[5] Question 2:

ideal opamp

For the above circuit, find the output voltage, Vo

[5] Question 3:

Use the 0.7V constant voltage drop model for the diodes.

Sketch the resulting waveform for ${\cal V}_C$ on the graph below and label important voltages and important time constants.

[5] Question 4:

Use the exponential model for the diodes.

1K52

Consider the circuit above where the two diodes are identical. Given that each diode would

have a current of 2mA at a voltage of 0.7V and that its voltage drop changes by 0.1V for

every decade change in current, find the current, Ix and the voltage, Vx.

[5] Question 5:

For the above transistor circuit, find the values of the collector current, base voltage, collector voltage and emitter voltage. Assume $\beta=100$ and ignore any finite output resistance.

[5] Question 6:

For the above transistor circuit, the collector current was found to be 1mA and the transistor is operating in the active region. Using small-signal analysis, find the gain, ν_o/ν_s , input resistance, R_i and output resistance, R_o . Assume $\beta=100$ and ignore any finite output resistance.

[5] Question 7:

For the above circuit, find V_B , V_C and V_E . Assume $\beta = 100$ and ignore finite output resis-

tance.

[5] Question 8:

The above is a transimpedance amplifier (used in photodetectors). Find the output resistance, R_o . Assume $\beta=100$ and ignore finite output resistance.

[5] Question 9:

$$R_D = 5k \qquad V_i = 1V$$

$$\mu_n C_{ox} = 20 \text{uA/V}$$

$$W = 10 \text{um}$$

$$V_G \longrightarrow \square$$

For the above circuit, find the value of V_G where the transistor is at the edge of the triode

region.