Topic 12: Show how to construct a Universal Turing Machine

Prepared and Presented by: Joe Fakhri Revised October 16, 2002

Outline

• What is a Turing Machine? (a quick intro)

• Construction of a Universal Turing Machine

What is a Turing Machine?

- Formal definition: it is a quadruple $M=(K,\Sigma,\delta,s)$
- K is a finite set of states
- $s \in K$ is the initial state
- Σ is a finite set of symbols (Σ is the alphabet)
- Σ always contains the special symbols \sqcap and \blacktriangleright denoting the blank and first symbols

What is a Turing Machine? (continued)

• δ is the transition function which maps:

$$K \times \Sigma$$
 to $(K \cup \{h, "yes", "no"\}) \times \{\leftarrow, \rightarrow, -\}$

- Function δ is the "program" of the machine. For each current state $q \in K$ and a current symbol $\sigma \in \Sigma$, it specifies a triple $\delta(q, \sigma) = (p, \rho, D)$, where p is the next state, ρ is the symbol to be overwritten on σ , and $D \in \{\leftarrow, \rightarrow, -\}$
- The input string is initialized to a \triangleright followed by a finitely long string $x \in (\Sigma \Pi)$

Construction of a Universal Turing Machine

- A universal Turing machine interprets the input as a description of another Turing machine M, concatenated with a description of the input x.
- We denote it as U(M; x) = M(x)
- Assumptions:
 - no priori bounds on number of states and symbols that U must face
 - .. both states and their symbols are integers

Construction of a Universal Turing Machine (continued)

- For any Turing machine $M=(K,\Sigma,\delta,s)$ we assume :
 - $-\Sigma = \{1,2,\ldots,|\Sigma|\}$ and $K = \{|\Sigma|+1,|\Sigma|+2,\ldots,|\Sigma|+|K|\}$
 - $-|\Sigma| + 1$ is the starting state
 - Numbers $|K| + |\Sigma| + 1, ..., |K| + |\Sigma| + 6$ will encode the special symbols.
 - All numbers will be processed by U as binary numbers with $\lceil (\log |K| + |\Sigma| + 6) \rceil$ bits
 - Introduce leading zeros to make all numbers of the same length

Construction of a Universal Turing Machine (continued)

- A description of the Turing machine M will start by the number |K| in binary, followed by | Σ |, followed by a description of δ as ((q, σ), (p, ρ , D)).
 - Symbols "(", ")", ", "," etc ∈ Alphabet of U
- The description of M is followed by a ";" followed by a description of the input x.
 - x's symbols are also encoded in binary integers separated by ","

Construction of a Universal Turing Machine (continued)

- The universal Turing machine U on input M; x simulates M on input x (it seems U has two strings)
- U uses its second string to store M's configuration
 - Configuration of the following form (w, q, u)
- To simulate a step of U:
 - U scans its second string until it finds the binary description of an integer corresponding to a state
 - It searches the first string for a rule of δ matching the current state
 - If a rule is located, M moves to the left in the 2nd string to compare symbols
 - If no match then another rule is sought
 - If there is a match the rule is implemented (ie. Change current symbol, state and direction)

References

- "Computational Complexity", by Christos H. Papadimitriou
- Introduction to Automata Theory, Languages, and Computation, by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, SECOND EDITION
- http://mathworld.wolfram.com/TuringMachine.html
- Note: This presentation is posted on : www.cas.mcmaster.ca/~fakhrijm/home.html