Методы оптимизации

Транспортная задача

Д.В. Домашова

m – поставщиков однородной продукции (источников) n – потребителей однородной продукции (стоков)

 $a_i\,$ - запасы і-го поставщика

 b_i - потребности (спрос) ј-го потребителя

 \mathcal{C}_{ij} - стоимость перевозки из пункта і в ј

m – поставщиков однородной продукции (источников)n – потребителей однородной продукции (стоков)

 a_i - запасы і-го поставщика

 b_i - потребности (спрос) ј-го потребителя

 ${\it C}_{ij}$ - стоимость перевозки из пункта і в ј

Требуется найти такой план перевозок продукции от поставщиков к потребителям, который обеспечивал бы спрос потребителей и вывоз продукции от поставщиков при минимальных суммарных транспортных расходах

m – поставщиков однородной продукции (источников)n – потребителей однородной продукции (стоков)

 $a_i\,$ - запасы і-го поставщика

 b_i - потребности (спрос) ј-го потребителя

 ${\it C}_{ij}$ - стоимость перевозки из пункта і в ј

 \mathcal{X}_{ij} - количество груза, перевезенного из пункта і в ј

m – поставщиков однородной продукции (источников)n – потребителей однородной продукции (стоков)

 a_i - запасы і-го поставщика

 b_i - потребности (спрос) ј-го потребителя

 ${\it C}_{ij}$ - стоимость перевозки из пункта і в ј

 \mathcal{X}_{ij} - количество груза, перевезенного из пункта і в ј

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min$$

$$\sum_{j=1}^{n} x_{ij} \leq a_{i}, i = \overline{1, m}$$

$$\sum_{j=1}^{m} x_{ij} \ge b_j, \quad j = \overline{1, n}$$

$$x_{ij} \ge 0$$
, $i = \overline{1,m}$, $j = \overline{1,n}$

Определение: Транспортная задача, в которой сумма запасов равна сумме потребностей, называется закрытой. В противном случае задача — открытая.

В случае, если транспортная задача является открытой, невозможно удовлетворить всех потребителей (если сумма потребностей больше суммы запасов) или вывезти все грузы от поставщиков (если сумма запасов больше, чем сумма потребностей).

Классическая транспортная задача

```
m – поставщиков однородной продукции (источников)
n – потребителей однородной продукции (стоков)
\mathcal{Q}_i - мощность і-го источника
b_{\scriptscriptstyle i} - мощность ј-го стока
C_{ii} - стоимость перевозки из пункта і в ј
\sum \sum c_{ij} x_{ij} \to \min
\sum x_{ij} = a_i , i = 1, m
\sum x_{ij} = b_j, \ j = 1, n
x_{ij} \ge 0, i = \overline{1,m}, j = \overline{1,n}
```

Классическая транспортная задача

Приведение открытой ТЗ к закрытой

- 1) Если сумма запасов больше суммы потребностей $(\sum_{i=1}^m a_i > \sum_{j=1}^n b_j)$, то введем в таблицу еще одного потребителя, потребность которого определим, как $\sum_{i=1}^m a_i \sum_{j=1}^n b_j$ Так как грузы к новому потребителю (фиктивному) отправляться не будут, то и стоимость этих перевозок равна нулю т.е. цены (тарифы) в новой строке будут равны 0.
- 2) Если сумма запасов меньше суммы потребностей $(\sum_{i=1}^m a_i < \sum_{j=1}^n b_j)$, то вводим в таблицу еще одного поставщика, запас груза у которого определим, как $\sum_{j=1}^n b_j \sum_{i=1}^m a_i$. Цены в новом столбце проставим равными нулю из тех же соображений, что и в первом случае.

Решение транспортной задачи

1) Любая транспортная задача, как задача ЛП, может быть решена симплекс-методом, однако, специфика задач рассмотренного класса (каждая неизвестная входит лишь в два уравнения-ограничения и коэффициенты при неизвестных в ограничениях равны единице) позволила выработать более эффективные вычислительные методы.

2) Транспортную задачу можно представить с помощью сети => можно использовать для их решения эффективные алгоритмы.

- Теорема: необходимым и достаточным условием разрешимости транспортной задачи является равенство суммы запасов сумме потребностей.
- Так как транспортная задача является задачей линейного программирования, то и методика нахождения оптимального решения остается той же:
 - находится первоначальный опорный план,
 - проверяется на оптимальность и если план не оптимален, то
 - переход к другому опорному плану, улучшающему целевую функцию в смысле оптимума (а именно уменьшающую значение целевой функции).
- Критерий отсутствия решения не требуется, так как решению подлежат лишь закрытые ТЗ

- Решение ТЗ проводится на основе теории двойственности.
- Поставим двойственную к закрытой ТЗ.

	x_{11} x_{12} x_{1n}	x_{21} x_{22} x_{2n}	•••	x_{m1} x_{m2} x_{mn}	Мощ	ность
1	1 1 1				a_1	u_1
2		1 1 1			a_2	u_2
•			•••			•
•					•	•
, m				1 1 1		
m				1 1 1	a_m	u_m
					Спро	c
1	1	1		1	b_1	v_1
2	1	1		1	b_2	v_2
	•	•	•••	•		•
	•	•		•		
•						
n	1	1		1	b_{j}	v_n
	c_{11} c_{12} c_{1n}	$c_{21} \ c_{22} \ \dots \ c_{2n}$	•••	c_{m1} c_{m2} c_{mn}		

Двойственная задача

$$G = (u_1, ..., u_m, v_1, ..., v_n) = \sum_{i=1}^m a_i u_i + \sum_{j=1}^n b_j v_j \longrightarrow \max$$

$$u_i + v_j = c_{ij}$$

где переменные u_i , v_j - не ограничены в знаке.

Из второй теоремы двойственности =>

$$(u_i^* + v_i^* - c_{ij}) \cdot x_{ij}^* = 0$$

т.е.

$$u_i^* + v_j^* = c_{ij} \quad \forall x_{ij}^* \neq 0$$
 (1)

$$u_i^* + v_j^* \le c_{ij} \quad \forall x_{ij}^* = 0$$
 (2)

- Идея решения транспортной задачи
- На каждой итерации решения ТЗ для текущего опорного решения исходной задачи получают одно из соответствующих решений двойственной задачи, используя соотношения (1).
- Далее, для него осуществляют проверку условий (2).
- Если они выполнены => текущее опорное решение транспортной задачи является оптимальным.
- Иначе осуществляется переход к новому (лучшему) опорному решению, в котором значение целевой функции будет лучше (меньше), чем в предыдущем.

- Нужно уметь:
- Находить опорное решение ТЗ
- Иметь правило перехода к новому опорному решению
- Критерий отсутствия решения не требуется

1) метод северо-западного угла.

В верхнюю левую клетку (северо-западный угол) таблицы записываем наименьшее из чисел $\boldsymbol{b_1}$ и $\boldsymbol{a_1}$, пересчитываем запасы и потребности и столбец с исчерпанным запасом или строку с удовлетворенной потребностью исключаем из дальнейшего расчета.

В оставшейся части таблицы снова находим северо-западный угол, заполняем эту клетку, вычеркиваем строку или столбец и опять обращаемся к северо-западному углу и т.д.

Важнейшим условием построения опорного плана является назначение в выбранной клетке наибольшей возможной перевозки.

1) метод северо-западного угла.

	1	2	3	запасы
1	2	8	9	60
2	3	5	8	70
3	4	1	4	120
4	2	4	7	130
5	4	1	2	100
спрос	140	180	160	

Проверим, является ли задача закрытой

1) метод северо-западного угла.

	1	2	3	запасы
1	2	8	9	60
2	3	5	8	70
3	4	1	4	120
4	2	4	7	130
5	4	1	2	100
спрос	140	180	160	480
				480

1) метод северо-западного угла.

	1	2	3	запасы
1	2^{60}	8	9	60
2	3 ⁷⁰	5	8	70
3	4 ¹⁰	1110	4	120
4	2	4 ⁷⁰	7 ⁶⁰	130
5	4	1	2^{100}	100
спрос	140	180	160	480

1) метод северо-западного угла.

	1	2	3	запасы
1	2^{60}	8	9	60
2	3 ⁷⁰	5	8	70
3	4 ¹⁰	1110	4	120
4	2	4 ⁷⁰	7 ⁶⁰	130
5	4	1	2^{100}	100
спрос	140	180	160	480

$$F = 1380$$

2) метод минимальных элементов

Клетки ТЗ заполняются по такому же принципу, как в методе сверо-западного угла, но в первую очередь заполняются клетки с минимальной стоимостью поставки

Решение транспортной задачи Свойства опорного решения Т3

<u>Теорема:</u> Число положительных компонентов в опорном плане (число заполненных клеток в таблице) меньше или равно *m+n-1*.

<u>Доказательство</u>: В процессе построения опорного плана на каждом шаге заполняли одну клетку таблицы. При этом либо потребности, либо запасы в соответствующей строке или столбце становятся равными нулю, (либо оба вместе). При заполнении последней клетки одновременно удовлетворялись спрос потребителя и исчерпывались запасы поставщика => число заполненных клеток максимум *m+n-1*.

Если в процессе построения плана встретится клетка (кроме последней), после заполнения которой запасы и потребности столбца и строки становятся равными нулю, то число неизвестных будет меньше *m+n-1*.

Теорема: Если для транспортной задачи выполнены условия $a_i \in N_0$, $b_j \in N_0$, $N_0 = \{0,1,\dots\}$, то в любом её допустимом базисном решении, базисные переменные принимают значения из N_0 .

$$\begin{cases} u_1 + v_1 = 2 \\ u_1 + v_2 = 3 \\ u_1 + v_3 = 4 \\ u_2 + v_3 = 1 \\ u_2 + v_4 = 4 \\ u_3 + v_4 = 7 \\ u_3 + v_5 = 2 \end{cases} \begin{cases} u_1 = 0 \\ v_1 = 2 \\ v_2 = 3 \\ v_3 = 4 \\ u_2 = -3 \\ v_4 = 7 \\ u_3 = 0, v_5 = 2 \end{cases}$$

$$u_i = c_{ij} - v_j$$
$$v_j = c_{ij} - u_i$$

	1	2	3	запасы
1	2^{60}	8	9	$v_1 = 2$
2	3 ⁷⁰	5	8	$v_2 = 3$
3	4	1110	4	$v_3 = 4$
4	2	4^{70}	7^{60}	$v_4 = 7$
5	4	1	2^{100}	$v_5 = 2$
спрос	$u_1 = 0$	$u_2 = -3$	$u_3 = 0$	480

Проверяем на оптимальность:

$$u_i + v_j \le c_{ij} \Longrightarrow d_{ij} = c_{ij} - u_i - v_j \ge 0 \Longrightarrow$$
 оптимальное

$$d_{12} = 8 - (-3) - 2 = 9 \ge 0$$

$$d_{13} = 9 - 0 - 2 = 7 \ge 0$$

$$d_{22} = 5 - (-3) - 3 = 5 \ge 0$$

$$d_{23} = 8 - 0 - 3 = 5 \ge 0$$

$$d_{33} = 4 - 0 - 4 = 0 \ge 0$$

$$d_{41} = 2 - 0 - 7 = -5 < 0$$

$$d_{51} = 4 - 0 - 2 = 2 \ge 0$$

$$d_{52} = 1 - (-3) - 2 = 2 \ge 0$$

$$d_{41} = -5 < 0$$
 - клетка пересчета

- Путем перераспределения перевозок будем улучшать план.
- Построим цикл пересчета.
- Циклом пересчета в таблице Т3 называется ломаная линия, вершины которой находятся в заполненных клетках, в клетке пересчета она имеет начало и конец, а звенья располагаются вдоль строк и столбцов таблицы.
- Обозначим вершины ломанной, начиная с клетки пересчета знаками +,-.
- Новый план получим следующим образом: в клетку пересчета записывается наименьшая из величин поставок, стоящих в минусовых клетках. Одновременно это число вычитается из величин поставок «-» клеток и прибавляется к величинам поставок «+» клеток.

	1	2	3	запасы
1	2^{60}	8	9	$v_1 = 2$
2	3 ⁷⁰	5	8	$v_2 = 3$
3	4^{10-W}	1^{110+W}	4	$v_3 = 4$
4	2^W	4^{70-W}	7 ⁶⁰	$v_4 = 7$
5	4	1	2^{100}	$v_5 = 2$
спрос	$u_1 = 0$	$u_2 = -3$	$u_3 = 0$	480
				480

	1	2	3	v_j
1	2^{60}	8	9	
2	3 ⁷⁰	5	8	
3	4	1 ¹²⁰	4	
4	210	4^{60}	7^{60}	
5	4	1	2100	
u_i				

Проверяем полученный план на оптимальность:

1) Вычисляем потенциалы

	1	2	3	v_j
1	2^{60}	8	9	2
2	3 ⁷⁰	5	8	3
3	4	1 ¹²⁰	4	-1
4	2^{10}	4 ⁶⁰	7^{60}	2
5	4	1	2100	-3
u_i	0	2	5	

	1	2	3	v_j
1	2^{60}	8	9	2
2	3 ⁷⁰	5	8	3
3	4	1 ¹²⁰	4	-1
4	2 ¹⁰	4 ⁶⁰	7^{60}	2
5	4	1	2 ¹⁰⁰	-3
u_i	0	2	5	

2) Проверяем выполнение условия (2) для незаполненных клеток

$$d_{12} = 8 - 2 - 2 = 4 \ge 0$$

$$d_{13} = 9 - 5 - 2 = 2 \ge 0$$

$$d_{22} = 5 - 2 - 3 = 0 \ge 0$$

$$d_{23} = 8 - 5 - 3 = 0 \ge 0$$

$$d_{31} = 4 - 0 + 1 = 5 \ge 0$$

$$d_{33} = 4 - 5 - (-1) = 0 \ge 0$$

$$d_{51} = 4 - 0 - (-3) = 7 \ge 0$$

$$d_{52} = 1 - 2 - (-3) = 2 \ge 0$$

Условия (2) выполнены, следовательно, текущее опорное решение является оптимальным

$$F^* = 1330$$

$$G^* = 0.140 + 2.180 + 5.160 + 60.2 + 70.3 - 120 + 2.130 - 3.100 = 1330$$

• Вырожденный опорный план

Ошибки искали Воронович и Миронова

- 2 слайд c_{ij} стоимость одной единицы груза из пункта і в ј. Нарисовать сетевую постановку задачи
- 5+7 слайд $\sum_{i=1}^m x_{ij} \ge b_{ij}$, $j = \overline{1,n}$ (3 случай)
- ullet Слайд 11 не b_j в столбике, b_n
- Слайд 12 после **G** не надо =. Знак меньше или равно $u_i + v_j \leq c_{ij}$
- 13 слайд $(u_i^* + v_j^* c_{ij}) * x_{ij}^* = 0$
- ullet 24 слайд : дописать у 4^{10}