House Price Prediction

GA DSI Project 2: Sep 27, 2021

Basazin Belhu

Introduction

Problem Statements:

A real estate company has datasets that contain qualitative and quantitative criteria of the houses they have sold. They want to improve the sales and predict the price of their future new houses.

This project is focus on develop a machine learning model that able to extract the different criteria that determining the house price. It also optimize sales price of the house as accurate as possible depending on the information feed.

- Want to know which criteria mainly determine the house price
- Create a multi linear regression to predict the price of the house based on features
- Want to know how well the model predict the price.

Initial Approach

Sale Type

SalePrice

```
train_data.shape
15]: (2051, 81)
    train_data.isnull().sum().sort_values(ascending = False)[:10]
   Pool OC
                2042
                1986
    Misc Feature
    Allev
                1911
    Fence
                1651
    Fireplace Ou
                1000
                 330
    Lot Frontage
    Garage Finish
                 114
                 114
    Garage Oual
    Garage Yr Blt
                 114
    Garage Cond
                 114
    dtype: int64
  Id
                                  int64
  PID
                                  int64
  MS SubClass
                                  int64
  MS Zoning
                                object
                               float64
  Lot Frontage
  Misc Val
                                  int64
  Mo Sold
                                  int64
  Yr Sold
                                  int64
```

Length: 81, dtype: object

object

int64

81 Variables:

- Sales price: dependent variable and the price the house was sold
- 80 Independent variables

https://memegenerator.net/instance/72837712/very-excited-dog-omg

Basic Summary Statistics

8		count	mean	std	min	25%	50%	75%	max
	PID	2051.0	7.135900e+08	1.886918e+08	526301100.0	528458140.0	5.354532e+08	907180080.0	924152030.0
	MS SubClass	2051.0	5.700878e+01	4.282422e+01	20.0	20.0	5.000000e+01	70.0	190.0
	Lot Frontage	2051.0	6.905520e+01	2.130636e+01	21.0	60.0	6.905520e+01	78.0	313.0
	Lot Area	2051.0	1.006521e+04	6.742489e+03	1300.0	7500.0	9.430000e+03	11513.5	159000.0
	Overall Qual	2051.0	6.112140e+00	1.426271e+00	1.0	5.0	6.000000e+00	7.0	10.0
	Overall Cond	2051.0	5.562165e+00	1.104497e+00	1.0	5.0	5.000000e+00	6.0	9.0
	Year Built	2051.0	1.971709e+03	3.017789e+01	1872.0	1953.5	1.974000e+03	2001.0	2010.0
	Year Remod/Add	2051.0	1.984190e+03	2.103625e+01	1950.0	1964.5	1.993000e+03	2004.0	2010.0
	Mas Vnr Area	2051.0	9.862652e+01	1.743247e+02	0.0	0.0	0.000000e+00	159.0	1600.0
	BsmtFin SF 1	2051.0	4.420848e+02	4.611950e+02	0.0	0.0	3.680000e+02	733.5	5644.0
	BsmtFin SF 2	2051.0	4.793564e+01	1.649641e+02	0.0	0.0	0.000000e+00	0.0	1474.0
	Bsmt Unf SF	2051.0	5.674515e+02	4.450228e+02	0.0	220.0	4.740000e+02	811.0	2336.0
	Total Bsmt SF	2051.0	1.057472e+03	4.499080e+02	0.0	793.0	9.940000e+02	1318.5	6110.0
	1st Fir SF	2051.0	1.164488e+03	3.964469e+02	334.0	879.5	1.093000e+03	1405.0	5095.0
	2nd Flr SF	2051.0	3.293291e+02	4.256710e+02	0.0	0.0	0.000000e+00	692.5	1862.0
	Low Qual Fin SF	2051.0	5.512921e+00	5.106887e+01	0.0	0.0	0.000000e+00	0.0	1064.0
	Gr Liv Area	2051.0	1.499330e+03	5.004478e+02	334.0	1129.0	1.444000e+03	1728.5	5642.0
	Bsmt Full Bath	2051.0	4.271087e-01	5.225887e-01	0.0	0.0	0.000000e+00	1.0	3.0
	Bsmt Half Bath	2051.0	6.338372e-02	2.515902e-01	0.0	0.0	0.000000e+00	0.0	2.0
	Full Bath	2051.0	1.577279e+00	5.492794e-01	0.0	1.0	2.000000e+00	2.0	4.0
	Half Bath	2051.0	3.710385e-01	5.010427e-01	0.0	0.0	0.000000e+00	1.0	2.0
	Bedroom AbvGr	2051.0	2.843491e+00	8.266183e-01	0.0	2.0	3.000000e+00	3.0	8.0
	Kitchen AbvGr	2051.0	1.042906e+00	2.097900e-01	0.0	1.0	1.000000e+00	1.0	3.0
	TotRms AbvGrd	2051.0	6.435885e+00	1.560225e+00	2.0	5.0	6.000000e+00	7.0	15.0
	Fireplaces	2051.0	5.909313e-01	6.385163e-01	0.0	0.0	1.000000e+00	1.0	4.0
	Garage Yr Blt	2051.0	1.868726e+03	4.541337e+02	0.0	1957.0	1.978000e+03	2001.0	2207.0
	Garage Cars	2051.0	1.775719e+00	7.653569e-01	0.0	1.0	2.000000e+00	2.0	5.0
	Garage Area	2051.0	4.734408e+02	2.161351e+02	0.0	319.0	4.800000e+02	576.0	1418.0
	Wood Deck SF	2051.0	9.383374e+01	1.285494e+02	0.0	0.0	0.000000e+00	168.0	1424.0
	Open Porch SF	2051.0	4.755680e+01	6.674724e+01	0.0	0.0	2.700000e+01	70.0	547.0
	Enclosed Porch	2051.0	2.257192e+01	5.984511e+01	0.0	0.0	0.000000e+00	0.0	432.0
	3Ssn Porch	2051.0	2.591419e+00	2.522961e+01	0.0	0.0	0.000000e+00	0.0	508.0
	Screen Porch	2051.0	1.651146e+01	5.737420e+01	0.0	0.0	0.000000e+00	0.0	490.0
	Pool Area	2051.0	2.397855e+00	3.778257e+01	0.0	0.0	0.000000e+00	0.0	800.0
	Misc Val	2051.0	5.157435e+01	5.733940e+02	0.0	0.0	0.000000e+00	0.0	17000.0
	Mo Sold	2051.0	6.219893e+00	2.744736e+00	1.0	4.0	6.000000e+00	8.0	12.0
	Yr Sold	2051.0	2.007776e+03	1.312014e+00	2006.0	2007.0	2.008000e+03	2009.0	2010.0
	SalePrice	2051.0	1.814697e+05	7.925866e+04	12789.0	129825.0	1.625000e+05	214000.0	611657.0

Check the correlation matrices

- Strong Correlation:
 - Overall quality, Gr live area,
 - Garage area, and garage cars
- Weak Correlation:
 - Year and Month of sold
- PID has a negative correlation

Target Distribution:

- Close to normal distribution
- No need to transform the target values

Bar Plots Analysis

Box Plot Analysis

Data Processing:

Training Datasets:

- 75% of our loaded training data
- The model training based on this datasets

Testing Datasets:

- It is a 25% of the loaded training data
- Used to test the model

Feature Engineering and Selection

- Drop columns that are less correlation with the sales price
- Drop columns that has mostly filled with 0
- Add a columns from year of sold year of built
- Select columns that has varies in observations
- One hot encoded some categorical features

Modeling

Baseline Model

- Based on the mean of the training datasets
- Baseline RMSE Train: 78434.16
- Baseline RMSE Test: 81625.43

Sklearn Linear Regression:

Formula

$$Y_i = f(X_i,eta) + e_i$$

 Y_i = dependent variable

f = function

 X_i = independent variable

 β = unknown parameters

 e_i = error terms

Assumptions:

- Linearity features
- Independence of observations
- Normality error distribution
- Homoscedasticity equal variance
- Multicollinearity features not linearly correlated

Metrics:

- Determine the Coefficient of the features
- Metrics RMSE and R2

Linear Reg Con't

The model training on 75% of our training data:

Significance of features:

R2 training: 0.883

R2 testing: 0.89

Accuracy of the model:

Train RMSE: 26801.87

Test RMSE: 26886.049

	columns	coef
51	Neighborhood_GrnHill	100930.502485
66	Neighborhood_StoneBr	55003.826436
59	Neighborhood_NoRidge	42510.996120
60	Neighborhood_NridgHt	40662.772054
30	Bsmt Qual_Ex	27905.119636
28	Electrical_Mix	22093.281609
73	Bsmt Exposure_Gd	18371.625990
65	Neighborhood_Somerst	14923.136764
86	Functional_Typ	14872.846750
81	Functional_Min1	13727.117475
57	Neighborhood_NPkVill	13458.819397
69	Lot Config_CulDSac	13135.274010
83	Functional_Mod	12643.435978
17	House Style_1Story	12530.062904
34	Bsmt Qual_TA	11409.569378

- R2 and RMSE is acceptable
- Some coefficients are very unlikely high and Scale the data to try different model

Lasso and GridSearch

Significance:

Strong R2 values: the 88% variability in the house prices are due to the feature we selected in our model.

• R2 for training with lasso:0.88

R2 for testing lass: 0.89

Accuracy:

Train RMSE: 26801.89Test RMSE: 26884.53

•

<pre>grid_coef_df.head()</pre>								
	col	umns		coef				
7	Gr Liv	/ Area	25244.52	5336				
6	Overal	11252.73	2672					
60	Neighborhood_Nr	idgHt	9921.37	5242				
30	Bsmt Qu	ıal_Ex	8051.23	7313				
66	Neighborhood_St	toneBr 7749.94		3942				
grid_coef_df.tail()								
gr	id_coef_df.ta	il()						
gr	id_coef_df.ta: columns	il()	coef					
g r			coef 24.117723					
	columns	-97						
8	columns Age Sold	-97 -116	24.117723					
8	columns Age Sold Exter Qual_Gd	-97 -116 -132	24.117723 86.177651					

Interprete top features:

- Gr Liv Area: A one unit increase in Gr Liv Area of the house we expect the house price increased by \$25244, all else held constant
- Overall Qual: A one unit increase in Overall Qual of the house we expect the house price increased by \$11252, all else held constant
- Neighborhood_GrnHil: A 1 unit increase in Neighborhood_GrnHil the house price predicted to increase by \$9921., all else hold constant
 or keep equal.
- Neighborhood_StoneB: A 1 unit increase in Neighborhood_StoneB of a house, we expect the price increased by \$7749, all else keep constant or equal.
- Age Sold: A 1 unit older of a house, we expect the price decreased by \$9274., all else keep constant or equal.
- Kitchen Qual_TA: A one unit decreased in Kitchen Qual_TA, we expect the house price will decreased by \$16000.
- Kitchen Qual_Gd: A one unit decreased in Kitchen Qual_Gd, we expect the house price will decreased by \$13690.

Does Assumption Fulfilled?

Conclusion

We solved the problems that we want to discover

- Want to know which criteria has main impact on determine the house price
 - a. Features with high negative and positive coefficients as strong impact in house price
- Create a multi linear regression to predict the price of the hase based on the import
 - **a.** The model we create has features that contributes 88% of variability in house price
- They want to know the performance of this model, how well the model predict the price.
 - a. The model predict the house price in unseen data and it has the smaller RMSE and high R2 values

Future Work:

Add feature interaction and develop an app with this model, so the company just need to put the features and the app will tell them the estimated prices