Дискретна математика

Колоквијум II

1. Нека је дат граф G са 35 грана за који важи $\delta(G) \geq 3$. Колико највише чворова може да има граф G?

Решење: На основу основне теореме теорије графова имамо $2e = \sum d(v) \ge 3n$. Уврштавањем e = 35 добијамо $70 \ge 3n$, тј. $n \le \frac{70}{3}$. Сада је $n \le 23$.

2. Ако су чворови u и v једини чворови непарног степена у графу G, доказати да су тада u и v повезани.

Решење: Ако је граф G повезан тада су u и v повезани по дефиницији. Претпоставимо да је G неповезан. Ако су u и v из исте компоненте повезаности графа G, чворови су поново повезани јер је свака компонента повезаности повезан граф. Претпоставимо зато да $u \in V(G_i), v \in V(G_j), i \neq j$. Сада је чвор u једини чвор непарног степена у подграфу G_i , што је немогуће.

3. У стаблу T сви суседи висећих чворова имају степен бар 3. Доказати да постоје бар два висећа чвора у T који имају заједничког суседа.

Решење: Посматрајмо најдужи пут $u_1u_2...u_k$ у стаблу T. Сада чвор u_2 због услова задатка мора да има још једног суседа v. Чвор v је висећи и не налази се на путу (иначе би имали контуру). Сада чворови u_1 и v имају заједничког суседа u_2 .

4. Доказати да је регуларан комплетан бипартитан граф Хамилтонов.

Решење: Из услова регуларности добијамо $d_G(v)=k,\ \forall v\in V(G)$. Пошто је у питању комплетан бипартитан граф закључујемо да класе морају бити исте кардиналности, па је |V(G)|=2k. Како је $d_G(v)=\frac{|V(G)|}{2}=k,\ \forall v\in V(G),$ на основу теореме Дирака добијамо да је граф G Хамилтонов.