Dynamic Programming 0/1 Knapsack

(Class 22)

0/1 Knapsack Problem: Dynamic Programming Approach

- For each $i \le n$ and each $w \le W$, solve the knapsack problem for the first i objects when the capacity is w.
- Why will this work?
- Because solutions to larger subproblems can be built up easily from solutions to smaller ones.

- We construct a matrix V[0 ... n, 0 ... W].
- For $1 \le i \le n$, and $0 \le j \le W$, V[i,j] will store the maximum value of any set of objects $\{1,2,\ldots,i\}$ that can fit into a knapsack of weight j.
- V[n, W] will contain the maximum value of all n objects that can fit into the entire knapsack of weight W.

- To compute entries of V we will imply an inductive approach.
- As a basis, V[0,j]=0 for $0 \le j \le W$ since if we have no items then we have no value.
- We consider two cases:
 - Leave object i: If we choose to not take object i, then the optimal value will come about by considering how to fill a knapsack of size j with the remaining objects $\{1, 2, ..., i-1\}$. This is just V[i-1, j].
 - Take object i: If we take object i, then we gain a value of v_i . But we use up w_i of our capacity.

With the remaining $j-w_i$ capacity in the knapsack, we can fill it in the best possible way with objects $\{1, 2, ..., i-1\}$.

This is $v_i + V[i-1, j-w_i]$. This is only possible if $w_i \leq j$.

• This leads to the following recursive formulation:

$$\begin{split} V[i,j] &= -\infty & \text{if } j < 0 \\ V[0,j] &= 0 & \text{if } j \geq 0 \\ V[i,j] &= \begin{cases} V[i-1,j] & \text{if } w_i > j \\ \max\{V[i-1,j], \ v_i + V[i-1,j-w_i]\} & \text{if } w_i \leq j \end{cases} \end{split}$$

- A naive evaluation of the running time of this recursive definition is exponential.
- So, as usual, we avoid re-computation by making a table.

- Example: The maximum weight the knapsack can hold is W is 11.
- There are five items to choose from.
- Their weights and values are presented in the following table:

Weight limit (j):	0	1	2	3	4	5	6	7	8	9	10	11
$w_1 = 1 \ v_1 = 1$												
$w_2 = 2 v_2 = 6$												
$w_3 = 5 v_3 = 18$												
$w_4 = 6 v_4 = 22$												
$w_5 = 7 v_5 = 28$												

• The [i, j] entry here will be V[i, j], the best value obtainable using the first i rows of items if the maximum capacity were j.

We begin by initializing the first row.

Weight limit:	0	1	2	3	4	5	6	7	8	9	10	11
$w_1 = 1 v_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2 v_2 = 6$	0											
$w_3 = 5 v_3 = 18$	0											
$w_4 = 6 v_4 = 22$	0											
$w_5 = 7 v_5 = 28$	0											

- Recall that we take V[i, j] to be 0 if either i or j is 0.
- We then proceed to fill in top-down, left-to-right always using:

$$V[i,j] = \max\{V[i-1,j], v_i + V[i-1,j-w_i]\}$$

Weight limit:	0	1	2	3	4	5	6	7	8	9	10	11
$w_1 = 1 v_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2 v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
$w_3 = 5 v_3 = 18$	0											
$w_4 = 6 v_4 = 22$	0											
$w_5 = 7 v_5 = 28$	0											

Weight limit:	0	1	2	3	4	5	6	7	8	9	10	11
$w_1 = 1 v_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2 v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
$w_3 = 5 v_3 = 18$	0	1	6	7	7	18	19	24	25	25	25	25
$w_4 = 6 v_4 = 22$	0											
$w_5 = 7 v_5 = 28$	0											

• As an illustration, the value of V[3,7] was computed as follows:

$$V[3,7] = \max\{V[3-1,7], v_3 + V[3-1,7-w_3]\}$$

$$= \max\{V[2,7], 18 + V[2,7-5]\}$$

$$= \max\{7, 18+6\}$$

$$= 24$$

Weight limit:	0	1	2	3	4	5	6	7	8	9	10	11
$w_1 = 1 v_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2 v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
$w_3 = 5 v_3 = 18$	0	1	6			18	19	24	25	25		
$w_4 = 6 v_4 = 22$	0	1	6	7	7	18	22	24	28	29	29	40
$w_5 = 7 v_5 = 28$	0											

• Finally, we have

Weight limit:												
$w_1 = 1 v_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2 v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
$w_3 = 5 v_3 = 18$	0	1	6	7	7	18	19	24	25	25	25	25
$w_4 = 6 v_4 = 22$	0	1	6	7	7	18	22	24	28	29	29	40
$w_1 = 1 \ v_1 = 1$ $w_2 = 2 \ v_2 = 6$ $w_3 = 5 \ v_3 = 18$ $w_4 = 6 \ v_4 = 22$ $w_5 = 7 \ v_5 = 28$	0	1	6	7	7	18	22	28	29	34	35	40

• The maximum value of items in the knapsack is 40, the bottom-right entry.

 The dynamic programming approach can now be coded as the following algorithm:

```
KNAPSACK(n,W)
1 for W \leftarrow 0 to W
2 do V[0,w] \leftarrow 0
3 for i \leftarrow 0 to n
4 do V[i, 0] \leftarrow 0
    for w \leftarrow 0 to W
5
       if (w_i < w \& v_i + V[i - 1, w - w_i] > V[i - 1, w])
          then V[i,w] \leftarrow v_i + V[i-1,w-w_i]
          else V[i,w] \leftarrow V[i-1,w]
```

- The time complexity of this algorithm is clearly $O(n \cdot W)$.
- It must be cautioned that as n and W get large, both time and space complexity become significant.

Constructing the Optimal Solution

- The algorithm for computing V[i,j] does not keep record of which subset of items gives the optimal solution.
- To compute the actual subset, we can add an auxiliary boolean matrix keep[i,j] which is 1 if we decide to take the ith item and 0 otherwise.

• We will use all the values keep[i, j] to determine the optimal subset T of items to put in the knapsack as follows:

- If keep[n, W] is 1, then $n \in T$. We can now repeat this argument for $keep[n-1, W-w_n]$.
- If keep[n, W] is 0, the $n \notin T$ and we repeat the argument for keep[n-1, W].

We will add this to the knapsack algorithm:

```
KNAPSACK(n,W)
1 for W \leftarrow 0 to W
2 do V[0,w] \leftarrow 0
3 for i \leftarrow 0 to n
4 do V[i, 0] \leftarrow 0
5 for w \leftarrow 0 to W
6 if (w_i < w \& v_i + V[i - 1, w - w_i] > V[i - 1, w])
         then V[i,w] \leftarrow v_i + V[i - 1,w - w_i]
         else V[i,w] \leftarrow V[i-1,w]
   // output the selected items
10 k ← W
11 for i \leftarrow n downto 1
12 if keep[i, k] = 1
13 then output i
14
        k \leftarrow k - w_i
```

Here is the keep matrix for the example problem.

Weight limit:	0	1	2	3	4	5	6	7	8	9	10	11
$w_1 = 1 \ v_1 = 1$ $w_2 = 2 \ v_2 = 6$	0	1	1	1	1	1	1	1	1	1	1	1
												1
$w_3 = 5 v_3 = 18$	0	0	0	0	0	1	1	1	1	1	1	1
$w_4 = 6 v_4 = 22$	0	0	0	0	0	0	1	0	1	1	1	1
$w_5 = 7 v_5 = 28$	0	0	0	0	0	0	0	1	1	1	1	0

- When the item selection algorithm is applied, the selected items are 4 and 3.
- This is indicated by the boxed entries in the table above.