Exercise 1. When was calculus developed? And who where the main developers?

Exercise 2. Which developer used the binomial theorem as his starting point? And, how is his approach reflected today?

Exercise 3. Which developer used the infinitesimals as his starting point? And, how is his approach reflected today?

Exercise 4 (8.2.1). Find $1+2+\cdots+n$ by summing the identity $(m+1)^2-m^2=2m+1$ from m=1 to n. Similarly find $1^2+2^2+\cdots+n^2$ using the identity

$$(m+1)^3 - m^3 = 3m^2 + 3m + 1$$

together with the previous result. Likewise, find $1^3 + 2^3 + \cdots + n^3$ using the identity

$$(m+1)^4 - m^4 = 4m^3 + 6m^2 + 4m + 1$$

and so on.

Figure 8.1: Approximating an area by rectangles

Exercise 5 (8.2.2). Show that the approximation to the area under $y = x^2$ by rectangles in Figure 8.1 has value $(2n + 1)n(n + 1)/6n^3$, and deduce that the area under the curve is 1/3.