Computer Graphics Lecture-5 Scan Conversion-3

Tasnimatul Jannah Lecturer, SoSET East Delta University

A Simple Circle Drawing Algorithm

The equation for a circle is:

$$x^2 + y^2 = r^2$$

- where r is the radius of the circle
- So, we can write a simple circle drawing algorithm by solving the equation for y at unit x intervals using:

$$y = \pm \sqrt{r^2 - x^2}$$

A Simple Circle Drawing Algorithm (cont...)

$$y_0 = \sqrt{20^2 - 0^2} \approx 20$$

$$y_1 = \sqrt{20^2 - 1^2} \approx 20$$

$$y_2 = \sqrt{20^2 - 2^2} \approx 20$$

$$y_{19} = \sqrt{20^2 - 19^2} \approx 6$$

$$y_{20} = \sqrt{20^2 - 20^2} \approx 0$$

A Simple Circle Drawing Algorithm (cont...)

- However, unsurprisingly this is not a brilliant solution!
- Firstly, the resulting circle has large gaps where the slope approaches the vertical
- Secondly, the calculations are not very efficient
 - The square (multiply) operations
 - The square root operation try really hard to avoid these!
- We need a more efficient, more accurate solution

Eight-Way Symmetry

• The first thing we can notice to make our circle drawing algorithm more efficient is that circles centred at (0, 0) have eight-way symmetry

Mid-Point Circle Algorithm

- Similarly to the case with lines, there is an incremental algorithm for drawing circles – the mid-point circle algorithm
- In the mid-point circle algorithm we use eight-way symmetry so only ever calculate the points for the top right eighth of a circle, and then use symmetry to get the rest of the points

- Assume that we have just plotted point (x_k, y_k)
- The next point is a choice between (x_k+1, y_k) and (x_k+1, y_k-1)
- We would like to choose the point that is nearest to the actual circle
- So how do we make this choice?

• Let's re-jig the equation of the circle slightly to give us: $f_{circ}(x,y) = x^2 + y^2 - r^2$

• The equation evaluates as follows:

$$f_{circ}(x, y) \begin{cases} < 0, \text{ if } (x, y) \text{ is inside the circle boundary} \\ = 0, \text{ if } (x, y) \text{ is on the circle boundary} \\ > 0, \text{ if } (x, y) \text{ is outside the circle boundary} \end{cases}$$

 By evaluating this function at the midpoint between the candidate pixels we can make our decision

- Assuming we have just plotted the pixel at (x_k, y_k) so we need to choose between (x_k+1, y_k) and (x_k+1, y_k-1)
- Our decision variable can be defined as:

$$p_k = f_{circ}(x_k + 1, y_k - \frac{1}{2})$$
$$= (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - r^2$$

- If p_k < 0 the midpoint is inside the circle and and the pixel at y_k is closer to the circle
- Otherwise the midpoint is outside and y_k -1 is closer

- To ensure things are as efficient as possible we can do all of our calculations incrementally
- First consider: $p_{k+1} = f_{circ}(x_{k+1} + 1, y_{k+1} \frac{1}{2})$ = $[(x_k + 1) + 1]^2 + (y_{k+1} - \frac{1}{2})^2 - r^2$

• or:

$$p_{k+1} = p_k + 2(x_k + 1) + (y_{k+1}^2 - y_k^2) - (y_{k+1} - y_k) + 1$$

• where y_{k+1} is either y_k or $y_k\text{-}1$ depending on the sign of \boldsymbol{p}_k

$$P_{k+1} - P_{k} = (\chi_{k+1} + 1)^{2} - (\chi_{k+1})^{2} + (\chi_{k+1} - \frac{1}{2})^{2} - (\chi_{k+1} - \frac{1}{2})^{2} - (\chi_{k+1})^{2} + (\chi_{k+1} - \frac{1}{2})^{2} - (\chi_{k+1})^{2} - (\chi_{k+1})^{2} + (\chi_{k+1} - \frac{1}{2})^{2} - (\chi_{k+1} - \frac{1}{2})^{2} - (\chi_{k+1} - \chi_{k+1})^{2} - \chi_{k+1} + \chi_{k+1} - \chi_{k+1} -$$

• The first decision variable is given as:

$$p_{0} = f_{circ}(1, r - \frac{1}{2})$$

$$= 1 + (r - \frac{1}{2})^{2} - r^{2}$$

$$= \frac{5}{4} - r$$

• Then if p_k < 0 then the next decision variable is given as: $p_{k+1} = p_k + 2x_{k+1} + 1$

• If $p_k > 0$ then the decision variable is:

$$p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_k + 1$$

$$P_{k+1} = P_{k} + 2x_{k+1} + 3 + 2(y_{k} - 1)^{2} - y_{k}^{2} - y_{k+1}^{2} + 3 + 2(y_{k} - 1)^{2} - y_{k}^{2} -$$

Mid-point Circle Algorithm - Steps

- 1. Input radius \mathbf{r} and circle center $(\mathbf{x}_c, \mathbf{y}_c)$. set the first point $(\mathbf{x}_o, \mathbf{y}_o) = (\mathbf{0}, \mathbf{r})$.
- 1. Calculate the initial value of the decision parameter as $\mathbf{p}_0 = \mathbf{1} \mathbf{r}$. $(\mathbf{p}_0 = \mathbf{5}/4 \mathbf{r} \cong \mathbf{1} \mathbf{r})$
- 3. If $p_k < 0$, plot $(x_k + 1, y_k)$ and $p_{k+1} = p_k + 2x_{k+1} + 1$,

Otherwise,

plot
$$(x_k + 1, y_k - 1)$$
 and $p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$

where
$$2x_{k+1} = 2x_k + 2$$
 and $2y_{k+1} = 2y_k - 2$.

Mid-point Circle Algorithm - Steps

- 4. Determine symmetry points on the other seven octants.
- 4. Move each calculated pixel position (x, y) onto the circular path centered on (x_c, y_c) and plot the coordinate values: $x = x + x_c$, $y = y + y_c$
- 4. Repeat steps 3 though 5 until $x \ge y$.
- 4. For all points, add the center point (x_c, y_c)

Mid-point Circle Algorithm - Steps

- Now we drew a part from circle, to draw a complete circle, we must plot the other points.
- We have $(x_c + x, y_c + y)$, the other points are:
 - $(x_c x, y_c + y)$
 - $(x_c + x, y_c y)$
 - $(x_c x, y_c y)$
 - $(x_c + y, y_c + x)$
 - $(x_c y, y_c + x)$
 - $-(x_c + y, y_c x)$
 - $(x_c y, y_c x)$

Mid-point circle algorithm (Example)

• Given a circle radius r = 10, demonstrate the midpoint circle algorithm by determining positions along the circle octant in the first quadrant from x = 0 to x = y.

Solution:

- $p_0 = 1 r = -9$
- Plot the initial point $(x_0, y_0) = (0, 10)$,
- $2x_0 = 0$ and $2y_0 = 20$.
- Successive decision parameter values and positions along the circle path are calculated using the midpoint method as appear in the next table:

Mid-point circle algorithm (Example)

K	P _k	(x_{k+1}, y_{k+1})	2x _{k+1}	2y _{k+1}
0	9 –	(1,10)	2	20
1	-6	2,10(4	20
2	1 –	(10,3)	6	20
3	6	(9,4)	8	18
4	3 –	(9,5)	10	18
5	8	(6,8)	12	16
6	5	(7,7)	14	14

Mid-point circle algorithm (Example)

Mid-point Circle Algorithm – Example (2)

• Given a circle radius r = 15, demonstrate the midpoint circle algorithm by determining positions along the circle octant in the first quadrant from x = 0 to x = y.

Solution:

- $p_0 = 1 r = -14$
- plot the initial point $(x_0, y_0) = (0, 15)$,
- $2x_0 = 0$ and $2y_0 = 30$.
- Successive decision parameter values and positions along the circle path are calculated using the midpoint method as:

Mid-point Circle Algorithm – Example (2)

K	P _k	(x_{k+1}, y_{k+1})	2 x _{k+1}	2 y _{k+1}
0	- 14	(1, 15)	2	30
1	- 11	(2, 15)	4	30
2	- 6	(3, 15)	6	30
3	1	(4, 14)	8	28
4	- 18	(5, 14)	10	28

Mid-point Circle Algorithm – Example (2)

K	P _k	(x_{k+1}, y_{k+1})	<i>x</i> _{k+1} 2	y _{k+1} 2
5	7 –	(6,14)	12	28
6	6	(7,13)	14	26
7	5 –	(8,13)	16	26
8	12	(9,12)	18	24
9	7	(10,11)	20	22
10	6	(11,10)	22	20

Midpoint Ellipse Algorithm

- Implicit equation is: $F(x,y) = b^2x^2 + a^2y^2 a^2b^2 = 0$
- We have only 4-way symmetry
- There exists two regions
 - In Region 1 dx > dy
 - Increase x at each step
 - y may decrease
 - In Region 2 dx < dy
 - Decrease y at each step
 - x may increase
- At region boundary:

$$2 \cdot x \cdot b^2 + 2 \cdot y \cdot a^2 \cdot \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = -\frac{b^2 \cdot x}{a^2 \cdot y}$$

In Region 1
$$\left| \frac{dy}{dx} \right| < 1$$

$$\therefore b^2 \cdot x < a^2 \cdot y$$

Midpoint Ellipse Algorithm • In region 1

$$d = F(x_p + 1, y_p - \frac{1}{2})$$

$$= b^2(x_p + 1)^2 + a^2(y_p - \frac{1}{2})^2 - a^2b^2$$
if $d < 0$ then move to E
$$d_{new} = F(x_p + 1, y_p)$$

$$= b^2(x_p + 1)^2 + a^2(y_p)^2 - a^2b^2$$
if $d > 0$ then move to SE
$$d_{new} = F(x_p + 1, y_p - 1)$$

$$= b^2(x_p + 1)^2 + a^2(y_p - 1)^2 - a^2b^2$$

Midpoint Ellipse Algorithm In region 2

$$d = F(x_p + \frac{1}{2}, y_p - 1)$$

= $b^2(x_p + \frac{1}{2})^2 + a^2(y_p - 1)^2 - a^2b^2$

if d < 0 then move to S

$$d_{new} = F(x_p, y_p - 1)$$

= $b^2(x_p)^2 + a^2(y_p - 1)^2 - a^2b^2$

if d > 0 then move to SE

$$d_{new} = F(x_p + 1, y_p - 1)$$

$$= b^2(x_p + 1)^2 + a^2(y_p - 1)^2 - a^2b^2$$

