Avaliação e processamento de dados brutos de sequenciamento de genomas e transcriptomas

Dra Desirrê Petters-Vandresen

Por que devemos avaliar os dados brutos com atenção?

• Muitas perguntas são respondidas e muitas hipóteses são testadas com base na informação existente nas sequências de um genoma ou transcriptoma

- Montar todos os reads brutos que saem do equipamento em um genoma ou transcriptoma sem qualquer tipo de controle de qualidade não é uma boa ideia! • sequencias erradas podem ter um grande impacto
- negativo nos resultados e conclusões de um estudo

O que devemos avaliar nos dados brutos antes de prosseguir com montagens?

Qualidade das bases

Presença de adaptadores e contaminantes

Comprimento dos reads

• Quantidade de reads

Indicador de qualidade Q (Phred quality score)

- Baseado na probabilidade de erro (E) na identificação de uma base em determinada posição do read
- Define a acurácia de uma base
 - 90%: um erro em cada 10 leituras (0.1), Q = 10
 - -99%: um erro em cada 100 leituras (0.01), Q = 20
 - 99,9%: um erro em cada 1.000 leituras (0.001), Q = 30
 - 99,99%: um erro em cada 10.000 (0.0001), Q = 40
- Q < 20, a perda de confiabilidade é muito alta e rápida
- Q > 20, o aumento na confiabilidade não é tão significativo
- 20 ou 25 como valores de corte em muitos casos

$$Q = -10 \log E$$

Formato FASTQ

• Formato de armazenamento de sequências biológicas e scores de qualidade correspondentes às bases

Linha 01: começa com um @ e contém o identificador da sequência (similar à primeira linha do formato FASTA)
Linha 02: sequência em nucleotídeos
Linha 03: começa com um + e

pode conter o identificar da sequência novamente **Linha 04:** contém os valores de qualidade para a sequência na linha 02. Mesmo número de caracteres que a linha 02 (cada símbolo é correspondente à

uma letra)

Q	P_error	ASC	II	Q	P_error	ASC	[]	Q	P_error	ASC	II	Q	P_error	ASC	11
0	1.00000	33	1	11	0.07943	44	,	22	0.00631	55	7	33	0.00050	66	Ε
1	0.79433	34	n	12	0.06310	45	-	23	0.00501	56	8	34	0.00040	67	C
2	0.63096	35	#	13	0.05012	46		24	0.00398	57	9	35	0.00032	68	I
3	0.50119	36	\$	14	0.03981	47	1	25	0.00316	58		36	0.00025	69	I
4	0.39811	37	8	15	0.03162	48	0	26	0.00251	59	;	37	0.00020	70	1
5	0.31623	38	&	16	0.02512	49	1	27	0.00200	60	<	38	0.00016	71	(
6	0.25119	39	•	17	0.01995	50	2	28	0.00158	61	=	39	0.00013	72	1
7	0.19953	40	(18	0.01585	51	3	29	0.00126	62	>	40	0.00010	73	
8	0.15849	41)	19	0.01259	52	4	30	0.00100	63	?	41	0.00008	74	i
9	0.12589	42	*	20	0.01000	53	5	31	0.00079	64	@	42	0.00006	75	I
0	0.10000	43	+	21	0.00794	54	6	32	0.00063	65	A				

- Download dos dados
- Verificação do formato do arquivo
 - Separação de reads forward e reverso

Pré-preparação

Avaliação da qualidade (1ª rodada)

- Qualidade dos reads
- Comprimento e quantidade de reads
- Presença de adaptadores e contaminantes

- Remoção de adaptadores e contaminantes
- Remoção de reads muitos curtos e/ou de baixa qualidade

Limpeza dos reads

Avaliação da qualidade (2ª rodada)

- Qualidade dos reads
- Comprimento e quantidade de reads
- Presença de adaptadores e contaminantes

Pré-preparação - Download

- Organizar os arquivos para que possam ser avaliados e processados:
 - Servidores online como o Galaxy
 - Servidor interno (e. g. cluster de um instituto de pesquisa)
 - Computador pessoal
- Obtenção de dados em bases de dados públicas
 - NCBI SRA
 - JGI Mycocosm

Pré-preparação – Verificação do formato do arquivo

 Formato FASTQ (compactado ou descompactado): formato compatível com os softwares de avaliação e processamento

 Formato SRA: exige conversão para o formato FASTQ para que possa ser avaliado e processador

Avaliação de qualidade (1ª rodada)

- Qualidade dos reads
- Comprimento e quantidade de reads
- Presença de adaptadores e contaminantes

• Diferentes módulos de análises e resultados no FastQC

Limpeza dos reads

- Remoção de adaptadores e contaminantes
- Remoção de reads muitos curtos e/ou de baixa qualidade

 Uso do software Trimmomatic e arquivo de sequências de adaptadores

Avaliação de qualidade (2ª rodada)

- Qualidade dos reads
- Comprimento e quantidade de reads
- Presença de adaptadores e contaminantes

- Diferentes módulos de análises e resultados no FastQC
- Determinar se a limpeza realizada pelo Trimmomatic foi suficiente e se os dados estão adequados para as análises posteriores

E se o genoma/transcriptoma já estiver pronto?

 Observar seção de materiais e métodos na publicação associada ao genoma ou transcriptoma e confirmar se o controle de qualidade foi realizado antes da montagem

For *P. capitalensis* LGMF01 and *P. citricarpa* LGMF06, libraries of the paired-end reads were processed with NxTrim (O'Connell et al., 2015) to remove Nextera adapters and generate mate-pair, paired-end, single-end and unknown libraries. The script "deinterleave_fastq.sh" (https://gist.github.com/nathanhaigh/3521724) was used to separate the reads from the mate-pair and paired-end libraries in "forward" and "reverse" files. For quality filtering, Trimmomatic v 0.38 (Bolger et al., 2014) was used to (1) trim bases at the start and end of the reads below a quality threshold of 25, (2) trim low quality segments using a 4 bp sliding window and a quality threshold of 15, and (3) discard reads shorter than 50 bp. For *P. citribraziliensis* LGMF08, the reads were filtered in Trimmomatic to remove Illumina adapters and trim for quality using the same parameters described before but discarding reads shorter than 90 bp.

FastQC v 0.11.8 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was employed to check the quality of reads after processing in Trimmomatic. *De novo* genome assemblies were generated with SPAdes v 3.13 (Bankevich et al., 2012), using default parameters. Contigs smaller than 500 bp were filtered and removed from the final assemblies, which were then evaluated with QUAST v 4.6.3 (Gurevich et al., 2013). Library and assembly statistics for the new assemblies are summarized in Table S1 and assemblies are available at Zenodo (https://doi.org/10.5281/zenodo.3750350).