Mini-test 2

Mardi le 10 octobre 1995; Durée: 14h40 à 15h20 Aucune documentation permise; aucune calculatrice permise

Problème 1 (1 point sur 5)

Complétez la table:

Signal	Transformée	Théorème
f(t)	$F(\omega)$	Transformée de Fourier
f(t- au)	$e^{-j\omega au}F(\omega)$	Déplacement en temps
?	$F(\omega - \omega_0)$	Déplacement en fréquence
tf(t)	$j\frac{d}{d\omega}F(\omega)$	Différentiation

Problème 2 (1 point sur 5)

$$f(t) = \begin{cases} 0 & t < 0 \\ \frac{1}{2} & t = 0 \\ e^{-\beta t} & t > 0 \end{cases} \Leftrightarrow F(\omega) = \frac{1}{\beta + j\omega}$$

Lesquels des énoncés suivants sont vrais? Aucun crédit partiel.

est la partie impaire de f(t)

c) L'aire sous la courbe f(t) est $\frac{1}{2\beta}$.

Problème 3 (3 points sur 5)

$$f_k(t) = \operatorname{sgn}(t) \cdot e^{-k|t|}$$

a) 2 points

Trouvez la transformée de Fourier de $f_k(t)$.

b) 1 point

Soit
$$f(t) = \lim_{k \to 0} f_k(t)$$

- Quelle est la fonction f(t)?
- Quelle est la transformée de Fourier de la fonction f(t)?

Commentaires à l'auteur: rusch@gel.ulaval.ca

Tous droits réservés, Leslie A. Rusch.

Mise à jour: 13-sep-96