A FIRST COURSE

IN

TOPOLOGY

A FIRST COURSE

IN

TOPOLOGY

MAT4002 Notebook

Lecturer

Prof. Daniel Wong

The Chinese University of Hongkong, Shenzhen

Tex Written By

Mr. Jie Wang

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	nowledgments	XV
Notat	tions	xvi
1	Week1	1
1.1	Monday for MAT3040	1
1.1.1	Introduction to Advanced Linear Algebra	1
1.1.2	Vector Spaces	2
1.2	Monday for MAT3006	5
1.2.1	Overview on uniform convergence	5
1.2.2	Introduction to MAT3006	6
1.2.3	Metric Spaces	7
1.3	Monday for MAT4002	11
1.3.1	Introduction to Topology	11
1.3.2	Metric Spaces	12
1.4	Wednesday for MAT3040	14
1.4.1	Review	14
1.4.2	Spanning Set	14
1.4.3	Linear Independence and Basis	16
1.5	Wednesday for MAT3006	20
1.5.1	Convergence of Sequences	20
1.5.2	Continuity	24
1.5.3	Open and Closed Sets	25
1.6	Wednesday for MAT4002	27
1.6.1	Forget about metric	27
1.6.2	Topological Spaces	30

1.6.3	Closed Subsets	. 31
2	Week2	33
2.1	Monday for MAT3040	33
2.1.1	Basis and Dimension	. 33
2.1.2	Operations on a vector space	. 36
2.2	Monday for MAT3006	38
2.2.1	Remark on Open and Closed Set	. 38
2.2.2	Boundary, Closure, and Interior	. 41
2.3	Monday for MAT4002	44
2.3.1	Convergence in topological space	. 44
2.3.2	Interior, Closure, Boundary	. 46
2.4	Wednesday for MAT3040	51
2.4.1	Remark on Direct Sum	. 51
2.4.2	Linear Transformation	. 52
2.5	Wednesday for MAT3006	59
2.5.1	Compactness	. 59
2.5.2	Completeness	. 64
2.6	Wednesday for MAT4002	66
2.6.1	Remark on Closure	. 66
2.6.2	Functions on Topological Space	. 68
2.6.3	Subspace Topology	. 70
2.6.4	Basis (Base) of a topology	. 72
3	Week3	73
3.1	Monday for MAT3040	73
3.1.1	Remarks on Isomorphism	. 73
312	Change of Basis and Matrix Representation	74

3.2	Monday for MAT3006	81
3.2.1	Remarks on Completeness	81
3.2.2	Contraction Mapping Theorem	82
3.2.3	Picard Lindelof Theorem	86
3.3	Monday for MAT4002	87
3.3.1	Remarks on Basis and Homeomorphism	87
3.3.2	Product Space	90
3.4	Wednesday for MAT3040	92
3.4.1	Remarks for the Change of Basis	92
3.5	Wednesday for MAT3006	98
3.5.1	Remarks on Contraction	98
3.5.2	Picard-Lindelof Theorem	98
3.6	Wednesday for MAT4002	103
3.6.1	Remarks on product space	103
3.6.2	Properties of Topological Spaces	106
4	Week4	109
4.1	Monday for MAT3040	109
4.1.1	Quotient Spaces	109
4.1.2	First Isomorphism Theorem	112
4.2	Monday for MAT3006	115
4.2.1	Generalization into System of ODEs	115
4.2.2	Stone-Weierstrass Theorem	117
4.3	Monday for MAT4002	121
4.3.1	Hausdorffness	121
4.3.2	Connectedness	122
4.4	Wednesday for MAT3040	126
441	Dual Space	131

4.5	Wednesday for MAT3006	134
4.5.1	Stone-Weierstrass Theorem	135
4.6	Wednesday for MAT4002	140
4.6.1	Remark on Connectedness	140
4.6.2	Compactness	142
5	Week5	145
5.1	Monday for MAT3040	145
5.1.1	Remarks on Dual Space	146
5.1.2	Annihilators	148
5.2	Monday for MAT3006	152
5.2.1	Stone-Weierstrass Theorem in ${\Bbb C}$	153
5.2.2	Baire Category Theorem	155
5.3	Monday for MAT4002	157
5.3.1	Continuous Functions on Compact Space	157
5.4	Wednesday for MAT3040	160
5.4.1	Adjoint Map	161
5.4.2	Relationship between Annihilator and dual of quotient spaces	163
5.5	Wednesday for MAT3006	165
5.5.1	Remarks on Baire Category Theorem	165
5.5.2	Compact subsets of $C[a,b]$	167
5.6	Wednesday for MAT4002	169
5.6.1	Remarks on Compactness	169
5.6.2	Quotient Spaces	170
6	Week6	175
6.1	Monday for MAT3040	175
6.1.1	Polynomials	175

6.2	Monday for MAT 3006	1//
6.2.1	Compactness in Functional Space	. 177
6.2.2	An Application of Ascoli-Arzela Theorem	. 178
6.3	Monday for MAT4002	179
6.3.1	Quotient Topology	. 179
6.3.2	Properties in quotient spaces	. 181
6.4	Wednesday for MAT3040	185
6.4.1	Eigenvalues & Eigenvectors	. 188
6.5	Wednesday for MAT4002	191
6.5.1	Remarks on Compactness	. 191
7	Week7	193
7.1	Monday for MAT3040	193
7.1.1	Minimal Polynomial	. 193
7.1.2	Minimal Polynomial of a vector	. 198
7.2	Monday for MAT3006	200
7.2.1	Remarks on the outer measure	. 200
7.3	Monday for MAT4002	205
7.3.1	Quotient Map	. 205
7.3.2	Simplicial Complex	. 206
7.4	Wednesday for MAT3040	211
7.4.1	Cayley-Hamiton Theorem	. 211
7.5	Wednesday for MAT4002	218
7.5.1	Remarks on Triangulation	. 218
7.5.2	Simplicial Subcomplex	. 220
7.5.3	Some properties of simplicial complex	. 222

8	Week8	225
8.1	Monday for MAT3040	225
8.1.1	Cayley-Hamiton Theorem	. 227
8.1.2	Primary Decomposition Theorem	. 230
8.2	Monday for MAT3006	232
8.2.1	Remarks for Outer Measure	. 232
8.2.2	Lebesgue Measurable	. 233
8.3	Monday for MAT4002	238
8.3.1	Quotient Map	. 238
8.3.2	Simplicial Complex	. 239
8.4	Wednesday for MAT3006	242
8.4.1	Remarks on Lebesgue Measurability	. 242
8.4.2	Measures In Probability Theory	. 243
8.5	Wednesday for MAT4002	247
8.5.1	Homotopy	. 249
9	Week9	251
		231
9.1	Monday for MAT3040	251
9.1.1	Remarks on Primary Decomposition Theorem	. 251
9.2	Monday for MAT3006	257
9.2.1	Measurable Functions	. 257
9.3	Monday for MAT4002	262
9.3.1	Remarks on Homotopy	. 262
9.4	Wednesday for MAT3040	268
9.4.1	Jordan Normal Form	. 268
9.4.2	Inner Product Spaces	. 273
9.5	Wednesday for MAT3006	275
9.5.1	Remarks on Measurable function	. 275

9.5.2	Lebesgue Integration	276
9.6	Wednesday for MAT4002	280
9.6.1	Simplicial Approximation Theorem	280
10	Week10	85
10.1	Monday for MAT3040	285
10.1.1	Inner Product Space	285
10.1.2	Dual spaces	288
10.2	Monday for MAT3006	291
10.2.1	Remarks on Markov Inequality	291
10.2.2	Properties of Lebesgue Integration	291
10.3	Monday for MAT4002	294
10.3.1	Group Presentations	296
10.4	Wednesday for MAT3040	297
10.4.1	Orthogonal Complement	297
10.4.2	Adjoint Map	300
10.5	Wednesday for MAT3006	303
10.5.1	Consequences of MCT	306
10.6	Wednesday for MAT4002	309
10.6.1	Reviewing On Groups	309
10.6.2	Free Groups	311
10.6.3	Relations on Free Groups	313
11	Week11	15
11.1	Monday for MAT3040	315
11.1.1	Self-Adjoint Operator	315
11.1.2	Orthononal/Unitary Operators	318
11.2	Monday for MAT3006	320
11.2.1	Consequences of MCT I	320

11.2.2	MCT II	323
11.3	Monday for MAT4002	325
11.3.1	Cayley Graph for finitely presented groups	327
11.3.2	Fundamental Group	329
11.4	Wednesday for MAT3040	332
11.4.1	Unitary Operator	332
11.4.2	Normal Operators	335
11.5	Wednesday for MAT3006	337
11.5.1	Properties of Lebesgue Integrable Functions	338
11.6	Wednesday for MAT4002	342
11.6.1	The fundamental group	342
12	Week12	840
12.1	•	349
12.1.1	Remarks on Normal Operator	349
12.1.2	Tensor Product	353
12.2	Monday for MAT3006	355
12.2.1	Remarks on MCT	355
12.2.2	Dominated Convergence Theorem	358
12.3	Monday for MAT4002	362
12.3.1	Some basic results on $\pi_1(X,b)$	365
12.4	Wednesday for MAT3040	367
12.4.1	Introduction to Tensor Product	367
12.5	Wednesday for MAT3006	371
12.5.1	Riemann Integration & Lebesgue Integration	371
12.5.2	Continuous Parameter DCT	373
12.6	Wednesday for MAT4002	376
1261	Groups & Simplicial Complices	376

13	Week13	81
13.1	Monday for MAT3040	381
13.1.1	Basis of $V \otimes W$	383
13.1.2	Tensor Product of Linear Transformation	387
13.2	Monday for MAT3006	388
13.2.1	Double Integral	389
13.3	Monday for MAT4002	393
13.3.1	Isomorphsim between Edge Loop Group and the Fundamental Group	393
13.4	Wednesday for MAT3040	399
13.4.1	Tensor Product for Linear Transformations	399
13.5	Wednesday for MAT3006	105
13.5.1	Fubini's and Tonell's Theorem	405
13.6	Wednesday for MAT4002	110
13.6.1	Applications on the isomorphism of fundamental group	410
14	Week14	17
14.1	Monday for MAT3040	117
14.1.1	Multilinear Tensor Product	417
14.1.2	Exterior Power	420
14.2	Monday for MAT3006	122
14.2.1	Tonelli's and Fubini's Theorem	422
14.3	Monday for MAT4002	126
14.3.1	Fundamental group of a Graph	426
15	Week15	31
15.1	Monday for MAT3040	131
15.1.1	More on Exterior Power	431
15.1.2	Determinant	433

15.2	Monday for MAT3006	438
15.2.1	Applications on the Tonell's and Fubini's Theorem	. 438
15.3	Monday for MAT4002	443
15.3.1	The Selfert-Van Kampen Theorem	. 444

Acknowledgments

This book is taken notes from the MAT4002 in spring semester, 2019. These lecture notes were taken and compiled in LATEX by Jie Wang, an undergraduate student in spring 2019. The tex writter would like to thank Prof. Daniel Wong and some students for their detailed and valuable comments and suggestions, which significantly improved the quality of this notebook. Students taking this course may use the notes as part of their reading and reference materials. This version of the lecture notes were revised and extended for many times, but may still contain many mistakes and typos, including English grammatical and spelling errors, in the notes. It would be greatly appreciated if those students, who will use the notes as their reading or reference material, tell any mistakes and typos to Jie Wang for improving this notebook.

Notations and Conventions

 (X,\mathcal{T}) Topological space $X \cong Y$ The space *X* is homeomorphic to space *Y* $G \cong H$ The group *G* is isomorphic to group *H* Project mapping p_X $X \times Y$ **Product Topology** X/\sim Quotient Topology related to the topological space *X* and the equivalence class ~ The *n*-sphere $\{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ S^n D^n The *n*-disk $\{\boldsymbol{x} \in \mathbb{R}^n \mid ||\boldsymbol{x}|| \le 1\}$ E° , ∂E , \overline{E} The interior, boundary, closure of E \mathbb{T}^2 The torus in \mathbb{R}^3 Δ^n The *n*-simplex $i: A \hookrightarrow X$ Inclusion mapping from $A \subseteq X$ to X $K = (V, \Sigma)$ (Abstract) Simplicial Complex |K|Topological realization of the simplicial complex *K* $\langle X \mid R \rangle$ The presentation of a group $H: f \stackrel{H}{\simeq} g$ *f* and *g* are homotopic, where *H* denotes the homotopy $X \simeq Y$ The space *X* and *Y* are homotopy equivalent $\pi_1(X,x)$ The fundamental group of X w.r.t. the basepoint $x \in X$ E(K,b)The edge loop group of the space *K* w.r.t. the basepoint *b* f_* The induced homomorphism $f_*: \pi_1(X, x) \to \pi_1(Y, y)$ for $f: X \to Y$

15.3. Monday for MAT4002

Theorem 15.4 Let Γ be a connected graph. Then $\pi(\Gamma)$ is isomorphic to the free group generated by $\#\{E(\Gamma) \setminus E(T)\}$ elements, for any maximal tree of Γ .

Now we give a proof for this theorem on one special case of Γ :

Proof. • Fix an orientation for each e ∈ E(Γ) \ E(T):

• Now let *K* be a simplicial complex with $|K| \cong \Gamma$:

As a result, $E(K,b) \cong \pi_1(\Gamma)$

• Now we construct the group homomorphism

$$\phi: \quad \langle \alpha, \beta, \gamma, \delta \rangle \to E(K, b)$$
with
$$\phi(\alpha) = [ba'a''b]$$

$$\phi(\beta) = [bee'f''b'b''b]$$

$$\phi(\gamma) = [bee'f''f'fdc'c''f''e'eb]$$

$$\phi(\delta) = [bee'f''f'fdd''d'dff'f''e'eb]$$

• We can show the group homomorphism ϕ is bijective. In particular, the inverse of ϕ is given by:

$$\Psi: E(K,b) \rightarrow \langle \alpha, \beta, \gamma, \delta \rangle$$

where for any $[\ell] := [bv_1 \cdots v_n] \in E(K, b)$, the mapping $\Psi[\ell]$ is constructed by

- (a) Remove all other letters appearing in ℓ except b,a',a'',b',b'',c',c'',d'',d''
- (b) Assign

$$\alpha$$
, α^{-1} , β , β^{-1} , γ , γ^{-1} , δ , δ^{-1}

for each appearance of

respectively.

15.3.1. The Selfert-Van Kampen Theorem

Theorem 15.5 Let $K = K_1 \cup K_2$ be the union of two **path-connected open** sets, where $K_1 \cap K_2$ is also path-connected. Take $b \in K_1 \cap K_2$, and suppose the group presentations for $\pi_1(K_1,b), \pi_1(K_2,b)$ are

$$\pi_1(K_1,b) \cong \langle X_1 \mid R_1 \rangle, \quad \pi_1(K_2,b) \cong \langle X_2 \mid R_2 \rangle.$$

Let the inclusions be

$$i_1: K_1 \cap K_2 \hookrightarrow K_1$$
, $i_2: K_1 \cap K_2 \hookrightarrow K_2$,

then a presentation of $\pi_1(K,b)$ is given by:

$$\pi_1(K,b) \cong \langle X_1 \cup X_2 \mid R_1 \cup R_2 \cup \{(i_1)_*(g) = (i_2)_*(g) : \forall g \in \pi_1(K_1 \cap K_2,b)\} \rangle.$$

(Here $(i_1)_* : \pi_1(K_1 \cap K_2, b) \hookrightarrow \pi_1(K_1, b)$ and $(i_2)_* : \pi_1(K_1 \cap K_2, b) \hookrightarrow \pi_1(K_2, b)$.)

■ Example 15.4

1. Let $K = S^1 \wedge S^1$ given by

(a) Then construct b as the intersection between two circles, and construct K_1, K_2 as shown below:

We can see that $K_1 \cap K_2$ is contractible:

$$K_1 \cap K_2 =$$

(b) As we have shown before, $\pi_1(S^1) \cong \mathbb{Z}$, which follows that

$$\pi_1(K_1,b) \cong \langle \alpha \rangle, \quad \pi_1(K_2,b) \cong \langle \beta \rangle$$

Also, $\pi_1(K_1 \cap K_2, b) \cong \pi_1(\{b\}, b) \cong \{e\}.$

(c) It's easy to compute $(i_1)_*$ and $(i_2)_*$:

$$\begin{array}{lll} (i_1)_*: & \pi_1(K_1\cap K_2)\to \pi_1(K_1) & (i_2)_*: & \pi_1(K_1\cap K_2)\to \pi_1(K_2) \\ \text{with} & e\mapsto e & & \text{with} & e\mapsto e \end{array}$$

(d) Therefore, by Seifert-Van Kampen Theorem,

$$\pi_1(K,b) \cong \langle \alpha,\beta \mid e=e \rangle \cong \langle \alpha,\beta \rangle$$

2. By induction,

$$\pi_1(\wedge^n S^1, b) \cong \langle a_1, \dots, a_n \rangle$$

For instance, the figure illustration for \wedge^4S^1 and the basepoint b is given below:

3. (a) Construct $S^2 = K_1 \cup K_2$, which is shown below:

Therefore, we see that $K_1 \cap K_2 \simeq S^1$:

(b) It's clear that K_1 and K_2 are contractible, and therefore

$$\pi_1(K_1) \cong \langle \beta \mid \beta \rangle, \quad \pi_1(K_2) \cong \langle \gamma \mid \gamma \rangle$$

and $\pi_1(K_1 \cap K_2) \cong \pi_1(S^1) \cong \langle \alpha \rangle$.

(c) Then we compute $(i_1)_*$ and $(i_2)_*$. In particular, the mapping $(i_1)_*$ is defined as

$$(i_1)_*: \quad \pi_1(K_1 \cap K_2) \to \pi_1(K_1)$$

with $[\alpha] \mapsto [i_1(\alpha)]$

where α is any loop based at b. Since K_1 is contractible, we imply α in K_1 is homotopic to c_b , i.e.,

$$(i_1)_*([\alpha]) = [i_1(\alpha)] = e, \forall \alpha \in \pi_1(K_1 \cap K_2).$$

Similarly, $(i_2)_*([\alpha]) = e$.

(d) By Seifert-Van Kampen Theorem, we conclude that

$$\pi_1(S^2) \cong \langle \beta, \gamma \mid \beta, \gamma, e = e \rangle \cong \{e\}$$

4. Homework: Use the same trick to check that $\pi_1(S^n)=\{e\}$ for all $n\geq 2$. Hint: for S^3 , construct

$$K_1 = \{(x_1, \dots, x_4) \in S^3 \mid x_4 > -1/2\}$$

and

$$K_1 = \{(x_1, \dots, x_4) \in S^3 \mid x_4 < 1/2\}$$

5. (a) Consider the quotient space $K\cong \mathbb{T}^2$, and we construct $K=K_1\cup K_2$ as follows:

Therefore, we can see that K_1 is contractible, and K_2 is homotopy equivalent to $S^1 \wedge S^1$:

Figure 15.2: Illustration for $K_2 \simeq S^1 \wedge S^1$

and $K_1 \cap K_2$ is homotopic equivalent to the circle:

(b) It follows that

$$\pi_1(K_1) \cong \{e\}, \quad \pi_1(K_2) \cong \langle \alpha, \beta \rangle,$$

and $\pi_1(K_1 \cap K_2) \cong \langle \gamma \rangle$.

(c) Then we compute $(i_1)_*$ and $(i_2)_*$. In particular, $(i_1)_*$ is trivial:

$$(i_1)_*: \quad \pi_1(K_1 \cap K_2) \to \pi_1(K_1)$$
 with $[\alpha] \mapsto e$

Then compute $(i_2)_*$. In particular, for any loop γ , we draw the graph for $i_2(\gamma)$:

Therefore,

$$(i_2)_*[\gamma] = [i_2(\gamma)] = [\alpha \beta \alpha^{-1} \beta^{-1}]$$

(d) By Seifert-Van Kampen Theorem, we conclude that

$$\pi_1(K) \cong \langle \alpha, \beta \mid \beta, \alpha\beta\alpha^{-1}\beta^{-1} = e \rangle \cong \langle \alpha, \beta \mid, \alpha\beta = \beta\alpha \rangle \cong \mathbb{Z} \times \mathbb{Z}$$

6. Exerise: The Klein bottle K shown in graph below satisfies $\pi_1(K) = \langle a, b \mid aba^{-1}b \rangle$.

7. Consider the quotient space $K = \mathbb{R}P^2$. We construct $K = K_2 \cup K_2$, which is shown below:

(a) It's clear that K_1 is contractible. In hw3, question 1, we can see that $K_2\simeq S^1$. Moreover, similar as in (5), $K_1\cap K_2\simeq S^1$.

- (b) Therefore, $\pi_1(K_1) = \{e\}$ and $\pi_1(K_2) = \langle \alpha \rangle$, $\pi_1(K_1 \cap K_2) = \langle \gamma \rangle$.
- (c) It's easy to see that $(i_1)_*([\gamma]) = e$ for any loop γ . For any loop γ , we draw the graph for $i_2(\gamma)$:

Therefore, $(i_2)_*([\gamma]) = [i_2(\gamma)] = [\alpha^2].$

(d) By Seifert-Van Kampen Theorem, we conclude that

$$\pi_1(K) \cong \langle \alpha \mid \alpha^2 = e \rangle \cong \mathbb{Z}/2\mathbb{Z} \cong \{0,1\}_{\text{mod }(2)}$$

8. Let $K = \mathbb{R}^2 \setminus \{2 \text{ points } \alpha, \beta\}$. As have shown in hw3, $K \simeq S^1 \wedge S^1$, which implies

$$\pi_1(K) \cong \pi_1(S^1 \wedge S^1) \cong \langle \alpha, \beta \rangle.$$

We can compute the fundamental group for K directly. Construct $K=K_1\cup K_2$ as follows:

- (a) It's clear that $K_1\cong \mathbb{R}^2\setminus \{\text{one point}\}\simeq S^1$ and similarly $K_2\simeq S^1.$ Moreover, $K_1\cap K_2$ is contractible
- (b) Therefore,

$$\pi_1(K_1) \cong \langle \alpha \rangle, \quad \pi_1(K_2) \cong \langle \beta \rangle, \quad \pi_1(K_1 \cap K_2) \cong \{e\}$$

- (c) Therefore, $(i_1)_*$ and $(i_2)_*$ is trivial since $\pi_1(K_1\cap K_2)\cong \{e\}.$
- (d) By Seifert-Van Kampen Theorem, we conclude that

$$\pi_1(K) \cong \langle \alpha, \beta \mid e = e \rangle \cong \langle \alpha, \beta \rangle$$