МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №52

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ			
ПРЕПОДАВАТЕЛЬ			
Доцент.			Марковская Н.В.
должность, уч. степень,	звание	подпись, дата	инициалы, фамилия
	ОТЧЕТ ПО	ЛАБОРАТОРНОЙ	РАБОТЕ
		вание интенсивности от восстанавливаемых сис	
по кур		ИСТЕМЫ ПЕРЕДАЧИ	
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР.	5512		К.А.Абдулжамилов
_		подпись, дата	инициалы, фамилия

1. Цель работы:

Смоделировать периоды жизни невосстанавливаемой системы.

2. Исходные данные:

Система состоит из двух групп. Для этих групп определены интенсивности:

$$\lambda_1 = 0.9$$

$$\lambda_2 = 1.3$$

Также определены вероятности того, что выбрана конкретная система для первого

$$p_1 = 0.7$$

$$p_2 = 0.3$$

3. Имитационное моделирование первого периода:

Всего моделируется N систем. Из них N* p_1 имеют время жизни $T_i = -\frac{\ln(\alpha)}{\lambda_1}$ и оставшиеся системы имеют время жизни $T_i=-rac{\ln(lpha)}{\lambda_2}$, где lpha- случайная равномерно распределенная величина. Затем для сгенерированных N систем считаются T_{max} и $\overline{T}=rac{\sum T_i}{N}$

Далее выбирается некая промежуточная точка между T_{max} и $ar{T}$, данный промежуток разбивается на к отрезков. В каждый момент времени считается, сколько систем находится в рабочем состоянии и высчитывается функция надежности $R(t)=rac{n_{cur}}{N}$, где n_{cur} – количество работающих систем. Также для модели рассчитывается интенсивность отказов $\lambda(t)=rac{(n_t-n_{t+\Delta})}{n_t\cdot\Delta}$. Полученные результаты сравниваются с теоритическими. R(t)= $e^{-\lambda_1 t} p_1 + e^{-\lambda_2 t} p_2$

$$e^{-\lambda_1 t} p_1 + e^{-\lambda_2}$$

$$\lambda(t) = -\frac{R'(t)}{R(t)}.$$

Для заданной модели $\lambda(t)=rac{\lambda_1 e^{-\lambda_1 t} p_1 + \lambda_2 e^{-\lambda_2 t} p_2}{e^{-\lambda_1 t} p_1 + e^{-\lambda_2 t} p_2}$

Результат моделирования и расчетов представлен на графиках

Рисунок 1 - R(t) для первой модели

Рисунок 2 - λ(t) для первого периода

4. Имитационное моделирование второго периода:

Система представляет собой последовательное соединение элементов.

Всего моделируется N систем. $T_i=\min(-\frac{\ln(\alpha)}{\lambda_1},-\frac{\ln(\beta)}{\lambda_2})$,где α и β — случайная равномерно распределенная величина. Затем для сгенерированных N систем считаются T_{max} и $\overline{T}=\frac{\sum T_i}{N}$. Далее выбирается некая промежуточная точка между T_{max} и \overline{T} , данный промежуток разбивается на k отрезков. В каждый момент времени считается, сколько систем находится в рабочем состоянии и высчитывается функция надежности $R(t)=\frac{n_{cur}}{N}$, где n_{cur} — количество работающих систем. Также для модели рассчитывается интенсивность отказов $\lambda(t)=\frac{(n_t-n_{t+\Delta})}{n_t\cdot\Delta}$. Полученные результаты сравниваются с теоритическими.

$$R(t) = e^{-\lambda_1 t} + e^{-\lambda_2 t}$$

$$\lambda(t) = -\frac{R'(t)}{R(t)}.$$

Для заданной модели $\lambda(t)=rac{(\lambda_1+\lambda_2)\,e^{-\lambda_1t}e^{-\lambda_2t}}{e^{-\lambda_1t}e^{-\lambda_2t}}=\;(\lambda_1+\;\lambda_2)$

Результат моделирования и расчетов представлен на графиках

Рисунок 3 - R(t) для второй модели

Рисунок 4 - λ(t) для второго периода

5. Имитационное моделирование третьего периода: Система представляет собой параллельное соединение элементов. Всего моделируется N систем. $T_i = \max\left(-\frac{\ln(\alpha)}{\lambda_1}, -\frac{\ln(\beta)}{\lambda_2}\right)$,где α и β — случайная равномерно распределенная величина. Затем для сгенерированных N систем считаются T_{max} и $\overline{T} = \frac{\sum T_i}{N}$. Далее выбирается некая промежуточная точка между T_{max} и \overline{T} , данный промежуток разбивается на k отрезков. В каждый момент времени считается, сколько

систем находится в рабочем состоянии и высчитывается функция надежности $R(t)=\frac{n_{cur}}{N}$, где n_{cur} – количество работающих систем. Также для модели рассчитывается интенсивность отказов $\lambda(t)=\frac{(n_t-n_{t+\Delta})}{n_t\cdot\Delta}$. Полученные результаты сравниваются с теоритическими.

$$R(t) = e^{-\lambda_1 t} + e^{-\lambda_2 t} - e^{-(\lambda_1 + \lambda_2) t},$$

 $\lambda(t) = -\frac{R'(t)}{R(t)}.$

Для заданной модели $\lambda(t)=rac{\lambda_1 e^{-\lambda_1 t}+\lambda_2\,e^{-\lambda_2 t}-(\lambda_1+\lambda_2)\,e^{-(\lambda_1+\lambda_2)\,t}}{e^{-\lambda_1 t}+\,e^{-\lambda_2 t}-\,e^{-(\lambda_1+\lambda_2)\,t}}$

Результат моделирования и расчетов представлен на графиках

Рисунок 5 - R(t) для третьей модели

Рисунок 6- λ(t) для третьего периода

Вывод: в данной лабораторной работе было выполнено имитационное моделирование для моделей разного периода. Также для каждой модели были построены графики теоритических значений.

```
public void firstStage()
```

```
curs.add(cur);
public void secondAndThirdStage(boolean stage)
       T_average = T_average / N;
double Tmidle = (T_average + T_max) / 2;
double st = Tmidle/step;
double delta_S = st / delta;
```

```
return Math.log(Math.random())/lymda[index]*(-1);
       lab3.firstStage();
       lab3.secondAndThirdStage(false);
       lab3.secondAndThirdStage(true);
XYChartBuilder().width(800).height(600).title(name).xAxisTitle("x").yAxisTitl
       chart.addSeries("теоретическая", list1, array);
chart.addSeries("Практическая", list1, array1);
       new SwingWrapper<XYChart>(charts).displayChartMatrix();
```