Projeto de Previsão de Rotatividade de Clientes

Visão Geral

A **Interconnect**, uma operadora de comunicações, deseja reduzir a rotatividade de seus clientes por meio de um sistema preditivo capaz de identificar usuários propensos ao cancelamento de contrato. A detecção antecipada desses clientes permitirá que a empresa ofereça promoções, upgrades e condições especiais de retenção.

Este projeto de ciência de dados tem como finalidade construir um modelo de classificação binária que identifique, com alta performance, se um cliente está inclinado a abandonar a operadora com base em seu perfil, tipo de contrato e serviços utilizados.

o Objetivos

- Realizar uma análise criteriosa dos dados fornecidos pela Interconnect.
- Aplicar boas práticas de pré-processamento e engenharia de features.
- \$\frac{1}{4}\$ Construir pipelines de dados para garantir reprodutibilidade e modularidade.
- Treinar e comparar modelos preditivos com foco em performance e interpretabilidade.
- Zi Otimizar a métrica primária AUC-ROC, buscando um valor igual ou superior a 0.88.
- Documentar cada etapa com clareza, rigor técnico e foco em aplicabilidade real.

Fontes de Dados

Serão utilizados quatro conjuntos de dados fornecidos pela empresa:

Arquivo	Descrição
contract.csv	Informações contratuais dos clientes
personal.csv	Dados pessoais e demográficos dos clientes
internet.csv	Uso e tipo de conexão com a internet
phone.csv	Serviços de telefonia contratados

A variável alvo (target) será derivada da coluna EndDate. Clientes com EndDate = 'No' serão considerados ativos (não cancelaram), enquanto os demais serão rotulados como cancelados.

📊 Métricas de Avaliação

• **Principal**: AUC-ROC (quanto mais próximo de 1, melhor)

Secundária: Acurácia

Critérios de Sucesso

AUC-ROC	Desempenho Esperado
< 0.75	Insatisfatório
0.75 - 0.81	Regular
0.81 – 0.85	Bom
0.85 - 0.87	Muito bom
0.87 - 0.88	Excelente
≥ 0.88	Ótimo (meta alvo)

S Abordagem Metodológica

Este projeto será conduzido em etapas progressivas e bem documentadas:

- 1. Configuração e estruturação do ambiente
- 2. Carregamento e unificação dos dados
- 3. Análise exploratória (EDA)
- 4. Pré-processamento e engenharia de features
- 5. Construção de pipelines
- 6. Treinamento e avaliação de modelos
- 7. Análise de desempenho e explicabilidade
- 8. Exportação e entrega final do modelo

🚃 Início do Projeto

15 de Junho de 2025

Autor: Lucas Coelho **Função:** Data Scientist

Contato: lukaslopes.coelho@icloud.com

```
# # IMPORTAÇÃO DE BIBLIOTECAS
        # Instalar shap se necessário
        %pip install shap
        # Manipulação e análise de dados
         import pandas as pd
         import numpy as np
        # Visualização de dados
         import matplotlib.pyplot as plt
         import seaborn as sns
         import shap
        # Pré-processamento
        from sklearn.preprocessing import StandardScaler, OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        # ModeLagem
        from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
        from sklearn.linear_model import LogisticRegression
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from xgboost import XGBClassifier
        from catboost import CatBoostClassifier
         # Avaliação de modelos
        from sklearn.metrics import (
            roc_auc_score,
            accuracy_score,
            confusion_matrix,
            classification_report,
            roc_curve,
            RocCurveDisplay
        # Utilidades
         import warnings
         import os
         # Ignore warnings
        warnings.filterwarnings('ignore')
         # Configurações de exibição
```

```
sns.set(style='whitegrid')
       [notice] A new release of pip is available: 25.0.1 -> 25.1.1
       [notice] To update, run: python.exe -m pip install --upgrade pip
      Collecting shap
        Downloading shap-0.48.0-cp313-cp313-win amd64.whl.metadata (25 kB)
      Requirement already satisfied: numpy in c:\users\doit\desktop\projetos triple ten\sptr
      int3\venv\lib\site-packages (from shap) (2.2.5)
      Requirement already satisfied: scipy in c:\users\doit\desktop\projetos triple ten\sptr
      int3\venv\lib\site-packages (from shap) (1.15.3)
      Requirement already satisfied: scikit-learn in c:\users\doit\desktop\projetos triple t
      en\sptrint3\venv\lib\site-packages (from shap) (1.6.1)
      Requirement already satisfied: pandas in c:\users\doit\desktop\projetos triple ten\spt
      rint3\venv\lib\site-packages (from shap) (2.2.3)
      Requirement already satisfied: tqdm>=4.27.0 in c:\users\doit\desktop\projetos triple t
      en\sptrint3\venv\lib\site-packages (from shap) (4.67.1)
      Requirement already satisfied: packaging>20.9 in c:\users\doit\desktop\projetos triple
      ten\sptrint3\venv\lib\site-packages (from shap) (25.0)
      Collecting slicer==0.0.8 (from shap)
        Using cached slicer-0.0.8-py3-none-any.whl.metadata (4.0 kB)
      Collecting numba>=0.54 (from shap)
        Using cached numba-0.61.2-cp313-cp313-win_amd64.whl.metadata (2.8 kB)
      Requirement already satisfied: cloudpickle in c:\users\doit\desktop\projetos triple te
      n\sptrint3\venv\lib\site-packages (from shap) (3.1.1)
      Requirement already satisfied: typing-extensions in c:\users\doit\desktop\projetos tri
      ple ten\sptrint3\venv\lib\site-packages (from shap) (4.13.2)
      Collecting llvmlite<0.45,>=0.44.0dev0 (from numba>=0.54->shap)
        Using cached llvmlite-0.44.0-cp313-cp313-win_amd64.whl.metadata (5.0 kB)
      Requirement already satisfied: colorama in c:\users\doit\desktop\projetos triple ten\s
      ptrint3\venv\lib\site-packages (from tqdm>=4.27.0->shap) (0.4.6)
      Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\doit\desktop\projeto
      s triple ten\sptrint3\venv\lib\site-packages (from pandas->shap) (2.9.0.post0)
      Requirement already satisfied: pytz>=2020.1 in c:\users\doit\desktop\projetos triple t
      en\sptrint3\venv\lib\site-packages (from pandas->shap) (2025.2)
      Requirement already satisfied: tzdata>=2022.7 in c:\users\doit\desktop\projetos triple
      ten\sptrint3\venv\lib\site-packages (from pandas->shap) (2025.2)
      Requirement already satisfied: joblib>=1.2.0 in c:\users\doit\desktop\projetos triple
      ten\sptrint3\venv\lib\site-packages (from scikit-learn->shap) (1.5.0)
      Requirement already satisfied: threadpoolctl>=3.1.0 in c:\users\doit\desktop\projetos
      triple ten\sptrint3\venv\lib\site-packages (from scikit-learn->shap) (3.6.0)
      Requirement already satisfied: six>=1.5 in c:\users\doit\desktop\projetos triple ten\s
      ptrint3\venv\lib\site-packages (from python-dateutil>=2.8.2->pandas->shap) (1.17.0)
      Downloading shap-0.48.0-cp313-cp313-win amd64.whl (545 kB)
          ----- 0.0/545.1 kB ? eta -:--:--
         ----- 545.1/545.1 kB 10.9 MB/s eta 0:00:00
      Using cached slicer-0.0.8-py3-none-any.whl (15 kB)
      Using cached numba-0.61.2-cp313-cp313-win_amd64.whl (2.8 MB)
      Using cached llvmlite-0.44.0-cp313-cp313-win_amd64.whl (30.3 MB)
      Installing collected packages: slicer, llvmlite, numba, shap
      Successfully installed llvmlite-0.44.0 numba-0.61.2 shap-0.48.0 slicer-0.0.8
      Note: you may need to restart the kernel to use updated packages.
In [4]: df contract = pd.read csv('contract.csv')
        df_internet = pd.read_csv('internet.csv')
```

pd.set_option('display.max_columns', None)

```
df_phone = pd.read_csv('phone.csv')
df_personal = pd.read_csv('personal.csv')
```

Etapa 2 — Análise Exploratória dos Dados (EDA)

© Objetivo

Antes de construir qualquer modelo, é essencial entender profundamente os dados disponíveis. A análise exploratória (EDA) nos ajudará a:

- Compreender a estrutura e qualidade dos dados.
- Identificar padrões, outliers e inconsistências.
- Avaliar a distribuição de variáveis numéricas e categóricas.
- Explorar relações entre variáveis e a variável alvo (EndDate).
- Guiar a criação de features relevantes para a modelagem.

Conjuntos de Dados

Os arquivos carregados foram:

- df_contract : informações sobre contratos (tipo, duração, forma de pagamento e status do cliente).
- df_internet : serviços relacionados à internet e adicionais.
- df_phone : serviços telefônicos contratados.
- df_personal : dados demográficos e pessoais dos clientes.

Cada DataFrame possui uma chave em comum: customerID, que será usada posteriormente para unir os dados em uma base única de análise.

Próximas Ações

A análise exploratória será dividida em etapas:

- 1. Visualização de amostras iniciais com .head() e .info().
- 2. Análise de valores nulos e duplicados.
- 3. Verificação e tratamento de tipos de dados.
- 4. Distribuição de variáveis importantes.
- 5. Exploração da variável alvo (EndDate) e criação da variável binária de churn.
- 6. Análise cruzada entre serviços, perfil e churn.

Todas as análises serão acompanhadas de visualizações claras com seaborn e matplotlib, além de comentários explicativos para guiar as decisões posteriores.

```
# Análise Exploratória: Visão Geral
     # Função auxiliar para resumir o DataFrame
     def resumo_df(df, nome):
        print("-" * 50)
        print(df.info())
        display(df.head())
        print("\n \ Valores ausentes por coluna:")
        display(df.isnull().sum())
        print("=" * 50)
     # Resumo de todos os conjuntos
     resumo_df(df_contract, "Contrato")
     resumo_df(df_personal, "Pessoal")
     resumo_df(df_internet, "Internet")
     resumo_df(df_phone, "Telefone")
     Estrutura do DataFrame: Contrato
    _____
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
```

	cinack. 7015 cheri	cs, 0 co / 0 l =		
Data	columns (total 8	columns):		
#	Column	Non-Null Count	Dtype	
0	customerID	7043 non-null	object	
1	BeginDate	7043 non-null	object	
2	EndDate	7043 non-null	object	
3	Туре	7043 non-null	object	
4	PaperlessBilling	7043 non-null	object	
5	PaymentMethod	7043 non-null	object	
6	MonthlyCharges	7043 non-null	float64	
7	TotalCharges	7043 non-null	object	
<pre>dtypes: float64(1), object(7)</pre>				
memoi	ry usage: 440.3+ K	В		
None				

Amostra dos dados:

	customerID	BeginDate	EndDate	Туре	PaperlessBilling	PaymentMethod	MonthlyCha
0	7590- VHVEG	2020-01- 01	No	Month- to- month	Yes	Electronic check	2
1	5575- GNVDE	2017-04- 01	No	One year	No	Mailed check	5
2	3668- QPYBK	2019-10- 01	2019-12- 01 00:00:00	Month- to- month	Yes	Mailed check	5
3	7795- CFOCW	2016-05- 01	No	One year	No	Bank transfer (automatic)	4
4	9237-HQITU	2019-09- 01	2019-11- 01 00:00:00	Month- to- month	Yes	Electronic check	7
Q	Valores au	sentes por	coluna:				
	stomerID	0					
	ginDate	0					
	dDate	0					
Ту	pe	0					

customerID 0
BeginDate 0
EndDate 0
Type 0
PaperlessBilling 0
PaymentMethod 0
MonthlyCharges 0
TotalCharges 0
dtype: int64

Estrutura do DataFrame: Pessoal

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	int64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object

dtypes: int64(1), object(4)
memory usage: 275.2+ KB

None

Amostra dos dados:

	customerID	gender	SeniorCitizen	Partner	Dependents
0	7590-VHVEG	Female	0	Yes	No
1	5575-GNVDE	Male	0	No	No
2	3668-QPYBK	Male	0	No	No
3	7795-CFOCW	Male	0	No	No
4	9237-HQITU	Female	0	No	No

Valores ausentes por coluna:

customerID 0
gender 0
SeniorCitizen 0
Partner 0
Dependents 0
dtype: int64

■ Estrutura do DataFrame: Internet

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5517 entries, 0 to 5516
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	customerID	5517 non-null	object
1	InternetService	5517 non-null	object
2	OnlineSecurity	5517 non-null	object
3	OnlineBackup	5517 non-null	object
4	DeviceProtection	5517 non-null	object
5	TechSupport	5517 non-null	object
6	StreamingTV	5517 non-null	object
7	StreamingMovies	5517 non-null	object

dtypes: object(8)
memory usage: 344.9+ KB

None

Amostra dos dados:

	customerID	InternetService	OnlineSecurity	OnlineBackup	DeviceProtection	TechSupport
0	7590- VHVEG	DSL	No	Yes	No	Nc
1	5575- GNVDE	DSL	Yes	No	Yes	Nc
2	3668- QPYBK	DSL	Yes	Yes	No	Nc
3	7795- CFOCW	DSL	Yes	No	Yes	Yes
4	9237-HQITU	Fiber optic	No	No	No	Nc

■ Estrutura do DataFrame: Telefone

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6361 entries, 0 to 6360
Data columns (total 2 columns):

Column Non-Null Count Dtype
--- 0 customerID 6361 non-null object
1 MultipleLines 6361 non-null object

dtypes: object(2)
memory usage: 99.5+ KB

None

Amostra dos dados:

	customerID	MultipleLines
0	5575-GNVDE	No
1	3668-QPYBK	No
2	9237-HQITU	No
3	9305-CDSKC	Yes
4	1452-KIOVK	Yes

Valores ausentes por coluna:

customerID 0
MultipleLines 0

dtype: int64

Etapa 2 — Análise Exploratória (Parte1): Visão Geral dos Dados

2.1 Estrutura Inicial dos DataFrames

Após a leitura completa dos dados, os quatro DataFrames analisados foram:

df_contract — Informações Contratuais

Coluna	Tipo	Observações
BeginDate	object	Data de início do contrato
EndDate	object	Usado para gerar o label churn
Type	object	Duração do contrato
PaymentMethod	object	Diversos métodos possíveis
MonthlyCharges	float64	Valor mensal
TotalCharges	object	Possivelmente mal tipado

Atenção: a coluna TotalCharges está como object , mesmo sendo numérica. Provavelmente contém strings inválidas ou espaços em branco — isso será tratado no préprocessamento.

df_personal — Dados Pessoais

Coluna	Tipo	Observações
SeniorCitizen	int64	0 = Não idoso, 1 = Idoso
Partner	object	Cliente tem cônjuge?
Dependents	object	Cliente tem dependentes?

Nenhum valor nulo encontrado. Estrutura limpa e clara.

df_internet — Serviços de Internet

Coluna	Tipo	Observações
InternetService	object	DSL, Fiber optic ou No
Serviços adicionais	object	OnlineSecurity, TechSupport, Streaming etc.

or Todos os dados estão completos. Variáveis categóricas binárias do tipo Yes/No.

df_phone — Serviços de Telefonia

Coluna	Tipo	Observações
MultipleLines	object	Cliente usa mais de uma linha?

Esse DataFrame tem menos registros (6361 vs 7043), ou seja, **nem todos os clientes têm telefonia** — atenção ao fazer merge posterior.

准 Considerações Técnicas

- **Nenhum valor nulo** encontrado em nenhuma das tabelas.
- A TotalCharges precisa ser convertida para numérico após limpeza.
- * Será necessário tratar os tipos de dados antes de modelagem.
- 🗱 Os dados estão prontos para unificação com base em customerID.

Próximos Passos

plt.figure(figsize=(8, 5))

- 1. Criar a variável **churn** com base em EndDate (valor No indica cliente ativo).
- 2. Unificar todos os DataFrames em uma base analítica única.
- 3. Iniciar análise das distribuições, correlações e segmentações.

```
In [6]: # ===========
       # 🎯 Criar variável 'churn'
       # =============
       df_contract['churn'] = df_contract['EndDate'].apply(lambda x: 0 if x == 'No' else 1)
       # Ø Merge dos DataFrames
       # Unir com dados pessoais (todos têm)
       df_merged = df_contract.merge(df_personal, on='customerID', how='left')
       # Unir com dados de internet (alguns podem não ter)
       df_merged = df_merged.merge(df_internet, on='customerID', how='left')
       # Unir com dados de telefonia (alguns podem não ter)
       df_merged = df_merged.merge(df_phone, on='customerID', how='left')
       print(f" ■ Base unificada criada com shape: {df_merged.shape}")
      🔽 Base unificada criada com shape: (7043, 21)
In [7]: # Substituir espaços por NaN e converter para float
       df_merged['TotalCharges'] = pd.to_numeric(df_merged['TotalCharges'].replace(" ", np.r
In [8]: # ==========
       # 🏉 Heatmap de correlação
       # Selecionar apenas colunas numéricas para correlação
       df_corr = df_merged[['MonthlyCharges', 'TotalCharges', 'churn']].copy()
```

```
sns.heatmap(df_corr.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Mapa de Correlação entre Variáveis Numéricas")
plt.show()
```



```
In [11]: plt.figure(figsize=(7, 4))
    sns.countplot(data=df_merged, x='Type', hue='churn')
    plt.title("Churn por Tipo de Contrato")
    plt.xlabel("Tipo de Contrato")
    plt.ylabel("Número de Clientes")
    plt.legend(title='Churn')
    plt.xticks(rotation=0)
    plt.show()
```



```
In [12]: plt.figure(figsize=(10, 4))
    sns.countplot(data=df_merged, x='PaymentMethod', hue='churn')
    plt.title("Churn por Método de Pagamento")
    plt.xlabel("Método de Pagamento")
    plt.ylabel("Número de Clientes")
    plt.legend(title='Churn')
    plt.xticks(rotation=15)
    plt.show()
```



```
In [13]: fig, axes = plt.subplots(1, 2, figsize=(12, 4))

sns.countplot(data=df_merged, x='Partner', hue='churn', ax=axes[0])
axes[0].set_title("Churn por Presença de Cônjuge")
axes[0].set_xlabel("Tem Cônjuge?")

sns.countplot(data=df_merged, x='Dependents', hue='churn', ax=axes[1])
axes[1].set_title("Churn por Presença de Dependentes")
axes[1].set_xlabel("Tem Dependentes?")

plt.tight_layout()
plt.show()
```



```
In [14]: plt.figure(figsize=(7, 4))
    sns.countplot(data=df_merged, x='InternetService', hue='churn')
```

```
plt.title("Churn por Tipo de Serviço de Internet")
plt.xlabel("Tipo de Internet")
plt.ylabel("Número de Clientes")
plt.legend(title='Churn')
plt.show()
```


TETAL DE L'ANTION DE L'ANTION

© Objetivo

Através de gráficos de barras, buscamos entender como variáveis categóricas importantes se relacionam com a variável alvo churn . Essa análise permite identificar padrões de comportamento, preferências e perfis de risco que serão úteis na etapa de modelagem.

Gráficos e Interpretações

1. Churn por Tipo de Contrato (Type)

- Clientes com contrato "Month-to-month" apresentam uma taxa de churn significativamente maior.
- Contratos anuais ou de dois anos demonstram maior retenção.
- **Insight:** contratos curtos aumentam a probabilidade de cancelamento.

2. = Churn por Método de Pagamento (PaymentMethod)

- O churn é maior entre clientes que usam "Electronic check".
- Métodos automáticos (cartão/crédito automático) têm menor índice de cancelamento.
- 🆈 Insight: conveniência no pagamento pode estar ligada à fidelização.

3. **Churn por Presenca de Cônjuge e Dependentes** (Partner, Dependents)

- Clientes **sem parceiro** e **sem dependentes** têm churn mais elevado.
- Laços familiares parecem contribuir para a permanência.
- **Insight:** laços familiares podem indicar estabilidade de consumo.

- Fibra óptica está associada a uma maior taxa de churn em relação ao DSL.
- Possivelmente, isso se deve ao custo mais alto ou expectativas de desempenho.

5. Churn por Segurança Online e Suporte Técnico (OnlineSecurity, TechSupport)

- Clientes sem segurança online ou sem suporte técnico têm churn mais elevado.
- Serviços agregados parecem contribuir para retenção.
- 🖈 Insight: suporte técnico e segurança aumentam a percepção de valor.

Conclusões Visuais

- A maioria das variáveis categóricas apresenta correlações visíveis com o churn.
- Essa análise reforça a importância de incluir variáveis como Type , PaymentMethod ,
 TechSupport , Partner , OnlineSecurity , etc., no modelo final.

Próximos Passos

- 1. Preparar o pré-processamento de variáveis categóricas (encoding).
- 2. Criar o pipeline de modelagem com validação cruzada.
- 3. Avaliar modelos com foco em AUC-ROC e interpretabilidade.

Etapa 3 — Pré-processamento e Engenharia de Features

o Objetivo

Esta etapa visa preparar os dados para serem utilizados pelos algoritmos de machine learning. Faremos o tratamento criterioso das variáveis, com foco em:

- Conversão de tipos inconsistentes;
- Codificação de variáveis categóricas;
- Tratamento de valores ausentes;
- Criação de novas variáveis relevantes (feature engineering);
- Padronização de variáveis numéricas;
- Organização do fluxo em um pipeline estruturado.

Ações que serão realizadas

1. **©** Seleção da variável-alvo (churn) e das features explicativas

• Remoção de colunas que não agregam valor (ex: customerID , EndDate , etc).

2. Análise de valores ausentes

• Substituição, imputação ou remoção controlada.

3. Codificação de variáveis categóricas

 Aplicação de OneHotEncoder ou OrdinalEncoder, conforme o tipo da variável e modelo escolhido.

4. Escalonamento de variáveis numéricas

• Padronização com StandardScaler para modelos sensíveis à escala.

5. Feature Engineering

 Extração de informações úteis de colunas existentes (ex: duração do contrato, tipo de cliente, presença de serviços premium, etc).

6. 🧱 Estruturação do Pipeline

 Utilização de ColumnTransformer e Pipeline do sklearn para deixar o processo limpo, reutilizável e validado.

Observações Importantes

- O pré-processamento será separado em variáveis numéricas e categóricas.
- A variável alvo já está criada (churn) e validada.
- O uso de pipeline garante consistência entre treino e teste, além de facilitar testes com diferentes algoritmos.

👀 Objetivo Final da Etapa

Gerar um conjunto de dados **pronto para modelagem**, com **features tratadas e otimizadas**, que maximize a performance do modelo e sua capacidade de generalização.

🔽 Etapa 3.1 — Seleção e Separação de Dados

Etapa 3.2 — Identificação de Tipos de Variáveis

Etapa 3.3 — Pipelines de Pré-processamento

Etapa 3.4 — Divisão dos Dados (Treino/Teste)

```
print("X_train:", X_train.shape)
print("X_test:", X_test.shape)

✓ Divisão concluída. Tamanhos:
X_train: (5634, 17)
X_test: (1409, 17)
```

Etapa 4 — Modelagem Preditiva (Baseline)

© Objetivo

Iniciar a fase de modelagem com um algoritmo base (baseline) para avaliar o desempenho inicial e estabelecer um ponto de comparação para modelos mais sofisticados posteriormente.

Modelo Inicial

Utilizaremos a Regressão Logística, que é:

- Rápida e eficiente;
- Fácil de interpretar;
- Excelente ponto de partida para problemas de classificação binária.

🧱 Abordagem Técnica

- Integraremos o pipeline de pré-processamento diretamente com o estimador.
- Utilizaremos validação cruzada para avaliação robusta da métrica AUC-ROC.
- Avaliaremos o modelo com as métricas:
 - AUC-ROC (principal)
 - Acurácia
 - Matriz de confusão

Etapa 4.1 — Pipeline completo com LogisticRegression

```
# Previsões
y_pred = model_pipeline.predict(X_test)
y_proba = model_pipeline.predict_proba(X_test)[:, 1]
# Avaliação
auc = roc_auc_score(y_test, y_proba)
acc = accuracy_score(y_test, y_pred)
print(f" ✓ AUC-ROC: {auc:.4f}")
print(f" ✓ Acurácia: {acc:.4f}")
AUC-ROC: 0.8258
Acurácia: 0.7899
```

```
In [21]: # Curva ROC
         plt.figure(figsize=(8, 5))
         RocCurveDisplay.from_estimator(model_pipeline, X_test, y_test)
         plt.title("Curva ROC - Logistic Regression")
         plt.grid(True)
         plt.show()
```

<Figure size 800x500 with 0 Axes>


```
In [22]: print(" Relatório de Classificação:\n")
         print(classification_report(y_test, y_pred, target_names=['Não Churn', 'Churn']))
```

Relatório de Classificação:

	precision	recall	f1-score	support
Não Churn	0.83	0.89	0.86	1035
Churn	0.63	0.51	0.56	374
accuracy			0.79	1409
macro avg	0.73	0.70	0.71	1409
weighted avg	0.78	0.79	0.78	1409

Análise do Modelo Baseline — Regressão Logística

Visão Geral

O modelo inicial de Logistic Regression apresentou um desempenho sólido considerando sua simplicidade. É um bom ponto de partida para entendermos a estrutura do problema e a separabilidade das classes.

📊 Métricas de Avaliação

Métrica	Valor
AUC-ROC	0.8258
Acurácia	0.7899
Recall (Churn)	0.51
Precision (Churn)	0.63
F1-score (Churn)	0.56

Interpretação dos Resultados

- O AUC-ROC de 0.8258 indica que o modelo consegue distinguir bem entre clientes que cancelam e os que permanecem.
- A acurácia de ~79% é consistente com o AUC, mas não deve ser usada isoladamente, pois a base é desbalanceada (poucos churns).
- O recall da classe "Churn" está em 51%, ou seja, o modelo detecta metade dos clientes que realmente cancelam.
- Precision razoável (63%), o que significa que quando o modelo prevê churn, ele acerta com boa frequência.

- O modelo é simples, rápido e interpretável, mas não captura toda a complexidade do problema.
- O principal ponto fraco é o recall baixo na classe minoritária, que é justamente a mais importante no caso de uso.

Direcionamento

Para resolver esse problema de detecção limitada de churners, vamos agora testar modelos mais robustos, como:

- RandomForestClassifier
- CatBoostClassifier
- XGBoostClassifier

Nosso objetivo é:

- Aumentar o recall da classe churn;
- Elevar o AUC-ROC acima de 0.85:
- Manter boa interpretabilidade com análise posterior via SHAP.

```
In [23]: def avaliar_modelo(modelo, nome_modelo="Modelo"):
            Treina, avalia e exibe resultados de um modelo com pipeline completo.
            Parâmetros:
            modelo : Estimador sklearn
                Algoritmo de classificação a ser treinado.
            nome modelo : str
                Nome do modelo para títulos dos gráficos.
            0.00
            print("-" * 50)
            # Pipeline completo
            pipeline = Pipeline(steps=[
                ('preprocessing', preprocessor),
                ('classifier', modelo)
            1)
            # Treinar
            pipeline.fit(X_train, y_train)
```

```
# Previsões
             y_pred = pipeline.predict(X_test)
             y_proba = pipeline.predict_proba(X_test)[:, 1]
             # Métricas
             auc = roc_auc_score(y_test, y_proba)
             acc = accuracy_score(y_test, y_pred)
             print(f" AUC-ROC: {auc:.4f}")
             print(f" ✓ Acurácia: {acc:.4f}\n")
             # Curva ROC
             RocCurveDisplay.from_estimator(pipeline, X_test, y_test)
             plt.title(f"Curva ROC - {nome_modelo}")
             plt.grid(True)
             plt.show()
             # Matriz de Confusão
             cm = confusion_matrix(y_test, y_pred)
             plt.figure(figsize=(5, 4))
             sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
             plt.title(f"Matriz de Confusão - {nome_modelo}")
             plt.xlabel("Predito")
             plt.ylabel("Real")
             plt.show()
             # Classification Report
             print(" Relatório de Classificação:")
             print(classification_report(y_test, y_pred, target_names=["Não Churn", "Churn"]))
             return pipeline
In [24]: modelo_rf = RandomForestClassifier(n_estimators=100, random_state=42)
         modelo_rf_pipeline = avaliar_modelo(modelo_rf, "Random Forest")
```

🚀 Avaliando: Random Forest

✓ AUC-ROC: 0.8126 Acurácia: 0.7793

Relatório de Classificação:

	precision	recall	f1-score	support
Não Churn	0.82	0.89	0.86	1035
Churn	0.61	0.48	0.54	374
accuracy			0.78	1409
macro avg	0.72	0.68	0.70	1409
weighted avg	0.77	0.78	0.77	1409

Análise do Modelo — Random Forest

Desempenho Geral

Métrica	Valor
AUC-ROC	0.8126
Acurácia	0.7793
Recall (Churn)	0.48
Precision (Churn)	0.61
F1-score (Churn)	0.54

Interpretação

- O Random Forest apresenta desempenho geral muito próximo à regressão logística em AUC e acurácia.
- Embora seu AUC-ROC seja bom (> 0.81), ainda não superou o baseline em recall para churn (Logistic = 0.51, RF = 0.48).
- A matriz de confusão mostra que o modelo acerta muitos "Não Churn", mas ainda comete **195 falsos negativos**, o que é crítico no nosso contexto de retenção.
- O modelo tem maior robustez, mas possivelmente está sofrendo com desbalanceamento da classe e a falta de tuning de hiperparâmetros.

Conclusões Técnicas

- Apesar de ser um modelo mais complexo, o Random Forest ainda não oferece ganho real sobre o baseline.
- Há margem para melhoria com ajuste de hiperparâmetros, balanceamento de classes ou uso de modelos mais sensíveis como o CatBoost ou XGBoost.

Próximo Passo

Vamos agora testar o CatBoostClassifier, que lida muito bem com:

- Dados categóricos diretamente;
- Dados desbalanceados;
- Overfitting em estruturas tabulares pequenas e médias.

A seguir: avaliar_modelo(CatBoostClassifier(...)) com configuração inicial.

```
In [25]: # Configuração inicial do CatBoost (sem tuning por enquanto)
catboost_model = CatBoostClassifier(
    iterations=500,
    learning_rate=0.1,
    depth=6,
    verbose=0,
    random_state=42
)

# Avaliação do modelo
modelo_catboost_pipeline = avaliar_modelo(catboost_model, "CatBoost Classifier")
```

🚀 Avaliando: CatBoost Classifier

✓ AUC-ROC: 0.8281✓ Acurácia: 0.7935

Relatório de Classificação:

	precision	recall	f1-score	support
	•			
Não Churn	0.84	0.89	0.86	1035
Churn	0.63	0.54	0.58	374
accuracy			0.79	1409
macro avg	0.74	0.71	0.72	1409
weighted avg	0.79	0.79	0.79	1409

Análise do Modelo — CatBoost Classifier

Desempenho Geral

Métrica	Valor
AUC-ROC	0.8281
Acurácia	0.7935
Recall (Churn)	0.54
Precision (Churn)	0.63
F1-score (Churn)	0.58

Destaques

- **Melhor desempenho geral até o momento**, superando Random Forest e Logistic Regression em todas as principais métricas.
- AUC-ROC de 0.8281 indica excelente capacidade de separação entre churners e não churners.
- A acurácia de ~79% está no mesmo nível dos outros modelos, mas com melhor recall e f1-score para a classe churn, que é nosso foco.
- O modelo conseguiu classificar **201 churners corretamente**, com **menos falsos negativos (173)** que os modelos anteriores.

Interpretação da Matriz de Confusão

	Predito: 0	Predito: 1
Real: 0	917	118
Real: 1 (Churn)	173	201

- Os erros de churn (falsos negativos) foram reduzidos comparado ao Random Forest.
- O CatBoost está mais equilibrado entre detecção e precisão.

★ Conclusão

O CatBoostClassifier é, até agora, o modelo mais eficiente para este problema, com excelente AUC-ROC, f1-score e recall para a classe minoritária.

Ele será nossa nova baseline robusta e também o principal candidato para explicabilidade com SHAP.

Próximos Passos

- 1. Executar o XGBoostClassifier para comparação final.
- 2. Analisar explicabilidade via SHAP no modelo CatBoost (caso mantenha como final).
- 3. Definir modelo vencedor e salvar pipeline final.

Avaliando: XGBoost Classifier

✓ AUC-ROC: 0.8174 ✓ Acurácia: 0.7857

Relatório de Classificação:

	precision	recall	f1-score	support
Não Churn	0.84	0.88	0.86	1035
Churn	0.61	0.52	0.56	374
accuracy			0.79	1409
macro avg	0.72	0.70	0.71	1409
weighted avg	0.78	0.79	0.78	1409

Análise do Modelo — XGBoost Classifier

Desempenho Geral

Métrica	Valor
AUC-ROC	0.8174
Acurácia	0.7857
Recall (Churn)	0.52
Precision (Churn)	0.61
F1-score (Churn)	0.56

Interpretação

- O modelo atingiu AUC-ROC de 0.817, bem próximo do Logistic Regression e Random Forest, mas ainda abaixo do CatBoost (0.8281).
- A acurácia geral é boa (78.6%), e o recall da classe churn (52%) é aceitável, mas não supera os 54% do CatBoost.
- Na matriz de confusão, o XGBoost classificou corretamente 194 churners, com 180 falsos negativos — novamente um pouco pior que os 173 FN do CatBoost.

Conclusão

- O XGBoost teve desempenho consistente, com bom equilíbrio entre precisão e recall, mas não superou o CatBoost em nenhuma métrica-chave.
- Ainda assim, é um excelente backup e pode ser útil em um ensemble, caso desejemos combinar previsões no futuro.

Comparação Final dos Modelos

Modelo	AUC-ROC	Recall (Churn)	F1-score (Churn)
Logistic Regression	0.8258	0.51	0.56
Random Forest	0.8126	0.48	0.54
CatBoost	0.8281	0.54	0.58
XGBoost	0.8174	0.52	0.56

→ O CatBoost Classifier foi o modelo com melhor performance geral, e será selecionado como o modelo final a ser interpretado e salvo para produção.

Etapa 5 — Otimização Avançada para AUC ≥ 0.88

o Objetivo

Nosso novo objetivo é elevar a performance do modelo até atingir **AUC-ROC** ≥ **0.88**, que representa o nível máximo de excelência (6 PPE) definido no projeto da Interconnect.

Estratégia de Otimização

Para isso, vamos aplicar três ações avançadas de melhoria:

✓ Passo 1 — Aiuste de Peso da Classe Positiva (scale_pos_weight)

Objetivo: Lidar com o desbalanceamento natural entre as classes (churn vs. não churn), forçando o modelo a aprender melhor os casos minoritários.

- Modelo base: CatBoostClassifier
- Parâmetro ajustado: scale_pos_weight = 2.5
- Esperado: aumento no recall e AUC da classe churn, com controle sobre overfitting.

Passo 2 — Engenharia de Features Derivadas

Objetivo: Enriquecer o conjunto de dados com informações adicionais, extraídas logicamente dos dados originais.

Novas variáveis planejadas:

- ContractDuration : diferença entre a data de início e data de referência (tempo de permanência).
- AutoPay : cliente utiliza método automático de pagamento? (Bank transfer ou Credit card)
- ServiceCount : número total de serviços ativos por cliente.
- AvgServiceCost: média de gasto mensal por serviço ativo (MonthlyCharges dividido por ServiceCount)

Essas variáveis buscam representar o valor, engajamento e fidelidade do cliente, que são indicadores fortes de churn.

Passo 3 — Tuning com GridSearchCV (CatBoost)

Objetivo: Explorar combinações ótimas de hiperparâmetros para maximizar AUC-ROC.

Parâmetros a otimizar:

depth: [4, 6, 8]

• learning_rate: [0.03, 0.05, 0.1]

• iterations: [500, 800]

• 12_leaf_reg: [1, 3, 5]

scale_pos_weight: [1.5, 2.0, 2.5, 3.0]

Critério de avaliação: roc_auc

Técnica: StratifiedKFold com validação cruzada

XXX Resultado Esperado

Após esses ajustes, esperamos:

- AUC-ROC ≥ 0.88
- Recall da classe churn > 0.55
- Redução nos falsos negativos (FN) na matriz de confusão

```
In [27]: # Modelo com ajuste de peso
         catboost_ajustado = CatBoostClassifier(
             iterations=500,
```

```
learning_rate=0.1,
  depth=6,
  scale_pos_weight=2.5, # peso maior para a classe churn
  12_leaf_reg=3,
  random_state=42,
  verbose=0
)

# Avaliação usando pipeline e função definida
modelo_catboost_balanceado = avaliar_modelo(catboost_ajustado, "CatBoost Balanceado ("CatBoost Balanceado")
```

Avaliando: CatBoost Balanceado (scale_pos_weight=2.5)

ALIC DOC+ A 9254

✓ AUC-ROC: 0.8254✓ Acurácia: 0.7644

Matriz de Confusão — CatBoost Balanceado (scale_pos_weight=2.5)

Relatório de Classificação:

	precision	recall	f1-score	support
Não Churn	0.87	0.79	0.83	1035
Churn	0.54	0.68	0.61	374
accuracy			0.76	1409
macro avg	0.71	0.74	0.72	1409
weighted avg	0.79	0.76	0.77	1409

Análise do CatBoost Balanceado (scale_pos_weight = 2.5)

Métricas Obtidas

Métrica	Valor
AUC-ROC	0.8254
Acurácia	0.7644
Recall (Churn)	0.68
Precision (Churn)	0.54
F1-score (Churn)	0.61

Interpretação Estratégica

- O modelo teve uma quebra positiva no recall da classe churn: passou de 0.54 →
 0.68, capturando 255 churners, o maior recall de toda a rodada até aqui.
- Como esperado, houve queda na acurácia e precisão, o que é aceitável nesse contexto, já que o objetivo é reduzir churn — mesmo que se cometa mais falsos positivos.
- A matriz de confusão mostra menor número de falsos negativos (FN = 119) o menor até agora.

Trade-Off

Antes (CatBoost padrão)	Agora (CatBoost balanceado)
Recall (Churn): 0.54	0.68
F1-score (Churn): 0.58	0 .61

| AUC-ROC: 0.8281 | **0.8254** (pequena queda) | FN: 173 | **119** |

★ Isso mostra que conseguimos otimizar o modelo para o negócio, maximizando detecção de churners, com uma perda mínima no AUC.

Conclusão

- Ainda não atingimos AUC ≥ 0.88, mas melhoramos fortemente a eficácia real do modelo, com recall e F1 mais altos.
- Esse modelo está mais adequado para estratégias de retenção, que priorizam não deixar churners escaparem.

Próximo Passo

Seguimos agora para o Passo 2: Feature Engineering, com as seguintes variáveis novas:

- 1. ContractDuration tempo de contrato
- 2. AutoPay método automático de pagamento
- 3. ServiceCount total de serviços ativos
- 4. AvgServiceCost média de gasto por serviço

```
# ===========
# 1. 🕑 ContractDuration
# Converter BeginDate para datetime se necessário
df_fe['BeginDate'] = pd.to_datetime(df_fe['BeginDate'], errors='coerce')
# Considerar data de referência padrão
referencia = pd.to_datetime("2020-02-01")
df_fe['ContractDuration'] = (referencia - df_fe['BeginDate']).dt.days
# =========
# 2. 📻 AutoPay
# ===========
df_fe['AutoPay'] = df_fe['PaymentMethod'].apply(
   lambda x: 'Yes' if 'automatic' in str(x).lower() else 'No'
# ===========
# 3. 🏉 ServiceCount
servicos = [
   'OnlineSecurity', 'OnlineBackup', 'DeviceProtection',
    'TechSupport', 'StreamingTV', 'StreamingMovies', 'MultipleLines'
df_fe['ServiceCount'] = df_fe[servicos].apply(lambda row: (row == 'Yes').sum(), axis-
# ===========
# 4. 💰 AvgServiceCost
# ==========
df_fe['AvgServiceCost'] = df_fe['MonthlyCharges'] / df_fe['ServiceCount'].replace(0,
# Corrigir valores infinitos ou NaNs (onde service count = 0)
df_fe['AvgServiceCost'] = df_fe['AvgServiceCost'].fillna(0)
1. Atualização dos dados (X e y)
y = df_fe['churn']
# Selecionar colunas úteis (excluir ID e datas)
X = df_fe.drop(columns=['customerID', 'BeginDate', 'EndDate', 'churn'])
```

```
In [29]: # Atualizar y
```

2. Separar tipos de colunas novamente

```
In [30]: # Separar colunas numéricas e categóricas
         num_cols = X.select_dtypes(include=['float64', 'int64']).columns.tolist()
         cat_cols = X.select_dtypes(include='object').columns.tolist()
```

3. Atualizar pipeline de pré-processamento

```
In [31]: # Numérico
         num_pipeline = Pipeline(steps=[
             ('imputer', SimpleImputer(strategy='median')),
             ('scaler', StandardScaler())
         ])
```

```
# Categórico
cat_pipeline = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')),
    ('encoder', OneHotEncoder(handle_unknown='ignore'))
])

# Combinar
preprocessor = ColumnTransformer(transformers=[
    ('num', num_pipeline, num_cols),
    ('cat', cat_pipeline, cat_cols)
])
```

4. Divisão Treino/Teste

✓ 5. Modelo CatBoost com peso ajustado

```
In [33]: catboost_final = CatBoostClassifier(
    iterations=500,
    learning_rate=0.1,
    depth=6,
    scale_pos_weight=2.5,
    l2_leaf_reg=3,
    random_state=42,
    verbose=0
)
```

In [34]: modelo_catboost_final = avaliar_modelo(catboost_final, "CatBoost Final com Novas Feat

🚀 Avaliando: CatBoost Final com Novas Features

✓ AUC-ROC: 0.9336

Acurácia: 0.8850

Relatório de Classificação:

	precision	recall	f1-score	support
	•			
Não Churn	0.92	0.92	0.92	1035
Churn	0.78	0.79	0.78	374
accuracy			0.89	1409
macro avg	0.85	0.85	0.85	1409
weighted avg	0.89	0.89	0.89	1409

∑ Etapa Final — Modelo Otimizado com AUC ≥ 0.93

© Objetivo Alcançado

Após aplicação estratégica de engenharia de features e ajuste de penalidade de classe, nosso modelo CatBoostClassifier atingiu:

Métrica	Valor
✓ AUC-ROC	0.9336
Acurácia	0.8850
Recall (Churn)	0.79
F1-score (Churn)	0.78

| **V** Falsos negativos (FN) | **79** → melhor resultado até aqui

Impacto das Novas Features

As seguintes variáveis derivadas foram fundamentais para o salto de performance:

Feature Descrição

- | ContractDuration | Dias de permanência desde o início do contrato
- | AutoPay | Identifica uso de métodos de pagamento automáticos
- | ServiceCount | Número de serviços ativos (segurança, suporte, streaming etc)
- | AvgServiceCost | Gasto médio mensal por serviço ativo

Essas variáveis capturaram **fidelização, engajamento e risco de evasão**, sendo decisivas para separar churners de não-churners.

Matriz de Confusão

	Predito: 0	Predito: 1
Real: Não Churn	952	83
Real: Churn	79	295

- Churners corretamente identificados: 295
- **V** Falsos negativos reduzidos: de 195 (RF) para 79
- Alta precisão + alta sensibilidade resultado raro e valioso

XXX Conclusão Técnica

- AUC superou a meta de 0.88 → atingimos 6 PPE
- Modelo robusto, equilibrado, com recall de 79%
- Pronto para deploy com interpretabilidade via SHAP (opcional)
- Pipeline limpo, reprodutível, profissional

```
In [40]: explainer = shap.Explainer(modelo_catboost_final.named_steps['classifier'])
# Obter dados transformados (X_test processado)
X_test_processed = modelo_catboost_final.named_steps['preprocessing'].transform(X_test)
# Calcular valores SHAP
shap_values = explainer(X_test_processed)
In [41]: # Gráfico de resumo (impacto por feature)
shap.summary_plot(shap_values, X_test_processed, feature_names=modelo_catboost_final.
```


In [42]: # Gráfico de barras (importância média)
shap.plots.bar(shap_values, max_display=15)

Interpretação SHAP — Análise Explicativa do Modelo

Gráfico 1 — shap.plots.bar(): Importância média

Esse gráfico mostra o **peso médio absoluto** de cada variável na predição do churn. As variáveis com maiores valores de SHAP impactaram mais fortemente o resultado final do modelo.

Top Features Mais Impactantes:

Feature Interpretação

TotalCharges | Clientes com **menor valor acumulado** tendem a churnar mais cedo | ContractDuration | Quanto **menor o tempo de contrato**, maior o risco de churn

| MonthlyCharges | **Altas mensalidades** estão associadas a maior churn | Type_Month-to-month | Contrato **mensal** é um forte indicativo de risco | PaymentMethod_Electronic check | Método de pagamento mais associado a evasão

Gráfico 2 — shap.summary_plot(): Impacto de valores altos/baixos

Este gráfico mostra como os valores altos ou baixos das features afetam a probabilidade de churn:

- **Valores em vermelho (altos)** → puxam o resultado para churn (direita)
- **Valores em azul (baixos)** → puxam o resultado para não churn (esquerda)

Observações Relevantes:

- TotalCharges: valores **baixos (azul)** fortemente associados a churn
- ContractDuration : contratos mais recentes (baixa duração) indicam maior churn
- MonthlyCharges : clientes com **mensalidades mais altas** também correm maior risco
- PaperlessBilling=No , AutoPay=No : maior risco de churn, sugerindo menor fidelidade

Conclusão da Interpretação

- O modelo aprendeu padrões altamente coerentes com o domínio de negócio: clientes novos, com pouco acúmulo de pagamento, pagando caro e sem contrato longo tendem a sair.
- SHAP comprovou a eficácia das novas variáveis derivadas, como ContractDuration, AvgServiceCost e ServiceCount.

Conclusão Final do Projeto — Previsão de Churn para Interconnect

Objetivo do Projeto

O desafio proposto pela Interconnect consistia em:

Desenvolver um modelo capaz de prever com precisão a **rotatividade de clientes (churn)**, a fim de permitir ações preventivas de retenção — como envio de promoções, revisão de planos e abordagens personalizadas.

O conjunto de dados incluía:

- Informações pessoais dos clientes (personal.csv)
- Informações contratuais (contract.csv)
- Serviços de internet e telefonia (internet.csv e phone.csv)

Que Foi Feito

O projeto foi desenvolvido com foco em excelência técnica, boas práticas de ciência de dados e clareza no processo.

Etapas executadas:

- 1. Exploração e análise dos dados (EDA)
 - Unificação dos arquivos com merge
 - Criação da variável-alvo churn
 - Análise gráfica de correlação e categorias com Seaborn
- 2. Pré-processamento e tratamento
 - Tratamento de nulos e conversão de tipos
 - Separação de variáveis numéricas e categóricas
 - Criação de pipeline completo com ColumnTransformer e Pipeline
- 3. Treinamento e comparação de modelos
 - Modelos testados: Logistic Regression, Random Forest, XGBoost, CatBoost
 - Aplicação de scale_pos_weight para ajustar desequilíbrio de classes
- 4. Engenharia de features avançada
 - Criação das variáveis:
 - ContractDuration
 - AutoPay
 - ServiceCount
 - AvgServiceCost
 - Inclusão dessas variáveis resultou em grande salto de performance
- 5. Avaliação com SHAP
 - Explicabilidade das predições com SHAP
 - Identificação clara de fatores de risco para churn

Impactos e Aprendizados

- A engenharia de features foi decisiva para diferenciar churners
- O modelo é altamente explicável, pronto para deploy real
- A análise SHAP revelou padrões consistentes com o comportamento de consumidores reais, fortalecendo a confiança no sistema

Agradecimentos

Este projeto foi conduzido com dedicação e rigor técnico, com foco em transformar dados em valor para o negócio. Agradeço à equipe da Interconnect pela oportunidade de colaborar com uma solução preditiva que pode impactar diretamente a **retenção de clientes e a rentabilidade da operação**.

Autor: Lucas Coelho **Cargo:** Data Scientist

Data: 15 de Junho de 2025

Contato: lukaslopes.coelho@icloud.com