Quantitative Finance

Swaption on Forward-Starting Swap "Replication"?

Asked 1 year, 6 months ago Modified 1 year, 6 months ago Viewed 380 times

Lately I was thinking about forward-starting swaptions vs. options on forward-starting swaps a bit, and I started wondering about the following:

Suppose we are at time T_0 (today) and we want to price a swaption that expires in T_1 and entitles us to enter into a swap which lives from T_2 to T_3 . Clearly, I work in the setting

I was asking myself whether it is reasonable (*possible*?) to approximate (*replicate*?) the price of above mentioned option by looking at a combination of the prices of:

- a spot (T_0) starting swaption with expiry T_2 that delivers the (then, i.e., at T_2) spot-starting swap and
- ullet a forward-starting swaption that lives from T_1 to T_2 and delivers the (then, i.e., at T_2) spot-starting swap

I have drawn a little picture to illustrate what I mean ($T_0=0$ (today), T_1 is 1 year from today, T_2 is 3 years from today, and T_3 is 6 years from today):

I intuitively have the feeling that it's not working out, and my first line of thought is that it's because the swap underlying the three options is not 100% the same (although it's always the 3x6 swap, the forward starting swap seems more uncertain to me compared to the then-spot starting swap, as the optionality ends after 1y and not after 3y). Maybe someone can provide a little more information and/or some formulae that would confirm my conjecture?

Your privacy

By clicking "Accept all cookies", you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy.

Accept all cookies

Customize settings

Sorted by:

1 Answer

Highest score (default)

\$

The way to think about this is an option to enter a basket of two swaps. The basket contains these positions:

 P_1 : a long position in a swap that starts at T_1 and finishes at T_3

 P_2 : a short position in a swap that starts at T_1 and finishes at T_2 .

This basket replicates the payoff of the forward starting swap. Denoting $S(\tau_1, \tau_2)$ as the swap rate for the swap starting at τ_1 and ending at τ_2 , and $A(\tau_1, \tau_2)$ as the corresponding Annuity (PVBP), then the payoff (for a payer) can be written as:

$$\max \left\{ \underbrace{A(T_1,T_3)(S(T_1,T_3)-K)}_{P_1} - \underbrace{A(T_1,T_2)(S(T_1,T_2)-K)}_{P_2}, 0 \right\}$$

This is effectively a spread option between two swap rates (obviously with some weights). The present value of the spread option therefore depends on the joint distribution between the two swap rates, $S(T_1,T_2)$ and $S(T_1,T_3)$. So you will not be able to perfectly replicate this payoff with vanilla swaptions, though some (upper / lower bound) approximations may be possible.

Share Improve this answer Follow

answered Dec 18, 2020 at 9:30

Your privacy

By clicking "Accept all cookies", you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy.

Accept all cookies

Customize settings