Automi e Linguaggi Formali

a.a. 2016/2017

LT in Informatica 20 Marzo 2017

Torniamo al secondo esercizio di ieri

■ Costruiamo l'espressione regolare equivalente al seguente DFA:

Il risultato che abbiamo ottenuto con la procedura di eliminazione degli stati è:

$$((1+01)+00(0+10)^*11)^*00(0+10)^*$$

Domanda: l'espressione sopra è equivalente a $(0+1)^* 00(0+10)^*$?

Risposta: SI

• Costruiamo un automa per $(0+1)^* 00(0+10)^*$:

■ Lo semplifichiamo eliminando lo stato q_3 :

Risposta: SI

■ Alla fine, lo convertiamo in un DFA:

■ E abbiamo ottenuto lo stesso automa da cui siamo partiti!

Esercizio

■ Costruiamo un automa che riconosce il linguaggio:

$$L_{01} = \{a^n b^n : n \ge 0\}$$

Dimostriamo che L_{01} non è regolare

- Supponiamo che $L_{01} = \{0^n 1^n : n \ge 0\}$ sia regolare
- Allora deve essere accettato da un DFA *A* con un certo numero *k* di stati
- Cosa succede quando A legge 0^k ?
- Seguirà una qualche sequenza di transizioni:

- Siccome ci sono k + 1 stati nella sequenza, esiste uno stato che si ripete: esistono i < j tali che $p_i = p_i$
- Chiamiamo q questo stato

Dimostriamo che L_{01} non è regolare

- Cosa succede quando l'automa A legge 1ⁱ partendo da q?
- Se l'automa finisce la lettura in uno stato finale:
 - lacktriangle allora accetta, sbagliando, la parola $0^j 1^i$
- Se l'automa finisce la lettura in uno stato non finale:
 - allora rifiuta, sbagliando, la parola 0ⁱ1ⁱ
- In entrambi i casi abbiamo ingannato l'automa, quindi L_{01} non può essere regolare

Theorem (Pumping Lemma per Linguaggi Regolari)

Sia L un linguaggio regolare. Allora

- \blacksquare esiste una lunghezza $n \ge 0$ tale che
- $lue{}$ ogni parola $w \in L$ di lunghezza $|w| \geq n$
- **p**uo essere spezzata in w = xyz tale che:
 - 1 $y \neq \varepsilon$ (il secondo pezzo è non vuoto)
 - $|xy| \le n$ (i primi due pezzi sono lunghi al max n)
 - $\forall k > 0, xy^k z \in L$ (possiamo "pompare" y rimanendo in L)

Pumping Lemma: dimostrazione

Dimostrazione:

- Supponiamo che *L* sia un linguaggio regolare
- Allora è riconosciuto da un DFA con, supponiamo, *n* stati
- Consideriamo una parola $w = a_1 a_2 \dots a_m \in L$ di lunghezza $m \ge n$
- Consideriamo gli stati percorsi da A mentre legge w:

$$p_i = \hat{\delta}(p_0, a_1 a_2 \dots a_i)$$

■ Siccome in p_0, p_1, \ldots, p_n ci sono n+1 stati, ne esiste uno che si ripete:

esistono
$$i < j$$
 tali che $p_i = p_i$ e $j \le n$

Pumping Lemma: dimostrazione

- Possiamo spezzare w in tre parti w = xyz:
 - $1 \quad x = a_1 a_2 \dots a_i$
 - $y = a_{i+1}a_{i+1}...a_j$
 - $z = a_{j+1}a_{j+1}\dots a_m$
- che rispettano le condizioni del Lemma:
 - $y \neq \varepsilon$ perché i < j
 - $|xy| \le n$ perché $j \le n$

Pumping Lemma: dimostrazione

■ Quindi, nel grafo delle transizioni di A:

■ E di conseguenza anche xy^kz viene riconosciuta dall'automa per ogni $k \ge 0$

Uso del Pumping Lemma

- Ogni linguaggio regolare soddisfa il Pumping Lemma.
- Per mostrare che un linguaggio non è regolare dobbiamo mostrare che falsifica il Pumping Lemma:
 - per ogni lunghezza $n \ge 0$
 - **esiste una parola** $w \in L$ di lunghezza $|w| \ge n$ tale che
 - **per ogni split** w = xyz tale che:
 - 1 $y \neq \varepsilon$ (il secondo pezzo è non vuoto)
 - $|xy| \le n$ (i primi due pezzi sono lunghi al max n)
 - esiste un $k \ge 0$ tale che $xy^kz \in L$ (possiamo "pompare" y ed uscire da L)

Il Pumping Lemma come Gioco

- L'avversario sceglie la lunghezza k
- Noi scegliamo una parola w
- L'avversario spezza w in xyz
- Noi scegliamo i tale che xyⁱz ∉ L
- allora abbiamo vinto

Pumping Lemma: esercizi

I Sia L_{ab} il linguaggio delle stringhe sull'alfabeto $\{a,b\}$ con un numero di b maggiore del numero di a. L_{ab} è regolare?

No, L_{ab} non è regolare:

- supponiamo per assurdo che lo sia
- sia *n* la lunghezza data dal Pumping Lemma
- \blacksquare consideriamo la parola $w = a^n b^{n+1}$
- prendiamo un qualsiasi split w = xyz tale che $y \neq \varepsilon$ e $|xy| \leq n$:

$$w = \underbrace{aaa...}_{x} \underbrace{...a}_{y} \underbrace{abbb...bb}_{z}$$

■ per il Pumping lemma, anche $xy^2z \in L_{ab}$, ma contiene più a che $b \Rightarrow$ assurdo

Pumping Lemma: esercizi

2 II linguaggio $L_{rev} = \{ww^R : w \in \{a, b\}^*\}$ è regolare?

No, L_{rev} non è regolare:

- supponiamo per assurdo che lo sia
- sia *n* la lunghezza data dal Pumping Lemma
- \blacksquare consideriamo la parola $w = a^n bba^n$
- prendiamo un qualsiasi split w = xyz tale che $y \neq \varepsilon$ e $|xy| \leq n$:

$$w = \underbrace{aaa \dots aaa}_{x} \underbrace{abbaaa \dots aaa}_{z}$$

■ per il Pumping lemma, anche $xy^0z = xz \in L_{rev}$, ma non la posso spezzare in $ww^R \Rightarrow$ assurdo

Pumping Lemma: esercizi

Il linguaggio $L_{nk} = \{a^n b^k : n \text{ è dispari oppure } k \text{ è pari}\}$ è regolare?

Si, L_{nk} è regolare:

- lacktriangle è rappresentato dall'espressione regolare $a(aa)^*b^* + a^*(bb)^*$
- e riconosciuto dall'automa

