A Proof of Dudley's Convex Approximation

Sariel Har-Peled*

Mitchell Jones[†]

December 2, 2017

Abstract

We provide a self contained proof of a result of Dudley [Dud74], which shows that a bounded convex-body in \mathbb{R}^d can be ε -approximated, by the intersection of $O_d(\varepsilon^{-(d-1)/2})$ halfspaces, where O_d hides constants that depends on d.

1. Statement and proof

For a convex body $C \subseteq \mathbb{R}^d$, let $C_{\oplus \varepsilon}$ denote the set of all points in \mathbb{R}^d in distance at most $\leq \varepsilon$ from C. In particular, $C \subseteq C_{\oplus \varepsilon}$, and the Hausdorff distance between C and $C_{\oplus \varepsilon}$ is ε .

Theorem 1.1 ([Dud74]). Let C be a (closed) convex body in \mathbb{R}^d , containing the unit ball of radius one centered at the origin, such that C is contained in a ball of radius d centered at the origin. For a parameter $\varepsilon > 0$, one can compute a convex body D, which is the intersection of $O_d(1/\varepsilon^{(d-1)/2})$ halfspaces, such that $C \subseteq D \subseteq C_{\oplus \varepsilon}$.

Proof: Let S be the sphere of radius 2d centered at the origin, and let Q be a maximal δ -packing of S, where $\delta = \sqrt{d\varepsilon/8}$. We remind the reader that a set $Q \subseteq S$ is a δ -packing, if

- (i) for any point $p \in S$, there is a point $q \in Q$, such that $||p q|| \le \delta$, and
- (ii) for any two points $q, q' \in Q$, we have that $||q q'|| \le \delta$.

In particular, it is easy to verify that $|Q| = O_d((d/\delta)^{d-1}) = O_d(\varepsilon^{-(d-1)/2})$.

Next, for every point $q \in Q$, let n(q) be its nearest neighbor in C (which naturally lies on ∂C), and consider the halfspace that passes through n(q), contains C, and is orthogonal to the vector q - n(q). Let $h_{C}(q)$ denote this halfspace. Let $D = \bigcap_{q \in Q} h_{C}(q)$. We claim that D is the desired approximation.

First, it is clear that $C \subseteq D$. As for the other direction, consider any point $p \in \partial C$, and consider a normal to C at p, denoted by v. Consider the ray emanating from p in the direction of v. It hits S at a point p', and let $q \in Q$, be the nearest point in the packing Q to it. Next, consider n(q). It is easy to verify that $||p - n(q)|| \le ||p' - q|| \le \delta$ (because projecting to nearest-neighbor is a contraction).

^{*}Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA; sariel@illinois.edu; http://sarielhp.org/. Work on this paper was partially supported by a NSF AF awards CCF-1421231, and CCF-1217462.

[†]Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA; mfjones2@illinois.edu; http://mfjones2.web.engr.illinois.edu/.

Figure 1.1

We are interested in angle between v and n(q)-q. To this end, observe that $||p'-q|| \le \delta$, $||p-n(q)|| \le \delta$, $||p-p'|| \ge d$, and $||q-n(q)|| \ge d$. Let x = q - n(q) and y = p' - p. Notice that

$$\ell = ||x - y|| = ||q - n(q) - (p' - p)|| = ||(p - n(q)) + (q - p')||$$

$$\leq ||p - n(q)|| + ||q - p'|| \leq 2\delta.$$

Observe that $||x|| \leq \operatorname{radius}(S) = 2d$ and $||y|| \leq 2d$. Let \triangle be the triangle formed by the origin, x and y. The height of \triangle at x is bounded by ℓ . As such, $\operatorname{area}(\triangle) \leq \frac{1}{2} \max(||x||, ||y||) \operatorname{height}(\triangle) \leq d\operatorname{height}(\triangle) \leq d\ell \leq 2d\delta$.

Let γ denote the angle between x and y. We have that

$$\operatorname{area}(\triangle) = \frac{1}{2} \|x\| \|y\| \sin \gamma \le 2d\delta \implies \sin \gamma \le \frac{4\delta}{d}.$$

Let h be the three dimensional affine subspace that is spanned by the vectors x, y, p - n(q), and passes through n(q). Clearly, $p \in h$. Now, $H_q = h \cap h_{\mathsf{C}}(q)$ and $H_{p'} = h \cap h_{\mathsf{C}}(p')$ are two halfspaces contained in h. The angle between their bounding planes is exactly γ (as their normals are x and y). In particular, let $f \subseteq h$ be the two dimensional plane that contains the points n(q), q, p. Let ℓ be the line $\partial H_q \cap \partial H_{p'}$, and let t be the intersection of f with ℓ .

The distance of p from $\partial h_{\mathsf{C}}(q)$ bounds the distance of p from the boundary of D. This distance in turn is bounded by the distance from p to the line ℓ' spanned by n(q) and t. Let β be the angle between ℓ' and pt (see figure). It is easy to verify that as f contains the vector x, this implies that $\beta \leq \gamma$. This in turn implies that $\angle tn(q)p \leq \beta \leq \gamma$. Using the packing property that $\delta \leq \sqrt{d\varepsilon/8}$, we have

$$\operatorname{dist}(p, \partial D) \le \operatorname{dist}(p, \ell') \le \|p - n(q)\| \sin \beta \le \delta \sin \gamma \le \delta \frac{4\delta}{d} \le \frac{\varepsilon}{2}.$$

The distance of any point of $\partial C_{\oplus \varepsilon}$ from C is at least $\varepsilon/2$. It follows that $D \subseteq C_{\oplus \varepsilon}$.

References

[Dud74] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. *J. Approx. Theory*, 10(3):227–236, 1974.