Instructions for preparing the solution script:

- Write your name, ID#, and Section number clearly in the very front page.
- Write all answers sequentially.
- Start answering a question (not the part of the question) from the top of a new page.
- Write legibly and in orderly fashion maintaining all mathematical norms and rules. Prepare a single solution file.
- Start working right away. There is no late submission form. If you miss the deadline, you need to use the make-up assignment to cover up the marks.
- A. Consider the following function, $f(x) = \frac{2x(x^2+x)-8(x+1)}{2}$. Based on these, answer the following questions:
 - 1. (1 mark) Find the possible roots of f(x) within the error bound (machine epsilon) of 1×10^{-2} using $x_0 = -10$.
 - 2. (4 marks) State the exact roots of f(x) and construct two different fixed point functions g(x) such that f(x) = 0.
 - 3. (5 marks) Compute the convergence rate of each fixed point function g(x) obtained in the previous part, and state which is convergent or divergent.
- B. Read the following questions and answer accordingly:
 - 1. (2 marks) Consider the fixed point function, $g(x) = \frac{4x+2}{2\sqrt{x+1}}$. Show that to be super-linearly convergent, the root is $-\frac{3}{2}$.
 - 2. (4 marks) For $f(x) = x^3 2x + 2$, where $x_0 = 0$. Showing the first 2 iterations state that is it possible to find the actual root of f(x). If yes, then write the actual root and if no, then state the reason.
 - 3. (4 marks) For $f(x) = -1 + xe^x$, find the solution of f(x) = 0 up to 5 iterations using Newton's method starting with $x_0 = 1.5$. (use 4 significant figures)