DISTRIBUTED SYSTEMS

Distributed Databases

Group 6

About Us

Group 6

Nguyễn Trấn Nguyên	BI10-128
Nguyễn Tương Quỳnh	BI10-154
Nguyễn Quang Vinh	BI10-195
Nguyễn Anh Quân	BI10-146
Mai Xuân Hiếu	BI10-064

CONTENTS

- 1. Introduction
- 2. Methodology
- 3. Demo
- 4. Conclusion and Future Works

1. INTRODUCTION

1. INTRODUCTION

- 1.1. What is Distributed Database?
- 1.2. The Types of Distributed Database
- 1.3. Distributed Data Storage

1.1. WHAT IS DISTRIBUTED DATABASE?

- A distributed database (DDB) is a collection of databases that are physically spread across multiple sites in a computer network.
- In DDB, the files must be **formatted**, logically **interconnected**, and physically **dispersed** over numerous sites to form a distributed database system. A common interface for accessing the distributed data is required.
- Applications: It is used in the Corporate Management Information System, multimedia applications, Military control systems, Hotel chains, also in the manufacturing control system, and many other systems.

1.2. THE TYPES OF DISTRIBUTED DATABASE

Homogeneous Distributed Database:

- In a homogeneous database, all different sites store the database identically.
- The operating system, database management system, and the data structures used – all are the same at all sites. Hence, they're easy to manage.
- In our project, we would try to create a homogeneous distributed database

1.2. THE TYPES OF DISTRIBUTED DATABASE

Heterogeneous Distributed Database:

- In a heterogeneous distributed database,
 different sites can use different schema and
 software.
- Different computers may use a different operating system, a different database application.
- They may even use different data models for the database. Hence, translations are required for different sites to communicate.

1.3. DISTRIBUTED DATA STORAGE

Replication:

- In this approach, the entire relationship is stored redundantly. Hence, in replication, systems maintain copies of data.
- This is advantageous as it increases the **availability** of data at different sites. Also, the query requests can be processed in parallel.
- However, it has certain disadvantages as well.
 - Data needs to be constantly updated.
 - Also, concurrency control becomes way more complex as concurrent access now needs to be checked over a number of sites.

1.3. DISTRIBUTED DATA STORAGE

• Fragmentation:

- In this approach, the relations are fragmented and each of the fragments is stored in different sites where they're required.
- It must be made sure that the fragments are able to reconstruct the original relation (i.e, there isn't any loss of data).
- Fragmentation is advantageous as it doesn't create copies of data, consistency is not a problem.
- Fragmentation of relations can be done in two ways:
 - Horizontal fragmentation Splitting by rows: The relation is fragmented into groups of tuples so that each tuple is assigned to at least one fragment.
 - Vertical fragmentation Splitting by columns: The schema of the relation is divided into smaller schemas. Each fragment must contain a common candidate key so as to ensure a lossless join.
- In certain cases, an approach that is a hybrid of fragmentation and replication is used.
- In our project, we choose horizontal fragmentation as our distributed data storage

2. METHODOLOGY

2. METHODOLOGY

- We try to set up a distributed database to manage student course enrollment by PostgreSQL and Citus
- + **PostgreSQL** is a powerful, open source object-relational database system with a strong reputation for reliability and performance.
- + **Citus** is a PostgreSQL **extension** that allows commodity database servers (called *nodes*) to coordinate with one another in a "shared nothing" architecture. This architecture allows the database to scale by simply adding more nodes to the cluster.

2. METHODOLOGY

- Database Architecture:
- + In total, we have 5 database.
- + These small database instances are easier to manage as most of the data exists in the separate database worker servers.
- + Coordinators hold smaller amounts of data, like some metadata and data that is not sensible to shard.

3. DEMO

4. CONCLUSION AND FUTURE WORKS

4. CONCLUSION AND FUTURE WORKS

- In conclusion, we have successfully set up a distributed database to manage student course enrollment by PostgreSQL and Citus
- However, there are a lot of **improvements** that can be done in the future, such as the larger database or more workers/replica in the architecture.

REFERENCE

- https://docs.citusdata.com/en/stable/get_started/concepts.html#table-types
- https://en.wikipedia.org/wiki/Distributed_database
- https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_2492
- https://www.tutorialspoint.com/DDBMS-Advantages-and-Disadvantages#:~:text=The%20database %20is%20easier%20to,be%20stored%20at%20different%20locations.
- https://www.youtube.com/watch?v=J-sj3GUrq9k&ab_channel=DatabasesDemystified
- https://www.geeksforgeeks.org/difference-between-centralized-database-and-distributed-database/
- Charles Tupper (2011) 'Distributed Databases' in *Data Architecture: From Zen to Reality*. Elsevier: p385-400
- https://www.smartly.io/blog/scaling-our-analytical-processing-service-sharding-a-postgresql-databas e-with-citus

THANK YOU FOR LISTENING!