Sentiment Analysis

In this project we will use amazon reviews to work through a sentiment analysis using both the Afinn package, and the nltk.sentiment.vader packages in python. Through this analysis, we will compare the packages for performance, as well as gain an understanding of the most common positive and negative words, and the overal sentiment of the text.

The code, along with the files necessary and versions of packages in this instance can be found on this repo: https://github.com/Benjamin-Siebold/MSDS-682-Text-Analytics)

The amazon file for analysis can be found here: http://jmcauley.ucsd.edu/data/amazon/)
(http://jmcauley.ucsd.edu/data/amazon/)

```
In [1]: import matplotlib.pyplot as plt
    from afinn import Afinn
    import pandas as pd
    import numpy as np
    import spacy
    import nltk
    from nltk.corpus import subjectivity
    from nltk.sentiment.vader import SentimentIntensityAnalyzer
    from nltk import tokenize
    nlp = spacy.load('en_core_web_lg')
    np.random.seed(50)
    pd.options.display.max_rows = 20
    nlp.max_length = 10000000000
    afinn = Afinn()
```

1 - Import and Clean Data

Before we apply any sentiment analysis, we must first load the data in and clean it for analysis. Because we are looking at sentiment, we lemmatized the words to get a smaller amount of words to apply sentiment to, and removed proper pronouns and numbers. The dataset chosen for this analysis is the reviews of home and kitchen goods, purely because we are in the process of remodeling and it seemed like a fitting topic.

In [4]: home_reviews.head(5)

Out[4]:

	asin	helpful	overall	reviewText	reviewTime	reviewerID	reviewerName	summa
0	0615391206	[0, 0]	5	My daughter wanted this book and the price on	10 19, 2013	APYOBQE6M18AA	Martin Schwartz	Be Prid
1	0615391206	[0, 0]	5	I bought this zoku quick pop for my daughterr 	06 18, 2014	A1JVQTAGHYOL7F	Michelle Dinh	zoł
2	0615391206	[26, 27]	4	There is no shortage of pop recipes available	05 5, 2013	A3UPYGJKZ0XTU4	mirasreviews	Excels Swe Desse Pops, b Fal Short
3	0615391206	[14, 18]	5	This book is a must have if you get a Zoku (wh	08 4, 2011	A2MHCTX43MIMDZ	M. Johnson "Tea Lover"	Creativ Combo
4	0615391206	[0, 0]	4	This cookbook is great. I have really enjoyed	06 7, 2014	AHAI85T5C2DH3	PugLover	A mu own if yc own th Zol maker

```
In [5]: home_reviews = home_reviews[['reviewText','summary']]
In [6]: review_sample = home_reviews['reviewText'].sample(2500)
In [7]: sentiment_analyzer = SentimentIntensityAnalyzer()
In [8]: cleaned_reviews = clean_text(' '.join(review_sample))
```

2 - Apply vader and Afinn

Next in our analysis we apply both the vader package from nltk and afinn to get insight into the top positive and negative words from each, along with the mean sentiment from each.

```
In [9]: words = cleaned_reviews.strip().split()
scores = []
for word in words:
    scores.append(sentiment_analyzer.polarity_scores(word))
```

```
In [10]: word_score = pd.DataFrame(scores, words)

In [11]: word_score.replace(0, np.nan, inplace=True)
    word_score.reset_index(level=0, inplace=True)
    word_score.rename(columns={'index':'words'}, inplace=True)
```

In [12]: word_score

Out[12]:

	words	compound	neg	neu	pos
0	job	NaN	NaN	1.0	NaN
1	design	NaN	NaN	1.0	NaN
2	nice	0.4215	NaN	NaN	1.0
3	compact	NaN	NaN	1.0	NaN
4	like	0.3612	NaN	NaN	1.0
5	bowl	NaN	NaN	1.0	NaN
6	hold	NaN	NaN	1.0	NaN
7	measure	NaN	NaN	1.0	NaN
8	juice	NaN	NaN	1.0	NaN
9	live	NaN	NaN	1.0	NaN
95189	time	NaN	NaN	1.0	NaN
95190	end	NaN	NaN	1.0	NaN
95191	alcohol	NaN	NaN	1.0	NaN
95192	like	0.3612	NaN	NaN	1.0
95193	great	0.6249	NaN	NaN	1.0
95194	buy	NaN	NaN	1.0	NaN
95195	future	NaN	NaN	1.0	NaN
95196	expand	0.3182	NaN	NaN	1.0
95197	hand	0.4939	NaN	NaN	1.0
95198	home	NaN	NaN	1.0	NaN

95199 rows × 5 columns

```
In [13]: afinn_scores = []

for word in words:
    afinn_scores.append(afinn.score(word))
```

In [15]: word_score.groupby([words,'compound']).count().sort_values(by='pos', ascending=F

words neg neu pos

Out[15]:

C	compound				
like	0.3612	999	0	0	999
great	0.6249	877	0	0	877
good	0.4404	848	0	0	848
easy	0.4404	622	0	0	622
love	0.6369	554	0	0	554
clean	0.4019	517	0	0	517
nice	0.4215	455	0	0	455
want	0.0772	389	0	0	389
fit	0.3612	320	0	0	320
recommend	0.3612	292	0	0	292

In [16]: afinn_pos.groupby(['words']).count().sort_values(by='score', ascending=False).he

Out[16]:

score

words	
like	999
great	877
good	848
easy	622
love	554
clean	517
nice	455
want	389
fit	320
quality	315

```
In [17]: word_score.groupby([words,'compound']).count().sort_values(by='neg', ascending=Fout[17]:
```

words neg neu pos

			- 5		
	compound				
problem	-0.4019	259	259	0	0
hard	-0.1027	187	187	0	0
cut	-0.2732	185	185	0	0
leave	-0.0516	160	160	0	0
low	-0.2732	117	117	0	0
pay	-0.1027	88	88	0	0
bad	-0.5423	86	86	0	0
stop	-0.2960	75	75	0	0
leak	-0.3400	60	60	0	0
drop	-0.2732	58	58	0	0

```
In [18]: afinn_neg.groupby(['words']).count().sort_values(by='score', ascending=False).he
Out[18]:
```

```
words
            259
problem
   hard
            187
     cut
            185
            160
   leave
             88
    pay
             86
    bad
    stop
             75
    leak
             60
             58
   drop
             56
pressure
```

score

```
In [19]: word_score_values = pd.DataFrame(word_score['compound'].value_counts())
    word_score_values.reset_index(level=0, inplace=True)
    word_score_values.rename(columns={'index':'score', 'compound':'count'}, inplace=
    word_score_values['total_score'] = word_score_values['score']*word_score_values[
```

```
In [20]: word_score_values.describe()
```

Out[20]:

	score	count	total_score
count	66.000000	66.000000	66.000000
mean	-0.021011	261.318182	64.894239
std	0.426949	392.647548	192.252086
min	-0.690800	3.000000	-183.668300
25%	-0.416600	51.500000	-19.552800
50%	-0.038700	118.500000	-0.579100
75%	0.376650	299.750000	60.851950
max	0.636900	2195.000000	966.678000

In [23]: afinn_word_score_values.describe()

Out[23]:

	score	count	total_score
count	9.000000	9.000000	9.000000
mean	0.444444	1742.111111	2203.000000
std	3.395258	1776.975692	5182.342448
min	-5.000000	1.000000	-3124.000000
25%	-2.000000	295.000000	-1377.000000
50%	1.000000	1512.000000	120.000000
75%	3.000000	3197.000000	3197.000000
max	5.000000	4539.000000	12270.000000

In [24]: afinn_word_score_values['total_score'].sum()/afinn_word_score_values['count'].sum

Out[24]: 1.2645576886281014

3 - Understand sentiment

From above, we can see Afinn only applies 10 options for sentiment, whole numbers between -5 and 5. Vader on the other hand gives 66 different sentiment levels depending on the word. Both Afinn and vader seem to have similar top negative and positive words (like, great, easy for positive) (hard, problem, cut for negative) with the biggest difference being Afinn didn't include low in it's negatives, and vader didn't include quality in it's positives. Additionally, the afinn scoring seems to have a slightly more negative sentiment average than vader.

We see below that vader finds quality to be a nuetral, and the afinn package has given the word low a score of 0.0. This shows that different sentiment packages apply different scorings to words, and thus have subjectivity in them.

```
In [25]:
          afinn word score[afinn word score['words'] == 'low'].head(1)
Out[25]:
                words
                      score
           3821
                  low
                       NaN
In [26]:
         afinn.score('low')
Out[26]: 0.0
          word_score[word_score['words'] == 'quality'].head(1)
Out[27]:
              words compound
                               neg
                                    neu
                                         pos
           67 quality
                          NaN
                               NaN
                                     1.0
                                         NaN
```

4 - Build Visuals

The last step is to build a few visuals of the data to get the rest of the comparison. To do this, we will build frequency charts of the sentiment scores available in both afinn and vader.

In [28]: word_score_values.sort_values(by='score').plot.bar(x='score', y='count', figsize:
Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x1fd0e4bf860>

In [29]: afinn_word_score_values.sort_values(by='score').plot.bar(x='score', y='count', f
Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x1fd0e623b00>

From the visuals above we can see one of the main issues with Afinn is the size of it's dictionary. There are many words with a nuetral (0.0) classification for sentiment which does not appear in the vader package. Although their means are close to the same for overall sentiment, the missing data in Afinn suggests it is less accurate. Next steps would be to additionally perform a NB training of sentiments and compare to vader because the text being analyzed is not social media data. The subjectivity shown in step 3 may indicate a trained classifier for sentiment may be better because certain words (such as low or quality) may have either positive, negative, or nuetral sentiment depending on the context (i.e. social media, product reviews, etc.)