

# PESQUISA QUANTITATIVA – PRÁTICAS DE LABORATÓRIO PROPAGAÇÃO DE ERRO

Prof. Marcelo Girardi Schappo FÍSICA

### **QUANDO PRECISO CALCULAR O ERRO PROPAGADO?**

Serve para quando quero determinar a incerteza de uma grandeza "y" que é CALCULADA a partir de outras grandezas (x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, ...) que foram MEDIDAS.



velocidade média (v)

$$(y \pm E_{P})$$

$$\downarrow \qquad v = \frac{\Delta x}{\Delta t}$$

$$(x_{1} \pm E_{1})$$

$$(x_{2} \pm E_{2})$$
como calcular?

## **QUANDO PRECISO CALCULAR O ERRO PROPAGADO?**

Serve para quando quero determinar a incerteza de uma grandeza "y" que é CALCULADA a partir de outras grandezas  $(x_1, x_2, x_3, ...)$  que foram MEDIDAS.



volume de uma esfera (V)

$$(y \pm E_{\mathbf{p}}) \qquad (x_1 \pm E_1)$$

$$V = \frac{\pi \cdot D^3}{6}$$

como calcular?

# ERRO PROPAGADO EM CADA OPERAÇÃO

A vantagem de usar essas fórmulas ocorre em situações em que a grandeza calculada depende de poucas medidas e poucas operações entre elas.

| Soma                             | $y = x_1 + x_2$       | $E_P = E_1 + E_2$                       |
|----------------------------------|-----------------------|-----------------------------------------|
| Subtração                        | $y = x_1 - x_2$       | $E_P = E_1 + E_2$                       |
| Soma/subtração com constante $a$ | $y = x_1 \pm a$       | $E_P = E_1$                             |
| Multiplicação de medidas         | $y = x_1.x_2$         | $E_P = x_1.E_2 + x_2.E_1$               |
| Divisão de medidas               | $y = \frac{x_1}{x_2}$ | $E_P = \frac{x_1.E_2 + x_2.E_1}{x_2^2}$ |
| Multiplicação por constante $a$  | $y = a.x_1$           | $E_P = a.E_1$                           |
| Potência                         | $y = x_1^n$           | $E_p = n.x_1^{n-1}.E_1$                 |
| Logaritmo de base 10             | $y = log(x_1)$        | $E_P = \frac{0,4343.E_1}{x_1}$          |
| Logaritmo natural                | $y = ln(x_1)$         | $E_P = \frac{E_1}{x_1}$                 |
| Exponencial base $e$             | $y = e^{x_1}$         | $E_P = e^{x_1}.E_1$                     |
| Exponencial base qualquer $a$    | $y = a^{x_1}$         | $E_P = a^{x_1}.ln(a).E_1$               |
|                                  |                       |                                         |

**Exemplo**: determinar o volume da esfera, com seu devido erro, a partir da medida do diâmetro

$$V = \frac{\pi \cdot D^3}{6} \qquad D = (1,225 \pm 0,005) \ cm$$

1º operação: potência

$$D^3 = 1,225^3 = 1,838265625$$

$$E_{P1} = n. x_1^{n-1}. E_1 = 3. (1,225)^2. 0,005$$

$$E_{P1} = 0.022509375$$

2º operação: multiplicação por constante

$$\frac{\pi}{6}$$
.  $D^3 = \frac{3,1415926}{6}$ . 1,838265625

$$\frac{\pi}{6}.D^3 = 0.962513614$$

2º erro propagado:

$$\frac{\pi}{6}$$
.  $D^3 = \frac{3,1415926}{6}$ . 1,838265625  $E_{P2} = \alpha$ .  $E_{P1} = \frac{3,1415926}{6}$ . 0,022509375

$$E_{P2} = 0.01178588$$

**Exemplo**: determinar o volume da esfera, com seu devido erro, a partir da medida do diâmetro

$$V = \frac{\pi \cdot D^3}{6}$$
  $D = (1,225 \pm 0,005) cm$ 

Resultado final

$$V = (0.962513614 \pm 0.01178588) cm^{3}$$

$$V = (0.962513614 \pm 0.02) cm^{3}$$

$$V = (0.96 \pm 0.02) cm^{3}$$

Lembrete: erro só se arredonda no final, sempre para mais, com somente 1 significativo!

#### ERRO PROPAGADO POR DERIVADAS PARCIAIS

A vantagem de usar esse método é fazer de forma mais direta quando a grandeza calculada depende de muitas operações entre muitas grandezas medidas diferentes.

$$E_P = \left| \frac{\partial y}{\partial x_1} \right| \cdot E_1 + \left| \frac{\partial y}{\partial x_2} \right| \cdot E_2 + \dots + \left| \frac{\partial y}{\partial x_n} \right| \cdot E_n$$

Exemplo:

$$V = \frac{\pi \cdot D^3}{6} \longrightarrow y = \frac{\pi}{6} \cdot x_1^3 \qquad \frac{\partial y}{\partial x_1} = 3 \cdot \frac{\pi}{6} \cdot x_1^2$$

$$E_P = \frac{\pi}{2} \cdot x_1^2 \cdot E_1$$

$$E_P = \left| \frac{\partial y}{\partial x_1} \right| \cdot E_1 + \left| \frac{\partial y}{\partial x_2} \right| \cdot E_2 + \dots + \left| \frac{\partial y}{\partial x_n} \right| \cdot E_n$$

Exemplo:

$$v = \frac{\Delta x}{\Delta t} \longrightarrow y = \frac{x_1}{x_2} \qquad \frac{\partial y}{\partial x_1} = \frac{1}{x_2}$$
$$\frac{\partial y}{\partial x_2} = -\frac{x_1}{x_2^2}$$

$$E_P = \frac{1}{x_2}.E_1 + \frac{x_1}{x_2^2}.E_2$$