# relational model

### Relational Model

A database consists of several tables (relations)

| Customer |      |        |      |       |  |  |  |  |
|----------|------|--------|------|-------|--|--|--|--|
| CustID   | Name | Street | City | State |  |  |  |  |
|          |      |        |      |       |  |  |  |  |
|          |      |        |      |       |  |  |  |  |



| Depositor |            |  |  |  |  |  |
|-----------|------------|--|--|--|--|--|
| CustID    | AccountNum |  |  |  |  |  |
|           |            |  |  |  |  |  |
|           |            |  |  |  |  |  |

- Columns in the tables are named by attributes
- Each attribute has an associated domain (set of allowed values)

e.g. for Customer.State: {CA, NY, WA, ...}

 Data in a table consist of a set of rows (tuples) providing values for the attributes

### Relational Model Example



### Relational Schema

- "Type declaration"
- Consists of:
  - Relation name
  - Set of attributes
  - Domain of each attribute
  - Integrity constraints

# Relational Schema Attribute Types

- Each attribute of a relation has a:
  - Name
  - Domain: Set of allowed values
- Attribute values are (normally) required to be atomic;
   that is indivisible
- Sometimes, the special value null is considered a member of every domain

### Relational Instance

- "The current content of the relation"
- Consists of:
  - A set of rows (tuples) over the attributes with values from the attribute domains

#### e.g.

#### Customer

| CustID | Name            | Street       | City |
|--------|-----------------|--------------|------|
| 1      | Fred Flintstone | First Av     | SD   |
| 2      | Barney Rubble   | Main Street  | SD   |
| 3      | Maggie Simpson  | Cartoon Way  | SF   |
| 4      | James Bond      | Dangerous Av | NY   |

### Relations are Unordered

 The tuples are not considered to be ordered, even though they appear to be so when displayed in tabular form

| Custo  | omer | r    |        |        |        |      |              |
|--------|------|------|--------|--------|--------|------|--------------|
| CustIE | ) N  | lame | Custom | ner    |        |      |              |
| 1      | F    | red  | CustID | Name   | Custom | ner  |              |
| 3      | I    | lagg | 4      | James  | CustID | Nan  | ne           |
| 2      |      | arne | 1      | Fred F | 3      | Mag  | ggie Simpson |
| 4      |      |      | 3      | Maggi  | 4      | Jam  | nes Bond     |
|        |      |      | 2      | Barne  | 1      | Fred | d Flintstone |
|        |      | L    |        |        | 2      | Barı | ney Rubble   |
|        |      | /    |        | ,      |        |      |              |

Visual representations of the same relational instance

### **Tuples: Some notation**

- Component values/coordinates of a tuple t: t(A<sub>i</sub>)
   The value of attribute A<sub>i</sub> for tuple t
- Subtuple of a tuple t:  $t(A_{i_1}, A_{j_1}, ..., A_{k_l})$ The subtuple of t containing the values of attributes  $A_i, A_j, ..., A_k$

### **Tuples: Some notation**



Attribute and tuple values are generally assumed to be ordered

### **Database**

- A database consists of multiple relations
- Information about an application is broken up into parts,
   with each relation storing one part of the information

account: stores information about accounts

depositor: stores information about which customer

owns which account

customer: stores information about customers

### Database

- Why not store all information as a single relation?
- It is possible e.g., bank (accountNum, balance, customerName, ..)
- But not desirable
  Results in repetition of information and the need for null values

### **Relational Integrity Constraints**

- Constraints are conditions that must hold on all valid relation instances of a database
- Some common types of constraints:
  - Key constraints
  - Entity integrity constraints
  - Referential integrity constraints

### **Key Constraints**

#### Superkey of relation R:

A set of attributes SK of R such that no two tuples in any valid relation instance r(R) will have the same value for SK. That is, for any distinct tuples t1 and t2 in r(R), t1(SK)  $\neq$  t2(SK).

#### Key of relation R:

A "minimal" superkey; that is, a superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey.

e.g., the CAR relation schema:

CAR(<u>State</u>, <u>Reg#</u>, SerialNo, Make, Model, Year)
has two keys Key1 = {State, Reg#}, Key2 = {SerialNo}.
{SerialNo, Make} is a superkey but not a key.

### **Key Constraints**

• If a relation has *several* candidate keys, one is chosen arbitrarily to be the primary key.

### **Key Constraint Examples**

• The primary key attributes are underlined

| CAR | LicenseNumber      | EngineSerialNumber | Make       | Model   | Year |
|-----|--------------------|--------------------|------------|---------|------|
|     | Texas ABC-739      | A69352             | Ford       | Mustang | 96   |
|     | Florida TVP-347    | B43696             | Oldsmobile | Cutlass | 99   |
|     | New York MPO-22    | X83554             | Oldsmobile | Delta   | 95   |
|     | California 432-TFY | C43742             | Mercedes   | 190-D   | 93   |
|     | California RSK-629 | Y82935             | Toyota     | Camry   | 98   |
|     | Texas RSK-629      | U028365            | Jaguar     | XJS     | 98   |

#### **EMPLOYEE**

| FNAME   MINIT   LNAME   SSN   BDATE   ADDRESS   SEX   SALARY   SUPERSSN   DNO |
|-------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------|

#### DEPARTMENT

| DNAME <u>DNUMBER</u> MGRSSN MGRSTARTDATE | DNAME | DNUMBER | MGRSSN | MGRSTARTDATE |
|------------------------------------------|-------|---------|--------|--------------|
|------------------------------------------|-------|---------|--------|--------------|

#### DEPT\_LOCATIONS

| DNUMBER | DLOCATION |
|---------|-----------|
| ·       |           |

#### **PROJECT**

| PNAME | PNUMBER | PLOCATION | DNUM |  |
|-------|---------|-----------|------|--|
|-------|---------|-----------|------|--|

#### WORKS\_ON

| ESSN | PNO | HOURS |
|------|-----|-------|
|------|-----|-------|

#### DEPENDENT

| ESSN | DEPENDENT_NAME | SEX | BDATE | RELATIONSHIP |
|------|----------------|-----|-------|--------------|
|      |                |     |       |              |

| EMPLOYEE  | FNAME      | MINIT  | LNAME     | SSN       | BDATE      | ADDRESS                  | SEX      | SALARY  | SUPERSSN   | DNO  |
|-----------|------------|--------|-----------|-----------|------------|--------------------------|----------|---------|------------|------|
| LNIFLOILL | I IMAIAIIT | Marail | L346-441E | OON       | DDML       | ADDRESS                  | OLA      | OMLMITI | OUFLINGUIN | DIMO |
|           | John       |        | Smith     | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М        | 30000   | 333445555  | 5    |
|           | Franklin   |        | Wong      | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | M        | 40000   | 888665555  | 5    |
|           | Alicia     |        | Zelaya    | 999887777 | 1968-01-19 | 3321 Casile, Spring, TX  | u.       | 25000   | 987654321  | 4    |
|           | Jennifer   |        | Wallace   | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | <b>F</b> | 43000   | 888665555  | 4    |
|           | Ramesh     |        | Narayan   | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М        | 38000   | 333445555  | 5    |
|           | Joyce      |        | English   | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | N        | 25000   | 333445555  | 5    |
|           | Ahmad      |        | Jabbar    | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М        | 25000   | 987654321  | 4    |
|           | James      |        | Borg      | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М        | 55000   | nul        | 1    |

WORKS\_ON

| DEPENDENT | <u>ESSN</u> | DEPENDENT_NAME | SEX | BDATE      | RELATIONSHIP |
|-----------|-------------|----------------|-----|------------|--------------|
|           | 333445555   | Alice          | т.  | 1986-04-05 | DAUGHTER     |
|           | 333445555   | Theodore       | М   | 1983-10-25 | SON          |
|           | 333445555   | Jby            | F   | 1958-05-03 | SPOUSE       |
|           | 987654321   | Abner          | М   | 1942-02-28 | SPOUSE       |
|           | 123456789   | Michael        | М   | 1988-01-04 | SON          |
|           | 123456789   | Alice          | -   | 1988-12-30 | DAUGHTER     |
|           | 123456789   | Elizabeth      | F   | 1967-05-05 | SPOUSE       |

|   | <u>ESSN</u>       | <u>PNO</u> | HOURS |
|---|-------------------|------------|-------|
|   | 123456789         | 4mm        | 32.5  |
| ı | 123456789         | 2          | 7.5   |
| ı | 666884444         | 3          | 40.0  |
| ı | 453453453         | 4mm        | 20.0  |
| ı | 453453453         | 2          | 20.0  |
| ı | 333445555         | 2          | 10.0  |
| ı | 333445555         | 3          | 10.0  |
| ı | 333445555         | 10         | 10.0  |
| ı | 333445555         | න          | 10.0  |
| ı | 999887777         | 30         | 30.0  |
| ı | 999887777         | 10         | 0.01  |
| ı | 967987987         | 10         | 35.0  |
| ı | 987987987         | 30         | 5.0   |
| ı | 987654321         | 30         | 20.0  |
| ı | 987654321         | 20         | 15.0  |
|   | <b>38866</b> 5555 | 20         | rull  |
|   |                   |            |       |

### **Entity Integrity**

 The primary key attributes PK of each relation schema R in S cannot have null values in any tuple. This is because PK values are used to identify the individual tuples.

> t(A) ≠ null for any tuple t in a valid instance of R, where A is in PK

Note: Other attributes of R may be similarly constrained to disallow null values, even though they are not members of the primary key.

## Referential Integrity

- A constraint involving two relations of the database (the previous constraints involve a single relation).
- Used to specify a relationship among tuples in two relations: the referencing relation and the referenced relation.
- Tuples in the referencing relation R<sub>1</sub> have attributes FK (called foreign key attributes) that reference the primary key attributes PK of the referenced relation R<sub>2</sub>. A tuple t<sub>1</sub> in R<sub>1</sub> is said to reference a tuple t<sub>2</sub> in R<sub>2</sub> if t<sub>1</sub>(FK) = t<sub>2</sub>(PK).
- A referential integrity constraint can be displayed in a relational database schema as a directed arc from R₁.FK to R₂.PK.



### Referential Integrity Constraint

#### Statement of the constraint

The value in the foreign key column(s) FK of the **referencing relation** R<sub>1</sub> can be either

- (1) a value of a primary key PK in the **referenced relation**  $R_2$  or
- (2) null.

In case (2), the FK in R<sub>1</sub> should <u>not</u> intersect its own primary key (or else entity integrity is violated)

### Other types of constraints

- Semantic Integrity Constraints
   based on application semantics and cannot be expressed by the model per se
- Example
  - e.g., "the max. no. of hours per employee for all projects he or she works on is 56 hrs per week"
- A constraint specification language may have to be used to express these
- SQL-99 allows triggers and ASSERTIONS to support some of these