Toxicity Classification Using GNNs

1805006 - Tanjeem Azwad Zaman 1805030 - Md Toki Tahmid

Problem Definition

Basic Concepts

• SMILES:

- Simplified Molecular Input Line Entry System
- String representation of a compound/mixture
- Example: Aspirin is CC(=0)OC1=CC=CC=C1C(=0)

• Multi-Label Binary Classification Task

- Many output labels/Columns
- For each input, a single **Yes/No** for EACH output column

Input	Output					
	Acidic?	Reductant?	Soluble?			
CH3-CH2-OH	Yes	No	Yes			

Problem Definition

- A Multi-label Binary Classification Task on the Tox-21 Dataset
- le. Input -> SMILES; Output -> an Yes/No for 12 labels each

Dataset and its Analysis (Statistics)

Consolidated Dataset

- Per Row: (1 *mol_id* +1 smiles + 12 labels)
- 7831 entries

[
NR-AR	NR-AR-LBD	NR-AhR	NR-Aromatase	NR-ER	NR-ER-LBD	NR-PPAR-gamma	SR-ARE	SR-ATAD5	SR-HSE	SR-MMP	SR-p53	mol_id	smiles
0	9	1			0	9	1	0	0	0	0	T0X3021	CCOclccc2nc(S(N)(=0)=0)sc2c1
9	9	0	0	9	0	9		ø		9	0	T0X3020	CCN1C(=0)NC(c2cccc2)C1=0
							9		0	 		T0X3024	CC[C@]1(0)CC[C@H]2[C@@H]3CCC4=CCCC[C@@H]4[C@H]3CC[C@@]21C
0	9	9	0	9	9			0		9	9	T0X3027	CCCN(CC)C(CC)C(=0)Nc1c(C)cccc1C
9	9	9	0	0	9		0	0	0	9	0	T0X20800	CC(0)(P(=0)(0)0)P(=0)(0)0
0	0	0	0	0		9		0	0	0	0	T0X5110	cc(c)(c)00c(c)(c)ccc(c)(c)00c(c)(c)c

Consolidated Dataset

Issues:

Lots of NaN's in labels

Attempted Solution	Issue		
1. Remove Row with a NaN	Dataset reduced		
2. Weighted loss function (0 for NaN)	Issue with converging		
3. Random fillna with 0/1	Negative correlation Established		

Consolidated Dataset

- Correlation Matrix:
- Observation:
 - Not closely related, except
 (NR-AR, NR-AR-LBD) & (NR-ER, NR-ER-LBD)
 - Try for 12 models, one for each label

Primary Dataset

- Separate Datasets for each Label
- Separate Test sets as well.
- VERY Imbalanced -> UnderSampled
- Link: <u>Separate Datasets</u>

Dataset Statistics

File	Number of Labels	Number of Positive Labels	Number of Negative Labels	Positive Ratio	Negative Ratio
nr-ahr	8169	950	7219	0.12	0.88
nr-ar	9362	380	8982	0.04	0.96
nr-ar-lbd	8599	303	8296	0.04	0.96
nr-aromatase	7226	360	6866	0.05	0.95
nr-er	7697	937	6760	0.12	0.88
nr-er-lbd	8753	446	8307	0.05	0.95
nr-ppar-gamma	8184	222	7962	0.03	0.97
sr-are	7167	1098	6069	0.15	0.85
sr-atad5	9091	338	8753	0.04	0.96
sr-hse	8150	428	7722	0.05	0.95
sr-mmp	7320	1142	6178	0.16	0.84
sr-p53	8634	537	8097	0.06	0.94

Dataset Statistics (Test)

File	Number of Labels	Number of Positive Labels	Number of Negative Labels	Positive Ratio	Negative Ratio
nr-ahr	610	73	537	0.12	0.88
nr-ar	586	12	574	0.02	0.98
nr-ar-lbd	582	8	574	0.01	0.99
nr-aromatase	528	39	489	0.07	0.93
nr-er	516	51	465	0.1	0.9
nr-er-lbd	600	20	580	0.03	0.97
nr-ppar-gamma	605	31	574	0.05	0.95
sr-are	555	93	462	0.17	0.83
sr-atad5	622	38	584	0.06	0.94
sr-hse	610	22	588	0.04	0.96
sr-mmp	543	60	483	0.11	0.89
sr-p53	616	41	575	0.07	0.93

Proposed Solution (Architecture)

Main Idea

- Represent each molecule/ compound as a graph where
 - Each node == an Atom
 - Each edge == a bond between two atoms

```
def extract_node_features(smiles):
   mol = Chem.MolFromSmiles(smiles)
   if mol is None: # Check if the SMILES string is valid
   node features = []
   for atom in mol.GetAtoms():
        features = {
            'atom index': atom.GetIdx(), #
            'atomic_num': atom.GetAtomicNum(),#
            'is aromatic': atom.GetIsAromatic(), #
            'hybridization': atom.GetHybridization().name,
            'num_hydrogens': atom.GetTotalNumHs(),#
            'formal charge': atom.GetFormalCharge(),#
            'chirality': atom.GetChiralTag().name,
            'is_in_ring': atom.IsInRing(),#
            'degree': atom.GetDegree(),#
            'implicit_valence': atom.GetImplicitValence(),#
            'explicit valence': atom.GetExplicitValence().#
        node_features.append(features)
   return node_features
```

```
# Function to extract comprehensive bond features for each bond in a molecule
def extract_bond_features(smiles):
   mol = Chem.MolFromSmiles(smiles)
   if mol is None:
   bond_features = []
   for bond in mol.GetBonds():
       features = {
            'bond_type': bond.GetBondType().name,
            'bond_type_as_double': bond.GetBondTypeAsDouble(),
           'is_conjugated': bond.GetIsConjugated(),
           'is_in_ring': bond.IsInRing(),
           'stereo': bond.GetStereo().name,
            'bond_dir': bond.GetBondDir().name,
            'begin_atom_idx': bond.GetBeginAtomIdx(),
            'end_atom_idx': bond.GetEndAtomIdx(),
            'is_aromatic': bond.GetIsAromatic(),
       bond features.append(features)
   return bond_features
```

Main Idea

- Use **Graph-Auto-Encoders** and
- Use middle hidden layer as "feature Vector"
- Original molecular graphs -> Node features represented
- Dual of each molecular graph -> Edge Features represented

Main Idea

- Each node gets a feature vector; so take mean over all nodes to get feature vector for a graph/molecule
- Use MolBert to get another set of features (embedding) for entire molecule
- Final Feature vector/Embedding for a molecule
 - = (Mean Node Embedding) + (Mean Edge Embedding) + (MolBert Embedding)

Architecture (Encoder, Decoder)

```
class GraphEncoder(torch.nn.Module):
    def init (self, input dim, hidden dim, encoding dim):
       super(GraphEncoder, self). init ()
       self.conv1 = GCNConv(input dim, hidden dim)
       self.conv2 = GCNConv(hidden dim, encoding dim)
   def forward(self, x, edge index):
       x = F.relu(self.conv1(x, edge index))
       x=F.dropout(x,p=0.2)
       z = self.conv2(x, edge index)
       z=F.dropout(z,p=0.2)
       return z
# Define the graph decoder model
class GraphDecoder(torch.nn.Module):
    def init (self, encoding dim, hidden dim, output dim):
       super(GraphDecoder, self). init ()
       self.conv1 = GCNConv(encoding dim, hidden dim)
       self.conv2 = GCNConv(hidden dim, output dim)
   def forward(self, z, edge index):
       x = F.relu(self.conv1(z, edge index))
       x=F.dropout(x,p=0.2)
       x = self.conv2(x, edge index)
       x=F.dropout(x,p=0.2)
       return x
```

```
# Create instances of the graph encoder and decoder models
input_dim = 20
hidden_dim = 16
encoding_dim = 16
output_dim = input_dim
encoder = GraphEncoder(input_dim, hidden_dim, encoding_dim)
decoder = GraphDecoder(encoding_dim, hidden_dim, output_dim)
```

Architecture (DNN for classification)

```
class EncodedClassifier(nn.Module):
   def init (self, in features, out features):
       super(EncodedClassifier, self). init ()
       self.conv1 = nn.Conv1d(1, 128, kernel_size=3, padding=1) # input channel is 1
       self.bn1 = nn.BatchNorm1d(128)
       self.conv2 = nn.Conv1d(128, 256, kernel size=3, padding=1)
       self.bn2 = nn.BatchNorm1d(256)
       self.pool = nn.MaxPoolld(2) # Downsample, resulting in halving the sequence length
       self.fc1 = nn.Linear(256 * 4, 512) # Adjusted the size for the new flattened output
       self.dropout = nn.Dropout(0.5)
       self.fc2 = nn.Linear(512, 128)
       self.fc3 = nn.Linear(128, out features)
   def forward(self, x):
       x = F.relu(self.bn1(self.conv1(x)))
       x = self.pool(x)  # x shape becomes (batch size, 128, 8)
       x = F.relu(self.bn2(self.conv2(x)))
       x = self.pool(x) # x shape becomes (batch size, 256, 4)
       x = x.view(x.size(0), -1) # Flatten to (batch size, 256*4)
       x = F.relu(self.fc1(x))
       x = self.dropout(x)
       x = F.relu(self.fc2(x))
       x = self.fc3(x) # No activation, assuming you're using BCEWithLogitsLoss or similar
       return x
```

Loss Function and its intuition

Reconstruction Loss

Classification Loss

Performance Report

Class-wise Results

Comparison with SOTA methods

Challenges/Discussion

Graph Isomorphism (Weisfeiler-Lehman graph isomorphism test)

Graph Isomorphism Network (GIN)

[Xu+ ICLR'2019]

GIN is theoretically the most expressive GNN

The GIN's neighbor aggregation is injective!

Dual Graph Autoencoder "Might" pass the WL-Isomorphism Test

Future Directions

Prospects

- Try it on different Datasets
- Try with GNNs other than GCNs
- Doing Preprocessing

GCNConv	The graph convolutional operator from the "Semi-supervised Classification with Graph Convolutional Networks" paper.
ChebConv	The chebyshev spectral graph convolutional operator from the "Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering" paper.
SAGEConv	The GraphSAGE operator from the "Inductive Representation Learning on Large Graphs" paper.
CuGraphSAGEConv	The GraphSAGE operator from the "Inductive Representation Learning on Large Graphs" paper.
GraphConv	The graph neural network operator from the "Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks" paper.
GravNetConv	The GravNet operator from the "Learning Representations of Irregular Particle-detector Geometry with Distance-weighted Graph Networks" paper, where the graph is dynamically constructed using nearest neighbors.
GatedGraphConv	The gated graph convolution operator from the "Gated Graph Sequence Neural Networks" paper.
ResGatedGraphConv	The residual gated graph convolutional operator from the "Residual Gated Graph ConvNets" paper.
GATConv	The graph attentional operator from the "Graph Attention Networks" paper.
CuGraphGATConv	The graph attentional operator from the "Graph Attention Networks" paper.
FusedGATConv	The fused graph attention operator from the "Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective" paper.
GATv2Conv	The GATv2 operator from the "How Attentive are Graph Attention Networks?" paper, which fixes the static attention problem of the standard GATCONV layer.
TransformerConv	The graph transformer operator from the "Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification" paper.