18.445 Introduction to Stochastic Processes

Lecture 3: Markov chains: time-reversal

Hao Wu

MIT

18 February 2015

1/11

Recall

Consider a Markov chain with state space Ω and transition matrix P:

$$\mathbb{P}[X_{n+1} = y \mid X_n = x] = P(x, y).$$

- A probability measure π is stationary if $\pi = \pi P$.
- If *P* is irreducible, there exists a unique stationary distribution.

Today's goal

- Ergodic Theorem
- Time-reversal of Markov chain
- Birth-and-Death chains
- Total variation distance

Ergodic Theorem

Theorem

Let f be a real-valued function defined on Ω . If $(X_n)_n$ is an irreducible Markov chain with stationary distribution π , then for any starting distribution μ , we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^n f(X_j)=\pi f,\quad \mathbb{P}_\mu-a.s.$$

In particular,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^n 1_{[X_j=x]}=\pi(x),\quad \mathbb{P}_{\mu}-a.s.$$

3/11

Detailed balance equations

Definition

Suppose that a probability measure π on Ω satisfies

$$\pi(x)P(x,y) = \pi(y)P(y,x), \quad \forall x,y \in \Omega.$$

These are called detailed balance equations.

Lemma

Any distribution π satisfying the detailed balance equations is stationary for P.

Definition

A chain satisfying detailed balance equations is called reversible.

Simple random walk on graph

Example Consider simple random walk on graph G = (V, E) (which is connected). The measure

$$\pi(x) = \frac{deg(x)}{2|E|}, \quad x \in \Omega$$

satisfies detailed balance equations; therefore the simple random walk on \boldsymbol{G} is reversible.

Time-reversal of Markov chain

Theorem

Let (X_n) be an irreducible Markov chain with transition matrix P and stationary distribution π . Define \widehat{P} to be

$$\widehat{P}(x,y) = \frac{\pi(y)P(y,x)}{\pi(x)}.$$

- P is stochastic
- Let (\widehat{X}_n) be a Markov chain with transition matrix \widehat{P} . Then π is also stationary for \widehat{P} .
- For any $x_0,...,x_n \in \Omega$, we have $\mathbb{P}_{\pi}[X_0 = x_0,...,X_n = x_n] = \mathbb{P}_{\pi}[\widehat{X}_0 = x_n,...,\widehat{X}_n = x_0].$ We call \widehat{X} the time-reversal of X

Remark If a chain with transition matrix P is reversible, then $\widehat{P} = P$ and \widehat{X} has the same law as X.

Birth-and-Death chains

A birth-and-death chain has state space $\Omega = \{0, 1, ..., N\}$.

The current state can be though of as the size of some population; in a single step of the chain there can be at most one birth or death. The transition probabilities can be specified by $\{(p_k, r_k, q_k)_{k=0}^N\}$ where $p_k + r_k + q_k = 1$ for each k and

- p_k is the probability of moving from k to k+1 when $0 \le k < N$; $p_N = 0$
- q_k is the probability of moving from k to k-1 when $0 < k \le N$; $q_0 = 0$
- r_k is the probability of remaining at k when $0 \le k \le N$.

Theorem

Every birth-and-death chain is reversible.

Total variation distance

Definition

The total variation distance between two probability measures μ and ν on Ω is defined by

$$||\mu - \nu||_{TV} = \max_{A \subset \Omega} |\mu(A) - \nu(A)|.$$

Lemma

The total variation distance satisfies triangle inequality:

$$||\mu - \nu||_{TV} \le ||\mu - \eta||_{TV} + ||\eta - \nu||_{TV}.$$

Three ways to characterize the total variation distance

Lemma

$$||\mu - \nu||_{TV} = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

Lemma

$$||\mu - \nu||_{TV} = \frac{1}{2} \sup\{\mu f - \nu f : f \text{ satisfying } \max_{x \in \Omega} |f(x)| \le 1\}.$$

9/11

Hao Wu (MIT) 18.445 18 February 2015

Three ways to characterize the total variation distance

Definition

A coupling of two probability measures μ and ν is a pair of random variables (X,Y) defined on the same probability space such that the marginal law of X is μ and the marginal law of Y is ν .

Lemma

$$||\mu - \nu||_{TV} = \inf\{\mathbb{P}[X \neq Y] : (X, Y) \text{ is a coupling of } \mu, \nu\}.$$

Definition

We call (X, Y) the optimal coupling if $\mathbb{P}[X \neq Y] = ||\mu - \nu||_{TV}$.

Hao Wu (MIT) 18.445 18 February 2015 10 / 11