Лекция 10

Ilya Yaroshevskiy

24 апреля 2021 г.

Содержание

1	Сходимость случайных величин		
	1.1	Сходимость 'почти наверное'	
	1.2	Сходимость по вероятности	
	1.3	Сходимость по функции распределения	
	1.4	Связь между видами сходимости	
2	Сво	риство моментов	
	2.1	Ключевые неравенства	
3	Сре	еднее арифметическое случайных величин	
4	Законы больших чисел		
	4.1	Закон больших чисел Чебышева	
	4.2	Закон больших чисел Бернулли	
	4.3	Закон больших чисел Хинчина	
	4.4	Усиленный закон больших чисел Колмогорова	
	4.5	Закон больших чисел Маркова	
5	Her	тральная предельная теорема	

1 Сходимость случайных величин

1.1 Сходимость 'почти наверное'

Определение. Случайная величина имеет некоторое свойство **почти наверное**, если: p(случайная величина имеет свойство) = 1, или p(случайная величина не имеет свойство) = 0

Определение. $\{\xi_n\}$ сходится почти наверное к случайной величине ξ , при $n\to\infty$, если $p(\omega\in\Omega|\xi_n(\omega)\to\xi(\omega))\to 1$

Обозначение. $\xi_n \xrightarrow[n \to \infty]{\text{п.н.}} \xi$

1.2 Сходимость по вероятности

Определение. Последовательность $\{\xi_n\}$ сходится по вероятности к случайной величине ξ при $n\to\infty,$ если $\forall \varepsilon>0$ $p(|\xi_n-\xi|\geq \varepsilon)$ $\xrightarrow[n\to\infty]{}0$ или $p(|\xi_n-\xi|<\varepsilon)$ $\xrightarrow[n\to\infty]{}1$

Примечание. $\xi_n p \xi \not\Longrightarrow E \xi_n \to E \xi$

Свойство 1. $|\xi_n| \leq C = const \ \forall n, \ mor \partial a \ \xi_n \xrightarrow{p} \xi \implies E\xi_n \to E\xi$

Свойство 2. Если $\xi_n \xrightarrow{p} \xi$ и $\eta_n \xrightarrow{p} \eta$, то $\xi_n + \eta_n \xrightarrow{p} \xi + \eta$ и $\xi_n \eta_n \xrightarrow{p} \xi \eta$

1.3 Сходимость по функции распределения

Определение. Последовательность случайных величин $\{\xi_n\}$ слабо сходится к случайной величине ξ , если $F_{\xi_n}(x) \xrightarrow[n \to \infty]{} F_{\xi}(x) \ \forall x$

Обозначение. $\xi_n \rightrightarrows \xi$

Свойство 1. Если $\xi_n \stackrel{p}{\to} C$ и $\eta_n \rightrightarrows \eta$, то $\xi_n \eta_n \rightrightarrows C \eta$ и $\xi_n + \eta_n \rightrightarrows \eta + C$

1.4 Связь между видами сходимости

Теорема 1.1. $\xi_n \xrightarrow{\text{п.н.}} \xi \implies \xi_n p \xi \implies \xi_n \rightrightarrows \xi$

Доказательство. Доделать

Теорема 1.2. Если $\xi \rightrightarrows C$, то $\xi \xrightarrow{p} C$

Доказательство. Доделать

Примечание. В общем случае бессмысленно утверждение $\xi_n \rightrightarrows \xi \implies \xi_n \xrightarrow{p} \xi$, т.к. совершенно разные случайные величины могут иметь одинаковое распределение

Теорема 1.3. Для произвольной Борелевской функции g(x):

- 1. $Eg(x) = \sum_{n=1}^{\infty} g(x_n) \cdot p(\xi = x_n)$, если ξ дискретная случайная величина
- 2. $Eg(x) = \int_{-\infty}^{\infty} g(x) f_{\xi}(x) dx$, если ξ абсолютно непрерывная случайная величина

2 Свойство моментов

Свойство 1. Если случайная величина $\xi \ge 0$ почти наверное, то $E\xi \ge 0$

Доказательство. Доделать

Свойство 2. Если $\xi \geq \eta$ почти наверное, то $E\xi \geq E\eta$

Доказательство. $\xi \geq \eta$ почти наверное $\implies \xi - \eta \geq 0$ почти наверное $\implies E(\xi - \eta) = E\xi - E\eta \geq 0$ $\implies E\xi \geq E\eta$ почти наверное

Свойство 3. *Если* $|\xi| \ge |\eta|$ *почти наверное, то* $E|\xi|^k \ge E|\eta|^k$

Свойство 4. Если существует момент n_t случайной величины ξ , то существуют u ее моменты меньшего порядка s < t

Доказательство. Доделать

2.1 Ключевые неравенства

Далее ξ — случайная величина, $E|\xi| < \infty$ и $D\xi < \infty$, если оно упоминается в теореме

Теорема 2.1 (неравенство Йенсена). Пусть функция выпукла вниз, тогда для любой случайной величины верно неравенство:

$$Eg(\xi) \ge g(E\xi)$$

Примечание. Для вогнутых функция знак неравенства меняется

Доказательство. Доделать

Следствие 2.1.1. Если $E|\xi|^t < \infty$, то $\forall 0 < s < t$

$$\sqrt[s]{E|\xi|^s} \le \sqrt[t]{E|\xi|^t}$$

Теорема 2.2 (неравентво Маркова).

$$p(|\xi| \ge \varepsilon) \le \frac{E|\xi|}{\varepsilon} \ \forall \varepsilon > 0$$

Теорема 2.3 (неравентво Чебышева).

$$p(|\xi - E\xi| \ge \varepsilon) \le \frac{D\xi}{\varepsilon} \ \forall \varepsilon > 0$$

3 Среднее арифметическое случайных величин

Пусть $\xi_1, \xi_2, \dots, \xi_n$ — независимые, одинаково распределенные случайные величины с конечным вторым моментом. Обозначим $a = E\xi, d = D\xi, \sigma = \sigma_\xi, S_n = \xi_1 + \xi_2 + \dots + \xi_n$

$$\frac{S_n}{n} = \frac{\xi_1 + \xi_2 + \dots + \xi_n}{n}$$

$$E\left(\frac{S_n}{n}\right) = \frac{1}{n}(E\xi_1 + \dots + E\xi_n) = \frac{1}{n}(a + \dots + a) = a = E\xi$$

$$D\left(\frac{S_n}{n}\right) = \frac{1}{n^2}(D\xi_1 + \dots + D\xi_n) = \frac{1}{n^2} \cdot n \cdot d = \frac{d}{n} = \frac{D\xi}{n}$$

$$\sigma_{S_n} = \frac{\sigma}{\sqrt{n}}$$

4 Законы больших чисел

4.1 Закон больших чисел Чебышева

Теорема 4.1. Пусть ξ_1, ξ_2, \ldots — последовательность независимых, одинаково распределенных случайных величин с конечными вторым моментом, тогда $\frac{\xi_1+\cdots+\xi_n}{n} \xrightarrow{p} E\xi_1$

Примечание. При доказательстве получили полезное неравенство:

$$p\left(\left|\frac{S_n}{n} - a\right| \ge C\right) \le \frac{D\xi_1}{n\varepsilon^2}$$

4.2 Закон больших чисел Бернулли

Теорема 4.2. Пусть N_A — число появления события A в серии из N независимых экспериментов, p=p(A) Тогда $\frac{N_A}{n} \stackrel{p}{\to} p$

4.3 Закон больших чисел Хинчина

Теорема 4.3. Пусть $\xi_1,\xi_2,\ldots-$ последовательности независимых, одинаково распределенных случайных величин с конечным первым моментом $E\xi_1<\infty$ Тогда

$$\frac{\xi_1 + \dots + \xi_n}{n} \xrightarrow{p} E\xi_n$$

4.4 Усиленный закон больших чисел Колмогорова

Теорема 4.4. В условиях теоремы Хинчина

$$\frac{\xi_1 + \xi_2 + \dots + \xi_1}{n} \xrightarrow{\text{п.н.}} E\xi_n$$

4.5 Закон больших чисел Маркова

Теорема 4.5. Пусть имеется последовательность случайных величин ξ_1, ξ_2, \dots с конечными вторыми моментами, при чем $D(S_n) = o(n^2)$ Тогда

$$\frac{S_n}{n} \xrightarrow{p} E\left(\frac{S_n}{n}\right)$$

или

$$\frac{\xi_1 + \dots + \xi_n}{n} - \frac{E\xi_1 + \dots + E\xi_n}{n} \xrightarrow{p} 0$$

5 Центральная предельная теорема

Теорема 5.1. Пусть $\xi_1, \xi_2, \ldots -$, $0 < D\xi_1 < \infty$ и $S_n = \sum i = 1^n \xi_i$ Тогда

$$\frac{S_n - nE\xi_1}{\sqrt{nD\xi_1}} \rightrightarrows N_{0,1}$$

Примечание. $a=E\xi_1,\ \sigma=\sigma_{\xi_1},$ тогда $\sigma\left(\frac{S_n}{n}\right)=\frac{\sigma}{\sqrt{n}}$

$$\frac{\frac{S_n}{n} - a}{\sigma\left(\frac{S_n}{n}\right)} \Longrightarrow N_{0,1}$$

Т.е. стандартизованное среднее арифметическое слабо сходится к стандартному нормальному распределению