Sprawozdanie z Projektu "Dno oka"

1. Skład grupy

- Adam Detmer 155976
- Jakub Buler 155987

2. Zastosowany język programowania i biblioteki

- Język: Python
- **Środowisko**: Google Colab / Jupyter Notebook
- Biblioteki:
 - o numpy, opency-python, scikit-image Przetwarzanie obrazu
 - o scikit-learn metryki klasyfikacji, modele ML
 - o matplotlib, pandas wizualizacja i raportowanie
 - o torch, torchvision Sieci neuronowe

3. Opis zastosowanych metod

3.1 Przetwarzanie obrazów

- Kanał zielony: ekstrakcja informacji strukturalnej (naczynia najlepiej widoczne).
- **Denoising (FastNIMeansDenoising)**: redukcja szumów bez utraty szczegółów.
- Equalizacja histogramu: wzmocnienie kontrastu naczyń.
- Filtr Frangiego: wykrywanie naczyń.
- **Progowanie**: ręczne progowanie odpowiednio dobrane eksperymentalnie.
- **Postprocessing**: usunięcie drobnych obiektów, zamknięcie morfologiczne.
- Maskowanie FOV: ograniczenie segmentacji do wnętrza siatkówki.

Uzasadnienie: Do analizy naczyń krwionośnych zastosowaliśmy klasyczne metody przetwarzania obrazu, skupiając się na poprawie kontrastu i redukcji szumu. Wybrano kanał zielony, ponieważ najlepiej uwidacznia naczynia na tle siatkówki. Filtr FastNIMeansDenoising usunął szum bez rozmywania cienkich struktur, a equalizacja histogramu zwiększyła kontrast naczyń względem tła. Zastosowana dylacja pozwoliła wzmocnić słabo widoczne naczynia przed dalszą segmentacją. Tak przygotowane obrazy były lepiej przystosowane do działania filtru Frangiego i progowania.

	accuracy	sensitivity	specificity	harmonic_mean	arithmetic_mean	TP	TN	FP	FN	image	E
0	0.9789	0.7241	1.0	0.8400	0.8621	453077	7559651	0	172616	11_g.jpg	
1	0.9823	0.8105	1.0	0.8954	0.9053	620346	7419989	0	145009	11_h.jpg	
2	0.9823	0.7908	1.0	0.8832	0.8954	547969	7492407	0	144968	11_dr.JPG	
3	0.9872	0.8445	1.0	0.9157	0.9223	571271	7508920	0	105153	12_g.jpg	
4	0.9845	0.8527	1.0	0.9205	0.9264	732763	7326049	0	126532	12_h.jpg	
5	0.9886	0.8325	1.0	0.9086	0.9162	463446	7628620	0	93278	12_dr.JPG	

(Błąd wliczeniu TN i specificity wynikał z pastowania wartości w masce na zły typ po braniu obszaru z fova)

3.2 Uczenie maszynowe Decison Tree Clasifier

W podejściu opartym na uczeniu maszynowym segmentujemy obrazy siatkówki na małe fragmenty (patches) o stałym rozmiarze, np. 15×15 pikseli. Dla każdego takiego fragmentu obliczamy zestaw cech opisujących jego strukturę i teksturę – są to momenty Hu (odporne na rotacje i skalowanie) oraz wariancje jasności w kanałach RGB. Cechy te reprezentują właściwości wizualne naczyń krwionośnych i stanowią wejście dla klasyfikatora.

Maska ekspercka (ground truth) jest dzielona na te same fragmenty i wykorzystywana do oznaczenia każdego segmentu jako naczyniowy (1) lub tło (0), zależnie od wartości środkowego piksela. Z uwagi na dużą nierównowagę klas (dużo więcej tła niż naczyń), stosujemy *undersampling*, by zrównoważyć liczbę przykładów obu klas w zbiorze treningowym.

Do klasyfikacji zastosowano model drzewa decyzyjnego DecisionTreeClassifier z biblioteki scikit-learn. W celu kontroli złożoności modelu i uniknięcia przeuczenia przyjęto następujące parametry:

- max_depth=30 maksymalna głębokość drzewa została ograniczona do 30 poziomów, co
 pozwala modelowi uchwycić złożone zależności, ale zapobiega nadmiernemu dopasowaniu
 do szumu w danych;
- min_samples_leaf=5 minimalna liczba próbek w liściu ustalona na 5 sprawia, że drzewo nie tworzy zbyt małych i niestabilnych reguł;
- random_state=42 ustalono stały seed dla zapewnienia powtarzalności wyników;
- użyto domyślnego algorytmu podziału i funkcji entropii

Model uczony jest na przygotowanych cechach wyciągniętych z obrazu 01_dr.JPG, który nie pojawia się w zbiorze testowym.

W trakcie predykcji każdy fragment nowego obrazu jest klasyfikowany przez wytrenowany model. Jeśli prawdopodobieństwo klasy "naczynie" przekracza ustalony próg, to cały segment jest oznaczany jako naczyniowy w masce wynikowej. W ten sposób tworzymy binarną maskę wykrytych naczyń krwionośnych.

Wyniki Klasyfikatora


```
accuracy sensitivity specificity harmonic mean arithmetic mean
                                                              TP \
                      0.823476
0 0.814826
           0.710321
                                    0.762724
                                                  0.766898 444443
          0.851661
1 0.750783
                       0.740378
                                    0.792129
                                                  0.796019 651823
2 0.782440
          0.772744
                       0.783337
                                   0.778004
                                                 0.778040 535463
3 0.802400 0.722965 0.809555
                                   0.763813
                                                 0.766260 489031
4 0.723042 0.869954
                       0.705810
                                   0.779332
                                                 0.787882 747547
                                    0.748533
5 0.777786
            0.717668 0.782174
                                                 0.749921 399543
      TN
             FP
                   FN image
0 6225188 1334463 181250
                        11 g
1 5493593 1926396 113532
                        11_h
2 5869078 1623329 157474 11 dr
3 6078886 1430034 187393 12_g
4 5170798 2155251 111748 12_h
5 5966905 1661715 157181 12_dr
```

Model drzewa decyzyjnego osiągnął dobre i stabilne wyniki — accuracy utrzymywało się w granicach 77–81%, a czułość (sensitivity) nawet powyżej 0.85, co oznacza skuteczne wykrywanie naczyń krwionośnych. Wyniki były zrównoważone, a harmoniczna średnia sięgała 0.79, co świadczy o dobrym kompromisie między wykrywaniem naczyń a unikaniem fałszywych alarmów.

Zastosowaliśmy drzewo decyzyjne, ponieważ jest szybkie, dobrze radzi sobie z nieliniowymi zależnościami, pozwala kontrolować złożoność modelu i jest łatwe do interpretacji. To sprawia, że dobrze sprawdza się w zadaniach klasyfikacji segmentów obrazu.

3.3 Sieć neuronowa

W celu dokładniejszego rozpoznawania drobnych struktur naczyń zastosowano segmentacyjną sieć neuronową U-Net, która sprawdza się w zadaniach segmentacji medycznej. Obrazy wejściowe były wcześniej przetwarzane – wykorzystywano tylko kanał zielony, który został poddany denoisingowi, dylacji i equalizacji histogramu, aby zwiększyć kontrast naczyń. Dla poprawy równowagi klas sieć uczona była na zbalansowanych fragmentach obrazu (patchach 128×128 px), zawierających jednocześnie naczynia i tło.

Maski eksperckie oraz obrazy były ograniczane przez FOV, dzięki czemu sieć nie uczyła się na czarnych obszarach spoza siatkówki. Model U-Net zawiera cztery poziomy enkodera i dekodera, z dodatkowymi warstwami konwolucyjnymi i transpozycyjnymi, oraz funkcję aktywacji sigmoid na wyjściu. Trenowano go przez 40 epok z użyciem funkcji kosztu będącej sumą **Binary Cross Entropy** i **Dice loss**, co pozwalało lepiej wyważyć wpływ zarówno obszarów tła, jak i naczyń. Zastosowany optymalizator to Adam z krokiem uczenia 1e-4.

To podejście pozwoliło sieci skutecznie uczyć kształtu i rozmieszczenia naczyń krwionośnych na podstawie lokalnego kontekstu i struktury obrazu.

Wyniki przetwarzania

	accuracy	sensitivity	specificity	harmonic_mean	arithmetic_mean	TP	TN	FP	FN	image
0	0.9567	0.6879	0.9830	0.8094	0.8355	16086	234714	4047	7297	11_g.jpg
1	0.9656	0.7658	0.9889	0.8632	0.8773	20909	232228	2613	6394	11_h.jpg
2	0.9545	0.7014	0.9819	0.8183	0.8417	17938	232289	4281	7636	11_dr.JPG
3	0.9515	0.7403	0.9740	0.8412	0.8571	18686	230741	6162	6555	12_g.jpg
4	0.9635	0.7514	0.9913	0.8548	0.8713	22807	229764	2027	7546	12_h.jpg
5	0.9534	0.6504	0.9797	0.7818	0.8151	13612	236322	4894	7316	12_dr.JPG

4. Porównanie Wyników Drzewa i Sieci

Sieć neuronowa U-Net osiągnęła bardzo dobre wyniki — **accuracy na poziomie 95–96%**, przy **high specificity (do 99%)** oraz zauważalnej poprawie równowagi między czułością a precyzją. **Harmoniczna średnia (łącząca sensitivity i specificity)** wynosiła od **0.78 do 0.86**, co oznacza skuteczne i zrównoważone wykrywanie naczyń.

W porównaniu z wcześniejszym klasyfikatorem drzewa decyzyjnego, U-Net:

- zdecydowanie lepiej radził sobie z odróżnianiem naczyń od tła (wyższa specificity),
- utrzymał porównywalną lub lepszą czułość (sensitivity do 0.76),
- i znacząco zmniejszył liczbę fałszywych pozytywów (FP) oraz fałszywych negatywów (FN).

Model uczył się na wycinkach obrazów, ale potrafił skutecznie generalizować wiedzę na całe obrazy testowe. U-Net lepiej odwzorowywał strukturę naczyń, zwłaszcza cienkich i lokalnie słabo widocznych, co klasyfikator oparty na patchach często pomijał. W praktyce oznacza to, że sieć neuronowa zapewnia bardziej spójne i dokładne segmentacje w zastosowaniach medycznych.

5. Podsumowanie

Porównanie średniej harmonicznej

image_normalized	Drzewo	Klasyczna	UNet
11_dr	0.778004	0.8832	0.8183
11_g	0.762724	0.84	0.8094
11_h	0.792129	0.8954	0.8632
12_dr	0.748533	0.9086	0.7818
12_g	0.763813	0.9157	0.8412
12_h	0.779332	0.9205	0.8548

Porównanie sensitivity

image_normalized	Drzewo	Klasyczna	UNet
11_dr	0.772744	0.7908	0.7014
11_g	0.710321	0.7241	0.6879
11_h	0.851661	0.8105	0.7658
12_dr	0.717668	0.8325	0.6504
12_g	0.722965	0.8445	0.7403
12_h	0.869954	0.8527	0.7514

Powyższe tabele przedstawiają porównanie wyników dla obrazów testowych. W zakresie czułości (sensitivity), metoda klasyczna dominuje w większości przypadków, osiągając najwyższe wartości dla 12_dr, 12_g i 11_dr, co sugeruje dobrą zdolność wykrywania prawdziwych naczyń krwionośnych. UNet ma czułość niższą niż klasyczna metoda, ale stabilną, podczas gdy drzewo decyzyjne pokazuje wysoką zmienność – od bardzo dobrej (11_h) do przeciętnej (12_dr). Ostatecznie klasyczna metoda oferuje najlepszy kompromis w zakresie skutecznego wykrywania naczyń.

Zdecydowanie przy większych zasobach ciekawe było by próba ulepszenia sieci neuronowej.