

LICENCIATURAS EM ENGENHARIA INFORMÁTICA

Unidade Curricular: ANÁLISE MATEMÁTICA II

Ano Letivo: 2016/2017

EXAME DA ÉPOCA NORMAL - TESTE A+B » Data: 19/06/2017

Código da prova: **1906201701**

Nota: A resolução completa dos exercícios inclui a justificação do raciocínio utilizado.

Duração: 2h30+30m

Nome do aluno: Número:

- 1. Considere a equação não linear $e^x \ln(-x) = 0 \Leftrightarrow f(x) = 0$
- [0.5] (a) Indique um intervalo de amplitude igual a 1 no qual a equação dada tem uma única raiz x^* real e negativa. Justifique a sua resposta!
- [0.5] (b) Determine um valor aproximado da raiz localizada utilizando o método da bisseção uma vez. Indique a precisão do resultado obtido.
- [0.5] (c) O resultado obtido na alínea anterior é uma aproximação inicial favorável à aplicação do método de Newton-Raphson ou das tangentes? Obtenha um valor aproximado da raiz efetuando uma iteração.
- [1.5] (d) Complete a função seguinte e averigue se a script imediatamente a seguir traduz corretamente a resolução em MATLAB da equação não linear dada. Justifique a sua resposta, corrigindo se for esse o caso os erros existentes na *script*.

```
function x = MTangentes(f,dfdx,x0,kmax,tol)
 k=____; x(k)=____;
 while( )
     if(_____
end
% Script01 de interface do MTangentes
Clear; clc;
strF = 'exp(x) - ln(x)';
f=@(x) vectorize(eval(strF));
while(1)
   a=str2num(input('a=','s'));
                              b=str2num(input('b=','s'));
   if ~((isscalar(a)&&isreal(a))&&(isscalar(b)&&isreal(b))&& b>a) continue end;
   if (f(a)*f(b)>0) break; end
end
      = diff(f('x')); % Derivada simbólica
df
      = @(x) eval(vectorize(char(df)));
d2fdx2 = @(x) eval(vectorize(char(diff(df))));
while(1)
   x0 = str2num(input('x0=','s'));
   if ~(isscalar(x0)&& isreal(x0)) continue; end
    if(f(x0)*d2fdx2(x0)<0) break; end
end
kmax = input('k_max='); tol = str2num(input('tol=','s'));
xT = MTangentes(dfdx,f,x0,kmax,tol) % Chamada do método das tangentes
```

2. Na natureza existem formas e imagens expressas matematicamente por funções definidas por ramos. Considere as funções reais de variável real definidas por:

$$f(x) := \begin{vmatrix} \sec & 0 \le x \le 2\pi \\ \cot \tilde{a}o & y = \cos x \\ \sec \tilde{a}o & \sec & -2 \le x < 0 \\ \cot \tilde{a}o & y = \sqrt{1 - \frac{x^2}{4}} \end{vmatrix} \qquad \qquad e \qquad g(x) = -f(x)$$

Figura 1 – Gráficos de fe g

- [2.0] (a) Aplicando a interpoladora de Newton das diferenças divididas, determine o polinómio interpolador de grau 2 da função f(x) para $x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$. Redesenhe a figura 1, aproximando as funções por uma interpolação linear para $x \in \left[-2, 0\right]$ e por uma interpolação quadrática para $x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- [2.5] **(b)** Obtenha um valor aproximado dos integrais $I_1 = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} g(x) \, dx$ e $I_2 = \int_{-2}^{0} f(x) \, dx$, utilizando as regras simples de Simpson e dos trapézios respetivamente. Recorrendo à figura 1 interprete os resultados obtidos.
 - 3. Considere o seguinte problema de valor inicial $y'=y-yt^2, y(0)=5, t\in [0,2]$
- [2.5] (a) Sabendo que $y(t) = 5 \exp\left(t \frac{t^3}{3}\right)$ é a solução exata do PVI, complete a tabela seguinte e interprete os resultados obtidos.

	Aproximações				Erros			
		$y(t_i)$	y_i	y_i	y_i	$ y(t_i)-y_i $	$ y(t_i)-y_i $	$ y(t_i)-y_i $
i	t_{i}	Exata	Euler	RK2	RK4	Euler	RK2	RK4
0	0	5				0	0	0
1				7.5000				0.0772
2	2	2.5671			1.5599		6.3171	1.0072

4. Considere as funções reais de duas variáveis reais definidas por:

$$f(x,y) = x^2 + y^2; \quad g(x,y) = -\sqrt{1 - f(x,y)}; \quad h(x,y) := \begin{vmatrix} \sec & 1 < x^2 + y^2 \le 4 \\ \cot \tilde{a}o & z = f(x,y) - 1 \end{vmatrix}; \quad j(x,y) = \begin{cases} g(x,y) \\ h(x,y) \end{cases}$$

- [0.5] (a) Determine o domínio da função j e represente-o geometricamente. O domínio é fechado? Justifique.
- [1.5] (b) Identifique as superfícies associadas às funções e trace um esboço da superfície de equação z = j(x,y).
- [1.5] (c) Resolva apenas duas das alíneas seguintes.

Qual o valor lógico das seguintes afirmações? Justifique a sua resposta.

- i) Das figuras 2, 3 e 4, as figuras 2 e 4 representam funções simétricas e a figura 3 não é gráfico de nenhuma função real de duas variáveis reais.
- ii) O vetor $\begin{bmatrix} x & 0 & 1 \end{bmatrix}$ define a equação da reta tangente à curva de intersecção da superfície z = j(x,y) com o plano x = 0 no ponto de coordenadas P(0,0,-1).
- iii) A função j é contínua nos pontos do $cord\~ao$ de soldadura definido por $C = \left\{ \left(\, x,y \, \right) \in \mathbb{R}^2 \, : \, x^2 \, + \, y^2 \, = 1 \right\}.$
- iv) A função seguinte, definida em Maple, é simétrica da função j

M:=(x, y)-piecewise($x^2+y^2<=1$, sqrt($1-x^2+y^2$), $x^2+y^2<=4$, $-x^2-y^2$), undefined)

- [1.5] (d) Das alíneas seguintes resolva apenas uma
 - i) Supondo que o potencial em qualquer ponto do plano xOy é dada por $V=\sqrt{f(x,y)}$, a taxa de variação máxima do potencial no ponto $P\left(2,2\right)$ ocorre na direção e sentido do vetor $\vec{w}=\left\langle -1,-1\right\rangle ?$ Justifique a sua resposta e determine a taxa de variação do potencial em P segundo o vetor $\vec{u}=-\frac{\vec{w}}{\|\vec{w}\|}$.
 - ii) Utilizando diferenciais e supondo que a temperatura em qualquer ponto do plano xOy é dado por $T = \sqrt{f(x,y)}$, obtenha uma aproximação da diferença da temperatura entre os pontos (2,2) e (2.22,2.22).
 - iii) Mostre que se $z=f(x,y)-(x+y)\,,\ x=\rho\cos\theta$ e $y=\rho\sin\theta\,,$

então
$$\frac{\partial^2 z}{\partial y^2} + \frac{\partial^2 z}{\partial x^2} - 2\frac{\partial^2 z}{\partial \rho^2} + \frac{\partial^2 z}{\partial \theta \partial \rho} = \sin(\theta) - \cos(\theta).$$

iv) Determine a equação do plano tangente à superfície definida por $z=1+f(x-1,y-1) \ \text{ se } (x-1)^2+(y-1)^2\leq 4 \ , \text{ no ponto } P\left(1,1,1\right). \ \text{Represente a superfície e o plano tangente.}$

5. A figura 5 representa um molde de um cálice, de densidade igual a 3, composto por quatro partes: paraboloide de raio 2 e altura 4; calote esférica de raio 1; cone de raio e altura 2; cilindro de raio 2 e altura 0.25

Figura 5

Figura 6

[2.0] (a) Associando os conjuntos seguintes a três sistemas de coordenadas 3D, mostre que o sólido é definido por $S = S_1 \cup S_2 \cup S_3 \cup S_4$, onde:

$$S_1 = \left\{ (\rho, \theta, z) \in \mathbb{R}^3 : 0 \leq \rho \leq 2 \wedge 0 \leq \theta \leq 2\pi \wedge \rho^2 \leq z \leq 4 \right\}$$

$$S_2 = \left\{ (R, \theta, \varphi) : 0 \leq R \leq 1 \wedge 0 \leq \theta \leq 2\pi \wedge \frac{\pi}{2} \leq \varphi \leq \pi \right\}$$

$$S_3 = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 4 \land -3 \le z \le -\sqrt{x^2 + y^2} - 1 \right\}$$

$$S_4 = \left\{ (\rho,\theta,z) \in \mathbb{R}^3 : 0 \leq \rho \leq 2 \wedge 0 \leq \theta \leq 2\pi \wedge -3.25 \leq z \leq -3 \right\}$$

- [2.0] (b) Calcule o volume e a massa do sólido.
- [1.0] (c) Das alíneas seguintes resolva apenas <u>uma</u>
 - i) Usando coordenadas cilíndricas, prove que o volume de um cone de raio r e altura h é igual a $\frac{1}{3}\pi r^2 h$.
 - ii) Determine a área da superfície parabólica do cálice.

<u>Sugestão</u>: A área de uma superfície de equação z = f(x,y) é dada por

$$A(S) = \iint_D \sqrt{(f_x(x,y))^2 + (f_y(x,y))^2 + 1} \ dy dx \ , \ \text{com} \ \ f_x \ \ \text{e} \ \ f_y \ \ \text{funções contínuas em} \ D.$$

iii) Mostre que em coordenadas cartesianas o cálice é definido por:

$$S = S_1 \cup S_2 \cup S_3 \cup S_4$$

$$S_1 \, = \, \left\{ (x,y,z) \in \, \mathbb{R}^{\, 3} \, : \, x^2 \, + \, y^2 \, \leq \, 4 \, \wedge \, x^2 \, + \, y^2 \, \leq \, z \, \leq \, 4 \, \right\}$$

$$S_2 \, = \, \Big\{ (x,y,z) \in \, \mathbb{R}^{\, 3} \, : x^2 \, + \, y^2 \, \leq 1 \, \wedge \, - \sqrt{1 - x^2 \, - \, y^2} \, \leq z \, \leq \, 0 \, \Big\}$$

$$S_3 \, \cup \, S_4 \, = \, \Big\{ (x,y,z) \in \mathbb{R}^3 \, : x^2 \, + \, y^2 \, \leq \, 4 \, \wedge \, -3.25 \, \leq \, z \, \leq \, -\sqrt{x^2 \, + \, y^2} \, -1 \Big\}$$

iv) Complete a função seguinte e associe-a a uma transformação/mudança de variáveis.

```
Cartesianas2Esfericas := proc(x, y, z)

local R, theta, phi;

R := sqrt(--?--);

if (x \neq 0) then theta := arctan(--?--);

elif (y=0) then theta := 0;

elif (y>0) then theta := --?--; else theta := -\frac{\pi}{2};

end if;

if (R=0) then phi := --?--; else phi:=arccos(--?--); end if;

return [R, theta, phi];

end proc;
```

Nome Completo:						
Número:						
Curso						
Licenciatura em Eng. Informática						
Licenciatura em Eng. Informática - Pós-laboral						
Licenciatura em Informática - Curso Europeu						
Trabalhador-Estudante						
Sim						
Não						
Frequência às aulas de AM2						
Regime diurno						
Regime Pós-laboral						
Foi assíduo às aulas de AM2 (frequência a mais de 70% das aulas lecionadas)						
Sim						
Não						
Fez atividades de aprendizagem e avaliação ao longo do semestre						
Não						
Sim						
At01_Matlab - Integração Numérica (Presencial)						
At02_Matlab - MNEDO_PVI						
At03_Matlab - Máquina para derivação e integração						
At01_TP - Cálculo Diferencial e Integral em IR^n						
Participação nos fóruns temáticos de AM2 (pelo menos 3 vezes)						
Acompanhou registos sobre AM2 e outros na página » facebook/armeniocorreia						
Sim						
Não						