Literature Review (Secondary Research) Template

Student Name	A.Rohan
Project Topic Title	Emotion recognition from text and feedback analysis using deep learning

1

Reference in APA format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://ieeexplore.ieee.org/document/95445 54	Priyanka Awatramani Rucha Daware Hrushabhsingh Chouhan Anmol Vaswani Sujata Khedkar	Sentiment Analysis, Data Preprocessing, Hinglish, Natural Language Processing, Code-Mixed Text, TF-IDF features, Logistic Regression, Random Forest, SVM, KNN, Machine Learning, Lexicon Based Approach, Rule based approach	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?	
Lexicon based approach Rule based approach ML algorithms (SVM,Logistic Regression,KNN,Random Forest)	The aim of this paper is to solve the limitations and challenges by studying and analyzing the different approaches to tackle the Hinglish text.	Handling data with noise, Case folding, Punctuation Removal, Special character removal, Spelling Correction, Stop-Word Removal	

	Process Steps	Advantage	Disadvantage (Limitation)
	The datasets that have been considered here IIITH and SemEval, the first approach to the problem was to convert the Hindi Language to the English Language using Google Cloud Translate API	Balanced dataset plays a crucial role	
2	The API only detects the Hindi Language if the input given to it is written in Devanagari Script. For this purpose, there was a need to convert the romanized Hindi text to Devanagari Text using Indic-Transliteration API.	The hindi language in the text is converted to english easily using the APIS	
3	Also Here the simple steps such as preprocessing has been done consisting of handling noisy data, case folding, punctuation removal, special character removal, etc. Also, in the data given the spellings of the words can also be wrong so spelling correction is also needed to be done	Sentiments can be properly be detected because here spelling correction is also done.	
	Then after here the code mixed data is converted into monolingual data and on this text/data sentiment classification is carried out		
5	The sentiment classifications that can be used here are: Lexicon based, Rule based, ML based Lexicon based:-AFINN Rule based:-TextBlob, Vader sentiment	Varied classification approaches helps in accurately classifying the sentiments	The NLP based approach much rely on the weightage of emotion related words which means that they are not beneficial for long term dependencies

	ML based: SVM,KNN,Ran Regression	J				
Analyze the performance of chosen sentiment classification and the analysis of sentiment of hinglish text is done.			ed on classification of sentiments not emotions			
			Major Impact Fact	tors in this Work		
	Dependent Variable	Independent	Variable	Moderating var	iable	Mediating (Intervening) variable
Sentime)	ent(Positive,negative,neutral	Set of Sentences, two	eets			
	Relationship Among The Above 4 Variables in This article					
Input and Output Feature of This Solution				s Solution	Contrib	bution & The Value of This Work

_	
Input	Output
Hinglish text(Hindi+English)	Detecting sentiment present in the given text, either positive,negative or neutral

- 1. The solution handles code-mixed text
- 2. A novel romanized Hindi dictionary is created using sentiment scores from HindiSentiWordNet. This helps overcome the lack of Hindi resources.

Good to have this knowledge from this paper, as we got better understanding about how to handle hinglish text and also gained insights about lexicon and rule based approach for sentiment analysis.

	Positive Impact of this Solution in This Pro	oject Domain	Negative Impa	ct of this Solution in This Project Domain
Both NLP based approaches and ML approaches have been used in order		_	n Hindi-English code-mixing. It may not generalize	
to accurately determine sentiments. Also, the dictionary based approach		well to other language pairs	without further study.	
used, i.e a dictionary of Romanized Words derived from Hindi				
SentiWordNet is helpful for properly translating hindi to english				
	Analyse This Work By Critical Thinking	The Tools That	Assessed this Work	What is the Structure of this Paper

Analyse This Work By Critical Thinking	The Tools That Assessed this Work	What is the Structure of this Paper		
This work is good, as they tried to provide a good solution for sentiment analysis for hinglish text because on social media the text written is not always english it can be english in addition with the regional language (Hindi) so it is important to understand the sentiments in hinglish text.	Accuracy, Precision, Recall	Abstract I. Introduction II. Related Work III. Problem Definition IV. DataSet V. Methodology VI Results VII. Conclusion and Future work		
Diagram/Flowchart				

---End of Paper 1-

,
-

Reference in APA format		
URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://www.ijsr.net/archive/v5i5/NOV163	Ashish V C	Digital systems, Human Behavior, Emotion, Intelligent
818.pdf	Somashekar R	Behavior, Human Express, plain text and Hybrid Based Approach
	Dr. Sundeep Kumar	11
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
Keyword spotting method, Lexical Affinity	appropriately identifying the emotion in text	Text document
Method, learning based method and hybrid methods	and analyzing various approaches	preprocessing the data
methods		Tokenization of data
		Emotion keyword detection
		Intensity analysis
		Negation check
	Mandy Manage How the Dunblem has Columb 9 Adv	Emotion class

	Process Steps	Advantage	Disadvantage (Limitation)

1	Firstly, dataset needs to be considered and then after preprocessing of the data needs to be carried out.		
2	And then after tokenization is carried out after that various approaches are considered those are:- keyword based, Lexical Affinity Method, learning based method and hybrid methods		
	The keyword based approach identifies the emotion related words and then analysis of the intensity of the emotion words is performed. The sentence is checked whether negation is presented in it or not then finally an emotion class will be found as the required output.	Simple and easy to implement	It is not a reliable method because it totally depends on the emotional related keywords as the meanings of keywords could be multiple and vague
4	The other approach is lexical affinity based approach, which is an extension of keyword based approach here it assigns probabilistic affinity for a particular emotion word	Uses probabilities for arbitrary words, not just keywords	Probabilities can be biased by corpus and doesn't recognize emotions
5	The other approach can be used is lexicon based approach here counting of number of emotion related words and then the emotion label of the text is determine	Identifies the class of emotion based on count such that if there are varied emotional words then that can be identified properly as compared to keyword and lexical affinity based	
	And, other approaches can be used are using SVM, and hybrid based approach		
7	Here, the hybrid based approach is combination of the keyword based method and learning based method.	Hybrid based approach achieves good accuracy as compared to other approaches	
		Major Impact Factors in this Work	

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Emotions	Set of text		

Input and Output		Feature of	f This Solution	Contribution in This Work
Input text document is taken as input	Output output is generated as an emotion class	1.Detects six different emotions.		It was good to have knowledge about various approaches for recognizing emotion from text where the simple and complex approaches help in recognizing emotion from simple text to moderate text.
Positive Impact	of this Solution in This Pr	oject Domain	Negative Impa	ct of this Solution in This Project Domain
Varied approaches have been discussed for emotion detection from text such that the methods can be used on the basis of type of text.		A firm solution/method has not been provided that can be helpful for detecting complex emotions or text.		
Analyse This Work	Analyse This Work By Critical Thinking		Assessed this Work	What is the Structure of this Paper

The work is good as they tried to provide varied solutions for detecting emotion from text because there are varied approaches for recognizing emotion ranging from simple to complex. However the performance of the emotion recognition from text can be enhanced by using the other approaches

Abstract

- 1. Introduction
- 2. Text Based Emotion Recognition Methods
- 3. Limitations
- 4. Text Normalization Techniques For Resolving Short Messaging Language
- 5. Conclusion

Diagram/Flowchart

Reference in APA format		
URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://ieeexplore.ieee.org/document/92307	Juyana Islam	Emotion Recognition, Emoticons, Deep Learning, Long
25	Sadman Ahmed	Short-Term Memory.
	M. A. H. Akhand	
	N. Siddique	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
Long Short-Term Memory	To improve emotion recognition from microblog keeping semantic relation among texts and emoticons	Dataset Preprocessing Emoticon Representation Tokenization Embedding Layer LSTM Network

	Process Steps	Advantage	Disadvantage (Limitation)
1	The dataset considered is a collection of english tweets. Primarily here, tweepy is used, which is a very useful library to collect data from twitter.		Smaller dataset is prefered, instead larger dataset can be used.
	Then, after data preprocessing is carried out inorder to clean the data here, the cleaning involves case conversion, hashtag and username removal, punctuation removal	Preprocessing is an important step for removing inconsistencies.	
3	as here the text consists of emoticons here emoticons needed to be converted in to corresponding meanings using the function Emoticon meaning(). Here it uses lookup table for knowing the meaning	Emoticons are converted into text so that emotions can be predicted accurately.	
4	then after tokenization is carried where integer encoding of texts is performed.		
5	Here LSTM is considered further, Finally the embedding step transforms integer value transforms in to a dense 2D vector	Word embeddings capture semantic meaning and relationships between words/emoticons.	Instead of LSTM other models such as BI-LSTM
Ч	A softmax output layer finally converts this context vector to probabilities over the emotion classes.		
7	The highest probability class is taken as the predicted emotion for the microblog		Only 4 emotions are considered love,happy,sad,angry

Major Impact Factors in this Work

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Emotion	Set of microblogs, text, emoticons		

Relationship Among The Above 4 Variables in This article

Input a	nd Output	Feature of	f This Solution	Contribution & The Value of This Work
Input Text is given as input	Output Emotion in text	The textual data is in the form of sequential manner so the model which is used (LSTM) is best suitable for text such that it can find the emotion hidden in it accurately. Here, emoticons are fused into text embeddings.		It was good to have the knowledge, as we got to know the significance of considering emoticons as a valid data item in increasing the accuracy of model and also what kind of model to be chosen for sequential data
Positive Impact of this Solution in This Project Domain		oject Domain	Negative Impa	ct of this Solution in This Project Domain
Better understanding of emotions expressed in microblogs by incorporating emoticons along with text.		Tested only on Twitter data. Effectiveness for other social media platforms o textual domains is unclear.		
Analyse This Wor	k By Critical Thinking	The Tools That	Assessed this Work	What is the Structure of this Paper

The work done is good because textual data is spread over microblogs/social media so identifying the emotions in the text plays an crucial role and always the text is not of words as now a days many are preferring the usage of emoticons, so identifying the emotions hidden in the text by considering the text as well as emoticons is crucial. So,here the solution suggested helps in finding the emotion in the text accurately.

Confusion matrix, Accuracy score

Abstract

- 1.Introduction
- 2. Improved emotion recognition from microblog focusing on both emoticon and text
- 3.Experimental Studies
- 4. Conclusion

Diagram/Flowchart

Л
_

Reference in APA format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://ieeexplore.ieee.org/document/93927	Mahmud Hasan Munna	Sentiment Analysis, Online Product Review Classification, E-	
10	Md Rifatul Islam Rifat	commerce, Bangla NLP, Deep Learning.	
	A. S. M. Badrudduza		
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?	
Deep Neural Network and Natural	developed two Deep Neural Network (DNN) based models for review based classification and sentiment analysis.	Data Preprocessing	
Language Processing		Removing Stop-words	
		Removing Punctuation	
		Removing Unnecessary Characters	
		Data Partitioning	
		Feature Extraction	
	L	l	

	Process Steps	Advantage	Disadvantage (Limitation)
	1		

1	Firstly, for dataset here, product reviews have been collected from various e-commerce sites such as Daraz, BDshop and Evally	Real-world ecommerce data	
2	Then, after data preprocessing is carried out involving stop words removal, punctuation removal, unnecessary character removal.	Cleaned and normalized data Improves model performance	Time-consuming process
	Then after data partitioning is carried out where data is partitioned in to training, validation and test data		
	pre-trained FastText word embeddings to extract features	Helpful in capturing proper semantic meaning	
5	Then after Deep neural network model has been considered where one DNN model is for sentiment analysis and other DNN is for product reviews classification		Computationally expensive
6	And the number of neurons in the input and out layers is decided based on the shape of training dataset where as number of neurons for output layer is decided up on number of classes		
	Then after number of hidden layers will be considered and followed by activation function	It defines the complexity and efficiency of DNN architecture	
8	The optimization is considered here to be Adam	It has relatively low memory requirements	
9	Finally, the DNN is made ready and the performance will be evaluated using accuracy,precision,recall and F1 score		

Major Impact Factors in this Work

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Type of review	Product review text		

Relationship Among The Above 4 Variables in This article

Input and Output	Feature of This Solution	Contribution & The Value of This Work			
Product reviews given as input Reviews classified as good/bad as part of sentiment analysis or in to 4 classes as a part of product review classification	 Uses deep neural network architecture for text classification tasks. Can capture semantic information better than traditional ML models. classifies the product reviews in to 4 classes that can be helpful in proper analysis of reviews 	It was good to have knowledge about the significance of DNN for sentiment analysis and classification of product reviews. Also got to know about the important parameters of DNN and how to assign them.			

The work done is good as they tries to provide a good solution for both sentiment analysis and product reviews classification by using the DNN models, they have not only focused on particular classes for product reviews they have focussed on various classes such as recommended, complain, wrong delivery, and appreciation these varied classifications can help the e-commerce platforms, customers and merchants to better understand about their products and satisfaction level of customers. The Tools That Assessed this Work Accuracy score, Precision Abstract 1. Introduction 2. Related Work 3. Dataset Description 4. Data Preprocessing 5. Methodology 6. Result and Analysis 7. Conclusion 8. References	Positive Impact of this Solution in This Protection the solutions helps the e-commerce domain by harringights from reviews. This is helpful for both customers.	nessing NLP to extract	ct of this Solution in This Project Domain racy can lead to misclassifications of reviews.
	The work done is good as they tries to provide a good solution for both sentiment analysis and product reviews classification by using the DNN models, they have not only focused on particular classes for product reviews they have focussed on various classes such as recommended, complain, wrong delivery, and appreciation these varied classifications can help the e-commerce platforms, customers and merchants to better understand about their		 Introduction Related Work Dataset Description Data Preprocessing Methodology Result and Analysis Conclusion

--End of Paper 4—

_
-
2

Reference in APA format						
URL of the Reference	Authors Names and Emails	Keywords in this Reference				
https://ieeexplore.ieee.org/document/96338 43	Mahima M A, Nidhi C Patel, Srividhya Ravichandran, Aishwarya N Sumana Maradithaya	Text Mining, Multiple Emotion Detection, Natural Language Processing, Sentence embeddings, Cosine Similarity, Ekman's emotions				
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?				
a new hybrid methodology for the detection of multiple emotions from the text using sentence embeddings along with rule based techniques.	The goal is to detect the multiple emotions present in the text and also if emoticons are used in text how can they be used in detecting the emotions.	Datasets Preprocessing Hybrid Model Multiple Emotion Tagger				

	Process Steps	Advantage	Disadvantage (Limitation)
1	The datasets used in this model include: ISEARs, MELD, EmoDB, GoEmotions, and their combinations.	Combining multiple datasets like conversations, social media and generic text makes the model more robust.	

2	Preprocessing of data is carried out, including Filtering, converting emoticons, and sentence tokenization	Conversion of emoticons helps in more precisely detecting/identifying the emotions	
	next the Hybrid model consists mainly of the Rule-based methods, Sentiment Analyzer and the Context and Semantic based Disambiguation model.		Rules and similarity matching have limitations for handling very complex language use cases.
4	The hybrid model has been developed by comparing two state-of-the art pre-trained models known as Sentence-BERT and InferSent.	Here the cosine similarity helps to find the closest matching sentences from the training set.	Need to train and ensemble multiple models (Sentence-BERT, InferSent) which increases complexity.
5	The Tagger gets the scores and assigns the respective emotions to each sentence and these emotions are combined to get the overall emotions present in the text	This allows capturing transitions in emotions within a text.	Restricted to only Ekman's basic emotions. Does not detect more complex or nuanced emotions.

Major Impact Factors in this Work

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Multiple emotions	Set of text, emoticons		

Relationship Among The Above 4 Variables in This article

Input and Output	Feature of	This Solution	Contribution in This Work				
Given input as text identifying the multiple emotions hidden in the text	techniques. 2.Employs similarity to similar sentences for en	splitting using rule-based echnique to find most motion assignment	It was good to have this knowledge, as we got to know how to deal with the ambiguities in the words that can alter the recognition of emotion				
Positive Impact of this Solution in This P	Project Domain Negative Impact of this Solution in This Project Domai						
Provides more contextual disambiguation of emoti combining semantic similarity and sentiment analy			nodels like SentenceBERT and InferSent which are to run compared to simpler models.				
Analyse This Work By Critical Thinking	The Tools That	Assessed this Work	What is the Structure of this Paper				
As we know, the text does not contain a single emotion it has multiple emotions hidden in it, so here, the work mainly focuses on identifying multiple hidden emotions and also tries to detect the emotions without any ambiguity.	Accuracy score		Abstract 1.Introduction 2.Methodology 3.Related Works 4. Experimentation and results 5. Conclusion and Future Work				

End of paper-5

Work Evaluation Table

<Use the same factors you have used in "Work Evaluation Table" to build your own "Proposed and Previous comparison table ">

	Work Goal	System's Components	System's Mechanism	Features /Characteristics	C o s t	Speed	S e c u ri t y	Performance	Advantages	Li mit ati ons /Di sad va nta ges	Platform	Results
Priyanka Awatramani Rucha Daware Hrushabhsin gh Chouhan Anmol Vaswani Sujata Khedkar	The goal of this paper is to solve the limitations and challenges by studying and analyzing the different approaches to tackle the Hinglish text.	folding, Punctuation Removal, Special character removal,	Rule based approach ML algorithms (SVM,Logistic Regression,KNN,R andom Forest)	1. The solution handles code-mixed text 2. A novel romanized Hindi dictionary is created using sentiment scores from HindiSentiWordNet. This helps overcome the lack of Hindi resources.	-	-	-	Out of all the approaches the SVM(Support Vector Machine) and Logistic Regression have performed well	The hindi language in the text is converted to english easily using the APIS Sentiments can be properly be detected because here spelling correction is also done.	Focu sed on class ificat ion of senti ment s not on the emot ions		Varied approache s have been discussed and evaluated through accuracy, precision and the accuracy obtained is 86%

Juyana Islam	To improve	Dataset	Long Short-Term	The textual data is in	-	-	-	Comparing the	Word	Python	The
Sadman Ahmed	emotion	Preprocessing	Memory	the form of				text where the	embeddin		accuracy
M. A. H. Akhand	recognition	Emoticon		sequential manner so the model which is				emoticons are	gs capture semantic		obtained
		Representation		used (LSTM) is best				eliminated it has been	meaning		is 82.1%
N. Siddique	keeping	Tokenization		suitable for text such				observed that	and		
	semantic			that it can find the				the	relationshi		
2020	relation	Embedding Layer		emotion hidden in it				performance is	ps		
	among texts	LSTM Network		accurately.				not good as	between words/em		
	and							compared with	oticons.		
	emoticons			Here, emoticons are				the text where emoticons are			
				fused into text				considered.			
				embeddings.				constacted.			

Mahmud Hasan Munna Md Rifatul Islam Rifat A. S. M. Badrudduza	two Deep Neural Network (DNN) based models for review based classificatio n and	Removing Stop-words Removing Punctuation Removing Unnecessary Characters Data Partitioning	Uses deep neural network architecture for text classification tasks. Can capture semantic information better than traditional ML models.		The Perform ance of the model is good for sentime nt analysis as	Helpful in capturing proper semantic meaning Activation functions define the complexity and efficiency of DNN architecture	Com putati onall y expe nsive	·	The sentimen t analysis obtained an accuracy of 84% and product review classification obtained			
	sentiment analysis.	Feature Extraction						compar ed with product review classific ation				an accuracy of 69%

Mahima M A, Nidhi C Patel,	mumble	Preprocessing	a new hybrid methodology for the detection of	Able to detect multiple emotions present within a	-	-	-	Traditional approaches ignore the	emoticons	Rules and similarity matching	Pytho n	observed that using
Srividhya Ravichandran, Aishwarya N Sumana	emotions present in the text and also if emoticons are used in	Multiple Emotion	the text using sentence	single text by splitting using rule-based techniques. Employs similarity technique to find most similar sentences for emotion				presence of disambiguitie s but, here using rules,	detecting/identi fying the emotions	have limitations for handling		EmoDBG Oemotion s datasets With vsm produces highest classificat ion with 57.447%
Maradithaya 2021	text how can they be used in detecting the emotions.							the model cap looks to have tran	allows capturing transitions in emotions	very complex language use cases.		
2021				assignment				performance as compared t traditional approaches	within a text.			