Homework 3 Solutions

Page 1/8

Problem 1:

1 a)
$$X = /(/A + B) * (B + /C)$$

1 b) Y = (A + /B) * /(/B * /C + B * C)

Problem 2:

2 a)
$$X = /(/A + B) * (B + /C)$$

2 b) Y = (A + /B) * /(/B * /C + B * C)

Problem 3:

Problem 4:

- a) 12-bit unsigned binary = 1010 1111 1111 = 2048+512+255 = 2815
- b) 12-bit sign magnitude = -(512+255) = -767
- c) 12-bit 1's complement = $-(0101\ 0000\ 0000) = -(1024+256) = -1280$
- d) 12-bit 2's complement = $-(0101\ 0000\ 0001) = -(1024+256+1) = -1281$
- e) 12-bit BCD = not a valid BCD number

Homework 3 Solutions

Page 2/8

Problem 5:

	3 bit signed	3 bit 1's compl	3 bit 2's compl
000	0	0	0
001	1	1	1
010	2	2	2
011	3	3	3
100	(-)0	-3	-4
101	-1	-2	-3
110	-2	-1	-2
111	-3	(-)0	-1

Problem 6:

	1	1001	25
	* 1	0110	*22
	11	0010	50
	110	01	50
1	1001		<u>50</u> 550
10	0010	0110	_

Problem 7:

a)
$$1001 \ 0101$$
 149
+ $0111 \ 1111$ +127
 $1 \ 0001 \ 0100$ 276

c) 8 bit signed complement: 1001 0101 -21 + 0111 1111 +127 106

Since the first number is negative and the second number is positive, I'll subtract the first number (unsigned) from the second.

	0111	1111	+127
-	0001	0101	-21
	0110	1010	106

Since the answer is positive, I'll leave the sign bit as a zero.

d) Problem a) is \underline{not} valid 276 > 2^8 (256). Problems b) and c) are valid.

Homework 3 Solutions

Page 3/8

2.30

2.10

$$47757$$
 ΓS
 167757 ΓS
 167757 ΓS
 1677 $\Gamma S = F$
 1677

Homework 3 Solutions

Page 4/8

Homework 3 Solutions

Page 5/8

Homework 3 Solutions

Page 6/8

FOR & WORD LENGTH OF N, THE RONGE OF 2'S CONSIGNENT 1.8 NUMBERS THAT CAN BE REPRESENTED IS -2"-1 TO 2"-1 SO, FOR DWORD LENGTH OF 8, THE PONGE FS-2" TO 27.1. OR - 128 TO 12T. BELOUSE 1'S COMPLEMENT HAS A "NEGATING ZERO" (1/11111) IN DODITION TO ZERO (00000000), THE VALUES THAT CON BE REPRESENTED RANGE FROM - (27-1) TO 27-1, OR -127 TO 127 1.10 () 301.12,0 165301 - 13 = 016 .12x 16=1.92 .91×16=14.72 E, 16 JIR 12 .72x16 = 11.52 BIG 1651 -1 0001 0010 1101.0001 1110 1011₂ D. 1 E B₁₆ 5 7 2 4 5 = 5724.50 5x83+7x87+2x81+4+5x81=3028.625101 11×162+ 13×16+4+ 10×16 = 3028.625,0

Homework 3 Solutions

Page 7/8

Homework 3 Solutions

Page 8/8