In DC steady state inductors "become" wires, and capacitors "disappear". Super/linked nodes can be made when there is a voltage source between the nodes. To measure current with a multimeter the rods need to be places together, and voltage one rod on either side of the resistor. Resisters Parallel: R1 * R2/ R1 + R2, Series: $R_1 + R_2$. Capacitors in s-land are 1/sC, and inductors are sL. Step response is voltage/s Voltage divider formula: Vin[Ruse/Req], Current divider formula: Iin[Req/Req+Ruse]

$$V_{out}(s) = H(s)V_{in}(s)$$
 or, in steady-state, $V_{out}(j\omega) = H(j\omega)V_{in}(j\omega)$ transfer function

3. Draw the phasor-domain equivalent circuit for the circuit below

Thevenin:

Figure 1: Thevenin equivalent

Figure 2: Norton equivalent

 \dots and we also have the notion of **source transformation** - so that the simple equivalents are completely interchangeable.

Figure 4.16

Different States:

Zero-State Models

t-domain	s-domain	s-domain Impedance
$v(t) = i(t) \cdot R$	$V(s) = I(s) \cdot R$	$Z_R = R$
$v(t) = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau$	$V(s) = \frac{I(s)}{sC}$	$Z_C = \frac{1}{s \cdot C}$
$v(t) = L \frac{di(t)}{dt}$	$V(s) = Ls \cdot I(s)$	$Z_L = s \cdot L$

Steady-State Impedance Models

s-domain	Steady State @ ω R/s	Steady State @ f Hz
$Z_R = R$	$Z_R = R$	$Z_R = R$
$Z_C = \frac{1}{s \cdot C}$	$Z_C = \frac{1}{i\omega \cdot C}$	$Z_C = \frac{1}{j2\pi f \cdot C}$
$Z_L = s \cdot L$	$Z_L = \check{j}\omega \cdot L$	$Z_L = j2\pi f \cdot L$

Op Amps:

Test Load Procedure:

- With the circuit in-situ and energized,
- 2. Measure the open-circuit voltage, obtain $V_{Th} = V_{OPEN}$.
- 3. Apply a reasonable load $R_{\rm LOAD}$ within range of the system specs (NEVER A SHORT!)
- 4. Measure the voltage, V_{LOAD} .
- 5. We can then find:

$$\begin{split} R_{Th} &= -\frac{V_{\text{OPEN}} - V_{\text{LOAD}}}{I_{\text{OPEN}} - I_{\text{LOAD}}} \\ &= \frac{V_{\text{OPEN}} - V_{\text{LOAD}}}{I_{\text{LOAD}} - 0} \\ &= \frac{V_{\text{OPEN}} - V_{\text{LOAD}}}{V_{\text{LOAD}}/R_{\text{LOAD}}} \end{split}$$

Open-Box system

Closed-box system?

Op amp circuit

Name/output-input relationship

- 1. Replace all independent sources with symbolic representations such as V_{in} or I_{in}
- 2. Add a "test-load" resistor R_L across the specified terminals, a-b.
- 3. Use circuit analysis techniques to determine V_{a-b} in terms of V_{in} and R_L .
- 4. The result will be of the form: $V_{a-b} = \text{Input}_1 \cdot H_1 + \text{Input}_2 \cdot H_2$ with R_L in the expressions for the transfer functions.
- 5. Compute V_{a-b} as $R_L \to \infty$ to obtain $V_{Th} = V_{a-b}|_{R_L \to \infty} = \text{Input}_1 \cdot H_1^* + \text{Input}_2 \cdot H_2^*$.
- 6. If asked, find V_{Th} for specific values of V_{in} or I_{in} .
- 7. To find R_{Th} , select a second reasonable value for $R_{\rm LOAD}$
- 8. Compute the voltage, $V_{\text{LOAD}} = V_{a-b}|_{R_L = R_{\text{LOAD}}}$
- 9. Then find:

$$R_{Th} = \frac{V_{Th} - V_{\text{LOAD}}}{V_{\text{LOAD}} / R_{\text{LOAD}}}$$

3. Write a node equation you would use to find v_o . Include any conveniently-labeled voltages. Do not simplify or solve.

Find v_o =. Do not simplify.

Transiate Responses: S-domain

$$v_{in}(t) \xleftarrow{\mathcal{L}} V_{in}(s) \xrightarrow{\qquad} H(s) \xrightarrow{\qquad} V_{in}(s) \cdot H(s) = V_{out}(s) \xleftarrow{\mathcal{L}} v_{out}(t)$$

Figure 1: Transient Response Procedure for Zero-State Systems

Note: This is exactly the same procedure as for sinusoidal steady-state except we apply the s-domain input function to the transfer function H(s)!

- 1. Replace all independent sources with symbolic representations such as $V_{\rm in}(s)$
- 2. Employ s-domain impedance models
- 3. Analyze the circuit using appropriate techniques to find the output: $V_{out}(s)$, or whatever output function is dictated by the problem
- 4. Find the transfer function: $H(s) = \frac{V_{out}(s)}{V_{in}(s)}$, or whatever input-output function is dictated by the problem
- 5. Find the output $V_{out}(s) = H(s) \cdot V_{in}(s)$, where $V_{in}(s) \xleftarrow{\mathcal{L}} V_{in}(t)$
- 6. Find the output $v_{out}(t) \xleftarrow{\mathcal{L}} V_{out}(s)$ using the inverse Laplace transform solver $v_{out}(t) = \mathrm{ilaplace}(V_{out}(s))$
- 7. Plot $v_{out}(t)$ to observe the response of the system to that input

Misc

3. This circuit is a realization of (choose one): a) High-pass filter (b) Low-pass filter, c) Band-pass filter.

more phasor/

Find the transfer function H(s) = VOUT Do not simplify or compu

2. An analysis of a certain circuit yields transfer function $H(s)=\frac{vo}{Vin}.$ If

and

 $H(j * 100) = 0.6 \angle 0$

Find us(t) —

$$V_0(t) = V_0(t) = 20.0.6 (0.6/100t + 0.3 + 0.2)$$

4. Write a node equation at v_o . Do not write any other equations. Do not solve

$$\frac{V_0}{5} + \frac{V_0}{j5} + \frac{(V_0 - V_a)}{-j5} = 0$$
Sorry about the 5 's.