Hypothesis Testing.

1.
$$\mu = 2.75 \quad \overline{\chi} = 2.85$$

$$G = 0.65$$
 $n = 256$

$$z = 2.85 - 2.75$$

Since 2 score frat 95%. Significance is 2.
and 2.5 > 2; reject null hypothesis.

2.
$$\mu = 52$$
 $\sigma = 4.50$

$$h = 100$$
 $X = 52.8$

Null =) mean is same

Alternate =) mean varied.

$$2 = \frac{x - \mu}{6} = \frac{52.8 - 52}{4.50} = 1.78$$

At 5%. level of significance; =) 2 1.78 < 2, hence accept rull hypothesis.

Null hypothesis. $\mu = 34$ Alternate hypothesis. M = 34 at 0.01 Significance 6=8 h = 50×= 32.5 = -1.33Since -1.33 less than 2352-58 (a.1%, Significance) accept mull hypothesis. Null hypothes: all candidates and equally popular. Alternate hypothesis: not equally popular. No. of voters = 100 Since 4 eandidates =) Expected No. of votes = 25. deiggins = 41 Reardon = 19 White = 24 Charlton = 16 $\sqrt{2} = 14.96$ at 3 df and 0.05 significance. =) X crit = 7.815 Since X greater than X crit, original null hypothesis as all candiclates are not equal. Null hypothesis: µ < 145 7. M=145 cm M> 145 6 = 20 cm Alternate:

n = 200

x=147cm

at 10% =)
$$-1.9443$$
 (Reject)
at 5% =) -2.447 (Rejet)
at 1% =) -3.7 (Accept) Since less than
 $t=-2.9315$.