

课程 > Unit 7: Bayesian inf... > Lec. 16: Least mea... > 14. Exercise: Theor...

14. Exercise: Theoretical properties

Exercise: Theoretical properties

2/2 points (graded)

Let $\widehat{\Theta}$ be an estimator of a random variable Θ , and let $\widetilde{\Theta} = \widehat{\Theta} - \Theta$ be the estimation error.

a) In this part of the problem, let $\widehat{\Theta}$ be specifically the LMS estimator of Θ . We have seen that for the case of the LMS estimator, $\mathbf{E}[\widetilde{\Theta} \mid X = x] = \mathbf{0}$ for every x. Is it also true that $\mathbf{E}[\widetilde{\Theta} \mid \Theta = \theta] = \mathbf{0}$ for all θ ? Equivalently, is it true that $\mathbf{E}[\widehat{\Theta} \mid \Theta = \theta] = \theta$ for all θ ?

✓ Answer: No

b) In this part of the problem, $\widehat{\Theta}$ is no longer necessarily the LMS estimator of $\widehat{\Theta}$. Is the property $Var(\widehat{\Theta}) = Var(\widehat{\Theta}) + Var(\widehat{\Theta})$ true for every estimator $\widehat{\Theta}$?

✓ Answer: No

Solution:

- a) There is no reason for this relation to be true. For an example, suppose that Θ is a Bernoulli random variable. With a noisy measurement, $\widehat{\Theta}$ will be somewhere in between 0 and 1, and therefore will never be equal to the true value of θ , which is either 0 or 1 exactly.
- b) There is no reason for this to be the case. In fact, the variance of $\widehat{\Theta}$, for a poorly chosen estimator, can be larger than the variance of $\widehat{\Theta}$. For an example, consider the usual model of an observation $X=\Theta+W$ and the estimator $\widehat{\Theta}=100X$.

提交

You have used 1 of 1 attempt

1 Answers are displayed within the problem

显示讨论

Topic: Unit 7 / Lec. 16 / 14. Exercise: Theoretical properties