18.06 Recitation 11

Isabel Vogt

October 1, 2018

(a)	The matrix AA^T :
	•is dimensions ×
	•and is and
	• Therefore the eigenvalues λ_i of AA^T satisfy
	• I can choose an eigenbasis $\{u_i\}$ for AA^T such that
	$\bullet \ N(AA^T) = \underline{\hspace{1cm}}.$
	• The rank of AA^T is
(1 \	$ C(AA^T) = $
(b)	The matrix $A^T A$:
	•is dimensions ×
	•and is and
	• Therefore the eigenvalues ω_i of A^TA satisfy
	 I can choose an eigenbasis {v_i} for A^TA such that N(A^TA) =
	• $N(A \mid A) = \underline{\hspace{1cm}}$. • The rank of $A^T A$ is $\underline{\hspace{1cm}}$.
	• $C(A^TA) =$
(a)	By considering $A(A^TA)v_i$ and $A^T(AA^T)u_i$, the eigenvalues (without multiplication)
(c)	AA^T and A^TA are Up to reordering we can therefore a
	that
	$A^T A v_i = \sigma_i^2 v_i$ and $A A^T u_i = \sigma_i^2 u_i$ $1 \le i \le r$,
	with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$; and that $A^T A v_i = A A^T u_i = 0$ for $i > r$.
(d)	Using $(A^T A)v_i$, we know that $ Av_i = \underline{\hspace{1cm}}$.
(0)	Again from considering $A(A^TA)v_i$, we know that

(f) Using the above, write $AV = U\Sigma$, where V is the matrix of vectors v_i and U is the

matrix of vectors v_i , and Σ is the _____ × ____ diagonal matrix of the singular values

$$\Sigma = \begin{pmatrix} \sigma_1 & & & & & \\ & \ddots & & & & \\ & & \sigma_r & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}.$$

(g) Using this, write A as a sum of _____ rank 1 matrices

$$A =$$

- 2. Suppose that B is a real-symmetric matrix.
 - (a) What do you know about the eigenvalues of B? What nice properties can we arrange for an eigenbasis?
 - (b) Using the eigenbasis, what is the maximum possible value of the quoteint $\frac{x^T B x}{x^T x}$?
 - (c) What is the minimum possible value of the quoteint $\frac{x^T B x}{x^T x}$?
- 3. Given the SVD of a real matrix A and singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$, what is the maximum value of $\frac{||Av||}{||v||}$?
- 4. (Beginning defective matrices!)
 - (a) What are the eigenvalues and eigenvectors of the 2×2 matrix

$$A = \begin{pmatrix} 0 & 1 \\ 0 & \epsilon \end{pmatrix}?$$

- (b) What happens to the two eigenvectors as $\epsilon \to 0$. What does this tell you about diagonalizability of A?
- (c) For $\epsilon = 0$, N(A) is dimension _____. What is $N(A^2)$?
- (d) For $\epsilon = 0$, we know that $A^2 =$ _____. Therefore

$$e^{At} = \underline{\qquad}.$$

(e) Given input vector $x(0) = \begin{pmatrix} a \\ b \end{pmatrix}$, give the solution x(t) to

$$\frac{dx}{dt} = Ax$$

with this input. What is the behavior as $t \to \infty$?

- (f) How does e^{At} act on eigenvectors?
- (g) Similarly, what is $(I+A)^n$? How does this act on eigenvectors?