assingment 5

giridharpaida1111

January 2021

1 Introduction

Question For any two statements p and q the negation of expression p gibvee q $\bigvee($ p \bigwedge q)is

1.~(p
$$\wedge$$
 ~ q

2. p ∧q

3. p rightarrow q

 $4.\sim (p \lor q)$

solution

The negation of p \bigwedge (\sim p \bigvee q) is \sim (p \bigwedge (\sim p \bigvee q)) \sim (p \bigwedge \sim q) \bigvee (p \bigvee q),

we know that $p \lor \sim p = True$

 $\sim (T \land (p \lor q), we know that True V a=a$

 $\sim (p \bigvee q)$

 $\sim \dot{p} \dot{\wedge} \sim \dot{q}$

hence proved

-	nonce proved							
\boldsymbol{p}	\boldsymbol{q}	$\sim {f p}$	$\sim {f q}$	$\sim (p \land q)$	\sim ($p \lor q$)	$(p \lor q))$	$\sim (\mathbf{p} ee \mathbf{q})$	∼p∧ q
0	0	1	1	0	1	1	1	1
0	1	1	0	1	1	1	0	0
1	0	0	1	1	1	1	0	0
1	1	0	0	0	0	1	0	0