# **AD172A Datasheet**

# Zhuhai Jieli Technology Co.,LTD

Version: 1.1

Date: 2023.09.28



### **AD172A Features**

### **CPU**

- 32bit DSP
- Maximum speed 160MHz
- Interrupts with 8 priority level

### Memory

Optional built-in flash memory

#### Clocks

- On-chip 16 MHz clock
- On-chip 200KHz lower-temperature-drift clock

#### **Audio APA**

- Support for driving 4 or 8 ohm speaker
- Mono Class-D Speaker Amplifier
  - 0.42W/8 Ω @3.7V
  - 0.17W/8 Ω @2.4V
  - 0.62W/4 Ω @3.7V
  - 0.25W/4 Ω @2.4V

### **Peripherals**

- Three multi-function 16-bit timers, support capture and PWM mode
- Two UART Controllers(UART0/1) supports DMA and Flow Control
- One IIC Master controller
- Two SPI Master / Slaver controller with DMA

SPI0 support 4bit, SPI1 support 2bit

- A0:8-channel 10-bit general purpose ADC A2/4:10-channel 10-bit general purpose ADC
- 4-channel Advance PWM controller
- 13 Individually programmable and multiplexed GPIO pins
- Digital peripheral crossbar
- Support Touch Key of pulse counter
- Up to 8 external interrupt / wake-up source (low power available,can be multiplexed to any I/O)
- Watchdog

#### PMU

- Less than 2uA soft off current
- VBAT range : 2.0V to 5.5V
- IOVDD range: 2.0V to 3.4V

### Packages

SOP16

### **Temperature**

- Operating temperature:  $-40^{\circ}$ C to  $+85^{\circ}$ C
- Storage temperature:  $-65^{\circ}$ C to  $+150^{\circ}$ C

### **Applications**

- Sound Toy
- Audio player
- Universal Microcontroller



# 1 Block Diagram



Figure 1-1 AD172A Block Diagram



### 2 Pin Definition

### 2.1 Pin Assignment



Figure 2-1 AD172A0 Package Diagram



Figure 2-2 AD172A2/4 Package Diagram



# 2.2 Pin Description

Table 2-1 AD172A Pin Description

|            |                  |       |      |                       | <u> </u>                                  |  |  |
|------------|------------------|-------|------|-----------------------|-------------------------------------------|--|--|
| PIN<br>NO. | Na               | ime   | Туре | Function              | Other Function                            |  |  |
|            | A0               | PD2   | I/O  | GPIO                  | SFCCS:SFC Chip Select;                    |  |  |
| 1          | 12/4             | D. 4  | 1/0  | CNIC                  | ADC4:ADC Input Channel 4;                 |  |  |
|            | A2/4   PA4   I/O |       | 1/O  | GPIO                  | PWMCK0;                                   |  |  |
|            | A0               | PD1   | I/O  | GPIO                  | SFCDO:SFC Data Out;                       |  |  |
|            | Au               | 1 1 1 | 1/0  | GI IO                 | ADC13:ADC Input Channel 13;               |  |  |
| 2          |                  |       |      |                       | ADC3:ADC Input Channel 3;                 |  |  |
|            | A2/4             | PA3   | I/O  | GPIO                  | CAP0:Timer0 Capture;                      |  |  |
|            |                  |       |      |                       | PWM0:Timer0 PWM Output;                   |  |  |
|            | A0               | PD0   | I/O  | GPIO                  | SFCCLK:SFC Clk;                           |  |  |
| 3          | A2/4             | PA2   | I/O  | GPIO                  | ADC2:ADC Input Channel 2;                 |  |  |
|            |                  |       |      |                       | TMR0:Timer0 Clock Input;                  |  |  |
| 4          | PA1              |       | I/O  | GPIO                  | ADC1:ADC Input Channel 1;                 |  |  |
|            |                  |       |      |                       | LVD:Low Voltage Detect;                   |  |  |
| 5          | PA0              |       | I/O  | GPIO<br>(pull up)     | Long press reset;                         |  |  |
|            |                  |       |      |                       | ADC0:ADC Input Channel 0;                 |  |  |
| 6          | IOVD:            |       |      | Power supply for GPIO | Built-in linear voltage regulator output; |  |  |
| 7          | VBAT             |       | PI   | 1                     | Power supply input;                       |  |  |
| 8          | VSS              |       | G    |                       | System ground;                            |  |  |
|            | APAP             |       | o    |                       | Class-D APA Positive Output;              |  |  |
| 9          | 711711           |       |      |                       | Class-D/H/1 Oslave Output,                |  |  |
|            | PB3              | Jan.  | I/O  | 5V tolerant IO        |                                           |  |  |
| 10         | APAN             |       | 0    |                       | Class-D APA Negative Output;              |  |  |
| 10         | PB0              |       | I/O  | 5V tolerant IO        |                                           |  |  |
| 11         | PB1              |       | I/O  | 5V tolerant IO        | Serial port code upgrade pin;             |  |  |
| 12         | PA12             |       | I/O  | GPIO                  | ADC12:ADC Input Channel 12;               |  |  |
| 13         | PA11             |       | I/O  | GPIO                  | ADC11:ADC Input Channel 11;               |  |  |
| 14         | PA10             |       | I/O  | GPIO                  | ADC10:ADC Input Channel 10;               |  |  |
| 15         | PA9              |       | I/O  | GPIO<br>(pull down)   | ADC9:ADC Input Channel 9;                 |  |  |
| 16         | PA8              |       | I/O  | GPIO<br>(pull down)   | ADC8:ADC Input Channel 8;                 |  |  |

| Pin Type | Description   | Pin Type | Description     |
|----------|---------------|----------|-----------------|
| P        | Power         | I/O      | Input or Output |
| PI       | Power Input   | I        | Input           |
| PO       | Power Output  | 0        | Output          |
| AO       | Analog Output | G        | Ground          |



| CROSSBAR |          |         |          |          |         |         |  |  |
|----------|----------|---------|----------|----------|---------|---------|--|--|
| SPI0     | SPI1     | IIC     | UART0    | UART1    | PWMCH0  | PWMCH1  |  |  |
| SPI0_CLK | SPI1_CLK | IIC_CLK | UART0_TX | UART1_TX | PWMCH0L | PWMCH1L |  |  |
| SPI0_DI  | SPI1_DI  | IIC_DAT | UART0_RX | UART1_RX | PWMCH0H | PWMCH1H |  |  |
| SP0_D0   | SPI1_D0  |         |          |          |         |         |  |  |
| SP0_DAT2 |          |         |          |          |         |         |  |  |
| SP0_DAT3 |          |         |          |          |         |         |  |  |

|         | Input Channel x6 |           | Output Channel x8 |          |         |  |
|---------|------------------|-----------|-------------------|----------|---------|--|
| WAKEUP  | Timer1           | IRFLT     | PWM1              | CLK_OUT0 | APA_DOP |  |
| PWMFP0  | Timer2           | TOUCH_CAP | PWM2              | CLK_OUT1 | APA_DON |  |
| PWMFP1  | CAP1             | UART1_CTS | UART1_RTS         | CLK_OUT2 |         |  |
| EXT_CLK | CAP2             |           |                   |          | 4       |  |



### 3 Electrical Characteristics

# 3.1 Absolute Maximum Ratings

Table 3-1

| Symbol             | Parameter                                    | Min  | Max       | Unit |
|--------------------|----------------------------------------------|------|-----------|------|
| Topt               | Operating temperature                        | -40  | +85       | °C   |
| Tstg               | Storage temperature                          | -65  | +150      | °C   |
| VBAT               | Supply Voltage                               | -0.3 | 6         | V    |
| V <sub>IOVDD</sub> | Voltage applied at IOVDD                     | -0.3 | 3.6       | V    |
| $ m V_{GPIO}$      | Voltage applied to GPIO                      | -0.3 | IOVDD+0.3 | V    |
| $V_{ m HVIO}$      | Voltage applied to High Voltage Resistant IO | -0.3 | +5.5      | V    |

Note: The chip can be damaged by any stress in excess of the absolute maximum ratings listed below

### 3.2 ESD Protectio

**Table 3-2** 

| Parameter           | Тур.       | Test pin       | Reference standard     |
|---------------------|------------|----------------|------------------------|
| Human Body Mode     | ±4KV       | All pins       | JEDEC EIA/JESD22-A114  |
| Machine Mode        | ±200V      | All pins       | JEDEC EIA/JESD22-A115  |
| Charge Device Model | ±2KV       | All pins       | JEDEC EIA/JESD22-C101F |
| I otolo ve          | ±200mA     | All GPIO pins  | JEDEC STANDARD NO.78E  |
| Latch up            | 1.5xVopmax | All power pins | JEDEC STANDARD NO./8E  |

Note: 1.5 xVopmax = 1.5 times maximum operating voltage.

### 3.3 PMU Characteristics

Table 3-3

| Symbol    | Parameter       | Min | Тур | Max | Unit | Test Conditions                  |  |
|-----------|-----------------|-----|-----|-----|------|----------------------------------|--|
| VBAT      | Voltage Input   | 2.0 | 3.7 | 5.5 | V    | _                                |  |
| IOVDD     | Voltage output  | 2.0 | 3.0 | 3.4 | V    | VBAT = 4.2V, 10mA loading        |  |
| עטייטו    | Loading current | -   | -   | 100 | mA   | IOVDD= $3.3$ V@VBAT $\geq 3.6$ V |  |
| $V_{LVD}$ | Voltage input   | 1.8 | 2.5 | 2.5 | V    | Low-Voltage Detection of IOVDD   |  |



# 3.4 IO Input/Output Electrical Logical Characteristics

Table 3-4

| GPIO input cl                      | haracteristics                           |             |                                       |                                 |      |                 |
|------------------------------------|------------------------------------------|-------------|---------------------------------------|---------------------------------|------|-----------------|
| Symbol                             | Parameter                                | Min         | Тур                                   | Max                             | Unit | Test Conditions |
| $V_{\rm IL}$                       | Low-Level Input<br>Voltage               | -0.3        | ı                                     | 0.3* IOVDD                      | V    | IOVDD = 3.0V    |
| $V_{\mathrm{IH}}$                  | High-Level Input<br>Voltage              | 0.7* IOVDD  | _                                     | IOVDD+0.3                       | V    | IOVDD = 3.0V    |
| High Voltage l                     | Resistant IO input chara                 | acteristics |                                       |                                 |      |                 |
| Symbol                             | Parameter                                | Min         | Тур                                   | Max                             | Unit | Test Conditions |
| V <sub>IL</sub>                    | Low-Level Input<br>Voltage               | -0.3        | _                                     | 0.3* IOVDD                      | V    | IOVDD = 3.0V    |
| $V_{\mathrm{IH}}$                  | High-Level Input<br>Voltage              | 0.7* IOVDD  | -                                     | +5V                             | V    | IOVDD = 3.0V    |
| Resistant IO o                     | output characteristics                   |             |                                       |                                 |      |                 |
| Symbol                             | Paramete                                 | er          | GPIO                                  | Тур                             | Unit | Test Conditions |
| $ m V_{OL}$                        | 0.1*IOVDD Driv                           | ve current  | PA0~PA4<br>PA8~PA12<br>PB0,PB1        | HD=1:-7<br>HD=2:-22<br>HD=3:-27 | mA   | IOVDD = 3.0V    |
|                                    | 0.443393399.9.1                          |             | PB3                                   | -7                              |      |                 |
| 0.1*HPVDD I<br>APA IO total curren |                                          |             | APAN<br>APAP                          | -400                            |      | VBAT=3.7V       |
| $ m V_{OH}$                        | 0.9*IOVDD Drive current                  |             | PA0~PA4<br>PA8~PA12<br>PB0,PB1<br>PB3 | HD=1:7<br>HD=2:24<br>HD=3:56    | mA   | IOVDD = 3.0V    |
|                                    | 0.9*HPVDD Driv<br>APA IO total current l |             | APAN<br>APAP                          | 400                             |      | VBAT=3.7V       |

# 3.5 Internal Resistor Characteristics

**Table 3-5** 

| Port                            | Internal<br>Pull-Up<br>Resistor | Internal<br>Pull-Down<br>Resistor | Comment                                                                                                                                   |
|---------------------------------|---------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| PA0~PA4,PA8~PA12<br>PB0,PB1,PB3 |                                 | 200K                              | <ol> <li>PA0 default pull up</li> <li>PA8~PA9 default pull down</li> <li>Internal pull-up/pull-down resistance   accuracy ±20%</li> </ol> |



### 3.6 Audio APA Characteristics

Table 3-6

| Parameter   MODE   Min   Typ   Max   Unit   Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P A MODE M: T A C M: |                |               |      |              |      |                     |                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|---------------|------|--------------|------|---------------------|-----------------|--|
| Diff (N to P )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | MODE           |               |      |              |      |                     |                 |  |
| Diff (N to P )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency Response   |                | 20            | _    | 20K          | Hz   | R <sub>L</sub> =10K | ,VBAT=3.7V      |  |
| Dutput Swing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                | _             | 1.57 | _            | Vrms | $R_L=4\Omega$       |                 |  |
| Output Swing         Single-ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | Diff (N to P)  | _             | 1.83 | _            | Vrms | $R_L=8\Omega$       | f=1kHz/0dB      |  |
| Diff (N to P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                | _             | 2.22 | _            | Vrms | R <sub>L</sub> =10K | VBAT=3.7V       |  |
| Diff (N to P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Output Swing         | Single-ended   | _             | 1.11 | _            | Vrms | R <sub>L</sub> =10K |                 |  |
| $Single-ended = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o mp m o mmg         |                | _             | 0.99 | _            | Vrms | $R_L=4\Omega$       |                 |  |
| Single-ended   0.72   Vrms   R₁=10K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Diff (N to P)  | _             |      |              | Vrms | $R_L=8\Omega$       |                 |  |
| Diff (N to P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                | _             | 1.44 |              | Vrms | R <sub>L</sub> =10K | VBAT=2.4V       |  |
| Output power         Diff (N to P)         —         0.42         W         R <sub>L</sub> =8Ω         VBAT=3.7V           —         0.25         —         W         R <sub>L</sub> =4Ω         f=1kHz/0dB           —         0.17         —         W         R <sub>L</sub> =8Ω         VBAT=2.4V           THD+N         Diff (N to P)         —         -35         —         dB         R <sub>L</sub> =4Ω         F=1kHz/0dB         A-Weighted VBAT=3.7V           Single-ended         —         70         —         dB         R <sub>L</sub> =10K         VBAT=3.7V           Diff (N to P)         —         -36         —         dB         R <sub>L</sub> =0K         VBAT=3.7V           Single-ended         —         -70         —         dB         R <sub>L</sub> =10K         VBAT=2.4V           Single-ended         —         -70         —         dB         R <sub>L</sub> =10K         VBAT=2.4V           Single-ended         —         -97         —         dB         R <sub>L</sub> =0K         VBAT=2.4V           Single-ended         —         -97         —         dB         R <sub>L</sub> =10K         VBAT=3.7V           Single-ended         —         -95         —         dB         R <sub>L</sub> =0M         VBAT=2.4V <t< td=""><td></td><td>Single-ended</td><td>_</td><td>0.72</td><td>4</td><td>Vrms</td><td>R<sub>L</sub>=10K</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | Single-ended   | _             | 0.72 | 4            | Vrms | R <sub>L</sub> =10K |                 |  |
| Output power         Diff (N to P)         —         —         0.25         W         R <sub>1</sub> =4Ω         f=1kHz/0dB         VBAT=2.4V           Loff (N to P)         —         -31         —         dB         R <sub>1</sub> =4Ω         F=1kHz/0dB         A-Weighted         VBAT=2.4V         F=1kHz/0dB         A-Weighted         VBAT=3.7V         WR_1=8Ω         A-Weighted         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         A-Weighted         VBAT=3.7V         VBAT=3.7V         VBAT=2.4V         F=1kHz/0dB         A-Weighted         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         A-Weighted         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         A-Weighted         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         A-Weighted         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         VBAT=3.7V         A-Weighted         VBAT=3.7V         A-Weighted<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                | _             | 0.62 |              | W    | $R_L=4\Omega$       | f=1kHz/0dB      |  |
| Diff (N to P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Output nower         | Diff (N to P)  | _             | 0.42 | 4            | W    | $R_L=8\Omega$       | VBAT=3.7V       |  |
| Diff (N to P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Output power         | Diff (iv to 1) | _             | 0.25 | X            | W    | $R_L=4\Omega$       | f=1kHz/0dB      |  |
| Diff (N to P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                | _             | 0.17 | <b>/</b> _ \ | W    | $R_L=8\Omega$       | VBAT=2.4V       |  |
| $THD+N \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                | _             | -31  | -            | dB   | $R_L=4\Omega$       | f=1kHz/0dB      |  |
| $THD+N = \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | Diff (N to P)  | _             | -35  |              | dB   | $R_L=8\Omega$       |                 |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                | _             | -75  | _            | dB   | R <sub>L</sub> =10K |                 |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THD+N                | Single-ended   | 10 <u>-</u> A | -70  | /-           | dB   | R <sub>L</sub> =10K | VBM1 3.7V       |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE                  |                |               | -31  |              | dB   | $R_L=4\Omega$       | f=1kHz/0dB      |  |
| Single-ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | Diff (N to P)  |               | -36  |              | dB   | $R_L=8\Omega$       |                 |  |
| Single-ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                |               | -73  | _            | dB   | R <sub>L</sub> =10K | _               |  |
| $S/N = \begin{array}{ c c c c c c c c c } \hline Diff (N to P) &                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Single-ended   | _             | -70  | _            | dB   | R <sub>L</sub> =10K | V DA1-2.4 V     |  |
| $S/N = \begin{array}{ c c c c c c c c c } \hline Diff (N to P) & - & 97 & - & dB & R_L=8\Omega \\ - & 95 & - & dB & R_L=10K \\ \hline Single-ended & - & 75 & - & dB & R_L=10K \\ \hline Diff (N to P) & - & 94 & - & dB & R_L=8\Omega \\ - & 88 & - & dB & R_L=10K \\ \hline Single-ended & - & 72 & - & dB & R_L=10K \\ \hline Single-ended & - & 72 & - & dB & R_L=10K \\ \hline Diff (N to P) & - & 88 & - & dB & R_L=10K \\ \hline Diff (N to P) & - & 88 & - & dB & R_L=8\Omega \\ - & 86 & - & dB & R_L=10K \\ \hline Single-ended & - & 75 & - & dB & R_L=10K \\ \hline Single-ended & - & 75 & - & dB & R_L=10K \\ \hline Diff (N to P) & - & 87 & - & dB & R_L=8\Omega \\ \hline Diff (N to P) & - & 87 & - & dB & R_L=8\Omega \\ \hline Diff (N to P) & - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega \\ \hline - & 87 & - & dB & R_L=8\Omega $ |                      | Diff (N to P)  | _             | 97   | _            | dB   | $R_L=4\Omega$       | f-11/H2/04B     |  |
| $S/N = \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / /                  |                | _             | 97   | _            | dB   | $R_L=8\Omega$       |                 |  |
| $S/N = \begin{array}{ c c c c c c c c }\hline S/N & Single-ended & & & & 75 & & & & & dB & R_L=10K \\ \hline Diff (N to P) & & & & & & & & dB & R_L=4\Omega \\ \hline Diff (N to P) & & & & & & & & dB & R_L=10K \\ \hline Single-ended & & & & & & & & & dB & R_L=10K \\ \hline Single-ended & & & & & & & & & dB & R_L=10K \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=4\Omega \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=10K \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=10K \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=10K \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=4\Omega \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=4\Omega \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=4\Omega \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=4\Omega \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=4\Omega \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=4\Omega \\ \hline Diff (N to P) & & & & & & & & & dB & R_L=4\Omega \\ \hline Diff (N to P) & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                | -             | 95   | _            | dB   | R <sub>L</sub> =10K | 0               |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C/NI                 | Single-ended   |               | 75   | _            | dB   | R <sub>L</sub> =10K | VDA1-3./V       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/1 <b>N</b>         |                |               | 94   | _            | dB   | $R_L=4\Omega$       | £-11-U-z/0.4D   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | Diff (N to P)  | -             | 94   | _            | dB   | $R_L=8\Omega$       |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                | _             | 88   | _            | dB   | R <sub>L</sub> =10K |                 |  |
| $Diff (N \text{ to P}) = \begin{bmatrix} - & 88 & - & dB & R_L = 4\Omega \\ - & 88 & - & dB & R_L = 8\Omega \\ - & 86 & - & dB & R_L = 10K \\ \hline Single-ended & - & 75 & - & dB & R_L = 10K \\ \hline Diff (N \text{ to P}) & - & 87 & - & dB & R_L = 4\Omega \\ - & 85 & - & dB & R_L = 10K \\ \hline Diff (N \text{ to P}) & - & 87 & - & dB & R_L = 8\Omega \\ - & 85 & - & dB & R_L = 10K \\ \hline A-Weighted VBAT = 2.4V \\ \hline VBAT = 2.4V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                  | Single-ended   |               | 72   |              | dB   | $R_L=10K$           | V DA 1-2.4 V    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                |               | 88   |              | dB   | $R_L=4\Omega$       | £11dI=/ (04D    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Diff (N to P)  |               | 88   |              | dB   | $R_L=8\Omega$       |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                | _             | 86   | _            | dB   | R <sub>L</sub> =10K |                 |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drime                | Single-ended   |               | 75   |              | dB   | R <sub>L</sub> =10K | V DA 1=3./V     |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dynamic Kange        |                |               | 87   |              | dB   | $R_L=4\Omega$       | C 11 II / (0.1P |  |
| 85dB R <sub>L</sub> =10K VBAT=2.4V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | Diff (N to P)  |               | 87   | _            | dB   | $R_L=8\Omega$       |                 |  |
| Single-ended _ 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | . /            | _             | 85   | _            | dB   | R <sub>L</sub> =10K | _               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Single-ended   | _             | 74   | _            | dB   | R <sub>L</sub> =10K | VBA1=2.4V       |  |



# 4 Package Information

# 4.1 SOP16



Figure 4-1 AD172A Package



# 5 IC Marking Information



- ① LLLLLLLLL: Production Batch
- ② AD17Nx: Chip Model
- 3 Built-in flash size
  - 0: No Flash Memory
  - 2: 2Mbit Flash
  - 4: 4Mbit Flash
  - 8: 8Mbit Flash
  - 6: 16Mbit Flash
  - 3: 32Mbit Flash



### **6 Solder-Reflow Condition**



**Figure 6-1 Classification Reflow Profile** 

**Classification Profiles** 

Table 6-1

|                                                    | Profile Feature                                          | Sn-Pb Eutectic Assembly | Pb-Free Assembly |
|----------------------------------------------------|----------------------------------------------------------|-------------------------|------------------|
|                                                    | Temperature Min (T <sub>smin</sub> )                     | 100 °C                  | 150 ℃            |
| Preheat/                                           | Temperature Max (T <sub>smax</sub> )                     | 150 °C                  | 200 ℃            |
| Soak                                               | Time (ts) from (T <sub>smin</sub> to T <sub>sma</sub> x) | 60-120 seconds          | 60-180 seconds   |
| Average ra                                         | amp-up rate $(T_{smax} \text{ to } T_p)$                 | 3 °C/second max         | 3 °C/second max  |
| Liquidous                                          | temperature (T <sub>L</sub> )                            | 183 ℃                   | 217 ℃            |
| Time (t <sub>L</sub> ) 1                           | maintained above T <sub>L</sub>                          | 60-150 seconds          | 60-150 seconds   |
| Peak pack                                          | age body temperature (Tp)                                | See Table 6-2.          | See Table 6-3.   |
| Time within 5°C of actual Peak Temperature (tp)    |                                                          | 10-30 seconds           | 20-40 seconds    |
| Ramp-down rate (T <sub>p</sub> to T <sub>L</sub> ) |                                                          | 6 °C/second max.        | 6 °C/second max. |
| Time 25                                            | C to peak temperature                                    | 6 minutes max.          | 8 minutes max.   |

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Note 2: Time within  $5^{\circ}$ C of actual peak temperature (tp) specified for the reflow profiles is a "supplier" minimum and "user" maximum.

**SnPb - Classification Temperature** 

**Table 6-2** 

| Package   | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> |  |
|-----------|------------------------|------------------------|--|
| Thickness | < 350                  | ≥ 350                  |  |
| <2.5 mm   | 240 +0/-5 °C           | 225 +0/-5 °C           |  |
| ≥ 2.5 mm  | 225 +0/-5 °C           | 225 +0/-5 °C           |  |



**Pb-free - Classification Temperature** Table 6-3

| Package        | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> |
|----------------|------------------------|------------------------|------------------------|
| Thickness      | < 350                  | 350 - 2000             | > 2000                 |
| < 1.6mm        | 260 ℃                  | 260 ℃                  | 260 ℃                  |
| 1.6 mm - 2.5mm | 260 ℃                  | 250 ℃                  | 245 ℃                  |
| > 2.5mm        | 250 ℃                  | 245 °C                 | 245 ℃                  |





# 7 Revision History

| Date       | Revision | Description                                          |
|------------|----------|------------------------------------------------------|
| 2023.07.13 | V1.0     | Initial Release.                                     |
| 2023.09.28 | V1.1     | Update Pin Definition. Update Features modification. |
|            |          |                                                      |
|            |          |                                                      |

