Linear Reg

Linear Regression Part - Used for Graph 5 on dashboard

Creating the Linear Regression dataset for finding the relation in the sales amount for last 7 days to see if there is a trend

Reading the day level transaction data present on S3

Checking the read data

Checking the read data

```
In [148]: date_reg.limit(5).toPandas()
```

Out[148]:

	date	dist_str	dist_item	sales	cntltmSoldOnPromo	dcoilwtico	holidayFl	cnt_trns
0	8/1/2015	51	3023	1044894.790	1448	45.25	0	105307
1	8/2/2015	51	2982	1043495.475	2194	45.25	0	97134
2	8/3/2015	51	3020	811119.834	1405	45.25	0	89639
3	8/4/2015	51	3014	726613.358	3489	45.75	0	85613

	date	dist_str	dist_item	sales	cntltmSoldOnPromo	dcoilwtico	holidayFl	cnt_trns
4	8/5/2015	51	3019	724346.594	8919	45.13	1	84912

Reading the ml feature Vector Assembler for later use in regression if necessary

```
In [149]: from pyspark.ml.feature import VectorAssembler
```

Adding a numeric sequence column to the dataset to later filter based on this column to create separate dataframe for capturing relation based on lag days sales.

```
In [160]: from pyspark.sql.functions import monotonically_increasing_id

date_reg = date_reg.withColumn('Seq',monotonically_increasing_id())
```

Registering a temp table from above daat for further processing

```
In [180]: date_reg.registerTempTable("date1")
```

Creating sepearate dataframes based on sequence number that are corresponding to different dates

```
date1
         where Seq \leftarrow 740 AND Seq \rightarrow 561
dt4 = sqlContext.sql("""
         SELECT sales as sale4 from
         date1
         where Seq \leftarrow 739 AND Seq \rightarrow 560
dt5 = sqlContext.sql("""
         SELECT sales as sale5 from
         date1
         where Seq \leftarrow 738 AND Seq \rightarrow 559
dt6 = sqlContext.sql("""
         SELECT sales as sale6 from
         date1
         where Seq \leftarrow 737 AND Seq \rightarrow 558
dt7 = sqlContext.sql("""
         SELECT sales as sale7 from
         date1
         where Seg \leftarrow 736 AND Seg \rightarrow 557
dt8 = sqlContext.sql("""
         SELECT sales as sale8 from
         date1
         where Seq \leftarrow 735 AND Seq \rightarrow 556
         """)
dt1.show()
+----+
```

| sale1| +----+

```
645968.257
 758855.713|
 1063394.8441
 858897.1231
  759120.06
 717806.677
 739388.035
   675578.51
 816197.499
1026011.2231
 775708.9881
 744956.948
 949366.8291
 1008521.71
 836225.179
 882639.775
1125736.347
 1196983.691
 790143.241
  761866.731
+---+
only showing top 20 rows
```

Adding sequence number again to these separated datasets so that they can be joined together with the lag to see if there is a corelation

```
In [270]: dt1 = dt1.withColumn('Tseq', monotonically_increasing_id())
    dt2 = dt2.withColumn('Tseq', monotonically_increasing_id())
    dt3 = dt3.withColumn('Tseq', monotonically_increasing_id())
    dt4 = dt4.withColumn('Tseq', monotonically_increasing_id())
    dt5 = dt5.withColumn('Tseq', monotonically_increasing_id())
    dt6 = dt6.withColumn('Tseq', monotonically_increasing_id())
    dt7 = dt7.withColumn('Tseq', monotonically_increasing_id())
    dt8 = dt8.withColumn('Tseq', monotonically_increasing_id())
```

```
sale1|Tseq|
  645968.257|
                0
 758855.713
                1|
 1063394.8441
                2|
 858897.123|
                3|
                4|
  759120.06
 717806.6771
                5|
 739388.035
                6
                7
    675578.5
 816197.499|
                8|
                9
1026011.223
 775708.9881
               10|
 744956.948
               11|
 949366.829
               12
 1008521.71
               13|
 836225.179|
               14|
 882639.7751
               15 l
 1125736.347|
               16
 1196983.691
               17|
 790143.241
               18|
  761866.73| 19|
only showing top 20 rows
```

Registering the above dataframes as tables for joining them together

```
In [271]: dt1.registerTempTable("dt1")
    dt2.registerTempTable("dt2")
    dt3.registerTempTable("dt4")
    dt4.registerTempTable("dt5")
    dt5.registerTempTable("dt5")
    dt6.registerTempTable("dt6")
    dt7.registerTempTable("dt7")
    dt8.registerTempTable("dt8")
```

Creating the dataset by joining the above different dates dataset

```
In [272]: dt11 = sqlContext.sql("""
                           SELECT dt1.Tseq, dt1.sale1, dt2.sale2
                           FROM dt1 INNER JOIN dt2
                           ON dt1.Tseq = dt2.Tseq
                           """)
          dt11.registerTempTable("dt11")
          dt12 = sqlContext.sql("""
                           SELECT dt11.*, dt3.sale3
                           FROM dt11 INNER JOIN dt3
                           ON dt11.Tseq = dt3.Tseq
          dt12.registerTempTable("dt12")
          dt13 = sqlContext.sql("""
                           SELECT dt12.*, dt4.sale4
                           FROM dt12 INNER JOIN dt4
                           ON dt12.Tseq = dt4.Tseq
                           """)
          dt13.registerTempTable("dt13")
          dt14 = sqlContext.sql("""
                           SELECT dt13.*, dt5.sale5
                           FROM dt13 INNER JOIN dt5
                           ON dt13.Tseq = dt5.Tseq
                           """)
          dt14.registerTempTable("dt14")
          dt15 = sqlContext.sql("""
                           SELECT dt14.*, dt6.sale6
                           FROM dt14 INNER JOIN dt6
                           ON dt14.Tseq = dt6.Tseq
                           11 11 11 )
```

++								+
Tseq	sale1	sale2	sale3	sale4	sale5	sale6	sale7	sale8
0	645968.257	745780.355	642613.187	794314.432	1074820.9	944924.653	752207.24	624387.488
1	758855.713	645968.257	745780.355	642613.187	794314.432	1074820.9	944924.653	752207.24
j 2 j	1063394.844	758855.713	645968.257	745780.355	642613.187	794314.432	1074820.9	944924.653
j 3 j	858897.123	1063394.844	758855.713	645968.257	745780.355	642613.187	794314.432	1074820.9
j 4 j	759120.06	858897.123	1063394.844	758855.713	645968.257	745780.355	642613.187	794314.432
5	717806.677	759120.06	858897.123	1063394.844	758855.713	645968.257	745780.355	642613.187
6	739388.035	717806.677	759120.06	858897.123	1063394.844	758855.713	645968.257	745780.355
7	675578.5	739388.035	717806.677	759120.06	858897.123	1063394.844	758855.713	645968.257
8	816197.499	675578.5	739388.035	717806.677	759120.06	858897.123	1063394.844	758855.713
9	1026011.223	816197.499	675578.5	739388.035	717806.677	759120.06	858897.123	1063394.844
10	775708.988	1026011.223	816197.499	675578.5	739388.035	717806.677	759120.06	858897.123
11	744956.948	775708.988	1026011.223	816197.499	675578.5	739388.035	717806.677	759120.06
12	949366.829	744956.948	775708.988	1026011.223	816197.499	675578.5	739388.035	717806.677
13	1008521.71	949366.829	744956.948	775708.988	1026011.223	816197.499	675578.5	739388.035
14	836225.179	1008521.71	949366.829	744956.948	775708.988	1026011.223	816197.499	675578.5
15	882639.775	836225.179	1008521.71	949366.829	744956.948	775708.988	1026011.223	816197.499
16	1125736.347	882639.775	836225.179	1008521.71	949366.829	744956.948	775708.988	1026011.223
17	1196983.69	1125736.347	882639.775	836225.179	1008521.71	949366.829	744956.948	775708.988

Importing the various libraries required for running a regression

```
In [273]: import pyspark.mllib
import pyspark.mllib.regression
from pyspark.mllib.regression import LabeledPoint
from pyspark.sql.functions import *
```

Selecting the variables needed for running the model

```
In [274]: dt17 = dt17.select("sale1","sale2","sale3","sale4","sale5","sale6","sale7","sale8")
```

Converting the dataframe into the RDD

```
In [296]: dt18 = dt17.rdd
```

Running the model on teh above created dataframe

```
In [297]: from pyspark.mllib.regression import LinearRegressionWithSGD
    dt18 = dt18.map(lambda line:LabeledPoint(line[0],[line[1:]]))
    linearModel = LinearRegressionWithSGD.train(dt18,10,.2)
    linearModel.weights
```

```
Out[297]: DenseVector([-1.0466, -1.0459, -1.0461, -1.0479, -1.0496, -1.0495, -1.0482])
```