Decimation in Time (DIT) processing

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-\frac{j2\pi kn}{N}}$$

$$= \sum_{n=0}^{\frac{N}{2}-1} x [2n] \cdot e^{-\frac{j2\pi k(2n)}{N}} + \sum_{n=0}^{\frac{N}{2}-1} x [2n+1] \cdot e^{-\frac{j2\pi k(2n+1)}{N}}$$

$$= \sum_{n=0}^{\frac{N}{2}-1} x [2n] \cdot e^{-\frac{j2\pi kn}{(N/2)}} + \sum_{n=0}^{\frac{N}{2}-1} x [2n+1] \cdot e^{-\frac{j2\pi kn}{(N/2)}} \cdot e^{-\frac{j2\pi kn}{N}}$$

$$= \sum_{n=0}^{\frac{N}{2}-1} x [2n] \cdot e^{-\frac{j2\pi kn}{N/2}} + \left(e^{-\frac{j2\pi k}{N}}\right) \cdot \sum_{n=0}^{\frac{N}{2}-1} x [2n+1] \cdot e^{-\frac{j2\pi kn}{N/2}}$$

Let
$$y[n] = \lceil x[0] \ x[2] \rceil$$
 & $z[n] = \lceil x[1] \ x[3] \rceil$

$$= \sum_{n=0}^{\frac{N}{2}-1} \underbrace{y[n]}_{even \ samples} \cdot e^{-\frac{j2\pi kn}{N/2}} + \left(e^{-\frac{j2\pi k}{N}}\right) \cdot \sum_{n=0}^{\frac{N}{2}-1} \underbrace{z[n]}_{odd \ samples} \cdot e^{-\frac{j2\pi kn}{N/2}}$$

$$\begin{bmatrix}
X[k] = \sum_{n=0}^{\frac{N}{2}-1} \underbrace{y[n]}_{even \ samples} \cdot e^{-\frac{j2\pi kn}{N/2}} + \left(e^{-\frac{j2\pi k}{N}}\right) \cdot \sum_{n=0}^{\frac{N}{2}-1} \underbrace{z[n]}_{odd \ samples} \cdot e^{-\frac{j2\pi kn}{N/2}} \quad \leftarrow [k = 0 \& 1]$$

$$= \left[\sum_{n=0}^{\frac{N}{2}-1} y[n] \cdot e^{-\frac{j2\pi kn}{N/2}}\right] + \left[\left(e^{-\frac{j2\pi k}{N}}\right) \cdot \sum_{n=0}^{\frac{N}{2}-1} z[n] \cdot e^{-\frac{j2\pi kn}{N/2}}\right]$$

$$= Y[k] + \left(e^{-\frac{j2\pi k}{N}}\right) \cdot Z[k]$$

$$\begin{split} \left[X \left[k + \frac{N}{2} \right] &= \sum_{n=0}^{\frac{N}{2}-1} y [n] \cdot e^{-\frac{j2\pi kn}{N/2}} \cdot e^{-\frac{j2\pi \left(k + \frac{N}{2} \right)n}{N/2}} + \left(e^{-\frac{j2\pi \left(k + \frac{N}{2} \right)}{N}} \right) \cdot \sum_{n=0}^{\frac{N}{2}-1} z [n] \cdot e^{-\frac{j2\pi kn}{N/2}} \cdot e^{-\frac{j2\pi \left(k + \frac{N}{2} \right)n}{N/2}} \\ &= \sum_{n=0}^{\frac{N}{2}-1} y [n] \cdot e^{-\frac{j2\pi kn}{N/2}} \cdot e^{-\frac{j2\pi \left(\frac{N}{2} \right)}{N/2}} + \left(e^{-\frac{j2\pi k}{N}} \cdot e^{-\frac{j2\pi k}{N}} \cdot e^{-\frac{j2\pi kn}{N}} \right) \cdot \sum_{n=0}^{\frac{N}{2}-1} z [n] \cdot e^{-\frac{j2\pi kn}{N/2}} \cdot e^{-\frac{j2\pi kn}{N$$

Assume $x[n] = [1 \ 2 \ 3 \ 4]$ then $y[n] = [1 \ 3]$ and $z[n] = [2 \ 4]$

$$\begin{bmatrix}
X[k] = Y[k] + \left(e^{-\frac{j2\pi k}{N}}\right) \cdot Z[k] \\
X[k = 0] = Y[0] + \left(e^{-\frac{j2\pi \cdot 0}{N}}\right) \cdot Z[0] \\
= \sum_{n=0}^{\frac{N}{2} - 1} y[n] \cdot e^{-\frac{j2\pi \cdot 0 \cdot n}{N/2}} + \left(e^{-\frac{j2\pi \cdot 0}{N}}\right) \cdot \sum_{n=0}^{\frac{N}{2} - 1} z[n] \cdot e^{-\frac{j2\pi \cdot 0 \cdot n}{N/2}} \\
= 3 + 6 = 10$$

The Fast Fourier Transform (FFT)

- The <u>FFT</u> is an algorithm or a procedure with which the discrete Fourier transform can be computed using far fewer calculations.
 - o Decimation in time algorithm
 - o Decimation in frequency algorithm
- DFT requires $\lceil N^2 \rceil$ complex multiply and $\lceil (N-1) \cdot N \rceil$ add operations
- FFT needs only approximately $\left\lceil \frac{N}{2} \log_2 N \right\rceil$ operations.

Figure 9-11 Computation for direct DFT and DFT via FFT.

Number of stages, ν	Number of points,	Number of complex multiplications using direct calculation, N^2	Number of complex multiplications using Cooley-Tukey FFT algorithm, (N/2) log ₂ N	Times faster than direct evaluation, $R = N^2/((N/2) \log_2 N)$
2	4	16	4	4
3	8	64	12	5.333
4	16	256	32	8
5	32	1,024	80	12.8
6	64	4,096	192	21.33
7	128	16,384	448	36.57
8	256	65,536	1024	64
9	512	262,144	2304	113.77
10	1024	1,048,576	5120	204.8