Open Experiment: Measurement Of Convective Heat Transfer Coefficient Over a Flat Surface

Group-2

20110032	Ayush Singh Kushwah ayush.kushwah@iitgn.ac		
20110065	Ekansh Somani	ekansh.somani@iitgn.ac.in	
20110068	Gaurav Sharma	sharmagaurav@iitgn.ac.in	
20110130	Dishant Patel	patel.dishant@iitgn.ac.in	
20110133	Shubham Patel	patel.shubham@iitgn.ac.in	
20110169	Rohan Naika	rohan.naika@iitgn.ac.in	
20110176	Sachin Bhardwaj	sachin.bhardwaj@iitgn.ac.in	

Bill Of Materials

BOM| ME Lab Open Experiment| Final

Sheet1 Proposed,Final Component,Specifications,Price (Per Peice),Quantity,Cost,Dealer,Status,Company,Expected Arrival,Ordered Price (Per Piece),Quantity,Cost,Delivery Silicone

https://docs.google.com/spreadsheets/d/1lgM_1tlKLjqt6ZRa XVtyFMK4Sk5S2AIKURmWly-mzow/edit?usp=sharing

Setup

Theoretical Approach

Theoretically, we can find the average heat transfer coefficient for a given flow rate using the relation between Nusselt Number, Reynold's Number, and Prandtl Number. Where.

$$Nu=rac{h_lL}{k}, \ Re=rac{
ho VL}{\mu}\,, ext{and} \ Pr=rac{\mu C_p}{k}$$

For Laminar Flow

$$egin{align} Nu &= 0.664 (Re)^{0.5} (Pr)^{0.33} \ \Longrightarrow \ h_l &= 0.664 rac{k}{L} igg(rac{
ho V L}{\mu}igg)^{0.5} igg(rac{\mu C_p}{k}igg)^{0.33} \ &= 0.664 * rac{ig(
ho * Vig)^{0.5} * C_p^{0.33} * k^{0.67}}{L^{0.5} * \mu^{0.17}} \end{split}$$

For Turbulent Flow

$$Nu = 0.037 (Re)^{0.8} (Pr)^{0.33}$$

Practical Approach

From experimental readings, we can find average heat transfer coefficient using,

$$\dot{q} = hA(T_s - T_{\infty}) = V * I$$

where,

 $T_s \rightarrow$ Temperature of surface

 T_{∞} \rightarrow Temperature of Air

Estimation

(for deciding the power requirement for heating element)

$$h pprox 2-100; \ T_s = 200^oC; \ T_\infty = 25^oC; \ A = 0.01m^2 \ P = 20*0.01*175 = 35W$$

Thus, we need a heating element with variable power supply between 20-100 W.

Schematic

Data

40 Volt

80 Volt

120 Volt

\	T,	T2	T3	Tair	Tong	heractical	htheo.
401	29	35	29.5	26.1	32.125	19.24	17.27
80Y	29.75	55.5	30.75	26.	42.875	27.52	17.27
1204	30.5	87.25	32.75	26.1	59.43	31.32	17.27