MATH5735: Modules and Representation Theory (2014,S1) Problem Set 2 1

Throughout, k will denote some field, R a ring and n some positive integer. This problem set covers lectures 6-10.

- 1. Use universal properties to show that the abelian group $\operatorname{Hom}_R(R^n, R^m)$ is naturally isomorphic to the additive group of $m \times n$ -matrices with entries in R.
- 2. Let G be the cyclic group of order 2 and $R = \mathbb{C}G$. Show that $\mathbb{C}G$ is decomposable as a right R-module.
- 3. Let $R=\mathbb{R}[x]$. Is $M=\mathbb{R}[x]/\langle x^2+x-2\rangle$ decomposable as an R-module? What about $M=\mathbb{R}[x]/\langle x^2+x+1\rangle$?
- 4. Show that $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$ is a cyclic \mathbb{Z} -module.
- 5. Let $R = \operatorname{End}_{\mathbb{C}} \mathbb{C}[x]$ and $\partial \in R$ be the differentiation operator. Show that the right R-module generated by ∂ is all of R but the left R-module generated by ∂ is not.
- 6. Recall that since $\mathbb{Z}[\sqrt{2}]$ is a subring of $\mathbb{Z}[\sqrt[4]{2}]$ we may consider $\mathbb{Z}[\sqrt[4]{2}]$ as a $\mathbb{Z}[\sqrt{2}]$ -module. Show that it is free.
- 7. Let R = k[x] and M be the R-module $k[x]/\langle x \rangle$. Let $\bar{1}$ denote the element $1 + \langle x \rangle \in M$. Recall that the matrix $(\bar{1} \bar{1})$ defines an R-linear homomorphism $\phi : R^2 \longrightarrow M$. Is ker ϕ cyclic? If so, find a generator for it, otherwise find a minimal generating set.
- 8. Let $G = \langle \sigma, \tau \rangle$ be the dihedral group of order 2n where σ is an order n rotation and τ is a reflection. Let $H = \langle \sigma \rangle$ and R = kH. Recall that M = kG is a free kH-module. Write down an explicit isomorphism $\phi: R^2 \longrightarrow M$. Recall that left multiplication by τ on M is (right) kG-linear and hence also kH-linear. This induces an R-linear map $\psi: R^2 \longrightarrow R^2$ via ϕ . Write down the 2×2 -matrix representing this homomorphism.

¹by Daniel Chan

- 9. Consider the submodule N of \mathbb{Z}^3 generated by (4,4,6) and (8,4,4). Use EROs and ECOs to write \mathbb{Z}^3/N as a direct sum of cyclic groups. (Your answer should be of the form $\mathbb{Z}^3/N \simeq \mathbb{Z}^r \oplus \mathbb{Z}/a_1\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/a_s\mathbb{Z}$ for integers r, s, a_1, \ldots, a_s which you need to determine).
- 10. Let R = k[x] and M be the R-submodule of R^2 generated by $(x^2 1, x 1)$ and $(2 2x, x^3 1)$. Write R^2/M as a direct sum of cyclic modules.
- 11. How close can you get to a Jordan canonical form theorem over \mathbb{R} ? What's the new theorem?
- 12. Prove the rational canonical form theorem (below) in linear algebra which works over an arbitrary field k, even if it is not algebraically closed.

Theorem 0.1 Let A be an $n \times n$ -matrix over k. Then A is similar to a direct sum of blocks, each of which has the form

$$B = \begin{pmatrix} 0 & 0 & \cdots & 0 & \beta_1 \\ 1 & 0 & & \vdots & \beta_2 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & & 0 & \vdots \\ 0 & \cdots & 0 & 1 & \beta_n \end{pmatrix}$$

for some $\beta_1, \ldots, \beta_n \in k$.