ASMS 2018 ANNUAL CONFERENCE WORKSHOP



# USING R FOR MASS SPECTROMETRY DATA ANALYSIS & WORKFLOWS



#### **WORKSHOP OVERVIEW**

Main Goal present and discuss tools within the R ecosystem that support mass spec data analysis & analysis workflows



R for Data Science (Wickham & Grolemund, Ch 1)



### **WORKSHOP OVERVIEW**

#### Outline

- Introductory tips, thoughts & suggestions
- Converting MS data files to open formats
- R packages for MS analysis
- tidyverse for analysis workflows
- Shiny apps for data exploration and communication
- Bringing everything together



#### **WORKSHOP OVERVIEW**

All Presentation Material Are on GitHub

https://github.com/ZenBrayn/asms-2018-r-workshop



# GETTING STARTED



#### WIN/MAC/LINUX: INSTALL R & RSTUDIO

Install R first!
<a href="https://cloud.r-project.org">https://cloud.r-project.org</a>

Then install RStudio Desktop
<a href="https://www.rstudio.com/products/rstudio/download/">https://www.rstudio.com/products/rstudio/download/</a>

Install R packages (easy to do through RStudio)
 Tools → Install Packages...



#### NOTES ON INSTALLING PACKAGES

- Some packages require shared libraries and/or compilation
- On the Mac: Install Xcode (from the Mac App Store) and the Command Line Tools
   (from the terminal run: xcode-select --install)
- Pay attention to any error messages They're getting better and could be helpful!
- Google is your friend!



#### **EXAMPLE PACKAGE ERROR MESSAGE**

```
Using PKG CFLAGS=
Using PKG LIBS=-1xm12
                   ----- ANTICONF ERROR -----
Configuration failed because libxml-2.0 was not found. Try installing:
* deb: libxml2-dev (Debian, Ubuntu, etc)
* rpm: libxml2-devel (Fedora, CentOS, RHEL)
* csw: libxml2_dev (Solaris)
If libxml-2.0 is already installed, check that 'pkg-config' is in your
PATH and PKG_CONFIG_PATH contains a libxml-2.0.pc file. If pkg-config
is unavailable you can set INCLUDE_DIR and LIB_DIR manually via:
R CMD INSTALL --configure-vars='INCLUDE_DIR=... LIB_DIR=...'
ERROR: configuration failed for package 'xml2'
* removing '/usr/local/lib/R/site-library/xml2'
ERROR: dependency 'xml2' is not available for package 'tm'
* removing '/usr/local/lib/R/site-library/tm'
The downloaded source packages are in
    '/tmp/RtmpLb48pu/downloaded packages'
Warning messages:
1: In install.packages("tm"):
  installation of package 'xml2' had non-zero exit status
2: In install.packages("tm") :
  installation of package 'tm' had non-zero exit status
```

This is actually helpful!



#### WINDOWS: INSTALL THE LINUX SUBSYSTEM

Follow the guide here

https://docs.microsoft.com/en-us/windows/wsl/install-win10

- For the current version of Windows 10
  - Enable the Linux subsystem need to run a command in the terminal, with admin privileges
  - Install your Linux distro of choice from the Microsoft Store
  - Run the Linux app, create your account, ready to go!



#### **RSTUDIO TIPS**

- Learn the keyboard shortcuts& customize them as needed
- Spend most of your time in the code editor, not the console
- knit'ing rmarkdown and running Shiny apps is just a button click away
- Don't save/restore .RData sessions!





### THOUGHTS ON REPRODUCIBLE DATA ANALYSIS

- Could you repeat an analysis 1 month, 6 months, 1 year from now and *know* that you could get the same results?
- Factors to consider for doing reproducible analysis
  - Encapsulate all analysis steps in scripts
  - Red flags: doing analysis in a GUI, copy-paste data
  - Think about how OS and software versions and updates could affect previous analyses
  - Could your input data change or disappear?



# A (VERY) BASIC REPRODUCIBLE ANALYSIS WORKFLOW

- 1. Create a new directory for your analysis project to hold your analysis scripts and outputs
- 2. Encapsulate ALL data processing and analysis steps in a set of scripts
  - Prefix script names with numbers indicating the order in which to run them (e.g. 01\_process.R, 02\_analyze.R)
  - Start with "raw" data, do all data processing, manipulation, clean, reformatting in code
- 3. Add a README file to your project directory to document the when/what/why/how of your analysis; keep it current
- 4. Reproducible Test: move your directory to another location, or ideally a different computer can you re-run your analysis and get the same results?



# CONVERTING VENDOR DATA TO OPEN FORMATS



#### CONVERTING VENDOR DATA TO OPEN FORMATS

ProteoWizard is the package of choice!

http://proteowizard.sourceforge.net

- Provides LOTS of tools for MS data conversion and analysis
- Tool of particular note: MSConvert a command line and GUI tool for converting among MS data formats including vendor → open formats
- Important: must use the *Windows* version to convert proprietary vendor formats



### THE MSCONVERT GUI IS VERY EASY TO USE ...





#### ... BUT USE THE COMMAND LINE INTERFACE FOR REPRODUCIBLE WORKFLOWS

MSConvert can also be used through Command Prompt

http://proteowizard.sourceforge.net/tools/msconvert.html

```
# Convert all .RAW files to mzML files and save to output_dir
msconvert *.RAW -o output_dir -mzML

# Might need to specify full path to msconvert, i.e.
"C:\Program Files\ProteoWizard\ProteoWizard 3.0.11252\msconvert.exe"
```

 Also provides many other options for data processing and filtering (see the documentation link above)



#### YOU CAN INSTALL PROTEOWIZARD IN LINUX ON WINDOWS

For Ubuntu, first run the Ubuntu app and:

```
# Update apt repositories
sudo apt update

# Install the ProteoWizard tools
sudo apt install libpwiz-tools
```

- IMPORTANT: You can't convert vendor format files since this is the Linux version
   Use Command Prompt to run the Windows version instead
- Otherwise, you can use all the other ProteoWizard tools as usual



# **EXAMPLE DATA CONVERSION WORKFLOW**





# OVERVIEW OF R PACKAGES FOR MS DATA PROCESSING AND ANALYSIS



#### NOTABLE BIOCONDUCTOR R PACKAGES FOR MS DATA ANALYSIS

#### MSnBase

infrastructure for reading, processing and analyzing MS data

#### mzR

unified API for reading a variety of MS data formats

#### MassSpecWavelet

MS spectrum processing tools

#### xcms

comprehensive set of tools for MS analysis

Check out the documentation and vignettes on the Bioconductor package pages



#### XCMS HAS A GREAT TUTORIAL ON LCMS PROCESSING/ANALYSIS

LCMS data preprocessing and analysis with xcms

http://bioconductor.org/packages/release/bioc/vignettes/xcms/inst/doc/xcms.html

- Covers
  - Loading data ("on disk")
  - High-level data review
  - Chromatographic peak detection
  - Retention time alignment, and cross-experiment feature grouping



# USING THE TIDYVERSE FOR ANALYSIS WORKFLOWS



#### WHAT IS THE TIDYVERSE?

 tidyverse: a collection of R packages designed around the central idea of "tidy data"

https://www.tidyverse.org https://vita.had.co.nz/papers/tidy-data.pdf

 Supports the entire data analysis process in a systematic way, making it easier to write and understand





#### WHICH PACKAGES ARE PART OF THE TIDYVERSE?

- Core packages
  - ggplot2: visualization
  - dplyr: data manipulation, data pipelines
  - tidyr: data formatting and arranging
  - readr: data importing from flat files
  - purrr: functional programming toolkit (replace for loops!)
  - tibble: modern data frames
  - stringr: string manipulation
  - forcats: tools for factors (categorical variables)
- ▶ LOTS of other associated packages, such as...
  - readxl: data importing from Excel
  - DBI: connecting to databases
  - lubridate: tools for handling dates, times



#### DPLYR FOR ANALYSIS WORKFLOWS

- dplyr allows you to create powerful data analysis workflows based upon data manipulation verbs
  - mutate: add new variables (columns)
  - select: pick specific variables (columns)
  - filter: subset to specific cases (rows)
  - summarize: transform multiple values to a single summary
  - arrange: reorder cases (rows)
  - group\_by: group data into sub-groups, operate on them individually
- Uses the pipe operator (%>%) to chain expressions together, makes things easier to read and understand



#### **NOTES ON THE TIDYVERSE**

- The tidyverse does not replace base R
  - peacefully co-exist, both compliment each other
  - base R functions can usually be used with tidyverse tools
- The tidyverse tools typically use tibbles instead of data frames
  - like data frames, but act more consistently
  - provide powerful additions not possible with data frames
  - some non-tidyverse packages don't like tibbles, you can always convert a tibble to a standard data frame



## **EXAMPLE: ANALYSIS WITH DPLYR**

Live Demo
01\_dplyr\_example



# BUILDING INTERACTIVE DATA APPLICATIONS WITH SHINY



#### SHINY ALLOWS R USERS TO EASILY BUILD INTERACTIVE DATA APPS

- ▶ **Shiny**: an R framework for building interactive data applications, accessed via a web browser
- If you know R, you're 90% of the way towards building (basic) Shiny applications
- Example use cases:
  - Dashboards
  - Data tools/widgets
  - Communicate data to non-analysts, allow them to explore data



#### THE MAIN STRUCTURE OF A SHINY APP

#### ui.R - define the application's interface

```
library(shiny)
# Define UI for application that draws a histogram
shinyUI(fluidPage(
  # Application title
  titlePanel("Old Faithful Geyser Data"),
  # Sidebar with a slider input for number of bins
  sidebarLayout(
    sidebarPanel(
       sliderInput("bins",
                   "Number of bins:",
                   min = 1,
                   max = 50,
                   value = 30)
    # Show a plot of the generated distribution
    mainPanel(
       plotOutput("distPlot")
))
```

#### server.R - define the application's logic

Also possible to create a single file Shiny application in an app.R file



#### **LEARNING SHINY**

- Check out the tutorials
  <a href="https://shiny.rstudio.com/tutorial/">https://shiny.rstudio.com/tutorial/</a>
- Reactivity is a critical concept for building shiny apps;
   might be strange at first, but worth learning
- Start simple, don't focus (too much) on the interface, just try to build something useful
- Basic Shiny apps can look bland, but the framework is rich
   & based on web standards, can do most anything you want



# BRING IT ALL TOGETHER: EXAMPLE ANALYSIS WORKFLOW



### **EXAMPLE SCENARIO**

- You've just finished running a study consisting of multiple
   LCMS runs (different subjects, sample types, etc.)
  - in our example here: 2 subjects, 10 measurements each
- You are tasked with reviewing the data & performing a high-level assessment
- You co-workers in the lab and your supervisor are also interested to see what the data look like



#### 1. READ AND CLEAN YOUR DATA



- Use ProteoWizard to convert data from raw to open format
- Use mzR to read and parse data files
- Use dplyr and tidyverse to tidy your data



### **EXAMPLE: PARSING & TIDYING THE LCMS DATA**

Live Demo
02\_parse\_experiments



#### 2. REVIEW AND UNDERSTAND YOUR DATA



- Use dplyr and tidyverse to explore/drill-in/summarize data
- Use ggplot2 to visualize data (exploratory analysis)
- Look for potential problems, interesting patterns



## **EXAMPLE: REVIEWING THE LCMS DATA**

Live Demo
03\_review\_experiments



#### 3. SHARE YOUR DATA AND RESULTS



- Use rmarkdown to generate reports
- Use Shiny to create interactive data applications
- Share with others, discuss, listen to feedback



### **EXAMPLE: SHARING THE LCMS DATA**

Live Demo
03\_shiny\_data\_table
04\_spectrum\_viewer



#### RESOURCES

#### Books

- R for Data Science <a href="http://r4ds.had.co.nz">http://r4ds.had.co.nz</a>
- Applied Predictive Modeling
   <a href="http://appliedpredictivemodeling.com">http://appliedpredictivemodeling.com</a>
- ggplot2: Elegant Graphics for Data Analysis, 2nd Ed.
- Advanced Rhttps://adv-r.hadley.nz

#### Websites

- RStudio Community
  <a href="https://community.rstudio.com">https://community.rstudio.com</a>
- Kaggle https://www.kaggle.com
- R Bloggers
  <a href="https://www.r-bloggers.com">https://www.r-bloggers.com</a>

#### Podcasts

- Data Framed <a href="https://www.datacamp.com/community/">https://www.datacamp.com/community/</a> <a href="podcast">podcast</a>