

Connect and Secure with Meraki

Rob Watt - CCIE: Security #19459 Product Manager, Cisco Meraki BRKMER-2020

Agenda

- Introduction
- What is Zero Trust?
- Secure Infrastructure with Meraki SecureConnect
- Intent based Security with Meraki Adaptive Policy
- IP Access Controls using Meraki MS Group Policy ACLs
- Conclusion

Introduction

A little bit about me?

- Will work for motorcycles
- Happy Husky owner!
- CCIE:Sec #19459
- Cisco for 7 Years
- PM in Cisco Meraki on MS Switching
- Prior Meraki CSE in Global Enterprise
- Way way back... Post/Presales Engineer w/ partners

Cisco's Implementation of Zero Trust

We establish trust by verifying:

- ✓ User & device identity
- ✓ Device posture & vulnerabilities
- ✓ Any workloads
- ✓ App/service trust
- ✓ Any indicators of compromise

We enforce least privilege access to:

- ✓ Applications
- ✓ Network resources
- ✓ Workload communications
- ✓ All workload users/admins

We continuously verify:

- ✓ Original tenets used to establish trust are still true
- ✓ Traffic is not threat traffic
- ✓ Any risky, anomalous and malicious behavior
- ✓ If compromised, then the trust level is changed

Zero Trust with SecureConnect

Meraki SecureConnect

Automated secure on-boarding of MR APs

- Automated securing of Access Point switchports
- Maintains infrastructure security with a focus on simplicity
- Consistent configuration of AP ports
- Certificate based verification of AP identity

https://documentation.meraki.com/MS/Access Control/SecureConnect

Supported on MS210/225/250/350/355/425/450 and 802.11ac wave 2 / Wi-Fi 6 (802.11ax) MR access points

Setting up SecureConnect

Step 1 - Plug in an MR Access Point to an MS Switch

MR physically connected to MS

Step 2 - Temporary Access for MR to Meraki Cloud

MR physically connected to MS

MS permits Meraki dashboard connection for MR

Step 3 - MR Requests Certificate from Cisco Managed PKI

cisco

SecureConnect Packet Capture

Initial Meraki Dashboard Connection - Management Traffic Only

Source	Destination	Protocol	Length Info		
0.0.0.0	255.255.255.255	DHCP	346 DHCP Discover - Transaction ID 0x4b6933f6		
10.39.0.1	10.39.0.115	DHCP	342 DHCP Offer - Transaction ID 0x4b6933f6		
0.0.0.0	255.255.255.255	DHCP	350 DHCP Request - Transaction ID 0x4b6933f6		MD LL' ID
10.39.0.1	10.39.0.115	DHCP	342 DHCP ACK - Transaction ID 0x4b6933f6		MR obtains IP on
0.0.0.0	255.255.255.255	DHCP	346 DHCP Release - Transaction ID 0x5f117916		Management VLAN
0.0.0.0	255.255.255.255	DHCP	346 DHCP Discover - Transaction ID 0x4b6933f7		
10.39.0.1	10.39.0.115	DHCP	342 DHCP Offer - Transaction ID 0x4b6933f7		
0.0.0.0	255.255.255.255	DHCP	350 DHCP Request - Transaction ID 0x4b6933f7		
10.39.0.1	10.39.0.115	DHCP	342 DHCP ACK - Transaction ID 0x4b6933f7		
10.39.0.115	10.39.0.1	DNS	78 Standard query 0x5d24 A mtunnel.meraki.com		
10.39.0.115	10.39.0.1	DNS	78 Standard query 0x4223 AAAA mtunnel.meraki.com		
10.39.0.1	10.39.0.115	DNS	115 Standard query response 0x5d24 A mtunnel.meraki.com CNAME		5
10.39.0.115	10.39.0.1	DNS	79 Standard query 0xe4b7 A mtunnel3.meraki.com		Performs lookup to
10.39.0.115	10.39.0.1	DNS	79 Standard query 0xac9c AAAA mtunnel3.meraki.com		connect to Meraki Cloud
10.39.0.1	10.39.0.115	DNS	116 Standard query response 0xe4b7 A mtunnel3.meraki.com CNAM	E	Connect to Meraki Cicaa
10.39.0.115	10.39.0.1	DNS	78 Standard query 0x3382 AAAA mtunnel.meraki.com		
10.39.0.1	10.39.0.115	DNS	109 Standard query response 0x3382 AAAA mtunnel.meraki.com CN	A	
10.39.0.115	209.206.48.214	UDP	146 44546 → 7351 Len=104		
10.39.0.115	209.206.52.14	UDP	146 44798 → 7351 Len=104		
209.206.52.14		UDP	88 7351 → 44798 Len=46		N1 1 1 1 1 1
209.206.48.214		UDP	88 7351 → 44546 Len=46		Normal dashboard
209.206.48.214		UDP	166 7351 → 44546 Len=124		communication
10.39.0.115	209.206.48.214	UDP	173 44546 → 7351 Len=131		
209.206.48.214		UDP	158 7351 → 44546 Len=116		(config/firmware download
209.206.48.214		UDP	164 7351 → 44546 Len=122		 + Cisco PKI enrollment ove
10.39.0.115	209.206.48.214	UDP	165 44546 → 7351 Len=123		management connection)
10.39.0.115	209.206.48.214	UDP	530 44546 → 7351 Len=488		management connection)
209-206-48-214	10-39-0-115	LIDP	158 7351 → 44546 Len=116		

Step 4 - MR Initiates EAPOL using new certificate

MR physically connected to MS

MR requests certificate from Cisco PKI

MS permits Meraki dashboard connection for MR

MR authenticates with acquired certificate

SecureConnect Packet Capture

SecureConnect Authentication via EAP-TLS

How Does it Work? Step 5 - MS Authorizes port and onboarding complete CISCO MS authorizes port as trunk and matches MR physically MR requests certificate management VLAN connected to MS from Cisco PKI MS permits Meraki MR authenticates dashboard with acquired connection for MR certificate

SecureConnect Demo

Building Zero Trust with Meraki Adaptive Policy

Adaptive Policy

- Intent-based policy leveraging inline Security Group Tags as identity
- One consistent policy across networks
- Micro-segmentation enforcement

What do I need to enable Adaptive Policy?

802.11ax/ac**

Assigning Adaptive Policy Group

Groups/tags can be applied in a number of ways:

- Statically assigned to a switch port
- Static assignment per SSID
- Dynamic assignment via RADIUS
- Static Prefix to SGT Mapping

One Consistent Policy Across All Sites

API First Development!

All settings available via Meraki dashboard APIs

Adaptive Policy Technical Details

cisco live!

What are SGTs?

SGT Packet Capture

Cisco MetaData
SGT=2

SGT Order of Application

Static Tag Applied to Port/SSID

Tag Received via RADIUS

Policy Object to Tag Mapping

MS Port Configuration and Behavior

Peer SGT Capable

- Trust received tags/send tagged frames on trunk ports
- Untagged frames tagged have port Group applied
- Used when connecting MS to Adaptive Policy capable MS/MR

Static Tag Assigned

- Incoming traffic tagged with configured Adaptive Policy Group
- Only available on Open/MAC Allow-List ports

802.1x Assigned

- Per-Session assignment based on RADIUS response
- Static fallback performed through Prefix to SGT map

Connecting MR to Adaptive Policy MS

- Meraki Simple!
- No MR configuration needed
- MR recognizes inbound CMD frames
- Automatically switches to CMD encapsulation
- Applies infrastructure SGT to management traffic

BRKMFR-2020

Using Policy Objects to map IP to SGT

Tag Application and Preservation

Adaptive Policy Domain

So where do we see tags?

SGT via RADIUS

Assign SGT values using the AV Pair:

cisco-av-pair:cts:security-group-tag = {SGT value in HEX}-{revision number}

Adaptive Policy Scaling

- Maximum of 60 tags
- Maximum 10 custom ACLs per tag <> tag relationship
- Maximum 16 ACE entries per custom ACL
- Endpoint scale is based on network/platform hardware and not on SGT/ACL

Adaptive Policy Demo

Group Policy ACLs

Group Policy ACL

Granular Wired Permissions

- Per-session 802.1X inbound ACL
- dACL-like functionality
- ACL orchestration via Dashboard
- On-the-fly ACL update (no CoA required)

Supported on MS210/225/250/350/355/425/450

Step 1 - GP ACL downloaded

MS Receives GP ACL as config from dashboard

Step 2 - Endpoint connected

MS Receives GP ACL as config from dashboard

Endpoint connects to network

Step 3 - RADIUS Access-Request

MS Receives GP ACL as config from dashboard

MS Sends RADIUS Access-Request

Endpoint connects to network

BRKMER-2020

Step 4 - RADIUS Responds

MS Receives GP ACL as config from dashboard

Endpoint connects to network

Server Responds with Access-Accept & Filter-ID AV-Pair

Step 6 - ACL Applied

ACL Entry Re-use

- Up to 20 active groups
- Maximum 600 active ACL entries per switch
- Group is active if there is an authenticated client with that policy applied
- ACL entry utilization does not increase with increase in number of clients using same group

$$1_{\text{client}} \times 1_{\text{group}} \times 10_{\text{rules}} = 10_{\text{hardware ACL entries}}$$

$$2_{\text{clients}} \times 1_{\text{group}} \times 10_{\text{rules}} = 10_{\text{hardware ACL entries}}$$

$$2000_{\text{clients}} \times 1_{\text{group}} \times 10_{\text{rules}} = 10_{\text{hardware ACL entries}}$$

But 2000 MAC addresses with ACL applied!

cisco Live!

ACL Usage = 10 entries

Group Policy ACLs Demo

Conclusion

Use Meraki as a building block to Zero Trust

- The latest Meraki Policy solutions enable building a Zero Trust workplace
- SecureConnect brings the concept of Zero Trust to infrastructure devices
- Adaptive Policy leverages mature security technologies to deliver a scalable, simple to deploy, LAN infrastructure

Continue your education

Demos in the Cisco campus

Meet the engineer 1:1 meetings

Walk-in labs

Related sessions

Thank you

