Untyped \(\lambda \)-calculus Nameless representation

Advanced Compiler Construction and Program Analysis

Lecture 1

The topics of this lecture are covered in detail in...

Benjamin C. Pierce.

Types and Programming Languages

MIT Press 2002

I Untyped Systems 21			
3 Untyped Arithmetic Expressions	23		
3.1 Introduction 23			
3.2 Syntax 26			
3.3 Induction on Terms 29			
3.4 Semantic Styles 32			
3.5 Evaluation 34 5	The Untyped Lambda-Calculus 51		
3.6 Notes 43	5.1 Basics 52		
	5.2 Programming in the Lambda-Calculus 58		
	5.3 Formalities 68		
	5.4 Notes 73		
6	Nameless Representation of Terms 75		
	6.1 Terms and Contexts 76		
	6.2 Shifting and Substitution 78		
	6.3 Evaluation 80		

Untyped Arithmetic Expressions. Syntax

```
t ::=
    true
    false
    if t then t else t
terms
    constant true
    constant false
    conditional
```

Untyped Arithmetic Expressions. Syntax

```
terms
true
                                          constant true
false
                                         constant false
if t then t else t
                                            conditional
0
                                          constant zero
succ t
                                             successor
                                           predecessor
pred t
iszero t
                                              zero test
```

```
consts(true) = {true}
```

```
consts(true) = {true}
consts(false) = {false}
consts(0) = {0}
```

```
consts(true) = {true}
consts(false) = {false}
consts(0) = {0}
consts(succ t) = consts(t)
```

```
consts(true) = {true}
consts(false) = {false}
consts(0) = {0}
consts(succ t) = consts(t)
consts(pred t) = consts(t)
consts(iszero t) = consts(t)
```

```
consts(true)
                      = {true}
                      = {false}
consts(false)
consts(0)
            = {0}
consts(succ t)
                      = consts(t)
                  = consts(t)
consts(pred t)
consts(iszero t) = consts(t)
consts(if t<sub>1</sub> then t<sub>2</sub> else t<sub>3</sub>)
   = consts(t<sub>1</sub>) U consts(t<sub>2</sub>) U consts(t<sub>3</sub>)
```

```
size(true) = 1
size(false) = 1
size(0)
            = 1
size(succ t) = size(t) + 1
size(pred t) = size(t) + 1
size(iszero t) = size(t) + 1
size(if t<sub>1</sub> then t<sub>2</sub> else t<sub>3</sub>)
  = size(t_1) + size(t_2) + size(t_3) + 1
```

```
depth(true)
                       = 1
depth(false)
                       = 1
depth(0)
                       = 1
depth(succ t)
                  = depth(t) + 1
depth(pred t) = depth(t) + 1
depth(iszero t) = depth(t) + 1
depth(if t<sub>1</sub> then t<sub>2</sub> else t<sub>3</sub>)
  = max(depth(t<sub>1</sub>), depth(t<sub>2</sub>), depth(t<sub>3</sub>)) + 1
```

Exercise 1.1. Prove the following statement:

The number of distinct constants in a term **t** is no greater than the size of **t**:

 $|consts(t)| \leq size(t)$

The number of distinct constants in a term t is no greater than the size of t: $|consts(t)| \le size(t)$ Proof.

Principles of induction

Theorem 1.2 (Induction on depth).

Suppose P is a predicate on terms.

If, for each term s,

given P(r) for all r such that depth(r) < depth(s)

we can show P(s),

then P(s) holds for all s.

$$(\forall s.(\forall r.(\mathsf{depth}(r) < \mathsf{depth}(s)) \implies P(r)) \implies P(s)) \implies \forall s.P(s)$$

Principles of induction

Theorem 1.3 (Induction on size).

Suppose P is a predicate on terms.

If, for each term s,

given P(r) for all r such that size(r) < size(s)

we can show P(s),

then P(s) holds for all s.

$$(\forall s.(\forall r.(\mathsf{size}(r) < \mathsf{size}(s)) \implies P(r)) \implies P(s)) \implies \forall s.P(s)$$

Principles of induction

Theorem 1.4 (Structural induction).

Suppose P is a predicate on terms.

If, for each term s,

given P(r) for all immediate subterms of s we can show P(s),

then P(s) holds for all s.

Semantic styles

- Operational semantics specifies behaviour, typically by providing some machine that "executes" expressions.
- Denotational semantics provides some abstract interpretation (ignoring some details) in some domain.
- Axiomatic semantics focuses on reasoning about properties of programs (e.g. pre- and post-conditions and invariants).

Boolean Expressions

```
t ::=
true
false
if t then t else t

terms

constant true
constant false
conditional
```

v ::=
true
constant true
false
constant false

if true then t_2 else t_3 \longrightarrow t_2

$$t \longrightarrow t'$$

if true then t_2 else t_3 \longrightarrow t_2

if false then t_2 else $t_3 \longrightarrow t_3$

 $t \longrightarrow t'$

if true then
$$t_2$$
 else t_3 \longrightarrow t_2

if false then
$$t_2$$
 else $t_3 \longrightarrow t_3$

$$\begin{cases} t_1 \longrightarrow u_1 \\ \hline if t_1 then t_2 else t_3 \longrightarrow if u_1 then t_2 else t_3 \end{cases}$$

Boolean Expressions. Evaluation example

```
if false then true else
  (if true then false else true)
  → >
```

Boolean Expressions. Evaluation example

Boolean Expressions. Evaluation example

if false then true else
 (if true then false else true)
 → if true then false else true
 → false

Multi-step evaluation

Definition 1.5. The *multi-step evaluation* relation

is the reflexive, transitive closure of one-step evaluation.

That is, it is the smallest relation, such that

- 1. if $t \longrightarrow u$ then $t \longrightarrow^* u$
- 2. for any term t, we have $t \longrightarrow^* t$
- 3. if $t \longrightarrow^* u$ and $u \longrightarrow^* s$ then $t \longrightarrow^* s$

Multi-step evaluation example

```
if false then true else
  (if true then false else true)

→* false
```

Numbers. New syntactic forms

```
succ t
  pred t
∨ ::= ...
  succ nv
```

terms constant zero successor predecessor zero test

values

numeric values zero value successor value

$$t \longrightarrow t'$$

$$\left(\begin{array}{c} t_{1} \longrightarrow u_{1} \\ \hline succ \ t_{1} \longrightarrow succ \ u_{1} \end{array}\right)$$

 $t \longrightarrow t'$

$$\left(\begin{array}{c} t_{1} \longrightarrow u_{1} \\ \hline succ \ t_{1} \longrightarrow succ \ u_{1} \end{array}\right)$$

$$\begin{array}{c} & t_{1} \longrightarrow u_{1} \\ \hline \text{pred } t_{1} \longrightarrow \text{pred } u_{1} \end{array}$$

$$\begin{array}{c} t_1 \longrightarrow u_1 \\ \hline iszero \ t_1 \longrightarrow iszero \ u_1 \end{array}$$

 $t \longrightarrow t'$

	tı	\longrightarrow	U ₁		_ `
succ	tı	\longrightarrow	succ	u ₁	_

iszero 0 \longrightarrow true

$$\begin{array}{c} t_1 \longrightarrow u_1 \\ \hline \text{pred } t_1 \longrightarrow \text{pred } u_1 \end{array}$$

 $\begin{array}{c} t_{1} \longrightarrow u_{1} \\ \hline succ \ t_{1} \longrightarrow succ \ u_{1} \end{array}$

iszero 0 → true

 $t_1 \longrightarrow u_1$ pred $t_1 \longrightarrow pred u_1$

iszero (succ t) → false

 $\begin{array}{c} t_1 \longrightarrow u_1 \\ \hline iszero \ t_1 \longrightarrow iszero \ u_1 \end{array}$

 $t_1 \longrightarrow u_1$ $succ t_1 \longrightarrow succ u_1$

iszero $0 \longrightarrow true$

 $t_1 \longrightarrow u_1$ $pred t_1 \longrightarrow pred u_1$

pred $0 \longrightarrow 0$

iszero (succ t) \longrightarrow false

 $t_1 \longrightarrow u_1$ iszero $t_1 \longrightarrow iszero u_1$

pred (succ t) \longrightarrow t

Stuck terms

When formalizing semantics, we have to consider behaviour of all terms. In particular, we have to consider terms like **pred 0** and **succ false**.

If a term is not a value, but also cannot be reduced by any of the evaluation rules, we call this term a **stuck term**.

Definition. A closed term **t** is **stuck** if it is in normal form, but is not a value.

Untyped λ-calculus. Syntax

terms
variable
abstraction
application

ν ::= **λ**x.t values abstraction value

Untyped λ-calculus. Evaluation rules

$$\left(\begin{array}{c}
t_1 \longrightarrow u_1 \\
\hline
t_1 t_2 \longrightarrow u_1 t_2
\end{array}\right)$$

$$(\lambda x.t_1) t_2 \longrightarrow [x \mapsto t_2]t_1$$

Untyped \(\lambda\)-calculus. Substitution

 $[x \mapsto s]t$

```
[x \mapsto s]x
[x \mapsto s]y
                      = y \text{ if } y \neq x
 [x \mapsto s](\lambda x.t) = \lambda y.[x \mapsto s]t
    if y \neq x and y is not free in s
 [x \mapsto s](t_1 t_2) = [x \mapsto s]t_1 [x \mapsto s]t_2
```

Untyped \(\lambda\)-calculus. Alpha-equivalence

$$\lambda z. \lambda x. \lambda y. x (y z)$$

is the alpha-equivalent to

 $\lambda a. \lambda b. \lambda c. b (c a)$

Names of bound variables do not matter!

Nameless representation of terms

Working "up to renaming of bound variables" is good when reasoning on paper, but is not very practical when implementing a compiler. Some options are:

- 1. Use symbolic names are perform automatic renaming whenever name conflicts arise.
- 2. Use symbolic names, but introduce a condition that all bound variables have to use unique names, different from each other and any free variables. *Barendregt convention*.
- 3. Devise "canonical" representation so that renaming is not required.

Nameless untyped λ-calculus. Syntax

```
t ::=
   n
   λt
   t t
```

variable index abstraction application

values abstraction value

Nameless syntax. Example

$$\lambda x.\lambda y. x (y x)$$

corresponds to

Nameless syntax. Example

corresponds to

Nameless syntax. Exercise

Exercise 1.2. Write down nameless term corresponding to each of the following terms:

- 1. $c0 = \lambda s. \lambda z. z$
- 2. $c2 = \lambda s. \lambda z. s (s z)$
- 3. plus = λ m. λ n. λ s. λ z. m s (n z s)
- 4. fix = λf . (λx . f (λy . (x x) y)) (λx . f (λy . (x x) y))
- 5. foo = $(\lambda x. (\lambda x. x)) (\lambda x. x)$

Nameless syntax. Exercise

```
1. c0 = \lambda s. \lambda z. z

2. c2 = \lambda s. \lambda z. s (s z)

3. plus = \lambda m. \lambda n. \lambda s. \lambda z. m s (n z s)

4. fix = \lambda f. (\lambda x. f (\lambda y. (x x) y)) (\lambda x. f (\lambda y. (x x) y))

5. foo = (\lambda x. (\lambda x. x)) (\lambda x. x)
```

Nameless λ-calculus. Evaluation

$$\left(\begin{array}{c}
t_1 \longrightarrow u_1 \\
\hline
t_1 t_2 \longrightarrow u_1 t_2
\end{array}\right)$$

$$(\lambda t_1) t_2 \longrightarrow [0 \mapsto t_2]t_1$$

Nameless λ-calculus. Substitution

 $[n \mapsto s]t$

```
[n \mapsto s]n = s
[n \mapsto s]m = m \text{ if } n \neq m
[n \mapsto s](\lambda t) = \lambda[n+1 \mapsto \uparrow(s)]t
[n \mapsto s](t_1 t_2) = [n \mapsto s]t_1 [n \mapsto s]t_2
```

Nameless λ-calculus. Shifting

```
↑(t)
```

```
\uparrow(k, n) = n & \text{if } n < k \\
\uparrow(k, n) = n+1 & \text{if } n \ge k \\
\uparrow(k, \lambda t) = \lambda \uparrow(k+1, t) \\
\uparrow(k, t_1 t_2) = \uparrow(k, t_1) \uparrow(k, t_2)
```

$$|\uparrow(t) = \uparrow(0, t)|$$

```
class A {
   int x, y;
   bool f(int x) \{ return (x + y) > 0; \}
   int g(int y) {
      for (int x = 0; x < 10; x++) {
  if (f(x + y)) { return x; }</pre>
      return x;
```

```
class A {
  int x, y;
  bool f(int x) { return (x + y) > 0; }
  int g(int y) {
     for (int x = 0; x < 10; x++) {
       if (f(x + y)) { return x; }
     return x;
```

```
class A {
   int x, y;
   bool f(int) { return (\underline{0} + y) > 0; }
   int g(int) {
      for (int = 0; 0 < 10; 0++) {
  if (f(0 + 1)) { return 0; }
       return x;
```

```
class A {
   int x, y;
   bool f = \lambda ((\underline{0} + y) > 0)
   int g(int) {
       for (int = 0; 0 < 10; 0++) {
  if (f(0 + 1)) { return 0; }
       return x;
```

```
class A {
    int x, y;
    bool f = \lambda ((\underline{0} + y) > 0)
    int g(int) {
       for (int = 0; 0 < 10; 0 + +) {
           if ((\lambda ((\underline{0} + y) > 0))(\underline{0} + \underline{1})) { return \underline{0}; }
         return x;
```

```
class A {
    int x, y;
    bool f = \lambda ((\underline{0} + y) > 0)
    int g(int) {
       for (int = 0; 0 < 10; 0 + + 1 < 0) {
if ([0 \mapsto (0 + 1)]((0 + y) > 0)) { return 0 \in 0; }
        return x;
```

```
class A {
    int x, y;
    bool f = \lambda ((\underline{0} + y) > 0)
    int g(int) {
       for (int = 0; 0 < 10; 0 + +) {
          if (((\underline{0} + \underline{1})^{-} + y) > \overline{0}) { return \underline{0}; }
       return x;
```

```
class A {
  int x, y;
  bool f(int x) \{ return (x + y) > 0; \}
  int g(int y1) {
     for (int x1 = 0; x1 < 10; x1 + +) {
       if (((x1 + y1) + y) > 0)  return x1; }
     return x;
```

Summary

- Untyped arithmetic expressions
- Principles of induction
- Untyped λ-calculus
- Nameless representation

Summary

- Untyped arithmetic expressions
- Principles of induction
- Untyped λ-calculus
- Nameless representation

See you next time!