Shapley Values

David S. Rosenberg

NYU: CDS

December 1, 2021

Contents

Shapley Values

Shapley Values for Feature Importance

3 Shapley values for prediction functions

Shapley Values

Coalitional game¹

- Suppose there is a game played by a team (or "coalition") of players.
- A coalition game is
 - a set N consisting of n "players" and
 - a function $v: 2^N \to \mathbb{R}$, with $v(\emptyset) = 0$, assigning a value to any subset of players.
- Think of N as a team. Maybe they're trying to solve a puzzle together...
 - Says how well a subset of the team would have done, cooperating on the puzzle.
- Suppose the whole team plays and gets value v(N).
- How should that value be allocated to the individuals on the team?
- Is there a fair way to do it that reflects the contributions of each individual?

- Where we're headed is that we're going to apply this approach of "value allocation" to "coalitions" of feature "working together" to produce the final output.
- Of course, it's not really clear what it means to use a subset of features with a specific prediction function f(x).
- Various approaches to this will give us different interpretations.

Solutions to coalition games

- Let $\mathcal{G}(N)$ denote the set of all coalition games on set N.
 - i.e. a game for every possible $v: 2^N \to \mathbb{R}$.
- A solution to the allocation problem on the set $\mathfrak{G}(N)$ is a map $\Phi:\mathfrak{G}(N)\to\mathbb{R}^n$
 - gives the allocation to each of n players for any game $v \in \mathcal{G}(N)$.
- Next we'll give a particular solution, the Shapley value solution.
- Then we'll give various properties that seem desirable for a solution.
- Finally, we'll state a theorem that says the Shapley value solution
 - is the unique solution satisfying these properties.

The Shapley value solution

• The Shapley value solution is $\Phi(v) = (\phi_i(v))_{i=1}^n$ where

$$\phi_i(v) = \sum_{S \subset (N - \{i\})} k_{|S|,n} (v(S \cup \{i\}) - v(S)),$$

where $k_{s,n} = s! (n-s-1)!/n!$.

- In words, for any game $v \in \mathcal{G}(N)$, player i receives $\phi_i(v)$.
 - You can show that $\sum_{i=1}^{n} \phi_i(v) = v(N)$.
- Equivalently,

$$\phi_i(v) = \frac{1}{n!} \sum_{R} \left[v(P_i^R \cup \{i\}) - v(P_i^R) \right],$$

- where sum ranges over all n! permutations R of the players in N.
- P_i^R is the set of players in N that precede i in order R.

- The second version can be explained by the "room parable" [MP08, p. 6]: Players enter a room one at a time to form the team of n players. Each player receives the marginal contribution of their presence (could be negative). If all orders of entering the room have the same probability, then $\phi_i(v)$ is the expected value of how much player i receives.
- Yet another way to write the Shapley value is as

$$\phi_i(v) = \frac{1}{n} \sum_{s=0}^{n-1} \sum_{S \subset (N-\{i\}) \text{ and } |S|=s} {n-1 \choose s}^{-1} [v(S \cup \{i\}) - v(S)]$$

$$= \frac{1}{n} \sum_{s: \text{size of coalition coalition excluding } i \text{ of size } s} \frac{\text{marginal contribution of } i \text{ to the coalition number of coalitions of size } s \text{ excluding } i}{\text{number of coalitions of size } s \text{ excluding } i}.$$

Efficiency and symmetry properties

• **Efficiency**: For any $v \in \mathcal{G}(N)$,

$$\sum_{i\in N} \phi_i(v) = v(N).$$

• **Symmetry**: For any $v \in \mathcal{G}(N)$, if players i and j are equivalent in the sense that

$$v(S \cup \{i\}) = v(S \cup \{j\})$$

for every subset S of players that excludes i and j, then

$$\phi_i(v) = \phi_j(v).$$

Also called "equal treatment of equals".

Linearity property

• Linearity: For any $v, w \in \mathcal{G}(N)$, we have

$$\phi_i(v+w) = \phi_i(v) + \phi_i(w)$$

for every player *i* in *N*. Also, for any $a \in \mathbb{R}$,

$$\phi_i(av) = a\phi_i(v)$$

for every player *i* in *N*.

- \bullet v+w is the game resulting from summing the outcomes of v and w for each coalition.
- ullet av is the game resulting from scaling up outcomes of v by the factor a
- (These can be useful for prediction functions that are linear combinations of other functions, such as gradient boosted regression trees.)

David S. Rosenberg (NYU: CDS)

Null player property

- A player *i* is **null** in v if $v(S \cup \{i\}) = v(S)$ for all coalitions $S \subset N$.
- If player i is null in a game v, then $\phi_i(v) = 0$.

• (In the context of machine learning, this is called the Dummy property. Presumably because if we replace players by features, a dummy feature has no information, and we want it to get importance 0?)

Shapley value theorem (Shapley, 1953)

Theorem

The Shapley value solution $\Phi(v) = (\phi_i(v))_{i=1}^n$ defined previously is the unique solution for $\mathfrak{G}(N)$ that satisfies the

- efficiency, symmetry, linearity, and null properties.
- Proof: See references.

Example: Shapley values for constant game

- Suppose $v(S) \equiv c$ for any coalition $S \subset N$, except $v(\emptyset) = 0$.
- Then for any $i, j \in N$, $S \subset (N \{i, j\})$, we have

$$v(S \cup \{i\}) = v(S \cup \{j\}) = c,$$

which implies $\phi_1(v) = \cdots = \phi_n(v)$ by the symmetry property.

By the efficiency property,

$$\sum_{i\in\mathcal{N}} \Phi_i(v) = v(\mathcal{N}) = c.$$

• Therefore, $\phi_1(v) = \cdots = \phi_n(v) = c/n$.

Example: game plus a constant

- Suppose we have a game v(S) on N
 - with Shapley values $\phi_1(v), \ldots, \phi_n(v)$.
- Suppose we shift the rewards, so v'(S) := v(S) + c.
- What are the Shapely values for v'(S)?
- Let $w(S) \equiv c$ for $S \subset N$, except $w(\emptyset) = 0$.
- Then v'(S) = v(S) + w(S) and by linearity,

$$\phi_i(v') = \phi_i(v+w) = \phi_i(v) + \phi_i(w) = \phi_i(v) + \frac{c}{n}.$$

• So if we shift by a constant, the shift is divided equally among the players.

Shapley Values for Feature Importance

13/32

Shapley values for features

- Shapley values are about *n*-player games.
- In particular, they are about set functions on a set of *n* elements.
- How can we connect this to the feature importance in machine learning?
- Easy part: each "player" is a feature.
- Hard part: what's the set function?
- We have a prediction function,
 - but it doesn't naturally apply to subsets of features.
- What if we start earlier:
 - building a model with a subset of features

Attribute R^2 to features

APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY Appl. Stochastic Models Bus. Ind., 2001; 17:319–330 (DOI: 10.1002/asmb.446)

Analysis of regression in game theory approach

Stan Lipovetsky*,† and Michael Conklin

Custom Research Inc., 8401 Golden Valley Road, Minneapolis, MN 55427, U.S.A.

- An early application of Shapley values to machine learning [LC01].
- \bullet Applied Shapley values to allocate the R^2 performance measure to features
 - for linear regression, though we'll present the obvious generalization.
- Essentially the same approach was actually done much earlier,
 - without making the connection to Shapley values, e.g. [Kru87].

Attribute model performance to features

- Let R(f) be some performance measure of a prediction function f.
- Let $A : \mathcal{D} \mapsto f$ represent a model training algorithm that
 - \bullet takes a training dataset ${\mathcal D}$ and
 - produces a prediction function f.
- Let $\{1, \ldots, d\}$ index the features available for a problem.
- Let \mathcal{D}_S denote the dataset with just the features indexed by $S \subset \{1, \ldots, d\}$.
- Define the set function $v(S) := R(\mathcal{A}(\mathcal{D}_S))$ and $v(\emptyset) = 0$.
- For any subset of features, v(S) gives
 - the performance of the model trained on just that subset of features.

Lipovetsky and Conklin (2001)

- In [LC01],
 - performance measure was R^2
 - model class was linear models.
- They used only 7 features, and linear models train quickly,
 - so computation wasn't an issue.
- Generally speaking, need to train 2^d models.
- Not practical in most machine learning settings.

Monte Carlo approach

• The Shapley values in our scenario are

$$\phi_i(v) = \frac{1}{d!} \sum_{R} \left[v(P_i^R \cup \{i\}) - v(P_i^R) \right],$$

- where sum ranges over all n! permutations R of the players in N.
- P_i^R is the set of players in N that precede i in order R.
- ullet We can approximate this by averaging a random sample of M permutations.
- This still requires training Md models, which may not be practical for large d.
- This whole approach is only realistic when d is small and training and evaluation are fast.

Connection to LOCO

- This approach is most related to LOCO from an earlier module.
- We're not saying anything about a particular prediction function.
- We're saying something about the importance of each feature
 - in a particular dataset,
 - for a particular model training procedure
- LOCO was about the effect of removing each single feature.
- Here we have something that seems a bit deeper,
 - though hard to say exactly what machine learning question it's answering.

Shapley values for prediction functions

20 / 32

Interpreting a prediction function

- Suppose we want to use Shapley values
 - to interpret a particular prediction function f(x).
- It's not obvious what it means to evaluate f using a subset of features.
- This is not a standard operation in machine learning.
- Let's write x_S for the features corresponding to $S \subset \{1, ..., d\}$.
- Let's write x_C for the features corresponding to the complement $\{1, \ldots, d\} S$.
- So if $f(x) = f(x_S, x_C)$, we need a definition for $f_S(x_S)$.

Two approaches to defining $f_S(x_S)$

- Two approaches, as described by [CJLL20, JMB19].
- Conditional expectation (or "observational conditional expectation")

$$f_S(x_S) := \mathbb{E}[f(x_S, X_C) | X_S = x_S].$$

Marginal expectation (or "interventional conditional expectation")

$$f_S(x_S) := \mathbb{E}[f(x_S, X_C)]$$

= $\mathbb{E}[f(x_S, X_C) | do(X_S = x_S)],$

where the do-operator is beyond our scope, but see [JMB19].

- Conditional expectation keeps our evaluations $f(x_S, x_C)$ on the data manifold.
- Marginal expectation will potentially evaluate $f(x_S, x_C)$ off the data manifold,
 - when we have dependencies between x_S and x_C .

(Note: we discussed exactly these definitions of $f_X(x_S)$ in the feature importance module.)

Independent features

• Note that when X_S and X_C are independent, we have

$$\mathbb{E}\left[f(x_S, X_C) \mid X_S = x_S\right] = \mathbb{E}\left[f(x_S, X_C)\right].$$

- So the conditional expectation and marginal expectation methods are equivalent.
- In the literature, some works (e.g. [LL17, AJL21])
 - see conditional expectation as the preferred approach.
 - but use marginal expectation as an approximation (e.g. KernSHAP in [LL17]).
- Others argue that marginal expectations is what we wanted in the first place.
 - Since it gives a more interventinal interpretation.

Estimating $f_S(x_S)$

- We generally don't know the joint distribution of X,
 - so we can't exactly compute the expectations needed for $f_S(x_S)$ (either version).
- For the marginal version, we can use the same estimate as for partial dependency:

$$\hat{f}_S(x_S) = \frac{1}{n} \sum_{i=1}^n f(x_S, x_{Ci}),$$

where $(x_{C1},...,x_{Cn})$ are the *n* instantiations of x_C in a dataset \mathfrak{D} .

- For consistency, we'll also define $\hat{f}_{\emptyset} = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$.
- For conditional expectation, this estimation is much more challenging.
 - In general, seems to require training 2^d regression models.
 - (TreeSHAP uses a special property of trees to kinda approximate this.)

Shapley values for prediction function

- Suppose we have an estimate $\hat{f}_S(x_S)$ for each $S \subset \{1, \ldots, d\}$.
- Then we can define the set function for our "game" on $\{1, \ldots, d\}$ as

$$v(S) := \hat{f}_S(x_S)$$

 $v(\emptyset) := 0.$

• Frequently it's defined as

$$v(S) := \hat{f}_S(x_S) - \hat{f}_\emptyset$$

 $v(\emptyset) := 0.$

- That way, Shapley values indicate how each feature
 - pulls the prediction away from the mean / "no information" prediction.

Linear case²

- Consider a linear regression model $f(x) = \beta_0 + \sum_{j=1}^{M} \beta_j x_j$.
- Consider the Shapley values based on marginal expectation,
 - or equivalently, based on conditional expectation with independent features.
- Let β_S be the vector of coefficients corresponding to X_S , and similarly for β_C .

$$f_{S}(x_{S}) = \mathbb{E}[f(x_{S}, X_{C})]$$

$$= \mathbb{E}[\beta_{0} + \beta_{S}^{T} x_{S} + \beta_{C}^{T} X_{C}]$$

$$= \beta_{0} + \beta_{S}^{T} x_{S} + \beta_{C}^{T} \mathbb{E}[X_{C}]$$

Let's define the set function as

$$v(S) = f_S(x_S) - \mathbb{E}[f(X)]$$

 $v(\emptyset) = 0$

²Based on [AJL21, App B.1].

Shapley value linear case

• Let $C_i = C - \{i\}$. Then we have

$$v(S + \{i\}) - v(S) = \beta_0 + \beta_S^T x_S + \beta_i x_i + \beta_{C_i}^T \mathbb{E}[X_{C_i}] - \mathbb{E}[f(X)]$$
$$- (\beta_0 + \beta_S^T x_S + \beta_i \mathbb{E}[X_i] + \beta_{C_i}^T \mathbb{E}[X_{C_i}] - \mathbb{E}[f(X)])$$
$$= \beta_i (x_i - \mathbb{E}[X_i]).$$

- Note this is independent of S.
- Let's verify that this makes sense when $S = \emptyset$.
- Let C consist of all features except i:

$$v(\lbrace i\rbrace) - v(\emptyset) = \beta_0 + \beta_i x_i + \beta_C^T \mathbb{E}[X_C] - \mathbb{E}[f(X)]$$

= $\beta_0 + \beta_i x_i + \beta_C^T \mathbb{E}[X_C] - \mathbb{E}[\beta_0 + \beta_i X_i + \beta_C^T X_C]$
= $\beta_i (x_i - \mathbb{E}[X_i]).$

• Note that if we had defined $v(S) = f_S(x_S)$, without subtracting off $\mathbb{E}[f(X)]$, then

$$v(S+\{i\})-v(S)=\beta_i(x_i-\mathbb{E}[X_i])$$

would only hold for $S \neq \emptyset$. Which would have complicated the subsequent calculations.

• Once we know the Shapley values for $v(S) = f_S(x_S) - \mathbb{E}[f(X)]$ As we know, all the Shapley values would just increase by β_0/M if we used $v(S) = f_S(x_S)$.

Shapley value linear case

• So the Shapley value is

$$\varphi_{i}(v) = \sum_{S \subset (N-\{i\})} k_{|S|,n}(v(S \cup \{i\}) - v(S))$$

$$= \beta_{i}(x_{i} - \mathbb{E}[X_{i}]) \sum_{S \subset (N-\{i\})} k_{|S|,n}$$

$$= \beta_{i}(x_{i} - \mathbb{E}[X_{i}]),$$

where the last step we leave as an easy exercise.

References

Resources

- The most common citation for the proof of the Shapley value theorem is Shapley's paper [Sha53]. These slides provide a proof of the Shapley value theorem, and I think the first few sections of [MP08] are easier to read than Shapley's paper.
- The result of SHAP See [AJL21, App B.1]

- [AJL21] Kjersti Aas, Martin Jullum, and Anders Løland, *Explaining individual predictions when features are dependent: More accurate approximations to shapley values*, Artificial Intelligence **298** (2021), 103502.
- [CJLL20] Hugh Chen, Joseph D. Janizek, Scott Lundberg, and Su-In Lee, *True to the model or true to the data?*, CoRR (2020).
- [JMB19] Dominik Janzing, Lenon Minorics, and Patrick Blöbaum, Feature relevance quantification in explainable ai: a causal problem, CoRR (2019).
- [Kru87] William Kruskal, *Relative importance by averaging over orderings*, The American Statistician **41** (1987), no. 1, 6–10.
- [LC01] Stan Lipovetsky and Michael Conklin, *Analysis of regression in game theory approach*, Applied Stochastic Models in Business and Industry **17** (2001), no. 4, 319–330.

References II

- [LL17] Scott Lundberg and Su-In Lee, *A unified approach to interpreting model predictions*, 2017, pp. 4765–4774.
- [MP08] Stefano Moretti and Fioravante Patrone, *Transversality of the shapley value*, TOP **16** (2008), no. 1, 1–41.
- [Sha53] L. S. Shapley, *17. a value for n-person games*, Contributions to the Theory of Games (AM-28), Volume II, ch. 17, pp. 307–318, Princeton University Press, 1953.
- [Wik20] Wikipedia contributors, Shapley value Wikipedia, the free encyclopedia, 2020, [https://en.wikipedia.org/wiki/Shapley_value; accessed 26-April-2021].