Тема II: Линейные операторы

§ 4. Сопряженный оператор

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Построение сопряженного оператора

Пусть $\mathscr{A}\colon V_1\to V_2$ – линейный оператор пространств со скалярным произведением над полем $F\in\{\mathbb{R},\mathbb{C}\}.$

В каждом из пространств V_1 и V_2 – свое скалярное произведение. Для наглядности полезно (временно) использовать разные обозначения для произведений в V_1 и в V_2 : будем обозначать произведение векторов $\mathbf{x},\mathbf{y}\in V_1$ через $\mathbf{x}\circ_1\mathbf{y}$, а произведение векторов $\mathbf{p},\mathbf{q}\in V_2$ – через $\mathbf{p}\circ_2\mathbf{q}$.

Возьмем произвольный вектор $\mathbf{r} \in V_2$ и свяжем с ним отображение

$$\Phi_{\mathbf{r}}\colon V_1\to F,$$

определенное правилом $\Phi_{\mathbf{r}}(\mathbf{x}):=\mathscr{A}\mathbf{x}\circ_2\mathbf{r}$. Отображение $\Phi_{\mathbf{r}}$ – линейный функционал на пространстве V_1 . Действительно,

$$\Phi_{\mathbf{r}}(\mathbf{x}+\mathbf{y}) = \mathscr{A}(\mathbf{x}+\mathbf{y})\circ_2\mathbf{r}$$
 по определению $\Phi_{\mathbf{r}}$
$$= (\mathscr{A}\mathbf{x}+\mathscr{A}\mathbf{y})\circ_2\mathbf{r}$$
 в силу линейности \mathscr{A}
$$= \mathscr{A}\mathbf{x}\circ_2\mathbf{r}+\mathscr{A}\mathbf{y}\circ_2\mathbf{r}$$
 свойство скалярного произведения
$$= \Phi_{\mathbf{r}}(\mathbf{x})+\Phi_{\mathbf{r}}(\mathbf{y})$$
 по определению $\Phi_{\mathbf{r}}$.

Аналогично проверяется, что $\Phi_{\mathbf{r}}(\lambda x) = \lambda \Phi_{\mathbf{r}}(\mathbf{x})$ для любого $\lambda \in F$.

Построение сопряженного оператора. Ключевое тождество.

Пусть пространство V_1 конечномерно. По теореме о строении линейного функционала существует однозначно определяемый вектор $\mathbf{a} \in V_1$ такой, что $\mathscr{A}\mathbf{x} \circ_2 \mathbf{r} = \mathbf{x} \circ_1 \mathbf{a}$ для каждого $\mathbf{x} \in V_1$. Сопоставляя вектору \mathbf{r} вектор \mathbf{a} , получаем отображение из V_2 в V_1 . Это отображение называется сопряженным оператором к \mathscr{A} и обозначается через \mathscr{A}^* .

Построение дает ключевое тождество для сопряженного оператора:

$$\forall \mathbf{x} \in V_1 \ \forall \mathbf{r} \in V_2 \quad \mathscr{A} \mathbf{x} \circ_2 \mathbf{r} = \mathbf{x} \circ_1 \mathscr{A}^* \mathbf{r}. \tag{\dagger}$$

Как мы увидим дальше, ключевое тождество – мощный и исключительно полезный инструмент. Именно оно применяется во всех рассмотрениях, связанных с сопряженными операторами; построение же нужно только для того, чтобы обосновать, что сопряженный оператор существует.

Замечание. Тождество (†) однозначно определяет сопряженный оператор, т.е. если для оператора $\mathcal{B}\colon V_2\to V_1$ равенство $\mathscr{A}\mathbf{x}\circ_2\mathbf{r}=\mathbf{x}\circ_1\mathscr{B}\mathbf{r}$ выполнено при всех $\mathbf{x}\in V_1$ и $\mathbf{r}\in V_2$, то $\mathscr{B}=\mathscr{A}^*$.

Доказательство. Если $\mathbf{x} \circ_1 \mathscr{A}^* \mathbf{r} = \mathbf{x} \circ_1 \mathscr{B} \mathbf{r}$ для всех \mathbf{x} , то $\mathscr{A}^* \mathbf{r} = \mathscr{B} \mathbf{r}$ (ослабленный закон сокращения). Это и означает, что $\mathscr{A}^* = \mathscr{B}$.

Линейность сопряженного оператора

Вернемся к привычному обозначению ${\bf xy}$ для скалярного произведения векторов ${\bf x}, {\bf y}$ любого пространства. Тождество (\dagger) тогда запишется так:

$$\forall \mathbf{x} \in V_1 \ \forall \mathbf{r} \in V_2 \quad \mathscr{A} \mathbf{x} \mathbf{r} = \mathbf{x} \mathscr{A}^* \mathbf{r}. \tag{\dagger}$$

Теорема (линейность сопряженного оператора)

Пусть $\mathscr{A}: V_1 \to V_2$ – линейный оператор пространств со скалярным произведением. Тогда сопряженный оператор $\mathscr{A}^*: V_2 \to V_1$ линеен.

 \mathcal{A} оказательство. Пусть $\mathbf{p}, \mathbf{q} \in V_2$; проверим, что $\mathscr{A}^*(\mathbf{p} + \mathbf{q}) = \mathscr{A}^*\mathbf{p} + \mathscr{A}^*\mathbf{q}$. Возьмем произвольный вектор $\mathbf{x} \in V_1$. Имеем

$$\mathbf{x}\left(\mathscr{A}^*\mathbf{p}+\mathscr{A}^*\mathbf{q}\right)=\mathbf{x}\mathscr{A}^*\mathbf{p}+\mathbf{x}\mathscr{A}^*\mathbf{q}$$
 свойство скалярного произведения
$$=\mathscr{A}\mathbf{x}\mathbf{p}+\mathscr{A}\mathbf{x}\mathbf{q}$$
 тождество (†)
$$=\mathscr{A}\mathbf{x}(\mathbf{p}+\mathbf{q})$$
 свойство скалярного произведения
$$=\mathbf{x}\mathscr{A}^*(\mathbf{p}+\mathbf{q})$$
 тождество (†).

Отсюда $\mathscr{A}^*(\mathbf{p}+\mathbf{q})=\mathscr{A}^*\mathbf{p}+\mathscr{A}^*\mathbf{q}$ (ослабленный закон сокращения). Сходным образом проверяется, что $\mathscr{A}^*(\lambda\mathbf{p})=\lambda\mathscr{A}^*\mathbf{p}$ для всех $\lambda\in F$.

Свойства сопряженных операторов

Укажем основные свойства взятия сопряженного оператора.

$$\nabla 1$$
: $(\mathscr{A}^*)^* = \mathscr{A}$;

$$\nabla 2: (\alpha \mathscr{A})^* = \overline{\alpha} \mathscr{A}^*;$$

$$\nabla 3$$
: $(\mathscr{A} + \mathscr{B})^* = \mathscr{A}^* + \mathscr{B}^*$;

$$\nabla 4: (\mathscr{A}\mathscr{B})^* = \mathscr{B}^*\mathscr{A}^*.$$

Доказательство свойства $\nabla 1$. Заметим, что $(\mathscr{A}^*)^*$ отображает V_1 в V_2 . Применяя тождество (\dagger) к оператору \mathscr{A}^* , получаем

$$\mathscr{A}^* \mathbf{p} \mathbf{x} = \mathbf{p} \left(\mathscr{A}^* \right)^* \mathbf{x}$$

для всех $\mathbf{p} \in V_2$ и $\mathbf{x} \in V_1$. С другой стороны,

$$\mathscr{A}^*\mathbf{p}\mathbf{x} = \overline{\mathbf{x}\mathscr{A}^*\mathbf{p}} \stackrel{(\dagger)}{=} \overline{\mathscr{A}\mathbf{x}\mathbf{p}} = \mathbf{p}\mathscr{A}\mathbf{x}.$$

Итак, $\mathbf{p} (\mathscr{A}^*)^* \mathbf{x} = \mathbf{p} \mathscr{A} \mathbf{x}$ для всех \mathbf{p} и \mathbf{x} , откуда $(\mathscr{A}^*)^* \mathbf{x} = \mathscr{A} \mathbf{x}$ (ослабленный закон сокращения). Это и означает, что $(\mathscr{A}^*)^* = \mathscr{A}$.

Свойства $\nabla 2$ и $\nabla 3$ докажите самостоятельно.

Свойства сопряженных операторов (2)

Обсудим свойство $\nabla 4$: $(\mathscr{A}\mathscr{B})^*=\mathscr{B}^*\mathscr{A}^*$. Здесь рассматриваются три векторных пространства V_1 , V_2 и V_3 , причем \mathscr{A} – линейный оператор из V_2 в V_3 , а \mathscr{B} – линейный оператор из V_1 в V_2 . Соответственно, \mathscr{B}^* – оператор из V_2 в V_3 , а \mathscr{A}^* – оператор из V_3 в V_2 .

Возьмем произвольные вектора $\mathbf{x} \in V_1$ и $\mathbf{s} \in V_3$. Тогда

$$\left(\mathscr{A}\mathscr{B}\right)\mathbf{x}\mathbf{s}\overset{(\dagger)}{=}\mathbf{x}\left(\mathscr{A}\mathscr{B}\right)^{*}\mathbf{s}.$$

С другой стороны,

$$(\mathscr{A}\mathscr{B})\,\mathbf{x}\mathbf{s}=\mathscr{A}\,(\mathscr{B}\mathbf{x})\,\mathbf{s}\stackrel{(\dagger)}{=}\mathscr{B}\mathbf{x}\mathscr{A}^*\mathbf{s}\stackrel{(\dagger)}{=}\mathbf{x}\mathscr{B}^*\mathscr{A}^*\mathbf{s}.$$

Итак, $\mathbf{x} \, (\mathscr{A}\mathscr{B})^* \, \mathbf{s} = \mathbf{x} \mathscr{B}^* \mathscr{A}^* \mathbf{s}$ для всех \mathbf{x} и \mathbf{s} , откуда $(\mathscr{A}\mathscr{B})^* \, \mathbf{s} = \mathscr{B}^* \mathscr{A}^* \mathbf{s}$ (ослабленный закон сокращения). Это и значит, что $(\mathscr{A}\mathscr{B})^* = \mathscr{B}^* \mathscr{A}^*$. \square

Матрица сопряженного оператора

Пусть $\mathbf{e}_1,\dots,\mathbf{e}_k$ – базис V_1 , а $\mathbf{f}_1,\dots,\mathbf{f}_n$ – базис V_2 . Матрица линейного оператора $\mathscr{A}:V_1\to V_2$ состоит из координат векторов $\mathscr{A}\,\mathbf{e}_1,\dots,\mathscr{A}\,\mathbf{e}_k$ в базисе $\mathbf{f}_1,\dots,\mathbf{f}_n$, записанных по столбцам:

$$\mathscr{A}\mathbf{e}_i = \sum_{\ell=1}^n \alpha_{\ell i} \mathbf{f}_{\ell}.$$

Если базис $\{\mathbf{f}_j\}$ – ортонормированный, умножив справа на \mathbf{f}_j , получим

$$\mathscr{A}\mathbf{e}_{i}\mathbf{f}_{j} = \left(\sum_{\ell=1}^{n} \alpha_{\ell i}\mathbf{f}_{\ell}\right)\mathbf{f}_{j} = \sum_{\ell=1}^{n} \alpha_{\ell i}\mathbf{f}_{\ell}\mathbf{f}_{j} = \alpha_{ji}.$$

Оператор $\mathscr{A}^*\colon V_2\to V_1$ – тоже линейный, и его матрица состоит из координат векторов $\mathscr{A}^*\mathbf{f}_1,\dots,\mathscr{A}^*\mathbf{f}_n$ в базисе $\mathbf{e}_1,\dots,\mathbf{e}_k$:

$$\mathscr{A}^*\mathbf{f}_j = \sum_{\ell=1}^k \beta_{\ell j} \mathbf{e}_{\ell}.$$

Если базис $\{\mathbf e_i\}$ – ортонормированный, умножив слева на $\mathbf e_i$, получим

$$\mathbf{e}_i \mathscr{A}^* \mathbf{f}_j = \mathbf{e}_i \left(\sum_{\ell=1}^k \beta_{\ell j} \mathbf{e}_\ell \right) = \sum_{\ell=1}^k \overline{\beta_{\ell j}} \mathbf{e}_i \mathbf{e}_\ell = \overline{\beta_{ij}}.$$

Матрица сопряженного оператора (2)

Итак, если оба базиса $\mathbf{e}_1,\dots,\mathbf{e}_k$ и $\mathbf{f}_1,\dots,\mathbf{f}_n$ ортонормированные, то

$$\mathscr{A}\mathbf{e}_{i}\mathbf{f}_{j}=\alpha_{ji}$$
 u $\mathbf{e}_{i}\mathscr{A}^{*}\mathbf{f}_{j}=\overline{\beta_{ij}}.$

Но левые части этих равенств одинаковы в силу (\dagger) . Отсюда $\alpha_{ji}=\overline{\beta_{ij}}$. Это можно переписать как $\beta_{ij}=\overline{\alpha_{ji}}$. Мы видим, что матрица сопряженного оператора \mathscr{A}^* получается, если матрицу исходного оператора \mathscr{A} транспонировать и заменить каждый элемент его сопряженным. Матрица, получаемая из данной матрицы A транспонированием и заменой каждого элемента на сопряженный, называется эрмитово сопряженной к матрице A и обозначается через A^* : если $A=(a_{ij})_{k\times n}$, то $A^*:=(\overline{a_{ji}})_{n\times k}$.

Итак, установлен следующий весьма полезный факт:

Предложение (матрица сопряженного оператора)

Если линейный оператор $\mathscr{A}: V_1 \to V_2$ имеет в ортонормированных базисах пространств V_1 и V_2 матрицу A, то сопряженный ему оператор $\mathscr{A}^*\colon V_2 \to V_1$ имеет в тех же базисах матрицу A^* .

Случай $V_1=V_2$

Во всех рассмотрениях выше не исключался случай, когда пространства V_1 и V_2 – это одно и то же пространство V. В этом важном частном случае сопоставление каждому линейному оператору $\mathscr{A}:V\to V$ его сопряженного оператора становится дополнительной *унарной операцией* в кольце всех линейных операторов пространства V.

Наличие такой дополнительной операции позволяет:

- выделить важные типы линейных операторов прежде всего, самосопряженные (когда $\mathscr{A}^* = \mathscr{A}$) и унитарные/ортогональные (когда $\mathscr{A}^* = \mathscr{A}^{-1}$);
- описать устройство произвольных линейных операторов пространств со скалярным произведением.