

Comment on “Five-Body Cluster Structure of the Double- Λ Hypernucleus $_{\Lambda\Lambda}^{11}\text{Be}$ ”

A. Gal^{1,2} and D.J. Millener³

¹Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

²ECT*, Villa Tambosi, I-38100 Villazzano (Trento), Italy

³Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

Hiyama *et al.* [1] have recently reported on a pioneering five-body $\alpha\alpha n\Lambda\Lambda$ cluster-model (CM) calculation of $_{\Lambda\Lambda}^{11}\text{Be}$ in order to confront a possible interpretation of the KEK-E373 HIDA event [2]. Unfortunately, a six-body $\alpha\alpha nn\Lambda\Lambda$ calculation of $_{\Lambda\Lambda}^{12}\text{Be}$ to confront another possible interpretation is beyond reach at present. Using experimental B_Λ values with small corrections based on recently determined ΛN spin-dependent interaction parameters [3], we obtain binding-energy shell-model (SM) estimates for both $_{\Lambda\Lambda}^{11,12}\text{Be}$, concluding that neither $_{\Lambda\Lambda}^{11}\text{Be}$ nor $_{\Lambda\Lambda}^{12}\text{Be}$ provide satisfactory interpretation of the HIDA event. The SM approach is tested by reproducing $B_{\Lambda\Lambda}^{\text{exp}}(_{\Lambda\Lambda}^{13}\text{B})$.

PACS numbers: 21.80.+a, 21.60.Cs, 21.60.Gx

The input to the SM estimates consists of three Λ -spin-dependent ΛN interaction parameters (Δ, S_Λ, T) fitted to the six known Λ hypernuclear doublet splittings beyond ${}^9\text{Be}$ and of the induced nuclear spin-orbit parameter S_N extracted from the excitation energy of ${}^6\Lambda\text{O}(1^-_2)$. The fit also includes a $\Lambda - \Sigma$ coupling interaction [3]. For this fit, with a spin-independent ΛN interaction parameter $V_{\Lambda N} = -1.04$ MeV, ground-state (g.s.) binding energies of Λ hypernuclei with mass number $A = 10, 11, 12$ are reproduced to within $\delta B_\Lambda^{\text{SM}} \lesssim 0.2$ MeV. The associated SM estimate for the $\Lambda\Lambda$ binding energy of the $\Lambda\Lambda$ hypernucleus $_{\Lambda\Lambda}^A\text{Z}$ is given by

$$B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^A\text{Z}) = 2\bar{B}_\Lambda^{\text{SM}}({}_{\Lambda\Lambda}^{A-1}\text{Z}) + \langle V_{\Lambda\Lambda} \rangle_{\text{SM}}, \quad (1)$$

where $\bar{B}_\Lambda^{\text{SM}}({}_{\Lambda\Lambda}^{A-1}\text{Z})$ is the $(2J+1)$ -averaged binding energy of the g.s. doublet in the Λ hypernucleus $_{\Lambda\Lambda}^{A-1}\text{Z}$, as appropriate to the spin zero $(1s_\Lambda)^2$ configuration of $_{\Lambda\Lambda}^A\text{Z}$. The $\Lambda\Lambda$ interaction contribution to $B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^A\text{Z})$ is deduced from the NAGARA event [2]: $\langle V_{\Lambda\Lambda} \rangle_{\text{SM}} = B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^6\text{He}) - 2B_{\Lambda\Lambda}^{\text{SM}}({}^5\text{He}) = (0.67 \pm 0.17)$ MeV, close to $\langle V_{\Lambda\Lambda}^{\text{CM}} \rangle = B_{\Lambda\Lambda}(V_{\Lambda\Lambda}^{\text{CM}}) - B_{\Lambda\Lambda}(V_{\Lambda\Lambda} = 0) \approx 0.55$ MeV, with $V_{\Lambda\Lambda}^{\text{CM}}$ also fitted to $B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^6\text{He})$ [1]. Table I lists $\bar{B}_\Lambda^{\text{SM}}({}_{\Lambda\Lambda}^{A-1}\text{Z})$ input to Eq. (1), constrained by $B_\Lambda^{\text{exp}}({}_{\Lambda\Lambda}^{A-1}\text{Z})$ values [4], plus $B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^A\text{Z})$ predictions.

TABLE I: SM input and $B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^A\text{Z})$ predictions (in MeV).

$_{\Lambda\Lambda}^A\text{Z}$	$\bar{B}_\Lambda^{\text{SM}}({}_{\Lambda\Lambda}^{A-1}\text{Z})$	$B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^A\text{Z})$	$B_{\Lambda\Lambda}^{\text{exp}}(_{\Lambda\Lambda}^A\text{Z})$ [2]
$_{\Lambda\Lambda}^{11}\text{Be}$	8.86 ± 0.10	18.39 ± 0.20	20.83 ± 1.27
$_{\Lambda\Lambda}^{12}\text{Be}$	10.02 ± 0.05	20.71 ± 0.20	22.48 ± 1.21
$_{\Lambda\Lambda}^{13}\text{B}$	11.27 ± 0.06	23.21 ± 0.21	23.3 ± 0.7

- [1] E. Hiyama, M. Kamimura, Y. Yamamoto, and T. Motoba, Phys. Rev. Lett. **104**, 212502 (2010).
- [2] K. Nakazawa, Nucl. Phys. A **835**, 207 (2010), and private communication (October 2010).
- [3] D.J. Millener, Nucl. Phys. A **835**, 11 (2010), and arXiv:1011.0367.

For the calculation of $B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^{11}\text{Be})$, since our SM fit maintains charge symmetry, we averaged statistically on $B_\Lambda^{\text{exp}}({}^{10}_\Lambda\text{Be}_{\text{g.s.}})$ and $B_\Lambda^{\text{exp}}({}^{10}_\Lambda\text{B}_{\text{g.s.}})$ [4] to get a SM input value $B_{\Lambda\Lambda}^{\text{SM}}({}^{10}_\Lambda\text{Be}) = (8.94 \pm 0.10)$ MeV. The SM prediction in Table I compares well with the CM prediction $B_{\Lambda\Lambda}^{\text{CM}}(_{\Lambda\Lambda}^{11}\text{Be}) = 18.23$ MeV [1] in spite of the differing input. However, a meaningful comparison requires using identical interactions. For example, the induced nuclear spin-orbit interaction (parameter S_N), known to play a key role in p shell Λ hypernuclei [3], contributes close to 400 keV to $B_{\Lambda\Lambda}^{\text{SM}}({}^{10}_\Lambda\text{Be}_{\text{g.s.}})$ and twice as much to $B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^{11}\text{Be})$, but it is missing in the CM works [1, 5].

For the calculation of $B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^{12}\text{Be})$, we replaced the spin dependent and $\Lambda - \Sigma$ coupling contributions to $B_\Lambda^{\text{exp}}({}^{11}_\Lambda\text{B}_{\text{g.s.}})$ [4] by those appropriate to ${}^{11}_\Lambda\text{Be}_{\text{g.s.}}$. For the calculation of $B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^{13}\text{B})$, since the value of $B_\Lambda^{\text{exp}}({}^{12}_\Lambda\text{C}_{\text{g.s.}})$ is controversial, we used $B_\Lambda^{\text{exp}}({}^{12}_\Lambda\text{B}_{\text{g.s.}})$ [4] plus a 161 keV ($1^-_{\text{g.s.}}, 2^-_{\text{exc}}$) doublet splitting from ${}^{12}_\Lambda\text{C}$ [6].

The excellent agreement between $B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^{13}\text{B})$ and $B_{\Lambda\Lambda}^{\text{exp}}(_{\Lambda\Lambda}^{13}\text{B})$ provides a consistency check on the SM estimates $B_{\Lambda\Lambda}^{\text{SM}}(_{\Lambda\Lambda}^{11,12}\text{Be})$ listed in Table I. Comparing these estimates with the corresponding $B_{\Lambda\Lambda}^{\text{exp}}$ options listed in the table, we conclude that a ${}^{12}_\Lambda\text{Be}$ assignment to the HIDA event is no more likely than a ${}^{11}_\Lambda\text{Be}$ assignment.

Useful discussions with Emiko Hiyama are gratefully acknowledged. AG thanks ECT* Director Achim Richter for hospitality when this Comment was conceived. D.J.M. acknowledges the support by the U.S. DOE under Contract DE-AC02-98CH10886 with the Brookhaven National Laboratory.

- [4] D.H. Davis, Nucl. Phys. A **754**, 3c (2005).
- [5] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Phys. Rev. C **66**, 024007 (2002).
- [6] Y. Ma *et al.*, Nucl. Phys. A **835**, 422 (2010).