## 9 Wednesday, February 23, 2011

## Hilbert Basis Theorem

A ring A is Noetherian if the ideals are finitely generated.

**Theorem** (Hilbert Basis Theorem). If R is Noetherian, then R[x] is Noetherian

Corollary.  $\mathbb{C}[x_1,\ldots,x_n]$  is Noetherian

Any finite-type (finitely generated as an algebra (everything is a polynomial in finitely many things))  $\mathbb{C}$ -algebra is Noetherian. ( $A \cong \mathbb{C}[x]/I$ )

Equivalent conditions on A:

- 1. A is noetherian (ideals are finitely generated)
- 2. Every infinite increasing family  $I_1 \subset I_2 \subset \cdots$  of ideals becomes constant eventually  $(I_1 < I_2 < \cdots \text{ chain is finite})$
- 3. Every non-empty set S of ideals contains maximal elements  $(\exists I \in S \text{ such that } I \not\subset J \text{ for any } J \in S, J \neq I)$

**Corollary.** If A is noetherian, I is an ideal of A, and I < A, then I is contained in a maximal ideal. (The maximal ideal is a maximum element in the set of ideals < A.)

**Corollary.** If A contains no maximal ideal, then A is the zero ring. spec  $A \neq \emptyset \iff A = \{0\}$ 

Adjoining inverses to  $A = \mathbb{C}[x]$   $(x = x_1, \dots, x_n)$ ,  $B = A[g^{-1}] = \mathbb{C}[x, y]/(yg - 1)$ . Then spec  $A = \mathbb{A}^n$ , and spec  $B \approx \mathbb{A}^n - V(g)$ .

**Theorem** (Strong Nullstellensatz). Let I be an ideal of  $\mathbb{C}[x]$ ,  $g \in \mathbb{C}[x]$ . Suppose g vanishes identically on V(I). Then  $g^N \in I$  for some  $N \gg 0$ .

*Proof. Idea*: Find a ring with no maximal ideal. It is therefore the zero ring. Play with this fact. Say  $I = (f_1, \ldots, f_r)$ ,  $f_i \in \mathbb{C}[x]$   $(x = x_1, \ldots, x_n)$ . Let's inspect the locus of zeros in  $\mathbb{A}^{n+1}_{x,y}$ ,  $V = V(f_1, \ldots, f_r; yg - 1)$ .

If  $(x^0, y^0) \in V$ , then  $x^0 \in V(I) = V(f_1, \dots, f_r) \subset \mathbb{A}_x^n$ . Therefore  $g(x^0) = 0$  (by hypothesis). Then there is no  $y^0$  such that  $y^0g(x_0) = 1$ .

Therefore,  $V = \emptyset$ .

We also have that  $V = \operatorname{spec} \mathbb{C}[x,y]/(f_1,\ldots,f_r,yg-1)$ . Then  $\mathbb{C}[x,y]/(f,yg-1) = \{0\}$ . Therefore, (g,yg-1) is the unit ideal in  $\mathbb{C}[x,y]$ . This means that we can write 1 as a polynomial combination of f and yg-1. Say

$$1 = p_1(x, y)f_1(x) + \dots + f_r(x, y)f_r(x) + q(x, y)(yg - 1).$$

Now work in the ring  $B = \mathbb{C}[x][g^{-1}] = \mathbb{C}[x,y]/(yg-1)$ . In Byg-1=0 and  $y=g^{-1}$ . Then

$$1 = p_1(x, g^{-1})f_1(x) + \dots + p_r(x, g^{-1})f_r(x) + 0.$$

Multiply by  $g^N$  to clear denominators. Then, since g = g(x),

$$g^N = \tilde{p}_1(x)f_1(x) + \dots + \tilde{p}_r(x)f_r(x).$$

Therefore,  $g^N \in I$ .

NOTE: If  $I \subset J$  are ideals in  $\mathbb{C}[x]$ , then  $V(I) \supseteq V(J)$ . But  $V(x_1) = V(x_1^2)$ . Let I be an ideal. Then rad I = radical of  $I = \{g \mid g^n \in I, \text{ some } n > 0\}$ .

Theorem.

$$V(I) \supset V(J) \iff I \subset \operatorname{rad} J$$
  
 $V(I) = V(J) \iff \operatorname{rad} I = \operatorname{rad} J$ 

*Proof.* Say  $V(I) \supset V(J)$ . Take  $g \in I$ . Then g = 0 on V(J). Then  $g^N \in J$  for some N by the strong Nullstellensatz, and so  $g \in \operatorname{rad} J$ .

The other direction is left as an exercise.

**Definition.** Let X be a topological space. Then a closed subset C is *irreducible* if you can't write  $C = C_1 \cup C_2$  where  $C_i$  closed,  $C_i < C$ .

A a finite type algebra is noetherian, satisfies the ascending chain condition on ideals. Then spec A has the descending chain condition on ideals.

Prime ideals: Given a polynomial ring R: (equivalent conditions)

- R/P is a domain
- P < R,  $ab \in P \implies a \in P$  or  $b \in P$
- A, B ideals of R,  $AB \subset P \implies A \subset P$  or  $B \subset P$ . (Recall that the product ideal  $AB = \{\text{finite sums } \sum a_i b_i \mid a_i \in A, b_i \in B\}$ .)

Proof. (2)  $\Longrightarrow$  (3) Say  $AB \subset P$ , but  $A \subset P$ .  $\exists a \in A, a \notin P$ .  $AB \subset P \Longrightarrow B \subset P$  $\forall b \in B, ab \in P, \therefore b \in P$ , so  $B \subset P$ .