PART-II

DIGITAL ELECTRONICS

CHAPTER-5: LOGIC GATES

Reference:

- Malvino and Leach, Digital Principles & applications, 7th edition, TMH, 2010
- Morris Mano, "Digital design", Prentice Hall of India, Third Edition.

Boolean Algebra & Logic gates

MODULE -2

LOGIC GATES

OBJECTIVES

At the end of this module students will be able to:

- Describe basic logic gates and the concept of universal logic.
- Build a logic circuit for the given Boolean expressions.
- Write Boolean expressions for the given logic circuit.
- Differentiate combinational and sequential circuits.

 A logic gate is a digital circuit with one or more input signals and only one output signal.

The input and output signals are either HIGH (1) or LOW (0).

OR Gate:

Table: Truth table for two input OR gate

Input		Output	
Α	В	Y= A+B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

AND Gate:

Table: Truth table for two input OR gate

In	Output	
А	В	Y=A.B
0	0	0
0	1	0
1	0	0
1	1	1

Not Gate (Inverter):

Truth Table for NOT gate

Input	output
А	Y=
0	1
1	0

Universal Gates

NAND Gate: The output of a NAND gate is LOW only when all inputs are HIGH and output of the NAND is HIGH if one or more inputs are LOW.

 NOR Gate: The output of the NOR gate is HIGH only when all the inputs are LOW.

Universal gates: NAND and NOR gates are called Universal gates.

Universal Gates

NAND gate as Universal gate:

NOT operation:

$$A \longrightarrow A \longrightarrow A$$

AND operation:

$$\begin{array}{c} A \\ B \end{array} \begin{array}{c} \overline{AB} \\ \overline{AB} \\ \overline{AB} \\ \end{array} \begin{array}{c} \overline{AB} \\ \overline{AB$$

OR operation:

NOR operation:

XOR Gate or Exclusive OR gate: output is HIGH only when any one of the input is HIGH. (inequality comparator)

XNOR Gate or Exclusive NOR Gate: complementary of XOR operation.

The output of XNOR gate is High, when all the inputs are identical; otherwise it is low.

Types of Digital Circuits:

- Combinational Digital Circuits
- Sequential Digital Circuits

Figure (a) Combinational Circuit (b) Sequential circuit

Elements of combinational logic:

Literal

Ex- X and X' are both literals. Similarly ABCD' consists of 4 literals A,B,C and D'.

Product term

Ex- X, XY', XYZ are the product terms when X,Y,Z are Boolean variables.

Sum term

Ex- X+Y', X+Y+Z are the sum terms when X,Y,Z are Boolean variables.

Continued......

Sum of products (SOP): Each product term is the logical AND of literals.

Ex: Y+XY'+XYZ

 Products of Sums (POS): Each sum term is the logical OR of literals.

Ex: (X+Y')((X'Y+Z)(X+Y+Z)

Continued......

 Canonical form: Canonical is defined as "conforming to a general rule". (Standard form)

All the literals exist either complimented or non complimented form.

Canonical Sum of Products:

Ex: f(A,B,C) = A'B'C+A'BC'+A'BC+ABC'

Canonical Product of Sums:

Ex: f(X,Y)=(X+Y')(X+Y)(x'+y)

Continued......

- Minterm: Each product term in the standard (canonical) SOP expression.
- Maxterm: Each sum term in the standard (canonical) POS expression

Building logic circuits using Boolean expression

> Examples of combinational circuits

Draw the logic circuit for the Boolean expression. Y= A'BC+AB' C+ABC'.

(Do the reverse process also)

Combinational circuits

Half adder circuit

Input		Output		
А	В	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Continued......

- Sum= A'B+AB' =A XOR B
- Carry= A.B

Self test

- 1. Show that NOR is a universal gate.
- 2. Draw the logic circuit for the Boolean expression. Y= BC+A' C+AB'C.
- 3. Implement the half adder circuit using XOR gates.
- 4. Implement the full adder circuit using logic gates.

Summary

- Logic gates are fundamental building blocks of digital systems
- The basic set of logic gates are AND, OR and NOT and this set is called Universal set.
- NAND and NOR are called Universal gates.
- Inputs and outputs of logic gates can occur in two levels. These two levels are termed as HIGH and LOW, or TRUE and FALSE, or ON and OFF, or simply 1 or 0.
- Logic circuits whose output at any instant of time is entirely dependent upon the input signals present at that time are known as combinational digital circuits.
- Logic circuits whose output at any instant of time depend, not only on the present input but also on the past outputs are called Sequential Circuits.

Exercise:

- 1. Draw the logic circuit for the Boolean expression. Y= BC+A' C+AB'C.
- 2. Show that AB+(A+B) is equivalent to A O B. Also construct the corresponding logic diagrams.
- 3. The most suitable gate to check whether the number of 1s in a digital word is even or odd is ------
- 4. a)X-OR b) NAND c) NOR d) AND, OR and NOT
- 5. Realize NOR and NAND gate using discrete components.
- 6. Implement Full Subtractor using Basic gates.
- 7. Implement full adder using two half adders.

Module-3

KARNAUGH MAP (K – MAP)

KARNAUGH MAP (K – MAP)

OBJECTIVES

At the end of this module students will be able to:

- Explain the standard form of Boolean expressions.
- Apply the K-map for Boolean expression simplification and design of logic circuits.

KARNAUGH MAP (K – MAP)

Karnaugh map (k – map) method of simplifying the Boolean expressions:

- ➤ Boolean expression can be expressed in sum of product (SOP) form or product of sum (POS) form.
- Boolean expression in SOP form:

$$Y = AB'C + ABC + A'BC$$

- Each of the product terms in the standard SOP form is called a minterm.
- Boolean expression in POS form:

$$Y = (A + B + C') (A' + B + C) (A + B + C)$$

Each sum term in the standard POS form is called a maxterm.

- Steps to convert SOP to canonical SOP:
- Find the missing literal in each product term.
- AND each product term having missing literals with terms by ORing the literal and its complement.
- Expand the terms and reduce the expression by removing repeated terms.
- Ex1: F(A,B,C) = AC+AB+BC
 = A (B+B')C+AB(C+C')+(A+A')BC
 = AB'C+ABC'+A'BC+ABC

Self test

1. Determine the Boolean function of the truth table in canonical SOP form and simplify the expression.

Inputs			Output
Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

- Introduction
- **Structure of a K map:**
- Two variable $K \text{map has } 2^2 = 4 \text{ cells}$
- Three variable K-map has $2^3 = 8$ cells
- Four variable K-map has $2^4 = 16$ cells.

KARNAUGH MAP (K – MAP)

2-Variable K-MAP

3-Variable K-MAP

KARNAUGH MAP (K – MAP)

4-Variable K-MAP

	yz	yz	yz	yz	
	0000	0001	0011	0010	
wx	0 0	1 1	3 3	2 2	
	0100	0101	0111	0110	
wx	4 4	5 5	7 7	6 6	
wx	1100	1101	1111	1110	
WX	C 12	D 13	F 15	E 14	
	1000	1001	1011	1010	
wx	8 8	9 9	В 11	A 10	
	Note that this is still an				
	SOP K-map.				

Department of Electronics and Communication Engineering, MIT, Manipal

KARNAUGH MAP (K - MAP)

Simplification of Boolean expressions in SOP form:

- 1. Place logical 1s in the appropriate cells.
- 2. Two or Four or Eight adjacent logical '1s' can be grouped together.

Example

The minterms on the K-map can be labeled as $f=\Sigma m(5, 7, 13, 15)$ in decimal, or $f=\Sigma m(5, 7, D, F)$ in hex.*

PROBLEM: Reduce the following Boolean expression using K-map:

$$f = AB + AB'C + A'BC' + BC'$$

Soln. The given Boolean expression is not in SOP form.

$$f = AB(C + C') + AB'C + A'BC' + BC'(A + A')$$

$$= ABC + ABC' + AB'C + A'BC' + ABC' + A'BC'$$

$$= ABC + ABC' + AB'C + A'BC'$$

$$= \Sigma m(7, 6, 5, 2)$$

Ans.
$$f = AC + BC'$$

Simplify using 3-variable K-map

Self test

Problem 1 Reduce the Boolean expression $f = \Sigma m (0, 2, 3, 4, 5, 6)$ using K-map and implement it in AOI logic. Ans: f = C' + AB' + A'B

Problem 2 Reduce the expression f = A'B' + A'B + AB using mapping Ans: f = A' + B

Don't care terms

- The combinations for which the values of the expression are not specified are called don't care combinations.
- The don't care terms are denoted by d or X.

Ex1: Simplify the following Boolean expression using K Map. $F(A,B,C) = \Sigma m(3,4) + d(2,5,6)$

BC A	00	01	11	10		
0	0	0	1		Х	
1	1	Х	0		Х	

$$F = AB' + A'B$$

Summary

- 1. The K-map is a chart or a graph, composed of an arrangement of adjacent cells, each representing a particular combination of variables in sum of product form.
- 2. It is a means of showing the relationship between the logic inputs and desired output.
- 3. K-map is limited to 6 variables.
- 4. Any Boolean expression can be expressed in a standard or canonical or expanded sum (OR) of products (AND) form –SOP form—or in a standard or canonical or expanded product (AND) of sums (OR) form – POS form.

Exercise:

1. Consider the truth table of a function. Transfer the outputs to the K map and write the Boolean expression.

А	В	Y
	0	0
U	0	U
0	1	1
1	0	1
1	1	1

2. Simplify the following Boolean expressions using K maps.

$$F = \Sigma m(0,2,4,6)$$

$$F = \Sigma m(0,2,4,6) + d(5,7).$$