Administrator Training for Apache Hadoop

The Case for Apache Hadoop

The Data Deluge (1)

We are generating more data than ever

- Financial transactions
- Sensor networks
- Server logs
- Analytics
- e-mail and text messages
- Social media

The Data Deluge (2)

And we are generating data faster than ever

- Automation
- Ubiquitous internet connectivity
- User-generated content

For example, every day

- Twitter processes 500 million messages
- Amazon S3 storage adds more than one billion objects
- Facebook users generate 4.5 billion comments and "Likes"

Data is Value

This data has many valuable applications

- Marketing analysis
- Product recommendations
- Demand forecasting
- Fraud detection
- And many, many more...
- We must process it to extract that value

Data Processing Scalability

- How can we process all that information?
- There are actually two problems
 - Large-scale data storage
 - Large-scale data analysis

Disk Capacity and Price

- We are generating more data than ever before
- Fortunately, the size and cost of storage has kept pace
 - Capacity has increased while price has decreased

Year	Capacity (GB)	Cost per GB (USD)
1997	2.1	\$157
2004	200	\$1.05
2015	3,000	\$0.029

Disk Capacity and Performance

- Disk performance has also increased in the last 15 years
- Unfortunately, transfer rates have not kept pace with capacity

Year	Capacity (GB)	Transfer Rate (MB/s)	Disk Read Time
1997	2.1	16.6	126 seconds
2004	200	56.5	59 minutes
2015	3,000	210	3 hours, 58 minutes

Data Access is the Bottleneck

- Although we can process data more quickly, accessing it is slow
 - This is true for both reads and writes
- For example, reading a single 3TB disk takes almost four hours
 - We cannot process the data until we have read it
 - We are limited by the speed of a single disk
- We will see Hadoop's solution in a few moments
 - But first we will examine how we process large amounts of data

Monolithic Computing

- Traditionally, computation has been processor-bound
 - Intense processing on small amounts of data
- For decades, the goal was a bigger, more powerful machine
 - Faster processor, more RAM
- This approach has limitations
 - High cost
 - Limited scalability

Distributed Computing

Modern large-scale processing is distributed across machines

- Often hundreds or thousands of nodes
- Common frameworks include MPI, PVM and Condor

Focuses on distributing the processing workload

- Powerful compute nodes
- Separate systems for data storage
- Fast network connections to connect them

Distributed Computing Processing Pattern

Typical processing pattern

- Step 1: Copy input data from storage to compute node
- Step 2: Perform necessary processing
- Step 3: Copy output data back to storage

This works fine with relatively small amounts of data

- That is, where step 2 dominates overall runtime

Data Processing Bottleneck

That pattern does not scale with large amounts of data

- More time spent copying data than actually processing it
- Getting data to the processors is the bottleneck

Grows worse as more compute nodes are added

- They are competing for the same bandwidth
- Compute nodes become starved for data

Complexity of Distributed Computing

- Distributed systems pay for scalability by adding complexity
- Much of this complexity involves
 - Availability
 - Data consistency
 - Event synchronization
 - Bandwidth limitations
 - Partial failure
 - Cascading failures
- These are often more difficult than the original problem
 - Error handling often accounts for the majority of the code

System Requirements: Failure Handling

- Failure is inevitable
 - We should strive to handle it well
- An ideal solution should have (at least) these properties

Failure-Handling Properties of an Ideal Distributed System		
Automatic	Job can still complete without manual intervention	
Transparent	Tasks assigned to a failed component are picked up by others	
Graceful	Failure results only in a proportional loss of load capacity	
Recoverable	That capacity is reclaimed when the component is later replaced	
Consistent	Failure does not produce corruption or invalid results	

More System Requirements

Linear horizontal scalability

- Adding new nodes should add proportional load capacity
- Avoid contention by using a "shared nothing" architecture
- Must be able to expand cluster at a reasonable cost

Jobs run in relative isolation

- Results must be independent of other jobs running concurrently
- Although performance can be affected by other jobs

Simple programming model

- Should support a widely-used language
- The API must be relatively easy to learn

Hadoop addresses these requirements

Hadoop: A Radical Solution

Traditional distributed computing frequently involves

- Complex programming requiring explicit synchronization
- Expensive, specialized fault-tolerant hardware
- High-performance storage systems with built-in redundancy

Hadoop takes a radically different approach

- Inspired by Google's GFS and MapReduce architecture
- This new approach addresses the problems described earlier

Hadoop Scalability

Hadoop aims for linear horizontal scalability

- Cross-communication among nodes is minimal
- Just add nodes to increase cluster capacity and performance

Clusters are built from industry-standard hardware

- Widely-available and relatively inexpensive servers
- You can "scale out" later when the need arises

Solution: Data Access Bottleneck

- Recap: separate storage and compute systems create bottleneck
 - Can spend more time copying data than processing it
- Solution: store and process data on the same machines
 - This is why adding nodes increases capacity and performance
- Optimization: Use intelligent job scheduling (data locality)
 - Hadoop tries to process data on the same machine that stores it
 - This improves performance and conserves bandwidth
 - "Bring the computation to the data"

Solution: Disk Performance Bottleneck

- Recap: a single disk has great capacity but poor performance
- Solution: use multiple disks in parallel
 - The transfer rate of one disk might be 210 megabytes/second
 - Almost four hours to read 3 TB of data
 - 1000 such disks in parallel can transfer 210 gigabytes/second
 - Less than 15 seconds to read 3TB of data
- Colocated storage and processing makes this solution feasible
 - 100-node cluster with 10 disks per node = 1000 disks

Solution: Complex Processing Code

- Recap: Distributed programming is very difficult
 - Often done in C or FORTRAN using complex libraries
- Solution: Use a popular language and a high-level API
 - MapReduce code is typically written in Java (like Hadoop itself)
 - It is possible to write MapReduce in nearly any language
- The MapReduce programming model simplifies processing
 - Deal with one record (key-value pair) at a time
 - Complex details are abstracted away
 - No file I/O
 - No networking code
 - No synchronization

Solution: Fault Tolerance

Recap: Distributed systems often use expensive components

- In order to minimize the *possibility* of failure

Solution: Realize that failure is inevitable

- And instead try to minimize the effect of failure
- Hadoop satisfies all the requirements we discussed earlier

Machine failure is a regular occurrence

- A server might have a mean time between failures (MTBF) of 5 years (~1825 days)
- Equates about one failure per day in a 2,000 node cluster

Core Hadoop Components

- Hadoop is a system for large-scale data processing
- Hadoop provides
 - HDFS for data storage
 - The extensible YARN framework
 - For application scheduling and resource management
 - Includes MapReduce version 2 for data processing
- Plus the infrastructure needed to make them work, including
 - Filesystem utilities
 - Application scheduling and monitoring
 - Web UI

The Hadoop Ecosystem

Many related tools integrate with Hadoop

- Data processing: Spark
- Data analysis: Hive, Pig, and Impala
- Data discovery: Solr (Cloudera Search)
- Machine learning: MLlib, Mahout, and others
- Data ingestion: Sqoop, Flume, Kapa
- Coordination: ZooKeeper
- User experience: Hue
- Workflow management: Oozie
- Cluster management: Cloudera Manager

These are not considered "core Hadoop"

- Rather, they are part of the "Hadoop ecosystem"
- Many are also open source Apache projects
- We will learn about several of these later in the course

Hadoop Cluster Installation

Hadoop Cluster Overview

- Hadoop daemons run on a cluster of machines
- The Hadoop Distributed File System (HDFS) is used to distribute data amongst the nodes
- Computational frameworks such as MapReduce, Spark, and Impala bring the computing to the data
- To realize the benefits of Hadoop you must deploy Hadoop daemons across a sizable cluster of machines
 - Many organizations maintain multiple clusters, each with hundreds or thousands of nodes

Deploying on Multiple Machines

- When commissioning multiple machines, use an automated operating system deployment tool
 - Red Hat's Kickstart
 - Debian Fully Automatic Installation
 - Dell Crowbar
 - ...
- You might optionally use a tool to manage the underlying operating system
 - Puppet
 - Chef
 - ...
- Use Cloudera Manager to install Hadoop and manage the Hadoop cluster

Hadoop Requirements (1)

Supported Operating Systems (all 64-bit)

- Red Hat Enterprise Linux/Centos 5.7, 6.4, 6.5, 6.6
- Oracle Enterprise Linux 5.6, 6.4, 6.5, 6.6
- SUSE Linux Enterprise Server 11 Service Pack 2 or later
- Debian 7.0, 7.1
- Ubuntu 12.04, 14.04

Supported Browsers

- Internet Explorer 9 or later
- Google Chrome
- Safari 5 or later
- Firefox 24 or 31

Hadoop Requirements (2)

Supported JDKs

- Oracle JDK 1.7.0_55, 1.7.0_67 or higher, 1.8.0_40 or higher

Supported databases

- MySQL 5.5 and 5.6
- Oracle 11g Release 2
- PostgreSQL 8.4, 9.2, and 9.3

Basic Hadoop Cluster Installation: HDFS and YARN (MR2 Included)

- YARN Resource Manager, Job History Server, and many NodeManagers
- HDFS Name Node(s) and many DataNodes

Distribute the Daemons

Not all daemons run on each machine

- NameNode, ResourceManager, JobHistoryServer ('master' daemons)
 - One per cluster, unless running in an HA configuration
- Secondary NameNode
 - One per cluster in a non-HA environment
- DataNodes, NodeManagers
 - On each data node in the cluster
- Exception: for small clusters (less than 10 20 nodes), it is acceptable for more than one of the master daemons to run on the same physical node

Lab: Launching Cluster HDFS