Hourly Energy Consumption

•••

Time Series Analysis

Why care?

Energy Demand vs. Energy Supply

Imbalance could lead to energy waste, inconvenience, nationwide blackouts

Energy efficiency

The Data

Collected by PJM - regional transmission organization

Timeframe : 2002 - 2018

Focused on the East coast

Data Preparation

presentation

We'll skip that for the purpose of this

Exploratory Data Analysis

Energy Consumption of PJME per

Forecasting

The data Test/Train

XGBoost

Facebook's Prophet

Takeaways

Both models do a decent job at forecasting

Models do not capture the "peaks"

Metrics:

Root Mean Squared Error:

$$ext{RMSD} = \sqrt{rac{\sum_{i=1}^{N} \left(x_i - \hat{x}_i
ight)^2}{N}}$$

RMSD = root-mean-square deviation

i = variable i

N = number of non-missing data points

 x_i = actual observations time series

 \hat{c}_i = estimated time series

Mean Absolute Percentage Error:

$$M = rac{1}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|$$

M = mean absolute percentage error

 $n \hspace{0.1in}$ = number of times the summation iteration happens

 A_t = actual value

 F_t = forecast value

How well are these models doing?

Prophet:

RMSE: 4195.90

MAPE: 9.86 %

XGBoost

RMSE: 3745.90

MAPE: 9.108%

XGBoost does slightly better

Improvements

Add lag variables

Add Holiday Indicators

Add weather source data

Log/other transformation to minimize the spikes

Weighted MAPE evaluation

VotingRegressor - combine both models