# Truonw Cong Nghe Thong Tin

duc viet

may 2022

## Bài 1

**a.** 
$$1+3+5+7+\cdots+999$$
  
**b.**  $2+4+8+16+\cdots+1024$   
**c.**  $\sum_{i=3}^{n+1} 1$   
**d.**  $\sum_{i=3}^{n+1} i$   
**e.**  $\sum_{i=0}^{n-1} i(i+1)$   
**f.**  $\sum_{j=1}^{n} 3^{j+1}$   
**g.**  $\sum_{i=1}^{n} \sum_{j=1}^{n} ij$   
**h.**  $\sum_{i=1}^{n} \frac{1}{i(i+1)}$ 

Câu d. 
$$\sum_{i=3}^{n+1} i = \sum_{i=1}^{n+1} i - \sum_{i=1}^{2} i = \frac{(n+1)(n+2)}{2} - 3 = \frac{1}{2}x^2 + \frac{3}{2} - 2$$

Câu e. 
$$\sum_{i=0}^{n-1} i(i+1) = \sum_{i=0}^{n-1} (i^2 + i)$$
$$= \sum_{i=0}^{n-1} i^2 + \sum_{i=0}^{n-1} i = \frac{1}{3}(n-1)^3 + \frac{1}{2}(n-1)^2$$

Câu i. 
$$\sum_{j \in (2,3,5)} j^2 + j$$

# Bài 4

- Xét vòng while ngoài: Ta có:
  - 2 + 4 \* n(G)
  - n + 1(SS)

- Xét vòng while trong : Đặt  $\alpha_i$  là số vòng lặp của while trong, ta có:
  - $2 * \alpha_i$  (G)
  - $\alpha_i + 1$  (SS)

Suy ra: 
$$\begin{cases} G(n) = 2 + 4n + \sum_{i=1}^{n} 2\alpha_i \\ SS(n) = n + 1 + n + \sum_{i=1}^{n} \alpha_i \end{cases}$$

Xét  $\alpha_i$  ta có:  $\alpha_i$  là số con j với  $j \leq i$ , Bước tăng theo tỉ lệ: 2\*j  $\Rightarrow \alpha_i$  là số phần tử của tập hợp  $\{2^0, 2^1, 2^2, 2^3...\} = k (\in 0 < 2^k \leq i)$   $\Leftrightarrow 1 \leq 2^k \leq i$   $\Leftrightarrow 0 \leq k \leq \log_2 i$   $\Rightarrow \alpha_i = \log_2 i + 1$  Suy ra:  $\begin{cases} G(\mathbf{n}) = 2 + 4n + \sum_{i=1}^n 2(\log_2 i + 1) \\ SS(\mathbf{n}) = n + 1 + n + \sum_{i=1}^n (\log_2 i + 1) \end{cases}$   $\Leftrightarrow \begin{cases} G(\mathbf{n}) = 2 + 6n + \log_2 n! \\ SS(\mathbf{n}) = 3n + 1 + \log_2 n! \end{cases}$ 

#### Bài 5

```
\begin{aligned} &sum = 0; i = 1; \\ &while (i \le n) \\ \{ & j = n - i; \\ &while (j \le 2*i) \\ \{ & sum = sum + i*j; \\ & j = j + 2; \\ \} \\ & k = i; \\ &while (k > 0) \\ \{ & sum = sum + 1; \\ & k = k / 2; \\ \} \\ & i = i + 1; \\ \} \end{aligned}
```

- Xét vòng while ngoài: Ta có:

• 
$$2 + 3 * n(G)$$

• 
$$n + 1(SS)$$

- Xét vòng  $while_{(1)}$  trong : Đặt  $\alpha_i$  là số vòng lặp của while, ta có:

• 
$$2*\alpha_i$$
 (G)

• 
$$\alpha_i + 1$$
 (SS)

- Xét vòng  $while_{(2)}$  trong : Đặt  $\beta_i$  là số vòng lặp của while, ta có:

• 
$$2 * \beta_i$$
 (G)

• 
$$\beta_i + 1$$
 (SS)

Suy ra: 
$$\begin{cases} G(n) = 2 + 4n + \sum_{i=1}^{n} 2\alpha_i + \sum_{i=1}^{n} 2\beta_i \\ SS(n) = n + 1 + n + n + \sum_{i=1}^{n} \alpha_i + \sum_{i=1}^{n} \beta_i \end{cases}$$

Xét  $\alpha_i$  ta có:

 $\alpha_i$  là số con j<br/> với  $j \leq 2 * i$  , Bước tăng theo tỉ lệ: 2

$$\Rightarrow \alpha_i = \frac{3i-n}{2}$$

Ta có: Vòng lặp  $while_{(1)}$  trong chỉ thực hiện khi  $j \leq 2*i \iff n/3 \leq i$ 

$$\begin{cases} \alpha_i = \frac{3i-n}{2} , i \ge n/3 \\ \alpha_i = 0 , \text{còn lại} \end{cases}$$

Xét  $\beta_i$  ta có:

 $\beta_i$  là số con k với k>0, Bước giảm theo tỉ lệ: 1/2

$$\Rightarrow \beta_i$$
 là số phần tử của tập hợp  $\{\frac{i}{2^0},\frac{i}{2^1},\frac{i}{2^2},\frac{i}{2^3}...\}=k(\in 0<\frac{i}{2^k}\leq i)$ 

$$\Leftrightarrow 1 \leq \frac{i}{2^k} \leq i$$

$$\Leftrightarrow 1 \le 2^k \le i$$

$$\Leftrightarrow 0 \le k \le \log_2 i$$

$$\Rightarrow \beta_i = \log_2 i + 1$$
 (c/m tương tự câu 4)

Suy ra: 
$$\begin{cases} G(n) = 2 + 4n + \sum_{i=n/3}^{n} 2^{\frac{3i-n}{2}} + \sum_{i=1}^{n} 2(\log_2 i + 1) \\ SS(n) = n + 1 + n + n + \sum_{i=n/3}^{n} \frac{3i-n}{2} + \sum_{i=1}^{n} (\log_2 i + 1) \end{cases}$$
$$\Leftrightarrow \begin{cases} G(n) = 2 + 6n - 3 * (\frac{1}{2}n^2 + 1) + \log_2 n! \\ SS(n) = 4n + 1 - (\frac{1}{2}n^2 + 1) + \log_2 n! \end{cases}$$

## Bài 9



- Xét vòng while ngoài: Ta có:
  - 2 + 3 \* n(G)
  - n + 1(SS)
- Xét vòng while trong : Đặt  $\alpha_i$  là số vòng lặp của while, ta có:
  - $3*\alpha_i$  (G)
  - $\alpha_i + 1 \; (SS)$

Suy ra: 
$$\begin{cases} G(n) = 2 + 3n + \sum_{i=1}^{n} 3\alpha_i \\ SS(n) = n + 1 + n + \sum_{i=1}^{n} \alpha_i \end{cases}$$

Xét  $\alpha_i$  ta có:

 $\alpha_i$  là số con j<br/> với  $j \leq i$  , Bước tăng theo tỉ lệ: j = j + k + 2

 $\Rightarrow \alpha_i$  là số phần tử  $\in \{1,4,9,16,25,\ldots\}$ 

Hay  $1 \le k^2 \le i$ 

$$\Rightarrow \alpha_i = \sqrt{i}$$

Vây: 
$$\begin{cases} G(n) = 2 + 3n + \sum_{i=1}^{n} 3\sqrt{i} \\ SS(n) = n + 1 + n + \sum_{i=1}^{n} \sqrt{i} \end{cases}$$

$$\Leftrightarrow \begin{cases} G(n) = 2 + 3n + \frac{3}{1/2+1} * n^{k+1} \\ SS(n) = n + 1 + n + \frac{1}{1/2+1} * n^{k+1} \end{cases}$$