## Домаћи задатак 1

Потребно је реализовати дигитални систем састављен од комбинационих компоненти по следећем упуству:

#### 1. БЛОК-ДИЈАГРАМ ШЕМА: :

- На основу спецификације која је дата на крају упутства, нацртати блок-дијаграм шему система по узору на слику сложеног система 4 из Лабораторијске вежбе 3.
- Шему је могуће цртати ручно па фотографисати или нацртати у неком софтверу.
- Слику шеме сачувати под именом block\_diagram.jpg у директоријум LPRS1\_Homework1\_RA\_067\_2022\_Solution.

#### 2. У датотеци

LPRS1\_Homework1\_RA\_067\_2022\_Solution/lprs1\_homework1.vhd реализовати ову блок шему у VHDL-у по задатој спецификацији.

### 3. НАПОМЕНЕ ЗА ПИСАЊЕ КОДА:

- Изнад дела кода који описује сваку појединачну компоненту у коментару написати назив описане компоненте.
- Сви интерни сигнали су ширине 4 бита.

### 4. ПРОВЕРА ИСПРАВНОСТИ СИСТЕМА:

- Проверити исправност решења коришћењем симулатора ModelSim-Altera.
- У пројекту је дат тестбенч који аутоматски проверава исправност решења. Потребно је само покренути симулацију. Ако је дизајн исправан, Transcript панел у ModelSim-у ће бити без грешака, као на Слици 1:



Слика 1: Симулација без грешака

• Уколико дизајн није исправан, у Transcript панелу појавиће се грешке типа: Error: Assertion violation као што је приказано на Слици 2:

```
Transcript

# 1
# run 1ps
# set NumericStdNoWarnings 0
# 0
# set NumericStdNoWarnings 0
# 0
# run 1 us
# ** Error: Assertion violation.
# Time: 321 ns Iteration: 0 Instance: /lprs1_homework1_tb
# ** Error: Assertion violation.
# Time: 321 ns Iteration: 0 Instance: /lprs1_homework1_tb

# ** Error: Assertion violation.
# Time: 321 ns Iteration: 0 Instance: /lprs1_homework1_tb

VSIM 3>

Now: 10,000,101 ps Delta: 0 | sim:/lprs1_homework1_tb
```

Слика 2: Симулација са грешакама

- Тестбенч није потребно мењати, нити ће исти бити прегледан. Он олакшава проверу и прегледање задатка.
- Такође, дозвољено је мењање тестбенча, ради дебаговања и вежбања.

### 5. НАПОМЕНЕ ЗА ПРЕДАЈУ РЕШЕЊА:

- Зиповати директоријум LPRS1\_Homework1\_RA\_067\_2022\_Solution у зип датотеку LPRS1\_Homework1\_RA\_067\_2022\_Solution.zip.
  - Не треба зиповати датотеке из textttLPRS1\_Homework1\_RA\_067\_2022\_Solution, већ искључиво директоријум са датотекама.
  - Не треба зиповати директоријум целог пројеката, него само LPRS1\_Homework1\_RA\_067\_2022\_Solution.
  - Уколико се пошаље нешто друго (нпр. цео пројекат), рад неће бити прегледан и резултоваће са оценом D односно 0 поена.
- Решење (.зип датотеку) поставити на СОВУ у делу ЗАДАТАК 1, у своју додељену групу.

# Спецификација

Потребно је реализовати следећи систем:

- 1. На сигнал s\_shl довести i\_x померен 3 бит(a) у лево логички.
- 2. На сигнал s\_shr довести i\_y померен 3 бит(a) у десно логички.
- 3. На сигналу s\_dec поставити бит са редним бројем i\_z на јединицу а остале бите на логичку нулу.
- 4. Сигналу s\_add доделити збир s\_shl и s\_shr сигнала.
- 5. Од s\_dec одузети i\_x и разлику доделити s\_sub сигналу.
- 6. На сигнал s\_const0 доделити 7.
- 7. На сигнал s\_const1 доделити 10.
- 8. На сигнал в\_тих доделити:
  - s\_add ако је i\_sel једнако 0
  - s\_sub ако је i\_sel једнако 1
  - s\_const0 ако је i\_sel једнако 2
  - s\_const1 ако је i\_sel једнако 3
- 9. Сигналу о\_res доделити сигнал s\_mux.
- 10. На сигнал о\_стр(0) довести логичку јединицу ако је s\_mux различит од 0.
- 11. На сигнал о\_стр(1) довести логичку јединицу ако је s\_тих већи од 6.
- 12. На сигнал о\_enc довести индекс бита на логичкој јединици сигнала s\_mux. Ако постоји више таквих бита, изабрати онај са највећим индексом. Ако ни један бит није на логичкој јединици, резултат нека буде 0.

ВАЖНА НАПОМЕНА: Сви сигнали морају бити именовани како је тражено у спецификацији. Није дозвољено мењање назива сигнала! У супротном, задатак неће бити оцењен!