

Strojové učenie II

prednáška 3 – Dynamické programovanie

Ing. Ján Magyar, PhD.

Katedra kybernetiky a umelej inteligencie
Technická univerzita v Košiciach
2021/2022 letný semester

Dynamické programovanie

- metóda riešenia zložitých problémov
 - rekurzívne rozdelenie problému na jednoduchšie podproblémy
 - vyriešenie jednotlivých podproblémov
 - skombinovanie riešení podproblémov do riešenia problému
- vlastnosti riešeného problému
 - prekrývajúce sa podproblémy
 - riešenia podproblémov sú viacnásobne používané (cache)
 - riešenia podproblémov sú memoizované (caching)
 - optimálna štruktúra
 - optimálne riešenie celkového problému pozostáva z optimálnych riešení podproblémov

Dynamické programovanie a MDP

• rozklad na podproblémy je reprezentovaný Bellmanovými rovnicami

$$v_{\pi}(s) = E[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

$$q_{\pi}(s, a) = E[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

pre rekurzívnu dekompozíciu na dve zložky

- nasledujúci krok
- ostávajúce kroky

Podúlohy v MDP

- hodnotové funkcie v(s) a q(s,a)
 - používané pre určenie hodnoty všetkých predchodcov (stavov a dvojíc stavakcia)
 - ukladané v tabuľke pre opakované použitie
 - na základe $v_*(s)$ a $q_*(s,a)$ sa určí optimálna politika

Dynamické programovanie pre RL

- počítanie optimálnej politiky na základe perfektného modelu prostredia (niekedy označované ako plánovanie)
 - model v tvare MDP
 - konečný MDP
 - dynamika procesu daná distribúciou p(s', r|s, a)
- použitie pre úlohy
 - diskrétny priestor stavov a akcií možné riešiť priamo
 - spojitý priestor priamo kvantovaním alebo zložitejšími prístupmi
- limitované využitie
 - predpoklad dostupnosti perfektného modelu
 - veľké výpočtové nároky

Vyhodnocovanie politiky π

• označuje určovanie hodnotových funkcií v_{π} a q_{π} pre ľubovoľnú politiku π

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a)(r + \gamma v_{\pi}(s'))$$

- sústava lineárnych rovníc
 - počet rovníc daný počtom možných stavov
- garancia jedinečného riešenia ak platí aspoň jedno:
 - $\gamma < 1$
 - z každého stavu je pri π dosiahnutý terminálny stav

Iteračné vyhodnocovanie politiky π

- iteračné riešenie sústavy rovníc
 - $v_0(s) = 0$ pre terminálne stavy
 - počiatočná aproximácia pre neterminálne stavy $v_0(s)$ môže byť ľubovoľná
 - je generovaná sekvencia aproximácií hodnotovej funkcie stavu v_0, v_1, v_2, \dots
- aktualizačné pravidlo

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a)(r + \gamma v_k(s'))$$

• ukončenie ak $\max_{s} |v_{k+1}(s) - v_k(s)|$ je dostatočne malé

Iteračné vyhodnocovanie politiky π

- aktualizačné stratégie
 - sweep stratégia
 - dve polia, jedno pre nové hodnoty v_{k+1} a jedno pre staré hodnoty v_k
 - nové hodnoty počítané iba zo starých hodnôt
 - staré hodnoty sa počas výpočtu nových hodnôt nemenia
 - in-place stratégia
 - jedno pole reprezentujúce staré aj nové hodnoty
 - vypočítaná nová hodnota okamžite prepíše starú hodnotu
 - nové hodnoty počítané zo starých aj nových hodnôt

Iteračné vyhodnocovanie politiky π

- konvergencia
 - $\{v_k\}$ konverguje k v_{π} ak $k \to \infty$
 - in-place
 - konverguje rýchlejšie ako verzia s dvomi poliami
 - rýchlosť konvergencie je ovplyvnená poradím aktualizácie hodnôt stavov

Algoritmus odhadu v_{π}

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S} \text{:} \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ \text{until } \Delta < \theta \end{array}$$

Hľadanie lepšieho výberu akcie

- vzťah medzi $v_{\pi}(s)$ a $q_{\pi}(s,a)$ $\min_{a} q_{\pi}(s,a) \leq v_{\pi}(s) \leq \max_{a} q_{\pi}(s,a)$
- nech pre stav s: $v_{\pi}(s) < q_{\pi}(s, a)$
 - $v_{\pi}(s)$ ako dobre je zo stavu s pokračovať podľa π
 - lepšie je v s nevyberať podľa π ale raz vybrať a a potom pokračovať podľa π
 - lepšie je v s vždy vyberať akciu a

Teoréma zlepšovania politiky

- nech π a π' sú deterministické politiky
- nech $q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$ pre všetky $s \in S$
- potom π' musí byť rovnako dobrá alebo lepšia ako π
- potom $v_{\pi'}(s) \ge v_{\pi}(s)$

Teoréma zlepšovania politiky

$$\begin{aligned} v_{\pi}(s) &\leq q_{\pi}(s, \pi'(s)) \\ &= E_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s] \\ &\leq E_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_{t} = s] \\ &= E_{\pi'}[R_{t+1} + \gamma [R_{t+2} + \gamma v_{\pi}(S_{t+2})] | S_{t} = s] \\ &\leq E_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi}(S_{t+2}, \pi'(S_{t+2}))] | S_{t} = s] \\ &= \cdots \\ &\leq E_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots | S_{t} = s] \\ &= v_{\pi'}(s) \end{aligned}$$

Zlepšovanie politiky

• rozšírenie TZP na všetky stavy a všetky akcie $\pi'(s) = \operatorname{argmax} q_{\pi}(s, a)$

$$\pi'(s) = \underset{a}{\operatorname{argmax}} E[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$

$$\pi'(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} \sum_{r} p(s', r | s, a) (r + \gamma v_{\pi}(s'))$$

- výber najlepšej akcie s uvážením následkov jedného dopredného kroku
- zlepšovanie politiky ako greedy výber akcií s ohľadom na hodnotovú funkciu pôvodnej politiky

Zlepšovanie politiky

• ak $a = \pi(s)$ je deterministická politika, potom môžeme zlepšiť politiku daným rozšírením na $\pi'(s)$

$$q_{\pi}(s,\pi'(s)) = \max_{a} q_{\pi}(s,a) \ge q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

• ak π' nepriniesla zlepšenie, tak:

$$q_{\pi}(s, \pi'(s)) = \max_{a} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

čo je Bellmanova rovnica optimality a $v_{\pi}(s) = v_{*}(s)$ a π je optimálnou politikou

Greedy politika

- greedy politika spĺňa podmienky teorémy
 - je lepšia alebo rovnaká ako politika, podľa ktorej boli vytvorené hodnotové funkcie, na základe ktorých vznikla greedy politika
 - ak je rovnako dobrá, ako pôvodná politika, tak obe sú optimálne
- zlepšovanie politiky proces pretvárania politiky na greedy politiku na základe hodnotových funkcií pôvodnej politiky
- rozšírenie na stochastickú politiku
 - všetky maximalizujúce akcie majú nenulovú pravdepodobnosť výberu
 - ostatné akcie majú nulovú pravdepodobnosť výberu

Iterácia politiky

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{Z} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{Z} \pi_2 \xrightarrow{E} v_{\pi_2} \xrightarrow{Z} \dots \xrightarrow{Z} \pi_* \xrightarrow{E} v_*$$

- sekvencia monotónne sa zlepšujúcich politík a hodnotových funkcií
 - na základe politiky π a k nej prislúchajúcej hodnotovej funkcie v_{π} možno vytvoriť lepšiu politiku π' ,
 - ktorá umožní lepšiu hodnotovú funkciu $v_{\pi'}$,
 - ktorá umožní vytvoriť lepšiu politiku π'' , ...
- pre konečný MDP sekvencia
 - má konečný počet iterácií
 - konverguje k optimálnej politike

Algoritmus iterácie politiky

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Iterácia hodnôt

- evaluácia politiky nemusí skonvergovať (v rámci limitu Δ)
 - stačí menej iterácií vyhodnotenia politiky (zmeny správnym smerom aj keď ešte mimo Δ)
 - extrémnym prípadom je iba jedna iterácia
- kombinácia zlepšovania politiky a skráteného (jednokrokového) ohodnocovania
 - jeden krok aktualizácie hodnotenia politiky (funkcia *v*) zahŕňajúcej spôsob vylepšovania politiky
 - počas iterovania nie je potrebné explicitné vytváranie politiky
- sekvencia $\{v_k\}$ konverguje k v_*
 - je to pravidlo vytvorené z Bellmanovej funkcie optimality

Kombinácia zlepšovania a ohodnocovania

• jednokrokové ohodnocovanie politiky ($a = \pi(s)$)

$$v_{k+1} = \sum_{s'} \sum_{r} p(s', r|s, a)(r + \gamma v_k(s'))$$

zlepšovanie politiky

$$\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} \sum_{r} p(s', r|s, a)(r + \gamma v_k(s'))$$

• kombinácia zlepšovania politiky a skráteného ohodnocovania

$$v_{k+1}(s) = \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a)(r + \gamma v_k(s'))$$

Algoritmus iterácie hodnôt

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

```
 \begin{array}{c|c} & \Delta \leftarrow 0 \\ & \text{Loop for each } s \in \mathbb{S} \text{:} \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \\ & \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ & \text{until } \Delta < \theta \end{array}
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Algoritmy synchrónneho DP

Algoritmus	Zdrojová teória
iteratívne vyhodnocovanie politiky	Bellmanova rovnica očakávania
iterácia politiky	Bellmanova rovnica očakávania + greedy zlepšovanie politiky
iterácia hodnôt	Bellmanova rovnica optimality

- založené na práci s hodnotovou funkciou stavu
- zložitosť je polynomiálna vzhľadom na počet stavov a počet akcií

Asynchrónne DP

- sekvencia úplných prechodov všetkých stavov je nevhodná ak
 - množina stavov je veľmi veľká
 - nie všetky stavy sú zaujímavé z pohľadu optimálnej politiky
- asynchrónne DP algoritmy
 - in-place iterácie
 - nie sú systematické prechody celou množinou stavov
 - niektoré stavy môžu byť aktualizované viackrát kým iné budú aktualizované iba raz
 - kvôli konvergencii nemožno stavy vynechať úplne
 - flexibilita ohľadom poradia aktualizácie stavov

Interakcia evaluácie a zlepšovania

- interakcia dvoch procesov
 - rôzne granularity striedania
 - procesy súťažia a kooperujú
- konvergencia smerom k optimálnym v_* a π_*
 - iba spoločná stabilizácia

Zdroj: Sutton-Barto: Reinforcement Learning, 2nd ed., 2018

Backup diagram

Dynamic Programming

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Zdroj: https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html