Real Analysis: HW1

Aamod Varma

 $August\ 25,\ 2025$

Exercise 1.2.2

We need to show that there is no rational number r satisfying $2^r = 3$. Let's assume on the contrary that there exists a rational number $r = \frac{p}{q}$ where $p, q \in \mathbb{Z}$ are coprime and q > 0. So we have,

$$2^{p/q} = 3$$
$$2^p = 3^q$$

Here the right hand side is 3^q and q > 0 so it's a positive integer. This also means that the left hand side must be positive which implies that $p \ge 0$. Now we see that 2^p has only 2 as a prime factor and 3^q has only 3 as its prime factor. So the only solution to this equation is if bothsides are equal to 1 which is when p, q = 0. But this contradicts our assumption that q > 0. Hence our assumption must be wrong and there is no rational number r that satisfies the equation.

Exercise 1.3.3

(a). We have, A is nonempty and bounded below and $B = \{b \in \mathbb{R} : b \text{ is a lower bound for } A\}$. We need to show that $\sup B = \inf A$.

As A is bounded below there exists a infimum say inf A=x. Now as x is the greatest lowerbound we have $x\geq b, \forall b\in B$. This means that x is an upper bound for B. We need to now show that x is the smallest upperbound for B. Consider for instance there exists an upperbound y such that $b\leq y< x$. As y< x this means that $y\leq a, \forall a\in A$, this means that $y\in B$ as y is a lowerbound for A. So we have $y\geq x$ as $x\in B$ and $x\geq y$ as $y\in B$ which means that x=y, a contradiction as we assumes y< x. Implies that there is no y< x which means that x is the smallest upperbound of B.

Exercise 1.3.8

- (a) We have $\{m/n : m, n \in \mathbb{N} \text{ with } m < n\}$. Here suprema is 1 and infima is 0.
- (b) $\{(-1)^m/n : m, n \in \mathbb{N}\}$. Here suprema is 1 and infima is -1.
- (c) $\{n/(3n+1): n \in \mathbb{Z}\}$. Here when n=1 and -1 we have minimum and maximum value which is $\frac{-1}{2}$ and $\frac{1}{2}$ which are the infima and suprema respectively.
- (d) $\{m/(m+n): m, n \in \mathbb{Z}\}$. Here suprema and infima don't exist as we can make it arbitrarily large and small.

Exercise 1.4.1

(a) Given $a,b\in\mathbb{Q}$. We need to show that ab and a+b in \mathbb{Q} as well. If $a,b\in\mathbb{Q}$ then we have $a=\frac{p_1}{q_1},p_1,q_1\in\mathbb{Z},q_1>0$ and $b=\frac{p_2}{q_2},p_2,q_2\in\mathbb{Z},q_2>0$. So we have,

$$fab = \frac{p_1}{q_1} \cdot \frac{p_2}{q_2}$$
$$= \frac{p_1 p_2}{q_1 q_2}$$

Now as $p_1, p_2 \in \mathbb{Z}$ it must mean that $p_1p_2 \in \mathbb{Z}$. And as $q_1, q_2 \in \mathbb{Z}$ and > 0 we have $q_1q_2 > 0$. Hence we showed that $ab = \frac{p_3}{q_3}$ where $p_3 = p_1p_2$ and $q_3 = q_1q_2$ such that $p_3, q_3 \in \mathbb{Z}$ and $q_3 > 0$.

Now for a + b we have,

$$a + b = \frac{p_1}{q_1} + \frac{p_2}{q_2}$$
$$= \frac{p_1 q_2 + p_2 q_1}{q_1 q_2}$$

Similar to above we have $p_3=p_1q_2+p_2q_1$ and we know that a linear combination of integers is also an integer so $p_3\in\mathbb{Z}$. WE also have $q_3=q_1q_2$ and as both $q_1,q_2>0$ we have $q_3=q_1q_2>0$. So we are able to write $a+b=\frac{p_3}{q_3}$ where $p_3,q_3\in\mathbb{Z}$ and $q_3>0$.

(b) We have $a \in Q$ and $t \in I$ we need to show that $a + t \in I$ and $at \in I$ given $a \neq 0$.

Consider to the contrary that $a+t \notin I$. This means that a+t is of form $\frac{p}{q}$ where $p,q \in \mathbb{Z}$ and q>0. So we have,

$$a + t = \frac{p}{q}$$
$$t = \frac{p}{q} + (-a)$$

As per (a) we know that the sum of two rationals is also rational. This implies that $\frac{p}{q} + (-a)$ is rational which implies that t is rational. But this is a contradiction as we know that $t \in I$. Hence our assumption must be wrong and $a + t \in I$.

Now consider that $at \notin I \Rightarrow at \in \mathbb{Q}$. So we have $at = \frac{p}{q}$ for $p, q \in \mathbb{Z}$ and q > 0. So,

$$at = \frac{p}{q}$$

$$t = \frac{p}{q} \cdot \frac{1}{a} \text{ which is defined as } a \neq 0$$

We know from above that product of two rationals is also rational which means that $\frac{p}{q} \cdot \frac{1}{a}$ is rational or that t is rational. A contradiction as we know that $t \in I$ so our assumption must be wrong and $at \in I$.

(c) No, I is not closed under addition and multiplication. For instance, consider the following example where $a=\sqrt{2}+1$ and $b=1-\sqrt{2}$. We have a+b=2. Here $a,b\in I$ but $a+b=2\in\mathbb{Q}$ which shows that it is not closed under addition. Now consider $ab=(1+\sqrt{2})(1-\sqrt{2})=1^2-\sqrt{2}^2=-1\in\mathbb{Q}$. So here we have $a,b\in I$ but $ab\in\mathbb{Q}$ which shows that irrationals are not closed under multiplication either.

Exercise 1.4.4

We have a < b where $a, b \in \mathbb{R}$ and $T = Q \cap [a, b] = \{x : x \in \mathbb{Q} \text{ and } x \in [a, b]\}$. We need to show that $\sup T = b$. We have to show two things that b is an upper bound and b is the smallest upper bound. Now we know that $\forall x \in [a, b]$ that

 $x \leq b$ by definition of the closed interval. And as all $x \in T$ we have $x \in [a, b]$ this means that $\forall x \in T$ we have $x \leq b$. This makes b an upper bound for T.

We now have two cases, either $b \in \mathbb{Q}$ or $b \notin \mathbb{Q}$. If $b \in \mathbb{Q}$ then we have $b \geq x, \forall x \in T$ and $b \in T$ which makes b the supremum as if any other strictly smaller upper bound than b exists then it's not a lower bound anymore as $b \in T$ would be greater than it.

Now consider the case where $b \notin \mathbb{Q}$. Let us assume to the contrary that b is not the smallest upperbound and there exists some q < b such that $q \geq x, \forall x \in T$. However, as $q, b \in \mathbb{R}$ we know that there must exist some $a \in \mathbb{Q}$ such that q < a < b because of the density of the rationals in reals. Now as $a < b, \in [a, b]$ and $a \in \mathbb{Q}$ so we have $a \in T$. So we showed that there is some $a \in T$ such that q < a thus making q not an upperbound anymore. So our assumption that q < b where $q \geq x, \forall x \in T$ exists is wrong which must mean that b is the smallest upper bound. Hence, b is the suprema of T.

 $\frac{x}{y}$