Invariance and equivariance

Shift invariance

Input x

Output $f(\mathbf{x}) = 1$

Shifted input $S_{v}x$

Output $f(S_v \mathbf{x}) = 1$

- 'Cat detector' $f: \mathbb{R}^d \to \mathbb{R}$
- Shift operator $S_{\boldsymbol{v}} \colon \mathbb{R}^d \to \mathbb{R}^d$ shifting the image by vector \boldsymbol{v}

Shift invariance: $f(\mathbf{x}) = f(S_v \mathbf{x})$

Shift equivariance

Input x

Output $f_i(\mathbf{x}) = \begin{cases} 1 & \text{pixel } i \in \text{cat} \\ 0 & \text{otherwise} \end{cases}$

Shifted input $S_{v}x$

Output
$$f_i(S_v \mathbf{x}) = \begin{cases} 1 & \text{pixel } i \in \text{cat} \\ 0 & \text{otherwise} \end{cases}$$

- 'Cat segmentor' $\mathbf{f} \colon \mathbb{R}^d \to \mathbb{R}^d$
- Shift operator $S_v \colon \mathbb{R}^d o \mathbb{R}^d$ shifting the image by vector $oldsymbol{v}$

Shift equivariance: $S_v f(x) = f(S_v x)$

Invariance vs equivariance

Equivariance

Invariance vs equivariance

Invariance

Equivariance

$$f(g(\mathbf{x})) = g'(f(\mathbf{x}))$$

Approximate deformation invariance

Input x

Output $f(\mathbf{x}) = 1$

Shifted input $S_{v}x$

Output $f(D_{\tau}\mathbf{x}) = 1$

- 'Digit 3 detector' $f: \mathbb{R}^d \to \mathbb{R}$
- Warp operator $D_{\tau} \colon \mathbb{R}^d \to \mathbb{R}^d$ warping the image by field τ

Deformation invariance: $f(\mathbf{x}) \approx f(D_{\tau}\mathbf{x})$

Approximate deformation invariance

Input x

Output $f(\mathbf{x}) = 1$

Shifted input $S_{v}x$

Output $f(D_{\tau}\mathbf{x}) = 1$

- 'Digit 3 detector' $f: \mathbb{R}^d \to \mathbb{R}$
- Warp operator $D_{\tau} \colon \mathbb{R}^d \to \mathbb{R}^d$ warping the image by field τ

$$||f(\mathbf{x}) - f(D_{\tau}\mathbf{x})|| \approx ||\nabla \tau||$$

Equivariance in CNNs

Output of convolutional layer (shift equivariant)

Equivariance in CNNs

Output of convolutional layer (shift equivariant)

Approximate invariance in CNNs with pooling

Output of convolutional layer+max pooling (~shift invariant)

Approximate invariance in CNNs with pooling

Output of convolutional layer+max pooling (~shift invariant)