Discrimination- and Privacy-aware Data Mining

Sara Hajian
Eurecat Technology Center, Yahoo! labs, Barcelona,
Spain

FAT ML 2015

Motivation

- Google's algorithm shows prestigious job ads to men, but not to women.
- Flicker debuted image recognition tools in May, users noticed the tool sometimes tagged black people as "apes" or "animals".
- Google image search for "C.E.O." produced 11 percent women, even though 27 percent of United States chief executives are women.

Outline

- A framework for direct and indirect discrimination prevention in data mining
- Simultaneous discrimination prevention and privacy protection
 - Data publishing
 - Pattern publishing

Privacy-aware data mining (PADM)

Discrimination-aware data mining (DADM)

On the relationship between PPDM and DPDM

- Privacy and anti-discrimination are two intimately intertwined concepts:
 - Share common challenges
 - Share common methodological problems to be solved
 - In certain contexts, directly interact with each other.

PPDM	DPDM
Measuring disclosure risk	Measuring potential discrimination
Data/model anonymization to protect privacy	Data/model transformation to prevent discrimination
Measuring data/model utility	Measuring data/model utility

Open problems

- There is an evident gap between the large body of research in PPDM and the recent early results in DPDM.
- Research questions
 - Can we adapt and use some of the approaches from PPDM for DPDM?
 - What is the relationship between PPDM and DPDM?
 - Is it enough to tackle only privacy or discrimination?
 - If not, how can we design a holistic method capable of addressing both threats together in significant data mining processes?
- Need for simultaneous privacy and anti-discrimination by design.

 A Methodology for Direct and Indirect Discrimination Prevention in Data Mining

Sara Hajian¹ Josep Domingo-Ferrer²

^{1,2} Universitat Rovira I Virgili, Spain

IEEE Transactions on Knowledge and Data Engineering, 25(7): 1445-1459, 2013.

Roadmap: DADM

A framework for direct and indirect discrimination prevention in data mining

- Limitations of previous approaches
 - Prevent only direct discrimination
 - Deal with only one protected group
 - Deal with discrimination only at top level while discrimination may occur in some subsets
- We propose new utility metrics
 - Discrimination removal

A framework for direct and indirect discrimination prevention in data mining

Measures of discrimination

On the legal side, different measures are adopted worldwide.

- Selection lift (slift) is the ratio of the proportions of benefit denial between the protected and unprotected groups in the given context.
- **Election lift (elift)** is the ratio of the proportions of benefit denial between the protected groups and all people who were not granted the benefit in the given context.

Direct discrimination measurement

 The purpose of direct discrimination discovery is to identify α-discriminatory rules that are directly inferred from protected groups

- Note that α states an acceptable level of discrimination according to laws and regulations
 - e.g. U.S. Equal Pay Act: This amounts to using slift with = 1.25.

- Based on direct discriminatory measures f, a PD classification rule r is:
 - □ α -discriminatory if $f(r) \ge \alpha$; or
 - α -protective if $f(r) < \alpha$

Indirect discrimination measurement

- The purpose of indirect discrimination discovery is to indicate α-discriminatory rules that are indirectly inferred from non-protected groups
 - e.g. Zip = 10451
- Based on indirect discriminatory measures elb [Pedreschi2009], a PND classification rule r is:
 - Redlining
 - e.g., $\{Zip=10451, City=NYC\} \rightarrow Hire=No.$
 - Non-redlining or legitimate

Mining

A framework for direct and indirect discrimination prevention in data mining

Data transformation

- The purpose is transform the original data D in such a way to remove direct and/or indirect discriminatory biases, with minimum impact
 - On the data, and
 - On legitimate decision rules
- We have developed metrics that specify
 - Which records (and in which order) should be changed?
 - How many records should be changed?
 - How those records should be changed during data transformation?

Data transformation for direct discrimination prevention

- Direct rule protection (DRP)
 - $lue{}$ A suitable data transformation with minimum information loss to make each α -discriminatory rule α -protective.

Data transformation methods for direct rule protection

Direct Rule Protection							
DTM 1	$\neg A, B \rightarrow \neg C \Rightarrow A, B \rightarrow \neg C$						
DTM 2	$\neg A, B \rightarrow \neg C \Rightarrow \neg A, B \rightarrow C$						

Data transformation for direct discrimination prevention

- Rule generalization (DRP)
 - A suitable data transformation with minimum information loss to make each α-discriminatory rule an instance of a non-redlining PND rule.

Data transformation method for rule generalization

Rule Generalization						
DTM	$A,\ B,\ \neg D\to C\ \Rightarrow\ A,\ B,\ \neg D\to\ \neg C$					

Data transformation for indirect discrimination prevention

- Indirect rule protection (IRP)
 - A suitable data transformation with minimum information loss to make each redlining rule non-redlining.

Data transformation methods for indirect rule protection

	Indirect Rule Protection
DTM 1	$\neg A, B, \neg D \rightarrow \neg C \Rightarrow A, B, \neg D \rightarrow \neg C$
DTM 2	$\neg A, B, \neg D \rightarrow \neg C \Rightarrow \neg A, B, \neg D \rightarrow C$

Data transformation for both direct and indirect discrimination

- Direct and indirect rule protection
 - Lemma. Method 2 for IRP is beneficial for Method 2 for DRP. On the other hand, Method 2 for DRP is at worst neutral for Method 2 for IRP.

	Method 1		Method 2	
Direct Rule Protection	$\neg A, B \to \neg C \Rightarrow A, B \to \neg C$	7/	$A, B \to \neg C \Rightarrow \neg A, B \to C$	
Indirect Rule Protection	$\neg A, B, \neg D \rightarrow \neg C \Rightarrow A, B, \neg D \rightarrow \neg C$	$\neg A, B,$	$\neg D \rightarrow \neg C \Rightarrow \neg A, B, \neg D$	$\rightarrow C$

A framework for direct and indirect discrimination prevention in data mining

Experiments

Discrimination removal

Data quality

Utility measures

- Measuring direct/indirect discrimination removal
 - Direct/indirect discrimination prevention degree (DDPD) quantifies the percentage of α-discriminatory rules that are no longer α-discriminatory in the transformed dataset.

Direct/indirect discrimination protection preservation (DDPP) quantifies the percentage of the α-protective rules in the original dataset that remain α-protective in the transformed dataset.

Utility measures

- Measuring Data Quality
 - Misses Cost (MC) quantifies the percentage of original rules that cannot be extracted from the transformed dataset.
 - Ghost Cost (GC) quantifies the percentage of the rules that were not extractable from the original dataset.

Datasets

- Adult dataset
 - Number of records: 48,842
 - "train" part with 32,561 records
 - "test" part with 16,281 records
 - Number of attributes: 14 attributes (without class attribute)
- German Credit dataset
 - Number of records: 1,000 records
 - Number of attributes: 20 attributes (without class attribute)

- Adult dataset for minimum support 2% and confidence 10%
 - Protected groups ={Sex=Female, Age=Young}

												1
	Methods	α	p	No.	No. Indirect	No. Direct	Discrimination Removal			Data Quality		
				Redlining	α -Disc.	α -Disc.	Dir	ect	Indi	rect		·
				Rules	Rules	Rules	DDPD	DDPP	IDPD	IDPP	MC	GC
	Removing. Disc. Attributes	n.a.	n.a	n.a.	n.a	n.a.	n.a.	n.a.	n.a.	n.a.	66.08	0
	DRP (Method 1)	1.2	n.a	n.a.	n.a	274	100	100	n.a.	n.a.	4.16	4.13
_	→ DRP (Method 2)	1.2	n.a.	n.a.	n.a.	274	100	100	n.a.	n.a.	0	0
	DRP (Method 1) + RG	1.2	0.9	n.a.	n.a.	274	100	100	n.a.	n.a.	4.1	4.1
_	→ DRP (Method 2) + RG	1.2	0.9	n.a.	n.a.	274	91.58	100	n.a.	n.a.	0	0
	IRP (Method 1)	1.1	n.a.	21	30	n.a.	n.a.	n.a.	100	100	0.54	0.38
	→ IRP (Method 2)	1.1	n.a.	21	30	n.a.	n.a.	n.a.	100	100	0	0
	DRP(Method 2) + IRP(Method 2)	1.1	n.a.	21	30	280	100	100	100	100	0	0
	No of Freq. Class. Rules: 5,092							No. of B	ack. Kno	w. Rules.	2089	

- 1) We get very good results for all methods in terms of discrimination removal.
- 2) In terms of data quality, the best results for direct discrimination prevention are obtained with Method 2 for DRP or Method 2 for DRP combined with Rule Generalization.
- 3) The best results for indirect discrimination prevention are obtained with Method 2 for IRP.

- German credit dataset for minimum support 5% and confidence 10%
- Protected groups = {Personal Status=Female and not Single, Age=Old, Foreign worker=Yes}

Methods	α	p	No.	No. Indirect	No. Direct	Discrimination Removal		Data Quality			
			Redlining	α -Disc.	α -Disc.	Dir	ect	Indi	rect		
			Rules	Rules	Rules	DDPD	DDPP	IDPD	IDPP	MC	GC
Removing. Disc. Attributes	n.a.	n.a	n.a.	n.a	n.a.	n.a.	n.a.	n.a.	n.a.	64.35	0
DRP (Method 1)	1.2	n.a	n.a.	n.a	991	100	100	n.a.	n.a.	15.44	13.52
DRP (Method 2)	1.2	n.a.	n.a.	n.a.	991	100	100	n.a.	n.a.	0	4.06
DRP (Method 1) + RG	1.2	0.9	n.a.	n.a.	991	100	100	n.a.	n.a.	13.34	12.01
DRP (Method 2) + RG	1.2	0.9	n.a.	n.a.	991	100	100	n.a.	n.a.	0.01	4.06
IRP (Method 1)	1	n.a.	37	42	n.a.	n.a.	n.a.	100	100	1.62	1.47
IRP (Method 2)	1	n.a.	37	42	n.a.	n.a.	n.a.	100	100	0	0.96
DRP(Method 2) + IRP(Method 2)	1	n.a.	37	42	499	99.97	100	100	100	0	2.07
No of Freq. Class. Rules: 32,340					No. of Back. Know. Rules: 22,763						

We obtained lower information loss in terms of MC and GC in the Adult dataset than in the German Credit dataset.

- German Credit dataset
- Direct discrimination prevention
 - Information loss

Discrimination removal degree

- German Credit dataset
- Impact minimization procedure
 - Execution times

DRP(Method1) DRP(Method1) w.o. impact minim. 100 1.2 1.3 1.4 1.5 1.6 1.7 Disc. Threshold (α)

Information loss degree

Impact minimization procedure substantially increases the execution time of the algorithm. Impact minimization procedure has a noticeable effect on information loss (decreasing MC and GC)

Summary

- We developed a new pre-processing discrimination prevention framework to prevent direct discrimination, indirect discrimination or both of them at the same time.
- The experimental results showed that the proposed methods are successful to provide a proper trade-off between discrimination removal and data quality.
- We showed that indirect discrimination removal can help direct discrimination removal.

Discrimination- and Privacy-aware Patterns

Sara Hajian¹

Josep Domingo-Ferrer²

Anna Monreale³

Dino Pedreschi⁴

Fosca Giannotti⁵

Data Mining and Knowledge Discovery Journal

^{1,2} Universitat Rovira I Virgili, Spain

^{3,4} Dipartimento di Informatica, Università di Pisa, Italy

⁵ ISTI-CNR, Pisa, Italy

Roadmap: PADM

Motivating example

Question: Is it sufficient to focus on either privacy or anti-discrimination only and ignore the other property?

Sex	Job	Credit_history	Salary	Credit_approved
Male	Writer	No-taken	€	Yes
Female	Lawyer	Paid-duly	€	No
Male	Veterinary	Paid-delay	€	Yes
	•••			

- □ Privacy protection only
 - sex=female, credit-history=no-taken →credit-approved=no
- Discrimination protection only
 - job =veterinarian, salary =low → credit-approved=no
 - job = veterinarian → credit-approved=no
- Answer: This example shows that protecting both privacy and nondiscrimination is needed when disclosing a set of patterns.

Privacy-aware frequent pattern discovery

- k-Anonymous frequent pattern set [Atzori2008]
 - □ Given $F(D, \sigma)$, obtain a k-anonymous version of it.

Two steps:

- Step 1: Detecting non-k-anonymous patterns.
 - Example: k=3
 - p₁: { Job=veterinarian, Credit_approved=no }, supp(p₁)=41
 - p₂: {Job=veterinarian, Salary =low, Credit_approved=no}, supp(p₂)=40
 - p_x : {Job=veterinarian, Salary=high, Credit_approved=no} $\sup(C_{p1}^{p2})$ =41-40=1
- Step 2: Privacy pattern sanitization
 - p_1 : { Job=veterinarian, Credit_approved=no }, $supp(p_1)=41+k=44$

Mining

Discrimination-aware frequent pattern discovery

- Discrimination protected frequent pattern set
 - □ Given $F(D, \sigma)$, obtain α -protective version of it.

Has two steps:

- Step 1: Detecting α -discriminatory patterns
 - Example: discrimination threshold α =1.2, protected groups: {sex=female}
 - p: {sex=female,credit-history=no-taken, credit-approved=no},supp(p)=20

$$slift(p) = 1.45$$

- Step 2: Anti-discrimination pattern sanitization
 - p_s : {sex=female,credit-history=no-taken}, $supp(p_s)=34+\Delta=40$
 - Theorem: Anti-discrimination pattern sanitization for making $F(D, \sigma)$ α -protective does not generate new discrimination as a result of its transformation.

Simultaneous discrimination-privacy awareness in frequent pattern discovery

- We need to generate a discrimination- and privacy-protected version of $F(D, \sigma)$.
 - \square Definition (α -protective k-anonymous pattern set).
 - □ How making $F(D, \sigma)$ k-anonymous impacts on the α -protectiveness of $F(D, \sigma)$?
 - □ How making $F(D, \sigma)$ α -protective impacts on the k-anonymity of $F(D, \sigma)$?

Simultaneous discrimination-privacy awareness in frequent pattern discovery

- Question: How making $F(D,\sigma)$ k-anonymous impacts on the α -protectiveness of $F(D,\sigma)$?
 - First scenario

Patterns	Support
p_s :{female, veterinarian}	45
$p_2:$ {female, veterinarian, salary $>$ 15000}	42
$p_1:$ {female, veterinarian, No}	32
p_n :{male, veterinarian, No}	16
$p_{ns}:\{\mathtt{male, veterinarian}\}$	58

- Using privacy pattern sanitization for making $F(D, \sigma)$ k-anonymous can make $F(D, \sigma)$ more α -protective.
- Second scenario

Patterns	Support
$p_s:\{\mathtt{male, veterinarian}\}$	58
$p_2:\{\mathtt{male,\ veterinarian,\ salary}>\mathtt{15000}\}$	56
$p_1: \{ extsf{female, veterinarian, No}\}$	23
$p_n:\{ exttt{male, veterinarian, No}\}$	26
$p_{ns}: \{ exttt{female, veterinarian} \}$	45

• Using privacy pattern sanitization for making $F(D, \sigma)$ k-anonymous can make $F(D, \sigma)$ less α -protective.

Simultaneous discrimination-privacy awareness in frequent pattern discovery

- Question: How making $F(D, \sigma)$ α -protective impacts on the k-anonymity of $F(D, \sigma)$?
 - **Theorem:** Using anti-discrimination pattern sanitization for making $F(D, \sigma)$ α-protective cannot make $F(D, \sigma)$ non-k-anonymous

Framework

Experiments

- Pattern distortion
 - Patterns with changed support
 - Pattern distortion error
- The accuracy of classification
 - Using the CMAR (i.e. classification based on multiple association rules) approach.

Pattern distortion

Pattern distortion scores to make the Adult dataset
 k-anonymous

It can be seen that the percentage of patterns whose support has changed and the average distortion introduced) increase with larger k and with smaller support σ , due to the increasing number of inference channels.

Pattern distortion

Pattern distortion scores to make the Adult dataset
 α-protective

It can be seen that distortion scores increase with smaller σ and smaller α , because the number of α -discriminatory patterns increases.

Pattern distortion

Pattern distortion scores to make the Adult dataset
 α-protective k-anonymous

We can (empirically) conclude that we provide protection against both the privacy and discrimination threats with a marginally higher distortion w.r.t. providing protection against the privacy threat only.

Accuracy of classification

Preservation of the classification task

Adult dataset: accuracy of classifiers

	k	α	\mathcal{FP}	\mathcal{FP}'	\mathcal{FP}''	\mathcal{FP}^*
_	5	1.2	0.744	0.763	0.724	0.691
	5	1.5	0.744	0.763	0.752	0.739
	50	1.2	0.744	0.751	0.682	0.691
	50	1.5	0.744	0.751	0.746	0.739

German dataset: accuracy of classifiers

k	α	\mathcal{FP}	\mathcal{FP}'	\mathcal{FP}''	\mathcal{FP}^*	
3	1.2	0.7	0.645	0.582	0.572	
3	1.8	0.7	0.645	0.624	0.615	
10	1.2	0.7	0.583	0.561	0.572	
10	1.8	0.7	0.583	0.605	0.615	

We do not observe a significant difference between the accuracy of the classifier obtained from an α -protective k-anonymous version of the original pattern set and the accuracy of the classifier obtained from either a k-anonymous or an α -protective version.

Extensions

- Alternative privacy models
 - Differential privacy
 - \Box Similar to k-anonymity, achieving differential privacy in frequent pattern discovery can achieve α -protection or work against it.
 - □ We propose an algorithm to obtain an α-protective ε-differentially version of the original pattern set.
- Alternative anti-discrimination legal concepts
 - Genuine occupational requirement
 - We propose an algorithm to make the frequent pattern protected against unexplainable discrimination only.

Summary

- Simultaneous DADM and PADM in frequent pattern discovery
 - We found that privacy pattern sanitization methods based on either *k*-anonymity or differential privacy can work against anti-discrimination.
 - We found that our anti-discrimination pattern sanitization methods do not interfere with a privacy-preserving sanitization based on either k-anonymity or differential privacy.
 - The utility loss caused by simultaneous anti-discrimination and privacy protection is only marginally higher than the loss caused by each of those protections separately.

 Generalization-based Privacy Preservation and Discrimination Prevention in Data Publishing and Mining

Sara Hajian¹
Josep Domingo-Ferrer²
Oriol Farràs³

Universitat Rovira I Virgili, Spain^{1,2,3}

Data mining and Knowledge Discovery Journal (ECML/PKDD 2014 -- Journal Track), 28(5-6): 1158-1188 (2014)

Roadmap: PADM

A study on the impact of data anonymization on anti-discrimination

Data Anonymization techniques	Achieve α-protection	Against α -protection	No impact
Global recoding generalizations	Active a-protection	Against α-protection	10 mpact
	٧	V	٧
Cell generalization/Cell suppression Type (1)	✓		✓
Cell generalization/Cell suppression Type (2)		✓	√
Cell generalization/Cell suppression Type (3)	✓		
Cell generalization/Cell suppression Type (4)		✓	
Multidimensional generalization	✓	✓	✓
Record suppression Type (1)	✓		
Record suppression Type (2)		✓	
Record suppression Type (3)	✓		✓
Record suppression Type (4)		✓	
Value suppression	✓		√

 We exploit the fact that some data anonymization techniques can protect data against discrimination.

Motivating example

- Raw customer credit data
 - Private data set with biased decision records

ID	Sex	\mathbf{Race}	Hours	Salary	Credit approved
1	Male	\mathbf{W} hite	40	High	Yes
2	Male	Asian-Pac	50	Medium	Yes
3	Male	Black	35	Medium	No
4	Female	Black	35	Medium	No
5	Male	White	37	Medium	Yes
6	Female	Amer-Indian	37	Medium	Yes
7	Female	White	35	Medium	No
8	Male	Black	35	High	Yes
9	Female	White	35	Low	No
10	Male	White	50	High	Yes

- The credit giver needs to eliminate two types of threats against her customers before publishing data:
 - Privacy threat
 - e.g., record linkage through QI attributes
 - Discrimination threat

PPDM via generalization

- To prevent record linkage attack
 - Model: k-anonymity.
 - Sanitization mechanism : Full-domain generalizations
 - Algorithm: Incognito [Lefevre2005]
 - Incognito is a well-known suite of optimal bottom-up generalization algorithms to generate all possible k-anonymous full-domain generalizations.

Mining

PPDM via generalization

- Incognito is based on two main properties satisfied for k-anonymity
 - Subset property
 - Generalization property

- Consider the generalization lattice over QI attributes
- \square QI = {Race, Sex} and k = 3

ID	\mathbf{Sex}	Race	Hours	Salary	Credit approved	
1	Male	White	40	High	Yes	
2	Male	Asian-Pac	50	Medium	Yes	
3	Male	Black	35	Medium	No	
4	Female	Black	35	Medium	No	
5	Male	White	37	Medium	Yes	
6	Female	Amer-Indian	37	Medium	Yes	
7	Female	White	35	Medium	No	
8	Male	Black	35	High	Yes	
9	Female	White	35	Low	No	
10	Male	White	50	High	Yes	

DPDM via generalization

- To prevent discrimination
 - \square Model: α -protection.
 - α -protective version of the original data table.
 - Sanitization mechanism: Full-domain generalizations?
 - Given the generalization lattice of D over QI, where $DA \subseteq QI$, there are some candidate nodes for which D is α -protective
- Example
 - suppose f = elift
 - QI = {Race, Sex}
 - 1.2-protective with respect to *DA* = {Sex}.

Simultaneous PPDM and DPDM via generalization

- Obtain anonymized data tables that are protected against record linkage and also free from discrimination
 - \square Definition (α -protective k-anonymous data table).
- Observation. k-Anonymity and α -protection can be achieved simultaneously in a data table by means of full-domain generalization.
- Example
 - suppose f = elift
 - 3-anonymous with respect toQI = {Race, Sex}.
 - 1.2-protective with respect to DA = {Sex}.

Simultaneous PPDM and DPDM via generalization

- Our task is to obtain α -protective k-anonymous full-domain generalizations.
 - The naïve approach is the sequential way.
 - It is a very expensive solution
 - □ Our proposal: we present a more efficient algorithm that takes advantage of the common properties of α -protection and k-anonymity
 - Foundations
 - $lue{}$ Observation (Subset property of α -protection).
 - \square Proposition (Generalization property of α -protection).
 - \square Proposition (Roll-up property of α -protection).
 - Algorithm
 - \square α -protective Incognito

Experiments

- Evaluate the execution time of α-protective Incognito and compare it with Incognito.
- Evaluate the quality of unbiased anonymous data, compared to that of the anonymous data
 - Using general and specific data analysis metrics.

Execution time

• Performance of Incognito and α -protective Incognito .

Since α -protective Incognito provides extra protection (i.e. against discrimination) in comparison with Incognito, the cost is sometimes a longer execution time.

General data quality

 General data quality metrics. Left, generalization height (GH). Right, discernibility ratio (DR).

We found that the data quality of k-anonymous tables (i.e. in terms of GH and DR) without α -protection is equal or only slightly better than the quality of k-anonymous tables with α -protection.

Data quality for classification

Data quality for classification analysis. Left, classification metric (CM).
 Right, classification accuracy, in percentage (CA).

We found that the data quality of k-anonymous tables (i.e. in terms of CM) without α -protection is equal or only slightly better than the quality of k-anonymous tables with α -protection.

Extensions

- Alternative privacy models
 - Attribute disclosure
 - Differential privacy
- Alternative anti-discrimination legal concepts
 - Indirect discrimination

Summary

- Simultaneous DADM and PADM in data publishing
 - We found that a subset of k-anonymous full-domain generalizations with the same or slightly higher data distortion than the rest are also α -protective.
 - We have adapted to α -protection two well-known properties of k-anonymity, namely the subset and the generalization properties.
 - We have sketched how our approach can be extended to satisfy alternative privacy models or anti-discrimination legal constraints.

Projects and future works

- H2020 EU innovation action project
 - TYPES: Towards transparencY and Privacy in the online advertising businesS
- Unbiased recommendation and machine learning algorithms
- New types of data
 - Wikipedia
 - Social network data

Thank you for your attention!

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 INNOVATION ACTION PROGRAMME UNDER GRANT AGREEMENT NO 653449