### Blast Off!

Lecture 7



# Genetic Algorithm

### What is it?

Genetic Algorithm is a probabilistic search algorithm that iteratively transforms a set (population) of mathematical objects each with an associated fitness value into a new population of offsprings objects using Darwinian principle of natural selection using patterns such as mutation and crossover

### How does it work?

- 1. Individuals in a population compete for resources
- 2. Those that are successful (fittest) mate to create more offsprings
- 3. Each inherent quality of the parent can be thought of as it's gene.
- 4. Genes from the "fittest" parents are passed on to the offspring, which is better than the parent
- 5. Hence, the offspring is better suited for the environment (more optimized)

#### Pseudo Code

**Initialize** population with random candidates **Evaluate** all individuals While termination criteria not met **Select** parents Apply crossover **Mutate** offspring Replace current generation end while

### Fitness Function

Since GAs operate on survival of the fittest, we need to give a score based on how good an individual at surviving. Fitness can be a function of the initial parameters and used in successive genetic operations.

Individuals with higher fitness have a higher chance to reproduce and pass on their genes. Hence, that's why the population is usually sorted based on it's fitness.

Multi Objective

# Genetic

# Algorithm



### What is it?

As the name suggests, it involves optimization in an n-dimensional space, contrary to normal optimization in 1D space.

Optimization here might refer to minimization along one axis while simultaneously maximization along another. A good example is rocket construction.

### Rocket Optimization

While making a rocket, we have to increase payload mass going into orbit while simultaneously minimizing the cost it takes to do so. Hence, optimization plays a crucial role.

But how do you define optimization in say a 2D space? Enter, Pareto Fronts. A commonly used library to find pareto dominance is *pygmo* 

### Sample Plot



### Pareto Front and Dominance



### Pareto Front and Dominance

