Push – Pull converter:

$$N_{11} = N_{12} = \frac{N_1}{2}$$

$$N_{21} = N_{22} = \frac{N_2}{2}$$

From
$$t = 0$$

to
$$t = \frac{DT}{2}$$
,

$$T_1$$
 is ON & T_2 is OFF

$$t = \frac{DT}{2}$$

to
$$t = \frac{T}{2}$$
,

$$T_1$$
 & T_2 are OFF

$$t = \frac{T}{2}$$

to
$$t = {1 + D)T \over 2}$$
,

$$T_2$$
 is ON & T_1 is OFF

$$t = {1 + D)T \over 2}$$

to
$$t = T$$
,

$$\mathbf{T}_{\!_{1}}$$
 & $\mathbf{T}_{\!_{2}}$ are OFF

From
$$0 < t < \frac{DT}{2}$$
 T_1 is ON

'V' across $N_{11} = V_{11} = V_{DC}$ (with ' \bullet ' as + ve)

'V' across $N_{12} = V_{12} = V_{DC}$

'V' across $T_2 = 2V_{DC}$

i, enters the DOT

 i_{D1} can leave the DOT = i_{L}

 $\mathbf{i}_{D2} = 0$

'V' across $N_{21} = V_{21} = V_{DC} \frac{N_2}{N_1} =$ 'V' across N_{22}

 ${}^{\prime}\mathrm{D}_{2}^{\prime}$ is off

∴'V' across $D_2 = 2V_{DC} \frac{N_2}{N_1}$

 $\overline{\mathbf{i}_{D2}}$ enters the dot

- \Rightarrow i_{D1} can leave the dot
- \therefore If D₂ conducts D₁ will also conduct.
- 'V'across secondary = $0 (N_2 turns)$
- 'V'across primary = $0 (N_1 turns)$

$$\mathbf{N}_{21} \frac{\mathbf{d}\phi}{\mathbf{d}t} - \mathbf{i}_{D1} \mathbf{r} = \mathbf{V}_{01}$$

$$\mathbf{N}_{22} \frac{\mathbf{d}\phi}{\mathbf{d}t} + \mathbf{i}_{D2}\mathbf{r} = -\mathbf{V}_{01}$$

:.
$$N_2 \frac{d\phi}{dt} = -(i_{D2} - i_{D1})r$$
, $N_{21} = N_{22} = N_2/2$

 i_{D2} should be $> i_{D1}$,

$$i_{D1}$$
; $i_{D2} = i_{L}/2$

$$\Rightarrow V_{01} ; 0 : V_L = -V_0$$
,

 \therefore av. 'V' across L = 0

$$V_0 = V_{Dc} \frac{N_2}{N_1} D$$
, $D \rightarrow duty cycle of each switch = $\frac{T_{on}}{T_s/2}$$

$$V_0 = 2V_{Dc} \frac{N_2}{N_1} D$$
, $D = \frac{T_{on}}{T_s}$, $0 < D < 0.5$

at
$$\frac{1}{2}$$
< t< $\frac{(1+D)1}{2}$, close $\frac{1}{2}$,

$$V_{12} = -V_{DC}$$
 (with ' \bullet ' as $-$ ve)

 $\mathbf{i}_{\scriptscriptstyle L}$ flows through $\mathbf{D}_{\scriptscriptstyle 2}$ & $\mathbf{D}_{\scriptscriptstyle 1}$ can not conduct

Open T_2 : Both $D_1 \& D_2$ conduct

Limitations of push – pull converter:

In a practical circuit, two halves of push—pull converter are not the same

⇒ Primary winding may differ by a fraction of a turn

- ⇒ Switches may have slightly different saturation voltage
- \Rightarrow B H curve is not traversed symmetrically
- \Rightarrow A dc flux in the core
- ⇒ Core imbalance
- ⇒ Flux walking to one direction
- \Rightarrow Sudden demand in load controller \uparrow D to max. value
- \Rightarrow i & \therefore H \uparrow
- ⇒ Core may saturate
- \Rightarrow Dead time between \mathbf{I}_1 & \mathbf{I}_2 :

 If both are ON flux produced by \mathbf{i}_1 & \mathbf{i}_2 opposes each other
- \Rightarrow If $L_1 = L_2 = M$
- 'i' in the core is limited by 'r'.

- In 1960's \rightarrow Linear Regulators
 - → Simple
 - \rightarrow Low η

Switch Mode Conversion \Rightarrow Vary 'D' (ON/T) to control 'V₀' \rightarrow P.W.M. Control

If 'i' is continuous, switches are required to turn ON/OFF the entire inductor 'i'.

- $\Rightarrow \frac{di}{dt} & \frac{dv}{dt}$ is very high
- ⇒ Hard Switching

Without Snubber	1	2
With Snubber	3	4
SOA : Safe Operating	Area	

V_s = Supply VoltageI_m = Maximum Current