1. Show for all vectors \vec{v} in \mathbb{R}^n , $\|\vec{v}\|_1 \leq n \|\vec{v}\|_{\infty}$.

$$\|\vec{v}_{i}\|_{1}^{2} = \sum_{i=1}^{n} |v_{i}| = |v_{i}| + |v_{2}| + \dots + |v_{n}|$$
 $\leq \max_{i=1}^{n} |v_{i}| + \dots + \max_{i=1}^{n} |v_{i}|$
 $= \max_{i=1}^{n} |v_{i}| + \dots + \max_{i=1}^{n} |v_{i}|$
 $= \max_{i=1}^{n} |v_{i}| + \dots + \max_{i=1}^{n} |v_{i}|$
 $= \max_{i=1}^{n} |v_{i}| + \dots + |v_{n}|$

2. Verify the above inequality for vector $\vec{v} = [1, -2, 3]^T$.

$$\|\vec{v}_{i}\|_{\infty}^{2} = \sum_{i=1}^{3} |v_{i}| = |1| + |-z| + |3| = 6$$

$$\|\vec{v}_{i}\|_{\infty}^{2} = \max_{1 \le i \le 3} |v_{i}| = 3.$$