中国科学院大学网络空间安全学院专业核心课

2021-2022学年春季学期

网络空间安全态势感知 Cyber security situation awareness

授课团队: 刘宝旭 卢志刚 刘玉岭

教: 李 宁 助

中国科学院大学网络空间安全学院专业核心课

网络空间安全态势感知

Cyber security situation awareness

[第11次课] 传统态势识别技术

授课教师: 刘玉岭

授课时间: 2022.3.28

内容概要

- 一、入侵检测与防御技术
- **◆** 二、安全信息和事件管理SIEM
- ◆ 三、安全管理中心SOC
- 四、相关系统和工具

●不同技术阶段的网络安全态势感知

方法	分析重点	主要数据源	输出结果
基于安全关键"点" 的方法	安全脆弱性态 势的发掘分析	源代码、二进制 代码等	脆弱性的有无和 多少
基于安全攻防"线" 的方法	攻防利用途径 和可能性的纵 向分析	脆弱性和资产信 息	可能的攻防途径 及其可能性
"平面化"的方法	安全风险态势 的迭代性分析	脆弱性、资产、 威胁、拓扑关系 等信息	风险有无及其严 重程度
"立体化"的方法	安全状况和趋势的量化分析	全方位的网络安 全信息	整体安全状况及 可能的演变趋势

●不同呈现形态的网络安全态势感知

方法	数据来源	数据分析深度	分析结果用途
类SOC方 法	安全设备的数据	以资产为核心进行 安全事件全流程的 分析	安全事件管理、应急响应等
面向Web 的方法	安全设备的数据、 主动获取的网络安 全状态数据	以安全威胁为核心 进行全面的风险分 析	安全预警、安全整改等
大数据驱动的方法	安全设备的数据、 主动获取的网络安 全状态数据、威胁 情报数据	以安全事件为驱动 因素进行全面分析	通报预警、应急响应、 追踪溯源、调查取证 等

●入侵检测系统IDS

- ●一种网络安全设备或应用软件,可以监控网络传输或者系统, 检查是否有可疑活动或者违反企业的政策,侦测到时发出警报或 者采取主动反应措施
- ●IDS最早出现在1980年4月, James P. Anderson为美国空军做 了一份题为《Computer Security Threat Monitoring and Surveillance》的技术报告,提出了IDS的概念

●入侵预防系统IPS

●一种能够监视网络或网络设备的网络数据传输行为的计算机网 络安全设备, 能够即时的中断、调整或隔离一些不正常或是具有 伤害性的网络数据传输行为

面向网络安全异常,发出告警并采取措施

● 入侵检测系统的CIDF (通用入侵检测架构组织) 模型

IETF (互联网工程任务组) 的入侵检测系统 模型

•IDS/IPS

- ●作为防火墙技术的补充,开展网络行为的安全管理
- ●模式发现技术:基于知识
 - ●前提: 所有入侵行为和手段都能够表示为一种模式或特征
 - ●关键:如何表示入侵的模式,恰当的分开正常行为和入侵
- ●异常发现技术:基于行为
 - ●前提: 所有入侵行为与正常行为都是不同的
 - ●关键: 异常阈值与特征的选择
- ●状态协议分析技术:基于场景
 - ●前提:入侵行为并不能靠单一的数据包分析得出,需结合 协议建模,加入状态特性
 - ●关键:协议状态模型的表达能力:完备性、正确性

•IDS/IPS

●模式发现技术:基于知识

●优点:简单有效,详细的上下文分析

●缺点:不能有效检测未知攻击、已知攻击的变种攻击和逃

避攻击; 特征和模式难以及时更新; 知识维护比较费时

●异常发现技术:基于行为

●优点:对于新型攻击的检测比较有效;不依赖于OS;易于

发现特权滥用行为

Signature-based (knowledge-based)	Anomaly-based (behavior-based)	Stateful protocol analysis (specification-based)
Pros	Effective to detect new and unforeseen	• Vnow and trace the protocol states
 Simplest and effective method to detect known attacks. Detail contextual analysis. 	vulnerabilities. • Less dependent on OS. • Facilitate detections of privilege abuse.	 Know and trace the protocol states. Distinguish unexpected sequences of commands.
Cons		
 Ineffective to detect unknown attacks, evasion attacks, and variants of known attacks. 	 Weak profiles accuracy due to observed events being constantly changed. 	 Resource consuming to protocol state tracing and examination.
Little understanding to states and protocols.Hard to keep signatures/patterns up to date.	Unavailable during rebuilding of behavior profiles.Difficult to trigger alerts in right time.	 Unable to inspect attacks looking like benign protocol behaviors.

Time consuming to maintain the knowledge

Might incompatible to dedicated OSs or APs.

- ●IDS/IPS划 分(4个维度)
 - ●系统部署
 - ●数据源
 - ●检测策略
 - ●时间性

Intrusion detection system: A comprehensive review, 2012

●大数据时代IDS/IPS面临的挑战

1. "Comprehensive Enterprise Coverage"	The entire production IT stack (e.g., "networks, hosts, applications databases, identities") for the enterprise must be monitored by the ESM regardless of environment (i.e., onsite or in the cloud).		
2. "Information Interaction and Correlation"	All meaningful events, logs, and similar from input sources in #1 must be capable of being collected for correlation.		
3. "Technology Interaction and Correlation"	The SIEM will serve as the foundation of the correlation engine, however it should also integrate with other important security technologies such as: Firewalls, IDSs/IPSs, DLPs, Vulnerability Management, and Anti-Malware.		
4. "Business Interaction and Correlation"	The ESM must be aware and tuned to the specifics of the organization's business context to better assess an attacker motivation and yield better correlation and intelligence.		
5. "Cross-Boundary Intelligence for Better Decision Making"	The ESM solution must span organizational boundaries across the entire enterprise in a cohesive and collaborative manner, and no permit fragmentation with regards to its overall cyber defense.		
6. "Visualized Output for Dynamic and Real- time Defense"	The output of the system must be easily visualized and understandable by end user analysts in an effective manner.		

Intrusion detection and Big Heterogeneous Data: a Survey, 2015

内容概要

- 一、入侵检测与防御技术
- ◆ 二、安全信息和事件管理SIEM
- ◆ 三、安全管理中心SOC
- 四、相关系统和工具

二、安全信息和事件管理SIEM

●SIEM工作原理

二、安全信息和事件管理SIEM

A survey of information security incident handling in the cloud, 2015

_	A A A A A A A A A A A A A A A A A A A		
•	Phase	Research area	Theme/application domain
-	Preparation	CSIRT	Automation workflow Establishing and coordinating CSIRT model
			Collaborative information sharing model
		Incident management/handling strategies	Model
			Collaborative structure
			Cloud computing
	Detection and analysis	Incident reporting	Model
			Cloud computing
			Information exchange format
		Risk management	Model
			Cloud computing
			Critical infrastructure
			Smartphone
		Incident prioritisation	Model
	Response (containment,	Response selection technique	Static mapping
	eradication and recovery)		Dynamic mapping
			Cost-sensitive mapping
		Backup and recovery	Performance
			Technologies
			Techniques and implementation
	Post incident	Adaptive incident learning	Model, information content and template
nfc			Organisational learning theory
			Web-based technology
春	0839X6M05004	H 网络空间安全态势原	※知 刘宝旭,卢志刚,刘玉岭 17

* ISO/IEC 27035

^ NIST SP 800-61

The bomb indicates the occurrence of an incident.

- •Policy, plan and procedure creation *^
- •Management commitment *^
- ·Establishment of incident response team
- ·Prepare for incident handling (establish technical and other support) *^
- Prevent incidents, perform risk management *^
- •Incident management awareness briefings and training *
- Incident management scheme testing *

Learn

- •Further forensic analysis, if required *
- *Identify lessons learned *^
- *Using collected incident data over time*

Detect and reporting

*Detection *^

Responses

- Notification/communication *^
- •Responses *^

Information security intelent management: Current ractice as reported in the raction of the ract

Assessment and decision

- •Analysis *^
- •Documentation *^

二、安全信息和事件管理SIEM

●SIEM演进路线

●越来越重视异常 检测,如 UEBA: User and Entity **Behavior Analytics** ●强化事件应急响 应: SOAR模型(Security Orchestration, **Automationand** Response, 安全编 排、自动化和响应); OODA模型(Observe, Orient, Decide, Act,观察 ,调整,决策以及 行动)

安全信息和事件管理SIEM

IBM QRadar 提供全面的風險管理與事件調查分析能力 涵蓋了資安運維的事前、事中及事後各階段

攻擊前

預測/預防階段

回應

反應/調查階段

QRadar Vulnerability Management 弱點掃描與生命週期管理

預先知道相關的弱點,以及其對 應的修補,能有效評估企業存在的漏洞,並進行漏洞生命週期管

QRadar Risk Management 網路設備組態風險評估及預測

針對網路設備組態進行安全評估 自動繪出網路關聯拓樸圖,並模 擬攻擊, 能有效預測企業存在的 資安風險.

偵測 (Detection)與分析(ANALYZE)

攻擊

QRadar Log Manager 日誌管理與合規

了解內部、外部在設備上的活動 得知相關未授權存取活動

QRadar Network Anomaly Detection

網路流量異常檢測 分析異常封包行為及攻擊 包含Malware,木馬, DDos,異常探測網路, 外洩活動...

QRadar Network Insights

進階網路內容異常檢測 分析所有封包的檔案 MD5 hash, DNS Query, PII, URL, Email外洩活

QRadar SIEM + User Behavior Analytics

資安事件關聯分析

將大量的日誌及網路資訊,進行關聯分析,有效快速針 對有問題的事件進行調查

IBM QRadar Advisor with Watson (SaaS)

認知安全 - 安全分析師的大腦

將關聯出的日誌及網路資訊,送往雲端Watson,透過 Machine Learning與X-Force 進行分析

鑑識與調查 (Forensics)

QRadar Incident Forensics

鑑識與外洩分析

快速進行外洩的調查與分析,將影 響降至最低, 能將事故還原以有效 舉證

IBM Security i2 for Cyber

Intelligence 安全事件視覺化調查分析

透過各種視覺化圖形,快速進行的 調查與分析,找出關聯性

事件響應(Response)

IBM Resilient Incident Response Platform

事件響應與處理流程

以安全事件為導向,透過內建的行 業標準和最佳實踐,將響應流程整 體細化、分解,並自動化的對流程 進展狀況進行監控,幫助企業快速 進行安全事件的應急回應

二、安全信息和事件管理SIEM

内容概要

- 一、入侵检测与防御技术
- ◆ 二、安全信息和事件管理SIEM
- ◆ 三、安全管理中心SOC
- 四、相关系统和工具

●安全管理中心

- ●集中化
- ●全方位
- ●体系化

- ●安全管理中心
 - ●全方位的安全管 理中心
 - ●人员
 - ●技术
 - ●过程

Building a World-Class Security Operations Center: A Roadmap, SANS Institute, 2015

●必备技术组成

Manage People & Process Policy & Compliance Controls

Management &
Security
Accreditation

Deterrent Controls 威慑式控 制技术

Business Audit

Technical Audit

Log Collection

Proactive Controls 主动式控 制技术

Event Monitoring Privilege User Monitoring Correlation –by
Time across
Multiple
Channels

Reactive Controls 被动式控 制技术

Analyse & Identify Incidents

Manage Incidents to Resolution

Forensic & Legal Readiness

Retrospective Controls 回顾式控制技术

●安全管理中心 组织层次 ●告警分析 (Tier 1 IDS/IPS) Alert SME/ Analyst Hunter ●事件响应((Threat Intel) Tier 2 SIEM) Incident Responder Tier 1 ●安全事件管理,ttlines Alert Analyst 俘获 SME/ SME/ SOC Hunter Hunter Manager (Malware RE) (Network) Tier 2 Tier Incident Alert Responder Analyst SME/ Hunter (Endpoint) Tier 1 Alert **Frontlines** Analyst

- Security Monitoring
- 2. Incident Handling & Response
- 3. Digital Forensics
- 4. eDiscovery & Investigations
- 5. Cyber Threat Intelligence
- 6. Technical Solution Development

ANALYTIC PROCESSES

Those processes that enable the CyberSOC to perform its security functions. Commonly referred to as "Watch Operations".

BUSINESS PROCESSES

The people, processes, and technology that enable the CyberSOC to fully integrate with the rest of the business

- 1. Metrics & Reporting
- 2. Integration with ITOC
- 3. Integration with Business
- 4. Operational Systems & Networks

- 1. Change Management
- 2. Design Requirements
- Configuration Management
- 4. System Management
- 5. Capacity Planning
- Data Source Expansion
- Note: Specific to CyberSOC

TECHNICAL PROCESSES

People, processes, and technology that enable the CyberSOC to identify, regulate, and manage CyberSOC technology required for operations.

OPERATIONAL PROCESSES

People, processes, and technology that enable CyberSOC to provide vision, maintain resourcing and certification, develop strategy, process improvement, and specific "backroom" functions.

- Staffing, Retention, & Recruitment
- 2. Scheduling
- 3. Process Improvement
- 4. Roles & Responsibilities
- 5. Compliance
- Use case development
- Business Continuity
- 8. Budget

Cyberse**Cerity Oper**ations Center: Cyber Preparedness and Lesson Learned, 2017

三 安全管理中心(1)(1)

CYBER SECURITY OPERATIONS CENTRE, center for multidisciplinary Research, innovation and collaboration, 2015

- ●安全管理中心实例-Gartner威胁情报驱动的SOC
 - ●强调安全管理的自动化
 - ●强调安全事件的响应
 - ●强调安全威胁和脆弱性的管理

SOA
Security
Operations
Automatio
n

TVM
Threat and
Vulnerability
Managemen
t

More information: The Five Characteristics of an Intelligence-Driven Security Operations Center, Gartner 2015

●NASA 的Security Operations Center (SOC)

- ●SOC与NASA的计算机取证和事故分析(CFIA)团队以及网络威胁分析计划(CTAP)并行工作,该计划专注于解决最严重的威胁,将信息映射到美国国家航空航天局的威胁与NASA固有的脆弱性之间
- ●SOC还对美国航空航天局<mark>进行渗透测试</mark>,以确定安全弱点,并在企业范围内识别和响应安全事件
 - ●实时检测具有恶意软件感染的NASA系统
 - ●有效阻止访问恶意漏洞网站
 - ●防止数据丢失
 - ●采用有效的多层防御 和极其重要的实时情报
 - ●支持多种操作系统
 - ●与外部密切合作:包括美国CERT,事件响应和安全小组论坛(FIRST)、 海湾地区CSO委员会、FBI和反间谍机构(CI)等

内容概要

- 一、入侵检测与防御技术
- ◆ 二、安全信息和事件管理SIEM
- ◆ 三、安全管理中心SOC
- 四、相关系统和工具

四、相关系统与工具

Snort

- ●最最常用的开源入侵检测和防御工具
- ●已发展成为一个多平台(Multi-Platform),实时(Real-Time)流量 分析, 网络IP数据包(Pocket)记录等特性的强大的网络入侵检测/ 防御系统
- ●支持三种工作模式
 - ●嗅探器: Snort将在现有的网域内截取数据包,并显示在显 示屏上
 - ●数据包记录器: Snort将已截取的数据包存入存储媒体中
 - ●网络入侵检测系统: Snort可对截取到的数据包做分析的动 作,并根据一定的规则来判断是否有网络攻击行为的出现
- ●支持多平台: Linux, FreeBSD, Windows
- https://www.snort.org/

四、相关系统与工具

OSSEC

- ●开源工具,结合了基于主机的入侵检测系统、日志监控、安全 事件管理等
- ●主要功能:日志分析、文件完整性检查、rootkit检测、实时警 报和主动响应
- ●支持多种平台: Linux, OpenBSD, FreeBSD, MacOS, Solaris, Windows
- ●具备详细的使用文档,甚至中文版
- ●网站: https://ossec.github.io/

四、相关系统与工具

- ◆ AlienVault统一安全管理平台
 - ●提供了在各种系统中监控、分析和管理系统事件的工具
 - ●提供用于漏洞评估和入侵检测(包括网络和基于主机)的工具
 - ●提供OSSIM (开源安全信息和事件管理) 服务, 包含的开源项 目列表包括:
 - FProbe, Munin, Nagios, NFSen/NFDump, OpenVAS, OSSEC, PRADS, Snort, Suricata和 **TCPTrack**

传统态势识别技术

