README

July 4, 2022

This code runs the EnKF on the linearised cart-pole system, and plots the controlled state when the controller is obtained using ARE and using EnKF.

The code is written in Python 3 and there are two files: constants_ivp.py, ivp.py. The steps for running the code are as follows:

- 1. In constants_ivp.py, set the desired variables as per the modelling and simulation parameters, see Table 1 and Table 2 respectively for location of these variables in the code.
- 2. Run enkf.py

Table 1: Modelling parameters in constants_ivp.py

Modelling parameter	Variable name in code	1 10
Mass of ball (m)	MASS_BALL	11
Length of rod (l)	LENGTH_ROD	12
Gravity (g)	GRAV	13
Mass of cart (M)	$\mathtt{MASS_CART}$	14
Initial condition of θ (θ (0))	$\verb theta_init $	50
Initial condition of $x(x(0))$	${\tt dist_init}$	51
Initial condition of ω ($\omega(0)$)	${\tt omega_init}$	53
Initial condition of v $(v(0))$	vel_init	52
C	C	33
R	R	35
P_T	ST	36

Table 2: Simulation parameters in constants_ivp.py

Modelling parameter	Variable name in code	Line number in code
Number of particles (N)	N	5
Total simulation time (T)	T	8
Stepsize (Δt)	STEP	9