1. Sia A_k la seguente matrice reale:

(a) Si determini per quali valori di $k \in \mathbb{R}$ la matrice A_k ammette inversa.

(b) Sia $k \in \mathbb{R}$ tale che A_k ammette inversa. Si calcoli A_k^{-1} usando la formula $A_k^{-1} = \frac{1}{\det(A_k)} A_k^*$.

 $rkA_k = \begin{cases} 3 & \text{Se } k \neq 0 \\ 2 & \text{se } k = 0 \end{cases}$ det $A_k = 2k^2$ $(\frac{1}{2}) = 2 \text{ per il produbb della diagonale}$

$$A_k = \begin{pmatrix} 2 & 2 & 2k \\ k-1 & k & k^2 \\ -k & -k & 0 \end{pmatrix}.$$

 $\begin{bmatrix} 2 & 2 & 2k \\ k-1 & k & k^2 \\ -k & -k & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & k \\ k-1 & k & k^2 \\ -k & -k & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & k \\ k-1 & k & k^2 \\ -k & -k & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & k \\ 0 & 1 & k \\ 0 & 0 & k^2 \end{bmatrix}$

(a) A_k ammette inversa (⇒) det A_k ≠0 (⇒) rkA_k = 3.

Dunque
$$A_k$$
 è invertibile se e solo se $k \neq 0$.
(b) Supponiamo che $k \neq 0$.
 $det A_k = 2k^2$ $A_k^T = \begin{pmatrix} 2 & k-1 & -k \\ 2 & k & -k \\ 2k & k^2 & 0 \end{pmatrix}$

$$= \begin{pmatrix} k^{3} & -2k^{2} & 0 \\ -k^{3} & 2k^{2} & -2k \\ k & 0 & 2 \end{pmatrix}$$

$$\frac{1}{2k^{2}} = \frac{1}{2k^{2}} \begin{pmatrix} k^{3} & -2k^{2} & 0 \\ -k^{3} & 2k^{2} & -2k \\ k & 0 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}k & -1 & 0 \\ -\frac{1}{2}k & 1 & -\frac{1}{k} \\ \frac{1}{2k} & 0 & \frac{1}{k^{2}} \end{pmatrix}$$

2. Nello spazio vettoriale $\mathbb{R}^{\mathbb{R}}$ definito in Esempio 5.2(2), si consideri il seguente sottoinsieme per ogni $t \in \mathbb{R}$:

$$\mathscr{S}_t = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = t \}.$$

- (a) Si trovino i valori di t per cui l'insieme \mathscr{S}_t è un sottospazio di $\mathbb{R}^{\mathbb{R}}$.
- (b) Sia \mathscr{U} il sottospazio di $\mathbb{R}^{\mathbb{R}}$ generato da f e g dove $f(x) = \sin(x)$ e $g(x) = \cos(x)$ per ogni $x \in \mathbb{R}$. Si trovi una base dell'intersezione $\mathscr{U} \cap \mathscr{S}_0$.

 $(\alpha f)(o) = t$ xf € St (=) det. di St d = (0) + xdy. di Molt. in IR^{IR} $\alpha t'' \leftarrow f(0) = t$ $x \in \mathbb{R}$, allera t = 0 (ad Se at = t per ogni esempio, se $\alpha = 0$. Quirdi 3t è un sottospazio «sin "+ sossin se e solo se t=o. (b) $U = \langle f, 9 \rangle = \left\{ \alpha f + \beta 9 \mid \alpha, \beta \in \mathbb{R} \right\} \subseteq \mathbb{R}^{\mathbb{R}}$ UNT = $\{xf + \beta \} \mid \alpha, \beta \in \mathbb{R} \in (xf + \beta g)(0) = 0\}$

Inoltre abbiamo che

$$= \begin{cases} \alpha f + \beta 9 & | \alpha, \beta \in \mathbb{R} \\ = \begin{cases} \alpha f + \beta 9 & | \alpha, \beta \in \mathbb{R} \\ = \end{cases} \end{cases}$$

$$= \begin{cases} \alpha f + \beta 9 & | \alpha, \beta \in \mathbb{R} \\ = \end{cases}$$

$$= \begin{cases} \alpha f + \beta 9 & | \alpha, \beta \in \mathbb{R} \\ = \end{cases}$$

Quindi {f} è una base di Un S..

 $=\langle t \rangle$

Sinc

$$\{xf + \beta g | x, \beta \in \mathbb{R} \in \beta = 0\}$$

$$= \left\{ \alpha f + \beta 9 \right| \alpha, \beta \in \mathbb{R} \quad e \quad \beta = 0 \right\}$$

$$= \left\{ \alpha f \mid \alpha \in \mathbb{R} \right\}$$

3. Sia $f: \mathbb{C}^3 \to \mathbb{C}^2$ l'applicazione data da

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x - y + z \\ 3x - 3y + 3z \end{pmatrix}$$

per ogni
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{C}^3$$
.

- (a) Si verifichi che f è lineare.
- (b) Si determini la matrice A associata a f rispetto alla base canonica e si dica se f è un isomorfismo.
- (c) Si calcolino le dimensioni degli spazi vettoriali $\operatorname{Im}(f) \subseteq \mathbb{C}^2$ e $\operatorname{N}(f) \subseteq \mathbb{C}^3$.
- (d) Si verifichi che l'insieme $\mathscr{C} = \{v_1, v_2, v_3\}$ con $v_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ è una base di \mathbb{C}^3 .
- (e) Si verifichi che l'insieme $\mathscr{B} = \{w_1, w_2\}$ con $w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ è una base di \mathbb{C}^2 .
- (f) Si determini la matrice associata a f rispetto alla base \mathscr{C} di \mathbb{C}^3 e alla base \mathscr{B} di \mathbb{C}^2 .

(ii)
$$f(\alpha v) = \alpha f(v) \quad \forall v \in \mathbb{C}^3 \quad \forall \alpha \in \mathbb{C}$$
.
(i) Siano $V = \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}, \quad W = \begin{pmatrix} W_1 \\ W_2 \\ W_3 \end{pmatrix} \in \mathbb{C}^3$.
 $f(v + w) = f \begin{pmatrix} V_1 + W_1 \\ V_2 + W_2 \\ V_3 + W_3 \end{pmatrix} = \begin{pmatrix} (v_1 + w_1) - (v_2 + w_2) + (v_3 + w_3) \\ 3(v_1 + w_1) - 3(v_2 + w_2) + 3(v_3 + w_3) \end{pmatrix}$

 $f(v) + f(w) = \begin{pmatrix} v_1 - v_2 + v_3 \\ 3v_1 - 3v_2 + 3v_3 \end{pmatrix} + \begin{pmatrix} w_1 - w_2 + w_3 \\ 3w_1 - 3w_2 + 3w_3 \end{pmatrix} = \begin{pmatrix} v_1 - v_2 + v_3 + w_1 - w_2 + w_3 \\ 3v_1 - 3v_2 + 3v_3 + 3w_1 - 3w_2 + 3w_3 \end{pmatrix}$

(i) f(x+m) = f(x) + f(m) $Ax^{m} \in \mathbb{C}_{3}$

2(a) f è lineare se e solo se

(ii) Sin
$$\alpha \in \mathbb{R}$$
 e sin $V = \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} \in \mathbb{C}^3$

$$f\begin{pmatrix} \alpha \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} \end{pmatrix} = f\begin{pmatrix} \begin{pmatrix} \alpha \vee_1 \\ \alpha \vee_2 \\ \alpha \vee_3 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \alpha \vee_1 - \alpha \vee_2 + \alpha \vee_3 \\ 3\alpha \vee_1 - 3\alpha \vee_2 + 3\alpha \vee_3 \end{pmatrix}$$

$$\alpha + \begin{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} \end{pmatrix} = \alpha \begin{pmatrix} (\vee_1 - \vee_2 + \vee_3) \\ 3(1 - 3v_2 + 3v_3) \end{pmatrix} = \begin{pmatrix} \alpha ((\vee_1 - \vee_2 + \vee_3)) \\ \alpha ((3v_1 - 3v_2 + 3v_3)) \end{pmatrix}$$

(b) La matrice associata a f rispetto alla base

canonica è $A = (f(e_1) f(e_2) f(e_3))$

canonica $e = A = (f(e_1) f(e_2) f(e_3))$ = (1 -1 1). (3-33)

f è un isomonfismo (=> A è invertibile

Siccome A non è una matrice quadrata,

A non è invertibile e quindi f non è un

isomonfismo.

(c) $Im(f) = Im(f_A) = C(A) = \left\langle \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ -3 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \end{pmatrix} \right\rangle$. Le colonne di A che corrispondono alle colonne dominanti di una forma ridotta di A formano una base di C(A). Calcoliamo una forma ridotta:

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 3 & -3 & 3 \end{pmatrix} \xrightarrow{E_{21}(-3)} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = U$$
Quirdi $\{ \{ 1 \} \} \}$ è una base di $\{ 1 \} = \{ (A) \}$

 $\begin{pmatrix}
1 & -1 & 1 & 0 \\
3 & -3 & 3 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 6
\end{pmatrix}$ sistema $\begin{cases}
x_1 - x_2 + x_3 = 0 \\
0 & 0 & 0
\end{cases}$ Tineare

equivalente assegniamo parametri alle

colonne non-don

 $X_2 = t$, $X_3 = S$

Dunque $N(f) = N(A) = \begin{cases} \begin{pmatrix} t-s \\ t \\ s \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \mid t, s \in C \end{cases}$

Consideramo la numice

 $\begin{cases} x_1 = t - S \\ x_2 = t \\ x_3 = S \end{cases}$

e $\left\{ \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$ è una base di N(f).

 $= \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\rangle$

$$C = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Allora $C(C) = \langle v_1, v_2, v_3 \rangle$. Moshiamo che

(={v,v2,v3} è una base di C(c) e quirdi dim C(c) = 3. Perció C(c) è un sottospazio di dimensione $3 = \dim_{\mathbb{C}} \mathbb{C}^3$, abbiamo $\mathbb{C}(\mathbb{C}) = \mathbb{C}^3$. Le colonne di c che conispondono alle colonne

dominanti di una forma ridotta di C formano una base di c(c).

Dunque
$$\left\{\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}\right\}$$
 è une base di \mathbb{C}^3 .

(e) Consideriamo la matrice $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

Mostriamo che $B = \left\{\begin{pmatrix} \frac{1}{1} \\ 1 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}\right\}$ è une base di $C(B)$.

 $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \stackrel{E_{21}(-1)}{\sim} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = U$

Le colonne di B conispondono a colonne

 $\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{E_{12}} \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{E_{21}(-2)} \begin{pmatrix} 1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{E_{2}(\frac{1}{2})} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$ $v_{1} \quad v_{2} \quad v_{3}$

dominanti di U, quindi B è una base di C(B). Perció C(B) è un sollospazio di C² di dimensione $2 = \dim_{\mathbb{C}} \mathbb{C}^2$, abbiamo $\mathbb{C}(B) = \mathbb{C}^2$ cioè Bè una base di C². (f) La natrice associata a f rispetto alla base e di C3 ed alla base B di C2 è la matrice $A = ([f(v_1)]_R [f(v_2)]_R [f(v_3)]_R)$

$$f(v_1) = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \qquad f(v_2) = \begin{pmatrix} -1 \\ -3 \end{pmatrix} \qquad f(v_3)$$
Osserviamo one
$$f(v_1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

 $A = \begin{pmatrix} 3 & -3 & 6 \\ -2 & 2 & -4 \end{pmatrix}$

$$f(v_1) = 3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$f(v_2) = 3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow$$

 $f(v_3) = 6 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

4. Sia
$$\mathscr{C}$$
 la base di \mathbb{C}^3 dell'esercizio 3(d) e sia $\mathscr{D} = \{u_1, u_2, u_3\}$ dove $u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 6 \\ -1 \\ 8 \end{pmatrix}$,

$$\mathcal{L}_{3} = \begin{pmatrix} -8 \\ -8 \\ 1 \end{pmatrix}$$
. Si verifichi che \mathcal{D} è una base di \mathbb{C}^{3} e si calcoli la matrice del cambio di base $\mathcal{L} \to \mathcal{D}$.

$$\mathcal{D} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -6 \\ -1 \\ 8 \end{pmatrix}, \begin{pmatrix} -8 \\ -8 \\ 1 \end{pmatrix} \right\}$$
 è une base se e solo se tutte le colonne di $\begin{pmatrix} 1 & b & -8 \\ 0 & -1 & -8 \\ 1 & 8 & 1 \end{pmatrix}$ comispondano a colonne dominanti di una

forma ridotta di
$$\begin{pmatrix} 1 & 6 & -8 \\ 0 & -1 & -8 \\ 1 & 8 & 1 \end{pmatrix}$$
.

 $\begin{pmatrix} 1 & 6 & -8 \\ 0 & -1 & -8 \\ 0 & -1 & -8 \\ 0 & 2 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 6 & -8 \\ 0 & 1 & 8 \\ 0 & 2 & 9 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & 8 \\ 0 & 2 & 9 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & 8 \\ 0 & 2 & 9 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & 8 \\ 0 & 2 & 9 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & 8 \\ 0 & 0 & 1 \end{pmatrix}$

Per definizione, la matrica del cambio di bak

 $e \rightarrow D$ è la matrica associata a

 $e \rightarrow D$ è la matrica associata a

matrice $M = (v_1 \ v_2 \ v_3) = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ e la

matrice associate a Cop è la matrice
$$N^{-1}$$
 dove $N = (u_1 \ u_2 \ u_3) = \begin{pmatrix} 1 & 6 & -8 \\ 0 & -1 & -8 \\ 1 & 8 & 1 \end{pmatrix}$
Calcoliamo N^{-1} :

 $\det N = \det \begin{pmatrix} -1 & -8 \\ 8 & 1 \end{pmatrix} + \det \begin{pmatrix} 6 & -8 \\ -1 & -8 \end{pmatrix} = 63 - 56 = 7$ Laplace Col 1. $N^{T} = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$

$$N^{T} = \begin{pmatrix} 1 & 0 & 1 \\ 6 & -1 & 8 \\ -8 & -8 & 1 \end{pmatrix}$$

$$N^* = \begin{pmatrix} \det \begin{pmatrix} \frac{1}{6} & \frac{1}{1} & \frac{8}{8} \\ -\frac{1}{8} & -\frac{1}{8} & \frac{1}{8} \end{pmatrix} - \det \begin{pmatrix} \frac{1}{6} & \frac{1}{1} & \frac{1}{8} \\ -\frac{1}{8} & -\frac{1}{8} & \frac{1}{8} \end{pmatrix} - \det \begin{pmatrix} \frac{1}{6} & \frac{1}{1} & \frac{1}{8} \\ -\frac{1}{8} & -\frac{1}{8} & \frac{1}{8} \end{pmatrix}$$

$$\det \begin{pmatrix} \frac{1}{6} & \frac{1}{1} & \frac{1}{8} \\ -\frac{1}{8} & -\frac{1}{8} & \frac{1}{8} \end{pmatrix} - \det \begin{pmatrix} \frac{1}{6} & \frac{1}{1} & \frac{1}{8} \\ -\frac{1}{8} & -\frac{1}{8} & \frac{1}{8} \end{pmatrix}$$

$$\det \begin{pmatrix} \frac{1}{6} & \frac{1}{1} & \frac{1}{8} \\ -\frac{1}{8} & -\frac{1}{8} & \frac{1}{8} \end{pmatrix}$$

$$\det \begin{pmatrix} \frac{1}{6} & \frac{1}{1} & \frac{1}{8} \\ -\frac{1}{8} & -\frac{1}{8} & \frac{1}{8} \end{pmatrix}$$

$$= \begin{pmatrix} 63 & -70 & -56 \\ -8 & 9 & 8 \\ 1 & -2 & -1 \end{pmatrix}$$

$$N^{-1} = \frac{1}{\text{det N}} N^* = \frac{1}{7} \begin{pmatrix} 63 & -70 & -56 \\ -8 & 9 & 8 \\ 1 & -2 & -1 \end{pmatrix} = \begin{pmatrix} 9 & -10 & -8 \\ -\frac{9}{7} & \frac{9}{7} & \frac{9}{7} \\ \frac{1}{7} & -\frac{7}{7} & \frac{1}{7} \end{pmatrix}$$

Dunque la matrice del cambio di base è
$$A_{e\rightarrow D} = \begin{pmatrix} 9 & -10 & -8 \\ -\frac{9}{3} & \frac{9}{3} \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Dunque la matrice del cambio di base è
$$A_{e\rightarrow D} = \begin{pmatrix} 9 & -10 & -8 & 1 \\ -\frac{8}{7} & \frac{9}{7} & \frac{1}{7} & 1 & 0 \\ \frac{1}{7} & -\frac{2}{7} & -\frac{1}{7} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 8 & -10 & 1 \\ -1 & \frac{9}{7} & 0 \\ 0 & \frac{2}{7} & 0 \end{pmatrix}$$