R Markdown

INFO 201

Data Report of the Day

			Trump's share of the vote in the 2016 election minus Clinton's	How often a member is expected to support Trump based on Trump's 2016 margin	How often a member votes in line with Trump's position	Difference between a member's actual and predicted Trump- support scores
MEMBER 	PARTY 	STATE ♥	TRUMP MARGIN ♦	PREDICTED SCORE ♥	TRUMP SCORE	TRUMP PLUS-MINUS \$
Barrasso	R	WY	+46.3	99.8%	100.0%	+0.2
Enzi	R	WY	+46.3	99.8%	100.0%	+0.2
Capito	R	WV	+42.2	99.7%	100.0%	+0.3
Manchin	D	WV	+42.2	99.7%	87.5%	-12.2
Baldwin	D	WI	+0.8	78.2%	50.0%	-28.2
Johnson	R	WI	+0.8	78.2%	100.0%	+21.8
Cantwell	D	WA	-15.5	59.0%	62.5%	+3.5
Murray	D	WA	-15.5	59.0%	50.0%	-9.0
Leahy	D	VT	-26.4	47.0%	50.0%	+3.0
Sanders		VT	- 26 . 4	47.0%	25.0%	-22.0
Kaine	D	VA	-5.3	70.8%	75.0%	+4.2
Warner	D	VA	-5.3	70.8%	87.5%	+16.7
Hatch	R	UT	+18.1	94.1%	100.0%	+5.9
Lee	R	UT	+18.1	94.1%	100.0%	+5.9

https://projects.fivethirtyeight.com/congress-trump-score/,

Today's Objectives

By the end of class, you should be able to

- Comfortably read and access web APIs
- Manage api keys (access tokens)
- Generate dynamic reports with R Markdown

API Review

Module 11 exercise-1

Module 11 exercise-2

Today's API

Get NYT API Key

The New York Times Developer Network

All the APIs Fit to POST

You already know that NYTimes.com is an unparalleled source of news and information. But now it's a premier source of data, too - why just read the news when you can hack it?

Getting Started

The Times Developer Network is our API clearinghouse and community. Here's how to get started:

- Request an API key
- 2. Read the API documentation, FAQ and Terms of Use
- 3. Use the API Tool associated with each API to experiment without writing code

Access Tokens

An access token (or api key) is a unique identifier for each developer who uses the API. These are used to control access (like user names or passwords).

Access tokens are usually sent as a query parameter:

https://api.github.com/user&access token=12345678abcdefgh

parameter name (varies by API) (varies by user)

API key

Managing Access Tokens

Because **access tokens** are like passwords, we don't want to push them to GitHub!

Best practice is to store keys in a **separate script** which is added to your **.gitignore** file to avoid being committed.

```
### in apikey.R file ###
my.apikey <- "123456789abcdefg" # save the key</pre>
```

```
### in script.R file ###
# load the script with the key
source("apikey.R") # makes my.apikey available

# use the key
query.params <- list(access_token = my.apikey)
# ...</pre>
```

```
### in .gitignore file ###
apikey.R # tell git to ignore!
```

Module 11 exercise-4

Data Presentation

Data Presentation

Results Global modeled age-standardized prevalence of daily tobacco smoking in the population older than 15 years decreased from 41.2% (95% uncertainty interval [UI], 40.0%-42.6%) in 1980 to 31.1% (95% UI, 30.2%-32.0%; P < .001) in 2012 for men and from 10.6% (95% UI, 10.2%-11.1%) to 6.2% (95% UI, 6.0%-6.4%; P < .001) for women. Global modeled prevalence declined at a faster rate from 1996 to 2006 (mean annualized rate of decline, 1.7%; 95% UI, 1.5%-1.9%) compared with the subsequent period (mean annualized rate of decline, 0.9%; 95% UI, 0.5%-1.3%; P = .003). Despite the decline in modeled prevalence, the number of daily smokers increased from 721 million (95% UI, 700 million–742 million) in 1980 to 967 million (95% UI, 944 million–989 million; P < .001) in 2012. Modeled prevalence rates exhibited substantial variation across age, sex, and countries, with rates below 5% for women in some African countries to more than 55% for men in Timor-Leste and Indonesia. The number of cigarettes per smoker per day also varied widely across countries and was not correlated with modeled prevalence.

How many numbers are in this summary?

Data Reports

Data reports have hundreds (thousands!) of variables, dozens of representations (tables or graphics)

Results Global modeled age-standardized prevalence of daily tobacco smoking in the population older than 15 years decreased from 41.2% (95% uncertainty interval [UI], 40.0%-42.6%) in 1980 to 31.1% (95% UI, 30.2%-32.0%; P < .001) in 2012 for men and from 10.6% (95% UI, 10.2%-11.1%) to 6.2% (95% UI, 6.0%-6.4%; P < .001) for women. Global modeled prevalence declined at a faster rate from 1996 to 2006

(mean annualized rate of decline, 1.7%; 95% UI, 1.5 annualized rate of decline, 0.9%; 95% UI, 0.5%-1.3 the number of daily smokers increased from 721 mi million (95% UI, 944 million–989 million; P < .001 substantial variation across age, sex, and countries, countries to more than 55% for men in Timor-Leste per day also varied widely across countries and was

How can we update our report when the data or analysis changes?

Copy and Paste?

R Markdown

An R package (framework) for dynamically generating documents from code. Formatted **text**, executed **code**, and displayed **graphics** are seamlessly integrated.

Markdown

Markdown is a simple **syntax** for specifying how plain text should be formatted.

This is a paragraph in which we'll add **bold text**, italicized text, and code into the middle of a sentence

Top Level header

Second Level Header

Here is a normal paragraph

- · List item 1
- · List item 2
- · List item 3

block of code across multiple lines

Here is a block quote

Rmd Files

R Markdown document source code is written in Rmd files. These can easily be created through R Studio.

Markdown and Code

We write Markdown code as normal in the document, but include {r} next to code blocks we want to execute!

```
This is the code we will look at in class. This is just plain old Markdown that lets you render text in **bold** or _italics_. However, you can put in a block of R code, and the document will show the code and the results!

```{r}

numbers <- runif(1:100) # make random numbers
hist(x) # show a histogram of those numbers
```

# Knitting



R Markdown files are converted into readable documents (e.g., HTML) using the <a href="mailto:knitr">knitr</a> library. This library handles the code execution and producing the output.





## Markdown and Code

This is the code we will look at in class. This is just plain old Markdown that lets you render text in \*\*bold\*\* or \_italics\_. However, you can put in a block of R code, and the document will show the code and the results!

```
```{r}
numbers <- runif(1:100) # make random numbers
hist(x) # show a histogram of those numbers
```</pre>
```

This is the code we will look at in class. This is just plain old Markdown that lets you render text in **bold** or *italics*. However, you can put in a block of R code, and the document will show the code and the results!

```
numbers <- runif(1:100) # make random numbers
hist(numbers) # show a histogram of those numbers</pre>
```

#### Histogram of numbers



# knitr Options

Specify options after a comma in the {r} to specify what content should be rendered.

```
This is the code we will look at in class. This is just plain old Markdown that lets you render text in **bold** or _italics_. However, you can put in a block of R code, and the document will show the code and the results!
```

```
Do not echo (show)

the code, just output

numbers <- runif(1:100) # make random numbers

hist(x) # show a histogram of those numbers
```

This is the code we will look at in class. This is just plain old Markdown that lets you render text in **bold** or *italics*. However, you can put in a block of R code, and the document will show the code and the results!



## Inline Code

Include expressions (e.g., variables) in **inline** code blocks by prepending them with  $\mathbf{r}$ 

```
This is the code we will look at in class. This is just plain old Markdown that lets you render text in **bold** or _italics_. However, you can put in a block of R code, and the document will show the code and the results!

'``{r, echo=FALSE} numbers <- runif(1:100) # make random numbers
hist(x) # show a histogram of those numbers
numbers.mean <- mean(numbers) # save the mean

The mean of the above histogram
```

is \*\*`r numbers.mean`\*\*

This is the code we will look at in class. This is just plain old Markdown that lets you render text in **bold** or *italics*. However, you can put in a block of R code, and the document will show the code and the results!





The mean of the above histogram is 0.5175073

Module 12 exercise-1



# Questions on anything so far?

## **Action Items!**

- Be comfortable with **module 11-12**
- Assignment 5 due *Tuesday before class*

Tuesday: Making pretty diagrams!