

LISTADO 1: ESPACIOS Y SUBESPACIOS VECTORIALES

ÁLGEBRA II - 525148

Observación: Los ejercicios marcados con (P) son los ejercicios a resolver en las clases prácticas.

1) (P) Sea $\mathbb{K} = \{0, 1\}$. Las operaciones

$$\Delta: \mathbb{K} \times \mathbb{K} \longrightarrow \mathbb{K}, \quad *: \mathbb{K} \times \mathbb{K} \longrightarrow \mathbb{K}$$

son tales que

Estas tablas significan que Δ y * son tales que

$$0\Delta 0 = 0,$$
 $0\Delta 1 = 1,$ $1\Delta 0 = 1,$ $1\Delta 1$ no se define $0*0$ no se define, $0*1=0,$ $1*0=0,$ $1*1=1.$

- 1.1) ¿Son Δ y * conmutativas? ¿Hay un elemento neutro para la primera operación? ¿Hay un neutro para la segunda?
- 1.2) Defina los valores que faltan en las tablas de modo que el conjunto \mathbb{K} , con las operaciones Δ y *, sea un cuerpo.
- 2) Sea X un conjunto no vacío. Determine si $(\mathcal{P}(X), \cup, \cap)$ es un cuerpo. Recuerde que

$$\mathcal{P}(X) = \{A : A \subseteq X\}$$

y las operaciones \cup y \cap son tales que para cada par de conjuntos $A, B \in \mathcal{P}(X)$

$$A \cup B = \{x \in X : x \in A \lor x \in B\}, \qquad A \cap B = \{x \in X : x \in A \land x \in B\}.$$

- 3) Decida si los siguientes son o no espacios vectoriales.
 - 3.1) $(\mathbb{C}, \oplus, \odot)$ sobre el cuerpo $(\mathbb{R}, +, \cdot)$, 3.3) **(P)** $(\mathbb{Q}, \oplus, \odot)$ sobre el cuerpo $(\mathbb{R}, +, \cdot)$,
 - 3.2) $(\mathbb{R}, \oplus, \odot)$ sobre el cuerpo $(\mathbb{Q}, +, \cdot)$, 3.4) **(P)** $(\mathbb{C}^2, \oplus, \odot)$ sobre el cuerpo $(\mathbb{C}, +, \cdot)$,

donde, en cada caso, + y · denotan la suma y producto usuales entre los elementos de los cuerpos dados, \oplus es la suma usual entre los elementos de los conjuntos especificados y \odot es el producto usual entre un elemento del primer conjunto y un elemento del cuerpo.

- 4) Justifique adecuadamente si el conjunto V con la operaciones suma \oplus y multiplicación por escalar \odot definidas en cada caso es un \mathbb{K} -espacio vectorial.
 - 4.1) **(P)** $V = \mathbb{R}^+, \mathbb{K} = \mathbb{R}, \qquad x \oplus y = xy \qquad y \qquad \alpha * x = x^{\alpha}.$
 - 4.2) **(P)**

$$V = \left\{ \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{C}) \right\}, \quad \mathbb{K} = \mathbb{C},$$

con las operaciones usuales de suma de matrices y producto de una matriz por un número complejo.

4.3)
$$V = \left\{ \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{C}) \right\}, \quad \mathbb{K} = \mathbb{R},$$

con las operaciones usuales de suma de matrices y producto de una matriz por un número real.

4.4)
$$V = \mathbb{R}^2$$
, $\mathbb{K} = \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$
 y $\alpha \odot (x_1, y_1) := (\alpha x_1, y_1).$

- 5) Determine si los subconjuntos indicados son subespacios vectoriales del espacio vectorial V con las operaciones usuales de suma y producto por escalar sobre el cuerpo K. Para cada conjunto, escríbalo (si se puede) en forma paramétrica, o bien caracterícelo usando ecuaciones.
 - 5.1) $V = \mathbb{R}^3$, $\mathbb{K} = \mathbb{R}$

1) **(P)**
$$M = \{(x, y, z) : xyz \ge 0\}$$

3) **(P)**
$$S = \{(x, y, z) \in \mathbb{R}^3 : 2x + y - z = 0\}$$

2)
$$N = \{(x, y, z) : x = y\}$$

4)
$$T = \{(x, y, z) \in \mathbb{R}^3 : x - yz = 0\}$$

5.2)
$$V = \mathbb{C}^2$$
, $\mathbb{K} = \mathbb{C}$

1)
$$R = \{(x, y) : x + \overline{y} = 0\}$$

2) **(P)**
$$P = \{(x, y) : \text{Re}(x) = \text{Re}(y)\}$$

5.3)
$$V = \mathbb{C}^2$$
, $\mathbb{K} = \mathbb{R}$

1)
$$R = \{(x, y) : x + \overline{y} = 0\}$$

2) **(P)**
$$P = \{(x, y) : \text{Re}(x) = \text{Re}(y)\}$$

5.4)
$$V = \mathcal{M}_2(\mathbb{Q}), \mathbb{K} = \mathbb{Q}$$

1)
$$U = \left\{ \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} : b \in \mathbb{Q} \right\}$$

2) **(P)**
$$W = \left\{ \begin{pmatrix} a & 0 \\ 0 & a-1 \end{pmatrix} : a \in \mathbb{Q} \right\}$$

3)
$$P = \left\{ \left(\begin{array}{cc} a & a \\ b & b \end{array} \right) : a + 2b - 1 = 0 \right\}$$

5.5)
$$V = \mathcal{M}_n(\mathbb{C}), \mathbb{K} = \mathbb{C}$$

1)
$$U = \{A : A \text{ es invertible}\}$$

3)
$$W = \{A : A \text{ es antisimétrica}\}\$$

2)
$$S = \{A : A^2 = \theta\}$$

4)
$$R = \{ A \in M_n(\mathbb{R}) : \text{rango}(A) = 0 \}$$

5.6)
$$V = \mathcal{P}_3(\mathbb{R}), \mathbb{K} = \mathbb{R}$$

1) **(P)**
$$S = \{p : p \text{ intersecta al eje } Y \text{ en } -1\}$$
 3) $U = \{p : p'(0) + 2p(1) = 0\}$
2) $M = \{p : p \text{ intersecta al eje } X \text{ en } -1\}$ 4) $W = \{p : p' = p\}$

3)
$$II = \{n \cdot n'(0) + 2n(1) = 0\}$$

2)
$$M = \{p : p \text{ intersecta al eie } X \text{ en } -1\}$$

4)
$$W = \{p : p' = p\}$$

5.7)
$$V = \mathcal{F}(\mathbb{R}, \mathbb{R}), \mathbb{K} = \mathbb{R}$$

1) (P)
$$G = \{ f \in \mathcal{F} : f \text{ es cóncava} \}$$

3) (P)
$$S = \{ f \in \mathcal{F} : f \text{ es sobreyectiva} \}$$

2)
$$W_p = \{ f \in \mathcal{F} : f \text{ es } p\text{-periódica} \}$$

4)
$$E = \{ f \in C^2(0,1) : f \text{ es par} \}$$

Recordar que $\mathcal{F}(\mathbb{R},\mathbb{R})$ es el conjunto de las funciones reales. Además $f \in \mathcal{F}(\mathbb{R},\mathbb{R})$ es

- convexa si $(\forall x, y \in \mathbb{R})(\forall \lambda \in [0, 1])$ $f(\lambda x + (1 \lambda)y) \leq \lambda f(x) + (1 \lambda)f(y)$;
- cóncava si $(\forall x, y \in \mathbb{R})(\forall \lambda \in [0, 1])$ $f(\lambda x + (1 \lambda)y) \ge \lambda f(x) + (1 \lambda)f(y);$
- par si $(\forall x \in \mathbb{R})$ f(-x) = f(x);
- impar si $(\forall x \in \mathbb{R})$ f(-x) = -f(x); y
- p-periódica si $(\forall x \in \mathbb{R})$ f(x+p) = f(x).

- 6) Sea V un espacio vectorial sobre cierto cuerpo \mathbb{K} . Demuestre que si U es subespacio vectorial de V y E es subespacio vectorial de U, entonces E es subespacio vectorial de V.
- 7) (P) Sea V un \mathbb{K} -e.v y U un s.e.v. de V. Muestre que para todo escalar $\alpha \neq 0$, el conjunto $\alpha U := \{\alpha \cdot u : \alpha \neq 0\}$ $u \in U$ } es igual a U.
- 8) Sean $\vec{a}, \vec{b} \in \mathbb{R}^3$ tales que $\vec{a} \times \vec{b} \neq \vec{0}$. Considere el conjunto $S = \{\alpha \vec{a} + \beta \vec{b} : \alpha, \beta \in \mathbb{R}\}$.
 - 8.1) Demuestre que S es un subespacio vectorial de \mathbb{R}^3 .
 - 8.2) Pruebe que $S = \{\vec{x} \in \mathbb{R}^3 : \vec{x} \cdot (\vec{a} \times \vec{b}) = 0\}.$
- 9) (P) Sean $\vec{a}, \vec{b} \in \mathbb{R}^3$ tales que $\vec{a} \times \vec{b} \neq \vec{0}$ y sea el conjunto $S = \{\vec{x} \in \mathbb{R}^3 : \vec{x} \cdot \vec{a} = \vec{x} \cdot \vec{b} = 0\}$.
 - 9.1) Demuestre que S es un subespacio vectorial de \mathbb{R}^3 .
 - 9.2) Pruebe que $S = \{\alpha(\vec{a} \times \vec{b}) : \alpha \in \mathbb{R}\}.$