Alloy cheat sheet

Propositional Logic:

\neg	negation	!, not			
\wedge	conjunction	&&, and			
V	disjunction	, or			
\rightarrow	implication	=>, implies			
\longleftrightarrow	equivalence	<=>, iff			
First Order Logic:					
$(\forall x)P[x]$	universal quantifier	all $x:X \mid P$			
$(\exists x)P[x]$	existential quantifier	$some x : X \mid P$			
$(\exists!x)P[x]$	uniquess quantifier	one x:X P			

at most one quantifier

at most zero quantifier

lone $x:X \mid P$

 $no x : X \mid P$

 $(\forall x) \neg P[x]$ Set Theory:

 $(\exists_0^1 x)P[x]$

$\emptyset, \{\}$	the empty set	none
$\{x \in X \mid P[x]\}$	comprehension	$\{x:X\mid P\}$
$X \subseteq Y$	set inclusion	${\tt X}$ in ${\tt Y}$
$x \in X$	element, singleton subset	x: one X
$x \in \wp(X)$	subset inclusion	$\mathtt{x}:\mathtt{set}\ \mathtt{X}$
$x \in \wp(X), x \neq 0$	inclusion, nonempty subset	$x: \mathtt{some}\ X$
$x \in \wp(X), x \le 1$	empty or singleton subset	x: lone X
$X \times Y$	cartesian product	X -> Y
$X \cup Y$	sets union	X + Y
$X \cap Y$	sets intersection	X & Y
$X \setminus Y$	sets difference	Х - Ү
\mathtt{dom},U	entire domain set	univ

Relational Algebra:

	9	
\mathtt{id},I	identity relation	iden
$R \subseteq A \times B$	binary relation	$R:A\rightarrow B$
$R\bowtie S$	relational join	R.S, S[R]
R^{-1}	inverse/transpose relation	~R
R^+	transitive closure	^R
R^*	reflexive-transitive closure	*R
$S \lhd R$	domain restriction	S <: R
$R \rhd S$	range restriction	R:>S
$R \oplus S$	relational override	R++ S

```
Function Properties:
    f: A \nrightarrow B
                         partial function
                                                              f:A \rightarrow lone B
    f:A\to B
                          total function
                                                               f : A \rightarrow one B
    f: A \not \rightarrowtail B
                         partial injection
                                                           f:A lone->lone B
    f: A \rightarrow B
                          total injection
                                                           f:A lone->one B
    f: A \not\rightarrow\!\!\!\!\rightarrow B
                        partial surjection
                                                           f: A some -> lone B
    f:A \twoheadrightarrow B
                         total surjection
                                                           f: A some -> one B
    f:A \leftrightarrow B
                        bijective function
                                                            f: A one -> one B
   Cardinality & Arithmetic:
     \#X, |X|
                                                                     #X
                          set cardinality
    1, 2, 3, \dots
                          integer literals
                                                                1,2,3,...
                                                              x + y, add [x, y]
                         integer addition
      x + y
                                                              x - y, sub [x, y]
       x - y
                       integer substraction
                       integer comparisons
                                                               x \ge y, x = < y
   x \ge y, x \le y
   x > y, x < y
                       strict comparisons
                                                                x > y, x < y
more arithmetic functionality with open util/integer:
    x' = x + 1
                        successor function
                                                                 next[x]
                      integer multiplication
                                                                 mul[x,y]
       x \cdot y
                         integer division
                                                                 div[x,y]
       x/y
                        reminder division
      x \operatorname{mod} y
                                                                 rem[x,y]
   Sequences & Lists:
 s = \langle a_0 a_1 \cdots a_n \rangle
                        ordered sequence
                                                                   seq s
       s^{\hat{}}t
                          concatenation
                                                               s.append[t]
                          head function
     s_{(0)} = a_0
                                                                 s.first
s_{[1]} = \langle a_1 a_2 \cdots a_n \rangle
                           tail function
                                                                  s.rest
more ordered sequeces functionality with open util/sequence:
   Alloy Language Expresions:
    signature
                      sig name {}
       fields
                      sig name \{field : S\}
abstract/instance
                      abstract sig A { }; sig B,C extends A { }
 domain/subset
                      sig A\{\}; sig S in A\{\}
    shortcuts
                      let n1 = s1.field1, n2 = s2.field2 | \{n1 = n2\}
       facts
                      fact {nop: human | pin p.^(mother) && father = ~child}
                      pred contains[b: Book, n: Name, d: Addr] {n->d in b.addr}
    predicates
    functions
                      fun lives_at[b:Book, n: Name]: set Addr {b.addr[n]}
   conditional
                      fun case[n: Int]: Int \{n>0 \Rightarrow 1 \text{ else } 0\}
 assertion check
                      assert nSelfF{no m: Man | m=m.father} check nSelfFfor 4
                      pred Test[M:machine] {doThis} run Test for 4 but 1 machine
consistency check
```

Further information from: alloy.mit.edu