

Control System Basics

Control Problem Definition

Control Strategies

Feedback Control Structures

Nature of Control Tasks

Performance Augmentation

In **most** dynamical systems, the **performance** attributes e.g. stability, tracking and disturbance rejection, **need augmentation** due to system **deficiencies**.

However, there are **other situations** where the **role** of a system gets **modified**, resulting in different **requirements** on these attributes

In all such **cases**, we need **additional** entities, e.g. **control**, which help us to achieve **desired** objectives.

Concept of Control System

Control System, or controller, is an object or a process, for ensuring a desirable response from the system, under specified operating conditions & disturbances.

Control problems can be **generically** described by **considering** any system in its **input – output** form.

Control Problem Description

Given below is a generic structure of a control action.

Controller is an element that generates manipulated input, based on the command, as shown below.

Control Action Strategies

In general, **control action** is of two broad **categories**, which are;

Open Loop: In this case, a pre-set action is taken based on system features and desired performance, without any reference to the actual performance.

Closed Loop: In this case, the control action is based on the current state of the output, which is measured and then fed back as modification to the input.

In some **special** cases, a **variant** of **open** loop control **action** category, called **'feed forward'** is also employed.

Control Action Structures

Open Loop

Open & Closed Loop Examples

Open Loop System

Closed Loop System

Open Vs. Closed Loop Control

Attribute	Open Loop	Closed Loop
Calibration	Yes	No
Implementation	Simple	Complex
Impact on Stability	Largely No	Yes
Output Monitoring	No	Yes
Control Action	Independent	Dependent
Recalibration	Yes	No
Requirements	Yes	Yes

Control practices usually employ both the options.

However, **closed loop** is considered **better** when we need **greater** assurance under **uncertain** conditions.

Feed-forward Control Concept

Given below is a schematic of feed-forward action.

Here, U(s) is a known **disturbance**, which is sought to be **nullified** by the feed-forward controller, $G_c(s)$.

Summary

Open loop strategies are simpler but error prone, while closed loop strategies are more complex but provide better accuracy and control authority.

Feed-forward action is a variant of open loop action, which aims to improve the transient response.

Feedback Control Structures

Feedback Control Structure

The most **commonly** used feedback control **structure** is the **single** loop negative **feedback**, as shown below.

Single Loop Control Options

Further, single loop structure can be both non-unity as well as unity feedback type, as shown below.

Unity Vs. Non-unity Structure

Closed loop transfer functions for both unity and nonunity feedback structures are as given below.

$$\left| \frac{C(s)}{R(s)} \right|_{Unity} = \frac{G(s)H(s)}{1 + G(s)H(s)}; \quad \frac{C(s)}{R(s)} \right|_{Non-unity} = \frac{G(s)}{1 + G(s)H(s)}$$

We note that for a **given input**, the structures will give **different types** of responses, so that we can **satisfy** different **requirements**.

Unity Vs. Non-unity Structure

In **general**, it is found that **unity feedback** form is the simplest, **intuitive**, and hence, is the most **widely** used in a **large** number of control **applications**.

Further, in many cases, results from unity feedback are also applicable to non-unity feedback.

Therefore, in the **present course**, we will **focus** only on the **unity** feedback control **structure**.

However, wherever **applicable**, correspondence with **non-unity** feedback form will be **highlighted**.

Summary

Single loop **unity** negative **feedback** form is a commonly employed control **structure**.

Performance through Feedback Control

It was **seen** earlier that performance **attributes** e.g. stability, tracking etc. **depend** on the transfer function.

In this **context**, we know that a **feedback** structure modifies the **relation** between the output and the input.

Therefore, an **appropriate** feedback control **structure** should be able to also **modify** the performance **attributes** as per the **requirements**.

Let us **explore** this aspect through **simple examples**.

Stability Augmentation

We know that for any **system** to be **stable**, all its **poles** must have **negative** real part.

For unity feedback structure, this requirement can be stated on closed loop transfer function, as follows.

$$C(s) = \frac{G(s)H(s)}{1 + G(s)H(s)}R(s); \quad D(s) = 1 + G(s)H(s) = 0$$

 $G(s)H(s) = -1 \rightarrow \text{All roots must have negative real part.}$

Thus, we can employ a **suitable H(s)** to achieve closed loop system **stability**, even for **unstable** plants.

Stability Augmentation Example

Unstable Plant:

$$G(s) = \frac{1}{(s^2 + s - 2)}$$

 $D(s) = 1 + G(s) = s^2 + s - 1 = 0$

 $\Rightarrow s = 0.618, -1.618$

→ Closed Loop Unstable

Unstable Plant with Controller:

$$G(s) \cdot H(s) = \frac{1}{(s^2 + s - 2)} \times 5$$

$$D(s) = 1 + G(s)H(s) = (s^{2} + s - 2) + 5$$

$$s^{2} + s + 3 = 0 \rightarrow s = -0.5 \pm j1.658$$

$$s^2 + s + 3 = 0 \rightarrow s = -0.5 \pm j1.658$$

Stable Closed Loop

Tracking

Tracking requires following a given input, for which applicable closed loop response is as shown below.

Tracking:
$$\lim_{t \to \infty} c(t) = r(t) \to \lim_{t \to \infty} [r(t) - c(t)] = 0$$

$$C(s) = \frac{G(s)H(s)}{1 + G(s)H(s)} R(s); \quad R(s) - C(s) = \frac{R(s)}{1 + G(s)H(s)} = 0$$

$$\lim_{s \to 0} s \left[R(s) - C(s) \right] = \lim_{s \to 0} \left(\frac{sR(s)}{1 + G(s)H(s)} \right) = 0$$

It can be seen that **exact tracking** depends on both input $\mathbf{R}(\mathbf{s})$ and the controller $\mathbf{H}(\mathbf{s})$.

Step Tracking Through Gain

Step Tracking Through Integral

Disturbance Rejection

Disturbance **rejection** is the counterpart of **tracking**, in which the applied **input** is to be **rejected** (or not tracked). Following schematic shows the **overall** context.

In this structure, D(s) is the disturbance input, and is to be rejected so that C(s) is zero for non-zero D(s) as $t \to \infty$.

Disturbance Rejection

Resulting closed loop response, C(s) is as shown below.

$$C(s) = \frac{G(s)}{1 + G(s)H(s)}D(s); \text{ Rejection: } \lim_{t \to \infty} c(t) = 0$$

$$\lim_{s \to 0} sC(s) = 0 \to \lim_{s \to 0} \left(\frac{sG(s)D(s)}{1 + G(s)H(s)} \right) = 0 \to \lim_{s \to 0} sG(s)D(s) = 0$$

We see that quality of disturbance rejection will depend on **nature** of disturbance and G(s).

Step Rejection Through Gain

Step Rejection Through Derivative

Summary

We can **improve** stability, tracking and rejection **performance** through feedback **control**, by suitable **choice** of control **element**.