WHAT IS CLAIMED IS:

1.

an anode including a lithium-containing anode active material;				
a solid cathode including a current collector including aluminum and a cathode active				
material in contact with the current collector; and				
a separator between the anode and the cathode.				
2. The battery of claim 1, wherein the lithium-containing anode active material is				
lithium or a lithium alloy.				
3. The battery of claim 1, wherein the current collector includes an aluminum alloy.				
anoy.				
4. The battery of claim 1, wherein the current collector includes a 2000 series				
aluminum alloy, a 6000 series aluminum alloy, or a 7000 series aluminum alloy.				
5. The battery of claim 1, wherein the current collector includes a 6000 series				
aluminum alloy.				
6. The battery of claim 1, wherein the current collector includes an aluminum				
alloy including 0-0.4% by weight of chromium.				
7. The battery of claim 1, wherein the current collector includes an aluminum				
alloy including 0.01-6.8% by weight of copper.				
8. The battery of claim 1, wherein the current collector includes an aluminum				
alloy including 0.05-1.3% by weight of iron.				
9. The battery of claim 1, wherein the current collector includes an aluminum				
alloy including 0.1-7% by weight of magnesium.				
10. The battery of claim 1, wherein the current collector includes an aluminum				
alloy including 0-2% by weight of manganese.				

A primary lithium battery comprising:

- 1 11. The battery of claim 1, wherein the current collector includes an aluminum alloy including 0-2% by weight of silicon.
- 1 12. The battery of claim 1, wherein the current collector includes an aluminum alloy including less than 0.25% by weight of titanium.
- 1 13. The battery of claim 1, wherein the current collector includes an aluminum alloy including 0-2.3% by weight of nickel.
- 1 14. The battery of claim 1, wherein the current collector includes an aluminum alloy including 0-8.2% by weight of zinc.
- 1 15. The battery of claim 1, further comprising a nonaqueous electrolyte in contact with the anode, the cathode, and the separator.
- 1 16. The battery of claim 15, wherein the nonaqueous electrolyte includes an organic solvent.
- 1 17. The battery of claim 15, wherein the nonaqueous electrolyte includes a perchlorate salt.
- 1 18. The battery of claim 1, wherein the cathode active material includes a manganese dioxide, a CF_x, iron disulfide, or a vanadate.
- 1 19. The battery of claim 1, wherein the current collector is an expanded metal grid.
- 1 20. The battery of claim 19, wherein the current collector has a yield strength of at least 2.0 lb/in.
- 1 21. The battery of claim 19, wherein the current collector has a yield strength of at least 5 lb/in.
- 1 22. The battery of claim 19, wherein the current collector has a tensile strength of at least 5 lb/in.

1	23. The battery of claim 19, wherein the current collector has a tensile strength of			
2	at least 7 lb/in.			
1	24. The battery of claim 19, wherein the current collector has a yield strength of at			
2	least 2.0 lb/in and a tensile strength of at least 5 lb/in.			
1	25. The battery of claim 19, wherein the current collector has a yield strength of at			
2	least 5 lb/in and a tensile strength of at least 7 lb/in.			
1	26. A primary lithium battery comprising:			
2	an anode including a lithium-containing anode active material;			
3	a solid cathode including a current collector including aluminum and a cathode active			
4	material in contact with the current collector, wherein the current collector has a resistivity of			
5	less than 100 m Ω /cm; and			
6	a separator between the anode and the cathode.			
4	27. A primary lithium battery comprising:			
. ! 2	an anode including a lithium-containing anode active material;			
	a solid cathode including a current collector including aluminum and a cathode active			
, 3				
4	material in contact with the current collector, wherein the current collector has a resistivity of			
5	less than 10 m Ω /cm; and			
6	a separator between the anode and the cathode.			
1	28. A primary lithium battery comprising:			
2	an anode including a lithium-containing anode active material;			
3	a solid cathode including a current collector including an aluminum alloy and a			
4	cathode active material including a manganese dioxide in contact with the current collector;			
5 -	a separator between the anode and the cathode; and			
6	a non-aqueous electrolyte including an organic solvent and a perchlorate salt in			
7	contact with the anode, the cathode and the separator.			
1	The battery of claim 28, wherein the aluminum alloy is a 2000 series			
2	aluminum alloy, a 6000 series aluminum alloy, or a 7000 series aluminum alloy.			

- 30. The battery of claim 28, wherein the aluminum alloy is a 6000 series 1 aluminum alloy. 2 31. The battery of claim 28, wherein the aluminum alloy including 0-0.4% by 1 weight of chromium, 0.01-6.8% by weight of copper, 0.05-1.3% by weight of iron, 0.1-7% 2 by weight of magnesium, 0-2% by weight of manganese, 0-2% by weight of silicon, less than 3 0.25% by weight of titanium, 0-2.3% by weight of nickel, and 0-8.2% by weight of zinc. 4 32. The battery of claim 28, wherein the current collector is an expanded metal 1 grid. 2 33. The battery of claim 32, wherein the current collector has a yield strength of at 1 2 least 2.0 lb/in. The battery of claim 32, wherein the current collector has a yield strength of at 34. 1 least 5 lb/in. 2 The battery of claim 32, wherein the current collector has a tensile strength of 35. 1 at least 5 lb/in. 2 The battery of claim 32, wherein the current collector has a tensile strength of 36. 1 at least 7 lb/in. 2 A method of making a primary lithium battery comprising assembling a solid 37. 1 cathode including a current collector including aluminum, an anode including lithium, and a 2 separator in a housing. 3 38. The method of claim 37, wherein the current collector includes a 1000 series aluminum, a 2000 series aluminum alloy, a 6000 series aluminum alloy, or a 7000 series 2 aluminum alloy. 3 39. The method of claim 37, wherein the current collector includes a 6000 series 1
 - 17

The method of claim 37, wherein the current collector is an expanded metal

aluminum alloy.

40.

grid.

2

1

1	41. The method of claim 37, wherein the cathode includes a manganese dioxide, a			
2	CF _x , iron disulfide, or a vanadate.			
1 -	42. The method of claim 37, further comprising placing a nonaqueous electrolyte			
2	in the housing.			
1	43. The method of claim 42, wherein the nonaqueous electrolyte includes an			
2	organic solvent.			
1	44. The method of claim 42, wherein the nonaqueous electrolyte includes a			
2	perchlorate salt.			
1	45. A primary lithium battery comprising:			
2	an anode including a lithium-containing anode active material;			
3	a solid cathode including a current collector including an aluminum alloy and a			
4	cathode active material including manganese dioxide in contact with the current collector;			
5 ,	a separator between the anode and the cathode; and			
6	a non-aqueous electrolyte including an organic solvent and a perchlorate salt in			
7	contact with the anode, the cathode and the separator.			
1	46. The battery of claim 45, wherein the aluminum alloy is a 2000 series			
2	aluminum alloy, a 6000 series aluminum alloy, or a 7000 series aluminum alloy.			
1	47. The battery of claim 45, wherein the aluminum alloy is a 6000 series			
2	aluminum alloy.			
1	48. The battery of claim 45, wherein the aluminum alloy including 0-0.4% by			
2	weight of chromium, 0.01-6.8% by weight of copper, 0.05-1.3% by weight of iron, 0.1-7%			
3	by weight of magnesium, 0-2% by weight of manganese, 0-2% by weight of silicon, less that			
4	0.25% by weight of titanium, 0-2.3% by weight of nickel, and 0-8.2% by weight of zinc.			
1	49. The battery of claim 45, wherein the current collector is an expanded metal			
2	grid.			

1	50. The battery of claim 49, wherein the current collector has a yield strength of a		
2	least 2.0 lb/in.		
1	51. The battery of claim 49, wherein the current collector has a yield strength of a		
2	least 5 lb/in.		
,	52. The battery of claim 49, wherein the current collector has a tensile strength of		
1	,		
2	at least 5 lb/in.		
1 .	53. The battery of claim 49, wherein the current collector has a tensile strength of		
2	at least 7 lb/in.		
٠			
1	54. The battery of claim 49, wherein the current collector has a yield strength of a		
2	least 2.0 lb/in and a tensile strength of at least 5 lb/in.		
	55. The battery of claim 49, wherein the current collector has a yield strength of a		
1			
2	least 2.5 lb/in and a tensile strength of at least 7 lb/in.		
1	56. A primary lithium battery comprising:		
2	an anode including a lithium-containing anode active material; and		
3	a cathode including a current collector including a 6061 aluminum alloy and a		
; 4	cathode active material in contact with the current collector.		
٠			
1	57. The battery of claim 56, wherein the cathode active material is a solid.		
4			
1	58. The battery of claim 56, wherein the cathode active material is a liquid.		
1	59. The battery of claim 56, wherein the cathode active material includes SO ₂ or		
2	SOCl ₂ .		
1	60. The battery of claim 56, wherein the current collector includes a pulled grid.		
4	61. The battery of claim 56, wherein the current collector includes a leveled grid.		
1	or. The battery of claim 50, wherein the current confector includes a leveled grid.		
1	62. A method of making a primary lithium battery comprising assembling a solid		
2	cathode including a current collector including an aluminum alloy, an anode including		
3	lithium, and a separator in a housing.		

1	63.	The method of claim 62, wherein the current collector includes a 2000 series			
2	aluminum alloy, a 6000 series aluminum alloy, or a 7000 series aluminum alloy.				
1	64.	The method of claim 62, wherein the current collector includes a 6000 series			
2	aluminum alloy.				
1	65.	The method of claim 62, wherein the aluminum alloy including 0-0.4% by			
2	weight of chromium, 0.01-6.8% by weight of copper, 0.05-1.3% by weight of iron, 0.1-7%				
3	by weight of magnesium, 0-2% by weight of manganese, 0-2% by weight of silicon, less than				
4	0.25% by weight of titanium, 0-2.3% by weight of nickel, and 0-8.2% by weight of zinc.				
1	66.	The method of claim 62, wherein the current collector is an expanded metal			
2	grid.				
1.	67.	The method of claim 62, wherein the cathode includes a manganese dioxide, a			
2	CF _x , iron disulfide, or a vanadate.				
, ; 1	68.	The method of claim 62, further comprising placing a nonaqueous electrolyte			
2	in the housin	g.			
1	69.	The method of claim 68, wherein the nonaqueous electrolyte includes an			
2	organic solvent.				
1	70.	The method of claim 68, wherein the nonaqueous electrolyte includes a			
2	perchlorate salt.				