ECE 447: Control Systems

goal: what is a system's state? what is a nonlinear system?

- (a) state space new way of looking at/representing a system using a vector description of grantities of interest and how they interact over time
- (b) time: continuous and discrete we'll consider DE that evolve in continuous time, $\mathring{x} = \mathring{f}(x,u)$ or in discrete time, $\mathring{x}^{\dagger} = \mathring{f}(x,u)$
- (c) linear systems one matrices AEIR^{nxn}, BEIR^{nxn} determine linear state-space system f(x,u)=Ax+Bu
- (2) non linear systems = defined by = +(x, u)

(a) state space [AMV2 Ch 3.2] [NV7 Ch 3.3]

ex: RLC circuit: capacitor charge & & current & interact with voltage N over time:

R = CD Lä+Rå+ - 6= N

know: given $v:[o,\infty) \to \mathbb{R}$, initial condition (g(o), g(o)): $t \mapsto v(t)$ then $g(t) = g_o(t) + g_v(t)$ partial ar response to v

then $g(t) = g_0(t) + g_v(t)$ hamogeneous response too · the vector (g(t), g(t)) = 12 is the circuit state at time t -> if I know . and input N:[t, \in), g(z) determined for z>t hamogeneas response to 1.0 charge *q* initial condition/state harge q, current \dot{q} current \dot{q} 0.5 0.0 -0.5 time t 2º multiple trajectories over time 1° one trajectory over time 1.0 charge *q* charge q, current \dot{q} current q 0.5 0.5 current \dot{q} 0.0 -0.5 -1.015 5 10 time t charge q state space = { [8]

state space ____ > instead of a single 2nd-order DE

state space ______ ; instead of a single 2nd-order DE $\frac{1}{8} + \frac{1}{6} = \frac{1}{6} = \frac{1}{6}$ think about two 1st-order DE $\frac{1}{8} + \frac{1}{6} = \frac{1}{6} = \frac{1}{6}$ think about two 1st-order DE $\frac{1}{8} + \frac{1}{6} = \frac{1}{6} = \frac{1}{6}$ $\frac{1}{8} + \frac{1}{6} = \frac{1}{6} = \frac{1}{6}$ State-space (more generally: $\frac{1}{6} + \frac{1}{6} = \frac{1}{6} = \frac{1}{6}$)

state-space (more generally: $\frac{1}{6} + \frac{1}{6} = \frac{1}{6} = \frac{1}{6} = \frac{1}{6}$ super sentation where: $x \in \mathbb{R}^n$, $u \in \mathbb{R}^n$, $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ for (DE) system state

(b) time: continuous and discrete [AMV2 (lb 3.27)

ex: proportional-integral control on a microcontroller/embedded system

o PI $u(t) = k_p e(t) + k_p e(t) d\tau$ $= k_p e(t) + k_p e(t)$ where $\dot{x}(t) = e(t)$ (DE)

ie $\dot{x}(t) \in \mathbb{R}^X$ is controller state

and time $t \in \mathbb{R}$ is continuous (i.e. any real number)

on an embedded system, microprocessor weasure error at discrete instants in time $t = \Delta$, 2Δ , 3Δ , $\Delta > 0$ clock cycle duration.

 \rightarrow approximate (DE) as $\frac{1}{\Lambda}(\tilde{\chi}(t+\Delta)-\tilde{\chi}(t)) \simeq \dot{\chi}(t) = e(t)$

lec-fa21 Page 3

ie
$$\tilde{\chi}(t+\Delta) = \tilde{\chi}(t) + \Delta \cdot e(t)$$

 \sim yields a difference equation (DE) $\tilde{x}^{+}=e$ whose "solutions" are defined at times $t = k \cdot \Delta$ * to emphasize that ~ defined only at discrete times, write $\chi[k]$ to denote $\chi(k.\Delta)$

o more generally, with $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$ denoting state vector

and $u = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \in \mathbb{R}^p$ denoting input vector

then state could change in time according to:

1°. differential equation $\frac{d}{dt}x = \dot{x} = f(x, u)$

2°. difference equation $\tilde{\chi}^+ = \tilde{f}(\tilde{\chi}_1 u)$

· well refer to both (1°.) & (2°.) as (DE)

and distingish them notationally by writing: "continuous time"

1° x(t) for state of differential equation at time LER

2°. X[k] for state of difference equation at time t=k.A

"discrete time"

o with
$$x = \begin{bmatrix} 6 \\ \hat{g} \end{bmatrix}$$

owith
$$x = \begin{bmatrix} 8 \\ 9 \end{bmatrix}$$
, $\hat{x} = \begin{bmatrix} 9 \\ 9 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix}$

note:
$$f$$
 is linear: $(f(x,u) = Ax + Bu)$

$$= \begin{bmatrix} 0 & 1 \\ -\frac{1}{LC} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} 8 \\ 6 \end{bmatrix} + \begin{bmatrix} 0 \\ 1\frac{1}{L} \end{bmatrix} v$$

omore generally, any
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times p}$ defins a linear system in state-space form $\dot{x} = A \times + B u$

a linear system in state-space from
$$\dot{x} = Ax + Bu$$

$$ex$$
: gives $\frac{dt_n}{dt_n}g + a_1\frac{dt_{n-1}}{dt_{n-1}}g + \cdots + a_ng = u$

ochoosing
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} \frac{d^{n-1}}{dt^{n-2}} & y \\ \frac{d^{n-2}}{dt^{n-2}} & y \\ \vdots & \ddots & \vdots \\ X_{n-1} & x \end{bmatrix} \in \mathbb{R}^n$$

$$||x_{n-1}|| \leq |x_{n-1}|| \leq |x$$

(d) nonlinear systems

[AMV2 (h3.1] [NV7 Ch3.7]

ex: "rocket flight" (really: pendulum)

- · state x = (6, 3) ongle, velocity
- · input u honzantal acceleration of prot
- · (DE) ml³ = mglsing xg+lucose

$$\dot{x} = \begin{bmatrix} \dot{g} \\ \dot{g} \end{bmatrix} = \begin{bmatrix} g_{1} & g_{1} & g_{2} \\ g_{1} & g_{2} & g_{3} \\ g_{1} & g_{2} & g_{3} \\ g_{2} & g_{3} \\ g_{4} & g_{5} \\ g_{5} & g_{5} \\ g_{5} & g_{5} \\ g_{6} & g_{7} \\ g_{7} & g$$

ex: quadrotor

A Simple Learning Strategy for High-Speed Quadrocopter Multi-Flips

Sergei Lupashin, Angela Schöllig, Michael Sherback, Raffaello D'Andrea

$$M\ddot{z} = (F_a + F_b + F_c + F_d)\cos\theta - Mg \qquad (1)$$

$$M\ddot{x} = (F_a + F_b + F_c + F_d)\sin\theta \tag{2}$$

$$I_{yy}\ddot{\theta} = L(F_a - F_b), \tag{3}$$

$$\eta = \times \left(\frac{\text{lnonzontal}}{\text{v}} \right)$$
 $\nu = 3 \left(\text{vestical} \right)$

$$M\dot{v} = -M_0 + F\cos\theta$$

where $F = F_a + F_b + F_c + F_d$ is the net thrust from 4 rotors $T = L(F_a - F_b)$ is the net targue around roll axis

with
$$g = (y, v, 6) \in \mathbb{R}^3$$
 denoting positions $\dot{g} = \frac{d}{dt}g = (\dot{y}, \dot{v}, \dot{6}) \in \mathbb{R}^3$ denoting relocations, the state is $x = (g, \dot{g}) \in \mathbb{R}^6$, input is $u = (F, \tau) \in \mathbb{R}^2$

so dynamics are
$$\dot{x} = \frac{d}{dt} \begin{bmatrix} \dot{g} \end{bmatrix} = \begin{bmatrix} \dot{g} \\ \dot{g} \end{bmatrix} = f(x, u)$$

where
$$\dot{g}(x,u) = \int F/M \sin\theta$$

$$-g + F/M \cos\theta$$

$$- \int \frac{1}{\sqrt{1}} dx$$

 $f: \mathbb{R}^6 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^6$ $: (\times, u) \longmapsto f(\times, u)$