Prediction using Unsupervised learning

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn import datasets
```

Loading Data set

```
In [3]: # Load the iris dataset
    df = pd.read_csv('Iris.csv')
    df.head()
```

Out [3]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa

```
In [4]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
# Column
                  Non-Null Count Dtype
___
0 Id
                    150 non-null
                                    int64
    SepalLengthCm 150 non-null float64
 2 SepalWidthCm 150 non-null
                                    float64
    PetalLengthCm 150 non-null
                                    float64
    PetalWidthCm 150 non-null
                                    float64
5 Species 150 non-null object(1) dtypes: float64(4), int64(1), object(1)
                                    object
memory usage: 7.2+ KB
```

```
In [5]: df.isnull().sum()
```

```
Out [5]: Id
                         0
        SepalLengthCm
                         0
        SepalWidthCm
                         0
        PetalLengthCm
                         0
        PetalWidthCm
                         0
        Species
                         0
        dtype: int64
 In [6]:
         df = df.drop(columns= ['Id'])
         df.head()
Out [6]:
            SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                           Species
                                                                          Iris-
                                            1.4
         0
            5.1
                            3.5
                                                           0.2
                                                                          setosa
                                                                          Iris-
            4.9
                            3.0
                                            1.4
                                                           0.2
                                                                          setosa
                                                                          Iris-
                            3.2
                                                            0.2
         2
            4.7
                                            1.3
                                                                          setosa
                                                                          Iris-
                            3.1
         3 4.6
                                            1.5
                                                           0.2
                                                                          setosa
                                                                          Iris-
            5.0
                            3.6
                                            1.4
                                                            0.2
                                                                          setosa
 In [7]:
         df.describe()
Out [7]:
                SepalLengthCm
                                SepalWidthCm PetalLengthCm PetalWidthCm
               150.000000
                                150.000000
                                                150.000000
                                                                150.000000
         count
                5.843333
                                3.054000
                                                3.758667
                                                                1.198667
         mean
           std 0.828066
                                0.433594
                                                1.764420
                                                               0.763161
                                2.000000
           min 4.300000
                                                1.000000
                                                               0.100000
          25% 5.100000
                                2.800000
                                                1.600000
                                                                0.300000
          50%
                5.800000
                                3.000000
                                                4.350000
                                                                1.300000
          75% 6.400000
                                3.300000
                                                5.100000
                                                                1.800000
          max 7.900000
                                4.400000
                                                6.900000
                                                               2.500000
In [8]:
         df['Species'].value counts()
Out [8]: Iris-setosa
                           50
                           50
        Iris-versicolor
        Iris-virginica
                           50
        Name: Species, dtype: int64
In [9]:
         df['SepalLengthCm'].hist()
```

Out [9]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdb1df72160>

In [39]: df['SepalWidthCm'].hist()

In [40]: df['PetalLengthCm'].hist()

Out [40]: <AxesSubplot:>


```
In [41]: df['PetalWidthCm'].hist()
```

Out [41]: <AxesSubplot:>

```
40

35

30

25

20

15

10

5

0

0.0

0.5

1.0

1.5

2.0

2.5
```

```
In [42]: # Scatterplot
    colors = ['red', 'orange', 'blue']
    species = ['Iris-virginica','Iris-versicolor','Iris-setosa']
```

```
In [43]: for i in range(3):
    x = df[df['Species'] == species[i]]
    plt.scatter(x['SepalLengthCm'], x['SepalWidthCm'], c = co
plt.xlabel("Sepal Length")
    plt.ylabel("Sepal Width")
    plt.legend()
```

Out [43]: <matplotlib.legend.Legend at 0x7f0d1374b820>


```
In [44]:
    for i in range(3):
        x = df[df['Species'] == species[i]]
        plt.scatter(x['PetalLengthCm'], x['PetalWidthCm'], c = co
    plt.xlabel("Petal Length")
    plt.ylabel("Petal Width")
    plt.legend()
```

Out [44]: <matplotlib.legend.Legend at 0x7f0d1366f070>

```
2.5 - Iris-virginica Iris-versicolor Iris-setosa 1.5 - 0.0 - 0.5 - 0.0 - 1 2 3 4 5 6 7 Petal Length
```

```
In [45]: for i in range(3):
    x = df[df['Species'] == species[i]]
    plt.scatter(x['SepalLengthCm'], x['PetalLengthCm'], c = c
    plt.xlabel("Sepal Length")
    plt.ylabel("Petal Length")
    plt.legend()
```

Out [45]: <matplotlib.legend.Legend at 0x7f0d135e1130>


```
In [62]: sns.pairplot(df)
```

Out [62]: <seaborn.axisgrid.PairGrid at 0x7f0d1394abe0>

In [46]: df.corr()

\cap	шt	- 1	۲4	6-	١.
			- 4	n	

		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	SepalLengthCm	1.000000	-0.109369	0.871754	0.817954
	SepalWidthCm	-0.109369	1.000000	-0.420516	-0.356544
	PetalLengthCm	0.871754	-0.420516	1.000000	0.962757
	PetalWidthCm	0.817954	-0.356544	0.962757	1.000000

```
In [47]: corr = df.corr()
    fig, ax = plt.subplots(figsize=(5,4))
    sns.heatmap(corr, annot=True, ax=ax, cmap = 'coolwarm')
```

```
Out [47]: <AxesSubplot:>
```



```
In [48]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
```

```
In [49]: df['Species'] = le.fit_transform(df['Species'])
    df.head()
```

Out [49]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

```
In [50]: from sklearn.model_selection import train_test_split
    # train - 70
# test - 30
X = df.drop(columns=['Species'])
Y = df['Species']
x_train, x_test, y_train, y_test = train_test_split(X, Y, test)
```

```
In [54]: # knn - k-nearest neighbours
    from sklearn.neighbors import KNeighborsClassifier
    model = KNeighborsClassifier()
```

```
In [55]: model.fit(x_train, y_train)
```

Out [55]: KNeighborsClassifier()

```
In [56]: # print metric to get performance
print("Accuracy: ",model.score(x_test, y_test) * 100)
```

Accuracy: 95.555555555556