UNCUYO UNIVERSIDAD NACIONAL DE CUYO	FACULTAD DE INGENIERÍA	GUÍA DE TRABAJOS PRÁCTICOS N° 3
ENSAYO DI	Rev 01 – 06/03/2016	
Preparó: M. Del Pópolo	Preparó: M. Del Pópolo Aprobó: A.M. Furlani	

1. Objeto

Establecer la metodología para la realización del ensayo de tracción en metales.

2. Alcance

Esta guía es aplicable a los ensayos de tracción realizados sobre probetas metálicas.

3. Documentos de referencia:

Norma ISO 9001 / 2015 Requisitos 8.1, 8.2 y 8.5 Norma ASTM E8 IRAM – IAS – U 500 – 102 Laboratorio de Ensayos Industriales – Antonio González Arias

4. Definiciones:

No aplicable.

5. Procedimiento:

5.1- Descripción:

Este es el ensayo que mejor revela el comportamiento de los metales cuando son sometidos a cargas estáticas.

Permite no sólo deducir algunas de sus propiedades tecnológicas más importantes (tenacidad, ductilidad), sino también obtener el límite de elasticidad, o aquél que lo reemplace en caso de que no lo hubiera.

Asimismo puede conocerse la carga máxima y la consiguiente resistencia estática a la tracción, en base a cuyos valores puede determinarse la tensión admisible o de trabajo.

5.2- Máquina utilizada y accesorios correspondientes:

Se emplea la máquina universal marca CIFIC tipo AMSLER, con capacidad de 30 toneladas.

Los accesorios que se utilizan para el caso de ensayo de "barras en general" permiten el amarre mediante cuñas planas o cuñas provistas de canaletas en "V".

UNCUYO UNIVERSIDAD NACIONAL DE CUYO		FACULTAD DE INGENIERÍA	GUÍA DE TRABAJOS PRÁCTICOS N° 3
	ENSAYO DE TRACCIÓN		Rev 01 – 06/03/2016
Preparó: M. Del Pópolo		Aprobó: A.M. Furlani	Hoja 2 de 7

Las cuñas planas se emplean para el amarre de planchuelas y alambres; las cuñas en "V" para barras cilíndricas.

Cuando la barra cilíndrica sea de pequeño diámetro, que no pueda ser amarrada por las cuñas en "V", queda la posibilidad de fijarla empleando la combinación de una plana y una en "V", o las dos planas directamente.

Las cuñas se introducirán de a pares en los alojamientos superior (mesa móvil) e inferior (cabezal inferior).

Para sostenerlos al introducir la barra a ensayar, se dispone de sendos dispositivos "levanta cuñas": uno en la mesa móvil y el otro en el cabezal inferior.

La barra a ensayar se introducirá de manera que pueda ser aprisionada en los extremos por las cuñas de amarre, cuidando que el eje de la barra permanezca coincidente con el eje de la máquina, de modo que el esfuerzo sea realmente axial.

Para el ensayo de probetas normalizadas se emplea un dispositivo que tiene dos articulaciones que permiten el acomodamiento de la probeta según el eje del esfuerzo. Para el amarre de este tipo de probetas se procede así:

	UNCUYO UNIVERSIDAD NACIONAL DE CUYO	FACULTAD DE INGENIERÍA	GUÍA DE TRABAJOS PRÁCTICOS N° 3
	ENSAYO DE	Rev 01 – 06/03/2016	
Ī	Preparó: M. Del Pópolo	Aprobó: A.M. Furlani	Hoja 3 de 7

- 1. Se fija la parte superior del dispositivo (la más larga) con las cuñas en "V" a la mesa móvil, y la parte inferior (la más corta) de igual manera al cabezal inferior.
- 2. Debe desplazarse la mesa móvil de la máquina, hasta colocarla en una posición que resulte adecuada con la longitud de la probeta a ensayar.

Se coloca la probeta de manera que la cabeza de la misma calce en el anillo partido correspondiente (hay dos juegos de anillos de diferentes dimensiones). Luego se unen dos mitades del soporte y se las mantiene unidas colocando la cubierta que a tal efecto poseen cada uno de los dispositivos.

5.3- Procedimiento operativo de ensayo:

Se adecuará la máquina para el rango de medición elegido (de 0 a 3-6-15 o 30 toneladas).

Se colocará la probeta en la forma indicada en el apartado anterior. Se realizará el ajuste del cero del cuadrante en la escala correspondiente.

Se destornillará lentamente el grifo de carga hasta obtener la velocidad de carga adecuada, y se la mantendrá hasta la rotura de la probeta, instante en el cual se tornilla el grifo de carga.

Se anotará la carga máxima que soportó la probeta, la cual permanece indicada por la aguja de máxima.

UNCUYO UNIVERSIDAD NACIONAL DE CUYO	FACULTAD DE INGENIERÍA	GUÍA DE TRABAJOS PRÁCTICOS N° 3
ENSAYO DI	Rev 01 – 06/03/2016	
Preparó: M. Del Pópolo Aprobó: A.M. Furlani		Hoja 4 de 7

Se extrae la probeta rota y destornilla el grifo de descarga para que la mesa móvil descienda otra vez.

5.4- Probetas: especificaciones de las normas:

La norma IRAM IAS U 500 102 da la siguiente especificación sobre probetas para ensayo a tracción de materiales férreos y no férreos, fijando como dimensión principal el diámetro d₀=20mm:

Designación	Longitud Inicial	Longitud Calibrada	Longitud Total	Diámetro Inicial	Sección Inicial
	l _o (mm)	I _c (mm)	I _t (mm)	d₀(mm)	S _o (mm²)
Probeta normal larga	10 d _o = 200	220	320	20	314
Probeta normal corta	5 d _o = 100	120	220	20	314
Probeta proporcional larga	$10 d_o = 11,3\sqrt{S_o}$	$(I_o + d_o)$	indeterminado	indeterminado	-
Probeta proporcional corta	$5 d_o = 5,65 \sqrt{S_o}$	$(I_o + d_o)$	indeterminado	indeterminado	-

5.5- Determinación de la sección de rotura:

En caso de probetas cilíndricas, se mide el diámetro de rotura en dos direcciones perpendiculares entre sí y luego se halla el valor medio: d=(d1+d2)/2.

5.6- Determinación de la longitud final entre puntos fijos:

Antes del ensayo se divide la longitud inicial en 10 o 20 partes según sea la probeta, normal corta o normal larga; marcando muy suavemente sobre la superficie de ésta.

Luego de producida la rotura:

- a) Si ésta se produjo dentro del tercio medio ⇒ se enfrentan los trozos de las probetas y se mide la longitud final (distancia entre trazos extremos o marcas de referencia).
- b) Si ocurrió fuera del tercio medio \Rightarrow se numerarán los trozos como indica la figura, llamando 0 a la marca más próxima a la sección de rotura y continuando en forma progresiva a todas las marcas existentes como se detalla a continuación:

Preparó: M. Del Pópolo

GUÍA DE TRABAJOS PRÁCTICOS N° 3

Rev 01 - 06/03/2016

ENSAYO DE TRACCIÓN

Aprobó: A.M. Furlani

Hoja 5 de 7

En el trozo corto, se cuentan todas las marcas desde el 0 hasta la de referencia F_1 , y en el trozo largo se cuentan cinco marcas desde F_2 hasta el punto Z, (un número de marcas igual a la mitad del número total de divisiones de la probeta).

Se mide en el trozo corto la distancia entre la marca de referencia F1 y el punto en que la sección de rotura corta a la recta imaginaria de referencia, y se le llama I₁.

En el trozo largo se mide la distancia entre el punto Z y el punto en que la sección de rotura corta a la recta imaginaria de referencia, y se le llama l₂.

En el trozo largo se cuenta, partiendo del punto Z hacia la sección de rotura, el número de divisiones que faltan al trozo corto para completarla mitad del total de divisiones, midiéndose esa longitud l₃.

Para determinar la longitud final se considera la suma de: $I = I_1 + I_2 + I_3$.

Planilla de Registro de Resultados

Tracción estática de Metales

Material a ensayar:
Laboratorio:
Ensayo realizado por:
Normas Consultadas:
Máquina empleada:
Sensibilidad del ensayo:
Accesorios:
Tiempo de ensayo:
Probeta (hacer croquis):

DIMENSIONES	Valores Iniciales			Valores Finales		
		Probeta 1	Probeta 2		Probeta 1	Probeta 2
Diámetro (mm)	d_0			d		
Longitud (mm)	I ₀			1		
Sección (mm2)	S ₀			S		

Resultados del Ensayo

Designación	Símbolo	Fórmula	Valor P1	Valor P2
Carga al límite proporcional	Pp	Del gráfico	Kg	Kg
Carga Máxima	Pmax	Del dial	Kg	Kg
Resistencia al límite proporcional	σр	Pp / S ₀	Kg / mm ²	Kg / mm²
Resistencia estática a la compresión	$\sigma_{ t EC}$	P _{max} / S ₀	Kg / mm²	Kg / mm²
Acortamiento de rotura %	d%	[(h ₀ – h)/ h ₀]100	%	%
Recalcadura o ensanchamiento transversal	Y%	[(S - S ₀)/ S ₀]100	%	%

Diagrama del Ensayo:

Fractura (graficar tipo):

Conclusiones: