

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Adress: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/761,365	01/22/2004	Taro Fujii	Q79526	3414
23373	7590	03/26/2008	EXAMINER	
SUGHRUE MION, PLLC 2100 PENNSYLVANIA AVENUE, N.W. SUITE 800 WASHINGTON, DC 20037			JOHNSON, BRIAN P	
ART UNIT	PAPER NUMBER			
		2183		
MAIL DATE	DELIVERY MODE			
03/26/2008	PAPER			

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/761,365	Applicant(s) FUJII ET AL.
	Examiner BRIAN P. JOHNSON	Art Unit 2183

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If no period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 18 December 2007.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-12 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-12 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date _____
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date _____
- 5) Notice of Informal Patent Application
 6) Other: _____

DETAILED ACTION

1. Claims 1-12 are pending.

Papers Filed

2. Examiner acknowledges receipt of remarks filed on 18 December 2007.

Specification

3. The lengthy specification has not been checked to the extent necessary to determine the presence of all possible minor errors. Applicant's cooperation is requested in correcting any errors of which applicant may become aware in the specification.

4. In general, specification language should be revised to improve readability, comprehensibility and grammar. Doing so may increase enforceability of any future patent that results from this application.

Claim Rejections - 35 USC § 103

1. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

5. Claims 1-12 rejected under 35 U.S.C. 103(a) as being unpatentable over Dahl et al. (U.S. Patent No. 5,710,938) in view of Toll (U.S. Patent No. 6,308,279).

6. As per claim 1, Dahl teaches an array-type processor comprising a multiplicity of processor elements, which individually execute data processing in accordance with instruction codes in which data are individually set, said multiplicity of processor elements arranged in rows and columns, (Fig. 1) and a state control unit (Fig. 1 controller 20) which changes a configuration of the multiplicity of processor elements and causes successive transitions of operating states of the multiplicity of processor elements for each operating cycle by means of contexts that are composed of said instruction codes; wherein:

said multiplicity of processor elements are divided into a plurality of element areas; (Figs. 2a, 2b and 2c and col. 1 lines 42-57)

one said state control unit is connected to the plurality of element areas;

Controller 20 in Fig. 1 is shown as being connected to all of the processing elements.

a prescribed number of said operating states that occur in different said operating cycles are set to at least a portion of said contexts; *The examiner asserts that instructions passed to the processing elements cause them to change operations.*

and said state control unit temporarily halts operations of said element areas that correspond to a prescribed number of said operating states that are set to one said context during said operating cycles in which said operating states do not occur. *When a processing element (or group of elements) does not have a task to perform (operating state), it will inherently halt processing. Inherently, the processor must be told to start processing by passing it some sort of instruction (context).*

Dahl fails to disclose that the control unit individually halts the plurality of element areas.

Toll discloses the use of a "stop grant mode" which halts individual processors or individual threats of a multiprocessor system (col 2 lines 19-34 and 52-55).

Dahl would have been motivated to utilize the technique of Toll in order to more effectively conserve power when the resources of a particular element area are not needed.

It would have been obvious at the time of the invention for one of ordinary skill in the art to take the processing system of Dahl and incorporate the stop grant mode of Toll.

7. As per claim 2, Dahl/Toll teaches an array-type processor comprising a multiplicity of processor elements, which individually execute data processing in accordance with instruction codes in which data are individually set said multiplicity of processor elements arranged in rows and columns, (Fig. 1) and state control units (Fig. 1 controller 20) which change a configuration of the multiplicity of processor elements and cause successive transitions of operating states of the multiplicity of processor elements for each operating cycle by means of contexts that are composed of said instruction codes; wherein:

said multiplicity of processor elements are divided into a plurality of element areas; (Figs. 2a, 2b and 2c and col. 1 lines 42-57)

each of the plurality of element areas is connected to a respective state control unit of an equal number of the element areas; *The examiner asserts that each element area is connected to controller 20, as shown in fig. 1. Inherently, the controller will be connected to any number of element areas that the processing elements are split into.*

a prescribed number of said operating states that occur in different said operating cycles are set to at least a portion of said contexts; *The examiner asserts that instructions passed to the processing elements cause them to change operations.*

and said state control units temporarily halt operations of said element areas to which said state control units are connected, the operations of the element areas corresponding to a prescribed number of said operating states that are set to one said context, during said operating cycles in which said operating states do not occur.

Said plurality of state control units individually and temporarily halt said plurality of element areas (Toll col 2 lines 19-34 and 52-55).

8. As per claim 3, Dahl/Toll teaches an array-type processor comprising a multiplicity of processor elements, which individually execute data processing in accordance with instruction codes in which data are individually set, said multiplicity of processor elements arranged in rows and columns, and state control units (Fig. 1 controller 20) which change a configuration of the multiplicity of processor elements and cause successive transitions of operating states of the multiplicity of processor elements for each operating cycle by means of contexts that are composed of said instruction codes; wherein:

said multiplicity of processor elements are divided into a number (a x b) of element areas; (Fig. 2a, 2b, 2c and col. 1 lines 42-57)

each of a number (a) of said state control units is connected to a respective group of (b) element areas of these (a x b) element areas; *The examiner asserts that Dahl/Toll discloses the instance where there is one element area and one controller, as shown in fig. 1.*

a prescribed number of said operating states that occur in different said operating cycles are set to at least a portion of said contexts; *The examiner asserts that instructions passed to the processing elements cause them to change operations.*

said state control units temporarily halt operations of said element areas to which said state control units are connected, the operations of the element areas corresponding to a prescribed number of said operating states that are set to one said context, during said operating cycles in which said operating states do not occur.

Said plurality of state control units individually and temporarily halt said plurality of element areas (Toll col 2 lines 19-34 and 52-55).

9. As per claims 4-6, *Dahl/Toll* teaches an array-type processor according to claims 1-3, wherein said state control units cause an operation of a portion of a plurality of processor elements of said element areas that said state control units have temporarily halted. *The examiner asserts that Dahl/Toll's processor will inherently restart processing in any elements that have previously been halted when they are needed for a*

subsequent operation. If this were not the case, the processor would lose functionality as processing elements halted.

10. As per claims 7-12, Dahl/Toll teaches an array-type processor according to claims 1-6, wherein:

a shared resource is provided that is shared by said plurality of element areas; *Memory element 22 (fig. 1) is shared by all processing elements. (Col. 6 line 43)* and said state control units switch paths to said shared resource from said plurality of element areas. *Paths must inherently be switched by message routing circuits (Fig. 1 element 10) in order for the processing elements to receive their proper messages.*

Response to Arguments

2. Applicant's arguments filed 18 December 2007 have been fully considered but they are not persuasive.

3. Applicant states:

"Applicant respectively submits that Dahl does not disclose or teach a plurality of state control units that change the configuration and cause successive transitions of operating states of processor elements for each operating cycle by contexts, within an array-type processor. Dahl discloses an operator-set single configuration for loading different programs into pre-assigned individual processors."

Examiner disagrees. As programs are loaded into the processors, they are provided (by state control units) with instructions to "cause successive transitions of operating states of processor elements for each operating cycle by contexts." In other

Art Unit: 2183

words, instructions contain the information to cause transitions to the operating state every cycle. These instructions are provided by programs loaded by the state control.

4. Applicant states:

"With further regard to claim 1, claim 1 recites the feature of state control units temporarily halting operations of processing element areas that correspond to a prescribed number of operating states that are set to a context during an operating cycle during which the operating states do not occur. In rejecting the claims, the Examiner alleges a processing element without a task to perform will inherently halt processing so as to save power. The Applicant respectfully disagrees and submits Toll discusses external chipsets (col. 1, lines 48- 51; col. 3, lines 1-3 and lines 35-37) to control the power state of processors thereby showing power control of processing is not an inherent quality of processors. Further, the Examiner states (page 3) a processor must be told to stop processing by passing it an instruction, which additionally shows power control of processors is not an inherent quality of processors."

Examiner recognizes Applicant's point that power saving is not necessarily an inherent aspect of the invention; however, it is inherent that processing will be halted when a processor has not been given a task to perform. The "power saving" element is not required by the claim. Examiner further notes that Examiner's comment on page 3 should have stated, "a processor must be told to start processing by passing it an instruction."

5. Applicant states:

"Further still, the Examiner cites to Toll (col. 2, lines 19-34 and 52-55) as teaching halting individual processors or individual threads of a multiprocessor system. Applicant respectfully points to the following sentence of Toll (col. 2, lines 56-58) in that the sections of Toll cited by the Examiner describe the problem to be solved and a lack of workable solution ("may cause a problem" at 36-37, "would slow the process down" at 41-42, "no guarantee" at 42, and "is difficult" at 46). The external control chipset and signals described by Toll do not teach or describe an array-type processor with state-control-units (as components of the array- type processor) which halt individual processing elements of the processor, as recited by claim 1."

Applicant appears to make two arguments in the preceding paragraph
paragraph.

Regarding the first argument, Applicant appears to be claiming that Toll teaches away from the combination. Examiner disagrees. A reference “teaches away” when it states that something cannot be done. See *In re Gurley*, 27 F.3d 551, 553, 31 USPQ2d 1130, 1130 (Fed. Cir. 1994). Toll specifically states, “it is possible for a one logical processor to enter a power mode, such as a stop grant mode, while the other logical processor remains in the active mode.” It can be done and, therefore, does not teach away.

Regarding the second argument, Applicant appears to argue that the combination does not contain all limitations of the claimed invention. Examiner disagrees. In particular, Applicant states, “The external chipset and signals described by Toll do not teach or describe an array-type processor with state-control units ... which halt individual processing elements of the processor.” That statement is true. This is why there are two references viewed in combination. Toll discloses halting individual processing elements while Dahl discloses the array-type processor with state-control-units.

Conclusion

6. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not

mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Brian P. Johnson whose telephone number is (571) 272-2678. The examiner can normally be reached on 8-4:30 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Eddie Chan can be reached on (571) 272-4162. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Eddie P Chan/

Supervisory Patent Examiner, Art Unit 2183