MA320 抽象代数 作业十

刘逸灏 515370910207

2018年5月23日

Ex. 3.3/1

设 $f(x), g(x) \in Z[x]$, 则 $f(x)g(x) \in \langle x \rangle$, $\exists h(x) \in Z[x]$ 使得 $f(x)g(x) = x \cdot h(x)$ 。由于 x 不可约,上式可得 $x \mid f(x)$ 或 $x \mid g(x)$,故 $\langle x \rangle$ 是 Z[x] 的素理想。

Ex. 3.3/2

必要性: 设 P 是素理想,则对 R 的任何两个理想 I,J 使得 $IJ \subset P$ 必定可以推出 $I \subset P$ 或 $J \subset P$,则对 $ab \in P$,有 $\langle ab \rangle \subset P$,而 $\langle a \rangle \langle b \rangle \subset \langle ab \rangle$,故 $\langle a \rangle \subset P$ 或 $\langle b \rangle \subset P$,即 $a \in P$ 或 $b \in P$ 。 充分性: 设对 $ab \in P$,有 $a \in P$ 或 $b \in P$ 。则对 R 的任何两个理想 I,J 使得 $IJ \subset P$,假设 $I \not\subset P$ 且 $J \not\subset P$,有 $a \in I, a \not\in P, b \in J, b \not\in P$ 。又因为 $ab \in IJ \subset P$, $ab \in P$,根据条件中的 $a \in P$ 或 $b \in P$ 得到矛盾,故假设错误,证得 $I \subset P$ 或 $J \subset P$ 。

Ex. 3.3/3

假设素理想为 P,根据命题 3.1(ii),由于 R 是有单位元的交换环,可得商环 R/P 为整环。由于 R 是有限的,R/P 是一个有限整环,即是一个域。根据命题 3.1(i) 可得 P 是极大理想,故得证。

Ex. 3.3/5

- (i) 由于 $P \neq R$ 的是素理想,对于 $a,b \in R$, 当 $ab \in P$, 有 $a \in P$ 或 $b \in P$ 。则对于 $f(a),f(b) \in S$, 当 $f(a)f(b) \in S$, 若 $f(a) \notin S$ 且 $f(b) \notin S$,则 $P \supset K$,与条件矛盾,故 f(P) 也是 S 的素理想。
- (ii) 由于 Q 是 S 的素理想, 对于 $a, b \in S$, 当 $ab \in S$, 有 $a \in S$ 或 $b \in S$ 。则对于 $f^{-1}(a), f^{-1}(b) \in R$,当 $f^{-1}(a)f^{-1}(b) \in P$,显然有 $f^{-1}(a) \in R$ 或 $f^{-1}(b) \in R$,故 $f^{-1}(Q)$ 也是 R 的素理想。

(iii) 根据 (i)(ii) 可得 S 中素理想与 R 中包含 K 的素理想有单射和满射关系,故是一一对应的。

Ex. 3.3/7

Z/mZ 的全部素理想和极大理想为 nZ/mZ,其中 n 为 m 的全部素因数。首先,易得 nZ/mZ 为 Z/mZ 的理想,故 $(Z/mZ)/(nZ/mZ)\cong Z/nZ$,nZ/mZ 为极大理想当且仅当 n/nZ 是域,又当且仅当 n 为素数。故 nZ/mZ 为极大理想当且仅当 n 为 m 的素因数。同理可知,nZ/mZ 为素理想当且仅当 n/nZ 是整环,又当且仅当 n 为素数。故 nZ/mZ 为素理想当且仅当 n 为 m 的素因数。