

Discrete mathematics

Algorithms

Chapter 3

RIZOAN TOUFIQ

ASSISTANT PROFESSOR

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
RAJSHAHI UNIVERSITY OF ENGINEERING & TECHNOLOGY

Section Summary

- Time Complexity
- Worst-Case Complexity
- Algorithmic Paradigms
- Understanding the Complexity of Algorithms

The Complexity of Algorithms

- Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size? To answer this question, we ask:
 - How much time does this algorithm use to solve a problem?
 - How much computer memory does this algorithm use to solve a problem?
- When we analyze the time the algorithm uses to solve the problem given input of a particular size, we are studying the *time complexity* of the algorithm.
- When we analyze the computer memory the algorithm uses to solve the problem given input of a particular size, we are studying the *space complexity* of the algorithm.

The Complexity of Algorithms

- In this course, we focus on time complexity. The space complexity of algorithms is studied in later courses.
- We will measure time complexity in terms of the number of operations an algorithm uses and we will use big-*O* and big-Theta notation to estimate the time complexity.
- We can use this analysis to see whether it is practical to use this algorithm to solve problems with input of a particular size. We can also compare the efficiency of different algorithms for solving the same problem.
- We ignore implementation details (including the data structures used and both the hardware and software platforms) because it is extremely complicated to consider them.

Time Complexity

- To analyze the time complexity of algorithms, we determine the number of operations, such as comparisons and arithmetic operations (addition, multiplication, etc.). We can estimate the time a computer may actually use to solve a problem using the amount of time required to do basic operations.
- We ignore minor details, such as the "house keeping" aspects of the algorithm.
- We will focus on the *worst-case time* complexity of an algorithm. This provides an upper bound on the number of operations an algorithm uses to solve a problem with input of a particular size.
- It is usually much more difficult to determine the *average case time complexity* of an algorithm. This is the average number of operations an algorithm uses to solve a problem over all inputs of a particular size.

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm for finding the maximum element in a finite sequence.

```
procedure max(a_1, a_2, ...., a_n): integers)

max := a_1

for i := 2 to n

if max < a_i then max := a_i

return max\{max \text{ is the largest element}\}
```

Solution: Count the number of comparisons.

- The $max < a_i$ comparison is made n-1 times.
- Each time *i* is incremented, a test is made to see if $i \le n$.
- One last comparison determines that i > n.
- Exactly 2(n-1) + 1 = 2n 1 comparisons are made.

Hence, the time complexity of the algorithm is $\Theta(n)$.

Worst-Case Complexity of Linear Search

Example: Determine the time complexity of the linear search algorithm.

```
procedure linear search(x:integer, a_1, a_2, ..., a_n: distinct integers)
i := 1
while (i \le n and x \ne a_i)
i := i + 1
if i \le n then location := i
else location := 0
return location{location is the subscript of the term that equals x, or is 0 if x is not found}
```

Solution: Count the number of comparisons.

- At each step two comparisons are made; $i \le n$ and $x \ne a_i$.
- To end the loop, one comparison $i \le n$ is made.
- After the loop, one more $i \le n$ comparison is made.

If $x = a_i$, 2i + 1 comparisons are used. If x is not on the list, 2n + 1 comparisons are made and then an additional comparison is used to exit the loop. So, in the worst case 2n + 2 comparisons are made. Hence, the complexity is $\Theta(n)$.

Average-Case Complexity of Linear Search

Example: Describe the average case performance of the linear search algorithm. (Although usually it is very difficult to determine average-case complexity, it is easy for linear search.)

Solution: Assume the element is in the list and that the possible positions are equally likely. By the argument on the previous slide, if $x = a_i$, the number of comparisons is 2i + 1.

$$\frac{3+5+7+\ldots+(2n+1)}{n} = \frac{2(1+2+3+\ldots+n)+n}{n} = \frac{2\left[\frac{n(n+1)}{2}\right]}{n} + 1 = n+2$$

Hence, the average-case complexity of linear search is $\Theta(n)$.

Worst-Case Complexity of Binary Search

Example: Describe the time complexity of binary search in terms of the number of comparisons used.

```
procedure binary search(x: integer, a_1, a_2, \ldots, a_n: increasing integers)
i := 1 {i is the left endpoint of interval}
j := n {j is right endpoint of interval}

while i < j
m := \lfloor (i+j)/2 \rfloor
if x > a_m then i := m+1
else j := m
if x = a_i then location := i
else location := 0
return location{location is the subscript i of the term a_i equal to x, or 0 if x is not found}
```

Solution: Assume (for simplicity) $n = 2^k$ elements. Note that $k = \log n$.

- Two comparisons are made at each stage; i < j, and $x > a_m$.
- At the first iteration the size of the list is 2^k and after the first iteration it is 2^{k-1} . Then 2^{k-2} and so on until the size of the list is $2^1 = 2$.
- At the last step, a comparison tells us that the size of the list is the size is $2^0 = 1$ and the element is compared with the single remaining element.
- Hence, at most $2k + 2 = 2 \log n + 2$ comparisons are made.
- Therefore, the time complexity is Θ (log n), better than linear search.

Worst-Case Complexity of Bubble Sort

Example: What is the worst-case complexity of bubble sort in terms of the number of comparisons made?

```
procedure bubblesort(a_1,...,a_n): real numbers with n \ge 2)

for i := 1 to n-1

for j := 1 to n-i

if a_j > a_{j+1} then interchange a_j and a_{j+1}
\{a_1,...,a_n \text{ is now in increasing order}\}
```

Solution: A sequence of n-1 passes is made through the list. On each pass n-i comparisons are made. $(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2}$

$$\frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n$$

The worst-case complexity of bubble sort is $\Theta(n^2)$ since

Worst-Case Complexity of Insertion Sort

Example: What is the worst-case complexity of insertion sort in terms of the number of comparisons made?

Solution: The total number of comparisons are:

$$2+3+\cdots+n = \frac{n(n-1)}{2}-1$$

Therefore the complexity is $\Theta(n^2)$.

```
procedure insertion sort(a_1,...,a_n):
    real numbers with n \ge 2)

for j := 2 to n
i := 1
while a_j > a_i
i := i + 1
m := a_j
for k := 0 to j - i - 1
a_{j-k} := a_{j-k-1}
a_i := m
```

Matrix Multiplication Algorithm

- The definition for matrix multiplication can be expressed as an algorithm; $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ where \mathbf{C} is an m n matrix that is the product of the $m \times k$ matrix \mathbf{A} and the $k \times n$ matrix \mathbf{B} .
- This algorithm carries out matrix multiplication based on its definition.

```
 \begin{aligned} \textbf{for } i &:= 1 \text{ to } m \\ \textbf{for } j &:= 1 \text{ to } n \\ c_{ij} &:= 0 \\ \textbf{for } q &:= 1 \text{ to } k \\ c_{ij} &:= c_{ij} + a_{iq} b_{qj} \\ \textbf{return } \textbf{C} \{ \textbf{C} = [c_{ij}] \text{ is the product of } \textbf{A} \text{ and } \textbf{B} \} \end{aligned}
```

Complexity of Matrix Multiplication

Example: How many additions of integers and multiplications of integers are used by the matrix multiplication algorithm to multiply two *n n* matrices.

Solution: There are n^2 entries in the product. Finding each entry requires n multiplications and n-1 additions. Hence, n^3 multiplications and $n^2(n-1)$ additions are used.

Hence, the complexity of matrix multiplication is $O(n^3)$.

Boolean Product Algorithm

• The definition of Boolean product of zero-one matrices can also be converted to an algorithm.

```
procedure Boolean product(\mathbf{A}, \mathbf{B}: zero-one matrices)

for i := 1 to m

for j := 1 to n

c_{ij} := 0

for q := 1 to k

c_{ij} := c_{ij} \lor (a_{iq} \land b_{qj})

return \mathbf{C}\{\mathbf{C} = [c_{ij}] \text{ is the Boolean product of } \mathbf{A} \text{ and } \mathbf{B}\}
```

Complexity of Boolean Product Algorithm

Example: How many bit operations are used to find \bullet **B**, where A and B are n zero-one matrices?

Solution: There are n^2 entries in the $\mathbf{A} \odot \mathbf{B}$. A total of n Ors and n ANDs are used to find each entry. Hence, each entry takes 2n bit operations. A total of $2n^3$ operations are used.

Therefore the complexity is $O(n^3)$

Matrix-Chain Multiplication

- How should the *matrix-chain* $A_1A_2 \cdot A_n$ be computed using the fewest multiplications of integers, where A_1 , A_2 , ..., A_n are m_1
- $\times m_2$, $m_2 \times m_3$, $\cdots m_n \times m_{n+1}$ integer matrices. Matrix multiplication is associative (exercise in Section 2.6).

Example: In which order should the integer matrices $A_1A_2A_3$ where A_1 is 30 \times 20 A_2 20 \times 40, A_3 40 \times 10 - be multiplied to use the least number of multiplications.

Solution: There are two possible ways to compute $A_1A_2A_3$.

- $A_1(A_2A_3)$: A_2A_3 takes $20 \cdot 40 \cdot 10 = 8000$ multiplications. Then multiplying A_1 by the 20×10 matrix A_2A_3 takes $30 \cdot 20 \cdot 10 = 6000$ multiplications. So the total number is 8000 + 6000 = 14,000.
- $(A_1A_2)A_3$: A_1A_2 takes $30 \cdot 20 \cdot 40 = 24,000$ multiplications. Then multiplying the 30×40 matrix A_1A_2 by A_3 takes $30 \cdot 40 \cdot 10 = 12,000$ multiplications. So the total number is 24,000 + 12,000 = 36,000.

So the first method is best.

An efficient algorithm for finding the best order for matrix-chain multiplication can be based on the algorithmic paradigm known as *dynamic programming*. (see Ex. 57 in Section 8.1)

Algorithmic Paradigms

- An *algorithmic paradigm* is a a general approach based on a particular concept for constructing algorithms to solve a variety of problems.
 - Greedy algorithms were introduced in Section 3.1.
 - We discuss brute-force algorithms in this section.
 - We will see divide-and-conquer algorithms (Chapter 8), dynamic programming (Chapter 8), backtracking (Chapter 11), and probabilistic algorithms (Chapter 7). There are many other paradigms that you may see in later courses.

Brute-Force Algorithms

- A *brute-force* algorithm is solved in the most straightforward manner, without taking advantage of any ideas that can make the algorithm more efficient.
- Brute-force algorithms we have previously seen are sequential search, bubble sort, and insertion sort.

Computing the Closest Pair of Points by Brute-Force

Example: Construct a brute-force algorithm for finding the closest pair of points in a set of *n* points in the plane and provide a worst-case estimate of the number of arithmetic operations.

Solution: Recall that the distance between (x_i, y_i) and (x_j, y_j) is $\sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$. A brute-force algorithm simply computes the distance between all pairs of points and picks the pair with the smallest distance.

Note: There is no need to compute the square root, since the square of the distance between two points is smallest when the distance is smallest.

Continued →

Computing the Closest Pair of Points by Brute-Force

• Algorithm for finding the closest pair in a set of *n* points.

```
procedure closest pair((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n): x_i, y_i real numbers)

min = \infty

for i := 1 to n

for j := 1 to i

if (x_j - x_i)^2 + (y_j - y_i)^2 < min

then min := (x_j - x_i)^2 + (y_j - y_i)^2

closest\ pair := (x_i, y_i), (x_j, y_j)

return closest\ pair
```

- The algorithm loops through n(n-1)/2 pairs of points, computes the value $(x_j x_j)^2 + (y_j y_j)^2$ and compares it with the minimum, etc. So, the algorithm uses $\Theta(n^2)$ arithmetic and comparison operations.
- We will develop an algorithm with $O(\log n)$ worst-case complexity in Section 8.3.

Understanding the Complexity of Algorithms

TABLE 1	Commonly Used Terminology for the
Complexity	of Algorithms.

Complexity	Terminology			
$\Theta(1)$	Constant complexity			
$\Theta(\log n)$	Logarithmic complexity			
$\Theta(n)$	Linear complexity			
$\Theta(n \log n)$	Linearithmic complexity			
$\Theta(n^b)$	Polynomial complexity			
$\Theta(b^n)$, where $b > 1$	Exponential complexity			
$\Theta(n!)$	Factorial complexity			

Understanding the Complexity of Algorithms

TABLE 2 The Computer Time Used by Algorithms.								
Problem Size	Bit Operations Used							
n	log n	n	$n \log n$	n^2	2^n	n!		
10	$3 \times 10^{-11} \text{ s}$	10^{-10} s	$3 \times 10^{-10} \text{ s}$	10^{-9} s	10^{-8} s	$3 \times 10^{-7} \text{ s}$		
10^{2}	$7 \times 10^{-11} \text{ s}$	10^{-9} s	$7 \times 10^{-9} \text{ s}$	10^{-7} s	$4 \times 10^{11} \text{ yr}$	*		
10^{3}	$1.0 \times 10^{-10} \text{ s}$	10^{-8} s	$1 \times 10^{-7} \text{ s}$	10^{-5} s	*	*		
10^{4}	$1.3 \times 10^{-10} \text{ s}$	10^{-7} s	$1 \times 10^{-6} \text{ s}$	10^{-3} s	*	*		
10^{5}	$1.7 \times 10^{-10} \text{ s}$	10^{-6} s	$2 \times 10^{-5} \text{ s}$	0.1 s	*	*		
10 ⁶	$2 \times 10^{-10} \text{ s}$	10^{-5} s	$2 \times 10^{-4} \text{ s}$	0.17 min	*	*		

Times of more than 10^{100} years are indicated with an *.

Complexity of Problems

- *Tractable Problem*: There exists a polynomial time algorithm to solve this problem. These problems are said to belong to the *Class P*.
- Intractable Problem: There does not exist a polynomial time algorithm to solve this problem
- Unsolvable Problem: No algorithm exists to solve this problem, e.g., halting problem.
- Class NP: Solution can be checked in polynomial time. But no polynomial time algorithm has been found for finding a solution to problems in this class.
- NP Complete Class: If you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class.

P Versus NP Problem

- The *P versus NP problem* asks whether the class P = NP? Are there problems whose solutions can be checked in polynomial time, but can not be solved in polynomial time?
 - Note that just because no one has found a polynomial time algorithm is different from showing that the problem can not be solved by a polynomial time algorithm.
- If a polynomial time algorithm for any of the problems in the NP complete class were found, then that algorithm could be used to obtain a polynomial time algorithm for every problem in the NP complete class.
 - Satisfiability (in Section 1.3) is an NP complete problem.
- It is generally believed that $P \neq NP$ since no one has been able to find a polynomial time algorithm for any of the problems in the NP complete class.
- The problem of P versus NP remains one of the most famous unsolved problems in mathematics (including theoretical computer science). The Clay Mathematics Institute has offered a prize of \$1,000,000 for a solution.

Stephen Cook (Born 1939)

Query???

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=I}^{\infty} x = ?$$

$$\forall_{\mathbf{x}} (\Re/\mathbf{x}) = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}} = ?$$
 $1-1+1-1+1....=?$

$$1-1+1-1+1....=2$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$