Amazon Fine Food Reviews: Progetto di Text Mining

DI FRANCESCO ANELLO, FRANCESCO FUSTINI E LAURA RAPINO

Gennaio 2022

OVERVIEW

- Analisi esplorativa
- Pre-Processing: dati e testo
- Text Representation
- Riduzione della dimensionalità
- Text Classification
- Text Clustering

Workflow e obiettivo

Analisi Esplorativa

VARIABILE SCORE

Distribuzione della variabile riguardante il punteggio assegnato alle recensioni studiate.

VARIABILE TEXT

Vizualizzazione della lunghezza media delle recensioni per punteggio di Score

Sbilanciamento distribuzione per Score = 5

Lunghezze maggiori per Score = 3

Pre-processing

DATI

DATA BALANCING

TESTO

- PAROLE IN MINUSCOLO
- RIMOZIONE DI:
 - CONTRAZIONI
 - URLS
 - PUNTEGGIATURA
 - NUMERI
 - SPAZI
- TOKENIZATION
- RIMOZIONE DELLE STOPWORDS
- LEMMATIZATION & STEMMING

Text Representation & Riduzione dimensionalità

Strutturazione dati:

Metodo usato:

BAG OF WORDS

PESO TF-IFD

- uni e bi-grammi
- 30.000 più frequenti

SVD

300 COMPONENTI

Text Classification & Text Clustering

I MODELLI UTILIZZATI

S

TRAINING E TEST SET

70% e 30% rispettivamente con successiva standardizzazione

XGBOOST

SVM

K-NN

GRIDSEARCH CON CROSSVALIDATION

Tuning dei parametri sulla rappresentazione BoW stemmata considerando 3 fold

EVALUATION

Precision, Recall, F-score, Accuracy

XGBOOST & SVM

CLASS PRECISION RECALL F-SCORE

1	0.57	0.61	0.59
2	0.39	0.36	0.37
3	0.40	0.38	0.39
4	0.43	0.41	0.42
5	0.59	0.66	0.62

KNN

CLASS PRECISION RECALL F-SCORE

1	0.34	0.65	0.45
2	0.28	0.17	0.21
3	0.29	0.13	0.18
4	0.32	0.18	0.23
5	0.38	0.56	0.45

Text

Clustering

K-MEANS

k=5, Lemmed Bag of Words

k=3, Lemmed Bag of Words

La tecnica di clustering k-Means non identifica gli stessi gruppi identificati dalla variabile Score. Infatti le osservazioni vengono principalmente associate ad un singolo gruppo sia nel caso k=3 che nel caso k=5.

CLUSTERING GERARCHICO

I cluster gerarchici agglomerativi testati con legame semplice e completo, metrica euclidea e di Manhattan non danno risultati migliori, infatti accentuano maggiormente il fenomeno dell'associazione delle osservazione ad un gruppo principale osservato nel k-Means.

t-SNE

grafico di dispersione

2 componenti

Conclusioni

TEXT CLASSIFICATION:

- XGBoost-SVM vs k-NN per performance
- XGboost vs SVM per quantità di risorse necessarie
- Possibilità di ridurre la classificazione a 2-3 classi

TEXT CLUSTERING:

- k-means e gerarchico agglomerativo inefficaci