10.단순회귀분석

- 단순 선형 회귀(Simple Linear Regression):
 특성변수 X 하나만 가지고, 연속형 종속변수 Y를 예측하는 모델
- 회귀분석 개요
 - 。 회귀분석
 - 독립변수와 종속변수 간의 함수적인 관련성을 규명하기 위하여 어떤 수학적 모형을 가정하고, 이 모형을 측정된 자료로부터 통계적으로 추정하는 분석방법.
 - *y=f(x)*의 함수 관계가 있을 때,
 - x를 설명변수(explanatory variable)
 또 는독립변수(independent variable)
 또는 예측변수, 특성 변수
 - 단순 회귀: 독립변수가 1개
 - 。 다중 회귀: 독립변수가 2개 이상
 - y를반응 변수(response variable)
 또는종속 변수(dependent variable)
 또는 목표변수, 타겟변수

- 단순선형회귀모형
 - 。 모형 정의 및 가정
 - 자료 (x_i, Y_i) , $i=1, \dots, n$ 에 다음의 관계식이 성립한다고 가정함

10.단순회귀분석 1

 $Y_i = \alpha + \beta x_i + \epsilon_i, i = 1, 2, ..., n$

- ullet 오차항인 $\epsilon_1,\epsilon_2,\cdots,\epsilon_n$ 는 서로 독립인 확률변수로, $\epsilon_i \ N[0,\sigma^2]$:정규, 등분 산, 독립가정
- α, β 는 회귀계수라 부르며 α 는 절편, β 는 기울기를 나타냄
- α, β, σ^2 은 미지의 모수로, 상수임.
- ullet 자료 (x_i,Y_i) , i=1,…, n 에 다음의 관계식이 성립한다고 가정함. $Y_i \ N[lpha+eta x_i,\sigma^2] o E[Y_i] = lpha+eta x_i$

- 단순 선형회귀모형의 모수 추정
 - 。 모수 추정
 - 모형이 포함한 미지의 모수 α,β 를 추정하기 위하여 각 독립변수 x_i 에 대응하는 종속변수 y_i 로 짝지어진 n 개의 표본인 관측치 (x_i,y_i) 가 주어짐

。 최소제곱법

ullet 단순회귀모형 $Y_i=lpha+eta x_i+\epsilon_i$ 에서 자료점과 회귀선 간의 수직거리 제곱합 $SS(lpha,eta)=\Sigma_i^n(y_i-lpha-eta_i)^2$ 이 최소가 되도록 lpha와 eta를 추정하는 방법

- ullet lpha에 대한 최소제곱 추정량 : $\widehat{lpha}=\widehat{y}-\widehat{eta}\overline{x}$
- m eta에 대한 최소제곱 추정량 : $\widehat{eta}=rac{\Sigma_i^n x_i(y_i-\overline{y})}{\Sigma_i^n x_i(x_i-\overline{x})}$ (단, \overline{x} 는 x_i 의평균, \overline{y} 는 y_i 의평균)
- ullet y_i 의 추정치 : $\widehat{y_i} = \widehat{lpha} + \widehat{eta} x_i, i = 1, 2, ..., n$
- ullet 잔차 : $e_i = y_i \widehat{y_i} = y_i \widehat{lpha} \widehat{eta} x_i, i = 1, 2, ..., n$
 - 오차 ϵ 과 대응되는 개념으로써 오차는 확인이 불가능하지만 잔차는 확인이 가능
- 단순 선형회귀모형의 유의성 검정
 - 。 모형의 유의성 t 검정
 - 독립변수 x가 종속변수 Y를 설명하기에 유용한 변수인가에 대한 통계적 추론은 회귀계수 β 에 대한 검정을 통해 파악할 수 있음.
 - 가설

 H_0 : $\beta = 0$ H_1 : $\beta \neq 0$

- 검정통계량과 표본분포
 - 귀무가설 H_0 이 사실일 때, $T=rac{\widehat{eta}}{\widehat{S.E.[\widehat{eta}]}}\sim t[n-2]$ $|T|=|rac{\widehat{eta}}{\widehat{S.E.[\widehat{eta}]}}|>t_{lpha/2,n-2}$ 또는 p-value $(=P[T>|t_0|] imes2)<lpha$ 명

귀무가설을 기각

 \rightarrow 독립변수x가종속변수Y를설명하기에유용한변수라고해석할수있음.

- $_{-}$ $_{-}$
- 단순선형회귀모형 사례
 - 。 예제
 - 베타에 관한 유의성을 유의수준 5%로 검정할 것.

	추정치	표준오차	T 통계량	p-value
절편	-17.5791	6.7584	-2.601	0.0123
주행속도	3.9324	0.4155	9.464	1.49E-12

■ 가설 H_0 : β = 0 $H_1: \beta \neq 0$

- 귀무가설(H_0)이사실일때,
- 검정통계량의관찰값(x_0)는9.464로t[48]의분포에서 유의확률은1.49E-12
- p-value(=1.49E-12) $\leq \alpha$ (=0.05) 이므로, H_0 를기각
- 단순선형회귀모형의 적합도
 - 。 Y의 변동성 분해
 - 제곱합:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
SST SSR SSE (모형으로 설명되는 변동) (모형으로 설명되지 않는 변동)

。 모형의 적합성

- 결정계수 R^2 $R^2 = \frac{SSR}{SST} = 1 \frac{SSE}{SST}$
- SST=SSR+SSE이므로 항상 0과1 사이의 값을 가짐(0 $\leq R^2 \leq$ 1).
- ullet y_i 의 변동 가운데 추정된 회귀모형으로 통해 설명되는 변동의 비중을 의미함.
- 0에 가까울수록 추정된 모형의 설명력이 떨어지는 것으로, 1에 가까울수록 추정된 모형이 y_i 의 변동을 완벽하게 설명하는 것으로 해석할 수 있음.
- ullet R^2 는 두 변수 간의 상관계수 r의 제곱과 같음.