CMPE 12

SECTION 01-C

Katerina Chinnappan

kachinna@ucsc.edu

1) (5 pts) Build a 5-input and gate out of 2-input and gates.

Answer:

2) (5 pts) How many output lines will a five-input decoder have?

Answer: $2^5 = 32 \rightarrow So 32$ output lines

3) (5 pts) How many output lines will a 16-input multiplexer have? How many select lines will this multiplexer have?

Answer: 16 lines since 16 input.

Log base (2) (16) = 4 output lines.

4) (5 pts) You know a byte is 8 bits. We call a 4-bit quantity a nibble. if a byte-addressable memory has a 14-bit address, how many nibbles of storage are in this memory?

Answer: 14-bit address, so \rightarrow 2^14 = 16384. \rightarrow 16382 * 2 = **32768 nibbles**

5) (15 pts) All Logic circuits can be created by NAND gates. Prove this by building logic circuits for NOT, OR and AND using only NAND gates.

Answer:

6) (10 pts) Distinguish between a memory address and the memory's addressability.

Answer: Memory is made up of many locations, where each location is unique and has the ability to store a value.

Addressability is the number of bits stored in each memory location.

7) (15 pts) Give the logic circuit below, fill in the truth table for the output value Y.

Answer:	Α	В	С	Υ
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
	0	1	1	0
	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	0

8) (15 pts) Create the Logic gates for the truth Table below

Answer:

a.	not use additive inverse. 39 - 22 b. 25 - 14 c. 39 - 12 d. 18 - 11 e. 30 – 26			
An	<mark>iswer:</mark> (let's use 8 bit)	<mark>REMEMBER: 1-0 = 0, 1-1 = 0, 0-0 = 0, 0-1 = 1</mark> carry 1		
a)	1) convert 39 to binary → 0010 0111 2) convert 22 to binary → 0001 0110			
	3) subtract:	0010 0111		
	-	0001 0110		
		0001 0001 → 0001 0001 which is 17 in base 10.		
b)	1) convert 25 to binary > 0001 1001			
	2) convert 14 to binary → 0000 1110	0001 1001		
	3) subtract:	0000 11001		
		$0000\ 1011 \rightarrow 0000\ 1011$ which is 11 in base 10.		
c)	1) convert 39 to binary → 0010 0111 2) convert 12 to binary → 0000 1100			
	3)subtract:	0010 0111		
	-	0000 1100		
۹/	1) convert 19 to hipary-20001 0010	0001 1011 → 0001 1011 which is 27 in base 10 .		
d)	 convert 18 to binary → 0001 0010 convert 11 to binary → 0000 1011 			
	3) subtract:	0001 0010		
	-	0000 1011		
		0000 0111 →0000 0111which is 7 in base 10.		
e)	1) convert 30 to binary > 0001 1110			
	2) convert 26 to binary → 0001 1010 3) subtract:	0001 1110		
		0001 1110		
		0000 0100 → 0000 0100 which is 4 in base 10 .		

9) (25 pts) Convert the following numbers to binary and perform binary subtraction on them. Do