

Relógios de Lamport em Sistemas Distribuídos

Relógios Lógicos de Lamport e Relógios Vetoriais

por Fernando Souza Furtado Carrilho

Sistemas Distribuídos e Concorrência

Definição	Desafios	Exemplos
Nós independentes se comunicam,	Ausência de relógio global e atrasos de	Sistemas bancários, e-commerce,
formando um sistema único.	rede.	redes sociais.

A latência típica em redes de longa distância (WAN) varia de 50 a 200 milissegundos.

Necessidade de Ordenação de Eventos

Ordem Causal

Fundamental para consistência e correção de dados.

Problemas sem Ordem

Transações bancárias inconsistentes.

Aplicações Práticas

Controle de concorrência, detecção de deadlock, replicação de dados.

Por exemplo, a reserva de assentos em voos impede o overbooking.

Relógios Lógicos: Uma Abordagem

Alternativa

Introdução aos relógios lógicos como solução.

Definição

Mecanismo que atribui timestamps a eventos.

Abstração

Foco na causalidade, não no tempo físico.

O objetivo principal é capturar a relação de causalidade entre eventos.

O Algoritmo do Relógio de Lamport

Exemplo: Nó A envia msg (t=5) para Nó B (t=3); B ajusta para t=max(3,5)+1=6.

Exemplo de Lamport

Aplicações e Extensões

Casos de Uso

Sistemas de log distribuídos e controle de versão.

Relógios Vetoriais

Capturam causalidade total. Se a → b, então V(a)[i] ≤ V(b)[i] para todo i.

Outros Algoritmos

Relógios matriciais oferecem visão mais complexa.

As extensões visam superar as limitações da ordem parcial.

Propriedades e Limitações

Ordem Parcial

Se evento A causou evento B, então C(A) < C(B).

Limitação

Não captura a ordem total dos eventos concorrentes.

Causalidade vs. Concorrência

Eventos independentes podem ter timestamps trocados.

Isso significa que dois eventos podem ter o mesmo timestamp, mas serem independentes.

Conclusão

Como próximos passos, explore vetores de relógio e outras soluções para gerenciar o tempo em sistemas distribuídos.