Homework 2

Nathaniel Hamovitz Math 108B, Sung, F22

 ${\rm due}\ 2022\text{--}10\text{--}20$

Axler 2e, Exercise 5.18: Give an example of an operator whose matrix with respect to some basis contains only 0's on the diagonal, but the operator is invertible.

Solution. Consider

$$T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

which is its own inverse.

Axler 2e, Exercise 5.19: Give an example of an operator whose matrix with respect to some basis contains only nonzero numbers on the diagonal, but the operator is not invertible.

Solution. Consider

$$T = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

T is not invertible because it is not injective; note that (for example) $T(2,0)^t = T(1,1)^t = (2,2)^t$.

Axler 2e, Exercise 6.1: Prove that if x, y are nonzero vectors in \mathbb{R}^2 , then

$$\langle x, y \rangle = ||x|| \, ||y|| \cos \theta,$$

where θ is the angle between x and y (thinking of x and y as arrows with initial point at the origin).

Proof. Consider the traingle formed by the vectors x, y, and x - y. From the Law of Cosines (remember high school geometry?) we then have that

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos \theta.$$

Applying some properties of the norm and the inner product, we see

$$||x - y||^{2} = ||x||^{2} + ||y||^{2} - 2 ||x|| ||y|| \cos \theta$$

$$\langle x - y, x - y \rangle =$$

$$\langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle =$$

$$||x||^{2} + ||y||^{2} - 2 \langle x, y \rangle = ||x||^{2} + ||y||^{2} - 2 ||x|| ||y|| \cos \theta$$

$$-2 \langle x, y \rangle = -2 ||x|| ||y|| \cos \theta$$

$$\langle x, y \rangle = ||x|| ||y|| \cos \theta$$

Axler 2e, Exercise 6.10: On $\mathcal{P}_2(\mathbb{R})$, consider the inner product given by

$$\langle p, q \rangle = \int_0^1 p(x)q(x) dx.$$

Apply the Gram-Schmidt prodedure to the basis $(1, x, x^2)$ to produce an orthonormal basis of $\mathcal{P}_2(\mathbb{R})$.

Solution. Let
$$e_1 = \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{\langle 1, 1 \rangle}} = \frac{1}{\sqrt{1}} = 1$$
.

Let

$$e_{2} = \frac{v_{2} - \langle v_{2}, e_{1} \rangle e_{1}}{\|v_{2} - \langle v_{2}, e_{1} \rangle e_{1}\|}$$

$$= \frac{x - \langle x, 1 \rangle \cdot 1}{\|x - \langle x, 1 \rangle \cdot 1\|}$$

$$= \frac{x - \left(\int_{0}^{1} x \, dx\right) (1)}{\|x - \left(\int_{0}^{1} x \, dx\right) (1)\|}$$

$$= \frac{x - \frac{1}{2}}{\|x - \frac{1}{2}\|}$$

$$= \left(x - \frac{1}{2}\right) \left(\left\langle x - \frac{1}{2}, x - \frac{1}{2}\right\rangle\right)^{-1}$$

$$= \left(x - \frac{1}{2}\right) \left(\int_{0}^{1} \left(x - \frac{1}{2}\right)^{2}\right)^{-1}$$

$$= 12 \left(x - \frac{1}{2}\right)$$

$$= 12x - 6$$

Axler 2e, Exercise 6.11: that is not linearly independent	What happens if the Gram-Schmidt procedure is applied to a list of vectors :?
Solution.	

Axler 2e, Exercise 6.14: Find an orthonormal basis of $\mathcal{P}_2(\mathbb{R})$ (with inner product as in Exercise 10
such that the differentiation operator (the operator that takes p to p') on $\mathcal{P}_2(\mathbb{R})$ has an upper-triangular
matrix with respect to this basis.

 \Box

Axler 2e, Exercise 6.15: Suppose U is a subspace of V. Prove that

$$\dim U^{\perp} = \dim V - \dim U.$$

Proof.

Axler 2e, Exercise 6.18: Prove that if $P \in \mathcal{L}(V)$ is such that $P^2 = P$ and

$$\|Pv\| \leq \|v\|$$

for every $v \in V$, then P is an orthogonal projection.

Proof. Let $P \in \mathcal{L}(V)$. Suppose that $P^2 = P$ and $\forall v \in V, ||Pv|| \le ||v||$.