CS-541: Artificial Intelligence Lecture 6

Abdul Rafae Khan

Department of Computer Science Stevens Institute of Technology akhan4@stevens.edu

March 21, 2022

Deterministic

Deterministic Actions

Actions from a give state are deterministic Succ(s, a) is always the same state s'

Stochastic Actions

Actions from a give state are probabilistic (stochastic)

Succ(s, a, t) denotes the next state given the current state s and action a taken at the time t_i

It can either be state B with a probability p_i or state C with probability p_j

Game:

The player starts with \$0 as the prize money. In each round, the player can take two steps:

- Quit and take \$10
- Answer a question
 - Correctly answer with a probability of $\frac{2}{3}$, get \$4 prize and move to the next round
 - Otherwise get \$4 prize and end the game

Gameshow:

The player starts with 0 as the prize money. In each round, the player can take two steps:

- Quit and take \$10
- Answer a question
 - Correctly answer with a probability of $\frac{2}{3}$ and move to the next round
 - Otherwise take \$4 and end the game

What is the best strategy for the game?

If our policy is to 'answer':

If our policy is to 'answer':

Expected Utility:

$$\frac{1}{3}(4) + \frac{2}{3} \cdot \frac{1}{3}(8) + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}(12) + \dots = 12$$

If our policy is to 'quit':

Expected Utility:

$$1(10) = 10$$

s_{start}: start state

Actions(s): all possible actions from state s

Succ(s, a): next possible states given action a is taken from state s

Cost(s, a): cost of transition from state s by taking action a

lsEnd(s): is s a goal state

Search problem

```
s_{start}: start state Actions(s): all possible actions from state s T(s, a, s'): probability of s' if action a is taken from state s Reward(s, a, s'): reward from the transition s to s' IsEnd(s): is s a goal state 0 \le \gamma \le 1: discount factor (default: 1)
```

Total transition probability: $\sum_{s'} T(s, a, s') = 1$ Discount factor γ is based on how much we value the future reward

 $Succ(s,a) \to T(s,a,s')$ Succ(s,a) can be considered as a special case of transition probability

$$T(s, a, s') =$$

$$\begin{cases}
1 & \text{if } s' = Succ(s, a) \\
0 & \text{otherwise}
\end{cases}$$

 $\mathsf{Cost}(s,a) \to \mathsf{Reward}(s,a,s')$ Instead of minimizing the cost, we maximize the reward Negating one is equivalent to the other

T(s, a, s'): probability of s' if action a is taken from state s

5	а	s'	T(s,a,s')
S _{start}	Quit	S _{end}	1
S _{start}	Question	S _{end}	2/3
S _{start}	Question	S _{start}	1/3

T(s, a, s'): probability of s' if action a is taken from state s

5	а	s'	T(s,a,s')
S _{start}	Quit	S _{end}	1
S _{start}	Question	S _{end}	2/3
S _{start}	Question	S _{start}	1/3

To re-iterate:

Sum of probabilities from a given state s by making an action a is 1

$$\sum_{s' \in states} \mathcal{T}(s, a, s') = 1$$

Successors: states s' where T(s, a, s') > 0

T(s, a, s'): probability of s' if action a is taken from state s

S	а	s'	T(s,a,s')
S _{start}	Quit	Send	1
S _{start}	Question	S _{end}	2/3
S _{start}	Question	S _{start}	1/3

Sum of probabilities from a given state s by making an action a is 1

Policy

Policy: gives an action a for a given $\pi: s \to s$

For deterministic search problems, we wanted the optimal sequence of actions from start to goal

For MDP, we want the optimal policy π^* : $s \rightarrow s$ which maximizes the reward

For MDP, we want the optimal policy $\pi^*: s \to a$ which maximizes the reward Reward(s, a, s')

Grid World!

Our world is 3×4 grid Start state is at (0,0)Reward +1 at (4,3)Reward -1 at (4,2)

Grid World!

For any state, three possible moves

up: 0.8left: 0.1

• right: 0.1

Grid World!

Optimal policy for $\gamma < -0.04$ There are two optimal policies for state (3,1)

Discount

Additive discount utility

Let say the path is s_0 , $a_1r_1s_1$, $a_2r_2s_2$, (sequence of state, action, and reward)

The utility with discount γ is:

$$\mathsf{R}(s,a,s') + \gamma \mathsf{R}(s,a,s') + \gamma^2 \mathsf{R}(s,a,s') + \cdots$$
 where $\gamma \in [0,1]$

 $\boldsymbol{\gamma}$ is based on how important current reward is compared to the future reward

Discount

```
Solving the problem of infinite stream of rewards Geometric series: 1+\gamma+\gamma^2+\ldots=1/(1-\gamma) Assume rewards bounded by \pm R_{max} Then r_0+\gamma_1 r_1+\gamma_2 r_2+\ldots is bounded by \pm R_{max}/(1-\gamma)
```

The **utility** is the discounted sum of rewards on the path. Optimal policy: $\pi^*(s) = \text{optimal actions from state } s$ It gives highest $U_{\pi}(s)$ for any π

$$U_{\pi}(s) = R(s, a, s') + (s, a, s') + \gamma^2 R(s, a, s') + \cdots$$

For a given policy π , we have two variable associated with it:

- Value of the policy $V_{\pi}(s)$
- ullet Q-value of the policy $Q_{\pi}(s,\pi(s))$

For a given policy π , we have two variable associated with it:

- Value of the policy $V_{\pi}(s)$
- Q-value of the policy $Q_{\pi}(s,\pi(s))$

The value can be thought of as the label for the nodes representing the states and the Q-value as the label for the chance nodes

Value is the expected utility from following policy π from state s **Q-value** is the expected utility of taking action a from state s, and then following policy π .

$$V_{\pi}(s) = E[V_{\pi}(s)] = egin{cases} 0 ext{ if } isEnd(s) \ Q_{\pi}(s) ext{ otherwise} \end{cases}$$

$$Q_{\pi}(s) = \sum_{s'} T(s'|s,a)[R(s,a,s') + \gamma V(s')]$$

Let the policy π be 'Answer':

$$egin{aligned} V_\pi(s_{end}) &= 0 \ V_\pi(s_{start}) &= Q_\pi(s_{start}, Answer) \ &= rac{1}{3}(4 + V_\pi(s_{end})) + rac{2}{3}(4 + V_\pi(s_{start})) \ \implies V_\pi(s_{start}) &= rac{1}{3}(4) + rac{2}{3}(4 + V_\pi(s_{start})) \end{aligned}$$

Closed form solution:

$$3V_{\pi}(s_{start}) = 4 + 2 \cdot 4 + 2V_{\pi}(s_{start})$$
 $V_{\pi}(s_{start}) = 12$

Given the recursion $V^*(s) = \max_a Q^*(s,a)$

Value:

$$V^*(s) = \max_{a \in Actions(s)} \sum_{s'} \{P(s'|s, a)[R(s, a, s') + \gamma V(s')]\}$$

Q-value:

$$Q^*(s, a) = \sum_{s'} \{P(s'|s, a)[R(s, a, s') + \gamma V(s')]\}$$

$$= \sum_{s'} \{P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q(s', a')]\}$$

Solving MDPs:

- Value Iteration
- Policy Iteration

Policy Iteration

```
\begin{aligned} V_{\pi}^{(0)}(s) &\leftarrow 0 \\ \text{for } i &= 1 \cdots t_{\text{max}} \\ \text{for each state } s \\ V_{\pi}^{(t)}(s) &\leftarrow \sum_{s'} T(s'|s,a) [R(s,\pi(s),s') + \gamma V_{\pi}^{(t-1)}(s')] \end{aligned}
```

Policy Iteration

```
V_{\pi}^{(0)}(s) \leftarrow 0 for i = 1 \cdots t_{max} for each state s V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s'|s,a)[R(s,\pi(s),s') + \gamma V_{\pi}^{(t-1)}(s')]}_{Q_{\pi}^{(t-1)}(s)}
```

How many iterations (t_{max}) ? Repeat until there is no/very little change

$$\max_{s \in states} |V_{\pi}^{(t)}(s) - V_{\pi}^{(t-1)}(s)| \leq \epsilon$$

Only save the last two iterations, $V_{\pi}^{(t)}$ & $V_{\pi}^{(t-1)}$

Policy Iteration

```
egin{aligned} V_\pi^{(0)}(s) &\leftarrow 0 \ 	ext{for } i = 1 \cdots t_{max} \ 	ext{for each state } s \ V_\pi^{(t)}(s) &\leftarrow \sum_{s'} T(s'|s,a) [R(s,\pi(s),s') + \gamma V_\pi^{(t-1)}(s')] \end{aligned}
```

Total states: S

Actions per state: *A*

Total successor (with T(s'|s, a) > 0): S'

Complexity: $O(SS't_{max})$

Policy Iteration

Let the policy π be 'Answer':

$$egin{aligned} V_{\pi}^{(t)}(s_{end}) &= 0 \ V_{\pi}^{(t)}(s_{start}) &= rac{1}{3}(4 + V_{\pi}^{(t-1)}(s_{end})) + rac{2}{3}(4 + V_{\pi}^{(t-1)}(s_{start})) \end{aligned}$$

Iteration (t)	$V_{\pi}^{(t)}(s_{end})$	$V_{\pi}^{(t)}(s_{start})$
0	0.00	0.00
1	0.00	4.00
2	0.00	6.67
3	0.00	8.44
100	0.00	12.00

$$V_{\pi}^{(t)}(s_{start})=12$$

Goal: try to get directly at maximum expected utility $V_{opt}(s) =$ is the maximum value obtained by any policy

Given the recursion $V_{opt}(s) = \max_a Q_{opt}(s, a)$ Value:

$$V_{opt}(s) = \max_{a \in Actions(s)} \sum_{s'} \{ T(s'|s, a) [R(s, a, s') + \gamma V_{opt}(s')] \}$$

Q-value:

$$\begin{aligned} Q_{opt}(s, a) &= \sum_{s'} \{ T(s'|s, a) [R(s, a, s') + \gamma V_{opt}(s')] \} \\ &= \sum_{s'} \{ T(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_{opt}(s', a')] \} \end{aligned}$$

Policy evaluation used the action from a fixed policy π Now we pick the action which maximizes the Q-value $Q_{opt}(s)$

$$V_{opt}(s) = egin{cases} 0 ext{ if } isEnd(s) \ \max_{a \in Actions(s)} Q_{opt}(s) ext{ otherwise} \end{cases}$$

$$Q_{opt}(s) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{opt}(s')]$$

Optimal Policy

As for any state s, $Q_{\pi}(s)$ gives you the value of taking the policy $\pi(s)$ Therefore, **Optimal policy** π_{opt} in state s is the one which gives the largest value for $Q_{opt}(s)$

$$\pi_{opt}(s) = \mathop{\mathrm{arg\;max}}_{s \in Actions(s)} Q_{opt}(s)$$

```
\begin{aligned} V_{opt}^{(0)}(s) &\leftarrow 0 \\ \text{for } i &= 1 \cdots t_{max} \\ \text{for each state } s \\ V_{opt}^{(t)}(s) &\leftarrow \max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, \pi(s), s') + \gamma V_{opt}^{(t-1)}(s')] \end{aligned}
```

```
V_{opt}^{(0)}(s) \leftarrow 0 for i = 1 \cdots t_{max} for each state s V_{opt}^{(t)}(s) \leftarrow \max_{a \in Actions(s)} \underbrace{\sum_{s'} T(s, a, s')[R(s, \pi(s), s') + \gamma V_{opt}^{(t-1)}(s')]}_{Q_{opt}^{(t-1)}(s)}
```

```
\begin{aligned} V_{opt}^{(0)}(s) &\leftarrow 0 \\ \text{for } i &= 1 \cdots t_{max} \\ \text{for each state } s \\ V_{opt}^{(t)}(s) &\leftarrow \max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, \pi(s), s') + \gamma V_{opt}^{(t-1)}(s')] \end{aligned}
```

Total states: *S*

Actions per state: A Total successor: S'

Complexity: $O(SAS't_{max})$

```
\begin{aligned} V_{opt}^{(0)}(s) &\leftarrow 0 \\ \text{for } i &= 1 \cdots t_{max} \\ \text{for each state } s \\ V_{opt}^{(t)}(s) &\leftarrow \max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, \pi(s), s') + \gamma V_{opt}^{(t-1)}(s')] \end{aligned}
```

 argmax instead of max will give the optimal policy π_{opt}

Iteration (t)	$V_{opt}^{(t)}(s_{end})$	$V_{opt}^{(t)}(s_{start})$	$\pi_{opt}(s_{end})$	$\pi_{opt}(s_{start})$
0	0.00	0.00	-	-
1	0.00	10.00	-	Quit
2	0.00	10.67	-	Answer
3	0.00	11.11	-	Answer
100	0.00	12.00	-	Answer

$$V_{\pi}^{(t)}(s_{start})=12$$

Recap

Deterministic vs Stochastic Markov Decision Process

- Transition
- Reward
- Policy
- Discount

Policy value & Q-value Solving MDPs

- Policy Iteration
- Value Iteration

References

Stuart Russell and Xiaodong Song (2021)

CS 188 — Introduction to Artificial Intelligence

University of California, Berkeley

Chelsea Finn and Nima Anari (2021)

CS221 — Artificial Intelligence: Principles and Techniques

Stanford University

The End