

Diseño de Maquinas de Estado Síncronas Tipo Mealy

Maquina de Estados Síncrona

Diseñar una *maquina de estados síncrona* para controlar los *motores de dos bandas de transporte* en un proceso industrial

- ❖ el proceso se detiene si por la banda 2 (b2) pasan 3 objetos o si por las dos bandas (b2 y b1) pasan 6 objetos
- ❖ las señales de control para los motores M1 y M2 son las salidas de la FSM: En este caso:
 - cuando M2M1 = 11: ambas bandas están funcionando
 - \diamond cuando M2M1 = 00: ambas bandas están apagadas
- ❖ las entradas de la FSM son X1 y X2
 - \diamond cuando X2X1 = 00: por las bandas no pasan objetos
 - \diamond cuando X2X1 = 01: por la banda b1 pasa 1 objeto
 - \diamond cuando X2X1 = 10: por la banda b2 pasa 1 objeto
 - ◆ cuando X2X1 = 11: por las bandas b1 y b2 pasa 1 objeto

Diagrama de Estados

Tabla de Transición flip-flop T

Lógica del Próximo Estado

Tabla de Estados

		Ε	P		PE / Z												X=0				X=1			
	Q3 Q2 Q1 Q0				X=0 / Z1 Z0						X=1 / Z1 Z0						T3 T2 T1 T0				T3 T2 T1 T0			
S0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1
S 1	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	1	1
S2	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0
S3	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	1	1	1	1
S 4	0	1	0	0	0	1	1	0	0	1	0	1	0	1	0	1	0	0	0	0	1	0	0	1
S 5	0	1	0	1	0	0	1	1	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0
S 6	0	1	1	0	0	1	1	1	0	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0
S7	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	0	1	0	0	0	1	0	1
S8	1	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1
S 9	1	0	0	1	1	0	1	0	1	0	0	0	1	1	0	0	0	1	0	0	1	1	1	0
S10	1	0	1	0	1	0	1	1	0	0	1	1	0	0	1	0	0	0	0	1	0	1	1	0
S11	1	0	1	1	1	0	1	1	0	1	0	1	0	0	0	1	0	1	0	1	0	1	0	1
S 12	1	1	0	0	1	0	1	0	1	0	1	1	0	1	1	0	0	0	1	0	1	0	0	1
S 13	1	1	0	1	0	0	1	1	0	0	1	1	0	1	1	0	1	0	1	0	1	0	0	0
S 14	1	1	1	0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
S 15	1	1	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Simplificación por Mapas de Karnaugh

 $T3 = X1\overline{Q3} + X2\overline{Q3}$

T2= X1 (Q2Q1Q0 + Q3Q1Q0 + Q3Q1Q0 + Q2Q1) + X2 (Q3Q2Q1 + Q2Q1Q0 + Q3Q1Q0)

Simplificación por Mapas de Karnaugh

 $T1 = X1\overline{Q3} + X2\overline{Q3}$

Z0= X1 (Q2Q1Q0 + Q3Q1Q0 + Q3Q1Q0 + Q2Q1) + X2 (Q3Q2Q1 + Q2Q1Q0 + Q3Q1Q0)

Simplificación por Mapas de Karnaugh

Z1 = X1Q3 + X2Q3

Z0= X1 (Q2Q1Q0 + Q3Q1Q0 + Q3Q1Q0 + Q2Q1) + X2 (Q3Q2Q1 + Q2Q1Q0 + Q3Q1Q0)

Implementación

Entradas

