☑ Instructions

Uppsala University

Department of Information Technology

Database Design I (1DL301)

2022-08-19

Instructions: Read through the complete exam and note below any unclear directives before you start solving the questions. Answer **all** questions.

The paper has two types of questions:

- If a question is marked with ♥ you must select ALL correct choices. If you do not select
 all correct choices or you include any incorrect choice, your answer will be marked as
 incorrect.
- For all other questions you must select only one choice even if there are several correct choices. Your answer will be marked as correct if you select any of the correct choices. If you select an incorrect choice or select more than one choice, your answer will be marked as incorrect.

Please also answer questions: ♣ Q1, Q2 and Q3 which can be useful to us.

Grading. For each correct answer, you gain 1 point. A wrong answer does not generate negative points. To achieve a grade of 3, you must gain at least 14 points in the whole exam. To achieve a grade of 4, you must gain at least 17 points in the whole exam. To achieve a grade of 5, you must collect at least 21 points in the whole exam.

If you find any unclear directives, please note the question number below and exployu think is unclear.					d explain what	

¹ ♣ Question G1: When

2

General questions (useful for us)	
When have you attended the course?	
Select one alternative (no points awarded for this question):	
O 2021	
○ 2020	
O 2019	
○ Before 2019	
	Maximum marks: 0
♣ Question G2: How many	
♣ Question G2: How many General questions (useful for us)	
General questions (useful for us)	
General questions (useful for us) How many lectures have you attended?	
General questions (useful for us) How many lectures have you attended? Select one alternative (no points awarded for this question):	
General questions (useful for us) How many lectures have you attended? Select one alternative (no points awarded for this question): None or very few	
General questions (useful for us) How many lectures have you attended? Select one alternative (no points awarded for this question): None or very few Around 25%	
General questions (useful for us) How many lectures have you attended? Select one alternative (no points awarded for this question): None or very few Around 25% Around 50%	
General questions (useful for us) How many lectures have you attended? Select one alternative (no points awarded for this question): None or very few Around 25% Around 50% Around 75%	

2/41

³ ♣ Question G3: Study program

General questions (useful for us)					
What is your study program? Select one alternative (no points awarded for this question):					
○ F					
○ STS					
○ cs					
\circ X					
ОІТ					
None of the previous answers					
	Maximum marks: 0				

⁴ Department Employee ER

Consider a reasonable interpretation of the entities and attributes of the following ER-diagrams, where underlined attributes indicate candidate keys. Which of the following ER-diagrams is the most appropriate?

Select one alternative:

⁵ ▼ Interpreting ER model

For the depicted ER model, select all statements that must hold!

♥ Select one or more alternatives:

- There can be employees who work on no projects.
- An employee can work on several projects.
- Every employee has a unique combination of first and last name.
- The ID for an employee must match the ID for some project.
- ☐ There can be projects on which no employees work.

6 Mapping ER to relational model

Which of the following options is a correct mapping of the ER diagram to the relational model?

Select one alternative:

CUSTOMER(Id, {Phone numbers}, Address(City, Street)),

PRODUCT(<u>Product_id</u>, <u>Product_no</u>, Customer_id, Time_of_purchase), with Cutomer_id FK→ CUSTOMER(Id)

CUSTOMER(<u>Id</u>, City, Street, Product_id, Product_no), with {Product_id, Product_no} ^{FK} → PRODUCT(<u>{Product_id, Product_no}</u>) PHONES(<u>Phone_number, Id</u>), with Id ^{FK} → CUSTOMER(Id), PRODUCT(<u>Product_id</u>, <u>Product_no</u>, Time_of_purchase)

CUSTOMER(<u>Id</u>, {Phone numbers}, Address, City, Street),

BUYS(<u>Id</u>, <u>Product_id</u>, Time_of_purchase), with Id ^{FK} → CUSTOMER(Id) and Product_id ^{FK} → PRODUCT(Product_id),

PRODUCT(<u>Product_id</u>, <u>Product_no</u>)

CUSTOMER(Id, City, Street),

PHONES(<u>Phone_number, Id</u>), with Id ^{FK}→ CUSTOMER(Id),
PRODUCT(Product_id, <u>Product_no</u>, Time_of_purchase, Buyer_id), with
Buyer id ^{FK}→ CUSTOMER(Id)

⁷ EER part 1

Entity type P can be *one or more of* the types C1, C2, C3 but must be at least one of them. Which of the following EER diagrams corresponds to these specifications? (only a portion of the diagram has been visualized!)

Select one alternative:

8 ▼ EER Parts

Based on the EER model depicted below and the semantics of EER models, select all correct statements from the following.

♥ Select one or more alternatives:

- PURCHASED_PART cannot inherit a primary key from PART.
- An entity type PURCHASED_PART must also be a MANUFACTURED_PART
- An entity type PART may be none of the indicated sub-classes
- All entity types have an attribute called "Description"

⁹ ▼ Interpreting EER

Select all true statements according to the following EER diagram:

Every subclass of ANIMAL must live in some continent.

♥ Select one or more alternatives:

It is possible that an entity type ANIMAL is none of the entity types BADGER, CAT, DOG, or ELEPHANT.

An ELEPHANT entity type must have a Number_of_tusks

It is possible that an entity type ELEPHANT is none of the entity types ASIAN_ELEPHANT or AFRICAN_ELEPHANT

In every CONTINENT at least one of the following animals lives: BADGER, CAT, DOG, ELEPHANT, ASIAN_ELEPHANT, AFRICAN_ELEPHANT.

The average temperature of the Continent Europe could be 90°C

10 EER to Relational

We want to convert the following diagram to the relational model. Choose the MOST appropriate answer from the following.

Select one alternative:

- MANUFACTURED_PART(<u>Part_no</u>, Manufacture_date, Batch_no, Drawing_no, Description), PURCHASED_PART(<u>Part_no</u>, Supplier_name, List_price, Description)
- PART(<u>Part_no</u>, Description, Manufacture_date, Batch_no, Drawing_no, Supplier_name, List_price, Manufactured_part_flag, Purchased_part_flag)
- PART(<u>Part_no</u>, Description, Manufacture_date, Batch_no, Drawing_no, Supplier_name, List_price, Type)

PART(Part_no, Description),

MANUFACTURED_PART(Manufacture_date, Batch_no, Drawing_no),
 PURCHASED PART(Supplier name, List price)

¹¹ ♥ Valid EER

Which of the following are valid EER diagrams (select all)?

♥ Select one or more alternatives:

Consider the following populated database, with the two tables CAR and OWNER where VIN is the primary key for CAR and OwnerID is the primary key for OWNER. Also, CAR.OwnerID is a foreign key to OWNER.OwnerID.

CAR				
VIN	Year	Manufacturer	Color	OwnerID
1234	2001	Toyota	Red	1
4201	2017	Tesla	Silver	2
5678	2005	Ford	Black	3
9999	1999	Saab	Blue	1
1111	2010	Volvo	Green	NULL
2345	2015	Volvo	Gray	3

OWNER				
<u>OwnerID</u>	Name	Age		
1	Mandy	19		
2	George	45		
3	Styrbjörn	39		
4	Ingrid	80		

Answer the questions on the right.

Which of the following SQL statements will return the number of cars owned by the owner with OwnerID 4?

¹³ SQL

Which of the following SQL statements will return the number of cars that have an owner?

SELECT COUNT(*)
 FROM OWNER;
 SELECT COUNT(DISTINCT Name)
 FROM CAR, OWNER
 WHERE CAR.OwnerID = OWNER.OwnerID;
 SELECT DISTINCT(COUNT NAME)
 FROM CAR, OWNER
 WHERE OWNER.OwnerID = CAR.OwnerID;
 SELECT COUNT(*)
 FROM CAR
 WHERE OwnerID IS NOT NULL;

¹⁴ SQL

Which of the following SQL statements will return the number of cars that are Volvos?

SELECT COUNT(*)
FROM CAR
WHERE CAR.Manufacturer IN (CAR SELECT 'Volvo');
SELECT Number
FROM COUNT(CAR.Manufacturer = 'Volvo') AS Number;
SELECT COUNT('Volvo')
FROM CAR.Manufacturer;
SELECT COUNT(*)
FROM CAR
WHERE CAR.Manufacturer = 'Volvo';

Consider the following populated database, with the two tables CAR and OWNER where VIN is the primary key for CAR and OwnerID is the primary key for OWNER. Also, CAR.OwnerID is a foreign key to OWNER.OwnerID.

CAR				
<u>VIN</u>	Year	Manufacturer	Color	OwnerID
1234	2001	Toyota	Red	1
4201	2017	Tesla	Silver	2
5678	2005	Ford	Black	3
9999	1999	Saab	Blue	1
1111	2010	Volvo	Green	NULL
2345	2015	Volvo	Gray	3

OWNER				
<u>OwnerID</u>	Name	Age		
1	Mandy	19		
2	George	45		
3	Styrbjörn	39		
4	Ingrid	80		

Answer the questions on the right.

Which SQL statement returns the name of the manufacturer that has produced the most cars in the database along with the number of cars made by that manufacturer?

SELECT T.Manufacturer, MAX(Num)
FROM (SELECT CAR.Manufacturer, COUNT(CAR.Manufacturer) AS Num FROM CAR GROUP BY CAR.Manufacturer) AS T;
SELECT Manufacturer, Num FROM CAR WHERE COUNT(Manufacturer) IN MAX(SELECT COUNT(Manufacturer) GROUP BY Manufacturer) AS Num;
(SELECT Manufacturer FROM CAR) UNION (SELECT COUNT(Manufacturer) FROM CAR WHERE COUNT(Manufacturer) IN MAX(COUNT(Manufacturer)))
None of the options are correct.
SELECT Manufacturer, COUNT(Manufacturer) FROM CAR WHERE MAX(COUNT(Manufacturer));

Which of the following SQL-statements will return a list of manufacturers, without repetitions, who have made cars before 2000 or after 2005 in the database?

(SELECT Manufacturer FROM CAR WHERE Year < 2000)

UNION
(SELECT Manufacturer FROM CAR WHERE Year > 2005);

SELECT Manufacturer

FROM CAR
WHERE Year < 2000 OR Year > 2005;

(SELECT Manufacturer FROM CAR WHERE Year < 2000)

UNION ALL
(SELECT Manufacturer FROM CAR WHERE Year > 2005);

SELECT DISTINCT Manufacturer
WHERE Year < 2000 OR Year > 2005;

Which of the following SQL-statements will return the average manufacturing year of cars owned by people under the age of 40?

SELECT AVG(Year)
FROM OWNER LEFT OUTER JOIN CAR ON Car.OwnerID = OWNER.OwnerID
GROUP BY Year
HAVING Age < 40;

SELECT AVG(Year) AND Age < 40
FROM CAR, OWNER
WHERE CAR.OwnerID = OWNER.OwnerID;

SELECT AVG(Year)
FROM CAR INNER JOIN OWNER ON Car.OwnerID = OWNER.OwnerID
WHERE Age < 40;

SELECT Year
FROM CAR, OWNER
WHERE Year IN (SELECT AVG(Year) FROM CAR) AND OWNER.Age < 40;

¹⁸ SQL

We want to get a list of the names of owners of cars manufactured after 2004. Which of the following SQL-statements is correct?

SELECT DISTINCT Name
FROM CAR
WHERE Year > 2004;

SELECT DISTINCT Name
FROM OWNER
WHERE OWNER.OwnerID = CAR.OwnerID AND CAR.Year > 2004;

SELECT DISTINCT Name
FROM OWNER, CAR
WHERE CAR.OwnerID = OWNER.OwnerID AND CAR.Year > 2004;

SELECT DISTINCT Name
FROM CAR LEFT OUTER JOIN OWNER ON CAR.OwnerID = OWNER.OwnerID
WHERE Year > 2004;

Which of the following SQL-statements will return a table where each row contains an owner ID and the most recent manufacturing year from which they own at least one car (several different cars can be made in the same year)? The table should contain the ID of all car owners and no IDs of people who do not own cars.

	None of the other options.
0	SELECT OwnerID, Year FROM CAR WHERE YEAR IN (SELECT MAX(Year) FROM CAR);
0	SELECT OwnerID, Year FROM CAR WHERE OwnerID IS NOT NULL GROUP BY MAX(Year);
0	SELECT OwnerID, MAX(Year) FROM CAR GROUP BY OwnerID;
	SELECT OwnerID, MAX(Year) AS Year_of_newest FROM CAR WHERE OwnerID IS NOT NULL GROUP BY OwnerID;

²⁰ ▼ Referential Integrity

Consider the SQL instruction DELETE FROM T WHERE T.KEY = 1, where KEY is the primary key of the table T containing many rows. T belongs to a database which contains other tables and has many constraints on these tables.

Select all correct answers.

♥ Select one or more alternatives:
☐ It may delete tables from the database schema, if there are no more rows after deletion.
☐ The SQL statement is incorrect
It may update the values of attributes in the database because of referential integrity constraints.
Due to other constraints, it is possible that the statement may delete more than one tuples from table T.
☐ It may delete no rows because of referential integrity constraints.
It may delete more than 1 row from tables in the database because of referential integrity constraints.

21 ♥ Functional Dependencies

The following table shows the current state of a relation, where C_1 is the **key** of the relation. Which of the following options are correct? (Select **all** correct choices)

<u>C</u> ₁	C_2	C_3	C ₄	C ₅
1	1	George	Anna	42
2	1	George	Chris	42
3	1	George	Anna	42
4	2	John	Nek	2
5	2	John	Chris	1
6	3	Marina	Anna	3

▼ Select one or more alternatives:

\square All attributes are functionally dependent on C_1 .
We cannot be certain whether the functional dependency $C_2 \rightarrow C_3$ holds.
\square The functional dependency $C_3 \rightarrow C_4$ may hold.
\square The functional dependency $C_3 \rightarrow C_5$ may hold.
\square The functional dependency $C_1 \rightarrow C_4$ holds.
\square The functional dependency $\{C_3, C_4\} \rightarrow C_5$ may hold.

²² ♥ Normal forms

Consider a relation $R(\underline{A}, B,$	C, D) where A is t	he primary key	and the following	g full functiona
dependencies hold:				

- $\bullet \quad A \to B$
- $\bullet \quad A \to C$
- $\bullet \quad A \to D$
- $\{B, C\} \rightarrow D$

Which of the following hold?

•	Select	one	٥r	more	altor	nativo	٠.
•	Select	OHE	OI	111011 😝	aner	HAHVE	•

R is in 3NF but not in 2NF	
R is in 3NF	
R is in 2NF but not in 1NF	
R is in 1NF but not in 2NF	
R is in 2NF but not in 3NF	

Consider the database below. Where, the primary keys are underlined and the foreign key (FK) relationships are:

- PROJECT.Dnum is FK ref. DEPARTMENT.Dnumber;
- PROJECT.Plocation is FK ref. DEPT_LOCATIONS.Dlocation;
- DEPT_LOCATIONS.Dnumber is FK ref. DEPARTMENT.Dnumber;
- DEPARTMENT.Mgr_ssn is FK ref. EMPLOYEE.Ssn;
- EMPLOYEE.Super_ssn is FK ref. EMPLOYEE.Ssn;
- EMPLOYEE.Dno is FK ref. DEPARTMENT.Dnumber.

Suppose each of the following update operations is applied directly to this database:

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

PROJECT

Pname	<u>Pnumber</u>	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPT LOCATIONS

_	
Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

²³ ♥ Constraint violations

Choose the correct statements regarding the integrity constraints (i.e. key constraints, entity and referential integrity constraint) of the following operation when applied to the database on the left:

UPDATE EMPLOYEE SET Fname = 'John', Minit = 'B', Lname = 'Smith'	
WHERE Ssn = '987654321';	
Select one or more alternatives:	
☐ No constraint violations.	
☐ It violates entity integrity	
☐ It violates the key constraint.	
☐ It violates referential integrity.	

Consider the database below. Where, the primary keys are underlined and the foreign key (FK) relationships are:

- PROJECT.Dnum is FK ref. DEPARTMENT.Dnumber;
- PROJECT.Plocation is FK ref. DEPT_LOCATIONS.Dlocation;
- DEPT_LOCATIONS.Dnumber is FK ref. DEPARTMENT.Dnumber;
- DEPARTMENT.Mgr_ssn is FK ref. EMPLOYEE.Ssn;
- EMPLOYEE.Super_ssn is FK ref. EMPLOYEE.Ssn;
- EMPLOYEE.Dno is FK ref. DEPARTMENT.Dnumber.

Suppose each of the following update operations is applied directly to this database:

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

PROJECT

Pname	<u>Pnumber</u>	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPT_LOCATIONS

Dnumber	Dlocation			
1	Houston			
4	Stafford			
5	Bellaire			
5	Sugarland			
5	Houston			

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

²⁴ ♥ Constraint violations

Choose the correct statements regarding the integrity constraints (i.e. key constraints, entity and referential integrity constraint) of the following operation when applied on the database shown to the left.

DELETE FROM EMPLOYEE WHERE EMPLOYEE.SSN = '333445555'

▼ Select one or more alternatives:
It violates referential integrity because Super_ssn is NULL for the employee with Ssn 888665555.
☐ It violates the key constraint because employee with primary key 333445555 is deleted.
☐ It violates both key and referential integrity constraint.
No constraint violations.
It violates entity integrity constraint because Super_ssn is NULL for the employee with Ssn 888665555.
It violates referential integrity constraint because Mgr_ssn in the DEPARTMENT table has a value of 333445555 for one of its rows.
Maximum marks: 1

²⁵ ♥ Candidate Keys

Consider a relation R(A, B, C, D, E, F) in 1NF where the following functional dependencies hold:

- $\{A, B\} \rightarrow \{C\}$
- $\{C\} \rightarrow \{D, F\}$
- $\{D, F\} \rightarrow \{E\}$

Which of the following are candidate keys?

- **▼** Select one or more alternatives:
 - {C}
 - {A, B}
 - □ {D, F}
 - There are no candidate keys.
 - {C, D, E, F}

²⁶ ♥ Normalization

Which of the following databases contains all the information contained in the following relation:

R(A, B, C, D, E, F) in 1NF (at least) where the following functional dependencies hold:

- $\{B, C\} \rightarrow \{E\}$
- $\{E\} \rightarrow \{A\}$
- $\{A\} \rightarrow \{D, F\}$

and has all relations in 3NF (not showing the primary and foreign key constraints)?

*	Select	one	or	more	alternatives	S

- \square R(A,B,C,D,E,F)
- R₁(B, C, E), R₂(A, D, E, F)
- \square R₁(B,C), R₂(E), R₃(A), R₄(D,F)
- \blacksquare R₁(A, B, C, E), R₂(A, D, E, F)
- \square R₁(B,C,E), R₂(A,E), R₃(A,D,F)

²⁷ ♥ Serializability

For the following sets of transactions T_1 , T_2 , and T_3 , which of the schedules are (conflict) serializable?:

♥ Select one or more alternatives:

T1	T2	Т3
	read_item(A);	
	A := A + 10	
		read_item(C);
		C := C / 5;
		write_item(C)
		read_item(A)
read_item(A);		
A := A * 3;		
write_item(A);		
read_item(B);		
B := B - 5;		
write_item(B);		
	write_item(A);	
		A := A / 3;
		write_item(A)

T1	T2	T3
	read_item(A);	
	A := A + 10	
	write_item(A);	
read_item(A);		
A := A * 3;		
write_item(A);		
read_item(B);		
B := B – 5;		
write_item(B);		
		read_item(C);
		C := C / 5;
		write_item(C)
		read_item(A)
		A := A / 3;
		write_item(A)

T1	T2	Т3
read_item(A);		
A;= A * 5;		
write_item(A);		
	read_item(A);	
read_item(B);		
B;= B − 10;		
write_item(B);		
	A_:= A + 10	
		read_item(C);
		C;= C / 10;
		write_item(C)
	write_item(A);	
		read_item(A)
		A;= A / 5;
		write_item(A)

T1	T2	Т3
read_item(A);		
		read_item(C);
	read_item(A);	
A := A * 5;		
write_item(A);		
read_item(B);		
B := B − 10;		
write_item(B);		
	A := A + 10	
		C;= C / 10;
		write_item(C)
	write_item(A);	
		read_item(A)
		A := A / 5;
		write_item(A)