Rahul Dintyala

Introduction

Algebraic Number Theory

Rahul Dintyala

May 9, 2024

Rahul Dintyala

Introduction

Theorem

Let H be a discrete subgroup of \mathbb{R}^n . Then H is generated (as a \mathbb{Z} -module) by r vectors which are linearly independent over \mathbb{R} (so $r \leq n$).

Rahu Dintya

Introduction

Theorem

Let G be a group and \mathbb{K} a field. Then, distinct characters are linearly independent over \mathbb{K} .

Proof. Suppose

$$a_1\chi_1+\ldots+a_n\chi_n=0 \qquad (\star)$$

with $a_i \in \mathbb{K}$ not all zero and n minimal with this property. Then of course $n \geq 2$ and $a_i \neq 0$ for all i. Since χ_1 and χ_2 are distinct, there exists $h \in G$ such that $\chi_1(h) \neq \chi_2(h)$. Then, for any $g \in G$,

$$0 = a_1\chi_1(hg) + \cdots + a_n\chi_n(hg) = a_1\chi_1(h)\chi_1(g) + \cdots + a_n\chi_n(h)\chi_n(g)$$

which means that $a_1\chi_1(h)\chi_1 + \cdots + a_n\chi_n(h)\chi_n = 0$. Dividing this last expression by $\chi_1(h)$ and subtracting it from (\star) we get :

$$\left(a_2-a_2\frac{\chi_2(h)}{\chi_1(h)}\right)\chi_2+\cdots+\left(a_n-a_n\frac{\chi_n(h)}{\chi_1(h)}\right)\chi_n=0$$

contradicting the minimality of n. Thus, any collection of distinct characters must be linearly independent.

Corollary

Suppose that L/\mathbb{K} is a finite normal extension of fields and σ_1,\ldots,σ_n be the distinct automorphisms of L. Then these are linearly independent over L.

Proof. Follows from previous theorem by viewing the automorphisms as homomorphisms from $L^* \to L^*$.

Corollary

Let L/\mathbb{K} be a finite Galois extension of fields of degree n. Suppose that x_1, \ldots, x_n is a basis of L over \mathbb{K} and let $\sigma_1, \ldots, \sigma_n$ be the distinct \mathbb{K} -automorphisms of L. Then, $\det(\sigma_i(x_i)) \neq 0$.

Proof. Suppose that this determinant is actually zero. Then, there exist a_1,\ldots,a_n not all zero such that $\sum_j a_j\sigma_j(x_i)=0$ for all $1\leq i\leq n$. Now, since x_1,\ldots,x_n make a basis of L, for any $l\in L$, $\sum_j a_j\sigma_j(l)=0$. Thus, $\sigma_ja_j\sigma_j=0$ contradicting the previous corrolary.

Rahul Dintyala

Introduction

Definition

A discrete subgroup of rank n of \mathbb{R}^n is called a lattice in \mathbb{R}^n .

Rahul Dintyala

Introduction

Lemma

The volume $\mu(P_e)$ is independent of the base chosen for H.

Theorem

Let H be a lattice in \mathbb{R}^n and let S be a measurable subset of \mathbb{R}^n such that $\mu(S) > \operatorname{vol}(H)$. Then there exist two distinct points $x, y \in S$ such that $x - y \in H$.

Corollary

Let H be a full-dimensional lattice in \mathbb{R}^n and let $C \subseteq \mathbb{R}^n$ be a convex set symmetric about the origin $(i.e.x \in C \implies -x \in C)$. Suppose that either :

- **1** (C) $> 2^n \cdot (H)$, or
- ② $(C) \ge 2^n \cdot (H)$ and C is compact.

Then $\mathbb{C} \cap (H \setminus \{0\}) \neq \emptyset$.

Proposition

If M is a free \mathbb{Z} -submodule of K of rank n and if $(x_i)_{1 \leq i \leq n}$ is a \mathbb{Z} -base for M then $\sigma(M)$ is a lattice in \mathbb{R}^n , whose volume is :

$$\operatorname{vol}(\sigma(M)) = 2^{-r_2} | \det_{1 \leq i, i \leq n} (\sigma_i(x_i)) |.$$

Proposition

Let d be the absolute discriminant of K, let A be the ring of integers in K, and let $\mathfrak a$ be a non-zero integral ideal of A. Then $\sigma(A)$ and $\sigma(\mathfrak a)$ are lattices. Moreover,

$$\operatorname{vol}(\sigma(A)) = 2^{-r_2} |d|^{\frac{1}{2}} \quad \text{and} \quad \operatorname{vol}(\sigma(\mathfrak{a})) = 2^{-r_2} |d|^{\frac{1}{2}} \mathcal{N}(\mathfrak{a}).$$

Proposition

Let K be a number field, n its degree, r_1 and r_2 are integers defined earlier, d the absolute discriminant of K, and $\mathfrak a$ a non-zero integral ideal of K. Then $\mathfrak a$ contains a non-zero element x such that :

$$|N_{K/\mathbb{Q}}(x)| \leq \left(\frac{4}{\pi}\right)^{r_2} \frac{n!}{n^n} |d|^{\frac{1}{2}} N(\mathfrak{a}).$$

Corollary

With the same notations, every ideal class of ${\it K}$ contains an integral ideal ${\it b}$ such that :

$$N(\mathfrak{b}) \leq \left(\frac{4}{\pi}\right)^{r_2} \frac{n!}{n^n} |d|^{\frac{1}{2}}.$$

Rahul Dintyala

Introduction

Theorem

For any number field K the ideal class group is finite.