Алгоритмы и модели вычислений. Задание 8: линейное программирование

Сергей Володин, 272 гр.

задано 2014.03.27

(каноническое) Задача 32

 $10a_{+} - 10a_{-} + 19 + c_{+} - c_{-} + T + t_{13} = 0$ $-10a_{+} + 10a_{-} - 19 - c_{+} + c_{-} + T + t_{14} = 0$

 $a_+, a_-, c_+, c_-, T, t_1, ..., t_{14} \ge 0$

```
n \in \mathbb{N}, \{(x_i, y_i)\}_{i=1}^n \subset \mathbb{R}^2. Задача: найти (a_0, c_0) = \arg\min\max|ax_i + y_i + c|.
 Сведем к задаче ЛП: переменные (a,c,M), неравенства:  \begin{cases} ax_i+y_i+c & \leqslant & M \\ ax_i+y_i+c & \geqslant & -M \end{cases}, i \in \overline{1,n}, M \to \min 
 Выпишем конкретную задачу (n = 7, точки даны):
M \to \min, \begin{cases} a+3+c & \leqslant M \\ -a-3-c & \leqslant M \\ 2a+5+c & \leqslant M \\ -2a-5-c & \leqslant M \\ 3a+7+c & \leqslant M \\ -3a-7-c & \leqslant M \\ 5a+11+c & \leqslant M \\ -5a-11-c & \leqslant M \\ 7a+14+c & \leqslant M \\ -7a-14-c & \leqslant M \\ 8a+15+c & \leqslant M \\ -8a-15-c & \leqslant M \\ 10a+19+c & \leqslant M \\ -10a-19-c & \leqslant M \end{cases}
                                                                      . Каноническая форма: T \stackrel{\text{def}}{=} -M, a = a_+ - a_-, c = c_+ - c_-, новые переменные t_1, ..., t_{14}:
      1a_{+} - 1a_{-} + 3 + c_{+} - c_{-} + T + t_{1} = 0
       -1a_{+} + 1a_{-} - 3 - c_{+} + c_{-} + T + t_{2} = 0
      2a_{+} - 2a_{-} + 5 + c_{+} - c_{-} + T + t_{3} = 0
       -2a_{+} + 2a_{-} - 5 - c_{+} + c_{-} + T + t_{4} = 0
      3a_{+} - 3a_{-} + 7 + c_{+} - c_{-} + T + t_{5} = 0
    -3a_{+} + 3a_{-} - 7 - c_{+} + c_{-} + T + t_{6} = 0
  \int 5a_{+} - 5a_{-} + 11 + c_{+} - c_{-} + T + t_{7} = 0
  -5a_{+} + 5a_{-} - 11 - c_{+} + c_{-} + T + t_{8} = 0
   7a_{+} - 7a_{-} + 14 + c_{+} - c_{-} + T + t_{9} = 0
     -7a_{+} + 7a_{-} - 14 - c_{+} + c_{-} + T + t_{10} = 0
     8a_{+} - 8a_{-} + 15 + c_{+} - c_{-} + T + t_{11} = 0
-8a_{+} + 8a_{-} - 15 - c_{+} + c_{-} + T + t_{12} = 0
```

(каноническое) Задача 33

$$P_{\varepsilon} \stackrel{\text{\tiny def}}{=} \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \middle| \left\{ \begin{array}{ccc} (*_1) & 0 & \leqslant & x_1 & \leqslant & 1 \\ (*_2) & \varepsilon x_1 & \leqslant & x_2 & \leqslant & 1 - \varepsilon x_1 \\ (*_3) & \varepsilon x_2 & \leqslant & x_3 & \leqslant & 1 - \varepsilon x_2 \end{array} \right\}.$$

Путь:

1. $\vec{x}_1 = (0,0,0) \in P_{\varepsilon}$:

$$(*_1)$$
 $0 \leqslant 0 \leqslant 1$

$$(*_2) \ 0 \le 0 \le 1 - 0$$

$$(*_3) \ 0 \le 0 \le 1 - 0$$

2.
$$\vec{x}_2 = (1, \varepsilon, \varepsilon^2) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 1 \le 1$$

$$(*_2) \ \varepsilon \leqslant \varepsilon \leqslant 1 - \varepsilon \ (\varepsilon < \frac{1}{2})$$

$$(*_3)$$
 $\varepsilon^2 \leqslant \varepsilon^2 \leqslant 1 - \varepsilon^2 (\varepsilon^2 < \frac{1}{4} < \frac{1}{2})$

Высота больше: $\varepsilon^2 > 0$

3.
$$\vec{x}_3 = (1, 1 - \varepsilon, \varepsilon - \varepsilon^2) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 1 \le 1$$

$$(*_2) \ \varepsilon \leqslant 1 - \varepsilon \leqslant 1 - \varepsilon \ (\varepsilon < \frac{1}{2})$$

$$(*_3)$$
 $\varepsilon - \varepsilon^2 \leqslant \varepsilon - \varepsilon^2 \leqslant 1 - \varepsilon + \varepsilon^2 (2\varepsilon^2 - 2\varepsilon + 1 > 0, D = 4 - 8 < 0)$

Высота больше: $\varepsilon - \varepsilon^2 > \varepsilon^2 \ (\varepsilon < \frac{1}{2})$

4.
$$\vec{x}_4 = (0, 1, \varepsilon) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 0 \le 1$$

$$(*_2) \ 0 \le 1 \le 1$$

$$(*_3) \ \varepsilon \leqslant \varepsilon \leqslant 1 - \varepsilon \ (\varepsilon < \frac{1}{2})$$

Высота больше: $\varepsilon > \varepsilon - \varepsilon^2 \ (\varepsilon > 0)$

5.
$$\vec{x}_5 = (0, 1, 1 - \varepsilon) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 0 \le 1$$

$$(*_2) \ 0 \le 1 \le 1$$

$$(*_3)$$
 $\varepsilon \leqslant 1 - \varepsilon \leqslant 1 - \varepsilon (\varepsilon < \frac{1}{2})$

Высота больше: $1 - \varepsilon > \varepsilon$ ($\varepsilon < \frac{1}{2}$)

6.
$$\vec{x}_6 = (1, 1 - \varepsilon, 1 - \varepsilon + \varepsilon^2) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 1 \le 1$$

$$(*_2)$$
 $\varepsilon \leqslant 1 - \varepsilon \leqslant 1 - \varepsilon (\varepsilon < \frac{1}{2})$

$$(*_3)$$
 $\varepsilon - \varepsilon^2 \le 1 - \varepsilon + \varepsilon^2 \le 1 - \varepsilon + \varepsilon^2 (2\varepsilon^2 - 2\varepsilon + 1 > 0, D = 4 - 8 < 0)$

Высота больше: $1 - \varepsilon + \varepsilon^2 > 1 - \varepsilon \ (\varepsilon > 0)$

7.
$$\vec{x}_7 = (1, \varepsilon, 1 - \varepsilon^2) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \leqslant 1 \leqslant 1 \ ()$$

$$(*_2) \ \varepsilon \leqslant \varepsilon \leqslant 1 - \varepsilon \ (\varepsilon > \frac{1}{2})$$

$$(*_3)$$
 $\varepsilon^2 \leqslant 1 - \varepsilon^2 \leqslant 1 - \varepsilon^2$ $(\varepsilon^2 < \frac{1}{4} < \frac{1}{2})$

Высота больше: $1 - \varepsilon^2 > 1 - \varepsilon + \varepsilon^2$ $(\varepsilon < \frac{1}{2})$

8.
$$\vec{x}_8 = (0,0,1) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 0 \le 1$$

$$(*_2) \ 0 \le 0 \le 1$$

$$(*_3) \ 0 \le 1 \le 1$$

Высота больше: $1 > 1 - \varepsilon^2$ ($\varepsilon > 0$)

(каноническое) Задача 34

 $A = \left\|a_{ij}\right\|_{i,i=1}^{m,n}.\ P_1 \stackrel{\text{\tiny def}}{=} \left[\exists p \in \mathbb{R}^m \colon A^T p < 0\right].\ P_2 \stackrel{\text{\tiny def}}{=} \left[\exists y \in \mathbb{R}^n \colon y \geqslant 0,\ y \neq 0,\ Ay = 0\right].\ Доказать:\ \lnot P_1 \Leftrightarrow P_2 \stackrel{\text{\tiny def}}{=} \left[\exists y \in \mathbb{R}^n \colon y \geqslant 0,\ y \neq 0,\ Ay = 0\right].$

- 1. $e_i \stackrel{\text{\tiny def}}{=} \left\| \begin{smallmatrix} 0 & \dots & \underbrace{1}_i & \dots & 0 \end{smallmatrix} \right\| \in \mathbb{R}^n \Rightarrow e \stackrel{\text{\tiny def}}{=} (e_1, \dots, e_n)$ стандартный базис в \mathbb{R}^n . Скалярное произведение (\cdot, \cdot) тоже стандартное, т.е. матрица Грама в e единичная, т.е. $(\left\| \begin{matrix} x_1 \\ \dots \\ x_l \end{matrix} \right\|, \left\| \begin{matrix} y_1 \\ \dots \\ y_l \end{matrix} \right\|) = x_1 y_1 + \dots + x_n y_n$
- 2. Пусть P_2 .
 - (а) Тогда $\exists y \colon Ay = 0, \ y \geqslant 0, \ y \neq 0$. Обозначим столбцы матрицы $A = \|\underline{b_1} \quad \dots \quad \underline{b_n}\| \cdot y \in \mathbb{R}^n \Rightarrow y = \|y_1 \quad \dots \quad y_n\|^T$ Тогда $Ay = 0 \Leftrightarrow \|\underline{b_1} \quad \dots \quad \underline{b_n}\| \cdot \|y_1\| = 0 \Leftrightarrow \sum_{i=1}^n \underline{b_i} y_i \stackrel{(*)}{=} 0$. Условие $y \neq 0 \Rightarrow \exists i \in \overline{1,n} \colon y_i \neq 0$. Без ограничения общности это y_1 . Тогда в (*) перенесем всё, кроме $y_1\underline{b_1}$ в правую часть, и поделим на $y_1 \neq 0 \colon \underline{b_1} = -\frac{y_2}{y_1}\underline{b_2} \dots \frac{y_n}{y_1}\underline{b_n}$
 - (b) Рассмотрим $A^T p = \left\| \frac{b_1}{\dots} \right\| \cdot \left\| p_1 \right\| = \left\| \frac{(b_1, p)}{\dots} \right\| = \left\| \frac{(b_n, p)}{(b_n, p)} \right\|$
 - (c) Предположим, что P_1 , т.е. $\exists p \colon \forall i \in \overline{1,n} \hookrightarrow (\underline{b_i},p) < 0$. Рассмотрим $(\underline{b_1},p) = (-\frac{y_2}{y_1}\underline{b_2} - ... - \frac{y_n}{y_1}\underline{b_n},p) = -\frac{y_2}{y_1}(\underline{b_2},p) - ... - \frac{y_n}{y_1}(\underline{b_n},p)$. Поскольку $(\underline{b_i},p) < 0, \ \frac{y_i}{y_1} \geqslant 0$, то $(b_1,p) \geqslant 0$ — противоречие.
 - (d) Значит, $^{7}P_{1}$.

(каноническое) Задача 35

(каноническое) Задача 36

(Тарасов, лекция 2014.04.01)

Фиксируем $k \in \mathbb{N}$, $\{t_i\}_{i=1}^k \subset \mathbb{R}$. Определим $\vec{r} \colon \mathbb{R} \to \mathbb{R}^4 : \vec{r}(t) \stackrel{\text{def}}{=} \|t^4 - t^3 - t^2 - t\|^T$. Рассмотрим точки $\vec{x}_i = \vec{r}(t_i)$. Рассмотрим $G \stackrel{\text{def}}{=} \operatorname{conv}(\{\vec{x}_i\}_{i=1}^k)$ — выпуклую оболочку этих точек. Фиксируем $i_1 \neq i_2 \in \overline{1,k}$. Докажем, что $\vec{x}_{i_1}, \vec{x}_{i_2}$ — вершины G, соединенные ребром $\stackrel{\text{def}}{\Leftrightarrow} \exists$ гиперплоскость $\pi \colon (\vec{x}_{i_1}, \vec{x}_{i_2} \in \pi)$ и (многогранник G лежит по одну сторону от π).

- 1. Определим многочлен $P(t)\stackrel{\mbox{\tiny def}}{=} (t-t_{i_1})^2\cdot (t-t_{i_2})^2 \equiv t^4+a_3t^3+a_2t^2+a_1t+a_0$
- 2. Определим гиперплоскость π . $\mathbb{R}^4 \ni \vec{x} \equiv \|x_1 x_2 x_3 x_4\|^T \in \pi \Leftrightarrow F(\vec{x}) \equiv x_1 + a_3x_2 + a_2x_3 + a_1x_4 + a_0 = 0$.
- 3. Тогда $F(\vec{r}(t)) = P(t)$: $F(\vec{r}(t)) = F(t^4, t^3, t^2, t) = t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0 t^3$
- 4. t_{i_1} и t_{i_2} корни P(t), откуда $P(t_{i_1})=P(t_{i_2})=0$, значит, $F(\vec{x}_{i_1})=F(\vec{x}_{i_2})=0$, значит, $\vec{x}_{i_1},\vec{x}_{i_2}\in\pi$
- 5. Фиксируем $t \in \mathbb{R}$. Тогда $F(\vec{r}(t)) = P(t) \geqslant 0$. Значит, все точки $\{\vec{x}_i\}_{i=1}^k$ лежат по одну сторону от π . Значит, G лежит по одну сторону
- 6. Пусть $t: \vec{r}(t) \in \pi \Leftrightarrow F(\vec{r}(t)) = 0 \Leftrightarrow P(t) = 0 \Leftrightarrow t \in \{t_{i_1}, t_{i_2}\}$

(каноническое) Задача 37