(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2002-247852 (P2002-247852A) (43)公開日 平成14年8月30日(2002.8.30)

(51) Int. C1. 7	識別記号		FΙ		テーマ:	コード(参考)
H 0 2 M	3/28		H 0 2 M	3/28	Q 5H00	06
					H 5H7:	30
					M	
					V	
	3/338			3/338	Α	
	審査請求 未請求 請求項の数5	OL			(全19頁)	最終頁に続く
(a-) 11 FT # F	###T0004 10710 (D0004 10710)		(as) there t			
(21)出願番号	特願2001-43519(P2001-43519)		(71)出願人		- A 11	
(00) 111577 5	Ti-1-10 To Floor (2001 2 00)			ソニー株式会社		
(22)出願日 平成13年2月20日(2001.2.20)			()		川区北品川6丁目7番35号	
			(72) 発明者	者 安村 昌之		
				東京都品川区北品川6丁目7番35号 ソニー		
				株式会社内	3	
			(74)代理人	100086841		
					馬夫 (外1:	
			Fターム(参	:考) 5H006	AA02 CA01 CA0	7 CB01 CB08
			CC08			
				5H730	AA18 BB23 BB63	2 CC01 DD02
					DD23 EE03 EE0	7 EE73 FD01
·			FG05			

(54) 【発明の名称】 スイッチング電源回路

(57)【要約】

【課題】 広範囲入力電圧対応とし、また負荷、交流入 力電圧変動に対して実使用条件に対応できるだけの力率 を維持する。

【解決手段】 プッシュプル形のスイッチング周波数制 御方式複合共振形コンバータといわれる電源回路に備え られる力率改善回路に磁気結合トランスMCTを備え、 一次側共振回路に得られるスイッチング出力電圧が磁気 結合方式により帰還すると共に、スイッチング動作切換 手段により交流入力電圧に応じてプッシュプル動作と分 電圧プッシュプル動作を切り換えるようにする。

2

【特許請求の範囲】

【請求項1】 入力された商用交流電源を整流するとともに、直列接続された2つの平滑コンデンサの両端に得られる平滑電圧を分圧して第1及び第2の直流入力電圧を出力することができる整流平滑手段と、

1

疎結合とされる所要の結合係数が得られるようにギャップが形成され、一次側出力を二次側に伝送するために設けられる絶縁コンバータトランスと、

上記第1の直流入力電圧をプッシュプル動作により断続 して上記絶縁コンバータトランスの一次巻線に出力する 10 ようにされた第1及び第2のスイッチング手段と、

少なくとも、上記絶縁コンバータトランスの一次巻線を含む漏洩インダクタンス成分と一次側並列共振コンデンサのキャパシタンスとによって形成されて、上記第1及び第2のスイッチング手段の動作を電圧共振形とする第1及び第2の一次側共振回路と、

上記一次巻線と接続される第1巻線と、整流電流経路に 挿入される第2巻線とを磁気結合する磁気結合トランス と、整流電流経路に挿入されるスイッチング用素子とを 少なくとも備えることで電力帰還方式の力率改善動作を 20 行う力率改善手段と、

商用交流電源電圧に応じて、上記第1及び第2の直流入力電圧が、それぞれ上記第1及び第2のスイッチング手段による分電圧プッシュプル動作により断続されて上記絶縁コンバータトランスの一次巻線に出力されるようにすることのできるスイッチング動作切換手段と、

上記絶縁コンバータトランスの二次巻線の漏洩インダクタンス成分と、二次側共振コンデンサのキャパシタンスとによって二次側において形成される二次側共振回路と、

上記二次側共振回路を含んで形成され、上記絶縁コンバータトランスの二次巻線に得られる交番電圧を入力して、整流動作を行って二次側直流出力電圧を生成するように構成された直流出力電圧生成手段と、

上記二次側直流出力電圧のレベルに応じて、二次側直流 出力電圧に対する定電圧制御を行うように構成された定 電圧制御手段と、

を備えたことを特徴とするスイッチング電源回路。

【請求項2】 上記力率改善手段は、上記磁気結合トランスの第1巻線と第2巻線の極性が加極性又は減極性で結合されるとともに、上記第2巻線が上記スイッチング用素子としての高速リカバリ型と直列接続されて構成されていることを特徴とする請求項1に記載のスイッチング電源回路。

【請求項3】 上記磁気結合トランスは、上記第2巻線が上記第1巻線よりも大きな所定のインダクタンスを有して構成されていることを特徴とする請求項1に記載のスイッチング電源回路。

【請求項4】 上記磁気結合トランスの上記第1巻線と 上記第2巻線のインダクタンス値の各々について所要の 50

値が得られるように上記第1巻線と上記第2巻線の巻数 比が設定されることで電力帰還量が最適化されることを 特徴とする請求項1に記載のスイッチング電源回路。

【請求項5】 上記スイッチング動作切換手段は、電磁パワーリレーを備えて構成されることを特徴とする請求項1に記載のスイッチング電源回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、力率改善回路を備 えたスイッチング電源回路に関するものである。

[0002]

【従来の技術】従来より交流入力電圧が100V系と200V系共用のワイドレンジ対応力率改善ソフトスイッチング電源は電流共振形コンバータと静電結合あるいは磁気結合形力率改善回路を組み合わせて種々の回路が構成されている。まず図10~図19により、各種のスイッチング電源回路の構成及び問題点を説明する。

【0003】図10、図11はそれぞれ従来の電流共振 形コンバータと電力帰還方式力率改善回路を組み合わせ た力率改善ソフトスイッチング電源を示しており、図1 0は静電結合形の力率改善回路20を採用した方式で、 また図11は磁気結合形の力率改善回路21を採用した 方式である。

【0004】この図10、図11に示す電源回路においては、商用交流電源ACを全波整流するブリッジ整流回路Diが備えられている。この場合、ブリッジ整流回路Diにより整流された整流出力は、力率改善回路20または21を介して平滑コンデンサCiに充電され、平滑コンデンサCiの両端には、交流入力電圧VACの1倍のレベルに対応する整流平滑電圧Eiが得られることになる。また、この整流平滑回路(Di, Ci)に対しては、その整流電流経路に対して突入電流制限抵抗Riが挿入されており、例えば電源投入時に平滑コンデンサに流入する突入電流を抑制するようにしている。

【0005】また、この図10、図11のスイッチング電源回路では、平滑コンデンサCiの両端電圧である整流平滑電圧Eiを動作電源とする自励式の電流共振形コンバータが備えられる。そしてこの電流共振形コンバータにおいては、図のように2つのバイポーラトランジスタによるスイッチング素子Q100、Q200をハーフブリッジ結合した上で、平滑コンデンサCiの正極側の接続点とアース間に対して挿入するようにして接続されている。なおクランプダイオードDD100、DD200が、それぞれスイッチング素子Q100、Q200のエミッターコレクタ間に対して並列に接続される。そしてスイッチング素子Q100、Q200は、それぞれ制御回路1からの信号に基づいて所要のスイッチング周波数でスイッチング動作を行う。

【0006】絶縁コンバータトランスPIT (Power Is olation Transformer)は、スイッチング素子Q100、Q2

30

00のスイッチング出力を二次側に伝送する。すなわち、 平滑コンデンサCiの端子電圧を動作電源としてスイッ チング素子Q100、Q200が交互に開閉を繰り返すことに よって、絶縁コンバータトランスPITの一次巻線N1 に共振電流波形に近いドライブ電流を供給し、二次巻線 N2に交番出力を得る。この絶縁コンバータトランスP ITの一次巻線N1 の一端は、スイッチング素子Q100 のエミッタとスイッチング素子Q200のコレクタの接点 (スイッチング出力点) に接続されることで、スイッチ ング出力が得られるようにされる。

【0007】また、一次巻線N1の他端は、直列共振コ ンデンサC100を介して、力率改善回路20(または2 1) に接続されている。この場合、上記直列共振コンデ ンサC100及び一次巻線N1 は直列に接続されている が、この直列共振コンデンサC100のキャパシタンス及 び一次巻線N1 (直列共振巻線)を含む絶縁コンバータ トランスPITの漏洩インダクタンス(リーケージイン ダクタンス)成分により、スイッチングコンバータの動 作を電流共振形とするための一次側直列共振回路を形成 している。

【0008】また、この図10、図11における絶縁コ ンバータトランスPITの二次側では、二次巻線N2に 対してセンタータップを設けた上で、整流ダイオードD 01, D02及び平滑コンデンサC0を図のように接続する ことで、全波整流回路が形成され、直流出力電圧E0が 生成される。制御回路1は、例えば二次側の直流電圧出 力E0のレベルに応じてそのレベルが可変されるよう に、スイッチング素子Q100、Q200のスイッチング周波 数を制御することで、定電圧制御を行う。

【0009】図10の場合における力率改善回路20 は、ブリッジ整流回路Diの正極出力端子と平滑コンデ ンサCiの正極端子間に対して、フィルタチョークコイ ルLN-高速リカバリ型ダイオードD1 が直列接続され て挿入される。ここで、フィルタコンデンサCN はフィ ルタチョークコイルLN -高速リカバリ型ダイオードD 1 の直列接続回路に対して並列に設けられる。そして、 このような接続形態によっても、フィルタコンデンサC N はフィルタチョークコイルLN と共にノーマルモード のローパスフィルタを形成している。また、共振コンデ ンサC3 は、高速リカバリ型ダイオードD1 に対して並 40 列に設けられる。ここでは詳しい説明は省略するが、例 えば共振コンデンサC3 は例えばフィルタチョークコイ ルLN 等と共に並列共振回路を形成するようにされ、そ の共振周波数は後述する直列共振回路の共振周波数とほ ぼ同等となるように設定される。これにより、負荷が軽 くなったときの整流平滑電圧Eiの上昇を抑制する作用 を有するものである。

【0010】この力率改善回路20に対しては、フィル タチョークコイルLN と高速リカバリ型ダイオードD1 のアノードとの接続点に対して一次側直列共振回路 (N 50 1, C100) の端部が接続される。

【0011】このような接続形態では、一次巻線N1 に 得られるスイッチング出力は、直列共振コンデンサC10 0の静電容量結合を介して、スイッチング出力を整流電 流経路に帰還されることになる。この場合には、フィル タチョークコイルLN と高速リカバリ型ダイオードD1 のアノードとの接続点に対して、一次巻線N1に得られ た共振電流が流れるように帰還されて、スイッチング出 力が印加される。

【0012】上記のようにしてスイッチング出力が帰還 されることで、整流電流経路にはスイッチング周期の交 番電圧が重畳されることになるが、このスイッチング周 期の交番電圧の重畳分によって、高速リカバリ型ダイオ ードD1 では整流電流をスイッチング周期で断続する動 作が得られることになり、この断続作用により見掛け上 のフィルタチョークコイルLN のインダクタンスも上昇 することになる。また、共振コンデンサC3にはスイッ チング周期の電流が流れることでその両端に電圧が発生 するが、整流平滑電圧Eiのレベルは、この共振コンデ 20 ンサC3の両端電圧だけ引き下げられることになる。こ れにより、整流出力電圧レベルが平滑コンデンサCiの 両端電圧よりも低いとされる期間にも平滑コンデンサC iへの充電電流が流れるようにされる。この結果、交流 入力電流の平均的な波形が交流入力電圧の波形に近付く ようにされて交流入力電流の導通角が拡大され、力率改 善が図られることになる。

【0013】また図11の場合における力率改善回路2 1は、ブリッジ整流回路Diの正極出力端子と平滑コン デンサCiの正極端子間に対して、フィルタチョークコ イルLN -高速リカバリ型ダイオードD1 ーチョークコ イルLS が直列接続されて挿入される。フィルタコンデ ンサCN は高速リカバリ型ダイオードD1 のアノード 側と平滑コンデンサCiの正極端子間に対して挿入され ることで、フィルタチョークコイルLN と共にノーマル モードのローパスフィルタを形成している。また共振コ ンデンサC3 は、高速リカバリ型ダイオードD1 に対し て直列に設けられる。

【0014】この力率改善回路21に対しては、高速リ カバリ型ダイオードD1 のカソードとチョークコイルL Sの接続点に対して、一次側の直列共振回路(N1, C10 0) の端部が接続される。すなわち、直列共振回路(N 1, C100) に供給されたスイッチング出力をチョークコ イルLS 自体が有するとされる誘導性リアクタンス(磁 気結合)を介して整流電流経路に帰還するようにされ る。

【0015】上記のようにして帰還されたスイッチング 出力により、整流電流経路にはスイッチング周期の交番 電圧が重畳されることになるが、このスイッチング周期 の交番電圧の重畳分によって、高速リカバリ型ダイオー ドD1 では整流電流をスイッチング周期で断続する動作 が得られることになり、この断続作用により見掛け上のフィルタチョークコイルLN、チョークコイルLS のインダクタンスも上昇することになる。これにより、整流出力電圧レベルが平滑コンデンサCiの両端電圧よりも低いとされる期間にも平滑コンデンサCiへの充電電流が流れるようにされる。この結果、交流入力電流の平均的な波形が交流入力電圧の波形に近付くようにされて交流入力電流の導通角が拡大される結果、力率改善が図られることになる。

【0017】これに対して、図14は直列共振回路(L30、C30)を追加して、チョークコイルL30と共振コンデンサC30の直列共振電流I01を、力率改善回路20の高速リカバリ型ダイオードD1とコンデンサC3の並列接続点に電力帰還するようにしたものである。なお、以降各図の説明において、既に説明した図における電源回路と同一部分は同一符号を付して説明を省略する。

【0018】この電源回路では、スイッチング素子Q10 30 1, Q201のスイッチング動作を電流共振形とするために設けられる直列共振回路(N1, C100)は、その一次巻線N1 の一端が共振コンデンサC100を介してスイッチング素子Q101, Q201のソースードレインの接続点(スイッチング出力点)に対して接続され、その他端は一次側アースに接地されることにより、スイッチング出力が供給されるようにされている。さらに上記のように直列共振回路(L30、C30)が追加され、直列共振電流I01が力率改善回路20に電力帰還される。

【0019】なお、スイッチング素子Q101、Q201は、そのゲートに対してスタート回路3からのトリガに基づいてドライブ・発振回路2から所要のスイッチング周波数の駆動パルスが供給されることにより、交互にオン/オフのスイッチングを行う。また制御回路1は、二次側の直流電圧出力E0のレベルに応じてそのレベルが可変されるように、ドライブ・発振回路2からスイッチング素子Q101、Q201に供給されるパルス周波数(スイッチング周波数)を制御することで、定電圧制御を行う。

【0020】この図14の電源回路についての力率PF -交流入力電圧VAC特性、及び力率PF-負荷電力Po 50

特性を図15(a)(b)に示す。図15(a)(b)から分かるように、この電源回路の場合、負荷電力Po=113W~47Wの変動に対して交流入力電圧VAC=100Vの場合と交流入力電圧VAC=230Vの場合で、共に力率PFはほぼ0.7以上となり、十分なものとなっている。しかしながら、この電源回路では一次側直列共振電流I02と電力帰還用直列共振電流I01が重畳してスイッチング素子Q101、Q201に流れるため、スイッチング素子Q101、Q201のスイッチング損失が増加し、電力変換効率が低下する。したがって、負荷電力Poが100W程度以下の軽負荷にしか適用できない方式であるといえる。

【0021】負荷電力Poが200W以上の重負荷の場合は図16に示すように交流ラインに電力帰還方式力率改善回路を挿入し、4組の整流ダイオード(D101~D104)と2組の平滑用電解コンデンサ(Cil、Ci2)と電磁パワーリレーRYによる倍圧/全波整流回路切り替え方式とすれば、交流入力電圧VACが100V系と200V系のワイドレンジ対応が可能となる。

【0022】すなわち図16の電源回路は、力率改善回 路22においては、商用交流電源ACの正極入力ライン に直列にフィルタチョークコイルLN が挿入されてお り、商用交流電源ACに対して並列に接続されるフィル タコンデンサCN と共にノーマルモードのローパスフ ィルタを形成して、高調波電流が商用交流電源ACに流 れるのを阻止するようにしている。この場合には、力率 改善回路22において2本の並列共振コンデンサC31, C32が設けられており、並列共振コンデンサC31は、整 流ダイオードD101に並列に挿入され、並列共振コンデ ンサC32は整流ダイオードD102に並列に挿入される。 これら並列共振コンデンサC31、C32は、例えばフィル タチョークコイルLN のインダクタンス等と共に並列共 振回路を形成するものとされ、この並列共振回路の共振 周波数は例えば後述する直列共振回路の共振周波数とほ ぼ同様となるように設定される。

【0023】この場合、4本の整流ダイオードD101~D104によるブリッジ整流回路は、後述するようにして力率改善動作に伴って整流電流経路にスイッチング周期の高周波電流が流れることに対応して高速リカバリ型が40 用いられている。整流ダイオードD101、D102の接続点に対しては、絶縁コンバータトランスPITの一次巻線N1 が直列共振コンデンサC100を介して接続されており、一次巻線N1 に得られたスイッチングコンバータ(後述)のスイッチング出力が直列共振コンデンサC100の静電容量結合を介して、整流電流経路に帰還されるようにしている。

【0024】この電源回路では、2本の平滑コンデンサ Ci1, Ci2が直列に接続されて、上記ブリッジ整流 回路の正極出力端子と一次側アース間に挿入するように 設けられる。そして平滑コンデンサCi1, Ci2の接

続点は、スイッチSを介して、上記ブリッジ整流回路の 負極入力端子に対して接続される。直列接続された平滑 コンデンサCi1, Ci2の両端に得られる整流平滑電 圧は、後段の他励式による電流共振形コンバータに入力 される。電流共振形コンバータでは、入力された整流平 滑電圧に基づいてスイッチング動作を行い、最終的に安 定化された二次側直流出力電圧E0を出力する。

【0025】スイッチSは、倍電圧整流平滑動作と通常 の整流平滑動作を切り換えるために設けられ、電磁リレ ーRYによりオン/オフ制御される。電磁リレーRY は、リレー駆動回路40によって駆動される。このリレ 一駆動回路40においては、商用交流電源ACを半波整 流する整流ダイオードD105及び平滑コンデンサC33か らなる半波整流回路が備えられ、この半波整流回路の出 力と一次側アース間に対して抵抗R1、R2が直列に接 続される。この抵抗R1、R2の分圧点とトランジスタ Q300のベース間にはツェナーダイオードZDが挿入され る。この場合、商用交流電源ACに供給される交流入力 電圧VACがAC150V以上の場合に、抵抗R1、R2 で分圧される電圧値によってツェナーダイオードZDが 導通するように、上記各部品が選定されているものとさ れる。つまり、上記各部品によって交流入力電圧レベル がAC150V以上か否かを検出する電圧検出回路が形 成される。トランジスタQ300は電磁リレーRYを駆動 する。このトランジスタQ300のベースと一次側アース 間には、抵抗R3とコンデンサC34がそれぞれ接続され ている。また、トランジスタQ300のコレクタは一次側 アースに接地される。またエミッタは電磁リレーRYを 介して、後述する絶縁コンバータトランスPITの三次 巻線N3、整流ダイオードD300及び平滑コンデンサC10 30 1により得られる低圧直流電圧のラインと接続されてい る。電磁リレーRYに対しては逆方向電流を流すための 保護用ダイオードD5が並列に接続されている。

【0026】例えば、AC100V系としてAC150 V以下の交流入力電圧VACが供給されている場合、ツェ ナーダイオードZDは導通しないことから、トランジス タQ300ではベース電流が抵抗R3を介して流れるよう にされてオン状態となる。これにより電磁リレーRYに は、エミッタ電流が導通する。そして、電磁リレーRY の励磁作用によってスイッチSはオン状態とされること 40 になる。これにより、平滑コンデンサCi1, Ci2の 接続点と上記ブリッジ整流回路の負極入力端子とがスイ ッチSを介して接続されることになる。このような接続 形態では、交流入力電圧VACが正の期間では整流ダイオ ードD102で整流した商用交流電源ACを平滑コンデン サCilに充電する整流電流経路が形成されることで、 平滑コンデンサCi1にはAC100V系の交流入力電 圧に相当するレベルの両端電圧が発生する。これに対し て、交流入力電圧VACが負の期間では整流ダイオードD 101で整流した商用交流電源ACを平滑コンデンサС i

2に充電する整流電流経路が形成されることで、平滑コ ンデンサCi2にもAC100V系の交流入力電圧に相 当するレベルの両端電圧が発生する。したがって、直列 接続された平滑コンデンサCil-Ci2の両端には1 00V系のほぼ2倍に相当するレベルの整流平滑電圧E i が発生する倍電圧整流平滑動作となる。

【0027】AC200V系としてAC150V以上の 交流入力電圧VACが供給されている場合では、ツェナー ダイオードZDが導通することにより、トランジスタQ3 10 00のベース電位が所定以上に引き上げられてベース電流 が流れないようにされ、トランジスタQ300はオフとな る。このため、トランジスタQ300のエミッタ電流は電 磁リレーRYを流れなくなり、スイッチSはオフ状態と されることになる。この場合には、商用交流電源ACを 上記ブリッジ整流回路(整流ダイオードD101~D104) により全波整流して、平滑コンデンサCi1-Ci2の 直列接続に対して充電をする全波整流平滑動作となり、 交流入力電圧VACに対応するAC200V系の整流平滑 電圧Eiが得られることになる。

【0028】この図に示すスイッチングコンバータは他 励式による電流共振形コンバータとされる。この電流共 振形コンバータでは、例えばMOS-FETによる2石 のスイッチング素子Q101、Q201がハーフブリッジ結合 されて備えられている。これらスイッチング素子Q10 1、Q201は、発振ドライブ回路2によって交互にオン/ オフ動作が繰り返されるようにスイッチング駆動され て、整流平滑電圧Eiを断続してスイッチング出力とす る。なお、各スイッチング素子Q101、Q201のドレイン - ソース間に対して図に示す方向に対して並列にダンパ ーダイオードD101、D201が備えられる。

【0029】スイッチング素子Q101、Q201のソースー ドレインの接続点(スイッチング出力点)に対しては、 絶縁コンバータトランスPITの一次巻線N1 の一端 が接続されて、この一次巻線N1 に対してスイッチン グ出力を供給するようにされる。また、絶縁コンバータ トランスPITの一次巻線N1 は直列共振コンデンサ C100と直列に接続され、この直列共振コンデンサC100 のキャパシタンス及び一次巻線N1 を含む絶縁コンバ ータトランスPITの漏洩インダクタンス成分により、 スイッチング電源回路を電流共振形とするための直列共 振回路を形成している。

【0030】絶縁コンバータトランスPITは、一次巻 線N1 に供給されたスイッチング出力により得られる 交番電圧を二次側に転送する。絶縁コンバータトランス PITの二次側では、上記図10、図11、図14の場 合と同様に直流出力電圧E0を得る。

【0031】起動回路3は、電源投入直後に整流平滑ラ インに得られる電圧あるいは電流を検出して、発振ドラ イブ回路2を起動させるために設けられており、この起 50 動回路3には、動作電源として絶縁コンバータトランス

PITに設けられた三次巻線N3と整流ダイオードD30 0、及び平滑コンデンサC101により供給される低圧直流 電圧が供給される。

【0032】力率改善回路22については、前述のよう に絶縁コンバータトランスPITの一次巻線N1に得ら れるスイッチング出力を、直列共振コンデンサC100の 静電容量結合を介して整流電流経路に帰還するようにさ れている。このようにして帰還されたスイッチング出力 は、フィルタチョークコイルLNのインダクタンスを介 する整流出力電圧に対してスイッチング周期の交番電圧 10 (スイッチング電圧)を重畳するように作用し、この重 畳されたスイッチング電圧によって、整流ダイオードD 101、D102は整流電流をスイッチング周期で断続するよ うに動作する。整流ダイオードD101、D102は、倍電圧 整流時及び全波整流時の何れの場合にも整流電流の経路 にあることから、上述の動作は、倍電圧整流時及び全波 整流時の何れにおいても行われることになる。

【0033】この動作により、例えば倍電圧整流動作時 には、整流出力電圧はスイッチング電圧が重畳された状 態で平滑コンデンサCi1及びCi2に充電されること になるが、このスイッチング電圧の重畳分によって、平 滑コンデンサCi1、Ci2の各両端電圧をスイッチン グ周期で引き下げることになる。このため、整流出力電 圧レベルが平滑コンデンサCi1、Ci2の各両端電圧 よりも低いとされる期間にも平滑コンデンサCil、C i 2への充電電流が流れるようにされる。また、全波整 流動作時では、整流出力電圧はスイッチング電圧が重畳 された整流出力電圧によって直列接続される平滑コンデ ンサCilーCi2に充電を行うようにされ、このスイ ッチング電圧の重畳分によって、直列接続された平滑コ 30 ンデンサCi1-Ci2の両端電圧(整流平滑電圧)を スイッチング周期で引き下げることになる。このため、 整流出力電圧レベルが直列接続された平滑コンデンサC i 1-Ci 2の両端電圧よりも低いとされる期間にも充 電電流が流れるようにされる。

【0034】この結果、倍電圧整流動作または全波整流 動作時の何れの場合においても、交流入力電流 I ACの平 均的な波形が交流入力電圧VACの波形に近付くようにさ れ、交流入力電流 I ACの導通角が拡大されることにな る。このようにして、この図に示す電源回路では倍電圧 40 整流動作時と全波整流動作時の何れの場合にも力率が改 善されることになる。

【0035】図17(a)(b)に、この図16の電源 回路についての力率PF-交流入力電圧VAC特性、及び 力率PF-負荷電力Po特性を示す。図17 (a)

(b) から分かるように、この電源回路の場合、負荷電 カPo=250W~150Wの変動に対して交流入力電 圧VACが100V系の場合と交流入力電圧VACが230 V系の場合で、共に力率PFは十分なものとなってい る。しかしながら、図16に示した回路ではノーマルモ 50 列に設けられているが、このような接続形態によっても

ードのローパスフィルタ (LN, CN) や並列共振コ ンデンサC31、C32などの力率改善用の部品素子が交流 入力ラインに設けられているため、例えば全世界対応の 安全規認定格品を採用する必要があって、コスト的に不 利となる。また、交流入力電圧VACの検出回路が瞬時停 電や外乱ノイズによって誤動作する場合があるため誤動 作防止の対策を施さねばならない。

【0036】図18はスイッチング素子4石(Q41~Q 44) によるフルブリッジ結合電流共振形コンバータと磁 気結合形電力帰還方式力率改善回路を組み合わせて、磁 気結合トランス (MCT) の一次インダクタンス L30と C100の直列共振回路を追加し、2次インダクタンスLR を介して電力帰還するようにしたものである。

【0037】この電源回路ではスイッチングコンバータ として、4本のスイッチング素子Q41~Q44をフルブリ ッジ結合した他励式の電流共振形コンバータが備えられ る。このようなフルブリッジ結合による他励式の電流共 振形コンバータは、スイッチング素子Q41, Q42の組と スイッチング素子Q43, Q44の組がプッシュプルにより 駆動されるように構成される。この際スイッチング素子 Q41~Q44の各ドレイン-ソース間に対してもダンパー ダイオードDD41~DD44が備えられる。

【0038】この場合、ドライブ回路2日はスイッチン グ素子Q41, Q42の各ゲートに対してスイッチング駆動 信号を出力し、またドライブ回路2Cはスイッチング素 子Q43, Q44の各ゲートに対してスイッチング駆動信号 を出力するように構成される。この場合、ドライブ回路 2 B、 2 Cは、発振回路 2 Aからの互いに逆相の発振出 力に基づいて、[スイッチング素子Q41, Q44] と [ス イッチング素子Q42, Q43] の組が所要のスイッチング 周波数により交互にオン/オフするスイッチング動作を 行うようにスイッチング駆動信号を出力する。

【0039】また、平滑コンデンサCiの充電電圧を検 出するVAC検出回路2Dによって、交流入力電圧VACが 150V以上と検出された際には、このVAC検出回路2 Dの制御によってスイッチング素子Q43はオフ、Q44は オンの状態とすれば、ハーフブリッジ結合電流共振形コ ンバータ動作となる。すなわちフルブリッジ、ハーフブ リッジ結合切り替え方式とされてワイドレンジ対応を可 能としている。

【0040】力率改善回路23では、磁気結合トランス MCTを備えてその磁気結合作用によって直列共振回路 に供給されるスイッチング出力を整流電流経路に帰還す るようにされる。この力率改善回路23においては、ブ リッジ整流回路Diの正極出力端子と平滑コンデンサC iの正極端子間に、フィルタチョークコイルLN -高速 リカバリ型ダイオードD1 -巻線NRが直列接続されて 挿入される。フィルタコンデンサCN は、フィルタチ ョークコイルLN -巻線NRの直列接続回路に対して並

フィルタチョークコイルLN と共にローパスフィルタを 形成する。

【0041】磁気結合トランスMCTは、コアに対して 巻線NR及び巻線N30を磁気的に密結合するようにして 巻装して形成される。巻線N30の一端はスイッチング素 子Q41、Q42の接続点に対して接続され、他端は直列共 振コンデンサC100を介してスイッチング素子Q43、Q4 4の接続点と接続される。またこの接続点は直列共振コ ンデンサC1を介して一次巻線N1の一端と接続される。 この接続形態により、スイッチング素子Q41~Q44のス 10 イッチング出力は、一次巻線N1側の直列共振回路に供 給されるようにされると共に、この直列共振回路に対し て直列に接続されるき線N30に対してもスイッチング出 力が得られることになる。

【0042】このようにして形成される力率改善回路23では、巻線N30に得られるスイッチング出力が、磁気結合トランスMCTの磁気結合作用を介することによって、巻線LRに伝送される。これにより、巻線NRにはスイッチング周期の電圧(スイッチング電圧)が発生するが、巻線NRは整流電流経路に挿入されていることから、整流出力電圧に対してスイッチング電圧を重畳するように動作する。そして、このスイッチング出力電圧の重畳分によって高速リカバリ型ダイオードD1が整流電流をスイッチング周期で断続するように動作し、交流入力電流の導通角の拡大が図られて力率が改善されることになる。

【0043】図19に、この図18の電源回路についての力率PF-交流入力電圧VAC特性を示す。この図19から分かるように、この電源回路の場合、負荷電力Po=192W~84Wの変動に対しても高い力率PFが得30られる。ところが、回路構成が複雑となり、構成部品点数が増加し、プリント基板マウント面積が拡大するという欠点がある。

[0044]

【発明が解決しようとする課題】以上の図10~図19 によって各種の電源回路例をあげたが、これら従来の電 源回路の問題点をまとめると、以下のようになる。

【0045】・ハーフブリッジ結合電流共振形コンバータの直列共振回路と並列にLCの直列共振回路を設けて電力帰還方式力率改善回路と組み合わせる場合、2組の 40スイッチング素子のスイッチング電流が増加し電力変換効率が低下する。

・ハーフブリッジ結合電流共振形コンバータの交流入力電圧整流切り替え方式の場合、最大負荷電力は250W程度に向上するが、ACラインに構成部品が接続されており安全規格承認品の選定が必要であり、AC200V系時に瞬間停電や外乱ノイズによる整流方式切り替え回路の誤動作対策が必要である。

・フルブリッジ結合電流共振形コンバータをAC100 V系、ハーフブリッジ結合電流共振形コンバータをAC 50

200V系で動作するフルブリッジ、ハーフブリッジ切り替え方式の場合、スイッチ素子のドライブ段が2組となり回路構成が複雑である。したがって、構成部品点数が多く基板面積が増加する。

12

[0046]

【課題を解決するための手段】そこで本発明は上記課題 を考慮してスイッチング電源回路として次のように構成 する。即ち本発明のスイッチング電源回路は、入力され た商用交流電源を整流するとともに、直列接続された2 つの平滑コンデンサの両端に得られる平滑電圧を分圧し て第1及び第2の直流入力電圧を出力することができる 整流平滑手段と、疎結合とされる所要の結合係数が得ら れるようにギャップが形成され、一次側出力を二次側に 伝送するために設けられる絶縁コンバータトランスと、 上記第1の直流入力電圧をプッシュプル動作により断続 して上記絶縁コンバータトランスの一次巻線に出力する ようにされた第1及び第2のスイッチング手段と、少な くとも、上記絶縁コンバータトランスの一次巻線を含む 漏洩インダクタンス成分と一次側並列共振コンデンサの キャパシタンスとによって形成されて、上記第1及び第 20 2のスイッチング手段の動作を電圧共振形とする第1及 び第2の一次側共振回路と、上記一次巻線と接続される 第1巻線と、整流電流経路に挿入される第2巻線とを磁 気結合する磁気結合トランスと整流電流経路に挿入され るスイッチング用素子とを少なくとも備えることで力率 改善動作を行う力率改善手段と、商用交流電源電圧に応 じて、上記第1及び第2の直流入力電圧が、それぞれ上 記第1及び第2のスイッチング手段による分電圧プッシ ュプル動作により断続されて上記絶縁コンバータトラン スの一次巻線に出力されるようにすることのできるスイ ッチング動作切換手段と、上記絶縁コンバータトランス の二次巻線の漏洩インダクタンス成分と、二次側共振コ ンデンサのキャパシタンスとによって二次側において形 成される二次側共振回路と、上記二次側共振回路を含ん で形成され、上記絶縁コンバータトランスの二次巻線に 得られる交番電圧を入力して、整流動作を行って二次側 直流出力電圧を生成するように構成された直流出力電圧 生成手段と、上記二次側直流出力電圧のレベルに応じ て、二次側直流出力電圧に対する定電圧制御を行うよう に構成された定電圧制御手段とを備える。

【0047】また上記力率改善手段は、上記磁気結合トランスの第1巻線と第2巻線の極性が加極性又は減極性で結合されるとともに、上記第2巻線が上記スイッチング用素子としての高速リカバリ型と直列接続されて構成される。また上記磁気結合トランスは、上記第2巻線が上記第1巻線よりも大きな所定のインダクタンスを有して構成される。また上記磁気結合トランスの上記第1巻線と上記第2巻線のインダクタンス値の各々について所要の値が得られるように上記第1巻線と上記第2巻線の巻数比が設定されることで電力帰還量が最適化される。

また上記スイッチング動作切換手段は、電磁パワーリレーを備えて構成される。

【0048】上記構成によれば、プッシュプル形のスイッチング周波数制御方式複合共振形コンバータといわれる電源回路に備えられる力率改善回路に対して磁気結合トランスを備えることで、一次側共振回路に得られるスイッチング出力による電力が磁気結合方式により帰還されることになると共に、上記スイッチング動作切換手段により、例えばAC電圧が150V以上の場合に、分電圧プッシュプル形の動作に切り換えらることで、広範囲入力電圧対応となり、かつAC100V系とAC200V系で力率が一定に保持できる。

[0049]

【発明の実施の形態】図1は、本発明の実施の形態としてのスイッチング電源回路の構成を示す回路図である。この図1のスイッチング電源回路は、2石のスイッチング素子Q1,Q2を備えて、いわゆるプッシュプル方式で自励式によりスイッチング動作を行う電圧共振形コンバータを備えて構成される。そしてその電圧共振形コンバータに対して力率改善回路10が設けられる。

【0050】またこの図に示す電源回路は、例えば交流入力電圧Vac=150V以上(いわゆるAC200V系)の条件に対応できるようにするため、スイッチング素子Q1、Q2によるプッシュプル動作を、いわゆる分電圧プッシュプル動作に切り換えることができるようにしている。このため、整流平滑電圧を得るための平滑コンデンサとしては、2本の平滑コンデンサCil、Ci2が備えられる。これら平滑コンデンサCil、Ci2は、図示するようにブリッジ整流回路Diの正極出力ラインから力率改善回路10を介して、一次側アース間に直列30に接続される。

【0051】そしてスイッチS1、S2が設けられ、平滑コンデンサCi1, Ci2の接続点はスイッチS1の t a 端子に接続される。スイッチS1の t b 端子は平滑コンデンサCi1の正極に接続される。またスイッチS1はスイッチS2の t a 端子に接続され、またスイッチS2の t b 端子は1次側アースに接続される。

【0052】スイッチS1、S2は電磁パワーリレーR Yによって連動されるものであり、スイッチS1、S2 がta端子に接続されることで、スイッチング素子Q 1、Q2による分電圧プッシュプル方式のスイッチング 動作が行われる回路構成となり、一方、スイッチS1、 S2がtb端子に接続されることで、スイッチング素子 Q1、Q2によるプッシュプル方式のスイッチング動作 が行われる回路構成となるものである。

【0053】この図に示す電源回路においては、商用交流電源(交流入力電圧VAC)を入力して直流入力電圧を得るための整流平滑回路として、ブリッジ整流回路Di及び平滑コンデンサCiからなる全波整流回路が備えられ、交流入力電圧VACの1倍のレベルに対応する整流平50

滑電圧Eiを生成するようにされる。また、この整流平滑回路に対しては、その整流電流経路に対して突入電流制限抵抗Riが挿入されており、例えば電源投入時に平滑コンデンサに流入する突入電流を抑制するようにしている

14

【0054】また、平滑コンデンサCilの正極側に対して絶縁コンバータトランスPITの一次巻線NIAの一端が、チョークコイルCH1、直交型ドライブトランスPRTの検出巻線ND、及び力率改善回路10の磁気結合トランスMCTの一次巻線(第1巻線)NPを介して接続される。さらに分電圧プッシュプル動作を可能とするため、スイッチS1、S2がta端子に接続された場合は、平滑コンデンサCilの負極と平滑コンデンサCi2の正極との接続点に対しては、チョークコイルCH2を介して一次巻線NIBの一端が接続される。

【0055】この電源回路としては、2組のスイッチング素子Q1、Q2をプッシュプル動作(及び分電圧プッシュプル動作)によりスイッチング駆動すると共に、スイッチング素子Q1、Q2のスイッチング周波数を可変制御 20 するために、直交型ドライブトランスPRTが設けられている。

【0056】直交型ドライブトランスPRTの構造としては、例えば4本の磁脚を有する2つのダブルコの字型コアの互いの磁脚の端部を接合するようにして立体型コアを形成する。そして、この立体型コアの所定の2本の磁脚に対して、同じ巻回方向に検出巻線ND,駆動巻線NB1,NB2を巻装し、更に制御巻線NCを、上記検出巻線ND,駆動巻線NB1,NB2に対して直交する方向に巻装することで可飽和リアクトルとして構成される。

【0057】また、この場合の駆動巻線NB1,NB2は、図のように互いに独立して直交型ドライブトランスPRTに巻装されている。そして、駆動巻線NB1の一端は、スイッチS2がtb端子に接続されている時は一次側アースに接地され、またスイッチS1及びS2がta端子に接続されている時は平滑コンデンサCi1-Ci2の接続点に対して接続される。その駆動巻線NB1の他端はベース電流制限抵抗RB1-共振コンデンサCB1を介してスイッチング素子Q1のベースに接続される。

【0058】また、駆動巻線NB2の一端は一次側アース 40 に接地され、その他端は共振コンデンサCB2ーベース電 流制限抵抗RB2を介してスイッチング素子Q2のベース に接続される。つまり、駆動巻線NB1ーベース電流制限 抵抗RB1ー共振コンデンサCB1によりスイッチング素子 Q1のための自励発振駆動回路を形成し、駆動巻線NB2 ー共振コンデンサCB2ーベース電流制限抵抗RB2により スイッチング素子Q2のための自励発振駆動回路を形成 する。

【0059】検出巻線NDでは、後述するスイッチング動作によってスイッチング出力に応じた交番電圧が検出される。駆動巻線NB1,NB2では、検出巻線NDにより検

出されたスイッチング出力に応じて、互いに180°位相が異なる逆極性の交番電圧が得られるようになっている。

【0060】 プッシュプル動作及び分電圧プッシュプル 動作のために設けられる2本のスイッチング素子Q1、 Q2には、高耐圧のバイポーラトランジスタ(BJT; 接合型トランジスタ)が採用されている。

【0061】スイッチング素子Q1には、上記駆動回路(駆動巻線NB1ーベース電流制限抵抗RB1ー共振コンデンサCB1)、及びクランプダイオードDD1、並列共振コ 10ンデンサCr1が図のように接続され、またスイッチング素子Q2には、駆動回路(駆動巻線NB2ー共振コンデンサCB2ーベース電流制限抵抗RB2)、及びクランプダイオードDD2、並列共振コンデンサCr2が図のように接続される。

【0062】ここで、クランプダイオードDD1, DD2 は、それぞれスイッチング素子Q1, Q2のベースーコレ クタ間に対して並列に接続される。また並列共振コンデ ンサCrl、Cr2は、それぞれスイッチング素子Q1、 Q2のコレクターエミッタ間に対して接続される。

【0063】スイッチング素子Q1のエミッタは、スイッチS2がtb端子に接続されている時は一次側アースに接地され(プッシュプル動作時)、またスイッチS1及びS2がta端子に接続されている時は平滑コンデンサCi1-Ci2の接続点に対して接続される(分電圧プッシュプル動作時)。また、スイッチング素子Q2のエミッタは一次側アースに接続される。

【0064】起動抵抗Rsは平滑コンデンサCilの負極とスイッチング素子Q2間に対して接続されるようになっている。この起動抵抗Rsは、起動時において、ス 30イッチング動作を起動させるための起動電流をスイッチング素子Q2に対して供給するために挿入されるものである。

【0065】絶縁コンバータトランスPITは、スイッ チング素子Q1, Q2のスイッチング出力を二次側に伝送 する絶縁コンバータトランスPITは、図2に示すよう に、例えばフェライト材によるE型コアCR1、CR2 を互いの磁脚が対向するように組み合わせたEE型コア が備えられ、このEE型コアの中央磁脚に対して、分割 ボビンBを利用して一次巻線N1 (N1A, N1B) 及び後 述する駆動巻線N5と、二次巻線N2をそれぞれ分割し た状態で巻装している。そして、中央磁脚に対しては図 のようにギャップGを形成するようにしている。これに よって、所要の結合係数による疎結合が得られるように している。ギャップGは、E型コアCR1, CR2の中 央磁脚を、2本の外磁脚よりも短く形成することで形成 することが出来る。また、結合係数kとしては、例えば k≒0.85という疎結合の状態を得るようにしてお り、その分、飽和状態が得られにくいようにしている。

【0066】この場合、絶縁コンバータトランスPIT 50 ング動作を行なう。つまりスイッチング素子Q1, Q2

における一次側巻線は、一次巻線N1A, N1B、駆動巻線 N5に分割される。一次巻線N1Aの一端はスイッチング 素子Q1のコレクタと接続され、他端はチョークコイル CH1のインダクタンス巻線Lc1、直交型ドライブト ランスPRTの検出巻線ND、及び磁気結合トランスM CTの一次巻線NPを介して平滑コンデンサCilの正極 側に接続される。一次巻線N1Bの一端は、スイッチング 素子Q2のコレクタに対して接続される。その一次巻線 N1Bの他端は、スイッチS1がtb端子に接続されてい る時はチョークコイルCH2のインダクタンス巻線Lc 2の直列接続を介して平滑コンデンサCi1の正極と接 続され(プッシュプル動作時)、またスイッチS1がt a 端子に接続されている時はチョークコイルCH2のイ ンダクタンス巻線Lc2の直列接続を介して平滑コンデ ンサCi2の正極に対して接続される(分電圧プッシュ プル動作時)。

16

【0067】この場合、上記した並列共振コンデンサCrlは、一次巻線N1Aの漏洩インダクタンス成分(L1A)とインダクタンス巻線Lclとの合成インダクタン
20ス(L1A+Lcl)とによってスイッチング素子Q1を電圧共振形の動作とするための並列共振回路を形成する。同様にして、並列共振コンデンサCr2は、一次巻線N1Bの漏洩インダクタンス成分(L1B)とインダクタンス巻線Lc2との合成インダクタンス(L1B+Lc2)とによってスイッチング素子Q2を電圧共振形の動作とするための並列共振回路を形成する。またここでは詳しい説明を省略するが、スイッチング素子Q1、Q2の各オフ時には、これらの並列共振回路の作用によって共振コンデンサCr1、Cr2の両端電圧は、実際には30正弦波状のパルス波形となって電圧共振形の動作が得られるようになっている。

【0068】このような一次側の構成では、直交型ドライブトランスPRTの駆動巻線NB1,駆動巻線NB2において互いに逆極性の交番電圧が得られることで、駆動巻線NB1を備える自励発振駆動回路と、駆動巻線NB2を備える自励発振駆動回路のそれぞれによって、互いに逆極性の交番電流としての駆動電流(ベース電流)が、スイッチング素子Q1、Q2は、自励発振駆動回路ので、スイッチング素子Q1、Q2は、自励発振駆動回路の定数により決定されるスイッチング周波数により交互にオン/オフを行う動作が得られる。即ち、電圧共振形で、かつ、プッシュプルによるスイッチング動作が得られる。スイッチング素子Q1のスイッチング曲力は、一次巻線N1Aに供給され、スイッチング素子Q2のスイッチング出力は一次巻線N1Bに供給される。

【0069】スイッチS1, S2がtb端子に接続されてスイッチング素子Q1, Q2がプッシュプル動作を行う場合は、スイッチング素子Q1、Q2は、平滑コンデンサCi(Ci1+Ci2)の両端電圧を入力してスイッチング動作を行かう。つまりスイッチング素子Q1 Q2

流を、制御電流としてドライブトランスPRTの制御巻 線NC に供給することにより、後述のように定電圧制御 を行う。

は、直流入力電圧Eiを入力してスイッチングを行うよ うにされる。またスイッチS1, S2がta端子に接続 されて、スイッチング素子Q1, Q2が分電圧プッシュプ ル動作を行う場合は、スイッチング素子Q1は、平滑コ ンデンサCilの両端電圧を入力してスイッチング動作 を行い、スイッチング素子Q2は、平滑コンデンサCi2 の両端電圧を入力してスイッチング動作を行うようにさ れる。つまり、スイッチング素子Q1, Q2は、それぞれ 1/2Eiのレベルの直流電圧を入力してスイッチング を行うようにされる。

【0075】ところで、絶縁コンバータトランスPIT においては、一次巻線N1、二次巻線N2 の極性(巻方 向) と整流ダイオードD0 (D01、D02、D03、D04) の接続との関係によって、一次巻線N1 のインダクタン スL1と二次巻線N2 のインダクタンスL2 との相互イ ンダクタンスMについて、+Mとなる場合と-Mとなる 10 場合とがある。例えば、図3 (a) に示す接続形態を採 る場合に相互インダクタンスは+M(加極性:フォワー ド方式)となり、図3(b)に示す接続形態を採る場合 に相互インダクタンスは-M(減極性:フライバック方 式)となる。これを、図1に示す電源回路の二次側の動 作に対応させてみると、例えば二次巻線N2 に得られる 交番電圧が正極性のときに整流ダイオードD01(D03) に整流電流が流れる動作は、+Mの動作モード (フォワ ード方式) とみることができ、逆に、二次巻線N2 に得 られる交番電圧が負極性のときに整流ダイオードD02 (D04) に整流電流が流れる動作は、-Mの動作モード (フライバック方式)であるとみることができる。即 ち、この電源回路では、二次巻線に得られる交番電圧が 正/負となるごとに、相互インダクタンスが+M/-M のモードで動作することになる。

【0070】このような構成とし、交流入力電圧がAC 100 V系のときはプッシュプル動作、AC200 V系 のときは分電圧プッシュプル動作とすることで、AC2 00V系の条件であってもAC100V系と同様の条件 でプッシュプルによるスイッチング動作を行うことを可 能としているものである。

> 【0076】制御回路1では、二次側直流出力電圧レベ ル (E01) の変化に応じて、制御巻線NCに流す制御電 流(直流電流)レベルを可変することで、直交型ドライ ブトランスPRTに巻装された駆動巻線NB1、NB2のイ ンダクタンスLB1、LB2を可変制御する。これにより、 駆動巻線NB1、NB2のインダクタンスLB1、LB2を含ん で形成されるスイッチング素子Q1、Q2のための自励発 振駆動回路内の直列共振回路の共振条件が変化する。こ れは、スイッチング素子Q1、Q2のスイッチング周波数 を可変する動作となるが、この動作によって二次側直流

出力電圧を安定化する作用を有する。

【0071】絶縁コンバータトランスPITの二次側で は、一次巻線N1 により誘起された交番電圧が二次巻線 N2に発生する。この場合、二次巻線N2に対しては、二 次側並列共振コンデンサC2 が並列に接続されること で、二次巻線N2のリーケージインダクタンスL2と二次 側並列共振コンデンサC2のキャパシタンスとによって 並列共振回路が形成される。この並列共振回路により、 二次巻線N2に励起される交番電圧は共振電圧となる。 つまり二次側において電圧共振動作が得られる。

> 【0077】続いて、力率改善回路10の構成について 説明する。この図に示す力率改善回路10は、フィルタ コンデンサCN、高速リカバリ型ダイオードD1、及び磁 気結合トランスMCTを備えて成る。ここで、磁気結合 トランスMCTは一次巻線(第1巻線)Npと二次巻線 (第2巻線) Nsを例えば密結合の状態となるようにし て巻装して構成される。また、本実施の形態にあって は、一次巻線NpのインダクタンスLpと二次巻線Nsの してインダクタンスLsのほうが大きい値を採ることを される。このためには、例えば一次巻線Npと二次巻線 Nsの巻数(巻線比)を実際に選定すべきインダクタン ス値に応じて設定することになる。

【0072】即ち、この電源回路では、一次側にはスイ ッチング動作を電圧共振形とするための並列共振回路が 備えられ、二次側にも、電圧共振動作を得るための並列 共振回路が備えられる。なお、本明細書では、このよう に一次側及び二次側に対して共振回路が備えられて動作 30 する構成のスイッチングコンバータについては、「複合 共振形スイッチングコンバータ」ともいうことにする。

> インダクタンスLsとについて、インダクタンスLpに対 前提として、それぞれ、所定のインダクタンス値が選定

【0073】この場合、上記のようにして形成される二 次側の並列共振回路に対しては、二次巻線N2に対して タップを設けた上で、整流ダイオードD01, D02, D0 3, D04及び平滑コンデンサC01, C02を図のように接 続することで、 [整流ダイオードD01, D02, 平滑コン デンサC01] の組と、 [整流ダイオードD03, D04, 平 滑コンデンサC02]の組とによる、2組の全波整流回路 が設けられる。 [整流ダイオードD01, D02, 平滑コン 40 デンサC01]から成る全波整流回路は直流出力電圧E01 を生成し、「整流ダイオードD03, D04, 平滑コンデン サC02] から成る全波整流回路は直流出力電圧E02を生 成する。なお、この場合には、直流出力電圧 E01 及び直 流出力電圧 E02は制御回路 1 に対しても分岐して入力さ れる。制御回路1においては、直流出力電圧E01を検出 電圧として利用し、直流出力電圧E02を制御回路1の動 作電源として利用する。

【0078】磁気結合トランスMCTの一次巻線Npの

【0074】制御回路1は、例えば二次側の直流電圧出 カE01のレベルに応じてそのレベルが可変される直流電 50 巻始め端部は、検出巻線ND及びチョークコイルCH1を介して絶縁コンバータトランスPITの一次巻線N1Aと接続され、巻終わり端部は平滑コンデンサCi1の正極に対して接続される。これにより、磁気結合トランスMCTの一次巻線Npに対しては、一次巻線N1Aに現れるスイッチング素子Q1のスイッチング出力が、チョークコイルCH1、検出巻線NDを介して伝達されることになる。

【0079】磁気結合トランスMCTの二次巻線Nsの 巻始め端部は、高速リカバリ型ダイオードD1のカソー 10 ドに対して接続される。ここで、高速リカバリ型ダイオードD1のアノードは、ブリッジ整流回路Diの正極出 力端子に接続される。また、二次巻線Nsの巻終わり端 部は、平滑コンデンサCiの正極端子に対して接続され る。つまり、ブリッジ整流回路Diの正極出力端子と平 滑コンデンサCiの正極端子間(すなわち整流電流経 路)に対して、高速リカバリ型ダイオードD1-二次巻 線Nsの直列接続回路が挿入される。また、この図に示 す磁気結合トランスMCTの一次巻線Npと二次巻線Ns の巻方向の関係を見た場合には、図3(a)と同様とな り、したがってその動作は、加極性(+M)モードとさ れることになる。

【0080】また、この場合のフィルタコンデンサCNは、高速リカバリ型ダイオードD1のアノード側と一次側アース間に対して挿入されることで、例えば磁気結合トランスMCTの二次巻線Nsと共にノーマルモードのローパスフィルタを形成している。

【0081】このような構成の力率改善回路10による力率改善動作としては、基本的に、次のようになる。力率改善回路10では、まず、絶縁コンバータトランスPITの一次巻線N1Aに得られるスイッチング素子Q1のスイッチング出力が、磁気結合トランスMCTの一次巻線Npに伝達されることになる。そして、磁気結合トランスMCTにおける磁気結合を介して、一次巻線Npに得られたスイッチング出力は、二次巻線Nsに対して励起される。つまり、磁気結合トランスMCTの磁気結合によってスイッチング出力が整流電流経路に電力帰還される。

【0082】このようにして帰還されたスイッチング出力により、高速リカバリ型ダイオードD1では整流電流40をスイッチング周期で断続するように動作する。この断続動作により、チョークコイルとして機能する二次巻線NsのインダクタンスLSも上昇し、整流出力電圧レベルが平滑コンデンサCiの両端電圧よりも低いとされる期間にも平滑コンデンサCiへの充電電流が流れる。したがって結果的に、交流入力電流の導通角が拡大されて力率改善が図られる。

【0083】本例では上述してきたようにスイッチS 1、S2により、プッシュプル動作と分電圧プッシュプル動作が切り換えられる。そしてスイッチS1、S2 を、交流入力電圧値に応じて切り換えることで、交流入力電圧100V系の場合はプッシュプル動作、交流入力電圧200V系の場合は分電圧プッシュプル動作を行うようにするものである。すなわち本例では、リレー駆動回路4、電磁パワーリレーRY、及びスイッチS1, S2により、商用交流電源電圧に応じてプッシュプル動作/分電圧プッシュプル動作を切り換えるスイッチング動

20

【0084】上述したようにスイッチS1, S2は、電10 磁パワーリレーRYにより連動的にオン/オフ制御される。電磁パワーリレーRYは、リレー駆動回路4によって駆動される。リレー駆動回路4は、抵抗R1~R3、スイッチング素子Q3、ツェナーダイオードZD、コンデンサC5、ダイオードD5が図のように接続されて構成される。

作切換回路が形成される。

【0085】このリレー駆動回路4においては、平滑コンデンサCi1の正極と一次側アース間に対して抵抗R1、R2が直列に接続される。そしてこの抵抗R1、R2の分圧点とスイッチング素子Q3間にツェナーダイオードZDが挿入される。この場合、平滑コンデンサCi1にあらわれる整流平滑電圧がAC150V以上の場合に、抵抗R1、R2で分圧される電圧値によってツェナーダイオードZDが導通するように、上記各部品が選定されているものとされる。つまり、上記各部品によって交流入力電圧レベルがAC150V以上か否かを検出する電圧検出回路が形成される。そしてスイッチング素子Q3のオン/オフにより電磁リレーRYが駆動される。電磁パワーリレーRYに対しては逆方向電流を流すための保護用ダイオードD5が並列に接続されている。

【0086】またリレー駆動回路4が動作するための動作電源としては、絶縁コンバータトランスPITに対して駆動巻線N5を巻装し、この駆動巻線N5に励起された交番電圧を、整流ダイオードD6とコンデンサC6から成る半波整流回路によって整流して得られる直流電圧が利用される。

【0087】このようなリレー駆動回路4によって、例えばAC100V系としてAC150V以下の交流入力電圧VACが供給されている場合、ツェナーダイオードZDは導通しないことから、スイッチング素子Q3はオフとなる。このとき電磁リレーRYによって切り換えられるスイッチS1、S2は、それぞれtb端子側に接続された状態となっている。つまりプッシュプル動作状態となる。

【0088】一方、AC200V系としてAC150V以上の交流入力電圧VACが供給されている場合では、ツェナーダイオードZDが導通しスイッチング素子Q3がオンとなることにより、電磁リレーRYの励磁作用によってスイッチS1,S2は、それぞれta端子側に切り換えられ、分電圧プッシュプル動作状態となる。

【0089】図4に、上記図1に示す電源回路の動作波

形を示す。ここで、図4 (a) ~ (e) は、各部の商用 電源周期での動作が示され、図4 (f)~(j)は、各 部のスイッチング周期での動作が示される。また、この 動作は、交流入力電圧VAC=100V、最大負荷電力2 90W時のプッシュプル動作による動作となる。

【0090】ここでは、商用電源の周波数は50Hzと され、交流入力電圧VACは図4(a)に示すように、半 周期が10msとなる正弦波状の波形が得られている。 そして、ブリッジ整流回路Diに流れる整流電流として は、交流入力電流 I ACが図4 (b) に示すようにして流 10 れると、高速リカバリ型ダイオードD1ではこれを断続 するようにスイッチングすることで、図4(c)に示す 波形によるスイッチング電流 I Dが流れることになる。

【0091】ここで、交流入力電圧VACが高いとされて 交流入力電流 I ACが流れる期間におけるスイッチング周 期の動作としては次のようになる。例えば、この期間に おいてスイッチング素子Q1がスイッチング動作を行っ たとすると、並列共振コンデンサCrの両端には、図4 (f) に示すようにして、スイッチング素子Q1がオフ となる期間Toff (3μs)において正弦波状のパルス となる並列共振電圧Vcpが発生する。そして、スイッ チング素子Q1がオンとなる期間Ton(7μs)には、 スイッチング素子Q1のコレクターエミッタ間に、図4 (g) に示すようにしてスイッチング出力電流 I c p が 流れるが、このスイッチング出力電流Ісрは、力率改 善回路10内のフィルタコンデンサCNから、高速リカ バリ型ダイオードD1→二次巻線Nsを介して平滑コンデ ンサCilに流れる。このとき、高速リカバリ型ダイオ ードD1を流れるスイッチング電流 IDは、図4(h)に 形となる。

【0092】また、スイッチング周期における二次巻線 Nsの両端電圧VLは、図4(i)に示すようにして、期 間Toffにおいては、正方向に100Vpとなる正弦波 状の波形となり、期間Tonにおいてはその開始期間にお いて負方向に60 V p となる波形が得られる。また、図 4(j)は、スイッチング周期における、二次巻線Ns -平滑コンデンサCiの直列接続回路の両端電圧V1を 示しているが、この電圧V1は、期間Toffにおいては、 260Vpとなる正弦波状の波形となり、期間Tonにお 40 いては、その開始期間において100Vpとなる逆方向 の正弦波状の波形が得られ、この後、150Vが維持さ

【0093】そして、

商用電源周期による動作として、 交流入力電圧VACが低いとされて、交流入力電流 I ACが 流れない期間(高速リカバリ型ダイオードD1がスイッ チング動作を行わない期間)においては、磁気結合トラ ンスMCTの一次巻線Npに対して、絶縁コンバータト ランスPITの一次巻線N1に流れる一次側スイッチン グ電流 I 1が流れ、これによって磁気結合トランスMC

Tの二次巻線Nsには、励起電圧が発生する。これによ り、商用電源周期で見た場合の二次巻線Nsの両端電圧 VLは、図4 (d) に示すものとなり、ほぼ定常的に電 圧レベルが得られていることになる。そして、この二次 巻線Nsの両端電圧VLが整流平滑電圧E i (平滑コンデ ンサCiの両端電圧)に重畳されることで、二次巻線N s-平滑コンデンサCiの直列接続回路の両端電圧V1 は、商用電源周期において図4 (e) に示す波形が得ら れる。この図4(e)に示す波形から分かるように、本 実施の形態では、磁気結合トランスMCTの二次巻線N sに励起される電圧により、整流平滑電圧E i (直流入 力電圧)のレベルを増加させるように動作しているもの である。そして、この動作は、前述したようにして、磁 気結合トランスMCTの一次巻線Npのインダクタンス Lpと、二次巻線NsのインダクタンスLsについて、イ ンダクタンスLsのほうがインダクタンスLpよりも大き くなるように設定されていることによって得られるもの である。

【0094】上記のようにして、直流入力電圧のレベル 20 を増加させていることで、例えば、高速リカバリ型ダイ オードD1のカソード電位V1が、力率改善回路への入力 電圧(高速リカバリ型ダイオードD1のアノード側電 位)よりも低いとされる期間においても、高速リカバリ 型ダイオードD1のスイッチング動作を継続するように 動作する。つまり、商用電源周期の半周期ごとにおい て、高速リカバリ型ダイオードD1がスイッチングを行 う期間が延長されるものである。このような動作によっ て、10msの商用電源の半周期に対して、例えば図4 (b) に示すように交流入力電流 I ACの導通角は6ms 示すように、略正弦波上で11Apのレベルを有する波 30 程度にまで拡大されることになり、より高い力率が得ら れるようにされる。

> 【0095】ここで、図5、図6に、上記図1に示した 電源回路についての実験結果を示す。なお、これらの図 に示す実験結果を得るのにあたっては、磁気結合トラン スMCTについてはEI-25のEI型コアを用い、一 次巻線NpについてはインダクタンスLp=13μH、二 次巻線Nsについてはインダクタンス Lp=105 μ Hと している。そして、フィルタコンデンサ $CN=1\mu F$ 、 並列共振コンデンサCr=2700pF、スイッチング 素子Q1、Q2はVCB0>1500Vを選定している。ま た、動作条件としては、負荷電力 Po=290W~0 W、交流入力電圧VAC=80V~288V時とされる。 【0096】まず図5には、交流入力電圧VAC=100 V、及び交流入力電圧VAC=230Vで一定とした条件 の下での、負荷と力率との関係を示している。この図に 示されるように、本実施の形態では、負荷電力 Po=1 00W程度以上から、力率PFについて0.75程度以 上が維持される。そして、負荷電力Po=300Wにお いて力率 PF=0.8程度となるまで、力率が緩やかに 50 上昇する特性が得られている。このようにして、本実施

の形態では、広範囲の負荷条件にわたって高力率が得られるものである。

【0097】また、図6には、負荷電力Po=290Wで一定とした条件の下での、交流入力電圧VACと力率との関係が示されている。この図から分かるように、力率PFとしては、交流入力電圧VAC=100V付近において既にPF=0.9程度以上の高力率が得られており、交流入力電圧VACが上昇するように変動していくのにしたがって、力率PFが低くはなっていくものの、そして、交流入力電圧VAC=230Vにあっても、PF=0.8に近い値を維持しているものである。

【0098】このように、本実施の形態の電源回路では、プッシュプル動作と分電圧プッシュプル動作において、磁気結合トランスMCTの磁気結合によって整流電子Q1のス流経路に帰還されるスイッチング出力がほぼ同じになる。したがって、図5、図6で示したように交流入力電圧VACが100V系または200V系であるときでも力率PFはほぼ同等の特性となる。また本実施の形態の電源回路では、交流入力電圧、負荷の変動に対しても高力率を維持できる。このために、交流入力電圧や負荷条件20のである。が指定されるテレビジョン受像機などに限定されず、例えば負荷条件が変動する事務機器やパーソナルコンピュータなどの事務機器に対して本実施の形態の電源回路を変更して、搭載することが実用上十分に可能となるものである。ング電流1

【0099】また本実施の形態の電源回路によれば、従 来の電力帰還方式に比較して、負荷電力Po及び交流入 力電圧VACの変化に対して力率PFが非常に安定したも のとなる。また負荷電力Poの変動範囲も大幅に拡大さ れている。このように交流入力電圧、負荷の変動に対し ても高力率を維持できることで、交流入力電圧や負荷条 30 件が指定されるテレビジョン受像機などに限定されず、 例えば負荷条件が変動する事務機器やパーソナルコンピ ュータなどの事務機器に対して本実施の形態の電源回路 を搭載することが実用上十分に可能となるものである。 また、ワイドレンジ対応の構成として、プッシュプル動 作/分電圧プッシュプル動作の切換のための交流入力電 圧VACの検出は、平滑コンデンサCi1の正極にあらわ れる直流入力電圧Eiから行っている。したがって例え ば瞬時停電や外乱のノイズなどの影響で、商用交流電流 レベルの誤検出が生じたとしても、プッシュプル動作/ 40 分電圧プッシュプル動作の切換が行なわれるだけで、ス イッチングのための動作電源である直流入力電圧Eiの レベル変化を生じさせずに、スイッチング動作を継続す ることができる。つまり、スイッチング素子Q1、Q2な どの部品において、例えば瞬間停電や外乱のノイズなど による交流入力電圧VACにも対応することができる耐圧 品を選定したり、誤検出からスイッチング素子Q1、Q2 を保護する構成を採るなどの対策が必要なくなる。した がって、誤動作対策を採る必要がないので回路規模の拡 大を防ぐことができる。

【0100】また、本実施の形態の電源回路では、交流 入力電圧がVAC=100V、VAC=230Vのときに電 力変換効率が上昇し、例えば力率改善回路10を備えな い場合よりも1.5%向上し、交流入力電力としては、 力率改善回路10を備えない場合よりも約4. 4W低減 している。これは、本実施の形態の力率改善回路10の 構成として、電力帰還のために磁気結合トランスMCT を備えていることによる。例えば図14に示した力率改 善回路20の構成では、スイッチング出力が、一次側直 10 列共振回路と、力率改善回路20に対して電力帰還する ためのLC共振回路とに対して分岐して流れるためにス イッチング電流が増加して、その分電力損失が増加す る。これに対して、本実施の形態では、スイッチング素 子Q1のスイッチング出力を単に磁気結合トランスMC Tの一次側巻線NPに伝達すれば、磁気結合トランスM CTの磁気結合作用によって、整流電流経路へのスイッ チング出力の帰還が行われるものである。これにより、 同じ力率改善を図るのにあたって、スイッチング電流量 は、図14の場合よりも少なくすることができているも

【0101】また、実験結果として、磁気結合トランスMCTの巻線(Np, Ns)間のインダクタンス値の比を変更して、一次巻線Npから二次巻線Ns側へのスイッチング電流I1の帰還量を変更することで、力率特性を変えられることが確認されている。つまり、本実施の形態としては、磁気結合トランスMCTにおける巻線(Np, Ns)のインダクタンス値を変更することで、実使用に適った条件の力率特性が得られるように調整を行うことができるものである。このように磁気結合トランスMCTの一次巻線Np/二次巻線Nsのインダクタンス値の比を変更するのには、例えば一次巻線Np/二次巻線Nsの巻数比を変更してやればよいものである。

【0102】ここで、磁気結合トランスMCTにおける一次巻線Np/二次巻線Nsのインダクタンス値として、一次巻線Npについてはインダクタンス $Lp=13\mu$ H、二次巻線Nsについてはインダクタンス $Lp=90\mu$ Hとなるように、その巻数比を設定した場合に得られた各部の動作波形を図7に示す。

【0103】図7(a)に示すように、例えば50Hzの商用電源周期により交流入力電圧VACが入力されているとして、高速リカバリ型ダイオードD1では、図7(c)のスイッチング電流IDに示されるようにしてスイッチング動作を行う。また、このときの磁気結合トランスMCTの二次巻線Nsの両端電圧VLは、図7(d)に示すようにして、交流入力電圧VACが低いとされるで期間以外の期間にほぼ対応して、スイッチング周期に応じた交番波形が得られるものとなり、二次巻線Nsー平滑コンデンサCiの直列接続回路に得られる両端電圧(直流入力電圧)V1は、交流入力電圧VACが高いとさ

50 れるτ期間に130 V p で、τ期間以外の期間において

は40Vとなる電圧レベルに対して、電圧VLとほぼ同 一の波形が重畳されるものとなる。

【0104】また、上記のようにして磁気結合トランス MCTの巻線比を変更した場合の、交流入力電圧をVAC = 100V、VAC= 230Vで一定とした条件の下で の、負荷と力率との関係を図8に示す。例えば図5と比 較すると、図8の場合には、負荷電力Po=100W以 上では、力率PFの値は低くはなるものの、負荷電力の 変動に関わらずほぼ PF=0.75程度で一定に維持さ れ、負荷電力Рο=100W程度以下では、逆に力率が 10 上昇するという特性が得られる。

【0105】図9は、同じく磁気結合トランスMCTの 巻線比を変更した構成における、負荷電力をPo=10 OW、Po=290Wで一定とした条件の下での、交流 入力電圧VACと力率との関係が示されている。この場合 にも、力率PFとしては、負荷電力Po=100Wの場 合、交流入力電圧VAC=100V程度以上では、力率P F=0. 75程度でほぼ一定となり、VAC=100V程 度以下で力率PFが高くなるという特性が得られる。ま た、負荷電力Po=290Wの場合、交流入力電圧VAC 20 =200V程度以上では、力率PF=0.75程度でほ ぼ一定となり、VAC=200V程度以下で力率PFが高 くなるという特性が得られる。

【0106】なお、図1に示すスイッチング電源回路の 構成において、磁気結合トランスMCTの一次巻線N p、二次巻線Nsの巻方向の関係として、図3 (b) に示 した関係、すなわち磁気結合トランスMCTが減極性 (-M:フライバック方式)で動作するように構成した 場合でも、図5、図6に示した特性を得ることができ る。また、磁気結合トランスMCTの一次巻線と二次巻 30 線の巻数比を変更すれば、例えば図8、図9に示したよ うな特性が得られるものである。この場合、図4に示し た、スイッチング素子Q1がオフとなるとき(期間Tof f) に高速リカバリ型ダイオードD1にスイッチング電流 IDが流れ、両端電圧VLと両端電圧V1の高周波波形の 位相が逆になる。

【0107】以上、実施の形態について説明してきた が、本発明はさらに多様な変形例が考えられる。例えば 本出願人は、複合共振形スイッチングコンバータとし て、二次側直列共振回路を利用した4倍電圧整流回路を 40 備えた構成も既に提案しているが、このような構成も本 実施の形態の変形例として成立し得る。つまり、本実施 の形態としては二次側の共振回路及び整流回路の構成と して特に限定されるものではない。

【0108】また、本実施の形態では、プッシュプル動 作を行う場合にスイッチング素子Q1のスイッチング出 力が力率改善回路10に帰還される構成を例に挙げて説 明したが、スイッチング素子Q2のスイッチング出力を 力率改善回路10に帰還させるように構成することも考 えられる。さらに、本実施の形態においては、一次側に 50 例えば整流電流経路にスイッチング出力を帰還するため

対して自励式による共振コンバータを備えた構成の下で 定電圧制御を行うための制御トランスとして直交形制御 トランスが用いられているが、この直交形制御トランス の代わりに、先に本出願人により提案された斜交形制御 トランスを採用することができる。上記斜交形制御トラ ンスの構造としては、ここでの図示は省略するが、例え ば直交形制御トランスの場合と同様に、4本の磁脚を有 する2組のダブルコの字形コアを組み合わせることで立 体型コアを形成する。そして、この立体形コアに対して 制御巻線NCと駆動巻線NBを巻装するのであるが、この 際に、制御巻線と駆動巻線の巻方向の関係が斜めに交差 する関係となるようにされる。具体的には、制御巻線N Cと駆動巻線NBの何れか一方の巻線を、4本の磁脚のう ちで互いに隣り合う位置関係にある2本の磁脚に対して 巻装し、他方の巻線を対角の位置関係にあるとされる2 本の磁脚に対して巻装するものである。そして、このよ うな斜交形制御トランスを備えた場合には、駆動巻線を 流れる交流電流が負の電流レベルから正の電流レベルと なった場合でも駆動巻線のインダクタンスが増加すると いう動作傾向が得られる。これにより、スイッチング素 子をターンオフするための負方向の電流レベルは増加し て、スイッチング素子の蓄積時間が短縮されることにな るので、これに伴ってスイッチング素子のターンオフ時 の下降時間も短くなり、スイッチング素子の電力損失を より低減することが可能になるものである。

[0109]

【発明の効果】以上説明したように本発明は、プッシュ プル方式のスイッチング周波数制御方式複合共振形コン バータといわれる電源回路の整流電流経路に磁気結合ト ランスを備えた力率改善回路を備えている。そして、一 次側共振回路に得られるスイッチング出力が磁気結合ト ランスによる磁気結合を介して帰還されると共に、スイ ッチング動作切換手段により交流入力電圧に応じてプッ シュプル動作と分電圧プッシュプル動作を切り換えるよ うにしている。これにより広範囲入力電圧対応となり、 また交流入力電圧や負荷電力の変動に対して広範囲にわ たって十分な力率が維持されるという効果がある。例え ばAC100V系、200V系共用で負荷電力が200 W以上の重負荷時に、290W~0Wの広範囲の負荷変 動に対して、安定的に高力率が得られるようになる。し たがって、100V系と200V系共用のワイドレンジ に対応した力率改善ソフトスイッチング電源としては適 切なものとなり、負荷変動が大きい事務機器、情報機器 用の力率改善電源回路として好適なものとなる。

【0110】また、力率改善手段としては磁気結合トラ ンスを備えていることで、スイッチング出力を一次巻線 に供給すべき系に対して、例えば磁気結合トランスの第 1巻線を挿入すれば、整流電流経路へのスイッチング出 力の帰還を実現することが可能とされている。これは、

の共振回路系を追加する必要が無いことを意味するもの で、その分、スイッチング素子に流れるスイッチング電 流を低減することができ、電力変換効率の向上を図るこ とができる。さらに、力率改善手段は商用電源ラインに 挿入されておらず、整流出力点と平滑コンデンサ間に挿 入されているので、安全規格承認品を選定する必要がな く、安価に構成することができるようになる。また本発 明としては、ワイドレンジ対応の構成として、プッシュ プル動作/分電圧プッシュプル動作の切換を行うように している。これは、例えば商用交流電源レベルを検出す 10 る検出回路系において、瞬時停電や外乱のノイズ等によ る誤検出が生じたとしても、単にプッシュプル動作/シ ングルエンド動作の切り換えが行われるのみであって、 誤検出に伴った、スイッチングのための動作電源である 直流入力電圧レベルの変化を生じさせない。従って、例 えば誤検出時に対応した保護対策を特に採る必要も無い ために、それだけ、回路規模の拡大を防ぐことができ

【0111】また、一次側共振回路を電圧共振形で構成 することで、交流入力電圧に応じてプッシュプル動作と 20 分電圧プッシュプル動作を切り換えることによってワイ ドレンジに対応することが可能となる。これによって、 一次側共振回路を電流共振形として、例えばハーフブリ ッジ結合とフルブリッジ結合を切り換えてスイッチング 動作を行うように構成した電源回路よりも部品点数を削 減することができる。したがって、スイッチング電流を 低減することができ電力変換効率を向上することができ る。さらに、部品点数を削減することで回路構成を簡素 化することができ基板面積を低減することができる。

【0112】また、磁気結合トランスにおいては、第1 30 図である。 巻線のインダクタンスよりも第2巻線のインダクタンス が大きくなるように設定されていることで、直流入力電 圧が増加するのであるが、これにより、結果的には、交 流入力電圧、及び負荷電力の変動に対しても、実用性に 足るだけの力率が得られるように維持されるものであ る。したがって、例えば負荷変動が大きい事務機器、情 報機器用の力率改善電源回路として好適なものとなる。 また、力率の特性としては、例えば第1巻線のインダク タンスと第2巻線のインダクタンスとの比を調整するこ とで、交流入力電圧、負荷電力の変動に対してほぼ一定 40 とすることもできるために、リップル成分の抑制を図る ことも可能となる。また、直流入力電圧の増加によっ て、電力変換効率の向上が図られるものである。

【図面の簡単な説明】

【図1】本発明の実施の形態としてのスイッチング電源 回路の回路図である。

【図2】本実施の形態の電源回路に採用される絶縁コン バータトランスの構造を示す断面図である。

【図3】相互インダクタンスが+M/-Mの場合の各動 作を示す説明図である。

【図4】図1に示すスイッチング電源回路のプッシュプ ル動作によるスイッチング動作を示す波形図である。

【図5】図1に示すスイッチング電源回路について、負 荷電力と力率との関係を示す特性図である。

【図6】図1に示すスイッチング電源回路について、交 流入力電圧と力率との関係を示す特性図である。

【図7】磁気結合トランスの巻線比を変更した場合の図 1に示すスイッチング電源回路の動作を示す波形図であ

【図8】磁気結合トランスの巻線比を変更した場合の図 1に示すスイッチング電源回路の負荷電力と力率との関 係を示す特性図である。

【図9】磁気結合トランスの巻線比を変更した場合の図 1に示すスイッチング電源回路の交流入力電圧と力率と の関係を示す特性図である。

【図10】先行技術としての電源回路の構成を示す回路 図である。

【図11】先行技術としての電源回路の構成を示す回路 図である。

【図12】図10、図11の電源回路の動作を示す波形 図である。

【図13】図10、図11の電源回路の交流入力電圧と 力率との関係を示す特性図である。

【図14】先行技術としての電源回路の構成を示す回路

【図15】図14の電源回路について負荷電力と力率と の関係、及びを交流入力電圧と力率との関係を示す特性

【図16】先行技術としての電源回路の構成を示す回路 図である。

【図17】図16の電源回路について負荷電力と力率と の関係、及びを交流入力電圧と力率との関係を示す特性 図である。

【図18】先行技術としての電源回路の構成を示す回路 図である。

【図19】図18の電源回路について交流入力電圧と力 率との関係を示す特性図である。

【符号の説明】

1 制御回路、4 リレー駆動回路、10 力率改善回 路、Di ブリッジ整流回路、Ci1,Ci2 平滑コ ンデンサ、D1 高速リカバリ型ダイオード、MCT 磁気結合トランス、Cr1, Cr2 並列共振コンデン サ、C2 二次側並列共振コンデンサ、PRT 直交型 ドライブトランス、PIT 絶縁コンバータトランス、 Q1, Q2, Q3 スイッチング素子、RY 電磁パワー リレー、S1, S2 スイッチ

【図10】

【図11】

【図14】

【図16】

【図15】

フロントページの続き

(51) Int. Cl. 7

識別記号

FI

テーマコード(参考)

Р

H 0 2 M 7/06

H 0 2 M 7/06