MAGNET: Multi-Label Text Classification using Attention-based Graph Neural Network

Team 32

'The Matrix'

Members

- Santanu Biswas 2022201031
- Aman Motwani 2022201077
- Ayush Lakshakar 2022201051

The Problem

01

Paper

Multi-Label Text Classification using Attention-based Graph Neural Network

Ankit Pal, Muru Selvakumar and Malaikannan Sankarasubbu

02

Problem Statement

Multi-label text classification assigns zero or more labels to a text document without considering dependency among the labels.

Scope:

- Explore the datasets available with some preliminary data analysis.
- Implement standard techniques for multi label classification on datasets and find desired results.
- Implement Graph Attention Network
- Experimentation with Hyperparameters like number of heads and embedding methods etc.
- Analysis of the experiments done.

Datasets

01

Toxic Comment

Train - 27384

Test - 31915

Dev - 16383

Labels - 7

02

Reuters-21578

Train - 6215

Test - 3019

Dev - 1554

Labels - 90

03

RCV1-V2

Train - 611354

Test - 160883

Dev - 32177

Labels - 103

EDA – Toxic comment

Median text length

Percentage records by category

EDA

Correlation between toxic categories

EDA

Correlation between toxic categories

Evaluation Metric

 F1 micro score is the harmonic mean of precision and recall calculated globally across all labels.

$$F1 - Score_{micro} = \frac{\sum_{j=1}^{L} 2tp_{j}}{\sum_{j=1}^{L} (2tp_{j} + fp_{j} + fn_{j})}$$

$$Precision_{micro} = \frac{\sum_{j=1}^{L} tp_{j}}{\sum_{j=1}^{L} tp_{j} + fp_{j}}$$

$$Recall_{micro} = \frac{\sum_{j=1}^{L} tp_{j}}{\sum_{j=1}^{L} tp_{j} + fn_{j}}$$

Pre-processing

Tokenization and cleaning

Word2index mapping

Creating

Data Loader

Baseline Models

Model	Micro F1 score
OneVsRest	0.70358
Binary Relevance	0.79971
Classifier Chains	0.72687
Label Powerset	0.68389

OneVsRest

Binary Relevance

Classifier Chains

Label Powerset

MLP Bi-LSTM BERT MAGNET

Models

MLP Model

BiLSTM Model

A pretrained BERT model is used for generating embeddings for the input text

Single fully connected layer for classification task

Output layer

Provide a probability distribution over the possible classes using a sigmoid activation function

MAGNET Model

Graph Representation:

Node feature description M {n x d} and adjacency matrix A {n x n}

GAT (Graph Attention Network) takes node features and adjacency as input. Model will learn the adjacency matrix.

Model correlation among labels. Adjacency Matrix and attention weight represents correlation.

Node Update Mechanism

For any node i in (L+1) th layer (without attention) —

$$\mathbf{H}^{(\ell+1)} = \sigma \left(\mathbf{A} \mathbf{H}^{\ell} \mathbf{W}^{\ell} \right)$$

where

A: Adjacency Matrix (so that only neighbour will contribute in update mechanism),

W: Weight Matrix

H: Node feature matrix in **Lth** layer.

(without attention)
$$\begin{aligned} H_2^{(\ell+1)} &= \sigma\Big(H_2^{(\ell)}W^{(\ell)} + H_1^{(\ell)}W^{(\ell)} \\ &+ H_3^{(\ell)}W^{(\ell)} + H_4^{(\ell)}W^{(\ell)}\Big) \end{aligned}$$

Node Update Mechanism Continued...

$$\begin{split} \text{(with attention)} &\quad H_2^{(\ell+1)} = \text{ReLU}\Big(\alpha_{22}^{(\ell)} H_2^{(\ell)} W^{(\ell)} + \alpha_{21}^{(\ell)} H_1^{(\ell)} W^{(\ell)} \\ &\quad + \alpha_{23}^{(\ell)} H_3^{(\ell)} W^{(\ell)} + \alpha_{24}^{(\ell)} H_4^{(\ell)} W^{(\ell)} \Big) \end{split}$$

Where $\alpha_{ij}^{(\ell)}$ is the attention coefficient : importance of **j**th node in updating **i**th node with

$$\alpha_{ij}^{(\ell)} = f\Big(\mathbf{H}_i^{(\ell)} \mathbf{W}^{(\ell)}, \mathbf{H}_j^{(\ell)} \mathbf{W}^{(\ell)}\Big)$$

where

F can be any function. It can be Neural Network also.

 $H_i^{(\ell)}W^{(\ell)}, H_j^{(\ell)}W^{(\ell)}$ are the transformed node features embeddings.

Node Update Mechanism Continued...

For Multiple Attention Head :-
$$\mathbf{H}_{\mathbf{i}}^{(\ell+1)} = Tanh\left(\frac{1}{K}\sum_{k=1}^K\sum_{j\in N(i)}\alpha_{ij,k}^{\ell}H_j^{\ell}W^{\ell}\right)$$

K is the total number of heads

N(i) is the neighbours of **i**th node

H is the node feature matrix

L is the layer no, for **L** = 1, **H** = Adjacency Matrix

Feature Vector Generation

- Bidirectional LSTM is used for feature vector generation of a sentence.
- Forward and Backward pass will capture both forward and previous context of a sentence
- Feature vector is the concatenation of output hidden states of forward and backward pass.

Overall Solution

 Loss will be calculated on dot product of Feature Vector from Bi-LSTM and final node feature embedding from last layer of GAT.

Our Implementation

- Feature Vector is generated using Bi-LSTM.
- For attention coefficient –

$$\alpha_{ij} = \frac{\exp(LeakyReLU\left(\overrightarrow{w_a^T}\left[Wh_i||Wh_j\right]\right))}{\sum_{k \in N(i)} \exp(LeakyReLU\left(\overrightarrow{w_a^T}\left[Wh_i||Wh_j\right]\right))}$$

Where

Whi & Whj are transformed node features, W – Learnable parameter

Wa – Learnable parameter for calculating attention

- For multiple heads, mean of node features generated from all heads is taken, followed by Tanh activation function over mean.
- Loss is calculated over dot product of final Node embeddings and Feature vector.

Our Implementation

For Node feature updation

Sample Input Output Inference -

MAGNET on Reuters-21578 dataset

Sentence	Output
The stock market rallied after the Fed announced a new interest rate policy.	Interest, money-fx
The pharmaceutical company received approval for a new drug to treat a rare disease.	acq
The energy sector experienced a surge in demand for renewable energy sources.	crude
The U.S. Federal Reserve is expected to raise interest rates next month, according to analysts.	interest

Results

Comparisons of **Micro F1-score** for various models on three benchmark datasets

Model	Toxic Comment	Reuters- 21578	RCV1-V2
MLP	0.89656	0.79069	0.84490
Bi-LSTM	0.90575	0.65613	0.85611
BERT	0.93092	0.83994	NA
MAGNET	0.86315	0.76419	0.80379

Results

Comparisons of **Micro F1-score** for various models on three benchmark datasets

Experiments

Comparisons of **Micro F1-score** for various attention heads on three benchmark datasets

No of Attention Heads	Toxic Comment	Reuters- 21578	RCV1-V2
2	0.86486	0.78276	0.79248
4	0.86391	0.76044	0.80767
8	0.87157	0.75870	0.786971

Experiments

Comparisons of validation loss for various attention heads on three benchmark datasets

Experiments

Comparisons of **Micro F1-score** for various word embeddings for Reuters-21578 dataset

Word embeddings

Micro F1-score

word2vec	0.71873
glove	0.76419
random	0.59519
bert	0.75345

Conclusion:

- The empirical results indicate that the baseline models do not perform satisfactorily in multi-label classification and are unable to capture dependencies.
- MLP and LSTM models are observed to have a better understanding of the task than the baseline models due to their ability to extract complex features from textual data.
- Based on our experiments comparing different models for Multilabel Text Classification, we observed that the basic BERT model outperformed the more complex MAGNET model.
- On an average, across all datasets, 4 heads in the multihead graph attention-based neural network yields relatively better results.
- Comparing different word embeddings for generating feature vectors, both BERT and GloVe showed better performance than other options.

REFERENCES:

- [1] Ashish Vaswani et. al.: Attention Is All You Need
- [2] Devlin et. al.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018)
- [3] Petar Veli ckovi c et. al.: GRAPH ATTENTION NETWORKS
- [4] Jie Zhou et al.: Graph neural networks: A review of methods and applications

THANK YOU!

Contribution

01

Santanu Biswas

- BERT
- Experimenting MAGNET

02

Aman Motwani

- Baseline models
- Implementing MAGNET

03

Ayush Lakshakar

- MLP, BiLSTM
- Implementing MAGNET