

(30) Priority Data:

PP 8230

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

WO 00/42057

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ΑU

(51) International Patent Classification 7: (11) International Publication Number: C07H 23/00, 5/10, 9/04, 5/04, 7/06, A1 15/207, 7/04

18 January 1999 (18.01.99)

- (43) International Publication Date: 20 July 2000 (20.07.00)
- PCT/AU00/00025 (21) International Application Number: (22) International Filing Date: 18 January 2000 (18.01.00)
- (71) Applicant (for all designated States except US): ALCHEMIA PTY. LTD. [AU/AU]; P.O. Box 4062, St Lucia South, QLD
- 4067 (AU). (72) Inventors; and (75) Inventors/Applicants (for US only): PAPAGEORGIOU, John
- [AU/AU]; Unit 6, 101 Harts Road, Indooroopilly, QLD 4068 (AU). DEKANY, Gyula [HU/AU]; 51 Tekato Street, Westlake, QLD 4074 (AU). BORNAGHI, Laurent, Francois [FR/AU]; 16 Flinders Street, Forest Lake, QLD 4078 (AU).
- (74) Agent: GRIFFITH HACK; 509 St Kilda Road, Melbourne, VIC 3004 (AU).
- (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: PROTECTING GROUPS FOR CARBOHYDRATE SYNTHESIS

(57) Abstract

The invention provides collections of orthogonally-protected monosaccharides as universal building blocks for the synthesis of glycoconjugates of non-carbohydrate molecules, neo-glycoconjugates and oligosaccharides. This orthogonal protection strategy allows for the specific deprotection of any substituent on the saccharide ring, and greatly facilitates targeted or library-focused carbohydrate-related syntheses. In particular, the invention provides a universal monosaccharide building block of General Formula (I) or General Formula (II) in which A is a leaving group; X is hydrogen, O, N or N₃; X₁ is hydrogen, -CH₂O-, -CH₂NH-, -CH₃, -CH₂N₃ or -COO-; and B, C, D and E are protecting groups that can be cleaved orthogonally, and in which B, C, D and E are absent when X is hydrogen or N3, and E is absent when X1 is hydrogen, CH3 or N3.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	WIR		TR	Turkey
BG	Bulgaria	HU		ML	Republic of Macedonia	TT	•
-	Benin		Hungary		Mali		Trinidad and Tobago
BJ		IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
RR	Estonia	LR	Liberia	SG	Singapore		
					- .		

WO 00/42057 PCT/AU00/00025

- 1 -

PROTECTING GROUPS FOR CARBOHYDRATE SYNTHESIS

This invention relates to methods of synthesis of glycoconjugates, and in particular to orthogonally

protected carbohydrate building blocks. The invention provides collections of orthogonally protected monosaccharides as universal building blocks for the synthesis of glycoconjugates of non-carbohydrate molecules, neo-glycoconjugates and oligosaccharides. This orthogonal protection strategy allows for the specific deprotection of any substituent on the saccharide ring, and greatly facilitates targeted or library-focused carbohydrate related syntheses.

15 BACKGROUND OF THE INVENTION

30

Oligosaccharides are important components of a variety of different types of biological molecules, and are involved in antigenic recognition and cell-cell interactions. In many cases, bio-molecules require

20 conjugation with a carbohydrate component in order to be fully functional. In order to enable investigation of the biological function, and to exploit the exquisite biochemical and antigenic specificity of oligosaccharides, it is essential to have access to highly defined, specific synthetic oligosaccharides. Therefore achieving efficient, cost-effective synthesis of oligosaccharides and glycoconjugates by either solution or solid phase methods is of the utmost importance.

This task is enormously complicated by the complexity of oligosaccharides. Because of the number of sites which can carry substituents, and the number of possible ways in which two saccharide molecules can be linked, the number of permutations is enormously high.

In naturally-occurring oligosaccharides Dglucose, D-galactose L-fucose, D-mannose, D-glucosamine and
D-galactosamine are among the most common sugar residues.
To construct oligosaccharides and carbohydrate conjugates

10

15

20

25

30

35

using these sugars, current methodologies require long, protracted syntheses, involving synthesis of as many as one hundred different specially-protected sugar donors in order to cover adequately all the possible permutations of glycosidic link formation (eg. 1-3, 1-4), link type (eg. α or β) and to include all possible branching points in the oligosaccharide.

Orthogonal protection of bi-functional molecules has been a widely used technique in organic chemistry, which provided general building blocks for selected syntheses. However, orthogonal protection in the case of molecules with a greater degree of functionalisation is quite rare. Our technology involves penta-functional monosaccharide building blocks, which require a much higher level of chemical specificity to attain the appropriate orthogonality.

Orthogonal protection has been defined by Merrifield as follows:

"The principle of orthogonal stability requires that only those protecting functions should be used that can be cleaved under different reaction conditions without affecting the other functions present" (Merrifield, 1977)

Although the use of orthogonal protection would greatly facilitate carbohydrate related synthesis, there has been limited success in devising suitable protecting groups and methods.

Wong et al. synthesised a universal building block with chloroacetyl, p-methoxybenzyl, levulinyl and tert-butyldiphenylsilyl protecting groups, selectively removable with sodium bicarbonate, trifluoroacetic acid, hydrazine and hydrogen fluoride-pyridine respectively, on a galactopyranose ring with an aryl-thio leaving group at the glycosidic position. This building block was used solely to synthesise a 6-hexanate glycoside. The subsequent recombinant oligosaccharide library formation focused on using the 6-hexanate derivatised building block which

exhibits only four degrees of orthogonality (Wong et al, 1998).

Similarly Kunz and coworkers synthesised an orthogonally protected D-glucopyranose derivative, but 5 synthetic manipulations were only performed on the aglycon. These authors describe orthogonal protection of hydroxyl groups on a monosaccharide linked at C1 via a thioglycoside group to a solid support or to a succinimide moiety. this case the protecting groups are acetyl or methyl at C2, 10 allyl at C3, ethoxyethyl at C4, and tert-butyldiphenylsilyl at C6. The thioglycoside anchor functionalized in the side-chain is stated to be crucial. Again there is no suggestion that this protection system can be used for substituted sugars. Kunz's orthogonally-protected building block was not used for glycosylation or construction of 15 glycoconjugates or neo-glycoconjugates, by directly attaching functionalitites to the pyranose ring (Wunberg et al. 1998).

In our earlier International Patent Applications

No. PCT/AU97/00544, No. PCT/AU98/00131 and

No. PCT/AU98/00808, we described protecting and linking
groups which enabled oligosaccharides and
aminooligosaccharides to be synthesised using solid phase
methods of the type which for many years have been used in
peptide synthesis. In addition the protecting groups,
described therein were useful for solution-phase synthesis.
The entire disclosures of these specifications are
incorporated herein by this reference.

We have now devised new types of building blocks
which greatly facilitate the synthesis of oligosaccharides
and glycoconjugates, using orthogonally-protected
saccharide building blocks with five degrees of
othogonality. These building blocks contain a leaving group
or latent leaving group at the glycosidic position, and
another four orthogonally-protected functional groups
around the carbohydrate ring.

Using our approach with six universal building blocks based on six of the most common naturally occurring sugars, any one of the one hundred sugars referred to above may be quickly synthesised in a facile manner, using simple, well-known protecting group chemistry. The years of work and complex protection strategies required to produce these one hundred building blocks by previously-available methods can be avoided by use of our six universal building blocks, which do not require a high level of skill to use, and enable one to achieve the synthesis of a specific desired oligosaccharide or glycoconjugate much faster and more efficiently than previously possible.

SUMMARY OF THE INVENTION

In its most general aspect the invention provides a universal monosaccharide building block of General Formula I or General Formula II

20

25

10

in which

A is a leaving group, including but not limited to groups such as -SR; where R is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, halogen; trichloroacetimidoyl-; sulphoxide; -O-alkenyl;

X is hydrogen, O, N or N3;

 X_1 is hydrogen, -CH2O-, -CH2NH-, -CH3, -CH2N3 or -COO-; and

B, C, D and E are any protecting groups which can be cleaved orthogonally.

WO 00/42057 PCT/AU00/00025

- 5 -

It will be appreciated that as a consequence of stoichiometry and valence bond theory B, C, D and E are absent when X is hydrogen or N_3 and E is absent when X_1 is hydrogen, CH_3 or N_3 .

The following non-limiting sets have been designated as orthogonal to each other on the basis of their cleavage conditions. A protecting group is classified in a particular set according to its lability to the cleavage conditions for a particular set and its stability to the cleavage conditions required for the removal of those groups in the remaining sets. Each set is to be taken to include, but is not be limited, by the members thereof.

Of the sets defined, set 1, the 'Base Solvolysis'

set, is of particular importance, because in addition to
the fact that the members of this set are considered to be
orthogonal to the members of the remaining sets, some
members of this set are also considered to be orthogonal to
each other. Where this is the case, the alternative

condition of cleavage that provides orthogonality is
specified in brackets following the listing of the
protecting group.

1. Base Solvolysis

a) for hydroxy protection:

acyl-type protecting groups, eg. chloroacetate (also thiourea-sensitive)
bromoacetate (also pyridine-sensitive)
carbonates, eg. Alloc (Pd⁰)
Fmoc (β-elimination)
Troc
p-nitrophenylsulphonylethyloxy carbonyl)
levanoyl (also hydrazine sensitive)

30

b) for amino protection:

Dde, Wow (primary amine-sensitive)

tetraphthaloyl

dichlorophthaloyl

2,5-dimethyl-pyrroyl (primary amine-sensitive)

benzyloxycarbonyl

pentenyl

10 2. Fluoride Ion-Sensitive

for hydroxy protection:

t-butyldiphenylsilyl
triisopropylsilyl
trimethylsilylethyl
triphenylsilylethyl
(all cleavable with HF/Pyridine)

3. Reduction-Sensitive

20

15

5

trifluoromethyl
trichloromethyloxymethyl
trichloromethyloxycarbonate
(all cleavable with zinc/acetic acid)

25

30

4. β-Elimination-Sensitive, Base-Labile Protecting Groups

ethoxyethyl
cyanoethyl
NSC (p-nitrobenzyl-sulphonylethyloxycarbonyl)
p-nitrobenzyl-sulphonylethyl

- 5. Hydrogenolysis-Sensitive Protecting Groups
- naphthylmethyl substituted naphthylmethyl

PCT/AU00/00025

- 7 -

6. Oxidation-Sensitive Protecting Groups:

p-methoxybenzyl

3,4-dimethoxybenzyl

2,4,6-trimethoxybenzyl

3,4-methylenedioxybenzyl

acylamidobenzyl

azidobenzyl

p-azido-m-chlorobenzyl

10

5

7. Allylic Protecting Groups

Cleavable with Pd⁰ complexes

15 8. Photolabile Protecting Groups:

o-nitrobenzyloxycarbonate

o-nitrobenzyl

dinitrobenzyl

20 2-oxo-1, 2-diphenylethyl

9. Protecting Groups Removable by Relay Deprotection

methylthioethyl

25 acyloxybenzyl

benzylthioethyl.

In one preferred embodiment, the invention provides a compound of General Formula III

30

in which

 $\mbox{\ensuremath{A}}\mbox{\ensuremath{A}}\mbox{\ensuremath{X}}\mbox{\ensuremath{a}}\mbox{\$

B₁, C₁, D₁ and E₁ are orthogonal carbohydrate 5 protecting groups (*ie.* an orthogonal set) selected from protecting group sets 1, 2, 6 and 8.

Another preferred embodiment provides a compound of General Formula IV

10

20

$$\begin{array}{c|c} E_2X_1 & O & A \\ & & & \\ D_2X & & & \\ & & & XC_2 & \\ \hline IV & & & \end{array}$$

in which

 $$\tt A, \ X$$ and X_1 are as defined for General Formulae I and II, and

 B_2 , C_2 , D_2 and E_2 are selected from the members of protecting group set 1, and in themselves constitute an orthogonal set, for example the carbohydrate-protecting groups levanoyl (ammonia-labile), chloroacetate (thiourea-labile), p-methoxybenzyloxycarbonyl (oxidation-labile) and 2-trimethylsilylethylcarbonate (fluoride ion-labile).

This embodiment provides universal building blocks with protecting groups selected from the protecting groups of set 1.

In a third preferred embodiment the invention provides a compound of General Formula V

$$D_3X$$
 XC_3
 V

WO 00/42057 PCT/AU00/00025

- 9 -

in which

10

15

20

25

 $\mbox{\fontfamily{1.5ex}\hspace{1.5ex}\hsp$

 B_3 , C_3 , D_3 and E_3 are an orthogonal set of protecting groups selected from amongst the members of set 1 and from the remaining orthogonal sets.

This embodiment provides orthogonally protected building blocks, the protecting group constituents of which may be selected from within set 1 and from the remaining sets.

It will be clearly understood that the invention is not limited to use with monosaccharides, but is also applicable to any compound in which substituents are linked to a pyranose or furanose ring, such as sugar analogues.

For the purposes of this specification it will be clearly understood that the word "comprising" means "including but not limited to", and that the word "comprises" has a corresponding meaning.

For the purposes of this specification "orthogonal cleavage" is defined as the regioselective cleavage of a hydroxy or amino protecting group from a carbohydrate, in which the cleavage conditions do not compromise the stability of the other protecting or functional groups on the molecule. Such cleavages can be effected in any order of priority. "Cleaved orthogonally" and "orthogonal cleavage" are taken to be synonymous.

DETAILED DESCRIPTION OF THE INVENTION

30 Abbreviations used herein are as follows:

Alloc Allyloxycarbonyl

Bn Benzyl

Bu Butyl

35 DCM Dichloromethane

Dde N-1-(4,4-Dimethyl-2,6-dioxocyclohexylidene)ethyl

	Dde-OH	6-Hydroxy-6-(4,4-dimethyl-2,6-dioxocyclohexyl-
	•	idene)ethyl
	DMAP	N,N'-Dimethylaminopyridine
	DMF	N, N'-Dimethylformamide
5	DMTST	Dimethyl (methylthio) sulphoniumtrifluoromethane-
		sulphonate
	EEDQ	1-isobutyloxycarbonyl-2-isobutyloxy-1,2-dihydro-
		quinoline
	EtOAc	Ethyl acetate
10	EtOH	Ethanol
	FAB-MS	Fast atom bombardment mass spectrometry
	HRMS	High resolution mass spectrometry
	Fmoc	Fluoromethoxycarbonyl
	MBHA	Methyl benzyhydryamine resin
15	Me	Methyl
	MeOH	Methanol
	NCS	$p extsf{-Nitrobenzyl-sulphonylethyloxycarbonyl}$
	NMR	Nuclear magnetic resonance
	ODmab	$4-\{N-[1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-$
20		3-methylbutyl]-amino}benzyl alcohol
	PEG	Polyethylene glycol
	tBu	Tertiary-butyl
	TFA	Trifluoroacetic acid
	THF	Tetrahydrofuran
25	Troc	2,2,2-Trichloroethoxycarbonyl

The invention provides universal building blocks, which are useful in the solution and solid phase synthesis of oligosaccharides. The reaction scheme for synthesis of each target molecule is designed so as to specify the orthogonally-protected functional groups which must be freed for glycosylation, and those which need to be capped with a protecting group such as benzyl, benzoyl, or another such group which remains uncleaved until the end of the synthesis, in order to avoid competition during glycosylations later in the synthesis.

WO 00/42057 PCT/AU00/00025

- 11 -

When participation during the glycosylation reaction is required, the 2-hydroxyl is selectively deprotected and re-protected with a benzoyl group which, again, remains until the completion of the synthesis. In the case of 2-deoxy 2-aminosugars, if participation or stereoselectivity is required the Dde group might be removed and replaced with a tetrachlorophthaloyl or 2,5-dimethylpyrrole group.

10 Example 1 Synthesis of an Exemplary Tetrasaccharide
A strategy for synthesis of the tetrasaccharide
of formula VI is set out in Scheme 1.

15

5

WO 00/42057 PCT/AU00/00025

- 13 -

In solution phase, protecting groups A and C from the first sugar residue of the target molecule (residue [4]) are selectively removed, and the sites capped by a permanent protecting group, eg. benzoyl group. The residue is then coupled to the resin, followed by selective removal of protecting group B. In solution phase, protecting group A from sugar residue [3] is selectively removed, and the site is capped by a permanent protecting group. Residue [3] is then linked to the resin-bound sugar residue via a glycosylation reaction. Protecting group C from the new disaccharide is removed, and residue [2] is linked via a glycosylation. Protecting group A is finally selectively removed to regenerate the 6-hydroxyl group, which is linked with residue 1.

15

10

5

5

Example 2

Synthesis of an Orthogonally Protected
Thioglycoside Building Block, Methyl 6-0-(tbutyldiphenylsilyl)-3-0-(p-chlorobenzoyl)-2deoxy-2-[1-(4,4-dimethyl-2,6-dioxocyclohex-1ylidene)ethylamino]-4-0-tetrahydropyranyl-1thio-β-D glucopyranoside (5)

10 Methyl 4,6-O-benzylidene-2-deoxy-2-[1-(4,4-dimethyl-2,6dioxocyclohex-1-ylidene)ethylamino]-1-thio-β-D glucopyranoside (1)

A mixture of methyl 2-deoxy-2-[1-(4,4-dimethyl2,6-dioxocyclohex-1-ylidene)ethylamino]-1-thio-β-D
glucopyranoside (20 g, 54 mmol), α,α-dimethoxytoluene
(9.78 g, 64 mmol) and p-toluenesulphonic acid (50 mg) in
dry acetonitrile (100 mL), was stirred at 60°C for 2 hours.
The reaction mixture was cooled to room temperature and
adjusted to pH 7 with the addition of triethylamine. The
solvent was removed in vacuo, the residue was taken up in
CH₂Cl₂ (200 ml), washed with brine (50 ml), with water

(50 ml) and dried over MgSO₄. The organic phase was concentrated to give a yellow solid, methyl 4,6-O-benzylidene-2-deoxy-2-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethylamino]-1-thio- β -D glucopyranoside (24.5 g, 98%).

Methyl 4,6-0-benzylidene-3-0-(p-chlorobenzoyl)-2-deoxy-2-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethylamino]-1thio-β-D glucopyranoside (2)

10

5

A mixture of methyl 4,6-0-benzylidene-2-deoxy-2-[1-(4,4dimethy1-2,6-dioxocyclohex-1-ylidene)ethylamino]-1-thio- β -D-glucopyranoside (1)(6.3 g, 13.5 mmol), p-chlorobenzoylchloride (2.6 ml, 20 mmol) and 4-dimethylaminopyridine (2.44 g, 40 mmol) in dry 15 1,2-dichloroethane (100 ml), was stirred at room temperature overnight. The resultant suspension was filtered, the filtrate diluted with chloroform (100 ml) and washed with diluted brine (3 x 50 ml, $H_2O/Brine$, 2/1). organic phase was dried over MgSO4 and the solvent removed 20 in vacuo to give yellow solid. The residue chromatographed EtOAc/Hexane 1:1 as the mobile phase to give methyl 4,6-0benzylidene-3-0-(p-chlorobenzoyl)-2-deoxy-2-[1-(4,4dimethyl-2,6-dioxocyclohex-1-ylidene) ethylamino]-1-thio- β -D-glucopyranoside (2)(6.4 g, 80%). 25

Methyl 3-0-(p-chlorobenzoyl)-2-deoxy-2-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethylamino]-1-thio-β-D glucopyranoside (3)

30

A mixture of methyl 4,6-0-benzylidene-3-0-(p-chlorobenzoyl)-2-deoxy-2-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethylamino]-1-thio- β -D

glucopyranoside (2) (2.51 g, 4.20 mmol) and 50% aqueous solution of tetrafluoroboric acid (1 ml) in acetonitrile (25 mL), was stirred at room temperature for 2 hours. The pH was adjusted to 7 with the addition of triethylamine and the resultant suspension concentrated. The residue was crystallised from diisopropyl ether-ethyl acetate to give methyl $3-O-(p-chlorobenzoyl)-2-deoxy-2-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethylamino]-1-thio-<math>\beta$ -D glucopyranoside (3) (1.7 g, 79%).

10

5

Methyl 6-0-(t-butyldiphenylsilyl)-3-0-(p-chlorobenzoyl)-2-deoxy-2-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethylamino]-1-thio- β -D glucopyranoside (4)

A mixture of methyl 3-0-(p-chlorobenzoyl)-2-deoxy-2-[1-15 (4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-ethylamino]-1thio- β -D-glucopyranoside (3) (1.00 g, 1.95 mmol), tbutyldiphenylsilylchloride (536 mg, 1.95) and 4-dimethylaminopyridine (238 mg, 1.95 mmol), in 1,2-dichloroethane (30 mL), was stirred under reflux for 20 6 hours. The reaction mixture was cooled to room temperature, diluted with chloroform (60 mL) and washed with diluted brine (3 \times 50 mL, brine/water, 1:2), dried over MgSO4. The solvent was removed in vacuo and the residue was chromatographed using hexane - EtOAc 1:1 as the 25 mobile phase to give a white solid, methyl 6-0-(tbutyldiphenylsilyl)-3-0-(p-chlorobenzoyl)-2-deoxy-2-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethylamino]-1thio- β -D-glucopyranoside (4) (1.1 g, 75%).

5

Methyl 6-O-(t-butyldiphenylsilyl)-3-O-(p-chlorobenzoyl)-2-deoxy-2-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethylamino]-4-O-tetrahydropyranyl-1-thio- β -D glucopyranoside (5)

A mixture of methyl 6-0-(t-butyldiphenylsilyl)-3-0-(pchlorobenzoy1)-2-deoxy-2-[1-(4,4-dimethy1-2,6dioxocyclohex-1-ylidene) ethylamino]-1-thio-β-Dglucopyranoside (500 mg, 0.6 mmol), 3,4-dihydro-2H-pyran 10 (5 mL) and p-toluenesulphonic acid (5 mg) in dry acetonitrile (10 mL) was stirred at room temperature for 1 hour. The reaction mixture was adjusted to pH 7 with the addition of triethylamine and then evaporated to dryness. The residue was taken up in dichloromethane (30 mL), washed 15 with water (2 x 10 mL) and the organic phase dried over MgSO₄. The solvent was removed in vacuo and the residue was chromatographed using hexane - EtOAc 2:1 as the mobile phase to give methyl 6-0-(t-butyldiphenylsilyl)-3-0-(pchlorobenzoyl)-2-deoxy-2-[1-(4,4-dimethyl-2,6-20 dioxocyclohex-1-ylidene)ethylamino]-4-0-tetrahydropyranyl-1-thio- β -D-glucopyranoside (5) (420 mg, 85%).

PCT/AU00/00025

- 18 -

Example 3

Synthesis of an Orthogonally Protected Thioglycoside Building Block, methyl 2-azido-6-0-(t-butyldiphenylsilyl)-2-deoxy-3-0-(4-methoxybenzyl)-4-0-biphenylcarbonyl-1-thio- β -D glucopyranoside

5

Methyl 2-azido-4,6-0-benzylidene-2-deoxy-1-thio-β-D
10 glucopyranoside (7)

A mixture of methyl 2-azido-2-deoxy-1-thio-β-D glucopyranoside (6)(10g, 4.25 mmol), α,α-dimethoxytoluene (9.71 g, 64 mmol) and p-toluenesulphonic acid (50 mg) in dry acetonitrile (100 mL), was stirred at 60°C for 2 hours. The reaction mixture was cooled to room temperature and adjusted to pH 7 with the addition of triethylamine. The solvent was removed in vacuo. The residue was taken up in CH₂Cl₂ (200 mL), washed with brine (50 mL), with water (50 mL) and dried over MgSO₄. The organic phase was concentrated to give a white solid, methyl 2-azido-4,6-0-benzylidene-2-deoxy-1-thio-β-D glucopyranoside (7) (10.5 g, 73%).

Methyl 2-azido-4,6-0-benzylidene-2-deoxy-3-0-(4methoxybenzyl)-1-thio-β-D glucopyranoside (8)

A suspension of sodium hydride (1.0 g, 41.8 mmol) in dry DMF (50 mL) was cooled to 0 °C, and a solution of methyl 2-5 azido-4,6-0-benzylidene-2-deoxy-1-thio-β-D glucopyranoside (7) (9.0 g, 27.8 mmol) in dry DMF (50 mL) was added dropwise in 30 minutes. The resulting solution was stirred at 0 °C for 30 minutes and 4-methoxybenzyl chloride (6.54 g, 41.8 mmol) was added dropwise at 0 $^{\circ}\text{C}$. The reaction 10 mixture was stirred at room temperature overnight, cooled to 0 °C and dry methanol (5 mL) was added dropwise. The reaction mixture was concentrated under reduced pressure, then xylene (50 mL) was co-evaporated from the residue. The residue was taken up in CHCl $_3$ (200 mL) washed with H_2O (400 15 ml), saturated NaHCO3 solution (200 mL) dried over MgSO4 and evaporated to dryness. The residue was crystallized from EtOH to give methyl 2-azido-4,6-O-benzylidene-2-deoxy- $3-0-(4-methoxybenzyl)-1-thio-\beta-D-glucopyranoside (8) (9,0)$ g, 73%) as white crystalline solid. 20

Methyl 2-azido-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D-glucopyranoside (9)

A mixture of methyl 2-azido-4,6-0-benzylidene-2-deoxy-3-0-25 $(4-methoxybenzyl)-1-thio-\beta-D$ glucopyranoside (8) (12.0 g, 27.08 mmol) and p-toluenesulphonic acid (300 mg) in MeOH -MeCN 1:1 (400 mL) was stirred at 50 C° for 1 hour. residue was the evaporated, reaction mixture was chromatographed using CHCl₃ - EtOAc gradient to give methyl 30 $2-azido-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-\beta-D$ glucopyranoside (9) (8.21 g, 88%).

80%).

20

Methyl 2-azido-6-0-tert-butyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D glucopyranoside (10)

A mixture of t-butyldiphenylsilyl chloride (8.66 g, 31.53 mmol), 4-dimethylaminopyridine (5.12 g, 42.04 mmol) 5 $2-azido-2-deoxy-3-0-(4-methoxybenzyl)-1-thio-<math>\beta$ -Dmethyl glucopyranoside (9) (7.21 g, 21.02 mmol) in dry 1,2dichloroethane (100 mL) was stirred at 80°C for 2 hours. solution was cooled to room The resulting clear temperature, diluted with CHCl₃ (300 mL), washed with H₂O 10 $(3 \times 200 \text{ mL})$, brine solution (200 mL), dried over MgSO₄ and evaporated. The residue was purified by chromatography using hexane - ether 2:1 as the mobile phase to give methyl 2-azido-6-0-tert-butyldiphenylsilyl-2-deoxy-3-0-(4methoxybenzyl)-1-thio- β -D glucopyranoside (10) (9.73) g, 15

Methyl 2-azido-6-0-tert-butyldiphenylsilyl-4-0-biphenylcarbonyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D glucopyranoside (11)

A mixture of methyl 2-azido-6-0-tert-butyldiphenylsilyl-2deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D glucopyranoside (10) (12.7 g, 21.46 mmol), 4-dimethylaminopyridine (5.23 g, 42.92 mmol) in dry 1,2-dichloroethane (100 mL) was stirred at room temperature. Biphenylcarbonyl chloride (6.97 g, 25 32.19 mmol) was added to the stirred reaction mixture in 15 minutes. After the addition the resulting suspension was stirred under reflux for 3 hours. The reaction mixture was cooled to 10°C and filtered. The crystalline solid was washed on the funnel with dry 1,2-dichloroethane (50 mL) 30 and filtered. The filtrates were combined, diluted with CHCl₃ (200 mL) and washed twice with diluted brine solution (water-brine 2:1) (150 mL). The organic layer was dried over MgSO4 and evaporated. The residue was crystallized 35 from EtOH (75 mL) to give methyl 2-azido-6-0-tertbutyldiphenylsilyl-4-O-biphenylcarbonyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio- β -D-glucopyranoside (11) (12.7 g, 76%)

5 Example 4 Synthesis of an Orthogonally Protected Thioglycoside Building Block, methyl 2-azido-6-0-(t-butyldiphenylsilyl)-2-deoxy-3-0-(4-methoxybenzyl)-4-0-biphenylcarbonyl-1-thio-β-D-galactopyranoside (17)

10

Methyl 2-azido-4,6-0-benzylidene-2-deoxy-1-thio- β -D galactopyranoside (13)

A mixture of methyl 2-azido-2-deoxy-1-thio-β-D-galactopyranoside (12)(3.0 g, 12.76 mmol), α,α-dimethoxytoluene (2.91 g, 19.14 mmol) and p-toluenesulphonic acid (30 mg) in dry acetonitrile (15 mL), was stirred at 70°C for 20 minutes. The reaction mixture was cooled to room temperature and adjusted to pH 7 with the addition of triethylamine. The solvent was removed in vacuo and the residue was taken up in CH₂Cl₂ (100 mL), washed with brine (50 mL), with water (50 mL) and dried over MgSO₄. The organic phase was concentrated to give a

5

white solid, methyl 2-azido-4,6-0-benzylidene-2-deoxy-1-thio- β -D-galactopyranoside (13) (3.09 g, 75%).

Methyl 2-azido-4,6-0-benzylidene-2-deoxy-3-0-(4-methoxybenzyl)-1-thio-β-D-galactopyranoside (14)

A suspension of sodium hydride (123 mg, 4.87 mmol) in dry DMF (10 mL) was cooled to 0 °C, and a solution of methyl 2-azido-4,6-0-benzylidene-2-deoxy-1-thio- β -D-

galactopyranoside (13) (1.05 g, 3.25 mmol) in dry DMF (10 10 mL) was added dropwise in 30 minutes. The resulting solution was stirred at 0 °C for 30 minutes and 4methoxybenzyl chloride (763 mg, 4.87 mmol) was added dropwise at 0 °C. The reaction mixture was stirred at room temperature overnight, cooled to 0 °C and dry methanol (2 15 mL) was added dropwise. The reaction mixture was concentrated under reduced pressure, then xylene (25 mL) was co-evaporated from the residue. The residue was taken up in CHCl₃ (50 mL) washed with H₂O (40 ml), saturated NaHCO3 solution (50 mL) dried over MgSO4 and evaporated to 20 dryness. The residue was crystallized from EtOH (10 mL)to give methyl 2-azido-4,6-0-benzylidene-2-deoxy-3-0-(4methoxybenzyl)-1-thio- β -D-galactopyranoside (14) (1.0 g,

25

Methyl 2-azido-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D-galactopyranoside (15)

70%) as white crystalline solid.

A mixture of methyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-30 (4-methoxybenzyl)-1-thio-β-D-galactopyranoside (14) (500 mg, 1.12 mmol) and p-toluenesulphonic acid (10 mg) in MeOH - MeCN 1:1 (50 mL) was stirred at 50 C° for 1 hour. The reaction mixture was evaporated, the residue was

chromatographed using CHC13 - EtOAc gradient to give methyl 2-azido-2-deoxy-3-O-(4-methoxybenzyl)-1-thio- β -D-galactopyranoside (15) (309 mg, 80%)

5 Methyl 2-azido-6-0-tert-butyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio-β-D-galactopyranoside (16)

A mixture of t-butyldiphenylsilyl chloride (151 mg, 0.54 mmol), 4-dimethylaminopyridine (90 mg, 0.73 mmol)

10 and methyl 2-azido-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D-galactopyranoside (15) (130 mg, 0.36 mmol) in dry 1,2-dichloroethane (8 mL) was stirred at 80°C for 2 hours. The resulting clear solution was cooled to room temperature, diluted with CHCl₃ (20 mL), washed with H₂O (3 x 20 mL), brine solution (20 mL), dried over MgSO₄ and evaporated. The residue was purified by chromatography using hexane - ether 2:1 as the mobile phase to give methyl 2-azido-6-O-tert-butyldiphenylsilyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D-galactopyranoside (16) (142 mg, 68%).

20

Methyl 2-azido-6-0-tert-butyldiphenylsilyl-4-0-biphenylcarbonyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio-β-D-galactopyranoside (17)

A mixture of methyl 2-azido-6-O-tert-butyldiphenylsilyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D-galactopyranoside (16) (213 mg, 0.36 mmol), 4-dimethylaminopyridine (67 mg, 0.55 mmol) in dry 1,2-dichloroethane (10 mL) was stirred at room temperature. Biphenylcarbonyl chloride (119 mg, 0.55 mmol) was added to the stirred reaction mixture. The resulting suspension was stirred under reflux for 3 hours. The reaction mixture was cooled to 10°C and filtered. The crystalline solid was washed on the funnel with dry 1,2-dichloroethane (5 mL) and filtered. The filtrates were

H₃C

combined, diluted with CHCl3 (20 mL) and washed twice with diluted brine solution (water-brine 2:1) (15 mL). The organic layer was dried over MgSO4 and evaporated. The residue was purified by chromatography using hexane - CHCl₃ 1:1 as the mobile phase to give methyl 2-azido-6-0-tertbutyldiphenylsilyl-4-O-biphenylcarbonyl-2-deoxy-3-O-(4methoxybenzyl)-1-thio- β -D-galactopyranoside (17) (180 mg, 65%).

10 Example 5

5

15

Synthesis of an Orthogonally Protected Thioglycoside Building Block, Methyl 6-0-(tbutyldiphenylsilyl)-2-deoxy-2-[(1,3dimethy1-2,4,6(1H,3H,5H)-trioxopyrimidin-5ylidene)methylamino]-3-0-(4-methoxybenzyl)-4-0-biphenylcarbonyl-1-thio-β-Dglucopyranoside (23)

ОН OH HO SMe **SMe** H₃C H. V-CH₃ O: O: -CH₃ H₃C 19 H₃C 20 0 18 OTBDPS OH Ph HO HO MeOBnO **SMe MeOBnO** SMe 1<u>−</u>H MeOBnO Sivie -H H-H-O H-O= -CH₃ ·CH₃ O H₃C H₃C

22

Methyl 2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-1-thio- β -D-glucopyranoside (19)

To methyl 2-deoxy-2-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-5 ylidene)-ethylamino]-1-thio- β -D-glucopyranoside (18)(100 g, 268 mmol) was added conc. ammonia solution (300 mL) and the reaction mixture was stirred at 100 C° for 1 hour. The suspension was cooled to room temperature and filtered. The filtrate was washed with CHCl3 (3x200 mL), then the aqueous 10 phase was evaporated under reduced pressure. The residue was taken up in EtOH: benzene 1:1 (250 mL) and evaporated to dryness. The residue was taken up in hot MeOH (600 mL) and 1, 3dimethyl-5-[(dimethylamino)methylene]2, 4, 6 (1H, 3H, 5H)-15 trioxopyrimidine (Wow-reagent) (62.27 g, 294.9 mmol) in hot MeOH (120 mL) was added. /Synthesis of 1, 3-Dimethyl-5-[(dimethylamino)methylene]2, 4, 6 (1H, 3H, 5H)trioxopyrimidine (Wow-reagent): N, N-Dimethylformamide dimethyl acetal (252 g, 2.11 mol) was stirred at 0°C in 20 CHCl₃ (750 mL). 1, 3-Dimethylbarbituric acid (300 g, 1.92 mol) in CHCl₃ (2100 mL) was added to the stirring acetal solution over 2 hours. The CHCl3 was evaporated immediately following complete addition and the resulting residue resuspended in CHCl₃ (2000 mL) and washed with water (3x600 25 mL) and saturated brine solution (600 mL). The organic phase was dried over MgSO4, filtered and evaporated to dryness under high vacuum. The residue was re-suspended in diethyl ether (750 mL), filtered and washed on the funnel 30 with additional diethyl ether (500 mL) to yield 1, 3-Dimethyl-5-[(dimethylamino)methylene]2, 4, 6 (1H, 3H, 5H)trioxopyrimidine as a pale-yellow solid (271.85 g, 67%)./ The reaction mixture was stirred under reflux for 30 minutes, then cooled to room temperature. The resulting 35 suspension was filtered, the solid was washed with MeOH (150 mL), ether (150 mL), dried to give methyl 2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5ylidene)methylamino]-1-thio- β -D-glucopyranoside (19)(83 g, 90%).

Methyl 4,6-0-benzylidene-2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-1thio-β-D-glucopyranoside (20)

A mixture of methyl 2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-1thio-β-D-glucopyranoside (19)(84.64 g, 226.31 mmol), α,αdimethoxytoluene (51.66 g, 339.46 mmol) and ptoluenesulphonic acid (500 mg) in dry acetonitrile
(600 mL), was stirred at 60°C for 2 hours. The reaction
mixture was cooled to room temperature and filtered. The
solid was washed with ether (200 mL), dried to give methyl
4,6-O-benzylidene-2-deoxy-[(1,3-dimethyl-2,4,6(1H,3H,5H)trioxopyrimidin-5-ylidene)methylamino]-1-thio-β-Dglucopyranoside (20) (80 g, 77%).

20 Methyl 4,6-O-benzylidene-2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-3-O-(4-methoxybenzyl)-1-thio-β-D-glucopyranoside (21)

A suspension of sodium hydride (6.82 g, 269.97 mmol) in dry

DMF (50 mL) was cooled to 0 °C, and a solution of methyl

4,6-O-benzylidene-2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-1-thio-β-D-glucopyranoside (20) (50 g, 107.99 mmol in dry DMF (200 mL)

was added dropwise in 30 minutes. The resulting solution

was stirred at room temperature for 30 minutes and 4-methoxybenzyl chloride (37.36 g, 238.56 mmol) was added dropwise at 0 °C. The reaction mixture was stirred at room temperature overnight, cooled to 0 °C and dry methanol (10 mL) was added dropwise. The reaction mixture was

- 27 -

concentrated under reduced pressure, then xylene (200 mL) was co-evaporated from the residue. The residue was taken up in CHCl₃ (1000 mL) washed with H₂O (1000 ml), saturated NaHCO3 solution (1000 mL) dried over MgSO4 and evaporated to dryness. The residue was crystallized from EtOH to give methyl 4,6-0-benzylidene-2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-3-0- $(4-methoxybenzyl)-1-thio-\beta-D-glucopyranoside (21) (52.21 g,$ 82%).

10

30

5

Methyl 2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)trioxopyrimidin-5-ylidene)methylamino]-3-0-(4methoxybenzyl)-1-thio- β -D-glucopyranoside (22)

A mixture of methyl 4,6-O-benzylidene-2-deoxy-2-[(1,3-15 dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5ylidene)methylamino]-3-0-(4-methoxybenzyl)-1-thio- β -D-(21) (52.21 g, 89.55 mmo1 and glucopyranoside toluenesulphonic acid (200 mg) in MeOH - MeCN 1:1 (400 mL) was stirred at 50 C° for 1 hour. The reaction mixture was 20 evaporated, the residue was chromatographed using CHCl3 -MeOH 10:1 as the mobile phase to give methyl 2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5ylidene) methylamino] -3-0-(4-methoxybenzyl) -1-thio- β -Dglucopyranoside (22) (31.0 g, 70%) 25

Methyl 6-0-tert-butyldiphenylsilyl-2-deoxy-2-[(1,3dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5ylidene)methylamino]-3-0-(4-methoxybenzyl)-1-thio- β -Dglucopyranoside (23)

A mixture of t-butyldiphenylsilyl chloride (16.65 g, 60.60 mmol), 4-dimethylaminopyridine (9.85 g, 80.80 mmol) methyl 2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-

trioxopyrimidin-5-ylidene)methylamino]-3-0-(4methoxybenzyl)-1-thio- β -D-glucopyranoside (22) (20 g, 40.4 mmol) in dry 1,2-dichloroethane (200 mL) was stirred at 80°C for 2 hours. The resulting clear solution was cooled to room temperature, diluted with CHCl₃ (200 mL), washed with H_2O (3 x 500 mL), brine solution (500 mL), dried over and evaporated. The residue was purified chromatography using 1,2-dichloroethane - EtOAc 10:1 as the mobile phase to give methyl 6-O-tert-butyldiphenylsilyl-2-10 deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5ylidene) methylamino] $-3-0-(4-methoxybenzyl)-1-thio-\beta-D$ glucopyranoside (23) (23.3 g, 79%).

Methyl 6-0-tert-butyldiphenylsilyl-4-0-biphenylcarbonyl-215 deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5 ylidene)methylamino]-3-0-(4-methoxybenzyl)-1-thio-β-D glucopyranoside (24)

A mixture of methyl 6-0-tert-butyldiphenylsilyl-2-deoxy-2-20 [(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5ylidene)methylamino]-3-0-(4-methoxybenzyl)-1-thio- β -Dglucopyranoside (23) (10.0 g, 13.64 mmol), 4dimethylaminopyridine (2.5 g, 20.46 mmol) in dry 1,2dichloroethane (100 mL) was stirred at room temperature. 25 Biphenylcarbonyl chloride (4.42 g, 20.46 mmol) was added to the stirred reaction mixture. The resulting suspension was stirred under reflux for 3 hours. The reaction mixture was cooled to 10°C and filtered. The crystalline solid was washed on the funnel with dry 1,2-dichloroethane (20 mL) 30 and filtered. The filtrates were combined, diluted with CHCl₃ (100 mL) and washed twice with diluted brine solution (water-brine 2:1) (150 mL). The organic layer was dried over MgSO4 and evaporated. The residue was purified by chromatography using hexane - CHCl; 1:1 as the mobile phase 35 to give methyl 6-O-tert-butyldiphenylsilyl-4-O-

biphenylcarbonyl-2-deoxy-2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-3-O-(4-methoxybenzyl)-1-thio- β -D-glucopyranoside (24) (9.5 g, 75%).

5

Example 6 Synthesis of an Orthogonally Protected Thioglycoside Building Block, Methyl $6-O-(t-butyldiphenylsily1)-2-O-(4-methoxybenzy1)-3-O-allyl-4-O-acetyl-1-thio-<math>\beta$ -D-galactopyranoside (6)

10

15

20

Methyl 6-0-(t-butyldiphenylsilyl)-1-thio- β -D-galactopyranoside (26)

A mixture of methyl 1-thio- β -D-galactopyranoside (25) (5 g, 28 mmol), chloro t-butyldiphenylsilane (5.85 g, 21 mmol) and DMAP (2.63 g, 21 mmol) in dry 1, 2-dichloroethane (130 mL) was left to stir at reflux for 2.5 h. The reaction mixture was cooled to room temperature, diluted with dichloromethane (200 mL) and washed with saturated sodium chloride solution (2 x 250 mL). The organic phase was dried over MgSO₄ and subsequently evaporated to dryness to

WO 00/42057 PCT/AU00/00025

- 30 -

give methyl 6-0-(t-butyldiphenylsilyl)-1-thio- β -D-galactopyranoside (26) (7.5 g, 81%) as a colorless oil.

Methyl 6-0-(t-butyldiphenylsilyl)-3,4-0-isopropylidene-1thio- β -D-galactopyranoside (27)

A mixture of methyl 6-O-(t-butyldiphenylsilyl)-1-thio- β -D-galactopyranoside (26) (7.4 g, 16.5 mmol) and p-toluenesulphonic acid (20 mg) in 2,2-dimethoxypropane (100 mL) was left to stir at room temperature for 2 h. The reaction mixture was then neutralized with triethylamine (1 mL) and evaporated to dryness. The residue was dissolved in dichloromethane (250 mL), washed with water (1 x 250 mL), dried over MgSO₄ and evaporated to dryness to give methyl 6-O-(t-butyldiphenylsilyl)-3,4-O-isopropylidene-1-thio- β -D-galactopyranoside (27) (7.0 g, 87%) as a white solid.

10

15

Methyl 6-0-(t-butyldiphenylsilyl)-2-0-(4-methoxybenzyl)-3,4-0-isopropylidene-1-thio- β -D-galactopyranoside (28) To a suspension of sodium hydride (95%, 0.53 g, 21 mmol) in dry DMF (100 mL) at 0° C°, was added dropwise methyl 6-0-20 $(t-butyldiphenylsily1)-3,4-0-isopropylidene-1-thio-\beta-D$ galactopyranoside (27) (6.8 g, 13.9 mmol) as a solution in dry DMF (25 mL) in 5 minutes. The resulting mixture was left to stir at 0 C° for 15 min and then at room temperature for 1 h. The mixture was then cooled to 0 C° 25 and a solution of 4-methoxybenzyl chloride (3.27 g, 21 mmol) in dry DMF (25 mL) was added dropwise, over 5 min. The reaction mixture was left to stir at 0°C for 15 min and then at room temperature for 16 h. After this period 30 the reaction was neutralized with absolute ethanol (15 mL) at 0°C, and then evaporated to dryness. The residue was taken up in chloroform (400 mL), washed with water (300 mL)

and saturated sodium bicarbonate solution (300 mL). The organic phase was dried over MgSO₄ and evaporated to dryness to give the crude product as an orange oil (~9 g). The crude material was chromatographed using EtOAc - hexane 25 : 75 as the mobile phase to give methyl $6-O-(t-butyldiphenylsilyl)-2-O-(4-methoxybenzyl)-3,4-O-isopropylidene-1-thio-<math>\beta$ -D-galactopyranoside (28) as a pale yellow oil (6.5 g, 77%).

10

5

Methyl $6-O-(t-butyldiphenylsily1)-2-O-(4-methoxybenzy1)-1-thio-<math>\beta$ -D-galactopyranoside (29)

A suspension of methyl 6-0-(t-butyldiphenylsilyl)-2-0-(4-methoxybenzyl)-3,4-0-isopropylidene-1-thio- β -D-

- 15 galactopyranoside (28) (6.4 g, 10.5 mmol) in acetic acid (80%, 150 mL) was left to stir at 70 C° for 1.5 h. The reaction mixture was evaporated to dryness and the remaining residue was chromatographed using EtOAc hexane 1 : 1) to give methyl 6-O-(t-butyldiphenylsilyl)-2-O-(4-
- 20 methoxybenzyl)-1-thio- β -D-galactopyranoside (29) as a pale yellow oil (3.0 g, 50%).

Methyl 6-0-(t-butyldiphenylsilyl)-2-0-(4-methoxybenzyl)-3-0-allyl-1-thio- β -D-galactopyranoside (30)

- 25 A mixture of methyl 6-O-(t-butyldiphenylsilyl)-2-O-(4-methoxybenzyl)-1-thio- β -D-galactopyranoside (29) (2.8 g, 4.9 mmol) and dibutyl tin oxide (1.6 g, 6.4 mmol) in anhydrous methanol (200 mL) was stirred at reflux for 1 h. The reaction mixture was evaporated to dryness and the remaining residue dissolved in dry toluene (50 mL).
 - Tetraethylammonium bromide (1.34 g, 6.4 mmol) and allyl bromide (7.7 g, 64 mmol) were added. The reaction mixture was left to stir at reflux overnight. The reaction mixture

PCT/AU00/00025

5

10

15

20

was cooled to room temperature and filtered. The filtrate was evaporated to dryness and the residue was purified by chromatography using EtOAc - hexane 15 : 85 as the mobile phase to give methyl $6-O-(t-\text{butyldiphenylsilyl})-2-O-(4-\text{methoxybenzyl})-3-O-allyl-1-thio-<math>\beta$ -D-galactopyranoside (30) (1.5 g, 50%) as a pale yellow oil.

Methyl 6-0-(t-butyldiphenylsilyl)-2-0-(4-methoxybenzyl)-3-0-allyl-4-0-acetyl-1-thio- β -D-galactopyranoside (31)

To a solution of methyl $6-O-(t-butyldiphenylsilyl)-2-O-(4-methoxybenzyl)-3-O-allyl-1-thio-<math>\beta$ -D-galactopyranoside (30) (1.4 g, 2.3 mmol) in pyridine (30 mL) was added acetic anhydride (20 g, 196 mmol) in one portion. The resulting solution was left to stir at room temperature for 72 h. The reaction contents were then evaporated to dryness and the residue was dissolved in dichloromethane (200 mL). The solution was washed with potassium hydrogen sulphate solution (1M, 2 x 150 mL) followed by saturated sodium chloride (150 mL), dried over MgSO₄ and evaporated to dryness. The crude residue was purified by chromatography using dichloromethane as the mobile phase to give Methyl 6-O-(t-butyldiphenylsilyl)-2-O-(4-methoxybenzyl)-3-O-allyl-4-<math>O-acetyl-1-thio- β -D-galactopyranoside (31) (750 mg, 48%) as

25

Example 7

a pale yellow oil.

Selective Deprotection - Etherification study using an Orthogonally Protected Thioglycoside Building Block, Methyl 2-azido-6-O-tert-butyldiphenylsilyl-4-O-biphenylcarbonyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D glucopyranoside (11)

30

5

Methyl 2-azido-6-0-tert-butyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D-glucopyranoside (10)

Sodium (89 mg) was reacted in dry MeOH (50 mL)then a solution of methyl 2-azido-4-0-biphenylcarbonyl-6-0-tert-butyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D-glucopyranoside (11) (3 g, 3.88 mmol) in THF (25 mL) was added. The reaction mixture was stirred at 40 C° for 30 minutes, then cooled to room temperature. The solution was

35

neutralized by Amberlite IR 120 (H $^+$) ion exchange resin. The suspension was filtered, the filtrate was evaporated. The residue was purified by chromatography using EtOAc - hexane 1 : 4 as the mobile phase to give methyl 2-azido-6-O-tert-butyldiphenylsilyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio- β -D-glucopyranoside (10) (2.1 g, 91%)

Methyl 2-azido-4-0-benzyl-6-0-tert-butyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio-β-D-glucopyranoside (32)

- A suspension of sodium hydride (196 mg, 5.1 mmol) in dry DMF (10 mL) was cooled to 0 °C, and a solution of methyl 2-azido-6-O-tert-butyldiphenylsilyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D glucopyranoside (10) (2.53 g, 4.3 mmol) in dry DMF (20 mL) was added dropwise in 30 minutes.
- The resulting solution was stirred at room temperature for 30 minutes and benzyl bromide (880 mg, 5.1 mmol) was added dropwise at 0 °C. The reaction mixture was stirred at room temperature overnight, cooled to 0 °C and dry methanol (1 mL) was added dropwise. The reaction mixture was
- concentrated under reduced pressure, then xylene (20 mL) was co-evaporated from the residue. The residue was taken up in CHCl₃ (100 mL) washed with H₂O (100 ml), saturated NaHCO₃ solution (100 mL) dried over MgSO₄ and evaporated to dryness. The residue was purified by chromatography using
- 25 EtOAc Hexane 1: 9 as the mobile phase to give methyl 2-azido-4-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D-glucopyranoside (32) (2.0 g, 68%).
- 30 Methyl 2-azido-4-0-benzyl-2-deoxy-3-0-(4-methoxybenzyl)-1thio-β-D-glucopyranoside (33)

To a mixture of methyl 2-azido-4-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D-glucopyranoside (32) (1.5 g, 2.2 mmol) and anhydrous AcOH (28.8 mL) in dry THF (169 mL) hydrogen fluoride-pyridine complex (20.3 mL) was added in a polypropylene container. The reaction mixture was kept at room temperature

overnight, then diluted with EtOAc (1 L). The resulting solution was washed with saturated sodium hydrogen carbonate (4 x 1 L), saturated brine solution (1 L), dried over MgSO₄ and evaporated to dryness. The residue was crystallized from MeOH. The mother liquor was evaporated, the residue was treated with hexane to get more solid. The solid products were combined affording methyl 2-azido-4-O-benzyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio- β -D-glucopyranoside (33) (735 mg, 75%).

10

3.00 c 750

5

Methyl 2-azido-4-0-benzyl-6-0-(4-chlorobenzyl)-2-deoxy-3-0- $(4-methoxybenzy1)-1-thio-\beta-D-glucopyranoside (34)$ A suspension of sodium hydride (71 mg, 1.8 mmol) in dry DMF (5 mL) was cooled to 0 °C, and a solution of methyl 2azido-4-0-benzyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D-15 glucopyranoside (33) (680 mg, 1.5 mmol) in dry DMF (5 mL) was added dropwise in 30 minutes. The resulting solution was stirred at room temperature for 30 minutes and 4chlorobenzyl chloride (295 mg, 1.5 mmol) was added dropwise at 0 °C. The reaction mixture was stirred at room 20 temperature for 4.5 hours, cooled to 0 °C and dry methanol (1 mL) was added dropwise. The reaction mixture was concentrated under reduced pressure, then xylene (10 mL) was co-evaporated from the residue. The residue was treated with hexane (10 mL) and filtered to give methyl 2-azido-4-25 O-benzy1-6-0-(4-chlorobenzy1)-2-deoxy-3-0-(4methoxybenzyl)-1-thio- β -D-glucopyranoside (34) (620 mg, 71 용).

30 Methyl 2-azido-4-0-benzyl-6-0-(4-chlorobenzyl)-2-deoxy-1-thio-β-D-glucopyranoside (35)

A mixture of methyl 2-azido-4-O-benzyl-6-O-(4-chlorobenzyl)-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D glucopyranoside (34) (580 mg, 1.01 mmol) and DDQ (270 mg, 1.2 mmol) in CH₂Cl₂ - H₂O 9:1 (10 mL) was stirred at room temperature for 3 hours. The reaction mixture was washed with saturated NaHCO₃ solution (3 x 15 ml), dried over

5

30

35

MgSO₄ and evaporated. The residue was purified by chromatography using CHCl₃-Hexane-MeOH 30:20:0.5 as the mobile phase to give methyl 2-azido-4-O-benzyl-6-O-(4-chlorobenzyl)-2-deoxy-1-thio- β -D glucopyranoside (35) (300 mg, 66%).

Methyl 2-azido-4-0-benzyl-6-0-(4-chlorobenzyl)-2-deoxy-3-0-pentamethylbenzyl-1-thio- β -D-glucopyranoside (36)

A suspension of sodium hydride (40 mg, 1.0 mmol, 60%) in dry DMF (5 mL) was cooled to 0 °C, and a solution of methyl 10 $2-azido-4-0-benzyl-6-0-(4-chlorobenzyl)-2-deoxy-1-thio-\beta-D$ glucopyranoside (35) (280 mg, 0.67 mmol) in dry DMF (5 mL) was added dropwise in 30 minutes. The resulting solution was stirred at room temperature for 30 minutes and pentamethylbenzyl chloride (200 mg, 1.0 mmol) was added 15 dropwise at 0 °C. The reaction mixture was stirred at room temperature for 4 hours, cooled to 0 °C and dry methanol (1 mL) was added dropwise. The reaction mixture was concentrated under reduced pressure then xylene (10 mL) was co-evaporated from the residue. The residue was in EtOAc 20 (100 mL), washed with brine (2 x 100 mL), dried over MgSO₄ and evaporated. The resulting solid was suspended in hexane (50 mL) and filtered to give methyl 2-azido-4-O-benzyl-6-O-(4-chlorobenzyl)-2-deoxy-3-0-pentamethylbenzyl-1-thio-β-Dglucopyranoside (36) (290 mg, 76%). 25

2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-ethyl 2-azido-4-0-benzyl-6-0-(4-chlorobenzyl)-2-deoxy-3-0-pentamethylbenzyl- α , β -D-glucopyranoside (37)

A mixture of methyl 2-azido-4-0-benzyl-6-0-(4-chlorobenzyl)-2-deoxy-3-0-pentamethylbenzyl-1-thio- β -D glucopyranoside (36) (220 mg, 0.36 mmol), 2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-ethanol (150 mg, 0.66 mmol), molecular sieves 4A (1 g) and DMTST (138 mg, 0.66 mmol) in 1,2-dichloroethane (10 mL) was

stirred at room temperature for 30 minutes. The reaction

5

mixture was neutralized with TEA (0.5 mL) and evaporated. The residue was purified by chromatography using CHCl₃-MeOH 40 mL: 20 drops as the mobile phase to give $2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-ethyl 2-azido-4-O-benzyl-6-O-(4-chlorobenzyl)-2-deoxy-3-O-pentamethylbenzyl-<math>\beta$ -D glucopyranoside (37) (220 mg, 77%).

2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5ylidene)methylamino]-ethyl 2-amino-4-0-benzyl-6-0-(4chlorobenzyl)-2-deoxy-3-0-pentamethylbenzyl-α,β-Dglucopyranoside (38)
A mixture of 2-[(1,3-dimethyl-2,4,6(1H,3H,5H)trioxopyrimidin-5-ylidene)methylamino]-ethyl 2-azido-4-0-

benzyl-6-O-(4-chlorobenzyl)-2-deoxy-3-O-pentamethylbenzylβ-D glucopyranoside (37) (160 mg, 0.2 mmol) and TEA (3
drops) in 1,3-propanedithiol (1 mL) was stirred at room
temperature overnight. The reaction mixture was
chromatographed using EtOAc - hexane 1:1 then EtOAc - MeOH

20 10:1 solvent systems as mobile phases to give 2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5ylidene)methylamino]-ethyl 2-amino-4-0-benzyl-6-0-(4-chlorobenzyl)-2-deoxy-3-0-pentamethylbenzyl-α,β-D
glucopyranoside (38) (123 mg, 80%)

25

30

2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-ethyl 2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-4-0-benzyl-6-0-(4-chlorobenzyl)-2-deoxy-3-0-pentamethylbenzyl-α,β-D glucopyranoside (39)

A mixture of 2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-ethyl 2-amino-4-0-benzyl-6-0-(4-chlorobenzyl)-2-deoxy-3-0-pentamethylbenzyl- β -D glucopyranoside (38) (50 mg, 0.066 mmol), 1,3-dimethyl-

5-[(dimethylamino)methylene]2,4,6(1H,3H,5H)trioxopyrimidine (Wow-reagent) (50 mg, 0.24 mmol), TEA (0.2 mL) in CHCl₃ - MeOH 3:1 (4 mL) was stirred at room temperature for 3 hours. The reaction mixture was evaporated, the resulting residue was chromatographed using EtOAc as the mobile phase to give 2-[(1,3-dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino]-ethyl $2-[(1,3-\text{dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidin-5-ylidene)methylamino}]-4-O-benzyl-6-O-(4-chlorobenzyl)-2-deoxy-3-O-pentamethylbenzyl-<math>\alpha$, β -D glucopyranoside (39) (45 mg, 75%).

10 Example 8

15

Selective deprotection study using an Orthogonally Protected Thioglycoside Building Block, Methyl 2-azido-6-0-tert-butyldiphenylsilyl-4-0-biphenylcarbonyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D glucopyranoside (11)

OH **OTBDPS BPCO** HO MeOBn MeOBn N_3 10 **OTBDPS BPCO** MeOBn **SMe OTBDPS BPCO OTBDPS BPCO** MeOBr **OTBDPS** N_3 43 BPCO^{*} MeOBn

Methyl 2-azido-6-0-tert-butyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D glucopyranoside (10)

20 Sodium (89 mg) was reacted in dry MeOH (50 mL)then a solution of methyl 2-azido-4-O-biphenylcarbonyl-6-O-tert-butyldiphenylsilyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D

WO 00/42057 PCT/AU00/00025

- 39 -

glucopyranoside (11) (3 g, 3.88 mmol) in THF (25 mL) was added. The reaction mixture was stirred at 40 C° for 30 minutes, then cooled to room temperature. The solution was neutralized by Amberlite IR 120 (H $^+$) ion exchange resin. The suspension was filtered, the filtrate was evaporated. The residue was purified by chromatography using EtOAc - hexane 1 : 4 as the mobile phase to give methyl 2-azido-6-O-tert-butyldiphenylsilyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio- β -D glucopyranoside (10) (2.1 g, 91%).

10

Methyl 2-azido-4-0-biphenylcarbonyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio-β-D-glucopyranoside (40)

To a mixture of methyl 2-azido-4-0-biphenylcarbonyl-6-0tert-butyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)-1thio- β -D-glucopyranoside (11) (150 mg, 0.19 mmol) and 15 anhydrous AcOH (2.8 mL) in dry THF (17 mL) hydrogenfluoride-pyridine complex (2 mL) was added in a polypropylene container. The reaction mixture was kept at room temperature overnight, then diluted with EtOAc (100 mL). The resulting solution was washed with saturated 20 sodiumhydrogen carbonate (4 x 100 mL), saturated brine solution (100 mL), dried over MgSO4 and evaporated to dryness. The residue was purified by chromatography using EtOAc - hexane 2:5 as the mobile phase to give methyl 2azido-4-O-biphenylcarbonyl-2-deoxy-3-O-(4-methoxybenzyl)-1-25 thio- β -D-glucopyranoside (40) (96 mg, 93%).

Methyl 2-azido-4-0-biphenylcarbonyl-6-0-tertbutyldiphenylsilyl-2-deoxy-1-thio-β-D-glucopyranoside (41)

A mixture of methyl 2-azido-4-O-biphenylcarbonyl-6-O-tert-butyldiphenylsilyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D-glucopyranoside (11) (150 mg, 0.19 mmol) and DDQ (52 mg, 0.23 mmol) in CH₂Cl₂ - H₂O 9:1 (5 mL) was stirred at room temperature for 3 hours. The reaction mixture was washed with saturated NaHCO₃ solution (3 x 3 ml), dried over MgSO₄ and evaporated. The residue was purified by chromatography using EtOAc - hexane 15:85 as the mobile phase to give

methyl 2-azido-4-O-biphenylcarbonyl-6-O-tert-butyldiphenylsilyl-2-deoxy-1-thio- β -D-glucopyranoside (41) (116 mg, 92%).

5 Methyl 2-amino-4-0-biphenylcarbonyl-6-0-tertbutyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio-β-D-glucopyranoside (42)

A mixture of methyl 2-azido-4-0-biphenylcarbonyl-6-0-tert-butyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -

- D-glucopyranoside (11) (150 mg, 0.19 mmol) and TEA (3 drops) in 1,3-propanedithiol (1 mL) was stirred at room temperature overnight. The reaction mixture was chromatographed using EtOAc hexane 15:85 then EtOAc hexane 1:1 solvent systems as mobile phases to give methyl 2-amino-4-O-biphenylcarbonyl-6-O-tert-butyldiphenylsilyl-2-deoxy-3-O-(4-methoxybenzyl)-1-thio-β-D-glucopyranoside (42) (130 mg, 91%).
- 3,4-Methylenedioxybenzyl 2-azido-4-0-biphenylcarbonyl-6-0-20 tert-butyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)- α , β -D-glucopyranoside (43)

A mixture of methyl 2-azido-4-0-biphenylcarbonyl-6-0-tert-butyldiphenylsilyl-2-deoxy-3-0-(4-methoxybenzyl)-1-thio- β -D-glucopyranoside (11) (200 mg, 0.26 mmol), 3,4-

- methylenedioxybenzyl alcohol 59 mg, 0.39 mmol), molecular sieves 4A (1 g) and methyltriflate (106 mg, 0.65 mmol) in 1,2-dichloroethane (10 mL) was stirred at room temperature overnight. The reaction mixture was neutralized with TEA (0.5 mL) and evaporated. The residue was purified by chromatography using EtOAc hexane 15:85 as the mobile
 - chromatography using EtOAc hexane 15:85 as the mobile phase to give 3,4-methylenedioxybenzyl 2-azido-4-0-biphenylcarbonyl-6-0-tert-butyldiphenylsilyl-2-deoxy-3-0- (4-methoxybenzyl)- α , β -D-glucopyranoside (43) (173 mg, 76%).
- It will be apparent to the person skilled in the art that while the invention has been described in some detail for the purposes of clarity and understanding,

WO 00/42057 PCT/AU00/00025

- 41 -

various modifications and alterations to the embodiments and methods described herein may be made without departing from the scope of the inventive concept disclosed in this specification.

5

References cited herein are listed below, and are incorporated herein by this reference.

WO 00/42057 PCT/AU00/00025

- 42 -

REFERENCES

Merrifield, R. B.

5 Pept., Proc. Am. Pept. Symp., 5th, 1977 488.

Wong, C-H, Ye, X-S and Zhang, Z. J. Am. Chem. Soc., 1998 <u>120</u> 7137-7138.

10 Wunberg, T., Kallus, C., Opatz, T., Henke, S., Schmidt, W.,
and Kunz, H.
Angew. Chem. Int. Ed., 1998 37 2503-2505

15

CLAIMS

5

10

1. A universal monosaccharide building block of General Formula I or General Formula II

in which

A is a leaving group;

X is hydrogen, O, N or N_3 ;

 X_1 is hydrogen, -CH2O-, -CH2NH-, -CH3, -CH2N3 or -COO-; and

B, C, D and E are protecting groups which can be cleaved orthogonally,

15 and in which

B, C, D and E are absent when X is hydrogen or N_3 , and E is absent when X_1 is hydrogen, CH_3 or N_3 .

- 2. A monosaccharide building block according to 20 claim 1, in which A is selected from the group consisting of -SR; where R is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, halogen; trichloroacetimidoyl-; sulphoxide; and -Oalkenyl.
 - 3. A monosaccharide building block according to claim 1 or claim 2, which is a compound of General Formula III

30

PCT/AU00/00025

III

in which

 B_1 , C_1 , D_1 and E_1 are orthogonal carbohydrate protecting groups selected from protecting group sets 1, 2, 6 and 8 as herein defined.

4. A monosaccharide building block according to claim 1 or claim 2, which is a compound of General Formula 10 IV

$$\begin{array}{c|c} E_2X_1 & O & A \\ & & & \\ D_2X & & & \\ & & & XC_2 \\ & & IV \end{array}$$

15 in which

 B_2 , C_2 , D_2 and E_2 are selected from the members of protecting group set 1, and in themselves constitute an orthogonal set.

- 20 5. A monosaccharide building block according to claim 4, in which the members of protecting group set 1 are levanoyl, chloroacetate, p-methoxybenzyloxycarbonyl and 2-trimethylsilylethylcarbonate.
- 25 6. A monosaccharide building block according to claim 1 or claim 2, which is a compound of General Formula V

$$\begin{array}{c} E_3X_1 \\ \\ D_3X \\ \end{array} \begin{array}{c} O \\ \\ XC_3 \\ \end{array} \begin{array}{c} A \\ \\ XB_3 \\ \end{array}$$

in which

 $\mbox{\ensuremath{\mathtt{A}}},\mbox{\ensuremath{\mathtt{X}}}$ and $\mbox{\ensuremath{\mathtt{X}}}_1$ are as defined for General Formula I $\mbox{\ensuremath{\mathtt{B}}}$ and II, and

 B_3 , C_3 , D_3 and E_3 are an orthogonal set of protecting groups selected from amongst the members of set 1 and from the remaining orthogonal sets.

- 7. A method of synthesis of a molecule selected from the group consisting of glycoconjugates of non-carbohydrate molecules, neo-glycoconjugates and oligosaccharides, comprising the step of using a monosaccharide building block according to any one of claims 1 to 6.
- 8. A method according to claim 7, in which the molecule comprises one or more compounds in which substituents are linked to a pyranose or furanose ring.
- 20 9. A method according to claim 7 or claim 8, in which the molecule comprises a sugar analogue.
 - 10. A method according to any one of claims 7 to 9, in which the synthesis is carried out in solution.
- 11. A method according to any one of claims 7 to 9, in which the synthesis is carried out on a solid-phase support.

25

International application No.
PCT/AU00/00025

		<u> </u>	PCT/AU00/00025			
A.	CLASSIFICATION OF SUBJECT MATTER	·				
Int. Cl. 7:	C07H 23/00, 5/10, 9/04, 5/04, 7/06, 15/207, 7/04					
According to	nternational Patent Classification (IPC) or to bo	th national classification and	IPC			
В.	FIELDS SEARCHED	,	•			
Minimum docu	nentation searched (classification system followed by	classification symbols)				
Documentation	searched other than minimum documentation to the e	xtent that such documents are in	*			
	base consulted during the international search (name stracts substructure (see Box 1.2.)	of data base and, where practical	ble, search terms used)			
C.	DOCUMENTS CONSIDERED TO BE RELEVAN	TT .				
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant pas	sages Relevant to claim No			
х	Chemical Abstracts Vol. 129, Abstract 203 (1998), 37(11), 1559-1561: See Chem Abs RN 211947-41-0	158: Angew. Chem., Int. Ec	1. 1-4, 6-11			
x	Chemical Abstracts Vol. 127, Abstract 2934 119(42), 10064-10072: See Chem Abs RN 196704-08-2	97), 1-4, 6-11				
X Chemical Abstracts Vol. 126, Abstract 75 (1996), 35(21), 2510-2512: See Chem Abs RN 185447-08-9		49; Angew. Chem., Int. Ed.	Engl. 1-4, 6-11			
x	Further documents are listed in the continuati	ion of Box C X See pa	tent family annex			
"A" docum not cor "E" earlier the int docum or whi anothe "O" docum exhibi "P" docum	ent defining the general state of the art which is a sidered to be of particular relevance application or patent but published on or after ernational filing date ent which may throw doubts on priority claim(s) ch is cited to establish the publication date of recitation or other special reason (as specified) ent referring to an oral disclosure, use, tion or other means	priority date and not in con understand the principle of X" document of particular rele be considered novel or can inventive step when the do document of particular rele be considered to involve as combined with one or more	evance; the claimed invention cannot in inventive step when the document to other such documents, such to a person skilled in the art			
	al completion of the international search	Date of mailing of the internat	ional search report MAR 2000			
Name and mailing address of the ISA/AU AUSTRALIAN PATENT OFFICE PO BOX 200, WODEN ACT 2606, AUSTRALIA E-mail address: pct@ipaustralia.gov.au Facsimile No. (02) 6285 3929		Authorised officer G. D. HEARDER Telephone No: (02) 6283 2:	553			

International application No. PCT/AU00/00025

Continuati	ion). DOCUMENTS CONSIDERED TO BE RELEVANT		
	Citation of document with indication, where appropriate of the relevant passages	F	

C (Continuat		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	Chemical Abstracts Vol. 124, Abstract 109384; Bioconjugate Chem. (1996), 7(1), 45-55:	1-4, 6-11
	See Chem Abs RN 170966-45-7	
х	Chemical Abstracts Vol. 122, Abstract 315043; JP 0625601 A2 (Rikagaku Kenkyusho, Japan; Otsuka Pharma Co Ltd) 13 September 1994: See Chem Abs 163214-35-5	1-4, 6-11
X ····	Chemical Abstracts Vol. 121, Abstract 256150; J. Carbohydr. Chem. (1994), 13(2), 141-61: See Chem Abs RN 158419-55-7	1-4, 6-11
x	Chemical Abstracts Vol. 121, Abstract 157984; Chem. Lett. (1994), (6), 1049-52: See Chem Abs RN 157428-32-5	1-4, 6-11
x	Chemical Abstracts Vol. 119, Abstract 250313; Carbohydr. Res. (1993), 244(2), 259-73: See Chem Abs RN 151072-08-1	1-4, 6-11
x	Chemical Abstracts Vol.116, Abstract 194721; Carbohydr. Res. (1992), 224, 111-22: See Chem Abs RN 140420-79-7	1-4, 6-11
x	Chemical Abstracts Vol. 112, Abstract 139667; J. Carbohydr. Chem. (1989), 8(4), 629-44: See Chem Abs RN 125739-37-9	1-4, 6-11
x	Chemical Abstracts Vol. 110, Abstract 39265; Carbohydr. Res. (1988), 179, 61-75: See Chem Abs RN 118281-93-9	1-4, 6-11
x	Chemical Abstracts Vol. 75, Abstract 36570; US 3574187 (Bannister) 6 April 1971 [et. al.]: See Chem Abs RN 34291-35-5	1-4, 6-11
x	EP 578112 A2 (The Nissan Oil Mills Ltd) 12 January 1994; See (for example) page 5 compound 1, page 8 compound 33, and examples 1, 2, claims 5 and 7	1-4, 6-11
x	Derwent Abstract Accession Number 98-433880, Class B03 E13, JP 10182684 A (TORAY IND INC) 7 July 1998, See Abstract, especially compounds of formulae (I) - (VI).	1-4, 6-11
x	WO 9508553 A1 (The Scripps Research Institute) 30 March 1995, See for example compound 43: page 17 lines 25-33, page 18, Claim 2	1-4, 6-11

International application No. PCT/AU00/00025

Category* Citation of document, with indication, where appropriate, of the relevant passages Releva	C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
9(14), 1911-1914: see Chem. Abs Registry Number (RN) 244022-43-3		•			Relevant to claim No.	
	P,X	9(14), 1911-1914:				
·	. Samuel de S	olio — Company (San Care Care Care Care Care Care Care Care	ടെ നലാധ വാധി കും	; E	· · · · · · · · · · · · · · · · · · ·	
·						
·		·		· .		
·	-		•			
l	·					

International application No. PCT/AU00/00025

Box 1	Observations where certain claims were found unsearchable (Continuation of item 2 of first sneet)
This inte	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following
1.	Claims Nos:
••	because they relate to subject matter not required to be searched by this Authority, namely:
	·
2.	X Claims Nos: 1-4, 6-11
- • · · · -	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	These claims are so broad in scope that a search could not be carried out on economic grounds. See supplemental sheet.
,	
3.	Claims Nos:
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)
Вох П	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
11110 11110	
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not
3.	invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search
J.	As only some of the required additional search less were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search
	report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest
	No protest accompanied the payment of additional search fees.

International application No.

PCT/AU00/00025

Su	laa	emental	Box

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: 1.2

No meaningful international search can be carried out on claims 1-4, 6-11 as they are so broad in scope. Indeed a relatively narrow substructure search of "A" being "-SMe" resulted in several hundreds of compounds falling within the scope of these claims. Accordingly this search report has been limited largely to the invention defined by claim 2 and the examples.

NB: the citations are only a selection of many citations that fall within the scope of the claims.

Information on patent family members

International application No. PCT/AU00/00025

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report		Patent Family Member					
US	3574187	us	3697503	ZA	7006741	IL	35424
		СН	547276	СН	547277	ES	384565
		NL	7015542	NL	7015639	GB	1319988
		GB	1319990	GB	1319989	DE	2053672
		FR	2068368	FR	2073320	DK	125918
EP	578112	CA	2099475	JР	6016692		
wo	9508553	AU	78782/94				
		· — ·				E	ND OF ANNI

THIS PAGE BLANK (USPTO)