Mote: Dot product takes in two vectors to give a number while coss product takes in a mouser two vectors and gives a vector. Rinomial expansion of $(2-2)^3$ $(2-2)^3 = 3(6(2^3)(-2)^2 + 3(3(2^2)(-2)^2 + 3(3(2^2)(-2)^2 + 3(3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^3 + 3(2^2)(-2)^2$ Therefore all the first three options will return

Journal Jonation Jonation Jonation Jonation Jonation Jonath Grand Jonath Glass Jonath Glass	Ans	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5	Geometric Segues (= D.2.) Geometric Segues (= D.2.)
	1 12 22 2	to the mark to constant to the top the top top the top the top the top top the top top the top	divide both sides by 5 Sn-1 = 1953125 Sn-1 = 9 Ainide both sides by 5 Andres = 10	390625