

CSCE 771: Computer Processing of Natural Language Lecture 10: Machine Learning Basics (Review)

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 20TH SEPTEMBER, 2022

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lecture 10

- Opening Segment
 - Recent NLP-related talks
 - Review of Lecture 9
 - Recent Talks
 - Announcements
- Main Lecture
- Concluding Segment
 - About Next Lecture Lecture 11

Main Section

- ML—Supervised
- ML Unsupervised
- Neural Networks

9	Sep 15 (Th)	Semantics
10	Sep 20 (Tu)	Review: Machine Learning for NLP, Evaluation – Metrics
11	Sep 22 (Th)	Prelim. for Language Model – Vector embeddings, CNN/ RNN
12	Sep 27 (Tu)	Guest Lecture – Dr. Amitava Das: Glove, Word2Vec, Transformer Review: Reasoning for NLP
13	Sep 29 (Th)	Representation: Ontology, Knowledge Graph, QUIZ
14	Oct 4 (Tu)	Representation: Embeddings, Language Models
15	Oct 6 (Th)	Entity extraction
16	Oct 11 (Tu)	Guest Lecture – Dr. Amitava Das: Using lang models to solve NLP tasks

Review of Lecture 9

- Semantics
 - Shallow: similarity, relatedness; frames
 - Propbank
 - Deep: AMR
 - ConceptNet
- Review projects

Discussions: Recent Talks

Sep 19, 2022: Distinguished Speaker Series Talk:
 NLP and Society - Sentiment Analysis, Mental Health Monitoring,
 By Prof. Pushpak Bhattacharya, IIT Bombay
 Video: https://youtu.be/d-deCau9ud4

Sep 16, 2022: Seminar in Advances in Computing,
 "Can we ever trust our chatbots? Towards trustable collaborative assistants",
 By Prof. Biplav Srivastava, UoSC

Main Lecture

Machine Learning – Insights from Data

- Descriptive analysis
 - Describe a past phenomenon
 - Methods: classification, clustering, dimensionality reduction, anomaly detection, neural methods
- Predictive analysis
 - Predict about a new situation
 - Methods: time-series, neural networks
- Prescriptive analysis
 - What an agent should do
 - Methods: simulation, reinforcement learning, reasoning

- New areas
 - Counterfactual analysis
 - Causal Inferencing
 - Scenario planning

Machine Learning – Label Based View

- Label available Supervised Learning
 - Example: Classification
- Label unavailable Unsupervised Learning
 - Example: Clustering

Common Textual Data Processing Steps for ML

- Input: strings / documents/ corpus
- Processing steps (task dependent / optional *)
 - Parsing
 - Word pre-processing
 - Tokenization getting tokens for processing
 - Normalization* making into canonical form
 - Case folding* handling cases
 - Lemmatization* handling variants (shallow)
 - Stemming* handling variants (deep)
 - Semantic parsing representations for reasoning with meaning *
 - Embedding creating vector representation*

Impt: Contextual Word Embeddings

- Words as discrete
- Words with distributional assumptions:
 - Context: given a word, its nearby words or sequences of words
 - Words used in similar ways are likely to have related meanings; i.e., words used in the same (similar) context have related meanings
 - No claim about meaning except relative similarity v/s dis-similarity of words

TF-IDF based Word Representation -1

- Given N documents
- Term frequency (TF): for term (word) t in document d = tf(t, d)

Variants to reduce bias due to document length

Sources:

- (a) sci-kit documentation
- (b) Wikipedia: https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Variants of term frequency (tf) weight

weighting scheme	tf weight	
binary	0,1	
raw count	$oxed{f_{t,d}}$	
term frequency	$\left f_{t,d} \middle/ \sum_{t' \in d} f_{t',d} ight $	
log normalization	$\log(1+f_{t,d})$	
double normalization 0.5	$0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$	
double normalization K	$K+(1-K)rac{f_{t,d}}{\max_{\{t'\in d\}}f_{t',d}}$	

TF-IDF based Word Representation -2

- Given N documents
- Term frequency (TF): for term (word) t in document d = tf(t, d)
- Inverse document frequency IDF(t)

$$= \log [N / DF(t)] + 1$$

DF(t) = **document frequency**, the number of documents in the document set that contain the term t.

• **TF-IDF**(t, d) = TF(t, d) * IDF(t),

Variants of inverse document frequency (idf) weight

weighting scheme	idf weight ($n_t = \{d \in D: t \in d\} $)	
unary	1	
inverse document frequency	$\log rac{N}{n_t} = -\log rac{n_t}{N}$	
inverse document frequency smooth	$\log\!\left(\frac{N}{1+n_t}\right)+1$	
inverse document frequency max	$\log\!\left(rac{\max_{\{t'\in d\}}n_{t'}}{1+n_t} ight)$	
probabilistic inverse document frequency	$\log rac{N-n_t}{n_t}$	

Sources:

- (a) sci-kit documentation
- (b) Wikipedia: https://en.wikipedia.org/wiki/Tf%E2%80%93idf

TF-IDF Example Calculation

Github: https://github.com/biplav-s/course-nl-f22/blob/main/sample-code/l5-wordrepresent/Word%20Representations%20-%20Vectors.ipynb

Classification

Classifier Method Types

- Individual methods
 - Decision Tree
 - Naïve Bayes
- Ensemble
 - Bagging: Aggregate classifiers ("bootstrap aggregation" => bagging)
 - Random Forest
 - Samples are chosen with replacement (bootstrapping), and combined (aggregated) by taking their average
 - Gradient Boosting: aggregate to turn weak learners into strong learners
 - Boosters (aggregators) turn weak learners into strong learners by focusing on where the individual weak models (decision trees, linear regressors) went wrong
 - Gradient Boosting
 - XGBoost: "eXtreme Gradient Boosting."

Source:

- Data Mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber
- https://towardsdatascience.com/getting-started-with-xgboost-in-scikit-learn-f69f5f470a97

ML - Supervised

- By Example:
 - https://github.com/biplav-s/course-nl/blob/master/l9-ml-review/Classification%20-%20Fake%20news.ipynb
- Fake news dataset

Metrics: Accuracy, Precision, Recall

	Predicted class			
A-to-al Glass		Class = Yes	Class = No	
Actual Class	Class = Yes	True Positive	False Negative	
	Class = No	False Positive	True Negative	

Accuracy = (TP+TN)/ (TP+FP+FN+TN)

ROC – Receiver Operating Characteristic curve

An ROC curve plots TPR vs. FPR at different classification thresholds

Source: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

Class = No

False Negative

True Negative

AUC – Area Under the ROC Curve

- Aggregate measure of performance across all possible classification thresholds.
- Interpretation: probability that the model ranks a random positive example more highly than a random negative example

Not helpful when the <u>cost</u> of false negatives vs. false positives are asymmetric

Source: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

References

- •Blogs: https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
- Google: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

AutoML – Automated Machine Learning

- Automate data preparation
- Automate feature selection
- Hyperparameter tuning
- Demo:
 - IBM Auto AI https://www.youtube.com/watch?v=ILCsbh9IKT0

Clustering

Unsupervised Machine Learning

- Group data into clusters/ classes without supervision
 - Limited supervision
- What is a good cluster?
 - Samples within a cluster should be "near" to each other (cohesiveness)
 - Samples in a cluster should be "far" from other samples in other clusters. (distinctiveness)

Clustering for Data Understanding and Applications

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- •Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- •City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- •Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market resarch

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Clustering as a Preprocessing Tool (Utility)

•Summarization:

- Preprocessing for regression, PCA, classification, and association analysis
- •Compression:
 - Image processing: vector quantization
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Considerations for a Clustering Algorithm

- Need a distance measure for far and near
- Be able to explain what a cluster means
- Handle different types of attributes: numeric, categorical (nominal, ordinal), binary
- Detect different shapes of clusters
- Handle noisy data
- Scale
 - Size
 - Dimensions

Major Clustering Approaches (I)

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

Hierarchical approach:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, CAMELEON

Density-based approach:

- Based on connectivity and density functions
- Typical methods: **DBSACN**, OPTICS, DenClue

Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Major Clustering Approaches (II)

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical methods: EM, SOM, COBWEB

Frequent pattern-based:

- Based on the analysis of frequent patterns
- Typical methods: p-Cluster

<u>User-guided or constraint-based</u>:

- Clustering by considering user-specified or application-specific constraints
- Typical methods: COD (obstacles), constrained clustering

Link-based clustering:

- Objects are often linked together in various ways
- Massive links can be used to cluster objects: SimRank, LinkClus

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

ML - UnSupervised

- Example 1
 - https://github.com/biplav-s/course-nl-f22/tree/main/sample-code/l10-ml-review
 - Two mysterious datasets
- Example 2
 - https://github.com/biplav-s/course-nl/blob/master/l9-ml-review/Clustering%20-%20Fake%20news%20Illustration.ipynb
 - Data
 - Bank agreement dataset
 - Fake news dataset

Neural Network Methods

Logistic Regression in a Slide

Function estimate (linear)

W: weight, b: bias

$$f(X_j) = X_j W + b$$

Update Weight

$$W^* = W - \eta \frac{dL}{dW}$$

Error Term (mean squared error)

$$MSE = \frac{1}{n} \sum_{j=1}^{n} [f(X_{j\cdot}) - y_j]^2$$

Common Code Pattern

y = tf.matmul(x, W) + b loss = tf.reduce_mean(tf.square(y - y_label))

Keras and TensorFlow

- By Example:
 - https://github.com/biplav-s/course-nl/blob/master/l9-ml-review/Basic%20TensorFlow%20and%20Keras.ipynb
- TensorFlow's NMIST tutorial
 - https://www.tensorflow.org/tutorials/quickstart/beginner
- More examples
 - Number Addition by sequence learning: https://keras.io/examples/nlp/addition-rnn/
 - AutoEncoder: https://machinelearningmastery.com/lstm-autoencoders/

Discussion

- Platforms/ Tools
 - Periodic changes
 - Interoperation of models
- Data
- Compute resources
 - Development and test
 - Production

Lecture 10: Lecture Summary

- We reviewed Machine Learning methods
- Data preparation is the key
- Watch out for evaluation
- ML is just a step, what happens to the model is also important

Concluding Segment

Reading

- Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu, and Jianfeng Gao. 2021. <u>Deep Learning--based Text Classification: A Comprehensive Review</u>. ACM Comput. Surv. 54, 3, Article 62 (April 2022), 40 pages. https://doi.org/10.1145/3439726
- Hang Li, <u>Language Models: Past, Present, and Future</u>, Communications of the ACM, July 2022, Vol. 65 No. 7, Pages 56-63 10.1145/3490443

About Next Lecture – Lecture 11

Lecture 11 Outline

- Preliminaries for Language Model and Embeddings
 - Contextual Word Embeddings
- CNN
- RNN
- AutoEncoders