PENYEBARAN LAHAN MASAM, POTENSI DAN KETERSEDIAANNYA UNTUK PENGEMBANGAN PERTANIAN

Anny Mulyani, A. Rachman, dan A. Dairah

PENDAHULUAN

Potensi sumber daya lahan Indonesia cukup besar yang memiliki wilayah daratan sekitar 188,2 juta ha, terdiri atas 148 juta lahan kering dan sisanya berupa lahan basah termasuk lahan rawa (gambut, pasang surut, lebak) dan lahan yang sudah menjadi sawah permanen. Keragaman tanah, bahan induk, fisiografi, elevasi, iklim, dan lingkungannya menjadikan sumber daya lahan yang beranekaragam, baik potensi maupun tingkat kesesuaian lahannya untuk berbagai komoditas pertanian. Variasi iklim dan curah hujan yang relatif tinggi di sebagian besar wilayah Indonesia mengakibatkan tingkat pencucian basa di dalam tanah cukup intensif, sehingga kandungan basa-basa rendah dan tanah menjadi masam (Subagyo et al., 2000). Hal ini yang menyebabkan sebagian besar tanah di lahan kering bereaksi masam (pH 4,6-5,5) dan miskin unsur hara, yang umumnya terbentuk dari tanah mineral. Mulyani et al. (2004) telah mengidentifikasi lahan kering masam berdasarkan data sumber daya lahan eksplorasi skala 1:1.000.000, yaitu dari total lahan kering sekitar 148 juta ha dapat dikelompokkan menjadi lahan kering masam 102,8 juta ha dan lahan kering tidak masam seluas 45,2 juta ha.

Sedangkan di lahan basah, lahan masam ditemukan pada lahan sawah yang berasal dari bahan mineral berpelapukan lanjut dan pada lahan rawa terutama terdapat di lahan sulfat masam serta tanah organik (gambut). Lahan rawa di Indonesia luasnya cukup luas sekitar 33,4-39,4 juta ha (Widjaja-Adhi *et al.*, 2000), menyebar dominan di Sumatera, Kalimantan, Sulawesi dan Papua. Lahan rawa tersebut terdiri atas lahan rawa pasang surut 23,1 juta ha dan lahan rawa lebak 13,3 juta ha (Subagyo dan Widjaja-Adhi, 1998).

Berdasarkan uraian di atas menunjukkan bahwa sebagian besar lahan daratan Indonesia termasuk pada lahan masam, yang sebagian telah dimanfaatkan untuk memproduksi berbagai jenis komoditas pertanian, baik tanaman pangan maupun tanaman tahunan (perkebunan dan hortikultura). Ciri utama lahan masam adalah tingkat produktivitas lahannya yang rendah untuk beberapa jenis tanaman terutama tanaman pangan utama seperti padi, jagung, kedelai, sehingga untuk meningkatkan produktivitasnya diperlukan pemupukan berimbang (pupuk organik dan anorganik), bahkan untuk meningkatkan pH tanah diperlukan pengapuran.

Makalah ini akan memberikan informasi penyebaran dan karakteristik lahan masam, potensi lahannya serta ketersediaannya untuk pengembangan pertanian di masa yang akan datang.

KARAKTERISTIK DAN PENYEBARAN LAHAN MASAM

1. Karakteristik dan Penyebaran Lahan Kering Masam

Secara umum, lahan kering dapat didefinisikan sebagai suatu hamparan lahan yang tidak pernah digenangi atau tergenang air pada sebagian besar waktu dalam setahun. Lahan kering masam adalah lahan yang mempunyai sifat-sifat seperti pH rendah, kapasitas tukar kation (KTK), kejenuhan basa (KB) dan Corganik rendah, kandungan aluminium (kejenuhan AI) tinggi,

fiksasi P tinggi, kandungann besi dan mangan mendekati batas meracuni tanaman, peka erosi, dan miskin unsur biotik (Adiningsih dan Sudjadi, 1993; Soepardi, 2001). Tingginya curah hujan di sebagian wilayah Indonesia menyebabkan tingkat pencucian hara tinggi terutama basa-basa, sehingga basa-basa dalam tanah akan segera tercuci keluar lingkungan tanah dan yang tinggal dalam kompleks adsorpsi liat dan humus adalah ion H dan Al. Akibatnya tanah menjadi bereaksi masam dengan kejenuhan basa rendah, dan menunjukkan kejenuhan aluminium yang tinggi (Subagyo *et al.*, 2000). Selain itu, tanah-tanah yang terbentuk umumnya merupakan tanah berpenampang dalam, berwarna merah-kuning, dan mempunyai kesuburan alami yang rendah.

Untuk mengetahui luas dan penyebaran lahan masam di Indonesia, telah dilakukan pengelompokan lahan berdasarkan karakteristik tanah yang ada pada basis data Sumber Daya Tanah Eksplorasi Indonesia skala 1:1.000.000 (Puslitbangtanak, 2000). Ordo tanah yang ditemukan di Indonesia ada 10 yaitu *Histosols*, Entisols, Inceptisols, Alfisols, Mollisols, Vertisols, Ultisols, Oxisols, Andisols, dan Spodosols. Semua ordo Histosol (gambut) dan ordo tanah lainnya yang mempunyai rezim kelembapan aguik dikelompokkan menjadi lahan basah, dan sisanya menjadi lahan kering. Lahan kering dipilah lebih lanjut menjadi lahan kering masam dan non-masam. Lahan kering bertanah masam dicirikan dengan pH < 5,0 dan kejenuhan basa < 50%, yang tergolong pada tanah-tanah yang mempunyai sifat distrik. Sebaliknya lahan yang bertanah tidak masam adalah lahan dengan pH > 5,0 dan kejenuhan basa > 50%, yang tergolong pada tanah-tanah yang bersifat eutrik (Hidayat dan Mulyani, 2002). Tanah-tanah yang umumnya mempunyai pH masam di lahan kering adalah ordo Entisols, Inceptisols, Ultisols, Oxisols, dan Spodosols terutama

yang mempunyai iklim basah dengan curah hujan tinggi (kelembapan udik). Sedangkan lahan kering yang tidak masam umumnya terdiri atas ordo *Inceptisols*, *Vertisols*, *Mollisols*, *Andisols*, dan *Alfisols*, yang berada pada daerah beriklim kering (rezim kelembapan ustik). Diagram alir pemilahan lahan masam dengan non-masam disajikan pada Gambar 1.

Gambar 1. Diagram alir pemilahan lahan masam dengan non-masam

Berdasarkan Tabel 9 terlihat bahwa lahan kering masam berada pada ordo Ultisols, Inceptisols, Oxisols, Entisols, dan sedikit Spodosols. Dari total lahan kering masam 102,8 juta ha, terluas terdapat pada ordo Ultisols dan Inceptisols, dengan penyebarannya dominan terdapat di Sumatera, Kalimantan, dan Papua.

Tabel 9. Penyebaran tanah masam berdasarkan ordo tanah

Provinsi	Entisols	Inceptisols	Oxisols	Spodosols	Ultisols	Total masam
	-			ha ———		
NAD	112.958	2.276.588	15.226		712.199	3.116.971
Sumut	137.141	2.414.939	79.789		1.524.414	4.156.283
Sumbar	55.910	1.640.205	355.113		1.224.880	3.276.108
Riau	121.416	1.897.205	465.588	16.394	2.191.601	4.692.204
Jambi	24.112	1.351.412	1.140.479		933.370	3.449.373
Sumsel	38.066	1.756.843	2.131.944		1.105.575	5.032.428
Bengkulu	24.531	894.073	16.166		705.161	1.639.931
Lampung	11.048	1.105.978	1.035.463		497.924	2.650.413
Bangka Belitung	69.933	75.179	689.306		496.405	1.330.823
Sumatera	595.115	13.412.422	5.929.074	16.394	9.391.529	29.344.534
DKI	2.854	17.567	26.352			46.773
Jabar	122.605	897.845	221.450		598.004	1.839.904
Jateng	56.752	485.015			304.238	846.005
DIY	5.107	8.161			12.241	25.509
Jatim	24.577	401.715			21.805	448.097
Banten	27.033	314.320	23.907		235.463	600.723
Jawa	238.928	2.124.623	271.709	-	1.171.751	3.807.011
Bali	4.053					4.053
NTB	11.323	3.629				14.952
NTT	22.422	35.255			25.515	83.192
Bali + NT	37.798	38.884	-	-	25.515	102.197
Kalbar	249.391	3.110.354	1.791.235	420.588	5.617.974	11.189.542
Kalteng	1.149.504	2.254.317	2.042.771	1.494.050	4.775.062	11.715.704
Kalsel	34.828	613.763	216.814		886.186	1.751.591
Kaltim	13.430	4.989.666	624.875	147.766	8.809.912	14.585.649
Kalimantan	1.447.153	10.968.100	4.675.695	2.062.404	20.089.134	39.242.486
Sulut	38.024	326.895			387.726	752.645
Sulteng	100.001	1.634.661	301.058		1.602.168	3.637.888
Sulsel	52.664	1.542.379	156.824		1.529.242	3.281.109
Sultra	7.275	894.771	198.314		723.353	1.823.713
Gorontalo	15.790	8.557			1.949	26.296
Sulawesi	213.754	4.407.263	656.196	-	4.244.438	9.521.651
Maluku	23.677	1.088.814	4.033		735.127	1.851.651
Papua	1.215.695	7.882.195	2.407.728		5.753.893	17.259.511
Maluku Utara	32.731	957.386	190.049		507.906	1.688.072
Papua+Maluku	1.272.103	9.928.395	2.601.810	-	6.996.926	20.799.234
Indonesia	3.804.851	40.879.687	14.134.484	2.078.798	41.919.293	102.817.113

Sumber: Mulyani et al. (2004); Puslitbangtanak (2000), data diolah

2. Karakteristik dan penyebaran lahan rawa masam

Lahan rawa pasang surut merupakan rawa pantai pasang surut di dekat muara sungai besar yang dipengaruhi secara langsung oleh aktivitas air laut. Pada wilayah pasang surut karena lingkungannya selalu jenuh air dan tergenang, terdapat dua jenis

utama yaitu tanah mineral (*mineral soils*) jenuh air dan tanah gambut (*peat soils*).

Tanah mineral yang dijumpai di wilayah pasang surut terbentuk dari bahan endapan marin yang proses pengendapannya dipengaruhi air laut. Pada wilayah agak ke dalam, pengaruh sungai relatif masih kuat sehingga tanah bagian atas terbentuk dari endapan sungai sedangkan bagian bawah terdapat bahan sulfidik (pirit) dari pengendapan lumpur yang terjadi lebih dahulu. Berdasarkan tipologi lahannya, dibedakan menjadi lahan sulfat masam potensial (SMP) dan lahan sulfat masam aktual (SMA). Lahan SMP merupakan lahan yang mempunyai bahan sulfidik (pirit) pada kedalaman 0-100 cm dari permukaan tanah, mempunyai pH > 3,5 yang makin tinggi selaras dengan kedalaman tanah. Sedangkan lahan SMA mempunyai pH tanah lapang < 3,5, mempunyai horizon sulfurik atau tanda-tanda horizon sulfurik yang disebabkan teroksidasinya pirit akibat drainase berlebihan.

Tanah gambut terbentuk dari lapukan bahan organik yang berasal dari penumpukan sisa jaringan tumbuhan pada masa lampau, dengan kedalaman bervariasi tergantung keadaan topografi tanah mineral di bawah lapisan gambut. Tingkat dekomposisi bahan organik dapat dibedakan menjadi tiga tingkatan yaitu fibrik, hemik, dan saprik. Selanjutnya lahan gambut dibedakan berdasarkan kedalamannya menjadi gambut dangkal (kedalaman 50-100 cm) dengan tingkat dekomposisi hemik sampai saprik; gambut sedang (> 100-200 cm) dengan tingkat dekomposisi hemik sampai saprik; dan gambut dalam (> 200-300 cm) dengan tingkat dekomposisi fibrik sampai hemik; dan gambut

sangat dalam (> 300 cm) dengan tingkat dekomposisi fibrik sampai hemik (Widjaja-Adhi *et al.*, 2000).

Lahan gambut umumnya mempunyai tingkat kemasaman yang relatif tinggi dengan kisaran pH 3 - 5. Gambut oligotropik yang memiliki *substratum* pasir kuarsa di Berengbengkel, Kalimantan Tengah memiliki kisaran pH 3,25 – 3,75 (Halim, 1987; Salampak, 1999). Sementara itu gambut di sekitar Air Sugihan Kiri, Sumatera Selatan memiliki kisaran pH yang lebih tinggi yaitu antara 4,1 - 4,3 (Hartatik *et al.*, 2004).

Tabel 10. Luas lahan rawa berdasarkan bahan induk, *landform* dan tanahnya

Bahan induk	Landform	Sub landform	Tanah 1	Tanah 2	Total
					ha
Aluvium	Aluvial	Basin aluvial (lakustrin)	Endoaquepts	Dystrudepts	89.189
				Endoaquents	82.993
		Dataran aluvial	Endoaquepts	Endoaquents	873.681
			Sulfaquepts	Sulfaquents	400.238
		Dataran aluvio-koluvial	Endoaquepts	Endoaquents	409.306
		Jalur aliran sungai	Endoaquepts	Dystrudepts	4.608.883
				Udifluvents	3.884.093
		Rawa belakang	Endoaquepts	Sulfaquents	653.445
		Delta atau dataran			
	Fluvio-marin	estuarin	Endoaquepts	Sulfaquents	2.224.988
	Marin	Dataran pasang surut	Endoaquepts	Endoaquents	1.308.263
				Halaquepts	302.959
			Hydraquents	Sulfaquents	3.200.213
		Pesisir pantai	Udipsamments	Endoaquents	1.482.386
Aluvium dan	Aluvial	Basin aluvial (lakustrin)	Endoaquepts	Haplohemists	835.590
organik	Marin	Dataran pasang surut	Endoaquents	Haplohemists	2.513.207
Organik	Gambut	Dataran gambut	Haplohemists	Sulfihemists	4.975.799
		Kubah gambut	Haplohemists	Haplofibrists	2.751.628
				Haplosaprists	4.183.816

Grand total 34.780.677

Berdasarkan data sumber daya tanah eksplorasi Indonesia skala 1:1.000.000 (Puslitbangnak, 2000), lahan rawa dapat dipilah menjadi rawa yang berasal dari tanah mineral dan tanah gambut, berdasarkan bahan induk, *landform* dan kombinasi tanah 1 dan 2 seperti disajikan pada Tabel 10. Dari Tabel 10 terlihat bahwa total lahan rawa sekitar 34,7 juta ha, yang berasal dari tanah mineral seluas 22,8 juta ha dan tanah gambut sekitar 11,9 juta ha. Tanah mineral umumnya didominasi oleh Inceptisols (Endoaquepts, Sulfaquepts) dan Entisols (Hidraquents). Sedangkan tanah gambut didominasi oleh Histosols (Haplohemists, Haplosafrists, dan Sulfihemists).

Nugroho *et al.* (1991) menyatakan bahwa lahan rawa tersebar di empat pulau besar (Tabel 11) yaitu Sumatera, Kalimantan, Sulawesi dan Papua dengan total luasan 33,4 juta ha atau 17% dari total luas daratan Indonesia (188,2 juta ha). Lahan rawa tersebut dibedakan berdasarkan agro-ekosistem dalam kaitannya dengan sistem hidrologi (sumber air), yaitu (1) lahan rawa pasang surut (dipengaruhi pasang surut air laut) dan (2) lahan rawa lebak (hanya dipengaruhi oleh curah hujan). Dataran lahan rawa pasang surut meliputi areal seluas 20,11 juta ha, dan lahan rawa lebak seluas 13,29 juta ha. Lahan rawa pasang surut dibedakan menjadi lahan potensial yang relatif tidak mempunyai masalah keharaan (2,07 juta ha), lahan sulfat masam (6,71 juta ha), lahan gambut (10,89 juta ha) dan lahan salin (0,44 juta ha). Sedangkan lahan rawa lebak terdiri atas lebak dangkal (4,17 juta ha), lebak tengahan (6,08 juta ha), dan lebak dalam (3,04 juta ha).

Tabel 11. Perkiraan luas berbagai lahan rawa di Indonesia

Provinsi	Total	Potensi lahan untuk pertanian	Tanah gambut	Tanah mineral	Tanah sulfat masam	Rawa lebak
	ha	ha ¹⁾		—— ha		
Sumatera	9.390.000	1.400.000	6565000*	1.806.000	1806000	2.786.000
Kalimantan	11.707.400	1.400.000	5769246*	3.452.100	3452100	3.580.500
Papua	10.552.710	2.800.000	1284250	2.932.690	2932690	6.305.770
Sulawesi	1.793.450	Tidak ada data	145500	1.039.450	1039450	608.500
Indonesia	33.413.560	20.132.790	10.902.550	9.230.240	4.343.980	13.280.770

^{*} Sumber: Nugroho et al. (1991) dan Wahjunto et al. (2005);

POTENSI LAHAN MASAM

1. Potensi Lahan Kering Masam

Berdasarkan Atlas Sumber Daya Tanah Eksplorasi Indonesia pada skala 1:1.000.000 (Puslitbangtanak, 2000) telah dilakukan pemilahan lahan kering berdasarkan kemasaman tanahnya, sehingga diperoleh penyebaran dan luas lahan kering masam seluas 102,8 juta ha. Untuk mengetahui potensi lahan kering masam untuk pengembangan pertanian, telah dilakukan evaluasi (tumpang tepat) antara peta lahan kering masam dengan Peta Arahan Tata Ruang Pertanian Nasional pada skala eksplorasi (Puslitbangtanak, 2001). Dalam arahan tata ruang tersebut, kelompok tanaman yang dapat dikembangkan di lahan kering berdasarkan tanaman semusim dan dipilah tanaman tahunan/perkebunan yang sesuai di daerah beriklim basah dan beriklim kering, serta pada wilayah dataran rendah dan dataran tinggi.

¹⁾ Potensi lahan yang diperkirakan sesuai untuk usaha pertanian

Hasil penilaian dan arahan penggunaan lahan kering masam di masing-masing provinsi disajikan pada Tabel 12. Tabel 11 menunjukkan bahwa dari total luas tanah masam sekitar 102,8 juta ha, hanya sekitar 56,0 juta ha yang sesuai untuk pengembangan pertanian, sisanya termasuk lahan yang tidak sesuai dan diarahkan menjadi kawasan khusus (kawasan lindung seperti hutan sempadan sungai, hutan konservasi, dll). Pada lahan kering, sifat kimia tanah tersebut umumnya tidak dijadikan faktor pembatas karena dengan *input* teknologi pemupukan kendala tersebut dapat diatasi. Oleh karena itu, lahan yang tidak sesuai seluas sekitar 46,8 juta ha umumnya karena faktor pembatas lereng (> 30-40%), solum dangkal dan banyaknya batuan di permukaan. Dari lahan yang tidak sesuai sekitar 46,8 juta ha, sekitar 31,2 juta ha merupakan daerah bergunung dengan lereng >30% (Mulyani et al., 2004). Dan pada wilayah bergunung ini banyak dijumpai tanah-tanah yang bersolum dangkal dan kandungan batuan di permukaan > 50%. Lahan-lahan tersebut diarahkan untuk kawasan hutan, meskipun kenyataannya di lapangan sebagian ada yang tetap diusahakan untuk usaha pertanian (termasuk usaha tani tanaman pangan), yang umumnya tanpa menerapkan teknologi konservasi dan air, sehingga lahan tersebut umumnya sudah terdegradasi.

Dari Tabel 11 terlihat bahwa lahan kering masam yang sesuai untuk tanaman pangan semusim di dataran rendah (palawija, sayuran dan buah-buahan semusim) seluas 18,3 juta ha, terluas terdapat di Kalimantan, Sumatera, dan Papua. Sedangkan lahan kering masam yang sesuai untuk tanaman tahunan seluas 33,6 juta ha, terluas terdapat di Sumatera, Kalimantan, dan Papua. Lahan yang sesuai tersebut dominan

terdapat di kawasan yang beriklim basah, sedangkan kawasan yang sesuai di lahan kering dataran rendah iklim kering hanya sedikit yaitu 182.902 ha untuk tanaman pangan dan 671.736 ha untuk tanaman tahunan, terluas terdapat di NTT, Sulawesi, Maluku, dan Papua. Untuk kawasan yang berada di dataran tinggi (> 700 m dpl), sebagian besar beriklim basah yaitu 1 juta ha sesuai untuk tanaman pangan dan 2 juta ha sesuai untuk tanaman tahunan. Sedangkan kawasan yang berada di dataran tinggi beriklim kering, hanya sesuai untuk tanaman tahunan, yaitu 60.752 ha.

2. Potensi Lahan Rawa

Berdasarkan data sumber daya tanah eksplorasi Indonesia skala 1:1.000.000 (Puslitbangtanak, 2000), lahan rawa dapat dipilah menjadi tanah yang berasal dari bahan mineral dan tanah dari bahan induk gambut (Tabel 9). Untuk mengetahui berapa luas lahan rawa yang sesuai untuk budi daya pertanian, telah dilakukan tumpang tepat (overlayed) antara peta sumber daya tanah eksplorasi dengan peta arahan tata ruang pertanian nasional skala 1:1000.000 (Puslitbangtanak, 2001). Hasilnya menunjukkan bahwa dari total lahan rawa 34,7 juta ha, sekitar 24,8 juta ha yang sesuai untuk budi daya pertanian, yang terdiri atas lahan yang sesuai untuk pengembangan lahan sawah 13,2 juta ha, lahan kering semusim 244.096 ha, tanaman tahunan seluas 4,8 juta ha, dan untuk mangrove (perikanan air payau/tambak) seluas 6,6 juta ha (Tabel 13). Apabila dipilah lebih lanjut, dari 24,8 juta ha ternyata lahan yang sesuai untuk budi daya pertanian tersebut umumnya berada pada lahan mineral yaitu sekitar 20,1 juta ha dan sisanya 4,7 juta ha berada di lahan gambut masing-masing 443.232 ha untuk padi sawah, 59.237 ha untuk tanaman semusim (palawija dan sayuran), dan 4,0 juta ha untuk tanaman

tahunan/perkebunan, serta 115.769 ha untuk pengembangan *mangrove*/perikanan air payau.

Tabel 12. Potensi lahan kering masam untuk pertanian tanaman semusim dan tahunan

	Dataran rendah					Dataran tinggi			
Provinsi	Iklim basah		Iklim kering		Iklim basah		Iklim kering	Jumlah	
	TP	TT	TP	TT	Ternak	TP	TT	TT	
NAD	20,472	698,520	41,787	124,751	10,741		191,900		1,088,171
Sumut	277,623	1,741,164			126,022	87,281	82,789	43,898	2,358,777
Sumbar	106,276	1,006,729				20,889	54,687		1,188,581
Riau	380,636	3,396,423							3,777,059
Jambi	811,608	1,636,906				37,492	52,820		2,538,826
Sumsel	1,635,519	2,160,283				27,065	66,964		3,889,831
Bengkulu	166,493	595,602				12,716	28,217		803,028
Lampung	912,609	687,121		18,158		12,624	67,760		1,698,272
BangkaBelitung		1,147,365							1,147,365
Sumatera	4,311,236	13,070,113	41,787	142,909	136,763	198,067	545,137	43,898	18,489,910
DKI	7,404	18	,	•	•	•	,	•	7,422
Jabar	164,925	621,033		7		113,093	73,968		973,026
Jateng	,	394,940		2.730		10,051	48,526		456,247
DIY		21,185		,		-,	-,-		21,185
Jatim		159,063		53,016			34,660	16,840	263,579
Banten	19,801	308,412		, .			6,959	-,-	335,172
Jawa	192,130	1,504,651	0	62,746	0	123,144	164,113	16,840	2,063,624
Bali	. ,	, ,		30		-,	, ,	-,-	30
NTB		155							155
NTT			3,728	1,826		3,046			8,600
Bali+NT	-	155	3,728	1,856	0	3,046	-	0	8,785
Kalbar	2,678,363	4,112,591	-,	,		26,911	16,267		6,834,132
Kalteng	1,500,146	4,572,399				70,677	79,845		6,223,067
Kalsel	886,355	631,837				2,285	,		1,520,477
Kaltim	4,622,804	3,062,196				492,225	229,556		8,406,781
Kalimantan	9,687,668	12,379,023	0	0	0	592,098	325,668	0	22.984.457
Sulut	0,001,000	480,441	•	•	•	32.027	36,171	•	548.639
Sulteng	1,429	564,077	4,910	57,213		38,734	223,218		889,581
Sulsel	15,595	454,721	.,	19,767		,	583,948		1,074,031
Sultra	.0,000	301,852	29,950	103,176			3,143		438,121
Gorontalo		2,224	5,097	1,020			3,.10		8,341
Sulawesi	17,024	1,803,315	39,957	181,176	0	70,761	846,480	0	2,958,713
Maluku	,-=-	482,827	,	41,247	J	71	62,341	14	586,500
Papua	4,074,171	3,872,551		43,485		30,389	73,329		8,093,925
Maluku Utara	.,,	505,906	97,430	198,317		10	10,918		812,581
Papua+Maluku	4,074,171	4,861,284	97,430	283,049	0	30,470	146,588	14	9,493,006
Indonesia	18,282,229	33,618,541	182,902	671,736	136.763	1,017,586	2,027,986	60,752	55,998,495

Keterangan:

TP:

tanaman semusim

TT:

tanaman tahunan

KETERSEDIAAN LAHAN DAN PELUANG PERLUASAN AREAL PERTANIAN

1. Ketersediaan Lahan

Untuk mengetahui luas lahan yang masih tersedia untuk perluasan areal pertanian dapat dideteksi dengan memperkirakan lahan-lahan sesuai yang saat ini belum dimanfaatkan untuk usaha (lahan terlantar/lahan tidur), vaitu dengan menumpangtepatkan antara peta arahan tata ruang pertanian (Puslitbangtanak, 2001) dengan peta penggunaan lahan (BPN, 2000-2004). Hasilnya menunjukkan bahwa terdapat lahan yang sesuai untuk pengembangan pertanian dimana saat ini berupa semak belukar atau rerumputan, yaitu seluas 30,7 juta ha. Dari luasan tersebut, lahan yang tersedia untuk perluasan areal di lahan basah (sawah) seluas 8,3 juta ha, terdiri atas 3 juta ha di lahan rawa, dengan penyebaran terluas terdapat di Papua, Kalimantan dan Sumatera, serta di lahan non-rawa seluas 5,3 juta ha terluas di Papua, Kalimantan, dan Sumatera (Tabel 14).

Sedangkan lahan tersedia di lahan kering sekitar 22,4 juta ha yang terdiri atas lahan yang sesuai untuk tanaman semusim sekitar 7,1 juta ha dan untuk tanaman tahunan seluas 15,3 juta ha (Tabel 14). Lahan tersedia di lahan kering merupakan lahan kering total yang tidak memisahkan antara lahan kering masam ataupun lahan kering non-masam. Dari 30,7 juta ha lahan yang belum dimanfaatkan (lahan terlantar), sekitar 10,3 juta ha berada di kawasan budi daya pertanian dan 20,4 juta ha berada di kawasan budi daya kehutanan (hutan produksi dan HPH).

Tabel 13. Potensi lahan rawa untuk budi daya pertanian

Provinsi	Total					
	Lahan rawa	Padi Sawah	Tanaman semusim	Tanaman tahunan	Mangrove/ tambak	Jumlah
						ha
NAD	997,007	466,141	0	173,248	122,210	761.599
Sumut	1,080,930	570,311	0	195,651	239,144	1,005.106
Sumbar	552,793	344,701	0	106,388	324	451.413
Riau	5,068,422	773,399	0	1,146,781	440,791	2,360.971
Jambi	1,299,314	557,878	0	200,704	51,115	809.697
Sumsel	3,341,663	1,555,698	184,894	184,970	486,953	2,412.515
Bengkulu	172,003	110,687	0	44,507	3,137	158.331
Lampung Bangka	544,305	410,177	0	8,685	71,496	490.358
Belitung	343,561	106,629	0	116,066	76,344	299.039
DKI	40,667	11,267	0	30	571	11.868
Jabar	544,953	434,886	0	50,426	17,993	503.305
Jateng	273,577	189,998	0	44,609	29,237	263.844
DIY	20,053	16,608	0	3,075	0	19.683
Jatim	129,241	34,200	0	34,508	58,309	127.017
Banten	146,434	98,301	0	21,141	0	119.442
Bali	6,754	0	0	49	0	49
NTB	1,896	0	0	0	0	(
NTT	62,417	41,662	0	3,044	17,711	62.417
Kalbar	3,105,130	547,598	0	832,501	603,412	1,983.511
Kalteng	3,546,064	1,096,983	0	693,800	340,361	2,131.144
Kalsel	1,175,678	844,741	0	108,298	36,949	989.988
Kaltim	2,028,300	401,605	0	38,161	592,700	1,032.466
Sulut	133,444	98,062	0	0	33,245	131.307
Sulteng	468,113	365,805	0	19,635	52,562	438.002
Sulsel	493,654	341,892	0	8,276	132,181	482.349
Sultra	323,409	153,594	59,202	0	108,803	321.599
Gorontalo	72,167	41,676	0	0	21,174	62.850
Maluku	474,513	202,136	0	16,033	177,212	395.381
Papua	8,198,048	3,324,066	0	713,616	2,858,045	6,895.727
Maluku Utara	136,167	66,698	0	3,980	56,311	126.989
Indonesia	34,780,677	13,207,399	244,096	4,766,111	6,630,361	24,847.967

Sumber: Puslitbangtanak (2000) dan Puslitbangtanak (2001), data diolah

Tabel 14. Rincian lahan potensial tersedia untuk perluasan areal pertanian di lahan rawa dan lahan kering

Pulau/ Provinsi -		LB-semusim		LK-	LK-	Total
	Rawa	Non-rawa	Total	semusim*)	tahunan**)	Total
				ha		
NAD	3,660	64,601	68,261	282,109	431,293	781,663
Sumut	6,700	68,800	75,500	429,751	141,972	647,223
Riau	46,400	139,700	186,000	252,980	896,245	1,335,225
Sumbar	39,352	70,695	110,047	55,118	310,611	475,776
Jambi	40,500	156,600	197,000	177,341	258,997	633,338
Sumsel	195,742	39,650	235,393	307,225	424,846	967,464
Babel	0	25,807	25,807	-	225,470	251,277
Bengkulu	0	22,840	22,840	88,078	209,105	320,023
Lampung	22,500	17,500	40,000	26,398	21,021	87,419
Sumatera	354,854	606,193	960,847	1,311,776	3,226,785	5,499,407
DKI Jakarta	0	0	0	0	0	0
Banten	0	1,488	1,488	311	54,757	56,557
Jabar	0	7,447	7,447	4,873	48,090	60,410
Jateng	-	1,302	1,302	8,966	20,654	30,922
DIY	0	-	-	-	-	-
Jatim	0	4,156	4,156	26,394	35,451	66,001
Jawa	0	14,393	14,393	40,544	158,953	213,890
Bali	0	14,093	14,093	-	-	14,093
NTB	0	6,247	6,247	137,659	80,628	224,534
NTT	0	28,583	28,583	-	529,537	558,119
Bali dan NT	0	48,922	48,922	137,659	610,165	796,746
Kalbar	174,279	8,819	183,098	856,368	1,770,109	2,809,575
Kalteng	177,194	469,203	646,397	401,980	2,661,510	3,709,888
Kalsel	211,410	123,271	334,681	494,791	409,101	1,238,573
Kaltim	167,276	64,487	231,763	1,886,264	2,431,329	4,549,355
Kalimantan	730,160	665,779	1,395,939	3,639,403	7,272,049	12,307,390
Sulut	0	26,367	26,367	5,091	133,135	164,592
Gorontalo	0	20,257	20,257	-	-	20,257
Sulteng	0	191,825	191,825	47,219	95,484	334,527
Sulsel	0	63,403	63,403	69,725	266,045	399,172
Sultra	0	121,122	121,122	93,417	106,518	321,056
Sulawesi	0	422,972	422,972	215,452	601,180	1,239,604
Papua	1,893,366	3,293,634	5,187,000	1,688,587	2,790,112	9,665,699
Maluku	0	121,680	121,680	-	440,381	562,061
Maluku Utara	0	124,020	124,020	50,391	210,480	384,890
Maluku+Papua	1,893,366	3,539,334	5,432,700	1,738,978	3,440,973	10,612,651
Indonesia	2,978,380	5,297,593	8,275,773	7,083,811	15,310,104	30,669,688

Sumber: Badan Litbang Pertanian (2007); BBSDLP (2008)

b. Permasalahan dan Peluang Pengembangan

Dalam pengembangan komoditas pertanian di suatu wilayah, akan menghadapi berbagai permasalahan teknis di tanah masam

lahan kering yaitu berupa rendahnya tingkat kesuburan tanah dan ketersediaan air pada musim kemarau. Tanah masam umumnya dicirikan oleh sifat reaksi tanah masam (pH rendah) yang berkaitan dengan kadar Al tinggi, fiksasi P tinggi, kandungan basa-basa dapat tukar rendah, kandungan besi dan mangan yang mendekati batas meracuni, peka erosi, miskin elemen biotik. Kendala tersebut memang relatif lebih mudah diatasi dengan teknologi pemupukan, pengapuran, serta pengelolaan bahan organik.

Seperti telah disebutkan di atas, total tanah mineral masam sangat luas penyebarannya yaitu sekitar 102 juta ha, terluas terdapat di Sumatera, Kalimantan, dan Papua. Dengan kendala biofisik yang telah disebutkan di atas, peluang pengembangan pertanian di tanah masam ini masih besar. Soepardi (2001) mengemukakan bahwa tidak terlalu sulit untuk membenahi tanah masam sehingga menjadi baik, aman dan siap tanam untuk usaha tani yang menguntungkan dan berkelanjutan. Kendala ini dapat ditangkal dengan menerapkan teknologi pengapuran yang dilanjutkan dengan perawatan, dan pemilihan jenis tanaman yang cocok pada kondisi tersebut. Jumlah kapur yang diberikan disesuaikan dengan kebutuhan tiap jenis tanah, dan jenis tanaman yang akan diusahakan dapat berfungsi (1) meredam (alleviate) reaksi masam tanah untuk waktu lama mengubahnya menjadi tidak masam; (2) menyingkirkan bahaya keracunan Al (tanda keracunan Al, akar membengkak, gagal berkembang dengan baik, dan kehilangan daya serap air dan hara); (3) meradam bahaya keracunan besi, mangan, dan anasir senyawa organik; (4) menurunkan daya fiksasi P sekaligus membebaskan P yang semula diikat kuat; (5) meningkatkan ketersediaan basa; (6) memperlancar serapan unsur hara dari tanah; dan (7) meningkatkan respon tanaman terhadap upaya

pemupukan dan budi daya lainnya. Selain itu, Adiningsih dan Sudjadi (1993) menambahkan bahwa tanah masam dapat ditingkatkan produktivitasnya dengan pemupukan, pengapuran dan pengelolaan bahan organik (*alley croping*).

Pendapat tersebut di atas memang tidak sulit dilaksanakan bagi petani yang mempunyai kemampuan teknis maupun nonteknis (modal cukup) serta pengetahuan yang sudah maju, sementara kondisi petani kita pada umumnya berada pada kondisi yang kurang mampu dan tidak cukup modal untuk menerapkan teknologi tersebut, sehingga tanah akan tetap masam dan produktivitas tanah rendah, dan akibatnya produksi pertanian sulit ditingkatkan. Kondisi ini berlaku untuk wilayah yang dominan usaha taninya adalah berbasis tanaman pangan. Tetapi pada wilayah yang berbasis tanaman perkebunan (kelapa sawit atau karet), khususnya perkebunan negara kendala tersebut mungkin dapat teratasi. Sedangkan untuk perkebunan rakyat dan sebagian perkebunan swasta, perbaikan kualitas lahan ini (pemupukan dan pengapuran) kurang diperhatikan. Hal ini terlihat dari produksi kelapa sawit yang jauh berbeda antara perkebunan negara dengan perkebunan rakyat/swasta yaitu 2,69 t ha⁻¹ th⁻¹ untuk perkebunan rakyat, 4.59 t ha⁻¹ untuk perkebunan negara, dan 2.87 t ha⁻¹ th⁻¹ untuk perkebunan swasta (Ditjen Perkebunan, 2002). Dari kasus ini terlihat, bahwa ternyata tidak hanya dalam usaha tani tanaman pangan saja masalah ini menjadi kendala, bahkan pada tanaman perkebunanpun umumnya, usaha peningkatan produktivitas lahan belum optimal.

Belajar dari keberhasilan beberapa sentra produksi komoditas pertanian di beberapa wilayah tanah masam ini, seperti lada di Bangka/Belitung, Lampung untuk palawija (ubi kayu, jagung), Kalbar untuk lada dan jagung (Gambar 2) yang umumnya diusahakan pada tanah masam dan berproduksi baik serta dapat bertahan dalam beberapa dekade terakhir. Keberhasilan usaha tani jagung di Kecamatan Sanggoledo, Kalbar, mampu memproduksi jagung 70 t hari dan dapat berproduksi sepanjang tahun untuk memasok beberapa pabrik pakan ternak di Singkawang, dari luasan total 8.000 ha lahan masam yang ditanam secara bergantian. Kedua ilustrasi tersebut mengindikasikan bahwa tanah masam yang cukup luas ini sebetulnya sangat berpotensi untuk memproduksi berbagai komoditas pertanian (pangan, hortikultura, dan tanaman tahunan/perkebunan) dengan sedikit sentuhan teknologi pengelolaan lahan baik itu pengelolaan secara teknis maupun non-teknis (kelembagaan).

Gambar 2. Pemanfaatan lahan kering masam (a dan b) dan lahan rawa (c dan d) untuk berbagai komoditas pertanian

Sedangkan untuk masalah kekurangan air pada musimmusim tertentu, saat ini memang belum banyak yang dapat dilakukan petani, bahkan peran pemerintah untuk penyediaan irigasi di lahan kering masih belum terlihat. Pada umumnya petani lebih sering memberakan lahannya pada musim kemarau, kecuali pada beberapa wilayah sentra produksi yang telah ada usaha untuk menggunakan air permukaan ataupun air dalam dengan pompanisasi.

Demikian pula di lahan rawa, meskipun terdapat kendala dan permasalahan biofisik lahan, namun dengan terobosan inovasi pengelolaan lahan rawa, maka lahan rawa dapat dimanfaatkan secara optimal (Gambar 2).

PENUTUP

Sebagian besar iklim di Indonesia termasuk pada iklim basah yang mempunyai curah hujan tinggi, mengakibatkan tingkat pencucian basa di dalam tanah cukup intensif, sehingga kandungan basa-basa rendah dan tanah menjadi masam. Lahan kering masam cukup luas sekitar 102 juta ha dan sekitar 56,3 juta ha diantaranya adalah lahan yang sesuai untuk usaha pertanian (pada wilayah datar-berbukit dengan lereng <30%). Sedangkan lahan rawa yang umumnya bersifat masam (rawa pasang surut, lebak dan gambut) dari luasan 34,7 juta ha sekitar 24,8 juta ha termasuk lahan yang sesuai untuk budi daya pertanian. Namun, sebagian besar lahan sesuai tersebut telah dimanfaatkan untuk usaha berbagai sektor baik sektor pertanian maupun non pertanian. Berdasarkan hasil identifikasi terhadap lahan yang belum dimanfaatkan (lahan terlantar), terdapat sekitar 30,7 juta ha lahan terlantar baik yang ada di kawasan budi daya pertanian

(10,3 juta ha) maupun budi daya kehutanan (20,4 juta ha). Lahan ini ke depan akan bersaing pemanfaatannya untuk berbagai kepentingan baik untuk pertanian maupun non-pertanian, sehingga makin terbatas ketersediaannya. Lahan subur sebagian besar telah dimanfaatkan, sehingga yang tersisa untuk pengembangan ke depan adalah lahan sub optimal atau marjinal (lahan kering masam dan rawa). Oleh karena itu, dalam pemanfaatannya perlu didukung oleh teknologi pengelolaan sumber daya lahan seperti benih unggul tahan masam di lahan kering dan rawa, pemupukan berimbang, penyediaan irigasi suplementer untuk lahan kering dan pengaturan drainase untuk lahan rawa, konservasi tanah dan air untuk lahan berlereng.

DAFTAR PUSTAKA

- Adiningsih, J. dan M. Sudjadi. 1993. Peranan sistem bertanam lorong (*Alley cropping*) dalam meningkatkan kesuburan tanah pada lahan kering masam. Risalah Seminar, Hasil Penelitian Tanah dan Agroklimat. Pusat Penelitian Tanah dan Agroklimat, Bogor (Tidak dipublikasikan).
- Badan Litbang Pertanian. 2007. Prospek dan Arah Pengembangan Komoditas Pertanian: Tinjauan Aspek Sumber daya Lahan. Badan Litbang Pertanian, Jakarta.
- BBSDLP. 2008. Policy Brief Keragaan dan Ketersediaan Sumber Daya Lahan untuk Pembangunan Pertanian. Balai Besar Penelitian dan Pengembangan Sumber daya Lahan Pertanian, Bogor.

- Dirjen Perkebunan. 2002. Statistik Perkebunan Indonesia 2000-2002. Direktorat Jenderal Bina Produksi Perkebunan, Jakarta.
- Hidayat, A. dan A. Mulyani. 2002. Lahan kering untuk pertanian. hlm. 1-34 dalam Abdurachman et al. (Ed.). Buku Pengelolaan Lahan Kering Menuju Pertanian Produktif dan Ramah Lingkungan. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat, Bogor.
- Mulyani, A., Hikmatullah, dan H. Subagyo. 2004. Karakteristik dan potensi tanah masam lahan kering di Indonesia. hlm. 1-32 dalam Prosiding Simposium Nasional Pendayagunaan Tanah Masam. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat, Bogor.
- Nugroho, K., Alkasuma, Paidi, W. Wahdini, Abdulrachman, H. Suhardjo, dan I P.G. Widjaja-Adhi. 1991. Laporan Akhir. Penentuan Areal Potensial Lahan Pasang Surut, Rawa, dan Pantai skala 1:500.000. Laporan Teknik No. 1/PSRP/1991. Proyek penelitian Sumber daya Lahan, Puslittanah dan Agroklimat, Bogor.
- Puslitbangtanak. 2000. Atlas Sumber Daya Tanah Eksplorasi Indonesia. Skala 1:1.000.000. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat, Bogor.
- Puslitbangtanak. 2001. Atlas Arahan Tata Ruang Pertanian Indonesia. Skala 1:1.000.000. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat, Bogor.

- Soepardi, H. G. 2001. Strategi usahatani agribisnis berbasis sumber daya lahan. hlm. 35-52 dalam Prosiding Nasional Pengelolaan Sumber daya Lahan dan Pupuk Buku I. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat, Bogor.
- Subagyo, H. dan I PG. Widjaja-Adhi. 1998. Peluang dan kendala pembangunan lahan rawa untuk pengembangan pertanian di Indonesia. hlm. 13-50 *dalam* Prosiding Pertemuan Pembahasan dan Komunikasi Hasil Penelitian Tanah dan Agroklimat: Makalah Utama. Bogor, 10-12 Februari 1998. Pusat Penelitian Tanah dan Agroklimat, Bogor.
- Subagyo, H., Nata Suharta, dan Agus. B. Siswanto. 2000. Tanahtanah pertanian di Indonesia. hlm. 21-66 *dalam* Buku Sumber daya Lahan Indonesia dan Pengelolaannya. Pusat Penelitian Tanah dan Agroklimat, Bogor.
- Wahjunto, Sofyan Ritung, Suparto, dan H. Subagyo. 2005. Sebaran gambut dan kandungan karbon di Sumatera dan Kalimantan. Proyek Climate Change, Forest and Peatlands in Indonesia. Wetlands International Indonesia Programme dan Wildlife habitat Canada. Bogor. Xxiii+254 hlm.
- Widjaja-Adhi, I P.G., D.A. Suriadikarta, M.T. Sutriadi, I G.M. Subiksa, and I W. Suastika. 2000. Pengelolaan pemanfaatan dan pengembangan lahan rawa. hlm. 127-164 *dalam* Buku Sumber Daya Lahan Indonesia dan Pengelolaannya. Pusat Penelitian Tanah dan Agroklimat, Bogor.