Problema 1.

Se consideră un circuit de memorie cu acces secvențial de 128 * 1 bit conectat pe portul paralel al unui SC (poate fi un PC sau un controler Arduino) astfel (realizați voi conexiunile pe care le doriți):

Circuit de memorie	Direcție	Pin digital	Registru/bit pin digital
V _{cc} (alimentare)			
RST (reset)			
CLK (clock)			
R/\overline{W} (citire / scriere)			
GND			
DATA OUT			
DATA IN			

Să se scrie un program care citește acest circuit de memorie și afișează cei 16 bytes citiți. Primul bit citit este cel mai semnificativ bit din primul byte.

Obs.:

- Circuitul este activ atâta timp cât semnalul RST este pe "1". Când acest pin este pe "0" circuitul nu este activ;
- Circuitul de memorie conține un contor intern (care reprezintă adresa locației curente de memorie) și care se va incrementa automat cu 1 la fiecare tranziție a semnalului de CLK din "1" în "0" (cât timp semnalul de RST este pe "1" logic) și se va reseta automat când semnalul de RST va trece în "0"; Contorul de adrese va avea valori între 0 și 127.
- După selectarea circuitului de memorie trecerea semnalului CLK din 0 în 1 va determina scoaterea pe linia DATA OUT a valorii din locația curentă sau memorarea valorii de pe linia DATA IN în locația curentă (în funcție de valoarea semnalului de pe lina R/\overline{W}). Trecerea semnalului CLK din 1 în 0 înseamnă incrementarea contorului de adrese din interiorul circuitului de memorie și trecerea la următoarea locație de memorie.
- Semnalul R/\overline{W} dacă este pe "0" circuitul va citi valoarea care se găsește pe linia DATA IN și o **scrie** (/**W**) în locația curentă de memorie, iar când este pe "1" va **citi** (**R**) valoarea care se găsește în locația curenta de memorie și va comuta linia DATA OUT corespunzător.

