Álgebra Linear - Lista de Exercícios 11 - Simulado

escreva seu nome aqui

1.	Verdadeiro ou falso (prove ou dê um contra-exemplo):
	(a) Se A é singular, então AB também é singular.
	(b) O determinante de A é sempre o produto de seus pivôs.
	(c) O determinante de $A - B$ é det $A - \det B$.
	(d) $AB \in BA$ tem o mesmo determinante.
	Resolução:
	(a)
	(b)
	(c)
	(d)
2.	Sejam u e v vetores ortonormais em \mathbb{R}^2 e defina $A=uv^T$. Calcule A^2 para descobrir os autovalores de A . Verifique que o traço de A é $\lambda_1+\lambda_2$.
	Resolução:
3.	A matriz B tem autovalores 1 e 2, C tem autovalores 3 e 4 e D tem autovalores 5 e 7 (todas são matrizes 2×2). Ache os autovalores de A :
	$A = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}.$
	Resolução:
4.	Seja D uma matriz $n \times n$ só com 1's em suas entradas. Procure a inversa da matriz $A = I + D$ dentre as matrizes $I + cD$ e ache o número c correto.
	Resolução:
5.	Vamos resolver uma EDO de segunda ordem usando o que aprendemos. Considere $y'' = 5y' + 4y$ com $y(0) = C_1$ e $y'(0) = C_2$. Defina $u_1 = y$ e $u_2 = y'$. Escreva $\mathbf{u}'(t) = A\mathbf{u}(t)$ e ache a solução da equação.
	Resolução:
6.	Se A é simétrica e todos seus autovalores são iguais a λ . O que podemos dizer sobre A ?
	Resolução:

7. Suponha que C é positiva definida e que A tenha as colunas LI. Mostre que	A^TCA é	é positiva definida
--	-----------	---------------------

Resolução:

8. Quais são os autovalores de A se ela for similar a A^{-1} ?

Resolução:

9. Suponha que A é quadrada, mostre que $\sigma_1 \ge |\lambda|$, para qualquer autovalor λ de A, onde σ_1 é o primeiro valor singular de A.

Resolução:

10. Ache a decomposição SVD da matriz

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

 ${\bf Resolução:}$