Formulaire

Objectif: Découvrir l'utilisation de différentes fonctions utiles pour l'exploitation de Réseaux de neurones

Tableau de fonctions d'activation :

Nom	Fonction	Dérivée	Graphe	Avantages / Inconvénients
Sigmoid	$\sigma(x) = \frac{1}{1 + e^{-x}}$	$\frac{d\sigma}{dx} = \frac{e^{-x}}{(1+e^{-x})^2}$	0.8 0.8 0.9 0.2	- Annule le gradient lors de la saturation - Pas centré sur 0 - Calcul de l'exponentiel long
tanh	$tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	$\frac{dtanh}{dz} = 1 - tanh(z)$	-10 -5 10 -0.5	- Centré sur 0 - Annule le gradient lors de la saturation
ReLU	$f(x) = \max(0, x)$	$\frac{df}{dx} = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x > 0 \end{cases}$	10 8 6 6 4 2 2 10 -10 -5 5 10	 Ne sature pas pour x > 0 Rapide à calculer Converge plus rapidement Pas centré sur 0 Pas de gradient pour x < 0
Leaky ReLU	$f(x) = \max(0.1x, x)$	$\frac{df}{dx} = \begin{cases} 0.1 & \text{si } x < 0.1x \\ 1 & \text{si } x > 0.1x \end{cases}$	10 8 6 4 2 2	- Ne sature pas - Rapide à calculer - Converge plus rapidement

Pour le calcul du Gradient :

Modèles de 'sous-calcul' :

'+' → distributeur de gradient '*' → commutateur de gradient 'max' → sélectionneur de gradient

Dérivée de fonctions :

$$f_c(x) = c + x \rightarrow \frac{df}{dx} = 1$$

$$f_a(x) = ax \rightarrow \frac{df}{dx} = a$$

$$f(x) = \frac{1}{x} \rightarrow \frac{df}{dx} = -\frac{1}{x^2}$$

$$f(x) = e^x \rightarrow \frac{df}{dx} = e^x$$

$$f(x,y) = x + y \rightarrow \frac{df}{dx} = 1 \quad \frac{df}{dy} = 1$$

$$f(x,y) = x \cdot y \rightarrow \frac{df}{dx} = y \quad \frac{df}{dy} = x$$