METODY PROGRAMOWANIA – LABORATORIUM 11

PROGRAM 01

Użyj algorytmu Huffmana w celu skonstruowania optymalnego binarnego kodu prefiksowego dla liter przedstawionych w poniższych tabelach:

a)

Litera	Częstotliwość
Α	12
В	7
1	18
M	10
S	9
Х	5
Z	2

D)

Litera	Prawdopodobieństwo
С	0,11
е	0,22
i	0,16
r	0,12
S	0,15
t	0,10
х	0,14

OPIS ALGORYTMU HUFFMANA

Huffman()

for każdego symbol utwórz drzewo zawierające jedynie korzeń i uporządkuj te drzewa na podstawie prawdopodobieństwa wystąpienia poszczególnych symboli;

while pozostało więcej niż jedno drzewo
weź dwa drzewa t1 i t2 o najmniejszych prawdopodobieństwach
p1 i p2 (p1<=p2) i utwórz drzewo z dziećmi t1 i t2,
a w jego korzeniu zapisz prawdopodobieństwo p1+p2;

Z każda lewą gałęzią skojarz 0, a z prawą gałęzią skojarz 1;

Dla każdego symbolu utwórz unikalne słowo kodowe, przechodząc drzewo od korzenia do węzła zawierającego prawdopodobieństwo odpowiadające danemu symbolowi i łącząc ze sobą wszystkie wystąpienia zer i jedynek;

Informatyka, rok I, sem. II - 2017/2018– Katedra Automatyki i Technik Informacyjnych (E-3) – Politechnika Krakowska mgr inż. Grzegorz Nowakowski

PRZYKŁADY (LABORATORIUM)

Przykład 1

Załóżmy, że zbiór znaków ma postać {a, b, c, d, e, f} i każdy znak występuje w pliku pewną liczbę razy, określoną w poniższej tabeli:

Litera	Częstotliwość
a	16
b	5
С	12
d	17
е	10
f	25

Użyj algorytmu Huffmana w celu skonstruowania optymalnego binarnego kodu prefiksowego dla powyższych liter.

Przykład 2

Załóżmy, że zbiór znaków ma postać {A, B, C, D, E} a ich prawdopodobieństwa wystąpienia przedstawia poniższa tabela:

Litera	Prawdopodobieństwo
Α	0,39
В	0,21
С	0,19
D	0,12
E	0,09

Użyj algorytmu Huffmana w celu skonstruowania optymalnego binarnego kodu prefiksowego dla powyższych liter.

UWAGA

Nie można wykorzystać rozwiązań ze strony http://eduinf.waw.pl/inf/

Należy zabezpieczyć program tak aby obsługiwał wyjątki.

ZASADY ODDAWANIA GOTOWYCH PROGRAMÓW:

Plik.cpp o nazwie: Nazwisko_Imie_Program_01.cpp

wraz z wszystkimi wyjściowymi plikami tekstowymi powinny być zamieszczone w katalogu: Nazwisko_Imie_Laboratorium_11

Katalog powinien być spakowany w formacie .rar lub .zip i przesłany do folderu: Programy - laboratorium 11 – Poniedziałek godzina 19.45 dostępnego na stronie kursu MP (elf2.pk.edu.pl).

LITERATURA:

Neapolitan R.: Podstawy algorytmów z przykładami w C++, Helion 2004

Drozdek A.: Algorytmy i struktury danych, Helion 2004

Informatyka, rok I, sem. II - 2017/2018 – Katedra Automatyki i Technik Informacyjnych (E-3) – Politechnika Krakowska mar inż. Grzegorz Nowakowski