Linguagens Formais e Autômatos

Aula 27 - Problemas indecidíveis

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John E.
 Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed. original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 9 Seção 9.3 e 9.5
- Introdução à teoria da computação / Michael Sipser; tradução técnica
 Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira. -São Paulo: Thomson Learning, 2007 (Título original: Introduction to the
 theory of computation. "Tradução da segunda edição norte-americana" ISBN 978-85-221-0499-4)
 - Capítulo 5

Hierarquia de linguagens

Existe uma MT que sempre para (decisor)

Não existe MT

Não-recursivamente

Existe uma MT, mas ela pode entrar em loop (reconhecedor)

enumeráveis

Hierarquia de linguagens

- Agora conhecemos L_d e L_u, duas linguagens diferentes, ambas indecidíveis
- Podemos utilizá-las para provar que outras linguagens são também indecidíveis
- Utilizaremos essas como ponto de partida nas demonstrações
- Para isso, introduziremos o conceito de redução

- Uma redução é uma maneira de converter um problema em outro de forma que uma solução para o segundo problema possa ser usada para resolver o primeiro
- Dois problemas: A e B
 - Se A se reduz a B, podemos usar uma solução para B para resolver A
- Exemplo:
 - A = problema de se orientar em uma cidade
 - B = problema de se obter um mapa da cidade

- Outro exemplo:
 - A = problema de se medir a área de um retângulo
 - B = problema de se medir seu comprimento e altura
- Outro exemplo:
 - A = problema de se resolver um sistema de equações lineares
 - B = problema de se inverter uma matriz

Informalmente:

 Se existe um algoritmo para converter instâncias de um problema A em instâncias de um problema B, dizemos que A se reduz a B

Formalmente:

 Uma redução de A a B é uma máquina de Turing que toma uma instância de A gravada em sua fita e para com uma instância de B em sua fita

- Papel importante na classificação de problemas por decidibilidade (e complexidade também, veremos depois)
 - Quando A é redutível a B
 - resolver A não pode ser mais difícil do que resolver B
 - pois uma solução para B dá uma solução para A
 - ou seja, B é pelo menos tão difícil quanto A
 - Se A for redutível a B, então:
 - Se A é indecidível, então B também o é
 - Além disso, se A é não-RE, então B também o é
 - mas esse resultado é menos prático, já que saber que B é incedidível basta

- A prova de que L_{..} é indecidível utilizou uma redução
 - Ao aplicar w111w sobre M_{nu}, reduzimos M_d a M_{nu}, ou seja:
 - Problema A = M_d = linguagem da diagonalização
 - Problema B = M_{nii} = complemento da linguagem universal
 - A é não-RE (já sabíamos disso), portanto B é não-RE

Problema da Correspondência de Post

- Iremos agora fechar o ciclo:
 - Provaremos que o PCP é indecidível
 - Estratégia: reduziremos L_{.,} a PCP
 - Utilizaremos um passo intermediário para facilitar, produzindo um PCP "modificado" (PCPM)

 Como sabemos que L_u é indecidível, provaremos que o PCP é indecidível também

PCP "Modificado"

- O PCP "Modificado" é igual ao PCP original, mas com um requisito adicional:
 - O primeiro par nas listas A e B tem de ser o primeiro par na solução
 - Ou seja, a solução deve começar com1
 - Na versão com dominós, a solução deve começar com a primeira peça
 - Formalmente, uma instância do PCPM é formada por duas listas A = w1,w2,...,wk e B = x1, x2, ..., xk, e uma solução é uma lista de 0 ou mais inteiros S = (i1, i2, ..., im) tais que
 - $\mathbf{w}_{1}\mathbf{w}_{i1}\mathbf{w}_{i2}...\mathbf{w}_{im}=\mathbf{x}_{1}\mathbf{x}_{i1}\mathbf{x}_{i2}...\mathbf{x}_{im}$

	Lista A	Lista B
<u>.</u>	wi	хi
1	10	101
2	011	11
3	101	011

Nesse exemplo, as cadeias devem começar com:

- Iremos reduzir o PCPM ao PCP
 - Ou seja, iremos providenciar um algoritmo que converte instâncias do PCPM em instâncias do PCP
- De forma que: se existir uma solução para o PCP, poderemos usá-la para obter uma solução para o PCPM

- O algoritmo de redução é o seguinte:
 - Dada uma instância do PCPM, com k elementos
 - Passaremos de wi, xi para yi, zi

	Lista A	Lista B
i	wi	хi
1	1	111
2	10111	10
3	10	0

	Lista A	Lista B
i	yi	zi
0		
1		
2		
3		
4		

Instância do PCPM

Instância do PCP

 Primeiro, copia-se os elementos das listas A e B para a nova instância, deixando um "espaço" antes e depois

	Lista A	Lista B
i	wi	хi
1	1	111
2	10111	10
3	10	0

	Lista A	Lista B
i	yi	zi
0		
1	1	111
2	10111	10
3	10	0
4		

Instância do PCPM

Instância do PCP

 Depois, modifica-se a Lista A, inserindo um * após cada símbolo

	Lista A	Lista B
i	wi	хi
1	1	111
2	10111	10
3	10	0

	Lista A	Lista B
i	yi	zi
0		
1	1*	111
2	1*0*1*1*1*	10
3	1*0*	0
4		
4		

Instância do PCP

 Depois, modifica-se a Lista B, inserindo um * antes de cada símbolo

	Lista A	Lista B
i	wi	хi
1	1	111
2	10111	10
3	10	0

	Lista A	Lista B
i	yi	zi
0		
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4		

Instância do PCP

 Na primeira linha da Lista A, insere-se o elemento da segunda linha, com um * antes

	Lista A	Lista B
i	wi	хi
1	1	111
2	10111	10
3	10	0

	Lista A	Lista B
i	yi	zi
0	*1*	
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4		

Instância do PCP

 Na primeira linha da Lista B, insere-se o elemento da segunda linha, sem modificá-lo

	Lista A	Lista B
i	wi	хi
1	1	111
2	10111	10
3	10	0

	Lista A	Lista B
i	yi	zi
0	*1*	*1*1*1
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4		

Instância do PCP

Na última linha da Lista A, insere-se um \$

	Lista A	Lista B
i	wi	хi
1	1	111
2	10111	10
3	10	0

	Lista A	Lista B
i	yi	zi
0	*1*	*1*1*1
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4	\$	

Instância do PCP

Na última linha da Lista B, insere-se a cadeia *\$

	Lista A	Lista B
i	wi	хi
1	1	111
2	10111	10
3	10	0

	Lista A	Lista B
i	yi	zi
0	*1*	*1*1*1
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4	\$	*\$

Instância do PCP

- Esses passos são claramente um algoritmo: um passo-a-passo simples de ser seguido
- Vamos agora mostrar que esse algoritmo resulta em uma redução válida, ou seja:
 - Uma solução para o PCP pode ser usada para se obter uma solução para o PCPM

	Lista A	Lista B
i	yi	zi
0	*1*	*1*1*1
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4	\$	*\$

- Primeiro, observe que as instâncias reduzidas para o PCP só possuem soluções do tipo:
 - o 0,i1,i2,...,im,k+1
 - Ou seja, o primeiro elemento da solução (primeira peça do dominó) só pode ser o elemento da linha 0
- Cadeia A = *1*...
- Cadeia B = *1*1*1...
 - Pois de outra maneira, as cadeias iriam começar de forma diferente

	Lista A	Lista B
i	yi	zi
0	*1*	*1*1*1
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4	\$	*\$

- Da mesma maneira o último elemento da solução (última peça do dominó) só pode ser o elemento da linha k+1 (4)
- Cadeia A = *1*... \$
- Cadeia B = *1*1*1... ... *\$
 - Pois de outra maneira, as cadeias iriam terminar de forma diferente

	Lista A	Lista B
i	yi	zi
0	*1*	*1*1*1
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4	\$	*\$

- Os elementos intermediários correspondem ao PCP original
 - Os *s inseridos não modificam a lógica
 - A cada nova peça do dominó,
 a cadeia A irá terminar com *,
 e a B não
 - Mas cada nova peça do dominó, a cadeia B irá começar com *, e a A não
- Ou seja, se antes a solução sem os *s "servia", com os *s a mesma solução vai "servir" também

	Lista A	Lista B
i	yi	zi
0	*1*	*1*1*1
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4	\$	*\$

- Suponha agora que eu tenho uma solução para o PCP
 - o 0,i1,i2,...im,k+1
 - Ou seja:
 - $y_0 y_{i1} y_{i2} ... y_{im} y_{k+1} = z_0 z_{i1} z_{i2} ... z_{im} z_{k+1}$
 - Lembrando que yi e zi são as cadeias no PCP, com *s e \$s inseridos conforme o algoritmo de redução
 - Enquanto que wi e xi são as cadeias do PCPM, sem *s e sem
 \$s
 - Agora, se removermos os *s e \$s de ambos os lados, teremos
 - $\mathbf{w}_{1}\mathbf{w}_{i1}\mathbf{w}_{i2}...\mathbf{w}_{im} = \mathbf{x}_{1}\mathbf{x}_{i1}\mathbf{x}_{i2}...\mathbf{x}_{im}$
 - Ou seja, 1,i1,i2,...,im é uma solução para o PCPM

- Resumindo: se encontrei a solução para o PCP:
 - o 0,i1,i2,...,im,k+1
- Basta remover o primeiro e último elementos, começar com 1, e teremos uma solução para o PCPM
 - 1,i1,i2,...,im

Exemplo: aplicando o algoritmo

	Lista A	Lista B
i	wi	хi
1	а	ab
2	b	ca
3	ca	а
4	abc	С

	Lista A	Lista B
i	yi	zi
0	*a*	*a*b
1	a*	*a*b
2	b*	*c*a
3	c*a*	*a
4	a*b*c*	*C
5	\$	*\$

Instância do PCPM

Instância do PCP

 Encontrando uma solução para o PCP

Lista A	Lista B
yi	zi
a	*a*b
a*	*a*b
b*	*c*a
c*a*	*a
a*b*c*	*C
\$	*\$
	yi *a* a* b* c*a* a*b*c*

Resposta:

```
Cadeia A = [ *a*] [ b*] [c*a*] [ a*] [a*b*c*] [ $] Cadeia B = [*a*b] [*c*a] [ *a] [*a*b] [ *c]
```

```
Solução = 0,2,3,1,4,5
```

	Lista A	Lista B
i	wi	хi
1	а	ab
2	b	ca
3	ca	а
4	abc	С

Instância do PCPM

- Usando a solução do PCP para resolver o PCPM
 - Solução PCP
 - **0**,2,3,1,4,5
 - Solução PCPM (removendo primeiro e último da solução do PCP, e adicionando 1 no início)
 - **1**,2,3,1,4

Resposta:

```
Cadeia A = [a] [b] [ca] [a] [abc] = abcaaabc Cadeia B = [ab] [ca] [a] [ab] [c] = abcaaabc
```

- Concluímos que, se conseguimos resolver o PCP, é simples resolver o PCPM
- Agora vamos fazer um passo a mais
 - Reduziremos Lu ao PCPM
 - De forma similar, se conseguirmos resolver o PCPM, conseguiremos resolver o Lu
 - Considerando a redução anterior: se conseguirmos resolver o PCP, conseguiremos resolver o Lu
- Mas sabemos que Lu é indecidível!!
 - Vimos a prova nessa aula, anteriormente
- Portanto, a conclusão é que o PCP não pode ser resolvido por um algoritmo!!
 - Pois se fosse, teríamos um algoritmo para resolver o Lu!!

FAQ:

- P: Mas no último exemplo, encontramos uma solução para o PCP! E a utilizamos para encontrar uma solução para o PCPM!! Então como podemos concluir que o PCP é indecidível?? Acabamos de decidi-lo!
- R: Na verdade, não decidimos! Encontramos apenas UMA solução, usando nossa capacidade inventiva e criativa de seres humanos! Não usamos um algoritmo para resolvê-lo! A questão aqui é: existe um algoritmo para resolvê-lo? A resposta (como veremos) é não! Mas isso não impede que consigamos eventualmente encontrar UMA ou DUAS soluções, usando intuição, raciocínio, sorte, etc...

- Lembrando: o que é Lu?
 - É o conjunto de pares (M,w) tal que M aceita w, onde:
 - M é uma máquina de Turing
 - w é uma entrada
- A redução de Lu ao PCPM irá simular a execução de M
 - A solução para o PCPM será um "log" ou registro da execução de M sobre a entrada w
 - De forma parecida com o que fazemos com as configurações instantâneas
- Veremos que o PCPM pode ser usado para "implementar" a função de transição de M

- Utilizaremos uma abordagem baseada em exemplos:
- Considere a entrada w=01
- Considere a seguinte MT:
 - \circ M = ({q1,q2,q3},{0,1},{0,1,B}, δ ,q1,B,{q3})
- Onde δ é dado por:

	0	1	В
q1	(q2,1,D)	(q2,0,E)	(q2,1,E)
q2	(q3,0,E)	(q1,0,D)	(q2,0,D)
q3	-	-	-

- Regra 1:
 - O primeiro par é
 - #,#q₀w#
 - Onde q0 é o estado inicial
 - E w é a entrada

w = 01

	0	1	В
q1	(q2,1,D)	(q2,0,E)	(q2,1,E)
q2	(q3,0,E)	(q1,0,D)	(q2,0,D)
q3	-	-	-

Regra	Lista A	Lista B
(1)	#	#q ₁ 01#

- Regra 2:
 - Insira um par para cada símbolo de fita e o separador #
 - Sem considerar B

w = 01

	0	1	В
q1	(q2,1,D)	(q2,0,E)	(q2,1,E)
q2	(q3,0,E)	(q1,0,D)	(q2,0,D)
q3	-	-	-

Regra	Lista A	Lista B
(1)	#	#q ₁ 01#
(2)	0	0
	1	1
	#	#

Regra 3:

- Insira pares que simulam o movimento de M
 - \blacksquare qX,Yp se $\delta(q,X) = (p,Y,D)$
 - ZqX,pZY se $\delta(q,X) = (p,Y,E)$
 - (Repetir para todo símbolo de fita Z)
 - \blacksquare q#,Yp# se $\delta(q,B) = (p,Y,D)$
 - $Zq\#,pZY\#se \delta(q,B) = (p,Y,E)$
 - (Repetir para todo símbolo de fita Z)

$$w = 0.1$$

	0	1	В
q1	(q2,1,D)	(q2,0,E)	(q2,1,E)
q2	(q3,0,E)	(q1,0,D)	(q2,0,D)
q3	-	-	-

Regra	Lista A	Lista B
(3)	q ₁ 0	1q ₂
	0q ₁ 1	q ₂ 00
	1q ₁ 1	q ₂ 10
	0q ₁ #	q ₂ 01#
	1q ₁ #	q ₂ 11#
	0q ₂ 0	q ₃ 00
	1q ₂ 0	q ₃ 10
	q ₂ 1	0q ₁
	q ₂ #	0q ₂ #

Regra 4:

- Insira pares, para todo símbolo de fita X e Y e para todo estado de aceitação q:
 - XqY,q
 - Xq,q
 - qY,q

w = 0.1

	0	1	В
q1	(q2,1,D)	(q2,0,E)	(q2,1,E)
q2	(q3,0,E)	(q1,0,D)	(q2,0,D)
q3	-	-	-

Regra	Lista A	Lista B
	0q ₃ 0	q_3
	0q ₃ 1	q_3
(4)	1q ₃ 0	q_3
	1q ₃ 1	q_3
	0q ₃	q_3
	1q ₃	q_3
	q ₃ 0	q_3
	q ₃ 1	q_3

- Regra 5:
 - Para cada estado de aceitação q, insira um par:
 - **q##**,#

Regra	Lista A	Lista B
(5)	q ₃ ##	#

w = 0.1

	0	1	В
q1	(q2,1,D)	(q2,0,E)	(q2,1,E)
q2	(q3,0,E)	(q1,0,D)	(q2,0,D)
q3	-	-	-

Executando a MT original

w = 01

	0	1	В
q1	(q2,1,D)	(q2,0,E)	(q2,1,E)
q2	(q3,0,E)	(q1,0,D)	(q2,0,D)
q3	-	-	-

[q1]01 1[q2]1 10[q1]B 1[q2]01 [q3]101

Lista A	Lista B
#	#q ₁ 01#
0	0
1	1
#	#
q ₁ 0	1q ₂
0q ₁ 1	q ₂ 00
1q ₁ 1	q ₂ 10
0q₁#	q ₂ 01#
1q ₁ #	q ₂ 11#
0q ₂ 0	q ₃ 00
1q ₂ 0	q ₃ 10
q ₂ 1	0q ₁
q ₂ #	0q ₂ #
0q ₃ 0	q_3
0q ₃ 1	q_3
1q ₃ 0	q_3
1q ₃ 1	$q_{\scriptscriptstyle 3}$
0q ₃	q_3
1q ₃	q_3
q ₃ 0	$q_{\scriptscriptstyle 3}$
q ₃ 1	q_3
q ₃ ##	#
	# 0 1 # q ₁ 0 0q ₁ 1 1q ₁ 1 0q ₁ # 1q ₁ # 0q ₂ 0 1q ₂ 0 q ₂ 1 q ₂ # 0q ₃ 0 0q ₃ 1 1q ₃ 0 1q ₃ 1 0q ₃ 1q ₃ q ₃ 0 q ₃ 1

• Deve começar pelo primeiro elemento:

A:#

B:#q₁01#

Lista A	Lista B
#	#q ₁ 01#
0	0
1	1
#	#
q ₁ 0	1q ₂
0q ₁ 1	q ₂ 00
1q ₁ 1	q ₂ 10
0q ₁ #	q ₂ 01#
1q ₁ #	q ₂ 11#
0q ₂ 0	q ₃ 00
1q ₂ 0	q ₃ 10
q ₂ 1	0q ₁
q ₂ #	0q ₂ #
0q ₃ 0	q_3
0q ₃ 1	q_3
1q ₃ 0	q_3
1q ₃ 1	q_3
0q ₃	q_3
1q ₃	q_3
q ₃ 0	q_3
q ₃ 1	q_3
q ₃ ##	#
	# 0 1 # q ₁ 0 0q ₁ 1 1q ₁ 1 0q ₁ # 1q ₁ # 0q ₂ 0 1q ₂ 0 q ₂ 1 q ₂ # 0q ₃ 0 0q ₃ 1 1q ₃ 0 1q ₃ 1 0q ₃ 1q ₃ q ₃ 0 q ₃ 1

Escolhendo o único par possível

 $A: #q_10$

B:#q₁01#1q₂

Regra	Lista A	Lista B
(1)	#	#q ₁ 01#
	0	0
(2)	1	1
	#	#
	q ₁ 0	1q ₂
	0q ₁ 1	q ₂ 00
	1q ₁ 1	q ₂ 10
	0q ₁ #	q ₂ 01#
(3)	1q ₁ #	q ₂ 11#
	0q ₂ 0	q ₃ 00
	1q ₂ 0	q ₃ 10
	q ₂ 1	0q ₁
	q ₂ #	0q ₂ #
	0q ₃ 0	q_3
	0q ₃ 1	q_3
	1q ₃ 0	q_3
(4)	1q ₃ 1	q_3
	0q ₃	q_3
	1q ₃	q_3
	q ₃ 0	q_3
	q ₃ 1	q_3
(5)	q ₃ ##	#

Escolhendo o único par possível

Regra	Lista A	Lista B
(1)	#	#q ₁ 01#
	0	0
(2)	1	1
	#	#
	q ₁ 0	1q ₂
	0q ₁ 1	q ₂ 00
	1q ₁ 1	q ₂ 10
	0q ₁ #	q ₂ 01#
(3)	1q ₁ #	q ₂ 11#
	0q ₂ 0	q ₃ 00
	1q ₂ 0	q ₃ 10
	q ₂ 1	0q ₁
	q ₂ #	0q ₂ #
	0q ₃ 0	q_3
	0q ₃ 1	q_3
	1q ₃ 0	q_3
(4)	1q ₃ 1	q_3
(+)	0q ₃	q_3
	1q ₃	q_3
	q ₃ 0	q_3
	q ₃ 1	q_3
(5)	q ₃ ##	#

- Nesse ponto, daria para "copiar" os três símbolos seguintes 1,# e 0
 - Mas aí não iríamos muito longe
 - A solução é "copiar" apenas o 1 e #

$$A: #q_101#1q_21#1$$

$$B: \#q_101\#1q_21\#10q_1\#1$$

Regra	Lista A	Lista B
(1)	#	#q ₁ 01#
	0	0
(2)	1	1
	#	#
	q ₁ 0	1q ₂
	0q ₁ 1	q ₂ 00
	1q ₁ 1	q ₂ 10
	0q ₁ #	q ₂ 01#
(3)	1q ₁ #	q ₂ 11#
	0q ₂ 0	q ₃ 00
	1q ₂ 0	q ₃ 10
	q ₂ 1	0q₁
	q ₂ #	0q ₂ #
	0q ₃ 0	q_3
	0q ₃ 1	q_3
	1q ₃ 0	q_3
(4)	1q ₃ 1	q_3
(-,	0q ₃	q_3
	1q ₃	q_3
	q ₃ 0	q_3
	q ₃ 1	q_3
(5)	q ₃ ##	#

Só tem uma opção agora

Regra	Lista A	Lista B
(1)	#	#q ₁ 01#
	0	0
(2)	1	1
	#	#
	q ₁ 0	1q ₂
	0q ₁ 1	q ₂ 00
	1q ₁ 1	q ₂ 10
	0q ₁ #	q ₂ 01#
(3)	1q ₁ #	q ₂ 11#
	0q ₂ 0	q ₃ 00
	1q ₂ 0	q ₃ 10
	q ₂ 1	0q₁
	q ₂ #	0q ₂ #
	0q ₃ 0	q_3
	0q ₃ 1	q_3
	1q ₃ 0	q_3
(4)	1q ₃ 1	q_3
(-,	0q ₃	q_3
	1q ₃	q_3
	q ₃ 0	q_3
	q ₃ 1	q_3
(5)	q ₃ ##	#

Novamente, uma opção

B:
$$\#q_101\#1q_21\#10q_1\#1q_201\#q_310$$

Lista A	Lista B
#	#q ₁ 01#
0	0
1	1
#	#
q ₁ 0	1q ₂
0q ₁ 1	q ₂ 00
1q ₁ 1	q ₂ 10
0q₁#	q ₂ 01#
1q ₁ #	q ₂ 11#
0q ₂ 0	q ₃ 00
1q ₂ 0	q ₃ 10
q ₂ 1	0q ₁
q ₂ #	0q ₂ #
0q ₃ 0	q_3
0q ₃ 1	q_3
1q ₃ 0	q_3
1q ₃ 1	q_3
0q ₃	q_3
1q ₃	q_3
q ₃ 0	$q_{\scriptscriptstyle 3}$
q ₃ 1	q_3
q ₃ ##	#
	# 0 1 # q ₁ 0 0q ₁ 1 1q ₁ 1 0q ₁ # 1q ₁ # 0q ₂ 0 1q ₂ 0 q ₂ 1 q ₂ # 0q ₃ 0 0q ₃ 1 1q ₃ 0 1q ₃ 1 0q ₃ 1q ₃ q ₃ 0 q ₃ 1

Continuando

```
A: \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31\#1q_31
```

$$\mathtt{B:} \# \mathtt{q_1} \mathtt{01} \# \mathtt{1} \mathtt{q_2} \mathtt{1} \# \mathtt{10} \mathtt{q_1} \# \mathtt{1} \mathtt{q_2} \mathtt{01} \# \mathtt{q_3} \mathtt{101} \# \mathtt{q_3} \mathtt{01} \# \mathtt{q_3} \mathtt{1} \# \mathtt{q_3} \#$$

Regra	Lista A	Lista B
(1)	#	#q ₁ 01#
(2)	0	0
	1	1
	#	#
(3)	q ₁ 0	1q ₂
	0q ₁ 1	q ₂ 00
	1q ₁ 1	q ₂ 10
	0q ₁ #	q ₂ 01#
	1q ₁ #	q ₂ 11#
	0q ₂ 0	q ₃ 00
	1q ₂ 0	q ₃ 10
	q ₂ 1	0q ₁
	q ₂ #	0q ₂ #
(4)	0q ₃ 0	q_3
	0q ₃ 1	q_3
	1q ₃ 0	q_3
	1q ₃ 1	q_3
	0q ₃	q_3
	1q ₃	q_3
	q ₃ 0	q_3
	q ₃ 1	q_3
(5)	q ₃ ##	#

Pra encerrar, a regra 5

$$\texttt{A:} \# \texttt{q}_1 \texttt{01} \# \texttt{1} \texttt{q}_2 \texttt{1} \# \texttt{10} \texttt{q}_1 \# \texttt{1} \texttt{q}_2 \texttt{01} \# \texttt{q}_3 \texttt{101} \# \texttt{q}_3 \texttt{01} \# \texttt{q}_3 \texttt{1} \# \texttt{q}_3 \# \#$$

$$\mathtt{B:} \# \mathtt{q_1} \mathtt{01} \# \mathtt{1} \mathtt{q_2} \mathtt{1} \# \mathtt{10} \mathtt{q_1} \# \mathtt{1} \mathtt{q_2} \mathtt{01} \# \mathtt{q_3} \mathtt{101} \# \mathtt{q_3} \mathtt{01} \# \mathtt{q_3} \mathtt{1} \# \mathtt{q_3} \# \#$$

- Vimos que a solução anterior "simula" a execução da máquina de turing sobre w
 - É possível demonstrar que não existe solução diferente para o PCPM, senão aquela que é uma simulação correta de M!
 - Ou seja: M aceita w se e somente se a instância do PCPM construída tem uma solução!!
- Dessa forma, confirmamos que o algoritmo anterior, com as 5 regras, é uma redução válida

Conseguimos completar a redução de Lu ao PCP

- Verificamos que as reduções são válidas
- Ou seja, se pudéssemos decidir o PCP, poderíamos usar o mesmo algoritmo como base para decidir um PCPM, e em seguida, decidir Lu
- Mas Lu é indecidível
 - Ou seja, não existe um algoritmo que decide o PCP
- Portanto PCP é um problema indecidível!

Outros problemas incedidíveis

- Agora temos 3 problemas indecidíveis "nas mãos"
 - o Ld
 - o Lu
 - o PCP
- Podemos usá-los como ferramenta para provar que outros problemas são indecidíveis
 - Um exemplo é a ambiguidade de gramáticas livres de contexto
 - Problema AMB = decidir se uma gramática é ambígua
 - É possível reduzir PCP a esse problema AMB

Resumo

- Mostramos que existe uma forma de demonstrar indecidibilidade de problemas
 - Descrevendo-os como linguagens
 - Reduzindo esses problemas a outros conhecidamente indecidíveis
 - Pode ser útil na prática
- Vimos também que problemas indecidíveis têm soluções, apenas não existe um algoritmo para encontrá-las

Resumo

- Veremos a seguir outra classe de problemas
 - São decidíveis, porém não é viável decidi-los
 - São problemas ditos intratáveis
 - Ou seja, existem algoritmos, mas eles são muito ineficientes
 - A ineficiência é tanta, que mesmo supercomputadores modernos levariam anos para decidir uma instância de tamanho razoável
 - Ou necessitariam de uma quantidade inimaginável de memória e/ou espaço em disco

Fim

Aula 27 - Problemas indecidíveis