PROVA SCRITTA DI ELETTRONICA 1 28 GENNAIO 2016

1) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia $V_{T1} = V_{T2}$ e V_{T3} dai coefficienti β_1 , β_2 e β_3 . Il segnale d'ingresso abbia il seguente andamento:

t<0:
$$V_i = Vdd$$

t>0: $V_i = 0$

Si calcoli il tempo di propagazione $t_{\text{p,LH}}$ relativo al segnale di uscita V_{u} .

 $V_{dd} = 3.5 \text{ V}, V_{T1} = V_{T2} = 0.5 \text{ V}, V_{T3} = 0.6 \text{ V}, \beta_1 = 6 \text{ mA/V}^2, \beta_2 = 1 \text{ mA/V}^2, \beta_3 = 0.5 \text{ mA/V}^2, R_1 = 5 \text{ k}\Omega, C = 100 \text{ pF}.$

- 2) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia V_{T1} (<0) e V_{T2} = V_{T3} e dai coefficienti β_1 , β_2 e β_3 . I segnali di ingresso V_1 e V_2 abbiano l'andamento periodico mostrato in figura, con periodo pari a 4 ns. Si determini:
 - l'andamento del segnale di uscita V_u;
 - la potenza statica media dissipata \widetilde{P}_s

$$\begin{split} V_{dd} &= 3.3 \ V, \ V_{T1} = \text{-}0.2 \ V, \ V_{T2} = V_{T3} = 0.3, \ \beta_1 \text{=}1 \ mA/V^2, \\ \beta_2 \text{=}2 \ mA/V^2, \ \beta_3 \text{=}0.5 \ mA/V^2. \end{split}$$

Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 15m).

Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 15m).

Esame di ELETTRONICA 1 / FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h e 30m).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Osservazioni preliminari: M2 quando ON è in SAT.

1)t<0, vi=Vdd, M1 ON e LIN (sse vu<vdd-vt1, da verificare); M2 on e sat (sse vu<vdd-vt2); M3 off (sse vu<vt3, da verificare)

$idn1lin=\beta1*((vdd-vt1)*vu-0.5*vu^2)$	Risolvendo si ricavano i seguenti valori:
$idn2sat = \beta 2/2*(vdd-vu-vt2)^2$	vu = 0.256 V, vu = 5.801 V.
ir1=(vdd-vu)/r1	La soluzione accettabile è vu=0.256V , che soddisfa la
Ma	Hp di linearità di M1 (vu <vdd-vt1=3 accensione<="" di="" td="" v),=""></vdd-vt1=3>
idn2sat+ir1=idn1lin	di M2 (vu<3V) e di spegnimento di M3 (vu <vt3(=0.6< td=""></vt3(=0.6<>
	V).

2) Per $t \to \infty$, vi=0, quindi suppongo M1 OFF. Suppongo M2 (sse vu < vdd-vt2) e sat, M3 on e sat (sse vu > vt3), da verificare.

$idn2sat=\beta 2/2*(vdd-vu-vt2)^2$	Risolvendo si ricavano i seguenti valori:
$idn3sat=\beta 3/2*(vu-vt3)^2$	vu=2.167V, vu=9.433 V.
ir1=(vdd-vu)/r1	La soluzione accettabile è vu=2.167V , che soddisfa la
Ma	Hp di accensione di M2 (vu<3 V)) e M3 (vu>0.6 V).
idn2sat+ir1=idn3sat	

Il ritardo di propagazione è il tempo necessario al segnale d'uscita vu per compiere l'escursione $0.256 \text{ V} \longrightarrow (0.256+2.167)/2 \text{ V}=1.211 \text{ V}$, con vi=0 V.

3) t=0+, vi=0, la tensione ai capi del condensatore non cambia rispetto all'istante t=0-, ovvero vu(0-) = vu(0+)=0.256 V, M1 è off, M2 sat, e M3 off fintantoché vu non raggiunte vt3, dopodiché anche M3 sia accende

M3 sia accende		
I) 0.256 V <vu (="vt3):" 0.6="" <="" m1="" m2="" m3="" off,="" off;<="" sat,="" th="" v=""></vu>		
II) 0.6 V < vu < 1.211 V: M1 off, M2 sat, M3 sat.		
I)	II)	
$idn2sat=\beta 2/2*(vdd-vu-vt2)^2$	idn2sat=β2/2*(vdd-vu-vt2)^2	
ir1=(vdd-vu)/r1	$idn3sat=\beta 3/2*(vu-vt3)^2$	
ic=C*dvu/dt	ir1=(vdd-vu)/r1	
Ma ic=ir1+idn2sat	ic=C*dvu/dt	
$t_{p,LH1} = \int_{0.256}^{0.6} \frac{c}{ir1 + idn2sat} dvu = 8.8 \text{ ns}$	Ma	
0.256 ir1+idn2sat	ic=ir1+idn2sat-idn3sat	
	$tp_{LH2} = \int_{0.6}^{1.211} \frac{c}{ir1 + idn2sat - idn3sat} dvu = 23.3 \text{ ns}$	
	$t_{p,LH} = t_{p,LH1} + t_{p,LH2} = 32.1 \text{ ns.}$	

28/1/2016 - Esercizio 2

Il transistore M_1 (depletion) è acceso per ogni valore di interesse. Infatti: M_1 off $\rightarrow V_{GS1} = V_1 < V_{T1} < 0$ Il transistore M_3 , se acceso, è necessariamente in saturazione ($V_{GS3} = V_{DS3} < V_{DS3} + V_{T3}$).

1) 0 < t < 1ns:

 $V_1 = V_2 = 0 \rightarrow M_1 \text{ on (HP: sat *)}, M_2 \text{ off :}$

$$I_{D1} = \frac{\beta_{1}}{2} (0 - V_{T1})^{2}$$

$$I_{D2} = 0$$

$$I_{D3} = \frac{\beta_{3}}{2} (V_{DD} - V_{u} - V_{T3})^{2}$$

$$I_{D3} = \frac{\beta_{3}}{2} (V_{DD} - V_{u} - V_{T3})^{2}$$

$$I_{D3} = I_{D3} = I_{D1} + I_{D2}$$

$$I_{D3} = I_{D3} = I_{D$$

La soluzione $V_u = 3.282$ va scartata perchè incompatibile con l'ipotesi M_3 on: $V_{GS3} = V_{DD} - V_u = 0.018V < V_{T3}$ Verifica (*): $V_{GS1} = V_1 = 0 < V_{DS1} + V_{T1} = V_u - |V_{T1}| = 2.717 - 0.2 → OK$

2) 1ns < t < 2ns:

$$V_1 = V_{DD}, V_2 = 0 \rightarrow M_1 \text{ on (HP: lin **)}, M_2 \text{ off:}$$

$$V_{1} = V_{DD}, V_{2} = 0 \rightarrow M_{1} \text{ on (HP: lin **)}, M_{2} \text{ off :}$$

$$I_{D1} = \beta_{1} \left((V_{DD} - V_{T1}) V_{u} - \frac{{V_{u}}^{2}}{2} \right)$$

$$I_{D2} = 0$$

$$I_{D3} = \frac{\beta_{3}}{2} (V_{DD} - V_{u} - V_{T3})^{2}$$

$$I_{D3} = I_{D1} + I_{D2} \times V_{u} = 0.485 V, \quad I_{D1} = I_{D3} = I_{DD,2} = 1.58 \text{ mA}$$

La soluzione $V_u = 6.181 \ V$ va scartata perchè incompatibile con l'ipotesi M_3 on: $V_{GS3} = V_{DD} - V_u = -2.88 V < V_{T3}$ Verifica (**): $V_{GS1} = V_1 = 3.3 > V_{DS1} + V_{T1} = V_u - |V_{T1}| = 0.485 - 0.2 → OK$

3) 2ns < t < 3ns:

$$V_1 = V_2 = V_{DD} \rightarrow M_1 \text{ on (HP: lin ***)}, M_2 \text{ on (HP: lin ***)}$$
:

$$I_{D1} = \beta_1 \left((V_{DD} - V_{T1}) V_u - \frac{{V_u}^2}{2} \right)$$

$$I_{D2} = \beta_2 \left((V_{DD} - V_{T2}) V_u - \frac{{V_u}^2}{2} \right)$$

$$I_{D3} = \frac{\beta_3}{2} (V_{DD} - V_u - V_{T3})^2$$

$$I_{D3} = \frac{\beta_3}{2} (V_{DD} - V_u - V_{T3})^2$$

La soluzione $V_u = 6.074~V$ va scartata perchè incompatibile con l'ipotesi M_3 on: $V_{GS3} = V_{DD} - V_u = -2.77V < V_{T3}$ Verifica (***):

$$V_{GS1}=V_1=3.3>V_{DS1}+V_{T1}=V_u-|V_{T1}|=0.212-0.2\to 0\mbox{K}$$
 $V_{GS2}=V_2=3.3>V_{DS2}+V_{T2}=V_u+V_{T2}=0.212+0.3\to 0\mbox{K}$

4) 3ns < t < 4ns:

$$V_1 = 0, V_2 = V_{DD} \rightarrow M_1 \text{ on (HP: sat ****)}, M_2 \text{ on (HP: lin ****)}$$
:

$$I_{D1} = \frac{\beta_1}{2} (0 - V_{T1})^2$$

$$I_{D2} = \beta_2 \left((V_{DD} - V_{T2}) V_u - \frac{{V_u}^2}{2} \right)$$

$$I_{D3} = \frac{\beta_3}{2} (V_{DD} - V_u - V_{T3})^2$$

$$I_{D3} = \frac{\beta_3}{2} (V_{DD} - V_u - V_{T3})^2$$

La soluzione $V_u = 5.686 \, V$ va scartata perchè incompatibile con l'ipotesi M_3 on: $V_{GS3} = V_{DD} - V_u = -2.38 V < V_{T3}$ Verifica (****):

$$V_{GS1} = V_1 = 0 < V_{DS1} + V_{T1} = V_u - |V_{T1}| = 0.313 - 0.2 \rightarrow \text{OK}$$
 $V_{GS2} = V_2 = 3.3 > V_{DS2} + V_{T2} = V_u + V_{T2} = 0.313 + 0.3 \rightarrow \text{OK}$

La potenza media complessivamente dissipata vale quindi:

$$\widetilde{P}_{S} = \frac{1}{T} \int_{0}^{4ns} V_{DD} * I_{DD} dt = \frac{V_{DD}}{T} \left(\int_{0}^{1ns} I_{DD,1} dt + \int_{1ns}^{2ns} I_{DD,1} dt + \int_{2ns}^{3ns} I_{DD,1} dt + \int_{3ns}^{4ns} I_{DD,1} dt \right) = \mathbf{4.41} \, \mathbf{mW}$$