HASHING ~ 03

CSE 122 ~ Algorithms & Data Structures

HASH FUNCTIONS

- → Division Method (last lecture)
- → Folding Method
- → Hashing by Multiplication
- → Mid-Square Method

HASH FUNCTIONS ~ FOLDING METHOD

- → Sometimes the key is rather long
 - Fold it
- → Folding Method
 - Divide the key value into a number of parts. Divide K into parts k_1 , k_2 , ..., k_n , where each part has the same number of digits (chunks) except the last part which may have fewer digits
 - Add the individual parts, $k_1 + k_2 + ... + k_n$. The hash value is found by ignoring the last carry, if any
 - Example:
 - Given m = 100, by folding the key 5678 you get 56 + 78 = 134, or 34 by dropping the 1
 - If K = 321 you would get 32 + 1 = 33
 - If K = 34567 you get 34 + 56 + 7 = 97

HASHING BY MULTIPLICATION

- \rightarrow Sometimes you want m to be non-prime
- → Weird, but true math fact
 - If θ is an irrational number (θ cannot be expressed as the ratio of a/b where a and b are integers) and for large enough n the fractions $\{\theta\}$, $\{2\theta\}$, $\{3\theta\}$, ..., $\{n\theta\}$ are distributed very uniformly from 0 to 1
- ightharpoonup Choosing θ equal to the reciprocal of the golden ratio ϕ^{-1} is a particularly excellent choice as it causes the distribution to be particularly excellent choice
 - So choose $\theta = \phi^{-1}$ fix m and define the multiplicative hash for key K as $h(K) = \lfloor m\{K\theta\} \rfloor$
- → Example
 - Assume m = 1000 and K = 12345
 - $h(K) = \lfloor 1000\{12345 \times 0.61803399\} \rfloor = 629$

HASHING ~ MID-SQUARE METHOD

- → Method
 - Square the value of the key. That is find K^2 .
 - Extract the middle r bits of the result obtained in 1.
- → Works because the distribution is not dominated by the bottom or top digit of the original key
- → Example:
 - M = 100 and the indexes range from 0 99. So need 2 digit numbers or 16 bits
 - If K = 1234, $K^2 = 1522756$, extract the 3^{rd} and 4^{th} digit bits or 27
 - If K = 3287, $K^2 = 10804369$ have to be consistent so extract 43

DEALING WITH COLLISIONS

- → Collisions your hash function maps two different keys to the same location
- → Collision Resolution Techniques
 - Open Addressing
 - Linear/Quadratic Probing
 - Double Hashing
 - Chaining

OPEN ADDRESSING

- → Once a collision takes place, open addressing computes a new position using a probe sequence and the next record is stored in that position
 - All values are stored in the hash table
 - The hash table takes two values:
 - Sentinel value: (-1) a flag that indicates the memory location is open (not occupied)
 - Data values
 - If a location has some value in it other slots are examined systematically to find an open slot
 - The process of examining memory locations is called probing
 - If no free locations are found you have an overflow condition

LINEAR PROBING

- \rightarrow Hash with $h(K) = K \mod m$, where m is prime and equal to the table-size
- → Assume h(K) is already occupied, then use the following to resolve the collision:
 - If key K hashes to index i but that position is occupied by another record, just try positions i+1, i+2, ... until an empty slot is found and store the record with K there.
 - If the search continues beyond the end of the table (beyond m-1) then continue from the top
 - $rehash(key) = (h(K)+i) \mod m$
 - If search reaches the initial probe position a second time the table is full and no hope to insert the key

SEARCHING FOR A VALUE USING A LINEAR PROBE

- → Given a key
 - Calculate h(K)
 - Check the location, if key found. You are done. 0(1)
 - If the key does not match begin a search of the array using a linear probe (sequential) until:
 - The value is found
 - The search function encounters a vacant location in the array indicating the value is not present
 - The search terminates because the table is full and the value is not present
 - Worst Case: O(n)

CONS OF LINEAR PROBING

- → Linear Probing works if the table is **not too full**
- → As hash table fills, you get clusters of consecutive cells which increases the times for insertions and searches ~ primary clustering
- → Once a block of a few contiguous occupied positions emerges in the table it becomes a *target* for subsequent collisions.
- → A collision in any position in the cluster makes the cluster grow larger.
- → The larger the cluster, the bigger a target it becomes

QUADRATIC PROBING

- → Similar to linear probing, but now use the following to resolve collisions:
 - If key K hashes to index i, but that position is occupied by another record, just try positions $i+1^2$, $i+2^2$, $i+3^2$ = i+1, i+4, i+9 ... until an empty slot is found and store the record with K there
 - $\bullet \quad \mathsf{H}(\mathsf{K},0) = \mathsf{h}(\mathsf{K})$
 - $H(K,p+1) = H(K,p)+p^2) \mod m$
 - rehash(key) = $(h(K) + p^2) \mod m$

QUADRATIC PROBING: PROS AND CONS

- → Helps eliminate primary clustering, but you now get secondary clustering
- → If there is a collision between two keys the same probe sequence is followed by both keys
- → Collisions occur more frequently as the table becomes full
- → Search is similar to linear probing

DOUBLE HASHING

- → Intervals between probes is defined by another hash function
- → Double hashing helps reduce clustering.
- → The 2nd hash should be $h_1(K) \neq 0$ and $h_1 \neq h(k)$
 - So $h(k,i) = [h_i(k) + ih_2(k)] \mod m$
 - M is the table size
 - $+ h_1(k) = k \mod m$
 - $h_2(k) = k \mod m*$
 - \cdot i = 0 to m-1
 - m* < m and can choose m* = m-1 or m-2</pre>
 - If h(k) produces a location that is occupied probe the locations $h(k)+h_1(k) \mod m$, $(h(k)+2*h_1(k)) \mod m$, ...

PROS AND CONS OF DOUBLE HASHING

→ Minimizes primary and secondary clustering

DELETIONS FROM OPEN ADDRESSED HASH TABLE

- → Seems trivial ~ just delete the key
 - But this really messes up searching for a key in the hash table
 - Deletion can possibly lead to empty positions which might be on the probe sequence ~ giving false positives
- → Usual way to fix false positives ~ people a one bit field to the table entry which indicates the slot has been deleted
 - Thus when searching, you check the deleted flad and skip over if a value has been deleted
 - Searches become longer when deletions of hash table increase and its possible every slot in the table has been deleted
- → Another solution: avoid deletions altogether, or rebuild the hash table

COLLISION BY CHAINING

- → In chaining, each location in the hash table stores a pointer to a linked list that contains all the key values that were hashed to the same location
- → Data Structure consists of two levels:
 - The hash table is an index that divides the dictionary into m linked lists
 - The linked lists are referred to as buckets

LOAD FACTOR

- → Define a **probe** as one access to the data structure
 - Thus in chaining one **probe** to get the list header, and a second to retrieve the first record in the linked list
- → For a LookUp, the time is proportional to the number of probes.
 - Thus the number of probes is a good indicator of efficiency
- \rightarrow Let *n* be the size of the dictionary to be stored and *m* be the size of the hash table, we define the *load factor* to be $\lambda = n/m$
 - A load factor of λ = 0 indicates an empty table. A load factor of λ = 0.5 indicates a table that is half full (half-empty)
 - Load factors can never exceed 1 for open addressing
 - Load factors can be > 1 for chaining