Introduction to POMDPs

Dr. Stephan Timmer

Institute of Cognitive Science, University of Osnabrück

Partially Observable Markov Decision Processes

Uncertainty in Reinforcement Learning

Agent Architecture

Agent achieves goals by interacting with environment

Uncertainty in Reinforcement Learning

Agent Architecture

Agent achieves goals by interacting with environment

Partial Observability

 Uncertainty about state is induced through noisy sensory measurements

Uncertainty in Reinforcement Learning

Agent Architecture

Agent achieves goals by interacting with environment

Partial Observability

- Uncertainty about state is induced through noisy sensory measurements
- Observations do not reveal complete state information

Partially Observable Markov Decision Process

A POMDP is given by $M = (T, S, O, A, P_S, P_O, r)$

Partially Observable Markov Decision Process

A POMDP is given by $M = (T, S, O, A, P_S, P_O, r)$

T: Discretized Time Finite set of decision stages $T := \{0, ..., T_F\}$

Partially Observable Markov Decision Process

```
A POMDP is given by M = (T, S, O, A, P_S, P_O, r)
```

T: Discretized Time Finite set of decision stages $T := \{0, ..., T_F\}$

S: State Space Set of environmental states denoted by $s \in S$

Partially Observable Markov Decision Process

```
A POMDP is given by M = (T, S, O, A, P_S, P_O, r)
```

T: Discretized Time Finite set of decision stages $T := \{0, ..., T_F\}$

S: State Space Set of environmental states denoted by $s \in S$

O: Observation Space Set of observations denoted by $o \in O$

Partially Observable Markov Decision Process

```
A POMDP is given by M = (T, S, O, A, P_S, P_O, r)
```

- T: Discretized Time Finite set of decision stages $T := \{0, ..., T_F\}$
- S: State Space Set of environmental states denoted by $s \in S$
- *O*: Observation Space Set of observations denoted by $o \in O$
- A: Action Space Set of available actions denoted by $a \in A$

Partially Observable Markov Decision Process

```
A POMDP is given by M = (T, S, O, A, P_S, P_O, r)
```

T: Discretized Time Finite set of decision stages $T := \{0, ..., T_F\}$

S: State Space Set of environmental states denoted by $s \in S$

O: Observation Space Set of observations denoted by $o \in O$

A: Action Space Set of available actions denoted by $a \in A$

 P_S : Transition Model Transition matrix $P_S(s_t \mid s_{t-1}, a_{t-1})$

Partially Observable Markov Decision Process

```
A POMDP is given by M = (T, S, O, A, P_S, P_O, r)
```

T: Discretized Time Finite set of decision stages $T := \{0, ..., T_F\}$

S: State Space Set of environmental states denoted by $s \in S$

O: Observation Space Set of observations denoted by $o \in O$

A: Action Space Set of available actions denoted by $a \in A$

 P_S : Transition Model Transition matrix $P_S(s_t \mid s_{t-1}, a_{t-1})$

 P_O : Observation Model Observation matrix $P_O(o_t \mid s_t, a_{t-1})$

Partially Observable Markov Decision Process

```
A POMDP is given by M = (T, S, O, A, P_S, P_O, r)
```

T: Discretized Time Finite set of decision stages $T := \{0, ..., T_F\}$

S: State Space Set of environmental states denoted by $s \in S$

O: Observation Space Set of observations denoted by $o \in O$

A: Action Space Set of available actions denoted by $a \in A$

 P_S : Transition Model Transition matrix $P_S(s_t \mid s_{t-1}, a_{t-1})$

 P_O : Observation Model Observation matrix $P_O(o_t \mid s_t, a_{t-1})$

r: Reward Model Reward function $r: S \times A \rightarrow \mathbb{R}$

The Famous Tiger Problem

State Space

$$S = LEFT$$

$$S = RIGHT$$

The Famous Tiger Problem State Space

S = LEFT

Actions and Rewards

S = RIGHT

The Famous Tiger Problem State Space

S = LEFT

Actions and Rewards

S = RIGHT

The Famous Tiger Problem State Space

S = LEFT

Actions and Rewards

S = RIGHT

The Famous Tiger Problem

State Space

S = RIGHT

Observations (Listening for R = -1)

The Famous Tiger Problem

State Space

$$S = LEFT$$

S = RIGHT

Observations (Listening for R = -1)

$$P(o = HL \mid s = LEFT) = 0.85$$

$$P(o = HR \mid s = LEFT) = 0.15$$

$$P(o = HL \mid s = RIGHT) = 0.15$$

$$P(o = HR \mid s = RIGHT) = 0.85$$

Fully Observable Processes

An optimal policy is given by a sequence of mappings $\pi^*:=(\pi_t^*)_{(0\leq t<\mathcal{T}_F)}$ each constituting a rule $\pi_t:S\to A$ for choosing actions

Fully Observable Processes

An optimal policy is given by a sequence of mappings $\pi^* := (\pi_t^*)_{(0 \le t < T_F)}$ each constituting a rule $\pi_t : S \to A$ for choosing actions

$$\pi^* \in \arg\max_{\pi \in \Pi} E[\sum_{t=0}^{T_F-1} r(s_t, \pi_t(s_t)) + r(s_{T_F}, \cdot)]$$

Fully Observable Processes

An optimal policy is given by a sequence of mappings $\pi^* := (\pi_t^*)_{(0 \le t < T_F)}$ each constituting a rule $\pi_t : S \to A$ for choosing actions

$$\pi^* \in rg \max_{\pi \in \Pi} E[\sum_{t=0}^{T_F-1} r(s_t, \pi_t(s_t)) + r(s_{\mathcal{T}_F}, \cdot)]$$

Partially Observable Processes

Given that current state s_t is unknown, what information is available in order to choose optimal actions?

Fully Observable Processes

An optimal policy is given by a sequence of mappings $\pi^* := (\pi_t^*)_{(0 \le t < T_F)}$ each constituting a rule $\pi_t : S \to A$ for choosing actions

$$\pi^* \in rg \max_{\pi \in \Pi} E[\sum_{t=0}^{T_F-1} r(s_t, \pi_t(s_t)) + r(s_{T_F}, \cdot)]$$

Partially Observable Processes

Given that current state s_t is unknown, what information is available in order to choose optimal actions?

The complete sequence of past actions and observations

Fully Observable Processes

An optimal policy is given by a sequence of mappings $\pi^* := (\pi_t^*)_{(0 \le t < T_F)}$ each constituting a rule $\pi_t : S \to A$ for choosing actions

$$\pi^* \in rg \max_{\pi \in \Pi} E[\sum_{t=0}^{T_F-1} r(s_t, \pi_t(s_t)) + r(s_{T_F}, \cdot)]$$

Partially Observable Processes

Given that current state s_t is unknown, what information is available in order to choose optimal actions?

The complete sequence of past actions and observations \Rightarrow Optimal policy π^* depends on past actions and observations

Policy \equiv Tree

$Policy \equiv Tree$

Policy ≡ Mapping

Policy
$$\pi: (A \times O)^* \to A$$

 $\pi([]) = Listen$
 $\pi([Listen, HL]) = Right$ $\pi([Listen, HR]) = Left$

$Policy \equiv Tree$

$Policy \equiv Tree$

$\mathsf{Policy} \equiv \mathsf{Mapping}$

$$\pi([]) = \textit{Listen}$$

$$\pi([\textit{Listen}, \textit{HL}] = \textit{Listen} \qquad \pi([\textit{Listen}, \textit{HR}]) = \textit{Left}$$

$$\pi([\textit{Listen}, \textit{HL}, \textit{Listen}, \textit{HL}]) = \textit{Right} \qquad \pi([\textit{Listen}, \textit{HL}, \textit{Listen}, \textit{HR}]) = \textit{Left}$$

How to solve POMDPs?

Question: How is it possible to compute an optimal policy tree?

How to solve POMDPs?

Question: How is it possible to compute an optimal policy tree?

Answer: Perform value iteration on branches of policy trees

How to solve POMDPs?

Question: How is it possible to compute an optimal policy tree? Answer: Perform value iteration on branches of policy trees

⇒ Branches correspond to sequences of actions and observations

How to solve POMDPs?

Question: How is it possible to compute an optimal policy tree? Answer: Perform value iteration on branches of policy trees

⇒ Branches correspond to sequences of actions and observations

Definition (Information States)

The information state I_t is defined to be the complete sequence of actions and observations $[a_0, o_1, a_1, o_2, ..., a_{t-1}, o_t]$ until time t. The information state space I contains all possible information states.

Given a POMDP $M := (T, S, A, O, P_S, P_O, r)$, we compute an optimal policy for M by transforming M into an MDP called Information State MDP

Given a POMDP $M := (T, S, A, O, P_S, P_O, r)$, we compute an optimal policy for M by transforming M into an MDP called Information State MDP

Definition (Information State MDP)

Discretized Time Does not change

Given a POMDP $M := (T, S, A, O, P_S, P_O, r)$, we compute an optimal policy for M by transforming M into an MDP called Information State MDP

Definition (Information State MDP)

Discretized Time Does not change State Space Given by information state space I

Given a POMDP $M := (T, S, A, O, P_S, P_O, r)$, we compute an optimal policy for M by transforming M into an MDP called Information State MDP

Definition (Information State MDP)

Discretized Time Does not change State Space Given by information state space *I* Action Space Does not change

Given a POMDP $M := (T, S, A, O, P_S, P_O, r)$, we compute an optimal policy for M by transforming M into an MDP called Information State MDP

Definition (Information State MDP)

Discretized Time Does not change

State Space Given by information state space I

Action Space Does not change

Transitions $P_I(I_{t+1} = [a_0, o_1, ..., a_t, o_{t+1}] \mid a_t, I_t) = p(o_{t+1} \mid a_t, I_t)$

Information State MDP

Given a POMDP $M := (T, S, A, O, P_S, P_O, r)$, we compute an optimal policy for M by transforming M into an MDP called Information State MDP

Definition (Information State MDP)

Discretized Time Does not change

State Space Given by information state space I

Action Space Does not change

Transitions
$$P_I(I_{t+1} = [a_0, o_1, ..., a_t, o_{t+1}] \mid a_t, I_t) = p(o_{t+1} \mid a_t, I_t)$$

Markov Property

Lemma

Information states constitute a markovian state space. It holds that $P_I(I_{t+1} \mid a_t, I_t) = P_I(I_{t+1} \mid a_t, I_t, I_{t-1}, ..., I_0)$ (memoryless process)

Markov Property

Lemma

Information states constitute a markovian state space. It holds that $P_I(I_{t+1} \mid a_t, I_t) = P_I(I_{t+1} \mid a_t, I_t, I_{t-1}, ..., I_0)$ (memoryless process)

$$I_k = [a_0, o_1, ..., a_{k-1}, o_k] \subset [a_0, o_1, ..., a_{t-1}, o_t] = I_t \ (0 \le k \le t-1)$$

Thus, it follows $P_I(I_{t+1} \mid a_t, I_t) = P_I(I_{t+1} \mid a_t, I_t, I_{t-1}, ..., I_0)$

Value Iteration on Information States

Value Functions on Information States

Compute sequence of value functions $(V_n)_{0 \le n \le T_F}$ defined on information states, $V_n : (A \times O)^* \to \mathbb{R}$

Value Iteration on Information States

Value Functions on Information States

Compute sequence of value functions $(V_n)_{0 \le n \le T_F}$ defined on information states, $V_n : (A \times O)^* \to \mathbb{R}$

Algorithm

1. Initialization

$$V_{T_F}(I_{T_F}) = \sum_{s \in S} p(s_{T_F} = s \mid I_{T_F}) r(s, \cdot)$$

Value Iteration on Information States

Value Functions on Information States

Compute sequence of value functions $(V_n)_{0 \le n \le T_F}$ defined on information states, $V_n : (A \times O)^* \to \mathbb{R}$

Algorithm

1. Initialization

$$V_{T_F}(I_{T_F}) = \sum_{s \in S} p(s_{T_F} = s \mid I_{T_F}) r(s, \cdot)$$

2. Bellman Equation

$$\begin{aligned} V_n^*(I_t) &= \max_{a \in A} [\sum_{s \in S} p(s_t = s | I_t) r(s, a) \\ &+ \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(I_{t+1} = \{a_0, ..., a_t = a, o_{t+1} = o\})] \end{aligned}$$

$$V_0([]) = \max\{r(Left) + V_1([Left, T]),$$

$$V_0([]) = \max\{r(Left) + V_1([Left, T]), r(Right) + V_1([Right, T]),$$

$$V_0([]) = \max\{r(Left) + V_1([Left, T]), r(Right) + V_1([Right, T]), r(Listen) + \sum_{o \in \{HL, HR\}} p(o \mid [Listen]) V_1([Listen, o])\}$$

$$V_1([Left, T]) = V_2([Left, T, \cdot, T])$$

 $V_1([Right, T]) = V_2([Right, T, \cdot, T])$

$$V_1([\mathit{Listen}, \mathit{HL}]) = \max\{r(\mathit{Left}) + V_2([\mathit{Listen}, \mathit{HL}, \mathit{Left}, \mathit{T}]), \\ r(\mathit{Right}) + V_2([\mathit{Listen}, \mathit{HL}, \mathit{Right}, \mathit{T}]), \\ r(\mathit{Listen}) + V_2([\mathit{Listen}, \mathit{HL}, \mathit{Listen}, \mathit{T}])\}$$

$$V_2(I) = \sum_{s \in S} p(s \mid I) r(s, \cdot)$$
$$= 0$$

1. Model of Information state MDP unknown

- 1. Model of Information state MDP unknown
 - \Rightarrow Formulas needed for $p(o_t \mid a_t, I_t)$ and $p(s_t \mid I_t)$

- 1. Model of Information state MDP unknown
 - \Rightarrow Formulas needed for $p(o_t \mid a_t, I_t)$ and $p(s_t \mid I_t)$
- 2. Length of information states grows linearly with horizon T_F

- 1. Model of Information state MDP unknown \Rightarrow Formulas needed for $p(o_t \mid a_t, I_t)$ and $p(s_t \mid I_t)$
- 2. Length of information states grows linearly with horizon T_F
- 3. Number of information states grows exponentially with horizon T_F

Belief States

How can we represent information states by a (data)-structure of constant size?

Belief States

How can we represent information states by a (data)-structure of constant size?

Definition (Belief State)

The belief state b_t is an |S|-dimensional vector such that $b_t(s) := p(s_t = s \mid I_t)$. Belief states therefore form probability distributions over states.

Value Functions on Belief States

Theorem (Equivalence of Information States and Belief States)

Given a POMDP $(T, S, A, O, P_S, P_O, r)$ and a finite horizon T_F , it is possible to rewrite the sequence of (optimal) value functions $(V_n^*)_{(0 \le n \le T_F)}$ in terms of belief states

Value Functions on Belief States

Theorem (Equivalence of Information States and Belief States)

Given a POMDP $(T, S, A, O, P_S, P_O, r)$ and a finite horizon T_F , it is possible to rewrite the sequence of (optimal) value functions $(V_n^*)_{(0 \le n \le T_F)}$ in terms of belief states

$$V_n^*(b) := \max_{a \in A} [\sum_{s \in S} b(s)r(s, a) + \beta \sum_{o \in O} \sum_{s' \in s, s'' \in S} P_O(o \mid s'', a) \\ \cdot P_S(s'' \mid s', a)b(s')V_{n+1}^*(b_o^a)]$$

Value Functions on Belief States

Theorem (Equivalence of Information States and Belief States)

Given a POMDP $(T, S, A, O, P_S, P_O, r)$ and a finite horizon T_F , it is possible to rewrite the sequence of (optimal) value functions $(V_n^*)_{(0 \le n \le T_F)}$ in terms of belief states

$$\begin{aligned} V_n^*(b) &:= \max_{a \in A} [\sum_{s \in S} b(s) r(s, a) + \beta \sum_{o \in O} \sum_{s' \in s, s'' \in S} P_O(o \mid s'', a) \\ &\cdot P_S(s'' \mid s', a) b(s') V_{n+1}^*(b_o^a)] \end{aligned}$$

The belief state b_o^a denotes the successor belief of b after executing action $a \in A$ and making observation $o \in O$

$$b_o^a(s) := \frac{P_O(o \mid s, a) \sum_{s' \in S} P_S(s \mid s', a) b(s')}{\sum_{s' \in S, s'' \in S} P_S(s'' \mid s', a) P_O(o \mid s'', a) b(s')}$$

Successor Beliefs

Lemma

Given that $b := b_t$, $a := a_t$, $o := o_{t+1}$, it holds that

$$b_o^a(s) = b_{t+1} = \frac{P_O(o \mid s, a) \sum_{s' \in S} P_S(s \mid s', a) b_t(s')}{\sum_{s' \in S, s'' \in S} P_S(s'' \mid s', a) P_O(o \mid s'', a) b_t(s')}$$

$$b_{t+1}(s) = p(s_{t+1} = s \mid I_{t+1})$$

$$b_{t+1}(s) = p(s_{t+1} = s \mid I_{t+1})$$

= $p(s_{t+1} = s \mid I_t, o_{t+1} = o, a_t = a)$

$$\begin{aligned} b_{t+1}(s) &= p(s_{t+1} = s \mid I_{t+1}) \\ &= p(s_{t+1} = s \mid I_t, o_{t+1} = o, a_t = a) \\ &= \frac{p(s_{t+1} = s, o_{t+1} = o, I_t, a_t = a)}{p(o_{t+1} = o, I_t, a_t = a)} \end{aligned}$$

$$b_{t+1}(s) = p(s_{t+1} = s \mid I_{t+1})$$

$$= p(s_{t+1} = s \mid I_t, o_{t+1} = o, a_t = a)$$

$$= \frac{p(s_{t+1} = s, o_{t+1} = o, I_t, a_t = a)}{p(o_{t+1} = o, I_t, a_t = a)}$$

$$= \frac{p(s_{t+1} = s, o_{t+1} = o \mid I_t, a_t = a)}{p(o_{t+1} = o \mid I_t, a_t = a)}$$

Proof.

$$\sum_{s'\in S}b_t(s')$$

Proof.

$$\sum_{s'\in S} P_S(s\mid s',a)b_t(s')$$

Proof.

$$P_O(o \mid s, a) \sum_{s' \in S} P_S(s \mid s', a) b_t(s')$$

Proof.

$$p(s_{t+1} = s, o_{t+1} = o \mid I_t, a_t = a) = P_O(o \mid s, a) \sum_{s' \in S} P_S(s \mid s', a) b_t(s')$$

Proof.

Numerator

$$p(s_{t+1} = s, o_{t+1} = o \mid I_t, a_t = a) = P_O(o \mid s, a) \sum_{s' \in S} P_S(s \mid s', a) b_t(s')$$

$$\sum_{s'\in S}b_t(s')$$

Proof.

Numerator

$$p(s_{t+1} = s, o_{t+1} = o \mid I_t, a_t = a) = P_O(o \mid s, a) \sum_{s' \in S} P_S(s \mid s', a) b_t(s')$$

$$\sum_{s'' \in S} \sum_{s' \in S} P_S(s'' \mid s', a) b_t(s')$$

Proof.

Numerator

$$p(s_{t+1} = s, o_{t+1} = o \mid I_t, a_t = a) = P_O(o \mid s, a) \sum_{s' \in S} P_S(s \mid s', a) b_t(s')$$

$$\sum_{s'' \in S} \sum_{s' \in S} P_O(o \mid s'', a) P_S(s'' \mid s', a) b_t(s')$$

Proof.

Numerator

$$p(s_{t+1} = s, o_{t+1} = o \mid I_t, a_t = a) = P_O(o \mid s, a) \sum_{s' \in S} P_S(s \mid s', a) b_t(s')$$

$$p(o_{t+1} = o \mid I_t, a_t = a) = \sum_{s'' \in S} \sum_{s' \in S} P_O(o \mid s'', a) P_S(s'' \mid s', a) b_t(s')$$

Value Functions on Belief States (2)

Theorem

The sequence of (optimal) value functions $(V_n^*)_{(0 \le n \le T_F)}$ can be rewritten in terms of belief states such that

$$\forall \ 0 \leq n \leq T_F, \ \forall t \in T : V_n^*(I_t) = V_n^*(b_t)$$

Theorem

The sequence of (optimal) value functions $(V_n^*)_{(0 \le n \le T_F)}$ can be rewritten in terms of belief states such that $\forall 0 \le n \le T_F, \ \forall t \in T : V_n^*(I_t) = V_n^*(b_t)$

Proof.

Theorem

The sequence of (optimal) value functions $(V_n^*)_{(0 \le n \le T_F)}$ can be rewritten in terms of belief states such that $\forall 0 \le n \le T_F, \ \forall t \in T : V_n^*(I_t) = V_n^*(b_t)$

Proof.

$$V_{T_F}^*(I_t) = \sum_{s \in S} p(s_t = s \mid I_t) r(s, \cdot)$$

Theorem

The sequence of (optimal) value functions $(V_n^*)_{(0 \le n \le T_F)}$ can be rewritten in terms of belief states such that

$$\forall \ 0 \leq n \leq T_F, \ \forall t \in T : V_n^*(I_t) = V_n^*(b_t)$$

Proof.

$$V_{T_F}^*(I_t) = \sum_{s \in S} p(s_t = s \mid I_t) r(s, \cdot)$$

= $\sum_{s \in S} b_t(s) r(s, \cdot)$

Theorem

The sequence of (optimal) value functions $(V_n^*)_{(0 \le n \le T_F)}$ can be rewritten in terms of belief states such that

$$\forall \ 0 \leq n \leq T_F, \ \forall t \in T : V_n^*(I_t) = V_n^*(b_t)$$

Proof.

$$egin{aligned} V_{T_F}^*(I_t) &= \sum_{s \in S} p(s_t = s \mid I_t) r(s,\cdot) \ &= \sum_{s \in S} b_t(s) r(s,\cdot) \ &= V_{T_F}^*(b_t) \end{aligned}$$

Proof.

Proof.

$$V_n^*(I_t) = \max_{a \in A} \left[\sum_{s \in S} p(s_t = s | I_t) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(I_{t+1}) \right]$$

Proof.

$$\begin{aligned} V_n^*(I_t) &= \max_{a \in A} [\sum_{s \in S} p(s_t = s | I_t) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(I_{t+1})] \\ &= \max_{a \in A} [\sum_{s \in S} b_t(s) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(b_{t+1})] \end{aligned}$$

Proof.

$$\begin{split} V_n^*(I_t) &= \max_{a \in A} [\sum_{s \in S} p(s_t = s | I_t) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(I_{t+1})] \\ &= \max_{a \in A} [\sum_{s \in S} b_t(s) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(b_{t+1})] \\ &= \max_{a \in A} [\sum_{s \in S} b_t(s) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(b_o^a)] \end{split}$$

Proof.

$$\begin{split} V_n^*(I_t) &= \max_{a \in A} [\sum_{s \in S} p(s_t = s | I_t) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(I_{t+1})] \\ &= \max_{a \in A} [\sum_{s \in S} b_t(s) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(b_{t+1})] \\ &= \max_{a \in A} [\sum_{s \in S} b_t(s) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(b_o^a)] \\ &= \max_{a \in A} [\sum_{s \in S} b_t(s) r(s, a) + \beta \sum_{o \in O} \sum_{s' \in s, s'' \in S} P_O(o | s'', a) \\ &\cdot P_S(s'' | s', a) b_t(s') V_{n+1}^*(b_o^a)] \end{split}$$

Proof.

$$\begin{split} V_n^*(I_t) &= \max_{a \in A} [\sum_{s \in S} p(s_t = s | I_t) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(I_{t+1})] \\ &= \max_{a \in A} [\sum_{s \in S} b_t(s) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(b_{t+1})] \\ &= \max_{a \in A} [\sum_{s \in S} b_t(s) r(s, a) + \beta \sum_{o \in O} p(o_{t+1} = o | I_t, a) V_{n+1}^*(b_o^a)] \\ &= \max_{a \in A} [\sum_{s \in S} b_t(s) r(s, a) + \beta \sum_{o \in O} \sum_{s' \in s, s'' \in S} P_O(o | s'', a) \\ &\cdot P_S(s'' | s', a) b_t(s') V_{n+1}^*(b_o^a)] \\ &= V_n^*(b_t) \end{split}$$

Value Iteration on Belief States

Value Functions on Belief States

Compute sequence of value functions $(V_n)_{0 \le n \le T_F}$ defined on belief states, $V_n : B \to \mathbb{R}$

Value Iteration on Belief States

Value Functions on Belief States

Compute sequence of value functions $(V_n)_{0 \le n \le T_F}$ defined on belief states, $V_n : B \to \mathbb{R}$

Algorithm

1. Initialization

$$V_{T_F}(b) = \sum_{s \in S} b(s) r(s, \cdot)$$

Value Iteration on Belief States

Value Functions on Belief States

Compute sequence of value functions $(V_n)_{0 \le n \le T_F}$ defined on belief states, $V_n : B \to \mathbb{R}$

Algorithm

1. Initialization

$$V_{T_F}(b) = \sum_{s \in S} b(s) r(s, \cdot)$$

2. Bellman Equation

$$V_n^*(b) := \max_{a \in A} [\sum_{s \in S} b(s)r(s, a) + \beta \sum_{o \in O} \sum_{s' \in s, s'' \in S} P_O(o \mid s'', a) + P_S(s'' \mid s', a)b(s')V_{n+1}^*(b_o^a)]$$

Optimal Policy for $T_F = 3$

Optimal Policy Tree

Question What about non-uniform initial beliefs over states?

Question What about non-uniform initial beliefs over states? Short Answer The optimal policy tree may change!

Question What about non-uniform initial beliefs over states? Short Answer The optimal policy tree may change! Long Answer There may be several regions B_r partitioning the belief space B such that a policy tree P_r is optimal within region B_r

Question What about non-uniform initial beliefs over states?

Short Answer The optimal policy tree may change!

Long Answer There may be several regions B_r partitioning the belief space B such that a policy tree P_r is optimal within region B_r

General Value Functions

Let V_r be the optimal value function for policy tree P_r

$$V^*(b) = \max_{B_r} V_r(b)$$

Lemma

Let b_s be the belief state assigning probability p = 1 to state $s \in S$. Thus, it holds that

$$V(b) = \sum_{s \in S} b(s)V(b_s)$$

Lemma

Let b_s be the belief state assigning probability p=1 to state $s \in S$. Thus, it holds that

$$V(b) = \sum_{s \in S} b(s)V(b_s)$$

Vector Representation of V^*

$$V^*(b) = \max_{B_r} V_r(b)$$

Lemma

Let b_s be the belief state assigning probability p=1 to state $s \in S$. Thus, it holds that

$$V(b) = \sum_{s \in S} b(s)V(b_s)$$

Vector Representation of V^*

$$V^*(b) = \max_{B_r} V_r(b)$$
$$= \max_{B_r} \sum_{s \in S} b(s) V_r(b_s)$$

Lemma

Let b_s be the belief state assigning probability p = 1 to state $s \in S$. Thus, it holds that

$$V(b) = \sum_{s \in S} b(s)V(b_s)$$

Vector Representation of V^*

$$V^*(b) = \max_{B_r} V_r(b)$$

$$= \max_{B_r} \sum_{s \in S} b(s) V_r(b_s)$$

$$= \max_{B_r} b * \alpha_r [\text{ with } \alpha_r(s) := V_r(b_s)]$$

General Value Iteration for POMDPs

Theorem

Given a POMDP $(T, S, A, O, P_S, P_O, r)$ and a finite horizon T_F , each value function from the sequence of optimal value functions $(V_n^*)_{(0 \le n \le T_E)}$ can be represented by a finite set of vectors Γ_n .

General Value Iteration for POMDPs

Theorem

Given a POMDP $(T, S, A, O, P_S, P_O, r)$ and a finite horizon T_F , each value function from the sequence of optimal value functions $(V_n^*)_{(0 \le n < T_F)}$ can be represented by a finite set of vectors Γ_n .

$$\Gamma_n := \{ \sum_{o \in O} \alpha_{f(o)}^{o,a} \mid f \in f(O, \Gamma_{n+1}), \ a \in A \}$$

The symbol $f(O, \Gamma_{n+1})$ denotes the set of possible mappings from observations to vectors from Γ_{n+1}

General Value Iteration for POMDPs

Theorem

Given a POMDP $(T, S, A, O, P_S, P_O, r)$ and a finite horizon T_F , each value function from the sequence of optimal value functions $(V_n^*)_{(0 \le n < T_F)}$ can be represented by a finite set of vectors Γ_n .

$$\Gamma_n := \{ \sum_{o \in O} \alpha_{f(o)}^{o,a} \mid f \in f(O, \Gamma_{n+1}), \ a \in A \}$$

The symbol $f(O, \Gamma_{n+1})$ denotes the set of possible mappings from observations to vectors from Γ_{n+1}

$$\forall \gamma \in \Gamma_{n+1} : \alpha_{\gamma}^{o,a}(s') := \frac{r(s',a)}{|O|} + \beta \sum_{s \in S} P_O(o \mid s,a) P_S(s \mid s',a) \gamma(s)$$

General Optimal Policy for $T_F = 2$

Computational Complexity

Theorem

There exists a family of POMDPs such that, for every m, |S|=2m, |A|=1, |O|=m, it exists $|\Gamma_n|=2$ and $|\Gamma_{n-1}|=2^m$

Computational Complexity

Theorem

There exists a family of POMDPs such that, for every m, |S| = 2m, |A| = 1, |O| = m, it exists $|\Gamma_n| = 2$ and $|\Gamma_{n-1}| = 2^m$

⇒ Solving POMDPs exactly is fundamentally inefficient!