Quiz 4: Mathematical Statistics (MATH-UA 234)

In-class 11/01 (15min). Print your name and NetID, write in the box, and circle your final answer.

Name:	NetID:	
Problem 1. For some fixed but unknown	wn parameter $p\in(0,1/2)$, define the cumulative distribution fu	ınction
	$F_p(x) = \begin{cases} 0 & x < -1 \\ p & -1 \le x < 0 \\ 1 - p & 0 \le x < 2 \\ 1 & x \ge 2. \end{cases}$	
Suppose $X_1, \ldots, X_n \sim F_p$ are all independ	dent and define $\bar{X}_n=rac{1}{n}(X_1+\cdots+X_n)$.	
(a) Suppose $X \sim F_p$. Write the probability	bility mass function $f_p(x) = \mathbb{P}[X = x]$.	(3 pts)
(b) Suppose $X \sim F_p$. What is $\mathbb{E}[X] = \int x dF_p(x)$ and $\mathbb{V}[X] = \int (x - \mathbb{E}[X])^2 dF_p(x)$?		(3 pts)
(c) What is $\mathbb{E}[\bar{X}_n]$ and $\mathbb{V}[\bar{X}_n]$?		(2 pts)
(d) Find an interval (a_n, b_n) depending	g on X_1, \ldots, X_n and $\alpha \in (0, 1)$ such that	
	$\mathbb{P}[p \in (a_n, b_n)] \geq 1 - \alpha.$	
Your interval should not have p in	the formula and should get smaller as n gets larger.	(7 pts)
Hint: it may help to use Chebyshev's ineq	uality:	
	$\mathbb{P}[Z - \mathbb{E}[Z] \ge \epsilon] \le \frac{\mathbb{V}[Z]}{\epsilon^2}, \forall Z.$	

