Experiment 7: Standing Waves on a Wire

Brandon Tsang PHYS 122L-002

January 29, 2020

Goals

The following are quoted directly from PHYS 122L Lab Manual (Department of Physics and Astronomy, 2020).

- To produce and observe standing waves on a wire.
- To demonstrate that the fundamental frequencies are proportional to the square root of the tension of the wire when the length is fixed.
- To observe the harmonic frequencies of a wire of fixed length and fixed tension.
- To demonstrate that the fundamental frequencies of standing waves on a wire depend inversely on the length when the tension is fixed.
- · To analyze data graphically.

Part A: Investigation of the dependence of f_1 on T with L constant

Experiment Summary

Results

The length L of the wire: 1.0 m

Table 1: Data for fundamental frequencies for different masses

M (kg)	f_1 (Hz)	Δf_1 (Hz)	f_1^2 (Hz ²)	$\Delta f_1^2 (\mathrm{Hz^2})$	$\log(M)$	$\log(f_1)$
0.2	14.3	0.1	204	2.9	-0.699	1.16
0.4	20.1	0.1	404	4.0	-0.398	1.30
0.6	24.6	0.1	605	4.9	-0.222	1.39
0.8	28.3	0.1	801	5.7	-0.0969	1.45
1.0	31.7	0.1	1010	6.3	0.000	1.50
1.2	34.7	0.1	1200	6.9	0.0792	1.54
1.5	38.8	0.1	1510	7.8	0.176	1.59

Below is the plot of f_1^2 vs. M. The error bars are too small to be shown.

Figure 1: Relationship between fundamental frequency and mass of weight

Slope of the above graph: 1000 Hz 2 kg $^{-1}$ The slope m should be equal to $\frac{g}{4L^2\mu}$. Solving for μ :

$$m = \frac{g}{4L^{2}\mu}$$

$$4L^{2}\mu = \frac{g}{m}$$

$$\mu = \frac{g}{4L^{2}m}$$

$$= \frac{9.8 \text{ m s}^{-2}}{4(1.0 \text{ m})^{2}(1000 \text{ Hz}^{2} \text{ kg}^{-1})}$$

$$= 0.002 45 \text{ kg m}^{-1}$$

Logarithmic plot of f_1 vs M:

Figure 2: Logarithmic relationship between fundamental frequency and mass of weight

M = 1 intercept: 31.6 Hz

This intercept (call it b) should be equal to $\frac{1}{2L}\sqrt{\frac{g}{\mu}}.$ Solving for $\mu:$

$$b = \frac{1}{2L} \sqrt{\frac{g}{\mu}}$$

$$2Lb = \sqrt{\frac{g}{\mu}}$$

$$4L^2b^2 = \frac{g}{\mu}$$

$$\mu = \frac{g}{4L^2b^2}$$

$$= \frac{9.8 \text{ m s}^{-2}}{4(1.0 \text{ m})^2(31.6 \text{ Hz})^2}$$

$$= 0.002 45 \text{ kg m}^{-1}$$

Parth B: Investigation of harmonic frequencies

Results

The following results are using a 0.5 kg weight:

n	f_n	Δf_n	$\frac{f_n}{f_1}$
1	22.7	0.1	1.00
2	44.4	0.1	1.96
3	67.7	0.1	2.98
4	90.8	0.1	4.00
5	113	1	4.98
6	136	1	5.99
7	160	1	7.05

Part C: Investigation of the dependence of f_1 on L with T fixed Results

Table 2: Using a 500 g mass, the fundamental frequencies at different distances

L (m)	ΔL (m)	L^{-1} (m ⁻¹)	$\Delta L^{-1} \; (\mathrm{m}^{-1})$	f_1 (Hz)	Δf_1 (Hz)	$\log(L)$	$\log(f_1)$
0.2	0.1	5.00	2.50	113	1	-0.70	2.05
0.3	0.1	3.33	1.11	74.6	0.1	-0.52	1.87
0.4	0.1	2.50	0.625	57.5	0.1	-0.40	1.76
0.5	0.1	2.00	0.400	44.8	0.1	-0.30	1.65
0.6	0.1	1.67	0.278	38.9	0.1	-0.22	1.59
0.7	0.1	1.43	0.204	32.2	0.1	-0.15	1.51
0.8	0.1	1.25	0.156	28.2	0.1	-0.10	1.45
0.9	0.1	1.11	0.123	25.1	0.1	-0.05	1.40
1.0	0.1	1.00	0.100	22.7	0.1	0.00	1.36