Typical Steps for Statistical Hypothesis Testing

November 29, 2018

1. Observations

 X_1, \ldots, X_n i.i.d. from $N(\mu, 1)$.

- 2. Specify the null and alternative hypotheses $H_0: \mu = \mu_0 \ v.s. \ H_1: \mu \neq \mu_0 \ (many \ other \ choices \ exist)$
- 3. Design a test statistic T and derive its sampling distribution under H_0 In this example, the relevant test statistic is

$$T = \frac{\bar{X} - \mu_0}{1/\sqrt{n}}.$$

Due to the fact that $\bar{X} \sim N(\mu_0, n^{-1})$ under H_0 , then the test statistic $T \sim N(0, 1)$.

4. Calculate the value of test statistic with observed data T_{obs} , compare with the critical value

Note that the test statistics T is itself a random variable, while its observed value T_{obs} is a scalar once observations are given.

In this example, let the significance level $\alpha = 0.05$, then the critical value is 1.96, which means P(|T| > 1.96) = 0.05. If the observed test statistic T_{obs} is outside of interval [-1.96, 1.96], then reject H_0 ; otherwise, fail to reject the null.

5. Equivalent to the above step, we usually calculate the p-value and compare it with the significant level α

The meaning of p-value is the probability, under the null hypothesis H_0 , of obtaining a test statistic which is more or equally extreme than the one we have observed. In this example, the p-value is $P_{H_0}(|T| > |T_{obs})$. When compared with $\alpha = 0.05$, it is equivalent to compare $|T_{obs}|$ and the critical value 1.96.

6. Decision: reject H_0 or fail to reject H_0 .

Note that fail to reject H_0 does not mean we accept H_0 . Along the steps of hypothesis testing, we are assuming H_0 is true. The terminology of fail to reject means there is a lack of evidence against H_0 . The terminology of accept H_0 is apparently a stronger conclusion, and it is improper

Contents

use in hypothesis testing.