Clase 07 Regresión lineal simple y evaluación de supuestos

Curso Análisis de datos con R para Biociencias

Dra. María Angélica Rueda maria.rueda.c@pucv.cl | Pontificia Universidad Católica de Valparaíso

25 January 2022

PLAN DE LA CLASE

1.- Introducción

- Regresión lineal ¿Qué es y para qué sirve?
- Correlación v/s causalidad.
- Repaso ecuación de regresión lineal.
- Repaso betas y causalidad.
- Interpretación Regresión lineal con R.
- Evaluación de supuestos.

2.- Práctica con R y Rstudio cloud

- Realizar análisis de regresión lineal.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato pdf.

INTRODUCCIÓN REGRESIÓN LINEAL

Herramienta estadística que permite determinar si existe una relación (asociación) entre una variable predictora (independiente) y la variable respuesta (dependiente).

Nivel del mar en función del tiempo. Fuente: epa.gov

REGRESIÓN LINEAL: PREDICCIÓN

1850

1800

1900

La ecuación de la regresión permite, bajo ciertos supuestos, predecir el valor de una variable respuesta "y" a partir de una o más variables predictoras "x".

1950 vear 2000

2050

NOAA Climate.gov Adapted from Sweet et al., 2017

2100

CORRELACIÓN NO IMPLICA CAUSALIDAD

¿Si dejamos de tomar helados disminuirá el nivel del mar? ¿Qué factor "z" puede explicar la correlación entre consumo de helados y nivel del mar?

REGRESIÓN LINEAL: BETAS

Betas miden la influencia del intercepto y la pendiente sobre la variable Y.

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

 β_0 = Intercepto = valor que toma "y" cuando x = 0.

 $\beta_1 = \text{Pendiente} = \text{Cambio promedio de "y" cuando "x" cambia en una unidad.}$

LINEA DE REGRESIÓN

Línea de regresión: Corresponde a los valores "ajustados" o estimados de "y" en función de "x". Se calcula con los estimadores de *mínimos cuadrados* de β_0 y β_1 .

RESIDUOS Y MÉTODOS DE MÍNIMOS CUADRADOS

COEFICIENTE DE DETERMINACIÓN

 R^2 mide la proporción de la variación muestral de "y" que es explicada por x (varía entre 0-1). Se calcula como el cuadrado del coeficiente de correlación de pearson.

 R_{ajust}^2 nos dice qué porcentaje de la variación de la variable dependiente es explicado por la o las variables independientes de manera conjunta.

$$R_{ajust}^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

donde:

n = tamaño de la muestra

p =cantidad de variables predictoras en el modelo

PRUEBAS DE HIPÓTESIS

Prueba de hipótesis del coeficiente de regresión y el intercepto Tipo de prueba: Prueba de t – student

La hipótesis nula en ambos casos es que los coeficiente (β_0) y (β_1) son iguales a 0, es decir sin asociación entre las variables.

$$H_0: \beta_0 = 0 \text{ y } H_0: \beta_1 = 0$$

Prueba de hipótesis del modelo completo Tipo de prueba:

Prueba de F.

La hipótesis nula es que los coeficientes son iguales a 0.

$$H_0: \beta_j = 0 ; j = 1, 2, ..., k$$

REGRESIÓN LINEAL CON R: COEFICIENTES

Coeficientes

	Estimate	Std. Error	t value	Pr(>
Intercepto	-3.18	0.1629	-19.54	<2e-16 ***
CO2	0.0099	0.0004	21.67	<2e-16 ***

REGRESIÓN LINEAL CON R: PRUEBA DE F

Anova de la regresión.

anova(reg) %>% kable()

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
CO2_ppm	1	4.1525733	4.1525733	469.5292	0
Residuals	57	0.5041149	0.0088441	NA	NA

EXTRAER INFORMACIÓN DE LA REGRESIÓN LINEAL

```
summary(reg$residuals)
##
        Min.
                1st Qu.
                           Median
                                        Mean
                                                3rd Qu.
## -0.1931891 -0.0752495 0.0001668
                                   0.0000000
                                              0.0792104
summary(reg)$sigma
## [1] 0.09404319
summary(reg)$r.squared
## [1] 0.8917439
summary(reg)$adj.r.squared
```

[1] 0.8898447

PREDICCIÓN LINEAL DEL NIVEL DEL MAR

Predicción de la anomalía próximos años

```
## fit lwr upr
## 1 0.8997967 0.8422796 0.9573139
## 2 0.9994129 0.9334513 1.0653745
## 3 1.0990291 1.0244426 1.1736155
```

SUPUESTOS DE LA REGRESIÓN LINEAL SIMPLE

¿Cuales son los supuestos?
 Independencia.
 Linealidad entre variable independiente y dependiente.
 Homocedasticidad.
 Normalidad.

¿Por qué son importantes?
 Para validar el resultado obtenido.
 En caso de incumplimiento se pueden transformar datos o elaborar otros modelos (Regresión logística).

INDEPENDENCIA: MÉTODO GRÁFICO

H₀: Los residuos son independientes entre sí.

 $\mathbf{H}_{\mathbf{A}}$: Los residuos no son independientes entre sí (existe autocorrelación).

```
plot(reg$residuals)
abline(h=0, col="red")
```


LINEALIDAD: MÉTODO GRÁFICO

 $\mathbf{H_0}$: Hay relación lineal entre la variable regresora y la variable predictora.

 $\mathbf{H}_{\mathbf{A}}$: No hay relación lineal entre la variable regresora y la variable predictora.

HOMOGENEIDAD DE VARIANZAS: MÉTODO GRÁFICO

 H_0 : La varianza de los residuos es constante.

 H_A : La varianza de los residuos no es constante.

plot(reg, which=3)

NORMALIDAD: GRÁFICO DE CUANTILES

H₀: Los residuos tienen distribución normal.
 H_A: Los residuos no tienen distribución normal.

qqPlot(reg) # library(car)

[1] 18 40

VALORES ATÍPICOS

Una observación se puede considerar influyente (valor atípico) si tiene un valor de distancia de Cook mayor a 1.

plot(reg, which=4)

PRÁCTICA ANÁLISIS DE DATOS

- ► Guía de trabajo práctico disponible en drive y Rstudio.cloud.
- El trabajo práctico se realiza en Rstudio.cloud.

RESUMEN DE LA CLASE

- Elaborar hipótesis para una regresión lineal.
- Realizar análisis de regresión lineal simple.
- Interpretar coeficientes y realizar predicciones.
- Evaluar supuestos de los análisis de regresión.