September 30, 2010

612-339-3061.

P.O. Box 2938 Minneapolis, MN 55402 Telephone (612) 373-6900 Facsimile (612) 339-3061

Time:			1.4	
	(Minneapolis, Minn.)			
TO:	Commissioner for Patents	FROM:	Ann M. McCrackin	
	Attn: Ben Wang Patent Examining Corps Facsimile Center P.O. Box 1450 Alexandria, VA 22313-1450	OUR RE	EF: <u>800,035US1</u>	
	FAX NUMBER <u>571-273-8300</u>			
* Please deliver to Examiner Ben Wang in Art Unit 2192. *				
Document(s) Transmitted: Supplemental Amendment and Response (9 pgs.)				
Total pages of this transmission, including cover letter: <u>10</u>				

 In re. Patent Application of: James Smith et al.
 Examiner: Ben Wang

 Serial No.: 10/772,555
 Group Art Unit: 2192

 Filed: February 5, 2004
 Docket No.: 800,035US1

If you do NOT receive all of the pages described above, please telephone us at 612-373-6900 or fax us at

Title: IDENTIFYING PROGRAM PHASE CHANGES THROUGH PROGRAM WORKING

SET ANALYSIS

Please charge any additional fees or credit overpayment to Deposit Account No. 19-0743.

By: 1 ann M. Mc Crackin		
Name: Ann M. McCrackin		
USPTO Reg. No. 42,858		

hyreby certify that this paper is being transmitted by facsimile to the U.S. Patent and Trademark Office on the date shown below.

September 30, 2010

Date of Transmission

<u>S/N 10/772,555</u> <u>PATENT</u>

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
Applicants: James Smith et al. Examiner: Ben Wang

Serial No.: 10/772,555 Group Art Unit: 2192

Filed: February 5, 2004 Docket No.: 800.035US1
Customer No.: 81244 Confirmation No.: 5526

Title: IDENTIFYING PROGRAM PHASE CHANGES THROUGH PROGRAM

WORKING SET ANALYSIS

SUPPLEMENTAL AMENDMENT & RESPONSE UNDER 37 C.F.R. § 1.111

Mail Stop Amendment Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Further in response to the Advisory Action dated January 10, 2010, to which a Request for Continued Examination was filed on July 14, 2010, please amend the application as follows:

SUPPLEMENTAL AMENDMENT & RESPONSE UNDER 37 C.F.R. § 1.111 Serial Number: 10.772.555 Filing Date: February 5, 2004

Tide: IDENTIFYING PROGRAM PHASE CHANGES THROUGH PROGRAM WORKING SET ANALYSIS

Page 2 Dkt: 800.035US1

IN THE CLAIMS

Please amend the claims as follows:

(Currently Amended) An apparatus comprising:

a processing unit of a processor;

a memory coupled to the processor; and

an instruction set operable on the processing unit of the processor and including instructions:

to instantiate a data structure in the memory to collect a representation of a working set; and

defining to define a hash unit operable on the processing unit to map a plurality of working set elements into the data structure using a hash function.

wherein, in a program, [[a]] the working set $W(t_i, \tau)$ for i=1,2,..., where i is an integer, is a set of distinct memory segments $\{s_1, s_2,...s_m\}$ accessed over the ith window of size τ within a time interval t_i :

wherein the window is a sequence of τ consecutive memory accesses; wherein the working set size is \overrightarrow{w} , the cardinality of the set of unique segments that are accessed by members of the window.

- 2. (Previously Presented) The apparatus of claim 1 wherein the data structure is a $2^n \times m$ bit table, where n is a number of bit table entries and m is a width of the bit table.
- (Original) The apparatus of claim 2 wherein m is in the range of 1 to 64.
- (Original) The apparatus of claim 2 wherein m = 1.
- 5. (Original) The apparatus of claim 2 wherein n is in the range of 1 to 20.

SUPPLEMENTAL AMENDMENT & RESPONSE UNDER 37 C.F.R. § 1.111 Serial Number: 10/772,555

Page 3 Dkt: 800.035U\$1

Filing Date: February 5, 2004
Title: IDENTIFYING PROGRAM PHASE CHANGES THROUGH PROGRAM WORKING SET ANALYSIS

- 6. (Original) The apparatus of claim 1 wherein the data structure is a 2ⁿ -bit vector.
- (Original) The apparatus of claim 6 wherein n = 1.
- (Currently Amended) A computerized method of creating a representation of a working set, the computerized method comprising:

mapping a plurality of working set elements into fields of a data structure using a hash function,

where in in a program, the working set $W(t_i, \tau)$ for i=1,2,..., where i is an integer, is a set of distinct memory segments $\{s_1, s_2,...s_m\}$ accessed over the i^{th} window of size τ within a time interval t:

wherein the window is a sequence of \u03c4 consecutive memory accesses;

wherein the working set size is 00, the cardinality of the set of unique segments that are accessed by members of the window.

- (Original) The computerized method of claim 8 wherein the mapping is performed for a fixed interval of program execution.
- 10. (Original) The computerized method of claim 9 wherein the data structure is reset prior to each fixed interval of program execution.
- 11. (Original) The computerized method of claim 10 further comprising saving the fields of the data structure prior to resetting the data structure.
- 12. (Currently Amended) A computerized method of creating a representation of a working set, the computerized method comprising:

executing a program for a fixed interval, the program comprising instructions identified by a program counter; SUPPLEMENTAL AMENDMENT & RESPONSE UNDER 37 C.F.R. § 1.111 Scrial Number: 10/772,555 Page 4 Dkt: 800.035US1

Filing Date: February 5, 2004
Title: IDENTIFYING PROGRAM PHASE CHANGES THROUGH PROGRAM WORKING SET ANALYSIS

performing a hash function on the program counter to create a hash value for each instruction executed during the fixed interval; and

updating a field of a table indexed by the hash value wherein the table represents the working set.

wherein, in a second program, the working set $W(t_1, \tau)$ for i=1,2..., where i is an integer, is a set of distinct memory segments $\{s_1, s_2...s_{\omega}\}$ accessed over the ith window of size τ within a time interval t:

wherein the window is a sequence of t consecutive memory accesses;

wherein the working set size is ω, the cardinality of the set of unique segments that are accessed by members of the window.

13. (Currently Amended) A computer system comprising:

a bus:

a memory coupled to the bus; and

a processor coupled to the memory and the bus; the processor comprising:

a data structure to collect a representation of a working set; and

a hash unit to map a plurality of working set elements into the data structure using a hash function.

wherein, in a program, the working set $W(t_i, \tau)$ for i=1,2,..., where i is an integer, is a set of distinct memory segments $\{s_1, s_2,...s_m\}$ accessed over the ith window of size τ within a time interval t_i ;

wherein the window is a sequence of t consecutive memory accesses;

wherein the working set size is 00, the cardinality of the set of unique segments that are accessed by members of the window.

 (Previously Presented) The computer system of claim 13, further comprising: an instruction retirement unit; and SUPPLEMENTAL AMENDMENT & RESPONSE UNDER 37 C.F.R. § 1.111 Serial Number: 107772,555 Page 5

Filing Date: February 5, 2004
Title: IDENTIFYING PROGRAM PHASE CHANGES THROUGH PROGRAM WORKING SET ANALYSIS

wherein the data structure and the hash unit are part of an instruction retirement unit.

15. (Currently Amended) A computerized method of estimating size of a working set, the method comprising:

receiving a signature for a working set; and

estimating the size of the working set based on the size of the signature.

wherein_in a program, the working set $W(t_i, \tau)$ for i=1,2,..., where j is an integer_is a set of distinct memory segments $\{s_1, s_2,...,s_\omega\}$ accessed over the i^{th} window of size τ within a time interval t_i :

wherein the window is a sequence of τ consecutive memory accesses;

wherein the working set size is ω, the cardinality of the set of unique segments that are accessed by members of the window.

16. (Original) The computerized method of claim 15 wherein the estimating is performed with the following function:

$$K = \log(1-f)/\log\left(1-\frac{1}{2^n}\right),$$

wherein K is the number of unique working set elements, 2" is the number of entries in the signature, and f is the fraction of 1's in the signature.

17. (Currently Amended) A computerized method of detecting working set changes, the method comprising:

comparing a current working set signature to a previous working set signature;

calculating a relative signature distance between the current working set signature and the previous working set signature; and

identify a working set change when the relative signature distance exceeds a predetermined threshold,

wherein, in a program, [[a]] the working set W(ti, t) for i=1,2..., where i is an integer, is a

Filing Date: February 5, 2004

SUPPLEMENTAL AMENDMENT & RESPONSE UNDER 37 C.F.R. § 1.111 Serial Number: 10/772.555 Page 6

Title: IDENTIFYING PROGRAM PHASE CHANGES THROUGH PROGRAM WORKING SET ANALYSIS

set of distinct memory segments $\{s_1, s_2...s_\omega\}$ accessed over the i^{th} window of size t within a time interval t_i :

wherein the window is a sequence of τ consecutive memory accesses;

wherein the working set size is ω , the cardinality of the set of unique segments that are accessed by members of the window.

- 18. (Original) The computerized method of claim 17 wherein the working set change indicates a phase change in a program.
- 19. (Currently Amended) A computerized method of identifying a recurring working set, the method comprising:

comparing a current working set signature to one or more previous working set signatures;

calculating a relative signature distance between the current working set signature and the one or more previous working set signatures; and

identifying a recurring working set when the relative signature distance between the current working set signature and one of the previous working set signatures is within a predetermined threshold,

where in_in a program, [[a]] the working set $W(t_i, \tau)$ for i=1,2,..., where i is an integer, is a set of distinct memory segments $\{s_1, s_2,...s_{\omega}\}$ accessed over the i^{th} window of size τ within a time interval t:

wherein the window is a sequence of τ consecutive memory accesses:

wherein the working set size is 00, the cardinality of the set of unique segments that are accessed by members of the window.

20. (Original) The computerized method of claim 19 further comprising identifying a new working set when the relative signature distance between the current working set signature the one or more previous working set signatures exceeds a predetermined threshold.

SUPPLEMENTAL AMENDMENT & RESPONSE UNDER 37 C.F.R. § 1.111
Serial Number: 107772-555

Page 7

Filing Date: February 5, 2004
Title: IDENTIFYING PROGRAM PHASE CHANGES THROUGH PROGRAM WORKING SET ANALYSIS

- 21. (Original) The computerized method of claim 20 further comprising maintaining a table of the one or more previous working set signatures.
- 22. (Currently Amended) A hardware reconfiguration method comprising: maintaining a table comprising a plurality of working set signatures for a program; upon detecting a working set change, looking up a working set signature for a current working set in the table;

if the working set signature is in the table, reinstating a hardware configuration for the current working set; and

if the working set signature is not in the table; identifying a new hardware configuration for the current working set and saving the working set signature and the new hardware configuration,

wherein, in a program, [[a]] the working set $W(t_i, \tau)$ for i=1,2,..., where i is an integer, is a set of distinct memory segments $\{s_1, s_2,...s_0\}$ accessed over the i^{th} window of size τ within a time interval t_i :

wherein the window is a sequence of t consecutive memory accesses;

wherein the working set size is on the cardinality of the set of unique segments that are accessed by members of the window.

 (Original) The method of claim 22 wherein the working set change indicates a phase change in a program. SUPPLEMENTAL AMENDMENT & RESPONSE UNDER 37 C.F.R. § 1.111 Serial Number: 10/772,555 Page 8 Dkt: 800.035US1

Filing Date: February 5, 2004
Title: IDENTIFYING PROGRAM PHASE CHANGES THROUGH PROGRAM WORKING SET ANALYSIS

REMARKS

This is further in response to the Advisory Action dated January 10, 2010, to which a Request for Continued Examination was filed on July 14, 2010.

Claims 1, 8, 12-13, 15, 17, 19, and 22 are amended; no claims are canceled, and no claims are added in this response. As a result, claims 1-23 are pending in this application.

Support for the amendments may be found throughout the instant application. As such, it is believed that no new matter is introduced by these amendments.

Interview Summary

Applicants would like to thank Examiner Wang for the Examiner initiated telephonic interview on September 16, 2010. Examiner suggestions with respect to claim 1, and indicated to be applicable to the other independent claims, were discussed. Applicants then agreed to amend the independent claims (1, 8, 12–13, 15, 17, 19, and 22) in accordance with the Examiner's suggestions. Accordingly, it is believed that claims 1–23 are currently in condition for allowance.

SUPPLEMENTAL AMENDMENT & RESPONSE UNDER 37 C.F.R. § 1.111
Serial Number: 10/772.555

Page 9

Filing Date: February 5, 2004
Title: IDENTIFYING PROGRAM PHASE CHANGES THROUGH PROGRAM WORKING SET ANALYSIS

CONCLUSION

Applicants respectfully submit that the claims are in condition for allowance, and notification to that effect is earnestly requested. The Examiner is invited to telephone the undersigned at (612) 349-9592 to facilitate prosecution of this application.

If necessary, please charge any additional fees or deficiencies, or credit any overpayments to Deposit Account No. 19-0743.

Respectfully submitted,

SCHWEGMAN, LUNDBERG & WOESSNER, P.A. P.O. Box 2938

Minneapolis, MN 55402-0938 (612) 349-9592

Date Sept. 30, 2010

1 ann M. Mc Cackin 1

Reg. No. 42,858

I hereby certify that this paper is being transmitted by facsimile to the U.S. Patent and Trademark Office on the date shown

below

September 30, 2010

Date of Transmission