# Connaissances professionnelles écrites Série 2022

Installatrice-électricienne CFC Installateur-électricien CFC

PQ selon orfo 2015

Technique des systèmes électriques, incl. bases technologiques

| Nom: | Prénom: | N° de candidat: | Date: |
|------|---------|-----------------|-------|
|      |         |                 |       |
|      |         |                 |       |

| 90 | Minutes | 18 | Exercices | 15 | Pages  | 44 | Points |
|----|---------|----|-----------|----|--------|----|--------|
|    |         |    |           |    | . 4900 |    | . ••   |

#### Moyens auxiliaires autorisés:

• Règle, équerre, chablon

Position 7

- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (tablettes, smartphones, etc. ne sont pas autorisés)

### Cotation – Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- · Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Le nombre de réponses demandé est déterminant.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

| Ва |  |  |
|----|--|--|
|    |  |  |
|    |  |  |
|    |  |  |

| 6                  | 5,5                  | 5         | 4,5       | 4                      | 3,5       | 3         | 2,5       | 2     |        | 1,5   | 1       |
|--------------------|----------------------|-----------|-----------|------------------------|-----------|-----------|-----------|-------|--------|-------|---------|
| 44,0-42,0          | 41,5-37,5            | 37,0-33,0 | 32,5-29,0 | 28,5-24,5              | 24,0-20,0 | 19,5-15,5 | 15,0-11,0 | 10,5- | 7,0 6, | 5-2,5 | 2,0-0,0 |
| Experte            | s / Expe             | rts       |           |                        |           |           |           |       |        |       |         |
| Page               | 2                    | 3         | 4         | 5 6                    | 5 7       | 8         | 9         | 10    | 11     | 12    | 13      |
| Points:            |                      |           |           |                        |           |           |           |       |        |       |         |
| Page               | 14                   | 15        |           |                        |           |           |           |       |        |       |         |
| Points:            |                      |           |           |                        |           |           |           |       |        |       |         |
| Signatu<br>experte | ıre de<br>e/expert 1 | I         | _         | nature de<br>erte/expe |           | Р         | oints     |       | Not    | e     |         |

#### Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1<sup>er</sup> septembre 2023.

#### Créé par:

Groupe de travail PQ d'EIT.swiss pour la profession d'installatrice-électricienne CFC / Installateur-électricien CFC

#### **Editeur:**

CSFO, département procédures de qualification, Berne

3

1

# 1. Système électrochimique

A une source de tension, on mesure une tension  $U_1 = 3.5$  V pour un courant  $I_1 = 10$  A et une tension  $U_2 = 1.5$  V pour un courant  $I_2 = 30$  A.

a) Dessiner la droite de charge.



b) Quels sont les valeurs de la tension à vide et du courant de court-circuit ?

c) Calculer la résistance interne.

1

# 2. Transformateur 2

Un transformateur de 10 VA est connecté au réseau 230 V. A pleine charge, on mesure au secondaire un courant de 1,5 A.

En négligeant les pertes du transformateur, calculer :

a) Le courant au primaire.

1

1

b) La tension au secondaire.

#### 3. Technique d'éclairage

2

Un terrain de football d'une longueur de 105 m et d'une largeur de 68 m est éclairé par six spots LED.

Chaque spot émet un flux lumineux de 142'800 lm.

Calculer l'éclairement moyen en lx. Les pertes d'éclairage sont négligées.

| 4. | Transformateur | 2 |
|----|----------------|---|
|    |                |   |

Cocher juste ou faux pour chacune des affirmations ci-dessous.

|                                                                                                                            | Juste | Faux |     |
|----------------------------------------------------------------------------------------------------------------------------|-------|------|-----|
| L'huile dans les transformateurs triphasés est utilisée pour la lubrification des pièces mécaniques.                       |       |      | 0,5 |
| Le noyau des transformateurs est composé de feuilles individuelles, car cela est moins cher à fabriquer.                   |       |      | 0,5 |
| Un transformateur produit des pertes fer et des pertes cuivre (enroulements).                                              |       |      | 0,5 |
| Le rapport de transformation d'un transformateur dépend<br>du nombre de spires des enroulements primaire et<br>secondaire. |       |      | 0,5 |

# 5. Loi d'Ohm 2

Cocher juste ou faux pour chacune des affirmations ci-dessous.

|                                                                                                                                                                        | Juste | Faux |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----|
| Si la résistance reste la même et que la puissance quadruple, la tension doit donc avoir doublée.                                                                      |       |      | 0,5 |
| Si la tension et la résistance ont diminué de moitié, alors le courant diminue de moitié.                                                                              |       |      | 0,5 |
| A une première résistance, on raccorde en parallèle une deuxième résistance identique à la première. La puissance devient donc 4 fois plus grande. (U reste constante) |       |      | 0,5 |
| Le raccordement d'un circuit en parallèle avec un autre permet de réduire la tension de moitié. Cela réduit également de moitié la puissance.                          |       |      | 0,5 |

3

# 6. Couplage mixte

Calculer:



a) La tension partielle  $\mathsf{U}_2$ .

b) La puissance partielle P<sub>1</sub>.

c) La résistance R<sub>4</sub>.

1,5

1

0,5

|                                                                                                                                                                    |                 |              | P   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-----|--|--|--|
| <ul><li>7. Champ magnétique</li><li>L'illustration montre un aimant permanent et une bobine en</li></ul>                                                           | coupe.          |              | 2   |  |  |  |
| <ul><li>a) Dessiner les lignes de champ magnétique résultantes et leur direction dans la bobine.</li><li>b) Indiquer les pôles magnétiques de la bobine.</li></ul> |                 |              |     |  |  |  |
| Aimant permanent: Bobine:                                                                                                                                          |                 |              |     |  |  |  |
| N S  c) Qu'arrive-t-il à l'aimant permanent mobile si celui-ci se tro de la bobine ?                                                                               | ouve à une cour | rte distance | 0,5 |  |  |  |
| 8. Champ électrique                                                                                                                                                |                 |              | 2   |  |  |  |
| Cocher juste ou faux pour chacune des affirmations ci-dess                                                                                                         | ous.            |              |     |  |  |  |
|                                                                                                                                                                    | Juste           | Faux         |     |  |  |  |
| Les lignes de champ électrique sortent du pôle Nord et entrent dans le pôle Sud.                                                                                   |                 |              | 0,5 |  |  |  |
| Les lignes de champ électrique sortent du pôle positif et entrent dans le pôle négatif.                                                                            |                 |              | 0,5 |  |  |  |

| Points |
|--------|
| par    |
| page:  |
|        |

0,5

0,5

La tension est la cause d'un champ électrique.

Deux charges électriques positives exercent une force

d'attraction l'une sur l'autre.

3

I<sub>L1</sub> 0,5

I<sub>L2</sub> 0,5

I<sub>L3</sub> 0,5

I<sub>N</sub> 0,5

1

# 9. Système triphasé

Trois appareils de mesure affichent les courants chaque conducteur de ligne d'un réseau 3 x 400 V / 230 V / 50 Hz.



Déterminer graphiquement le courant dans le conducteur neutre. Echelle 1 A = 1 cm



Le courant dans le conducteur de neutre est de :

3

1

1

### 10. Puissances et facteur de puissance



a) Calculer la puissance réactive du moteur.

b) Calculer le  $\cos \varphi$  du moteur.

c) Le facteur de puissance doit être amélioré à 0,94 avec un système de compensation parallèle. Quelle sera alors l'intensité du courant dans la ligne d'alimentation ?

# 11. Puissance active, apparente et réactive

3

1

Un courant de 8,7 A est mesuré dans la ligne d'alimentation dont la tension est de 230 V.

L'écran d'un appareil de mesure affiche les courbes suivantes :



a) Calculer la puissance active à l'aide des résultats de mesure et du graphique.

b) Calculer la puissance réactive.

c) La charge connectée est-elle inductive ou capacitive ?

☐ Capacitive ☐ Inductive

Points par page:

0,5

3

#### 12. Résistance en AC

Le testeur d'installation affiche les valeurs suivantes :



Valeurs affichées:

 $\begin{array}{ll} I_{K} : & 1647 \; A \\ Z_{s} : & 0,140 \; \Omega \\ R_{s} : & 0,125 \; \Omega \\ L_{s} : & 0,2 \; mH \end{array}$ 

a) A partir de ces valeurs, calculer la réactance  $X_L$  de la ligne. (Fréquence du réseau européen = 50 Hz)

1,5

b) Dessiner le triangle des résistances (sans être à l'échelle). Indiquer sur chacun des côtés du triangle : le nom et le symbole de sa grandeur, sa valeur et son unité. 1,5

3

#### 13. Chute de tension



a) Calculer le courant efficace dans le récepteur.

b) Quelle est la tension aux bornes du foehn?

2,5

0,5

2

### 14. Système numérique

Compléter la table de vérité du circuit logique ci-dessous.

### Circuit logique:



#### Table de vérité :

| I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | <b>I</b> 4 | Q |
|----------------|----------------|----------------|------------|---|
| 1              | 1              | 0              | 1          |   |
| 0              | 1              | 0              | 1          |   |
| 0              | 1              | 1              | 1          |   |
| 1              | 0              | 0              | 1          |   |

0,5

0,5

0,5

0,5

2

#### 15. Alimentation de secours

Selon les indications figurant sur le schéma de l'onduleur ci-dessous, nommer les modules 1 à 4.



Module 1: 0,5

Module 2: 0,5

Module 3: 0,5

Module 4: 0,5

2

## 16. Système triphasé

On connecte quatre consommateurs ohmiques sur notre réseau standard 3 x 400 / 230 V. Calculer les courants dans chaque ligne d'alimentation ( $I_{L1}$ ,  $I_{L2}$ ,  $I_{L3}$ ):



### 17. Système triphasé

On connecte un nouveau consommateur R<sub>5</sub> sur une installation existante.



Cocher l'affirmation correcte dans le tableau ci-dessous.

| Affirmations pour un système triphasé        | Augmente | Ne change pas | Diminue |
|----------------------------------------------|----------|---------------|---------|
| Le courant dans le conducteur L <sub>1</sub> |          |               |         |
| Le courant dans le conducteur L <sub>2</sub> |          |               |         |
| Le courant dans le conducteur L <sub>3</sub> |          |               |         |
| Le courant dans le neutre                    |          |               |         |

0,5

2

0,5

0,5

0,5

3

2

1

#### 18. Moteur triphasé

Une pompe à eau potable fournit 50 litres d'eau par seconde à un réservoir situé 60 m plus haut.



a) Calculer la puissance absorbée par le moteur.

b) Calculer le courant absorbé par le moteur triphasé (Réseau 3 x 400 V).