OpenOffice.org Math dla uczniów i studentów

Pawel Wimmer

Darmowa publikacja dostarczona przez ZloteMysli.pl

Niniejsza publikacja może być kopiowana, oraz dowolnie rozprowadzana tylko i wyłącznie w formie dostarczonej przez Wydawcę. Zabronione są jakiekolwiek zmiany w zawartości publikacji bez pisemnej zgody wydawcy. Zabrania się jej odsprzedaży, zgodnie z <u>regulaminem Wydawnictwa Złote Myśli.</u>

© Copyright for Polish edition by **ZloteMysli.pl**.

Data: 7.02.2006

Tytuł: OpenOffice.org Math dla uczniów i studentów

Autor: Paweł Wimmer

Wydanie I

Niniejsza publikacja może być kopiowana, oraz dowolnie rozprowadzana tylko i wyłącznie w formie dostarczonej przez Wydawcę. Zabronione są jakiekolwiek zmiany w zawartości publikacji bez pisemnej zgody wydawcy. Zabrania się jej odsprzedaży, zgodnie z regulaminem Wydawnictwa Złote Myśli.

Internetowe Wydawnictwo Złote Myśli Złote Myśli s.c. ul. Plebiscytowa 1 44-100 Gliwice

WWW: www.ZloteMysli.pl

EMAIL: kontakt@zlotemysli.pl

Wszelkie prawa zastrzeżone. All rights reserved.

SPIS TREŚCI

<u>WSTĘP</u>	4
WPROWADZANIE FORMUŁ	5
Narzędzia.	•
Przykład.	•
Edycja istniejącej formuły.	
Tworzenie formuły w edytorze	
Formatowanie formuł	
ANATOMIA FORMUŁ	11
Nowy wiersz	
Nawiasy klamrowe	12
Inne formy nawiasów	13
Formatowanie znaków	•
Indeksy górne i dolne	17
Macierze i stosy	
MODUŁ MATH	91
WAŻNIEJSZE POLECENIA MATH	
Operatory jedno- lub dwuargumentowe	
Operacje na zbiorach	
Relacje	-
Funkcje	_
Operatory	
Atrybuty	•
Różne znaki	•
Greckie symbole	
Znaki specjalne	29

Wstęp

Jednym z najbardziej atrakcyjnych narzędzi pakietu OpenOffice.org jest Math – zaawansowany edytor formuł matematycznych. Warto podkreślić, że moduł ten jest znacznie bardziej funkcjonalny od odpowiadającego mu narzędzia w Microsoft Office.

Z formułami matematycznymi stykają się na co dzień uczniowie i studenci wielu kierunków, zatem znajomość OpenOffice Math przyda się w trakcie nauki, gdy przyjdzie do sporządzenia dokumentu zawierającego takie formuły. Co ciekawe, składnia formuł jest dość prosta i potrzeba niewiele czasu, aby nabrać biegłości w ich tworzeniu – praktyka pokazuje, że choć początkowo większość osób korzysta ze specjalnych okienek zawierających znaki wchodzące w skład formuł, rychło okazuje się, że szybciej i wygodniej jest wpisywać składnię formuł ręcznie i jednym kliknięciem przekształcać je do graficznej postaci.

Poradnik przedstawia techniki tworzenia formuł, ilustrując je praktycznymi przykładami.

Dobra rada: Biegłe posługiwanie się składnią formuł matematycznych wymaga pewnej wprawy, zatem warto wykonywać rozmaite ćwiczenia, sięgając po przykłady do podręczników szkolnych i akademickich czy kompendiów, jak choćby "Poradnik matematyczny" Dziubińskiego i Świątkowskiego. Po pewnym czasie uzyskasz praktyczną znajomość ważniejszych poleceń i ręczne tworzenie formuł z pamięci stanie się proste i łatwe.

Wprowadzanie formuł

Narzędzia

Formuły matematyczne można tworzyć zarówno w specjalnym module OpenOffice Math, jak i bezpośrednio w edytorze Writer. Ponieważ na ogół formuły są częścią obszerniejszego dokumentu, celowe jest zaprezentowanie możliwości Math właśnie w kontekście edytora.

Przykład

Najłatwiej jest zacząć od prostego przykładu ilustrującego użyteczność Math.

Zanim rozpoczniesz pracę z wprowadzaniem formuł, wyświetl pasek narzędziowy **Wstaw**. W tym celu wybierz polecenie **Widok – Paski narzędzi** – **Wstaw**. Na ekranie ukaże się pływający pasek **Wstaw**.

Rozwiń ikonę strzałki w pasku i w rozwijanym menu wybierz polecenie **Dokuj pasek narzędzi**. Pasek zostanie umieszczony pod głównym paskiem narzędziowym edytora.

Załóżmy teraz, że chcemy wpisać formułę y=2x+5.

Wpisz ręcznie formułę, zaznacz ją blokiem i w pasku narzędziowym **Wstaw** kliknij ikonę polecenia **Formuła**.

Wpisana ręcznie formuła zostanie natychmiast zamieniona w graficzny obiekt.

$$y = 2x + 5$$

I nieco bardziej skomplikowane przykłady.

Ciąg a^2+b^2=c^2 możemy łatwo zamienić na następującą postać graficzną:

$$a^2 + b^2 = c^2$$

Ciąg y=int from $\{r \ 0\}$ to $\{r \ t\}$ x zamienimy na

$$y = \int_{r_0}^{r_t} x$$

Ciag $y=\{x+2\}$ over x^2 zamienimy na

$$y = \frac{x+2}{x^2}$$

Ciąg

zamienimy na postać

$$y = \sqrt{x}$$
$$y = \frac{2x}{5}$$

Edycja istniejącej formuły

Gdy dwukrotnie klikniesz graficzną postać formuły, w dolnej części ekranu ukaże się edytor składni formuły, w którym możesz ręcznie poprawić jej postać, zmieniając po prostu treść źródła. Klawisz **F9** odświeża widok w edytorze.

Po poprawieniu formuły wstaw kursor myszki do dokumentu lub naciśnij klawisz **Escape.** Edytor formuły zniknie, a na ekranie ukaże się poprawiona postać formuły.

Tworzenie formuły w edytorze

Formułą można także utworzyć, ustawiając kursor w żądanym miejscu i klikając przycisk Formuła w pasku narzędziowym. Można też wybrać w menu polecenie Wstaw – Obiekt - Formuła. Na ekranie ukaże się wtedy edytor formuły, w którym można zdefiniować jej zawartość.

Zauważ od razu, że na ekranie widoczne jest okienko narzędziowe **Wybór** zawierające "ściągawkę" w postaci 177 znaków zgromadzonych w 9 kategoriach.

Kategorie te to: *Operatory jedno-* lub *dwuargumentowe*, *Relacje*, *Operacje na zbiorach*, *Funkcje*, *Operatory*, *Atrybuty*, *Inne*, *Nawiasy*, *Formaty*.

Kategorie są wyświetlane w górnej części okienka **Wybór**, natomiast zawarte w nich znaki w dolnej, pod kreską.

Innym sposobem wstawiania symboli w edytorze formuł jest naciśnięcie prawego klawisza myszki i wybranie z podręcznego menu jednej z kategorii, a w niej konkretnego znaku.

Gdy korzystasz z okienka narzędziowego **Wybór** lub menu pod prawym klawiszem myszy, do okna edytora są wstawiane szablony, które należy wypełnić znakami. Pola te są sygnalizowane znakami zapytania w nawiasach kątowych.

Należy je zastąpić właściwymi znakami, a można się między nimi przemieszczać do przodu za pomocą klawisza **F4** (wstecz **Shift+F4**), który powoduje objęcie blokiem kolejnego znaku zapytania w nawiasach – wystarczy od razu wpisać w miejscu bloku właściwe znaki, w naszym przykładzie w pierwszym a, zaś w drugim b, przez co formuła przyjmie postać a parallel b.

Oprócz tego do dyspozycji mamy też znaki specjalne wywoływane za pomocą polecenia **Narzędzia – Katalog**.

Wprowadzanie formuł

Formatowanie formuł

Gdy edytor formuł jest otwarty, zmienia się menu programu. Wybierając polecenie **Format – Czcionki** możesz sprawdzić, za pomocą jakich czcionek jest formatowana formuła.

Wartości te możesz zmienić za pomocą polecenia **Modyfikuj**, aczkolwiek zalecane są domyślne czcionki. Jeśli zmienisz czcionkę i klikniesz przycisk **Domyślnie**, każda następna formuła będzie wyświetlana nową czcionką.

W podobny sposób możesz zmienić wielkość czcionek, wybierając w menu polecenie **Format – Rozmiar czcionki**. Domyślnie jest to 12 pt, tekst ma

100% wielkości domyślnej, a pozostałe elementy są wyświetlane czcionką stanowiącą także jakiś procent wielkości bazowej.

Polecenie **Format – Odstęp** pozwala wyregulować wartości dla odstępów i szeregu innych kategorii, co wpływa na graficzny wygląd formuły – stosuj ewentualne modyfikacje ostrożnie i z umiarem.

Polecenie **Format** – **Wyrównanie** pozwala wybrać sposób justowania formuły, np. ustawienie na środku czy przesunięcie do prawego marginesu.

Polecenie **Format** – **Tryb tekstowy** włącza lub wyłącza tryb tekstowy, w którym formuły są wyświetlane w takim samym rozmiarze, jak linia tekstu. Zwróć jeszcze uwagę, że gdy redagujesz formułę w edytorze, wskazanie myszką fragmentu formuły w edytorze powoduje jej zaznaczenie w dokumencie, i odwrotnie, wskazanie fragmentu formuły w dokumencie powoduje ustawienie kursora w odpowiadającym mu miejscu w edytorze formuły.

Anatomia formul

Poprawne wprowadzanie formuł wymaga przestrzegania kilku ważnych reguł, które wpływają na sposób wyświetlania formuł.

Nowy wiersz

Przede wszystkim konieczne jest stosowanie polecenia newline, które wprowadza nowy wiersz i pozwala ułożyć kilka formuł jedna pod drugą.

Przykładowo, dwie formuły

$$x + y = 2$$
$$x-2y = 4$$

zostaną wyświetlone w jednym wierszu, choć ułożyliśmy je w edytorze jedna pod drugą.

$$x + y = 2x - 2y = 4$$

Jeśli natomiast wpiszemy formuły w postaci

$$x + y = 2$$
 newline $x-2y = 4$

efekt będzie taki, jakiego oczekujemy.

$$\begin{array}{c}
x + y = 2 \\
x - 2y = 4
\end{array}$$

Oczywiście w wypadku jednowierszowej formuły stosowanie polecenia wprowadzającego nowy wiersz nie jest konieczne.

Nawiasy klamrowe

Kluczową rolę w formułach odgrywają nawiasy klamrowe, które grupują poszczególne fragmenty formuły i modyfikują domyślną (naturalną) kolejność operacji oraz wpływają na graficzną postać formuły, choć same nie są widoczne. Posłużmy się przykładem.

Formuła y = x + 2 over x^2 zostanie wyświetlona w postaci

$$y = x + \frac{2}{x^2}$$

natomiast formuła $y = \{x + 2\}$ over x^2 przyjmie postać

$$y = \frac{x+2}{x^2}$$

Wynika to z tego, ze nawiasy klamrowe grupują najpierw wyrażenie x + 2 jako licznik i dopiero potem wprowadzana jest kreska ułamkowa i wyrażenie w mianowniku.

Formula $y = sqrt x^2 + 2x ma postać$

$$v = \sqrt{x^2 + 2x}$$

natomiast formuła y = sqrt $\{x^2 + 2x\}$ ma postać

$$y = \sqrt{x^2 + 2x}$$

a więc są to oczywiście odmienne formuły, które w rzeczywistych rachunkach dałyby inne wyniki.

Pamiętaj, aby grupować elementy formuły nawiasami klamrowymi, a nie okrągłymi, które mają odmienne znaczenie i służą do pokazywania sposobu

grupowania elementów w trybie wizualnym. Nawiasy klamrowe grupują elementy w samej formule, ale nie są wyświetlane, natomiast nawiasy okrągłe pełnią tylko rolę prezentacyjną, pokazując czytelnikowi dokumentu, że jakieś elementy formuły powinny być zgrupowane. Są w związku z tym wyświetlane, ale same nie pełnią funkcji grupowania.

Inne formy nawiasów

Oprócz niewidocznych w formule nawiasów klamrowych, pełniących rolę czynnika grupującego wyrażenia i wpływającego na kolejność operacji i wyświetlanie formuły, w Math jest cały szereg nawiasów pełniących rolę prezentacyjną.

Nawiasy okragłe

$$(x+2)$$
 $(x+2)$

Nawiasy kwadratowe

$$[y^2]$$

Podwójne nawiasy kwadratowe

```
ldbracket x rdbracket [x]
```

Zwróć uwagę, że ld oznacza left double, natomiast rd oznacza right double – warto pamiętać takie mnemotechniczne szczegóły, gdyż znacznie ułatwia to zapamiętywanie składni, gdy wprowadzamy ją ręcznie.

Anatomia formuł

Pojedyncze linie

```
lline x rline |x|
```

Podwójne linie

ldline y rdline
$$\|y\|$$

Nawiasy klamrowe (wersja prezentacyjna)

lbrace z rbrace
$$\{z\}$$

Nawiasy kątowe

langle a rangle
$$\langle a \rangle$$

Nawiasy okragłe zmieniające rozmiar

left (stack{x#y#z} right)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Zauważ, że lewy nawias jest kombinacją wyrazu i znaku left (, natomiast prawy – kombinacją right). Nawiasy te zmieniają rozmiar (są rozciągane) zależnie od liczby elementów w środku.

Nawiasy kwadratowe zmieniające rozmiar

left [stack{x#y#z} right]
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Anatomia formul

Podwójne nawiasy kwadratowe zmieniające rozmiar

left ldbracket stack $\{x # y # z\}$ right rdbracket

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Pojedyncze linie zmieniające rozmiar

left lline stack{x#y#z} right rline

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix}$$

Podwójne linie zmieniające rozmiar

left ldline stack{x#y#z} right rdline

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix}$$

Nawiasy klamrowe zmieniające rozmiar

left lbrace $stack\{x\#y\#z\}$ right rbrace

$$\begin{cases} x \\ y \\ z \end{cases}$$

Nawiasy kątowe zmieniające rozmiar

left langle stack{x#y#z} right rangle

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Formatowanie znaków

OpenOffice Math oferuje szereg prostych sposobów formatowania znaków w formułach, jak czcionka rodzajowa, atrybuty czcionki (pogrubienie, pochylenie), kolor, wreszcie indeks górny i dolny.

Ważna uwaga: polecenia formatujące zmieniają atrybuty znaków bezpośrednio za poleceniem – jeśli chcesz, aby objęły szereg elementów, obejmij te elementy nawiasami grupującymi, czyli klamrowymi.

Polecenie font fixed wprowadza czcionkę monotypiczną (o stałej szerokości znaku).

```
font fixed x + y = 2

x+y=2

font fixed \{x + y = 2\}

x+y=2
```

Polecenie font serif wprowadza czcionkę szeryfową.

font serif
$$\{x + y = 2\}$$

 $x+y=2$

Polecenie font sans wprowadza czcionkę bezszeryfową.

font sans
$$\{x + y = 2\}$$

 $x+y=2$

Polecenie ital wprowadza pochylenie znaków.

ital {
$$y = 3x \text{ over 5}$$
}
$$y = \frac{3x}{5}$$

Polecenie nitalic usuwa pochylenie znaków, np. w tych elementach, które mają takie domyślne formatowanie.

Polecenie bold wprowadza pogrubienie znaków.

```
left [ bold matrix {a \# b \#\# c \# d} right ] \begin{bmatrix} a & b \\ c & d \end{bmatrix}
```

Polecenie nbold usuwa pogrubienie znaków, np. w tych elementach, które mają takie właśnie domyślne formatowanie.

Polecenie size*x. y zmienia wielkość czcionki.

size*1.5 a = sum from{2}b
$$\mathcal{A} = \sum_{2} b$$

Polecenie color nazwa koloru wprowadza kolor czcionki.

```
color red left ( stack {a#b#c} right )
\begin{pmatrix} a \\ b \\ c \end{pmatrix}
```

Indeksy górne i dolne

Ważną rolę w tworzeniu skomplikowanych technicznie formuł pełnią indeksy górne i dolne, nazywane niekiedy superskryptami i subskryptami.

Indeks lewy górny

$$a lsup\{b\}$$
 a

Zwróć uwagę na kolejność elementów oraz nazwę – 1sup oznacza lewy superskrypt.

Anatomia formuł

Indeks środkowy górny

```
a csup{b}
b
a
```

Indeks prawy górny

```
a^{b} lub a rsup{b} a^{b}
```

Indeks lewy dolny

```
a lsub{b}
_{b}a
```

Indeks środkowy dolny

```
a csub{b}
a
b
```

Indeks prawy dolny

```
a rsub{b} a_b
```

Macierze i stosy

Macierze i stosy pozwalają wprowadzać wielopiętrowe wyrażenia, często stosowane w zaawansowanych konstrukcyjnie formułach.

Stos macierzowy

```
matrix {a \# b \#\# c \# d} a b c d
```

Zwróć uwagę, że elementy macierzy są rozdzielane w wierszu za pomocą pojedynczego znaku # (hash), natomiast dwa kolejne znaki # rozdzielają wiersze.

```
left [ matrix {a # b # c ## d # e # e ## e # f # g} right ]  \begin{bmatrix} a & b & c \\ d & e & e \\ e & f & g \end{bmatrix}
```

Zwykły stos

```
stack {a # b # c}

a
b
c
```

Stos z wyrównaniem do lewej

```
stack { Witaj świecie \# alignl (a) } Witaj świecie (a)
```

Wyrównanie do lewej jest realizowane za pomocą alignl.

Stos z wyrównaniem do prawej

```
stack { Witaj świecie # alignr (a) } Witaj \, \acute{s}wiecie \ (a)
```

Wyrównanie do prawej jest realizowane za pomocą alignr.

Stos z wyrównaniem do środka

```
stack { Witaj świecie \# alignc (a) } Witaj świecie (a)
```

Wyrównanie do środka jest realizowane za pomocą alignc.

Anatomia formuł

Dwumian

binom a b a

b

Uwaga: Informacje o składni operatorów jedno- lub dwuargumentowych (np. dodawania, mnożenia, negacji, dzielenia), operatorów relacji, operacji na zbiorach, funkcji oraz rozmaitych znaków znajdziesz w tabelarycznym zestawieniu na końcu podręcznika.

Modul Math

Formuły matematyczne możesz także tworzyć jako osobny dokument, uruchamiając moduł Math. Aktywny jest w nim tylko edytor formuł, natomiast w górnej części ekranu widoczny jest graficzny podgląd tworzonych formuł.

W module są oczywiście dostępne te same narzędzia, co w wersji współpracującej bezpośrednio z edytorem OpenOffice Writer, aczkolwiek możesz jeszcze dodatkowo zmieniać stopień powiększenia formuły na podglądzie.

Gotowy dokument jest zapisywany w domyślnym formacie OpenDocument z rozszerzeniem .odf, co jest skrótem od OpenDocument Formula. Możliwe jest też użycie starszego formatu OpenOffice 1.0, z rozszerzeniem .sxm, a także zapisanie formuły w formacie StarOffice (z którego cały pakiet się wywodzi) i w popularnym formacie XML-owym MathML, z rozszerzeniem .mml. Oczywiście możliwy jest również eksport do formatu PDF.

Z drugiej strony możesz wczytywać do modułu pliki formuł w tych samych formatach.

W rozdziale prezentujemy wybrane polecenia OpenOffice Math, odsyłając Czytelnika do treści pomocy edytora, gdzie znajduje się pełna lista poleceń i znaków.

Polecenie	Składnia	Ilustracja
Operatory jedno- lub dwuargumentowe		
Znak +	+x	+x
Znak -	-X	-x
Znak +-	+-x	$\pm x$
Znak -+	-+x	$\mp x$
Operator logiczny negacji NIE	neg x	$\neg x$
Dodawanie	x+y	x+y
Odejmowanie	x-y	x-y
Mnożenie z kropką	x cdot y	$x \cdot y$
Mnożenie z iksem	x times y	$x \times y$
Mnożenie z gwiazdką	x * y	x* y
Dzielenie ułamkowe	x over y	$\frac{x}{y}$
Dzielenie z dwukropkiem i kreską	x div y	$x \div y$
Dzielenie z kreską	x / y	x/y
Ukośnik	x wideslash y	x/ /y
Wsteczny ukośnik	x widebslash y	x x
Operator logiczny	x and y	$x \wedge y$

Polecenie	Składnia	Ilustracja
iloczynu I		
Operator logiczny sumy LUB	x or y	$x \lor y$
Operator złączenia (konkatenacji)	x circ y	$x \circ y$
Operacje na zbiorach		
Zawiera się	a in A	$a \in A$
Nie zawiera się	a notin A	a∉A
Zawiera	A owns a	$A\ni a$
Zbiór pusty	emptyset	Ø
Iloczyn zbiorów	A intersection B	$A \cap B$
Suma zbiorów	A union B	$A \cup B$
Różnica zbiorów	A setminus B	$A \setminus B$
Zbiór ilorazów	A slash B	AIB
Podzbiór	A subset B	$A \subset B$
Podzbiór lub równy	A subseteq B	$A \subseteq B$
Nadzbiór	A supset B	$A \supset B$
Nadzbiór lub równy	A supseteq B	$A \supseteq B$
Zbiór liczb naturalnych	setN	IN .
Zbiór liczb całkowitych	setZ	Z
Zbiór liczb wymiernych	setQ	Q
Zbiór liczb rzeczywistych	setR	IR
Zbiór liczb zespolonych	setC	C
Relacje		
Jest równe	a=b	a=b
Nie jest równe	a <> b <i>lub</i> a neq b	$a\neq b$
Jest w przybliżeniu równe	a approx b	$a \approx b$

Polecenie	Składnia	Ilustracja
Dzieli	a divides b	a b
Nie dzieli	a ndivides b	$a \nmid b$
Jest mniejsze niż	a < b <i>lub</i> a lt b	a < b
Jest większe niż	a > b <i>lub</i> a gt b	<i>a</i> > <i>b</i>
Jest mniejsze lub równe	a <= b <i>lub</i> a le b	$a \le b$
Jest większe lub równe	a >= b lub a ge b	$a \ge b$
Jest mniejsze-równe	a leslant b	$a \leq b$
Jest większe-równe	a geslant b	$a \geqslant b$
Jest podobne lub równe	a simeq b	$a \simeq b$
Jest podobne do	a sim b	<i>a</i> ∼ <i>b</i>
Jest prostopadłe do	a ortho b	$a \perp b$
Jest równoległe do	a parallel b	a b
Przystaje do	a equiv b	$a\equiv b$
Jest proporcjonalne do	a prop b	$a \propto b$
Dąży do	a toward b	$a \rightarrow b$
Podwójna strzałka w lewo	a dlarrow b	$a \leftarrow b$
Podwójna strzałka w prawo	a drarrow b	$a \Rightarrow b$
Podwójna strzałka w obie strony	a dlrarrow b	$a \Leftrightarrow b$
Funkcje		
Funkcja wykładnicza	func e^{a}	e ^a
Funkcja wykładnicza	exp(a)	$\exp(a)$
Logarytm naturalny	ln(a)	$\ln(a)$
Logarytm	log(a)	$\log(a)$
Potęga	a^{b}	a^b
Sinus	sin(a)	sin(a)

Polecenie	Składnia	Ilustracja
Cosinus	cos(a)	$\cos(a)$
Tangens	tan(a)	tan (a)
Cotangens	cot(a)	$\cot(a)$
Pierwiastek kwadratowy	sqrt{a}	\sqrt{a}
Arcus sinus	arcsin(a)	$\arcsin(a)$
Arcus cosinus	arccos(a)	arccos(a)
Arcus tangens	arctan(a)	arctan(a)
Arcus cotangens	arccot(a)	$\operatorname{arccot}(a)$
Pierwiastek n-tego stopnia z a	nroot{n}{a}	$\sqrt[n]{a}$
Wartość absolutna	abs{a}	a
Silnia	fact{a}	a!
Operatory		
Granica	lim(a)	lim (a)
Suma	sum(a)	$\sum (a)$

Polecenie	Składnia	Ilustracja
Granica od…do (razem z całką)	int from {r_o} to {r_t} a	$\int_{r_0}^{r_t} a$
Całka	int{a}	$\int a$
Całka podwójna	iint{a}	$\iint a$
Dolna granica (razem z sumą)	sum from{3}b	$\sum_{3} b$
Górna granica (razem z produktem)	prod to{3} r	$\prod_{i=1}^{3} r_i$
Atrybuty		
Strzałka wektora	vec a	\vec{a}
Duży znak wektora	widevec a	$a\overrightarrow{bc}$
Nadkreślenie	overline abc	abc
Podkreślenie	underline abc	<u>abc</u>
Przekreślenie	overstrike abc	abc
Różne znaki		
Nieskończoność	infinity	∞

Polecenie	Składnia	Ilustracja	
Istnieje	exists	3	
Dla wszystkich	forall	A	
Część rzeczywista	re	R	
Część urojona	im	3	
Strzałka w lewo	leftarrow	←	
Strzałka w prawo	rightarrow	→	
Strzałka w dół	downarrow	\	
Strzałka w górę	uparrow	1	
Greckie symbole			
alpha	%alpha	α	
beta	%beta	β	
chi	%chi	X	
delta	%delta	δ	
epsilon	%epsilon	ϵ	
gamma	%gamma	γ	

Polecenie	Składnia	Ilustracja
lambda	%lambda	λ
mu	%mu	μ
omega	%omega	ω
omicron	%omicron	О
phi	%phi	φ
pi	%pi	π
rho	%rho	ρ
sigma	%sigma	σ
xi	%xi	ξ
zeta	%zeta	ζ
Znaki specjalne		
Logiczne I	%and	^
Logiczne LUB	%or	V
Kąt	%angle	*
Należy do (element)	%element	€

Polecenie	Składnia	Ilustracja
Identyczne	%identical	≡
Nie należy (nie jest elementem)	%noelement	∉
Nie równa się	%notequal	≠
Promil	%perthousand	% o
Dąży do	%tendto	\rightarrow

