Life Cycle Plan (LCP)

LEMA Pilot School Integrated Scheduling System

Team No. 12

Name	Primary Role	Secondary Role
David Wiggins	Project Manager	Developer
Aakash Shah	Prototyper	Developer
Kushalpreet Kaur	Developer	Developer
Thammanoon Kawinfruangfukul	Tester	Developer
Eunyoung Hwang	Architect	Developer
Louis Demaria	IIV&V	Developer
Mark Villanueva	QFP	Developer
Sangik Park	Developer	Developer

04/27/2012

Version History

Date	Author	Version	Changes made	Rationale
09/29/11	Harsimran Singh Benipal, Madhulika Mazumdar	1.0	First Draft. Identifying the Roles, Skills and Responsibilities of all the team members.	Initial draft with respect to LEMA Pilot School Integrated Scheduling System Version 1.0
09/30/11	Harsimran Singh Benipal	1.1	Add Introduction part	Correction after grading
10/07/11	Harsimran Singh Benipal	1.2	Fixed bug #4465; Modified skills (section 3.3)	Response to Core VC package; fixing od bugs
10/12/11	Neelima Agarwal	2.0	Identify new skills, describe milestones and products; identifying responsibility for the team members in valuation phase	Added info to comply with the minimum exit criteria for LCP within Core FC
10/18/11	Neelima Agarwal	2.2	Added Stakeholders' responsibilities, monitoring and control, updated methods and tolls, estimated resources using COTIPMO tool; Fixed Bugs	Minimum exit criteria for Draft FC package
10/18/11	Neelima Agarwal	2.3	Changes in the estimated resources	Correction in order for the modules to trace back to the requirements
10/24/2011	Neelima Agarwal	2.4	Detailed project plan for foundations phase, COTIPMO estimate, identification of skills and responsibilities for new members	Minimum exit criteria for FC package; feedback from ARB session
11/07/2011	Neelima Agarwal	2.5	Fixed bugs #5998, #6080 through #6089.	Response to evaluation of FC Package
11/21/2011	Neelima Agarwal	3.0	Updated resource estimates, according to COTIPMO iteration #6	Draft Development Commitment Package (DCP)
11/29/2011	Neelima Agarwal	3.1	Updated resource estimates; made corrections	Draft Development Commitment Package (DCP)
12/05/2011	Neelima Agarwal	3.2	Updated estimates according to the latest COTIPMO iteration; fixed bugs	Draft Development Commitment Package (DCP) and Response to evaluation of draft DCP
02/04/2012	Thammanoon	4.0	Updated all sections for rebasedline foundation phase	Updated information following new team structure and members
02/10/2012	Thammanoon	4.1	Updated section 2, 5, and 6	Manage inconsistency of requirements among documents
02/15/2012	Thammanoon	4.2	Update section 5	Updated cost estimate and feedback from ARB session
02/24/2012	Thammanoon	4.3	Update table of contents	Updated following IIV&Ver

Date	Author	Version	Changes made	Rationale
03/25/2012	Thammanoon	5.0	Update section 1.2 and 6	Update document following feedback from TA and add iteration assessment and CCD preparation.
04/03/2012	Thammanoon	5.1	Update section 1.2 and 6.2	Add testing and CCD results
04/11/2012	Thammanoon	5.2	Update section 1.2, 5, and 6.3 Update table 5 and 7	Update document following feedback from TA and plan for second iteration.
04/27/2012	Thammanoon	6.0	Update section 1.2, 5, 6.2 and 6.3	Assess the second iteration

Version Date: 04/27/12

Table of Contents

	cle Plan (LCP)	
	History	
	f Contents	
	Figures	
1.	Introduction	
1.1		
1.1	•	
1.2	Status of the LCP	1
1.3	Assumptions	1
2.	Milestones and Products	2
2.1	Overall Strategy	2
2.2	Project Deliverables	4
3.	Responsibilities	12
3.1	Project-specific stakeholder's responsibilities	12
3.2	Responsibilities by Phase	14
3.3	Skills	17
4.	Approach	22
4.1	Monitoring and Control	22
4.2	Methods, Tools and Facilities	23
5.	Resources	
	ion Plan	
6.1 P	Plan	40
	Capabilities to be implemented	
	Capabilities to be tested	
	Capabilities not to be tested	
	CCD Preparation Plans	
	teration Assessment	
	Capabilities Implemented	
	Summary of Test Results	
~		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Life Cycle Plan (LCP)

Version Date: 04/27/12

Table of Tables

Table 1: Artifacts Deliverables in Exploration Phase	4
Table 2: Artifact deliverable in Valuation Phase	
Table 3: Artifact deliverable in Foundations Phase	6
Table 4: Artifact deliverable in Development Phase	
Table 5: Artifact deliverable in Development Phase	8
Table 6: Project Specific stakeholder's responsibilities	
Table 7: Stakeholder's Responsibilities in each phase	14
Table 8: Skills identified for development team (CS577a)	17
Table 9: Skills identified for development team (CS577b)	19
Table 10: Methods, Tools and Facilities	
Table 11: COCOMOII Scale Driver	
Table 12: Cost Drivers - Teacher Course Allocation Module	
Table 13: Cost Drivers - Database Module	
Table 14: Cost Drivers - Family Accountability Integration Module	
Table 15: Cost Drivers – csv import/export for integration	
Table 16: Cost Drivers - Student Progress Tracking	34
Table 17: Cost Drivers - Student Course Allocation module	
Table 18: Cost Drivers - Head Scheduler Data entry module	
Table 19: Cost Drivers - Student Course Preference module	38
Table 20: Capabilities to be implemented in the iteration 1	
Table 21: Capabilities to be implemented in the iteration 2	
Table 22: CCD Stakeholders	
Table 23: CCD usage scenarios	
Table 24: CCD feedback form layout	
Table 25: CCD preparation risk management plans	
Table 26: Capabilities implemented, tested, and results in the first iteration	
Table 27: Capabilities implemented, tested, and results in the second iteration	
Table 28: Core capabilities drive-through results	
Table 29: CCD risk management plans	50

Table of Figures

Figure 1: Software Modules (Initial Estimates)	25
Figure 2: Scale factors	25

1. Introduction

1.1 Purpose of the LCP

Life Cycle Plan is used to identify the deadlines for the various phases and modules of the project. It also identifies the roles, skills and responsibilities of the various team members. It provides a detailed description of the milestones, products or deliverables in each phase. It also specifies the life cycle management approach which helps in managing and controlling progress

1.2 Status of the LCP

This is the version 6.0 of the Life Cycle Plan and it is a part of the Initial Operational Capability Package. It identifies all the major milestones regarding the various phases of the project. This version describes the life cycle plan for the development phase, identifies modules for the system and the cost estimation based on the latest iteration of COTIPMO tool. Moreover, this version recorded the test results of capabilities in the second iteration.

1.3 Assumptions

- The duration of the project is 24 weeks, i.e. 12 weeks in Fall 2011 and 12 weeks in Spring 2012
- The team comprises of 8 members including 3 DEN students and 2 unpaid interns.
- The team members, the client and the other success-critical stakeholders are shared goals and have the strong commitments to achieve the goals.
- The team members, the client and the other success-critical stakeholders will be in regular communication with one another, so everyone will be informed of updates their progress, a decision had to be made, or an issue found.
- The requirements will not change drastically during the course of the project

2. Milestones and Products

2.1 Overall Strategy

The LEMA Pilot School Integrated Scheduling System will be following the Architected Agile Methodology because 80% of its functionality has to be developed from scratch and the rest comes from Free Timetabling Software (COTS). The team will be following Incremental Commitment Spiral Model.

Exploration phase

Duration: 09/09/11- 10/03/11

Concept: The team gets to know each other working styles and is introduced to the clients. The team will schedule several meetings with the clients in order to analyze the current system and understand the current business work flow, collect the system scope, make initial life cycle plans, perform benefit chain analysis.

The team also does feasibility analysis, identifies risks and start with initial risk management

Deliverables: Valuation Commitment Package **Milestone**: Valuation Commitment Review

Strategy: Scrum Development

Valuation Phase

Duration: 10/03/11- 10/26/11

Concept: The team holds WinWin negotiation sessions with the clients. All win conditions, issues, and options are to be updated on the Winbook. The stakeholders must suggest alternatives and options to address any issues. System requirements are described at a detailed level. Initial prototype is developed here, operational concept is elaborated in detail and system architecture is specified. Feasibility analysis and risk mitigation planning are to be done and the system requirements need to be prioritized.

Deliverables:

- Core Foundation Commitment Package,
- Draft Foundation Commitment Package
- Foundation Commitment Package

Milestone: Architecture Board Review-Foundation Commitment Review

Strategy: Win-win negotiation, initial prototype development, defining architecture

Foundations Phase

Duration: 10/26/11- 12/05/11

Concept: By now, negotiation is done with the client and the system requirements are clearly defined and understood. The team should spend more effort on prototyping, developing the system architecture, specifying architecture styles, patterns and frameworks, managing project quality and assessing and managing project status.

Some effort has to be spent on the transition plans and planning needed for moving to the development phase (choosing development tools, analyzing compatibility of each tools, deciding development environment, etc.)

Deliverables:

• Draft Development Commitment Package

• Development Commitment Package

Milestone: Architecture Board Review-Foundation Commitment Review

Strategy: prototype development, detailed architecture

Rebaselined Foundation Phase

Duration: 01/09/2012 – 02/08/2012

Concept: Updating requirements if it is necessary. Create shared vision and transfer knowledge to new team members. The team revises all requirements, design, and artifacts, and prepares test and transition plans in order to ensure that the project is ready for development phase.

Deliverables: Rebaselined Development Commitment Package **Milestone**: Rebaslined Development Commitment Review **Strategy**: One short Incremental Commitment Cycle.

Development phase (Construction iteration):

Duration: 02/09/2012 - 04/09/2012

Concept: Develop and implement the system based on previous design and architecture. The development team is able to reuse the prototypes to speed up the process and reduce the risks since the prototypes are developed and tested. Before leaving from this phase, all functions need to finish development and testing, and most of the risks and defects have to eliminate in order to be ready for transition.

Deliverables:

- Initial Operational Capability (IOC) Package
- Core Capability Drive-Thru Report
- Draft Transition Readiness Review Package

Milestones: Core Capability Drive-through **Strategy**: Mostly implementation and testing.

Development phase (Transition iteration):

Duration: 04/10/2012 – 04/27/2012

Concept: This involves installing and deploying the system at the operational environment. Training should be provided to the clients and users, so that the users of the system can use it successfully.

Version Date: 04/27/12

Deliverables:

- Initial Operational Capability (IOC) Package
- Support and Transition Set Package
- Close Out Report
- Project Archiving

Milestones: Transition Readiness Review **Strategy**: Installation, Transition and training.

2.2 Project Deliverables

This section describes all of the artifacts the team is responsible for delivering and its due date, format, and medium.

2.2.1 Exploration Phase

Table 1: Artifacts Deliverables in Exploration Phase

Artifact	Due date	Format	Medium
Client Interaction Report	09/29/11	.doc, .pdf	Soft copy
Valuation Commitment Package	09/30/11	.doc, .pdf	Soft copy
Operational Concept Description			
(OCD) Early Section			
• Life Cycle Plan (LCP) Early			
Section			
Feasibility Evidence Description			
(FED) Early Section			
Progress Report	Every Wednesday	.xls	Soft copy
WikiWinWin Report		Text	Soft copy
Project Plan	Every Wednesday	.mpp	Soft copy
Initial prototype		.doc, .pdf	Soft copy
Evaluation of Valuation	10/03/2011	.xls	Soft Copy;
Commitment Package			Bugzilla

2.2.2 Valuation Phase

Table 2: Artifact deliverable in Valuation Phase

Artifact	Due date	Format	Medium
Core Foundations	10/12/2011	.doc, .pdf	Soft copy
Commitment Package			
Operational Concept			
Description (OCD)			
• Life Cycle Plan (LCP)			
Feasibility Evidence			
Description (FED)			
• Prototype (PRO)			
System and Software			
Architecture Description			
(SSAD)			
System and Software			

	1		
Requirements Definition (SSRD)			
• Supporting Information			
Document (SID)			
Progress Report	Every Wednesday	.xls	Soft copy
Project Plan	Every Wednesday	.mpp	Soft copy
Evaluation of Core	10/12/2011	.xls	Soft copy; Bugzilla
Commitment Package			
Effort Report	Every Monday	-	Effort Reporting system
Draft Foundations	10/17/2011	.doc, .pdf	Soft copy
Commitment Package			
Operational Concept			
Description (OCD)			
• Life Cycle Plan (LCP)			
Feasibility Evidence			
Description (FED)			
• Prototype (PRO)			
System and Software			
Architecture Description			
(SSAD)			
 System and Software 			
Requirements Definition			
(SSRD)			
• Supporting Information			
Document (SID)			
Evaluation of Draft FC	10/17/2011	.xls	Soft copy; Bugzilla
Package			
Foundation Commitment	10/24/2011	.doc, .pdf	Soft copy
Package:			
Operational Concept			
Description (OCD)			
• Life Cycle Plan (LCP)			
Feasibility Evidence			
Description (FED)			
• Supporting Information			
Document (SID)			
System and Software			
Architecture Description			
(SSAD)			
• UML Model	10/21/2011	_ 1	C.C
Evaluation of Foundation	10/31/2011	.xls	Soft copy; Bugzilla
Commitment Package			

2.2.3 Foundations Phase

Table 3: Artifact deliverable in Foundations Phase

Artifact	Due date	Format	Medium
Draft Development	11/21/2011	.doc, .pdf	Soft copy
Commitment Package			
Operational Concept			
Description (OCD)			
• Life Cycle Plan (LCP)			
 Feasibility Evidence 			
Description (FED)			
• Prototype (PRO)			
 System and Software 			
Architecture			
Description (SSAD)			
 System and Software 			
Requirements			
Definition (SSRD)			
 Supporting 			
Information Document			
(SID)			
Quality Management			
Plan (QMP)			
• Test Plan (TP)			
• Iteration Plan			
Acceptance Test Plan			
(ATP)			
Development	12/05/2011	.doc, .pdf	Soft copy
Commitment Package			
Operational Concept			
Description (OCD)			
• Life Cycle Plan (LCP)			
• Feasibility Evidence			
Description (FED)			
• Prototype (PRO)			
• System and Software			
Architecture			
Description (SSAD)			
• System and Software			
Requirements Definition (SSRD)			
• Supporting Information Document			
(SID)			
(SID)			

 Quality Management Plan (QMP) Test Plan (TP) Iteration Plan Acceptance Test Plan (ATP) 			
Effort Report	Every Monday		Effort Reporting system
Progress Report	Every Wednesday	.xls	Soft Copy
Project Plan	Every Wednesday	.mpp	Soft copy

2.2.4 Rebaselined Development Phase

Table 4: Artifact deliverable in Development Phase

Artifact	Due date	Format	Medium
Draft Rebaselined	02/08/2012	.doc, .pdf	Soft copy
Development			
Commitment (RDC)			
Package			
Operational Concept			
Description (OCD)			
 System and Software 			
Requirements			
Definition (SSRD)			
• System and Software			
Architecture			
Description (SSAD)			
• UML Model			
• Life Cycle Plan (LCP)			
 Feasibility Evidence 			
Description (FED)			
Supporting			
Information Document			
(SID)			
Quality Management			
Plan (QMP)			
• Test Plan and Cases			
(TPC)			
• Transition Plan (TP)	0.0 (0.0 (0.0)		
Prototyping:	02/09/2012	.php, .ep	Soft copy
• User interface			
prototypes			
• REST API			
• OAUTH API			
• Interface with COTS			

Rebaselined	02/15/2012	.doc, .pdf	Soft copy
Development		, I	13
Commitment Package			
Operational Concept			
Description (OCD)			
• System and Software			
Requirements			
Definition (SSRD)			
• System and Software			
Architecture			
Description (SSAD)			
• UML Model			
• Life Cycle Plan (LCP)			
Feasibility Evidence			
Description (FED)			
• Supporting			
Information Document			
(SID)			
 Quality Management 			
Plan (QMP)			
• Test Plan and Cases			
(TPC)			
• Transition Plan (TP)			
Evaluation of	02/27/2012	.doc, .pdf,	Soft copy, Bugzilla
Rebaselined		Bugzilla	
Development			
Commitment Package			
Effort Report	Every Monday		Effort Reporting system
Progress Report	Every Wednesday	.xls	Soft Copy
Project Plan	Every Wednesday	.mpp	Soft copy

2.2.5 Development Phase

Table 5: Artifact deliverable in Development Phase

Artifact	Due date	Format	Medium
Develop system	03/15/2012	.php	Soft copy
modules:			
- Online application for			
students subject			
registration			
- Locking certain classes			
- Student course requests			
are			
viewed/approved/rejecte			

d by counselor			
- Schedule generation			
- Map teachers to course			
sections			
- View alternate			
schedules			
- LAUSD constraints			
- Detailed Database	02/22/2012	1	g c
Develop system	03/22/2012	.php	Soft copy
modules:			
- Authentication to the			
system			
- Providing Information			
to team 04			
- Integration with family			
accountability system			
Test Result and	03/24/2012	.doc, .pdf	Soft copy
Feedback			
• Unit testing			
 Integrated testing 			
Initial Operational			
Capability (IOC)	03/26/2012	.doc, .pdf	Soft copy
Package Working set #1			
 Operational Concept 			
Description (OCD)			
 System and Software 			
Requirements			
Definition (SSRD)			
 System and Software 			
Architecture			
Description (SSAD)			
• UML Model			
• Life Cycle Plan (LCP)			
• Feasibility Evidence			
Description (FED)			
• Supporting			
Information Document			
(SID)			
• Quality Management			
Plan (QMP)			
• Test Plan and Cases			
(TPC)			
` ′			
• Transition Plan (TP)			
• Test Procedure and			
Results (TPR)			

Core Capability Drive- Thru Report Core Capability Drive-Thru document (CCD) Code Count Code Count COCOMOII Estimation Uncertainty COCOMOII Output	04/04/2012	.doc, .pdf, .csv	Soft copy
Evaluation of Initial Operational Capability (IOC) Package Working set #1	04/04/2012	.doc, .pdf, Bugzilla	Soft copy, Bugzilla
Draft Transition Readiness Review Package • Transition Plan (TP) • User Manual (UM) • Support Plan (SP) • Training Materials (TM) • Regression Test Package (RTP)	04/09/2012	.doc, .pdf	Soft copy
Develop system modules: - Track the progress of a particular student - Student Progress Enhanced - GPA for various universities - Level of Normalization	04/17/2012	.php	Soft copy
Test Result and Feedback • Unit testing • Integrated testing	04/20/2012	.doc, .pdf	Soft copy
Support and Transition Set Package Transition Plan (TP) User Manual (UM) Support Plan (SP) Training Materials (TM)	04/16/2012	.doc, .pdf	Soft copy

• Regression Test Package (RTP)			
Evaluation of Support and Transition Set Package	04/23/2012	.doc, .pdf, Bugzilla	Soft copy, Bugzilla
• Initial Operational Capability (IOC) Package Working set #2	04/27/2012	.doc, .pdf	Soft copy
• Support and Transition Set Package			
Software system	04/28/2012	.php, .twig, .exe	Soft copy
installation			
• Source Code Files			
• Executable			
Components			
Close Out Report			
Project Archiving	05/04/2012	.doc, .pdf, .php,	Soft copy
• Source Code Files		.twig, .exe	
• Executable			
Components			
• Release Description			
Effort Report	Every Monday		Effort Reporting system
Progress Report	Every Wednesday	.xls	Soft Copy
Project Plan	Every Wednesday	.mpp	Soft copy

3. Responsibilities

3.1 Project-specific stakeholder's responsibilities

The following table shows the responsibilities of each stakeholder during the project development.

Table 6: Project Specific stakeholder's responsibilities

Role	Responsibilities
All stakeholders	 Participate in WinWin negotiation sessions, commitment reviews and weekly meetings Collaborate and take responsibility for tasks assigned Commit to the agreed project progress
Client (Mrs. Beth Kennedy, LEMA Pilot School)	 Arrange for site visit, and collaborate with the development team Specify win conditions and explain operation concept Coordinate among user and developer Review and test the product and provide feedback Test and deploy the product in operational environment Support system's transition Receive training for the new system, provide training for regular users
System Users – Students, Counselor, Teachers, Administrator (Ms. Roberta Mailman)	 Explain current business workflow and context Express win conditions Review and test prototypes and the product and provide feedback Test and deploy the product in operational environment
IIV&V	 Help in conducting WinWin Sessions Verify and validate documents and provide feedback to the development team Ensure the quality of the project

Development team Get all win conditions from stakeholders Understand the system and convert the project-related information into requirements, operational concepts, initial architecture, and prototype Develop project plan, ROI analysis, provide feasibility evidence Analyze current system environment, identify project risks, analyze project feasibility and mitigate risks Develop software and project artifacts to meet milestone requirements Interact with the various stakeholders for better understanding of the Participate in Win Win sessions; identify issues/concerns and suggest alternatives/ options Schedule weekly client meetings and team meetings Meet the client weekly for showing them various system & documents and taking their reviews about the system Work together as a team aiming towards a common goal Plan and conduct testing Develop the system based on the agreed architecture Perform system transition, provide training for client and maintainer Provide product support in operational environment to customer Maintainer Express interests or win conditions (LEMA school) Provide information and show current intranet. • Provide information and feedback, review and test the intranet in early version Prepare operational environment Test and deploy the product in operational environment Receive instruction for the new system, provide training for users Maintain the system

3.2 Responsibilities by Phase

Table 7: Stakeholder's Responsibilities in each phase

		Pri	mary / Seconda	ry Responsibil	ity	
Team Member / Role	Exploration	Valuation	Foundations	Rebaselined Foundation	Development- Construction Iteration	Development- Transition Iteration
Neelima Agarwal: Project Manager/ Software Architect	Project Manager: -Define, plan, assign, and identify tasks & priorities for each team member -Record project proceedings -Record project progress	Project Manager: - Planning and control -Record project progress and individual effort - Identify and resolve risks -Life cycle planning Software Architect: - Analyze the Proposed System architecture	Project Manager: - Planning and assessing project progress - Identify risks -Discuss with clients Software Architect: - Specify architecture styles, patterns and frameworks	N/A	N/A	N/A
Aakash Shah: Prototyper/ Feasibility Analyst/ Builder	Prototyper: - Search for a COTS - Explore the various available technologies.	Feasibility Analyst: - Assess and plan to mitigate risks Prototyper: - Develop initial prototype	Feasibility Analyst: - Assess feasibility evidence Prototyper: - Develop prototype -Analyze and prioritize capabilities to prototype	Builder: - Assess capabilities - Study COTS - Implement REST services	Builder: - Develop the system components - Perform unit testing	Builder: - Deploy the system - Final Project Deliverable
Madhulika Mazumdar: Operational Concept Engineer	Operational Concept Eng: - Making the OCD and LCP - Contributing in Progress report	Operational Concept Eng: - Identify objectives, constraints and priorities - Develop operational concept	Operational Concept Eng: - Identify organizational and operational transformations - Assess operational concept	N/A	N/A	N/A
Eunyoung Hwang: Software Architect/ Requirements Engineer/	Software Architect: - Constructing and Maintaining the website	Software Architect: - Analyze the Proposed System architecture	Software Architect: -Describing the architecture, styles, and	Builder: - Assess capabilities - Develop user interface prototypes	Builder: - Develop the system components - Perform unit testing	Builder: - Deploy the system - Final Project Deliverable

Builder/ Trainer	Requirements Engineer: - Help in requirement Analysis	Requirements Engineer: - Analyze the current and proposed system	patterns -Defining technology dependent architecture Requirements Engineer: - Re-evaluate the Win Conditions based on client's feedback	Software Architect: - Assess architecture and detail design		Trainer: - Prepare and train the system content - Transition the system
Harsimran Benipal: Requirements Engineer/ Life Cycle Planner	Requirements Engineer: - Making the CIR - Getting System Requirements and making the SSRD. Life Cycle Planner: - Making LCP	Requirements Engineer: - Negotiate Win conditions	Requirements Engineer: - Re-negotiate Win Conditions based on client's feedback Life Cycle Planner: - Estimate project effort and schedule	N/A	N/A	N/A
Louis DeMaria: IIV&V / Shaper/ Quality Focal Point/ Builder/ Tester	IIV&V: - facilitation in win win sessions - verifying the requirements	IIV&V: - Manage Project Quality - Verifying & validation of products or deliverables Shaper: - Setup WinWin negotiation context - Negotiate WIOA - Capture new system items and project context	IIV&V: - Verify and validate documents using Bugzilla Quality Focal Point: - Construct traceability matrix - Identify configuration management strategy Shaper: - Negotiate the Win conditions to validate the feasibility of requirements - Capture new system items and project context	IIV&V: - Verify and validate documents recording to Bugzilla Builder: - Assess capabilities	IIV&V: - Verify and validate the work products Builder: - Develop the system components - Perform unit testing Tester: - Test modules/ system and record test results	IIV&V: - Manage issues and defects - Verify and validate the work products Builder: - Deploy the system - Final Project Deliverable Tester: - Test system and record test results
Tianyin Zhou: Prototyper	N/A	N/A	Prototyper: - Develop prototype -Prioritize capabilities to prototype	N/A	N/A	N/A

David Wiggins:	N/A	N/A	N/A	Project	Project	Project
Project Manager/	IVA	IVA	IVA	Manager:	Manager:	Manager:
Feasibility				- Define detail	- Define detail	- Define detail
Analyst/ Builder/				project plan	project plan	project plan
Trainer				- Track	- Track	- Track
Tranici				Progress	Progress	Progress
					_	_
				Feasibility	Builder:	Builder:
				Analyst:	- Develop the	- Deploy the
				- Assess and	system	system
				evaluate COTS	components	- Final Project
				- Track risks	- Perform unit	Deliverable
				throughout life	testing	Trainer:
				cycle		- Prepare and
				Builder:		train the
				- Develop user		system content
				interface		- Transition the
				prototypes		system
Thammanoon	N/A	N/A	N/A	Requirements	Life Cycle	Life Cycle
Kawinfruangfu				Engineer:	Planner:	Planner:
kul:				- Define detail	- Define detail	- Define detail
Requirements				requirements	life cycle plan	life cycle plan
Engineer/ Life				- Handle	Builder:	Builder:
Cycle Planner/				requirement	- Develop the	- Deploy the
Builder/Tester/				changes	system	system
Trainer				Life Cycle	components	- Final Project
				Planner:	- Perform unit	Deliverable
				- Assess life	testing	Tester:
				cycle plan	Tester:	- Test system
				- Define detail	- Test modules/	and record test
				life cycle plan	system and	results
				- Define	record test	Trainer:
				iteration and	results	- Prepare and
				support plan	resures	train the
				Builder:		system content
				- Develop user		- Transition the
				interface		
						system
				prototypes		
				- Setup		
				development		
				environment		
				- Study		
Manla	NT/A	NT/A	NT/A	Symfony	OI'd- EI	D-214.
Mark	N/A	N/A	N/A	Quality Focal	Quality Focal	Builder:
Villanueva:				Point:	Point:	- Deploy the
Quality Focal				- Assess quality	- Identify test	system
Point/ Builder/				management	plan	- Final Project
Tester				plan and	Builder:	Deliverable
				strategies	- Develop the	Tester:
				Builder:	system	- Test system
				- Study	components	and record test
				Symfony	- Perform unit	results
				- Implement	testing	
				REST services	Tester:	
					- Test modules/	
					system, record	
					test results	
		1	I .		test resums	<u> </u>

Kushalpreet	N/A	N/A	N/A	Builder:	Builder:	Builder:
Kaur:				- Study	- Develop the	- Deploy the
Builder				Symfony	system	system
				- Interface with	components	- Final Project
				COTS	- Perform unit	Deliverable
					testing	
Sangik Park:	N/A	N/A	N/A	Builder:	Builder:	Builder:
Builder				- Study	- Develop the	- Deploy the
				Symfony	system	system
				- Interface with	components	- Final Project
				database and	- Perform unit	Deliverable
				Symfony	testing	

3.3 Skills

Table 8: Skills identified for development team (CS577a)

Name	Roles	Skills
Neelima Agarwal	Project Manager/ Software Architect	Technical Skils: C, C++, Java, JS, XML, HTML, MySQL
		-Planning and managerial skills -Inter-personal Skills -Good at assessing and identifying project risks, defects, and concerns -Team Management skills -Mentoring skills -Risk mitigation planning skills -Conflict Resolution Skills -Good at partnering with end users, and clients to ensure progress in the right direction - UML modeling skills -Skilled at analyzing the current and proposed system architecture
Aakash Shah	Prototyper / Feasibility Analyst	Technical Skills: C#,J#, C, C++, HTML, DB design and SQL scripting to develop the prototype -Mentoring skills - Skilled at analyzing components for implementation and risk -Assessment skills for understanding the system - Skilled in Silverlight UI, C#, C,C++, DB design and SQL scripting to develop the prototype -Good analytical skills for analyzing the cost and benefits of the project -NDI analysis skills for checking feasibility - Effective Communication skills

Madhulika Mazumdar	Operation Concept Engineer / Project Manager	Technical Skills: C,C++, Java, HTML, XML, JS -Skilled at identifying the goals, restrictions, and priorities of the system -Good at evaluation of the new concepts for the proposed system as well as the current system -Effective communication skills -Team collaboration skills -Inter-personal skills.
Harsimran Singh Benipal	Requirements Engineer / Life Cycle Planner	Technical Skills C, C++, C#, ASP.NET, SQL Server, MySQL -Negotiation skills -Analytical skills to understand and comprehend the proposed system -Resource management skills -Listening skills -Communication skills -Team collaboration skills
Eunyoung Hwang	Software Architect / Requirements Engineer	Technical Skills Java, SQL Server, Javascript, C, C++, J#, HTML -Skilled in system analysis - Analytical skills to understand how the users will interact with the system -Skilled at mapping requirements to architecture and detailed designingProblem solving skills - Listening skills - Communication skills - UML modeling skills
Tianyin Zhou	Prototyper	Technical Skills: Python, PHP - Team collaboration skills - Listening skills - Communication skills - Analytical skills to understand and comprehend the proposed system

 Table 9: Skills identified for development team (CS577b)

Name	Roles	Skills
David Wiggins	 Project Manager Feasibility Analyst Builder Trainer 	Current skills: PHP, CSS, HTML, MySQL Project management skills People skills Ability to handle conflicts Ability to analyze business and investment Ability to assess and mitigate risks Communication skills Required skills: Symfony
Aakash Shah	• Builder	 Current skills: C#,J#, C, C++, HTML, DB design and SQL scripting to develop the prototype Mentoring skills Skilled at analyzing components for implementation and risk Assessment skills for understanding the system Skilled in Silverlight UI, C#, C,C++, DB design and SQL scripting to develop the prototype Good analytical skills for analyzing the cost and benefits of the project NDI analysis skills for checking feasibility Effective Communication skills Required skills: Symfony PHP
Eunyoung Hwang	 Software Architect Requirements Engineer Builder 	Current skills: Java, SQL Server, Javascript, C, C++, J#, HTML Skilled in system analysis Analytical skills to understand how the users will interact with the system Skilled at mapping requirements to architecture and detailed designing. Problem solving skills Listening skills Communication skills UML modeling skills Required skills: Symfony PHP

Thammanoon Kawinfruangfukul	 Requirements Engineer Life Cycle Planner Builder Tester Trainer 	Current skills Planning skills Project coordination COTIPMO MS project UML, RSM PHP, MySQL Communication skills Analytical skills Negotiation skills
		Required skills
Mark Villanueva	Quality Focal PointBuilderTester	Current skills Analytical skills Communication skills Testing methodology Bug tracking and removal techniques UML, RSM WinBook PHP, HTML Required skills: Symfony PHP
Louis Demaria	 IIV&V Shaper Quality Focal Point Builder Tester 	 Current skills C, C++, HTML, J script, JAVA, Visual Basic, C++, C#, J#, MySQL Communication and negotiation skills Analytical skills to understand the system and finding any potential errors. Listening skills Communication skills Team collaboration skills Inter-personal skills Defect tracking and reporting skills Required skills: Symfony
Kushalpreet Kaur	Builder	 PHP Current skills PHP, CSS, HTML, MySQL Analytical skills Communication skills Required skills: Symfony

Sangik Park	Builder	 Current skills PHP, CSS, HTML, MySQL Analytical skills Communication skills
		Required skills: • Symfony

4. Approach

4.1 Monitoring and Control

The team is adopting various approaches for monitoring and control. Weekly meetings with the client provide the necessary feedback, monitoring and control. Further, regular sync ups with the team members through meetings, and emails allow for effective communication. The summary of report will be recorded on the meeting minutes sent to group email, progress report, effort report, and project plan.

4.1.1 Closed Loop Feedback Control

- Weekly Progress reports identifying risks and risk mitigation plans; defects, problems and concerns and progress in terms of tasks completed last week and tasks to be completed in the following week. Any deviation from the baseline is identified, its severity is analyzed and action, as appropriate, is taken.
- Weekly detailed project plan stating the plan for the coming weeks and tasks for each of the team members. Moreover, MS Project plan gives the tasks to be completed by calendar year, this also helps the manager to record any lags and if any, compensate them as soon as possible, so as to avoid future major delays.
- Weekly effort reports for assessing the number of hours spent per week by the development team members on the project development.
- Regular team meetings to discuss and plan the tasks for the coming week and for follow-ups on the tasks completed in between two consecutive meetings
- Use of emails, phone calls, wikispace, and CSCI 577 Team 12 Google group page(http://groups.google.com/group/csci577-team12) for effective communication.

4.1.2 Reviews

Reviews and recommendations for every artifact are done at various levels.

First, IIV&V activities are carried out and IIV&V files a bug report in case there is a bug in the artifact being reviewed. Then, the artifacts are reviewed and graded by the teaching staff members. The team also uses Architecture Review Boards which are performed after every major milestone of project development.

Sometimes, the team uses peers review where team members review each other's work and provide suggestions.

4.2 Methods, Tools and Facilities

Table 10: Methods, Tools and Facilities

Tools	Usage	Provider
Bugzilla	Utilized to detect bugs, and errors	USC
CSE Effort	Record and keep track of the cumulative weekly effort reports	USC
Reporting	for each team member	
System and		
iCard system		
Google Docs	Utilized for cohesive collaboration on documents	Google
Google	Tool for communication and collaboration among the team	Google
Groups	members	
Project	Uploading documentation	USC
Website		OBC
Rational	Create UML models (use-case diagrams, sequence diagrams,	
Software	etc) for SSAD	USC
Modeler		
Microsoft	Create documents for the documentation purposes	Developers
Word		Ветегорега
Microsoft	Used for documenting detailed weekly project plan, defining	
Project	tasks for each team member and setting milestones or	USC
	deadlines	
Microsoft	Create presentation for ARB sessions	Developers
PowerPoint		-
Winbook	Facilitates and support WinWin Negotiation	USC
COTIPMO	Cost Estimation tool	USC
Subversion	Configuration manager	CollabNet

5. Resources

Estimate on the software cost (estimated for Iteration #14 using COTIPMO)

- Estimated CSCI577a Effort: 7 team members at 20 hrs/week for 12 weeks
- Estimated CSCI577b Effort: 8 team members at 8 hrs/week for 12 weeks
- Estimated effort from COTIPMO Iteration #10 = 4.31 PM (656 hours)
- 8 person development team is required to complete all the requirements of the project (Estimation required team members are 3.02 (6.04 /1.67) and there are 8 team members, so the project is feasible enough to be delivered)

- Project duration 24 weeks
- Component modules in your development project :
 - Student Progress Tracking module
 - o Student Course Preference module
 - o Student Course Allocation module
 - o Teacher Course Allocation module
 - o csv import/export for integration
 - o Head Scheduler data entry module
 - o Family accountability integration module
 - o Database
- Programming language used: PHP
- Development framework used: Symfony 2.0

Initial Estimates:

Figure 1: Software Modules (Initial Estimates)

Figure 2: Scale factors

COTIPMO Iteration List

Iteratio	n List							
	#	Start Date	End Date	Description	Scale Factor	Modules	Spent PM ?	Estimated PM
√ †	1	10/19/11	10/25/11	1st Iteration of the project	18.07	8	-	10.05 (1528 hrs)
V	2	10/26/11	11/2/11	2nd Iteration	18.07	8	-	9.29 (1412 hrs)
V	3	11/2/11	11/9/11	Iteration 3	17.79	8	-	8.85 (1345 hrs)
V	4	11/9/11	11/16/11	Iteration 4	17.79	8	-	8.61 (1309 hrs)
V	5	11/16/11	11/23/11	Iteration 5	17.79	8	-	8.39 (1275 hrs)
▽ †	6	11/23/11	11/30/11	Iteration 6	17.54	8	0.42 (64 hrs)	7.36 (1118 hrs)
V	7	11/30/11	12/7/11	Iteration 7	17.54	8	0.74 (112 hrs)	6.93 (1053 hrs)
V	8	12/7/11	12/14/11	Iteration 8	17.54	8	0.05 (8 hrs)	7.29 (1108 hrs)
▽ 🕆	9	2/1/12	2/14/12	Iteration 1 Spring 2012 -Re-scope the project and prepare for development phase	17.26	8	5.79 (880 hrs)	26.21 (3984 hrs)
V	10	2/15/12	2/28/12	Iteration 2 Spring 2012 - Implement requirements in the first iteration.	17.26	8	1.74 (264 hrs)	15.54 (2362 hrs)
V	11	2/29/12	3/20/12	Iteration 3 Spring 2012 - Implement requirements in the first iteration (cont.)	17.26	8	0.78 (119 hrs)	4.40 (669 hrs)
V	12	3/21/12	4/3/12	Iteration 4 Spring 2012 - Implement all requirements (the first and second iterations), Prepare for CCD and Delivery	17.26	8	3.52 (535 hrs)	4.31 (656 hrs)
▽ 🕆	13	4/4/12	4/17/12	Iteration 5 Spring 2012 - Implement all requirements and change following feedback, Prepare for TRR and Delivery	17.26	8	5.17 (786 hrs)	6.11 (929 hrs)
V	14	4/25/12	5/1/12	Iteration 6 Spring 2012 - Transit the system	17.26	8	5.78 (879 hrs)	6.04 (918 hrs)

Project Progress Graph

New estimates based on COTIPMO Iteration#14 and survey results:

Scale Factors

Table 11: COCOMOII Scale Driver

Scale Driver	Value	Rationale
PREC	NOM	The product is somewhat similar to several that have been
		developed before
FLEX	LOW+75%	There is considerable flexibility on the requirements, schedules, and interfaces. However, most of the requirements are a must have.
RESL	HIGH	Risk resolution is done extensively throughout the project lifecycle. A good amount of effort is spent in reviewing architecture and mitigating risk.
TEAM	NOM+50%	The team members have a communication and meetings and the team uses many collaborative tools to synchronize among team members.
PMAT	NOM	The level of detail done for 577 roughly corresponds to CMM level 2. Nominal amount of project management and life cycle tasks are performed.

Iteration #14 Resource Details

Software Modules (Iteration #14):

Note: The *csv import/export for integration* is the module for integration with Columbia (legacy system used by LAUSD) and the scheduling COTS (FET)

 Table 12: Cost Drivers - Teacher Course Allocation Module

Cost Driver	Value	Rationale
RELY	LOW	Effect of software failure causes little inconvenience and losses can be recovered easily.
DATA	LOW	The data size is small. The database contains around maximum of 50 teachers.
DOCU	HIGH	The team produces and maintains documents. Comparing with project's complexity, there are excessive amount of documentation for life-cycle needs.
CPLX	LOW+25%	Simple UI designs; no direct hardware operations; simple queries for retrieval and update to database; no complex data structure designs
RUSE	LOW	Not developing for product line; independent standalone application; very little component reuse.
TIME	NOM	Execution time constraint is not very strict and is expected to be less than or equal to 50%
STOR	NOM	It is expected to be less than 50% use of available storage. Little computation resource is required by the system. A lot of available execution time and main storage makes this of less relevance.
PVOL	NOM	The system will use stable platforms (i.e. stable OS and DBMS)
ACAP	NOM+25%	The ability in analysis, design and requirements gathering is quite good. There is a considerable amount of cooperation and communication among team members
PCAP	NOM	Some team members have industrial experience in dealing and developing various COTS package, SDKs, and frameworks.
PCON	LOW	The project's annual personnel turnover is around 25%/year. Only two people will continue to the 577b
APEX	HIGH	All computer science students in the development team, so good amount of application experience of the development team. All team members have experiences about web application and related domain.
LTEX	NOM+50%	Most of the team members have experience with programming languages such as PHP, Java and databases like MySQL, GUI development etc. Six members out of eight are experienced in PHP.
PLEX	NOM	Team has nominal experience with development of database (MySQL) and GUIs.
TOOL	NOM	Basic lifecycle tools for development and report are used. Some software engineering aid tools like Bugzilla, COCOMO tool, etc. are also used
SITE	NOM	The team uses many collaborative tools, such as skype, google group, and wikispaces to cooperate among team members. Some of team members live different cities and time zones.
SCED	NOM	Schedule of the project is fixed i.e. 24 weeks. So, schedule stretchout is 100%.

EAF: Teacher Course Allocation Module

Table 13: Cost Drivers - Database Module

Cost Driver	Value	Rationale
RELY	NOM	Effect of software failure causes moderate inconvenience and losses can be recovered easily. Database should be reliable for the various operations to be carried out successfully.
DATA	NOM	The system needs to maintain database for 450 students. The database also has to maintain the course related data for students, teacher preferences, and constraints.
DOCU	HIGH	The team produces and maintains documents. Comparing with project's complexity, there are excessive amount of documentation for life-cycle needs.
CPLX	LOW+50%	Simple UI designs; no direct hardware operations; simple queries for retrieval and update to database; no complex data structure designs
RUSE	LOW + 50%	Not developing for product line; independent standalone application; very little component reuse.
TIME	NOM	Execution time constraint is not very strict and is expected to be less than or equal to 50%
STOR	NOM	It is expected to be less than 50% use of available storage. Little computation resource is required by the system. Lots of available execution time and main storage makes this of less relevance.
PVOL	NOM	The system will use stable platforms (i.e. stable OS and DBMS)
ACAP	NOM+25%	The ability in analysis, design and requirements gathering is quite good. There is a considerable amount of cooperation and communication among team members

PCAP	NOM	Some team members have industrial experience in dealing and developing various COTS package, SDKs, and frameworks.
PCON	LOW	The project's annual personnel turnover is around 25%/year. Only two people will continue to the 577b
APEX	HIGH	All computer science students in the development team, so good amount of application experience of the development team. All team members have experiences about web application and related domain.
LTEX	NOM + 75%	Most of the team members have experience with programming languages such as PHP, Java and databases like MySQL, GUI development etc.
PLEX	NOM+25%	Team has nominal experience with development of database (MySQL) and GUIs.
TOOL	NOM	Basic lifecycle tools for development and report are used. Some software engineering aid tools like Bugzilla, COCOMO tool, etc. are also used
SITE	NOM	The team uses many collaborative tools, such as skype, google group, and wikispaces to cooperate among team members. Some of team members live different cities and time zones.
SCED	NOM	Schedule of the project is fixed i.e. 24 weeks. So, schedule stretchout is 100%.

EAF: Database Module

 Table 14: Cost Drivers - Family Accountability Integration Module

Cost Driver	Value	Rationale	
RELY	NOM+50%	Effect of software failure causes moderate inconvenience and losses can be recovered easily. Reliability should be on the higher side because this module has to interface with the external system to get information from the external database. Failure can cause the system to be unusable.	
DATA	LOW+50%	The system needs to maintain database for 450 students. However, we need very specific information from the external system such as student ID, course ID etc.	
DOCU	HIGH	The team produces and maintains documents. Comparing with project's complexity, there are excessive amount of documentation for life-cycle needs.	
CPLX	NOM+25%	Complex DB queries and updates, simple callbacks, distributed processing	
RUSE	LOW+50%	Not developing for product line; independent standalone application; very little component reuse. But, might be re-used across project.	
TIME	NOM	Execution time constraint is not very strict and is expected to be less than or equal to 50%	
STOR	NOM	It is expected to be less than 50% use of available storage. Little computation resource is required by the system. Lots of available execution time and main storage makes this of less relevance.	
PVOL	NOM	The system will use stable platforms (i.e. stable OS and DBMS)	
ACAP	NOM+25%	The ability in analysis, design and requirements gathering is quite good. There is a considerable amount of cooperation and communication among team members	
PCAP	NOM	Some team members have industrial experience in dealing and developing various COTS package, SDKs, and frameworks.	
PCON	LOW	The project's annual personnel turnover is around 25%/year. Only two people will continue to the 577b	
APEX	NOM	All computer science students in the development team, so some amount of application experience of the development team. But, most of the members don't have experience with REST services.	
LTEX	NOM+75%	Most of the team members have experience with programming languages such as PHP, Java and databases like MySQL, GUI development etc. Six members out of eight are experienced in PHP.	
PLEX	NOM	Team has nominal experience with development of database (MySQL) and GUIs.	
TOOL	NOM	Basic lifecycle tools for development and report are used. Some software engineering aid tools like Bugzilla, COCOMO tool, etc. are also used	
SITE	NOM	The team uses many collaborative tools, such as skype, google group, and wikispaces to cooperate among team members. Some of team members live different cities and time zones.	
SCED	NOM	Schedule of the project is fixed i.e. 24 weeks. So, schedule stretchout is 100%.	

EAF: Family Accountability Integration Module

Table 15: Cost Drivers – csv import/export for integration

Cost Driver	Value	Rationale
RELY	LOW+25%	Effect of software failure causes little inconvenience and losses can be recovered easily.
DATA	LOW+50%	It uses data related to course, teacher preferences, constraints, student courses, rooms etc.
DOCU	HIGH	The team produces and maintains documents. Comparing with project's complexity, there are excessive amount of documentation for life-cycle needs.
CPLX	NOM	Simple UI designs; no direct hardware operations; simple queries for retrieval and update to database; no complex data structure designs
RUSE	LOW	Not developing for product line; independent standalone application; very little component reuse.
TIME	NOM	Execution time constraint is not very strict and is expected to be less than or equal to 50%
STOR	NOM	It is expected to be less than 50% use of available storage. Little computation resource is required by the system. Lots of available execution time and main storage makes this of less relevance.
PVOL	NOM	The system will use stable platforms (i.e. stable OS and DBMS)
ACAP	NOM+25%	The ability in analysis, design and requirements gathering is quite good. There is a considerable amount of cooperation and communication among team members

PCAP	NOM	Some team members have industrial experience in dealing and developing various COTS package, SDKs, and frameworks.
PCON	LOW	The project's annual personnel turnover is around 25%/year. Only two people will continue to the 577b
APEX	HIGH	All computer science students in the development team, so good amount of application experience of the development team. All team members have experiences about web application and related domain.
LTEX	NOM+50%	Most of the team members have experience with programming languages such as PHP, Java, Perl and databases like MySQL, GUI development etc. Six members out of eight are experienced in PHP.
PLEX	LOW+25%	Team has nominal experience with development of database (MySQL) and GUIs. Most developers don't have experience with COTS products.
TOOL	NOM	Basic lifecycle tools for development and report are used. Some software engineering aid tools like Bugzilla, COCOMO tool, etc. are also used
SITE	NOM	The team uses many collaborative tools, such as skype, google group, and wikispaces to cooperate among team members. Some of team members live different cities and time zones.
SCED	NOM	Schedule of the project is fixed i.e. 24 weeks. So, schedule stretchout is 100%.

EAF: csv import/export for integration

 Table 16: Cost Drivers - Student Progress Tracking

Cost Driver	Value	Rationale
RELY	LOW+25%	Effect of software failure causes little inconvenience and losses can be recovered easily.
DATA	LOW+50%	The system needs to maintain database for 450 students. The database also has to maintain the course related data for students and their grades.
DOCU	HIGH	The team produces and maintains documents. Comparing with project's complexity, there are excessive amount of documentation for life-cycle needs.
CPLX	LOW+25%	Simple UI designs; no direct hardware operations; simple queries for retrieval and update to database; no complex data structure designs
RUSE	LOW+25%	Not developing for product line; independent standalone application; very little component reuse.
TIME	NOM	Execution time constraint is not very strict and is expected to be less than or equal to 50%
STOR	NOM	It is expected to be less than 50% use of available storage. Little computation resource is required by the system. Lots of available execution time and main storage makes this of less relevance.
PVOL	NOM	The system will use stable platforms (i.e. stable OS and DBMS)
ACAP	NOM+25%	The ability in analysis, design and requirements gathering is quite high. The efficiency and throughput of the team members, level of cooperation and communication is nominal.
PCAP	NOM	Some team members have industrial experience in dealing and developing various COTS package, SDKs, and frameworks.
PCON	LOW	The project's annual personnel turnover is around 25%/year. Only two people will continue to the 577b
APEX	HIGH	All computer science students in the development team, so good amount of application experience of the development team. All team members have experiences about web application and related domain.
LTEX	NOM+50%	Most of the team members have experience with programming languages such as PHP Java and databases like MySQL, GUI development etc. Six members out of eight are experienced in PHP.
PLEX	NOM	Team has nominal experience with development of database (MySQL) and GUIs.
TOOL	NOM	Basic lifecycle tools for development and report are used. Some software engineering aid tools like Bugzilla, COCOMO tool, etc. are also used
SITE	NOM	The team uses many collaborative tools, such as skype, google group, and wikispaces to cooperate among team members. Some of team members live different cities and time zones.
SCED	NOM	Schedule of the project is fixed i.e. 24 weeks. So, schedule stretchout is 100%.

EAF: Student Progress Tracking

Table 17: Cost Drivers - Student Course Allocation module

Cost Driver	Value	Rationale
RELY	LOW+25%	Effect of software failure causes little inconvenience and losses can be recovered easily.
DATA	LOW+50%	The data size is small. The database contains around maximum of 50 teachers and course details.
DOCU	HIGH	The team produces and maintains documents. Comparing with project's complexity, there are excessive amount of documentation for life-cycle needs.
CPLX	LOW+50%	Simple UI designs; no direct hardware operations; simple queries for retrieval and update to database; no complex data structure designs
RUSE	LOW+25%	Not developing for product line; independent standalone application; very little component reuse.
TIME	NOM	Execution time constraint is not very strict and is expected to be less than or equal to 50%
STOR	NOM	It is expected to be less than 50% use of available storage. Little computation resource is required by the system. Lots of available execution time and main storage makes this of less relevance.
PVOL	NOM	The system will use stable platforms (i.e. stable OS and DBMS)
ACAP	NOM+25%	The ability in analysis, design and requirements gathering is quite high. The efficiency and throughput of the team members, level of cooperation and communication is nominal.

PCAP	NOM	Some team members have industrial experience in dealing and developing various COTS package, SDKs, and frameworks.
PCON	LOW	The project's annual personnel turnover is around 25%/year. Only two people will continue to the 577b
APEX	HIGH	All computer science students in the development team, so good amount of application experience of the development team. All team members have experiences about web application and related domain.
LTEX	NOM+50%	Most of the team members have experience with programming languages such as PHP, Java and databases like MySQL, GUI development etc. Six members out of eight are experienced in PHP.
PLEX	NOM	Team has nominal experience with development of database (MySQL) and GUIs.
TOOL	NOM	Basic lifecycle tools for development and report are used. Some software engineering aid tools like Bugzilla, COCOMO tool, etc. are also used
SITE	NOM	The team uses many collaborative tools, such as skype, google group, and wikispaces to cooperate among team members. Some of team members live different cities and time zones.
SCED	NOM	Schedule of the project is fixed i.e. 24 weeks. So, schedule stretchout is 100%.

EAF: Student Course Allocation module

 Table 18: Cost Drivers - Head Scheduler Data entry module

Cost Driver	Value	Rationale
RELY	LOW+25%	Effect of software failure causes little inconvenience and losses can be recovered easily.
DATA	LOW+50%	The database contains teacher, student, and course information. This module is only used for data entry and not for retrieval of data.
DOCU	HIGH	The team produces and maintains documents. Comparing with project's complexity, there are excessive amount of documentation for life-cycle needs.
CPLX	LOW+50%	Simple UI designs; no direct hardware operations; simple queries for retrieval and update to database; no complex data structure designs
RUSE	LOW	Not developing for product line; independent standalone application; very little component reuse.
TIME	NOM	Execution time constraint is not very strict and is expected to be less than or equal to 50%
STOR	NOM	It is expected to be less than 50% use of available storage. Little computation resource is required by the system. Lots of available execution time and main storage makes this of less relevance.
PVOL	NOM	The system will use stable platforms (i.e. stable OS and DBMS)
ACAP	NOM+25%	The ability in analysis, design and requirements gathering is quite high. The efficiency and throughput of the team members, level of cooperation and communication is nominal.
PCAP	NOM	Some team members have industrial experience in dealing and developing various COTS package, SDKs, and frameworks.
PCON	LOW	The project's annual personnel turnover is around 25%/year. Only two people will continue to the 577b
APEX	HIGH	All computer science students in the development team, so good amount of application experience of the development team. All team members have experiences about web application and related domain.
LTEX	NOM+50%	Most of the team members have experience with programming languages such as PHP, Java and databases like MySQL, GUI development etc. Six members out of eight are experienced in PHP.
PLEX	NOM	Team has nominal experience with development of database (MySQL) and GUIs.
TOOL	NOM	Basic lifecycle tools for development and report are used. Some software engineering aid tools like Bugzilla, COCOMO tool, etc. are also used
SITE	NOM	The team uses many collaborative tools, such as skype, google group, and wikispaces to cooperate among team members. Some of team members live different cities and time zones.
SCED	NOM	Schedule of the project is fixed i.e. 24 weeks. So, schedule stretchout is 100%.

EAF: Head Scheduler Data entry module

Table 19: Cost Drivers - Student Course Preference module

Cost Driver	Value	Rationale
RELY	LOW+25%	Effect of software failure causes little inconvenience and losses can be recovered easily.
DATA	LOW+50%	The database contains 450 students and course details.
DOCU	HIGH	The team produces and maintains documents. Comparing with project's complexity, there are excessive amount of documentation for life-cycle needs.
CPLX	LOW+50%	Simple UI designs; no direct hardware operations; simple queries for retrieval and update to database; no complex data structure designs
RUSE	LOW+25%	Not developing for product line; independent standalone application; very little component reuse.
TIME	NOM	Execution time constraint is not very strict and is expected to be less than or equal to 50%
STOR	NOM	It is expected to be less than 50% use of available storage. Little computation resource is required by the system. Lots of available execution time and main storage makes this of less relevance.
PVOL	NOM	The system will use stable platforms (i.e. stable OS and DBMS)
ACAP	NOM+25%	The ability in analysis, design and requirements gathering is quite high. The efficiency and throughput of the team members, level of cooperation and communication is nominal.

PCAP	NOM	Some team members have industrial experience in dealing and developing various COTS package, SDKs, and frameworks.
PCON	LOW	The project's annual personnel turnover is around 25%/year. Only two people will continue to the 577b
APEX	HIGH	All computer science students in the development team, so good amount of application experience of the development team. All team members have experiences about web application and related domain.
LTEX	NOM+50%	Most of the team members have experience with programming languages such as PHP Java and databases like MySQL, GUI development etc. Six members out of eight are experienced in PHP.
PLEX	NOM	Team has nominal experience with development of database (MySQL) and GUIs.
TOOL	NOM	Basic lifecycle tools for development and report are used. Some software engineering aid tools like Bugzilla, COCOMO tool, etc. are also used
SITE	NOM	The team uses many collaborative tools, such as skype, google group, and wikispaces to cooperate among team members. Some of team members live different cities and time zones.
SCED	NOM	Schedule of the project is fixed i.e. 24 weeks. So, schedule stretchout is 100%.

EAF: Student Course Preference module

6. Iteration Plan

6.1 Plan

The development of the project is divided into two iterations, and the main milestone is the Core Capability Drive-through (CCD). The capabilities which have higher priorities and risks will be implemented in the first iteration, and the less priority capabilities will be implemented in the second iteration, which occurs after the CCD.

The development phase has a transition iteration which comes after the construction iteration. It begins at the end of the construction iteration two and continues until the end of the semester. The transition iteration accounts for the transition of the system and training if the users and clients.

A detailed plan for the construction and transition iterations of the development phase has been documented in the project plan. Major milestones and products for each iteration can be found in the life cycle plan.

Estimated dates for each iteration are shown below:

- Construction iteration 1: 02/10/2012 03/23/2012
- Construction iteration 2: 03/24/2012 04/09/2012
- Transition iteration: 04/10/2012- 04/27/2012

6.1.1 Capabilities to be implemented

Iteration 1:

The capabilities to be implemented in the first iteration will be the capability requirements that have a high priority, with low ease of implementation or are required for development of other capability requirements. Also, since the system needs to be integrated with the system being developed by team 4, the capabilities which are required for integration of the two systems are also implemented during the first iteration.

Table 20: Capabilities to	be implemented in t	the iteration 1
---------------------------	---------------------	-----------------

Requirement	Description	Priority
CR- 1: Online application	Students should be able to fill in their choices for various	M (Must have)
for students subject	subjects.	
registration		
CR-2: locking certain	The administration should be able to lock certain classes	M (Must have)
classes.	to certain time frames	
CR-3: Student course	The counselor can review all the courses requested by	M (Must have)
requests are	the student and can edit or approve or disapprove the	
viewed/approved/rejected	student request	
by counselor		

CR-4: Schedule	The system helps the administration in scheduling a time	M (Must have)
generation	table for the school	
CR-7: Map teachers to	Teachers are assigned a particular course section by the	M (Must have)
course sections	scheduler	
CR-8: View alternate	The administrator can view alternate schedules	M (Must have)
schedules		
CR-10: LAUSD	The various LAUSD constraints should be entered into	M (Must have)
constraints	the database through a simple UI	
CR-11: Detailed	Database to contain student id, course details and	M (Must have)
Database	teachers id	
LOS-1: System usability	The system will provide an intuitive User interface in	M (Must have)
	order to provide ease of usability	
SR-1: Use given	It is advised to make the user interface according to the	M (Must have)
templates by LEMA Pilot	given templates and it should be user friendly	
School		
SR-2: Integration with	The system should interact with the system being	M (Must have)
family accountability	developed by team 04 and get teacher information,	
system	student information, and authenticated token	

Iteration 2:

The capabilities to be implemented in the second iterations are all the remaining capability requirements.

Table 21: Capabilities to be implemented in the iteration 2

Requirement	Description	Priority
CR-4: Schedule	The system helps the administration in scheduling a time	M (Must have)
generation	table for the school	
	Note: this requirement has been developed in the first	
	iteration but it cannot satisfy the requirement, so this	
	requirement needs to be redeveloped and tested.	
CR-10: LAUSD	The various LAUSD constraints should be entered into	M (Must have)
constraints	the database through a simple UI	
	Note: this requirement has been developed in the first	
	iteration but it cannot satisfy the requirement, so this	
	requirement needs to be redeveloped and tested.	
SR-3: Authentication to	The user logs in from the interface from team 04 and in	M (Must have)
the system	an authenticated session from where it is redirected to	
	our system. Thus we check the cookie to confirm that	
	they were in an authenticated session. The cookie would	
	have user type, user id and authentication key.	
	Note: this must have requirement cannot be delivered at	
	the first iteration because it need to be integrated with	

	team 4, but team 4 cannot finish related functionality by CCD	
LOS-1: System usability	The system will provide an intuitive User interface in order to provide ease of usability	M (Must have)
CR- 5 : Track the progress of a particular student	Track student progress from A-G requirements for mapping	S (Should have)
CR- 6: Student Progress Enhanced	Ability of students to see how many more credits they need to complete a particular grade	S (Should have)
CR-9: GPA for various universities	Displays how much GPA is required for CSU, U of California and other universities	S (Should have)
CR-12: Level of Normalization	The introduction of a school code which will enable the scheduling system to be ubiquitous	W (Want to have)

6.1.2 Capabilities to be tested

All the capability requirements that are implemented need to be tested. The list is the same as given in tables above respective to the iterations for which they have been mentioned.

6.1.3 Capabilities not to be tested

There is no capability that does not need to be tested. All capabilities require testing and modules need to be integrated and tested as well.

6.1.4 CCD Preparation Plans

6.1.4.1 CCD Stakeholders

LEMA Pilot School Integrated Scheduling System provides four types of users which are scheduler, counselor, teacher, and student. The client and maintainer are included as CCD stakeholders.

All stakeholders who will be involved in Core Capability Drive-through are summarized as followed.

Table 22: CCD Stakeholders

Stakeholder name	Role	
Dr. Supannika Koolmanojwong	• Instructor	
Pongtip Aroonvatanaporn	• TA	
Roberta Mailman	• Client	
	• Scheduler	
	 Teacher 	
Beth Kennedy	• Client	

	Maintainer
	 Counselor
	• Student
Thammanoon Kawinfruangfukul	Developer
Eunyoung Hwang	Developer
David Wiggins	 Developer
Mark Villanueva	Developer
	• Tester
Louis Demaria	• IIV&V
	• Tester
Kushalpreet Kaur	Developer
Sangik Park	 Developer

6.1.4.2 CCD usage scenarios

The usage scenarios of each capability in the first iteration are shown below.

Table 23: CCD usage scenarios

Requirement	Description			
CR- 1: Online application for	1. The student goes to student course registration page			
students subject registration	2. The student selects courses which are shown following			
	student grade level.			
	3. The student clicks at confirm button			
CR-2: locking certain classes.	After the scheduler selects courses that will be open in the current			
	semester, the scheduler can click at lock button to set available			
	courses and allow student to register.			
CR-3: Student course requests	After the student selects and registers courses, the counselor can			
are viewed/approved/rejected	review all the student registered courses.			
by counselor	1. The counselor goes to summary page			
	2. The counselor clicks a link on student row that the counselor			
	would like to review.			
	3. The counselor can change selected courses and approval			
	status.			
	4. The counselor clicks at confirm button			
CR-4: Schedule generation	After the scheduler import activity list csv file to FET, the scheduler			
	can add constrains and generate the schedule.			
CR-7: Map teachers to course	1. The scheduler goes to teacher assignment page in schedule			
sections	management			
	2. The scheduler selects the current semester			
	3. The scheduler assigns the teacher to the course.			
	4. The scheduler can click save button to continue finishing			
	teacher assignment later or can click lock button to enable			
	export activity to csv file in Import/Export page			
	5.			

CR-8: View alternate schedules	After scheduler generates the schedule with FET, FET provides	
	website to see possible schedules.	
CR-10: LAUSD constraints	Overall student grade level courses:	
	1. The scheduler goes to constrains management page to set	
	overall minimum and maximum number of students for	
	student grade level courses	
	2. The scheduler clicks save button	
	Specific courses:	
	1. The scheduler goes to course profile page	
	2. The scheduler clicks a link under course name to go to edit	
	course profile page	
	3. The scheduler sets minimum and maximum number of	
	students	
	4. The scheduler clicks save button	
CR-11: Detailed Database	The scheduler inputs all data using the phpmyadmin UI into the	
	database.	
LOS-1: System usability	The user uses the system to justify the system usability	
SR-1: Use given templates by	The user uses the system to review that user interface follow LEMA	
LEMA Pilot School	Pilot School Templates.	
SR-2: Integration with family	The user is able to see information exist in family accountability	
accountability system	system	

6.1.4.3 CCD preparation plans

- 1. Implement and test all capabilities in the first iteration, using both informal unit testing and formal testing with test plan by testers.
- 2. Prepare sample data on the development server for using in the CCD session. The data is provided by the clients and include course information and user id.
- 3. Prepare user manual and feedback form for all participants
- 4. In the CCD session, the team introduces and explains the capabilities, test data, and provide all participants with user manual which is on how to use the system, and feedback form which will focus mainly on the design and usability of the system.
- 5. While participants are using the system, the team observes and records the result and behavior of the participant.

Version Date: 04/27/12

6. Gather the feedback form

6.1.4.4 CCD preparation site and dry run

Before performing the CCD session, the team will setup the system with sample data to the setting environment by connecting the server and client devices via Wireless connection.

In CCD session, the team will present and demonstrate all capabilities in the first iteration of the project and then give the user manual to a participant. Participants test the proposed system following the user manual.

After CCD session, the participants give feedback by filling in the feedback form.

6.1.4.5 Feedback form

Feedback form should include at least entities shown below

Table 24: CCD feedback form layout

Content	Description	
No	Document number	
Time	Document time	
Capability	Which capability will be tested	
Description	Detail and guideline for testing	
Correctness	Correctness of module, for example, the functionality perform and response	
	correctly based on input data in scale of 0-10	
Performance	Performance of module in scale of 0-10	
Satisfaction	Satisfaction of module in scale of 0-10	
Overall	The overall result of testing in scale of 0-10	
Comment	Suggestion or comment added	
Signature	Signature of the participant	
Date	Date	

Note 0 for the lowest score and 10 for the highest score

6.1.4.6 CCD preparation risk management plans

Table 25: CCD preparation risk management plans

Risk	Risk description	Risk management plan	
Schedule	Some team members have many	1. Prioritize the capabilities according to	
conflict	assignments due before CCD session, so	business value, detail of implementation,	
	team members may not have enough	and risks.	
	time to develop and test some	2. Implement and test the higher	
	capabilities lead to be not able to finish	prioritized requirements. If there is not	
all capabilities in the first iteration		enough time to finish all capabilities, the	
		rest of capabilities will be implemented	
		in next iteration.	

Requirement	The team and client may misunderstand	The team develops user interface mockup	
mismatch	the concept of the requirements, so	to show and get feedback from the client.	
	some user interfaces may not easy to use	Moreover, the team encourages the	
	or some capabilities cannot perform	clients to experience some part of	
	properly	development before CCD session.	

6.2 Iteration Assessment

This part of the document records the assessment of implemented capability at the end of each iteration. This version records the end of the first iteration and assessment activity at Core Capability Drive-through (CCD) which allows the client and end-user to have a hand-on experience on the proposed system.

6.2.1 Capabilities Implemented, Tested, and Results

Most of capabilities mentioned in the first iteration plan have been implemented and tested according to test cases shown in Acceptance Test Plan and Cases document; however, CR-4 and CR-10 have been pushed to the second iteration due to requirement changes and less support from the clients.

Table 26: Capabilities implemented, tested, and results in the first iteration

ID	Capability	Test Case	Test Results	If fail, why?
CR- 1	Online application for students	TC-01-01,	Failed	This requirement cannot
	subject registration	TC-01-02,		pass some test cases
		TC-01-03,		because the authentication
		TC-01-04,		does not implement
		TC-02-01,		(second iteration) and
		TC-02-02		client needs to change the
				layout and some
				functionalities in this
				requirement
CR-2	Locking certain classes.	TC-03-01,	Failed	The implementation of
		TC-03-02,		this requirements need to
		TC-03-04,		be redeveloped and
		TC-03-05,		retested due to the
		TC-03-08,		completeness and
		TC-03-09		correctness of the
				functionality and response
CR-3	Student course requests are	TC-04-01,	Passed	,
	viewed/approved/rejected by	TC-04-02,		
	counselor	TC-04-02a		

CR-7	Map teachers to course sections	TC-03-01,	Failed	The functionality does not
	_	TC-03-03,		response correctly when
		TC-03-03a,		the user would like to
		TC-05-01		undo assign the teachers
CR-8	View alternate schedules	TC-08-01	Failed	The FET can provide
				alternated schedule, but
				the schedule generation
				need to be redeveloped
				and retested.
CR-11	Detailed Database	TC-06-01	Passed	
LOS-1	System usability	TC-07-01	Passed	
SR-1	Use given templates by LEMA	N/A	Passed	
	Pilot School			
SR-2	Integration with family	TC-02-01,	Failed	There are some
	accountability system	TC-02-02,		information needed from
		TC-02-03,		team 4, such as student
		TC-03-01,		performance, so the team
		TC-03-03,		cannot meet this
		TC-03-03a,		requirement.
		TC-03-04,		
		TC-03-08,		
		TC-04-01,		
		TC-04-02,		
		TC-04-02a,		
		TC-04-03,		
		TC-05-01		

Some of capabilities mentioned in the second iteration plan have been implemented and tested according to test cases shown in Acceptance Test Plan and Cases document; however, CR-5, 6, 9 and CR-12 have become evolutionary requirements because team 4 cannot provide relative features as an infrastructure. Moreover, SR-3 cannot finish due to dependencies from team 4. The team collaborates with team 4 to deliver the system.

Table 27: Capabilities implemented, tested, and results in the second iteration

ID	Capability	Test Case	Test Results	If fail, why?
CR- 4	Schedule generation	TC-02-04,	Passed	
		TC-03-06,		
		TC-03-07a,		
		TC-03-07b,		
		TC-05-01,		
		TC-03-08a		
CR-10	LAUSD constraints	TC-03-10,	Passed	
		TC-03-10a		
SR-3	Authentication to the system	TC-01-01,	Failed	This requirement cannot
		TC-01-02,		pass because team 4

		TC-01-03, TC-01-04		cannot provide the support functionalities on time.
LOS-1	System usability	TC-07-01	Passed	

6.2.2 Core Capabilities Drive-Through Results

The core capabilities drive-through results are captured from both the client and developers during the CCD session. There are some capabilities that the client could not capture during the CCD session because of running out time during the CCD, so the team gathered all comments recorded from the team members in the CCD session and then combined with the client's comments as the CCD results.

Most of capabilities provided in the CCD are met the clients' expectation and business domain. Some capabilities, such as "Online application for students subject registration" are needed to update to reflect the clients' needs and be more intuitive when they are displayed in the website. Each page particularly for students should have instructions telling the user what to do. The detail feedback is shown in the table 27.

Table 28: Core capabilities drive-through results

Requirement	User experience	Result
CR- 1: Online application	Driven-through	Positive feedbacks:
for students subject		- The user interface is easy to use
registration		
		Improvements needed:
		- The students should be able to see the default
		grade level and advanced courses at the same
		page
		- The layout should be updated to reflect the
		domain business
		- The user interface should display the number of
		courses that students can take and course name
		with A – G requirement
		- The user interface should display default
		courses with selected check box.
		Changes-to-be-considered:
		- In the user interface, is should have a
		mechanism to detect conflicts and errors, such
		as conflict courses.
CR-2: locking certain	Demonstrated	Positive feedbacks:
classes.		- The functionality works properly
		Improvements needed: N/A

		Changes-to-be-considered: - Exporting the activities and locking certain classes should work correspondingly
CR-3: Student course requests are viewed/approved/rejected by counselor	Driven-through	Positive feedbacks: - The user interface is easy to navigate - The client was satisfied with the performance and correctness of this capability
		Improvements needed: - An approval status should be approved or remain unapproved
		Changes-to-be-considered: - The user interface should be similar to the student subject registration when the counselor would like to change the selected courses
CR-7: Map teachers to course sections (this feedback was captured by the team)	Driven-through	Positive feedbacks: - The user interface is intuitive and easy to use Improvements needed: N/A
		Changes-to-be-considered: N/A
CR-8: View alternate schedules (this feedback was captured by the team)	Shown	Positive feedbacks: N/A Improvements needed: - It should integrate with the schedule generation requirement
		Changes-to-be-considered: N/A
CR-11: Detailed Database (this feedback was captured by the team)	Driven-through	Positive feedbacks: - The sample data helps the clients understand the system better
		Improvements needed: - The database schema need to be modified by adding isDefaultCourse field in course_detail table and removing denied approval status in approval_status table
		Changes-to-be-considered: - Reflect modified database schema in related pages
LOS-1: System usability	Driven-through	Positive feedbacks: - The system is easy to navigate and use

		Improvements needed:
		- Each page should have instructions telling the
		user what to do.
		Changes-to-be-considered:
		- The users in the system have different
		background and skills. Student's user interface
		should be the easiest and simplest to use.
SR-1: Use given	Driven-through	Positive feedbacks:
templates by LEMA Pilot		- The clients are familiar with the user interfaces
School		since the website includes LEMA Pilot School
(this feedback was		templates
captured by the team)		
		Improvements needed: N/A
		Changes-to-be-considered: N/A
SR-2: Integration with	Driven-through	Positive feedbacks:
family accountability		- The information from family accountability
system		system is displayed correctly
		Improvements needed:
		- The student performance should be displayed in
		the student performance should be displayed in the student progress tracking properly
		the student progress tracking property
		Changes-to-be-considered: N/A

According to the concern log provided by Ms. Beth Kennedy, all capabilities in the second iteration are important. As a result, the priority of each capability is still the same and needed to be done.

The team realized that there was some misunderstanding in the domain knowledge and it might lead to cause the problems in the future, so the team will identify all possible risks from the CCD session and create mitigation plan.

Table 29: CCD risk management plans

Risk	Risk description	Risk management plan
User interface	The team may misunderstand the	The team develops user interface mockup
mismatch	concept of the domain knowledge led to	to show and get feedback from the client.
	create the user interface which is not	-
	reflect clients' needs	
Schedule	After finishing the CCD session, there	The team asked the clients to reprioritize
shortfall	are many changes required in the system	capabilities left and focus on the higher
	and the project schedule is compressed,	priority capabilities.
	so it is possible that the team cannot	

	provide all the capabilities	
Low	The team members have many	The project manager plans ahead and
productivity	assignments and get many changes from	gives buffer time to finish team
	the CCD, so it is possible that the team	member's responsibilities
	productivity will be reduced.	_

6.3 Adherence to Plan

Most of capabilities mentioned in the first iteration plan are on the schedule. However, some capabilities need to be redeveloped and retested to meet the project requirements because some of capabilities were required to be updated following the client's feedback. Three capabilities in the first iteration were deferred to implement and test in the second iteration due to schedule conflicts and developmental dependency on team 4. The team put capabilities which were required redeveloping and retesting and capabilities which were deferred in the second iteration, so these capabilities will be developed and tested.

During developing the project in the first iteration, there were uncertainties occurred such as requirement changes and misunderstanding the concepts between the client and development team. To avoid mistakes, the team will do the prototypes helped all stakeholders understand and give feedback.

In second iteration, team spent time redeveloping and retesting some requirements of the first iteration, so it affected the plan and cause the team not to be able to follow the plan. Moreover, the team 4's collaboration and commitment played an important role in delivering some requirements. CR-5, 6, 9 and CR-12 became the evolutionary requirements because team 4 could not provide support functionalities. Moreover, SR-3 also depended on team 4. The team tried to mitigate risks by having a backup plan to implement by the team and increasing communication between teams.