高等数学 A 大练习 10

范围: 泰勒公式 函数的极值

Part 1 错题再现

(8)
$$\lim_{x\to \frac{\pi}{2}}\frac{\tan x}{\tan 3x};$$

Part 2 新知识巩固

例2 求极限
$$\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$$

例 4 若
$$\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$$
, 求极限 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$.

例5 设 f''(x) > 0, 当 $x \to 0$ 时, f(x) 与 x 是等价无 穷小.证明: 当 $x \neq 0$ 时, f(x) > x.

例3 求函数
$$f(x) = x^3 - 3x^2 - 9x + 5$$
 的极值.

例4 求函数
$$f(x) = (x-1)\sqrt[3]{x^2}$$
 的极值.

Part 3 补充习题练习

- 1. 按(x-4)的幂展开多项式 $f(x) = x^4 5x^3 + x^2 3x + 4$
- 2. 应用麦克劳林公式,按 x 的幂展开函数 $f(x) = (x^2 3x + 1)^3$.
- 3. 求函数 $f(x) = \sqrt{x}$ 按(x-4)的幂展开的带有拉格朗日型余项的 3 阶泰勒公式.
- 4. 求函数 $f(x) = \ln x$ 按(x-2)的幂展开的带有佩亚诺型余项的 n 阶泰勒公式.
- 5. 求函数 $f(x) = \frac{1}{x}$ 按(x+1)的幂展开的带有拉格朗日型余项的 n 阶泰勒公式.
- 6. 求函数 $f(x) = \tan x$ 的带有佩亚诺型余项的 3 阶麦克劳林公式.
- 7. 求函数 $f(x) = xe^{t}$ 的带有佩亚诺型余项的 n 阶麦克劳林公式.
- 8. 验证当 $0 < x \le \frac{1}{2}$ 时,按公式 $e' \approx 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$ 计算 e' 的近似值时,所产生的误差 小于 0.01, 并求√e的近似值, 使误差小于 0.01.
 - 9. 应用 3 阶泰勒公式求下列各数的近似值,并估计误差:
 - (1) $\sqrt[3]{30}$:

(2) sin 18°.

10. 利用泰勒公式求下列极限:

(1)
$$\lim_{x \to +\infty} (\sqrt[4]{x^3 + 3x^2} - \sqrt[4]{x^4 - 2x^3});$$

(2)
$$\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^2[x + \ln(1-x)]};$$

(3)
$$\lim_{x \to 0} \frac{1 + \frac{1}{2}x^2 - \sqrt{1 + x^2}}{(\cos x - e^{x^2})\sin x^2}$$

1. 求下列函数的极值:

(1)
$$y = 2x^3 - 6x^2 - 18x + 7$$
;

(2)
$$y = x - \ln(1 + x)$$
;

(3)
$$y = -x^4 + 2x^2$$
;

(4)
$$y = x + \sqrt{1-x}$$
;

(5)
$$y = \frac{1+3x}{\sqrt{4+5x^2}}$$
;

(6)
$$y = \frac{3x^2 + 4x + 4}{x^2 + x + 1}$$
;

(7)
$$y = e^x \cos x$$
;

(8)
$$y = x^{\frac{1}{x}}$$

(9)
$$y = 3 - 2(x+1)^{\frac{1}{3}}$$
; (10) $y = x + \tan x$.

(10)
$$y = x + \tan x$$

- 2. 试证明:如果函数 $y = ax^3 + bx^2 + cx + d$ 满足条件 $b^2 3ac < 0$,那么这函数没有极值.
- 3. 试问 a 为何值时,函数 $f(x) = a\sin x + \frac{1}{3}\sin 3x$ 在 $x = \frac{\pi}{3}$ 处取得极值? 它是极大值还是极小值? 并求此极值.
 - 4. 求下列函数的最大值、最小值;
 - (1) $y = 2x^3 3x^2$, $-1 \le x \le 4$; (2) $y = x^4 8x^2 + 2$, $-1 \le x \le 3$;
 - (3) $y = x + \sqrt{1-x}, -5 \le x \le 1$.
 - 5. 问函数 $y = 2x^3 6x^2 18x 7$ ($1 \le x \le 4$)在何处取得最大值? 并求出它的最大值.
 - 6. 问函数 $y = x^2 \frac{54}{x}(x < 0)$ 在何处取得最小值?
 - 7. 问函数 $y = \frac{x}{x^2 + 1} (x \ge 0)$ 在何处取得最大值?

Part 4 附加题

2.(15分) (极值题) 求出闭区间 [-1,1] 上的一元函数 $f(x) = x^{\frac{2}{3}} - (x^2 - 1)^{\frac{1}{3}}$ 达到 最小值的 所有 [-1,1] 上的点。