Datum:	SPŠ CHOMUTOV	Třída:
Číslo úlohy:	MĚŘENÍ VA CHARAKTERISTIKY, KAPACITY A DYNAMICKÉHO ODPORU ZENEROVY DIODY	Jméno: LEDVINKOVÁ

Zadání:

Vytvořte program v programu Keesight VEE, který změří VA charakteristiku Zenerovy diody a poté změřte její kapacitu a dynamický odpor.

Schéma:

1. VEE - VA charakteristika

- 2. Ruční měření
- a. Měření kapacity

b. Měření dynamického odporu

Tabulka použitých přístrojů:

1. VEE - VA charakteristika

Název přístroje	Označení	Údaje	Evidenční číslo
zdroj	zdroj	E3631A	LE 3102
Zenerova dioda	ZD	8 NZ 70	-
přepínač	Př	U=6 V, I _{max} =5 A	-

2. Ruční měření

Název přístroje	Označení	Údaje	Ev. číslo
zdroj	U	AUL 310, 2 × 0-36 V/2 A	LE2 1031
potenciometr	Р	105 Ω/ 1,6 A	LE2 432
reostat	R_P	1450 Ω/ 0,4 A	LE2 467
ochranný odpor	R _O	250 Ω/ 1 A	LE2 435
nastavitelný odpor	R _N	L 110	LE4 1616
miliampérmetr	mA	600 mA, ⊸© º⁵ 🌣	LE2 2241/8
voltmetr	V	120 V,	LE2 411/6
tlumivka	TL	L=2 H, L=4 H, L=6 H,	-
cívka	L	N=4400 záv., I _n =0,10 A	-
vazební kondenzátor	$C_{V_r}C_1$	C _{V1} =220 pF, C _{V2} =4 μF	-
normálový kondenzátor	C _N	TESLA, 100-1100 pF	LE1 2234
Zenerova dioda	Z _D	8 NZ 70, KZZ 71	1
číslicový voltmetr	ČV	U3401A	LE 5096
generátor	G	SDG1020	LE 5077
přepínač	PŘ	-	-
vypínač	VYP	250 V/6 A	-

Teorie:

Zenerova dioda je dvouvrstvá polovodičová součástka s PN přechodem. Když je zapojena v propustném směru, chová se jako běžná dioda. Avšak pokud je zapojena v závěrném směru, projevuje se Zenerův jev. Zenerův jev se projevuje při určitém napětí, nazývaném Zenerovo napětí (U_z). Toto napětí zůstává téměř konstantní i při prudkém nárůstu závěrného proudu až do jeho určité maximální hodnoty. Překročení této maximální hodnoty závěrného proudu vede k nevratnému průrazu a následnému poškození diody.

Postup:

- 1. VEE VA charakteristika
- > Vymyslíme schéma zapojení
- > Zapojíme dle schéma
- > Vytvoříme program v programu Keysight VEE
- > Spustím program a změřím VA charakteristiku Zenerovy diod
- 2. Ruční měření
- a. Měření kapacity
- > Zapojíme dle schéma zapojení
- > Zjistíme mezní parametry ZD 8NZ 70
- $I_z = 70 \text{ mA}$
- $U_z = 16,2-20 \text{ V}$
- $r_z = 10 < 18 \Omega$
- > V rozepnutém stavu nastavíme C_N na maximální hodnotu (C_{N1}=1100 pF) a EV na rozsah 100 mV
- > Na generátoru snižujeme amplitudu a zvyšujeme frekvenci, dokud nedostaneme obvod do rezonance
- > Sepneme vypínač a nastavíme požadovaný pracovní bod diody pomocí potenciometru P (dioda musí být zavřená, jinak by ztratila kapacitu) >> změnou PB dojde k rozladění rezonančního obvodu
- > Změnou kapacity C_N uvedeme obvod zpět do rezonance
- > Zapíšeme hodnoty a dosadíme do vzorce pro určení kapacity Zenerovy diody
- b. Měření dynamického odporu
- > Zapojíme dle schéma zapojení
- > Zjistíme mezní parametry ZD KZZ 71
- Iz=36 mA
- Uz=5,8-7,5 V
- > Změříme odpor tlumivky R_{TL} pomocí multimetru
- > Vypočítáme požadovaný odpor R_P a napětí zdroje U
- > Přepínač přepneme na Z_D a vypínač sepneme
- > Pomocí R_P nastavíme požadovaný pracovní bod (I_Z 0,2I_Z)
- > Na generátoru nastavíme frekvenci 1kHz a sinusové střídavé napětí o velikosti přibližně 80-100 mV
- > Nastavíme R_N na 0, vypneme vypínač a přepneme na odpor
- > Zvyšujeme R_N dokud nedosáhneme původního napětí, pak platí r_d= R_N

Program:

- VEE VA charakteristika
- 1. nastavení mezních parametrů
- a. zadání mezního proudu
- b. zadání mezního napětí
- 2. nastavení proudové pojistky a spuštění od 0
- 3. nastavení krokování
- a. krokování 0-1 V s krokem 50 mV stačí zde rozsah do 1 V kvůli prahovému napětí diody (0,3-0,7 V)
- b. krokování 0-16 V s krokem 1 V do 16 V by měla dioda být zavřená, proto zde stačí krok 1 V
- c. krokování 16-21 V s krokem 50 mV rozsah je zde do 21 V kvůli průraznému napětí diody s krokem 50 mV pro lepší vykreslení charakteristiky
- d. rovnice pro univerzálnost programu
- 4. nastavení zdroje a amplitudy
- a. nastavení napětí na zdroji č. 2 a amplitudy
- b. nastavení napětí na zdroji č. 3 a amplitudy
- 5. zpoždění 100 ms
- 6. zjištění
- a. naměřeného propustného proudu a napětí
- b. naměřeného závěrného proudu a napětí
- 7. uzel
- a. uzel pro spojení hodnot do grafu
- 8. převedení naměřených hodnot do záporu pro vykreslení charakteristiky v závěrném směru
- 9. podmínka pro kontrolu mezních parametrů s rezervou 0,5 mA
- 10. nadzdvižení pisátka >> zajištění, aby se při vykreslení závěrného směru začalo od 0 ne v posledním bodě charakteristiky propustného směru
- 11. display s vykreslenou VA charakteristikou
- 12. ukončení programu, pokud se dosáhlo mezních parametrů

Tabulka naměřených hodnot:

- 2. ruční měření
- a. měření kapacity

ZD 8NZ 70			
U [V]	C _{N1} [pF]	C _{N2} [pF]	C _z [pF]
2	1100	407,5	692,5
4		584	516
6		652	448
8		708	392
10		734	366
12		774,5	325,5
14		787	313
16		798,5	301,5

$$C_Z = C_{N1} - C_{N2} = 1100 - 734 = 366 \, pF$$

b. měření dynamického odporu

ZD KZZ 71		
U _R [V]	I [mA] r _d [Ω]	
100	4	25
	8	14
	12	10
	16	7,9
	20	5,8
	24	4,8
	28	4,2
	32	3,6
	36	3,2

Použité vzorce:

- 2. ruční měření
- b. měření dynamického odporu

$$R_0 = 250 \Omega$$

$$R_{TL} = 61,6 \Omega$$

$$U_z = 5.8 - 7.5 v$$

$$I_Z = 36 \text{ mA}$$

$$R_O = \frac{U - U_Z}{I_Z} - R_{TL} \rightarrow U = (R_O + R_{TL}) \times I_Z + U_Z$$

$$U = (250 + 61.6) \times 0.036 + 6.65 = 17.87 V$$

$$R_P = \frac{U - U_Z}{0.2 \times I_Z} - R_{TL} - R_O = \frac{17,87 - 6,65}{0.2 \times 0,036} - 61,6 - 250 = 1746,73 \,\Omega$$

Grafy:

1. VEE – VA charakteristika

Prahové U: 0,57 V Průrazné U: 17,47 V

2. Ruční měření

a. Měření kapacity

měřítko:

 $\begin{array}{l} U_R\hbox{:}\ 1\ d\'ilek\cong 2\ V \\ C_{ZD}\hbox{:}\ 1\ d\'ilek\cong 100\ pF \end{array}$

b. Měření dynamického odporu

měřítko:

 I_R : 1 dílek \cong 5 mA I_R : 1 dílek \cong 5 I_R

Závěr: Měření proběhlo v pořádku. Prahové napětí odpovídá křemíkové diodě (0,6-0,7 V), ačkoliv ho má lehce nižší (0,57 V). Průrazné napětí (17,47 V) odpovídá teoretickým předpokladům od 16 do 20 V. Vykreslení charakteristiky proběhlo v pořádku. U ručního měření díky správnému zvolení voltmetru, číslicového místo elektronického, jsme si při měření dynamického odporu ulehčili úlohu, protože jsme nemuseli kontrolovat a přepínat rozsah.