NeuralNet 101

5. Error Back Propagation

We have a problem..

We have a problem..

Add complexity on neural network

- \Rightarrow Let F(X) = WX + b
- \Rightarrow Let s(x) = sigmoid(x)

 \Rightarrow Then, we can set new complex function as G(x) = s(F(s(F(x)))))

We might be able to solve the problem, but we cannot define loss function

What is Backpropagation?

=> Another way of Differentiation

Why Backpropagation?

There is an Error in Numerical differentials that the computer progresses

Why Backpropagation?

There is an Error in Numerical differentials that the computer progresses

Split into several small, definite differentials with chain rules

$$f(x, y, z) = ((x + y)z)$$
 $x = 1, y = 5, z = -3$

$$f(x, y, z) = ((x + y)z)$$
 $x = 1, y = 5, z = -3$

$$f(x, y, z) = ((x + y)z)$$
 $x = 1, y = 5, z = -3$

$$f(x, y, z) = ((x + y)z)$$
 $x = 1, y = 5, z = -3$

$$f(x, y, z) = ((x + y)z)$$
 $x = 1, y = 5, z = -3$

$$f(x, y, z) = ((x + y)z)$$
 $x = 1, y = 5, z = -3$

$$f(x, y, z) = ((x + y)z)$$
 $x = 1, y = 5, z = -3$

$$f(x, y, z) = ((x + y)z)$$
 $x = 1, y = 5, z = -3$

$$f(x, y, z) = ((x + y)z) \qquad x = 1, y = 5, z = -3$$

$$1 \qquad \qquad \frac{\partial p}{\partial x} \frac{\partial q}{\partial p} \frac{\partial f}{\partial q} \qquad p \qquad -3$$

$$-3 \qquad \qquad \qquad \frac{\partial p}{\partial x} \frac{\partial q}{\partial p} \frac{\partial f}{\partial q} \qquad q$$

$$-3 \qquad \qquad \qquad \frac{\partial q}{\partial y} \frac{\partial f}{\partial p} \frac{\partial f}{\partial q} \qquad \qquad 1$$

$$-3 \qquad \qquad \qquad \qquad \frac{\partial q}{\partial z} \frac{\partial f}{\partial q} \qquad \qquad 1$$

Making Sigmoid Layer

$$\begin{array}{c|c}
X \\
\hline
\frac{\partial L}{\partial X}
\end{array}
\qquad
\begin{array}{c}
Y \\
\hline
\frac{\partial L}{\partial Y}
\end{array}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}} \quad \frac{\partial \sigma(x)}{\partial x} = (1 - \sigma(x))\sigma(x)$$
$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{\partial Y}{\partial x} = \frac{\partial L}{\partial Y} (1 - Y)Y$$

Backpropagation - Real

Backpropagation - Real

- 1. receive new observation $\mathbf{x} = [x_1...x_d]$ and target y^*
- 2. **feed forward:** for each unit g_j in each layer 1...L compute g_j based on units f_k from previous layer: $g_j = \sigma \left(u_{j0} + \sum_k u_{jk} f_k \right)$
- 3. get prediction y and error $(y-y^*)$
- 4. back-propagate error: for each unit g_i in each layer L...1

(a) compute error on g_j $\frac{\partial E}{\partial g_j} = \sum_{i} \sigma'(h_i) v_{ij} \frac{\partial E}{\partial h_i}$ should g_j how h_i will was h_i too change as high or or lower? g_j changes too low?

- (b) for each u_{jk} that affects g_j
 - (i) compute error on u_{jk} (ii) upd

$$\frac{\partial E}{\partial u_{jk}} = \underbrace{\frac{\partial E}{\partial g_{j}}} \sigma'(g_{j}) f_{k} \qquad u_{jk} \leftarrow u_{jk} - \eta \frac{\partial E}{\partial u_{jk}}$$

е

do we want g_j to how g_j will change be higher/lower if u_{jk} is higher/lower

Sigmoid, bias, weight added

Lab Session vlab-kaist/NN101_23S/lab/week5

$$f(x,y) = \sin(x)(x + y)(x^3 + 1)$$