Interpolation of Molecular Dynamics with Bi-Directional Neural Networks

Ludwig Winkler & Huziel Sauceda

October 22, 2020

- Can we predict MD trajectories directly with a neural network (NN)?
- Use NN to predict solver for MD equations
- NN are trained on predicting change in position and momentum
- But we still want the accuracy of real MD simulations?
- Use coarse grained MD simulation to predict initial and final conditions of differential equation governing MD trajectories
- Reconstruct high dimensional components to interpolate smartly with NN between coarse grained solution

- ullet Given true dynamics f learn approximate dynamics $f_{ heta}$ with NN
- ullet Train $f_{ heta}$ to predict the true solutions x(t)
- o Integrate approximate dynamics f_{θ} to obtain approximate solution $\hat{x}(t)$
- Use coarse grained MD simulation to predict initial and final conditions of differential equation governing MD trajectories
- Reconstruct high dimensional components to interpolate smartly with NN between coarse grained solution

- Predict forward solution $\hat{x}(t)$ and backward solution $\hat{x}(t)$ with the same dynamics f_{θ}
- Use adiabatic connection to interpolate $\overrightarrow{\hat{x}(t)}$ and $\overleftarrow{\hat{x}(t)}$ to $\hat{x}(t)$

$$\hat{x}(t) = (1 - \lambda(t)) \ \overrightarrow{\hat{x}(t)} + \lambda(t) \ \overleftarrow{\hat{x}(t)}$$
 (1)

 Unidirectional LSTM architecture for Benzene MD trajectory interpolating over 20 time steps

- Bidirectional LSTM architecture for Benzene MD trajectory interpolating over 20 time steps
- Final condition and additional bidirectional training smooth trajectories significantly

 Single initial and final condition already good for sufficient performance by bidirectional LSTM

