Claims

What is claimed is:

1. A voltage-controlled oscillator, comprising:

a voltage-controlled phase-shift circuit, outputting an output signal with a phase of an input signal shifted by a specified amount according to an external control voltage;

a SAW resonator, resonating at a specified resonance frequency, and;

a buffer, inputting a signal from the SAW resonator and outputting the signal as a clock signal with a specified frequency, and outputting an output signal for a positive-feedback oscillation loop.

wherein the voltage-control phase-shift circuit, the SAW resonator, and the buffer form the positive-feedback oscillation loop, and a frequency temperature characteristic of the SAW resonator is corrected by rotating the frequency temperature characteristic of the SAW resonator by a specified amount using a temperature characteristic of propagation delay time of the buffer.

2. The voltage-controlled oscillator according to Claim 1, wherein the buffer includes a first differential amplifier, amplifying a signal from the SAW resonator and outputting the signal, a second differential amplifier, inputting the signal outputted from the first differential amplifier, of which either one of a non-inversion output terminal and an inversion output terminal outputs the positive-feedback-oscillation-loop output signal, and a third differential amplifier, inputting the signal from the first differential

amplifier and outputting the signal as a clock signal with a specified frequency, wherein the propagation delay time of the buffer is propagation delay time between the first differential amplifier and the second differential amplifier connected to the first differential amplifier.

- 3. The voltage-controlled oscillator according to Claim 2, wherein the differential amplifier is a differential amplifier circuit using an ECL line receiver.
- 4. The voltage-controlled oscillator according to Claim 1, wherein the buffer includes a first amplifier, amplifying a signal from the SAW resonator and outputting the signal, a second amplifier, inputting the signal outputted from the first amplifier and outputting the signal as the positive-feedback-oscillation-loop output signal, and at least one third amplifier, inputting the signal outputted from the first amplifier and outputting the signal as a clock signal with a specified frequency, wherein the propagation delay time is propagation delay time between the first amplifier and the second amplifier connected to the first amplifier.
- 5. The voltage-controlled oscillator according to one of Claims 1 to 4, wherein the SAW resonator uses an in-plane rotated ST-cut quartz crystal plate with Euler angles of $(0, 113^{\circ})$ to (40°) to (40°) .
- 6. The voltage-controlled oscillator according to one of Claims 1 to 5, further comprising an impedance circuit, generating a specified potential

difference between the non-inversion input terminal and the inversion input terminal of the buffer, and an NTC thermistor having a negative temperature characteristic in parallel to the impedance circuit, between the non-inversion input terminal of the buffer and the terminal of the SAW resonator adjacent to the downstream of the feedback loop.

7. A clock converter, forming a feedback loop constructed of a voltage-controlled oscillator, in which frequency varies depending on a supplied control voltage and which outputs a feedback-loop output signal, a phase comparing section, comparing phases of the feedback-loop output signal from the voltage-controlled oscillator and an external input signal to output a phase-difference signal, and a loop filter, smoothing a phase difference signal to generate the control voltage, wherein the voltagecontrolled oscillator comprises a voltage-controlled phase-shift circuit, outputting an output signal with the phase of an input signal shifted by a specified amount according to the control voltage, a SAW resonator, resonating at a specified resonance frequency, and a buffer, inputting a signal from the SAW resonator and outputting the signal as a clock signal with a specified frequency, and outputting an output signal for a positive-feedback oscillation loop and the feedback-loop output signal, wherein the voltagecontrolled phase-shift circuit, the SAW resonator, and the buffer form a positive-feedback oscillation loop, and wherein a frequency temperature characteristic of the SAW resonator is corrected by rotating the frequency temperature characteristic of the SAW resonator by a specified amount using a temperature characteristic of propagation delay time of the buffer.

8. The clock converter according to Claim 7, wherein the buffer includes a first differential amplifier, amplifying a signal from the SAW resonator and outputting the signal, a second differential amplifier, inputting the signal outputted from the first differential amplifier, of which either one of a non-inversion output terminal and an inversion output terminal outputs the feedback-loop output signal and the other output terminal outputs the positive-feedback-oscillation-loop output signal, and a third differential amplifier, inputting the signal from the first differential amplifier and outputting the signal as a clock signal with a specified frequency, wherein the propagation delay time of the buffer is propagation delay time between the first differential amplifier and the second differential amplifier connected to the first differential amplifier.

- 9. The clock converter according to Claim 8, wherein the differential amplifier is a differential amplifier circuit using an ECL line receiver.
- 10. The clock converter according to Claim 7, wherein the buffer includes a first amplifier, amplifying a signal from the SAW resonator and outputting the signal, a second amplifier, inputting the signal outputted from the first amplifier and outputting the signal as an output signal for the positive-feedback oscillation loop, and a plurality of third amplifiers, inputting the signal outputted from the first amplifier, outputting at least one clock signal having a specified frequency, and outputting the feedback-loop output signal,

wherein the propagation delay time is propagation delay time between the first amplifier and the second amplifier connected to the first amplifier.

- 11. The clock converter according to one of Claims 7 to 10, wherein the SAW resonator uses an in-plane rotated ST-cut quartz crystal plate with Euler angles of (0, 113° to 135°, ±(40° to 49°)).
- 12. The clock converter according to one of Claims 7 to 11, further comprising an impedance circuit, generating a specified potential difference between a non-inversion input terminal and an inversion input terminal of the buffer, and an NTC thermistor having a negative temperature characteristic in parallel to the impedance circuit, between the non-inversion input terminal of the buffer and the terminal of the SAW resonator adjacent to the downstream of the feedback loop.
- 13. An electronic device, comprising a clock converter according to one of Claims 7 to 12.