Time Series Data Analysis

Assoc. Prof. Nguyen Binh Minh Ph.D.

1

Learning Objectives

- Describe what forecasting is
- Explain time series & its components
- Smooth a data series
 - Moving average
 - Exponential smoothing
- Forecast using trend models Linear Regression regressive

Simple Auto-

What Is Forecasting?

- Process of predicting a future event
- Underlying basis of all business decisions
 - Production
 - Inventory
 - Personnel
 - Facilities

3

Forecasting Approaches

Qualitative Methods

Quantitative Methods

- Used when situation is vague & little data exist
 - New products
 - New technology
- Involve intuition, experience
- e.g., forecasting sales on Internet

Forecasting Approaches

Qualitative Methods

- Used when situation is vague & little data exist
 - New products
 - New technology
- Involve intuition, experience
- e.g., forecasting sales on Internet

Quantitative Methods

- Used when situation is 'stable' & historical data exist
 - Existing products
 - Current technology
- Involve mathematical techniques
- e.g., forecasting sales of color televisions

5

Quantitative Forecasting

- Select several forecasting methods
- 'Forecast' the past
- Evaluate forecasts
- Select best method
- Forecast the future
- Monitor continuously forecast accuracy

7

Quantitative Forecasting Methods

Quantitative Forecasting

9

Quantitative Forecasting Methods

11

Quantitative Forecasting Methods

13

What is a Time Series?

- Set of evenly spaced numerical data
 - Obtained by observing response variable at regular time periods
- Forecast based only on past values
 - Assumes that factors influencing past, present, & future will continue
- Example

• Year:	1995	1996	1997	1998	1999
• Sales:	78.7	63.5	89.7	93.2	92.1

Time Series vs. Cross Sectional Data

Time series data is a sequence of observations

- collected from a process
- •with equally spaced periods of time.

15

Time Series vs. Cross Sectional Data

Contrary to restrictions placed on cross-sectional data, the major purpose of forecasting with time series is to extrapolate beyond the range of the explanatory varia

Time Series vs. Cross Sectional Data

Time series is dynamic, it does change over time.

17

Time Series vs. Cross Sectional Data

When working with time series data, it is paramount that the data is plotted so the researcher can view the data.

Time Series Components

19

Time Series Components

Time Series Components

21

Time Series Components

Time Series Components

23

Trend Component

- Persistent, overall upward or downward pattern
- Due to population, technology etc.
- Several years duration

Trend Component

- Overall Upward or Downward Movement
- Data Taken Over a Period of Years

25

Cyclical Component

- Repeating up & down movements
- Due to interactions of factors influencing economy
- Usually 2-10 years duration

Cyclical Component

- Upward or Downward Swings
- May Vary in Length
- Usually Lasts 2 10 Years

27

Seasonal Component

- Regular pattern of up & down fluctuations
- Due to weather, customs etc.
- · Occurs within one year

Seasonal Component

- Upward or Downward Swings
- Regular Patterns
- Observed Within One Year

29

Irregular Component

- Erratic, unsystematic, 'residual' fluctuations
- Due to random variation or unforeseen events
 - Union strike
 - War
- Short duration & nonrepeating

Random or Irregular Component

- Erratic, Nonsystematic, Random, 'Residual' Fluctuations
- Due to Random Variations of
 - Nature
 - Accidents
- Short Duration and Non-repeating

31

Time Series Forecasting

33

Time Series Forecasting

35

Time Series Forecasting

37

Time Series Forecasting

Time Series Analysis

39

Plotting Time Series Data

Data collected by Coop Student (10/6/95)

Moving Average Method

41

Time Series Forecasting

Moving Average Method

- Series of arithmetic means
- · Used only for smoothing
 - Provides overall impression of data over time

43

Moving Average Method

- Series of arithmetic means
- Used only for smoothing
 - Provides overall impression of data over time

Used for elementary forecasting

Moving Average Graph

Actual

Year

45

Moving Average

[An Example]

You work for Firestone Tire. You want to smooth random fluctuations using a 3-period moving average.

1995 20,000

1996 24,000

1997 22,000

1998 26,000

1999 25,000

Moving Average [Solution]

Year Sales	MA(3) in 1,0	000	
1995	20,000	NA	
1996	24,000	(20+	4+22)/3 = 22
1997	22,000	(24+2	2+26)/3 = 24
1998	26,000	(22+2	/ +25)/3 = 24
1999	25,000	NA	

47

Moving Average

Year	Respons	se	Moving Ave
1994	2		NA
1995	5)	3
1996	2	7	3
1997	2		- 3.67
1998	7	_	5
1999	6		NA

Exponential Smoothing Method

49

Time Series Forecasting

Exponential Smoothing Method

- Form of weighted moving average
 - · Weights decline exponentially
 - Most recent data weighted most
- Requires smoothing constant (W)
 - Ranges from 0 to 1
 - · Subjectively chosen
- Involves little record keeping of past data

51

Exponential Smoothing

[An Example]

You're organizing a Kwanza meeting. You want to forecast attendance for 1998 using exponential smoothing

(α = .20). Past attendance (00) is:

Exponential Smoothing

$$E_i = W \cdot Y_i + (1 - W) \cdot E_{i-1}$$

Time	Y _i	Smoothed Value, E_i ($W = .2$)	Forecast Y_{i+1}
1995	갶	4.0	NA
1996	Õ	(,2)(6) + (1-,2)(4,0) = 4,4	7.0
1997	5	(,2)(5) + (1-,2)(4,4) = 4,5	4.4
1998	3	(,2)(3) + (1-,2)(4,5) = 4,2	4,5
(999	7	(.2)(7) + (1.2)(4.2) = 4.8	4.2
2000	AK	NA	7.3

53

Exponential Smoothing [Graph]

Attendance

Actual

Year

Forecast Effect of Smoothing Coefficient (W)

$$\hat{Y}_{i+1} = W \cdot Y_i + W \cdot (1-W) \cdot Y_{i+1} + W \cdot (1-W)^2 \cdot Y_{i+2} + \dots$$

Weight
2 Periods
Ago
Ago
W(1-W)
W(1-W)^2

0.10
10%
9%
9%
0.9%

55

Linear Time-Series Forecasting Model

57

Linear Time-Series Forecasting Model

- · Used for forecasting trend
- Relationship between response variable Y & time X is a linear function
- Coded X values used often

• Year <i>X</i> :	1995	1996	1997	1998	1999
 Coded year: 	0	1	2	3	4
• Sales Y:	78.7	63.5	89.7	93.2	92.1

Linear Time-Series Model

59

Linear Time-Series Model [An Example]

You're a marketing analyst for Hasbro Toys. Using coded years, you find $Y_i = .6 + .7X_i$.

1995	1
1996	1
1997	2
1998	2
1999	4

Forecast 2000 sales.

Linear Time-Series [Example]

<u>Year</u>	Coded Year	Sales (Units)
1995	0	1
1996	1	1
1997	2	2
1998	3	2
1999	4	4
2000	5	

2000 forecast sales: $Y_i = .6 + .7 \cdot (5) = 4.1$

The equation would be different if 'Year' used.

61

The Linear Trend Model

Time Series Plot

63

Time Series Plot [Revised]

Source: General Hospital, Metropolis

Seasonality Plot

65

Trend Analysis

Quadratic Time-Series Forecasting Model

67

Time Series Forecasting

Quadratic Time-Series Forecasting Model

- · Used for forecasting trend
- Relationship between response variable Y & time X is a quadratic function
- · Coded years used

69

Quadratic Time-Series Forecasting Model

- · Used for forecasting trend
- Relationship between response variable Y & time X is a quadratic function
- Coded years used
- Quadratic model

$$\hat{Y}_{i} = \hat{\omega}_{0} + \hat{\omega}_{1} X_{1i} + \hat{\omega}_{11} X_{1i}^{2}$$

Quadratic Time-Series Model Relationships

71

Quadratic Trend Model

Year	Coded	Sales	$\hat{\mathbf{Y}}_i = \mathbf{b}_0 + \mathbf{b}_1$	$X_i + b_2$
94	0	2		
0.5	4	-		Coefficients
95	1	5	Intercept	2.85714286
96	2	2	X Variable 1	-0.3285714
97	3	2	X Variable 2	0.21428571
98	4	7	Excel (Output
99	5	6	$\hat{Y}_i = 2.857 - 0.3$	$33 X_i + .21$

Exponential Time-Series Model

73

Time Series Forecasting

Exponential Time-Series Forecasting Model

- Used for forecasting trend
- Relationship is an exponential function
- Series increases (decreases) at increasing (decreasing) rate

75

Exponential Time-Series Forecasting Model

- · Used for forecasting trend
- Relationship is an exponential function
- Series increases (decreases) at increasing (decreasing) rate

Exponential Time-Series Model Relationships

77

Exponential Weight [Example Graph]

Exponential Trend Model

79

Autoregressive Modeling

Time Series Forecasting

81

Autoregressive Modeling

- · Used for forecasting trend
- · Like regression model
 - Independent variables are lagged response variables Y_{i-1} , Y_{i-2} , Y_{i-3} etc.
- Assumes data are correlated with past data values
 - 1st Order: Correlated with prior period
- Estimate with ordinary least squares

Time Series Data Plot

Data collected by Coop Student (10/6/95)

83

Auto-correlation Plot

Autoregressive Model [An Example]

The Office Concept Corp. has acquired a number of office units (in thousands of square feet) over the last 8 years.

Develop the 2nd order Autoregressive models.

Year	Units
92	4
93	3
94	2
95	3
96	2
97	2
98	4
99	6

85

Autoregressive Model [Example

Solution]

Develop the :	2nd	order
table		

 Use Excel to run a regression model

Excel Output

	Coefficients
Intercept	3.5
X Variable 1	0.8125
X Variable 2	-0.9375

Year	Y_i	Y_{i-1}	Y_{i-2}
92	4		
93	3	4	
94	2	3	4
95	3	2	3
96	2	3	2
97	2	2	3
98	4	2	2
99	6	4	2

$$Y_i = 3.5 + .8125 Y_{i-1} - .9375 Y_{i-2}$$

Evaluating Forecasts

87

Quantitative **Forecasting Steps**

- Select several forecasting methods
- 'Forecast' the past
- Evaluate forecasts

- Select best method
 - Forecast the future
 - Monitor continuously forecast accuracy

Forecasting Guidelines

- No pattern or direction in forecast error
 - e_i = (Actual Y_i Forecast Y_i)
 - Seen in plots of errors over time
- Smallest forecast error
 - Measured by mean absolute deviation
- Simplest model
 - Called principle of parsimony

89

Pattern of Forecast Error

Desired Pattern

Residual Analysis

91

Principal of Parsimony

- Suppose two or more models provide good fit for data
- Select the Simplest Model
 - Simplest model types:
 - least-squares linear
 - least-square quadratic
 - 1st order autoregressive
 - More complex types:
 - 2nd and 3rd order autoregressive
 - least-squares exponential

Summary

- Described what forecasting is
- Explained time series & its components
- · Smoothed a data series
 - Moving average
 - · Exponential smoothing
- Forecasted using trend models

93

You and StatGraphics

Specification

[Know assumptions underlying various models.]

Estimation

[Know mechanics of StatGraphics Plus Win].

Diagnostic checking

Questions?

95

Source of Elaborate Slides

Prentice Hall, Inc Levine, et. all, First Edition

End of Chapter