Exercice 1

Déterminer une primitive de la fonction f dans les cas suivants :

1)
$$f(x) = 3x^4 - 2x^2 + x - 1$$
. 2) $f(x) = \sin x \cos^3 x$.

3)
$$f(t) = \sin(\omega t + \varphi)$$
. 4) $f(x) = \sqrt{x} - \frac{2}{x^3}$. 5) $f(x) = \frac{4x+2}{x^2+x-2}$.

6)
$$f(x) = 2 + \frac{3}{x-1} - \frac{4}{(x+1)^2}$$
. 7) $f(x) = \frac{\ln x}{x}$. 8) $f(x) = e^{-3x+1}$.

9)
$$f(x) = \frac{1}{x^2} e^{\frac{1}{x}}$$
. 10) $f(x) = \frac{1}{x \ln x}$.

Exercice 2

- 1. Soit $f(x) = \frac{x}{(x^2+1)^2}$. Déterminer la primitive de f qui s'annule en
- 1.
- 2. Soit $g(x) = \frac{1}{\sqrt{4x+8}}$.
- a) Sur quel intervalle g admet-elle des primitives ?
- b) Déterminer la primitive de g qui prend la valeur 4 en 2.
- 3. Soit $h(x) = \frac{1}{x}$.
- a) Déterminer un intervalle I sur lequel h admet des primitives.
- b) Préciser dans ce cas l'ensemble des primitives de h sur I.

Exercice 3

Calculer les intégrales suivantes :

1)
$$\int_0^1 \frac{t}{\sqrt{1+t^2}} dt$$
. 2) $\int_2^1 3x e^{x^2-1} dx$. 3) $\int_0^{\frac{\pi}{2}} \cos x \sin^2 x dx$.

4)
$$\int_{\frac{\pi}{4}}^{0} \tan u \, du$$
. 5) $\int_{-1}^{2} |1 - x| \, dx$.

Exercice 4

1. Calculer à l'aide d'une (ou d'une double) intégration par parties les intégrales suivantes :

a)
$$\int_0^{\frac{\pi}{2}} x \cos x \, dx$$
. b) $\int_1^3 \frac{\ln x}{x^2} \, dx$.

c)
$$\int_0^1 x^2 e^{2x} dx$$
. d) $\int_0^{\pi} e^x \sin x dx$.

- 2. Déterminer les primitives de f dans les cas suivants :
- a) $f(x) = \ln x \text{ sur } [1; +\infty[$. b) $f(x) = (x+1)e^{-x} \text{ sur } \mathbb{R}$.

Exercice 5

Soit f la fonction définie par f(x) = cosx et C_f sa courbe dans un repère orthogonal d'unités 2 et 3 cm.

- 1. Calculer en cm^2 , l'aire du domaine D limité par C_f , l'axe des abscisses, les droites d'équation x=0 et $x=\frac{3\pi}{4}$.
- 2. Soit la fonction g définie par $g(x) = \frac{1}{f(x)}$.

Montrer que
$$\frac{\pi}{4} \le \int_0^{\frac{\pi}{4}} g(x) dx \le \frac{\pi\sqrt{2}}{4}$$
.

Exercice 6

Soit $(O, \vec{i}, \vec{j}, \vec{k})$ un repère de l'espace.

- 1. Déterminer le volume d'une boule de rayon R.
- 2. Soit la courbe (C) d'équation $y = \sqrt{x}$ où $1 \le x \le 4$.

Calculer le volume de la figure obtenue en faisant tourner (C) autour de l'axe des abscisses $(O, \vec{\iota})$.

- 1. Résoudre les équations différentielles suivantes :
- a) 2y'-3y = 0. b) $y' = \frac{-1}{3}y$. c) y'' + y' 6y = 0.
- 2. Résoudre les équations différentielles vérifiant les conditions posées :
- a) y' + 2y = 0; y(-1) = 2.
- b) y'' + 4y' + 4y = 0; y(0) = 1 et y'(0) = 1.
- c) y''- 2y'+ 5y = 0; $y(\pi) = 1$ et $y'(\pi) = 0$.

Exercice 8

- 1. Déterminer f la solution de l'équation différentielle y''-2y'+y=0, vérifiant f(0)=1 et f'(0)=3.
- 2. En déduire F une primitive de f.
- 3. Vérifier que la fonction F trouvée est une primitive de f.

Exercice 9

Soit l'équation différentielle (E) : y' + y = cosx

- 1. Déterminer les réels p et q tels que h(x) = pcosx + qsinx soit solution de (E).
- 2. Résoudre l'équation différentielle (E') : y' + y = 0.
- 3. Montrer que g est solution de (E) si et seulement si g-h est solution de (E').
- 4. En déduire les solutions de (E).
- 5. Déterminer f la solution de (E) dont la courbe passe par A(0;1).

6.3. EXERCICES D'ENTRAINEMENT