

Virtual Local Area Networks (VLAN's)

Slides do CCNA Routing & Switching revistos e atualizados por Luísa Caeiro, Jorge Martins e Teles Rodrigues

ESTSetúbal (v1)

Marcação das *Frames* para Identificação de VLANs

VLANs Nativas e Tagging 802.1q

- As frames que pertencem à VLAN nativa não são marcadas.
- Se as frames recebidas não estiverem marcadas (untagged), mantêm-se untagged e são encaminhadas na VLAN nativa.
- Se não existirem portas associadas à VLAN nativa e não existirem outras ligações de trunk, as frames untagged são descartadas.
- Nos switches Cisco, a VLAN nativa por omissão é a VLAN 1.

Marcação na VLAN de Voz

- O tráfego VoIP é time-sensitive e tem os seguintes requisitos:
 - Largura de banda garantida para assegurar qualidade de voz.
 - Prioridade na transmissãoem relação a outro tipo de tráfego de rede.
 - Capacidade para se encaminhado por fora de áreas congestionadas da rede.
 - Atraso inferior a 150 ms na rede.
- A VLAN de voz permite que as portas de acesso transportem tráfego de voz sobre IP a partir de um telefone IP.
- O switch pode-se ligar a um telefone IP Cisco 7960 e transportar tráfego de voz sobre IP. O switch suporta qualidade de serviço (QoS)
- A qualidade do som de uma chamada de voz sobre IP pode deteriorar-se se os pacotes não forem enviados regularmente.

Marcação na VLAN de Voz

Marcação na VLAN de Voz

O switch S3 está configurado para transportar tráfego de voz na VLAN 150 e tráfego de dados na VLAN 20.

Envio:

O telefone marca o tráfego de voz na VLAN 150 e envia o tráfego de dados untagged. O switch marca o tráfego de dados na VLAN 20.

Receção:

F0/18

O telefone atua no tráfego de voz e remove o tag do tráfego de dados destinado ao PC.

P2

P3

Access

3-port

switch

VLAN IDs nos Switches Catalyst

- Os switches Cisco da série Catalyst 2960 and 3560 suportam até 4000 VLANs.
- As VLANs estão divididas em duas categorias:
 - VLANs na gama normal (VLAN 1 a 1005)
 - Configurações guardadas em flash:vlan.dat
 - VLAN Trunking Protocol (VTP) só aprende e guarda VLANs da gama normal
 - VLANs na gama estendida (VLAN 1006 a 4096)
 - Configurações guardadas no ficheiro running configuration
 - VTP n\u00e3o aprende VLANs da gama estendida

23

Criação de uma VLAN

Cisco Switch IOS Commands				
Enter global configuration mode.	S1# configure terminal			
Create a VLAN with a valid id number.	S1(config)# vlan vlan_id			
Specify a unique name to identify the VLAN.	S1(config)# name vlan_name			
Return to the privileged EXEC mode.	S1(config)# end			

Atibuição de Portas às VLANs

Cisco Switch IOS Commands				
Enter global configuration mode.	S1 # configure terminal			
Enter interface configuration mode for the SVI.	S1(config) # interface interface_id			
Configure the management interface IP address.	S1(config) # ip address 172.17.99.11			
Set the port to access mode.	S1(config-if) # switchport mode access			
Assign the port to a VLAN.	S1(config-if) # switchport access vlan vlan_id			
Return to the privileged EXEC mode.	S1(config-if) # end			

25

Atibuição de Portas às VLANs

Alteração da atribuição da Porta a uma VLAN

```
S1(config)# int fa0/18
S1(config-if) # no switchport access vlan
S1(config-if)# end
S1# show vlan brief
VLAN Name
                      Status Ports
1 default
                    active Fa0/1, Fa0/2, Fa0/3, Fa0/4
                               Fa0/5, Fa0/6, Fa0/7, Fa0/8
                               Fa0/9, Fa0/10, Fa0/11, Fa0/12
                               Fa0/13, Fa0/14, Fa0/15, Fa0/16
                               Fa0/17, Fa0/18, Fa0/19, Fa0/20
                               Fa0/21, Fa0/22, Fa0/23, Fa0/24
                               Gi0/1, Gi0/2
20
    student
                       active
1002 fddi-default
                       act/unsup
1003 token-ring-default act/unsup
1004 fddinet-default
                       act/unsup
1005 trnet-default
                       act/unsup
S1#
```


Alteração da atribuição da Porta a uma VLAN

```
S1# config t
S1(config) # int fa0/11
S1(config-if) # switchport mode access
S1(config-if) # switchport access vlan 20
S1(config-if)# end
S1#
S1# show vlan brief
VLAN Name
                         Status
                                     Ports
1 default
                         active
                                    Fa0/1, Fa0/2, Fa0/3, Fa0/4
                                     Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                     Fa0/9, Fa0/10, Fa0/12, Fa0/1
                                     Fa0/14, Fa0/15, Fa0/16, Fa0/
                                     Fa0/18, Fa0/19, Fa0/20, Fa0/
                                     Fa0/22, Fa0/23, Fa0/24, GiO/
                                     Gi 0/2
20
     student
                         active
                                     Fa0/11
                       act/unsup
1002 fddi-default
1003 token-ring-default act/unsup
1004 fddinet-default
                         act/unsup
1005 trnet-default
                         act/unsup
S1#
                             IIII
```


Apagar VLANs

```
S1# conf t
S1(config) # no vlan 20
S1(config)# end
S1#
S1# sh vlan brief
VLAN Name
                          Status Ports
                         active Fa0/1, Fa0/2, Fa0/3, Fa0/4
1 default
                                    Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                    Fa0/9, Fa0/10, Fa0/12, Fa0/13
                                    Fa0/14, Fa0/15, Fa0/16, Fa0/17
                                    Fa0/18, Fa0/19, Fa0/20, Fa0/21
                                    Fa0/22, Fa0/23, Fa0/24, Gi0/1
                                    Gi0/2
1002 fddi-default
                      act/unsup
1003 token-ring-default
                          act/unsup
1004 fddinet-default
                          act/unsup
1005 trnet-default
                          act/unsup
S1#
```


Verificação da Informação de VLAN

```
S1# show vlan name student
                        Status Ports
VLAN Name
                        active Fa0/11, Fa0/18
20 student
VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2
20 enet 100020 1500 - - -
Remote SPAN VLAN
Disabled
Primary Secondary Type Ports
S1# show vlan summary
Number of existing VLANs : 7
Number of existing VTP VLANs : 7
Number of existing extended VLANS : 0
S1#
```


Verificação da Informação de VLAN

```
S1# show interfaces vlan 20
Vlan20 is up, line protocol is down
 Hardware is EtherSVI, address is 001c.57ec.0641 (bia
001c.57ec.0641)
 MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input never, output never, output hand never
 Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output
drops: 0
 Queueing strategy: fifo
 Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     O packets input, O bytes, O no buffer
     Received 0 broadcasts (0 IP multicast)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     O packets output, O bytes, O underruns
     O output errors, O interface resets
     O output buffer failures, O output buffers swapped out
```


Configuração de Trunk IEEE 802.1q

Enter global configuration mode.	S1# configure terminal			
Enter interface configuration mode.	S1 (config) # interface interface_id			
Force the link to be a trunk link.	S1 (config-if) # switchport mode trunk			
Specify a native VLAN for untagged 802.1Q trunks.	S1 (config-if) # switchport trunk native vlan vlan id			
Specify the list of VLANs to be allowed on the trunk link.	S1 (config-if) # switchport trunk allowed vlar vlan-list			
Return to the privileged EXEC mode.	S1 (config-if) # end			

```
S1(config)# interface FastEthernet0/1
S1(config-if)# switchport mode trunk
S1(config-if)# switchport trunk native vlan 99
S1(config-if)# switchport trunk allowed vlan 10,20,30
S1(config-if)# end
```


Reinicialização do *Trunk* para Estado por Omissão

```
S1(config) # interface f0/1
S1(config-if) # no switchport trunk allowed vlan
S1(config-if) # no switchport trunk native vlan
S1(config-if)# end
S1# show interfaces f0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1g
Operational Trunking Encapsulation: dot1g
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
<output omitted>
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
<output omitted>
```


Reinicialização do *Trunk* para Estado por Omissão

Return Port to Access Mode

```
S1(config)# interface f0/1
S1 (config-if) # switchport mode access
S1(config-if)# end
S1# show interfaces f0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
<output omitted>
```

34

Verificação da Configuração de Trunk

```
S1(config)# interface f0/1
S1(config-if) # switchport mode trunk
S1(config-if) # switchport trunk native vlan 99
S1(config-if)# end
S1# show interfaces f0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1g
Operational Trunking Encapsulation: dot1g
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 99 (VLAN0099)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1g
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
<output omitted>
```

35

Introdução ao Dynamic Trunking Protocol

- Uma porta de trunk pode ser configurada para negociar e estabelecer um trunk com outra a que esteja ligada.
- O protocolo Dynamic Trunking Protocol (DTP) gere a negociação do trunk se a porta no switch vizinho estiver também configurada num modo trunk que suporte DTP.
- DTP é um protocolo proprietário da Cisco e está ativo por omissão nos switches Cisco Catalyst 2960 and 3560:

Modos de Interface Negociados

- O modo DTP por omissão é o dynamic auto.
- Os outros modos DTP suportados são: dynamic desirable trunk e nonegotiate.

	Dynamic Auto	Dynamic Desirable	Trunk	Access
Dynamic auto	Access	Trunk	Trunk	Access
Dynamic desirable	Trunk	Trunk	Trunk	Access
Trunk	Trunk	Trunk	Trunk	Limited connectivity
Access	Access	Access	Limited connectivity	Access

37

Modos de Interface Negociados

Endereçamento IP nas VLANs

- É prática comum associar uma VLAN com uma rede IP.
- Todos os dispositivos numa VLAN devem estar na mesma rede IP para comunicar entre si.

Resolução de Problemas com VLANs

Resolução de Problemas com Trunks

Problemas Comuns com Trunks

- Problemas com trunks estão normalmente associados a configurações incorretas.
- Os problemas mais comuns são:
 - VLAN nativa não corresponde nas duas extremidades.
 - Modo de Trunk n\u00e3o corresponde nas duas extremidades.
 - VLANs não permitidas no Trunk.

Modo de Trunk Incompatível

- Se uma porta numa ligação de trunk está configurda com um modo de trunk incompativel com a porta de trunk no switch vizinho, a formação do trunk entre os dois vizinhos falha.
- Use o comando *show interfaces trunk* para verificar o estado das portas de *trunk* nos switches.
- Para corrigir o problema, configure as interfaces com os modos de trunk adequados.

Lista de VLANs Incorreta

- As VLANs devem estar permitidas no trunk antes das suas frames poderem ser transmitidas.
- Use o comando show interfaces trunk para assegurar que as VLANs certas estão a ser permitidas no trunk.
- Use o comando switchport trunk allowed vlan para especificar que VLANs são permitidas na ligação de trunk.

Segurança nas VLANs

Ataques nas VLANs – Switch Spoofing

- Switch *Spoofing* é um tipo de *VLAN hopping attack uma vez que* o *attacker* passa a ter acesso a outras VLANs.
- É explorado fato da configuração por omissão das portas do switch ser *dynamic auto*:
 - Se o attacker configurar um host para atuar como switch em modo trunk, pode ganhar acesso a qualquer VLAN.
- Para impedir um ataque deste tipo, em que se cria a ilusão (spoofing) de um switch, devem desativar-se o trunking em todas as portas excepto as que são especificamente trunks.

Ataques nas VLANs – Switch Spoofing Attack

Ataques nas VLANs - Double-Tagging

- O Double-tagging attack explora a forma como o hardware desencapsula as tags 802.1q na maioria dos switches, aplicando apenas um nível de desencapsulamento:
 - A transferência da frame pode ser forçada para outra VLAN através da introdução de um 2º VLAN ID não autorizado.
- Se a frame for enviada na VLAN nativa e marcada com o seu VLAN ID, o switch remove o cabeçalho da VLAN nativa e não volta a marcar a frame, sendo o 2º tag o considerado.
- A melhor abordagem para mitigar este ataque é garantir que a VLAN nativa nas portas de trunk é diferente da VLAN de qualquer porta usada.

Virtual Local Area Networks (VLAN's)

Attacks on VLANs - Double-Tagging Attack

PVLAN Edge

 A funcionalidade Private VLAN (PVLAN) Edge, também conhecida como proteção de portas, assegura que não há trocas de tráfego unicast, broadcast, ou multicast entre portas protegidas no switch.

- Uma porta protegida só troca tráfego com portas não protegidas.
- Evita ataques diretos entre PCs.
- Só tem relevância local.

Orientações para Desenho de VLANs

- Retirar todas as portas da VLAN 1 e atribuí-las a uma VLAN que não esteja em uso.
- Desativar todas as portas não usadas.
- Separar o tráfego de gestão do tráfego de dados de utilizador.
- Alterar a VLAN de gestão para outra que não a VLAN 1.
- Alterar a VLAN de nativa para outra que não a VLAN 1
- Assegurar que só os dispositivos na VLAN de gestão podem-se ligar aos switches.

Orientações para Desenho de VLANs

- Permitir apenas ligações remotas ao switch por SSH.
- Desativar auto negociação nas portas de trunk.
- Não usar os modos de porta auto ou desirable.
- Utilizar VLANs separadas para tráfego de VoIP e de dados.