Университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №5 «Вычислительная математика»

Выполнил:

Студент группы Р32102 Гулямов Т.И.

Преподаватель:

Рыбаков С.Д.

Цель лабораторной работы

Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Порядок выполнения работы

- 1. Вычислительная реализация задачи
- 2. Программная реализация задачи

Вычислительная реализация задачи

Исходные данные:

х	0.50	0.55	0.60	0.65	0.70	0.75	0.80
у	1.5320	2.5356	3.5406	4.5462	5.5504	6.5559	7.5594

Конечные разности:

	r						
х	у	Δy	Δ2y	∆3у	Δ4y	∆5y	Δ6y
0.50	1.5320	1.0036	0.0014	-0.0008	-0.0012	0.0059	-0.0166
0.55	2.5356	1.005	0.0006	-0.002	0.0047	-0.0107	
0.60	3.5406	1.0056	-0.0014	0.0027	-0.006		
0.65	4.5462	1.0042	0.0013	-0.0033			
0.70	5.5504	1.0055	-0.002				
0.75	6.5559	1.0035					
0.80	7.5594						

Формула Ньютона:

$$t = (x - x_0)/h = (0.502 - 0.50)/0.05 = -0.04$$

$$N_n(x) = y_i + t\Delta y_i + \frac{t(t-1)}{2!}\Delta^2 y_i + ... + \frac{t(t-1)...(t-n+1)}{n!}\Delta^n y_i$$

$$N(0.502) = y_i + t\Delta y_i + \frac{t(t-1)}{2!}\Delta^2 y_i + ... + \frac{t(t-1)(t-2)(t-3)(t-4)(t-5)}{6!}\Delta^6 y_i$$

$$N(0.502) = 1.5320 + 0.04 * 1.0036 + \frac{0.04(0.04-1)}{2!}0.0014 + ...$$

$$N(0.502) = 1.5320 + 0.0401 - 0.00003 + 0.00002 + 0.00001 + 0.00004 + 0.0001 = 1.57229$$

Формула Гаусса:

$$\begin{split} t &= (x - x_0)/h = (0.645 - 0.65)/0.05 = -0.1 \\ P_n(x) &= y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}t\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}t\Delta^3 y_{-2} + \dots + \frac{(t+n-1)\dots(t-n+1)}{(2n)!}\Delta^{2n-1} y_{-n} + \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!}\Delta^{2n-1} y_{-n} + \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!}\Delta^{2n-$$

Листинг программы

```
struct LagrangePolynomial {
  let points: [Point]

func callAsFunction(_ x: Double) -> Double {
    self.points.reduce(0) { sum, i in
        sum + i.y * self.points.reduce(1) { mult, j in
            i == j ? mult : mult * (x - j.x) / (i.x - j.x)
        }
    }
}
```

```
struct GaussPolynomial {
 enum Error: Swift.Error {
   case incorrectPoints
 }
 init(points: [Point]) throws {
    guard points.count > 2 else {
     throw Error.incorrectPoints
    }
    guard points
      .map(\.x).slidingWindow2()
      .map(-).allEquals({ abs($0 - $1) < eps })</pre>
   else {
      throw Error.incorrectPoints
    }
    self.middlePointForward = points[(points.count - 1) / 2]
   self.middlePointBackward = points[points.count / 2]
    self.stepLength = points[1].x - points[0].x
   self.count = points.count
    self.differences = FiniteDifferences(
      points.map(\.y)
    )
 let count: Int
 let stepLength: Double
 let middlePointForward: Point
 let middlePointBackward: Point
 let differences: FiniteDifferences
 var middlePoint: Point {
```

```
.init(
    x: (self.middlePointForward.x + self.middlePointBackward.x) / 2,
    y: (self.middlePointForward.y + self.middlePointBackward.y) / 2
}
func callAsFunction(_ x: Double) -> Double {
 let isForward = x > self.middlePoint.x
  let t = isForward
    ? (x - self.middlePointForward.x) / self.stepLength
    : (x - self.middlePointBackward.x) / self.stepLength
 var numerator = 1.0
  var denominator = 1.0
  var result = isForward
    ? self.middlePointForward.y
    : self.middlePointBackward.y
 for i in 1..<self.count {</pre>
    // Calculate finite difference
    let difference = isForward
      ? self.differences[forward: i, -(i / 2)]
      : self.differences[backward: i, -(i /+ 2)]
    // Calculate factorial
    denominator *= Double(i)
    // Calculate numerator
    switch (isForward, i.isMultiple(of: 2)) {
    case (false, true), (true, false):
      numerator *= t + Double((i - 1) /+ 2)
    case (false, false), (true, true):
      numerator *= t - Double((i - 1) /+ 2)
    result += difference * numerator / denominator
 return result
}
```

Результаты выполнения программы


```
Interpolate Chart Finite Differences

0 0,909297 0,909297 -0,756802 -1,6661 2,143487 0,791387 -1,3521 -2,24144 3,829545 0,989358 -1,533379 -2,802153 -3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 3,59354 -2,24144 -2,2414 -2,2414 -2,2414 -2,2414 -2,2414 -2,2414 -2,2414 -2,2414 -2,2414 -2,2414 -2,2414 -2,2414 -2,2414 -2,241
```

Вывод

Во время выполнения лабораторной работы познакомился с методом интерполяции функции. Научился использовать и реализовывать программно метод Гаусса и метод Лагранжа. Получил ценные знания, которые несомненно пригодятся в будущем.