Algorithm Lab

Week 3: Binary Search

Description

Binary search in a well-known divide and conquer algorithm. In original, binary search is designed for searching position of specific value in a sorted random-accessible list.

We can see an array $A = \{a_1, a_2, ..., a_n\}$ as a function $A'(i) = a_i$ have domain [1, n]. If array A is an increasing-order array or a decreasing-order array, then the correspond function A'(i) is a monotone function. Thus, we can change the definition as followed:

Instance: A monotone function $f(X) \rightarrow V$, a value $v \in V$, and a precision ε .

Result: $x \in X$ that v in range $[f(x - \varepsilon), f(x + \varepsilon)]$.

In this version, we can not only find the specific value in a sorted array (use $\varepsilon = 1$), but also solve an equation y = f(x) where y is the specific value and f(x) is a monotone function.

Questions

- 1 Write pseudo code of binary search algorithm.
- 2 Analysis pseudo code of step 1.
 - 2.1 Space complexity
 - 2.2 Time complexity in base case
 - 2.3 Time complexity in worst case
- 3 Implement your algorithm to solve ALG02A on https://oj.csie.ndhu.edu.tw/