Atome und Moleküle

Stoff		Neon	Stickstoff	Methan	Wasser	Gold	
Formel		Ne	N_2	CH ₄	H ₂ O	Au	
Dichte	ρ	0.900	1.25	0.717	998	19'300	kg/m ³
Molare Masse	M	20.2	28.0	16.0	18.0	197	g/mol
Molares Volumen	V_{mn}	22.4	22.4	22.4	0.0180	0.0102	dm ³ /mol
Masse eines Teilchens	m_T	33.5	46.5	26.6	29.9	327	$\cdot 10^{-27} \text{ kg}$
Teilchenzahl in 1 m ³	N/V	2.69	2.69	2.69	3340	5900	$\cdot 10^{25} \text{ m}^{-3}$

2

a)
$$N_0 = 6.02 \cdot 10^{23}$$
 b) $N = N_0 \cdot \frac{p_i}{p_0}$; 5.9·10²⁰

$$5.9 \cdot 10^{20}$$

c)
$$5.9 \cdot 10^{10}$$

$$N = \frac{V_{\text{Löffel}}}{V_{\text{See}}} \cdot \frac{\rho V_{\text{Tasse}}}{M} \cdot N_A; \qquad 4.7 \cdot 10^9$$

$$d = \sqrt[3]{\frac{M}{N_A \rho}}$$
; 0.207 nm

$$A = V : a = \frac{m}{\rho} : \sqrt[3]{\frac{m_T}{\rho}} = m \cdot \sqrt[3]{\frac{N_A}{\rho^2 M}};$$
 1300 m² (etwa 5 Tennisplätze)

a)
$$m = Nm_a = \frac{\sqrt{3} A_{\text{Waage}}}{6r_a^2} m_a;$$
 1.9·10⁻¹⁰ kg

b)
$$N = \frac{m_{\text{Auflösung}}}{m_a}$$
; 3.8·10¹² (also 3800 Milliarden)

c) 0.4 ng sind 0.21% von 190 ng. Das entspricht rund einer $\frac{1}{500}$ -stel Monolage.