Architecture de réseau de neurones

_

Le Transformer

Guillaume Bourmaud

PLAN

- I. Histoire du "Transformer"
- II. Couche d'attention à softmax
- III. Équivariance par permutation et encodage de la position
- IV. Application à des images
- V. Limites

I) Histoire du "Transformer"

"Attention is All You Need", NIPS 2017

I)

Sequence-to-sequence

"the cat sat on the mat" -> [Seq2Seq model] -> "le chat etait assis sur le tapis"

Architecture encodeur-décodeur

I)

Exemple avec un RNN

Apprentissage (en "Teacher-Forcing")

Exemple avec un RNN (suite)

Inférence

Exemple avec un RNN (suite)

Calcul séquentiel Apprentissage lent Comment paralléliser ? Limites Encoder LIMITES Apprentissage lent LISTM L

Difficile d'apprendre de longues dépendances avec un RNN.

Coronavirus pandemic is spread across 175 countries, it is a serious problem especially in Italy, Spain and US as of March 2020.

I)

Transformer vs RNN

I)

Transformer: vue globale

Transformer: encodeur

ENCODER #2 ENCODER #1 r1 dépend de z1 Feed Forward Feed Forward **Neural Network Neural Network** r2 dépend de z2 Self-Attention

Machines

Thinking

z1 dépend de x1 et x2

z2 dépend de x1 et x2

II) Couche d'attention à softmax

Entrées

x : vecteur de dimension

 $1 \times D$

 $\{\mathbf y_i\}_{i=1...N_y}$: ensemble de vecteurs de dimension 1 imes D

Attention utilisant la fonction softmax

Entrées	\mathbf{X}	: vecteur de dimension	$1 \times D$
	$\{\mathbf y_i\}_{i=1N_y}$: ensemble de vecteurs de dimension $1 imes D$		

Fonction

$$\exp(\mathbf{x}\mathbf{y}_j^{ op})$$

Produit scalaire + exp :

$$\gg 1$$
 si ${f x}$ est "attiré" par ${f y}_j$ $= 1$ si ${f x}$ orthogonal à ${f y}_j$

pprox 0 si ${f X}$ est "repoussé" par ${f y}_j$

Attention utilisant la fonction softmax

Entrées $\begin{array}{c} \mathbf{x} & \text{: vecteur de dimension} & 1 \times D \\ \{\mathbf{y}_i\}_{i=1...N_y} \text{: ensemble de vecteurs de dimension} & 1 \times D \end{array}$

Produit scalaire + exp :

pprox 0 si ${f X}$ est "repoussé" par ${f y}_i$

$$\gg 1$$
 si ${f x}$ est "attiré" par ${f y}_j$ $\qquad \qquad {f y}_j$ "attire l'attention de" ${f x}$

Attention utilisant la fonction softmax

Entrées

 \mathbf{X}

: vecteur de dimension

 $1 \times D$

 $\{\mathbf y_i\}_{i=1...N_y}$: ensemble de vecteurs de dimension 1 imes D

Fonction

$$rac{\exp(\mathbf{x}\mathbf{y}_j^{ op})}{\sum_{k=1}^{N_y} \exp(\mathbf{x}\mathbf{y}_k^{ op})}$$
 — Softmax

Entrées

: vecteur de dimension

 $1 \times D$

 $\{\mathbf y_i\}_{i=1...N_y}$: ensemble de vecteurs de dimension 1 imes D

Fonction

$$\mathbf{x}' = \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x}\mathbf{y}_j^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x}\mathbf{y}_k^\top)} \mathbf{y}_j$$

Combinaison linéaire des $\{\mathbf y_i\}_{i=1...N_y}$

Les poids les plus élevés de cette combinaison linéaire correspondent aux vecteurs ayant le plus "attiré l'attention" de $\mathbf X$

Entrées

: vecteur de dimension

 $1 \times D$

 $\{\mathbf y_i\}_{i=1...N_u}$: ensemble de vecteurs de dimension 1 imes D

Fonction

$$\mathbf{x}' = \sum_{j=1}^{N_y} rac{\exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_j \mathbf{K})^{ op})}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_k \mathbf{K})^{ op})} \mathbf{y}_j$$

Pour pouvoir apprendre à "attirer l'attention" - introduction de paramètres à optimiser

Paramètres $^{\mathsf{W}}_{\mathsf{V}}$

: matrice "query" de taille

: matrice "key" de taille

 $D \times L$ $D \times L$

Entrées

x : vecteur de dimension

 $1 \times D$

 $\{\mathbf y_i\}_{i=1...N_y}$: ensemble de vecteurs de dimension 1 imes D

Fonction

$$\mathbf{x}' = \mathbf{x} + \sum_{j=1}^{N_y} rac{\exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_j \mathbf{K})^{ op})}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_k \mathbf{K})^{ op})} \mathbf{y}_j \mathbf{V}$$

En pratique, la combinaison linéaire est elle-même transformée linéairement, et suivie d'une connection résiduelle.

Paramètres

Y V : matrice "query" de taille: matrice "key" de taille

 $D \times L \\ D \times L$

7

V : matrice "value" de taille

 $\times D$

22

Entrées $\begin{array}{c} \mathbf{x} & \text{: vecteur de dimension} & 1 \times D \\ \{\mathbf{y}_i\}_{i=1...N_y} \text{: ensemble de vecteurs de dimension} & 1 \times D \end{array}$

Fonction

$$\mathbf{x}' = \mathbf{x} + \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_j \mathbf{K})^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_k \mathbf{K})^\top)} \mathbf{y}_j \mathbf{V}$$

Couche d'inter-attention softmax ("Cross-attention")

 $\begin{aligned} & \{\mathbf{x}_i\}_{i=1...N_x} \text{ : vecteurs de dimension } D & \longrightarrow \mathbf{X} \text{ : matrice de taille } N_x \times D \\ & \{\mathbf{y}_i\}_{i=1...N_y} \text{ : vecteurs de dimension } D & \longrightarrow \mathbf{Y} \text{ : matrice de taille } N_y \times D \end{aligned}$

Couche d'inter-attention softmax ("Cross-attention")

Sorties $\{\mathbf{x}_i'\}_{i=1...N_x}$: vecteurs de dimension $D \longrightarrow \mathbf{X}'$: matrice de taille $N_x \times D$

Couche d'inter-attention softmax ("Cross-attention")

Sorties $\{\mathbf{x}_i'\}_{i=1...N_x}$: vecteurs de dimension $D \longrightarrow \mathbf{X}'$: matrice de taille $N_x \times D$

$$M = XQ(YK)^{\top}$$
 $S = \text{softmax}(M, \text{dim}=1)$
 $X' = X + SYV$

Calcul réalisé en parallèle sur les vecteurs $\{\mathbf{x}_i\}_{i=1...N_r}$

Couche d'inter-attention softmax ("Cross-attention")

Sorties $\{\mathbf{x}_i'\}_{i=1...N_x}$: vecteurs de dimension $D \longrightarrow \mathbf{X}'$: matrice de taille $N_x \times D$ $\mathtt{M} = \mathtt{XQ}(\mathtt{YK})^{\top}$ S = softmax(M, dim=1)X' = X + SYVmatriciel Produit Calcul réalisé en parallèle sur les vecteurs $\{\mathbf{x}_i\}_{i=1...N_r}$ matriciel

Couche d'inter-attention softmax ("Cross-attention") (suite)

$$\mathtt{X}:N_x imes D$$
 $\mathtt{Y}:N_y imes D$ $\mathtt{X}':N_x imes D$

$$\mathbf{M} = \mathbf{XQ}(\mathbf{YK})^{\top} : N_x \times N_y \qquad \mathbf{S} = \mathbf{softmax}(\mathbf{M}, \mathbf{dim} = 1) : N_x \times N_y$$

Couche d'inter-attention softmax ("Cross-attention") (suite)

$$\mathtt{X}:N_x imes D$$
 $\mathtt{Y}:N_u imes D$ $\mathtt{X}':N_x imes D$

$$\mathbf{M} = \mathbf{XQ}(\mathbf{YK})^{\top} : N_x \times N_y \qquad \mathbf{S} = \mathbf{softmax}(\mathbf{M}, \mathbf{dim} = 1) : N_x \times N_y$$

Calcul

- Nombre d'opérations potentiellement très élevé
- + Parallélisable

Stockage

- Mémoire requise pour stocker M et S potentiellement très élevée

Couche d'inter-attention softmax ("Cross-attention") (suite)

 $\mathtt{X}:N_x imes D$ $\mathtt{Y}:N_y imes D$ $\mathtt{X}':N_x imes D$

+ Parallélisable

$$\begin{aligned} \mathbf{M} &= \mathbf{XQ}(\mathbf{YK})^+ : N_x \times N_y & \mathbf{S} &= \mathbf{Softmax}(\mathbf{M}, \mathbf{dim} = \mathbf{I}) : N_x \times N_y \\ \mathbf{Calcul} & \mathbf{Stockage} \\ &- \mathbf{Nombre d'opérations} & - \mathbf{M\acute{e}moire requise pour stocker M et S} \\ & \mathbf{potentiellement très \acute{e}lev\acute{e}} & \mathbf{potentiellement très \acute{e}lev\acute{e}e} \end{aligned}$$

$$\mathbf{M} = \mathbf{XQ}(\mathbf{YK})^{ op}: N_x imes N_y$$
 $\mathbf{S} = \mathbf{softmax}(\mathbf{M}, \mathbf{dim} = 1): N_x imes N_y$ Calcul Stockage - Nombre d'opérations - Mémoire requise pour stocker \mathbf{M} et \mathbf{S}

Exemple : $N_x = N_y = 640 imes 480 pprox 3.10^5$ pixels

 $N_x imes N_y pprox 9.10^{10}$ flottants (32 bits) $os 360 {
m Go}$

Cas particulier : Couche d'auto-attention ("Self-attention")

Entrées $\{\mathbf x_i\}_{i=1...N_x}$: vecteurs de dimension $D \longrightarrow \mathbf X$: matrice de taille $N_x imes D$

Sorties $\{\mathbf{x}_i'\}_{i=1...N_x}$: vecteurs de dimension $D \longrightarrow \mathbf{X}'$: matrice de taille $N_x \times D$

Cas particulier : Couche d'auto-attention ("Self-attention")

Entrées $\{\mathbf x_i\}_{i=1...N_x}$: vecteurs de dimension $D \longrightarrow \mathbf X$: matrice de taille $N_x imes D$

Sorties
$$\{\mathbf{x}_i'\}_{i=1...N_x}$$
 : vecteurs de dimension $D \longrightarrow \mathbf{X}'$: matrice de taille $N_x \times D$

$$egin{aligned} \mathbf{M} &= \mathbf{XQ}(\mathbf{XK})^{ op} : N_x imes N_x \ \mathbf{S} &= \mathrm{softmax}(\mathbf{M}, \mathrm{dim} = 1) : N_x imes N_x \ \mathbf{X}' &= \mathbf{X} + \mathbf{SXV} : N_x imes D \end{aligned}$$

Transfert d'information depuis X vers lui-même le tout stocké dans X'

Attention softmax à têtes multiples "Multi-head dot-product attention"

Entrées

x : vecteur de dimension

 $1 \times D$

 $\{\mathbf y_i\}_{i=1...N_u}$: ensemble de vecteurs de dimension 1 imes D

$$\mathbf{x}' = \mathbf{x} + \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_j \mathbf{K})^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_k \mathbf{K})^\top)} \mathbf{y}_j \mathbf{V}$$

Attention softmax à têtes multiples "Multi-head dot-product attention"

Entrées

x : vecteur de dimension

 $1 \times D$

 $\{\mathbf y_i\}_{i=1...N_y}$: ensemble de vecteurs de dimension 1 imes D

$$\mathbf{x}' = \mathbf{x} + \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_j \mathbf{K})^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_k \mathbf{K})^\top)} \mathbf{y}_j \mathbf{V}$$

$$\mathbf{x}' = \mathbf{x} + \sum_{h=1}^{H} \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x} \mathbf{Q}_h (\mathbf{y}_j \mathbf{K}_h)^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q}_h (\mathbf{y}_k \mathbf{K}_h)^\top)} \mathbf{y}_j \mathbf{V}_h$$

36

Attention softmax à têtes multiples (suite) "Multi-head dot-product attention"

Entrées

: vecteur de dimension

Fonction

 $\{\mathbf y_i\}_{i=1...N_u}$: ensemble de vecteurs de dimension 1 imes D

 $\mathbf{x}' = \mathbf{x} + \sum_{h=1}^{H} \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x} \mathbf{Q}_h (\mathbf{y}_j \mathbf{K}_h)^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q}_h (\mathbf{y}_k \mathbf{K}_h)^\top)} \mathbf{y}_j \mathbf{V}_h \mathbf{W}_h$

Paramètres $\begin{cases} \mathbb{Q}_h \\ h = 1 \dots H \end{cases} : \text{matrices "query" de taille} \\ \mathbb{K}_h \\ h = 1 \dots H \end{cases} : \text{matrices "key" de taille} \\ \mathbb{V}_h \\ h = 1 \dots H \end{cases} : \text{matrices "value" de taille} \\ \mathbb{W}_h \\ h = 1 \dots H \end{cases} : \text{matrices "output" de taille}$ $D \times L$ $D \times L$ $D \times L$

37

Transfert d'information de Y vers X

Transformation non-linéaire de chaque ligne

Transfert d'information de Y vers X

41

Transformation non-linéaire de chaque ligne

Vue détaillée du Transformer

III) Équivariance par permutation et encodage de la position

Équivariance par permutation

Équivariance par permutation

Équivariance par permutation

Encodage de la position

Encodage de la position

55

Encodage de la position

Encodage de la position

Remarque : Il existe d'autres façons d'encoder la position (ex: "Fourier Features").

IV) Application à des images

IV)

"An image is worth 16x16 words", ICLR 2021

"An image is worth 16x16 words", ICLR 2021

IV)

"Segmenter: Transformer for Semantic Segmentation", ICCV 2021

IV)

"DETR: End-to-End Object Detection With Transformers", ECCV 2020

En pratique, il y a 100 "object queries", donc 100 boîtes englobantes prédites.

63

"LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

IV)

U-Net avec des blocs d'attention

Architecture très utilisée par les méthodes de diffusion (prochain cours)

V) Limites

V)

Limites des couches d'attention à softmax

$$\mathbf{M} = \mathbf{XQ}(\mathbf{YK})^{\top} : N_x \times N_y \qquad \mathbf{S} = \mathbf{softmax}(\mathbf{M}, \mathbf{dim} = 1) : N_x \times N_y$$

Problème : Inapplicable pour des ensembles de grandes tailles.

V)

Limites des couches d'attention à softmax

$$\mathbf{M} = \mathbf{XQ}(\mathbf{YK})^\top : N_x \times N_y \qquad \mathbf{S} = \mathbf{softmax}(\mathbf{M}, \mathbf{dim} = 1) : N_x \times N_y$$

Problème : Inapplicable pour des ensembles de grandes tailles.

Solutions:

- Appliquer des couches d'attention à softmax en cherchant à réduire Nx et/ou Ny
 - → ViT ou U-Net avec attention
- Modifier la couche d'attention softmax
 - → peu utilisé en pratique

Exemple de modification de la couche d'attention softmax : couche d'attention linéaire

"Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention", ICML 2020

$$\mathbf{x}' = \mathbf{x} + \left(\sum_{j=1}^{N_y} \frac{\phi(\mathbf{x}\mathbf{Q})\phi(\mathbf{y}_j\mathbf{K})^\top}{\sum_{k=1}^{N_y} \phi(\mathbf{x}\mathbf{Q})\phi(\mathbf{y}_k\mathbf{K})^\top} \mathbf{y}_j\right)\mathbf{V} \qquad \text{Remplacement du noyau exponentiel par un noyau linéaire}$$

Se simplifie en $\mathbf{x}' = \mathbf{x} + \phi(\mathbf{x}\mathbf{Q}) \frac{\left|\sum_{j=1}^{N_y} \phi(\mathbf{y}_j\mathbf{K})^\top \mathbf{y}_j\mathbf{V}\right|}{\phi(\mathbf{x}\mathbf{Q})\left|\sum_{k=1}^{N_y} \phi(\mathbf{y}_k\mathbf{K})^\top\right|} \qquad \begin{array}{c} \text{Indépendant de x, plus besoin de calculer ni stocker explicitement les matrices M et S} \end{array}$

Indépendant de x, plus les matrices M et S

Exemple de réduction de Nx et/ou Ny : PerceiverIO

"Perceiver IO: A General Architecture for Structured Inputs & Outputs." arXiv, 2021

