LP n° 25 Titre : Ondes Acoustiques

Présentée par : Gloria Robert Rapport écrit par : Léa Chibani

Correcteur : Marc Rabaud Date : 23/11/2018

Bibliographie de la leçon :			
Titre	Auteurs	Éditeur	Année
Dictionnaire de physique		De Boeck	
Tout-en-un PC/PC* 2006		Dunod	2006
Ondes mécaniques et diffusion	Garing	Ellipse	

Plan détaillé

Niveau choisi pour la leçon : CPGE

Préreguis :

- -ondes mécaniques
- -ondes électromagnétiques dans le vide/coefficient de réflexion
- -mécanique des fluides
- -équation de d'Alembert

I-Propagation des ondes acoustiques

- -définition d'une onde acoustique = onde mécanique établit dans un milieu élastique (ex : eau/air)
- -il faut caractériser ces milieux élastiques qui sont des fluides :
- -masse volumique mu0 + mu1(M,t)
- -pression P0 + p1(M,t) \rightarrow p1 = surpression
- -vitesse particulaire v1(M,t)

1) Approximation acoustique

-définition de l'approximation acoustique

2) Equations Eulériennes

- -diapo = équation de conservation de la masse/équation d'Euler (fluide parfait/et pesanteur négligée) /relation de comportement du fluide mu=f(P)
- -linéarisation de l'équation la conservation de la masse
- -Equation d'Euler : montrer que le terme accélération convective << terme

accélération locale

- -Equation de comportement du fluide mu=f(P) et introduction de la compressibilité du fluide
- -Système d'équation couplées →3 équations importantes pour déduire l'équation de la propagation
- -Equation de d'Alembert pour la supression

3) Célérité

- -Analyse dimensionnelle pour retrouver que c2=1/(X0mu0)**1/2
- -Ordre de grandeurs sur diapo (c[gaz]/c[liquide]<c[solide])
- -forme des solutions de l'équation de d'Alembert → ondes progressives (+ combinaison d'OPPH) qui dépendent de la pulsation et donc montre la variété des sons que l'on entend.
- -Dire que le milieu n'est pas dispersif
- →On veut montrer pourquoi on entend moins bien loin et sous l'eau dans la piscine

II-Impédance acoustique

- -définition de l'impédance acoustique Zac
- -Passage en complexe grâce à la linéarité du pb
- -Equations Euler+conservation de la masse avec passage en complexe pour déterminer la formule de l'impédance acoustique
- -Zac dépend seulement des paramètres du fluide (masse volumique et coefficient de compressibilité)
- -Lien avec les ondes électromécaniques à la traversé interface entre deux milieux
- -Montrer qu'à la piscine on entend moins bien sous l'eau grâce au calcul du coefficient de réflexion entre air et eau (r=0,99)
- -Montrer le caractère longitudinal de l'onde acoustique
- → analogie avec EM, on peut donc définir aussi un vecteur de Poynting sonore

III-Aspect énergétique

1) Vecteur de Poynting sonore

-Définition du vecteur de Poynting comme le flux du vecteur v(M,t)p(M,t) à travers la surface S (S à bien définir !!!)

-PI = $(P0+p1(M,t)v1(M,t) \rightarrow avec des OPPH seulement le terme p1v1 donnera une valeur moyenne par rapport au temps non nul donc on ne s'intéresse pas au vecteur <math>P0v1(M,t)$

2) Densité volumique d'énergie

- -définition classique de la densité volumique d'énergie avec la conservation de l'énergie entre t et t+dt
- -Expression de div(PI)=div(p1v1) et retrouver par dvpt de la divergence pour le produit d'un scalaire et d'un vecteur l'expression de la densité volumique d'énergie
- -Tableau récap analogie entre ondes EM et ondes acoustiques
- → Il manque une grandeur physique pour résoudre le pb suivant : pq lorsque l'on est plus loin on entend moins bien.

3) Intensité sonore

- -définition de l'intensité sonore comme étant la moyenne de la puissance sonore par rapport au temps.
- -présentation graphique intensité/surpression/fréquence. Donner gamme fréquence audible par l'homme/ où se situe les infrasons/ les ultrasons/ données des ordres de grandeurs de plusieurs phénomènes = pièce calme/conversation normale/ avion au décollage

4) Ondes sphériques

- -Cordes vocales qui vibrent et qui créent des ondes sphériques qui se propagent.
- -Surpression onde sphérique/ + vitesse particulaire
- -Calcul de l'intensité sonore qui décroit en 1/r2 donc ceci explique que l'on entend moins bien plus on est loin.
- On peut avoir une autre approche du problème en regardant la puissance → qui ne dépend pas de la distance. L'énergie est conservée donc elle est répartie sur une surface de plus en plus

Conclusion : les ondes acoustiques se propagent dans un milieu et résultent d'un couplage entre surpression et vitesse particulaire/Transportent de l'énergie/ etc ...

Questions posées par l'enseignant

- -Pour un gaz parfait de quoi dépend la célérité ? (température/masse volumique)
- -<u>Utilisation de la loi de Laplace? pourquoi? (gaz parfait donc écoulement parfait) adiabaticité)</u>

-Expérience pour vérifier ces conditions ? (Expérience de Newton /mesure du son dans l'air)

- <u>-Comment vérifier avec des équations l'hypothèse d'adiabaticité ? (Vérifier le rapport Tdiff/Tpériode de l'onde)</u>
- -Analogie avec résultat électromagnétique : quel est l'impédance EM?
- -D'autres types d'onde : ondes gravito-capillaire : célérité dépend de la longueur d'onde.
- -Pourquoi ici on ne voit pas la dépendance de la longueur d'onde avec la célérité du milieu ?

-Effet Doppler : calcul et ordre de grandeur !

cair=340m.s-1

pour 1 ton deltaf=32Hz (pour un Do et Ré)

 $v=cair^*(2.2000/12^*1000) \rightarrow l'homme distingue <math>\frac{1}{2}$ ton

-<u>Dans les gaz = vitesse quadratique moyenne dans les gaz << cair Pourquoi microscopiquement ?</u>

<u>-Variations de la masse volumique spatialement dans un gaz ?</u> -utilisé $I=20\log(p1eff/poeff) \rightarrow en déduire p1eff \rightarrow utiliser mu1= p1eff/c**2 \rightarrow mu1/mu0 <<<<1$

Les collisions entre les particules indiquent que la perturbation ne peut pas se déplacer plus vite que la vitesse de choc des particules = vitesse d'agitation thermique.

-Maintenant que se passe-t-il dans l'eau au niveau microscopique?

Si on a une ligne de molécules que se passe-t-il pour la propagation de la collision ? <u>Expérience Berceau de Newton = Conclusion =Information « propagation de la collision » peut se déplacer plus vite que la particule qui rentre en collision avec les autres.</u>

- -Lien entre w /k = c? Vitesse de phase
- <u>-Mirages acoustiques avec gradient altitude que se passe-t-il ?</u> Couche limite turbulente du fait de la turbulence. La vitesse est donc plus grande en haute altitude (calcul dans le Dunod)

Commentaires donnés par l'enseignant

- -3) Célérité du son : dire que le milieu n'est pas dispersif
- -Introduction TB
- -Choix de parler de la célérité avec des gaz parfaits.

-Commentaires:

- Gagner en temps en enlevant les calculs fait en ondes sphériques et juste parler des résultats de la leçon pour faire la mesure de la célérité dans l'air en manip.

Partie réservée au correcteur

Avis sur le plan présenté

Plan logique et clair

Concepts clés de la leçon

Approximation acoustique, calcul microscopique pour le GP

Concepts secondaires mais intéressants

Ondes sphériques

Expériences possibles (en particulier pour l'agrégation docteur)

Une mesure de temps de vol (célérité) et aussi de la longueur d'onde avec 2 micros en recherchant les signaux en phase.

Points délicats dans la leçon

Généraliser à des ondes dans les solides ou des liquides alors qu'on a fait le calcul pour un GP.