Soal dan Solusi Logika UI 2022

Mathematics Individual Competition Final Round

WILDAN BAGUS WICAKSONO

Updated 27 Januari 2022

§1 Soal

Terdiri dari soal yang dikerjakan dalam waktu 120 menit. Tuliskan setiap langkah Anda hingga mendapatkan jawaban akhir dengan jelas dan detail. Soal yang akan dipresentasikan ketika sesi presentasi adalah soal nomor tiga.

Problem 1. Diberikan bilangan bulat positif $1, 2, \cdots, 121$ akan disusun dalam tabel berukuran 11×11 . Irene mendapatkan 11 bilangan dari hasil perkalian bilangan pada masing-masing baris, dan Rachel mendapatkan 11 bilangan dari hasil perkalian bilangan pada masing-masing kolom. Tunjukkan bahwa Irene dan Rachel tidak mungkin mendapatkan himpunan 11 bilangan yang sama.

Problem 2. Diberikan dua lingkaran berbeda Γ_1 dan Γ_2 dengan pusat O_1 dan O_2 secara berurutan. Titik A berada pada Γ_1 sehingga O_1A memotong Γ_2 di B, dengan A terletak di antara O_1 dan B. Diketahui Γ_1 dan Γ_2 berpotongan di X dan Y dengan M dan N merupakan titik tengah AB dan AX secara berturut-turut. Lingkaran luar O_1NM dan lingkaran luar O_1XB berpotongan di T. Apabila T berada di Γ_2 , tunjukkan bahwa $\triangle ABT$ sama kaki.

Problem 3 (Presentasi). Tentukan semua kuadruplet bilangan bulat positif terurut (x, y, z, w) dengan $1 < x \le y \le z \le w$ sehingga keempat bilangan berikut:

$$x^{2} + y + z + w$$
, $y^{2} + z + w + x$, $z^{2} + w + x + y$, $w^{2} + x + y + z$

merupakan bilangan kuadrat sempurna.

§2 Soal dan Solusi

Problem 1

Diberikan bilangan bulat positif $1, 2, \cdots, 121$ akan disusun dalam tabel berukuran 11×11 . Irene mendapatkan 11 bilangan dari hasil perkalian bilangan pada masing-masing baris, dan Rachel mendapatkan 11 bilangan dari hasil perkalian bilangan pada masing-masing kolom. Tunjukkan bahwa Irene dan Rachel tidak mungkin mendapatkan himpunan 11 bilangan yang sama.

Asumsikan sebaliknya, andaikan kita bisa menyusun 121 bilangan tersebut sedemikian sehingga kita mendapatkan perkalian dari 11 kolom yang diperoleh Rachel sama dengan perkalian dari 11 baris yang diperoleh Irene.

Tinjau semua bilangan prima yang tidak kurang dari 61. Bilangan prima yang demikian ada 13, misalkan $p_1, p_2, p_3, \dots, p_{13}$. Perhatikan bahwa jika Irene menghitung perkalian pada baris yang mengandung p_i (untuk suatu $1 \le i \le 13$), namun Rachel menghitung perkalian pada kolom yang **tidak** mengandung p_i , maka perkalian yang diperoleh akan jelas berbeda.

Sekarang akan kita tinjau jika Rachel dan Irene pada perhitungan perkaliannya mengandung p_i . Menurut Pigeon Hole Principle, terdapat setidaknya dua i di mana $1 \le i \le 13$ sehingga p_i terletak pada baris atau kolom yang sama. W.L.O.G. p_1 dan p_2 terletak pada baris yang sama. Pada perkalian Irene dari baris yang mengandung p_1 dan p_2 , maka bilangan yang diperoleh akan habis dibagi p_1p_2 . Sedangkan, Rachel hanya akan mendapatkan perkalian yang hanya mengandung tepat satu dari p_1 atau p_2 . Sehingga tidak mungkin perkalian yang diperoleh dari Irene dan Rachel akan bernilai sama. Maka kontradiksi.

Jadi, terbukti bahwa Irene dan Rachel tidak mungkin mendapatkan himpunan 11 bilangan yang sama.

Problem 2

Diberikan dua lingkaran berbeda Γ_1 dan Γ_2 dengan pusat O_1 dan O_2 secara berurutan. Titik A berada pada Γ_1 sehingga O_1A memotong Γ_2 di B, dengan A terletak di antara O_1 dan B. Diketahui Γ_1 dan Γ_2 berpotongan di X dan Y dengan M dan N merupakan titik tengah AB dan AX secara berturut-turut. Lingkaran luar O_1NM dan lingkaran luar O_1XB berpotongan di T. Apabila T berada di Γ_2 , tunjukkan bahwa $\triangle ABT$ sama kaki.

Proposed by Tahta Aulia

Lemma

X, N, A, T kolinear.

Akan kita gunakan sudut berarah (directed angle). Tinjau bahwa M dan N berturut-turut adalah titik tengah \overline{AB} dan \overline{AX} . Dari Midpoint Theorem, maka $BX \parallel MN$. Karena MNO_1T dan BXO_1T keduanya siklis, maka

$$\angle MNT = \angle MO_1T = \angle BO_1T = \angle BXT.$$

Karena $\angle MNT = \angle BXT$, hal ini menyimpulkan X, N, T kolinear mengingat $BX \parallel MN$. Tinjau panjang $O_1A = O_1X$ dan kita punya

$$\angle ABT = \angle O_1BT = \angle O_1XT = \angle O_1XA = \angle XAO_1 = \angle TAB.$$

Karena $\angle ABT = \angle TAB$, maka panjang TA = TB sehingga $\triangle ABT$ sama kaki.

Problem 3

Tentukan semua kuadruplet bilangan bulat positif terurut (x, y, z, w) dengan $1 < x \le y \le z \le w$ sehingga keempat bilangan berikut:

$$x^{2} + y + z + w$$
, $y^{2} + z + w + x$, $z^{2} + w + x + y$, $w^{2} + x + y + z$

merupakan bilangan kuadrat sempurna.

Jawabannya adalah (x,y,z,w)=(6,6,11,11) dan (x,y,z,w)=(40,57,96,96). Misalkan

$$x^{2} + y + z + w = a^{2}$$

$$y^{2} + z + w + x = b^{2}$$

$$z^{2} + w + x + y = c^{2}$$

$$w^{2} + x + y + z = d^{2}$$

untuk suatu bilangan asli a, b, c, dan d. Tinjau bahwa

$$w^2 < w^2 + x + y + z \le w^2 + 3w < (w+2)^2 \implies w^2 < d^2 < (w+2)^2$$
.

Maka haruslah d = w + 1. Kita punya

$$w^{2} + x + y + z = d^{2} = (w+1)^{2} = w^{2} + 2w + 1 \implies x + y + z = 2w + 1.$$

Kita punya

$$z^{2} + w + x + y = z^{2} + \frac{x + y + z - 1}{2} + x + y \le z^{2} + \frac{3z - 1}{2} + 2z.$$

Tinjau bahwa $\frac{3z-1}{2} < 2z$, maka

$$z^2 < z^2 + w + x + y < z^2 + 4z < (z+2)^2 \implies z^2 < c^2 < (z+2)^2.$$

Maka c = z + 1. Kita punya

$$z^{2} + \frac{x+y+z-1}{2} + x + y = c^{2} = (z+1)^{2} = z^{2} + 2z + 1 \implies z = x + y - 1.$$

Kita peroleh $2w + 1 = x + y + z = 2x + 2y - 1 \implies w = x + y - 1$. Selanjutnya,

$$y^{2} + z + w + x = y^{2} + x + y - 1 + x + y - 1 + x = y^{2} + 3x + 2y - 2.$$

Tinjau bahwa x > 1, maka

$$(y+1)^2 < y^2 + 3x + 2y - 2 \iff y^2 + 2y + 1 < y^2 + 3x + 2y - 2 \iff 1 < x.$$

Di sisi lain,

$$y^{2} + 3x + 2y - 2 \le y^{2} + 5y - 2 < (y+3)^{2}$$
.

Maka $(y+1)^2 < b^2 < (y+3)^2$ sehingga haruslah b=y+2. Kita punya

$$y^{2} + 3x + 2y - 2 = b^{2} = (y+2)^{2} = y^{2} + 4y + 4 \implies y = \frac{3x}{2} - 3.$$

Sehingga x haruslah genap. Misalkan x=2t untuk suatu $t\in\mathbb{N}$. Kita punya y=3t-3 dan w=z=x+y-1=5t-4. Karena y>0, kita simpulkan t>1. Kita peroleh

$$x^{2} + w + y + z = 4t^{2} + 5t - 4 + 3t - 3 + 5t - 4 = 4t^{2} + 13t - 11.$$

Tinjau bahwa

$$(2t+1)^2 < 4t^2 + 13t - 11 \iff 4t^2 + 4t + 1 < 4t^2 + 13t - 11 \iff 12 < 9t.$$

Selain itu,

$$4t^2 + 13t - 11 < (2t + 4)^2 \iff 4t^2 + 13t - 11 < 4t^2 + 16t + 16 \iff -27 < 3t.$$

Kita punya $(2t+1)^2 < a^2 < (2t+4)^2$. Maka a = 2t+2 atau a = 2t+3.

• Jika a = 2t + 2, maka

$$4t^2 + 13t - 11 = (2t + 2)^2 = 4t^2 + 8t + 4 \implies 5t = 15 \iff t = 3.$$

Kita punya (x, y, z, w) = (2t, 3t - 3, 5t - 4, 5t - 4) = (6, 6, 11, 11). Dapat dicek ini memenuhi karena

$$x^{2} + y + z + w = 6^{2} + 6 + 11 + 11 = 8^{2}$$

$$y^{2} + z + w + x = 6^{2} + 11 + 11 + 6 = 8^{2}$$

$$z^{2} + w + x + y = 11^{2} + 11 + 6 + 6 = 12^{2}$$

$$w^{2} + x + y + z = 11^{2} + 6 + 6 + 11 = 12^{2}.$$

• Jika a = 2t + 3, maka

$$4t^2 + 13t - 11 = (2t + 3)^2 = 4t^2 + 12t + 9 \implies t = 20.$$

Maka (x, y, z, w) = (2t, 3t - 3, 5t - 4, 5t - 4) = (40, 57, 96, 96). Dapat dicek ini memenuhi karena

$$x^{2} + y + z + w = 40^{2} + 57 + 96 + 96 = 43^{2}$$

$$y^{2} + z + w + x = 57^{2} + 96 + 96 + 40 = 59^{2}$$

$$z^{2} + w + x + y = 96^{2} + 96 + 40 + 57 = 97^{2}$$

$$w^{2} + x + y + z = 96^{2} + 40 + 57 + 96 = 97^{2}.$$

Jadi, (x, y, z, w) = (6, 6, 11, 11), (40, 57, 96, 96) merupakan solusi yang diminta.