An introduction to probabilistic programming with PyMC3

Sean Meling Murray and Solveig Masvie

inmeta

16. februar 2020

Road map

- 1. Theory
 - (a) The basics of Bayesianism
- (b) Markov chain Monte Carlo methods (MCMC)
- 2. Practice
 - (a) Probabilistic programming with PyMC3

inmeta 2/31

What is Bayesian data analysis?

"A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule."

inmeta 3/31

It's just counting!

- Richard McElreath: "Bayesian inference is just counting."
- Count all the ways observed data could have arisen according to assumptions
- Assumptions that can arise in more ways are more consistent with the data, and therefore more plausible

inmeta 4/31

The Garden of Forking Data

Counting possibilities

inmeta 5/31

Priors, posteriors and likelihoods

Prior $p(\theta)$: Encodes assumptions about θ Likelihood $p(y|\theta)$: How were the observed data generated? Posterior $p(\theta|y)$: Assumptions

about θ consistent with data

$$p(\theta|y) = \frac{p(\theta)p(y|\theta)}{\int p(y|\theta)p(\theta)d\theta}$$
$$\propto p(\theta)p(y|\theta)$$

 $posterior \propto prior \cdot likelihood$

inmeta 6/31

Model

- In the bayesian analysis we are trying to describe the process that generated the data.
- ullet We assume that the process can be expressed as a parametic model $\mathbf{M}(\mathit{input}, oldsymbol{ heta})$

inmeta 7/31

Example

The oh so boring linear regression example....

Model:
$$y_i = \theta x_i + \varepsilon_i, \quad \varepsilon \sim N(0, \sigma^2)$$

inmeta 8/31

Example: Priors

inmeta 9/31

Example: Likelihood

$$p(y|\theta) = \prod_{i=1}^{n} p(y_i|\theta)$$
$$p(y_i|\theta) = N(y_i|\theta x_i, \sigma^2)$$

What is the probability of my data given the model and parameters I've chosen?

inmeta 10/31

Example: Size of dataset

inmeta 11/31

Towards a Bayesian workflow

- 1. Design the model (tell the data story)
 - (a) Describe data generating process: $p(y|\theta) = \theta^{blue} (1-\theta)^{white}$
- (b) Encode assumptions about parameters: $p(\theta) = \frac{1}{5}$
- 2. Condition on the data (update step)
 - (a) $p(\theta|y) \propto p(\theta)p(y|\theta)$
- 3. Evaluate the model (critique), and either
 - (a) be happy, it worked as planned, or
 - (b) return to step 1

inmeta 12/31

The Garden of Forking Data, revisited

```
import numpy as np
## Observed data
data = np.array([1, 0, 1])
## Conjectures (possible values for theta)
# arrav([0., 0.25, 0.5, 0.75, 1.1)
theta = np.linspace(0, 1, num=5)
# Prior distribution over theta
# array([0.2, 0.2, 0.2, 0.2, 0.2])
uniform prior = np.repeat(0.2, repeats=5)
# Likelihood function
def likelihood(data, theta):
    num blue = data.sum()
    num white = len(data) - num blue
    return theta**num blue * (1 - theta) **num white
# Unnormalised posterior over theta
# array([0., 0.009375, 0.025, 0.028125, 0.])
unnormalised posterior = uniform prior * likelihood(data, theta)
# Posterior distribution over theta
# arrav([0., 0.15, 0.4, 0.45, 0.1)
posterior = unnormalised posterior / unnormalised posterior.sum()
```

inmeta 13/31

The Garden of Forking Data, revisited

import numpy as np

```
# Number of paths consistent with conjectures
forking_data = np.array([0, 3, 8, 9, 0])
# array([0., 0.15, 0.4, 0.45, 0.]
forking_data / forking_data.sum()
```

inmeta 14/31

The Frequentist vs. Bayesian debacle

- Frequentist statistics
 - ▶ Probability = limiting frequency
 - ▶ Uncertainty arises from sampling variation
- Bayesian statistics
 - Frequency ≠ probability
 - Uncertainty arises from ignorance
- Principled way to represent and take into account uncertainty
- Easily incorporates prior information

inmeta

But priors are subjective! Buu! Hiss!

- Non-informative vs. informative priors
 - ► Forking data example: Uniform(0,1) vs. $Uniform(\frac{1}{4},\frac{3}{4})$
- Test your assumptions, e.g. using prior predictive checks
- More about priors:
 - ► Gelman et al. (2017): https://arxiv.org/abs/1708.07487
 - ► Bayesian Methods for Hackers: https://tinyurl.com/v2yzyqv
- For more Bayesian challenges, see e.g. Gelman and Yao (2020): https://tinyurl.com/sbr2tev

inmeta 16/31

Telling the data story

"People think in terms of stories - thus the unreasonable power of the anecdote to drive decision-making, well-founded or not. Existing analytics largely fails to provide this kind of story; instead, numbers seemingly appear out of thin air."

Beau Cronin, Why Probabilistic Programming Matters (2013)

inmeta 17/31

How to sample from intractable posteriors?

- In textbooks, nice, we can sample directly from well-behaved, analytical posteriors
- In the real world, often impossible to sample directly from $p(\theta|y)$
- A general class of algorithms called Markov chain Monte
 Carlo let us approximately sample from posterior

inmeta 18/31

Markov chains

- A Markov chain defines a joint probability distribution over sequences
- Used to model events in discrete and continuous time (manufacturing processes, queuing systems, etc.)
- Typically interested in the long-term distribution of being in a certain state

inmeta 19/31

Properties of a Markov chain

- Memoryless (Markov property): $P(X_t | X_{t-1}, X_{t-2}, \dots, X_1) = P(X_t | X_{t-1})$
- Under certain conditions, guaranteed to have a unique, limiting distribution (aka. stationary distribution)
 - ▶ Long run proportion of time spent in each state
 - ► For more details, check
 https://github.com/smu095/presentations/

inmeta 20/31

Monte Carlo simulations

- Monte Carlo (MC) simulations are just a way to approximate numerical results using repeated random sampling
- Main idea:
 - Generate *N* samples x_1, \ldots, x_N from p(x), approximate *f* using the empirical distribution of $\{f(x_n)\}_{n=1}^N$
 - $\triangleright \mathbb{E}[f] = \int f(x)p(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n) = \hat{f}$
- MC estimates converge thanks to Law of Large Numbers

$$\blacktriangleright (\hat{f} - \mathbb{E}[f]) \to \mathcal{N}\left(0, \frac{Var[f]}{N_{eff}}\right) \text{ as } N \to \infty$$

inmeta 21/31

Application: Evaluate integrals

• Calculate difficult integrals, such as the area of the Batman sign

inmeta 22/31

Application: Evaluate integrals

- Repeatedly sample $(u_1, u_2) \sim \text{Uniform}(-\frac{1}{2}, \frac{1}{2})$
- Calculate area A of Batman sign as $A = \text{area of rectangle} \times \frac{\text{green dots}}{\text{all dots}}$

inmeta 23/31

Markov chain Monte Carlo methods

- Main idea: Construct a Markov chain over the parameter space where the stationary distribution is the posterior $p(\theta | y)$
 - ► For more details, check

 https://github.com/smu095/presentations/
- Randomly move around the parameter space such that the fraction of time spent at each randomly sampled parameter value is proportional to the true target density $p(\theta | y)$.
- Use the sequence of parameters generated by Markov chain to calculate MC approximations of any quantity of interest

inmeta 24/31

Algorithmic view of MCMC

- 1. Start at current position.
- 2. Propose new position.
- 3. Accept/reject new position based on position's adherence to data and prior distributions.
 - (a) If reject: Remain in your current position, return to step 1.
 - (b) If accept: Move to the new position, return to step 1.
- 4. After large number of iterations, return sequence of accepted positions.

inmeta 25/31

Metropolis algorithm

- 1. Start at some initial parameter value θ_0
- 2. for t = 1 to T:
 - (a) Sample θ^* from a proposal distribution $q(\theta^* | \theta_{t-1})$
- (b) Evaluate $\alpha_{\theta^*} = \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)}$.
- (c) Set acceptance probability to $r_{\theta^*} = \min(1, \alpha_{\theta^*})$.
- (d) Draw $u \sim Uniform(0,1)$
- (e) Set $\theta_t = \begin{cases} \theta^*, & \text{if } u < r \\ \theta_{t-1}, & \text{o.w.} \end{cases}$

inmeta 26/31

Metropolis in Python

```
"""Metropolis sampling from posterior of mean"""
import numpy as np
\# N = 10 observations from Normal(loc=5, scale=2)
unknown mean, known variance = 5, 2
data = true mean + np.sgrt(known variance) * np.random.randn(10)
def loglik (theta, x):
    """Log-likelihood of Normal distribution."""
    return np.sum(st.norm(loc=theta, scale=known variance).logpdf(x))
# Initial value for theta
theta = 0
num samples = 10 * *4
samples = np.zeros(num_samples)
# Metropolis algorithm
for i in range(num samples):
    # Draw proposal
    theta star = theta + np.random.randn(1)
    # Accept/reject
    u = np.random.rand()
    if u < np.exp(loglik(theta star, data) - loglik(theta, data)):</pre>
        theta = theta star
    samples[i] = theta
```

inmeta 27/31

Metropolis in Python

inmeta 28/31

Sampling algorithms

- Many different sampling algorithms exist
- Currently, the state-of-the-art is Hamiltonian Monte Carlo (HMC)
 - ► See e.g. Betancourt (2017): https://arxiv.org/abs/1701.0

inmeta 29/31

Probabilistic programming in Python

- PyStan
- PyMC3
- Pyro
- TensorFlow Probability

inmeta 30/31

PyMC3

- Python package for for fitting Bayesian models using modern methods (MCMC, variational inference, etc.)
- Well-documented, large suite of statistical models
- Highly flexible, but easy to use
- Uses Theano-backend (not good)
- PyMC4 in development, uses TensorFlow Probability-backend

inmeta 31/31