

2022-2023

HS VIRTUAL CHALLENGE REGIONAL QUALIFIERS' MEET

MATHEMATICS

DO NOT OPEN TEST UNTIL TOLD TO DO SO

The Virtual Challenge Meets™

1.	Carl, Cameron and Chris ate at a burger truck. Together they ordered 3 hot dogs for \$1.75 each, 2
	burgers for \$1.50 each, 3 large drinks for \$1.78 each and 1 order of cobbler for \$3.25. They tipped
	20% on the food subtotal and paid tax. Carl paid with two \$20 bills and received \$18.66 in change.
	What was the tax rate? (nearest hundredth percent)

- (A) 6.25%
- **(B)** 6.72%
- (C) 8.28%
- (D) 6.29%
- (E) 8.25%

2. Consider the line AB with points A(-5, 9) and B(5, 5). If the point (1, b) lies on AB, then b =____.

- $(A) \quad \frac{27}{5}$
- (C) $\frac{33}{5}$ (D) $\frac{29}{5}$

3. Ethan works at a café where a 10-oz cup of coffee costs \$0.95, a 14-oz cup costs \$1.15 and a 20-oz cup costs \$1.50. In one hour, Ethan served 19 cups of coffee, using 274 oz of coffee, for a total cost of \$22.55. How many 14-oz cups did Ethan serve?

- (A) 7
- **(B)** 5
- (C) 8
- (\mathbf{D}) 6
- **(E)** 9

4. The measure of minor arc AB is $(5x)^{\circ}$, and the measure of minor arc CD is $(4x-13)^{\circ}$. Find the value of x if $m \angle BEC = 137^{\circ}$.

- (A) 43
- **(B)** 11
- (C) 6
- (D) 9
- (E) 13
- 5. Angela, Barb and Carry plan on mowing lawns to earn money this summer. Angela can mow a lawn in 1 hr 20 min, Barb can mow a lawn in 1 hr 15 min, and Carry can mow a lawn in 1 hr 45 min. How long will it take the three of them working together to mow 30 lawns? (nearest minute)
- (A) 15 hr 11 min (B) 14 hr 14 min (C) 14 hr 31 min (D) 14 hr 8 min
- (E) 15 hr 7 min

6. Ethan is solving the quadratic equation $x^2 + 7x - 9 = 0$ by completing the square. His second step is $x^2 + 7x + c = 9 + c$. The value of c is _____.

- (A) 24.5
- **(B)** 3.5
- (C) 7
- (D) 49
- **(E)** 12.25

7. The chord AB is 9 cm from the center of circle O. If AB = 80 cm, the area of circle O is $___$ cm². (nearest square centimeter)

- (A) 251
- (B) 5281
- (C) 5027
- (D) 258
- (E) 20360

8. Cole's take-home pay is directly related to the number of hours he works. Two weeks ago, he worked 18 hours and received a check for \$274.86. Last week, he worked 23 hours and received a check for \$351.21. If he worked 31 hours this week on his spring break, how much should he receive in his paycheck?

- (A) \$427.56
- **(B)** \$452.78
- (C) \$473.37
- (D) \$397.21
- (E) \$481.17

18.	Consi	der the l	Fibona	acci ty	pe serio	es 16+	7 + 23	+ 30 + +	÷ 574 ·	+ 929 .	The sum of	the seri	es is
	(A)	2425		(B)	2404		(C)	2402		(D)	1890	(E)	1898
19.		th term o s of the se			etic seq	uence i	s 12, v	while the	9 th te	rm is 2	21. Find the s	sum of	the first 19
	(A)	441.75		(B)	413.25	;	(C)	313.5		(D)	378.25	(E)	319.5
20.	Consi	der infin	ite ge	ometr	ic sequ	ences w	ith a f	ourth ter	m 17	280 ar	nd sixth term	$\frac{31104}{5}$. The smallest
											ese condition	•	
	(A)	43,200		(B)	-50,00	00	(C)	82,500		(D)	10,800	(E)	-43,200
21.	drove mph	422 mile on Tuesd	es at a lay. V	n ave Vhat a	rage sp average	eed of 6	64 mpl must H	on Mon	day a el on	nd 38 Wedn	OR, a distance 8 miles at an esday in orde	averag	
	(A)	60.0 m _l	oh	(B)	60.5 m	ph	(C)	60.8 mp	h	(D)	61.2 mph	(E)	62.2 mph
22.	senio	rs. She h	as the	e budg	get to ta	ke 2 stu	ıdents	each fro	m the	lower	_		juniors and 6 iors to the state
	(A)	4050		(B)	3375		(C)	432		(D)	4320	(E)	6864
23.	The a	rea of qu	ıadril	ateral	ABCD	is	_ cm ²	. (nearest	whol	le cent	imeter)		
													B
	(A)	204	(B)	102	(C)	155	(D)	126	(E)	144	A		30°
24.	The p	erimeter	of qu	ıadrila	ateral A	BCD is	S	cm. (n	eares	t centi	meter)		45°
	(A)	70	(B)	53	(C)	47	(D)	64	(E)	57		D	12 cm C
25.	Find 1	the rema	inder	when	$4x^4+2$	$2x^3 - 18$	$8x^2-2$	2x + 8 is	divid	ed by	$x^2 - 2$.	Prob	olems 23, 24
	(A)	2x		(B)	-12		(C)	0		(D)	2x - 12	(E)	x-12
26.								66 cm. I ions per			e cruise cont	rol set t	o 68 mph, what
	(A)	853 rpn	n	(B)	859 rp	m	(C)	862 rpn	1	(D)	866 rpm	(E)	880 rpm
27.	Whic	h of the f	collow	ing is	one of t	he four	th roo	ots of 5 –	3i?(1	neares	t tenth)		
	(A)	1.6 cis 8.	3.2°	(B)	1.6cis	229.7°	(C)	1.6 cis 34	19.7°	(D)	1.6 cis 262.3°	(E)	1.6 cis 355.3°
		20)22-20)23 Vi	rtual Ch	allenge	Regio	nal Quali	fiers'	Meet I	Mathematics -	- Page 3	

				dioxide have b w long will it t		_				ssions continue
	(A)	8 yr	(B)	42 yr	(C)	77 yr	(D)	81 yr	(E)	111 yr
29.]	If $f($	$(x) = \frac{1}{x^2}$, then	f(x +	$\frac{h(h)-f(x)}{h} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		_•				
	(A)	$\frac{-2x+h}{x^2(x+h)^2}$	(B)	$-\frac{2}{x^3}$	(C)	$\frac{2}{x^3}$	(D)	$-\frac{2x+h}{x^4+x^2h^2}$	(E)	$\frac{-2x-h}{x^2(x+h)^2}$
30.]	Deter	mine the eccer	ıtricit	y of the ellipse:	$x^2 +$	$4y^2 - 6x - 16y$	-11=	= 0. (nearest h	undre	edth)
	(A)	0.82	(B)	0.87	(C)	0.89	(D)	0.91	(E)	0.92
31.	How	many odd, thr	ee-dig	it counting nu	nbers	less than 1000	exist	such that the s	um of	the digits is 6?
	(A)	5	(B)	7	(C)	9	(D)	11	(E)	13
32.	Find	the distance fr	om th	e point (-2, -5)	and 1	the line $y = -\frac{2}{3}$	$\frac{1}{6}x + 5$. (nearest tentl	1)	
	(A)	9.4	(B)	9.7	(C)	9.9	(D)	10.3	(E)	10.5
33.	If $f($	(x) = 5x - 3 and	d g(x)	$=x^2-2$ then	$g \circ j$	$f^{-1}\Big)(7) = \underline{\hspace{1cm}}$	_•			
	(A)	1022	(B)	237	(C)	288	(D)	2	(E)	14
34.	$\frac{\cot^2 t}{\csc t}$; - =								
	(A)	$\csc t - \sin t$	(B)	$\sec t - \sin t$	(C)	$\csc t + \sin t$	(D)	$\sec t - \cos t$	(E)	$\sec t + \cos t$
	X wir	s if the total n	umbe	ay a game in wir of heads is grobability of Y	eater	than the numb				-
	(A)	$\frac{7}{12}$	(B)	$\frac{1}{2}$	(C)	$\frac{11}{32}$	(D)	<u>5</u> 12	(E)	$\frac{21}{32}$

36. Which of the following is a solution to the system of equations x - y < 2, x > -2 and $y \le 3$?

(A) (1,-3) (B) (-2,-4) (C) $(\frac{3}{2},-1)$ (D) (3,1) (E) $(1,\frac{3}{2})$

37. Solve $\sqrt{17-2x+1} = x$ for x.										
(A)	8	(B)	4	(C)	2	(D)	±8	(E)	±4	
38. Find	the total numb	er of o	diagonals that o	can be	e drawn from t	he vei	rtices of a regul	lar 18	-sided polygon.	
(A)	135	(B)	153	(C)	148	(D)	162	(E)	165	
digits		it. Th	ach student an ne district does e?							
(A)	2,502,240	(B)	6,217,728	(C)	5,405,512	(D)	4,760,448	(E)	4,080,384	
40. Evalu	tate $\sum_{k=1}^{7} \left(3k^2 + \frac{1}{2}\right)^k$	2 <i>k</i> – 1).							
(A)	385	(B)	476	(C)	357	(D)	469	(E)	441	
41. Consi	der the graph	of $f($	$(x) = \frac{2x^2 - 5x - 6}{x^2 - 9}$	-3. V	Which of the fol	lowin	g is true?			
I. x:	= -3 is a vertic	al asy	mptote II.	(3,1)	is a hole	III.	y = 2 is a horizontal	zontal	asymptote	
(A)	II only	(B)	I, II only	(C)	I only	(D)	I, III only	(E)	II, III only	
42. If tan	$\theta = \frac{5}{12}$ and co	s θ <0	0, then $\sin \theta = 0$		_•					
(A)	$-\frac{12}{13}$	(B)	$-\frac{5}{13}$	(C)	12 5	(D)	$-\frac{5}{12}$	(E)	$\frac{5}{13}$	
43. Find	the angle betwo	een th	e two planes gi	ven b	y 6x + 2y + 5z	=4 aı	and $x-4y+3z$	= 9. (ı	nearest tenth)	
(A)	18.4°	(B)	72.6°	(C)	71.6°	(D)	17.4°	(E)	107.4°	
44. If \int_{2}^{k}	$\frac{1}{x+2}dx = \ln 2,$	find 1	the value of <i>k</i> .							
(A)	4	(B)	2	(C)	0	(D)	8	(E)	6	
	the total area o		two regions end	closed	by the curves	y = x	$3 - 4x^2 + x - 12$	2 and	y=6x-14.	

(D) 78

(E) 29

(C) 111

(A) 67

(B) 53

46.	What	is the equation	of th	e line through	(5, 14) that is norma	l to x	$y^2 - y = 11$?		
	(A)	x - 10y = -19	(B)	10x - 7 = -9	(C)	x + 10y = 19	(D)	x + 10y = 145	(E)	10x - y = 36
47.		eticle's movement $t^4 - 4t^3 - 26t^2$						ction the particle mo	oving	to the right?
	(A)	2	(B)	-4	(C)	0	(D)	3	(E)	4
48.		is the area of t $y^2 + 6x + 10y -$		_	_		nscrib	oed in the circle	with	the equation
	(A)	52	(B)	157	(C)	13	(D)	91 (E)	39	
49.		$= x^{x^2}$, then $\frac{dy}{dx}$								
	(A)	x^{x^2+1}	(B)	$x + 2x \ln x$	(C)	$(2x^{x-1})\ln x$	(D)	$x^{2x} \ln x$ (E)	(1+	$2\ln x)x^{x^2+1}$
50.	Whic	h of the followi	ing tes	sts will show th	at the	series $\sum_{n=1}^{\infty} \left[\left(-1 \right) \right]$) ⁿ⁺¹ -	$\left[\frac{n^2}{n^3+1}\right]$ converg	ges?	
	(A) 1	n th Term test		(B)]	Integr	al test		(C) Altern	ating	Series Test
	(D) T	Telescoping Ser	ies te	st (E)	Geom	etric Series test	ţ			
51.	area (_	is cha			_		2 cm/min. The is 24 cm is		
	(A)	41	(B)	42	(C)	43	(D)	44	(E)	45
52.		ne first four ter cimal places)	ms of	the McLaurin	serie	s for $f(x) = e^x$	² to a	oproximate $f($	0.5).	
	(A)	1.284025	(B)	1.283215	(C)	1.284584	(D)	1.283854	(E)	1.285283
53.	she g	-	ques	tion on a 20 qu	_	_	_	t by randomly obability that s	_	ing is 0.25. If ll make above a

(C) **0.190**

(D) 0.898

(E) 0.786

(A) 0.101

(B) **0.214**

and	54-55. The lifetime of a particular model of clothes dryer is approximately normal with a mean of 8 years and a standard deviation of 15 months. The manufacturer would like to offer a full warranty, but does not want to replace more than $2%$ of the dryers if they break while under warranty.									
54.	54. What z-score should the manufacturer use to set the length of the warranty? (nearest hundredth)									
	(A)	-2.05	(B)	-1.99	(C)	-2.01	(D)	-2.08	(E)	-2.10
55.	The n	nanufacturer v	ould	like to list the	warra	nty in years.	Гhey s	hould list a	у	ear warranty.
	(A)	2	(B)	3	(C)	4	(D)	5	(E)	6

Year	2015	2016	2017	2018	2019	2020	2021	2022
Passing Calculus Scores	28	20	33	33	23	46	37	32

The table above shows the number of students in Ms. Angle's class who passed either an AB or BC Calculus AP exam each year. Use the table for problems 56, 57 and 58.

56.	The n	node of the dat	a is _	student	S.					
	(A)	32	(B)	32.5	(C)	33	(D)	33.5	(E)	34
57.	The i	nterquartile ra	nge o	f the data is	•					
	(A)	3.5	(B)	7.5	(C)	8.5	(D)	9.5	(E)	18
58.	Whic	h value(s) are	consid	lered outliers?						
	(A)	none	(B)	20 only	(C)	46 only	(D)	23 only	(E)	20, 46 only

59. A principal was interested in the link between participation in school activities and academic success. She discovered that in her school population of 430 students, 110 were not involved in any activities and were not passing all their classes, 290 were passing all of their classes, and 210 were involved in school activities. What is the probability that a student involved in school activities is passing all their classes? (nearest percent)

(A)	42%	(B)	56%	(C)	62%	(D)	78 %	(E)	86%
------------	-----	------------	-----	------------	-----	------------	-------------	------------	-----

60. A survey asked a random sample of 1000 high school students whether they would work during their summer break. Of the sample, 485 said yes. Construct a 98% confidence interval for the proportion of high school students who would say "yes." if asked this question. (nearest ten-thousandth)

(A) (04525,.5175) (B) (.4482,.5218) (C) (.4515,.5185) (D) (.4503,.5197) (E) (.4478,.5222)

2022-2023

Virtual Challenge Regional Qualifiers' Meet Mathematics – Student Answer Sheet

C	~ 1
Contestant Name	Grade

Score 2: _____

	Score 3:	Final Score:
1	21	41
2	22	42
3	23	43
4	24	44
5	25	45
6	26	46
7	27	47
8	28	48
9	29	49
10	30	50
11	31	51
12	32	52
13	33	53
14	34	54
15	35	55
16	36	56
17	37	57
18	38	58
19	39	59
20	40	60

Score 1:_____

2022-2023 VIRTUAL CHALLENGE REGIONAL QUALIFIERS' MEET MATHEMATICS - KEY

1.	В	21. D	41. D
2.	C	22. A	42. B
3.	D	23. C	43. C
4.	В	24. B	44. E
5.	D	25. D	45. A
6.	E	26. E	46. D
7.	В	27. D	47. C
8.	C	28. C	48. B
9.	A	29. E	49. E
10.	E	30. B	50. C
11.	В	31. C	51. B
12.	E	32. A	52. D
13.	E	33. D	53. B
14.	C	34. A	54. A
15.	E	35. E	55. D
16.	В	36. E	56. C
17.	D	37. B	57. D
18.	A	38. A	58. A
19.	A	39. B	59. E
20.	В	40. D	60. B

23Y-1. (9.82/0.396) + 14.2 ------ 1=_____

23Y-2. $(9.29 - \pi)/(5.14) + 0.304$ ------ 2=_____

23Y-3. $(-6.19 - \pi + 6.31) \times (-0.0345) - 0.342$ ----- 3=______

23Y-5. $-9940 + 1080 - 3140 + \frac{(-47200 + 13300)}{(-6.34)(-4.66)}$ ----- 5=_____

23Y-6. Find the average of 77.2, 13.8 and -44.9.------ 6=______6=____

23Y-7. Mindy purchased a book that cost \$27.01 after adding sales tax. If the tax rate was 8.25%, what was the price of the book? ------ 7=\$

23Y-8. A yard stick is 1.5 in wide. What is the length of the diagonal?----- 8= <u>in</u>

23Y-10.

23Y-9 =____

23Y-10 =_____

23Y-12.
$$\frac{\{13.9 + (-4.72)(8.69)(-3.25)\}}{(0.252 + 0.334)(1.56)(1.25 + 0.37)}$$
 ------ 12=

23Y-13.
$$\frac{(-0.0607)(372 - 325)\{0.00277 - (-0.0752)(-0.00897)\}}{(-0.00249 + 3.14x10^{-4})(0.069 - 0.159)} ----- 13=$$

23Y-17. Find the width of the Central Standard Time zone at 36° north latitude. ----- 17= mi

23Y-21.
$$\left[\frac{\sqrt{2.85-0.764}}{8.99} + \frac{(0.469)}{5.09}\right]^2 - \dots 21 = \dots$$

23Y-23.
$$\left[\frac{0.432 + 0.388 + \sqrt{0.144/0.816}}{0.56 + 0.469}\right]^{2} - \dots 23 = \dots 23 = \dots$$

23Y-24.
$$(797)(8.37 \times 10^{-4})\sqrt{(-0.636)^2/0.503} + 1/\sqrt{1.99 + 15.8}$$
 ----- 24=_____

23Y-25.
$$(-36.6)(-0.0743) + \sqrt{(3.2)/(3.93)} + [(0.414)(3.67)]^2$$
 ------ 25=_____

23Y-26. David ran 10 mi in 54 min 36 sec and then he cycled 30 mi in 56 min 12 sec in the Tech biathlon. What was his average pace for the race? ------ 26= mph

23Y-27. Joe paid \$3200 for a low mileage used Camero in 1977. In 2022, he paid \$43,500 for a low mileage used Camero. Based on these prices, what was the average annual rate of inflation?----- 27=________

23Y-28. A sphere had an initial volume of 46.5 cm³. Its volume increased by 22%. Find the positive difference between the final radius and the initial

23Y-29.

CUBE

Volume = 291

Total Surface Area = ?

23Y-29 =_____

23Y-30.

CYLINDER

cm

Total Surface Area = 576

23Y-30 =_____

23Y-33.
$$\frac{(9.67\times10^{5})^{2}(7.52\times10^{-13}+1.41\times10^{-13})}{239+(-0.82)(-1160)} + \frac{1}{\frac{1}{6.42\times10^{-4}}+\frac{1}{(-5.83\times10^{-4})}} -- 33 = \underline{\hspace{2cm}}$$

23Y-34.
$$\frac{\sqrt{(77.6)/\{(92.9)/\sqrt{59.9}\}}}{2.24 + (0.422)(2.17)} + \{0.556 + 0.716\}^{1/2}$$
 ----- 34=______

23Y-35.
$$\frac{\left[\frac{0.143}{542}\right]^2 + \sqrt{\frac{(0.552)(0.986)}{(1.39\times10^{14})} + (7.68\times10^{-8})}}{0.764 + \sqrt{(-0.375)(-0.503)}} ------35=$$

23Y-36. Consider the graph of $y = x^3 - 2x + 3$. Find the distance from the x-intercept to the y-intercept. ----- 36=_____

23Y-37. Two boats leave harbor at the same time. One travels west at 15 knots. The second travels southeast at 18 knots. How far apart are the boats after 6 hours. (1 knot = 1.15 mph)------ $37 \underline{=}$ $\underline{\text{mi}}$

23Y-38. How long after 8:44 do the minute hand and hour hand align? ------ 38=___

23Y-42. $\frac{(0.422)}{(-0.88)} \left[1 - e^{-(0.407)(0.556)} \right]$ ------ 42=_____

23Y-44. $(585 + 3690)^{1/3} + 1/\{(85.2)^{-0.301}\}$ ------ 44=_____

23Y-45.(deg) $\{(76700)\sin(-138^{\circ})\} \times \{(-19800)\cos(-129^{\circ})\} ------45=$

23Y-46. A 1400-lb marble statue is 8 ft tall. How tall is a plastic model of the statue that weighs 265 grams? The density of marble is 150 lb/ft³ and the density of plastic is 0.95 g/cm^3 . ----- 46= in

23Y-47. The population of Mt. Angel has gradually increased. Here are some data, (year, population): (1970, 686), (1980, 744), (1990, 811), (2000, 883) and (2010, 938). Predict the population in 2030.----- 47=_____ 47=_____

23Y-48. Solve for w if $7w^{4.7} - 2 = 6w^2 - 3w$. ----- 48=

23Y-49.

SPHERE AND CYLINDER

Total Surface Area of Sphere = $\frac{2}{3}$ (Total Surface Area of Cylinder)

23Y-50.

Total Surface Area = ?

23Y-49 =

23Y-50 =____

23Y-51.
$$10^{+(0.813)} + 10^{-(0.118)} + \left[10^{(0.649/0.898)} - 10^{(0.608)}\right]^{1/2}$$
 -- 51=_____

23Y-54.
$$\frac{1}{(0.317)^{(-0.667)}} + (0.599 + 0.596)^{(0.526 - 0.291)}$$
 ----- 54=_____

23Y-55.(rad)
$$\frac{\arctan\{3.99 + (8.61)(0.331)\}}{\arcsin\{(0.682 + 0.619)/1.46\}}$$
 ------ 55=_____

23Y-56.(rad) Find the y-intercept of the line tangent to the graph of

$$f(x) = 0.5x \cos\left(\frac{\pi}{2} - x\right)$$
 at $x = 4.32$. ----- 56=_____

23Y-57. The height of an equilateral triangle is increasing at 3.6 cm/min.

At what rate is the area increasing when the height is 12 cm? ----- 57=____ cm²/min

23Y-60. ISOSCELES TRIANGLE AND SEGMENT

- 23Y-61. The intensity of light varies as the inverse of the square of the distance from the source. How far from a 120-W bulb is there adequate light for reading if the distance from a 90-W bulb is 12 ft?----- 61=____
- 23Y-63. A brick is dropped from a tower on Earth and hits the ground 2.73 seconds later. If the brick was dropped from a tower of the same height on the moon, where the acceleration due to gravity is 1/6 that of earth, how long would it take to hit the ground? ------ 63=_____

23Y-64.

ISOSCELES TRAPEZOID

$$AE = BE = DE = 15$$

Area of Trapezoid?

23Y-64 =____

SCALENE TRIANGLES

23Y-66.
$$(1/2)$$
Ln $\left[\frac{(5.81) \times (1.16) \times (5.37)^3}{(5.37)(8.64)^2}\right]^2$ ------ 66=_____

23Y-68. (rad)
$$\frac{98.2}{6(-4.86)}$$
 { (3.65) + (1.83)sin(-6.84) } ------ 68=_____

23Y-70. (rad)
$$\frac{\arctan\left\{e^{-(0.37)(0.57)}\sqrt{(-43.3)/(-74.9)}\right\}}{(85.1)\sqrt{(38.7)(24.3)(93.1)}} ------ 70=\underline{}$$

2022-2023

HS Virtual Challenge Regional Qualifiers' Meet - Key

23Y-1	= 39.0 $= 3.90 \times 10^{1}$	23Y-11	$= 0.00568$ $= 5.68 \times 10^{-3}$	23Y-21	$= 0.0639$ $= 6.39 \times 10^{-2}$
23Y-2	$= 1.50$ $= 1.50 \times 10^{0}$	23Y-12	= 99.4 $= 9.94 \times 10^{1}$	23Y-22	$= -0.0749$ $= -7.49 \times 10^{-2}$
23Y-3			= -30.5 = -3.05×10^{1}		$= 1.45$ $= 1.45 \times 10^{0}$
23Y-4	= 26.2 = 2.62×10^{1}		= -1280 $= -1.28 \times 10^3$	23Y-24	$= 0.835$ $= 8.35 \times 10^{-1}$
23Y-5	= -13100 $= -1.31 \times 10^4$	23Y-15	= 16.0 = 1.60×10^{1}	23Y-25	= 5.93 $= 5.93 \times 10^{0}$
23Y-6	=15.4 $=1.54 \times 10^{1}$	23Y-16	=1.700 (4SD) = 1.700×10^0		=21.7 = 2.17×10^{1}
23Y-7	=\$24.95	23Y-17	=839 $=8.39\times10^{2}$	23Y-27	=5.97 $=5.97 \times 10^{0}$
23Y-8	=36.0 $=3.60\times10^{1}$		=41.6 = 4.16×10^{1}	23Y-28	$=0.153$ $=1.53\times10^{-1}$
23Y-9	=77.2 $=7.72\times10^{1}$	23Y-19	=42.2 = 4.22×10^{1}	23Y-29	=263 = 2.63×10^2
23Y-10	=5.39 $=5.39 \times 10^{0}$	23Y-20	$=0.287$ $=2.87 \times 10^{-1}$	23Y-30	=10.0 $=1.00\times10^{1}$

2022-2023
HS Virtual Challenge Regional Qualifiers' Meet - Key

23Y-31	$= 2.52 \times 10^{-7}$	23Y-41	= 1.66 = 1.66×10^{0}	23Y-51	= 8.37 $= 8.37 \times 10^{0}$	23Y-61	=13.9 $=1.39 \times 10^{1}$
23Y-32	$= 55200$ $= 5.52 \times 10^4$	23Y-42	$= -0.0971$ $= -9.71 \times 10^{-2}$	23Y-52	= -2.14 = -2.14×10^{0}	23Y-62	$=1.40\times10^{11646}$
23Y-33	$= -0.00564$ $= -5.64 \times 10^{-3}$	23Y-43	= -12.4 $= -1.24 \times 10^{1}$	23Y-53	$= -0.243$ $= -2.43 \times 10^{-1}$	23Y-63	=6.69 = 6.69×10^0
23Y-34	$= 1.93$ $= 1.93 \times 10^{0}$	23Y-44	= 20.0 = 2.00×10^{1}	23Y-54	$= 1.51$ $= 1.51 \times 10^{0}$	23Y-64	=286 $=2.86 \times 10^{2}$
23Y-35	$= 1.74 \times 10^{-7}$	23Y-45	$= -6.40 \times 10^8$	23Y-55	$= 1.30$ $= 1.30 \times 10^{0}$	23Y-65	=46.8 = 4.68×10^{1}
23Y-36	=3.55 $=3.55\times10^{0}$	23Y-46	=9.77 $=9.77 \times 10^{0}$	23Y-56	=3.57 $=3.57 \times 10^{0}$	23Y-66	$= 0.957$ $= 9.57 \times 10^{-1}$
23Y-37	=211 = 2.11×10^2	23Y-47	$=1070 \\ =1.07 \times 10^3$	23Y-57	=49.9 = 4.99×10^{1}	23Y-67	= 338 = 3.38×10^2
23Y-38	$=65.1 = 6.51 \times 10^{1}$	23Y-48	$=0.893$ $=8.93\times10^{-1}$	23Y-58	=-1.55 = -1.55×10^0	23Y-68	= -468 = -4.68×10^2
23Y-39	=3.17 $=3.17 \times 10^{0}$	23Y-49	=28.3 $=2.83\times10^{1}$	23Y-59	=6.03 $=6.03\times10^{0}$	23Y-69	$= -0.278$ $= -2.78 \times 10^{-1}$
23Y-40	=39.3 $=3.93\times10^{1}$	23Y-50	$=102,000$ $=1.02\times10^{5}$	23Y-60	=41.6 = 4.16×10^{1}	23Y-70	$= 2.19 \times 10^{-5}$

The Virtual Challenge Meets HS Number Sense Test • VCM RO • 2022–2023

115 Number 5	clise i e	St • V CIVI RQ • 2022–2023			
Contestant's Name			Final		
School			2 nd		
Contestant's Grade 9 10 11	12		1 st		
Read directions carefully before beginning test		FOLD THIS SHEET OLD TO BEGIN		Score	Initials
Directions : Do not turn this page until the proctor gives Solve accurately and quickly as many as you can in the MENTALLY. Make no calculations with paper and per Problems marked with an (*) require approximate integr of the exact answer will be scored correct; all other problems	order in white cal answers;	ich they appear. ALL PROBLEMS ARE TO only the answer in the space provided at the any answer to a problem with an asterisk tha	DBE SO end of ea	LVED ach proble	em.
The person conducting this contest should explain		ctions to the contestants.			
	5101 - W	ATT FOR SIGNAL.			
(1) 2107 – 2023 + 145 =		$(19) 53^2 - 37^2 = 45 \times \underline{\hspace{1cm}}$			
$(2) \ \frac{5}{6} \times \frac{8}{10} \times \frac{16}{12} = \underline{\hspace{1cm}}$		*(20) 342185 ÷ 431 =			
(3) $713 \div 5 =$ (mixed n	umber)	(21) 23% of 234 is 69% of			
(4) 11 × 94 =		(22) 0.533333 =			
(5) 27 ² =		$(23) \ 54^2 = \underline{\hspace{1cm}}$			
(6) $\frac{18}{25} = $	lecimal)	(24) Let $\frac{2x}{9} = \frac{32}{x}$, $x > 0$. Find x.			
(7) $15 \times 7 + 18 \div 3 =$		(25) 11 pecks =			_
(8) $214\frac{2}{7}\% = $ (improper fi		(26) $24 \times 95 =$			
(9) 25(11) + 25(16) + 25(21) =		(28) 0.222 + 0.565656 =			(fraction
*(10) 347 × 354 =		$(29) 512_8 = \underline{\hspace{1cm}}$			10
(11) $2\frac{3}{4} + 3\frac{3}{8} =$ (mixed n	umber)	$*(30) \sqrt{4131857} = $			
(12) The largest prime divisor of 111 is		$(31) \ 1594 \times 6 + 36 = \underline{\hspace{1cm}}$			
(13) $(47 \times 38) \div 4$ has a remainder of		$(32) \ 5\frac{1}{4} \times 8\frac{2}{5} = \underline{\hspace{1cm}}$		(mix	xed number)
(14) Which is smaller, $\frac{3}{7}$ or $\frac{11}{29}$?					
(15) 1+3+5++69=		$(34) (11^3 - 1) \div (11 - 1) = _$			
$(16) 12^3 = \underline{\hspace{1cm}}$		$(35) \ 24^2 \div 8^2 \times \left(\frac{8}{3}\right)^2 = \underline{\hspace{1cm}}$			
(17) If 1 gram = 0.04 oz, then 150 grams =		(3)			
(18) 37.5% of 320 is		(36) The positive integral divisor	ULS OI 4	•∠ total	

- (38) 17, 15, 20, 11, 23, 7, p, q, 29, -1, p + q =____
- (39) 91 × 429 = ______square inches
- (41) If $\sqrt{4x+5} = 9$, then x =_____
- (42) P and Q are roots of $4x^2 3x 5 = 0$, then P + Q + PQ =_____
- (43) $(5x-9)^3 = ax^3 + bx^2 + cx + d$. $a + b + c + d = _____$
- (44) The diagonal of a square is $4\sqrt{3}$. The area is _____
- $(45) 9^3 9^2 = \underline{\hspace{1cm}} base 9$
- (46) 105 has how many positive integral divisors?_____
- (47) $5\frac{1}{m} \times n\frac{1}{4} = 12$, where *m* and *n* are natural numbers. Find mn.
- (48) $15^{34} \div 17$ has a remainder of ___
- (49) If $\frac{a}{13}$ has a remainder of 4 and $\frac{b}{13}$ has a remainder of 7, then $\frac{3ab}{13}$ has a remainder of _____
- *(50) 14285.7 × 105 =_____
- (51) $53^2 + 25^2 =$
- $(52) 14_6 \times 4_6 + 312_6 = \underline{\hspace{1cm}}_6$
- (53) (3-7i)(2+3i) = a + bi. Find a + b.
- (54) 12 + 9 + 6.75 + 5.0625 + ... = _____
- $(55)_{11}C_3 =$
- (56) $log_39 + log_327 + log_381 =$
- (57) The probability of rolling a sum of 10 or 11 when rolling two 6-sided die._____
- (58) (15 + 17 + 32 + 49 + 81 + 130) + (211 + 341 + 552 + 893) = _____

- (59) $\sum_{k=1}^{22} (-1)^k (k)^2 =$
- *(60) $\sqrt{3500} \times 375 =$ _____
- (61) Find the coefficient of the x^2y^4 term in the expansion of $(5x + y)^6$ is _____
- (62) $537_9 \div 8_9$ has a remainder of _____
- (63) The harmonic mean of the roots of $6x^4 17x^3 11x^2 + 12x 9 = 0$ is______
- (64) $|7 + 4i\sqrt{2}| =$ _____
- (65) $(\sin 45^{\circ} \sin 60^{\circ})^2 =$ _____(fraction)
- (66) $\frac{7!}{5!} \times (7^2 1) =$
- (67) $\sqrt{72} \div \sqrt{32} =$
- (68) Change 0.32 base 8 to a base 10 fraction.
- (69) If xy = 7, x + y = 9, then $x^3 + y^3 =$
- *(70) $\sqrt{171} \times \sqrt[3]{3300} \times \sqrt[3]{5000} =$
- (71) $(18, \frac{2\pi}{3})$ are polar coordinates for (x, y). x = _____
- $(72) \quad \lim_{x \to -3} \frac{22x + 66}{x^2 9} = \underline{\hspace{1cm}}$
- (73) Find the slope of the tangent line to $f(x) = x^2 8x 13$ at the point (10, 7)._____
- (74) The graph of $y = \frac{4x^2}{9x^2-4}$ has _____asymptotes
- (75) 783 × 111 = _____
- (76) $\int_{3}^{9} (5x 11) dx =$
- (77) **0.1515...**₇ = _____(base 7 fraction)
- (78) How many distinguishable permutations can be made using the letters, C, O, P, P, E, R?_____
- (79) The 15th pentagonal number is_____
- *(80) 72.7272...% of (27 × 800) = _____

2022-2023 Virtual Challenge Meets • HS Regional Qualifiers' Meet - NS Key

- (1) 229
- (2) $\frac{8}{9}$
- (3) $142\frac{3}{5}$
- (4) 1034
- (5) 729
- (6) .72
- (7) 111
- (8) $\frac{15}{7}$
- (9) 1200
- *(10) 116697 128979
- $(11) 6 \frac{1}{8}$
- (12) 37
- (13) 2
- $(14) \frac{11}{29}$
- (15) 1225
- (16) 1728
- (17) $\frac{3}{8}$ or .375
- (18) 120

- (19) 32
- *(20) 755 833
- (21) 78
- $(22) \frac{8}{15}$
- (23) 2916
- (24) 12
- (25) 88
- (26) 2280
- (27) 43
- $(28)\frac{26}{33}$
- (29) 330
- *(30) 1932 2134
- (31) 9600
- (32) 44 $\frac{1}{10}$
- (33) 93 $\frac{4}{9}$
- (34) 133
- (35) 64
- (36) 96

- (37) 24
- (38) 29
- (39) 39039
- *(40) 24624 27216
- (41) 19
- $(42) -\frac{1}{2}$
- (43) 24
- (44) 64
- (45) 800
- (46) 8
- **(47) 6**
- (48) 4
- **(49) 6**
- *(50) 1424999 1574998
- (51) 3434
- (52) 420
- (53) 22
- (54) 48
- (55) 165
- **(56)** 9
- $(57) \frac{5}{36}$
- (58) 2321

- (59) 253
- *(60) 21077 23294
- (00) 21077 23.
- (61) 375
- **(62)** 7
- (63) 3
- (64) 9
- $(65) \frac{3}{8}$
- 0
- (66) 2016
- (67) $\frac{3}{2}$, $1\frac{1}{2}$ or 1.5
- $(68) \frac{13}{32}$
- ((0) 54
- (69) 540
- *(70) 3163 3495
- (71) 9
- $(72) \ -\frac{11}{3} \ or -3\frac{2}{3}$
- (73) 12
- (74) 3
- (75) 86913
- (76) 114
- $(77) \frac{1}{4}$
- (78) 360
- (79) 330
- *(80) 14924 16494