Tutorial 4 (with solution)

Numbers

Question 1: Divisibility

- □ For all integers a, b, and c, if a|b and a|c, then a|(b+c)? Is it true? Prove or disprove it.
 - a. Yes
 - b. No

Q.1 (solution)

Yes.

Proof

By definition of divisibility,

b = ar and c = as for some integers r and s.

By substitution,

$$b+c = ar + as = a(r+s).$$

Since r + s is an integer, by definition of divisibility, a|(b + c).

Q.E.D.

Question 2: Simple Proof

 \square Prove that the square of any odd integer has the form 8m + 1 for some integer m.

Q.2 (solution)

Proof

Let n be an odd number, which can be written as n = 2k + 1 for some integer k.

Then,

$$n^{2} = (2k + 1)(2k + 1) = 4k^{2} + 4k + 1$$
$$= 4k(k + 1) + 1$$

Since either k or k+1 is an even number, we have $n^2=8m+1$ for some integer m.

Q.E.D.

Question 3: Data Storage

■ In computing, row-major order and column-major order are methods for storing two-dimensional array in linear storage such as RAM or hard disk.

Row-major order

Column-major order

Question 3: Data Storage

□ A matrix *M* has 3 rows and 4 columns.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

- □ The 12 entries in *M* are to be stored in row major order in locations 7,609 to 7,620 in a computer's memory.
- a) Which location will a_{22} be stored in?
- b) Write a formula (in i and j) for the location in which a_{ij} is stored.
- c) Find formulas (in n) for r and s so that a_{rs} is stored in location 7,609 + n.

Q.3 (solution)

- a) 7614.
- b) 7609 + 4(i-1) + (j-1).
- c) $r = 1 + (n \operatorname{div} 4)$ and $s = 1 + (n \operatorname{mod} 4)$.
 - O Alternatively, we can write $r = 1 + \lfloor n/4 \rfloor$, where $\lfloor x \rfloor$ is called the floor function. It gives the greatest integer less than or equal to x as its output.

Question 4: Euclidean Algorithm

□ Compute gcd(65432, 8642).

Q.4 (solution)

7	65432	8642	1
	60494	4938	
1	4938	3704	3
	3704	3702	
617	1234	2	
	1234		
	0		

Therefore, gcd(65432, 8642) = 2.

Question 5: Extended Euclidean Alg.

☐ Find a solution in integers to the equation

$$65432x + 8642y = \gcd(65432, 8642).$$

Q.5

		ı		
7	65432	8	642	1
	60494		4938	
1	4938		3704	3
	3704		3702	
617	1234		2	
	1234		_	
	0			

65432	8642		
1	0	65432	а
0	1	8642	b

Q.5 (solution)

65432	8642		
1	0	65432	а
0	1	8642	b
1	- 7	4938	c = a - 7b
-1	8	3704	d = -a + 8b
2	-15	1234	e = c - d
-7	53	2	f = d - 3e

$$x = -7 \text{ and } y = 53$$