Attorney Docket No. ESST-03901

Sep 13 2005 14:18

Amendments to the claims:

- 1-22. (Formerly Canceled in earlier response.)
- 23. (Formerly presented) A multiple modulus conversion (MMC) method for obtaining a plurality of index values associated with a plurality of moduli, for use in a communication system configured to map frames of information bits onto predetermined communication signal parameters, the method comprising:

obtaining an input Qo;

representing the input as a plurality of sub-quotients in the form of $Q_0 = Q_{0,0} + Q_{0,1} *B^{n(0)} + ... + Q_{0,k} *B^{n(0)+n(1)+..n(k-1)}$, where $Q_{0,j}$ is the jth sub-quotient of the input, B is the base numbering system, n(j) is the number of digits assigned for the jth sub-quotient, and k+1 is the number of sub-quotients, for j=[0,k];

obtaining a multiplicand C_i , that is an estimate of the inverse of a whole number Y_i , where Y_i is one of the moduli;

performing an inverse modulus multiplication operation by:

calculating at least one sub-quotient of the output pseudo-quotient corresponding to Y_i according to the following formula: $Q_{i,j} = ((Q_{i-1,j} + R_{i,j+1} *B^{n(j)}) *C_i) >> N_3$, where $Q_{i-1,j}$ is one of a sub-quotient from a previous calculation and a sub-quotient of the input, $R_{i,j+1}$ is the pseudo-remainder from a previous calculation, and N_3 is the number of digits used to represent C_i ; and

calculating a pseudo-remainder according to the following formula: $R_{i,j}=(Q_{i-1,j}+R_{i,j+1}*B^{n(j)})-(Q_{i,j}*Y_i)$; and

determining an index value associated with the modulus Y_i, the index value being responsive to the inverse modulus multiplication operation.

24. (Formerly presented) A method according to Claim 23, wherein C_i is estimated according to the formula: $C_i = floor(B^{N3}/Y_i)$, where the floor function returns the largest integer less than its argument.

Attorney Docket No. ESST-03901

- 25. (Formerly presented) A method according to Claim 23, wherein C_i is estimated according to the formula: $C_i = \text{ceil}(B^{N3}/Y_i)$, where the ceil function returns the smallest integer greater than its argument.
- 26. (Formerly presented) A method according to Claim 23, wherein C_i is estimated according to the formula: $C_i = \text{rnd}(B^{N3}/Y_i)$, where the rnd function returns the closest integer to its argument.
- 27. (Formerly presented) A method according to Claim 23, wherein the index value is determined by:

obtaining a final pseudo-remainder $R_{i,0}$ associated with a least significant sub-quotient $Q_{i,0}$; and

performing a final pseudo-remainder correction loop, wherein the value Y_i is repeatedly added to $R_{i,0}$ until the result is in the range $[0,Y_i)$.

28. (Formerly presented) A method according to Claim 23, wherein the index value is determined by:

obtaining a final pseudo-remainder $R_{i,0}$ associated with a least significant sub-quotient $Q_{i,0}$; and

performing a final pseudo-remainder correction loop, wherein the value Y_i is repeatedly subtracted to $R_{i,0}$ until the result is in the range $\{0,Y_i\}$.

29. (Formerly presented) A method according to Claim 23, wherein the index value is determined by:

obtaining a final pseudo-remainder $R_{i,0}$ associated with a least significant sub-quotient $Q_{i,0}$; and

performing a final pseudo-remainder correction loop, wherein the value Y_i is alternately added and subtracted to $R_{i,0}$ until the result is in the range $[0,Y_i)$.

Please cancel Claims 30-35