Cooking state recognition based on Acoustic event detection

Yusaku Korematsu Daisuke Satio*

korematsu@gavo.t.u-tokyo.ac.jp dsk-saito@gavo.t.u-tokyo.ac.jp The University of Tokyo Tokyo, Japan

ABSTRACT

In this research, the cooking sound analysis for understanding cooking activities was conducted toward the cooking support system. Although there have been attempts to use images and signals from motion sensors and temperature sensors to understand cooking behavior, only limited studies have been conducted using acoustic signals. The data set was newly constructed by actually cooking and recording. When humans cook, different cooking sounds are generated depending on the type of cooking behavior. By learning each cooking sound and restricting the action sequence from the recipe structure, it was achieved to estimate the cooking action sequence effectively.

CCS CONCEPTS

• Human-centered computing → Auditory feedback.

KEYWORDS

Cooking activity recognition, Acoustic event detection, Signal processing, Nonnegative matrix factorization

ACM Reference Format:

Yusaku Korematsu and Daisuke Satio. 2018. Cooking state recognition based on Acoustic event detection. In *Woodstock '18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY*. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. Woodstock '18, June 03–05, 2018, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM

ACM ISBN 978-1-4503-9999-9/18/06...\$15.00 https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Cooking activities are fundamental to human life and supporting it with information processing technology will become more important in order to improve the quality of life[9].

For speech information processing, support by a spoken dialogue system is considered, but in order to support cooking activities, it is necessary to recognize the state in a way that does not hinder the behavior of the cooker, and the question answering system is suitable Absent. Therefore, it is necessary to properly sense the behavior data of the cooker and use it for behavior understanding.

Research using images and acceleration sensors as information necessary for cooking behavior recognition is performed[4][7][3]. However, studies using sounds (cooking sounds) generated at the time of cooking are performed only limitedly[2], and research to tackle the recognition of the entire cooking process has not been conducted.

While image recognition is good at recognizing static objects such as food materials, cooking sounds are superior in recognition of cooking behavior such as "cutting" and "stir-frying", and if it is suitable for this task Conceivable.

Identification of cooking sound can also be considered as a task of Acoustic Event Detection and Classification (AEDC) 1, but its recognition unit is a problem. What can be thought of as a recognition unit is cooking behavior such as "cutting" or "stir-frying" as described in the recipe. However, in order to perform recognition in cooking behavior units, it is necessary to model cooking sounds labeled for each cooking behavior appropriately, and it is necessary to appropriately model cooking sounds labeled for each cooking behavior, A method that directly associates features is not suitable[6].

In this research, assuming that the cooking sound when doing cooking behavior can be described by the overlapping pattern of the basis of plural sound events, by extracting the sound event feature amount by nonnegative matrix factorization and modeling it, cooking We examined whether it is possible to identify behavior.

Figure 1: Probrem of Acoustic event detection

2 RELATED WORK

Cooking Activities recognition

Research on cooking behavior recognition using Egocentric videos has been conducted [8]. Research on cooking behavior recognition using image data during cooking is also being conducted.[3]

Acoustic event detection

Acoustic event detection is a theme that detects perceived events from acoustic signals such as bird calls and gunshots. Although research has been conducted by applying speech recognition technology, it is also addressing difficult problems by technological development of deep learning. There are many types of acoustic events, so research for using low-quality data sets and research for using small-scale data sets are issues[1].

3 PROPOSED METHOD

Feature extraction

In this paper, two feature quantities are used. The first is the MFCC, and the other is the activation matrix using NMF.

Mel frequency cepstrum coefficient (MFCC) is a feature that is widely used in the speech recognition field, but it is also widely used as an effective feature in the field of AED.

Nonnegative Matrix Factorization (NMF) is one of multivariate analysis methods aimed at decomposing nonnegative value data into additive constituents, and attracts attention in various fields in recent years There is technology to be [5].

In the application of NMF to the analysis of acoustic signals, prepare spectrogram V as a two-dimensional matrix of time-frequency and approximate it to the product of two matrices HandU ($V \simeq HU$). One is called the basis matrix, and multiple characteristic spectral distributions that make up the original spectrogram are obtained. The other is called a

weighting matrix, which indicates how much weight each basis vector is added at each time. Define the distance between V and HU and perform minimization to find H,U. Using the generalized Kullback-Leibler divergence as a distance function, find the stopping point by the auxiliary function method.

Cooking state modeling

The spectral basis is expected to be the spectrum of sound events that occur frequently in cooking sounds. However, the recognition unit of cooking sound has a longer duration than these sound events. Therefore, we propose to model cooking behavior using the frequency of each sound event appearing in a long time interval corresponding to cooking behavior.

Divide the weight vector sequence U_t by the window length N to obtain the weight matrix sequence X_0, \ldots, X_L . The NMF basis histogram \mathbf{x}_i is obtained by summing the weight vectors for each weight matrix.

$$\mathbf{x}_{i} = \sum_{n=0}^{N-1} X_{i,n} \tag{1}$$

However, $X_{i,n}$ is the nth row of the weight matrix X_i . The histogram x_i of the cooking behavior A is modeled by the output probability distribution P(x|A).

4 EXPERIMENT

Dataset

The cooking sound was actually recorded when conducting the experiment. Different cooks cook in different environments to avoid over-learning by recording in a specific environment, and the food made for the sake of simplicity is the same as the recipe specified. The specified food is "Yakisoba". The recipe specified a simple one. For recording, we used an iPhone 8 built-in microphone, and recorded using 48 kHz sampling, and in the experiment we used downsampling to 16 kHz. The recorded data is 6 times, about 130 minutes in total. The labeling was done by the cook himself, and I asked them to fill in each section of the procedure described in the recipe.

Frame by frame cooking state identification

Four classification experiments were conducted to classify cooking noise into three classes: "Cut", "Fish", and "Other". A six-fold cross validation was performed using the six recorded data recorded. The probability density function for all experiments was Gaussian mixture model (GMM). First, as a baseline, the cooking sound was converted to a feature sequence, and a discrimination experiment was performed assuming that each time frame always follows GMM (MFCC). The feature is a 36-dimensional vector combining 12-dimensional

Table 1: MFCC results

	mix-1	mix-2	mix-4	mix-8	mix-16	mix-32
val 1	61.84	63.70	65.79	72.60	70.35	74.50
val 2	48.55	68.33	60.70	65.99	64.69	62.11
val 3	59.67	60.30	61.56	63.23	54.67	56.10
val 4	63.52	69.48	75.28	54.64	55.19	55.01
val 5	77.15	78.60	79.70	79.62	81.07	80.80
val 6	65.72	69.61	80.12	71.90	74.64	77.15
average	62.74	68.34	70.53	68.00	66.77	67.61

Table 2: NMF results

	mix-1	mix-2	mix-4	mix-8	mix-16	mix-32
val 1	57.98	65.12	67.29	66.49	66.68	70.21
val 2	50.41	65.92	66.20	66.71	67.84	72.39
val 3	56.49	58.04	51.86	48.26	52.40	54.49
val 4	49.91	61.18	62.85	47.88	32.88	32.98
val 5	56.15	72.58	74.98	71.07	75.32	70.80
val 6	51.29	57.46	52.44	51.83	60.00	55.86
average	53.71	63.38	62.60	58.70	59.18	59.45

MFCC with 1st-order and 2nd-order dynamic feature. Both frame length and frame shift are 16 ms. Frames are grouped into segments so that the identification is performed for each segment.

Next, we tried soft clustering using GMM for all cooking sound data, and tried to generate a histogram using the class posterior probability for each frame (GMM). The mixture number of GMM was 20, and the histogram was set to be generated every second.

Third, we used the NMF basis histogram, which is the proposed method (NMF). The specified number of NMFs was 20, and the histogram was set to be generated every second.

Finally, in addition to the proposed method, we also examined a method for decomposing a spectrogram into two spectrograms before base decomposition with NMF (HPSS).

The decomposition method is intended to preserve the continuity in the time direction and the frequency direction respectively by median filter, and it is expected that the spectral basis will be learned appropriately by this. The basis number of NMF was set to be 10 for each of two resolved spectrograms, and the histogram was generated every one second. The mixing number of GMM was only 2 mixed with MFCC, and the other 3 methods were 32 mixed.

The table 1 2 shows the F value of each class and the whole for each method.

The MFCC method directly associates the acoustic features with the labels, and it is considered that the difference between various cooking environments was not successfully absorbed. Moreover, the GMM method is characterized by the class posterior probability and is expected to be robust to differences in environment, but it has the lowest F value. This was the worstGMM learns that each time frame belongs

to only one cluster, so unlike NMF where multiple bases are allowed to be included at the same time, cooking behavior could not be modeled well It is thought that there is no. On the other hand, the proposed NMF method can model cooking behavior by the superposition pattern of sound events, and it is thought that good results have been obtained. When HPSS is used in addition to the proposed method, it was expected that the basis could be learned more properly by separating the pulsing sound and the steady sound in advance. It was suggested that it did not fit the purpose of expressing the probability distribution of each action.

Figure 2: result

Post processing

In frame-by-frame state estimation, the problem is that the state changes frequently. As a method to avoid this, it is generally used to constrain the state transition using HMM. In this paper, we use the method of simply making the number of state transitions known and applying a smoothing filter until the number of state transitions is correct.

Figure 3: result

5 CONCLUSION

In this research, we presented a method of utilizing acoustic signals to understand cooking behavior for cooking activity support, and examined cooking behavior estimation using cooking sound using real environment data. By modeling cooking behavior with the superposition pattern of the basis of sound events, it is possible to identify with higher accuracy than the method of directly correlating labels and acoustic features as used in existing acoustic event detection and identification tasks.

ACKNOWLEDGMENTS

This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (?), 20XX-20XX(JP18K11369).

REFERENCES

- Keisuke Imoto. 2018. "Introduction to acoustic event and scene analysis".
 Acoustical Science and Technology 39, 3 (2018), 182–188. https://doi.org/ 10.1250/ast.39.182
- [2] T. Kojima, T. Ijiri, J. White, H. Kataoka, and A. Hirabayashi. 2016. CogKnife: Food recognition from their cutting sounds. In 2016 IEEE International Conference on Multimedia Expo Workshops (ICMEW). 1–6. https://doi.org/10.1109/ICMEW.2016.7574741
- [3] H. Kuehne, A. B. Arslan, and T. Serre. 2014. The Language of Actions: Recovering the Syntax and Semantics of Goal-Directed Human Activities. In Proceedings of Computer Vision and Pattern Recognition Conference (CVPR). 780–787.
- [4] Fernando De la Torre et al. 2008. "Guide to the Carnegie Mellon University Multimodal Activity (CMU-MMAC) Database". Technical Report. CMU.
- [5] Daniel Lee and H Sebastian Seung. 1999. Learning the Parts of Objects by Non-Negative Matrix Factorization. *Nature* 401 (11 1999), 788–791. https://doi.org/10.1038/44565
- [6] Panu Maijala, Shuyang Zhao, Toni Heittola, and Tuomas Virtanen. 2018. Environmental noise monitoring using source classification in sensors.

- Applied Acoustics 129 (01 2018), 258–267. https://doi.org/10.1016/j.apacoust.2017.08.006
- [7] Atsushi Shimada, Kazuaki Kondo, Daisuke Deguchi, G¥'eraldine Morin, and Helman Stern. 2013. Kitchen Scene Context Based Gesture Recognition: A Contest in ICPR2012. In Advances in Depth Image Analysis and Applications, Xiaoyi Jiang, Olga Regina Pereira Bellon, Dmitry Goldgof, and Takeshi Oishi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 168–185.
- [8] Shuichi Urabe, Katsufumi Inoue, and Michifumi Yoshioka. 2018. Cooking Activities Recognition in Egocentric Videos Using Combining 2DCNN and 3DCNN. In Proceedings of the Joint Workshop on Multimedia for Cooking and Eating Activities and Multimedia Assisted Dietary Management (CEA/MADiMa '18). ACM, New York, NY, USA, 1–8. https://doi.org/10.1145/3230519.3230584
- [9] Daisuke Uriu, Mizuki Namai, Satoru Tokuhisa, Ryo Kashiwagi, Masahiko Inami, and Naohito Okude. 2012. Panavi: Recipe Medium with a Sensors-embedded Pan for Domestic Users to Master Professional Culinary Arts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12). ACM, New York, NY, USA, 129–138. https://doi.org/10.1145/2207676.2207695