Course: Comtemporary Algorithms T.II/2019-20

Lecture 14: Linear Programming I

13 January 2020

Lecturer: Dr. Kanat Tangwongsan

Scribe: Kanokpon & Kanokpon

1 Algebraic view

1.1 Introduction to linear programming

The aim is to minimizing costs of various systems while meeting different constraints.

Linear program is consist of

• variables: $x_1, x_2, \dots x_n$

• linear constrain: eg. $2x_2 - 5x_7$

• linear objective: function that we aim to maximize/minimize

Example

Objective minimize $3x_1 + 2x_2$

subj to: $\begin{vmatrix} x_1 \ge 0 \\ x_1 + x_2 \le 2 \\ x_1 - x_2 \ge 1 \end{vmatrix}$

subj to: $|x_1 + x_2| \le 2$ Feasible(setting of x_1, x_2 that satisfy the constraints)

1.2 Diet problem

How to spend the least money while getting enough nutrient.

- \bullet *n* food
- m nutrients
- a_{ij} -amount of nutrient i in a unit of food j
- b_i -minimize need of nutrient i
- c_j unit cost of food j
- x_j -amount of food j we consume

Nutrient i:

$$\begin{aligned} &\forall_i a_{i1} x_1 + a_{i2} x_2 + a_{i3} x_3 + \ldots a_{in} x_n \geq b_i - (\text{enough nutrient } i) \\ &\vdots \\ &x_j \geq 0 \\ & & \text{minimize } \underbrace{c_i x_1 + c_2 x_2 + \ldots c_n x_n}_{\text{minimize }} \underbrace{\sum_{j=1}^n c_j x_j} = c^T x \\ &\text{subj to:} \\ &\forall_i : \sum_{j=1}^n a_{ij} \geq b_i \\ &\forall_j : x_j \geq 0 \middle| \rightarrow \vec{x} \geq \vec{0} \end{aligned}$$

In term of vector

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$A\vec{x} = \begin{bmatrix} a_{11} & a_{12} \dots & a_{1n} \\ a_{21} & a_{22} \dots & a_{2n} \\ & \ddots & a_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

$$= \begin{bmatrix} \sum_j a_{1j} x_j \\ \sum_j a_{2j} x_j \\ \sum_j a_{ij} x_j \end{bmatrix} \ge \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

General form

Minimize
$$\vec{c}^T \vec{x}$$
subj to $A\vec{x} \geq \vec{b}$

$$\begin{bmatrix} A \\ \overline{I} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} A_x \\ X \end{bmatrix} \geq \begin{bmatrix} \vec{b} \\ \overline{0} \end{bmatrix}$$

Tricks

- 1. minimize $c^T x = \text{maximize } (-c)^T x$
- 2. Upper bound constraints can be recast to be equivalent to lower bound constraints $\sum s_i x_i \ge b \iff \sum (-a_i) x_i \le -b$
- 3. Inequality constraints can get to an equality constraints $\sum a_i x = b \iff \sum a_i x_i \ge b \& \sum a_i x_i \le b$
- 4. x is unconstrained(can be positive or negative) $\iff x^+ x^- x^+ \ge 0, x^- \ge 0$

$$\alpha \ge \beta$$

$$\beta + \underbrace{t}_{\ge 0} = \alpha$$

$$\sum a_i x_i \ge b_j$$

$$\sum a_i x_j - \underbrace{s_j}_{\text{slack variable}} = b_j$$

Remarks

- $n \text{ vars} + m \text{ constants} \rightarrow O(n+m) \text{ vars } \& O(n+m) \text{ constraints}$
- Feasible $sol^1: x \in \mathbb{R}^n$ satisfying all constrains
- ullet Optimal $sol^1:x\in\mathbb{R}^n$: feasible sol^n & minimize/maximize the obj function

1.3 Fourier-Motzkin elimination

- 1. Introduce a new var
- 2. Reduce dimensions

For variable x_1 arrange constraints into three groups

- 1. has positive coefficients
- 2. has negative coefficients
- 3. do not involve x_1 at all

$$\min c^T x \\ \text{subj to} Ax \ge b \qquad \Longleftrightarrow \min \\ \sup \text{subj to} \qquad Ax \ge b \\ c^T x \le x_{n+1}$$

Example

$$-2x_1 -x_2 +3x_3 \ge 5 (1)$$

$$-x_1 +2x_2 -4x_3 \ge 1 \tag{2}$$

$$5x_2 +7x_3 \ge 4$$
 (3)

$$x_1 -7x_3 \ge 1 (4)$$

How to eliminate x_1 ?

$$p=$$
 constraints where the coeff of $x_1>0$ $p=\{1,4\}$ $N=$ constraints where the coeff of $x_1<0$ $N=\{2\}$ $Z=$ constraints where the coeff of $x_1=0$ $Z=\{3\}$

On P constraints

$$i \in [P] : \underbrace{\left(\frac{a_{i1}x_1}{a_{i1}}\right)}_{1} + \frac{a_{i2}x_2}{a_{i1}} + \dots + \frac{a_{in}x_n}{a_{i1}} \ge \frac{b_i}{a_{i1}}$$

$$\iff$$

$$x_1 \ge \frac{b_i}{a_{i1}} - \left[\sum_{i=2}^{n} \left(\frac{a_{ij}}{a_{i1}}\right) x_j\right] - (\text{Lower bound } x_1 \ge blah_i)$$

On N constraints

$$i \in [N] : \underbrace{\left(\frac{a_{i1}x_1}{a_{i1}}\right)}_{1} + \frac{a_{i2}x_2}{a_{i1}} + \dots + \frac{a_{in}x_n}{a_{i1}} \le \frac{b_i}{a_{i1}} - (\text{Upper bound } x_1 \le blah_i)$$

$$\iff$$

$$x_1 \le \frac{b_i}{a_{i1}} - \left[\sum_{i=2}^{n} \left(\frac{a_{ij}}{a_{i1}}\right) x_j\right]$$

We will get new constraints as follows: for each $i \in P$ and $i' \in N$, we get $blah_i \leq x_i$ and $x_{i'} \leq blah_{i'}$ so we will get $blah_i \leq blah_{i'}$

We took |P| + |N| constraints and change it to $|P| \cdot |N|$ which is $\leq m^2$, so for each n variables we will end up with m^{2^n} constraints

1.3.1 Gaussian Elimination

take the first $\sum_j a_{1j}x_j = b_1$ and rewriting it as $x_1 = a_{11}^{-1}(b_1 - \sum_{j=2}^n a_{1j}x_j)$ and substituting this into the other constraints (This can be done in polynomial time)

- \bullet #operations done in polynomial in n and m
- The size of the number in the intermediate stages of the algorithm are $poly(n, m, \log |a_{ij}|)$

1.4 Equational Form Solving

Assume our LP is in this form

$$min\{c^T x | Ax = b, x \ge 0\}$$

Assume $A_x = b$ has ≥ 1 solⁿ

Without loss of generality the rows of A are linearly independent $(rank(A) \ge m)$

Given a subset $B\subseteq [n]$ we define A_B to be the concatenation of the B columns of A and s_B to be the column vector consisting of the variables $\{x_i|i\in B\}$ If A_B is linearly independent then A_B has full rank & invertible($x_B=A_B^{-1}b$) so

$$A_B x_B = b$$