AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF THE CLAIMS

- 1. (Currently Amended) A lighting apparatus for emitting white light comprising:
- a semiconductor light source emitting radiation having a wavelength in the range of from about 235 to about 430 nm;
- a phosphor composition radiationally coupled to the semiconductor light source, the phosphor composition comprising a blue emitting phosphor, a green emitting phosphor and a red emitting phosphor comprising $(Ba,Sr,Ca)_3Mg_xSi_2O_8:Eu^{2+},Mn^{2+}$, wherein $1 \le x \le 2$.
- 2. (Original) The lighting apparatus of claim 1, wherein the semiconductor light source is a light emitting diode (LED).
- 3. (Currently amended) The lighting apparatus of claim 2, wherein the LED comprises a nitride compound semiconductor represented by the formula $ln_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le k$ [[K]], and i + j + k = 1.
- 4. (Original) The lighting apparatus of claim 1, wherein the phosphor composition is coated on the surface of the semiconductor light source.
- 5. (Original) The lighting apparatus of claim 1, further comprising an encapsulant surrounding the semiconductor light source and the phosphor composition.
- 6. (Original) The lighting apparatus of claim 1, wherein the phosphor composition is dispersed in the encapsulant.
- 7. (Original) The lighting apparatus of claim 1, further comprising a reflector cup.

U.S. Serial No. 10/636,016 Attorney Docket No.: GLOZ 200135

- 8. (Original) The lighting apparatus of claim 1, wherein said phosphor composition further comprises at least one of a blue-green emitting phosphor, an yellow-orange emitting phosphor, and an additional red emitting phosphor.
- 9. (Original) The lighting apparatus of claim 1, wherein said phosphor composition comprises a spectral weight of 0.01-0.3 of the blue phosphor, about 0.1-0.5 of the green phosphor, and the balance of the red phosphor.
- 10. (Currently amended) The lighting apparatus of claim 1, wherein said group blue emitting phosphor is selected from the consisting OH):Eu²⁺, Mn²⁺; Sb³⁺,(Ba,Sr,Ca)MqAl₁₀O₁₇:Eu²⁺,Mn²⁺ (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,Br, $(Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+};$ (Ba,Sr,Ca)BPO₅:Eu²⁺, Mn^{2+} : $2SrO^*0.84P_2O_5^*0.16B_2O_3:Eu^{2^+}; \;\; Sr_2Si_3O_{8^+2}SrCl_2:Eu^{2^+}; \;\; \underline{(Ba,Sr,Ca)Mg_xP_2O_7:Eu^{2^+},Mn^{2^+}}; \;\; \underline{(Ba,Sr,Ca)Mg_xP_2O_7:Eu^{2^+},Mn$ (Ba,Sr,Ca)MgP₂O₇:Eu²⁺,Mn²⁺; Sr₄Al₁₄O₂₅:Eu²⁺ (SAE); BaAl₈O₁₃:Eu²⁺; and mixtures thereof.
- 11. (Currently amended) The lighting apparatus of claim 8, wherein said red phosphor is selected from the group consisting of $(Gd,Y,Lu,La)_2O_3:Eu^{3+},Bi^{3+};$ $(Gd,Y,Lu,La)_2O_2S:Eu^{3+},Bi^{3+};$ $(Gd,Y,Lu,La)_2O_2S:Eu^{3+},Bi^{3+};$ $(Gd,Y,Lu,La)_2O_4:Eu^{3+},Bi^{3+};$ $(Ca,Sr)S:Eu^{2+};$ $SrY_2S_4:Eu^{2+};$ $CaLa_2S_4:Ce^{3+};$ $(Ca,Sr)S:Eu^{2+};$ $3.5MgO*0.5MgF_2*GeO_2:Mn^{4+}$ (MFG); $(Ba,Sr,Ca)Mg_xP_2O_7:Eu^{2+},Mn^{2+}$ $(Ba,Sr,Ca)MgP_2O_7:Eu^{2+},Mn^{2+};$ $(Y,Lu)_2WO_6:Eu^{3+},Mo^{6+};$ and mixtures thereof.
- 12. (Original) The lighting apparatus of claim 1, wherein said green phosphor is selected from the group consisting of (Ba,Sr,Ca)MgAl₁₀O₁7:Eu²⁺,Mn²⁺ (BAMn); (Ba,Sr,Ca)Al₂O₄:Eu²⁺; (Y,Gd,Lu,Sc,La)BO₃:Ce³⁺,Tb³⁺; Ca₈Mg(SiO₄)₄Cl₂:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)₂SiO₄:Eu²⁺; (Ba,Sr,Ca)₂(Mg,Zn)Si₂O₇:Eu²⁺; (Sr,Ca,Ba)(Al,Ga,In)₂S₄:Eu²⁺; (Y,Gd,Tb,La,Sm,Pr, Lu)₃(Al,Ga)₅O₁₂:Ce³⁺; (Ca,Sr)₈(Mg,Zn)(SiO₄)₄Cl₂: Eu²⁺, Mn²⁺ (CASI); Na₂Gd₂B₂O₇:Ce³⁺, Tb³⁺; (Ba,Sr)₂(Ca,Mg,Zn)B₂O₆:K,Ce,Tb; and mixtures thereof.
- 13. (Previously presented)The lighting apparatus of claim 1, wherein said (Ba,Sr,Ca)₃Mg_xSi₂O₈:Eu²⁺,Mn²⁺ phosphor emits radiation having a first emission

U.S. Serial No. 10/636,016 Attorney Docket No.: GLOZ 200135

peak at about 430 to about 475 nm and a second emission peak at around 610 to 700 nm.

14. (Previously Presented) The lighting apparatus of claim 1, wherein said (Ba,Sr,Ca)₃Mg_xSi₂O₈:Eu²⁺,Mn²⁺ phosphor contains a greater amount of Sr than Ba or Ca.

15. (Canceled)

- 16. (Currently Amended) The lighting apparatus of claim 1, wherein the total combined doping levels of Eu²⁺ and Mn²⁺ in the (Ba,Sr,Ca)₃Mg_xSi₂O₈:Eu²⁺,Mn²⁺ phosphor is from 0.1% to 40% by weight of the total phosphor composition.
- 17. (Currently Amended) A method for forming a lighting apparatus, the method comprising the steps of:

providing a near UV LED capable of emitting radiation having a wavelength of from about 235 to about 430 nm; and,

radiationally coupling a phosphor composition to the LED, the phosphor composition comprising a blue emitting phosphor, a green emitting phosphor and a red emitting phosphor comprising $(Ba,Sr,Ca)_3Mg_xSi_2O_8:Eu^{2+},Mn^{2+}$, wherein $1 < x \le 2$ $1 \le x \le 2$;

wherein the phosphor composition is capable of absorbing the radiation emitted by the semiconductor light source and converting the radiation into white light.

- 18. (Currently Amended) A phosphor blend comprising a blue emitting phosphor, a green emitting phosphor and a red emitting phosphor comprising $(Ba,Sr,Ca)_3Mg_xSi_2O_8:Eu^{2+},Mn^{2+}$, wherein $1 < x \le 2$.
- 19. (Original) The phosphor blend of claim 18, wherein said phosphor blend is capable of absorbing the radiation emitted by a semiconductor light source emitting from 235-430 nm and converting the radiation into white light.

U.S. Serial No. 10/636,016 Attorney Docket No.: GLOZ 200135

- 20. (Currently Amended) A lighting apparatus for emitting light comprising:
- a semiconductor light source emitting radiation having a wavelength in the range of from about 235 to about 430 nm;

a phosphor composition radiationally coupled to the semiconductor light source, the phosphor composition comprising a red emitting phosphor comprising $(Ba,Sr,Ca)_3Mg_xSi_2O_8:Eu^{2+},Mn^{2+}$, wherein $1 < x \le 2$ $1 \le x \le 2$.

21. (Canceled)

22. (Previously presented)A lighting apparatus for emitting light according to claim 20, wherein said (Ba,Sr,Ca)₃Mg_xSi₂O₈:Eu²⁺,Mn²⁺ phosphor emits radiation having a first emission peak at about 430 to about 475 nm and a second emission peak at around 610 to 700 nm.