11/14/22

The distribution of cereal brands by nutrition quality:

In this regression analysis, I will be investigating the distribution of cereal brands by their nutritional quality. Within this regression analysis; the protein, potassium, calories, sodium, fiber, carbohydrates, sugars, vitamins, shelf, weight, and cups will be analyzed to determine which cereal brands are of high quality.

Not only will a multi-linear regression be conducted to understand the quantitative relationship between the score and the nutritional values, but a univariable logistic regression will be conducted to investigate the relationship between the cereals that scored above 50 and the cereals that scored below a 50. In doing so, one can understand the causation of each cereals score by the nutritional values that determine its quality.

In statistics, nominal data is a type of data scale that is used to label variables without providing any quantitative value. It is the simplest form of a scale of measure. Unlike ordinal data, nominal data cannot be ordered and cannot be measured.

Nominal data can be analyzed using the grouping method. The variables can be grouped together into categories, and for each category, the frequency or percentage can be calculated.

Although nominal data cannot be treated using mathematical operators, they still can be analyzed using advanced statistical methods. For example, one way to analyze the data is through frequency procedures. That being said, the binary nominal method through a univariable logistic regression will be utilized for this analysis to see how these tested variables impact the rankings of cereal.

For the Univariable Logistic Regression, a random number assignment in data step. Random, uniform distribution between 0 and 1. Split at .5 to get $\sim 50/50$ split. As such, cereal rated above 50 = Y. Cereal rated below 50 = N. The occurrence of an event is a binary variable. This means there are two possibilities: the event occurs or it does not occur. The cereals either end up being below 50 or above 50 in terms of its ranking.

This categorization will separate high quality cereals from low quality cereals based on its nutritional content. The nutritional variables analyzed within each cereal brand will be utilized to determine the appropriate rating of the particular cereal. In addition, the nutritional values of the variables will be formulated to differentiate the cereals that rated above or below 50.

The table below displays the distribution of cereal rankings.

The SAS System

The UNIVARIATE Procedure Variable: rating

Moments

N 77 Sum Weights 77

Mean 42.665705 **Sum Observations** 3285.25928

Moments

Std Deviation	14.0472887	Variance	197.326321
Skewness	0.91024031	Kurtosis	1.31874692
Uncorrected SS	155164.704	Corrected SS	14996.8004
Coeff Variation	32.9240751	Std Error Mean	1.60083712

Basic Statistical Measures

Loc	cation	Variab	oility
Mean	42.66570	Std Deviation	14.04729
Media n	40.40021	Variance	197.32632
Mode	•	Range	75.66206
		Interquartile Range	17.65430

Tests for Location: Mu0=0

Test	9	Statistic	p Val	ue
Student's t	t	26.65212	Pr > t	<.000 1
Sign	M	38.5	Pr >= M	<.000 1
Signed Rank	S	1501.5	Pr >= S	<.000 1

Quantiles (Definition 5)

Level	Quantile
100% Max	93.7049
99%	93.7049
95%	68.4030
90%	60.7561
75% Q3	50.8284
50% Median	40.4002

Quantiles (Definition 5)

Level	Quantile
25% Q1	33.1741
10%	27.7533
5%	22.3965
1%	18.0429
0% Min	18.0429

These were the ranges rated cereals in the regression.

Extreme Observations

Lowest		Highe	est	
Va	lue	Obs	Value	Obs
18.0	429	11	68.2359	64
19.82	236	13	68.4030	1
21.8	713	36	72.8018	66
22.3	965	19	74.4729	65
22.7	364	15	93.7049	4

These observations above were the top five highest and lowest rated cereals in the regression.

This is a unimodal distribution with the majority of cereals having scored between 24 to 48 out of 100. Cereals that scored within the states range made up approximately 60% of the observations in the dataset.

Given that the skewness score was a .91024031, the histogram is skewed to the light. Hence, it is asymmetrical. If the skewness is between -0.5 and 0.5, the data is fairly symmetrical. If the skewness is between -1 and -0.5 or between 0.5 and 1, the data is moderately skewed. If the skewness is less than -1 or greater than 1, the data is highly skewed.

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: rating

Number of Observations 77 Read

Number of Observations Used 77

Analysis of Variance

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	14997	1249.73337	Infty	<.000 1
Error	64	0	0		
Corrected Total	76	14997			

Root MSE0R-Square1.0000Dependent Mean42.66570Adj R-Sq1.0000Coeff Var0

Parameter Estimates

Variable	D F	Parameter Estimate	Standar d Error	t Value Pr > t
Intercept	1	54.92718	0	Infty <.0001
calories	1	-0.22272	0	-Infty <.0001
protein	1	3.27317	0	Infty <.0001
fat	1	-1.69141	0	-Infty <.0001
sodium	1	-0.05449	0	-Infty <.0001
fiber	1	3.44348	0	Infty <.0001
carbo	1	1.09245	0	Infty <.0001
sugars	1	-0.72490	0	-Infty <.0001
potass	1	-0.03399	0	-Infty <.0001
vitamins	1	-0.05121	0	-Infty <.0001
shelf	1	-3.72068E-8	0	-Infty <.0001
weight	1	-4.29824E-7	0	-Infty <.0001
cups	1	1.378849E- 7	0	Infty <.0001

Multi linear regression formula for the table above:

The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: rating

Given that there is decreasing variance in the residual plot as the values increase in units, this means that the data is heteroskedastic. However, since there is no distinct pattern, there is a lack of bias in this dataset. The blue dots are the predicted observations and the black line represents the actual observations. Nevertheless, the scatterplot regarding the rating versus predicted values scored a r squared of 1.0, meaning that it is extremely and positively correlated.

The normal Q-Q plot shows that this linear regression for the analyzed dataset is skewed since the blue observations are roughly aligned with the black line but trail away from the black line at each end point. The normal Q-Q plot is a scatterplot that was created by plotting two sets of quantiles against each other. The residuals in the plot are not normally distributed because in order for that condition to be true, the points in the plot would lie in a straight diagonal line. The regression does seem to have a heavy-tail problem because there is data that lies at the extremities of the plot. The reason for a heavier upper tail is that the data has larger and smaller values than is expected by the model. This is further supported by the residual percent plot since the histogram is bimodal with a roughly symmetrical distribution. As such, the leverage plot shows that the x values are not asymmetrically influenced by outside variables since its leverage score was less than 1.

The residuals vs leverage plot allows us to identify individual observations in a regression model. The x-axis displays the leverage of each point, while the y-axis displays the standardized residual of each point. Meanwhile, Cook's distance is used to find influential outliers in a set of predictor variables. In other words, it's a way to identify points that negatively affect your regression model. Since the value of Cooks distance is 0.05, it is statistically significant that there are no outliers affecting the regression model.

These are the residuals for the predicted observations versus their actual respective values. The horizontal line represents the values from the dataset while the blue dots represent the predicted values from the predicted models. While sodium and calories seem to have homoscedasticity in their plots; fiber, carbohydrates, protein, and fat have heteroskedasticity since their variances decrease or increase as the values increase or decrease. There does not appear to be any bias in these residual plots.

These are the residuals for the predicted observations versus their actual respective values. The horizontal line represents the values from the dataset while the blue dots represent the predicted values from the predicted models. While all of these plots display homoscedasticity, there is bias in some of these regression plots. Shelf, vitamins, and weight all have bias in their plots due to the distinct patterns displayed.

The SAS System

The FREQ Procedure

r50p	Frequency		Cumulative Frequency	
N	56	72.73	56	72.73
Y	21	27.27	77	100.00

According to the calculations, 72.73 percent of the cereal brands in this dataset did not pass the rating threshold of 50.

Below is the logistic regression table:

The SAS System

The LOGISTIC Procedure

Model Information

Data Set	WORK.CEREALS2

Response Variable r50p

Number of Response Levels 2

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations 77 Read

Number of Observations Used 77

Response Profile

Ordered	r50p	Total
Value		Frequency
1	N	56
2	Y	21

Probability modeled is r50p='N'.

Model Convergence Status

Complete separation of data points detected.

Warning: The maximum likelihood estimate does not exist.

Warning: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable.

Model Fit Statistics

Criterion	Intercept Only	Intercept and Covariates
AIC	92.237	26.102
SC	94.581	56.571
-2 Log L	90.237	0.102

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	D F	Pr > ChiSq
Likelihood Ratio	90.1349	12	<.0001
Score	56.5527	12	<.0001
Wald	1.4606	12	0.9999

Analysis of Maximum Likelihood Estimates

Parameter	D	Estimat	Standar	Wald	Pr > ChiSq
	\mathbf{F}	e	d	Chi-Square	
			Error		
Intercept	1	-3.8252	280.1	0.0002	0.9891
calories	1	-0.3677	1.6322	0.0507	0.8218
protein	1	-4.0679	23.2599	0.0306	0.8612
fat	1	10.1289	20.7739	0.2377	0.6258
sodium	1	0.1115	0.2942	0.1436	0.7048
fiber	1	-5.2359	21.6515	0.0585	0.8089

Analysis of Maximum Likelihood Estimates

Parameter	D F	Estimat e	Standar d Error	Wald Chi-Square	Pr > ChiSq
carbo	1	1.7903	15.8209	0.0128	0.9099
sugars	1	3.0342	11.5890	0.0685	0.7935
potass	1	0.0358	0.7959	0.0020	0.9642
vitamins	1	0.1440	0.6908	0.0435	0.8348
shelf	1	1.4994	14.7284	0.0104	0.9189
weight	1	2.4006	240.8	0.0001	0.9920
cups	1	-20.1682	52.1702	0.1494	0.6991

Odds Ratio Estimates

Point Estimate		Wald nce Limits
	Commuc	nee Linnes
0.692	0.028	16.969
0.017	< 0.001	>999.999
>999.999	< 0.001	>999.999
1.118	0.628	1.990
0.005	< 0.001	>999.999
5.991	< 0.001	>999.999
20.785	< 0.001	>999.999
1.036	0.218	4.932
1.155	0.298	4.472
4.479	< 0.001	>999.999
11.030	< 0.001	>999.999
< 0.001	< 0.001	>999.999
	0.692 0.017 >999.999 1.118 0.005 5.991 20.785 1.036 1.155 4.479 11.030	Confide 0.692 0.028 0.017 <0.001 >999.999 <0.001 1.118 0.628 0.005 <0.001 5.991 <0.001 20.785 <0.001 1.036 0.218 1.155 0.298 4.479 <0.001 11.030 <0.001

With Maximum Likelihood Estimation, one can compute the maximum likelihood of observing Y given X under a logistic regression model. Here is the MLE formula for the logistic regression conducted:

```
MLE = -.3677(calories) - 4.0679(protein) + 10.1289(fat) + .1115(sodium) - 5.2359(fiber) + 1.7903(carbohydrates) + 3.0342(sugars) + .0358(potassium) + .1440(vitamins) + 1.4994(shelf) + 2.4006(weight) - 20.1682(cups) - 3.8252
```

The odd ratio estimate represents the variability of the cereals of those that scored below 50 to that of cereals that scored above 50. For example, cereals that scored below 50 are going to have 20.785 times more sugar than cereals that scored above 50. Here is the odd estimate ratio formula:

Beta = .692(calories) + .017(protein) + .099.999(fat) + .1.118(sodium) + .005(fiber) + .091(carbohydrates) + .007(sugars) + .008(potassium) + .008(vitamins) + .008(sugars) + .008(cups)

Association of Predicted Probabilities and Observed Responses

Percent Concordant	100.0	Somers' D	1.000
Percent Discordant	0.0	Gamma	1.000
Percent Tied	0.0	Tau-a	0.402
Pairs	1176	c	1.000

The SAS System

The FREQ Procedure

	Ta	ble of r50	p by pred	_50p
Frequency	r50p		pred_50p	
Percent		N	Y	Total
Row Pct	N			
Col Pct		56	0	56
		72.73	0.00	72.73
		100.00	0.00	
		100.00	0.00	
	Y			
		0	21	21
		0.00	27.27	27.27
		0.00	100.00	
		0.00	100.00	
	Total			
		56	21	77
		72.73	27.27	100.00

According to the calculations, 72.73 percent of the cereal brands in this dataset did not pass the rating of 50 out of 100.

In conclusion, there is now a numerical understanding of what proportions of nutrients influence each cereals rating score. As political debates regarding nutrition progress, it is essential for politicians to understand the societal impact on the health of its citizens through its essential products; in this case being food. To knowingly utilize this information to cereal industries and markets; regulators can appropriately enforce nutritional standards for the sake of human and societal health.

Below is the code for the	nis project:
/* import data */	
proc import file="\\ms	fs-03.grove.ad.uconn.edu\home\stg19003\Downloads\cereal.csv"
	out=Work.cereals
	dbms=csv replace;
run;	
proc import file="\\ms marketing.xlsx"	fs-03.grove.ad.uconn.edu\home\stg19003\Downloads\direct
	out=Work.dmkt
	dbms=xlsx replace;
	sheet='RapidMiner Data';
run;	
/*** CONTINUOUS P	REDICTION ***/
/* Establish baseline	*/
proc univariate data=	Work.cereals;
var rating;	
histogram;	
run;	

```
/* use proc reg to fit a model to your data. save the parameter estimates (aka model) */
proc reg data=Work.cereals outest=Work.reg_model1;
       model rating =
                            calories
                             protein
                            fat
                            sodium
                            fiber
                            carbo
                            sugars
                             potass
                            vitamins
                            shelf
                            weight
                            cups
quit;
/* use proc score to apply model to the data and generate predictions */
proc score data=Work.cereals score=Work.reg_model1
                     type=parms predict out=Work.m1_predictions;
       var calories
              protein
```

```
fat
              sodium
              fiber
              carbo
              sugars
              potass
              vitamins
              shelf
              weight
              cups
run;
/*** NOMINAL PREDICTION ***/
data Work.cereals2;
       set Work.cereals;
       if rating \geq 50 then r50p = 'Y';
       else r50p = 'N';
run;
```

```
/* baseline */
proc freq data=Work.cereals2;
       tables r50p;
run;
proc logistic data = Work.cereals2 outmodel=Work.cereal_50p;
 model r50p =
                     calories
                     protein
                     fat
                     sodium
                     fiber
                     carbo
                     sugars
                     potass
                     vitamins
                     shelf
                     weight
                     cups
run;
```

proc logistic inmodel=Work.cereal_50p;

```
score data=Work.cereals2_out=Work.cereals2_50p_score;
run;
data Work.cereals2_50p_score2;
       set Work.cereals2_50p_score;
       if P_Y > .75 the pred_50p = 'Y';
       else pred_50p = 'N';
run;
proc freq data=Work.cereals2_50p_score2;
       tables r50p * pred_50p;
run;
/*** Direct Marketing Example ***/
proc freq data=Work.dmkt;
       tables family_status lifestyle;
run;
data Work.dmkt;
       set Work.dmkt;
       FORMAT is_married 1. is_cozy is_active;
       if family_status = 'married' then is_married = 1;
       else is_married = 0;
```

```
if lifestyle = 'cozily' then is_cozy = 1; else is_cozy = 0;
       if lifestyle = 'active' then is_active = 1; else is_active = 0;
run;
proc freq data=Work.dmkt;
       tables is_married is_cozy is_active;
run;
proc logistic data = Work.dmkt outmodel=Work.dmkt_m1;
 model outcome =
                      age
                     earnings
                      is_cozy*/
                     is_active*/
                     is_married*/
run;
proc logistic inmodel=Work.dmkt_m1;
       score data=Work.dmkt out=Work.dmkt_score_m1;
run;
data Work.dmkt_score_m1_2;
```

```
set Work.dmkt_score_m1;
       FORMAT pred_resp $11.;
       if P_response > .80 then pred_resp = 'response';
       else pred_resp = 'no response';
run;
proc freq data=Work.dmkt_score_m1_2;
       tables outcome * pred_resp;
run;
%macro optimize();
%do t=5 %to 95 %by 5;
data work.t_score;
       set Work.dmkt_score_m1;
       FORMAT pred_resp $11.;
       if P_response > (&t / 100) then pred_resp = 'response';
       else pred_resp = 'no response';
run;
proc sql;
create table work.__acc_&t as
       SELECT
                     "&t %" as threshold
                     , count(*) as N
                     , sum(case when outcome = 'response' then 1 else 0 end) / count(*) AS
baseline
```

```
, sum(case when outcome = 'response' and pred_resp = 'response' then 1
else 0 end) / sum(case when pred resp = 'response' then 1 else 0 end) as model
                     , sum(case when outcome = 'response' and pred_resp = 'no response'
then 1 else 0 end) AS false_neg
                     , sum(case when outcome = 'no response' and pred_resp = 'response'
then 1 else 0 end) AS false_pos
       FROM work.t_score;
quit;
%end;
data Work.dmkt_thresholds;
       set __acc_:;
run;
proc sql;
       DROP table work.t_score;
       %do t=5 %to 95 %by 5;
              DROP table work. __acc_&t;
       %end;
%mend;
%optimize();
```

This is the primary dataset used for this regression analysis.

name	mf r	typ e	calorie s	protei n	fa t	sodiu m	fibe r	carb o	sugar s	potass	vitamin s	shel f	weigh t	cup s	rating
100% Bran	N	С	70	4	1	130	10	5	6	280	25	3	1	0.33	68.40 3
100% Natural Bran	Q	С	120	3	5	15	2	8	8	135	0	3	1	1	33.98 4
All-Bran	К	С	70	4	1	260	9	7	5	320	25	3	1	0.33	59.42 6
All-Bran with Extra Fiber	К	С	50	4	0	140	14	8	0	330	25	3	1	0.5	93.70 5
Almond Delight	R	С	110	2	2	200	1	14	8	-1	25	3	1	0.75	34.38 5
Apple Cinnamon Cheerios	G	С	110	2	2	180	1.5	10.5	10	70	25	1	1	0.75	29.51
Apple Jacks	К	С	110	2	0	125	1	11	14	30	25	2	1	1	33.17 4
Basic 4	G	С	130	3	2	210	2	18	8	100	25	3	1.33	0.75	37.03 9
Bran Chex	R	С	90	2	1	200	4	15	6	125	25	1	1	0.67	49.12
Bran Flakes	Р	С	90	3	0	210	5	13	5	190	25	3	1	0.67	53.31 4
Cap'n'Crunch	Q	С	120	1	2	220	0	12	12	35	25	2	1	0.75	18.04 3
Cheerios	G	С	110	6	2	290	2	17	1	105	25	1	1	1.25	50.76 5
Cinnamon Toast Crunch	G	С	120	1	3	210	0	13	9	45	25	2	1	0.75	19.82 4
Clusters	G	С	110	3	2	140	2	13	7	105	25	3	1	0.5	40.4
Cocoa Puffs	G	С	110	1	1	180	0	12	13	55	25	2	1	1	22.73 6
Corn Chex	R	С	110	2	0	280	0	22	3	25	25	1	1	1	41.44 5
Corn Flakes	К	С	100	2	0	290	1	21	2	35	25	1	1	1	45.86 3
Corn Pops	К	С	110	1	0	90	1	13	12	20	25	2	1	1	35.78 3
Count Chocula	G	С	110	1	1	180	0	12	13	65	25	2	1	1	22.39 7
Cracklin' Oat Bran	К	С	110	3	3	140	4	10	7	160	25	3	1	0.5	40.44 9
Cream of Wheat (Quick)	N	Н	100	3	0	80	1	21	0	-1	0	2	1	1	64.53 4
Crispix	K	С	110	2	0	220	1	21	3	30	25	3	1	1	46.89 6
Crispy Wheat & Raisins	G	С	100	2	1	140	2	11	10	120	25	3	1	0.75	36.17 6
Double Chex	R	С	100	2	0	190	1	18	5	80	25	3	1	0.75	44.33 1
Froot Loops	К	С	110	2	1	125	1	11	13	30	25	2	1	1	32.20 8
Frosted Flakes	К	С	110	1	0	200	1	14	11	25	25	1	1	0.75	31.43 6
Frosted Mini-Wheats	К	С	100	3	0	0	3	14	7	100	25	2	1	0.8	58.34 5

Fruit & Fibre	Р	С	120	3	2	160	5	12	10	200	25	3	1.25	0.67	40.91
Dates; Waln	P		120	3	2	160	5	12	10	200	25	3	1.25	0.67	40.91
Fruitful Bran	К	С	120	3	0	240	5	14	12	190	25	3	1.33	0.67	41.01 5
Fruity Pebbles	Р	С	110	1	1	135	0	13	12	25	25	2	1	0.75	28.02 6
Golden Crisp	Р	С	100	2	0	45	0	11	15	40	25	1	1	0.88	35.25 2
Golden Grahams	G	С	110	1	1	280	0	15	9	45	25	2	1	0.75	23.80 4
Grape Nuts Flakes	Р	С	100	3	1	140	3	15	5	85	25	3	1	0.88	52.07 7
Grape-Nuts	Р	С	110	3	0	170	3	17	3	90	25	3	1	0.25	53.37 1
Great Grains Pecan	Р	С	120	3	3	75	3	13	4	100	25	3	1	0.33	45.81 2
Honey Graham Ohs	Q	С	120	1	2	220	1	12	11	45	25	2	1	1	21.87 1
Honey Nut Cheerios	G	С	110	3	1	250	1.5	11.5	10	90	25	1	1	0.75	31.07 2
Honey-comb	Р	С	110	1	0	180	0	14	11	35	25	1	1	1.33	28.74 2
Just Right Crunchy Nugge	К	С	110	2	1	170	1	17	6	60	100	3	1	1	36.52 4
Just Right Fruit & Nut	К	С	140	3	1	170	2	20	9	95	100	3	1.3	0.75	36.47 2
Kix	G	С	110	2	1	260	0	21	3	40	25	2	1	1.5	39.24 1
Life	Q	С	100	4	2	150	2	12	6	95	25	2	1	0.67	45.32 8
Lucky Charms	G	С	110	2	1	180	0	12	12	55	25	2	1	1	26.73 5
Мауро	А	Н	100	4	1	0	0	16	3	95	25	2	1	1	54.85 1
Muesli Raisins; Dates; &	R	С	150	4	3	95	3	16	11	170	25	3	1	1	37.13 7
Muesli Raisins; Peaches;	R	С	150	4	3	150	3	16	11	170	25	3	1	1	34.14
Mueslix Crispy Blend	К	С	160	3	2	150	3	17	13	160	25	3	1.5	0.67	30.31 3
Multi-Grain Cheerios	G	С	100	2	1	220	2	15	6	90	25	1	1	1	40.10 6
Nut&Honey Crunch	К	С	120	2	1	190	0	15	9	40	25	2	1	0.67	29.92 4
Nutri-Grain Almond-Raisin	K	С	140	3	2	220	3	21	7	130	25	3	1.33	0.67	40.69 2
Nutri-grain Wheat	К	С	90	3	0	170	3	18	2	90	25	3	1	1	59.64 3
Oatmeal Raisin Crisp	G	С	130	3	2	170	1.5	13.5	10	120	25	3	1.25	0.5	30.45 1
Post Nat. Raisin Bran	Р	С	120	3	1	200	6	11	14	260	25	3	1.33	0.67	37.84 1
Product 19	К	С	100	3	0	320	1	20	3	45	100	3	1	1	41.50 4
Puffed Rice	Q	С	50	1	0	0	0	13	0	15	0	3	0.5	1	60.75 6
Puffed Wheat	Q	С	50	2	0	0	1	10	0	50	0	3	0.5	1	63.00 6
Quaker Oat Squares	Q	С	100	4	1	135	2	14	6	110	25	3	1	0.5	49.51 2
Quaker Oatmeal	Q	Н	100	5	2	0	2.7	-1	-1	110	0	1	1	0.67	50.82 8

Raisin Bran	K	С	120	3	1	210	5	14	12	240	25	2	1.33	0.75	39.25 9
Raisin Nut Bran	G	С	100	3	2	140	2.5	10.5	8	140	25	3	1	0.5	39.70 3
Raisin Squares	К	С	90	2	0	0	2	15	6	110	25	3	1	0.5	55.33 3
Rice Chex	R	С	110	1	0	240	0	23	2	30	25	1	1	1.13	41.99
Rice Krispies	К	С	110	2	0	290	0	22	3	35	25	1	1	1	40.56
Shredded Wheat	N	С	80	2	0	0	3	16	0	95	0	1	0.83	1	68.23 6
Shredded Wheat 'n'Bran	N	С	90	3	0	0	4	19	0	140	0	1	1	0.67	74.47 3
Shredded Wheat spoon size	N	С	90	3	0	0	3	20	0	120	0	1	1	0.67	72.80 2
Smacks	K	С	110	2	1	70	1	9	15	40	25	2	1	0.75	31.23
Special K	K	С	110	6	0	230	1	16	3	55	25	1	1	1	53.13 1
Strawberry Fruit Wheats	N	С	90	2	0	15	3	15	5	90	25	2	1	1	59.36 4
Total Corn Flakes	G	С	110	2	1	200	0	21	3	35	100	3	1	1	38.84
Total Raisin Bran	G	С	140	3	1	190	4	15	14	230	100	3	1.5	1	28.59 3
Total Whole Grain	G	С	100	3	1	200	3	16	3	110	100	3	1	1	46.65 9
Triples	G	С	110	2	1	250	0	21	3	60	25	3	1	0.75	39.10 6
Trix	G	С	110	1	1	140	0	13	12	25	25	2	1	1	27.75 3
Wheat Chex	R	С	100	3	1	230	3	17	3	115	25	1	1	0.67	49.78 7
Wheaties	G	С	100	3	1	200	3	17	3	110	25	1	1	1	51.59 2
Wheaties Honey Gold	G	С	110	2	1	200	1	16	8	60	25	1	1	0.75	36.18 8