Training sample regressions

Training sample begins in 1970-03-31 and ends in 2010-01-01. We run regressions of state and local tax revenues (by revenue source) using annual data over the training sample, then predict annual data for the out of sample forecasts. Next we smooth those out of sample forecasts into quarterly levels (at an annual rate).

The tables below report the regression results for the given specification and then display the figures of the forecast alongside the realized values of the tax revenue components. The tax components are named as follows:

- gsrpt = Personal income taxes
- gsrpri = Production & Import taxes
- gsrcp = corporate taxes
- gsrs = Payroll taxes

All values are in nominal billions of dollars, at seasonally-adjusted annual rates.

Nominal level regressions (with linear time trend)

Table 1: Nominal levels

	Dependent variable:				
	gsrpt	gsrpri	gsrcp	gsrs	
	(1)	(2)	(3)	(4)	
t	-14.140	-30.663**	-23.299**	5.961	
	(7.163)	(11.755)	(6.933)	(5.786)	
gdp	0.048***	0.058***	0.035***	-0.008	
	(0.008)	(0.013)	(0.007)	(0.006)	
gdp_l1	0.035***	0.015	-0.011	-0.0004	
	(0.007)	(0.011)	(0.007)	(0.006)	
gdp_l2	-0.023^*	0.022	0.020*	-0.007	
	(0.009)	(0.015)	(0.009)	(0.007)	
hpx	-0.269	2.499***	1.122**	0.414	
	(0.321)	(0.527)	(0.311)	(0.259)	
hpx_l1	-0.569	-2.460^*	-1.661**	-0.296	
	(0.617)	(1.012)	(0.597)	(0.498)	
hpx_l3	-0.561	4.221**	1.918*	0.787	
	(0.927)	(1.522)	(0.898)	(0.749)	
hpx_l5	0.769	-2.840	-1.549	-0.714	
	(1.069)	(1.754)	(1.034)	(0.863)	
Constant	139.904	417.415*	322.948**	-58.236	
	(107.575)	(176.538)	(104.120)	(86.893)	
Observations	14	14	14	14	
\mathbb{R}^2	0.999	1.000	0.986	0.966	
Adjusted R ²	0.998	1.000	0.964	0.911	

Note:

*p<0.1; **p<0.05; ***p<0.01

[[1]]

RMSD of forecast = 53.86

[[2]]

RMSD of forecast = 143.13

[[3]]

RMSD of forecast = 39.88

[[4]]

RMSD of forecast = 17.05

Differenced levels regressions

Table 2: Differenced levels

	Dependent variable:				
	gsrpt_d	$gsrpri_d$	$gsrcp_d$	gsrs_d	
	(1)	(2)	(3)	(4)	
gdp_d	0.044***	0.057**	0.033***	-0.005	
	(0.008)	(0.015)	(0.007)	(0.005)	
gdp_d_l1	0.035***	0.014	-0.012	0.0002	
	(0.008)	(0.014)	(0.007)	(0.005)	
gdp_d_l2	-0.024**	0.022	0.021**	-0.008	
	(0.009)	(0.016)	(0.008)	(0.006)	
hpx_d	-0.205	2.489**	1.153**	0.363	
	(0.366)	(0.645)	(0.305)	(0.224)	
hpx_d_l1	-0.527	-2.392*	-1.668**	-0.320	
	(0.626)	(1.106)	(0.522)	(0.383)	
hpx_d_l3	-0.579	4.086*	1.957*	0.784	
	(0.938)	(1.655)	(0.781)	(0.574)	
hpx_d_l5	0.830	-2.744	-1.659	-0.674	
	(1.042)	(1.839)	(0.868)	(0.638)	
Constant	-13.026	-29.242*	-22.352**	4.665	
	(7.353)	(12.982)	(6.129)	(4.501)	
Observations	13	13	13	13	
R^2	0.975	0.972	0.959	0.727	
Adjusted R ²	0.940	0.932	0.903	0.345	

Note:

*p<0.1; **p<0.05; ***p<0.01

[[1]]

RMSD of forecast = 49.11

[[2]]

RMSD of forecast = 138.91

[[3]]

RMSD of forecast = 58.64

[[4]]

RMSD of forecast = 24.71

Assuming constant tax rate

Personal income taxes grow with nominal private consumption. All other taxes grow with nominal GDP. [[1]]

RMSD of forecast = 30.39

[[2]]

[[3]]

RMSD of forecast = 4.1

[[4]]

RMSD of forecast = 3.16