Diplomarbeitspräsentation

011010010

9110011100

HIGHLY AVAILABLE

KNX NETWORKS

Harald Glanzer

Betreuung

11010100

001111100

10100110

101 10111016

1011 0101010.

11001 1010006

Ao.Univ-Prof. DI Dr. Wolfgang Kastner DI Dr. Lukas Krammer

Gebäudeautomation

- Energieeffizienz
- Zentrale Steuerung
- Raumkomfort → Produktivität

1 01111110001 11 0100001016

101 10111101001 1011 010101011

11001 10100006

9100101110:

Informationssicherheit

Böswillige Angriffe: Denial of Service Transiente Hardwarefehler

Availability

Integration Continue Redundanz

Sage Replay

Message Replay
Message Modification
Masquerade Attacks

110100

101001

0000110

110101001

0011111001

1010011001

1 01111100

11 01000010

101 1011101

1011 0101010

11001 101000

Message Authentication Codes Und Digitale Signaturen

Traffic Analysis Message Release 011010010

9110011100

901011101

Symmetrische / asymmetrische Verschlüsselung der Daten

- Herausgegeben durch 'KNX Association'
- Zusammenführung von 3 verschiedenen Standards:
 - EIB: European Installation Bus
 - EHS: European Home Systems Protocol
 - BATIBUS
- 'Offener' Standard Lizenzierung möglich
- ISO OSI Schichtenmodell
- Kommunikation mittels standardisierter 'Data Point Types'

Herstellerunabhängigkeit

01011

110100

101001

1011 0101010

11001 1010006

Applikation Application Layer Presentation Layer Session Layer Transport Layer **Network Layer** Data Link Layer **Physical Layer**

Ubertragungsmedium

KNX / Layer 5+6

- 011011010010 110110011100 11001011101 1110111010
- Data Point Types
 - → eindeutige Darstellung
 - → L6 nicht notwendig
- Zustandsloses Protokoll
 - → L5 nicht notwendig

- 011010010 9110011100 901011101

- 01011
- 110100
- 101001
- 0000110
- 11010100
- 001111100.
- 101001100

- 1011 0101010 11001 1010000

 Bestätigte Verbindungen - Punkt – zu – Punkt

- Unbestätigte Verbindungen
 - Punkt zu Punkt
 - Multicast
 - Broadcast

- 16 Bit Individual Adress
 - → eindeutige Geräteadresse

Octet 0								Octet 1							
7	6	5	4	3 2 1 0				7	6	5	4	3	2	1	0
Area Line Address Address						Device Address									
5	Subnetwork Address														

- 16 Bit Group Adress
 - → Adresse der Kontrollvariable

					G	rou	ıp A	۸dd	res	S					
		(Oct	et ()					(Oct	et 1			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

011010010

9110011100

- Verlässliche Übertragung von Frames innerhalb eines Subnetzes
- 2 verschiedene Frame Formate
 - Standard Frames (max. 14 Byte)

- Extended Frames (max. 254 Byte)

01011

110100

101001

1011 0101010.

11001 1010000

011010010

0110011100

0110011100 901011101

011010010

- 010116
- 1101000
- 101001
- 00001101
- 11010100
- 001111106
- 101001106
- 11 01000016
- 1011 0101010

11001 1010000

- Twisted Pair
 - 9600bps
 - CSMA/CA
 - alle Topologien ausser Ringe
- Power Line
 - 1200bps
 - Übertragung über Stromnetz
- Radio Frequency
 - kabellose Übertragung
- KNX/IP
 - Routing Mode
 - KNXnet/IP
 - KNX IP

Übertragungsmedium

KNX / Sicherheitsmassnahmen

011010010

- 'Basic' KNX
 - Cleartextkeys für Managementnachrichten
 - Cleartext für Kontrollinformation
- KNX Data Security
- ElBsec

101001100

1011 0101010

11001 101000

KNX IP Security

Erhöhung der Verfügbarkeit durch zusätzliches Einführen von Redundanz

Protokollphasen

1. Synchronisierungsphase

011010010

0011100

Highly Available KNX Networks

011010010

0110011100

2. Nachricht an Gruppenaddresse 1/1/1

01011

110100

101001

00001101

11010100

001111100

101001100

1 011111006

11 01000010

101 10111010

1011 01010101

3. Discovery - Phase

011010010

 $011001\overline{1100}$

4. Redundante Datenübertragung

5. Zustellung

1 011111000

11 010000101

Highly Available KNX Networks

011010010

0110011100

Zusätzliche Redundanz → Verfügbarkeit erhöhen

011010010 0110011100 01011101 Evaluierung / Test Setup Raspberry Pi KNX Taster 01011 Busware 110100 **KNX USB** 101001 Aktor Koppler 00001101 11010100 001111100 101001100 1 011111006 11 01000010 101 1011101 1011 01010101 11001 1010000

Verschlüsselung & Authentifizierung

- MAC: Authentifizierung & Ingetrität
 - HMAC Konstruktion
 - Hash Function: SHA256
- AES: 256 Bit Blockcipher
 - symmetrische Verschlüsselung
 - Counter Mode
 - 2 Keys:

110100

101001

0000110

11010100

001111106

10100110

1 01111100

101 1011101

1011 0101010

11001 1010006

- 1x Pre-Shared Authentication Key
- 1x Abgeleiteter Key
- Diffie Hellman (DH): Key Negotiation

Elliptic Curves (EC)

011010010

9110011100

- Ursprüngliches Diffie-Hellman (DH) über Finite Fields gegeben y,g,p: finde Exponenten x sodass y = g^x mod p
 → Discrete Logarithm Problem (DLP)
- DH über EC:
 gegeben EC, P, Q: finde Integer k sodass P = k * Q
 → Elliptic Curve Discrete Logarithm Problem (ECDLP)
- Allgemeine Form der Kurve: y² = x³ + a*x + b
 Definierte Operationen: 'Punkt-Addition', 'Punkt-Verdopplung'
- 'Gleiche' Sicherheit wie DH mit kürzeren Keys

RSA/DH	ECDH				
1024	160				
2048	224				
3072	256				
7680	384				
15360	512				

Source: NIST recommendation

Ergebnisse

011010010

0110011100

- Schutz gegen aktive Angreifer
- Schutz gegen passive Angreifer
- Schutz gegen Transiente Hardwarefehler
- 'Plug and Play' Funktionalität
 - → Erweiterung bereits bestehender KNX Netze möglich
- EIBD API erweitern

110100

101001

0000110

11010106

001111106

101001106

1 01111100

11 01000016

101 10111016

1011 0101010.

11001 1010000

• USB Buskoppler: instabiles Verhalten