$$xy$$
 (1)

$$xz^3 + (-1)yz^2 \tag{2}$$

Checking if following bases are Groebner basis. Divisors and bases are

•
$$x + (-1)z^2$$

•
$$y + (-1)z^3$$

.

1.
$$S(x + (-1)z^2, y + (-1)z^3) = xz^3 + (-1)yz^2$$
. Calculation is

(a) Start: calculates $xz^3 + (-1)yz^2 \div$

•
$$x + (-1)z^2$$
,

•
$$y + (-1)z^3$$
,

.

(b) Division:
$$x+(-1)z^2$$
 divides stock. stock is $(-1)yz^2+z^5$.

(c) Division:
$$y + (-1)z^3$$
 divides stock. stock is 0.

(d) Completed: quotients are

$$\bullet z^3$$

•
$$(-1)z^2$$
,

. remainder is 0. \blacksquare

Checking if following bases are Groebner basis. Divisors and bases are

•
$$x^2 + (-1)y$$

•
$$x^3 + (-1)z$$

.

1.
$$S(x^2 + (-1)y, x^3 + (-1)z) = (-1)xy + z$$
. Calculation is

(a) Start: calculates $(-1)xy + z \div$

•
$$x^2 + (-1)y$$
,

•
$$x^3 + (-1)z$$
,

.

(b) Remainder:
$$(-1)xy$$
 moved to remainder.

(c) Remainder: z moved to remainder.

(d) Completed: quotients are

• 0,

0,

. remainder is
$$(-1)xy + z$$
.

Checking if following bases are Groebner basis. Divisors and bases are

• $(-1)y + x^2$

.

• $(-1)z + x^3$

1. $S((-1)y + x^2, (-1)z + x^3) = (-1)x^2z + x^3y$. Calculation is

- (a) Start: calculates $(-1)x^2z + x^3y$:
 - $(-1)y + x^2$,
 - $(-1)z + x^3$,

(b) Division: $(-1)z + x^3$ divides stock. stock is $x^3y + (-1)x^5$.

(c) Division: $(-1)y + x^2$ divides stock. stock is 0.

(d) Completed: quotients are

- $(-1)x^3$,
- $\bullet x^2,$
- . remainder is 0. \blacksquare

Checking if following bases are Groebner basis. Divisors and bases are

- $xy^2 + (-1)xz + y$
- $xy + (-1)z^2$

.

• $x + (-1)yz^4$

1. $S(xy^2 + (-1)xz + y, xy + (-1)z^2) = (-1)xz + yz^2 + y$. Calculation is

- (a) Start: calculates $(-1)xz + yz^2 + y$:
 - $xy^2 + (-1)xz + y$,
 - $xy + (-1)z^2$,
 - $x + (-1)yz^4$,

(b) Division: $x + (-1)yz^4$ divides stock. stock is $(-1)yz^5 + yz^2 + y$.

- (c) Remainder: $(-1)yz^5$ moved to remainder.
- (d) Remainder: yz^2 moved to remainder.
- (e) Remainder: y moved to remainder.
- (f) Completed: quotients are
 - 0,
 - 0,
 - (-1)z,

. remainder is $(-1)yz^5 + yz^2 + y$.

.

- 2. $S(xy^2 + (-1)xz + y, x + (-1)yz^4) = (-1)xz + y^3z^4 + y$. Calculation is
 - (a) Start: calculates $(-1)xz + y^3z^4 + y$:
 - $xy^2 + (-1)xz + y$,
 - $xy + (-1)z^2$,
 - $x + (-1)yz^4$,

.

- (b) Division: $x + (-1)yz^4$ divides stock. stock is $y^3z^4 + (-1)yz^5 + y$.
- (c) Remainder: y^3z^4 moved to remainder.
- (d) Remainder: $(-1)yz^5$ moved to remainder.
- (e) Remainder: y moved to remainder.
- (f) Completed: quotients are
 - 0,
 - 0,
 - (-1)z,
 - . remainder is $y^{3}z^{4} + (-1)yz^{5} + y$.

.

- 3. $S(xy + (-1)z^2, x + (-1)yz^4) = y^2z^4 + (-1)z^2$. Calculation is
 - (a) Start: calculates $y^2z^4 + (-1)z^2$:
 - $xy^2 + (-1)xz + y$,
 - $xy + (-1)z^2$,
 - $x + (-1)yz^4$,

.

- (b) Remainder: y^2z^4 moved to remainder.
- (c) Remainder: $(-1)z^2$ moved to remainder.
- (d) Completed: quotients are
 - 0,
 - 0,
 - 0,

. remainder is $y^2z^4 + (-1)z^2$.