Convexity and Subadditivity

ALEX RUTAR

ABSTRACT. This work in progress discusses various properties of functions which satisfy some form of convexity or subadditivity, with a focus on functions satisfying both.

CONTENTS

1. Subadditivity	1
1.1. Subadditivity for functions on the positive reals	2
1.2. Approximate subadditivity and other variants	3
References	5

1. Subadditivity

Definition 1.1. Let A, B be abelian semigroups. We say that a function $f: A \to B$ is subadditive if

$$f(x+y) \le f(x) + f(y)$$

for all $x, y \in A$.

A natural first example of subadditivity is for a sequence $(a_n)_{n=1}^{\infty} \subset \mathbb{R}$ satisfying $a_{n+m} \leq a_n + a_m$. As a fundamental illustration of the nice properties of subadditivity, we have the following result due to Fekete [1]:

Lemma 1.2 (Subadditivity). If $(a_i)_{i=1}^{\infty}$ is subadditive, then $\lim_{n\to\infty} a_n/n$ exists and is equal to its infimum $L := \inf_{n\geq 1} a_n/n$.

Proof. For any $\epsilon > 0$, let n be such that $a_n/n < L + \epsilon$ and $b = \max\{a_i : 1 \le i \le n\}$. For $m \ge n$, write m = qn + r with $0 \le r < n$. Then from the subadditivity property, we have

$$a_{qn+r} \le qa_n + a_r \le qa_n + b$$

²⁰¹⁰ Mathematics Subject Classification. 28A80. Key words and phrases. convexity, subadditivity.

ALEX RUTAR

so that

2

$$\frac{a_m}{m} \le \frac{qa_n}{m} + \frac{b}{m}$$

$$< \frac{qn(L+\epsilon)}{m} + \frac{b}{m} \xrightarrow{m \to \infty} L + \epsilon$$

since $qn/m \to 1$ as $m \to \infty$.

1.1. **Subadditivity for functions on the positive reals.** Here we establish some conditions which guaratee that a function $f:(0,\infty)\to\mathbb{R}$ is subadditive:

Proposition 1.3. (i) If f(t)/t is decreasing on $(0, \infty)$, then f(t) is subadditive. (ii) If $f:(0,\infty)\to\mathbb{R}$ is concave with $\limsup_{t\to 0} f(t)\geq 0$, then f is subadditive.

Proof. To see (i), we have

$$f(t_1 + t_2) = t_1 \frac{f(t_1 + t_2)}{t_1 + t_2} + t_2 \frac{f(t_1 + t_2)}{t_1 + t_2} \le t_1 \frac{f(t_1)}{t_1} + t_2 \frac{f(t_2)}{t_2} = f(t_1) + f(t_2)$$

as claimed.

To see (ii), if f(t) is concave, for 0 < a < b, let 0 < t < a be arbitrary and let α be such that $\alpha t + (1 - \alpha)b = a$. Then by concavity, we have

$$f(a) \ge \alpha f(t) + (1 - \alpha)f(b) = \alpha f(t) + \frac{a - \alpha t}{b}f(b).$$

Thus

$$f(a) \ge \alpha \limsup_{t \to 0} f(t) + f(b) \limsup_{t \to 0} \frac{a - \alpha t}{b} \ge \frac{a}{b} f(b)$$

so that f(t)/t is decreasing. Then apply (i).

We can also establish the equivalent statement of Lemma 1.2 for functions $f:(0,\infty)\to\mathbb{R}$. The key technical detail is to establish a continuous equivalence of the maximum $\max\{a_i:1\leq i\leq n\}$ in the proof of Lemma 1.2.

The proofs of the following lemma and theorem are due to Hille [3]:

Lemma 1.4. Let $f:(0,\infty)\to\mathbb{R}$ be measurable and subadditive. Then f is bounded on any compact subset of $(0,\infty)$.

Proof. Let $a \in (0, \infty)$ be arbitrary. If $t_1, t_2 \in (0, \infty)$ satisfy $t_1 + t_2 = a$, then $f(a) \le f(t_1) + f(t_2)$. It follows that, with

$$E_a := \{t : f(t) \ge f(a)/2, 0 < t < a\},\$$

we have $(0, a) = E_a \cup (a - E_a)$ and therefore $m(E_a) \ge a/2$. Suppose for contradiction f is unbounded on some interval (α, β) with $0 < \alpha < \beta < \infty$.

If f is not bounded above on (α, β) , then there exists a sequence $(t_n)_{n=1}^{\infty}$ where each $f(t_n) \geq 2n$ and $(t_n)_{n=1}^{\infty} \to t_0 \in [\alpha, \beta]$. But now each $E_{t_n} = \{t : f(t) \geq n, 0 < t < t_n\} \subset [0, \beta]$ has $m(E_{t_n}) \geq t_n/2 \geq \alpha/2$, a contradiction. Thus f is bounded above on any interval (α, β) .

If f is not bounded below on (α, β) , then there exists a sequence $(t_n)_{n=1}^{\infty}$ where each $f(t_n) \leq -n$ and $(t_n)_{n=1}^{\infty} \to t_0 \in [\alpha, \beta]$. Let $M = \sup\{f(t) : 2 < t < 5\} < \infty$. Now if $t' \in (2,5)$, we have $f(t'+t_n) \leq f(t') + f(t_n) \leq M-n$. For sufficiently large n, $(t_0+3,t_0+4) \subset (t_n+2,t_n+5)$ so for each $t \in (t_0+3,t_0+4)$, we have $f(t) \leq M-n$, a contradiction. Thus f is bounded below on any interval (α,β) , and hence bounded below on any compact subset of $(0,\infty)$.

The previous lemma is the key technical result for the following theorem; the remaining details of the proof are similar to Lemma 1.2.

Theorem 1.5. Let $f:(0,\infty)\to\mathbb{R}$ be measurable and subadditive. Then

$$\lim_{n \to \infty} \frac{f(t)}{t} = \inf_{t > 0} \frac{f(t)}{t} < \infty.$$

Proof. We first assume $L:=\inf_{t>0}\frac{f(t)}{t}>-\infty$; the case $L=-\infty$ follows analgously. For any $\epsilon>0$, let b>0 be such that $f(b)/b< L+\epsilon$. Now for any $t\geq 2b$, let $n\in\mathbb{N}$ and $b\leq r<2b$ such that t=nb+r. Then

$$L \le \frac{f(t)}{t} = \frac{f(nb+r)}{t} \le \frac{nf(b) + f(r)}{t}$$
$$\le \frac{n}{t} \cdot \frac{f(b)}{b} + \frac{f(r)}{t}.$$

But $r \in [b,2b]$ and since $\sup\{f(t): t \in [b,2b]\} < \infty$ by Lemma 1.4, we have $\lim_{t\to\infty} \frac{f(t)}{t} \le L + \epsilon$. But $\epsilon > 0$ was arbitrary, so the desired result holds.

Remark 1.6. Of course, subadditivity is preserved under isomorphism. Let A, B, C be abelian semigroups and $f: A \to C$ a subadditive function. If $T: A \to B$ is an isomorphism of semigroups, then $g = T \circ f \circ T^{-1}$ is also subadditive. For example, submultiplicativity is equivalent to subadditivity by using the map $T(x) = -\log(x)$ as a function from (0,1) (with multiplication) to $(0,\infty)$ (with addition).

1.2. **Approximate subadditivity and other variants.** Sometimes, it is useful to consider an approximate form of subadditivity.

Definition 1.7. We say that $f:(0,\infty)\to\mathbb{R}$ is approximately subadditive if there exist constants $c\in\mathbb{R}$ and $r\in(0,\infty)$ such that

$$f(x+y+r) \le f(x) + f(y) + c$$

For example, the following result holds, and the proof is essentially same as Theorem 1.5:

Theorem 1.8. Let $f:(0,\infty)\to\mathbb{R}$ be approximately subadditive. Then $\lim_{t\to\infty} f(t)/t$ exists and is equal to $\inf_{t>0} f(t)/t$.

We can also consider types of subadditivity for functions of two variables. This result is motivated by the technique used in [2, Prop. 3.1]:

ALEX RUTAR

Theorem 1.9. Let $f:(0,\infty)\times(0,1)\to\mathbb{R}$ and suppose for any $\epsilon>0$ sufficiently small we have

(i) there exists some $\delta > 0$ such that whenever $s, t \in (0, \infty)$ have $s/t < \delta$,

$$f(t+s, 2\epsilon) \ge f(t, \epsilon),$$

and

(ii) there exists constants $r \in (0, \infty)$ and D > 0 such that for any $\epsilon \in (0, 1/2)$ and $p \in \mathbb{N}$, there exists $N(\epsilon) > 0$ so that

$$f(p(t+r), 2\epsilon) \ge D^p(f(t, \epsilon))^p$$

for any $t \geq N(\epsilon)$.

Then

4

$$\lim_{\epsilon \to 0} \limsup_{t \to \infty} \frac{\log f(t,\epsilon)}{t} = \lim_{\epsilon \to 0} \liminf_{t \to \infty} \frac{\log f(t,\epsilon)}{t}.$$

Proof. Let $\epsilon > 0$ be arbitrary and sufficiently small, and set

$$L := \limsup_{t \to \infty} \frac{\log f(t, \epsilon)}{t} \qquad \qquad M := \liminf_{t \to \infty} \frac{\log f(t, 4\epsilon)}{t}.$$

It suffices to show that $L \leq M$. Let $t_0 \geq N(\epsilon)$ be arbitrary and let $t_0 + r \leq s_1 \leq s_2 \leq \cdots$ be a sequence tending to infinity such that

$$\lim_{n \to \infty} \frac{\log f(s_n, 4\epsilon)}{s_n} = M.$$

Now for $n \in \mathbb{N}$ sufficiently large, there exists $p_n \in \mathbb{N}$ and $0 < s \le t_0 + r$ such that $s_n = p_n(t_0 + r) + s$ and $s/(p_n(t_0 + r)) < \delta$. Applying (i) and then (ii), we have

$$f(s_n, 4\epsilon) = f(p(t_0 + r) + s, 4\epsilon) \ge f(p_n(t_0 + r), 2\epsilon) \ge D^{p_n} f(t_0, \epsilon)^{p_n}$$

so that

$$\frac{\log f(s_n, 4\epsilon)}{s_n} \ge \frac{\log(D) + \log f(t_0, \epsilon)}{s_n/p_n}.$$

Now, observe that $\lim_{n\to\infty} s_n/p_n = t_0 + r$ so that

(1.1)
$$M \ge \frac{\log(D) + \log f(t_0, \epsilon)}{t_0 + r}$$

where $t_0 > 0$ is arbitrary.

Moreover, we observe that $\lim_{t\to\infty} f(t,\epsilon) = \infty$ as a consequence of (ii). Let $(t_n)_{n=1}^{\infty}$ be a sequence tending to infinity with $\lim_{n\to\infty} \frac{\log f(t_n,\epsilon)}{t_n} = L$. Then for each $n \in \mathbb{N}$ with $t_n \geq N(\epsilon)$, we have by (1.1)

$$M \ge \lim_{n \to \infty} \frac{\log D + \log f(t_n, \epsilon)}{t_n + r} = L$$

as required. \Box

REFERENCES

- [1] Michael Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. *Math. Z.*, 17(1):228–249, December 1923. 1
- [2] De-Jun Feng. Lyapunov exponents for products of matrices and multifractal analysis. Part II: General matrices. *Isr. J. Math.*, 170(1):355–394, March 2009. 3
- [3] Einar Hille and Ralph S. Phillips. *Functional Analysis and Semi-Groups*. American Mathematical Society, Providence, R.I., 1957. 2

University of Waterloo, 137 University Ave W, Waterloo, ON *Email address*: public@rutar.org