Clasificación

Punto simple:

$$u_4 = 0$$

Lineal, homogénea

$$v_1 = 0.2$$

Lineal, no homogénea

Multi punto

$$u_2 = 2 u_3$$

Lineal, homogénea

$$u_2 = 2 u_3 - v_2 + 0.1$$

Lineal, no homogénea

$$(u_1-v_1)^2 + u_5.u_6 = 0$$

No líneal, homogénea.

Ejemplo: Placa rígida

$$d1 = q1$$

 $d2 = q1+q2 L2$
 $d3=q1+q2 L3$
 $d4=q1+q2 L4$

Eliminando q1 y q2:

$$(L3/L2-1) d1 - (L3/L2) d2 + d3 = 0$$

 $(L4/L2-1) d1 - (L4/L2) d2 + d4 = 0$

Ejemplo: Unión viga / elemento plano

$$d_1 = d_5$$

$$d_2 = d_6 - ad_7$$

$$d_3 = d_5$$

$$d_3 = d_5$$

$$d_4 = d_6 + ad_7$$

Método directo

$$[C]{D} - {Q} = 0$$

C y Q matrices constantes que imponen restricciones.

$$[C_r C_c]{D} - {Q} = {0}$$

r: "restringidos"

$$\{D\} = \begin{cases} D_r \\ D_c \end{cases}$$

c: "condensados"

$$\begin{cases}
D_r \\
D_c
\end{cases} = \begin{bmatrix}
I \\
-C_c^{-1}C_r
\end{bmatrix} \{D_r\} + \{0 \\
C_c^{-1}Q
\} \to \{D\} = [T]\{D_r\} + \{Q_0\}$$

$$[K]{D} = {R} \rightarrow [K_r]{D_r} = {R_r}$$

$$[K_r] = [T]^T [K][T]$$

 $\{R_r\} = [T]^T (\{R\} - [K]\{Q_0\})$

Ejemplo: $u_3=u_6=u_9$

$$\begin{bmatrix} 0 & \cdots & 1 & \cdots & 0 & \cdots & -1 & 0 \\ 0 & \cdots & 0 & \cdots & 1 & \cdots & -1 & 0 \end{bmatrix} \cdot \begin{cases} u_1 \\ \vdots \\ u_3 \\ \vdots \\ u_6 \\ \vdots \\ u_9 \\ v_9 \end{cases} = \begin{cases} 0 \\ 0 \\ \vdots \\ u_9 \\ v_9 \end{cases}$$

$$\left[-C_{c}^{-1}C_{r} \right] = - \underbrace{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}^{-1} \underbrace{ \begin{bmatrix} 0 & \cdots & 0 & -1 & 0 \\ 0 & \cdots & 0 & -1 & 0 \end{bmatrix}}_{\text{cxr}} = \underbrace{ \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{bmatrix}}_{\text{cxr}} \quad ; \quad \{Q\} = \underbrace{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}}_{\text{cx1}}$$

$$\{Q\} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Ejemplo: $u_3=u_6=u_9$

Sistema Global

$$\underbrace{\left[T\right]^{T}}_{rx(c+r)}\underbrace{\left[K\right]}_{(c+r)x(c+r)}\underbrace{\left[T\right]}_{(c+r)}\left\{D_{r}\right\} = \underbrace{\left[T\right]^{T}}_{rx(c+r)}\underbrace{\left\{Q\right\}}_{(c+r)} - \underbrace{\left[K\right]}_{(c+r)}\underbrace{\left\{Q_{0}\right\}}_{(c+r)}\right) \ \to \ \left[K_{r}\right]\!\left\{D_{r}\right\} = \left\{R_{r}\right\}$$

Multiplicadores de Lagrange

$$\Pi_{p} = \frac{1}{2} \{D\}^{T} [K] \{D\} - \{D\}^{T} \{R\} + \{\lambda\}^{T} ([C] \{D\} - \{Q\})$$

$$\downarrow$$

$$\frac{\partial}{\partial D_{i}}; \frac{\partial}{\partial \lambda_{i}} \rightarrow \begin{bmatrix} K & C^{T} \\ C & 0 \end{bmatrix} \begin{bmatrix} D \\ \lambda \end{bmatrix} = \begin{bmatrix} R \\ Q \end{bmatrix}$$

Ejemplo

Penalización

$$\Pi_{p} \ = \ \tfrac{1}{2} \ \big\{\! D \big\}^{\mathsf{T}} \big[\! \big[\! K \big]\! \big]\! \big\{\! D \big\} - \big\{\! D \big\}^{\mathsf{T}} \big\{\! R \big\} + \ \tfrac{1}{2} \cdot \big\{\! t \big\}^{\mathsf{T}} \big[\! \alpha \big]\! \big\{\! t \big\}$$

$$\frac{\partial \Pi_p}{\partial D_i} = \{D\}^T [K] - \{R\} + \{t\}^T [\alpha] [C] = 0$$

$$\{D\}^T [K] - \{R\} + \{D\}^T [C]^T [\alpha]\!\![C] - \{Q\}^T [\alpha]\!\![C] = 0 \ \rightarrow (\![K] + [C]\!\![\alpha]\!\![C]\!\!] \! \{D\} = \{R\} + [C]\!\![\alpha]\!\![Q\}$$

Ejemplo

$$\left(\begin{bmatrix} \mathbf{K} \end{bmatrix} + \begin{bmatrix} \mathbf{C} \end{bmatrix}^T \begin{bmatrix} \alpha_1 & \mathbf{0} \\ \mathbf{0} & \alpha_2 \end{bmatrix} \begin{bmatrix} \mathbf{0} & \cdots & \mathbf{1} & \cdots & \mathbf{0} & \cdots & -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \cdots & \mathbf{1} & \cdots & -\mathbf{1} & \mathbf{0} \end{bmatrix} \right) \! \left\{ \! \mathbf{D} \! \right\} = \left\{ \! \mathbf{R} \! \right\} + \begin{bmatrix} \mathbf{C} \end{bmatrix}^T \begin{bmatrix} \alpha_1 & \mathbf{0} \\ \mathbf{0} & \alpha_2 \end{bmatrix} \! \left\{ \! \mathbf{0} \! \right\}$$

Restricciones - Dof no alineados (Skew)

$$\begin{cases} u_A' \\ v_A' \end{cases} = \begin{bmatrix} \cos \phi_A & \sin \phi_A \\ -\sin \phi_A & \cos \phi_A \end{bmatrix} \begin{cases} u_A \\ v_A \end{cases}$$

$$\boxed{T_A \end{bmatrix}$$

$$[T] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos \phi_A & \sin \phi_A & 0 & 0 \\ 0 & 0 & -\sin \phi_A & \cos \phi_A & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\{D\} = \begin{cases} u_A \\ v_A \\ u_B \\ \vdots \\ v_C \end{cases} \longrightarrow \{D'\} = \begin{cases} u'_A \\ v'_A \\ u_B \\ \vdots \\ v_C \end{cases} \Longrightarrow \{D\} = [T]^T \{D'\}$$

$$[K]{D} = {R}$$

 $v_A \approx u_A \tan \phi_A$

Numerical trouble

x,u

$$\underbrace{[T]\![K]\![T]\!]^T}_{[K']} \{D'\} = \underbrace{[T]\![R]}_{[R']}$$

Restricciones – Rigid Links

$$\begin{cases} u_5' \\ v_5' \end{cases} = \begin{bmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{bmatrix} \begin{cases} u_5 \\ v_5 \end{cases}$$

$$\begin{bmatrix} T_{\beta} \end{bmatrix}$$

$$\begin{cases} u_9' \\ v_9' \end{cases} = \begin{bmatrix} T_{\beta} \end{bmatrix} \begin{cases} u_9 \\ v_9 \end{cases}$$

$$u_5' = u_9' \Rightarrow u_5 \cos \beta + v_5 \sin \beta - u_9 \cos \beta - v_9 \sin \beta = 0$$

Restricciones – Rigid Links

$$u_{5}' = u_{9}' \Rightarrow u_{5} \cos \beta + v_{5} \sin \beta - u_{9} \cos \beta - v_{9} \sin \beta = 0$$

$$u_{9} = v_{5} \tan \beta + u_{5} - v_{9} \tan \beta$$

$$u_5'' = u_3'' \Rightarrow u_5 \cos \alpha + v_5 \sin \alpha - u_9 \cos \alpha - v_9 \sin \alpha = 0$$

$$u_3 = v_5 \tan \alpha + u_5 - v_3 \tan \alpha$$

Restricciones – Rigid Links

$$[K]{D} = {R}$$

$$[K][T]\{\widetilde{D}\} = \{R\}$$

$$[T]^T[K][T]\{\widetilde{D}\} = [T]^T\{R\}$$

$$\underbrace{[T]^T[K][T]}_{[\widetilde{K}]} \{D'\} = \underbrace{[T]^T\{R\}}_{[\widetilde{R}]}$$

Restricciones – Rigid Links – Giros

$$v_9' = -u_9 \sin \beta + v_9 \cos \beta$$
$$v_3'' = -u_3 \sin \alpha + v_3 \cos \alpha$$

$$v_9' = v_3'' \implies -u_9 \sin \beta + v_9 \cos \beta + u_3 \sin \alpha - v_3 \cos \alpha = 0$$

$$-u_9 \sin \beta + v_9 \cos \beta + u_3 \sin \alpha - v_3 \cos \alpha = 0$$

$$u_5 \cos \beta + v_5 \sin \beta - u_9 \cos \beta - v_9 \sin \beta = 0$$

$$u_5 \cos \alpha + v_5 \sin \alpha - u_9 \cos \alpha - v_9 \sin \alpha = 0$$

Ejemplo de aplicación*: Método directo

Imponemos un vínculo rígido: $u_2 = u_6 \rightarrow u_2 - u_6 = 0$

Tomando u₂ como Master:

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_7 \end{bmatrix}$$

$$\mathbf{u} = \mathbf{T}\hat{\mathbf{u}}.$$

Ejemplo de aplicación: Método directo

$$Ku = f$$
 $u = T\hat{u}$

$$\hat{\mathbf{K}} = \mathbf{T}^T \mathbf{K} \mathbf{T}$$

$$\hat{\mathbf{f}} = \mathbf{T}^T \mathbf{f}$$

$$\hat{K}\hat{u} = \hat{f}$$

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} + K_{66} & K_{23} & 0 & K_{56} & K_{67} \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 \\ 0 & K_{56} & 0 & K_{45} & K_{55} & 0 \\ 0 & K_{67} & 0 & 0 & 0 & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 + f_6 \\ f_3 \\ f_4 \\ f_5 \\ f_7 \end{bmatrix}$$

Tomando u₆ como Master:

$$\begin{bmatrix} K_{11} & 0 & 0 & 0 & K_{12} & 0 \\ 0 & K_{33} & K_{34} & 0 & K_{23} & 0 \\ 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\ 0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\ K_{12} & K_{23} & 0 & K_{56} & K_{22} + K_{66} & K_{67} \\ 0 & 0 & 0 & 0 & K_{67} & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_3 \\ f_4 \\ f_5 \\ f_2 + f_6 \\ f_7 \end{bmatrix}$$

Múltiples restricciones:

$$2u_3 + u_4 + u_5 = 0$$
$$u_2 - u_6 = 0$$
$$u_1 + 4u_4 = 0$$

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{8} & 0 & -\frac{1}{2} & 0 \\ -\frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_5 \\ u_7 \end{bmatrix}$$

Ejemplo de aplicación: Método directo

Caso no homogéneo

$$u_2 - u_6 = 0.2$$

no homogeneo
$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_7 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.2 \end{bmatrix}$$

$$\mathbf{u} = \mathbf{T}\hat{\mathbf{u}} - \mathbf{g}$$
$$\mathbf{T}^{T}\mathbf{K}\mathbf{T}\hat{\mathbf{u}} = \hat{\mathbf{K}}\hat{\mathbf{u}} = \hat{\mathbf{f}} = \mathbf{T}^{T}\mathbf{f} + \mathbf{T}^{T}\mathbf{K}\mathbf{g}$$

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} + K_{66} & K_{23} & 0 & K_{56} & K_{67} \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 \\ 0 & K_{56} & 0 & K_{45} & K_{55} & 0 \\ 0 & K_{67} & 0 & 0 & 0 & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 + f_6 - 0.2K_{66} \\ f_3 \\ f_4 \\ f_5 - 0.2K_{56} \\ f_7 - 0.2K_{67} \end{bmatrix}$$

Ejemplo de aplicación: Penalización

$$u_2 = u_6$$

$$\alpha \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_6 \end{bmatrix} = \begin{bmatrix} f_2^{(7)} \\ f_6^{(7)} \end{bmatrix}$$

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} + \alpha & K_{23} & 0 & 0 & -\alpha & 0 \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\ 0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\ 0 & -\alpha & 0 & 0 & K_{56} & K_{66} + \alpha & K_{67} \\ 0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \end{bmatrix}$$

Ejemplo de aplicación: Penalización

Caso homogéneo

$$u_2 = u_6$$

$$\alpha \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_6 \end{bmatrix} = \begin{bmatrix} f_2^{(7)} \\ f_6^{(7)} \end{bmatrix}$$

$$\alpha \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_6 \end{bmatrix} = \begin{bmatrix} f_2^{(7)} \\ f_6^{(7)} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} + \alpha & K_{23} & 0 & 0 & -\alpha & 0 \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\ 0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\ 0 & -\alpha & 0 & 0 & K_{56} & K_{66} + \alpha & K_{67} \\ 0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \end{bmatrix}$$

Caso no homogéneo

$$3u_3 + u_5 - 4u_6 = 1$$

$$\begin{bmatrix} 3 & 1 & -4 \end{bmatrix} \begin{bmatrix} u_3 \\ u_5 \\ u_6 \end{bmatrix} = 1$$

$$\begin{bmatrix} 9 & 3 & -12 \\ 3 & 1 & -4 \\ -12 & -4 & 16 \end{bmatrix} \begin{bmatrix} u_3 \\ u_5 \\ u_6 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -4 \end{bmatrix}$$

$$3u_3 + u_5 - 4u_6 = 1 \begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 \\ 0 & K_{23} & K_{33} + 9\alpha & K_{34} & 3\alpha & -12\alpha & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\ 0 & 0 & 3\alpha & K_{45} & K_{55} + \alpha & K_{56} - 4\alpha & 0 \\ 0 & 0 & -12\alpha & 0 & K_{56} - 4\alpha & K_{66} + 16\alpha & K_{67} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 + 3\alpha \\ f_4 \\ f_5 + \alpha \\ f_6 - 4\alpha \\ f_7 \end{bmatrix}$$

Ejemplo de aplicación: Multiplicadores de Lagrange

Caso homogéneo

$$u_2 = u_6$$

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 & 1 \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 & 0 \\ 0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 & 0 \\ 0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} & -1 \\ 0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ \lambda \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ 0 \end{bmatrix}$$

Caso no homogéneo

$$5u_2 - 8u_7 = 3$$
$$u_2 - u_6 = 0$$
$$3u_3 + u_5 - 4u_6 = 1$$

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 & 1 & 5 & 0 \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} & -1 & 0 & -4 \\ 0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} & -1 & 0 & -4 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 & -8 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 1 & -4 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ 0 \\ 3 \\ 1 \end{bmatrix}$$

Resumen métodos

Método directo:

Se eligen nodos "Master" y "Slave" y se eliminan estos últimos explícitamente.

Multiplicadores de Lagrange

Se agrega una incógnita para cada restricción. Físicamente representan las fuerzas necesarias que se deberían aplicar para lograr dicha restricción exactamente.

Penalización

Se introducen elementos elásticos ficticios que imponen aproximadamente el vínculo parametrizados por un peso. Se logra la restricción perfecta cuando el peso va a infinito. Se aumenta el modelo FEM con estos elementos de penalidad.

	Directo	Lagrange	Penalización
Generalidad	Aceptable	Excelente	Excelente
Implementación	Pobre - Aceptable	Sencilla	Fácil
Criterio del usuario	Alto	Casi ninguno	Alto
Precisión	Variable	Excelente	Mediocre
Sensitividad a la dependencia de las restricciones	Alta	Alta	Ninguna
[K] definida positiva	Sí	No	Sí
Modifica vector cargas (caso homog.)	Sí	Sí	No