洲江水学

硕士学位论文评阅书

论文题目	棋 态不匹配下的	Markov	跳变系统控制问题	
		MAINU	则又为为山土中门内区	

作者姓名	陶跃跃
学 号	21732013
指导教师	<u>吴争光</u>
学科 (专业)	控制科学与工程
所在学院	控制科学与工程学院

浙江大学学位委员会办公室制

参考评阅要素

论文选题: 研究方向明确,接触学科前沿,理论意义或应用前景等。

文献综述:文献资料的阅读面、分析与综述水平,对所研究领域学术动态的了解程度等。

实验设计与方法:实验设计是否合理,技术路线与方法是否先进等。

研究成果及论文水平:体现理论基础的水平,成果的创新性、完整性,理论意义及应用价值等。

论文写作与文风:论文写作的条理是否清楚,表述是否准确,文风是否严谨。

评阅书应给出具体的评价意见、修改意见和综合评价结果。

硕士学位论文专家评阅意见

硕士学位论文综合评语:
本文借助隐 Markov 模型,研究了几类具有不匹配模态的 Markov 跳变系统的异步控制问题。针对系统随机稳定性、鲁棒性能指标等推导出了一系列基于线性矩阵不等式的充分条件,在此基础上进一步给出了相应控制器的设计方法。总体而言本硕士论文研究方向明确,选题合适,具有最要的理论研究价值。作者引用了大量相关文献,对本领域的前期工作做了较为完整的阐述。所提出的理论方法具有一定的创新性,相应控制器的设计减弱了现有方法的保守性,扩展了适用范围。同时基于矩阵不等式的设计方法,能很好地与现有软件环境兼容,便于实现,提升了本文成果的实用性。在论文撰写方面,本论文条例清楚,用词得当,表述准确,数学推理过程严谨可靠。

硕士学位论文修改意见:

- 1. 现有免模型方法 (如经典的 Q 学习) 不需要获知转移概率。能否将此类方法用于具有不 匹配模态的 Markov 跳变系统的控制器设计,进一步提升控制算法的实用性?
- 2. 由于本论文中提出的方法是基于 LMI 的充分条件,因为建议对结果的保守性做一定分析与讨论。同时,是否可以用增广 LMI(Extended LMI)来降低分析与综合的保守性?
- 3. 公式 1.10 转置符号有错
- 4. 第9页第三行最后"无线"应该改为"无限"
- 5. 公式 3.8 缺少期望算子

论文总	体评价	优秀 (✓),良好 (),中等 (),及格 (),较差	! () .
是否同 意举行 论文答 辩意见	同意智	 等辩。	✓
	同意组		
	需要进		
	未达至	到硕士学位论文要求,不同意答辩。 ————————————————————————————————————	

评阅日期:

年 月

日

信息页 (不提供给研究生和研究生导师):

评阅人签名	冯宇	职称	教授
导师类别	博导(✓), 硕导(), 其他	()	
评阅人单位	浙江工业大学		
评阅人学科专业	控制科学与工程		

2020 年 06 月 28 日