

(12) (19) (CA) **Demande-Application**

CIPO
CANADIAN INTELLECTUAL
PROPERTY OFFICE

(21) (A1) **2,252,064**

(22) 1998/11/20 (43) 2000/05/20

(72) BURRELL, Paul Christopher, AU

(72) BLACKALL, Linda Louise, AU

(72) KELLER, Jurg, AU

(71) CRC FOR WASTE MANAGEMENT AND POLLUTION CONTROL LIMITED, AU

(51) Int.Cl. 6 C12N 1/20, C12Q 1/68, C02F 3/34, C07H 21/04

(54) MICROORGANISMES OXYDANT LES NITRITES DANS L'EAU

(54) AQUATIC NITRITE OXIDISING MICROORGANISMS

(57) The invention relates to the nitrification of wastewater and identification of microorganisms capable of participating in this process. Specifically, the invention provides a consortium of microorganisms capable of nitrite oxidation in wastewater, which consortium is enriched in members of the Nitrospira phylum. The invention also provides oligonucleotide primers and probes for the amplification or detection of DNA, kits comprising the primers and probes, and methods of detection and quantitating species in a sample.

ABSTRACT

The invention relates to the nitrification of wastewater and identification of microorganisms capable of participating in this process. Specifically, the invention provides a consortium of microorganisms capable of nitrite oxidation in wastewater, which consortium is enriched in members of the *Nitrospira* phylum. The invention also provides oligonucleotide primers and probes for the amplification or detection of *Nitrospira* DNA, kits comprising the primers and probes, and methods of detection and quantitating *Nitrospira* species in a sample.

AQUATIC NITRITE OXIDISING MICROORGANISMS TECHNICAL FIELD

This invention relates to the removal of nitrogenous compounds from wastewater. In particular, the invention relates to an isolated consortium of microorganisms capable of nitrification of wastewater. The invention also relates to methods of identifying microorganisms capable of nitrification of wastewater and oligonucleotide primers and DNA probes suitable for use in the methods.

INTRODUCTION

The removal of nitrogenous compounds from sewage effluents is an important aspect in the remediation of wastewaters. The presence of ammonia, nitrite and nitrate in wastewater discharges can cause numerous problems ranging from eutrophication (Meganck and Faup, 1988) of the receiving aquatic environment to aspects of public health concern such as nitrate contamination of drinking water. Nitrogen is biologically removed from wastewaters in a two step process of nitrification (ammonia oxidised to nitrate) (Randall, 1992; Robertson and Kuenen, 1991) and denitrification (nitrate reduced to dinitrogen gas that dissipates into the atmosphere) (Blackburn, 1983; Robertson and Kuenen, 1991). Nitrification is the first and most sensitive step of the process and can be further subdivided into two steps: ammonia oxidation to nitrite and nitrite oxidation to nitrate. The two steps are carried out by separate bacterial groups and for both groups, the total diversity of organisms with this phenotype is small.

Therefore, nitrification is a process where reduced nitrogen compounds, generally ammonium (NH₄⁺), are microbiologically oxidised to nitrate (NO₃) via nitrite (NO₂) under aerobic conditions (Halling-Sørensen and Jørgensen, 1993). The overall reactions and possible organisms responsible are:

$$2NH_4^+ + 3O_2 \xrightarrow{Nitrosomonas} 2NO_2^- + 2H_2O^- + 4H^+ + biomass$$

$$2NO_2^- + O_2 \xrightarrow{Nitrobacter} 2NO_3^- + biomass$$

The Gram negative chemoautotrophic nitrite oxidising bacteria are physiologically distinct, as they all possess the ability to use nitrite as their energy source and to assimilate CO₂, via the Calvin Benson cycle, as a carbon source for cell growth (Bock *et al.*, 1992). For each molecule of CO₂ fixed, 100 molecules of nitrite need to be oxidized, emphasising the high energy demands placed on these cells. The overall stoichiometry of nitrite oxidation is (Halling-Sørensen and Jørgensen, 1993):

$$400 \text{ NO}_{2}^{-} + \text{NH}_{4}^{+} + 4\text{H}_{2}\text{CO}_{3} + \text{HCO}_{3}^{-} + 195 \text{ O}_{2} \longrightarrow \text{C}_{5}\text{H}_{7}\text{NO}_{2} + 3\text{H}_{2}\text{O} + 400 \text{ NO}_{3}^{-}$$

These bacteria can typically also use nitric oxide (NO) instead of NO₂ as an electron source (Bock et al., 1992). Not all of the known nitrifying bacteria are obligate chemoautotrophs. In fact, many strains of *Nitrobacter* can grow well as heterotrophs, where both energy and carbon are obtained from organic carbon sources, or mixotrophically (a combination of both autotrophic and

5

10

15

20

25

heterotrophic behaviour). These bacteria are collectively known as facultative chemoautotrophs. Therefore, bacterial strains can grow three ways; aerobically and autotrophically, aerobically and mixotrophically or anaerobically and heterotrophically. In mixotrophic growth, NO₂ is oxidized in preference to organic carbon substrates like acetate, pyruvate and glycerol. Both autotrophic and heterotrophic growth is usually slow and inefficient.

As a generalisation, most strains of *Nitrobacter* seem to be able to grow faster as mixotrophs than as heterotrophs and faster heterotrophically or chemo-heterotrophically than chemoautotrophically.

Four genera are currently recognised: Nitrobacter, Nitrospina, Nitrococcus and Nitrospira (Halling-Sørensen and Jørgensen, 1993). Nitrospina and Nitrococcus are unable to grow heterotrophically or mixotrophically (Bock et al., 1992). One species of Nitrospira, Nitrospira marina, can grow autotrophically and mixotrophically, (Bock et al., 1992) whereas Nitrospira moscoviensis is an obligate autotroph (Ehrich, et al., 1995). These nitrite oxidizers have also been conventionally classified based on phenotypic characters like their cell shape and the ultrastructure of their intracytoplasmic membranes. Doubling times of Nitrobacter can range from 12 to 59 hours, or even as long as 140 hours (Halling-Sørensen and Jørgensen, 1993). These are therefore very slow growing bacteria.

In wastewater treatment systems, *Nitrosomonas* (an ammonia oxidizer) and *Nitrobacter* (a nitrite oxidizer) are the two autotrophs presumed to be responsible for nitrification because they are the commonest ammonia and nitrite oxidizers isolated from these environments (Halling-Sørensen and Jørgensen, 1993). Although ammonia oxidizers have been intensively studied by the use of molecular methods (Wagner et al., 1995; Wagner et al., 1996), the nitrite oxidizers have not been similarly investigated. Since the microorganisms responsible for nitrite oxidation in wastewater treatment plants were presumed to be from the genus *Nitrobacter*, mathematical modeling of the process has used data relevant to this genus. However, fluorescent in situ hybridization (FISH) probing of activated sludge mixed liquors with *Nitrobacter* specific probes (Wagner et al., 1996) could not confirm the presence of these organisms suggesting that they were not responsible for this major component of nitrogen remediation. Indeed, *Nitrobacter* could not be found in other aquatic environments (Hovanec and DeLong, 1996) when specific FISH probes were employed. It was speculated that other bacteria were likely responsible for nitrite oxidation (Hovanec and DeLong, 1996; Wagner et al., 1996).

Knowledge of the microorganisms responsible for nitrification of wastewater is desirable for the efficient management of treatment systems. It would also be advantageous to have available biomass which can be added to a system to implement or improve nitrification. However, as indicated above, there is no certainty in the art as to the actual microorganisms responsible for nitrification nor are there methods available for identifying such organisms.

35

5

10

15

20

25

SUMMARY OF THE INVENTION

It is an object of the invention to provide a consortium of microorganisms that can be used for nitrification of wastewater.

A further object of the invention is to provide a method of identifying microorganisms capable of nitrification of wastewater.

According to a first embodiment of the invention, there is provided a consortium of microorganisms capable of nitrite oxidation in wastewater, which consortium is enriched in members of the *Nitrospira* phylum.

According to a second embodiment of the invention, there is provided an oligonucleotide primer for PCR amplification of *Nitrospira* DNA, said primer comprising at least 12 nucleotides having a sequence selected from:

- (i) any one of SEQ ID NO: 1 to SEQ ID NO: 13; or
- (ii) a DNA sequence having at least 92% identity with any one of SEQ ID NO: 1 to SEQ ID NO: 13.
- According to a third embodiment of the invention, there is provided a primer pair for PCR amplification of *Nitrospira* DNA, said primer pair comprising:
 - (a) a first oligonucleotide of at least 12 nucleotides having a sequence selected from one strand of a bacterial 16S rDNA gene; and
- (b) a second oligonucleotide of at least 12 nucleotides having a sequence selected from the other strand of said 16S rDNA gene downstream of said first oligonucleotide sequence; wherein at least one of said first and second oligonucleotides is selected from:
 - (i) any one of SEQ ID NO: 1 to SEQ ID NO: 13; or
 - (ii) a DNA sequence having at least 92% identity with any one SEQ ID NO: 1 to SEQ ID NO: 13.
- According to a fourth embodiment of the invention, there is provided a probe for detecting Nitrospira DNA, said probe comprising at least 12 nucleotides having a sequence selected from:
 - (i) any one of SEQ ID NO: 1 to SEQ ID NO: 13; or
 - (ii) a DNA sequence having at least 92% identity with any one of SEQ ID NO: 1 to SEQ ID NO: 13.
- According to a fifth embodiment of the invention, there is provided a kit comprising:
 - at least one primer according to the second embodiment;
 - at least one primer pair according to the third embodiment; or
 - at least one probe according to the fourth embodiment.
- According to a sixth embodiment of the invention, there is provided a method of detecting a Nitrospira species in a sample, said method comprising the steps of:

5

- (a) lysing cells in said sample to release genomic DNA;
- (b) contacting denatured genomic DNA from step (a) with a primer pair according to the third embodiment:
- (c) amplifying *Nitrospira* DNA by cyclically reacting said primer pair with said DNA to produce an amplification product; and
 - (d) detecting said amplification product.

According to a seventh embodiment of the invention, there is provided a method of quantitating the level of a *Nitrospira* species in a sample, said method comprising the steps of:

- (a) lysing cells in said sample to release genomic DNA;
- (b) contacting denatured genomic DNA from step (a) with a primer pair according to the third embodiment;
 - (c) amplifying *Nitrospira* DNA by cyclically reacting said primer pair with said DNA to produce an amplification product; and
- (d) detecting said amplification product and quantitating the level of said product by comparison with at least one reference standard.

According to an eighth embodiment of the invention, there is provided a method of detecting a *Nitrospira* species in a sample, said method comprising the steps of:

- (a) lysing cells in said sample to release genomic DNA;
- (b) contacting denatured genomic DNA from step (a) with a labeled probe according to the fourth embodiment under conditions which allow hybridisation of said genomic DNA said probe;
- (c) separating hybridised labeled probe and genomic DNA from unhybridised labeled probe; and
 - (d) detecting said labeled probe-genomic DNA hybrid.

According to a ninth embodiment of the invention, there is provided a method of detecting cells of a *Nitrospira* species in a sample, said method comprising the steps of:

- (a) treating cells in said sample to fix cellular contents;
- (b) contacting said fixed cells from step (a) with a labeled probe according to the fourth embodiment under conditions which allow said probe to hybridise with RNA within said fixed cell;
 - (c) removing unhybridised probe from said fixed cells; and
- 30 (d) detecting said labeled probe-RNA hybrid.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a graph showing influent and effluent NO₂-N concentrations for an automated laboratory-scale reactor operating as a sequencing batch reactor at 2 cycles/day with strong selection for nitrite oxidising biomass (NOSBR).

Figure 2 is a graph showing influent and effluent NO₂-N concentrations of the NOSBR operating at 4 cycles/day.

Figure 3 is a graph of mixed liquor nitrite-N concentrations during the react period of the NOSBR cycle for attached growth and for suspended growth.

Figure 4 is a graph showing nitrite-N and nitrate-N concentrations in the mixed liquor during the react period of the NOSBR.

Figure 5 ia a graph showing mixed liquor nitrite-N concentrations during the react period in three stages of the NOSBR operated at 2 cycles/day with different concentrations of nitrite in the feed.

Figure 6 is a graph of mixed liquor nitrite-N concentrations during the react period in three representative cycles during operation of the NOSBR at 4 cycles/day.

Figure 7 is an evolutionary distance tree derived from a comparison of 16S rDNA sequences from nitrite oxidising bacteria and clone sequences from three different 16S rDNA clone libraries (RC, GC, and SBR).

Figure 8 is an alignment of sequences of 16S rDNA from *Nitrospira* clones identified in a nitrite-oxidising SBR and from other sources.

Figure 9 depicts the results of agarose gel electrophoresis of PCR-amplified DNA using genomic DNA from various *Nitrospira* clones as template.

BEST MODE AND OTHER MODES OF CARRYING OUT THE INVENTION

The following abbreviations are used hereafter:

20	SBR	sequencing batch reactor
	NOSBR	nitrite oxidising SBR
	NOM	nitrite oxidising medium
	HRT	hydraulic retention time
	MLSS	mixed liquor suspended solids
25	BNR	biological nutrient removal
	DO	dissolved oxygen
	PCR .	polymerase chain reaction
	REA	restriction enzyme analysis
	OTU	operational taxonomic unit
30	bp(s)	base pair(s)

The one-letter code for nucleotides in DNA conforms to the IUPAC-IUB standard described in *Biochemical Journal* 219, 345-373 (1984).

The term "comprise", or variations of the term such as "comprises" or "comprising", are used herein to denote the inclusion of a stated integer or stated integers but not to exclude any other

5

10

integer or any other integers, unless in the context or usage an exclusive interpretation of the terms is required.

The present inventors have developed a specific nitrifying biomass that is largely comprised of bacteria that are most closely related to *Nitrospira moscoviensis*. It is believed that a range of species of *Nitrospira* are involved in the process. The inventors have shown that these bacteria are likely to be more dominant in reactors with good nitrification performance than bacteria from the genus *Nitrobacter*. A range of studies have failed to find *Nitrobacter* in nitrifying processes (Hovanec & DeLong, 1996; Wagner *et al.*, 1996) and evidence is provided below that the organisms responsible for this important biochemical reaction in wastewater treatment processes (both suspended and attached growth processes) are from the *Nitrospira* phylum in the domain *Bacteria*.

With reference to the first embodiment of the invention, the nitrifying biomass can be produced by presenting a feed comprising nitrite, dissolved oxygen and dissolved carbon dioxide but which is free of organic carbon to seed sludge from any sewage plant exhibiting nitrification. The seed sludge is advantageously from a domestic wastewater treatment plant but can also be from an abattoir wastewater treatment plant. The nitrite component of the feed can be as low as about 400 mg/L nitrite-N. The oxygen and carbon dioxide can conveniently be provided as air bubbled through the solution.

Turning to the second embodiment of the invention, oligonucleotide primers typically have a length of about 12 to 50 nucleotides. A preferred length is 12 to 22 nucleotides. Particularly preferred primers are the following:

5' CGGGAGGGAAGATGGAGC 3' (SEQ ID NO: 14)

5' CCAACCCGGAAAGCGCAGAG 3' (SEQ ID NO: 15)

5' AGCCTGGCAGTACCCTCT 3' (SEQ ID NO: 16)

Oligonucleotide primer pairs according to the third embodiment of the invention comprise an oligonucleotide primer that will anneal to one strand of the target sequence and a second oligonucleotide primer which will anneal to the other, complementary, strand of the target sequence. It will be appreciated that the second oligonucleotide primer must anneal to the complementary strand downstream of the first oligonucleotide primer sequence, which occurs in the complementary strand, to yield a double stranded amplification product in the PCR. The amplification product is of a size that facilitates detection. Typically, the first and second oligonucleotide primer sites in the target DNA are separated by 50 to 1,400 bps. A preferred separation is 400 to 1,000 bps.

The probes of the fourth embodiment, as indicated above, can have a size as small as 12 nucleotides. Typically, however, probes have a length of 15 to 50 nucleotides. A preferred probe length is 15 to 22 nucleotides, particularly for *in situ* hybridisation according to the method of the ninth embodiment.

35

5

10

15

20

25

The oligonucleotide primers included in kits according to the fifth embodiment of the invention can be individual oligonucleotide primers appropriate for the detection of *Nitrospira* or a primer pair. Oligonucleotide primer pairs are advantageously provided as compositions. Additional oligonucleotide primers can also be included in kits for use in control reactions. For detection purposes, DNA probes can also be included in kits.

Kits according to the fifth embodiment of the invention can further comprise reagents used in PCR and hybridisation reactions. Such reagents include buffers, salts, detergents, nucleotides and thermostable polymerase. Such reagents are advantageously provided as solutions to facilitate execution of PCR or hybridisation. Solutions can be compositions comprising a number of reagents as is well known in the art.

The general techniques used in the methods of the sixth to ninth embodiments, and factors to be considered in selecting PCR primers and probes, will be known to those of skill in the art. Such techniques are described, for example, in Sambrook *et al.* (1989) and Stackebrandt and Goodfellow (1991), the entire contents of which are incorporated herein by cross reference. Particularly relevant chapters in Stackebrandt and Goodfellow are Chapter 7, "The Polymerase Chain Reaction" by S. Giovannoni, and Chapter 8, "Development and Application of Nucleic Acid Probes" by D. A. Stohl and R. Amann.

Non-limiting examples of the invention will now be provided.

General Methods

The total community DNAs from the NOSBR sludge (RC) and the seed sludge (GC) were isolated, the 16S rDNAs were polymerase chain reaction (PCR) amplified and cloned using previously published methods (Blackall, 1994; Blackall et al., 1994; Bond et al., 1995). Inserts from 102 clones in the RC library were amplified and grouped by HaeIII restriction enzyme digestion banding profiles (REA) into operational taxonomic units (OTUs) (Weidner et al., 1996). Clone inserts from representatives of RC OTUs and all 77 clones from the GC library were PCR amplified and partially sequenced (Blackall, 1994) using 530f (Lane, 1991) primer. Inserts from a selection of clones were fully sequenced (Blackall, 1994). Sequence data were analysed according to previously published methods (Blackall et al., 1994) which included BLAST (Altschul et al., 1990) comparisons and phylogenetic analyses (Felsenstein, 1993).

30 Example 1

Selection of a Nitrifying Biomass

In this example, we describe the use of a laboratory-scale reactor as a sequencing batch reactor (SBR) with strong selection for a nitrite oxidising biomass. Seed sludge was from the Merrimac domestic wastewater treatment plant operated by the Gold Coast City Council and located

5

10

15

20

at Merrimac, Queensland 4226, Australia. The reactor set-up will be hereafter referred to as the "Nitrite Oxidising SBR", or "NOSBR".

Reactor. A laboratory chemostat with a working volume of 1 L was operated in the dark at 24°C as the NOSBR. The influent nitrite oxidising medium (NOM) was a synthetic waste water mix comprising per L: 400 to 3,200 mg KNO₂, 3.75 g MgSO₄.7H₂O, 250 mg CaCl₂.2H₂O, 10 g KH₂PO4, 10 g K₂HPO₄, 200 mg FeSO₄.7H₂O, and 20 g NaHCO₃. The pH of the medium was adjusted to 7.0, but the reactor was not equipped with pH control. Dissolved oxygen was maintained at 1.6-2.0 mg/L and CO₂ was introduced by bubbling air through the liquid in the NOSBR. Surface biomass growth was precluded by regular scrubbing of all solid surfaces with a brush. Four cycles per day giving a hydraulic retention time (HRT) of 12 hr were performed with the following sequences:-

- 1) Feed of 500 ml of fresh medium 30 min (0 to 0.5 hr)
- 2) React (aeration) 4.5 hr (0.5 to 5 hr)
- 3) Settle 40 min (5 to 5.7 hr)
- 4) Decant 500 ml of supernatant 20 min (5.7 to 6 hr)
 - 5) Total time per cycle 6 hr.

Automatic timers controlled the magnetic stirrer (100 rpm), peristaltic pumps (feed and decant), and air pump for the cycles. Sludge biomass was not wasted from the reactor, but periodically, biomass was collected for testing which facilitated maintenance of a relatively steady amount of biomass in the SBR.

At start up, 1 L of mixed liquor suspended solids (MLSS) from a full scale Biological Nutrient Removal (BNR, nitrogen and phosphorus removal) plant was added to the NOSBR which was operated manually with the NOM. Initial manual and then automatic operation with 2-cycles per day (feed - [500 ml] 40 min; react - 10 hr; settle - 40 min; and decant [500 ml] - 40 min) occurred for some months before initiation of the 4-cycles per day scheme (see above).

Monitoring. Chemical analyses of feed, mixed liquor and effluent were regularly done for nitrite-N (NO₂-N), nitrate-N (NO₃-N), and ammonium-N (NH₄⁺-N) using spectrometric assays (Merck, Melbourne, Australia). To preclude the removal of excessive biomass, these analyses were done with 2 ml samples. The MLSS of the NOSBR was determined in duplicate 10 ml samples of mixed liquor. These were filtered onto pre-dried Whatman GF/C filters, and then dried to a constant weight at 105 degree C. A pH meter was used to periodically monitor pH in the mixed liquor and effluent. A portable dissolved oxygen (DO) meter and probe were used to periodically monitor the DO in the NOSBR.

Results of operation. Varying influent nitrite levels were employed to study a range of features of the selected nitrite oxidising biomass. The operating data for the influent and effluent nitrite levels

5

10

15

20

25

of the NOSBR during the automated 2 cycles/day period are presented in Figure 1 and for the automated 4 cycles/day in Figure 2. The data presented in these figures show that the microbial community are able to remove all the nitrite from the influent in a matter of hours.

Attributes of the NOSBR mixed liquor

5

10

15

20

25

30

35

1. Suspended versus attached growth - 2 cycles/day. To generate attached growth, the regular scrubbing regime of the reactor was suspended for two weeks. The vast bulk of the biomass was then attached to surfaces in the reactor. The little remaining suspended biomass was discharged from the reactor which was then filled with 1 L of half strength NOM. Regular sampling and nitrite analyses were done during the react period of one cycle with all the biomass attached to the reactor surfaces. The results of this experiment are presented in Figure 3. The results show that suspended biomass has twice the nitrite oxidation rate than the attached biomass but both systems are effective in removing nitrite from the influent.

Following the experiment described in the previous paragraph, the biomass was completely scrubbed from the surfaces to the liquid. The reactor was operated for two cycles with biomass scrubbing. A similar one-cycle study was performed as with the attached growth but with all biomass suspended. The biofilm growth exhibited a nitrite oxidation rate of 29 mg NO₂-N/hr and the suspended growth form showed a rate of 58 mg NO₂-N/hr. It was assumed that the biomass concentration was the same for both studies since none had been removed between them.

- 2. pH correlation with nitrification. It was observed that when the pH of the effluent fell below 7.4, nitrite-N was present in the effluent. If the pH rose above 7.4 for short periods, no effect to nitrification was observed. Therefore, pH values below 7.4 were detrimental to nitrification.
- 3. Cyclic studies. Figure 4 shows the results for periodic measurements of nitrite-N and nitrate-N during the react period of the reactor during 2 cycles/day. The results presented in these figures show that the bacterial population in the reactor oxidised nitrite to nitrate in a stoichiometric manner with 160 mg/l of nitrite-N being oxidised to 160 mg/l of nitrate-N (170 mg/l at the start of the react period and 330 mg/l when the nitrite-N was exhausted). The rate of nitrite oxidation and nitrate production also appeared to be linear, showing that the oxidation process was not limited by any external factors.

Studies measuring nitrite reaction in the reactor are shown for both 2 cycles/day (Figure 5) and 4 cycles/day operation (Figure 6). The significance of these results is that the biomass is robust in its capacity to oxidise nitrite under a range of operating conditions.

Example 2

The Microbiology of the NOSBR

In this example, we describe the microbiological characterisation of the nitrifying microorganisms present in the biomass selected in the NOSBR described in Example 1. Methods used

in the characterisation have been described by Blackall (1994) and Bond et al. (1995), the entire contents of which disclosures are incorporated herein by cross-reference.

Total microbial community DNA from both the seed BNR sludge (GC) and from the reactor after six months of operation (RC) was obtained. The 16S rDNA from each DNA extract were separately amplified by polymerase chain reaction (PCR), and then for each, clone libraries were prepared (Blackall, 1994; Bond et al., 1995).

Inserts from a total of 77 clones from the GC clone library were partially sequenced with the primer 530f and phylogenetically analysed (Blackall et al., 1994) (Table 1). The majority of the clone sequences grouped with the proteobacterial phylum, while 4% (3 clones; GC3, GC86 and GC109) grouped with the phylum Nitrospira.

Table 1

Phyla from the Domain Bacteria Represented in the GC Clone Library

Alpha Beta gamma delta th mol%G+C Gram positives w mol%G+C Gram positives wibacter/Cytophaga/Bacteroides rospira	Percentage in clone library
Proteobacteria	
Alpha	. 5
Beta	29
gamma	18
delta	4
High mol%G+C Gram positives	10
Low mol%G+C Gram positives	7
Flexibacter/Cytophaga/Bacteroides	5
Nitrospira	4
Planctomycetales	9
Unaffiliated	9

Restriction Enzyme Analysis (REA) of the RC library was done to group clones into operational taxonomic units (OTUs) in advance of partial or complete clone insert sequencing (Weidner et al., 1996). Thirteen different OTUs were found when HaeIII was employed as the restriction enzyme to digest the inserts from 102 clones. The large majority of the clone inserts (88% or 90 clones) were found in one OTU while the remaining 12% (12 clones) comprised individuals in 12 other OTUs. Each of the clone inserts from the latter 12 OTUs and six of the large former group (RC7, RC11, RC16, RC25, RC73, and RC99) were partially sequenced and phylogenetically analysed. These six and one of the other OTUs (RC90) were found to have partial insert sequences that phylogenetically grouped with the Nitrospira phylum. From this analysis, it was concluded that 91 clones or 89% of the clone library originated from bacteria in the Nitrospira phylum. In the

15

20

5

phylogenetic analysis, one of the other OTUs (RC44) grouped with *Nitrobacter*. It was concluded that the organisms responsible for nitrification in the NOSBR were likely to be from the *Nitrospira* phylum.

Near complete insert sequence analyses were done for the following clones:

- 5 six RC clones of the original partial sequences RC7, RC11, RC25, RC73, RC90, and RC99 (RC16 omitted);
 - two RC clones from the Nitrospira OTU (RC14 and RC19);
 - one of the three GC Nitrospira clones (GC86); and
 - four clones from a clone library prepared by Bond *et al.* (1995) that phylogenetically grouped in the *Nitrospira* phylum.

The data were phylogenetically analysed as shown in Figure 7. The two clone clades would likely comprise two separate species with the RC clones possibly comprising more than one species.

Sequences of clones from the two *Nitrospira* clades were subjected to direct pairwise sequence comparison. The results of this comparison are presented in Table 2. The table is a similarity matrix showing the percent similarity between 16S rDNA sequences of *Nitrospira moscoviensis*, *Nitrospira marina* and 13 near complete sequences from clone inserts from a full scale biological nutrient removal activated sludge plant (GC86), from the NOSBR (RC clone numbers) and from clones for which the partial sequences had been previously reported (SBR clones; Bond *et al.*, 1995). The similarity matrix showed that the first clade (SBR1015, SBR1024, SBR2046, GC86) had an average 16S rDNA comparison value of 99.4% while for the second clade (RC7, RC11, RC14, RC19, RC25, RC73, RC90, RC99, SBR2016), this value was 98.7%. The highest comparative value between an RC clone sequence and *N. moscoviensis* was 93.4% for RC25. From the sequence data analysis, the two clone clades would likely comprise two separate species, with the RC clones possibly comprising more than one species.

Sequence data for the SBR, GC and RC clones are presented in Figure 8. In this figure, sequences are divided into blocks with numbers given in square brackets above each block. The clone identification is given at the left of a line of sequence in each block. Dashes represent unknown nucleotides while full stops represent alignment breaks.

10

15

The sequences of clones are also presented as sequence listings as follows:

Clone	Sequence Listing Number
SBR1024	1
SBR1015	2
GC86	3
SBR2046	4
RC25	5
RC19	6
SBR2016	7
RC7	8
RC14	9
RC99	10
RC11	11
RC73	12
RC90	13

Table 2

Species or clone						Percent	sednen	se simil	Percent sequence similarity with species of strain number	th speci	es of st	rain nur	nber		
		2	3	4	5	9	7	∞	6	2	=	12	13	14	15
1. Nitrospira moscoviensis															
2. SBR1024	96.3														
3. SBR1015	96.1	9.66													
4. GC86	96.1	9.66	99.4												
5. SBR2046	95.8	99.3	99.4	99.2							•				
6. RC25	93.4	93.4	93.6	93.6	93.1										
7. RC19	93.2	93.1	93.0	93.2	92.7	8.86									
8. SBR2016	93.0	92.7	97.8	97.6	92.4	99.1	98.7								
9. RC7	92.9	93.1	93.2	92.9	92.8	98.7	98.7	98.5							
10 RC14	92.8	93.0	93.1	93.1	92.7	98.7	98.9	98.5	99.3						
11 RC99	92.7	92.9	93.0	93.0	97.6	98.5	98.7	98.4	99.2	9.66					
12 RC11	92.6	92.8	93.0	92.9	92.5	98.5	98.7	98.4	99.0	99.5	7.66				
13 RC73	92.2	92.5	97.6	97.6	92.1	98.0	98.2	97.9	98.7	99.1	99.4	99.4			
14 RC90	92.1	92.1	92.3	92.2	91.8	98.1	98.6	98.0	98.1	98.6	8.86	8.86	99.0		
15 Nitrospira marina	88.7	88.2	88.3	88.3	87.8	88.1	87.6	87.2	87.2	87.1	87.1	87.1	86.5	9.98	
16 Nitrospira marina	88.0	88.0	88.2	88.1	87.7	87.9	87.5	87.2	87.2	87.1	87.1	87.1	86.5	9.98	99.9

Example 3

Identification of Nitrospira Species

Primers for use in a diagnostic PCR for the *Nitrospira moscoviensis* clade of Figure 7 (see Example 2) were designed from aligned sequence datasets (see Tables 3-5 below).

Table 3 is an alignment of 16S rDNA sequences of *Nitrospira* phylum members and nitrite oxidisers from other bacterial phyla which was used to design the primer MOS457f (SEQ ID NO: 14) for the *Nitrospira mascoviensis* clade. In the table, mismatches with the primer sequence are in bold type and are underlined. The melting temperature calculated for MOS457f was 60°C and a fragment size of approximately 1052 nucleotides was calculated in a PCR with primer 1492r. The MOS457f sequence corresponds to the sequence at positions 440 to 457 of the *E. coli* 16S rDNA gene.

Table 3

Source of Sequence and Number of Sequence in	Sequence	Mismatches
Sequence Listings		
MOS457f primer (SEQ ID NO: 14)	CGGGAGGGAAGATGGAGC	-
Nitrococcus mobilis (SEQ ID NO: 17)	C <u>A</u> G <u>CC</u> GGGA <u>G</u> GA <u>AAAGCA</u>	10
Magnetobacterium bavaricum (SEQ ID NO: 18)	<u>TGTAG</u> GG <u>A</u> AAGATG <u>AT</u> G <u>A</u>	8
Nitrobacter hamburgensis (SEQ ID NO: 19)	<u>T</u> G <u>T</u> G <u>C</u> GGGAAGAT <u>AAT</u> G <u>A</u>	7
Nitrospina gracilis (SEQ ID NO: 20)	CGGG <u>T</u> GGGAAGA <u>ACA</u> A <u>AA</u>	6
Nitrospira marina (SEQ ID NO: 21)	C <u>AT</u> GAGG <u>A</u> AAGAT <u>AA</u> AG <u>T</u>	6
SBR1015 (SEQ ID NO: 22)	CGG <u>C</u> AGGGAAGATGGA <u>A</u> C	2
SBR1024 (SEQ ID NO: 22)	CGG <u>C</u> AGGGAAGATGGA <u>A</u> C	2 .
SBR2016 (SEQ ID NO: 23)	CGGGAGGGAAGATGGAGC	0
SBR2046 (SEQ ID NO: 24)	C <u>C</u> G <u>C</u> AGGGAAGATGGA <u>A</u> C	3
RC7 (SEQ ID NO: 23)	CGGGAGGGAAGATGGAGC	0
RC11 (SEQ ID NO: 23)	CGGGAGGGAAGATGGAGC	0
RC14 (SEQ ID NO: 23)	CGGGAGGGAAGATGGAGC	0
RC19 (SEQ ID NO: 23)	CGGGAGGGAAGATGGAGC	0
RC25 (SEQ ID NO; 23)	CGGGAGGGAAGATGGAGC	. 0
RC73 (SEQ ID NO: 25)	CGGGAGGGAAGATGGA <u>A</u> C	1
RC90 (SEQ ID NO: 25)	CGGGAGGGAAGATGGA <u>A</u> C	1
RC99 (SEQ ID NO: 23)	CGGGAGGGAAGATGGAGC	0
RC44 (Nitrobacter clone) (SEQ ID NO: 26)	CG <u>T</u> G <u>C</u> GGGAAGAT <u>AAT</u> G <u>A</u>	6
GC86 (SEQ ID NO: 27)	CGG <u>C</u> AGGGAAGATGGA <u>A</u> C	2
Nitrospira moscoviensis (SEQ ID NO: 28)	CGGGAGGGAAGATGGA <u>CG</u>	2

10

Like Table 3, Table 4 is an alignment of 16S rDNA sequences of *Nitrospira* phylum members and nitrite oxidisers from other bacterial phyla which was used to design the primer MOS638f (SEQ ID NO: 15) for the *Nitrospira moscoviensis* clade. Again, mismatches with the primer sequence are in bold and are underlined. The calculated melting temperature for this primer was 66°C and a fragment size of approximately 873 nucleotides was calculated in a PCR with primer 1492r. The MOS638f sequence corresponds to the sequence at positions 619 to 638 of the *E. coli* 16S rDNA gene.

Table 4

Source of Sequence and Number of Sequence	Sequence	Mismatches
in Sequence Listings		
MOS638f primer (SEQ ID NO: 15)	CCAACCCGGAAAGCGCAGAG	-
Nitrococcus mobilis (SEQ ID NO: 29)	$\underline{\mathbf{T}}$ CAACC $\underline{\mathbf{T}}$ GG $\underline{\mathbf{G}}$ AA $\underline{\mathbf{T}}\mathbf{T}$ GCA $\underline{\mathbf{T}}$ CC	8
Magnetobacterium bavaricum	$\underline{\mathbf{T}}$ CAACCCGG $\underline{\mathbf{G}}$ AA $\underline{\mathbf{TT}}$ GC $\underline{\mathbf{CTT}}$ G	7
(SEQ ID NO: 30)		
Nitrobacter hamburgensis (SEQ ID NO: 31)	<u>T</u> CAAC <u>T</u> C <u>CAG</u> AA <u>CT</u> GC <u>CTTT</u>	11
Nitrospina gracilis (SEQ ID NO: 32)	<u>T</u> CAACC <u>GT</u> G <u>G</u> AA <u>TT</u> GC <u>GTTT</u>	10
Nitrospira marina (SEQ ID NO: 33)	<u>TT</u> AACC <u>G</u> GGAAAG <u>GT</u> C <u>GAGA</u>	9
SBR1015 (SEQ ID NO: 34)	$C\underline{\mathbf{T}}$ AACCCGGAAAG $\underline{\mathbf{T}}$ GC $\underline{\mathbf{G}}$ GAG	3
SBR1024 (SEQ ID NO: 34)	$C\underline{\mathbf{T}}$ AACCCGGAAAG $\underline{\mathbf{T}}$ GC $\underline{\mathbf{G}}$ GAG	3
SBR2016 (SEQ ID NO: 35)	CCAACCCG <u>A</u> AAAGCGCAGAG	1
SBR2046 (SEQ ID NO: 34)	$C\underline{T}$ AACCCGGAAAG \underline{T} GC \underline{G} GAG	3 .
RC7 (SEQ ID NO: 36)	CCAACCCGGAAAGCGCAGAG	0
RC11 (SEQ ID NO: 36)	CCAACCCGGAAAGCGCAGAG	0
RC14 (SEQ ID NO: 36)	CCAACCCGGAAAGCGCAGAG	0
RC19 (SEQ ID NO: 36)	CCAACCCGGAAAGCGCAGAG	0
RC25 (SEQ ID NO: 36)	CCAACCCGGAAAGCGCAGAG	0
RC73 (SEQ ID NO: 36)	CCAACCCGGAAAGCGCAGAG	0
RC90 (SEQ ID NO: 36)	CCAACCCGGAAAGCGCAGAG	0
RC99 (SEQ ID NO: 36)	CCAACCCGGAAAGCGCAGAG	0
RC44 (Nitrobacter clone) (SEQ ID NO: 37)	<u>T</u> CAAC <u>T</u> C <u>CAG</u> AA <u>CT</u> GC <u>CTTT</u>	11
GC86 (SEQ ID NO: 34)	C <u>T</u> AACCCGGAAAG <u>T</u> GC <u>G</u> GAG	3
Nitrospira moscoviensis (SEQ ID NO: 38)	CCAACCCGGAAAGCGCAGAG	0

Table 5, is again an alignment of 16S rDNA sequences of *Nitrospira* phylum members and nitrite oxidisers from other bacterial phyla which was used to design the primer MOS635r (SEQ ID

NO: 16) for the Nitrospira moscoviensis clade. The melting temperature calculated for this primer was 58°C and a fragment size of approximately 625 nucleotides was calculated in a PCR with primer 27f. The MOS635r sequence corresponds to the sequence at positions 635 to 652 of the E. coli 16S rDNA sequence.

5

Table 5

Source of Sequence and Number of Sequence in	Sequence	Mismatches
Sequence Listings		
MOS635r primer (SEQ ID NO: 16)	AGCCTGGCAGTACCCTCT	
Nitrococcus mobilis (SEQ ID NO: 39)	AGCC <u>AAA</u> CAGTA <u>T</u> C <u>GGA</u> T	7
Magnetobacterium bavaricum (SEQ ID NO: 40)	AG <u>TTAAA</u> CAGT <u>TTT</u> C <u>AAG</u>	11
Nitrobacter hamburgensis (SEQ ID NO: 41)	AGACCTTCAGTATCAAAG	9
Nitrospina gracilis (SEQ ID NO: 42)	AGCC <u>GAAT</u> AGT <u>TT</u> C <u>AAAC</u>	10
Nitrospira marina (SEQ ID NO: 43)	AGC <u>TGAAT</u> AGT <u>T</u> CC <u>TCTC</u>	10
SBR1015 (SEQ ID NO: 44)	AGCC <u>GA</u> GCAGT <u>C</u> CCCTC <u>C</u>	4
SBR1024 (SEQ ID NO: 44)	AGCC <u>GA</u> GCAGT <u>C</u> CCCTC <u>C</u>	4
SBR2016 (SEQ ID NO: 45)	AGCCTGGCAGTACCCTCT	0
SBR2046 (SEQ ID NO: 44)	AGCC <u>GA</u> GCAGT <u>C</u> CCCTC <u>C</u>	4
RC7 (SEQ ID NO: 46)	AGCCTGGCAGTACCCCCT	1
RC11 (SEQ ID NO: 45)	AGCCTGGCAGTACCCTCT	0
RC14 (SEQ ID NO: 45)	AGCCTGGCAGTACCCTCT	0
RC19 (SEQ ID NO: 45)	AGCCTGGCAGTACCCTCT	0
RC25 (SEQ ID NO: 47)	AGCCTGGCAGTACCGTCT	1
RC73 (SEQ ID NO: 45)	AGCCTGGCAGTACCCTCT	0
RC90 (SEQ ID NO: 45)	AGCCTGGCAGTACCCTCT	0
RC99 (SEQ ID NO: 45)	AGCCTGGCAGTACCCTCT	0
RC44 (Nitrobacter clone) (SEQ ID NO: 48)	AG <u>ATCCT</u> CAGTA <u>T</u> C <u>AAAG</u>	10
GC86 (SEQ ID NO: 44)	AGCC <u>GA</u> GCAGT <u>C</u> CCCTC <u>C</u>	4
Vitrospira moscoviensis (SEQ ID NO: 49)	AGCCTGGCAGTACCCTCT	0

The three primers defined above in Tables 3 to 5 were included in separate primer pairs which pairs were then tested in PCR amplifications using genomic DNA from various *Nitrospira* clones as template. The PCRs were carried out according to methods detailed in Sambrook *et al.* (1989) at an annealing temperature of 62°C.

The results of electrophoretic analysis of PCRs on an agarose gel are presented in Figure 9. Details of the material analysed in each lane of the gel are given in Table 6. The marker DNA was

HaeIII-digested $\phi X174$ DNA. The sizes of the $\phi X174$ fragments are given on the left-hand side of the figure.

Table 6

Lane	Primer pair used	Mismatches between
	•	primer and template
1	(HaeIII-digested \$\phi X174 DNA)	
2	MOS457f, 1492r	0 mismatches with MOS457f
3	MOS457f, 1492r	1 mismatch with MOS457f
4	MOS457f, 1492r	2 mismatches with MOS457f
5	(HaeIII-digested \$\phi X174 DNA)	
6	MOS638f, 1492r	0 mismatches with MOS638f
7	MOS638f, 1492r	1 mismatch with MOS638f
8	MOS638f, 1492r	3 mismatches with MOS638f
9	(HaeIII-digested \$\phi X174 DNA)	
10	MOS635r, 27f	0 mismatches with MOS635r
11	MOS635r, 27f	I mismatch with MOS635r
12	MOS635r, 27f	4 mismatches with MOS635r

The results presented in Figure 9 show that an amplicon of the appropriate size was obtained in reactions where there was up to one mismatch between a primer and the template but that no amplicon was produced where there was a greater degree of mismatch.

When the three primer pairs used for the results presented in Figure 9 were used with clone RC44 (closest match to *Nitrobacter*), no amplicons were produced.

The primer NIT3 (Wagner et al. 1996; SEQ ID NO: 50) was used in a diagnostic PCR for Nitrobacter. NIT3 was designed originally for fluorescent in situ hybridisation experiments. The specificity of this primer can be appreciated from the sequence alignment presented in Table 7 which is an alignment of 16S rDNA sequences of Nitrospira phylum members and nitrite oxidisers from other bacterial phyla against NIT3. A melting temperature of 60°C was calculated for NIT3 and a fragment size of approximately 1020 nucleotides in a PCR with primer 27f as experimentally determined. The NIT3 sequence corresponds to the sequence at positions 1031 to 1048 of the E.coli 16S rDNA gene.

10

18 Table 7

Source of Sequence and Number of Sequence in	Sequence	Mismatche
Sequence Listings	-	
NIT3 primer (SEQ ID NO: 50)	CCTGTGCTCCATGCTCCG	
Nitrobacter hamburgensis (SEQ ID NO: 51)	CCTGTGCTCCATGCTCCG	0
Nitrospina gracilis (SEQ ID NO: 52)	CCTGTGC <u>AAGGGC</u> C <u>C</u> C <u>GA</u>	9
Nitrococcus mobilis (SEQ ID NO: 53)	CCTGT <u>CA</u> TCC <u>GGTTC</u> CCG	7
Nitrospira moscoviensis (SEQ ID NO: 54)	CCTG <u>A</u> GC <u>A</u> C <u>GC</u> TG <u>G</u> T <u>ATT</u>	8
Nitrospira marina (SEQ ID NO: 55)	CCTG <u>A</u> GCTC <u>GC</u> TCCCCTT	7
Magnetobacterium bavaricum (SEQ ID NO: 56)	CCTGTGC <u>AAGC</u> T <u>CTC</u> CC <u>T</u>	8
SBR1015 (SEQ ID NO: 57)	CCTG <u>A</u> GC <u>AGG</u> ATG <u>G</u> T <u>ATT</u>	8
SBR1024 (SEQ ID NO: 57)	CCTG <u>A</u> GC <u>AGG</u> ATG <u>G</u> T <u>ATT</u>	
SBR2016 (SEQ ID NO: 58)	CCTGAGCACGCTGGTATT	8
SBR2046 (SEQ ID NO: 57)	CCTG <u>A</u> GC <u>AGG</u> ATG <u>G</u> T <u>ATT</u>	8
RC7 (SEQ ID NO: 58)		8
RC11 (SEQ ID NO: 58)	CCTGAGCACCCTCCTATT	8
RC14 (SEQ ID NO: 58)	CCTGAGCACCCTGGTATT	8
RC19 (SEQ ID NO: 58)	CCTGAGGAGGGTGGTATT	8
RC25 (SEQ ID NO: 58)	CCTGAGCACGCTGGTATT	8
RC73 (SEQ ID NO: 58)	CCTGAGCACGCTGGTATT	8
RC90 (SEQ ID NO: 58)	CCTGAGCACGCTGGTATT	8
GC86 (SEQ ID NO: 59)	CCTG <u>A</u> GC <u>A</u> C <u>GC</u> TG <u>G</u> T <u>ATT</u>	8
	CCTG <u>A</u> GC <u>AGG</u> ATG <u>G</u> T <u>GTT</u>	8
RC99 (SEQ ID NO: 58)	CCTG <u>A</u> GC <u>A</u> C <u>GC</u> TG <u>G</u> T <u>ATT</u>	8

Results of PCRs with the primer pair NIT3 and 27f showed that the NIT3 primer specifically amplified only RC44 clone inserts (Nitrobacter) and not those from Nitrospira clones.

The different primer pairs were then used with DNAs extracted from sludges and the results are tabulated below in Table 8. The scorings presented in the table were generated by quantitating by eye the intensity of the amplificate in a stained gel. A definition of the scoring follows: - = no band; +/- = very faint band; + through ++++ = increasing intensity of the amplificate.

19 Table 8

Wastewater Treatment Plant	Performance	MOS635r-27f	NIT3-27f
		620 bp	1020 bp
Oxley	Full nitrification	++++	++
Merrimac	Full nitrification	++++	++
Loganholme	Full nitrification	+++	+/-
Gibson Island	Full nitrification	+++	-
Fairfield	No nitrification	+/	+++
Cannon Hill	Full nitrification	+	+
NOSBR	NO ₂ oxidation	++++	++++
Saline waste water BNR SBR	Partial nitrification	+/-	++
Nitrifying biofilm reactor	Full nitrification	++++	++++
Phenol/cyanide removing SBR	No nitrification	+/-	++
BNR SBR	Full nitrification	+	+

These results show that in plants having good nitrification, *Nitraspira* species were present as evidenced by amplification of target DNA with the selected primer pairs.

REFERENCES

- Blackall, L. L. (1994). Molecular identification of activated sludge foaming bacteria. Water Science and Technology 29-7, 35-42.
- Blackall, L. L., Seviour, E.M., Cunningham, M.A., Seviour, R.J., and Hugenholtz, P. (1994).
- 5 "Microthrix parvicella" is a novel, deep branching member of the actinomycetes subphylum. Systematic and Applied Microbiology 17, 513-518.
 - Blackburn, T. H. (1983). The Microbial Nitrogen Cycle. In *Microbial Geochemistry*. (pp. 63-89). Edited by W. E. Krumbein. Oxford: Blackwell Scientific Publications.
- Bock, E., Koops, H., Ahlers, B., and Harms, H. (1992). Oxidation of inorganic nitrogen compounds
 as energy source. In *The Prokaryotes A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications*, pp. 414-430. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer-Verlag.
 - Bond, P.L., Hugenholtz, P., Keller, J., and Blackall, L.L. (1995). Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors.
- 15 Applied and Environmental Microbiology, 61, 1910-1916.
 - Burrell, P., and Blackall, L.L. (in press). The microbiology of nitrogen removal in activated sludge systems. In *The Microbiology of Activated Sludge*, Edited by R. J. Seviour & L. L. Blackall.
 - Ehrich, S., Behrens, D., Lebedeva, E., Ludwig, W. and Bock, E. (1995). A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, *Nitrospira moscoviensis* sp. nov. and its phylogenetic relationship. *Archives of Microbiology*. **164**. 16-23.
- Halling-Sørensen, B., and Jørgensen, S.E. (1993). The Removal of Nitrogen Compounds from Wastewater, Amsterdam: Elsevier.
 - Hovanec, T. A. & DeLong, E. F. (1996). Comparative Analysis of Nitrifying Bacteria Associated with Freshwater and Marine Aquaria. *Applied and Environmental Microbiology*, **62**, 2888-2896.
- Meganck, M.T.J., and Faup, G.M. (1988). Enhanced biological phosphorus removal from waste waters. *Biotreatment Systems*, 3, 111-204.
 - Randall, C. W. (1992). Introduction and Principles of Biological Nutrient Removal. In *Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal*, (pp. 7-84). Edited by C. W. Randall. Lancaster: Technomic Publishing Company Inc.
- Robertson, L. A. & Kuenen, J. G. (1991). Physiology of Nitrifying and Denitrifying Bacteria. In Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes, (pp. 189-199). Edited by J. E. Rogers & W. B. Whitman. Washington D.C.: American Society for Microbiology.
- Sambrook, J., Fritsch, E. F., and Maniatis, T., *Molecular Cloning: A Laboratory Manual*, Second Edition, Cold Spring Harbor Laboratory Press, Plainview, New York, 1989.

- Stackebrandt, E., and Goodfellow, M., eds, Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, New York, 1991
- Wagner, M., Rath, G., Koops, H.-P., Flood, J., and Amann, R. (1996). In situ analysis of nitrifying bacteria in sewage treatment plants. *Water Science and Technology*, **34**, 237-244.
- Weidner, S., Arnold, W. and Pühler, A. (1996). Diversity of Uncultured Microorganisms Associated with the seagrass *Halophila stipulacea* Estimated by Restriction Fragment Length Polymorphism Analysis of PCR-Amplified 16S rRNA Genes. *Applied and Environmental Microbiology*, **62**, 766-771.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:	
10	(i) APPLICANT: (A) NAME: CRC for Waste Managment and Pollution Control Limited (B) STREET: High Street (C) CITY: Kensington (D) STATE: New South Wales (E) COUNTRY: Australia (F) POSTAL CODE (ZIP): 2033	
15	(ii) TITLE OF INVENTION: Aquatic Nitrite Oxidising Microorganisms	
20	<pre>(iii) NUMBER OF SEQUENCES: 59 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)</pre>	
25	(2) INFORMATION FOR SEQ ID NO: 1:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1428 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO	
40	(iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	CAAGTCGAGC GAGAAGACGT AGCAATACGT TTGTAAAGCG GCGAACGGGT GAGGAATACA	60
50	TGGGTAACCT ACCTTCGAGT GGGGAATAAC TAGCCGAAAG GTTAGCTAAT ACCGCATACG	120
		180
e -		240
55	GTCTGAGAGG ACGATCAGCC ACACTGGCAC TGCGACACGG GCCAGACTCC TACGGGAGGC	300
	AGCAGTAAGG AATATTGCGC AATGGGCGAC AGCCTGACGC AGCNACGCCG CGTGGGGGAT	360

					•		
	GAAGGTCTTC	GGATTGTAAA	CCCCTTTCGG	CAGGGAAGAT	GGAACGGGTA	ACCGTTCGGA	420
5	CGGTACCTGC	AGAAGCAGCC	ACGGCTAACT	TCGTGCCAGC	AGCCGCGGTA	ATACGAAGGT	480
3	GGCAAGCGTT	GTTCGGATTT	ACTGGGCGTA	CAGGGAGCGT	AGGCGGTTGG	GTAAGCCCTC	540
	CGTGAAATCT	CCGGGCCTAA	CCCGGAAAGT	GCGGAGGGGA	CTGCTCGGCT	AGAGGATGGG	600
10	AGAGGAGCGC	GGAATTCCCG	GTGTAGCGGT	GAAATGCGTA	GAGATCGGGA	GGAAGGCCGG	660
	TGGCGAAGGC	GGCGCTCTGG	AACATTTCTG	ACGCTGAGGC	TCGAAAGCGT	GGGGAGCAAA	720
15	CAGGATTAGA	TACCCTGGTA	GTCCACGCCT	TAAACGATGG	ATACTAAGTG	TCGGCGGGTT	780
13	ACCGCCGGTG	CCGCAGCTAA	CGCATTAAGT	ATCCCGCCTG	GGAAGTACGG	CCGCAAGGTT	840
	GAAACTCAAA	GGAATTGACG	GGGCCCGCA	CAAGCGGTGG	AGCATGTGGT	TTAATTCGAC	900
20	GCAACGCGAA	GAACCTTACC	CAGGCTGGAC	ATGCAGGTAG	TAGAAGGGTG	AAAGCCTAAC	960
	GAGGTAGCAA	TACCATCCTG	CTCAGGTGCT	GCATGGCTGT	CGTCAGCTCG	TGCCGTGAGG	1020
25	TGTTGGGTTA	AGTCCCGCAA	CGAGCGCAAC	CCCTGTCTTC	AGTTACCAAC	GGGTCATGCC	1080
23	GGGAACTCTG	GAGAGACTGC	CCAGGAGAAC	GGGGAGGAAG	GTGGGGATGA	CGTCAAGTCA	1140
	GCATGGCCTT	TATGCCTGGG	GCCACACACG	TGCTACAATG	GCCGGTACAA	AGCGCTGCAA	1200
30	ACCCGTAAGG	GGGAGCCAAT	CCCAAAAAAC	CGGCCTCAGT	TCAGATTGAG	GTCTGCAACT	1260
	CGACCTCATG	AAGGCGGAAT	CGCTAGTAAT	CCCGGATCAG	CACGCCGGGG	TGAATACGTN	1320
35	CCCGGGCCTT	GTACACACCG	CCCGTCACAC	CACGAAAGTT	TGTTGTACCT	GAAGTCGTTG	1380
33	GCGCCAACCG	CAAGGAGGCA	GACGCCCACG	GTATGACCGA	TGATTGGG		1428
	(2) INFORMA	TION FOR SE	Q ID NO: 2:				
40	(QUENCE CHAR A) LENGTH: B) TYPE: nu C) STRANDED	1407 base p cleic acid NESS: doubl	pairs			

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

50 (iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Nitrospira

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

45

	TAATACATGC AAGTCGAGCG AGAAGACGTA GCAATACGTT TGTAAAGCGG CGAACGGGTG	60
5	AGGAATACAT GGGTAGCCTA CCCTCGAGTG GGGAATAACT AACCGAAAGG TTAGCTAATA	120
	CCGCATACGG CTCCTGGTCT GCGGATCGGG AGAGAAAGCG ATACCGTGGG TATCGCGCTC	180
	TTGGATGGGC TCATGTCCTA TCAGCTTGTT GGTGAGGTAA CGGCTCACCA AGGCTTCGAC	240
10	GGGTAGCTGG TCTGAGAGGA CGATCAGCCA CACTGGCACT GCGACACGGG CCAGACTCCT	300
	ACGGGAGGCA GCAGTAAGGA ATATTGCGCA ATGGGCGACA GCCTGACGCA GCNACGCCGC	360
15	GTGGGGGATG AAGGTCTTCG GATTGTAAAC CCCTTTCGGC AGGGAAGATG GAACGGGTAA	420
	CCGTTCGGAC GGTACCTGCA GAAGCAGCCA CGGCTAACTT CGTGCCAGCA GCCGCGGTAA	480
	TACGAAGGTG GCAAGCGTTG TTCGGATTTA CTGGGCGTAC AGGGAGCGTA GGCGGTTGGG	540
20	TAAGCCCTCC GTGAAATCTC CGGGCCTAAC CCGGAAAGTG CGGAGGGGAC TGCTCGGCTA	600
	GAGGATGGGA GAGGAGCGCG GAATTCCCGG TGTAGCGGTG AAATGCGTAG AGATCGGGAG	660
25	GAAGGCCGGT GGCGAAGGCG GCGCTCTGGA ACATTTCTGA CGCTGAGGCT CGAAAGCGTG	720
	GGGAGCAAAC AGGATTAGAT ACCCTGGTAG TCCACGCCTT AAACGATGGA TACTAAGTGT	780
2.0	CGGCGGGTTA CCGCCGGTGC CGCAGCTAAC GCATTAAGTA TCCCGCCTGG GAAGTACGGC	840
30	CGCAAGGTTG AAACTCAAAG GAATTGACGG GGGCCCGCAC AAGCGGTGGA GCATGTGGTT	900
	TAATTCGACG CAACGCGAAG AACCTTACCC AGGCTGGACA TGCAGGTAGT AGAAGGGTGA	960
35	AAGCCTAACG AGGTAGCAAT ACCATCCTGC TCAGGTGCTG CATGGCTGTC GTCAGCTCGT	1020
	GCCGTGAGGT GTTGGGTTAA GTCCCGCAAC GAGCGCAACC CCTGTCTTCA GTTACCAACG	1080
40	GGTCATGCCG GGAACTCTGG AGAGACTGCC CAGGAGAACG GGGGAGGAAG GTGGGGATGA	1140
40	CGTCAAGTCA GCATGGCCTT TATGCCTGGG GCCACACACG TGCTACAATG GCCGGTACAA	1200
	AGCGCTGCAA ACCCGTAAGG GGGAGCCAAT CGCAAAAAAC CGGCCTCAGT TCAGATTGAG	1260
45	GTCTGCAACT CGACCTCATG AAGGCGGAAT CGCTAGTAAT CCCGGATCAG CACGCCGGGG	1320
	TGAATACGTN CCCGGACCTT GTACACACCG CCCGTCACAC CACGAAAGTT TGTTGTACCT	1380
50	GAAGTCGTTG GCGCCAACCG CAAGGAG	1407
50	(2) INFORMATION FOR SEC ID NO 3	

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1500 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

5 (iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Nitrospira

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

15	TTGATCCTGG	CTCAGAACGA	ACGCTGGCGG	CGCGCCTAAT	ACATGCAAGT	CGAGCGAGAA	60
	GACGTAGCAA	TACGTTTGTA	AAGCGGCGAA	CGGGTGAGGA	ATACATGGGT	AACCTACCCT	120
	CGAGTGGGGA	ATAACTAGCC	GAAAGGTTAG	CTAATACCGC	ATACGACTCC	TGGTCTGCGG	180
20	ATCGGGAGAG	AAAGCGATAC	CGTGGGTATC	GCGCTCTTGG	ATGGGCTCAT	GTCCTATCAG	240
	CTTGTTGGTG	AGGTAACGGC	TCACCAAGGC	TTCGACGGGT	AGCTGGTCTG	AGAGGACGAT	300
25	CAGCCACACT	GGCACTGCGA	CACGGGCCAG	ACTCCTACGG	GAGGCAGCAG	TAAGGAATAT	360
2.5	TGCGCAATGG	GCGACAGCCT	GACGCAGCNA	CGCCGCGTGG	GGGATGAAGG	TCTTCGGATT	420
	GTAAACCCCT	TTCGGCAGGG	AAGATGGAAC	GGGTAACCGT	TCGGACGGTA	CCTGCAGAAG	480
30	CAGCCACGGC	TAACTTCGTG	CCAGCAGCCG	CGGTAATACG	AAGGTGGCAA	GCGTTGTTCG	540
	GATTTACTGG	GCGTACAGGG	AGCGTAGGCG	GTTGGGTAAG	CCCTCCGTGA	AATCTCCGGG	600
35	CCTAACCCGG	AAAGTGCGGA	GGGGACTGCT	CGGCTAGAGG	ATGGGAGAGG	AGCGCGGAAT	660
,,,	TCCCGGTGTA	GCGGTGAAAT	GCGTAGAGAT	CGGGAGGAAG	GCCGGTGGCG	AAGGCGGCGC	720
	TCTGGAACAT	TTCTGACGCT	GAGGCTCGAA	AGCGTGGGGA	GCAAACAGGA	TTAGATACCC	780
10	TGGTAGTCCA	CGCCTTAAAC	GATGGATACT	AAGTGTCGGC	GGGTTACCGC	CGGTGCCGCA	840
	GCTAACGCAT	TAAGTATCCC	GCCTGGGAAG	TACGGCCGCA	AGGTTGAAAC	TCAAAGGAAT	900
15	TGACGGGGGC	CCGCACAAGC	GGTGGAGCAT	GTGGTTTAAT	TCGACGCAAC	GCGAAGAACC	960
	TTACCCAGGC	TGGACATGCA	GGTAGTAGAA	GGGTGAAAGC	CTAACGAGGT	AGCAACACCA	1020
	TCCTGCTCAG	GTGCTGCATG	GCTGTCGTCA	GCTCGTGCCG	TGAGGTGTTG	GGTTAAGTCC	1080
0	CGCAACGAGC	GCAACCCCTG	TCTTCAGTTA	CCAACGGGTC	ATGCCGGGAA	CTCTGGAGAG	1140
	ACTGCCCAGG	AGAACGGGGA	GGAAGGTGGG	GATGACGTCA	AGTCAGCATG	GCCTTTATGC	1200
55	CTGGGGCCAC	ACACGTGCTA	CAATGGCCGG	TACAAAGCGC	TGCAAACCCG	TAAGGGGGAG	1260
-	CCAATCGCAA	AAAACCGGCC	TCAGTTCAGA	TTGAGGTCTG	CAACTCGACC	TCATGAAGGC	1320

	GGAATCGCTA GTAATCCCGG ATCAGCACGC CGGGGTGAAT ACGTNCCCGG GCCTTGTACA	1380
	CACCGCCCGT CACACCACGA AAGTTTGTTG TACCTGAAGT CGTTGGCGCC AACCGCAAGG	1440
5	GGGCAGACGC CCACGGTATG ACCGATGATT GGGGTGAAGT CGTAACAAGG TAACCGTAAC	1500
	(2) INFORMATION FOR SEQ ID NO: 4:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1420 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
20	(iv) ANTI-SENSE: NO	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira</pre>	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
30	CGAGAAGACG TAGCAATACG TTTGTAAAGC GGCGAACGGG TGAGGAATAC ATGGGTAACC	60
30	TACCCTCGAG TGGGGAATAA CTAACCGAAA GGTTAGCTAA TACCGCATAC GGCTCCTGGT	120
	CTGCGGATCG GGAGAGAAAG CGATACCGTG GGTATCGCGC TCTTGGATGG GCTCATGTCC	180
35	TATCAGCTTG TTGGTGAGGT AACGGCTCAC CAAGGCTTCG ACGGGTAGCT GGTCTGAGAG	240
	GACGATCAGC CACACTGGCA CTGCGACACG GGCCAGACTC CTACGGGAGG CAGCAGTAAG	300
40	GAATATTGCG CAATGGGCGA CAGCCTGACG CAGCGACGCC GCGTTGGGGA TGAAAGTCTT	360
	CCGATTGTAA ACCCCTTTCC GCAGGGAAGA TGGAACGGGT AACCGTTCGG ACGGTACCTG	420
	CAGAAGCAGC CACGGCTAAC TTCGTGCCAG CAGCCGCGGT AATACGAAGG TGGCAAGCGT	480
45	TGTTCGGATT TACTGGGCGT ACAGGGAGCG TAGGCGGTTG GGTAAGCCCT CCGTGAAATC	540
	TCCGGGCCTA ACCCGGAAAG TGCGGAGGGG ACTGCTCGGC TAGAGGATGG GAGAGGAGCG	600
50	CGGAATTCCC GGTGTAGCGG TGAAATGCGT AGAGATCGGG AGGAAGGCCG GTGGCGAAGG	660
	CGGCGCTCTG GAACATTTCT GACGCTGAGG CTCGAAAGCG TGGGGAGCAA ACAGGATTAG	720
	ATACCCTGGT AGTCCACGCC TTAAACGATG GATACTAAGT GTCGGCGGGT TACCGCCGGT	780
55	GCCGCAGCTA ACGCATTAAG TATCCCGCCT GGGAAGTACG GCCGCAAGGT TGAAACTCAA	840
	AGGAATTGAC GGGGCCCCGC ACAAGCGGTG GAGCATGTGG TTTAATTCGA CGCAACGCGA	900

	AGAACCTTAC CCAGGCAGGA CATGCAGGTA GTAGAAGGGT GAAAGCCTAA CGAGGTAGCA	96
5	ATACCATCCT GCTCAGGTGC TGCATGGCTG TCGTCAGCTC GTGCCGTGAG GTGTTGGGTT	102
3	AAGTCCCGCA ACGAGCGCAA CCCCTGTCTT CAGTTACCAA CGGGTCATGC CGGGAACTCT	108
	GGAGAGACTG CCCAGGAGAA CGGGGAGGAA GGTGGGGATG ACGTCAAGTC AGCATGGCCT	1140
10	TTATGCCTGG GGCCACACAC GTGCTACAAT GGCCGGTACA AAGCGCTGCA AACCCGTAAG	1200
	GGGGAGCCAA TCGCAAAAAA CCGGCCTCAG TTCAGATTGA GGTCTGCAAC TCGACCTCAT	1260
15	GAAGGCGGAA TCGCTAGTAA TCCCGGATCA GCACGCCGGG GTGAATACGT NCCUGGGCCT	132
13	TGTACACACC GCCCGTCACA CCACGAAAGT TTGTTGTACC TGAAGTCGTT GGCGCCAACC	1380
	GCAAGGAGGC AGACGCCCAC GGTATGACCG ATGATTGGGG	1420
20	(2) INFORMATION FOR SEQ ID NO: 5:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1505 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
35	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	AGAGTTTGAT CCTGGCTCAG AACGAACGCT GGCGGCGCGC CTAATACATG CAAGTCGAGC	60
	GAGAAGACGT AGCAATACGT TTGTAAAGCG GCGAACGGGT GAGGAATACA TGGGTAATCT	120
45	ACCATCGAGT GGGGAATAAC CAACCGAAAG GTTGGCTAAT ACCGCGTACG CTTCTGAGTC	180
	TTCGGGTTCG GAAGGAAAGC CGTACTGTGA GTGCGGCGCT CTTTGATGAG CTCATGTCCT	240
50	ATCAGCTTGT TGGTAGGGTA ACGGCCTACC AAGGCTTTGA CGGGTAGCTG GTCTGAGAGG	300
	ACGATCAGCC ACACTGGCAC TGCGACACGG GCCAGACTCC TACGGGAGGC AGCAGTAAGG	360
	AATATTGCGC AATGGGCGAA AGCCTGACGC AGCNACGCCG CGTGGGGGAT GAAGGTCTTC	420
55	GGATTGTAAA CCCCTTTCGG GAGGGAAGAT GGAGCGAGCA ATCGTTCGGA CGGTACCTCC	480
	AGAAGCAGCC ACGGCCAACT TCGTGCCAGC AGCCGCGGTA ATACGAAGGT GGCAAGCGTT	540

	GIICGGAIIC ACTGGGCGTA CAGGGTGTGT AGGCGGTTTG GTAAGCCTTC TGTTAAAGCT	60
5	TCGGGCCCAA CCCGGAAAGC GCAGACGGTA CTGCCAGGCT AGAGGGTGGG AGAGGAGCGC	666
	GGAATTCCCG GTGTAGCGGT GAAATGCGTA GAGATCGGGA GGAAGGCCGG TGGCGAAGGC	720
	GGCGCTCTGG AACATACCTG ACGCTGAGAC ACGAAAGCGT GGGGAGCAAA CAGGATTAGA	780
10	TACCCTGGTA GTCCACGCCC TAAACTATGG ATACTAAGTG TCGGCGGGTT ACCGCCGGTG	840
	CCGCAGCTAA CGCATTAAGT ATCCCGCCTG GGAAGTACGG CCGCAAGGTT GAAACTCAAA	900
15	GGAATTGACG GGGGCCCGCA CAAGCGGTGG AGCATGTGGT TTAATTCGAC GCAACGCGAA	960
	GAACCTTACC CAGGTTGGAC ATGCACGTAG TAGAAAGGTG AAAGCCTGAC GAGGTAGCAA	1020
	TACCAGCGTG CTCAGGTGCT GCATGGCTGT CGTCAGCTCG TGCCGTGAGG TGTTGGGTTA	1080
20	AGTCCCGCAA CGAGCGCAAC CCCTGCTTTC AGTTGCTACC GGGTCATGCC GAGCACTCTG	1140
	AAAGGACTGC CCAGGATAAC GGGGAGGAAG GTGGGGATGA CGTCAAGTCA GCATGGCCTT	1200
25	TATGCCTGGG GCCACACGC TGCTACAATG GCCGGTACAA AGCGCTGCAA ACCCGTGAGG	1260
	GGGAGCCAAT CGCAAAAAAC CGGCCTCAGT TCAGATTGAG GTCTGCAACT CGACCTCATG	1320
	AAGGCGGAAT CGCTAGTAAT CGCGGATCAG CACGCCGCGG TGAATACGTN CCCGGGCCTT	1380
30	GTACACACCG CCCGTCACAC CACGAAAGCC TGTTGTACCT GAAGTCGCCC AAGCCAACCG	1440
	CAAGGAGGCA GGCGCCCACG GTATGGCCCG TGATTGGGGT GAAGTCGTAA CAAGGTAACC	1500
35	GTAAA	1505
	(2) INFORMATION FOR SEQ ID NO: 6:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1441 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: DNA (genomic)	
73	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
50	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
55	(xi) SEOUENCE DESCRIPTION: SEO ID NO. 6.	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

AAGTCGAGCG AGAAGGTGTA GCAATACACT TGTAAAGCGG CGAACGGGTG AGGAATACAT

	GGGTAATCTA	CCATCGAGTG	GGGAATAACC	AGCCGAAAGG	TTGGCTAATA	CCGCGTACGC	120
5	TTCCGAGTCT	TCGGGCTTGG	AAGGAAAGCC	GCACTGTGAG	TGCGGCGCTC	TTTGATGAGC	180
3	TCATGTCCTA	TCAGCTTGTT	GGTAGGGTAA	CGGCCTACCA	AGGCTTTGAC	GGGTAGCTGG	240
	TCTGAGAGGA	CGATCAGCCA	CACTGGCACT	GCGACACGGG	CCAGACTCCT	ACGGGAGGCA	300
10	GCAGTAAGGA	ATATTGCGCA	ATGGGCGAAA	GCCTGACGCA	GCGACGCCGC	GTGGGGGATG	360
	AAGGTCTTCG	GATTGTAAAC	CCCTTTCGGG	AGGGAAGATG	GAGCCAGCAA	TCGTTCGGAC	420
15	GGTACCTCCA	GAAGCAGCCA	CGGCCAACTT	CGTGCCAGCA	GCCGCGGTAA	TACGAAGGTG	480
13	GCAAGCGTTG	TTCGGATTCA	CTGGGCGTAC	AGGGTGTGTA	NGCGGTTTGG	TAAGCCTTCT	540
	GTTAAAGCTT	CGGGCCCAAC	CCGGAAAGCG	CAGAGGGTAC	TGCCAGGCTA	GAGGGTGGGA	600
20	GAGGAGCGCG	GAATTCCCGG	TGTAGCGGTG	AAATGCGTAG	AGATCGGGAG	GAAGGCCGGT	660
	GGCGAAGGCG	GCGCTCTGGA	ACATGCCTGA	CGCTGAGACA	CGAAAGCGTG	GGGAGCAAAC	720
25	AGGATTAGAT	ACCCTGGTAG	TCCACGCCCT	AAACTATGGA	TACTAAGTGT	CGGCGGGTTA	780
	CCGCCGGTGC	CGCAGCTAAC	GCATTAAGTA	TCCCGCCTGG	GAAGTACGGC	CGCAAGGTTG	840
	AAACTCAAAG	GAATTGACGG	GGGCCCGCAC	AAGCGGTGGA	GCATGTGGTT	TAATTCGACG	900
30	CAACGCGAAG	AACCTTACCC	AGGTTGGACA	TGCACGTAGT	AGAAAGGTGA	AAGNCTAACG	960
	AGGTAGCAAT	ACCAGCGTGC	TCAGGTGCTG	CATGGCTGTC	GTCAGCTCGT	GCCGTGAGGT	1020
35	GTTGGGTTAA	GTCCCGCAAC	GAGCGCAACC	CCTGCTTTCA	GTTGCTACCĠ	GGTCATGCCG	1080
	AGCACTCTGA	AAGGACTGCC	CAGGATAACG	GGGAGGAAGG	TGGGGATGAC	GTCAAGTCAG	1140
	CATGGCCTTT	ATGCCTGGGG	CCACACACGT	GCTACAATGG	CCGGTACAAA	GCGCTGCAAA	1200
40	CCCGTGAGGG	GGAGCCAATC	GCAAAAAACC	GGCCTCAGTT	CAGATTGAGG	TCTGCAACTC	1260
	GACCTCATGA	AGGCGGAATC	GCTAGTAATC	GCGGATCAGC	ACGCCGCGGT	GAATACGTNC	1320
45	CCGGGCCTTG	TACACACCGC	CCGTCACACC	ACGAAAGCCT	GTTGTACCTG	AAGTCGCCCA	1380
	AGCCAACCGC	AAGGAGGCAG	GCGCCCACGG	TATGGCCGGT	GATTGGGGTG	AAGTCCTAAC	1440
	A						144

50 (2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1426 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Nitrospira

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

15	TAATACATGC	AAGTCGAGCG	AGAAGGTGTA	GCAATACACT	TGTAAAGCGG	CGAACGGGTG	60
	AGGAATACAT	GGGTAATCTA	CCATCGAGTG	GGGAATAACC	AACCGAAAGG	TTGGCTAATA	120
	CCGCGTACGC	TTCTGAGCCT	TCGTGTTCGG	AAGGAAAGCC	GTACTGTGAG	TGCGGCGCTC	180
20	TTTGATGAGC	TCATGTCCTA	TCAGCTTGTT	GGTAGGGTAA	CGGCCTACCA	AGGCTTTGAC	240
	GGGTAGCTGG	TCTGAGAGGA	CGATCAGCCA	CACTGGCACT	GCGACACGGG	CCAGACTCCT	300
25	ACGGGAGGCA	GCAGTAAGGA	ATATTGCGCA	ATGGGCGAAA	GCCTGACGCA	GCNACGCCGC	360
	GTGGGGGATG	AAGGTCTTCG	GATTGTAAAC	CCCTTTCGGG	AGGGAAGATG	GAGCGAGCAA	420
	TCGTTCGGAC	GGTACCTCCA	GAAGCAGCCA	CGGCCAACTT	CGTGCCAGCA	GCCGCGGTAA	480
30	TACGAAGGTG	GCAAGCGTTG	CTTGGATTCA	CTGGGCGTAC	AGGGTGTGTA	GGCGGTTTGG	540
	TAAGCCTTCT	GTTAAAGCTT	CGGGCCCAAC	CCGAAAAGCG	CAGAGGGTAC	TGCCAGGCTA	600
35	GAGGGTGGGA	GAGGAGCGCG	GAATTCCCGG	TGTAGCGGTG	AAATGCGTAG	AGATCGGGAG	660
	GAAGGCCGGT	GGCGAAGGCG	GCGCTCTGGA	ACATACCTGA	CGCTGAGACA	CGAAAACGTG	720
	GGGAGCAAAC	AGGATTAGAT	ACCCTGGTAG	TCCACGCCCT	AAACTATGGA	TACTAAGTGT	780
40	CGGCGGGTTA	CCGCCGGTGC	CGCAGCTAAC	GCATTAAGTA	TCCCGCCTGG	GAGGTACGGC	840
	CGCAAGGTTG	AAACTCAAAG	GAATTGACGG	GGGCCCGCAC	AAGCGGTGGA	GCTTGTGGTT	900
45	TAATTCGACG	CAACGCGAAG	AACCTTACCC	AGGTTGGACA	TGCACGTAGT	AGAAAGGTGA	960
	AAGCCTGACG	AGGTAGCAAT	ACCAGCGTGC	TCAGGTGCTG	CATGGCTGTC	GTCAGCTCGT	1020
	GCCGTGAGGT	GTTGGGTTAA	GTCCCGCAAC	GAGCGCAACC	CCTGCTTTCA	GTTGCTACCG	1080
50	GGTCATGCCG	AGCACTCTGA	AAGGACTGCC	CAGGATAACG	GGGAGGAAGG	TGGGGATGAC	1140
	GTCAAGTCAG	CATGGCCTTT	ATGCCTGGGG	CCACACACGT	GCTACAATGG	CCGGTACAAA	1200
55	GCGCTGCAAA	CCCGTGAGGG	GGAGCCAATC	GCAAAAAACC	GGCCTCAGTT	CAGATTGAGG	1260
	TCTGCAACTC	GACCTCATGA	AGGCGGAATC	GCTAGTAATC	GCGGATCAGC	ACGCCGCGGT	1320

	GAATACGINC CCGGGCCTTG TACACACCGC CCGTCACACC ACGAAAGCCT GTTGTACCTG	1380
	AAGTCGCCCA AGCCAACCGC AAGGAGGCAG GCGCCCACGG TATGGC	1426
5	(2) INFORMATION FOR SEQ ID NO: 8:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1429 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
20	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	TAATACATGC AAGTCGAGCG AGAAGGTGTA GCAATACACT TGTAAAGCGG CGAACGGGTG	_. 60
	AGGAATACAT GGGTAATCTA CCATCGAGTG GGGAATAACC AACCGAAAGG TTGGCTAATA	120
30	CCGCGTACGC CTCCGAGTCT TCGGGTTCGG AGGGAAAGCT GCACTGTGAG TGTAGCGCTC	180
	TTTGATGAGC TCATGTCCTA TCAGCTTGTT GGTAGGGTAA CGGCCTACCA AGGCTTTGAC	240
35	GGGTAGCTGG TCTGAGAGGA CGATCAGCCA CACTGGCACT GCGACACGGG CCAGACTCCT	300
	ACGGGAGGCA GCAGTAAGGA ATATTGCGCA ATGGGCGAAA GCCTGACGCA GCNACGCCGC	360
	GTGGGGGATG AAGGTCTTCG GATTGTAAAC CCCTTTCGGG AGGGAAGATG GAGCGAGCAA	420
40	TCGTTCGGAC GGTACCTCCA GAAGCAGCCA CGGCCAACTT CGTGCCAGCA GCCGCGGTAA	480
	TACGAAGGTG GCAAGCGTTG TTCGGATTCA CTGGGCGTAC AGGGTGTGTA GGCGGTTTGG	540
45	TAAGCCTTCT GTTAAAGCTT CGGGCCCAAC CCGGAAAGCG CAGGGGGTAC TGCCAGGCTA	600
	GAGGGTGGGA GAGGAGCGCG GAATTCCCGG TGTAGCGGTG AAATGCGTAG AGATCGGGAG	660
	GAAGGCCGGT GGCGAAGGCG GCGCTCTGGA ACATACCTGA CGCTGAGACA CGAAAGCGTG	720
50	GGGAGCAAAC AGGATTAGAT ACCCTGGTAG TCCACGCCCT AAGCTATGGA TACTAAGTGT	780
	CGGCGGGTTA CCGCCGGTGC CGCAGCCAAC GCGTTAAGTA TCCCGCCTGG GAAGTACGGC	840
55	CGCAAGGTTG AAACTCAAAG GAATTGACGG GGGCCCGCAC AAGCGGTGGA GCATGTGGTT	900

TAATTCGACG CAACGCGAAG AACCTTACCC AGGTTGGACA TGCACGTAGT AGAAAGGTGA

960.

	AAGCCTGACG AGGTAGCAAT ACCAGCGTGC TCAGGTGCTG CATGGCTGTC GTCAGCTCGT	1020
	GCCGTGAGGT GTTGGGTTAA GTCCCGCAAC GAGCGCAACC CCTGCTTTCA GTTGCTACCG	1080
5	GGTCATGCCG AGCACTCTGA AAGGACTGCC CAGGATAACG GGGGAGGAAG GTGGGGATGA	1140
	CGTCAAGTCA GCATGGCCTT TATGCCTGGG GCCACACACG TGCTACAATG GCCGGTACAA	1200
10	AACGCTGCAA ACCCGTGAGG GGGAGCCAAT CGCAAAAAAC CGGCCTCAGT TCAGATTGAG	1260
10	GTCTGCAACT CGACCTCATG AAGGCGGAAT CGCTAGTAAT CGCGGATCAG CACGCCGCGG	1320
	TGAATACGTN CCCGGGCCTT GTGCACACCG CCCGTCACAC CACGAAAGCC TGTTGTACCT	1380
15	GAAGTCGCCC AAGCCAACCG CAAGGAGGCA GGCGCCCACG GTATGGCCG	1429
	(2) INFORMATION FOR SEQ ID NO: 9:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1415 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
30	(iv) ANTI-SENSE: NO	
30	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
40	CGAGAAGGTG TAGCAATACA CTTGTAAAGC GGCGAACGGG TGAGGAATAC ATGGGTAATC	60
70	TACCATCGAG TGGGGAATAA CCAACCGAAA GGTTGGCTAA TACCGCGTAC GCCTCCGAGT	120
	CTTCGGGTTC GGAGGGAAAG CTGCACTGTG AGTGTAGCGC TCTTTGATGA GCTCATGTCC	180
45	TATCAGCTTG TTGGTAGGGT AACGGCCTAC CAAGGCTTTG ACGGGTAGCT GGTCTGAGAG	240
	GACGATCAGC CACACTGGCA CTGCGACACG GGCCAGACTC CTACGGGAGG CAGCAGTAAG	300
	GAATATTGCG CAATGGGCGA AAGCCTGACG CAGCNACGCC GCGTGGGGGA TGAAGGTCTT	360
50	CGGATTGTAA ACCCCTTTCG GGAGGGAAGA TGGAGCGAGC AATCGTTCGG ACGGTACCTC	420
	CAGAAGCAGC CACGGCCAAC TTCGTGCCAG CAGCCGCGGT AATACGAAGG TGGCAAGCGT	480
55	TGTTCGGATT CACTGGGCGT ACAGGGTGTG TAGGCGGTTT GGTAAGCCTT CTGTTAAAGC	540
	TTCGGGCCCA ACCCGGAAAG CGCAGAGGGT ACTGCCAGGC TAGAGGGTGG GAGAGGAGCG	600

	CGGAATTCCC GGTGTAGCGG TGAAATGCGT AGAGATCGGG AGGAAGGCCG GTGGCGAAGG	660
	CGGCGCTCTG GAACATACCT GACGCTGAGA CACGAAAGCG TGGGGAGCAA ACAGGATTAG	720
5	ATACCCTGGT AGTCCACGCC CTAAACTATG GATACTAAGT GTCGGCGGGT TACCGCCGGT	780
	GCCGCAGCTA ACGCATTAAG TATCCCGCCT GGGAAGTACG GCCGCAAGGT TGAAACTCAA	840
	AGGAATTGAC GGGGGCCCGC ACAAGCGGTG GAGCATGTGG TTTAATTCGA CGCAACGCGA	900
10	AGAACCTTAC CCAGGTTGGA CATGCACGTA GTAGAAAGGT GAAAGCCTGA CGAGGTAGCA	960
	ATACCAGCGT GCTCAGGTGC TGCATGGCTG TCGTCAGCTC GTGCCGTGAG GTGTTGGGTT	1020
15	AAGTCCCGCA ACGAGCGCAA CCCCTGCTTT CAGTTGCTAC CGGGTCATGC CGAGCACTCT	1080
	GAAAGGACTG CCCAGGATAA CGGGGAGGAA GGTGGGGATG ACGTCAAGTC AGCATGGCCT	1140
20	TTATGCCTGG GGCCACACAC GTGCTACAAT GGCCGGTATA AAACGCTGCA AACCCGTGAG	1200
20	GGGGAGCCAA TCGCAAAAAA CCGGCCTCAG TTCAGATTGA GGTCTGCAAC TCGACCTCAT	1260
	GAAGGCGGAA TCGCTAGTAA TCGCGGATCA GCACGCCGCG GTGAATACGT NCCCGGGCCT	1320
25	TGTACACACC GCCCGTCACA CCACGAAAGC CTGTTGTACC TGAAGTCGCC CAAGCCAACC	1380
	GCAAGGAGGC AGGCGCCCAC GGTATGGCCG GTGAT	1415
• •	(2) INFORMATION FOR SEQ ID NO: 10:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1435 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
4 0	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
45	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
50	CCTAATACAT GCAAGTCGAT CGAGAAGGTG TAGCAATACA CTTGTAAAGC GGCGAACGGG	60
	TGAGGAATAC ATGGGTAATC TACCATCGAG TGGGGAATAA CCAACCGAAA GGTTGGCTAA	120
55	TACCGCGTAC GCCTCCGAGT CTTCGGGTTC GGAGGGAAAG CTGCACTGTG AGTGTAGCGC	18
ور	TCTTTGATGA GCTCATGTCC TATCAGCTTG TTGGTAGGGT AACGGCCTAC CAAGGCTTTG	24

	ACGGGTAGCT	GGTCTGAGAG	GACGATCAGC	CACACTGGCA	CTGCGACACG	GGCCAGACTC	300
	CTACGGGAGG	CAGCAGTAAG	GAATATTGCG	CAATGGGCGA	AAGCCTGACG	CAGCCACGCC	360
5	GCGTGGGGGA	TGAAGGTCTT	CGGATTGTAA	ACCCCTTTCG	GGAGGGAAGA	TGGAGCGAGC	420
	AATCGTTCGG	ACGGTACCTC	CAGAAGCAGC	CACGGCCAAC	TTCGTGCCAG	CAGCCGCGGT	480
10	AATACGAAGG	TGGCAAGCGT	TGTTCGGATT	CACTGGGCGT	ACAGGGTGTG	TAGGCGGTTT	540
10	GGTAAGCCTT	CTGTTAAAGC	TTCGGGCCCA	ACCCGGAAAG	CGCAGAGGGT	ACTGCCAGGC	600
	TAGAGGGTGG	GAGAGGAGCG	CGGAATTCCC	GGTGTAGCGG	TGAAATGCGT	AGAGATCGGG	660
15	AGGAAGGCCG	GTGGCGAAGG	CGGCGCTCTG	GAACATACCT	GACGCTGAGA	CACGAAAGCG	720
	TGGGGAGCAA	ACAGGATTAG	ATACCCTGGT	AGTCCACGCC	CTAAACTATG	GATACTAAGT	780
	GTCGGCGGGT	TACCGCCGGT	GCCGCAGCTA	ACGCATTAAG	TATCCCGCCT	GGGAAGTACG	840
20	GCCGCAAGGT	TGAAACTCAA	AGGAATTGAC	GGGGCCCGC	ACAAGCGGTG	GAGCATGTGG	900
	TTTAATTCGA	CGCAACGCGA	AGAACCTTAC	CCAGGTTGGA	CATGCACGTA	GTAGAAAGGT	960
25	GAAAGCCTGA	CGAGGTAGCA	ATACCAGCGT	GCTCAGGTGC	TGCATGGCTG	TCGTCAGCTC	1020
		GTGTTGGGTT					1080
		CGAGCACTCT					1140
30		CAGCATGGCC					1200
	AAAACGCTGC						1260
35	AGGTCTGCAA						
	GGTGAATACG						1320
							1380
40	CTGAAGTCGC				CGGTATGGCC	GGTGA	1435
		TION FOR SE					
	(1) SE	QUENCE CHAR	ACTERISTICS	:			

- (A) LENGTH: 1437 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic) 50
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- 55 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Nitrospira

45

. :

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

5	AATACATGCA	AGTCGATCGA	GAAGGTGTAG	CAATACACTT	GTAAAGCGGC	GAACGGGTGA	60
	GGAATACATG	GGTAATCTAC	CATCGAGTGG	GGAATAACCA	ACCGAAAGGT	TGGCTAATAC	120
10	CGCGTACGCC	TCCGAGTCTT	CGGGTTCGGA	GGGAAAGCTG	CACTGTGAGT	GTAGCGCTCT	180
10	TTGATGAGCT	CATGTCCTAT	CAGCTTGTTG	GTAGGGTAAC	GGCCTACCAA	GGCTTTGACG	240
	GGTAGCTGGT	CTGAGAGGAC	GATCAGCCAC	ACTGGCACTG	CGACACGGGC	CAGACTCCTA	300
15	CGGGAGGCAG	CAGTAAGGAA	TATTGCGCAA	TGGGCGAAAG	CCTGACGCAG	CCACGCCGCG	360
	TGGGGGATGA	AGGTCTTCGG	ATTGTAAACC	CCTTTCGGGA	GGGAAGATGG	AGCGAGCAAT	420
20	CGTTCGGACG	GTACCTCCAG	AAGCAGCCAC	GGCCAACTTC	GTGCCAGCAG	CCGCGGTAAT	480
20	ACGAAGGTGG	CAAGCGTTGT	TCGGATTCAC	TGGGCGTACA	GGGTGTGTAG	GCGGTTTGGT	540
	AAGCCTTCTG	TTAAAGCTTC	GGGCCCAACC	CGGAAAGCGC	AGAGGGTACT	GCCAGGCTAG	600
25	AGGGTGGGAG	AGGAGCGCGG	AATTCCCGGT	GTAGCGGTGA	AATGCGTAGA	GATCGGGAGG	660
	AAGGCCGGTG	GCGAAGGCGG	CGCTCTGGAA	CATACCTGAC	GCTGAGACAC	GAAAGCGTGG	.720
30	GGAGCAAACA	GGATTAGATA	CCCTGGTAGT	CCACGCCCTA	AACTATGGAT	ACTAAGTGTC	780
	GGCGGGTTAC	CGCCGGTGCC	GCAGCTAACG	CATTAAGTAT	CCCGCCTGGG	AAGTACGGCC	840
	GCAAGGTTGA	AACTCAAAGG	AATTGACGGG	GGCCCGCACA	AGCGGTGGAG	CATGTGGTTT	900
35	AATTCGACGC	AACGCGAAGA	ACCTTACCCA	GGTTGGACAT	GCACGTAGTA	NAAAGGTGAA	960
	AGCCTGACGA	GGTAGCAATA	CCAGCGTGCT	CAGGTGCTGC	ATGGCTGTCT	TCAGCTCGTG	1020
40	CCGTGAGGTG	TTGGGTTAAG	TCCCGCAACG	AGCGCAACCC	CTGCTTTCAG	TTGCTACCGG	1080
	GTCATGCCGA	ACACTCTGAA	AGGACTGCCC	AGGATAACGG	GGAAGGAAGG	TGGGGATGAC	1140
	GTCAAGTCAG	CATGGCCTTT	ATGCCTGGGG	CCACACACGT	GCTACAATGG	CCGGTACAAA	1200
45	GCGCTGCAAA	CCCGTGAGGG	GGAGCCAATC	GCAAAAAACC	GGCCTCAGTT	CAGATTGAGG	1260
	TCTGCAACTC	GACCTCATGA	AGGCGGAATC	GCTAGTAATC	GCGGATCAGC	ACGCCGCGGT	1320
50	GAATACGTNC	CCGGGCCTTG	TACACACCGC	CCGTCACACC	ACGAAAGCCT	GTTGTACCTG	1380
	AAGTCGCCCA	AGCCAACCGC	AAGGAGGCAG	GCGCCCACGG	TATGGCCGGT	GATGGGG	1437

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1437 base pairs

(B) TYPE: nucleic acid

(C)	STRANDEDNESS:	double
(-)		

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic) 5

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Nitrospira

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

AATACATGCA AGTCGATCGA NAAGGTGTAG CAATACACTT GTAAAGCGGC GAACGGGTGA 60 GGAATACATG GGTAATCTAC CATCGAGTGG GGAATAACCA ACCGAAAGGT TGGCTAATAC 120 20 CGCGTACGCC TCCGAGTCTT CGGGTTCGGA GGGAAAGCTG CACTGTGAGT GTAGCGCTCT 180 TTGATGAGCT CATGTCCTAT CAGCTTGTTG GTAGGGTAAC GGCCTACCAA GGCTTTGACG 240 25 GGTATCTGGT CTGAGAGGAC GATCAGCCAC ACTGGCACTG CGACACGGGC CAGACTCCTA 300 CGGGAGGCAG CAGTAAGGAA TATTGCGCAA TGGGCGAAAC CCNGACGCAG CCACGCCGCG 360 TGGGGGATGA AGGTCTTCGG ATTGTAAACC CCTTTCGGGA GGGAAGATGG AACGAGCAAT 420 30 CGTTCGGACG GTACCTCCAG AAGCAGCCAC GGCCAACTTC GTGCCAGCAG CCGCGGTAAT 480 ACGAAGGTGG CAAGCGTTGT TCGGATTCAC TGGGCGTACA GGGTGTGTAG GCGGTTTGGT 540 35 AAGCCTTCTG TTAAAGCTTC GGGCCCAACC CGGAAAGCGC AGAGGGTACT GCCAGGCTAG 600 AGGGTGGGAG AGGAGCGCGG AATTCCCGGT GTAGCGGTGA AATGCGTAGA GATCGGGAGG 660 AAGGCCGGTG GCGAAGGCGG CGCTCTGGAA CATACCTGAC GCTGAGACAC GAAAGCGTGG 720 40 GGNGCAAACA GGATTAGATA CCCTGGTAGT CCACGCCCTA AACTATGGAT ACTAAGTGTC 780 GGCGGGTTAC CGCCGGTGCC GCAGCTAACG CATTAAGTAT CCCGCCTGGG AAGTACGGCC 840 45 GCAAGGTTGA AACTCAAAGG GATTGACGGG GGCCCGCACA AGCGGTGGGG CATGTGGTTT 900 AATTCGACGC AACGCGAAGA ACCTTACCCA GGTTGGACAT GCACGTAGTN GAAAGGTGAA 960 AGCCTGACGA GGTAGCAATA CCAGCGTGCT CAGGTGCTGC ATGGCTGTCG TCAGCTCGTG 1020 50 CCGTGAGGTG TTGGGTTAAG TCCCGCAACG AGCGCAACCC CTGCTTTCAG TTGCTACCGG 1080 GTCATGCCGA ACACTCTGAA AGGACTGCCC AGGATAACGG GGAAGGAAGG TGGGGATGAC 1140 55 GTCAAGTCAG CATGGCCTTT ATACCTGGGG CCACACACGT GCTACAATGG CCGGTACAAA 1200 ACGCTGCAAA CCCGTGAGGG GGAGCCAATC GCAAAAAACC GGCCTCAGTT CAGATTGAGG 1260

	TCTGCAACTC GACCTCATGA ATGCGGAATC GCTAGTAATC GCGGATCAGC ACGCCGCGGT	1320
5	GAATACGTNC CCGGGCCTTG TACACACCGC CCGTCACACC ACGAAAGCCT GTTGTACCTG	1380
3	AAGTCGCCCA AGCCAACCGC AAGGAGGCAG GCGCCCACGG TATGGCCGGT GATGGGG	1437
	(2) INFORMATION FOR SEQ ID NO: 13:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1435 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: DNA (genomic)	•
	(iii) HYPOTHETICAL: NO	
20	(iv) ANTI-SENSE: NO	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira</pre>	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	-
	TAATACATGC AAGTCGATCG ANAAGGTGTA GCAATACACT TGTAAAGCGG CGAACGGGTG	60
30	AGGAATACAT GGGTAATCTA CCATCGAGTG GGGAATAACC AACCGAAAGG TTGGCTAATA	120
	CCGCGTACGC TTCCGAGTCT TCGGGCTTGG AAGGAAAGCC GCACTGTGAG TGCGGCGCTC	180
35	TTTGATGAGC TCATATCCTA TCANCTTGTT GGTAGGGTAA CGGCCTACCA AGGCTTTGAC	240
	GGGTATCTGG TCTGAGAGGA CGATCAGCCA CACTGGCACT GCGACACGGG CCAGACTCCT	300
	ACGGGAGGCA GCAGTAAGGA ATATTGCGCA ATGGGCGAAA CCCNGACGCA GCCACGCCGC	360
40	GTGGGGGATG AAGGTCTTCG GATTGTAAAC CCCTTTCGGG AGGGAAGATG GAACGAGCAA	420
	TCGTTCGGAC GGTACCTCCA GAAGCAGCCA CGGCCAACTT CGTGCCAGCA GCCGCGGTAA	480
45	TACGAAGGTG GCAAGCGTTG TTCGGATTCA CTGGGCGTAC AGGGTGTGTA GGCGGTTTGG	540
	TAAGCCTTCT GTTAAAGCTT CGGGCCCAAC CCGGAAAGCG CAGAGGGTAC TGCCAGGCTA	600
	GAGGGTGGGA GAGGAGCGCG GAATTCCCGG TGTAGCGGTG AAATGCGTAG AGATCGGGAG	660
50	GAAGGCCGGT GGCGAAGGCG GCGCTCTGGA ACATACCTGA CGCTCAGACA CGAAAGCGTG	720
	GGGAGCAAAC AGGATTAGAT ACCCTGGTAG TCCACGCCCT AAACTATGGA TACTAAGTGT	780
55	CGGCGGGTTA CCGCCGGTGC CGCAGCTAAC GCATTAAGTA TCCCGCCTGG GAAGTACGGC	840
	CGCAAGGTTG AAACTCAAAG GAATTGACGG GGGCCCGCAC AAGCGGTGGA GCATGTGGTT	900

	TAATTCGACG CAACGCGAAG AACCTTACCC AGGTTGGACA TGCACGTAGT AGAAAGGTGA	960
5	AAGCCTGACG AGGTAGCAAT ACCAGCGTGC TCAGGTGCTG CATGGCTGTC GTCAGCTCGT	1020
	GCCGTGAGGT GTTGGGTTAA GTCCCGCAAC GAGCGCAACC CCTGCTTTCA GTTGCTGCCG	1080
	GGTCATGCCG AACACTCTGA AAGGACTGCC CAGGATAACG GGGAAGGAAG GTGGGGATGA	1140
10	CGTCAAGTCA GCATGGCCTT TATGCCTGGG GCCACACACG TGCTACAATG GCCGGTACAA	1200
	AACGCTGCAA ACCCGTGAGG GGGAGCCAAT CGCAAAAAAC CGGCCTCAGT TCANATTGAG	1260
15	GTCTGCAACT CGACCTCATG AATGCGGAAT CGCTAGTAAT CGCGGATCAG CACGCCGCGG	1320
	TGAATACGTN CCCGGGCCTT GTACACGCCG CCCGTCACAC CACGAAAGCC TGTTGTACCT	1380
	GAAGTCGCCC AAGCCAACCG CAAGGAGGCA NGCGCCCACG GTATGGCCGG TGATG	1435
20	(2) INFORMATION FOR SEQ ID NO: 14:	
. 25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	
	(iv) ANTI-SENSE: NO	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
40	CGGGAGGGAA GATGGAGC	18
	(2) INFORMATION FOR SEQ ID NO: 15:	10
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
,50	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Oligonucleotide primer"	
	(iii) HYPOTHETICAL: NO	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
5	CCAACCCGGA AAGCGCAGAG	20
	(2) INFORMATION FOR SEQ ID NO: 16:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Oligonucleotide primer"</pre>	
	(iii) HYPOTHETICAL: NO	
20	(iv) ANTI-SENSE: NO	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
	AGCCTGGCAG TACCCTCT	18
	(2) INFORMATION FOR SEQ ID NO: 17:	
30		
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(iii) HYPOTHETICAL: NO	
40	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrococcus mobilis	
45	(A) ORGANISM: NICIOCOCCUS MODILIS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
50	CAGCCGGGAG GAAAAGCA	18
	(2) INFORMATION FOR SEQ ID NO: 18:	
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

		(D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
5	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
10	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Magnetobacterium bavaricum	
15		SEQUENCE DESCRIPTION: SEQ ID NO: 18:	18
		RMATION FOR SEQ ID NO: 19:	Τ.
20		SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
30	(iv)	ANTI-SENSE: NO	
35	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrobacter hamburgensis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	TGTGCGGG	AA GATAATGA	18
40	(2) INFOR	RMATION FOR SEQ ID NO: 20:	10
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
55	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospina gracilis	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
5	CGGGTGGGAA GAACAAAA	18
	(2) INFORMATION FOR SEQ ID NO: 21:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
20	(iv) ANTI-SENSE: NO	
20	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira marina</pre>	•
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	CATGAGGAAA GATAAAGT	. 18
30	(2) INFORMATION FOR SEQ ID NO: 22:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
45	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
	CGGCAGGGAA GATGGAAC	18
	(2) INFORMATION FOR SEQ ID NO: 23:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: pugleic acid	

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
_	(ii) MOLECULE TYPE: DNA (genomic)	
5	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
10	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
	CGGGAGGGAA GATGGAGC	18
20	(2) INFORMATION FOR SEQ ID NO: 24:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(iii) HYPOTHETICAL: NO	
30	(iv) ANTI-SENSE: NO	
35	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
40	CCGCAGGGAA GATGGAAC	18
	(2) INFORMATION FOR SEQ ID NO: 25:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
50	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
55	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	

_	(X1) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
5	CGGGAGGGAA GATGGAAC	18
	(2) INFORMATION FOR SEQ ID NO: 26:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
20	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrobacter	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
20	CGTGCGGGAA GATAATGA	18
30	(2) INFORMATION FOR SEQ ID NO: 27:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
45	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	CGGCAGGGAA GATGGAAC	18
55	(2) INFORMATION FOR SEQ ID NO: 28:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs	

		(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
5	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
10	(iv)	ANTI-SENSE: NO	
10	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospira moscoviensis	
15	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	CGGGAGGG	GAA GATGGACG	18
20	(2) INFO	RMATION FOR SEQ ID NO: 29:	
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
30	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
35	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrococcus mobilis	
40		SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
		GG AATTGCATCC	20
		RMATION FOR SEQ ID NO: 30:	
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
50	,,,,	(D) TOPOLOGY: linear	
	٠	MOLECULE TYPE: DNA (genomic)	
		HYPOTHETICAL: NO	
55		ANTI-SENSE: NO	
	(wi)	OPIGINAL SOUPCE:	

		45	
(A)	ORGANISM:	Magnetobacterium bavaricum	

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
	TCAACCCGGG AATTGCCTTG	20
10	(2) INFORMATION FOR SEQ ID NO: 31:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
20	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Nitrobacter hamburgensis	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
30	TCAACTCCAG AACTGCCTTT	20
	(2) INFORMATION FOR SEQ ID NO: 32:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
45	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospina gracilis</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
	TCAACCGTGG AATTGCGTTT	. 2
55	(2) INFORMATION FOR SEQ ID NO: 33:	
	(i) SEQUENCE CHARACTERISTICS:	

<u> </u>	(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
10	(iv) ANTI-SENSE: NO	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospina marina</pre>	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
20	TTAACCGGGA AAGGTCGAGA	20
20	(2) INFORMATION FOR SEQ ID NO: 34:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
35	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
	CTAACCCGGA AAGTGCGGAG	20
45	(2) INFORMATION FOR SEQ ID NO: 35:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
55	(iii) HYPOTHETICAL: NO	
, ,	(iv) ANTI-SENSE: NO	

(vi) ORIGINAL SOURCE:

	(A) ORGANISM: Nitrospira	
5	A LA GERMANIA DEL GENERALINA GUO ED MONTO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	CCAACCCGAA AAGCGCAGAG	20
10	(2) INFORMATION FOR SEQ ID NO: 36:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
25	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
30	CCAACCCGGA AAGCGCAGAG	20
	(2) INFORMATION FOR SEQ ID NO: 37:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
45	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrobacter	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
55	TCAACTCCAG AACTGCCTTT	20
<i>33</i>	(2) INFORMATION FOR SEQ ID NO: 38:	

5	(1,	(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
10	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
15	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospira moscoviensis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
20	CCAACCC	GGA AAGCGCAGAG	20
	(2) INFO	ORMATION FOR SEQ ID NO: 39:	
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
35	(iv)	ANTI-SENSE: NO	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrococcus mobilis	
40			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
4.5		AG TATCGGAT	18
45		RMATION FOR SEQ ID NO: 40:	
50	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
55	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	

	(vi) ORIGINAL SOURCE:(A) ORGANISM: Magnetobacterium bavaricum	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
10	AGTTAAACAG TTTTCAAG	18
	(2) INFORMATION FOR SEQ ID NO: 41:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
25	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrobacter hamburgensis	•
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	AGACCTTCAG TATCAAAG	18
35	(2) INFORMATION FOR SEQ ID NO: 42: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 18 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
45	(iii) HYPOTHETICAL: NO	
.5	(iv) ANTI-SENSE: NO	
50	(vi) ORIGINAL SOURCE:(A) ORGANISM: Nitrospina gracilis	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
55	AGCCGAATAG TTTCAAAC	18
	(2) INFORMATION FOR SEC ID NO. 43.	

5	(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
10	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
15	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospina marina	
20	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 43:	
20	AGCTGAAT	AG TTCCTCTC	18
	(2) INFO	RMATION FOR SEQ ID NO: 44:	
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
30		(D) TOPOLOGY: linear	
		MOLECULE TYPE: DNA (genomic)	
3.5		HYPOTHETICAL: NO	
35		ANTI-SENSE: NO	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	-
40			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
4.5	AGCCGAGC	AG TCCCCTCC	18
45	(2) INFO	RMATION FOR SEQ ID NO: 45:	
50	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	(ii)	MOLECULE TYPE: DNA (genomic)	
	(;;;)	UVDOTTIETT CALL NO	

	(iv)	ANTI-SENSE: NO	
5	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
3			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
10	AGCCTGGC	AG TACCCTCT	18
	(2) INFO	RMATION FOR SEQ ID NO: 46:	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
25	(iv)	ANTI-SENSE: NO	
23	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
30	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
	AGCCTGGC.	AG TACCCCCT	18
35	(2) INFO	RMATION FOR SEQ ID NO: 47:	
	(i)	SEQUENCE CHARACTERISTICS:	
40		(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
45	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
50	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
55	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
33	AGCCTGGC	AG TACCGTCT	18

	(2) INFORMATION FOR SEQ ID NO: 48:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrobacter	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
	AGATCCTCAG TATCAAAG	1
25	(2) INFORMATION FOR SEQ ID NO: 49:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
-	(ii) MOLECULE TYPE: DNA (genomic)	
35	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
40	(vi) ORIGINAL SOURCE:(A) ORGANISM: Nitrospira moscoviensis	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
45	AGCCTGGCAG TACCCTCT	18
	(2) INFORMATION FOR SEQ ID NO: 50:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
55	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Oligonucleotide primer"</pre>	

	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
5			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
10			
10	CCTGTGCT	CC ATGCTCCG	18
	(2) INFO	RMATION FOR SEQ ID NO: 51:	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
2.5	(iv)	ANTI-SENSE: NO	
25	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrobacter hamburgensis	
30	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
	CCTGTGCT	CC ATGCTCCG	18
35		RMATION FOR SEQ ID NO: 52:	
55			
40	(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
45	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
50	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospina gracilis	
5.5	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
55	CCTGTGCA	AG GGCCCCGA	1

	(2) INFORMATION FOR SEQ ID NO: 53:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nitrococcus mobilis	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
	CCTGTCATCC GGTTCCCG	18
25	(2) INFORMATION FOR SEQ ID NO: 54:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 18 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
40	(vi) ORIGINAL SOURCE:(A) ORGANISM: Nitrospira moscoviensis	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
45	CCTGAGCACG CTGGTATT	18
	(2) INFORMATION FOR SEQ ID NO: 55:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
55	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	

	(iv)	ANTI-SENSE: NO	
5	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospina marina	
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
	CCTGAGCT	CG CTCCCCTT	18
	(2) INFO	RMATION FOR SEQ ID NO: 56:	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	/÷÷\	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
25	(iv)	ANTI-SENSE: NO	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Magnetobacterium bavaricum	
30			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
	CCTGTGCA	AG CTCTCCCT	18
35	(2) INFORMATION FOR SEQ ID NO: 57:		
	(i)	SEQUENCE CHARACTERISTICS:	
40	(=/	(A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
4.5	(ii)	MOLECULE TYPE: DNA (genomic)	
45	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
50	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
55	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
	CCTGAGC	AGG ATGGTATT	1

	(2) INFO	RMATION FOR SEQ ID NO: 58:	
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
1.6	(iv)	ANTI~SENSE: NO	
15	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
20			
20	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
	CCTGAGCA	CG CTGGTATT	18
25	(2) INFO	RMATION FOR SEQ ID NO: 59:	
30	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
35	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
40	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Nitrospira	
45		SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
	CCTGAGCA	GG ATGGTGTT	1Ω

CLAIMS

- 1. A consortium of microorganisms capable of nitrite oxidation in wastewater, which consortium is enriched in members of the *Nitrospira* phylum.
- 2. An oligonucleotide primer for PCR amplification of *Nitrospira* DNA, said primer comprising at least 12 nucleotides having a sequence selected from the group consisting of:
 - (i) any one of SEQ ID NO: 1 to SEQ ID NO: 13; and
- (ii) a DNA sequence having at least 92% identity with any one of SEQ ID NO: 1 to SEQ ID NO: 13.
- 3. The oligonucleotide primer of claim 2, wherein said primer has a length of 12 to 50 nucleotides.
 - 4. The oligonucleotide primer of claim 2, wherein said primer has a length of 12 to 22 nucleotides.
 - 5. The oligonucleotide primer of claim 2, wherein said primer sequence is selected from the group consisting of SEQ ID NO: 14, SEQ ID NO: 15 and SEQ ID NO:16.
- 15 6. A primer pair for PCR amplification of Nitrospira DNA, said primer pair comprising:
 - (a) a first oligonucleotide of at least 12 nucleotides having a sequence selected from one strand of a bacterial 16S rDNA gene; and
 - (b) a second oligonucleotide of at least 12 nucleotides having a sequence selected from the other strand of said 16S rDNA gene downstream of said first oligonucleotide sequence; wherein at least one of said first and second oligonucleotides is selected from the group consisting of:
 - (i) any one of SEQ ID NO: 1 to SEQ ID NO: 13; and
 - (ii) a DNA sequence having at least 92% identity with any one of SEQ ID NO: 1 to SEQ ID NO: 13.
- 7. The primer pair of claim 6, wherein said first and second oligonucleotide primers independently have lengths of 12 to 50 nucleotides.
 - 8. The primer pair of claim 6, wherein said first and second oligonucleotide primers independently have lengths of 12 to 22 nucleotides.
 - 9. The primer pair of claim 6, wherein said first oligonucleotide primer sequence is selected from the group consisting of SEQ ID NO: 14 and SEQ ID NO: 15, and said second oligonucleotide primer sequence is SEQ ID NO: 16.
 - 10. A probe for detecting *Nitrospira* DNA, said probe comprising at least 12 nucleotides having a sequence selected from the group consisting of:
 - (i) any one of SEQ ID NO: 1 to SEQ ID NO: 13; and
 - (ii) a DNA sequence having at least 92% identity with any one of SEQ ID NO: 1 to SEQ
- 35 ID NO: 13.

30

5

- 11. The probe of claim 10, wherein said probe has a length of 15 to 50 nucleotides.
- 12. The probe of claim 10, wherein said probe has a length of 15 to 22 nucleotides.
- 13. A kit comprising:

- at least one primer according to claim 2;
- at least one primer pair according to claim 6; or
 - at least one probe according to claim 10.
- 14. The kit of claim 13, wherein said kit further includes reagents selected from the group consisting of buffers, salts, detergents, nucleotides and thermostable polymerase.
- 15. A method of detecting a Nitrospira species in a sample, said method comprising the steps of:
- 10 (a) lysing cells in said sample to release genomic DNA;
 - (b) contacting denatured genomic DNA from step (a) with a primer pair according to claim 6;
 - (c) amplifying *Nitrospira* DNA by cyclically reacting said primer pair with said DNA to produce an amplification product; and
- 15 (d) detecting said amplification product.
 - 16. The method according to claim 15, wherein said amplification product has a length of 50 to 1,400 bps.
 - 17. A method of quantitating the level of a *Nitrospira* species in a sample, said method comprising the steps of:
- 20 (a) lysing cells in said sample to release genomic DNA;
 - (b) contacting denatured genomic DNA from step (a) with a primer pair according to claim 6;
 - (c) amplifying *Nitrospira* DNA by cyclically reacting said primer pair with said DNA to produce an amplification product; and
- 25 (d) detecting said amplification product and quantitating the level of said product by comparison with at least one reference standard.
 - 18. The method according to claim 17, wherein said amplification product has a length of 50 to 1,400 bps.
 - 19. A method of detecting a Nitrospira species in a sample, said method comprising the steps of:
- 30 (a) lysing cells in said sample to release genomic DNA:
 - (b) contacting denatured genomic DNA from step (a) with a labelled probe according to claim 4 under conditions which allow hybridisation of said genomic DNA said probe;
 - (c) separating hybridised labeled probe and genomic DNA from unhybridised labeled probe; and
- 35 (d) detecting said labeled probe-genomic DNA hybrid.

- 20. A method of detecting cells of a *Nitrospira* species in a sample, said method comprising the steps of:
 - (a) treating cells in said sample to fix cellular contents;
- (b) contacting said fixed cells from step (a) with a labeled probe according to claim 10 under conditions which allow said probe to hybridise with RNA within said fixed cell;
 - (c) removing unhybridised probe from said fixed cells; and
 - (d) detecting said labeled probe-RNA hybrid.

Ridout & Maybee
Suite 2400
One Queen Street East
Toronto, Conana MSC 381
Patent Agents of the Applicant

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fia. 7

[1				50	ì
SBR102	4					•
SBR101						
GC86			TCGACCTG	CAGGCGGCCG	CACTAGTGAT	
SBR204	6					
RC25	GC	TCTCCCATAT	GGTCGACCTG	CAGGCGGCCG	CACTAGTGAT	
RC19						
SBR201	6					
RC7						
RC14						
RC99						
RC11						
RC73						
RC90						
[!	51				100	ı
SBR1024	4					,
SBR101	5				דא אייא ראיי	
GC86	TAGAGTTTGA	TCCTGGCTCA	GAACGAACGC			
SBR2046	6				CCIARIACAI	
RC25	TAGAGTTTGA	TCCTGGCTCA	GAACGAACGC	TGGCGGCGCG	CCTDATACAT	
RC19					CCIANIACAI	
SBR2016	5				די א א די א רי א	
RC7					TAATACAT	
RC14					IANIACAI	
RC99					CCTAATACAT	
RC11					AATACAT	
RC73						
RC90					AATACAT	
					TAATACAT	
[10)1				150	۱.
SBR1024	-CAAGTCGAG	CGAGAAGACG	TA	GCAA	TA	J
SBR1015	GCAAGTCGAG	CGAGAAGACG	TA	GCAA	TA	
GC86			TA			
SBR2046	; -		TA		TA	
RC25		CGAGAAGACG	TA	GCAA	TA	
RC19			TA			
	GCAAGTCGAG	CGAGAAGGTG	TA	CCAA	TA	
RC7			TA			
RC14			TA			
			TA		TA	
			TA		TA	
			TA		TA	
RC90	GCAAGTCGAT	CGANAAGGTG	TA	CCAA	TA	
				· · · · · · · · · · · · · · · · · · ·		

Fig. 8

[1	51				200]
SBR102	4 CGTTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAACCT	
SBR101	5CGTTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAGCCT	
GC86	CGTTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAACCT	
SBR204	6CGTTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAACCT	
RC25	CGTTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAATCT	
RC19	CACTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAATCT	
SBR201	6CACTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAATCT	
RC7	CACTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAATCT	
RC14	CACTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAATCT	
RC99	CACTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAATCT	
RC11	CACTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAATCT	
RC73	CACTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAATCT	
RC90	CACTTGTAAA	GCGGC	GAACGGGT	GAGGAATACA	TGGGTAATCT	
					•	
[2	01				250]
SBR102	4ACCTTCGAGT	GGGGAATAAC	TAGCCGAAAG	GTTAGCTAAT	ACCGCATACG	
SBR101	5ACCCTCGAGT	GGGGAATAAC	TAACCGAAAG	GTTAGCTAAT	ACCGCATACG	
GC86	ACCCTCGAGT	GGGGAATAAC	TAGCCGAAAG	GTTAGCTAAT	ACCGCATACG	
SBR204	6ACCCTCGAGT	GGGGAATAAC	TAACCGAAAG	GTTAGCTAAT	ACCGCATACG	
RC25	ACCATCGAGT	GGGGAATAAC	CAACCGAAAG	GTTGGCTAAT	ACCGCGTACG	
RC19	ACCATCGAGT	GGGGAATAAC	CAGCCGAAAG	GTTGGCTAAT	ACCGCGTACG	
SBR201	6ACCATCGAGT	GGGGAATAAC	CAACCGAAAG	GTTGGCTAAT	ACCGCGTACG	
RC7	ACCATCGAGT	GGGGAATAAC	CAACCGAAAG	GTTGGCTAAT	ACCGCGTACG	
RC14	ACCATCGAGT	GGGGAATAAC	CAACCGAAAG	GTTGGCTAAT	ACCGCGTACG	
RC99	ACCATCGAGT	GGGGAATAAC	CAACCGAAAG	GTTGGCTAAT	ACCGCGTACG	
RC11	ACCATCGAGT	GGGGAATAAC	CAACCGAAAG	GTTGGCTAAT	ACCGCGTACG	
RC73	ACCATCGAGT	GGGGAATAAC	CAACCGAAAG	GTTGGCTAAT	ACCGCGTACG	
RC90	ACCATCGAGT	GGGGAATAAC	CAACCGAAAG	GTTGGCTAAT	ACCGCGTACG	
[2	51				300] .
SBR102	4ACTCCTGGTC	.TGCGGAT	CGGGAGAGAA	AGCGATACC.	GTG.	
SBR101	5GCTCCTGGTC	.TGCGGAT	CGGGAGAGAA	AGCGATACC.	GTG.	
GC86	ACTCCTGGTC	.TGCGGAT	CGGGAGAGAA	AGCGATACC.	GTG.	
SBR204	6GCTCCTGGTC	.TGCGGAT	CGGGAGAGAA	AGCGATACC.	GTG.	
RC25	CTTCTGAGTC	.TTCGGGT	TCGGAAGGAA	AGCCGTACT.	GTG.	
RC19		.TTCGGGC			GTG.	
SBR201	6CTTCTGAGCC	.TTCGTGT	TCGGAAGGAA	AGCCGTACT.	GTG.	
RC7	CCTCCGAGTC	.TTCGGGT	TCGGAGGGAA	AGCTGCACT.	GTG.	
RC14	CCTCCGAGTC	.TTCGGGT	TCGGAGGGAA	AGCTGCACT.	GTG.	
RC99	CCTCCGAGTC		TCGGAGGGAA		GTG.	
RC11	CCTCCGAGTC	.TTCGGGT	TCGGAGGGAA	AGCTGCACT.	GTG.	
RC73	CCTCCGAGTC		TCGGAGGGAA		GTG.	
RC90	CTTCCGAGTC	.TTCGGGC	TTGGAAGGAA	AGCCGCACT.	GTG.	

Fig. 8 (continued)

[301				350	1
SBR1024GGTA	CGCGCTCTTG	GATGGGCTCA	TGTCCTATCA	CCTTCTTCCT	, ,
SBR1015GGTA	CGCGCTCTTG	GATGGGCTCA	TGTCCTATCA	GCTTGTTGGT	
GC86GGTA	CGCGCTCTTG	GATGGGCTCA	TGTCCTATCA	GCTTGTTGGT	
SBR2046GGTA	CGCGCTCTTG	GATGGGCTCA	TGTCCTATCA	GCTTGTTGGT	
RC25AGTG	GGCGCTCTTT	GATGAGCTCA	TGTCCTATCA	GCTTGTTGGT GCTTGTTGCT	
RC19AGTG	GGCGCTCTTT	GATGAGCTCA	TGTCCTATCA	CCTTCTTCCT	
SBR2016AGTG	GGCGCTCTTT	GATGAGCTCA	TGTCCTATCA	CCTTCTTCCT	
RC7AGTGT	AGCGCTCTTT	GATGAGCTCA	TGTCCTATCA	CCTTGTTGGT	
RC14AGTGT	AGCGCTCTTT	GATGAGCTCA	TGTCCTATCA	CCTTGTTGGT	
RC99AGTGT	AGCGCTCTTT	GATGAGCTCA	ТСТССТАТСА	CCTTGTTGGT	
RC11AGTGT	AGCGCTCTTT	GATGAGCTCA	TGTCCTATCA	CCTTGTTGGT	
RC73AGTGT	AGCGCTCTTT	GATGAGCTCA	TGTCCTATCA	CCTTCTTCCT	
RC90AGTGC	GGCGCTCTTT	GATGAGCTCA	TATCCTATCA	NCTTCTTCCT	
			IIIICCIAICA	MCTIGITGGT	
[351				400	ו
SBR1024GAGGTAACGG	CTCACCAAGG	CTTCGACGGG	ТАССТССТСТ	GACACCACCA	j
SBR1015GAGGTAACGG	CTCACCAAGG	CTTCGACGGG	TAGCTGGTCT	GAGAGGACGA	
GC86 GAGGTAACGG	CTCACCAAGG	CTTCGACGGG	TAGCTGGTCT	GAGAGGACGA	
SBR2046GAGGTAACGG	CTCACCAAGG	CTTCGACGGG	TAGCTGGTCT	GAGAGGACGA	
RC25 AGGGTAACGG	CCTACCAAGG	CTTTGACGGG	TAGCTGGTCT	GAGAGGACGA	
RC19 AGGGTAACGG	CCTACCAAGG	CTTTGACGGG	TAGCTGGTCT	CACACGACGA	
SBR2016AGGGTAACGG	CCTACCAAGG	CTTTGACGGG	TACCTCCTCT	CACACGACGA	
RC7 AGGGTAACGG	CCTACCAAGG	CTTTGACGG	TAGCTGGTCT	CACACGACGA	
RC14 AGGGTAACGG	CCTACCAAGG	CTTTGACGG	TAGCTGGTCT	CACACGACGA	
RC99 AGGGTAACGG	CCTACCAAGG	CTTTGACGG	TACCTCCTCT	GAGAGGACGA	
RC11 AGGGTAACGG	CCTACCAAGG	CTTTGACGG	TAGCTGGTCT	CACACCACCA	
RC73 AGGGTAACGG	CCTACCAAGG	CTTTGACGG	TATCTCCTCT	CACACGACGA	
RC90 AGGGTAACGG	CCTACCAAGG	CTTTGACGG	TATCIGGICI	GAGAGGACGA	
		0111023000	TATCIGGICI	GAGAGGACGA	
[401				450	,
SBR1024TCAGCCACAC	TGGCACTGCG	ACACGGGCCA	CACTCCTACC	450	1
SBR1015TCAGCCACAC	TGGCACTGCG	ACACGGGCCA	CACTCCTACC	CCACCCACCA	
GC86 TCAGCCACAC	TGGCACTGCG	ACACGGGCCA	GACTCCTACG	CCACCCACCA	
SBR2046TCAGCCACAC	TGGCACTGCG	ACACGGGCCA	CACTCCTACG	CCACCCACCA	
RC25 TCAGCCACAC	TGGCACTGCG	ACACGGGCCA	CACTCCTACG	GGAGGCAGCA	
RC19 TCAGCCACAC	TGGCACTGCG	ACACGGGCCA	CACTCCTACG	GGAGGCAGCA	
SBR2016TCAGCCACAC	TGGCACTGCG	ACACGGGCCA	GACTCCTACC	CCACCCACCA	
RC7 TCAGCCACAC	TGGCACTGCG	ACACGGGCCA	GACTCCTACG	GGAGGCAGCA	
RC14 TCAGCCACAC	TGGCACTGCG	ACACGGGGCCA	GACTCCIACG	GGAGGCAGCA	
RC99 TCAGCCACAC	TGGCACTGCG	ACACGGGCCA	CACTCCTACG	CCACCCACCA	
RC11 TCAGCCACAC	TGGCACTGCG	ACACGGGGCCA	GACICCIACG	CCACCCACCA	
RC73 TCAGCCACAC	TGGCACTGCG	ACACGGGGCCA	GACICCIACG	GGAGGCAGCA	
RC90 TCAGCCACAC	TGGCACTGCG	ACACGGGGCCA	CACTCCTACG	GGAGGCAGCA	
		A	GACICCIACG	GGAGGCAGCA	

Fig. 8 (continued)

[451				500	1
SBR1024GTAAGGAATA	TTGCGCAATG	GGC.GACAGC	CTGACGCAGC	NACGCCGCGT	•
SBR1015GTAAGGAATA	TTGCGCAATG	GGC.GACAGC	CTGACGCAGC	NACGCCGCGT	
GC86 GTAAGGAATA	TTGCGCAATG	GGC.GACAGC	CTGACGCAGC	NACGCCGCGT	
SBR2046GTAAGGAATA	TTGCGCAATG	GGC.GACAGC	CTGACGCAGC	GACGCCGCGT	
RC25 GTAAGGAATA	TTGCGCAATG	GGC.GAAAGC	CTGACGCAGC	NACGCCGCGT	
RC19 GTAAGGAATA	TTGCGCAATG	GGC.GAAAGC	CTGACGCAGC	GACGCCGCGT	
SBR2016GTAAGGAATA	TTGCGCAATG	GGC.GAAAGC	CTGACGCAGC	NACGCCGCGT	
RC7 GTAAGGAATA	TTGCGCAATG	GGC.GAAAGC	CTGACGCAGC	NACGCCGCGT	
RC14 GTAAGGAATA	TTGCGCAATG	GGC.GAAAGC	CTGACGCAGC	NACGCCGCGT	
RC99 GTAAGGAATA	TTGCGCAATG	GGC.GAAAGC	CTGACGCAGC	CACGCCGCGT	
RC11 GTAAGGAATA	TTGCGCAATG	GGC.GAAAGC	CTGACGCAGC	CACGCCGCGT	
RC73 GTAAGGAATA	TTGCGCAATG	GGC.GAAACC	CNGACGCAGC	CACGCCGCGT	•
RC90 GTAAGGAATA	TTGCGCAATG	GGC.GAAACC	CNGACGCAGC	CACGCCGCGT	
[501				550]
SBR1024GGGGGATGAA	GGTC.TTCGG	ATTGTAAACC	CCTTTCGGCA	GGGAAGATGG	-
SBR1015GGGGGATGAA	GGTC.TTCGG	ATTGTAAACC	CCTTTCGGCA	GGGAAGATGG	
GC86 GGGGGATGAA	GGTC.TTCGG	ATTGTAAACC	CCTTTCGGCA	GGGAAGATGG	
SBR2046TGGGGATGAA					
	GGTC.TTCGG				
RC19 GGGGGATGAA	GGTC.TTCGG	ATTGTAAACC	CCTTTCGGGA	GGGAAGATGG	
SBR2016GGGGGATGAA					
	GGTC.TTCGG				
[551				600]
SBR1024AACGG	.GTAA	CCGTTCG	GACGGTACCT	GCAGAAGCAG	_
SBR1015AACGG	.GTAA	CCGTTCG	GACGGTACCT	GCAGAAGCAG	
GC86 AACGG	.GTAA	CCGTTCG	GACGGTACCT	GCAGAAGCAG	
SBR2046AACGG	.GTAA	CCGTTCG	GACGGTACCT	GCAGAAGCAG	
RC25 AGCGA	.GCAA	TCGTTCG	GACGGTACCT	CCAGAAGCAG	
RC19 AGCCA	.GCAA	TCGTTCG	GACGGTACCT	CCAGAAGCAG	
SBR2016AGCGA					
	.GCAA				
RC73 AACGA	.GCAA	TCGTTCG	GACGGTACCT	CCAGAAGCAG	
RC90 AACGA	.GCAA	TCGTTCG	GACGGTACCT	CCAGAAGCAG	
•			· · · · -		

Fig. 8 (continued)

[601				650	1
SBR10	24CCACGGCTAA	CTTCGTGCCA	GCAGCCGCGG	TAATACGAAG	GTGGCAAGCG	,
SBR10	15CCACGGCTAA	CTTCGTGCCA	GCAGCCGCGG		GTGGCAAGCG	
GC86	CCACGGCTAA	CTTCGTGCCA	GCAGCCGCGG		GTGGCAAGCG	
SBR20	46CCACGGCTAA				GTGGCAAGCG	
RC25		CTTCGTGCCA			GTGGCAAGCG	
RC19		CTTCGTGCCA			GTGGCAAGCG	
SBR20	16CCACGGCCAA				GTGGCAAGCG	
RC7		CTTCGTGCCA			GTGGCAAGCG	
RC14	CCACGGCCAA	CTTCGTGCCA	GCAGCCGCGG		GTGGCAAGCG	
RC99	CCACGGCCAA	CTTCGTGCCA	GCAGCCGCGG		GTGGCAAGCG	
RC11		CTTCGTGCCA			GTGGCAAGCG	
RC73	CCACGGCCAA	CTTCGTGCCA	GCAGCCGCGG		GTGGCAAGCG	
RC90	CCACGGCCAA	CTTCGTGCCA	GCAGCCGCGG		GTGGCAAGCG	
					01000111000	
[651				700	1
SBR10	24TTGTTCGGAT	TTACTGGGCG	TACAGGGAGC	GTAGGCGGTT		•
SBR10	15TTGTTCGGAT	TTACTGGGCG		GTAGGCGGTT		
GC86	TTGTTCGGAT	TTACTGGGCG		GTAGGCGGTT	GGGTAAGCCC	
SBR20	46TTGTTCGGAT	TTACTGGGCG	TACAGGGAGC	GTAGGCGGTT	GGGTAAGCCC	
RC25	TTGTTCGGAT	TCACTGGGCG	TACAGGGTGT	GTAGGCGGTT	TGGTAAGCCT	
RC19	TTGTTCGGAT	TCACTGGGCG	TACAGGGTGT	GTANGCGGTT	TGGTAAGCCT	
SBR20	16TTGCTTGGAT	TCACTGGGCG		GTAGGCGGTT	TGGTAAGCCT	
RC7	TTGTTCGGAT	TCACTGGGCG	TACAGGGTGT	GTAGGCGGTT	TGGTAAGCCT	
RC14	TTGTTCGGAT	TCACTGGGCG	TACAGGGTGT	GTAGGCGGTT	TGGTAAGCCT	
RC99	TTGTTCGGAT	TCACTGGGCG	TACAGGGTGT	GTAGGCGGTT	TGGTAAGCCT	
RC11	TTGTTCGGAT	TCACTGGGCG	TACAGGGTGT	GTAGGCGGTT	TGGTAAGCCT	
RC73	TTGTTCGGAT	TCACTGGGCG	TACAGGGTGT	GTAGGCGGTT	TGGTAAGCCT	
RC90	TTGTTCGGAT	TCACTGGGCG	TACAGGGTGT	GTAGGCGGTT	TGGTAAGCCT	
				,		
-	701				750]
SBR10	24TCCGTGAAAT	CTCCGGGCCT	AACCCGGAAA	GTGCGGAGGG	GACTGCTCGG	
SBR10	15TCCGTGAAAT	CTCCGGGCCT	AACCCGGAAA	GTGCGGAGGG	GACTGCTCGG	
GC86	TCCGTGAAAT	CTCCGGGCCT	AACCCGGAAA	GTGCGGAGGG	GACTGCTCGG	
	46TCCGTGAAAT	CTCCGGGCCT	AACCCGGAAA	GTGCGGAGGG	GACTGCTCGG	
RC25	TCTGTTAAAG	CTTCGGGCCC	AACCCGGAAA	GCGCAGACGG	TACTGCCAGG	
RC19	TCTGTTAAAG	CTTCGGGCCC	AACCCGGAAA	GCGCAGAGGG	TACTGCCAGG	
	16TCTGTTAAAG	CTTCGGGCCC	AACCCGAAAA	GCGCAGAGGG	TACTGCCAGG	
RC7	TCTGTTAAAG	CTTCGGGCCC	AACCCGGAAA	GCGCAGGGG	TACTGCCAGG	
RC14	TCTGTTAAAG	CTTCGGGCCC	AACCCGGAAA	GCGCAGAGGG	TACTGCCAGG	
RC99	TCTGTTAAAG	CTTCGGGCCC	AACCCGGAAA	GCGCAGAGGG	TACTGCCAGG	
RC11	TCTGTTAAAG	CTTCGGGCCC	AACCCGGAAA	GCGCAGAGGG	TACTGCCAGG	
RC73	TCTGTTAAAG	CTTCGGGCCC	AACCCGGAAA	GCGCAGAGGG	TACTGCCAGG	
- RC90	TCTGTTAAAG	CTTCGGGCCC	AACCCGGAAA	GCGCAGAGGG	TACTGCCAGG	

Fig. 8 (continued)

[751				800]
SBR1024CTAGAGGATG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
SBR1015CTAGAGGATG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
GC86 CTAGAGGATG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
SBR2046CTAGAGGATG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
RC25 CTAGAGGGTG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
RC19 CTAGAGGGTG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
SBR2016CTAGAGGGTG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
RC7 CTAGAGGGTG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
RC14 CTAGAGGGTG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
RC99 CTAGAGGGTG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
RC11 CTAGAGGGTG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
RC73 CTAGAGGGTG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
RC90 CTAGAGGGTG	GGAGAGGAGC	GCGGAATTCC	CGGTGTAGCG	GTGAAATGCG	
[801				850]
SBR1024TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATTTC	
SBR1015TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATTTC	
GC86 TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATTTC	
SBR2046TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATTTC	
RC25 TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATACC	
RC19 TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATGCC	
SBR2016TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATACC	
	GAGGAAGGCC				
RC14 TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATACC	
RC99 TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATACC	
RC11 TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATACC	
RC73 TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATACC	
RC90 TAGAGATCGG	GAGGAAGGCC	GGTGGCGAAG	GCGGCGCTCT	GGAACATACC	
[851				900]
SBR1024TGACGCTGAG	GCTCGAAAGC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
SBR1015TGACGCTGAG	GCTCGAAAGC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
GC86 TGACGCTGAG	GCTCGAAAGC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
SBR2046TGACGCTGAG	GCTCGAAAGC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
RC25 TGACGCTGAG	ACACGAAAGC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
RC19 TGACGCTGAG	ACACGAAAGC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
SBR2016TGACGCTGAG	ACACGAAAAC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
RC7 TGACGCTGAG	ACACGAAAGC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
RC14 TGACGCTGAG	ACACGAAAGC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
RC99 TGACGCTGAG	ACACGAAAGC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
RC11 TGACGCTGAG	ACACGAAAGC	GTGGGGAGCA	AACAGGATTA	GATACCCTGG	
RC73 TGACGCTGAG	ACACGAAAGC	GTGGGGNGCA	AACAGGATTA	GATACCCTGG	
	ACACGAAAGC				

Fig. 8 (continued)

[9	01				950	1
SBR102	4TAGTCCACGC	CTTAAACGAT	GGATACTAAG	TGTCGGCGG.		•
SBR101	5TAGTCCACGC	CTTAAACGAT	GGATACTAAG	TGTCGGCGG.		
GC86	TAGTCCACGC	CTTAAACGAT	GGATACTAAG			
SBR204	6TAGTCCACGC	CTTAAACGAT	GGATACTAAG	TGTCGGCGG.		
RC25	TAGTCCACGC	CCTAAACTAT	GGATACTAAG	TGTCGGCGG.		
RC19	TAGTCCACGC	CCTAAACTAT	GGATACTAAG			
SBR201	6TAGTCCACGC	CCTAAACTAT	GGATACTAAG	TGTCGGCGG.		
RC7	TAGTCCACGC	CCTAAGCTAT	GGATACTAAG			
RC14	TAGTCCACGC	CCTAAACTAT	GGATACTAAG	TGTCGGCGG.		
RC99	TAGTCCACGC	CCTAAACTAT	GGATACTAAG			
RC11	TAGTCCACGC	CCTAAACTAT	GGATACTAAG		• • • • • • • • • • • • • • • • • • • •	
RC73	TAGTCCACGC	CCTAAACTAT	GGATACTAAG	TGTCGGCGG.		
RC90			GGATACTAAG			
	51				1000]
	4		• • • • • • • • • •	.CCGCCGGTG	CCGCAGCTAA	
	5			. CCGCCGGTG	CCGCAGCTAA	
GC86		TTA	• • • • • • • • • • •	.CCGCCGGTG	CCGCAGCTAA	
	5		• • • • • • • • • • • • • • • • • • • •	.CCGCCGGTG	CCGCAGCTAA	
RC25		TTA		.CCGCCGGTG	CCGCAGCTAA	
RC19		TTA	• • • • • • • • • • •	.CCGCCGGTG	CCGCAGCTAA	
	5		• • • • • • • • • • • • • • • • • • • •	. CCGCCGGTG	CCGCAGCTAA	
RC7			• • • • • • • • • • • • • • • • • • • •	. CCGCCGGTG	CCGCAGCCAA	
RC14			• • • • • • • • • • • • • • • • • • • •	.CCGCCGGTG	CCGCAGCTAA	
RC99				. CCGCCGGTG	CCGCAGCTAA	
RC11				. CCGCCGGTG	CCGCAGCTAA	
RC73		TTA	• • • • • • • • • • • • • • • • • • • •	.CCGCCGGTG	CCGCAGCTAA	
RC90		TTA	• • • • • • • • • •	.CCGCCGGTG	CCGCAGCTAA	
[100	11					_
•	-	ATCCCCCCTC	GGAAGTACGG	CCCCAAACC	1050	j
SBR1015	CCCATTAACT	ATCCCCCCCTC	GGAAGTACGG	CCGCAAGGTT	GAAACTCAAA	
GC86	CGCATTAACT	ATCCCGCCTG	GGAAGTACGG	CCGCAAGGTT	GAAACTCAAA	
SBR2046	CCCATTAACT	ATCCCCCCTC	GGAAGTACGG	CCGCAAGGTT	GAAACTCAAA	
RC25	CGCATTAAGT	ATCCCGCCTG	GGAAGTACGG	CCGCAAGGTT	GAAACTCAAA	
RC19	CGCATTAAGT	ATCCCCCCCTC	GGAAGTACGG	CCGCAAGGTT.	GAAACTCAAA	
SBR2016	CCCATTAACT	ATCCCCCCCTC	GGAGGTACGG	CCGCAAGGTT	GAAACTCAAA	
RC7	ССССТТАЛСТ	ATCCCGCCIG	GGAGGTACGG	CCGCAAGGTT	GAAACTCAAA	
RC14	CGCATTAAGT	ATCCCGCCTG	GGAAGTACGG	CCGCAAGGTT	GAAACTCAAA	
RC99	СССАТТААСТ	ATCCCGCCTG	GGAAGTACGG	CCCCAAGGTT	GAAACTCAAA	
RC11	CGCATTAAGT	ATCCCGCCTG	GGAAGTACGG	CCCCAAGGTT	GAAACTCAAA	
RC73	CGCATTAAGT	ATCCCGCCTG	GGAAGTACGG	CCCCAAGCTT	GAAACTCAAA	
RC90	CGCATTAAGT	ATCCCGCCTG	GGAAGTACGG	CCGCAAGGTT.	GAAACTCAAA	
			CONTRACOG	CCGCWWGGT.T.	GAAACTCAAA	

Fig. 8 (continued)

[10	51				1100)
	4GGAATTGACG	GGGGCCCGCA	CAAGCGGTGG	AGCATGTGGT	TTAATTCGAC	
	5GGAATTGACG				TTAATTCGAC	
GC86	GGAATTGACG	GGGGCCCGCA	CAAGCGGTGG	AGCATGTGGT	TTAATTCGAC	
SBR204	6GGAATTGACG	GGGCCCCGCA	CAAGCGGTGG	AGCATGTGGT	TTAATTCGAC	
RC25		GGGGCCCGCA			TTAATTCGAC	
RC19	GGAATTGACG	GGGGCCCGCA	CAAGCGGTGG	AGCATGTGGT	TTAATTCGAC	
SBR201	6GGAATTGACG	GGGGCCCGCA	CAAGCGGTGG	AGCTTGTGGT	TTAATTCGAC	
RC7	GGAATTGACG	GGGGCCCGCA	CAAGCGGTGG	AGCATGTGGT	TTAATTCGAC	
RC14	GGAATTGACG	GGGGCCCGCA	CAAGCGGTGG	AGCATGTGGT	TTAATTCGAC	
RC99	GGAATTGACG	GGGGCCCGCA	CAAGCGGTGG	AGCATGTGGT	TTAATTCGAC	
RC11	GGAATTGACG	GGGGCCCGCA	CAAGCGGTGG	AGCATGTGGT	TTAATTCGAC	
RC73	GGGATTGACG	GGGGCCCGCA	CAAGCGGTGG	GGCATGTGGT	TTAATTCGAC	•
RC90	GGAATTGACG	GGGGCCCGCA	CAAGCGGTGG	AGCATGTGGT	TTAATTCGAC	
[11	01				1150]
SBR102	4GCAACGCGAA	GAACCTTA.C	CCAGGCTGGA	CATG	CAGGTAG	
SBR101	5GCAACGCGAA	GAACCTTA.C	CCAGGCTGGA	CATG	CAGGTAG	
GC86	GCAACGCGAA	GAACCTTA.C	CCAGGCTGGA	CATG	CAGGTAG	
SBR204	6GCAACGCGAA	GAACCTTA.C	CCAGGCAGGA	CATG	CAGGTAG	
RC25	GCAACGCGAA	GAACCTTA.C	CCAGGTTGGA	CATG	CACGTAG	
RC19	GCAACGCGAA	GAACCTTA.C	CCAGGTTGGA	CATG	CACGTAG	
SBR201	6GCAACGCGAA	GAACCTTA.C	CCAGGTTGGA	CATG	CACGTAG	
RC7	GCAACGCGAA	GAACCTTA.C	CCAGGTTGGA	CATG	CACGTAG	
RC14	GCAACGCGAA	GAACCTTA.C	CCAGGTTGGA	CATG	CACGTAG	
RC99	GCAACGCGAA	GAACCTTA.C	CCAGGTTGGA	CATG	CACGTAG	
RC11				CATG		
RC73	GCAACGCGAA	GAACCTTA.C	CCAGGTTGGA	CATG	CACGTAG	
RC90	GCAACGCGAA	GAACCTTA.C	CCAGGTTGGA	CATG	CACGTAG	
[11	51				1200]
SBR102	4TAGAAGGGT.		TAACGAGGTA		TACCAT	
SBR101	STAGAAGGGT.	.GAAAGCC	TAACGAGGTA	GCAA.	TACCAT	
GC86	TAGAAGGGT.	.GAAAGCC	TAACGAGGTA	GCAA.	CACCAT	
SBR204	6TAGAAGGGT.	.GAAAGCC	TAACGAGGTA	GCAA.	TACCAT	
RC25	TAGAAAGGT.	.GAAAGCC	TGACGAGGTA	GCAA.	TACCAG	
RC19	TAGAAAGGT.		TAACGAGGTA		TACCAG	
SBR201	6TAGAAAGGT.			GCAA.		
RC7	TAGAAAGGT.			GCAA.		
RC14	TAGAAAGGT.			GCAA.		
RC99	TAGAAAGGT.			GCAA.		
RC11				GCAA.		
RC73				GCAA.		
RC90	TAGAAAGGT.	.GAAAGCC	TGACGAGGTA	GCAA.	TACCAG	

Fig. 8 (continued)

```
[ 1201
 SBR1024CCTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
 SBR1015CCTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
  GC86 CCTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
 SBR2046CCTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
       CGTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
        CGTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
 SBR2016CGTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
        CGTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
  RC7
       CGTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
  RC14
  RC99 CGTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
  RC11 CGTGCTCAGG TGCTGCATGG CTGTCTTCAG CTCGTGCCGT GAGGTGTTGG
  RC73 CGTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
  RC90 CGTGCTCAGG TGCTGCATGG CTGTCGTCAG CTCGTGCCGT GAGGTGTTGG
   1251
SBR1024GTTAAGTCCC GCAACGAGCG CAACCCCTGT CTTCAGTTAC CAACGG....
SBR1015GTTAAGTCCC GCAACGAGCG CAACCCCTGT CTTCAGTTAC CAACGG....
       GTTAAGTCCC GCAACGAGCG CAACCCCTGT CTTCAGTTAC CAACGG....
SBR2046GTTAAGTCCC GCAACGAGCG CAACCCCTGT CTTCAGTTAC CAACGG....
 RC25 GTTAAGTCCC GCAACGAGCG CAACCCCTGC TTTCAGTTGC TACCGG....
       GTTAAGTCCC GCAACGAGCG CAACCCCTGC TTTCAGTTGC TACCGG....
SBR2016GTTAAGTCCC GCAACGAGCG CAACCCCTGC TTTCAGTTGC TACCGG....
       GTTAAGTCCC GCAACGAGCG CAACCCCTGC TTTCAGTTGC TACCGG....
 RC7
       GTTAAGTCCC GCAACGAGCG CAACCCCTGC TTTCAGTTGC TACCGG....
 RC14
 RC99 GTTAAGTCCC GCAACGAGCG CAACCCCTGC TTTCAGTTGC TACCGG....
       GTTAAGTCCC GCAACGAGCG CAACCCCTGC TTTCAGTTGC TACCGG....
      GTTAAGTCCC GCAACGAGCG CAACCCCTGC TTTCAGTTGC TACCGG....
 RC73
 RC90 GTTAAGTCCC GCAACGAGCG CAACCCCTGC TTTCAGTTGC TGCCGG....
 [
    1301
                                                         1350 ]
SBR1024GTCATG.... CCGGGAACTC TGGAGAGACT GCCCAGGAGA ACGGG.GAGG
SBR1015GTCATG.... CCGGGAACTC TGGAGAGACT GCCCAGGAGA ACGGGGGAGG
 GC86 GTCATG.... CCGGGAACTC TGGAGAGACT GCCCAGGAGA ACGGG.GAGG
SBR2046GTCATG.... CCGGGAACTC TGGAGAGACT GCCCAGGAGA ACGGG.GAGG
 RC25 GTCATG.... CCGAGCACTC TGAAAGGACT GCCCAGGATA ACGGG.GAGG
      GTCATG.... CCGAGCACTC TGAAAGGACT GCCCAGGATA ACGGG.GAGG
SBR2016GTCATG.... CCGAGCACTC TGAAAGGACT GCCCAGGATA ACGGG.GAGG
      GTCATG.... CCGAGCACTC TGAAAGGACT GCCCAGGATA ACGGGGGAGG
RC14 GTCATG.... CCGAGCACTC TGAAAGGACT GCCCAGGATA ACGGG.GAGG
      GTCATG.... CCGAGCACTC TGAAAGGACT GCCCAGGATA ACGGGGAAGG
RC99
RC11 GTCATG.... CCGAACACTC TGAAAGGACT GCCCAGGATA ACGGGGAAGG
RC73 GTCATG.... CCGAACACTC TGAAAGGACT GCCCAGGATA ACGGGGAAGG
RC90 GTCATG.... CCGAACACTC TGAAAGGACT GCCCAGGATA ACGGGGAAGG
```

Fig. 8 (continued)

[1351				1400	1
SBR1024AAGGT	GGGGA TGACGTCA	AG TCAGCATGG	CTTTATGCCT	GGGGCCACAC	•
SBR1015AAGGT	GGGGA TGACGTCA	AG TCAGCATGGO	CTTTATGCCT	GGGGCCACAC	
GC86 AAGGT	GGGGA TGACGTCA	AG TCAGCATGGO	CTTTATGCCT	GGGGCCACAC	
SBR2046AAGGT	GGGGA TGACGTCA	AG TCAGCATGGO	CTTTATGCCT	GGGGCCACAC	
RC25 AAGGT	GGGGA TGACGTCA	AG TCAGCATGGC	CTTTATGCCT	GGGGCCACAC	
RC19 AAGGT	GGGGA TGACGTCA	AG TCAGCATGGC	CTTTATGCCT	GGGGCCACAC	
SBR2016AAGGT	GGGGA TGACGTCA	AG TCAGCATGGC	CTTTATGCCT	GGGGCCACAC	
RC7 AAGGT	GGGGA TGACGTCA	AG TCAGCATGGC	CTTTATGCCT	GGGGCCACAC	
RC14 AAGGT	GGGGA TGACGTCA	AG TCAGCATGGC	CTTTATGCCT	GGGGCCACAC	
RC99 AAGGT	GGGGA TGACGTCA	AG TCAGCATGGC	CTTTATGCCT	GGGGCCACAC	
RC11 AAGGT	GGGGA TGACGTCA	AG TCAGCATGGC	CTTTATGCCT	GGGGCCACAC	
RC73 AAGGT	GGGGA TGACGTCA	AG TCAGCATGGC	CTTTATACCT	GGGGCCACAC	
RC90 AAGGT	GGGGA TGACGTCA	AG TCAGCATGGC	CTTTATGCCT	GGGGCCACAC	
[1401				1450]
SBR1024ACGTG	CTACA ATGGCCGG	TA CAAAGCGCTG	CAAACCC.GT	AAGGGGGAGC	
SBR1015ACGTG	CTACA ATGGCCGG	TA CAAAGCGCTG	CAAACCC.GT	AAGGGGGAGC	
GC86 ACGTG	CTACA ATGGCCGG	TA CAAAGCGCTG	CAAACCC.GT	AAGGGGGAGC	
SBR2046ACGTG	CTACA ATGGCCGG	TA CAAAGCGCTG	CAAACCC.GT	AAGGGGGAGC	
RC25 ACGTG	CTACA ATGGCCGG	TA CAAAGCGCTG	CAAACCC.GT	GAGGGGGAGC	
RC19 ACGTG	CTACA ATGGCCGG	TA CAAAGCGCTG	CAAACCC.GT	GAGGGGGAGC	
SBR2016ACGTG	CTACA ATGGCCGG	TA CAAAGCGCTG	CAAACCC.GT	GAGGGGGAGC	
RC7 ACGTG	CTACA ATGGCCGG	TA CAAAACGCTG	CAAACCC.GT	GAGGGGGAGC	
RC14 ACGTG	CTACA ATGGCCGG	TA TAAAACGCTG	CAAACCC.GT	GAGGGGGAGC	
RC99 ACGTG	CTACA ATGGCCGG	TA CAAAACGCTG	CAAACCC.GT	GAGGGGGAGC	
RC11 ACGTG	CTACA ATGGCCGG	TA CAAAGCGCTG	CAAACCC.GT	GAGGGGGAGC	
RC73 ACGTG	CTACA ATGGCCGG	TA CAAAACGCTG	CAAACCC.GT	GAGGGGGAGC	
RC90 ACGTG	CTACA ATGGCCGG	TA CAAAACGCTG	CAAACCC.GT	GAGGGGGAGC	
[1451		•		1500]
	CCAAA AAACCGGC		TGAGGTCTGC	AACTCGACCT	
SBR1015CAATCO	GCAAA AAACCGGC	CT CAGTTCAGAT	TGAGGTCTGC	AACTCGACCT	
GC86 CAATCO	GCAAA AAACCGGC	CT CAGTTCAGAT	TGAGGTCTGC	AACTCGACCT	
SBR2046CAATCO	GCAAA AAACCGGC	CT CAGTTCAGAT	TGAGGTCTGC	AACTCGACCT	
RC25 CAATCO	GCAAA AAACCGGC	CT CAGTTCAGAT	TGAGGTCTGC	AACTCGACCT	
	GCAAA AAACCGGC				
SBR2016CAATCO	GCAAA AAACCGGC	CT CAGTTCAGAT	TGAGGTCTGC	AACTCGACCT	
RC7 CAATCO	GCAAA AAACCGGC	CT CAGTTCAGAT	TGAGGTCTGC	AACTCGACCT	
RC14 CAATCO	GCAAA AAACCGGC	CT CAGTTCAGAT	TGAGGTCTGC	AACTCGACCT	
	GCAAA AAACCGGC				
	GCAAA AAACCGGC				
RC73 CAATCO	GCAAA AAACCGGC	CT CAGTTCAGAT	TGAGGTCTGC	AACTCGACCT	
	GCAAA AAACCGGC				

Fig. 8 (continued)

[15	501					` _
-	4 CATGAAGGCG	ር እ አጥርርር ጥአር	TA ATTOCOCO	mara ar ar	1550]
SBR101	5CATGAAGGCG	GAATCGCTAG	TAATCCCGGA	TCAG CACGC	CGGGGTGAAT	ı
GC86	DODDAADTADC. CATGAAGGCG	CAATCCCTAC	TAATCCCGGA	TCAG.CACGC	CGGGGTGAAT CGGGGTGAAT	
	6CATGAAGGCG	GAAT CGCTAG	TAATCCCGGA	TCAG.CACGC	CGGGGTGAAT	
RC25	DODDAADIADU.	GAAT CGCTAG	TAATCCCGGA	TCAG.CACGC	CGGGGTGAAT	
RC19	CATGAAGGCG	CAATCGCTAG	TAATCGCGGA	TCAG.CACGC	CGCGGTGAAT	
	CATGAAGGCG	GAATCGCTAG	TAATCGCGGA	TCAG.CACGC	CGCGGTGAAT	
RC7	6CATGAAGGCG	GAATCGCTAG	TAATCGCGGA	TCAG.CACGC	CGCGGTGAAT	
RC14	CATGAAGGCG	GAATCGCTAG	TAATCGCGGA	TCAG.CACGC	CGCGGTGAAT	
	CATGAAGGCG	GAATCGCTAG	TAATCGCGGA	TCAG.CACGC	CGCGGTGAAT	
RC99	CATGAAGGCG	GAATCGCTAG	TAATCGCGGA	TCAG.CACGC	CGCGGTGAAT	
RC11	CATGAAGGCG	GAATCGCTAG	TAATCGCGGA	TCAG.CACGC	CGCGGTGAAT	
RC73	CATGAATGCG	GAATCGCTAG	TAATCGCGGA	TCAG.CACGC	CGCGGTGAAT	
RC90	CATGAATGCG	GAATCGCTAG	TAATCGCGGA	TCAG.CACGC	CGCGGTGAAT	
[15	51				1.500	,
-	4ACGTTCCCGG	GCCTTGTACA	СУССССССС	CACACCACCA	1600	j
SBR101	5ACGTTCCCGG	ACCUTCUACA	CACCGCCCGT	CACACCACGA	AAGTTTGTTG	
GC86						
	ACCITICCCCC	CCCTTCTTACA	CACCGCCCGT	CACACCACGA	AAGTTTGTTG	
RC25	6ACGTTCCCGG	CCCTTCTACA	CACCGCCCGT	CACACCACGA	AAGTTTGTTG	
RC19				CACACCACGA		
	ACGIICCCGG	GCCTTGTACA	CACCGCCCGT	CACACCACGA	AAGCCTGTTG	
RC7	6ACGTTCCCGG	GCCTTGTACA	CACCGCCCGT	CACACCACGA	AAGCCTGTTG	
RC14	ACGITCCCGG	GCCTTGTGCA	CACCGCCCGT	CACACCACGA	AAGCCTGTTG	
- -	ACGTTCCCGG	GCCTTGTACA	CACCGCCCGT	CACACCACGA	AAGCCTGTTG	
RC99 RC11	ACGINCCCGG	GCCTTGTACA	CACCGCCCGT	CACACCACGA	AAGCCTGTTG	
				CACACCACGA		
RC73	ACGINCCCGG	GCCTTGTACA	CACCGCCCGT	CACACCACGA	AAGCCTGTTG	
RC90	ACGTNCCCGG	GCCTTGTACA	CGCCGCCCGT	CACACCACGA	AAGCCTGTTG	
[160	01				1650	1.
SBR1024	TACCTGAAGT	CGTTGGCGCC	AACC	GCAA	GGAGGGAGAG	j
SBR1015	TACCTGAAGT	CGTTGGCGCC	AACC	GCAA	GGAG	
GC86	TACCTGAAGT	CGTTGGCGCC	AACC		GGGGGCAGAC	
SBR2046	TACCTGAAGT	CGTTGGCGCC	AACC	CCAA		
RC25	TACCTGAAGT	CGCCCAAGCC	AACC	GCAA	GGAGGCAGAC	
RC19	TACCTGAAGT	CGCCCAAGCC	AACC	CCAA	GGAGGCAGGC	
SBR2016	TACCTGAAGT	CGCCCAAGCC	AACC	GCAA	CCACCCACCC	
RC7	TACCTGAAGT	CGCCCAAGCC	AACC	CCAA	GGAGGCAGGC	
RC14	TACCTGAAGT	CGCCCAAGCC	AACC	CCNN	GGAGGCAGGC	
RC99	TACCTGAAGT	CGCCCAAGCC	AACC	CCAA	GGAGGCAGGC	
RC11	TACCTGAAGT	CGCCCAAGCC	AACC	GCAA	CCACCCACCC	
RC73	TACCTGAAGT	CGCCCAAGCC	AACC	CCAA	GGAGGCAGGC	
RC90	TACCTGAAGT	CCCCCVVCCC.	AACC	CCAA	GGAGGCAGGC	
	ccionnoi	COCCCAAGCC .	AACC	GCAA	GGAGGCANGC	

Fig. 8 (continued)

[1651				1700]
SBR1024GCCCACGGT					
SBR1015					
GC86 GCCCACGGT	A TGACCGATGA	TTGGGGTGAA	GTCGTAACAA	GGTAACCGTA	
SBR2046GCCCACGGT	A TGACCGATGA	TTGGGG			
RC25 GCCCACGGT	A TGGCCCGTGA	TTGGGGTGAA	GTCGTAACAA	GGTAACCGTA	
RC19 GCCCACGGT	A TGGCCGGTGA	TTGGGGTGAA	GTCCTAACA-		
SBR2016GCCCACGGT					
	A TGGCCG				
	A TGGCCGGTGA				
	TGGCCGGTGA				
	A TGGCCGGTGA				
	A TGGCCGGTGA				
RC90 GCCCACGGT	A TGGCCGGTGA	TG			
[1701				1750]
SBR1024					
SBR1015					
SBR2046					
RC25 AA					
RC19					
SBR2016					
WCT 1					
NCJJ					
RC11					
RC73					
RC90					
:					

Fig. 8 (continued)

BEST AVAILABLE COPY

Fig. 9