INDEX

SR.NO.	TITLE	DATE	SIGN
1	To study DDL-create and		
	DML-insert commands.		
2	To Perform various Select		
	operation		
3	To Perform various data		
	manipulation commands,		
	aggregate functions and		
	sorting		
	concept on all created		
	tables.		
4	To study Single-row		
	functions.		
5	Displaying data from		
	Multiple Tables (join)		
6	To apply the concept of		
	Aggregating Data using		
	Group functions.		
7	To solve queries using the		
	concept of sub query.		
8	To apply the concept of		
	Cursor		
9	To apply the concept of		
	procedure		
10	To apply the concept of		
	Function		

PRECTICAL 1

SQL> CREATE TABLE DIPOSIT (ACTNO VARCHAR2(5), CNAME VARCHAR2(18), BNAME VARCHAR2(18),AMOUNT NUMBER(8,2), ADATE DATE); Table created. **SQL>** CREATE TABLE BRANCH (BNAME VARCHAR2(18),CITY VARCHAR2(18)); Table created. **SQL>** CREATE TABLE CUSTOMERS (CNAME VARCHAR2(19),CITY VARCHAR2(18)); Table created. **SQL>** CREATE TABLE BORROW (LOANNO VARCHAR2(5), CNAME VARCHAR2(18), BNAME VARCHAR2(18), AMOUNT NUMBER(8,2)); Table created. **SQL>** COMMIT; Commit complete. **SQL>** INSERT INTO DEPOSIT 2 VALUES('&ACTNO','&CNAME','&BNAME','&AMOUNT','&ADATE'); **SQL>** INSERT INTO BRANCH 2 VALUES('&BNAME','&CITY'); **SQL>** INSERT INTO CUSTOMERS 2 VALUES('&CNAME','&CITY'); **SQL>** INSERT INTO BORROW 2 VALUES('&LOANNO','&CNAME','&BNAME','&AMOUNT'); **SQL>** COMMIT; Commit complete.

(1) Describe deposit, branch.

SQL> DESC DEPOSIT:

Name Null? Type -----

ACTNO VARCHAR2(5)
CNAME VARCHAR2(18)
BNAME VARCHAR2(18)
AMOUNT NUMBER(8,2)

ADATE DATE

SQL> DESC BRANCH;

Name Null? Type

DV4.45

BNAME VARCHAR2(18)
CITY VARCHAR2(18)

(2) Describe borrow, customers.

SQL> DESC BORROW;

Name Null? Type

LOANNO VARCHAR2(5)
CNAME VARCHAR2(18)
BNAME VARCHAR2(18)
AMOUNT NUMBER(8,2)

SQL> DESC CUSTOMERS;

Name Null? Type

CNAME VARCHAR2(19)
CITY VARCHAR2(18)

(3) List all data from table DEPOSIT.

SQL> SELECT * FROM DEPOSIT;

ACTNO CNAME DATE	BNAME	AMOUNT	A
100 ANIL 01-MAR-95	VRCE	1000	
101 SUNIL 04-JAN-96	AJNI	5000	
102 MEHUL 17-NOV-95	KAROLBAGH	3500	
104 MADHURI 17-NOV-95	CHANDI	1200	
105 PRMOD 27-MAR-96	M.G.ROAD	3000	
106 SANDIP 31-MAR-96	ANDHERI	2000	
107 SHIVANI 05-SEP-95	VIRAR	1000	
108 KRANTI	NEHRU		
PLACE	5000	02-JUL-95	
109 MINU 10-AUG-95	POWAI	7000	
9 rows selected.			_

(4) List all data from table BORROW.

SQL> SELECT * FROM BORROW;

LUAITI

CNAME	BNAME	AMOUNT
201 ANIL	VRCE	1000
206 MEHUL	AJNI	5000
311 SUNIL	DHARAMPETH	3000
321 MADHURI	ANDHERI	2000
375 PRMOD	VIRAR	8000
481 KRANTI	NEHRU PLACE	3000
6 rows selected.		

(5) List all data from table CUSTOMERS.

SQL> SELECT * FROM CUSTOMERS;

CNAME	CITY
ANIL	CALCUTTA
SUNIL	DELHI
MEHUL	BARODA
MANDAR	PATNA
MADHURI	NAGPUR
PRAMOD	NAGPUR
SANDIP	SURAT
SHIVANI	BOMBAY
KRANTI	BOMBAY
NAREN	BOMBAY

10 rows selected

(6) List all data from table BRANCH.

SQL> SELECT * FROM BRANCH;

BNAME	CITY
VRCH	NAGPUR
AJNI	NAGPUR
KAROLBAGH	DELHI
CHANDI	DELHI
DHARAMPETH	NAGPUR
M.G.ROAD	BANGLORE
ANDHERI	BOMBAY
VIRAR	BOMBAY
NEHRU PLACE	DELHI
POWAI	BOMBAY

10 rows selected

(7) Give account no and amount of depositors.

SQL> SELECT ACTNO,AMOUNT 2 FROM DEPOSIT;

ACTNO	AMOUNT	
100	1000	
101	5000	
102	<i>3</i> 500	
104	1200	

105	3000		
106	2000		
107	1000		
108	5000		
109	7000		
9 rows selected.			
(8) Give name of depositors having amount greater than 4000.			

SQL> SELECT CNAME

- 2 FROM DEPOSIT
- 3 WHERE AMOUNT>4000;

CNAME
SUNIL
KRANTI
MINU

(9) Give name of customers who opened account after date '1-12-96'.

SQL> SELECT ADATE

- 2 FROM DEPOSIT
- 3 WHERE ADATE>'1-DEC-96';

no rows selected

SQL> create table job(job_id varchar2(15),job_title varchar2(30),min_sal number(7,2),max_sal number(7,2); Table created. **SQL>** create table employee(emp_no number(3),emp_name varchar2(30),emp_sal number(8,2),emp_comm number(6,1),dept_no number(3)); Table created. **SQL>** create table deposit1(a_no varchar2(5),cname varchar2(15),bname varchar2(10),amount number(7,2),a_date date); Table created. **SQL>** create table borrow1(loanno varchar2(5),cname varchar2(15),bname varchar2(10),amount varchar2(7)); Table created. **SQL>** commit; Commit complete. **SQL>** insert into employee 2 values(&emp_no,'&emp_name',&emp_sal,&emp_comm,&dept_no); **SQL>** insert into job 2 values('&job_id','&job_title',&min_sal,&max_sal); **SQL>** insert into deposit1 2 values('&a_no','&cname','&bname',&amount,'&date');

(2) Give details of account no. and deposited rupees of customers having account opened between dates 01-01-06 and 25-07-06.

SQL> select A_NO ,AMOUNT

- 2 FROM DEPOSITI
- 3 WHERE A_DATE BETWEEN'01-JAN-06'and'25-JUL-06';

A_NO	AMOUNT
101	7000
102	<i>5000</i>

6500

(3) Display all jobs with minimum salary is greater than 4000.

SQL> select job_title,min_sal

2 from job

103

3 where min_sal>4000;

JOB_TITLE	MIN_SAL	
Marketing manager	9000	
Finance manager	8200	
Account	4200	
Lecturer	6000	

(4) Display name and salary of employee whose department no is 20. Give alias name to name of employee.

SQL> select emp_name"name of employee",emp_sal

- 2 from employee
- 3 where dept_no=20;

name of employee	EMP_SAL
Smith	800
Adama	1100

(5) Display employee no,name and department details of those employee whose department lies in(10,20)

SQL> select emp_no,emp_name,dept_no

- 2 from employee
- 3 where dept_no between 10 and 20;

EMP_NO EMP_NAME	DEPT_NO
101 Smith	20
103 Adama	20
104 Aman	15
105 Anita	10
106 Sneha	10

To study various options of LIKE predicate

(1) Display all employee whose name start with 'A' and third character is 'a'.

SQL> select *

- 2 from employee
- 3 where emp_name like'A_a%';

EMP_NO EMP_NAME	EMP_SAL	EMP_COMM	DEPT_NO
103 Adama 110	0 0	20	
104 Aman 300	00	15	
107 Anamika 19	75	<i>30</i>	

(2) Display name, number and salary of those employees whose name is 5 characters long and first three characters are 'Ani'.

SQL> select emp_name,emp_no,emp_sal

- 2 from employee
- 3 where emp_name like'Ani__';

EMP_NAME	EM	P_NO	EMP_SAL
Anita	105	<i>5000</i>	

(3) Display the non-null values of employees and also employee name second character should be 'n' and string should be 5 character long.

SQL> select *

- 2 from employee
- 3 where emp_comm is not null and emp_name like '_n___';

EMP_NO EMP_NAME		EMP_SAL	EMP_COMM	DEPT_NO
105 Anita	5000	50000	10	
106 Sneha	2450	24500	10	

(4) Display the null values of employee and also employee name's third character should be 'a'.

SQL> select *

- 2 from employee
- 3 where emp_comm is null and emp_name like '__a%';

EMP_NO EMP_NAME	EMP_SAL	EMP_COMM	DEPT_NO
104 Aman	3000	15	
107 Anamika	1975	30	

(5) What will be output if you are giving LIKE predicate as '%_%' ESCAPE '\'

SQL> select *

- 2 from employee
- 3 where emp_name like '%_%'ESCAPE'\';

no rows selected

7

To Perform various data manipulation commands, aggregate functions and sorting concept on all created tables.
(1) List total deposit from deposit.
SQL> select sum(amount) from deposit;
SUM(AMOUNT)
28700
(2) List total loan from karolbagh branch
SQL> select sum(amount) from deposit where BNAME='KAROLBAGH';
SUM(AMOUNT)
3500
(3) Give maximum loan from branch vrce.
SQL> select max(amount) from deposit where BNAME='VRCE';
MAX(AMOUNT)
1000
(4) Count total number of customers
SQL> select count(CNAME) from customers;
COUNT(CNAME)
10
(5) Count total number of customer's cities.
SQL> select count(distinct CITY) from customers;
COUNT(DISTINCTCITY)

(6) Create table supplier from employee with all the columns.

SQL> create table supplier as select * from EMPLOYEE;

Table created

SQL>	desc	supp	lier
	ucsc	Bupp.	1101

Name	Null?	Type
EMP_NO		NUMBER(3)
EMP_NAME		VARCHAR2(30)
EMP_SAL		NUMBER(8,2)
EMP_COMM		NUMBER(6,1)
DEPT_NO		NUMBER(3)

(7) Create table sup1 from employee with first two columns.

SQL> create table sup1 as select EMP_NO,EMP_NAME from EMPLOYEE;

Table created.

SQL> desc sup1

Name	Null?	Туре
EMP_NO EMP_NAME		NUMBER(3) VARCHAR2(30)

(8) Create table sup2 from employee with no data.

SQL> create table sup2 as select * from EMPLOYEE where 1=2;

Table created.

SQL> desc sup2

Name	Null?	Туре
EMP_NO		NUMBER(3)
EMP_NAME		VARCHAR2(30)
EMP_SAL		NUMBER(8,2)
EMP_COMM		NUMBER(6,1)
DEPT NO		NUMBER(3)

(9) Insert the data into sup2 from employee whose second character should be 'n' and string should be 5 characters long in employee name field.

SQL> insert into sup2 (select * from employee where emp_name like '_n___');

2 rows created.

(10) Delete all the rows from sup1.			
SQL> delete from sup1;			
0 rows deleted.			
(11) Delete the detail of supplier whose so	up_no is 103.		
SQL> delete from supplier where EMP_NO	O=103;		
1 row deleted.			
(12) Rename the table sup2.			
SQL> rename sup2 to sup3;			
Table renamed.			
SQL> select * from sup3;			
EMP_NO EMP_NAME			
105 Anita 106 Sneha		50000	
(13) Destroy table sup1 with all the data.			
SQL> truncate table sup1;			
Table truncated.			
(14) Update the value dept_no to 10 when	re second cha	racter of emp. n	ame is 'm'.
SQL> update employee set dept_no=10 wh	nere emp_nam	e like '_m%';	
2 rows updated.			
(15) Update the value of employee name	whose employ	yee number is 10	3.
SQL> update employee set emp_name='La	kshman' wher	re emp_no=103;	
1 row updated.			
COL. 1.446			
SQL> select * from employee;			
EMP_NO EMP_NAME		EMP_COMM	DEPT_NO

101 Smith	800		10
102 Snehal	1600	300	25
103 Lakshman	1100	0	20
104 Aman	3000		10
105 Anita	5000	50000	10
106 Sneha	2450	24500	10
107 Anamika	1975		30

7 rows selected.

PRECTICAL 4

.....

4. To study Single-row functions.

(1) Write a query to display the current date. Label the column Date

SQL> SELECT sysdate "Date" 2 FROM dual;

Date

24-NOV-16

(2) For each employee, display the employee number, job, salary, and salary increased by 15% and expressed as a whole number. Label the column New Salary

SQL> SELECT EMP_NO, EMP_NAME, EMP_SAL,

- 2 ROUND(EMP_SAL * 1.15, 0) "New_Salary"
- 3 FROM employee;

EMP_NO EMP_NAME	EMP_SA	L New_Salary
101 SMITH	800	920
102 SNEHAL	1600	1840
103 ADAMA	1100	1265
104 AMAN	3000	3450
105 ANITA	5000	<i>5750</i>
106 SNEHA	2450	2818
107 ANAMIKA	2975	3421

(3) Modify your query no 4.(2) to add a column that subtracts the old salary from the new salary. Label the column Increase

SQL> SELECT EMP_NO,EMP_NAME,EMP_SAL,

- 2 ROUND(EMP_SAL * 1.15, 0) "New_Salary"
- 3 ROUND(EMP_SAL *1.15, 0) NEW_SALARY "INCREASE"
- 4 FROM EMPLOYEE;

EMP_NO EMP_NAME	EMP_SAL	New_Salary
101 SMITH	800	920
102 SNEHAL	1600	1840
103 ADAMA	1100	1265
104 AMAN	3000	<i>3450</i>

105 ANITA	<i>5000</i>	<i>5750</i>
106 SNEHA	2450	2818
107 ANAMIKA	2975	3421

(4) Write a query that displays the employee's names with the first letter capitalized and all other letters lowercase, and the length of the names, for all employees whose name starts with J, A, or M. Give each column an appropriate label. Sort the results by the employees' last names.

SQL> SELECT INITCAP(EMP_NAME) "Name",

- 2 LENGTH(EMP_NAME) "Length"
- 3 FROM employee
- 4 WHERE EMP_NAME LIKE 'J%'
- 5 OR EMP_NAME LIKE 'M%'
- 6 OR EMP_NAME LIKE 'A%'
- 7 ORDER BY EMP_NAME;

Name	Length
Adama	5
Aman	4
Anamika	7
Anita	5

(5) Write a query that produces the following for each employee: <employee last name> earns <salary> monthly

```
SQL> SELECT last_name || ' earns '
|| TO_CHAR(salary, 'fm$99,999.00')
|| ' monthly but wants '
|| TO_CHAR(salary * 3, 'fm$99,999.00')
|| '.' "Dream Salaries"
FROM employees;
```

PRACTICAL 5
5. Displaying data from Multiple Tables (join)
(1) Give details of customers ANIL.
 SQL> select d.actno,d.cname,d.amount,d.adate,c.city,b,city,d.bname from deposit d,customers c,branch b where d.cname=c.cname and d.bname=b.bname and d.cname= 'anil';
actno bname cname amount adate city city 100 vice anil 1000 01-mar-95 calcutta nagpur ************************************
(2) Give name of customer who are borrowers and depositors and having living city nagpur
 SQL> select c.cname 2 from customers.c,deposit.d,borrow.b 3 where c.city = 'nagpur' and c.cname = d.cname and c.cname = b.cname;
cname Madhuri Pramod ************************************
(3) Give city as their city name of customers having same living branch.
<pre>SQL> select c.city 2 from customers.c,branch.b, 3 where c.city= b.city;</pre>
Output City Nagpur Delhi Bombay ************************************
(4) Write a query to display the last name, department number, and department name for all employees.
<pre>SQL> select e.emp_name,e.dept_no,d.dept_name 2 from employee.e,dept.d 3 where e.dept_no = d.dept_no; emp_name dept_no dept_name smith 20 ce</pre>

snehal 25

adama 20 ce

me

anita 10 it sneha 10 it anamika 30 civil

->Department Table

dept_no dept_name dept_loc

20 ce newyork 10 it baroda *30* civil newyork *35* ahmedabad ec 25 surat me 45 me baroda *********

(5) Create a unique listing of all jobs that are in department 30. Include the location of the department in the output

SQL> select j.job_id,j.job_name,e.depy_no,d.dept_no

- 2 from job.j,employee.e,dept.d
- 3 wheremj.job_id = e.job_id and e.dept_no = d.dept_no and e.dept_no = 30;

job_id job_name dept_no dept_loc lec lecturer 30 newyork

(6) Write a query to display the employee name, department number, and department name for all employees who work in NEW YORK.

SQL> select e.emp_name,d.dept_name,e.dept_no

- 2 from employee.e,dept.d
- 3 where e.dept_no=d.dept_no and d.dept_loc='newyork';

PRACTICAL 6
6. To apply the concept of Aggregating Data using Group functions.
 (1) List total deposit of customer having account date after 1-jan-96. SQL> select sum(amount) 2 from deposit 3 where adate > '1-jan-96';
SUM(AMOUNT)
10000 *********************************
(2) List total deposit of customers living in city Nagpur.
<pre>SQL> select sum(d.amount) 2 from deposit.d,customers.c 3 where d.cname = c.cname and c.city = 'nagpur';</pre>
SUM(AMOUNT)
4200 ***********************************
(3) List maximum deposit of customers living in bombay.
SQL> select max(d.amount)2 from deposit d,customer c3 where d.cname = c.cname and city = 'bombay

(4) Display the highest, lowest, sum, and average salary of all employees. Label the columns Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole number.

SQL> select max(emp_sal)"maximun",sum(emp_sal)"sum",min(emp_sal)"minimun"

- 2 round(avg(emp_sal)"average")
- 3 from employee;

MAX(D.AMOUNT)

5000

maximum	minimum	sum	average
5000	800	16925	2418

(5) Write a query that displays the difference between the highest and lowest salaries. Label the column DIFFERENCE.

SQL> select max(emp_sal)-min(emp_sal)"difference"

2 from employee;

Difference

4200

(6) Create a query that will display the total number of employees and, of that total, the number of employees hired in 1995, 1996, 1997, and 1998

SQL> select count(emp_name)

- 2 from employee
- 3 where hire_date like '%95' or hire_date like '%96' or hire_date like '%97'or hire_date like '%98';

Count(emp_name)

3

(7) Find the average salaries for each department without displaying the respective department numbers.

SQL> select avg(emp_sal)

- 2 from employee
- 3 group by dept_no;

AVG(EMP_SAL)

1600

2975

800

2050

5000

2450

(8) Write a query to display the total salary being paid to each job title, within each department.

SQL> select dept_no,sum(emp_sal)

- 2 from employee
- 3 group by dept_no;

DEPT_NO SUM(EMP_SAL)

<i>25</i>	1600
<i>30</i>	2975
20	800
<i>15</i>	4100
<i>10</i>	5000
12	2450

(9) Find the average salaries > 2000 for each department without displaying the respective department numbers.

SQL> select dept_no,avg(emp_sal)

- 2 from employee
- 3 group by dept_no having avg(emp_sal)>2000;

DEPT_NO AVG(EMP_SAL)

30 2975 15 2050 10 5000 12 2450

(10) Display the job and total salary for each job with a total salary amount exceeding 3000, in which excludes president and sorts the list by the total salary.

SQL> select dept_no,sum(emp_sal)

- 2 from employee
- 3 group by having sum(emp_sal)>3000
- 4 order by (emp-sal);

DEPT_NO SUM(EMP_SAL)

(11) List the branches having sum of deposit more than 5000 and located in city bombay.

SQL> select d.bname,sum(d.amount)

- 2 from deposit.d branch.b
- 3 where b.bname=d.bname and b.city='bombay'
- 4 group by d.bname having sum (d.amount)>5000;

BNAME SUM(D.AMOUNT)
POWALI 7000

7. To solve queries using the concept of sub query.

(1) Write a query to display the last name and hire date of any employee in the same department as SCOTT. Exclude SCOTT

SQL>select emp_name, hire_date

From employee

Where dept_no in (select dept_no from employee where emp_name like 'SCOTT') and

emp_name < > 'SCOTT';

Emp_name	hire_date
Adama	1-JAN-96

(2) Give name of customers who are depositors having same branch city of mr. sunil.

SQL> select d1.cname, d1.bname

From deposit d1, branch b1

Where b1.city in (select b2.city from deposit d2, branch b2 where d2.cname='sunil') and d1.bname=b1.bname

cname	bname
Sunil	Ajni
Anil	Vrce

- (3) Give deposit details and loan details of customer in same city where pramod is living.
- SQL>select d1.actno, d1.bname, d1.amount,d1.adate, b1.loan no, b1.bname, b1.amount
 From deposit d1, borrow b1, customers c1

Where c1.cname=d1,cname and d1.cname=b1.cname and c1.city in (select c2.city from customer .c2 where c2.cname='prmod');

bname	actno	amount	adate	lo	anno	bname	amount	
Chandi		104	1200	17-DE	C-05	321	Andheri	2000
M.G.Road	105	3000	27-MA	AR-96	375	virar	8000	

(4) Create a query to display the employee numbers and last names of all employees who earn more than the average salary. Sort the results in ascending order of salary.

SQL>select emp_no, emp_name, emp_sal,

From employee

Where emp_sal >(select avg(emp_sal) from employee) order by emp_sal

emp_name	emp_no	emp_sal
Sneha	106	2450
Anamika	107	2975
Aman	104	3000
Anita	105	5000

.....

(5) Give names of depositors having same living city as mr. anil and having deposit amount greater than $2000\,$

SQL>selecy d.cname, d.amount, c.city, d.bname

From customer c.deposit

Where d.amount > 2000 and d.cname = c.name and c.city in (select city from customer Where c.cname = 'shivani'0;

Cname	amount	city	bname	
Kranti	5000	Bombay	Nehruplace	

(6) Display the last name and salary of every employee who reports to ford.

SQL>select em.manager_name , e.emp_sal

From employee e , emp_manager em

Where e.emp_no = emp.emp_no and manager_name = 'Rakesh';

Emp_name	emp_sal
Anamika	2975

(7) Display the department number, name, and job for every employee in the Accounting department.

SQL>select e.job_id , e.dept_no , d.dept_name

From department d, employee e

Where d.dept_no = e.dept_no and d.dept_name='CE';

Dept_no	dept_name	job_id
20	CE	
20	CE	

(8) List the name of branch having highest number of depositors.

SQL>select bname

From deposit d Group by bname having count (bname) >= all (select count) (cname from deposit d group by bname);
bname
Andheri
(9) Give the name of cities where in which the maximum numbers of branches are located.
SQL>select city from branch group by city having count (banme) >= all(select count (bname) from branch group by city);
city
Nagpur Delhi Bombay

-----8:- To apply the concept of Cursor 1. **SQL>** Declare v_eno employees.employee_id%type; v_sal employees.salary%type; Cursor emp_cur is Select employee_id,salary From employees Where department_id=90; Begin Open emp_cur; loop Fetch emp_cur into v_eno,v_sal; DBMS_OUTPUT.PUT_LINE(to_char(v_eno)|| ' '||to_char(v_sal)); Exit when emp_cur%NOTFOUND; end loop; Close emp_cur; End: 2. **SQL>** Declare 2 v_eno employees.employee_id%type; 3 v_sal employees.salary%type; 4 Cursor emp_cur is 5 Select employee_id,salary 6 From employees 7 : 8 Begin 9 Open emp_cur; 10 loop

```
11 Fetch emp_cur into v_eno,v_sal;
12 dbms_output_line(to_char(v_eno)||' '||to_char(v_sal));
13 exit when emp_cur%NOTFOUND;
14 end loop;
15 end;
16
Declare
v_eno employees.employee_id%type;
v_sal employees.salary%type;
Cursor emp_cur is
Select employee_id,salary
From employees
Begin
Open emp_cur;
loop
Fetch emp_cur into v_eno,v_sal;
dbms_output.put_line(to_char(v_eno)||' '||to_char(v_sal));
exit when emp_cur%ROWCOUNT >10;
end loop;
end:
OUTPUT
100 24000
101 17000
102 17000
103 9000
104 6000
105 4800
106 4800
107 4200
```

```
108 12000
109 9000
110 8200
```

PL/SQL procedure successfully completed.

PRACTICAL 9

9:- To apply the concept of procedure

```
SQL> Create or replace procedure
show_sal(v_id employees.employee_id%type)
  ls
  v_sal employees.salary%type;
  begin
  select salary
  into v sal
  from employees
  where employee_id=v_id;
  dbms_output.put_line(v_sal);
 end show_sal;
Procedure created.
SQL> call show_sal(104);
6000
Call completed.
SQL> call show_sal(108);
12000
Call completed.
```

11:- To apply the concept of Function

```
SQL> Create or replace function
get_sal(v_id employees.employee_id%type)
Return number
ls
v_sal employees.salary%type;
begin
select salary
into v_sal
from employees
where employee_id=v_id;
return v_sal;
end get_sal;
Function created.
SQL> variable sal number;
SQL> execute:sal:= get_sal(101);
PL/SQL procedure successfully completed.
SQL> print sal;
   SAL
  17000
```