Esonero 4 2021-06-11

Un fascio di pioni viene fatto incidere su un bersaglio di idrogeno liquido per studiare la reazione:

$$\pi^{\scriptscriptstyle{-}}\, p \to \Lambda^0 \; K^0$$

1. Calcolare l'impulso del K nel laboratorio, nella configurazione di soglia (si assuma il protone fermo)

Nella configurazione del punto (1) il mesone K^0 decade secondo la reazione $K^0 \to \pi^- \, e^+ \, v_e$ dentro il volume di un tracciatore, che schematizziamo come una sfera di raggio R.

2. Calcolare il valore di R necessario per assicurarsi che i decadimenti di tutti i K^0 che decadono in un tempo proprio $t_0 < \tau_0$ avvengano dentro il volume del tracciatore.

Sempre nella configurazione del punto (1), consideriamo il caso in cui tutti i prodotti di decadimento del K^0 abbiano la stessa energia E_{π} = E_{e} = E_{v} , e che il decadimento avvenga entro il volume del tracciatore. Si vuole trovare un metodo sperimentale per distinguere gli elettroni dai pioni.

 Descrivere il tipo di rivelatore, il processo fisico, e la quantità osservabile (ad esempio, energia, impulso, energia depositata, luce Cerenkov) che consentono di identificare i due tipi di particelle. La soluzione non è unica e sono possibili diverse soluzioni altrettanto valide.

Dati utili:

Soluzioni:

1. L'energia cinetica di soglia per il pione:

$$K_{\text{soglia}} = [(m(\Lambda^0) + m(K^0))^2 - (m(\pi^-) + m(p))^2] / 2m(p) = 745 \text{ MeV}$$

Dunque:

$$E(\pi^{-}) = K + m(\pi^{-}) = 885 \text{ MeV}$$

 $p(\pi^{-}) = \text{sqrt}(E(\pi^{-})^{2} - m(\pi^{-})^{2}) = 874 \text{ MeV}$

Nella configurazione di soglia il K e' fermo nel centro di massa. Quindi per calcolarci l'energia e l'impulso nel laboratorio bisogna fare una trasformazione di Lorentz con parametri del boost pari a:

$$\beta_{cm} = p(\pi^{-})/(E(\pi^{-}) + m(p)) = 0.48$$

 $\gamma_{cm} = sqrt(1/(1-\beta_{cm}^{-2})) = 1.14$

Quindi otteniamo:

$$E_{lab}(K^{0}) = \gamma_{cm} m(K^{0}) = 552 \text{ MeV}$$

$$p_{lab}(K^0) = \gamma_{cm}\beta_{cm}m(K^0) = 265 \text{ MeV}$$

- 2. La lunghezza di decadimento di un K^0 che decade con in un tempo pari a $\tau_0(K^0)$ è data da L = $\gamma_K \beta_K c \tau_0 = \gamma_{cm} \beta_{cm} c \tau_0 = 8.37$ m. Questo corrisponde al raggio minimo R del tracciatore.
- 1 Pt B, 8 2 Pt boost di bovont

3. Nella configurazione descritta abbiamo E_{π} = E_{e} = E_{v} = E(K)/3 = 184 MeV, che corrisponde, per il pione, a:

$$p_{\pi} = \text{sqrt}(E_{\pi}^2 - m_{\pi}^2) = 119 \text{ MeV}$$

 $\beta_{-} = p_{-} / F_{-} = 0.65$

$$\beta_{\pi} = p_{\pi} / E_{\pi} = 0.65$$

$$y_{\pi} = 1.3$$

e per l'elettrone a:

p_e = sqrt(
$$E_e^2$$
 - m_e^2) ~ E_e

$$y_e = E_e / m_e = 360$$

4 pt Caloniarethi.
3 pt Ceren kou con spieration
2 pt Ceren kou sente
5 pierer.
2 pt Carvature