Quantum Mechanics: Fall 2017 Solution to Midterm Exam

NOTE: Problems start on page 2. Bold symbols are 3-component vectors. Some useful facts:

- 1D harmonic oscillator: $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2}{2}x^2$. Here \hat{x} is position operator, \hat{p} is momentum operator, $[\hat{x},\hat{p}] = i\hbar$, and in position representation $\hat{p} = -i\hbar\frac{\partial}{\partial x}$. Define $\hat{a}_{\mp} = \sqrt{\frac{m\omega}{2\hbar}}(\hat{x} \pm i\frac{1}{m\omega}\hat{p}) = \sqrt{\frac{m\omega}{2\hbar}}(x \pm \frac{\hbar}{m\omega}\frac{\partial}{\partial x})$. Then $[\hat{a}_{-},\hat{a}_{+}] = 1$ and $\hat{H} = \hbar\omega\,(\hat{a}_{+}\hat{a}_{-} + \frac{1}{2})$. It has a unique ground state $|\psi_{0}\rangle$ with $\hat{a}_{-}|\psi_{0}\rangle = 0$, and excited states $|\psi_{n}\rangle \equiv \frac{1}{\sqrt{n!}}(\hat{a}_{+})^{n}|\psi_{0}\rangle$ with energy $E_{n} = (n + \frac{1}{2})\hbar\omega$. The ground state wavefunction is $\psi_{0}(x) = (\frac{m\omega}{n\hbar})^{1/4}\exp(-\frac{m\omega}{2\hbar}x^2)$.
- $\int_0^{+\infty} x^n e^{-x} dx = \Gamma(n+1) = n!$, for non-negative integer n.
- Central potential problem: $\hat{H} = \frac{1}{2m}\hat{\boldsymbol{p}}^2 + V(r)$. Here $\hat{\boldsymbol{p}}$ is the 3D momentum $-i\hbar\frac{\partial}{\partial \boldsymbol{r}}$, and $r = |\boldsymbol{r}|$ is the radius. Under polar coordinates (r,θ,ϕ) , the eigenfunctions are generally $\psi_{E,\ell,m} = \frac{u(r)}{r} \cdot Y_\ell^m(\theta,\phi)$, where $Y_\ell^m(\theta,\phi)$ is the spherical harmonics, and u(r) satisfies $-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[V(r) + \frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}\right] \cdot u = E \cdot u$. Here $\ell = 0,1,\ldots$ is the angular momentum quantum number; $m = -\ell, -\ell+1,\ldots,\ell$ is the azimuthal angular momentum quantum number; E is the energy eigenvalue.
 - The spherical harmonics are orthonormal, and are eigenfunctions of $\hat{\boldsymbol{L}}^2$ and \hat{L}_z . $Y_0^0 = \frac{1}{\sqrt{4\pi}}, Y_1^0 = \sqrt{\frac{3}{4\pi}}\cos\theta, Y_1^{\pm 1} = \mp\sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm\mathrm{i}\phi}, \ldots$
- Generic angular momentum: $[\hat{J}_x, \hat{J}_y] = i\hbar \hat{J}_z$, $[\hat{J}_y, \hat{J}_z] = i\hbar \hat{J}_x$, $[\hat{J}_z, \hat{J}_x] = i\hbar \hat{J}_y$. For eigenstate $|j, m\rangle$ of $\hat{\boldsymbol{J}}^2$ and \hat{J}_z , $\hat{\boldsymbol{J}}^2|j, m\rangle = j(j+1)\hbar^2|j, m\rangle$, $\hat{J}_z|j, m\rangle = m\hbar|j, m\rangle$, and $(\hat{J}_x \pm i\hat{J}_y)|j, m\rangle = \sqrt{(j \mp m)(j \pm m + 1)}\hbar|j, m \pm 1\rangle$. Here 2j is non-negative integer, $m = -j, -j + 1, \dots, j$.
 - Orbital angular momentum: $\hat{\boldsymbol{L}} \equiv \hat{\boldsymbol{r}} \times \hat{\boldsymbol{p}}$.
 - Spin-1/2: basis states $|\uparrow\rangle$ and $|\downarrow\rangle$. Under this basis, $\hat{S}_a = \frac{\hbar}{2}\sigma_a$ where $\sigma_{x,y,z}$ are Pauli matrices.

Generic wavefunction under this basis is $\begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \end{pmatrix}$, which means $\psi_{\uparrow} |\uparrow\rangle + \psi_{\downarrow} |\downarrow\rangle$.

Problem 1. (45 points) Consider the 1D harmonic oscillator $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2$. Set the initial(time t = 0) wavefunction to be $\psi(x, t = 0) = A \cdot x^2 \cdot \exp(-\frac{m\omega}{2\hbar}x^2)$.

- (a) (5pts) Find the normalization constant A.
- (b) (10pts) Solve the coefficients c_n in the expansion $\psi(x, t = 0) = \sum_n c_n \psi_n(x)$ in terms of \hat{H} eigenstates. [Hint: this expansion contains only a few terms.]
 - (c) (5pts) Write down the wavefunction $\psi(x,t)$ at time t.
 - (d) (5pts) Measure energy in $\psi(x,t)$, what values can you get, with what probabilities?
- (e) (20pts) Compute the expectation values $\langle \hat{x} \rangle$, $\langle \hat{p} \rangle$, $\langle \hat{p}^2 \rangle$ in the state $\psi(x,t)$. Check that the uncertainty principle for \hat{x}, \hat{p} is satisfied.

Solution:

(a) A should satisfy that $\int_{x=-\infty}^{\infty} |\psi(x,t=0)|^2 dx = |A|^2 \int_{x=-\infty}^{\infty} x^4 \exp(-\frac{m\omega}{\hbar}x^2) dx = 1$.

From the basic Gaussian integral formula, $\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\pi} a^{-1/2}$, take second derivative with respect to a, $\int_{-\infty}^{\infty} x^4 e^{-ax^2} dx = \sqrt{\pi} a^{-5/2} \cdot \frac{1}{2} \cdot \frac{3}{2}$.

Then
$$|A|^2 \sqrt{\pi} (\frac{m\omega}{\hbar})^{-5/2} \cdot \frac{3}{4} = 1$$
. We can choose $A = \pi^{-1/4} (\frac{m\omega}{\hbar})^{5/4} \sqrt{\frac{4}{3}}$.

(b) Method #1: direct decomposition,

for notation simplicity, define length $a = \sqrt{\frac{\hbar}{m\omega}}$,

$$\psi(x,t=0) = (\frac{1}{\pi a^2})^{1/4} \sqrt{\frac{4}{3}} (\frac{x}{a})^2 \exp(-\frac{1}{2} (\frac{x}{a})^2);$$

$$\hat{a}_{+} = \frac{1}{\sqrt{2}} \left(\frac{x}{a} - a \frac{\partial}{\partial x} \right).$$

$$\psi_0(x) = (\frac{1}{\pi a^2})^{1/4} \exp(-\frac{1}{2}(\frac{x}{a})^2);$$

$$\psi_1(x) = \hat{a}_+ \psi_0(x) = (\frac{1}{\pi a^2})^{1/4} \sqrt{2} (\frac{x}{a}) \exp(-\frac{1}{2} (\frac{x}{a})^2);$$

$$\psi_1(x) = \frac{1}{\sqrt{2!}} (\hat{a}_+)^2 \psi_0(x) = \frac{1}{\sqrt{2}} \hat{a}_+ \psi_1(x) = (\frac{1}{\pi a^2})^{1/4} \frac{1}{\sqrt{2}} [2(\frac{x}{a})^2 - 1] \exp(-\frac{1}{2}(\frac{x}{a})^2).$$

Combining these results,
$$\psi(x, t = 0) = \sqrt{\frac{1}{3}}\psi_0(x) + \sqrt{\frac{2}{3}}\psi_2(x)$$
.

As a consistency check, the expansion coefficient is normalized, $\sum_{n} |c_n|^2 = 1$.

Method #2: use ladder operators

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(\hat{a}_- + \hat{a}_+).$$

$$\psi(x, t = 0) = \sqrt{\frac{4}{3}} \frac{m\omega}{\hbar} \hat{x}^2 \psi_0(x) = \sqrt{\frac{4}{3}} \frac{1}{2} (\hat{a}_- + \hat{a}_+)^2 \psi_0(x)$$

By the commutation relation $[\hat{a}_{-}, \hat{a}_{+}] = 1$, $(\hat{a}_{-} + \hat{a}_{+})^{2} = \hat{a}_{-}^{2} + \hat{a}_{+}^{2} + 2\hat{a}_{+}\hat{a}_{-} + 1$.

Use
$$\hat{a}_{-}\psi_{0}(x) = 0$$
, and $\psi_{n}(x) = \frac{1}{\sqrt{n!}}\hat{a}_{+}^{n}\psi_{0}(x)$,

$$\psi(x,t=0) = \sqrt{\frac{1}{3}} \cdot [0 + \sqrt{2}\psi_2(x) + 2 \cdot 0 + \psi_0(x)] = \sqrt{\frac{1}{3}}\psi_0(x) + \sqrt{\frac{2}{3}}\psi_2(x).$$

(c) Use the result of (b),

$$\psi(x,t) = \sum_{n} c_n e^{-iE_n t/\hbar} \psi_n(x) = \sqrt{\frac{1}{3}} e^{-i\omega t/2} \psi_0(x) + \sqrt{\frac{2}{3}} e^{-5i\omega t/2} \psi_2(x).$$

(d) From the result of (c), possible energy measurement results are $E_0 = \frac{1}{2}\hbar\omega$ with possibility $\frac{1}{3}$; and $E_2 = \frac{5}{2}\hbar\omega$ with possibility $\frac{2}{3}$.

(e)
$$|\psi(t)\rangle = \sqrt{\frac{1}{3}}e^{-\mathrm{i}E_{0}t/\hbar}|\psi_{0}\rangle + \sqrt{\frac{2}{3}}e^{-\mathrm{i}E_{2}t/\hbar}|\psi_{2}\rangle.$$
 Rewrite \hat{x} and \hat{p} by the ladder operators, $\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(\hat{a}_{-} + \hat{a}_{+}), \, \hat{p} = -\mathrm{i}\sqrt{\frac{\hbar m\omega}{2}}(\hat{a}_{-} - \hat{a}_{+}).$ $\hat{x}^{2} = \frac{\hbar}{2m\omega}(\hat{a}_{-} + \hat{a}_{+})^{2} = \frac{\hbar}{2m\omega}(\hat{a}_{-}^{2} + \hat{a}_{+}^{2} + 2\hat{a}_{+}\hat{a}_{-} + 1).$ $\hat{p}^{2} = -\frac{\hbar m\omega}{2}(\hat{a}_{-} - \hat{a}_{+})^{2} = \frac{\hbar m\omega}{2}(-\hat{a}_{-}^{2} - \hat{a}_{+}^{2} + 2\hat{a}_{+}\hat{a}_{-} + 1).$ $\langle \psi(t)|\hat{a}_{+}|\psi(t)\rangle = 0$, because $\hat{a}_{+}|\psi(t)\rangle$ contains only $|\psi_{1}\rangle$ and $|\psi_{3}\rangle$. $\langle \psi(t)|\hat{a}_{-}|\psi(t)\rangle = \langle \psi(t)|\hat{a}_{+}|\psi(t)\rangle^{*} = 0.$ $\langle \psi(t)|\hat{a}_{+}^{2}|\psi(t)\rangle = \sqrt{\frac{2}{3}}e^{\mathrm{i}E_{2}t\hbar} \cdot \sqrt{2} \cdot \sqrt{\frac{1}{3}}e^{-\mathrm{i}E_{0}t\hbar} = \frac{2}{3}e^{2\mathrm{i}\omega t}.$ $\langle \psi(t)|\hat{a}_{-}^{2}|\psi(t)\rangle = \langle \psi(t)|\hat{a}_{+}^{2}|\psi(t)\rangle^{*} = \frac{2}{3}e^{-2\mathrm{i}\omega t}.$ $\langle \psi(t)|\hat{a}_{+}\hat{a}_{-}|\psi(t)\rangle = \sqrt{\frac{2}{3}}e^{\mathrm{i}E_{2}t\hbar} \cdot 2 \cdot \sqrt{\frac{2}{3}}e^{-\mathrm{i}E_{2}t\hbar} = \frac{4}{3}.$

Finally,

$$\langle \hat{x} \rangle = 0, \ \langle \hat{p} \rangle = 0, \ \langle \hat{x}^2 \rangle = \frac{\hbar}{2m\omega} (\frac{4}{3} \cos(2\omega t) + \frac{8}{3} + 1)), \ \langle \hat{p}^2 \rangle = \frac{\hbar m\omega}{2} (-\frac{4}{3} \cos(2\omega t) + \frac{8}{3} + 1)).$$
$$\sigma_x^2 \cdot \sigma_p^2 = \frac{\hbar^2}{4} [(\frac{11}{3})^2 - (\frac{4}{3})^2 \cos^2(2\omega t)] > \frac{\hbar^2}{4}.$$

Problem 2. (20 points) Consider a 3D central potential problem $\hat{H} = \frac{1}{2m}\hat{\boldsymbol{p}}^2 - \alpha \cdot \delta(r - R)$. Here α , R are positive constants, δ is Dirac- δ function. Consider only the s-wave bound state with $\ell = m = 0$, the eigenstate is $\psi_{E,0,0} = \frac{1}{r}u(r)$ with energy eigenvalue E < 0.

- (a) (5pts) Draw qualitatively the function u(r).
- (b) (15pts) Express u(r) in terms of elementary functions, and write down the equation for the energy eigenvalue E. [Hint: Use $\kappa \equiv \frac{\sqrt{-2mE}}{\hbar}$. You will not be able to solve E.]

Solution:

$$u(r)$$
 satisfies $\frac{-\hbar^2}{2m} \frac{\mathrm{d}^2 u}{\mathrm{d}r^2} - \alpha \cdot \delta(r-R) \cdot u = E \cdot u$.

Define $\kappa = \sqrt{-2mE}/\hbar$.

(a) At r = R, u(r) is continuous, but its derivative is discontinuous.

For $r \to 0$, $u(r) \sim r^{\ell+1}$, so u(r) should vanish linearly at r = 0.

For $r \to \infty$, $u(r) e^{-\kappa r}$ decays exponentially.

For $r \neq R$, $\frac{d^2u}{dr^2} = \kappa^2 u$. Then if u(r) > 0, u(r) is a convex function.

A schematic picture is the following,

(b) u(r) should be linear combinations of $e^{-\kappa r}$ and $e^{\kappa r}$ in each region where the potential is zero.

For r > R, it must be proportional to $e^{-\kappa r}$, in order to be a bound state; but for r < Rit should contain both $e^{-\kappa r}$ and $e^{\kappa r}$.

$$u(r) = \begin{cases} Ae^{-\kappa r}, & r > R; \\ Be^{-\kappa r} + Ce^{\kappa r}, & 0 < r < R. \end{cases}$$

Because u(r) is continuous at r=R, and u(r=0)=0, the coefficients are related by

$$Ae^{-\kappa R} = Be^{-\kappa R} + Ce^{\kappa R} \text{ and } B + C = 0.$$
 Finally, $u(r) = A \cdot \begin{cases} e^{-\kappa r}, & r > R; \\ e^{-\kappa R} \cdot \frac{e^{-\kappa r} - e^{\kappa r}}{e^{-\kappa R} - e^{\kappa R}}, & 0 < r < R. \end{cases}$

Then, u(r) $\left(e^{-\kappa R} \cdot \frac{e^{-\kappa r} - e^{\kappa r}}{e^{-\kappa R} - e^{\kappa R}}, \ 0 < r < R.\right)$ The equation at r = R produces the relation, $-\frac{\hbar^2}{2m} \left(\frac{\mathrm{d}u}{\mathrm{d}r}|_{r=R+} - \frac{\mathrm{d}u}{\mathrm{d}r}|_{r=R-}\right) - \alpha \cdot u(r=R) = 0.$

This simplifies to $\frac{\hbar^2}{2m}\kappa \cdot (\frac{2}{1-e^{-2\kappa R}}) = \alpha$, or equivalently $e^{-2\kappa R} = 1 - \frac{\hbar^2 \kappa}{m\alpha}$.

Note: when $R \to +\infty$, this simplifies to the condition of 1D bound state on a δ -potential.

Note: this equation may not have a solution, if $R < \frac{\hbar^2}{m\alpha}$.

Problem 3. (15 points) Consider spin-1/2 particle on the unit sphere (r = 1). The spinor wavefunction is generically $\begin{pmatrix} \psi_{\uparrow}(\theta,\phi) \\ \psi_{\downarrow}(\theta,\phi) \end{pmatrix}$. The total angular momentum is $\hat{\boldsymbol{J}} = \hat{\boldsymbol{L}} + \hat{\boldsymbol{S}}$.

(a) (5pts) If the particle has orbital angular momentum ℓ [i.e. $\hat{\boldsymbol{L}}^2$ has eigenvalue $\ell(\ell+1)$

- $1)\hbar^2$]. What is the possible total angular momentum j, or the possible eigenvalue of $\hat{\boldsymbol{J}}^2$?
- (b) (10pts) For the largest possible j in (a), write down the normalized spinor wavefunction for eigenstate of eigenvalues $\hat{\boldsymbol{J}}^2 = j(j+1)\hbar^2$ and $\hat{\boldsymbol{L}}^2 = \ell(\ell+1)\hbar^2$ and $\hat{J}_z = m\hbar$, in terms of spherical harmonics. Here $m=-j,-j+1,\ldots,j$

Solution:

- (a) j can be $(\ell \frac{1}{2})$ or $(\ell + \frac{1}{2})$, for $\ell > 0$; if $\ell = 0$, j can only be $\frac{1}{2}$.
- (b) For $j = \ell + \frac{1}{2}$ and highest possible m = j, $|j, m = j\rangle = |\ell, m_{\ell} = \ell\rangle|\uparrow\rangle = \begin{pmatrix} Y_l^t \\ 0 \end{pmatrix}$.

Apply the lowering ladder operator repeatedly, we can generate all $|j,m\rangle$ states.

Generically
$$|j,m\rangle = c_{m,\uparrow}|\ell,m-\frac{1}{2}\rangle|\uparrow\rangle + c_{m,\downarrow}|\ell,m+\frac{1}{2}\rangle|\downarrow\rangle$$
.

Then
$$|j, m-1\rangle = \frac{1}{\sqrt{(i+m)(i-m+1)\hbar}} \hat{J}_{-}|j, m\rangle = \frac{1}{\sqrt{(i+m)(i-m+1)\hbar}} (\hat{L}_{-} + \hat{S}_{-})|j, m\rangle$$

Then
$$|j, m-1\rangle = \frac{1}{\sqrt{(j+m)(j-m+1)\hbar}} \hat{J}_{-}|j, m\rangle = \frac{1}{\sqrt{(j+m)(j-m+1)\hbar}} (\hat{L}_{-} + \hat{S}_{-})|j, m\rangle$$

$$= \frac{\sqrt{(j+m-1)(j-m+1)}}{\sqrt{(j+m)(j-m+1)}} c_{m,\uparrow}|\ell, m - \frac{3}{2}\rangle|\uparrow\rangle + \frac{\sqrt{(j+m)(j-m)}}{\sqrt{(j+m)(j-m+1)}} c_{m,\downarrow}|\ell, m - \frac{1}{2}\rangle|\downarrow\rangle$$

$$+ \frac{1}{\sqrt{(j+m)(j-m+1)}} c_{m,\uparrow}|\ell, m - \frac{1}{2}\rangle|\downarrow\rangle.$$

This produces recursion relation, $c_{m-1,\uparrow} = c_{m,\uparrow} \frac{\sqrt{j+m-1}}{\sqrt{j+m}}$, and

$$c_{m-1,\downarrow} = c_{m,\downarrow} \frac{\sqrt{j-m}}{\sqrt{j-m+1}} + \frac{1}{\sqrt{(j+m)(j-m+1)}} c_{m,\uparrow}.$$

From $c_{j,\uparrow} = 1$, we have $c_{m,\uparrow} = \frac{\sqrt{j+m}}{\sqrt{2j}}$.

By normalization condition, $c_{m,\downarrow} = \frac{\sqrt{j-m}}{\sqrt{2j}}$, which satisfies the above recursion relation.

$$|j = \ell + \frac{1}{2}, m\rangle = \begin{pmatrix} \frac{\sqrt{j+m}}{\sqrt{2j}} Y_{\ell}^{m-\frac{1}{2}} \\ \frac{\sqrt{j-m}}{\sqrt{2j}} Y_{\ell}^{m+\frac{1}{2}} \end{pmatrix}.$$

Problem 4. (15 points) Consider $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 + \alpha \cdot \delta(x)$. Here α is a positive constant, δ is Dirac- δ function.

- (a) (10pts) Draw qualitatively the wavefunctions for the ground state, first excited state, and second excited state. What can you say about the properties of these wavefunctions?
- (b) (5pts) What can you say about the ground state energy (e.q.) compared to harmonic oscillator energy levels)?

Solution:

Denote the eigenstates of this Hamiltonian as ψ'_n , for $n = 0, 1, 2, \ldots$, in ascending order of their energies E'_n .

Denote the eigenstates of original harmonic oscillator as ψ_n with energies $E_n = (n + \frac{1}{2})\hbar\omega$. Denote the original harmonic oscillator Hamiltonian by $\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2$.

Note that this Hamiltonian \hat{H} has spatial inversion symmetry (invariant under $x \to -x$). Note that $\langle \psi_0 | \hat{H} | \psi_0 \rangle \geq \langle \psi_0' | \hat{H} | \psi_0' \rangle$, because we can expand ψ_0 in terms of ψ_n' , $\psi_0 = \sum_n c_n' \psi_n'$, with $\sum_n |c_n'|^2 = 1$, then $\langle \psi_0 | \hat{H} | \psi_0 \rangle = \sum_n |c_n'|^2 E_n' \geq \sum_n |c_n'|^2 E_0' = E_0'$. Similarly $\langle \psi_0' | \hat{H}_0 | \psi_0' \rangle > E_0$.

(a)

(2pts) Ground and second excited states are parity even, $\psi_0'(x) = \psi_0(-x), \ \psi_2'(x) = \psi_2'(-x);$

(1pts) first excited state should be parity odd, $\psi_1'(x) = -\psi_1'(-x)$.

(3pts) ψ_0' and ψ_2' has a "dip" toward horizontal axis at $x=0; \psi_1'$ is smooth at x=0.

(2pts) $\psi'_n(x)$ has n nodes.

(1pts) All ψ'_n decay as $\exp(-\frac{m\omega}{2\hbar}x^2)$ for $|x|\to\infty$, like the harmonic oscillator eigenstates.

(1pts) In fact ψ'_1 is the same as the first excited state of original harmonic oscillator.

Schematic picture of the three states is the following (black, blue, red lines are for $\psi_{0,1,2}$ respectively),

(b).

(3pts)
$$E'_0 > E_0$$
. Because $E'_0 = \langle \psi'_0 | \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} + \alpha \delta(x) | \psi'_0 \rangle > \langle \psi'_0 | \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} | \psi'_0 \rangle \ge E_0$.
(1pts) $E'_0 < E'_1 = E_1$.

(1pts)
$$E_0' < E_0 + \langle \psi_0 | \alpha \delta(x) | \psi_0 \rangle = E_0 + \alpha \sqrt{\frac{m\omega}{\pi\hbar}}$$
. Because $E_0' < \langle \psi_0 | \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} + \alpha \delta(x) | \psi_0 \rangle$.

Problem 5 (5 points) Can the probability current density $J = \frac{i\hbar}{2m} (\psi \partial_r \psi^* - \psi^* \partial_r \psi)$ be

nonzero for a stationary bound state? If yes, try to give an example; if not, why?

Solution:

Yes, in 2-dimension and higher spatial dimensions.

For stationary state, the probability density $\rho(\mathbf{r},t) \equiv |\psi(\mathbf{r},t)|^2$ does not change over time. By the continuity equation, \mathbf{J} has to satisfy $\operatorname{div} \mathbf{J} = 0$.

In one-dimension, this divergence-free condition requires that J is a uniform constant in 1D space (does not vanish at spatial infinity). This is not compatible with bound states.

In 2-dimension or higher spatial dimensions, J can be divergence-free circulating currents, whose magnitude vanishes at spatial infinity. This usually comes from complex combinations of degenerate energy levels.

Example: hydrogen atom eigenstate $\psi_{2,1,1}$ whose angular part is $\sin \theta \, e^{\mathrm{i}\phi}$.

Example: for 3D harmonic oscillator, the state $\frac{1}{\sqrt{2}}(|n_x=1,n_y=0,n_z=0\rangle + i|n_x=0,n_y=1,n_z=0\rangle)$ with wavefunction proportional to $(x+iy)\exp[-\frac{m\omega}{2\hbar}(x^2+y^2+z^2)]$.