Analysis of the current trigger and selection efficiency for the process $H \to J/\psi \gamma \to \mu \mu \gamma t$ CMS and comparison with new trigger proposals

Javier Mariño Villadamigo

Research Activities Academic year: 2021/2022 Università degli studi di Padova

October 25, 2022

Outline

- Introduction
- Objectives
- **3** Trigger and selection efficiencies
- 4 Results
- 6 Conclusions

Outline

Introduction •000

- Introduction

Introduction

Introduction $0 \bullet 00$

A word on physics motivations

The Higgs boson is considered to be discovered in 2012, when a new particle with the properties predicted by Standard Model (SM) was observed by CMS and ATLAS collaborations. Yukawa couplings to first and second-generation quarks are still to be measured.

- Rare exclusive decays of the Higgs boson to mesons in association with a photon can be used to explore these couplings.
- H \rightarrow J/ $\psi\gamma$ can be used to explore the Higgs boson coupling to the charm quark \Rightarrow test of SM predictions.
- $Z \to J/\psi \gamma$ can be used as an experimental benchmark.

Introduction

• Both decays receive contributions from direct and indirect processes

Figure: Lowest order Feynman diagrams for the Z (or H) \rightarrow J/ $\psi\gamma$ decay. The left-most diagram shows the direct and the remaining diagrams the indirect processes[†].

• The cumulative yield of the decay is proportional to the branching ratio (BR).

[†]Sirunyan et al., "Search for rare decays of Z and Higgs bosons to J/ψ and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV".

Introduction

Introduction ooo•

- Experimental efforts have only established an upper bound 200 times the SM predicted value.
- The main challenge is the discrimination between background and signal ⇒ higher luminosity and more efficient trigger needed.

Figure: $m_{\mu\mu\gamma}$ in Higgs boson exotic decay[‡].

[‡]Sirunyan et al., "Search for rare decays of Z and Higgs bosons to J/ψ and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV".

Outline

- 1 Introduction
- Objectives
- 3 Trigger and selection efficiencies
- 4 Results
- 6 Conclusions

Trigger

In order to filter the amount of data that is recorded from each collision at the LHC, triggers are used. Current High Level Trigger requires the presence of a muon and a photon exceeding 17 and 30 GeV in the final state.

Goal

Design a new trigger that can outperform *HLT_Mu17_Photon30*.

Trigger and selection efficiencies

•00

Outline

- Trigger and selection efficiencies

The trigger efficiency:

The selection efficiency:

$$\varepsilon_{\text{trigger}} = \frac{\text{\# events passing HLT \& selection}}{\text{\# events passing selection}}$$

$$\varepsilon_{\text{selection}} = \frac{\# \text{ events passing selection}}{\# \text{ total events}}$$

Muons	Photons	
$nMuon \ge 2$	$\mathrm{nPhoton} \geq 1$	
Opposite charges: μ^- , μ^+	-	
$ \eta < 2.4$	$ \eta < 2.4$	
Retain pair with min. $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$	-	
$p_{\mathrm{T}}^{\mu_{1}} > 10 \; \mathrm{GeV}, \; p_{\mathrm{T}}^{\mu_{2}} > 5 \; \mathrm{GeV}$	$p_{\mathrm{T}}^{\gamma} > 15 \; \mathrm{GeV}$	
$\operatorname{mediumId}$	$mvaID_WP90$	
-	$pixel_Seed = 0$	

Figure: Kinematic, charge and quality selection criteria imposed to the muons and photons in the final state.

Example calculation of ε for $HLT_Mu17_Photon30$

$HLT_Mu17_Photon30$					
				Efficie	ncies (%)
	\mid # total events	# passing sel.	# passing HLT & sel.	Trigger	Selection
QCD	21 335 910	34	26	76(7)	0.00016(3)
\mathbf{Z}	459 000	98 630	81 829	83.0(1)	21.49(6)
Н	448 000	160 587	142 102	88.49(8)	35.85(7)

Figure: Example calculation of the trigger and selection efficiencies for the trigger $HLT_-Mu17_-Photon30$ and selection cuts: $p_T^{\mu} > 18$ GeV and $p_T^{\gamma} > 32$ GeV.

- 1 Introduction
- 2 Objectives
- 3 Trigger and selection efficiencies
- 4 Results
- 6 Conclusions

Muon1: $p_T > 15 \text{ GeV}$, muon2: $p_T > 10 \text{ GeV}$, photon: $p_T > 15 \text{ GeV}$

Selection efficiencies (%)		
QCD	$(1.6 \pm 0.3) \cdot 10^{-4}$	$(4.4 \pm 0.5) \cdot 10^{-4}$
\mathbf{Z}	21.49 ± 0.06	20.55 ± 0.06
Н	35.85 ± 0.07	28.65 ± 0.07

Figure: Selection efficiencies obtained for the selection cuts: $p_{\rm T}^{\mu 1} > 15 \text{ GeV}, p_{\rm T}^{\mu 2} > 10 \text{ GeV},$ $p_{\rm T}^{\gamma} > 15 \text{ GeV}$ (right column) compared to the ones obtained for $p_{\rm T}^{\mu 1} > 18 \text{ GeV}$, $p_{\rm T}^{\gamma} > 32 \text{ GeV (left column)}.$

• Efficiency of QCD increases while Z and Higgs efficiencies decrease ⇒ scheme is discarded.

Muon1: $p_T > 18$ GeV, photon: $p_T > 24$ GeV, $\Delta R(\mu - \mu) < 0.4$

Figure: Normalized histogram for angular separation ΔR between the two muons reconstructed in the final state.

Selection efficiencies (%)		
$p_{\mathrm{T}}^{\mu 1} > 18 \text{ GeV}, p_{\mathrm{T}}^{\gamma} > 32 \text{ GeV} \mid p_{\mathrm{T}}^{\mu 1} > 18 \text{ GeV}, p_{\mathrm{T}}^{\gamma} > 24 \text{ GeV}, \Delta R(\mu - \mu) < 0.4$		
QCD	$(1.6 \pm 0.3) \cdot 10^{-4}$	$(1.4 \pm 0.3) \cdot 10^{-4}$
\mathbf{Z}	21.49 ± 0.06	24.73 ± 0.06
Н	35.85 ± 0.07	37.65 ± 0.07

Figure: Selection efficiencies obtained for the selection cuts: $p_{\rm T}^{\mu 1} > 18 \text{ GeV}, p_{\rm T}^{\gamma} > 24 \text{ GeV},$ $\Delta R(\mu - \mu) < 0.4$ (right column) compared to the ones obtained for $p_T^{\mu 1} > 18$ GeV, $p_{\rm T}^{\gamma} > 32 \text{ GeV (left column)}.$

- QCD selection efficiency: -10%
- Z selection efficiency: +15%
- H selection efficiency: +5%

Figure: Normalized histogram for invariant mass of the muon pair system reconstructed in the final state.

Results

Selection efficiencies (%)		
$p_{\mathrm{T}}^{\mu 1} > 18 \text{ GeV}, p_{\mathrm{T}}^{\gamma} > 32 \text{ GeV} \mid p_{\mathrm{T}}^{\mu 1} > 15 \text{ GeV}, p_{\mathrm{T}}^{\gamma} > 20 \text{ GeV}, 2 < m_{\mu \mu} < 4 \text{ GeV}$		
QCD	$(1.6 \pm 0.3) \cdot 10^{-4}$	$(1.3 \pm 0.2) \cdot 10^{-4}$
\mathbf{Z}	21.49 ± 0.06	27.42 ± 0.07
Η	35.85 ± 0.07	38.75 ± 0.07

Figure: Selection efficiencies obtained for the selection cuts: $p_{\rm T}^{\mu 1} > 15$ GeV, $p_{\rm T}^{\gamma} > 20$ GeV, $2 < m_{\mu\mu} < 4$ GeV (right column) compared to the ones obtained for $p_{\rm T}^{\mu 1} > 18$ GeV, $p_{\rm T}^{\gamma} > 32$ GeV (left column).

- QCD selection efficiency: -25%
- Z selection efficiency: +28%
- H selection efficiency: +8%

	Selection efficiencies (%)		
	$\left \ p_{\mathrm{T}}^{\mu 1} > 18 \ \mathrm{GeV}, \ p_{\mathrm{T}}^{\gamma} > 32 \ \mathrm{GeV} \ \right \qquad p_{\mathrm{T}}^{\mu 1} > 10 \ \mathrm{GeV}, \ p_{\mathrm{T}}^{\mu 2} > 5 \ \mathrm{GeV},$		
		$p_{\rm T}^{\gamma} > 15 \text{ GeV}, 2 \text{ GeV} < m_{\mu\mu} < 4 \text{ GeV}$	
QCD	$(1.6 \pm 0.3) \cdot 10^{-4}$	$(4.5 \pm 0.5) \cdot 10^{-4}$	
\mathbf{Z}	21.49 ± 0.06	29.83 ± 0.07	
Н	35.85 ± 0.07	39.81 ± 0.07	

Figure: Selection efficiencies obtained for the selection cuts: $p_T^{\mu 1} > 10 \text{ GeV}, p_T^{\mu 2} > 5 \text{ GeV},$ $p_{\rm T}^{\gamma} > 15 \text{ GeV}, 2 \text{ GeV} < m_{\mu\mu} < 4 \text{ GeV}$ (right column) compared to the ones obtained for $p_{\rm T}^{\mu 1} > 18 \text{ GeV}, p_{\rm T}^{\gamma} > 32 \text{ GeV} \text{ (left column)}.$

- QCD selection efficiency: +181%
- Z selection efficiency: +38%
- H selection efficiency: +11%

Results 000000000

Muon1: $p_T > 10 \text{ GeV}$, muon2: $p_T > 5 \text{ GeV}$, photon: $p_T > 22.7 \text{ GeV}$, $2 \text{ GeV} < m_{\mu\mu} < 4 \text{ GeV}$

	Selection efficiencies (%)		
	$\left \ p_{\mathrm{T}}^{\mu 1} > 18 \ \mathrm{GeV}, \ p_{\mathrm{T}}^{\gamma} > 32 \ \mathrm{GeV} \ \right \qquad p_{\mathrm{T}}^{\mu 1} > 10 \ \mathrm{GeV}, \ p_{\mathrm{T}}^{\mu 2} > 5 \ \mathrm{GeV},$		
		$p_{\rm T}^{\gamma} > 22.7 \; { m GeV}, \; 2 \; { m GeV} < m_{\mu\mu} < 4 \; { m GeV}$	
QCD	$(1.6 \pm 0.3) \cdot 10^{-4}$	$(1.6 \pm 0.3) \cdot 10^{-4}$	
\mathbf{Z}	21.49 ± 0.06	28.22 ± 0.07	
Н	35.85 ± 0.07	38.90 ± 0.07	

Figure: Selection efficiencies obtained for the selection cuts: $p_T^{\mu 1} > 10 \text{ GeV}, p_T^{\mu 2} > 5 \text{ GeV},$ $p_{\rm T}^{\gamma} > 22.7 \; {\rm GeV}, \; 2 \; {\rm GeV} < m_{\mu\mu} < 4 \; {\rm GeV} \; ({\rm right \; column}) \; {\rm compared \; to \; the \; ones \; obtained \; for \; }$ $p_{\rm T}^{\mu 1} > 18 \text{ GeV}, p_{\rm T}^{\gamma} > 32 \text{ GeV} \text{ (left column)}.$

- QCD selection efficiency: +3%
- Z selection efficiency: +31%
- H selection efficiency: +9%

Summary of results

•0

Outline

- 6 Conclusions

00

- Comparison between the standard selection associated to HLT_Mu17_Photon30 and other possibilities has been made.
- Increases on efficiency of the Higgs boson signal are very limited.
- Selections including criteria beyond purely kinematical cuts are more efficient.
- Rising slightly the photon momentum threshold decreases QCD efficiency.
- 3-4 selection criteria are more efficient than the current one.
- The trigger efficiency corresponding to these cuts should be obtained in dedicated simulations.

References

Sirunyan, Albert M et al. "Search for rare decays of Z and Higgs bosons to J/ψ and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV". In: The European Physical Journal C 79.2 (2019), pp. 1–27.

References

