K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC CIRCUITS

Numerical 1: For the circuit shown in figure 1:

- a) Write the nodal equations and solve for the node voltages.
- b) Find the value for current I

Figure 1: Circuit 1

SOLUTION:

We know that,

$$V_A = V_s$$

$$\therefore V_A = \mathbf{10} \ \mathbf{V}$$

At Node B,

Applying KCL and Ohm's law we get,

$$\frac{V_A - 9}{1000} + \frac{V_B - V_D}{5000} + \frac{V_B - V_C}{1000} = 0$$

On solving, we get,

$$11V_B - V_D - 5V_C = 50 \dots (1)$$

At Node C,

Applying KCL and Ohm's law we get,

$$\frac{V_C - 10}{1000} + \frac{V_C - V_D}{2000} + \frac{V_C - V_B}{1000} = 0$$

On solving, we get,

$$5V_C - V_D - 2V_D = 20 \dots (2)$$

At Node D,

Applying KCL and Ohm's law we get,

$$\frac{V_D - V_B}{5000} + \frac{V_D - V_0}{1000} + \frac{V_D - V_C}{2000} = 0$$

On solving, we get,

$$19V_D - 2V_B - 5V_C = 0 \dots (3)$$

On solving, we get,

 $V_B = 8.4415584V$

 $V_C = 7.9740259V$

 $V_D = 2.9870129 V$

At Node A,

Applying KCL,

$$I = I_1 + I_2$$

$$V_B - 10 \quad V_C = 0$$

$$I = \frac{V_B - 10}{1000} + \frac{V_C - 10}{1000}$$

On solving, we get,

I = -3.618181 mA

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

Figure 2: Circuit Schematic and Simulated Results

Parameters	Theoretical Values	Simulated Values
V_A	10V	10V
V_B	8.445584V	8.52941V
V_C	7.9740259V	8.08823V
V_D	2.9870129V	3.38235V
I	-3.61881 mA	-3.3823529 mA

Table 1: Numerical 1

Numerical 2: For the circuit shown in figure 3:

- a) Write equilibrium equations for the network on nodal basis.
- b) Obtain voltages V_1 , V_2 , V_3 ,

All resistors in the network are of 1Ω .

Figure 3: Circuit 2

Solution:

At Node 1,

Applying KCL and Ohm's law we get,

$$\frac{V_1 - 10}{1} + \frac{V_1 - V_2}{1} + \frac{V_1 - 0}{1} = 0$$

On solving, we get,

$$3V_1 - V_2 = 10 \dots (1)$$

At Node 2,

Applying KCL and Ohm's law we get,

$$\frac{V_2 - V_1}{1} + \frac{V_2 - 0}{1} + \frac{V_2 - 0}{1} + \frac{V_2 - V_3}{1} = 0$$

On solving, we get,

$$4V_2 - V_1 - V_3 = 0 \dots (2)$$

At Node 3,

Applying KCL and Ohm's law we get,

$$\frac{V_3 - V_2}{1} + \frac{V_3 - 0}{1} + \frac{V_3 - 0}{1} = 0$$

On solving, we get,

$$3V_3 - V_2 = 0 \dots (3)$$

On solving, we get,

 $V_1 = 3.66667 V$

 $V_2 = 1V$

 $V_3 = 0.333333$ V

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

Figure 4: Circuit Schematic and Simulated Results

Parameters	Theoretical Values	Simulated Values
V_1	3.66667V	3.66667V
V_2	1V	1V
V_3	0.333333V	0.333333V

Table 2: Numerical 2

Numerical 3: By applying nodal method of network analysis, find current in the 15Ω resistor of the network shown.

Figure 5: Circuit 3

Solution:

At Node A,

Applying KCL and Ohm's law we get,

$$\frac{V_A - 400}{20} + \frac{V_A - V_B}{15} + \frac{V_A - 0}{80} = 0$$

On solving, we get,

$$V_A \left(\frac{1}{15} + \frac{1}{80} + \frac{1}{90} \right) - V_B \left(\frac{1}{15} \right) = 20...(1)$$

At Node B,

Applying KCL and Ohm's law we get,

$$\frac{V_B - 200}{10} + \frac{V_B - V_A}{15} + \frac{V_B - 0}{90} = 0$$

On solving, we get,

$$V_B\left(\frac{1}{10} + \frac{1}{15} + \frac{1}{90}\right) - V_B\left(\frac{1}{15}\right) = 20...(2)$$

On solving, (1) and (2) we get,

$$V_A = 264 \mathrm{V}$$

$$V_B = 211.5 V$$

For I_{15} , using Ohm's law,

$$I_{15} = \frac{V_A - V_B}{15} = \frac{264 - 211.5}{15} = 3.5 mA$$

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

Figure 6: Circuit Schematic and Simulated Results

Parameters	Theoretical Values	Simulated Values
I_{15}	$3.5 \mathrm{mA}$	$3.5 \mathrm{mA}$

Table 3: Numerical 3

Numerical 4: The circuit given, is to control the speed of a motor such that the motor draws the current of 5A, 3A and 1A when the switch is set at High, Medium and Low respectively. The motor can be modelled as a load resistance of $20m\Omega$.

Determine the series dropping resistances R_1 , R_2 and R_3 .

Figure 7: Circuit 4

Solution: According to the given circuit diagram, the fuse and the motor will put out a resistance in series at all positions.

Thus, motor and fuse resistance = $(0.02 + 0.01)\Omega$

At high position, motor draws 5A current,

Using ohms law,

$$6 = (0.1 + 0.02 + R_3) \times 5$$

$$\therefore R_3 = 1.17 \Omega$$

At medium position, motor draws 3A current,

Using ohms law,

$$6 = (0.1 + 0.02 + R_2 + R_3) \times 3$$

$$\therefore R_2 = 0.8 \Omega$$

At low position, motor draws 1A current,

Using ohms law,

$$6 = (0.1 + 0.02 + R_1 + R_2 + R_3) \times 1$$

$$\therefore R_1 = 4 \Omega$$

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

At high position,

Figure 8: Circuit Schematic and Simulated Results at High Position

At medium position,

Figure 9: Circuit Schematic and Simulated Results at Medium Position

At low position,

Figure 10: Circuit Schematic and Simulated Results at Low Position

Parameters	Theoretical Values	Simulated Values
I_{low}	1A	1A
I_{med}	3A	3A
I_{high}	5A	5A
R_1	4Ω	4Ω
R_2	0.8Ω	0.8Ω
R_3	1.17Ω	1.17Ω

Table 4: Numerical 4

Numerical 5: Find the current I flowing through shown in circuit 5, using star-delta transformation if the circuit is excited by 39V and the value of each resistor is 4Ω .

Figure 11: Circuit 5

SOLUTION:

In the following circuit, parallel resistors R_1 , R_2 and R_4 , R_5 can be replaced by a single resistor each of 2Ω

So the circuit becomes:

Figure 12: Circuit after replacing resistors in parallel connection

Using delta-star transformation for resistors R_3 , R_4 and R

$$R_{34} = \frac{R_3 \times R_4}{R_3 + R_4 + R} = 0.8\Omega$$

$$R_3 = \frac{R_3 \times R}{R_3 + R_4 + R} = 1.6\Omega$$

$$R_4 = \frac{R_4 \times R}{R_3 + R_4 + R} = 0.8\Omega$$

Figure 13: Delta-star transformation

Figure 14: Circuit after delta-star transformation

Now, resistors R_1 and R_{34} , R_3 and R_6 , resistors R_4 and R_7 can be replaced by a single resistor of 2.8Ω , 5.6Ω and 4.8Ω respectively.

So the circuit thus becomes,

Figure 15: Circuit after replacing resistors in series connection

Now, all the resistors of the circuit can be replaced by a singe resistor of value as

$$R = 4 + 0.8 \left(\frac{1}{\frac{1}{5.6} - \frac{1}{4.8}} \right) + 4$$

$$\therefore R = 9.3846\Omega$$

This is the total resistance in the circuit.

Now, Current
$$(I) = \frac{Voltage}{Resistance}$$

 \therefore Current $(I) = \frac{39}{9.3846}$

$$\therefore$$
 Current $(I) = \frac{39}{9.3846}$

$$\therefore$$
 Current $(I) = 4.15574A$

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

Figure 16: Circuit Schematic and Simulated Results

Parameters	Theoretical Values	Simulated Values
I	4.15574A	4.15574A

Table 5: Numerical 5

Numerical 6: Find the node voltages V_1 , V_2 , V_3 , V_4 in the shown circuit 6.

Figure 17: Circuit 6

SOLUTION:

Nodes 1 and 2 form a super-node, so do nodes 3 and 4.

Figure 18: Modified Circuit

So we apply KCL to them,

At super-node 1-2,

$$I_3 + 10 = I_1 + I_2$$

Using Ohm's law,

$$\frac{V_3 - V_2}{6} + 10 = \frac{V_1 - V_4}{3} + \frac{V_1}{2}$$

i.e.
$$5V_1 + V_2 - V_3 - 2V_4 = 60$$
 ...(1)

At super-node 3-4,

$$I_1 = I_3 + I_4 + I_5$$

Using Ohm's law,

$$\frac{V_1 - V_4}{3} = \frac{V_3 - V_2}{6} + \frac{V_4}{1} + \frac{V_3}{4}$$

i.e.
$$4V_1 + 2V_2 - 5V_3 - 16V_4 = 0$$
 ...(2)

We now apply KVL to the branches involving the voltage sources as in the figure below,

Figure 19: Modified Circuit

For loop 1,

$$-V_1 + 20 + V_2 = 0$$

i.e. $V_1 - V_2 = 20$...(3)
For loop 2,
 $V_3 + 3V_x + V_4 = 0$ (4)
For loop 3,
 $V_x - 3V_x + 6I_3 - 20 = 0$
But, $6I_3 = V_3 - V_2$ and $V_x = V_1 - V_4$
 $\therefore -2V_1 - V_2 + V_3 + 2V_4 = 20$ (5)
Solving for equations 1 to 4, we get,

 $V_1 = 26.6666667V$ $V_2 = 6.666667V$ $V_3 = 173.33333V$ $V_4 = -46.6666667V$

Equation 5 can be used for cross verifying the results.

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

Figure 20: Circuit Schematic and Simulated Results

Parameters	Theoretical Values	Simulated Values
V_1	26.6666667V	26.6778V
V_2	6.666667V	6.67778V
V_3	173.33333V	173.489V
V_4	-46.666667V	-46.7111V

Table 6: Numerical 6

Numerical 7: Determine the Norton's equivalent for the circuit 7. Express your result in terms of I and R.

Figure 21: Circuit 7

SOLUTION:

Here, the two current sources can be represented by a single source of 2I. Also, the resistors can be replaced by a single resistor of 0.5R. The circuit thus becomes:

Figure 22: Circuit after replacing resistors and current sources

Now, the 2I current source and the 0.5R resistor in parallel can be replaced by a voltage source and a resistor in series as follows,

Using, Ohm's law,

$$V = I \times \mathbf{R}$$

The circuit thus becomes:

Figure 23: Circuit after replacing resistor and current source

Now, current across AB can be calculated as:

$$I_{SC} = \frac{V}{R} = \frac{I \times R}{0.5R} = 2I$$

For R_{TH} ,

We short all current sources and the circuit becomes:

Figure 24: Calculating R_{TH}

Thus

$$R_{TH} = R || R = \frac{R}{2} = 0.5 R$$

Thus, the Norton's Equivalent circuit is:

Figure 25: Norton's Equivalent

To cross verify the values we got for I and R, we take I as 5A and R as 10Ω in the given circuit for LTSpice simulations,

So,
$$I_{SC} = 2I = 2 \times 5 = 10A$$

$$R_{TH} = 0.5 R = 0.5 \times 10 = 5 \Omega$$

$$V_{AB} = 50 V$$

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows: For I_{SC} ,

Figure 26: Circuit Schematic for verifying I_{SC} and Simulated Results

For V_{AB} ,

Figure 27: Circuit Schematic for verifying V_{AB} and Simulated Results

Parameters	Theoretical Values	Simulated Values
I_{SC}	10A	9.998A
R_{TH}	5Ω	5Ω
V_{AB}	50V	49.9975V

Table 7: Numerical 7

Numerical 8: Use Norton's theorem to find V_0 in the circuit 8.

Figure 28: Circuit 8

In the figure, the resistor across V_0 acts as the load resistance and to find I_{SC} we short circuit it.

The short circit current I_{SC} is given by,

$$I_{SC} = I_1 + I_2$$
 ...(1

where, I_1 and I_2 are short circuit currents due to the 36V source and 3mA source respectively.

For I_1 due to 36V source acting alone, Consider the circuit diagram below,

Figure 29: Circuit for 36V source acting alone

The total resistance is given by,

$$R = 12k\Omega + 24k\Omega || (2k\Omega + 10k\Omega)$$

$$\therefore \mathbf{R} = \left(12 + \frac{24 \times 12}{24 + 12}\right) \times 10^3 \ \Omega$$

$$R = 20 \mathrm{k}\Omega \qquad \dots$$

Total current,
$$I = \frac{V}{R} = \frac{24 + 12}{20 \times 10^3} = 1.8 mA$$

Now,
$$I_1 = \frac{24}{36} \times 1.8 \times 10^{-3}$$
 ...(By current division)

$$\therefore I_1 = 1.2 \text{mA}$$

For I_2 due to 3mA source acting alone, Consider the circuit diagram below,

Figure 30: Circuit for 3mA source acting alone

The total resistance is given by,

$$R = (12k\Omega || 24k\Omega) + 2k\Omega$$

$$\therefore \mathbf{R} = 10k\Omega$$

Now,
$$I_2 = \frac{10}{10+10} \times -3 \times 10^{-3}$$
 ...(By current division)

$$\therefore I_2 = -1.5 \mathrm{mA}$$

The circuit diagram is thus modified as follows,

Figure 31: Modified Circuit

$$I_{SC} = I_1 + I_2 = (1.2 - 1.5) \times 10^{-3} = -0.3 \text{mA}$$

Also, our R from (2) is our Norton's Resistance, R_{TH}

Thus, the Norton's equivalent circuit is:

Figure 32: Norton's Equivalent Circuit

The voltage V_0 can be calculated by:

$$V_0 = \frac{1}{20+1} \times 0.3 \times 10^{-3}$$

$$\therefore V_0 = -0.2857V$$

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

For I_{SC} ,

Figure 33: Circuit Schematic for verifying I_{SC} and Simulated Results

For V_{AB} ,

Figure 34: Circuit Schematic for verifying V_{AB} and Simulated Results

Parameters	Theoretical Values	Simulated Values
I_{SC}	$-0.3 \mathrm{mA}$	$-0.3 \mathrm{mA}$
R_{TH}	$20 \mathrm{k}\Omega$	$20 \mathrm{k}\Omega$
V_{AB}	-0.2857V	-0.285714V

Table 8: Numerical 8

Numerical 9: Determine the value of R_L that will draw the maximum power from the circuit 9. Calculate the maximum power.

Figure 35: Circuit 9

SOLUTION:

Here we disconnect the load resistance to calculate open circuit voltage,

Figure 36: Circuit after disconnecting load resistance

For voltage
$$V_x$$
, $V_x = 9 - V_A$...(1)
Applying KCL to node A,
$$\frac{V_A - 9}{2} + \frac{V_A - 3V_x}{1} = 0$$
i.e. $V_A - 9 + 2V_A - 6V_x = 0$
Using (1), $3V_A - 9 - 6 [9 - V_A] = 0$

On solving, we get:
$$V_A = 7V$$

 $\therefore V_x = 7V$
Here, $V_x = V_{TH}$
 $\therefore V_{TH} = 7V$

Now, we short all voltage sources to find R_{TH} ,

Figure 37: Modified Circuit for finding R_{TH}

From the figure, we get: $R_{TH} = 4 + (2 \parallel 1)$

$$\therefore R_{TH} = 4.6666\Omega$$

Now, Max power absorbed by the load resistance is given by:

$$P_{max} = \frac{(V_{TH})^2}{R_{TH}}$$

Substituting the values for R_{TH} and V_{TH} , we get:

$$P_{max} = 2.625 W$$

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

For V_{TH} :

Figure 38: Circuit Schematic and Simulated Results to find V_{TH}

For R_{TH} :

Figure 39: Circuit Schematic and Simulated Results to find R_{TH}

Thevenin's Equivalent Circuit:

Figure 40: Circuit Schematic and Simulated Results for Thevenin's Equivalent Circuit

Parameters	Theoretical Values	Simulated Values
R_{TH}	4.6666Ω	4.6666Ω
V_{TH}	7V	7V
P_{max}	2.625W	2.625W

Table 9: Numerical 9

Numerical 10: Calculate the value of R that will absorb maximum power from the circuit 10. Also compute the maximum power.

Figure 41: Circuit 10

SOLUTION:

Here we disconnect the load resistance to calculate open circuit voltage,

Figure 42: Circuit after disconnecting load resistance

Applying KCL to node A,

$$\frac{V_A - 120}{10} + \frac{V_A - 0}{5} - 6 = 0$$

i.e.
$$V_A = 60 \text{V}$$

Here, $V_A = V_{TH} = 60 \text{V}$

Now, we short all voltage and current sources to find R_{TH} ,

Figure 43: Modified Circuit for finding R_{TH}

From the figure, we get: $R_{TH} = 10 \mid\mid 5$

$$\therefore R_{TH} = 3.3333\Omega$$

Now, Max power absorbed by the load resistance is given by:

$$P_{max} = \frac{(V_{TH})^2}{R_{TH}}$$

Substituting the values for R_{TH} and V_{TH} , we get:

 $P_{max} = 270.0027W$

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

For V_{TH} :

Figure 44: Circuit Schematic and Simulated Results to find V_{TH}

For R_{TH} :

Figure 45: Circuit Schematic and Simulated Results to find R_{TH}

Thevenin's Equivalent Circuit:

Figure 46: Circuit Schematic and Simulated Results for Thevenin's Equivalent Circuit

Parameters	Theoretical Values	Simulated Values
R_{TH}	3.3333Ω	3.3333Ω
V_{TH}	60V	60V
P_{max}	270.0027W	269.9993W

Table 10: Numerical 10