BIOSTAT 651 Homework #1due: Wednesday, January 25

- turn in at the start of class

- each sub-question=2 points; total 20 points

1. Y_i has the following density function,

$$f(Y_i; \beta, \alpha) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} Y_i^{\alpha - 1} e^{-Y_i \beta} \qquad Y_i > 0$$

for i = 1, ..., n. The parameter α is treated as known.

- (a) Derive $L(\beta)$, $\ell(\beta)$ and $U(\beta)$.
- (b) Derive the observed information, $J(\beta)$.
- 2. Consider a simple linear regression model,

$$Y_i = \beta_1 X_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2).$$

All elements in $\boldsymbol{\theta} = (\beta_1, \sigma^2)$ are unknown.

- (a) Find the MLE, $\hat{\boldsymbol{\theta}}$. Are MLE of (β_1, σ^2) the same as LSE of (β_1, σ^2) (Yes, NO)?
- (b) Determine the asymptotic variance of $\hat{\boldsymbol{\theta}}$, $Var(\hat{\boldsymbol{\theta}})$. (Use the fact that $Var(\hat{\boldsymbol{\theta}}) = I(\boldsymbol{\theta})^{-1}$).
- 3. The number of male and female births at a rural hospital is recorded over a span of 10 months, with the observed data given in the table below. Of interest is θ , defined as the probability that a given newborn is male.

month	Male	Female
1	9	11
2	21	22
3	34	27
4	30	35
5	17	24
6	34	29
7	29	26
8	22	27
9	30	38
10	13	14

- (a) Derive $L(\theta)$, $\ell(\theta)$, $U(\theta)$ and $I(\theta)$.
- (b) Compute $\widehat{\theta}$, $\widehat{Var(\widehat{\theta})}$, and 95% confidence interval for θ (use Normal approximation)
- (c) Test $H_0: \theta = 0.5$ against a two-sided H_1 using the score test.
- 4. Solve 6.3 (a), (b) and (c) on page 119 of Textbook.