (1 - \lambda)y \in M$. Since f is concave, this implies:

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$
$$= f(x)$$

which implies $\lambda x + (1 - \lambda)y \in M$

- 6. Define $f:[1,\infty) \to [1,\infty)$ as $f(x) = x + \frac{1}{x}$.
 - (a) (5 points) Show that $|f(x) f(y)| < |x y| \ \forall x, y \text{ such that } x \neq y.$

Solution : For every $x, y \ge 1$ with $x \ne y$, we have :

$$|f(x) - f(y)| = \left| x - y + \frac{y - x}{xy} \right| = \left| 1 - \frac{1}{xy} \right| |x - y|$$

$$< |x - y|$$

(b) (5 points) Show that $f(\cdot)$ has no fixed point i.e. there does not exist x^* such that $f(x^*) = x^*$. Argue why this does not contradict Banach's Contraction Mapping Theorem.

Solution: $f(x) > x \ \forall x$ which implies there is no fixed point. It does not contradict the Contraction Mapping Theorem because $\nexists \lambda \in [0,1)$ such that $|f(x) - f(y)| \le \lambda |x - y|$. This is because $\left|1 - \frac{1}{xy}\right| \to 1$ as $xy \to \infty$

7. Consider a consumer with a utility function $u(x_1, x_2) = x_1^{\frac{2}{3}} x_2^{\frac{1}{3}}$. Each good x_i costs p_i per unit and the consumer has a budget of M dollars. Find the consumer's optimal mix of consumption i.e. solve the program:

$$\max_{x_1,x_2} \ x_1^{\frac{2}{3}} x_2^{\frac{1}{3}}$$
 subject to $p_1 x_1 + p_2 x_2 = M$

(a) (10 points) What is the optimal choice of consumption for the consumer i.e. what is (x_1^*, x_2^*) ?

Solution : $(x_1^*, x_2^*) = \left(\frac{2M}{3p_1} \cdot \frac{M}{3p_2}\right)$

(b) (10 points) Write down the value function $V(p_1, p_2, M)$. Verify that :

$$-\frac{\frac{\partial V}{\partial p_1}}{\frac{\partial V}{\partial M}} = x_1^*$$

(This is known as Roy's Identity)

Solution:
$$V(\cdot) = M \left(\frac{2}{3p_1}\right)^{\frac{2}{3}} \left(\frac{1}{3p_2}\right)^{\frac{1}{3}}$$

$$-\frac{\frac{\partial V}{\partial p_1}}{\frac{\partial V}{\partial M}} = \frac{\frac{2}{3}p_1^{-\frac{5}{3}}M\left(\frac{2}{3}\right)^{\frac{2}{3}}\left(\frac{1}{3p_2}\right)^{\frac{1}{3}}}{\left(\frac{2}{3p_1}\right)^{\frac{2}{3}}\left(\frac{1}{3p_2}\right)^{\frac{1}{3}}}$$

$$= \frac{2M}{3p_1}$$