

Christof Brandstetter, Markus Sinnl

Institute of Business Analytics and Technology Transformation / JKU Business School, Johannes Kepler University Linz

This research was funded in whole, or in part, by the Austrian Science Fund (FWF) [P 35160-N]. 2024-03-09

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria iku at

- given
 - o a set V of locations,

- given
 - o a set V of locations,
 - $\circ p \in \mathbb{Z}$, and

- given
 - o a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - \circ distances d_{ij} from location $i \in V$ to $j \in V$

- given
 - o a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - distances d_{ij} from location $i \in V$ to $j \in V$
- · we want to
 - open p locations of V, such that

Definition

- given
 - a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - distances d_{ij} from location $i \in V$ to $j \in V$
- · we want to
 - o open p locations of V, such that
 - the maximum distance of any location to its closest opened location is minimized.

Ales and Elloumi (2018), Contardo, Iori, and Kramer (2019), Gaar and Sinnl (2022), and Hakimi (1964)

- given
 - o a set of locations V

- given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and

- given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and
 - \circ a set of integers $\mathcal{P} = \{p^1, \dots, p^H\}$ indicating the number of facilities to open

- given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and
 - \circ a set of integers $\mathcal{P} = \{p^1, \dots, p^H\}$ indicating the number of facilities to open
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$

- given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and
 - \circ a set of integers $\mathcal{P} = \{p^1, \dots, p^H\}$ indicating the number of facilities to open
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$
- the subsets $V^h \subseteq V$ with $|V^h| = p^h$

- given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and
 - \circ a set of integers $\mathcal{P} = \{p^1, \dots, p^H\}$ indicating the number of facilities to open
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$
- the subsets $V^h \subseteq V$ with $|V^h| = p^h$
- are called nested iff $V^h \subseteq V^{h+1}$ for h = 1, ..., H-1

Definition

- given
 - o a set of locations V
 - \circ a set of time periods $\mathcal{H} = \{1, \dots, H\}$ and
 - \circ a set of integers $\mathcal{P} = \{p^1, \dots, p^H\}$ indicating the number of facilities to open
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$
- the subsets $V^h \subseteq V$ with $|V^h| = p^h$
- are called nested iff $V^h \subset V^{h+1}$ for h = 1, ..., H-1

Introduced by Roodman and Schwarz (1975) and used in e.g., Albareda-Sambola et al. (2009) and Bakker and Nickel (2024) and reintroduced as nesting by McGarvey and Thorsen (2022)

ρ -center problem vs nested ρ -center problem

Figure: Optimal solution of (pCP) with p = 4, 5, 6 and (n-pCP) with $P = \{4, 5, 6\}$

Definition part I

• given a set of locations V,

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H \leq |V|$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - where $p^h \le p^{h+1}$ for h = 1, ..., H-1and
 - $\circ p^H \leq |V|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

Definition part I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - where $p^h \le p^{h+1}$ for h = 1, ..., H-1and
 - $\circ p^H \leq |V|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

Definition part II

 a feasible solution to the nested *p*-center problem consists of a set J^h ⊆ V

Definition part I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - where $p^h \le p^{h+1}$ for h = 1, ..., H-1and
 - $\circ p^H \leq |V|$
- distances $d_{ij} \ge 0$ between each $i \in V$ and $j \in V$

Definition part II

- a feasible solution to the nested p-center problem consists of a set J^h ⊆ V
 - \circ with $|V^h| = p^h$ for $h \in \mathcal{H}$,
 - \circ for which $V^h \subseteq V^{h+1}$ for

 $h = 1, \dots, H-1$ holds

Definition part I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - where $p^h \le p^{h+1}$ for h = 1, ..., H-1and
 - $\circ p^H \leq |V|$
- distances d_{ij} ≥ 0 between each i ∈ V and i ∈ V

- a feasible solution to the nested p-center problem consists of a set J^h ⊆ V
 - \circ with $|V^h| = p^h$ for $h \in \mathcal{H}$,
 - for which $V^h \subseteq V^{h+1}$ for $h = 1, \dots, H-1$ holds
- the goal is to find a feasible solution which minimizes ∑^H_{h-1} d(V^h),
 - where $d(V^h) = \max_{i \in V} \min_{j \in V^h} d_{ij}$ for $h \in \mathcal{H}$
- objective function can be seen as sum of absolute regrets of nestedness over time periods

Mixed Integer Linear Programming (MILP) formulations

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

z^h... maximum distance between any customer *i* and its nearest open facility in period *h*

Decision variables

 $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

 z^h ... maximum distance between any customer i and its nearest open facility in period h

(nPC2) based on Gaar and Sinnl (2022)

$$\min \qquad \sum_{h \in \mathcal{H}} z^h \tag{1a}$$

s.t.
$$\sum_{j \in V} y_j^h = p^h \qquad \forall h \in \mathcal{H} \quad (1b)$$

$$z^h \geq d_{ij} - \sum_{j': d_{ij'} < d_{ij}} (d_{ij} - d_{ij'}) y_{j'}^h \qquad \forall i, j \in V, h \in \mathcal{H} \quad (1c)$$

$$y_j^h \ge y_j^{h-1}$$
 $\forall j \in V, \forall h \in \mathcal{H} \setminus \{1\}$ (1d)

$$(y,z) \in \mathbb{B}^{|V||\mathcal{H}|} \times \mathbb{R}^{|\mathcal{H}|}_{>0}$$
 (1e)

Variables and sets

$$u_k^h \dots \begin{cases} 1 \dots \text{ if } z^h \geq D_k \text{ in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

Variables and sets

$$u_k^h \dots \begin{cases} 1 \dots \text{ if } z^h \geq D_k \text{ in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

 \mathcal{K} ... set of indices k for distinct distances D_k

Variables and sets

$$u_k^h \dots \begin{cases} 1 \dots \text{ if } z^h \geq D_k \text{ in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

 \mathcal{K} ... set of indices k for distinct distances D_k

 S_i ...set of indices k for customer i, for which there exists a $d_{ij} = D_k$

Variables and sets

$$u_k^h \dots \begin{cases} 1 \dots \text{ if } z^h \geq D_k \text{ in} \\ & \text{time period } h \end{cases}$$

 \mathcal{K} ... set of indices k for distinct distances D_k S_i ... set of indices k for customer i, for which there exists a $d_{ij} = D_k$

(nPC3) based on Ales and Elloumi (2018)

$$\min \sum_{h \in \mathcal{H}} z^h$$
s.t.
$$\sum_{j \in V} y_j^h = p^h \qquad \forall h \in \mathcal{H}$$

$$D_0 + \sum_{k=1}^K (D_k - D_{k-1}) u_k^h \leq z^h \qquad \forall h \in \mathcal{H}$$

$$u_k^h + \sum_{j: d_{ij} < D_k} y_j^h \geq 1 \qquad \forall i \in V, \forall h \in \mathcal{H}, \forall k \in S_i \cup \{K\}$$

$$u_k^h \geq u_{k+1}^h \qquad \forall h \in \mathcal{H}, \forall k \in \mathcal{K} \setminus \{K\}$$

$$y_j^h \geq y_j^{h-1} \qquad \forall h \in \mathcal{H} \setminus \{1\}$$

$$(u, y, z) \in \mathbb{B}^{|\mathcal{K}||\mathcal{H}|} \times \mathbb{B}^{|V||\mathcal{H}|} \times \mathbb{R}^{|\mathcal{H}|}_{\geq 0}$$

Improving the formulations

Lemma 1

Let \underline{z}^h be a lower bound on the decision variable z_h of (nPC2) for a given h then for every $i \in \mathcal{I}, j \in \mathcal{J}$ constraints

Lemma 1

Let z^h be a lower bound on the decision variable z_h of (nPC2) for a given h then for every $i \in \mathcal{I}, j \in \mathcal{J}$ constraints

$$z^h \geq d_{ij} - \sum_{j':d_{ij'} < d_{ij}} (d_{ij} - d_{ij'}) y_{j'}^h$$

can be replaced by

Lemma 1

Let \underline{z}^h be a lower bound on the decision variable z_h of (nPC2) for a given h then for every $i \in \mathcal{I}$, $j \in \mathcal{J}$ constraints

$$z^h \geq d_{ij} - \sum_{j':d_{ij'} < d_{ij}} (d_{ij} - d_{ij'}) y_{j'}^h$$

can be replaced by

$$z^h \geq \max\{\underline{z^h}, d_{ij}\} - \sum_{j': d_{ij'} < d_{ij}} \left(\max\{\underline{z^h}, d_{ij}\} - \max\{\underline{z^h}, d_{ij'}\} \right) y_{j'}^h$$
 (nL-OPT)

The lemma is based on Lemma 5 in Gaar and Sinnl (2022) for the (pCP).

Reducing the number of variables u_k^h in (nPC3)

Reducing the number of variables u_k^h in (nPC3)

Observation 1

Let $\underline{z^h}$ be a valid lower bound and $\overline{z^h}$ be a valid upper bound on the decision variable z^h for $h \in \mathcal{H}$, then the distinct distance D_k can only be the optimal distance for z^h if $\underline{z^h} \leq D^k \leq \overline{z^h}$ holds.

Observation 2

Following Observation 1, we observe that decision variables $u_h^k = 0$ for $k : D_k > \overline{z^h}$ and $u_h^k = 1$ for $k : D_k < \underline{z^h}$ in any optimal solution.

⇒ these variables can be removed

Obtaining bounds

Obtaining bounds

Observation 3

For $\mathcal{H} = \{1\}$ the (n-pCP) reduces to the (pCP) where $p = p^1$, so the optimal objective value (z^{rh*}) of the (pCP), where $p = p^h$ is a lower bound \underline{z}^h on the decision variable z^h of the (n-pCP).

Obtaining bounds

Observation 3

For $\mathcal{H} = \{1\}$ the (n-pCP) reduces to the (pCP) where $p = p^1$, so the optimal objective value (z'^{h*}) of the (pCP), where $p = p^h$ is a lower bound \underline{z}^h on the decision variable z^h of the (n-pCP).

Proposition 1

Given an valid upper bound UB on the objective value of the (n-pCP) and valid lower bounds \underline{z}^h on the variable z^h can be obtained by the following equation:

$$\overline{z^h} = \frac{UB - \sum_{h'=h+1}^{H} \underline{z^{h'}}}{h} \tag{3}$$

Computational results

• C++, CPLEX 20.1

- C++, CPLEX 20.1
- preprocessing
 - Solving p-center problem with $p = p^H$
 - Use optimal solution value as lower bound for p-center problem with $p = p^{H-1}$
 - Repeat for remaining p^h and calculate the upper bounds $\overline{z^h}$
 - o can be used to obtain a starting solution

- C++, CPLEX 20.1
- preprocessing
 - Solving p-center problem with $p = p^H$
 - Use optimal solution value as lower bound for p-center problem with $p = p^{H-1}$
 - Repeat for remaining p^h and calculate the upper bounds $\overline{z^h}$
 - o can be used to obtain a starting solution
- Staring heuristic
- (nPC2)
 - branch-and-cut separating of (1c)/(nL-OPT)
 - separation based on the fixedCustomer separation scheme from Gaar and Sinnl (2022)

- C++, CPLEX 20.1
- preprocessing
 - Solving p-center problem with $p = p^H$
 - Use optimal solution value as lower bound for p-center problem with $p = p^{H-1}$
 - Repeat for remaining p^h and calculate the upper bounds $\overline{z^h}$
 - o can be used to obtain a starting solution
- Staring heuristic
- (nPC2)
 - branch-and-cut separating of (1c)/(nL-OPT)
 - separation based on the fixedCustomer separation scheme from Gaar and Sinnl (2022)

Instance from literature

- instance set PMED Beasley (1985)
 - 40 instances
 - $\circ \mathcal{P} = \{p, p+1, p+2\}, p \text{ from 5 to 200, } |V| \text{ from 100 and 900 nodes}$

Instance from literature

- instance set PMED Beasley (1985)
 - 40 instances
 - $\circ \mathcal{P} = \{p, p+1, p+2\}, p \text{ from 5 to 200, } |V| \text{ from 100 and 900 nodes}$
- instance set TSPLIB Reinelt (1991)
 - o 50 instances
 - $\circ \mathcal{P} = \{4, 5, 6\}, |V| \text{ from 51 and 1002 nodes}$

Instance from literature

- instance set PMED Beasley (1985)
 - 40 instances
 - $\circ \mathcal{P} = \{p, p+1, p+2\}, p \text{ from 5 to 200, } |V| \text{ from 100 and 900 nodes}$
- instance set TSPLIB Reinelt (1991)
 - o 50 instances
 - $\circ \mathcal{P} = \{4, 5, 6\}, |V| \text{ from 51 and 1002 nodes}$

- computational setup
 - o single core of Intel Xeon X5570 with 2.93 GHz and 8 GB RAM
 - o timelimit of 3600 seconds
- B: no preprocessing, no cut lifting/variable removing

- computational setup
 - single core of Intel Xeon X5570 with 2.93 GHz and 8 GB RAM
 - timelimit of 3600 seconds
- B: no preprocessing, no cut lifting/variable removing
- P: with preprocessing and

- computational setup
 - single core of Intel Xeon X5570 with 2.93 GHz and 8 GB RAM
 - timelimit of 3600 seconds
- B: no preprocessing, no cut lifting/variable removing
- P: with preprocessing and
 - \circ (nPC2): set upper bounds on z^h and using lower bounds in (nL-OPT)
 - \circ (nPC3): problem initialized on the reduced number of u_k^h

- computational setup
 - single core of Intel Xeon X5570 with 2.93 GHz and 8 GB RAM
 - timelimit of 3600 seconds
- B: no preprocessing, no cut lifting/variable removing
- P: with preprocessing and
 - \circ (nPC2): set upper bounds on z^h and using lower bounds in (nL-OPT)
 - \circ (nPC3): problem initialized on the reduced number of u_{ν}^{h}
- PH: preprocessing, cut lifting/variable removing, starting heuristic

Setting comparison on formulation (nPC2)

2024-03-09

Setting comparison on formulation (nPC3)

Formulation comparison on setting PH

Managerial insights

(g) Relative regrets of the optimal solution value

Managerial insights

(i) Relative regrets of the optimal solution value

(j) Relative regrets of # of opened facilities

Conclusion

- introduced nested *p*-center problem
- three mixed integer formulations
- improvement of formulations
- preprocessing brings a large speed up on all formulations
- starting heuristic little effect, shows good upper bound obtained in preprocessing
- nested facility location with uncertainty interesting for future work
- or nested maximum coverage problem

On the nested p-center problem

Christof Brandstetter, Markus Sinnl

Institute of Business Analytics and Technology Transformation / JKU Business School, Johannes Kepler University Linz

This research was funded in whole, or in part, by the Austrian Science Fund (FWF) [P 35160-N]. 2024-03-09

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria iku at

References I

- [1] M. Albareda-Sambola, E. Fernández, Y. Hinojosa, and J. Puerto. The multi-period incremental service facility location problem. In: Computers & Operations Research 36.5 (2009), pp. 1356–1375.
- [2] Z. Ales and S. Elloumi. Compact MILP formulations for the p-center problem. In: Combinatorial Optimization: 5th International Symposium, ISCO 2018, Marrakesh, Morocco, April 11–13, 2018, Revised Selected Papers 5. 2018, pp. 14–25.
- [3] H. Bakker and S. Nickel. The Value of the Multi-period Solution revisited: When to model time in capacitated location problems. In: Computers & Operations Research 161 (2024), p. 106428.

References II

- J. E. Beasley. A note on solving large p-median problems. In: European Journal [4] of Operational Research 21.2 (1985), pp. 270–273.
- C. Contardo, M. Iori, and R. Kramer. A scalable exact algorithm for the vertex [5] p-center problem. In: Computers & Operations Research 103 (2019), pp. 211–220.
- [6] M. S. Daskin. Network and Discrete Location: Models, Algorithms, and Applications, Second Edition. John Wiley & Sons, Ltd, 2013.
- [7] E. Gaar and M. Sinnl. A scaleable projection-based branch-and-cut algorithm for the p-center problem. In: European Journal of Operational Research 303.1 (2022), pp. 78–98.

References III

- S. L. Hakimi. Optimum locations of switching centers and the absolute centers [8] and medians of a graph. In: Operations Research 12.3 (1964), pp. 450–459.
- [9] R. G. McGarvey and A. Thorsen. Nested-solution facility location models. In: Optimization letters 16.2 (2022), pp. 497–514.
- [10] G. Reinelt. TSPLIB—A traveling salesman problem library. In: ORSA Journal on Computing 3.4 (1991), pp. 376–384.
- [11] G. M. Roodman and L. B. Schwarz. Optimal and heuristic facility phase-out strategies. In: AIIE transactions 7.2 (1975), pp. 177–184.

Setting comparison on formulation (nPC1)

Decision variables

 $x_{ij}^h \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

Decision variables

$$x_{ij}^{h} \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ & \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$y_{j}^{h} \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

Decision variables

$$x_{ij}^h \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ & \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$\begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$z^h \dots \text{ maximum distance between any}$$

$$\text{customer } i \text{ and its nearest open facility}$$

$$\text{in period } h$$

Decision variables

$$X_{ij}^{h} \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

 z^h ... maximum distance between any customer i and its nearest open facility in period h

(nPC1) based on Daskin (2013)

$$\min \sum_{h \in \mathcal{H}} z^h \tag{4a}$$

s.t.
$$\sum_{j \in V} y_j^h = p^h \quad \forall h \in \mathcal{H}$$
 (4b)

$$\sum_{j\in V} x_{ij}^h = 1 \qquad \forall i\in V, h\in \mathcal{H}$$
 (4c)

$$x_{ij}^h \leq y_j^h \qquad \forall i, j \in V, h \in \mathcal{H}$$
 (4d)

$$x_{ij}^{h} \leq y_{j}^{h} \qquad \forall i, j \in V, h \in \mathcal{H}$$
 (4d)
$$\sum_{j \in V} d_{ij} x_{ij}^{h} \leq z^{h} \qquad \forall i \in V, h \in \mathcal{H}$$
 (4e)

$$y_j^h \ge y_j^{h-1} \quad \forall h \in \mathcal{H} \setminus \{1\}$$
 (4f)

$$(x, y, z) \in |V|^2 |\mathcal{H}| \times |V| |\mathcal{H}| \times \mathbb{R}_{>0}$$
 (4g)

2024-03-09