Spatial Orthogonal Geostatistical Model

John Tipton

April 19, 2014

1 Full Dimensional Model Statement

1.1 Data Model

$$\boldsymbol{y}_t = \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t + \boldsymbol{\eta}_t + \boldsymbol{\epsilon}_t$$

1.2 Process Model

$$\begin{split} \boldsymbol{\beta}_t &\sim N(\boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta}) & \boldsymbol{\Sigma}_{\beta} = \sigma_{\beta}^2 \boldsymbol{I}_t \\ \boldsymbol{\eta}_t &\sim N(0, \boldsymbol{\Sigma}_{\eta}) & \boldsymbol{\Sigma}_{\eta} = \sigma_{\eta}^2 \boldsymbol{R}(\phi) & \boldsymbol{R}(\phi) = \exp\left(-\boldsymbol{D}_t/\phi\right) \\ \boldsymbol{\epsilon}_t &\sim N(0, \boldsymbol{\Sigma}_{\epsilon}) & \boldsymbol{\Sigma}_{\epsilon} = \sigma_{\epsilon}^2 \boldsymbol{I}_t \end{split}$$

1.3 Parameter Model

$$\begin{split} & \boldsymbol{\mu}_{\beta} \sim N(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}) \\ & \sigma_{\beta}^{2} \sim IG(\alpha_{\beta}, \beta_{\beta}) \\ & \sigma_{\eta}^{2} \sim IG(\alpha_{\eta}, \beta_{\eta}) \\ & \sigma_{\epsilon}^{2} \sim IG(\alpha_{\epsilon}, \beta_{\epsilon}) \\ & \phi \sim IG(\alpha_{\phi}, \beta_{\phi}) \end{split}$$

where I_{β} is the identity matrix of size $\tau \times \tau$ where τ is the number of parameters in β_t , I_t is the identity matrix of size $n_t \times n_t$ and n_t is the number of samples of y_t at time t and D_t is the distance matrix between locations observed at time t. Define $\Sigma = \Sigma_{\eta} + \Sigma_{\epsilon}$

2 Orthogonalization

To preserve the fixed effects from being influence by the spatial process that should be explicitly second order, we construct the perpendicular projection operator (PPO)

$$\boldsymbol{P}_{t}^{c} = \boldsymbol{I}_{n_{t}} - \boldsymbol{H}_{t} \boldsymbol{X} \left((\boldsymbol{H}_{t} \boldsymbol{X})^{T} \boldsymbol{H}_{t} \boldsymbol{X} \right)^{-1} (\boldsymbol{H}_{t} \boldsymbol{X})^{T}.$$

The singular value decomposition of P_t^c is given by

$$\boldsymbol{P}_t^c = [\boldsymbol{L}|\boldsymbol{K}]^T \boldsymbol{\Phi} [\boldsymbol{L}|\boldsymbol{K}]$$

where K is a linear combination of the vectors of L (associated eignevalues of L are 0) and we can re-write our model as

$$oldsymbol{y}_t = oldsymbol{H}_t oldsymbol{X} oldsymbol{eta}_t + oldsymbol{L} oldsymbol{\eta}_t^* + oldsymbol{\epsilon}_t$$

where $\boldsymbol{\eta}_t^* \sim N(0, \sigma_n^2 \boldsymbol{L}^T \boldsymbol{R}(\phi) \boldsymbol{L})$. Define $\boldsymbol{\Sigma}_t = \boldsymbol{\Sigma}_{\epsilon_t}$.

3 Posterior

$$\prod_{t=1}^T [\boldsymbol{\beta}_t, \boldsymbol{\eta}_t^*, \boldsymbol{\mu}_{\beta}, \sigma_{\beta}^2, \sigma_{\eta}^2, \sigma_{\epsilon}^2, \phi | \boldsymbol{y}_t] \propto \prod_{t=1}^T [\boldsymbol{y}_t | \boldsymbol{\beta}_t, \sigma_{\eta}^2, \phi, \sigma_{\epsilon}^2] [\boldsymbol{\beta}_t | \boldsymbol{\mu}_{\beta}, \sigma_{\beta}^2] [\boldsymbol{\mu}_{\beta}] [\sigma_{\beta}^2] [\sigma_{\epsilon}^2] [\phi]$$

4 Full Conditionals

4.1 Full Conditional for β_t

For t = 1, ..., T,

$$\begin{split} [\boldsymbol{\beta}_t|\cdot] &\propto [\boldsymbol{y}_t|\boldsymbol{\beta}_t, \sigma_{\eta}^2, \sigma_{\epsilon}^2, \phi] [\boldsymbol{\beta}_t|\boldsymbol{\mu}_{\beta}, \sigma_{\beta}^2] \\ &\propto e^{-\frac{1}{2}} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t - \boldsymbol{L} \boldsymbol{\eta}_t^*)^T \boldsymbol{\Sigma}_{\epsilon}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t - \boldsymbol{L} \boldsymbol{\eta}_t^*)_e^{-\frac{1}{2}} (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta})^T \boldsymbol{\Sigma}_{\beta}^{-1} (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta})_e^T \boldsymbol{\Sigma}_{\beta}^{-1} (\boldsymbol{$$

which is Normal with mean $\boldsymbol{A}^{-1}\boldsymbol{b}$ and variance \boldsymbol{A}^{-1} where

$$\begin{split} \boldsymbol{A}^{-1} &= (\boldsymbol{X}^T \boldsymbol{H}_t^T \boldsymbol{\Sigma}_{\epsilon}^{-1} \boldsymbol{H}_t \boldsymbol{X} + \boldsymbol{\Sigma}_{\beta}^{-1})^{-1} \\ \boldsymbol{b} &= (\boldsymbol{X}^T \boldsymbol{H}_t^T \boldsymbol{\Sigma}_{\epsilon}^{-1} \left(\boldsymbol{y}_t - \boldsymbol{L} \boldsymbol{\eta}_t^* \right) + \boldsymbol{\Sigma}_{\beta}^{-1} \boldsymbol{\mu}_{\beta}) \end{split}$$

4.2 Full Conditional for μ_{β}

$$\begin{split} [\boldsymbol{\mu}_{\beta}|\cdot] &\propto \prod_{t=1}^{T} [\boldsymbol{\beta}_{t}|\boldsymbol{\mu}_{\beta}, \sigma_{\beta}^{2}][\boldsymbol{\mu}_{\beta}] \\ &\propto e^{-\frac{1}{2}\sum_{t=1}^{T} (\boldsymbol{\beta}_{t} - \boldsymbol{\mu}_{\beta})^{T} \boldsymbol{\Sigma}_{\beta}^{-1} (\boldsymbol{\beta}_{t} - \boldsymbol{\mu}_{\beta})} e^{-\frac{1}{2} (\boldsymbol{\mu}_{\beta} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}_{0}^{-1} (\boldsymbol{\mu}_{\beta} - \boldsymbol{\mu}_{0})} \\ &\propto e^{-\frac{1}{2} (\boldsymbol{\mu}_{\beta}^{T} (T \boldsymbol{\Sigma}_{\beta}^{-1} + \boldsymbol{\Sigma}_{0}^{-1}) \boldsymbol{\mu}_{\beta} - 2 \boldsymbol{\mu}_{\beta}^{T} (\sum_{t=1}^{T} \boldsymbol{\Sigma}_{\beta}^{-1} \boldsymbol{\beta}_{t} + \boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0})) \end{split}$$

which is multivariate normal with mean $(T\Sigma_{\beta}^{-1} + \Sigma_{0}^{-1})^{-1}(\sum_{t=1}^{T}\Sigma_{\beta}^{-1}\beta_{t} + \Sigma_{0}^{-1}\mu_{0})$ and variance $(T\Sigma_{\beta}^{-1} + \Sigma_{0}^{-1})^{-1}$

4.3 Full Conditional for σ_{β}^2

$$\begin{split} [\sigma_{\beta}^2|\cdot] &\propto \prod_{t=1}^T [\boldsymbol{\beta}_t|\boldsymbol{\mu}_{\beta},\sigma_{\beta}^2][\sigma_{\beta}^2] \\ &\propto (\prod_{t=1}^T |\boldsymbol{\Sigma}_{\beta}|^{-\frac{1}{2}}) e^{-\frac{1}{2}\sum_{t=1}^T (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta})^T \boldsymbol{\Sigma}_{\beta}^{-1} (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta}) (\sigma_{\beta}^2)^{-(\alpha_{\beta}+1)} e^{-\frac{\beta_{\beta}}{\sigma_{\beta}^2}} \\ &\propto (\sigma_{\beta}^2)^{-(\alpha_{\beta} + \frac{\sum_{t=1}^T n_t}{2} + 1)} e^{-\frac{1}{\sigma_{\beta}^2} (\frac{1}{2}\sum_{t=1}^T (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta})^T \boldsymbol{\Lambda}^{-1} (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta}) + \beta_{\beta})} \end{split}$$

which is $IG(\alpha_{\beta} + \frac{\sum_{t=1}^{T} n_{t}}{2}, \beta_{\beta} + \frac{1}{2} \sum_{t=1}^{T} (\boldsymbol{\beta}_{t} - \boldsymbol{\mu}_{\beta})^{T} \boldsymbol{\Lambda}^{-1} (\boldsymbol{\beta}_{t} - \boldsymbol{\mu}_{\beta}))$ since the determinant $|\boldsymbol{\Sigma}_{\beta}| = (\sigma_{\beta}^{2})^{n_{t}} |\boldsymbol{\Lambda}|$ and $\boldsymbol{\Sigma}_{\beta}^{-1} = \frac{1}{\sigma_{\beta}^{2}} \boldsymbol{\Lambda}^{-1}$

4.4 Full Conditional for η_t^*

For t = 1, ..., T,

$$\begin{split} [\boldsymbol{\beta}_t|\cdot] &\propto [\boldsymbol{y}_t|\boldsymbol{\beta}_t, \sigma_{\eta}^2, \sigma_{\epsilon}^2, \phi][\boldsymbol{\eta}_t^*|\sigma_{\eta}^2] \\ &\propto e^{-\frac{1}{2}}(\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t - \boldsymbol{L} \boldsymbol{\eta}_t^*)^T \boldsymbol{\Sigma}_{\epsilon}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t - \boldsymbol{L} \boldsymbol{\eta}_t^*)_e - \frac{1}{2} \boldsymbol{\eta}_t^{*T} \boldsymbol{\Sigma}_{\eta^*}^{-1} \boldsymbol{\eta}_t^* \\ &\propto e^{-\frac{1}{2}} \{\boldsymbol{\eta}_t^{*T} (\boldsymbol{L}^T \boldsymbol{\Sigma}_{\epsilon}^{-1} \boldsymbol{L} + \boldsymbol{\Sigma}_{\eta^*}^{-1}) \boldsymbol{\eta}_t^* - 2 \boldsymbol{\eta}_t^{*T} (\boldsymbol{L}^T \boldsymbol{\Sigma}_{\epsilon}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)) \} \end{split}$$

which is Normal with mean $\boldsymbol{A}^{-1}\boldsymbol{b}$ and variance \boldsymbol{A}^{-1} where

$$\begin{aligned} \boldsymbol{A}^{-1} &= (\boldsymbol{L}^T \boldsymbol{\Sigma}_{\epsilon}^{-1} \boldsymbol{L} + \boldsymbol{\Sigma}_{\eta^*}^{-1})^{-1} \\ \boldsymbol{b} &= (\boldsymbol{L}^T \boldsymbol{\Sigma}_{\epsilon}^{-1} \left(\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t \right) \end{aligned}$$

4.5 Full Conditional for σ_{η}^2

$$\begin{split} [\sigma_{\eta}^{2}|\cdot] &\propto \prod_{t=1}^{T} [\boldsymbol{y}_{t}|\boldsymbol{\beta}_{t}, \sigma_{\eta}^{2}, \boldsymbol{\phi}, \sigma_{\epsilon}^{2}][\sigma_{\eta}^{2}] \\ &\propto (\prod_{t=1}^{T} |\boldsymbol{\Sigma}_{\epsilon}|^{-\frac{1}{2}}) e^{-\frac{1}{2} \sum_{t=1}^{T} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t} \boldsymbol{X} \boldsymbol{\beta}_{t} - \boldsymbol{L} \boldsymbol{\eta}_{t}^{*})^{T} \boldsymbol{\Sigma}_{\epsilon}^{-1} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t} \boldsymbol{X} \boldsymbol{\beta}_{t} - \boldsymbol{L} \boldsymbol{\eta}_{t}^{*}) \left(\sigma_{\eta}^{2}\right)^{-\alpha_{\eta} + 1} e^{-\frac{\beta_{\eta}}{\sigma_{\eta}^{2}}} \\ &\propto |\boldsymbol{\Sigma}_{\epsilon}|^{-\frac{T}{2}} e^{-\frac{1}{2} \sum_{t=1}^{T} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t} \boldsymbol{X} \boldsymbol{\beta}_{t} - \boldsymbol{L} \boldsymbol{\eta}_{t}^{*})^{T} \boldsymbol{\Sigma}_{\epsilon}^{-1} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t} \boldsymbol{X} \boldsymbol{\beta}_{t} - \boldsymbol{L} \boldsymbol{\eta}_{t}^{*}) \left(\sigma_{\eta}^{2}\right)^{-\alpha_{\eta} + 1} e^{-\frac{\beta_{\eta}}{\sigma_{\eta}^{2}}} \end{split}$$

which can be sampled using a Metropolis-Hastings step

4.6 Full Conditional for σ_{ϵ}^2

$$\begin{split} [\sigma_{\epsilon}^{2}|\cdot] &\propto \prod_{t=1}^{T} [\boldsymbol{y}_{t}|\boldsymbol{\beta}_{t}, \sigma_{\eta}^{2}, \boldsymbol{\phi}, \sigma_{\epsilon}^{2}][\sigma_{\epsilon}^{2}] \\ &\propto (\prod_{t=1}^{T} |\boldsymbol{\Sigma}|^{-\frac{1}{2}}) e^{-\frac{1}{2}\sum_{t=1}^{T} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t}\boldsymbol{X}\boldsymbol{\beta}_{t} - \boldsymbol{L}\boldsymbol{\eta}_{t}^{*})^{T} \boldsymbol{\Sigma}_{\epsilon}^{-1} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t}\boldsymbol{X}\boldsymbol{\beta}_{t} - \boldsymbol{L}\boldsymbol{\eta}_{t}^{*}) (\sigma_{\epsilon}^{2})^{-\alpha_{\epsilon} + 1} e^{-\frac{\beta_{\epsilon}}{\sigma_{\epsilon}^{2}}} \\ &\propto |\boldsymbol{\Sigma}_{\epsilon}|^{-\frac{T}{2}} e^{-\frac{1}{2}\sum_{t=1}^{T} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t}\boldsymbol{X}\boldsymbol{\beta}_{t} - \boldsymbol{L}\boldsymbol{\eta}_{t}^{*})^{T} \boldsymbol{\Sigma}_{\epsilon}^{-1} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t}\boldsymbol{X}\boldsymbol{\beta}_{t}) - \boldsymbol{L}\boldsymbol{\eta}_{t}^{*} (\sigma_{\epsilon}^{2})^{-\alpha_{\epsilon} + 1} e^{-\frac{\beta_{\epsilon}}{\sigma_{\epsilon}^{2}}} \end{split}$$

which can be sampled using a Metropolis-Hastings step

4.7 Full Conditional for ϕ

$$egin{aligned} [\phi|\cdot] &\propto \prod_{t=1}^T [y_t|eta_t,\sigma^2_\eta,\phi,\sigma^2_\epsilon][\phi] \ &\propto \prod_{t=1}^T ig|oldsymbol{\Sigma}_\epsilonig|^{-rac{1}{2}} e^{-rac{1}{2}} (oldsymbol{y}_t - oldsymbol{H}_t oldsymbol{X} eta_t - oldsymbol{H}_t^*)^T oldsymbol{\Sigma}_\epsilon^{-1} (oldsymbol{y}_t - oldsymbol{H}_t oldsymbol{X} eta_t - oldsymbol{\eta}_t^*)_\phi - lpha_\phi + 1_e - rac{eta_\phi}{\phi} \ &\propto ig|oldsymbol{\Sigma}_\epsilonig|^{-rac{T}{2}} e^{-rac{1}{2} \sum_{t=1}^T (oldsymbol{y}_t - oldsymbol{H}_t oldsymbol{X} eta_t - oldsymbol{L} oldsymbol{\eta}_t^*)^T oldsymbol{\Sigma}_\epsilon^{-1} (oldsymbol{y}_t - oldsymbol{H}_t oldsymbol{X} oldsymbol{\beta}_t - oldsymbol{L} oldsymbol{\eta}_t^*)_\phi - lpha_\phi + 1_e - rac{eta_\phi}{\phi} \ \end{aligned}$$

which can be sampled using a Metropolis-Hastings step

5 Posterior Predictive Distribution

The posterior predictive distribution for \boldsymbol{y}_t is sampled a each MCMC iteration k by

$$oldsymbol{y}_t^{(k)} \sim N(oldsymbol{H_t} oldsymbol{X} oldsymbol{eta}_t^{(k)}, oldsymbol{\Sigma}^{(k)})$$