NPIV Estimation through Stochastic Gradients and Kernel Methods

Student: Caio Lins Advisor: Yuri Saporito

EMAp - FGV

October 18, 2023

Summary

NPIV estimation

Our approach

Where we are at

Next steps

► Consider a generic regression problem:

$$Y = h^*(X) + \varepsilon$$

where $\mathbb{E}[\varepsilon] = 0$ and we wish to estimate h^* .

► Consider a generic regression problem:

$$Y=h^{\star}(X)+\varepsilon,$$

where $\mathbb{E}[\varepsilon] = 0$ and we wish to estimate h^* .

▶ What happens if $\varepsilon \not\perp \!\!\! \perp X$? That is, $\mathbb{E}[\varepsilon \mid X] \neq 0$?

► Consider a generic regression problem:

$$Y=h^{\star}(X)+\varepsilon,$$

where $\mathbb{E}[\varepsilon] = 0$ and we wish to estimate h^* .

- ▶ What happens if $\varepsilon \not\perp \!\!\! \perp X$? That is, $\mathbb{E}[\varepsilon \mid X] \neq 0$?
- ▶ Minimizing $\mathbb{E}[(Y h(X))^2]$ over h gives biased results.

Consider a generic regression problem:

$$Y=h^{\star}(X)+\varepsilon,$$

where $\mathbb{E}[\varepsilon] = 0$ and we wish to estimate h^* .

- ▶ What happens if $\varepsilon \not\perp \!\!\! \perp X$? That is, $\mathbb{E}[\varepsilon \mid X] \neq 0$?
- ▶ Minimizing $\mathbb{E}[(Y h(X))^2]$ over h gives biased results.

$$Y = \underbrace{h^{\star}(X) + \mathbb{E}[\varepsilon \mid X]}_{= f(X) \text{ for some } f} + (\varepsilon - \mathbb{E}[\varepsilon \mid X]).$$

Consider a generic regression problem:

$$Y=h^{\star}(X)+\varepsilon,$$

where $\mathbb{E}[\varepsilon] = 0$ and we wish to estimate h^* .

- ▶ What happens if $\varepsilon \not\perp \!\!\! \perp X$? That is, $\mathbb{E}[\varepsilon \mid X] \neq 0$?
- ▶ Minimizing $\mathbb{E}[(Y h(X))^2]$ over h gives biased results.

$$Y = \underbrace{h^{\star}(X) + \mathbb{E}[\varepsilon \mid X]}_{= f(X) \text{ for some } f} + (\varepsilon - \mathbb{E}[\varepsilon \mid X]).$$

▶ We end up estimating f instead of h^* !

▶ Suppose we have access to a variable Z such that

- ▶ Suppose we have access to a variable Z such that
 - 1. $Z \not\perp \!\!\! \perp X$, i.e., $\mathbb{E}[X \mid Z]$ is not constant,

- ▶ Suppose we have access to a variable Z such that
 - 1. $Z \not\perp\!\!\!\perp X$, i.e., $\mathbb{E}[X \mid Z]$ is not constant,
 - 2. Z affects Y only through X,

- ▶ Suppose we have access to a variable Z such that
 - 1. $Z \not\perp \!\!\! \perp X$, i.e., $\mathbb{E}[X \mid Z]$ is not constant,
 - 2. Z affects Y only through X,
 - 3. $\varepsilon \perp \!\!\! \perp Z$, i.e., $\mathbb{E}[\varepsilon \mid Z] = 0$.

- ▶ Suppose we have access to a variable Z such that
 - 1. $Z \not\perp \!\!\! \perp X$, i.e., $\mathbb{E}[X \mid Z]$ is not constant,
 - 2. Z affects Y only through X,
 - 3. $\varepsilon \perp \!\!\! \perp Z$, i.e., $\mathbb{E}[\varepsilon \mid Z] = 0$.

Z is called an instrumental variable.

- ▶ Suppose we have access to a variable Z such that
 - 1. $Z \not\perp \!\!\! \perp X$, i.e., $\mathbb{E}[X \mid Z]$ is not constant,
 - 2. Z affects Y only through X,
 - 3. $\varepsilon \perp \!\!\! \perp Z$, i.e., $\mathbb{E}[\varepsilon \mid Z] = 0$.

Z is called an instrumental variable.

▶ How does it help us?

► Structural equation:

$$Y = h^{\star}(X) + \varepsilon,$$

where $\mathbb{E}[\varepsilon \mid Z] = 0$.

► Structural equation:

$$Y=h^{\star}(X)+\varepsilon,$$

where $\mathbb{E}[\varepsilon \mid Z] = 0$.

► Consider minimizing $\mathcal{R}(h) = \mathbb{E}\left[\left(\mathbb{E}[Y - h(X) \mid Z]\right)^2\right]$ over h.

► Structural equation:

$$Y=h^{\star}(X)+\varepsilon,$$

where $\mathbb{E}[\varepsilon \mid Z] = 0$.

- ▶ Consider minimizing $\mathcal{R}(h) = \mathbb{E}\left[\left(\mathbb{E}[Y h(X) \mid Z]\right)^2\right]$ over h.
- Since

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[h^{\star}(X) + \varepsilon \mid Z] = \mathbb{E}[h^{\star}(X) \mid Z],$$

► Structural equation:

$$Y = h^*(X) + \varepsilon,$$

where $\mathbb{E}[\varepsilon \mid Z] = 0$.

- ► Consider minimizing $\mathcal{R}(h) = \mathbb{E}\left[\left(\mathbb{E}[Y h(X) \mid Z]\right)^2\right]$ over h.
- Since

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[h^*(X) + \varepsilon \mid Z] = \mathbb{E}[h^*(X) \mid Z],$$

We have

$$\mathcal{R}(h) = \mathbb{E}\left[\left(\mathbb{E}\left[(h^*-h)(X)\mid Z\right]\right)^2\right].$$

► Structural equation:

$$Y = h^*(X) + \varepsilon,$$

where $\mathbb{E}[\varepsilon \mid Z] = 0$.

- ▶ Consider minimizing $\mathcal{R}(h) = \mathbb{E}\left[\left(\mathbb{E}[Y h(X) \mid Z]\right)^2\right]$ over h.
- Since

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[h^{\star}(X) + \varepsilon \mid Z] = \mathbb{E}[h^{\star}(X) \mid Z],$$

We have

$$\mathcal{R}(h) = \mathbb{E}\left[\left(\mathbb{E}\left[\left(h^{\star} - h\right)(X) \mid Z\right]\right)^{2}\right].$$

 $\mathbb{P}(h) = 0 \iff \mathbb{E}[(h^* - h)(X) \mid Z] = 0 \iff \mathbb{E}[h^*(X) \mid Z] = \mathbb{E}[h(X) \mid Z].$

Structural equation:

$$Y = h^*(X) + \varepsilon,$$

where $\mathbb{E}[\varepsilon \mid Z] = 0$.

- ▶ Consider minimizing $\mathcal{R}(h) = \mathbb{E}\left[\left(\mathbb{E}[Y h(X) \mid Z]\right)^2\right]$ over h.
- Since

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[h^{\star}(X) + \varepsilon \mid Z] = \mathbb{E}[h^{\star}(X) \mid Z],$$

We have

$$\mathcal{R}(h) = \mathbb{E}\left[\left(\mathbb{E}\left[(h^{\star} - h)(X) \mid Z\right]\right)^{2}\right].$$

- $\mathbb{P}(h) = 0 \iff \mathbb{E}[(h^* h)(X) \mid Z] = 0 \iff \mathbb{E}[h^*(X) \mid Z] = \mathbb{E}[h(X) \mid Z].$
- ▶ Still does *not* imply $h = h^*$, but reduces bias if Z is a good instrument.

$$\underbrace{\mathsf{Grades}}_{Y} = h^{\star} \underbrace{\left(\underbrace{\mathsf{Attends} \ \mathsf{tutoring} \ \mathsf{sessions?}}_{X} \right) + \varepsilon}.$$

$$\underbrace{\mathsf{Grades}}_{Y} = h^{\star} \underbrace{\left(\underbrace{\mathsf{Attends} \ \mathsf{tutoring} \ \mathsf{sessions?}}_{X} \right) + \varepsilon}.$$

▶ Natural ability is a confounding variable: maybe only people who struggle a lot go to tutoring sessions.

$$\underbrace{\mathsf{Grades}}_{Y} = h^{\star} \underbrace{\left(\mathsf{Attends} \ \mathsf{tutoring} \ \mathsf{sessions?} \right)}_{X} + \varepsilon.$$

- ▶ Natural ability is a confounding variable: maybe only people who struggle a lot go to tutoring sessions.
- ightharpoonup Z = Lives close to school?

$$\underbrace{\mathsf{Grades}}_{Y} = h^{\star} \underbrace{\left(\mathsf{Attends} \ \mathsf{tutoring} \ \mathsf{sessions?} \right)}_{X} + \varepsilon.$$

- ▶ Natural ability is a confounding variable: maybe only people who struggle a lot go to tutoring sessions.
- ightharpoonup Z = Lives close to school?
 - 1. *Z* ⊥ *X*,
 - 2. Z affects Y only through X,
 - 3. $\varepsilon \perp \!\!\! \perp Z$.

$$\underbrace{\mathsf{Grades}}_{Y} = \mathit{h}^{\star} \underbrace{\left(\mathsf{Attends} \ \mathsf{tutoring} \ \mathsf{sessions?} \right)}_{X} + \varepsilon.$$

- ▶ Natural ability is a confounding variable: maybe only people who struggle a lot go to tutoring sessions.
- ightharpoonup Z = Lives close to school?
 - 1. *Z* ⊥ *X*,
 - 2. Z affects Y only through X, (Kind of)
 - 3. $\varepsilon \perp \!\!\! \perp Z$.

NPIV estimation

▶ Stands for "Nonparametric Instrumental Variable estimation".

NPIV estimation

- ▶ Stands for "Nonparametric Instrumental Variable estimation".
- ▶ No assumptions on some parametric form for h^* .

Summary

Our approach

► We have

$$Y = h^{\star}(X) + \varepsilon,$$

where $\mathbb{E}[\varepsilon \mid Z] = 0$, and want to estimate h^* .

We have

$$Y = h^{\star}(X) + \varepsilon,$$

where $\mathbb{E}[\varepsilon \mid Z] = 0$, and want to estimate h^* .

Equivalently,

$$r_0(Z) = \mathcal{T}[h^*](Z),$$

with

We have

$$Y = h^{\star}(X) + \varepsilon,$$

where $\mathbb{E}[\varepsilon \mid Z] = 0$, and want to estimate h^* .

Equivalently,

$$r_0(Z) = \mathcal{T}[h^*](Z),$$

with

- $r_0(Z) = \mathbb{E}[Y \mid Z],$
- $\mathcal{T}[h](Z) = \mathbb{E}[h(X) \mid Z].$

We have

$$Y = h^{\star}(X) + \varepsilon,$$

where $\mathbb{E}[\varepsilon \mid Z] = 0$, and want to estimate h^* .

Equivalently,

$$r_0(Z) = \mathcal{T}[h^*](Z),$$

with

- $r_0(Z) = \mathbb{E}[Y \mid Z],$
- $\mathcal{T}[h](Z) = \mathbb{E}[h(X) \mid Z].$
- ► Risk measure:

$$\mathcal{R}(h) = \mathbb{E}\left[\frac{1}{2}\left(\mathbb{E}\left[Y - h(X) \mid Z\right]\right)^2\right] = \mathbb{E}\left[\frac{1}{2}\left(r_0(Z) - \mathcal{T}[h](Z)\right)^2\right].$$

▶ It turns out that $\nabla \mathcal{R}(h)(X) = \mathcal{T}^*[\mathcal{T}[h] - r_0](X)$.

- ▶ It turns out that $\nabla \mathcal{R}(h)(X) = \mathcal{T}^*[\mathcal{T}[h] r_0](X)$.
- Immediate idea:

$$\begin{cases} h_0 \equiv 0, \\ h_t \leftarrow h_{t-1} - \alpha_t \nabla \mathcal{R}(h_{t-1}) & \text{for t } \geq 1. \end{cases}$$

▶ Problem: We don't observe r_0 neither know how to compute \mathcal{T}^* nor \mathcal{T} .

Problem: We don't observe r_0 neither know how to compute \mathcal{T}^* nor \mathcal{T} . We only have access to joint independent samples from X, Y and Z.

- Problem: We don't observe r_0 neither know how to compute \mathcal{T}^* nor \mathcal{T} . We only have access to joint independent samples from X, Y and Z.
- Solution 1: "No problem, we estimate everything!" ...doable, but horrible, since $\mathcal{T}^*[\mathcal{T}[h] r_0]$ involves plugin estimates into other estimates. Goodbye theoretical guarantees.

► Solution 2: Notice that

$$\nabla \mathcal{R}(h)(X) = \mathbb{E}_{Z} \left[\Phi(X, Z) (\mathcal{T}[h](Z) - r_0(Z)) \right],$$

where
$$\Phi(x, z) = \frac{p(x, z)}{p(x)p(z)}$$
.

► Solution 2: Notice that

$$\nabla \mathcal{R}(h)(X) = \mathbb{E}_{Z} \left[\Phi(X, Z) (\mathcal{T}[h](Z) - r_0(Z)) \right],$$

where
$$\Phi(x,z) = \frac{p(x,z)}{p(x)p(z)}$$
.

► Second idea: *Now* we estimate everything:

$$\begin{cases} h_0 \equiv 0, \\ h_t \leftarrow \widehat{\Phi}(\cdot, Z_i) \left(\widehat{\mathcal{T}[h_{t-1}]}(Z_i) - \widehat{r_0}(Z_i)\right). \end{cases}$$

► Solution 2: Notice that

$$\nabla \mathcal{R}(h)(X) = \mathbb{E}_{Z} \left[\Phi(X, Z) (\mathcal{T}[h](Z) - r_0(Z)) \right],$$

where
$$\Phi(x,z) = \frac{p(x,z)}{p(x)p(z)}$$
.

Second idea: Now we estimate everything:

$$\begin{cases} h_0 \equiv 0, \\ h_t \leftarrow \widehat{\Phi}(\cdot, Z_i) \left(\widehat{\mathcal{T}[h_{t-1}]}(Z_i) - \widehat{r_0}(Z_i)\right). \end{cases}$$

...Not pretty, but manageable, since we no longer have iterated conditional expectations

► Solution 2: Notice that

$$\nabla \mathcal{R}(h)(X) = \mathbb{E}_{Z} \left[\Phi(X, Z) (\mathcal{T}[h](Z) - r_0(Z)) \right],$$

where
$$\Phi(x, z) = \frac{p(x, z)}{p(x)p(z)}$$
.

Second idea: Now we estimate everything:

$$\begin{cases} h_0 \equiv 0, \\ h_t \leftarrow \widehat{\Phi}(\cdot, Z_i) \left(\widehat{\mathcal{T}[h_{t-1}]}(Z_i) - \widehat{r_0}(Z_i)\right). \end{cases}$$

► ...Not pretty, but manageable, since we no longer have iterated conditional expectations (but must estimate ratio of densities).

Summary

NPIV estimatio

Our approach

Where we are at

Prototype

Prototype gave reasonable results

Figure: In red we have $h^* = \sin$, in black we have h_N and in blue, $\frac{1}{N} \sum_{t=1}^{N} h_N$.

Theoretical properties

► Still working on convergence guarantees.

Theoretical properties

- ► Still working on convergence guarantees.
- \blacktriangleright This is helping us find better ways to estimate Φ and \mathcal{T} (mainly RKHS methods).

Summary

NPIV estimation

Our approach

Where we are at

Next steps

Finalize convergence guarantees.

- Finalize convergence guarantees.
- ▶ Implement modifications which the theory points to.

- Finalize convergence guarantees.
- ▶ Implement modifications which the theory points to.
- Benchmark against current methods.

References

- [1] Yuri R. Fonseca and Yuri F. Saporito. Statistical Learning and Inverse Problems: A Stochastic Gradient Approach. 2022. arXiv: 2209.14967 [stat.ML].
- [2] Whitney K. Newey and James L. Powell. "Instrumental Variable Estimation of Nonparametric Models". In: Econometrica 71.5 (2003), pp. 1565–1578. ISSN: 00129682, 14680262. URL: http://www.jstor.org/stable/1555512 (visited on 07/03/2023).

Thank You!