7. Равномерный, показательный и биномиальный законы распределения

Задан закон распределения и его основные параметры:

- •для равномерного распределения интервал (a;b);
- •для показательного распределения параметр λ ;
- ullet для биномиального распределения вероятность p=p(A) и число испытаний n .

Найти:

- 1. Для равномерного и показательного распределения функцию плотности распределения и построить ее график.
 - Для биномиального распределения найти закон распределения.
- 2. Для всех видов распределения написать функции распределения, построить их графики.
- 3. Числовые характеристики случайных величин математическое ожидание, дисперсию и среднее квадратическое отклонение.
- 4. Вероятность попадания случайной величины в заданный интервал $(\alpha; \beta)$.

No	Закон распределения	a	b	λ	p	n	α	β
176.	Равномерный	6	15	70	1		3	12
177.	Показательный			6			0	1/12
178.	Биномиальный				0,7	3	0,3	10
179.	Равномерный	7	18		-		2	11
180.	Показательный			1,5			0	1/3
181.	Биномиальный				0,8	3	2,5	5
182.	Равномерный	7	16				3	10
183.	Показательный			2,5			0	1/5
184.	Биномиальный				0,9	3	0,5	6
185.	Равномерный	9	17				4	12
186.	Показательный			1			0	0,5
187.	Биномиальный				0,2	3	1	2,5
188.	Равномерный	3	10				6	13
189.	Показательный			2			0	0,25
190.	Биномиальный				0,3	3	0,5	2,5
191.	Равномерный	4	13				8	16
192.	Показательный			3			0	1/6
193.	Биномиальный				0,4	3	1,5	4
194.	Равномерный	10	17				15	20
195.	Показательный			4			0	1/8
196.	Биномиальный				0,1	3	2	3,5

197.	Равномерный	1	10				8	13
198.	Показательный			5			0	0,1
199.	Биномиальный				0,6	3	0,3	38
200.	Равномерный	2	11				5	15

8. Нормальный закон распределения

Даны математическое ожидание a и среднее квадратичное отклонение σ нормально распределенной случайной величины X . Требуется:

- 1. Записать функцию плотности данной нормально распределенной случайной величины и построить ее график.
- 2. Найти вероятность того, что случайная величина X примет значения из заданного интервала $(\alpha; \beta)$.
- 3. Найти вероятность того, что абсолютная величина отклонения от среднего значения окажется меньше δ .

No॒	а	σ	α	β	δ
201.	11	4	5	25	9
202.	13	3	6	21	5
203.	14	5	7	22	11
204.	15	4	11	21	6
205.	13	5	9	19	4
206.	11	3	7	19	6
207.	9	5	15	18	8
208.	7	3	3	16	6
209.	11	5	7	19	9
210.	13	4	7	20	8
211.	15	5	8	21	7
212.	7	2	3	12	5
213.	9	3	5	11	4
214.	10	3	6	15	8
215.	12	4	2	15	3
216.	14	4	10	20	10
217.	12	5	8	18	10
218.	10	4	6	16	10
219.	8	2	4	14	5
220.	10	5	8	20	8
221.	12	3	10	15	4
222.	14	6	5	24	11
223.	16	6		28	12
224.	8	4	3	15	8
225.	10	5	3	20	9

9. Корреляционный анализ. Уравнение регрессии

Задачи №№226-250. Для представленных ниже данных вычислить коэффициент корреляции и построить уравнения регрессии.

			$N_{\underline{0}}$	226							$N_{\underline{0}}$	227			
1	η_{ij}			3	Y				n_{ij}				Y		
	ij	2	7	12	17	22	27		ij	10	15	20	25	30	35
	10	2	4						30	2	6				
	20		6	2					40		4	4			
X	30			3	50	2		λ	50			7	35	8	
	40			1	10	б			60			2	10	8	
	50				4	7	3		70				5	б	3

			№	228							№	229			
1	7				Y			1	η_{ij}			,	Y		
,	η_{ij}	10	15	20	25	30	35		ij	6	12	18	24	30	36
	30	2	6						5					3	3
	40		4	4					10				4	5	
X	50			7	35	8		X	15		2	40	8	2	
	60			2	10	8			20	8	2	10			
	70				5	б	3		25	9	12	4			

			№	230								No	231				
1	n]	Y					n				Y			
,	η_{ij}	8	13	18	23	28	33			n_{ij}	4	9	14	19	24	29	
	18	2								10	2	3					
	28	2	10			4				20		7	3				
\boldsymbol{X}	38		10	30	5				X	30			2	Y 14			
	48			15	7	8	2			40				10	6		
	58						3			50				1	б	4	
			No	232								$N_{\underline{0}}$	233	Y 14 19 24 29 3 2 5 2 10 6 1 6 4 233 Y 25 30 35 40 4 6 45 2			
n_{ij}				Y	7					n_{ij}			,	14 19 24 29 3 2 5 2 10 6 1 6 4 233 Y 25 30 35 40			
ij	1	5.5	16.0	16.	.5	17.0	17.5			ij	15	20	25	2 5 2 10 6 1 6 4 233 Y 25 30 35 40			
12	2	5	2							5	4	2					
	3	3	15	6						8		6	4				
$7 \mid 14$			8	20)	7			X	11		5	6	45	2		
1:	_			9		15	2	4		14			2	3	6		
10	5					2	6			17				4	7	4	

			№ 23	34							$N_{\underline{0}}$	235			
1	η_{ij}			Y				,	η_{ij}				Y		
	ij	40	50	60	70	80			ij	5	10	15	20	25	30
	25	2							8	2	4				
	40	6	15	10		4			12		3	7			
\boldsymbol{X}	55		8	15	5			X	16			5	30	10	
	70			7	15	8			20			7	10	8	
	85	2				3			24				5	б	3

				№	236							$N_{\underline{0}}$	237			
	n	ļ			Y				n	ij			}	7		
		ij	5,5	6,0	6,5	7,0	7,5	8,0		IJ	65	75	85	95	105	115
		4	6	4						80	5	3				
		6		10	8					85	3	30	8			
X		8			4	35	5		X	90			70	10		
		10			б	10	4			95			10	40	10	
		12				3	3	2		100					6	5

			No	238							№ 23	39		
	η_{ij}				Y			γ	l_{ij}			Y		
	ij	10	20	30	40	50	60	,	ij	2,4	2,8	3,2	3,6	4,0
	60	5	3						2,5	10	3			4
	75		18	7					3,0	7	30	15		
\boldsymbol{X}	90	2		30	10			X	3,5		10	50	15	
	105				12	3	4		4,0			10	30	6
	120					2	4		4,5					10

			№ 2	40							№ 24	1			
ľ	i_{ij}			Y				,	n_{ij}			Y			
	ij	50	55	60	65	70			ıj	25	30	35	40	45	
	30				5	5			20					2	
	40	4	6						22			5	4	3	
	50	<u> </u>	15	40			_	X	24			35	10		
\boldsymbol{X}	-		13		5		1	11	26	5	10	5			
	60			10	3		_		28		7				
	70				5				30	6	8				
	80				3	2									

			N	242							No	243			
ľ	\imath_{ij}			Y	7			n				7	Y		
	ij	10	20	30	40	50	60		ij	10	20	30	40	50	60
	30	5	10						30					10	5
	40			15		55			40				15		
X	50			20	80			X	50			80	20		
	60		5		10	35			60		35	10		5	
	70	5					10		70	10	3			2	

			No	244							No	245			
n				Y	7			n]	Y		
	ij	6	12	18	24	30	36		ij	-2	0	4	6	12	24
	5					3	3		1	4	5				
	10				4	5			2	1	4	9			
X	15		2	40				X	4		1	20	21		
	20		6	10	5	б			6			4	17	6	
	25	3	7	4					7				5	10	8

№ 246									№ 247									
1	i_{ij}	Y							n		Y							
	ij	15	18	21	24	27	30		10	ij	-6	0	6	12	18	24		
	20	2	4							1	8	1						
	25		6	3	35	4				2	1	4	9					
\boldsymbol{X}	30			6	8	6			X	3		1	10	31				
	35			2	4	7	3			4			4	16	7			
	40				6	4				5				2	13	8		

	№ 248										№ 249								
	1	i_{ij}	Y								l_{ij}	Y							
		ij	7	9	12	18	22	23			ij	2,5	2,9	3,4	3,9	4,0			
		10	5	3							2,5	10	3						
		20	2	17	8						3,0	7	30	15					
	X	30			20	20				X	3,5		20	40	15				
		40				10	5	4			4,0			20	20	6			
		50					2	4			4,5	4				10			

ТИПОВОЙ РАСЧЕТ

Задание 1. Марковские цепи с дискретным временем

Дана матрица переходных вероятностей за один шаг марковской цепи с дискретным временем. Составить граф марковской цепи, найти вероятности переходов из одного состояния в другое за два шага. Найти распределение вероятностей за один, два, три, четыре, восемь шагов. Определить стационарные вероятности. Сравнить стационарные вероятности с распределение вероятностей за восемь шагов.

1.1
$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$
1.4
$$1.5$$

$$1.6$$

$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{2}{3} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{5}{6} & \frac{1}{6} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{3}{4} & 0 & \frac{1}{4} \\ 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix} \qquad P = \begin{pmatrix} 0 & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix} \qquad P = \begin{pmatrix} \frac{4}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

1.8

$$P = \begin{pmatrix} 0 & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{4}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

1.10

$$P = \begin{pmatrix} \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{3}{4} & \frac{1}{4} & 0 \\ \frac{1}{3} & 0 & \frac{2}{3} \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix}$$

1.11

$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{3}{4} & \frac{1}{4} & 0 \\ \frac{1}{3} & 0 & \frac{2}{3} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix}$$

1.13

$$P = \begin{pmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{4} & \frac{3}{4} & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{5}{6} & 0 & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{4} & \frac{3}{4} & 0 \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{5}{6} & 0 & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{2}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{6} & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4} & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{2} & \frac{1}{6} & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4} & 0 \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{3} \\ \frac{3}{4} & \frac{1}{4} & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ \frac{3}{4} & \frac{1}{4} & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ \frac{3}{4} & \frac{1}{4} & 0 \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{3}{4} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{3}{4} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \qquad P = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{3}{4} & \frac{1}{4} \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & \frac{3}{4} & \frac{1}{4} \\ \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{5}{6} & \frac{1}{6} & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & \frac{3}{4} & \frac{1}{4} \\ \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{5}{6} & \frac{1}{6} & 0 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & \frac{5}{6} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{9} & \frac{5}{9} & \frac{3}{9} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{2}{7} & \frac{3}{7} & \frac{2}{7} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{9} & \frac{5}{9} & \frac{3}{9} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{2}{7} & \frac{3}{7} & \frac{2}{7} \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{4} & \frac{2}{4} & \frac{1}{4} \\ \frac{2}{10} & \frac{3}{10} & \frac{5}{10} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{11} & \frac{5}{11} & \frac{5}{11} \\ \frac{1}{11} & \frac{2}{11} & \frac{2}{5} & \frac{2}{5} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{11} & \frac{5}{11} & \frac{5}{11} \\ \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$