Упорядоченные множества в анализе данных Тема 2. Порядки, их графы и диаграммы

С.О. Кузнецов

Квазипорядки

Квазипорядок - рефлексивное и транзитивное бинарное отношение.

Квазипорядок \unlhd задает отношение $\unlhd \cup \trianglerighteq$, являющееся отношением эквивалентности.

Примеры.

1. Логика: отношение выводимости ⊢.

$$\bar{x} \lor (x \to y) \vdash \bar{x} \lor y\bar{x} \lor y \vdash \bar{x} \lor (x \to y),$$

однако формулы $\bar{x} \lor (x \to y)$ и $\bar{x} \lor y$ (синтаксически) различны.

- 2. Микроэкономика: отношение предпочтения на продуктовых наборах
- 3. Теория графов: отношение "изоморфизм подграфу".

Квазипорядки

Определим отношение на классах эквивалентности квазипорядка следующим образом: для двух классов эквивалентности π , σ имеет место $\pi \preceq \sigma$ если $p \lhd s$ для всех $p \in \pi$, $s \in \sigma$.

Утверждение. Отношение \leq на классах эквивалентности, задаваемых квазипорядком, является рефлексивным, транзитивным и антисимметричным.

Частичный порядок

Частичный порядок - рефлексивное, транзитивное и антисимметричное бинарное отношение.

Частично-упорядоченное множество (P, \leq) - это множество P с заданным на нем отношением частичного порядка \leq . Частично-упорядоченные множества естественно представляются ациклическими ориентированными графами.

Строгий порядок <, связанный с частичным порядком \leq :

$$x < y := x \le y$$
 и $x \ne y$

- антирефлексивное асимметричное транзитивное отношение

Пример. Частичный порядок на разбиениях

Разбиением множества S называется семейство множеств (называемых блоками) $\{S_1, \dots, S_n\}$, такое что

$$\bigcup_{i\in[1,n]} S_i = S, \quad \forall i,j \in [1,n] \quad S_i \cap S_j = \emptyset.$$

Разбиения обозначают в виде $S_1 \mid S_2 \mid \ldots \mid S_n$.

Разбиение P_1 более точное чем разбиение P_2 (эквивалентно, разбиение P_2 более грубое чем разбиение P_1) или $P_1 \leq P_2$ если для каждого блока разбиения P_1 найдется содержащий его блок разбиения P_2 .

Утверждение. Отношение \leq на разбиениях является отношением частичного порядка.

Пример. Для $S = \{a, b, c, d\}$ имеет место $\{a, b\} \mid \{c\} \mid \{d\} \leq \{a, b, c\} \mid \{d\}.$

Пример. Частичный порядок на мультимножествах

Мультимножество на множестве S - это множество S вместе с функцией $r\colon S\to N\cup\{0\}$, задающей кратность элементов S. Мультимножество M на S обычно обозначают в виде $\{a_{m_a}\mid a\in M\}$, где m_a - кратность элемента a. Мультимножество $L=\{a_{I_a}\mid a\in L\}$ есть подмножество мультимножества $M=\{a_{m_a}\mid a\in M\}$ $(L\subseteq M)$, если для всех a имеет место $I_a\leq m_a$.

Утверждение. Отношение \subseteq на мультимножествах является отношением частичного порядка.

Пример. Для $S=\{a,b,c,d\}$ имеет место $\{a_1,b_5,c_2\}\subseteq\{a_3,b_6,c_2,d_2\}.$

Отношение покрытия

Отношение покрытия \prec , соответствующее отношению частичного порядка \leq :

$$x \prec y := x \leq y, \ x \neq y, \ \not\exists z \neq x, y \ x \leq z \leq y$$

или, эквивалентно,

$$x \prec y := x < y, \ \not\exists z \quad x < z < y.$$

Теорема. Пусть a < b в конечном частично-упорядоченном множестве (P, \leq) . Тогда P содежит подмножество элементов $\{x_1, \ldots, x_l\}$ такое, что $a = x_1 \prec \ldots \prec x_l = b$.

Идея доказательства. Индукция по числу элементов y со свойством a < y < b.

Диаграмма ч. порядка

Диаграмма (Хассе) частично-упорядоченного множества (P, \leq) это укладка на плоскость графа отношения покрытия (P, \prec) , имеющая следующее свойство: $a \prec b \Longrightarrow$ точка, соответствующая вершине a имеет меньшую вертикальную координату чем точка, соответствующая вершине b.

Пример. Отношение ч. порядка

	a	b	С	d	е
а	1	0	1	1	1
b	0	1	1	1	1
С	0	0	1	0	1
d	0	0	0	1	1
е	0	0 1 0 0	0	0	1

Пример. Граф ч. порядка

	а	b	С	d	е
а	1	0	1	1	1
b	0	1	1	1	1
С	0	0	1	0	1
d	0	0	0	1	1
е	0	0	0	1 1 0 1	1

ациклический граф

Пример. Диаграмма ч. порядка

	а	b	С	d	е
а	1	0	1	1	1
b	0	1	1	1	1
С	0	0	1	0	1
d	0	0	0	1	1
е	0	0 1 0 0	0	0	1

диаграмма порядка

Принцип двойственности для ч. порядков

Отношение \geq , обратное к отношению частичного порядка \leq на множестве M, называется двойственным частичным порядком $(M,\leq)^d$.

Пусть A - утверждение о частичном порядке (M, \leq) . Утверждение A^d , двойственное к утверждению A, получается заменой символа \leq на символ \geq .

Утверждение A имеет место для частично-упорядоченного множества (M, \leq) если утверждение A^d имеет место для двойственного частично-упорядоченного множества $(M, \leq)^d$.

Диаграмма двойственного ч.у. множества получается из исходного симметрией относительно горизонтальной оси.

Принцип двойственности используется для упрощения изложения определений и доказательств.

Линейные порядки

Линейный или **полный** порядок - частичный порядок со свойством полноты:

для любых
$$x, y$$
 либо $x \le y$ либо $y \le x$.

Линейно-упорядоченное множество также называют **цепью**. В самом деле, линейно-упорядоченному множеству соответствует цепь в ациклическом графе порядка.

Строгий порядок, соответствующий линейному порядку, назовем строгим линейным порядком.

Пример. Лексикографический порядок

Пусть A - конечное множество символов (алфавит), которое линейно упорядочено отношением \prec . Словом в алфавите A называется конечная (может быть пустая) последовательность символов из A. Множество всех слов обозначается A^* .

Лексикографический порядок < на словах из A^* определяется следующим образом:

 $w_1 < w_2$ для $w_1, w_2 \in A^*$ если либо w_1 есть префикс w_2 (т.е. $w_2 = w_1 v$, где $v \in A^*$), либо первый слева символ, который у w_1 и w_2 отличается, у w_1 меньше относительно линейного порядка \prec , чем у w_2 (т.е. $w_2 = wav_1$, $w_1 = wbv_2$, где $w, v_1, v_2 \in A^*$, $a, b \in A$, $a \prec b$).

Утверждение. Лексикографический порядок на множестве слов A^* является строгим линейным порядком.

Топологическая сортировка

Теорема Пусть (S, \leq) - конечное частично-упорядоченное множество. Тогда элементы S можно перенумеровать таким образом, что

$$S = \{s_1, \ldots, s_n\}, \quad s_i \leq s_j \Longrightarrow i \leq j.$$

Идея доказательства. Индукция по числу занумерованных таким образом элементов множества S.

Примеры.

- сбор справок
- производственный процесс
- вычислительный процесс

Морфизмы порядков

Отображение $\varphi: M \to N$ между двумя упорядоченными множествами (M, \leq_1) и (N, \leq_2) сохраняет порядок если для всех $x, y \in M$ имеет место

$$x \leq_1 y \Rightarrow \varphi x \leq_2 \varphi y$$
.

Если выполняется обратная импликация

$$x \leq_1 y \Leftarrow \varphi x \leq_2 \varphi y$$
,

то φ - **порядковое вложение**. Биективное порядковое вложение называется **порядковым изоморфизмом**. Не всякое биективное отображение, сохраняющее порядок, является порядковым изоморфизмом.

Литература по порядкам

- Ф.Т. Алескеров, Э.Л. Хабина, Д.А. Шварц, Бинарные отношения, графы и коллективные решения, М., ГУ-ВШЭ, 2006.
- Г. Биркгоф, Теория решеток, М., Наука, 1984. (Раздел 1.1)
- Г. Биркгоф, Т.К. Барти, *Современная прикладная алгебра*, М., Лань, 2005. (Глава 2)
- Г. Гретцер, Общая теория решеток, М., Мир, 1982.
- О. Оре, Теория графов, М., Мир, 1965. (Главы 1,2,10)
- Ф. Харари, *Теория графов*, М., Мир, 1973.
- B. A. Davey and H. A. Priestley, *Introduction to Lattices and Order*, Cambridge University Press, 1990.

Упражнения

- Отношение несравнимости для частичного порядка является отношением толерантности
- Отношение изоморфизма подграфу является квазиупорядочением
- Всякое подмножество частично-упорядоченного множества является частично-упорядоченным множеством (относительно того же самого порядка)
- Является ли строгий порядок антисимметричным?
- Для любого отношения частичного упорядочения P имеет место $(P^c)^d = (P^d)^c$.
- Отношение, обратное к отношению частичного порядка, является отношением частичного порядка

Упражнения

- Пересечение частичных порядков на некотором множестве является частичным порядком
- Построить диаграмму отношения частичного порядка, заданного матрицей отношения
- Доказать, что лексикографический порядок является линейным
- Перечислить все частичные порядки на множестве из 4 (5) элементов
- Пусть дано непустое множество A и P множество всех частичных порядков на A. Пусть для $\rho, \sigma \in P$ имеет место $\rho \leq \sigma$ если $a\rho b$ влечет за собой $a\sigma b$. Доказать, что (P, \leq) частично-упорядоченное множество.
- Построить диаграмму частичного порядка разбиений 4-элементного множества.

