Trie, Suffix Trees and Suffix Arrays

Trie (Cont)

Assume no string is a prefix of another

Each edge is labeled by a letter,

no two edges outgoing from the same node are labeled the same.

Compressed Trie

· Compress unary nodes, label edges by strings

Problems

- Given a pattern P = P[1..m], find all occurrences of P in a text S = S[1..n]
- · Another problem:
 - Given two strings $S_1[1..n_1]$ and $S_2[1..n_2]$ find their longest common substring.
 - find i, j, k such that $S_1[i ... i+k-1] = S_2[j ... j+k-1]$ and k is as large as possible.
- · Solve these problems efficiently?

Exact string matching

- Finding the pattern P[1..m] in S[1..n] can be solved simply with a scan of the string S in O(m+n) time. However, when S is very long and we want to perform many queries, it would be desirable to have a search algorithm that could take O(m) time.
- To do that we have to preprocess S. The preprocessing step is especially useful in scenarios where the text is relatively constant over time (e.g., a genome), and when search is needed for many different patterns.

Applications in Bioinformatics

- · Multiple genome alignment
 - Longest common substring problem
 - Common substrings of more than two strings
- · Selection of signature oligonucleotides for microarrays
- · Identification of sequence repeats

Suffix trees

- Any string of length m can be degenerated into m suffixes.
 - abcdefgh (length: 8)
 - 8 suffixes:
 - h, gh, fgh, efgh, defgh, cdefgh, bcefgh, abcdefgh
- The suffixes can be stored in a suffix-tree and this tree can be generated in O(n) time
- A string pattern of length m can be searched in this suffix tree in O(m) time.

Definition of a suffix tree

- Let S=S[1..n] be a string of length n over a fixed alphabet Σ. A suffix tree for S is a tree with n leaves (representing n suffixes) and the following properties:
 - 1. Every internal node other than the root has at least 2 children
 - 2. Every edge is labeled with a nonempty substring of S.
 - 3. The edges leaving a given node have labels starting with different letters.
 - 4. The concatenation of the labels of the path from the root to leaf *i* spells out the *i*-th suffix S[i..n] of S. We denote S[i..n] by S_i .

An example suffix tree

The suffix tree for string: 1 2 3 4 5 6
x a b x a c

What about the tree for xabxa?

• The suffix tree for string: 1 2 3 4 5 x a b x a

xa an a are not leaf nodes.

Problem

- Note that if a suffix is a prefix of another suffix we cannot have a tree with the properties of suffix tree
 - e.g. xabxa

The fourth suffix xa or the fifth suffix a won't be represented by a leaf node.

Solution: the terminal character \$

Solution: insert a special terminal character at the end such as \$. Therefore xa\$ will not be a prefix of the suffix xabxa.

Suffix tree construction

- Start with a root and a leaf numbered 1, connected by an edge labeled S\$.
- Enter suffixes S[2..n]\$; S[3...n]\$; ...; S[n]\$ into the tree as follows:
- To insert $K_i = S[i..n]$ \$, follow the path from the root matching characters of K_i until the first mismatch at character $K_i[j]$ (which is bound to happen)
 - (a) If the matching cannot continue from a node, denote that node
 - (b) Otherwise the mismatch occurs at the middle of an edge, which has to be split

Suffix tree construction - 2

- If the mismatch occurs at the middle of an edge $e = S[u \dots v]$
 - let the label of that edge be $a_1...a_l$
 - If the mismatch occurred at character a_k , then create a new node w, and replace e by two edges S[u ... u+k-1] and S[u+k ... v] labeled by $a_1...a_{k and} a_{k+1}...a_l$
- Finally, in both cases (a) and (b), create a new leaf numbered i, and connect w to it by an edge labeled with $K_i[j ... |K_i|]$

Example construction

- Let's construct a suffix tree for xabxac\$

· Start with:

- xabxac\$
- · After inserting the second and third suffix:

Example cont'd

• Inserting the fourth suffix xac\$ will cause the first edge to be split:

· Same thing happens for the second edge when ac\$ is inserted.

Example cont'd

• After inserting the remaining suffixes the tree will be completed:

Complexity of the naive construction

• We need O(n-i+1) time for the ith suffix. Therefore the total running time is:

$$\sum_{1}^{n} O(i) = O(n^2)$$

Using suffix trees for pattern matching

- Given S and P. How do we find all occurrences of P in S?
- Observation. Each occurrence has to be a prefix of some suffix. Each such prefix corresponds to a path starting at the root.
 - 1. We construct the suffix tree for S.
 - 2. Try to match P on a path, starting from the root. Three cases:
 - (a) The pattern does not match \rightarrow P does not occur in T
 - (b) The match ends in a node u of the tree. Set x = u.
 - (c) The match ends inside an edge (v,w) of the tree. Set x = w.
 - 3. All leaves below x represent occurrences of P.

Illustration

- T = xabxac
 - suffixes ={xabxac, abxac, bxac, xac, ac, c}
- Pattern P₁: xa

Running Time Analysis

- · Search time:
 - $-\ O(m+k)$ where k is the number of occurrences of P in T and m is the length of P
 - O(m) to find match point if it exists
 - O(k) to find all leaves below match point

Scalability

 For very large problems a linear time and space bound is not good enough. This lead to the development of structures such as Suffix Arrays to conserve memory.

Two implementation issues

- · Alphabet size
- · Generalizing to multiple strings

Suffix arrays

- More space efficient than suffix trees
- A suffix array for a string x of length m is an array of size m that specifies the lexicographic ordering of the suffixes of x.

Suffix Arrays

Example of a suffix array for acaacatat\$

0	aaacatat\$	3
1	aacatat\$	4
2	acaaacatat\$	1
3	acatat\$	5
4	atat\$	7
5	at\$	9
6	caaacatat\$	2
7	catat\$	6
8	tat\$	8
9	t\$	10
10	\$	11

Suffix array construction

- Similar to insertion sort
- Insert all the suffixes into the array one by one making sure that the new inserted suffix is in its correct place
- Running time complexity: O(m²) where m is the length of the string

Suffix arrays

- O(n) space where n is the size of the database string
- Space efficient. However, there's an increase in query time
- Lookup query
 - Binary search
 - O(m log n) time; m is the size of the query

Search example

Search is in mississippi\$

Examine the pattern letter by letter, reducing the range of occurrence each time.

First letter i:

•occurs in indices from 0 to 3 •So, pattern should be between these indices.

Second letter s:

•occurs in indices from 2 to 3

•Done.

Output: issippi\$ and ississippi\$

0	11	i\$
1	8	ippi\$
2	5	issippi\$
3	2	ississippi\$
4	1	mississippi\$
5	10	pi\$
6	9	ppi\$
7	7	sippi\$
8	4	sissippi\$
9	6	ssippi\$
10	3	ssissippi\$
11	12	\$

Searching for a pattern in Suffix Arrays

```
\begin{split} & \text{find}(Pattern \ P \ in \ SuffixArray \ A); \\ & i=0 \\ & lo=0, \ hi=length(A) \\ & \text{for } 0{<}\text{=i}{<}length(P); \\ & \text{Binary search for } x,y \\ & \text{where } P[i]{=}S[A[j]{+}i] \ \text{for } lo{<}\text{=x}{<}\text{=j}{<}y{<}\text{=hi} \\ & lo=x, \ hi=y \\ & \text{return } \{A[lo],A[lo+1],...,A[hi-1]\} \end{split}
```

Suffix Arrays

- It can be built very fast.
- It can answer queries very fast:
- Disadvantages:
 - Can't do approximate matching
 - Hard to insert new stuff (need to rebuild the array) dynamically.