Physics Stage 2: Nuclear Physics Test 2010.

Name:		(45 marks)	
1.	Within a nuclear reactor, uranium-235 is bombarded by a neutron products also emitting two neutrons. Part of the nuclear equation		er
	$^{235}_{92}$ U + $^{1}_{0}$ n \rightarrow X + $^{91}_{38}$ Sr + 2 $^{1}_{0}$ n		
	a. Write the nuclide for the missing daughter product labelled ${\bf X}$.		
	b. What is the atomic and mass numbers of the daughter product		. mark)
	Mass number (1 mark) Atomic number	(1 mark)	
2.	In terms of the properties of alpha and beta radiation, explain why penetrate paper but beta radiation can. (4 marks)	alpha radiation cannot	
3.	For an atomic bomb to explode the amount of uranium-235 must the fission reaction created from a neutron induced chain react What is a neutron induced chain reaction and why does it need cri	ion becomes uncontro tical mass to explode?	ollable.

4.	A radioactive isotope has a count of 3.85×10^3 decays in one hour. Calculate the activity of the source. (2 marks)
5.	Calculating the binding energy per nucleon in MeV of the helium-3 atom given the mass of He- $3 = 5.00 \times 10^{-27} \text{ kg}$. (4 marks)
6.	If the original activity of a sample is 42.0 kBq and it has a half-life of 4.00 days, how much will
	be left after 12.0 days? (3 marks)

7. A radiation source and a detector can be used to measure the thickness of very thin aluminium foil during manufacture. Select, from the table, a suitable radioisotope to be used as a radiation source.

RADIOISOTOPE	MOST USEFUL RADIATION EMITTED	HALF-LIFE
Americium-241	alpha	432 years
Cesium-137	gamma	30 years
Cobalt-60	gamma	5.27 days
lodine-131	beta	8.04 days
Radium-223	alpha	11.4 years
Strontium-90	beta	29 years

Choice:	1 mark)
Reason for choice: (3 marks)	
emitting alpha and beta radiation causes a tra not. (3 marks)	ive decay is called transmutation. Explain why nsmutation but emitting gamma radiation does

9. A miner in a uranium mine is unaware that he is breathing in radon-222 gas, an alpha of the gas has a very long half life with an activity of 3.40kBq which will be unchanged dutime in the mine. Each decay of the isotope releases 3.8 x 10 ⁻¹² J of energy into the both that the radioisotope is not eliminated from the body as it settles into the tissue of his ludefile a month the gas is discovered and the mine closed (assume a month is 30 days).		
	a. Calculate the total energy the miner absorbed into his lungs during this time.	(2 marks)
		,
		- 1 (15
	b. Calculate the absorbed dose he received in one month if he has a mass of 75 were unable to obtain a value for (a) above use 0.035 J) (2 marks)	o kg. (If you
		(0 1)
	c. Calculate the dose equivalent if the alpha radiation has a quality factor of 20.	(2 marks)
	d. Should the miner be concerned about his exposure? Explain. (2 marks)	

10. Determine the half-life of the substance from the graph.

- 11. When Pu-238 (atomic number 94) is bombarded with a neutron, fission occurs to form Sn-128 (atomic number 50), Ru-108 (atomic number 44) and some neutrons.
 - a. Complete the nuclear equation showing the number of neutrons released. (1 mark)

$${}^{1}_{0}$$
n + ${}^{235}_{94}$ Pu \rightarrow ${}^{128}_{50}$ Sn + ${}^{108}_{44}$ Ru + _____ 1 n

b. How much energy is released per reaction using the information on your data sheet and below. (3 marks)

 $Pu-238 = 396.82 \times 10^{-27} \text{ kg}$

 $Sn-128 = 212.33 \times 10^{-27} \text{ kg}$

Ru-108 = $179.13 \times 10^{-27} \text{ kg}$