3 xy 平面の $y \geq 0$ の部分にあり,x 軸に接する円の列 $C_1,\,C_2,\,C_3,\,\cdots$ を次のように定める。

 C_1 と C_2 は半径1の円で,互いに外接する。

正の整数 n に対し, C_{n+2} は C_n と C_{n+1} に外接し, C_n と C_{n+1} の弧および x 軸で囲まれる部分にある。

円 C_n の半径を r_n とする。

- (1) 等式 $rac{1}{\sqrt{r_{n+2}}} = rac{1}{\sqrt{r_n}} + rac{1}{\sqrt{r_{n+1}}}$ を示せ。
- (2) すべての正の整数 n に対して $\frac{1}{\sqrt{r_n}} = s\alpha^n + t\beta^n$ が成り立つように , n によらない 定数 α , β , s , t の値を一組与えよ。
- (3) $n o \infty$ のとき数列 $\left\{ rac{r_n}{k^n}
 ight\}$ が正の値に収束するように実数 k の値を定め , そのと きの極限値を求めよ。