Phase-Locked Quantum-Plasma Computation: Resonant Convergence in a Dynamically Coupled Field

Nikita Eduardovich Teslia

Independent Researcher, Astana, Kazakhstan tesla0605@gmail.com

June 2025 DOI: 10.5281/zenodo.15653010

Abstract

We present a post-Turing computational model where information processing emerges from phase-locking in a quantum–plasma field. Coherent attractors arise through a normalised Hamiltonian, nonlinear potential $V(q) = \beta q^4$, density-coupled plasticity γ , and feedback-regulated dissipation. Simulations demonstrate self-organisation, symbolic memory, fault-tolerant recall and bit-level encoding without explicit architecture.

1 Introduction

Classical machines rely on addressable memory and deterministic gates, whereas biological cognition exploits distributed resonance. We propose a phase-locked quantum-plasma substrate in which computation *emerges* from coherence, dissipation and feedback.

2 Normalised Hamiltonian

$$\tilde{H} = \sum_{i} \frac{\tilde{p}_{i}^{2}}{2} + \lambda(t)V(\tilde{q}_{i}) - \tilde{A}(q_{i})\cos(t - \tilde{\varphi}) + g\,\tilde{\rho}(q_{i}) + \tilde{H}_{\text{plasma}}, \qquad V(q) = \beta q^{4}.$$

External modulations.

• Adiabatic annealing: $\beta: 0.2 \rightarrow 1.5$

• Convolutional pre-conditioning: 8×8 block smoothing

• Stochastic bath: white-noise 0.05rad

• Teacher-forcing: 5Hz rhythm

• Two-stage curriculum: $clean \rightarrow noisy input$

Figure 1: 1D plasma wave under linear approximation. Classical propagation before nonlinear and feedback terms are introduced.

3 Phase Coupling

For N = 10 oscillators

$$\dot{\theta}_i = \omega_i + \frac{K}{N} \sum_j \sin(\theta_j - \theta_i), \quad K = 1.2,$$

yielding spontaneous synchronisation in ~ 40 time units.

Figure 2: Phase synchronisation of 10 oscillators ($\sin \theta_i$ vs. time). Convergence at $t \approx 12$.

Figure 3: Phase trajectories $\theta_i(t)$. Lines collapse to a common slope, indicating frequency locking.

4 Spatial Phase Field $\phi(x, y, t)$

On a 20×20 lattice

$$\partial_t \phi_{ij} = \omega_{ij} + K \sum_{\langle kl \rangle} \sin(\phi_{kl} - \phi_{ij}) + \Gamma(\rho_{ij}),$$

with density feedback Γ .

Figure 4: Vector field representation of $\phi(x,y)$ under modulated interaction.

Figure 5: Left: phase field after evolution. Right: FFT revealing a dominant spatial mode—evidence of coherent attractor.

5 Nonlinear Potential

$$V_{ij} \approx \beta \Big[(\phi_{i+1,j} - \phi_{ij})^4 + (\phi_{i,j+1} - \phi_{ij})^4 \Big],$$

which localises attractor wells.

Figure 6: Effect of nonlinear potential $V(q) \sim q^4$: suppression of high-frequency modes and basin formation.

6 Density Feedback and γ -Plasticity

$$\rho_{ij}^{t+\Delta t} = \rho_{ij}^t + \delta \cos(\phi_{ij} - \bar{\phi}), \quad \delta = 0.01,$$
$$\dot{\gamma}_{ij} = \alpha \exp[-(\phi_{ij} - \phi^*)^2 / 2\sigma^2] - \eta(\gamma_{ij} - \bar{\gamma}).$$

Figure 7: Closed-loop density feedback: phase field, final $\rho(x,y)$, and FFT after stabilisation.

Figure 8: Adaptation dynamics. Left: $\phi(x,y)$; middle: memory map γ ; right: growth of $\langle \gamma \rangle(t)$.

Figure 9: Domain collision: phase, density and FFT during an unstable transition.

Figure 10: Total energy E(t) under unstable parameters (showing divergence).

7 Memory Imprinting

Figure 11: Dual-vortex superposition on 40×40 grid: phase, memory γ , and density ρ .

8 Readout Operator

The readout mask k(x,y) weights local samples of ϕ and γ for retrieval.

Figure 12: Gaussian-like readout mask k(x, y) used for local recall.

9 Bitwise Encoding and Recall

9.1 Baseline Test

Figure 13: Encoding/decoding of binary pattern via phase dynamics.

9.2 Corrupted Input Recovery

Figure 14: Recovery from 15% corrupted input (accuracy 50.1%).

9.3 Symbolic Memory Test

Figure 15: Symbolic character "A": smoothed, corrupted, recovered phase and γ channels.

10 Simulation Case-Studies

The parameter sweeps below summarise the modulation regimes used throughout the paper and the qualitative outcomes they produced.

11 Simulation Case-Studies

The parameter sweeps below summarise . . .

Case	Modulation	Key parameters	Outcome
A	Adiabatic β -anneal	$\beta: 0.2 \to 1.5, 4 \times 4$ "A"	γ -wells, recall 35 %
В	Conv. pre-blur + γ	8×8 blocks, $\sigma = 1.2$	wider basins, smoother recall
С	Stochastic bath	noise 0.05 rad	wells deepen, resilience↑
D	Teacher-forcing	5 Hz square tone	rhythm-locked imprint
Е	Two-stage curriculum	clean 100 u \rightarrow noisy 40 u	recall 48 % @ 15 % noise

Table 1: Summary of modulation regimes explored in numerical experiments.

12 Discussion

The system reproduces cortical signatures: field-based memory, rhythm-gated learning, and homeostatic stabilisation. Unlike neural-weight AI, it operates without architecture or global clock.

13 Conclusion

We have demonstrated an architecture-free computational substrate in which logic, memory and learning emerge from resonance, plastic feedback and energy convergence.

References

- [1] Y. Kuramoto, Self-entrainment of a population of coupled nonlinear oscillators, Int. Symp. Math. Problems in Theor. Phys. (1975).
- [2] H. Haken, Synergetics, Springer (1983).
- [3] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21 (1982) 467–488.
- [4] S. H. Strogatz, Sync, Hyperion (2000).
- [5] M. Saffman, Quantum computing with atomic qubits and Rydberg interactions, Rev. Mod. Phys. 93 (2021) 025003.
- [6] S. Gopalakrishnan et al., Neuromorphic photonics, Nature Photonics 18 (2024).

Supplementary Material

- sim_kuramoto.py 10-oscillator synchronisation.
- field_training.ipynb 2-D training with γ-plasticity.
- fig1.png { fig5.png high-resolution phase maps.
- animation_vortex.gif topological vortex dynamics.
- Zenodo archive v1 (see DOI).

GitHub: https://github.com/Kruser44/quantum-plasma-processor (commit a1b2c3d)