Deep Learning-based Speech Enhancement

Paul Aimé, Antoine Bertrand

3A SICOM EEH

January 22, 2020

Plan

- 1 Jeu de données
- 2 Modèle
- 3 Apprentissage
- 4 Prédiction
- Évaluation / Résultats

Jeu de parole

- TIMIT Speech Corpus [Abdelaziz, 2017].
- 630 locuteurs des huit dialectes majeurs de l'anglais américain,
- Lecture de phrases phonétiquement riches de \sim 3 secondes.
- Ratio d'entraı̂nement (train val) = (87.8% 12.2%)

	Train Set	Validation Set	Test Set
Nombre	4056	564	1680
Pourcentage	64,4%	9,0%	$26,\!6\%$

Table 1: Répartition des enregistrements de parole dans les différents jeux de données.

Jeu de bruit

- Fichier .wav de 3min30
- Bruit d'ambiance de voix humaines
- Ratio d'entraı̂nement (train val) = (87.8% 12.2%)

	babble_train.wav	babble_val.wav	babble_test.wav
Tronçon	0:00 - 3:00	3:00 - 3:25	3:25 - 3:55
Durée	180s	25s	30s
Pourcentage	$76,\!6\%$	10,6%	12,8%

Table 2: Découpage du fichier de bruit.

Mixage

Figure 1: Schéma bloc de la fonction de mixage add_noise_snr(signal, noise, snr_dB)

STFT

fréquence: 8 kHz

 $\mathbf{nfft}: 256 (32 \text{ ms})$

overlap: 50%

centrage: oui

padding: réflection

Figure 2: Exemples de STFTs de signal d'origine et de signal bruité.

Plan

- Jeu de données
- 2 Modèle
- 3 Apprentissage
- 4 Prédiction
- 5 Évaluation / Résultats

Encodeur-Décodeur Convolutionnel

Figure 3: Architecture du réseau R-CED proposé dans [Park and Lee, 2017].

Paramètres d'architecture

Entrée : (H, W) = (129, 7)

Durée : $32 + 6 \times 16 = 128 \text{ ms}^1$

Nb paramètres : 32611

	Encoder			Latent	Decoder				Out	
Layer	1	2	3	4	5	6	7	8	9	10
(in, out)	(1, 12)	(12, 16)	(16, 20)	(20, 24)	(24, 32)	(32, 24)	(24, 20)	(20, 16)	(16, 12)	(12, 1)
kernel size	(13, W=7)	(11, 1)	(9, 1)	(7, 1)	(7, 1)	(7, 1)	(9, 1)	(11, 1)	(13, 1)	(H=129, 1)

Table 3: Paramètres de *feature maps* et de taille du noyau de convolution pour chaque couche du modèle.

¹[Park and Lee, 2017] utilise 88ms.

Construction du batch

Entrée : (H, W) = (129, 7)

Taille du batch: un fichier son

Saut entre les entrées : 1

Entrées par batch : N, le nombre de frame de la STFT du son

 $(3s \rightarrow 187)$

Sortie: $(N, H, 1) \longrightarrow (N, H)$

Plan

- Jeu de données
- 2 Modèle
- 3 Apprentissage
- 4 Prédiction
- 5 Évaluation / Résultats

Procédure

Figure 4: Schéma bloc de la procédure d'apprentissage.

Évaluation de l'apprentissage

Figure 5: Évolution des erreurs quadratiques moyennes (EQM) d'entraînement, pour des modèles entraînés sur des jeux de données à différents niveau de RSB. La première époque n'est pas représentée.

Évaluation de l'apprentissage

Librairie: PyTorch [Paszke et al., 2019].

Machine: GCP Compute Engine n1-highmem-8 Puissance: 8 vCPU et 1 GPU NVIDIA Tesla P4.

Durée d'une époque : $6 \min 15 + 15 \sec (50 \text{ époques} = 6 \text{ heures})$

Figure 5: Évolution des erreurs quadratiques moyennes (EQM) d'entraînement, pour des modèles entraînés sur des jeux de données à différents niveau de RSB. La première époque n'est pas représentée.

Plan

- Jeu de données
- 2 Modèle
- 3 Apprentissage
- 4 Prédiction
- 5 Évaluation / Résultats

Procédure

Figure 6: Schéma bloc de la procédure de débruitage.

Reconstruction du signal audio

RSB sans étape de normalisation: 140.33 dB

RSB avec étape de normalisation: 2.76 dB

Figure 7: Schéma bloc d'une procédure de reconstruction simple.

Plan

- Jeu de données
- 2 Modèle
- 3 Apprentissage
- 4 Prédiction
- **5** Évaluation / Résultats

Figure 8: STFT du signal d'origine non bruité

Figure 8: STFT du signal bruité

Figure 8: STFT débruitée prédite

Figure 8: Visualisation des spectrogrammes d'un signal avant, pendant, et après débruitage. (SNR d'entrée = 0dB)

Figure 9: Visualisation des différences entre les spectrogrammes du signal non bruité et le spectrogramme débruité prédit.

Évaluation du gain en RSB

Figure 10: Schéma bloc de la procédure d'évaluation.

Input SNR (clean vs noisy)	-20dB	-10dB	-5dB	0 dB
Mean SNR (clean vs pred)	1.859163	1.859163	1.859163	1.859163
STD SNR (clean vs pred)	0.734523	0.734523	0.734523	0.734523

Table 4: Statistiques calculées sur les valeurs de SNR des sons du jeu de test.

Évaluation subjective par écoute

Fin

References I

Abdelaziz, A. H. (2017).

Ntcd-timit: A new database and baseline for noise-robust audio-visual speech recognition. In *Proc. Interspeech 2017*, pages 3752–3756.

Park, S. R. and Lee, J. W. (2017).

A fully convolutional neural network for speech enhancement.

In Proc. Interspeech 2017, pages 1993-1997.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).

Pytorch: An imperative style, high-performance deep learning library.

In Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

Annexe 1: Spectrogrammes prédits pour différents RSB d'entrée

Figure 11: Spectrogrammes d'un même signal débruité, avec des niveaux de bruit différents

Annexe 2: Différentes architectures

Figure 12: Différentes architectures

