SHA256

- Sha 256 is secure hash algorithm generating 256-bit hash value.
- ➤ Takes the message input of 512-bit block and then produces 256-bit output.
- > There are steps involved to generate the hash value.
 - 1. Message padding
 - After giving the inputs, it will give the equivalent hexadecimal value and add single 1 bit at the end of the input.
 - Add zeros after that till 448 locations excluding last 64 bits of the 512.
 - The last 64 bits consists the length of the original input.

Input message added 1-bit added zeros length of the input	sage added 1-bit added zeros length of the i	ıput
---	--	------

Total 512 bit

2. 64 words

- Making 512-bit block as 64 words having each of 32-bits
- i.e w [0] w [63] where w [0] =32-bit
- The initial w [0] to w [15] will have 512-bit messages. The remaining words are filled using the formula

From 16 - 63

S0 = $(w[i-15] \text{ right rotate 7}) ^ (w[i-15] \text{ right rotate 18}) ^ (w[i-15] \text{ right shift 3})$

S1 = $(w[i-2] \text{ right rotate 17}) ^ (w[i-2] \text{ right rotate 19}) ^ (w[i-2] \text{ right shift 10})$

W[i] = w[i-16] + S0 + w[i-7] + S1

- 3. Setting initial hash values/ working variables and round constants.
 - H0 H7 = The square root of the initial prime numbers where the fractions part of that written in hexadecimal value.
 K0 - K63 = The cube root of the initial prime numbers where the fractions part of that written in hexadecimal value.

4. 64 round Function

Run 64 rounds in that perform these operations
Sigma0, sigma1, ch, Maj, Temp1, Temp2.

Sigma0= (a)right rotate 2 ^ (a)right rotate 13 ^ (a)right rotate 22

Sigma1= (e)right rotate 6 ^ (e)right rotate 11 ^ (e)right rotate 25

Ch (e, f, g) = (e & f)
$$^((\sim e) \& g)$$

Working like a 2:1 mux

Maj
$$(a, b, c) = (a \& b) \land (a \& c) \land (b \& c)$$

This is majority checker

Temp1 =
$$h + Sigma1(e) + ch (e, f, g) + k [t] + w[t]$$

Temp2 = $Sigma0(a) + Maj (a, b, c)$

Then update the working variable for the next round a= Temp1 + Temp2

$$b = a$$

$$c = b$$

$$d = c$$

$$e = d + Temp1$$

$$f = e$$

$$g = f$$

$$h = g$$

5. After 64 rounds update the 8 working variables

• Formula is

$$H0 = H0 + a$$

$$H1 = H1 + b$$

$$H2 = H2 + c$$

$$H3 = H3 + d$$

$$H5 = H5 + f$$

$$H6 = H6 + g$$

$$H7 = H7 + h$$

6. 256-bit hash value

Concatenating the updated 8 working variable
Data_out = {H0, H1, H3, H4, H5, H6, H7}

These are the steps