Ramirez Velásquez, Tomas Alejandro. @tomasramirez20 (GitHub)

UMNG

PRACTICA OSCILOSCOPIO

Est.tomas.ramirez@unimilitar.edu.co

I. INTRODUCCIÓN

En esta práctica de laboratorio, se utilizó el osciloscopio y el generador de señales, con el fin de ver diferentes tipos de señales y usar la opción de math en el osciloscopio, para logra visualizar el espectro en el dominio frecuencial, con magnitudes de dB. El osciloscopio es capaz de guardar el muestreo de la señal bien sea en el dominio del tiempo o la frecuencia, esto en formato .csv el cual fue manejado en la anterior práctica, para procesar estos datos de muestreo y lograr graficar las señales, se programa en MATLAB y COLAB.

II. Fundamentos Teóricos y Metodología

A. Transformada de fourier

Fourier indica que una señal periódica continua se puede mostrar en el dominio frecuencial, ya que demostró como la suma de señales seno con distintas frecuencias y amplitudes forman una señal cuadrada o triangular, dependiendo de la frecuencia fundamental y sus armónicos.

$$X(f) = \oint_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$

Transformada Inversa de Fourier: Reconstruye la señal original a partir de su representación frecuencial:

$$x(t) = \oint_{-\infty}^{\infty} X(f)e^{j2\pi ft} dt$$

Conversión de voltaje a decibeles

Los decibeles (dB) expresan magnitudes relativas en escala logarítmica. Para voltajes, se usa:

$$dB = 20 Log_{10}(V_n)$$

Vn para triangulares

$$V_n = \frac{8V_P}{(n\pi)^2}$$

Vn para cuadradas

$$V_n = \frac{4V_p}{n\pi}$$

Antes de seguir con la medición en el osciloscopio el procesamiento en las interfaces de MATLAB y COLAB, se tabula **teóricamente** como se espera ver el espectro en las diferentes formas de señal, pero compartiendo los siguientes parámetros:

$$V_p = 1V$$
$$f = 3KHz$$

Triangular

Armonico	Frecuencia	dB
1	3000	-1.82
3	9000	-20.9
5	15000	-29.78
7	21000	-35.62
9	27000	-40
11	33000	-43.47

Cuadrada

Armonico	Frecuencia	dB
1	3000	2.09
3	9000	-7.44
5	15000	-11.88
7	21000	-14.80
9	27000	-16.98
11	33000	-18.72

Pulsos

Se diferencian a las cuadradas, ya que gracias a la variación del Duty Cycle aparecen también los armónicos pares.

Armonico	frecuencia	dB
1	3000	2.09
2	6000	-3.92
3	9000	-7.44
4	12000	-9.94
5	15000	-11.88
6	18000	-13.46
7	21000	-14.80
8	24000	-15.96
9	27000	-16.98
10	30000	-17.90

Sinusoidal

En esta señal solo se encuentra una frecuencia, no hay armónicos, esto se confirma más adelante cuando en el espectro de la ya mencionada se muestra solo un pico en la frecuencia de 3KHz.

Procesamiento en MATLAB y Python

Los datos se importaron a Python (Google Colab) y MATLAB para su visualización. Se generaron gráficas de los diferentes tipos de señales.

Ilustracion 1. Grafica tiempo seno 1 en COLAB

	Record Length	1024	Points	0.0	-2.5897000	Unnamed: 5
0	Sample Interval	123.3033447	Hz	123.303345	-38.9897	NaN
1	Trigger Point	0.0	Samples	246.606689	-38.9897	NaN
2	NaN	NaN	NaN	369.910034	-38.9897	NaN
					Dominio d	e Frecuencia

Ilustracion 2. Grafica frecuencial seno 1 en COLAB

Ar	chivo TIME: SE	N2-TIMEE.csv				
	Record Length	2500	Points	-499.999965541E-6	919.999957085E-3	Unnamed: 5
0	Sample Interval	400.00000467E-9	s	-0.000500	0.88	Nañ
1	Trigger Point	1.2500000E3	Samples	-0.000499	0.88	NaN
2	NaN	NaN	NaN	-0.000499	0.84	NaN

Ilustracion 3. Grafica tiempo seno 2 (con DC) en COLAB

Ar	chivo FFT: SEN	2-FFT.csv				
	Record Length	1024	Points	0.0	4.61030006	Unnamed: 5
0	Sample Interval	123.3033447	Hz	123.303345	-49.789700	NaN
1	Trigger Point	0.0	Samples	246.606689	-47.789700	NaN
2	NaN	NaN	NaN	369.910034	-48.589699	NaN

Ilustracion 4. Grafica frecuencial seno 2 (con DC) en COLAB

Ar	chivo TIME: TR	IANGU1-TIMEE.csv	/			
	Record Length	2500	Points	-499.999965541E-6	-99.999994040E-3	Unnamed: 5
0	Sample Interval	400.00000467E-9	s	-0.000500	-0.10	NaN
1	Trigger Point	1.2500000E3	Samples	-0.000499	-0.08	NaN
2	NaN	NaN	NaN	-0.000499	-0.10	NaN

Ilustracion 4. Grafica tiempo triangular 1 en COLAB

Archivo FFT: TRIANGU1-FFT.csv						
Unnamed: 5	-35.78969955	0.0	Points	1024	Record Length	
NaN	-34.189701	49.321339	Hz	49.32133865	Sample Interval	0
NaN	-40.989700	98.642677	Samples	0.0	Trigger Point	1
NeN	64 590600	147.064020	NaM	MaN	MaN	2

Ilustracion 5. Grafica frecuencial triangular 1 en COLAB

Ar	chivo TIME: TR	IANGU2-TIME.	CSV					
	Record Length	25	500 P	oints	-499.99	9965541E-6	1.3199999	Unnamed: 5
0	Sample Interval	400.00000467	E-9	s		-0.000500	1.28	Nati
1	Trigger Point	1.250000	OE3 San	nples		-0.000499	1.28	Nah
2	NaN	N	laN	NaN		-0.000499	1.28	Nah
Ar	chivo FFT: TRI	ANGU2-FFT.cs	v					
	Record Length	1024	Point	s	0.0	3.83089948	Unnamed:	5
0	Sample Interval	49.32133865	н	z 49.	321339	6.230899	Nai	N
1	Trigger Point	0.0	Sample	s 98.	642677	-0.169101	Nai	N

Ilustracion 6. Graficas frecuencial y tiempo triangular 2 (con DC) en COLAB

	cord Length		00 Poi	ints -499.99			
O Sa	enelo letonol					.0000000	Unnamed: 5
	inperimental	400.00000467	E-9	\$	-0.000500	1.00	NaN
1	Trigger Point	1.250000	DE3 Samp	ples	0.000499	1.02	NaN
2	NaN	N	laN N	NaN	0.000499	1.00	NaN
Archi	ivo FFT: PUL	SO1-FFT.csv					
Re	cord Length	1024	Points	0.0	-34.98970032	Unname	d: 5
O Sa	mple interval	49.32133865	Hz	49.321339	-32.589699		NaN
1	Trigger Point	0.0	Samples	98.642677	-36.189701		NaN
2	NaN	NaN	NaN	147.964020	42.589699		NaN

Ilustracion 7. Graficas frecuencial y tiempo pulso 1 (50% duty cicle) en COLAB

Ilustracion 8. Graficas frecuencial y tiempo Cuadrado 1 en COLAB

En el repositorio de GitHub se pueden encontrar más tipos de señales con o sin DC, los códigos de procesamiento de los datos, como se puede observar las señales procesadas tienen una tabulacion, estos son los valores de amplitud experimentales, lo cuales junto con los valores teoricos anteriormente calculados, se procede porcentaje de error.

En donde solo se calcula para una señal de cada tipo, ya que se haria muy extenso la representación de las gráficas en este informe (toda la información recogida en el laboratorio se encuentra en el repositorio de Github, este informe es solo para guiar el procedimiento de laboratorio).

En primer lugar, tenemos el porcentaje de error de la señal triangular1:

TRIANGULA	
Armonico	% De error amplitud en dB
1	20.15
3	13.87
5	9.46
7	8.36
9	7.50
11	8.12

Para la señal cuadrada1:

CUADRADA	
Armonico	% De error amplitud en dB
1	50
3	42
5	26.44
7	21.62
9	18.96
11	16.45

Para la señal pulso1:

PULSO	
Armonico	% de error amplitud en dB
1	23.92
2	76.40
3	65.7
4	78
5	27.11
6	48.58
7	53.84
8	21.55
9	23.67
10	24.11

Dentro de la practica se utilizo un cable BNC, El cual por condiciones de laboratorio, puede llegar a presentar ruido sobre la señal en estudio. Aumentando las amplitudes de sus armonicos, teoricamente el cable de transmision no tiene ruido. Por ello los valores experimentales presentan un porcentaje de error tan alto, se puede identificar la cantidad de ruido en dB y tomar nuevas muestras experimentales, tambien es posible buscar un cable con mayor atenuacion al ruido. Pero, en este caso se llega a estos porcentajes bajo las condiciones de ruido en el laboratorio.

-MUESTREO DEL OSCILOSCOPIO

B. Aplicación de FFT y IFFT

Como se explicó en los fundamentos teoricos, la trasnformada de fourier nos permite la conversion de una señal entre el dominio del tiempo y la frecuencia, esto con el fin de analizar el comportamiento de las diferentes señales con sus armonicos, en el caso de la triangular y cuadrada con los pares y los pulso con cada uno de sus armonicos (pares e impares).

Dentro de las interfaces usadas (MATLAB y COLAB), se permite usar la transformada usando el lenguaje Python. Para ello se utilizan los siguientes comandos (para ver el codigo "dominio_tiempo_frecuencia" y "dominio_frecuencia_tiempo" completo puede encontrarlo en el repositorio de Github):

```
yf = fft(sine_wave)
xf = fftfreq(len(sine_wave), T)[:len(sine_wave)//2]
```

Se procede a aplicarle la transformada a cada tipo de señal en el dominio del tiempo:

Ilustracion 9. Conversion del dominio del tiempo a frecuencial señal seno

	itudes (dB): Amplitude (dB)	
0	3000.0	1.821338
1	9000.0	20.883320
2	15000.0	29.711498
3	21000.0	35.487870
4	27000.0	39.761814
5	33000.0	43.132752
6	39000.0	45.896289
7	45000.0	48 220069

Ilustracion 10. Conversion del dominio del tiempo a frecuencial señal triangular

Tabla de Ar	mónicos y Ampli	tudes (dB):
Harmoni	ic Frequency (Hz)	Amplitude (dB)
0	1000.0	-26.656260
1	3000.0	2.099631
2	5000.0	-26.956418
3	7000.0	-26.309756
4	9000.0	-7.431360
5	11000.0	-27.213332
6	13000.0	-25.913046
7	15000.0	-11.845449
8	17000.0	-27.429492
9	19000.0	-25.461312
10	21000.0	-14.733635
11	23000.0	-27.606881
12	25000.0	-24.948500
13	27000.0	-16.870607
14	29000.0	-27.747056
15	31000.0	-24.366926
16	33000.0	-18.556076
17	35000.0	-27.851199
18	37000.0	-23.706692
19	39000.0	-19.937845
20	41000.0	-27.920166

Ilustracion 11. Conversion del dominio del tiempo a frecuencial señal cuadrada

Se continua con la tranformada inversa, es decir ahora en lugar de pasar al dominio frecuencial, a partir de los armonicos teoricos calculados dentro de los fundamento.

Se utiliza archivos de excel para subir la tabulacion teorica dentro del codigo y poder aplicar la transformada inversa. Usando tambien el lenguaje python obteniendo el siguiente resultado (Para no extender esta parte del informe se presenta la transformada aplicada a la señal triangular, dentro del repositorio se encuentra el codigo completo con los demas tipos de señales):

Ilustracion 12. Conversion del dominio frecuencial al tiempo señal triangular

La señal esperada es de l'Vpico con una frecuencia de 3KHz, se evidencia una ligera variacion en la amplitud. Pero se logro la reconstruccion de la señal en el tiempo a partir de sus armonicos, tambien cabe aclaar que en las señales cuadrda y pulsos, entre mas armonicos calculemos en las tabulaciones teoricas en excel la señal en el tiempo se vera mas cercana a los resultados esperados.

C. Muestreo del osciloscopio

El osciloscopio Rigol DS1104Z tiene una frecuencia de muestreo máxima de 1 GSa/s cuando se utiliza un solo canal, reduciéndose a 500 MSa/s con dos canales y 250 MSa/s con los cuatro canales activos. Al exportar los datos a un archivo .csv, la frecuencia de muestreo del archivo coincide con la configuración de adquisición original. Si se aplican operaciones matemáticas (Math) como sumas o restas de señales, el .csv mantendrá la misma frecuencia de muestreo de la señal base. Sin embargo, al realizar una FFT, el archivo contendrá datos en el dominio de la frecuencia (amplitud vs. frecuencia) en lugar de muestras en el tiempo, por lo que el concepto de frecuencia de muestreo no aplica de la misma manera.

Para verificar la frecuencia de muestreo a partir del archivo .csv, se deben analizar los valores de tiempo registrados. Calculando la diferencia entre dos puntos consecutivos

$$(\Delta t = t_2 - t_1)$$

la frecuencia de muestreo (Fs) se obtiene como Fs = $1/\Delta t$.

Los datos muestran incrementos de tiempo de $1~\mu s$ (0.000001 s), la frecuencia de muestreo será de 1~MSa/s. Este método permite confirmar la tasa de muestreo real independientemente de la configuración del osciloscopio, asegurando la precisión en el análisis de los datos capturados.

III. ANÁLISIS Y RESULTADOS

- La señal senoidal pura mostró un único pico espectral en su frecuencia fundamental, confirmando la ausencia de armónicos.
- La señal **cuadrada** presentó múltiples armónicos impares, con amplitudes decrecientes proporcionales a *1/n* (donde *n* es el orden del armónico), validando su composición en serie de Fourier.
- La señal **triangular** exhibió armónicos impares con amplitudes proporcionales a $1/n^2$, lo que coincide con su perfil suave en el dominio del tiempo.
- Los pulsos mostraron un espectro continuo dependiente de su ciclo de trabajo, destacando componentes de alta frecuencia en pulsos más estrechos.

La IFFT permitió reconstruir las señales originales a partir de sus espectros, verificando que el procesamiento no introdujo distorsiones significativas. Sin embargo, en señales con contenido armónico elevado (como la cuadrada), se notó que la reconstrucción fue más precisa al incluir un mayor número de armónicos en el cálculo.

Comparación entre MATLAB y Google Colab

Ambas plataformas generaron resultados consistentes, aunque se identificaron diferencias menores en el tiempo de ejecución:

- MATLAB mostró un rendimiento ligeramente superior en señales con gran cantidad de puntos (ej: archivos .csv con memoria profunda), gracias a su optimización para operaciones matriciales.
- Colab, aunque dependiente de la conexión a internet, resultó eficiente para análisis básicos y facilitó la colaboración en equipo.

IV. CONCLUSIONES

Validación teórico-práctica: Los espectros obtenidos mediante FFT confirmaron las propiedades teóricas de cada señal, demostrando la precisión del osciloscopio Rigol DS1104Z y la confiabilidad del procesamiento en MATLAB/Colab.

Importancia del muestreo: La alta frecuencia de muestreo (1 GSa/s) permitió capturar detalles críticos en señales rápidas (pulsos), evitando aliasing y pérdida de información.

Flexibilidad de herramientas: La combinación de hardware (osciloscopio) y software (MATLAB/Colab) optimizó el análisis, permitiendo desde visualizaciones rápidas hasta procesamiento avanzado (ej: zero-padding para mejorar resolución espectral).

Este trabajo refuerza la utilidad de la FFT/IFFT en aplicaciones de ingeniería, destacando la necesidad de configurar

adecuadamente los parámetros de adquisición (frecuencia de muestreo, longitud de registro) y procesamiento (tamaño de la FFT) para garantizar resultados confiables.