Recupero della I prova in itinere – 20 febbraio 2018

- 1) Una carica positiva +q e due cariche negative -q, tutte di massa m, sono allineate e vincolate a distanza relativa pari a D (AB = BC = D). Si determini:
- a) il campo elettrico (\underline{modulo} , $\underline{direzione\ e\ verso}$) a cui è soggetta la carica negativa posta in A (E_A) e quello a cui è soggetta la carica positiva (E_B);

- b) l'energia elettrostatica U_o del sistema costituito dalle tre cariche.
- c) Supponendo che le cariche vengono poi lasciate libere di muoversi, si determini la velocità di ognuna di esse nell'istante in cui AB = D/2.
- 2) Si consideri un conduttore neutro, in condizioni di equilibrio elettrostatico, immerso in un campo elettrico esterno E_o . Si descriva lo stato del sistema in termini di campo elettrostatico, potenziale e distribuzione di carica di superficie e di volume). Si giustifichino tutte le affermazioni fatte.
- 3) Si enuncino le formule di Laplace, chiarendo il significato di ogni grandezza che vi compare, e se ne commentino il significato fisico e l'utilità.
- 4) Un filo rettilineo infinito, di sezione circolare (raggio R), è percorso da una corrente uniforme, di intensità I_1 , perpendicolare e uscente dal piano del foglio.
- a) Utilizzando il teorema di Ampère, e commentando ogni passaggio, si scriva l'espressione del campo magnetico B₁ (modulo, direzione e verso) generato dal filo in tutto lo spazio.
 Ad una distanza D dal filo spesso, è posto un secondo filo rettilineo infinito, di sezione infinitesima, percorso da una corrente I₂. Detta C la circuitazione del campo magnetico complessivo B lungo il percorso tratteggiato γ, si calcolino:

- b) il valore della corrente I_2 , specificandone il verso;
- c) la posizione lungo l'asse x, nello spazio compreso tra i due fili, in cui il campo magnetico $\bf B$ si annulla. [R=1 cm, D=10 cm, $I_I=8$ mA, $C=20\pi\times 10^{-10}$ T·m, $\mu_0=4\pi\times 10^{-7}$ N/A²]

Nota:

Si invitano gli studenti a:

- Scrivere in stampatello NOME, COGNOME e numero di MATRICOLA e a FIRMARE ogni foglio;
- MOTIVARE e COMMENTARE adeguatamente ogni risultato.

Recupero della II prova in itinere – 20 febbraio 2018

- 1) Due bobine di filo di rame sono poste a stretto contatto. Quando la prima viene alimentata con una corrente sinusoidale di ampiezza $I_o = 2$ A e frequenza v = 30 Hz, nella seconda si osserva una f.e.m. indotta con ampiezza $f_0 = 500$ mV.
- a) Si calcoli il coefficiente di mutua induttanza *M* tra le due bobine.
- b) Si tracci un grafico *quantitativo* della f.e.m. che si misurerebbe nella seconda bobina se la prima fosse alimentata con una corrente il cui andamento temporale è mostrato in figura.

- 2)
- a) Si dia la definizione di intensità di un'onda elettromagnetica e se ne spieghi il significato fisico. Supponendo che il campo elettrico di un'onda sia $E = E_o sin(\omega t kz)$ e che la sua intensità media sia $\bar{I} = 53.12 \times 10^{-4} \text{ Wm}^{-2}$, si calcolino:
- b) le ampiezze E_o e B_o del campo elettrico e magnetico,
- c) la densità di quantità di moto g trasportata dall'onda, specificandone anche direzione e verso. $[\varepsilon_0 = 8.8 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}]$
- 3)
- a) Si discuta la figura di diffrazione prodotta da un'onda piana monocromatica di lunghezza d'onda λ , che incide normalmente su uno schermo opaco con una fenditura di larghezza d.
- b) Si descriva poi e si rappresenti graficamente la differenza tra le figure di diffrazione che si ottengono per $d_1 = \lambda$ e $d_2 = 10\lambda$.
- 4) Si considerino due sorgenti puntiformi, a distanza relativa d, che emettono luce polarizzata linearmente di uguale intensità I_o e lunghezza d'onda $\lambda = 650$ nm Il profilo di intensità generato dalle due sorgenti viene osservato su uno schermo posto a distanza L >> d.
- a) Si calcoli la distanza d tra le sorgenti quando L=3 m e la figura di interferenza osservata sullo schermo è quella riportata in Fig. 1 (dove x= distanza dall'asse del sistema).
- b) Sapendo che, quando il sistema viene immerso in un liquido, la figura di interferenza diventa quella riportata in Fig. 2, si calcoli l'indice di rifrazione *n* del liquido.

Nota:

Si invitano gli studenti a:

- Scrivere in stampatello NOME, COGNOME e numero di MATRICOLA e a FIRMARE ogni foglio;
- MOTIVARE e COMMENTARE adeguatamente ogni risultato.

Appello - 20 febbraio 2018

- 1) Una carica positiva +q e due cariche negative -q, tutte di massa m, sono allineate e vincolate a distanza relativa pari a D (AB = BC = D). Si determini:
- a) il campo elettrico (\underline{modulo} , $\underline{direzione\ e\ verso}$) a cui è soggetta la carica negativa posta in A (E_A) e quello a cui è soggetta la carica positiva (E_B);

- b) l'energia elettrostatica U_o del sistema costituito dalle tre cariche.
- c) Supponendo che le cariche vengono poi lasciate libere di muoversi, si determini la velocità di ognuna di esse nell'istante in cui AB = D/2.
- 2) Si enuncino le formule di Laplace, chiarendo il significato di ogni grandezza che vi compare, e se ne commentino il significato fisico e l'utilità.
- 3) Due bobine di filo di rame sono poste a stretto contatto. Quando la prima viene alimentata con una corrente sinusoidale di ampiezza $I_o = 2$ A e frequenza v = 30 Hz, nella seconda si osserva una f.e.m. indotta con ampiezza $f_0 = 500$ mV.
- a) Si calcoli il coefficiente di mutua induttanza *M* tra le due bobine.
- b) Si tracci un grafico *quantitativo* della f.e.m. che si misurerebbe nella seconda bobina se la prima fosse alimentata con una corrente il cui andamento temporale è mostrato in figura.

4)

- a) Si dia la definizione di intensità di un'onda elettromagnetica e se ne spieghi il significato fisico. Supponendo che il campo elettrico di un'onda sia $E = E_o sin(\omega t kz)$ e che la sua intensità media sia $\bar{I} = 53.12 \times 10^{-4} \, \mathrm{Wm}^{-2}$, si calcolino:
- b) le ampiezze E_o e B_o del campo elettrico e magnetico,
- c) la densità di quantità di moto g trasportata dall'onda, specificandone anche direzione e verso. $[\epsilon_0 = 8.8 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}]$

Nota:

Si invitano gli studenti a:

- Scrivere in stampatello NOME, COGNOME e numero di MATRICOLA e a FIRMARE ogni foglio;
- MOTIVARE e COMMENTARE adeguatamente ogni risultato.