project2_OSEMN_plus_mvp_final

April 26, 2021

Copyright: Thomas Klinder

#

Increase Your Property Value and Stretch Your House Buying Budget Further

Phase 2 Final Project * Student name: Elena Kazakova * Student pace: full time * Cohort: DS02222021 * Scheduled project review date/time: TBD * Instructor name: James Irving * Blog post URL: TBD

0.1 Table of Contents

Click to jump to matching Markdown Header.

- Section 1
- Section 2
- Section ??
- Section ??
- Section 4
- Section 5
- Section 6 ____

1 Introduction

1.1 Business Problem

This project is the Inference Analysis project of King County, WA house prices, and various factors that might affect the sales price. This study aims to build a model(s) of house sale prices depending on the features of the property in the dataset provided. This information can be helpful for house owners, house buyers, and real estate agents in the county.

2 Obtain

2.1 Data Understanding

The dataset used in this project has been downloaded from KAGGLE site. The dataset includes the information about properties sold in King County of Washington State between May 2014 and May 2015. The area consists of Seattle city area but does not include the inner city. The dataset consists of 21 dependent and independent variables and 21597 records.

2.1.1 Importing Python tools and utilities

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import folium
     import json
     import plotly.express as px
     import statsmodels.api as sm
     import statsmodels.formula.api as smf
     import statsmodels.stats.api as sms
     import sklearn.metrics as metrics
     #import plotly.graph_objects as go
     import scipy.stats as stats
     import math
     #import pickle
     import scipy.stats
     from matplotlib import style
     from statsmodels.formula.api import ols
     from statsmodels.stats.outliers influence import variance inflation factor
     #from pandasql import sqldf
```

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
#from sklearn.preprocessing import OneHotEncoder, PolynomialFeatures,
⇒StandardScaler, RobustScaler, MinMaxScaler
from sklearn.preprocessing import OneHotEncoder, PolynomialFeatures,
→RobustScaler, MinMaxScaler
from sklearn.feature_selection import RFE
from sklearn.metrics import make_scorer
from sklearn.model_selection import cross_val_score
from sklearn.experimental import enable iterative imputer
from sklearn.impute import IterativeImputer
from scipy.stats import pearsonr
from IPython.display import display, Math, Latex
from folium import plugins
from plotly.subplots import make_subplots
#from mlxtend.evaluate import bias_variance_decomp
from warnings import filterwarnings
filterwarnings('ignore')
%matplotlib inline
```

2.1.2 Functions used

```
[2]: def count_unique_records(df):
    unique_records=[]
    for column in df.columns:
        n = df[column].nunique()
        unique_records.append((column,n))
    print(unique_records)
    return None

def count_dups_field(field1):
    dups = df.pivot_table(index = [field1], aggfunc ='size')
    return dups

def count_dups_fields(field1, field2):
    dups = df.pivot_table(index = [field1, field2], aggfunc ='size')
    return dups

def remove_columns(df, y_columns=['price'], x_columns=[], exclude_columns=[], u_add_constant=True):
```

```
if x_columns==[]:
        x_columns=list(df.drop(columns=y_columns, axis=1))
    [x_columns.remove(columns) for columns in exclude_columns]
    df_x=df[x_columns]
    df_y=df[y_columns]
    return df_x, df_y
# Function to convert geo coordinates to distance from center. I am using
def distance_from_center(lat_coord,lon_coord):
    R = 3959.999
# I am using geo coordinates of Seattle 47.6062° N, 122.3321° W, from Wikipedia
    lat1 = math.radians(47.6062)
    lon1 = math.radians(122.3321)
    lat2 = math.radians(lat_coord)
    lon2 = math.radians(lon coord)
    dlon = lon2 - lon1
    dlat = lat2 - lat1
   a = math.sin(dlat / 2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon_
→/ 2)**2
    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
    d=R*c
    return round(d,1)
def jointplot(df):
    sns.set_style('white')
    for col in df.columns:
        g=sns.jointplot(x=col, y='price', data=df, size=5, kind='reg',_
→marginal_ticks=True,
                        joint_kws={'line_kws':{'color':'green'}}, height=15,__
\rightarrowspace=0.7)
        name=col
        R2,p= scipy.stats.pearsonr(x=df[col], y=df.price)
        g.fig.suptitle('For {}: R2 coefficient is {}, p-value is {}'.
\rightarrow format(name, round(R2,4),p))
        g.fig.tight_layout()
        g.fig.subplots_adjust(top=0.85)
    return None
```

```
def r2_p(df):
    for col in df.columns:
        name=col
        R2,p= scipy.stats.pearsonr(x=df[col], y=df.price)
        print('For {}: R2 coefficient is {}, p-value is {}'.format(name, ___
\rightarrowround(R2,4),p))
    return None
# This is a snippet from https://www.analyticsvidhya.com/bloq/2020/03/
\hookrightarrow what-is-multicollinearity/
def calc_vif(X):
    # Calculating VIF
    vif = pd.DataFrame()
    vif["variables"] = X.columns
    vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.
\rightarrowshape [1])]
    return(vif)
# This is a snippet from https://atmamani.github.io/cheatsheets/seaborn/
⇒seaborn_cheat_sheet_1/
def distribution(column):
    col_mean = column.mean()
    col_sd = column.std()
    skew_val = stats.skew(column, bias=False)
    kurt_val = stats.kurtosis(column,bias=False)
    ax = sns.distplot(column, kde_kws={"color": "r", "lw": 2, "label": "KDE", _

¬"bw_adjust": 3})
    ax.axvline(x=col_mean, color='black', linestyle='dashed')
    ax.axvline(x=col_mean + col_sd, color='red', linestyle='dotted')
    ax.axvline(x=col_mean - col_sd, color='red', linestyle='dotted')
    ax.set_title('$\mu = {}$ | $\sigma = {}$ | Skew = {} | Kurtosis = {}'.
                 format(round(col_mean, 2), round(col_sd, 2),__
 →round(skew_val,2), round(kurt_val,2)))
    plt.subplots_adjust(top=0.5)
    plt.tight_layout()
    return None
def boxen_plot(df,colname):
```

```
ax = sns.catplot(x=df[colname], y=df.price/1000000, kind="boxen",
                 data=df.sort_values(colname), height=7, aspect=8/5)
    ax.set_xticklabels(fontsize=12)
    ax.set_yticklabels(fontsize=12)
    plt.ylabel('Price in millions', fontsize=15)
    plt.xlabel(colname,fontsize=15)
    plt.grid()
    plt.show()
    return None
#Zipcode choropleth maps with average values per a zipcode (King County)
def map_choropleth_zip(df, column, title, column_name):
    fig=px.choropleth_mapbox(data_frame=df, locations='zipcode',_
→geojson=KC_zip_json, color=column,
                         mapbox_style='open-street-map', zoom=8.5, height=900,__

→featureidkey='properties.ZCTA5CE10',
                        center={'lat': 47.403768, 'lon': -122.005863},__
\rightarrowopacity=0.4,
                        color_continuous_scale=px.colors.sequential.YlOrRd,
                        title=title,
                        template = "plotly_dark",
                        labels={
                            column: column name})
    fig.update_layout(
    font_family="Arial",
    font_size=16,
    font_color="white",
    title_font_family="Arial",
    title_font_color="white",
    title_font_size=20)
    fig.update_layout(
    title={
        'y':0.98,
        'x':0.5,
        'xanchor': 'center',
        'yanchor': 'top',
    })
    fig.show()
    return None
```

2.1.3 Importing data

```
[3]: # Importing raw data
df=pd.read_csv('data/kc_house_data.csv')
pd.set_option('display.width', 1000)
df.head()
```

[3]: price bedrooms bathrooms sqft_living sqft_lot date floors waterfront view ... grade sqft_above sqft_basement yr_built yr_renovated zipcode lat long sqft_living15 sqft_lot15 0 7129300520 10/13/2014 221900.0 1.00 3 1180 5650 1.0 NaN0.0 ... 1180 0.0 1955 0.0 98178 47.5112 -122.257 1340 5650 12/9/2014 538000.0 1 6414100192 2.25 7242 3 2570 2.0 0.0 0.0 ... 2170 400.0 1951 1991.0 98125 47.7210 -122.319 1690 7639 2 5631500400 2/25/2015 180000.0 2 1.00 770 10000 1.0 770 0.0 0.0 ... 0.0 1933 8062 NaN 98028 47.7379 -122.233 2720 3 2487200875 12/9/2014 604000.0 3.00 5000 1960 1.0 0.0 0.0 ... 1050 910.0 1965 98136 47.5208 -122.393 5000 0.0 1360 4 1954400510 2/18/2015 510000.0 2.00 1680 8080 3 1.0 0.0 0.0 ... 1680 0.0 1987 0.0 98074 47.6168 -122.045 7503 1800

[5 rows x 21 columns]

[4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	float64
9	view	21534 non-null	float64
10	condition	21597 non-null	int64
11	grade	21597 non-null	int64
12	sqft_above	21597 non-null	int64

```
sqft_basement 21597 non-null object
     13
     14 yr_built
                        21597 non-null
                                        int64
        yr_renovated
                        17755 non-null
                                       float64
     15
     16 zipcode
                        21597 non-null int64
     17 lat
                        21597 non-null float64
     18 long
                        21597 non-null float64
     19 sqft living15 21597 non-null int64
     20 sqft_lot15
                        21597 non-null int64
    dtypes: float64(8), int64(11), object(2)
    memory usage: 3.5+ MB
[5]: # Displaying tuples of fields and unique records in them
     count unique records(df)
    [('id', 21420), ('date', 372), ('price', 3622), ('bedrooms', 12), ('bathrooms',
    29), ('sqft_living', 1034), ('sqft_lot', 9776), ('floors', 6), ('waterfront',
    2), ('view', 5), ('condition', 5), ('grade', 11), ('sqft_above', 942),
    ('sqft_basement', 304), ('yr_built', 116), ('yr_renovated', 70), ('zipcode',
    70), ('lat', 5033), ('long', 751), ('sqft_living15', 777), ('sqft_lot15', 8682)]
[6]: # Finding all duplicate IDs
     df_a=pd.DataFrame(count_dups_field('id'))
     df_a.columns=['count']
     df_a = df_a[df_a['count'] > 1].sort_values('count', ascending=False)
     df_a.reset_index(level=0, inplace=True)
     df a
[6]:
                  id
                     count
     0
          795000620
                          3
     1
            1000102
                          2
     2
          5430300171
                          2
     3
          6021500970
                          2
     4
          6021501535
                          2
     171 2726049071
                          2
                          2
     172 2767602141
                          2
     173 2767603612
     174 2787460720
                          2
     175 9834200885
                          2
     [176 rows x 2 columns]
[7]: # Listing duplicate IDs and associated dataset records to find out the reason
     → they are in the file twice
     df_dup=pd.DataFrame()
     for i in range(len(df_a)):
```

df_dup=df_dup.append(df[df.id==df_a.id[i]], ignore_index=True)
df_dup

[7]:		i	d	date		price	e be	edroor	ms	bath	rooms	sqft_li	ving	
	sqft	_lot floo	rs wat	erfron	t v	iew "	. gr	ade	sq	[ft_ab	ove s	qft_base	ment	
	yr_bı	ıilt yr_r	enovate	ed zip	code		lat		lon	g so	ft_liv	ing15 s	qft_l	ot15
		79500062												
	6250	1.0		0.0	0.0		5			1080		0.0		1950
	0.0	98168	47.5045	-122.	330			1070			6250			
	1	79500062	0 12/1	5/2014	12	4000.0)		3		1.00		1080	
	6250	1.0		0.0	0.0	•••	5			1080		0.0		1950
	0.0	98168	47.5045	-122.	330			1070			6250			
	2	79500062	0 3/1	1/2015	15	7000.0)		3		1.00		1080	
	6250	1.0		NaN	0.0	•••	5			1080		0.0		1950
	NaN	98168												
	3	100010	2 9/1	6/2014	28	0000.0)		6		3.00		2400	
	9373			NaN	0.0	•••	7			2400		0.0		1991
	0.0	98002	47.3262	-122.	214			2060			7316			
	4	100010	2 4/2	2/2015	30	0000.0)		6		3.00		2400	
	9373	2.0		0.0	0.0		7			2400		0.0		1991
	0.0	98002	47.3262	-122.	214			2060			7316			
				•••	•••									
	•••	•••			•••		•••			•••				
	•••	•••	•••											
	348	276760361)		2				1290	
	1334	3.0		0.0	0.0		8			1290		0.0		2007
	NaN	98107	47.6719	-122.	382			1350			1334			
	349	278746072	0 2/2	7/2015	20	0000.0)		3		2.00		1010	
	7896	1.0		0.0	0.0		7			1010		0.0		1984
	0.0	98031	47.4046	-122.	181			1540			7896			
	350	278746072	0 5/	6/2015	25	9950.0)		3		2.00		1010	
	7896											0.0		
		00021	17 1016	-100	181			1540			7896			
	0.0	90031	41.4040) -122.										
	351	983420088	5 7/1	7/2014	36	0000.0)		4		2.50		2080	
	351	983420088	5 7/1	7/2014	36	0000.0	7		4	1040	2.50	1040.0	2080	1962
	351 4080 0.0	983420088 1.0 98144	5 7/1 47.5720	7/2014 0.0 -122.	36 0.0 290	0000.0 	7	1340		1040	4080	1040.0		1962
	351 4080 0.0 352	983420088 1.0 98144 983420088	5 7/1 47.5720 5 4/2	.7/2014 0.0 0-122.	36 0.0 290 55	0000.0 	7	1340	4	1040	4080 2.50	1040.0	2080	1962
	351 4080 0.0 352 4080	983420088 1.0	5 7/1 47.5720 5 4/2	.7/2014 0.0 0-122. 20/2015 0.0	36 0.0 290 55 0.0	0000.0	7	1340	4	1040 1040	4080 2.50	1040.0	2080	1962

[353 rows x 21 columns]

The inspection of the records shows that the records with duplicate IDs have different sale dates and sale prices. However, all other features remain the same. Records with the same set of predictors but different prices would introduce additional "noise" to the data. Because there are only 353 records with that problem, I decided to drop them from the dataset.

```
[8]: #listing datatype, number of null values, min and max values in the fields of \Box
     \hookrightarrow the dataset
    fields1=['bedrooms','bathrooms','floors','waterfront',u
     fields2=['sqft_lot15',__
     → 'sqft_living15', 'yr_renovated', 'yr_built', 'sqft_above', 'sqft_living', 'sqft_lot|]
    for column in df.columns:
        type_=df[column].dtypes
        num nulls=df[column].isna().sum()
        min = 0
        \max = 0
        unique =[0]
        if column in fields1:
            unique_=df[column].unique()
            unique_.sort()
        else:
            if column in fields2:
                min =df[column].min()
               max_=df[column].max()
            else:
                continue
        print('Column name:', column)
        print('Type:', type_)
        print('Number of null values', num nulls)
        print('Unique values:',unique_)
        print('Min value: ', min_, 'Max value:', max_)
        print('***********************************
    Column name: bedrooms
    Type: int64
    Number of null values 0
    Unique values: [ 1 2 3 4 5 6 7 8 9 10 11 33]
    Min value: 0 Max value: 0
    **********
    Column name: bathrooms
    Type: float64
    Number of null values 0
    Unique values: [0.5 0.75 1. 1.25 1.5 1.75 2. 2.25 2.5 2.75 3. 3.25 3.5
    3.75
        4.25 4.5 4.75 5. 5.25 5.5 5.75 6. 6.25 6.5 6.75 7.5 7.75
    4.
    8. 1
    Min value: 0 Max value: 0
    **********
    Column name: sqft_living
    Type: int64
    Number of null values 0
```

Unique values: [0]

Column name: sqft_lot

Type: int64

Number of null values 0

Unique values: [0]

Column name: floors

Type: float64

Number of null values 0

Unique values: [1. 1.5 2. 2.5 3. 3.5]

Min value: 0 Max value: 0

Column name: waterfront

Type: float64

Number of null values 2376 Unique values: [0. 1. nan] Min value: 0 Max value: 0

Column name: view Type: float64

Number of null values 63

Unique values: [0. 1. 2. 3. 4. nan]

Min value: 0 Max value: 0

Column name: condition

Type: int64

Number of null values 0 Unique values: [1 2 3 4 5] Min value: 0 Max value: 0

Column name: grade

Type: int64

Number of null values 0

Unique values: [3 4 5 6 7 8 9 10 11 12 13]

Min value: 0 Max value: 0

Column name: sqft_above

Type: int64

Number of null values 0

Unique values: [0]

Min value: 370 Max value: 9410 ***************

Column name: yr_built

Type: int64

Number of null values 0

Unique values: [0]

Column name: yr_renovated

Type: float64

Number of null values 3842

Unique values: [0]

Column name: sqft_living15

Type: int64

Number of null values 0

Unique values: [0]

Column name: sqft_lot15

Type: int64

Number of null values 0 Unique values: [0]

2.1.4 Description of the fields

The file has 21597 records with 21 columns, out of which 11 columns have integer values, 8 are real numbers, and 2 are strings. The annotation to the fields and associated data (link to the definitions here) * id: Unique ID for each home sold

- 1. no NULL values

- 2.integer numbers

- 3.176 duplicate records

353 rows to be dropped

• date: Date of the sale >no NULL values string

Convert to DateTime type

- price Price of each home sold >no NULL values Real numbers Minimum price: 78000 Maximum price: 7700000
- bedrooms Number of bedrooms > no NULL values > Integer numbers, between 1 and 33
- bathrooms Number of bathrooms, where .5 accounts for a room with a toilet but no shower >no NULL values >Real numbers, between 0.5 and 8.0
- sqft_living Square footage of the house interior living space >No NULL values Integer numbers Minimum value: 370 Maximum value: 13540
- sqft_lot Square footage of the land lot >No NULL values Integer numbers Minimum value: 520 Maximum value: 1651359
- floors Number of floors > no NULL values > Real numbers, between 1.0 and 3.5

• waterfront - A categorical variable for whether the house was overlooking the waterfront or not >2376 NULL values >Real numbers, only two values 1.0 and 0.0

Convert to a categorical variable Waterfront, not Waterfront Replace NULL values with "Missing" category

• **view** - A categorical variable describing how good the view of the property was >63 NULL values >Real numbers: 1.0, 2.0, 3.0, 4.0

Convert to a categorical variable Poor, Fair, Good Excellent

Replace NULL values with "Missing" category

• condition - A categorical variable describing the condition of the house >no NULL values >Integer numbers, between 1 and 5

Convert to a categorical variable Poor, Fair, Good, Very Good, Excellent

- grade A categorical variable describing the quality of construction, from 1 to 13; 1-3 falls short of building construction and design, 7 has an average level of construction and design, and 11-13 have a high quality level of construction and design. >no NULL values >Integer numbers, between 3 and 13
- sqft_above The square footage of the interior housing space that is above ground level >No NULL values Integer numbers Minimum value: 370 Maximum value: 9410
- sqft_basement The square footage of the interior housing space that is below ground level >No NULL values String

Convert to integer

- yr_built The year the house was initially built >No NULL values Integer numbers Minimum value: 1900 Maximum value: 2015
- yr_renovated The year of the last house renovation >3842 NULL values >Real numbers, between 0.0 and 2015.0

Convert to integer

• **zipcode** - What zipcode area the house is in >no NULL values Integer numbers, 70 unique values

Convert to categorical variable or drop

- lat Lattitude >no NULL values >Real numbers
- long Longitude >no NULL values >Real numbers
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors >No NULL values Integer numbers Minimum value: 399 Maximum value: 6210
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors >No NULL values Integer numbers Minimum value: 651 Maximum value: 871200

2.1.5 Initial cleaning of the data

[9]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

Dava	COTUMIND (COURT	Zi Columno).	
#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	float64
9	view	21534 non-null	float64
10	condition	21597 non-null	int64
11	grade	21597 non-null	int64
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	<pre>yr_built</pre>	21597 non-null	int64
15	<pre>yr_renovated</pre>	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19		21597 non-null	
20	sqft_lot15	21597 non-null	int64
dtype	es: float64(8),	int64(11), obje	ct(2)
memoi	ry usage: 3.5+ N	ИВ	

1. Dropping duplicate rows for houses sold twice in the timeframe of the dataset

```
[10]: #Dropping duplicate rows for houses sold twice in the timeframe of the dataset
df = df.drop_duplicates(subset='id', keep="first")
df
```

```
[10]:
                                       price bedrooms bathrooms sqft_living
                              date
     sqft_lot floors waterfront view ... grade sqft_above sqft_basement
     yr_built yr_renovated zipcode
                                                  long sqft_living15 sqft_lot15
                                          lat
     0
            7129300520 10/13/2014 221900.0
                                                     3
                                                             1.00
                                                                          1180
     5650
              1.0
                                                     1180
                                                                     0.0
                          NaN
                                0.0 ...
                                            7
                                                                             1955
     0.0
            98178 47.5112 -122.257
                                              1340
                                                          5650
            6414100192
                         12/9/2014 538000.0
                                                     3
                                                             2.25
                                                                          2570
     7242
              2.0
                          0.0
                                0.0 ...
                                                     2170
                                                                   400.0
                                                                             1951
                                                 1690
     1991.0
               98125 47.7210 -122.319
                                                             7639
            5631500400
                        2/25/2015 180000.0
                                                     2
                                                             1.00
                                                                           770
```

```
10000
          1.0
                      0.0 0.0 ...
                                         6
                                                    770
                                                                   0.0
                                                                            1933
NaN
       98028 47.7379 -122.233
                                          2720
                                                       8062
3
       2487200875
                    12/9/2014 604000.0
                                                          3.00
                                                                       1960
5000
                                                  1050
                     0.0
                           0.0 ...
                                                                910.0
                                                                           1965
0.0
       98136 47.5208 -122.393
                                          1360
                                                       5000
                    2/18/2015 510000.0
                                                          2.00
       1954400510
                                                  3
                                                                       1680
8080
                     0.0
                            0.0
                                                  1680
                                                                  0.0
                                        8
                                                                          1987
0.0
       98074 47.6168 -122.045
                                                       7503
                                          1800
21592
        263000018
                    5/21/2014
                               360000.0
                                                          2.50
                                                                       1530
1131
         3.0
                     0.0
                            0.0
                                        8
                                                  1530
                                                                  0.0
                                                                           2009
                                •••
0.0
       98103 47.6993 -122.346
                                          1530
                                                       1509
21593
       6600060120
                    2/23/2015 400000.0
                                                          2.50
                                                                       2310
                                                  4
5813
         2.0
                     0.0
                           0.0 ...
                                        8
                                                  2310
                                                                  0.0
                                                                           2014
0.0
       98146 47.5107 -122.362
                                          1830
                                                       7200
21594
      1523300141
                    6/23/2014 402101.0
                                                          0.75
                                                                       1020
1350
         2.0
                                                  1020
                     0.0
                            0.0 ...
                                                                  0.0
                                                                           2009
0.0
       98144 47.5944 -122.299
                                          1020
                                                       2007
21595
        291310100
                    1/16/2015 400000.0
                                                          2.50
                                                                       1600
                                                  3
2388
         2.0
                     NaN
                            0.0 ...
                                                  1600
                                                                  0.0
                                                                           2004
                                        8
0.0
       98027 47.5345 -122.069
                                          1410
                                                       1287
21596
      1523300157 10/15/2014 325000.0
                                                  2
                                                          0.75
                                                                       1020
1076
         2.0
                     0.0
                                        7
                                                  1020
                                                                  0.0
                            0.0 ...
                                                                           2008
0.0
       98144 47.5941 -122.299
                                          1020
                                                       1357
```

[21420 rows x 21 columns]

2. Converting the 'date' field to DateTime formate and making sure it worked

```
[11]: # date string to datetime type
df['date'] = pd.to_datetime(df['date'])
```

```
[12]: #Checking if the conversion went OK

mask = (df['date'] > '9/24/2014') & (df['date'] <= '4/22/2015')

df.loc[mask]
```

[12]: id date price bedrooms bathrooms sqft living sqft_lot floors waterfront view ... grade sqft_above sqft_basement yr_built yr_renovated zipcode long sqft_living15 sqft_lot15 lat 7129300520 2014-10-13 221900.0 3 1.00 1180 5650 1.0 0.0 ${\tt NaN}$ 0.0 ... 7 1180 1955 5650 0.0 98178 47.5112 -122.257 1340 6414100192 2014-12-09 3 2.25 2570 538000.0 7242 2.0 0.0 0.0 ... 2170 400.0 1951 1991.0 98125 47.7210 -122.319 1690 7639 5631500400 2015-02-25 1.00 770 180000.0 2

```
NaN
       98028 47.7379 -122.233
                                           2720
                                                        8062
3
       2487200875 2014-12-09
                                604000.0
                                                           3.00
                                                                         1960
5000
                      0.0
                            0.0
                                                   1050
                                                                  910.0
                                                                            1965
0.0
       98136 47.5208 -122.393
                                           1360
                                                        5000
       1954400510 2015-02-18
                                510000.0
                                                   3
                                                           2.00
                                                                         1680
8080
                                                   1680
                      0.0
                            0.0
                                                                    0.0
                                                                            1987
0.0
       98074 47.6168 -122.045
                                           1800
                                                        7503
21590
      7936000429 2015-03-26 1010000.0
                                                           3.50
                                                                         3510
7200
         2.0
                      0.0
                            0.0
                                                   2600
                                                                  910.0
                                                                            2009
0.0
       98136 47.5537 -122.398
                                           2050
                                                        6200
21591
       2997800021 2015-02-19
                                475000.0
                                                           2.50
                                                                         1310
                                                   3
1294
         2.0
                      0.0
                            0.0 ...
                                                   1180
                                                                  130.0
                                                                            2008
0.0
       98116 47.5773 -122.409
                                                        1265
                                           1330
21593
       6600060120 2015-02-23
                                400000.0
                                                                         2310
                                                           2.50
5813
         2.0
                      0.0
                            0.0 ...
                                                   2310
                                                                    0.0
                                                                            2014
0.0
       98146 47.5107 -122.362
                                           1830
                                                        7200
21595
        291310100 2015-01-16
                                400000.0
                                                                         1600
                                                   3
                                                           2.50
2388
         2.0
                      NaN
                                                   1600
                                                                    0.0
                            0.0
                                         8
                                                                            2004
0.0
       98027 47.5345 -122.069
                                           1410
                                                        1287
21596
       1523300157 2014-10-15
                                                   2
                                                           0.75
                                325000.0
                                                                         1020
1076
         2.0
                      0.0
                                                   1020
                                                                    0.0
                            0.0
                                                                            2008
0.0
       98144 47.5941 -122.299
                                           1020
                                                        1357
```

770

0.0

1933

[10574 rows x 21 columns]

10000

1.0

3. Locations of the houses with missing 'waterfront' values

0.0 0.0 ...

```
[13]: # Possible strategies:
# 1. Check if there are waterfront properties among neighbors within a certainudistance range
# 2. Make a map and place properties with missing values on it visually
# 3. What is the longitude of the bay shore? Any house with a missing value tooudfar away from it
# should have their waterfront value set to 0. Hopefully, it will eliminated whost of the missing values in this field
```

```
[14]:
                 lat
                         long
            47.5112 -122.257
      10
             47.6007 -122.145
      23
             47.3533 -122.166
      40
             47.6145 -122.027
      55
             47.6597 -122.290
      21578 47.3749 -122.107
      21582 47.2931 -122.264
      21586 47.3095 -122.002
      21587 47.5389 -121.881
      21595 47.5345 -122.069
      [2353 rows x 2 columns]
     3.1 Visual assessment of the houses with Null value in the 'waterfront column
[15]: # Initializing the map based on the Wikipedia location of Seattle
      KCMap = folium.Map(location=[47.6171,-122.3249], tiles='Stamen Terrain', L
      →zoom_start=9)
      # for each row in the KC house dataset with missing waterfront value,
      # plot the corresponding latitude and longitude on the map
      for index, row in df_wf_na_coord.iterrows():
          folium.CircleMarker((row['lat'], row['long']), radius=1, weight=2,
                              color='red', fill_color='red', fill_opacity=.5).
       →add_to(KCMap)
      display(KCMap)
      # adding the heatmap
      KCMap.add_child(plugins.HeatMap(data=df_wf_na_coord[['lat', 'long']],__
       ⇒radius=20, blur=10))
     <folium.folium.Map at 0x21a69232fd0>
[15]: <folium.folium.Map at 0x21a69232fd0>
[16]: # Displaying
      # the percentage of waterfront properties in the dataset with missing \Box
      →waterfront values,
      # the percentage of waterfront properties in the full dataset
      # The systemic error introduced to the full dataset if missing waterfront \sqcup
      \rightarrow values would be replaced with 0
      a=round((20/len(df_wf_na_coord))*100,3)
```

b=round((len(df[df['waterfront'] == 1])/len(df)*100),2)

0.85%, 0.68%, 0.093%

It is self-evident from the visuals above that the vast majority of the houses are located inland. Simple zooming in the maps allows a rough counting of alleged waterfront properties. The estimate is approximately 20 waterfront houses. It is 0.85% of all properties with no value in 'waterfront column (2353). In the primary dataset, the percentage of waterfront properties out of the total number of properties is 0.68%. The numbers above indicate that replacing the NaN values with 0 would introduce a systemic error of 0.01% to the whole system. Conclusion: The NULL values in the 'waterfront' column will be replaced with 0.

3.2 Replacing NULL values in 'waterfront' column and converting the column to the integer datatype to make it categorical

```
[17]: #Replacing NaN values in 'waterfront' column

df.loc[df.waterfront.isna(),'waterfront']=0
  df.waterfront=df.waterfront.astype('int64')

subset_df = df[df['waterfront'] == 1]
  count = len(subset_df)
  print(count)
  #df.info()
```

146

[18]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21420 entries, 0 to 21596
Data columns (total 21 columns):

	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
#	Column	Non-Null Count	Dtype
0	id	21420 non-null	int64
1	date	21420 non-null	datetime64[ns]
2	price	21420 non-null	float64
3	bedrooms	21420 non-null	int64
4	bathrooms	21420 non-null	float64
5	sqft_living	21420 non-null	int64
6	sqft_lot	21420 non-null	int64
7	floors	21420 non-null	float64
8	waterfront	21420 non-null	int64
9	view	21357 non-null	float64
10	condition	21420 non-null	int64

```
21420 non-null
                                        int64
      11 grade
      12 sqft_above
                        21420 non-null int64
      13
         sqft_basement 21420 non-null
                                        object
      14 yr_built
                                        int64
                        21420 non-null
      15 yr renovated 17616 non-null float64
      16 zipcode
                        21420 non-null int64
      17
         lat
                        21420 non-null float64
      18 long
                        21420 non-null float64
      19 sqft_living15 21420 non-null int64
      20 sqft_lot15
                        21420 non-null int64
     dtypes: datetime64[ns](1), float64(7), int64(12), object(1)
     memory usage: 3.6+ MB
     3.3 Replacing NULL values in waterfront and view field using IterativeImputer
[19]: # Dropping columns with str datatypes to use IterativeImputer on the rest
     df_to_II=df.drop(['date','id','zipcode','sqft_basement'],axis=1)
     df_to_II.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 21420 entries, 0 to 21596
     Data columns (total 17 columns):
          Column
                        Non-Null Count Dtype
          ----
                        -----
          price
      0
                        21420 non-null float64
      1
          bedrooms
                        21420 non-null int64
      2
          bathrooms
                        21420 non-null float64
      3
          sqft_living
                        21420 non-null int64
          sqft lot
      4
                        21420 non-null int64
      5
          floors
                        21420 non-null float64
      6
          waterfront
                        21420 non-null int64
      7
                        21357 non-null float64
          view
      8
         condition
                       21420 non-null int64
      9
                        21420 non-null int64
          grade
      10 sqft_above
                        21420 non-null int64
         yr_built
                        21420 non-null int64
      12
         yr_renovated 17616 non-null float64
      13
         lat
                        21420 non-null float64
      14
         long
                        21420 non-null float64
      15 sqft_living15 21420 non-null
                                        int64
      16 sqft_lot15
                        21420 non-null int64
     dtypes: float64(7), int64(10)
     memory usage: 2.9 MB
[20]: # Using IterativeImputer to fill in Nan cells
      imp = IterativeImputer(max_iter=10,random_state=0)
     imp.fit(df_to_II)
```

```
imputed_df_to_II = imp.transform(df_to_II)
imputed_df = pd.DataFrame(imputed_df_to_II, columns=df_to_II.columns)
imputed_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21420 entries, 0 to 21419
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	price	21420 non-null	float64
1	bedrooms	21420 non-null	float64
2	bathrooms	21420 non-null	float64
3	sqft_living	21420 non-null	float64
4	sqft_lot	21420 non-null	float64
5	floors	21420 non-null	float64
6	waterfront	21420 non-null	float64
7	view	21420 non-null	float64
8	condition	21420 non-null	float64
9	grade	21420 non-null	float64
10	sqft_above	21420 non-null	float64
11	<pre>yr_built</pre>	21420 non-null	float64
12	${\tt yr_renovated}$	21420 non-null	float64
13	lat	21420 non-null	float64
14	long	21420 non-null	float64
15	sqft_living15	21420 non-null	float64
16	sqft_lot15	21420 non-null	float64
d+1170	og: floa+6/(17)		

dtypes: float64(17) memory usage: 2.8 MB

[21]: df.head(20)

[21]: price bedrooms bathrooms sqft_living sqft_lot id date floors waterfront view ... grade sqft_above sqft_basement yr_built yr renovated zipcode long sqft living15 sqft lot15 lat 7129300520 2014-10-13 221900.0 3 1.00 5650 1180 1.0 0.0 ... 1180 0.0 1955 0 0.0 98178 47.5112 -122.257 1340 5650 6414100192 2014-12-09 538000.0 3 2.25 2570 7242 2.0 0.0 ... 7 2170 400.0 1951 1991.0 98125 47.7210 -122.319 7639 1690 5631500400 2015-02-25 180000.0 10000 2 1.00 770 1.0 0.0 ... 6 770 0.0 1933 NaN 98028 47.7379 -122.233 2720 8062 2487200875 2014-12-09 604000.0 5000 3.00 1960 1.0 0.0 ... 1050 910.0 1965 0.0 98136 47.5208 -122.393 1360 5000 1954400510 2015-02-18 510000.0 2.00 8080 3 1680 1.0 0.0 ... 8 1680 0.0 1987 0

0.0 98074 47.6168 -122.045	1800	7503		
5 7237550310 2014-05-12 1230000.0	4	4.50	5420	101930
1.0 0 0.0 11			2001	
0.0 98053 47.6561 -122.005	4760	101930		
6 1321400060 2014-06-27 257500.0	3	2.25	1715	6819
2.0 0 0.0 7	1715		1995	
0.0 98003 47.3097 -122.327				
7 2008000270 2015-01-15 291850.0			1060	9711
1.0 0 NaN 7		0.0		
0.0 98198 47.4095 -122.315	1650			
8 2414600126 2015-04-15 229500.0	3	1.00	1780	7470
1.0 0 0.0 7	1050	730.0	1960	
	1780	8113		
9 3793500160 2015-03-12 323000.0	3		1890	6560
2.0 0 0.0 7				
0.0 98038 47.3684 -122.031				
10 1736800520 2015-04-03 662500.0		2.50	3560	9796
1.0 0 0.0 8				
0.0 98007 47.6007 -122.145				
11 9212900260 2014-05-27 468000.0			1160	6000
1.0 0 0.0 7		300.0		
0.0 98115 47.6900 -122.292				
12 114101516 2014-05-28 310000.0			1430	19901
1.5 0 0.0 7				10001
NaN 98028 47.7558 -122.229		12697	1021	
13 6054650070 2014-10-07 400000.0			1370	9680
1.0 0 0.0 7				3000
0.0 98074 47.6127 -122.045			1011	
14 1175000570 2015-03-12 530000.0			1810	4850
1.5 0 0.0 7				1000
0.0 98107 47.6700 -122.394			1300	
15 9297300055 2015-01-24 650000.0			2050	5000
2.0 0 3.0 9		970.0	1979	3000
0.0 98126 47.5714 -122.375			1919	
16 1875500060 2014-07-31 395000.0			1890	14040
2.0 0 0.0 7			1994	14040
			1994	
17 6865200140 2014-05-29 485000.0			1600	4200
1.5 0 0.0 7		0.0		4300
0.0 98103 47.6648 -122.343	1610		1910	
		4300	1200	0050
18 16000397 2014-12-05 189000.0		1.00 ?		9850
1.0 0 0.0 7			1921	
0.0 98002 47.3089 -122.210			1050	0774
19 7983200060 2015-04-24 230000.0	3	1.00	1250	9//4
		2 2		
1.0 0 0.0 7 0.0 98003 47.3343 -122.306	1250	0.0 8850		

[22]: imputed_df.head(20)

[22]:	prio	ce bedro	ooms bath	rooms sqft	_living	sqft_lot floo	rs water	rfront
	view condit	cion gra	ade sqft_	above yr_b	uilt yr_	renovated	lat	long
	sqft_living1							
	0 221900	. 0	3.0	1.00	1180.0	5650.0 1	.0	0.0
	0.00000	3.0	7.0	1180.0	1955.0	0.00000	47.5112	-122.257
	1340.0							
	1 538000	. 0	3.0	2.25	2570.0	7242.0 2	0	0.0
						1991.00000		
	1600 0	7620 0						
	2 180000	. 0	2.0	1.00	770.0	10000.0 1	.0	0.0
						120.63025		
	2720.0							
				3.00	1960.0	5000.0 1	.0	0.0
						0.00000		
	1360.0							
				2.00	1680.0	8080.0 1	.0	0.0
						0.00000		
	1800.0							
				4.50	5420.0	101930.0 1	.0	0.0
						0.00000		
	4760.0 10							
				2.25	1715.0	6819.0 2	0	0.0
						0.00000		
	2238.0	6819.0						
	7 291850	.0	3.0	1.50	1060.0	9711.0 1	.0	0.0
						0.00000		
	1650.0							
				1.00	1780.0	7470.0 1	.0	0.0
						0.00000		
	1780.0							
				2.50	1890.0	6560.0 2	0	0.0
						0.00000		
	2390.0							
					3560.0	9796.0 1	.0	0.0
						0.00000		
	2210.0							
				1.00	1160.0	6000.0 1	.0	0.0
						0.00000		
	1330.0				•			- -
				1.00	1430.0	19901.0 1	.5	0.0
						106.23238		
	1780.0							
				1.75	1370.0	9680.0 1	.0	0.0

```
0.000000
                4.0
                       7.0
                                 1370.0
                                           1977.0
                                                         0.00000 47.6127 -122.045
1370.0
           10208.0
     530000.0
14
                    5.0
                               2.00
                                          1810.0
                                                     4850.0
                                                                1.5
                                                                             0.0
0.000000
                3.0
                                 1810.0
                                           1900.0
                                                         0.00000 47.6700 -122.394
                       7.0
1360.0
            4850.0
     650000.0
                               3.00
                                          2950.0
                                                     5000.0
15
                    4.0
                                                                2.0
                                                                             0.0
                       9.0
3.000000
                3.0
                                 1980.0
                                           1979.0
                                                         0.00000 47.5714 -122.375
2140.0
            4000.0
16
     395000.0
                    3.0
                               2.00
                                          1890.0
                                                    14040.0
                                                                2.0
                                                                             0.0
0.000000
                3.0
                       7.0
                                 1890.0
                                           1994.0
                                                         0.00000 47.7277 -121.962
1890.0
           14018.0
     485000.0
                               1.00
                                          1600.0
                                                     4300.0
                                                                1.5
                    4.0
                                                         0.00000 47.6648 -122.343
0.000000
                4.0
                       7.0
                                 1600.0
                                           1916.0
1610.0
            4300.0
18
                               1.00
                                          1200.0
                                                     9850.0
                                                                1.0
     189000.0
                    2.0
                                                                             0.0
                                                         0.00000 47.3089 -122.210
0.000000
                4.0
                       7.0
                                 1200.0
                                           1921.0
1060.0
            5095.0
19
     230000.0
                    3.0
                               1.00
                                          1250.0
                                                     9774.0
                                                                1.0
                                                                             0.0
                                 1250.0
                                           1969.0
                                                         0.00000 47.3343 -122.306
0.000000
                4.0
                       7.0
1280.0
            8850.0
```

3804

```
[24]: # Listing Imputed NaN values in yr_renovated column
list_unique=list(df.yr_renovated.unique())

inverse_boolean_series = ~imputed_df.yr_renovated.isin(list_unique)
inverse_filtered_df = imputed_df[inverse_boolean_series]
inverse_filtered_df.yr_renovated.sort_values()
```

```
[24]: 9787
              -275.837124
      2661
              -245.605029
      19729
              -238.322030
      4500
              -237.754900
              -232.222954
      15831
      3986
               730.910013
      14413
               739.149439
      7278
               778.387115
      8206
               779.072447
      10163
               786.483270
```

Name: yr_renovated, Length: 3804, dtype: float64

```
[25]: # Listing Imputed NaN values in waterfront column
      inverse_boolean_series = ~imputed_df.waterfront.isin([0,1])
      inverse_filtered_df = imputed_df[inverse_boolean_series]
      inverse_filtered_df.waterfront.sort_values()
[25]: Series([], Name: waterfront, dtype: float64)
[26]: # Listing Imputed NaN values in view column
      inverse_boolean_series = ~imputed_df.view.isin([0,1,2,3,4])
      inverse_filtered_df = imputed_df[inverse_boolean_series]
      inverse_filtered_df.view.sort_values()
[26]: 128
              -0.186803
      6341
              -0.162364
      17069
              -0.116911
      11207
              -0.110384
      19976
              -0.099051
      3124
               1.100092
      18447
               1.108053
      19818
               1.125893
      9326
               1.669403
      1301
               5.984964
     Name: view, Length: 63, dtype: float64
     <b>Conclusion:</b> Based on the results of IterativeImputer the original approach of replacing
     4. Replacing NULL values in yr_renovated column with 0. value and changing the
     type to integer
[27]: df.loc[df.yr_renovated.isna(), 'yr_renovated']=0.0
      df.yr_renovated=df.yr_renovated.astype('int64')
     5. Replacing '?' values in 'sqft_basement' column with 0. value and changing the
     type to integer
[28]: df.loc[(df.sqft_basement == '?')]
[28]:
                                        price bedrooms bathrooms sqft living
                              date
      sqft_lot floors waterfront view
                                          ... grade sqft_above sqft_basement
      yr_built yr_renovated zipcode
                                                   long sqft_living15 sqft_lot15
                                           lat
             1321400060 2014-06-27
                                     257500.0
                                                               2.25
                                                                            1715
      6819
               2.0
                             0
                                 0.0 ...
                                                       1715
                                                                               1995
      0
           98003 47.3097 -122.327
                                             2238
                                                         6819
      18
               16000397 2014-12-05
                                                                            1200
                                     189000.0
                                                       2
                                                               1.00
      9850
                             0
                                 0.0 ...
                                                       1200
                                                                               1921
           98002 47.3089 -122.210
                                             1060
                                                         5095
```

```
42
       7203220400 2014-07-07
                                861990.0
                                                          2.75
                                                                        3595
         2.0
5639
                          0.0 ...
                                        9
                                                  3595
                                                                           2014
                        0
     98053 47.6848 -122.016
                                        3625
                                                     5639
79
       1531000030 2015-03-23
                                720000.0
                                                          2.50
                                                                        3450
39683
                                                                            2002
                        0.0 ...
                                                   3450
                                                                      ?
     98010 47.3420 -122.025
                                        3350
                                                    39750
112
       2525310310 2014-09-16
                                272500.0
                                                                        1540
                                                          1.75
12600
          1.0
                         0
                             0.0 ...
                                         7
                                                   1160
                                                                      ?
                                                                            1980
     98038 47.3624 -122.031
                                        1540
                                                    11656
21442 3226049565 2014-07-11
                                504600.0
                                                  5
                                                          3.00
                                                                        2360
5000
         1.0
                        0
                            0.0
                                                  1390
                                                                     ?
                                                                           2008
     98103 47.6931 -122.330
                                        2180
                                                     5009
21447 1760650900 2014-07-21
                                337500.0
                                                          2.50
                                                                        2330
4907
         2.0
                                                  2330
                                                                           2013
                        0
                            0.0
     98042 47.3590 -122.081
                                        2300
                                                     3836
21473 6021503707 2015-01-20
                                352500.0
                                                          2.50
                                                                         980
1010
                            0.0 ...
                                                   980
                                                                           2008
         3.0
                        0
     98117 47.6844 -122.387
                                         980
                                                     1023
21519 2909310100 2014-10-15
                                                                        2380
                                332000.0
                                                          2.50
         2.0
                                                  2380
                                                                           2010
5737
                        0
                            0.0 ...
     98023 47.2815 -122.356
                                        2380
                                                     5396
        191100405 2015-04-21 1580000.0
21581
                                                          3.25
                                                                        3410
                        0
                             0.0 ...
                                        10
                                                   3410
                                                                            2007
     98040 47.5653 -122.223
                                        2290
                                                    10125
```

[452 rows x 21 columns]

```
[29]: # Converting '?' sqft_basement values to 0 and listing unique values
df.loc[(df.sqft_basement == '?'), 'sqft_basement']='0.0'

df.sqft_basement=df.sqft_basement.astype('float64')

df.sqft_basement=df.sqft_basement.astype('int64')

#Checking the result
df_temp=df.sqft_basement.unique()
list1 = df_temp.tolist()
list1.sort()
print(list1)
```

```
[0, 10, 20, 40, 50, 60, 65, 70, 80, 90, 100, 110, 120, 130, 140, 143, 145, 150, 160, 170, 172, 176, 180, 190, 200, 207, 210, 220, 225, 230, 235, 240, 243, 248, 250, 260, 265, 266, 270, 274, 276, 280, 283, 290, 295, 300, 310, 320, 330, 340, 350, 360, 370, 374, 380, 390, 400, 410, 414, 415, 417, 420, 430, 435, 440, 450, 460, 470, 475, 480, 490, 500, 506, 508, 510, 515, 516, 518, 520, 530, 540, 550,
```

```
556, 560, 570, 580, 588, 590, 600, 602, 610, 620, 630, 640, 650, 652, 660, 666,
670, 680, 690, 700, 704, 710, 720, 730, 740, 750, 760, 768, 770, 780, 784, 790,
792, 800, 810, 820, 830, 840, 850, 860, 861, 862, 870, 875, 880, 890, 900, 906,
910, 915, 920, 930, 935, 940, 946, 950, 960, 970, 980, 990, 1000, 1008, 1010,
1020, 1024, 1030, 1040, 1050, 1060, 1070, 1080, 1090, 1100, 1110, 1120, 1130,
1135, 1140, 1150, 1160, 1170, 1180, 1190, 1200, 1210, 1220, 1230, 1240, 1245,
1248, 1250, 1260, 1270, 1275, 1280, 1281, 1284, 1290, 1300, 1310, 1320, 1330,
1340, 1350, 1360, 1370, 1380, 1390, 1400, 1410, 1420, 1430, 1440, 1450, 1460,
1470, 1480, 1481, 1490, 1500, 1510, 1520, 1525, 1530, 1540, 1548, 1550, 1560,
1570, 1580, 1590, 1600, 1610, 1620, 1630, 1640, 1650, 1660, 1670, 1680, 1690,
1700, 1710, 1720, 1730, 1740, 1750, 1760, 1770, 1780, 1790, 1798, 1800, 1810,
1816, 1820, 1830, 1840, 1850, 1852, 1860, 1870, 1880, 1890, 1900, 1910, 1913,
1920, 1930, 1940, 1950, 1960, 1990, 2000, 2010, 2020, 2030, 2040, 2050, 2060,
2070, 2080, 2090, 2100, 2110, 2120, 2130, 2150, 2160, 2170, 2180, 2190, 2196,
2200, 2220, 2240, 2250, 2300, 2310, 2330, 2350, 2360, 2390, 2400, 2490, 2500,
2550, 2570, 2580, 2600, 2610, 2720, 2730, 2810, 2850, 3000, 3260, 3480, 3500,
4130, 4820]
```

6. Replacing NULL values in 'view' column with 0.0 and making it integer

```
[30]: df.loc[df.view.isna(),'view']=0
df.view=df.view.astype('int64')

df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21420 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	21420 non-null	int64
1	date	21420 non-null	datetime64[ns]
2	price	21420 non-null	float64
3	bedrooms	21420 non-null	int64
4	bathrooms	21420 non-null	float64
5	$sqft_living$	21420 non-null	int64
6	sqft_lot	21420 non-null	int64
7	floors	21420 non-null	float64
8	waterfront	21420 non-null	int64
9	view	21420 non-null	int64
10	condition	21420 non-null	int64
11	grade	21420 non-null	int64
12	sqft_above	21420 non-null	int64
13	sqft_basement	21420 non-null	int64
14	<pre>yr_built</pre>	21420 non-null	int64
15	$yr_renovated$	21420 non-null	int64
16	zipcode	21420 non-null	int64
17	lat	21420 non-null	float64
18	long	21420 non-null	float64

```
19 sqft_living15 21420 non-null int64 20 sqft_lot15 21420 non-null int64 dtypes: datetime64[ns](1), float64(5), int64(15) memory usage: 3.6 MB
```

3 Scrub and Explore

3.1 Additional data cleaning

3.1.1 Dropping non-needed fields

```
[31]: # Dropping 'zipcode' variable because I think there are better indicators of au docation.

# Zipcodes boundaries are usually drawn out of convenience for postal servicesuder

or

# other more formal reasons than geographic location

# Dropping 'id' field

# Resettingh index because of the removal of the duplicates

df_1=df

df_1=df_1.drop(['id','zipcode'], axis=1)

#df_1.tail()

df_1.reset_index()
```

[31]: price bedrooms bathrooms sqft_living sqft_lot date floors waterfront view condition grade sqft_above sqft_basement yr_built lat long sqft_living15 sqft_lot15 yr_renovated 0 2014-10-13 221900.0 1.00 1.0 0 47.5112 -122.257 1 2014-12-09 538000.0 2.25 2.0 1991 47.7210 -122.319 2 2015-02-25 180000.0 1.00 1.0 0 47.7379 -122.233 3 2014-12-09 604000.0 3.00 1.0 0 47.5208 -122.393 4 2015-02-18 510000.0 2.00 1.0 0 47.6168 -122.045

•••	•••	•••		•••	•••				
21415	21592	2014-	-05-21	360000.0		3	2.50	1530	1131
3.0		0	0	3	8		1530	0	2009
0 47.6	6993 -	122.34	16	1530		1509			
21416	21593	2015-	-02-23	400000.0		4	2.50	2310	5813
2.0		0	0	3	8		2310	0	2014
0 47.	5107 -	122.36	52	1830		7200			
21417	21594	2014-	-06-23	402101.0		2	0.75	1020	1350
2.0		0	0	3	7		1020	0	2009
0 47.	5944 -	122.29	99	1020		2007			
21418	21595	2015-	-01-16	400000.0		3	2.50	1600	2388
2.0		0	0	3	8		1600	0	2004
0 47.	5345 -	122.06	59	1410		1287			
21419	21596	2014-	-10-15	325000.0		2	0.75	1020	1076
2.0		0	0	3	7		1020	0	2008
0 47.	5941 -	122.29	99	1020		1357			

[21420 rows x 20 columns]

- 3.2 Exploring distributions and correlation of original variables
- 3.2.1 Numerical variables: Investigating distributions and correlations between the original, minimally processed predictors and the target (price)

Histograms and pair correlations of the original predictor variables

[32]: df_1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21420 entries, 0 to 21596
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	date	21420 non-null	datetime64[ns]
1	price	21420 non-null	float64
2	bedrooms	21420 non-null	int64
3	bathrooms	21420 non-null	float64
4	$sqft_living$	21420 non-null	int64
5	sqft_lot	21420 non-null	int64
6	floors	21420 non-null	float64
7	waterfront	21420 non-null	int64
8	view	21420 non-null	int64
9	condition	21420 non-null	int64
10	grade	21420 non-null	int64
11	sqft_above	21420 non-null	int64
12	sqft_basement	21420 non-null	int64
13	yr_built	21420 non-null	int64

```
14 yr_renovated
                         21420 non-null int64
                         21420 non-null float64
      15 lat
      16 long
                         21420 non-null float64
      17 sqft_living15 21420 non-null int64
      18 sqft lot15
                         21420 non-null int64
     dtypes: datetime64[ns](1), float64(5), int64(13)
     memory usage: 3.3 MB
[33]: # Investigating histograms
      df 1.hist(figsize=(20, 30), bins='auto')
[33]: array([[<AxesSubplot:title={'center':'price'}>,
              <AxesSubplot:title={'center':'bedrooms'}>,
              <AxesSubplot:title={'center':'bathrooms'}>,
              <AxesSubplot:title={'center':'sqft_living'}>],
             [<AxesSubplot:title={'center':'sqft_lot'}>,
              <AxesSubplot:title={'center':'floors'}>,
              <AxesSubplot:title={'center':'waterfront'}>,
              <AxesSubplot:title={'center':'view'}>],
             [<AxesSubplot:title={'center':'condition'}>,
              <AxesSubplot:title={'center':'grade'}>,
              <AxesSubplot:title={'center':'sqft above'}>,
              <AxesSubplot:title={'center':'sqft_basement'}>],
             [<AxesSubplot:title={'center':'yr_built'}>,
              <AxesSubplot:title={'center':'yr_renovated'}>,
              <AxesSubplot:title={'center':'lat'}>,
              <AxesSubplot:title={'center':'long'}>],
             [<AxesSubplot:title={'center':'sqft_living15'}>,
              <AxesSubplot:title={'center':'sqft_lot15'}>, <AxesSubplot:>,
              <AxesSubplot:>]], dtype=object)
```


Based on the histograms above > 1. The following variables should be considered categorical: "Waterfront Condition View > 2. sqft_basement, sqft_lot, sqft_lot15, and yr_renovated have a large number of zeros and are strong candidates for removal of outliers and/or engineered variables > 3. Latitudes and Longitudes can be used as descriptors of a geographic location of a property. However, I think there is a better variable to describe the location of a property, a distance from the center of the city, which can be calculated from geocoordinates. >4. The target variable, the price of the property, has a strong positive skew attributed to outliers in the higher price bracket. The strategy is to remove the outliers and to transform the variable to make it more normally distributed

```
# Checking for correlations between the variables with Pearson coefficient

⇒between 1 and 0.3

# I am using the same approach and reusing the code from Lesson 19

df_coeff=df_1.corr().abs().stack().reset_index().sort_values(0, ascending=False)
df_coeff['pairs'] = list(zip(df_coeff.level_0, df_coeff.level_1))
df_coeff.set_index(['pairs'], inplace = True)
df_coeff.drop(columns=['level_1', 'level_0'], inplace = True)
df_coeff.columns = ['cc']
df_coeff.drop_duplicates(inplace=True)
df_coeff[((df_coeff.cc>.3) & (df_coeff.cc <1))]
```

СС

```
pairs
(sqft_above, sqft_living)
                               0.876533
(sqft_living, grade)
                               0.762477
(grade, sqft_above)
                               0.756221
(sqft living, sqft living15)
                               0.756186
(bathrooms, sqft_living)
                               0.755522
(sqft_above, sqft_living15)
                               0.731887
(sqft_lot, sqft_lot15)
                               0.717743
(grade, sqft_living15)
                               0.713178
(sqft_living, price)
                               0.701875
(sqft_above, bathrooms)
                               0.686328
(price, grade)
                               0.668020
(bathrooms, grade)
                               0.665587
(price, sqft_above)
                               0.605294
(sqft_living15, price)
                               0.584549
(bedrooms, sqft_living)
                               0.579069
(sqft_living15, bathrooms)
                               0.569453
(price, bathrooms)
                               0.526229
(sqft_above, floors)
                               0.522751
(bathrooms, bedrooms)
                               0.515383
(bathrooms, yr built)
                               0.506252
(floors, bathrooms)
                               0.501803
(yr built, floors)
                               0.488935
(sqft_above, bedrooms)
                               0.480242
```

[34]:

```
(floors, grade)
                               0.458091
(grade, yr_built)
                               0.446235
(sqft_living, sqft_basement)
                               0.428026
(yr_built, sqft_above)
                               0.422977
(yr_built, long)
                               0.409173
(sqft_living15, bedrooms)
                               0.394949
(view, price)
                               0.393113
(view, waterfront)
                               0.381654
(condition, yr_built)
                               0.365129
(bedrooms, grade)
                               0.357988
(floors, sqft_living)
                               0.352868
(long, sqft_above)
                               0.344161
(long, sqft_living15)
                               0.334679
(yr_built, sqft_living15)
                               0.324715
(price, sqft_basement)
                               0.320842
(yr_built, sqft_living)
                               0.316646
(price, bedrooms)
                               0.309453
(price, lat)
                               0.305744
```

The variables which have the strongest correlations with the price are * sqft_living * grade * sqft_above * sqft_living15 * bathrooms * view * bedrooms *lat

Establishing an intermediate dataframe and removing some outliers from it

<class 'pandas.core.frame.DataFrame'>
Int64Index: 20015 entries, 0 to 21596
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	date	20015 non-null	datetime64[ns]
1	price	20015 non-null	float64
2	bedrooms	20015 non-null	int64
3	bathrooms	20015 non-null	float64

```
sqft_living
      5
          sqft_lot
                        20015 non-null int64
          floors
      6
                        20015 non-null float64
      7
          waterfront 20015 non-null int64
      8
          view
                        20015 non-null int64
          condition
                      20015 non-null int64
      10 grade
                       20015 non-null int64
      11 sqft_above
                     20015 non-null int64
      12 sqft basement 20015 non-null int64
      13 yr_built
                        20015 non-null int64
      14 yr_renovated 20015 non-null int64
      15 lat
                        20015 non-null float64
      16 long
                        20015 non-null float64
      17 sqft_living15 20015 non-null int64
      18 sqft_lot15
                        20015 non-null int64
     dtypes: datetime64[ns](1), float64(5), int64(13)
     memory usage: 3.1 MB
[36]: # Creating a new categorical variable: month
     df_2['month'] = pd.to_datetime(df_2['date']).dt.month
      # Creating a new numerical variable: distance (distance from center)
     df_2['distance'] = df_2.apply(lambda row: distance_from_center(row.lat,abs(row.
      \rightarrowlong)), axis=1)
      # Creating a new categorical variable: basement_exists (1/0), integer datatype
     df_2.loc[(df_2['sqft_basement'] > 50), 'basement_exists'] = 1
     df_2.loc[(df_2['sqft_basement'] <= 50), 'basement_exists'] = 0</pre>
     df_2.basement_exists=df_2.basement_exists.astype('int64')
[37]: # Creating a new categorical variable (integer datatype) renovation done with
      \rightarrow values [0,1,2,3,4]
      # 0 representing renovation never done on houses more than 9 years old _{f L}
      \rightarrow (yr_built between 2015 and 2006)
      # 1 representing renovation done more than or equal 50 years ago
      # 2 representing renovation done between 30 and 49 years ago
      # 3 representing renovation done between 29 and 10 years ago
      # 4 representing renovation done between 9 and 1 year ago OR houses built less_
      →or equal 9 years ago
      # (yr_built between 2015 and 2006)
     df_2.loc[((df_2['yr_renovated'] == 0) & (df_2['yr_built'] < 2006)),__
      df_2.loc[((2015-df_2['yr_renovated'] >= 50) & (df_2['yr_renovated'] != 0)),__
```

20015 non-null int64

4

[38]: price bedrooms bathrooms sqft_living sqft_lot floors waterfront grade sqft_above yr_built sqft_living15 sqft_lot15 month view condition distance basement_exists renovation_done 221900.0 1.00 1.0 7.4 \cap 538000.0 2.25 2.0 8.0 180000.0 1.00 1.0 10.2 604000.0 3.00 1.0 6.6 510000.0 2.00 1.0 13.4 ••• 360000.0 2.50 3.0 6.5 400000.0 2.50 2.0

```
6.7
                     0
                          2
                                   0.75
                                                  1020
                                                                       2.0
20012 402101.0
                                                             1350
                                                                                       0
0
            3
                    7
                              1020
                                         2009
                                                          1020
                                                                       2007
                                                                                  6
1.7
20013 400000.0
                          3
                                   2.50
                                                  1600
                                                             2388
                                                                       2.0
                                                                                       0
            3
                    8
                              1600
                                         2004
                                                          1410
                                                                       1287
                                                                                  1
13.2
                      0
20014 325000.0
                          2
                                   0.75
                                                  1020
                                                             1076
                                                                       2.0
                                                                                       0
                    7
                              1020
            3
                                         2008
                                                          1020
                                                                       1357
                                                                                 10
1.8
                     0
                                        4
```

[20015 rows x 18 columns]

 $\begin{cal}{l} \begin{cal}{l} \beg$

Index reset</div>

/div>
/

Plotting numerical variables against the target variable

For distance: R2 coefficient is -0.3432, p-value is 0.0

[40]: # Displaying the Coefficients of Determination and p-values for the remaining variables r2_p(df_num1)

For price: R2 coefficient is 1.0, p-value is 0.0

For bedrooms: R2 coefficient is 0.3195, p-value is 0.0

For bathrooms: R2 coefficient is 0.4999, p-value is 0.0

For sqft_living: R2 coefficient is 0.6795, p-value is 0.0

For sqft_lot: R2 coefficient is 0.1565, p-value is 7.279024950162686e-110

For floors: R2 coefficient is 0.2657, p-value is 1.2233e-320

For grade: R2 coefficient is 0.6726, p-value is 0.0

For sqft_above: R2 coefficient is 0.5746, p-value is 0.0

For yr_built: R2 coefficient is 0.0348, p-value is 8.471205832359682e-07

For sqft_living15: R2 coefficient is 0.5951, p-value is 0.0

For sqft_lot15: R2 coefficient is 0.1512, p-value is 1.1950868785722046e-102

[41]: # Joint plot of the original (not altered) numerical variables jointplot(df_num1)

For price: R2 coefficient is 1.0, p-value is 0.0

For sqft_lot: R2 coefficient is 0.1565, p-value is 7.279024950162686e-110

For grade: R2 coefficient is 0.6726, p-value is 0.0

For sqft_lot15: R2 coefficient is 0.1512, p-value is 1.1950868785722046e-102

For distance: R2 coefficient is -0.3432, p-value is 0.0

[42]: df_num1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20015 entries, 0 to 20014
Data columns (total 12 columns):

		- · · · · · · · · · · · · · · · · · · ·	
#	Column	Non-Null Count	Dtype
0	price	20015 non-null	float64
1	bedrooms	20015 non-null	int64
2	bathrooms	20015 non-null	float64
3	sqft_living	20015 non-null	int64
4	sqft_lot	20015 non-null	int64
5	floors	20015 non-null	float64
6	grade	20015 non-null	int64
7	sqft_above	20015 non-null	int64
8	yr_built	20015 non-null	int64
9	sqft_living15	20015 non-null	int64
10	sqft_lot15	20015 non-null	int64

```
dtypes: float64(4), int64(8)
     memory usage: 1.8 MB
[43]: | # Removing extreme values from bedrooms, bathrooms, floors, and distance
      # The observations with the extreme values of these variables are visually \Box
      \rightarrow identifiable
      df_num1=df_num1[(df_num1.bedrooms < 9) & (df_num1.bathrooms < 5.5) & (df_num1.
      →distance < 30)</pre>
                     & (df_num1.floors<3.5)]
      df_num2.drop(['yr_built'], axis=1, inplace=True)
      df_num2.reset_index(drop=True, inplace=True)
[44]: df num2.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 19811 entries, 0 to 19810
     Data columns (total 11 columns):
                         Non-Null Count Dtype
          Column
          _____
                         -----
      0
                         19811 non-null float64
          price
                         19811 non-null int64
      1
          bedrooms
          bathrooms
                        19811 non-null float64
         sqft_living
                        19811 non-null int64
      4
          sqft_lot
                         19811 non-null int64
      5
         floors
                        19811 non-null float64
      6
          grade
                        19811 non-null int64
      7
          sqft_above
                        19811 non-null int64
          sqft_living15 19811 non-null int64
          sqft lot15
                         19811 non-null int64
      10 distance
                         19811 non-null float64
     dtypes: float64(4), int64(7)
     memory usage: 1.7 MB
     <b>df_num2</b> DataFrame<br><b>19811</b> records out of original <b>21597</b> left
     </div><br>
     <b>Index reset</b>
     </div><br>
[45]: # Joint plot of numerical variables after adjustments
```

20015 non-null float64

11 distance

jointplot(df_num2)

For price: R2 coefficient is 1.0, p-value is 0.0

For sqft_lot: R2 coefficient is 0.1606, p-value is 1.3229570300257684e-114

For grade: R2 coefficient is 0.6726, p-value is 0.0

For sqft_lot15: R2 coefficient is 0.1557, p-value is 8.785298244418031e-108

For distance: R2 coefficient is -0.3383, p-value is 0.0

[46]: r2_p(df_num2)

For price: R2 coefficient is 1.0, p-value is 0.0

For bedrooms: R2 coefficient is 0.3179, p-value is 0.0

For bathrooms: R2 coefficient is 0.4989, p-value is 0.0

Tot background. 102 deciriotes the distance, p varieties of

For sqft_living: R2 coefficient is 0.6794, p-value is 0.0

For sqft_lot: R2 coefficient is 0.1606, p-value is 1.3229570300257684e-114

For floors: R2 coefficient is 0.265, p-value is 1.20092504e-315

For grade: R2 coefficient is 0.6726, p-value is 0.0

For sqft_above: R2 coefficient is 0.5746, p-value is 0.0

For sqft_living15: R2 coefficient is 0.5946, p-value is 0.0

For sqft_lot15: R2 coefficient is 0.1557, p-value is 8.785298244418031e-108

For distance: R2 coefficient is -0.3383, p-value is 0.0

[47]: df_num2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19811 entries, 0 to 19810
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	price	19811 non-null	float64
1	bedrooms	19811 non-null	int64
2	bathrooms	19811 non-null	float64
3	sqft_living	19811 non-null	int64
4	sqft_lot	19811 non-null	int64
5	floors	19811 non-null	float64
6	grade	19811 non-null	int64
7	sqft_above	19811 non-null	int64
8	sqft_living15	19811 non-null	int64
9	sqft_lot15	19811 non-null	int64
10	distance	19811 non-null	float64

dtypes: float64(4), int64(7)

memory usage: 1.7 MB

Visualizing numerical predictors correlation with the price and with each other using heat map

```
[48]: fig, ax = plt.subplots(figsize=(15,10))
sns.heatmap(df_num2.corr(), cmap="cubehelix", annot=True)
```

[48]: <AxesSubplot:>

[49]: # Bedrooms is relatively highly correlated with bathrooms and sqft_living;

→ correlations of floors, sqft_lot and sqft_lot15

with prices are low. Dropping these variables

df_num3=df_num2.drop(['bedrooms','sqft_lot','sqft_lot15','floors'], axis=1)

[50]: fig, ax = plt.subplots(figsize=(15,10))
sns.heatmap(df_num3.corr(), cmap="cubehelix", annot=True)

[50]: <AxesSubplot:>

[51]: r2_p(df_num3)

For price: R2 coefficient is 1.0, p-value is 0.0
For bathrooms: R2 coefficient is 0.4989, p-value is 0.0
For sqft_living: R2 coefficient is 0.6794, p-value is 0.0
For grade: R2 coefficient is 0.6726, p-value is 0.0
For sqft_above: R2 coefficient is 0.5746, p-value is 0.0
For sqft_living15: R2 coefficient is 0.5946, p-value is 0.0
For distance: R2 coefficient is -0.3383, p-value is 0.0

Exploring the distribution of the remaining numerical predictors

Column: bathrooms | Skewness = 0.28 | Kurtosis = 0.09 Column: grade | Skewness = 0.73 | Kurtosis = 1.02

All but one variable (distance) are left shifted, which is indicated by the skewness values >1, with price has the most skewed distribution. Because the skewness it to the left (positive values), the log transformation might be needed to normalize the variables. Kurtosis values for all variables are different from 0 (Pearson's definition of kurtosis of a normal distribution). Price distribution is highly Leptokurtic, other variables are slightly Leptokurtic (sqft_living, sqft_above, sqft_living15, grade), slightly Platykurtic (distance) or almost Mesokurtic (bathrooms)

Based on the distribution plots, variable 'bathroom' has a symmetrical distribution (Skewness is 0.28), with a very low kurtosis (0.09) indicative of a Mesokurtic curve (Gaussian distribution has a kurtosis of 0 by Pearson's definition used by scipy.stats.kurtosis method) Variable 'grade' is slightly skewed to the right (0.73) and relatively low kurtosis, slightly above 1. The pronounced correlation of these variables with the price is identifiable in the box plots above. The plots show that the numbers of outliers in the distribution of the variables are reasonable. Both variables have a wider range of values in the higher price brackets.

3.2.2 Numerical variables: Exploring Mutual Correlation Coefficients and Variance Inflation Factor

Using VIF as an indicator of collinearity between independent variables

[54]: variables VIF
0 price 11.713924
1 bathrooms 21.024526
2 sqft_living 42.036909

3 grade 27.796857 4 sqft_above 26.850680

calc_vif(df_num3)

[54]:

```
6
              distance
                        6.670397
[55]: # Dropping fields that have high VIF. I decided to leave in sqft_living versus_
      ⇒sqft_living15 due to the fact that it is
      # easier to interpret in a model and it is a feature under control of a_{\sqcup}
      →property owner (versus sqft_living15 which is
      # a charecteristic of a neighborhood)
      df_num4=df_num3.drop(['price','sqft_above','sqft_living15'],axis=1)
      calc_vif(df_num4)
[55]:
           variables
                            VIF
           bathrooms 20.829518
      1 sqft living 16.749281
               grade 18.971120
            distance
                       3.971751
      3
     Pearson coefficients analysis of the remaining independent variables
[56]: df_num4['price']=df_num3['price']
[57]: # Displaying R2s for the remaining variables
     r2_p(df_num4)
     For bathrooms: R2 coefficient is 0.4989, p-value is 0.0
     For sqft_living: R2 coefficient is 0.6794, p-value is 0.0
     For grade: R2 coefficient is 0.6726, p-value is 0.0
     For distance: R2 coefficient is -0.3383, p-value is 0.0
     For price: R2 coefficient is 1.0, p-value is 0.0
```

[58]: # Displaying correlations between predictors and the target

jointplot(df_num4)

For grade: R2 coefficient is 0.6726, p-value is 0.0

For price: R2 coefficient is 1.0, p-value is 0.0


```
[59]: # Using heatmap to visualize mutual relationships between predictors and their → correlations with the target
fig, ax = plt.subplots(figsize=(15,10))
sns.heatmap(df_num4.corr(), cmap="cubehelix", annot=True)
```

[59]: <AxesSubplot:>


```
[60]: # Checking for correlations between the variables with pearson coefficient.
       \rightarrow between 1 and 0.3
      df_coeff=df_num4.corr().abs().stack().reset_index().sort_values(0,__
      →ascending=False)
      df_coeff['pairs'] = list(zip(df_coeff.level_0, df_coeff.level_1))
      df_coeff.set_index(['pairs'], inplace = True)
      df_coeff.drop(columns=['level_1', 'level_0'], inplace = True)
      df_coeff.columns = ['cc']
      df_coeff.drop_duplicates(inplace=True)
      df_coeff[((df_coeff.cc>.3) & (df_coeff.cc <1))]</pre>
[60]:
                                       СС
      pairs
      (sqft_living, grade)
                                 0.746576
      (bathrooms, sqft_living)
                                 0.737962
```

0.679411

0.672609

0.647588

0.498869

(price, sqft_living)

(grade, bathrooms)

(price, bathrooms)

(price, grade)

```
(distance, price) 0.338264
```

Mutual correlation coefficients between the remaining independent variables are slightly higher or below 0.7. I am leaving sqft_living, grade, and bathroom variables in because of their logical connection with a property price despite their multicollinearity (0.74 & 0.73 are above the 0.7 threshold).

Therefore the remaining numerical variables for modeling are 1. grade 2. bathrooms 3. sqft_living 4. distance

```
[61]: df_num4.describe()
[61]:
                                                                               price
                bathrooms
                             sqft_living
                                                  grade
                                                             distance
      count
             19811.000000
                            19811.000000
                                          19811.000000
                                                         19811.000000
                                                                        1.981100e+04
      mean
                 2.091338
                             2026.647670
                                              7.615264
                                                            10.861961
                                                                       5.228653e+05
      std
                 0.739792
                              842.234389
                                               1.116205
                                                             6.093693
                                                                       3.083509e+05
                 0.500000
                                                             0.600000 7.800000e+04
      min
                              370.000000
                                              4.000000
      25%
                 1.500000
                             1410.000000
                                              7.000000
                                                             5.900000
                                                                       3.200000e+05
      50%
                 2.250000
                             1880.000000
                                              7.000000
                                                             9.900000
                                                                       4.450000e+05
      75%
                 2.500000
                             2500.000000
                                              8.000000
                                                            14.800000
                                                                       6.338170e+05
                 5.250000
                             7880.000000
                                              13.000000
                                                            29.800000
                                                                       2.490000e+06
      max
```

3.2.3 Categorical variables: Investigating distributions and the raw correlations between the original, minimally processed predictor and the target (price)

Original categorical variables: waterfront, view, condition, basement $_$ exists, renovation done, month

```
[62]: #Creating a DataFrame with categorical variables

df_cat1 = df_2.

→filter(['price','waterfront','view','condition','basement_exists','renovation_done','month'

→axis=1)
```

Visual investigation of the box plots

[63]: df_cat1

[63]:		price	waterfront	view	condition	basement_exists	renovation_done
	month						
	0	221900.0	0	0	3	0	0
	10						
	1	538000.0	0	0	3	1	3
	12						
	2	180000.0	0	0	3	0	0
	2						
	3	604000.0	0	0	5	1	0
	12						
	4	510000.0	0	0	3	0	0
	2						

•••	•••		•••	•••	•••	
 20010 5	360000.0	0	0	3	0	4
20011 2	400000.0	0	0	3	0	4
20012 6	402101.0	0	0	3	0	4
20013 1	400000.0	0	0	3	0	0
20014 10	325000.0	0	0	3	0	4

[20015 rows x 7 columns]

Based on the plots, it is quite clear that 'month', 'condition' and 'basement_exists' variables do not affect the price of the properties and can be dropped from the categorical variables

Dumming out variables in the categorical DataFrame

```
1 view_2 20015 non-null float64
2 view_3 20015 non-null float64
3 view_4 20015 non-null float64
4 renovation_done_1 20015 non-null float64
5 renovation_done_2 20015 non-null float64
6 renovation_done_3 20015 non-null float64
7 renovation_done_4 20015 non-null float64
dtypes: float64(8)
memory usage: 1.2 MB
```

[66]: # Adding a price column and resetting the index
Due to the removal of the extreme values in numerical values, some rows have

→Nan price values; these rows are dropped

df_cat1_trsfm['price']=df_num4['price']

 $\tt df_cat1_trsfm=df_cat1_trsfm[df_cat1_trsfm.price.notna()]$

df_cat1_trsfm=df_cat1_trsfm.reset_index()

df_cat1_trsfm=df_cat1_trsfm.drop('index', axis=1)

df_cat1_trsfm

[66]:						renovation_done_1	renovation_done_2
			_	vation_dor	_	•	
	0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0		0.0	221900.0			
	1	0.0	0.0	0.0	0.0	0.0	0.0
	1.0		0.0	538000.0			
	2	0.0	0.0	0.0	0.0	0.0	0.0
	0.0		0.0	180000.0			
	3	0.0	0.0	0.0	0.0	0.0	0.0
	0.0		0.0	604000.0			
	4	0.0	0.0	0.0	0.0	0.0	0.0
	0.0		0.0	510000.0			
				•••		•••	•••
	•••		•••	•••			
	19806	0.0	0.0	0.0	0.0	0.0	0.0
	0.0		1.0	360000.0			
	19807	0.0	0.0	0.0	0.0	0.0	0.0
	0.0		1.0	400000.0			
	19808	1.0	0.0	0.0	0.0	0.0	0.0
	0.0		1.0	402101.0			
	19809	0.0	0.0	0.0	0.0	0.0	0.0
	0.0		1.0	400000.0			
	19810	0.0	0.0	0.0	0.0	0.0	0.0

```
0.0 1.0 325000.0
```

[19811 rows x 9 columns]

df_cat1_trsfm DataFrame

b>19811 records out of original 21597 left </div>

</div>

Index reset</div>

/div>
/

```
[67]: df_cat1_trsfm.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19811 entries, 0 to 19810
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	view_1	19811 non-null	float64
1	view_2	19811 non-null	float64
2	view_3	19811 non-null	float64
3	view_4	19811 non-null	float64
4	renovation_done_1	19811 non-null	float64
5	renovation_done_2	19811 non-null	float64
6	renovation_done_3	19811 non-null	float64
7	renovation_done_4	19811 non-null	float64
8	price	19811 non-null	float64
dtyp	es: float64(9)		

dtypes: float64(9) memory usage: 1.4 MB

4 Model

4.1 Data Modeling

4.1.1 Baseline model

"Everything should be made as simple as possible, but no simpler."

Albert Einstein

The chosen baseline model is a model with only one numerical variable, grade.

Creating a model

```
[68]: ## Create the formula and the model

f = 'price~grade'

model_baseline = smf.ols(f, df_num4).fit()
model_baseline.summary()
```

[68]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variab	ole:	p	rice	R-squared:			0.452	
Model:		_	OLS	Adj.	R-squared:		0.452	
Method:		Least Squ	ares	F-sta	atistic:		1.637e+04	
Date:		Mon, 26 Apr	2021	Prob	(F-statisti	c):	0.00	
Time:		16:5	8:25	Log-I	Likelihood:		-2.7254e+05	
No. Observa	ations:	1	9811	AIC:			5.451e+05	
Df Residual	ls:	1	9809	BIC:			5.451e+05	
Df Model:			1					
Covariance	Type:	nonro	bust					
========		std err	=====	===== t.	P> t	[0 005	0.075]	
	coei	sta err		ւ 	P> t	[0.025	0.975]	
Intercept	-8.921e+0	5 1.12e+04	 -79	.803	0.000	-9.14e+05	-8.7e+05	
grade	1.858e+0	1452.448	127	.927	0.000	1.83e+05	1.89e+05	
			400	=====		=======	4 004	
Omnibus:	`	7709			in-Watson:		1.964	
Prob(Omnibu	18):		.000	-	ıe-Bera (JB)	:	46187.116	
Skew:		1	.765	Prob	(JB):		0.00	

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

53.9

11 11 11

9.595

The baseline model has a coefficient of determination of 0.452, indicating that roughly 45% of the observations fit the model. F-statistics is very high that indicates that the baseline model is a significant improvement of the "intercept only model" The Skewness and the Kurtosis values indicate non-normal distribution of the target variable QQ plot is also indicative of the abnormal distribution of the residuals, especially in the upper Quantile

4.1.2 Model 1 (all numerical variables considered significant, see Explore section)

```
[70]: ## Create a formula including the remaining numerical variables

variables_to_include = ' + '.join(df_num4.drop('price',axis=1).columns)

## Create the formula and the model
f = "price~" + variables_to_include

model_1 = smf.ols(f, df_num4).fit()
model_1.summary()
```

```
[70]: <class 'statsmodels.iolib.summary.Summary'>
```

OLS Regression Results

Dep. Variable: price R-squared: 0.668
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 9947.

Date:	Mon, 26 Apr 2021	Prob (F-statistic):	0.00
Time:	16:58:25	Log-Likelihood:	-2.6759e+05
No. Observations:	19811	AIC:	5.352e+05
Df Residuals:	19806	BIC:	5.352e+05

Df Model: 4
Covariance Type: nonrobust

========			.========	-=======	:=======	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-3.142e+05	1.04e+04	-30.071	0.000	-3.35e+05	-2.94e+05
bathrooms	-1.725e+04	2599.797	-6.634	0.000	-2.23e+04	-1.22e+04
sqft_living	177.5465	2.610	68.031	0.000	172.431	182.662
grade	9.475e+04	1748.262	54.195	0.000	9.13e+04	9.82e+04
distance	-1.917e+04	209.218	-91.613	0.000	-1.96e+04	-1.88e+04
Omnibus:		8098.3	307 Durbin-	-Watson:		1.981
Prob(Omnibu	ıs):	0.0	000 Jarque	-Bera (JB):		65266.147
Skew:		1.7	62 Prob(JI	3):		0.00
Kurtosis:		11.1	.63 Cond. 1	No.		1.84e+04
========						========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.84e+04. This might indicate that there are strong multicollinearity or other numerical problems.

QQ plot: to access normality of the target variable

[71]: fig = sm.graphics.qqplot(model_1.resid,dist=stats.norm,fit=True,line='45')

The summary of the model above indicates that 1. All the independent variables coefficients and the intercept value are significant (p-values < 0.05) 2. The coefficient of determination (R2) is not very high, but it is significantly higher than R2 of the baseline model. It indicates that about 66.8 percent of the observations fall within the regression line 3. The skew and the Kurtosis values indicate the highly non-normal distribution of the target variable 4. The high value of JB coefficient also indicates that the data is highly non-normal

From the model's QQ plot, it is also quite obvious that the 'price' target variable is not normally distributed. A steep swing up indicates that the higher-priced houses are less likely to fit the baseline model and are more spread out. One possible reason might be an unusually large number of outliers in the dataset

There are two potential approaches that can be taken 1. Normalization by either log or square root transformation 2. Removal of outliers

Plot regression results against each regressor: accessing linearity of there relationship with the target and their homoscedasticity

```
[72]: for col in (df_num4.drop('price',axis=1).columns):
    fig = sm.graphics.plot_regress_exog(model_1, col, fig=plt.
    →figure(figsize=(12,8)))
```


The results indicate that all of the predictors display linear relationship with the target. The distance, sqft_living and bathrooms variables display less heteroscedasticity than the grade variable does.

There might be several appropriate ways to address this issue 1. Log transformation of the target and/or independent variables 2. Using either Generalized Least Squares or Weighted Least squares 3. Bootstrapping

4.1.3 Model 2 (adding categorical variables)

Creating a model with all numerical variables and all categorical variables

[73]	۱. ا	Аf	num4
1/3	1: 1	αı	num 4

[73]:	bathrooms	sqft_living	grade	distance	price
0	1.00	1180	7	7.4	221900.0
1	2.25	2570	7	8.0	538000.0
2	1.00	770	6	10.2	180000.0
3	3.00	1960	7	6.6	604000.0
4	2.00	1680	8	13.4	510000.0
•••	•••		•••	•••	
19806	2.50	1530	8	6.5	360000.0
19807	2.50	2310	8	6.7	400000.0
19808	0.75	1020	7	1.7	402101.0
19809	2.50	1600	8	13.2	400000.0
19810	0.75	1020	7	1.8	325000.0
19810	0.75	1020	7	1.8	325000.0

[19811 rows x 5 columns]

[74]	•	df	cat.1	trsfm

[74]:		view_1 vi	iew_2	view_3 vi	Lew_4	renovation_done_1	renovation_done_2	
	renova	tion_done_3	3 rend	vation_dor	ne_4	price		
	0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0		0.0	221900.0				
	1	0.0	0.0	0.0	0.0	0.0	0.0	
	1.0		0.0	538000.0				
	2	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0		0.0	180000.0				
	3	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0		0.0	604000.0				
	4	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0		0.0	510000.0				
				•••		•••	•••	
	•••		•••	•••				
	19806	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0		1.0	360000.0				
	19807	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0		1.0	400000.0				

19808	1.0	0.0	0.0	0.0	0.0	0.0
0.0		1.0	402101.0			
19809	0.0	0.0	0.0	0.0	0.0	0.0
0.0		1.0	400000.0			
19810	0.0	0.0	0.0	0.0	0.0	0.0
0.0		1.0	325000.0			

[19811 rows x 9 columns]

```
[75]: # DatyaFrames to concatinate: df_cat1_trsfm AND df_num4

df_num_cat_1 = pd.concat([df_num4, df_cat1_trsfm.drop('price',axis=1)],axis=1)
```

```
[76]: # Visualizing multicollinearity in the new dataset
fig, ax = plt.subplots(figsize=(15,10))
sns.heatmap(df_num_cat_1.corr(), cmap="cubehelix", annot=True)
```

[76]: <AxesSubplot:>

The matrix indicates no strong correlation between the price and any of the categorical variables. However, renovation_done_4 correlation is slightly higher than the rest of the categorical variables. Conceptually this variables indicative of a recent renovation or a newer property.

There is no high expectations that adding the categorical variables to the mix will significantly improve the model

[77]: df_num_cat_1

[77]:		bathrooms	-	_	•			-		view_2	view_3
		renovation		1 ren	ovation	_done_	2 r	enovation_	_done_3		
		tion_done_4		4.400	_			001000			
	0	1.00		1180	7		7.4	221900.0		0.0	
	0.0		0.0		_	0.0			0.0		0.0
	1	2.25		2570	7		8.0	538000.0		0.0	0.0
	0.0		0.0			0.0			1.0		0.0
	2	1.00		770	6		0.2	180000.0		0.0	0.0
	0.0		0.0			0.0			0.0		0.0
	3	3.00		1960	7		6.6	604000.0	0.0	0.0	0.0
	0.0		0.0			0.0			0.0		0.0
	4	2.00		1680	8	1	3.4	510000.0	0.0	0.0	0.0
	0.0		0.0			0.0			0.0		0.0
		•••	•••	•••	•••		•••		•••		
	•••		••		•••			•••		•••	
	19806	2.50		1530	8		6.5	360000.0	0.0	0.0	0.0
	0.0		0.0			0.0			0.0		1.0
	19807	2.50		2310	8		6.7	400000.0	0.0	0.0	0.0
	0.0		0.0			0.0			0.0		1.0
	19808	0.75		1020	7		1.7	402101.0	1.0	0.0	0.0
	0.0		0.0			0.0			0.0		1.0
	19809	2.50		1600	8	1	3.2	400000.0	0.0	0.0	0.0
	0.0		0.0			0.0			0.0		1.0
	19810	0.75		1020	7		1.8	325000.0	0.0	0.0	0.0
	0.0		0.0			0.0			0.0		1.0

[19811 rows x 13 columns]

```
[78]: # Create a formula for the numerical variables from the basemodel
    # AND the categorical variables from the previous section

variables_to_include = ' + '.join(df_num_cat_1.drop('price',axis=1).columns)

## Create the formula and the model
f = "price~" + variables_to_include

model_2 = smf.ols(f, df_num_cat_1).fit()
model_2.summary()
```

[78]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	Pric OL Least Square Mon, 26 Apr 202 16:58:3 1981 1979		R-squared: Adj. R-squared: F-statistic:		0.669 0.668 3328. 0.00 -2.6756e+05 5.352e+05 5.353e+05
Covariance Type:]	nonrobust			
0.975]	coef	std err	t	P> t	[0.025
 Intercept -2.98e+05	-3.189e+05	1.05e+04	-30.473	0.000	-3.39e+05
-2.98e+05 bathrooms -9888.816	-1.502e+04	2616.457	-5.740	0.000	-2.01e+04
sqft_living 181.263	176.1368	2.615	67.355	0.000	171.011
grade 9.9e+04	9.553e+04	1750.159	54.586	0.000	9.21e+04
distance -1.88e+04	-1.917e+04	208.998	-91.705	0.000	-1.96e+04
view_1 2.55e+04	5556.1173	1.02e+04	0.547	0.584	-1.43e+04
view_2 1.11e+04	-1185.4496	6242.542	-0.190	0.849	-1.34e+04
view_3 2.1e+04	4061.7300	8636.371	0.470	0.638	-1.29e+04
view_4 3.66e+04	1.425e+04	1.14e+04	1.249	0.212	-8114.035
renovation_done_1 6.99e+04	1.333e+04	2.89e+04	0.462	0.644	-4.32e+04
renovation_done_2 4.49e+04	1.11e+04	1.72e+04	0.644	0.520	-2.27e+04
renovation_done_3 2.34e+04	3143.7672	1.03e+04	0.305	0.761	-1.71e+04
renovation_done_4 -1.9e+04			-6.985	0.000	-3.37e+04
Omnibus: Prob(Omnibus): Skew: Kurtosis:		8082.328 0.000 1.760 11.134	Durbin-Watsor Jarque-Bera (Prob(JB): Cond. No.		1.989 64840.177 0.00 5.02e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.02e+04. This might indicate that there are strong multicollinearity or other numerical problems.

The summary indicates a very slight improvement over the previous model, 66.9% versus 66.8% of all of the observations fall within the results of the line formed by the regression equation. It is also evident that p-values of most of the categorical values are very high, indicating their insignificance in the model. However, because they describe the same feature, I am leaving them in for now The residuals normality did not improve

4.1.4 Model 3 (preprocessing and removal of outliers)

Scaling with Robust Scaler I ruled out the scaling of the data in this step of the process because it would not change the statistics of the mode, though the correlation coefficients would become more compatible with each other. I am leaving the snippets in the notebook in case I reconsider.

The next step is a removal of ourliers

```
[80]: # Using RobustScaler to scale the data
      """# Using RobustScaler, which transforms the feature vector by subtracting the \Box
      →median and then dividing by the
      # interguartile range (%25-75%). It is the most robust to the ourliers
      df_for_scalers=df_num_cat_2.copy()
      cols=['bathrooms', 'grade', 'sqft_living15', 'distance', 'waterfront_1', 'renovation_done_4']
      scaler = RobustScaler()
      robust_df = scaler.fit_transform(df_for_scalers.drop('price',axis=1))
      robust_df = pd.DataFrame(robust_df, columns=cols)
      df_num_cat_2.describe()"""
      """robust df.describe()"""
      """fiq, (ax1, ax2) = plt.subplots(ncols = 2, fiqsize = (20, 5))
      ax1.set_title('Before Scaling')
      sns.kdeplot(df_for_scalers['distance'], ax = ax1, color ='blue')
      ax2.set_title('After Robust Scaling')
      sns.kdeplot(robust df['distance'], ax = ax2, color = 'red')
      plt.show()"""
[80]: "fig, (ax1, ax2) = plt.subplots(ncols = 2, figsize = (20,
      5))\nax1.set_title('Before Scaling')\n
      \nsns.kdeplot(df_for_scalers['distance'], ax = ax1, color
      ='blue')\n\nax2.set_title('After Robust Scaling')\n
      \nsns.kdeplot(robust_df['distance'], ax = ax2, color = 'red')\n\nplt.show()"
[81]: # Building and summary of the model with scaled data
      """robust_df['price'] = df_for_scalers['price']
      robust_df.info()
      num_cat_var2_robust = ' + '.join(robust_df.drop('price',axis=1).columns)
      ## Create the formula and the model
      f = "price~" + num_cat_var2_robust
      model_num_cat_2_robust = smf.ols(f, robust_df).fit()
      model_num_cat_2_robust.summary()
```

```
coeffs=model_num_cat_2.params
coeffs.sort_values().round(2)

coeffs=model_num_cat_2_robust.params
coeffs.sort_values().round(2)"""
```

[81]: 'robust_df[\'price\']=df_for_scalers[\'price\']\nrobust_df.info()\n\n\nnum_cat_v ar2_robust = \' + \'.join(robust_df.drop(\'price\',axis=1).columns)\n\n## Create the formula and the model\nf = "price~" + num_cat_var2_robust\n\n\nmodel_num_cat_2_robust = smf.ols(f, robust_df).fit()\nm odel_num_cat_2_robust.summary()\n\ncoeffs=model_num_cat_2.params\ncoeffs.sort_va lues().round(2)\n\ncoeffs=model_num_cat_2_robust.params\ncoeffs.sort_values().ro und(2)'

Removal of outliers

IQR method Using IQR

[82]: df_num_cat_1

[82]:		bathrooms	sqft_l	iving	grade	distance	price	view_1	view_2	view_3
		renovation	-	_	_		-			
	renova	tion_done_4				_		_		
	0	1.00		1180	7	7.4	221900.0	0.0	0.0	0.0
	0.0		0.0			0.0		0.0		0.0
	1	2.25		2570	7	8.0	538000.0	0.0	0.0	0.0
	0.0		0.0			0.0		1.0		0.0
	2	1.00		770	6	10.2	180000.0	0.0	0.0	0.0
	0.0		0.0			0.0		0.0		0.0
	3	3.00		1960	7	6.6	604000.0	0.0	0.0	0.0
	0.0		0.0			0.0		0.0		0.0
	4	2.00		1680	8	13.4	510000.0	0.0	0.0	0.0
	0.0		0.0			0.0		0.0		0.0
	•••	•••	•••	•••	•••	•••		•••		
					•••		•••		•••	
	19806	2.50		1530	8	6.5	360000.0	0.0	0.0	0.0
	0.0		0.0			0.0		0.0		1.0
	19807	2.50		2310	8	6.7	400000.0	0.0	0.0	0.0
	0.0		0.0			0.0		0.0		1.0
	19808	0.75		1020	7	1.7	402101.0	1.0	0.0	0.0
	0.0		0.0			0.0		0.0		1.0
	19809	2.50		1600	8	13.2	400000.0	0.0	0.0	0.0
	0.0		0.0			0.0		0.0		1.0
	19810	0.75		1020	7	1.8	325000.0	0.0	0.0	0.0
	0.0		0.0			0.0		0.0		1.0

[19811 rows x 13 columns]

```
[83]: df num cat 2=df num cat 1.copy()
                # Due to the fact that discrete variables are not suitable for IQR method,
                  →outlier removal, they are being dropped
                # from the DataFrame. They will be added back to the Dataframe for modeling
                df num_cat_2=df_num_cat_2.drop(['view_1','view_2','view_3','view_4',

¬'renovation_done_1', 'renovation_done_2', 'renovation_done_3', 'renovation_done_4|,
                                                                                                'grade', 'bathrooms'], axis=1)
                Q1 = df_num_cat_2.quantile(q=.25)
                Q3 = df_num_cat_2.quantile(q=.75)
                IQR = df_num_cat_2.apply(stats.iqr)
                 df_num_cat_3 = df_num_cat_2[~((df_num_cat_2 < (Q1-1.5*IQR)) | (df_num_cat_2 >_{\sqcup} ) | (df_num_cat_2
                  \hookrightarrow (Q3+1.5*IQR))).any(axis=1)]
                df num cat 3
[83]:
                                  sqft_living distance
                                                                                                       price
                0
                                                     1180
                                                                                  7.4 221900.0
                1
                                                     2570
                                                                                  8.0 538000.0
                2
                                                       770
                                                                               10.2 180000.0
                3
                                                     1960
                                                                                  6.6 604000.0
                4
                                                     1680
                                                                               13.4 510000.0
                                                     1530
                                                                                  6.5 360000.0
                19806
                19807
                                                     2310
                                                                                  6.7 400000.0
                                                                                  1.7 402101.0
                19808
                                                     1020
                19809
                                                     1600
                                                                               13.2 400000.0
                19810
                                                     1020
                                                                                  1.8 325000.0
                [18619 rows x 3 columns]
[84]: df_num_cat_3['grade']=df_num_cat_1['grade']
                df num cat 3['bathrooms'] = df num cat 1['bathrooms']
                df_num_cat_3['view_1']=df_num_cat_1['view_1']
                df_num_cat_3['view_2']=df_num_cat_1['view_2']
                df_num_cat_3['view_3']=df_num_cat_1['view_3']
                df_num_cat_3['view_4']=df_num_cat_1['view_4']
                df_num_cat_3['renovation_done_1']=df_num_cat_1['renovation_done_1']
                df_num_cat_3['renovation_done_2']=df_num_cat_1['renovation_done_2']
                df_num_cat_3['renovation_done_3']=df_num_cat_1['renovation_done_3']
                df_num_cat_3['renovation_done_4']=df_num_cat_1['renovation_done_4']
```

[85]: df_num_cat_3.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 18619 entries, 0 to 19810
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype						
0	sqft_living	18619 non-null	int64						
1	distance	18619 non-null	float64						
2	price	18619 non-null	float64						
3	grade	18619 non-null	int64						
4	bathrooms	18619 non-null	float64						
5	view_1	18619 non-null	float64						
6	view_2	18619 non-null	float64						
7	view_3	18619 non-null	float64						
8	view_4	18619 non-null	float64						
9	renovation_done_1	18619 non-null	float64						
10	renovation_done_2	18619 non-null	float64						
11	renovation_done_3	18619 non-null	float64						
12	renovation_done_4	18619 non-null	float64						
dtypes: float64(11), int64(2)									
memo	memory usage: 2.0 MB								

[86]: df_num_cat_3=df_num_cat_3.reset_index()

df_num_cat_3.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18619 entries, 0 to 18618
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype						
0	index	18619 non-null	int64						
1	sqft_living	18619 non-null	int64						
2	distance	18619 non-null	float64						
3	price	18619 non-null	float64						
4	grade	18619 non-null	int64						
5	bathrooms	18619 non-null	float64						
6	view_1	18619 non-null	float64						
7	view_2	18619 non-null	float64						
8	view_3	18619 non-null	float64						
9	view_4	18619 non-null	float64						
10	renovation_done_1	18619 non-null	float64						
11	renovation_done_2	18619 non-null	float64						
12	renovation_done_3	18619 non-null	float64						
13	renovation_done_4	18619 non-null	float64						
dtypes: float64(11), int64(3)									
memo	memory usage: 2.0 MB								

```
[87]: df_num_cat_3=df_num_cat_3.drop('index', axis=1)
     df_num_cat_3.info()
     <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 18619 entries, 0 to 18618
    Data columns (total 13 columns):
         Column
                          Non-Null Count Dtype
     --- -----
                          -----
                          18619 non-null int64
     0
         sqft_living
                          18619 non-null float64
     1
         distance
                          18619 non-null float64
     2
        price
                          18619 non-null int64
     3
        grade
     4
        bathrooms
                         18619 non-null float64
     5
        view_1
                          18619 non-null float64
        view_2
                         18619 non-null float64
     6
     7
                          18619 non-null float64
        view_3
     8
        view 4
                         18619 non-null float64
        renovation_done_1 18619 non-null float64
     10 renovation_done_2 18619 non-null float64
     11 renovation_done_3 18619 non-null float64
     12 renovation_done_4 18619 non-null float64
    dtypes: float64(11), int64(2)
    memory usage: 1.8 MB
     <b>df_num_cat_3</b> DataFrame<br><br><b>18619</b> records out of the original <b>21597</b> lef
     </div><br>
    <b>Index reset</b>
     </div><br>
    Building the model
[88]: ## Formula is the same, model is for the cleaned DF
     variables_to_include_3_1 = ' + '.join(df_num_cat_3.drop('price',axis=1).columns)
     f = "price~" + variables_to_include_3_1
     model_3_1 = smf.ols(f, df_num_cat_3).fit()
     model_3_1.summary()
[88]: <class 'statsmodels.iolib.summary.Summary'>
                               OLS Regression Results
     ______
     Dep. Variable:
                                          R-squared:
                                                                        0.633
                                   price
     Model:
                                    OLS Adj. R-squared:
                                                                        0.633
                           Least Squares F-statistic:
     Method:
                                                                        2672.
```

Mon, 26 Apr 2021 Prob (F-statistic):

0.00

Date:

Time: No. Observations: Df Residuals: Df Model: Covariance Type:		16:58:33 18619 18606 12 nonrobust	Log-Likelihood AIC: BIC:		-2.4463e+05 4.893e+05 4.894e+05
=====					
0.975]	coef	std err	t	P> t	[0.025
Intercept -1.24e+05	-1.397e+05	7752.045	-18.019	0.000	-1.55e+05
sqft_living 133.140	129.1653	2.028	63.697	0.000	125.191
distance	-1.527e+04	152.634	-100.023	0.000	-1.56e+04
-1.5e+04 grade	7.293e+04	1291.290	56.478	0.000	7.04e+04
7.55e+04 bathrooms	-7626.9730	1901.298	-4.011	0.000	-1.14e+04
-3900.255 view_1	1295.3996	7317.902	0.177	0.859	-1.3e+04
1.56e+04 view_2	-1419.9738	4457.993	-0.319	0.750	-1.02e+04
7318.099 view_3	454.9216	6141.592	0.074	0.941	-1.16e+04
1.25e+04 view_4	1.163e+04	8208.818	1.417	0.156	-4457.709
2.77e+04 renovation_done_1	3.485e+04	2.08e+04	1.673	0.094	-5972.705
7.57e+04 renovation_done_2	1.589e+04	1.22e+04	1.299	0.194	-8087.988
3.99e+04 renovation_done_3	-907.0686	7331.656	-0.124	0.902	-1.53e+04
1.35e+04 renovation_done_4 -1.03e+04		2714.396		0.000	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		849.136 0.000 0.438 3.882	Durbin-Watson: Jarque-Bera (Cond. No.	: JB) :	1.997 1199.719 3.05e-261 4.74e+04

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 4.74e+04. This might indicate that there are strong multicollinearity or other numerical problems.

While the IQR removal of outliers decreased the R squared of the model, it made the distribution more normal (Skew and Kurtosis values are almost within the normality ranges). This fact is also reflected by the QQ plot of the model residuals. Unfortunately, the Coefficient of determination dropped

$\textbf{Z-score method} \quad \text{Using Z scores}$

[90]:	f_num_cat_1
-------	-------------

[90]:	ba	athrooms sq	ft_living	grade d	distance	price	view_1	view_2	view_3
	view_4 n	cenovation_d	one_1 rend	vation_c	done_2 r	enovation_o	done_3		
	renovatio	on_done_4							
	0	1.00	1180	7	7.4	221900.0	0.0	0.0	0.0
	0.0	0	.0	(0.0	(0.0		0.0
	1	2.25	2570	7	8.0	538000.0	0.0	0.0	0.0
	0.0	0	.0	(0.0	:	1.0		0.0
	2	1.00	770	6	10.2	180000.0	0.0	0.0	0.0
	0.0	0	.0	(0.0	(0.0		0.0
	3	3.00	1960	7	6.6	604000.0	0.0	0.0	0.0

0.0		0.0			0.0		0.0		0.0
4	2.00		1680	8	13.4	510000.0	0.0	0.0	0.0
0.0		0.0			0.0		0.0		0.0
•••	•••	•••	•••	•••	•••		•••		
•••	••	•		•••		•••		•••	
19806	2.50		1530	8	6.5	360000.0	0.0	0.0	0.0
0.0		0.0			0.0		0.0		1.0
19807	2.50		2310	8	6.7	400000.0	0.0	0.0	0.0
0.0		0.0			0.0		0.0		1.0
19808	0.75		1020	7	1.7	402101.0	1.0	0.0	0.0
0.0		0.0			0.0		0.0		1.0
19809	2.50		1600	8	13.2	400000.0	0.0	0.0	0.0
0.0		0.0			0.0		0.0		1.0
19810	0.75		1020	7	1.8	325000.0	0.0	0.0	0.0
0.0		0.0			0.0		0.0		1.0

[19811 rows x 13 columns]

[91]:	sqft_living	distance	price	z_sqft_living	z_distance z_price
0	1180	7.4	221900.0	-1.005265	-0.568136 -0.976073
1	2570	8.0	538000.0	0.645148	-0.469671 0.049084
2	770	10.2	180000.0	-1.492078	-0.108633 -1.111960
3	1960	6.6	604000.0	-0.079134	-0.699423 0.263131
4	1680	13.4	510000.0	-0.411591	0.416513 -0.041724
•••	•••	•••	•••		
19806	1530	6.5	360000.0	-0.589694	-0.715834 -0.528195
19807	2310	6.7	400000.0	0.336438	-0.683012 -0.398469
19808	1020	1.7	402101.0	-1.195241	-1.503553 -0.391656
19809	1600	13.2	400000.0	-0.506579	0.383692 -0.398469
19810	1020	1.8	325000.0	-1.195241	-1.487142 -0.641705

[19811 rows x 6 columns]

```
[92]: df_num_cat_5=df_num_cat_4[(abs(df_num_cat_4.z_price) < 3)]
      df_num_cat_5=df_num_cat_5[(abs(df_num_cat_5.z_distance) < 3)]</pre>
      df_num_cat_5=df_num_cat_5[(abs(df_num_cat_5.z_sqft_living) < 3)]</pre>
      df_num_cat_5
[92]:
                                       price z_sqft_living
             sqft_living distance
                                                              z_distance
                                                                           z_price
      0
                    1180
                               7.4 221900.0
                                                  -1.005265
                                                               -0.568136 -0.976073
      1
                    2570
                               8.0 538000.0
                                                   0.645148
                                                               -0.469671 0.049084
      2
                     770
                              10.2
                                   180000.0
                                                   -1.492078
                                                               -0.108633 -1.111960
      3
                    1960
                               6.6
                                    604000.0
                                                  -0.079134
                                                               -0.699423 0.263131
      4
                    1680
                              13.4 510000.0
                                                  -0.411591
                                                                0.416513 -0.041724
                               6.5 360000.0
                                                  -0.589694
      19806
                    1530
                                                               -0.715834 -0.528195
      19807
                    2310
                               6.7 400000.0
                                                   0.336438
                                                               -0.683012 -0.398469
      19808
                    1020
                               1.7
                                    402101.0
                                                  -1.195241
                                                               -1.503553 -0.391656
                    1600
                              13.2 400000.0
      19809
                                                  -0.506579
                                                              0.383692 -0.398469
      19810
                    1020
                               1.8 325000.0
                                                  -1.195241
                                                               -1.487142 -0.641705
      [19261 rows x 6 columns]
[93]: df_num_cat_5['grade']=df_num_cat_1['grade']
      df_num_cat_5['bathrooms']=df_num_cat_1['bathrooms']
      df_num_cat_5['view_1']=df_num_cat_1['view_1']
      df_num_cat_5['view_2']=df_num_cat_1['view_2']
      df num cat 5['view 3']=df num cat 1['view 3']
      df_num_cat_5['view_4']=df_num_cat_1['view_4']
      df_num_cat_5['renovation_done_1']=df_num_cat_1['renovation_done_1']
      df_num_cat_5['renovation_done_2']=df_num_cat_1['renovation_done_2']
      df_num_cat_5['renovation_done_3']=df_num_cat_1['renovation_done_3']
      df_num_cat_5['renovation_done_4']=df_num_cat_1['renovation_done_4']
[94]: df_num_cat_5=df_num_cat_5.drop(['z_sqft_living','z_distance','z_price'], axis=1)
[95]: df_num_cat_5=df_num_cat_5.reset_index()
      df_num_cat_5=df_num_cat_5.drop('index', axis=1)
      df_num_cat_5.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 19261 entries, 0 to 19260
     Data columns (total 13 columns):
      #
          Column
                             Non-Null Count
                                              Dtype
      0
          sqft_living
                              19261 non-null
                                              int64
                              19261 non-null float64
          distance
      2
          price
                              19261 non-null float64
          grade
                             19261 non-null
                                             int64
```

```
bathrooms
                        19261 non-null float64
     5 view_1
                       19261 non-null float64
                      19261 non-null float64
     6 view_2
                 19261 non-null float64
19261 non-null float64
     7
        view_3
     8 view 4
        renovation_done_1 19261 non-null float64
     10 renovation done 2 19261 non-null float64
     11 renovation_done_3 19261 non-null float64
     12 renovation_done_4 19261 non-null float64
    dtypes: float64(11), int64(2)
    memory usage: 1.9 MB
    <b>df_num_cat_5</b> DataFrame<br><br><b>19261</b> records out of the original <b>21597</b> lef
    </div><br>
    <b>Index reset</b>
    </div><br>
    Building the model
[96]: ## Formula is the same, model is for the cleaned DF
     variables_to_include_3_2 = ' + '.join(df_num_cat_5.drop('price',axis=1).columns)
     f = "price~" + variables_to_include_3_2
     model_3_2 = smf.ols(f, df_num_cat_5).fit()
     model_3_2.summary()
[96]: <class 'statsmodels.iolib.summary.Summary'>
                          OLS Regression Results
     ______
    Dep. Variable:
                               price R-squared:
                                                                  0.654
    Model:
                                 OLS Adj. R-squared:
                                                                  0.653
                       Least Squares F-statistic:
    Method:
                                                                 3027.
    Date:
                     Mon, 26 Apr 2021 Prob (F-statistic):
                                                                  0.00
    Time:
                             16:58:34 Log-Likelihood:
                                                           -2.5551e+05
    No. Observations:
                               19261 AIC:
                                                              5.110e+05
    Df Residuals:
                               19248 BIC:
                                                              5.111e+05
    Df Model:
                                  12
                     nonrobust
     Covariance Type:
     ______
                         coef std err t P>|t| [0.025]
     0.975]
     Intercept -2.074e+05 8498.928 -24.399 0.000 -2.24e+05
```

-1.91e+05						
sqft_living	141.6977	2.203	64.311	0.000	137.379	
146.016	4 000 .04	4.07. 00.0	00.074		4. 57 0.4	
distance -1.63e+04	-1.666e+04	167.636	-99.371	0.000	-1.7e+04	
grade	8.286e+04	1416.839	58.485	0.000	8.01e+04	
8.56e+04	0.2000104	1410.039	30.403	0.000	0.016+04	
bathrooms	-1.001e+04	2109.297	-4.746	0.000	-1.41e+04	
-5875.419						
view_1	1.247e+04	8077.275	1.544	0.123	-3357.516	
2.83e+04						
view_2	-1948.1291	4983.950	-0.391	0.696	-1.17e+04	
7820.847						
view_3	-3331.9562	6896.935	-0.483	0.629	-1.69e+04	
1.02e+04	1 (41-104	0104 004	1 000	0.070	1441 202	
view_4 3.43e+04	1.641e+04	9104.994	1.802	0.072	-1441.323	
renovation_done_1	3.577e+04	2.27e+04	1.576	0.115	-8719.452	
8.03e+04	0.0110.01	2.270.01	1.070	0.110	0110.102	
renovation_done_2	1.284e+04	1.37e+04	0.938	0.348	-1.4e+04	
3.97e+04						
${\tt renovation_done_3}$	-4898.3754	8252.665	-0.594	0.553	-2.11e+04	
1.13e+04						
renovation_done_4	-2.12e+04	3022.668	-7.014	0.000	-2.71e+04	
-1.53e+04						
Omnibus:		2690.071	======== Durbin-Watso	:======: \n ·	========== 1	991
Prob(Omnibus):		0.000	Jarque-Bera		6382.	
Skew:		0.811	Prob(JB):	- •		.00
Kurtosis:		5.307	Cond. No.		4.75e	+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 4.75e+04. This might indicate that there are strong multicollinearity or other numerical problems.

[97]: fig = sm.graphics.qqplot(model_3_2.resid,dist=stats.norm,fit=True,line='45')

The R squared of the model is 0.654 and F-statistics is higher than for the previous model The IQR method of outliers removal made the residual distribution more normal than Z-score method due to the former having more strict criteria. The decision is to use the dataset compiled after Z-score outlier removal.

The next step is Log transformation of the target variable

4.1.5 Model 4 (Using log and square root transformations on the target variable)

Log Transformation

[98]: df_num_cat_5.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19261 entries, 0 to 19260

Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	sqft_living	19261 non-null	int64
1	distance	19261 non-null	float64
2	price	19261 non-null	float64
3	grade	19261 non-null	int64
4	bathrooms	19261 non-null	float64
5	view_1	19261 non-null	float64
6	view_2	19261 non-null	float64
7	view_3	19261 non-null	float64
8	view_4	19261 non-null	float64

```
9 renovation_done_1 19261 non-null float64
10 renovation_done_2 19261 non-null float64
11 renovation_done_3 19261 non-null float64
12 renovation_done_4 19261 non-null float64
dtypes: float64(11), int64(2)
```

memory usage: 1.9 MB

[99]: # Log transform
df_num_cat_5_log=df_num_cat_5.copy()

df_num_cat_5_log['log_price'] = df_num_cat_5['price'].map(lambda x: np.log(x))
df_num_cat_5_log

[99]:		•			price growation_done			_	view_2	view_3
	renovation_d	lone_4]	log_p	orice						
	0	1180			221900.0	7	1.00	0.0	0.0	0.0
	0.0	(0.0		0.0			0.0		0.0
	12.309982									
	1	2570		8.0	538000.0	7	2.25	0.0	0.0	0.0
	0.0		0.0		0.0			1.0		0.0
	13.195614									
	2	770		10.2	180000.0	6	1.00	0.0	0.0	0.0
	0.0		0.0		0.0	_		0.0		0.0
	12.100712	•								
	3	1960		6.6	604000.0	7	3 00	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	•	0.00	0.0	0.0	0.0
	13.311329				0.0			0.0		0.0
	4	1680		13 4	510000.0	8	2 00	0.0	0.0	0.0
	0.0		0.0	10.1	0.0		2.00	0.0	0.0	0.0
	13.142166		J. 0		0.0			0.0		0.0
		•••	•••		•••	•••		•••		
	•••	•••			•••		•••		•••	
	 19256	1530		6 5	360000.0	8	2.50	0.0	0.0	0.0
	0.0		0.0	0.5	0.0	0		0.0	0.0	1.0
		(J. U		0.0			0.0		1.0
	12.793859 19257	0210		6.7	400000.0	8	2.50	0.0	0.0	0 0
	0.0	2310	0.0	6.7	0.0	0	2.50	0.0	0.0	0.0
		(J. U		0.0			0.0		1.0
	12.899220	4000		4 5	100101	-	0.75	4.0	0 0	0 0
	19258	1020		1.7	402101.0	7	0.75		0.0	0.0
	0.0	(0.0		0.0			0.0		1.0
	12.904459	4.000		40.0	100000		0.50			
	19259	1600		13.2	400000.0	8	2.50	0.0	0.0	
	0.0	(0.0		0.0			0.0		1.0
	12.899220					_		_		
	19260	1020		1.8	325000.0	7	0.75	0.0	0.0	0.0

```
12.691580
      [19261 rows x 14 columns]
[100]: df_num_cat_5_log.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 19261 entries, 0 to 19260
      Data columns (total 14 columns):
       #
           Column
                              Non-Null Count
                                              Dtype
      ___
       0
           sqft_living
                              19261 non-null int64
       1
           distance
                              19261 non-null float64
       2
                              19261 non-null float64
           price
                              19261 non-null int64
       3
           grade
           bathrooms
                              19261 non-null float64
       5
          view_1
                              19261 non-null float64
           view_2
                              19261 non-null float64
       6
       7
           view_3
                              19261 non-null float64
                              19261 non-null float64
           view_4
           renovation_done_1 19261 non-null float64
       10 renovation_done_2 19261 non-null float64
          renovation_done_3 19261 non-null float64
          renovation_done_4 19261 non-null float64
       12
       13 log_price
                              19261 non-null float64
      dtypes: float64(12), int64(2)
      memory usage: 2.1 MB
[101]: # Histogram of log_price and price
      continuous=['price','log_price']
      for col in continuous:
          fig, ax =plt.subplots(figsize=(5, 5))
          distribution(df_num_cat_5_log[col])
```

0.0

0.0

1.0

0.0

0.0

The transformation worked well, improving the normality of the 'price' variable. Log_price distribution looks more symmetrical. Skewness improved dramatically (from 1.18 to -0.01, 0 being perfectly symmetrical) Kurtosis value decreased, making the curve more Mesokurtic (close to a Gaussian curve). It is an expected effect of log transform.

The next step is test a square root transformation.

```
[102]:
             sqft_living distance
                                       price grade bathrooms view_1 view_2 view_3
      view_4 renovation_done_1 renovation_done_2 renovation_done_3
      renovation_done_4 sqrt_price
                    1180
                               7.4 221900.0
                                                          1.00
      0
                                                                  0.0
                                                                          0.0
                                                                                  0.0
      0.0
                                                              0.0
                                                                                 0.0
                         0.0
                                            0.0
```

474 000000								
471.062629	0.570	0 0	F20000 0	7	0.05	0 0	0.0	0 0
1		8.0	538000.0	1	2.25		0.0	
0.0	0.0		0.0		1.0			0.0
733.484833 2	770	10.0	100000	6	1 00	0 0	0.0	0 0
		10.2	180000.0	О	1.00		0.0	
0.0	0.0		0.0		0.0			0.0
424.264069 3	1060	6 6	604000 0	7	2 00	0 0	0.0	0 0
0.0	0.0	0.0	604000.0	1	3.00		0.0	0.0
	0.0		0.0		0.0			0.0
777.174369 4	1600	12 /	510000.0	0	2.00	0 0	0.0	0.0
0.0			0.0	0	0.0		0.0	0.0
714.142843	0.0		0.0		0.0			0.0
			•••	•••	•••	•••		
	***		•••		•••		•••	
	1530	6 5	360000 0	Q	2 50	0 0	0.0	0 0
		0.5		O			0.0	
	0.0		0.0		0.0			1.0
	2310	6.7	400000 0	8	2 50	0 0	0.0	0 0
		0.7		O			0.0	
	0.0		0.0		0.0			1.0
	1020	1 7	402101 0	7	0.75	1 0	0 0	0 0
		1.1		'			0.0	
	0.0		0.0		0.0			1.0
	1600	13.2	400000.0	8	2.50	0.0	0.0	0.0
	1020	1.8	325000.0	7	0.75	0.0	0.0	0.0
				•			• • • •	
	-							-
19256 0.0 600.000000 19257 0.0 632.455532 19258 0.0 634.114343 19259 0.0 632.455532 19260 0.0 570.087713	0.0 2310 0.0 1020 0.0 1600 0.0	6.7 1.7 13.2	 360000.0 0.0 400000.0 0.0 402101.0 0.0 400000.0 0.0	8 7 8	2.50 0.0 2.50 0.0 0.75 0.0 2.50	0.0 1.0 0.0	0.0	1.0 0.0 1.0 0.0 1.0

[19261 rows x 14 columns]

```
[103]: # Histogram of log_price and price
continuous=['price','sqrt_price']
for col in continuous:
    fig, ax =plt.subplots(figsize=(5, 5))
    distribution(df_num_cat_5_sqrt[col])
```


The square root transformation also worked well in improving the normality of the 'price' variable. sqrt_price distribution looks more symmetrical. Skewness improved dramatically (from 1.18 to -0.59, 0 being perfectly symmetrical) However, both of the parameters are worse that the parameters of log_price distribution.

The next step is create two separate models and to see if the transformations made a difference

Model using log transformed target variable

[104]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Res	ults
--------------------	------

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Mon, 26	OLS Squares Apr 2021 16:58:36 19261 19248 12 onrobust	R-squared: Adj. R-square F-statistic: Prob (F-stat: Log-Likelihoo AIC: BIC:	0.664 0.663 3164. 0.00 -2224.4 4475. 4577.	
0.975]	coef	std err	t	P> t	[0.025
 Intercept 11.674	11.6414	0.017	704.222	0.000	11.609
sqft_living 0.000	0.0003	4.29e-06	60.161	0.000	0.000
distance -0.034	-0.0348	0.000	-106.862	0.000	-0.035
grade 0.165	0.1599	0.003	58.035	0.000	0.155
bathrooms 0.021	0.0125	0.004	3.052	0.002	0.004
view_1 0.043	0.0120	0.016	0.764	0.445	-0.019
view_2 0.016	-0.0027	0.010	-0.281	0.779	-0.022
view_3 0.028	0.0017	0.013	0.128	0.898	-0.025
view_4 0.060	0.0253	0.018	1.427	0.154	-0.009
renovation_done_1 0.165	0.0788	0.044	1.785	0.074	-0.008
renovation_done_2 0.097	0.0449	0.027	1.688	0.091	-0.007
renovation_done_3 0.015	-0.0161	0.016	-1.002	0.316	-0.048
renovation_done_4 -0.022	-0.0340	0.006	-5.782	0.000	-0.046
Omnibus:	=======	310.255	 Durbin-Watson	======== 1:	2.003

Skew:	-0.167	Prob(JB):	1.82e-105
Kurtosis:	3.700	Cond. No.	4.75e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.75e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Model using square root transformed target variable

[105]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

ULS Regression Results								
Dep. Variable: Model:	sqr	t_price OLS	R-squared: Adj. R-square	0.673 0.673				
Method:	Least S	Squares	F-statistic:		3307.			
Date:	Mon, 26 Aj	pr 2021	Prob (F-stati	istic):	0.00			
Time:	16	6:58:36	Log-Likelihoo	od:	-1.1442e+05			
No. Observations:		19261	AIC:		2.289e+05			
Df Residuals:		19248	BIC:		2.290e+05			
Df Model:		12						
Covariance Type:	noi	nrobust						
0.975]	coef	std err	t	P> t	[0.025			
 Intercept 218.923	207.9501	5.598	37.145	0.000	196.977			
sqft_living 0.097	0.0938	0.001	64.625	0.000	0.091			
distance	-11.7839	0.110	-106.715	0.000	-12.000			

-11.567					
grade	56.1638	0.933	60.178	0.000	54.334
57.993					
bathrooms	-1.7413	1.389	-1.253	0.210	-4.465
0.982					
view_1	6.2009	5.321	1.165	0.244	-4.228
16.630					
view_2	-1.1299	3.283	-0.344	0.731	-7.565
5.305					
view_3	-0.9735	4.543	-0.214	0.830	-9.878
7.931	0.0754		4 000		4 504
view_4	9.9751	5.998	1.663	0.096	-1.781
21.731	05 0040	44.054	4 700	0.004	0. 474
renovation_done_1	25.8342	14.951	1.728	0.084	-3.471
55.140	10 0770	0.010	1 200	0 170	F 207
renovation_done_2 29.953	12.2778	9.018	1.362	0.173	-5.397
renovation_done_3	-4.3359	5.436	-0.798	0.425	-14.991
6.319	-4.5559	3.430	-0.190	0.425	-14.991
renovation_done_4	-13.1475	1.991	-6.603	0.000	-17.050
-9.245	10.1470	1.551	0.005	0.000	17.000
=======================================	========	========	=========	=======	==========
Omnibus:		571.397	Durbin-Watso	on:	1.997
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	863.310
Skew:		0.300	Prob(JB):		3.42e-188
Kurtosis:		3.846	Cond. No.		4.75e+04
	=======	=======	=========		==========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.75e+04. This might indicate that there are strong multicollinearity or other numerical problems.

[106]: fig = sm.graphics.qqplot(model_4_1.resid,dist=stats.norm,fit=True,line='45')

-2

Both models have improved the R squared and the F-statistics of the previous models. The residuals

0

Theoretical Quantiles

2

4

of both models display a close-to-normal distribution. Log transformation helped improve the upper part of the distribution, while square root transformation worked better in the lower part of the distribution. R squared of the square root transformation-based model is slightly higher, while its kurtosis value is slightly worse than the kurtosis value of the log-transformed price model. The decision is to use the log-transformed target variable.

The next step is to remove unnecessary categorical variables, scale the remaining variables, and built the last model with coefficients in the regression model, which are easy to compare and interpret

[109]:	df_num_cat_5_log_cropped
[

[109]:	sqft	_living	distance	price	grade	bathrooms	recent_renovation	_new
	log_price							
	0	1180	7.4	221900.0	7	1.00		0.0
	12.309982							
	1	2570	8.0	538000.0	7	2.25		0.0
	13.195614							
	2	770	10.2	180000.0	6	1.00		0.0
	12.100712							
	3	1960	6.6	604000.0	7	3.00		0.0
	13.311329							
	4	1680	13.4	510000.0	8	2.00		0.0
	13.142166							
	•••	•••	•••		•••		•••	
	•••							
	19256	1530	6.5	360000.0	8	2.50		1.0
	12.793859							
	19257	2310	6.7	400000.0	8	2.50		1.0
	12.899220							
	19258	1020	1.7	402101.0	7	0.75		1.0
	12.904459							
	19259	1600	13.2	400000.0	8	2.50		1.0
	12.899220							
	19260	1020	1.8	325000.0	7	0.75		1.0

12.691580

[19261 rows x 7 columns]

```
[110]: # Standardizing the independent variables. I decided to do it manually due to a
                   →better control of the utput
                 df_num_cat_5_log_cropped_st=df_num_cat_5_log_cropped.copy()
                 lv_min=df_num_cat_5_log_cropped_st.sqft_living.min()
                 lv_range=df_num_cat_5_log_cropped_st.sqft_living.
                   →max()-df_num_cat_5_log_cropped_st.sqft_living.min()
                 distance_range=df_num_cat_5_log_cropped_st.distance.
                   →max()-df_num_cat_5_log_cropped_st.distance.min()
                 distance_min=df_num_cat_5_log_cropped_st.distance.min()
                 bathroom_range=df_num_cat_5_log_cropped_st.bathrooms.
                   →max()-df_num_cat_5_log_cropped_st.bathrooms.min()
                 bathroom_min=df_num_cat_5_log_cropped_st.bathrooms.min()
                 grade_range=df_num_cat_5_log_cropped_st.grade.max()-df_num_cat_5_log_cropped_st.
                   →grade.min()
                 grade_min=df_num_cat_5_log_cropped_st.grade.min()
                 df_num_cat_5_log_cropped_st['sqft_living_st']=df_num_cat_5_log_cropped_st.
                   apply(lambda row: round((row.sqft_living-lv_min)/lv_range,3), axis=1)
                 df_num_cat_5_log_cropped_st['distance_st']=df_num_cat_5_log_cropped_st.
                   →apply(lambda row: round((row.distance-distance_min)/distance_range,3), __
                 df_num_cat_5_log_cropped_st['bathrooms_st']=df_num_cat_5_log_cropped_st.
                   →apply(lambda row: round((row.bathrooms-bathroom_min)/bathroom_range,3), __
                 df num_cat_5_log_cropped_st['grade_st']=df_num_cat_5_log_cropped_st.
                   →apply(lambda row: (row.grade-grade_min)/grade_range, axis=1)
                 \#df\_num\_cat\_5\_sqrt\_cropped\_st['recent\_renovation\_new\_str'] = df\_num\_cat\_5\_sqrt\_cropped\_st['recent\_renovation\_new\_str'] = df\_num\_cat\_5\_sqrt\_cropped\_st['recent\_renovation\_str'] = df\_num\_cat\_5\_sqrt\_cropped\_str'] = df\_num\_cat\_5\_sqrt\_cropp
                   \rightarrow astype('str')
                 df_num_cat_5_log_cropped_st
「110〕:
                                  sqft_living distance
                                                                                                 price grade bathrooms recent_renovation_new
```

```
log_price sqft_living_st distance_st bathrooms_st grade_st
              1180
                         7.4 221900.0
                                                                            0.0
                                                    1.00
12.309982
                    0.194
                                 0.239
                                               0.105
                                                         0.375
              2570
                         8.0 538000.0
                                            7
                                                    2.25
                                                                            0.0
13.195614
                    0.528
                                 0.260
                                               0.368
                                                         0.375
```

2	770	10.2	180000.0	6	1.00)		0.0
12.100712		0.096	0.337		0.105	0.250		
3	1960	6.6	604000.0	7	3.00)		0.0
13.311329		0.381	0.211		0.526	0.375		
4	1680	13.4	510000.0	8	2.00)		0.0
13.142166		0.314	0.449		0.316	0.500		
•••	•••	•••		•••			•••	
•••	•••	•••	•••	•••				
19256	1530	6.5	360000.0	8	2.50)		1.0
12.793859		0.278	0.207		0.421	0.500		
19257	2310	6.7	400000.0	8	2.50)		1.0
12.899220		0.465	0.214		0.421	0.500		
19258	1020	1.7	402101.0	7	0.7	5		1.0
12.904459		0.156	0.039		0.053	0.375		
19259	1600	13.2	400000.0	8	2.50)		1.0
12.899220		0.295	0.442		0.421	0.500		
19260	1020	1.8	325000.0	7	0.7	5		1.0
12.691580		0.156	0.042		0.053	0.375		

[19261 rows x 11 columns]

```
[111]: ## Formula is the same, model is for the cleaned DF

variables_to_include_4_3 = ' + '.join(df_num_cat_5_log_cropped_st.drop(
        ['price','log_price','sqft_living','distance','grade','bathrooms'],axis=1).
        →columns)

f = "log_price~" + variables_to_include_4_3
        print(f)
        model_4_3= smf.ols(f, df_num_cat_5_log_cropped_st).fit()
        model_4_3.summary()
```

log_price~recent_renovation_new + sqft_living_st + distance_st + bathrooms_st +
grade_st

[111]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	log_price	R-squared:	0.663
Model:	OLS	Adj. R-squared:	0.663
Method:	Least Squares	F-statistic:	7593.
Date:	Mon, 26 Apr 2021	Prob (F-statistic):	0.00
Time:	16:58:37	Log-Likelihood:	-2228.2
No. Observations:	19261	AIC:	4468.
Df Residuals:	19255	BIC:	4516.
Df Model:	5		
Covariance Type:	nonrobust		

======	c	. 1		D. L. I	FO. 00F
0.975]	coef s	std err	t 	P> t	[0.025
Intercept 12.377	12.3621	0.008	1602.897	0.000	12.347
recent_renovation_new -0.023	-0.0345	0.006	-5.875	0.000	-0.046
sqft_living_st 1.110	1.0747	0.018	60.141	0.000	1.040
distance_st -0.975	-0.9931	0.009	-106.878	0.000	-1.011
bathrooms_st	0.0598	0.019	3.072	0.002	0.022
grade_st 1.324	1.2805	0.022	58.089	0.000	1.237
	310.179	Durb	======== in-Watson:	======	2.004
Prob(Omnibus):	0.000		ne-Bera (JB):		482.427
Skew:	-0.166	-			1.75e-105
Kurtosis:	3.700	Cond	. No.		16.5

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression Plots for distance_st

Regression Plots for bathrooms_st

0.0

0.0

0.2

0.6

1.0

The final linear regression model of a log of the price variable versus grade, bathrooms, distance from the center of the city, sqft_living space, and the indicator if a house has been renovated recently or a newer house has a Coefficient of Determination of 0.663. It is indicative of the fact that 66.3% of the sold properties fall within the results of the line formed by the regression equation. F-statistics displays the high value and the overall p-value much lower than the confidence interval The independent variables used in the equation display a clear linear relationship with the target and homoscedasticity.

The next step is to validate the model by using training and test datasets

0.2

0.3

0.4

0.0

4.1.6 Train the model

12.100712

2

-0.4

```
13.142166
       4
       19256 12.793859
       19257 12.899220
       19258 12.904459
       19259 12.899220
       19260 12.691580
       [19261 rows x 1 columns]
[115]: X
[115]:
              sqft_living_st distance_st bathrooms_st grade_st
                       0.194
                                    0.239
                                                   0.105
       0
                                                             0.375
       1
                       0.528
                                    0.260
                                                   0.368
                                                             0.375
       2
                       0.096
                                    0.337
                                                   0.105
                                                             0.250
       3
                       0.381
                                    0.211
                                                   0.526
                                                             0.375
       4
                       0.314
                                    0.449
                                                   0.316
                                                             0.500
                                                   0.421
                                                             0.500
       19256
                       0.278
                                    0.207
       19257
                       0.465
                                    0.214
                                                   0.421
                                                             0.500
       19258
                       0.156
                                    0.039
                                                   0.053
                                                             0.375
       19259
                       0.295
                                    0.442
                                                   0.421
                                                             0.500
                       0.156
                                    0.042
                                                   0.053
       19260
                                                             0.375
       [19261 rows x 4 columns]
[116]: # Split the data into training and test sets. Use the default split size
       # X_train, X_test, y_train, y_test = train_test_split(X, y)
       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,_
        →random_state=100)
       print(len(X_train), len(X_test), len(y_train), len(y_test))
      13482 5779 13482 5779
[117]: # Fit the model to train data
       linreg = LinearRegression()
       model=linreg.fit(X_train, y_train)
       # Calculate predictions on training and test sets for y_hat
       y_hat_train=linreg.predict(X_train)
       y_hat_test=linreg.predict(X_test)
       # Calculate residuals
       train_residuals=y_hat_train-y_train
```

3

13.311329

```
test_residuals=y_hat_test-y_test

# Calculate training and test RMSE
train_mse = mean_squared_error(y_train, y_hat_train, squared=False)
test_mse = mean_squared_error(y_test, y_hat_test, squared=False)
print('Train MSE:', round(train_mse,3))
print('Test MSE:', round(test_mse,3))

Train MSE: 0.272
Test MSE: 0.272
Test MSE: 0.272
[118]: print(model.coef_, model.intercept_, model.score(X_test, y_test))

[[ 1.07971047 -0.9891889    0.04547509    1.26484854]] [12.36601493]
```

4.1.7 Validation

0.6718738822346366

```
[120]: metrics.r2_score(price_target, linreg.predict(price_predictors))
```

[120]: 0.6628669814917774

```
[121]: metrics.mean_absolute_error(price_target, linreg.predict(price_predictors))
```

[121]: 0.21292952976823826

```
[122]: mean_squared_error(price_target, linreg.predict(price_predictors))
```

[122]: 0.07392658991485863

Train MSE: 0.272 Test MSE: 0.272 Are equal down to the third decimal digit indicating a good agreement between the training and the test sets R squared for for the prediction on the full dataset is the same as in model_4_3: 0.663 Mean Absolute Error for the prediction on the full dataset is 0.213 which is not great but acceptable. The best possible theoretical value is 0. Mean Squared Error for the prediction on the full dataset is 0.074. The best possible theoretical value is 0.

```
[123]: # Not sure if the results of this function are indicative of anything, but \Box \rightarrow leaving it here for a possible future use

"""mse, bias, var = bias_variance_decomp(model, X_train.values, y_train.values.

\rightarrow flatten(),

X_test.values, y_test.values, \Box
\rightarrow num_rounds=200, random_seed=1, loss='mse')
```

```
# summarize results
print('MSE: %.3f' % mse)
print('Bias: %.3f' % bias)
print('Variance: %.3f' % var)"""
```

5 iNterpret

```
\ln{(Price)} = 12.366 + 1.265 \cdot (grade) + 1.080 \cdot (sqft\_living) - 0.989 \cdot (distance) + 0.060 \cdot (bathrooms) - 0.035 \cdot (no.000) \cdot (distance) + 0.060 \cdot (bathrooms) - 0.035 \cdot (no.000) \cdot (distance) + 0.060 \cdot (bathrooms) - 0.035 \cdot (no.000) \cdot (bathrooms) - 0.000 \cdot (bathr
```

The final model has a reasonable predictive ability tested in the final step of the model validation. MSE, MAE, and R2 score along with the model p-values for all predictors indicate a good fit. The most influential predictor is a **building grade**, following by a **living space footage**. Both factors are **positively correlated** with the price of the property. Both factors are within property owners' control when they are renovating their houses. A distance from the center of the city is **negatively correlated** with the price of property, meaning the further away a property is, the lower is the price. It is not a controllable variable but is helpful for home buyers if the living space and the number of bedrooms/bathrooms are important. A number of bathrooms has a positive effect on the price of a property, but it is not as strong as the first two factors. This fact indicates that the convenience of having multiple bathrooms is essential for potential buyers and should be taken into account when owners are planning a renovation. The last predictor in the model is an indicator of whether a property has been renovated recently or a new construction. It is very weakly negatively correlated with the price variable. The negative correlation (reduction of the price) might be related to the following factors: newer properties, on the average, are of less building quality. The intercept of the model is a bias of the model and can be interpreted as an offset of the model due to other factors not taken into account for various reasons.

6 Conclusions and Recommendation

Recommendations to property owners planning a renovation to their properties: * Increase the living space of your property * Do the renovation with higher building quality *

Consider adding a bathroom

Recommendations to potential buyers: * Look for properties further away from the city center to make the best out of your property buying budget * Properties in some zipcodes of the city are more affordable than others at the same distance from the city center * Properties in some zipcodes of the city are more affordable than others with a better view, more considerable property lots, and with older houses of better quality construction if these factors are essential to a buyer

Limitations of the model: * The original dataset does not include other important factors, and therefore the model is biased * Multiple linear regression models, while easily interpretable, are limited in their predictive ability * Some variables in the dataset are strongly correlated with each other, and that affect the predictive power of the model

Suggestion for future improvements: * Add variables to the original dataset like kitchen renovation, average commute time, crime index, average nearby public school quality, etc. * Update the dataset with more current data

7 Appendix

7.0.1 Visualization

```
[125]: df_test=X_test.copy()
    df_test['log_price'] = y_test['log_price']
    df_test['recent_renovation_new'] = df_num_cat_5_log_cropped_st['recent_renovation_new']
    df_test['sqft_living'] = df_num_cat_5_log_cropped_st['sqft_living']
    df_test['distance'] = df_num_cat_5_log_cropped_st['distance']
    df_test['grade'] = df_num_cat_5_log_cropped_st['grade']
    df_test['bathrooms'] = df_num_cat_5_log_cropped_st['bathrooms']
    df_test['price'] = df_test.apply(lambda row: math.exp(row.log_price), axis=1)
    df_test['recent_renovation_new_str'] = df_test['recent_renovation_new'].
    \timesatype('str')
    #df_test=df_test.reset_index(drop='index')
    df_test
```

```
[125]:
              sqft living st distance st bathrooms st grade st log price
       recent_renovation_new
                               sqft_living distance grade bathrooms
                                                                               price
       recent_renovation_new_str
       4977
                        0.317
                                      0.088
                                                    0.263
                                                               0.375
                                                                      12.860999
                    1690
                                                         385000.0
       0.0
                               3.1
                                         7
                                                 1.75
       0.0
       8676
                        0.233
                                      0.646
                                                    0.105
                                                               0.375
                                                                      12.415523
       0.0
                    1340
                              19.0
                                         7
                                                 1.00
                                                         246600.0
       0.0
       9682
                        0.451
                                      0.246
                                                    0.526
                                                               0.375
                                                                      13.507626
       0.0
                   2250
                               7.6
                                         7
                                                 3.00
                                                         735000.0
       0.0
       2046
                        0.129
                                      0.351
                                                    0.105
                                                               0.375
                                                                     12.631340
                                                         306000.0
       0.0
                     910
                              10.6
                                         7
                                                 1.00
       0.0
```

```
18744
                0.511
                             0.740
                                            0.421
                                                      0.625 13.262125
1.0
            2500
                      21.7
                                                575000.0
                                 9
                                         2.50
1.0
                             0.126
12600
                                            0.421
                                                      0.500 13.825461
                0.528
0.0
            2570
                       4.2
                                 8
                                         2.50 1010000.0
0.0
8951
                0.621
                             0.232
                                            0.368
                                                      0.750 14.100690
0.0
                       7.2
                                10
                                         2.25 1330000.0
            2960
0.0
14452
                0.137
                             0.179
                                            0.105
                                                      0.375 12.739638
0.0
             940
                       5.7
                                7
                                         1.00
                                                341000.0
0.0
10710
                0.336
                             0.779
                                            0.421
                                                      0.375 12.767116
0.0
                                                350500.0
            1770
                      22.8
                                7
                                         2.50
0.0
8312
                0.252
                             0.270
                                            0.263
                                                      0.125 12.345835
0.0
            1420
                       8.3
                                 5
                                         1.75
                                                230000.0
0.0
```

[5779 rows x 12 columns]

```
[126]: # Regplots for all four variables
       sns.set_style("darkgrid", {"axes.facecolor": ".6"})
       fig, axes = plt.subplots(figsize=(20,20), ncols=2, nrows=2)
       g1=sns.regplot(data=df_test, x="sqft_living_st", y="price", color="#003300", u
       →fit_reg=True,
                      ax=axes[0,0], line_kws={"color": "red", "lw":5});
       g2=sns.regplot(data=df_test, x="distance_st", y="price", color="#000066",
                      ax=axes[0,1], line_kws={"color": "red", "lw":5});
       g3=sns.regplot(data=df_test, x="bathrooms_st", y="price", color="#009900",
                      ax=axes[1,0], line_kws={"color": "red", "lw":5});
       g4=sns.regplot(data=df_test, x="grade_st", y="price", color="#0000ff",
                      ax=axes[1,1], line_kws={"color": "red", "lw":5});
       axes[0,0].set_title("Prive vs Living Space", fontsize=26);
       axes[0,0].set ylabel('Price', fontsize=20)
       axes[0,0].set_xlabel('Living Footage, adjusted', fontsize=20)
       axes[0,0].set xlim(-0.01, 1.0)
       ylabels = ['\{:,.1f\}'.format(x) + 'M' for x in g1.get_yticks()/1000000]
       axes[0,0].set_yticklabels(ylabels, size=15)
       axes[0,0].grid(color='lightgrey')
```

```
axes[0,1].set_title("Price vs Distance from City Center", fontsize=26);
axes[0,1].set_ylabel('Price', fontsize=20)
axes[0,1].set_xlabel('Distance, adjusted', fontsize=20)
axes[0,1].set_xlim(-0.01, 1.0)
ylabels = ['\{:,.1f\}'.format(x) + 'M' for x in g2.get_yticks()/1000000]
axes[0,1].set_yticklabels(ylabels, size=15)
axes[0,1].grid(color='lightgrey')
axes[1,0].set title("Price vs Number of Bathrooms", fontsize=26);
axes[1,0].set_ylabel('Price', fontsize=20)
axes[1,0].set_xlabel('Number of Bathrooms, adjusted', fontsize=20)
axes[1,0].set_xlim(-0.01, 1.0)
ylabels = ['\{:,.1f\}'.format(x) + 'M' for x in g3.get_yticks()/1000000]
axes[1,0].set_yticklabels(ylabels, size=15)
axes[1,0].grid(color='lightgrey')
axes[1,1].set_title("Price vs Building Grade", fontsize=26);
axes[1,1].set_ylabel('Price', fontsize=20)
axes[1,1].set_xlabel('Building Grade, adjusted', fontsize=20)
axes[1,1].set_xlim(-0.01, 1.0)
ylabels = ['{:,.1f}'.format(x) + 'M' for x in g4.get_yticks()/1000000]
axes[1,1].set_yticklabels(ylabels, size=15)
axes[1,1].grid(color='lightgrey')
plt.suptitle("Regression plots of Price vs Four Independent Variables",,,
⇒size=30, c="Blue")
plt.tight_layout(pad=3)
```

Regression plots of Price vs Four Independent Variables


```
g4=sns.regplot(data=df_test, x="grade_st", y="log_price", color="#0000ff",
               ax=axes[1,1], line_kws={"color": "red", "lw":5});
axes[0,0].set_title("Ln(Price) vs Living Space", fontsize=26);
axes[0,0].set_ylabel('Ln(Price)', fontsize=20)
axes[0,0].set_xlabel('Living Footage, adjusted', fontsize=20)
axes[0,0].set_xlim(-0.01, 1.0)
ylabels = ['{:,.1f}'.format(x) for x in g1.get_yticks()]
axes[0,0].set yticklabels(ylabels, size=15)
axes[0,0].grid(color='lightgrey')
axes[0,1].set_title("Ln(Price) vs Distance from City Center", fontsize=26);
axes[0,1].set_ylabel('Ln(Price)', fontsize=20)
axes[0,1].set_xlabel('Distance, adjusted', fontsize=20)
axes[0,1].set_xlim(-0.01, 1.0)
ylabels = ['{:,.1f}'.format(x) for x in g2.get_yticks()]
axes[0,1].set_yticklabels(ylabels, size=15)
axes[0,1].grid(color='lightgrey')
axes[1,0].set_title("Ln(Price) vs Number of Bathrooms", fontsize=26);
axes[1,0].set_ylabel('Ln(Price)', fontsize=20)
axes[1,0].set_xlabel('Number of Bathrooms, adjusted', fontsize=20)
axes[1,0].set_xlim(-0.01, 1.0)
ylabels = ['{:,.1f}'.format(x) for x in g3.get_yticks()]
axes[1,0].set_yticklabels(ylabels, size=15)
axes[1,0].grid(color='lightgrey')
axes[1,1].set_title("Ln(Price) vs Building Grade", fontsize=26);
axes[1,1].set_ylabel('Ln(Price)', fontsize=20)
axes[1,1].set_xlabel('Building Grade, adjusted', fontsize=20)
axes[1,1].set_xlim(-0.01, 1.0)
ylabels = ['{:,.1f}'.format(x) for x in g4.get_yticks()]
axes[1,1].set_yticklabels(ylabels, size=15)
axes[1,1].grid(color='lightgrey')
plt.suptitle("Regression plots of Ln(Price) vs Four Independent Variables",
⇒size=30, c="Blue")
plt.tight_layout(pad=3)
```

Regression plots of Ln(Price) vs Four Independent Variables


```
fig.update_traces(marker=dict(
            line=dict(
                color='coral',
                width=0.5
            )))
fig.update_layout(
    font_family="Arial",
    font size=18,
    font_color="white",
    title_font_family="Arial",
    title_font_color="white",
fig.update_layout(
    title={
        'y':0.95,
        'x':0.5,
        'xanchor': 'center',
        'yanchor': 'top',
})
fig.show()
```

```
[129]: fig = px.scatter(df_test, x='bathrooms', y='price', color_continuous_scale=px.
       size='sqft_living',size_max=20,
                      trendline='lowess', trendline_color_override='blue', u
       width=1000, height=800, labels={
                          "price": "Price",
                          "bathrooms": "Number of bathrooms",
                          "grade": "Building Grade"
                     title="Correlation: Property Price vs Number of Bathrooms",
                      template = "plotly_dark")
      fig.update_traces(marker=dict(
                 line=dict(
                     color='coral',
                     width=0.5
                 )))
      fig.update_layout(
          font_family="Arial",
          font_size=18,
```

```
font_color="white",
  title_font_family="Arial",
  title_font_color="white",

)

fig.update_layout(
  title={
    'y':0.95,
    'x':0.5,
    'xanchor': 'center',
    'yanchor': 'top',
})

fig.show()
```

```
[130]: fig = px.scatter(df_test, x='distance', y='price', trendline='lowess', __
       color='grade', size='bathrooms', width=1000, height=800, __
       \rightarrowsize_max=20,
                      color_continuous_scale=px.colors.sequential.Blackbody_r,
                      labels={
                          "price": "Price",
                          "distance": "Distance",
                          "grade": "Building Grade"
                       },
                     title="Correlation: Property Price vs Distance from the City_
       fig.update_traces(marker=dict(
                 line=dict(
                     color='coral',
                     width=0.5
                 )))
      fig.update_layout(
          font_family="Arial",
          font_size=18,
          font_color="white",
          title_font_family="Arial",
          title_font_color="white",
      fig.update_layout(
          title={
              'y':0.95,
              'x':0.5,
```

```
'xanchor': 'center',
    'yanchor': 'top',
})

fig.show()
```

```
[131]: fig = px.scatter(df_test, x='sqft_living', y='price', trendline='ols', u
       →trendline_color_override='yellow',
                       color='recent_renovation_new_str', width=1000, height=800, u
       \rightarrowsize_max=20,
                       labels={
                           "price": "Price",
                           "sqft_living": "Living Space (sq ft)",
                           "recent_renovation_new_str": "Newer(1)/Older(0)"
                        },
                      title="Correlation: Property Price vs Living Space Footage of_
       template = "plotly_dark")
      fig.update_traces(marker=dict(
                  line=dict(
                      color='coral',
                      width=0.5
                  )))
      fig.update_layout(
          font family="Arial",
          font_size=18,
          font_color="white",
          title_font_family="Arial",
          title_font_color="white",
      fig.update_layout(
          title={
              'y':0.95,
               'x':0.5,
               'xanchor': 'center',
              'yanchor': 'top',
      })
      fig.show()
```

```
[132]: fig = px.scatter_3d(df_test, x='bathrooms', z='grade', y='sqft_living', color='price', size='distance', size_max=50, opacity=1,__ 
width=1000, height=800,
```

```
color_continuous_scale=px.colors.sequential.Blackbody_r,
                   labels={
                     "bathrooms": "Number of Bathrooms",
                     "sqft_living": "Living Space (sq ft)",
                     "grade": "Grade",
                       "price": "Price"
                  },
                title="3D plot: Living Space Footage, Number of Bathrooms and_
→Grade of Sold Properties",
                   template = "plotly_dark")
fig.update_traces(marker=dict(
            line=dict(
                color='coral',
                width=0.5
            )))
fig.update_layout(
    font_family="Arial",
    font size=16,
    font_color="white",
    title font family="Arial",
    title_font_color="white"
fig.update_layout(
    title={
        'y':0.9,
        'x':0.5,
        'xanchor': 'center',
        'yanchor': 'top',
})
fig.show()
```

```
title_font_family="Arial",
          title_font_color="white"
      )
      fig.update_layout(
          title={
              'y':0.98,
              'x':0.5,
              'xanchor': 'center',
              'yanchor': 'top',
      })
      fig.show()
[134]: df_zipcode_viz=df.groupby('zipcode').mean()
      df_zipcode_viz=df_zipcode_viz.reset_index()
      df_zipcode_viz=df_zipcode_viz.
       -drop(['id','sqft_above','sqft_basement','yr_renovated','lat','long'], axis=1)
      df_zipcode_viz
[134]:
          zipcode
                          price bedrooms bathrooms sqft_living
                                                                      sqft_lot
      floors waterfront
                              view condition
                                                 grade
                                                           yr_built sqft_living15
      sqft_lot15
            98001 2.813837e+05 3.402235
                                           2.012570 1908.256983 14966.393855
                                      3.329609 7.296089 1981.047486
      1.432961
                  0.000000 0.094972
                                                                         1832.279330
      11200.337989
            98002 2.340839e+05 3.314721
                                           1.837563 1627.416244
                                                                   7509.248731
      1.332487
                  0.000000 0.010152
                                      3.751269 6.695431 1967.695431
                                                                         1478.461929
      7587.690355
            98003 2.942254e+05 3.358696
                                           2.053442 1931.438406 10625.137681
      1.309783
                  0.000000 0.217391
                                      3.373188 7.550725 1976.873188
                                                                         1880.416667
      9771.572464
            98004 1.355200e+06 3.853968
                                           2.530159 2910.730159 13084.374603
      1.431746
                  0.003175  0.307937  3.495238  8.688889  1971.542857
                                                                         2672.634921
      12798.577778
            98005 8.102897e+05 3.851190
                                           2.424107 2656.803571 19928.785714
                  0.000000 0.095238 3.696429 8.488095 1969.744048 2567.863095
      1.279762
      18367.773810
                                 •••
                                          •••
                                •••
            98177 6.770352e+05 3.397638
                                           2.099409 2325.511811 11921.086614
      1.277559
                  0.003937  0.814961  3.496063  7.976378  1960.822835
                                                                         2186.220472
      11704.362205
```

1.738372 1736.744186 8308.457364

98178 3.106226e+05 3.306202

```
8132.344961
            98188 2.893271e+05 3.437037
      67
                                            1.870370 1806.125926 10136.644444
      1.225926
                  0.000000 0.148148
                                       3.33333 7.044444 1965.681481
                                                                          1638.770370
      9760,600000
            98198 3.029441e+05 3.178182
                                            1.792727 1749.530909 10553.425455
      1.225455
                  0.032727 0.603636
                                       3.450909 7.109091 1966.865455
                                                                          1715.927273
      9502.130909
                                                                    5439.721519
            98199 7.919480e+05 3.208861
                                            2.166930 2162.246835
      1.466772
                  0.003165 0.553797
                                       3.503165 8.009494 1956.569620
                                                                        1992.341772
      5282.101266
      [70 rows x 14 columns]
[135]: KC_zip_json=json.load(open('data/wa_washington_zip_codes_geo.min.json', 'r'))
[136]: map_choropleth_zip(df_zipcode_viz, 'price', "Average Prices of Sold Properties_
       →per Zipcode (King County, 2014-2015)",
                         "Price")
[137]: map_choropleth_zip(df_zipcode_viz, 'sqft_lot', "Average Lot Size of Sold_
       →Properties per Zipcode (King County, 2014-2015)",
                          "Lot size (sq ft)")
[138]: map_choropleth_zip(df_zipcode_viz, 'sqft_living', "Average Living Space of Soldu
       →Properties per Zipcode (King County, 2014-2015)",
                         "Living Space (sq ft) ")
[139]: map_choropleth_zip(df_zipcode_viz, 'view', "Average View Category of Sold_
       →Properties per Zipcode (King County, 2014-2015)",
                          "View Category")
[140]: map choropleth zip(df zipcode viz, 'yr built', "Average Year Built of Soldu
       →Properties per Zipcode (King County, 2014-2015)",
                         "Year Built")
[141]: !conda info
           active environment : learn-env
          active env location : C:\Users\elena\anaconda3\envs\learn-env
                  shell level: 2
             user config file : C:\Users\elena\.condarc
       populated config files : C:\Users\elena\.condarc
                conda version: 4.9.2
          conda-build version: 3.20.5
               python version: 3.8.5.final.0
             virtual packages : __cuda=11.1=0
```

3.325581 6.829457 1955.325581

1650.503876

1.186047

0.034884 0.542636

__win=0=0

__archspec=1=x86_64

base environment : C:\Users\elena\anaconda3 (writable)

channel URLs : https://repo.anaconda.com/pkgs/main/win-64

https://repo.anaconda.com/pkgs/main/noarch https://repo.anaconda.com/pkgs/r/win-64 https://repo.anaconda.com/pkgs/r/noarch https://repo.anaconda.com/pkgs/msys2/win-64 https://repo.anaconda.com/pkgs/msys2/noarch

package cache : C:\Users\elena\anaconda3\pkgs

C:\Users\elena\.conda\pkgs

C:\Users\elena\AppData\Local\conda\conda\pkgs

envs directories : C:\Users\elena\anaconda3\envs

C:\Users\elena\.conda\envs

C:\Users\elena\AppData\Local\conda\conda\envs

platform : win-64

user-agent : conda/4.9.2 requests/2.24.0 CPython/3.8.5 Windows/10

Windows/10.0.19041

administrator : False
 netrc file : None
 offline mode : False