6.3 Borrowing Money

Goals for the Day

Credit Cards

Paying off credit cards

- Number of Fixed Payments Required to Pay Off Credit Cart Debt
 - ightharpoonup R = # of payments
 - A = Future value (loan amount)

$$R = \frac{-\log\left[1 - \frac{r}{n}\left(\frac{A}{PMT}\right)\right]}{\log\left(1 + \frac{r}{n}\right)}$$

Credit Card Payments

Example

Franz wants to buy a new computer that costs \$2200 using a credit card that has an APR of 19.99%. How long will it take him to pay off the computer if he makes regular monthly payments of \$40? How much will he pay overall for the computer?

$$R = \frac{-\log\left[1 - \frac{r}{n}\left(\frac{A}{PMT}\right)\right]}{\log\left(1 + \frac{r}{n}\right)} = \frac{-\log\left[1 - \frac{0.1999}{12}\left(\frac{2200}{40}\right)\right]}{\log\left(1 + \frac{0.1999}{12}\right)} \approx 150.08 \text{ (151) payments}$$

$$Total\ paid = PMT * \#\ payments = 40 * 151 = $6,040$$

Loans

Fixed Installment Loans

- Fixed installment loans (present value annuity): Receive money now, in the present, and use the regular payments to pay off the future value of the loan (principal and interest).
- **Down payments** are often required on large loans (house, car, etc.). These reduce the principal of the loan, and the amount that remains is *financed* (borrowed with interest).
- Monthly Payment Formula for Fixed Installment Loans

$$P = Price - Down Payment$$
 Principal that is financed
$$PMT = \frac{\left(P \cdot \frac{r}{n}\right)}{\left[1 - \left(1 + \frac{r}{n}\right)^{-nt}\right]}$$

Monthly Payments

Example

Owen wants to buy a new car for \$34,000 (including taxes and fees). He chooses to make a down payment of 20% and wants to finance the remainder. If Owen can get an APR of 3.99% for a 72-month loan, what is the amount of his monthly payment?

$$PMT = \frac{\left(P \cdot \frac{r}{n}\right)}{\left[1 - \left(1 + \frac{r}{n}\right)^{-nt}\right]} = \frac{\left(27,200 \cdot \frac{0.0399}{12}\right)}{\left[1 - \left(1 + \frac{0.0399}{12}\right)^{-12 \cdot 6}\right]} \qquad P = Price - Down payment = 34,000 - (34,000 * 0.20) = 34,000 - 6,800 = $27,200$$

$$\approx $425.43$$

Amortization Schedules

Home Mortgages - Maximum Purchase Price

- Amortization schedule: Payments on loans such as mortgages are portioned out between interest and principal. To show you this breakdown over time, lenders provide loan amortization schedules.
- When the monthly schedule is made, the interest is computed using the simple interest formula I = Prt.

$$I = 190,000 * 0.035 * \frac{1}{12} = $554.17$$

Loan amount: \$190,000 @ 3.5% APR

Payment Number		Payment	Principal	Interest	Balance	
	1	(\$853.18)	(\$299.02)	(\$554.17)	\$189,700.98	
	2	(\$853.18)	(\$299.89)	(\$553.29)	\$189,401.09	
	3	(\$853.18)	(\$300.77)	(\$552.42)	\$189,100.33	
	4	(\$853.18)	(\$301.64)	(\$551.54)	\$188,798.68	
	5	(\$853.18)	(\$302.52)	(\$550.66)	\$188,496.16	
	6	(\$853.18)	(\$303.40)	(\$549.78)	\$188,192.76	

Home Mortgage

Example

Find the mortgage balance after the first three payments on a 30-year \$180,000 mortgage that was financed at an APR of 5.25% and has a monthly payment of \$993.97.

Payment Number	Interest Payment	Principal Payment	Mortgage Balance
1	\$787.50	\$206.47	\$179,793.53
2	\$786.60	\$207.37	\$179,586.16
3	\$785.69	\$208.28	\$179,377.88

$$New\ Balance = Old\ Balance - Principal\ Payment$$

$$Balance\ 1 = 180,000.00 - 206.47 = \$179,793.53$$

$$Balance\ 2 = 179,793.53 - 207.37 = \$179,586.16$$

$$Balance\ 3 = 179,586.16 - 208.28 = \$179,377.88$$

Examples

Example #1

Natalie bought a new car for \$26,000. She paid a 10% down payment and financed the remaining balance for 36 months with an APR of 4.8%. Assuming she made monthly payments, determine the total cost of Natalie's car. Round your answer to the nearest cent. Then, determine how much interest she paid.

Total cost = \$27,771.92 Interest = \$1,771.92

Example #2

Jake bought several concert tickets for a total of \$900. He used a credit card that has an APR of 17.77%. How much will he pay in total to pay off the purchases if he makes monthly payments of \$30? Round the number of monthly payments up to the nearest whole number. Round your final answer to the nearest whole number, if necessary.

40 payments \$1200