BEST AVAILABLE COPY

10/509647

特

JAPAN PATENT OFFICE PCT/JP03/04040

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 3月29日

REC'D 2 3 MAY 2003

Application Number:

特願2002-095162

[ST.10/C]:

[JP2002-095162]

出 Applicant(s):

新日本製鐵株式会社

PRIORITY

WIPO

2003年 1月28日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

1023587

【提出日】

平成14年 3月29日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

C21D 8/00

如果**活**、 V.4

C22C 38/00

301 =

C22C 38/12

【発明者】

【住所又は居所】

千葉県富津市新富20-1 新日本製鐵株式会社 技術

飞.

開発本部内

【氏名】

熊谷 達也

【発明者】

【住所又は居所】

千葉県富津市新富20-1 新日本製鐵株式会社 技術

開発本部内

【氏名】

岡田 忠義

【特許出願人】

【識別番号】

000006655

【氏名又は名称】

新日本製鐵株式会社

【代理人】

【識別番号】

100077517

【弁理士】

【氏名又は名称】

石田 敬

【電話番号】

03-5470-1900

【選任した代理人】

【識別番号】

100092624

【弁理士】

【氏名又は名称】

鶴田 準一

【選任した代理人】

【識別番号】

100113918

【氏名又は名称】 亀松 宏

【選任した代理人】

【識別番号】

100082898

【弁理士】

【氏名又は名称】 西山 雅也

【手数料の表示】

【予納台帳番号】

036135

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書

【物件名】

要約書

【包括委任状番号】 0018106

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 800℃高温特性に優れる常温引張強さ400~490N/m m²級耐火建築構造用鋼およびその厚鋼板の製造方法

【特許請求の範囲】

【請求項1】 質量%で、

 $C : 0.03 \sim 0.10\%$

 $Si:0.02\%\sim0.5\%$

Mn: 0. 5%以下、

 $A1:0.001\sim0.1\%$

 $Mo: 0. 1 \sim 0. 3\%$

 $Ti:0.01\sim0.20\%$

 $Nb:0.01\sim0.20\%$

 $V : 0.01 \sim 0.20\%$

【諸求項2】 質量%で、さらに、

 $Cu: 0. 1 \sim 2. 0\%$

 $Ni: 0. 1 \sim 0. 5\%$

 $Cr: 0.1 \sim 0.6\%$

B : 0. 0005 \sim 0. 010%

のうち1種または2種以上を含むことを特徴とする、請求項1に記載の800℃ 高温特性に優れる常温引張強さ400~490N/mm²級耐火建築構造用鋼。

【請求項3】 質量%で、さらに、

 $Mg: 0.0001 \sim 0.01\%$

 $Ca: 0.0001 \sim 0.01\%$

のうち1種または2種を含むことを特徴とする、請求項1または2に記載の80 0℃高温特性に優れる常温引張強さ400~490N/mm²級耐火建築構造用 鋼。 【請求項4】 請求項1~3のいずれか1項に記載の成分組成を有する鋼片または鋳片を、1200℃以上に加熱し、930℃以下830℃以上の温度域で仕上げ板厚に対して40%以上の累積圧下率を確保する熱間圧延を行い、圧延終了後、鋼板表面の平均冷却速度が2℃/s以上で300℃以下まで冷却することを特徴とする、800℃高温特性に優れる常温引張強さ400~490N/mm²級耐火建築構造用厚鋼板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、800℃までの高温強度が高く、特に高温耐火建築構造用鋼として優れた性能を発揮する常温引張強さが $400\sim490\,\mathrm{N/mm}^{\,2}$ 級の鋼およびその厚鋼板の製造方法に関するものである。

[0002]

【従来の技術】

一般に、建築物には火災時の安全性を確保するために、火災時における鋼材表面温度が350℃以下で使用するように耐火基準が定められており、ロックウールなどの耐火被覆が必要となる。しかし、耐火被覆施工費用は高額であり、工程も余分にかかること、さらには景観上からも、耐火被覆を完全に省略したいという要求は非常に高まっている。

[0003]

一方、昭和57年度から61年度にかけて、建設省総合技術開発プロジェクト「建築物の防火設計法の開発」の中で設けられた「耐火設計法の開発」という課題のもとで、性能型の新しい耐火設計法を具体化するための研究が行われた。その成果を受けて(建築基準法第38条に基づく認定により)、性能型の設計が可能となった結果、鋼材の高温強度と建物に実際に加わっている荷重とによってどの程度の耐火被覆が必要かを決定できるようになり、場合によっては、無耐火被覆で鋼材を使用することも可能となった。

[0004]

こうした状況から、近年、短時間の髙温強度を高めたいわゆる耐火鋼が多く開

発された。特開平2-77523号公報をはじめとして、600℃での高温降伏強度が常温時の2/3以上となる鋼材、すなわち、600℃耐火鋼の技術が多数開示されている。また、特開平9-209077号公報や特開平10-68015号公報などでは、700℃での高温降伏強度が常温時の2/3となる、700℃耐火鋼の技術も開示されている。

[0005]

しかし、600℃耐火鋼では、無耐火被覆構造が可能となるのは比較的可燃物量が少ない立体駐車場や外部鉄骨に限られる。700℃耐火鋼でも無耐火被覆が可能となる構造物はそれほど多くはならない。これに対して、耐火性能が800℃以上であれば、無耐火被覆構造が可能となる範囲の大幅な拡大が可能である。

[0006]

一方、現行の耐震設計法では骨組みの変形による地震エネルギー吸収を前提としていることから、設計で想定した骨組みの崩壊形の確保や、部材の組成変形能力の確保、部材性能を十分発揮させるための接合部降伏強度や靭性の確保が必要となり、これに用いる建築構造用の鋼材には、降伏強度のばらつきの制限(つまり降伏強度の上下限)や、降伏比上限などの耐震性の規定、溶接性の確保が必要とされる。

[0007]

SN材(JIS G 136-1994)は、これらの耐震性、溶接性に関する規定がなされた鋼材であり、 $400N/mm^2$ 級鋼(降伏強度下限235 N/mm^2)の場合、降伏強度上限が355 N/mm^2 、降伏比上限が80%、490 N/mm^2 級鋼(降伏強度下限325 N/mm^2)の場合、降伏強度上限が445 N/mm^2 、降伏比上限が80%というように規定されている。

[0008]

高温強度を確保するためには、例えば耐熱鋼で利用されるCr、Mo、Mn、Vなどの合金元素を添加する方法が一般的である。しかし、800℃というような高温においては、変態によって鋼材の組織が変化することや、炭化物などの析出物が粗大化あるいは消失して析出強化の効果が少なくなるため、耐火性能を確保するためには合金元素量が多量になり、溶接継手靭性などの溶接性を低下させ

ることの他、常温強度が高くなるため、上記建築構造用鋼で規定されている降伏 強度上限を上回るなどの問題が生じる。

[0009]

こうしたことから、従来、800 Cまで無耐火被覆での設計が可能な耐火性能を有する建築構造用途400 N/mm 2 級鋼、490 N/mm 2 級鋼はなかった

《 順 · 【0010】

【発明が解決しようとする課題】

本発明は、前述のような事情を鑑みなされたもので、特に、800℃までの温度における耐火性に優れた常温引張強さ400~490N/mm²級高温耐火建築構造用鋼とその厚鋼板の製造方法を提供するものである。

[0011]

【課題を解決するための手段】

上述のように、溶接性の確保が、800℃での耐火鋼性能を付与するにあたっての大きな制約である。そこで、発明者らは、本発明鋼が部材として用いられる際には、柱梁接合部などの作用応力の大きな部位については溶接を用いない設計方法を採用することを前提とすることとした。

[0012]

これによって、鋼材に対する溶接性の制約が緩和される。例えば、SN材規格には溶接性に関する規定として、Ceq(炭素等量)の上限規制があるが、本発明鋼においては、特にCeqの上限などは考慮していない。

[0013]

一方、耐火設計では火災継続時間内で高い強度を維持すればよく、従来の耐熱 鋼のように、長時間の強度を考慮する必要はなく、比較的短時間の高温降伏強度 が維持できればよい。例えば、800℃での保持時間が30分程度の短時間高温 降伏強度が確保できれば、800℃耐火鋼として十分利用できる。

[0014]

従来耐火鋼では、高温降伏強度が常温時の2/3となるように性能を定めていたが、鉄骨構造物の実設計範囲が常温降伏強度下限の0.2~0.4倍であるこ

とを勘案し、常温降伏強度下限比0.4以上であれば使用できるとの考えに基づき、800 に高温強度のめやすとしては、常温降伏強度下限比0.4以上とした。すなわち、800 に降伏強さの目標値は、常温引張強さ400 N/mm 2 網で130 N/mm 2 である。

[0015]

すなわち、溶接性に関する制約を緩和することを前提として、建築構造用鋼と して使用できる常温強度の範囲内で、高温での保持時間が30分程度の短時間で 、常温降伏強度下限比0.4以上の降伏強度を確保する方法について種々検討し た。

[0016]

通常、700℃未満程度の温度域での強化に利用されるCr炭化物やMo炭化物などは、800℃といった高温では再固溶してしまうため、ほとんど強化効果を維持できない。

[0017]

発明者らは、高温における安定性のより高い単独あるいは複合の析出物を種々検討した。その結果、との複合析出物は高温における安定性が高く、800℃においても高い強化効果を有することを見いだした。

[0018]

すなわち、Mo、Nb、Ti、Vを適量添加して圧延時の加熱温度を高くとることで、これらを十分に固溶させ、かつ、転位密度の高い適切な圧延組織の導入により、析出物が析出可能な析出サイトを確保することで、再昇温時、例えば、火災による昇温中に、Moと、Nb、Ti、Vとの複合析出物が微細に析出する

[0019]

この複合析出物は、単独の析出物や他の複合析出物に比べて、高温における安定性が非常に高く、800℃においても比較的短時間であれば十分微細なまま安定である。また、鋼板製造時点においては、Mo、Nb、Ti、Vの析出を抑えこれらを極力固溶状態におくことで、常温強度の上昇は抑制される。

[0020]

[0021]

具体的には、オーステナイトフォーマーであるMnの添加量を低くするなどの合金元素の調整によって、鋼のAc1変態温度を800℃以上とすることが必要である。

[0022]

一方、A c 1 変態温度が900℃を超えると、圧延中に変態が進行するために 析出サイトとして有効な圧延組織が得られないことから、かえって高温強度は得 にくくなる。従ってA c 1 変態温度は800℃以上、900℃以下であることが 必要条件である。

[0023]

本発明の要旨は以下の通りである。

[0024]

(1) 質量%で、C:0.03~0.10%、Si:0.02%~0.5%、Mn:0.5%以下、A1:0.001~0.1%、Mo:0.1~0.3%、Ti:0.01~0.20%、Nb:0.01~0.20%、V:0.01~0.20%、V:0.01~0.20%を有し、残部Feおよび不可避的不純物からなり、Ac1変態温度が800~900℃であることを特徴とする、800℃高温特性に優れる常温引張強さ400~490N/mm²級耐火建築構造用鋼。

[0025]

(2) 質量%で、さらに、Cu:0.1~2.0%、Ni:0.1~0.5%、Cr:0.1~0.6%、B:0.0005~0.010%のうち1種または2種以上を含むことを特徴とする、上記(1)に記載の800℃高温特性に優れる常温引張強さ400~490N/mm²級耐火建築構造用鋼。

[0026]

(3) 質量%で、さらに、 $Mg:0.0001\sim0.01%$ 、 $Ca:0.0001\sim0.01%$ 、 $Ca:0.0001\sim0.01%$ のうち1種または2種を含むことを特徴とする、上記(1)または(2) に記載の800で高温特性に優れる常温引張強さ $400\sim490$ N/mm 2 級耐火建築構造用鋼。

[0027]

(4)上記(1)~(3)のいずれかに記載の成分組成を有する鋼片または鋳片を、1200℃以上に加熱し、930℃以下830℃以上の温度域で仕上げ板厚に対して40%以上の累積圧下率を確保する熱間圧延を行い、圧延終了後、鋼板表面の平均冷却速度が2℃/s以上で300℃以下まで冷却することを特徴とする、800℃高温特性に優れる常温引張強さ400~490N/mm²級耐火建築構造用厚鋼板の製造方法。

[0028]

【発明の実施の形態】

以下に、本発明における各成分の限定理由を説明する。なお、%は質量%を意味する。

[0029]

Cは、Mo、Nb、Ti、Vとの複合析出物(炭化物)を形成するために必須であり、少なくとも0.03%が必要である。しかし、0.10%を超えて添加をすると、Ac1変態温度が上昇するために800℃温強度が得にくく、靭性も低下するので、0.03%以上、0.10%以下に限定する。

[0030]

Siは、製鋼上脱酸元素として必要な元素であり、鋼中にO. O 2%以上の添加が必要であるが、O. 5%を超えると常温強度が高くなりすぎるので、O. 5%を上限とする。

[0031]

Mnは、常温強度に対する強化元素であるが、高温強度にはあまり効果がない。さらにAc1変態温度を800℃以上とするためには、添加を抑制する必要があり、上限を0.5%とする。

[0032]

Moは、高温強度を高める複合析出物を構成する基本元素であり、本発明鋼においては必須元素である。800℃高温強度を高めるには、0.1%以上の添加が必要であるが、0.3%を超えて添加すると常温強度が高くなりすぎるので、Mo添加量は0.1%以上、0.3%以下とする。

[0034]

N b は、高温強度を高める複合析出物の構成元素として本発明綱においては必須元素である。800℃高温強度を高めるには0.01%以上の添加が必要である。しかし、0.20%を超えて添加すると母材靭性を低下させる場合があるため、添加量は0.01%以上、0.20%以下とする。

[0035]

Tiも、高温強度を高める複合析出物の構成元素として本発明鋼においては必須元素である。800℃高温強度を高めるには0.01%以上の添加が必要である。しかし、0.20%を超えて添加すると母材靭性を低下させる場合があるため、添加量は0.01%以上、0.20%以下とする。

[0036]

Vは、高温強度を高める複合析出物の構成元素として本発明鋼においては必須元素である。800℃高温強度を高めるには0.01%以上の添加が有効である。しかし、0.20%を超えて添加すると母材靭性を低下させる場合があるため、添加量は0.01%以上、0.20%以下とする。

[0037]

Cuは、析出強化元素として添加する場合には 0. 1%以上の添加を必要とするが、2. 0%を超えて添加してもその効果は変わらないので、添加量は 0. 1%以上、2. 0%以下とする。

[0038]

Niは、母材靭性を高めるために添加する場合は 0.1%以上を必要とするが、Ac1変態温度を低下させるため、0.5%を超えて添加すると高温強度が低下する。したがってNiの添加量は 0.1%以上、0.5%以下の範囲とする。

[0039]

Crは、焼入強化元素として添加する場合には0.1%以上を要するが、0.6%を超えて添加すると常温強度が高くなりすぎるので、添加量は0.1%以上、0.6%以下とする。

[0040]

Bは、焼入性を高め、強度を得るために添加する場合には0.0005%以上の添加を必要とするが、0.010%を超えて添加してもその効果は変わらないので、添加量は0.0005%以上、0.010%以下とする。

[0041]

MgおよびCaの1種または2種を添加することにより、硫化物や酸化物を形成して母材靭性および溶接熱影響部靭性を高めることができる。この効果を得るためには、MgあるいはCaはそれぞれ0.0001%以上の添加が必要である。しかし、0.01%を超えて過剰に添加すると粗大な硫化物や酸化物が生成するため、かえって、母材靭性を低下させることがある。したがって添加量を0.0001~0.01%とする。

[0042]

上記の成分の他に不可避不純物として、P、S、Oは、母材靭性を低下させる 有害な元素であるので、その量は少ないほうがよい。望ましくは、PはO. 02 %以下、SはO. 02%以下、OはO. 005%以下とする。

[0043]

製造方法については、Nb、Ti、Vを十分に固溶させるために、鋼片または 鋳片を1200℃以上の温度で溶体化処理するか、圧延時の加熱温度を1200 ℃以上とする。さらに、930℃以下830℃以上の温度域で仕上げ板厚に対し て40%以上の累積圧下率を確保する熱間圧延を行う。

[0044]

圧延終了後、鋼板表面の平均冷却速度が2℃/s以上で300℃以下まで冷却する。この目的は、析出サイトとなる変形帯や転位を多く含む圧延組織を得、それを水冷によって凍結することにより、昇温時に微細で素地と整合なMoと、Nb、Ti、Vとの複合析出物を高密度に得ることにある。

[0045]

930℃超の温度域での圧延では、十分な圧延歪が得られない。また、830℃未満の温度域で圧延を行うと、圧延中に加工誘起析出によって析出物が析出するため、室温強度が高くなりすぎる。水冷後に鋼板を500℃以下の温度範囲で30分以内の焼戻し熱処理を行ってもよい。

[0046]

また、請求項1~3のいずれかに記載の鋼は、厚鋼板の他、鋼管、薄鋼板、形 鋼などの鋼材としても、十分に本発明の効果を享受可能である。

[0047]

【実施例】

表 1 および表 2 に示す成分組成の鋼を溶製して得られた鋼片を、表 3 および表 4 に示す製造条件にて 1 2 \sim 5 0 mm厚さの鋼板とした。これらのうち、1 - A \sim 1 4 - N (表 3) は本発明例であり、1 5 - O \sim 3 3 - A (表 4) は比較例である。

[0048]

【表1】

:	:		-		1 .				化学組成	1	(領量%)								Aci
Nu la cu	Nu la cu	Nun P	S G	වී		_	ź	Ö	§	₹	£	F	>	8	Mg	රී	z	0	温(い)
0.09 0.35 0.005	0.09 0.35 0.005	0.35 0.005	0000	-		J	1	1	624	0.02	0.05	0.03	0.05				0.006	0.0024	819
0.28 0.29 0.008	0.28 0.29 0.008	0.29 0.008	0.003	0.005		- 1	\dashv		0.18	0.007	0.05	0.15	0.05				0.003	0.0024	826
0.33 0.26	0.33 0.26 0.009	0.26 0.009	0.003	0.007	_]	\neg		0.19	0.007	90.0	0.01	0.07				9000	0.0026	888
0.31 0.41 0.015	0.31 0.41 0.015	0.41 0.015	0.015	0.008		Į	ᅱ		0.18	0.05	0.12	0.03	0.02				0.005	0.0009	845
0.15	0.15 0.19 0.008	0.19 0.008	0.008	0.012	-		_		0.20	0.03	0.05	0.09	0.03	0.0018			9000	0.0015	833
0.18 0.28 0.010	0.18 0.28 0.010	0.28 0.010	0.010	0.008					0.22	0.03	0.02	0.03	0.15		0.0031		0.003	0.0021	841
0.34 0.22 0.012	0.34 0.22 0.012	0.22 :0.012	0.012	0.005					0.48	0.05	0.09	0.04	0.03			0.0024	0.005	0.0029	825
0.15 0.25 0.008	0.15 0.25 0.008 0.010	0.25 0.008 0.010	0.008 0.010		0.71		-		0.25	0.07	0.07	0.03	0.04				0.006	0.0018	998
0.09 0.18	0.09 0.18 0.005 0.008	0.18 0.005 0.008	0.005 0.008		0.32	0.32			0.19	0.04	0.17	0.02	0.05				0.003	0.0028	820
-+	0.24 0.20 0.007	0.20 0.007		0.010			_	0.41	0.21	0.01	0.09	0.08	0.05				0.003	0.0033	829
0.41 0.20 0.009	0.41 0.20 0.009	0.20 0.009		0.008			-	_	0.28	0.09	0.05	0.02	0.07	0.0020	0.0008		0.005	0.0027	833
0.26 0.28 0.008	0.26 0.28 0.008	0.28 0.008		0.007			_	0.21	0.22	0.04	0.02	90.0	0.04		0.0022		0.003	0.0041	865
69	0.09 0.35 0.011 0.004	0.35 0.011 0.004	0.004		0.2	2	2)	0.20	0.05	90.0	0.05	0.02		0.0035		0.003	0.0022	2
0.04 0.17 0.37 0.008 0.008	0.17 0.37 0.008	0.37 0.008	-	0.006				\dashv	0.17	0.03	0.07	0.04	0.07	0.0015		0.0007	0.004	0.0015	825

[0049]

【表2】

	5個公	_	<u>@</u>	iS	혛	4	27	2	ಜ	ξ.	2	ç	9	<u></u>	اجر	ιči	2
	2 編 (5	871	788	845	154	854	822	842	832	825	088	860	098	768	761	825	3 833
	0	0.0022	0.0025	0.0028	0.0031	0.0025	0.0041	00000	0.0050	0.0041	0.0025	0.0030	0:0030	0.0029	0.0028	0.0040	0.0028
	Z	0.004	0.003	0.004	0.002	0.005	0.005	0.003	0.004	0.003	0.004	0.002	0.002	0.005	0.004	9000	0.008
	පි										·						0.018
	Mg															0.019	
	8																
	>	0.02	0.05	9.0 20.0	0.05	900	900	0.07	0.04	0.02	0.03	0.004	0.23	90.0	0.12	0.05	0.07
	i=	0.02	0.08	90.0	0.11	90.0	0.08	0.05	0.04	0.005	0.25	0.02	0.02	90.0	0.03	0.04	0.05
(質量%	£	0.08	0.02	0.05	0.03	0.07	0.03	0.005	0.28	0.09	0.11	0.04	0.04	90:0	0.03	90'0	0.05
化学組成	¥	0.07	0.05	0.05	0.04	90.0	90.0	40.0	0.02	0.08	0.02	0.008	0.008	0.07	0.02	0.03	0.05
₹ 2	£	022	0.28	0.28	0.24	0.03	0,48	0.22	0.18	0.24	0.19	0.21	0.21	0.20	0.24	0.18	0.19
	ঠ														7776		
	Ż													0.69			
	ਹੌ																Γ
	တ	0.007	0.002	0.008	0.004	0.00	0.005	0.005	0.00	9000	0.004	0.005	0.005	0.008	0.004	0.005	0.005
	ď	0.008	0.005	0.005	0.002	0.006	0.005	0.003	90.0	0.007	0.009	0.005	0.005	0.070	0.002	0.005	0.004
	Man	0.24	0.29	0.28	0.66	0.28	0.25	0.30	0.25	0.23	0.33	0.21	021	0.33	0.28	0.34	0.39
	Ω	0.41	0.25	97.0	0.32	0.38	0.50	140	0.64	0.41	0.25	0.23	0.23	0.31	600	0.22	0.27
	၁	100	0.13	90.0	0.07	90.0	0.05	900	90.0	0.05	005	0.05	0.05	0.05	700	9.0	8
	發拉	0	۵	G	22	S	1	5	>	3	×	>	7	\$	8	8	8
ΙC							뇠		数		悪						

裘2

[0050]

これらの鋼板について各種特性を表3および表4に併せて示す。それぞれの表中、下線で示すものは特許範囲を逸脱しているところ、または、各特性の目標値に達していないところである。

[0051]

【表3】

1. か一節間の財

<u></u>														
数件 Trss。 (°C)	-32	-30	-25	-72	-24	-33	-29	-31	-28	-33	-36	-40	-22	-22
800°C 降伏強さ (N/mm²)	125	115	66	105	131	129	131	137	155	161	177	105	151	125
常温(25°C) 降伏強さ (N/mm²)	350	346	299	330	328	342	333	354	438	422	411	335	440	340
板厚 (mm)	20	20	20	25	12	20	30	25	25	20	50	25	20	25
焼戻し 温度 (°C)			450	·								475		
冷却速度 (°C/sec)	33	30	14	29	#	18	21	18	24	30	6	29	25	30
930℃以下 830℃以上での 累積圧下率 (%)	46	48	50	47	22	09	₩	64	50	20	45	55	48	52
圧延時の 加熱温度 (°C)	1220	1250	1230	1230	1230	1230	1200	1220	1250	1250	1250	1250	1230	1230
強度クラス	400MPa	400МРа	400MPa	400MPa	400МРа	400MPa	400MPa	490MPa	490MPa	490MPa	490MPa	400MPa	490MPa	400MPa
本題	٧	8	ပ	a	Ξ	Ъ	g	Ŧ	1	7	×	-	Σ	Z
觀錄 記本 vo.	-	7		4	2	9	7	80	6	10	11	12	13	14
				₩		毿		溫		2				

报3

[0052]

【表4】

.	類性 Trsso (°C)	7	쒸	-24	-25	86-	-25	-38	41	-78	01	ဇ္	위	-35	-24	위	뒤	-29	ဓ္က	<u>ج</u>
	800°C 沙 降伏強さ (N/mm²)	8 1	ຄ	140	115	87	142	77	150	32	143	<u>්</u> හි	147	111	139	144	110	11	88	82
	常温(25°C) 降伏強さ (N/mm²)	255	468	485	425	341	472	305	418	295	415	408	410	401	400	384	344	285	314	288
	板厚 (mm)	20	35	20	20	25	25	20	20	82	20	20	25	25	25	22	25	25	20	20
	焼戻し 温度 (°C)						,													
	冷却速度 (°C/sec)	32	15	35	34	33	25	31	31	26	34	33	38	35	32	. 31	38	39	40	1
	930°C以下 830°C以上での 累積圧下率 (%)	55	46	50	54	48	50	45	45	41	09	46	50	50	48	45	51	55	32	20
	圧延時の 加熱温度 (°C)	1220	1230	1230	1230	1230	1230	1200	1200	1230	1250	1250	1250	1250	1250	1250	1250	1150	1220	1220
	強度クラス	400MPa	490MPa	490MPa	490MPa	400MPa	490MPa	400MPa	490МРа	400MPa	490MPa	490MPa	490МРа	490MPa	490MPa	490MPa	400MPa	400MPa	400MPa	400MPa
	銀技	0	d	Ö	R	S	1	n	۸	≥	×	λ	7	¥	AB	AC	Φ	¥	4	4
	数条。 心。	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
X V							ㅂ			粏			寒							

[0053]

常温降伏強さの目標値は、 400N/mm^2 鋼で $235 \text{N/mm}^2 \sim 355 \text{N/mm}^2$ /mm 2 、 490N/mm^2 鋼で $325 \text{N/mm}^2 \sim 445 \text{N/mm}^2$ である。

800℃降伏強さの目標値は、400N/mm 2 鋼で94N/mm 2 、490N/mm 2 800℃降伏強さの目標値は、400N/mm 2 80で94N/mm 2 、490N/mm 2 80で130N/mm 2 80のN/mm 2 80のN/mm 2 80、割性は、JIS Z2242記載の方法により破面遷移温度Trs50を測定し、目標値は、Trs50 \le -20℃とした。

[0054]

本発明例 $1-A\sim14-N$ は、いずれもAc.1変態温度が800 $C\sim900$ Cの範囲にあり、800C降伏強さは、400 N/mm^2 鋼で94 N/mm^2 以上、490 N/mm^2 鋼で130 N/mm^2 以上あり、Trs50が-20C以下である。

[0055]

これに対し、比較例15-0はCが低いため800℃降伏強さが低い。比較例 16-PはCが高いためAc1変態温度が低く、800℃降伏強さが低く、かつ 靭性も低い。比較例17-Qは、Siが高いため、比較例20-TはMoが高い ため、比較例28-ABはCrが高いため、それぞれ、常温引降伏張強さが高い

[0056]

比較例18-RはMnが高いため、比較例27-AAはNiが高いため、それぞれ、Ac1変態温度が低く、800 C降伏強さが低い。比較例19-SはMoが低いため、比較例21-UはNbが低いため、比較例23-WはTiが低いため、比較例25-YはVが低いため、それぞれ、800 C降伏強度が低い。

[0057]

比較例22-VはNbが高いため、比較例24-XはTiが高いため、比較例26-ZはVが高いため、比較例29-ACはMgが高いため、比較例30-ADはCaが高いため、それぞれ、靭性が低い。

[0058]

比較例31-Aは圧延時の加熱温度が低いため、比較例32-Aは930℃以下830℃以上の温度域での累積圧下率が低いため、比較例33-Aは冷却速度が小さいため、それぞれ、800℃降伏強度が低い。

[0059]

【発明の効果】

本発明によれば、800 ℃までの高温強度が高く、特に、高温耐火建築構造用 鋼として優れた性能を発揮する400 N / m m 2 級 および 490 N / m m 2 級 鋼 およびその厚鋼板の製造方法が提供でき、その工業界への効果は極めて大きい。

【書類名】

要約書

【要約】

【課題】 常温降伏応力が400~490N/mm²級で800℃高温特性に優れる耐火建築構造用鋼およびその厚鋼板の製造方法を提供する。

【解決手段】 質量%で、C:0.03~0.10%、Si:0.02%~0.5%、Mn:0.5%以下、A1:0001~0.1%、Mo:0.1~0.3%、Ti:0.01~0.20%、Nb:0.01~0.20%、V:0.01~0.20%を有し、残部Feおよび不可避的不純物からなり、Ac1変態温度が800~900℃であることを特徴とする、800℃高温特性に優れる常温引張強さ400~490N/mm²級耐火建築構造用鋼、およびその厚鋼板の製造方法。

【選択図】 なし

出願人履歴情報

識別番号

[000006655]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

住 所

東京都千代田区大手町2丁目6番3号

氏 名

新日本製鐵株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

OTHER: