

How to characterize a cube?

Cubic geometry has axis-aligned surface normals

Minimizing L1-norm

$$||n||_1 = |n_x| + |n_y|$$

As-rigid-as-possible deformation

$$E(R, p') = \sum_{i} w_{i} \sum_{j \in \Omega(i)} w_{ij} \| (p'_{i} - p'_{j}) - R_{i} (p_{i} - p_{j}) \|^{2}$$

 \succ Vertex normal of deformed mesh $n_i'=R_in_i$

$$E_{cubic} = \sum_{i} a_i ||R_i n_i||_1$$

$$E(R, p') + \lambda E_{cubic}$$

Optimization

$$\sum_{i} w_{i} \sum_{j \in \Omega(i)} w_{ij} \| (p'_{i} - p'_{j}) - R_{i} (p_{i} - p_{j}) \|^{2} + \lambda \sum_{i} a_{i} \| z_{i} \|_{1}, s.t. z_{i} - R_{i} n_{i} = 0$$

ADMM updates - penalty functions $\frac{\rho}{2} \|z_i - R_i n_i + u_i\|_2^2$

- 1. Local update R_i
- 2. Local update $\overline{z_i}$
- 3. Update u_i and ρ

Orientation Dependent

Polygonal Boxes Stylization

Polygonal Boxes Stylization

$$\sum_{i} w_{i} \sum_{j \in \Omega(i)} w_{ij} \| (p'_{i} - p'_{j}) - R_{i} (p_{i} - p_{j}) \|^{2} + \lambda \sum_{i} a_{i} \| BR_{i} n_{i} \|_{1}$$

Assignment requirements

- Cubic stylization algorithm
- Email: ID_name_homework#1.zip
 - > Pdf : Input + parameter + output
 - Source code (no exe)
- > Deadline: 2024.04.17, 23:59

Normal-Driven Spherical Shape Analogies

Normal-Driven Spherical Shape Analogies

Spherical Shape Analogies

Figure 6: We generate an output shape B' that relates to the input B in the same way as how the surface normal of a given primitive A' relates to the surface normal of a sphere A.

Normal-Driven Spherical Shape Analogies

- Map the normals of the style shape $N_{A'}$ to a unit sphere to obtain $\widetilde{N}_{A'}$ (top row)
- Transfer the relationship between N_A and $\widetilde{N}_{A'}$ to the input shape to obtain the target normal T (middle row)
- Optimize the input shape B so that the actual output normals are aligned with the target normal T (bottom row)

Generating $\widetilde{N}_{A'}$

- Closest normals
- > Spherical parameterization
- \succ User-provided $\widetilde{N}_{A'}$

Normal-Driven Optimization

As-rigid-as-possible deformation

$$E(R, p') = \sum_{i} w_{i} \sum_{j \in \Omega(i)} w_{ij} \| (p'_{i} - p'_{j}) - R_{i} (p_{i} - p_{j}) \|^{2}$$

 \triangleright Vertex normal of deformed mesh $n_i'=R_in_i$

$$E_{cubic} = \sum_{i} a_i ||R_i n_i - t_i||_2^2$$

Extension

Developable Approximation via Gauss Image Thinning

Input mesh and its Gauss image

Piecewise developable mesh with thinned Gauss image

Gauss curvature

Smooth developable surface

- > Zero Gaussian curvature $K = \kappa_1 \kappa_2 = 0$
- Special ruled surface

$$\mathbf{x}(u,v) = (1-v)\mathbf{a}(u) + v\mathbf{b}(u)$$

$$\Rightarrow \det(\mathbf{a}', \mathbf{b}', \mathbf{a} - \mathbf{b}) = 0$$

$$A_f = \sum_{g \in \mathcal{N}_f} w_g n_g n_g^T$$

- First two right singular vectors span the plane.
- Project n_g to the plane to get target normals

Normal-Driven Optimization

As-rigid-as-possible deformation

$$E(R, p') = \sum_{i} w_{i} \sum_{j \in \Omega(i)} w_{ij} \| (p'_{i} - p'_{j}) - R_{i} (p_{i} - p_{j}) \|^{2}$$

 \triangleright Vertex normal of deformed mesh $n_i'=R_in_i$

$$E_{cubic} = \sum_{i} a_i ||R_i n_i - t_i||_2^2$$

PolyCube

Definition:

- Compact representations for closed complex shapes
- > Boundary normal aligns to the axes.
- > Axes: $(\pm 1,0,0)$, $(0,\pm 1,0)$, $(0,0,\pm 1)$
- PolyCube-map f
 - > A mesh-based map.
 - > Foldover-free and low distortion.

Applications

All-hex meshing

Applications

- All-hex meshing
- Texture Mapping

Figure 1: Cube maps can be used to seamlessly texture map an apple (left). In this case, the 3D texture domain T_3 is the surface of a single cube that is immersed in the 3D texture space \mathbb{T}^3 (middle) and corresponds to a 2D texture domain T_2 that consists of six square images (right).

Applications

- > All-hex meshing
- > Texture Mapping
- GPU-based subdivision

PolyCube facet, edge, and vertex

PolyCube facet: share the same label

PolyCube edge: the edges between facets

PolyCube vertex: sharing by at least three charts

Sufficient topological conditions

- Any PolyCube facet should have at least four neighboring PolyCube facets.
- Any two neighboring PolyCube facets
 should not have opposite labels such as
 + X and -X.
- The valence of each PolyCube vertex is three.

Methods

- Deformation-based method
 - All-Hex Mesh Generation via Volumetric PolyCube Deformation
- Cluster-based method
 - PolyCut: Monotone Graph-Cuts for PolyCube Base-Complex Construction
- Voxel-based method
 - Optimizing PolyCube domain construction for hexahedral remeshing

Deformation-based method

> All-Hex Mesh Generation via Volumetric PolyCube Deformation

Rotation-driven deformation

Goal: gradually aligns the model's surface normals with one of the six global axes, preserving shape as much as possible.

Rotation-driven deformation

As-Rigid-As-Possible deformation

$$E(R, p') = \sum_{i} w_{i} \sum_{j \in \Omega(i)} w_{ij} \| (p'_{i} - p'_{j}) - R_{i} (p_{i} - p_{j}) \|^{2}$$

- \rightarrow How to determine R_i ?
 - No local step
 - Rotations are determined by axis-alignment constraints

Determine R_i

- For every surface vertex (except those on sharp features), the minimal rotation necessary to align each surface vertex normal with one of $\pm X, \pm Y, \pm Z$.
- Smoothly propagate to feature and interior vertices. Laplace equation per quaternion component.
- > Solve *E* by least squares.

Labeling

- 1. Label surface triangles according to the closest axis
- 2. Group similarly labeled triangles into charts.
- 3. Straighten chart boundaries.

4. Remove small, spurious charts bounded by at most two edges

Multi-orientation chart

Highly non-planar chart

Detect extrema along the chart boundary

Three possible axis-aligned cut options

Valid cuts are defined as those that would not introduce new charts with three or fewer neighbors

Position-driven deformation

$$\sum_{i} w_{i} \sum_{j \in \Omega(i)} w_{ij} \| (p'_{i} - p'_{j}) - R_{i} (p_{i} - p_{j}) \|^{2}$$

- Constrain each chart to an axis-aligned plane
- Soft distance preservation energy

Discussions

- > Inverted tet
- More papers

L1 -based Construction of PolycubeMaps from Complex Shapes (2014)

Efficient Volumetric PolyCube-Map
Construction (2016)

Cluster-based method

PolyCut: Monotone Graph-Cuts for PolyCube Base-Complex Construction

> Angular distance - distortion

- Angular distance distortion
- > Monotonicity

- Angular distance distortion
- > Monotonicity

- Angular distance distortion
- > Monotonicity

Monotonicity

Monotonicity requires global
 constraints that we cannot plug
 into our energy term...

Monotonicity

Monotonicity requires global
 constraints that we cannot plug
 into our energy term...

> Hill Climbing

Explore the space of segmentations to find the closest fully monotone labeling...

Monotonicity

Before Hill Climbing After Hill Climbing

PolyCube deformation

Initial Deformation

Gradual Deformation

Final PolyCube

Voxel-based method

Optimizing PolyCube domain construction for hexahedral remeshing

Pre-deformation

PolyCube construction and optimization

Mapping computation

Motivation

Wedge regions are hard to avoid

Motivation

- Wedge regions are hard to avoid
- PolyCube construction length of cube
 - Topology preservation
 - · Close to deformed shape

Optimization

- > Corner number → Domain simplicity E_c
- \triangleright Geometric deviation E_g

with E_c

with E_g

with $E_c + 20E_g$

Mapping computation

> Projection

Fixed boundary mapping

More papers

Computing Surface PolyCube-Maps by Constrained Voxelization (PG2019)

Generalized PolyCube

- Conventional PolyCube:
 - A shape composes of axis-aligned unit cubes that abut with each other.
 - Unit cubes as the building block.
 - All cubes are glued together and embedded in the 3D space.
- Generalized PolyCube:
 - A shape composes of a set of cuboids glued together topologically.
 - Topological simplicity and elegance

Generalized PolyCube

Comparisons

Thinking from topology

Generalized poly-cubes: (a) The wrench model; (b) The conventional poly-cube (CPC); (c) The generalized poly-cube (GPC) as a topological graph; (d-e) The cuboid edges are overlaid onto the model to visualize the GPC global structure.

Frame field

> All-Hex Meshing using Closed-Form Induced Polycube

Figure 3: Pipeline of our algorithm. From the left to the right are input mesh, cut faces, frame field, deformed cut mesh, polycube parametrization and final hexahedral mesh.