4

CROISSANCE EXPONENTIELLE

Résumé

Seconde croissance étudiée cette année : la croissance exponentielle dont le vocabulaire est utilisé régulièrement dans le langage commun.

1 Suites géométriques

Définition

Soient $q \neq 0$ et (u_n) une suite numérique définie sur \mathbb{N} par la relation de récurrence :

$$u_{n+1} = q \times u_n$$
.

 (u_n) est appelée **suite géométrique** de **raison** q.

Exemple Soit (u_n) une suite géométrique de raison 2 et de premier $u_0 = 1,3$. Alors, $u_1 = 2 \times u_0 = 3 \times 1,3 = 2,6$. De même, $u_2 = 2 \times u_1 = 5,2$. On peut continuer indéfiniment : $u_3 = 10,4$, $u_4 = 20,8$, $u_5 = 41,6$, ...

Propriété

Une suite $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison q et de premier terme u_0 si, et seulement si, pour tout $n\in\mathbb{N}$,

$$u_n = u_0 \times q^n$$

Exemple Représentons la suite géométrique (u_n) de raison 1,2 et de premier terme 0,5.

Théorème | Variations d'une suite géométrique

Soit (u_n) une suite géométrique de raison q et de premier terme u_0 **strictement positif**.

- \blacktriangleright (u_n) est strictement croissante si, et seulement si, q > 1.
- ▶ (u_n) est constante si, et seulement si, q = 1.
- \blacktriangleright (u_n) est strictement décroissante si, et seulement si, 0 < q < 1.

Exemples Soit (u_n) la suite définie par : $u_n = 3^n$. C'est une suite géométrique de raison 3 et de premier terme 1 donc elle est strictement croissante.

Soit (v_n) la suite définie par : $\begin{cases} v_0 = 2 \\ v_{n+1} = \frac{2}{10}v_n \end{cases}$. (v_n) est une suite géométrique de raison $\frac{2}{10}$ et de premier terme 2. Elle est donc strictement décroissante.

Fonctions exponentielles de base a

Définition

Soit *a* un réel strictement positif. Une fonction *f* définie pour tout réel positif *x* par $f(x) = a^x$ est une **fonction exponentielle** de base a.

Théorème | Variations d'une fonction exponentielle

Une fonction exponentielle f définie sur \mathbb{R}_+ par $f(x) = a^x$ avec a > 0 est :

- \blacktriangleright strictement croissante sur \mathbb{R}_+ si, et seulement si, a > 1;
- constante sur \mathbb{R}_+ si, et seulement si, a = 1;
- ▶ strictement décroissante sur \mathbb{R}_+ si, et seulement si, 0 < a < 1.

Remarque Les propriétés de variations entre suites géométriques et fonctions exponentielles sont semblables. Toutes les propriétés des suites peuvent être déduites de celles des fonctions exponentielles.

Exemples $> f(x) = 2^x$ est l'expression d'une fonction exponentielle de base 2.

► $f(x) = 0.3^x$ est l'expression d'une fonction exponentielle de base 0.3.

Propriétés | Calculs exponentiels

Pour tous réels x et y et pour tout réels strictement positifs a et b on a :

$$a^x \times a^y = a^{x+y}$$

$$(a^x)^y = a^{xy}$$

Propriété

Si une grandeur subit une **évolution** de taux t, alors elle atteint la même valeur en subissant *n* évolutions successives de même taux $(1+t)^{\frac{1}{n}}-1$ où *n* est un entier naturel non nul.

Définition

Le nombre $(1+t)^{\frac{1}{n}}-1$ est appelé **taux moyen** des *n* évolutions successives de taux global t.

Exemple D'après l'association 60 Millions de consommateurs, le prix des pâtes a augmenté d'environ 11,4% entre février 2021 et février 2022. Ainsi, l'évolution a suivi un coefficient multiplicateur C_M de 1 + 0,114 = 1,114.

Finalement, le coefficient multiplicateur moyen est $C_M^{\frac{1}{12}}$ et le taux moyen est :

$$t_{moyen} = (1+0,114)^{\frac{1}{12}} - 1.$$