CS 4710, Homework 1 Megan Do (md9bt) Eliza Chen (lc3am) Jerome Romualdez (jhr3kd)

Throughout this assignment the ~ symbol may be used to indicate negation (¬). The values T and F are also used to represent true (\top) and false (\bot), respectively. In the final question, longer expressions are sometimes given variable names (e.g. $M = (P \downarrow P) \downarrow (Q \downarrow Q)$) to enhance legibility.

1. Prove that $\{\neg, \land\}$ is an expressively complete set of logical operators for PC.

Α	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р
Р	Q	~P	~Q	P^Q	~P ^ Q	P ^ ~Q	~P ^ ~Q	p ^ ~ p	~(P ^ ~ P)	~(~P^Q)	~(P^~Q)	(P^Q) ^ (~P ^ ~Q)	(P^~Q) ^ (~P ^ Q)	~(~P^~Q)	~(P^Q)
Т	Т	F	F	T	F	F	F	F	T	Т	Т	Т	F	Т	F
Т	F	F	Т	F	F	Т	F	F	Т	Т	F	F	Т	Т	Т
F	Т	Т	F	F	Т	F	F	F	Т	F	Т	F	Т	T	Т
F	F	Т	Т	F	F	F	Т	F	Т	Т	Т	Т	F	F	Т

We have 16 possible valuations for any statement, all of which can be constructed with $\{-,^{}\}$:

- 1. TTTT through combination J
- 2. FFFF through combination I
- 3. TTTF through combination O
- 4. FTTT through combination P
- 5. TTFT through combination K
- 6. TFTT through combination L
- 7. TFFT through combination M
- 8. FTTF through combination N
- 9. TTFF through combination A
- 10. TFTF through combination B
- 11. FTFT through combination D
- 12. FFTT through combination C
- 13. TFFF through combination E
- 14. FTFF through combination G
- 15. FFTF through combination F
- 16. FFFT through combination H

2. Prove that modus tollens is a valid inference rule in propositional calculus.

Р	Q	~P	~Q	$P \rightarrow Q$	(P→Q) ^ ~Q	$((P \rightarrow Q) \land \sim Q) \rightarrow \sim P$
Т	Т	F	F	Т	F	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	Т

Given $\neg Q$ and $P \rightarrow Q$ are true, we find $(P \rightarrow Q) \land \neg Q \rightarrow \neg P$ is also always true, meaning it is a tautology. This proves modus tollens - that $P \rightarrow Q$, $\neg Q \vdash \neg P$.

3. Prove soundness for PC (if $S \vdash P$, then $S \models P$) using mathematical induction.

Proof by induction on the construction of derivations:

Fact: If S \vdash P, there exists a sequence (by the definition of \vdash and deduction) R_1, \ldots, R_n where $R_n = P$. We need to demonstrate that $S \models R_n$.

Base case (k=1). Prove R_1 is a deduction of R_1 from S. There are three possibilities for R_1 's inclusion in such a deduction (by definition):

- 1. R_1 is a tautology. Note that $Q \models R_1$ for any statement Q, by the definition of entailment and the definition of tautology. Thus $S \models R_1$.
- 2. $R_1 \subseteq S$. Here, $S \models R_1$ as any V satisfying S must satisfy all of its members.
- 3. R_1 is derivable from earlier elements of the series by MP. Note that R_1 is the only element in the series, therefore this case is trivially proven (MP requires two statements).

Step. Inductive hypothesis: For all $m \le n$, if R_1, \ldots, R_m is a deduction of R_m from S, then $S \models R_m$. We have the same three cases to deal with as before.

- 1. R_m is a tautology. Note that $Q \models R_m$ for any statement Q, by the definition of entailment and the definition of tautology. Thus $S \models R_m$.
- 2. $R_m \in S$. Here, $S \models R_m$ as any V satisfying S must satisfy all of its members.
- 3. R_m is derivable from earlier elements of the series by MP. Given a number $m \le n$, R_m is in the sequence R_1 , ... R_n . We have already derived R_1 meaning that $S \vdash R_1$, and because R_m is in the sequence R_1 , ... R_n , R_m is a deduction from R_1 . We can show by modus ponens (MP), the definition of \vdash , and induction that $S \vdash R_m$ and R_m is thus derivable from earlier elements of the series.

Now given $S \vdash R_m \Rightarrow S \models R_m$ in our inductive hypothesis, we can show $S \vdash R_{m+1} \Rightarrow S \models R_{m+1}$.

Any number $m+1 \le n$ is still within the sequence R_1 , ... R_n and is therefore a deduction from R_1 , meaning it too will be derivable from earlier elements of the series via modus ponens such that $S \vdash R_{m+1}$. Because we have found $S \vdash R_{m+1}$ and $S \vdash R_m$ via modus ponens, by the definition of MP there must be two statements in the sequence, which we will R_i and R_j . By the definition of modus ponens R_i represents a preceding statement of the sequence P_i , and R_j represents that $P \rightarrow R_{m+1}$. R_i and R_j are elements of the sequence that are derivable from previous statements ($S \vdash R_i$, $S \vdash R_j$), and so given our inductive hypothesis we know $S \models R_i$, $S \models R_j$. Thus the only relevant valuations of R_i and R_j are "true" when we come to construct our truth table. Wherever R_i and R_j are true, R_{m+1} will also be true via MP, so $S \models R_{m+1}$ and thus soundness in the inductive step ($S \vdash R_{m+1} \Rightarrow S \models R_{m+1}$) holds.

R _i (P)	$R_{j}(P \rightarrow R_{m+1})$	R _{m+1}
Т	Т	Т

4. Let A be a set of atomic statements, and |A| denote the number of elements in A (its cardinality). Let V_{all} denote the set of all possible valuations for A. Prove that $|V_{all}| = 2^{|A|}$.

Proof:

We can write A as a set of atomic statements $A = \{a_1, a_2, a_3, ..., a_n\}$ where the cardinality of A is n (|A| = n). Due to the principle of bivalence, the valuation of any one atomic statement is "one (and only one) member of $\{\top, \bot\}$." The cardinality of $\{\top, \bot\}$ is 2, meaning every atomic statement can take on two possible values. We can then use the fundamental counting principle, which says that to find the total outcomes of a scenario one must multiply the total number of outcomes for each individual event. Therefore, each additional statement added to A doubles the number of possible valuations in V_{all} .

Knowing V_{all} denotes the set of all possible valuations for A, $|V_{all}| = 2 * 2 * 2 ... * 2$ where there are n distinct elements, meaning 2 is multiplied by itself n times. Therefore, $|V_{all}| = 2^n = 2^{|A|}$.

5. Prove that the Pierce arrow is expressively complete.

Α	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	P
Р	Q	P↓Q	(P↓Q) ↓Q	(P↓Q) ↓P	P↓P	Q\Q	(P↓Q) ↓ (P↓Q)	(P↓P) ↓ P	141	E↓E	D \ D	(P↓P)↓ (Q↓Q)	M↓M	м↓с	010
Т	Т	F	F	F	F	F	Т	F	Т	Т	Т	Т	F	F	T
Т	F	F	Т	F	F	T	Т	F	Т	Т	F	F	T	Т	F
F	Т	F	F	Т	Т	F	Т	F	T	F	T	F	T	T	F
F	F	Т	F	F	Т	Т	F	F	Т	Т	Т	F	Т	F	Т

- 1. TTTT through combination J
- 2. FFFF through combination I
- 3. TTTF through combination H
- 4. FTTT through combination N
- 5. TTFT through combination K
- 6. TFTT through combination L
- 7. TFFT through combination P
- 8. FTTF through combination O
- 9. TTFF through combination A
- 10. TFTF through combination B
- 11. FTFT through combination G
- 12. FFTT through combination F
- 13. TFFF through combination M
- 14. FTFF through combination D
- 15. FFTF through combination E
- 16. FFFT through combination C