1 Die Aussage

Proposition 1.1. Ist G eine Gruppe und $N \subseteq G$ eine normale Untergruppe vom Index 2, so ist N normal in G.

2 Möglichkeit 1 (mit Rechtsnebenklassen)

Die Äquivalenz
relation \sim_L auf G mit

$$g_1 \sim_L g_2 \iff g_1^{-1}g_2 \in N \quad \text{für alle } g_1, g_2 \in G$$

hat als Äquivalenzklassen genau die Linksnebenklassen, d.h. es ist $[g]_L=gN$ für alle $g\in G$. Analog ergibt sich für die Äquivalenzrelation \sim_R auf G mit

$$g_1 \sim_R g_2 \iff g_1 g_2^{-1} \in N \quad \text{für alle } g_1, g_2 \in G,$$

dass die Äquivalenklassen mit den Rechtsnebenklassen übereinstimmen, dass also $[g]_R=Ng$ für alle $g\in G.$

Analog zu der Menge der Linksnebenklassen $G/N=\{gN\mid g\in G\}$ bezeichne $N\backslash G\coloneqq\{Ng\mid g\in G\}$ die Menge der Rechtsnebenklassen.

Behauptung A. Es gibt gleich viele Links- und Rechtsnebenklassen, d.h. es gilt

$$|G/N| = |N \backslash G|$$
.

Beweis. Die Abbildung $i: G \to G, g \mapsto g^{-1}$ induziert Abbildungen

$$i_{L\to R}\colon G/N\to N\backslash G, \quad gN\mapsto i(gN)=Ng^{-1},$$

und

$$i_{R\to L}: N\backslash G\to G/N, \quad Ng\mapsto i(Ng)=g^{-1}N,$$

und da $i^2=\mathrm{id}_G$ sind $i_{L\to R}$ und $i_{R\to L}$ invers zueinander, also Bijektionen.

Behauptung B. Für alle $g \in G$ gilt

$$gN = N \iff g \in N \iff Ng = N.$$

Beweis. Da N = 1N ist

$$N = gN \iff 1N = gN \iff 1 \sim_L g \iff 1^{-1}g \in N \iff g \in N.$$

Dass
$$Ng = N \iff g \in N$$
 ergibt sich analog.

Beweis der Proposition. Da [G:N]=2 gibt es nur zwei Linksnebenklassen. Wir wissen, dass N=1N eine dieser Linksnebenklassen ist. Da G die disjunkte Vereinigung der beiden Linksnebenklassen ist, muss $G-N=\{g\in G\mid g\notin N\}$ die andere Linksnebenklasse sein.

Da [G:N]=2 auch die Anzahl der Rechtsnebenklassen ist, ergibt sich analog, dass N und G-N die einzigen beiden Rechtsnebenklassen sind.

Die Normalität von N ergibt sich nun dadurch, dass gN=Ng für alle $g\in G$: Ist $g\in N$, so ist dies klar, da N eine Untergruppe ist. Ist $g\notin N$, so ist $gN\neq N$, und es muss gN=G-N gelten; analog muss dann auch Ng=G-N gelten, und somit gN=Ng.

Dass entscheidende an [G:N]=2 ist also, dass es neben der "trivialen" Nebenklasse N nur eine "nicht-triviale" Links- und Rechtsnebenklasse gibt, und diese nicht-trivialen Nebenklasse(n) deshalb nichts kaputt machen können.

3 Möglichkeit 2 (ohne Rechtsnebenklassen)

Der folgende Beweist stammt (angeblich) aus Rotmans Advanced Modern Algebra.

Beweis der Proposition. Da [G:N]=2 gibt es neben N=1N nur eine weitere Nebenklasse; da G die Vereinigung dieser beiden Linksnebenklassen ist, muss G-N die andere Linksnebenklasse sein. Es sei $h\in G$ mit G-N=hN, wobei notwendigerweise $h\notin N$.

Es genügt zu zeigen, dass $gNg^{-1}\subseteq N$ für alle $g\in G$. Ist $g\in N$, so ist dies klar, dass N eine Untergruppe ist. Ist $g\notin N$, also $g\in G-N=hN$, so gibt es ein $n_1\in N$ mit $g=hn_1$. Ist $gNg^{-1}\subseteq N$, so gilt die Aussage; ansonsten gibt es $n_2\in N$ mit $gn_2g^{-1}\in G-N=hN$, und somit $gn_2g^{-1}=hn_3$ für ein $n_3\in N$. Dann ist insgesamt

$$hn_3 = gn_2g^{-1} = (hn_1)n_2(hn_1)^{-1} = hn_1n_2n_1^{-1}h^{-1}.$$

Durch Multiplikation mit h^{-1} von links ergibt sich, dass

$$n_3 = n_1 n_2 n_1^{-1} h^{-1},$$

und umstellen ergibt, dass

$$h = n_3^{-1} n_1 n_2 n_1^{-1} \in N,$$

im Widerspruch zu $h \notin N$.