Reasoning with discrete time

Manuel Bodirsky, Barnaby Martin, **Antoine Mottet**QuantLA Workshop 2016

- Find results,
- Write abstract,
- Write slides,
- ► Rehearse,

- ► Find results, before writing the slides
- ► Write abstract, before August 26
- ► Write slides, before your talk
- ► Rehearse, after writing the slides, before the talk

- ► Find results, before writing the slides
- ► Write abstract, before August 26
- ► Write slides, before your talk
- ► Rehearse, after writing the slides, before the talk



- ► Find results, before writing the slides
- ▶ Write abstract, at least 2 days before August 26
- ► Write slides, at least 2 days before your talk
- ► Rehearse, after writing the slides, before the talk



## Definition (Reduct)

 $\Gamma, \Delta$  relational structures with same domain.  $\Delta$  is a reduct of  $\Gamma$  if the relations of  $\Delta$  can be defined by first-order formulas in  $\Gamma$ .

## Definition (Reduct)

 $\Gamma, \Delta$  relational structures with same domain.  $\Delta$  is a reduct of  $\Gamma$  if the relations of  $\Delta$  can be defined by first-order formulas in  $\Gamma$ .

# Example (Reducts of $(\mathbb{Z},<)$ )

 $ightharpoonup x \le y$ :  $x < y \lor x = y$ .

## Definition (Reduct)

 $\Gamma, \Delta$  relational structures with same domain.  $\Delta$  is a reduct of  $\Gamma$  if the relations of  $\Delta$  can be defined by first-order formulas in  $\Gamma$ .

# Example (Reducts of $(\mathbb{Z},<)$ )

- ightharpoonup y = x + 1:  $x < y \land \forall z (x < z \Rightarrow y \leq z)$ .

## Definition (Reduct)

 $\Gamma, \Delta$  relational structures with same domain.  $\Delta$  is a reduct of  $\Gamma$  if the relations of  $\Delta$  can be defined by first-order formulas in  $\Gamma$ .

# Example (Reducts of $(\mathbb{Z},<)$ )

- $\triangleright$   $x \le y$ :  $x < y \lor x = y$ .
- $y = x + k: \exists z_0, \dots, z_k (\bigwedge z_{i+1} = z_i + 1 \land z_0 = x \land z_k = y)$

## Definition (Reduct)

 $\Gamma, \Delta$  relational structures with same domain.  $\Delta$  is a reduct of  $\Gamma$  if the relations of  $\Delta$  can be defined by first-order formulas in  $\Gamma$ .

# Example (Reducts of $(\mathbb{Z},<)$ )

- $\triangleright$   $x \le y$ :  $x < y \lor x = y$ .
- $y = x + 1: x < y \land \forall z (x < z \Rightarrow y \le z).$
- y = x + k:  $\exists z_0, \dots, z_k (\bigwedge z_{i+1} = z_i + 1 \land z_0 = x \land z_k = y)$
- $\triangleright$   $y \le x + k$ :  $\exists z (z = x + k \land y \le z)$

4/1

## Definition (Reduct)

 $\Gamma, \Delta$  relational structures with same domain.  $\Delta$  is a reduct of  $\Gamma$  if the relations of  $\Delta$  can be defined by first-order formulas in  $\Gamma$ .

# Example (Reducts of $(\mathbb{Z},<)$ )

- $ightharpoonup x \le y$ :  $x < y \lor x = y$ .
- $y = x + 1: x < y \land \forall z (x < z \Rightarrow y \le z).$
- ▶ y = x + k:  $\exists z_0, ..., z_k (\bigwedge z_{i+1} = z_i + 1 \land z_0 = x \land z_k = y)$
- $\bigvee y \leq x + k$ :  $\exists z (z = x + k \land y \leq z)$
- $\blacktriangleright$   $x \le \max(y + k, z + k')$ :  $x \le y + k \lor x \le z + k'$

 $\Gamma = (D; R_1, \dots, R_s)$ , called the template of the problem.

**Input:** a sentence  $\Phi := \exists x_1, \dots, x_n . \bigwedge T_i(\mathbf{y}_i), T_i \in \{R_1, \dots, R_s\}.$ 

**Question:** Is  $\Phi$  true in  $\Gamma$ ?

 $\Gamma = (D; R_1, \dots, R_s)$ , called the **template** of the problem. **Input:** a sentence  $\Phi := \exists x_1, \dots, x_n . \bigwedge T_i(\mathbf{y}_i), T_i \in \{R_1, \dots, R_s\}$ . **Question:** Is  $\Phi$  true in  $\Gamma$ ?

► When *D* is finite, always in NP.

5/1

 $\Gamma = (D; R_1, \dots, R_s)$ , called the **template** of the problem. **Input:** a sentence  $\Phi := \exists x_1, \dots, x_n \land T_i(\mathbf{y}_i), T_i \in \{R_1, \dots, R_s\}$ .

**Question:** Is  $\Phi$  true in  $\Gamma$ ?

- ► When *D* is finite, always in NP.
- ▶ When *D* is infinite, can be undecidable.

 $\Gamma = (D; R_1, \dots, R_s)$ , called the **template** of the problem. **Input:** a sentence  $\Phi := \exists x_1, \dots, x_n \land T_i(\mathbf{y}_i), T_i \in \{R_1, \dots, R_s\}$ .

**Question:** Is  $\Phi$  true in  $\Gamma$ ?

- ▶ When *D* is finite, always in NP.
- ▶ When *D* is infinite, can be undecidable.
- ▶ Γ reduct of  $(\mathbb{Z}, <) \Rightarrow \mathsf{CSP}(\Gamma)$  is in NP.

$$x \leq \max(y, z) + k$$

$$x \leq \max(y, z) + k$$



Feasibility in  $\mathbb{Z}^n$  of a system of constraints of the form:

$$x \leq \max(y, z) + k$$



Equivalent to deciding winner in deterministic mean-payoff games.

In P, if k given in unary.

Fix  $d \in \mathbb{N}$ ,  $d \ge 1$ .

$$a \le x - y \le b, x = y \mod d$$

Fix  $d \in \mathbb{N}$ ,  $d \ge 1$ .

$$a \le x - y \le b, x = y \bmod d$$



Fix  $d \in \mathbb{N}$ ,  $d \ge 1$ .

$$a \le x - y \le b, x = y \mod d$$



- ▶ If d = 1, difference logic
- For all  $d \ge 1$ , in P.

## Theorem (Bodirsky, Kára, JACM 2010)

Let  $\Gamma$  be a reduct of  $(\mathbb{Q},<)$ . Then  $\mathsf{CSP}(\Gamma)$  is in P or  $\mathsf{NP}\text{-}\mathsf{complete}.$ 

#### Theorem (Bodirsky, Kára, JACM 2010)

Let  $\Gamma$  be a reduct of  $(\mathbb{Q},<)$ . Then  $\mathsf{CSP}(\Gamma)$  is in P or  $\mathsf{NP}\text{-}\mathsf{complete}.$ 

- $\blacktriangleright$  ( $\mathbb{Q}$ , <) itself: in P, digraph acyclicity
- ▶  $(\mathbb{Q}, x = y \Rightarrow u = v, \leq, \neq)$ : in P, Ord-Horn (Nebel, Bürckert)
- $\blacktriangleright$  ( $\mathbb{Q}$ ,  $x < y < z \lor z < y < x$ ): NP-complete, Betweenness

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}; <)$ . Then  $\mathsf{CSP}(\Gamma)$  is in P, NP-complete, or is  $\mathsf{CSP}(\Delta)$  for a finite structure  $\Delta$ .

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}; <)$ . Then  $\mathsf{CSP}(\Gamma)$  is in P, NP-complete, or is  $\mathsf{CSP}(\Delta)$  for a finite structure  $\Delta$ .

Extends the ICALP'15 classification for reducts of ( $\mathbb{Z}$ ; y = x + 1).

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}; <)$ . Then  $\mathsf{CSP}(\Gamma)$  is in P, NP-complete, or is  $\mathsf{CSP}(\Delta)$  for a finite structure  $\Delta$ .

Extends the ICALP'15 classification for reducts of ( $\mathbb{Z}$ ; y = x + 1).

- $\blacktriangleright$  ( $\mathbb{Z}$ , <) itself: in P, digraph acyclicity
- $\blacktriangleright$  ( $\mathbb{Z}, x = y \Rightarrow u = v, \leq, \neq$ ): NP-complete
- $\blacktriangleright$  ( $\mathbb{Z}$ ,  $x < y < z \lor z < y < x$ ): NP-complete, Betweenness

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}; <)$ . Then  $\mathsf{CSP}(\Gamma)$  is in P, NP-complete, or is  $\mathsf{CSP}(\Delta)$  for a finite structure  $\Delta$ .

Extends the ICALP'15 classification for reducts of ( $\mathbb{Z}$ ; y = x + 1).

- $ightharpoonup (\mathbb{Z},<)$  itself: in P, digraph acyclicity
- ▶  $(\mathbb{Z}, x = y \Rightarrow u = v, \leq, \neq)$ : NP-complete
- $\blacktriangleright$  ( $\mathbb{Z}$ ,  $x < y < z \lor z < y < x$ ): NP-complete, Betweenness
- $\blacktriangleright$  ( $\mathbb{Z}, x \leq \max(y, z), y = x + 1$ ): in P, unary max-atoms

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}; <)$ . Then  $\mathsf{CSP}(\Gamma)$  is in P,  $\mathsf{NP}$ -complete, or is  $\mathsf{CSP}(\Delta)$  for a finite structure  $\Delta$ .

Extends the ICALP'15 classification for reducts of ( $\mathbb{Z}$ ; y = x + 1).

- $ightharpoonup (\mathbb{Z},<)$  itself: in P, digraph acyclicity
- $\blacktriangleright$  ( $\mathbb{Z}, x = y \Rightarrow u = v, \leq, \neq$ ): NP-complete
- $\blacktriangleright$  ( $\mathbb{Z}$ ,  $x < y < z \lor z < y < x$ ): NP-complete, Betweenness
- $\blacktriangleright$  ( $\mathbb{Z}, x \leq \max(y, z), y = x + 1$ ): in P, unary max-atoms
- $\blacktriangleright$  ( $\mathbb{Z}$ ,  $x = y \Rightarrow u = v, y = x + 1$ ): in P

▶ It can happen that  $CSP(\Gamma) = CSP(\Delta)$  for distinct structures.

▶ It can happen that  $CSP(\Gamma) = CSP(\Delta)$  for distinct structures. Example:  $CSP(\mathbb{Z}, <) = CSP(\mathbb{Q}, <)$ .

- It can happen that  $CSP(\Gamma) = CSP(\Delta)$  for distinct structures. Example:  $CSP(\mathbb{Z}, <) = CSP(\mathbb{Q}, <)$ .
- ▶  $\forall$  reduct  $\Gamma$  of  $(\mathbb{Q}, <)$ ,  $\exists \Delta$  a reduct of  $(\mathbb{Z}, <)$  s.t.  $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ .

- ▶ It can happen that  $CSP(\Gamma) = CSP(\Delta)$  for distinct structures. Example:  $CSP(\mathbb{Z}, <) = CSP(\mathbb{Q}, <)$ .
- ▶  $\forall$  reduct  $\Gamma$  of  $(\mathbb{Q}, <)$ ,  $\exists \Delta$  a reduct of  $(\mathbb{Z}, <)$  s.t.  $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ .
- ▶ First step: characterise the reducts of  $(\mathbb{Z}, <)$  which don't have the same CSP as a finite structure or a reduct of  $(\mathbb{Q}, <)$ .

- ▶ It can happen that  $CSP(\Gamma) = CSP(\Delta)$  for distinct structures. Example:  $CSP(\mathbb{Z}, <) = CSP(\mathbb{Q}, <)$ .
- ▶  $\forall$  reduct  $\Gamma$  of  $(\mathbb{Q}, <)$ ,  $\exists \Delta$  a reduct of  $(\mathbb{Z}, <)$  s.t.  $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ .
- ▶ First step: characterise the reducts of  $(\mathbb{Z}, <)$  which don't have the same CSP as a finite structure or a reduct of  $(\mathbb{Q}, <)$ .

#### Theorem

 $\Gamma$  a reduct of  $(\mathbb{Z}; <)$  with finite signature.

- ▶ It can happen that  $CSP(\Gamma) = CSP(\Delta)$  for distinct structures. Example:  $CSP(\mathbb{Z}, <) = CSP(\mathbb{Q}, <)$ .
- ▶  $\forall$  reduct  $\Gamma$  of  $(\mathbb{Q}, <)$ ,  $\exists \Delta$  a reduct of  $(\mathbb{Z}, <)$  s.t.  $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ .
- ▶ First step: characterise the reducts of  $(\mathbb{Z}, <)$  which don't have the same CSP as a finite structure or a reduct of  $(\mathbb{Q}, <)$ .

 $\Gamma$  a reduct of  $(\mathbb{Z};<)$  with finite signature.  $\exists \Delta$  with  $\mathsf{CSP}(\Delta) = \mathsf{CSP}(\Gamma)$  and at least one of the following cases applies:

- ▶ It can happen that  $CSP(\Gamma) = CSP(\Delta)$  for distinct structures. Example:  $CSP(\mathbb{Z}, <) = CSP(\mathbb{Q}, <)$ .
- ▶  $\forall$  reduct  $\Gamma$  of  $(\mathbb{Q}, <)$ ,  $\exists \Delta$  a reduct of  $(\mathbb{Z}, <)$  s.t.  $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ .
- ▶ First step: characterise the reducts of  $(\mathbb{Z}, <)$  which don't have the same CSP as a finite structure or a reduct of  $(\mathbb{Q}, <)$ .

 $\Gamma$  a reduct of  $(\mathbb{Z};<)$  with finite signature.  $\exists \Delta$  with  $\mathsf{CSP}(\Delta) = \mathsf{CSP}(\Gamma)$  and at least one of the following cases applies:

- 1.  $\triangle$  has a finite domain.
- 2.  $\Delta$  is a reduct of  $(\mathbb{Q}; <)$ .
- 3. The endomorphisms of  $\Delta$  are isometries.

- ▶ It can happen that  $CSP(\Gamma) = CSP(\Delta)$  for distinct structures. Example:  $CSP(\mathbb{Z}, <) = CSP(\mathbb{Q}, <)$ .
- ▶  $\forall$  reduct  $\Gamma$  of  $(\mathbb{Q}, <)$ ,  $\exists \Delta$  a reduct of  $(\mathbb{Z}, <)$  s.t.  $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ .
- ▶ First step: characterise the reducts of  $(\mathbb{Z}, <)$  which don't have the same CSP as a finite structure or a reduct of  $(\mathbb{Q}, <)$ .

 $\Gamma$  a reduct of  $(\mathbb{Z};<)$  with finite signature.  $\exists \Delta$  with  $\mathsf{CSP}(\Delta) = \mathsf{CSP}(\Gamma)$  and at least one of the following cases applies:

- 1.  $\triangle$  has a finite domain.
- 2.  $\Delta$  is a reduct of  $(\mathbb{Q}; <)$ .
- 3. The endomorphisms of  $\Delta$  are isometries.

Let's prove it!

 $\Gamma = (D, R_1, \dots, R_s)$  a structure,  $f: D \to D$ . f is an endomorphism of  $\Gamma$  if

$$\forall i \in \{1,\ldots,s\}, \forall (a_1,\ldots,a_r) \in R_i, (f(a_1),\ldots,f(a_r)) \in R_i.$$

 $\Gamma = (D, R_1, \dots, R_s)$  a structure,  $f: D \to D$ . f is an endomorphism of  $\Gamma$  if

$$\forall i \in \{1,\ldots,s\}, \forall (a_1,\ldots,a_r) \in R_i, (f(a_1),\ldots,f(a_r)) \in R_i.$$

Remark:  $\Gamma$  and  $f(\Gamma)$  have the same CSP.

 $\Gamma = (D, R_1, \dots, R_s)$  a structure,  $f: D \to D$ . f is an endomorphism of  $\Gamma$  if

$$\forall i \in \{1,\ldots,s\}, \forall (a_1,\ldots,a_r) \in R_i, (f(a_1),\ldots,f(a_r)) \in R_i.$$

Remark:  $\Gamma$  and  $f(\Gamma)$  have the same CSP.

# Proposition |

Let  $\Gamma$  be an infinite structure. Then  $\Gamma$  has the same CSP as a finite structure if and only if there exists an endomorphism of  $\Gamma$  whose range is finite.

 $\Gamma = (D, R_1, \dots, R_s)$  a structure,  $f: D \to D$ . f is an endomorphism of  $\Gamma$  if

$$\forall i \in \{1,\ldots,s\}, \forall (a_1,\ldots,a_r) \in R_i, (f(a_1),\ldots,f(a_r)) \in R_i.$$

Remark:  $\Gamma$  and  $f(\Gamma)$  have the same CSP.

# **Proposition**

Let  $\Gamma$  be an infinite structure. Then  $\Gamma$  has the same CSP as a finite structure if and only if there exists an endomorphism of  $\Gamma$  whose range is finite.

# Example

 $\Gamma = (\mathbb{Z}, |x - y| = 1)$ . Then  $f: x \mapsto x \mod 2$  is an endomorphism.

 $f: \mathbb{Z} \to \mathbb{Z}, \ t \geq 1$ . f is tightly-t-bounded if

$$\forall z \in \mathbb{Z}, |f(x+t) - f(x)| \leq t.$$

 $f: \mathbb{Z} \to \mathbb{Z}, \ t \ge 1$ . f is tightly-t-bounded if

$$\forall z \in \mathbb{Z}, |f(x+t) - f(x)| \leq t.$$

Fix Γ a reduct of  $(\mathbb{Z}, <)$ .

 $f: \mathbb{Z} \to \mathbb{Z}, \ t \ge 1$ . f is tightly-t-bounded if

$$\forall z \in \mathbb{Z}, |f(x+t)-f(x)| \leq t.$$

- Fix Γ a reduct of  $(\mathbb{Z}, <)$ .
- Suppose that for each t, there exists an endomorphism  $f_t$  of Γ which is not tightly-t-bounded.

Antoine Mottet Reasoning with discrete time 13/1

 $f: \mathbb{Z} \to \mathbb{Z}, \ t \ge 1$ . f is tightly-t-bounded if

$$\forall z \in \mathbb{Z}, |f(x+t)-f(x)| \leq t.$$

- Fix Γ a reduct of  $(\mathbb{Z}, <)$ .
- Suppose that for each t, there exists an endomorphism  $f_t$  of Γ which is not tightly-t-bounded.
- ▶ Then  $\forall x, y, k \in \mathbb{Z}$ ,  $\exists e \in \text{End}(\Gamma)$  such that |e(x) e(y)| > k.

 $f: \mathbb{Z} \to \mathbb{Z}, \ t \geq 1$ . f is tightly-t-bounded if

$$\forall z \in \mathbb{Z}, |f(x+t)-f(x)| \leq t.$$

- Fix Γ a reduct of  $(\mathbb{Z}, <)$ .
- Suppose that for each t, there exists an endomorphism  $f_t$  of Γ which is not tightly-t-bounded.
- ▶ Then  $\forall x, y, k \in \mathbb{Z}$ ,  $\exists e \in \text{End}(\Gamma)$  such that |e(x) e(y)| > k.
- ► So what?

 $(\mathbb{Q}.\mathbb{Z},<)$  is the structure on  $\mathbb{Q}\times\mathbb{Z}$  with the lexicographic ordering.  $\Gamma$  a reduct of  $(\mathbb{Z},<)$ ,  $\mathbb{Q}.\Gamma$  corresponding reduct of  $(\mathbb{Q}.\mathbb{Z},<)$ .

 $(\mathbb{Q}.\mathbb{Z},<)$  is the structure on  $\mathbb{Q}\times\mathbb{Z}$  with the lexicographic ordering.  $\Gamma$  a reduct of  $(\mathbb{Z},<)$ ,  $\mathbb{Q}.\Gamma$  corresponding reduct of  $(\mathbb{Q}.\mathbb{Z},<)$ .

 $(\mathbb{Q}.\mathbb{Z},<)$  is the structure on  $\mathbb{Q}\times\mathbb{Z}$  with the lexicographic ordering.  $\Gamma$  a reduct of  $(\mathbb{Z},<)$ ,  $\mathbb{Q}.\Gamma$  corresponding reduct of  $(\mathbb{Q}.\mathbb{Z},<)$ .

**Fact:**  $CSP(\Gamma) = CSP(\mathbb{Q}.\Gamma)$ .

Fix Γ a reduct of  $(\mathbb{Z},<)$ .

 $(\mathbb{Q}.\mathbb{Z},<)$  is the structure on  $\mathbb{Q}\times\mathbb{Z}$  with the lexicographic ordering.  $\Gamma$  a reduct of  $(\mathbb{Z},<)$ ,  $\mathbb{Q}.\Gamma$  corresponding reduct of  $(\mathbb{Q}.\mathbb{Z},<)$ .

- Fix Γ a reduct of  $(\mathbb{Z},<)$ .
- Suppose that for each t, there exists an endomorphism  $f_t$  of  $\mathbb{Q}.\Gamma$  which is not tightly-t-bounded.

 $(\mathbb{Q}.\mathbb{Z},<)$  is the structure on  $\mathbb{Q}\times\mathbb{Z}$  with the lexicographic ordering.  $\Gamma$  a reduct of  $(\mathbb{Z},<)$ ,  $\mathbb{Q}.\Gamma$  corresponding reduct of  $(\mathbb{Q}.\mathbb{Z},<)$ .

- Fix Γ a reduct of  $(\mathbb{Z},<)$ .
- Suppose that for each t, there exists an endomorphism  $f_t$  of  $\mathbb{Q}.\Gamma$  which is not tightly-t-bounded.
- ► Then  $\forall x, y \in \mathbb{Q}.\mathbb{Z}, \forall k, \exists e \in \text{End}(\mathbb{Q}.\Gamma)$  such that |e(x) e(y)| > k.

 $(\mathbb{Q}.\mathbb{Z},<)$  is the structure on  $\mathbb{Q}\times\mathbb{Z}$  with the lexicographic ordering.  $\Gamma$  a reduct of  $(\mathbb{Z},<)$ ,  $\mathbb{Q}.\Gamma$  corresponding reduct of  $(\mathbb{Q}.\mathbb{Z},<)$ .

- Fix Γ a reduct of  $(\mathbb{Z}, <)$ .
- Suppose that for each t, there exists an endomorphism  $f_t$  of  $\mathbb{Q}.\Gamma$  which is not tightly-t-bounded.
- ► Then  $\forall x, y \in \mathbb{Q}.\mathbb{Z}, \forall k, \exists e \in \text{End}(\mathbb{Q}.\Gamma)$  such that |e(x) e(y)| > k.
- ▶ Black magic (a.k.a. König's tree lemma)

 $(\mathbb{Q}.\mathbb{Z},<)$  is the structure on  $\mathbb{Q}\times\mathbb{Z}$  with the lexicographic ordering.  $\Gamma$  a reduct of  $(\mathbb{Z},<)$ ,  $\mathbb{Q}.\Gamma$  corresponding reduct of  $(\mathbb{Q}.\mathbb{Z},<)$ .

**Fact:**  $CSP(\Gamma) = CSP(\mathbb{Q}.\Gamma)$ .

- Fix Γ a reduct of  $(\mathbb{Z}, <)$ .
- Suppose that for each t, there exists an endomorphism  $f_t$  of  $\mathbb{Q}.\Gamma$  which is not tightly-t-bounded.
- ► Then  $\forall x, y \in \mathbb{Q}.\mathbb{Z}, \forall k, \exists e \in \text{End}(\mathbb{Q}.\Gamma)$  such that |e(x) e(y)| > k.
- ▶ Black magic (a.k.a. König's tree lemma)
- ▶  $\exists e \in \mathsf{End}(\mathbb{Q}.\mathsf{\Gamma})$  such that

$$\forall x, y \in \mathbb{Q}.\mathbb{Z}, e(x) \neq e(y) \Rightarrow e(x) - e(y) = \infty.$$

Antoine Mottet Reasoning with discrete time 14/1

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}, <)$  with finite signature and without finite-range endomorphisms. Exactly one of the following applies:

- ▶ There exists a reduct  $\Delta$  of  $(\mathbb{Q}, <)$  with  $\mathsf{CSP}(\Gamma) = \mathsf{CSP}(\Delta)$ .
- ▶ There exists t > 0 such that every endomorphism of  $\mathbb{Q}$ .  $\Gamma$  is tightly-t-bounded.

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}, <)$  with finite signature and without finite-range endomorphisms. Exactly one of the following applies:

- ► There exists a reduct  $\Delta$  of ( $\mathbb{Q}$ , <) with CSP( $\Gamma$ ) = CSP( $\Delta$ ).
- ► There exists t > 0 such that every endomorphism of  $\mathbb{Q}$ . $\Gamma$  is tightly-t-bounded.

f is tightly-t-bounded if  $\forall z \in \mathbb{Z}, |f(x+t) - f(x)| \leq t$ .

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}, <)$  with finite signature and without finite-range endomorphisms. Exactly one of the following applies:

- ▶ There exists a reduct  $\Delta$  of ( $\mathbb{Q}$ , <) with CSP(Γ) = CSP( $\Delta$ ).
- ▶ There exists t > 0 such that every endomorphism of  $\mathbb{Q}.\Gamma$  is tightly-t-bounded.

$$f$$
 is tightly- $t$ -bounded if  $\forall z \in \mathbb{Z}, |f(x+t) - f(x)| \leq t$ .

#### Lemma

If  $f \in \operatorname{End}(\mathbb{Q}.\Gamma)$  is tightly-t-bounded and  $\mathbb{Q}.\Gamma$  does not have finite-range endomorphisms, then we have

$$|f(x+t)-f(x)|=t.$$

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}, <)$  with finite signature and without finite-range endomorphisms. Exactly one of the following applies:

- ► There exists a reduct  $\Delta$  of ( $\mathbb{Q}$ , <) with CSP( $\Gamma$ ) = CSP( $\Delta$ ).
- ▶ There exists t > 0 such that every endomorphism of  $\mathbb{Q}$ . $\Gamma$  is tightly-t-bounded.

$$f$$
 is tightly- $t$ -bounded if  $\forall z \in \mathbb{Z}, |f(x+t) - f(x)| \leq t$ .

#### Lemma

If  $f \in \operatorname{End}(\mathbb{Q}.\Gamma)$  is tightly-t-bounded and  $\mathbb{Q}.\Gamma$  does not have finite-range endomorphisms, then we have

$$|f(x+t)-f(x)|=t.$$

Note: if t = 1, every endomorphism of  $\mathbb{Q}.\Gamma$  is an isometry.

Let  $\Gamma$  be a reduct of  $(\mathbb{Z},<)$ , and let  $t\geq 1$ .  $(\mathbb{Q}.\Gamma)/t$  is the structure induced by  $\mathbb{Q}.\Gamma$  on  $\{t\cdot z:z\in\mathbb{Z}\}.$ 

Antoine Mottet Reasoning with discrete time 16/1

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}, <)$ , and let  $t \ge 1$ .  $(\mathbb{Q}.\Gamma)/t$  is the structure induced by  $\mathbb{Q}.\Gamma$  on  $\{t \cdot z : z \in \mathbb{Z}\}$ .

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}, <)$ , and let  $t \ge 1$ .  $(\mathbb{Q}.\Gamma)/t$  is the structure induced by  $\mathbb{Q}.\Gamma$  on  $\{t \cdot z : z \in \mathbb{Z}\}$ .

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}, <)$ , and let  $t \ge 1$ .  $(\mathbb{Q}.\Gamma)/t$  is the structure induced by  $\mathbb{Q}.\Gamma$  on  $\{t \cdot z : z \in \mathbb{Z}\}$ .

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}, <)$ , and let  $t \ge 1$ .  $(\mathbb{Q}.\Gamma)/t$  is the structure induced by  $\mathbb{Q}.\Gamma$  on  $\{t \cdot z : z \in \mathbb{Z}\}$ .

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}, <)$ , and let  $t \ge 1$ .  $(\mathbb{Q}.\Gamma)/t$  is the structure induced by  $\mathbb{Q}.\Gamma$  on  $\{t \cdot z : z \in \mathbb{Z}\}$ .

**Fact:**  $(\mathbb{Q}.\Gamma)/t$  is isomorphic to  $\mathbb{Q}.\Delta$  for some reduct  $\Delta$  of  $(\mathbb{Z},<)$ .

▶ The endomorphisms of  $(\mathbb{Q}.\Gamma)/t$  are tightly-1-bounded.

Let  $\Gamma$  be a reduct of  $(\mathbb{Z}, <)$ , and let  $t \ge 1$ .  $(\mathbb{Q}.\Gamma)/t$  is the structure induced by  $\mathbb{Q}.\Gamma$  on  $\{t \cdot z : z \in \mathbb{Z}\}$ .

- ▶ The endomorphisms of  $(\mathbb{Q}.\Gamma)/t$  are tightly-1-bounded.
- ightharpoonup CSP( $\Gamma$ ) = CSP( $\Delta$ ).

We proved:

## Theorem

 $\Gamma$  a reduct of  $(\mathbb{Z};<)$  with finite signature.  $\exists \Delta$  with  $\mathsf{CSP}(\Delta) = \mathsf{CSP}(\Gamma)$  and at least one of the following cases applies:

- 1.  $\Delta$  has a finite domain.
- 2.  $\Delta$  is a reduct of  $(\mathbb{Q}; <)$ .
- 3. The endomorphisms of  $\mathbb{Q}.\Delta$  are isometries.

We proved:

## Theorem

 $\Gamma$  a reduct of  $(\mathbb{Z};<)$  with finite signature.  $\exists \Delta$  with  $\mathsf{CSP}(\Delta) = \mathsf{CSP}(\Gamma)$  and at least one of the following cases applies:

- 1.  $\triangle$  has a finite domain.
- 2.  $\Delta$  is a reduct of  $(\mathbb{Q}; <)$ .
- 3. The endomorphisms of  $\mathbb{Q}.\Delta$  are isometries.

**Preservation theorem:** we can assume that  $\Delta$  contains the relation y=x+1 or |y-x|=1.

Constraints: conjunctions of clauses of the form

$$\left(\bigwedge x_i = y_i + p_i\right) \Rightarrow u = v + q$$

Constraints: conjunctions of clauses of the form

$$\left(\bigwedge x_i = y_i + p_i\right) \Rightarrow u = v + q$$

## Algorithm: repeat

ightharpoonup Form the set  $\mathcal{C}$  of clauses with no premise

Constraints: conjunctions of clauses of the form

$$\left(\bigwedge x_i = y_i + p_i\right) \Rightarrow u = v + q$$

# Algorithm: repeat

- ightharpoonup Form the set  $\mathcal C$  of clauses with no premise
- ightharpoonup Test if C is satisfiable, and reject if it isn't

19/1

Constraints: conjunctions of clauses of the form

$$\left(\bigwedge x_i = y_i + p_i\right) \Rightarrow u = v + q$$

#### Algorithm: repeat

- ightharpoonup Form the set  $\mathcal C$  of clauses with no premise
- ightharpoonup Test if C is satisfiable, and reject if it isn't
- ▶ Test if C implies some literal  $x_i = y_i + p_i$  of a premise, and remove that literal if that is the case.

Constraints: conjunctions of clauses of the form

$$\left(\bigwedge x_i = y_i + p_i\right) \Rightarrow u = v + q$$

#### Algorithm: repeat

- ightharpoonup Form the set  $\mathcal C$  of clauses with no premise
- ightharpoonup Test if C is satisfiable, and reject if it isn't
- ▶ Test if C implies some literal  $x_i = y_i + p_i$  of a premise, and remove that literal if that is the case.
- ▶ If no new implication is found, accept

 $\triangleright$  A relation R is preserved by a binary function f iff

$$\forall (x_1 \dots x_n) \in R$$

$$\forall (y_1 \dots y_n) \in R$$

$$\Rightarrow (f(x_1, y_1) \dots f(x_n, y_n)) \in R.$$

 $\triangleright$  A relation R is preserved by a binary function f iff

$$\forall (x_1 \dots x_n) \in R$$

$$\forall (y_1 \dots y_n) \in R$$

$$\Rightarrow (f(x_1, y_1) \dots f(x_n, y_n)) \in R.$$

▶ Let  $f: (\mathbb{Q}.\mathbb{Z})^2 \to \mathbb{Q}.\mathbb{Z}$  be injective, and such that

$$f(x+1, y+1) = f(x, y) + 1.$$

 $\triangleright$  A relation R is preserved by a binary function f iff

$$\forall (x_1 \dots x_n) \in R$$

$$\forall (y_1 \dots y_n) \in R$$

$$\Rightarrow (f(x_1, y_1) \dots f(x_n, y_n)) \in R.$$

▶ Let  $f: (\mathbb{Q}.\mathbb{Z})^2 \to \mathbb{Q}.\mathbb{Z}$  be injective, and such that

$$f(x + 1, y + 1) = f(x, y) + 1.$$

▶ *f* preserves every Horn relation.

 $\triangleright$  A relation R is preserved by a binary function f iff

$$\forall (x_1 \dots x_n) \in R$$

$$\forall (y_1 \dots y_n) \in R$$

$$\Rightarrow (f(x_1, y_1) \dots f(x_n, y_n)) \in R.$$

▶ Let  $f: (\mathbb{Q}.\mathbb{Z})^2 \to \mathbb{Q}.\mathbb{Z}$  be injective, and such that

$$f(x + 1, y + 1) = f(x, y) + 1.$$

- ▶ *f* preserves every Horn relation.
- ► We use *f* to produce a solution of the instance, such that all the premises are violated.

### Definition (Modular maximum)

$$d \geq 1$$
.  $\max_d : \mathbb{Z}^2 \to \mathbb{Z}$  defined by

$$\max_{d}(x,y) = \begin{cases} \max(x,y) & x = y \mod d \\ x & x \neq y \mod d \end{cases}$$

### Definition (Modular maximum)

 $d \geq 1$ .  $\max_d : \mathbb{Z}^2 \to \mathbb{Z}$  defined by

$$\max_{d}(x, y) = \begin{cases} \max(x, y) & x = y \mod d \\ x & x \neq y \mod d \end{cases}$$

#### Example

$$\{(a+2,a,a),(a,a+2,a),(a+2,a+2,a):a\in\mathbb{Z}\}$$

21/1

is preserved by max<sub>2</sub>.

### Definition (Modular maximum)

 $d \geq 1$ .  $\max_d : \mathbb{Z}^2 \to \mathbb{Z}$  defined by

$$\max_{d}(x,y) = \begin{cases} \max(x,y) & x = y \mod d \\ x & x \neq y \mod d \end{cases}$$

#### Example

$$\{(a+2, a, a), (a, a+2, a), (a+2, a+2, a) : a \in \mathbb{Z}\}$$

is preserved by max<sub>2</sub>.

Algorithm: essentially local consistency.

▶  $\Gamma$  not Horn  $\Rightarrow \Gamma$  defines primitively positively  $|y - x| \le k$ .

23/1

▶  $\Gamma$  not Horn  $\Rightarrow \Gamma$  defines primitively positively  $|y - x| \le k$ .



- ▶  $\Gamma$  not Horn  $\Rightarrow \Gamma$  defines primitively positively  $|y x| \le k$ .
- ▶  $\Gamma$  not positive  $\Rightarrow$   $\Gamma$  defines primitively positively |y x| > k'.



- ▶  $\Gamma$  not Horn  $\Rightarrow \Gamma$  defines primitively positively  $|y x| \le k$ .
- ▶  $\Gamma$  not positive  $\Rightarrow \Gamma$  defines primitively positively |y x| > k'.



- ▶  $\Gamma$  not Horn  $\Rightarrow \Gamma$  defines primitively positively  $|y x| \le k$ .
- ▶  $\Gamma$  not positive  $\Rightarrow \Gamma$  defines primitively positively |y x| > k'.



- ▶  $\Gamma$  not Horn  $\Rightarrow \Gamma$  defines primitively positively  $|y x| \le k$ .
- ightharpoonup  $\Gamma$  not positive  $\Rightarrow \Gamma$  defines primitively positively |y-x| > k'.



### Theorem (Hell, Nešetril, Journ. Comb. Th. Series B 1990)

G undirected graph. CSP(G) in P if G bipartite, NP-complete otherwise.

▶  $\Gamma$  positive  $\Rightarrow \Gamma$  defines primitively positively  $|y - x| \le k$ 

- $ightharpoonup \Gamma$  positive  $\Rightarrow \Gamma$  defines primitively positively  $|y-x| \le k$
- ▶  $\Gamma$  not preserved by  $\max_d \Rightarrow$  it contains a relation not preserved by  $\max_d$  and locally finite: a relation is locally finite if every  $x \in \mathbb{Z}$  appears in finitely many tuples from R

- ▶  $\Gamma$  positive  $\Rightarrow \Gamma$  defines primitively positively |y x| < k
- ▶  $\Gamma$  not preserved by  $\max_d \Rightarrow$  it contains a relation not preserved by  $\max_d$  and locally finite: a relation is locally finite if every  $x \in \mathbb{Z}$  appears in finitely many tuples from R

# Theorem (BDalmauMMPinsker, Inf. Comp. 2016)

Let  $\Gamma$  be a reduct of  $(\mathbb{Z},<)$  which is locally finite. If  $\Gamma$  is not preserved by  $\max_d$  for any  $d\geq 1$ , then  $\mathsf{CSP}(\Gamma)$  is NP-complete.

# Theorem (Bodirsky, Martin, M)

 $\Gamma$  a reduct of  $(\mathbb{Z};<)$  with finite signature.  $\exists \Delta$  with  $\mathsf{CSP}(\Delta) = \mathsf{CSP}(\Gamma)$  and at least one of the following cases applies:

- 1.  $\Delta$  has a finite domain.
- **2**.  $\Delta$  is a reduct of  $(\mathbb{Q}; <)$ .
- 3. The relations of  $\Delta$  are Horn, and  $CSP(\Delta)$  is in P.
- 4. The relations of  $\Delta$  are preserved by  $\max_d$ , for some  $d \geq 1$ , and  $\mathsf{CSP}(\Delta)$  is in P.
- 5.  $CSP(\Delta)$  is NP-complete.

# Theorem (Bodirsky, Martin, M)

 $\Gamma$  a reduct of  $(\mathbb{Z};<)$  with finite signature.  $\exists \Delta$  with  $\mathsf{CSP}(\Delta) = \mathsf{CSP}(\Gamma)$  and at least one of the following cases applies:

- 1.  $\Delta$  has a finite domain.
- **2**.  $\Delta$  is a reduct of  $(\mathbb{Q}; <)$ .
- 3. The relations of  $\Delta$  are Horn, and  $CSP(\Delta)$  is in P.
- 4. The relations of  $\Delta$  are preserved by  $\max_d$ , for some  $d \geq 1$ , and  $\mathsf{CSP}(\Delta)$  is in P.
- **5**.  $CSP(\Delta)$  is NP-complete.

Complexity dichotomy modulo the Feder-Vardi conjecture.

- ▶ Reducts of  $(\mathbb{Z}, <, 0)$ :
  - ► all finite-domain CSPs (Zhuk'16?!),
  - reducts of equality with constants (Bodirsky, M LICS'16)
- ▶ Long-term goal: reducts of  $(\mathbb{Z}, +, <)$ , i.e., complexity of CSPs within Presburger arithmetic.