Chapter 7 Wireless and Mobile Networks

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Ch. 6: Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Characteristics of selected wireless links

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops		
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net		
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET,VANET		

Chapter 7 outline

7. I Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Wireless Link Characteristics (I)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")

$$ext{SNR}(ext{dB}) = 10 \log_{10} \left(rac{P_{ ext{signal}}}{P_{ ext{noise}}}
ight)$$

- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

...... QAM256 (8 Mbps)

– – • QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B,A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B,A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., CDMA code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoded signal = (original data) X (CDMA code)
- decoding: inner-product of encoded signal and CDMA code

CDMA encode/decode

CDMA encode/decode

- * Formally, sender's CDMA code consists of a sequence of M values c_m , $m = 1, \ldots, M$ (1,1,1,-1,1,-1,-1)
- **❖** Encode $Z_{i,m} = d_i \cdot c_m$ **❖** 1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,1
- Decode

$$d_i = \frac{1}{M} \sum_{m=1}^{M} Z_{i, m} \cdot c_m$$

CDMA: two-sender interference

CDMA: two-sender interference

- Sender I:
 - ❖ CDMA code: (1,1,1,-1,1,-1,-1)
 - ❖ Encode (I,-I) as (I,I,I,-I,I,-I,-I,-I,-I,-I,I,I,I)
- Sender 2:
 - CDMA code: (1,-1,1,1,1,-1,1,1)
 - Encode (I,I) as (I,-I,I,I,I,-I,I,I,I,-I,I,I,I,I)
- Sum up
 - ***** (2,0,2,0,2,-2,0,0,0,-2,0,2,0,0,2,2)
- Receiver I:
 - $(2,0,2,0,2,-2,0,0)\cdot(1,1,1,-1,1,-1,-1,-1)/8=1$
 - $(0,-2,0,2,0,0,2,2)\cdot(1,1,1,-1,1,-1,-1,-1)/8=-1$
- Receiver 2:
 - $(2,0,2,0,2,-2,0,0)\cdot(1,-1,1,1,1,-1,1,1)/8=1$
 - $(0,-2,0,2,0,0,2,2)\cdot(1,-1,1,1,1,-1,1,1)/8=1$

Receiver 1 and 2's codes are orthogonal

Chapter 7 outline

7. I Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

IEEE 802.11 Wireless LAN

802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
 - all hosts connecting to a same base station use same CDMA code

802.11a

- 5-6 GHz range
- up to 54 Mbps

802.11g

- 2.4-5 GHz range
- up to 54 Mbps

802. I In: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps

802.11 ax (WiFi 6)

- up to 9.6 Gbps
- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN architecture

BSS 2

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's subnet

WifiInfoView

SSID A	MAC Address	PHY Type	RSSI	Signal Quality	Average Sig	Frequency	Channel	
€ d	F4-74-88-2F-1	802.11g/n	-88	20	26.1	2.462	11	
atil	B4-A8-98-B2-4	802.11g/n	-87	21	21.0	2.437	6	
atil	30-A2-C2-24-7	802.11g/n/ac	-85	25	23.6	2.437	6	
atil	30-A2-C2-24-7	802.11g/n/ac	-85	25	24.7	2.437	6	
arill	88-40-3B-88-A	802.11g/n	-89	18	16.3	2.462	11	
arill	88-40-3B-88-A	802.11g/n	-93	11	14.5	2.462	11	
arill	34-2E-B6-7F-E	802.11g/n	-91	15	15.0	2.437	6	
all	E4-34-93-5C-8	802.11g/n	-94	10	10.0	2.462	11	
atl 1202	88-25-93-80-F	802.11g/n	-90	16	16.0	2.437	6	
atl 1222	48-0E-EC-69-D	802.11g/n	-91	15	15.0	2.462	11	
MII 3	10-44-00-6C-4	802.11g/n	-83	28	22.0	2.437	6	
.dl 416	B0-6E-BF-6C-E	802.11g/n	-76	40	42.8	2.412	1	
416-office	20-DC-E6-9C-5	802.11g/n	-51	99	95.2	2.457	10	
atl 711-2	78-44-FD-84-8	802.11g/n	-88	20	19.3	2.462	11	
₁1¶ 904a-AP	24-69-68-7F-6	802.11g/n	-88	20	20.0	2.437	6	
.d Dir Dir	00 40 2D 00 V	900 11a/p	00	20	20.0	2 462	11	

802. II: passive/active scanning

passive scanning:

- (I) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to HI

active scanning:

- (I) Probe Request frame broadcast from HI
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: HI to selected AP
- (4) Association Response frame sent from selected AP to HI

IEEE 802.11: multiple access

- avoid collisions: 2⁺ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - · don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - · can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff timer value using binary exponential backoff (as in 802.3)

timer counts down while channel idle / freeze while channel busy

3 if timer reach zero

transmit and wait for ACK

4 if no ACK

increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

IEEE 802.11 MAC Protocol: CSMA/CA

- Why link-layer ACK?
 - Hard to detect collision. The station can not abort.
 - The receiver acknowledges the frame in case of no collision.

- Can link-layer ACK avoids collision? NO
 - Two stations are hidden station to each other
 - Two stations choose random backoff values that are close to each other

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they' re short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

Collision Avoidance: RTS-CTS

- Avoid data frame collisions completely
 - The hidden station problem is mitigated, since a long DATA frame is transmitted only after the channel has been reserved.
 - A collision involving an RTS or CTS frame will last only for the duration of the short RTS or CTS frame. Once the RTS and CTS frames are correctly transmitted, the following DATA and ACK frames should be transmitted without collisions.
- RTS/CTS is only used when transmitting long DATA frame

802.11 frame: addressing

which AP is attached

Address 2: MAC address of wireless host or AP transmitting this frame

802.11 frame: addressing

802.11 frame: addressing

- RI knows IP address of HI, use ARP to determine HI's MAC address, encapsulate 802.3 frame with HI as dst_addr, RI as src_addr.
- Frame reaches to AP, AP converts it to 802.11 frame, with H1 as address 1, AP as address 2, R1 as address 3.
- HI responds, encapsulate 802.11 frame with AP and HI as address I and address 2, RI as address 3.
- ❖ Frame reaches to AP, AP converts it to 802.3 frame, with HI as src_addr, RI as dst_addr.

802.11 frame: more

802.11: mobility within same subnet

- HI remains in same
 IP subnet: IP address
 can remain same
- switch: which AP is associated with HI?
 - self-learning (Ch. 5): switch will see frame from HI and "remember" which switch port can be used to reach HI

H1 may keep its IP address and all of its ongoing TCP connections.

802. I I: mobility within same subnet

 HI in different IP subnet: IP address will change (if no mobile IP)

802. I I: advanced capabilities

Rate adaptation

- base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies
 - Two frames without ack, fall back to next lower rate
 - 10 frames acked, or timeout since last fallback, promote to next higher level

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802. I I: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with APto-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps

- Master device
- S Slave device
- P Parked device (inactive)

Chapter 7 outline

7. I Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")

7.4 Cellular Internet access

- architecture
- standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Components of cellular network architecture

MSC

- connects cells to wired tel. net.
- manages call setup (more later!)
- handles mobility (more later!)

cell

- covers geographical region
- * base station (BS) analogous to 802.11 AP
- mobile users attach to network through BS
- air-interface: physical and link layer protocol between mobile and BS

Cellular networks: the first hop

Two techniques for sharing mobile-to-BS radio spectrum

- combined FDMA/TDMA: divide spectrum in frequency channels, divide each channel into time slots
- CDMA: code division multiple access

2G (voice) network architecture

3G (voice+data) network architecture

- voice network unchanged in core
- data network operates in parallel

Gateway GPRS Support Node (GGSN)

3G (voice+data) network architecture

3G versus 4G LTE network architecture

4G: differences from 3G

- all IP core: IP packets tunneled (through core IP network) from base station to gateway
- no separation between voice and data all traffic carried over IP core to gateway

Functional split of major LTE components

Radio+Tunneling: UE – eNodeB – PGW

Quality of Service in LTE

- QoS from eNodeB to SGW: min and max guaranteed bit rate
- QoS in radio access network: one of 12 QCI values

QCI	RESOURCE TYPE	PRIORITY	PACKET DELAY BUDGET (MS)	PACKET ERROR LOSS RATE	EXAMPLE SERVICES
1	GBR	2	100	10 ⁻²	Conversational voice
2	GBR	4	150	10 ⁻³	Conversational video (live streaming)
3	GBR	5	300	10 ⁻⁶	Non-conversational video (buffered streaming)
4	GBR	3	50	10 ⁻³	Real-time gaming
5	Non-GBR	1	100	10 ⁻⁶	IMS signaling
6	Non-GBR	7	100	10 ⁻³	Voice, video (live streaming), interactive gaming
7	Non-GBR	6	300	10 ⁻⁶	Video (buffered streaming)
8	Non-GBR	8	300	10⁴	TCP-based (for example, WWW, e-mail), chat, FTP, p2p file sharing, progressive video and others
9	Non-GBR	9	300	10 ⁻⁶	

Chapter 7 outline

7. Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

What is mobility?

spectrum of mobility, from the network perspective:

Mobility: vocabulary

Mobility: more vocabulary

How do you contact a mobile friend:

Consider friend frequently changing addresses, how do you find her?

search all phone books?

- call her parents?
- expect her to let you know where he/she is?
- Facebook!

I wonder where Alice moved to?

Mobility: approaches

- let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - routing tables indicate where each mobile located
 - no changes to end-systems
- let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: approaches

- let routing handle it: routers advertise permanent address of mobil
 not residence via usual scalable
 - routing table to millions of ere each mobile located mobiles
- let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: registration

end result:

- foreign agent knows about mobile
- home agent knows location of mobile

Mobility via indirect routing

Datagram forwarding

Datagram forwarding

- Home agent encapsulate the correspondent's original complete datagram within a new (larger) datagram, delivered to the mobile node's COA
 - Route the datagram to foreign network
 - Keep the correspondent's datagram intact
- Foreign agent receives and decapsulates the datagram and forward the original datagram to the mobile node.

Indirect Routing: comments

- mobile uses two addresses:
 - permanent address: used by correspondent (hence mobile location is transparent to correspondent)
 - care-of-address: used by home agent to forward datagrams to mobile
- foreign agent functions may be done by mobile itself
- triangle routing: correspondent-home-networkmobile
 - inefficient when correspondent, mobile are in same network

Indirect routing: moving between networks

- suppose mobile user moves to another network
 - registers with new foreign agent
 - new foreign agent registers with home agent
 - home agent update care-of-address for mobile
 - packets continue to be forwarded to mobile (but with new care-of-address)
- mobility, changing foreign networks transparent: on going connections can be maintained!
 - Correspondent always communicate with permanent address.

Mobility via direct routing

Mobility via direct routing: comments

- Correspondent learns mobile node's COA
- Correspondent tunnels to mobile node's COA
- overcome triangle routing problem
- non-transparent to correspondent: correspondent must get care-of-address from home agent
 - what if mobile changes visited network?

Accommodating mobility with direct routing

- Identify the foreign agent in that foreign network where the mobile node was first found as the anchor foreign agent.
- Session starts before node moves (step 1)
- When the mobile node moves to a new foreign network (step 2), the mobile node registers with the new foreign agent (step 3), and the new foreign agent provides the anchor foreign agent with the mobile node's new COA (step 4).
- When the anchor foreign agent receives an encapsulated datagram for a departed mobile node, it can then reencapsulate the datagram and forward it to the mobile node using the new COA (step 5).

Accommodating mobility with direct routing

Indirect routing vs. direct routing

- Transparent to correspondent
 - Indirect: yes, only need to know permanent address
 - Direct: no, need to tunnel.
- Efficiency:
 - Indirect: low, triangle routing
 - Direct: high
- Mobility within session:
 - Indirect: Simple, just update home agent with new COA
 - Direct: Complicated

Mobile IP

- RFC 3344
- has many features we've seen:
 - home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-apacket)
- three components to standard:
 - indirect routing of datagrams
 - agent discovery
 - registration with home agent

Mobile IP: indirect routing

Mobile IP: agent discovery

 agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (typefield = 9)

Mobile IP: registration example

Chapter 7 outline

7. Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Components of cellular network architecture

different cellular networks, operated by different providers

Handling mobility in cellular networks

- home network: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon)
 - home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- visited network: network in which mobile currently resides
 - visitor location register (VLR): database with entry for each user currently in network
 - could be home network

GSM: indirect routing to mobile

GSM: handoff with common MSC

- handoff goal: route call via new base station (without interruption)
- reasons for handoff:
 - stronger signal to/from new BSS (continuing connectivity, less battery drain)
 - load balance: free up channel in current BSS
 - GSM doesn't mandate why to perform handoff (policy), only how (mechanism)
- handoff initiated by old BSS

GSM: handoff with common MSC

- 1. old BSS informs MSC of impending handoff, provides list of 1+ new BSSs
- 2. MSC sets up path (allocates resources) to new BSS
- 3. new BSS allocates radio channel for use by mobile
- 4. new BSS signals MSC, old BSS: ready
- 5. old BSS tells mobile: perform handoff to new BSS
- 6. mobile, new BSS signal to activate new channel
- 7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
- 8 MSC-old-BSS resources released

GSM: handoff between MSCs

(a) before handoff

- anchor MSC: first MSC visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- optional path minimization step to shorten multi-MSC chain

GSM: handoff between MSCs

(b) after handoff

- anchor MSC: first MSC visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- optional path minimization step to shorten multi-MSC chain

Handling Mobility in LTE

- Paging: idle UE may move from cell to cell: network does not know where the idle UE is resident
 - paging message from MME broadcast by all eNodeB to locate UE
- handoff: similar to 3G:
 - preparation phase
 - execution phase
 - completion phase

Mobility: cellular versus Mobile IP

cellular element	Comment on cellular element Mo	bile IP element
Home system	Network to which mobile user's permanent phone number belongs	Home network
Gateway Mobile Switching Center, or "home MSC". Home Location Register (HLR)	Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information	Home agent
Visited System	Network other than home system where mobile user is currently residing	Visited network
Visited Mobile services Switching Center. Visitor Location Record (VLR)	Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user	Foreign agent
Mobile Station Roaming Number (MSRN), or "roaming number"	Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent.	Care-of- address

Chapter 7 outline

7. Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Wireless, mobility: impact on higher layer protocols

- logically, impact should be minimal ...
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - TCP interprets loss as congestion, will decrease congestion window un-necessarily
 - delay impairments for real-time traffic
 - limited bandwidth of wireless links

Chapter 7 summary

Wireless

- wireless links:
 - capacity, distance
 - channel impairments
 - CDMA
- IEEE 802.11 ("Wi-Fi")
 - CSMA/CA reflects wireless channel characteristics
- cellular access
 - architecture
 - standards (e.g., 3G, 4G LTE)

Mobility

- principles: addressing, routing to mobile users
 - home, visited networks
 - direct, indirect routing
 - care-of-addresses
- case studies
 - mobile IP
 - mobility in GSM, LTE
- impact on higher-layer protocols