

# 串口协议

设备连接 > MCU 开发接入 > Zigbee 通用方案 > 软件开发

文档版本: 20201118



# 目录

| 1 | 串口通信协议约定                 | 2  |
|---|--------------------------|----|
| 2 | 帧格式                      | 4  |
| 3 | 帧格式说明                    | 5  |
| 4 | 协议详述                     | 9  |
|   | 4.1 模组查询 MCU 设备类型        | 9  |
|   | 4.2 查询产品信息               | 10 |
|   | 4.3 报告模组网络状态             | 12 |
|   | 4.4 查询模组网络状态             | 13 |
|   | 4.5 配置 Zigbee 模组         | 14 |
|   | 4.6 命令下发                 | 16 |
|   | 4.7 状态上报(被动)             | 18 |
|   | 4.8 状态上报(主动)             | 20 |
|   | 4.9 Zigbee 模组功能性测试       | 21 |
|   | -<br>4.10时间同步            | 23 |
|   | 4.11场景开关协议               |    |
|   | 4.12查询按键信息               |    |
|   | 4.13场景唤醒命令               |    |
| _ |                          | 00 |
| 5 | MCU OTA 协议               | 28 |
|   | 5.1 OTA 版本请求的数据格式        |    |
|   | 5.2 OTA 升级通知             |    |
|   | 5.3 OTA 固件内容请求           |    |
|   | 5.4 OTA 固件升级结果上报         |    |
|   | 5.5 MCU 广播数据             |    |
|   | 5.6 MCU 配置 Ziabee 网络策略参数 | 34 |



涂鸦 Zigbee 串口通用协议为涂鸦定制的 Zigbee 模组串口通用协议,主要用于涂鸦 Zigbee 模组与其它 MCU 串口直连做串口通信,涂鸦 Zigbee 串口协议结构如下图所示。



{width=400px}



### 1 串口通信协议约定

• 波特率: 9600/115200

• 数据位: 8

• 奇偶校验:无

• 停止位: 1

• 数据流控:无

• 供电电压: Zigbee 模组和 MCU 主控均采用 DC 3.3V

• 休眠模式:

- 对于带休眠的低功耗设备,Zigbee 模组与 MCU 之间预留 2 个 GPIO 口(PWM1 和 PWM2),作为 MCU 和模组唤醒时使用,唤醒方式为电平触发。Zigbee 模组和 MCU 之间,每次主动发起命令之前,发起方都需要做一次握手连接,具体唤醒参考下图。



- 对于不带休眠的强电设备,串口处于长监听状态,硬件上不需要连接 I/O1 和 I/O2。
- MCU 唤醒模组: 拉低之后可延时 1~5 ms 发送数据,只要保持唤醒口持续低电平,模组会一直处于唤醒状态,当拉高之后,模组会在约 300~550ms 之后进入休眠,减少不必要的唤醒时间,以降低功耗。



**说明**:固件中有脉冲唤醒的方式,即 mcu 端每次发送串口数据之前都需要先在唤醒口上给一个低脉冲,时间为 1~5ms,然后再发送串口数据。考虑到长时间拉低唤醒,模组功耗偏高的情况,优化为脉冲方式唤醒模组。



```
1 set_gpio_low();
2 delay(1);
3 set_gpio_high();
4 uart_send_buffer();
```



# 2 帧格式

涂鸦 Zigbee 模组与 MCU 之间的 UART 通信数据帧由帧头(Front),版本(Ver),命令字(Cmd),数据长度(Length),数据(Data)和校验和(Check)组成,定义和描述如下所示:

Octets: 2 1 2 1 2 Variable 1

Front Ver Seq Cmd Length Data Check



# 3 帧格式说明

#### 帧格式说明如下表所示:

| 字段           | 说明                                        |
|--------------|-------------------------------------------|
| 帧头(Front)    | 2 个字节的前导符,固定为 0x55aa                      |
| 版本(Ver)      | 串口通信协议版本,升级扩展用                            |
| 序列号(seq)     | 传输数据序列号,范围 0-0xfff0,到达<br>0xfff0 之后重新回到 0 |
| 命令字(Cmd)     | 具体帧类型,参考文章下方表 2                           |
| 数据长度(Length) | 传输的有效数据长度,length 的长度值为<br>62 字节           |
| 数据(Data)     | 传输的有效数据                                   |
| 校验和(Check)   | 数据校验,从帧头开始按字节求和得出的结<br>果对 256 求余          |

注意: 帧中的数据长度(Length)由 Zigbee 模组单个空中数据包的长度决定,涂鸦会对 Zigbee 空中数据格式重新封装,目前可以使用的数据大小为 62 字节。

### Cmd 描述如下表所示:

| Cmd ID | 说明          |
|--------|-------------|
| 0x01   | 产品信息查询/上报   |
| 0x02   | 设备状态查询/上报   |
| 0x03   | Zigbee 设备重置 |
| 0x04   | 命令下发        |
| 0x05   | 状态上报        |
| 0x06   | 状态查询        |
| 0x07   | reserved    |
|        |             |



| Cmd ID | 说明                 |
|--------|--------------------|
| 0x08   | Zigbee 设备功能测试      |
| 0x09   | 查询按键信息(仅场景开关类设备有效) |
| 0x0A   | 场景唤醒命令(仅场景开关类设备有效) |
| 0x24   | 时间同步               |
| 0x25   | 模组查询 MCU 设备类型      |
|        |                    |

所有大于 1 个字节的数据均采用大端模式传输。

一般情况下,采用命令字一发一收同步机制,即一方发出命令,另一方应答,若发送方超时未收到正确的响应包,则传输超时,如下图所示:



说明:具体通信方式以"协议详述"章节中为准。

模组控制命令下发及 MCU 状态上报则采用异步模式,假设模组控制命令下发"命令字"为 x,MCU 状态上报"命令字"为 y,如下所示:

• 模组控制命令下发:





#### 模组命令下发处理流程

模组通过 04 指令下发命令,内容为可下发的 DP 数据;

Mcu 收到 04 指令之后,需要回复 04 指令,表示串口接收到该命令;

Mcu 再通过 05 指令将执行的结果上报给云端;

05 指令的 seq 和 04 指令保持一致。

• MCU 状态上报:

MCU 状态上报分为被动上报和主动上报两种情况;

- 被动上报:由模组端发送数据命令给 MCU, MCU 执行之后将状态返回;





• 主动上报: MCU 端状态发生改变(物理操作或者断电重启等),主动将当前状态上报到模组; MCU 主动上报为异步操作,在超时时间内没有收到状态上报应答帧,或者收到的应答帧里状态不成功,MCU 端必须进行重传。





### 4 协议详述

#### 4.1 模组查询 MCU 设备类型

上电之后模组用来查询 MCU 的设备类型,查询成功之后,模组会保存当前设备类型,以后不会再开启查询。

说明: 新增功能,需要客户测试模组中的固件是否支持该功能。

当接收到 MCU 的应答之后,Zigbee 模组将重新启动,载入完成参数之后,继续和模组进行数据交互。

模组上电之后先以 9600 波特率发送查询指令,如果没有收到 MCU 应答,则使用 115200 波特率进行检测。

#### 注意:

检测过程中,全部按照低功耗设备处理,先在模组唤醒 MCU 的 I/O 口发送一个 50ms 的低脉冲,再发送串口数据,可以保证 MCU 收到数据。

之前已经发布的 mcu 固件不需要进行修改,可以继续使用最新固件,新产品接入,需要实现这个协议。

#### 模组发送

| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 帧头   | 2        | 0x55aa                      |
| 版本   | 1        | 0x02                        |
| 序列号  | 2        | N                           |
| 命令字  | 1        | 0x25                        |
| 数据长度 | 2        | 0x0000                      |
| 数据   | 0        | 0                           |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

#### MCU 返回



| 字段   | 长度(byte) | 说明                                |
|------|----------|-----------------------------------|
| 帧头   | 2        | 0x55aa                            |
| 版本   | 1        | 0x02                              |
| 序列号  | 2        | N                                 |
| 命令字  | 1        | 0x25                              |
| 数据长度 | 2        | 0x0001                            |
| 数据   | 1        | 01 强电类对接设备 02 低<br>功耗设备 03 强电场景面板 |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余       |

### 4.2 查询产品信息

- 产品信息由 product ID、MCU 软件版本构成。
- product ID:对应涂鸦开发者平台 PID (产品标识),在创建产品时由涂鸦开发者平台自动生成,用于云端记录产品相关信息。
- MCU 软件版本号格式定义:采用点分十进制形式,"x.x.x",x 为十进制数。
- 当模组复位后,会主动查询,如果 MCU 没有回复,或者回复内容有误,将会间隔 5 秒重复查询。

**注意**: OTA 相关命令用单字节表示 MCU 版本时,最大版本由于字节长度限制,最大版本号可到 3.3.15。

#### 模组发送

| 字段  | 长度(byte) | 说明     |
|-----|----------|--------|
| 帧头  | 2        | 0x55aa |
| 版本  | 1        | 0x02   |
| 序列号 | 2        | N      |
| 命令字 | 1        | 0x01   |



| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 数据长度 | 2        | 0x0000                      |
| 数据   | 0        | 无                           |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

0x55aa 02 N 01 0000 xx

### MCU 返回

| 字段   | 长度(byte) | 说明                                |
|------|----------|-----------------------------------|
| 帧头   | 2        | 0x55aa                            |
| 版本   | 1        | 0x02                              |
| 序列号  | 2        | N                                 |
| 命令字  | 1        | 0x01                              |
| 数据长度 | 2        | N                                 |
| 数据   | N        | {"p":"Alp08kLl",<br>"v":"1.0.0" } |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余       |

#### 示例

{"p":" Alp08kLl","v":"2.0.0" }

- p 表示产品 ID 为 Alp08kLI
- v 表示 MCU 版本为 2.0.0

 $0x55aa\ 02\ N\ 01\ 00\ 1c\ 7b2270223a2241497031386b4c49222c2276223a22312e302e30227d$  xx



### 4.3 报告模组网络状态

| 设备状态 ID | 描述       |
|---------|----------|
| 0x00    | 设备为未入网状态 |
| 0x01    | 设备为已入网状态 |
| 0x02    | 设备网络状态异常 |
| 0x03    | 设备为配网中状态 |

- 设备未入网状态:设备第一次上电、或者入网失败、或者离网的情况下,设备状态为未入 网状态;并将该状态下发至 MCU。
- 设备为已入网状态:设备入网成功之后,设备状态为已入网状态;并将该状态下发至 MCU。
- 当模组的网络状态发生变化,则主动下发模组网络状态至 MCU。
- 网络状态是指 Zigbee 的网络的状态,当模组配网成功之后,即设备已加入网络,不因网 关断电,父节点丢失等原因变更网络状态。

#### 模组发送

| 字段   | 长度(byte) | 说明                                 |
|------|----------|------------------------------------|
| 帧头   | 2        | 0x55aa                             |
| 版本   | 1        | 0x02                               |
| 序列号  | 2        | N                                  |
| 命令字  | 1        | 0x02                               |
| 数据长度 | 2        | 0x0001                             |
| 数据   | 1        | 指示模组工作状态: 0x00:<br>状态 1 0x01: 状态 2 |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余        |

#### 示例



0x55aa 02 N 02 0001 00 xx

### MCU 返回

| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 帧头   | 2        | 0x55aa                      |
| 版本   | 1        | 0x02                        |
| 序列号  | 2        | N                           |
| 命令字  | 1        | 0x02                        |
| 数据长度 | 2        | 0x0000                      |
| 数据   | 0        | 无                           |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

### 示例

0x55aa 02 N 02 0000 xx

### 4.4 查询模组网络状态

新增功能,MCU 可以查询 Zigbee 当前网络状态,MCU 端如需增加此功能,请测试使用的模组版本是否支持该功能。

### MCU 发送

| 字段   | 长度(byte) | 说明     |
|------|----------|--------|
| 帧头   | 2        | 0x55aa |
| 版本   | 1        | 0x02   |
| 序列号  | 2        | N      |
| 命令字  | 1        | 0x20   |
| 数据长度 | 2        | 0x0000 |



| 字段  | 长度(byte) | 说明                          |
|-----|----------|-----------------------------|
| 校验和 | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

0x55aa 02 N 20 0000 xx

### 模组返回

| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 帧头   | 2        | 0x55aa                      |
| 版本   | 1        | 0x02                        |
| 序列号  | 2        | N                           |
| 命令字  | 1        | 0x20                        |
| 数据长度 | 2        | 0x0001                      |
| 数据   | 1        | 网络状态:参见网络状态表                |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

### 示例

0x55aa 02 N 20 0001 xx xx

# 4.5 配置 Zigbee 模组

配置 Zigbee 模组命令分为两种,如下所示;

| 命令   | 说明      |
|------|---------|
| 0x00 | 将模组软件复位 |



| 命令   | 说明                   |
|------|----------------------|
| 0x01 | 将模组配置为开始配网状态(先离网再配网) |

# MCU 发送

| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 帧头   | 2        | 0x55aa                      |
| 版本   | 1        | 0x02                        |
| 序列号  | 2        | N                           |
| 命令字  | 1        | 0x03                        |
| 数据长度 | 2        | 0x0001                      |
| 数据   | 0        | 0x00/0x01                   |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

### 示例

0x55aa 02 N 03 0001 01 xx

### 模组返回

| 字段   | 长度(byte) | 说明     |
|------|----------|--------|
| 帧头   | 2        | 0x55aa |
| 版本   | 1        | 0x02   |
| 序列号  | 2        | N      |
| 命令字  | 1        | 0x03   |
| 数据长度 | 2        | 0x0000 |
| 数据   | 0        | 无      |



| 字段  | 长度(byte) | 说明                          |
|-----|----------|-----------------------------|
| 校验和 | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

0x55aa 02 N 03 0000 xx

### 4.6 命令下发

• 命令下发帧格式:

| Octets: 2        | 1           | 1                 |         | 2      |          | Variable    | 1     |
|------------------|-------------|-------------------|---------|--------|----------|-------------|-------|
| Front            | Ver         | Cmd               |         | Length |          | Data        | Check |
|                  |             |                   |         |        |          |             |       |
| Octets: Variable | le Variable | Variable Variable |         |        | Variable |             |       |
| CmdData Unit-    | 1 CmdData U | nit-2             | CmdData | Unit-3 | :        | CmdData Uni | t-n   |
|                  |             |                   |         |        |          |             |       |
| Octets: 1        | 1           | 2 Variable        |         |        |          |             |       |
| Dpid             | Type        | Len Value         |         |        |          |             |       |

• datapoint 命令/状态数据单元如下所示:

| 数据段  | 长度(byte) | 说明                                                  |    |
|------|----------|-----------------------------------------------------|----|
| Dpid | 1        | datapoint 序号                                        |    |
| Туре | 1        | 对应开放平台上某<br>datapoint 具体的数<br>据类型, 通过如下<br>"表示值" 标识 |    |
| 类型   | 表示值      | 长度(字节)                                              | 说明 |



| 数据段    | 长度(byte) | 说明                      |                                  |
|--------|----------|-------------------------|----------------------------------|
| raw    | 0x00     | N                       | 对应于 raw 型<br>datapoint(模组透<br>传) |
| bool   | 0x01     | 1                       | value 范围:<br>0x00/0x01           |
| value  | 0x02     | 4                       | 对应 int 类型,大端<br>表示               |
| string | 0x03     | N                       | 对应于具体字符串                         |
| enum   | 0x04     | 1                       | 枚举类型,范围<br>0-255                 |
| bitmap | 0x05     | 1/2/4                   | 长度大于 1 字节时,<br>大端表示              |
| Len    | 2        | 长度对应 value 的<br>字节数     |                                  |
| Value  | 1/2/4/N  | hex 表示,大于 1<br>字节采用大端传输 |                                  |

- datapoint 命令/状态数据单元除"raw" 类型外,其他类型均属于 "obj" 型 datapoint。
- "命令下发"可包含多个 datapoint "命令数据单元",raw 类型只能单条命令下发。
- "命令下发" 为异步处理协议,对应于 MCU 的 datapoint "状态上报"。

### 模组发送

| 字段  | 长度(byte) | <br>说明 |
|-----|----------|--------|
|     |          |        |
| 帧头  | 2        | 0x55aa |
| 版本  | 1        | 0x02   |
| 序列号 | 2        | N      |
| 命令字 | 1        | 0x04   |



| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 数据长度 | 2        | 取决于 "命令数据单元" 类<br>型以及个数     |
| 数据   | N        | 参考 DP 格式                    |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

系统开关对应 3 号 DP, 使用 bool 型变量,开机数值为 1 0x55aa 02 N 04 0005 **03 01 0001 01** xx

### 4.7 状态上报(被动)

• 当 MCU 收到模组端下发的命令,并执行相应动作之后,需要将新的状态被动上报给模组端;

状态正确执行之后,只上报执行了操作的 datapoint 状态;

- "状态上报(被动)" 为同步处理协议,模组端收到 datapoint 信息之后会立即返回 ACK 给 MCU
- "状态上报(被动)" 可包含多个 "obj" 型 datapoint "命令数据单元",datapoint 状态数据单元说明详见 "DP 格式表"。
- "raw" 类型数据不能和其他数据一起上报。

#### MCU 发送

| 字段  | 长度(byte) | 说明     |
|-----|----------|--------|
| 帧头  | 2        | 0x55aa |
| 版本  | 1        | 0x02   |
| 序列号 | 2        | N      |
| 命令字 | 1        | 0x05   |



| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 数据长度 | 2        | 取决于"状态数据单元"类<br>型以及个数       |
| 数据   | N        | 参考命令下发的 DP 格式               |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

湿度对应 5 号 DP, 使用 value 型变量,湿度为 30℃ 0x55aa 02 N 05 00 08 **05 02 0004 0000001e** xx

### 模组返回

| 字段<br>———————————————————————————————————— | 长度(byte) | 说明                                          |
|--------------------------------------------|----------|---------------------------------------------|
| 帧头                                         | 2        | 0x55aa                                      |
| 版本                                         | 1        | 0x02                                        |
| 序列号                                        | 2        | N                                           |
| 命令字                                        | 1        | 0x05                                        |
| 数据长度                                       | 2        | 0x0001                                      |
| 数据                                         | 0        | 0x00/0x01 0x00: 状态上<br>报失败 0x01: 状态上报成<br>功 |
| 校验和                                        | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余                 |

### 示例

模组返回 ACK 状态成功给 MCU 0x55aa 02 N 05 0001 01 xx



#### 4.8 状态上报(主动)

- MCU 主动检测到 datapoint 有变化,或者 MCU 重启等情况下,需要将变化后的 datapoint 状态发送至模组。
  - 正常变化时,只上报有变化的 datapoint;
  - 重启等异常情况下,需要上报所有的 datapoint;
- "状态上报(主动)" 为异步处理协议,模组端在超时时间内收到网关的 response 之后,会将状态返回给 MCU 端;如果状态返回超时,或者返回状态为 fail,MCU 需要做随机退避的重传机制。
- "状态上报(主动)" 可包含多个 "obj" 型 datapoint "命令数据单元",datapoint 状态数据单元说明详见 " DP 格式表"。
- "raw" 类型数据不能和其他数据一起上报。
- 如果需要在配网成功之后,上报 DP 数据用于同步 app 面板,最好增加一定的延时上报, 5 秒为宜。

#### MCU 发送

| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 帧头   | 2        | 0x55aa                      |
| 版本   | 1        | 0x02                        |
| 序列号  | 2        | N                           |
| 命令字  | 1        | 0x06                        |
| 数据长度 | 2        | 取决于 "状态数据单元" 类<br>型以及个数     |
| 数据   | N        | DP 格式表                      |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

#### 示例

湿度对应 5 号 DP, 使用 value 型变量,湿度为 30℃ 0x55aa 02 N 06 08 **05 02 0004 0000001e** xx



#### 模组返回

| 字段   | 长度(byte) | 说明                                      |
|------|----------|-----------------------------------------|
| 帧头   | 2        | 0x55aa                                  |
| 版本   | 1        | 0x02                                    |
| 序列号  | 2        | N                                       |
| 命令字  | 1        | 0x06                                    |
| 数据长度 | 2        | 0x0001                                  |
| 数据   | 0        | 0x00/0x01 0x00: 状态上<br>报失败 0x01: 状态上报成功 |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余             |

#### 示例

模组返回 ACK 状态成功给 MCU 0x55aa 02 N 06 0001 01 xx

### 4.9 Zigbee 模组功能性测试

扫描指定信道的 RSSI 值,返回扫描结果和信号强度百分比;该命令必须在设备未配网情况下才可正常运行,单次测试完成之后必须重启模组。

注意: 默认使用 11 信道,MCU 发送时,直接选择 11 信道即可。

### MCU 发送

| 字段  | 长度(byte) | 说明     |
|-----|----------|--------|
| 帧头  | 2        | 0x55aa |
| 版本  | 1        | 0x02   |
| 序列号 | 2        | N      |



| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 命令字  | 1        | 0x08                        |
| 数据长度 | 2        | 0x0001                      |
| 数据   | Data     | 信道值(11-26)                  |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

MCU 要求模组扫描 11 信道的 RSSI 值

0x55aa 02 N 08 0001 0b xx

### 模组返回

| 字段   | 长度(byte) | 说明                                                            |
|------|----------|---------------------------------------------------------------|
| 帧头   | 2        | 0x55aa                                                        |
| 版本   | 1        | 0x02                                                          |
| 序列号  | 2        | N                                                             |
| 命令字  | 1        | 0x08                                                          |
| 数据长度 | 2        | 0x0002                                                        |
| 数据   | 2        | 数据长度为 2 字节:<br>Data[0]: 0x00 失败, 0x01<br>成功                   |
|      |          | 当 Data[0] 为 0x01,即成功时,Data[1] 表示信号强度 (0-100, 0 信号最差,100 信号最强) |



| 字段  | 长度(byte) | 说明                                                                                |
|-----|----------|-----------------------------------------------------------------------------------|
|     |          | 当 Data[0] 为 0x00,即失败时,Data[1] 为 0x00 表示未在指定信道扫描到RSSI,Data[1] 为 0x01 表示模组未烧录授权 key |
| 校验和 | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余                                                       |

信道有效值为(11-26),无效信道会默认使用 11 信道 0x55aa 02 N 08 0002 01 64 xx

### 4.10 时间同步

时间同步用来 MCU 同步网关的网络时间使用。

### MCU 发送

| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 帧头   | 2        | 0x55aa                      |
| 版本   | 1        | 0x02                        |
| 序列号  | 2        | N                           |
| 命令字  | 1        | 0x24                        |
| 数据长度 | 2        | 0x0000                      |
| 数据   | Data     | NA                          |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

### 模组返回



| 字段   | 长度(byte) | 说明                                    |
|------|----------|---------------------------------------|
| 帧头   | 2        | 0x55aa                                |
| 版本   | 1        | 0x02                                  |
| 序列号  | 2        | N                                     |
| 命令字  | 1        | 0x024                                 |
| 数据长度 | 2        | 0x0002                                |
| 数据   | 2        | 数据长度为 8 字节的时间<br>值,格式参考如下时间同步<br>数据格式 |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余           |

时间同步的数据格式,包含标准时间戳和本地时间戳。

| Variable       | Variable       |
|----------------|----------------|
| 标准时间戳 (4 byte) | 本地时间戳 (4 byte) |

- 标准时间戳为格林威治时间 1970 年 01 月 01 日 00 时 00 分 00 秒起至现在的总秒数
- 本地时间戳为标准时间戳 + 标准时间和本地时间相差的秒数(包含时区和夏令时)

### 4.11 场景开关协议

在场景开关设备中,MCU 只需要通过串口透传协议告知 Zigbee 模组设备有几个按键,以及当前操作的是哪个按键即可。

### 4.12 查询按键信息

在模组重启之后会发送查询按键信息。

目前最多支持 10 个按键,即 10 个场景,仅作为场景面板使用,不支持其他 DP 和自定义功能 DP。



创建产品时,需要选择的 DP 为场景 ID 组和场景编号 (1~10)。场景编号必须从小到大,从场景 1 开始,直到最多按键个数。

### 模组发送

| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 帧头   | 2        | 0x55aa                      |
| 版本   | 1        | 0x02                        |
| 序列号  | 2        | N                           |
| 命令字  | 1        | 0x09                        |
| 数据长度 | 2        | 0x0000                      |
| 数据   | Data     | NA                          |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

### 示例

模组要求获取 MCU 的按键总数值

0x55aa 02 N 09 0000 xx

### MCU 返回

| 字段   | 长度(byte) | 说明         |
|------|----------|------------|
| 帧头   | 2        | 0x55aa     |
| 版本   | 1        | 0x02       |
| 序列号  | 2        | N          |
| 命令字  | 1        | 0x09       |
| 数据长度 | 2        | 0x0001     |
| 数据   | 2        | 面板开关的按键总个数 |



| 字段  | 长度(byte) | 说明                          |
|-----|----------|-----------------------------|
| 校验和 | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

0x55aa 02 N 09 0001 02 xx

### 4.13 场景唤醒命令

### MCU 发送

| 字段<br>———————————————————————————————————— | 长度(byte) | 说明                          |
|--------------------------------------------|----------|-----------------------------|
| 帧头                                         | 2        | 0x55aa                      |
| 版本                                         | 1        | 0x02                        |
| 序列号                                        | 2        | N                           |
| 命令字                                        | 1        | 0x0A                        |
| 数据长度                                       | 2        | 0x0001                      |
| 数据                                         | Data     | 按键 ID                       |
| 校验和                                        | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

按键 ID 和按键总个数——对应,如按键总个数为 4,则按键 ID 依次为 1,2,3,4;

### 示例

MCU 要求模组执行按键 1 对应的场景:

0x55aa 02 N 0A 0001 01 xx

#### 模组返回



| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 帧头   | 2        | 0x55aa                      |
| 版本   | 1        | 0x02                        |
| 序列号  | 2        | N                           |
| 命令字  | 1        | 0x0A                        |
| 数据长度 | 2        | 0x0001                      |
| 数据   | 1        | 0: 场景唤醒失败; 1: 场景<br>唤醒成功;   |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

#### 0x55aa 02 N 0A 0001 01 xx

注意:模组应答成功,表示该按键在 app 成功绑定了场景,且该场景已经被成功执行,如果回复失败,则认为 app 端没绑定场景,则该场景不会被执行。这里说的场景为场景面板本地发送出的场景。

当按键按下时,场景面板还会向网关发送一个按键值,用于联动云端场景,当 MCU 有按键上报时,即会上报按键给网关,即如果该场景面板仅使用云端场景功能,模组无论回复成功和失败都可以认为 MCU 上报按键成功。

云端场景和本地场景的区别,本地场景即标准的 Zigbee 场景,满足 Zigbee 协议,注意,不是所有的命令都支持本地场景,目前设备端保存的场景的数据为某些属性值,而有些命令不支持的,这些功能需要走云端场景。

云端场景,其本质是云端联动控制,和本地场景只是文字上叫法相似,但区别很大。



### 5 MCU OTA 协议

OTA 的流程为云端发出 OTA 通知,MCU 接收到通知之后,回复通知,然后开始发起数据请求,数据请求的包大小最大为 50 字节,MCU 发送数据请求之后,模组会将该请求转发给网关,网关根据当前偏移量和数据包大小回复数据。该过程中,有时会出现,网关等待一段时间才回复的情况,因此需要 MCU 端完善数据请求逻辑,需要增加超时机制,当发出数据请求在一段时间内没有回复时,需要重新发送该请求,建议超时时间 3~5 秒,超时超过一定次数再认为 OTA 升级异常,取消 OTA 升级,建议次数 5 次。

#### 5.1 OTA 版本请求的数据格式

若支持 MCU 升级必须实现此命令,网关会主动查询 MCU 版本号,MCU 侧也可主动上报;查询场景: 1. 配网成功时 2.MCU 升级过程异常时;主动上报场景: 1. 配网成功后(必须添加)2. 升级结束。

#### 模组发送

| 字段         | 长度(byte) | 说明                          |
|------------|----------|-----------------------------|
| 帧头         | 2        | 0x55aa                      |
| 版本         | 1        | 0x02                        |
| 业务序列号(Seq) | 2        | 模组产生                        |
| 命令字        | 1        | 0x0B                        |
| 数据长度       | 2        | 0x0000                      |
| 数据         | 0        | NA                          |
| 校验和        | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

#### 示例

0x55 AA 02 00 f0 0B 00 00 XX

#### MCU 响应



| 字段         | 长度(byte) | 说明                                     |
|------------|----------|----------------------------------------|
| 帧头         | 2        | 0x55aa                                 |
| 版本         | 1        | 0x02                                   |
| 业务序列号(Seq) | 2        | MCU 下发的 SEQ                            |
| 命令字        | 1        | 0x0B                                   |
| 数据长度       | 2        | 0x0001                                 |
| 数据         | 1        | 版本号(当前版本)(Bits)<br>01.00.0001 表示 1.0.1 |
| 校验和        | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余            |

### 55 AA 02 00 39 0B 00 01 40 XX

**注意**: OTA 相关命令用单字节表示 MCU 版本时,最大版本由于字节长度限制,最大版本号可到 3.3.15。

### 5.2 OTA 升级通知

### 模组发送

| 字段         | 长度(byte) | 说明                   |
|------------|----------|----------------------|
| 帧头         | 2        | 0x55aa               |
| 版本         | 1        | 0x02                 |
| 业务序列号(Seq) | 2        | 模组产生                 |
| 命令字        | 1        | 0x0C                 |
| 数据长度       | 2        | 0x0011               |
| 数据         | 8        | Data[0]~ Data[7] PID |



| 字段  | 长度(byte) | 说明                                     |
|-----|----------|----------------------------------------|
| 数据  | 1        | 版本号(升级版本)(Bits)<br>01.00.0001 表示 1.0.1 |
| 数据  | 4        | 固件大小最大 256K                            |
| 数据  | 4        | 固件校验和:从固件第一个字节按字节求和得出的结果对 2^32 求余      |
| 校验和 | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余            |

0x55 AA 02 00 1C 0C 00 0F 30 31 32 33 34 35 36 37 40 00 01 00 00 30 31 32 33 XX

### MCU 响应

| 字段         | 长度(byte) | 说明                          |
|------------|----------|-----------------------------|
| 帧头         | 2        | 0x55aa                      |
| 版本         | 1        | 0x02                        |
| 业务序列号(Seq) | 2        | 模组下发的 seq                   |
| 命令字        | 1        | 0x0C                        |
| 数据长度       | 2        | 0x0001                      |
| 数据         | 1        | 0x00: OK, 0x01:error        |
| 校验和        | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

### 示例

0x55 AA 02 00 1C 0C 00 01 00 XX



### 5.3 OTA 固件内容请求

### MCU 发送

| 字段         | 长度(byte) | 说明                                     |
|------------|----------|----------------------------------------|
| 帧头         | 2        | 0x55aa                                 |
| 版本         | 1        | 0x02                                   |
| 业务序列号(Seq) | 2        | 0x0000                                 |
| 命令字        | 1        | 0x0D                                   |
| 数据长度       | 2        | 0x000E                                 |
| 数据         | 8        | PID                                    |
| 数据         | 1        | 版本号(升级版本)(Bits)<br>01.00.0001 表示 1.0.1 |
| 数据         | 4        | 数据包的偏移量 (固件的位<br>置)                    |
| 数据         | 1        | 数据包的大小(最大 50 字<br>节)                   |
| 校验和        | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余            |

### 示例

0x55 AA 02 00 00 0D 00 0E 30 31 32 33 34 35 36 37 40 00 00 00 01 32 XX

注意: 每次拉去的数据包大小最大为 50 字节。

### 模组响应

| 字段         | 长度(byte) | 说明     |
|------------|----------|--------|
| 帧头         | 2        | 0x55aa |
| 版本         | 1        | 0x02   |
| 业务序列号(Seq) | 2        | 0x0000 |



| 字段   | 长度(byte) | 说明                                     |
|------|----------|----------------------------------------|
| 命令字  | 1        | 0x0D                                   |
| 数据长度 | 2        | 0x0006+N                               |
| 数据   | 1        | Status 0:成功 1:失败                       |
| 数据   | 8        | PID                                    |
| 数据   | 1        | 版本号(升级版本)(Bits)<br>01.00.0001 表示 1.0.1 |
| 数据   | 4        | 数据包的偏移量 (固件的位<br>置)                    |
| 数据   | N        | 数据                                     |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余            |

55 AA 02 00 39 0D XXXX 00 30 31 32 33 34 35 36 37 40 00 00 00 01 .... XX

### 5.4 OTA 固件升级结果上报

### MCU 发送

| 字段<br>———————————————————————————————————— | 长度(byte) | 说明                 |
|--------------------------------------------|----------|--------------------|
| 帧头                                         | 2        | 0x55aa             |
| 版本                                         | 1        | 0x02               |
| 业务序列号(Seq)                                 | 2        | MCU 下发的 SEQ        |
| 命令字                                        | 1        | 0x0E               |
| 数据长度                                       | 2        | 0x000A             |
| 数据                                         | 1        | Status 0: 成功 1: 失败 |
| 数据                                         | 8        | PID                |



| 字段  | 长度(byte) | 说明                                             |
|-----|----------|------------------------------------------------|
| 数据  | 1        | 版本号(升级后的当前版<br>本)(Bits)01.00.0001 表<br>示 1.0.1 |
| 校验和 | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余                    |

0x55 AA 03 00 f0 0E 00 0A 00 30 31 32 33 34 35 36 37 40 26

### 模组响应

| 字段         | 长度(byte) | 说明                          |
|------------|----------|-----------------------------|
| 帧头         | 2        | 0x55aa                      |
| 版本         | 1        | 0x02                        |
| 业务序列号(Seq) | 2        | MCU 下发的 seq                 |
| 命令字        | 1        | 0x0E                        |
| 数据长度       | 2        | 0x0001                      |
| 数据         | 1        | 0x00: OK, 0x01: error       |
| 校验和        | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

#### 示例

0x55 AA 02 00 1C 0E 00 01 00 XX

### 5.5 MCU 广播数据

MCU 端需要将数据进行全网通知时,使用该帧数据,注意广播之间需要有一定的时间间隔,间隔由网络的规模决定。该数据可以让全网络中的设备接收到,有个有低功耗设备,其需要处于周期唤醒的状态,且唤醒周期需要小于广播周期,不然还没有唤醒,下一条广播数据就会将之



前的广播数据覆盖。

### MCU 发送

| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 帧头   | 2        | 0x55aa                      |
| 版本   | 1        | 0x02                        |
| 序列号  | 2        | N                           |
| 命令字  | 1        | 0x27                        |
| 数据长度 | 2        | N                           |
|      | N        | DP 格式表                      |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

### 模组返回

| 字段   | 长度(byte) | 说明                          |
|------|----------|-----------------------------|
| 帧头   | 2        | 0x55aa                      |
| 版本   | 1        | 0x02                        |
| 序列号  | 2        | N                           |
| 命令字  | 1        | 0x027                       |
| 数据长度 | 2        | 0x0001                      |
| 数据   | 1        | 00 上报失败 01 上报成功             |
| 校验和  | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |

# 5.6 MCU 配置 Zigbee 网络策略参数

该指令可以在接收到模组发送的查询 pid 帧之后,进行 ms 级延时之后发送。



**注意**:该命令接收完成并回复成功应答之后,模组将会执行重启。

#### • 心跳时间

心跳时间是用来维护设备和网关之间的数据链路是否正常的手段,强电设备的心跳时间默认为 150+random(30)秒,低功耗设备的心跳时间默认为 4 小时,且网关判定 12 小时内没有收到心跳则认为设备离线,心跳时间修改仅支持低功耗设备的心跳时间。

#### • 超时时间

当 MCU 发送配网指令之后,模组会开启一段时间的配网,并发送当前网络状态为配网状态,当在这一段时间内由于某些原因,例如附近没有开启配网的网络,或者距离较远的原因导致模组没有加入到合适网络,则配网超时,配网超时之后,模组将处于未配网状态,同时也会将此状态发送给 MCU。

#### • 轮询 (Poll)

Poll 周期是指已经加入到网络的低功耗模组会周期内唤醒,其唤醒之后会发送 data request 给其父节点,用于告知父节点,其当前处于唤醒状态,父节点是否为其缓存数据,如果有缓存数据则父节点可以将数据发送给它。

Poll 是用于接收父节点的数据,即设备对控制的实时性要求很高,例如单火开关,可以将这个值设置为 250ms,其他产品,例如传感器,只有当状态发生变化时,或者周期上报,即只需要上报数据时,就可以把 poll 关闭。模组将收不到网关下发的控制指令,因此一般是在上电之后,设置一段时间的快速 poll,可以在这个时间窗内将网关的配置命令下发下来。上电之后的快速 poll 的时间默认为 30 秒,支持 MCU 设置。如果设备需要关闭 poll,且有网关的配置需要下发,建议将快速 poll 的时间窗增加。

当关闭 poll 时,网关会帮忙缓存数据,当模组上报数据时,会携带 data request,此时 网关会将数据发下给模组。

注意:该值主要是影响功耗,唤醒周期越短,功耗越大。poll 最小值为 200ms,小于最小值按照最小值处理。最大值建议 8s,如果设置为 0 则关闭 poll。

#### • 重连(Rejoin)

模组发送 data request 之后,父节点首先是需要回复 ack,该 ack 是对 data request 的应答,然后如果有缓存数据则将数据发送给模组。如果没有数据发送,则仅需回复 ack。如果模组发送了 data request,但由于环境、距离、父节点断电等因素导致模组 没有收到 ack,则模组的 poll 失败次数会加 1,如果在累加的过程中重新收到父节点的 ack,则累加清零,当累加到的一定的值时(Poll 失败次数),认为模组丢失父节点,需要 触发 rejion。

触发 rejion,目前由 2 种方式,应用层有数据发送则触发 rejion 或者定时触发 rejion,即当模组处于离线状态,周期性开始触发 rejion,直到模组重新加入到之前网络。两者目



前独立。Rejion 成功,只能表示其和父节点能够正常通信,数据能否到达网关需要看网 关和父节点的路由情况。目前这两个参数都可以由 MCU 灵活配置。

rejion 即重新加入到网络,这里不是指配网,无须网关开启配网,是一种专门用于低功耗设备在父节点丢失时,重新加入的网络的一种机制。

rejoin 间隔时间:即上面提到的周期触发 rejion 的时间间隔,对应一些对数据要求严格的场合,或者功耗满足要求的场景,可以将 rejion 间隔设置的短一些例如 3~5 秒。对于一些传感设备或者通过数据上报触发的场景,可以将时间间隔设置久一些,例如 1 小时。

Rejoin 尝试次数,是指设备触发 rejion 之后,模组可以发送多少次 rejion,对于 poll 时间较短的场合,以及 rejion 间隔短的应用,可以设置少些,例如 1~2 次,对于 rejion间隔较长的场合,可以将 rejion 尝试次数稍微增加,时例如 3~4 次。

注意:设置参数不在范围内的,参数值不变化。

#### MCU 发送

#### 字段

1 <b>长度</b></2 <th><b>说明</b>

#### 帧头

2

1

#### 版本



1

```
1 0x02
```

### 序列号

2

```
1 N
```

### 命令字

1

```
1 0x26
```

```
1
```

### 数据长度

2

```
1 0x0e
```

```
1
```



#### 数据

```
1 
2 2 2
3 0 xfffe表示對前值,0xfffe表示默认值
```

只有低功耗设备支持心跳修改, 低功耗设备的心跳默认为 4 小时, 设置范围为(10~5\*3600 秒)

```
1 
    2 
    2 
    3
```

#### 设置范围为(30~600)

```
1 
2 
3 2
4
```

设置 0xffff 表示当前值设置 0xfffe 表示默认值范围为(3~3600)默认值为 180 秒,即当设备丢失父节点时,会间隔 180 秒尝试 rejion

单位 ms 0 表示关闭 poll,0xffff 表示当前值,0xfffe 表示默认为 5000ms 范围(200~10000)模组会间隔 poll 时间唤醒一次,用于确认父节点是否有数据发送给它,如果产品为传感类型,仅有数据上传,则可以将其设置为 0

默认为 30 秒,设置为 0xffff 表示当前值,0xfffe 表示默认值。范围:(10~3000)



设置为 0xff,为当前值 0xfe 为默认值 4 次范围为( $3\sim40$ )当达到最大值时,如果配置了时间触发 rejion,则到规定的时间则会触发设备 rejion

```
1 
2 
3 1 </fr>
4
```

设置为 0xff 为当前值设置为 0xfe 为默认值 0 表示不触发 1 表示触发默认值为 1

```
1 
2 
3 1 
4 Rejoin 尝 试 次 数
```

设置为 0xff 为当前值设置为 0xfe 为默认值默认值为 1 范围(1~10)

```
1 
2 
3 
4 1 </fr>
5 5 </fr>
```

设置为 0xff 当前值设置为 0xfe 默认值默认值为 11 范围(3~19)dB

#### 校验和

1

```
1 人td>从帧头开始按字节求和得出的结果对 256 求余
```

#### 模组返回



| 字段<br> | 长度(byte) | 说明                          |
|--------|----------|-----------------------------|
| 帧头     | 2        | 0x55aa                      |
| 版本     | 1        | 0x02                        |
| 序列号    | 2        | N                           |
| 命令字    | 1        | 0x026                       |
| 数据长度   | 2        | 0x0001                      |
| 数据     | 1        | 00 失败 01 成功                 |
| 校验和    | 1        | 从帧头开始按字节求和得出<br>的结果对 256 求余 |