Preliminaries for Pruning

First, grow a vary large tree $T_{\rm max}$

- 1. until all terminal nodes are nearly pure;
- 2. or when the number of data in each terminal node is less than certain threshold;
- 3. or when the tree reaches certain size.

As long as the tree is sufficiently large, the size of the initial tree is not critical.

Notation : subtree $T' \prec T$, branch T_t .

Minimum Complexity-cost Pruning

For any subtree $T \prec T_{\text{max}}$, define the Complexity-cost

$$R_{\alpha}(T) = R(T) + \alpha |T|, \tag{1}$$

- R(T): RSS for regression tree T
- \bullet |T|: tree size, i.e., the number of leaf nodes
- $\alpha > 0$: cost (penalty) of adding a split

Questions: i) How to minimize (1) for a given α ? ii) How to choose α ?

Pick the best subtree that minimizes the cost

$$T(\alpha) = \operatorname{argmin}_{T \preceq T_{\max}} R_{\alpha}(T) = \operatorname{argmin}_{T \preceq T_{\max}} \left[R(T) + \alpha |T| \right]$$

 $T(\alpha)$ may not be unique.

Define the optimal subtree $T^*(\alpha)$ to be the smallest one among $T(\alpha)$'s

(1)
$$R_{\alpha}(T^*(\alpha)) = \min_{T \leq T_{\text{max}}} R_{\alpha}(T)$$
.

(2)
$$T^*(\alpha) \leq \text{any } T(\alpha)$$
.

 $T^*(\alpha)$ is unique.