CS204: 數位系統設計

Boolean Algebra and Logic Gates

Outline

- 2.1 Introduction
- 2.2 Basic Definitions
- 2.3 Axiomatic Definition of Boolean Algebra
- 2.4 Basic Theorems and Properties of Boolean Algebra
- 2.5 Boolean Functions
- 2.6 Canonical and Standard Forms
- 2.7 Other Logic Operations
- 2.8 Digital Logic Gates
- 2.9 Integrated Circuits

2.1 Introduction (p.54)

- A set is collection of elements having the same property
 - S: set, x and y: element or event
 - For example: S = {1, 2, 3, 4}
 - » If x = 2, then $x \in S$.
 - » If y = 5, then $y \notin S$.
- A binary operator defines a rule which assigns a pair of elements from S to a unique element from S
 - For example: given a set S, consider a * b = c and * is a binary operator.
 - ♦ If (a, b) through * get c and $a, b, c \in S$, then * is a binary operator of S.
 - ♦ On the other hand, if * is not a binary operator of S and $a, b \in S$, then $c \notin S$.

Common Algebraic Postulates (p.55)

- A set of elements S and two binary operators + and *
- 1. Closure property: a set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique element of S.
 - \bullet $x, y \in S, \ni x + y \in S$ (such that)
 - » a + b = c, for any $a, b, c \in N$ (Natural numbers). ("+" binary operator plus has closure)
 - » But operator is not closed for N, because 2 3 = -1 and 2, 3 ∈ N, but (-1) \notin N.
- 2. Associative law: a binary operator * on a set S is said to be associative whenever
 - (x * y) * z = x * (y * z) for all $x, y, z \in S$ • (x + y) + z = x + (y + z)
- 3. Commutative law: a binary operator * on a set S is said to be commutative whenever
 - x * y = y * x for all $x, y \in S$
 - x + y = y + x

Common Algebraic Postulates (p.55)

- 4. Identity element: a set S is said to have an identity element e with respect to a binary operator * on S if there exists an element e∈S with the property that
 - e * x = x * e = x for every $x \in S$
 - 0 + x = x + 0 = x for every $x \in I$. $I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$.
 - » 1 * x = x * 1 = x for every $x \in I$. $I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$.
- 5. Inverse: a set S having the identity element e with respect to a binary operator * is said to have an inverse whenever, for every $x \in S$, there exists an element $y \in S$ such that
 - $\rightarrow x * y = e$
 - » In I and the operator +, with e = 0, the inverse of an element a is (-a), since a + (-a) = 0.
- 6. Distributive law: if * and + are two binary operators on a set S, * is said to be distributive over + whenever
 - \bullet x * (y + z) = (x * y) + (x * z)

2.3 Six Postulates of Huntington for Boolean Algebra (p.56)

- A set of elements B and two binary operators + and ·
 - ◆ Closure: (a) + and (b) · are closed
 - + have identity 0, · have identity 1

$$(a) x + 0 = 0 + x = x$$

$$(b) x \cdot 1 = 1 \cdot x = x$$

→ + and · are commutative

$$(a) x + y = y + x$$

$$(b) x \cdot y = y \cdot x$$

Distributive

$$-x \cdot (y+z) = xy + xz$$

» (b) + is distributive over •

$$-x+(y\cdot z)=(x+y)\cdot (x+z)$$

♦ Each $x \in B$, $\ni x' \in B$ (complement) s.t.

$$(a) x + x' = 1$$

$$\rightarrow$$
 (b) $x \cdot x' = 0$

♦ At least exist two elements $x, y \in B$ and $x \neq y$

Note

- The associative law can be derived
- No additive and multiplicative inverses
- Complement

歷史: 1854年 George Boole 發展布林代數; 1904 E. V. Huntingtion 提出布林代數的公 理; 1938年 C. E. Shannon 介紹一種二值布 林代數,稱為交換代數 (switching algebra), 說明了雙穩態的電子交換電路,可以用交換 代數來表示。

Postulates of Two-Valued Boolean Algebra (1/3) (p.57)

- \blacksquare B = {0, 1} and two binary operators, + and \cdot
- The rules of operations: AND \ OR and NOT.

AND			
X	у	х • у	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

	OR	
X	у	x + y
0	0	0
0	1	1
1	0	1
1	1	1

NOT				
X	x'			
0	1			
1 0				

- 1. Closure (+ and·)
- 2. The identity elements

$$(1)+:0 \rightarrow 0+0=0, 0+1=1+0=1$$

$$(2) \cdot : 1 \rightarrow 1 \cdot 1 = 1, 1 \cdot 0 = 0 \cdot 1 = 0$$

Postulates of Two-Valued Boolean Algebra (2/3) (p.58)

3. The commutative laws

4. The distributive laws

X	у	Z	y + z	$x \cdot (y + z)$	х • у	x · z	$(x \cdot y) + (x \cdot z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Postulates of Two-Valued Boolean Algebra (3/3) (p.58)

5. Complement

- \bullet $x + x' = 1 \rightarrow 0 + 0' = 0 + 1 = 1; 1 + 1' = 1 + 0 = 1$
- \bullet $x \cdot x' = 0 \rightarrow 0 \cdot 0' = 0 \cdot 1 = 0; 1 \cdot 1' = 1 \cdot 0 = 0$
- 6. Has two distinct elements 1 and 0, with $0 \neq 1$

Note

- A set of two elements
- +: OR operation; ·: AND operation
- A complement operator: NOT operation
- ♦ Binary logic (defined in Chap 1.9) is a two-valued Boolean algebra

2.4 Basic Theorems and Properties (p.59)

Property: duality principle

- Every algebraic expression deducible from the postulates of Boolean algebra remains valid if
 - » The binary operators are interchanged; AND (\cdot) \Leftrightarrow OR (+), and
 - » the identity elements are interchanged; 1 ⇔ 0

Basic Theorems

Table 2.1Postulates and Theorems of Boolean Algebra

Postulate 2	(a) x + 0 = x	$(b) x \cdot 1 = x$
Postulate 5	(a) $x + x' = 1$	$(b) x \cdot x' = 0$
Theorem 1	(a) x + x = x	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	$(b) x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) x + y = y + x	(b) xy = yx
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) x(yz) = (xy)z
Postulate 4, distributive	(a) x(y+z) = xy + xz	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	$(a) \qquad (x+y)' = x'y'$	$(b) \qquad (xy)' = x' + y'$
Theorem 6, absorption	(a) x + xy = x	(b) x(x+y) = x

Basic Theorems (1/3) (p.60)

2(a)

■ Theorem 1(b):
$$x \cdot x = x$$

2(b)

Basic Theorems (2/3) (p.60)

• Theorem
$$2(a): x + 1 = 1$$

$$x + 1 = 1 \cdot (x + 1)$$
 postulate 2(b)
 $=(x + x')(x + 1)$ 5(a)
 $= x + x' 1$ 4(b)
 $= x + x'$ 2(b)
 $= 1$ 5(a)

■ Theorem 2(b): $x \cdot 0 = 0$

by duality

- Theorem 3: (x')' = x
 - Postulate 5 defines the complement of x, x + x' = 1 and x x' = 0
 - The complement of x' is (x')' = x

Basic Theorems (3/3) (p.61)

 $\blacksquare \text{ Theorem 6(a): } x + xy = x$

♦
$$x + xy = x \cdot 1 + xy$$
 postulate2(b)
= $x (1 + y)$ 4(a)
= $x (y + 1)$ 3(a)
= $x \cdot 1$ T.2(a)
= $x \cdot 1$ 2(b)

■ Theorem 6(b): x(x + y) = x

- by duality
- By means of truth table (another way to proof)

X	у	ху	x + xy
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

DeMorgan's Theorems (p.61)

DeMorgan's Theorems

- (x + y)' = x'y'
- (x y)' = x' + y'

X	y	<i>x</i> + <i>y</i>	(x + y)'	x'	y'	x'y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0
X	у	ху	(xy)'	х'	y'	x' + y'
х 0	у 0	<i>xy</i> 0	(xy)'	x' 1	y' 1	x' + y' 1
_		-	_		y' 1 0	x' + y' 1 1
0	0	0	1	1	1	1

Operator Precedence (p.61)

- **■** The operator precedence for evaluating Boolean Expression is
 - ◆ Parentheses (括弧)
 - NOT
 - AND
 - OR
- Examples
 - $\rightarrow xy'+z$
 - (x y + z)'

2.5 Boolean Functions (p.62)

- A Boolean function (described by an algebraic expression)
 - Binary variables
 - Binary operators OR and AND
 - Unary operator NOT
 - Parentheses

Examples

- $ightharpoonup F_1 = x y z'$
- + $F_2 = x + y'z$
- $F_3 = x'y'z + x'yz + xy'$
- $F_4 = x y' + x' z$

Boolean Functions (p.62)

■ The truth table of 2ⁿ entries

$$F_1 = x y z'$$

 $F_2 = x + y'z$
 $F_3 = x' y' z + x' y z + x y'$
 $F_4 = x y' + x' z$

X	у	Z	F ₁	F ₂	F ₃	F ₄
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Two Boolean expressions may specify the same function

Boolean Functions (p.63)

■ Implementation with logic gates

$$F_1 = x y z'$$

$$F_2 = x + y'z$$

Boolean Functions (p.63)

$$F_3 = F_4$$

■ F₄ is more economical

$$F_3 = x'y'z + x'yz + xy'$$

$$F_4 = x y' + x' z$$

Algebraic Manipulation (p.64)

Minimize Boolean expressions

- Literal: a primed or unprimed variable (an input to a gate)
- ◆ Term: an implementation with a gate
- ◆ The minimization of the number of literals and the number of terms → a circuit with less hardware resource
- It is a hard problem (no specific rules to follow)

Example 2.1

- 1. x(x' + y)
- 2. x + x'y
- 3. (x + y)(x + y')
- 4. xy + x'z + yz
- 5. (x + y)(x' + z)(y + z)

Complement of a Function (p.65)

- An interchange of 0's for 1's and 1's for 0's in the value of F
 - By DeMorgan's theorem

♦
$$(A+B+C)' = (A+X)'$$
 let $B+C = X$
 $= A'X'$ by theorem 5(a) (DeMorgan's)
 $= A'(B+C)'$ substitute $B+C = X$
 $= A'(B'C')$ by theorem 5(a) (DeMorgan's)
 $= A'B'C'$ by theorem 4(b) (associative)

- Generalizations: a function is obtained by interchanging AND and OR operators and complementing each literal
 - (A+B+C+D+...+F)' = A'B'C'D'...F'
 - (ABCD ... F)' = A'+B'+C'+D' ... +F'

Examples (p.66)

Example 2.2

- $F_1' = (x'yz' + x'y'z)'$
- $F_2' = [x(y'z'+yz)]'$

Example 2.3: a simpler procedure

Take the dual of the function and complement each literal

1.
$$F_1 = x'yz' + x'y'z$$

2.
$$F_2 = x(y'z' + yz)$$

2.6 Canonical and Standard Forms (p.67)

Minterms and Maxterms

- A minterm (standard product): an AND term consists of all literals in their normal form or in their complement form
 - For example, two binary variables x and y
 - » xy, xy', x'y, x'y'
 - It is also called a standard product
 - n variables can be combined to form 2ⁿ minterms
- A maxterm (standard sums): an OR term
 - It is also call a standard sum
 - 2ⁿ maxterms

Minterms and Maxterms (1/3) (p.67)

Each maxterm is the complement of its corresponding minterm, and vice versa

y 001 101 110 110 000 100

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

			Minterms		Max	cterms
x	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

111

Minterms and Maxterms (2/3) (p.68)

An Boolean function can be expressed by

- A truth table
- Sum of minterms
- \bullet $f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$
- $f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$

Table 2.4 *Functions of Three Variables*

x	y	z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Minterms and Maxterms (3/3) (p.68)

- The complement of a Boolean function
 - The minterms that produce a 0
 - $f_1' = m_0 + m_2 + m_3 + m_5 + m_6 = x'y'z' + x'yz' + x'yz + xy'z + xyz'$
 - $f_1 = (f_1')' = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y+z') = M_0 M_2 M_3 M_5 M_6$
 - $f_2 = (x+y+z) (x+y+z') (x+y'+z) (x'+y+z) = M_0 M_1 M_2 M_4$
- Any Boolean function can be expressed as
 - A sum of minterms ("sum" meaning the ORing of terms)
 - » That produce a 1
 - A product of maxterms ("product" meaning the ANDing of terms)
 - » That produce a 0
 - Both Boolean functions are said to be in Canonical form

Sum of Minterms (p.68)

Example 2.4: express F = A+B'C as a sum of minterms

$$+$$
 $F = A + B'C$

Table 2.5 *Truth Table for F* = A + B'C

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Product of Maxterms (p.70)

- Product of maxterms: using distributive law to expand.
 - + x + yz

Example 2.5: express F = xy + x'z as a product of maxterms.

Conversion between Canonical Forms (p.71)

- The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function
 - $F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$
 - Then, $F'(A, B, C) = \Sigma(0, 2, 3)$
 - By DeMorgan's theorem

$$F(A, B, C) = \Pi(0, 2, 3)$$

 $F'(A, B, C) = \Pi(1, 4, 5, 6, 7)$

- $+ m_j' = M_j$
- ♦ Sum of minterms → product of maxterms
- \bullet Interchange the symbols Σ and Π and list those numbers missing from the original form
 - » Σ of 1's
 - » Π of 0's

Conversion Example

Example

- ightharpoonup F = xy + x'z
- $F(x, y, z) = \Sigma(1, 3, 6, 7)$
- $F(x, y, z) = \Pi(0, 2, 4, 5)$

Table 2.6

Truth Table for F = xy + x'z

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Standard Forms (P.72)

- Canonical forms are very seldom with the least number of literals
- Standard forms: the terms that form the function may obtain one, two, or any number of literals
 - Sum of products: $F_1 = y' + xy + x'yz'$
 - Product of sums: $F_2 = x(y' + z)(x' + y + z')$
 - Nonstandard form: $F_3 = AB + C(D + E)$

Implementation (p.73)

Two-level implementation

■ Three-/multi-level implementation

(a)
$$AB + C(D + E)$$

2.7 Other Logic Operations (p.74)

- **2**ⁿ rows in the truth table of *n* binary variables
- 16 functions of two binary variables

Table 2.7 *Truth Tables for the 16 Functions of Two Binary Variables*

X	y	F ₀	<i>F</i> ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F 9	F ₁₀	<i>F</i> ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0 0 0 0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Boolean Expressions (p.75)

Table 2.8 Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x\supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15}=1$	• -	Identity	Binary constant 1

All the new symbols except for the exclusive-OR symbol are not commonly used by digital designers

2.8 Digital Logic Gates (p.76)

- Boolean expression: AND, OR, and NOT operations
- Considerations for constructing gates of other logic operations
 - The feasibility and economy
 - The possibility of extending gate's inputs
 - The basic properties of the binary operations (e.g., commutative and associative)
 - The ability of the gate to implement Boolean functions alone or in conjunction with other gates

Standard Gates (p.76)

- Consider the 16 functions in Table 2.8
 - Two are equal to a constant (F₀ and F₁₅)
 - Four are repeated twice $(F_4, F_5, F_{12} \text{ and } F_{13})$
 - \bullet Inhibition (F_2) and implication (F_{11}) are not commutative or associative
 - ♦ The other eight: complement (F_{10}) , transfer (F_3) , AND (F_1) , OR (F_7) , NAND (F_{14}) , NOR (F_8) , XOR (F_6) , and equivalence (XNOR) (F_9) are used as standard gates
 - Complement: inverter
 - Transfer: buffer/repeater (increasing drive strength)
 - Equivalence: XNOR

Summary of Logic Gates (p.77)

Name	Graphic symbol	Algebraic function	Truth table
AND	<i>x</i>	F = xy	$\begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	$x \longrightarrow F$	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
Buffer	$x \longrightarrow F$	F = x	$\begin{array}{c c} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$

Figure 2.5 Digital logic gates

Summary of Logic Gates (p.77)

NAND	<i>x F</i>	F = (xy)'	0 0 1 1	y 0 1 0 1 1	F 1 1 1 0
NOR	$x \longrightarrow F$	F = (x + y)'	$ \begin{array}{c} x \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	y 0 1 0 1	1 0 0 0
Exclusive-OR (XOR)	$x \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	0 0 1 1	y 0 1 0 1	F 0 1 1 0
Exclusive-NOR or equivalence	$x \longrightarrow F$	$F = xy + x'y'$ $= (x \oplus y)'$	0 0 1 1	y 0 1 0 1	F 1 0 0 1

Figure 2.5 Digital logic gates

Multiple Inputs (p.78)

Extension to multiple inputs

- A gate can be extended to multiple inputs
 - » If its binary operation is commutative and associative
- AND and OR are commutative and associative
 - » OR
 - -x+y=y+x
 - -(x + y) + z = x + (y + z) = x + y + z
 - » AND
 - -xy=yx
 - (x y) z = x (y z) = x y z

Multiple Inputs (p.79)

 NAND and NOR are commutative but not associative → they are not extendable

Figure 2.6 Demonstrating the nonassociativity of the NOR operator:

$$(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$$

Multiple Inputs (p.79)

- Multiple NOR = a complement of OR gate
- Multiple NAND = a complement of AND
- The cascaded NAND operations = sum of products
- The cascaded NOR operations = product of sums

Figure 2.7 Multiple-input and cascaded NOR and NAND gates

Multiple Inputs (p.79)

- The XOR and XNOR gates are commutative and associative
- Multiple-input XOR gates are uncommon
- **♦** XOR is an odd function: 1 if the input variables have odd number of 1's

$\begin{array}{c} x \\ y \\ z \end{array}$	$-F = x \oplus y \oplus z$
(b) 3-input gate	

Figure 2.8 3-input XOR gate

х	у	z	F
0	0	0	0
$0 \\ 0$	0 1	$\frac{1}{0}$	1 1
0 1	$\frac{1}{0}$	$\begin{array}{c} 1 \\ 0 \end{array}$	0 1
1	0	1	0
1 1	1 1	0 1	0 1

(c) Truth table

Positive and Negative Logic (p.80)

- Positive and Negative Logic System
 - Two signal values <=> two logic values
 - Positive logic system: H=1; L=0
 - Negative logic system: H=0; L=1
- Consider a gate (next page)
 - A positive logic AND gate
 - A negative logic OR gate
 - The positive logic is used in this book

Figure 2.9 Signal assignment and logic polarity

Positive and Negative Logic (p.81)

(c) Truth table for positive logic

х	у	Z
1	1	1
1	0	1
0	1	1
0	0	0

(e) Truth table for negative logic

(b) Gate block diagram

(d) Positive logic AND gate

(f) Negative logic OR gate

Figure 2.10 Demonstration of positive and negative logic

2.9 Integrated Circuits (p.82)

- An IC (a chip) is fabricated on a die of a silicon semiconductor crystal, containing the electronic components for constructing digital gates
- Level of Integration:
 - Small-scale Integration (SSI): < 10 gates</p>
 - ♦ Medium-scale Integration (MSI): 10 ~ 100 gates
 - **♦** Large-scale Integration (LSI): 100 ~ n k gates
 - Very Large-scale Integration (VLSI): > n k gates

VLSI

- Small size (compact size)
- Low cost
- Low power consumption
- High reliability
- High speed

Moore's Law

■ Transistors on lead microprocessors double every 2 years (transistors on electronic component double every 18 months)

source: http://www.intel.com
Boolean Algebra and Logic Gates-46

Silicon Wafer and Dies

- Exponential cost decrease technology basically the same:
 - A wafer is tested and chopped into dies that are packaged

AMD K8, source: http://www.amd.com

Cost of an Integrated Circuit (IC)

Cost of IC =
$$\frac{\text{Cost of die} + \text{Cost of testing die} + \text{Cost of packaging and final test}}{\text{Final test yield}}$$

(A greater portion of the cost that varies between machines)

Cost of die =
$$\frac{\text{Cost of wafer}}{\text{\#Dies per wafer} \times \text{Die yield}}$$

#Dies per wafer =
$$\frac{\pi \times (\text{Wafer radius})^2}{\text{Die area}} - \frac{\pi \times \text{Wafer diameter}}{\sqrt{2 \times \text{Die area}}}$$

(sensitive to die size)

(# of dies along the edge)

Die yield = Wafer yield
$$\times \left(1 + \frac{\text{Defect density} \times \text{Die area}}{\alpha}\right)^{-\alpha}$$

Today's technology: $\alpha \approx 4.0$, defect density $0.4 \sim 0.8$ per cm²

Examples of Cost of an IC

- Example 1: Find the number of dies per 30-cm wafer for a die that is 0.7 cm on a side.
 - The total die area is 0.49 cm². Thus

#Dies per wafer =
$$\frac{\pi \times (\text{Wafer radius})^2}{\text{Die area}} - \frac{\pi \times \text{Wafer diameter}}{\sqrt{2 \times \text{Die area}}}$$

= $\frac{\pi \times (30/2)^2}{0.49} - \frac{\pi \times 30}{\sqrt{2 \times 0.49}} = \frac{706.5}{0.49} - \frac{94.2}{0.99} = 1,347$

- Example 2: Find the die yield for dies that are 1 cm on a side and 0.7 cm on a side, assuming a defect density of 0.6 per cm².
 - ♦ The total die areas are 1 cm² and 0.49 cm². For the large die the yield is

Die yield = Wafer yield ×
$$\left(1 + \frac{\text{Detect desity} \times \text{Die area}}{\alpha}\right)^{-\alpha}$$

= $\left(1 + \frac{0.6 \times 1}{4.0}\right)^{-4} = 0.35$

For the small die, it is

Die yield =
$$\left(1 + \frac{0.6 \times 0.49}{4.0}\right)^{-4} = 0.58$$

Digital Logic Families (p.82)

- Digital logic families: circuit technology
 - TTL: transistor-transistor logic
 - ECL: emitter-coupled logic (high speed, high power consumption)
 - MOS: metal-oxide semiconductor (NMOS, high density)
 - CMOS: complementary MOS (low power)
 - BiCMOS: high speed, high density

Digital Logic Families (p.83)

- The characteristics of digital logic families
 - Fan-out: the number of standard loads that the output of a typical gate can drive
 - Fan-in: the number of inputs available in a gate
 - Power dissipation: the power consumption during circuit switching
 - Propagation delay: the average transition delay time for the signal to propagate from input to output
 - Noise margin: the maximum external noise voltage added to an input signal that does not cause an undesirable change in the circuit output

CAD (p.83)

Boolean Algebra and Logic Gates-56