UXREROLLING (brand-new rerolling algorithm)

Toshihiro KONDA

Aim

- UXREROLLING
 - Consider optimal loop-rerolling algorithm
 - We expect the following effects
 - Maximum use of instruction cache (I\$)
 - Promote loop vectorization
 - legacy code performance improvement

Background

- Generally known "loop rerolling" algorithm
 - It can only reroll relatively simple loops.

- ▶ Why?
 - With existing technology,
 - difficult to apply to complex loops
 - need a complicated logic
 - etc.

Solution 1. (Premise)

- Unrolled code···
 - Regardless of manual, automatic.
 - Number of unrolls is obtained by applying Greatest
 Common Divisor algorithm (GCD) to the following
 - Increment value of induction variable,
 - Index indicating the position of the array,
 - Array type

Solution 2. (Preparation)

- From unrolled code, generate an operation tree representing a chain of operations
- A fixed algorithm that does not apply deformation (tree height reduction, etc.) is used for generating the operation tree
 - As a result, it is possible to deform while maintaining the original structure

Solution 3. (Preparation)

- A depth-first search is performed on the operation tree and it is taken as "operation character string"
- Whether to trace either the left subtree or the right subtree is fixed, which is OK.
 - Uniqueness is preserved.
- Uniqueness can be guaranteed by including (mainly) characteristics of load instructions.

Solution 4. ("rerolling possibility")

- It is possible to calculate similarity with three parameters of
 - Longest Common Subsequence (LCS),
 - Edit distance, and
 - String length
- among plural "character strings" that can be created.
- e.g.
 - ▶ When "DEBFGCA", "BFGCA", and "BCA" are given,
 - When calculating the LCS length starting from the shortest "character string", the three LCS lengths agree.
 - And editing distance is different but editing to the same "character string" is possible only by inserting.

Solution 5. ("rerolling possibility")

- Definition
 - Common LCS length
 - It is possible to "edit" the same "character string" by just inserting
 - Define this group to be rerollable.
- Similarly, if there are several groups of the same number of "character strings"
 - It is judged whether to have "rerolling possibility" or not by considering calculation of induction variables, that all are "rerollable".

Solution 6. ("loop-rerollable")

Definition

- When there was "rerolling possibility",
 - Depending on the index of the array operated by either load instructions or store instructions (store easy),
 - Make sure that all pairs with "rerolling possibility" are accessing the array with the same increment value ratio (depending on the type of variable).
- When this is possible, it is defined as "looprerollable".

Solution 7. (loop rerolling process)

- "Character string" is made redundant (common) by "insertion operation only" out of the algorithms for calculating the edit distance.
 - In order to reproduce the original operation in the case of the operation tree from which the common expression is removed.
- When performing the insertion operation, it is necessary to keep the shape of the operation tree in order to guarantee the uniqueness.
 - Therefore, we add the shape information of the tree and make the operation tree "character string".

Solution 8. (loop rerolling process)

- When loops are "loop-rerollable",
 - It is possible to reproduce the operation tree before applying loop unrolling based on shape information.
 - If the shape can be reproduced, since loops are "loop-rerollable" afterward, loop rerolling can actually be performed.
- ▶ This is the essence of the algorithm.

Additional functions

- When the operation is included in the tree "only" other than the largest operation tree,
 - with predicate, or ternary operator, it is possible to do more than simply loop rerolling.
 - It is also easier by treating loops as "character strings".

Points to keep in mind

- Disadvantages to be expected
 - Depending on
 - Number of loops to iterate and
 - **▶ SIMD** width,
- there is a possibility that the effect when common expression is taken may become larger.

In order to prevent it, it is necessary to adopt a good estimate beforehand.

Conclusion

- With conventionally known methods, loop rerolling in complicated cases is quite difficult.
- ▶ By this method···
 - By analyzing the similarity of operations over a plurality of groups, "easy" loop rerolling can be applied.
- At the same time the original purpose is also achieved
 - Maximum use of instruction cache (I\$)
 - Promote loop vectorization
 - legacy code performance improvement

Thanks.

