高级工程数学 2122(1)

沈超敏 计算机科学与技术学院 cmshen@cs.ecnu.edu.cn

Three acronyms:

- FONC (First Order Necessary Condition)
- SONC (Second Order Necessary Condition)
- SOSC (Second Order Sufficient Condition)

★ Conditions for Local Minimizers

- Global minimizer $x^*: f(x) \geqslant f(x^*) \quad \forall x \in \Omega \setminus \{x^*\}$
- Strict global minimizer $x^*: f(x) > f\left(x^*\right) \quad \forall x \in \Omega \backslash \left\{x^*\right\}$
- ullet Mathematically, "near" can be characterized as $\|oldsymbol{x} oldsymbol{x}^*\| < arepsilon$
- x^* is a local minimizer if $\exists \varepsilon > 0$, s.t.

$$f(\boldsymbol{x}) \geqslant f(\boldsymbol{x}^*) \quad \forall \boldsymbol{x} \in \Omega \backslash \{\boldsymbol{x}^*\} \& \|\boldsymbol{x} - \boldsymbol{x}^*\| < \varepsilon$$

★ First Order Necessary Condition

Theorem. x^* is a local minimizer of f over Ω . Then for any feasible direction d at x^* , we have

$$\nabla f(\boldsymbol{x}^*) \cdot \boldsymbol{d} \geqslant 0$$

Explanation. ① feasible direction d at a point $x \in \Omega$ is a direction so that: starting from x and moving towards d remains in Ω .

Math language: $\exists \alpha_0 > 0$ s.t. $\boldsymbol{x} + \alpha \boldsymbol{d} \in \Omega, \forall \alpha \in [0, \alpha_0]$

② $\nabla f(x^*) \cdot d$: inner product of two vectors.

Also write as $\boldsymbol{d}^{\top}\nabla f\left(\boldsymbol{x}^{*}\right)$ or $\left(\nabla f\left(\boldsymbol{x}^{*}\right),\boldsymbol{d}\right),$ $\left\langle \nabla f(\boldsymbol{x}^{*}),\boldsymbol{d}\right\rangle$

 $\frac{\partial f}{\partial d} \triangleq \nabla f \cdot d$ is the directional derivative when $\|d\| = 1$

• 3 Define $\phi(\alpha) = f(x^* + \alpha d)$ for $\alpha \in [0, \alpha_0]$, then

$$\phi'(0) = \begin{cases} \lim_{\alpha \to 0^+} \frac{\phi(\alpha) - \phi(0)}{\alpha} = \lim_{\alpha \to 0^+} \frac{f(x^* + \alpha d) - f(x^*)}{\alpha} & \text{Def} \\ \nabla f(x^*) \cdot d & \text{Chain rule} \end{cases}$$

• Proof. Let $m{d}$ be any feasible direction at $m{x}^*$. Define $\phi(\alpha) = f\left(m{x}^* + \alpha m{d}\right)$ Then $f\left(m{x}^* + \alpha m{d}\right) - f\left(m{x}^*\right) = \phi(\alpha) - \phi(0) = \phi'(0)\alpha + o(\alpha)$ $= \langle \nabla f\left(m{x}^*\right) \cdot m{d}\rangle \alpha + o(\alpha)$

If x^* is a local minimizer,

(i.e.,
$$\exists \varepsilon$$
, s.t. $f(\boldsymbol{x}) \geqslant f(\boldsymbol{x}^*)$, $\forall \boldsymbol{x} \in \Omega \backslash \{\boldsymbol{x}^*\} \& \|\boldsymbol{x} - \boldsymbol{x}^*\| < \varepsilon$) for sufficiently small α (e.g. $\|\alpha \boldsymbol{d}\| < \varepsilon$), $f(\boldsymbol{x}^* + \alpha d) - f(\boldsymbol{x}^*) \geqslant 0$ then $\phi'(0) = \nabla f(\boldsymbol{x}^*) \cdot \boldsymbol{d} \geqslant 0$

ullet FONC Two possibilities for a given feasible direction d.

$$\left\{ \begin{array}{l} \nabla f\left(\boldsymbol{x}^{*}\right) \cdot \boldsymbol{d} > 0 \text{ then } f\left(\boldsymbol{x}^{*} + \alpha \boldsymbol{d}\right) > f\left(\boldsymbol{x}^{*}\right) \text{ for all sufficienty small } \alpha > 0 \\ \nabla f\left(\boldsymbol{x}^{*}\right) \cdot \boldsymbol{d} = 0 \text{ . check second-order derivative} \end{array} \right.$$

★ Second Order Necessary Condition

• Theorem If \boldsymbol{x}^* is a local minimizer of f over Ω , and there exists a feasible direction \boldsymbol{d} at \boldsymbol{x}^* s.t. $\nabla f\left(\boldsymbol{x}^*\right)\cdot\boldsymbol{d}=0$, then

$$\mathbf{d}^{\top} \nabla^2 f(\mathbf{x}^*) \mathbf{d} \geqslant 0$$

• Proof Consider $\phi(\alpha) = f\left({m x}^* + \alpha {m d} \right)$ and its Taylor series at $\alpha = 0$

$$\phi(\alpha) = \phi(0) + \phi'(0)\alpha + \frac{1}{2}\phi''(0)\alpha^2 + o\left(\alpha^2\right).$$
as $\phi'(0) = \nabla f(\mathbf{x}^*) \cdot \mathbf{d} = 0$

So we have $\phi(\alpha) - \phi(0) = \frac{1}{2}\phi''(0)\alpha^2 + o\left(\alpha^2\right)$. Written in terms f is $f\left(\boldsymbol{x}^* + \alpha \boldsymbol{d}\right) - f\left(\boldsymbol{x}^*\right) = \frac{\alpha^2}{2} \boldsymbol{d}^\top \nabla^2 f\left(\boldsymbol{x}^*\right) \boldsymbol{d} + o\left(\alpha^2\right)$.

If $d^{\top}\nabla^{2}f(x^{*})d < 0$, then for sufficiently small α (how small?) which contradicts that x^{*} is a local minimizer. so, $d^{\top}\nabla^{2}f(x^{*})d > 0$.

- ullet Corollary $oldsymbol{x}^*$ is an interior local minimizer of f. Then
- FONC $\nabla f(\mathbf{x}^*) = 0$
- SONC $d^{\top} \nabla^2 f(x^*) d \geqslant 0$, $\forall d \in \mathbb{R}^n$

Examples. 6.3 (p.86), 6.5 (p.89)

Necessary conditions are not sufficient

Video 32 结束

★ Second Order Sufficient Condition

if α is sufficiently small.

• Th 6.3 (SOSC) $f \in C^2(\Omega), x^* \in \Omega$ is an interior point. Suppose that (1) $\nabla f(x^*) = 0$; (2) $\nabla^2 f(x^*) > 0$. Then x^* is a strict local minimizer of f. Pf. $\nabla^2 f(x^*) \succ 0 \Leftrightarrow \lambda_{\min} (\nabla^2 f(x^*)) > 0$ (Prove by diagonaligation of $\nabla^2 f(\boldsymbol{x}^*) = Q^\top \wedge Q$) For a feasible direction ${m d} \neq 0$, define $\phi(\alpha) = f\left({{{m x}^*} + \alpha {m d}} \right)$ $f(\boldsymbol{x}^* + \alpha \boldsymbol{d}) - f(\boldsymbol{x}^*) = \phi(\alpha) - \phi(0) = \frac{1}{2}\phi''(0)\alpha^2 + o(\alpha^2)$ $= \frac{1}{2} \boldsymbol{d}^{\top} \nabla^{2} f(\boldsymbol{x}^{*}) \, \boldsymbol{d} \alpha^{2} + o\left(\alpha^{2}\right)$ $\geqslant \frac{1}{2}\lambda_{\min}\|d\|^2\alpha^2 + o\left(\alpha^2\right) > 0$

9/63

Necessary
$$\begin{array}{c|c} \textbf{X*} & \text{is a local minimizer of } \textbf{f} \\ \hline \\ \textbf{Necessary} & \textbf{Sufficient} \\ \text{interior pt} & \nabla f\left(\boldsymbol{x}^*\right) = 0, \nabla^2 f\left(\boldsymbol{x}^*\right) \geqslant 0 & \nabla f\left(\boldsymbol{x}^*\right) \\ \text{general pt} & \nabla f\left(\boldsymbol{x}^*\right) \cdot \boldsymbol{d} \geqslant 0 & \forall d \\ \text{If } \nabla f\left(\boldsymbol{x}^*\right) \cdot \boldsymbol{d} = 0 \text{ for some } \boldsymbol{d}, \boldsymbol{d}^\top \nabla^2 f\left(\boldsymbol{x}^*\right) \boldsymbol{d} \geqslant 0 \\ \hline \end{array}$$

Video 33 结束

Figure 7.1 Unimodal function.

- 7.1 Introduction
- 7.2 Golden Section Search
- 7.3 Fibonacci Method
- 7.4 Bisection Method
- 7.5 Newton's Method
- 7.6 Secant Method
- 7.7 Bracketing
- 7.8 Line Search in Multidimensional Optimization

§2单因素

我们知道,得要用某种化学元素来加强基强度,太少不好,太多也不好。例如,碳太多了成为生铁、碳太少了成为熟铁,都不成钢材,每吨要加多少碳才能达到强度最高。假定已 从理论上算出)每吨在1000克到2000克之间。普通的方法是加1001克,1002克,……,做下去,做了一千次以后,才能发现最好的选择,这种方法称为均分法。做一千次实验既很贵时间 又很费原材料,为了迅速找出最优方案,我们建议以下的"折连纸条法"。

请牢记一个数0.618.

用一个有刻度的纸条表达1000~2000克,在这纸条长度的0.618的地方划一条线,在这条线所指示的刻度做一次实验,也就是按1618克做一次实验。

然后把纸条对中迭起,前一线落在另一层上的地方,再划一条线,这条线在1382克处,再按1382克做一次实验.

两次实验进行比较,如果1382克的好一些,我们在1618处把纸条的右边一段剪掉,得:

(如果1618克比较好,则在1382克处剪掉左边一段).再依中对折起来,又可划出一条线在1236克处。

依1236克做实验,再和1382克的结果比较.如果,仍然是1382克好,则在1236处剪掉左边。

再依中对折,找出一个试点是1472,按1472克做实验,做出后再剪掉一段,等等. 注意每次留下的纸条的长度是上次长度的0. 618(留下的纸条长=0. 618×上次长),

就这样,实验、分析、再实验、再分析,矛盾的解决和又出现的过程中,一次比一次地更加接近所需要的加入量,直到所能达到的精度.

Figure 7.4 Finding value of ρ resulting in only one new evaluation of

Video 34 结束

7.3 Fibonacci Method

Figure 7.4 Finding value of ρ resulting in only one new evaluation of

7.4 Bisection Method

Video 35 结束

Topic 3: Ch 8. Gradient Methods

 $\nabla f(x)$ is the direction of maximum rate of increase of f at x.

 $-\nabla f(x)$ is the direction of maximum rate of decrease of f at x.

Lemma: (Cauchy-Schwarz inequality) For $oldsymbol{a}, oldsymbol{b} \in \mathbb{R}^n$

$$a \cdot b = (a, b) = \sum_{i=1}^{n} a_i b_i \leqslant \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} b_i^2\right)^{\frac{1}{2}} = \|a\| \cdot \|b\|$$

Apply to
$$(\nabla f, \mathbf{d}) \leq \|\nabla f\| \cdot \|\mathbf{d}\| = \|\nabla f\|$$
 if $\|\mathbf{d}\| = 1$

Equality holds
$$\Leftrightarrow d = rac{
abla f}{\|
abla f\|}$$

Therefore $-\nabla f(\boldsymbol{x})$ is the max-rate descending direction. When $\nabla f(\boldsymbol{x}) \neq \boldsymbol{0}$, for α sufficiently small, $f(\boldsymbol{x} - \alpha \nabla f(\boldsymbol{x})) < f(\boldsymbol{x})$.

Gradient Descent Algorithm:

Start from x^0 for $k = 0, 1, 2, \cdots$ till converge

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \alpha_k \nabla f\left(\boldsymbol{x}^k\right)$$

Ideal condition:
$$\left\|\nabla f\left(\boldsymbol{x}^{k}\right)\right\|=0$$

Practical conditions:

gradient condition
$$\left\| \nabla f\left({{oldsymbol x}^k} \right) \right\| < arepsilon$$

success objective condition
$$\frac{\left|f\left(x^{k+1}\right) - f\left(x^{k}\right)\right|}{\left|f\left(x^{k}\right)\right|} < \varepsilon$$

successive point difference
$$\frac{\|x^{k+1}-x^k\|}{\|x^k\|}$$

Replace denominator by $\max\left\{1,|f\left(\boldsymbol{x}^k\right)|\right\}$ or $\max\{1,\|\boldsymbol{x}^k\|\}$ to avoid division by tiny numbers.

Step size:

- 1. Exact line search. Expensive and not worth
- 2. Fixed estimate value.
- 3. Line search (Ch. 7).

具体地

1. Exact or "best" for $\phi_k(\alpha) = f(x_k - \alpha \nabla f(x_k))$

$$\alpha_k = \operatorname*{arg\,min}_{\alpha > 0} \phi_k(\alpha)$$

This is called Steepest Descent method.

2. Based on properties of f, choose a fixed value

small: converges slow

large: may diverge faster

convergence efficiency

- 3. Several practical line search algorithms
- Golden section Newton's method
- Fibonacci Secant method
- Bisection Bracketing

Quadratic Programming

For a symmetric and positive definite (SPD) matrix Q, i.e., Q>0,

we can define a new norm
$$\| {m x} \|_Q = \left({m x}^{ op} Q {m x} \right)^{\frac{1}{2}}$$
 and a new inner product $({m x}, {m y})_Q riangleq (Q {m x}, {m y}) = ({m x}, Q {m y}) = {m y}^T Q {m x}$

Let $f(x)=\frac{1}{2}\|x\|_Q^2-(b,x)$. Consider non-constrained, convex, and smooth optimization problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$$

$$\nabla f(\mathbf{x}) = Q\mathbf{x} - \mathbf{b}, \quad \nabla^2 f(\mathbf{x}) = Q > 0$$

Topic 3: Quadratic Programming

As f is strictly convex, the global minimum pt is $\nabla f(x) = \mathbf{0}$

Solve Qx - b = 0 to get the solution $x = Q^{-1}b$.

Why not computing $Q^{-1}b$ directly?

- 1. Q^{-1} is expensive, $O(n^3)$ complexity.
- 2. Want a method for more general problems.

Steepest descent for quadratic programming

$$\begin{split} \phi_k(\alpha) &= f\left(\boldsymbol{x}_k - \alpha \nabla f\left(\boldsymbol{x}_k\right)\right), \quad \alpha_k = \underset{\alpha}{\arg\min} \phi_k(\alpha) \quad \phi_k'\left(\alpha_k\right) = 0 \\ \phi_k'(\alpha) &= \left\langle \nabla f(\boldsymbol{x}_k - \alpha \nabla f(\boldsymbol{x}_k)), -\nabla f\left(\boldsymbol{x}_k\right)\right\rangle \\ &= \left\langle Q\left(\boldsymbol{x}_k - \alpha \nabla f\left(\boldsymbol{x}_k\right)\right) - \boldsymbol{b}, -\nabla f\left(\boldsymbol{x}_k\right)\right\rangle \\ &= \alpha \|\nabla f(\boldsymbol{x}_k)\|_Q^2 - \left\langle Q\boldsymbol{x}_k - \boldsymbol{b}, \nabla f\left(\boldsymbol{x}_k\right)\right\rangle = \alpha \|\nabla f\left(\boldsymbol{x}_k\right)\|_Q^2 - \|\nabla f\left(\boldsymbol{x}_k\right)\|^2 \end{split}$$

Video 36 结束

Topic 3: Quadratic Programming

If we denote by $g_k = \nabla f(x_k)$, then we can write as

$$\alpha_k = \|\boldsymbol{g}_k\|^2 / \|\boldsymbol{g}_k\|_Q^2$$

As
$$\lambda_{\min} \| oldsymbol{v} \|^2 \leqslant oldsymbol{v}^ op Q oldsymbol{v} \leqslant \lambda_{\max} \| oldsymbol{v} \|^2$$

(which can be proved first for diagonal matrix and then $Q=U^T\Lambda U$)

so
$$\frac{1}{\lambda_{\max}} \leqslant \alpha_k \leqslant \frac{1}{\lambda_{\min}}$$

Video 37 结束

Figure 8.7 Steepest descent method in search for minimizer in a narrow valley.

Consider
$$\min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})$$

$$\cdot n = 1 \qquad \mathbf{x}_{R+1} = \mathbf{x}_{R} - \left[f''(\mathbf{x}_{R})\right]^{-1} f'(\mathbf{x}_{R})$$

$$\cdot n > 1 \qquad \mathbf{x}_{R+1} = \mathbf{x}_{R} - \left[\nabla^{2} f(\mathbf{x}_{R})\right]^{-1} \nabla f(\mathbf{x}_{R})$$
Another form ① solve $\nabla^{2} f(\mathbf{x}_{R}) d_{R} = -\nabla f(\mathbf{x}_{R})$
② update $\mathbf{x}_{R+1} = \mathbf{x}_{R} + d_{R}$

Remark. Do not require $\nabla^{2} f(\mathbf{x}_{R}) > 0$ only needs non-singular (invertible).

Namely, Newton's method also works for non-convex optimization problems.

but may not find local min.

- Pro. 1. Convergences super-fast (quadratic rate).
 - 2. Affine invariant.
- con. 1. Local convergence. Require 11 xo-x*11 is small enough.
 - 2. Computational cost.

Form Hessian matrix $O(n^2)$. Compute $(\nabla^2 f)^{-1}$: $O(n^3)$.

Figure 12.3 The solid line in the left plot is $f(x) = (e^x - e^{-x})/(e^x + e^{-x})$. The dashed line and the circles indicate the iterates in Newton's method for solving f(x) = 0, starting at $x^{(0)} = 0.85$ (left) and $x^{(0)} = 1.15$ (right). In the first case the method converges rapidly to $x^* = 0$. In the second case it does not converge.

Video 38 结束

Derivation. Given current approximate
$$x_k$$
, approximates f by its quadratic Taylor series
$$f(x) \approx f_g(x; x_k) := f(x_k) + (\nabla f(x_k), x - x_k) + \frac{1}{2}(\nabla^2 f(x_k)(x - x_k), x - x_k)$$

$$\min_{x \in \mathbb{R}^n} f(x) \xrightarrow{x_k \in \mathbb{R}^n} f_g(x; x_k) \xrightarrow{x_k \in \mathbb{R}^n} \nabla f_g(x_{k+1}; x_k) = 0.$$

$$\nabla f_g(x; x_k) = \nabla f(x_k) + \nabla^2 f(x_k)(x - x_k) \qquad \text{Newton's method}$$

Figure 9.1 Quadratic approximation to the objective function using first and second derivatives.

Video 39 结束

Convergence Analysis.

Theorem. Suppose $f \in C^3$. x^* is a critical pt, i.e. $\nabla f(x^*) = 0$, and $\nabla^* f(x^*)$ is invertible. Then for all x_0 sufficiently close to x^* . Newton's method is well defined for all k, and $\|x_{k+1} - x^*\| \le C \|x_k - x^*\|^2 \ \forall \ k = 0, 1, 2, \cdots$ **Proof**. Denote by $F(x) = \nabla^2 f(x)$. Then $\det F(x) \in C^1$. As $\det F(x^*) \neq 0$, for sufficiently small ϵ , $\det F(x) \neq 0$, $\forall \|x - x^*\| < \epsilon$. So F(x) is invertible.

Furthermore ||F'(x)|| &c, Y ||x-x*|| < E.

Assume x_R satisfies $\|x_R - x^*\| < \epsilon$, then $F^{-1}(x_R)$ exists and $\|F^{-1}(x_R)\| \le C$.

Then
$$x_{k+1} - x^* = x_k - x^* - (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

$$= \left(\nabla^2 f(x_k) \right)^{-1} \left[\nabla^2 f(x_k) \left(x_k - \chi^* \right) - \nabla f(x_k) \right].$$

We apply first order Taylor expansion to $\nabla f(x^*)$ at x_* to get

$$\nabla f(x^*) = \nabla f(x_k) + \nabla^2 f(x_k) (x^* - x_k) + O(\|x_k - x^*\|^2)$$

Note that $\nabla f(x^*) = 0$ and the sign change, we have

$$\nabla^2 f(x_k) (x_k - x^*) - \nabla f(x_k) = O(||x_k - x^*||^2).$$

Therefore $\|x_{k+1} - x^*\| \le C \|(\nabla^2 f(x_k))^{-1}\| \|x_{k-} x^*\|^2$

$$\leq C_1 \| x_{k-} x^* \|^2$$

Again by choosing ε sufficiently small s.t. $C_1\varepsilon^2 < \varepsilon$, we conclude $\|x_{k+1} - x^*\| < \varepsilon$ and $F(x_{k+1})^{-1}$ exists and $\|F(x_{k+1})^{-1}\| \le C$.

So if ε is small enough and $\|x_0 - x^*\| < \varepsilon$, all $\|x_k - x^*\| < \varepsilon$ and $\|x_{k+1} - x^*\| \le C$, $\|x_k - x^*\|^2 \quad \forall \ k = 0, 1, 2, \cdots$ which implies the local quadratic convergence. #.

Modification of Newton's method.

Newton's method may not be a descent method, i.e. $f(x_{n+1}) > f(x_n)$ is possible (e.g. x^* is a local maximum). Have to restrict to stricktly convex functions.

Lemma. Assume $\nabla^2 f(x) > 0$, $\forall x$. If $\nabla f(x_k) \neq 0$, then Newton's direction $d_k = -(\nabla^2 f(x_k)^{-1} \nabla f(x_k))$ is a descent direction in the sense that $f(x_k + ad_k) < f(x_k)$ for sufficiently small a.

Proof. Let $\emptyset(\alpha) = f(x_R + \alpha d_R)$. Then $\emptyset'(\alpha) = (\nabla f(x_R + \alpha d_R), d_R)$ and $\emptyset'(0) = -(\nabla f(x_R), (\nabla^2 f(x_R))^{-1} \nabla f(x_R)) = -(\partial_R, \partial_R) \alpha < 0$ where

$$g_{\mathbf{k}} = \nabla f(\mathbf{x}_{\mathbf{k}}), \ Q = (\nabla^2 f(\mathbf{x}_{\mathbf{k}}))^{-1} > 0.$$

Then for sufficiently small a, $f(x_R + ad_R) = \emptyset(a) < \emptyset(0) = f(x_R)$. #.

For convex functions, we can use the following modification

- 1. Compute de by solving $\nabla^2 f(x_k) d_k = -\nabla f(x_k)$.
- 2. Find dx = argmin f(xx+ddx) by line search.
- 3. Update Xx+1 = Xx + dxdk.

Figure 12.3 The solid line in the left plot is $f(x) = (e^x - e^{-x})/(e^x + e^{-x})$. The dashed line and the circles indicate the iterates in Newton's method for solving f(x) = 0, starting at $x^{(0)} = 0.85$ (left) and $x^{(0)} = 1.15$ (right). In the first case the method converges rapidly to $x^* = 0$. In the second case it does not converge.

What if $\nabla^2 f$ is not SPD? Note that for non-convex functions, the gradient method $\chi_{R+1} = \chi_R - \lambda_R I \nabla f(\chi_R)$ is always a descent method. This motivates the Levenberg-Marquardt modification

$$\chi_{k+1} = \chi_k - a_k (\nabla^k f(\chi_k) + \mu_k I)^{-1} \nabla f(\chi_k),$$

where $\mu_R > 0$ is chosen s.t. $\nabla^2 f(x_R) + \mu_R I > 0$ and $\alpha_R > 0$ is a step size.

It is a mixture of Newton and gradient methods:

- · HR = 0. Newton's method.
- · $\mu_k \rightarrow +\infty$. Gradient method.

Video 40 结束

Figure 9.1 Quadratic approximation to the objective function using first and second derivatives.

Search directions

- · Gradient method
- · Conjugate gradient method
- · Newton's method

. . .

· Quasi-Newton method

$$d_{\mathbf{k}} = -\left(\nabla^2 f(\chi_{\mathbf{k}})\right)^{-1} g_{\mathbf{k}}$$

Algorithm

Start with xo, go, Ho.

for k=0,1,2,...

$$d_k = argmin f(x_k + adk);$$

$$\chi_{k+1} = \chi_k + \alpha_k dk$$
;

$$g_{k+1} = \nabla f(x_{k+1});$$

construction of NR

Two consideration ① He $\approx (\nabla^2 f(x_k))^{-1}$ approximation to inverse of Hessian

- 2) HR gr is efficient to compute.
- Approximation. Recall for 1-d line search,

$$f''(x_k) \approx \frac{f(x_k) - f'(x_{k-1})}{2}$$

 $f''(x_R) \approx \frac{f'(x_R) - f'(x_{R-1})}{x_P - x_{R-1}}$ the quoient only suitable for scalars

$$\nabla f(x_k) - \nabla f(x_{k-1}) = \nabla^2 f(3) (x_k - x_{k-1})$$
 by mean value theorem

$$\left(\nabla^2 f(3)\right)^{-1} \left(\nabla f(\chi_{k}) - \nabla f(\chi_{k-1})\right) = \chi_k - \chi_{k-1}$$

(*)

Rank One Correction

Here
$$= \frac{1}{1}k + 3k 3k$$
 $3k 3k$ is a $n \times n$ matrix with rank 1.

 $= \frac{1}{3k 3k} v = 3k (3k v) = (3k, v) 3k$ is easy to compute.

Here $= \frac{1}{3k 3k} v = 3k (3k v) = (3k, v) 3k$ is easy to compute.

Here $= \frac{1}{3k 3k} v = 3k (3k v) = (3k, v) 3k$ is easy to compute.

Simple $= \frac{1}{3k 3k} v = \frac{1}{3k 3k} v =$

Next we use (*) to determine 3k.

$$K_{k+1} \triangle g_k = \frac{1}{8} k \triangle g_k + 3k (3k, \triangle g_k) = \Delta x_k \qquad (1)$$

$$So \quad 3k = \frac{\Delta x_k - 1}{(3k, \triangle g_k)} \frac{1}{stil unknown}$$

$$(\Re \Delta g_k, \Delta g_k) + (g_k, \Delta g_k)^2 = (\Delta \chi_k, \Delta g_k)$$

which implies
$$(3\kappa,\Delta 9\kappa)^2 = (\Delta \chi_R,\Delta 9\kappa) - (H\kappa\Delta 9\kappa,\Delta 9\kappa)$$

$$= (\Delta x R - H R \Delta g R, \Delta g R)$$

Question: RHS may not be positive! That's why we add ar.

We can skip ak and skip the sgrt to compute (3k, Agk). Continue to

$$3k3k = \frac{(\Delta x_R - H_k \Delta g_R)(\Delta x_R - H_k \Delta g_R)^T}{(\Delta x_R - H_k \Delta g_R)}$$

Notational simplification Dek = DXR-The D&R.

 $uv^T = u \otimes v : \otimes tensor product . \quad u \otimes v = (v \otimes u)^T . \quad u \otimes u \text{ is symmetric}$

$$N_{R+1} = N_R + \frac{\Delta e_R \otimes \Delta e_R}{(\Delta e_R, \Delta g_R)}$$

Video 41 结束

Example 11.1 Let

$$f(x_1, x_2) = x_1^2 + \frac{1}{2}x_2^2 + 3.$$

Apply the rank one correction algorithm to minimize f. Use $\mathbf{x}^{(0)} = [1, 2]^{\mathsf{T}}$ and $\mathbf{H}_0 = \mathbf{I}_2$ (2 × 2 identity matrix).

We can represent f as

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\top} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{x} + 3.$$

Thus,

$$oldsymbol{g}^{(k)} = egin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} oldsymbol{x}^{(k)}.$$

Because $H_0 = I_2$,

$$d^{(0)} = -g^{(0)} = [-2, -2]^{\top}.$$

The objective function is quadratic, and hence

$$\begin{split} \alpha_0 &= \mathop{\arg\min}_{\alpha \geq 0} f(\boldsymbol{x}^{(0)} + \alpha \boldsymbol{d}^{(0)}) = -\frac{\boldsymbol{g}^{(0)^{\top}} \boldsymbol{d}^{(0)}}{\boldsymbol{d}^{(0)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(0)}} \\ &= \frac{\begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}}{\begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}} = \frac{2}{3}, \end{split}$$

and thus

$$m{x}^{(1)} = m{x}^{(0)} + lpha_0 m{d}^{(0)} = \left[-rac{1}{3}, rac{2}{3}
ight]^{ op}.$$

We then compute

$$\Delta x^{(0)} = \alpha_0 d^{(0)} = \left[-\frac{4}{3}, -\frac{4}{3} \right]^{\top},$$
 $g^{(1)} = Q x^{(1)} = \left[-\frac{2}{3}, \frac{2}{3} \right]^{\top},$
 $\Delta g^{(0)} = g^{(1)} - g^{(0)} = \left[-\frac{8}{3}, -\frac{4}{3} \right]^{\top}.$

Because

$$\Delta g^{(0)\top}(\Delta x^{(0)} - H_0 \Delta g^{(0)}) = \left[-\frac{8}{3}, -\frac{4}{3}\right] \begin{bmatrix} \frac{4}{3} \\ 0 \end{bmatrix} = -\frac{32}{9},$$

we obtain

$$\boldsymbol{H}_1 = \boldsymbol{H}_0 + \frac{(\Delta \boldsymbol{x}^{(0)} - \boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)})(\Delta \boldsymbol{x}^{(0)} - \boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)})^\top}{\Delta \boldsymbol{g}^{(0)\top}(\Delta \boldsymbol{x}^{(0)} - \boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)})} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix}.$$

Therefore,

$$d^{(1)} = -H_1 g^{(1)} = \left[\frac{1}{3}, -\frac{2}{3}\right]^{\mathsf{T}}$$

and

$$\alpha_1 = -\frac{g^{(1)T}d^{(1)}}{d^{(1)T}Qd^{(1)}} = 1.$$

We now compute

$$x^{(2)} = x^{(1)} + \alpha_1 d^{(1)} = [0, 0]^{\top}.$$

Unfortunately, the rank one correction algorithm is not very satisfactory, for several reasons. First, the matrix H_{k+1} that the rank one algorithm generates may not be positive definite (see Example 11.2 below) and thus $d^{(k+1)}$ may not be a descent direction. This happens even in the quadratic case (see Example 11.10). Furthermore, if

$$\Delta \boldsymbol{g}^{(k)}(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})$$

is close to zero, then there may be numerical problems in evaluating H_{k+1} .

Video 42 结束

Least Square Problems

Problem
$$A x = b$$
, $A: m \times n$ matrix, $b \in \mathbb{R}^m$ is given, find $x \in \mathbb{R}^n$

$$m \ge n$$

= | Since # egns > # unknowns, no solution in general

Instead, consider optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) := \frac{1}{2} \| A\mathbf{x} - b \|^2.$$

Solution.
$$\nabla f(x) = A^T A x - A^T b$$
. $\nabla^2 f(x) = A^T A \ge 0$.

Lemma, when A is full rank, i.e. rank (A) = n, then $\nabla^2 f = A^T A > 0$.

Proof. Let $A = (a_1 a_2 \cdots a_n)$, where a_i is the i-th column vector.

Interept $Au = \sum_{i=1}^{n} u_i a_i$ as linear combination of column vectors.

rank (A)=n means { a,..., an} are linearly independent. Therefore

Au = 0 implies u = 0. Consequently (ATAu, u) = (Au, Au) > 0, Vu el?", u + 0.

#

As a quadratic and stricktly convex function, the global minimum of f is the solution to $\nabla f(x) = 0$, $x^* = (A^TA)^{-1}A^Tb$.

inverse is not easy to compute!


```
Projector, R^{\perp}(A) = \{c \in \mathbb{R}^{m}, (c, Ay) = 0, \forall y \in \mathbb{R}^{n}\}
• Proj_{R(A)} = A(A^{T}A)^{-1}A^{T}, N(A^{T}) = \{c \in \mathbb{R}^{m}, A^{T}c = 0\}
• Proj_{R(A)} = Proj_{N(A^{T})} = I - A(A^{T}A)^{-1}A^{T} Verify N(A^{T}) = R^{\perp}(A)
```

Amxn, $m \le n$. Yank (A) = m.

more unknowns than equations.

There may exists infinite many solutions. Which one to pick?

Consider constrained optimization problem

min $\|x\|^2$ (1) $\{x \in \mathbb{R}^n, Ax = b\}$

Theorem. The solution to (1) is
$$x^* = A^T (AA^T)^{-1} b$$
.

Proof. Write x = x*+e. Ax=b ⇔ Ae=0.

$$\|x\|^2 = \|x^* + e\|^2 = \|x^*\|^2 + \|e\|^2 + 2(x^* + e)$$
 Since $(x^*, e) = (A^T(AA^T)^{-1}b, e)$

$$\min_{Ax=b} \|x\|^2 = \|x^*\|^2 + \min_{Ae=0} \|e\|^2 = \|x^*\|^2.$$
 = ((AA^T)⁻¹b, Ae) = 0. #.

Geometry $S = \{x \in \mathbb{R}^n : Ax = b\}$ is an affine space not a linear space

$$x_1$$
, $x_2 \in S$ but $x_1 - x_2 \notin S$ as $A(x_1 - x_2) = b - b = 0$.

Kaczmarz算法

$$i = i + 1$$

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$\boldsymbol{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Kaczmarz 算法

```
Kaczmarz算法.pdf
function Kaczmarz(A.
                   x;
                   \mu = 1.
                   \epsilon = 0.001)
 #Check if the dimensions match
 if !(ndims(A) == 2 && ndims(b) == 1) # MUST be double '&'
     error("A should be a matrix (dims = 2) and b should be a vector (dim = 1)")
 end
 r. c = size(A)
 l = length(b)
 if l != r
     error("# of rows in A should match with # of elements in b")
 end
 if r > c
     error("Kaczmarz algorithm is not applicable!")
 end
 xk = x
 xn = x
 A0 = mapslices(r \rightarrow r .* (1 /(r'*r)), A. dims=[2])
 pts = []
 push!(pts, xn)
 while i = 0 \mid \mid norm(xn - xk) > \epsilon
      i = i + 1
      for j in 1:r
         xn = xn + \mu*(b[i] - A[i, 1:end]'*xn) .* A0[i, 1:end]
         push!(pts, xn)
      end
 end
 return (xn, pts)
```

Video 43 结束