Examen de contrôle continu

Durée: 2h

Documents et calculatrices interdits

Exercice 1 (Questions de cours). 1. Soit $\langle \cdot, \cdot \rangle$ une forme bilinéaire sur un \mathbb{R} -espace vectoriel E. Quelles propriétés supplémentaires doit-elle satisfaire pour être un produit scalaire ? (On ne se contentera pas d'énoncer chacune des propriétés, on en donnera une définition mathématique précise).

2. Montrer que si f_1 et f_2 sont deux formes linéaires sur E, on a

$$\operatorname{Ker} f_1 = \operatorname{Ker} f_2 \Leftrightarrow \exists \alpha \neq 0, f_1 = \alpha f_2.$$

3. Enoncer et démontrer le théorème de Pythagore.

Exercice 2. Sur l'espace $E = \mathbb{R}_3[X]$, on considère les quatre formes linéaires $\varphi_1, \varphi_2, \varphi_3$ et φ_4 définies par

$$\varphi_1(P) = P(0), \quad \varphi_2(P) = P'(0), \quad \varphi_3(P) = P(1), \quad \varphi_4(P) = P'(1).$$

- 1. Montrer que la famille $\mathcal{B} = (\varphi_1, \varphi_2, \varphi_3, \varphi_4)$ forme une base de E^* .
- 2. Calculer la base préduale (P_1, P_2, P_3, P_4) de \mathcal{B} .
- 3. Exprimer la forme linéaire ψ définie par $\psi(P) = P(-1)$ comme combinaison linéaire de $(\varphi_1, \varphi_2, \varphi_3, \varphi_4)$.

Exercice 3. Sur l'espace $E = \mathbb{R}^3$, on se donne la forme quadratique

$$\Phi((x_1, x_2, x_3)) = 4x_1^2 + 4x_2^2 + x_3^2 - 12x_2x_3 - 4x_1x_3 + 2x_1x_2.$$

- 1. Donner la forme bilinéaire symétrique φ associée à Φ .
- 2. Faire une réduction de Gauss de Φ .
- 3. La forme bilinéaire φ définit-elle un produit scalaire ? Justifier votre réponse.

Exercice 4. Sur l'espace $E = \mathbb{R}_2[X]$, on considère la forme bilinéaire symétrique

$$\langle P, Q \rangle = \sum_{k=0}^{2} P(k)Q(k).$$

- 1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
- 2. Quelle est la norme $\|\cdot\|$ associée à ce produit scalaire ?
- 3. Enoncer l'inégalité de Cauchy-Schwarz pour $\langle \cdot, \cdot \rangle$ et donner le cas d'égalité.
- 4. Enoncer l'inégalité de Minkoswki pour || ⋅ || et donner le cas d'égalité.