Topografia Avançada

Prof. Diego Camargo

Aula 02 – Sensoriamento Remoto

Curso de Engenharia de Transportes Departamento de Engenharia de Transportes

OBJETIVO DA AULA

1. Aspectos básicos do sensoriamento remoto;

2. Aquisição de imagens e processamento.

esenvolvimento

FUNDAMENTOS

Sensoriamento Remoto pode ser definido como a técnica de obtenção dados sobre determinado objeto sem qualquer contacto físico com o mesmo.

O sensoriamento remoto é a obtenção de dados por meio de sensores instalados em plataformas terrestres, aéreas (balões e aeronaves) e orbitais (satélites artificiais). envolvimento

FUNDAMENTOS

O Sensoriamento remoto é uma ferramenta poderosa de fornecimento de dados para uso em Sistemas de Informações Geográficas (SIG).

Novas tecnologias, tais como o uso rotineiro de GNSS e sistemas de satélites multissensores, bem como o desenvolvimento da fotogrametria digital, produzem geodados com resoluções espaciais, espectrais e temporais cada vez maiores (Ehlers, 2002a).

esenvolvimento

FUNDAMENTOS

Mais especificamente, o sensoriamento remoto é uma forma de estudar a Terra a partir de instrumentos, tais como câmeras e outros sensores.

esenvolvimento

FUNDAMENTOS

Os objetos da superfície terrestre refletem e absorvem seletivamente a energia eletromagnética, devido a sua diferente composição molecular. Esta característica, denominada resposta espectral dos objetos permite identificá-los numa FOTOGRAFIA AÉREA ou imagem de sensoriamento remoto.

FUNDAMENTOS

Taxonomia de sistemas de sensoriamento remoto

Plataforma de gravação	Satélite / S	Shuttle	Avião /	Avião / Balão		Estacionário	
Modo de gravação	Passivo (visível, infravermelho próximo, infravermelho termal, microondas termal)			Ativo (laser, radar)			
Meio de gravação	Analógico (câmara, vídeo)			Digital (Whiskbroom, Line array, 2D CCD)			
Cobertura espectral	Visível / Ultravioleta		avermelho efletido	Infraverme termal	Mic	cro-ondas	
Resolução espectral	Pancromátic 1 banda		tiespectral 20 bandas	Hiperespe 20 - 250 ba		aespectral 50 bandas	
Resolução radiométrica	Baixa (< 6 bit) Mé		a (6 - 8 bit)	Alta (8 -12 b		Muito alta (> 12 bit)	
Resolução espacial no solo Fonte: Ehlers et al		Baixa 50 - 250 m	Média 10 - 50 m	Alta 4 - 10 m	Muito alta 1 - 4 m	Ultra-alta < 1 m	

esenvolvimento

COLETA DE DADOS

Existem três níveis de coleta de dados no Sensoriamento Remoto: o nível do solo, o nível aéreo e o nível orbital. Eles influenciam na distância entre o sensor e o alvo e no tamanho da superfície analisada.

- Nível do solo;
- Nível aéreo;
- Nível orbital.

Sensores passivos

Os sensores passivos são aqueles que precisam de uma fonte externa de radiação eletromagnética para obter os dados, por exemplo, a radiação do Sol. Os sensores multiespectrais a bordo de satélites se encaixam nessa categoria e se destacam produzirem imagens em diferentes comprimentos de onda, como intervalos espectrais da região do visível e termal.

Exemplos de Sensores passivos

- 1. Landsat (sensores OLI e TIRS): Os satélites Landsat são equipados com sensores passivos, como o OLI (Operational Land Imager) e o TIRS (Thermal Infrared Sensor). Esses sensores captam a luz refletida e a radiação térmica emitida, sendo amplamente usados para monitoramento de uso da terra, mudanças ambientais e recursos naturais.
- 2. MODIS (Moderate Resolution Imaging Spectroradiometer): Presente nos satélites Terra e Aqua da NASA, o sensor MODIS captura imagens de larga escala em várias bandas espectrais, permitindo o monitoramento de vegetação, temperatura da superfície, cobertura de nuvens e oceanos.
- 3. AVHRR (Advanced Very High Resolution Radiometer): Utilizado em satélites meteorológicos da NOAA, o AVHRR captura dados em diferentes comprimentos de onda (visível, infravermelho próximo e infravermelho térmico), sendo empregado no monitoramento climático, observação de cobertura vegetal e análise de temperatura da superfície dos oceanos.

Sensores Ativos

Os sensores ativos são aqueles que emitem sua própria radiação para obter dados do alvo.

A principal vantagem de um sensor ativo em relação aos sensores passivos é que a radiação emitida não sofre interferência da atmosfera, permitindo a obtenção de imagens em qualquer condição atmosférica e em qualquer hora do dia ou da noite.

Exemplos de Sensores Ativos

- 1. RADAR (RAdio Detection And Ranging): Utiliza ondas de rádio para detectar objetos e medir distâncias. É amplamente utilizado para monitoramento climático, mapeamento de áreas e observação de movimentos terrestres.
- 2. LIDAR (Light Detection And Ranging): Emite pulsos de laser para medir distâncias e gerar modelos tridimensionais precisos do terreno. É comumente usados para mapeamento topográfico, florestal, planejamento urbano e estudos de elevação.
- 3. SAR (Synthetic Aperture Radar): É uma forma avançada de radar que cria imagens detalhadas da superfície terrestre, mesmo através de nuvens e em condições de baixa luminosidade. É muito utilizado em satélite de observação da Terra, como os da série Sentinel-1, para monitoramento ambiental e detecção de mudanças.

GLOSSÁRIO

Resolução espacial é a capacidade de um sensor de distinguir detalhes e registrar objetos menores em uma imagem, ou seja, a menor área do terreno que um pixel na imagem representa. Em termos simples, é o nível de detalhe que uma imagem de sensoriamento remoto pode capturar.

Quanto maior a resolução espacial, mais detalhada é a imagem e maior é a capacidade de distinguir pequenos elementos na superfície terrestre.

Resolução espacial

Por exemplo:

- Uma imagem com alta resolução espacial, como 1 metro, pode capturar objetos pequenos, como veículos ou árvores individuais.
- 2. Uma imagem com baixa resolução espacial, como 30 metros, é mais adequada para observar características gerais do terreno, como florestas ou grandes áreas de água, mas não para detalhes específicos.

Resolução espectral é a capacidade de um sensor de detectar e diferenciar comprimentos de onda específicos da radiação eletromagnética.

A resolução espectral é importante porque permite que o sensor capture informações em diferentes regiões do espectro eletromagnético, como o visível, infravermelho e ultravioleta. Essa característica ajuda a identificar e distinguir entre diferentes materiais e elementos na superfície terrestre

Resolução espectral:

- 1. Baixa resolução espectral: Um sensor com apenas três bandas (como as cores vermelho, verde e azul) consegue gerar uma imagem em cores, mas pode não ser capaz de distinguir com precisão entre vegetação saudável e estressada, pois ambos refletem de maneira semelhante nessas bandas.
- 2. Alta resolução espectral: Sensores hiperespectrais, como o sensor AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), têm centenas de bandas estreitas e podem distinguir com precisão entre diferentes tipos de vegetação, minerais, corpos d'água e até características do solo.

Resolução radiométrica é a capacidade de um sensor de diferenciar pequenas variações na intensidade da radiação (intensidade de energia) que ele detecta, ou seja, o nível de detalhe com que ele consegue registrar as diferenças de brilho ou de energia refletida ou emitida por um objeto. Em termos práticos, é determinada pelo número de níveis de intensidade (ou "tons") que o sensor pode captar em cada pixel de uma imagem.

Resolução radiométrica é geralmente medida em bits:

- **8 bits**: Pode registrar 256 níveis de intensidade (2^8 = 256).
- **10 bits**: Pode registrar 1.024 níveis de intensidade (2^10 = 1.024).
- **12 bits**: Pode registrar 4.096 níveis de intensidade (2^12 = 4.096).

Resolução radiométrica

- Em imagens de 8 bits, áreas sombreadas ou com contrastes sutis podem parecer homogêneas, pois a variação de brilho pode não ser captada em detalhes.
- Em imagens de 12 ou 16 bits, o sensor é capaz de capturar mais gradações de luz, tornando essas áreas mais detalhadas e revelando variações sutis, úteis para estudos ambientais, monitoramento de vegetação, análise de solos e outros.

Resolução temporal é a frequência com que determinada missão (ou satélite) faz o imageamento sobre uma mesma área.

A resolução temporal do TM-Landsat-5 é de 16 dias, ou seja, a mesma área leva um período de 16 dias para ser fotografada pelo mesmo equipamento.

FORMAÇÃO DE CORES

O princípio da fotografia colorida consiste na possibilidade de reproduzir qualquer cor a partir de uma mistura de apenas três cores primárias: vermelho (Red), verde (Green) e azul (Blue) – RGB.

AQUISIÇÃO DE DADOS

Banco de dados:

- 1. https://search.asf.alaska.edu
 - a) Sentinel-1 (Ativo)
 - b) ALOS PALSAR (2006 2011)
- 2. https://earthexplorer.usgs.gov/
 - a) Landsat (Ativo)
- 3. http://www.dgi.inpe.br/catalogo
 - a) CBERS acervo (Ativo)

AQUISIÇÃO DE DADOS

Além das bases de dados citados há outras, como por exemplo: MODIS (Moderate Resolution Imaging Spectroradiometer), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), PlanetScope, Tellus Traveler e Copernicus Open Access Hub.

AQUISIÇÃO DE DADOS

Pela própria definição de Sensoriamento Remoto, visto anteriormente, há várias formas de adquirir informações sem contato direto, através de equipamentos como:

- 1. Estação total;
- GNSS (Global Navigation Satellite System);
- 3. LiDAR (Light Detection and Ranging);
- 4. Fotogrametria.

FOTOGRAMETRIA

- Ciência e tecnologia para obter informações sobre objetos físicos e o ambiente;
- Usa imagens fotográficas e padrões de energia eletromagnética
- Realizar medições precisas para mapeamentos e

estudos

Conclusão

FOTOGRAMETRIA

- Mapeamentos em grande escala;
- Criação de modelos digitais de elevação (DEM);
- Modelos detalhados do terreno;
- Aplicação em diversos setores, como geologia, hidrologia e planejamento urbano.

MODELO DIGITAL DE ELEVAÇÃO

Um modelo digital de elevação é uma grade de varredura do solo regularmente espaçada referenciada a um ponto de referência vertical comum. Quando você filtra pontos fora do solo, como pontes e estradas, você fica com um modelo de elevação digital suave. Quando você anula a vegetação e estruturas feitas pelo homem de dados de elevação, você obtém um MDE.

Shuttle Radar Topography Mission

O propósito da missão **SRTM** foi atuar na produção de um banco de dados digitais para todo o planeta, necessários na elaboração de um Modelo Digital de Elevação (MDE) das terras continentais.

O SRTM é um exemplo de sensor ativo, fornecendo um Modelo Digital de Elevação (MDE) para diferentes áreas da Terra, bastante utilizado para análise do relevo e obtenção de parâmetros, como altitude e declividade.

MODELO DIGITAL DE ELEVAÇÃO

REFERÊNCIAS

BLASCHKE, Thomas; KUX, Hermann. **Sensoriamento remoto e SIG avançados:** novos sistemas sensores, métodos inovadores. 2. ed. São Paulo: Oficina de Textos, 2007. *E-book*. Disponível em: https://plataforma.bvirtual.com.br. Acesso em: 05 nov. 2024.

FLORENZANO, Teresa Gallotti. **Iniciação em sensoriamento remoto**. 3. ed. São Paulo: Oficina de Textos, 2019. *E-book*. Disponível em: https://plataforma.bvirtual.com.br. Acesso em: 05 nov. 2024.

GARG, P. K. Remote Sensing: Theory and Applications. Boston: Mercury Learning and Information, 2024. ISBN 978-1-68392-748-8.