DataSci 420

lesson 7: support vector machines

Seth Mottaghinejad

today's agenda

- SVM pros and cons
- linear separability and wide-margin classifiers
- non-linear separability
- the kernel trick
- soft-margin classifiers
- multi-class classification with SVMs
- cross validation for hyper-parameter tuning

SVMs in a nutshell

SVMs give us models that capture very **complex relationships** without running the risk of over-fitting:

- world-class until the advent of deep learning
- they can run through a lot of compute, although the kernel trick makes the computation much more efficient
- less affected by outliers (because the separation boundary only depends on the support vectors)
- not great for multi-class classfication: one-vs-one, one-vs-all

SVM classifier

- there are many lines that offer linear separability
- the one that maximizes the margin is the best one
- SVM are called widemargin classifires
- the model is explained by its support vectors

source: Wikipedia

source: Wikipedia

source: Wikipedia

SVM motivation

- if data is linearly separable (by a hyper-plane), then a widemargin classifier is a better classifier
- when data is not linearly separable, project it to a **higher** dimension ($\phi:X o Z$) in which the labels are linearly separable
- ullet in Z space, decision boundary is linear, pinned down only by a few data points called support vectors
- ullet the **pre-image** of decision boundary in X space can look complex, but it's the pre-image of a hyper-plane in Z space

break time

the kernel trick

- the math for SVMs can be challenging: linear algebra including some abstract concepts
- ullet the prediction equation is $g(\mathbf{x}) = \mathrm{sign}(\mathbf{w}^T\mathbf{z} + b)$
- ullet we need to calculate $\mathbf{z}_n^T\mathbf{z}_m$ to find a solution
- with the kernel trick we can do it without explicitly finding the mappings $\mathbf{x}_i \mapsto \mathbf{z}_i$
- ullet instead we use the kernel $K \colon \mathbf{z}_n^T \mathbf{z}_m = K(\mathbf{x}_n, \mathbf{x}_m)$

types of kernels

depending on the choice, kernels introduce new hyper-parameters (such as γ and d)

- linear $K(\mathbf{x}_n,\mathbf{x}_m)=\mathbf{x}_n^T\mathbf{x}_m$
- ullet polynomial $K(\mathbf{x}_n,\mathbf{x}_m)=(\gamma\mathbf{x}_n^T\mathbf{x}_m+r)^d$ where $\gamma>0$
- radial basis function $K(\mathbf{x}_n, \mathbf{x}_m) = \exp(-\gamma ||\mathbf{x}_n \mathbf{x}_m||^2)$ where $\gamma > 0$ (which corresponds to an infinite dimensional Z space if we look at its Taylor series expansion)

soft-margin classifiers

- hard-margin classifiers expect perfect separability, but we can add a slack variable and get a soft-margin classifier
- ullet when the data is not linearly separable, we can adjust the trade-off between margin width and the classification error using the C hyper-parameter
- *C* is the penalty on data points that are on the wrong side of the decision boundary:
 - \circ higer C means more **tolerance** for misclassification

multi-class classification

- let k be the number of classes
- SVMs can only give us binary classifiers but we can still use them to do multi-class classification:
 - \circ one vs one: builds $\binom{k}{2}$ classifiers
 - \circ one vs rest: (also called. one vs all), builds k classifers
- unlike SVMs, neural networks can train multi-class classifiers with a single instance of training
 - logistic regression is like a NN too and can do the same

break time

hyper-parameter tuning

- we can do a three-way split:
 - training data is for learning, validation data is for model selection, test data is for evaluating final model
- we can do a two-way split and cross validation:
 - \circ training data is divided into k folds:
 - k-1 folds are for learning, and the kth fold for validation
 - we repeat this k times, one for each fold
 - test data is for evaluating final model

source: www.scikit-learn.org

the end