DUAL RADAR SAR CONTROLLER USER GUIDE

by

JOSIAH W. SMITH

DUAL RADAR SAR CONTROLLER USER GUIDE

Josiah W. Smith, PhD The University of Texas at Dallas, 2022

Supervising Professor: Murat Torlak

The following is a user guide for the Dual Radar SAR Controller graphical user interface (GUI) to operate the dual radar synthetic aperture radar (SAR) scanner. The scanner was designed in the Spring semester of 2022 by Josiah Smith (RA), Yusef Alimam (UG), and Geetika Vedula (UG) with multiple axes of motion for the radar and target under test. The system is operated by a personal computer (PC) running MATLAB. An AMC4030 motion controller is employed to control the mechanical system. An ESP32 microcontroller synchronizes the mechanical motion and radar frame firing to achieving precise positioning at high movement speeds; the software was designed by Josiah Smith (RA) and Benjamin Roy (UG). A second system is designed that employs 3-axes of motion (X-Y + rotation) for fine control over the location of the target under test. The entire system is capable of efficiently collecting data from colocated and non-colocated radars for multiband fusion imaging in addition to simple single radar imaging.

TABLE OF CONTENTS

ABSTR	ACT		ii			
СНАРТ	TER 1	GETTING STARTED GUIDE	1			
1.1	1.1 Opening the Dual Radar GUI					
1.2	Conne	ections for Interface with Devices	3			
	1.2.1	Identifying the TI Radars and AMC4030 Motion Controllers	4			
1.3	Conne	Connecting the Radars				
1.4	Configuring the DCA1000EVM Settings					
1.5	Configuring the Radars					
1.6 Connecting and Configuring the Scanner						
	1.6.1	Move to Initial Position of Scan	6			
1.7	Config	guring the SAR Scan Parameters	7			
1.8	Starti	ng the Scan	7			
1.9	Loadi	ng the SAR Data	8			
СНАРТ	TER 2	RECONSTRUCTING IMAGES FROM DUAL RADAR SAR SCANS	9			
CHAPTER 3		CALIBRATING A MMWAVE RADAR	10			
СНАРТ	TER 4	MECHANICAL SYSTEM	11			
4.1	Physic	cal Scanner Stand	11			
4.2	Scann	er Motion	11			
	4.2.1	MJUnit Linear Actuators	11			
	4.2.2	Stepper Drivers	11			
	4.2.3	Stepper Motors	11			
	4.2.4	AMC4030 Motion Controller	11			
	4.2.5	ESP32 Microcontroller	11			
4.3	Wirin	g	11			
4.4	Dual 3	Radar SAR Position Synchronizer	11			
СНАРТ	TER 5	CHANGING DCA1000EVM IP ADDRESSES AND PORTS	12			
5.1	If the	Current DCA1000EVM IP Address is Unknown	12			
5.2	Setting New IP Addresses and Ports to the DCA1000EVM					

CHAPI	TER 6	USING HARDWARE TRIGGER WITH TI 6843 60 GHZ RADAR .	15		
6.1	Hardware Requirements				
6.2	Software Requirements				
6.3	Hardw	Hardware Set Up			
	6.3.1	DCA1000EVM Hardware Configuration	15		
	6.3.2	MMWAVEICBOOST Hardware Configuration	16		
	6.3.3	IWR6843ISK Hardware Configuration	16		
6.4	Softwa	are Set Up	17		
	6.4.1	Flash the SDK Demo Binary to the MMWAVEICBOOST (See TI SDK 3.5.0.4 User Guide Section 4.2)	17		
	6.4.2	Set Up the DCA1000EVM on Proper IP Address (See the DCA1000EVM Quick Start Guide)	18		
	6.4.3	Open the Dual Radar SAR Controller MATLAB Application	19		
СНАРТ	TER 7	USING HARDWARE TRIGGER WITH TI 1642 77 GHZ RADAR $$.	21		
7.1	Hardware Requirements				
7.2	Software Requirements				
7.3	Hardw	Hardware Set Up			
	7.3.1	DCA1000EVM Hardware Configuration	21		
	7.3.2	xWR1642BOOST Hardware Configuration	22		
7.4	Softwa	are Set Up	22		
	7.4.1	Flash the SDK Demo Binary to the xWR1642BOOST (See TI SDK 3.5.0.4 User Guide Section 4.2)	22		
	7.4.2	Set Up the DCA1000EVM on Proper IP Address (See the DCA1000EVM Quick Start Guide)	23		
	7.4.3	Open the Dual Radar SAR Controller MATLAB Application	23		
СНАРТ	TER 8	USING THE BASE SCANNER	25		
APPEN	IDIX A	PRELIMINARIES OF FMCW SIGNALING	26		
A.1	Monos	static FMCW Signal Model	26		
	A.1.1	FMCW Chirp	26		
	A.1.2	FMCW Beat Signal	27		

A.1.3 Multiple Targets	29			
A.2 Range Resolution and Maximum Resolvable Range	29			
APPENDIX B SPATIAL FOURIER TRANSFORM AND RELATIONS	31			
APPENDIX C METHOD OF STATIONARY PHASE	32			
C.1 1-D Method of Stationary Phase	33			
2.2 2-D Method of Stationary Phase				
C.3 Useful MSP Identities	33			
C.3.1 Example MSP Derivation	34			
C.3.2 Useful MSP Approximations	35			
APPENDIX D EFFICIENT NEAR-FIELD SAR IMAGE RECONSTRUCTION ALGORITHMS FOR VARIOUS GEOMETRIES	36			
D.1 1-D Linear Synthetic Array 1-D Imaging - Fourier-based	36			
$\mathrm{D.2}\;$ 1-D Linear Synthetic Array 2-D Imaging - Range Migration Algorithm $\;$	37			
D.3 2-D Rectilinear Array 2-D Imaging - Fourier-based	38			
D.4 2-D Rectilinear Array 3-D Imaging - Range Migration Algorithm	40			
$\mathrm{D.5}\;$ 1-D Circular Synthetic Array 2-D Imaging - Polar Formatting Algorithm $\;$	41			
${\rm D.6~2\text{-}D}$ Cylindrical Synthetic Array 3-D Imaging - Polar Formatting Algorithm .	43			
REFERENCES	46			
BIOGRAPHICAL SKETCH	49			
CURRICULUM VITAE				

CHAPTER 1

GETTING STARTED GUIDE

In this chapter, we detail the steps for getting started with the Dual Radar SAR Controller MATLAB application, referred to as the Dual Radar GUI. This software is capable of connection with multiple Texas Instruments (TI) millimeter-wave (mmWave) frequency-modulated continuous-wave (FMCW) single-chip radars. A simple introduction to FMCW radar signaling is provided in Appendix A and near-field synthetic aperture radar (SAR) imaging algorithms are briefly introduced in Appendix D.

System Requirements

The following is a set of system requirements for the Dual Radar GUI, where essential requirements are denoted with an asterisk.

- *Windows 10/11 PC (Dual Radar GUI is not currently compatible with MacOS or Linux operating systems).
- *Multiple Ethernet ports (required for use with multiple radars).
- High speed USB 3.X to connect with large number of devices of single USB connection.
- 16 GB RAM, decent CPU, enough storage to save files from scans (on the order of 100s of MB per scan for a typical synthetic aperture dimension).
- NVIDIA GPU (optional, for image reconstruction using machine learning-based algorithms).

Hardware Set Up

Prior to using the Dual Radar GUI application, the following hardware must be properly configured. The remainder of this guide assumes that the hardware has been configured and is ready.

- Scanner stand must be assembled.
- Mechanical system (linear actuators, stepper motors, stepper drivers, motion controller, and ESP32 synchronizer) must be assembled and connected (See Section 1.2 for more details on the connections).

- 2 DCA1000EVM data capture cards must be configured at unique IP addresses and mounted to the mechanical system. (See Chapter 5 for details to set up each DCA1000EVM).
- The 60 GHz radar (TI IWR6843ISK + MMWAVEICEBOOST) and 77 GHz radar (TI IWR1642BOOST) must be modified using the steps detailed in Chapters 6 and 7, respectively.
- 60 GHz radar (TI IWR6843ISK + MMWAVEICEBOOST) and 77 GHz radar (TI IWR1642BOOST) must be mounted to their corresponding DCA1000EVM data capture cards and connected. (See Section 1.2 for more details on the connections). Physical alignment of the two mounted radars is important to recover images as the relative position of each radar must be taken into account.
- Optionally, the base scanner must be assembled and connected.

Software Set Up

The following software is necessary for the set up of the hardware and operation of the Dual Radar GUI.

- TI mmWave SDK 3.5.0.4
- TI Uniflash
- TI mmWave Studio 2.1.1.0
- MATLAB 2021b (recommended, may be compatible with earlier/later releases)

1.1 Opening the Dual Radar GUI

After downloading the Dual Radar GUI software, the following steps are required to open the application.

- Open MATLAB and navigate to the downloaded folder containing the application file: dual_radar_gui.mlapp.
- Open the dual_radar_gui.mlapp file, which will open the MATLAB Application Designer in a separate window.

- In the MATLAB Application Designer window, press "Run" at the top to run the Dual Radar GUI application.
 - If the MATLAB path is set to the proper path (the main folder, containing the application file: dual_radar_gui.mlapp), the application will initialize without any issues. Otherwise, if the MATLAB path is incorrect, a selection window will open and the user will be asked to find the folder containing dual_radar_gui.mlapp.
 - If the proper version of TI mmWave Studio (2.1.1.0) is installed to the default location C:\ti\mmwave_studio_02_01_01_00\, the application will initialize without any issues. Otherwise, if a different version of mmWave Studio is installed or it is installed at a different location, a selection window will open and the user will be asked to find the mmWaveStudio folder (typically at
 - ...\mmwave_studio_xx_xx_xx_xx\mmWaveStudio\).
- After initialization (the correct folders are added to the path, etc.), the GUI will open and the indicator lamps will be red, as none of the devices are connected to the application or configured.

The following sections detail the basic operation of the Dual Radar SAR Controller GUI. Although the GUI is designed for dual radar operation, it can be applied for single radar use cases by ignoring either the 60 GHz or 77 GHz radar, referred to in the GUI as "Radar 1" and "Radar 2," respectively. For single radar use, only one radar must be connected, configured, etc.; however, even if two radars are connected and configured, the scan can be performed using only one radar, if specified by the user.

1.2 Connections for Interface with Devices

Since the Dual Radar GUI connects to many serial USB devices, identifying each serial device is crucial to proper operation of the application. Specifically, difference instances of TI radars or AMC4030 motion controllers will appear under an identical name at different COM ports in Device Manager and it is important to distinguish between the two radars and two AMC4030s (in the case of the base scanner).

1.2.1 Identifying the TI Radars and AMC4030 Motion Controllers

To identify each TI radar, first open Device Manager by searching "Device Manager" in the start menu. Then, find the most convenient USB connection (usually at a USB hub) for each radar and disconnect both radars. Connect the first radar and two COM ports will appear labeled "XDS110 Class Application/User UART Port" and "XDS110 Class Application/User Data Port." Record the COM port number corresponding to the "XDS110 Class Application/User UART Port" associated with the first radar for later use. Similarly, disconnect the first radar and connect the second radar. Then, Record the COM port number corresponding to the "XDS110 Class Application/User UART Port" associated with the second radar for later use.

To identify the AMC4030 motion controllers, follow the same procedure, which is summarized below:

- (1) Disconnect both devices.
- (2) Connect one device and record its COM port inside Device Manager for later use.
- (3) Disconnect that device, connect the next device, and repeat step (2) until all devices are recorded.

1.3 Connecting the Radars

After noting the COM port for each radar, return to the Dual Radar SAR Controller GUI and navigate to the "Radar Setup" tab. This section follows the numerical order of the various panels in this tab, starting with the Serial Connections panel. Pressing "Connect Radar 1" opens a window displaying a list of the connected COM ports. Select the "XDS110 Class Application/User UART Port" corresponding to the 60 GHz IWR1643ISK radar. Similarly, select "Connect Radar 2" and choose the "XDS110 Class Application/User UART Port" corresponding to the 77 GHz xWR1642BOOST radar. If the serial connection is successful, the radar connection lamps in the top right of the GUI will be green.

1.4 Configuring the DCA1000EVM Settings

Assuming both DCA1000EVMs have been configured properly following the instructions in Chapter 5, the IP addresses and ports for each DCA1000EVM can be entered into the corresponding fields in the GUI. Then, pressing the "Prepare DCA 1" button prepares the

DCA1000EVM configuration and creates a .json file at

...\mmwave_studio_xx_xx_xx_xx\mmWaveStudio\PostProc\cf1.json with the proper configuration and checks the connection of the DCA1000EVM. If the DCA1000EVM is connected at the specified IP addresses and ports, the message "System is Connected" will appear in the MATLAB terminal. If the message "System is Disconnected" appears in the MATLAB terminal, the following may be causing the issue:

- The DCA1000EVM is disconnected from either the USB cable, Ethernet cable, or power cable.
- The DCA1000EVM is configured to a different IP address. (To change the DCA1000EVM IP address, follow the steps in Chapter 5).
- The Ethernet connection on the PC is not properly configured to the DCA1000EVM IP address. (Follow the steps in Section 6.4.2 to ensure the Ethernet port is properly configured).
- In some cases, the system appears disconnected, despite being properly configured, when multiple DCA1000EVMs are connected. In this case, disconnect the other DCA1000EVM and attempt to prepare the DCA1000EVM again. Usually, it will succeed. Then, connect the other DCA1000EVM and attempt the connection of both DCA1000EVMs again. Typically, both DCA1000EVMs will now connect properly.

1.5 Configuring the Radars

The radar configuration panels are straightforward and follow the corresponding fields in TI mmWave Studio. The user can enter the desired chirp parameters for each radar and press the respective Configuration button for each radar to send the configuration to each radar. The Serial Number for each radar is the last four digits of the serial number, which is used to store the calibration data for each unique radar.

After a configuration is sent to the radar, if a HW trigger capture is made, the radar must be power cycled before another configuration can be sent. This is a limitation of operating the radars with a HW trigger in addition to command line interface (CLI) configuration.

Alternatively, if the Hardware Trigger checkbox is unchecked, a software (SW) trigger used, which automatically ends when the number of frames are sent (or if the capture is stopped for No of Frames = 0 for infinite transmission).

The calibration functionality for each radar is detailed in Chapter 3. Once the radar has been calibrated, its calibration data are saved for reuse in future scans.

At this point, the radars and corresponding DCA1000EVMs have been connected and configured, and the scan can be set up and performed.

1.6 Connecting and Configuring the Scanner

First, the user must switch to the "Scanner Setup" tab at the top of the Dual Radar GUI.

The user must connect the AMC4030 motion controller by pressing the "Connect AMC4030" button. A window will appear listing the connected serial devices and their COM ports. If using the base scanner, it is important to select the correct the proper COM port labeled "USB-SERIAL CH340" corresponding to the dual radar scanner. One way to test if the proper AMC4030 is connected is to press the "Home" button in the "Single Movement" panel on the bottom right of this tab. If the vertical dual radar scanner moves to the home position, then the correct scanner is connected. If the base scanner moves, then you have selected the incorrect COM port. You can disconnect the AMC4030 and select the proper COM port.

The ESP32 must be connected using the "Connect ESP32" button. The user should select the COM port corresponding to the ESP32.

The AMC4030 must be configured with the appropriate parameters for the given linear actuators and settings of each stepper driver, as detailed in Sections 4.2.1 and 4.2.2, respectively. After entering the proper settings, the user can configure the AMC4030 by pressing the "Configure AMC4030" button, which send the configuration to the AMC4030.

1.6.1 Move to Initial Position of Scan

For many cases, the home position is not the ideal starting position for a given scan. Thus, after the AMC4030 is configured, it is recommended to move the platform to a different starting position using the "Single Movment" functionality in this tab. The user can enter a step size (both positive or negative) to move the platform and press the "Send" button to send the command which moves the platform. The "Home" button sends the platform to the home position, effectively resetting the position. It is recommended to reset the platform the home position every time the system is turned on. After the scanner is moved to the initial/starting position for the scan, the configuration can continue.

1.7 Configuring the SAR Scan Parameters

Under the "Configure Scan" panel, the user can enter the parameters of the scanner and desired SAR aperture. The parameters are detailed in Table 1.7. After the parameters are entered, the user can configure the scan, which updates the scan dimensions and estimated scan time fields, by pressing the "Configure Scan" button.

Table 1.7: Parameters of SAR scan.							
Parameter	Meaning						
X-Max Size (mm)	Maximum dimension of linear actuator along the x-direction in mm						
Y-Max Size (mm)	Maximum dimension of linear actuator along the y -direction in mm						
File Name	Name of the $scan^a$						
X-Step Size (mm)	Step size between each sample along the x -direction in mm						
Y-Step Size (mm)	Step size between each sample along the y -direction in mm						
Periodicity	Approximate periodicity along the x-direction						
X-Offset (mm)	Offset from the starting location to start collecting samples in mm^b						
$\Delta X (mm)$	Distance between the radars along the x -direction in mm						
Num X-Steps	Number of samples along the x -direction						
Num Y-Steps	Number of samples along the y -direction						
Radar 1 Checkbox	To use radar 1 for scan						
Radar 2 Checkbox	To use radar 2 for scan						

^aThe scan is saved to a folder with name corresponding to the date of the scan, so names can be reused. The GUI will check if the scan name already exists before performing the scan.

Additionally, the "Scan Notes" text area is provided for the user to record notes about the specified scan. We have found this helpful for describing the target scene, scanning parameters, etc. for later use. The scan notes are recorded into a text file and saved with the scan data for reference.

1.8 Starting the Scan

After the scan is configured and all devices are connected and configured, all the indicator lamps should be green. In this case, the scan is ready to commence and the user can start the command by pressing the "Start Scan" button.

^bAllows the effect of up-ramp of the acceleration to be diminished.

During the scan, the platform will perform a raster back-and-forth scanning motion during which the radars will be triggered at the specified locations to create a uniform grid synthetic aperture elements from which to reconstruct a high-resolution image. The DCA1000EVM must be reset for each horizontal scan, which is currently the largest inefficiency in the scanning process. For each horizontal motion, HW triggers are sent by the ESP32 to each radar. After each radar receives a HW pulse, it sends a frame (typically of 4 chirps). The beat signals are streamed to the DCA1000EVM over LVDS and then to the PC over UDP via Ethernet. The reason we need to reset for each horizontal scan is currently unknown, but after the HW triggers stop at the end of the horizontal motion, either the radar or DCA1000EVM stops. The radar may stop streaming and need to be reset or the DCA1000EVM may reset since the data stops streaming. We have attempted different streaming modes for the DCA1000EVM that are supposed to change the stopping criterion of the DCA1000EVMs, but we have not seen any difference and this is likely a bug or due to operating the hardware in an unsupported manner. Additional system details can be found in [1].

The following are potential known issues that may occur during the scanning process (typically when multiple DCA1000EVMs are uses simultaneously):

- Too many packets are received to a DCA1000EVM: this is a common issue with no known cause or solution. If too many packets are received by the DCA1000EVM, we typically truncate the received data and assume that the extra data can be ignored. This does not seem to degrade image quality substantially.
- Not enough packets are received to a DCA1000EVM: this occurs rarely and also does
 not have a known cause or solution. If too few packets are received, we terminate the
 scan and reset the process. Typically, the scan can be attempted again with success
 after one or two attempts.

1.9 Loading the SAR Data

After the scan completes successfully, the user can press the "Load Data" button to load the data and store it to a convenient format for later processing. Data are saved to data\<date>\<fileName>\ with MATLAB files to load the data and reconstruct the images using the radar imaging toolbox, as detailed in Chapter 2.

CHAPTER 2

RECONSTRUCTING IMAGES FROM DUAL RADAR SAR SCANS

CHAPTER 4

MECHANICAL SYSTEM

- 4.1 Physical Scanner Stand
- 4.2 Scanner Motion
- 4.2.1 MJUnit Linear Actuators
- 4.2.2 Stepper Drivers
- 4.2.3 Stepper Motors
- 4.2.4 AMC4030 Motion Controller
- 4.2.5 ESP32 Microcontroller
- 4.3 Wiring
- 4.4 Dual Radar SAR Position Synchronizer

CHAPTER 5

CHANGING DCA1000EVM IP ADDRESSES AND PORTS

The following is a simple guide for changing the configuration of a DCA1000EVM. To operate multiple DCA1000EVM devices on the same PC, the IP addresses and ports associated with each DCA1000EVM must be unique. Hence, these steps must be carefully followed to ensure each DCA1000EVM is properly configured for multi-radar coordination.

5.1 If the Current DCA1000EVM IP Address is Unknown

If the current IP address is unknown, the following steps are necessary to reset the DCA1000EVM to factory defaults prior to setting a new IP address.

- 1) Place SW2.6 to the ON position (towards pin 11).
- 2) Power cycle the DCA1000EVM (This loads the default Ethernet settings from the DCA1000EVM's FPGA).
- 3) The IP address for the DCA1000EVM is now 192.168.33.180.
- 4) Set the IPv4 address on active PC LAN port to 192.168.33.30 (see the DCA1000EVM Quick Start Guide).
 - a) Once the device is properly connected to the PC, open the start menu and search "View Network Connections," as shown in Fig. 6.3.
 - b) Inside the "Network Connections" of Control Panel, right click on the Ethernet port of choice and select "Properties."
 - c) "Local Area Connection Properties" window will open. Right click on "Internet Protocol Version 4 (TCP/IPv4)."
 - d) "Internet Protocol Version 4 (TCP/IPc4)" window will open. Set the IP address field to 192.168.33.30.
 - e) The Subnet mask field can remain the default 255.255.255.0.
 - f) Press "OK" on all the windows and you can close "Network Connections."
- 5) Follow the instructions in the following Section to set a new IP address to the DCA1000EVM.

5.2 Setting New IP Addresses and Ports to the DCA1000EVM

- 1) Modify DCA1000EVM configuration file (.json). The typical location is "C:/ti/mmwave_studio_xx_xx_xx/mmWaveStudio/PostProc/."
 - a) Lines 9–20 will have the format given in Fig. 5.1.

```
[9]
        "ethernetConfig": {
[10]
        "DCA1000IPAddress": "192.168.33.180",
                                                       < - - current DCA IP Address
[11]
        "DCA1000ConfigPort": 4096,
        "DCA1000DataPort": 4098
[12]
[13]
        "ethernetConfigUpdate": {
[14]
[15]
        "systemIPAddress": "192.168.33.30",
                                                       < - - future System IP Address
[16]
        "DCA1000IPAddress": "192.168.33.180",
                                                       < - - future DCA IP Address
[17]
        "DCA1000MACAddress": "12.34.56.78.90.12",
        "DCA1000ConfigPort": 4096,
[18]
[19]
        "DCA1000DataPort": 4098
[20]
```

Figure 5.1: Lines 9–20 of the .json configuration file used to change the DCA1000EVM IP addresses and ports.

- b) Ensure that the IP address on line 10 matches the current IP address of the DCA1000EVM.
- c) Change the IP addresses on lines 15 16 to the new IP address.
- d) Save the json file under a new name, such as: newIP.json.¹
- 2) Send the new configuration file to DCA1000EVM.
 - a) Power cycle the DCA1000EVM.
 - b) Open Powershell.
 - c) Use the following commands to enter the correct directory and update the DCA1000EVM's EEPROM:

```
cd "C:\ti\mmwave_studio_xx_xx_xx\mmWaveStudio\PostProc\"
```

¹If you want to use different IP address with mmWave Studio, make sure the json is called cf.json. mmWave Studio will use and modify the cf.json in the PostProc folder. Hence, it is recommended that you use different .json files for each radar named cf1.json, for example.

.\DCA1000EVM_CLI_Control.exe eeprom newIP.json

- 3) Set the IPv4 address on active PC LAN port to the new System IP Address (see the DCA1000EVM Quick Start Guide).
 - a) Once the device is properly connected to the PC, open the start menu and search "View Network Connections," as shown in Fig. 6.3.
 - b) Inside the "Network Connections" of Control Panel, right click on the Ethernet port of choice and select "Properties."
 - c) "Local Area Connection Properties" window will open. Right click on "Internet Protocol Version 4 (TCP/IPv4)."
 - d) "Internet Protocol Version 4 (TCP/IPc4)" window will open. Set the IP address field to 192.168.xxx.xxx (the **NEW** DCA1000EVM System IP Address).
 - e) The Subnet mask field can remain the default 255.255.255.0.
 - f) Press "OK" on all the windows and you can close "Network Connections."
- 4) Update the .json file
 - a) In the .json file, change line 10 to match the IP address on line 15.
 - b) Save changes.
- 5) Verify changes
 - a) Place SW2.6 to the OFF position (towards pin 6).
 - b) Power cycle the DCA1000EVM. (This loads the Ethernet settings from the DCA1000EVM's EEPROM).
 - c) Open Powershell.
 - d) Use the following commands to enter the correct directory and verify system status:
 - cd "C:\ti\mmwave_studio_xx_xx_xx_xx\mmWaveStudio\PostProc\"
 .\DCA1000EVM_CLI_Control.exe query_sys_status newIP.json
 - e) If response is "System is connected" then the device is functioning properly. If the response is "System is disconnected" then ensure that the following are true:
 - i SW2.6 is in the OFF position (towards pin 6).
 - ii PC's IP Address is set to the correct IP Address for the system and not the IP Address for the DCA.
 - iii Correct .json file is called when running query_sys_status command.

CHAPTER 6

USING HARDWARE TRIGGER WITH TI 6843 60 GHZ RADAR

The following is a simple demo for enabling the hardware (HW) trigger with a Texas Instruments IWR6843ISK 60 GHz radar in conjunction with the Dual Radar SAR Controller application.

6.1 Hardware Requirements

- 1) DCA1000EVM with modifications (see Section 6.3.1).
- 2) MMWAVEICBOOST with modifications (see Section 6.3.2).
- 3) IWR6843ISK with modifications (see Section 6.3.3).
- 4) ESP32 microcontroller to send HW trigger pulses.

6.2 Software Requirements

- 1) TI mmWave SDK 3.5.0.4
- 2) TI Uniflash
- 3) TI mmWave Studio 2.1.1.0
- 4) Dual Radar SAR Controller software (requires MATLAB 2021b (recommended, may be compatible with earlier/later releases)).

6.3 Hardware Set Up

6.3.1 DCA1000EVM Hardware Configuration

- 1) Remove R120 (suggested here).
- 2) Connect to the MMWAVEICBOOST with 60 pin connector, as shown on page 16 here.
- 3) Connect to the PC over USB on the RADAR/FTDI connnector (J1 on DCA1000EVM) and over Ethernet.
- 4) Connect 5V/3A power.

6.3.2 MMWAVEICBOOST Hardware Configuration

- 1) Remove R346 and short R348 (suggested here and here).
 - a) Follow Josiah's E2E post:
 - b) Download xWR6843 EVM Schematic Drawing, Assembly Drawing, and Bill of Materials - SWRR164C.zip from here.
 - c) On page 9 of PROC074B(001)_Sch.pdf (for rev B of the MMWAVEICBOOST), under "RNR FOR SYNC IN", 40PIN_SYNC_IN needs to be routed to RADAR_SYNC_IN.
 - d) From that diagram, DCA_SYNC_IN is shorted via R346 to RADAR_SYNC_IN.
 - e) Hence, remove R346 and place 0 ohm resistor over R348. Now 40PIN_SYNC_IN is routed to RADAR_SYNC_IN.
- 2) Switch Settings
 - a) From page 11 here, use the switch settings on S1 for DCA1000 Mode, as shown in Fig. 6.1.
- 3) Connect to Microcontroller (MCU)
 - a) Follow Josiah's E2E post:
 - b) On page 8 of PROC074B(001)_Sch.pdf and page 19 of here, 40PIN_SYNC_IN is pin 9 of J5 (IMPORTANT). See picture here for pin 9 of J5 input. Ground is pin 4 of J5 or pin 2 of J6.
- 4) Connect to the PC over USB on XDS110_USB/J1 and attach IWR6843 as shown on page 16 here.
- 5) Connect 5V/3A power.

6.3.3 IWR6843ISK Hardware Configuration

- 1) Switch Settings
 - a) From step 1 here or page 45 here, use the switch settings on S1, as shown in Fig. 6.2.
- 2) Connect to MMWAVEICEBOOST, as shown on page 16 here.

Reference Designator	(Default Position) Position for STAND ALONE Mode ⁽¹⁾	Position for DCA1000 Mode	Position for 40-Pin LP/BP
S1.12	ON	ON	ON
S1.11	ON	ON	OFF
S1.10	ON	ON	OFF
S1.9	OFF	OFF	ON
S1.8	OFF	OFF	ON
S1.7	ON	OFF	OFF
S1.6	ON	OFF	OFF
S1.5 ⁽²⁾	ON	ON	OFF
S1.4	ON	OFF	ON
S1.3	ON	ON	OFF
S1.2	ON	ON	ON
S1.1	OFF	OFF	OFF

⁽¹⁾ Standalone mode means starter kit and MMWAVEICBOOST connected together.

Figure 6.1: Switch Settings for MMWAVEICBOOST

6.4 Software Set Up

6.4.1 Flash the SDK Demo Binary to the MMWAVEICBOOST (See TI SDK 3.5.0.4 User Guide Section 4.2)

- 1) Set the device to Flash Programming Mode by bridging SOP0 and SOP2 as shown in step 5 here.
- 2) Power cycle the MMWAVEICBOOST.
- 3) Once the device is properly connected to the PC, download the demo firmware using Unifash. (Typically under the path:
 - "C:/ti/mmwave_sdk_03_05_00_04/packages/ti/demo/xwr68xx/mmw").
- 4) Once the download is complete, set the device to Functional Mode by bridging only SOP0 and remove the bridge on SOP2.
- 5) Power cycle the MMWAVEICBOOST.

⁽²⁾ S1.5 has RS232 connections from 40 pin/FTDI/60 pin/XDS110, ON postion routes UART to XDS110 (Application/user UART COM port).

S1.1: Off S1.2: Off S1.3: Off S1.4: Off S1.5: On S1.6: N/A

Different antenna for

Figure 6.2: Switch Settings for IWR6843ISK

6.4.2 Set Up the DCA1000EVM on Proper IP Address (See the DCA1000EVM Quick Start Guide)

1) Once the device is properly connected to the PC, open the start menu and search "View Network Connections," as shown in Fig. 6.3.

Figure 6.3: Example of Windows start menu search result for viewing network connections

2) Inside the "Network Connections" of Control Panel, right click on the Ethernet port of choice and select "Properties."

- 3) "Local Area Connection Properties" window will open. Right click on "Internet Protocol Version 4 (TCP/IPv4)."
- 4) "Internet Protocol Version 4 (TCP/IPc4)" window will open. Set the IP address field to 192.168.33.30, or the desired IP address if different. (See Chapter 5 on changing the IP address of the DCA1000EVM using the DCA1000 CLI Utility, which is necessary for a dual radar setup).
- 5) The Subnet mask field can remain the default 255.255.255.0.
- 6) Press "OK" on all the windows and you can close "Network Connections."

6.4.3 Open the Dual Radar SAR Controller MATLAB Application

- 1) Open MATLAB and navigate to the folder containing "dual_radar_gui.mlapp" and open that file. The MATLAB App Designer window will open the application.
- 2) Press "Run" at the top of the page.
- 3) The app will open and all the indicators will be red as none of the devices are connected to the application or configured.
- 4) Assuming you have installed mmWave Studio 2.1.1.0 to the typical location, it will open normally. Otherwise, it will ask you to find the installation location of mmWave Studio 2.1.1.0.
- 5) Press "Connect Radar 1."
- 6) A window will appear asking to select a serial COM port. Select the COM port corresponding to the entry in device manager labeled "XDS110 Class Application/User UART."
- 7) Under the DCA 1 Configuration panel, enter the correct System and DCA IP addresses and ports for the radar. Press "Prepare DCA 1." If a Windows Defender Firewall window opens, give access to private networks and public networks (check both boxes) and select "Allow access." (The optional drop down menu in the bottom right corner of the DCA 1 Configuration panel is used to select from a set of defaults with different patterns and is straightforward).

- 8) Under the Radar 1 (60 GHz) Configuration panel, enter the desired chirp parameters and press "Configure Radar 1." The Radar 1 Configuration lamp should change to a green color to indicate the configuration was successful. If the configuration stalls and the lamp is stuck on yellow, this indicates a communication error between the PC and radar, and the radar must be disconnected and power cycled. Then, attempt these steps again.
- 9) Under the Radar 1 (60 GHz) Configuration panel, press "Start" to start the 60 GHz radar.
 - a) The DCA1000EVM will start waiting for data over LVDS.
 - b) The MMWAVEICBOOST and IWR6843ISK will wait for HW trigger from MCU.
 - c) If everything is working properly at this point, the D7 LED on the IWR6843ISK and the DS2 LED on the MMWAVEICBOOST will turn on.
- 10) Start the MCU sending pulses. If everything is working properly the DATA_TRAIN_PRG LED on the DCA1000EVM will be flashing while the radar is triggered.
- 11) Once the MCU stops sending pulses, the radar and DCA1000EVM will automatically stop the capture. (Pressing the "stop" button is only necessary if you set No of Frames to 0, for infinite capture mode, with HW trigger disabled, indicating the SW trigger will be used).

CHAPTER 7

USING HARDWARE TRIGGER WITH TI 1642 77 GHZ RADAR

The following is a simple demo for enabling the hardware (HW) trigger with a Texas Instruments xWR1642BOOST 77 GHz radar in conjunction with the Dual Radar SAR Controller application.

7.1 Hardware Requirements

- 1) DCA1000EVM with modifications (see Section 7.3.1).
- 3) xWR1642BOOST with modifications (see Section 7.3.2).
- 4) ESP32 microcontroller to send HW trigger pulses.

7.2 Software Requirements

- 1) TI mmWave SDK 3.5.0.4
- 2) TI Uniflash
- 3) TI mmWave Studio 2.1.1.0
- 4) Dual Radar SAR Controller software (requires MATLAB 2021b (recommended, may be compatible with earlier/later releases)).

7.3 Hardware Set Up

7.3.1 DCA1000EVM Hardware Configuration

- 1) Remove R120 (suggested here).
- 2) Connect to the MMWAVEICBOOST with 60 pin connector, as shown on page 16 here.
- 3) Connect to the PC over USB on the RADAR/FTDI connnector (J1 on DCA1000EVM) and over Ethernet.
- 4) Connect 5V/3A power.

7.3.2 xWR1642BOOST Hardware Configuration

- 1) Connect to Microcontroller (MCU)
 - a) Follow Josiah's E2E post:
 - b) For IWR1642Boost, on page 10 of PROC049B(002)_Sch.pdf, AR_SYNC_IN is pin 9 of J6 (IMPORTANT).
 - c) For AWR1642Boost, On page 10 of PROC011C(002)_Sch.pdf, AR_SYNC_IN is pin 9 of J6 (IMPORTANT).
 - d) For newest revisions, the R165 resistor is already shorted, enabling the HW trigger input.
 - e) Ground is pin 4 of J6 or pin 2 of J5.
- 2) Connect to the PC over.
- 3) Connect 5V/3A power.

7.4 Software Set Up

7.4.1 Flash the SDK Demo Binary to the xWR1642BOOST (See TI SDK 3.5.0.4 User Guide Section 4.2)

- 1) Set the device to Flash Programming Mode by bridging SOP0 and SOP2. Similar bridging is shown on the MMWAVEICBOOST in step 5 here.
- 2) Power cycle the xWR1642BOOST.
- 3) Once the device is properly connected to the PC, download the demo firmware using Unifash. (Typically under the path:
 - "C:/ti/mmwave_sdk_03_05_00_04/packages/ti/demo/xwr68xx/mmw").
- 4) Once the download is complete, set the device to Functional Mode by bridging only SOP0 and remove the bridge on SOP2.
- 5) Power cycle the xWR1642BOOST.

7.4.2 Set Up the DCA1000EVM on Proper IP Address (See the DCA1000EVM Quick Start Guide)

- 1) Once the device is properly connected to the PC, open the start menu and search "View Network Connections," as shown in Fig. 6.3.
- 2) Inside the "Network Connections" of Control Panel, right click on the Ethernet port of choice and select "Properties."
- 3) "Local Area Connection Properties" window will open. Right click on "Internet Protocol Version 4 (TCP/IPv4)."
- 4) "Internet Protocol Version 4 (TCP/IPc4)" window will open. Set the IP address field to 192.168.33.30, or the desired IP address if different. (See Chapter 5 on changing the IP address of the DCA1000EVM using the DCA1000 CLI Utility, which is necessary for a dual radar setup).
- 5) The Subnet mask field can remain the default 255.255.255.0.
- 6) Press "OK" on all the windows and you can close "Network Connections."

7.4.3 Open the Dual Radar SAR Controller MATLAB Application

- 1) Open MATLAB and navigate to the folder containing "dual_radar_gui.mlapp" and open that file. The MATLAB App Designer window will open the application.
- 2) Press "Run" at the top of the page.
- 3) The app will open and all the indicators will be red as none of the devices are connected to the application or configured.
- 4) Assuming you have installed mmWave Studio 2.1.1.0 to the typical location, it will open normally. Otherwise, it will ask you to find the installation location of mmWave Studio 2.1.1.0.
- 5) Press "Connect Radar 2."
- 6) A window will appear asking to select a serial COM port. Select the COM port corresponding to the entry in device manager labeled "XDS110 Class Application/User UART."

- 7) Under the DCA 2 Configuration panel, enter the correct System and DCA IP addresses and ports for the radar. Press "Prepare DCA 2." If a Windows Defender Firewall window opens, give access to private networks and public networks (check both boxes) and select "Allow access." (The optional drop down menu in the bottom right corner of the DCA 2 Configuration panel is used to select from a set of defaults with different patterns and is straightforward).
- 8) Under the Radar 2 (77 GHz) Configuration panel, enter the desired chirp parameters and press "Configure Radar 2." The Radar 2 Configuration lamp should change to a green color to indicate the configuration was successful. If the configuration stalls and the lamp is stuck on yellow, this indicates a communication error between the PC and radar, and the radar must be disconnected and power cycled. Then, attempt these steps again.
- 9) Under the Radar 2 (77 GHz) Configuration panel, press "Start" to start the 77 GHz radar.
 - a) The DCA1000EVM will start waiting for data over LVDS.
 - b) The MMWAVEICBOOST and IWR6843ISK will wait for HW trigger from MCU.
 - c) If everything is working properly at this point, the D7 LED on the IWR6843ISK and the DS2 LED on the MMWAVEICBOOST will turn on.
- 10) Start the MCU sending pulses. If everything is working properly the DATA_TRAIN_PRG LED on the DCA1000EVM will be flashing while the radar is triggered.
- 11) Once the MCU stops sending pulses, the radar and DCA1000EVM will automatically stop the capture. (Pressing the "stop" button is only necessary if you set No of Frames to 0, for infinite capture mode, with HW trigger disabled, indicating the SW trigger will be used).

APPENDIX A

PRELIMINARIES OF FMCW SIGNALING

A.1 Monostatic FMCW Signal Model

A.1.1 FMCW Chirp

In this section we derive the simple signal model for a monostatic (Tx and Rx are assumed to be at the same position in space) scenario with a single, ideal point scatterer (reflector). By definition, an FMCW signal, called an FMCW chirp, has a frequency linearly increasing with time. We can express this relationship as

$$f(t) \triangleq f_0 + Kt, \quad 0 \le t \le T, \tag{A.1}$$

where f is the instantaneous frequency as a function of t, f_0 is the start frequency (frequency at time t = 0), K is the slope of the chirp, the bandwidth covered by the chirp is given by B = KT, and t is called the "fast time" variable.

The definition of instantaneous frequency is given by

$$f(t) \triangleq \frac{1}{2\pi} \frac{\partial}{\partial t} \phi(t),$$
 (A.2)

where $\phi(t)$ is the phase of the signal, containing the frequency content, e.g.,

$$m(t) \triangleq e^{j\phi(t)}$$
. (A.3)

Hence, the phase term $\phi(t)$ can be expressed as

$$\phi(t) = 2\pi \int_0^t f(t')dt'. \tag{A.4}$$

Substituting (A.1) into (A.4) yields

$$\phi(t) = 2\pi \int_0^t (f_0 + Kt')dt',$$

$$= 2\pi \left[f_0 t' + 0.5K(t')^2 \right]_0^t,$$

$$= 2\pi (f_0 t + 0.5Kt^2).$$
(A.5)

A.1.2 FMCW Beat Signal

Thus, by the definition of the FMCW chirp as a sinusoidal signal whose frequency linearly increases with time, we can derive the phase of the signal and express the transmitted FMCW pulse by substituting (A.5) into (A.3) as

$$m(t) = e^{j\phi(t)} = e^{j2\pi(f_0t + 0.5Kt^2)}, \quad 0 \le t \le T,$$
 (A.6)

where T is the duration of the FMCW pulse.

Assuming the monostatic radar antenna element is located at (x', y', z') and the point scatterer is located at (x_0, y_0, z_0) , the distance between the radar and point target can be expressed as

$$R_0 = \sqrt{(x_0 - x')^2 + (y_0 - y')^2 + (z_0 - z')^2}.$$
 (A.7)

The FMCW pulse, expressed in (A.6) is transmitted from the antenna, propagates through space traveling a distance of R_0 to the point scatter, reflects from the point scatterer, travels another R_0 back to the radar. The round-trip time delay required for this propagation is given by

$$\tau_0 = \frac{2R_0}{c},\tag{A.8}$$

where c is the speed of light.

As a result, the signal received at the radar is a time-delayed and scaled version of the transmitted signal as

$$\hat{s}(t) = \frac{\sigma}{R_0^2} m(t - \tau_0),
= \frac{\sigma}{R_0^2} e^{j2\pi(f_0(t - \tau_0) + 0.5K(t - \tau_0)^2)},
= \frac{\sigma}{R_0^2} e^{j2\pi(f_0t - f_0\tau_0 + 0.5Kt^2 - K\tau_0t + 0.5K\tau_0^2)},
= \frac{\sigma}{R_0^2} e^{j2\pi(f_0t + 0.5Kt^2 - f_0\tau_0 - K\tau_0t + 0.5K\tau_0^2)},
= \frac{\sigma}{R_0^2} \underbrace{e^{j2\pi(f_0t + 0.5Kt^2 - f_0\tau_0 - K\tau_0t + 0.5K\tau_0^2)}}_{m(t)},$$
(A.9)

where σ is known as the "reflectivity" of the scatterer (how reflective the point target is) and the $1/R_0^2$ term is the round-trip path loss or amplitude decay (the intuition here is that farther targets give weaker reflections). Note that the received signal $\hat{s}(t)$ contains a factor which is the transmitted signal m(t).

The next step in the signal chain is known as "dechirping" and removes this factor of m(t) by multiplying the conjugate of the received signal by the transmitted signal. After dechirping, the signal is known as the IF signal or beat signal. The beat signal can be expressed as

$$s(t) = m(t)\hat{s}^{*}(t),$$

$$= e^{j2\pi(f_{0}t + 0.5Kt^{2})} \frac{\sigma}{R_{0}^{2}} e^{-j2\pi(f_{0}t + 0.5Kt^{2})} e^{j2\pi(f_{0}\tau_{0} + K\tau_{0}t - 0.5K\tau_{0}^{2})},$$

$$= \frac{\sigma}{R_{0}^{2}} e^{j2\pi(f_{0}t + 0.5Kt^{2}) - j2\pi(f_{0}t + 0.5Kt^{2})} e^{j2\pi(f_{0}\tau_{0} + K\tau_{0}t - 0.5K\tau_{0}^{2})},$$

$$= \frac{\sigma}{R_{0}^{2}} e^{j2\pi(f_{0}\tau_{0} + K\tau_{0}t - 0.5K\tau_{0}^{2})}.$$
(A.10)

In radar literature, it is common practice to express the beat signal as a function of k rather than t, where k(t) is the instantaneous wavenumber corresponding to the instantaneous frequency f(t) given by

$$k(t) \triangleq \frac{2\pi}{c} f(t).$$
 (A.11)

Substituting (A.1) into (A.11) yields

$$k(t) = \frac{2\pi}{c}(f_0 + Kt), \quad 0 \le t \le T.$$
 (A.12)

Hence, let us express s(t) as a function of k by rewriting (A.10) in terms of (A.12). Note that for short distances τ_0^2 is negligible and the last term in (A.10) can be ignored. Substituting (A.8) into (A.10) and recalling the definitions in (A.1) and (A.11) yields

$$s(t) = \frac{\sigma}{R_0^2} e^{j2\pi(f_0\tau_0 + K\tau_0 t)},$$

$$= \frac{\sigma}{R_0^2} e^{j2\pi\tau_0(f_0 + Kt)},$$

$$= \frac{\sigma}{R_0^2} e^{j2\pi\frac{2R_0}{c}(f_0 + Kt)},$$

$$= \frac{\sigma}{R_0^2} e^{j2\pi\frac{2R_0}{c}f(t)},$$

$$= \frac{\sigma}{R_0^2} e^{j2\pi\frac{2R_0}{c}f(t)},$$

$$= \frac{\sigma}{R_0^2} e^{j2R_0\frac{2\pi}{c}f(t)},$$

$$s(k) = \frac{\sigma}{R_0^2} e^{j2R_0k}, \quad 0 \le t \le T.$$
(A.13)

More commonly, the beat signal is expressed as

$$s(k) = \frac{\sigma}{R_0^2} e^{j2kR_0} \tag{A.14}$$

We have derived a compact representation of the FMCW beat signal, s(k). It is clear from (A.14) that the frequency of the beat signal corresponds directly with the radial distance, known as the "range", R_0 . For this single point scatter case, the radar beat signal s(k) is a single tone sinusoid whose frequency corresponds with R_0 . Hence, the Fourier transform of s(k) would have a single peak at a position corresponding to the range R_0 .

This section detailed the derivation of the radar beat signal. However, now that the beat signal has been derived, it can be applied simply by the definition of s(k) in (A.14) without needing to go through all steps every time.

A.1.3 Multiple Targets

Suppose N point scatterers are in the radar FOV such that the n-th point scatterer is located at (x_n, y_n, z_n) and has reflectivity σ_n . In this case, the transmit signal is the same, but the received signal is now a sum (by superposition) of the received signals from each of the point scatterers. As a result, the radar beat signal can be written as

$$s(k) = \sum_{n=1}^{N} \frac{\sigma_n}{R_n^2} e^{j2kR_n}, \quad 0 \le t \le T,$$
(A.15)

which is clearly a sum of sinusoidal signals whose frequencies depend on the distances R_n . Hence, the Fourier transform of (A.15) would result in multiple peaks such that the location of the n-th peak corresponds with the distance R_n .

Alternatively, if we model the target as a continuous set of point targets, rather than a discrete set as in (A.15), where the target is located in a volume V inside (x, y, z) space, we express the reflectivity as a continuous function p(x, y, z) and the summation expressed in (A.15) becomes an integral as

$$s(k) = \iiint_V \frac{p(x, y, z)}{R^2} e^{j2kR} dx dy dz, \tag{A.16}$$

where

$$R = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2},$$
(A.17)

recall the position of the antenna is (x', y', z').

A.2 Range Resolution and Maximum Resolvable Range

Knowing the target range information is present in the frequency of the beat signal (A.14), we examine the minimum resolvable distance between two targets in the scene and the maximum resolvable range.

The simplest method of identifying the frequency content of a given signal is the Fourier transform. According to Fourier transform theory, frequency components can be resolved if separated by at least the reciprocal of the observation time (T) as

$$\Delta f > \frac{1}{T},\tag{A.18}$$

where Δf is the change in frequency of the beat signal

Considering a monostatic radar with two targets separated by a distance ΔR , the difference in frequency between the two beat signals, Δf , is expressed as

$$\Delta f = \frac{2K\Delta R}{c}.\tag{A.19}$$

Combining (A.18) with (A.19) yields

$$\frac{2K\Delta R}{c} > \frac{1}{T} \Rightarrow \Delta R > \frac{c}{2KT},\tag{A.20}$$

$$\Delta R > \frac{c}{2B}.\tag{A.21}$$

This minimum resolvable distance is commonly known as the radar range resolution for ultra-wide-band (UWB) systems. For an automotive radar with a several GHz of bandwidth, the range resolution will be on the order of centimeters. For example, a common 4 GHz chirp yields a range resolution of 3.75 cm.

Similar analysis can be performed to compute the maximum resolvable range of a given set of chirp parameters. The maximum range R_{max} yields an IF frequency of $f_{max} = 2KR_{max}/c$. Assuming a complex baseband IF signal, the maximum frequency is limited by the ADC sampling rate f_S as

$$f_S > \frac{2KR_{max}}{c}. (A.22)$$

The expression above can be rearranged yielding the maximum range as a function of the chirp slope, the sampling frequency, and the speed of light as

$$R_{max} < \frac{f_S c}{2K}. (A.23)$$

APPENDIX B

SPATIAL FOURIER TRANSFORM AND RELATIONS

Neglecting amplitude terms, the 1-D, 2-D and 3-D spatial Fourier transforms can be defined as [2]

$$FT_{1D}^{(u)}[s(u)] = S(k_u) = \int s(u)e^{-jk_u u}du,$$
 (B.1)

$$FT_{2D}^{(u,v)}[s(u,v)] = S(k_u, k_v) = \iint s(u,v)e^{-j(k_u u + k_v v)} du dv,$$
 (B.2)

$$FT_{3D}^{(u,v,w)}[s(u,v,w)] = S(k_u,k_v,k_w) = \iiint s(u,v,w)e^{-j(k_uu+k_vv+k_ww)}dudvdw.$$
 (B.3)

Similarly, the 1-D, 2-D and 3-D inverse spatial Fourier transforms can be expressed as

$$IFT_{1D}^{(k_u)}[S(k_u)] = s(u) = \int S(k_u)e^{jk_u u} du,$$
(B.4)

$$IFT_{2D}^{(k_u,k_v)}[S(k_u,k_v)] = s(u,v) = \iint S(k_u,k_v)e^{j(k_uu+k_vv)}dudv,$$
 (B.5)

$$IFT_{3D}^{(k_u, k_v, k_w)}[S(k_u, k_v, k_w)] = s(u, v, w) = \iiint S(k_u, k_v, k_w) e^{j(k_u u + k_v v + k_w w)} du dv dw.$$
 (B.6)

A shift in the spatial domain results in a corresponding phase shift in the spatial spectral domain. The example given here is in the 3-D spatial domain but holds true for the 2-D and 1-D cases also:

$$FT_{3D}^{(u,v,w)}\left[s(u-u_0,v-v_0,w-w_0)\right] = e^{-j(k_u u_0 + k_v v_0 + k_w w_0)}S(k_u,k_v,k_w).$$
(B.7)

Similarly, a shift in the spatial spectral domain results in a phase shift in the spatial domain:

$$IFT_{3D}^{(k_u,k_v,k_w)}\left[S(k_u - k_0^u, k_v - k_0^v, k_w - k_0^w)\right] = e^{j(k_u u_0 + k_v v_0 + k_w w_0)}s(u, v, w).$$
(B.8)

These spatial Fourier transform definitions and relations are useful in deriving the reconstruction algorithms discussed in the subsequent appendices.

APPENDIX C

METHOD OF STATIONARY PHASE

In this chapter, we discuss the important topic of the Method of Stationary Phase (MSP) required for many of the subsequent imaging algorithms detailed in following chapters. A highly recommended exercise to the reader is to follow the example derivation in Section C.3.1 closely and derive the helpful approximations given in (C.22)–(C.27) showing every step. Additionally, a careful review of the spatial Fourier relationships in Appendix B is recommended.

As discussed in [3, 4, 5], the general form of the n-dimensional Method of Stationary Phase (MSP) can be expressed as the following. A rigorous mathematical perspective is offered in [5], whereas our discussion does not comprehensively address the underlying assumptions and constraints. Rather, this section is meant to serve as a resource to researchers and engineers to apply the results of the MSP approximation to near-field spherical wave decomposition problems.

Given an oscillatory integral with a wide phase variation of the form

$$I(\mathbf{x}) = \int g(\mathbf{x})e^{jf(\mathbf{x})}d\mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^n,$$
 (C.1)

where $f(\mathbf{x})$ is assumed to be twice-continuously differentiable, the major contribution to the quantity $I(\mathbf{x})$ is from the stationary points, \mathbf{x}_0 , which are calculated by

$$\nabla f(\mathbf{x})|_{\mathbf{x}=\mathbf{x}_0} = 0 \tag{C.2}$$

Thus, the integral can be approximated by

$$I(\mathbf{x}) \approx \frac{g(\mathbf{x}_0)}{\sqrt{\det \mathbf{A}}} e^{jf(\mathbf{x}_0)},$$
 (C.3)

where \mathbf{x}_0 is the set of stationary points and \mathbf{A} is the Hessian matrix of $f(\mathbf{x})$ evaluated at \mathbf{x}_0 and defined as

$$\mathbf{A} = \left. \left(\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} \right) \right|_{\mathbf{x} = \mathbf{x}_0}.$$
 (C.4)

For the derivations required in this article, we can limit n to 1 or 2 dimensions.

C.11-D Method of Stationary Phase

The 1-D MSP can be written as the following. The following integral with the same assumptions as the MSP,

$$I(u) = \int g(u)e^{jf(u)}du,$$
 (C.5)

can be approximated as

$$I(u) \approx \frac{g(u_0)}{\sqrt{f''(u_0)}} e^{jf(u_0)},$$
 (C.6)

where u_0 is the stationary point calculated by

$$\left. \frac{\partial f(u)}{\partial u} \right|_{u=u_0} = 0,\tag{C.7}$$

and $f''(u_0)$ is the second derivative of f(u) evaluated at the stationary point u_0 .

2-D Method of Stationary Phase

Similarly, for the 2-D case, the integral,

$$I(u,v) = \iint g(u,v)e^{jf(u,v)}dudv,$$
(C.8)

can be approximated by

$$I(u,v) \approx \frac{g(u_0, v_0)}{\sqrt{f_{uu}f_{vv} - f_{uv}^2}} e^{jf(u_0, v_0)},$$
 (C.9)

where the stationary points u_0 , v_0 are calculated by

$$\left. \frac{\partial f(u,v)}{\partial u} \right|_{(u=u_0,v=v_0)} = 0, \tag{C.10}$$

$$\frac{\partial f(u,v)}{\partial u}\Big|_{(u=u_0,v=v_0)} = 0,$$

$$\frac{\partial f(u,v)}{\partial v}\Big|_{(u=u_0,v=v_0)} = 0,$$
(C.10)

and f_{uu} , f_{vv} , f_{uv} are the second partial derivatives of f(u,v) evaluated at the stationary points.

C.3Useful MSP Identities

Using the aforementioned method for the 1-D and 2-D cases, the MSP is applied to several integrals and the corresponding approximations are provided for reference in this section.

We will demonstrate the steps for the approximation below which have been applied to the other spherical wavefronts to yield the relations in (C.22)–(C.27).

C.3.1 Example MSP Derivation

We consider the linear array case with a monostatic single antenna array being scanned along the x-axis at the positions labeled x'. Further, we consider a 1-D target at some line z_0 in the x-z plane, where the x and x' coordinate systems are coincident. Thus, the radar beat signal can be modeled, neglecting path loss, as

$$s(x',k) = \int p(x)e^{j2kR}dx,$$
 (C.12)

where R is the radial distance from each of the antenna locations (x', 0) to the target locations (x, z) and is expressed as

$$R = \sqrt{(x - x')^2 + z_0^2}.$$
 (C.13)

It is desired to approximate the spherical wavefront term in (C.12), e^{j2kR} , as a more tractable expression. Thus, the MSP is exploited. For generality, the following substitutions are made u = x', r = 2k, $w = z_0$. The 1-D spatial Fourier transform (B.1) is performed over the u dimension of the spherical wave term and the spatial translation property (B.7) is applied as

$$FT_{1D}^{(u)} \left[e^{jr\sqrt{(x-u)^2 + w^2}} \right] = e^{-jk_u x} \int e^{jr\sqrt{u^2 + w^2} - jk_u u} du.$$
 (C.14)

The MSP will be applied to the Fourier integral in (C.14), implying for this example

$$g(u) = 1, (C.15)$$

$$f(u) = r\sqrt{u^2 + w^2} - k_u u. (C.16)$$

Using (C.7), the stationary point u_0 can be computed as

$$\frac{\partial f(u)}{\partial u}\Big|_{u=u_0} = \frac{ru_0}{\sqrt{u_0^2 + w^2}} - k_u = 0,$$
(C.17)

$$u_0 = \frac{k_u w}{\sqrt{r^2 - k_u^2}},\tag{C.18}$$

$$f(u_0) = w\sqrt{r^2 - k_u^2} (C.19)$$

Finally, u_0 can be substituted into (C.6) ignoring the factor of $1/f''(u_0)$ as

$$\int e^{jr\sqrt{u^2+w^2}-jk_u u} du \approx e^{jw\sqrt{r^2-k_u^2}}.$$
 (C.20)

Substituting (C.20) into (C.14) yields

$$FT_{1D}^{(u)} \left[e^{jr\sqrt{(x-u)^2 + w^2}} \right] = e^{-jk_u x + jw\sqrt{r^2 - k_u^2}}.$$
 (C.21)

Taking the 1-D inverse spatial Fourier transform of (C.21) results in (C.22), labeled Approximation 1 below. This example illustrates the key steps of the spherical wave decomposition using the method of stationary phase. Similar analysis has been employed on the other examples below yielding the corresponding approximations using the MSP.

C.3.2 Useful MSP Approximations

Approximation 1:

$$e^{jr\sqrt{(x-u)^2+w^2}} \approx \int e^{jk_u(u-x)+jk_w w} dk_u, \tag{C.22}$$

where

$$k_w^2 = r^2 - k_u^2. (C.23)$$

Approximation 2:

$$\frac{e^{jr\sqrt{(x-u)^2+(y-v)^2+w^2}}}{\sqrt{(x-u)^2+(y-v)^2+w^2}} \approx \iint \frac{1}{k_w} e^{jk_u(u-x)+jk_v(v-y)+jk_ww} dk_u dk_v, \tag{C.24}$$

where

$$k_w^2 = r^2 - k_u^2 - k_v^2. (C.25)$$

Approximation 3:

$$e^{jr\sqrt{(x-u)^2+(z-w)^2}} \approx \iint e^{jk_u(u-x)+jk_w(w-z)} dk_u dk_w.$$
 (C.26)

Approximation 4:

$$e^{jr\sqrt{(x-u)^2+(y-v)^2+(z-w)^2}} \approx \iiint e^{jk_u(u-x)+jk_v(v-y)+jk_w(w-z)} dk_u dk_v dk_w.$$
 (C.27)

APPENDIX D

EFFICIENT NEAR-FIELD SAR IMAGE RECONSTRUCTION ALGORITHMS FOR VARIOUS GEOMETRIES

In this chapter, we detail the efficient image reconstruction algorithms for several synthetic aperture radar (SAR) scanning geometries. The algorithms in this section have been derived elsewhere and are included for the benefit of the reader.

D.1 1-D Linear Synthetic Array 1-D Imaging - Fourier-based

In this section, we derive the image reconstruction algorithm for recovering a 1-D reflectivity function from a 1-D linear SAR scenario in the near-field [6, 7, 8, 9, 10]. Given a 1-D linear SISO synthetic array whose elements are located at the points (y', Z_0) in the y-z plane and a 1-D target with reflectivity function p(y) located at the points (y, z_0) , the isotropic beat signal can be written as

$$s(y',k) = \int \frac{p(y)}{R^2} e^{j2kR} dy, \tag{D.1}$$

where

$$R = \sqrt{(y - y')^2 + (z_0 - Z_0)^2}.$$
 (D.2)

Ignoring amplitude terms, applying the MSP derived in (C.22), the spherical phase term in (D.1) can be substituted yielding

$$s(y',k) = \iint p(y)e^{j(k'_y(y'-y)+k_z(z_0-Z_0))}dydk'_y,$$
(D.3)

where

$$k_z = \sqrt{4k^2 - k_y^2}. (D.4)$$

Rearranging the phase terms in (D.3), a forward spatial Fourier transform on y and inverse spatial Fourier transform on y' become evident as

$$s(y',k) = \int \left[\int p(y)e^{-jk'_y y} dy \right] e^{j(k'_y y' + k_z(z_0 - Z_0))} dk'_y.$$
 (D.5)

The term inside the brackets can be rewritten as the spatial-spectral representation of the target reflectivity function, $P(k_y)$. Then, performing a forward Fourier transform along y' on both sides simplifies the expression as the following. Note that the distinction between

the primed and unprimed domains can be dropped in the spatial Fourier domain as they coincide.

$$s(y',k) = \int [P(k_y)e^{jk_z(z_0 - Z_0)}] e^{jk'_y y'} dk'_y,$$
 (D.6)

$$S(k_y, k) = P(k_y)e^{jk_z(z_0 - Z_0)},$$
 (D.7)

$$P(k_y) = S(k_y, k)e^{-jk_z(z_0 - Z_0)}.$$
(D.8)

For wideband waveforms, (D.8) is evaluated at multiple wavenumbers thus coherent summation is performed over k. Hence, the complete expression for the Fourier-based 1-D image reconstruction algorithm for a 1-D linear SISO synthetic array is

$$p(y) = \int IFT_{1D}^{(k_y)} \left[FT_{1D}^{(y')} [s(y', k)] e^{-jk_z(z_0 - Z_0)} \right] dk.$$
 (D.9)

D.2 1-D Linear Synthetic Array 2-D Imaging - Range Migration Algorithm

In this section we derive the image reconstruction algorithm for recovering a 2-D reflectivity function from a 1-D linear SAR scenario in the near-field [6, 7, 8, 9, 10]. Given a 1-D linear SISO synthetic array whose elements are located at the points (y', Z_0) in the y-z plane and a 2-D target with reflectivity function p(y, z) located at the points (y, z), the isotropic beat signal can be written as

$$s(y',k) = \iint \frac{p(y,z)}{R^2} e^{j2kR} dy dz, \tag{D.10}$$

where

$$R = \sqrt{(y - y')^2 + (z - Z_0)^2}.$$
 (D.11)

Ignoring amplitude terms, applying the MSP derived in (C.22), the spherical phase term in (D.10) can be substituted yielding

$$s(y',k) = \iiint p(y,z)e^{j(k'_y(y'-y)+k_z(z-Z_0))}dydzdk'_y,$$
 (D.12)

where

$$k_z = \sqrt{4k^2 - k_y^2}.$$
 (D.13)

Leveraging conjugate symmetry of the spherical wavefront, (D.12) can be rewritten in the following form to exploit the spatial Fourier transform on z

$$s^*(y',k) = \iiint p(y,z)e^{j(k'_y(y'-y)-k_z(z-Z_0))}dydzdk'_y,$$
 (D.14)

where $(\cdot)^*$ is the complex conjugate operation.

Rearranging the phase terms in (D.14), a forward spatial Fourier transform on y-z and inverse spatial Fourier transform on y' become evident as

$$s^*(y',k) = \int \left[\iint p(y,z)e^{-j(k'_y y + k_z z)} dy dz \right] e^{j(k'_y y' + k_z Z_0)} dk'_y.$$
 (D.15)

The term inside the brackets can be rewritten as the spatial-spectral representation of the target reflectivity function, $P(k_y, k_z)$. Then, performing a forward Fourier transform along y' on both sides simplifies the expression as the following. Note that the distinction between the primed and unprimed domains can be dropped in the spatial Fourier domain as they coincide.

$$s^*(y',k) = \int \left[P(k_y, k_z) e^{jk_z Z_0} \right] e^{jk_y' y'} dk_y', \tag{D.16}$$

$$\tilde{S}(k_y, k) = \text{FT}_{1D}^{(y')}[s^*(y', k)],$$
 (D.17)

$$\tilde{S}(k_y, k) = P(k_y, k_z)e^{jk_z Z_0},$$
(D.18)

$$P(k_y, k_z) = \tilde{S}(k_y, k)e^{-jk_z Z_0}.$$
 (D.19)

The direct relationship between $P(k_y, k_z)$ and $\tilde{S}(k_y, k)$ is now obvious in (D.19); however, $P(k_y, k_z)$ is sampled on a uniform k_y - k_z grid and $\tilde{S}(k_y, k)$ is sampled on a uniform k_y -k grid. Before the reflectivity function can be recovered using in inverse Fourier transform, $\tilde{S}(k_y, k)e^{-jk_zZ_0}$ must be interpolated to a uniform k_y - k_z grid using Stolt interpolation, represented by the $S[\cdot]$ operator, to account for the curvature of the wavefront [11].

$$S(k_y, k_z) = \mathcal{S}\left[\tilde{S}(k_y, k)e^{-jk_z Z_0}\right]. \tag{D.20}$$

Finally, the complete expression for the Fourier-based 2-D image reconstruction algorithm for a 1-D linear SISO synthetic array can be written as

$$p(y,z) = \text{IFT}_{2D}^{(k_y,k_z)} \left[\mathcal{S} \left[\text{FT}_{1D}^{(y')} [s^*(y',k)] e^{-jk_z Z_0} \right] \right].$$
 (D.21)

D.3 2-D Rectilinear Array 2-D Imaging - Fourier-based

In this section, we derive the image reconstruction algorithm for recovering a 2-D reflectivity function from a 2-D rectilinear SAR scenario in the near-field [12, 13]. Given a 2-D rectilinear SISO synthetic array whose elements are located at the points (x', y', Z_0) in x-y-z space and

a 2-D target with reflectivity function p(x, y) located at the points (x, y, z_0) , the isotropic beat signal can be written as

$$s(x', y', k) = \iint \frac{p(x, y)}{R^2} e^{j2kR} dx dy,$$
 (D.22)

where

$$R = \sqrt{(x - x')^2 + (y - y')^2 + (z_0 - Z_0)^2}.$$
 (D.23)

Assuming the points of the target scene are closely located, the R^{-2} factor in (D.22) can be approximated as R^{-1} [2]. Applying the MSP derived in (C.24), the spherical phase term in (D.22) can be substituted yielding

$$s(x', y', k) = \iiint \frac{p(x, y)}{k_z} e^{j(k_x'(x'-x) + k_y'(y'-y))} e^{jk_z(z_0 - Z_0)} dx dy dk_x' dk_y',$$
(D.24)

where

$$k_z = \sqrt{4k^2 - k_x^2 - k_y^2}. (D.25)$$

Rearranging the phase terms in (D.24), a forward spatial Fourier transform on x-y and inverse spatial Fourier transform on x'-y' become evident as

$$s(x'y',k) = \iint \left[\iint \frac{p(x,y)}{k_z} e^{-j(k'_x x + k'_y y)} dx dy \right] e^{j(k'_x x' + k'_y y') + jk_z(z_0 - Z_0)} dk'_x dk'_y.$$
(D.26)

The term inside the brackets can be rewritten as the spatial-spectral representation of the target reflectivity function. Then, performing a forward Fourier transform along x'-y' on both sides simplifies the expression as the following. Note that the distinction between the primed and unprimed domains can be dropped in the spatial Fourier domain as they coincide.

$$s(x', y', k) = \int \left[\frac{P(k_x, k_y)}{k_z} e^{jk_z(z_0 - Z_0)} \right] e^{j(k_x' x' + k_y' y')} dk_x' dk_y', \tag{D.27}$$

writing

$$S(k_x, k_y, k) = \frac{P(k_x, k_y)}{k_z} e^{jk_z(z_0 - Z_0)},$$
 (D.28)

$$P(k_x, k_y) = S(k_y, k)k_z e^{-jk_z(z_0 - Z_0)}.$$
 (D.29)

For wideband waveforms, (D.29) is evaluated at multiple wavenumbers thus coherent summation is performed over k. Hence, the complete expression for the Fourier-based 2-D image reconstruction algorithm for a 2-D rectilinear SISO synthetic array is

$$p(x,y) = \int IFT_{2D}^{(k_x,k_y)} \left[FT_{2D}^{(x',y')}[s(x',y',k)]k_z e^{-jk_z(z_0-Z_0)} \right] dk.$$
 (D.30)

D.4 2-D Rectilinear Array 3-D Imaging - Range Migration Algorithm

In this section we derive the image reconstruction algorithm for recovering a 3-D reflectivity function from a 2-D rectilinear SAR scenario in the near-field [11, 14, 15, 16, 17, 18, 19, 20, 21, 2, 1, 22, 23, 24, 25, 26]. Given a 2-D rectilinear SISO synthetic array whose elements are located at the points (x', y', Z_0) in x-y-z space and a 3-D target with reflectivity function p(x, y, z) located at the points (x, y, z), the isotropic beat signal can be written as

$$s(x', y', k) = \iiint \frac{p(x, y, z)}{R^2} e^{j2kR} dx dy dz,$$
 (D.31)

where

$$R = \sqrt{(x - x')^2 + (y - y')^2 + (z - Z_0)^2}.$$
 (D.32)

Assuming the points of the target scene are closely located, the R^{-2} factor in (D.31) can be approximated as R^{-1} [2]. Applying the MSP derived in (C.24), the spherical phase term in (D.31) can be substituted yielding

$$s(x', y', k) = \iiint \left[\iiint \frac{p(x, y, z)}{k_z} e^{j(k'_x(x'-x) + k'_y(y'-y))} e^{jk_z(z-Z_0)} dx dy dz \right] dk'_x dk'_y,$$
 (D.33)

where

$$k_z = \sqrt{4k^2 - k_x^2 - k_y^2}. (D.34)$$

Leveraging conjugate symmetry of the spherical wavefront, (D.33) can be rewritten in the following form to exploit the spatial Fourier transform on z

$$s^{*}(x', y', k) = \iiint \left[\iiint \frac{p(x, y, z)}{k_{z}} e^{j(k'_{x}(x'-x) + k'_{y}(y'-y))} e^{-jk_{z}(z-Z_{0})} dx dy dz \right] dk'_{x} dk'_{y}, \quad (D.35)$$

where $(\cdot)^*$ is the complex conjugate operation.

Rearranging the phase terms in (D.35), a forward spatial Fourier transform on x,y,z and inverse spatial Fourier transform on x',y' become evident as

$$s^{*}(x', y', k) = \iiint \left[\iiint \frac{p(x, y, z)}{k_{z}} e^{-(jk'_{x}x + jk'_{y}y + jk_{z}z)} dx dy dz \right] e^{j(k'_{x}x' + k'_{y}y') + jk_{z}Z_{0}} dk'_{x} dk'_{y}.$$
(D.36)

The term inside the brackets can be rewritten as the spatial-spectral representation of the target reflectivity function. Then, performing a forward Fourier transform along x', y' on

both sides simplifies the expression as the following. Note that the distinction between the primed and unprimed domains can be dropped in the spatial Fourier domain as they coincide.

$$s^*(x', y', k) = \int \left[P(k_x, k_y, k_z) e^{jk_z Z_0} \right] e^{j(k_x' x' + k_y' y')} dk_x' dk_y', \tag{D.37}$$

writing

$$\tilde{S}(k_x, k_y, k) = FT_{2D}^{(x', y')}[s^*(x', y', k)],$$
(D.38)

$$\tilde{S}(k_x, k_y, k) = \frac{P(k_x, k_y, k_z)}{k_z} e^{jk_z Z_0},$$
(D.39)

$$P(k_x, k_y, k_z) = \tilde{S}(k_x, k_y, k) k_z e^{-jk_z Z_0}.$$
 (D.40)

The direct relationship between $P(k_x, k_y, k_z)$ and $\tilde{S}(k_x, k_y, k)$ is now obvious in (D.40); however, $P(k_x, k_y, k_z)$ is sampled on a uniform k_x - k_y - k_z grid and $\tilde{S}(k_x, k_y, k)$ is sampled on a uniform k_x - k_y -k grid. Before the reflectivity function can be recovered using an inverse Fourier transform, $\tilde{S}(k_x, k_y, k)e^{-jk_zZ_0}$ must be interpolated to a uniform k_x, k_y - k_z grid using the Stolt interpolation, represented by the $S[\cdot]$ operator, to account for the curvature of the wavefront [11].

$$S(k_x, k_y, k_z) = \mathcal{S}\left[\tilde{S}(k_x, k_y, k)k_z e^{-jk_z Z_0}\right]. \tag{D.41}$$

Finally, the complete expression for the Fourier-based 3-D image reconstruction algorithm for a 2-D rectilinear SISO synthetic array can be written as

$$p(x, y, z) = \text{IFT}_{3D}^{(k_x, k_y, k_z)} \left[\mathcal{S} \left[\text{FT}_{2D}^{(x', y')} [s^*(x', y', k)] k_z e^{-jk_z Z_0} \right] \right].$$
 (D.42)

D.5 1-D Circular Synthetic Array 2-D Imaging - Polar Formatting Algorithm

In this section, we derive the image reconstruction algorithm for recovering a 2-D reflectivity function from a 1-D circular SAR scenario in the near-field [27, 28, 29]. Given a 1-D circular SISO synthetic array whose elements are located at the points $(R_0 \cos \theta, R_0 \sin \theta)$ in the x-z plane at y = 0, where R_0 and θ are the constant radial distance from the antenna elements to the origin and the angular dimension, respectively, and a 2-D target with reflectivity function p(x, z) located at the points (x, z), the isotropic beat signal can be written as

$$s(\theta, k) = \iint \frac{p(x, z)}{R^2} e^{j2kR} dx dz, \tag{D.43}$$

where

$$R = \sqrt{(x - R_0 \cos \theta)^2 + (z - R_0 \sin \theta)^2}.$$
 (D.44)

The MSP derived in (C.26) can be applied to the spherical phase term in (D.43) after the following substitutions

$$x' = R_0 \cos \theta, \tag{D.45}$$

$$z' = R_0 \cos \theta, \tag{D.46}$$

$$k_x' = k_r \cos \alpha, \tag{D.47}$$

$$k_z' = k_r \cos \alpha, \tag{D.48}$$

$$k_r^2 = k_x'^2 + k_z'^2, (D.49)$$

yielding

$$e^{j2kR} \approx \iint e^{j(k'_x(x'-x)+k'_z(z'-z))} dk'_x dk'_z.$$
 (D.50)

Neglecting path loss, (D.43) and (D.50) can be combined as

$$s(\theta, k) = \iiint p(x, z)e^{j(k'_x(x'-x) + k'_z(z'-z))} dx dz dk'_x dk'_z.$$
 (D.51)

Rearranging the phase terms in (D.51), a forward spatial Fourier transform on x-z and inverse spatial Fourier transform on x'-z' become evident as

$$s(\theta, k) = \iint \left[\iint p(x, z) e^{-j(k'_x x + k'_z z)} dx dz \right] e^{j(k'_x x' + k'_z z')} dk'_x dk'_z. \tag{D.52}$$

The term inside the brackets can be rewritten as the spatial spectral representation of the target reflectivity function, $P(k_x, k_z)$. Then using the relations (D.45)-(D.49), the expression in (D.52) can be rewritten as

$$s(\theta, k) = \iint P(k_x, k_z) e^{j(k_r \cos \theta R_0 \cos \alpha + k_r \sin \theta R_0 \sin \alpha)} k_r dk_r d\alpha.$$
 (D.53)

Rewriting the spectral $P(k_x, k_z)$ as its equivalent spectral polar form $P(\alpha, k_r)$ and simplifying the phase term

$$s(\theta, k) = \int \left[\int P(\alpha, k_r) e^{jk_r R_0 \cos(\theta - \alpha)} d\alpha \right] k_r dk_r.$$
 (D.54)

The term inside the brackets in (D.54) is a convolution operation in the θ domain, where the θ and α domains are coincident and can be exploited using Fourier relations by taking a Fourier transform across θ on both sides of the equation as

$$S(k_{\theta}, k) = \int P(k_{\theta}, k_r) \operatorname{FT}_{1D}^{(\theta)} \left[e^{jk_r R_0 \cos \theta} \right] k_r dk_r.$$
 (D.55)

Considering only the values lying on the Ewald sphere, $k_r^2 = 4k^2$ imposes a δ -function behavior of the integrand in (D.55) with respect to k_r [30]. As such, (D.55) can be simplified as such, substituting $k_r = 2k$,

$$P(k_{\theta}, k_r) = S(k_{\theta}, k)G^*(k_{\theta}, k), \tag{D.56}$$

where

$$G(k_{\theta}, k) = \mathrm{FT}_{1D}^{(\theta)} \left[e^{j2kR_0 \cos \theta} \right]. \tag{D.57}$$

The spatial spectral reflectivity function in polar coordinates can be recovered from (D.56) as

$$P(\theta, k_r) = \text{IFT}_{1D}^{(k_{\theta})} [S(k_{\theta}, k)G^*(k_{\theta}, k)].$$
 (D.58)

Finally, the reflectivity function p(x, z) can be recovered using a nonuniform FFT (NUFFT) [31] or via interpolation to the rectangular spatial Fourier domain k_x - k_z followed by a uniform IFFT. This interpolation operation, known as the polar formatting algorithm (PFA), is denoted by $\mathcal{P}[\cdot]$. Thus, the final step in the image recovery process is (prime notation will be ignored for the remainder of this derivation as the primed and unprimed coordinate systems are coincident)

$$p(x,z) = \operatorname{IFT}_{2D}^{(k_x,k_z)} \left[\mathcal{P}[P(\theta,k_r)] \right]. \tag{D.59}$$

Finally, the complete expression for the Fourier-based 2-D image reconstruction algorithm for a 1-D circular SISO synthetic array can be written as

$$p(x,z) = \operatorname{IFT}_{2D}^{(k_x,k_z)} \left[\mathcal{P} \left[\operatorname{IFT}_{1D}^{(k_\theta)} \left[S(k_\theta, k) \operatorname{FT}_{1D}^{(\theta)} \left[e^{j2kR_0 \cos \theta} \right]^* \right] \right] \right].$$
 (D.60)

D.6 2-D Cylindrical Synthetic Array 3-D Imaging - Polar Formatting Algorithm

In this section, we derive the image reconstruction algorithm for recovering a 3-D reflectivity function from a 2-D cylindrical SAR (also known as ECSAR) scenario in the near-field [30, 32, 33, 34, 35, 36]. Given a 2-D cylindrical SISO synthetic array whose elements are located

at the points $(R_0 \cos \theta, y', R_0 \sin \theta)$ in x-y-z space, where R_0 and θ are the constant radial distance from the antenna elements to the origin and the angular dimension, respectively, and a 3-D target with reflectivity function p(x, y, z) located at the points (x, y, z), the isotropic beat signal can be written as

$$s(\theta, y', k) = \iiint \frac{p(x, y, z)}{R^2} e^{j2kR} dx dy dz,$$
 (D.61)

where

$$R = \sqrt{(x - R_0 \cos \theta)^2 + (y - y')^2 + (z - R_0 \sin \theta)^2}.$$
 (D.62)

The MSP derived in (C.27) can be applied to the spherical phase term in (D.61) after the following substitutions

$$x' = R_0 \cos \theta, \tag{D.63}$$

$$z' = R_0 \cos \theta, \tag{D.64}$$

$$k_x' = k_r \cos \alpha, \tag{D.65}$$

$$k_z' = k_r \cos \alpha, \tag{D.66}$$

$$k_r^2 = k_x'^2 + k_z'^2 = 4k^2 - k_y'^2,$$
 (D.67)

yielding

$$e^{j2kR} \approx \iint e^{j(k'_x(x'-x)+k'_y(y'-y)+k'_z(z'-z))} dk'_x dk'_y dk'_z.$$
 (D.68)

Neglecting path loss, (D.61) and (D.68) can be combined as

$$s(\theta, y', k) = \iiint \left[\iiint p(x, y, z) e^{j(k'_x(x'-x) + k'_y(y'-y) + k'_z(z'-z))} dx dy dz \right] dk'_x dk'_y dk'_z.$$
 (D.69)

Rearranging the phase terms in (D.69), a forward spatial Fourier transform on x-y-z and inverse spatial Fourier transform on x'-y'-z' become evident as

$$s(\theta, y', k) = \iiint \left[\iiint p(x, y, z) e^{-j(k'_x x + k'_y y + k'_z z)} dx dy dz \right] e^{j(k'_x x' + k'_y y' + k'_z z')} dk'_x dk'_y dk'_z.$$
(D.70)

The term inside the brackets can be rewritten as the spatial spectral representation of the target reflectivity function, $P(k_x, k_y, k_z)$. Then using the relations (D.63)-(D.67), the expression in (D.70) can be rewritten as

$$s(\theta, y', k) = \iiint P(k_x, k_y, k_z) e^{j(k_r \cos \theta R_0 \cos \alpha} e^{j(k_r \sin \theta R_0 \sin \alpha) + k_y' y')} k_r dk_y' dk_r d\alpha.$$
 (D.71)

Taking a Fourier transform on both side with respect to y', rewriting the spectral $P(k_x, k_y, k_z)$ as its equivalent spectral polar form $P(\alpha, k_y, k_r)$, and simplifying the phase term yields (prime notation will be dropped for the remainder of this derivation as the primed and unprimed coordinate systems are coincident)

$$s(\theta, k_y, k) = \int \left[\int P(\alpha, k_y, k_r) e^{jk_r R_0 \cos(\theta - \alpha)} d\alpha \right] k_r dk_r.$$
 (D.72)

The term inside the brackets in (D.72) is a convolution operation in the θ domain, where the θ and α domains are coincident and can be exploited using Fourier relations by taking a Fourier transform across θ on both sides of the equation as

$$S(k_{\theta}, k_{y}, k) = \int P(k_{\theta}, k_{y}, k_{r}) \operatorname{FT}_{1D}^{(\theta)} \left[e^{jk_{r}R_{0}\cos\theta} \right] k_{r} dk_{r}.$$
 (D.73)

Considering only the values lying on the Ewald sphere, $k_r^2 = 4k^2 - k_y^2$ imposes a δ -function behavior of the integrand in (D.73) with respect to k_r [30]. As such, (D.73) can be simplified as such, substituting $k_r = \sqrt{4k^2 - k_y^2}$,

$$P(k_{\theta}, k_{y}, k_{r}) = S(k_{\theta}, k_{y}, k)G^{*}(k_{\theta}, k_{y}, k), \tag{D.74}$$

where

$$G(k_{\theta}, k_{y}, k) = \mathrm{FT}_{1D}^{(\theta)} \left[e^{j\sqrt{4k^{2} - k_{y}^{2}}R_{0}\cos\theta} \right]. \tag{D.75}$$

The spatial spectral reflectivity function in polar coordinates can be recovered from (D.74) as

$$P(\theta, k_y, k_r) = \text{IFT}_{1D}^{(k_{\theta})} \left[S(k_{\theta}, k_y, k) G^*(k_{\theta}, k_y, k) \right]. \tag{D.76}$$

Finally, the reflectivity function p(x, y, z) can be recovered using a nonuniform FFT (NUFFT) [31] or via interpolation to the rectangular spatial Fourier domain k_x - k_y - k_z followed by a uniform IFFT. This interpolation operation, known as the polar formatting algorithm (PFA), is denoted by $\mathcal{P}[\cdot]$. Thus, the final step in the image recovery process is

$$p(x, y, z) = IFT_{3D}^{(k_x, k_y, k_z)} \left[\mathcal{P}[P(\theta, k_y, k_r)] \right].$$
 (D.77)

Finally, the complete expression for the Fourier-based 3-D image reconstruction algorithm for a 2-D cylindrical SISO synthetic array can be written as

$$p(x, y, z) = \text{IFT}_{3D}^{(k_x, k_y, k_z)} \left[\mathcal{P} \left[\text{IFT}_{1D}^{(k_\theta)} \left[S(k_\theta, k_y, k) \text{FT}_{1D}^{(\theta)} \left[e^{j\sqrt{4k^2 - k_y^2} R_0 \cos \theta} \right]^* \right] \right] \right].$$
 (D.78)

REFERENCES

- [1] M. E. Yanik, D. Wang, and M. Torlak, "Development and demonstration of MIMO-SAR mmWave imaging testbeds," *IEEE Access*, vol. 8, pp. 126019–126038, Jul. 2020.
- [2] M. E. Yanik and M. Torlak, "Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data," *IEEE Access*, vol. 7, pp. 31801–31819, Mar. 2019.
- [3] C. Cook, Radar signals: an introduction to theory and application. Elsevier, 2012.
- [4] A. Papoulis, "Systems and transforms with applications in optics," McGraw-Hill Series in System Science, 1968.
- [5] J. McClure and R. Wong, "Multidimensional stationary phase approximation: boundary stationary point," J. Comput. Appl. Mathematics, vol. 30, no. 2, pp. 213–225, May 1990.
- [6] S. Paul, F. Schwartau, M. Krueckemeier, R. Caspary, C. Monka-Ewe, J. Schoebel, and W. Kowalsky, "A systematic comparison of near-field beamforming and Fourier-based backward-wave holographic imaging," *IEEE Open J. Antennas Propag.*, vol. 2, pp. 921– 931, Aug. 2021.
- [7] M. A. Maisto, R. Pierri, and R. Solimene, "Sensor arrangement in monostatic subsurface radar imaging," *IEEE Open J. Antennas Propag.*, vol. 2, pp. 3–13, Nov. 2020.
- [8] M. Soumekh, "Wide-bandwidth continuous-wave monostatic/bistatic synthetic aperture radar imaging," in *Proc. IEEE Int. Conf. Image Process. (ICIP98)*, Chicago, IL, USA, Oct. 1998, pp. 361–365.
- [9] —, Synthetic aperture radar signal processing. New York: Wiley, 1999, vol. 7.
- [10] J. W. Smith, O. Furxhi, and M. Torlak, "An FCNN-based super-resolution mmWave radar framework for contactless musical instrument interface," *IEEE Trans. Multimedia*, pp. 1–1, May 2021.
- [11] J. M. Lopez-Sanchez and J. Fortuny-Guasch, "3-D radar imaging using range migration techniques," *IEEE Trans. Antennas Propag.*, vol. 48, no. 5, pp. 728–737, May 2000.
- [12] Q. Guo, J. Liang, T. Chang, and H.-L. Cui, "Millimeter-wave imaging with accelerated super-resolution range migration algorithm," *IEEE Trans. Microw. Theory Techn.*, vol. 67, no. 11, pp. 4610–4621, Jul. 2019.
- [13] M. E. Yanik and M. Torlak, "Millimeter-wave near-field imaging with two-dimensional SAR data," in *Proc. SRC Techcon*, no. P093929, Austin, TX, USA, Sep. 2018.

- [14] X. Zhuge and A. G. Yarovoy, "A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection," *IEEE Trans. Geosci. Remote Sens.*, vol. 49, no. 1, pp. 509–518, Jul. 2010.
- [15] T. Savelyev, X. Zhuge, B. Yang, P. Aubry, A. Yarovoy, L. Ligthart, and B. Levitas, "Comparison of 10-18 GHz SAR and MIMO-based short-range imaging radars," *Int. J. Microw. Wireless Techn.*, vol. 2, no. 3–4, p. 369, Aug. 2010.
- [16] B. Fan, J. Gao, H. Li, Z. Jiang, and Y. He, "Near-field 3D SAR imaging using a scanning linear MIMO array with arbitrary topologies," *IEEE Access*, vol. 8, pp. 6782–6791, Dec. 2019.
- [17] N. Mohammadian, O. Furxhi, R. Short, and R. Driggers, "SAR millimeter wave imaging systems," in *Proc. SPIE*, vol. 10994, Baltimore, MD, USA, May 2019, p. 109940A.
- [18] X. Zhuge and A. G. Yarovoy, "Three-dimensional near-field MIMO array imaging using range migration techniques," *IEEE Trans. Image Process.*, vol. 21, no. 6, pp. 3026–3033, Feb. 2012.
- [19] R. Zhu, J. Zhou, G. Jiang, and Q. Fu, "Range migration algorithm for near-field MIMO-SAR imaging," *IEEE Geosci. Remote Sens. Lett.*, vol. 14, no. 12, pp. 2280–2284, Nov. 2017.
- [20] L. Qiao, Y. Wang, Z. Shen, Z. Zhao, and Z. Chen, "Compressive sensing for direct millimeter-wave holographic imaging," Appl. Opt., vol. 54, no. 11, pp. 3280–3289, Apr. 2015.
- [21] M. E. Yanik, D. Wang, and M. Torlak, "3-D MIMO-SAR imaging using multi-chip cascaded millimeter-wave sensors," in *Proc. IEEE Global Conf. Signal Inf. Process.* (GlobalSIP), Ottawa, ON, Canada, Nov. 2019, pp. 1–5.
- [22] J. W. Smith, S. Thiagarajan, R. Willis, Y. Makris, and M. Torlak, "Improved static hand gesture classification on deep convolutional neural networks using novel sterile training technique," *IEEE Access*, vol. 9, pp. 10893–10902, Jan. 2021.
- [23] D. M. Sheen, T. E. Hall, D. L. McMakin, A. M. Jones, and J. R. Tedeschi, "Three-dimensional radar imaging techniques and systems for near-field applications," in *Proc. SPIE*, vol. 9829, Baltimore, MD, USA, May 2016, p. 98290V.
- [24] D. Sheen, D. McMakin, and T. Hall, "Near-field three-dimensional radar imaging techniques and applications," *Appl. Opt.*, vol. 49, no. 19, pp. E83–E93, Jun. 2010.
- [25] D. M. Sheen, D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," *IEEE Trans. Microw. Theory Techn.*, vol. 49, no. 9, pp. 1581–1592, Sep. 2001.

- [26] D. M. Sheen, A. M. Jones, and T. E. Hall, "Simulation of active cylindrical and planar millimeter-wave imaging systems," in *Proc. SPIE*, vol. 10634, Orlando, FL, USA, May 2018, p. 1063408.
- [27] S. Demirci, H. Cetinkaya, M. Tekbas, E. Yigit, C. Ozdemir, and A. Vertiy, "Back-projection algorithm for ISAR imaging of near-field concealed objects," in *Proc. XXXth URSI Gen. Assem. Sci. Symp. (URSI GASS)*, Istanbul, Turkey, Aug. 2011, pp. 1–4.
- [28] G. Jia and W. Chang, "Modified back projection reconstruction for circular FMCW SAR," in *Proc. Inter. Radar Conf.*, Lille, France, Oct. 2014, pp. 1–5.
- [29] J. K. Gao, Y. L. Qin, B. Deng, H. Q. Wang, J. Li, and X. Li, "Terahertz wide-angle imaging and analysis on plane-wave criteria based on inverse synthetic aperture techniques," J. Infrared Millim. Terahertz Waves, vol. 37, no. 4, pp. 373–393, Jan. 2016.
- [30] R. K. Amineh, N. K. Nikolova, and M. Ravan, Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. John Wiley & Sons, 2019.
- [31] J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, "Efficient terahertz wide-angle NUFFT-based inverse synthetic aperture imaging considering spherical wavefront," *Sensors*, vol. 16, no. 12, p. 2120, Dec. 2016.
- [32] J. Fortuny-Guasch and J. M. Lopez-Sanchez, "Extension of the 3-D range migration algorithm to cylindrical and spherical scanning geometries," *IEEE Trans. Antennas Propag.*, vol. 49, no. 10, pp. 1434–1444, Oct. 2001.
- [33] J. Detlefsen, A. Dallinger, S. Huber, S. Schelkshorn, and F. H. F. und Schaltungen, "Effective reconstruction approaches to millimeter-wave imaging of humans," in *Proc. XXVIIIth URSI Gen. Assem. Sci. Symp. (URSI GASS)*, New Delhi, India, Oct. 2005, pp. 23–29.
- [34] J. Laviada, A. Arboleya-Arboleya, Y. Álvarez, B. González-Valdés, and F. Las-Heras, "Multiview three-dimensional reconstruction by millimetre-wave portable camera," *Sci. Rep.*, vol. 7, no. 1, pp. 6479–6479, Jul. 2017.
- [35] J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, "An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging," *IEEE Trans. Microw. Theory Techn.*, vol. 66, no. 11, pp. 5065–5074, Aug. 2018.
- [36] J. W. Smith, M. E. Yanik, and M. Torlak, "Near-field MIMO-ISAR millimeter-wave imaging," in *Proc. IEEE Radar Conf. (RadarConf)*, Florance, Italy, Sep. 2020, pp. 1–6.

BIOGRAPHICAL SKETCH

Josiah W. Smith received the BSEE degree (*summa cum laude*) in electrical engineering from The University of Texas at Dallas in 2019, where he is currently pursuing a PhD degree in electrical engineering specializing in communications engineering.

In 2019, he was an undergraduate research intern at the Texas Analog Center of Excellence (TxACE) working on radar reception for hand gesture recognition and high resolution near-field MIMO synthetic aperture radar imaging algorithms. During the summer of 2020, he developed real-time human-computer interaction algorithms for mmWave radar with imec-USA. In the summer of 2021, he developed advanced deep learning and data-driven algorithms for user experience enhancement at Apple in the Display Technologies group.

Mr. Smith was awarded the Texas Instruments Analog Excellence Graduate Fellowship in August 2019 and the Louis Beecherl, Jr. Graduate Research Fellowship in August 2021. In 2020, he was awarded first alternate for the student paper competition in the *IEEE Radar Conf. 2020*, ranking 6/143 and best poster award at the *2020 TxACE Symposium*. He is a student IEEE member. His current research interests include new regime radar imaging algorithm development, ultrawideband radar imaging algorithms, terahertz radar, radar perception, computer vision, machine learning, millimeter-wave sensing, and phased array signal processing.

CURRICULUM VITAE

Josiah W. Smith

Contact Information:

Department of Electrical and Computer Eng. The University of Texas at Dallas 800 W. Campbell Rd. Richardson, TX 75080-3021, U.S.A.

Educational History:

BSEE, Electrical Engineering, The University of Texas at Dallas, 2019

Employment History:

Research Assistant, The University of Texas at Dallas, August 2019 – May 2022 Machine Learning Intern, Apple - EE Display Team, March 2021 – August 2021 Computational Imaging Intern, imec-USA, March 2020 – August 2020 Undergraduate Researcher, Texas Analog Center of Excellence (TxACE), January 2019 – August 2019

Publications:

- [J1] **J. W. Smith**, S. Thiagarajan, R. Willis, Y. Makris and M. Torlak, "Improved Static Hand Gesture Classification on Deep Convolutional Neural Networks Using Novel Sterile Training Technique," *IEEE Access*, vol. 9, pp. 10893–10902, Jan. 2021.
- [J2] J. W. Smith, O. Furxhi, M. Torlak, "An FCNN-Based Super-Resolution mmWave Radar Framework for Contactless Musical Instrument Interface," *IEEE Trans. on Multimedia*, May 2021.
- [J3] **J. W. Smith** and M. Torlak, "Efficient 3-D Near-Field MIMO-SAR Imaging for Irregular Scanning Geometries," *IEEE Access*, vol. 10, pp. 10283–10294. Jan. 2022.
- [J4] **J. W. Smith** and M. Torlak, "Deep learning-based multiband signal fusion for 3-D SAR super-resolution," *IEEE Trans. Image Process.*, submitted for publication.
- [J5] **J. W. Smith** and M. Torlak, "Survey of emerging systems and algorithms for near-field THz SAR imaging," *IEEE Trans. THz Sci. Technol.*, to be submitted.
- [C1] **J. W. Smith**, M. E. Yanik and M. Torlak, "Near-Field MIMO-ISAR Millimeter-Wave Imaging," in *Proc. IEEE Radar Conf. (RadarConf)*, Florence, Italy, Sep. 2020, pp. 1–6.
- [C2] J. W. Smith, Y. Alimam, G. Vedula, and M. Torlak, "A vision transformer approach for efficient near-field SAR super-resolution under array perturbation," in *Proc. IEEE Tex. Symp. Wirel. Microw. Circuits Syst. (WMCS)*, Waco, TX, USA, Apr. 2022.

[C3] C. Vasieleiou, **J. W. Smith**, S. Thiagarajan, M. Nigh, Y. Makris, and M. Torlak, "Efficient CNN-based super resolution algorithms for mmWave mobile radar imaging," in *Proc. IEEE Int. Conf. Image Process. (ICIP)*, submitted for publication.

Professional Recognitions and Honors:

Louis Beecherl, Jr. Graduate Research Fellowship, Aug. 2021

Best Poster Award, TxACE Symposium, Oct. 2020

First Alternate Student Paper (Ranked 6/143), IEEE Radar Conference 2020, Sep. 2020

Texas Instruments Analog Excellence Graduate Fellowship, Aug. 2019

First Place Senior Capstone Project, UTDesign II Expo, May 2019

First Place Senior Capstone Project, UTDesign I Expo, Dec. 2018

Greater Texas Foundation Removing Educational Barriers Endowed Scholarship, Aug. 2017 Academic Excellence Full-Ride Scholarship, The University of Texas at Dallas, Aug. 2016

Professional Memberships:

Institute of Electrical and Electronics Engineers (IEEE), 2016 – present