[4]

OR	111.	What is peak detector? Draw its circuit diagram and explain its	(
		working with input output wave forms.	

Q.6 Attempt any two:

- i. What is switching regulator? List major component of switching 5 regulator and explain there working.
- ii. Write short note on SMPS.
- iii. What is fixed and adjustable voltage regulator list the advantage of adjustable voltage regulator over fixed voltage regulator.

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

5

Faculty of Engineering

End Sem (Even) Examination May-2022 EC3CO17 Linear Integrated Circuit

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. Which of the following electrical characteristics is not exhibited by an ideal op-amp?
 - (a) Infinite voltage gain
- (b) Infinite bandwidth
- (c) Infinite output resistance (d) Infinite slew rate
- ii. Calculate the input offset current from the circuit shown below:

- (a) ± 1.55 mA (b) ± 1.55 mA (c) ± 1.55 mA (d) None of these
- iii. Define the input resistance with feedback for voltage series 1 feedback amplifier.
 - (a) $R_{IF} = R(1-AB)$
- (b) $R_{IF} = R(AB-1)$
- (c) $R_{IF} = R(1+AB)$
- (d) None of these
- iv. Find out the gain value by which each input of the averaging 1 amplifier is amplified? (Assume there are four inputs)
 - (a) 0.5
- (b) 0.25
- (c) 1
- (d) 2
- v. Match the gain of the filter with the frequencies in the low pass filter. 1

	Frequency	Gain of the filter		
A	$f < f_H$	A	$V_{\rm O}/V_{\rm in}\cong A_{\rm F}/\sqrt{2}$	
В	$f = f_H$	В	$V_O/V_{in} \le A_F$	
С	$f > f_H$	C	$V_0/Vin \cong AF$	

- (a) AA, BB, CC
- (b) AB, BC, CA
- (c) AC, BB, CA
- (d) AC, BA, CB

P.T.O.

- vi. Find the roll-off rate for 8th order Low pass filter-
 - (a) -160 dB/decade
- (b) -320 dB/decade
- (c) -480 dB/decade
- (d) -200 dB/decade
- vii. Determine the time period of a monostable 555 multivibrator.
 - (a) T = 0.33RC
- (b) T = 1.1RC

(c) T = 3RC

- (d) T = RC
- viii. Calculate the hysteresis voltage for the schmitt trigger from the given specification: $R_2 = 56 \text{ k}\Omega$, $R_1 = 100 \Omega$, $V_{\text{ref}} = 0V \& V_{\text{sat}} = \pm 14V$.

(a) 0 mV

(b) 25 mV

(c) 50 mV

- (d) -25 mV
- ix. The 7812 regulator IC provides-
 - (a) 5 V
- (b) -5 V
- (c) 12 V
- (d) -12 V
- x. Which is not considered as a linear voltage regulator?
 - (a) Fixed output voltage regulator
 - (b) Adjustable output voltage regulator
 - (c) Switching regulator
 - (d) Special regulator
- Q.2 i. What is Op-Amp?

1

1

1

1

- ii. Design an inverting amplifier with gain of -5 and an input resistance $\,$ 3 of 10 k $\!\Omega.$
- iii. Define following electrical parameters of Op-Amp: Input offset 5 voltage, CMRR, Output Voltage Swing, slew rate and SVRR.
- OR iv. List and explain the function of all the basic building block of an 5 Op-Amp.
- Q.3 i. What is feedback? List two types of feedback. Which type is used in linear application?

- ii. Draw circuit diagram of an integrator, explain its working, drive the expression of output and draw the output waveform for square wave input.
- iii. What is instrumentation amplifier? Draw its circuit diagram and 5 drive the expression of output also write its applications.
- OR iv. Draw and explain the circuit diagram of phase shift oscillator and 5 design it for output frequency of 200 Hz.
- Q.4 i. Define Filter. How are filter classified?
 - ii. What are the advantages of active filters over passive filters?
 - iii. Design a first order low pass butterworth filter so that it has a cut off frequency of 1.6 kHz and a pass band gain of 2.
- OR iv. Consider the following filter circuit and calculate the low cut-off 5 frequency value

- Q.5 i. Draw and explain the functional diagram of a 555 timer.
 - ii. Identify the circuit given below, explain its working and determine 6 the output waveform for the given sinusoidal input.

P.T.O.

Marking Scheme

EC3CO17 Linear Integrated Circuit

.Q.1	i.	Which of the following electrical characteristics is no an ideal op-amp?	t exhibited by	1
		(c) Infinite output resistance		
	ii.	Calculate the input offset current from the circuit show	m halow:	1
	111•	Calculate the input offset current from the circuit show	ii ociow.	1
		(a) +1.55mA		
	iii.	Define the input resistance with feedback for v	voltage series	1
		feedback amplifier.		
		(c) $R_{IF} = R(1+AB)$		
	iv.	Find out the gain value by which each input of	the averaging	1
		amplifier is amplified? (Assume there are four inputs)	2 2	
		(b) 0.25		
	v.	Match the gain of the filter with the frequencies in the	low pass filter	1
	. •	(d) AC, BA, CB	10 W P 4000 1114-011	_
	vi.	Find the roll-off rate for 8 th order Low pass filter-		1
	, 20	(a) -160 dB/decade		-
	vii.	Determine the time period of a monostable 555 multiv	ibrator.	1
		(b) $T = 1.1RC$		
	viii.	Calculate the hysteresis voltage for the schmitt trig	gger from the	1
	, 1110	given specification: $R_2 = 56 \text{ k}\Omega$, $R_1 = 100 \Omega$, $V_{ref} = 0V \&$		-
		(c) 50 mV	c v sat —1 i v .	
	ix.	The 7812 regulator IC provides-		1
	14.	(c) 12 V		1
	v	Which is not considered as a linear voltage regulator?		1
	Χ.			1
		(c) Switching regulator		
Q.2	i.	Definition	2 Marks	2
Q.2		Circuit Diagram	1 Marks	3
	11.	Calculation of feedback and input resistance	2 Marks	3
	iii.	Each definition	2 Mark*5)	5
ΩD			,	5 5
OR	iv.	Block diagram	2 Marks	3
		Explanation of blocks	3 Marks	
Q.3	i.	Definition	1 Marks	2
	1.		0.5 Mark	2
		List type of feedback		
		Which is used for linear application	0.5 Mark	•
	ii.	Circuit diagram	0.5 Mark	3

		Working	0.5 Mark	
		Output expression	1 Mark	
		Output Waveform	1 Mark	
	iii.	Definition	1 Mark	5
		Circuit diagram	1 Mark	
		Expression	2 Mark	
		Application	1 Mark	
OR	iv.	Circuit diagram	1 Mark	5
		Explanation	2 Marks	
		Design	2 Marks	
		2 00.6	2 1/1 // 1115	
Q.4	i.	Definition	1 Mark	2
		Classification	1 Mark	
	ii.	Each with explanation	1 Mark*3	3
	iii.	Circuit diagram	1 Mark	5
		Parameter for Cut off Frequency	2 Marks	
		Parameter for Gain	2 Marks	
OR	iv.	Cutt off Frequency Calculation	(As per	5
		explanation)		
Q.5	i.	PIN Diagram	2 Marks	4
		Explanation	2 Marks	
	ii.	Identification of Circuit	1 Mark	6
		Working	3 Mark	
		Out Put Wave form	2 Mark	
OR	iii.	Definition	1 Mark	6
		Circuit Diagram	2 Marks	
		Working	2 Marks	
		Output Wave Form	1 Mark	
Q.6		Attempt any two:		
	i.	Definition	1 Mark	5
		List of major component	2 Marks	
		Working	2 Marks	
	ii.	Diagram	2 Marks	5
		Explanation	3 Marks	
	iii.	Definition	3 Marks	5
		Advantage	2 Marks	
