Cálculo I

Tiago Lima

2 de novembro de 2022

Sumário

1	Funç	ções Reais	2
	1.1	Funções de uma Variável Real	3
	1.2	Classificação de Função Real	3
	1.3	Operações com Função Real	4
	1.4	Função Composta e Função Inversa	5
	1.5	Função Polinomial	6
		Transforação de Funções	7
	1.7	Funções Exponencias	7
		1.7.1 Propriedades	8
	1.8	Funções Logarítmica	8
		1.8.1 Propriedades	10

Capítulo 1

Funções Reais

Aula 1: Revisão de Funções Reais - Parte 1

02 NOV 2022

A relação entre dois conjuntos A e B é um conjunto de pares ordenados, no qual cada elemento do par ordenado pertence a um dos conjuntos relacionados. Vale saber, não existem restrições (regra) entre os elementos dos conjuntos. Nesse sentido, a função será um caso particular de relação: **Todo elemento do primeiro conjunto** corresponde a **um único elemento** do segundo conjunto.

Uma relação entre dois conjuntos A e B será uma **função de** A **em** B, se e somente se, para todo x pertencente a A exista um único y pertencente a B, de modo que todo x se relacione com y.

$$f(x):A\subset\mathbb{R}\to B\subset\mathbb{R},$$

$$x \in A \to f(x) = y \in B$$
.

Figura 1.1: Relação entre os conjuntos A e B definindo uma função.

O conjunto A é chamado de **domínio** da função e o conjunto B é chamado de **contradomínio** da função. Sendo assim, o contradomínio é todo o conjunto B e os elementos desse conjunto que tem correspondência com o dominínio é denominado de **imagem**, ou seja, o conjunto imagem é um subconjunto do contradomínio.

1.1 Funções de uma Variável Real

Entende-se por uma função f a terna

$$(A, B, a \mapsto b) \tag{1.1}$$

em que A e B são dois conjuntos e $a \mapsto b$ uma regra que permite associar a cada elemento a de A a um único elemento b de B. O conjunto A é denominado domínio de f e é indicado por D_f , assim $A = D_f$. O conjunto B é denominado contradomínio de f e é indicado por CD_f , assim $B = CD_f$. O único elemento b de B associado ao elemento a de A é indicado por a0.

Uma função de domínio A e contradomínio B é usualmente indicada por $f:A\to B$. Se A (domnínio) e B (contradomínio) são subconjuntos de \mathbb{R} , então f é uma função de uma variável real a valores reais tal que $f:A\to B$.

Seja $f: A \to B$ uma função, seu gráfico será dado pelo conjunto de pares ordenados

$$G_f = \{(x, f(x)) \mid x \in A\};$$
 (1.2)

assim o gráfico de f é um subconjunto do conjunto de todos os pares ordenados (x, f(x)) de números reais. Além disso, o gráfico de f pode então se pensado como o lugar geométrico descrito pelo ponto (x, f(x)) quando x percorre o domínio de f.

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por

$$y = f(x), x \in A$$
.

Neste caso, x é a variável independente e y a variável dependente, ou simplesmente dizer que y é função de x.

1.2 Classificação de Função Real

Uma função é denominada **sobrejetora** se, e somente se, o seu conjunto imagem for igual ao contradomínio.

Uma função é denominada **injetora** se os elementos distintos do domínio tiverem imagens distintas, ou seja, dois elementos não podem ter a mesma imagem.

Uma função será bijetora se ela for, simultaneamente, sobrejetora e injetora.

Uma função é dita **par** se apresenta uma simetria em relação ao eixo vertical.

$$\forall x \in \mathbf{Domínio} \to f(x) = f(-x).$$

Uma função é dita **ímpar** se apresenta uma simetria em relação à origem dos eixos.

$$\forall x \in \mathbf{Domínio} \to f(-x) = -f(x).$$

Podem existir funções que não são nem par e nem ímpar!

Figura 1.2: Definição gráfica de uma função par (a) e uma função ímpar (b).

Uma função é dita **crescente** em um determinado intervalo se os valores de f(x) crescerem quando x crescer neste intervalo:

$$x_2 > x_1 \Leftrightarrow f(x_2) > f(x_1).$$

Uma função é dita **decrescente** em um determinado intervalo se os valores de f(x) decrescerem quando x crescer neste intervalo:

$$x_2 > x_1 \Leftrightarrow f(x_2) < f(x_1).$$

Uma função é dita **monótona não decrescente** em um intervalo se os valores de f(x) **não decrescerem** quando x crescer neste intervalo.

$$x_2 > x_1 \Leftrightarrow f(x_2) \ge f(x_1)$$
.

Uma função é dita monótona não crescente em um intervalo se os valores de f(x) não crescerem quando x crescer neste intervalo.

$$x_2 > x_1 \Leftrightarrow f(x_2) \leq f(x_1).$$

1.3 Operações com Função Real

Sejam f e g duas funções reais de variável real. Seja D a interseção do domínio de f e do domínio de g, então

1.
$$h(x) = (kf)(x) = kf(x)$$
, k é real, definida em D_f ;

- 2. $h(x) = (f \pm g)(x) = f(x) \pm g(x)$, definida em D;
- 3. $h(x) = (f \cdot g)(x) = f(x) \cdot g(x)$, definida em D;
- 4. $h(x) = \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$, definida em $D \cap g(x) \neq 0$;
- 5. $f(x) = g(x) \Leftrightarrow I = D_f = D_g e \ \forall x \in I, f(x) = g(x).$

1.4 Função Composta e Função Inversa

Uma função é dita **composta** ou **função de função** quando é obtida substituindo-se a variável independente por uma função

$$f \circ g(x) = f(g(x)).$$

Obs.:

$$f \circ q \neq q \circ f$$
.

Dada uma função $f:A\to B$, se f é **bijetora**, então define-se a função inversa f^{-1} como sendo a função de $B\to A$, tal que $f^{-1}(y)=x$. Os gráficos de f e f^{-1} são simétricos em relação à bissetriz do primeiro quadrante.

Figura 1.3: Gráfico da simetria em relação à bissetriz do primeiro quadrante.

Aula 2: Funções Reais Elementares – Parte 1

15 SET 2022

1.5 Função Polinomial

A função é dita **polinomial** se $f: \mathbb{R} \to \mathbb{R}$ é dada por

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x^1 + a_0,$$
(1.3)

em que $a_0 \neq 0$, $a_i \in \mathbb{R}$ e $n \in \mathbb{Z}_+^*$, onde denomina-se função polinomial de grau n $(n \in \mathbb{N})$.

A função polinomial pode ser decomposta em fatores e esses fatores estarão associados com a raíz desse polinômio, podendo ser reescrita como

$$p(k) = k(x - r_1)(x - r_2) \cdots (x - r_n),$$

onde r_n são as n raízes do polinômio.

Alguns casos particulares:

Função Constante: $f(x) = a_0$

Função Linear ou afim: $f(x) = a_1x + a_0$

Função Quadrática: $f(x) = a_2x^2 + a_1x + a_0$

Função Cúbica: $f(x) = a_3x^3 + a_2x^2 + a_1x + a_0$

Função Constante

Uma função $y=f(x), x\in A$, dada por f(x)=k, k constante, denomina-se função constante.

Figura 1.4: Função Constante

Função Linear

A função linear é dada por $f: \mathbb{R} \to \mathbb{R}$ representada por

$$f(x) = a_1 x + a_0 (1.4)$$

e tem o gráfico representado na figura abaixo, onde a_0 é o **coeficiente linear** da função, a_1 é o **coeficiente angular** definida por

$$\tan \theta = \frac{y_1 - y_0}{x_1 - x_0} = a_1.$$

Aula 3: Funções Reais Elementares – Parte 1

15 SET 2022

1.6 Transforação de Funções

Dada uma função conhecide f(x), define-se a função

$$g(x) = B + Af(ax + b).$$

Aula 4: Funções Reais Elementares – Parte 2

15 SET 2022

1.7 Funções Exponencias

A função é dita **exponencial** de base "a" quando apresenta a seguinte equação:

$$f(x) = ka^x, k \in \mathbb{R}^*.$$

Onde a base não pode ser qualquer número, tem que ser a>1 e $a\neq 1$. Se a=1 torna-se uma função constante, pois 1 elevado a qualquer x é sempre 1. O domínio dessa função é \mathbb{R} , a imagem é \mathbb{R}_+^* .

$$a > 1$$
: $a^m < a^n \Leftrightarrow m < n$

$$0 < a < 1$$
: $a^m \le a^n \Leftrightarrow m \ge n$

Figura 1.5: Gráfico da função exponencial

1.7.1 Propriedades

$$a^{m} = a^{n} \Leftrightarrow m = n$$

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

$$(a^{m})^{n} = a^{m \cdot n}$$

$$a^{-m} = \frac{1}{a^{m}}$$

1.8 Funções Logarítmica

A função é dita **logarítmica** de base "a" quando apresenta a seguinte equação:

$$f(x) = k \log_a(x), k \in \mathbb{R}^*.$$

A base é a>0 e $a\neq 1$. Só existe logaritmo de número positivo, ou seja, a>0. Portanto o domínio é \mathbb{R}_+^* e a imagem é todo \mathbb{R} .

A função logarítmica e a função exponencial são **função inversas** e terão simetria em relação a bissetriz do primeiro e terceiro quadrante, observe o gráfico 1.7.

Função Crescente
$$a > 1$$
: $\log_a(m) \le \log_a(n) \Leftrightarrow m \le n$

Função Decrescente
$$0 < a < 1$$
: $\log_a(m) \le \log_a(n) \Leftrightarrow m \ge n$

Figura 1.6: Gráfico da função logarítmica

Um fato a ser notado é quando se tem um log na base 10. Quando isso ocorre, não se faz necessário escrever a base, assumindo a forma:

 $\log x$,

porém quando tem-se o logaritmo na base neperiano, ou seja, sua base é o e o logaritmo é escrito como

 $\ln x$.

Figura 1.7: Simetria em relação a bissetriz do primeiro e terceiro quadrante das funções exponenciais e logarítmicas.

1.8.1 Propriedades

$$\log_a(x) = y \Leftrightarrow a^y = x$$

$$\log_a(m) = \log_a(n) \Leftrightarrow m = n$$

$$\log_a(a) = 1$$

$$\log_a(b^k) = k \log_a(b)$$

$$\log_{a^p}(b) = \frac{1}{p} \log_a(b)$$

$$\log_a(x \cdot y) = \log_a(x) + \log_a(y)$$

$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$

$$\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$$