CSE 350 DATA COMMUNICATIONS

Lecture 5: Digital Data Communication Techniques

Asynchronous and Synchronous Transmission

- Timing problems require a mechanism to synchronize the transmitter and receiver
- Receiver must know—arrival time, data rate,
 duration of each bit
- Two solutions for controlling timing:

Asynchronous and Synchronous Transmission

- With serial transmission signaling elements are sent down the signal path one at a time.
- Reception of digital data involves sampling the signal once per bit time to determine the binary value.
- In order for the receiver to sample the incoming bits properly, it must know the arrival time and duration of each bit it receives.

Asynchronous

- Data transmitted one character at a time
 - Each char is 5 to 8 bits in length
- Timing only needs maintaining within each character
- The receiver has the opportunity to resynchronize at the beginning of each new character

Asynchronous (diagram)

(a) Character format

(b) 8-bit asynchronous character stream

(c) Effect of timing error

Asynchronous - Behavior

- Idle state: When no character is being transmitted
 - Signaling element for binary 1
- The beginning of a character is signaled by a start bit with a value of binary 0.
- The bits of the character are transmitted beginning with the least significant bit.
- The receiver set a parity bit
- □ Stop element
 - binary 1.
 - Minimum length for the stop element is:1,1.5,2 bit duration.
 - No maximum value is specified
 - The transmitter will continue to transmit the stop element until it is ready to send the next character.

Timing Error

- □ Data rate:10 kbps; each bit 0.1ms or 100µs duration
- □ Receiver fast :6% or 6µs per bit time
- So, the receiver samples the incoming character every 94µs—error
- Results two errors—
 - The last sampled bit is incorrectly received
 - The bit count may be out of alignment (Framing error). If bit 7 is 1 and bit 8 is a 0, bit 8 could be mistaken for a start bit.
 - □ Frame = character + start bit +stop bit.

Pros and Cons

- Simple
- Cheap
- \square Overhead of 2 or 3 bits per char (~20%)
- Good for data with large gaps

Synchronous - Bit Level

- Block of data is transmitted without start or stop bits
- The block may be many bits in length
- Clocks must be synchronized
- Techniques
- Provide separate clock line between transmitter and receiver
 - One side pulses the line regularly with one short pulse per bit time
 - The other side uses these pulses as a clock.

Synchronous - Bit Level

- Good over short distances
- Subject to impairments for longer distances timing error
- Embed clock signal in data
 - Manchester encoding
 - Carrier frequency (analog)
 - Based on the phase of the carrier

Synchronous - Block Level

- To allow the receiver to determine the beginning and end of a block of data
- Use preamble (called flag, 8 bits long) bit pattern –
 beginning of blocks
- Postamble (called flag, 8 bits long) bit pattern ending of blocks.
- Control information other bits are added to convey control information.
- data+ preamble+ postamble +control info = frame

Synchronous - Block Level

- More efficient (lower overhead) than asynchronous
 - For example one scheme contains 48 bits of control, preamble and postamble. Thus for a 1000 character block of data, each frame contains 8000 bits of data and 48bits of control information, for a percentage overhead of only 0.6%.

Synchronous - Block Diagram

	ntrol Da	ta Field	Control	
flag fiel	lds Da	da Ficiu	fields	flag

Types of Errors

•An error occurs when a bit is altered between transmission and reception

Types of Errors

- Single bit errors
 - Only one bit is altered
 - Adjacent bits are not affected
 - White noise
- Burst errors
 - Length B
 - Contiguous sequence of B bits in which first, last and any number of intermediate bits are in error
 - Or two or more bits in the data unit have changed
 - Impulse noise
 - Effect is greater at higher data rates
 - More difficult to deal with than Single bit errror.

Single-bit error

Burst error

Error Detection

- Principle error detection technique.
- Additional bits added by transmitter for error detection code with a given frame of bits.
- This code is calculated on data bits

Error Detection Process

Parity Check

- Simplest error detection scheme
- Append a parity-bit to the end of a block of data
- Value of parity bit is such that character has even (even parity) or odd (odd parity) number of ones
- Problem: Two or even number of bit errors goes undetected

Parity Example

- □ Character to be transmitted → "S"
 - □ "S" → 1010011
- □ Even Parity → 0 1010011
- □ Odd Parity → 1 | 1010011
- □ Transmission w/ one error (odd) → 11011011
 - Error detected!!
- □ Transmission w/ two errors (odd) \rightarrow 11011111
 - No error detected!!
 - Received character is " "

Cyclic Redundancy Check(CRC)

- The most powerful
- A sequence of redundant bits, CRC or CRC remainder is added to the end of a data unit
- The resulting data unit becomes exactly divisible by a predetermined binary number
- At the destination, the incoming data is divided by the same number
- □ If there is no reminder
- The data unit is assumed to be intact and accepted
- If there is reminder, data has been damaged and rejected.

Cyclic Redundancy Check (CRC)

- For block of k data bits, transmitter generates frame check sequence (FCS) of length n-k
- Transmit n-bit frame which is built to be exactly divisible by some number (i.e. predetermined divisor)
- Receiver divides frame by that number
 - If no remainder, assume no error

CRC described—in 3 ways

- □ Modulo 2 Arithmetic
- Polynomial
- □ Digital logic

Modulo 2 Arithmetic

- Uses binary addition with no carries
- Just the XOR operation

Modulo 2 Arithmetic

1111	1111	11001
+ <u>1010</u>	-0101	× 11
0101	1010	11001
		11001
4.1		101011

Binary Division In CRC generator

Binary Division in CRC Checker

Polynomials

- To express all values as polynomials in a dummy variable x, with binary coefficients
- The coefficients correspond to the bits in the binary number.

$$x^7 + x^5 + x^2 + x + 1$$

Polynomial and Divisor

Polynomial Division

1010001101 110101 $X^9 + X^8 + X^6 + X^4 + X^2 + X$ $\leftarrow Q(X)$ $P(X) \rightarrow X^5 + X^4 + X^2 + 1 / X^{14}$ X^{12} $\frac{X^{14} + X^{13} + X^{11} + X^{9}}{X^{13} + X^{12} + X^{11} + X^{9} + X^{8}}$ $X^{13} + X^{12} + X^{10} + X^{3}$ $X^{11} + X^{10} + X^9 + X^7$ $X^{11} + X^{10} + X^{8} + X^{6}$ $X^9 + X^8 + X^7 + X^6 + X^5$ $X^9 + X^8 + X^6 + X^4$ $X^7 + X^6 + X^4 + X^2$ $X^6 + X^5 + X^3 + X$

 $01110 \qquad \chi^3 + \chi^2 + \chi = R(X)$

CRC Standards—P(X)

- CRC-12
 - Used when character length is 6 bits
- CRC-16 and CRC-CCITT
 - Used when character length is 8 bits
 - Used in WANs
- CRC-32
 - Used in LANs

Standard Polynomials

CRC-12

$$x^{12} + x^{11} + x^3 + x + 1$$

CRC-16

$$x^{16} + x^{15} + x^2 + 1$$

CRC-ITU

$$x^{16} + x^{12} + x^5 + 1$$

CRC-32

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$$

Digital Logic

- CRC can be implemented using XOR gates and a shift register
- Shift register
 - Is a string of 1 bit storage devices
 - Each device has an output line, indicates the value currently stored, and an input line
 - At discrete time instants (clock times) the value in the storage device is replaced by the value indicated by its input line

Example with P = 110101

