

maze-dataset

Michael Igorevich Ivanitskiy • 1¶, Aaron Sandoval • 1, Alex F. Spies • 2, Tilman Räuker • 1, Brandon Knutson • 1, Cecilia Diniz Behn • 1, and Samy Wu Fung • 1

1 Colorado School of Mines, Department of Applied Mathematics and Statistics 2 Imperial College London \P Corresponding author

DOI: N/A

Software

■ Review 🗅

■ Repository 🗗

■ Archive ♂

Editor: Open Journals ♂

Reviewers:

@openjournals

Submitted: 01 January 1970 **Published:** 01 January 1970

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Summary

Solving mazes is a classic problem in computer science and artificial intelligence, and humans have been constructing mazes for thousands of years. Although finding the shortest path through a maze is a solved problem, this very fact makes it an excellent testbed for studying how machine learning algorithms solve problems and represent spatial information. We introduce maze-dataset, a Python library for generating, processing, and visualizing datasets of mazes. This library supports a variety of maze generation algorithms providing both mazes with loops and "perfect" mazes without them. These generation algorithms can be configured with various parameters, and the resulting mazes can be filtered to satisfy desired properties. Also provided are tools for converting mazes to and from various formats suitable for a variety of neural network architectures, such as rasterized images and tokenized text sequences, as well as various visualization tools. As well as providing a simple interface for generating, storing, and loading these datasets, maze-dataset is extensively tested, type hinted, benchmarked, and documented.

Figure 1: Usage of maze-dataset. We create a MazeDataset from a MazeDatasetConfig. This contains SolvedMaze objects which can be converted to and from a variety of formats. Code in the image contains clickable links to documentation. A variety of generated examples can be viewed here.

Statement of Need

The generation of mazes with a given algorithm is not inherently a complex task, but the ability to seamlessly switch out algorithms, modify algorithm parameters, or filter by desired properties all while preserving the ability to convert between different representations of the maze is not trivial. This library aims to greatly streamline the process of generating and working with datasets of mazes that can be described as subgraphs of an $n \times n$ lattice with boolean connections and, optionally, start and end points that are nodes in the graph. Furthermore, we place emphasis on a wide variety of possible text output formats aimed at evaluating the spatial reasoning capabilities of Large Language Models and other text-based transformer models.

For interpretability and behavioral research, algorithmic tasks offer benefits by allowing systematic data generation and task decomposition, as well as simplifying the process of circuit discovery (Räuker et al., 2023). Although mazes are well suited for these investigations, we have found that existing maze generation packages (Cobbe et al., 2019; Ehsan, 2022; Harries et al., n.d.; Németh, 2019; Schwarzschild, Borgnia, Gupta, Bansal, et al., 2021) do not support flexible maze generation algorithms that provide fine-grained control of generation parameters and the ability to easily transform between multiple representations of the mazes (Raster, Textual, Tokenized) for training and testing models.

Related Works

A multitude of public and open-source software packages exist for generating mazes (Ehsan, 2022; Németh, 2019; Schwarzschild, Borgnia, Gupta, Bansal, et al., 2021). However, nearly all of these packages generate and store mazes in a form that is not optimized for storage space or, more importantly, computer readability. The mazes produces by other packages are usually rasterized or in some form of image, rather than the underlying graph structure, and this makes it difficult to work with these datasets.

- Most prior works provide mazes in some kind of image or raster format, and we provide a variety of similar output formats:
 - RasterizedMazeDataset, utilizing as_pixels(), which can exactly mimic the outputs provided in easy-to-hard-data(Schwarzschild, Borgnia, Gupta, Bansal, et al., 2021) and can be configured to be similar to the outputs of Németh (2019)
 - as_ascii() provides a format similar to that used in (Oppenheim, 2018; Singla, 2023)
 - MazePlot provides a feature-rich plotting utility with support for multiple paths, heatmaps over positions, and more. This is similar to the outputs of (Alance AB, 2019; Ehsan, 2022; Guo et al., 2011; Nag, 2020)
- The text format provided by SolvedMaze(...).as_tokens() is similar to that of (Liu & Wu, 2023), but provides over 5.8 million unique formats for converting mazes to a text stream, detailed in subsection .
- For rigorous investigations of the response of a model to various distributional shifts, preserving metadata about the generation algorithm with the dataset itself is essential. To this end, our package efficiently stores the dataset along with its metadata in a single human-readable file (M. Ivanitskiy, n.d.). As far as we are aware, no existing packages do this reliably.
- Storing mazes as images is not only difficult to work with, but also inefficient. We use an extremely efficient method detailed in section.
- Our package is easily installable with source code freely available. It is extensively tested, type hinted, benchmarked, and documented. Many other maze generation packages lack this level of rigor and scope, and some (Ayaz et al., 2008) appear to simply no longer be accessible.

Features

Generation and Usage

Our package can be installed from PyPi via pip install maze-dataset, or directly from the git repository (Michael I. Ivanitskiy et al., 2023a).

To create a dataset, we first create a MazeDatasetConfig configuration object, which specifies the seed, number, and size of mazes, as well as the generation algorithm and its corresponding parameters. This object is passed to a MazeDataset class to create a dataset. Crucially, this MazeDataset mimics the interface of a PyTorch (Paszke et al., 2019) Dataset, and can thus be easily incorporated into existing data pre-processing and training pipelines, e.g., through the use of a DataLoader class.

```
from maze_dataset import MazeDataset, MazeDatasetConfig, LatticeMazeGenerators
cfg: MazeDatasetConfig = MazeDatasetConfig(
    name="example",
    grid_n=3,
    n_mazes=32,
    maze_ctor=LatticeMazeGenerators.gen_dfs,
)
dataset: MazeDataset = MazeDataset.from_config(cfg)
```

When initializing mazes, further configuration options can be specified through the from_config() factory method as necessary. Options allow for saving/loading existing datasets instead of regenerating, and parallelization options for generation. Available maze generation algorithms are static methods of the LatticeMazeGenerators class and include generation algorithms based on randomized depth-first search, Wilson's algorithm (Wilson, 1996), percolation (Duminil-Copin, 2017; Fisher & Essam, 2004), Kruskal's algorithm (Kruskal, 1956), and others.

Furthermore, a dataset of mazes can be filtered to satisfy certain properties. Custom filters can be specified, and some filters are included in MazeDatasetFilters.

```
dataset_filtered: MazeDataset = dataset.filter_by.path_length(min_length=3)
```

All implemented maze generation algorithms are stochastic by nature. For reproducibility, the seed parameter of MazeDatasetConfig may be set. In practice, we do not find that exact duplicates of mazes are generated with any meaningful frequency, even when generating large datasets.

Visual Output Formats

Internally, mazes are SolvedMaze objects, which have path information, and a connection list optimized for storing sub-graphs of a lattice. These objects can be converted to and from several formats to maximize their utility in different contexts.

as_ascii()

Simple text format for displaying mazes, useful for debugging in a terminal environment.

as_pixels()

numpy array of dtype=uint8 and shape (height, width, 3). The last dimension is RGB color.

MazePlot()

feature-rich plotting utility with support for multiple paths, heatmaps over positions, and more.

Figure 2: Various output formats. Top row (left to right): ASCII diagram, rasterized pixel grid, and advanced display.

In previous work, maze tasks have been used with Recurrent Convolutional Neural Network (RCNN) derived architectures (Schwarzschild, Borgnia, Gupta, Huang, et al., 2021). To facilitate the use of our package in this context, we replicate the format of (Schwarzschild, Borgnia, Gupta, Bansal, et al., 2021) and provide the RasterizedMazeDataset class which returns rasterized pairs of (input, target) mazes as shown in Figure 3 below.

Figure 3: Input is the rasterized maze without the path marked (left), and provide as a target the maze with all but the correct path removed. Configuration options exist to adjust whether endpoints are included and if empty cells should be filled in.

Tokenized Output Formats

Autoregressive transformer models can be quite sensitive to the exact format of the input data, and may use delimiter tokens to perform reasoning steps (Pfau et al., 2024). To facilitate systematic investigation of this, we provide a variety of tokenized output formats.

We convert mazes to token sequences in two steps. First, the maze is stringified using as_tokens(). The MazeTokenizerModular class provides a powerful interface for configuring maze stringification behavior. Second, the sequence of strings is tokenized into integers using encode(). Tokenization uses a fixed vocabulary for simplicity. Mazes up to 50×50 are supported using unique tokens, and up to 128×128 when using coordinate tuple tokens.

There are many algorithms by which one might tokenize a 2D maze into a 1D format usable by autoregressive text models. Training multiple models on the encodings output from each of these algorithms may produce very different internal representations, learned solution algorithms, and levels of performance. To allow exploration of how different maze tokenization algorithms affect these models, the MazeTokenizerModular class contains a rich set of options

to customize how mazes are stringified. This class contains 19 discrete parameters, resulting in over 5.8 million unique tokenizers. But wait, there's more! There are 6 additional parameters available in the library which are untested but further expand the the number of tokenizers by a factor of 44/3 to 86 million.

All output sequences consist of four token regions representing different features of the maze of which we see an example in Figure 4.

Figure 4: Example text output format with token regions highlighted. Adjacency list: text representation of the lattice graph, Origin: starting coordinate, Target: ending coordinate, Path: maze solution sequence

Each MazeTokenizerModular is constructed from a set of several _TokenizerElement objects, each of which specifies how different token regions or other elements of the stringification are produced.

Figure 5: Nested internal structure of _TokenizerElement objects inside a typical MazeTokenizerModular.

The tokenizer architecture is purposefully designed such that adding and testing a wide variety of new tokenization algorithms is fast and minimizes disturbances to functioning code. This is enabled by the modular architecture and the automatic inclusion of any new tokenizers in integration tests. To create a new tokenizer, developers forking the library may simply create their own _TokenizerElement subclass and implement the abstract methods. If the behavior change is sufficiently small, simply adding a parameter to an existing _TokenizerElement subclass and updating its implementation will suffice. For small additions, simply adding new cases to existing unit tests will suffice.

The breadth of tokenizers is also easily scaled in the opposite direction. Due to the exponential scaling of parameter combinations, adding a small number of new features can significantly

slow certain procedures which rely on constructing all possible tokenizers, such as integration tests. If any existing subclass contains features which aren't needed, a developer tool decorator omark_as_unsupported is provided which can be applied to the unneeded TokenizerElement subclasses to prune those features and compact the available space of tokenizers.

Benchmarks of Generation Speed

We provide approximate benchmarks for relative generation time across various algorithms, parameter choices, maze sizes, and dataset sizes in Table 1 and Figure 6. Experiments were performed on a standard GitHub runner without parallelism.

			small	medium	large
maze_ctor	keyword args	all sizes	$g \le 10$	$g \in (10, 32]$	g > 32
dfs		28.0	2.8	20.3	131.8
dfs	accessible_cells=20	2.3	2.2	2.4	2.2
dfs	do_forks=False	2.7	2.2	3.1	3.5
dfs	$max_tree_depth=0.5$	2.5	2.0	2.7	4.0
dfs_percolation	p=0.1	43.9	2.8	33.9	208.0
dfs_percolation	p=0.4	48.7	3.0	36.5	233.5
kruskal		12.8	1.9	10.3	55.8
percolation	p=1.0	50.2	2.6	37.2	242.5
recursive_div		10.2	1.7	8.9	42.1
wilson		676.5	7.8	188.6	3992.6
mean		559.9	13.0	223.5	3146.9
median		11.1	6.5	32.9	302.7

Table 1: Generation times for various algorithms and maze sizes.

Figure 6: Plots of maze generation time. Generation time scales exponentially with maze size for all algorithms (left). Generation time does not depend on the number of mazes being generated, and there is minimal overhead to initializing the generation process for a small dataset (right). Wilson's algorithm is notably less efficient than others and has high variance. Note that for both plots, values are averaged across all parameter sets for that algorithm, and parallelization is disabled.

Success Rate Estimation

In order to replicate the exact dataset distribution of (Schwarzschild, Borgnia, Gupta, Bansal, et al., 2021), we allow placing additional constraints in MazeDatasetConfig.endpoint_kwargs:

EndpointKwargsType, such as enforcing that the start or end point be in a "dead end" with only one accessible neighbor cell. However, combining this with cyclic mazes (such as those generated with percolation), as was required for the work in (Knutson et al., 2024), can lead to an absence of valid start and end points. Placing theoretical bounds on this success rate is difficult, as it depends on the exact maze generation algorithm and parameters used. However, our package provides a way to estimate the success rate of a given configuration using a symbolic regression model trained with PySR (Cranmer, 2023). More details on this can be found in estimate_dataset_fractions.ipynb.

Using the estimation simply requires the user to call cfg_new: MazeDatasetConfig = cfg.success_fraction_compensate(), providing their initial cfg and then using the returned cfg_new in its place.

Success Rate Estimation Algorithm

The base function learned by symbolic regression is not particularly insightful, and is potentially subject to change. It is defined as cfg_success_predict_fn, and takes a 5 dimensional float vector created by MazeDatasetConfig._to_ps_array() which represents the 0) percolation value 1) grid size 2) endpoint deadend configuration 3) endpoint uniqueness 4) categorical generation function index.

However, the outputs of this function are not directly usable due to minor divergences at the endpoints with respect to the percolation probability p. Since we know that maze success is either guaranteed or impossible for p=0 and p=1, we define the ${\tt soft_step}$ function to nudge the raw output of the symbolic regression. This function is defined with:

A shifted sigmoid σ_s , amplitude scaling A, and h function:

$$\begin{split} \sigma_s(x) &= (1+e^{-10^3\cdot(x-0.5)})^{-1} \qquad A(q,a,w) = w\cdot(1-|2q-1|^a) \\ h(q,a) &= q\cdot(1-|2q-1|^a)\cdot(1-\sigma_s(q)) + (1-(1-q)\cdot(1-|2(1-q)-1|^a))\cdot\sigma_s(q) \end{split}$$

We combine these to get the <code>soft_step</code> function, which is identity-like for $p\approx 0.5$, and pushes pushes x to extremes otherwise.

soft step
$$(x, p, \alpha, w) = h(x, A(p, \alpha, w))$$

Finally, we define

$$cfg_success_predict_fn(\mathbf{x}) = soft_step(raw_val, x_0, 5, 10)$$

where raw_val is the output of the symbolic regression model. x_0 is the percolation probability, while all other parameters from _to_ps_array() only affect raw_val.

Figure 7: An example of both empirical and predicted success rates as a function of the percolation probability p for various maze sizes, percolation with and without depth first search, and endpoint_kwargs requiring that both the start and end be in unique dead ends.

Implementation

We refer to our GitHub repository and docs for documentation and up-to-date implementation details.

This package utilizes a simple, efficient representation of mazes. Using an adjacency list to represent mazes would lead to a poor lookup time of whether any given connection exists, while using an adjacency matrix would waste memory by failing to exploit the structure (e.g., only 4 of the diagonals would be filled in). Instead, we describe mazes with the following simple representation: for a d-dimensional lattice with r rows and c columns, we initialize a boolean array $A = \{0,1\}^{d \times r \times c}$, which we refer to in the code as a connection_list. The value at A[0,i,j] determines whether a downward connection exists from node [i,j] to [i+1,j]. Likewise, the value at A[1,i,j] determines whether a rightwards connection to [i,j+1] exists. Thus, we avoid duplication of data about the existence of connections, at the cost of requiring additional care with indexing when looking for a connection upwards or to the left. Note that this setup allows for a periodic lattice.

To produce solutions to mazes, two points are selected uniformly at random without replacement from the connected component of the maze, and the A^* algorithm (Hart et al., 1968) is applied to find the shortest path between them. The endpoint selection can be affected by MazeDatasetConfig.endpoint_kwargs: EndpointKwargsType, and complications caused by this are detailed in subsection .

Parallelization is implemented via the multiprocessing module in the Python standard library, and parallel generation can be controlled via keyword arguments to MazeDataset.from_config().

Usage in Research

This package was originally built for the needs of the (Michael I. Ivanitskiy et al., 2023b) project, which aims to investigate spatial planning and world models in autoregressive transformer models trained on mazes (Michael Igorevich Ivanitskiy et al., 2023; Spies et al., 2024). This project has also adapted itself to be useful for work on understanding the mechanisms by which recurrent convolutional and implicit networks (Fung et al., 2022) solve mazes given a rasterized view (Knutson et al., 2024), and for this we match the output format of (Schwarzschild,

Borgnia, Gupta, Bansal, et al., 2021).

This package has also been utilized in work by other groups:

- (Nolte et al., 2024) use maze-dataset to compare the effectiveness of transformers trained with the MLM- \mathcal{U} (Kitouni et al., 2024) multistep prediction objective against standard autoregressive training for multi-step planning on our maze task.
- (Wang et al., 2024) and (Chen et al., 2024) use maze-dataset to study the effectiveness
 of imperative learning

Acknowledgements

This work was partially supported by and many of the authors were brought together by AI Safety Camp and AI Safety Support. We would like to thank our former collaborators at AI Safety Camp and other users and contributors to the maze-dataset package: Naveen Arunachalam, Benji Berczi, Guillaume Corlouer, William Edwards, Leon Eshuijs, Chris Mathwin, Lucia Quirke, Can Rager, Adrians Skapars, Johannes Treutlein, and Dan Valentine.

This work was partially funded by National Science Foundation awards DMS-2110745 and DMS-2309810. We are also grateful to LTFF and FAR Labs for hosting three of the authors for a Residency Visit, and to various members of FAR's technical staff for their advice.

We thank the Mines Optimization and Deep Learning group (MODL) for fruitful discussions. We also thank Michael Rosenberg for recommending the usage of Finite State Transducers for storing tokenizer validation information.

References

Alance AB. (2019). Maze generator. http://www.mazegenerator.net. Ayaz, H., Allen, S. L., Platek, S. M., & Onaral, B. (2008). Maze suite 1.0: A complete set of tools to prepare, present, and analyze navigational and spatial cognitive neuroscience experiments. Behavior Research Methods, 40, 353-359. Chen, X., Yang, F., & Wang, C. (2024). iA*: Imperative learning-based A* search for pathfinding. arXiv Preprint arXiv:2403.15870. Cobbe, K., Hesse, C., Hilton, J., & Schulman, J. (2019). Leveraging procedural generation to benchmark reinforcement learning. arXiv Preprint arXiv:1912.01588. Cranmer, M. (2023). Interpretable machine learning for science with PySR and SymbolicRegression. jl. arXiv Preprint arXiv:2305.01582. Duminil-Copin, H. (2017). Sixty years of percolation (No. arXiv:1712.04651). arXiv. http://arxiv.org/abs/1712.04651 Ehsan, E. (2022). Maze. https://github.com/emadehsan/maze Fisher, M. E., & Essam, J. W. (2004). Some Cluster Size and Percolation Problems. Journal of Mathematical Physics, 2(4), 609-619. https://doi.org/10.1063/1.1703745 Fung, S. W., Heaton, H., Li, Q., McKenzie, D., Osher, S., & Yin, W. (2022). Jfb: Jacobian-free backpropagation for implicit networks. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 6648-6656. Guo, C., Barthelet, L., & Morris, R. (2011). Maze generator and solver. Wolfram Demonstrations Project, https://demonstrations.wolfram.com/MazeGeneratorAndSolver/. Harries, L., Lee, S., Rzepecki, J., Hofmann, K., & Devlin, S. (n.d.). MazeExplorer: A Customisable 3D Benchmark for Assessing Generalisation in Reinforcement Learning. 2019 IEEE Conf. Games CoG, 1-4. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107. https://doi.org/10.1109/TSSC.1968.300136 Ivanitskiy, M. (n.d.). ZANJ. https://github.com/mivanit/ZANJ Ivanitskiy, Michael I., Shah, R., Spies, A. F., Räuker, T., Valentine, D., Rager, C., Quirke, L., Corlouer, G., & Mathwin, C. (2023a). Maze dataset. https://github.com/understanding-search/maze-dataset Ivanitskiy, Michael I., Shah, R., Spies, A. F., Räuker, T., Valentine, D., Rager, C.,

Quirke, L., Corlouer, G., & Mathwin, C. (2023b). Maze transformer interpretability. https://github.com/understanding-search/maze-transformer Ivanitskiy, Michael Igorevich, Spies, A. F., Räuker, T., Corlouer, G., Mathwin, C., Quirke, L., Rager, C., Shah, R., Valentine, D., Behn, C. D., & others. (2023). Structured world representations in maze-solving transformers. arXiv Preprint arXiv:2312.02566. Kitouni, O., Nolte, N. S., Williams, A., Rabbat, M., Bouchacourt, D., & Ibrahim, M. (2024). The factorization curse: Which tokens you predict underlie the reversal curse and more. Advances in Neural Information Processing Systems, 37, 112329-112355. Knutson, B., Rabeendran, A. C., Ivanitskiy, M., Pettyjohn, J., Diniz-Behn, C., Fung, S. W., & McKenzie, D. (2024). On logical extrapolation for mazes with recurrent and implicit networks. arXiv Preprint arXiv:2410.03020. Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1), 48-50. Liu, C., & Wu, B. (2023). Evaluating large language models on graphs: Performance insights and comparative analysis. arXiv Preprint arXiv:2308.11224. Nag, A. (2020). MDL suite: A language, generator and compiler for describing mazes. Journal of Open Source Software, 5(46), 1815. Németh, F. (2019). Maze-generationalgorithms. https://github.com/ferenc-nemeth/maze-generation-algorithms Nolte, N., Kitouni, O., Williams, A., Rabbat, M., & Ibrahim, M. (2024). Transformers can navigate mazes with multi-step prediction. arXiv Preprint arXiv:2412.05117. Oppenheim, J. (2018). Maze-generator: Generate a random maze represented as a 2D array using depth-first search. https://github.com/oppenheimj/maze-generator/; GitHub. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., ... Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems 32 (pp. 8024-8035). Curran Associates, Inc. http://papers.neurips.cc/ paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pfau, J., Merrill, W., & Bowman, S. R. (2024). Let's think dot by dot: Hidden computation in transformer language models. arXiv Preprint arXiv:2404.15758. Räuker, T., Ho, A., Casper, S., & Hadfield-Menell, D. (2023). Toward transparent ai: A survey on interpreting the inner structures of deep neural networks. 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), 464-483. Schwarzschild, A., Borgnia, E., Gupta, A., Bansal, A., Emam, Z., Huang, F., Goldblum, M., & Goldstein, T. (2021). Datasets for Studying Generalization from Easy to Hard Examples (No. arXiv:2108.06011). arXiv. https://doi.org/10.48550/arXiv.2108.06011 Schwarzschild, A., Borgnia, E., Gupta, A., Huang, F., Vishkin, U., Goldblum, M., & Goldstein, T. (2021). Can you learn an algorithm? Generalizing from easy to hard problems with recurrent networks. Advances in Neural Information Processing Systems, 34, 6695-6706. Singla, A. (2023). Evaluating ChatGPT and GPT-4 for visual programming. arXiv Preprint arXiv:2308.02522. Spies, A. F., Edwards, W., Ivanitskiy, M. I., Skapars, A., Räuker, T., Inoue, K., Russo, A., & Shanahan, M. (2024). Transformers use causal world models in maze-solving tasks. arXiv Preprint arXiv:2412.11867. Wang, C., Ji, K., Geng, J., Ren, Z., Fu, T., Yang, F., Guo, Y., He, H., Chen, X., Zhan, Z., & others. (2024). Imperative learning: A self-supervised neural-symbolic learning framework for robot autonomy. arXiv Preprint arXiv:2406.16087. Wilson, D. B. (1996). Generating random spanning trees more quickly than the cover time. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing -STOC '96, 296-303. https://doi.org/10.1145/237814.237880