Equivalencia de Condiciones para la Integrabilidad de Riemann

Introducción

En el análisis matemático, la integrabilidad de Riemann es un concepto fundamental. Una función $f:[a,b]\to\mathbb{R}$ se dice Riemann integrable si existe $I\in\mathbb{R}$ tal que:

$$\forall \epsilon > 0, \exists P$$
 partición de $[a, b]$ tal que $U(P, f) - L(P, f) < \epsilon$.

Este teorema establece condiciones necesarias y suficientes para la integrabilidad de Riemann, formuladas en tres formas equivalentes:

- 1. Condición de Riemann: $\forall \epsilon>0, \exists P$ partición de [a,b] tal que $U(P,f)-L(P,f)<\epsilon.$
- 2. Condición de Darboux: $\lim_{\|P\| \to 0} U(P, f) = \lim_{\|P\| \to 0} L(P, f)$.
- 3. Condición de Cauchy: $\forall \epsilon>0, \exists P$ partición de [a,b] tal que $\forall P'\supseteq P,$ se tiene $U(P',f)-L(P',f)<\epsilon.$

Demostraremos la equivalencia probando las siguientes implicaciones:

 $Riemann \Rightarrow Darboux \Rightarrow Cauchy \Rightarrow Riemann.$

Demostración de las Implicaciones

1. Riemann \Rightarrow Darboux

```
 \begin{split} \mathbf{Hip\acute{o}tesis:} \ \forall \epsilon > 0, \exists P \ \mathrm{tal} \ \mathrm{que} \ U(P,f) - L(P,f) < \epsilon. \\ \mathbf{Tesis:} \ & \lim_{\|P\| \to 0} U(P,f) = \lim_{\|P\| \to 0} L(P,f). \end{split}
```

El argumento geométrico subyacente a esta afirmación es que, conforme el tamaño de la partición se reduce, las áreas de las barras de la suma superior y la suma inferior se van ajustando a la misma cantidad. Intuitivamente, al hacer las particiones más finas, las oscilaciones de la función quedan cada vez más confinadas, reduciendo la diferencia U(P,f)-L(P,f). Esto se puede visualizar mediante diagramas en los que la diferencia de áreas se vuelve arbitrariamente pequeña.

Dado $\epsilon > 0$, existe una partición P tal que:

$$U(P, f) - L(P, f) < \epsilon$$
.

Dado que U(P, f) y L(P, f) son respectivamente cotas superior e inferior de la integral, se tiene:

$$L(P, f) \le \int_a^b f(x) dx \le U(P, f).$$

Al hacer $||P|| \to 0$, se concluye que U(P,f) y L(P,f) convergen a un mismo valor, demostrando la tesis.

2. Darboux \Rightarrow Cauchy

 $\begin{aligned} & \textbf{Hipótesis:} \ & \lim_{\|P\| \to 0} U(P,f) = \lim_{\|P\| \to 0} L(P,f). \\ & \textbf{Tesis:} \ \forall \epsilon > 0, \exists P \ \text{tal que} \ \forall P' \supseteq P, \ \text{se cumple} \ U(P',f) - L(P',f) < \epsilon. \end{aligned}$

Desde una perspectiva geométrica, la condición de Darboux garantiza que al hacer refinamientos sucesivos, la diferencia entre las sumas superior e inferior disminuye de manera controlada. Esto significa que, sin importar cómo se refinan las particiones, los valores de U(P, f) y L(P, f) permanecerán cercanos, asegurando la condición de Cauchy.

Dado $\epsilon > 0$, existe $\delta > 0$ tal que, para cualquier partición P con $||P|| < \delta$:

$$U(P, f) - L(P, f) < \epsilon$$
.

Si P' es un refinamiento de P, entonces $||P'|| \le ||P|| < \delta$, por lo que la desigualdad sigue siendo válida, demostrando la tesis.

3. Cauchy \Rightarrow Riemann

Hipótesis: $\forall \epsilon > 0, \exists P \text{ tal que } \forall P' \supseteq P \text{ se cumple } U(P', f) - L(P', f) < \epsilon.$ **Tesis:** $\forall \epsilon > 0, \exists P \text{ tal que } U(P, f) - L(P, f) < \epsilon.$

Desde una perspectiva visual, esto significa que una vez que encontramos una partición suficientemente fina, cualquier refinamiento posterior sigue cumpliendo la propiedad de que la diferencia entre la suma superior e inferior se mantiene por debajo de ϵ . Este hecho implica que la función es integrable en el sentido de Riemann.

Dado $\epsilon > 0$, por la hipótesis existe una partición P tal que $\forall P' \supseteq P$:

$$U(P', f) - L(P', f) < \epsilon$$
.

En particular, tomando P'=P, se concluye $U(P,f)-L(P,f)<\epsilon,$ demostrando la tesis.

Conclusión

Hemos probado las implicaciones:

 $Riemann \Rightarrow Darboux \Rightarrow Cauchy \Rightarrow Riemann.$

Por lo tanto, las tres condiciones son equivalentes:

Riemann
$$\iff$$
 Darboux \iff Cauchy.

Esto establece que f es Riemann integrable en [a,b] si y solo si cumple cualquiera de estas condiciones, proporcionando un criterio riguroso para su integrabilidad.