Chapter 6

Generalizations of regression

REGRESSION TREES

Decision Tree: The Obama-Clinton Divide

Note: a simple linear regression is too restrictive for large data sets.

Regression trees offer a flexible technique with results, which are easy to interpret

General strategy:

• The values of the explanatory variables are split into P disjunct regions (rectangles) R_1, \ldots, R_P : binary splitting

• In each rectangle we fit a simple model e.g. a constant, i.e. the forecast in rectangle R_p is the mean of all Y-values falling into this rectangle.

Source: Hastie et al. (2001)

Question: how to determine the regions?

OLS method:

$$\sum_{i=1}^{n} (y_i - x_i' b)^2 \longrightarrow min, \quad bzgl. \quad b.$$

For regression trees: $\sum_{p=1}^{P}\sum_{i\in R_p}(y_i-\hat{y}_{R_p})^2 \longrightarrow min, \quad w.r.t. \quad R_1,\ldots,R_p, \quad \text{and #f}$

where \hat{y}_{R_p} is the mean of observations in the p-th rectangle.

Note: direct optimization is hardly possible → recursive binary 5 (xi-a) = min. = a= x. splitting

Step 1

• Find the variable X_i and the splitting point s, which separates the space into two regions:

$$R_1(j,s) = \{ \mathbf{X} | X_j \le s \} \text{ and } R_2(j,s) = \{ \mathbf{X} | X_j > s \}.$$

• j and s are determined using the following objective function

$$\sum_{i: \boldsymbol{x}_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: \boldsymbol{x}_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2,$$
 where \hat{y}_{R_1} and \hat{y}_{R_2} are averages in R_1 and R_2 .

Step 2

Repeat Step 1 to split regions R_1 and R_2 recursively.

Gain Summary for Nodes

Gain Summary for Nodes											
		Node-by-Node		Cumulative							
Node	N	Percent	Mean	N	Percent	Mean					
6	30	5,9%	45,10	30	5,9%	45,10					
5	57	11,3%	31,34	87	17,2%	36,09					
3	245	48,4%	23,18	332	65,6%	26,56					
13	13	2,6%	21,45	345	68,2%	26,37					
14	11	2,2%	17,87	356	70,4%	26,11					
15	53	10,5%	17,17	409	80,8%	24,95					
11	25	4,9%	14,14	434	85,8%	24,33					
16	24	4,7%	14,04	458	90,5%	23,79					
17	14	2,8%	13,92	472	93,3%	23,50					
18	34	6,7%	9,10	506	100,0%	22,53					

- > library("tree")
- > tree.ceo = tree(salary ~ tenure + assets, data=ceo)
- > plot(ceo\$tenure,ceo\$assets, type="p", pch=20, xlab="tenure", ylab="assets")
- > partition.tree(tree.ceo, ordvars=c("tenure", "assets"), add=TRUE)

- > library("rpart")
- > rpart.ceo = rpart(salary ~ .,data=ceo,control=rpart.control(cp = 0.001))
- > fancyRpartPlot(rpart.ced

Rattle 2017-Nov-16 09:30:27 okhrinya

Note: Using CART we can grow the tree to saturation.

- Fix the maximal number of splittings and a lower bound for the number of observations per region.
- Fix the minimal change in the objective function.
- tree prunning: after the optimal tree is found, it is shortened

$$R_{\alpha}(T) = \frac{1}{\sum_{i} (y_{i} - \bar{y})^{2}} \sum_{m=1}^{|T|} \sum_{i: \boldsymbol{x}_{i} \in R_{m}} (y_{i} - \hat{y}_{R_{m}})^{2} + \alpha |T|$$

where |T| is the number of terminal nodes in a tree and α is the complexity parameter.

Key properties of CARTs

- For given α it is possible to determine the tree $T(\alpha)$ with the smallest $R_{\alpha}(T)$ uniquely
- If $\alpha > \beta$ then $T(\alpha) = T(\beta)$ or $T(\alpha)$ is a strict subtree of $T(\beta)$.

```
R=1- 2(8:-512.
> printcp(rpart.ceo)
Regression tree:
rpart(formula = salary ~ ., data = ceo, control = rpart.control(cp = 0.001, xval = 10))
Variables actually used in tree construction:
                                                    Cross- solide him
[1] age
           assets profits sales tenure totcomp
Root node error: 1323386794/447 = 2960597
         CP nsplit rel error xerror
                    0.47467 0.707920.15182
                    0.43951 0.73676 0.17353
                6
                8
```

Rr 0,63

Q: How to choose the overall optimal α or subtree? \leadsto cross-validation

• The sequence of trees T_0 (no splits) to T_m (m splits) uniquely determines the sequence of possible α 's

$$\infty, \alpha_1, \ldots, \alpha_{m-1}, \alpha_{min}$$

- Any α between $(\alpha_i, \alpha_{i+1}]$ leads to the same optimal subtree
- Define $\beta_i = \sqrt{\alpha_i \alpha_{i+1}}$ as an "average" CP for every interval
- Split the data into B subsets G_1, \ldots, G_B (10 by default)
 - For every subset excluding the G_i 's determine $T_{\beta_1}, \ldots T_{\beta_m}$
 - Compute the relative MSE as the forecast loss for elements in G_i
- Compute the average loss over all G_i 's and choose β (and thus the optimal subtree) which corresponds to the smallest one.

- > cp.min = which.min(rpart.ceo\$cptable[,4]);
- > rpart.ceo.prune=prune(rpart.ceo, cp=rpart.ceo\$cptable[cp.min,1])
- > rpart.ceo.prune\$variable.importance/sum(rpart.ceo.prune\$variable.importance)
 totcomp assets sales profits tenure age
- 0.52984007 0.18398873 0.10229360 0.09962347 0.05557637 0.02867777

Rattle 2017-Nov-16 14:56:49 okhrinya

Generalizations

- Bagging: if you use for CART just a subsample, then you obtain a completely different tree.
 - Fit a CART to B random subsamples (bootstrap).
 - The error is measured on the remaining observations out-of-bag.
 - The final forecast is:

$$\hat{f}_{avr}(oldsymbol{x}_0) = rac{1}{B} \sum_{b=1}^B \hat{f}^b(oldsymbol{x}_0).$$

> bagging.ceo= randomForest(salary ~ ., data=ceo, mtry=6)

> predict(bagging.ceo);

> cor(ceo\$salary,predict(bagging.ceo))

11 0 6180269

Universität Augsburg

Mintel - terments

Generalizations: regression trees: CART problem free will be himber it you have a Random Forests: is a generalization of Bagging dominent verible is

• For each splitting you consider not all explanatory variables bus just a subset of size $M \approx \sqrt{J}$ does not only a subset of the subset of

- terms of forecasts
- Each tree is grown on a bootstrap sample (as for bagging)
- The importance of a variable is measured by increase in (a) MSE; (b) in node impurity over the out-of-bag sample if the variable is permuted

$$\Delta MSE_{j,b} = \frac{1}{|\overline{\mathcal{B}}_b|} \sum_{k \in \overline{\mathcal{B}}_b} \hat{u}^2(x_{1k}, \dots, x_{Jk}) - \frac{1}{|\overline{\mathcal{B}}_b|} \sum_{k \in \overline{\mathcal{B}}_b} \tilde{u}^2_k(x_{1k}, \dots, x_{j-1,k}, \tilde{x}_{jk}, x_{j+1,k}, \dots, x_{Jk}),$$

where \tilde{x}_i are the randomly permuted (reordered) observations on the jth variable and $\overline{\mathcal{B}}_b$ is the bth out-of-bag subsample.

> forest.ceo= randomForest(salary ~ ., data=ceo, importance=T)

> varImpPlot(forest.ceo)

forest.ceo

forest.ceo

Partial dependence plots: visualize the marginal impact of a variable/feature

$$\tilde{f}_j(x) = \frac{1}{K} \sum_{k=1}^K \hat{f}(x_{1k}, ..., x_{j-1,k}, x, x_{j+1,k}, ..., x_{Jk})$$

> partialPlot(forest.ceo, pred.data=ceo, x.var=tenure)

Chree; CS.O

CHAID

- An alternative approach is CHAID (Chi-square Automatic Interaction Detectors): allows not only for binary splitting and is similar to ANOVA.
- Analysis is a generalization of two-sample test for the mean.
- Idea: let G be the number of splittings for variable X. We test if there is a significant difference between the means of Y in different regions.

CART - ho fests => just optimizens.

CHAID' - test. => we test the difference in the beaus for two or were rectargles with only to the presence of the presence in the beaus for two or were rectargles.

No: M:= 12 presence in the difference in th

Total sum of squares

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{g=1}^{G} \sum_{i: \boldsymbol{x}_i \in R_g} (y_i - \bar{y})^2$$

Within sum of squares

$$WSS = \sum_{g=1}^{G} \sum_{i: \boldsymbol{x}_i \in R_g} (y_i - \bar{y}_{R_g})^2$$

Between sum of squares

$$BSS = TSS - WSS = \sum_{g=1}^{G} |R_g| (\bar{y}_{R_g} - \bar{y})^2.$$

$$H_0: \mu_1 = \cdots = \mu_G$$
 vs $H_1: \mu_i \neq \mu_j$ for at least one pair i, j .

Test statistic: $F = \frac{BSS/(G-1)}{WSS/(n-G)} \sim F_{G-1,n-G}$

$$F = \frac{BSS/(G-1)}{WSS/(n-G)} \sim F_{G-1,n-G}$$

Idea:

- For each predictor we determine the optimal splitting, i.e. the regions with the smallest p-value of the test.
- The p-values should be corrected due to multiple testing (Bonferroni correction).

• The predictor with the smallest corrected p-value is used for splitting.

	_		_			Daumtabelle	,					
					Vorhergesager	Übergeordneter	Primäre unabhängige Variable					
Knoten	Mittelwert	Standardabweichung	N	Prozent	Mittelwert	Knoten	Variable	Sig.*	F	df1	df2	Werte aufteilen
0	22,53	9,182	506	100,0%	22,53							
1	32,59	8,973	126	24,9%	32,59	0	Istat	,000	210,346	3	502	<= 6,9
2	24,24	6,159	127	25,1%	24,24	0	Istat	,000	210,346	3	502	(6,9, 11,3]
3	19,36	3,572	127	25,1%	19,36	0	Istat	,000	210,346	3	502	(11,3, 17,0)
4	13,93	4,392	126	24,9%	13,93	0	Istat	,000	210,346	3	502	> 17,0
5	25,48	4,758	43	8,5%	25,48	1	m	,000	60,541	1	124	<= 6,6
6	36,28	8,419	83	16,4%	36,28	1	m	,000	60,541	1	124	> 6,6
7	21,74	4,890	56	11,1%	21,74	2	m	,000	26,209	2	124	<= 6,2
8	23,81	4,678	47	9,3%	23,81	2	m	,000	26,209	2	124	(6,2, 6,6]
9	30,89	6,717	24	4,7%	30,89	2	m	,000	26,209	2	124	> 6,6
10	22,59	3,393	17	3,4%	22,59	3	tax	,000	18,192	1	125	<= 279,0
11	18,86	3,345	110	21,7%	18,86	3	tax	,000	18,192	1	125	> 279,0
12	19,31	2,881	14	2,8%	19,31	4	nox	,000	36,153	2	123	<= ,5
13	15,72	3,623	44	8,7%	15,72	4	nox	,000	36,153	2	123	(,5, ,6]
14	11,67	3,554	68	13,4%	11,67	4	nox	,000	36,153	2	123	> ,6
15	27,59	6,544	17	3,4%	27,59	5	dis	,050	6,235	1	41	<= 5,2
16	24,10	2,367	26	5,1%	24,10	5	dis	,050	6,235	1	41	> 5,2
17	34,10	7,005	60	11,9%	34,10	6	crim	,000	17,392	1	81	<=,3
18	41,96	9,267	23	4,5%	41,96	6	crim	,000	17,392	1	81	> ,3
19	24,92	9,515	12	2,4%	24,92	7	dis	,030	7,161	1		<= 3,2
20	20,88	1,961	44	8,7%	20,88	7	dis	,030	7,161	1		> 3,2
21	36,02	6,435	11	2,2%	36,02	9	tax	,000	23,296	1		<= 279,0
22	26,55	2,738	13	2,6%	26,55	9	tax	,000	23,296	1	22	> 279,0
23	19,51	2,847	75	14,8%	19,51	11	nox	,007	9,596	1		<= ,6
24	17,47	3,911	35	6,9%	17,47		nox	,007	9,596	1		> ,6
25	17,24	3,698	24	4,7%	17,24		rad	,022	11,566	1		2,0; 5,0; 6,0; 24
26	13,90	2,596	20	4,0%	13,90		rad	,022	11,566	1		4,0
27	10,85	3,087	56	11,1%	10,85		dis	,000	22,769	1	66	<= 2,1
78	15.53	3.094	12	2.4%	16.63	14	die	000	22.769	1	66	> 2.1

The general form of a nonlinear regression is:

$$y_k = h(x_k, \beta) + u_k,$$

where $h(\cdot, \cdot)$ is some unknown function of the regressors and parameters. logy = Bo+ Bisci+ Bz xc+ U.

$$y = e^{\beta_0}e^{\beta_1x_1}e^{\beta_2x_2}e^u$$
 - can be linearized

$$y = \beta_0 + \beta_1 e^{\beta_2 x_1} + u$$
 - cannot be linearized

•
$$y = \beta_0 + \beta_1 e^{\beta_2 x_1} + u$$
 - cannot be linearized of something $y = \beta_0 + \beta_1 x_1^{\gamma} + u$ - cannot be linearized applied directly.

A popular special case of the non-linear regression is the single-index link $= h \left(\beta_0 + \beta_1 x_{ik+\dots} + \beta_j x_{jk}\right) + uk$ $y_k = h(x_k'\beta) + u_k, \quad \text{her } k - unix rick function$ model

thus h is a function of a linear combination of the regressors.

Assumptions

- as before +
- $E(\boldsymbol{u}|\boldsymbol{X}) = \boldsymbol{0}$ is replaced with $E(u_i|h(\boldsymbol{x}_i,\boldsymbol{\beta})) = 0$: if u is uncorrelated with x it still may be correlated with some function of x. In general E(u|X) = 0 is not needed.
- Identifiability of the model parameters: the model is identifiable if there is no a non-zero parameter β_0 , such that $h(x_i, \beta_0) = h(x_i, \beta)$ for all x_i .

Note: in the linear regression it is sufficient to assume rank(X'X) = J + 1. Here it is not enough.

$$rank(X'X) = J + 1. \text{ Here it is not enough.}$$

$$y = \frac{2\beta_0 + \beta_1 x_1}{\beta_2 + \beta_3 x_2} + u.$$

$$y = \frac{2\beta_0 + \beta_1 x_1}{\beta_2 + \beta_3 x_2} + u.$$

$$y = \frac{1 + \beta_1 x_1}{\beta_2 + \beta_3 x_2} + u.$$

$$y = \beta_0 + \beta_1 \cdot e^{\beta_2 + \beta_3 x_2} + u.$$

$$y = \beta_0 + \beta_1 \cdot e^{\beta_2 + \beta_3 x_2} + u.$$

$$y = \beta_0 + \beta_1 \cdot e^{\beta_2 + \beta_3 x_2} + u.$$

$$y = \beta_0 + \beta_1 \cdot e^{\beta_2 + \beta_3 x_2} + u.$$

$$y = \beta_0 + \beta_1 \cdot e^{\beta_2 + \beta_3 x_2} + u.$$

$$y = \beta_0 + \beta_1 \cdot e^{\beta_2 + \beta_3 x_2} + u.$$

$$y = \beta_0 + \beta_1 \cdot e^{\beta_2 + \beta_3 x_2} + u.$$

Estimation: the LS estimation can be used, but the asymptotic theory follows in a straightforward way from the quasi (!)

Thus the first order conditions for β are

$$\frac{\partial \mathcal{L}(y_k | \boldsymbol{x}_k, \boldsymbol{\beta}, u_k)}{\partial \boldsymbol{\beta}} = \sum_{k=1}^K (y_k - h(\boldsymbol{x}_k, \boldsymbol{\beta})) \frac{\partial h(\boldsymbol{x}_k, \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0.$$

→ mostly a highly nonlinear system of equations solved numerically. 3) in contest to B=(X|X) X / y in the Circ would.

Consequences: since the resulting $\hat{\beta}$ is a non-linear function of the residuals u_k

- ... the unbiasedness can not be proven in simple fashion;
- ... the variance of $\hat{\beta}$ is not easy to derive;_
- ... the exact distribution of $\hat{\beta}$ is not Gaussian;
- ... all the inferences, like tests, are valid only asymptotically.

but the ML estimators are consistent and efficient (they possess the smallest variance among all consistent and asymptotically normal estimators)

Where all this comes from?

• Taylor expansion of f(x) in neighborhood of x_0

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \dots$$

 \bullet Exact Taylor expansion of f(x) in neighborhood of x_0 (mean-value theorem)

$$f(x) = f(x_0) + f'(x_+)(x - x_0),$$

where x_+ lies between x and x_0 .

$$\frac{\partial \mathcal{L}(y_k|\mathbf{x}_k,\boldsymbol{\beta}_k,u_k)}{\partial \boldsymbol{\beta}}\bigg|_{\hat{\boldsymbol{\beta}}} = \frac{\partial \mathcal{L}(y_k|\mathbf{x}_k,\boldsymbol{\beta}_k,u_k)}{\partial \boldsymbol{\beta}}\bigg|_{\boldsymbol{\beta}} + \frac{\partial^2 \mathcal{L}(y_k|\mathbf{x}_k,\boldsymbol{\beta}_k,u_k)}{\partial \boldsymbol{\beta}\partial \boldsymbol{\beta'}}\bigg|_{\boldsymbol{\beta}_+} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$

 $\sqrt{K}(\hat{\beta} - \beta) = -\left(\frac{\partial^2 \mathcal{L}(y_k|\boldsymbol{x}_k, \boldsymbol{\beta}_k, u_k)}{\partial \beta \partial \beta'}\bigg|_{\boldsymbol{\beta}_+}\right)^{-1} \sqrt{K} \frac{\partial \mathcal{L}(y_k|\boldsymbol{x}_k, \boldsymbol{\beta}_k, u_k)}{\partial \beta}\bigg|_{\boldsymbol{\beta}}$ where parameters $\sqrt{K}(\hat{\beta} - \beta) \stackrel{approx}{\sim} N(\mathbf{0}, \mathbf{A}^{-1} \mathbf{B} \mathbf{A}^{-1})$ he restricted to the second of the second of

Example:

- Model 1 : $y = \beta_0 + \beta_1 x + u$
- Model 2: $y = \beta_0 + \beta_1 x^{\beta_2} + u$

connet be linearized

live mely -> non-linear lant-3;

> z2 = x2 (y~ b0+b1*x^b2, start=list(b0=0, b1=1, b2=2))

> summary(z1)

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.44547 0.09694 4.595 1.29e-05 *** 0.09787 28.488 < 2e-16 *** 2.78805

Residual standard error: 0.604 on 98 degrees of freedom Multiple R-squared: 0.8923. Adjusted R-squared: 0.8912

F-statistic: 811.5 on 1 and 98 DF. p-value: < 2.2e-16

> summary(z2)

Formula: $v \sim b0 + b1 * x^b2$

Parameters:

Estimate Std. Error t value Pr(>|t|) <2e-16 *** b0 1.08702 0.09345 11.63 b1 1.77926 0.13041 13.64 <2e-16 *** h2 1.56810 0.08382 18.71 <2e-16 ***

Residual standard error: 0.4678 on 97 degrees of freedom

Number of iterations to convergence: 5 Achieved convergence tolerance: 2.905e-06

dox to the frue So A BZ True model: $y = 1 + 2x^{1.5} + u$, $u \sim N(0, 0.5^2)$.

Tured to simulate the date

= look a (residueds !!

I from liner model

Note: that B1 = 2,78805 from the linear model

has as relationship to Bland Bzin

the was linear model

Augsburg

 $Im(y \sim x)$

LR: by date: fist estimek the model \$50, ... \$57 = only after this the model of the street of which a which a change of the street of unreliefle selection.

K-mil; J-by = low precision > many 15's insignificant > unreliefle selection.

Lasso regression

Men: model selection and critication similareally Problems:

- accuracy: In K is much larger than J, then the variances are small and the inferences are precise. Low number of observations per parameter implies general high variability.
- interpretability: In large data sets there always irrelevant variables which make the economic interpretability difficult.
- sparsity: only a subset of the explanatory variables is relevant economically and statistically.

Solution: stepwise variable selection procedures based on statistical properties of the estimators or lasso regression

Idea: minimize the sum of squared residuals with constrains on the parameters.

The objective function of the OLS procedure is replaced with $\sum_{i=1}^{K} (y_k - \beta_0 - \sum_{i=1}^{J} \beta_j x_{kj})^2 + \lambda \sum_{i=1}^{J} |\beta_j| \longrightarrow min, \text{ w.r.t } \beta_j\text{'s}$ In forces some of B do acome as in the OLS : Buc Text was A-quadratic in A's 2-large => strict pendization. - Time Als are zero OLS endinator 20-smll =) soft pendinho, 2=0 7016 B2=0 /3= max B = defines the E /Pil set with

Note:

• The problem is equivalent to the following problem, i.e. for each λ there exists s such that both problems lead to the same lasso-coefficients.

- Minimizing the objective is not trivial and there many specific numerical methods developed for this purpose.
- Selecting a good value for $\underline{\lambda}$ is crucial. The optimal value is chosen by cross-validation.

Special case

Assume an individual constant for each observation:

ant for each observation:
$$\sum_{k=1}^{K} (y_k - \beta_k)^2$$

replace out of by a significant point of the property of the property

with the OLS solution $\hat{\beta}_k = y_k$.

With lasso we obtain:

obtain:
$$\sum_{k=1}^{K} (y_k - \beta_k)^2 + \lambda \sum_{k=1}^{K} |\beta_k| \longrightarrow min$$

with the solution
$$\hat{\beta}_k^{(lasso)} = \begin{cases} y_k - \lambda/2, & \text{if } y_k \geq \lambda/2 \\ y_k + \lambda/2, & \text{if } y_k \leq -\lambda/2 \\ 0, & \text{if } |y_k| \leq \lambda/2 \end{cases}$$
 Statistics for CS|DSQUCU — Yarema Okhrin 382 Universität Augsburg


```
> lasso.coef = predict(lasso, type="coefficients", s=cv.lasso$lambda.min);
                                                             of which minimizes
> lasso.coef
16 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) -4.392079e+02
          -4.250433e+00
lat
           4.017435e+00
                                               other are sauller, than OLS
(in most of the aures)
crim
           -9.553123e-02
            4.149031e-02
           -1.432740e+01
             3.816713e+00
rm
age
dis
rad
            2.572257e-01
tax
           -1.071061e-02
ptratio -8.520927e-01
           8.974756e-03
lstat
           -5.326668e-01
```