

OPERATING AND SERVICE MANUAL

MODEL 493A/495A MICROWAVE AMPLIFIER

SERIALS PREFIXED: 350-, 330-, 304-,
229-, 151-, 142-

COPYRIGHT HEWLETT-PACKARD COMPANY 1963
1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.

TABLE OF CONTENTS

Section	Title	Page	Section	Title	Page
I	GENERAL INFORMATION	1-1	V	MAINTENANCE	5-1
1-1.	Introduction	1-1	5-1.	Air Filter Maintenance	5-1
1-3.	Description	1-1	5-6.	Panel Removal	5-1
1-11.	Instrument Option	1-1	5-8.	Top and Bottom Panels	5-1
1-13.	Instrument Identification	1-1	5-9.	Side Panels	5-1
I-15.	Cooling System	1-1	5-10.	Test Equipment Required	5-3
1-17.	Three-Conductor Power Cable. . .	1-1	5-12.	Troubleshooting Procedure	5-3
1-20.	Increasing Tube Life	1-1	5-14.	Repair	5-3
1-22.	Traveling-Wave Amplifier Tube . .	1-1	5-20.	TWT Removal	5-3
II	INSTALLATION	2-1	5-21.	TWT Installation	5-5
2-1.	Air Filter	2-1	5-22.	TWT Voltage Adjustments	5-5
2-3.	Mechanical Inspection	2-1	5-24.	Filament Adjustment	5-5
2-5.	Installation	2-1	5-25.	Collector/Helix Adjustments	5-5
2-7.	Conversion to Rack Mount	2-1	5-26.	Anode Adjustment	5-5
2-9.	Power Requirements	2-2	5-27.	-350 Volt Adjustment	5-5
2-11.	Repackaging for Shipment.	2-2	5-28.	Grid Voltage	5-8
III	OPERATION	3-1	5-29.	Optimizing TWT Element Voltages to Obtain Proper Power Ampl..	5-8
3-1.	Introduction	3-1	5-31.	Modulator Adjustment	5-9
3-3.	Front Panel Controls	3-1	5-32.	Frequency Response	5-8
3-8.	Operating Instructions	3-1	5-33.	Bandwidth	5-9
3-10.	Microwave Amplifier Applications .	3-1	5-34.	Performance Check	5-9
IV	CIRCUIT DESCRIPTION	4-1	5-36.	Power Amplification Check	5-9
4-1.	Introduction	4-1	5-37.	Gain Control Power On-Off Ratio	5-9
4-3.	Overall Description	4-1	5-38.	Modulator On-Off Ratio	5-11
4-6.	Traveling Wave Amplifier Tube . .	4-1	5-39.	Residual AM Check	5-11
4-9.	Regulated High Voltage Power Supply	4-3	5-40.	Modulator Frequency Response	5-11
4-16.	+300 Volt Regulation Circuit . . .	4-3	5-41.	SWR Check	5-12
4-18.	Modulator	4-5	5-44.	Frequency Range Conversion	5-12
4-23.	Relay Sequence	4-6	VI	REPLACEABLE PARTS	6-1
4-27.	Regulated Filament Supply	4-6	6-1.	Introduction	6-1
			6-4.	Ordering Information	6-1

LIST OF ILLUSTRATIONS

Number	Title	Page	Number	Title	Page
1-1.	The Model 495A Microwave Amplifier . .	1-0	5-1.	Panel Removal	5-1
1-2.	TWT Warranty Claim Sheet	1-2	5-2.	Troubleshooting Chart	5-4
2-1.	Cabinet to Rack Mount Conversion . . .	2-1	5-3.	Model 493A Top View	5-6
3-1.	Turn-On Procedure	3-2	5-4.	Model 493A Bottom View	5-7
3-2.	Amplitude Modulation	3-3	5-5.	Power Amplification Setup	5-8
3-3.	RF Leveler Setup	3-4	5-6.	Frequency Response Setup	5-9
4-1.	Model 493A/495A Block Diagram	4-1	5-7.	Bandwidth Setup	5-10
4-2.	TWT and How it Works	4-2	5-8.	Modulator On-Off Ratio	5-10
4-3.	Block Diagram of Regulated High Voltage Power Supply	4-4	5-9.	Residual AM Check	5-11
4-4.	Block Diagram of Modulator	4-4	5-10.	Filament Circuit (Schematic)	5-13
4-5.	Relay Sequence	4-5	5-11.	High Voltage Board (A1)	5-14
			5-12.	High Voltage Power Supply (Schematic)	5-15
			5-13.	Modulator Board (A400)	5-16
			5-14.	Modulator (Schematic)	5-17

LIST OF TABLES

Number	Title	Page
1-1.	Specifications	1-0
5-1.	Test Equipment Required	5-2
5-2.	TWT Lead Identification	5-5
6-1.	Reference Designation Index	6-2
6-2.	Replaceable Parts	6-9

Figure 1-1. The Model 495A Microwave Amplifier
(The Model 493A Microwave Amplifier is exactly the same in its physical construction)

Table 1-1. Specifications

FREQUENCY RANGE:

Model 493A: 4 to 8 Gc
Model 495A: 7 to 12.4 Gc

POWER OUTPUT: 1 watt or greater with 1-mw or less input

GAIN: 30 db or greater with 1-mw or less input

GAIN VARIATION WITH FREQUENCY:

At 1-watt output: 6 db or less across the band.
Small Signal: 5 db or less across any 10% of the band, except the 495A, which is across any 300 MHz of the band. 10 db or less across the band, except the 493A which is 12 db or less across the band

GAIN VARIATION WITH LINE VOLTAGE: 1 db or less for $\pm 10\%$ variation from rated line voltage

MAXIMUM RF INPUT: 100 mw

INPUT/OUTPUT CHARACTERISTICS:

Impedance: 50 ohms
SWR: 2.5 or less (cold)

CONNECTORS: Type N female

AMPLITUDE MODULATION:

Sensitivity: A modulation input of -20 V peak or greater reduces the RF output by more than 20 db from dc to 50 kc. Above 50 kc modulation decreases approximately 6 db per octave

Residual AM: At least 45 db below modulated output

NOISE:

Noise Figure: 30 db or less
Noise Power Output: 0 dbm or less

FRONT PANEL CONTROL:
Gain; varies grid voltage

METER: Monitors cathode current

DIMENSIONS:

NOTES:

DIMENSIONS IN INCHES AND (MILLIMETERS)
④ EIA RACK HEIGHT (INCLUDING FILLER STRIP) $16 \frac{3}{8}$ (425) TO
EIA RACK HEIGHT
⑤ REAR APRON RECESS

</div

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This manual provides instructions for installation, operation, circuit description, and maintenance of the \oplus Models 493A and 495A Microwave Amplifiers. The manual applies directly to instruments which carry the serial number prefix indicated on the title page. The Model 495A Microwave Amplifier is shown in figure 1-1. Specifications for both instruments are given in table 1-1.

1-3. DESCRIPTION.

1-4. The \oplus Models 493A and 495A are broadband linear amplifiers that provide signal amplification to at least 30 db. The Model 493A covers the 4.0 to 8.0 gc range; the Model 495A covers the 7.0 to 12.4 gc range. Both instruments produce at least 1 watt at the output with the application of 1 milliwatt or less at the input.

1-5. The Models 493A and 495A output can be amplitude modulated. Externally supplied modulation signals are applied to the MOD INPUT. Since the modulation circuit is dc coupled, an external leveler circuit can be connected at the MOD INPUT to obtain relatively flat power output across the band.

1-6. The Models 493A and 495A require no tuning and are particularly useful for signal amplification over a broad band of frequencies. The GAIN control is the only variable front panel control. It controls rf signal amplification and average rf power output.

1-7. The Models 493A and 495A traveling-wave amplifier tubes (twt's) utilize periodic permanent magnet focusing, thus they are lightweight, compact and consume less power than solenoid focused twt's.

1-8. An instrument in one frequency range can be converted to an instrument in another frequency range, since both the Models 493A and 495A are identical except for traveling-wave amplifier tube.

1-9. Since the Models 493A and 495A are identical except for the twt, the manual will be discussed in terms of the Model 493A. The Model 495A will be mentioned only when its operation differs from that of the Model 493A.

1-10. The Model 493A uses a modular design which includes a kit that allows conversion to either a cabinet or rack mount configuration.

1-11. INSTRUMENT OPTION.

1-12. The option 01 Model 493A microwave amplifier RF INPUT and OUTPUT connectors are located on the rear panel. In all other respects the option 01 microwave amplifier is the same as a regular microwave amplifier.

1-13. INSTRUMENT IDENTIFICATION.

1-14. Hewlett-Packard uses a two-section eight-digit serial number (000-0000). If the first three digits of the serial number on your instrument do not agree with those on the title page of this manual, change sheets supplied with the manual will define differences between your instrument and the Model 493A described in this manual.

1-15. COOLING SYSTEM.

1-16. The Model 493A uses the forced air method for obtaining the desired temperature within the instrument. Incoming air is filtered through a specially treated filter at the rear of the instrument. The air filter should be checked periodically and if dirty, cleaned. A dirty air filter will affect instrument performance as well as component life. Refer to paragraph 5-1 for air filter maintenance.

1-17. THREE-CONDUCTOR POWER CABLE.

1-18. To protect operating personnel, the National Electrical Manufacturers' Association (NEMA) recommends that the instrument panel and cabinet be grounded. All Hewlett-Packard instruments are equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable's three-prong connector is the green grounding wire.

1-19. To preserve the protection feature when operating the instrument from a two-contact outlet, use a three-prong to two-prong adapter and connect the green pigtail on the adapter to ground.

1-20. INCREASING TUBE LIFE.

1-21. The cathode of the traveling-wave amplifier tube has a shorter cathode life than those used in conventional types of tubes. In addition, the traveling-wave amplifier tube is expensive. TURN THE INSTRUMENT OFF WHEN NOT IN USE.

1-22. TRAVELING-WAVE AMPLIFIER TUBE (TWT).

1-23. The twt supplied with the microwave amplifier and replacement twt's purchased from Hewlett-Packard Company are guaranteed against electrical failure for a specified period (either period of time from date of purchase or number of hours of instrument operation). For information regarding warranty contact your local Hewlett-Packard field office. A sheet for your use is included in the appendix of this manual.

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This manual provides instructions for installation, operation, circuit description, and maintenance of the \oplus Models 493A and 495A Microwave Amplifiers. The manual applies directly to instruments which carry the serial number prefix indicated on the title page. The Model 495A Microwave Amplifier is shown in figure 1-1. Specifications for both instruments are given in table 1-1.

1-3. DESCRIPTION.

1-4. The \oplus Models 493A and 495A are broadband linear amplifiers that provide signal amplification to at least 30 db. The Model 493A covers the 4.0 to 8.0 gc range; the Model 495A covers the 7.0 to 12.4 gc range. Both instruments produce at least 1 watt at the output with the application of 1 milliwatt or less at the input.

1-5. The Models 493A and 495A output can be amplitude modulated. Externally supplied modulation signals are applied to the MOD INPUT. Since the modulation circuit is dc coupled, an external leveler circuit can be connected at the MOD INPUT to obtain relatively flat power output across the band.

1-6. The Models 493A and 495A require no tuning and are particularly useful for signal amplification over a broad band of frequencies. The GAIN control is the only variable front panel control. It controls rf signal amplification and average rf power output.

1-7. The Models 493A and 495A traveling-wave amplifier tubes (twt's) utilize periodic permanent magnet focusing, thus they are lightweight, compact and consume less power than solenoid focused twt's.

1-8. An instrument in one frequency range can be converted to an instrument in another frequency range, since both the Models 493A and 495A are identical except for traveling-wave amplifier tube.

1-9. Since the Models 493A and 495A are identical except for the twt, the manual will be discussed in terms of the Model 493A. The Model 495A will be mentioned only when its operation differs from that of the Model 493A.

1-10. The Model 493A uses a modular design which includes a kit that allows conversion to either a cabinet or rack mount configuration.

1-11. INSTRUMENT OPTION.

1-12. The option 01 Model 493A microwave amplifier RF INPUT and OUTPUT connectors are located on the rear panel. In all other respects the option 01 microwave amplifier is the same as a regular microwave amplifier.

1-13. INSTRUMENT IDENTIFICATION.

1-14. Hewlett-Packard uses a two-section eight-digit serial number (000-00000). If the first three digits of the serial number on your instrument do not agree with those on the title page of this manual, change sheets supplied with the manual will define differences between your instrument and the Model 493A described in this manual.

1-15. COOLING SYSTEM.

1-16. The Model 493A uses the forced air method for obtaining the desired temperature within the instrument. Incoming air is filtered through a specially treated filter at the rear of the instrument. The air filter should be checked periodically and if dirty, cleaned. A dirty air filter will affect instrument performance as well as component life. Refer to paragraph 5-1 for air filter maintenance.

1-17. THREE-CONDUCTOR POWER CABLE.

1-18. To protect operating personnel, the National Electrical Manufacturers' Association (NEMA) recommends that the instrument panel and cabinet be grounded. All Hewlett-Packard instruments are equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable's three-prong connector is the green grounding wire.

1-19. To preserve the protection feature when operating the instrument from a two-contact outlet, use a three-prong to two-prong adapter and connect the green pigtail on the adapter to ground.

1-20. INCREASING TUBE LIFE.

1-21. The cathode of the traveling-wave amplifier tube has a shorter cathode life than those used in conventional types of tubes. In addition, the traveling-wave amplifier tube is expensive. TURN THE INSTRUMENT OFF WHEN NOT IN USE.

1-22. TRAVELING-WAVE AMPLIFIER TUBE (TWT).

1-23. The twt supplied with the microwave amplifier and replacement twt's purchased from Hewlett-Packard Company are guaranteed against electrical failure for a specified period (either period of time from date of purchase or number of hours of instrument operation). For information regarding warranty contact your local Hewlett-Packard field office. A sheet for your use is included in the appendix of this manual.

SECTION II

INSTALLATION

2-1. AIR FILTER.

2-2. This instrument is equipped with a renewable type air filter. When first unpacking and placing the instrument into service the filter must be coated with a dirt gathering adhesive to make it effective. While light machine oil is satisfactory, we recommend a water-soluble adhesive such as "Super Filter Coat" manufactured by Research Products Corporation of Madison 1, Wisconsin.

2-3. MECHANICAL INSPECTION.

2-4. Unpack the instrument upon receipt and inspect it for signs of physical damage such as scratched panel surfaces, broken knobs, etc. The Model 493A should be checked electrically. Section V includes a performance check which is an in-cabinet check to verify proper operation and is a good test as part of incoming inspection. If there is any apparent damage, file a claim with the carrier and refer to the warranty page in this manual.

2-5. INSTALLATION.

2-6. The Model 493A is of modular design. It is shipped as a cabinet instrument. A kit is included

with the instrument for conversion from cabinet to rack mount configuration (see paragraph 2-7, Conversion to Rack Mount).

Note

The instrument fan is located on the rear panel. Make provisions to insure that the instrument obtains sufficient air. The ambient temperature within the instrument should not be greater than 35°C.

2-7. CONVERSION TO RACK MOUNT.

2-8. To convert the Model 493A to a rack-mounted instrument, proceed as follows (see Figure 2-1):

- a. Remove adhesive-backed trim strip from sides of instrument.
- b. Remove tilt stand by pressing the two sides of the stand toward center of instrument.
- c. Remove plastic feet by pressing button in center of each foot and sliding the foot toward center of instrument.
- d. Attach filler strip to bottom of instrument.

Figure 2-1. Cabinet to Rack Mount Conversion

- e. Add filler strip to bottom of instrument.

2-9. POWER REQUIREMENTS.

2-10. The Model 493A is usually shipped connected for 115-volt, 50 to 60 cps operation. To convert to 230-volt, 50 to 60 cps operation:

- a. Move slide switch in the rear of the instrument to the 230-volt position (when properly positioned switch will read 230 volts). See figure 2-2.

CAUTION

NEVER SWITCH THE 115-230 VOLT SWITCH S2 FROM ONE POSITION TO THE OTHER WHEN THE INSTRUMENT IS IN OPERATION.

- b. Replace the 3-ampere standard fuse with a 1-1/2 ampere standard fuse.

2-11. REPACKAGING FOR SHIPMENT.

2-12. The following list is a general guide for re-packaging an instrument for shipment. However, if you have any questions, contact your Hewlett-Packard Engineering Representative.

- a. If possible, use the original container designed for the instrument.
- b. Wrap the instrument in heavy paper or plastic before placing it in the shipping container.
- c. Use plenty of packing material around all sides of the instrument and protect panel faces with cardboard strips.
- d. Use a heavy cardboard carton or wooden box to house the instrument and use heavy tape or metal bands to seal the container.
- e. Mark the packing box with "Fragile", "Delicate Instrument", etc.

SECTION III

OPERATION

3-1. INTRODUCTION.

3-2. The Model 493A Microwave Amplifier has only one control, the GAIN control; thus it is easy to operate. The GAIN control and input and output connectors are explained under paragraph 3-3.

CAUTION

The instrument should not be allowed to remain in operation for long periods of time without fan duct and panels. Ambient temperature within instrument will increase causing excessive helix current to flow.

3-3. FRONT PANEL CONTROLS.

3-4. GAIN CONTROL. The GAIN control sets the gain of the amplifier. Maximum input-vs-output gain of the instrument is at least 30 db for outputs up to 1 watt. With a signal applied at the microwave amplifier input the only way to insure zero output is to place the instrument on STANDBY.

3-5. CURRENT METER. The current meter monitors cathode current. The instrument has a gain of at least 30 db for outputs up to 1 watt when the GAIN control is adjusted to within the RATED POWER limits indicated on the meter.

3-6. RF INPUT AND OUTPUT. An rf signal, up to 100 milliwatts, in the 4.0 to 8.0 gc range (7.0 to 12.4 gc for the Model 495A) is applied to the RF INPUT. Input and output impedance is 50 ohms at rf frequencies; infinity at dc. SWR is less than 3:1.

CAUTION

DO NOT APPLY AN INPUT SIGNAL BEFORE APPLYING AN EXTERNAL LOAD AT THE RF OUTPUT. THE TWT CAN BE DAMAGED.

3-7. MODULATION INPUT. The MOD INPUT accepts externally applied dc to 500 kc signals up to 10 volts in amplitude, or dc to 100 kc signals up to -20 volts in amplitude. Modulation signal amplitudes of -20 volts will produce a modulation on-off ratio of at least 20 db. Since the modulator is dc coupled, an rf power leveler circuit can be applied between the RF POWER OUTPUT and MOD INPUT (see paragraph 3-16). Under no circumstances should the modulation voltage be allowed to go positive unless GAIN is reduced accordingly. In other words, peak cathode current must not exceed RATED POWER level.

3-8. OPERATING INSTRUCTIONS.

3-9. Turn-on and amplitude modulation procedures are given in figures 3-1 and 3-2.

3-10. MICROWAVE AMPLIFIER APPLICATIONS.

3-11. The Model 493A is used for broadband or narrow-band power amplification and amplitude modulation. An external rf leveler circuit can be employed where relatively constant output power is required.

3-12. BROADBAND AMPLIFICATION. The Model 493A will faithfully amplify many broadband signals such as those employed in radar, television relays and microwave carrier systems. In addition to this broadband feature, it has a linear amplification characteristic over the frequency range.

3-13. Of the many broadband applications of the Model 493A, some of the most useful are: 1) investigation of information handling capacity in broadband microwave communications systems, 2) amplification of low-frequency harmonics to produce frequency markers used in microwave-frequency measurements.

3-14. NARROWBAND AMPLIFICATION. The Models 493A and 495A can be used for narrowband amplification at any one point across the 4.0 to 12.4 gc range. Noise can be greatly reduced by employing a narrow bandpass filter in conjunction with the Models 493A and 495A Microwave Amplifiers.

3-15. POWER AMPLIFICATION. The Model 493A can be used as a moderate power, broadband signal source by amplifying the low power output of klystron signal generators in the 4.0 to 12.4 gc range. Thus a microwave source-amplifier combination can be used in many applications where a generous amount of microwave power is required. Typical applications are 1) wide-range antenna measurements to plot patterns to determine efficiency, directivity, etc., 2) portable low-cost means of providing moderate power microwave-signal sources for field-testing a microwave installation.

3-16. CONSTANT OUTPUT AMPLIFICATION. Many amplifier applications require a constant output level characteristic. Although the Model 493A traveling-wave amplifier tube's saturated output characteristic can be used to provide nearly constant power output, the use of feedback circuitry provides a more versatile and effective means of control. One such arrangement for obtaining relatively constant rf output power is shown in figure 3-3. In this circuit a portion of the rf signal is coupled from the traveling-wave amplifier tube output, through a directional coupler to a detector such as a crystal rectifier. The detected rf output is then amplified and applied to the MOD INPUT. With this arrangement any tendency for the output-power level to increase is immediately detected, amplified, and fed back to reduce the gain of the amplifier. Conversely, any reduction in output level increases the

CAUTION

NEVER APPLY POWER TO THE MODEL 493A/495A INPUT UNLESS ITS OUTPUT IS TERMINATED INTO A 50-OHM LOAD. THE TWT CAN BE DAMAGED.

1. Set LINE switch to ON. The STANDBY lamp glows. Approximately 90 seconds later the ON lamp will glow and the instrument is ready for normal operation. If the Model 493A/495A is placed in the STANDBY position, the STANDBY lamp will glow. Approximately 90 seconds later high voltage will be applied to the instrument only when the primary power switch is set from STANDBY to ON. The purpose of the STANDBY position is to instantly turn rf power output "on" or "off" after initial turn-on without waiting for the initial 90-second time delay.

Note

The instrument should be turned to ON and allowed to warm up for 30 minutes before proceeding to step 2.

2. Rotate GAIN control clockwise to within RATED POWER indicated on meter (full clockwise). With the CURRENT meter pointer set within normal meter limits, a maximum of 1 mw at the input produces a minimum of 1 watt at the output across the frequency range. Small signal

gain is at least 30 db. A constant 1-mw signal at the input of the Model 493A/495A across the band produces an amplified power output variation across the band of 6 db or less.

Note

If excessive helix current is drawn by the twt, the overload relay K3 will energize, removing high voltage from the circuit. Also if the filament voltage is not correct, the fail-safe relay K304 will energize, removing high voltage and filament voltage from the circuit. In such cases, the primary power switch must be switched off, then on again. If condition persists remove the power from the instrument and troubleshoot.

3. Connect Model 493A/495A OUTPUT to the instrument into which the amplified signal is to be applied.
4. Apply rf power to the Model 493A/495A INPUT. The maximum allowable power than can be applied to the Model 493A/495A INPUT is 100 mw.

Figure 3-1. Turn-On Procedure

1. Rotate the GAIN control full clockwise.
2. Apply a negative-going signal to the MOD INPUT. Specifications: bandpass for small signal inputs dc to 500 kc; bandpass for large signal inputs dc to 100 kc. Small signal inputs are from 0 to -10 volts; large signal inputs -10 to -20 volts. Bandwidths are measured at the grid of the twt.

Note

Peak cathode current must not be allowed to exceed RATED POWER level. If the MOD INPUT voltage is positive during any part of the modulation cycle, GAIN must be reduced accordingly.

Figure 3-2. Amplitude Modulation

gain of the amplifier to hold the output level constant. In practice, output levels can be held within 1 db during input signal variations as great as 20 db.

Note

The limitations to the degree of leveling obtainable is determined by errors introduced by crystal detector and directional coupler.

3-17. BUFFER OR ISOLATION. The ϕ Model 493A Microwave Amplifier can also be used as a buffer between a microwave-signal source and an external load. As a buffer it isolates load reflections from the signal source and eliminates the problems which occur when the source is modulated directly.

3-18. AMPLITUDE MODULATION. The Model 493A is particularly suitable for use in power amplifier systems. This feature opens new fields of application since it is not possible to amplitude modulate a reflex klystron directly. Furthermore, the traveling wave amplifier tube's use as a power amplifier means that rf output from a microwave oscillator can be sine wave,

pulse, or pulse-train modulated without starting delays and jitter generally present when the oscillator itself is modulated. Thus, in addition to amplification the traveling-wave amplifier tube provides a simple system of amplitude modulation.

Figure 3-3. RF Leveler Setup

SECTION IV

CIRCUIT DESCRIPTION

4-1. INTRODUCTION.

4-2. The Models 493A and 495A circuitry is the same. Only the traveling-wave amplifier tube (twt) types are different. However, the basic traveling-wave tube explanation given in this section applies for both the Models 493A and 495A twt types.

4-3. OVERALL DESCRIPTION.

4-4. A block diagram of the Model 493A is shown in figure 4-1. The purpose of the Model 493A Microwave Amplifier is to provide a means of amplifying a signal in the 4.0 to 8.0 gc range (7.0 to 12.4 gc range for the Model 495A), to control the amount of amplification produced, and to supply external modulation facilities for the amplified signal.

4-5. The signal is applied to the microwave amplifier input, amplified, and taken at the output of the traveling-wave amplifier tube (twt). All voltages required by the twt are supplied by the regulated high-voltage power supply and the modulator. The regulated high-voltage power supply supplies collector, helix, and anode voltages to the twt. The modulator supplies voltages to the grid of the twt. Power gain of the twt is controlled by the modulator GAIN control. Positive

voltage for the modulator is supplied through a +300-volt regulator circuit which maintains +300 at modulator; negative voltage is supplied by the modulator power supply. Cathode current is monitored by the current monitoring meter M201.

4-6. TRAVELING WAVE AMPLIFIER TUBE.

4-7. The traveling-wave amplifier tube used in the Model 493A/495A includes an electron gun which projects a focused beam through a helically-wound coil to a collector electrode (shown in figure 4-2). The focused electrons are held in a pin-like beam through the helix by the periodic permanent magnet focusing which produces a powerful magnetic field along the full length of the tube.

4-8. The rf signal coupled into the gun end of the helix travels around the turns of the helix and thus has its linear velocity reduced by an amount equal to the ratio of the length of wire in the helix to the length of the helix itself. The electron beam velocity, determined by the potential difference between the cathode and the helix, is adjusted so that the electron beam travels a little faster than the rf signal. The electric field of the rf signal on the helix interacts with the

Figure 4-1. Model 493A/495A Block Diagram

Figure 4-2. TWT and How it Works

electron field created by the electron beam and increases the amplitude of the signal on the helix, thus producing the desired amplification.

Note

The ceramic magnets used in twt, 493A will defocus the electron beam if ambient temperature of the instrument exceeds 35°C. Thus with twt operating above this temperature poor power amplification performance can be expected.

4-9. REGULATED HIGH VOLTAGE POWER SUPPLY.

4-10. A block diagram of Regulated High Voltage Power Supply is shown in figure 4-3. The regulated high-voltage power supply is a series regulated power supply that includes series regulator V1/V2, reference tubes V3, V4, and differential amplifier V5.

4-11. The series regulator V1/V2 is connected in series with the main load. A regulated output voltage is obtained by varying the internal resistance of the series regulator to compensate for variations in load current and source voltage.

4-12. Initially the voltage at the grid of V5B sets the conduction of the series regulator which in turn sets the output voltage level. When the output voltage varies from the level set by the high voltage level adjust R57, these variations are sensed at the grid of V5A/B. The resultant signal is amplified and sent to the series regulator. The series regulator resistance varies to maintain the output voltage constant.

4-13. C12 and C13 (see figure 5-12) are part of the bypass and filter circuits at the output of the regulator tubes V3, V4. C15 couples ac ripple directly to the grid of V5, thus decreasing ripple voltage by lowering dynamic impedance.

4-14. A voltage doubler which includes CR7 through CR20 and C11A/B produces approximately 2.9 to 3.4 kv at normal line voltage. The actual high voltage output is dependent on how the transformer T1 has been connected (see table, figure 5-12).

4-15. CATHODE CURRENT ADJ. The cathode current adj R53, is connected in a resistive string from the high-voltage power supply regulated output to ground. When an anode type tube is used, adjustment of R53 sets the voltage on the anode thus setting beam current. The anode voltage is set to the value that will produce at least 1 watt at the RF OUTPUT with the application of 1 milliwatt or less at RF INPUT. R53 is inoperative for those tubes that do not have an anode.

4-16. +300 VOLT REGULATION CIRCUIT.

4-17. This regulated power supply includes the +300 volt regulator V6, and +300 volt control tube V8. The circuit is a series regulated supply similar in operation to that of the high voltage power supply. The supply derives its voltage from the regulated high voltage power supply and thus produces a nearly ripple free highly regulated voltage to the modulator. There is no control for adjustment of the +300 volt modulator power

supply. All components are fixed to provide the +300 volt output to the modulator regardless of the high voltage power supply output. The -350 volt supply is the reference for the +300 volt regulated power supply.

4-18. MODULATOR.

4-19. A block diagram of the modulator is shown in figure 4-4. The modulator includes an amplifier circuit and a regulated power supply. The amplifier circuit is a dc coupled circuit that sets the gain characteristics of the traveling-wave amplifier tube and accepts externally applied amplitude modulation signals from dc to 500kc (dc to 100 kc for large signals). The regulated power supply provides -350 volts to the amplifier circuit and high voltage power supply.

4-20. AMPLIFIER CIRCUIT. The amplifier circuit includes Differential Amplifier V403, Output Amplifier V404, and Hold-off Transistor Q401. External modulation signals are applied through the A section of the Differential Amplifier V403, to the output amplifier V404. The V404 output is applied to the grid of the traveling-wave tube. Degenerative feedback is supplied from the output of V404 to V403 to increase stability and frequency response.

4-21. Gain of the TWT (average rf output level) is set by adjusting the GAIN control in the B section of the Differential Amplifier V403. The voltage at the grid of the TWT is set at some negative potential. The Gain Limit Adj control R418 sets the highest positive voltage on the grid of the TWT. Hold-off transistor Q401 protects the TWT from a transient when the instrument is switched from STANDBY to ON. Normally, the application of a step-function positive voltage when turning on the +300 volt supply to the modulator would result in a positive transient spike to the TWT grid. This transient spike would cause excess helix current to be drawn and the helix overload relay to operate. To protect the instrument the Hold-off Transistor Q401 applies a positive voltage to V403B during the stand-by period. This positive voltage saturates V403B holding V404 in a condition such that the voltage applied to the grid of the TWT is negative. This action takes place whenever the voltage on the base of Q401 (an npn transistor) drops. This drop in voltage causes Q401 to cut-off. When Q401 is cut off the only voltage applied to CR403 is the voltage developed through R414, R415, and R431. This positive voltage is applied through CR403, since CR403 will now be forward-biased, to the grid of V403B. When the instrument is switched from STANDBY to ON the positive voltage from the +300 volt supply is applied to the base of Q401 through R416 and R417. This positive voltage turns Q401 on, causing current to flow from the -350 volt supply through R417, Q401, and R415 to CR403. This negative voltage will back-bias CR403 causing it to open and disconnect the hold-off circuitry. The instrument is now back to its normal operating condition.

4-22. -350 VOLT REGULATED POWER SUPPLY. The regulated power supply is a conventional series regulated power supply that provides -350 volts for the amplifier circuit. The circuit includes the series regulator V401A, control tube V401B, and reference tube V402. The -350 V Adj control R405 is used to set the regulated voltage output of the supply.

Figure 4-3. Block Diagram of Regulated High Voltage Power Supply

Figure 4-4. Block Diagram of Modulator

4-23. RELAY SEQUENCE.

4-24. A simplified illustration of the relay sequence is shown in figure 4-5. When the Model 493A is first turned to ON, power is applied to the transformer T2. Filament voltage is applied to all tubes in the instrument as well as to the 90-second time delay relay K1. After 90 seconds have elapsed, relay K1 will close, completing current flow path for delay slave relay K2. The relay K2 will energize: 1) completing the current path to the high voltage transformer T1, and 2) it will act as a holding relay for itself by bypassing the contacts at the time delay relay K1. The instrument is now operating normally. V1, V2, and V5 filaments and relays K1, K2, and K3 are held 200 volts above the helix.

4-25. When the instrument is placed on STANDBY the sequence will be the same as described in paragraph 4-24, but high voltage will be applied to the instrument after 90 seconds, only if the Model 493A primary power switch is placed in the ON position. The STANDBY position permits the turning of RF power "on" or "off" instantly by switching from STANDBY to ON (or from ON to STANDBY), once the initial 90-second time delay has elapsed.

4-26. In the event excessive helix current is drawn by the traveling-wave amplifier tube, a protective device, the overload relay K3, will energize.

Energizing K3 interrupts the current path for delay slave relay K2, which in turn removes power from the high voltage transformer T1. CR22 acts as a half-wave rectifier for the 6.3 vac signal, when the overload relay K3 is energized. This rectified output supplies approximately 2.5 ma to the overload relay K3 holding it energized, once high voltage has been removed.

4-27. REGULATED FILAMENT SUPPLY.

4-28. The filament supply is a conventional series regulated power supply that supplies approximately 6.3 volts dc to the filament of the differential amplifier V103, and TWT, V7. Successive regulation is provided by CR304 and CR305 to hold the base of Q301 constant. The filament adj. R306 sets the regulated output voltage.

4-29. Protection in the event that the filament voltage exceeds the limits set by the filament adj. R306 is provided by the relay K304 and CR308. K304 and CR308 are placed in parallel with the filaments. If the voltage limit set by filament adjust R306, is exceeded, CR308 will break down and K304, will energize, opening the filament circuit and removing ac power to high voltage power supply.

Figure 4-5. Relay Sequence

4-23. RELAY SEQUENCE.

4-24. A simplified illustration of the relay sequence is shown in figure 4-5. When the Model 493A is first turned to ON, power is applied to the transformer T2. Filament voltage is applied to all tubes in the instrument as well as to the 90-second time delay relay K1. After 90 seconds have elapsed, relay K1 will close, completing current flow path for delay slave relay K2. The relay K2 will energize: 1) completing the current path to the high voltage transformer T1, and 2) it will act as a holding relay for itself by bypassing the contacts at the time delay relay K1. The instrument is now operating normally. V1, V2, and V5 filaments and relays K1, K2, and K3 are held 200 volts above the helix.

4-25. When the instrument is placed on STANDBY the sequence will be the same as described in paragraph 4-24, but high voltage will be applied to the instrument after 90 seconds, only if the Model 493A primary power switch is placed in the ON position. The STANDBY position permits the turning of RF power "on" or "off" instantly by switching from STANDBY to ON (or from ON to STANDBY), once the initial 90-second time delay has elapsed.

4-26. In the event excessive helix current is drawn (5 to 7 ma) by the traveling-wave amplifier tube, a protective device, the overload relay K3, will energize.

Energizing K3 interrupts the current path for delay slave relay K2, which in turn removes power from the high voltage transformer T1. CR9 acts as a half-wave rectifier for the 6.3 vac signal, when the overload relay K3 is energized. This rectified output supplies approximately 2.5 ma to the overload relay K3 holding it energized, once high voltage has been removed.

4-27. REGULATED FILAMENT SUPPLY.

4-28. The filament supply is a conventional series regulated power supply that supplies approximately 6.3 volts dc to the filament of the differential amplifier V103, and TWT, V7. Successive regulation is provided by CR304 and CR305 to hold the base of Q301 constant. The filament adj. R306 sets the regulated output voltage.

4-29. Protection in the event that the filament voltage exceeds the limits set by the filament adj. R306 is provided by the relay K304 and CR308. K304 and CR308 are placed in parallel with the filaments. If the voltage limit set by filament adjust R306, is exceeded, CR308 will break down and K304, will energize, opening the filament circuit and removing ac power to high voltage power supply.

SECTION V

MAINTENANCE

5-1. AIR FILTER MAINTENANCE.

5-2. The air filter is located at the rear of the instrument. Inspect air filter frequently and clean whenever an appreciable amount of dirt has collected on it. Proper maintenance of the filter will produce longer twt tube and component life.

5-3. The filter should be washed in hot water and detergent to thoroughly remove all dirt deposits. After filter is clean, allow it to dry. Compressed air speeds the process.

5-4. To be most effective, the filter must be coated with a dirt gathering adhesive. While light machine oil is satisfactory, we recommend using a water-soluble adhesive such as "Super Filter Coat" manufactured by Research Products Corporation of Madison 1, Wisconsin.

5-5. This product is available in 1.5 fl. ounce cans equipped with a handy spray applicator at most heating supply stores. You can also obtain it from your \oplus Engineering Representative. The \oplus Stock Number is 3150-0002.

5-6. COVER REMOVAL.

5-7. \oplus modular instrument enclosures have removable top, bottom, and side covers for easy access to the instrument interior (see Figure 5-1). Instructions for cover removal and replacement are given below.

5-8. TOP AND BOTTOM COVERS.

- a. Remove four flat-head screws from covers.
- b. Slide cover back and off instrument.
- c. To replace cover reverse procedure.

5-9. SIDE COVERS.

- a. Remove four round-head screws holding each side cover.
- b. Remove side cover.
- c. Reverse procedure to replace the side-cover sections.

Figure 5-1. Cover Removal

Table 5-1. Test Equipment Required

Instrument Type	Critical Specifications	Use	Instrument Recommended
VOM	Range: 5 to 3000 volts Accuracy: $\pm 3\%$ Impedance: 10 megohms (floating input)	Check DC Voltages	Triplet Model 620A
AC Voltmeter	Range: 5 to 25 millivolts Accuracy: 2% Frequency Range: 10 to 1000 cps Impedance: 10 megohms	Check AC Ripple	\oplus Model 400D AC VTVM A 0.02 μ fd Capacitor (5000 volt rating) connected in series with AC VTVM
DC Clip-On Milliammeter	Range: 3 ma to 10 ma Accuracy: $\pm 3\%$	Check <input type="checkbox"/> Helix Current Figure 5-5	\oplus Model 428A Milliammeter
Signal Generator	Frequency Range: 4.0 to 8.0 gc, 8.0 to 12.4 gc* Power Output: 1 mw	Figure 5-5 through 5-9	\oplus Model 618B \oplus Model 620A \oplus Model 626A*
Power Meter	Range: 0.1 mw to 3 w Frequency Range: 4.0 to 8.0 gc, 8.0 to 12.4 gc* Accuracy: Within $\pm 5\%$ of full scale	Figures 5-5 and 5-8	\oplus Model 434A
Power Supply	Regulated Output: 0 to 20 volts	Figure 5-8	\oplus Model 721A
Wide Range Oscillator	Frequency Range: 1 kc - 500 kc $\pm 2\%$ Output to 600 ohms: 10 volts	Figure 5-7	\oplus Model 200CD Wide Range Oscillator
Oscilloscope	Band Pass: dc to 1 mc Sensitivity: 0.5 v/cm	Figures 5-6 and 5-7	\oplus Model 175A with \oplus Model 1750A, 1751A Vertical Amplifier
Square Wave Generator	Frequency Range: 1 to 10 kc Rise Time: 0.01 μ sec Signal Amplitude: 10 volts	Figures 5-6 and 5-9	\oplus Model 211A
Crystal Detector	Frequency Response: 4.0 to 8.0 gc, 8.2 to 12.4 gc* Square Law Characteristic: ± 1 db (matched pair ± 2 db) Sensitivity: 0.1 v/mw	Figures 5-7 and 5-9	\oplus Model 423A Crystal Detector

* for Model 495A only

NO marking used for both Models 493A and 495A

A VOM used in conjunction with the current monitoring resistors R201, R202
 R203 can also be used to measure current

5-10. TEST EQUIPMENT REQUIRED.

5-11. Test equipment used in the calibration of the Model 493A is given in table 5-1, Test Equipment Required. The table includes the type of equipment to be used, the critical specifications required for testing, where test equipment is used, and recommended commercially available test equipment used in the calibration of the instrument.

5-12. TROUBLESHOOTING PROCEDURE.

5-13. The troubleshooting procedure localizes troubles to a section (twt, high voltage power supply, or modulator). Troubles that usually arise affect power amplification or modulation. The following procedure lists checks to be made, voltage limits, and references to adjustment procedures. Voltage limits for collector/helix, anode and grid refer to values stamped on the twt capsule. If a voltage cannot be adjusted within the limits given, use the troubleshooting chart (figure 5-2) as a guide to isolate the cause of trouble.

CAUTION

Do not operate instrument without fan duct and covers for long periods of time. Cover is needed to maintain ambient temperature of the instrument below 35°C.

- a. TWT filament voltage 6.2 ± 0.1 volts (para 5-24).
- b. Collector/helix voltage $\pm 10\%$ (para 5-25).
- c. Anode voltage $\pm 10\%$ (para 5-26).
- d. Grid voltage ± 1 volt (para 5-28) check:
 - (1) -350 volts ± 2 volts applied to modulator.
 - (2) 300 volts ± 10 volts applied to modulator.
 - (3) R418, gain limit adj.
 - (4) Current sink, Q401.
- e. Frequency response and bandwidth of modulator (paragraphs 5-32 and 5-33).
- f. V403 and V404.

Note

Any change in collector/helix voltage causes a proportional change in anode voltage. Following repair or adjustment of collector/helix voltage, adjust anode voltage and check for proper grid voltage.

5-14. REPAIR.

5-15. The Model 493A uses etched circuit boards. A special procedure is required to repair or replace components on the boards. The procedure for repairing the circuit boards is given below.

5-16. \oplus uses three types of etched circuit boards: the single sided, double sided, and plated through circuit board. Soldering techniques vary for each. Regardless of which board is used, these general rules should be followed.

- a. Take care not to apply excessive heat to the conductor or component being soldered.
- b. Use a toothpick to clean holes before inserting new component.
- c. To remove damaged component, clip component leads near component. Then apply heat and remove each component lead with a straight upward motion.

d. After replacing a component, the printed circuit board should be sprayed with a clear plastic such as Krylon.

5-17. SINGLE SIDED BOARD: The single sided etched circuit board consists of a base board, funneled eyelets, and conductor. TO INSURE GOOD CONNECTION BETWEEN THE EYELET AND CONDUCTOR, SOLDER FROM CONDUCTOR SIDE.

5-18. DOUBLE SIDED BOARD: The double sided etched circuit board consists of a base board, funneled eyelets and conductors located on both sides of the board. TO INSURE GOOD CONNECTION BETWEEN THE EYELETS AND CONDUCTOR, APPLY SOLDER FROM BOTH SIDES OF THE BOARD.

5-19. PLATED THROUGH BOARD: The plated through etched circuit board consists of a base board and conductor. The board does not include funneled eyelets. The conductor material is plated to the walls of the hole and effectively the conductor is extended into the hole. THIS TYPE OF BOARD CAN BE SOLDERED FROM EITHER THE CONDUCTOR OR COMPONENT SIDE WITH EQUALLY GOOD RESULTS.

5-20. TWT REMOVAL.

- a. Remove ac power cable from instrument.
- b. Remove instrument's top and bottom covers (see paragraph 5-8, Panel Removal).
- c. Remove fan air duct.
- d. Disconnect twt leads from terminal board E1.
- e. Return cables and type N Panel Connectors with tube. If input and output cables are detachable, disconnect them at the tube without disassembling type-N panel connectors. If the cables are not detachable, disassemble type-N connectors, remove from panel, re-assemble them, and return them with the tube.
- f. Remove modulator plug-in A400.
- g. Remove E1 mounting screw nearest ground terminal (E1A, Figure 5-3), and swing E1 assembly aside.
- h. Place instrument on its side and remove four screws holding twt to main deck (see Figure 5-4).
- i. Remove twt and refer to twt warranty claim sheet for packing instructions. Note: Fill out warranty claim completely and include reason for returning twt (e.g., low power, no power, etc.).

Figure 5-2. Troubleshooting Chart

5-21. TWT INSTALLATION.

- a. Replace modulator board.
- b. Before installing new TWT, adjust filament voltage to value stamped on TWT capsule with a 5-ohm, 5-watt load across filament circuit (see paragraph 5-24 FILAMENT ADJUSTMENT). Rough set -350 volt supply (measured between C401 and R431 and ground), collector/helix voltage, anode and grid voltage as instructed in paragraph 5-24 through 5-27.
- c. Remove modulator board.
- d. Install TWT.
- e. Re-attach the E1 board to the instrument wall. Connect the TWT leads to terminal board E1.
- f. Connect jumper wire between E1C (grey filament lead) and E1E (white cathode lead) on the E1 board. All replacement tubes require the jumper between E1C and E1E. Connect the TWT lead to terminal board E1 as shown in table 5-2 and figure 5-3.
- g. If the replacement tube is supplied with detachable input and output cables, remove the cables from the tube to avoid disassembling the type-N panel connectors. If the cables are not detachable, disassemble the type-N connectors to mount them in the panel.
- h. Repeat step f with the TWT input cable connector.
- i. Replace modulator board.
- j. Refer to paragraph 5-29 for optimizing TWT element voltages to obtain proper power amplification.

Note

The new modulator board, ^④ Stock No. 495A-65D, can be used with the old type TWT, ^④ Stock No. 1952-0016, if diode CR405, ^④ Stock No. 1901-0029, is installed between pin 1 of V404A and pin 6 of V404B.

- k. Replace top and bottom cover.

Table 5-2. TWT Lead Identification

TWT Element	E1 Board Terminal	Color Lead
Collector	E1H	
Helix	E1G	
Anode	E1F	
Cathode	E1E	Refer to tube data sheet for proper identification of leads.
Grid	E1D	
Heater/Cathode	E1C	
Heater	E1B	
Ground	E1A	

5-22. TWT VOLTAGE ADJUSTMENTS.

5-23. Use this procedure when resetting TWT voltages or after installing a TWT. Note that adjustment of the collector/helix voltage affects anode voltage. When collector/helix adjustments are made, the anode voltage adjustment must also be made, if applicable.

CAUTION: The instrument should not be operated for long periods of time without fan duct and covers. Ambient temperature within the instrument will increase causing excessive helix current to flow. This will result in low power amplification and/or damage to TWT.

5-24. FILAMENT ADJUSTMENT.

- a. Remove the instrument top cover (see para 5-8).
- b. Rotate filament adjust R306, (figure 5-3) full counterclockwise.
- c. Connect dc voltmeter between E1B and E1C (see figure 5-3). DC voltmeter to 10-volt range.
- d. Set Model 493A power switch to STANDBY.
- e. Adjust filament adjust R306, for 6.2 vdc.
- f. Vary power line voltage from 103 to 127 vac. The dc voltmeter reading should not vary more than 6.2 ± 0.1 volt.

Note

The filament voltage is factory adjusted to 6.2 volts dc. This will extend the filament life of the TWT considerably.

5-25. COLLECTOR/HELIX ADJUSTMENT.

- a. Parallel an ac and dc voltmeter; connect between helix terminal (E1G) and ground (figure 5-3).
- CAUTION:** AC and dc voltmeter should be isolated to withstand 3000 volts.
- b. Set Model 493A power switch to ON.
- c. With the high voltage adj. R57, (figure 5-3) set the collector/helix voltage to the value stamped on the TWT capsule.

WARNING: High voltage is present on the high-voltage board A1 and the terminal board E1.

- d. Vary power-line voltage from 103 to 127 vac; collector/helix voltage should not vary more than 5 volts; ripple voltage should not exceed 10 millivolts.

5-26. ANODE ADJUSTMENTS (If Applicable).

- a. Parallel and ac and dc voltmeter; connect between anode terminal (E1F) and ground (figure 5-3).
- b. With the cathode current adjust R53 (figure 5-3), set anode voltage to value listed in TWT data sheet.

Note

If the anode voltage range is not great enough to obtain anode voltage needed, R54 and R55 (see figure 5-12) can be interchanged to provide proper voltage range. This is assuming collector/helix voltage is set to the proper value.

- c. Vary power-line voltage from 103 to 127 vac. Anode voltage should not vary more than 10 volts; ripple should not exceed 25 millivolts (measured on the TWT side of R203).

5-27. -350 VOLT ADJUSTMENT.

- a. Parallel an ac and dc voltmeter; connect between junction of C401 and R431 (see figures 5-13 and 5-14) and ground.

Figure 5-3. Model 493A Top View

Figure 5-4. Model 493A Bottom View

Figure 5-5. Power Amplification Setup

b. With the -350 volt adj. R405 (figure 5-3), set -350 volt regulated power supply to -350 volts.

c. Vary line voltage from 103 to 127 vac. The -350 volts should not vary more than ± 3 volts; -350 volt-supply ripple voltage should be less than 10 millivolts.

d. Connect dc voltmeter between pin 12 of A400 and ground. Place the dc voltmeter on the +300 volt range and check +300 volts. Meter should read +300 volts ± 10 volts. If not within the tolerance specified check V6 and V8. Then, if still out of specification replace R38 and R39.

e. Refer to para. 5-28, Gain Limit Adjustment.

5-28. GAIN LIMIT ADJUSTMENT.

a. Parallel an ac and a dc voltmeter; connect between grid terminal E1D and E1E (figure 5-3).

b. Rotate GAIN control full clockwise.

c. Adjust gain limit control R418, to voltage value stamped on twt capsule.

d. Vary power-line voltage from 103 to 127 vac. Grid voltage should not vary more than ± 1.5 volts; ripple voltage should be less than 10 millivolts.

5-29. OPTIMIZING TWT ELEMENT VOLTAGES TO OBTAIN PROPER POWER AMPLIFICATION.

5-30. When all twt element voltages have been set, it may be necessary to go back and optimize the collector/helix anode and grid voltages to obtain the desired power amplification.

a. Set up the Model 493A as shown in figure 5-5.

b. Set up the signal generator for a 1 milliwatt output at twt low power point (8.0 gc for 493A, 12.4 gc for 495A).

Note

Make sure that the 1 milliwatt signal generator output includes the attenuation produced by the coaxial cable and that the losses in the cable running to the output power meter have been accounted for.

c. Microwave output power should be 1 watt or more. If it is not, optimize the collector/helix voltage (high voltage level adj. R57) for maximum power reading on the power meter.

d. Optimize grid voltage. If power at minimum power point is still less than 1 watt, increase anode voltage to produce an rf output of at least 1 watt.

e. Connect a dc clip-on milliammeter to the orange or yellow lead located on the board directly behind the current meter (see figure 5-3).

Note

Another method of measuring helix current is to place a VOM across R202. Since R202 is 1K, volts equal milliamperes.

f. Set signal generator frequency to low end of the band; optimize the GAIN control for maximum helix current. The helix current should be less than 4 ma.

g. If the helix current is greater than 4 ma or rf output power is still below 1 watt, re-optimize the collector/helix and grid voltage.

h. Adj. meter sensitivity control R205 for correct meter indication within meter Rated Power limit.

5-31. MODULATOR ADJUSTMENT.**5-32. FREQUENCY RESPONSE.**

a. Connect the Model 493A/495A as shown in figure 5-6.

b. Rotate GAIN control full clockwise.

c. Set square-wave generator frequency to 10 kc and adjust square-wave generator amplitude for modulator output of 10 volts peak-to-peak.

d. Adjust high frequency adj. R411 (see figure 5-3), for optimum square-wave output. Rise time should be less than 0.8 μ sec, overshoot less than 5%.

e. Set square-wave generator frequency to 1 kc; increase signal amplitude to produce a 100-volt peak-to-peak signal at the grid of the twt. Rise time should be less than 10 μ sec, overshoot less than 5%.

5-33. BANDWIDTH.

a. Connect the Model 493A as shown in figure 5-7.

b. Set the sine-wave oscillator at 1 kc and adjust its output amplitude for a 10-volt peak-to-peak sine-wave output at the grid of the twt.

c. Increase the frequency of the sine-wave oscillator until the amplitude of the sine-wave voltage on the grid of the twt decreases to 7 volts peak-to-peak. Bandwidth specifications: 3 db variation from dc to 500 kc.

5-34. PERFORMANCE CHECK.

5-35. This performance check is an in-cabinet check that is used to check instrument specifications. All checks are made from the front panel. This procedure can also be used as an incoming or outgoing quality control check.

5-36. POWER AMPLIFICATION CHECK.

a. Refer to turn-on procedure, figure 3-1, and set up the Model 493A; set primary power switch to ON and allow the Model 493A to warm up for approximately 30 minutes.

b. Connect the Model 493A as shown in figure 5-5. Milliammeter not necessary for this check. Refer to table 5-1, Test Equipment Required.

c. Set up the signal generator for 1 mw cw output at 4.0 gc for 493A, 12.4 gc for 495A.

d. Set power meter to 3-watt range; zero-set the power meter.

e. Switch Model 493A primary power switch from STANDBY to ON.

f. Reading on power meter should be at least 1 watt. Specification: At least 1 watt at the output with application of 1 mw at the input. Remember to compensate for the losses in cable between the twt amplifier and the power meter.

5-37. GAIN CONTROL POWER ON-OFF RATIO.

a. Set up the Model 493A as shown in figure 5-8 (power supply power off). Signal generator set up for a 1 mw output at microwave amplifier low power point.

b. Rotate Model 493A GAIN control full counter-clockwise; record power meter reading.

c. Rotate Model 493A GAIN control full clockwise; record power meter reading. Difference between the two readings should be at least 20 db. Specifications: "Modulation On-Off Ratio". Power OUTPUT change should be at least 20 db with the GAIN control.

Figure 5-6. Frequency Response Setup

Figure 5-7. Bandwidth Setup

Figure 5-8. Modulator On-Off Ratio

Figure 5-9. Residual AM Check

5-38. MODULATOR ON-OFF RATIO.

- Connect the Model 493A as shown in figure 5-8, with the signal generator and the power meter at the same setting as those in paragraph 5-36 steps c and d.
- Rotate the Model 493A GAIN control full clockwise.
- Power supply output voltage to the Model 493A MOD INPUT, ZERO volts; record power meter reading.
- Turn on power supply. Adjust for negative output. Increase power-supply output until power-meter reading is 20 db less than that recorded in step c. Power-supply voltage should be between 0 and -20 volts.

Note

Readings taken on an average-reading voltmeter, such as \oplus Model 400D, require a +8 db correction factor to obtain the actual value of the residual AM. This +8 db factor accounts for a) the crystal square-law characteristic and b) the difference between average and peak values of square and sine waves. Thus, a -55 db ac vtvm reading includes the following: -10 db (-18 from step d plus 8 as explained above) produced by ac vtvm and crystal detector, and -45 db caused by residual AM.

5-39. RESIDUAL AM CHECK.

- Connect the Model 493A as shown in figure 5-9.

Note

Make sure the residual AM of the signal generator used to test the Model 493A is at least 45 db below signal level.

- Set up the square-wave generator for 1 kc.
- Signal generator output frequency 8 gc (12.4 gc for the Model 495A). Set generator MOD SELECTOR for EXT+ modulation.
- Adjust INPUT power to Model 493A for 100 millivolts (-18 db) reading at the ac vtvm.
- Set Signal Generator for CW output and record ac VTVM reading which should be less than -55 db.

5-40. MODULATOR FREQUENCY RESPONSE.

- Connect the Model 493A as shown in figure 5-7.
- Set Model 493A GAIN control full clockwise.
- Set up the signal generator for -15 dbm output at 8 gc (12.4 gc for Model 495A).
- Set up the wide range oscillator for a 1 volt peak-to-peak output at 1 kc.
- Adjust the signal generator power output so that the detected 1 kc modulated signal on the oscilloscope is set to a reference level.
- Set up the wide range oscillator for a 1 volt peak-to-peak output at 500 kc. The amplitude of the detected signal should not have dropped more than 3 db.

Specification: Less than 3 db small signal output variation dc to 500 kc.

5-41. SWR CHECK.

5-42. SWR of the rf input and output circuit is 3:1 or better, and normally need not be checked if the instrument meets gain and power output specifications.

5-43. If it is desired to check the swr, normal swr measuring techniques (i.e., slotted line or swept frequency reflectometer) can be employed. ^{HP} Application Note 54 (available from your ^{HP} Engineering Representative) describes new, improved swept frequency techniques for measurement of swr, etc.

Note

The dc resistance of the input and output circuits, when measured at the panel jacks from center conductor to ground, will read ∞ . The $50\ \Omega$ impedance is achieved through transmission line coupling.

5-44. FREQUENCY RANGE CONVERSION.

a. Remove the twt from the instrument (see twt removal, paragraph 5-20).

b. Replace twt in the instrument with twt in the range desired (4 - 8 gc or 7 - 12.4 gc). See twt installation, paragraph 5-21.

Note

Conversion from one frequency range to another may require switching of high voltage transformer leads. Refer to "note" on regulated high voltage power supply schematic.

c. Refer to performance check procedure, paragraph 5-34 and check instrument for specifications.

d. Replace the identification plate on the instrument with one indicating the frequency range and model number of the new twt installed.

NOTES

1. SEE A HIGH VOLT SUPPLY SCHEMATIC
2. SWITCHES ARE SH CONDITION; RELA IN DE-ENERGIZED
3. CAPACITANCE IN RESISTANCE IN OR OTHERWISE INDIC
4. —— PLUG-
5. —— ETCH
6. P/O = PART OF

SECTION VI

REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering replacement parts for instruments serial prefixed 350. For those with other prefixes, see Appendix II. Table 6-1 lists parts in alpha-numerical order of their reference designators and indicates the description and stock number of each part, together with any applicable notes. Table 6-2 lists parts in numerical order of their stock numbers and provides the following information on each part:

- a. Description of the part (see list of abbreviations below).
- b. Typical manufacturer of the part in a five-digit code; see list of manufacturers in Appendix I.
- c. Manufacturer's stock number.
- d. Total quantity used in the instrument (TQ col.).

6-3. Miscellaneous parts not indexed in Table 6-1 are listed at the end of the table.

6-4. ORDERING INFORMATION.

6-5. To order a replacement part, address order or inquiry to your nearest Hewlett-Packard field office (see maps at the rear of this manual).

6-6. Specify the following information for each part:

- a. Model and complete serial number of instrument.
- b. Hewlett-Packard stock number.
- c. Circuit reference designator.
- d. Description.

6-7. To order a part not listed in tables 6-1 and 6-2, give a complete description of the part and include its function and location.

REFERENCE DESIGNATORS

A	= assembly	F	= fuse	P	= plug	V	= vacuum tube, neon bulb, photocell, etc.
B	= motor	FL	= filter	Q	= transistor	W	= cable
C	= capacitor	J	= jack	R	= resistor	X	= socket
CR	= diode	K	= relay	RT	= thermistor	Y	= crystal
DL	= delay line	L	= inductor	S	= switch	Z	= network
DS	= device signaling (lamp)	M	= meter	T	= transformer		
E	= misc electronic part	MP	= mechanical part				

ABBREVIATIONS

A	= amperes	ELECT	= electrolytic	MOM	= momentary	RH	= round head
A.F.C.	= automatic frequency control	ENCAP	= encapsulated	MTG	= mounting	RMO	= rack mount only
AMP	= amplifier	F	= farads	MY	= mylar	RMS	= root-mean-square
B.F.O.	= beat frequency oscillator	FH	= flat head	NC	= normally closed	ROT	= rotary
BE CU	= beryllium copper	FIL H	= fillister head	NE	= neon	S-B	= slow-blow
BH	= binder head	FXD	= fixed	NI PL	= nickel plate	SE	= selenium
BP	= bandpass	GE	= germanium	NO	= normally open	SECT	= section(s)
BRS	= brass	GL	= glass	NPO	= negative positive zero (zero temperature coefficient)	SEMICON	= semiconductor
BWO	= backward wave oscillator	GRD	= ground(ed)	NSR	= not separately replaceable	SI	= silicon
CER	= ceramic	H	= henries	OBD	= order by description	SIL	= silver
CMO	= cabinet mount only	HEX	= hexagonal	OH	= oven head	SL	= slide
COEF	= coefficient	HG	= mercury	OX	= oxide	SPL	= special
COM	= common	HR	= hour(s)	P	= peak	SST	= stainless steel
COMP	= composition	IMPG	= impregnated	PC	= printed circuit board	TA	= tantalum
CONN	= connector	INCD	= incandescent	PF	= picofarads = 10^{-12} farads	TD	= time delay
CP	= cadmium plate	INS	= insulation(ed)	PH BRZ	= phosphor bronze	TI	= titanium
CRT	= cathode-ray tube	K	= kilo = 1000	PIV	= peak inverse voltage	TOG	= toggle
DEPC	= deposited carbon	LIN	= linear taper	POLY	= polystyrene	TOL	= tolerance
EIA	= Tubes or transistors meeting Electronic Industries' Association standards will normally result in instrument operating within specifications; tubes and transistors selected for best performance will be supplied if ordered by stock numbers.	LK	= lock	POR	= porcelain	TRIM	= trimmer
		LOG	= logarithmic taper	POS	= position(s)	TWT	= traveling wave tube
		LPF	= low pass filter	POT	= potentiometer	U	= micro = 10^{-6}
		M	= milli = 10^{-3}	PP	= peak-to-peak	VAC	= vacuum
		MEG	= meg = 10^6	PT	= point	VAR	= variable
		METFLM	= metal film	RECT	= rectifier	W	= watts
		MFR	= manufacturer	RF	= radio frequency	W/	= with
		MINAT	= miniature			W/O	= without
						WW	= wirewound

01194-8

Table 6-1. Reference Designation Index

Circuit Reference	Stock No.	Description	Note
A1	495A-65B	ASSY:HV REGULATOR BOARD	
A2	495A-65A	ASSY:HV RECTIFIER	
A3			
A199			
A200	495A-65E	NOT ASSIGNED ASSY:TWT TEST	
A201			
A299			
A300	489A-65D	NOT ASSIGNED ASSY:FILAMENT REGULATOR	
A301			
A399			
A400	495A-65D	NOT ASSIGNED ASSY:MODULATOR BOARD	
B1	3160-0026	FAN:MUFFIN	
C6			
C7	0150-0084	C:FXD CER 0.1 UF +80-20% 50VDCW	
C9			
C10	0180-0024	NOT ASSIGNED	
C11	0160-0121	C:FXD ELECT 40 UF 450VDCW C:FXD PAPER 3.5 X 3.5 UF 10% 2000VDCW	
C12	0150-0024	C:FXD CER 0.02 UF +80-20% 600VDCW	
C13	0150-0024	C:FXD CER 0.02 UF +80-20% 600VDCW	
C14	0150-0012	C:FXD CER 0.01 UF 20% 1000VDCW	
C15	0160-0384	C:FXD PAPER 5600 PF +80-20% 3000VDCW	
C16	0180-0058	C:FXD ELECT 50 UF +100-10% 25VDCW	
C17	0150-0024	C:FXD CER 0.02 UF +80-20% 600VDCW	
C18	0150-0012	C:FXD CER 0.01 UF 20% 1000VDCW	
C19			
C100	0180-0024	NOT ASSIGNED	
C101		C:FXD ELECT 40 UF 450VDCW	
C102	0180-0012	C:FXD ELECT 2 X 20UF 450VDCW	
C103			
C108	0160-0013	NOT ASSIGNED	
C109		C:FXD MY 0.1 UF 10% 400VDCW	
C110			
C200		NOT ASSIGNED	
C201	0150-0084	C:FXD CER 0.1 UF +80-20% 50VDCW	
C202	0160-0056	C:FXD PAPER 0.047 UF 10% 1000VDCW	
C203			
C300	0180-0028	NOT ASSIGNED	
C301		C:FXD ELECT 2 X 1500 UF 15VDCW	
C302	0180-0061	C:FXD ELECT 100 UF +100-10% 15VDCW	
C303	0180-0063	C:FXD ELECT 500 UF +100-10% 3VDCW	
C304			
C400	0150-0052	NOT ASSIGNED	
C401		C:FXD CER 0.05 UF 20% 400VDCW	
C402	0150-0052	C:FXD CER 0.05 UF 20% 400VDCW	
C403	0140-0149	C:FXD MICA 470 PF 5% 300VDCW	
C404	0140-0208	C:FXD MICA 680 PF 5% 300VDCW	
C405	0130-0013	C:VAR CER 3-12 PF NPO	
C406	0140-0203	C:FXD MICA 30 PF 5% 500VDCW	
C407	0150-0011	C:FXD TI 1.5 PF 20% 500VDCW	
C408	0140-0194	C:FXD MICA 110 PF 5% 300VDCW	
C409	0140-0149	C:FXD MICA 470 PF 5% 300VDCW	
CR6	1901-0030	SEMICON DEVICE:DIODE JUNCTION	
CR20	1901-0030	SEMICON DEVICE:DIODE JUNCTION	

See introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	Description	Note
CR21		NOT ASSIGNED	
CR22		SEMICON DEVICE:DIODE SILICON	
CR23			
CR100	1901-0029		
CR101	1901-0030	NOT ASSIGNED SEMICON DEVICE:DIODE JUNCTION	
CR102	1901-0030	SEMICON DEVICE:DIODE JUNCTION	
CR103	1901-0030		
CR300		NOT ASSIGNED	
CR301	1901-0025	SEMICON DEVICE:DIODE SILICON	
CR302	1901-0032	SEMICON DEVICE:DIODE IN3209	
CR303	1901-0032	SEMICON DEVICE:DIODE IN3209	
CR304	1902-0142	SEMICON DEVICE:DIODE SILICON,BREAKDOWN	
CR305	1902-0163	SEMICON DEVICE:DIODE SILICON,BREAKDOWN	
CR306	1901-0025	SEMICON DEVICE:DIODE SILICON	
CR307	1902-0025	SEMICON DEVICE:DIODE SILICON	
CR308	1902-0163	SEMICON DEVICE:DIODE SILICON,BREAKDOWN	
CR309	1901-0029		
CR400		NOT ASSIGNED	
CR401	1901-0029	SEMICON DEVICE:DIODE SILICON	
CR402	1901-0025	SEMICON DEVICE:DIODE JUNCTION	
CR403	1901-0025	SEMICON DEVICE:DIODE JUNCTION	
CR404	1901-0025	SEMICON DEVICE:DIODE JUNCTION	
CR405	1901-0029	SEMICON DEVICE:DIODE SILICON	
CR406	1902-0056	SEMICON DEVICE:DIODE SILICON	
DS1	1450-0048	LAMP:PILOT NE2H	
DS2	1450-0048	LAMP:PILOT NE2H	
E1	0360-0017	BOARD:TERMINAL	
F1	2110-0003 2110-0005	FUSE:CARTRIDGE 3A (115V OPERATION ONLY) FUSE:CARTRIDGE 1.5A(230V OPERATION ONLY)	
J1	1250-0083	CONNECTOR:BNC	
J2	1250-0083	CONNECTOR:BNC	
K1	0490-0135	RELAY:THERMAL SPDT	
K2	0490-0039	RELAY:DPDT	
K3	0490-0010	RELAY:SPDT 115AC	
K4			
K303			
K304	0490-0038	NOT ASSIGNED RELAY:DPDT 5A RESISTIVE	
M201	1120-0131	METER:1MA	
P1	1251-0148	CONNECTOR:POWER,MALE 3 PIN	
Q301	1850-0038	TRANSISTOR:GERMANIUM PNP 2N301	
Q302	1850-0021	TRANSISTOR:GERMANIUM PNP 2N441	
Q303	1850-0021	TRANSISTOR:GERMANIUM PNP 2N441	
Q304			
Q400		NOT ASSIGNED	
Q401	1854-0003	TRANSISTOR:SILICON NPN	

See introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	Description	Note
R1	0687-3331	R:FXD COMP 33K OHM 10% 1/2W	
R2	0687-3331	R:FXD COMP 33K OHM 10% 1/2W	
R3		NOT ASSIGNED	
R9		R:FXD COMP 1000 OHM 10% 2W	
R10	0693-1021		
R11	0813-0020	R:FXD WW 100 OHM 10% 5W	
R12			
R25	0692-4745	R:FXD COMP 470K OHM 5% 2W	
R26	0690-1041	R:FXD COMP 100K OHM 10% 1W	
R27	0690-1011	R:FXD COMP 100 OHM 10% 1W	
R28	0690-1011	R:FXD COMP 100 OHM 10% 1W	
R29	0687-4741	R:FXD COMP 470K OHM 10% 1/2W	
R30	0687-1021	R:FXD COMP 1000 OHM 10% 1/2W	
R31	0689-5115	R:FXD COMP 510 OHM 5% 1W	
R32	0687-1021	R:FXD COMP 1000 OHM 10% 1/2W	
R33	0689-5115	R:FXD COMP 510 OHM 5% 1W	
R34	0687-1011	R:FXD COMP 100 OHM 10% 1/2W	
R35	0690-2241	R:FXD COMP 220K OHM 10% 1W	
R36	0687-4731	R:FXD COMP 47K OHM 10% 1/2W	
R37	0690-1011	R:FXD COMP 100 OHM 10% 1W	
R38	0727-0266	R:FXD DEPC 975K OHM 1% 1/2W	
R39	0727-0278	R:FXD DEPC 1.13 MEGOHM 1% 1/2W	
R40	0690-2241	R:FXD COMP 220K OHM 10% 1W	
R41			
R48	0693-4731	R:FXD COMP 47K OHM 10% 2W	
R49	0693-3331	R:FXD COMP 33K OHM 10% 2W	
R50	0693-2231	R:FXD COMP 22K OHM 10% 2W	
R51	0687-2251	R:FXD COMP 2.2 MEGOHM 10% 1/2W	
R52	0730-0096	R:FXD DEPC 683.7K OHM 1% 1W	
R53	2100-0100	R:VAR COMP 3.5 MEGOHM 30% LIN 1/4W	
R54	0727-0115	R:FXD DEPC 2000 OHM 1% 1/2W FACTORY SELECTED COMP; TYPICAL VALUE GIVEN	
R55	0727-0240	R:FXD DEPC 405K OHM 1% 1/2W FACTORY SELECTED COMP; TYPICAL VALUE GIVEN	
R56	0727-0245	R:FXD DEPC 500K OHM 1% 1/2W	
R57	2100-0100	R:VAR COMP 3.5 MEGOHM 30% LIN 1/4W	
R58	0727-0240	R:FXD DEPC 405K OHM 1% 1/2W	
R59	0727-0246	R:FXD DEPC 600K OHM 1% 1/2W	
R60	0727-0246	R:FXD DEPC 600K OHM 1% 1/2W	
R61	0727-0246	R:FXD DEPC 600K OHM 1% 1/2W	
R62	0727-0246	R:FXD DEPC 600K OHM 1% 1/2W	
R63	0727-0246	R:FXD DEPC 600K OHM 1% 1/2W	
R64	0727-0246	R:FXD DEPC 600K OHM 1% 1/2W	
R65	0727-0222	R:FXD DEPC 214K OHM 1% 1/2W	
R66	0690-2241	R:FXD COMP 220K OHM 10% 1W FACTORY SELECTED COMP; TYPICAL VALUE GIVEN	
R67	0727-0276	R:FXD DEPC 1MEGOHM 1% 1/2W	
R68	0727-0245	R:FXD DEPC 500K OHM 1% 1/2W	
R69			
R100		NOT ASSIGNED	
R101	0690-4701	R:FXD COMP 47 OHM 10% 1W	

See introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	Description	Note
R102	0690-1041	R:FXD COMP 100K OHM 10% 1W	
R103	0690-1041	R:FXD COMP 100K OHM 10% 1W	
R104 THRU		NOT ASSIGNED	
R119		R:VAR COMP 500K OHM 10% LIN 2W	
R120	2100-0043		
R121 THRU		NOT ASSIGNED	
R200		R:FXD DEPC 100 OHM 1% 1/2W	
R201	0727-0043	R:FXD DEPC 1000 OHM 1% 1/2W	
R202	0727-0100	R:FXD DEPC 1000 OHM 1% 1/2W	
R203	0727-0100		
R204	0727-0043	R:FXD DEPC 100 OHM 1% 1/2W	
R205	2100-0335	R:VAR WW 10 OHM 20% 2W	
R206 THRU		NOT ASSIGNED	
R300		R:FXD COMP 56 OHM 10% 1/2W	
R301	0687-5601		
R302	0687-6801	R:FXD COMP 68 OHM 10% 1/2W	
R303	0687-3911	R:FXD COMP 390 OHM 10% 1/2W	
R304	0812-0019	R:FXD WW 0.33 OHM 5% 3W	
R305	0812-0019	R:FXD WW 0.33 OHM 5% 3W	
R306	2100-0308	R:VAR WW 2 OHM 10% LIN 5W	
R307	0816-0015	R:FXD WW 50 OHM 10% 10W	
R308 THRU		NOT ASSIGNED	
R400		R:FXD COMP 470K OHM 10% 1/2W	
R401	0687-4741	R:FXD COMP 100K OHM 10% 1/2W	
R402	0687-1041		
R403	0687-3331	R:FXD COMP 33K OHM 10% 1/2W	
R404	0727-0252	R:FXD DEPC 740K OHM 1% 1/2W	
R405	2100-0094	R:VAR COMP 50K OHM 30% LIN 1/5W	
R406	0727-0222	R:FXD DEPC 214K OHM 1% 1/2W	
R407	0690-8231	R:FXD COMP 82K OHM 10% 1W	
R408	0690-4731	R:FXD COMP 47K OHM 10% 1W	
R409	0690-1041	R:FXD COMP 100K OHM 10% 1W	
R410	0765-0008	R:FXD MET FLM 68K OHM 10% 2W	
R411	2100-0094	R:VAR COMP 50K OHM 30% LIN 1/5W	
R412	0765-0008	R:FXD MET FLM 68K OHM 10% 2W	
R413	0727-0283	R:FXD DEPC 1.66 MEGOHM 1% 1/2W	
R414	0758-0076	R:FXD MET FLM 68K OHM 5% 1/2W	
R415	0727-0165	R:FXD DEPC 13.2K OHM 1% 1/2W	
R416	0727-0230	R:FXD DEPC 284K OHM 1% 1/2W	
R417	0727-0235	R:FXD DEPC 360K OHM 1% 1/2W	
R418	2100-0096	R:VAR COMP 1 MEGOHM 30% LIN 1/5W	
R419	0727-0208	R:FXD DEPC 100K OHM 1% 1/2W	
R420	0727-0282	R:FXD DEPC 1.5 MEGOHM 1% 1/2W	
R421	0727-0286	R:FXD DEPC 1.88 MEGOHM 1% 1/2W	
R422	0727-0276	R:FXD DEPC 1 MEGOHM 1% 1/2W	
R423	0727-0245	R:FXD DEPC 500K OHM 1% 1/2W	
R424	0727-0276	R:FXD DEPC 1 MEGOHM 1% 1/2W	
R425	0689-2035	R:FXD COMP 20K OHM 5% 1W	
R426	0767-0010	R:FXD MET FLM 15K OHM 5% 3W	
R427	0693-5631	R:FXD COMP 56K OHM 10% 2W	
R428	0773-0010	R:FXD MET FLM 85K OHM 5% 5W	
R429	0727-0332	R:FXD DEPC 150K OHM 1% 1/2W	
R430	0727-0221	R:FXD DEPC 200K OHM 1% 1/2W	

See introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	Description	Note
R431	0727-0237	R:FXD DEPC 376K OHM 1% 1/2W	
RT1	0839-0017	THERMISTOR:250 OHM 10%	
S1	3101-0041	SWITCH:TOGGLE DPDT 3 POSITION	
S2	3101-0034	SWITCH:SLIDE 4PDT	
T1	9100-0153	TRANSFORMER:POWER	
T2	9100-0152	TRANSFORMER:POWER	
V1	1923-0048	ELECTRON TUBE:PENTODE 8068	
V2	1923-0048	ELECTRON TUBE:PENTODE 8068	
V3	1940-0004	ELECTRON TUBE:OA2 VOLTAGE REGULATOR	
V4	1940-0004	ELECTRON TUBE:OA2 VOLTAGE REGULATOR	
V5	1933-0004	ELECTRON TUBE:PENTODE 6U8	
V6	1923-0048	ELECTRON TUBE:PENTODE 8068	
V7	1952-0016	ELECTRON TUBE:TWT,4-8GC,MEC(493A ONLY)	
V7	1952-0019	ELECTRON TUBE:TWT,7-12.4GC,SYLVANIA(495A ONLY)	
V7	1952-0010	ELECTRON TUBE:TWT 7-12.4GC,MEC(495A ONLY)	OR
V7	1952-0017	ELECTRON TUBE:TWT 4-8GC,SYLVANIA(493A ONLY)	
V8	1923-0043	ELECTRON TUBE:PENTODE 6EW6	
V9		NOT ASSIGNED	
V400		ELECTRON TUBE:PENTODE 7734	
V401	1933-0005		
V402	1940-0001	ELECTRON TUBE:5651	
V403	1933-0004	ELECTRON TUBE:PENTODE 6U8	
V404	1933-0004	ELECTRON TUBE:PENTODE 6U8	
W1	8120-0078	ASSY:POWER CABLE	
W2	495A-16D	ASSY:RF POWER OUTPUT CABLE(MEC TWT C-,X-BAND ONLY)	
W3	495A-16D	ASSY:RF POWER OUTPUT CABLE(MEC TWT C-,X-BAND ONLY)	
XK1	1200-0062	SOCKET:TUBE 9 PIN	
XK2		NOT ASSIGNED	
XK3	1200-0049	SOCKET:TUBE 7 PIN	
XV1	1200-0084	SOCKET:TUBE	
XV2	1200-0084	SOCKET:TUBE	
XV3	1200-0053	SOCKET:TUBE 7 PIN	
XV4	1200-0053	SOCKET:TUBE 7 PIN	
XV5	1200-0062	SOCKET:TUBE 9 PIN	
XV6	1200-0084	SOCKET:TUBE	
XV7		NOT ASSIGNED	
XV8	2100-0053	SOCKET:TUBE 7 PIN	
XV9		NOT ASSIGNED	
XV400			
XV401	1200-0062	SOCKET:TUBE 9 PIN	
XV402	1200-0053	SOCKET:TUBE 7 PIN	
XV403	1200-0062	SOCKET:TUBE 9 PIN	
XV404	1200-0062	SOCKET:TUBE 9 PIN	

See introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	Description	Note
		<p>MISCELLANEOUS</p> <p>3150-0019 5060-0752 1401-0006 1251-0160 5000-0738 5000-0739 5000-0732 5060-0767 1400-0084 1200-0081 1200-0088</p> <p>AIR FILTER:3 5/8 X 7 11/16 X 1/2 BOTTOM COVER ASSEMBLY:16L FM CLIP:TUBE CONNECTOR:P.C. 15 CONTACTS(FOR A1 & A101) COVER:SIDE COVER:SIDE FRAME FOOT ASSEMBLY:FM FUSEHOLDER:EXTRACTOR POST TYPE INSULATOR:BUSHING, NYLON(Q301 MTG.) INSULATOR:D1ODE(SMALL WASHER FOR CR302,CR303 AND Q302,Q303 MTG.)</p> <p>1200-0079 1200-0043 0370-0026 489A-12Q 1220-0008</p> <p>INSULATOR:TRANSISTOR(4 HOLE,Q303 MTG.) INSULATOR:TRANSISTOR MTG.(Q301) KNOB:GAIN ADJUST RETAINER,AIR FILTER SHIELD:TUBE,FOR K3</p> <p>489A-57A 5060-0222 1490-0030 5060-0740 1200-0080</p> <p>SHOULDER SCREW:AIR FILTER RETAINER SIDE HANDLE ASSEMBLY STAND:TIILT TOP COVER ASSEMBLY:16L FM WASHER:INSULATOR(CR302,CR303 MTG)</p>	

See introduction to this section

Table 6-2. Replaceable Parts

Stock No.	Description #	Mfr.	Mfr. Part No.	TQ
0130-0013	C:VAR CER 3-12 PF NPO	28480	0130-0013	1
0140-0149	C:FXD MICA 470 PF 5% 300VDCW	04062	DM15F471J	2
0140-0194	C:FXD MICA 110 PF 5% 300VDCW	04062	DM15F111J 300V	1
0140-0203	C:FXD MICA 30 PF 5% 500VDCW	04062	DM15E300J 500V	1
0140-0208	C:FXD MICA 680 PF 5% 300VDCW	04062	DM15F681J	1
0150-0011	C:FXD TI 1.5 PF 20% 500VDCW	78488	TYPE GA	1
0150-0012	C:FXD CER 0.01 UF 20% 1000VDCW	28480	0150-0012	2
0150-0024	C:FXD CER 0.02 UF +80-20% 600VDCW	71590	DD203	3
0150-0052	C:FXD CER 0.05 UF 20% 400VDCW	56289	33C17A/50000PF	2
0150-0084	C:FXD CER 0.1 UF +80-20% 50VDCW	56289	33C41	2
0160-0013	C:FXD MY 0.1 UF 10% 400VDCW	56289	160P10494	1
0160-0056	C:FXD PAPER 0.047 UF 10% 1000VDCW	56289	160P473910	1
0160-0121	C:FXD PAPER 3.5 X 3.5 UF 10% 2000VDCW	56289	P49900	1
0160-0384	C:FXD CER 5600 PF +80-20% 3000VDCW	71590	DA172-098CB	1
0180-0012	C:FXD ELECT 2 X 20 UF 450VDCW	28480	0180-0012	1
0180-0024	C:FXD ELECT 40 UF +50-10% 450VDCW	56289	D32441	2
0180-0028	C:FXD ELECT 2 X 1500 UF 15VDCW	56289	D32442	1
0180-0058	C:FXD ELECT 50 UF +100-10% 25VDCW	56289	D28110	1
0180-0061	C:FXD ELECT 100 UF +100-10% 15VDCW	56289	30D107G015DD4	1
0180-0063	C:FXD ELECT 500 UF +100-10% 3VDCW	56289	D32530	1
0360-0017	BOARD: TERMINAL	75382	601-Y-8	1
0370-0026	KNOB: GAIN ADJUST	28480	0370-0026	1
489A-65D	FILAMENT REGULATOR BOARD	28480	489A-65D	1
489A-65D-1	BLANK PRINTED CIRCUIT BOARD	28480	489A-65D-1	1
0490-0010	RELAY: SPDT 115 AC	77342	SM-4107	1
0490-0038	RELAY: DPDT 5A RESISTIVE	04298	GHA/2C/6VAC	1
0490-0039	RELAY: DPDT	77342	KAI1AY-6.3	1
0490-0135	RELAY: SPDT THERMAL	70563	6N0-180T	1
495A-16D	ASSY: RF POWER INPUT, OUTPUT CABLE	28480	495A-16D	2
495A-65A	ASSY: RECTIFIER BOARD	28480	495A-65A	1
495A-65A-1	BLANK PRINTED CIRCUIT BOARD	28480	495A-65A-1	1
495A-65B	ASSY: HV REGULATOR BOARD	28480	495A-65B	1
495A-65B-1	BLANK PRINTED CIRCUIT BOARD	28480	495A-65B-1	1
495A-65D	ASSY: MODULATOR BOARD	28480	495A-65D	1
495A-65D-1	BLANK PRINTED CIRCUIT BOARD	28480	495A-65D-1	1
495A-65E	ASSY: TWT TEST	28480	495A-65E	1
495A-65E-1	BLANK PRINTED CIRCUIT BOARD	28480	495A-65E-1	1
0687-1011	R:FXD COMP 100 OHM 10% 1/2W	01121	EB 1011	1
0687-1021	R:FXD COMP 1000 OHM 10% 1/2W	01121	EB 1021	2
0687-1041	R:FXD COMP 100K OHM 10% 1/2W	01121	EB 1041	1
0687-2251	R:FXD COMP 2.2 MEGOHM 10% 1/2W	01121	EB 2251	1
0687-3331	R:FXD COMP 33K OHM 10% 1/2W	01121	EB 3331	3
0687-3911	R:FXD COMP 390 OHM 10% 1/2W	01121	EB 3911	1
0687-4731	R:FXD COMP 47K OHM 10% 1/2W	01121	EB 4731	1
0687-4741	R:FXD COMP 470K OHM 10% 1/2W	01121	EB 4741	2
0687-5601	R:FXD COMP 56 OHM 10% 1/2W	01121	EB 5601	1

See introduction to this section

Table 6-2. Replaceable Parts (Cont'd)

Stock No.	Description #	Mfr.	Mfr. Part No.	TQ
0687-6801	R:FXD COMP 68 OHM 10% 1/2W	01121	EB 6801	1
0689-2035	R:FXD COMP 20K OHM 5% 1W	01121	GB 2035	1
0689-5115	R:FXD COMP 510 OHM 5% 1W	01121	GB 5115	2
0690-1011	R:FXD COMP 100 OHM 10% 1W	01121	GB 1011	3
0690-1041	R:FXD COMP 100K OHM 10% 1W	01121	GB 1041	4
0690-2241	R:FXD COMP 220K OHM 10% 1W	01121	GB 2241	2
0690-4701	R:FXD COMP 47 OHM 10% 1W	01121	GB 4701	1
0690-4731	R:FXD COMP 47K OHM 10% 1W	01121	GB 4731	1
0690-8231	R:FXD COMP 82K OHM 10% 1W	01121	GB 8231	1
0692-4745	R:FXD COMP 470K OHM 5% 2W	01121	HB 4745	14
0693-1021	R:FXD COMP 1000 OHM 10% 2W	01121	HB 1021	1
0693-2231	R:FXD COMP 22K OHM 10% 2W	01121	HB 2231	1
0693-3331	R:FXD COMP 33K OHM 10% 2W	01121	HB 3331	1
0693-4731	R:FXD COMP 47K OHM 10% 2W	01121	HB 4731	8
0693-5631	R:FXD COMP 56K OHM 10% 2W	01121	HB 5631	1
0727-0043	R:FXD DEPC 100 OHM 1% 1/2W	28480	0727-0043	2
0727-0100	R:FXD DEPC 1000 OHM 1% 1/2W	19701	CD 1/2C	2
0727-0115	R:FXD DEPC 2000 OHM 1% 1/2W	19701	DC 1/2C	1
0727-0165	R:FXD DEPC 13.2K OHM 1% 1/2W	19701	DC 1/2C	1
0727-0208	R:FXD DEPC 100K OHM 1% 1/2W	19701	DC 1/2C	1
0727-0221	R:FXD DEPC 200K OHM 1% 1/2W	19701	DC 1/2A	1
0727-0222	R:FXD DEPC 214K OHM 1% 1/2W	19701	DC 1/2C	2
0727-0230	R:FXD DEPC 284K OHM 1% 1/2W	19701	DC 1/2C	1
0727-0235	R:FXD DEPC 360K OHM 1% 1/2W	19701	DC 1/2B	1
0727-0237	R:FXD DEPC 376K OHM 1% 1/2W	19701	DC 1/2C	1
0727-0240	R:FXD DEPC 405K OHM 1% 1/2W	19701	DC 1/2	2
0727-0245	R:FXD DEPC 500K OHM 1% 1/2W	19701	DC 1/2C	3
0727-0246	R:FXD DEPC 600K OHM 1% 1/2W	19701	DC 1/2C	6
0727-0252	R:FXD DEPC 740K OHM 1% 1/2W	19701	DC 1/2A	1
0727-0266	R:FXD DEPC 975K OHM 1% 1/2W	19701	DC 1/2C	1
0727-0276	R:FXD DEPC 1 MEGOHM 1% 1/2W	19701	DC 1/2C	3
0727-0278	R:FXD DEPC 1.13 MEGOHM 1% 1/2W	19701	DC 1/2C	1
0727-0282	R:FXD DEPC 1.5 MEGOHM 1% 1/2W	19701	DC 1/2-1.5M-1%	1
0727-0283	R:FXD DEPC 1.66 MEGOHM 1% 1/2W	19701	DC 1/2A	1
0727-0286	R:FXD DEPC 1.88 MEGOHM 1% 1/2W	19701	DC 1/2C	1
0727-0332	R:FXD DEPC 150K OHM 1% 1/2W	19701	CF 1/2	1
0730-0096	R:FXD DEPC 683.7K OHM 1% 1W	19701	DC1	1
0758-0076	R:FXD MET FLM 68K OHM 5% 1/2W	07115	C20	1
0765-0008	R:FXD MET FLM 68K OHM 10% 2W	07115	C42S	2
0767-0010	R:FXD MET FLM 15K OHM 5% 3W	07115	LPI-3	1
0773-0010	R:FXD MET FLM 85K OHM 5% 5W	07115	LPI-5	1
0812-0019	R:FXD WW 0.33 OHM 5% 3W	35434	VTA-3	2
0813-0020	R:FXD WW 100 OHM 10% 5W	94310	FRL-5	1
0816-0015	R:FXD WW 50 OHM 10% 1OW	35434	GC10 50	1
0839-0017	THERMISTOR:250 OHM 10%	24446	ID 751	1
1120-0131	METER:1 MA	06555	MODEL E-25	1
1200-0049	SOCKET:TUBE 7 PIN	71785	111-51-11-096	1
1200-0053	SOCKET:TUBE 7 PIN	71785	111-51-11	4
1200-0062	SOCKET:TUBE 9 PIN	71785	121-51-11-060	5
1200-0084	SOCKET:TUBE	71785	101-04-11-100	3

See introduction to this section

Table 6-2. Replaceable Parts (Cont'd)

# Stock No.	Description #	Mfr.	Mfr. Part No.	TQ
1250-0083	CONNECTOR:BNC	91737	UG-1094/U	
1251-0148	CONNECTOR:POWER MALE 3 PIN	60427	H-1060-1G-3L	2
1251-0160	CONNECTOR:PC 15 CONTACTS	07233	250-15-30-210	1
1400-0084	FUSEHOLDER:EXTRACTOR POST TYPE	75915	342014	3
1401-0006	CLIP:TUBE(PLATE CONNECTOR V1,V2,V6.)	91418	SPP-3	1
1450-0048	LAMP:PILOT NE2H	08717	858R	2
1490-0030	STAND:TIKT	28480	1490-0030	1
1850-0021	TRANSISTOR:GERMANIUM PNP 2N441	16758	2N441	2
1850-0038	TRANSISTOR:GERMANIUM PNP	86684	34879	1
1854-0003	TRANSISTOR:SILICON NPN	28480	1854-0003	1
1901-0025	SEMICON DEVICE:DIODE JUNCTION	28480	1901-0025	6
1901-0029	SEMICON DEVICE:DIODE SILICON	28480	1901-0029	3
1901-0030	SEMICON DEVICE:DIODE JUNCTION	28480	1901-0030	17
1901-0032	SEMICON DEVICE:DIODE JUNCTION IN3209	04713	IN3209	2
1902-0025	SEMICON DEVICE:DIODE SILICON	28480	1902-0025	
1902-0056	SEMICON DEVICE:DIODE SILICON,BREAKDOWN	28480	1902-0215	1
1902-0215	SEMICON DEVICE:DIODE SILICON,BREAKDOWN	28480	1902-0218	1
1902-0218	ELECTRON TUBE: PENTODE 6EW6	33173	6EW6	2
1923-0043	ELECTRON TUBE: PENTODE 8068	33173	8068	1
1923-0048	ELECTRON TUBE :PENTODE 6U8	33173	GU8	3
1933-0004	ELECTRON TUBE :PENTODE 6AU8	33173	6AU8	1
1933-0007	ELECTRON TUBE :5651	86684	5651	1
1940-0001	ELECTRON TUBE :OA2 VOLTAGE REGULATOR	86684	OA2	2
1940-0004	ELECTRON TUBE :TWT 7-12.4GC (495A ONLY)	08040	M2403-LB	1
1952-0010	ELECTRON TUBE :TWT 4-8GC(493A ONLY)	08040	M2407-DB	1
1952-0016	ELECTRON TUBE :TWT 4-8GC(493A ONLY)	04651	SYT 4278C	1
1952-0017	ELECTRON TUBE :TWT 7-12.4GC (495A ONLY)	04651	SYT 4273C	1
1952-0019	R:VAR COMP 500K OHM 10% LIN 2W	28480	2100-0043	1
2100-0043	R:VAR COMP 50K OHM 30% LIN 1/5W	28480	2100-0094	2
2100-0094	R:VAR COMP 1 MEGOHM 30% LIN 1/5W	28480	2100-0096	1
2100-0096	R:VAR COMP 3.5 MEGOHM 30% LIN 1/4W	28480	2100-0100	2
2100-0100	R:VAR WW 2 OHM 10% LIN 5W	28480	2100-0308	1
2100-0308	R:VAR WW 10 OHM 20% 2W	28480	2100-0335	1
2100-0335	FUSE :CARTRIDGE 3A	75915	312003	1
2110-0003	FUSE :CARTRIDGE 1.5A 250V	75915	31201.5	1
3101-0034	SWITCH:SLIDE 4PDT	42190	6633	1
3101-0041	SWITCH:TOGGLE DPDT 3 POSITION	88140	8906K370	1
3150-0019	AIR FILTER:3 5/8 X 7 11/16 X 1/2	82866	10337	1
3160-0026	FAN:MUFFIN	28480	3160-0026	1
5000-0732	FRAME	28480	5000-0732	1
5000-0738	COVER:SIDE	28480	5000-0738	1
5000-0739	COVER:SIDE	28480	5000-0739	1
5060-0740	TOP COVER ASSY.16L FM	28480	5060-0740	1
5060-0752	BOTTOM COVER ASSY.16L FM	28480	5060-0752	1
5060-0222	SIDE HANDLE ASSY	28480	5060-0222	2
5060-0767	FOOT ASSY. FM	28480	5060-0767	1
8120-0078	POWER CABLE	28480	8120-0078	1
9100-0152	TRANSFORMER:POWER	28480	9100-0152	1
9100-0153	TRANSFORMER:POWER	28480	9100-0153	1

See introduction to this section

TABLE 6-3.
CODE LIST OF MANUFACTURERS

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H4 Handbooks.

Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address
00000	U. S. A. Common	Any supplier of U. S.	05729	Metro-Tel Corp.	Westbury, N.Y.	12881	Metex Electronics Corp.	Clark, N.J.
00136	McCoy Electronics	Mount Holly Springs, Pa.	05783	Stewart Engineering Co.	Santa Cruz, Calif.	12930	Delta Semiconductor Inc.	Newport Beach, Calif.
00213	Sage Electronics Corp.	Rochester, N.Y.	05820	Wakefield Engineering Inc.	Wakefield, Mass.	12954	Dickson Electronics Corp.	Scottsdale, Arizona
00287	Cemco Inc.	Danielson, Conn.	06004	Bassick Co., The	Bridgeport, Conn.	13103	Thermoloy	Dallas, Texas
00334	Humidial	Colton, Calif.	06090	Raychem Corp.	Redwood City, Calif.	13396	Telefunken (GmbH)	Hanover, Germany
00348	Microtron Co., Inc.	Valley Stream, N.Y.	06175	Bausch and Lomb Optical Co.	Rochester, N.Y.	13835	Midland-Wright Div. of Pacific Industries, Inc.	Kansas City, Kansas
00373	Garlock Inc., Electronics Products Div.	Camden, N.J.	06402	E. T.A. Products Co. of America	Chicago, Ill.	14099	Sem-Tech	Newbury Park, Calif.
00656	Aerovox Corp.	New Bedford, Mass.	06540	Amatow Electronic Hardware Co., Inc.	New Rochelle, N.Y.	14193	Calif. Resistor Corp.	Santa Monica, Calif.
00779	Amp. Inc.	Harrisburg, Pa.	06555	Beede Electrical Instrument Co., Inc.		14298	American Components, Inc.	Conshohocken, Pa.
00781	Aircraft Radio Corp.	Boonton, N.J.	06666	General Devices Co., Inc.	Indianapolis, Ind.	14433	ITT Semiconductor, A Div. of Int. Telephone & Telegraph Corp.	West Palm Beach, Fla.
00815	Northern Engineering Laboratories, Inc.	Burlington, Wis.	06751	Semicor Div. Components Inc.	Phoenix, Ariz.	14493	Hewlett-Packard Company	Loveland, Colo.
00853	Sangamo Electric Co., Pickens Div.	Pickens, S.C.	06812	Torrington Mfg. Co., West Div.		14655	Cornell Dubilier Electric Corp.	Newark, N.J.
00866	Goe Engineering Co.	Los Angeles, Calif.	06980	Varian Assoc. Eimac Div.	San Carlos, Calif.	14674	Corning Glass Works	Corning, N.Y.
00881	Carl E. Holmes Corp.	Los Angeles, Calif.	07088	Kelvin Electric Co.	Van Nuys, Calif.	14752	Electro Cube Inc.	So. Pasadena, Calif.
00929	Microlab Inc.	Livingston, N.J.	07126	Digitron Co.	Pasadena, Calif.	14960	Williams Mfg. Co.	San Jose, Calif.
01009	Alden Products Co.	Brockton, Mass.	07137	Transistor Electronics Corp.	Minneapolis, Minn.	15203	Webster Electronics Co.	New York, N.Y.
01121	Allen Bradley Co.	Milwaukee, Wis.	07138	Westinghouse Electric Corp. Electronic Tube Div.		15291	Adjustable Bushing Co.	N. Hollywood, Calif.
01255	Littton Industries, Inc.	Beverly Hills, Calif.	07149	Filmohm Corp.	Elmira, N.Y.	15558	Micron Electronics	Garden City, Long Island, N.Y.
01281	TRW Semiconductors, Inc.	Lawndale, Calif.	07233	Cinch-Graphik Co.	City of Industry, Calif.	15566	Amprobe Inst. Corp.	Lynbrook, N.Y.
01295	Texas Instruments, Inc., Transistor Products Div.	Dallas, Texas	07261	Avnet Corp.	Culver City, Calif.	15772	Twentieth Century Coil Spring Co.	Santa Clara, Calif.
01349	The Alliance Mfg. Co.	Alliance, Ohio	07263	Fairchild Camera & Inst. Corp. Semiconductor Div.	Mountain View, Calif.	15818	Amelco Inc.	Mt. View, Calif.
01589	Pacific Relays, Inc.	Van Nuys, Calif.	07322	Minnesota Rubber Co.	Minneapolis, Minn.	15909	Daven Div. Thomas A. Edison Ind.	Long Island City, N.Y.
01930	Amerock Corp.	Rockford, Ill.	07387	Bircher Corp., The	Monterey Park, Calif.	15909	McGraw-Edison Co.	Spruce Pine, N.C.
01961	Pulse Engineering Co.	Santa Clara, Calif.	07700	Technical Wire Products Inc.	Cranford, N.J.	16179	Omni-Spectra Inc.	Detroit, Mich.
02114	Ferroxcube Corp. of America	Saugerties, N.Y.	07910	Continental Device Corp.	Hawthorne, Calif.	16352	Computer Diode Corp.	Lodi, N.J.
02286	Cole Rubber and Plastics Inc.	Sunnyvale, Calif.	07933	Raytheon Mfg. Co., Semiconductor Div.	Mountain View, Calif.	16688	Ideal Prec. Meter Co., Inc.	De Jur Meter Div.
02660	Amphenol-Borg Electronics Corp.	Chicago, Ill.	07966	Shockley Semi-Conductor Laboratories	Palo Alto, Calif.	16758	Delco Radio Div. of G.M. Corp.	Brooklyn, N.Y.
02735	Radio Corp. of America, Semiconductor and Materials Div.	Somerville, N.J.	07980	Hewlett-Packard Co., Beaverton Radio Div.	Rockaway, N.J.	17109	Thermonetics Inc.	Canoga Park, Calif.
02771	Vocaline Co. of America, Inc.	Old Saybrook, Conn.	08145	U.S. Engineering Co.	Los Angeles, Calif.	17474	Tranex Company	Mountain View, Calif.
02777	Hopkins Engineering Co.	San Fernando, Calif.	08289	Blinn, Delbert Co.	Pomona, Calif.	17675	Hamin Metal Products Corp.	Akron, Ohio
03508	G. E. Semiconductor Prod. Dept.	Syracuse, N.Y.	08358	Burgess Battery Co.	Niagara Falls, Ontario, Canada	17745	Angstrom Prec. Inc.	No. Hollywood, Calif.
03705	Apex Machine & Tool Co.	Dayton, Ohio	08664	Bristol Co., The	Waterbury, Conn.	18042	Power Design Pacific Inc.	Palo Alto, Calif.
03797	Eldema Corp.	Compton, Calif.	08717	Sloan Company	Sun Valley, Calif.	18476	Ty-Car Mfg. Co., Inc.	Holliston, Mass.
03877	Transitron Electric Corp.	Wakefield, Mass.	08718	ITT Cannon Electric Inc., Phoenix Div.	Phoenix, Arizona	18486	TRW Elect. Comp. Div.	Des Plaines, Ill.
03888	Pyrofilm Resistor Co., Inc.	Cedar Knolls, N.J.	08792	CBS Electronics Semiconductor Operations, Div of C.B.S. Inc.	Lowell, Mass.	18583	Curtis Instrument, Inc.	Mt. Kisco, N.Y.
03954	Singer Co., Diehl Div., Finderne Plant	Sumerville, N.J.	08984	Mei-Rain	Indianapolis, Ind.	18873	E.I. DuPont and Co., Inc.	Wilmington, Del.
04009	Arrow, Hart and Hegeman Elect. Co.	Hartford, Conn.	09026	Babcock Relays Div.	Costa Mesa, Calif.	18911	Durant Mfg. Co.	Milwaukee, Wis.
04013	Taurus Corp.	Lambertville, N.J.	09134	Texas Capacitor Co.	Houston, Texas	19315	Bendix Corp., The Eclipse-Pioneer Div.	Teterboro, N.J.
04222	Hi-Q Division of Aerovox	Myrtle Beach, S.C.	09145	Atcham Electronics	Sun Valley, Calif.	19500	Thomas A. Edison Industries, Div. of McGraw-Edison Co.	West Orange, N.J.
04354	Precision Paper Tube Co.	Chicago, Ill.	09250	Electro Assemblies, Inc.	Chicago, Ill.	19644	LRC Electronics	Horseheads, N.Y.
04404	Dymec Division of Hewlett-Packard Co.	Palo Alto, Calif.	09569	Mallory Battery Co. of Canada, Ltd.	Toronto, Ontario, Canada	19701	Electra Mfg. Co.	Independence, Kansas
04651	Sylvania Electric Products, Microwave Device Div.	Mountain View, Calif.	10214	General Transistor Western Corp.	Los Angeles, Calif.	20183	General Atronics Corp.	Philadelphia, Pa.
04713	Motorola, Inc., Semiconductor Prod. Div.	Phoenix, Arizona	10411	Ti-Tal, Inc.	Berkeley, Calif.	21226	Executive, Inc.	Long Island City, N.Y.
04732	Filtrol Co., Inc. Western Div.	Culver City, Calif.	10646	Carborundum Co.	Niagara Falls, N.Y.	21335	Fairfin Bearing Co., The	New Britain, Conn.
04773	Automatic Electric Co.	Northlake, Ill.	11236	CTS of Berke, Inc.	Berne, Ind.	21520	Fansteel Metallurgical Corp.	N. Chicago, Ill.
04796	Sequoia Wire Co.	Redwood City, Calif.	11237	Chicago Telephone of California, Inc.	So. Pasadena, Calif.	23783	British Radio Electronics Ltd.	Washington, D.C.
04811	Precision Coil Spring Co.	El Monte, Calif.	11242	Bay State Electronics Corp.	Waltham, Mass.	24455	G.E. Lamp Division	Nela Park, Cleveland, Ohio
04870	P. M. Motor Company	Westchester, Ill.	11312	Teledyne Inc., Microwave Div.	Palo Alto, Calif.	24655	General Radio Co.	West Concord, Mass.
05006	Twentieth Century Plastics, Inc.	Los Angeles, Calif.	11534	Duncan Electronics Inc.	Costa Mesa, Calif.	26365	Gries Reproducer Corp.	New Rochelle, N.Y.
05277	Westinghouse Electric Corp., Semi-Conductor Dept.	Youngwood, Pa.	11711	General Instrument Corp., Semiconductor Div., Products Group	Newark, N.J.	26462	Grobet File Co. of America, Inc.	Carlstadt, N.J.
05347	Ultronix, Inc.	San Mateo, Calif.	11717	Imperial Electronic, Inc.	Buena Park, Calif.	26992	Hamilton Watch Co.	Lancaster, Pa.
05593	Illumitronic Engineering Co.	Sunnyvale, Calif.	11870	Melabs, Inc.	Palo Alto, Calif.	28480	Hewlett-Packard Co.	Palo Alto, Calif.
05616	Cosmo Plastic (c/o Electrical Spec. Co.)	Cleveland, Ohio	12136	Philadelphia Handle Co.	Camden, N.J.	33173	G.E. Receiving Tube Dept.	Owensboro, Ky.
05624	Barber Colman Co.	Rockford, Ill.	12697	Clarcstat Mfg. Co.	Dover, N.H.	35434	Lectrohm Inc.	Chicago, Ill.
05728	Tiffen Optical Co.	Roslyn Heights, Long Island, N.Y.	12859	Nippon Electric Co., Ltd.	Tokyo, Japan	36196	Stanwyck Coil Products Ltd.	Hawkesbury, Ontario, Canada

TABLE 6-3.
CODE LIST OF MANUFACTURERS (Continued)

Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address
44655	Ohmite Mfg. Co.	Skokie, Ill.	72964	Robert M. Hadley Co.	Los Angeles, Calif.	80031	Mepco Division of Sessions Clock Co.	Morristown, N.J.
46384	Penn Eng. & Mfg. Corp.	Doylesboro, Pa.	72982	Erie Technological Products, Inc.	Erie, Pa.	80120	Schnitzer Alloy Products Co.	Elizabeth, N.J.
47904	Polaroid Corp.	Cambridge, Mass.	73061	Hansen Mfg. Co., Inc.	Princeton, Ind.	80130	Times Telephoto Equipment	New York, N.Y.
48620	Precision Thermometer & Inst. Co.	Southampton, Pa.	73076	H. M. Harper Co.	Chicago, Ill.	80131	Electronic Industries Association, Any brand	Tube meeting EIA Standards-Washington, DC.
49956	Microwave & Power Tube Div.	Waltham, Mass.	73138	Helipot Div. of Beckman Inst., Inc.	Fullerton, Calif.	80207	Unimax Switch, Div. Maxon Electronics Corp.	Wallingford, Conn.
52090	Rowan Controller Co.	Westminster, Md.	73293	Hughes Products Division of Hughes Aircraft Co.	Newport Beach, Calif.	80223	United Transformer Corp.	New York, N.Y.
52983	Sanborn Company	Waltham, Mass.	73445	Amperex Electronic Co., Div. of North American Phillips Co., Inc.	Hicksville, N.Y.	80248	Oxford Electric Corp.	Chicago, Ill.
54294	Shallicross Mfg. Co.	Selma, N.C.	73506	Bradley Semiconductor Corp.	New Haven, Conn.	80294	Bourns Inc.	Riverside, Calif.
55026	Simpson Electric Co.	Chicago, Ill.	73559	Carling Electric, Inc.	Hartford, Conn.	80411	Acro Div. of Robertshaw Controls Co.	Columbus, Ohio
55933	Sonotone Corp.	Elmsford, N.Y.	73682	George K. Garrett Co., Div. MSL Industries Inc.	Philadelphia, Pa.	80486	All Star Products Inc.	Defiance, Ohio
55938	Raytheon Co. Commercial Apparatus & Systems Div.	So. Norwalk, Conn.	73734	Federal Screw Products Inc.	Chicago, Ill.	80509	Avery Adhesive Label Corp.	Monrovia, Calif.
56137	Spaulding Fibre Co., Inc.	Tonawanda, N.Y.	73743	Fischer Special Mfg. Co.	Cincinnati, Ohio	80583	Hammerfund Co., Inc.	New York, N.Y.
56289	Sprague Electric Co.	North Adams, Mass.	73793	General Industries Co., The	Elyria, Ohio	80640	Stevens, Arnold, Co., Inc.	Boston, Mass.
59446	Telex, Inc.	St. Paul, Minn.	73846	Goshen Stamping & Tool Co.	Goshen, Ind.	81030	International Instruments Inc.	Orange, Conn.
59730	Thomas & Betts Co.	Elizabeth, N.J.	73899	JFD Electronics Corp.	Brooklyn, N.Y.	81073	Graybill Co.	LaGrange, Ill.
60741	Tripplett Electrical Inst. Co.	Bluffton, Ohio	73905	Jennings Radio Mfg. Corp.	San Jose, Calif.	81095	Triad Transformer Corp.	Venice, Calif.
61775	Union Switch and Signal, Div. of Westinghouse Air Brake Co.	Pittsburgh, Pa.	74276	Signalite Inc.	Neptune, N.J.	81312	Winchester Elec. Div. Litton Ind., Inc.	Oakville, Conn.
62119	Universal Electric Co.	Owosso, Mich.	74455	J. H. Winn's, and Sons	Winchester, Mass.	81349	Military Specification	-----
63743	Ward-Leonard Electric Co.	Mt. Vernon, N.Y.	74861	Industrial Condenser Corp.	Chicago, Ill.	81483	International Rectifier Corp.	El Segundo, Calif.
64959	Western Electric Co., Inc.	New York, N.Y.	74868	R. F. Products Division of Amphenol-Borg Electronics Corp.	Danbury, Conn.	81541	Airpax Electronics, Inc.	Cambridge, Mass.
65092	Weston Inst. Inc. Weston-Newark	Newark, N.J.	74970	E. F. Johnson Co.	Waseca, Minn.	81860	Barry Controls, Div. Barry Wright Corp.	Watertown, Mass.
66295	Wittek Mfg. Co.	Chicago, Ill.	75042	International Resistance Co.	Philadelphia, Pa.	82042	Carter Precision Electric Co.	Skokie, Ill.
66346	Revere Wollensak Div. Minn. Mining & Mfg. Co.	St. Paul, Minn.	75378	CTS Knights Inc.	Sandwich, Ill.	82047	Sperli Faraday Inc., Copper Hewitt Electric Div.	Hoboken, N.J.
70276	Alten Mfg. Co.	Hartford, Conn.	75382	Kulka Electric Corporation	Mt. Vernon, N.Y.	82142	Jeffers Electronics Division of Speer Carbon Co.	Du Bois, Pa.
70318	Allmetal Screw Product Co., Inc.	Garden City, N.Y.	75818	Lenz Electric Mfg. Co.	Chicago, Ill.	82170	Fairchild Camera & Inst. Corp.	Clifton, N.J.
70485	Atlantic India Rubber Works, Inc.	Chicago, Ill.	75915	Littlefuse, Inc.	Des Plaines, Ill.	82209	Maguire Industries, Inc.	Greenwich, Conn.
70563	Amperite Co., Inc.	Union City, N.J.	76005	Lord Mfg. Co.	Erie, Pa.	82219	Sylvania Electric Prod. Inc.	Emporium, Pa.
70903	Belden Mfg. Co.	Chicago, Ill.	76210	C. W. Marwedel	San Francisco, Calif.	82376	Astron Corp.	East Newark, Harrison, N.J.
70998	Bird Electronic Corp.	Cleveland, Ohio	76487	James Millen Mfg. Co., Inc.	Malden, Mass.	82389	Switchcraft, Inc.	Chicago, Ill.
71002	Birnbach Radio Co.	New York, N.Y.	76493	J. W. Miller Co.	Los Angeles, Calif.	82647	Metals & Controls Inc. Spencer Products	Attleboro, Mass.
71041	Boston Gear Works Div. of Murray Co. of Texas	Quincy, Mass.	76530	Cinch-Monadnock, Div. of United Carr Fastener Corp.	San Leandro, Calif.	82768	Phillips-Advance Control Co.	Joliet, Ill.
71218	Bud Radio, Inc.	Willoughby, Ohio	76545	Mueller Electric Co.	Cleveland, Ohio	82865	Research Products Corp.	Madison, Wis.
71286	Camloc Fastener Corp.	Paramus, N.J.	76703	National Union	Newark, N.J.	82877	Rotron Mfg. Co., Inc.	Woodstock, N.Y.
71313	Cardwell Condenser Corp.	Lindenhurst L.I., N.Y.	76854	Oak Manufacturing Co.	Crystal Lake, Ill.	82893	Vector Electronic Co.	Glendale, Calif.
71400	Bussmann Mfg. Div. of McGraw-Edison Co.	St. Louis, Mo.	77068	Bendix Corp., The	Bendix Pacific Div.	83053	Western Washer Mfg. Co.	Los Angeles, Calif.
71436	Chicago Condenser Corp.	Chicago, Ill.	77075	Pacific Metals Co.	San Francisco, Calif.	83058	Carr Fastener Co.	Cambridge, Mass.
71447	Calif. Spring Co., Inc.	Pico-Rivera, Calif.	77221	Phanostran Instrument and Electronic Co.	South Pasadena, Calif.	83086	New Hampshire Ball Bearing, Inc.	Peterborough, N.H.
71450	CTS Corp.	Elkhart, Ind.	77252	Philadelphia Steel and Wire Corp.	Philadelphia, Pa.	83125	General Instrument Corp., Capacitor Div.	Darlington, S.C.
71468	ITT Cannon Electric Inc.	Los Angeles, Calif.	77342	American Machine & Foundry Co. Potter & Brumfield Div.	Princeton, Ind.	83148	ITT Wire and Cable Div.	Los Angeles, Calif.
71471	Cinema Plant, Hi-Q Div. Aerovox Corp.	Burbank, Calif.	77630	TRW Electronic Components Div.	Camden, N.J.	83185	Victory Engineering Corp.	Springfield, N.J.
71482	C. P. Clare & Co.	Chicago, Ill.	77638	General Instrument Corp., Rectifier Div.	Brooklyn, N.Y.	83298	Bendix Corp., Red Bank Div.	Red Bank, N.J.
71590	Centralab Div. of Globe Union Inc.	Milwaukee, Wis.	77764	Resistance Products Co.	Harrisburg, Pa.	83315	Hubbell Corp.	Mundelein, Ill.
71616	Commercial Plastics Co.	Chicago, Ill.	77969	Rubbercraft Corp. of Calif.	Torrance, Calif.	83330	Smith, Herman H., Inc.	Brooklyn, N.Y.
71700	Cornish Wire Co., The	New York, N.Y.	78189	Shakeproof Division of Illinois Tool Works	Elgin, Ill.	83385	Central Screw Co.	Chicago, Ill.
71707	Coto Coil Co., Inc.	Providence, R.I.	78283	Signal Indicator Corp.	New York, N.Y.	83501	Gavitt Wire and Cable Co.	Div. of Amerace Corp.
71744	Chicago Miniature Lamp Works	Chicago, Ill.	78290	Struthers-Dunn Inc.	Pitman, N.J.	83594	Burroughs Corp. Electronic Tube Div.	Brookfield, Mass.
71753	A. O. Smith Corp., Crowley Div.	West Orange, N.J.	78452	Thompson-Bremer & Co.	Chicago, Ill.	83740	Union Carbide Corp. Consumer Prod. Div.	Plainfield, N.J.
71785	Cinch Mfg. Co., Howard B. Jones Div.	Chicago, Ill.	78471	Tilley Mfg. Co.	San Francisco, Calif.	83777	Model Eng. and Mfg., Inc.	New York, N.Y.
71984	Dow Corning Corp.	Midland, Mich.	78488	Stackpole Carbon Co.	St. Marys, Pa.	83821	Loyd Scruggs Co.	Huntington, Ind.
72136	Electro Motive Mfg. Co., Inc.	Willimantic, Conn.	78493	Standard Thomson Corp.	Waltham, Mass.	83821	Loyd Scruggs Co.	Festus, Mo.
72354	John E. Fast Co., Div. Victoreen Instr. Co.	Chicago, Ill.	78553	Tinnerman Products, Inc.	Cleveland, Ohio	83942	Aeronautical Inst. & Radio Co.	Lodi, N.J.
72619	Dialight Corp.	Brooklyn, N.Y.	78790	Transformer Engineers	San Gabriel, Calif.	84171	Arco Electronics Inc.	Great Neck, N.Y.
72656	Indiana General Corp., Electronics Div.	Keasby, N.J.	78947	Ucinite Co.	Newtonville, Mass.	84396	A. J. Glesener Co., Inc.	San Francisco, Calif.
72699	General Instrument Corp., Cap. Div. Newark, N.J.	Philadelphia, Pa.	79136	Waldes Kohinoor Inc.	Long Island City, N.Y.	84411	TRW Capacitor Div.	Ogallala, Neb.
72765	Drake Mfg. Co.	Chicago, Ill.	79142	Veeder Root, Inc.	Hartford, Conn.	84970	Sarkes Tarzian, Inc.	Bloomington, Ind.
72825	Hugh H. Eby Inc.	Philadelphia, Pa.	79251	Wenco Mfg. Co.	Chicago, Ill.	85454	Boonton Molding Company	Boonton, N.J.
72928	Gudeman Co.	Chicago, Ill.	79727	Continental-Witt Electronics Corp.	Philadelphia, Pa.			
80015-42			79953	Zierick Mfg. Corp.	New Rochelle, N.Y.			

TABLE 6-3.
CODE LIST OF MANUFACTURERS (Continued)

Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address
85471	A.B. Boyd Co.	San Francisco, Calif.	94137	General Cable Corp.	Bayonne, N.J.	98376	Zero Mfg. Co.	Burbank, Calif.
85474	R.M. Bracamonte & Co.	San Francisco, Calif.	94144	Raytheon Co., Comp. Div., Ind. Comp. Operations	Quincy, Mass.	98731	General Mills Inc., Electronics Div.	Minneapolis, Minn.
85660	Koiled Kords, Inc.	Hamden, Conn.	94148	Scientific Electronics Products, Inc.	Loveland, Colo.	98734	Paeo Div. of Hewlett-Packard Co.	Palo Alto, Calif.
85911	Seamless Rubber Co.	Chicago, Ill.	94154	Tung-Sol Electric, Inc.	Newark, N.J.	98821	North Hills Electronics, Inc.	Glen Cove, N.Y.
86197	Clifton Precision Products Co., Inc.	Clifton Heights, Pa.	94197	Curtiss-Wright Corp. Electronics Div.	East Paterson, N.J.	98978	International Electronic Research Corp.	Burbank, Calif.
86579	Precision Rubber Products Corp.	Dayton, Ohio	94222	South Chester Corp.	Chester, Pa.	99109	Columbia Technical Corp.	New York, N.Y.
86684	Radio Corp. of America, Electronic Comp. & Devices Div.	Harrison, N.J.	94310	Tru-Om Products Memcor Components Div.	Huntington, Ind.	99313	Varian Associates	Palo Alto, Calif.
87034	Marco Industries	Anaheim, Calif.	94330	Wire Cloth Products, Inc.	Bellwood, Ill.	99378	Atlec Corp.	Winchester, Mass.
87216	Philco Corporation (Lansdale Division)	Lansdale, Pa.	94682	Worcester Pressed Aluminum Corp.	Worcester, Mass.	99515	Marshall Ind. Elect. Products Div.	San Marino, Calif.
87473	Western Fibrous Glass Products Co.	San Francisco, Calif.	94696	Magnecraft Electric Co.	Chicago, Ill.	99707	Control Switch Division, Controls Co. of America	El Segundo, Calif.
87664	Van Waters & Rogers Inc.	San Francisco, Calif.	95023	George A. Philbrick Researchers, Inc.	Boston, Mass.	99800	Delevan Electronics Corp.	East Aurora, N.Y.
87930	Tower Mfg. Corp.	Providence, R.I.	95236	Allies Products Corp.	Miami, Fla.	99848	Wilco Corporation	Indianapolis, Ind.
88140	Cutter-Hammer, Inc.	Lincoln, Ill.	95238	Continental Connector Corp.	Woodside, N.Y.	99934	Renbrandt, Inc.	Boston, Mass.
88220	Gould-National Batteries, Inc.	St. Paul, Minn.	95263	Leecraft Mfg. Co., Inc.	Long Island, N.Y.	99942	Hoffman Electronics Corp., Semiconductor Div.	El Monte, Calif.
88421	Federal Telephone & Radio Corp.	Clifton, N.J.	95264	Lerco Electronics, Inc.	Burbank, Calif.	99957	Technology Instrument Corp. of Calif.	Newbury Park, Calif.
88698	General Mills, Inc.	Buffalo, N.Y.	95265	National Coil Co.	Sheridan, Wyo.			
89231	Graybar Electric Co.	Oakland, Calif.	95275	Vitramon, Inc.	Bridgeport, Conn.			
89665	United Transformer Co.	Chicago, Ill.	95348	Gordos Corp.	Bloomfield, N.J.			
90179	US Rubber Co., Consumer Ind. & Plastics Prod. Div.	Passaic, N.J.	95354	Methode Mfg. Co.	Chicago, Ill.			
90970	Bearing Engineering Co.	San Francisco, Calif.	95712	Dage Electric Co., Inc.	Franklin, Ind.			
91260	Connor Spring Mfg. Co.	San Francisco, Calif.	95984	Siemon Mfg. Co.	Wayne, Ill.			
91345	Miller Dial & Nameplate Co.	El Monte, Calif.	95987	Weckesser Co.	Chicago, Ill.			
91418	Radio Materials Co.	Chicago, Ill.	96067	Huggins Laboratories	Sunnyvale, Calif.			
91506	Augat Inc.	Attleboro, Mass.	96095	Hi-Q Div. of Aeroxov Corp.	Olean, N.Y.			
91637	Dale Electronics, Inc.	Columbus, Nebr.	96256	Thordarson-Meissner Inc.	Mt. Carmel, Ill.			
91662	Eico Corp.	Willow Grove, Pa.	96296	Solar Manufacturing Co.	Los Angeles, Calif.	0000F	Malco Tool and Die	Los Angeles, Calif.
91737	Gremar Mfg. Co., Inc.	Wakefield, Mass.	96330	Carlton Screw Co.	Chicago, Ill.	0000M	Western Coil Div. of Automatic Ind., Inc.	Redwood City, Calif.
91827	K F Development Co.	Redwood City, Calif.	96341	Microwave Associates, Inc.	Burlington, Mass.	0000Z	Willow Leather Products Corp.	Newark, N.J.
91929	Honeywell Inc., Micro Switch Div.	Freeport, Ill.	96501	Excel Transformer Co.	Oakland, Calif.	000AA	British Radio Electronics Ltd.	Washington, D.C.
91961	Nahn-Bros. Spring Co.	Oakland, Calif.	97464	Industrial Retaining Ring Co.	Irvington, N.J.	000AB	ETA	England
92180	Tri-Connector Corp.	Peabody, Mass.	97539	Automatic & Precision Mfg.	Englewood, N.J.	000BB	Precision Instrument Components Co.	
92367	Elgeet Optical Co. Inc.	Rochester, N.Y.	97979	Reon Resistor Corp.	Yonkers, N.Y.			
92196	Universal Industries, Inc.	City of Industry, Calif.	97983	Litton System Inc., Adler-Westrex Commun. Div.	New Rochelle, N.Y.			
92607	Tensolite Insulated Wire Co., Inc.	Tarrytown, N.Y.	98141	R-Troncis, Inc.	Jamaica, N.Y.	000MM	Rubber Eng. & Development	Hayward, Calif.
93332	Sylvania Electric Prod. Inc.	Weburn, Mass.	98159	Rubber Tech, Inc.	Gardena, Calif.	000NN	A "N" D Mfg. Co.	San Jose, Calif.
93369	Robbins and Myers, Inc.	New York, N.Y.	98220	Hewlett-Packard Co., Moseley Div.	Pasadena, Calif.	000QQ	Cooltron	Oakland, Calif.
93410	Stevens Mfg. Co., Inc.	Mansfield, Ohio	98278	Microdot, Inc.	So. Pasadena, Calif.	000WW	California Eastern Lab.	Burlington, Calif.
93929	G.V. Controls	Livingston, N.J.	98291	Sealectro Corp.	Mamaroneck, N.Y.	000YY	S.K. Smith Co.	Los Angeles, Calif.

THE FOLLOWING HP VENDORS HAVE NO NUMBER ASSIGNED IN THE LATEST SUPPLEMENT TO THE FEDERAL SUPPLY CODE FOR MANUFACTURERS HANDBOOK.

MANUAL CHANGES

This manual describes Model 493A and 495A instruments with serial numbers prefixed 350-. Change the manual as indicated below for serials indicated. For other serials, either a different manual or a change sheet is required. If the prefix on your instrument is not specifically mentioned either here or on a change sheet, the correct information can be obtained from your Hewlett-Packard Field Office.

Instrument Serial Prefix	Make Manual Changes	Instrument Serial Prefix	Make Manual Changes
330-	1		
304-	1, 2		
229-, 207-, 151-	1, 2, 3		

CHANGE 1

The turn-on time-delay is 3 minutes rather than 90 seconds. Change reference to this delay in Figure 3-1, 4-5, 5-2, 5-10, and 5-11, and in paragraphs 4-24 and 4-25.

Tables 6-1 and 6-2: K1: Change ~~④~~ Stock Number to 0490-0037 and Mfr. Part No. to 6N0180T.

R414: Change to R; fxd mtl film 100K ohms 5% 1/2W; ~~④~~ Stock No. 0758-0053; Mfr 07115;
Mfr. Part No. C20; TQ 1.

Delete: ~~④~~ Stock No. 0758-0076

CHANGE 2

Figure 5-12:

C15: Change value to 0.015 μ f

R51: Change value to 1 M

Tables 6-1 and 6-2:

Change to:	C15	0160-0062	C: fxd, paper, 0.015 μ f \pm 10% 3000 vdcw	56289	184P153	1
	R51	0687-1051	R: fxd, comp, 1 M \pm 10%, 1/2W	01121	EB1051	1

Delete 0160-0384 and 0687-2151

CHANGE 3

Figure 5-13. Modulator Board (A101): Change as illustrated.

Figure 5-14. Modulator: Change as illustrated.

Table 6-1:

Delete all items with 400-series designations.

Insert:

A101	495A-65C	Assembly: Mod Board
C103, C104	0150-0052	C: fxd, cer, dual, 0.05 μ f \pm 20%, 400 vdcw
C105	0150-0012	C: fxd, cer, 0.01 μ f \pm 20%, 1000 vdcw
C106	0140-0216	C: fxd, mica, 120 pf \pm 2%, 300 vdcw
C107	0140-0146	C: fxd, mica, 82 pf \pm 5%, 300 vdcw
C108	0130-0013	C: var, cer, 2-12 pf
C110	0150-0015	C: fxd, TiO ₂ , 2.2 pf \pm 10%, 500 vdcw
C111	0130-0017	C: var, cer, 8-50 μ f, 500 vdcw
C112	0140-0225	C: fxd, mica, 300 pf \pm 1%, 300 vdcw
CR103	1901-0030	Diode, Si: 800 PIV
CR104,		
CR105	1901-0025	Diode, Si
CR106	1902-0163	Diode
CR107,		
CR108	1901-0030	Diode, Si: 800 PIV
Q101	1854-0003	Transistor Si: NPN
R104	0693-4741	R: fxd, comp, 470K ohms \pm 10%, 2W
R105,		
R106	0693-1531	R: fxd, comp, 15K ohms \pm 10%, 2W
R107	0727-0246	R: fxd, dep c, 600K ohms \pm 1%, 1/2W
R108	2100-0094	R: var, comp, lin, 50K ohms \pm 30%, 1/4W
R109	0727-0226	R: fxd, dep c, 250K ohms \pm 1%, 1/2W

MANUAL CHANGES (Cont'd)

Table 6-1(cont'd)	R110	0693-8231	R: fxd, comp, 82K ohms ±10%, 2W
	R111	0687-4731	R: fxd, comp, 47K ohms ±10%, 1/2W
	R112	0687-1231	R: fxd, comp, 12K ohms ±10%, 1/2W
	R113	0693-6831	R: fxd, comp, 68K ohms ±10%, 2W
	R114	0690-1041	R: fxd, comp, 100K ohms ±10%, 1W
	R115, R116	0693-2731	R: fxd, comp, 27K ohms ±10%, 2W
	R117	0693-1531	R: fxd, comp, 15K ohms ±10%, 2W
	R118	0727-0292	R: fxd, dep c, 3M ±1%, 1/2W
	R119	0727-0255	R: fxd, dep c, 800K ohms ±1%, 1/2W
	R121	2100-0144	R: var, comp, 250K ohms
	R122	0727-0208	R: fxd, dep c, 100K ohms ±1%, 1/2W
	R123	0730-0093	R: fxd, dep c, 516K ohms ±1%, 1W
	R124	0727-0149	R: fxd, dep c, 7.96K ohms ±1%, 1/2W
	R125	0727-0245	R: fxd, dep c, 500K ohms ±1%, 1/2W
	R126, R127	0773-0010	R: fxd, mfgl, 85K ohms ±5%, 5W
	R128	0687-1521	R: fxd, comp, 1.5K ohms ±10%, 1/2W
	R129	0687-4741	R: fxd, comp, 470K ohms ±10%, 1/2W
	R130	0686-6845	R: fxd, comp, 680K ohms ±5%, 1/2W
	V101	1933-0005	Tube, delectron: 7734
	V102	1940-0007	Tube, electron: OB2
	V103	1933-0004	Tube, electron: 6U8A
	V104	1923-0043	Tube, electron: 6EW6
	XV101	1200-0048	Socket tube: 9 pin, minat
	XV102	1200-0047	Socket tube: 7 pin, minat w/ears (for pc)
	XV103	1200-0048	Socket tube: 9 pin, minat
	XV104	1200-0047	Socket tube: 7 pin, minat w/ears (for pc)

Table 6-2:

Delete:	0140-0149	0727-0237	0765-0008	0727-0282
	0140-0208	1902-0026	0727-0283	0727-0286
	0130-0016	0687-1041	0727-0165	0690-2231
	0140-0203	0727-0252	0727-0230	0767-0010
	0150-0011	0690-8231	0727-0235	0693-5631
	0140-0194	0690-4731	2100-0096	0727-0332
				0727-0221

0687-3331: Increase TQ to 2

0727-0276: Decrease TQ to 1

0773-0010: Increase TQ to 2

1901-0030: Increase TQ to 20

0150-0012: Increase TQ to 3

0130-0013: Decrease TQ to 1

0727-0246: Increase TQ to 7

2100-0094: Decrease TQ to 1

0687-4731: Increase TQ to 2

Add:

0130-0017	C: var, cer, 8-50 μ f, 500 vdcw	72982	557-019-U2PO-34R	1	1
0140-0146	C: fxd, mica, 82 pf ±5%, 300 vdcw	72136	DM15F820J	1	1
0140-0216	C: fxd, mica, 120 pf ±2%, 300 vdcw	72136	DM15F121G-300V	1	1
0140-0225	C: fxd, mica, 300 pf ±1%, 300 vdcw	72136	DM15F301F-300V	1	1
0150-0015	C: fxd, TiO ₂ , 2.2 pf ±10%, 500 vdcw	82142	Type JM	1	1
0686-6845	R: fxd, comp, 680K ohms ±5%, 1/2W	01121	EB6854	1	1
0687-1231	R: fxd, comp, 12K ohms ±10%, 1/2W	01121	EB1231	1	1
0687-1421	R: fxd, comp, 1.5K ohms ±10%, 1/2W	01121	EB1521	1	1
0693-1531	R: fxd, comp, 15K ohms ±10%, 2W	01121	HB1531	3	1
0693-2731	R: fxd, comp, 27K ohms ±10%, 2W	01121	HB2731	2	1
0693-4741	R: fxd, comp, 470K ohms ±10%, 2W	01121	HB4741	1	1
0693-6831	R: fxd, comp, 68K ohms ±10%, 2W	01121	HB6831	1	1
0693-8231	R: fxd, comp, 82K ohms ±10%, 2W	01121	HB8231	1	1
0727-0149	R: fxd, dep c, 7.96K ohms ±1%, 1/2W	19701	DC1/2CR5 obd#	1	1
0727-0226	R: fxd, dep c, 250K ohms ±1%, 1/2W	19701	DC1/2CR5 obd#	1	1
0727-0255	R: fxd, dep c, 800K ohms ±1%, 1/2W	19701	DC1/2AR5 obd#	1	1
0727-0292	R: fxd, dep c, 3M ±1%, 1/2W	19701	DC1/2CR5 obd#	1	1
0730-0093	R: fxd, dep c, 516K ohms ±1%, 1W	19701	CD1R5 obd#	1	1
1902-0163	Diode	28480	1902-0163		
1933-0005	Tube, electron: 7734	07138	7734	1	1
1940-0007	Tube, electron: OB2	86684	obd#	1	1
2100-0144	R: var, comp, 250K ohms	11237	Type UPE-70 obd#	1	1

Figure 5-13. Modulator Board (For Change 3)

Figure 5-14. Modulator (For Change 3)

WARRANTY CLAIM AND ADJUSTMENT PROCEDURE

for microwave tubes supplied by the
HEWLETT-PACKARD COMPANY
for use in Hewlett-Packard instruments

The procedure described below is for use within the United States. For warranty claims arising outside the U.S.A., before returning the tube, fill out the form on the reverse side and send it with a request for shipping instructions to your nearest Hewlett-Packard Sales and Service Office or to:

(in Western Europe)

Hewlett-Packard S. A.
54 Route des Acacias
Geneva, Switzerland
Telephone: (022) 42.81.50
Telex: 2.24.86
Cable: HEWPACKSA

(Rest of World)

Hewlett-Packard Co.
International Marketing Dept.
1501 Page Mill Road
Palo Alto, California, 94304, U.S.A.
Telephone: (415) 326-7000
Telex: 033811
Cable: HEWPACK

Microwave tubes supplied by the Hewlett-Packard Company, either as original or replacement, for use in Hewlett-Packard instruments are actually warranted by the tube manufacturer and not by Hewlett-Packard. However, all warranty claims on tubes obtained from us either as original or replacement will be processed by Hewlett-Packard.

In the event of failure you should purchase a new tube and return your old tube immediately to Hewlett-Packard. Credit allowances will be passed on to you upon receipt of the defective tube.

For your convenience, warranty claims for all microwave tubes supplied by the Hewlett-Packard Company may be made on this single form; merely fill out the information on the reverse side and return this form, along with the defective tube, to your Hewlett-Packard Sales and Service Office or to Hewlett-Packard. Please be sure each space on the form is filled in--lack of complete information may delay processing of your claim.

Each tube manufacturer has his own warranty policy. Copies of individual Conditions of Warranty are available from your Hewlett-Packard Sales and Service Office or from the Hewlett-Packard Company.

SHIPPING INSTRUCTIONS

The following instructions are included to aid you in preventing damage in transit. Package your tube carefully--no allowance can be made on broken tubes.

1. Carefully wrap tube in 1/4-inch thick cellulosic cushioning, cotton batting, or other soft padding material. Cable assemblies and other accessories not rigidly mounted to the tube should be padded and wrapped separately to prevent damage to the tube during shipment.
2. Wrap the above in heavy kraft paper.
3. Pack in a rigid container which is at least 4 inches larger than the tube in each dimension.
4. Surround the tube with at least 2 inches of shock absorbing material. Be certain that the packing is tight all around the tube.
5. Tubes returned from outside the continental United States should be packed in a wooden box.
6. Mark container **FRAGILE** and ship prepaid via Air freight or Railway Express. Do not ship via Parcel Post or Air Parcel Post since experience has shown that fragile items are more apt to be damaged when shipped by these means.

Note

Tubes with permanent magnets can interfere with magnetic compasses.
For air shipment plainly mark container: "MAGNETIZED MATERIAL"

In warranty tubes purchased from Hewlett-Packard may be returned, with a completed warranty Claim Form, to your local Hewlett-Packard Sales and Service Office, or to:

Hewlett-Packard Company
Customer Service Center
333 Logue Avenue
Mountain View, California 94040
USA

MICROWAVE TUBE WARRANTY CLAIM
INFORMATION FORM

IMPORTANT: Please answer all questions fully -- insufficient information may delay processing of your claim.

DATE: _____

FROM: (Tube Owner)

Company _____

Address _____

Tube type _____

Tube serial No. _____

Tube mfr. _____

Use in HP Model _____

Instrument serial No. _____

Tube is Original () or Replacement ()

Date tube received _____

Date of failure _____

Total hours filament operation _____

SYMPTOMS: (Please describe conditions prior to and at time of failure, along with description of tube's defect, if known) _____

IMPORTANT:

Replacement (new) tube serial No. _____

Signature _____

Title _____

For HP use only
Repair order # _____

HEWLETT-PACKARD SALES AND SERVICE

UNITED STATES

ALABAMA
P.O. Box 4207
2603 Byrd Spring Road S.W.
Huntsville 35802
Tel: (205) 881-4591
TWX: 810-726-2204

ARIZONA
3008 North Scottsdale Road
Scottsdale 85251
Tel: (602) 945-7601
TWX: 910-950-1282

CALIFORNIA
3939 Lankershim Boulevard
North Hollywood 91604
Tel: (213) 877-1282
TWX: 910-499-2170

COLORADO
7965 East Prentice
Englewood 80110
Tel: (303) 771-3455
TWX: 910-935-0705

CONNECTICUT
508 Tolland Street
East Hartford 06108
Tel: (203) 289-9394
TWX: 710-425-3416

DELAWARE
3941 Kennett Pike
Wilmington 19807
Tel: (302) 655-6161
TWX: 510-666-2214

FLORIDA
P.O. Box 545
Suite 106
9999 N.E. 2nd Avenue
Miami Shores 33153
Tel: (305) 758-3826
TWX: 810-848-7262

GEORGIA
P.O. Box 28234
450 Interstate North
Atlanta 30328
Tel: (404) 436-6181
TWX: 810-766-4890

ILLINOIS
5500 Howard Street
Skokie 60076
Tel: (312) 677-0400
TWX: 910-223-3613

INDIANA
111 East Avenue
Norwalk 06851
Tel: (203) 853-1251
TWX: 710-468-3750

KANSAS CITY
304-1037 West Broadway
Vancouver 9
Tel: (604) 738-5301
TWX: 610-922-5059

Louisiana
4002 Meadows Drive
Indianapolis 46205
Tel: (317) 546-4891
TWX: 810-341-3263

MARYLAND
6707 Whistestone Road
Baltimore 21207
Tel: (301) 944-5400
TWX: 710-862-0850

MASSACHUSETTS
32 Hartwell Ave.
Lexington 02173
Tel: (301) 948-6370
TWX: 710-332-0382

MICHIGAN
24315 Northwestern Highway
Southfield 48075
Tel: (313) 353-9100
TWX: 810-232-1532

MINNESOTA
2459 University Avenue
St. Paul 55114
Tel: (612) 645-9461
TWX: 910-563-3734

MISSOURI
9208 Wyoming Place
Kansas City 64114
Tel: (816) 333-2445
TWX: 910-771-2087

INDIANA
2812 South Brentwood Blvd.
St. Louis 63144
Tel: (314) 644-0220
TWX: 910-760-1670

LOUISIANA
W. 120 Century Road
Paramus 07652
Tel: (201) 265-5000
TWX: 710-990-4951

MARYLAND
1050B N. Kings Highway
Cherry Hill 08034
Tel: (609) 667-4000
TWX: 710-892-4945

NEW JERSEY
P.O. Box 8366
Station C
6501 Lomas Boulevard N.E.
Albuquerque 87108
Tel: (505) 255-5585
TWX: 910-989-1655

NEW MEXICO
156 Wyatt Drive
Las Cruces 88001
Tel: (505) 526-2485
TWX: 810-459-1925

INDIANA
5858 East Molley Road
Syracuse 13211
Tel: (315) 454-2485
TWX: 710-541-0482

LOUISIANA
1923 North Main Street
High Point 27262
Tel: (919) 882-6873
TWX: 510-926-1516

NEW YORK
1702 Central Avenue
Albany 12205
Tel: (518) 859-8462
TWX: 710-441-8270

MICHIGAN
1219 Campville Road
Endicott 13764
Tel: (607) 754-0050
TWX: 510-252-0890

MINNESOTA
82 Washington Street
Poughkeepsie 12601
Tel: (914) 454-7330
TWX: 510-248-0012

MISSOURI
39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510-253-5981

INDIANA
5858 East Molley Road
Syracuse 13211
Tel: (315) 454-2485
TWX: 710-541-0482

LOUISIANA
1923 North Main Street
High Point 27262
Tel: (919) 882-6873
TWX: 510-926-1516

NEW YORK
1702 Central Avenue
Albany 12205
Tel: (518) 859-8462
TWX: 710-441-8270

MICHIGAN
1219 Campville Road
Endicott 13764
Tel: (607) 754-0050
TWX: 510-252-0890

MINNESOTA
82 Washington Street
Poughkeepsie 12601
Tel: (914) 454-7330
TWX: 510-248-0012

MISSOURI
39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510-253-5981

INDIANA
144 Elizabeth Street
West Conshohocken 19428
Tel: (215) 248-1600, 828-6200
TWX: 510-660-8715

TEXAS
P.O. Box 1270
201 E. Arapaho Rd.
Richardson 75080
Tel: (214) 231-1601
TWX: 910-867-4723

TEXAS
P.O. Box 22813
4242 Richmond Avenue
Houston 77027
Tel: (713) 667-2407
TWX: 910-881-2645

GOVERNMENT CONTRACT OFFICE
225 Billy Mitchell Road
San Antonio 78226
Tel: (512) 434-4171
TWX: 910-871-1170

UTAH
2890 South Main Street
Salt Lake City 84115
Tel: (801) 486-8166
TWX: 910-925-5681

VIRGINIA
P.O. Box 6514
2111 Spencer Road
Richmond 23230
Tel: (703) 282-5451
TWX: 710-956-0157

WASHINGTON
433-108th N.E.
Bellevue 98004
Tel: (206) 454-3971
TWX: 910-443-2303

FOR U.S. AREAS NOT LISTED:
Contact the regional office nearest you: Atlanta, Georgia...
North Hollywood, California...
Paramus, New Jersey... Skokie, Illinois. Their complete addresses are listed above.

CANADA

ALBERTA
Hewlett-Packard (Canada) Ltd.
11745 Jasper Ave.
Edmonton
Tel: (403) 482-5561
TWX: 610-831-2431

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
304-1037 West Broadway
Vancouver 9
Tel: (604) 738-5301
TWX: 610-922-5059

MANITOBA
Hewlett-Packard Co. Ltd.
511 Bradford Ct.
St. James
Winnipeg
Tel: (204) 786-7581

NOVA SCOTIA
Hewlett-Packard (Canada) Ltd.
7001 Mumford Road
Suite 356
Halifax
Tel: (902) 455-0511
TWX: 610-271-4482

ONTARIO
Hewlett-Packard (Canada) Ltd.
880 Lady Elgin Place
Ottawa 3
Tel: (613) 722-4223
TWX: 610-562-1952
Hewlett-Packard (Canada) Ltd.
1415 Lawrence Avenue West
Toronto
Tel: (416) 249-9196
TWX: 610-492-2382

QUEBEC
Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard
Pointe Claire
Tel: (514) 697-4232
TWX: 610-422-3022
Telex: 01-20607

FOR CANADIAN AREAS NOT LISTED:
Contact Hewlett-Packard (Canada) Ltd. in Pointe Claire, at the complete address listed above.

CENTRAL AND SOUTH AMERICA

ARGENTINA
Hewlett-Packard Argentina
S.A.C.E.I.
Lavalle 1171 - 3°
Buenos Aires
Tel: 35-0436, 35-0627, 35-0431
Telex: 012-1009

BRAZIL
Hewlett-Packard Do Brasil
I.e.C Ltda.
Rua Coronel Oscar Porto, 691
Sao Paulo - 8, SP
Tel: 71-1503
Cable: HEWPAK Sao Paulo

Hewlett-Packard Do Brasil
I.e.C. Ltda.
Avenida Franklin Roosevelt 84-
grupo 203
Ribe de Janeiro, ZC-39, GB
Tel: 32-9733
Cable: HEWPAK Rio de Janeiro

CHILE
Hector Calcagni P.
Casilla 13942
Estadio 215 - Oficina 1016
Santiago
Tel: 31-890, 490-505

COLOMBIA
Instrumentacion
Henrik A. Langbaek & Cia. Ltda.
Carrera 7 #48-59
Apartado Aereo 6287
Bogota, I.D.E.
Tel: 45-78-06, 45-55-46
Cable: AARIS Bogota

COSTA RICA
Lic. Alfredo Gallegos Gurdian
Apartado 3243
San José
Tel: 21-86-13
Cable: GALGUR San José

ECUADOR
Laboratorios de Radio-Ingenieria
Calle Guayaquil 1246
Post Office Box 3199
Quito
Tel: 12496
Cable: HORVATH Quito

EL SALVADOR
Electrónica
Aparlado Postal 1589
27 Avenida Norte 1133
San Salvador
Tel: 25-74-50
Cable: ELECTRONICA
San Salvador

GUATEMALA
Olander Associates Latin America
Apartado 1226
7a. Calle, O-22, Zona 1
Guatemala City
Tel: 22812
Cable: OLALA Guatemala City

MEXICO
Hewlett-Packard Mexicana, S.A. de
C.V.
Apartado Postal 12-832
Eugenio 408, Dept. 1
Mexico 12, D.F.
Tel: 43-03-79, 36-08-78

NICARAGUA
Roberto Terán G.
Aparlado Postal 689
Edificio Terán
Managua
Tel: 3451, 3452
Cable: ROTERAQ Managua

PANAMA
Electrónica Balboa, S.A.
P.O. Box 4929
Ave. Manuel Espinosa No. 13-50
Bldg. Alina
Panama City
Tel: 30833
Cable: ELECTRON Panamá City

PERU
Fernando Ezeta B.
Avenida Petit Thouars 4719
Miraflores
Casilla 3061
Lima
Tel: 50346
Cable: FEPERU Lima

PUERTO RICO
San Juan Electronics, Inc.
P.O. Box 5167
Ponce 3-PTA, de Tierra
San Juan, P.R. 00906
Tel: (787) 725-3342
Cable: SATRONICS San Juan

URUGUAY
Pablo Ferrando S.A.
Comercial e Industrial
Avenida Italia 2877
Montevideo
Tel: 40-3102
Cable: RADIUM Montevideo

VENEZUELA
Hewlett-Packard De Venezuela
C.A.
Edificio Arisán Office No. 6
Avda. Francisco de Miranda
Apartado del Este 10934
Chacaito
Caracas
Tel: 71-88-05, 71-88-69, 71-88-76
Cable: HEWPAC Caracas

FOR AREAS NOT LISTED, CONTACT:
Hewlett-Packard Inter-Americas
3200 Hillview Ave.
Palo Alto, California 94304
Tel: (415) 326-7000
TWX: 910-373-1267
Cable: HEWPAC Palo Alto
Telex: 034-8461

HEWLETT-PACKARD SALES AND SERVICE

EUROPE

AUSTRIA

Unilabor GmbH
Wissenschaftliche Instrumente
Rummelhardtgasse 6/3
P.O. Box 33
Vienna 1X/71
Tel: 42 61 81
Cable: LABORINSTRUMENT
Vienna

BELGIUM

Hewlett-Packard Benelux S.A.
348 Boulevard du Souverain
Brussels 16
Tel: 72 22 40
Cable: PALOBEN Brussels
Telex: 23 494

DENMARK

Hewlett-Packard A/S
Egerang
Langebjerg 6
2850 Naerum
Tel: 01 80 40 40
Cable: HEWPACK AS
Telex: 66 40

FINLAND

Hewlett-Packard Oy
Gyldeinentie 3
Helsinki 20
Tel: 67 35 38
Cable: HEWPACKOY-Helsinki
Telex: 12-1563

FRANCE

Hewlett-Packard France
150 Boulevard Massena
75 Paris 13e
Tel: 707 97 19
Cable: HEWPACK Paris
Telex: 25048

Hewlett-Packard France
4 Quai des Etroits
69 Lyon 5e
Tel: 42 63 45

GERMANY

Hewlett-Packard Vertriebs-GmbH
Lietzenburger Strasse 30
1 Berlin W 30
Tel: 24 86 36
Telex: 18 34 05

Hewlett-Packard Vertriebs-GmbH
Herrenberger Strasse 110
703 Böblingen, Württemberg
Tel: 07031-6671
Cable: HEPAC Böblingen
Telex: 72 65 739

Hewlett-Packard Vertriebs-GmbH
Achenbachstrasse 15
4 Düsseldorf 1
Tel: 68 52 58/59
Telex: 85 86 533

Hewlett-Packard Vertriebs-GmbH
Kurhessenstrasse 95
6 Frankfurt 50
Tel: 52 00 36
Cable: HEWPACKSA Frankfurt
Telex: 41 32 49

NETHERLANDS

Hewlett-Packard Vertriebs-GmbH
Reginfriedstrasse 13
8 Munich 9
Tel: 69 51 21/22
Cable: HEWPACKSA Munich
Telex: 52 49 85

GREECE

Kostos Karayannis
18, Ermou Street
Athens 126
Tel: 230 301
Telex: 5962

IRELAND

Hewlett-Packard Ltd.
224 Bath Road
Slough, Bucks, England
Tel: Slough 33341
Cable: HEWPAC Slough
Telex: 84413

ITALY

Hewlett-Packard Italiana S.p.A.
Viale Lunigiana 46
20125 Milan
Tel: 69 15 84
Cable: HEWPACKIT Milan
Telex: 32046

SPAIN

Hewlett-Packard Italiana S.p.A.
Palazzo Italia
Piazza Marconi 25
00144 Rome - Eur
Tel: 591 2544
Cable: HEWPACKIT Rome
Telex: 61514

NETHERLANDS

Hewlett-Packard Benelux, N.V.
de Boelelaan 1043
Amsterdam, Z.2
Tel: 42 77 77
Cable: PALOBEN Amsterdam
Telex: 13 216

NORWAY

Hewlett-Packard Norge A/S
Nesveien 13
Haslum

Tel: 53 83 60
Cable: HEWPACK Oslo
Telex: 6621

PORTUGAL

Telectra
Rua Rodrigo da Fonseca 103
P.O. Box 2531
Lisbon 1
Tel: 68 60 72
Cable: TELECTRA Lisbon
Telex: 1598

SWITZERLAND

HEWPAK AG
Zurcherstrasse 20
8952 Schlieren
Zurich

Tel: (051) 98 18 21
Cable: HEWPACKAG Zurich
Telex: 53933

SPAIN

Atao Ingenieros
Urgel, 259
Barcelona, 11
Tel: 230-69-88

NETHERLANDS

Atao Ingenieros

Enrique Larreta 12

Madrid, 16

Tel: 235 43 44
Cable: TELEATAO Madrid
Telex: 2 72 49

NETHERLANDS

HP Instrument AB

Hagakergatan 7
Mölnal

Tel: 031 - 27 68 00

NETHERLANDS

HP Instrument AB

Svetsvägen 7

Södertälje 1

Tel: 98 12 50

Cable: MEASUREMENTS

Stockholm

Telex: 10721

YUGOSLAVIA

Belram S.A.
83 avenue des Mimosas
Brussels 15, Belgium

Tel: 34 33 32, 34 26 19

Cable: BELRAMEL Brussels
Telex: 21790

UNITED KINGDOM

Hewlett-Packard Ltd.

224 Bath Road

Slough, Bucks

Tel: Slough 33341

Cable: HEWPAC Slough
Telex: 84113

AFRICA, ASIA, AUSTRALIA

AFRICA, ASIA, AUSTRALIA

ANGOLA

Telectra
Box 6487
Luanda
Cable: TELECTRA Luanda

AUSTRALIA

Hewlett-Packard Australia
Pty. Ltd.
22-26 Weir Street
Glen Iris, 3146
Victoria

Tel: 20.1371 (4 lines)
Cable: HEWPARD Melbourne
Telex: 31024

Hewlett-Packard Australia
Pty. Ltd.
61 Alexander Street
Crows Nest 2065
New South Wales

Tel: 43 7866
Cable: HEWPARD Sydney
Telex: 20.1371

Hewlett-Packard Australia
Pty. Ltd.
97 Churchill Road
Prospect 5082
South Australia

Tel: 65 2366
Cable: HEWPARD Adelaide
Telex: 20.1371

CEYLON

United Electricals Ltd.
P.O. Box 681
Yahata Building
Staples Street
Colombo 2

Tel: 5496
Cable: HOTPOINT Colombo

CYPRUS

Kypronic
19-19D Hommer Avenue
P.O. Box 752
Nicosia

Tel: 6282-75628
Cable: HE-I-NAM
Telex: 27-1053

ETHIOPIA

African Salespower & Agency
Private Ltd., Co.
P.O. Box 718
58/59 Cunningham St.
Addis Ababa

Tel: 12285
Cable: ASACO Addisababa

HONG KONG

Schmidt & Co. (Hong Kong) Ltd.
P.O. Box 297
16, Kremeneitski Street
101, Prince's Building
10, Chater Road
Hong Kong

Tel: 240168, 232735
Cable: SCHMIDTCO Hong Kong

INDIA

The Scientific Instrument
Co., Ltd.
6, Tej Bahadur Sapru Road
Allahabad 1

Tel: 2451
Cable: SICO Allahabad

The Scientific Instrument
Co., Ltd.

11, Esplanade East
Calcutta 1

Tel: 23-4129
Cable: SICO Calcutta

The Scientific Instrument Co., Ltd.
30, Mount Road

Madras 2
Tel: 86339
Cable: SICO Madras

The Scientific Instrument Co., Ltd.
B-7, Ajmeri Gate Ext.
New Delhi 1

Tel: 27-1053
Cable: SICO New Delhi

IRAN

Telecom, Ltd.
P.O. Box 1812
240 Kh. Saba Shomai
Teheran

Tel: 43850, 48111
Cable: BASCOM Teheran

ISRAEL

Electronics & Engineering
Div. of Motorola Israel Ltd.
16, Kremeneitski Street
Tel-Aviv

Tel: 35021 (4 lines)
Cable: BASTEL Tel-Aviv

Telex: Bastel Tv 033-569

JAPAN

Yokogawa-Hewlett-Packard Ltd.
Nisei Ibaraki Bldg.
2-2-8 Kasuga
Ibaragi-Shi

Osaka

Tel: 0726-23-1641

Yokogawa-Hewlett-Packard Ltd.
Ito Building

No. 59, Kotori-cho
Nakamura-ku, Nagoya City

Tel: 551-0215

Yokogawa-Hewlett-Packard Ltd.
Ohashi Building

No. 59, 1-chome, Yoyogi

Shibuya-ku, Tokyo

Tel: 370-2281

Telex: YHPMARKET TOK 23-724

KENYA

R. J. Tilbury Ltd.
P. O. Box 2754
Suite 517/518
Hotel Ambassadeur
Nairobi

Tel: 25670, 26803, 68206, 58196

Cable: COOPERATOR Nairobi

PAKISTAN (WEST)

Mushko & Company, Ltd.
Oosman Chambers
Victoria Road
Karachi 3

Tel: 51027, 52927

Cable: ARJAYTEE Nairobi

SINGAPORE

Mechanical and Combustion
Engineering Company Ltd.
P.O. Box 1103
Dae Kyung Bldg.
170 Sejong Ro

Chongro Ku
Seoul

Tel: 75-5841

Cable: AMTRACO Seoul

LEBANON

Constantin E. Macridis
Clemenceau Street
Clemenceau Center
Beirut

Tel: 220846

Cable: ELECTRONUCLEAR Beirut

MALAYSIA

MECOMB Malaysia Ltd.
2 Lorong 13/6A
Section 13

Petaling Jaya, Selangor

Cable: MECOMB Kuala Lumpur

NEW ZEALAND

Hewlett-Packard (N.Z.) Ltd.
32-34 Kent Terrace
P.O. Box 9443

Wellington, N.Z.

Tel: 56-409

Cable: HEWPACK Wellington

PAKISTAN (EAST)

Mushko & Company, Ltd.
31, Jinnah Avenue
Dacca

Tel: 80058

Cable: NEWDEAL Dacca

TAIWAN

Hwa Sheng Electronic Co., Ltd.
P. O. Box 1558

21 Nanking West Road
Taipei

Tel: 46076, 45936, 48661

Cable: VICTRONIX Taipei

TANZANIA

R. J. Tilbury Ltd.
P.O. Box 2754

Suite 517/518

Hotel Ambassadeur

Nairobi

Tel: 25670, 26803, 68206, 58196

Cable: ARJAYTEE Nairobi

THAILAND

The International
Engineering Co., Ltd.
P. O. Box 39

614 Sukhumvit Road

Bangkok

Tel: 910722

Cable: GYSOM Bangkok

UGANDA

R. J. Tilbury Ltd.

P.O. Box 2754

Suite 517/518

Hotel Ambassadeur

Nairobi

Tel: 25670, 26803, 68206, 58196

Cable: ARJAYTEE Nairobi

VIETNAM

Landis Brothers and Company,
Inc.

P.O. Box H-3

216 Hien-Vuong

Saigon

Tel: 20.805

Cable: LANBROCOMP Saigon

ZAMBIA

R. J. Tilbury (Zambia) Ltd.

P.O. Box 2792

Lusaka

Zambia, Central Africa

FOR AREAS NOT LISTED, CONTACT:

Hewlett-Packard Export

Marketing

3200 Hillview Ave.

Palo Alto, California 94304

Tel: (415) 326-7000

IWX: 910-373-1267

Cable: HEWPACK Palo Alto

Telex: 034-8461

MANUAL CHANGES
MICROWAVE AMPLIFIER
MODEL 493A/495A
Manual HP Part No. 00493-90004

Make all corrections in this manual according to errata below, then check the following table for your instrument serial prefix (3 digits) or serial number (8-digits) and make any listed change(s) in the manual.

NEW ITEM

SERIAL		MAKE CHANGES
Prefix	Number	
424		1
449		1, 2
746		1, 2, 3
811		1, 2, 3, 4
811	1296-up	1 through 5
826		1 through 6
843		1 through 7
963		1 through 8
963	1536-1555	1 through 9
963	1556-1705	1 through 10
1144A	1706-1795	1 through 11
1231A	1796-up	1 through 12
1231A, 1545A	(see below)	1 through 13
All		14

ERRATA:

On the title page, add: Manual Stock No. 00493-90004.

Page 1-0, Table 1-1, under AMPLITUDE MODULATION.

Change Sensitivity specification to read, "A modulation input of -20V peak or greater reduces the RF output by more than 20 dB from dc to 50kHz. Above 50kHz, modulation decreases approximately 6 dB per octave."

Under GAIN VARIATION WITH FREQUENCY:

Change Small Signal specification to read, "5 dB or less across any 10% of the band, except the 495A, which is across any 300MHz of the band, 10 dB or less across the band, except the 493A, which is 12 dB or less across the band."

Page 4-6:

Delete all entries, (reprint of previous page.)

Page 5-14, Figure 5-11:

Indicate location provided for R69 (beside R34), and indicate location provided for R66 (beside C16).

Page 5-15, Figure 5-12:

Indicate on schematic that R66 and R69 are selected for correct Helix overload trip current. R69 is connected between pin 4 of

helix relay K3 and the junction of resistors R37 and R68. Complete the connection between terminals E1C and E1E.

Delete Notes 6 and 7.

Add Pin 7 beside the ORN lead of T1 and change the voltage table below to show the BLU lead to pin 10 for 1800-2400 volts, pin 11 for 2400-2700 volts (the ORN lead remains connected to pin 7).

R53: Change "MEC" to read "anode type".

TWT V7: Delete wire colors and references to SYL TWT and MEC TWT.

Page 5-16, 5-17, Figures 5-13 and 5-14:
Change note for CR405 to read "install for tubes having negative grid voltage".

Page 6-6, Table 6-1:

Change V403 and V404 to Electron Tube: Triode-Pentode 6U8, HP Part No. 1943-0014.

Page 6-7, Table 6-1:

Change Frame in MISCELLANEOUS to HP Part No. 5060-0732.

Add Conditions of Warranty page attached.

►Page 1-0, Table 1-1:

Accessories Furnished:

Delete all references to Rack Mounting Kit.

Accessories Available:

Add: "A Rack Mounting Kit is available to install the instrument in a 19-inch rack. Rack Mounting Kits may be obtained through your nearest Hewlett-Packard Office by ordering HP Part Number 5060-8740."

CHANGE 1:

Page 6-5, Table 6-1: Change R417 to HP Part No. 0727-0236.

Page 6-6, Table 6-1: Change T2 to HP Part No. 9100-0299.

CHANGE 2:

Page 6-6, Table 6-1: Delete the existing reference to V7 and replace with the following:
V7 1952-0017 Electron Tube: TWT 4-8 GHz,
MEC (493A only)

V7 1952-0022 Electron Tube: TWT 4-8 GHz,
MA (493A only)

V7 1952-0019 Electron Tube: TWT 7-12.4 GHz,
MEC (495A only)

V7 1952-0023 Electron Tube: TWT 7-12.4 GHz,
MA (495A only)

Page 6-10, Table 6-2: Delete entries for 1952-0010, 1952-0016, 1952-0017 and 1952-0019 and replace with the following:

1952-0017 Electron Tube: TWT 4-8 GHz (493A only) 11312 MEC M4278C

1952-0019 Electron Tube: TWT 7-12.4 GHz (495A only) 11312 MEC M4273C

1952-0022 Electron Tube: TWT 4-8 GHz (493A only) 96341 MA 2344
1952-0023 Electron Tube: TWT 7-12.4 GHz (495A only) 96341 MA 2345G

CHANGE 3:

Figure 5-3 and Parts List (Model 495A only): An Air Duct Assembly, HP Part No. 00495-6001 is mounted between the fan housing (above FILAMENT adjust R306) and the TWT, V7. This air duct assembly is shown in Figure 1. Note the duct is straight for the MEC TWT, and bent to an angle with the flap inserted for the MA TWT. In each case, the air flow is forced directly onto the TWT collector. Included in the 00495-6001 assembly is a finger guard which is to be used in place of the air filter and should be mounted onto the fan behind the rear panel. This finger guard is available separately as HP Part No. 3160-0099.

Page 5-12, paragraph 5-44 (both Models 493A and 495A):

Add introductory paragraphs to read:

"To change a Model 493A (4-8GHz) to the 7-12.4 GHz frequency range, the 00495-6001 Air Duct Assembly must be installed, and is included as part of the Replacement Kit, TWT, HP Part No. 495A-95A.

To change a Model 495A (7-12.4 GHz) to the 4-8 GHz frequency range, the following two parts must be ordered: Bracket, Fan Mounting, HP Part No. 489A-85B (includes 493A-type air duct). The 00495-6001 Air Duct Assembly included in the 495A is not used with the 4-8 GHz frequency range TWT."

Page 6-7, Table 6-1: Parts List, under MISCELLANEOUS.

Delete HP Part No. 3150-0019 Air Filter (495A only).

Figure 1. Model 495A Air Duct Assy, 00495-6001

CHANGE 4:

Page 6-2, Table 6-1: Change A200 Assembly to HP Part No. 489A-65E.

Page 6-5, Table 6-1: Change R205 to HP Part No. 2100-1767.

CHANGE 5:

Page 6-3, Table 6-1: Change K2 to HP Part No. 0490-0746.

Under K2 listing, add:

Relay Socket, HP Part No. 0490-0751.

Relay Retainer, HP Part No. 0490-0750.

CHANGE 6:

Page 5-6, Figure 5-3: Replace existing Figure 5-3 with attached copy.

Page 5-15, Figure 5-12: Add chassis part K4.

Manual Changes/Model 493A/495A
Manual HP Part No. 00493-90004
Page -3-

Connect as shown in partial schematic below:
Page 6-3, Table 6-1: Add K4, HP Part No. 0490-0026.
Page 5-17, Figure 5-14 and Page 6-3, Table 6-1:
Add chassis part CR103, Diode: Silicon, HP Part No. 1901-0033. On schematic, connect CR103 anode to A400 pin 8 and cathode to ground.
Page 5-17, Figure 5-14 and Page 6-5, Table 6-1:
Change R414 to 33.2K ohm, HP Part No. 0757-0044.
Change R421 to 2.87 Megohm, HP Part No. 0727-0286.

CHANGE 7:

Page 5-15, Figure 5-12 and Page 6-4, Table 6-1:
Change R38 to R: FXD, MET FILM, 988K ohm, 1% 1/2W, HP Part No. 0698-3545.
Change R39 to R:FXD, MET FILM, 1.1 Megohm, 1%, 1/2W, HP Part No. 0757-0139.
Change R54 to R:FXD, MET FILM, 2000 ohm, 1% 1/2W, HP Part No. 0757-0824.
ChangeR55* to R:FXD, MET FILM, 402K ohm, 1% 1/2W, HP Part No. 0698-4022.
Retain the asterisk (*) to indicate FACTORY SELECTED PART, TYPICAL VALUE GIVEN.
Change R56 to R:FXD, MET FILM, 500K ohm, 1% 1/2W, HP Part No. 0757-0052.
Change R58 to R:FXD, MET FILM, 402K ohm, 1% 1/2W, HP Part No. 0698-4022.
Change R59, R60, R61, R62, R63, and R64 to R:FXD, MET FILM, 604K ohm, 1%, 1/2W, HP Part No. 0757-0155.
Change R65 to R:FXD, MET FILM, 215K ohm 1%, 1/2W, HP Part No. 0757-0127.
Change R67 to R:FXD, MET FILM, 1 Megohm, 1% 1/2W, HP Part No. 0757-0059.
Change R68 to R:FXD, MET FILM, 500K ohm, 1% 1/2W, HP Part No. 0757-0052.
Page 5-15, Figure 5-12 and Page 6-5, Table 6-1:
Change R202 and R203 to R:FXD, MET FILM, 1000 ohm, 1%, 1/2W, HP Part No. 0757-0159.
Page 5-17, Figure 5-14 and Page 6-5, Table 6-1:
Change R404 to R:FXD, MET FILM, 750K ohm, 1% 1/2W, HP Part No. 0757-0137.
Change R406 to R:FXD, MET FILM, 215K ohm, 1%, 1/2W, HP Part No. 0757-0127.
Change R413 to R:FXD, MET FILM, 1.5 Megohm, 1%, 1/2W, HP Part No. 0757-0156.
Change R415 to R:FXD, MET FILM, 12.1K ohm, 1%, 1/2W, HP Part No. 0757-0841.
Change R416 to R:FXD, MET FILM, 287K ohm, 1%, 1/2W, HP Part No. 0757-0154.
Change R419 to R:FXD, MET FILM, 100K ohm, 1% 1/2W, HP Part No. 0757-0367.
Change R420 to R:FXD, MET FILM, 1.5 Megohm, 1%, 1/2W, HP Part No. 0757-0156.
Change R422 and R424 to R:FXD, MET FILM, 1 Megohm, 1%, 1/2W, HP Part No. 0757-0059.

Change R423 to R:FxD, MET FILM, 500K ohm, 1%, 1/2W, HP Part No. 0757-0052.
Change R430 to R:FxD, MET FILM, 200K ohm, 1% 1/2W, HP Part No. 0757-0128.
Page 5-17, Figure 5-14 and Page 6-6, Table 6-1:
Change R431 to R:FxD, MET FILM, 365K ohm, 1%, 1/2W, HP Part No. 0757-0865.

CHANGE 8:

Page 5-13, Figure 5-10:
Replace existing Figure 5-10 with the attached copy.
Page 6-3, Table 6-1:
ChangeF1 (115V) to 4 amp. HP Part No. 2110-0055.
Change F1 (230V) to 2 amp, HP Part No. 2110-0002.
Change J3 to HP Part No. 1251-2357.
Add K5, Relay: 3PDT, HP Part No. 0490-0124.
Page 6-6, Table 6-1:
Change S2 to HP Part No. 3101-1272.
Change W1 to HP Part No. 8120-1348.

CHANGE 9:

Page 6-3, Table 6-1:
Change DS1 and DS2 from HP Part No. 1450-0048 to HP Part No. 1450-0419. This changes the front panel lamps from red to white to conform to IEC recommendations.

CHANGE 10:

Page 3-2, Table 3-1, Step 1:
Change all time delay references from 90 seconds to 120 seconds (three places).
Page 4-5:
Change all time delay references from 90 seconds to 120 seconds (four places).
Page 5-13, Figure 5-10:
Change K1 to 120 SECOND TIME DELAY.
Page 6-3, Parts List:
Change K1 to HP Part No. 0490-0933 RELAY: TIME DELAY, 120 second. (HP Part No. 0490-0933 is the recommended replacement for HP Part No. 0490-0135 in all models 493/495 Microwave Amplifiers regardless of serial regardless of serial prefix).

►CHANGE 11:

The standard colors for this instrument are now mint gray (for front and rear panels) and olive gray (for all top, bottom, side, and other external surfaces). Option X95 designates use of the former color scheme of light gray and blue gray. Option A85 designates the use of a light gray front panel with olive gray used for all other external surfaces. New part numbers are shown on next page.

►CHANGE 12:

In the parts list: Change Q301 to 1850-0098, change CR22 to 1901-0330, change C11 to 0160-4050, change CR401 and CR405 to 1901-0330, and delete CR22 and R66. In the Model 495A only, change CR402, 403, and 404 to 1901-0033.

►CHANGE 13:

This change applies to Model 493A units with serial numbers above 1231A-1925 and Model 495A units with serial numbers above 1231A-1975. Change C16 from 50 μ F 25V (Part No. 0180-0058) to 100 μ A 25V (0180-0094), and change C15 from 0.0056 μ F 3KV (0160-0384) to 0.01 μ F 3KV (0160-2568).

►CHANGE 14:

This change supersedes Change 2 to define which replacement TWT part numbers are presently active, which are usable as alternates, and which are obsolete. For the Model 493A: 1952-0039 is active; the 1952-0035 can be used as an alternate; and 1952-0017, -0022, and -0031 are obsolete. For the Model 495A: the 1952-0040 is active; the 1952-0036 can be used as an alternate; and 1952-0019 and -0023 are obsolete. The obsolete tubes must be fan cooled; when using the active or alternate tubes, delete air duct ass'y 00495-6001 since forced air on the collector end of these tubes is not required.

DESCRIPTION	HP PART NO.		
	STANDARD	OPTION A85	OPTION X95
Front Panel	00489-00002	489A-2C	←
Front Side Cover (2)	5000-8711	←	5000-0739
Rear Side Cover (2)	5000-8709	←	5000-0738
Top Cover Assy.	5060-8589	←	5060-0740
Bottom Cover Assy.	5060-8713	←	5060-0752
Rack Mount Kit	5060-8740	5060-0775	←
Handle Retainer Assy.	5060-8737	←	5060-0766

Figure 5-3. Model 493A, Top View

Figure 5-10. Filament Circuit (Schematic)

CONDITIONS OF WARRANTY

FOR

BACKWARD WAVE OSCILLATOR TUBES

AND

TRAVELING WAVE TUBES

- Microwave (BWO, TWT) tubes are warranted to be free from manufacturing defects. The operating tube warranty will be 12 months unconditional from date of shipment from Hewlett-Packard. If a tube carrying this warranty fails and must be replaced, only the applicable remaining warranty of the first tube is transferred to the replacement tube, or 90 days, which ever is greater. The Hewlett-Packard Company will process warranty claims for customers on tubes which were supplied by Hewlett-Packard for use in Hewlett-Packard instruments. The serial number of the tube failing and the serial number of the replacement tube must be noted on the warranty claim form.

"In Warranty" tubes purchased from Hewlett-Packard must be returned immediately (not to exceed 30 days from date of failure) with a complete Warranty Claim Form, to your local Hewlett-Packard Sales and Service Office. Addresses are listed in the Instrument Manual. Be sure to pack the tube in accordance with the Packing Instructions listed on the Warranty Claim Form; warranty allowance cannot be made on tubes received broken due to improper packaging or showing evidence of tampering.

Instructions for filing a warranty claim are listed on the "Microwave Tube Warranty Claim" form which is included with the Operating and Service Manual for your instrument. This form is also included with replacement Microwave tubes supplied by Hewlett-Packard. Additional copies may be obtained from your local Hewlett-Packard Sales and Service Office. (Please ref: HP Stock No. 9320-1865.)

Hewlett-Packard specified replacement tubes can be obtained from your local Hewlett-Packard Sales and Service Office.