Home Assignment 2 - Interpolation Due 17.05.18

1. **Lagrange interpolation.** Implement the regular Lagrange interpolation algorithm, with the following signature:

$$[yy]$$
=LagrangeInterp (x, y, xx) ,

where

- **x** and **y** are the samples, i.e., $f(x_j) = y_j$. You can assume that the points are sorted and do not repeat.
- **xx** and **yy** are the interpolated values, such that if $P_n(x)$ is the interpolation polynomial, then $P_n(xx_k) = yy_k$.

Answer the following question: How do you verify that this is indeed Lagrange interpolation?

- 2. **Piecewise linear interpolation.** Build the piecewise linear approxiation. Same signature as **Lagrange**, but the function should be called **PWLinear**.
- 3. **Hermite interpolation.** Build the Hermite interpolant, by implementing the following function:

$$[yy] = HermiteInterp(x, y, ytag, xx)$$
,

where \mathbf{x} , \mathbf{y} and $\mathbf{x}\mathbf{x}$ are as in the Lagrange interpolation, and \mathbf{ytag} is the derivative at the sample points, i.e., $f'(x_i) = \mathrm{ytag}_i$.

4. Least-Squares Approximation. Build the order n least-squares approximation by implementing

$$[yy] = myLS(x, y, xx, n)$$
,

- **x** and **y** are the samples, i.e., $f(x_j) = y_j$.
- **xx** and **yy** are the approximated values, such that if $P_n(x)$ is the approximating polynomial, then $P_n(xx_k) = yy_k$.
- \bullet **n** is the degree of the polynomial approximation.
- 5. Compare methods. For the following functions, use N samples on the interval [-1,1], with $N=2,4,8,\ldots 256$. Use a uniform grid of size N. For each method and for each function from the list below, compute the interpolant/approximation on $\mathbf{xx} = \mathbf{linspace}(-1,1,1e4)$ once when the interpolation is with clean samples $\mathbf{y} = \mathbf{f}(\mathbf{x})$ and the second time with added random noise $\mathbf{y2} = \mathbf{f}(\mathbf{x}) + \mathbf{0.01*rand}(\mathbf{size}(\mathbf{x}))$. For each function, plot maximal-pointwise error vs. the grid size N for all four methods on the same figure. Use \mathbf{loglog} or $\mathbf{semilogy}$ to plot. All in all, you should end up with a single figure for each of these functions:
 - (a) f(x) = x
 - (b) $f(x) = x^8 + 6x^3$
 - (c) $f(x) = \tanh(9x) + \frac{x}{2}$
 - (d) $f(x) = \sin(20x)(1+x)$
 - (e) f(x) = |x|
 - (f) $f(x) = \frac{1}{1+16x^2}$
- 6. **ImageRestoration** Import the image **gate.jpg** by double clicking on it when in Matlab. plot it by **imagesc(gate)**.
 - (a) Reduce it to a low-quality version by **badGate** = **gate(1:10:end,:,:)**. Plot it as well.
 - (b) Interpolate it back to the original resolution using both piecewise-linear interpolation and Lagrange interpolation. Plot these as well.
 - (c) Repeat the same exercise with **badGate** = **gate(1:3:end,:,:)**.
 - (d) In both cases, polynomial interpolation looks awful. What can you do to fix it, while still using polynomial interpolation? Provide code and "fixed" image.

Technical notes:

- The imported image will be in unsigned int format, i.e., **uint8**. To perform analysis on it, you need to cast it to **double**. To plot back the results, cast it again to **uint8**.
- To plot all 4 images on the same figure, use the **subplot** command.
- To give a title to each subplot, use the **title** command.