FIRST SEMESTER 2019 – 2020 COURSE HANDOUT (PART II)

01-08-2019

In addition to Part I (General Handout for all courses appended to the timetable) this handout gives further details regarding the course.

Course No : **CS F342**

Course Title : Computer Architecture
Instructor-in-charge : Prof. G Geethakumari
Instructors : Suvadip Batabyal

1. Scope and Objective of the Course:

The scope of this course is to cover various aspects of Computer Architecture, which is a specification detailing how a set of software and hardware technology standards interact to form a computer system or platform. Performance issues with respect to computer system design and the compatible technologies would be discussed.

The main objective of this course is to give the students exposure to

- Processor performance criteria, performance benchmarks
- CPU design instruction set architecture, instruction execution
- Single and Multicycle implementation, ILP, Pipeline design, Hazards
- Methods of overcoming hazards, Branch prediction
- Memory subsystems including cache optimization

2. Text Book:

T1. Patterson, D.A. & J.L. Hennessy, Computer Organization and Design: MIPS Edition, Elsevier, 5th edition., 2013.

3. Reference Books:

- (i) Hamacher et. al, Computer Organisation, McGraw Hill, 5th ed., 2002.
- (ii)J.L. Hennessy & D.A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kauffmann, 5th Ed, 2012.
- (iii)W. Stallings, Computer Organisation & Architecture, PHI, 6th ed., 2004.
- (iv) Additional material to be put up in CMS

4. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Chapter in the Text Book
1 - 2	To understand about the overview of classes of computers	Computer Abstractions and Technology	Ch. 1
3 - 4	To learn about instructions; ISA as	Instructions- language of the computer	Ch.2
5-7 8	well as know about sample ISAs like MIPS	MIPS Architecture & Instruction Set	Ch. 2
9 - 11	To practice arithmetic operations on integers; floating point numbers etc	Arithmetic for computers: floating point arithmetic	Ch 3
12 -13	To understand the basics of	Processors: logic design conventions	Ch 4
14 - 15	processor; learn about data path, control path	Role of Performance, pipelining – design issues	Ch 4
16 - 17		Pipelined data path and control	Ch 4
18		Various types of hazards	Ch 4
19		Structural hazards	Ch 4
20 - 21		Data Hazards	Ch 4
22 - 23		Control Hazards	Ch 4
24		Branch prediction techniques	Ch 4
25		Static Branch Prediction	Ch 4
26		Dynamic Branch Prediction	Ch 4
27	To know about the organization of	Exploiting memory hierarchy - introduction	Ch 5
28	memory hierarchy and learn various	Cache Memory Organization	Ch 5
29-32	optimization techniques at each level	Measuring and improving cache performance, cache optimization	Ch 5
33 - 34		Main Memory and Interleaving	Ch 5
35		Virtual Memory and Virtual Machines	Ch 5
36-38		Performance and memory hierarchies: Cache coherence	Ch 5
39	To understand about storage systems	Storage and other I/O topics	T1 Ch5; R(ii)
40	and performance	Dependability, reliability, availability	T1 Ch5; R(ii)
41 - 42	_	I/O performance measures, Redundant Array of Independent Disks	T1 Ch5; R(ii)

5. Evaluation Scheme:

J. L'undution deneme.							
EC	Evaluation Component	Duration	Weightage	Date	Nature of		
No.		(Min)	(%)	& Time	Component		
1	Mid Sem Test	90	30	1/10, 3.30 5.00 PM	Closed Book		
2	Quizes (4Nos.)		10 %		Open Book		
	+		+				
	Lab tests (4 Nos.)		20%				
	(to be conducted together in the lab)						
3	Comprehensive	180	40	7/12 AN	Closed Book		

- **6. Chamber Consultation Hour:** To be announced in the class
- **7. Notices:** Notices regarding the course will be put up on the CSIS notice board and in CMS.
- **8. Makeup Policy:** No makeup exam allowed without prior permission. For lab evaluation component, there is no makeup.
- 9. **Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE

