Home assignment 4: quadratic lattices

Definition 4.1 A *lattice* is a finitely generated torsion-free \mathbb{Z} -module. *Quadratic form* on a lattice is a function $q: L \to \mathbb{Z}$, $q(\ell) = B(\ell, \ell)$ where B is a bilinear symmetric pairing $B: L \otimes_{\mathbb{Z}} L \longrightarrow \mathbb{Z}$. *Quadratic lattice* is a lattice equipped with a quadratic form. A quadratic form is *indefinite* if it takes positive and negative values, and *unimodular* if B is non-degenerate and defines an isomorphism $L \overset{\sim}{\to} L^*$.

Exercise 4.1 Let (L, q) be a quadratic lattice, $L_{\mathbb{Q}} := L \otimes_{\mathbb{Z}} \mathbb{Q}$, and L^* the set of all $x \in L_{\mathbb{Q}}$ such that $q(x, L) \subset \mathbb{Z}$.

- a. Prove that L* is a lattice of the same rank as L and L \subset L*.
- b. The *dscriminant group* of L is Disc L := L^*/L . Prove that L is unimodular if and only if Disc(L) = $\{0\}$.
- c. Let G be an abelian group. Construct a lattice (L, q) such that Disc(L) = G.

Solution.

a. Let $\{\alpha_i\}$ be a basis of L. Recall that the space of linear functionals on L is identified with L* via the map $x\mapsto q(x,\cdot)$. Then the functionals given by $\alpha_i^\vee(\alpha_j)=\delta_{ij}$ are a basis of L*.

Attempt to identify functionals with L*. We want to show that there is only one element $a_i^\vee \in L_\mathbb{Q}$ such that $q(a_i^\vee, a_j) = \delta_{ij}$. Then suppose \tilde{a}_i^\vee is another such element. Then $q(a_i^\vee - \tilde{a}_i^\vee, a_j) = 0$ so if q is nondegerate I'm done, but if q is not nondegenerate, how to prove $a_i^\vee = \tilde{a}_i^\vee$?

Remark In Dolgachev, the definition of L* is $Hom(L, \mathbb{Z})$. The discriminant is L*/img i where i denotes interior multiplication, that is, $i_x q = q(x, \cdot)$.

- b. Implication \implies is trivial. Implication \iff is also straightforward since $L^*/L = \{0\}$ means that every element of L^* is in L, so $L = L^*$.
- c. (*Idea.*) I think L is the free part of G. I want to show that there is an exact sequence $L \xrightarrow{i} Hom(L,\mathbb{Z}) \xrightarrow{\psi} L \oplus T = G \longrightarrow 0 \ \text{because this way I get that G is the cokernel of the interior multiplication i, which is the discriminant by definition.}$

Exercise 4.2 Let (L, q) be a quadratic lattice, and $L_1 \subset L$ a sublattice.

- a. Prove that $L_1^* \supset L^*$. Prove that any isometry $\alpha \in O(L)$ takes L_1 to another lattice $L^* \subset \alpha(L_1) \subset L$.
- b. Denote by $\delta(L_1)$ the image of L_1 in Disc(L). Prove that an isometry $\alpha \in O(L)$ which satisfies $\delta(L_1) = \delta(\alpha(L_1))$ preserves L_1 .

Solution.

a. (Perhaps there is a typo in the question because $L^* \subset L_1 \subset L$ would imply $L^* = L$.) However, the contention $L_1^* \supset L^*$ holds; it is immediate from definition: if $x^* \in L^*$ then $q(x^*, L) \subseteq \mathbb{Z} \implies q(x^*, L_1) \subset \mathbb{Z}$.

Since $a \in O(L)$, we know that $a(L_1) \subset L$.

To see $a(L_1)$ is lattice notice that a basis is $a(e_1), \ldots, a(e_n)$ where e_1, \ldots, e_n is a basis of L_1 . This is immediate from the definition of *orthogonal group* as found in Dolgachev, where isometries are taken to be (bijective) *homomorphisms* of the abelian groups. This means that for any $x \in L_1$

$$\alpha(x) = \alpha\left(\sum x^{\mathfrak{i}}e_{\mathfrak{i}}\right) = \sum x^{\mathfrak{i}}\alpha(x_{\mathfrak{i}})$$

b. We interpret δ as the map

$$L \xrightarrow{\delta} L^* \longrightarrow L^*/L = Disc(L)$$

But since $a(L_1) \subset L$, we always have that $\delta(L_1) = \delta(a(L_1))$ since both are the equivalence class of the identity in $L^*/L = Disc(L)$.

If instead we consider the projection onto Disc(L₁) we get

$$L_1 \stackrel{\delta_1}{\longleftrightarrow} L_1^* \stackrel{}{\longrightarrow} L_1^*/L_1 = Disc(L_1)$$

and in this case the condition $\delta_1(L_1) = \delta_1(\alpha(L_1))$ means that the equivalence class of $\alpha(L_1)$ in $Disc(L_1)$ is the identity class, meaning that $\alpha(\ell_1) \in L_1$ for every $\ell_1 \in L_1$. This is very tautological... maybe I didn't understand the question correctly...

Definition 4.2 Two subgroups $G_1, G_2 \subset GL(n, \mathbb{R})$ are called *commensurable* if $G_1 \cap G_2$ has finite index in G_1 and in G_2 .

Exercise 4.3 Let (L,q) be a quadratic lattice, and $L_1 \subset L$ a sublattice. Prove that $O(L_1,q) \cap O(L,q)$ has finite index in O(L,q).

Solution, first attempt. We are looking at the equivalence classes of $O(L_1)$ within O(L). $O(L_1)$ is the equivalence class of the identity. Two isometries $b,c \in O(L)$ are in the same equivalence class when $bc^{-1} \in O(L_1)$. I'd like to use the criterion of last exercise but I don't see how...

Solution, after lecture on lattices. Looks like the strategy is as follows:

Claim 1 Let $\Gamma_1 = SO(\Lambda_1)$ and $\Gamma_2 \subset \Gamma_1$ be its subgroup consisting of all maps preserving $\Lambda \supset \Lambda_1$. I think this means that $\Gamma_2 = SO(\Lambda_1) \cap SO(\Lambda) = \Gamma_1 \cap \Gamma$. Then Γ_2 is a group of all $\gamma \in SO(\Lambda_1)$ such that γ preserves the image of Λ in Disc (Λ_1) . The point is that the intersection of the SO groups is the elements that preserve Λ in the quotient.

Proof of claim. OK so what does it mean that an element $\gamma \in \Gamma_2$ preserves the image of Λ in $\mathrm{Disc}(\Lambda_1)$? It means that for every $x + \Lambda_1 \in \mathfrak{a}(\Lambda)$, where \mathfrak{a} is the projection onto $\mathrm{Disc}(\Lambda_1)$, $\gamma(\mathfrak{a}) + \Lambda_1 \in \mathfrak{a}(\Lambda)$. Notice that $\mathfrak{a}(\Lambda)$ is just the set of equivalence classes in $\mathrm{Disc}(\Lambda_1)$ that can be represented by an element in Λ .

Let $\gamma \in \Gamma_2$ and $x + \Lambda_1 \in \mathfrak{a}(\Lambda)$. Then there is a representant of $x + \Lambda_1$ with $x \in \Lambda$. Then $\gamma(x) \in \Lambda$, so $\gamma(x) + \Lambda_1 \in \mathfrak{a}(\Lambda)$.

Now suppose that $\gamma \in SO(\Lambda_1)$ preserves the image of Λ in $Disc(\Lambda_1)$. I can show that $\Lambda = a^{-1}(a(\Lambda))$: if $x \in a_1(a(\Lambda)) \setminus \Lambda$, then $a(x) = x + \Lambda_1 \in a(\Lambda)$, so we choose a representant $\ell \in \Lambda$ of a(x) and we see that $x - \ell \in \Lambda_1$, but this is impossible since $x \notin \Lambda$. But, why that γ preserves $a(\Lambda)$ means that it preserves $a^{-1}(a(\Lambda))$?

Question What is the relationship between all this and the dense space of planes that are orthogonal to any of the signature (x, x) = 4? How to get there? What are the hyperbolas, the zeroes of q? What is the action of the lattice on the hyperbolas?

Let me suppose I have the claim. Still, the proof of the exercise remains unclear. . \Box

Exercise 4.4 Let $nL := \bigcup_{x \in L} nx$. Prove that $nL_1 \subset L$ for any integer lattices L, L_1 and n sufficiently big. Prove that O(nL, q) = O(L, q).

Solution. It is not clear what $\bigcup_{x \in L} nx$ means. Perharps it is the set $\{nx : x \in L_1\}$, in which case it is immediate that $nL_1 \subset L$ if $L_1 \subset L$ as in the previous exercises. For arbitrary lattices L and L_1 , the statement $nL_1 \subset L$ might not make sense $(L = \mathbb{Z}, L_1 = \mathbb{Z} \oplus \mathbb{Z})$.