# 2025 Cloud and Environment

Week 4: AEL satellite module – Himawari part – Application



Peng Jen Chen & Shao Yu Tseng

### Recap

- Draw true color image & some RGB composite images
  - True color image depends on personal imagination
  - RGB composite image only constrain the specific band data used for the RGB channel
  - Data source can be alternative (not only AEL satellite module)

- 3. band7Refl(band07\_file\_name,band07, band13,sun\_zth):
  - Band file name for file date to calculate
     Julian day
  - Output band07 reflectance
- 2. hima\_plot.rgb\_composite(time\_list, rgb\_product\_name, ta\_resolution=2, plotting\_info=True)
  - Combine generate\_time\_list() to rgb\_merged()
  - Based on JMA RGB composite formula except true color image
  - Can be further expanded

In this section, you will learn...

Combine Himawari preprocess & plotting module

#### Work flow:

- 1. Generate data list
- 2. Data pre-process (download & sub-domain extract)
- 3. RGB composite data production
- 4. Plot figure & output .nc file

- pip install --upgrade ael\_satellite\_tools (current version 0.0.4)
- from ael\_satellite\_tools.preprocess import Himawari as Himawari
- from ael\_satellite\_tools.plotting import Himawari as Hima\_plot
- work\_path
  - Associate with saving figure
  - Default setting: current working path
  - Can decide your own work path

- Course demo (week4\*.py & week4\*.ipynb)
- /data/cloud2025/homework\_data/
- https://github.com/jerryjerry9/cldenv\_2025
- himawari = Himawari(work\_path=[], data\_path=data\_path, lat\_range=lat, lon\_range=lon)
- hima\_plot = Him\_plot(work\_path=[], data\_path=data\_path, plotting\_lat\_range=lat,plotting\_lon\_range=lon)

### 0. Get product name

- hima\_plot.RGB\_composite\_name()
  - RGB composite product name

```
print(hima_plot.work_path)
print(himawari.work_path)
```

```
/data/C.jerryjerry9/hima_download
/data/C.jerryjerry9/hima_download
```

#### 1. Generate list

 AHI\_band, geo = hima\_plot.rgb\_attribute(rgb\_product\_name, band\_info\_only=True)

```
rgb_product_name = ['True color']
AHI_band,geo

([1, 2, 3, 4], ['sun.azm', 'sun.zth', 'sat.azm', 'sat.zth'])
rgb_product_name = ['Microphysics 24hr b14']
AHI_band,geo

([11, 13, 14, 15], [])
```

- himawari.band\_name\_convert()
- himawari.generate\_list()

### 2. Data pre-process

himawari.pre\_process()

### 3. RGB composite data production

 hima\_plot.rgb\_composite(time\_list, rgb\_product\_name, ta\_resolution=2, plotting\_info=True)

### 1. Read band data in correct ways

- Single band; two bands difference; calculate band07refl...
- Fit resolution

### 2. RGB image production

**Optional** 

- Local adjustment
- Rayleigh correction
- Hybrid band
- RGB enhancement

#### **Necessary**

- Rescale value
- RGB merged

## 3. RGB composite data production

```
AHI_band, geo, band_method,
r_functions,g_functions,b_functions,
rs_channel,
min_threshold, max_threshold, reverse_flag,
gamma, self_enh_flag = hima_plot.rgb_attribute(rgb_product_name)
```

- method 0: read one band data
- method 1: band\_1 band\_2 (band difference)
- method 2: calculate band07 reflectance
- method 3: band\_1 band\_2 but with different resolution

```
print(AHI_band, geo)
print(band_method)

True color

[1, 2, 3, 4] ['sun.azm', 'sun.zth', 'sat.azm', 'sat.zth']
[[3, 0], [2, 0], [1, 0], [4, 0]]

print(AHI_band, geo)
print(AHI_band, geo)
print(band_method)

Microphysics 24hr b14

[11, 13, 14, 15] []
[[13, 15, 1], [14, 11, 1], [13, 0]]
```

3. RGB composite data production

```
AHI_band, geo, band_method,
r_functions,g_functions,b_functions,
rs channel,
```

min threshold, max threshold, reverse flag,

print(g\_functions) print(b\_functions) True color

```
[True, True, False, True, True]
[True, True, True, True]
[True, True, False, True, True]
```

gamma, self\_enh\_flag = hima\_plot.rgb\_attribute(rgb\_product\_name)

- 1. local adjustment
- 2. rayleigh correction
- 3. hybrid green
- 4. rescale value
- 5. rgb enhancement

```
print(r_functions)
print(b_functions)
```

# print(g\_functions) Cloud phase distinction

print(r\_functions)

```
[False, False, True, True]
[True, False, False, True, True]
[True, False, False, True, True]
```

- 4. Plot figure & output .nc file
- hima\_plot.generate\_rgb\_nc\_file(rgb\_product\_name, domain\_name)
  - 202312220400\_true\_color\_2km\_rgb\_east\_asia.nc

    Product Resol Domain name
  - rgb\_array=[], r\_band=[], g\_band=[], b\_band=[]
- hima\_plot.generate\_rgb\_figure(prefix='rgb\_figure', figure\_path='himawari\_figure')
  - rgb\_figure\_true\_color\_202312220400.png
  - Set hima\_plot.work\_path or figure\_path can change the figure folder

- hima\_plot.read\_rgb\_nc\_file(full\_path\_rgb\_file\_list)
  - Read RGB array

### HW4

### Plot composite image with satellite module and refine previous HW

- Use RGB composite along with ERA-5 to identify possible stratocumulus
- hima\_plot.rgb\_composite(time\_list, rgb\_product\_name, ta\_resolution=2, plotting\_info=True)
- RGB composite information
  - RGB\_QG\_List\_en.pdf
  - https://www.dropbox.com/scl/fo/gtal89soh9sebdvja8cii/ABt3NzShv5Nil4wSYV6CHAU?rlkey=r4ot3myowabzvu8lsnbz8ka90&st=lqc9vj3r&dl=0

# Reference

- Broomhall, M. A., Majewski, L. J., Villani, V. O., Grant, I. F., & Miller, S. D. (2019). Correcting Himawari-8 Advanced Himawari Imager Data for the Production of Vivid True-Color Imagery, *Journal of Atmospheric and Oceanic Technology*, 36(3), 427-442. Retrieved Sep 29, 2022, from <a href="https://journals.ametsoc.org/view/journals/atot/36/3/jtech-d-18-0060.1.xml">https://journals.ametsoc.org/view/journals/atot/36/3/jtech-d-18-0060.1.xml</a>
- Miller, S. D., Schmit, T. L., Seaman, C. J., Lindsey, D. T., Gunshor, M. M., Kohrs, R. A., Sumida, Y., & Hillger, D. (2016). A Sight for Sore Eyes: The Return of True Color to Geostationary Satellites, *Bulletin of the American Meteorological Society*, 97(10), 1803-1816. Retrieved Sep 29, 2022, from <a href="https://journals.ametsoc.org/view/journals/bams/97/10/bams-d-15-00154.1.xml">https://journals.ametsoc.org/view/journals/bams/97/10/bams-d-15-00154.1.xml</a>
- Peng-Jen Chen, Wei-Ting Chen, Chien-Ming Wu, Shih-Wen Tsou, Min-Hui Lo, Machine learning detection
  of fog top over eastern Taiwan mountains from Himawari-8 satellite true-color images, Remote Sensing
  Applications: Society and Environment, Volume 34, 2024, 101203, ISSN 2352-9385,
  https://doi.org/10.1016/j.rsase.2024.101203.
- SHIMIZU Akihiro, Introduction to Himawari-8 RGB composite imagery
  - https://www.data.jma.go.jp/mscweb/technotes/msctechrep65-1.pdf
- RGB composite quick guide
  - https://www.jma.go.jp/jma/jma-eng/satellite/RGB\_TL.html

# Online resource

- Near-real time image
  - https://himawari8.nict.go.jp/
- JMA Himawari home page
  - https://www.data.jma.go.jp/mscweb/en/index.html
- JAXA Himawari Monitor
  - https://www.eorc.jaxa.jp/ptree/index.html
- CHIBA Univ. gridded full-disk(FD) data page
  - http://www.cr.chiba-u.jp/databases/GEO/H8\_9/FD/index.html
- CWA 衛星產品整合系統
  - https://satimage.cwa.gov.tw/SPD/home
- RGB composite product
  - https://www.jma.go.jp/jma/jma-eng/satellite/RGB\_TL.html
- CWA True color description page
  - https://www.cwa.gov.tw/V8/C/W/OBS Sat Description.html
- Satellite Measurements of Clouds and Precipitation
  - https://doi.org/10.1007/978-981-19-2243-5

# **Appendix**

### Band 07 solar reflectance

- Band 07 (3.9  $\mu$ m) is the IR band. To get band 07 solar reflectance (**R07refl**), some calculating approaches must be applied with the band 13 (10.4  $\mu$ m) Tbb data.
- R07refl = 100\*(Rtot Rtherm) / (TOARAD Rtherm)
  - Rtot: the measured total radiance
  - Rtherm: the thermal component of radiance
  - TOARAD: the solar constant at the top of the atmosphere for 3.9 μm
- Rtot =  $(c1*(v^3))/{exp[(c2*v) / (a + b*(Tb3.9) + c*(Tb3.9^2))] 1}$
- Rtherm =  $(c1*(v^3)*R3.9corr) / {exp[(c2*v) / (a + b*(Tb10.4) + c*(Tb10.4^2))] 1}$ 
  - R3.9corr is set to 1 (R3.9corr is a correction term for absorption by CO2 which can be ignored for Band 07)
  - c1 = 1.19104\*10^(-5); c2 = 1.43878; v = 2575.767
  - a = 0.4793907798197780; b = 0.999234381214647; c = 1.85684785537253\*10^(-7)
- TOARAD =  $(C3.9 / ESD^2)*cos(\theta)$ 
  - C3.9 = 4.0877; ESD =  $1.0 0.0167*cos(2\pi*(JulianDay 3) / 365)$
  - JulianDAY: the number of days since the beginning of January 1st 4713 B.C. (e.g., January 1st 2019 is 2,458,485)
  - ESD: earth-sun distance (in Astronomical Units); θ: the solar zenith angle; θsat: satellite zenith angle
  - TOARAD has been simplified, ori-eq: TOARAD =  $(c3.9 / ESD^2)*cos(\theta)*exp{-(1 R3.9corr)*(cos(\theta) / cos(\thetasat))}$