Agora vamos:

- Descrever alguns modelos de métodos comparativos.
- Explorar as funções de likelihood e as suas superfícies.

Brownian Motion (BM)

- Descreve a evolução de características contínuas.
- Apresenta dois parâmetros:
 - a) 'rate'
 - b) 'root value' ou 'mean'
- É um dos modelos mais simples e base para muitos PCMs para características contínuas.

O modelo **BM** é conhecido como o "andar do bêbado". O próximo passo pode aumentar, diminuir ou não mudar.

Em média o valor não muda ao longo do tempo. Mas a variância aumenta em função do tempo.

Mudança do valor (em cada ramo) pode ser descrita como:

$$dX_{(t)} = \sigma dB_{(t)}$$

Mudança do valor (em cada ramo) pode ser descrita como:

$$dX_{(t)} = \sigma dB_{(t)}$$

Desvio padrão regula o processo. É a taxa do modelo BM.

Retirado de uma distribuição normal com média 0.

$$dX_{(t)} = \sigma dB_{(t)}$$

$$\sigma = 0.02$$

$$\sigma = 0.1$$

$$\sigma = 0.1$$

$$\sigma = 0.1$$

Filogenia simulada.

Vamos usar o BM para simular um fenótipo evoluindo de acordo com essa árvore.

Figura com o processo BM na filogenia.

$$\mu = 0$$

$$\sigma = 0.02$$

Figura com o processo BM na filogenia.

$$\mu = 0$$

$$\sigma = 0.02$$

Função de verossimilhança do modelo BM

$$\log P(y|\mu, \sigma^2, \mathbf{V}) = -0.5(y - \mu \mathbf{1})^T \mathbf{V}^{-1}(y - \mu \mathbf{1})$$
$$-\log \left(\sqrt{(2\pi)^{n \det(\mathbf{V})}}\right)$$

onde:

$$\mathbf{V} = \sigma^2 \mathbf{C}$$

 ${\mathcal Y}$ dados das espécies (tips).

 $\mu_{\rm a}$ valor para a raíz (root).

 σ^2 taxa do modelo (desvio padrão).

C matrix de variância-covariância da filogenia.

 $oldsymbol{1}$ vetor de '1' com comprimento igual a y .

log
$$P(y|\mu, \sigma^2, \mathbf{V}) = -0.5(y - \mu \mathbf{1})^T \mathbf{V}^{-1}(y - \mu \mathbf{1})$$

 $-\log\left(\sqrt{(2\pi)^{n\det(\mathbf{V})}}\right)$

Superfície de verossimilhança se assemelha à distribuição normal.

Ornstein-Uhlenbeck (OU)

- Introduz a noção de um *ótimo* para uma característica.
- O valor do ótimo é dado pelo parâmetro heta .
- O modelo **OU** é uma extenção do modelo **BM**.
- Diferente do modelo BM, OU introduz uma noção mecanistica de macroevolução. Agora as características evoluem em função da seleção que puxa os valores para próximo do valor ótimo.

Brownian Motion (BM) $dX_{(t)} = \sigma dB_{(t)}$

Ornstein-Uhlenbeck (OU) $dX_{(t)} = \alpha(\theta - X_{(t)})dt + \sigma dB_{(t)}$

Brownian Motion (BM)

$$dX_{(t)} = \sigma dB_{(t)}$$

Ornstein-Uhlenbeck (OU)

$$dX_{(t)} = \alpha(\theta - X_{(t)})dt + \sigma dB_{(t)}$$

Este termo adicional representa o efeito de atração para o valor de ótimo.

Ornstein-Uhlenbeck (OU)

$$dX_{(t)} = \alpha(\theta - X_{(t)})dt + \sigma dB_{(t)}$$

onde:

"força" da seleção para o ótimo.

valor do ótimo.

 $X_{(t)}$ valor da característica no tempo ($\it t$).

 $\sigma dB_{(t)}$ processo de Brownian motion.

$$lpha$$
 = força de seleção σ^2 = taxa de BM θ = valor ótimo $X_{(t=0)}$ = valor inicial

$$\alpha$$
 = força de seleção σ^2 = taxa de BM θ = valor ótimo $X_{(t=0)}$ = valor inicial

$$\alpha$$
 = força de seleção σ^2 = taxa de BM θ = valor ótimo $T_{t=0}$ = valor inicial

Valores maiores de α fazem com que o processo chegue no ótimo mais rapidamente.

Valores maiores de σ inflam a variância da parte BM que faz parte do modelo OU.

A variância do trajeto é limitada pelo α , pois a força de seleção é impede o desvio do valor ótimo.

Dois parâmetros controlam a variância do processo em relação ao valor ótimo. Diferentes combinações podem mostrar padrões semelhantes:

Baixa variância no ótimo.

Baixa variância no ótimo.

Alta variância no ótimo.

Baixa variância no ótimo.

Podemos diferenciar entre estes diferentes cenários?

Altos valores de α erodem o sinal filogenético, pois a atração para o valor de ótimo produz forte convergências.

Alta variância no ótimo.

Baixa variância no ótimo.

Podemos diferenciar entre estes diferentes cenários?

Baixa variância no ótimo.

Baixa variância no ótimo.

Baixa taxa (σ^2) produz menor variância mas não erode o sinal filogenético.

Baixa variância no ótimo.

Agora vamos explorar o modelo BM e OU no

Próximo passo será o tão esperado método de MCMC!!

