## Homework #1 B

Spring 2020, CSE 446/546: Machine Learning Dino Bektesevic

## Ridge regression on MNIST

B.2

a. [10 points] We just fit a classifier that was linear in the pixel intensities to the MNIST data. For classification of digits the raw pixel values are very, very bad features: it's pretty hard to separate digits with linear functions in pixel space. The standard solution to this is to come up with some transform  $h: \mathbb{R}^d \to \mathbb{R}^p$  of the original pixel values such that the transformed points are (more easily)linearly separable. In this problem, you'll use the feature transform:

$$h(x) = \cos(Gx + b)$$

where  $G \in \mathbb{R}^{p \times d}$ ,  $b \in \mathbb{R}^p$ , and the cosine function is applied element wise. We'll choose G to be a random matrix, with each entry sampled i.i.d. from a Gaussian with mean  $\mu = 0$  and variance  $\sigma^2 = 0.1$ , and b to be a random vector sampled i.i.d. from the uniform distribution on  $[0, 2\pi]$ . The big question is: how do we choose p? Using cross-validation, of course! Randomly partition your training set into proportions 80/20 to use as a new training set and validation set, respectively. Using the train function you wrote above, train  $\widehat{W}_p$  for different values of p and plot the classification training error and validation error on a single plot with p on the x-axis. Be careful, your computer may run out of memory and slow to a crawl if p is too large ( $p \le 6000$  should fit into 4 GB of memory that is a minimum for most computers, but if you're having trouble you can set p in the several hundreds). You can use the same value of  $\lambda = 1e - 4$  as above but feel free to study the effect of using different values of  $\lambda$  and  $\sigma^2$  for fun.



b. [5 points] Instead of reporting just the test error, which is an unbiased estimate of the true error, we would like to report a confidence interval around the test error that contains the true error.

Lemma 1. (Hoeffding's inequality) Fix  $\delta \in (0,1)$ . If for all  $i=1,\ldots,m$  we have that  $X_i$  are i.i.d.random variables with  $X_i \in [a,b]$  and  $\mathbb{E}[X_i] = \mu$  then

$$P\left(\left|\left(\frac{1}{m}\sum_{i=1}^{m}X_{i}\right)-\mu\right| \geq \sqrt{\frac{(b-a)^{2}\log(2/\delta)}{2m}}\right) \leq \delta$$

We will use the above equation to construct a confidence interval around the true classification error  $(\hat{f} = \mathbb{E}_{\text{test}}[\hat{\epsilon}_{\text{test}}(\hat{f})]$  since the test error  $\hat{\epsilon}_{\text{test}}(\hat{f})$  is just the average of indicator variables taking values in  $\{0,1\}$  corresponding to the i-th test example being classified correctly or not, respectively, where an error happens with probability  $\mu = \epsilon(\hat{f}) = \mathbb{E}_{\text{test}}[\hat{\epsilon}_{\text{test}}(\hat{f})]$ , the true classification error. Let  $\hat{p}$  be the value of p that approximately minimizes the validation error on the plot you just made and use  $\hat{f}(x) = \operatorname{argmax}_j x^T \widehat{W}_{\hat{p}} e_j$  to compute the classification test error  $\hat{\epsilon}_{\text{test}}(\hat{f})$ . Use Hoeffding's inequality, above, to compute a confidence interval that contains  $\mathbb{E}_{\text{test}}[\hat{\epsilon}_{\text{test}}(\hat{f})]$  (i.e., the true error) with probability at least 0.95 (i.e.  $\delta = 0.05$ ). Report  $\hat{\epsilon}_{\text{test}}(\hat{f})$  and the confidence interval.