Indian Institute of Technology Roorkee

MAN-001 (Mathematics-1), Autumn Semester: 2022-23

Assignment-1: Matrix Algebra I

(1) Reduce each of the following matrices into row echelon form and then find their ranks:

(a)
$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 8 & 6 \\ 0 & 0 & 5 & 8 \\ 3 & 6 & 6 & 3 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 2 & 4 & 6 \\ -1 & 3 & 2 \\ 1 & 4 & 6 \\ 2 & 8 & 7 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 & -2 & 5 & -3 \\ 2 & 3 & 1 & -4 \\ 3 & 8 & -3 & -5 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 0 & 0 & 2 & 2 & 0 \\ 1 & 3 & 2 & 4 & 1 \\ 2 & 6 & 2 & 6 & 2 \\ 3 & 9 & 1 & 10 & 6 \end{bmatrix}$$

(2) Examine the following set of vectors over \mathbb{R} for linear dependence:

- (a) $\{(1,0,0), (0,1,0), (1,1,1), (-1,1,-1)\}$ (b) $\{(1,-1,1), (2,1,1), (8,1,5)\}$
- (c) $\{(1,-1,2,4), (2,-1,5,7), (-1,3,1,-2)\}$ (d) $\{(1,2,1), (2,1,0), (1,-1,2)\}$

(3) (a) Find the conditions on α and β for which the matrix

$$\begin{pmatrix} \alpha & 1 & 2 \\ 0 & 2 & \beta \\ 1 & 3 & 6 \end{pmatrix} \text{ has (i) } \text{rank} = 1 \quad \text{(ii) } \text{rank} = 2 \quad \text{(iii) } \text{rank} = 3 \text{ .}$$
For what values of α and β is the following system consistent?

(b) For what values of α and β is the following system consistent? $2x + 4y + (\alpha + 3)z = 2$, x + 3y + z = 2, $(\alpha - 2)x + 2y + 3z = \beta$.

(4) Solve the following system of linear equations by Gauss elimination method:

- (a) x + 4y z = 4, x + y 6z = -4, 3x y z = 1
- (b) x + y + z = -3, 3x + y 2z = -2, 2x + 4y + 7z = 7
- (c) x + 2y + z = 2, 3x + y 2z = 1, 2x + 4y + 2z = 4

(5) Consider the following systems of linear equations:

- (a) 2x + 3y + 5z = 9, 2x + 3y + rz = s, 7x + 3y 2z = 8
- (b) x + y z = 1, $2x + 3y + \lambda z = 3$, $x + \lambda y + 3z = 2$
- (c) $\lambda x + y + z = p$, $x + \lambda y + z = q$, $x + y + \lambda z = r$

Find the values of unknown constant(s) such that each of the above systems has

(i) no solution (ii) a unique solution (iii) infinitely many solutions.

(6) Use Gauss elimination method to show that following system has no solution:

$$2\sin x - \cos y + 3\tan z = 3 \qquad 2x_2 + 2x_3 + 3x_4 = b_1$$

- (a) $4\sin x + 2\cos y 2\tan z = 10$, (b) $2x_1 + 4x_2 + 6x_3 + 7x_4 = b_2$ for some $(b_1, b_2, b_3) \in \mathbb{R}^3$. $6\sin x - 3\cos y + \tan z = 9$. $x_1 + x_2 + 2x_3 + 2x_4 = b_3$,
- (7) Let P_2 be the set of all polynomials of degree 2 or less. Use Gauss elimination method to find polynomial(s) $f \in P_2$ such that f(0) = 1, f(1) = 2 and f(-1) = 6.

(8) Find the values of k for which the following system of equations has

(i) trivial solution (ii) non-trivial solution.

$$(3k-8)x+3y+3z=0 (a) 3x+(3k-8)y+3z=0 3x+3y+(3k-8)z=0$$
 (b)
$$(k-1)x+(3k+1)y+2kz=0 (k-1)x+(4k-2)y+(k+3)z=0 2x+(3k+1)y+3(k-1)z=0$$

(9) By employing elementary row operations, find the inverse of the following matrices:

$$(a) \left(\begin{array}{rrr} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{array} \right), \qquad (b) \left(\begin{array}{rrr} 1 & 1 & 1 & 1 \\ 2 & 1 & 3 & 0 \\ 3 & 0 & 2 & 5 \\ 2 & 1 & 1 & 3 \end{array} \right)$$

(10) Suppose $X,Y\in\mathbb{R}^n,\ n>1$ are any two column matrices. Prove or disprove that the matrix $A=XY^T$ is invertible.

(11) Show that the matrix $\begin{pmatrix} 2 & 0 & 1 \\ 3 & 3 & 0 \\ 6 & 2 & 3 \end{pmatrix}$ is non-singular and express it as a product of elementary matrices.

(12) (a) Let A be an $n \times n$ matrix. If A is not invertible, then prove that there exists an $n \times n$ matrix
B such that $AB = 0$ but $B \neq 0$.

(b) Let
$$A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ -2 & 1 & 0 & 1 \\ 0 & 5 & -2 & 7 \\ -1 & 3 & -1 & 4 \end{bmatrix}$$
. Find a 4×4 matrix $B \neq 0$ such that $AB = 0$.

(13) Consider a
$$4 \times 5$$
 matrix $A = \begin{bmatrix} 1 & 7 & -1 & -2 & -1 \\ 3 & 21 & 0 & 9 & 0 \\ 2 & 14 & 0 & 6 & 1 \\ 6 & 42 & -1 & 13 & 0 \end{bmatrix}$.

(a) Find the row-reduced echelon form of

(b) Find an invertible matrix
$$P$$
 such that $PA = \begin{bmatrix} 1 & 7 & -1 & -2 & -1 \\ 0 & 0 & 3 & 15 & 3 \\ 0 & 0 & 2 & 10 & 3 \\ 0 & 0 & 5 & 25 & 6 \end{bmatrix}$.

- (c) Find the locus of the point $(x, y, z) \in \mathbb{R}^3$ such that for each column vector $Y = (x, y, z, 5)^T$, the equation AX = Y has a solution.
- (d) If $X = (x_1, x_2, x_3, x_4, x_5)^T$, then find the conditions on x_1, x_2, x_3, x_4, x_5 such that AX = 0.

ANSWERS

(3) (a) (i) Not possible (ii)
$$\alpha = \frac{1}{3}$$
 or $\beta = 4$ (iii) $\alpha \neq \frac{1}{3}$, $\beta \neq 4$ (b) $\alpha = 3$ and $\beta = 1$; or $\alpha = -2$ and $\beta = 6$; or $\alpha \neq 3, -2$.

(4) (a) (1,1,1) (b) No solution (c) Infinite solutions

(5) (a) (i)
$$r = 5, s \neq 9$$
 (ii) $r \neq 5, s \in \mathbb{R}$ (iii) $r = 5, s = 9$.

(b) (i)
$$\lambda = -3$$
 (ii) $\lambda \neq -3, 2$ (iii) $\lambda = 2$

(c) (i)
$$\lambda = 1$$
 and $p + q - 2r \neq 0$ OR $\lambda = 1$ and $q \neq r$ OR $\lambda = -2$ and $p + q + r \neq 0$ and $q \neq r$

(ii)
$$\lambda \neq 1, -2$$

(iii)
$$\lambda = 1$$
 and $p = q = r$ OR $\lambda = -2$ and $p + q + r = 0$

(7)
$$f(x) = 3x^2 - 2x + 1$$

(8) (a) (i)
$$k \neq \frac{2}{3}, \frac{11}{3}$$
 (ii) $k = \frac{2}{3}$ or $\frac{11}{3}$ (b) (i) $k \neq 0, 3$ (ii) $k = 0$ or 3

(9) (a)
$$\begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$
 (b) $\frac{1}{4} \begin{bmatrix} -16 & 4 & -4 & 12 \\ 5 & -1 & -1 & 0 \\ 9 & -1 & 3 & -8 \\ 6 & -2 & 2 & -4 \end{bmatrix}$

(11) $E_1(2)E_{21}(3)E_{31}(6)E_2(3)E_{32}(2)E_{13}(\frac{1}{2})E_{23}(-\frac{1}{2})$ (Not unique)

(11)
$$E_1(2)E_{21}(3)E_{31}(6)E_2(3)E_{32}(2)E_{13}(\frac{1}{2})E_{23}(-\frac{1}{2})$$
 (Not unique)
(12) (b)
$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 2 & -7 & 2 & -5 \\ 5 & 0 & 5 & 5 \\ 0 & 5 & 0 & 5 \end{bmatrix}$$
 (This is just one solution. The matrix B is not unique).

(13) (a)
$$\begin{bmatrix} 1 & 7 & 0 & 3 & 0 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ -6 & 0 & 0 & 1 \end{bmatrix}$$

(d)
$$x_1 + 7x_2 + 3x_4 = 0$$
, $x_3 + 5x_4 = 0$, $x_5 = 0$.