Category Theory - Lecture 4 (Notes)

Vorashil Farzaliyev

September 2024

1 Surjective functors

Write $A \cong B$ to mean that A and B are isomorphic, i.e., $f: A \longrightarrow B$ is an isomorphism.

Definition 1.1. (Surjective functor) Let $F: \mathbf{C} \longrightarrow \mathbf{D}$ be a functor.

We say that F is **essentially surjective** if for all $X \in \mathbf{D}$, there exists a A such that $F(A) \cong X$.

Example 1.1. Let $F : \mathbf{C} \longrightarrow \mathbf{D}$ be a functor.

• For $\mathbf{C} =$

$$\mathbf{C} = \text{ category of } \left\{ \begin{array}{l} [n] = \{1, 2, \dots, n\} \text{ for } n \in \mathbb{N}\} \\ \\ [n] \stackrel{f}{\longrightarrow} [m] \end{array} \right.$$

• For $\mathbf{D} = \underline{FinSet}$

$$\underline{FinSet} = category \ of \left\{ egin{array}{ll} finite \ sets \\ functions \end{array} \right.$$

$$\begin{bmatrix} n \end{bmatrix} \xrightarrow{F} \{1, 2, \dots, n\}$$

$$\downarrow^{f} \qquad \qquad \downarrow^{Ff = f}$$

$$[m] \xrightarrow{F} \{1, 2, \dots, m\}$$

For example, $\{1,3\} \in FinSet$ is not in the (essential) image of F. However, we have $[2] \in \mathbb{C}$ and

$$F([2]) \cong \{1,3\} \in \underline{FinSet}$$

2 Full and Faithful Functors

Definition 2.1. (Faithful functor)

Let $F: \mathbf{C} \longrightarrow \mathbf{D}$ be a functor. We say that F is **faithful** if $\forall A, B \in \mathbf{C}$ the function

$$\mathbf{C}(A,B) \longrightarrow \mathbf{D}(F(A),F(B))$$

is injective.

Definition 2.2. (Full functor)

Let $F: \mathbb{C} \longrightarrow \mathbb{D}$ be a functor. We say that F is **full** if $\forall A, B \in \mathbb{C}$ the function

$$\mathbf{C}(A,B) \longrightarrow \mathbf{D}(F(A),F(B))$$

is surjective.

Note 2.1. (What does it mean for a functor to be full?)

For all $A, B \in \mathbb{C}$, we have

$$\mathbf{C}(A,B) \longrightarrow \mathbf{D}(F(A),F(B))$$
 is surjective

means $\forall u : FA \longrightarrow FB$ in **D** there exists $f : A \longrightarrow B$ in **C** such that

$$Ff = u$$

Note 2.2. (What does it mean for a functor to be faithful?)

For all $A, B \in \mathbb{C}$, we have

$$\mathbf{C}(A,B) \longrightarrow \mathbf{D}(F(A),F(B))$$
 is injective

means $\forall f_1, f_2 : A \longrightarrow B$ in **C**

$$F(f_1) = F(f_2) \Rightarrow f_1 = f_2$$

2.1 Examples

Example 2.1. $(F : \underline{Grp} \longrightarrow \underline{Set})$

$$(G, \circ) \xrightarrow{F} G = F(G, \circ)$$

$$\downarrow^{f} \qquad \qquad \downarrow^{Ff = f}$$

$$(H, *) \xrightarrow{F} H = F(H, *)$$

So we have

$$\frac{Grp((G,\circ),(H,*)) \longmapsto \underline{Set}(G,H)}{f \longmapsto f}$$

not full, but faithful.

- not full: Because a map in \underline{Grp} is a group homomorphism, but not every map in \underline{Set} corresponds to a group homomorphism. So we can fund $u: G \longrightarrow H$ in \underline{Set} such that there is no $f: (G, \circ) \longrightarrow (H, *)$ in Grp such that Ff = u.
- faithful: since it injectively maps every map $f: G \longrightarrow H$ in \underline{Grp} to a map $Ff: GF \longrightarrow FH$ in Set.

Example 2.2.
$$(F : \underline{Ab} \longrightarrow \underline{Grp})$$

$$\underbrace{Ab} \longrightarrow \underline{Grp}$$

$$(G, \circ) \xrightarrow{F} (G, \circ) = F(G, \circ)$$

$$\downarrow^{f} \qquad \qquad \downarrow^{Ff = f}$$

$$(H, *) \xrightarrow{F} (H, *) = F(H, *)$$

So we have

$$\frac{\underline{Grp}((G,\circ),(H,*)) \longmapsto \underline{Set}(G,H)}{f \longmapsto f}$$

full and faithful.

- full: every group homomorphism between $F(G, \circ)$ and F(H, *) comes from an abelian group homomorphism between (G, \circ) and (H, *).
- faithful: F is faithful because it injectively maps abelian group homomorphisms to group homomorphisms

Exercise 2.1. Find a functor $F: \mathbf{C} \longrightarrow \mathbf{D}$ that is full but not faithful.

- think small categories
- $\bullet \ \underline{P} \longrightarrow Q$

3 Subcategories

Definition 3.1. Let C be a category.

A subcategory D of C consists of

 $\bullet \ \ a \ subclass$

$$Ob(\mathbf{D}) \subseteq Ob(\mathbf{C})$$

• $\forall A, B \in Ob(\mathbf{D}) \subseteq Ob(\mathbf{C})$

$$\mathbf{D}(A,B) \subseteq \mathbf{C}(A,B)$$

which is closed under composition and identities:

• $\forall A, B, C \in Ob(\mathbf{D})$

$$f \in \mathbf{D}(A, B)$$
 and $g \in \mathbf{D}(B, C) \Rightarrow g \circ f \in \mathbf{D}(A, C)$

• $\forall A \in Ob(\mathbf{D})$

$$1_A \in \mathbf{D}(A, A)$$

Definition 3.2. Let C be a category and D be a subcategory of C.

We say that **D** is **full** if

$$\mathbf{D}(A,B) = \mathbf{C}(A,B)$$

for all $A, B \in Ob(\mathbf{D})$.

Example 3.1. (Subcategories of <u>Set</u>)

- $\underline{Finset} \subseteq \underline{Set}$ is full subcategory of \underline{Set} with objects as finite sets
- $\underline{Finset}_{i,j} \subseteq \underline{Set}$, the subcategory of \underline{Set} with objects finite sets and bijections between them

Exercise 3.1. Let G be a group. Describe explicitly in terms of G, what is the subcategory of $\Sigma(G)$.

Exercise 3.2. Let \underline{P} be a poset. Describe explicitly in terms of \underline{P} , what is the subcategory of \underline{P} .