T1

- 1. Da un ejemplo que muestra que $||p+q|| \neq ||p|| + ||q||$.
- 2. Este ejercicio muestra que el área del triángulo con vértices $0, u=(u_1,u_2)$ y $v=(v_1,v_2)$ es $\frac{1}{2}|u_1v_2-u_2v_1|$.
 - (a) Prueba que el área del triángulo es $\frac{1}{2}||u||(||v|| \operatorname{sen}(\theta))$, donde $\theta \in [0, \pi]$, es el ángulo entre v y u.
 - (b) Prueba que $sen(\theta) = \sqrt{1 \left(\frac{\langle u,v \rangle}{\|u\|\|v\|}\right)^2}$. Sugerencia: usa ecuación $\langle u,v \rangle = \|u\|\|v\|\cos(\theta)$.
 - (c) Prueba que el área es igual a $\frac{1}{2}\sqrt{\|u\|^2\|v\|^2-(\langle u,v\rangle)^2}$.
 - (d) Finalmente prueba que $||u||^2 ||v||^2 (\langle u, v \rangle)^2 = (u_1 v_2 u_2 v_1)^2$.
- 3. Encuentra el área del triángulo con vértices en los puntos (1,1),(0,3) y (4,5).

Definición 1. Dos vectores $p, q \in \mathbb{R}^n$ se llaman ortogonales si $\langle p, q \rangle = 0$.

4. (Teorema de Pitágoras)

Par dos vectores $p, q \in \mathbb{R}^n$, demuestra:

 $||p+q||^2 = ||p||^2 + ||q||^2$ si y sólo si los vectores son prependiculares.

5. (La otra desigualdad del triángulo)

Demuestra, para todos los vectores p, q en un espacio con producto interior:

$$|||p|| - ||q||| \le ||p - q||.$$

Sugerencia: empieza con $\|p\|$ suma y resta q y usa la desigualdad del triángulo.

- 6. Sea A una matriz de 3×3 . Supongamos que dos renglones de A son iguales. Demuestra que $\det(A)=0$. Sugerencia: utiliza la propiedad alternante del determinante.
- 7. Considera los vectores $v = (v_1, v_2, v_3), w = (w_1, w_2, w_3).$

Dados escalares α, β construye el vector $u = \alpha v + \beta w$. Demuestra que

$$\det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix} = 0$$

8. Demuestra

$$(u \times v) \times w = (u \cdot w)v - (v \cdot w)u$$

$$u \times (v \times w) = (u \cdot w)v - (u \cdot v)w$$

Usa las fórmulas anteriores para dar un ejemplo de vectores u, v y w que muestren $(u \times v) \times w \neq u \times (v \times w)$.