

### Introducción a las Bases de Datos

Dr. Leon Felipe Palafox Novack Ipalafox@up.edu.mx

1

## Que se vio la clase pasada

Recordar es vivir!

#### Modelo relacional



- Es utilizado en la mayor parte de los sistemas de bases de datos.
- Es un modelo muy simple
- Se hacen las llamadas (query) con lenguajes de alto nivel: simple, pero expresivo.
  - Preguntas acerca de los contenidos de la base de datos.
- Tiene implementaciones eficientes.





- Base de datos: Conjunto de relaciones (o tablas)
- Cada relación tiene atributos ( o columnas)
- Cada tuple (o renglón) tiene valores para cada atributo.
- Cada atributo tiene un tipo (o dominio)



#### Modelo relacional



- Esquema (schema): Descripción estructural de los elementos en la base de datos.
- Instancia: Contenidos de la base de datos.



#### Modelo relacional



- NULL: Significa que un valor es no conocido, o no definido.
- Llave (Key): Valor único para cada tuple
  - También pueden ser combinaciones de atributos.



#### Pasos para crear y usar una base de datos



Hacer la carga masiva (Bulk Load)







#### Realizar Queries y Modificaciones





















## 2

#### Otros modelos de BD

Alguien tiene que aprender esto







#### Por que habría otros modelos?



- Hay 3 modelos principales:
  - Jerarquico
  - De red (network)
  - Relacional



#### Pregunta!



¿Qué les parece que es importante considerar cuando hablamos de los datos?







#### **Pregunta!**



- ¿Qué les parece que es importante considerar cuando hablamos de los datos?
  - Redundancia de los datos
  - Independencia Física de los datos
  - Independencia lógica de los datos
  - Lenguaje de alto nivel



#### ¿Por que estudiamos bases de datos viejas?



HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.





SITUATION: THERE ARE 15 COMPETING STANDARDS.



#### Modelo Jerárquico

















#### Guardias

| ID  | Nombre | Depto   |
|-----|--------|---------|
| 123 | Pedro  | Pastura |
| 345 | Ana    | Jungla  |
| 689 | Felipe | Siberia |
| 654 | Maria  | Sabana  |

#### Animales

| ID | Especie      | Guardia<br>ID |
|----|--------------|---------------|
| 1  | León         | 654           |
| 2  | Tigre        | 345           |
| 3  | Oso<br>Polar | 689           |
| 4  | Elefante     | 654           |



#### **Problemas**



- Que pasa con los animales que comparten una jaula?
- Que pasa con los animales que comparten jaula y tienen diferentes guardias.





#### **Problemas**



- La estructura jerárquica tiene problemas de redundancia
  - Se repite información
  - Puede llegar a ser inconsistente





#### **Problema Fundamental**



No es una jerarquía!



#### Bases de datos jerárquicas comerciales



- IMS (IBM)
  - Cada segmento tiene una hierarchichal sequential key (HSK)
- Lenguaje propio:
  - Encontrar todos los guardias de la jaula 5
    - GU Guardia
    - GNP Jaulas (id = 6)
    - Until no more
      - □ GN Guardia
      - GNP Jaulas (id = 6)



Initial release 1966; 52 years ago

Stable release IMS V15 / October 3,

2017; 10 months ago

Operating system z/OS V2.2 or later

Platform IBM System z

Type Database & transaction

processing subsystem

License proprietary

Website IBM IMS Product Page ₽



#### **IMS**



- Algunos comandos son muy rápidos
  - Otros son terriblemente lentos
  - Depende mucho (demasiado) del esquema y del tipo de disco
- Los IMS Wizards hacen cantidades bestiales de dinero (aún hoy en día).



#### **Problemas de IMS**



- Se duplican los datos (es jerárquico)
- Tienes que programar el algoritmo de búsqueda.
- Los datos no son muy independientes físicamente (lógica de la computadora)
- No puede hacer inserts en la estructura lógica.



#### **Otros casos de conflicto**







#### Otros casos de conflicto



Que pasaría si cambiara el negocio, y ahora fuese un guardia por jaula?





#### Por que usar una base de datos IMS







#### Que se hizo?



- Codasyl (Committee on Data Systems Languages)
  - Crearon un nuevo sistemas
  - Bases de Datos de Red
  - Se comercializó como IDS



#### ¿Por que estudiamos bases de datos viejas?



HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.





SITUATION: THERE ARE 15 COMPETING STANDARDS.



#### **Base de Datos de Red**







#### Bases de datos de red



- Son muy complejas.
- Los esquemas son estáticos
  - Un cambio, implica cambiar toda la base de datos.
  - No hay independencia física ni lógica de los datos
- Si cometes un error en la estructura, hay que cargar todos los datos de nuevo.



#### Ventaja



- Se crearon las relaciones:
  - Se define el concepto de tuple:
    - Animal (nombre, especie, edad, alimento)
    - Guardia (id, nombre, edad)
    - Jaula (id, tamaño)



#### Como se debe de diseñar una base de datos?



Que quieres, no como lo quieres!



# 3

### Diagrama entidad - relación

Uno de los conceptos más importantes en BD





















- Animales tienen:
  - Nombre, edad, especie
- Guardias tienen:
  - Nombre
- Jaulas tienen:
  - Tiempo de comida, edificio
- Los animales estan en 1 Jaula; las Jaulas tienen varios animales
- Guardias se asignan a varias; las jaulas tienen varios guardias.











Los animales estan en 1 Jaula; las Jaulas tienen varios animales





Los animales estan en 1 Jaula; las Jaulas tienen varios animales



