Star Cluster Formation:

The Effects of Early Forming Massive Stars and Building a Bridge Between Voronoi Mesh and Block-Structured Codes

Sean C. Lewis.

Stephen McMillan, Mordecai-Mark Mac Low, Claude Cournover-Cloutier, Brooke Polak, Aaron Tran, Martiin Wilhelm, Alison Sills, Ralf Klessen, Joshua Wall

January 6, 2023

Disruption of gas collapse, star formation, and cluster assembly

■ The feedback from massive stars likely dominates the self-regulation of star formation.

Disruption of gas collapse, star formation, and cluster assembly

- The feedback from massive stars likely dominates the self-regulation of star formation.
- Gas evacuation (via stellar feedback) is crucial to the completion of star cluster assembly. ¹

¹Bressert et al. (2010); Longmore et al. (2014); Grudić et al. (2018); Dobbs et al. (2022) ≥ →

Disruption of gas collapse, star formation, and cluster assembly

- The feedback from massive stars likely dominates the self-regulation of star formation.
- Gas evacuation (via stellar feedback) is crucial to the completion of star cluster assembly. 1
- How gas is removed (rapidly, or slowly) may affect cluster structure.²

¹Bressert et al. (2010); Longmore et al. (2014); Grudić et al. (2018); Dobbs et al. (2022)

²Portegies Zwart et al. (2010); Smith et al. (2013); Banjeree & Kroupa (2017)

Disruption of gas collapse, star formation, and cluster assembly

- The feedback from massive stars likely dominates the self-regulation of star formation.
- Gas evacuation (via stellar feedback) is crucial to the completion of star cluster assembly.¹
- How gas is removed (rapidly, or slowly) may affect cluster structure.²
- What about *when* massive stars form?

¹Bressert et al. (2010); Longmore et al. (2014); Grudić et al. (2018); Dobbs et al. (2022)

²Portegies Zwart et al. (2010); Smith et al. (2013); Banjeree & Kroupa (2017) A REPROPERTY OF THE PROPERTY O

A Controlled Experiment

Using Torch computational framework

Gas density contours

2 / 15

Early Forming Massive Stars Rapidly Unbind GMC

Early Forming Massive Stars Suppress Gas Accretion and Star Formation

Early Forming Massive Stars Suppress Gas Accretion and Star Formation

Early forming massive stars reduces sink accretion and star formation rates.

5 / 15

Early Forming Massive Stars Suppress Gas Accretion and Star Formation

Early forming massive stars reduces sink accretion and star formation rates.

Run	$\langle \epsilon_{\it ff} angle$
Fid	0.23
50M	0.08
70M	0.03
100M	0.04

Early Forming Massive Stars Promote Formation of Fragmented, Low Mass, Loosely Bound Clusters

Run	Mass in Clusters	Frac Mass	r _h MMC	E _{bind} MMC
	$10^3~M_{\odot}$	M_c/M_{tot}	pc	10^{46} erg
Fid	3.6	0.99	0.25	-140
50M	1.4	0.97	0.17	-12
70M	0.86	0.85	0.21	-4.2
100M	0.62	0.46	0.18	-3.8

Early Forming Massive Stars Promote Formation of Fragmented, Low Mass, Loosely Bound Clusters

Low mass and spatially distinct clusters.

Run	Mass in Clusters	Frac Mass	r _h MMC	E_{bind} MMC
	$10^3~M_{\odot}$	M_c/M_{tot}	pc	10^{46} erg
Fid	3.6	0.99	0.25	-140
50M	1.4	0.97	0.17	-12
70M	0.86	0.85	0.21	-4.2
100M	0.62	0.46	0.18	-3.8

Early Forming Massive Stars Promote Formation of Fragmented, Low Mass, Loosely Bound Clusters

- Low mass and spatially distinct clusters.
- Loosely bound; more unassociated stars.

Run	Mass in Clusters	Frac Mass	r_h MMC	E _{bind} MMC
	$10^3~M_{\odot}$	M_c/M_{tot}	pc	10 ⁴⁶ erg
Fid	3.6	0.99	0.25	-140
50M	1.4	0.97	0.17	-12
70M	0.86	0.85	0.21	-4.2
100M	0.62	0.46	0.18	-3.8

Effects of Early Forming Massive Stars

Significantly disrupt the natal gas structure, resulting in earlier unbinding of GMC.

Effects of Early Forming Massive Stars

- Significantly disrupt the natal gas structure, resulting in earlier unbinding of GMC.
- The star formation rate per free-fall time is suppressed by up to a factor of seven, reducing the total mass of stars formed.

Effects of Early Forming Massive Stars

- Significantly disrupt the natal gas structure, resulting in earlier unbinding of GMC.
- The star formation rate per free-fall time is suppressed by up to a factor of seven. reducing the total mass of stars formed.
- Stifle the hierarchical assembly process of massive star clusters, instead promoting the formation of spatially separate and more loosely bound subclusters.

In the Pursuit of a Self-Consistent Star Formation Simulation

The Problem with Initial Conditions

Prohibitively large spatial scales...

The Problem with Initial Conditions

- Prohibitively large spatial scales...
- Lead to "creative liberties..."

The Problem with Initial Conditions

Clouds from Galactic Simulations

GMC identification³

³Li, H. et al. (2020)

Voronoi Mesh to AMR Grid

Voronoi Mesh to AMR Grid

VorAMR: Logic path

2a. Convert mesh to particles and construct refined AMR grid

2h Construct KDtree with field values assigned to leaf nodes

VorAMR: The Big Wins

Provides a novel way to visualize Voronoi mesh-based hydrodynamical data.

VorAMR: The Big Wins

- Provides a novel way to visualize Voronoi mesh-based hydrodynamical data.
- Represents a critical linkage in the star cluster simulation pipeline which will allow Torch to use realistic GMC initial conditions.

VorAMR: The Big Wins

- Provides a novel way to visualize Voronoi mesh-based hydrodynamical data.
- Represents a critical linkage in the star cluster simulation pipeline which will allow Torch to use realistic GMC initial conditions.
- Provides an avenue for increased collaboration between research groups using different methods.

