Dylan Campbell

# COMP/ENGN 4528/6528: Computer Vision

### Question 1

## Matrix Algebra

1. Let 
$$\mathbf{A} = \begin{bmatrix} 2 & 6 \\ 2 & 0 \end{bmatrix}$$
 and  $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 2 & 8 \end{bmatrix}$ , compute  $\mathbf{AB}$ .

2. Let 
$$\mathbf{x} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
 and  $\mathbf{y} = \begin{bmatrix} 0 \\ 8 \end{bmatrix}$ , compute  $\|\mathbf{x} - \mathbf{y}\|_2$ .

3. Let 
$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
,  $\mathbf{x} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$  and  $\mathcal{L} = \frac{1}{2} (\mathbf{w}^{\top} \mathbf{x} - 4)^2$ , compute  $\frac{\partial \mathcal{L}}{\partial \mathbf{w}}$ <sup>1</sup>.

### Question 2

#### Back Propagation

1. Back propagation through the computational graph. The current values are  $w_0 = 0.2$ ,  $w_1 = 0.2$ ,  $w_2 = 0.3$ ,  $x_0 = 2$ ,  $x_1 = 3$ . p and q define the intermediate variables that are calculated during training, at the specified points in the computation graph.  $\mathcal{L}$  is the output of the computational graph. Please provide the gradient  $\frac{\partial \mathcal{L}}{\partial p}$  and  $\frac{\partial \mathcal{L}}{\partial q}$  based on the back-propagated gradient calculation.



- 2. Given the linear regression model  $\hat{y} = \mathbf{w}^{\top} \mathbf{x} + b$  and the loss function is defined as  $\mathcal{L}(y, \hat{y}) = \frac{1}{2}(y-\hat{y})^2$ . The initial model weights are  $\mathbf{w} = \begin{bmatrix} 6 \\ -4 \end{bmatrix}$  and b = -8. What is the new model weights after performing one gradient descent step with learning rate 0.01 and training data  $\mathbf{x} = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$ , y = 1.
- 3. !! Given a logistic regression model Softmax( $\mathbf{W}\mathbf{x} + \mathbf{b}$ ) where  $\mathbf{W} = \begin{bmatrix} 2 & 0 & 4 \\ 2 & 2 & 6 \\ -1 & 1 & 4 \end{bmatrix}$  and  $\mathbf{b} = \begin{bmatrix} -2 \\ -1 \\ -2 \end{bmatrix}$ . The Softmax function is defined as Softmax( $x_i$ ) =  $\frac{\exp(x_i)}{\sum_i \exp(x_j)}$ . For the training data, you have

<sup>&</sup>lt;sup>1</sup>read https://en.wikipedia.org/wiki/Matrix\_calculus for more matrix calculus contents

 $\mathbf{x} = \begin{bmatrix} -2 \\ -5 \\ 4 \end{bmatrix}$  and the ground truth label  $\mathbf{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ . Calculate the gradient of the cross-entropy loss  $(\mathcal{L} = -\sum_{c=1}^{M} y_{o,c} \log{(p_{o,c})})^2$  with respect to the bias vector  $\mathbf{b}$ .

 $<sup>^2</sup>$ The meaning of each variable is mentioned in https://ml-cheatsheet.readthedocs.io/en/latest/loss\_functions.html#cross-entropy