

피드백과 플립플롭

윤경담 스마트팜학과

전산하드웨어이론 2025년 5월 20일

17장: 피드백과 플립플롭

NOR 게이트

NOR	0	1
0	1	0
1	0	0

R-S 플립플롭 (Reset-Set Flip-Flop)

R-S 플립플롭 (Reset-Set Flip-Flop)

R-S 플립플롭 (Reset-Set Flip-Flop)

Reset/Set vs. Hold (보존)

입력		출력	
S	R	Q	\overline{Q}
1	0	1	0
0	1	0	1
0	0	Q	\overline{Q}
1	1	허용되	지 않음

입력		출력
데이터	데이터 값 보존	
0	1	0
1	1	1
0	0	Q
1	0	Q

Reset/Set vs. Hold (보존)

입력		출력	
S	R	Q	$\overline{\mathbf{Q}}$
1	0	1	0
0	1	0	1
0	0	Q	\overline{Q}
1	1	허용되	지 않음

입력		출력
데이터 값 보존		Q
0	1	0
1	1	1
X	0	Q

Hold: 예제

Level-triggered D-type Flip-Flop

Level-triggered D-type Latch

Level-triggered D-type Latch

입력		출력	
D	Clk	Q	Q-bar
0	1	0	1
1	1	1	0
X	0	Q	Q-bar

1-bit 메모리

Level-triggered D-type Latch: 예제

가산기: 누적 (accumulation)

여러 개의 래치를 이용해서 다수의 비트를 저장할 수 있도록 하는 것은 여러모로 유용하게 사용할 수 있습니다. 12장에서 본 덧셈기를 이용해서 세 개의 8비트 숫자를 서로 더하려고 한다고 가정해 봅시다. 기존에 해왔던 것 처럼 첫 번째 스위치들을 이용하여 첫 번째 숫자를 입력하고 두 번째 스위 치들을 이용해서 두 번째 숫자를 입력하면 되지만, 그 결과는 어딘가 적어 두어야만 합니다. 그 후에 좀 전의 결과를 스위치로 입력하고, 세 번째 숫자 를 또 다른 스위치를 이용하여 입력하면 됩니다. 하지만 중간 결과를 다시 입력할 필요가 없이 첫 번째 연산의 결과를 직접 이용하는 방법이 있을 것 같습니다.

8비트 래치 (8-bit Latch)

8비트 래치 (8-bit Latch)

8비트 가산기 (8-bit Adder)

8비트 가산기 + 래치

2:1 선택기 (2-Line-to-1-Line Selector)

	입력		출력
Select	A	В	Q
0	0	X	0
0	1	X	1
1	X	0	0
1	X	1	1

2:1 Multiplexer (MUX)

지우기 (clear)

지우기 (clear)

입력		출력	
D	Clk	Q	\overline{Q}
0	↑	0	1
1	\uparrow	1	0
X	0	Q	\overline{Q}

Edge-triggered D-type Flip-Flop

Edge-triggered D-type Flip-Flop: 예제

오실레이터

입력		출력	
D	Clk	Q	\overline{Q}
1	0	0	1

입력		출력	
D	Clk	Q	\overline{Q}
1	0	0	1
1	↑	1	0

ę	입력		력
D	Clk	Q	\bar{Q}
1	0	0	1
1	↑	1	0
0	1	1	0

입력		출력	
D	Clk	Q	\bar{Q}
1	0	0	1
1	↑	1	0
0	1	1	0
0	0	1	0

Ŷ	입력		력
D	Clk	Q	\overline{Q}
1	0	0	1
1	\uparrow	1	0
0	1	1	0
0	0	1	0
0	↑	0	1

Ŷ	입력		력
D	Clk	Q	\overline{Q}
1	0	0	1
1	\uparrow	1	0
0	1	1	0
0	0	1	0
0	\uparrow	0	1
1	1	0	1

타이밍 다이어그램 (timing diagram)

주파수 분주기 (frequency divider)

클럭 분주기 ×3

클럭 분주기 x3

클럭 분주기 x3

계수기 (counter)	이진수 0000	십진수 0
	0001	1
	0010	2
	0011	3
Clk 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0100	4
	0101	5
	0110	6
$Q_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0111	7
· · · · · · · · · · · · · · · · · · ·	1000	8
$Q_2 \ \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0$	1001	9
<u> </u>	1010	10
$Q_3 \ \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1$	1011	11
	1100	12
	1101	13
	1110	14
	1111	15
	2000-000/ P1500	

클럭 분주기 x8

리플 카운터 (ripple counter)

Ripple Counter: 예제

ACh = 172

오실레이터의 주파수

앞부분에서 오실레이터의 주파수를 알아낼 수 있는 방법을 알려드리겠다. 고 했습니다. 지금부터 알려드리도록 하지요. 만일 오실레이터가 8비트 카. 우터의 입력에 연결되어 있다면 카운터는 오실레이터에서 얼마나 많은 사이 클이 발생했는지 알려줄 수 있습니다. 또한 카운터가 1111111(십진수로 255) 에 도달하게 되면 그 값은 0000000으로 돌아가게 됩니다. 오실레이터의 주 파수를 알아내기 위하여 이 카운터를 이용할 때 가장 쉬운 방법은 8비트 카 우터의 출력을 전구와 연결하는 것입니다. 이제 출력이 0이 될 때(모든 전구가 꺼져 있는 경우입니다)까지 기다렸다가, 0이 되면 초시계를 켭니다. 이후에 모든 전구가 다시 꺼질 때 초시계를 끄면 됩니다. 이제 오실레이터에서 256사이클 을 발생시키는 데 걸리는 시간을 찾아냈습니다. 예를 들어, 10초가 걸렸다고 하면, 오실레이터의 주파수는 256÷10이 되어 25.6Hz가 됩니다.

Edge-triggered D-type Flip-Flop with Preset and Clear

Edge-triggered D-type Flip-Flop with Preset and Clear

Edge-triggered D-type Flip-Flop with Preset and Clear

입력			출	력	
Pre	Clr	D	Clk	Q	\overline{Q}
1	0	X	X	1	0
0	1	X	X	0	1
0	0	0	\uparrow	0	1
0	0	1	\uparrow	1	0
0	0	X	0	Q	$\overline{\mathbf{Q}}$

Edge-triggered D-type Flip-Flop with Preset and Clear: 예제

