Лабораторная работа №17

Задания для самостоятельной работы

Лихтенштейн Алина Алексеевна

Содержание

1	1 Цель работы							
2	Задание	5						
3	Выполнение лабораторной работы 3.1 Моделирование работы вычислительного центра	6 9 12						
4 Выводы								
5	Список литературы	20						

Список иллюстраций

3.1	Модель работы вычислительного центра	7								
3.2	Отчёт по модели работы вычислительного центра	8								
3.3	Отчёт по модели работы вычислительного центра	8								
3.4	Модель работы аэропорта	10								
3.5	Отчёт по модели работы аэропорта	11								
3.6	Отчёт по модели работы аэропорта	11								
3.7	Модель работы морского порта	12								
3.8	Отчет по модели работы морского порта	13								
3.9	Модель работы морского порта с оптимальным количеством при-									
	чалов	14								
3.10	Отчет по модели работы морского порта с оптимальным количе-									
	ством причалов	14								
3.11	Модель работы морского порта	15								
	Отчет по модели работы морского порта	16								
3.13	Модель работы морского порта с оптимальным количеством при-									
	чалов	17								
3.14	Отчет по модели работы морского порта с оптимальным количе-									
	ством причалов	18								

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

3 Выполнение лабораторной работы

3.1 Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

Построим модель (рис. 3.1).

```
Simulation of the computing center operation.gps
ram STORAGE 2
;моделирование заданий класса А
GENERATE 20,5
QUEUE class_A
ENTER ram, 1
DEPART class A
ADVANCE 20,5
LEAVE ram, 1
TERMINATE
 ;моделирование заданий класса В
GENERATE 20,10
QUEUE class_B
ENTER ram, 1
DEPART class B
ADVANCE 21,3
LEAVE ram, 1
TERMINATE 0
;моделирование заданий класса С
GENERATE 28,5
QUEUE class_C
ENTER ram, 2
DEPART class_C
ADVANCE 28,5
LEAVE ram, 2
TERMINATE 0
 ; таймер
GENERATE 4800
TERMINATE 1
 START 1
```

Рис. 3.1: Модель работы вычислительного центра

Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий обрабатывает задания класса C, используя два элемента ram. Также есть блок времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. 3.2, 3.3).

Рис. 3.2: Отчёт по модели работы вычислительного центра

QUEUE		ENTRY E	NTRY(0)	AVE.CONT.	AVE.TIME	AVE. (-0) RETRY
CLASS_A	1 7 4	240	3	3.288	65.765	66.597 0
CLASS B	7 5	236	1	3.280	66.703	66.987 0
CLASS_C	172 172	172	0	85.786	2394.038	2394.038 0
STORAGE	CAP. REM.	MIN. MA	X. ENTR	IES AVL.	AVE.C. UTI	L. RETRY DELAY
RAM	2 0			67 1		994 0 181
FEC XN PRI	BDT	ASSEM	CURRENT	NEXT F	PARAMETER	VALUE
650 0	4803.512	650	0	1		
636 0	4805.704	636	5	6		
651 0	4807.869	651	0	15		
637 0	4810.369	637	12	13		
652 0	4813.506	652	0	8		
653 0	9600.000	653	0	22		

Рис. 3.3: Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

3.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. 3.4).

Рис. 3.4: Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах – 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. 3.5, 3.6).

Рис. 3.5: Отчёт по модели работы аэропорта

FACILITY RUNWAY	ENTRIE 288		IL. .400	AVE. TIME 2.00	AVAIL.		PEND 0	INTER 0	RETRY 0	DELAY 0	
QUEUE	MAX	CONT.	ENTRY	ENTRY(0)	AVE.CON	T. AVI	E.TIME	AVE	E. (-0)	RETRY	
TAKEOFF	1	0	142	114	0.017		0.175	5	0.888	0	
ARRIVAL	1	0	146	122	0.019)	0.184	1	1.118	0	

Рис. 3.6: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

3.3 Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b \pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

```
1) a = 20 \text{ y}, \delta = 5 \text{ y}, b = 10 \text{ y}, \varepsilon = 3 \text{ y}, N = 10, M = 3;
```

2)
$$a = 30 \text{ y}, \delta = 10 \text{ y}, b = 8 \text{ y}, \varepsilon = 4 \text{ y}, N = 6, M = 2.$$

Первый вариант модели

Построим модель для первого варианта (рис. 3.7).

```
## Simulation of the seaport operationl gps

pier STORAGE 10 ; Определение хранилища (причала) емкостью 10 ; Генерация транзактов (судов) каждые 2015 единиц времени

" моделирование занатия причала
QUEUE arrive ; Вход в очередь для ожидания причала
DEPART arrive ; Вход в очередь для ожидания причала
ADVANCE 10,3 ; Занятие 3 единиц емкости причала
ADVANCE 10,3 ; Время обслуживания судна 1013 единиц времени

ТЕРМИЛАТЕ 0 ; Завершение транзакта без учета в стагистике

" таймер

timer GENERATE 24 ; Генерация таймера каждые 24 единицы времени

TERMINATE 1 ; Уменьшение счетчика завершения симуляции

| START 180 ; Запуск симуляции на 180 единиц времении

| Запуск симуляции на 180 единиц времении
| В Запуск симуляции на 180 единиц времении | В Запуск симуляции на 180 единици в В Запуск симуляции | В Запуск симуляции на 180 единици в В Запуск симуляции | В Запуск симуляции на 180 единици в В Запуск симуляции | В Запуск симулации |
```

Рис. 3.7: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. 3.8).

Рис. 3.8: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3 (рис. 3.9), получаем оптимальный результат, что видно на отчете (рис. 3.10).

```
Simulation of the seaport operation1_optimal.gps
                     STORAGE
                                                             ; Определение хранилища (причала) емкостью 3
                     GENERATE 20,5
                                                                       ; Генерация транзактов (судов) каждые 20±5 единиц времени
     моделирование занятия причала
                                          тии причала
arrive ; Вход в очередь для ожидания причала
pier,3 ; Занятие 3 единиц емкости причала
arrive ; Выход из очереди после занятия причала
10,3 ; Время обслуживания судна 10±3 единиц времени
pier,3 ; Освобождение 3 единиц емкости причала
0 ; Завершение транзакта без учета в статистике
                     QUEUE
                     ENTER
                     DEPART
                     ADVANCE
                                        10,3
                     LEAVE
                     TERMINATE 0 ; Завершение транзакта без учета в статисти:

GENERATE 24 ; Генерация таймера каждые 24 единицы времени

TERMINATE 1 ; Уменьшение счетчика завершения симуляции

START 180 ; Запуск симуляции на 180 единиц времении
                     TERMINATE 0
  * таймер
  timer
```

Рис. 3.9: Модель работы морского порта с оптимальным количеством причалов

Рис. 3.10: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. 3.11).

Рис. 3.11: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. 3.12).

Рис. 3.12: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. 3.13), получаем оптимальный результат, что видно из отчета (рис. 3.14).

```
Simulation of the seaport operation2_optimal.gps
                                                                                           pier
          STORAGE
                                  ; Определение хранилища (причала) емкостью 2
                                  ; Генерация транзактов (судов) каждые 30±10 единиц времени
          GENERATE
                      30,10
 * моделирование занятия причала
          QUEUE
                      arrive
                                  ; Вход в очередь для ожидания причала
          ENTER
                                  ; Занятие 2 единиц емкости причала
                      pier,2
          DEPART
                                  ; Выход из очереди после занятия причала
                      arrive
          ADVANCE
                      8,4
                                 ; Время обслуживания судна 8±4 единиц времени
           LEAVE
                     pier,2
                                  ; Освобождение 2 единиц емкости причала
          TERMINATE
                                 ; Завершение транзакта без учета в статистике
 * таймер
          GENERATE
                     24
                                  ; Генерация таймера каждые 24 единицы времени
          TERMINATE
                     1
                                  ; Уменьшение счетчика завершения симуляции
          START
                     180
                                  ; Запуск симуляции на 180 единиц времени
```

Рис. 3.13: Модель работы морского порта с оптимальным количеством причалов

Рис. 3.14: Отчет по модели работы морского порта с оптимальным количеством причалов

4 Выводы

В результате выполнения данной лабораторной работы были реализованы с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

5 Список литературы

Королькова А.В., Кулябов Д.С. Моделирование информационных процессов