

From Data to Power: Predicting Renewable Energy Generation for a Sustainable Future

SDG 7 - Affordable & Clean Energy

Muhammad Danial Haikal Bin Mastirana (U2001426)

Megat Faris Putra Bin Megat Mehamat Kaharrudin (U2001086)

Janice Chong See Wai (S2132420)

Jasmine Chong See Yan (S2132419)

Overview

- Introduction
- Processes Involved and Results
- Conclusion
- Recommendation

Problem Statement

The advancement of technology, urbanisation, and growing population, has led to a <u>surge in energy demand</u>. Despite the potential for renewable energy to fulfill two-thirds of the overall energy consumption, many still <u>rely on non-renewables</u> as <u>renewable energy is unreliable</u> due to unpredictable weather.

01

OBJECTIVES

- To analyze and forecast the energy demand and production pattern
- To determine and predict whether renewable energy can contribute 30% to total energy production by 2030
- To provide a solution for a smooth transition towards a renewable energypowered future

02

RESEARCH QUESTIONS

- What is the projected energy demand and energy production by 2030?
- Can energy production meet energy demand by 2030?
- What percentage of the total energy production is renewable energy by 2030?

Correlation

Figure 1: Correlation between Global Total Energy Production, Global Total Energy Consumption and Global Total Renewable Energy Production

Electricity demand is **strongly positively correlated** to energy production with the correlation of:

0.99

Renewable energy production is **positively correlated** to the overall energy production with the correlation of:

0.89

What is the projected energy demand by 2030?

- Time Series Analysis using Prophet -

	Year	World	OECD	BRICS	Europe	North America	Latin America	Asia	Pacific	Africa	Middle-East	CIS
0	1990	101855.54	52602.49	26621.07	20654.88	24667.23	5373.06	24574.19	1197.89	4407.77	2581.86	16049.40
1	1991	102483.56	53207.25	26434.99	20631.62	24841.68	5500.99	24783.53	1186.26	4535.70	2744.68	15898.21
2	1992	102588.23	53788.75	25993.05	20189.68	25341.77	5628.92	25690.67	1209.52	4582.22	3081.95	14339.79
3	1993	103646.56	54614.48	26283.80	20189.68	25830.23	5675.44	26876.93	1267.67	4721.78	3349.44	13246.57
4	1994	104449.03	55579.77	25993.05	20085.01	26365.21	5989.45	28098.08	1279.30	4803.19	3640.19	11606.74

Figure 1: Head of the dataset

- Data from 1990 2020 (30 rows)
- 12 columns

- Check for <u>missing</u> values and <u>duplicated</u> values.
- Delete all columns except the world column.

	Year	World Power Consumption (TWh)
0	1990	101855.54
1	1991	102483.56
2	1992	102588.23

Figure 2: Modified dataframe

- Convert the 'Year' from integer to
 <u>DateTime</u> format
- **Rename** columns:

Year --> ds
World Power Consumption (TWh) --> y

- Check for <u>missing</u> values and **duplicated** values.
- Delete all columns except the world column.

	Year	World Power Consumption (TWh)
0	1990	101855.54
1	1991	102483.56
2	1992	102588.23
		Figure 2: Modified dataframe

Figure 2: Modified dataframe

- Convert the 'Year' from integer to **DateTime** format
- **Rename** columns:

Year --> ds World Power Consumption (TWh) --> y

Initial plot

Figure 3: Graph of global energy consumption (1990 - 2020)

- Create a **Prophet** model
- Fit (train) the model to the data
- Make <u>prediction</u>
- Plot the prediction

Figure 4: Graph of actual & forecasted global energy consumption (1995 - 2035)

- Create a **Prophet** model
- Fit (train) the model to the data
- Make <u>prediction</u>
- Plot the prediction

Figure 4: Graph of actual & forecasted global energy consumption (1995 - 2035)

 Evaluate the model with <u>RMSE</u> & <u>R-squared</u>

RMSE = 3152.16 TWhR-Squared = 0.97

The projected energy demand by 2030 is 182,573.61 TWh

What is the projected energy production by 2030?

- Linear Regression -

Dataset Used

• Electricity_Production_By_Source.csv (Source: Kaggle)

Entity	Code	Year	Coal (TWh)	Gas (TWh)	Hydro (TWh)	Other renewables (TWh)	Solar (TWh)	Oil (TWh)	Wind (TWh)	Nuclear (TWh)
Argentina	ARG	1985	0.607	12.46381379	20.646	0.103321614	0	5.706	0	5.766
Argentina	ARG	1986	1.013	13.27074408	21.009	0.107078921	0	7.894	0	5.711
Argentina	ARG	1987	1.016	12.55825178	21.841	0.108156823	0	10.078	0	6.465
Argentina	ARG	1988	1.586	20.55537675	15.033	0.121116047	0	8.635	0	5.798
Argentina	ARG	1989	0.865	24.30740969	12.965	0.119376908	0	7.204	0	5.039

Figure 5: Head of the dataset

- Data from 1985 2020 (6241 rows)
- 11 columns

- Check for **null** and **duplicated** values
- Calculate the **<u>sum</u>** of energy production by different sources for each entity

Entity	Code	Year	Coal (TWh)	Gas (TWh)	Hydro (TWh)	Other renewables (TWh)	Solar (TWh)	Oil (TWh)	Wind (TWh)	Nuclear (TWh)	Total Energy (TWh)
Argentina	ARG	1985	0.607	12.4638138	20.646	0.103321614	0	5.706	0	5.766	45.2921354
Argentina	ARG	1986	1.013	13.2707441	21.009	0.107078921	0	7.894	0	5.711	49.004823
Argentina	ARG	1987	1.016	12.5582518	21.841	0.108156823	0	10.078	0	6.465	52.0664086
Argentina	ARG	1988	1.586	20.5553768	15.033	0.121116047	0	8.635	0	5.798	51.7284928
Argentina	ARG	1989	0.865	24.3074097	12.965	0.119376908	0	7.204	0	5.039	50.4997866

Figure 6: Modified dataframe

• **Remove** unnecessary rows and columns

Entity	Code	Year	Total Energy (TWh)
World	OWID_WRL	1985	9825.320895
World	OWID_WRL	1986	10120.31776
World	OWID_WRL	1987	10611.5288
World	OWID_WRL	1988	11074.62838
World	OWID_WRL	1989	11588.06717

Figure 7: Final dataframe

- Check for **null** and **duplicated** values
- Calculate the **<u>sum</u>** of renewable energy production for each year

Entity	Code	Year	Coal (TWh)	Gas (TWh)	Hydro (TWh)	Other renewables (TWh)	Solar (TWh)	Oil (TWh)	Wind (TWh)	Nuclear (TWh)	Total Energy (TWh)
Argentina	ARG	1985	0.607	12.4638138	20.646	0.103321614	0	5.706	0	5.766	45.2921354
Argentina	ARG	1986	1.013	13.2707441	21.009	0.107078921	0	7.894	0	5.711	49.004823
Argentina	ARG	1987	1.016	12.5582518	21.841	0.108156823	0	10.078	0	6.465	52.0664086
Argentina	ARG	1988	1.586	20.5553768	15.033	0.121116047	0	8.635	0	5.798	51.7284928
Argentina	ARG	1989	0.865	24.3074097	12.965	0.119376908	0	7.204	0	5.039	50.4997866

Figure 6: Modified dataframe

• **Remove** unnecessary rows and columns

Entity	Code	Year	Total Energy (TWh)
World	OWID_WRL	1985	9825.320895
World	OWID_WRL	1986	10120.31776
World	OWID_WRL	1987	10611.5288
World	OWID_WRL	1988	11074.62838
World	OWID_WRL	1989	11588.06717

Figure 7: Final dataframe

Figure 8: Graph of global energy production (1985 - 2020)

- Create a **Linear** model
- Fit (train) data
- Make <u>prediction</u>
- **Plot** the prediction

Figure 9: Graph of actual and forecasted renewables production (1990 - 2030)

Formula:

Total Energy= -930907.6902 + (473.4178 * Year)

- Create a **Linear** model
- Fit (train) data
- Make <u>prediction</u>
- Plot the prediction

Figure 9: Graph of actual and forecasted renewables production (1990 - 2030)

Formula:

Total Energy= -930907.6902 + (473.4178 * Year)

 Evaluate the model with <u>RMSE</u> & <u>R-squared</u>

RMSE = **737.4TWh**

R-Squared = 0.9786

Figure 10: Graph of prediction for year 2030

The projected energy production by 2030 is 30,130.4 TWh.

Can energy production meet energy demand by 2030?

Energy Demand:

182,573.61 TWh

Energy Production:

30,130.40 TWh

- Time Series Analysis using Prophet -

		Year	Hydro(TWh)	Biofuel(TWh)	Solar PV (TWh)	Geothermal (TWh)
-	0	1990	2191.67	3.88	0.09	36.42
	1	1991	2268.63	4.19	0.10	37.39
	2	1992	2267.16	4.63	0.12	39.30
,	3	1993	2397.67	5.61	0.15	40.23
4	4	1994	2419.73	7.31	0.17	41.05
,	4	1994	2419.73	7.31	0.17	41.0

Figure 11: Head of the dataset

- Data from 1990 2017 (28 rows)
- 5 columns

- Check for **null** and **duplicated** values
- Calculate the <u>sum</u> of renewable energy production for each year

	Year	Hydro(TWh)	Biofuel(TWh)	Solar PV (TWh)	Geothermal (TWh)
0	1990	2191.67	3.88	0.09	36.42
1	1991	2268.63	4.19	0.10	37.39
2	1992	2267.16	4.63	0.12	39.30
3	1993	2397.67	5.61	0.15	40.23
4	1994	2419.73	7.31	0.17	41.05
5	1995	2545.96	7.95	0.19	39.89
		Figur	ra 12. Initi	al datafram	Δ

Figure 12: Initial dataframe

- Drop unused columns
- Convert the 'Year' from integer to
 <u>DateTime</u> format
- **Rename** columns:

Year --> ds Total_Renewables (TWh) --> y

- Check for **null** and **duplicated** values
- Calculate the **<u>sum</u>** of renewable energy production for each year

Figure 12: Initial dataframe

- Drop unused columns
- Convert the 'Year' from integer to **DateTime** format
- **Rename** columns:

Year --> ds Total_Renewables (TWh) --> y

• Initial plot

Figure 14: Graph of total renewables production (1990 - 2017)

- Create a **Prophet** model
- Fit (train) data
- Make prediction
- **Plot** the prediction
- Compute the percentage
 of renewable energy
 generation to total energy
 production

Figure 14: Graph of actual and forecasted renewables production (1990 - 2030)

Formula:

forecasted renewable energy

X 100

forecasted total energy

- Create a **Prophet** model
- Fit (train) data
- Make prediction
- <u>Plot</u> the prediction
- Compute the percentage
 of renewable energy
 generation to total energy
 production

Figure 14: Graph of actual and forecasted renewables production (1990 - 2030)

Formula:

forecasted renewable energy

X 100

forecasted total energy

Evaluate the model with <u>RMSE</u> & <u>R-squared</u>

RMSE = **533.62 TWh**

R-Squared = 0.67

Answer: No

It is predicted that renewable energy contributes only 22.59% to the total energy production by 2030.

Answer: No

It is predicted that renewable energy contributes only 22.59% to the total energy production by 2030.

Fails to achieve SDG Target of 30% by 2030.

Conclusion

01

Energy demand is forecasted to

exceed

the energy production.

02

Renewable energy only contributes

22.6% to the overall energy production which is clearly against the SDG 7's

Target of 30%.

03

are needed to be taken to **put us**back on track
to hit the 30% mark
by 2030.

04

Our recommendation is to optimize and utilise **Smart grids** by implementing **Energy Storage Systems (ESS).**

Recommendation

Thank you

