Is it Fibonacci

Geek just learned about Fibonacci numbers.

The Fibonacci Sequence is the series of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ... where the next number is found by adding up the two numbers before it.

He defines a new series called Geeky numbers. Here the next number is the sum of the \mathbf{K} preceding numbers.

You are given an array of size K, GeekNum[], where the i^{th} element of the array represents the i^{th} Geeky number. Return its N^{th} term.

Note: This problem can be solved in $O(N^2)$ time complexity but the user has to solve this in O(N). The Constraints are less because there can be integer overflow in the terms.

Example 1:

```
Input:
N = 6, K = 1
GeekNum[] = {4}
Output:
4
Explanation:
Terms are 4, 4, 4, 4, 4, 4
```

Example 2:

```
Input:
N = 5, K = 3
GeekNum[] = {0, 1, 2}
Output:
6
Explanation:
```

Terms are 0, 1, 2, 3, 6.
So the 5th term is 6

Your Task:

You don't need to read input or print anything. Your task is to complete the function **solve()** which takes integer N, K, and an array GeekNum[] as input parameters and returns the Nth term of the Geeky series.

Expected Time Complexity: O(N) Expected Space Complexity: O(N)

Constraints:

 $1 \le K \le 30$

 $1 \le N \le 70$

 $K \leq N$

 $0 \le \text{GeekNum}[\] \le 100$