Find the global extrema of $f(x) = \tan(x) - 2x$ on the interval $\left[0, \frac{\pi}{4}\right]$. 1.

$$f(x) = \sec^{2}(x) - 2 = 0$$

$$\sec^{2}(x) = 2$$

$$\sec^{2}(x) = \pm \sqrt{2}$$

$$\sec^{2}(x) = \pm \sqrt{2}$$

$$\cos^{2}(x) = \pm \sqrt{2}$$

$$\cos^{$$

$$f(0) = \tan(0) - 2.0 = 0 \in \max$$

 $f(\frac{\pi}{4}) = \tan(\frac{\pi}{4}) - 2.\frac{\pi}{4} = 1 - \frac{\pi}{2} < 0 \in \min$

Ans. If has a global max of 0 at
$$x=0$$
 f has a global min of $1-\frac{\pi}{2}$ at $x=\frac{\pi}{4}$.

2. Find the global extrema of $f(x)=\frac{x^2}{2}+\frac{8}{x}$ on the interval $(1,4)$.

$$f'(x) = x - \frac{8}{x^2} = 0 \qquad x = \sqrt[3]{8}$$

$$x = \frac{8}{x^2}$$

$$x = \frac{8}{x^2}$$
This is the only critical point in The interval

$$f''(x) = 1 + \frac{16}{23}$$

 $f''(2) = 1 + \frac{16}{23} = 3 > 0$, so by 2nd derivative test there is a local minimum at $x = 2$
Therefore f has a global minimum of $f(2) = 6$ at $x = 2$. No global maximum

1. Find the global extrema of $f(x) = \frac{x^2}{2} + \frac{8}{x}$ on the interval [1, 4].

$$f(x) = x - \frac{8}{x^2} = 0$$

$$x = \frac{8}{x^2}$$

$$x^3 - 8$$

 $\chi = \frac{8}{\chi^2}$ $\chi^3 = 8$ $\chi^3 = 8$

$$f(1) = \frac{1^2}{2} + \frac{8}{1} = \frac{1}{2} + \frac{16}{2} = \frac{17}{2}$$

$$f(2) = \frac{2^2}{2} + \frac{8}{2} = 2 + 4 = 6 \leftarrow min$$

$$f(4) = \frac{4^2}{2} + \frac{8}{4} = 8 + 2 = 10 \leftarrow \text{max}$$

Ans f has a global max of 10 at $\chi = 4$ find the global extrema of $f(x) = \tan(x) - 2x$ on the interval $\left(0, \frac{\pi}{2}\right)$.

 $f(x) = \sec^2(x) - 2 = 0$ $sec^{2}(x) = 2$ $sec(x) = \pm \sqrt{2}$ $cos(x) = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$ $because f'(\frac{\pi}{4}) = 0$ sec2(x) = 2 Sec(x) = +12

 $\rightarrow \chi = \frac{\pi}{4}$ is the

 $f''(x) = 2 \sec(x) \sec(x) \tan(x) = 2 \sec^2(x) \tan(x)$ f"(#)=2 \(\frac{7}{4}\) = 2 \(\frac{7}{2}\). \(1 = 4 > 0 \) so by 2nd derivative test, of has a local min. at $x = T_4$, so this is a global min.

Ans If has a global minimum of $f(\overline{t_4})=1-\overline{t_2}$ at $x=\overline{t_4}$. No global max