© Debnath, Lokenath, Jan 22, 2008, Integral Transforms and Their Applications Chapman and Hall/CRC, Hoboken, ISBN: 9781420010916

TABLE B-5 Hankel Transforms

			<u> </u>
	f(r)	order	$\tilde{f}_n(k) = \int_0^\infty r J_n(kr) f(r) dr$
1	H(a-r)	0	$\frac{a}{k}J_1(ak)$
2	$\exp(-ar)$	0	$a(a^2+k^2)^{-\frac{3}{2}}$
3	$\frac{1}{r}\exp(-ar)$	0	$(a^2+k^2)^{-rac{1}{2}}$
4	$(a^2 - r^2) H(a - r)$	0	$\frac{4a}{k^3}J_1(ak) - \frac{2a^2}{k^2}J_0(ak)$
5	$a(a^2+r^2)^{-\frac{3}{2}}$	0	$\exp(-ak)$
6	$\frac{1}{r}\cos(ar)$	0	$(k^2 - a^2)^{-\frac{1}{2}}H(k - a)$
7	$\frac{1}{r}\sin(ar)$	0	$(a^2 - k^2)^{-\frac{1}{2}}H(a - k)$
8	$\frac{1}{r^2}(1-\cos ar)$	0	$\cosh^{-1}\left(\frac{a}{k}\right) H(a-k)$
9	$rac{1}{r}J_1(ar)$	0	$\frac{1}{a}H(a-k), a > 0$
10	$Y_0(ar)$	0	$\left(\frac{2}{\pi}\right)(a^2-k^2)^{-1}$
11	$K_0(ar)$	0	$(a^2 + k^2)^{-1}$
12	$rac{\delta(r)}{r}$	0	1
13	$(r^2+b^2)^{-rac{1}{2}}$	0	$(k^2+a^2)^{-rac{1}{2}}$
	$(r^2 + b^2)^{-\frac{1}{2}}$ $\times \exp\left\{-a(r^2 + b^2)^{\frac{1}{2}}\right\}$		$\times \exp\left\{-b(k^2+a^2)^{\frac{1}{2}}\right\}$
14	$\frac{\sin r}{r^2}$	0	$ \left\{ \frac{\frac{\pi}{2}}{2}, k < 1 \\ \sin^{-1}\left(\frac{1}{k}\right), k > 1 \right\} $

Their Applications	
Integral Transforms and	ISBN: 9781420010916
Debnath, Lokenath, Jan 22, 2008, Integral Transforms and Their Applications	Chapman and Hall/CRC, Hoboken, ISBN: 9781420010916

	f(r)	order	$\tilde{f}_n(k) = \int_{0}^{\infty} r J_n(kr) f(r) dr$
15	$(r^2+a^2)^{-\frac{1}{2}}$	0	$\frac{1}{k}\exp(-ak)$
16	$\exp(-ar)$	1	$k(a^2 + k^2)^{-3/2}$
17	$\frac{\sin ar}{r}$	1	$\frac{aH(k-a)}{k(k^2-a^2)^{\frac{1}{2}}}$
18	$\frac{1}{r}\exp(-ar)$	1	$\frac{1}{k} \left[1 - \frac{a}{(k^2 + a^2)^{\frac{1}{2}}} \right]$
19	$\frac{1}{r^2}\exp(-ar)$	1	$\frac{1}{k}\left[(k^2+a^2)^{\frac{1}{2}}-a\right]$
20	$r^n H(a-r)$	>-1	$\frac{1}{k}a^{n+1}J_{n+1}(ak)$
21	$r^n \exp(-ar), \operatorname{Re} a > 0$	>-1	$\frac{1}{\sqrt{\pi}} \frac{2^{n+1} \Gamma\left(n + \frac{3}{2}\right) a k^n}{(a^2 + k^2)^{n + \frac{3}{2}}}$
22	$r^n \exp(-ar^2)$	>-1	$\frac{k^n}{(2a)^{n+1}}\exp\biggl(-\frac{k^2}{4a}\biggr)$
23	r^{a-1}	>-1	$\frac{2^{a}\Gamma\left[\frac{1}{2}(a+n+1)\right]}{k^{a+1}\Gamma\left[\frac{1}{2}(1-a+n)\right]}$
24	$r^n(a^2-r^2)^{m-n-1}$	>-1	$2^{m-n-1}\Gamma(m-n)a^m$
	$\times H(a-r)$		$\times k^{n-m}J_m(ak)$
25	$r^m \exp(-r^2/a^2)$	>-1	$_{1}F_{1}\left(1+\frac{m}{2}+\frac{n}{2};n+1;-\frac{1}{4}a^{2}k^{2}\right)$
			$\times \frac{k^n a^{m+n+2}}{2^{n+1}\Gamma(n+1)} \Gamma\left(1 + \frac{m}{2} + \frac{n}{2}\right)$
26	$\frac{1}{r}J_{n+1}(ar)$	>-1	$k^n a^{-(n+1)} H(a-k), \ a > 0$
27	$r^n(a^2 - r^2)^m H(a - r),$	>-1	$2^m a^n \Gamma(m+1) \left(\frac{a}{k}\right)^{m+1}$
	m > -1	•	$ imes J_{n+m+1}(ak)$

S	
ation	
Slice	
Apj	
eir	
I I	
an	19
rms	109
ısfo	S
Trai	<u>×</u>
ra	. 97
nteg	Z
8, 1	<u></u>
200	ken
22,	4
an	, ,
ih, J	7
ena	7
Cok	7
© Debnath, Lokenath, Jan 22, 2008, Integral Transforms and Their Applicat	Chanman and Hall/CRC Hoboken ISBN: 9781420010916
bna	mar
De	han
0	Ċ.

	f(r)	order	$\tilde{f}_n(k) = \int_0^\infty r J_n(kr) f(r) dr$
28	$\frac{1}{r^2} J_n(ar)$	$>\frac{1}{2}$	$ \left\{ \frac{1}{2n} \left(\frac{k}{a} \right)^n, 0 < k \le a \\ \frac{1}{2n} \left(\frac{a}{k} \right)^n, a < k < \infty \right\} $
29	$\frac{r^n}{(a^2+r^2)^{m+1}}, a > 0$	>-1	$\left(\frac{k}{2}\right)^m \frac{a^{n-m}}{\Gamma(m+1)} K_{n-m}(ak)$
30	$\exp(-p^2r^2)J_n(ar),$	>-1	$(2p^2)^{-1} \exp\left(-\frac{a^2 + k^2}{4p^2}\right) \times I_n\left(\frac{ak}{2p^2}\right)$
31	$\frac{1}{r}\exp(-ar)$	>-1	$\frac{\left\{(k^2+a^2)^{\frac{1}{2}}-a\right\}^n}{k^n(k^2+a^2)^{\frac{1}{2}}}$
. 32	$\frac{r^n}{(r^2+a^2)^{n+1}}$	>-1	$\left(\frac{k}{2}\right)^n \frac{K_0(ak)}{\Gamma(n+1)}$
33	$\frac{r^{n}}{(a^{2}-r^{2})^{n+\frac{1}{2}}}H(a-r)$	< 1	$\frac{1}{\sqrt{\pi}} \left(\frac{k}{2}\right)^n \Gamma\left(\frac{1}{2} - n\right) \left(\frac{\sin ak}{k}\right)$
34	$\frac{1}{\sqrt{r}} J_{n-1}(ar)$	>-1	$ \begin{cases} 0, & 0 < k \le a \\ \frac{1}{\sqrt{a}} \left(\frac{a}{k}\right)^{n-\frac{1}{2}}, & a < k < \infty \end{cases} $
35	$\frac{1}{r\sqrt{r}}J_n(ar)$	>0	$ \left\{ \frac{\sqrt{a}}{2n} \left(\frac{k}{a} \right)^{n + \frac{1}{2}}, 0 < k \le a \\ \frac{\sqrt{a}}{2n} \left(\frac{a}{k} \right)^{n + \frac{1}{2}}, a < k < \infty \right\} $
36	$\frac{1}{\sqrt{r}} J_{n+1}(ar)$ $r^{n-1}e^{-ar}$ $e^{-ar^2} J_0(br)$	$>-\frac{3}{2}$	$ \left\{ \frac{1}{\sqrt{a}} \left(\frac{k}{a} \right)^{n + \frac{1}{2}}, 0 < k \le a \\ 0, \qquad a < k < \infty \right\} $
37	$r^{n-1}e^{-ar}$	>-1	$\frac{(2k)^n(n-\frac{1}{2})!}{\sqrt{\pi}(k^2+a^2)^{n+\frac{1}{2}}}$ $\frac{a}{2}\exp\left(\frac{k^2-b^2}{4a}\right)I_0\left(\frac{bk}{2a}\right)$
38	$e^{-ar^2}J_0(br)$	0	$\frac{a}{2} \exp\left(\frac{k^2 - b^2}{4a}\right) I_0\left(\frac{bk}{2a}\right)$