

Principal Component Analysis and Linear Discriminant Analysis

Joris Edelmann joris.edelmann@ovgu.de

21st of August 2025

Table of Contents

Aims and Ideas

Principal Component Analysis

Linear Discriminant Analysis

PCA vs LDA

Aim: Classify data

Example: We measured 200 spectra of different materials. We want to now, which material contains which ingredients.

Figure: Example of measured spectra

Example: We measured 200 spectra of different materials. We want to now, which material contains which ingredients.

Strategy:

reduce dimensions and get rid of noise

Figure: Example of measured spectra

Aim: Classify data

Example: We measured 200 spectra of different materials. We want to now, which material contains which ingredients.

Strategy:

- reduce dimensions and get rid of noise
- optimize distances
- only linear transformations

Figure: Reduced to two dimensions

Aim: Classify data

Example: We measured 200 spectra of different materials. We want to now, which material contains which ingredients.

Strategy:

- reduce dimensions and get rid of noise
- optimize distances
- only linear transformations
- criteria for classification

Figure: Easier to decide between classes

Principal Component Analysis

LDA

Observations

OTTO VON GUERICKE UNIVERSITÄT MAGDEBURG

FACULTY OF

MATHEMATICS

Observations

Typical spectrum

- high dimensional (every observed wavelength is new dimension)
- highly correlated (neighboring wavelengths have similar intensity)
- noisy
- few characteristic peaks

Decompose into few spectra (= change of basis, e.g. peaks)

Observations

Typical spectrum

- high dimensional (every observed wavelength is new dimension)
- highly correlated (neighboring wavelengths have similar intensity)
- noisv
- few characteristic peaks

PCA

Decompose into few spectra (= change of basis, e.g. peaks)

Prerequisites for PCA

- Standardize (0 mean and unit variance)
- Correlated data

Mathematical formulation

Let v^1 , v^2 be two instances (e.g. spectra) and mean-free. Recall, the correlation of both vectors is given by the scalar product:

$$\langle v^1, v^2 \rangle = \sum_{i=1}^n v_i^1 v_i^2 \tag{1}$$

Input: m instances with n attributes each

See the data as an $m \times n$ -matrix A

The covariance matrix is

$$Cov(A, A) = A^{T} \cdot A = \begin{pmatrix} \langle v^{1}, v^{1} \rangle & \langle v^{1}, v^{2} \rangle & \dots & \langle v^{1}, v^{n} \rangle \\ \langle v^{2}, v^{1} \rangle & \langle v^{2}, v^{2} \rangle & \dots & \langle v^{2}, v^{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle v^{n}, v^{1} \rangle & \langle v^{n}, v^{2} \rangle & \dots & \langle v^{n}, v^{n} \rangle \end{pmatrix}$$
(2)

Mathematical formulation II

$$Cov(A, A) = A^{T} \cdot A = \begin{pmatrix} \langle v^{1}, v^{1} \rangle & \langle v^{1}, v^{2} \rangle & \dots & \langle v^{1}, v^{n} \rangle \\ \langle v^{2}, v^{1} \rangle & \langle v^{2}, v^{2} \rangle & \dots & \langle v^{2}, v^{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle v^{n}, v^{1} \rangle & \langle v^{n}, v^{2} \rangle & \dots & \langle v^{n}, v^{n} \rangle \end{pmatrix}$$
(3)

- ► Compute Eigenvalues and Eigenvectors of $A^T A$ (or SVD from A)
- Eigenvectors are called principal components (PCs)
- ► Eigenvalues are the relevance of the PC

Usage: Dimensional reduction

Take only take first few PCs

- contain most of the information
- PCs are linear independent and uncorrelated
- first Eigenvalues are easy to compute (Power Method, QR)
- unimportant PCs contain mostly noise

Usage: Dimensional reduction

Take only take first few PCs

- contain most of the information
- PCs are linear independent and uncorrelated
- first Eigenvalues are easy to compute (Power Method, QR)
- unimportant PCs contain mostly noise

Unsupervised learning

- Standardize data for every wavelength(mean 0, variance 1)
- Calculate Eigenvalues and Eigenvectors of A^T · A

Example

- Standardize data for every wavelength(mean 0, variance 1)
- Calculate Eigenvalues and Eigenvectors of A^T · A
- 3. Look at variance ratio (take up to 80%) e.g. PC1: 70%, PC2: 10%, PC3: 6%, PC4: 2%,...
- 4. Plot PCs against each other

Figure: PC1 vs PC2

Standardize data for every wavelength(mean 0, variance 1)

- Calculate Eigenvalues and Eigenvectors of A^T · A
- Look at variance ratio (take up to 80%) e.g. PC1: 70%, PC2: 10%, PC3: 6%, PC4: 2%,...
- 4. Plot PCs against each other

Maybe additional data can help.

Figure: PC1 vs PC2

Linear Discriminant Analysis

Overview LDA

Linear Discriminant Analysis (LDA):

- classifier (sorts unknown data into known classes)
- LDA is a supervised method
- maximizes between-class variance
- minimizes within-class variance
- finds a decision boundary

Prerequisites for LDA

 data is linearly independent Gaussian distributed

Figure: Idea of LDA

LDA

Mathematical formulation

Given N instances $v_i \in \mathbb{R}^d$, separated into K classes C_1, \ldots, C_K . Define mean vector for each class C_i , $m_i = \frac{1}{|C_i|} \sum_{v \in C_i} v \in \mathbb{R}^d$ and the overall mean, $m = \frac{1}{N} \sum_{i=0}^{N} v_i \in \mathbb{R}^d$

Between-class variance (to maximize):

$$S_B = \sum_{i=1}^K |C_i| (m_i - m)(m_i - m)^T \in \mathbb{R}^{d \times d}$$

Within-class variance (to minimize):

$$S_W = \sum_{k=1}^K \sum_{x_i \in C_k} (x_i - m_k)(x_i - m_k)^T \in \mathbb{R}^{d \times d}$$

Mathematical formulation II

$$S_B = \sum_{i=1}^K |C_i| (m_i - m)(m_i - m)^T \qquad S_W = \sum_{k=1}^K \sum_{x_i \in C_k} (x_i - m_k)(x_i - m_k)^T \quad (4)$$

Find transformation $W: \mathbb{R}^d \to \mathbb{R}^l \ (l \leq d)$ to maximize

$$\mathcal{L}(W,\lambda) = W^{\mathsf{T}} S_{\mathsf{B}} W - \lambda (W^{\mathsf{T}} S_{\mathsf{W}} W - 1)$$
 (5)

Mathematical formulation II

$$S_B = \sum_{i=1}^K |C_i| (m_i - m)(m_i - m)^T \qquad S_W = \sum_{k=1}^K \sum_{x_i \in C_k} (x_i - m_k)(x_i - m_k)^T \quad (4)$$

Find transformation $W: \mathbb{R}^d \to \mathbb{R}^l \ (l \leq d)$ to maximize

$$\mathcal{L}(W,\lambda) = W^{\mathsf{T}} S_{\mathsf{B}} W - \lambda (W^{\mathsf{T}} S_{\mathsf{W}} W - 1)$$
 (5)

$$\frac{\partial \mathcal{L}}{\partial W} = 2S_B W - 2\lambda S_W W = 0$$

LDA

Mathematical formulation II

$$S_B = \sum_{i=1}^K |C_i| (m_i - m)(m_i - m)^T \qquad S_W = \sum_{k=1}^K \sum_{x_i \in C_k} (x_i - m_k)(x_i - m_k)^T \quad (4)$$

Find transformation $W: \mathbb{R}^d \to \mathbb{R}^l \ (l < d)$ to maximize

$$\mathcal{L}(W,\lambda) = W^{\mathsf{T}} S_{\mathsf{B}} W - \lambda (W^{\mathsf{T}} S_{\mathsf{W}} W - 1)$$
 (5)

$$\frac{\partial \mathcal{L}}{\partial W} = 2S_B W - 2\lambda S_W W = 0 \quad \Rightarrow \quad S_B W = \lambda S_W W \tag{6}$$

Decision Boundary

Figure: Where to place decision boundary?

LDA

MATHEMATICS

Figure: Where to place decision boundary?

Decision Boundary

- W gives a new coordinate system
- ▶ set decision boundary in 2d, s.t.

$$\frac{\#Upper}{\#Lower} = \frac{|C_1|}{|C_2|}$$

Figure: Where to place decision boundary?

Decision Boundary

Classification in Reduced Subspace

- W gives a new coordinate system
- ▶ set decision boundary in 2d, s.t.

$$\frac{\#Upper}{\#Lower} = \frac{|C_1|}{|C_2|}$$

Do this in 2d successively,

PCA vs LDA

PCA

LDA

Comparison PCA vs LDA

	PCA	LDA
Input	correlated	linearly independent
Output	linearly independent	classes
Purpose	dimensional reduction	classification
learning	unsupervised	supervised

Comparison PCA vs LDA

	PCA	LDA
Input	correlated	linearly independent
Output	linearly independent	classes
Purpose	dimensional reduction	classification
learning	unsupervised	supervised

similar applications because

- classes and PCs are correlated
- ► LDA works with weakly correlated data too

Comparison PCA vs LDA

	PCA	LDA
Input	correlated	linearly independent
Output	linearly independent	classes
Purpose	dimensional reduction	classification
learning	unsupervised	supervised

similar applications because

- classes and PCs are correlated
- ► LDA works with weakly correlated data too

Best: PCA and LDA

Questions

