2017级《线性代数 II》期末考试卷(B)答案

使用专业、班级 学号

题号	 	三	四	五	六	七	总分
得分							

本题

一、填空题(每小题 4 分, 共 24 分)

(1) 设矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 5 \end{pmatrix}$$
, 则 $A^{-1} = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & -5 & 4 \\ 0 & 4 & -3 \end{pmatrix}$.

- (2) 设向量 $\alpha = (1, -1, 0)^T$, $\beta = (2, 3, 1)$, 矩阵 $A = \alpha \beta$, 则 $A^{100} =$
- (3) 设 η_1, η_2, η_3 为四元非齐次线性方程组AX = b的三个解向量, R(A) = 3, 又 $η_1 + 2η_2 = (0,1,2,3)^T$, $2η_2 - 3η_3 = (1,2,3,4)^T$, MAX = b 的通解为 $X = k(3,7,11,15)^{T} - (1,2,3,4)^{T}$
- (4) 设三阶方阵 A 的特征值为1,2,3,则 $2 A^* + E = 455$.
- (5) 已知矩阵 $A = \begin{pmatrix} 1 & 2 \\ x & y \end{pmatrix}$ 与 $B = \begin{pmatrix} 1 & -1 \\ -6 & 2 \end{pmatrix}$ 相似,则 x = 3 , y = 2
- (6) 已知二次型 $f(x_1,x_2,x_3)=6x_1^2+2x_2^2+x_3^2+2tx_1x_2$ 正定,则t满足 $|t|<2\sqrt{3}$

得分

二、选择题(每小题4分,共16分)

- (1) 设A为n阶方阵,则下列结论成立的是
 - (B) B 为n阶方阵,则 $AB=O \Leftrightarrow A=O$ 或B=O
 - (C) $|A| = 0 \Leftrightarrow A = O$

(A) $A = E \Leftrightarrow |A| = 1$

(D) 存在n阶方阵 B, 使 $AB = E \Leftrightarrow |A| \neq 0$.

- (2) 如果向量组线性相关,那么向量组内 可由其余向量线性表示. [A]
 - (A) 至少有一个向量; (B) 至多有一个向量;
 - (C) 没有一个向量;
- (D) 任意一个向量.
- (3) 设矩阵 A, B 为n阶方阵, 且R(A) = R(B),则下列结论正确的是
 - (A) 存在可逆阵 P, 使得 $P^{-1}AP = B$; (B) 存在可逆阵 P, 使得 $P^{T}AP = B$;
 - (C) 存在可逆阵 P, Q, 使得 PAQ = B; (D) |A| = |B|.
- (4) 设A, B为n 阶相似方阵,则下列结论错误的是

[D]

[C]

- (A) R(A) = R(B);
- (B) A, B的特征值相同; (C) A与 B同时可逆或不可逆;
- (D) 若 λ 为 A, B 的特征值, 则 $(A-\lambda E)X=O$ 与 $(B-\lambda E)X=O$ 的解相同.

三、解答题(每小题8分,共16分)

(1) 设 A 为三阶方阵, 且 $\left|A\right| = -2$, 求 $\left|\frac{1}{3}A^{-1} - \left(\frac{1}{2}A\right)^*\right|$.

解: 原式=
$$\left|\frac{1}{3}A^{-1} - \frac{1}{4}A^*\right|$$
(2')
$$= \left|\frac{1}{3}A^{-1} + \frac{1}{2}A^{-1}\right|$$
(4')
$$= \left|\frac{5}{6}A^{-1}\right|$$

$$= \left(\frac{5}{6}\right)^3 \frac{1}{|A|}$$

$$= -\frac{125}{432}$$
(8')

考试形式开卷()、闭卷(√),在选项上打(√)

开课教研室 大学数学部 命题教师 命题时间 2018-5-18 使用学期 17-18-2 总张数 3 教研室主任审核签字

[D]

本题 得分 回、(本题12分) 设向量组 α_1 = $(1,-1,2,4)^T$, α_2 = $(0,3,1,2)^T$, α_3 = $(3,0,7,14)^T$, α_4 = $(1,-1,2,0)^T$, α_5 = $(2,1,5,6)^T$,求该向量组的秩以及一个最大无关组,并将其余向量用该最大无关组线性表示.

本题 得分 五、(本题 12 分) 问 λ 为何值时,线性方程组 $\begin{cases} x_1 + 2 x_2 - 2 x_3 = 3 \\ x_1 + 4 x_2 - 4 x_3 = 5 \end{cases}$ 无解, $-2 x_1 - x_2 + x_3 = -\lambda - 2$

有无穷多解?并求其通解.

解:
$$B = (A, b) = \begin{pmatrix} 1 & 2 & -2 & 3 \\ 1 & 4 & -4 & 5 \\ -2 & -1 & 1 & -\lambda - 2 \end{pmatrix} \xrightarrow{\frac{r_2 - r_1}{r_3 + 2r_1}} \begin{pmatrix} 1 & 2 & -2 & 3 \\ 0 & 2 & -2 & 2 \\ 0 & 3 & -3 & 4 - \lambda \end{pmatrix}$$

$$\xrightarrow{\frac{r_2 + 2}{r_3 - 3r_2}} \begin{pmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 - \lambda \end{pmatrix} \cdots (6')$$

∴
$$\lambda \neq 1$$
时, $R(A) = 2$, $R(B) = 3$,方程组无解;……(§)

$$\lambda = 1 \, \text{FT}, \quad B \longrightarrow \begin{pmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

R(A) = R(B) = 2 < 3,方程组有无穷多解;

此时,
$$\begin{cases} x_1 = 1 \\ x_2 - x_3 = 1 \end{cases}$$
,令 $x_3 = c$,得通解 $X = c \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ 其中 c 为任意常数......(12)

本题 得分

六、(本题 12 分) 已知三阶实对称矩阵 A 有三个特征值 1,1,-1,向量 $\xi_1 = (1,1,1)^T$,

 $\xi_2 = (2,2,1)^T$ 为 A的属于特征值1的特征向量,求 A.

解: 设 $\xi_3 = (x_1, x_2, x_3)^T$ 为对应于特征值-1的特征向量,由实对称矩阵的性质可知 $\xi_1^T \xi_3 = 0$, $\xi_2^T \xi_3 = 0$

$$\mathbb{E}\left(\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 2 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = 0$$

得基础解系 $\xi_3 = (1, -1, 0)^T \cdots (3')$

将 ξ_1 , ξ_2 施密特正交化得 $\eta_1 = \xi_1 = (1,1,1)^T$, $\eta_2 = \xi_2 - \frac{\left[\eta_1, \xi_2\right]}{\left[\eta_1, \eta_1\right]} \eta_1 = \frac{1}{3} \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$

将 η_1 , η_2 , ξ_3 单位化得 $p_1 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$, $p_2 = \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix}$, $p_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}$ (8')

则
$$A = P \wedge P^T = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdots (12')$$

本题 得分

七、(本题 8 分) 设向量组 α_1 , α_2 , α_3 线性相关 , α_1 , α_2 , α_4 线性无关 , 证明: α_1 , α_2 ,

 α_3 + α_4 线性无关.

证明: $\mathrm{l}\alpha_1, \alpha_2, \alpha_4$ 线性无关可知, α_1, α_2 线性无关

又由 α_1 , α_2 , α_3 线性相关可知 α_3 能由 α_1 , α_2 线性表示

若 α_1 , α_2 , α_3 + α_4 线性相关,则 α_3 + α_4 能由 α_1 , α_2 线性表示

故 α_4 能由 α_1 , α_2 线性表示

即 $\alpha_1, \alpha_2, \alpha_4$ 线性相关 与 $\alpha_1, \alpha_2, \alpha_3$ 线性无关矛盾.

因此 α_1 , α_2 , α_3 + α_4 线性无关.