FindPatent.ru <u>Патентный поиск</u>

найти

Найти

B §

f

Способ контроля материалов методом резонансной ультразвуковой спектроскопии

Авторы патента:

Гусейнов Керим Басирович (RU)
Пашук Евгений Григорьевич (RU)
Халилов Шамиль Арсланович (RU)

G01N29/04 - для обнаружения локальных дефектов в твердых телах (G01N 29/16,G01N 29/18,G01N 29/20 имеют преимущество)

Владельцы патента RU 2477854:

Общество с ограниченной ответственностью "Газпром трансгаз Махачкала" (RU)

Похожие патенты:

Способ ультразвукового контроля металлургической

продукции электромагнитноакустическими преобразователями на воздушной подушке и устройство для его осуществления // 2476872

<u>Способ</u> <u>ультразвукового</u>

контроля изделия // 2472144

<u>Способ</u>
<u>ультразвукового</u>
<u>контроля</u> // 2472143

Изобретение относится к области

неразрушающего ультразвукового контроля твердых тел и может использоваться при ультразвуковой дефектоскопии изделий, преимущественно рельсов.

Использование: для неразрушающего контроля материалов и изделий методом резонансной ультразвуковой спектрометрии. Сущность заключается в том, что в образце или в изделии возбуждают и регистрируют ультразвуковые колебания в определенном диапазоне частот и о качестве судят по полученному спектру отклика, при этом диагностическим признаком служит статистический критерий отклонения экспериментального спектра отклика от рассчитанного в результате решения обратной задачи резонансной ультразвуковой спектроскопии путем вариации значений модулей упругости в предположении однородности и изотропности материала, или известной кристаллической структуры, или допустимой анизотропии. Технический результат - повышение достоверности и надежности обнаружения дефектов и неоднородностей изделий методом резонансной ультразвуковой спектроскопии. 1 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к области неразрушающего контроля материалов и изделий ультразвуковыми методами, предпочтительно методом резонансной ультразвуковой спектрометрии, преимущественно, когда важна однородность материала изделия.

Известен способ контроля материалов методом резонансной ультразвуковой спектроскопии (RUS) [1-4], заключающийся в том, что в материале или изделии возбуждаются и регистрируются ультразвуковые колебания, сканируя частоту в некотором диапазоне. Получаемая в результате амплитудно-частотная характеристика (AЧX) содержит информацию о частотах и добротностях собственных колебаний образца или изделия - экспериментальный спектр отклика {fe}, содержащий конечное число N резонансов. Собственные частоты колебаний образца или изделия однозначно связаны с модулями упругости материала, поэтому по отклонению экспериментального спектра отклика от принятого за норму ({fet}) можно неразрушающим способом определить отклонение модулей упругости материала от нормированного значения, используя его в качестве диагностического признака. Диагностическим признаком обычно служит отклонение от нормы частот резонансов, ширины резонансных пиков или формы пика [1-4].

Одним из недостатков этого метода является то, что собственные частоты колебаний твердых тел сильно зависят от размеров образца или изделия. Чувствительность удобно характеризовать частными производными частот по модулям упругости и геометрическим размерам. Так, например, для изделия из электрокерамики МГ-54 в форме диска диаметром D=20 мм и толщиной h=20 мм средние для первых 30 мод собственных колебаний чувствительности к регистрации изменений модулей упругости С11, С44 (df/dC11, df/dC44) и диаметра (df/dD) составляют 39 Гц/ГПа, 1366 Гц/ГПа и 8265 Гц/мм соответственно. По этой причине при допуске изделия по диаметру dD=0.05 мм соответствующая неопределенность в регистрации изменений модулей упругости С11 и С44 составит соответственно 10,8 и 0,3 ГПа, что далеко не всегда обеспечит достаточный уровень надежности контроля.

Другим недостатком является то, что технические требования, как правило, допускают изменение среднего значения модулей упругости материала изделия в определенном интервале. В то же время, отклонение спектров {fe} от {fet} может быть вызвано не только допустимым изменением модулей упругости однородного материала, но и появлением неоднородностей - дефекты, области упругонапряженного состояния и т.д.

Известен также способ контроля материалов методом резонансной ультразвуковой спектроскопии [5], в котором о наличии дефекта и/или неоднородности судят по изменению спектра отклика изделия в результате его локального нагрева. Недостаток метода заключается в усложнении процедуры контроля и трудности его реализации для диагностики внутренних дефектов и/или неоднородностей.

Задача, на решение которой направлено заявленное изобретение, заключаются в повышении достоверности и надежности обнаружения дефектов и неоднородностей изделий методом резонансной ультразвуковой спектроскопии.

Предлагаемый способ основан на том, что в процессе собственных колебаний разных мод деформации подвергаются разные участки изделия. По этой причине, при наличии неоднородностей, частоты различных мод, представленных в спектре {fe}, изменяются не одинаково. Это в свою очередь приводит к увеличению дисперсии среднего значения отклонения спектров {fe} от {fet}, которая может характеризоваться среднеквадратичным отклонением (СКО) массивов этих чисел.

Однако использование СКО {fe} от {fet} в качестве диагностического признака оказывается недостаточно эффективным. Это происходит потому, что чувствительность различных мод собственных колебаний к изменению модулей упругости сильно различается. В Таблице приведены соответствующие данные для приведенного выше изделия МГ54.

Из таблицы видно, что частные производные изменяются в интервале от - 11.4 до 147 Гц/ГПа для df/dC11 и от 302 до 2250 Гц/ГПа для df/dC44. В результате такого значительного отличия чувствительностей, вклад различных мод колебаний, а значит и разных областей деформирования, оказывается нивелированным.

Мы предлагаем в качестве диагностического признака использовать СКО экспериментального спектра отклика {fe} от спектра, полученного в процессе решения обратной задачи RUS {ft1}, то есть после сведения спектров {fe} и {ft} в смысле наименьших квадратов путем вариации значений модулей упругости. Частные производные (df/dC11, df/dC44) используются в этой процедуре как параметры. В

Способ и устройство для неразрушающего контроля материала испытываемого объекта с помощью ультразвуковых

волн // 2467322

Изобретение относится к способу для неразрушающего контроля материала согласно родовому понятию пункта 1 формулы изобретения. .

Способ оценки дефекта в головке рельса // 2466386

Изобретение относится к области ультразвукового (УЗ) неразрушающего

контроля изделий, в частности железнодорожных рельсов.

Способ диагностики поверхности катания

колесных пар подвижного состава железнодорожного транспорта и метрополитена // 2466047

Изобретение относится к диагностике поверхности катания колесных пар подвижного состава железнодорожного транспорта и метрополитена. .

Способ диагностики положения колесных пар в раме тележки

пассажирских и грузовых вагонов в эксплуатации // 2466046

Установка для определения механических напряжений в

конструкционных

<u>материалах</u> // 2465583

Изобретение относится к неразрушающему контролю физических характеристик материалов изделий и может быть использовано для измерения напряженного состояния различных материалов, испытывающих значительные нагрузки в процессе эксплуатации.

Портативное сканирующее устройство для металлургического неразрушающего контроля // 2464557

Способ обнаружения изменений

параметров среды в окружении заглубленного магистрального продуктопровода // 2463590

Изобретение относится к контролю безопасности эксплуатируемых магистральных трубопроводов для предотвращения установки врезок в трубу, боеприпасов для ее подрыва, имитаторов утечек перекачиваемого продукта для дезинформации службы безопасности, а

Способ контроля материалов методом резонансной ультразвуковой спектроскопии

результате учитываются различия в чувствительности различных мод собственных колебаний к изменению модулей упругости и достоверность контроля существенно возрастает.

Алгоритм предлагаемого способа заключается в следующем:

- 1. По измеренным на заведомо пригодных изделиях модулям упругости, плотности и геометрическим размерам вычисляют теоретический спектр собственных частот {ft} в предположении однородности свойств изделия, заданной анизотропии, или кристаллического строения, путем решения прямой задачи RUS путем вариации значений модулей упругости. Вычисляются частные производные частот собственных колебаний от модулей упругости.
- 2. С помощью ультразвукового резонансного спектроскопа измеряют спектр частот отклика данного изделия {fe}, производят процедуру идентификации мод и определение коэффициента поглощения ультразвука α по ширине пиков отклика или путем аппроксимации АЧХ, например формулой пика Лоренца.
- 3. Решают обратную задачу RUS, используя данные, полученные в п.1 и 2. В процессе сведения спектров находят модули упругости данного изделия, дающие наилучшее в смысле метода наименьших квадратов приближение спектра собственных частот изделия {ft1} к экспериментальному спектру {fe}, и статистический параметр отклонения спектра {fe} от {ft1}, например среднеквадратичное отклонение.
- 4. Полученные в результате модули упругости, коэффициент поглощения и статистический параметр отклонения спектра {fe} от {ft1}, например среднеквадратичное отклонение, используют в качестве диагностического признака.

Изобретение поясняется примером реализации способа для электротехнического фарфора марки завода «Электроизолятор». Описание примера и чертежи не охватывают и, тем более, не ограничивают весь объем притязаний данного технического решения, а являются лишь иллюстрирующими материалами частного случая его выполнения.

Образцы диаметром 24,5±0,3 мм и толщиной 14,7±0,1 мм были вырезаны из стержней, приготовленных по заводской технологии, но обожженных при разных температурах (Тобж.). Допустимой температурой обжига считается 1320±10°С. При более низких температурах обжига поликристаллическая структура электрофарфора формируется не полностью («недожог»). При более высоких появляется избыток стеклофазы и вторичная пористость («пережог»). Оба эти процесса вызывают неоднородность материала изделия, что негативно сказывается на его служебных свойствах. Зависимости от температуры обжига модулей упругости С11, С44, коэффициента поглощения ультразвука с и СКО спектров {fe} от {ft1} - (оf), определенных по описанному выше алгоритму, показаны на Фиг.1 и Фиг.2. Коэффициент поглощения ультразвука вычислен из значений добротностей пиков, которые в свою очередь определены путем аппроксимации амплитудно-частотных характеристик образцов формулой пика Лоренца. Из чертежей видно, что область «недожога» уверенно диагностируется по любому из определенных параметров. Область «пережога» надежно диагностируется только параметром оf.

Список использованных источников

- 1. US patent №5062296, Resonant ultrasound spectroscopy, Migliori Albert, 1991, G01N 29/12.
- 2. US patent №5351543, Crack detection using resonant ultrasound spectroscopy, Migliori Albert, Thomas M. Rhodes, George W., 1994, G01N 29/12.
- 3. US patent №5992234, Detection of defects using resonant ultrasound spectroscopy at predicted high order modes, George Rhodes; James J. Schwarz; David E. Thomas; Ming Lei, 1999, G01N 29/12.
- 4. ASTM E2001 98 (2003) Standard Guide for Resonant Ultrasound Spectroscopy for Defect Detection in Both Metallic and Non-Metallic Parts.
- 5. Баранов В.М., Молодцов К.И. Способ дефектоскопии. А.С. №398867, G01N 29/04, бюл. изобр., 1973, №39.

N209.					
Nº	ft, Гц	df/dC11	df/dC44	df/dh	df/dD
1	32463.6	0.536	301.98	1197.34	-2828.23
2	53572.0	62.831	325.71	1778.03	-4469.62
3	65393.3	4.339	602.69	1889.11	-5174.74
4	76719.8	-2.617	726.62	-0.36	-3843.87
5	90117.4	23.929	774.04	-18.30	-4497.29
6	98204.4	80.243	700.29	2123.39	-7059.10
7	100244.3	7.238	924.50	2303.44	-7339.41
8	116314.5	147.032	669.20	-175.07	-5653.56
9	117849.2	-3.110	1109.71	-5.29	-5899.85
10	135650.2	9.256	1254.84	2521.01	-9334.10
11	139541.3	37.108	1194.75	-93.25	-6899.15
12	141346.2	87.456	1090.57	1995.64	-9099.51
13	141346.6	88.247	1089.47	1995.64	-9099.52
14	152929.6	103.453	1156.05	2265.71	-9949.05
15	153457.3	-0.365	1434.37	-20.81	-7668.60
16	167927.5	-11.443	1601.22	0.00	-8414.41
17	171004.3	10.350	1587.69	2605.44	-11192.17
18	182109.7	91.070	1469.83	1523.61	-10675.82
19	186728.5	2.017	1737.99	-51.45	-9305.23
20	190507.3	39.680	1663.63	-305.75	-9241.93
21	194178.4	109.271	1495.53	-744.92	-8988.13
22	196610.5	92.737	1607.20	146.19	-10056.73

также для обнаружения утечек продукта, уровня промерзания грунта в текущий период, просадок или выпучиваний трубопровода.

<u>Способ</u> <u>ультразвукового</u>

контроля сварных соединений лопаток с диском // 2478946

Изобретение относится к области неразрушающего контроля сварных соединений и может быть применено для контроля сварных дисков роторов газотурбинных двигателей, изготавливаемых с помощью линейной сварки трением (ЛСТ)

Способ неразрушающего контроля узлов

тележек железнодорожных вагонов и устройство для его реализации // 2480741

Изобретение относится к способам и устройствам диагностики технического состояния узлов подвижного состава, в частности для бесконтактного диагностического контроля узлов вагонных тележек железнодорожного транспорта, а также может быть использовано при неразрушающем контроле узлов и деталей сложной формы в различных отраслях промышленности и основных видах транспорта

<u>Комбинированный</u> <u>способ</u>

<u>ультразвукового контроля качества</u> <u>сварных соединений</u> // 2481571

Изобретение относится к области ультразвукового контроля сварных соединений, в частности к контролю тонких сварных соединений с ограниченной шириной поверхности ввода-приема ультразвуковых колебаний вдоль соединений, и может найти широкое применение в машиностроении и других отраслях промышленности

Способ контроля высоковольтного энергетического

<u>оборудования под</u> <u>напряжением</u> // 2483302

Изобретение относится к электроэнергетике и может найти применение для дистанционного контроля высоковольтного энергетического оборудования, находящегося под напряжением

Способ и устройство для обнаружения и диагностики дефектов в морских

ледостойких платформах // 2485492

Изобретение относится к инфразвуковой диагностике и предназначено для использования в стационарных ледостойких морских платформах башенного типа

Способ контроля материалов методом резонансной ультразвуковой спектроскопии

23	206042.6	10.636	1919.90	2600.07	-12943.89
24	218762.3	3.416	2032.53	-101.55	-10860.48
25	220311.6	91.485	1832.51	753.56	-11824.80
26	222918.5	2.732	2072.33	-240.17	-10930.41
27	229072.4	0.000	2191.49	-11393.73	0.00
28	231248.0	68.291	2010.67	-2686.23	-8949.09
29	240248.8	25.254	2163.42	-900.67	-11146.47
30	240662.1	10.276	2249.78	2533.66	-14613.02
Среднее значение	39.71	1366.35	1498.98	8265.27	

- 1. Способ контроля материалов методом резонансной ультразвуковой спектроскопии, при котором в образце или изделии возбуждают и регистрируют ультразвуковые колебания в определенном диапазоне частот и о качестве судят по полученному спектру отклика, отличающийся тем, что диагностическим признаком служит статистический критерий отклонения экспериментального спектра отклика от рассчитанного в результате решения обратной задачи резонансной ультразвуковой спектроскопии путем вариации значений модулей упругости в предположении однородности и изотропности материала, или известной кристаллической структуры, или допустимой анизотропии.
- 2. Способ по п.1, отличающийся тем, что в качестве статистического критерия отклонения экспериментального спектра отклика от рассчитанного в результате решения обратной задачи резонансной ультразвуковой спектроскопии используется среднеквадратичное отклонение.

http://www.findpatent.ru/patent/247/2477854.html

<u>Способ</u> <u>ультразвукового</u> <u>контроля</u> <u>труб</u> // 2486502

Изобретение относится к акустическим методам

неразрушающего контроля качества труб и может быть использовано в любой отрасли промышленности как при изготовлении, так и при эксплуатации труб, например при прокладке газо- и нефтепроводов

Способ определения местоположения и размеров неоднородных

образований на стенках трубопровода // 2486503

Изобретение относится к способам неразрушающего контроля и предназначено для диагностики состояния трубопроводов, используемых при добыче или для транспортировки нефти или газа, а именно для обнаружения и определения размеров различных типов неоднородных образований (структурных неоднородностей) на внутренних и внешних поверхностях стенки трубопровода

Способ контроля колебательной системы

пьезокерамических образцов на наличие дефектов // 2487345

Изобретение относится к области контроля пьезокерамических элементов и приборов с использованием пьезокерамических элементов на наличие дефектов в них в процессе изготовления и может быть использовано на предприятиях-изготовителях пьезокерамических элементов и на предприятиях, изготавливающих приборы с использованием пьезокерамических элементов

$$S = \frac{C_t(t_0 - t_{np})}{2} [4]$$

Способ ультразвукового контроля стыковых,

нахлесточных и тавровых сварных соединений тонкостенных труб малого диаметра // 2488108

<u>Способ</u> <u>ультразвукового</u> контроля труб и

<u>устройство для его</u> <u>осуществления</u> // 2488814

Оказать финансовую помощь проекту FindPatent.ru

© Патентный поиск, поиск патентов на изобретения - FindPatent.RU 2012-2017

