DATA STRUCTURES AND APPLICATIONS

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016)

SEMESTER - III

Subject Code	15CS33	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	

CREDITS - 04

Course objectives: This course will enable students to

- Explain fundamentals of data structures and their applications essential for programming/problem solving
- Analyze Linear Data Structures: Stack, Queues, Lists
- Analyze Non-Linear Data Structures: Trees, Graphs
- Analyze and Evaluate the sorting & searching algorithms
- Assess appropriate data structure during program development/Problem Solving

Module -1	Teaching Hours	
Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data structure		
Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions.		
Pointers and Dynamic Memory Allocation Functions. Representation of Linear Arrays in	10 Hours	
Memory, Dynamically allocated arrays, Array Operations : Traversing, inserting, deleting,		
searching, and sorting. Multidimensional Arrays, Polynomials and Sparse Matrices.		
Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms.		
Programming Examples.		
Text 1: Ch 1: 1.2, Ch 2: 2.2 -2.7		
Text 2: Ch 1: 1.1 -1.4, Ch 3: 3.1-3.3,3.5,3.7, Ch 4: 4.1-4.9,4.14		
Ref 3: Ch 1: 1.4		
	<u> </u>	
Module -2		
Stacks and Queues		
Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using		
Dynamic Arrays, Stack Applications: Polish notation, Infix to postfix conversion,	10 Hours	
evaluation of postfix expression, Recursion - Factorial, GCD, Fibonacci Sequence, Tower		
of Hanoi, Ackerman's function. Oueues: Definition, Array Representation, Oueue		

of Hanoi, Ackerman's function. Queues: Definition, Array Representation, Queue Operations, Circular Queues, Circular queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem. Multiple Stacks and Queues. Programming Examples.

Text 1: Ch 3: 3.1 -3.7

Text 2: Ch 6: 6.1 -6.3, 6.5, 6.7-6.10, 6.12, 6.13

Module - 3

Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation; Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and Deletion. Doubly Linked lists, Circular linked lists, and header linked lists. Linked Stacks and Queues. Applications of Linked lists – Polynomials, Sparse matrix representation. Programming Examples

10 Hours

Text 1: Ch 4: 4.1 -4.8 except 4.6

Text 2: Ch 5: 5.1 - 5.10

Module-4

Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder; Additional Binary tree operations. Threaded binary trees, Binary Search Trees – Definition, Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression, Programming Examples

10 Hours

Text 1: Ch 5: 5.1 –5.5, 5.7 Text 2: Ch 7: 7.1 – 7.9

Module-5

Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation Of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search. **Sorting and Searching**: Insertion Sort, Radix sort, Address Calculation Sort. **Hashing:** Hash Table organizations, Hashing Functions, Static and Dynamic Hashing. **Files and Their Organization:** Data Hierarchy, File Attributes, Text Files and Binary Files, Basic File Operations, File Organizations and Indexing

10 Hours

Text 1: Ch 6: 6.1 –6.2, Ch 7:7.2, Ch 8:8.1-8.3 Text 2: Ch 8: 8.1 – 8.7, Ch 9:9.1-9.3,9.7,9.9

Reference 2: Ch 16: 16.1 - 16.7

Course outcomes:

After studying this course, students will be able to:

- Acquire knowledge of
 - Various types of data structures, operations and algorithms.
 - Sorting and searching operations.
 - File structures.
- Analyse the performance of
 - Stack, Queue, Lists, Trees, Graphs, Searching and Sorting techniques.
- Implement all the applications of Data structures in a high-level language.
- Design and apply appropriate data structures for solving computing problems.

Graduate Attributes (as per NBA)

- 1. Engineering Knowledge
- 2. Design/Development of Solutions
- 3. Conduct Investigations of Complex Problems
- 4. Problem Analysis

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Fundamentals of Data Structures in C Ellis Horowitz and Sartaj Sahni, 2nd edition, Universities Press, 2014
- 2. Data Structures Seymour Lipschutz, Schaum's Outlines, Revised 1st edition, McGraw Hill, 2014

Reference Books:

- 1. Data Structures: A Pseudo-code approach with C –Gilberg & Forouzan, 2nd edition, Cengage Learning, 2014.
- 2. Data Structures using C, , Reema Thareja, 3rd edition Oxford press, 2012.
- 3. An Introduction to Data Structures with Applications- Jean-Paul Tremblay & Paul G. Sorenson, 2nd Edition, McGraw Hill, 2013.
- 4. Data Structures using C A M Tenenbaum, PHI, 1989.
- **5.** Data Structures and Program Design in C Robert Kruse, 2nd edition, PHI, 1996.