STANDALONE SpaceWire to Gigabit Ether H/W specification

Rev1.60

SHIMAFUJI Electric Inc KC Bidg.5F, 8-1-15, Nishikamata, Ota-ku,

Tokyo, Japan 144-00051 TEL: +81-3-3733-8308 FAX: +81-3-3733-8318

E-mail info@shimafuji.co.jp URL http://www.shimafuji.co.jp

Document No. EN210439003-0 Date Published July., 2012 SHIMAFUJI Electric Inc Printed in Japan

Notices on use and handling

You should follow those remarks to use this product safely. If you are not following those remarks, you may cause electrical shock, injury, fire or trouble.

Lightning

While lightning has occurred, never installing the product or connecting cables, it may cause an electrical shock by the thunderbolt.

Handle with care

Does not either drop, hit or give a strong shock to the product.

Caution to electrostatic discharge

This product mounted electrostatic sensitive parts.

The parts are possibly destroyed by electrostatic discharge; do not touch directly to contact area of the connectors and the parts.

Caution to connect or dis-connect cables

First turn off the power to this product to connect connecters on board and cables. If connecting or dis-connecting cables to this board without turn off the power, it may destroy this board and connected product.

Pay attention to touch this product

While the product is turned on or straight after the operation, it may cause an electrical shock or scald. (Some parts become higher temp.)

Unplug the Power source

Immediately unplug from the Power source when it smells or smokes. If continually keep supply power on while it smells or smokes, it may cause fire, an electrical shock or serious influence on this board and other equipments.

Do not use or store in the following places.

- -Do not expose in direct sunlight
- -Do not place where the temperature changes rapidly and wets with dew.
- -Do not expose to rain or moisture.
- -Do not place rolled or vibrated.
- -Do not place dusty or carpet laid places cause electrostatic obstacles.
- -Do not place where corrosive gas outbreaks.
- -Do not directly place this product on the electro conductive materials (it may cause trouble)

Remark on operation of this product

The maximum operating temperature of this Microprocessor (EC-4350) is 80 degrees Celsius on case; it has to operate under this temperature (it may need air cooling system to operate in high temp.)

Revision History

Version	Date	Contents	Note
Rev0.0	Date 2012/07/18	New Release	

Contents

1.	OVERVIEW	1
2.	SPECIFICATION	·· 1
3.	BLOCK DIAGRAM ·····	
4.	FUNCTION ·····	3
	4.1. SPACEWIRE ROUTER·····	3
	4.2. RMAP	3
	4.3. TX DATA FORMAT ·····	3
	4.3.1. APLICATION HEADER AREA······	
	4.3.2. SPACEWIRE DATA AREA ······	
	4.4. RX DATA FORMAT ·····	5
	4.5. TIME CODE ·····	
	4.6. EXAMPLE OF TCP/IP PACKET ·····	
	4.6.1. EXAMPLE OF WRITE COMMAND PACKET	
	4.6.2. EXAMPLE OF READ COMMAND PACKET······	6
	4.7. CHANGE IP ADDRESS ·····	·· 7
	4.8. MEMORY MAP ·····	
	4.9. ROUTER CONFIGRATION REGISTER ·····	·12
	4.9.1. SPACEWIRE LINK CTL STS 1 to 4 REGISTER······	
	4.9.2. SPACEWIRE LINK CTL STS6 REGISTER ······	13
	4.9.3. SPACEWIRE LINK CTL STS7 REGISTER ······	·14
	4.9.4. SPACEWIRE Time Code REGISTER······	∙14
	4.9.5. SPACEWIRE Time Code En REGISTER ······	·14
	4.9.6. SPACEWIRE Port0 Key ID REGISTER ······	15
	4.9.7. SPACEWIRE DEVISE ID REGISTER ······	
	4.9.8. SPACEWIRE _FPGA_REV REGISTER ······	15
	4.9.9. SPACEWIRE _IP_REV REGISTER ······	·16
	4.9.10. SPACEWIRE DEVISE ID REGISTER ······	·16
	4.10. SpW PORT LINK LED ·····	
	4.11. DIP SWTCH	
	4.12. POWER	
5.	SAMPLE PROGRAM ·····	
	5.1. OVER VIEW	
	5.2. OPERATIING METHOD	
	5.3. CONNECTION	
	5.4. RMA PHEADER·····	
	5.5. RMAP COMMAND ·····	
	5.6. TimeCode	
	5.7. EXCUTE MACRO	
	5.8. CREATE MACRO FILE	
_	5.9. EXAMPLE (test01.mac)	
6.	PRINT CIRCUIT BOARD TOP VIEW	
7	EXTERNAL VIEW	. 22

1. OVERVIEW

This STANDALONE SpaceWire to Gigabit Ether is the bridge between SpaceWire and Giga-bit Ether. The bridge function is embedded on FPGA and it transfer over 800 M bps from PC without device driver.

2. SPECIFICATION

Fur	nction	Specification / Feature	Remarks
FPGA		Spartan6 XC6SLX75-3FGG484	
ETHERNET	PHY	10/100/1000Base-T/Tx 1Port	
	IP Address	192.168.1.100 (Default)	Reconfigurable
	Connector	RJ-45	
Space Wire	Port	4port	
	Link Speed	MAX 200Mbps	Change transfer speed by register setting
	Connector	MDM 4port	
Size	-	136mm×75mm×25mm	Without protrusion
Weight		340g	
Power / Consu	med current	5V 1.3A(typ)	
Operation temp	perature	0~45 degree (Celsius)	

3. BLOCK DIAGRAM

Block diagram of this Unit is described as follows.

4. FUNCTION

4.1. SPACEWIRE ROUTER

The SpaceWire and Giga-bit Ether are connected as router port in the FPGA. Those port address are below table

Router port addresses

Port address	Space Wire Port	Remarks				
Port #0	Router configuration port	Router setting port				
Port #1	SpaceWire 1	MDM connector				
Port #2	SpaceWire 2	MDM connector				
Port #3	SpaceWire 3	MDM connector				
Port #4	SpaceWire 4	MDM connector				
Port #5	Reserved	N.C				
Port #6	Ether HOST1	TCP port number #10030				
Port #7	Ether HOST2	TCP port number #10031				
Port #8	Reserved	Not open to user				
Port #9	Reserved	Not open to user				

4.2. RMAP

RMAP port (Logical address, Key ID)

RMA Port	Logical Address	Key ID	Remarks			
Comfit Port	0xFE	0x02	Router seating			

4.3. TX DATA FORMAT

SpaceWire packet is insert in TCP packet.

This is the data format.

FLAG	RSV	SIZE	DATA0	DATA1	DATA2	-	-	 Data
8bit	8bit	80bit	8bit	8bit	8bit			[SIZE-1]

Application header area DATA0 to Data = SpaceWire Data area

4.3.1. APLICATION HEADER AREA

The Application header consists 12 byte of information.

FLAG (1 byte) : Packet information of this packet

0x00 : add EOP (Send packet with EOP which added end of this packet by FPGA)
 0x01 : add EEP (Send packet with EEP which added end of this packet by FPGA)

0x02 : add Continuation Packet Flag (send packet with 0x02 because SpaceWire data

length is larger than TCP packet length)

Other : Reserved

RSV (1byte) : Fixed to 0x00

4.3.2. SPACEWIRE DATA AREA

SpaceWire data area is configured by length data which specified by SIZE. The data configure as SpaceWire format. DATA0 have to specify this STANDALONE SpaceWire to Gigabit Ether port number.

➤ DATA0 : Specify this STANDALONE SpaceWire to Gigabit Ether port number

0x00 : Router Configuration Port

0x01 : SpaceWire 1
0x02 : SpaceWire 2
0x03 : SpaceWire 3
0x04 : SpaceWire 4
0x05 : Reserved

0x06 : --0x07 : --

0x08 : Reserved 0x09 : Reserved Other : Reserved

Transaction example 1

This data send to TCP socket when send the packet of SIZE=2048 byte with EOP to SpaceWire port 1.

FLAG	RSV	SIZE	DATA0	DATA	DATA	_	_	_	DATA
0x00	0x00	0x800	0x01	1	2				2047

■ Transaction example 2

This data send to TCP socket when send the packet of SIZE=4000 byte with EEP to SpaceWire port 1.

FLAG	RSV	SIZE	DATA0	DATA	DATA			_	DATA		
0x01	0x00	0x000FA0	0x01	1	2				3999		

Transaction example 3

This data send to TCP socket when send the packet of SIZE=2048 byte with Continuation Packet Flag to SpaceWire port 4. (It have to send the packet with EOP to send to TCP socket after packet with Continuation Packet Flag)

FLAG	RSV	SIZE	DATA0	DATA	DATA	 	 DATA
0x02	0x00	0x800	0x04	1	2		2047

4.4. RX DATA FORMAT

This is RX packet format of the SpaceWire replay packet

This is an example of the RX packet of SIZE=2048 byte with EOP.

FLAG	RSV	SIZE	DATA	DATA	DATA	-	-	-	DATA
0x00	0x00	0x800	0	1	2				2047

Note: It might be 2 SpaceWire replay packet in a TCP/IP replay packet.

4.5. TIME CODE

The STANDALONE SpaceWire to Gigabit Ether can send and receive TimeCode. It set flag to "0x30" when send TimeCode as TCP packet, and set flag to "0x31" when receive TCP packet.

This is TimeCode format

Sending TimeCode data format

FLAG	RS'	V	SIZE	= 9	SIZE8	SIZE7	SIZE6	SIZE5	SIZE4	SIZE3	SIZE2	SIZE1	SIZE0
0x30	0x0	00	0x0	0	0x00	0x02							
TimeCode		RS\	/										
8bit *1		0x0)										

Note *1 : Set TimeCode MSB 2bits to "0" and use LSB 6bit for TimeCode.

Receiving TimeCode data format

FLAG	RS	<	SIZ	ZE9	SIZE8	SIZE7	SIZE6	SIZE5	SIZE4	SIZE3	SIZE2	SIZE1	SIZE0
0x31	0x0	00	0x	00	0x00	0x02							
TimeCo	de	RS\	/										
8bit		0x0	0										

4.6. EXAMPLE OF TCP/IP PACKET

It describe example of TCP/IP packet.

4.6.1. EXAMPLE OF WRITE COMMAND PACKET

Target address : 0x30 Initiator address : 0xfe

Address : 0x0000-0000

Data length : 4 byte

Write data : 0x12345678

Instraction : 0x71

Flag	Reserved	Size[9]	Size[8]	Size[7]	Size[6]	Size[5]	Size[4]	Size[3]	Size[2]	Size[1]	Size[0]
0x00	0x1a										
Data[0]	Data[1]	Data[2]	Data[3]	Data[4]	Data[5]	Data[6]	Data[7]	Data[8]	Data[9]	Data[10]	Data[11]
0x01	0x30	0x01	0x71	0x02	0x00	0x00	0x00	0x06	0xfe	0x00	0x00
Data[12]	Data[13]	Data[14]	Data[15]	Data[16]	Data[17]	Data[18]	Data[19]	Data[20]	Data[21]	Data[22]	Data[23]
0x00	0x04	0xc6	0x78	0x56	0x34						
Data[24]	Data[25]										
0x12	0x32										

4.6.2. EXAMPLE OF READ COMMAND PACKET

Target address : 0x30 Initiator address : 0xfe

Address : 0x0000-0000

Data length : 4 byte Instraction : 0x4d

Flag	Reserved	Size[9]	Size[8]	Size[7]	Size[6]	Size[5]	Size[4]	Size[3]	Size[2]	Size[1]	Size[0]
0x00	0x00	0x00	0x15								
Data[0]	Data[1]	Data[2]	Data[3]	Data[4]	Data[5]	Data[6]	Data[7]	Data[8]	Data[9]	Data[10]	Data[11]
0x01	0x30	0x01	0x4d	0x02	0x00	0x00	0x00	0x06	0xfe	0x00	0x00
Data[12]	Data[13]	Data[14]	Data[15]	Data[16]	Data[17]	Data[18]	Data[19]	Data[20]			
0x00	0x04	0x30									

<Read replay>

	1 7										
Flag	Reserved	Size[9]	Size[8]	Size[7]	Size[6]	Size[5]	Size[4]	Size[3]	Size[2]	Size[1]	Size[0]
0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x11
Data[0]	Data[1]	Data[2]	Data[3]	Data[4]	Data[5]	Data[6]	Data[7]	Data[8]	Data[9]	Data[10]	Data[11]
0xfe	0x01	0x0c	0x00	0x030	0x00	0x00	0x00	0x00	0x00	0x04	0xa8
Data[12]	Data[13]	Data[14]	Data[15]	Data[16]							
0x78	0x56	0x34	0x12	0x32							

4.7. CHANGE IP ADDRESS

The default IP address is "192.168.1.100" of this unit.

The default IP address can change via web browser, use pertinence IP address to mach with netword configuration.

< Network setting for PC >

IP address : 192.168.1.101

(Select IP address a part from "1000", because The default IP address is

192.168.1.100 of this unit.)

Subnet address : 255.255.255.0 (It is not necessary to change.)
Default gateway : 192.168.0.1 (It is not necessary to change.)

Access 192.168.1.100 via web browser after connect PC and this unit by Ethernet cable. Please note "Safari" (MAC OS default browser) is not supported, so it mifgt be use something like "Camino" (http://caminobrowser.org/.)

< Web server start up screen > Input "192.168.1.100" in address bar.

< Change IP address to "192.168.0.102" screen > Input "192.168.0.102" in red circle and then click "change".

< Changed IP address to "192.168.0.102" >

< Confirm changeing address to "192.168.0.102" >

Turn OFF the power and then turn ON the power again.

Input "192.168.0.102" in address bar in web browse, and confirm IP address is changed on the screen

4.8. MEMORY MAP

This is the memory map of STANDALONE SpaceWire to Gigabit Ether

Por#0: Router Config MFMORY MAP

	WILWORTWAR
0x0000_0000	Router Config
	Register32KB
0x0000_8000	
	D
	Reserved
0 xFFFF_FFFF	
 L	

4.9. ROUTER CONFIGRATION REGISTER

This is the Router Configuration register table. it can accress to this register by 32 bits accress only.

Offset.	Register NAME	SYMBOL	R/W	Reset Value	Remarks
	SPACEWIRE LINK	CTL SPACEWIRE			
0x0004	STS1	_LINKCSR1	R/W	0x1305	
	SPACEWIRE LINK	CTL SPACEWIRE			
8000x0	STS2	_LINKCSR2	R/W	0x1305	
	SPACEWIRE LINK				
0x000C	STS3	_LINKCSR3	R/W	0x1305	
	SPACEWIRE LINK				
0x0010	STS4	_LINKCSR4	R/W	0x1305	
	SPACEWIRE LINK				
0x0018	STS6	_LINKCSR6	R	0x0000_0001	
	SPACEWIRE LINK				
0x001C	STS7	_LINKCSR7	R	0x0000_0000	
	ODA OEVANDE T	000000000000000000000000000000000000000			
0:-0440	SPACEWIRE Time			00000 0000	
0x0410	Code	_TCODE	R	0x0000_0000	
	SPACEWIRE Time (Code SPACEWIRE			
0x041C	En	TCODEEN	R/W	0x0000 00FE	
ONO 110	LII	_10052211	1000		
	SPACEWIRE Port0	Key SPACEWIRE			
0x0424	ID	PORTKEY	R/W	0x8000 FE02	
-		_			
		SPACEWIRE			
0x0430	SPACEWIRE Device		R	0x4762_4553	
	SPACEWIRE FPGA	SPACEWIRE		_	
0x0434	Revision	_FPGA_REV	R	0x4022_0101	
		SPACEWIRE		_	
0x0438	SPACEWIRE IP Rev	vision _IP_REV	R	0x4022_0201	
070430					
0,0430	SPACEWIRE RMAF	SPACEWIRE			
0x043c	SPACEWIRE RMAF Revision	P SPACEWIRE _RMAP_REV	R	0x4022_0200	

4.9.1. SPACEWIRE LINK CTL STS 1 to 4 REGISTER

This is the register's to control SpaceWire link status and link speed.

Offset Address	RW	Function	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
0x0004	RW	SPACEWIRE LINK CTL STS1	link_control1	error_status1	Link_status1
0x0008		SPACEWIRE LINK CTL STS2	link_control2	error_status2	Link_status2
0x000c		SPACEWIRE LINK CTL STS3	link_control3	error_status3	Link_status3
0x0010		SPACEWIRE LINK CTL STS4	link_control4	error_status4	Link_status4

Bit		name	R/W	default value	Function
[31:30]		valid	R	00	
[29:24]		txck_div	R/W	010011	SPACEWIRE Transfer clock = 200 / (txck_div+1)
	15:([MHz]
[23:20]	control[15:0]	valid	R	00	
[19]	ırtı	link_reset	R/W	0	1 => link_reset
[18]		auto_start	R/W	1	1 => auto_start
[17]	Ę,	link_disable	R/W	0	1 => link_disable
[16]		link_start	R/W	1	1 => link_start
[15]		valid	R	0	
[14]		escape_error	R	*	1 => Escape error
[13]	[Ö:	disconnect_error	R	*	1 => Disconnect error
[12]	status[7:0]	parity_error	R	*	1 => Parity error
[11]	atr	valid	R	0	
[10]		rx_err	R	*	1 => Receiver error
[9]	error	credit_error	R	*	1 => Credit error
[8]	ē	sequence_error	R	*	1 => Sequence error
[7]		reset	R	*	0 => Reset
[6]		valid	R	0	
[5]	0	send_time_codes	R	*	1 => Send TIME CODES
[4]	S [7	send_n_chars	R	*	1 => Send N_CHARACTERS
[3]	status[7:0]	send_fcts	R	*	1 => Send FCTS
[2]	_sts_	send_nulls	R	*	1 => Send NULLS
[1]	Ę,	enable_rx	R	*	1 => Receiver enable
[0]	Ī	enable_tx	R	*	1 => Transmitter enable

4.9.2. SPACEWIRE LINK CTL STS6 REGISTER

This is the link status registers for Ether HOST1.

Offset Address	RW	Function	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
0x0018	R	SPACEWIRE LINK CTL STS6		link on[6]

Bit	name	R/W	default value	Function
[0]	link_on[6]	R	0	Host1 link on status Linkstatus="1"

4.9.3. SPACEWIRE LINK CTL STS7 REGISTER

This is the link status registers for Ether HOST2.

Offset Address	RW	Function	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
0x001c	R	SPACEWIRE LINK CTL STS7	all 0	link_on[7]

Bit	name	R/W	default value	Function
[0]	link_on[7]	R	0	Host2 link on status Linkstatus="1"

4.9.4. SPACEWIRE Time Code REGISTER

This is the registers to store TimeCode for SPACEWIRE router in the STANDALONE SpaceWire to Gigabit Ether.

Offset Address	RW	Function	31	30) 29	9 2	28	27	26	32	5 24	4 2	23 2	22	21	20	19	18	17	16	3 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0410	R	SPACEWIRE Time Code														all	0													TIN	ΛE ₋	_C	OD	E[7	7:0]	

Bit	name	R/W	default value	Function
[7:0]	TIME_CODE[7:0]	R	0x00	TimeCode

4.9.5. SPACEWIRE Time Code En REGISTER

This is the register to set "enable / unable" sending TimeCode from SpaceWire router Port#1 to #4 of STANDALONE SpaceWire to Gigabit Ether.

Each bit correspond each port number.

Offset Address	RW	Function	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10	9	8	7	6	5	4 3 2	1 0
0x041c	RW	SPACEWIRE Time Code En	all 0	0	0	1	1	0	TCOE EN[4	-1()

Bit	name	R/W	default value	Function
[9:0]	TCODE_EN[9:0]	R/W	0011011110	TimeCode enable/unable setting : "1"= enable to send TimeCode "0"= unable to send TimeCode

4.9.6. SPACEWIRE Port0 Key ID REGISTER

This is the registers to set RMAP (CRC / address / Key) for SPACEWIRE router in the STANDALONE SpaceWire to Gigabit Ether.

Offset Address	M	Function	31	(7)	30	029	28	3 2	27	26	25	24	23	22	21	1 2	20	19	18	3 1	7 1	16	15	14	13	12	11	10	9	8	7	6	5	4	. 3	2	2	1	0
0x0424 RA	W	SPACEWIRE Port0 Key ID	CRC_REV				_		_			;	all (0	_			_	_		_		F	PC	RT		Α[DR	[7:0	0]		P	OR	RT_	_KE	ΞY	[7:	0]	

Bit	name	R/W	default value	Function
[31]	CRC_REV	R/W	1	CRC Flug
[15:8]	PORT_LADR[7:0]	R/W	0xfe	RMAP port logical address
[7:0]	PORT_KEY[7:0]	R/W	0x02	RMAP port D-key

4.9.7. SPACEWIRE DEVISE ID REGISTER

This is the revision registers for this device (SpaceWire to Giga-bit Ether Unit)

Offset Address	RW	Function	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x0430	R	SPACEWIRE_DEVISEID	SPACEWIRE _DEVISEID[31:0]

Bit	name	R/W	default value	Function
[31:0]	SPACEWIRE _DEVISEID[31:0]	R	0x4762_4553	SPACEWIRE _DEVISEID

4.9.8. SPACEWIRE _FPGA_REV REGISTER

This is the revision registers for SPACEWIRE _FPGA.

Offset Address	/W	Function	31	30	29	28	3 2	7 2	26	25	24	23	22	21	20	19	18	3 17	7 1	6 1	5 1	14	13 ^	12	11	10	9	8	7	6	5	4	. 3	2	1	0	
0x0434 F	R	SPACEWIRE _FPGA_REV																			S	SP	AC	Έ	WI	RI	Ε_	_FI	PC	3A	_F	RE'	۷[31	:0]		

Bit	name	R/W	default value	Function
[31:0]	SPACEWIRE_FPGA_REV [31:0]	R	0x4022_0101	SPACEWIRE_FPGA_REV

4.9.9. SPACEWIRE _IP_REV REGISTER

This is the revision registers for SPACEWIRE _IP.

Offset Address	RW	Function	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x0438	R	SPACEWIRE_IP_REV	SPACEWIRE _IP_REV [31:0]

Bit	name	R/W	default value	Function
[31:0]	SPACEWIRE _IP_REV [31:0]	R	0x4022_0201	SPACEWIRE _IP_REV

4.9.10. SPACEWIRE DEVISE ID REGISTER

This is the revision registers for SPACEWIRE _RMAP.

ĺ	Offset Address	RW	Function	31	30	29	2	8 2	27 :	26	25	24	23	32	2 2	21	20	19	18	17	10	6 1	5 1	4 1	3 1	12	11 1	10	9	8	7	6	5	4	3	2	2	1	0
	0x043c	R	SPACEWIRE RMAP REV												S	P	AC	E۱	ΛII	RE	<u> </u>	R۱	ΛA	P_	RE	V	[31	:0]											

Bit	name	R/W	default value	Function
[31:0]	SPACEWIRE RMAP REV [31:0]	R	0x4022_0200	SPACEWIRE _RMAP_REV

4.10. SpW PORT LINK LED

Those are LEDs to display link status of SpW Port #1 to #4.

L	.ED No.	F	unction	Remarks
LED1	(Green)	SpaceWire	Port#1link status	
LED2	(Green)	SpaceWire	Port#2link status	Illuminate = SpaceWire link is established
LED3	(Green)	SpaceWire	Port#3link status	Not illuminate = SpaceWire link is not
LED4	(Green)	SpaceWire	Port#4link status	established

4.11. DIP SWTCH

There are a DIP Switch (DSW1) on board. DIP switch (DSW1) setting table

Bit	Function	Setting	Default
1	IP ADDRESS	ON=Fix IP address (192.168.1.100) OFF=User setting IP4 address	OFF
2	Reserved		OFF
3	Reserved		OFF
4	Reserved		OFF
5	LINK Speed[0]	Transfer clock setting after Link established	OFF
6	LINK Speed[1]		ON
7	LED	Use this bits for debuging a part from "00".	OFF
8	LED	Set OFF for normal use	OFF

Bit5	Bit6	Comment
×	ON	10MHz Transfer clock setting value (default setting)
ON	OFF	100MHz Transfer clock setting value
OFF	OFF	200MHz Transfer clock setting value

Note: This setting is default value after turn power on.

It can change transfer clock speed by software to set transfer clock register.

Please refer "4.7.1SPACEWIRE LINK CTL STS1 to4 REGISTER" for details.

4.12. POWER

It will supply the power to STANDALONE SpaceWire to Gigabit Ether from attached AC adapter.

Specification

-Power supply voltage : 5V±5% / Ripple less than 300 mV

-Consumed current : MAX2A

-Plug : φ1.7mmDC Plug (outer diameter φ4mm)

-Jack (on PCB) : HEC3600-010020 (Hoshiden)

-polarity : Center +

5. SAMPLE PROGRAM

There are sample program for windows PC to download from web page which is written on the attached document come with SpaceWire to Giga bit Eher UNIT.

This chapter describe operation method of this sample program "SpaceWire RMAP TEST"

5.1. OVER VIEW

The "SpaceWire RMAP TEST" program is the program to test read or write on RMAP protocol on SpaceWire.

- It can operate on WindowsPC (confirmed on WindowsXP)
- This program is compiled by BorlandC++Bulder5.

It also attach source code (project) for reference to understand method to access SpaceWire etc. The attachment source is OPEN SOURCE.

Configuration

This diagram is for inspecting SpW Target Unit by this SpaceWire to Giga bit Ether UNIT. It can connect to SpW Target Unit, directly or via router.

5.2. OPERATIING METHOD

The "SpaceWire RMAP TEST" program will display this window after start up.

Ether Setting : Set Ether configuration to connect this SpaceWire to Giga bit Ether UNIT. System : Display Version information and close program to click "Exit" button.

RMAP setting : Set RMAP header information to Tx.

RMAP Command : Issue Read/Write command of RAMP

Time Code : Issue Time Code

ReplyData : Display reply responce data Communication-Monitor : Display result of operation

Display bellow wondow then click MACRO tab.

Macro : Excute selected file Macro (test script)

5.3. CONNECTION

Set Ether net configuration (IP address, port number) to connect this UNIT.

The status display will be turn GREEN when success to connect after click "connect" button.

5.4. RMA PHEADER

This "RMAP setting" is same order as RMAP Tx header.

Input those 1 to 10 data in each field.

Target SpaceWire address field

Set pass address in Hexadecimal, it could set multiple pass address.

Example to set multiple pass address: 0102

The pass address of this UNIT is as bellow.

01 : SPW port 1 02 : SPW port 2 03 : SPW port 3 04 : SPW port 4 06 : Ether port

- 2 Target logical address field Specified target logical address
- ③ Command field This field is automatically set.
- 4 Key field Set target key
- ⑤ Replay address length field Select from 0,4,8,12
- 6 Replay address fieldSpecified replay address"0x06" is Ether port pass address of this UNIT
- ⑦ Initiator logical address field Specified SpW address of this UNIT.
- 8 Transaction identifier field Specified packet identifier

- 9 Address fieldSpecified target address
- ① Data Length field Specified data length

This is example setting to read/write first 1k bytes from/to SpacewireDIO2 board (shimafuji Electric Inc) memory.

Connection diagram:

Setting:

It also could load setting file which has setting information already.

RMAP header should make "key name = value" format

Example of RmapHed01.txt file.

The pass address is hexadecimal without "0x".

The replay address is hexadecimal without "0x". It automatically generate replay address length.

5.5. RMAP COMMAND

RMAP Command	
Read	Send
O Write : File	File select
© Write : Input 0x (32b	it only)

There are 3 kind of command

Click "Send" for issuing command.

■Read : Issue Read command flowing RMAP header setting

Display read data in replay area.

■WriteFile : Specified RMAP data file by "FileSelect" button

The data file is binary data.

■Write Input : Write 32 bit specified data. *Writing little Indian

Those are example of read/write 1024 bytes increment data.

① Write data Specified RMAP data file by "FileSelect" button

Set darta length=0x400, Click "Send" button to write in the WriteFile mode. The testd.bin file is increment data which is byte unit..

2 Read data

Read from the address which is same address as written in ①.

Click "Send" button in the Read mode, It will be display read data in ReplyData area for data confirmation.

5.6. TimeCode

■Value : Set default value between 0 to 63 ■Count : Dispatch number of TimeCode

■Send button : Issue TimeCode

Increment "Value" each TimeCode send until number of "count" value times.

If send "3","4","5" and "6" TimeCodes, to set Value=3 and Count=4 then click "Send" button. The "Value" will be "7" after send TimeCode 4 times.

5.7. EXCUTE MACRO

Specify Macro file pressing "FileSelect" then click "ExecMacro" button.

The "ExecMacro" button will be change to "STOP" button. It could enforce to STOP Macro clicking "STOP" button.

Check "Error Stop" for stop Macro automatically in the error occur.

The "Error Count" is count up error event and display number of errors after excute macro.

5.8. CREATE MACRO FILE

Write test script in command format to Macro file.

test script and command list

No	Command function	Command parameter	Remarks			
1	Update write heeder information	HED,"File Name"				
2	Write	WT, Address, Size ,"File Name"				
3	Read	RD, Address, Size ,"File Name"	Save read data to Spacified file			
4	Compare files	CMP, Size ,"File Name" ,"File Name"				
5	End Macro	END	End Macro If there are no this command, it will repeat Macro.			

5.9. EXAMPLE (test01.mac)

Excute the script (test01.mac)

HED,"RmapHed01.txt"

WT,0x1000000,0x400,"RmapTestData001.bin"

RD,0x1000000,0x400,"Resp001.bin"

CMP,0x400,"RmapTestData001.bin","Resp001.bin"

First Line (L1) : Up date header information

Second Line (L2) : Write 1024 byte data to start address 0x1000000
Third Line (L3) : Read 1024 byte data from start address 0x1000000

Forth Line (L4) : Compere write data and read data.

Excute test script when click "ExecMacro" button.

The result od test will display in "Communication-Monitor".

L1: OK: read hedder

L2: OK: write command

L3: OK: read command

L4: OK: Compare

If "END" is written in fifth line, Test will be terminate.

If there are no "END" end of the script, test repeat from 1st line

6. PRINT CIRCUIT BOARD TOP VIEW

7. EXTERNAL VIEW

STANDALONE SpaceWire to Gigabit Ether case external view.

