

EE2029: Introduction to Electrical Energy System

Per Unit Analysis: Three Phase Transformers

Lecturer : Dr. Sangit Sasidhar (elesang)

Department of Electrical and Computer Engineering

© Copyright National University of Singapore. All Rights Reserved.

Three-Phase Transformers

Three-phase transformers at substations

Pole-mounted three single-phase transformers.

Source: http://www.meidensg.com.sg

Three-Phase Transformer Nameplate

Three Single-Phase Transformers

3Ф Transformer Connections

designation	winding connection	single-phase equivalent
Yy		$ V_{LN} $
Yd	VLN VIN VIN VIN VIN VIN VIN VIN VIN VIN VI	$ V_{LN} $ $ V_{ln} $
Dy	· VLN EMIVIN	$ V_{LN} $
Dd	V _{LN} V _{In}	$ V_{LN} $

- The voltage rating of a three phase transformer is the ratio between **line-to-line** voltage at the primary side and **line-to-line** voltage at the secondary side.
- The single-phase equivalent shows line-to-neutral voltage.
- For Y-Y and Δ - Δ transformers, voltage and current in both primary and secondary are in phase. The ratio of the voltage and current follows the turn ratio of the transformer.
- The same does not apply to Y- Δ and Δ -Y connections.

3Ф Transformer Connections

designation	winding connection	single-phase equivalent
Yy		
Yd	VLN VIN VIN	$ V_{LN} $
Dy	$\frac{1}{2} V_{LN} = \frac{1}{2} V_{In} $	
Dd	V _{LN} V _{In}	

Per phase per unit circuit

Wye-Delta 3Ф Transformers

Wye-connected

Delta-connected

 V_{A2-B2}

Line-to-neutral voltage

Line-to-line voltage!!

Wye-Delta 3Ф Transformer

Y-Δ 3Φ Transformer: Per Phase Model

For a positive sequence voltage source,

$$V_{A1-n} = \left(\frac{N_1}{N_2}\right)\sqrt{3}V_{A2-n} \angle 30^{\circ}$$
 $\angle V_{A1-n} : \angle V_{A2-n} = 1\angle 30^{\circ} : 1$

$$\angle V_{A1-n}: \angle V_{A2-n} = 1\angle 30^{\circ}: 1$$

$$i_2 = i_2' \angle -30^{\circ}$$

$$V_2 = V_2' \angle -30^{\circ}$$

3Ф Transformer Per Unit Model

designation	winding connection
Yy	
Yd	V _{LN} V _{In} V _{In}
Dy	· VLN EM VIN
Dd	V _{LN} V _{In}

Summary