LES ACIDES AMINES STRUCTURE, CLASSIFICATION

I. Définition:

Les acides aminés sont les briques constitutives des protéines. L'hydrolyse par voie chimique ou enzymatique des protéines conduit à la libération des AA. Possédant tous 2 fonctions en α:

- Une fonction acide: COOH

- une fonction amine: NH

Ainsi qu'une chaîne latérale (sauf la glycine)

Donc la formule générale est:

$$\begin{array}{c} \text{COOH} \\ \text{NH}_2 - \text{C} - \text{R} \\ \text{H} \end{array}$$

II-Les rôles des acides aminés:

- -structural :sont les monomères des protéines.
- -énergétique: peuvent être comme le glucose, les acides gras et les corps cétoniques des substrats énergétiques.
- -métabolique :ce sont des précurseurs plus ou moins directs de molécules d'intérêt biologique.
- -fonctionnel :certains ont en soi des propriétés biologiques importantes.

III- Classification: Il existe plusieurs classifications des AA:

A. Selon leur constitution chimique:

A.1. Aliphatique:

A.2. Les AA hydroxylés:

A.3. AA soufrés:

A.4. AA dicarboxyliques et leurs amides :

A.5. AA possédant 2grpts basiques:

(Arg)

A.6. AA aromatiques:

Tryptophan [W] (Trp)

Tyrosine [Y] (Tyr)

AA Hydroxylé
Parahydroxyphenylalanine

A.7. Iminoacides:

B. Selon la polarité des chaines latérales :

Les AA peuvent aussi être classés en fonction de la polarité et de la charge des chaines latérales à pH neutre:

- -Chargés positivement à pH neutre: Lys, Arg, His.
- -Chargés négativement à pH neutre: Asp, Glu.
- -Non chargés à pH neutre mais polaires: Ser, Thr, Cys, Asn, Gln, Tyr.
- -Non chargés à pH neutre mais apolaires (hydrophobes): Gly, Ala, Val, Leu, Ile, Met, Phe, Trp, Pro.
- *Plus de **300 aa** ont été inventoriés, parmis eux **les 20 aa constitutifs des protéines naturelles** ou aa standard.

*Parmis ces 20 aa : certains sont dits indispensables (ne peuvent être synthétisés par l'organisme).

Acides synthétisés	Acides indispensables		
Alanine	Isoleucine		
Glutamate	tryptophane		
glutamine	Leucine		
Proline	Lysine		
Aspartate	Méthionine		
Asparagine	Thréonine		
Glycocolle	Phénylalanine		
Sérine	Valine		
Tyrosine			
Cystéine			

L'histidine (His) et l'arginine (Arg) deviennent indispensables dans certaines conditions (grossesse et croissance).

IV- Propriétés physico-chimiques des aa:

A. Propriétés physiques:

A.1. Ionisation des AA: Les acides aminés sont des molécules **amphotères** : ils peuvent agir comme des **acides** et comme des **bases.**

• Nb: par définition le zwitterion est une forme neutre qui possède autant de charges positive que de charges négatives

$$^{+}$$
H₃N $-$ CH $-$ COOH $\stackrel{-H^{+}}{\rightleftharpoons}$ $^{+}$ H₃N $-$ CH $-$ COO $^{-}$ $\stackrel{-H^{+}}{\rightleftharpoons}$ $^{+}$ H₂N $-$ CH $-$ COO $^{-}$ $\stackrel{-H^{+}}{\rightleftharpoons}$ $\stackrel{-}{\bowtie}$ $\stackrel{-}{\bowtie$

- Les acides aminés se comportent donc comme des bases/acides faibles → on définit un pKb et un pKa pour les acides aminés.
- Le pKa et le pKb sont donc les pH de demi-dissociation: cad, la concentration en H+ pour laquelle la fonction acide/basique et à moitié ionisée.
- NB: On parle de pKr pour la fonction de la chaîne latérale
- Le pH_i est le pH pour lequel la charge de l'AA est nulle. Ce pH_i possède de grandes applications dans la séparation des AA par des techniques d'analyse.

A.2. Solubilité des AA:

• Les acides aminés sont généralement **solubles** dans **l'eau**, mais **très faiblement** à un pH autour de leur pHi, plus **fortement** en milieu **alcalin** (formation des sels).

A.3. Stéréochimie des AA:

- Tous les acides aminés constitutifs des protéines, sauf le glycocolle, possèdent un carbone α (carbone n° 2) asymétrique.
- Ils ont donc deux isomères optiques possibles, qui correspondent à ces deux structures.

A.4.Propriétés spectrales:

- Les solutions d'acides aminés sont incolores.
- La plupart des AA **absorbent** à une λ < 230nm.
- Les AA aromatiques absorbent vers 280 nm(UV).
- L'absorption à 280 nm est due principalement aux noyaux phénols.
- utile pour repérer et **doser** les protéines en solutions.

B. Propriétés chimiques:

B.1. Réactions dues à la présence du grpt -COOH:

a. Amidation: Elle résulte de la réaction avec une amine

Asparagine et glutamine sont deux exemples d'amides naturels.

Cette réaction revêt une importance particulière lorsque l'amine provient d'un autre AA; elle conduit alors à la liaison peptidique

b. Réaction de décarboxylation:

- Réaction de départ d'une molécule de CO2.
- Catalysée par une **décarboxylase** (coenzyme de phosphate de pyridoxal).
- Produit des **amines** douées de propriétés biologiques (histidine → histamine → choc, allergie. 50H tryptophane → sérotonine → hypertension).

c. Estérification par un alcool: En présence d'un acide fort:

$$R-CH-COOH+R'-OH \xrightarrow{H+} R-CH-COO-R'+H2O$$

$$NH2$$

$$NH2$$

$$NH2$$

$$ester$$

B.2. Réactions dues à la présence du groupement aminé :

a-Amidation: voir supra

b-Désamination chimique (par l'acide nitreux)

Donne naissance à des acides-alcools, avec dégagement d'azote:

c. Désamination oxydative (enzymatique):

- Catalysée par une **déshydrogénase** (souvent glutamate déshydrogénase mitochondriale).
- Transforme un AA en l'acide α -cétonique correspondant. Elle a lieu en 2 temps :
 - 1-AA oxydé en acide α-iminé (NAD ou NADP).

2-acide α-iminé (instable) est **hydrolysé** en acide α-cétonique

d. La transamination:

- catalysée par une **aminotransférase** (transaminase).
- coenzyme phosphate de pyridoxal.
- réaction de transfert **réversible** du gpt aminé entre un **acide aminé** et **un acide \alpha-cétonique.**

N.B: presque toujours l'α-cétoglutarate transformé en glutamate.

- Double intérêt métabolique :
- Permet la **Synthèse** d'acides aminés à partir d'acide α-cétoniques correspondants.

• Initie le catabolisme des acides aminés

La transamination a un double intérêt métabolique :

- Permet la **Synthèse** d'acides aminés à partir d'acide α-cétoniques correspondants.
- Initie le catabolisme des acides aminés

e-Réaction avec les aldéhydes: Avec les aldéhydes aromatiques, on obtient des bases de Schiff (imine).

f-l'arylation:

-permet l'analyse et **l'identification** de l'AA **terminal** de la chaine peptidique.

Ex : substitution d'un H de la fonction NH2 libre (terminale) par le dinitro-fluoro-benzène (réactif de **Sanger**), il se forme un dinitrophényl-acide aminé **coloré**, donc **dosable**.

$$O_2N$$

$$F + H2N - R \rightarrow O_2N$$

$$NO_2$$

$$NH - R + HF$$

Dérivé 2,4 dinitrophénylé

B.3. Réactions dues à la présence simultanée des fonctions COOH et NH2:

- a. Réaction à la ninhydrine:
- réalise une désamination associée à une décarboxylation. Au cours de la réaction il y a production de CO₂, de NH₃ et d'un aldéhyde ayant un atome de carbone de moins que l'acide aminé dont il provient.
- Après chauffage avec la ninhydrine, tous les aa donnent une couleur bleu intense dite pourpre de Ruhemann, sauf la proline et l'hydroxyproline (coloration jaune).

B.4. Réactions dues à la présence d'un groupement latéral:

1-Groupement carboxyle:

- -Les aa acides, **aspartate** et **glutamate** peuvent être transformés en amides, **asparagine** et **glutamine**.
- -La glutamine est la forme de transport et de détoxification de l'ammoniac.

2-Groupement amine:

-Le gpt aminé de lysine, par sa réactivité est à l'origine :

De réactions <u>spontanées</u> avec les gpts **carbonyles** des **aldoses** et des **cétoses** (**ex** : glycation des protéines plasmatiques).

De réactions enzymatiques (ex : liaison de coenzyme à son apoenzyme).

3-Groupement thiol:

• Les gpt thiols de **2 cystéines** sont facilement **déshydrogénés** pour former la **cystine**, à **l'origine** de la formation des ponts disulfures établissant des liaisons covalentes intra ou interchaines protéiques

4-Groupement hydroxyle:

<u>De la Tyr, Ser, Thr sont le site de phosphorylation réversible de protéines</u>

De la Ser et de la Thr est le point de branchement des O-glycosylationn des protéines.

4-Groupement amide:

De l'Asn est le point de branchement des N-glycosylations des protéines