Seminarul 7 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Rezultate folositoare din cursurile și seminariile trecute

Definiția 1.1: Fie R un inel și $n \geq 1$. Pentru un $\sigma \in S_n$, notăm cu

$$\sigma^* : R[X_1, ..., X_n] \to R[X_1, ..., X_n], \ \sigma^*(X_i) = X_{\sigma(i)}$$

(morfism de inele definit cu ajutorul proprietății de universalitate a inelului de polinoame).

- i) Un polinom $P \in R[X_1, ..., X_n]$ se numește simetric dacă $\sigma^*(P) = P$ pentru orice $\sigma \in S_n$.
- ii) Pentru orice $1 \le k \le n$, notăm cu

$$s_k = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} X_{i_1} X_{i_2} \dots X_{i_k}$$

i.e.

$$\begin{split} s_1 &= X_1 + \ldots + X_n \\ s_2 &= X_1 X_2 + X_1 X_3 + \ldots + X_{n-1} X_n \\ \ldots \\ s_n &= X_1 X_2 \ldots X_n. \end{split}$$

Atunci s_k sunt polinoame simetrice și se numesc polinoamele simetrice fundamentale.

Definiția 1.2: Fie R un inel și $n \ge 1$.

a) Pe multimea monoamelor din $R[X_1,...,X_n]$ introducem ordinea lexicografică:

$$X_1^{a_1}X_2^{a_2}...X_n^{a_n} \ge_{lex} X_1^{b_1}X_2^{b_2}...X_n^{b_n} \iff a_1 = b_1, a_2 = b_2, ...a_n = b_n$$
 sau

primul termen nenul din $(a_1 - b_1, a_2 - b_2, ..., a_n - b_n)$ este pozitiv.

Este imediat că \geq_{lex} este ordine totală.

b) Fie $f \in R[X_1, ..., X_n]$. Notăm cu $LT_{lex}(f) = LT(f)$ termenul din f al cărui monom este cel mai mare în sensul ordinii lexicografice și îl numim termenul principal al lui f.

Teorema 1.3: (fundamentală a polinoamelor simetrice)

Fie R un inel, $n \ge 1$ și $f \in R[X_1, ..., X_n]$. Atunci există un unic polinom $g \in R[X_1, ..., X_n]$ astfel încât

$$f = g(s_1, ..., s_n).$$

2 Inele de polinoame (cont.)

Exercițiul 2.1: Fie $P \in \mathbb{Z}[X_1, X_2, X_3]$,

$$P = 3X_1^2 X_2^2 X_3 + 7X_1^3 X_2^2 X_3 + 5X_1^6 - 3X_1 X_2 X_3 - 25X_3^3 + 1.$$

Scrieți P ca polinom în $\mathbb{Z}[X_2, X_3][X_1]$, ca polinom în $\mathbb{Z}[X_1, X_3][X_2]$ și ca suma de componente omogene (*i.e.* de același grad).

Exercițiul 2.2: Scrieți în ordine lexicografică descrescătoare monoamele de grad 2 din $R[X_1, X_2, X_3]$.

Exercițiul 2.3: Fie R un inel. Scrieți polinoamele de mai jos în ordine lexicografică descrescătoare a monoamelor:

a)
$$2X_1^2 + 3X_1X_2X_3 - 2X_1^2X_2^2 + X_3^3 + 1 + X_1^2X_3^2 + X_2^4 \in R[X_1, X_2, X_3].$$

b)
$$3X_1^2X_2^2X_3 + 7X_1^3X_2^2X_3 + 5X_1^6 - 3X_1X_2X_3 - 25X_3^3 + 1 \in R[X_1, X_2, X_3].$$

c)
$$X_1^4 - X_3^4 - 5X_2X_4^3 + X_2X_3 + 3X_1X_3^2X_4 - X_2 - X_1X_4^7 + 6 \in R[X_1, X_2, X_3, X_4].$$

Exercițiul 2.4: Fie R un inel comutativ. Demonstrați că

$$R[X,Y]/(X-Y) \simeq R[X].$$

Generalizați.

Exercițiul 2.5: Demonstrați că $K[X,Y]/(Y^2-X)$ și $K[X,Y]/(Y^2-X^2)$ nu sunt izomorfe, pentru orice corp K.

Exercitiul 2.6:

a) Fie K un corp și $a_1, ..., a_n \in K$. Demonstrați că idealul

$$(X_1 - a_1, X_2 - a_2, ..., X_n - a_n) \le K[X_1, ..., X_n]$$

este maximal.

b) Daţi exemplu de corp K pentru care $K[X_1,...,X_n]$ are şi alte ideale maximale.

Exercițiul 2.7:

- a) Fie D un domeniu de integritate, $a \in D$ şi $P, Q \in R[X]$ astfel încât a este rădăcină de ordinul n pentru P şi $Q(a) \neq 0$. Atunci a este rădăcină de ordinul n şi pentru PQ.
- b) Dați un contraexemplu pentru cazul în care inelul nu este domeniu de integritate.

Exercițiul 2.8: (Derivata formală a unui polinom) Fie K un corp comutativ.

a) Fie $n \geq 2$ și $f_1, ..., f_n \in K[X]$. Demonstrați că

$$D(f_1 f_2 ... f_n) = D(f_1) f_2 ... f_n + f_1 D(f_2) f_3 ... f_n + ... + f_1 f_2 ... f_{n-1} D(f_n).$$

b) Dacă $f = (X - a)^n$ pentru un $a \in K$ și $n \ge 1$, demonstrați că:

$$f^{(1)} = n(X - a)^{n-1},$$

$$f^{(2)} = n(n-1)(X - a)^{n-2},$$
...
$$f^{(k)} = n(n-1)...(n-k+1)(X - a)^{n-k},$$
...
$$f^{(n)} = n! \ 1_K$$

$$f^{(n+1)} = f^{(n+2)} = ... = 0.$$

- c) Demonstrați că, dacă p este prim și char K=p, atunci $f^{(p)}=0$ pentru orice polinom $f\in K[X].$
- d) Pentru $f,g\in K[X],$ demonstrați formula

$$(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)} g^{(n-k)}.$$

3 Polinoame simetrice

Exercițiul 3.1: Scrieți următoarele polinoame simetrice ca polinoame în polinoamele simetrice fundamentale:

a)
$$f(X_1, X_2, X_3) = \sum_{sym} X_1^3 X_2 = X_1^3 X_2 + X_1^3 X_3 + X_1 X_2^3 + X_1 X_3^3 + X_2^3 X_3 + X_2 X_3^3$$
.

b)
$$f(X_1, X_2, X_3) = \sum_{sym} X_1^2 X_2^2$$
.

c)
$$f(X_1, X_2, X_3) = \sum_{sym} X_2^2 X_3^3$$
.

d)
$$f(X_1, X_2, X_3) = \sum_{sym} X_1^3 X_2^3$$
.

e)
$$f(X_1, X_2, X_3) = \sum_{sym} X_1^4 X_2 X_3$$
.

f)
$$f(X_1, X_2, X_3) = \sum_{sym} X_1^4 X_2^3$$
.

Exercițiul 3.2: Rezolvați în \mathbb{R} sistemul de ecuații

$$\begin{cases} x^5 + y^5 = 33 \\ x + y = 3 \end{cases}.$$

Exercițiul 3.3: Rezolvați în \mathbb{R} ecuația

$$\sqrt[4]{x} + \sqrt[4]{97 - x} = 5.$$

Exercițiul 3.4:

a) Fie K un corp cu char $K \neq 2$ și $A \subset K[X,Y]$ subinelul polinoamelor simetrice din K[X,Y]. Demonstrați că

$$A_{/(X^2+Y^2)} \simeq K[X].$$

b) Demonstrați că

$$\mathbb{C}[X,Y]_{/(X^2+Y^2)}\not\simeq\mathbb{C}[X].$$

c) Demonstrați că

$$\mathbb{R}[X,Y]/(X^2+Y^2) \not\simeq \mathbb{R}[X].$$