Numerical Methods for Bayesian Inverse Problems

Lecture 2: Bayesian Approach to Inverse Problems

Robert Scheichl

Institute for Mathematics & IWR, Heidelberg University

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Autumn School – "Uncertainty Quantification for High-Dimensional Problems" CWI Amsterdam, October 7-11, 2024

(Thanks to Björn Sprungk, TU Freiberg)

Brief Recap

Observational model

$$y = \mathcal{G}(u) + \eta$$

- Inverse problems are typically ill-posed!
- Deterministic approach and (frequentist) statistical approach yield regularized least-squares problem

$$\underset{u}{\operatorname{argmin}} \, \frac{1}{2} \|y - \mathcal{G}(u)\|^2 + \alpha R(u)$$

which is a large-scale, deterministic (nonlinear) optimization problem

- Proper choice of the regularization term R and the regularization parameter α are crucial!
- No quantification of the uncertainty in the unknown u!

Bayesian Approach to Inverse Problems

The Bayesian Model

Besides random noise η we also assume now the unknown u to be random!

The Bayesian Model

Besides random noise η we also assume now the unknown u to be random!

Bayesian data model

$$Y = \mathcal{G}(U) + \eta,$$

where

- U is a random variable in $\mathcal X$ following a prior distribution π_0 (for simplicity for the moment only finite dimensional $\mathcal X\subseteq\mathbb R^n$)
- ullet η is a random variable in \mathbb{R}^d following a distribution π_{noise}
- ullet U and η are stochastically independent
- ullet $\mathcal{G}\colon \mathcal{X} o \mathbb{R}^d$ is known (and measurable)

The Bayesian Model

Besides random noise η we also assume now the unknown u to be random!

Bayesian data model

$$Y = \mathcal{G}(U) + \eta,$$

where

- U is a random variable in $\mathcal X$ following a prior distribution π_0 (for simplicity for the moment only finite dimensional $\mathcal X\subseteq\mathbb R^n$)
- ullet η is a random variable in \mathbb{R}^d following a distribution π_{noise}
- ullet U and η are stochastically independent
- ullet $\mathcal{G}\colon \mathcal{X} o \mathbb{R}^d$ is known (and measurable)

Bayesian statistical model

is a triple $(\mathcal{Y}, \mathcal{P}, \pi_0)$ consisting of a data space \mathcal{Y} , a family of probability distributions $\mathcal{P} = \{\pi_{y|u} \colon u \in \mathcal{X}\}$, and a prior probability distribution π_0 on \mathcal{X}

How a Bayesian learns from data

• Before observational data is available, the Bayesian encodes prior knowledge on unknown u in the prior distribution π_0 .

How a Bayesian learns from data

- Before observational data is available, the Bayesian encodes prior knowledge on unknown u in the prior distribution π_0 .
- ullet Given observational data $y \in \mathbb{R}^d$ as realization of the observable

$$Y = \mathcal{G}(U) + \eta, \qquad U \sim \pi_0, \ \eta \sim \pi_{\mathsf{noise}} \ \ \mathsf{independent}$$

the Bayesian updates his prior knowledge π_0 taking into account the information provided by the occured event Y=y .

How a Bayesian learns from data

- Before observational data is available, the Bayesian encodes prior knowledge on unknown u in the prior distribution π_0 .
- ullet Given observational data $y \in \mathbb{R}^d$ as realization of the observable

$$Y = \mathcal{G}(U) + \eta, \qquad U \sim \pi_0, \,\, \eta \sim \pi_{\mathsf{noise}} \,\,\, \mathsf{independent}$$

the Bayesian updates his prior knowledge π_0 taking into account the information provided by the occured event Y=y .

- This update/learning from data is done
 - by conditioning the prior $U \sim \pi_0$ on the event Y = y,
 - ullet yielding a conditioned or posterior distribution $\pi_{u|y}$ for the unknown u
 - ullet that represents current knowledge about u and is explicitly given by Bayes' rule.

Bayes' Rule

ullet Consider two events H and D, e.g.,

 $H={\sf Person}$ has a desease, $D={\sf Person}$ has a positive diagnosis test

ullet Consider two events H and D, e.g.,

 $H = \text{Person has a desease}, \quad D = \text{Person has a positive diagnosis test}$

ullet Task: Find conditional probability that H is true if we know D has occured.

- ullet Consider two events H and D, e.g.,
 - $H = \mathsf{Person}$ has a desease, $D = \mathsf{Person}$ has a positive diagnosis test
- ullet Task: Find conditional probability that H is true if we know D has occured.
- Formally,

$$\mathbb{P}(H \mid D) := \frac{\mathbb{P}(H \cap D)}{\mathbb{P}(D)}$$

ullet Consider two events H and D, e.g.,

 $H = \mathsf{Person}$ has a desease, $D = \mathsf{Person}$ has a positive diagnosis test

- ullet Task: Find conditional probability that H is true if we know D has occured.
- Formally,

$$\mathbb{P}(H \mid D) := \frac{\mathbb{P}(H \cap D)}{\mathbb{P}(D)}$$

Since analogously,

$$\mathbb{P}(D \mid H) = \frac{\mathbb{P}(D \cap H)}{\mathbb{P}(H)}$$

ullet Consider two events H and D, e.g.,

 $H={\sf Person}$ has a desease, $D={\sf Person}$ has a positive diagnosis test

- ullet Task: Find conditional probability that H is true if we know D has occured.
- Formally,

$$\mathbb{P}(H \mid D) := \frac{\mathbb{P}(H \cap D)}{\mathbb{P}(D)}$$

Since analogously,

$$\mathbb{P}\left(D\mid H\right)\,\mathbb{P}(H)=\mathbb{P}(H\cap D)$$

ullet Consider two events H and D, e.g.,

 $H={\sf Person}$ has a desease, $D={\sf Person}$ has a positive diagnosis test

- ullet Task: Find conditional probability that H is true if we know D has occured.
- Formally,

$$\mathbb{P}(H \mid D) := \frac{\mathbb{P}(H \cap D)}{\mathbb{P}(D)}$$

• Since analogously,

$$\mathbb{P}\left(D\mid H\right)\,\mathbb{P}(H)=\mathbb{P}(H\cap D)$$

Bayes' rule

$$\mathbb{P}\left(H\mid D\right) = \frac{1}{\mathbb{P}(D)}\,\mathbb{P}\left(D\mid H\right)\,\mathbb{P}(H)$$

Thomas Bayes (1701 – 1761)

ullet Consider two events H and D, e.g.,

 $H = \text{Person has a desease}, \quad D = \text{Person has a positive diagnosis test}$

- ullet Task: Find conditional probability that H is true if we know D has occured.
- Formally,

$$\mathbb{P}(H \mid D) := \frac{\mathbb{P}(H \cap D)}{\mathbb{P}(D)}$$

• Since analogously,

$$\mathbb{P}\left(D\mid H\right)\,\mathbb{P}(H) = \mathbb{P}(H\cap D)$$

Bayes' rule

$$\mathbb{P}\left(H\mid D\right) = \frac{1}{\mathbb{P}(D)}\,\mathbb{P}\left(D\mid H\right)\,\mathbb{P}(H)$$

Pierre-Simon Laplace (1749 – 1827)

• Often conditional probability $\mathbb{P}(D \mid H)$ easier to determine than $\mathbb{P}(D \cap H)$.

- Often conditional probability $\mathbb{P}(D \mid H)$ easier to determine than $\mathbb{P}(D \cap H)$.
- Classical application: In medicine we usually know
 - Prevalence of a desease: $\pi_0 = \mathbb{P}(H)$
 - $\bullet \ \textit{Sensitivity} \ \text{of the diagnosis test:} \quad \ p_{\text{sens}} = \mathbb{P}(D \mid H)$
 - Specificity of the diagnosis test: $p_{\mathrm{spec}} = \mathbb{P}(D^c \mid H^c)$

where D^c and H^c denote the corresponding counter events

- Often conditional probability $\mathbb{P}(D \mid H)$ easier to determine than $\mathbb{P}(D \cap H)$.
- Classical application: In medicine we usually know
 - Prevalence of a desease: $\pi_0 = \mathbb{P}(H)$
 - $\bullet \ \textit{Sensitivity} \ \text{of the diagnosis test:} \quad \ p_{\text{sens}} = \mathbb{P}(D \mid H)$
 - Specificity of the diagnosis test: $p_{\text{spec}} = \mathbb{P}(D^c \mid H^c)$

where D^c and H^c denote the corresponding counter events

 \bullet Thus, given a positive diagnosis test result D by the total law of probabilities

$$\mathbb{P}(D) = \mathbb{P}(D \mid H) \, \mathbb{P}(H) + \mathbb{P}(D \mid H^c) \, \mathbb{P}(H^c)$$

- Often conditional probability $\mathbb{P}(D \mid H)$ easier to determine than $\mathbb{P}(D \cap H)$.
- Classical application: In medicine we usually know
 - Prevalence of a desease: $\pi_0 = \mathbb{P}(H)$
 - Sensitivity of the diagnosis test: $p_{\mathsf{sens}} = \mathbb{P}(D \mid H)$
 - Specificity of the diagnosis test: $p_{\mathsf{spec}} = \mathbb{P}(D^c \mid H^c)$

where D^c and H^c denote the corresponding counter events

 \bullet Thus, given a positive diagnosis test result D by the total law of probabilities

$$\mathbb{P}(D) = \mathbb{P}(D \mid H) \, \mathbb{P}(H) + \mathbb{P}(D \mid H^c) \, \mathbb{P}(H^c)$$

it follows that

$$\mathbb{P}(H \mid D) = \frac{1}{\mathbb{P}(D)} \mathbb{P}(D \mid H) \mathbb{P}(H)$$

- Often conditional probability $\mathbb{P}(D \mid H)$ easier to determine than $\mathbb{P}(D \cap H)$.
- Classical application: In medicine we usually know
 - Prevalence of a desease: $\pi_0 = \mathbb{P}(H)$
 - Sensitivity of the diagnosis test: $p_{\mathsf{sens}} = \mathbb{P}(D \mid H)$
 - Specificity of the diagnosis test: $p_{\text{spec}} = \mathbb{P}(D^c \mid H^c)$

where D^c and H^c denote the corresponding counter events

ullet Thus, given a positive diagnosis test result D by the total law of probabilities

$$\mathbb{P}(D) = \mathbb{P}(D \mid H) \, \mathbb{P}(H) + \mathbb{P}(D \mid H^c) \, \mathbb{P}(H^c) = p_{\mathsf{sens}} \, \pi_0 + (1 - p_{\mathsf{spec}}) \, (1 - \pi_0)$$

it follows that

$$\mathbb{P}\left(H\mid D\right) = \frac{p_{\mathsf{sens}}}{p_{\mathsf{sens}}\,\pi_0 + \left(1 - p_{\mathsf{spec}}\right)\left(1 - \pi_0\right)}\,\pi_0$$

Interpretation

Bayes' rule for conditional/posterior probabilities

$$\mathbb{P}(H \mid D) = \frac{1}{\mathbb{P}(D)} \mathbb{P}(D \mid H) \mathbb{P}(H)$$

where

- ullet $\mathbb{P}(H)$ is the prior probability
- $\mathbb{P}(D \mid H)$ is the likelihood for the event D given H is true
- $1/\mathbb{P}(D)$ serves as normalizing constant with $\mathbb{P}(D)$ called evidence

Interpretation

Bayes' rule for conditional/posterior probabilities

$$\mathbb{P}(H \mid D) = \frac{1}{\mathbb{P}(D)} \mathbb{P}(D \mid H) \mathbb{P}(H)$$

where

- ullet $\mathbb{P}(H)$ is the prior probability
- $\mathbb{P}(D \mid H)$ is the likelihood for the event D given H is true
- ullet $1/\mathbb{P}(D)$ serves as normalizing constant with $\mathbb{P}(D)$ called evidence

Bayes' rule updates the prior probability by reweighting it with the likelihood of the observed data.

Towards Bayes' rule for conditional probability densities

- \bullet Consider pair (U,Y) of random variables with values $(u,y) \in \mathbb{R}^n \times \mathbb{R}^d$ and
- suppose the random vector (U,Y) follows a joint distribution $(U,Y) \sim \pi$ on \mathbb{R}^{n+d} with joint probability density function $\pi\colon \mathbb{R}^n\times\mathbb{R}^d\to [0,\infty)$, i.e., for subsets $H\subseteq\mathbb{R}^n$ and $D\subset\mathbb{R}^d$

$$\mathbb{P}(U \in H, Y \in D) = \int_{H \times D} \pi(u, y) \ d(u, y) = \int_{H} \int_{D} \pi(u, y) \ dy \ du$$

Towards Bayes' rule for conditional probability densities

- \bullet Consider pair (U,Y) of random variables with values $(u,y)\in\mathbb{R}^n\times\mathbb{R}^d$ and
- suppose the random vector (U,Y) follows a joint distribution $(U,Y) \sim \pi$ on \mathbb{R}^{n+d} with joint probability density function $\pi\colon \mathbb{R}^n\times\mathbb{R}^d\to [0,\infty)$, i.e., for subsets $H\subseteq\mathbb{R}^n$ and $D\subset\mathbb{R}^d$

$$\mathbb{P}(U \in H, Y \in D) = \int_{H \times D} \pi(u, y) \ \mathrm{d}(u, y) = \int_{H} \int_{D} \pi(u, y) \ \mathrm{d}y \ \mathrm{d}u$$

• For U and Y we have the marginal distributions $U \sim \pi_U$, $Y \sim \pi_Y$ given by the marginal probability densities $\pi_U \colon \mathbb{R}^n \to [0, \infty)$, $\pi_Y \colon \mathbb{R}^d \to [0, \infty)$

$$\pi_U(u) := \int_{\mathbb{R}^d} \pi(u,y) \ \mathrm{d}y, \qquad \pi_Y(y) := \int_{\mathbb{R}^n} \pi(u,y) \ \mathrm{d}u.$$

Towards Bayes' rule for conditional probability densities

- \bullet Consider pair (U,Y) of random variables with values $(u,y) \in \mathbb{R}^n \times \mathbb{R}^d$ and
- suppose the random vector (U,Y) follows a joint distribution $(U,Y) \sim \pi$ on \mathbb{R}^{n+d} with joint probability density function $\pi\colon \mathbb{R}^n\times\mathbb{R}^d\to [0,\infty)$, i.e., for subsets $H\subseteq \mathbb{R}^n$ and $D\subset \mathbb{R}^d$

$$\mathbb{P}(U \in H, Y \in D) = \int_{H \times D} \pi(u, y) \ \mathrm{d}(u, y) = \int_{H} \int_{D} \pi(u, y) \ \mathrm{d}y \ \mathrm{d}u$$

• For U and Y we have the marginal distributions $U \sim \pi_U$, $Y \sim \pi_Y$ given by the marginal probability densities $\pi_U \colon \mathbb{R}^n \to [0, \infty)$, $\pi_Y \colon \mathbb{R}^d \to [0, \infty)$

$$\pi_U(u) := \int_{\mathbb{R}^d} \pi(u, y) \, dy, \qquad \pi_Y(y) := \int_{\mathbb{R}^n} \pi(u, y) \, du.$$

• The conditional probability density $\pi_{U|Y}(\cdot;y)\colon \mathbb{R}^n \to [0,\infty)$ of U given Y=y and vice versa, $\pi_{Y|U}(\cdot;u)\colon \mathbb{R}^d \to [0,\infty)$ of Y given U=u are defined as

$$\pi_{U|Y}(u;y) := \frac{\pi(u,y)}{\pi_Y(y)}, \qquad \pi_{Y|U}(y;u) := \frac{\pi(u,y)}{\pi_U(u)}.$$

• Independence: If U and Y are independent, then for all $H \subseteq \mathbb{R}^n$, $D \subseteq \mathbb{R}^d$

$$\mathbb{P}(U \in H, Y \in D) = \mathbb{P}(U \in H) \,\mathbb{P}(Y \in D) \quad \Leftrightarrow \quad \pi(u, y) = \pi_U(u) \,\pi_Y(y)$$

We then write for the joint probability measure $\pi=\pi_U\otimes\pi_Y$.

• Independence: If U and Y are independent, then for all $H \subseteq \mathbb{R}^n$, $D \subseteq \mathbb{R}^d$

$$\mathbb{P}(U \in H, Y \in D) = \mathbb{P}(U \in H) \,\mathbb{P}(Y \in D) \quad \Leftrightarrow \quad \pi(u, y) = \pi_U(u) \,\pi_Y(y)$$

We then write for the joint probability measure $\pi = \pi_U \otimes \pi_Y$.

ullet For any (measurable) $H\subseteq \mathbb{R}^n$ we have

$$\mathbb{P}(U \in H \mid Y = y) = \int_{H} \pi_{U \mid Y}(u; y) \, du$$

• Independence: If U and Y are independent, then for all $H \subseteq \mathbb{R}^n$, $D \subseteq \mathbb{R}^d$

$$\mathbb{P}(U \in H, Y \in D) = \mathbb{P}(U \in H) \,\mathbb{P}(Y \in D) \quad \Leftrightarrow \quad \pi(u, y) = \pi_U(u) \,\pi_Y(y)$$

We then write for the joint probability measure $\pi = \pi_U \otimes \pi_Y$.

ullet For any (measurable) $H\subseteq \mathbb{R}^n$ we have

$$\mathbb{P}(U \in H \mid Y = y) = \int_{H} \pi_{U \mid Y}(u; y) \, du$$

but for (measurable) $D \in \mathbb{R}^d$

$$\mathbb{P}(U \in H \mid Y \in D) \neq \int_D \mathbb{P}(U \in H \mid Y = y) \, dy = \int_{H \times D} \pi_{U|Y}(u; y) \, d(u, y)$$

• Independence: If U and Y are independent, then for all $H \subseteq \mathbb{R}^n$, $D \subseteq \mathbb{R}^d$

$$\mathbb{P}(U \in H, Y \in D) = \mathbb{P}(U \in H) \,\mathbb{P}(Y \in D) \quad \Leftrightarrow \quad \pi(u, y) = \pi_U(u) \,\pi_Y(y)$$

We then write for the joint probability measure $\pi = \pi_U \otimes \pi_Y$.

ullet For any (measurable) $H\subseteq \mathbb{R}^n$ we have

$$\mathbb{P}(U \in H \mid Y = y) = \int_{H} \pi_{U|Y}(u; y) \, du$$

but for (measurable) $D \in \mathbb{R}^d$

$$\mathbb{P}(U \in H \mid Y \in D) \neq \int_D \mathbb{P}(U \in H \mid Y = y) \, dy = \int_{H \times D} \pi_{U|Y}(u; y) \, d(u, y)$$

However, we can write

$$\mathbb{P}(U \in H \mid Y \in D) = \int_{H} \pi_{U\mid Y \in D}(u) \, du, \qquad \pi_{U\mid Y \in D}(u) := \frac{\pi(u, y)}{\int_{D} \pi_{Y}(y) \, dy}$$

Bayes' rule

Given pair (U,Y) with joint probability density function $\pi\colon\mathbb{R}^n\times\mathbb{R}^d\to[0,\infty)$ and

$$\pi_{U|Y}(u;y) = \frac{\pi(u,y)}{\pi_Y(y)}, \qquad \pi(u,y) = \pi_{Y|U}(y;u) \,\pi_U(u)$$

we immediately obtain

Bayes' rule

Given pair (U,Y) with joint probability density function $\pi\colon\mathbb{R}^n\times\mathbb{R}^d\to[0,\infty)$ and

$$\pi_{U|Y}(u;y) = \frac{\pi(u,y)}{\pi_Y(y)}, \qquad \pi(u,y) = \pi_{Y|U}(y;u) \,\pi_U(u)$$

we immediately obtain

Bayes' rule for conditional probability densities

$$\pi_{U|Y}(u;y) = \frac{1}{\pi_Y(y)} \pi_{Y|U}(y;u) \pi_U(u)$$

Bayesian Inference

Bayesian inference

Bayesian statistical model (absolutely continuous case in \mathbb{R}^n)

is a triple $(\mathbb{R}^d, \mathcal{P}, \pi_0)$ with a family of distributions $\mathcal{P} = \{\pi_{y|u} \colon u \in \mathcal{X}\}$ and prior distribution π_0 on $\mathcal{X} \subseteq \mathbb{R}^n$ where each data distribution $\pi_{y|u} \in \mathcal{P}$ and π_0 have probability density functions

$$\pi_{y|u} \colon \mathbb{R}^d \to [0, \infty), \qquad \pi_0 \colon \mathcal{X} \to [0, \infty)$$

For consistent notation we write sloppily $\pi_{y|u}(y)=\pi_{Y|U}(y;u)$ and $\pi_{u|y}(u)=\pi_{U|Y}(u;y).$

Bayesian inference

Bayesian statistical model (absolutely continuous case in \mathbb{R}^n)

is a triple $(\mathbb{R}^d, \mathcal{P}, \pi_0)$ with a family of distributions $\mathcal{P} = \{\pi_{y|u} \colon u \in \mathcal{X}\}$ and prior distribution π_0 on $\mathcal{X} \subseteq \mathbb{R}^n$ where each data distribution $\pi_{y|u} \in \mathcal{P}$ and π_0 have probability density functions

$$\pi_{y|u} \colon \mathbb{R}^d \to [0, \infty), \qquad \pi_0 \colon \mathcal{X} \to [0, \infty)$$

For consistent notation we write sloppily $\pi_{y|u}(y) = \pi_{Y|U}(y;u)$ and $\pi_{u|y}(u) = \pi_{U|Y}(u;y)$.

• This yields joint probability density

$$\pi(u,y) := \pi_{y|u}(y) \,\pi_0(u)$$

Bayesian inference

Bayesian statistical model (absolutely continuous case in \mathbb{R}^n)

is a triple $(\mathbb{R}^d, \mathcal{P}, \pi_0)$ with a family of distributions $\mathcal{P} = \{\pi_{y|u} \colon u \in \mathcal{X}\}$ and prior distribution π_0 on $\mathcal{X} \subseteq \mathbb{R}^n$ where each data distribution $\pi_{y|u} \in \mathcal{P}$ and π_0 have probability density functions

$$\pi_{y|u} \colon \mathbb{R}^d \to [0, \infty), \qquad \pi_0 \colon \mathcal{X} \to [0, \infty)$$

For consistent notation we write sloppily $\pi_{y|u}(y)=\pi_{Y|U}(y;u)$ and $\pi_{u|y}(u)=\pi_{U|Y}(u;y)$.

This yields joint probability density

$$\pi(u,y) := \pi_{y|u}(y) \,\pi_0(u)$$

• Thus, given data $y \in \mathbb{R}^d$ we obtain the posterior density

$$\pi_{u|y}(u) = \frac{1}{\int_{\mathcal{X}} \pi_{y|u}(y) \, \pi_0(u) \, \mathrm{d}u} \, \pi_{y|u}(y) \, \pi_0(u)$$

via Bayes' rule, with the three ingredients prior, likelihood, and evidence.

Bayesian inference

Bayesian statistical model (absolutely continuous case in \mathbb{R}^n)

is a triple $(\mathbb{R}^d, \mathcal{P}, \pi_0)$ with a family of distributions $\mathcal{P} = \{\pi_{y|u} \colon u \in \mathcal{X}\}$ and prior distribution π_0 on $\mathcal{X} \subseteq \mathbb{R}^n$ where each data distribution $\pi_{y|u} \in \mathcal{P}$ and π_0 have probability density functions

$$\pi_{y|u} \colon \mathbb{R}^d \to [0, \infty), \qquad \pi_0 \colon \mathcal{X} \to [0, \infty)$$

For consistent notation we write sloppily $\pi_{y|u}(y)=\pi_{Y|U}(y;u)$ and $\pi_{u|y}(u)=\pi_{U|Y}(u;y)$.

This yields joint probability density

$$\pi(u,y) := \pi_{y|u}(y) \, \pi_0(u)$$

ullet Moreover, given i.i.d. data $y_1,\ldots,y_m\in\mathbb{R}^d$ we obtain the posterior density

$$\pi_{u|y}(u) = \frac{1}{\int_{\mathcal{X}} \left(\prod_{j=1}^{m} \pi_{y|u}(y_j) \right) \pi_0(u) du} \left(\prod_{j=1}^{m} \pi_{y|u}(y_j) \right) \pi_0(u)$$

via Bayes' rule, with the three ingredients prior, likelihood, and evidence.

Bayesian inverse problems

Bayesian data model (in \mathbb{R}^n with Gaussian noise)

$$Y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

where $\mathcal{G}\colon \mathcal{X} o \mathbb{R}^d$, $\mathcal{X} \subseteq \mathbb{R}^n$

Bayesian inverse problems

Bayesian data model (in \mathbb{R}^n with Gaussian noise)

$$Y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

where $\mathcal{G} \colon \mathcal{X} \to \mathbb{R}^d$, $\mathcal{X} \subseteq \mathbb{R}^n$

The likelihood simply is (using affine invariance of Gaussian)

$$\pi_{y|u}(y) \propto \exp\left(-\frac{1}{2}||y - \mathcal{G}(u)||_{\Sigma^{-1}}^2\right)$$

• We assume a prior π_0 with probability density $\pi_0 \colon \mathcal{X} \to [0, \infty)$

Bayesian inverse problems

Bayesian data model (in \mathbb{R}^n with Gaussian noise)

$$Y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

where $\mathcal{G} \colon \mathcal{X} \to \mathbb{R}^d$, $\mathcal{X} \subseteq \mathbb{R}^n$

The likelihood simply is (using affine invariance of Gaussian)

$$\pi_{y|u}(y) \propto \exp\left(-\frac{1}{2}||y - \mathcal{G}(u)||_{\Sigma^{-1}}^2\right)$$

• We assume a prior π_0 with probability density $\pi_0 \colon \mathcal{X} \to [0, \infty)$

Bayesian inverse problem (in \mathbb{R}^n with Gaussian noise)

Given data $y \in \mathbb{R}^d$ the **solution** to the Bayesian inverse problem of infering u given $y = \mathcal{G}(U) + \eta$ is the conditional or posterior distribution $\pi_{u|y}$ given by the density

$$\pi_{u|y}(u) \propto \exp\left(-\frac{1}{2}||y - G(u)||_{\Sigma^{-1}}^{2}\right)\pi_{0}(u)$$

Example: Condition the prior $U \sim \mu_0 = \mathrm{N}(0,1)$ on the observation y=2 where

$$y = \mathcal{G}(U) + \eta,$$
 $\mathcal{G}(u) = u^2 + u,$ $\eta \sim N(0, \sigma^2)$

Example: Condition the prior $U \sim \mu_0 = N(0,1)$ on the observation y=2 where

$$y = \mathcal{G}(U) + \eta,$$
 $\mathcal{G}(u) = u^2 + u,$ $\eta \sim N(0, \sigma^2)$

Bayes' rule

$$\pi_{u|y}(u) \propto \exp\left(-\frac{1}{2\sigma^2}|2-u^2-u|^2\right) \exp\left(-\frac{1}{2}u^2\right)$$

Example: Condition the prior $U \sim \mu_0 = N(0,1)$ on the observation y=2 where

$$y = \mathcal{G}(U) + \eta, \qquad \mathcal{G}(u) = u^2 + u, \quad \eta \sim N(0, \sigma^2)$$

Bayes' rule

$$\pi_{u|y}(u) \propto \exp\left(-\frac{1}{2\sigma^2}|2-u^2-u|^2\right) \exp\left(-\frac{1}{2}u^2\right)$$

The **posterior distribution** $\pi_{u|y}$ describes our updated knowledge about u given data y and quantifies our remaining uncertainty!

ullet We consider the following boundary value problem on $D=\left[0,1\right]$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\exp(u_1)\frac{\mathrm{d}}{\mathrm{d}x}p(x)\right) = f(x), \qquad p(0) = p_0, \ p(1) = u_2$$

with unknown log-conductivity $u_1 \in \mathbb{R}$ and unknown boundary data $u_2 \in \mathbb{R}$

ullet We consider the following boundary value problem on D=[0,1]

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\exp(u_1)\frac{\mathrm{d}}{\mathrm{d}x}p(x)\right) = f(x), \qquad p(0) = p_0, \ p(1) = u_2$$

with unknown log-conductivity $u_1 \in \mathbb{R}$ and unknown boundary data $u_2 \in \mathbb{R}$

• We are given noisy data y=(27.5,79.7) for $y=\mathcal{G}(U)+\eta$ with

$$\mathcal{G}(u) = \begin{pmatrix} p(0.25) \\ p(0.75) \end{pmatrix}, \quad \eta \sim \mathcal{N}\left(0, \begin{pmatrix} 0.25 & 0 \\ 0 & 0.25 \end{pmatrix}\right).$$

For f and p_0 given, the forward map $\mathcal{G} \colon \mathbb{R}^2 \to \mathbb{R}^2$ is in fact given explicitly here, since the solution p can be computed analytically as a fct. of $(u_1, u_2)^{\top}$ (Exercise!)

ullet We consider the following boundary value problem on $D=\left[0,1\right]$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\exp(u_1)\frac{\mathrm{d}}{\mathrm{d}x}p(x)\right) = f(x), \qquad p(0) = p_0, \ p(1) = u_2$$

with unknown log-conductivity $u_1 \in \mathbb{R}$ and unknown boundary data $u_2 \in \mathbb{R}$

• We are given noisy data y=(27.5,79.7) for $y=\mathcal{G}(U)+\eta$ with

$$\mathcal{G}(u) = \left(\begin{array}{c} p(0.25) \\ p(0.75) \end{array}\right), \quad \eta \sim \mathcal{N}\left(0, \left(\begin{array}{cc} 0.25 & 0 \\ 0 & 0.25 \end{array}\right)\right).$$

For f and p_0 given, the forward map $\mathcal{G} \colon \mathbb{R}^2 \to \mathbb{R}^2$ is in fact given explicitly here, since the solution p can be computed analytically as a fct. of $(u_1, u_2)^{\top}$ (Exercise!)

As prior we assume

$$\pi_0 = N(0,1) \otimes U(90,110)$$

and obtain as posterior measure . . .

Posterior for data $y = (27.5, 79.7)^{\top}$:

Posterior for data $y = (27.5, 79.7)^{\top}$:

Posterior for data $y = (27.5, 79.7)^{\top}$:

For different data $\tilde{y} = (23.8, 71.3)^{\top}$ we obtain the entirely different posterior:

Gauss-Linear model

Given $A \in \mathbb{R}^{d \times n}$

$$Y = AU + \eta$$
, $U \sim N(u_0, C)$, $\eta \sim N(0, \Sigma)$ independent.

Gauss-Linear model

Given $A \in \mathbb{R}^{d \times n}$

$$Y = AU + \eta$$
, $U \sim N(u_0, C)$, $\eta \sim N(0, \Sigma)$ independent.

Then, for data Y=y the posterior distribution is also Gaussian and given explicitly by

$$\pi_{u|y} = \mathcal{N}(u_{\mathsf{PM}}^y, C^y)$$

where

$$u_{\mathsf{PM}}^{y} = CA^{\top} (ACA^{\top} + \Sigma)^{-1} (y - Au_0)$$
$$C^{y} = C - CA^{\top} (ACA^{\top} + \Sigma)^{-1} AC$$

Gauss-Linear model

Given $A \in \mathbb{R}^{d \times n}$

$$Y = AU + \eta$$
, $U \sim N(u_0, C)$, $\eta \sim N(0, \Sigma)$ independent.

Then, for data Y=y the posterior distribution is also Gaussian and given explicitly by

$$\pi_{u|y} = \mathcal{N}(u_{\mathsf{PM}}^y, C^y)$$

where

$$u_{\mathsf{PM}}^{y} = CA^{\top} (ACA^{\top} + \Sigma)^{-1} (y - Au_0)$$
$$C^{y} = C - CA^{\top} (ACA^{\top} + \Sigma)^{-1} AC$$

• Proof uses affine invariance and then factorisation ('completing the square').

Gauss-Linear model

Given $A \in \mathbb{R}^{d \times n}$

$$Y = AU + \eta,$$
 $U \sim N(u_0, C), \ \eta \sim N(0, \Sigma)$ independent.

Then, for data Y=y the posterior distribution is also Gaussian and given explicitly by

$$\pi_{u|y} = \mathcal{N}(u_{\mathsf{PM}}^y, C^y)$$

where

$$u_{\mathsf{PM}}^{y} = CA^{\top} (ACA^{\top} + \Sigma)^{-1} (y - Au_0)$$
$$C^{y} = C - CA^{\top} (ACA^{\top} + \Sigma)^{-1} AC$$

- Proof uses affine invariance and then factorisation ('completing the square').
- Observere the reduction in uncertainty in terms of the covariance matrix

$$C \ge C^y = C - CA^{\top} (ACA^{\top} + \Sigma)^{-1}AC$$
 (independent of $y!$)

This formula is also the core for the famous Kalman filter.

$$y = Au + \eta$$

• We saw in Lecture 1 that the the (classical) Tikhonov-regularized solution to this problem with regulariser $R(u):=\alpha\|u\|^2$ is

$$u^{\alpha} = (A^{\top}A + 2\alpha I)^{-1}A^{\top}y$$

$$y = Au + \eta$$

• We saw in Lecture 1 that the the (classical) Tikhonov-regularized solution to this problem with regulariser $R(u):=\alpha\|u\|^2$ is

$$u^{\alpha} = (A^{\top}A + 2\alpha I)^{-1}A^{\top}y$$

By the Sherman-Morrison-Woodbury formula we get

$$u^{\alpha} = (A^{\top} I_d A + 2\alpha I_n)^{-1} A^{\top} y$$
$$= \left[\frac{1}{2\alpha} I_n - \frac{1}{2\alpha} I_n A^{\top} \left(I_d + \frac{1}{2\alpha} A I_n A^{\top} \right)^{-1} \frac{1}{2\alpha} A I_n \right] A^{\top} y$$

$$y = Au + \eta$$

• We saw in Lecture 1 that the the (classical) Tikhonov-regularized solution to this problem with regulariser $R(u):=\alpha\|u\|^2$ is

$$u^{\alpha} = (A^{\top}A + 2\alpha I)^{-1}A^{\top}y$$

• By the Sherman-Morrison-Woodbury formula we get

$$u^{\alpha} = (A^{\top} I_d A + 2\alpha I_n)^{-1} A^{\top} y$$
$$= \frac{1}{2\alpha} A^{\top} \left[I_d - \left(I_d + \frac{1}{2\alpha} A A^{\top} \right)^{-1} \frac{1}{2\alpha} A A^{\top} \right] y$$

$$y = Au + \eta$$

• We saw in Lecture 1 that the the (classical) Tikhonov-regularized solution to this problem with regulariser $R(u):=\alpha\|u\|^2$ is

$$u^{\alpha} = (A^{\top}A + 2\alpha I)^{-1}A^{\top}y$$

• By the Sherman-Morrison-Woodbury formula we get

$$u^{\alpha} = (A^{\top} I_d A + 2\alpha I_n)^{-1} A^{\top} y$$

$$= \frac{1}{2\alpha} A^{\top} \left[I_d - \left(I_d + \frac{1}{2\alpha} A A^{\top} \right)^{-1} \frac{1}{2\alpha} A A^{\top} \right] y$$

$$= \frac{1}{2\alpha} A^{\top} \left(I_d + \frac{1}{2\alpha} A A^{\top} \right)^{-1} y$$

$$y = Au + \eta$$

• We saw in Lecture 1 that the the (classical) Tikhonov-regularized solution to this problem with regulariser $R(u):=\alpha\|u\|^2$ is

$$u^{\alpha} = (A^{\top}A + 2\alpha I)^{-1}A^{\top}y$$

• By the Sherman-Morrison-Woodbury formula we get

$$u^{\alpha} = (A^{\top} I_d A + 2\alpha I_n)^{-1} A^{\top} y$$

$$= \frac{1}{2\alpha} A^{\top} \left[I_d - \left(I_d + \frac{1}{2\alpha} A A^{\top} \right)^{-1} \frac{1}{2\alpha} A A^{\top} \right] y$$

$$= \frac{1}{2\alpha} A^{\top} \left(I_d + \frac{1}{2\alpha} A A^{\top} \right)^{-1} y$$

• For prior mean $u_0=0$, prior covariance $C=\frac{1}{2\alpha}I_n$, noise covariance $\Sigma=I_d$ coincides with posterior mean for Gaussian-linear Bayesian inverse problems:

$$u_{\mathsf{PM}}^y = CA^{\top}(ACA^{\top} + \Sigma)^{-1}y$$

Back to the general case

Gauss-Linear model

Given $A \in \mathbb{R}^{d \times n}$ and

$$Y = AU + \eta,$$
 $U \sim N(u_0, C), \ \eta \sim N(0, \Sigma)$ independent,

we have for data Y=y as posterior distribution $\pi_{u|y}=\mathrm{N}(u_{\mathsf{PM}}^y,C^y)$ where

$$u_{\mathsf{PM}}^y = CA^{\top} (ACA^{\top} + \Sigma)^{-1} (y - Au_0)$$

$$C^y = C - CA^{\top}(ACA^{\top} + \Sigma)^{-1}AC$$

Back to the general case (again using the Sherman-Morrison-Woodbury formula):

Gauss-Linear model

Given $A \in \mathbb{R}^{d \times n}$ and

$$Y = AU + \eta,$$
 $U \sim N(u_0, C), \ \eta \sim N(0, \Sigma)$ independent,

we have for data Y=y as posterior distribution $\pi_{u|y}=\mathrm{N}(u_{\mathrm{PM}}^y,C^y)$ where

$$\begin{split} u_{\mathsf{PM}}^y &= CA^\top (ACA^\top + \Sigma)^{-1} (y - Au_0) \\ &= (A^\top \Sigma^{-1} A + C^{-1})^{-1} \left[\Sigma A^\top y + C^{-1} u_0 \right] \\ C^y &= C - CA^\top (ACA^\top + \Sigma)^{-1} AC = \left(A^\top \Sigma^{-1} A + C^{-1} \right)^{-1} \end{split}$$

Thus, we recover (generalized) Tikhonov solution to (linear) inverse problem

$$\underset{u}{\operatorname{argmin}} \frac{1}{2} \|y - Au\|_{\Sigma^{-1}}^2 + \frac{1}{2} \|u - u_0\|_{C^{-1}}^2$$

and can associate with $\pi_{u|y}$ the Bayesian posterior uncertainty about $u_{ extsf{PM}}^y$.

• The **posterior distribution** $\pi_{u|y}$ is the formal solution to the Bayesian inverse problem and allows for uncertainty quantification.

- ullet The **posterior distribution** $\pi_{u|y}$ is the formal solution to the Bayesian inverse problem and allows for uncertainty quantification.
- ullet However, usually we also require a "single, best guess" for u, an estimate.

- The **posterior distribution** $\pi_{u|y}$ is the formal solution to the Bayesian inverse problem and allows for uncertainty quantification.
- ullet However, usually we also require a "single, best guess" for u, an estimate.
- ullet The two most common Bayesian (point) esimtates for u are
 - the posterior mean (PM)

$$u_{\mathsf{PM}}^{y} := \int_{\mathcal{X}} u \, \pi_{u|y}(u) \, du = \mathbb{E}_{\pi_{u|y}}[U]$$

Interpretation: "average guess" for u given posterior $\pi_{u|y}$

- ullet The **posterior distribution** $\pi_{u|y}$ is the formal solution to the Bayesian inverse problem and allows for uncertainty quantification.
- ullet However, usually we also require a "single, best guess" for u, an estimate.
- ullet The two most common Bayesian (point) esimtates for u are
 - the posterior mean (PM)

$$u_{\mathsf{PM}}^y := \int_{\mathcal{X}} u \, \pi_{u|y}(u) \, du = \mathbb{E}_{\pi_{u|y}}[U]$$

Interpretation: "average guess" for u given posterior $\pi_{u|y}$

1 the maximum a posteriori estiamte (MAP)

$$u_{\mathsf{MAP}}^y \in \operatorname*{argmax}_{u \in \mathcal{X}} \pi_{u|y}(u)$$

Interpretation: "Most probable/likely guess" for u given posterior $\pi_{u|y}$

$$y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

• Assuming prior density $\pi_0 \colon \mathcal{X} \to (0, \infty)$ we have

$$u_{\mathsf{MAP}}^y \in \operatorname*{argmax}_{u \in \mathcal{X}} \pi_{u|y}(u)$$

$$y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

• Assuming prior density $\pi_0 \colon \mathcal{X} \to (0, \infty)$ we have

$$u_{\mathsf{MAP}}^y \in \operatorname*{argmax}_{u \in \mathcal{X}} \Big\{ \exp\left(-\tfrac{1}{2} \|y - \mathcal{G}(u)\|_{\Sigma^{-1}}^2\right) \ \pi_0(u) \Big\}$$

$$y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

• Assuming prior density $\pi_0 \colon \mathcal{X} \to (0, \infty)$ we have

$$u_{\mathsf{MAP}}^y \in \operatorname*{argmin}_{u \in \mathcal{X}} \left\{ \tfrac{1}{2} \|y - \mathcal{G}(u)\|_{\Sigma^{-1}}^2 - \log(\pi_0(u)) \right\}$$

$$y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

• Assuming prior density $\pi_0 \colon \mathcal{X} \to (0, \infty)$ we have

$$u_{\mathsf{MAP}}^y \in \operatorname*{argmin}_{u \in \mathcal{X}} \left\{ \frac{1}{2} \|y - \mathcal{G}(u)\|_{\Sigma^{-1}}^2 - \log(\pi_0(u)) \right\}$$

• Corresponds to regularized solution of the (deterministic) inverse problem with weighted least squares functional $\frac{1}{2}\|y-\mathcal{G}(u)\|_{\Sigma^{-1}}^2$ and regularizing functional

$$R(u) = -\log(\pi_0(u))$$

$$y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

• Assuming prior density $\pi_0 \colon \mathcal{X} \to (0, \infty)$ we have

$$u_{\mathsf{MAP}}^y \in \operatorname*{argmin}_{u \in \mathcal{X}} \left\{ \frac{1}{2} \|y - \mathcal{G}(u)\|_{\Sigma^{-1}}^2 - \log(\pi_0(u)) \right\}$$

• Corresponds to regularized solution of the (deterministic) inverse problem with weighted least squares functional $\frac{1}{2}\|y-\mathcal{G}(u)\|_{\Sigma^{-1}}^2$ and regularizing functional

$$R(u) = -\log(\pi_0(u))$$

ullet For Gaussian prior $\pi_0=\mathrm{N}(u_0,C)$, recover Tikhonov–Philipps regularization

$$u_{\mathsf{MAP}}^y \in \operatornamewithlimits{argmin}_{u \in \mathcal{X}} \tfrac{1}{2} \|y - \mathcal{G}(u)\|_{\Sigma^{-1}}^2 + \tfrac{1}{2} \|(u - u_0)\|_{C^{-1}}^2$$

Comparison between PM and MAP

- Posterior mean $u_{\mathsf{PM}}^y = \int_{\mathcal{X}} u \pi_{u|y}(u) \; \mathrm{d}u$ computed via **numerical integration**
- MAP estimate $u^y_{\mathsf{MAP}} \in \operatorname*{argmax}_{u \in \mathcal{X}} \pi_{u|y}(u)$ computed via **numerical optimization**

Comparison between PM and MAP

- \bullet Posterior mean $u_{\rm PM}^y = \int_{\mathcal{X}} u \pi_{u|y}(u) \ \mathrm{d}u$ computed via numerical integration
- MAP estimate $u^y_{\mathsf{MAP}} \in \operatorname*{argmax}_{u \in \mathcal{X}} \pi_{u|y}(u)$ computed via **numerical optimization**
- Although for Gaussian $\pi_{u|y} = \mathrm{N}(u^y_{\mathsf{PM}}, C^y)$, we have $u^y_{\mathsf{PM}} = u^y_{\mathsf{MAP}}$, in general, they yield very different estimates:

Thus, in general, neither represents the "center of mass" of $\pi_{u|y}$...

Comparison between PM and MAP

- \bullet Posterior mean $u_{\rm PM}^y = \int_{\mathcal{X}} u \pi_{u|y}(u) \ \mathrm{d}u$ computed via numerical integration
- MAP estimate $u^y_{\mathsf{MAP}} \in \operatorname*{argmax}_{u \in \mathcal{X}} \pi_{u|y}(u)$ computed via **numerical optimization**
- Although for Gaussian $\pi_{u|y} = N(u^y_{PM}, C^y)$, we have $u^y_{PM} = u^y_{MAP}$, in general, they yield very different estimates:

Thus, in general, neither represents the "center of mass" of $\pi_{u|y}$ but for unimodal $\pi_{u|y}$ they are often not too different.

• The choice of the prior distribution π_0 is crucial for the outcome of the resulting Bayesian data analysis or Bayesian inverse problem.

(like the choice of the regularization functional $\mathcal{R}(u)$ in the deterministic approach)

• There are some principles for choosing the prior in the statistics literature:

• The choice of the prior distribution π_0 is crucial for the outcome of the resulting Bayesian data analysis or Bayesian inverse problem.

(like the choice of the regularization functional $\mathcal{R}(u)$ in the deterministic approach)

- There are some principles for choosing the prior in the statistics literature:
 - **Onjugacy:** Given likelihood model $L(\cdot; u) = \pi_{y|u}(\cdot)$ choose the prior π_0 such that the posterior is analytically computable, e.g.,

Gaussian likelihood + Gaussian prior \Rightarrow Gaussian posterior

- The choice of the prior distribution π_0 is crucial for the outcome of the resulting Bayesian data analysis or Bayesian inverse problem.
 - (like the choice of the regularization functional $\mathcal{R}(u)$ in the deterministic approach)
- There are some principles for choosing the prior in the statistics literature:
 - **Onjugacy:** Given likelihood model $L(\cdot;u)=\pi_{y|u}(\cdot)$ choose the prior π_0 such that the posterior is analytically computable, e.g.,
 - Gaussian likelihood + Gaussian prior \Rightarrow Gaussian posterior
 - **2** Cromwells rule: The prior should asign probability 0 only to logically or physically impossible events, i.e., the support of π_0 should always be \mathbb{R}^n

- The choice of the prior distribution π_0 is crucial for the outcome of the resulting Bayesian data analysis or Bayesian inverse problem.
 - (like the choice of the regularization functional $\mathcal{R}(u)$ in the deterministic approach)
- There are some principles for choosing the prior in the statistics literature:
 - **Onjugacy:** Given likelihood model $L(\cdot;u)=\pi_{y|u}(\cdot)$ choose the prior π_0 such that the posterior is analytically computable, e.g.,
 - Gaussian likelihood + Gaussian prior \Rightarrow Gaussian posterior
 - **2** Cromwells rule: The prior should asign probability 0 only to logically or physically impossible events, i.e., the support of π_0 should always be \mathbb{R}^n
 - **Our Uninformative/objective prior:** If we have no prior knowledge, then π_0 should be uninformative regarding the data model, which leads to so-called Jeffreys priors based on Fisher information:

- The choice of the prior distribution π_0 is crucial for the outcome of the resulting Bayesian data analysis or Bayesian inverse problem.
 - (like the choice of the regularization functional $\mathcal{R}(u)$ in the deterministic approach)
- There are some principles for choosing the prior in the statistics literature:
 - **Onjugacy:** Given likelihood model $L(\cdot; u) = \pi_{y|u}(\cdot)$ choose the prior π_0 such that the posterior is analytically computable, e.g.,

 ${\sf Gaussian \ likelihood + Gaussian \ prior \ \Rightarrow \ Gaussian \ posterior}$

- **Q** Cromwells rule: The prior should asign probability 0 only to logically or physically impossible events, i.e., the support of π_0 should always be \mathbb{R}^n
- **1** Uninformative/objective prior: If we have no prior knowledge, then π_0 should be uninformative regarding the data model, which leads to so-called Jeffreys priors based on Fisher information:

$$\pi_0(u) \propto \sqrt{\det \mathcal{I}^{\mathcal{F}}(u)}, \qquad \mathcal{I}^{\mathcal{F}}(u) := \mathbb{C}\mathrm{ov}_{\pi_u} \left(\nabla_u \log(\pi_u(Y)) \right)$$

ullet For more and more observed realizations $y_1,y_2,y_3,\ldots\in\mathbb{R}^d$ of an assumed true observable

$$Y = \mathcal{G}(u_{\mathsf{true}}) + \eta, \qquad \eta \sim \mathrm{N}(0, \Sigma),$$

ullet For more and more observed realizations $y_1,y_2,y_3,\ldots\in\mathbb{R}^d$ of an assumed true observable

$$Y = \mathcal{G}(u_{\mathsf{true}}) + \eta, \qquad \eta \sim N(0, \Sigma),$$

a natural question is whether posterior $\pi_{u|y_1,\dots,y_m}$ concentrates around $u_{\text{true}}.$

ullet For more and more observed realizations $y_1,y_2,y_3,\ldots\in\mathbb{R}^d$ of an assumed true observable

$$Y = \mathcal{G}(u_{\mathsf{true}}) + \eta, \qquad \eta \sim N(0, \Sigma),$$

- a natural question is whether posterior $\pi_{u|y_1,\dots,y_m}$ concentrates around $u_{\mathsf{true}}.$
- This requires of course, that u_{true} belongs to the support of the prior π_0 , but such results do exist:

ullet For more and more observed realizations $y_1,y_2,y_3,\ldots\in\mathbb{R}^d$ of an assumed true observable

$$Y = \mathcal{G}(u_{\mathsf{true}}) + \eta, \qquad \eta \sim \mathcal{N}(0, \Sigma),$$

- a natural question is whether posterior $\pi_{u|y_1,\dots,y_m}$ concentrates around $u_{\text{true}}.$
- This requires of course, that u_{true} belongs to the support of the prior π_0 , but such results do exist:
- Doob's Consistency Theorem (informal): For $\mathcal G$ injective and any r>0,

$$\lim_{m \to \infty} \pi_{u|y_1, \dots, y_m} \Big(\{ u \colon |u - u_{\mathsf{true}}| \le r \} \Big) = 1$$

ullet For more and more observed realizations $y_1,y_2,y_3,\ldots\in\mathbb{R}^d$ of an assumed true observable

$$Y = \mathcal{G}(u_{\mathsf{true}}) + \eta, \qquad \eta \sim \mathrm{N}(0, \Sigma),$$

- a natural question is whether posterior $\pi_{u|y_1,...,y_m}$ concentrates around u_{true} .
- This requires of course, that $u_{\rm true}$ belongs to the support of the prior π_0 , but such results do exist:
- **Doob's Consistency Theorem** (informal): For G injective and any r > 0,

$$\lim_{m \to \infty} \pi_{u|y_1, \dots, y_m} \Big(\{ u \colon |u - u_{\mathsf{true}}| \le r \} \Big) = 1$$

• Bernstein-von Mises Theorem (informal): Under suitable assumptions

$$\lim_{m \to \infty} d_{\mathsf{TV}} \Big(\pi_{u|y_1, \dots, y_m}, \mathrm{N}(u_{\mathsf{PM}}^{y_1, \dots, y_m}, \tfrac{1}{m} \mathcal{I}^{\mathcal{F}}(u_{\mathsf{true}})) \Big) = 0 \qquad \text{(asymptotically Gaussian)}$$

where d_{TV} denotes the total variation distance of probability measures

$$d_{\mathsf{TV}}(\pi,\mu) := \sup_{A \in \mathbb{R}^n} |\pi(A) - \mu(A)|.$$

Laplace Approximation

• Often expensive to compute the posterior distribution $\pi_{u|y}$ in practice and one seeks a simple approximation $\tilde{\pi}_{u|y}$.

Laplace Approximation

- Often expensive to compute the posterior distribution $\pi_{u|y}$ in practice and one seeks a simple approximation $\tilde{\pi}_{u|y}$.
- A classical approximation (again based on a Gaussian distribution) is the Laplace approximation:

$$\pi_{u|y}(u) \approx \tilde{\pi}_{u|y} = c \, \exp \left(- \frac{1}{2} (u - u_{\mathsf{MAP}}^y)^\top \nabla^2 \log \pi_{u|y} (u_{\mathsf{MAP}}^y) (u - u_{\mathsf{MAP}}^y) \right)$$

Laplace Approximation

- Often expensive to compute the posterior distribution $\pi_{u|y}$ in practice and one seeks a simple approximation $\tilde{\pi}_{u|y}$.
- A classical approximation (again based on a Gaussian distribution) is the Laplace approximation:

$$\pi_{u|y}(u) \approx \tilde{\pi}_{u|y} = c \, \exp \left(- \frac{1}{2} (u - u_{\mathsf{MAP}}^y)^\top \nabla^2 \log \pi_{u|y}(u_{\mathsf{MAP}}^y) (u - u_{\mathsf{MAP}}^y) \right)$$

It is derived formally by a quadratic Taylor approximation, i.e.,

$$f(u) \approx f(u_*) - \nabla f(u_*)(u - u_*) - \frac{1}{2}(u - u_*)^{\top} \nabla^2 f(u_*)(u - u_*)$$

with $\nabla^2 f(u_*)$ denoting the Hessian of f at u_* , of the negative log posterior density $f(u) := -\log \pi_{u|y}(u)$ around the MAP estimate $u_* := u^y_{\mathsf{MAP}}$.

Laplace Approximation (Illustration)

The posterior $\pi_{u|y}$ is approximated by a Gaussian distribtion $\mathrm{N}(u_{\mathrm{MAP}}^y, H^{-1})$ where

$$H := -\nabla^2 \log \pi_{u|y}(u_{\mathsf{MAP}}^y)$$

Laplace approximation for inverse problems

$$y = \mathcal{G}(U) + \eta,$$
 $(U, \eta) \sim N(0, C) \otimes N(0, \Sigma)$

Laplace approximation

$$\pi_{u|y} \approx \mathrm{N}(u_{\mathsf{PM}}^y, H^{-1})$$

where

$$u_{\mathsf{MAP}}^y = \operatorname*{argmin}_{u \in \mathbb{R}^n} \Big\{ \Phi(u) + \tfrac{1}{2} \|C^{-1/2}u\|^2 \Big\}, \qquad \Phi(u) := \tfrac{1}{2} |y - \mathcal{G}(u)|_{\Sigma^{-1}}^2$$

and

$$H := \nabla^2 \Phi(u^y_{\mathsf{MAP}}) + C$$

Thus, to compute the Laplace approximation relies only on numerical optimization and can be used for approximate Bayesian inference (without sampling).

Summary – Part I

- In the Bayesian approach all variables in the inverse problem are treated as random variables.
- ullet The prior distribution π_0 for unknown u serves as probabilistic regularization.
- The solution of the Bayesian inverse problem is the posterior distribution $\pi_{u|y}$, the prior conditioned on the data y.
- ullet The posterior describes/quantifies all remaining uncertainty about unknown u.
- MAP (maximum a posteriori) estimate is the Tikhonov-regularized solution.
- ullet Another common point estimate for u is the posterior mean.
- Asymptotically the posterior concentrates around the ground truth and is approximately Gaussian (at least in finite dimensional Euclidean spaces).

Beyond Finite Dimensions

In general, we can consider Bayesian inverse problems

$$y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

where $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$ for separable infinite-dimensional Hilbert space \mathcal{X} , e.g., $L^2(D)$. For the most part $\mathcal{Y} = \mathbb{R}^d$, but also \mathcal{Y} can be a separable ∞ -dim'l Hilbert space.

In general, we can consider Bayesian inverse problems

$$y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

where $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$ for separable infinite-dimensional Hilbert space \mathcal{X} , e.g., $L^2(D)$. For the most part $\mathcal{Y} = \mathbb{R}^d$, but also \mathcal{Y} can be a separable ∞ -dim'l Hilbert space.

• We will not have time for a detailed treatment. It requires probability theory in Hilbert spaces. Only give a few pointers.

In general, we can consider Bayesian inverse problems

$$y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

where $\mathcal{G} \colon \mathcal{X} \to \mathcal{Y}$ for separable infinite-dimensional Hilbert space \mathcal{X} , e.g., $L^2(D)$. For the most part $\mathcal{Y} = \mathbb{R}^d$, but also \mathcal{Y} can be a separable ∞ -dim'l Hilbert space.

- We will not have time for a detailed treatment. It requires probability theory in Hilbert spaces. Only give a few pointers.
- ullet In particular, prior measures on ${\mathcal X}$ will now be random fields:

Random field (or stochastic process)

Considering domain $D\subseteq\mathbb{R}^k$, $k\in\mathbb{N}$, a random field or stochastic process is a family of (real-valued) random variables $U=\{U_x\colon\Omega\to\mathbb{R}\ :\ x\in D\}$ such that $U\colon\Omega\times D\to\mathbb{R}$ is measurable. The function $u:=U(\omega,\cdot)$, is called a path of U.

In general, we can consider Bayesian inverse problems

$$y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

where $\mathcal{G} \colon \mathcal{X} \to \mathcal{Y}$ for separable infinite-dimensional Hilbert space \mathcal{X} , e.g., $L^2(D)$. For the most part $\mathcal{Y} = \mathbb{R}^d$, but also \mathcal{Y} can be a separable ∞ -dim'l Hilbert space.

- We will not have time for a detailed treatment. It requires probability theory in Hilbert spaces. Only give a few pointers.
- ullet In particular, prior measures on ${\mathcal X}$ will now be random fields:

Random field (or stochastic process)

Considering domain $D\subseteq\mathbb{R}^k$, $k\in\mathbb{N}$, a random field or stochastic process is a family of (real-valued) random variables $U=\{U_x\colon\Omega\to\mathbb{R}:\ x\in D\}$ such that $U\colon\Omega\times D\to\mathbb{R}$ is measurable. The function $u:=U(\omega,\cdot)$, is called a **path** of U.

Main workhorse: Gaussian random fields on $\mathcal{X} = L^2(D)$.

Random Fields

Gaussian random fields

Gaussian random field

A Gaussian random field on $D\subseteq\mathbb{R}^k$ is a stochastic process U such that for any $n\in\mathbb{N}$ and any points $x_1,\ldots,x_n\in D$ the random vector $(U(x_1),\ldots,U(x_n))^{\top}$ follows a multivariate normal distribution in \mathbb{R}^n .

Gaussian random fields are uniquely determined by their first two moments:

mean function:
$$m(x) := \mathbb{E}\left[U(x)\right]$$
 covariance function:
$$c(x,x') := \mathbb{C}\mathrm{ov}(U(x),U(x'))$$

where $m \colon D \to \mathbb{R}$ and $c \colon D \times D \to \mathbb{R}$ is a symmetric positive semidefinite fct.

Gaussian random fields

Gaussian random field

A Gaussian random field on $D\subseteq\mathbb{R}^k$ is a stochastic process U such that for any $n\in\mathbb{N}$ and any points $x_1,\ldots,x_n\in D$ the random vector $(U(x_1),\ldots,U(x_n))^{\top}$ follows a multivariate normal distribution in \mathbb{R}^n .

Gaussian random fields are uniquely determined by their first two moments:

mean function:
$$m(x) := \mathbb{E}\left[U(x)\right]$$
 covariance function:
$$c(x,x') := \mathbb{C}\mathrm{ov}(U(x),U(x'))$$

where $m\colon D\to\mathbb{R}$ and $c\colon D\times D\to\mathbb{R}$ is a symmetric positive semidefinite fct.

• Ex.: Brownian motion on $D=[0,\infty)$ with $m\equiv 0$ and $c(x,x')=\min(x,x')$.

Gaussian random fields

Gaussian random field

A Gaussian random field on $D\subseteq\mathbb{R}^k$ is a stochastic process U such that for any $n\in\mathbb{N}$ and any points $x_1,\ldots,x_n\in D$ the random vector $(U(x_1),\ldots,U(x_n))^{\top}$ follows a multivariate normal distribution in \mathbb{R}^n .

Gaussian random fields are uniquely determined by their first two moments:

mean function:
$$m(x) := \mathbb{E}\left[U(x)\right]$$
 covariance function:
$$c(x,x') := \mathbb{C}\mathrm{ov}(U(x),U(x'))$$

where $m\colon D\to\mathbb{R}$ and $c\colon D\times D\to\mathbb{R}$ is a symmetric positive semidefinite fct.

- Ex.: Brownian motion on $D=[0,\infty)$ with $m\equiv 0$ and $c(x,x')=\min(x,x')$.
- ullet Often in UQ practice, parametric models for m and c are used, e.g.,

$$m(x) = \sum_{j=1}^{J} \beta_j f_j(x), \qquad c(x, x') = c_{\theta}(x, x')$$

where parameters $\beta \in \mathbb{R}^J$ and $\theta \in \mathbb{R}^p$ are given or estimated from data.

Matérn covariance functions

- The covariance (and mean) function determine smoothness properties of the paths $u\colon D\to \mathbb{R}$ of a Gaussian random field U.
- A common parametrized class are the Matérn covariance functions

$$c_{\sigma^2,\rho,\nu}(x,x') := \frac{\sigma^2}{2^{\nu-1}\,\Gamma(\nu)} \left(\frac{2\sqrt{\nu}\,|x-x'|}{\textcolor{red}{\rho}}\right)^{\nu} K_{\nu}\left(\frac{2\sqrt{\nu}\,|x-x'|}{\textcolor{red}{\rho}}\right)$$

with variance $\sigma^2 > 0$, correlation length $\rho > 0$, smoothness $\nu > 0$.

 K_{ν} is the modified (2nd-kind) Bessel function of order ν and Γ is the Gamma-function.

Matérn covariance functions

- The covariance (and mean) function determine smoothness properties of the paths $u\colon D\to \mathbb{R}$ of a Gaussian random field U.
- A common parametrized class are the Matérn covariance functions

$$c_{\sigma^2,\rho,\nu}(x,x') := \frac{\sigma^2}{2^{\nu-1}\,\Gamma(\nu)} \left(\frac{2\sqrt{\nu}\,|x-x'|}{\rho}\right)^{\nu} K_{\nu}\left(\frac{2\sqrt{\nu}\,|x-x'|}{\rho}\right)$$

with variance $\sigma^2 > 0$, correlation length $\rho > 0$, smoothness $\nu > 0$.

 K_{ν} is the modified (2nd-kind) Bessel function of order ν and Γ is the Gamma-function.

- Considering a probability measure π on a separable Hilbert space $\mathcal X$ or its Borel- σ -algebra $\mathcal B(\mathcal X)$, respectively.
- For $q \in \mathbb{N}_0$, we denote by $\mathcal{P}^q(\mathcal{X})$ all probability measures π in \mathcal{X} which satisfy

$$\int_{\mathcal{X}} \|u\|^q \, \pi(\mathrm{d}u) < +\infty.$$

We say $U \sim \pi$ for $\pi \in \mathcal{P}^q(\mathcal{X})$ belongs to Lebesgue–Bochner space $L^q(\Omega; \mathcal{X})$.

- Considering a probability measure π on a separable Hilbert space $\mathcal X$ or its Borel- σ -algebra $\mathcal B(\mathcal X)$, respectively.
- For $q \in \mathbb{N}_0$, we denote by $\mathcal{P}^q(\mathcal{X})$ all probability measures π in \mathcal{X} which satisfy

$$\int_{\mathcal{X}} \|u\|^q \, \pi(\mathrm{d}u) < +\infty.$$

We say $U \sim \pi$ for $\pi \in \mathcal{P}^q(\mathcal{X})$ belongs to Lebesgue–Bochner space $L^q(\Omega; \mathcal{X})$.

• The mean value $m_{\pi} \in \mathcal{X}$ of $\pi \in \mathcal{P}^1(\mathcal{X})$ of the r.v. $U \sim \pi$ is given by

$$m_{\pi} := \mathbb{E}_{\pi} [U] = \int_{\mathcal{X}} u \, \pi(\mathrm{d}u)$$

- Considering a probability measure π on a separable Hilbert space $\mathcal X$ or its Borel- σ -algebra $\mathcal B(\mathcal X)$, respectively.
- ullet For $q\in\mathbb{N}_0$, we denote by $\mathcal{P}^q(\mathcal{X})$ all probability measures π in \mathcal{X} which satisfy

$$\int_{\mathcal{X}} \|u\|^q \, \pi(\mathrm{d}u) < +\infty.$$

We say $U \sim \pi$ for $\pi \in \mathcal{P}^q(\mathcal{X})$ belongs to Lebesgue–Bochner space $L^q(\Omega; \mathcal{X})$.

• The mean value $m_{\pi} \in \mathcal{X}$ of $\pi \in \mathcal{P}^1(\mathcal{X})$ of the r.v. $U \sim \pi$ is given by

$$m_{\pi} := \mathbb{E}_{\pi} [U] = \int_{\mathcal{X}} u \, \pi(\mathrm{d}u)$$

• The covariance $C_{\pi} \in \mathcal{L}(\mathcal{X})$ of $\pi \in \mathcal{P}^2(\mathcal{X})$ is given by the unique linear, bounded operator satisfying

$$\langle v, C_{\pi} w \rangle = \int_{\mathcal{V}} \langle v, (u - m_{\pi}) \rangle \langle w, (u - m_{\pi}) \rangle \pi(\mathrm{d}u) \qquad \forall v, w \in \mathcal{X}.$$

- Considering a probability measure π on a separable Hilbert space $\mathcal X$ or its Borel- σ -algebra $\mathcal B(\mathcal X)$, respectively.
- ullet For $q\in\mathbb{N}_0$, we denote by $\mathcal{P}^q(\mathcal{X})$ all probability measures π in \mathcal{X} which satisfy

$$\int_{\mathcal{X}} \|u\|^q \, \pi(\mathrm{d}u) < +\infty.$$

We say $U \sim \pi$ for $\pi \in \mathcal{P}^q(\mathcal{X})$ belongs to Lebesgue–Bochner space $L^q(\Omega;\mathcal{X})$.

• The mean value $m_{\pi} \in \mathcal{X}$ of $\pi \in \mathcal{P}^1(\mathcal{X})$ of the r.v. $U \sim \pi$ is given by

$$m_{\pi} := \mathbb{E}_{\pi} [U] = \int_{\mathcal{X}} u \, \pi(\mathrm{d}u)$$

• The covariance $C_{\pi} \in \mathcal{L}(\mathcal{X})$ of $\pi \in \mathcal{P}^2(\mathcal{X})$ is given by the unique linear, bounded operator satisfying

$$\langle v, C_{\pi} w \rangle = \int_{\mathcal{X}} \langle v, (u - m_{\pi}) \rangle \langle w, (u - m_{\pi}) \rangle \pi(\mathrm{d}u) \qquad \forall v, w \in \mathcal{X}.$$

ullet Considering the tensor product $\mathcal{X}\otimes\mathcal{X}$ we can identify C_π for $U\sim\pi$ with

$$\mathbb{C}\mathrm{ov}(U) = \mathbb{E}\left[\left(U - \mathbb{E}\left[U\right]\right) \otimes \left(U - \mathbb{E}\left[U\right]\right)\right].$$

Densities in Hilbert space

• On infinite dimensional Hilbert spaces $\mathcal X$ there exists no Lebesgue measure! Hence, **cannot** work with 'simple' probability density fcts. $\pi\colon \mathcal X\to [0,\infty)$ s.t.

$$\pi(A) = \int_A \pi(u) \, du, \qquad A \subset \mathcal{X}.$$

Densities in Hilbert space

• On infinite dimensional Hilbert spaces $\mathcal X$ there exists no Lebesgue measure! Hence, **cannot** work with 'simple' probability density fcts. $\pi\colon \mathcal X \to [0,\infty)$ s.t.

$$\pi(A) = \int_A \pi(u) \, du, \qquad A \subset \mathcal{X}.$$

• However, given a suitable reference (probability) measure μ on \mathcal{X} we may define the density of π with respect to μ .

Radon-Nikodym theorem

We say $\pi \in \mathcal{P}(\mathcal{X})$ is absolutely continuous w.r.t. or dominated by $\mu \in \mathcal{P}(\mathcal{X})$ if

$$\mu(A) = 0 \quad \Rightarrow \quad \pi(A) = 0, \qquad A \subseteq \mathcal{X}.$$

Densities in Hilbert space

• On infinite dimensional Hilbert spaces $\mathcal X$ there exists no Lebesgue measure! Hence, **cannot** work with 'simple' probability density fcts. $\pi\colon \mathcal X\to [0,\infty)$ s.t.

$$\pi(A) = \int_A \pi(u) \, du, \qquad A \subset \mathcal{X}.$$

• However, given a suitable reference (probability) measure μ on $\mathcal X$ we may define the density of π with respect to μ .

Radon-Nikodym theorem

We say $\pi \in \mathcal{P}(\mathcal{X})$ is absolutely continuous w.r.t. or dominated by $\mu \in \mathcal{P}(\mathcal{X})$ if

$$\mu(A) = 0 \quad \Rightarrow \quad \pi(A) = 0, \qquad A \subseteq \mathcal{X}.$$

In that case, we write $\pi \ll \mu$ and there exists a density $f \colon \mathcal{X} \to [0,\infty)$ such that

$$\pi(A) = \int_A f(u) \, \mu(\mathrm{d}u), \qquad \forall A \subseteq \mathcal{X}.$$

We denote f by $\frac{\mathrm{d}\pi}{\mathrm{d}\mu}$ and call it Radon–Nikodym derivative/density of π w.r.t. μ .

Conditional Distribution

• Since we cannot work with conditional probability densities anymore, need more general notions, i.e., conditional distributions (requires some technicalities).

Conditional Distribution

 Since we cannot work with conditional probability densities anymore, need more general notions, i.e., conditional distributions (requires some technicalities).

Stochastic kernel

A mapping $K \colon \mathcal{Y} \times \mathcal{B}(\mathcal{X}) \to [0,1]$ is called a **stochastic kernel** if

- \bullet $K(y,\cdot)$ is a probabiliy measure on ${\mathcal X}$ for each $y\in{\mathcal Y}$
- $K(\cdot, A)$ is a measurable for each $A \in \mathcal{B}(\mathcal{X})$.

Conditional Distribution

 Since we cannot work with conditional probability densities anymore, need more general notions, i.e., conditional distributions (requires some technicalities).

Stochastic kernel

A mapping $K \colon \mathcal{Y} \times \mathcal{B}(\mathcal{X}) \to [0,1]$ is called a **stochastic kernel** if

- ullet $K(y,\cdot)$ is a probabiliy measure on $\mathcal X$ for each $y\in\mathcal Y$
- $K(\cdot, A)$ is a measurable for each $A \in \mathcal{B}(\mathcal{X})$.

Regular conditional distribution

Let $U\colon \Omega \to \mathcal{X}$ and $Y\colon \Omega \to Y$ with joint distribution $(U,Y) \sim \pi$ and marginal $Y \sim \pi_Y$, then the **regular conditional distribution** of U given Y is a stochastic kernel $\pi_{U|Y}\colon \mathcal{Y} \times \mathcal{B}(\mathcal{X}) \to [0,1]$ such that

$$\int_{B} \pi_{U|Y}(y, A) \, \pi_{Y}(\mathrm{d}y) = \pi(A \times B) = \mathbb{P}(U \in A, Y \in B), \quad \forall A \in \mathcal{B}(\mathcal{X}), B \in \mathcal{B}(\mathcal{Y})$$

Theorem

Let $U\colon\Omega\to\mathcal{X}$ and $Y\colon\Omega\to Y$ such that $U\sim\pi_U$, $Y\sim\pi_Y$ with joint distribution $(U,Y)\sim\pi$ written as

$$\pi(\mathrm{d} u\,\mathrm{d} y) = \pi_{Y|U}(u,\mathrm{d} y)\,\pi_U(\mathrm{d} u).$$

Theorem

Let $U\colon\Omega\to\mathcal{X}$ and $Y\colon\Omega\to Y$ such that $U\sim\pi_U$, $Y\sim\pi_Y$ with joint distribution $(U,Y)\sim\pi$ written as

$$\pi(\mathrm{d} u\,\mathrm{d} y) = \pi_{Y|U}(u,\mathrm{d} y)\,\pi_U(\mathrm{d} u).$$

If there exists a (measurable) $L\colon \mathcal{Y}\times\mathcal{X}\to [0,\infty)$ and a measure μ on \mathcal{Y} dominating each conditional distribution $\pi_{Y|U}(u,\cdot)\ll \mu$, $u\in\mathcal{X}$, such that

$$\frac{\mathrm{d}\pi_{Y|U}(u)}{\mathrm{d}\mu}(y) = L(y; u),$$

Theorem

Let $U\colon\Omega\to\mathcal{X}$ and $Y\colon\Omega\to Y$ such that $U\sim\pi_U$, $Y\sim\pi_Y$ with joint distribution $(U,Y)\sim\pi$ written as

$$\pi(\mathrm{d} u\,\mathrm{d} y) = \pi_{Y|U}(u,\mathrm{d} y)\,\pi_U(\mathrm{d} u).$$

If there exists a (measurable) $L\colon \mathcal{Y}\times\mathcal{X}\to [0,\infty)$ and a measure μ on \mathcal{Y} dominating each conditional distribution $\pi_{Y|U}(u,\cdot)\ll \mu$, $u\in\mathcal{X}$, such that

$$\frac{\mathrm{d}\pi_{Y|U}(u)}{\mathrm{d}\mu}(y) = L(y;u),$$

then provided $Z(y) := \int_{\mathcal{X}} L(y; u) \, \pi_U(\mathrm{d} u) < \infty$, we have

$$\pi_{U|Y}(y, du) = \frac{1}{Z(y)} L(y; u) \pi_U(du).$$

Theorem

Let $U\colon\Omega\to\mathcal{X}$ and $Y\colon\Omega\to Y$ such that $U\sim\pi_U$, $Y\sim\pi_Y$ with joint distribution $(U,Y)\sim\pi$ written as

$$\pi(\mathrm{d} u\,\mathrm{d} y) = \pi_{Y|U}(u,\mathrm{d} y)\,\pi_U(\mathrm{d} u).$$

If there exists a (measurable) $L\colon \mathcal{Y}\times\mathcal{X}\to [0,\infty)$ and a measure μ on \mathcal{Y} dominating each conditional distribution $\pi_{Y|U}(u,\cdot)\ll \mu$, $u\in\mathcal{X}$, such that

$$\frac{\mathrm{d}\pi_{Y|U}(u)}{\mathrm{d}\mu}(y) = L(y;u),$$

then provided $Z(y) := \int_{\mathcal{X}} L(y; u) \, \pi_U(\mathrm{d}u) < \infty$, we have

$$\pi_{U|Y}(y, \mathrm{d}u) = \frac{1}{Z(u)} L(y; u) \pi_U(\mathrm{d}u).$$
 (Bayes' rule)

- π_U is the prior probability measure;
- L(y; u) is the likelihood function for Y = y given U = u;
- 1/Z(y) is a normalizing constant with evidence Z(y).

Bayesian data model (for $\mathcal{Y} = \mathbb{R}^d$ and Gaussian noise)

$$Y = \mathcal{G}(U) + \eta, \qquad \mathcal{G} \colon \mathcal{X} \to \mathbb{R}^d, \quad (U, \eta) \sim \pi_0 \otimes \mathrm{N}(0, \Sigma)$$

Bayesian data model (for $\mathcal{Y} = \mathbb{R}^d$ and Gaussian noise)

$$Y = \mathcal{G}(U) + \eta, \qquad \mathcal{G} \colon \mathcal{X} \to \mathbb{R}^d, \quad (U, \eta) \sim \pi_0 \otimes \mathrm{N}(0, \Sigma)$$

• The data model yields as conditional distributions

$$\pi_{Y|U}(u) = \mathcal{N}(\mathcal{G}(u), \Sigma), \qquad u \in \mathcal{X},$$

 \bullet These are dominated, for any $y \in \mathbb{R}^d$, by Lebesgue measure with likelihood function

$$L(y; u) = c_{\Sigma} \exp(-\Phi(u; y)), \qquad \Phi(u; y) := \frac{1}{2}|y - \mathcal{G}(u)|_{\Sigma^{-1}}^{2}$$

where $\Phi \colon \mathcal{X} \times \mathbb{R}^d \to [0, \infty)$ is called the potential.

Bayesian data model (for $\mathcal{Y} = \mathbb{R}^d$ and Gaussian noise)

$$Y = \mathcal{G}(U) + \eta, \qquad \mathcal{G} \colon \mathcal{X} \to \mathbb{R}^d, \quad (U, \eta) \sim \pi_0 \otimes \mathrm{N}(0, \Sigma)$$

The data model yields as conditional distributions

$$\pi_{Y|U}(u) = \mathcal{N}(\mathcal{G}(u), \Sigma), \qquad u \in \mathcal{X},$$

 \bullet These are dominated, for any $y \in \mathbb{R}^d$, by Lebesgue measure with likelihood function

$$L(y; u) = c_{\Sigma} \exp(-\Phi(u; y)), \qquad \Phi(u; y) := \frac{1}{2}|y - \mathcal{G}(u)|_{\Sigma^{-1}}^{2}$$

where $\Phi \colon \mathcal{X} \times \mathbb{R}^d \to [0, \infty)$ is called the potential.

Thus, by Bayes' rule, the solution to the **Bayesian inverse problem** in an **infinite-dimensional** Hilbert space $\mathcal X$ is the posterior distribution $\pi_{u|y}$ of U given Y=y

$$\pi_{u|y}(du) = \frac{1}{Z(y)} \exp(-\Phi(u;y)) \,\pi_0(du), \ Z(y) = \int_X \exp(-\Phi(u;y)) \,\pi_0(du) \in (0,1].$$

Bayesian data model (for $\mathcal{Y} = \mathbb{R}^d$ and Gaussian noise)

$$Y = \mathcal{G}(U) + \eta, \qquad \mathcal{G} \colon \mathcal{X} \to \mathbb{R}^d, \quad (U, \eta) \sim \pi_0 \otimes \mathrm{N}(0, \Sigma)$$

The data model yields as conditional distributions

$$\pi_{Y|U}(u) = \mathcal{N}(\mathcal{G}(u), \Sigma), \qquad u \in \mathcal{X},$$

 \bullet These are dominated, for any $y \in \mathbb{R}^d$, by Lebesgue measure with likelihood function

$$L(y; u) = c_{\Sigma} \exp(-\Phi(u; y)), \qquad \Phi(u; y) := \frac{1}{2}|y - \mathcal{G}(u)|_{\Sigma^{-1}}^{2}$$

where $\Phi \colon \mathcal{X} \times \mathbb{R}^d \to [0, \infty)$ is called the potential.

Thus, by Bayes' rule, the solution to the **Bayesian inverse problem** in an **infinite-dimensional** Hilbert space $\mathcal X$ is the posterior distribution $\pi_{u|y}$ of U given Y=y

$$\pi_{u|y}(du) = \frac{1}{Z(y)} \exp(-\Phi(u;y)) \,\pi_0(du), \ Z(y) = \int_X \exp(-\Phi(u;y)) \,\pi_0(du) \in (0,1].$$

Note. Since $0 < \exp(-\Phi(u;y)) \le 1 \quad \Rightarrow \quad 0 < \int_{\mathcal{X}} \exp(-\Phi(u;y)) \, \pi_0(\mathrm{d} u) \le 1$ for any prior π_0 .

Gaussian Linear Model

Given observation $y \in \mathbb{R}^d$ of

$$Y = AU + \eta, \qquad \mathcal{G} \colon \mathcal{X} \to \mathbb{R}^d, \quad (U, \eta) \sim \mathcal{N}(u_0, C) \otimes \mathcal{N}(0, \Sigma)$$

where $A \in \mathcal{L}(\mathcal{X}, \mathbb{R}^d)$, the solution to the Bayesian inverse problem is the Gaussian posterior distribution $\pi_{u|y} = \mathrm{N}(u^y_{\mathsf{PM}}, C^y)$ where

$$\begin{split} u_{\text{PM}}^y &= (A^* \Sigma^{-1} A + C^{-1})^{-1} \left[\Sigma A^* y + C^{-1} u_0 \right] \\ C^y &= \left(A^* \Sigma^{-1} A + C^{-1} \right)^{-1} \end{split}$$

¹T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, A. Spantini. Likelihood-Informed Dimension Reduction for Nonlinear Inverse Problems. *Inverse Problems*. 30(11), 2014.

Gaussian Linear Model

Given observation $y \in \mathbb{R}^d$ of

$$Y = AU + \eta, \qquad \mathcal{G} \colon \mathcal{X} \to \mathbb{R}^d, \quad (U, \eta) \sim \mathcal{N}(u_0, C) \otimes \mathcal{N}(0, \Sigma)$$

where $A \in \mathcal{L}(\mathcal{X}, \mathbb{R}^d)$, the solution to the Bayesian inverse problem is the Gaussian posterior distribution $\pi_{u|y} = \mathrm{N}(u^y_{\mathsf{PM}}, C^y)$ where

$$\begin{split} u_{\mathsf{PM}}^y &= (A^* \Sigma^{-1} A + C^{-1})^{-1} \left[\Sigma A^* y + C^{-1} u_0 \right] \\ C^y &= \left(A^* \Sigma^{-1} A + C^{-1} \right)^{-1} \end{split}$$

- \bullet The operators $CA^\top (ACA^* + \Sigma)^{-1}AC$ and $A^*\Sigma^{-1}A$ have finite rank $r \leq d$
- Thus, only in the r-dimensional subspace $\mathcal{R}(A^*\Sigma^{-1}A)$ there is a change from prior to posterior!
- \bullet The marginal of $\pi_{u|y}$ in $\mathcal{N}(A)$ coincides with the corresponding prior marginal
- ullet Such "active" subspaces can be exploited for nonlinear forward maps ${\cal G}$ too 1

¹T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, A. Spantini. Likelihood-Informed Dimension Reduction for Nonlinear Inverse Problems. *Inverse Problems*, 30(11), 2014.

Well-Posedness of Bayesian Inverse Problems

So far, we have seen, that Bayesian inverse problems admit under mild assumptions a unique solution — the posterior distribution

$$\pi_{u|y}(du) = \frac{1}{Z(y)} \exp(-\Phi(u;y)) \pi_0(du), \quad Z(y) = \int_{\mathcal{X}} \exp(-\Phi(u;y)) \pi_0(du).$$

Thus, two of three conditions for well-posedness are satisfied.

How about the third, the continuous dependence on the data $y \in \mathcal{Y}$?

So far, we have seen, that Bayesian inverse problems admit under mild assumptions a unique solution — the posterior distribution

$$\pi_{u|y}(du) = \frac{1}{Z(y)} \exp(-\Phi(u;y)) \pi_0(du), \quad Z(y) = \int_{\mathcal{X}} \exp(-\Phi(u;y)) \pi_0(du).$$

Thus, two of three conditions for well-posedness are satisfied.

How about the third, the continuous dependence on the data $y \in \mathcal{Y}$?

• To this end, we require suitable distances for probability measures.

So far, we have seen, that Bayesian inverse problems admit under mild assumptions a unique solution — the posterior distribution

$$\pi_{u|y}(du) = \frac{1}{Z(y)} \exp(-\Phi(u;y)) \pi_0(du), \quad Z(y) = \int_{\mathcal{X}} \exp(-\Phi(u;y)) \pi_0(du).$$

Thus, two of three conditions for well-posedness are satisfied.

How about the third, the continuous dependence on the data $y \in \mathcal{Y}$?

- To this end, we require suitable distances for probability measures.
- More than 70 metrics are known. We will use Hellinger distance (see below).

So far, we have seen, that Bayesian inverse problems admit under mild assumptions a unique solution — the posterior distribution

$$\pi_{u|y}(du) = \frac{1}{Z(y)} \exp(-\Phi(u;y)) \pi_0(du), \quad Z(y) = \int_{\mathcal{X}} \exp(-\Phi(u;y)) \pi_0(du).$$

Thus, two of three conditions for well-posedness are satisfied.

How about the third, the continuous dependence on the data $y \in \mathcal{Y}$?

- To this end, we require suitable distances for probability measures.
- More than 70 metrics are known. We will use Hellinger distance (see below).
- We focus in the following again on the case of finite-dimensional data and Gaussian noise, i.e.,

$$\mathcal{Y} = \mathcal{R}^d$$
 and $\Phi(u; y) := \frac{1}{2} |y - \mathcal{G}(u)|_{\Sigma^{-1}}^2$.

However, similar results can be obtained for infinite-dimensional data.

Hellinger distance – Properties

The *Hellinger distance* is given by

$$d_{\mathsf{Hell}}(\pi,\tilde{\pi}) = \sqrt{\int_{\mathcal{X}} \left| \sqrt{\frac{\mathrm{d}\pi}{\mathrm{d}\mu}(u)} - \sqrt{\frac{\mathrm{d}\tilde{\pi}}{\mathrm{d}\mu}(u)} \right|^2 \ \mu(\mathrm{d}u)} = \left\| \sqrt{\frac{\mathrm{d}\pi}{\mathrm{d}\mu}} - \sqrt{\frac{\mathrm{d}\tilde{\pi}}{\mathrm{d}\mu}} \right\|_{L^2_{\mu}}$$

where μ is a common dominating measure of $\pi, \tilde{\pi}$, e.g., $\mu = \pi + \tilde{\pi}$.

Hellinger distance – Properties

The *Hellinger distance* is given by

$$d_{\mathsf{HeII}}(\pi,\tilde{\pi}) = \sqrt{\int_{\mathcal{X}} \left| \sqrt{\frac{\mathrm{d}\pi}{\mathrm{d}\mu}(u)} - \sqrt{\frac{\mathrm{d}\tilde{\pi}}{\mathrm{d}\mu}(u)} \right|^2 \ \mu(\mathrm{d}u)} = \left\| \sqrt{\frac{\mathrm{d}\pi}{\mathrm{d}\mu}} - \sqrt{\frac{\mathrm{d}\tilde{\pi}}{\mathrm{d}\mu}} \right\|_{L^2_{\mu}}$$

where μ is a common dominating measure of $\pi, \tilde{\pi}$, e.g., $\mu = \pi + \tilde{\pi}$.

• Hellinger distance is topologically equivalent to total variation distance:

$$\frac{1}{2}d_{\mathsf{Hell}}(\pi,\tilde{\pi})^2 \leq d_{\mathsf{TV}}(\pi,\tilde{\pi}) \leq d_{\mathsf{Hell}}(\pi,\tilde{\pi})$$

Hellinger distance – Properties

The *Hellinger distance* is given by

$$d_{\mathsf{Hell}}(\pi,\tilde{\pi}) = \sqrt{\int_{\mathcal{X}} \left| \sqrt{\frac{\mathrm{d}\pi}{\mathrm{d}\mu}(u)} - \sqrt{\frac{\mathrm{d}\tilde{\pi}}{\mathrm{d}\mu}(u)} \right|^2 \ \mu(\mathrm{d}u)} = \left\| \sqrt{\frac{\mathrm{d}\pi}{\mathrm{d}\mu}} - \sqrt{\frac{\mathrm{d}\tilde{\pi}}{\mathrm{d}\mu}} \right\|_{L^2_{\mu}}$$

where μ is a common dominating measure of $\pi, \tilde{\pi}$, e.g., $\mu = \pi + \tilde{\pi}$.

• Hellinger distance is topologically equivalent to total variation distance:

$$\frac{1}{2}d_{\mathsf{HeII}}(\pi,\tilde{\pi})^2 \leq d_{\mathsf{TV}}(\pi,\tilde{\pi}) \leq d_{\mathsf{HeII}}(\pi,\tilde{\pi})$$

• For any $f \in L^2_\pi(\mathcal{X},\mathcal{Y}) \cap L^2_{\tilde{\pi}}(\mathcal{X},\mathcal{Y})$ we have (Exercise – Hint: Cauchy-Schwarz!)

$$|\mathbb{E}_{\pi}\left[f\right] - \mathbb{E}_{\tilde{\pi}}\left[f\right]| \leq \sqrt{2\|f\|_{L_{\pi}^{2}}^{2} + 2\|f\|_{L_{\tilde{\pi}}^{2}}^{2}} \ d_{\mathsf{HeII}}(\pi, \tilde{\pi}),$$

i.e., Hellinger distance allows to control differences in mean and covariance.

Lemma

Given two potentials $\Phi_1,\Phi_2\colon \mathcal{X}\to [0,\infty)$, let $\pi_1,\pi_2\in \mathcal{P}(\mathcal{X})$ be given by

$$\pi_i(\mathrm{d} u) = \frac{1}{Z_i} \exp(-\Phi_i(u)) \, \pi_0(\mathrm{d} u), \qquad Z_i := \exp(-\Phi_i(u)) \, \pi_0(\mathrm{d} u).$$

Then

Lemma

Given two potentials $\Phi_1, \Phi_2 \colon \mathcal{X} \to [0, \infty)$, let $\pi_1, \pi_2 \in \mathcal{P}(\mathcal{X})$ be given by

$$\pi_i(\mathrm{d} u) = \frac{1}{Z_i} \exp(-\Phi_i(u)) \, \pi_0(\mathrm{d} u), \qquad Z_i := \exp(-\Phi_i(u)) \, \pi_0(\mathrm{d} u).$$

Then

$$d_{\mathsf{Hell}}(\pi_1, \pi_2) \le \frac{1}{\min(Z_1, Z_2)} \|\Phi_1 - \Phi_2\|_{L^2_{\pi_0}}.$$

Lemma

Given two potentials $\Phi_1, \Phi_2 \colon \mathcal{X} \to [0, \infty)$, let $\pi_1, \pi_2 \in \mathcal{P}(\mathcal{X})$ be given by

$$\pi_i(\mathrm{d} u) = \frac{1}{Z_i} \exp(-\Phi_i(u)) \, \pi_0(\mathrm{d} u), \qquad Z_i := \exp(-\Phi_i(u)) \, \pi_0(\mathrm{d} u).$$

Then

$$d_{\mathsf{Hell}}(\pi_1, \pi_2) \le \frac{1}{\min(Z_1, Z_2)} \|\Phi_1 - \Phi_2\|_{L^2_{\pi_0}}.$$

where $\min(Z_1, Z_2) \ge \exp(-\|\Phi_1\|_{L^1_{\pi_0}} - \|\Phi_1 - \Phi_2\|_{L^1_{\pi_0}}).$

Lemma

Given two potentials $\Phi_1, \Phi_2 \colon \mathcal{X} \to [0, \infty)$, let $\pi_1, \pi_2 \in \mathcal{P}(\mathcal{X})$ be given by

$$\pi_i(\mathrm{d} u) = \frac{1}{Z_i} \exp(-\Phi_i(u)) \, \pi_0(\mathrm{d} u), \qquad Z_i := \exp(-\Phi_i(u)) \, \pi_0(\mathrm{d} u).$$

Then

$$d_{\mathsf{Hell}}(\pi_1, \pi_2) \le \frac{1}{\min(Z_1, Z_2)} \|\Phi_1 - \Phi_2\|_{L^2_{\pi_0}}.$$

where $\min(Z_1, Z_2) \ge \exp(-\|\Phi_1\|_{L^1_{\pi_0}} - \|\Phi_1 - \Phi_2\|_{L^1_{\pi_0}}).$

 \bullet Consider now our Gaussian potential $\Phi(u;y):=\frac{1}{2}|y-\mathcal{G}(u)|_{\Sigma^{-1}}^2.$

Lemma

Given two potentials $\Phi_1, \Phi_2 \colon \mathcal{X} \to [0, \infty)$, let $\pi_1, \pi_2 \in \mathcal{P}(\mathcal{X})$ be given by

$$\pi_i(\mathrm{d} u) = \frac{1}{Z_i} \exp(-\Phi_i(u)) \, \pi_0(\mathrm{d} u), \qquad Z_i := \exp(-\Phi_i(u)) \, \pi_0(\mathrm{d} u).$$

Then

$$d_{\mathsf{Hell}}(\pi_1, \pi_2) \le \frac{1}{\min(Z_1, Z_2)} \|\Phi_1 - \Phi_2\|_{L^2_{\pi_0}}.$$

where $\min(Z_1, Z_2) \ge \exp(-\|\Phi_1\|_{L^1_{\pi_0}} - \|\Phi_1 - \Phi_2\|_{L^1_{\pi_0}}).$

- \bullet Consider now our Gaussian potential $\Phi(u;y):=\frac{1}{2}|y-\mathcal{G}(u)|_{\Sigma^{-1}}^2.$
- For any two observations $y, \tilde{y} \in \mathbb{R}^d$ it follows easily that (Exercise) (using the identity $|a^2 b^2| = |a + b| |a b|$)

$$\|\Phi(\cdot;y) - \Phi(\cdot;\tilde{y})\|_{L^2_{\pi_0}} \leq c \, \sqrt{2 \max\{|y|^2, |\tilde{y}|^2\} + 2 \, \|\mathcal{G}\|_{L^2_{\pi_0}}} \, |y - \tilde{y}|$$

Continuous dependence on the data

Theorem (Continuous dependence on the data)

Assume that $\mathcal{G} \in L^2_{\pi_0}(\mathcal{X}; \mathbb{R}^d)$. Then, for each r > 0 there exists a constant c_r such that for the posterior measures resulting from the data model

$$Y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

we have

$$d_{\mathsf{Hell}}(\pi_{u|y}, \pi_{u|\tilde{y}}) \le c_r |y - \tilde{y}| \qquad \forall y, \tilde{y} \colon |y|, |\tilde{y}| \le r$$

Continuous dependence on the data & on the forward map

Theorem (Continuous dependence on the data)

Assume that $\mathcal{G} \in L^2_{\pi_0}(\mathcal{X}; \mathbb{R}^d)$. Then, for each r > 0 there exists a constant c_r such that for the posterior measures resulting from the data model

$$Y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

we have

$$d_{\mathsf{Hell}}(\pi_{u|y}, \pi_{u|\tilde{y}}) \le c_r |y - \tilde{y}| \qquad \forall y, \tilde{y} \colon |y|, |\tilde{y}| \le r$$

Theorem (Continuous dependence on the forward map)

Consider a (numerical) approximation $\mathcal{G}_h \colon \mathcal{X} \to \mathbb{R}^d$ of $\mathcal{G} \colon \mathcal{X} \to \mathbb{R}^d$ such that

$$|\mathcal{G}_h(u) - \mathcal{G}(u)| \le c(u) \ h^p \qquad \forall u \in \mathcal{X}$$

for $h \to 0$ and that $|\mathcal{G}_h(u)|, |\mathcal{G}(u)| \le g(u), u \in \mathcal{X}$, with $c, g \in L^2_{\pi_0}(\mathcal{X}; \mathbb{R})$, and let $\pi^h_{u|y}$ be the approximate posterior measures using $\mathcal{G}_h(U)$ instead of $\mathcal{G}(U)$.

Continuous dependence on the data & on the forward map

Theorem (Continuous dependence on the data)

Assume that $\mathcal{G} \in L^2_{\pi_0}(\mathcal{X}; \mathbb{R}^d)$. Then, for each r > 0 there exists a constant c_r such that for the posterior measures resulting from the data model

$$Y = \mathcal{G}(U) + \eta, \qquad (U, \eta) \sim \pi_0 \otimes \mathcal{N}(0, \Sigma)$$

we have

$$d_{\mathsf{Hell}}(\pi_{u|y}, \pi_{u|\tilde{y}}) \le c_r |y - \tilde{y}| \qquad \forall y, \tilde{y} \colon |y|, |\tilde{y}| \le r$$

Theorem (Continuous dependence on the forward map)

Consider a (numerical) approximation $\mathcal{G}_h \colon \mathcal{X} \to \mathbb{R}^d$ of $\mathcal{G} \colon \mathcal{X} \to \mathbb{R}^d$ such that

$$|\mathcal{G}_h(u) - \mathcal{G}(u)| \le c(u) h^p \quad \forall u \in \mathcal{X}$$

for $h \to 0$ and that $|\mathcal{G}_h(u)|, |\mathcal{G}(u)| \le g(u), u \in \mathcal{X}$, with $c, g \in L^2_{\pi_0}(\mathcal{X}; \mathbb{R})$, and let $\pi^h_{u|y}$ be the approximate posterior measures using $\mathcal{G}_h(U)$ instead of $\mathcal{G}(U)$. Then

$$d_{\mathsf{Hell}}(\pi_{u|y}, \pi^h_{u|y}) \le c_r \mathbf{h}^p \qquad \forall y \colon |y| \le r$$

Bayes estimates

As in finite dimensions, we can derive Bayesian point estimates for the unknown $u \in \mathcal{X}$ based on the posterior $\pi_{u|u}$, such as the

Bayes estimates

As in finite dimensions, we can derive Bayesian point estimates for the unknown $u \in \mathcal{X}$ based on the posterior $\pi_{u|y}$, such as the

Posterior mean:

 \bullet Given $\pi_0 \in \mathcal{P}^1(\mathcal{X})$ and the above assumptions for existence of $\pi_{u|y}.$ Then

$$u_{\mathsf{PM}}^y = \int_{\mathcal{X}} u \, \pi_{u|y}(\mathrm{d}u)$$

is well-defined.

Bayes estimates

As in finite dimensions, we can derive Bayesian point estimates for the unknown $u \in \mathcal{X}$ based on the posterior $\pi_{u|y}$, such as the

Posterior mean:

ullet Given $\pi_0 \in \mathcal{P}^1(\mathcal{X})$ and the above assumptions for existence of $\pi_{u|y}.$ Then

$$u_{\mathsf{PM}}^y = \int_{\mathcal{X}} u \, \pi_{u|y}(\mathrm{d}u)$$

is well-defined.

ullet Given the assumptions for the well-posedness theorems and $\pi_0 \in \mathcal{P}^2(\mathcal{X})$,

$$\left\|u_{\mathsf{PM}}^y - u_{\mathsf{PM}}^{\tilde{y}}\right\| \leq C_r d_{\mathsf{Hell}}(\pi_{u|y}, \pi_{u|\tilde{y}}) \leq C_r \|y - \tilde{y}\| \qquad \forall y, \tilde{y} \colon |y|, |\tilde{y}| \leq r$$

and

$$\left\|u_{\mathsf{PM}}^y - u_{\mathsf{PM},h}^y\right\| \leq C_r d_{\mathsf{Hell}}(\pi_{u|y}, \pi_{u|y}^h) \leq C_r h^p \qquad \forall y \colon |y| \leq r.$$

• Again can also define the MAP estimate in infinite dimensions, although in general not by maximization of the posterior probability density function...

- Again can also define the MAP estimate in infinite dimensions, although in general not by maximization of the posterior probability density function...
- In the case of $y \in \mathbb{R}^d$, for Gaussian prior $u \sim \mathrm{N}(0,C)$ and Gaussian noise, i.e., $\pi_{u|y}(\mathrm{d}u) \propto \exp(-\Phi(u;y))\,\pi_0(\mathrm{d}u)$, we recover again Tikhonov-Philipps regularization (under suitable assumptions):

$$u_{\mathsf{MAP}} \in \mathrm{argmin}_{u \in \mathcal{X}} \, \frac{1}{2} \|y - \mathcal{G}(u)\|_{\Sigma^{-1}}^2 + \frac{1}{2} \|u\|_{C^{-1}}^2$$

with regularizing functional $R(u) = \frac{1}{2} \|u\|_{C^{-1}}^2$ determined by the prior.

- Again can also define the MAP estimate in infinite dimensions, although in general not by maximization of the posterior probability density function...
- In the case of $y \in \mathbb{R}^d$, for Gaussian prior $u \sim \mathrm{N}(0,C)$ and Gaussian noise, i.e., $\pi_{u|y}(\mathrm{d}u) \propto \exp(-\Phi(u;y))\,\pi_0(\mathrm{d}u)$, we recover again Tikhonov-Philipps regularization (under suitable assumptions):

$$u_{\mathsf{MAP}} \in \mathrm{argmin}_{u \in \mathcal{X}} \, \tfrac{1}{2} \|y - \mathcal{G}(u)\|_{\Sigma^{-1}}^2 + \tfrac{1}{2} \|u\|_{C^{-1}}^2$$

with regularizing functional $R(u) = \frac{1}{2} ||u||_{C^{-1}}^2$ determined by the prior.

• Under suitable assumptions continuous dependence on the prior π_0 can also be shown fairly straightforwardly.

- Again can also define the MAP estimate in infinite dimensions, although in general not by maximization of the posterior probability density function...
- In the case of $y \in \mathbb{R}^d$, for Gaussian prior $u \sim \mathrm{N}(0,C)$ and Gaussian noise, i.e., $\pi_{u|y}(\mathrm{d}u) \propto \exp(-\Phi(u;y))\,\pi_0(\mathrm{d}u)$, we recover again Tikhonov-Philipps regularization (under suitable assumptions):

$$u_{\mathsf{MAP}} \in \operatorname{argmin}_{u \in \mathcal{X}} \frac{1}{2} \|y - \mathcal{G}(u)\|_{\Sigma^{-1}}^2 + \frac{1}{2} \|u\|_{C^{-1}}^2$$

with regularizing functional $R(u) = \frac{1}{2} ||u||_{C^{-1}}^2$ determined by the prior.

- Under suitable assumptions continuous dependence on the prior π_0 can also be shown fairly straightforwardly.
- There are also theorems (much harder!) about the asymptotic behaviour of the posterior in infinite dimensions, i.e., **Bernstein-von Mises** type results.

- Again can also define the MAP estimate in infinite dimensions, although in general not by maximization of the posterior probability density function...
- In the case of $y \in \mathbb{R}^d$, for Gaussian prior $u \sim \mathrm{N}(0,C)$ and Gaussian noise, i.e., $\pi_{u|y}(\mathrm{d}u) \propto \exp(-\Phi(u;y))\,\pi_0(\mathrm{d}u)$, we recover again Tikhonov-Philipps regularization (under suitable assumptions):

$$u_{\mathsf{MAP}} \in \mathrm{argmin}_{u \in \mathcal{X}} \, \tfrac{1}{2} \|y - \mathcal{G}(u)\|_{\Sigma^{-1}}^2 + \tfrac{1}{2} \|u\|_{C^{-1}}^2$$

with regularizing functional $R(u) = \frac{1}{2} ||u||_{C^{-1}}^2$ determined by the prior.

- Under suitable assumptions continuous dependence on the prior π_0 can also be shown fairly straightforwardly.
- There are also theorems (much harder!) about the asymptotic behaviour of the posterior in infinite dimensions, i.e., **Bernstein-von Mises** type results.
- However, in contrast to the case $\mathcal{X} = \mathbb{R}^n$, there are positive but also negative results for infinite-dimensional spaces \mathcal{X} . The results are highly problem dependent and still a very active field of research!

Summary - Part II

- The Bayesian approach to inverse problems is well-posed!
- Unique solution: the posterior measure $\pi_{u|y}$.
- ullet Incorporation of prior knowledge/belief via prior measure π_0
- ullet Conditioning / updating / learning based on measured data y.
- Point estimates available, e.g., recover Tikhonov-Philipps regularization
- But crucially: $\pi_{u|y}$ allows for uncertainty quantification for unknown u.

Summary – Part II

- The Bayesian approach to inverse problems is well-posed!
- Unique solution: the posterior measure $\pi_{u|y}$.
- ullet Incorporation of prior knowledge/belief via prior measure π_0
- ullet Conditioning / updating / learning based on measured data y.
- Point estimates available, e.g., recover Tikhonov-Philipps regularization
- But crucially: $\pi_{u|y}$ allows for uncertainty quantification for unknown u.

But how to actually compute Bayes estimates and quantify uncertainty?

→ Lecture 3