Evaluating Memory in LLM Agents via Incremental **Multi-Turn Interactions**

Dual Distill: 通过双教师轨迹拼接蒸馏+自蒸馏 提升数学推理能力

Yuanzhe Hu^{1*}, Yu Wang^{1*}, Julian McAuley¹ ¹UC San Diego 1{yuh127,yuw164,jmcauley}@ucsd.edu

Datasets Source Code

本文提出DualDistill蒸馏框架,目的是让学生模型学习在数学任务上何时使用纯文本推理,何时使用工 具增强推理(TIR)。简单来说,DualDistill包含两个蒸馏步骤: 1) 双教师蒸馏,利用一个纯文本推理教师 (Deepseek-R1),擅长抽象、逻辑复杂的推导和一个TIR教师(OpenHands),擅长执行高效的数值计算 和算法 构建训练集,训练数据的特点是将两个教师的推理轨迹拼接,并包含推理策略切换提示 (transition segments)引导学生模型理解何时切换推理方式。然后对学生模型做sft; 2) 自蒸馏(Self-Distill),考虑到学生模型的tool-use比TIR教师差不少,又在学生自身生成的推理轨迹基础上由 DeepSeek-R1教师进行验证或纠正,进一步sft学生的策略选择和推理能力。

背景

对于数学任务,纯文本推理(text-based reasoning)和工具增强推理(tool-integrated reasoning, TIR)各具优势,TIR能高效完成复杂计 算和算法执行,而纯文本推理在抽象推导和逻辑 推演中也有独特之处。本文尝试将这两类不同模 型的推理能力蒸馏(sft)到同一个学生模型,并且 学生模型能够根据数学问题自动切换推理策略。

实验设置

- 任务类型: 数学推理,训练集大小: 2678
- 训练集的query来自我们读过的DeepMath-103K
- 为了让学生模型学会什么时候使用TIR,什么时候使用 纯文本推理,作者在构建训练集时,找了两类数学问题: 1) 工具优先子集(Agentic-Favored Subset), 更适合TIR 推理的数学题; 2) 纯推理优先子集(Pure Reasoning-Favored Subset),更适合纯文本推理的数学题。两类 数据数量相当
- 两个教师模型: OpenHands和DeepSeek-R1, 学生模 型: Deepseek-R1-Distill-7B

DualDistill流程

Algorithm 1 DUALDISTILL

16: Fine-tune S_0 on $\mathcal{T}_1 \to S_1$

1: Input: Teacher policies π_A, π_R ; student S_0 ;
training dataset $\mathcal{D} = \{(x_i, a_i)\}_{i=1}^N$; thresholds
β_1, β_2 ; sample count K ; binary grader $G(\cdot, \cdot)$
2: Output: Trained student S_2
TEACHER DISTILLATION
3: Initialize teacher-distillation buffer $\mathcal{T}_1 \leftarrow \varnothing$
4: for each $(x,a) \in \mathcal{D}$ do
5: Draw $z \sim \text{Bernoulli}(0.5)$
6: $y_1 \sim z \pi_A(\cdot x) + (1-z) \pi_R(\cdot x)$ 其实 $y_1 \in \mathcal{Y}$ 因为两个 $x \in \mathcal{Y}$
7: $y_2 \sim (1-z) \pi_A(\cdot x, y_1) + z \pi_R(\cdot x, y_1)$
8: $g_1 \leftarrow G(y_1, a), g_2 \leftarrow G(y_2, a)$
9: switch (g_1,g_2)
10: case $(0,1)$: Add $y_1 \oplus t^{-+} \oplus y_2$ to \mathcal{T}_1
11: case $(1,1)$: Add $y_1 \oplus t^{++} \oplus y_2$ to \mathcal{T}_1
12: case $(1,0)$: Add y_1 to \mathcal{T}_1
13: end switch
14: end for
15: Balance \mathcal{T}_1

SELF-DISTILLATION

```
17: Initialize self-distillation buffer \mathcal{T}_2 \leftarrow \emptyset
18: for each (x,a) \in \mathcal{D} do 还是相同的数据集D
          Sample \{t_j\}_{j=1}^K \sim \pi_{S_1}(\cdot \,|\, x)
19:
          g_j \leftarrow G(t_j, a)
20:
         \bar{g} \leftarrow \frac{1}{K} \sum_{j=1}^{K} g_j
          if \bar{g} > \beta_1 then
                                  verification只用了\pi_R 模型
22:
               Add a correct t_i + verification to \mathcal{T}_2
23:
          end if
24:
          if \bar{g} < \beta_2 then
25:
               Add an incorrect t_i + correction to \mathcal{T}_2
26:
          end if
27:
28: end for
29: Fine-tune S_1 on \mathcal{T}_2 \to S_2
30: return S_2
```

Model	Budget	DeepMath-L	Combinatorics300	MATH500	AIME	AMC avg.
Qwen2.5-7B-Instruct (w/o tool)	S	17.2	21.8	75.1	8.0	42.9 33.0
	L	17.5	21.8	75.2	8.0	42.9 33.1
Qwen2.5-7B-Instruct (w/ tool)	S	34.7	28.9	70.2	14.7	51.1 39.9
	L	34.7	28.9	70.2	14.7	51.1 39.9
DeepSeek-R1-Distill-7B	S L	34.7 56.3	34.7 44.5	83.1 89.2	23.3 40.7	61.2 47.4 84.8 63.1
Agentic-R1-7B (ours)	S L	37.0 59.3	36.9 49.4	80.0 82.4	28.0 40.7	$\begin{array}{c c} 64.3 \\ 82.2 \\ \end{array}$ \frac{49.3}{62.8}
Agentic-R1-7B-SD (ours)	S	40.0	38.2	82.5	27.3	66.3 50.9
	L	65.3	52.0	93.3	40.7	85.8 67.4

通过设计策略切换提示(transition segments)将两个能力各异的教师 推理轨迹拼接去sft 学生模型,竟 然能提升不小的推理效果。 对于long/short CoT 推理轨迹数 据,是否也可以用拼接方式来做 sft呢? 说不定也可以提升何时使 用long/short CoT的能力,值得 做实验。