Latent Structures in Vote Data COS 424 Final Project

Shun Yamaya Joe Bartusek

Data Sources

Ballot Image Data from South Carolina

- Population data set of complete vote choices of South Carolina Electorate
- N = 1,569,831

L2 Voter File Data

Precinct Aggregates of proportion of senior, non-white,
 female, college educated, citizens and logged median income

Methods

Unsupervised methods

- Principal Component Analysis (main results)
- Latent Dirichlet Allocation
- Non-Negative Matrix Factorization

Prediction

Multivariate OLS

Results

Variance explained by PCs of 2016 national/state contest ballots

TABLE 1. PCA Loadings on Federal and State Races

TABLE 2. PCA Loadings on Local Races

	${\color{red}Dependent\ variable:}$				$Dependent\ variable:$		
	PC1	PC2	PC3		PC1	PC2	PC3
	(1)	(2)	(3)		(1)	(2)	(3)
Percent Senior	0.256^* (0.148)	$0.445^{***} (0.131)$	-0.007 (0.090)	Percent Senior	0.147 (0.320)	-0.124 (0.110)	0.028 (0.049)
Percent Female	1.175** (0.549)	-1.576^{***} (0.487)	$0.201 \\ (0.334)$	Percent Female	-0.196 (1.212)	-0.194 (0.418)	0.051 (0.187)
Percent Non-White	3.568*** (0.073)	0.845*** (0.065)	-0.014 (0.045)	Percent Non-White	0.269 (0.164)	0.022 (0.057)	0.048^* (0.025)
Percent College Educated	0.096 (0.205)	-0.820^{***} (0.182)	0.031 (0.124)	Percent College Educated	-0.079 (0.453)	-0.154 (0.156)	-0.079 (0.070)
Median Income	-0.123^* (0.071)	-0.136** (0.063)	-0.072* (0.043)	Median Income	0.228 (0.155)	0.012 (0.053)	0.082** (0.024)
Constant	-0.627 (0.823)	2.321*** (0.730)	$0.670 \\ (0.500)$	Constant	-2.475 (1.805)	$0.045 \\ (0.623)$	-0.923^* (0.278)
Observations R ²	2,022 0.690	2,022 0.228	2,022 0.004	Observations \mathbb{R}^2	1,729 0.003	1,729 0.003	1,729 0.011
Adjusted R^2	0.689	0.226	0.002	${ m Adjusted} \ { m R}^2$	0.003	0.003	0.011
Residual Std. Error (df = 2016) F Statistic (df = 5 ; 2016)	0.560 897.855***	0.496 $118.987***$	$0.340 \\ 1.615$	Residual Std. Error (df = 1723) F Statistic (df = 5 ; 1723)	1.157 1.077	0.399 1.100	0.178 3.662**
Note:	*p<0.1; **p<0.05; ***p<0.01			Note: $\frac{\text{F Statistic (df = 5; 1725)}}{Note:}$	*p<0.1; **p<0.05; ***p<0.0		

Conclusion

• Largest source of variation comes from left-right ideology that aligns with partisanship. This is consistent in both Federal and Local races.

• In the context of South Carolina, Liberal-Conservative ideology at the federal level is largely explained by race, with gender also explaining some variance. However, these conclusions do not seem to hold at the local level.

Thank You for Listening!

We would <3 to hear any comments

jfb4@princeton.edu syamaya@princeton.edu