```
In [57]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random
from math import sqrt
df = pd.read_excel('clusters.xlsx', index col=0)
#number of data points predicted as class 2, while the correct class is 4
error 24= len(df[(df["Class"] == 4) & (df["Predicted Class"] == 2)])
#number of data points predicted as class 4, while the correct class is 2
error 42 = len(df[(df["Class"] == 2) & (df["Predicted Class"] == 4)])
#number of data points with predicted class not equal to correct class
error_all = error_24 + error 42
#number of data points
class_all = len(df)
#total error
error T = (error all / class all) * 100
error_T_rounded = round(error_T,2)
if(error T rounded >= 50):
   df["Predicted Class"].replace({2: 4, 4: 2}, inplace=True)
   error 24= len(df[(df["Class"] == 4) & (df["Predicted Class"] == 2)])
   error 42 = len(df[(df["Class"] == 2) & (df["Predicted Class"] == 4)])
   error all = error 24 + error 42
    error T = (error all / class all) * 100
    error T rounded = round(error T, 2)
#number of data points with predicted class equal to 2
pclass 2 = len(df.loc[df['Predicted Class'] == 2])
#number of data points with predicted class equal to 4
pclass 4 = len(df.loc[df['Predicted Class'] == 4])
#error rate for the benign cells
error B = 0
#error rate for the malign cells
error M = 0
#total error rate
error T = 0
error B = (error 24 / pclass 2) * 100
error B rounded = round(error B, 2)
error M = (error 42 / pclass 4) * 100
error M rounded = round(error M, 2)
print("Total errors:\t\t\t\t" + str(error T rounded) + "%")
print("Clusters are swapped!")
print("Swapping Predicted Class\n")
print("Data points in Predicted Class 2:\t" + str(pclass 2))
print("Data points in Predicted Class 4:\t" + str(pclass_4))
print("\nError data points, Predicted Class 2:\n")
print(df.loc[df['Predicted Class'] == 2][["Scn", "Class", "Predicted Class"]])
print("\nError data points, Predicted Class 4:\n")
print(df.loc[df['Predicted Class'] == 4][["Scn", "Class", "Predicted Class"]])
print("\nNumber of all data points:\t"+ str(class_all))
print("\nNumber of error data points:\t" + str(error all))
print("\nError rate for class 2:\t\t" + str(error_B_rounded) + "%")
print("Error rate for class 4:\t\t" + str(error M rounded) + "%")
print("Total error rate:\t\t" + str(error T rounded) + "%")
```

Clusters are swapped! Swapping Predicted_Class

Data points in Predicted Class 2: 465 Data points in Predicted Class 4: 234

Error data points, Predicted Class 2:

	Scn	Class	Predicted Class
0	1000025	2	_ 2
2	1015425	2	2
4	1017023	2	2
6	1018099	2	2
7	1018561	2	2
690	654546	2	2
692	714039	2	2
693	763235	2	2
694	776715	2	2
695	841769	2	2

[465 rows x 3 columns]

Error data points, Predicted Class 4:

	Scn	Class	Predicted_Class
1	1002945	2	4
3	1016277	2	4
5	1017122	4	4
14	1044572	4	4
18	1050670	4	4
681	1371026	4	4
691	695091	4	4
696	888820	4	4
697	897471	4	4
698	897471	4	4

[234 rows x 3 columns]

Number of all data points: 699

Number of error data points: 29

Error rate for class 2: 3.87% Error rate for class 4: 4.7%

Total error rate: 4.15%