微纳光电子材料与器件工艺原理

Cleanroom Environment and Wafer Clean

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Integrate Circuits

Moore's law

transistor number

Factory Evolution

1947

today

Factory Evolution

cost of new fab

□ 1967 2 million \$

2010 10 billion \$

Video TSMC

2016 武汉新芯 24 billion \$\$ today

Manufacturing Yield

Yield: rate of success

assume yield = 99% per step:

 $0.99^4 = 0.96$

 $0.99^{400} = 0.02$

every 1% yield increase = \$\$\$

Defects Control

Cleanroom Orientation

always gown up!

Contaminations

particles:

- hair
- pollen
- bacteria
- PM2.5

- ...

chemicals:

- organics
- Cu, Au
- Na, K

- ...

Particles

IC Roadmap

Year of 1st DRAM Shipment	1997	1999	2003	2006	2009	2012
Minimum Feature Size	250nm	180nm	130nm	100nm	70nm	50nm
Wafer Diameter (mm)	200	300	300	300	450	450
DRAM Bits/Chip	256M	1G	4G	16G	64G	256G
DRAM Chip Size (mm ²)	280	400	560	790	1120	1580
Microprocessor Transistors/chip	11M	21M	76M	200M	520M	1.40B
Critical Defect Size	125nm	90nm	65nm	50nm	35nm	25nm
Starting Wafer	0.60	0.29	0.14	0.06	0.03	0.015
Total LLS (cm ⁻²)						
DRAM GOI	0.06	0.03	0.014	0.006	0.003	0.001
Defect Density (cm ⁻²)						
Logic GOI	0.15	0.15	0.08	0.05	0.04	0.03
Defect Density (cm ⁻²)						
Starting Wafer	3x10 ¹⁰	1x10 ¹⁰	Under	Under	Under	Under
Total Bulk Fe (cm ⁻³)			1x10 ¹⁰	1x10 ¹⁰	1x10 ¹⁰	$1x10^{10}$
Metals onWafer Surface After						
Cleaning (cm ⁻²)	5x10 ⁹	4x10 ⁹	2x109	1x10°	< 10 ⁹	< 10°
Starting Material	≥ 300	≥ 325	≥ 325	≥ 325	≥ 450	≥ 450
Recombination Lifetime (µsec)						

Cleanroom

class X:

less than X particles larger than 0.5 μm per cubic feet

Cleanroom

class X:

less than X particles larger than 0.5 μm per cubic feet

Cleanroom

Particle Diameter (um)				
Class	0.1	0.3	0.5	5.0
1	35	3	1	
10	350	30	10	
100		300	100	
1,000			1,000	7
10,000			10,000	70
100,000			100,000	700

'PM2.5 index' << 1 μg/m³

class X:

less than X particles larger than 0.5 μm per cubic feet

- Point Defects e.g. Vacancies (V), Interstitials (I)
- <u>Line Defects</u> e.g. Dislocations
- •Area Defects e.g. Stacking Faults ("extrinsic" or "intrinsic" form along {111} planes)
- *Volume Defects e.g. Precipitates, Collection of Vacancies

Q: why?

dopants

deep level defects | Na, K, Au, Cu, Fe, O, ...

Diffusion of Defects

- C concentration (mol/m³)
- J diffusion flux (mol/m²/s)
- D diffusivity (m²/s)

Diffusion of Defects

- Diffusivity (扩散系数) D
 - rate of spread
 - unit: cm²/s

$$D = D_0 \exp(-\frac{E_A}{kT})$$

Diffusion length L

$$L = \sqrt{Dt}$$

Defect Diffusivity in Silicon

(a) Vacancy mechanism

B, P, As, Sb, Si, ...

(b) Interstitial mechanism

Cu, Fe, Li, H, Au, ...

Body (B)

alkali ions (Na, K, ...) in gate oxide

Deep level defects (e.g. Au) reduce minority carrier lifetime

bad for solar cells

Fig. 16 Recombination lifetime versus gold impurity concentration in silicon.8

recombination at defect sites reduce efficiencies of LEDs / solar cells

defects in water

effects of water cleaning on transistor performance

water resistivity	leakage current	
(MΩ*cm, at 25 °C)	(A /μ m ²)	
5	12*10 ⁻⁹	
10	10*10 ⁻⁹	
13	5*10 ⁻⁹	
15	1*10 ⁻⁹	

Water

Types

- purified water, distilled water, tapping water, ...
- □ 自来水,矿泉水,纯净水,超纯水,蒸馏水,...
- In cleanroom, deionized (DI) water (去离子水) is used
 - free of any mineral ions
 - only H⁺, OH⁻

$H_2O <-> H^+ + OH^-$

- In water, at 25 °C
 - \Box [H⁺]*[OH⁻] = K_w = 10⁻¹⁴ (mol/L)²
 - □ in DI water, $[H^+] = [OH^-] = 10^{-7}$, pH = 7.0
 - **□** resistivity = 18.5 MΩ*cm

Defects Control

Si Wafer Clean

Ultrasonic / megasonic clean in DI water

remove: large particles, water soluble ions (Na, K, Cl, ...)

Standard Si Wafer Clean (RCA)

- Step 1 (SC-1)
 - \square NH₄OH: H₂O₂: H₂O = 1:1:5, at 80 °C, 10 mins
 - remove organic residues
- Step 2
 - \Box HF: H₂O = 1:50, at 25 °C, 20 secs
 - □ remove native SiO₂
- Step 3 (SC-2)
 - \Box HCI: H₂O₂: H₂O = 1:1:6, at 80 °C, 10 mins
 - remove metals
- Step 4
 - clean in DI water

Surface Roughness

Surface Roughness of Si after cleaning ammonia (NH₄OH) and HF slightly etches Si

Metal Removal

Table 4-3 Oxidation-reduction reactions for a number of species of interest in silicon wafer cleaning

Oxidant/ Reductant	Standard Oxidation Potential (volts)	Oxidation-Reduction Reaction
Mn ²⁺ /Mn		
iO₂/Si	1.05	$Mn \leftrightarrow Mn^{2+} + 2e^{-}$
	0.84	$Si + 2H_2O \leftrightarrow SiO_2 + 4H^+ + 4e^-$
r ³⁺ /Cr	0.71	$Cr \leftrightarrow Cr^{3+} + 3e^{-}$
li ²⁺ /Ni	0.25	$Ni \leftrightarrow Ni^{2+} + 2e^{-}$
e ³⁺ /Fe	0.17	$Fe \leftrightarrow Fe^{3+} + 3e^{-}$
SO ₄ /H ₂ SO ₃	-0.20	$H_2O + H_2SO_3 \leftrightarrow H_2SO_4 + 2H^+ + 4e$
²⁺ /Cu	-0.34	$Cu \leftrightarrow Cu^{2+} + 2e^{-}$
/H₂O	-1.23	$2H_2O \leftrightarrow O_2 + 4H^+ + 4e^-$
u ³⁺ /Au	-1.42	$Au \leftrightarrow Au^{3+} + 3e^{-}$
2O2/ H2O	-1.77	$2H_2O \leftrightarrow H_2O_2 + 2H^+ + 2e^-$
) ₃ /O ₂	-2.07	$O_2 + H_2O \leftrightarrow O_3 + 2H^+ + 2e^-$

Other Si Clean Recipes

Piranha clean

- □ SPM: Sulfuric-Peroxide Mixture
- \Box H₂SO₄: H₂O₂ = 3:1, 10–30 mins
- extremely exothermic, self heating up to 80 °C
- remove organic residues and some metals

Ozone (O₃) clean

- $H_2O + O_3$
- remove organic residues

Organic solvent

- Acetone / Isopropanol / DI water
- remove organic residues
- not used for standard CMOS process!

'wet' method

Other Si Clean Recipes

- UV Ozone clean
 - clean organic residues

- Plasma clean
 - clean organic residues

'dry' method

Clean other Materials

- SiO₂ (glass, quartz, ...)
 - \square piranha clean, H_2SO_4 : H_2O_2 = 3:1, 10–30 mins
- GaAs
 - □ $NH_4OH : H_2O = 1:10$, for stoichiometric surface (Ga/As 1:1)
 - □ H₃PO₄ or HCI, for As rich surface
- Acetone / Isopropanol / DI water
 - generally works well for most non-CMOS process

Defects Control

- 'gettering' in vacuum
 - use titanium to absorb gases in vacuum tubes

titanium

intrinsic gettering

Temperature (°C) 1300 1100 900 800 700 600 **500** H 10-6 Cu Ni 10-8 Li easy 10^{-10} Au_e(2) D (cm²/s) Aus (1) 10-14 group-III elements hard 10-16 group-V elements self-diffusion Sb 10^{-18} 11 12

O defects in Si

diffusivity of defects

Minority carrier lifetime

Au doped Si: 10⁻⁹ s

Typical Si: 10⁻⁶ s

Gettered Si: 10⁻³ s

Lab Safety

- Chemicals
 - □ HF, H₂SO₄, ...
 - KOH, NH₄OH, ...
 - □ Acetone, ...
- Electricity
 - □ instruments, ...
- Fires
 - Acetone, Alcohol, ...
- Sharps
 - silicon, glass, ...
- •

Lab Safety

- Lab orientation
 - exits, showers, ...
- Proper protection
 - □ gloves, goggles, aprons, ...

Materials Data Safety Sheets (MSDS)

Lab Safety

Materials Data Safety Sheets (MSDS)

Material Safety Data Sheet Hydrofluoric Acid, 48% MSDS

Section 1: Chemical Product and Company Identification

Product Name: Hydrofluoric Acid, 48%

Catalog Codes: SLH2227

CAS#: 7664-39-3

RTECS: Not applicable.

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd.

Houston, Texas 77396

US Sales: 1-800-901-7247

International Sales: 1-281-441-4400

Section 3: Hazards Identification

Potential Acute Health Effects:

Very hazardous in case of skin contact (corrosive, irritant, permeator), of eye contact (irritant, corrosive), of ingestion. Liquid or spray mist may produce tissue damage particularly on mucous membranes of eyes, mouth and respiratory tract. Skin contact may produce burns. Inhalation of the spray mist may produce severe irritation of respiratory tract, characterized by coughing, choking, or shortness of breath. Severe over-exposure can result in death. Inflammation of the eye is characterized by redness, watering, and itching. Skin inflammation is characterized by itching, scaling, reddening, or, occasionally, blistering.

Chemical Safety

NFPA diamond

0: no harzard

4: highest risk

HF acetone

 H_2O_2

Chemical Safety

- Choose proper containers
- Most solvents
 - glass, Teflon, ...

- Be careful
 - □ alkali (NaOH, etc) slowly etches glass
 - HF strongly etches glass!

glass art by HF etch

Radiation Safety

XRD

SEM & TEM

Ebeam Evaporator

Laser Safety

Class 1	CD/DVD Player/Recorder, Laptop or Personal Computer
Class 2	Presentation Laser Pointer, Barcode Reader
Class 3R	Some Measuring & Targeting Devices, Higer Power Pointers
Class 3B	Higher power laser products intened for professional applications
Class 4	Medical Lasers, Industrial Cutting/Welding, Scientific Applications and most Laser Light Show Equipment

wear goggles

Biological Safety

- BSI -1
 - Safe microorganisms
 - Not known to cause disease in healthy adult humans
- BSL-2
 - Moderate-risk microorganisms
 - Potentially hazard to humans and the environment
 - e.g. inactivated virus that Causes Foot and Mouth Disease

- BSL-3, BSL-3 Enhanced & BSL-3 Ag
 - High-risk microorganisms, foreign and emerging agents
 - Serious and potential lethal consequences for livestock
 - Not harmful to humans because of protective measures
 - e.g. live virus that Causes Foot and Mouth Disease
- BSI-4
 - High-risk agents microorganisms
 - No known vaccine or therapy
 - e.g. Nipah and Hendra viruses

Thank you for your attention