Канонические разложения	Я							
Центрированная CB ((опр)							
Элементарно центриј	рованная СВ (с	опр)						
Хар-ки (Математичес	кое ожидание,	Коррелиров	анная функі	ция., Диспеј	осия, С	тандај	отное	
отклонение, коэффициент	г корреляции)							
Каноническое разлох	жение СП (опр)							
Хар-ки (Математичес	ское ожидание	, Коррелиро	занная функ	ция., Диспе	рсия,			
Стандартное отклонение,	коэффициент і	корреляции)						
Замечание								
Понятие обощенной функ	ции дельта-фун	нкции Дирак	а. Белый шу	м и его свої	йства.			
обобщенная функция	и (опр)							
дельта функция Дира	ака (опр + фор	+ рис)						
Свойства 1-2-3								
Нестационарный бел	ый шум + стаці	ионарный бе	пый шум (оп	p)				
основное свойство с	тационарного ц	шума						
Канонические интегральн	ые представле	ния СП						
Канонические интегр	альные предст	авления СП	(опр)					
характеристики СП: (Математическо	ое ожидание	, коррелиро	ванная фун	кция, д	испер	сия,	
стандартное отклонение, і	коэффициент к	корреляции,	плотность д	исперсии)				

Линейные и нелинейные	преобразо	вания	СП									
Постановка задачи												
3,40												
Прямая, обратная,	оптимизаци	онные	задач	Ш								
Операторы (рис)												
Задача о преобразо	овании СП н	ІДОПЦО	уропцс	NEO OE	naton	a cuc	TOM.					
оадача о преобразс	овании ОПТ	содно	родпс	n o one	σρατορ	a cric	I CIVI					
характеристики: (М	атематичес	кое ох	кидани	1е, кор	релир	ованн	ая фу	′НКЦИЯ	, дисп	ерсия	,	
стандартное отклонение	е, коэффици	ент ко	рреля	іпии)								
				. ,								
Квадратичный детектор												
Постановка задачи	и решение											
Векторные СП												
Опр												
мо всп												
Квадратная матриц	а корр фунг	кций										
Комплексные СП												
МО												
Коррелированная ф	рункция (доі	казате	эльств	0)								
Дисперсия												

