ETH zürich

Verwandtschaft - Inzucht - Inverse Verwandtschaftsmatrix

Peter von Rohr

Beispiel der Matrixmethode

Matrixmethode - Tiere anordnen

NA (Not Available) ist ein Platzhalter für das unbekannte Tier

	NA	A	В	С	D	E	F	G	Н	ı	J
NA											
Α											
В											
С											
D											
Е											
F											
G											
Н											
J											

Matrixmethode - Eltern eintragen

Fehlen die Eltern, soll NA verwendet werden

						ΑВ	ВС	C D	ΕF	FG	НΙ
	NA	Α	В	C	D	Ε	F	G	Н	I	J
NA											
Α											
В											
С											
D											
Е											
F											
G											
Н											
J											

Matrixmethode - Initialisierung

Zeile und Kolonne für NA auf 0 setzen

						ΑВ	ВС	C D	ΕF	FG	НΙ
	NA	Α	В	C	D	Е	F	G	Н	I	J
NA	0	0	0	0	0	0	0	0	0	0	0
Α	0										
В	0										
С	0										
D	0										
Е	0										
F	0										
G	0										
Н	0										
Ι	0										
J	0										

Matrixmethode - Elemente berechnen

- Elemente werden Zeile für Zeile von links nach rechts berechnet
- Unterscheidung zwischen Diagonalelementen und Nicht-Diagonalelementen
- **Diagonalelement** für Tier X: $1 + F_X$, wobei F_X der Inzuchtgrad von Tier X. Hat Tier X unbekannte Eltern, dann ist $F_X = 0$
- **Nicht-Diagonalelementen** zwischen Tier X und Tier Y steht im Feld der Zeile für Tier X und in der Kolonne für Tier Y. Wird berechnet als

$$a_{X,Y} = \frac{1}{2} \left(a_{X,m(Y)} + a_{X,v(Y)} \right)$$

wobei m(Y) die Mutter von Y ist und v(Y) der Vater von Y ist

■ Sind Eltern von Y unbekannt $\rightarrow a_{X,m(Y)} = a_{X,v(Y)} = 0$

Matrixmethode - Zweite Zeile, unbekannte Eltern

- Erstes Element ist ein Diagonalelement $\rightarrow a_{A,A} = 1 + F_A = 1$
- Zweites Element ist ein Nicht-Diagonalelement \rightarrow

$$a_{A,B} = \frac{1}{2} \left(a_{A,m(B)} + a_{A,v(B)} \right) = 0$$

• Analog für $a_{A,C}$ und $a_{A,D}$

						ΑВ			ΕF	FG	H I
	NA	Α	В	C	D	Е	F	G	Н	I	J
NA	0	0	0	0	0	0	0	0	0	0	0
Α	0	1	0	0	0						
В	0										

Matrixmethode - Zweite Zeile, bekannte Eltern

Additiv genetischer Verwandtschaftsgrad zwischen A und E

$$a_{A,E} = \frac{1}{2} \left(a_{A,m(E)} + a_{A,v(E)} \right) = \frac{1}{2} \left(a_{A,B} + a_{A,A} \right) = \frac{1}{2} \left(0 + 1 \right) = 0.5$$

Analog für F bis J

						ΑВ	ВС	C D	ΕF	FG	ΗΙ	
	NA	Α	В	C	D	Е	F	G	Н	ı	J	
 ΙA	0	0	0	0	0	0	0	0	0	0	0	
Α	0	1	0	0	0	0.5						ĺ
В	0											

Matrixmethode - Übertragen

						ΑВ	ВС	C D	ΕF	FG	HI
	NA	Α	В	C	D	Е	F	G	Н	I	J
NA	0	0	0	0	0	0	0	0	0	0	0
Α	0	1	0	0	0	0.5	0	0	0.25	0	0.125
В	0	0									
С	0	0									
D	0	0									
Е	0	0.5									
F	0	0									
G	0	0									
Н	0	0.25									
	0	0									
J	0	0.125									

Matrixmethode

- Schritte "Berechnung" "Ubertragen" wiederholen bis alle Felder der Matrix gefüllt sind
- erste Zeile und erste Kolonne, welche zu NA gehören wieder streichen
- Resultat entspricht der additiv genetischen Verwandtschaftsmatrix
- Bedeutung der Werte in den Feldern mittlere Wahrscheinlich für IBD
- Visualisierung mit Heatmap

Heatmap

Verwandtschaftsmatrix und ihre Inverse

- Covarianz-Matrix der additiv-genetischen Effekte zwischen Tieren: $Var(\mathbf{g}) = \mathbf{A} * \sigma_{\mathbf{g}}$, wobei **A** die additive genetische Verwandtschaftsmatrix
- In BLUP Zuchtwertschätzung (siehe später) wird Inverse von A gebraucht
- Aufstellen von A und anschliessendes Invertieren funktioniert nicht
- Für grosse Datensätze muss Inverse direkt aufgestellt werden

Direktes Aufstellen der Inversen

Einige Fakten aus der Matrix Algebra

■ Eine symmetrische Matrix A lässt sich als Produkt

$$A = TDT^T$$

schreiben

- **T** ist eine untere Dreiecksmatrix
- **D** ist eine Diagnoalmatrix
- Für die Inverse gilt

$$\mathbf{A}^{-1} = \left(\mathbf{T}\mathbf{D}\mathbf{T}^T\right)^{-1} = \left(\mathbf{T}^T\right)^{-1}\mathbf{D}^{-1}\mathbf{T}^{-1} = \left(\mathbf{T}^{-1}\right)^T\mathbf{D}^{-1}\mathbf{T}^{-1}$$

Matrizen D und T sind einfacher zu invertieren