Definitions and Theorems

2-5: Basic properties of groups

Definitions

Def: * is a binary operation on a set G if $\forall x, y \in G$, $x * y \in G$

Def: Let G be a set, and let $*: G \times G \to G$ be a binary operation on G. Suppose

- 1. * is associative, i.e., $\forall x, y \in G$, (x * y) * z = x * (y * z)
- 2. * has an identity element, i.e., $\exists e \in G \text{ s.t. } \forall x \in G, \ x*e = e*x = x$
- 3. * has inverses, i.e., $\forall x \in G, \exists y \in G \text{ s.t. } x * y = y * x = e$

We then say that (G, *) is a group. If (G, *) is a group and * is commutative, we say G is an abelian group.

Theorems

Lemma: (division algorithm) Let $a, n \in \mathbb{Z}$ with $n \geq 1$. Then $\exists ! q, r \in \mathbb{Z}$ s.t.

- $1. \ a = qn + r$
- 2. $0 \le r \le n 1$

Prop: Let G be a group.

- 1. The identity element e is unique
- 2. $\forall x \in G$, the inverse x^{-1} is unique

Prop: Let G be a group. Then

- 1. $\forall x \in G, (x^{-1})^{-1} = x$
- 2. $\forall x, y \in G, (xy)^{-1} = y^{-1}x^{-1}$

Prop: Let G be a group.

- 1. If $x, y \in G$ s.t. xy = e, then $x = y^{-1}$ and $y = x^{-1}$
- 2. If $x, g \in G$ s.t. xg = x (or gx = x), then g = e

Prop: (cancellation laws) Let G be a group, and $x, y, z \in G$. Then

- 1. If xy = xz, then y = z
- 2. If yx = zx, then y = z

Corollary: Let G be a group with $g \in G$. Define $f_1, f_2 : G \to G$ by $f_1(x) = gx$, $f_2(x) = xg$. Then f_1 and f_2 are 1 to 1 and onto.

Corollary: (stated differently) Let G be a group, $g \in G$. Then $\forall y \in G$,

- 1. $\exists ! x_1 \in G \text{ s.t. } gx_1 = y$
- 2. $\exists ! x_2 \in G \text{ s.t. } x_2g = y$