Обозначения

- **S** перестановочная
- С циклическая
- D диэдральная (группа симметрий правильного n-угольника)
- **Z** по сложению

Вычеты

- \circ Критерий: $[a]_n$ обратимый $\iff a, n-$ взаимно простые
- \circ Группа \mathbb{Z}_n^* группа обратимых вычетов по модулю n. $|\mathbb{Z}_n^*| = \varphi(n), \ \varphi(n)$ функция Эйлера количество взаимно простых с данным числом и меньших его.
- \circ Теорема Эйлера: НОД $(a,n)=1\Rightarrow a^{\varphi(n)}\equiv 1 (mod\ n)$
- \circ Малая теорема Ферма: p простое, тогда $a \neq 0 \pmod{p} \Rightarrow a^{p-1} \equiv 1 \pmod{p}$
- \circ Группа \mathbb{Z}_n по сложению остатки по модулю n. a элемент этой группы, тогда $ord(a) = \frac{\text{HOK(a, n)}}{a} = \frac{n}{\text{HOD(a, n)}}$

Свойства групповых операций

- \circ Закон сокращения: Пусть G группа $\forall a \in G \ x = y \Leftrightarrow ax = ay \Leftrightarrow xa = ya$
- \circ Формула обратного произведения: $(xy)^{-1} = y^{-1}x^{-1}$

Порядки элементов

- \circ Пусть G группа, тогда $\forall g, h \in G |ghg^{-1}| = |h|$, кроме того, |gh| = |hg|.
- \circ Пусть $\forall g \in G \ g^2 = e$. Тогда G абелева.

Подгруппы и классы смежности

- \circ Критерий подгруппы. Непустое $H \subset G$ подгруппа группы $G \Leftrightarrow \forall a,b \in H \ ab^{-1} \in H$
- о Пересечение подгрупп подгруппа
- \circ Левый смежный класс. Пусть H < G тогда левый смежный класс $gH = \{x \in G : x = gh, h \in H\}$. Тут g фиксировано и отвечает за свой класс смежности. Аналогично определяется правый класс смежности $Hg = \{x \in G : x = hg, h \in H\}$
- Смежные классы не пересекаются, либо совпадают, то есть смежные классы задают отношение эквивалентности на группе.
- \circ Критерий принадлежности классу смежности. Для левого класса: $x, y \in GH \Leftrightarrow y^{-1}x \in H$. Для правого класса: $x, y \in GH \Leftrightarrow xy^{-1} \in H$.
- Смежные классы не подгруппы в общем случае!
- \circ (G:H) индекс группы количество смежные классов по данной подгруппе H. Во всех классах смежности одинаковое количество элементов.

Теорема Лагранжа, ее следствие и применения

- \circ Теорема Лагранжа (мега-имба). Пусть G группа, H < G. Тогда $|G| = (G:H) \cdot |H|$. То есть количество элементов в группе равно количеству элементов в подгруппе, помноженному на количество смежных классов по этой подгруппе.
- Следствие 1: Порядок подгруппы делит порядок группы.
- \circ Следствие 2: |G| = p простое. Тогда в G нет несобственных подгрупп (то есть подгруппы только $\{e\}$, G)

- Следствие 3: Порядок элемента делит порядок группы OVERPOWERED
- \circ Следствие 4: |G| = p простое $\Rightarrow G$ абелева (доказывается через группу, порожденную одним элементом)
- \circ Следствие 5: Пусть $|G| = n, \forall g \in G: g^n = e$ (так как порядок элемента делит порядок группы)

Изоморфизм

Изоморфизм - биекция из одной группы в другую, сохраняющая операцию, то есть $\varphi(xy) = \varphi(x)\varphi(y)$

- Необходимое условие существования изоморфизма порядки элементов совпадают. Проверка на изоморфизм построить биекцию (можно табличкой)
- Способы доказать, что изоморфизма нет: проверить количество элементов (должны быть равны), проверить порядки элементов, проверить на абелевость (сказать, что одна абелева, а вторая нет).

Прямое произведение групп

Прямое произведение групп - все выполняется покомпонентно.

- \circ НОД(p,q)=1, тогда $C_p \times C_q \cong C_{pq}$.
- $\circ \ ord(g,h) = HOK(ord(g), ord(h))$

Перестановки

Если перестановка π представима в виде произведения циклов длины $l_0, l_1, ..., l_n$, то $ord(\pi) = HOK(l_0, l_1, ..., l_n)$. Четность перестановки. Эквивалентные определения:

- 1. Перестановка содержит четное число инверсий
- 2. Перестановка представима в видел произведения четного числа транспозиций
- 3. Перестановка представима в виде произведения циклов длины 3
- 4. n + k четно, где k число циклов (вместе с тривиальными)
- Любой цикл длины 3 представим в виде 2-х транспозиций.
- \circ Цикл длины n представим в виде n транспозиций. $(a_1,a_2,a_3,...,a_n)=(a_1,a_n)\circ (a_1,a_{n-1})\circ...\circ (a_1,a_2)$
- Умножение на транспозицию изменяет количество циклов на ±1.
- \circ Четные перестановки образуют подгруппу A_n . $|A_n| = \frac{n!}{2}$
- Перестановки сопряжены тогда и только тогда, когда у них совпадают длины циклов.

Гомоморфизм

Гомоморфизм - отображение, сохраняющее операцию $\varphi: G \to H$, $\varphi(xy) = \varphi(x) \cdot \varphi(y)$. Ядро $Ker\varphi = \{g \in G: \varphi(g) = e_H\}$ Ядро - подгруппа G Образ $Im\varphi = \{h \in H: \exists g \in G \ \varphi(g) = h\}$ Образ - подгруппа H.

- Композиция гомоморфизмов гомоморфизм
- о $\varphi:G\to H$ гомоморфизм, тогда $\varphi(e)$ нейтральный в H, $\varphi(a^{-1})=\varphi(a)^{-1}$
- $\circ |G| = |Im\varphi| \cdot |Ker\varphi|$ (G группа аргументов гомоморфизма, как в определении выше) следствие из теоремы Лагранжа.
- \circ В обозначениях того же определения: если K < H, тогда $\varphi^{-1}(H)$ подгруппа G.

Нормальные подгруппы, фактор-группа

 $H \lhd G \Leftrightarrow \forall g \in G: gH = Hg$, то есть правый смежный класс совпадает с левым смежным классом по нормальной подгруппе

- Ядро любого гомоморфизма нормальная подгруппа.
- Любая нормальная подгруппа является ядром некоторого гомоморфизма. Фактор-группа группа из смежных классов по ядру, то есть смежные классы мы воспринимаем как элементы фактор группы. (свойства классов смежности есть выше).
- о Любая подгруппа абелевой группа нормальная
- \circ ОСНОВНАЯ ТЕОРЕМА ГОМОМОРФИЗМА: $Im\varphi\cong G/Ker\varphi$ образ изоморфен фактору группы по ядру.
- \circ Подгруппа индекса 2 всегда нормальна Пусть $\psi: G \to G$ автоморфизм (то есть изоморфизм в самого себя) и H нормальная подгруппа G. Тогда $\psi(H)$ нормальна и $G/H \cong G/\psi(H)$
- $\circ \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$

Сопряжения

Пусть G - группа. Тогда элемент b сопряжен с a посредством g, если $b = g^{-1}ag$. Сопряжение - отношение эквивалентности.

Образуются классы сопряженности, отвечающие отношению эквивалентности.

- о Нормализатор $N_x = \{y|yx = xy\}$, $y = x^{-1}yx$, то есть все те y, которые сопряжены с собой посредством x. Ну либо же все те y, которые коммутируют с x.
- Нормализатор подгруппа
- $|N_x| \cdot |[x]| = |G|, [x]$ класс сопряженности по х.

Диэдральная группа

Диэдральная группа D_n - группа симметрий правильного n - угольника.

- \circ Количество элементов: $|D_n| = 2n$
- \circ Элементы: id, n-1 поворот, n осевых симметрий: n нечетно, тогда все осевые симметрии из вершины к середине противоположной стороны. n четно, тогда n/2 симметрий по серединам сторон, n/2 симметрий по вершинам.
- \circ Осевую симметрию можно получить сопряжением одной осевой симметрии поворотом: $x = srs^{-1}$, r симметрия, s поворот.
- \circ Также $s^{-1} = rsr$
- $\circ D_n$ не изоморфна $C_n \times C_2$, так как она не абелева.

Действия групп

Действие группы G на множестве X - гомоморфизм $G \to S(x)$, то есть каждому элементу из группы мы сопоставляем некоторую перестановку на множестве.

- \circ Действие левыми сдвигами (группа действует сама на себя) $g(x): x \mapsto gx$
- \circ Действие сопряжением (группа действует сама на себя) $g(x): x \mapsto g^{-1}xg$. Тут $Stab_x = N_x$ и Orb(x) = [x]
- \circ Орбита действия: $Orb(x) = \{y \in X : \exists g \in G : g(x) = y\}$
- \circ Стабилизатор: $Stab(x) = \{g \ inG : g(x) = x\}$ все элементы G, которые оставляют x на месте.
- Стабилизатор подгруппа
- Орбиты классы эквивалентности

- $\circ |Orb(x)| = (G: Stab_x)$
- \circ По теореме Лагранжа $|G| = |Orb(x)| \cdot |Stab_x|$
- Стабилизаторы элементов одной орбиты сопряжены.
- \circ Центр группы $Z(G) = \{z \in G | \forall g \in G : zg = gz\}$ те элементы, которые коммутируют со всеми. Центр ядро при действием сопряжением.
- \circ Если G p-группа (ее порядок равен p^n , p простое). Тогда центр Z(G) нетривиален, то есть в нем больше 1 элемента.
- $\circ\,$ Лемма Бернсайда: #орбит = $\frac{1}{|G|}\sum_{g\in G}|X^g|,$ где X^g это точки, неподвижные под действием g.

Группы симметрий правильный многогранников

$$Cube\cong S_4$$
 (доказывается через диагонали) $|Cube|=|Oct|=24$ $Tetra\cong A_4, |Tetra|=12,\ Dodec\cong Iso\cong A_5, |Dodec|=60$

Fun Facts

- \circ Если p>2 простое, тогда уравнение $x^2\equiv 1\mod p$ имеет только 2 решения: 1 и -1. (доказывается через $(x-1)(x+1)\equiv 0\mod p$
- о $\sum_{d|n} \varphi(d) = n$, где $\varphi(d)$ —функция Эйлера.
- $\circ\:$ Мультипликативность функции Эйлера: HOД(p,q) = 1 $\Rightarrow \varphi(pq) = \varphi(p) \cdot \varphi(q)$
- $\circ~$ Необходимое и достаточное условие квадратичного вычета: а кв.вычет по модулю p простого $\Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \mod p$
- Конечно порожденная абелева группа изоморфна прямому произведению циклических