QUESTION (HD0310): If *D* is completely integrally closed then how is *D* integrally closed?

ANSWER: That a "comletely integrally closed is integrally closed" follows from the general fact that "integral" implies "almost integral". You can read on integral elements and almost integral elements from sections 9 through 13 of [Gilmer, Multiplicative ideal theory, Marcel Dekker, 1972]. As your question is related to integral domains. I assume that by "D is (completely) integrally closed" you mean D is (completely) integrally closed in the field of fractions K of D.

In this set up D is completely integrally closed in K if for $x \in K$ such that there is a nonzero element $d \in D$ with $dx^n \in D$ for all natural numbers n, we have $x \in D$. On the other hand D is integrally closed if for $x \in K$ such that there are $a_0, a_1 \dots a_{n-1} \in D$ with $x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 = 0$ we have $x \in D$.

Now let D be completely integrally closed in K and let x be integral over D. (We shall show that $x \in D$.) Now x being integral over D means that $x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 = 0$ for some n.

From (A) it follows that $x^n \in Dx^{n-1} + ... + Dx^2 + Dx + D$.

We can use induction, and (A) to show that $x^r \in Dx^{n-1} + ... + Dx^2 + Dx + D$ for all natural numbers r.

[[We already know that $x^i \in Dx^{n-1} + ... + Dx^2 + Dx + D$ for $0 \le i \le n$. (Taking $x^0 = 1$) We complete the task by showing that $S_k : x^{n+k} \in Dx^{n-1} + ... + Dx^2 + Dx + D$ is true for all $k \ge 0$. Now S_k is true for k = 0, as we have already seen in (A). Suppose S_k true for some $k \ge 0$. Then $x^{n+k} \in Dx^{n-1} + ... + Dx^2 + Dx + D$.

for $d_{n-1}, \ldots, d_2, d_1, d_0 \in D$.

Multiply both sides of (B) by x to get

Substitute the value of x^n from (A) in the right hand side of (C) to get

$$x^{n+k+1} = d_{n-1}(-a_{n-1}x^{n-1} - \dots - a_1x - a_0) + \dots + d_2x^3 + d_1x^2 + d_0x.$$

Simplify and organize as a sum of powers of \boldsymbol{x} to get an expression like.

$$x^{n+k+1} = u_{n-1}x^{n-1} + ... + u_2x^2 + u_1x + u_0$$
 where, for instance, $u_{n-1} = -d_{n-1}a_{n-1}$ and $u_0 = -d_{n-1}a_0$.

But this means that S_{k+1} is true. So, we have shown that S_0 is true and S_k true implies that S_{k+1} is true and so by induction S_k is true for all integers $k \ge 0$. But this means that $x^r \in Dx^{n-1} + ... + Dx^2 + Dx + D$ for all integers $r \ge 0$.

Now as $x \in K$ we can write $x = \frac{u}{v}$, where $v \neq 0$, $u \in D$. Now, if we put $d = v^n \in D$ we find that $dx^i \in D$ for all i with $0 \le i \le n$. But then $dDx^i \subseteq D$ for all i with $0 \le i \le n$. Consequently from $x^r \in Dx^{n-1} + \ldots + Dx^2 + Dx + D$ we get $dx^r \in dDx^{n-1} + \ldots + dDx^2 + dDx + dD \subseteq D$. Hence for each nonnegative integer r we have $dx^r \in D$. Because D is completely integrally closed this means that $x \in D$. Since x is an arbitrary element of K that we assumed was integral over D we conclude that D is integrally closed.

Note. The material within square brackets [[]], is the proof by induction. If you do not need it skip it.

Comments:

1. (David Anderson): It would be easier to see that integral implies almost integral if you know that x is integral over D if and only if $x \in I : I$ for some finitely generated fractional ideal I of D and that x is almost integral over D if and only if $x \in I : I$ for some fractional ideal I. (Here $I: I = \{x \in K : xI \subseteq I\}$)