

دانشگاه تهران

دانشکده ریاضی، آمار و علوم کامپیوتر

نیم سال دوم تحصیلی سال ۱۴۰۱–۱۴۰۰

پاسخ آزمونک دوم اصول سیستم های کامپیوتری

مسئله۱. به کمک جدول کارنو، تابع زیر را به ساده ترین فرم ضرب حاصل جمعها(POS) بنویسید(don't care است).

$$F(w, x, y, z) = \Sigma(0,1,2,3,7,8,10)$$

$$d(w, x, y, z) = \Sigma(5,6,11,15)$$

پاسخ۱.

سعی می کنیم F' را ساده کنیم. براساس جدول فوق داریم:

$$F' = wz + xz' \rightarrow F = (wz + xz')' \xrightarrow{POS} F = (w' + z')(x' + z)$$

مسئله ۲. تابع اکثریت نوعی تابع است که به ازای هر ورودی ۳بیتی از ۰ و ۱ها، در صورتی که تعداد یکها بیشتر از صفرها باشد عدد ۱ و در غیر این صورت ۰ را خروجی میدهد. مدار مربوط به این تابع را رسم کنید.

پاسخ ۲. کافی است جدول درستی مربوط به این نوع تابع را بدست آورده و سپس ساده سازی کنیم.

$$xz + xy + zy = x(z + y) + zy$$

مسئله ۲. مدار عبارت زیر را تنها با استفاده از گیتهای XOR و AND پیادهسازی کنید.

$$AB'CD' + A'BCD' + AB'C'D + A'BC'D$$

پاسخ ۳.

$$AB'(CD'+C'D)+A'B(CD'+C'D)=(AB'+A'B)(CD'+C'D)=(A\oplus B)(C\oplus D)$$

مسئله ۴. شکل زیر یک 4bit adder-subtractor را نشان می دهد. ابتدا توضیح دهید که سیم ورودی از S به اولین 4bit adder را نشان می دهد. ابتدا توضیح دهید که سیم ورودی از S به اولین overflow رخ می دهد چه منظور کشیده شده است؟ سپس سعی کنید با اضافه کردن هرچند عدد سیم یا گیت دلخواه به شکل، تشخیص دهید که S می دهد یا خیر.

پاسخ ۴. این سیم وظیفه اضافه کردن یک واحد به حاصل جمع را دارد. در صورتی که s=1 باشد، یعنی هدف انجام عمل تفریق است، پس عدد ورودی توسط گیت های XOR مکمل 1 میشود، سپس به یک واحد اضافه کردن به آن مکمل 2 میشود و عمل تفریق انجام میشود.

برای تشخیص سرریز نیز کافیست دو carry آخر را بررسی کنیم. اگر یکسان بودند سرریز نداریم و در غیر این صورت سرریز رخ میدهد.

