Name 1:	
Name 2:	Setup No:
50	lpha-Decay and Radioactive Indoor Air

1 Samples, Location and Recorded Times

Exposition	t_0	t_1	t_1-t_0	t_2	t_2-t_1	t_3	t_3-t_2
Sample 1							
Sample 2							

 (t_0) : flask opened; t_1 : flask closed; t_2 : Cocktail added; t_3 : sample measured.)

2 Decay Counts

Counts	n (in 10 min)	$n_{ m tot} \pm \Delta n_{ m tot}$	$\overline{n} \pm \Delta \overline{n}$	$\overline{C} \pm \Delta \overline{C}$
Sample 1				
Sample 2				
Blank sample				

Estimate the errors based on a Poisson distribution.

3 Calculation of the Radon Concentration

Calibration factor g	$7.03 \times 10^{-3} \text{m}^3$	
Efficiency factor f		
λ_0		$\begin{vmatrix} a_0 \end{vmatrix}$
λ_1		$\begin{vmatrix} a_2 \end{vmatrix}$
λ_2		$ a_3 $
λ_3		

$$B(t) = 3 - a_0 e^{-\lambda_0 t} - a_2 e^{-\lambda_2 t} - a_3 e^{-\lambda_3 t}$$

$$D = gfG_A(t_1 - t_0)e^{-\lambda_1(t_2 - t_1)}$$

$$R = \frac{C - C_U}{DB(t_3 - t_2)}$$

	$B(t_3-t_2)$	D	$C - C_U \pm \Delta (C - C_U)$	$R \pm \Delta R$
Sample 1		±	±	±
Sample 2		±	±	±

4 Geiger-Counter Measurements

	High-radiation site	Low-radiation site
Location		
Counts in 5 min		
Counts per minute	±	±
Time for 5% accuracy	±	±