

Sistemas Distribuidos

Curso 21/22 :: Prueba 2 (extraordinario)

Escuela Superior de Informática

Este examen consta de 20 preguntas con un total de 40 puntos. Tres preguntas incorrectas restan un punto. Sólo una opción es correcta a menos que se indique algo distinto. No está permitido el uso de calculadora. La duración máxima de este examen será de 50 minutos.

En relación a la HOJA DE RESPUESTAS:

- Rellene sus datos personales en el formulario superior.
- Indique «Sistemas Distribuidos» en el campo EVALUACIÓN.
- Indique su DNI en la caja lateral (marcando también las celdillas correspondientes).
- Marque la casilla «2» en TIPO DE EXAMEN.

Marque sus respuestas sólo cuando esté completamente seguro. El escáner no admite correcciones o tachones de ningún tipo, las anulará automáticamente. En las preguntas no respondidas debe especificar la opción e) en la hoja de respuestas. Debe entregar únicamente la hoja de respuestas.

Apellidos:	SOLUCIÓN	Nombre:	Grupo:
1 [2p] RabbitM(Q usa un modelo de comunicación in	directa del tipo:	
a) Sistema	basado en eventos distribuidos.	c) Cola de mensa	ajes.
b) Memori	ia distribuida.	d) Comunicación	n uno a uno.
2 [2p] Marca la en broker:	afirmación correcta en relación a los	s sistemas de propagación de evento	os de publicación–subscripción basados
a) Los pub	licadores no conocen las referencias	de los subscriptores.	
b) Cada pu	iblicador es responsable de almacena	ar las referencias de sus subscriptore	es.
	bscriptor es responsable de almacen-	_	es.
☐ d) Cada pa	reja publicador-subscriptor es única	y está identificada unívocamente.	
3 [2p] ¿Cuál serí	ía la definición más acertada de un si	stema de colas de mensajes distribu	nidas?
a) El emiso	or coloca sus mensajes en una cola g	enérica, el broker los clasifi <mark>ca y res</mark>	ponde al emisor.
b) Un brok	cer central determina el receptor de c	ada mensaje de la cola di <mark>stribuida</mark> .	
c) Varios r	eceptores reciben copias del mismo	mensaje.	
☐ d) No hay	diferencias sustanciales con un siste	ma publicador-subscriptor.	
4 [2p] ¿Cuál de l	los siguientes NO se considera un m	ecanismo de comunicación indi <mark>recta</mark>	a?
a) Comuni	cación de grupos	c) Sistemas de pr	ropagación de eventos
b) Llamad	a a procedimiento remoto	d) Memoria com	nparti <mark>da distribuid</mark> a
5 [2p] ¿Cuál de l	las siguientes frases define mejor el	concepto de «evento»?	
	n de una notificación con un valor as	_	
— ′	icación de datos entre dos objetos di		
	ón de un fragmento de código remoto		a.
☐ d) Ejecucio	ón de un fragmento de código remot	o que reto <mark>rna una resp</mark> uesta <mark>asíncr</mark> oi	na.
6 [2p] ¿Qué trata	a de acotar el cálculo que se aplica en	n el algoritmo de Cristian?	
	r causado por un ancho de banda asin		
_	causado por la latencia de la red.		
	dad de mensajes necesarios para la s	sincronización de un grupo.	
	ero de nodos que forma parte del gru	· ·	

20 de junio de 2022 1/3

Sistemas Distribuidos Curso 21/22 :: Prueba 2 (extraordinario)

Escuela Superior de Informática

		lgoritmo de Cristian, el tiem s el tiempo al que podría act		-		utador	es de	e 8 segundos y el	servidor
	a) 10:25:11			c)	09:59:59				
	b) 10:25:15) Habría que conoc	cer la h	ıora d	el cliente.	
8 [2p]] ¿Cuál es una interpre	etación correcta del concepto	o de «causalida	ıd p	ootencial»?				
	a) Si un evento es un	efecto, su causa le precede e	en la historia de	e ev	ventos.				
	b) Si un evento tiene	la capacidad de causar otro,	deberá conside	erai	rse posterior.				
	c) Dos eventos en dis	tintos nodos nunca tienen re	lación de order	n.					
	d) Define ambos com	ponentes de los relojes lógio	cos de orden to	tal.					
9 [2p]] ¿Por qué la detección	n de terminación de un algor	ritmo distribuid	lo r	requiere determina	r el esta	ado g	lobal?	
	a) Los procesos invol	ucrados podrían estar des-si	ncronizados.						
	b) No se requiere cua	ndo el algoritmo distribuido	es asíncrono.						
	c) Una invocación en	tránsito podría implicar que	el algoritmo c	ont	tinúa.				
	d) Es necesario detern	ninar el orden causal de tod	os los mensaje	s in	nvolucrados.				
10 [2]	p] Marca la afirmación	n FALSA en relación a los re	elojes software	:					
	a) Su valor se determ	ina a partir de un reloj lógic	o.						
	b) Su valor se obtiene	a partir de un dispositivo h	ardware local.						
	c) Dos relojes softwar	re sin relación pueden tener	el mismo valor	r.					
	d) Se aplican procedi	mientos específicos para ase	gurar que no se	e pı	roducen saltos.				
por us	so (10 euros por MB), a. Durante el primer m r?	nodos se configura median a continuación, se configura nes de funcionamiento, ning	un algoritmo	de	exclusión mutua p	ara coi	ntrola	r el acceso a una	sección
	a) Anillo								
	b) Servidor Central								
	c) Ricart Agrawala			. ,					
	d) Si no hay acceso a	a la sección crítica, todos los	algoritmos ha	bría	an tenido el mismo	coste.			
		exclusión mutua centralizad no de los siguientes garantiz		oler	mentar un acceso p	or orde	en de	petición en el ac	ceso a la
	a) Servidor central			c)	<mark>) R</mark> icart <mark>y Agr</mark> awal	a			
	b) Anillo con testigo			d)) Todos <mark>los a</mark> lgori	tmos g	aranti	zan el orden	
13 [2]	p] Determine el tipo d	e problema que le ayuda a r	esolver el algor	ritn	no de anillo:				
	a) Consenso								
	b) Multidifusión								
	c) Consistencia intera	ctiva							
	d) Depende, hay dos	algoritmos «de anillo»: uno	de exclusión m	nutı	ua y otro para elec	ción de	coor	dinador.	
14 [2]	p] Construir un sistem	a que emplea multidifusión	sobre el protoc	colo	o IP, implica <mark>l</mark> a util	izaciór	ı de:		
	a) SNMP	□ b) TCP		c)) UDP			d) RPC	
		•							

2/3 20 de junio de 2022

Sistemas Distribuidos Curso 21/22 :: Prueba 2 (extraordinario)

Escuela Superior de Informática

	En el in	stante 1, el proceso P1 solicita acceso a R. En cuanto a núme e para conseguir la exclusión mutua en ausencia de fallos?	
	a)	Servidor Central	
	\Box b)	Anillo (formado por P2->P3->P4->P1->P2 y el token en P3)	
		Ricart y Agrawala (con soporte multicast real)	
	□ d)	García Molina (con soporte multicast real)	
16	[2p]	¿Cuál es el comportamiento ideal que persigue la replicación	?
	a)	Mantener varias copias idénticas de un recurso o servicio en	varios nodos.
	\bigsqcup b)	Llevar un registro detallado de los accesos concurrentes a un	mismo recurso.
	\Box c)	Acotar el tiempo de acceso a las copias secundarias de un ser	vicio para evitar inanición.
	☐ d)) Impedir el acceso concurrente de varios clientes a un recurso	compartido para así evitar inconsistencias.
17	[2p]	¿Por qué decimos que la replicación reduce la latencia?	
	\Box a)	No es cierto. La latencia crece linealmente con el número de	réplicas.
	\Box b)	El tiempo de sincronización de las réplicas está acotado y co	nverge con el tiempo.
	c)	Si las réplicas se distribuyen geográficamente, la latencia med	dia desde los clientes se reduce.
	□ d)	El balanceador de carga ofrece al cliente un acceso prioritario	o en función de la carga de los nodos.
18	[2p]	¿Cuál de las siguientes no es una característica considerada po	or el teorema CAP?
	\Box a)	Consistencia de datos	c) Ventana de inconsistencia estricta
	□ b)	Disponibilidad del sistema	d) Tolerancia a las particiones de red
19	[2p]	¿Qué dice el modelo de «consistencia eventual»?	
	\Box a)	El programador es responsable de actualizar las copias en ba	se a un modelo líder-seguidores.
		Todas las réplicas deben ser sincronizadas inmediatamente de	
	c)	Si no se hacen escrituras nuevas sobre un recurso dado, todo	s los accesos devolverán eventualmente el último valor
	_	escrito.	
	□ d)	Requiere de un protocolo de transacción distribuidas para gar particiones en la red.	rantizar la coherencia entre réplicas, especialmente ante
20		¿Qué es la «ventana de inconsistencia» (inconsistency window	
	_	Es el plazo en el que la réplica permite <mark>nuevas operaciones d</mark> e	
) El plazo que transcurre entre una escritu <mark>ra y el momento es q</mark> u	
		El tamaño mínimo del buffer de envío que garantiza que todas	
	□ d)	El conjunto de operaciones de lectura/escritura que puede m recurso.	anejar el gestor de réplicas antes de que se actualice un

20 de junio de 2022 3/3