Public Key Infrastructure

Chapter 7

Public Key Infrastructure

- ★ Encryption Revisit
 - Sample Scenario
 - Missing Link
- ★ What is PKI?
- ★ Digital Certificate
- ★ Who do you trust?
- ★ (Legal) Issues of Digital Certificate
- ★ Public Key Infrastructure
- ★ Conclusion

Encryption Revisit

- ★ Hash/Digest
 - Fastest
 - Integrity

- **Fast**
- Confidentiality
- o Integrity ?
- → Scalability
- → Authentication
- → Non-Repudiation

★ Asymmetric Encryption

- Slow
 - (100 1000 times slower than that of

Symmetric Encryption)

- Confidentiality
- Integrity
- Scalability
- o Authentication?
- Non-Repudiation

Combination of methodologies (protocols) can solve most issues, except **AUTHENTICATION**.

Scalability of Symmetric Encryption (Revisit)

★ Assuming that a professor wants to share a piece of information with 100 students, how many (symmetric) key do we need in order to prove the integrity of the information? (ie. proof that the document is created by a professor.)

★ Hint.

With one key, anyone (with the key) can write a message.

Asymmetric Encryption

- ★ Now, we only have to keep the private key. Our public key can freely be distributed. (eg. posted on our personal page.)
- ★ A key pair can be used for
 - Confidentiality Encrypted with public key, only a person with the private key can read.
 - Integrity Decrypted with public key, only a person with the private key can create.
 - Scalability A key pair is enough for a person.

Missing Link (Asymmetric Encryption)

★ Unless we can bind a private key to a person, we cannot solve Authentication.

* Receiving a public key in a sealed envelope with a person name on it, can you prove that it belongs to this person?

Security Protocol: Digital Signature (Revisit)

- ★ A receiver can verify the originality of the a (plain) text.
- ★ Combine the speed of message digest with the scalability of public key.

Computer Security, The foundations

Krerk Piromsopa, Ph.D. @ 2019

Digital Certificate

- ★ A Digital Certificate is a binding between an entity's
- ★ Public Key and one or more Attributes relating its Identity.
- ★ Digital Certificate is a trusted document issued and signed by a (known/trusted third) party with digital signature.

Web of Trust

Do you trust a document signed by a trusted party?

Assuming that you have a public key of a trusted person/organization, a document (certificate) signed by the associated private key can/should be trustworthy.

Digital Certificate

- ★ Digicert Inc has verified Thawte TLS RSA is real.
- ★ Thawte TLS RSA has verified www.chula.ac.th is real.
- ★ If we have a public of Digicert Inc in hands, we should be able to verified that www.chula.ac.th is valid.

This certificate has been verified for the following uses: SSL Client Certificate SSL Server Certificate	
Common Name (CN)	www.chula.ac.th
Organization (O)	<not certificate="" of="" part=""></not>
Organizational Unit (OU)	<not certificate="" of="" part=""></not>
Serial Number	09:22:09:61:E6:36:9C:F3:81:B2:17:BB:24:9C:BA:CD
Issued By	
Common Name (CN)	Thawte TLS RSA CA G1
Organization (O)	DigiCert Inc
Organizational Unit (OU)	www.digicert.com
Period of Validity	
Begins On	29 December BE 2560
Expires On	29 December BE 2562
Fingerprints	
SHA-256 Fingerprint	E1:F2:42:B1:21:CF:6C:25:F0:4F:8E:8E:21:FC:EF:C6: B6:D4:4C:E6:73:B3:E2:A3:4F:30:31:EA:82:05:81:E3
SHA1 Fingerprint	DF:C4:47:09:27:86:31:CA:1F:46:FD:1D:A1:25:CA:04:DA:CA:1D:49

Anatomy of Certificate

- ★ Issuer
- ★ Subject
- ★ Subject Public Key
- ★ Issuer Digital
 Signature

Picture is taken from https://www.slideshare.net/natemiller67/pki-overview

Fact

Self-Signed Certificate

- ★ Technically, a person may create and sign his/her own certificate (self-signed).
- ★ You may personally hand the public key/certificate to another person. (ie. import a certificate to the browser.)
- ★ Do you trust this person?

Computer Security, The foundations

(Legal) Issues of Digital Certificate

★ How are Digital Certificates Issued?
★ Who is issuing them?
★ Why should I Trust the Certificate Issuer?
★ How can I check if a Certificate is valid?
★ How can I revoke a Certificate?
★ Who is revoking Certificates?

Public Key Infrastructure (to the rescue)

What is Public Key Infrastructure?

- ★ Set of (physical) roles, policies, and procedures for enforcing:
 - The registration of public key
 - The management of public key (create, store, distribute, validate, revoke)
 - The validation of public key
- ★ Based on digital certificates
- ★ Bind public keys to identities (persons, organizations)

PKI Standards

- ★ There exist several PKI standards (X509, SPKI, etc). We only focus on
 - X509 PKI
 - X509 Digital Certificates
- ★ Standards defined by IETF, PKIX WG:
 - http://www.ietf.org/

- ★ Certificate Authority (CA)
- ★ Verification Authority (VA)
- ★ Certificate management system
- ★ Central directory
- ★ Certificate policy
- ★ Optional Registration
 Authority (RA)
- ★ PKI-Enabled Applications

Taken from

https://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Public-Key-Infrastructure.svg/2560px-Public-Key-Infrastructure.svg.png

Computer Security, The foundations

Krerk Piromsopa, Ph.D. @ 2019

X509 PKI - Simple Model

Picture is taken from https://www.slideshare.net/natemiller67/pki-overview

Roles

- ★ CA
 - Key Generation
 - o Digital Certificate Generation
 - Issuance and Distribution
 - Revocation
 - Key Backup and Recovery System
 - Cross Certification

★ RA

- Face-to-Face Registration
- Remote Registration
- Automatic Registration
- Revocation

★ Certificate Distribution System

- Digital Certificates
- Certificate Revocation Lists (CRLs)
- LDAP or Special Purpose Databases

0

Why should I trust CA?

- ★ Why should I Trust a CA?
 - Certificate Hierarchies, Cross-Certification
- ★ How can I determine the liability of a CA?
 - Certificate Policies (CP)
 - Certificate Policy Statement (CPS)

Picture is taken from https://www.slideshare.net/natemiller67/pki-overview

Cross-Certification and Path Discovery

- ★ PKI is a physical infrastructure for managing Digital Certificate.
- ★ The main function is to validate the identity of public key owner.
- ★ We do not cover the policy and the legal part here.

Food for Thought: Root Certificate

★ If a bad guy can manage to install a root certificate to your computer, how bad can it be?

★ Historically, a chinese company was able to ask every browsers to install its root certificate. Since they abused this certificate, several harmful things happened. What were the harmful things?

End of Chapter 7