

`

STANDARD STEEL CONSTRUCTION

A MANUAL FOR

ARCHITECTS, ENGINEERS AND CONTRACTORS CONTAINING USEFUL TABLES FORMULAS AND OTHER INFORMATION RELATING TO THE USE OF BEAMS, CHANNELS AND STRUCTURAL SHAPES

REVISED BY F. L. GARLINGHOUSE, C.E., Member A.S.C.E.

SIXTH EDITION

1908

AS MADE BY

JONES & LAUGHLIN STEEL COMPANY

AMERICAN IRON AND STEEL WORKS
PITTSBURGH CHICAGO

Copyrighted, 1896 Jones & Laughlins, Limited

Copyrighted, 1898 Jones & Laughlins, Limited

Copyrighted, 1900 Jones & Laughlins, Limited

Copyrighted, 1903 Jones & Laughlin Steel Co.

Copyrighted, 1908 Jones & Laughlin Steel Co.

4

Preface to Sixth Edition

N submitting this revised edition of Standard Steel Construction, it is our aim to put in concise form such information as should prove most useful to Structural Engineers, Architects and Contractors.

We have thoroughly revised all data relating to steel shapes manufactured by us, which shapes conform with the standard sections adopted by the American Association of Steel Manufacturers, omitting sections we no longer make, and adding a few new shapes.

We have discontinued manufacturing corrugated steel, but give a table conforming with the most approved practice.

We state in this edition the extreme length of beams, channels, angles, tees, bars and plates which we are willing to make, but we call attention that these lengths might be exceeded in some special cases, and would invite correspondence on this subject in cases where longer lengths are imperative.

The Standard Specifications for Structural Steel correspond with those adopted February, 1903, by the Association of American Steel Manufacturers.

The permissible working shear and bearing for rivets has, in many handbooks, been kept the same as when in former times wrought iron was used instead of steel. This is inconsistent with the balance of unit loads which are universally used in proportioning steel structures. We therefore give tables where the shear and bearing for rivets are given, which are permissible for quiescent loads such as in buildings, and for moving loads as in bridges, craneways, motor supports, or for similar purposes.

We have inserted data relating to chains which we manufacture, pages 40 and 41. Also a table of wrought steel pipe for steam, gas and water, which we do not manufacture, for reference only; and a table of the Metric System compared with the U. S. Standard weights and measures. Other data will be noticed not contained in former editions.

Pittsburgh, July, 1908.

STANDARD SECTIONS

Steel Beams

B. O.

80, 85, 90, 95 and 100 lbs.

STANDARD SECTIONS Steel Beams

STANDARD SECTIONS Steel Beams

STANDARD SECTIONS Steel Beams

3"SPECIAL BEAM

STANDARD SECTIONS Steel Channels

STANDARD SECTIONS Steel Channels

SPECIAL CHANNELS

Note: C 13 made only by special arrangement

ANGLES WITH EQUAL LEGS

UNEQUAL LEGGED TEES-STEEL

EQUAL LEGGED TEES-STEEL

EQUAL LEGGED TEES_STEEL

STEEL Z BARS

GROOVED STEEL

MISCELLANEOUS SHAPES—STEEL Channel Tires

Harvester Tires

Note: M 102, M 103 and M 105 made only by special arrangement

Cultivator Beams

Rack Rails

Note: M 37 and M 88 made only by special arrangement

COLD-ROLLED REAPER AND HARVESTER FINGER BARS

Accurately Finished and Straightened

Note: H 3 made only by special arrangement

COLD-ROLLED REAPER AND HARVESTER FINGER BARS

Accurately Finished and Straightened

HOT-ROLLED REAPER AND HARVESTER FINGER BARS

NOTE: H. 19, 20 & 21 made only by special arrangement.

STEEL T RAILS

SECTION R. I

40 lbs.

SECTION R. 2

35 lbs.

STEEL TEE RAILS

SECTION R. 3

SECTION R. 8

SECTION R. 4 25 lbs.

SECTION R. 7

SECTION R. 5 20 lbs.

SECTION R. 6
16 lbs.

(
S MANUFACTURED BY TONES & LAITGHT IN STEEL
Ġ
E
U
Z
<u></u>
Į
2
۹
_
مح
U.
エフ
\tilde{c}
\vdash
>
Щ
Д
田
R
ר
S
A
F
4
M
70
LS
I
RA
NO
NOTES
T
0
Z

			1					A - T		
СК	es and		No. of Spikes		9268 9152 8448 7680	11		16	0	
TRACK	Cross Ties Spikes *	S	No. of Cross Tie		2317 2288 2112 1920 1760			1 0		4
SINGLE	Cro	S	ALT COOK		25 25 25 25 25 25 25 25 25 25 25 25 25 2	BAR PUNCHING				
OF S	Bars Lbs.	(Jo	30 Feet 352 Sets	5244 3315 3258 2939	2031 1837 1517 1112	NC	-/			*
MILE (lice]	Lengths	28 Feet sta Sets	5617 3551 3497 3147	2185 1968 1625 1191	R P.	20".	, ,		4%"16%"-
TE M	s of Splice Bars Complete in Lbs.	, Lei	27 Feet stal Sets	5825 3683 3626 3264	2256 2041 1685 1235					
R ONE	sets c	ils in	26 Feet stag 304	6049 3824 3759 3390	2342 2119 1750 1283	SPLICE	-7	(
D FOR	Joints (Sets of and Bolts Com	Rails	25 Feet stal Sets	6287 3975 3907 3523	2434 2202 1818 1333	SPI	,,,	0		4"
REQUIRED	Joir	For	24 Feet stas 044	6556 4144 4074 3674	2236 2296 1896 1390					1 1
REC	st		Isa Second	621920 55 47320 392240	21 28 60 25 32 10 18 19 20 18 19 20 19 12 80 19 28 10		- Y	91	0	*5*
haic	ete Jo	ce wbj	nixorqqA no SanO lo liq2 owT) log ruo l	14.90 9.42 9.26 8.35	5.77 5.22 4.31 3.16	İ	For R1			For R ₂ to R ₈
	səyiq	S J	o əsiZ	5 x 16 0r5 x 1/2 4 1/2 x 1/2 4 x 1/2 4 x 1/2 4 x 1/2	3½x ½ 3½x ½ 3½x 3% 3 x x 3% 2½x 15		Round Holes		Θ-	
but	are î	olts olts che	Size of B Head, S	89 81 82 87 87 87 87 87 87 87 87 87	13 X X X X X X X X X X X X X X X X X X X	C			-(-)	4
3 OF LES	yr.	sa B	ooilq2 n1 odon1	Oval 11/8 x 13 31 x 16 31 x 16 32 x 16 32 x 16 34 x 16	34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	PUNCHING	*-2%- *			K2
Size			In K	Round 344 344 888 888 888 888 888 888 888 888	%%%%%% %%%%%%%	RAIL PUI	×-2%.	- 100	0	-2
SPLICE BARS			nyoidT anoni	72 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	REPUBLIA					
SPI	səı	[ɔu]	Length, 1	20 161/8 161/8	161/8 161/8 161/8 161/8	tional				,4-
	Yard	ght ght	isW Pounds	9888	02 11 8 12 8	addir	-¥			
S	s,		Head	1111 % \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	55 for on s				
RAILS	Size Inches	Flange		10 00 00 01	1.05 88 88 88 88 88 88 88 88 88 88 88 88 88	nge 235 for addit notes on spikes.	;		A	1- <u>*-</u> -
-		Height		10 00 00 00 00 00 00 00 00 00 00 00 00 0	2001 2003 88 110 110	*See page 235 for additional notes on spikes.	-> Head -			k-Flange.∽
1	1	noi	Sect	XXXX 101004	XXXX 2001-80	*	-X			-¥-
								741	gi∍H->	

FOR REFERENCE ONLY

Not Rolled by Jones & Laughlin Steel Co.

Rail sections recommended as standard by the Committee on Standard Rail Sections of the American Society of Civil Engineers. Dimensions which are constant for all sections are shown only on the 100-pound section. On other sections the dimensions special to each are alone shown.

METHOD OF INCREASING SECTIONAL AREAS

Dark portions represent the minimum sections, and the blank portions the added areas

CHAINS

Straight Link Coil Chain.

Standard Close Link Cable Chain.

Standard Stud Link Cable Chain.

Conveyor or Sprocket Wheel Chain.

Twist Coil Chain.

For sizes, dimensions and notes on the above chains, see page 41.

CHAINS

Sizes, Weights, Dimensions and Proof Tests of Chains Manufactured by Jones & Laughlin Steel Co.

AIN		STRA		Link	Coil		S'T'I CA		OSE]			'D ST		
Size of Chain in Inches	Length of Link Inches	Width of Link Inches	Weight per Ft. of Chain	Proof Test for BB Chain	Proof Test for BBB Chain	Proof Test for Dredge Chain	Length of Link Inches	Width of Link Inches	Weight per Ft. of Chain	Proof Test	Length of Link Inches	Width of Link Inches	Weight per Ft. of Chain	Proof Test
t	1	w	Lbs.	Tons	Tons	Tons	1	w	Lbs.	Tons	1	W	Lbs.	Tons
3 16 1/4 5 16 3/8 7 16 1/2	13/8 1½ 13/4 2 2¼ 2½	$ \begin{array}{c} 13\\ 1\\ 1\\ 1\frac{3}{16}\\ 1\frac{3}{16}\\ 1\frac{3}{8}\\ 1\frac{9}{16}\\ 1\frac{3}{4} \end{array} $.5 .75 1.10 1.55 2.00 2.65	.39 .66 1.37 1.92 2.64 3.41	.45 .75 1.6 2.21 3.05 3.92	.8 1.7 2.36 3.33	• • • •				• • • •			• • • •
9 16 5/8 11 16 3/4 13 16 7/8 15 16	27/8 31/4 31/2 33/4 4 41/4 41/2 43/4	$\begin{array}{c} 1_{15}^{15} \\ 2_{18}^{16} \\ 2_{18}^{16} \\ 2_{12}^{16} \\ 2_{11}^{16} \\ 3_{14}^{16} \\ 3_{12}^{16} \end{array}$	3.25 4.2 5.0 5.9 7.0 8.0 9.0 10.0	4.29 5.28 6.32 7.59 8.91 10.3 11.8 13.5	7.28 8.74 10.3 11.9 13.6				10.3		43/8 43/4 5 53/8 57/8	$\frac{3\frac{1}{4}}{3\frac{1}{2}}$	8.2	10.1 12.0 13.7 15.7 18.0
$\begin{array}{c} 1\frac{1}{16} \\ 1^{1}/8 \\ 1\frac{3}{16} \\ 1^{1}/4 \\ 1\frac{5}{16} \\ 1^{3}/8 \\ 1\frac{7}{16} \\ 1^{1}/2 \end{array}$	5 ½ 6 6½ 7 ¼	41/4	16.0 19.0	20.1		19.6 24.0 28.7 34.6	5 5 ³ / ₈ 5 ¹ / ₂ 5 ³ / ₄ 6 6 ¹ / ₄ 6 ⁵ / ₈ 6 ⁷ / ₈	37/8 41/8 41/4 41/2 43/4 5	11.8 12.7 13.7 15.2 16.5 18.8 19.7 21.7	15.1 16.9 18.7 20.6 22.6 24.7	6 1/4 6 1/2 6 3/4 7 1/8 7 3/8 7 3/4 8 1/8 8 1/2	4 ¹ / ₈ 4 ¹ / ₄ 4 ¹ / ₂ 4 ⁵ / ₈	11.5 12.3 13.5 15.0 16.2 18.3 18.8 21.2	22.8 25.5 28.1 31.0 34.0 37.2
$ \begin{array}{c} 1\frac{9}{16} \\ 15/8 \\ 1\frac{11}{16} \\ 1\frac{3}{4} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array} $	7 7/8	53/4	35.0	34.9		41.0	7 1/4 7 1/2	• • • •	23.0 25.3		87/8 9 1/4 9 5/8 10 10 1/2 10 3/4 11 1/8	5 1/8 6 6 1/4 6 3/4 7	23.8 25.0 26.2 28.8 33.8 35.8 38.8	47.5 51.2 55.2 63.3 67.5
$ \begin{array}{c c} 2\frac{1}{16} \\ 2^{\frac{1}{8}} \\ 2\frac{3}{16} \\ 2^{\frac{1}{4}} \end{array} $										• • • • •	$\frac{12}{12\frac{1}{2}}$	7 ³ / ₄ 8	42.3 46.0 48.3 50.0	86.1

Notes.—Safe working loads of chains are one-half of Proof Test Loads. Twist Coil Chains are made in all sizes from $\frac{3}{16}$ to $\frac{3}{4}$ -inch, inclusive. Conveyor or Sprocket Wheel Chains are made to any dimensions required, and in ordering give dimensions of links wanted, or preferably a sketch of same.

ROUND BARS
Sizes Rolled by Jones & Laughlin Steel Co.

DIAMETER INCHES	R FOOT	LENGTH	DIAMETER	R FOOT DS	LENGTH	DIAMETER Inches	R Foor	LE	KIMUM NGTH EET
DIAM INCHES	WEIGHT PER FOOT POUNDS	MAXIMUM LENGTH FEET	DIAME INCHES	WEIGHT PER FOOT POUNDS	MAXIMUM LENGTH FEET	DIAMI	WEIGHT PER FOOT POUNDS	Straight	Coiled
$7\frac{5}{16}$ $7\frac{1}{4}$ $7\frac{1}{8}$ $7\frac{1}{4}$ $7\frac{1}{8}$ $6\frac{3}{4}$ $6\frac{5}{8}$ $6\frac{1}{2}$ $6\frac{3}{8}$ $6\frac{1}{4}$ $6\frac{5}{8}$ $6\frac{1}{4}$ $6\frac{5}{8}$ $6\frac{1}{4}$ $6\frac{1}{8}$	142.8 140.4 135.6 130.9 126.2 121.7 117.2 112.8 108.5 104.3 100.2 96.14 92.17 88.29 84.49 80.77 77.15 73.60 70.14 66.76 63.46 60.25 57.12 54.07 51.11 48.24 45.44 42.73	45 45 45 45 45 45 45 45	$\begin{array}{c} 37/8 \\ 33/4 \\ 35/8 \\ 31/2 \\ 33/8 \\ 31/4 \\ 31/8 \\ 31/4 \\ 31/8 \\ 31/4 \\ 25/8 \\ 21/2 \\ 23/8 \\ 21/4 \\ 21/8 \\ 21/4 \\ 21/16 \\ 13/4 \\ 11/16 \\ 13/8 \\ 11/2 \\ 11/16 \\ 13/8 \\ 11/2 \\ 11/16 \\ 13/8 \\ 11/16 \\ 11/2 \\ 11/16 \\ 13/8 \\ 11/16 \\$	40.10 37.56 35.09 32.71 30.42 28.20 26.08 24.03 22.07 20.20 18.40 16.69 15.07 13.52 12.06 10.68 10.02 9.388 8.773 8.178 7.604 7.051 6.520 6.008 5.518 5.049 4.600 4.173 3.766	60 60 60 60 60 60	$\begin{array}{c} 1\frac{1}{8} \\ 1\frac{1}{16} \\ 1 \\ \hline \\ $	3.379 3.014 2.670 2.347 2.044 1.763 1.502 1.262 1.043 0.845 0.754 0.667 0.587 0.511 0.441 0.375 0.316 0.261 0.261 0.211 0.167 0.128 0.094	60 60 60 60 60 60 40 40 40 40 40 40 40 40 30 30 30 30	225 265 315 285 395 450 255 295 340 400 475 575 90 90 85 65

Note.—Maximum lengths denote shipping lengths.

SQUARE BARS
Sizes Rolled by Jones & Laughlin Steel Co.

SIDE	R FOOT DS	LENGTH	SIDE	R FOOT DS	LENGTH	Side	R Foor	LEN	CIMUM IGTH EET
INCHES	WEIGHT PER FOOT POUNDS	MAXIMUM LENGTH FEET	INCHES	WEIGHT PER POUNDS	MANIMUM LENGTH FEET	SIII SIII INCHES	WEIGHT PER POUNDS	Straight	Coiled
$4^{1}/4$ 4 $3^{3}/4$ $3^{1}/2$ $3^{1}/4$ 3 $2^{3}/4$ $2^{5}/8$ $2^{1}/2$ $2^{3}/8$ $2^{1}/4$ $2^{1}/8$ $2^{1}/8$ $2^{1}/8$ $2^{1}/8$ $2^{1}/8$ $2^{1}/8$ $2^{1}/8$	61.41 54.40 47.82 41.65 35.92 30.60 25.71 23.43 21.25 19.18 17.21 15.35 13.60 12.76 11.95 11.17	45 45 45 45 45 45 45 45 45 45 60 60 60	$\begin{array}{c} 1\frac{3}{4} \\ 1\frac{11}{16} \\ 1\frac{5}{8} \\ 1\frac{9}{16} \\ 1\frac{1}{2} \\ 1\frac{7}{16} \\ 1\frac{3}{8} \\ 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac$	10.41 9.682 8.978 8.301 7.650 7.026 6.428 5.857 5.313 4.795 4.303 3.838 3.400 2.988 2.603 2.245	60 60 60 60 60 60 60 60 60 60 60	3/41/16/80 9/66 17/2 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	1.913 1.607 1.328 1.076 0.960 0.850 0.747 0.651 0.478 0.402 0.332 0.269 0.212 0.163 0.120	60 40 40 40 40 40 40 40 30 30 30 30 30 30	70 70 75 75 80 80 75 70 70

	AL EDGE ACH PLA			BEVEL EDGE OR WAGON BOX							
A Ins.	B Ins.	R Ins.	A Ins.	B Ins.	C Ins.	A Ins.	B Ins.	C Ins.			
23 34 34 34 227 78 78 1 11/8	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	5/8 3/4 3/4 3/4 3/4 116 7/8	No. 12 No. 12 No. 14 $\frac{3}{16}$ 1/4 No. 13 No. 14		7/8 1 1 1 11/8 11/8 11/4 11/4	No. 12 No. 12 No. 12 14 No. 12 14 15 16 131	11 16 9 16			

Note.—Maximum lengths denote shipping lengths.

OVALS, HALF OVALS, HALF ROUNDS, HEXAGONALS AND BLUNT OVALS

Sizes Rolled by Jones & Laughlin Steel Company

OVALS \hat{h}	HALF OV	ALS		ALF	HEXAG- ONALS		
	Q-/		1-2	·d			
W Inches lack the second of t	W Inches // Inches R Inches R Inches	Weight Pounds	d Inches	Weight Pounds	d Inches	Weight Pounds	
1/2 1/4 5/16 0.297 9/16 9/3/2 0.376 5/8 5/16 3/2 0.465 3/4 5/16 3/2 0.551 3/4 3/8 1/3/2 0.551 3/4 3/8 1/3/2 0.669 7/8 5/16 1/16 0.632 7/8 7/16 1/2 3/4 1.508 1/2 1/4 1/5 1.508 1/4 1/2 3/4 1/16 2.670 BLUNT OVALS Spunod Spunod BLUNT OVALS Spunod Spunod Spunod Spunod Spunod Spunod Spunod Spuno	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.084 0.114 0.149 0.170 0.198 0.232 0.282 0.335 0.455 0.585 0.754 0.930 0.876 1.100 1.335 1.825 2.380 1.751 1.623 2.915 3.716 2.584 3.006	5 16 3/8 7/6 1/2 5/8 11 16 3/4 7/8 1 11/8 11/4 11/2 13/4 2	0.131 0.187 0.256 0.334 0.522 0.631 0.751 1.032 1.335 1.690 2.086 3.004 4.089 5.34	$\begin{array}{c} \frac{5}{16} \frac{3}{8} \\ \frac{3}{8} \\ \frac{7}{16} \frac{1}{2} \\ \frac{9}{16} \frac{5}{5} \\ \frac{11}{16} \frac{1}{6} \\ \frac{1}{16} \frac{1}{16} \\ \frac{1}{16} 1$	0.283 0.414 0.564 0.736 0.932 1.150 1.392 1.656 1.944 2.254 2.588 2.945 3.324 3.727 4.152 4.601 5.072 5.567 6.085 6.625 7.189 7.775 8.385 9.018 9.673	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$17/8$ $1\frac{15}{16}$	10.352 11.053	

STEEL HOOPS
Sizes Rolled by Jones & Laughlin Steel Company

WIDTH INCHES	Gauge	Width Inches	Gauge
1/2	13 to 19	13/4	13 to 19
5/8	13 to 19	2	13 to 18
3/4 7/	13 to 19 13 to 19	21/8	13 to 16
7/8	19 (0 19	21/4	13 to 16
1	13 to 19	23/8	13 to 16
11/8	13 to 19	2½	13 to 16
11/4	13 to 19	25/8	13 to 16
13/8	13 to 19	23/4	13 to 16
$1\frac{1}{2}$	13 to 19	2	19 4- 16
15/8	13 to 19	3	13 to 16

ROUND EDGE STEEL FLATS (Measurement Over All)

 $\frac{1}{2}$ to $\frac{3}{2}$ in. wide by $\frac{3}{16}$ to 1 in. thick . Advancing in width and thickness by 16ths.

ROUND EDGE STEEL TIRE (Measurement on Flat)

 $\frac{3}{4}$ to 3 in. wide by $\frac{3}{16}$ to 1 in. thick . $\begin{cases} \text{Advancing in width and thick-ness by 16ths.} \end{cases}$

LONGEST LENGTHS IN FEET, OF FLAT BARS Rolled by Jones & Laughlin Steel Company

TH	THICKNESS IN INCHES																
NIDTH	3 16	1/4	5 16	3/8	7 16	1/2	9 16	5/8	11 16	3/4	13 16	7/8	1	11/4	1½	13/4	2
16	••			75	75	75	75	75	75	75	75	70	70	60	45	44	3
15				75	75	75	75	75	75	75	75	70	70	60	45	44	3
14		75	75	75	75	75	75	75	75	75	70	65	65	50	40	40	3
13		75	75	75	75	75	75	75	75	75	70	65	65	50	40	40	3
12		75	75	75	75	75	75	75	75	75	70	65	65	50	40	40	3
11		75	75	75	75	75	75	75	75	75	70	65	65	50	40	40	3
10	50	75	75	75	75	75	75	75	75	75	70	65	65	50	40	40	3
$9\frac{3}{4}$	50	50	50	50	50	50	46	42	38	35	32	30	26	21	17	15	1
91/2	50	50	50	50	50	50	46	42	38	35	32	30	26	21	17	15	1
9	50	75	75	75	75	75	75	75	75	75	70	65	65	50	40	40	3
81/2	50	50	50	50	50	47	41	37	33	31	28	26	23	18	15	13	1
8	50	50	50	50	50	50	50	45	41	37	34	32	28	22	18	16	1
734	50	75	75	75	75	75	75	75	75	75	70	65	65	50	40	40	3
$7\frac{1}{2}$	50	50	50	50	50	50	50	45	41	38	34	32	28	22	19	16	1
71/4	50	50	50	50	50	50	50	50	47	43	39	36	32	25	21	18	1
7	50	50	50	50	50	50	50	50	48	44	40	38	33	26	22	19	1
$6\frac{3}{4}$	40	40	40	40	40	40	40	40	40	40	40	38	33	26	22	18	1
$6\frac{1}{2}$	50	50	50	50	50	50	50	50	48	44	41	38	33	26	22	19	1
6	50	50	50	50	50	50	50	50	50	49	45	42	36	29	24	21	1
$5\frac{1}{2}$	50	50	50	50	50	50	50	48	43	40	36	34	30	24	20	17	1
5	50	50	50	50	50	50	50	50	50	50	50	50	47	38	31	26	2
$4\frac{1}{2}$	50	50	50	50	50	50	50	50	50	50	50	50	50	40	34	29	2
$4\frac{1}{4}$	50	50	50	50	50	50	50	50	50	50	50	50	50	43	37	32	2
4	50	50	50	50	50	50	50	50	50	50	50	50	50	45	39	33	2
33/4	40	40	40	40	40	40	40	37	33	32	29	27	24	19	15	34	3
31/2	40	40	40	40	40	40	40	40	37	34	31	29	25	20	17	37	3
31/4	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	3
3	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	3
23/4	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
$2\frac{1}{2}$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
21/4	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
2	40	40	40	40	40	40	40	40	40	40	40	40	40	36	30	25	
13/4	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35		
$1\frac{1}{2}$	35	35	35	35	35	35	35	35	35	35	35	35	35	35			1
11/4	35	35	35	35	35	35	35	35	35	35	35	35	35				1
1	35	35	35	35	35	35	35	35	35	35	35	35	35				

FLATS
Sizes Rolled by Jones & Laughlin Steel Co.

WIDTH INCHES	THICKNESS INCHES	WIDTH INCHES	THICKNESS INCHES	WIDTH INCHES	THICKNESS, INCHES
1/2 5/8 3/4 7/8	No. 12 to $\frac{7}{16}$ No. 12 to $\frac{9}{16}$ No. 12 to $\frac{11}{16}$ No. 12 to $\frac{13}{16}$	33/8 31/2 35/8 33/4 37/8	No. 12 to 3½ No. 12 to 3¼ No. 12 to 3 No. 12 to 3½ ¼ to 3¾	7 7½ 7½ 7½ 7¾ 7%	No. 11 to 2 No. 10 to 3
1 11/8 11/4 13/8 11/2 15/8 13/4 17/8	No. 12 to 15/16 No. 12 to 1 No. 12 to 11/8 No. 12 to 11/4 No. 12 to 13/8 No. 12 to 11/2 No. 12 to 15/8 No. 12 to 13/4	4 41/8 41/4 43/8 41/2 45/8 43/4 47/8	No. 12 to 3½ No. 11 to 2 No. 12 to 2 No. 11 to 2	8 8½ 9 9½ 9¾ 10	No. 11 to 2 No. 11 to 2 No. 11 to 2 No. 11 to 2 No. 12 to 2 No. 13 to 2 No. 13 to 2
2 2½ 2½ 2¾ 2³/8 2½ 25/8 2³/4 27/8	No. 12 to 178 No. 12 to 11/2 No. 12 to 2 No. 12 to 21/4 No. 12 to 21/4 No. 12 to 11/2 No. 12 to 21/2 No. 12 to 23/4 No. 12 to 23/4	5 5 ¹ / ₄ 5 ¹ / ₂ 5 ³ / ₄ 6 6 ¹ / ₄	No. 11 to 2 No. 11 to 2	11 12 13 14	½ to 2
3 3½ 3½ 3½	No. 12 to 27/3 1/4 to 21/2 No. 12 to 3	6½ 6¾	No. 11 to 2 No. 11 to 2	15 16	3/8 to 2 3/8 to 2

NUT STEEL

Width	THICKNESS INCHES	Weight PER Foot	Width	THICKNESS INCHES	Weight PER Foot	Width	THICKNESS INCHES	WEIGHT PER FOOT
5 c45 c45 c45 c45 c45 c45 c45 c45 c45 c4	5 16 11 23 33 32 76 127 23 16 127 23 16	0.664 0.767 1.080 1.162 1.434 1.580 2.483	$\begin{array}{c} 1\frac{1}{8}\\ 1\frac{3}{16}\\ 1\frac{3}{16}\\ 1\frac{3}{2}\\ 1\frac{5}{16}\\ 1\frac{5}{3}\\ 1\frac{5}{$	1(61(63)65(33)65(65)65(65)	2.630 2.776 3.280 3.237 3.367 3.410 4.482	132 132 1332 134 238 238	$\begin{array}{c} 1_{16}^{1} \\ 1_{16}^{3} \\ 1_{16}^{5} \\ 1_{16}^{5} \\ 1_{16}^{76} \\ 1_{16}^{76} \end{array}$	5.757 7.192 8.785 10.69 12.61

Note.—See page 46 for maximum lengths of flats.

Sizes of Rectangular Plates Rolled on 108" Mill by Jones & Laughlin Steel Co. SHEARED STEEL PLATES

	24	100 100 100 100 100 100 100 100 100 100
1	36	250 250 250 250 250 250 250 250 250 250
-	40	360 360 360 360 360 360 360 360 360 360
	44	25.25.25.25.25.25.25.25.25.25.25.25.25.2
	48	1.2000 000 000 000 000 000 000 000 000 00
1	52	1080 1080 1080 1080 1080 1080 1080 1080
ES	56	1028400000000000000000000000000000000000
PLATES	09	11100000000000000000000000000000000000
LENGTH OF	64	00000000000000000000000000000000000000
	89	2564 2560 2560 2560 2560 2560 2560 2560 2560
TH AND	72	252 300 300 300 300 300 300 300 300 300 30
Млотн	92	2825 3800 3800 3800 2800 2800 1128 1128 1128 1128 1138 1138 1144 1138 1138 1138 1138 113
	80	222 224 226 2300 2300 2300 2300 2300 2300 2300
	84	216 264 264 264 264 276 276 276 1132 1132 1132 1133 1133 1133
	88	112002440 11324460 11324460 1132460 11
	06	*192 252 240 240 240 240 2240 2210 2210 2210 132 132 132 108
	94	24.0 192 192 193 193 193 193 193 193 193 193 193 193
	86	240 180 180 192 192 192 193 193 193 193 193 193 193 193 193 193
	102	168 174 174 180 180 180 180 180 180 180 180 180 180
	Тніск	400%/0/0/0/0/0/400/0 14%/0/0/4/0

Plates of greater width than shown in this schedule may be submitted for special consideration. *Plates 192" x 90" x 1/4" rolled by special arrangement.

RECTANGULAR PLATES ROLLED ON 78-INCH MILL

Sizes Rolled by Jones & Laughlin Steel Company

THICKNESS		Widi	гн А	ND L	ENGT	т оғ	PLA	TES I	in In	CHES	
THICKNESS	66	60	56	52	48	44	40	36	32	28	24
No. 11 No. 10	120 120 120 120 120 108	168 168 168 192 192 144	180 180 180 204 204 156	192 192 192 216 216 168	204 204 216 228 228 180	216 228 240 240	228 228 240 264 252 204	240 240 252 288 264 216	252 252 264 300 276 264	264 264 276 300 288 300	276 276 288 300 300 300

CIRCULAR PLATES

THICKNESS IN INCHES	Maximum Diameter in Inches	THICKNESS IN INCHES	Maximum Diameter in Inches
1/8 3 16 1/4 5 16 3/8 7 16 1/2	65 65 90 100 103 103 103	$ \begin{array}{c} \frac{9}{16} \\ 5/8 \\ \frac{11}{16} \\ 3/4 \\ \text{up to} \\ 1\frac{1}{2} \end{array} $	103 103 103

Plates of greater width than shown in this schedule may be submitted for special consideration.

All our plates are accurately straightened by the most improved straightening methods known.

WEIGHTS AND DIMENSIONS OF STEEL TEES With Equal Legs

					1
SECTION	Size in	INCHES	THICKNESS OF I	METAL, INCHES	WEIGH.
No.	Flange	Stem	Flange	Stem	Foot
T 1 T 2 T 3 T 4 T 5 T 6 T32 T 7 T 8 T 9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19	$\begin{array}{c} 4\\ 4\\ 3\frac{1}{2}\\ 3\frac{1}{2}\\ 3\frac{1}{2}\\ 3\\ 3\\ 2\frac{1}{2}\\ 2\frac{1}{4}\\ 2\frac{1}{4}\\ 2\frac{1}{4}\\ 2\frac{1}{4}\\ 1\frac{1}{4}\\ 1\frac{1}{4}\\ 1\\ 1\end{array}$	$\begin{array}{c} 4 \\ 4 \\ 3^{1/2} \\ 3^{1/2} \\ 3 \\ 2^{1/2} \\ 2^{1/4} \\ 2^{1/4} \\ 2^{1/4} \\ 2^{1/4} \\ 1^{1/2} \\ 1^{1/2} \\ 1^{1/4} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	1/2 to \(\frac{9}{16}\) 1/2 to \(\frac{1}{7}\) 1/3 to \(\frac{1}{7}\) 1/4 to \(\frac{3}{7}\) 1/4 to \(\frac{3}{7}\) 1/4 to \(\frac{3}{7}\) 1/4 to \(\frac{9}{3}\) 1/4 to \(\frac{9}{3}\) 1/4 to \(\frac{9}{3}\) 1/4 to \(\frac{9}{3}\) 1/4 to \(\frac{3}{7}\)	1/2 to 1/2 1/6 to 1/6 3/8 1/4 to 1/8 1/6 to 1/8 1/8 to	13.90 12.40 10.40 9.30 7.85 6.60 5.68 6.32 5.40 4.62 4.12 3.50 2.33 3.00 2.50 1.95 2.04 1.60 1.25 0.90

With Unequal Legs

Section	Size in	Inches	THICKNESS OF	METAL, INCHES	WEIGHT
No.	Flange	Stem	Flange	Stem	FOOT
T31 T33 T30 T29 T23 T24 T25 T26 T27 T28	$\begin{array}{c} 5 \\ 4^{1}/2 \\ 3^{1}/2 \\ 3^{1}/2 \\ 3^{1}/2 \\ 3^{1}/2 \\ 3^{1}/2 \\ 3 \\ 2^{1}/2 \\ 2^{1}/2 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3/8 to $\frac{7}{16}$ $\frac{5}{16}$ to $\frac{3}{8}$ $\frac{1}{2}$ to $\frac{9}{16}$ $\frac{3}{8}$ to $\frac{7}{16}$ $\frac{7}{16}$ to $\frac{1}{2}$ $\frac{3}{8}$ to $\frac{7}{16}$ $\frac{7}{16}$ to $\frac{1}{2}$ $\frac{1}{4}$ to $\frac{9}{3}$ $\frac{5}{16}$ to $\frac{1}{3}$ $\frac{1}{2}$	$\begin{array}{c} \frac{7}{16} \text{ to } \frac{2}{3}\frac{1}{2} \\ \frac{5}{16} \text{ to } \frac{3}{8} \\ \frac{1}{2} \text{ to } \frac{9}{16} \\ \frac{3}{8} \text{ to } \frac{7}{16} \\ \frac{7}{16} \text{ to } \frac{1}{2} \\ \frac{3}{8} \text{ to } \frac{7}{16} \\ \frac{7}{16} \text{ to } \frac{7}{16} \\ \frac{7}{16} \text{ to } \frac{1}{2} \\ \frac{1}{4} \text{ to } \frac{9}{3}\frac{1}{2} \\ \frac{5}{16} \text{ to } \frac{1}{3}\frac{1}{2} \end{array}$	11.00 8.60 12.80 9.90 9.80 9.00 8.60 9.80 3.90 4.80

Note.—The maximum length in which we can furnish tees is 35 feet. In ordering extreme lengths a leeway of five feet will facilitate the execution of orders.

Z BARS
Sizes, Weights, Dimensions and Maximum Lengths,
Rolled by Jones & Laughlin Steel Co.

Section Number	THICKNESS OF METAL, INCHES	Sız	E IN INC	HES	Weight per Foot	Area of Section	Maximum Length, Feet
SEC	THICK	Flange	Web	Flange	Weig	ARE	MAX
Z4 Z4 Z4	1/4 5 16 3/8	$egin{array}{c} 2rac{1}{1}rac{1}{6} \ 2rac{3}{4} \ 2rac{1}{1}rac{3}{6} \ \end{array}$	$\begin{array}{c} 3\\ 3\frac{1}{16}\\ 3\frac{1}{8} \end{array}$	$\begin{array}{c} 2\frac{1}{1}\frac{1}{6} \\ 2\frac{3}{4} \\ 2\frac{1}{1}\frac{3}{6} \end{array}$	6.7 8.4 10.1	1.97 2.48 3.00	54 50 41
Z8 Z8 Z8 Z8	7 16 1/2 9 16 5/8	$ \begin{array}{c} 25/8 \\ 2\frac{1}{16} \\ 2\frac{3}{4} \\ 2\frac{13}{16} \end{array} $	$\begin{array}{c} 2\frac{15}{16} \\ 3 \\ 3\frac{1}{16} \\ 3\frac{1}{8} \end{array}$	$\begin{array}{c} 25/8 \\ 2\frac{1}{1}\frac{1}{6} \\ 2\frac{3}{4} \\ 2\frac{1}{1}\frac{3}{6} \end{array}$	10.9 12.5 14.2 16.0	3.20 3.69 4.18 4.69	34 30 26 23
Z9			3	1½	3.6	1.06	

	11/8	26.9
LEGS	116	54.0
	-	30.6
EQUAL	100	28.1 28.3 28.9
1	100	27.2.1.2.2.1.2.2.1.2.2.2.1.2.2.2.2.2.2.2
ANGLES	133	42.0 31.0 25.4 119.9 17.1
AN		38.3 28.7 23.6 16.0 16.0
OF	11	35.8 26.5 21.8 17.1 14.8 12.5
DIMENSIONS	700	32.7 24.2 20.0 15.7 11.5 11.5
ENSI	9	29.6 21.9 118.1 14.3 12.4 10.4 8.5
DIM	75,	26.4 19.5 10.2 10.2 10.2 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3
AND	16	
TA	, so	:41 :421 :0.00 :0.
FOOT	rc[10	
PER	14	0 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0
WEIGHTS	7%	3.2.2.1.1.1.00 8.8.0.4.1.0.7.4.8.1.000
WE	Size in Inches	8 9 2 4 8 8 8 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

CS	1	30 6	0.00																													
DEU T	15		27.2		6 76								_																		_	
UNEQUAL	1,8%		25.71							18.3												_										
Z	I a							18.0							_																	
ANGLES	34	1						17.0																								
שוא	112			,				10.0																								-
J. O.	12/8	1 .						14.							10.5																	
2	I G							10.0							9.5																	
	1/2							11.0									6.8		0.9		5.6											
	10	14.3	13.5	15.8	12.0	200	10.01	10.0	10.0	ν. Σ,	9.1	က တ	7.2				6.1		5.3		4.9											
	3/8	12.3	11.7	1	10.4	0	-	 		က ()	7.9	7.2	6.3				5.3		4.7	4.8	4.4		7.0			3.7						
THE T	16		•	4	200	00 00 00	11	1-1-	- 0	2.5	9.9	6.1	5.3		5.6	5.0	÷.5		4.0	•	3.7	c	એ દ્વ વા દ્વ	2 2 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	ox ox	3.13	0 7	- i				
	7,7						•			: 0	5.3	4.9	4.3 دي		4.5	4.1	3.7	3.4	3.5		3.0	0	010	- i	*	2.6	18 848 69	30.3				-
	18		•				•	•						3.0		3.1	2.8	2.6	2.4	0 0	2.3	C	2.0	i		1.95		F-101	1.5	1.33	0	26.
	1/8									•			•							•		J. 9		•		•	•			.92	1.04	.00
	SIZE IN INCHES		6 ×3½				1	4 ×31%	77 00 00 00 00 00 00 00 00 00 00 00 00 0	4 × × × × × × × × × × × × × × × × × × ×	372×3	3/2×2/2	374×2	374×175	3 ×2½	3 ×2	2½×2	2½×1¾	$2\sqrt{2} \times 1\sqrt{2}$	$2\frac{1}{4} \times 1\frac{5}{3}$	2¼×1½	0 \\11/	××××××××××××××××××××××××××××××××××××××		6 XI	134×11/2	134×11/8	11//1	17271		×>	

LONGEST LENGTHS IN FEET OF ANGLES Rolled by Jones & Laughlin Steel Co.

ZE	HES						Тн	ICKN	NESS	IN	Inc	CHES	S 				
SIZE	Inc	1/8	3 16	1/4	5 16	3/8	7 16	1/2	9 16	5/8	11	3/4	13 16	7/8	1	1 1 6	11/8
8 >				• • •			•••	95	95	95	95	95	95	95	95	95	95
6 >	×6 ×4 ×3½					100	100	100	100	100	100 100 100	100	100	100	100		
5 > 5 >	×5 ×4 ×3½ ×3			• • •	100	100 100	100 100	100 100	100 100	100 100	100 100 100 100	100 100	$\begin{array}{c} 100 \\ 100 \end{array}$	100 100	100		
41/2>	×3				54	54	54	54	54	54	50	46	44				
4 >	×4 ×3½ ×3			• • •	54 54 54	54 54 54	54	54	54 54 54	54		44 46 50	42				
3½/2/ 3½/2/	×3½ ×3 ×2½ ×3¼	• • •	54 54	54 54 54 54	54 54 54 54	54 54 54 54	54 54	54	54 54 54 54	54 54	54 54		46				
3 2	$\begin{array}{c} \times 3 \\ \times 2\frac{1}{2} \\ \times 2 \\ \times 2^{3}4 \end{array}$	54	54 50 50	54 54 50 50	54 50	54 40	54 35	54 31	54								
21/2)	$\begin{array}{c} \times 2\frac{1}{2} \\ \times 2 \\ \times 1\frac{1}{2} \end{array}$	50	50 50 50	50 50 50	50	45	45	35									
	$\begin{array}{c} \times 1\frac{1}{2} \\ \times 2\frac{1}{4} \end{array}$	50	50 50														
2 2 2	×2 ×1½ ×1¾	50	50 35 35	35	35	35		45									
13/4	×1¾	35	35	35	35	35	35										
1½	$\times 1\frac{1}{2}$	35	35	35	35	35											
11/4	×1¼	35	35	35	35												
1	$\times 1$	45	45	45													
3/4	× ¾	45	45											1			

Lengths given are in feet. In ordering extreme lengths, a leeway of five feet will facilitate the execution of orders.

AREAS OF ANGLES

Size Inches	1/8	3 16	1/4	<u>5</u> 16	3/8	7 16	1/2	9 16	5/8	11 16	3/4	13 16	7/8
3 ×3 3 ×2½ 3 ×2 2¾×2¾ 2½×2½ 2½×2½	0.76 0.71 0.62	0.88 0.911 0.88 0.88 0.911 0.881	1.94 1.69 1.44 1.56 1.26 19 31 19 06	2. 25 2. 40 2. 09 2. 09 1. 93 1. 78 1. 56 1. 62 1. 47 1. 62 1. 47	3. 61 3. 42 3. 61 3. 24 3. 05 2. 86 2. 68 2. 48 2. 48 2. 30 1. 82 2. 11 1. 92 1. 73 1. 92 1. 73	5.06 4.18 3.97 4.18 3.76 3.53 3.31 3.09 2.87 2.65 2.43 2.22 2.00 2.22 2.00	5.75 4.75 4.75 4.26 4.00 3.75 3.50 3.25 3.25 3.00 2.75 3.00 2.38 2.75 2.50 2.25 2.50 2.25	5.31 5.03 5.31 4.74 4.47 4.18 3.91 4.18 3.91 3.62 3.62 3.34 3.06 3.34 2.64	7. 11 5. 86 5. 55 5. 86 5. 24 4. 92 4. 61 4. 29 4. 61 4. 29 3. 98 3. 98 3. 36 7.	7.78 6.41 6.06 6.41 5.71 5.37 5.03 4.68 5.03 4.68 4.34	8.44 6.94 6.56 6.94 6.18 5.81 5.44 5.06 5.44	12.34 9.09 7.47 7.06 7.47 6.65 6.25 5.84 5.44 5.03 5.03	13. 23 9. 74 7. 99 7. 55 7. 99 7. 12 6. 67 6. 28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.480	0.710	.94 .06 .94	1.31 1.15	1.55	1.782	2.00			. (*
$2 \times 1\frac{3}{8} \times 1\frac{3}{4} \times 1\frac{3}$	0.420	0.620 0.590 0.620	.79 (.81)	0.97 1.00		1. 30		Siz		15 16	1	116	1½8
1½×1½ 1¼×1¼ 1 ×1	0.360 0.300 0.240	0.57 0 0.53 0 0.43 0 0.34 0 0.27 0.25	.69().84(8×8 6×6 6×4 6×3 5×5	1/2	14.12 10.37 8.50 8.03 8.50	11.00	15.87	16.73

Size				Aı	REA	то	BE	DE	DUC	TED	FO	r O	NE	Hor	E		
Hole	1/8	3 18	1/4	16 16	3/8	7 1 ⁸	1/2	16	5/8	11 16	3/4	13	7/8	15 16	1	118	1½8
16 16 16 16 15 16	. 09	. 13	$\frac{.17}{.20}$	$\frac{.21}{.25}$	$\frac{.25}{.30}$	$\frac{.30}{.36}$. 34	. 39	.43	. 47	.52	. 56	. 60	. 53 . 64 . 76 . 88	. 69	.73	

Above table gives area of angles corresponding to thickness varying by ${}^1_{\bar{0}}$ -inch.

DIMENSIONS OF STANDARD STEEL BEAMS, AND MAXIMUM LENGTHS

d Inches	Weight per Foot	b Inches	t Inches	s Inches	a Inches	Size of Flange Holes, Inches	Max. Length, Ft.	d Inches	Weight per Foot	b Inches	t Inches	s Inches	a Inches	Size of Flange Holes, Inches	Max. Length, Ft.
24	95 90	7.254 7.192 7.131 7.070	$\begin{bmatrix} 0.692 \\ 0.631 \end{bmatrix}$	0.60	4	13 16	57 60 62 65	12	31.0	5.085 5.000	0.350	0.35	23/4	13 16	75 75 75
	80	7.000 7.284	0.500				69 45	10	40 35 30 25	5.101 4.954 4.807 4.660	$0.604 \\ 0.457$	0.31	25/8	13 16	75 75 75
20	95 90 85	7.210	0.810 0.737 0.663	0.65	4	13	47 50 50 53	9	35 30 25	4.787 4.624 4.461	0.747 0.584 0.421	0.29	2½	13	75 75 75
20	70		$0.649 \\ 0.575 \\ 0.500$	0.55	31/2	13	56 60 64	_	21 25.5	$\frac{4.330}{4.272}$	0.290 0.542				75
18	$\begin{bmatrix} 65 \\ 60 \end{bmatrix}$	6.177 6.098	0.719 0.637 0.555	0.46	31/4	13	60 63 65	8	23 20.5 18	4.090	$0.451 \\ 0.360 \\ 0.270$	0.27	21/4	136	75 75 75 —
_	100	6.792	$\begin{bmatrix} 0.460 \\ \\ 1.192 \\ 1.094 \end{bmatrix}$				70 43 45	7	20 17.5 15	3.765	$0.460 \\ 0.355 \\ 0.250$	0.25	21/4	11 16	75 75 75
15	$\frac{90}{85}$	6.596 6.498	0.996 0.898 0.800		33/4	13	48 51 55	6	14.75	3.453	0.475 0.353 0.230	0.23	2	11 16	75 75 75
15	70 65	6.196 6.098	$ \begin{array}{c} 0.884 \\ 0.786 \\ 0.688 \\ 0.590 \end{array} $	0.59	3½ 3½ 3¼ 3¼ 3¼ 3¼	13	56 60 64 70		14.75 12.25	3.294 3.147	0.250 0.504 0.357 0.210	0.21	13/4	9 16	75 75 75
15	$\begin{vmatrix} 50 \\ 45 \end{vmatrix}$	5.656 5.558	0.664 0.566 0.468 0.410	0.41	3	13	75 75 75 75		10.5 9.5 8.5	2.880 2.806 2.733	$\begin{bmatrix} 0 & 0.410 \\ 0.366 \\ 0.263 \end{bmatrix}$	0.19	11/2	9 16	50 50 50
12	55 50 48	5 5 618 5 496 5 5 373	0.950 8 0.828 6 0.706 8 0.583 0.460	$\begin{bmatrix} 0.46 \end{bmatrix}$	3	13	55 60 65 65 75		7.5 7.5 6.5 5.5	2.526 2.428	0. 190 0. 366 0. 268 0. 170	0.17	7 1 7 1 6	7 16	50 50 50 50

Lengths given are in feet. In ordering extreme lengths, a leeway of five feet will facilitate the execution of orders.

DIMENSIONS OF STANDARD STEEL CHANNELS AND MAXIMUM LENGTHS

d Inches	Weight per Foot	b Inches	t Inches	s Inches	a Inches	Flange Holes, In.	Max. Length, Ft.	Inches	Weight per Foot	b Inches	t Inches	s Inches	a Inches	Flange Hales, In.	Max. Length, Ft.
15	55 50 45 40 35 33	3.638 3.538 3.440	0.831 0.733 0.636 0.538 0.440 0.400	0.40	2½ 2½ 2¼ 178 178 178	13	75 75 75 75 75 75	7	19.75 17.25 14.75 12.25 9.75	$\begin{bmatrix} 2.405 \\ 2.300 \\ 2.195 \end{bmatrix}$	0.630 0.525 0.420 0.315 0.210	0.21	1½ 1½ 1¼ 1¼ 1¼ 1¼	13 16	75 75 75 75 75
13	52 to 31.5	4.460 to 4.000	to	0.34	21/4	13	60 to 75	didS 7	22.0 20.5 18.0	3.5 3.43 3.33	0.50 0.43 0.33	0.475	2 2 2	13	90 90 90
12	$\begin{vmatrix} 40 \\ 35 \\ 30 \\ 25 \\ 20.5 \end{vmatrix}$	3.410 3.290 3.170 3.050 2.940	$0.636 \\ 0.513 \\ 0.390$	0.28	2 2 2 1 ³ / ₄ 1 ³ / ₄	1316	75 75 75 75 75	6	15.50 13.00 10.50 8.00	2.166 2.043 1.920	0.568 0.446 0.323 0.200	0.20	13/8 13/8 11/8 11/8	11 16	75 75 75 75 75
10	35 30 25 20 15	3.188 3.041 2.894 2.747 2.600	$0.681 \\ 0.534 \\ 0.378$	0.24	2 2 2 1½ 1½ 1½	13	75 75 75 75 75	g Ship	18.40 17.10 15.90 14.60 13.30 15.0	3.000 2.936 2.874	0.562 0.500 0.437 0.375 0.312 0.35	0.28	1¾ 2		
9	$\begin{array}{c} \\ 25 \\ 20 \\ 15 \end{array}$	2.814 2.651 2.478	0.614 0.451	0.23	1 ³ / ₄ 1 ³ / ₄ 1 ³ / ₈ 1 ³ / ₈	13	75 75 75	5	11.50 9.00 6.50	2.044 1.897 1.750	0.337	0.19	1½ 1¼ 1¼ 1	9 16	75 75 75 75
	13.25	2.430	0.230			_	75 	4	7.25 6.25 5.25		$0.327 \\ 0.254 \\ 0.180$	0.18	1	9 16	50 50 50
8	18.75 16.25 13.75	$2.536 \\ 2.444$	0.496 0.404 0.312	0.22	1½ 1½ 1½ 1½ 1¼ 1¼ 1¼	13 16	75 75 75 75	3	6.00 5.00 4.00	1.606	$0.366 \\ 0.268$	0.17	15 16		50 50 50 50

Lengths given are in feet. In ordering extreme lengths, a leeway of five feet will facilitate the execution of orders.

CAST SEPARATORS FOR BEAMS Separators with Two Bolts

Designation of Beam			DISTANCES		Вогтз			WEIGHTS			
Depth Inches	Number of Shape	Weight Pounds	Out to Out of Flanges of Beams Inches	Center to Center of Beam Inches	Size Inches	Distance, Center to Center, Inches	Length Inches	Bolts and Nuts Pounds	Increase of Bolts for 1 inch Additional Spread of Beams Pounds	Separator Pounds	Add to Separator Weight for each Inch Spread of Beams Pounds
24	В 0	80	143/4	73/4	3/4	12	91/4	33/4	0.25	293/4	5½
20 20	B 1 B 2	80 65	14 ³ / ₄ 13 ¹ / ₄	73/4 7	3/4 3/4	10 10	9½ 8½	$\frac{3\frac{3}{4}}{3\frac{1}{2}}$	$0.25 \\ 0.25$	$\frac{24^{3}}{4}$	$3\frac{1}{16}$ $3\frac{1}{16}$
18	B 2½	55	123/4	63/4	3/4	9	8½	3½	0.25	19	234
15 15 15	B 2¾ B 3 B 4	80 60 42	$\begin{array}{c c} 13^{5}/8 \\ 12^{3}/4 \\ 11^{1}/2 \end{array}$	7½ 6¾ 6	3/4 3/4 3/4	7 7 7	9 8 7½	3½ 3¼ 3 3	$0.25 \\ 0.25 \\ 0.25$	13½ 12½ 11½	$ \begin{array}{c} 13/4 \\ 13/4 \\ 1\frac{13}{16} \end{array} $
12	В 6	31½	103/4	53/4	3/4	6½	71/8	3	0.25	9½	1½

Separators with One Bolt

12 12	B 5 B 6	40 31½	11 10 ³ ⁄ ₄	5 ³ / ₄ 5 ³ / ₄	3/4 3/4	 7½ 7½ 7½	$\frac{1\frac{1}{2}}{1\frac{1}{2}}$	0.12 0.12	9½ 9½	$\frac{1\frac{7}{16}}{1\frac{1}{2}}$
10 10	B 7 B 7	40 25	11 10½	6 5½	3/4 3/4	 $7\frac{3}{4}$ $6\frac{7}{8}$	13/8 13/8	$0.12 \\ 0.12$	7 7½	$1\frac{3}{16}$ $1\frac{1}{4}$
9	B 8 B 8	35 21	10½ 93/8	5½ 5	3/4 3/4	 7½ 6¾	1 ³ / ₈ 1 ³ / ₈	0.12 0.12	61/2	$1\frac{1}{16}$ $1\frac{1}{4}$
8	B 9 B 9	25½ 17¾	9½ 8¾ 8¾	5 4 ³ ⁄ ₄	3/4 3/4	 $6\frac{1}{2}$	13/8 13/8	0.12 0.12	5½ 5½	15 16 15 16
7 7	B10 B10	20 15	85/8 81/4	5 41/2	3/ ₄ 3/ ₄	 6½ 5¾ 5¾	1½ 1¼	$0.12 \\ 0.12$	$\frac{41/2}{41/2}$	$\frac{13}{16}$
6	B11 B11	17½ 12¼	7½ 7½ 7½	4 3 ³ ⁄ ₄	3/4 3/4	 5½ 5	1½ 1½	0.12 0.12	2½ 2½	1/2 9 16
5 5	B12 B12	14 ³ / ₄ 9 ³ / ₄	7 6½	3 ³ / ₄ 3 ¹ / ₂	3/4 3/4	 5½ 4¾ 4¾	1½8 1½8	0.12 0.12	13/4 13/4	$\frac{\frac{7}{16}}{\frac{7}{16}}$
4	B13	7½	57/8	31/4	3/4	 41/2	11/8	0.12	1½	3/8
3	B14	5½	51/4	3	3/4	 41/4	3/4	0.12	11/2	1/4

Separators for 18, 20 and 24-inch beams are made of ½-inch metal. Separators for 6 to 15-inch beams are made of ½-inch metal. Separators for 5-inch beams and under are made of ¾-inch metal. Minimum widths given. Separators can be made wider.

STANDARD SPACING AND DIMENSIONS OF RIVET AND BOLT HOLES

Through Flanges of Beams, Channels, Connection Angles

K-A-> K-B->					₽ B B					Ĉ		
STEEL BEAMS						STEEL	Angles					
Depth in Inches	Weight per Foot, Pounds	Diameter of Bolt or Rivet, Inches	Inches 🔻	Inches &	Depth in Inches	Weight per Foot, Pounds	Diameter of Bolt or Rivet, Inches	Inches v	Inches &	Depth of Leg, Inches	Max. Diam. of Bolt or Rivet, Inches Inches	
24	80.	3/4	4	5 1/2	15	45.	3/4	2 1/4	5 5/8	6	1 3½	
20 20	80. 65.	3/ ₄ 3/ ₄	4 3 1/2	5 ½ 5 ½	15 13	33.	3/4 3/4	17/8 21/4	$5\frac{7}{16}$ $5\frac{3}{8}$	5	1 2 3/4 1 2 1/4	
18	55.	3/4	31/4	5 ½	12 12	30. 20.5	3/ ₄ 3/ ₄	2 1¾	$5\frac{1}{2}$ $5\frac{5}{16}$	31/2	$ \begin{array}{c c} 1 & 2\frac{1}{4} \\ 1 & 2 \end{array} $	
15 15 15	80. 60. 42.	3/4 3/4 3/4	3 ³ / ₄ 3 ¹ / ₄ 3	$ \begin{array}{c c} 5\frac{1}{16} \\ 5\frac{5}{8} \\ 5\frac{7}{16} \end{array} $	10 10	25. 15.	3/4 3/4	2 1½	$5\frac{9}{16}$ $5\frac{1}{4}$	31/4	7/8 13/4	
12 12	40. 31.5	3/4 3/4 3/4	3 23/4	5 ½ 5 ½ 5 3/8	9	20. 13.25	3/4 3/4	13/4 13/8	$5\frac{7}{16}$ $5\frac{1}{4}$	3 2 3/4	7/8 13/4 3/4 11/2	
10	$\begin{vmatrix} 31.5 \\ 25. \end{vmatrix}$	3/4	25/8	$5\frac{5}{16}$	8 8	$\begin{vmatrix} 16.25 \\ 11.25 \end{vmatrix}$	3/ ₄ 3/ ₄	1½ 1¼	$5\frac{7}{16}$ $5\frac{1}{4}$	21/2	3/4 13/8	
9	21.	3/4	21/2	$5\frac{5}{16}$	7	17.25 9.75	3/4	11/2	$5\frac{9}{16}$ $5\frac{1}{4}$	2 1/4	3/4 1 1/4	
8	17.75		21/4	5 1/4	7	Ship	3/ ₄ 3/ ₄	1 1/4 2	$\begin{array}{c} 5 \\ 5 \\ \overline{1} \\ \overline{6} \end{array}$	2	5/8 1 1/8	
7	15.	.5/8		51/4	6	13. 8.	5/8 5/8	13/8 1 1/8	$5\frac{7}{16} \ 5\frac{3}{16}$	1 3/4	$\frac{5}{8}$ $\frac{1}{16}$	
6	12.25			51/4	6	Ship	3/4	2	53/8	1 1/2		
5	9.75	1/2	13/4	51/4	5		1/2	11/4	$5\frac{3}{8}$ $5\frac{3}{16}$	1 1/4	1	
4	7.5	1/2	1 1/2	$5\frac{3}{16}$		5.25					3/8 16	
3	5.5	3/8	$1\frac{7}{16}$	$5\frac{3}{16}$			3/8		$5\frac{3}{16}$		1/4 7 ₆	

The spaces "B" correspond with spacing given on page 61 for Standard Connection Angles.

Notes on Standard Connection Angles for Jones & Laughlin Steel Co.'s Beams

The Standard Connection Angles for Jones & Laughlin Steel Co.'s Steel Beams, illustrated on next page, are designed for an allowed shearing strain of 10,000 pounds per square inch, and a bearing strain for 20,000 pounds per square inch on rivets or bolts, corresponding with an extreme fiber strain of 16,000 pounds per square inch in the beam. The minimum span length at and above which the standard connections can be used with safety (the beam being loaded with its full capacity) are shown in the tables below. For shorter spans (the beam being loaded with its full capacity) additional strength in the connection should be made.

Table of Minimum Spans for Jones & Laughlin Steel Co.'s Steel Beams for which Standard Connection Angles may be Safely Used with Beams Loaded to their Full Capacity.

Section No.	Size of Beam Inches	Weight per Foot	Minimum Safe Span in Feet	Section No.	Size of Beam Inches	Weight per Foot	Minimum Safe Span in Feet
В 0	24	80	18.0	В 8	9	25	9.6
В 1	20	80	16.0	В 8	9	21	8.6
B 2	20	65	14.0	В 9	8	25¼	7.6
B 2½	18	55	14.0	В 9	8	173/4	7.0
B 23/4	15	80	12.6	В 10	7	20	6.0
В3	15	70	12.0	B 10	7	15	5.6
В4	15	60	11.6	B 11	6	17 ¼	6.6
В4	15	50	11.0	B 11	6	121/4	6.0
B 4	15	42	10.6	B 12	5	143/4	4.0
В 5	12	40	8.6	B 12	5	93/4	4.0
В 6	12	31½	7.6	В 13	4	10½	3.0
В7	10	35	10.6	В 13	4	7 ½	3.0
В7	10	25	9.0				

STANDARD CONNECTION ANGLES For I Beams and Channels

LOCATION OF CONNECTION ANGLES

(For Beams of Different Sizes Framing opposite, Bottoms or Tops being Flush)

BEARING PLATES FOR BEAMS AND CHANNELS ON BRICK OR MASONRY

Size of Beam or Channel	N WALL	N ALL SIZE OF		Safe Bearing Values in Tons for Plates Resting on			
	ZH SIZE OF BEARING PLATES		WEIGHT IN	Common Brick	First Class Brick	Ordinary Masonry	
3 4 5 & 6 inch	$\begin{bmatrix} 6 \\ 6 \end{bmatrix}$	$\begin{array}{c c} 6 \times 6 \times \frac{3}{8} \\ 6 \times 6 \times \frac{1}{2} \end{array}$	4 5	1.8	2.7	4.5	
7 & 8 inch	8 8	8× 8×½ 8× 8×¾	9 14	3.2	4.8	8.0	
9 & 10 inch	8	$\begin{array}{c} 8 \times 12 \times \frac{1}{2} \\ 8 \times 12 \times \frac{3}{4} \end{array}$	14 20	4.8	7.2	12.0	
12 inch 31.5 pounds	12 12	$\begin{array}{c} 12 \times 12 \times \frac{1}{2} \\ 12 \times 12 \times \frac{3}{4} \end{array}$	20 31	7.2	10.8	18.0	
12 inch 40 pounds and up 15 inch 42 pounds	12 12	$12 \times 16 \times \frac{3}{4}$ $12 \times 16 \times 1$	41 54	9.6	14.4	24.0	
15 inch 60 and 80 pounds	12 12	$\begin{array}{c} 12 \times 18 \times \frac{3}{4} \\ 12 \times 18 \times 1 \end{array}$	46 61	10.8	16.2	27.0	
18 20 24 inch	16	16×16×1	73	12.8	19.2	32.0	

Above bearing values are based on the following table:

Use the thicker plate for bearing values exceeding those given under

common brick work.

When end reaction exceeds the above safe bearing values, special plates will be provided. 20-inch and 24-inch beams will usually require special calculations.

BUILT COLUMN SECTIONS

Dotted lines indicate lattice.

GENERAL DETAILS

Notes on Splicing of Columns and Connection of Beams to Columns

Page 65 illustrates manner of splicing columns and also methods of attaching floor beams and girders to columns.

It will be noted that the columns are composed of four angles and one web plate.

Experience in the construction of skeleton steel frames for buildings, in the past ten years, has plainly demonstrated that columns so constructed are generally as economical in the use of material as when composed of zees or other shapes. Besides, the angles are easier to get from the mills and the connections on such columns are more simple and accessible.

In the fabrication of plate and angle columns less trouble is encountered in keeping them straight and out of wind. The designer has at his command a large list of sizes and weights of angles, so that the proper strength can be easily attained either with the four shaft angles or by the addition of flange plates.

Three kinds of splices are shown, designated as A, B and C. The first and last are for light and heavy columns of same widths of web plates, while that marked B is for columns of different widths of web plates, necessitating the use of pressure plates D and fillers F.

Pressure plates are commonly $\frac{3}{4}$ -inch thick, and splice plates $\frac{3}{8}$ -inch to $\frac{1}{2}$ -inch; the latter being about eighteen inches long; the columns being spliced about 1 foot 3 inches above finished floor level.

The beam connections illustrated will cover most cases occurring in practice.

The reactions given for the various connections apply to columns with metal $\frac{3}{8}$ -inch thick or more. With shafts $\frac{1}{4}$ -inch thick, the reaction must be reduced accordingly.

The bearing value of rivets should equal the double shearing value, where beams or girders connect on each side of column webs. See tables on pages 184 and 185.

FIREPROOF FLOOR CONSTRUCTION

GENERAL DETAILS OF FLOORS AND CONNECTIONS

GENERAL DETAILS OF CEILINGS

Fig. 1

Fig. 2

Fig. 3

DETAILS OF PARTITIONS

Fig. 4

Fig. 6

Fig. 7

FIREPROOFING COLUMNS

Fig. 8

Fig. 9

Fig. 10

General Notes on Floors and Fireproofing

Floors

Examples of girders and joists and their connections, as they most commonly occur, are shown on page 69, Figs. 1, 2 and 4, although we occasionally have cases where a large beam frames into a smaller beam, as in Fig. 3. This is somewhat objectionable and should be avoided as much as possible. Girders consisting of two or more beams side by side, as in Fig. 4, should be connected by means of cast-iron separators, using either 1-bolt separators or 2-bolt separators, according to the size of the beams. These separators in a measure hold in position the compression flanges of the beams, preventing side deflections or buckling. They also unite the two beams and cause them to act in unison as regards vertical deflection. Separators should be placed near the supports and then spaced at regular intervals of about 6 feet. Figs. 5 and 6 show cuts of separators. (For weights of separators for different sizes of beams, see page 58.)

Figs. 1, 2, 3 and 4 show different methods of framing joists into girders. Figs. 1 and 2 represent the joist framed into single girders, with standard angle connections, flush either top or bottom as the case may be. In this case the girders are of a greater depth than the joists. Fig. 4 represents joist framed into double girders, flush top and bottom. In this case the joists are of the same depth as the girders, connection being made as before with standard connection angles. Joist or floor beams should be placed about 5 or 6 feet center to center.

Information regarding standard sizes of connection angles for the different sizes of beams is given on pages 60, 61 and 62. The anchors shown in Figs. 3 and 8 are in the wall end of the beams and are embedded in the stone or brick work, thus tieing walls together. Fig. 9 shows tie rods used between floor beams. They are usually made of ¾-inch diameter rods and should be spaced about 6 feet apart.

Fireproofing

Within a few years, great improvements have been made in the methods and materials employed for the interior construction of buildings; especially is this true of the arch filling between the steel floor members of the skeleton frame.

Formerly ordinary brick arches, or corrugated sheets, curved to proper radii and filled up level with concrete to tops of floor beams, were used.

This construction being too heavy for high buildings, has been discarded, and the hollow tile arches, shown on page 67, (Figs. 1 to 6) are generally used.

The material is well-burned terra cotta blocks, with voids formed in them to decrease the weight. The result is that the blocks consist of a series of ribs, over which the pressure, from their own weight and the super-imposed loads, is distributed as uniformly as is practicable.

Figs. 1, 4 and 5 show the ribs running lengthwise of the blocks or arches.

In Figs. 2 and 6 the voussoirs have the ribs longitudinal as before, but the keys, springers or skewbacks have the ribs parallel with the axis of the arch or supporting beams. Sometimes solid-bearing tiles are inserted between the skewbacks and voussoirs or at intervals between the various voussoirs; the object being to secure a better bearing for the ribs.

Fig. 3 illustrates all ribs parallel with axis of arch or supporting beams. The first is styled "end" construction; the second "combination" construction, being a combination of the first and third, while the last is termed "side" construction.

Practically, it is easier to get better joints with the "side" construction, which is certainly a great desideratum in a good solid floor.

The tiles are made of suitable strength to meet conditions imposed by varying the thickness of the ribs.

The following formula is used in calculating the strength of flat arches:

$$L = \frac{208 \text{ A. D.}}{\text{S}^2} \quad \text{in which}$$

L=Safe load in pounds per square foot of floor.

A=Least effective area of terra cotta in square inches in section of arch 12 inches wide.

D=Total depth of arch in feet.

S=Span of arch in feet.

Two hundred and eight pounds is the permissible compression per square inch on terra cotta, or brick work laid in cement mortar, according to New York and Philadelphia building laws; and is equivalent to a factor of safety of 7.

From the safe load thus obtained should be deducted the dead weight, consisting of the terra cotta arch, concrete filling over same, floor finish and ceiling.

The weights of terra cotta arches, of various spans and depths, are given in table in column marked "W."

The total dead weight made up as stated will vary from 22 to 35 pounds per square foot of floor area, dependent upon depth and span of arch, nature of filling over same and kind of finish used for floors and ceilings.

The net permissible live loads thus obtained should be as follows, to accord with the New York building laws:

For dwellings and hotels	70 lbs. per sq. ft.
For office buildings	100 lbs. per sq. ft.
For places of public assembly	120 lbs. per sq. ft.
For stores, factories and	
warehouses	150 lbs. per sq. ft. (or more)
For roofs	50 lbs. per sq. ft.

FLAT ARCHES

PARALLEL WEB OR SIDE CONSTRUCTION	A and Cross Section Square Inches	15 15 15 15 22122 22122 22122 30 30 30 30 31 3712
tb or Side	. 1	138 98 116 90 87 87 82 100
RALLEL WE	M	161 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10
PAI	Max. S Feet and Inches	010 6 01 6 01 6 01 6 01 6 01 6 01 6 01
UCTION	A and End Section Square Inches	. # 25 25 25 26 26 26 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20
End Construction	L .	215 163 150 147 145 148 158 165 177 187
A	W	161 181 191 192 254 254 251 251 251 251 251 251 251 251 251 251
	Max. S Feet and Inches	647797 880661 000698 090661 00088 090661
F	INCHES	450 00 112 123 141 160 161 171 172 173 174 175 175 175 175 175 175 175 175 175 175

A great many tests have been made as to strength of hollow tile arches, both by quiescent load and by dropping of heavy weights, and in every case the "end section" method has demonstrated its greater efficiency over the older systems. The usual manner of setting tile arches is by the use of portable scaffolds formed of 2×10 plank, supported underneath by "center stringers," which in turn are carried by bolts attached to cross pieces resting on the tops of the beams. After the tile arches have been set in cement mortar for thirty-six hours, the center scaffolding is removed and the tops of the arches are then filled in with cement concrete to the required level, 2×4 wooden sleepers being embedded in the concrete to afford nailing surface for the wood flooring; or if marble or mosaic flooring is required, the wood strips are omitted.

Fig. 7 illustrates a hollow tile arch between beams with a segment soffit and flat top. This form of arch has been extensively used in breweries, warehouses, etc., where the necessity for a level ceiling did not exist.

Fig. 8 represents a segment hollow tile arch set in place between beams spaced 18 feet from center to center. The tiles forming this arch are 6×6 inches square with outside shell 7/s-inch thick, and center web 3/4-inch thick. This form of arch costs less than the flat systems shown in Figs. 1 and 2, effecting as it does a considerable saving in steel beams. Its use is becoming general for warehouses, malt houses and also office structures, although great care is necessary in the arrangement of steel framing to anticipate the thrust by the proper distribution of tie rods.

Fig. 10 shows in detail the abutment piece completely enclosing the steel beam, also the concrete filling in haunches cored out with metallic cores to lighten the weight of the floor; the wood strips are shown embedded in the concrete, same as described above.

Segment arches the sizes described have been built of 6-inch tile with a span of 18 feet, having 14 inches rise in the center, and tested to carry 300 pounds per foot, with factor of 6 for

safety. Segment arches of 5-inch and 4-inch thick tile are used for smaller spans, and effect considerable saving when a level ceiling is not essential. The weight of a 5-inch segment arch is about 28 pounds per square foot; that of a 6-inch arch, 35 pounds.

Fig. 9 shows method of fireproofing a beam or girder built in a floor that projects below the ceiling line. When desired special formed tile can be made to suit the outline required for ornamental cornices, etc.

On page 68, Figs. 15, 16 and 17 illustrate single and double isolated steel girders enclosed with fireproofing material, and finished out to the plaster line. On same page, Fig. 9 illustrates method of constructing mansard or flat fireproof roofs. For this purpose tees of the required weight are used, spaced 18 inches from center to center. Between the tees hollow tiles 12×18 inches are bedded in cement mortar and left ready for the weathering. On steep pitched and mansard roofs the porous tiles are preferable, as the slates or roofing tiles can be nailed directly to the same. Fig. 10 illustrates a fireproof ceiling constructed by a combination of steel and tile. The main supports are constructed of 3 × 3 angles spaced 6 feet from center to center, punched at regular intervals of 12-inch centers, with triangular holes of sufficient size to permit 1×1 -inch tees passing through the same. The 3×3 angles are supported by rods of the required length from the roof rafters at intervals of 8 feet. After the 1 × 1-inch tees are set in place 1/2-inch thick flat tiles with grooved edges are set in place between same and the under surface left ready for the receipt of the plaster. This form of fireproof ceiling is sufficiently strong to bear the weight of a man, but should not be used if required to carry anything but its own weight.

`Fig. 11 shows tees and tile construction suited for ceilings or attic floors of fireproof buildings. The tees are spaced 16 inches from center to center, 3-inch thick tiles being bedded between same; the soffits of the tees are protected with a slab of tile. A thin coat of cement mortar spread upon the tops

of the tile leaves a finished surface suitable for attic floor. Figs. 12, 13 and 14 illustrate three different forms of fireproof covering applied to steel columns. These tiles are molded to suit any size or form of column, and are secured to each other with steel clamps, and to the column with suitable fastenings. Any form of steel column can be fireproofed in a like manner.

Fig. 14 shows a steel column first enclosed in a few inches of cement concrete, protecting the steel against corrosion and then encased by hollow tiles as a protection against fire and also to obtain the desired shape of column.

By fireproofing columns as shown, a channel or duct between the column and tile is formed, thus allowing space for pipes, etc., to be carried up through the building without increasing the exterior dimensions of the column.

Figs. 7 and 8 show an isometrical view and plan of hollow tile partition. These tiles are manufactured from 2 to 6 inches thick, and are 12 inches square. They are laid in place in cement mortar, joints being regularly broken in every course. Steel clamps are used to tie the tiles together whenever the walls are of unusual heights.

In addition to the well known systems of terra cotta and hollow tile construction, we show on pages 70 and 71 examples of one of the standard systems of concrete construction and different methods of building fireproof partitions under what is known as the expanded metal system of fireproofing. This system is well beyond the experimental stage, having been used in different classes of buildings upwards of twelve years in different cities of the United States.

Page 70, Fig. 1 shows a method of construction where the floor beams are dispensed with and suitable steel channels substituted in their stead. These channels are sprung in arch form from girder to girder and are spaced generally about four feet on centers.

Concrete is filled on top of these channels by means of centering, and over the whole structure is then laid a slab of concrete of the required thickness, in which are imbedded sheets of expanded metal.

Fig. 2 is in all respects similar to Fig. 1, except that the channel arches are left out and the floor beams are spaced from 5 feet to 8 feet on centers.

One-half of the cut shows the method of floor construction giving paneled ceiling effect, and is the type generally used in warehouses where flat ceilings are not especially required.

The other half of the cut shows the method of construction to give flat ceiling effect. This is accomplished by attaching small channel or angle irons spaced 12 inches to 16 inches on centers to the bottom of the beam with malleable iron clamps, to which the expanded metal lathing is attached with No. 19 annealed wire, the space between the ceiling and the floor plate being used to conceal the pipes, speaking tubes and electric wires. This method is generally used for office and public buildings, schools, etc.

This system can be made to carry almost any weight that may be imposed upon it by simply using a thicker concrete plate and a heavier form of expanded metal. The usual requirement for a warehouse load to carry 250 pounds live load would be a plate 4 inches thick, with one sheet of No. 10 gauge, 3-inch mesh expanded metal.

Fig. 3 shows the common type of floor used in apartment houses, office buildings, etc.

This system is generally used where 5-inch to 7-inch beams are used spaced about 4 feet on centers.

This is a very economical system, as it gives a flat ceiling effect without the additional expense of furring and lathing.

This system may be used on floors where not more than 150 pounds per square foot, live load, is required.

Page 71, Fig. 4 shows a very light and economical method of construction for partitions.

The studding is made with two bars of light angle irons riveted together with pieces of strap iron every 2 or 3 feet, and expanded metal lathing tied on both sides with annealed wire. This affords an air space of 3 or 4 inches, depending

upon the width of the partitions in which the piping may be concealed as shown in the cut.

It has a unique advantage, possessed by no other partition, in the fact that the pipes may be run either vertically or horizontally, as may be desired.

Another advantage possessed by this partition is the fact that it may be plastered with common mortar, the framework being made very rigid and stiff.

Fig. 5 shows detail of framing around door openings for these partitions.

Fig. 6 shows the well known type of solid partition which has been in use throughout the United States for some time.

This partition is so well and favorably known that no explanation is necessary further than to say that the studding is made of light channel or angle irons, generally three-quarters of an inch, set about 16 inches on centers, on one side of which expanded metal lathing is securely tied.

It is then plastered on both sides with any one of the patent hard mortars to a total thickness of $1\frac{1}{2}$ to 2 inches.

Fig. 8 shows a method of fireproofing steel columns.

Light angle iron uprights are placed at each corner and expanded metal lathing is then bent around and securely tied. Plastering is then applied in the usual manner.

Fig. 9 shows the method of fireproofing columns with a double air space, which is considered preferable by many prominent engineers.

Fig. 10 shows the method of fireproofing round cast-iron columns.

The lathing in this case is tied on as tightly as possible to the column, the peculiar shape of the strands giving it ample set-off so that mortar will be securely keyed on the back.

Girders in Buildings

In the design of a building cases may occur where a single beam girder will not answer. It may be found desirable to increase the lengths of the spans so as to reduce the number of supporting columns to a minimum, or it often occurs that heavy concentrated loads, such as vaults, brick walls, etc., will render single beam girders inadequate. Various forms of girders may be used in such cases. Where the ends of the girders rest upon the wall, bearing plates should be used to distribute the pressure over a greater surface and thereby prevent the crushing of the material in the wall directly under the girder (see page 63).

The allowed pressure per square foot for brick work should not exceed six tons, and for stone twelve to twenty tons, according to its character.

For spanning openings in brick walls, girders composed of two or more I-beams connected by bolts and separators are most commonly used.

The probable line of rupture where the bricks have been laid regularly, if the girders should fail, will be found to be inside the sides of an isosceles triangle, whose base is the span, and whose height is one-third of the span. In order to be entirely on the safe side, the weight of wall between vertical lines directly over the girder for a height equal to that of the triangle is frequently adopted as the load to be carried. It should be noted, however, that for green walls, or walls having openings, this rule does not apply.

Placing the weight of brick work at 112 pounds per cubic foot, the weights per superficial foot for different walls are as follows:

For 9-inch wall						
For 13-inch wall	•	•		-	•	121 pounds
For 18-inch wall	•	•	•	•	•	168 pounds
For 22-inch wall						
For 26-inch wall						

Explanation of Tables

Jones & Laughlin's Steel Co.'s Sections

The tables on pages 86 to 105, for beams and channels, give the loads which a beam or channel will carry safely (distributed uniformly over its length) for the distances between supports indicated. These loads include the weight of the beam or channel, which must be deducted in order to arrive at the net load which the beam or channel will carry. On pages 106 to 110 will also be found the safe loads for other sections; and on pages 140 to 148 for built-up girders.

The values given are based on a maximum fiber strain of 16,000 lbs. per square inch.

It has been assumed in these tables that proper provision is made for preventing the compression flanges of the beams from deflecting sideways. They should be held in position at distances not exceeding twenty times the width of the flange, otherwise the strain allowed should be reduced as per table, page 84.

In some instances deflection, rather than absolute strength, may become the governing consideration in determining the size of beam to be used. For beams carrying plastered ceilings, for example, it has been found by practical tests that if the deflection exceeds $\frac{1}{360}$ of the distance between supports, or $\frac{1}{30}$ of an inch per foot of the distance, there is danger of the ceiling cracking. This limit is indicated in the following tables by cross lines, beyond which the beams should not be used, if intended to carry plastered ceilings, unless the allowable loads given in the tables are reduced. There is an element of safety not taken into account in the tables, viz., the fact that the dead load of the floor is carried by the beams before the plaster is applied; consequently, only the deflection due to the live load is liable to cause damage to the plaster. The following method can be used to obtain the reduced loads:

Multiply the load given immediately above the cross line by the square of the corresponding span and divide by the square of the required span; the result will be the required load. See example II. on page 84.

A table of deflection of Jones & Laughlin Steel Co.'s sections is given on page 85. It may generally be assumed, both for rolled and built beams, that the above limit is not exceeded so long as the depth of the beam is not less than $\frac{1}{20}$ of the distance between supports (%-inch per foot).

Inasmuch as the carrying capacity of beams increases largely with their depth, and it is therefore economical to use the greatest depth of beam consistent with the other conditions to which it is necessary to conform (as clear height, etc.), the above cases of extreme deflection will rarely be met with in practice.

As the deflection of beams is not very uniform either in iron or steel, the question of the relative deflection of iron and steel beams can be decided only from the average results of a large number of tests. Such experiments as have been made, though insufficient in number to be conclusive, indicate that a steel beam will deflect slightly less than an iron beam of the same section, under the same load, in about the inverse ratio of the moduli of elasticity for these materials as generally assumed, or say as 14 to 15.

Examples of Application of Tables

I. What size and weight of beam 19 feet 6 inches long in clear between walls, and therefore 20 feet long between centers of supports, will be required to carry safely a uniformly distributed load of 16 tons, the weight of the beam included?

Answer: From the table for safe loads of beams, a 15-inch beam, 42 lbs., will carry safely for a span of 20 feet, 15.71 tons, or .29 tons less than required in this case. Therefore, a beam of this size and weight will be sufficient to carry the load. Otherwise use beam weighing 45 lbs., which will carry 16.29 tons.

II. What load uniformly distributed, including its own weight, will a 15-inch beam, weighing 50 lbs. per foot, carry for a span of 30 feet, without deflecting sufficiently to endanger a plastered ceiling?

Answer: From the table for safe loads of beams we find, at the limit indicated for plastered ceilings, that a 15-inch, 50-lb. beam will carry safely a uniform load of 11.91 tons over a span of 29 feet. In order not to give rise to undue deflection, the safe load for a 30-foot span, according to the rule given on page 82, will be

$$\frac{11.91 \times 29^2}{30^2} = 11.12 \text{ tons.}$$

BEAMS WITHOUT LATERAL SUPPORT

LENGTH OF BEAM	PROPORTION OF TABULAR LOAF
20 times flange width	Whole tabular load
30 times flange width	9–10 tabular load
40 times flange width	8–10 tabular load
50 times flange width	7–10 tabular load
60 times flange width	6–10 tabular load
70 times flange width	5–10 tabular load

DEFLECTION COEFFICIENTS
For Different Shapes, Given in 64ths of an Inch

CIENT		DISTANCE BETWEEN SUPPORTS IN FEET										
COEFFICIENT	6	8	10	12	I4	16	18	20	22			
C C'	38.0 30.0	68.0 53.0	106.0 83.0	152.5 119.0	208.0 162.0	271.0 212.0	343.0 268.0	424.0 331.0	513.0 400.5			
		I	DISTAN	се Вет	ween S	SUPPORT	s in F	EET				
	24	26	28	30	32	34	36	38	40			
C C'	610.0 477.0	716.0 559.0	830.5 649.0	953.0 748.0	1085.0 847.0	1225.0 957.0	1373. 0 1073. 0	1530.0 1195.0	1695.0 1324.0			

The figures given opposite C and C' are the deflection coefficients for steel shapes subject to transverse strain for varying spans, under their maximum uniformly distributed safe loads, derived from a fiber strain of 16,000 and 12,500 respectively, the modulus of elasticity being taken at 29,000,000.

To find the deflection of any symmetrical shape used as a beam, under its corresponding safe load, divide the coefficients given in the above tables by the depth of the beam. This applies to such shapes as beams, channels, etc. For those shapes having unsymmetrical axes, such as tees, angles, etc., divide by twice the greatest distance of the neutral axis from the outside fiber.

Example: Required, the deflection of a 10-inch beam, 25 lbs. per foot, 20-foot span, under its maximum uniformly distributed safe load of 6.51 tons as given on page 94. The above tables give 424.0 as the deflection coefficient; dividing this by 10 gives 42 as the required deflection in 64ths of an inch. For deflections due to different systems of loading, see page 115.

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Beams

E IN WEEN TS	24-Inch Beam, Standard									
DISTANCE IN FEET BETWEEN SUPPORTS	100 Pounds	95 Pounds	90 Pounds	85 Pounds	80 Pounds	Deflection Inches				
10	105.32	102.18	99.04	95.90	92.76	.07				
11	95.74	92.89	90.04	87.18	84.33	.09				
12	87.76	85.15	82.53	79.92	77.30	.10				
13	81.01	78.60	76.18	73.77	71.36	.12				
14	75.23	72.99	70.74	68.50	66.26	.14				
15	70.21	68.12	66.03	63.93	61.84	.16				
16	65.82	63.86	61.90	59.90	57.97	.18				
17	61.95	60.10	58.26	56.41	54.57	.21				
18	58.51	56.76	55.02	53.28	51.53	.23				
19	55.42	53.78	52.13	50.47	48.82	.26				
20	52.66	51.09	49,52	47.95	46.38	.29				
21	50.15	48.66	47.16	45.67	44.17	.31				
22	47.87	46.44	45.02	43.59	42.16	.35				
23	45.79	44.43	43.06	41.69	40.33	.38				
24	43.88	42.57	41.27	39.96	38.65	.41				
25	42.13	40.87	39.62	38.36	37.11	.45				
26	40.51	39.30	38.09	36.88	35.68	.48				
27	39.01	37.84	36.68	35.52	34.36	.52				
28	37.61	36.49	35.37	34.25	33.13	.56				
29	36.31	35.23	34.15	33.07	31.99	.60				
30	35.11	34.06	33.01	31.97	30.92	.64				
31	33.97	32.96	31.95	30.94	29.92	.69				
32	32.91	31.93	30.95	29.97	28.98	.73				
33	31.91	30.96	30.01	29.06	28.11	.78				
34	30.98	30.05	29.13	28.20	27.28					
35	30.09	29.19	28.30	27.40	26.50					
36	29.25	28.38	27.51	26.64	25.76					

SAFE LOADS IN TONS OF 2000 POUNDS Uniformly Distributed, for Jones & Laughlin Steel Co.'s Steel Beams

		<u> </u>				
IN EEN IS		20-inci	н Веам, Н	HEAVY SEC	TION	
DISTANCE IN FEET BETWEEN SUPPORTS	100 Pounds	95 Pounds	90 Pounds	85 Pounds	80 Pounds	Deflection Inches
10	88.66	86.05	83.43	80.82	78.21	.09
11	80.59	78.22	75.84	73.47	71.10	.10
12	73.88	71.70	69.53	67.35	65.17	.12
13	68.20	66.19	64.18	62.17	60.16	.14
14	63.33	61.46	59.59	57.73	55.86	.17
15	59.11	57.36	55.62	53.88	52.14	.19
16	55.41	53.78	52.15	50.51	48.88	.22
17	52.15	50.61	49.08	47.54	46.00	.25
18	49.25	·47.80	46.35	44.90	43.45	.28
19	46.66	45.29	43.91	42.54	41.16	.31
20	44.33	43.02	41.72	40.41	39.10	.34
21	42.22	40.97	39.70	38.49	37.24	.38
22	40.30	39.11	37.93	36.74	35.55	.41
23	38.55	37.41	36.28	35.14	34.00	.45
24	36.94	35.85	34.76	33.68	32.59	.49
25	35.46	34.42	33.37	32.33	31.28	.54
26	34.10	33.09	32.09	31.08	30.08	.58
27	32.83	31.87	30.90	29.93	28.97	.62
28	31.66	30.73	29.80	28.87	27.93	.67
29	30.57	29.67	28.77	27.87	26.97	.72
30	29.55	28.68	27.81	26.94	26.07	.77
31	28.60	27.76	26.91	26.07	25.23	.82
32	27.70	26.89	26.07	-25.25	24.44	.88
33 34 35 36	26.86 26.07 25.33 24.63	26.07 25.31 24.58 23.90	25.31 24.52 23.84 23.18	24.49 23.77 23.09 22.45	$\begin{array}{ c c c }\hline 23.70\\\hline 23.00\\22.33\\21.72\\\hline\end{array}$.93

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Beams

3 IN VEEN IS		20-inch Bean	A, STANDARD	
DISTANCE IN FEET BETWEEN SUPPORTS	75 Pounds	70 Pounds	65 Pounds	Deflection . Inches
10 11 12	68.13 61.93 56.82	65.51 59.56 54.59	62.90 57.18 52.41	.09 .10 .12
13 14 15 16	52.40 48.66 45.42 42.58	50.39 46.79 43.67 40.94	48.38 44.93 41.93 39.31	.14 .17 .19 .22
17 18 19 20	$\begin{array}{r} 40.07 \\ 37.85 \\ 35.86 \\ 34.06 \end{array}$	38.54 36.40 34.48 32.76	37.00 34.94 33.10 31.45	.25 .28 .31 .34
21 22 23 24	32.44 30.97 29.62 28.41	31.20 29.78 28.48 27.29	29.95 28.59 27.35 26.21	.38 .41 .45 .49
25 26 27 · 28	27.25 26.20 25.23 24.33	26.20 25.19 24.26 23.45	$25.16 \\ 24.19 \\ 23.29 \\ 22.46$.54 .58 .62 .67
29 30 31 32	$\begin{array}{c} 23.49 \\ 22.71 \\ 21.98 \\ 21.29 \end{array}$	22.59 21.83 21.13 20.47	21.69 20.97 20.29 19.66	.72 .77 .82 .88
33 34 35 36	20.64 20.04 19.46 18.94	$ \begin{array}{r} 19.85 \\ \hline 19.27 \\ 18.72 \\ 18.20 \end{array} $	$ \begin{array}{r} 19.06 \\ \hline 18.50 \\ 17.97 \\ 17.47 \end{array} $.93

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Beams

IN		18-Inch Beam, Standard								
DISTANCE IN FEET BETWEEN SUPPORTS	70 Pounds	65 Pounds	60 Pounds	55 Pounds	Deflection Inches					
10	54.52	52.16	49.80	47.06	.10					
11	49.56	47.42	45.27	42.78	.12					
12	45.43	43.47	41.50	39.22	.14					
13	41.94	40.12 37.26 34.77 32.60	38.30	36.20	.16					
14	38.94		35.57	33.62	.19					
15	36.34		33.20	31.38	.21					
16	34.07		31.12	29.42	.24					
17	32.07 30.29 28.70 27.26	30.68	29.29	27.68	.28					
18		28.98	27.66	26.14	.31					
19		27.46	26.21	24.77	.34					
20		26.08	24.90	23.53	.38					
21 22 23 24	25.97 24.78 23.70 22.71	24.84 23.71 22.68 21.73	23.71 22.63 21.65 20.75	22.41 21.39 20.46 19.61	.42 .46 .50					
25	21.81	20.86	19.92	18.82	.60					
26	20.97	20.06	19.15	18.10	.64					
27	20.19	19.32	18.44	17.43	.69					
28	19.47	18.63	17.78	16.81	.75					
29	18.80	17.99	17.17	16.23	.80					
30	18.17	17.39	16.60	15.69						
31 32	17.58 17.04	16.83 16.30	16.06 15.56	15.18 14.71	.92					
33	16.52	15.81	15.09	14.27	1.04					
34	16.03	15.34	14.65	13.84						
35	15.58	14.91	14.23	13.45						
36	15.14	14.49	13.83	13.07						

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Beams

IN WEEN IS		15-Inc	н Веам,	HEAVY SE	CTION	
DISTANCE IN FEET BETWEEN SUPPORTS	100 Pounds	95 Pounds	90 Pounds	85 Pounds	80 Pounds	Deflection Inches
10	63.96	62.00	60.04	58.08	56.11	.1114 .16
11	58.14	56.36	54.58	52.80	51.01	
12	53.30	51.66	50.03	48.40	46.76	
13	49.20	47.69	46.18	44.67	43.17	.19
14	45.68	44.28	42.88	41.48	40.08	.22
15	42.64	41.33	40.02	38.72	37.41	.26
16	39.97	38.75	37.52	36.30	35.07	.29
17	37.62	36.47	35.32	34.16	33.01	.33
18	35.53	34.44	33.35	32.26	31.17	.37
19	33.66	32.63	31.60	30.57	29.52	.41
20	31.98	31.00	30.02	29.04	28.06	.46
21 22 23 24	30.45 29.07 27.81 26.65	29.52 28.18 26.96 25.83	28.59 27.29 26.10 25.01	27.66 26.40 25.25 24.20	26.73 25.51 24.40 23.38	.50 .55 .60
25	25.58	24.80	24.01	23.23	22.45	.71
26	24.60	23.84	23.09	22.34	21.58	.77
27	23.69	22.96	22.24	21.51	20.78	.83
28	22.84	22.14	21.44	20.74	20.04	.90
29	22.05	$ \begin{array}{r} 21.38 \\ \hline 20.67 \\ 20.00 \\ 19.37 \end{array} $	20.70	20.03	19.35	.96
30	21.32		20.01	19.36	18.70	1.03
31	20.63		19.37	18.73	18.10	1.10
32	19.99		18.76	18.15	17.54	1.17
33	19.38	18.79	18.19	17.60	17.00	1.24
34	18.81	18.23	17.66	17.08	16.50	
35	18.27	17.71	17.15	16.59	16.03	
36	17.76	17.22	16.68	16.13	15.59	

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Beams

15-Inch Beam, Light Section								
80	75	70	65	60	Deflection			
Pounds	Pounds	Pounds	Pounds	Pounds	Inches			
51.15	49.19	47.23	45.27	43.31	.11			
46.50	44.72	42.93	41.15	39.37	.14			
42.62	40.99	39.36	37.72	36.09	.16			
39.35	37.84	36.33	34.82	33.31	.19			
36.54	35.13	33.73	32.33	30.93	.22			
34.10	32.79	31.49	30.18	28.87	.26			
31.97	30.74	29.52	28.29	27.07	.29			
30.09	28.93	27.78	26.63	25.47	.33			
28.42	27.33	26.24	25.15	24.06	.37			
26.92	25.89	24.86	23.82	22.79	.41			
25.57	24.59	23.61	22.63	21.65	.46			
24.36 23.25 22.24 21.31	23.42 22.36 21.39 20.50	22.49 21.47 20.53 19.68	21.56 20.58 19.68 18.86	20.62 19.69 18.83 18.04	.50 .55 .60			
20.46	19.68	18.89	18.11	17.32	.71			
19.67	18.92	18.16	17.41	16.66	.77			
18.95	18.22	17.49	16.77	16.04	.83			
18.27	17.57	16.87	16.17	15.47	.90			
17.64	16.96	16.29	15.61	14.93	.96			
17.05	16.40	15.74	15.09	14.44	1.03			
16.50	15.87	15.23	14.60	13.97	1.10			
15.98	15.37	14.76	14.14	13.53	1.17			
15.50	14.91	14.31	13.72	13.12	1.24			
15.04	14.47	13.89	13.31	12.74				
14.61	14.05	13.49	12.93	12.36				
14.21	13.66	13.12	12.57	12.03				
	51.15 46.50 42.62 39.35 36.54 34.10 31.97 30.09 28.42 26.92 25.57 24.36 23.25 22.24 21.31 20.46 19.67 18.95 18.95 18.27 17.64 17.05 16.50 15.98 15.04 14.61	80 Pounds 75 Pounds 51.15 49.19 46.50 44.72 42.62 40.99 39.35 37.84 36.54 35.13 34.10 32.79 31.97 30.74 30.09 28.93 28.42 27.33 26.92 25.89 25.57 24.59 24.36 23.42 27.36 22.24 21.39 21.31 20.50 20.46 19.68 19.67 18.92 18.95 18.22 18.95 18.22 17.57 17.64 16.96 16.40 16.50 15.87 15.98 15.37 15.04 14.47 14.61 14.05 14.47 14.05	80 Pounds 75 Pounds 70 Pounds 51.15 49.19 47.23 46.50 44.72 42.93 42.62 40.99 39.36 39.35 37.84 36.33 36.54 35.13 33.73 34.10 32.79 31.49 31.97 30.74 29.52 30.09 28.93 27.78 28.42 27.33 26.24 26.92 25.89 24.86 25.57 24.59 23.61 24.36 23.42 22.49 23.25 22.36 21.47 22.24 21.39 20.53 21.31 20.50 19.68 20.46 19.68 18.89 19.67 18.92 18.16 18.95 18.22 17.49 18.27 17.57 16.87 17.64 16.96 16.29 17.05 16.40 15.74 16.50 15.87 15.23	80 Pounds 75 Pounds 70 Pounds 65 Pounds 51.15 49.19 47.23 45.27 46.50 44.72 42.93 41.15 42.62 40.99 39.36 37.72 39.35 37.84 36.33 34.82 36.54 35.13 33.73 32.33 34.10 32.79 31.49 30.18 31.97 30.74 29.52 28.29 30.09 28.93 27.78 26.63 28.42 27.33 26.24 25.15 26.92 25.89 24.86 23.82 25.57 24.59 23.61 22.63 24.36 23.42 22.49 21.56 23.25 22.36 21.47 20.58 22.24 21.39 20.53 19.68 21.31 20.50 19.68 18.86 20.46 19.68 18.89 18.11 19.67 18.92 17.49 16.77 18.27 <td>80 Pounds 75 Pounds 70 Pounds 65 Pounds 60 Pounds 51.15 49.19 47.23 45.27 43.31 46.50 44.72 42.93 41.15 39.37 42.62 40.99 39.36 37.72 36.09 39.35 37.84 36.33 34.82 33.31 36.54 35.13 33.73 32.33 30.93 34.10 32.79 31.49 30.18 28.87 31.97 30.74 29.52 28.29 27.07 30.09 28.93 27.78 26.63 25.47 28.42 27.33 26.24 25.15 24.06 26.92 25.89 24.86 23.82 22.79 25.57 24.59 23.61 22.63 21.65 24.36 23.42 22.49 21.56 20.62 23.25 22.36 21.47 20.58 19.69 22.24 21.39 20.53 19.68 18.83</td>	80 Pounds 75 Pounds 70 Pounds 65 Pounds 60 Pounds 51.15 49.19 47.23 45.27 43.31 46.50 44.72 42.93 41.15 39.37 42.62 40.99 39.36 37.72 36.09 39.35 37.84 36.33 34.82 33.31 36.54 35.13 33.73 32.33 30.93 34.10 32.79 31.49 30.18 28.87 31.97 30.74 29.52 28.29 27.07 30.09 28.93 27.78 26.63 25.47 28.42 27.33 26.24 25.15 24.06 26.92 25.89 24.86 23.82 22.79 25.57 24.59 23.61 22.63 21.65 24.36 23.42 22.49 21.56 20.62 23.25 22.36 21.47 20.58 19.69 22.24 21.39 20.53 19.68 18.83			

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Beams

IN	15-Inch Beam, Standard								
DISTANCE IN FEET BETWEEN SUPPORTS	55 Pounds	50 Pounds	45 Pounds	42 Pounds	Deflection Inches				
10	36.52 33.19 30.42	34.55	32.59	31.41	.11				
11		31.41	29.63	28.56	.14				
12		28.79	27.16	26.18	.16				
13	28.08	26.58	25.07	24.16	.19				
14	26.08	24.68	23.28	22.44	.22				
15	24.34	23.03	21.73	20.94	.26				
16	22.82	21.59	20.37	19.63	.29				
17	21.49	20.32	$ \begin{array}{c} 19.17 \\ 18.10 \\ 17.15 \\ 16.29 \end{array} $	18.48	.33				
18	20.28	19.19		17.45	.37				
19	19.21	18.18		16.53	.41				
20	18.26	17.26		15.71	.46				
21 22 23 24	17.38 16.59 15.87 15.21	16.45 15.70 15.02 14.40	15.52 14.81 14.17 13.58	14.96 14.28 13.66 13.09	.50 .55 .60				
25	14.60	13.82	13.04	12.56	.71				
26	14.04	13.29	12.53	12.08	.77				
27	13.52	12.80	12.07	11.63	.83				
28	13.04	12.34	11.64	11.22	.90				
29 30 31	$\begin{array}{ c c c c c }\hline 12.59 \\ \hline 12.17 \\ 11.78 \\ \hline \end{array}$	11.91 11.52 11.14	11.24 10.86 10.51	$ \begin{array}{r} 10.83 \\ \hline 10.47 \\ 10.13 \end{array} $.96 1.03 1.10				
32	11.41	10.80	10.18	9.82	1.17				
33	11.06	10.47	9.88	9.52	1.24				
34	10.74	10.16	9.58	9.24					
35	10.43	9.87	9.31	8.97					
36	10.14	9.60	9.05	8.73					

Uniformly Distributed, for Jones & Laughlin Steel Co.'s

Steel Beams

E IN FEET SUPPORTS	12-1	псн Веа	M, SPECI	AL SECTI	ION	12-inch Beam Standard			
DISTANCE IN BETWEEN SUP	60 Pounds	55 Pounds	50 Pounds	45 Pounds	40 Pounds	35 Pounds	31½ Pounds	Def. Inches	
10	30.18	28.61	27.04	25.48	23.91 21.73 19.92	20.28	19.18	.14	
11	27.44	26.01	24.58	23.16		18.44	17.44	.17	
12	25.14	23.84	22.54	21.23		16.90	15.99	.21	
13	23.22	22.01	20.80	19.60	18.39	15.60	14.76	.24	
14	21.56	20.44	19.32	18.20	17.08	14.49	13.70	.28	
15	20.13	19.08	18.03	16.98	15.94	13.52	12.79	.32	
16	18.86	17.88	16.90	15.92	14.94	12.68	11.99	.37	
17	17.75	16.83	15.91	14.99	14.06	11.93	11.28	.41	
18	16.78	15.90	15.02	14.15	13.28	11.27	10.66	.46	
19	15.89	15.06	14.23	13.41	12.58	10.67	10.10	.52	
20	15.10	14.31	13.52	12.74	11.95	10.14	9.59	.57	
21 22 23 24	14.38 13.73 13.12 12.57	13.63 13.01 12.44 11.92	12.88 12.29 11.76 11.27	12.13 11.58 11.08 10.61	11.38 10.87 10.39 9.96	9.66 9.22 8.82 8.45	9.14 8.72 8.34 7.99	.63 .69 .76	
25	12.08	11.45	10.82	10.19	9.56	8.11	7.67	.89	
26	11.62	11.01	10.40	9.80	9.19	7.80	7.38	.97	
27	11.18	10.60	10.02	9.43	8.85	7.51	7.10	1.04	
28	10.78	10.22	9.66	9.10	8.54	7.24	6.85	1.12	
29	10.41	9.87	9.33	8.78	8.24	6.99	6.62	1.20	
30	10.07	9.54	9.01	8.48	7.97	6.76	6.39	1.29	
31	9.74	9.23	8.72	8.21	7.71	6.54	6.19	1.37	

Safe load includes weight of beam. Maximum fiber strain of 16,000 pounds per square inch.

Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Beams

FEET	10-1	исн В	EAM, S	STANDA	ARD	9-inch Beam, Standard				
DISTANCE IN FEET BETWEEN SUPPORTS	40 Pounds	35 Pounds	30 Pounds	25 Pounds	Deflection Inches	35 Pounds	30 Pounds	25 Pounds	21 Pounds	Deflection Inches
10 11 12		14.22	13.03	13.02 11.85 10.85	.21	12.14	12.18 11.07 10.15	10.00		.19 .23 .27
13 14 15 16	13.03 12.10 11.30 10.59	11.17	11.02 10.24 9.55 8.96		.34	$ \begin{array}{r} 10.27 \\ 9.53 \\ 8.90 \\ \hline 8.34 \end{array} $	8.70 8.12		7.74 7.19 6.71 6.29	.32 .37 .43
17 18 19 20	9.97 9.41 8.92 8.47	9.20 8.69 8.23 7.82	8.43 7.96 7.54 7.16	7.24	.50 .56 .62 .69	7.85 7.42 7.03 6.67	7.16 6.76	6.47 6.11 5.79 5.50	5.92 5.60 5.30 5.03	.55 .62 .69 .76
21 22 23 24	8.07 7.71 7.37 7.06	7.45 7.11 6.80 6.52	6.82 6.51 6.23 5.97	6.20 5.92 5.66 5.43	.83					
25	6.78	6.25	5.73	5.21	1.07					

Safe load includes weight of beam. Maximum fiber strain of 16,000 pounds per square inch.

Uniformly Distributed, for Jones & Laughlin Steel Co.'s Steel Beams

DISTANCE IN FEET BETWEEN SUPPORTS	8	B-INH BE	EAM, ST.	ANDARD		7-INC	7-INCH BEAM, STANDARD				
	25½ Pounds	23 Pounds	20½ Pounds	18 Pounds	Deflection Inches	20 Pounds	17½ Pounds	15 Pounds	Deflection Inches		
5 6 7 8	18.31 15.26 13.08 11.44	17.26 14.38 12.33 10.79	16.21 13.51 11.58 10.13	15.17 12.64 10.83 9.48	.08 .10 .14	12.87 10.73 9.19 8.04	11.95 9.96 8.53 7.47	11.04 9.20 7.89 6.90	.09 .12 .16		
9 10 11 12	10.17 9.15 8.32 7.63	9.59 8.63 7.85 7.19	9.01 8.11 7.37 6.76	8.43 7.58 6.89 6.32	.17 .21 .26 .31	7.15 6.44 5.85 5.36	6.64 5.98 5.43 4.98	6.13 5.52 5.02 4.60	.20 .24 .30 .35		
13 14 15 16	7.04 6.54 6.10 5.72	6.64 6.16 5.75 5.39	5.79 5.40 5.07	5.83 5.42 5.06 4.74	.36 .42 .48 .55	4.95 4.60 4.29 4.02	4.60 4.26 3.99 3.74	4.25 3.94 3.68 3.45	.41 .48 .55 .63		
17 18	5.38 5.08	5.08 4.79	4.76 4.50	4.46 4.21	.62						

Safe load includes weight of beam. Maximum fiber strain of 16,000 pounds per square inch.

Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Beams

SUPPORTS	G-INC	ен Веам,	, STANDA	RD	5-inch Beam, Standard				
DISTANCE IN BETWEEN SUP	1714 Pounds	1434 Pounds	12¼ Pounds	Deflection Inches	14¾ Pounds	12¼ Pounds	934 Pounds	Deflection Inches	
5 6 7 8	9.31 7.76 6.65 5.82	8.53 7.11 6.09 5.33	7.74 6.45 5.53 4.84	.10 .14 .18	6.47 5.39 4.62 4.04	5.81 4.84 4.15 3.63	5.16 4.30 3.68 3.22	.09 .12 .17 .22	
9 10 11 12	5.17 4.66 4.23 3.88	4.74 4.26 3.88 3.55	$ \begin{array}{r} 4.30 \\ 3.87 \\ \hline 3.52 \\ 3.23 \end{array} $.23 .29 .35 .41	$ \begin{array}{r} 3.59 \\ \hline 3.23 \\ 2.94 \\ 2.69 \end{array} $	3.23 2.91 2.64 2.42	2.87 2.58 2.34 2.15	.28 .34 .41 .49	
13 14 15 16	3.58 3.33 3.10 2.91	3.28 3.05 2.84 2.66	2.98 2.77 2.58 2.42	.48 .56 .64 .73					

Safe load includes weight of beam. Maximum fiber strain of 16,000 pounds per square inch.

Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Beams

N FEET	4-	inch Bi	eam, St	3-INCH BEAM, STANDARD					
DISTANCE IN				7½	De ^{fle} ction	7½	6½	5½	Deflection
BETWEEN SUP				Pounds	Inches	Pounds	Pounds	Pounds	Inches
5	3.81	3.60	3.39	3.18	.11	2.08	1.92	1.76	.14
6	3.17	3.00	2.82	2.65	.15	1.73	1.60	1.47	.21
7	2.72	2.57	2.42	2.27	.21	1.49	1.39	1.26	.28
8	2.38	2.25	2.12	1.99	.27	1.30	1.20	1.10	.37
9	2.12 1.90	2.00 1.80	1.88 1.70	1.77 1.59	.35 .43				

Safe load includes weight of beam. Maximum fiber strain of 16,000 pounds per square inch.

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Channels

ANCE IN BETWEEN PORTS		15-In	CH CHANN	el, Stand	ARD	
DISTANCE IN	55	50	45	40	35	33
FEET BETWEE	Pounds	Pounds	Pounds	Pounds	Pounds	Pounds
10	30.85	28.80	26.93	24.97	23.01	22.22
11	28.05	26.27	24.48	22.70	20.92	20.20
12	25.71	24.08	22.44	20.81	19.17	18.52
13	23.73	22.22	20.72	19.21	17.70	17.10
14	22.04	20.64	19.24	17.84	16.44	15.87
15	20.57	19.26	17.96	16.65	15.34	14.82
16	19.28	18.06	16.83	15.61	14.38	13.89
17	18.15	16.99	15.84	14.69	13.53	13.07
18	17.14	16.05	14.96	13.87	12.78	12.35
19	16.24	15.21	14.17	13.14	12.11	11.69
20	15.43	14.45	13.47	12.48	11.50	11.11
21	14.69	13.76	12.82	11.89	10.96	10.58
$\begin{array}{c} 22 \\ 23 \\ 24 \\ \cdot \cdot 25 \end{array}$	14.02 13.41 12.86 12.34	13.13 12.56 12.04 11.56	12.24 11.71 11.22 10.77	11.35 10.86 10.40 9.99	$ \begin{array}{c} 10.46 \\ 10.00 \\ 9.59 \\ 9.20 \end{array} $	10.10 9.66 9.26 8.89
26	11.87	11.11	10.36	9.60	8.85	8.55
27	11.43	10.70	9.97	9.25	8.52	8.23
28	11.02	10.32	9.62	8.92	8.22	7.94
29	10.64	9.96	9.29	8.61	7.93	7.66
30	10.28	9.63	8.98	8.32	7.67	7.41

Safe load includes weight of channel. Maximum fiber strain of 16,000 pounds per square inch.

SAFE LOADS IN TONS OF 2000 POUNDS Uniformly Distributed, for Jones & Laughlin Steel Co.'s Steel Channels

E IN FEET SUPPORTS		12-inch Channel, Standard										
DISTANCE IN FEET	40	35	30	25	20½							
BETWEEN SUPPORTS	Pounds	Pounds	Pounds	Pounds	Pounds							
10	17.50	15.93	14.36	12.80	11.38							
11	15.91	14.49	13.06	11.64	10.35							
12	14.59	13.28	11.97	10.67	9.48							
13	13.46	12.25	11.05	9.85	8.76							
14	12.50	11.38	10.26	9.14	8.13							
15	11.67	10.62	9.58	8.53	7.59							
16	10.94	9.96	8.98	8.00	7.12							
17	10.30	9.37	8.45	7.53	6.69							
18 19 20 21	$ \begin{array}{r} 9.72 \\ 9.21 \\ 8.75 \\ \hline 8.34 \end{array} $	$ \begin{array}{r} 8.85 \\ 8.39 \\ 7.97 \\ \hline 7.59 \end{array} $	$ \begin{array}{r} 7.98 \\ 7.56 \\ \hline 7.18 \\ \hline 6.84 \end{array} $	$ \begin{array}{r} 7.11 \\ 6.74 \\ 6.40 \\ \hline 6.09 \end{array} $	$ \begin{array}{r} 6.33 \\ 5.99 \\ 5.69 \\ \hline 5.42 \end{array} $							
22	7.96	7.24	6.53	5.82	5.18							
23	7.61	6.93	6.25	5.56	4.95							
24	7.29	6.64	5.99	5.33	4.74							
25	7.00	6.37	5.75	5.12	4.55							
26	6.73	6.13	5.53	4.92	4.38							
27	6.48	5.90	5.32	4.74	4.22							
28	6.25	5.69	5.13	4.57	4.07							
29	6.04	5.49	4.95	4.41	3.92							
30	5.83	5.31	4.79	4.27	3.79							

Safe load includes weight of channel. Maximum fiber strain of 16,000 pounds per square inch.

Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Channels

SUPPORTS		10-inch Channel, Standard										
DISTANCE IN	35	30	25	20	15							
	Pounds	Pounds	Pounds	Pounds	Pounds							
10	12.36	11.06	9.75	8.44	7.13							
11	11.24	10.05	8.86	7.67	6.49							
12	10.30	9.21	8.12	7.03	5.94							
13	9.51	8.50	7.50	6.49	5.49							
14	8.83	7.90	6.96	6.03	5.10 4.75 4.46 4.20							
15	8.24	7.37	6.50	5.63								
16	7.73	6.91	6.09	5.28								
17	7.27	6.50	5.73	4.97								
18 19 20 21	6.87 6.51 6.18 5.89	5.82 5.53 5.26	5.42 5.14 4.87 4.64	$ \begin{array}{r} 4.69 \\ \hline 4.44 \\ 4.22 \\ 4.02 \end{array} $	3.96 3.75 3.57 3.44							
22	5.62	5.03	4.43	3.84	$egin{array}{c} 3.24 \\ 3.10 \\ 2.97 \\ 2.85 \\ \end{array}$							
23	5.37	4.81	4.24	3.67								
24	5.15	4.61	4.06	3.52								
25	4.95	4.42	3.90	3.38								

Safe load includes weight of channel. Maximum fiber strain of 16,000 pounds per square inch.

SAFE LOADS IN TONS OF 2000 POUNDS

Uniformly Distributed, for Jones & Laughlin Steel Co.'s

Steel Channels

IN FEET SUPPORTS		9-Inch Channel, Standard								
DISTANCE IN FEET	25	20	15	13¼						
	Pounds	Pounds	Pounds	Pounds						
10	8.37	7.20	6.02	5.61						
11	7.61	6.54	5.47	5.10						
12	6.98	6.00	5.02	4.67						
13	6.44	5.54	4.63	4.31						
14 15 16 17	5.98 5.58 5.23 4.92	$ \begin{array}{r} 5.14 \\ 4.80 \\ 4.50 \\ \hline 4.23 \end{array} $	$ \begin{array}{r} 4.30 \\ 4.01 \\ 3.76 \\ \hline 3.54 \end{array} $	$ \begin{array}{r} 4.01 \\ 3.74 \\ 3.51 \\ \hline 3.30 \end{array} $						
18	4.65	4.00	3.34	3.12						
19	4.41	3.79	3.17	2.95						
20	4.19	3.60	3.01	2.80						
21	3.99	3.43	2.87	2.67						

Safe load includes weight of channel. Maximum fiber strain of 16,000 pounds per square inch

Uniformly Distributed, for Jones & Laughlin Steel Co.'s
Steel Channels

IN FEET SUPPORTS	8-Inch Channel, Standard											
DISTANCE	21¼ Pounds	18¾ Pounds	16¼ Pounds	13¾ Pounds	11¼ Pounds							
10 11 12 13	6.40 5.82 5.33 4.92	5.88 5.34 4.90 4.52	5.35 4.87 4.46 4.12	4.83 4.39 4.03 3.72	4.32 3.93 3.60 3.32							
14 15 16 17	$ \begin{array}{r} 4.57 \\ 4.27 \\ 4.00 \\ 3.76 \end{array} $	$ \begin{array}{r} 4.20 \\ 3.92 \\ 3.67 \\ 3.46 \end{array} $	3.82 3.57 3.35 3.15	$\begin{array}{r} 3.45 \\ \hline 3.22 \\ 3.02 \\ 2.84 \end{array}$	$ \begin{array}{r} 3.08 \\ \hline 2.88 \\ 2.70 \\ 2.54 \end{array} $							
18	3.56	3.28	2.97	2.68	2.40							

Safe load includes weight of channel. Maximum fiber strain of 16,000 pounds per square inch.

.Uniformly Distributed, for Jones & Laughlin Steel Co.'s

Steel Channels

EIN FEET SUPPORTS		7-1NCH CHANNEL, STANDARD											
DISTANCEIN	19¾	17¼	14¾	12¼	9¾								
BETWEEN SUP	Pounds	Pounds	Pounds	Pounds	Pounds								
5	10.09	9.17	8.26	7.35	6.43								
6	8.41	7.64	6.88	6.12	5.36								
7	7.20	6.55	5.90	5.25	4.59								
8	6.30	5.73	5.16	4.59	4.02								
9	5.61	5.10	4.59	4.08	3.57								
10	5.04	4.59	4.13	3.67	3.22								
11	4.58	4.17	3.75	3.34	2.92								
12	4.20	3.82	3.44	3.06	2.68								
13	3.88	3.53	3.18	2.82	2.47								
14	3.60	3.27	2.95	2.62	2.29								
15	3.36	3.06	2.75	2.45	2.14								
16	3.15	2.86	2.58	2.29	2.01								

Safe load includes weight of channel. Maximum fiber strain of 16,000 pounds per square inch.

Uniformly Distributed, for Jones & Laughlin Steel Co.'s

Steel Channels

SUPPORTS	6-INCF	I CHANN	el, Stai	5-inch Channel, Standard				
DISTANCE I	15½ Pounds	13 Pounds	10½ Pounds	8 Pounds	11½ Pounds	9 Pounds	6½ Pounds	
5 6 7 8	6.97 5.81 4.98 4.36	6.19 5.16 4.42 3.87	5.41 4.50 3.86 3.38	4.62 3.85 3.30 2.89	4.47 3.73 3.19 2.79	3.82 3.18 2.73 2.39	3.16 2.64 2.26 1.98	
9 10 11 12	$ \begin{array}{r} 3.87 \\ 3.49 \\ \hline 3.17 \\ 2.91 \end{array} $	3.44 3.09 2.81 2.58	$ \begin{array}{r} 3.00 \\ 2.73 \\ \hline 2.45 \\ 2.25 \end{array} $	$ \begin{array}{c} 2.57 \\ 2.31 \\ \hline 2.10 \\ 1.93 \end{array} $	2.48 2.23 2.03 1.86	2.12 1.92 1.75 1.59	1.76 1.58 1.44 1.32	
13 14 15 16	2.68 2.49 2.32 2.18	2.38 2.21 2.06 1.93	2.08 1.93 1.80 1.69	1.78 1.65 1.54 1.44		-		

Safe load includes weight of channel. Maximum fiber strain of 16,000 pounds per square inch.

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Jones & Laughlin Steel Co's.
Steel Channels

IN FEET SUPPORTS	4-I	nch Chan Standard		3-Inch Channel Standard					
DISTANCE IN FEET BETWEEN SUPPORTS	7¼ 6¼ Pounds Pounds		5¼ Pounds	6 Pounds	5 Pounds	4 Pounds			
5	2.44	2.23	2.02	1.48	1.32	1.16			
6	2.04	1.86	1.69	1.23	1.10	.97			
7	1.74	1.59	1.44	1.06	.94	.83			
8	1.53	1.39	1.26	.92	.82	.73			
9	1.36	1.24	1.12						
10	1.22	1.12	1.01						

Safe load includes weight of channel. Maximum fiber strain of 16,000 pounds per square inch.

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Jones & Laughlin Steel Co's.
Angles with Equal Legs

Size		DISTANCE BETWEEN SUPPORTS IN FEET												
of Angle	1	2	3	4	5	6	7	8	9	10				
8 ×8 × ½ 8 ×8 ×1½ 6 ×6 × ¼ 6 ×6 × ½	44.64 93.49 21.71 40.75	22.32 46.74 10.85 20.37	14.88 31.16 7.24 13.58	11.16 23.37 5.43 10.18	8.93 18.70 4.34 8.15	7.44 15.58 3.62 6.79	6.38 13.36 3.10 5.82	5.58 11.69 2.71 5.09	10.39 2.41	4.46 9.35 2.17 4.08				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.84 24.11 8.11 14.99	5.92 12.05 4.05 7.49	3.95 8.04 2.70 5.00	2.96 6.03 2.03 3.75	2.37 4.82 1.62 3.00	1.97 4.02 1.35 2.50	1.69 3.44 1.16 2.14	1.48 3.01 1.01 1.87	2.68	1.18 2.41 0.81 1.50				
3½×3½× ¾ 3½×3½× ¾ 3¼×3¼× ¾ 3¼×3¼4× ¾	6.13 10.83 5.28 7.25	3.07 5.41 2.64 3.62	2.04 3.61 1.76 2.42	1.53 2.71 1.32 1.81	1.23 2.17 1.05 1.45	1.02 1.81 0.88 1.21	0.88 1.55 0.75 1.04	0.77 1.35 0.66 0.91	0.68 1.20 0.59 0.81	0.61 1.08 0.53 0.73				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.56	1.54 3.47 1.28 2.37	1.03 2.31 0.85 1.58	0.77 1.73 0.64 1.19	0.62 1.39 0.51 0.95	0.51 1.16 0.43 0.79	0.44 0.99 0.37 0.68	$\begin{array}{c} 0.39 \\ 0.87 \\ 0.32 \\ \hline 0.59 \end{array}$	0.34 0.77 0.28 0.53	0.31 0.69 0.26 0.48				
2½×2½× ½ 2½×2½× ½ 2¼×2¼× ½ 2¼×2¼× ½	1.71	1.07 1.94 0.85 1.54	0.71 1.30 0.57 1.03	0.53 0.97 0.43 0.77	0.43 0.78 0.34 0.62	0.36 0.65 0.29 0.52	$\begin{array}{c} 0.30 \\ 0.56 \\ \hline 0.24 \\ 0.44 \\ \end{array}$	0.27 0.49 0.21 0.39	0.24 0.43 0.19 0.34	0.21 0.39 0.17 0.31				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.59	0.40 1.06 0.30 0.80	0.27 0.71 0.20 0.53	0.20 0.53 0.15 0.40	0.16 0.43 0.12 0.32	0.13 0.36 0.10 0.27	0.11 0.30 0.08 0.23	0.10 0.27 0.07 0.20	0.09 0.24 0.07 0.18	0.08 0.21 0.06 0.16				
1½×1½× ½ 1½×1½× ¾ 1¼×1¼× ¼ 1¼×1¼× ¼		$\begin{array}{c c} 0.21 \\ 0.52 \\ 0.135 \\ 0.24 \end{array}$	0.14 0.34 0.090 0.16	$ \begin{array}{c c} 0.10 \\ \hline 0.26 \\ 0.067 \\ 0.12 \end{array} $	0.08 0.21 0.054 0.096	0.07 0.17 0.045 0.080	0.06 0.15 0.039 0.069	0.05 0.13 0.034 0.060		0.04 0.10 0.027 0.048				
1 ×1 × ½8 1 ×1 × 3 16 34× 34× ½ 34× 34× 36		0.085 0.115 0.045 0.063	0.077	0.057 0.022	0.046			0.021 0.029 0.011 0.016	0.025	0.017 0.023 0.009 0.013				

Safe loads include weight of angle. Maximum fiber strain of 16,000 pounds per square inch. Neutral axis through center of gravity parallel to one leg.

For safe loads to the right of heavy line the deflection will be greater than allowable for plastered ceiling. Limit for 8 x 8-inch L, 23 feet; for 6 x 6-inch L, 17 feet; for 5 x 5-inch L, 13 feet; for 4 x 4-inch L, 11 feet.

SAFE LOADS IN TONS OF 2000 POUNDS Uniformly Distributed, for Jones & Laughlin Steel Co's. Angles with Unequal Legs

· Long Leg Vertical

										
Size		Dist	ANCE B	ETW	EEN	SUPP	ORTS	IN	FEET	
of Angle	1	2	3	4	5	6	7	8	9	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.71 35.47 17.33 33.07	8.85 17.73 8.67 16.53	5.91 11.83 5.77 11.03	8.87 4.33	7.09 3.47	5.91 2.89	2.53 5.07 2.48 4.72	4.44 2.17	1.96 3.95 1.92 3.68	1.77 3.55 1.73 3.31
5 ×4 ×3/8 5 ×4 ×3/4 5 ×31/2×3/8 5 ×31/2×3/4 5 ×3 ×3/8 5 ×3 ×3/4	12.53 22.99 12.21 22.51 11.89 22.03	6. 27 11. 49 6. 11 11. 25 5. 95 11. 01	4. 17 7. 67 4. 07 7. 51 3. 96 7. 35	5.75 3.05 5.63 2.97	4.60 2.44 4.51 2.37	3.83 2.04 3.75 1.99	1.79 3.28 1.75 3.21 1.69 3.15	2.88 1.53 2.81 1.49	1.39 2.56 1.36 2.51 1.32 2.45	1.25 2.29 1.23 2.25 1.19 2.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.21 19.31 8.00 14.56 7.63 14.19	4.11 9.65 4.00 7.28 3.81 7.09	2.74 6.44 2.66 4.85 2.55 4.73	4.83 2.00 3.64 1.91	3.86 1.60 2.91 1.52	3.22 1.33 2.43 1.27	1.17 2.76 1.15 2.08 1.09 2.03	2.41 1.00 1.83 0.96	0.91 2.15 0.90 1.61 0.85 1.57	0.82 1.93 0.80 1.45 0.76 1.41
3½×3 ×¾ 3½×3 ×¾ 3½×2½×½ 3½×2½×½	5.81 10.83 4.00 7.79	2.91 5.41 2.00 3.89	1.93 3.61 1.33 2.60	$\frac{2.71}{1.00}$	$2.16 \\ 0.80$	1.80 0.66	0.83 1.55 0.57 1.11	$\frac{1.36}{0.51}$	0.64 1.20 0.44 0.87	0.59 1.08 0.40 0.77
3 ×2½×¼ 3 ×2½×½ 3¼×2 ×¼ 3¼×2 ×½	2.99 5.49 2.72 6.19	1.49 2.75 1.36 3.09	1.00 1.83 0.91 2.07	1.37 0.68	1.10 0.55	0.92 0.45	0.43 0.79 0.39 0.88	$\frac{0.69}{0.35}$	0.33 0.61 0.31 0.64	0.29 0.55 0.27 0.61
$\begin{array}{cccc} 3 & \times 2 & \times \frac{3}{16} \\ 3 & \times 2 & \times \frac{1}{2} \end{array}$	1.75 5.33	0.87 2.66	0.58 1.77				0.25		0.19 0.59	0.17 0.53
$\begin{array}{ccc} 2\frac{1}{2}\times2 & \times\frac{3}{16} \\ 2\frac{1}{2}\times2 & \times\frac{1}{2} \end{array}$	1.55 3.79	0.77 1.89	0.52 1.26				$0.22 \\ 0.54$		0.17 0.42	0.16 0.38
$ \begin{array}{cccc} 1\frac{3}{4} \times 1\frac{1}{8} \times \frac{5}{16} \\ 1\frac{3}{8} \times & \frac{7}{8} \times \frac{1}{8} \\ 1 & \times & \frac{5}{8} \times \frac{1}{8} \end{array} $	1.11 0.35 0.12	0.56 0.15 0.08	0.37 0.10 0.05	0.08	0.06	0.05	0.16 0.04 0.02	0.04		0.11 0.03 0.02

Safe loads include weight of angle. Maximum fiber strain of 16,000 pounds per square inch. Neutral axis through center of gravity parallel to short leg.

See notes on page 106.

SAFE LOADS IN TONS OF 2000 POUNDS Uniformly Distributed, for Jones & Laughlin Steel Co's. Angles with Unequal Legs

Short Leg Vertical

Size		Dis	STANC	E BET	WEEN	Supp	ORTS	IN F	EET	
OF ANGLE	1	2	3	4	5	6	7.	8	9	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.53 16.80 6.56 12.85	4.27 8.40 3.28 6.43	2.84 5.60 2.19 4.28	2.13 4.20 1.64 3.21	1.71 3.36 1.31 2.57	1.43 2.80 1.09 2.14	1.22 2.40 0.94 1.84	1.07 2.10 0.82 1.61	0.95 1.87 0.73 1.43	0.85 1.68 0.66 1.28
5 ×4 ×3/8 5 ×4 ×3/4 5 ×31/2×3/8 5 ×31/2×3/4 5 ×3 ×3/8 5 ×3 ×3/4	8.37 15.25 6.40 11.63 4.75 8.59	4.19 7.63 3.20 5.81 2.37 4.29	2.79 5.08 2.13 3.88 1.59 2.87	2.09 3.81 1.60 2.91 1.19 2.15	1.68 3.05 1.28 2.32 0.95 1.72	1.40 2.54 1.07 1.94 0.79 1.43	1.20 2.18 0.92 1.66 0.68 1.23	1.05 1.91 0.80 1.45 0.60 1.08	$\begin{array}{c} 0.93 \\ 1.69 \\ 0.71 \\ 1.29 \\ \hline 0.53 \\ 0.96 \end{array}$	$0.84 \\ 1.52 \\ 0.64 \\ 1.16 \\ \hline 0.48 \\ 0.86$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.05 9.12 6.29 11.36 4.53 8.32	2.03 4.56 3.15 5.68 2.27 4.16	1.35 3.04 2.09 3.79 1.51 2.77	1.01 2.28 1.57 2.84 1.13 2.08	0.81 1.82 1.25 2.27 0.91 1.67	0.68 1.52 1.05 1.89 0.76 1.39	0.58 1.30 0.90 1.62 0.65 1.19	0.51 1.14 0.79 1.42 0.57 1.04	$0.45 \\ 1.01 \\ 0.70 \\ 1.27 \\ 0.50 \\ 0.92$	$ \begin{array}{c c} 0.41 \\ 0.91 \\ \hline 0.63 \\ 1.14 \\ \hline 0.45 \\ 0.83 \end{array} $
$3\frac{1}{2} \times 3 \times \frac{3}{8}$ $3\frac{1}{2} \times 3 \times \frac{3}{4}$ $3\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4}$ $3\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{2}$	4.43 8.11 2.19 4.32	2.21 4.05 1.09 2.16	1.48 2.70 0.73 1.44	1.11 2.03 0.55 1.08	0.88 1.62 0.44 0.87	0.74 1.35 0.36 0.72	0.63 1.16 0.31 0.62	0.56 1.01 0.28 0.54	0.49 0.90 0.24 0.48	0.44 0.81 0.22 0.43
$\begin{array}{cccc} 3 & \times 2\frac{1}{2} \times \frac{1}{4} \\ 3 & \times 2\frac{1}{2} \times \frac{1}{2} \\ 3\frac{1}{4} \times 2 & \times \frac{1}{4} \\ 3\frac{1}{4} \times 2 & \times \frac{1}{2} \end{array}$	2.13 3.89 1.12 2.56	1.07 1.95 0.56 1.28	0.71 1.29 0.37 0.85	0.53 0.97 0.28 0.64	0.43 0.78 0.23 0.51	$0.36 \\ 0.65 \\ \hline 0.19 \\ 0.43$	$0.32 \\ 0.56 \\ \hline 0.16 \\ 0.36$	0.27 0.49 0.14 0.32	0.24 0.43 0.12 0.28	0.21 0.39 0.11 0.26
$\begin{array}{cccc} 3 & \times 2 & \times \frac{3}{10} \\ 3 & \times 2 & \times \frac{1}{2} \end{array}$	1.07 2.51	$0.53 \\ 1.25$	0.36	0.27 0.63	$0.21 \\ 0.50$	$0.18 \\ 0.42$	0.15	$\begin{bmatrix} 0.13 \\ 0.32 \end{bmatrix}$	$\begin{bmatrix} 0.12 \\ 0.28 \end{bmatrix}$	$0.11 \\ 0.25$
$\begin{array}{ccc} 2\frac{1}{2} \times 2 & \times \frac{3}{16} \\ 2\frac{1}{2} \times 2 & \times \frac{1}{2} \end{array}$	1.01 2.49	$\begin{bmatrix} 0.51 \\ 1.25 \end{bmatrix}$	0.33 0.83	$0.25 \\ 0.62$	0.20	$0.17 \\ 0.41$	0.15	$0.13 \\ 0.31$	0.11	$0.10 \\ 0.25$
$\begin{array}{c} 1\frac{3}{4} \times 1\frac{1}{8} \times \frac{5}{16} \\ 1\frac{3}{8} \times \frac{7}{8} \times \frac{1}{8} \\ 1 \times \frac{5}{8} \times \frac{1}{8} \end{array}$	0.49 0.13 0.064	$0.25 \\ 0.07 \\ \hline 0.032$	0.16 0.04 0.021	0.12 0.03 0.016	0.10 0.03 0.013	0.08 0.02 0.011	0.07 0.02 0.009	0.06 0.02 0.008	0.05 0.02 0.007	0.05 0.01 0.006

Safe loads include weight of angle. Maximum fiber strain of 16,000 pounds per square inch. Neutral axis through center of gravity parallel to long leg.

See notes on page 106.

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Jones & Laughlin Steel Co's.
Tees

rion o.	Size Flange	· I	DIST	ANCE	BET	WEEN	Sui	PPORT	rs in	FEE	ET
SECTION No.	BY STEM	1	2	3	4	5	6	7	8	9	10
T 1 T 2 T31 T29	4 ×4 4 ×4 5 ×2½ 3½×4	8.27	5. 15 2. 29 4. 13	3.43 1.53 2.76	2.57 1.15 2.07	2.05 0.92 1.65	$ \begin{array}{r} 1.72 \\ \hline 0.76 \\ \hline 1.37 \end{array} $	$ \begin{array}{r} 1.47 \\ \hline 0.66 \\ \hline 1.19 \end{array} $	$\frac{1.28}{0.57} \\ \hline 1.04$	$\begin{array}{r} 1.15 \\ 0.51 \\ \hline 0.92 \end{array}$	$ \begin{array}{r} 1.03 \\ \hline 0.46 \\ \hline 0.83 \end{array} $
T33 T30 T 3 T 4 T23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.56 7.37 6.39	5.28 3.69 3.19	3.52 2.45 2.13	2.64 1.84 1.60	2.11 1.48 1.28		1.51 1.05 0.92	1.32 0.92 0.80	1.17 0.81 0.71	$ \begin{array}{r} 1.05 \\ 0.74 \\ 0.64 \end{array} $
T24 T26 T25 T 5	3½×3 3 ×3½ 3 ×3½ 3 ×3 3 ×3	7.19 6.23	$3.59 \\ 3.11$	$\frac{2.40}{2.08}$	1.80 1.56	1.44 1.24	0.79 1.20 1.04 0.80	1.03 0.89	0.89 0.78	$\frac{0.80}{0.69}$	$\begin{array}{c c} 0.72 \\ 0.63 \end{array}$
T 6 T32 T 7 T 8 T28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 3.30 \\ 3.25 \\ 2.79 \end{bmatrix}$	1.65 1.63 1.39	1.10 1.08 0.93	0.82 0.81 0.69	0.66 0.65 0.56	0.68 0.55 0.55 0.47 0.28	0.47 0.47 0.40	$\begin{bmatrix} 0.41 \\ 0.40 \\ 0.35 \end{bmatrix}$	$\begin{bmatrix} 0.37 \\ 0.36 \\ 0.31 \end{bmatrix}$	0.33 0.32 0.28
T 9 T10 T11 T27	$ \begin{array}{c} 2\frac{1}{4} \times 2\frac{1}{4} \\ 2\frac{1}{4} \times 2\frac{1}{4} \\ 2 \times 2 \\ 2\frac{1}{2} \times 1\frac{3}{4} \end{array} $	1.75 1.36	0.87 0.68	$0.59 \\ 0.45$	$0.44 \\ 0.34$	$0.35 \\ 0.27$	$ \begin{array}{c} 0.36 \\ 0.29 \\ \hline 0.23 \\ 0.17 \end{array} $	$\begin{bmatrix} 0.25 \\ 0.20 \end{bmatrix}$	$0.21 \\ 0.17$	$0.20 \\ 0.15$	0.17
T13 T12 T14 T15	134×134 134×134 112×112 112×112	0.68 0.73 0.61	$0.34 \\ 0.37 \\ 0.31$	$0.23 \\ 0.24 \\ 0.20$	0. 17 0. 19 0. 15	$\begin{bmatrix} 0.13 \\ 0.15 \\ 0.12 \end{bmatrix}$	0. 17 0. 12 0. 12 0. 11	0.09 0.11 0.09	0.08 0.09 0.08	0.08 0.08 0.07	$0.07 \\ 0.07 \\ 0.06$
T16 T17 T18 T19	1¼×1¼ 1¼×1¼ 1 ×1 1 ×1 1 ×1	0.39 0.25	$0.20 \\ 0.13$	$0.13 \\ 0.08$	0.10	$0.08 \\ 0.05$	0.09 0.07 0.04 0.03	$0.05 \\ 0.04$	$0.05 \\ 0.03$	$0.04 \\ 0.03$	$\begin{array}{c} 0.04 \\ 0.03 \end{array}$

Safe loads include weight of tees. Maximum fiber strain, 16,000 pounds per square inch.

For safe loads to the right of heavy lines the deflection will be greater than allowable for plastered ceilings.

Uniformly Distributed, for Jones & Laughlin Steel Co.'s

Steel Z Bars

on No.	INCHES	ICKNESS OF METAL INCHES		Dı	STAN	CE BE	TWEE	n Su	PPORT	rs, Fe	EET ,	
SECTION	Size,	THICKI ME INC	4	5	6	7	8	9	10	12	14	16
Z4	$\frac{3}{3\frac{1}{16}}$	1/4 5 16 3/8	2.56 3.17 3.77		1.71 2.12 2.51	1.46 1.81 2.16	1.28 1.59 1.88	1.14 1.41 1.68	1.27	0.85 1.06 1.26	$0.73 \\ 0.91 \\ 1.08$	$0.64 \\ 0.70 \\ 0.94$
Z8	$\begin{array}{c} 2\frac{15}{16} \\ 3 \\ 3\frac{1}{6} \\ 3^{\frac{1}{8}} \end{array}$	7 16 1/2 9 16 5/8	3.57 4.08 4.57 5.08	2.86 3.26 3.66 4.05	2.38 2.72 3.05 3.39	2.04 2.33 2.61 2.90	1.79 2.04 2.29 2.54	1.59 1.81 2.03 2.26	1.43 1.63 1.83 2.03	1.19 1.36 1.52 1.69	1.02 1.16 1.31 1.45	0.89 1.02 1.14 1.27
Z9	3	3 16	1.24	0.99	0.82	0.71	0.62	0.55	0.50	0.41	0.36	0.31

Safe loads include weight of Z bar. Maximum fiber stress, 16,000 pounds per square inch.

CORRUGATED SHEETS.—(Not Manufactured by Jones & Laughlin Steel Co.)

-Width of sheet = 10% Corrugations=27" to 27% = b

T = 1.57. "> >

p = -

-35¢-

NOTE.—Allowing a lap of one and one-half corrugations, one sheet will cover 24 inches.

sheets inches			10/	360	274	198	160	128	106
		g	6	362	275	199	161	129	106
orrugato and 3	n of:	Painte	જે	366	278	201	163	130	107
feet of corrugated in length and 3%	1 (100)	Sheets Painted	1-	368	280	203	164	131	108
	sheet	S	,9	374	283	205	166	133	109
square ch lap	et for		्रे	379	288	209	169	135	111
	of sheet		10′	351	265	189	151	119	97
square of 100 l, allowing 6-in	width	ited	م	353	266	190	152	120	97
squa d. all	ns in	Sheets Not Painted	જે	357	269	192	154	121	86
it per en laj	ugatio	ts No	12	359	271	194	155	122	66
Weight k) when	Ö	Shee	- ,9	364	274	196	157	124	100
W (black)	or 13		2′	370	279	200	160	126	102
neets	Ft. 1	Lin, Shee	-				3.77	3.17	2.74
Veights of Sheets Galvanized		Sq. I			2.60		1.64	1.38	1.19
Weigh Ga	*15	Sq. P Flat	ьег	2.99				1.24	1.07
	1	Lin. Shee ainted	ło –						2.05
Veights of Sheets Black	pə	Sq. P rugato Paint	Cor						0.88
eights Bl	pa pa	Sq. H rugat	Per Cor						0.81
W	*12	Sq. F		2.65	2.00	1.43	1.14	0.90	0.73
		ліски Іпси	L	.065	670.	.035	.028	.022	.018
	រនិទ ឃោរ	riE yd 160	*0 NT	16	18	20	22	24	26

NOTE. - For weights per square laid with two laps, add to above five per cent. Sheets are 30½ inches wide before, and 27 to 27½ inches wide Sheets can be corrugated any length not exceeding 10 feet. It is not advisable to use over six feet clear spans on roofs. after corrugating.

Safe loads per sheet between supports=

W=Breaking weight distributed in pounds. w 99900tbd

W = W

d = Depth of corrugations in inches. t = Thickness of sheet in inches. b = Width of sheet in inches.

L = Unsupported length of sheet in inches.

Use of Tables on the Properties of Rolled Shapes

(Pages 118 to 139.)

These tables afford a ready means of determining the safe uniformly distributed load a particular shape will sustain, by making one division only.

Refer to columns headed "Coefficient of Strength" C and C' and divide the numbers therein found by the length of span measured between centers of bearings. The first column gives safe uniformly distributed loads with fiber stress at 16,000 pounds per square inch. The second with fiber stress at 12,500 pounds for beams and channels and 12,000 pounds for tees and zees.

Referring to 24-inch beam, 80 pounds per foot, in table under C is found 1,855,900 and under C' 1,449,900. If span is thirty feet divide said numbers by 30, giving 61,863 and 48,330 respectively, or the number of pounds uniformly distributed which a 24-inch beam, 80 pounds per foot, will safely support 30 feet between supports, the extreme fibers of beam being stressed 16,000 pounds per square inch in first case and 12,500 pounds in second.

Suppose we wish to know the safe load a tee will support ten feet long, section T-30. We find, page 127, under C and C', 21,160 and 15,870. Dividing same by ten we have 2116 and 1587 pounds, respectively, as safe loads, stressing material 16,000 pounds per square inch in first case and 12,000 pounds in second.

With any complicated system of loading it is only necessary to determine the moment, multiply same by eight and look up nearest number corresponding to this in columns C and C', when proper beam, channel, tee or zee will be indicated.

For example, if a beam is loaded at the center with 10,000 pounds and the span is twenty feet, the reaction at each end of beam is 5000 pounds and eight times the moment or $8 M=8\times10\times500=400,000$.

Under column C we find 405,800, which corresponds to a 12-inch 35-pound beam.

Under column C' we find 396,800, which corresponds to a 12-inch, 40-pound beam.

Where two beams or two channels are connected together by latticing or stay plates, column 14 will be useful in spacing them to make radii of gyration equal.

The value of I, I', r, r', R, R' will be found convenient in applying the general formulæ on the flexure of beams of any cross-section, given on page 114, to particular sections.

General Formulas on the Flexure of Beams of any Cross-Section

Let A = area of section, in square inches.

1 = length of span, in inches.

W = load, uniformly distributed, in pounds.

M = bending moment, in inch-pounds.

h = height of cross-section, out-to-out, in inches.

n = distance of center of gravity of section, from top or from bottom, in inches.

s = strain per square inch in extreme fibers of beam, either top or bottom, in pounds, according as n relates to distance from top or from bottom of section.

D = maximum deflection, in inches.

I = moment of inertia of section, neutral axis through center of gravity.

 I_d = moment of inertia of section, neutral axis parallel to above, but not through center of gravity.

d = distance between these neutral axes.

R = section factor.

r = radius of gyration, in inches.

E = modulus of elasticity (for wrought iron, assume 27,000,000; for steel, 29,000,000).

Then:
$$R = \frac{I}{n}$$
 $r = \sqrt{\frac{I}{A}}$

$$M = \frac{sI}{n} = sR$$

$$s = \frac{Mn}{I} = \frac{M}{R}$$

$$W = \frac{8sI}{ln} = \frac{8s}{l}$$

$$s = \frac{Wln}{8I} = \frac{Wl}{8R}$$

$$I_{a'} = I + Ad^{2}$$

 $D = \frac{5 \text{Wl}^3}{384 \text{ E I}}$ uniformly loaded.

 $D = \frac{Pl^3}{48EI}$ for beam supported at both ends and loaded with a single load P at middle.

 $D = \frac{Wl^3}{8EI}$ for beam fixed at one end and unsupported at the other and uniformly loaded.

 $D = \frac{Pl^3}{3EI}$ for beam fixed at one end and unsupported at the other, and loaded with a single load P at the latter end.

BENDING MOMENTS AND DEFLECTIONS OF BEAMS UNDER VARIOUS SYSTEMS OF LOADING

W=total load. l=length of beam.

(1) Beam fixed at one end and loaded at the other.

Safe load=1/8 that given in tables. Maximum bending moment at point of support = Wl.

Maximum shear at point of support =W.

Deflection =
$$\frac{Wl^3}{3EI}$$

(3) Beam supported at both ends, single load in the middle.

Safe load=½ that given in tables. Maximum bending moment at mid-dle of beam= $\frac{Wl}{l}$

Maximum shear at points of sup $port = \frac{1}{2}W.$ Wl^3

Deflection =
$$\frac{Wl^3}{48EI}$$

(5) Beams supported at both ends, single unsymmetrical load.

Safe load = that given in tables \times_{8ab}

Maximum bending moment under $load = \frac{W a b}{l}$

Maximum shear: at support near $a = \frac{Wb}{l}$; at other support = -

Maximum deflection
$$= \frac{W a b (2 l - a)}{g E l l} \sqrt{\frac{1}{3} a (2 l - a)}$$

I=moment of inertia. E = modulus of elasticity.

(2) Beam fixed at one end, and uniformly loaded.

Safe load=1/4 that given in tables. Maximum bending moment at point of support = $\frac{v}{2}$

Maximum shear at point of support=W. $W l^3$

Deflection =
$$\frac{W l^3}{8 E I}$$

(4) Beam supported at both ends and uniformly loaded.

Safe load = that given in tables. Maximum bending moment at mid-ÎV l dle of beam= $\frac{7}{8}$

Maximum shear at points of sup $port = \frac{1}{2}W.$ Wl^3

Deflection =
$$\frac{Wl^3}{768EI}$$

(6) Beam supported at both ends, two symmetrical loads.

Safe load=that given in tables

Maximum bending moment between $loads = \frac{1}{2} W a$.

Maximum shear between load and nearer support= $\frac{1}{2}$ W.

Maximum deflection

$$= \frac{Wa}{48 E I} (3l^2 - 4a^2).$$

VALUES OF MOMENTS OF INERTIA

I, axis X-X=
$$\frac{b d^3 - \frac{1}{4r}(h^4 - l^4)}{12}$$

I, axis Y-Y=
$$\frac{b^3 (d-h) + l t^3 + \frac{r}{4} (b^4 - t^4)}{12}$$

Batter=
$$r = \frac{h-l}{b-t}$$

I, axis X-X=
$$\frac{b d^3 - \frac{1}{8r}(h^4 - l^4)}{12}$$

I, axis Y-Y

$$= \frac{2 s b^3 + l t^3 + \frac{r}{2} (b^4 - t^4)}{3} - An^2$$

$$n = [b^2 s + \frac{h t^2}{2} + \frac{r}{3} (b-t)^2 (b+2t)] \div A$$

Area=A=2
$$b$$
 $s+h$ $t+\frac{h-l}{2}(b-t)$

Batter=
$$r = \frac{h-l}{2(b-t)}$$

I, axis X-X=
$$\frac{b n^3+t(d-n)^3-(b-t)(n-f)^3}{3}$$

I, axis Y-Y=
$$\frac{f b^3 + (d-f)t^3}{12}$$

$$n = \frac{b f^2 + t (d^2 - f^2)}{2 (h t + b f)}$$

I, axis X-X=
$$\frac{b n^3+t (d-n)^3-(b-t) (n-t)^3}{3}$$

for uneven and even angles.

I, axis Y-Y= $\frac{d n^3+t (b-n)^3-(d-t)(n-t)^3}{3}$ for uneven angles.

$$2n^{4}-2(n-t)^{4}+t[b-(2n-\frac{t}{2})]^{3},$$
I, axis U-U=

for even angles.

$$n = \frac{t(2h+b)+h^2}{2(h+b)}, \text{ for uneven and even angles.}$$

VALUES OF MOMENTS OF INERTIA

I=Moment of Inertia R=Moment of Resistance

Sections	I	R
X X X X X X X X X X X X X X X X X X X	For axis X-X= $\frac{b h^3}{12}$ For axis Y-Y= $\frac{b h^3}{3}$	$\frac{b h^2}{6}$
x -b ->	$\frac{b \ (h^3 - h_1^3)}{12}$	$\frac{b \left(h^3 - h_1^3\right)}{6 h}$
** b > X =	$\frac{b h^3 - b_1 h_1^3}{12}$	$\frac{b h^3 - b_1 h_1^3}{6 h}$
X b - > Y x - x - x - x - x - x - x - x - x	For axis $X-X = \frac{b h^3}{36}$ For axis $Y-Y = \frac{b h^3}{12}$	$Min. = \frac{b h^2}{24}$
X	$\frac{\pi d^4}{64}$	$\frac{\pi \ d^{3}}{32}$
X S S	$\frac{\pi \left(d^{4} - d_{1}^{4} \right)}{64}$	$\frac{\pi \left(d^4 - d_1^4\right)}{32 \ d}$
XX-h>	$\frac{\pi b h^3}{64}$	$\frac{\pi b h^2}{32}$
×	$\frac{b h^3 - (b - b_1) h_1^3}{12}$	$\frac{2 \text{ I}}{h}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2 \text{ I}}{h}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 I h

PROPERTIES OF

1		3	4	5	6	7	8	9
Section Number	Depth of Beam Inches	Weight per Foot Pounds	Area of Section Square Inches	Thickness of Web Inches	Width of Flange Inches	Mom. of Inertia Neutral Axis Perpendicular to Web at Center	Mom. of Inertia Neutral Axis Coincident with Center Line of Web	Radius of Gyration Neutral Axis Perpendicular to Web at Center
В0	24	100. 95. 90. 85. 80.	29.41 27.94 26.47 25. 23.53	.754 .692 .631 .570	7.254 7.192 7.131 7.070 7.000	2380.3 2309.6 2239.1 2168.6 2087.9	48.56 47.10 45.70 44.35 42.86	9.00 9.09 9.20 9.31 9.46
[B1	20	100. 95. 90. 85. 80.	29. 41 27. 94 26. 47 25. 23. 53	.884 .810 .737 .663 .600	7.284 7.210 7.137 7.063 7.000	1655.8 1606.8 1557.8 1508.7 1466.5	52. 65 50. 78 48. 98 47. 25 45. 81	7.50 7.58 7.67 7.77 7.86
B2	20	75. 70. 65.	22.06 20.59 19.08	. 649 . 575 . 500	6.399 6.325 6.250	1268.9 1219.9 1169.6	30.25 29.04 27.86	7.58 7.70 7.83
B2½	18	70. 65. 60. 55.	20.59 19.12 17.65 15.93	.719 .637 .555 .460	6. 259 6. 177 6. 095 6. 000	921.3 881.5 841.8 795.6	24.62 23.47 22.38 21.19	6.69 6.79 6.91 7.07
B2¾	15	100. 95. 90. 85. 80.	29.41 27.94 26.47 25. 23.53	1.184 1.085 .987 .889 .810	6.792 6.694 6.596 6.498 6.400	900.5 872.9 845.4 817.8 795.5	50.98 48.37 45.91 43.57 41.76	5.53 5.59 5.65 5.72 5.78
[B3	15	75. 70. 65. 60.	22.06 20.59 19.12 17.67	. \$82 . 784 . 686 . 590	6.274 6.183 6.091 6.000	691.2 663.6 636.0 609.0	30.68 29.00 27.42 25.96	5.60 5.68 5.77 5.87
B4	15	55. 50. 45. 42.	16.18 14.71 13.24 12.48	. 656 . 558 . 460 . 410	5.754 5.669 5.585 5.500	511.0 483.4 455.8 441.7	17.06 16.04 15.00 14.62	5.62 5.73 5.87 5.95
'B5	12	55. 50. 45. 40.	16.18 14.71 13.24 11.84	.822 .699 .576 .460	5.612 5.489 5.366 5.250	321.0 303.3 285.7 268.9	17.46 16.12 14.89 18.81	4.45 4.54 4.65 4.77
B6	12	35. 31.50	10.29 9.26	.436	5.086 5.000	228.3 215.8	10.07 9.50	4.71 4.83
В7	10	40. 35. 30. 25.	11.84 10.29 8.82 7.37	.749 .602 .455 .310	5.099 4.952 4.806 4.660	158.7 146.4 134.2 122.1	9.50 8.52 7.65 6.89	3.67 3.77 3.90 4.07
B8	9	35. 30. 25. 21.	10.29 8.82 7.35 6.81	.732 .569 .406 .290	4.772 4.609 4.446 4.330	111.8 101.9 91.9 84.9	7,31 6,42 5 65 5,16	3.29 3.40 3.54 3.67

L=Safe load in pounds uniformly distributed. I=Span in feet.
M=Moment of forces in foot pounds. C and C'=Coefficients given on opposite page. Weights in heavy print are standard; others are special.

STEEL BEAMS

10	11	12	13	14	15
Radius of Gyration Neutral Axis Coincident with Center Line of Web	Section Factor Neutral Axis Perpendicular to Web at Center	Coefficient of Strength for Fiber Stress of 16,000 Pounds per Square Inch. Used for Buildings	Coefficient of Strength for Fiber Stress of 12,500 Pounds per Square Inch. Used for Bridges	Distance Center to Center Required to Make Wadii of Gyration Equal	Section Number
1.28	198.4	2,115,800	1,653,000	17:82	В0
1.30	192.5	2,052,900	1,603,900	17.99	
1.31	186.6	1,990,300	1,554,900	18.21	
1.33	180.7	1,927,600	1,505,900	18.43	
1.36	174.0	1,855,900	1,449,900	18.72	
1.34	165.6	1,766,100	1,379,800	14.76	B1
1.35	160.7	1,713,900	1,339,000	14.92	
1.36	155.8	1,661,600	1,298,100	15.10	
1.37	150.9	1,509,300	1,257,200	15.30	
1.39	146.7	1,564,300	1,222,100	15.47	
1.17	126.9	1,353,500	1,057,400	14.98	B2
1.19	122.0	1,301,200	1,016,600	15.21	
1.21	117.0	1,247,600	974,700	15.47	
1.09	102.4	1,091,900	853,000	13.20	B2½
1.11	97.9	1,044,800	816,200	13.40	
1.13	93.5	997,700	779,500	13.63	
1.15	88.4	943,000	736,700	13.95	
1.31	120.1	1,280,700	1,000,600	10.75	B2 <u>%</u> 4
1.32	116.4	1,241,500	969,900	10.86	
1.32	112.7	1,202,300	939,300	10.99	
1.32	109.0	1,163,000	908,600	11.13	
1.32	106.1	1,131,300	883,900	11.25	
1.18	92.2	983,000	768,000	10.95	В3
1.19	88.5	943,800	737,400	11.11	
1.20	84.8	904,600	706,700	11.29	
1.21	81.2	866,100	676,600	11.49	
1.02	68.1	726,800	567,800	11.05	B4
1.04	64.5	687,500	537,100	11.27	
1.07	60.8	648,200	506,400	11.54	
1.08	58.9	628,300	490,800	11.70	
1.04	53.5	570,600	445,800	8.65	B5
1.05	50.6	539,200	421,300	8.83	
1.06	47.6	507,900	396,800	9.06	
1.08	44.8	478,100	373,500	9.29	
0.99	38.0	405,800	317,000	9.21	В6
1.01	36.0	383,700	299,700	9.45	
0.90	31.7	338,500	264,500	7. 12	B7
0.91	29.3	312,400	244,100	7. 32	
0.93	26.8	286,300	223,600	7. 57	
0.97	24.4	260,500	203,500	7. 91	
0.84	24.8	265,000	207,000	6.36	B8
0.85	22.6	241,500	188,700	7.58	
0.88	20.4	217,900	170,300	6.86	
0.90	18.9	201,300	157,300	7.12	

$$L = \frac{C \text{ or } C'}{1}$$
 $M = \frac{C \text{ or } C'}{8}$ $C \text{ or } C' = L 1 = 8M = \frac{8 \text{ s } R}{12}$

PROPERTIES OF

1	2	3	4	5.	6	7	8	9
Section Number	Depth of Beam Inches	Weight per Foot Pounds	Area of Section Square Inches	Thickness of Web Inches	Width of Flange Inches	Mom. of Inertia Neutral Axis Perpendicular to Web at Center	Mom. of Inertia Neutral Axis Coincident with Center Line of Web	Radius of Gyration Neutral Axis Perpendicular to Web at Center
В 9	8	25.50 23.00 20.50 18.00	7.50 6.76 6.03 5.33	. 541 . 449 . 357 . 270	4.271 4.179 4.087 4.000	68.4 64.5 60.6 56.9	4.75 4.39 4.07 3.78	3.02 3.09 3.17 3.27
B10	7	20.00 17.50 15.00	5.88 5.15 4.42	. 458 . 353 . 250	3.868 2.763 3.660	42.2 39.2 36.2	3.24 2.94 2.67	2.68 2.76 2.85
B11	6	17. 25 14. 75 12. 25	5.07 4.34 3.61	. 475 . 352 . 230	3.575 3.452 3.330	26.2 24.0 21.8	2.36 2.09 1.85	$2.27 \\ 2.35 \\ 2.46$
B12	5	14.75 12.25 9.75	4.34 3.60 2.87	.504 .357 .210	3.294 3.147 3.000	15. 2 13. 6 12. 1	$1.70 \\ 1.45 \\ 1.28$	1.87 1.94 2.05
B13	4	10.50 9.50 8.50 7.50	3.09 2.79 2.50 2.21	. 410 . 337 . 268 . 190	2,880 2,807 2,733 2,660	7.1 6.7 6.4 6.0	1.01 0.93 0.85 0.77	$egin{array}{ccc} 1.52 \\ 1.55 \\ 1.59 \\ 1.64 \\ \end{array}$
B14	3	7.50 6.50 5.50	2.21 1.91 1.63	. 361 . 263 . 170	2.521 2.423 2.330	2.9 2.7 2.5	$0.60 \\ 0.53 \\ 0.46$	1.15 1.19 1.23

PROPERTIES OF SPECIAL

1	2	3	4	5	6	7	8	9
Section Number	Depth of Channel Inches	Weight per Foot Pounds	Area of Section Square Inches	Thickness of Web Inches	Width of Flange Inches	Mom. of Inertia Neutral Axis Perpendicular to Web at Center	Mom. of Inertia Neutral Axis Parallel with Center Line of Web	Radius of Gyration Neutral Axis Perpen- dicular to Web at Center
	-					I	I′	r
*C 1½	13	52. 31.5	15.3 9.27	.84	4.46 4.	318.2 233.	13.07 10.39	4.56 5.01
†C21	7	22.1 18.	6.50 5.29	.50	3.50 3.33	46.04 41.30	7.04 5.80	2.67 2.79
†C16	6	18.4 13.3	5.41 3.91	. 562 3 · 12	3.06 2.81	25.44 20.94	3.66 2.65	2.17 2.31
†C22	6	15.	4.41	. 35	3.50	25.02	4.25	2.38

^{*} Special channels. † Ship channels.

STEEL BEAMS

10	11	12	13	14	15
Radius of Gyration Neutral Axis Coincident with Center Line of Web	Section Factor Neutral Axis Perpendicular to Web at Center	Coefficient of Strength for Fiber Stress of 16,000 Pounds per Square Inch. Used for Buildings	Coefficient of Strength for Fiber Stress of 12,500 Pounds per Square Inch. Used for Bridges	Distance Center to Center Required to Make Radii of Gyration Equal	Section Number
.80 81 .82 .84	17. 1 16. 1 15. 1 14. 2	182,500 172,000 161,600 151,700	142,600 134,400 126,200 118,500	5.82 5.96 6.12 6.32	В 9
.74 .76 . 78	12.1 11.2 10.4	128,600 119,400 110,400	100,400 93,300 86,300	5.15 5.31 5.50	B10
. 68 . 69 . 72	8.7 8.0 7.3	93,100 85,300 77,500	72,800 66,600 60,500	4.33 4.49 4.70	B11
.63 .63 .65	6.1 5.4 4.8	64,600 55,100 51,600	50,500 45,400 40,300	3.88	B12
. 57 . 58 . 58 . 59	3.6 3.4 3.2 3.0	38,100 36,000 33,900 31,800	29,800 28,100 26,500 24,900	3.07	B13
.52 .52 .53	1.9 1.8 1.7	20,700 19,100 17,600	16,200 15,000 15,800	2.24	B14

AND SHIP STEEL CHANNELS

10	11	12	13	14	15.	16
Radius of Gyration Neutral Axis Parallel with Center Line of Web	Section Factor Neutral Axis Perpendicular to Web at Center	Coefficient of Strength for Fiber Stress of 16,000 Pounds per Square Inch. Used for Buildings	Coefficient of Strength for Fiber Stress of 12,500 Pounds per Square Inch. Used for Bridges	Distance Required to make Radii of Gyration Equal	Distance of Center of Gravity from Outside of Web	Section Number
.924 1.059	48.95 35.85	522,100 38 2,400	407,900 298,800	6.72 7.66	1.114 10.72	C 1½
1.04 1.04	13.15 11.80	140,300 125,800	109,600 98,300	2.83 3.01	1.05 1.09	C21
.80	8.48 6.98	90,500 74,500	70,700 58, 200	2.45 2.75	0.78 0.79	C16
.98	8.34	88,960	69,500	2.24	1.05	C22

PROPERTIES OF

1	2	3	4	5	6	7	8	9
Section Number	Depth of Channel Inches	Weight per Foot Pounds	Area of Section Square Inches	Thickness of Web, Inches	Width of Flange Inches	Mom. of Inertia Neutral Axis Perpendicular to Web at Center	Mom. of Inertia Neutral Axis Parallel with Center Line of Web	Radius of Gyration Neutral Axis Perpen- dicular to Web at Center
						<u>I</u>	I′	r
C 1	15	55. 50. 45. 40. 35. 33.	16. 18 14.71 13. 24 11. 76 10. 29 9. 90	.818 .720 .622 .524 .426 .400	3.818 3.720 3.622 3.524 3.426 3.400	430.2 402.7 375.1 347.5 320.0 312.6	12. 19 11. 22 10. 29 9. 39 8. 48 8. 23	5. 16 5. 23 5. 32 5. 43 5. 58 5. 62
C 2	12	40. 35. 30. 25. 20.5	11.76 10.29 8.82 7.35 6.03	.758 .636 .513 .390 .280	3.418 3.296 3.173 3.050 2.940	197.0 179.3 161.7 144.0 128.1	6.63 5.90 5.21 4.53 3.91	4.09 4.17 4.28 4.43 4.61
C 3	10	35. 30. 25. 20. 15.	10.29 8.82 7.35 5.88 4.46	.828 .676 .529 .382 .240	3. 188 3. 036 2. 889 2. 742 2. 600	115.5 103.2 91.0 78.7 66.9	4.66 3.90 3.40 2.85 2.30	3. 35 3. 42 3. 52 3. 66 3. 87
C 4	9	25. 20. 15. 13.25	7.35 5.88 4.41 3.89	.614 .452 .288 .230	2.815 2.652 2.488 2.430	70.7 60.8 50.9 47.3	2.98 2.45 1.95 1.77	3. 10 3. 21 3. 40 3. 49
C 5	8	21.25 18.75 16.25 13.75 11.25	6.25 5.51 4.78 4.04 3.35	.588 .490 .399 .307 .220	2.628 2.530 2.439 2.347 2.260	47.8 43.8 39.9 36.0 32.3	2.25 2.01 1.78 1.55 1.33	2.77 2.82 2.89 2.98 3.11
C 6	7	19.75 17.25 14.75 12.25 9.75	5.81 5.07 4.34 3.60 2.85	.633 .528 .423 .318 .210	2.513 2.408 2.303 2.198 2.090	33.2 30.2 27.2 24.2 21.1	1.85 1.62 1.40 1.19 0.98	2.39 2.44 2.50 2.50 2.72
C 7	6	15.5 13. 10.5 8.00	4.56 3.82 3.09 2.38	.568 .440 .318 .200	2. 288 2. 160 2. 038 1. 920	19.5 17.3 15.1 13.0	1.28 1.07 0.88 0.70	2.07 2.13 2.21 2.34
C 8	5	11.5 9. 6.5	3.38 2.65 1.95	.484 .330 .190	2.044 1.890 1.750	10.4 8.9 7.4	0.82 0.64 0.48	1.75 1.83 1.95
C 9	4	7.25 6.25 5.25	2.13 1.84 1.55	. 327 . 252 . 180	1.727 1.652 1.580	4.6 4.2 3.8	0.44 0.38 0.32	1.46 1.51 1.56
C10	3	6. 5. 4.	1.76 1.47 1.19	. 366 . 264 . 170	1.606 1.504 1.410	2.1 1.8 1.6	0.31 0.25 0.20	1.08 1.12 1.17

L=Safe load in pounds uniformly distributed. I=Span in feet.
M=Moment of forces in foot pounds. C and C'=Coefficients given on opposite page. Weights in heavy type are standard; others are special.

STEEL CHANNELS

10	11	12	13	14	15	16
Radius of Gyration Neutral Axis Paral- Iel with Center Line of Web	Section Factor Neutral Axis Perpendicular to Web at Center	Coefficient of Strength for Fiber O Stress of 16,000 lbs. per Square Inch. Used for Buildings	Coefficient of Strength for Filter Stress of 12,500 lbs. per Square Inch Used for Bridges	Distance Required to make Radii of Gyration Equal	Distance of Center of Gravity from Outside of Web	Section Number
. 868 . 873 . 882 . 893 . 905	57.4 53.7 50.0 46.3 42.7 41.7	611,900 572,700 533,500 494,200 455,000 444,500	478,000 447,400 416,800 386,100 355,500 347,300	8.53 8.71 8.92 9.15 9.43 9.50	. 823 . 803 . 788 . 783 . 789 . 794	C 1
.751	32.8	350,200	273,600	6.60	.722	C 2
.757	29.9	318,800	249,100	6.81	.694	
.768	26.9	287,400	224,500	7.07	.677	
.785	24.0	256,100	200,000	7.36	.678	
.805	21.4	227,800	178,000	7.67	. 70 4	
.672	23.1	246,400	192,500	5. 17	. 695	C 3
.672	20.6	220,300	172,100	5. 40	. 651	
.680	18.2	194,100	151,700	5. 67	. 620	
.696	15.7	168,000	131,200	5. 97	. 609	
.718	13.4	142,700	111,500	6. 33	. 639	
. 637	15.7	167,600	130,900	4.84	. 615	C 4
. 646	13.5	144,100	112,600	5.12	. 585	
. 665	11.3	120,500	94,200	5.49	. 590	
. 674	10.5	112,200	87,600	5.63	. 607	
. 600	11.9	127,400	99,500	4.23	. 587	C 5
. 603	11.0	116,900	91,300	4.38	. 567	
. 610	10.0	106,400	83,200	4.54	. 556	
. 619	9.0	96,000	75,000	4.72	. 557	
. 630	8.1	86,100	67,30 0	4.94	. 57 6	
.565	9.5	107,700	79,000	3.48	. 583	C 6
.564	8.6	91,000	71,800	3.64	. 555	
.568	7.8	81,800	64,700	3.80	. 535	
.575	6.9	73,700	57,500	3.99	. 528	
.586	6.0	66,800	52,200	4.22	. 546	
.529	6.5	69,500	54,300	2.91	.546	C 7
.529	5.8	61,600	48,100	3.09	.517	
.534	5.0	53,800	42,000	3.28	.503	
.542	4.3	46,200	36,100	3.52	.517	
. 493	4.2	44,400	34,700	2.34	.508	C 8
. 493	3.5	37,900	29,600	2.56	.481	
. 498	3.0	31,600	24,700	2.79	.489	
. 455	2.3	24,400	19,000	1.85	. 463	C 9
. 454	2.1	22,300	17,400	1.96	. 458	
. 453	1.9	20,200	15,800	2.06	. 464	
.421 .415 .409	1.4 1.2 1.1	14,700 13,100 11,600	11,500 10,300 9,100	1.07 1.19 1.31	. 459 . 443 . 443	C10

$$L = \frac{C \text{ or } C'}{1}$$

$$M = \frac{C \text{ or } C'}{8}$$

C or C' = L1 = 8M =
$$\frac{8 \text{ sR}}{12}$$

PROPERTIES OF

1	2	3	4	5	6	7	8
			la			Moments I	of Inertia
Section Number	Depth of Web Inches	Width of Flange Inches	Thickness of Metal Inches	Weight per Foot Pounds	Area of Section Square Inches	Neutral Axis through Center of Gravity Perpendicular to Web	Neutral Axis through Center of Gravity Coincident with Web
	3	$2\frac{11}{16}$	1/4	6.7	1.97	2.87	2.81
Z4	$3\frac{1}{16}$	23/4	$\frac{5}{16}$	8.4	2.48	3.64	3.64
	31/8	$2\frac{13}{16}$	3/8	10.1	3.00	4.43	4.53
	$2\frac{15}{16}$	25/8	$\frac{7}{16}$	10.9	3.20	3.94	4.08
70	3	$2\frac{11}{16}$	1/2	12.5	3.69	4.59	4.85
Z8	$3\frac{1}{16}$	23/4	$\frac{9}{16}$	14.2	4.18	5.26	5.70
	3½	$2\frac{13}{16}$	5/8	16.0	4.69	5.95	6.56
Z9	3	1½	3 16	3.6	1.06	1.40	0.35

STANDARD AND SPECIAL Z BARS

9	10	11	12	13	14	15	16
Section Factors R R'		Ra	dii of Gyrat	tion r ²			
Neutral Axis through Center of Gravity Perpendicular to Web	Neutral Axis through Center of Gravity Coincident with Web	Neutral Axis through Center of Gravity Perpendicular to Web	Neutral Axis through Center of Gravity Coincident with Web	Least Radius Neutral Axis Diagonal	For Fiber Stress of 16,000 Pounds per Sq. In. Axis Perpendicular to Web at Center	For Fiber Stress of 12,000 Pounds per Sq. In. Axis Perpendicular to Web at Center	Section Number
1.92	1.10	1.21	1.19	0.55	20,500	15,400	
2.38	1.40	1.21	1.21	0.56	25,400	19,000	Z4
2.83	1.73	1.22	1.23	0.57	30,190	22,600	
2.68	1.70	1.10	1.13	0.54	28,600	21,440	
3.06	1.99	1.12	1.15	0.55	32,600	24,500	Z8
3.43	2.31	1.12	1.17	0.56	36,600	27,400	20
3.81	2.62	1.13	1.18	0.57	40,600	30,480	
0.93	0.25	1.15	0.57	0.40	9,900	7,400	Z9

PROPERTIES OF

1	$\frac{1}{2}$	3	4	5	6	7
Section Number	Size Flange by Stem Inches	Weight per Foot Pounds	Area of Section Square Inches	Distance of Center of Gravity from Outside of Flange Inches	Mom. of Inertia Neutral Axis I through Center of Gravity Parallel to Flange	Least Section Ractor Neutral Axis as before
T31	5 ×2½	11.	3.24	. 65	1.60	.86
$ \begin{smallmatrix} T & 1 \\ T & 2 \end{smallmatrix} $	$\begin{array}{ccc} 4 & \times 4 \\ 4 & \times 4 \end{array}$	13.9 12.4	4.08 3.63	1.20 1.19	6.12 5.42	2.19 1.93
T30 T29 T33	$3\frac{1}{2} \times 4$ $3\frac{1}{2} \times 4$ $4\frac{1}{2} \times 3$	12.8 9.9 8.6	3.75 2.91 2.55	1.25 1.19 .73	5.50 4.30 1.80	1.98 1.55 .81
T 3 T 4	$3\frac{1}{2} \times 3\frac{1}{2}$ $3\frac{1}{2} \times 3\frac{1}{2}$	$\begin{array}{c} 10.4 \\ 9.3 \end{array}$	3.06 2.73	1.00 .91	3.46 3.09	1.38 1.20
T23 T24	3½×3 3½×3	9.8 9.	2.SS 2.65	.83 .75	2.22 1.99	1.02 .88
T26 T25	3 ×3½ 3 ×3½	9.8 8.6	2.88 2.50	1.06 .98	3.29 2.94	1.35
T 5 T 6 T32	3 ×3 3 ×3 3 ×3	7.85 6.6 5.68	2.30 1.94 1.67	.89 .87 .83	1.88 1.63 1.35	.89 .77 .62
T 7 T 8	$\begin{array}{c} 2\frac{1}{2} \times 2\frac{1}{2} \\ 2\frac{1}{2} \times 2\frac{1}{2} \end{array}$	$\begin{array}{c} 6.32 \\ 5.4 \end{array}$	1.86 1.59	.79 .74	1.04 .92	.61 .52
T28	21/2×2	4.8	1.41	. 54	.46	. 32
T 9 T10	$2\frac{1}{4} \times 2\frac{1}{4}$ $2\frac{1}{4} \times 2\frac{1}{4}$	4.62 4.12	$1.36 \\ 1.21$.68 .67	. 63 . 49	. 40
T11 T27	$2 \times 2 \\ 2\frac{1}{2} \times 1\frac{3}{4}$	3.5 3.9	1.03 1.15	.56	.37 .25	. 25 . 19
T13 T12	$1\frac{3}{4} \times 1\frac{3}{4}$ $1\frac{3}{4} \times 1\frac{3}{4}$	3. 2.33	.88	.51 .50	.24	.19 .13
T14 T15	1½×1½ 1½×1½	$\frac{2.5}{1.95}$.77 .56	. 46	.14	. 14 . 11
T16 T17	1½×1¼ 1½×1¼	$\begin{bmatrix} 2.04 \\ 1.6 \end{bmatrix}$. 60 . 45	.42	.08	. 097
T18 T19	1 ×1 1 ×1	1.25 .90	.36	. 33 . 30	.032 .024	. 047

STEEL T'S

8	9	10	11	12	13
Radius of Cyration Neutral Axis as before	Mom. of Inertia Neutral Axis through Center of Gravity Coincident with Center Line of Stem	Section Factor Neutral Axis as before	Radius of Gyration Neutral Axis as before	Coefficient of Strength for Fiber Stress of 16,000 Pounds per Square Inch Neutral Axis through Center of Gravity Parallel to Flange	Strength for Fiber Stress of 12,000 Pounds per Square Inch Neutral Axis as before
r	I'	R'	r'	C	
.71	4.9	1.70	1.16	9,200	6,900
1.21 1.22 1.21 1.22 .87	3.05 2.61 1.89 1.42 2.60	1.52 1.31 1.08 .81 1.16	. 85 . 85 . 72 . 70 1. 03	23,320 20,560 21,160 16,500 8,650	17,490 15,420 15,870 12,380 6,490
1.04 1.01	1.70 1.47	.97 .84	.73 .70	14,740 12,760	11,060 9,570
.87 .84	1.70 1.47	.97 .84	.76 .72	10,890 9,420	8,170 7,070
1.06 1.03	1.08 .93	$\begin{array}{c} .71 \\ .62 \end{array}$. 60 . 58	14,360 12,440	10,770 9,330
.91 .92 .90	.93 .78 .64	. 62 . 52 . 43	. 64 . 63 . 62	9,550 8,200 6,610	7,160 6,150 4,960
.75 .75	. 54	.43 .36	.54	6,490 5,560	4,870 4,170
.57	.43	.34	. 55	3,390	2,540
.67 .67	.32	.28 .23	.48 .48	4,270 3,480	3,200 2,610
. 59	. 18	.18	.41	2,700	2,040
.48	. 37	.29	.58	2,050	1,540
.51 .48	.12	.14	.36 .36	2,040 1,360	1,530 1,020
.44	.076	. 10 . 077	.32	1,470 1,210	1,100 910
.37	.045	. 072 . 054	.28	1,040 770	780 580
.29	.017	.035	. 22	510 360	380 270

PROPERTIES OF STANDARD ANGLES Equal Legs

1	2 ·	3	4	5	6	7 .	8
Section No.	Dimensions Inches	Thickness Inch	Weight per Foot Pounds	Area of Section Square Inches	Distance of Center of Gravity from Back of Leg Inches	Moment of Inertia Axis Y-Y	Section Factor Axis Y-Y
	h x h	t		A	n	I	R
A11	3/4× 3/4	1/8 3 16	.6	.18	.23	.009	.017
A10	1 ×1	$\frac{1}{8}$ $\frac{3}{16}$ $\frac{1}{4}$.8 1.2 1.5	.24 .34 .44	.30 .32 .34	. 022 . 030 . 037	.031 .044 .056
A 9	1½×1¼	1/8 3 16 1/4 5 16	$ \begin{array}{c c} 1.1 \\ 1.5 \\ 2.0 \\ 2.4 \end{array} $.30 .44 .57 .69	. 36 . 38 . 40 . 42	.044 .061 .077 .090	.049 .071 .091 .109
A 8	1½×1½	1/8 3 16 1/4 5 16 3/8 7/6	1.3 1.8 2.4 2.9 3.4 3.9	. 36 . 53 . 69 . 84 . 99 1. 13	.42 .44 .47 .49 .51 .53	.08 .11 .14 .16 .19 .21	.072 .104 .134 .162 .188 .214
A 7	1¾×1¾	3 16 1/4 5 16 3/8 7 16 1/2	2.2 2.8 3.4 4.0 4.6 5.1	. 63 . 82 1. 00 1. 18 1. 34 1. 50	.51 .53 .55 .57 .59 .61	.18 .23 .27 .31 .35 .38	.14 .19 .23 .26 .30 .33
A 6	2 ×2	3 16 1/4 5 16 3/8 7 16 1/2	2.5 3.2 4.0 4.7 5.3 6.0	.72 .94 1.16 1.36 1.56 1.75	.57 .59 .61 .64 .66	.27 .35 .42 .48 .54 .59	.19 .25 .30 .35 .40 .45
A 5	2½×2½	3 1 6 1 4 5 5 1 6 3 8 7 1 6 1 1 2 9 1 6	3.1 4.1 5.0 5.9 6.8 7.7 8.5	.91 1.19 1.47 1.74 2.00 2.25 2.50	.69 .72 .74 .76 .78 .81 .83	.55 .70 .85 .98 1.11 1.23 1.34	.30 .39 .48 .57 .65 .72 .80
A 4	3 ×3	1/4 5 1/6 3/8 7/6 1/2 9 1/6 5/8 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1	4.9 6.1 7.2 8.3 9.4 10.4 11.5 12.5	1.44 1.78 2.11 2.44 2.75 3.06 3.36 3.66	.84 .87 .89 .91 .93 .95 .98	1.24 1.51 1.76 1.99 2.22 2.43 2.62 2.81	.58 .71 .83 .95 1.07 1.19 1.30 1.40

9	10	11	12	13	1
Radius of Gyration Axis Y.Y Inches	Distance of Center of Gravity from External Apex Inches	Least Moment of Inertia Axis N-X	Section Factor Axis X.X	Least Radius of Gyration Axis X-X	Section No.
r	n"	I''	R''	r''	
. 22	.33	.004	.011	.14	A-11
.30 .30 .29	. 42 . 45 . 48	. 009 . 013 . 016	.021 .028 .034	.19 .19 .19	A-10
.38 .38 .37 .36	.51 .54 .57 .60	.018 .025 .033 .040	. 035 . 047 . 057 . 066	.24 .24 .24 .24	A-9
.47 .46 .45 .44 .44	. 60 . 63 . 66 . 69 . 72 . 75	. 031 . 045 . 058 . 070 . 082 . 094	. 053 . 072 . 088 . 101 . 114 . 126	.30 .29 .29 .29 .29 .29	A-8
.54 .53 .52 .51 .51	.72 .75 .78 .81 .84	. 073 . 094 . 118 . 133 . 152 . 171	.10 .13 .15 .16 .18 .20	. 34 . 34 . 34 . 34 . 34	A-7
. 62 . 61 . 60 . 59 . 59 . 58	.80 .84 .87 .90 .93	.11 .14 .17 .20 .23 .26	. 14 . 17 . 20 . 22 . 25 . 27	. 39 . 39 . 39 . 39 . 38 . 38	A-6 ·
.78 .77 .76 .75 .75 .74 .73	.98 1.01 1.05 1.08 1.11 1.14 1.17	. 22 . 29 . 35 . 41 . 46 . 52 . 58	. 22 . 28 . 33 . 38 . 42 . 46 . 49	. 49 . 49 . 49 . 48 . 48 . 48 . 48	A-5
.93 .92 .91 .91 .90 .89 .88	1. 19 1. 22 1. 26 1. 29 1. 32 1. 35 1. 38 1. 41	.50 .61 .72 .82 .92 1.02 1.12 1.22	. 42 . 50 . 57 . 64 . 70 . 76 . 81 . 86	.59 .59 .58 .58 .58 .58 .58	A-4

PROPERTIES OF STANDARD ANGLES Equal Legs

1	2	3	4	5	6	7	8
Section No.	Dimensions	Thickness Inches	Weight per Foot Pounds	Area of Section Square Inches	Distance of Center of Gravity from Back of Leg Inches	Moment of Inertia	Section Factor Axis Y-Y
	h x h	t		A	n	I	R
A 3	3½×3½	5 16 3 8 7 16 1 2 9 16 15 8 1 16 1 3 1 1 16 1 1 1 1 1 1 1 1 1 1 1 1	7.2 8.5 9.8 11.1 12.4 13.6 14.8 16.0 17.1 18.3	2.09 2.49 2.88 3.25 3.63 3.99 4.34 4.69 5.03 5.36	0.99 1.01 1.04 1.06 1.08 1.10 1.12 1.15 1.17	2.45 2.87 3.26 3.64 3.99 4.33 4.65 4.96 5.25 5.53	0.98 1.15 1.32 1.49 1.65 1.81 1.96 2.11 2.25 2.39
A 2	4 ×4	5 6 8 7 6 7 6 8 16 4 8 6 8 16 4 8 6 8 16 7 8	8.2 9.8 11.3 12.8 14.3 15.7 17.1 18.5 19.9 21.2	2.41 2.86 3.31 3.75 4.19 4.62 5.03 5.44 5.84 6.24	1.12 1.14 1.16 1.18 1.21 1.23 1.25 1.27 1.29 1.31	3.71 4.36 4.97 5.56 6.12 6.66 7.17 7.66 8.14 8.59	1.29 1.52 1.75 1.97 2.19 2.40 2.61 2.81 3.01 3.20
A 1	6 ×6	3/8 1-6/2-6/9-1-6/	$14.9 \\ 17.2 \\ 19.6 \\ 21.9 \\ 24.2 \\ 26.5 \\ 28.7 \\ 31.0 \\ 33.1 \\ 35.3 \\ 37.4$	4.36 5.06 5.75 6.44 7.11 7.78 8.44 9.09 9.74 10.38 11.00	1.64 1.66 1.68 1.71 1.73 1.75 1.78 1.80 1.82 1.84 1.86	$\begin{array}{c} 15.39 \\ 17.68 \\ 19.91 \\ 22.07 \\ 24.16 \\ 26.19 \\ 28.15 \\ 30.06 \\ 31.92 \\ 33.72 \\ 35.46 \end{array}$	3.53 4.07 4.61 5.14 5.66 6.17 6.66 7.15 7.63 8.11 8.57
AA 1	8 ×8	1/2 9 16 5/8 11 16 16 1 16 1 16 1 18	26.4 29.6 32.7 35.8 38.9 42.0 45.0 48.1 51.0 54.0 56.9	7.75 8.69 9.61 10.53 11.44 12.34 13.24 14.13 15.00 15.88 16.74	2.19 2.21 2.23 2.25 2.28 2.30 2.32 2.34 2.37 2.39 2.41	48.65 54.09 59.43 64.64 69.74 74.72 79.58 84.34 88.98 93.58 97.97	8.37 9.34 10.30 11.25 12.18 13.11 14.02 14.91 15.80 16.67 17.53

9	10	11	12	13	1
Radius of Gyration Axis Y-Y Inches	Distance of Center of Gravity from External Apex Inches	Least Moment of Inertia Axis X-N	Section Factor Axis X-X	Least Radius of Gyration Axis X.X	Section No.
r	n"	Ι//	R''	r''	
1.08 1.07 1.07 1.06 1.05 1.04 1.04 1.03 1.02 1.02	1.40 1.43 1.46 1.50 1.53 1.56 1.59 1.62 1.65 1.68	.99 1.16 1.33 · 1.50 1.66 1.82 1.97 2.13 2.28 2.43	.71 .81 .91 1.00 1.09 -1.17 1.24 1.31 1.38 1.45	. 69 . 68 . 68 . 68 . 68 . 67 . 67 . 67	A 3
1.24 1.23 1.23 1.22 1.21 1.20 1.19 1.19 1.18	1.58 1.61 1.64 1.67 1.71 1.74 1.77 1.80 1.83 1.86	1.50 1.77 2.02 2.28 2.52 2.76 3.00 3.23 3.46 3.69	$\begin{array}{c} .95 \\ 1.10 \\ 1.23 \\ 1.36 \\ 1.48 \\ 1.59 \\ 1.70 \\ 1.80 \\ 1.89 \\ 1.99 \end{array}$.79 .79 .78 .78 .78 .77 .77 .77 .77	A 2
1.88 1.87 1.86 1.85 1.84 1.83 1.83 1.82 1.81 1.80	2.32 2.34 2.38 2.41 2.45 2.48 2.51 2.54 2.57 2.60 2.64	6. 19 7. 13 8. 04 8. 94 9. 81 10. 67 11. 52 12. 35 13. 17 13. 98 14. 78	2.67 3.04 3.37 3.70 4.01 4.31 4.59 4.86 5.12 5.37 5.61	1. 19 1. 19 1. 18 1. 18 1. 17 1. 17 1. 17 1. 17 1. 16 1. 16 1. 16	A 1
2.51 2.50 2.49 2.48 2.47 2.46 2.45 2.44 2.44 2.44 2.43 2.42	3.09 3.12 3.16 3.19 3.22 3.25 3.28 3.32 3.35 3.38 3.41	19.56 21.79 23.97 26.13 28.24 30.33 32.38 34.40 36.40 38.38 40.33	6.33 6.98 7.60 8.20 8.77 9.33 9.86 10.38 10.88 11.36 11.83	1.59 1.58 1.58 1.58 1.57 1.57 1.56 1.56 1.56 1.56	AA 1

PROPERTIES OF SPECIAL ANGLES Equal Legs

1	2	3	1	5	6	7	8
Section No.	u x d Dimensions Inches	Thickness Inches	Weight per Foot Pounds	A Area of Section Square Inches	Distance of Center of Gravity from Back of Leg Inches	Moment of Inertia	Section Factor Axis Y-Y
A 24	2½×2½	3 16 14 5 16 3/8 78 176 1/2	2.8 3.7 4.5 5.3 6.1 6.8	.81 1.07 1.31 1.55 1.78 2.00	.63 .65 .68 .70 .72 .74	. 39 . 50 . 61 . 70 . 79 . 87	.24 .32 .39 .45 .52
A 23	2¾×2¾	16 14 5 16 38 76 16 1/2	3.4 4.5 5.6 6.6 7.6 8.5	1.00 1.32 1.63 1.93 2.22 2.50	.76 .78 .80 .82 .85	.73 .95 1.15 1.33 1.51 1.67	.37 .48 .59 .69 .79
A 21	5 ×5	3/8 7/6 1/2 9/6 15/8 11/6 3/4/3/6 1/5/6 1/6 1	12.3 14.3 16.2 18.1 20.0 21.8 23.6 25.4 27.2 28.9 30.6	3.61 4.19 4.75 5.31 5.86 6.41 6.94 7.46 7.99 8.50 9.00	1.39 1.41 1.43 1.46 1.48 1.50 1.52 1.55 1.57 1.61	8.74 10.02 11.25 12.44 13.58 14.68 15.75 16.77 17.75 18.71 19.64	2.42 2.79 3.16 3.51 3.86 4.20 4.53 4.85 5.17 5.49 5.80

9	10	11	12	13	1
Radius of Gyration Axis Y-Y Inches	Distance of Center of Gravity from External Apex Inches	Least Moment of Inertia Axis X-X	Section Factor Axis X-X	Least Radius of Gyration Axis X-X	Section No.
r	n''	Ι′′	R"	r"	
.70 .69 .68 .67 .67	.89 .92 .96 .99 1.02 1.05	.16 .21 .25 .29 .33 .37	. 18 . 22 . 26 . 30 . 33 . 37	. 44 . 44 . 44 . 43 . 43 . 43	A 24
.86 .85 .84 .83 .83	1.07 1.10 1.13 1.17 1.20 1.23	.30 .38 .47 .55 .63 .70	. 28 . 35 . 41 . 47 . 52 . 57	. 54 . 54 . 54 . 53 . 53 . 53	A 23
1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.49 1.48	1.96 2.00 2.03 2.06 2.09 2.12 2.15 2.18 2.21 2.24 2.27	3.53 4.05 4.56 5.06 5.55 6.03 6.50 6.96 7.41 7.85 8.28	1.79 2.03 2.25 2.46 2.66 2.84 3.01 3.16 3.30 3.42 3.55	.99 .98 .98 .97 .97 .97 .96 .96	A 21

PROPERTIES OF STANDARD ANGLES Unequal Legs

1	2	3	4	5	6	7	8
Section No.	Dimensions Inches	Thickness Inches	Weight per Foot • Pounds	Area of Section Square Inches	Distance of Center of Gravity from Back of Longer Leg Inches	Moment of Inertia Axis Y-Y	Section Factor Axis Y-Y
	d x b	t		A	n [I	R
A 20	2½×2	3 16 14 5 16 3/8 7 16 1/2 9 16	2.8 3.7 4.5 5.3 6.1 6.8 7.6	.81 1.07 1.31 1.55 1.78 2.00 2.22	.51 .54 .56 .58 .60 .63 .65	. 29 . 37 . 45 . 51 . 58 . 64 . 69	.20 .25 .31 .36 .41 .46 .51
A 19	3 ×2½	1/4 5 16 3/8 7 16 1/2 9 16 5/8	4.5 5.6 6.6 7.6 8.5 9.5 10.4	1.32 1.63 1.93 2.22 2.50 2.78 3.05	.66 .68 .71 .73 .75 .77	.74 .90 1.04 1.18 1.30 1.42 1.53	.40 .49 .58 .66 .74 .82 .90
A 18	3½×2½	1/4 56 3/8 7 11/2 9 16/8 116/3/4	4.9 6.1 7.2 8.3 9.4 10.4 11.5 12.5 13.4	1.44 1.78 2.11 2.44 2.75 3.06 3.36 3.66 3.94	.61 .64 .66 .68 .70 .73 .75 .77	.78 .94 1.09 1.23 1.36 1.49 1.61 1.72 1.83	.41 .50 .59 .68 .76 .84 .92 .99
A 17	3½×3	5 1 6 3 8 7 1 6 1 / 2 9 1 6 5 5 0 1 1 6 6 3 4 1 1 6 6 7 0 0	6.6 7.9 9.1 10.2 11.4 12.5 13.6 14.7 15.8 16.8	1.94 2.30 2.66 3.00 3.34 3.68 4.00 4.32 4.63 4.93	.81 .83 .85 .88 .90 .92 .94 .96 .98	1.58 1.85 2.09 2.33 2.55 2.76 2.96 3.15 3.33 3.50	.72 .85 .98 1.10 1.21 1.33 1.44 1.54 1.65
A 16	4 ×3	3 6 8 7 6 8 1 6 5 8 1 1 6 6 8 1 1 6 6 8 1 1 6 6 8 1 1 6 6 8 1 1 6 6 8 1 1 7 7 8	7.2 8.5 9.8 11.1 12:4 13.6 14.8 16.0 17.1 18.3	2.09 2.49 2.88 3.25 3.63 3.99 4.34 4.69 5.03 5.36	.76 .78 .80 .83 .85 .87 .89 .92 .94	1.65 1.92 2.18 2.42 2.66 2.87 3.08 3.28 3.47 3.66	.73 .87 .99 1.12 1.23 1.35 1.46 1.57 1.68 1.79

9	10	11	12	13	14	15	1
Radius of Gyration Axis Y-Y Inches	Distance of Center of Caravity from Back of Shorter Leg Inches	Moment of Inertia Axis Z-2	Section Factor Axis Z-Z	Radius of Gyration Axis Z-Z	Tangent of Angle	Least Radius of Gyration Axis X-X Inches	Section No.
r	n'	I'	R'	r'	a	r"	Į.
.60 .59 .58 .58 .57 .56	.76 .79 .81 .83 .85 .88 .90	.51 .65 .79 .91 1.03 1.14 1.24	. 29 . 38 . 47 . 55 . 62 . 70 . 77	.79 .78 .78 .77 .76 .75	.632 .626 .620 .614 .607 .600	. 43 . 42 . 42 . 42 . 42 . 42 . 42	A20
.75 .74 .74 .73 .72 .72	.91 .93 .96 .98 1.00 1.02 1.04	1.17 1.42 1.66 1.88 2.08 2.28 2.46	.56 .69 .81 .93 1.04 1.15 1.26	.95 .94 .93 .92 .91 .91	.684 .680 .676 .672 .666 .661	. 53 . 53 . 52 . 52 . 52 . 52 . 52 . 52	A19
.74 .73 .72 .71 .70 .70 .69 .69	1.11 1.14 1.16 1.18 1.20 1.23 1.25 1.27 1.29	1.80 2.19 2.56 2.91 3.24 3.55 3.85 4.13 4.40	.75 .93 1.09 1.26 1.41 1.56 1.71 1.85 1.99	1.12 1.11 1.10 1.09 1.09 1.08 1.07 1.06 1.06	.506 .501 .496 .491 .486 .480 .472 .468 .461	.54 .54 .54 .54 .53 .53 .53 .53	A18
. 90 . 90 . 89 . 88 . 87 . 87 . 86 . 85 . 85 . 84	1.06 1.08 1.10 1.13 1.15 1.17 1.19 1.21 1.23 1.25	2.33 2.72 3.10 3.45 3.79 4.11 4.41 4.70 4.98 5.24	.95 1.13 1.29 1.45 1.61 1.76 1.91 2.05 2.20 2.33	1.10 1.09 1.08 1.07 1.07 1.06 1.05 1.04 1.04 1.03	.724 .721 .718 .714 .711 .707 .703 .698 .694 .689	.63 .62 .62 .62 .62 .62 .62 .62 .62	A17
.89 .87 .86 .86 .85 .84 .84	1.26 1.28 1.30 1.33 1.35 1.37 1.39 1.42 1.44 1.46	3.38 3.96 4.52 5.05 5.55 6.03 6.49 6.93 7.35 7.75	1.23 1.46 1.68 1.89 2.00 2.30 2.49 2.68 2.87 3.05	1.27 1.26 1.25 1.25 1.24 1.23 1.22 1.22 1.21 1.20	.554 .551 .547 .543 .538 .534 .529 .524 .518 .512	.65 .64 .64 .64 .64 .64 .64	A16

PROPERTIES OF STANDARD ANGLES Unequal Legs

1	2	3	4	5	6	7	8
Section No.	Dimensions	Thickness Inches	Weight per Foot Pounds	Area of Section Square Inches	Distance of Center of Gravity from Back of Longer Leg Inches	Moment of Inertia Axis Y-Y	Section Factor Axis Y-Y
	d x b	t		A	n	I	R
A 15	5×3	5 16/8 7 16/2 16/8 16/436/8 17/8	8.2 9.8 11.3 12.8 14.3 15.7 17.1 18.5 19.9 21.2	2.41 2.86 3.31 3.75 4.19 4.61 5.03 5.44 5.84 6.24	.68 .70 .73 .75 .77 .80 .82 .84 .86	1.75 2.04 2.32 2.58 2.83 3.06 3.29 3.51 3.71 3.91	.75 .89 1.02 1.15 1.27 1.39 1.51 1.62 1.74 1.85
A 14	5×3½	56 8 6 8 6 8 6 8 16 8 16 8 16 8 16 8 16	8.7 10.4 12.0 13.6 15.2 16.8 18.3 19.8 21.3 22.7 24.2	2.56 3.05 3.53 4.00 4.47 4.93 5.38 5.82 6.25 6.68 7.09	.84 .86 .88 .91 .93 .95 .97 1.00 1.02 1.04 1.06	2.72 3.18 3.63 4.05 4.45 4.83 5.20 5.55 5.89 6.21 6.52	1.02 1.21 1.39 1.56 1.73 1.90 2.06 2.22 2.37 2.52 2.67
A 13	6×3½	3/8 10/2-00/8-10 15/8-10/8-5-0 1-	11.7 13.5 15.3 17.1 18.9 20.6 22.4 24.0 25.7 27.3 28.9	3. 43 3. 97 4. 50 5. 03 5. 55 6. 06 6. 57 7. 06 7. 55 8. 03 8. 50	.79 .81 .83 .86 .88 .90 .93 .95 .97 .99	3.34 3.81 4.25 4.67 5.08 5.47 5.84 6.20 6.55 6.88 7.21	1.23 1.41 1.59 1.77 1.94 2.11 2.27 2.43 2.59 2.74 2.90
A 12	6×4	3/0 7-6 1/2 9-6 1-6 1-6 1-6 1-6 1-6 1-6 1-6	12.3 14.3 16.2 18.1 20.0 21.8 23.6 25.4 27.2 28.9 30.6	3.61 4.19 4.75 5.31 5.86 6.41 6.94 7.47 7.99 8.50 9.00	.94 .96 .99 1.01 1.03 1.06 1.08 1.10 1.12 1.14	4.90 5.60 6.27 6.91 7.52 8.11 8.68 9.23 9.75 10.26 10.75	1.60 1.85 2.08 2.31 2.54 2.76 2.97 3.18 3.39 3.59 3.79

9	10	11	12	13	14	15	1
Radius of Gyration Axis Y-Y Inches	Distance of Center of Gravity from Back of Shorter Leg Inches	Moment of Inertia Axis Z-Z	Section Factor Axis Z-Z	Radius of Gyration Axis Z-Z	Tangent of Angle	Least Radius of Gyration Axis X-X	Section No.
r	n'	I′	R′	r'	a	r''	
.85 .84 .84 .83 .82 .82 .81 .80 .80	1.68 1.70 1.73 1.75 1.77 1.80 1.82 1.84 1.86 1.88	6. 26 7. 37 8. 43 9. 45 10. 43 11. 37 12. 28 13. 15 13. 98 14. 78	1.89 2.24 2.58 2.91 3.23 3.55 3.86 4.16 4.46 4.75	1.61 1.61 1.60 1.59 1.58 1.57 1.56 1.55 1.55	. 368 . 364 . 361 . 357 . 353 . 349 . 345 . 340 . 336 . 331	. 66 . 65 . 65 . 65 . 65 . 64 . 64 . 64 . 64	A15
1.03 1.02 1.01 1.01 1.00 .99 .98 .98 .97 .96	1.59 1.61 1.63 1.66 1.68 1.70 1.72 1.75 1.77 1.79 1.81	6.60 7.78 8.90 9.99 11.03 12.03 12.99 13.92 14.81 15.67 16.49	1.94 2.29 2.64 2.99 3.32 3.65 3.97 4.28 4.58 4.88 5.17	1:61 1.60 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.53	. 489 . 485 . 482 . 479 . 478 . 472 . 468 . 464 . 460 . 455 . 451	.77 .76 .76 .75 .75 .75 .75 .75 .75	A14
.99 .98 .97 .96 .96 .95 .94 .94 .93 .93	2.04 2.06 2.08 2.11 2.13 2.15 2.18 2.20 2.22 2.24 2.26	12.86 14.76 16.59 18.37 20.08 21.74 23.34 24.89 26.39 27.84 29.15	3.24 3.75 4.24 4.72 5,19 5.65 6.10 6.55 6.98 7.41 7.80	1.94 1.93 1.92 1.91 1.90 1.89 1.89 1.88 1.87 1.86 1.85	. 350 . 347 . 344 . 341 . 338 . 334 . 331 . 327 . 323 . 320 . 317	.77 .76 .76 .75 .75 .75 .75 .75 .75 .75 .75	A13
1. 17 1. 16 1. 15 1. 14 1. 13 1. 13 1. 12 1. 11 1. 11 1. 10 1. 09	1.94 1.96 1.99 2.01 2.03 2.06 2.08 2.10 2.12 2.14 2.17	$\begin{array}{c} 13.47 \\ 15.46 \\ 17.40 \\ 19.26 \\ 21.07 \\ 22.82 \\ 24.51 \\ 26.15 \\ 27.73 \\ 29.26 \\ 30.75 \end{array}$	3.32 3.83 4.33 4.83 5.31 5.78 6.25 6.70 7.15 7.59 8.02	1.93 1.92 1.91 1.90 1.90 1.89 1.88 1.87 1.86 1.86	. 446 . 443 . 440 . 438 . 434 . 431 . 428 . 425 . 421 . 418 . 414	.88 .87 .87 .86 .86 .86 .86 .86	A12

PROPERTIES OF SPECIAL ANGLES

Unequal Legs

1	2	3	. 4	5	6	7	8
Section No.	Dimensions Inches	Thickness Inches	Weight per Foot Pounds	Area of Section Square Inches	Distance of Center of Gravity from Back of Longer Leg Inches	Moment of Inertia Axis Y-Y	Section Factor Axis Y.Y
	d x b	t		A	n	I	R
A 31	2½×1½	$ \begin{array}{r} \frac{3}{16} \\ \frac{1}{4} \\ \frac{5}{16} \\ \frac{3}{8} \\ \hline \frac{1}{6} \end{array} $	2.5 3.2 4.0 4.7 5.3	.72 .94 1.16 1.36 1.56	. 35 . 38 . 40 . 42 . 44	.13 .16 .19 .22	.11 .14 .17 .20 .23
A 29	3 ×2	$ \begin{array}{c} 3 \\ \hline $	$ \begin{array}{c} 3.1 \\ 4.1 \\ 5.0 \\ 5.9 \\ 6.8 \\ 7.7 \end{array} $	$\begin{array}{c} .91 \\ 1.19 \\ 1.47 \\ 1.74 \\ 2.00 \\ 2.25 \end{array}$.47 .49 .51 .54 .56	.31 .39 .47 .54 .61 .67	. 20 . 26 . 32 . 37 . 42 . 47
A 28	31/4×2	14 5 16 3/8 716 1/2 9 16	4:3 5.3 6.3 7.2 8.1 9.0	$\begin{array}{c} 1.25 \\ 1.54 \\ 1.83 \\ 2.11 \\ 2.38 \\ 2.64 \end{array}$.48 .50 .52 .54 .57 .59	.40 .48 .55 .62 .69 .75	. 26 . 32 . 37 . 43 . 48 . 53
A 26	4 ×3½	5 16 3/8 76 1/2 9 16 5/8 116 3/4 116	7.7 9.1 10.6 11.9 13.3 14.7 16.0 17.3 18.5	2.25 2.67 3.09 3.50 3.90 4.30 4.68 5.06 5.43	.93 .96 .98 1.00 1.02 1.04 1.07 1.09	2.59 2.99 3.40 3.79 4.17 4.52 4.86 5.18 5.49	1.01 1.18 1.35 1.52 1.68 1.84 2.00 2.15 2.30
A 62	4½×3	5 16 3 7 6 1 2 9 15 5 8 16 3 3 4 16 16 3 16 16 16 16 16 16 16 16 16 16 16 16 16	7.7 9.1 10.6 11.9 13.3 14.7 16.0 17.3 18.5	2.25 2.67 3.09 3.50 3.90 4.30 4.68 5.06 5.43	.72 .74 .76 .79 .81 .83 .85 .88	1.73 1.98 2.25 2.51 2.75 2.98 3.19 3.40 3.60	$\begin{array}{c} .76 \\ .88 \\ 1.01 \\ 1.13 \\ 1.25 \\ 1.37 \\ 1.49 \\ 1.60 \\ 1.71 \end{array}$
A 25	5 ×4	3/8/16/27 11/27 15/16/43/6/8	11.0 12.8 14.5 16.2 17.8 19.5 21.1 22.7 24.2	3.24 3.74 4.25 4.75 5.24 5.72 6.19 6.65 7.11	1.03 1.05 1.07 1.10 1.12 1.14 1.16 1.18 1.21	4.66 5.32 5.96 6.56 7.14 7.70 8.23 8.74 9.23	1.57 1.81 2.04 2.26 2.48 2.69 2.90 3.11 3.31

9	10	11	12	13	14	15	1
Radius of Gyration Inches	Distance of Center of Gravity from Back of Shorter Leg Inches	Moment of Inertia Avis 2-2	Section Factor Axis 2-2	Radius of Gyration Axis 2-2	Tangent of Angle	Least Radius of Gyration Axis N-N Inches	Section No.
r	n'	I′	R′	r'	a	r''	
. 42 . 41 . 41 . 40 . 40	. 85 . 88 . 90 . 92 . 94	. 46 . 55 . 71 . 82 . 92	. 28 . 36 . 44 . 52 . 59	.80 .79 .79 .79 .77	. 364 . 357 . 349 . 340 . 331	. 33 . 32 . 32 . 32 . 32	A31.
. 58 . 57 . 56 . 55 . 55	.97 .99 1.02 1.04 1.06 1.08	.84 1.09 1.32 1.53 1.73 1.92	. 41 . 54 . 66 . 78 . 89 1.00	. 97 . 96 . 95 . 94 . 93 . 92	. 446 . 440 . 434 . 428 . 421 . 414	. 44 . 43 . 43 . 43 . 43 . 43	A29
. 57 . 56 . 55 . 54 . 54 . 53	1.09 1.12 1.15 1.17 1.19 1.21	$\begin{array}{c} 1.36 \\ 1.65 \\ 1.92 \\ 2.18 \\ 2.42 \\ 2.64 \end{array}$	$\begin{array}{c} .63 \\ .77 \\ .91 \\ 1.05 \\ 1.17 \\ 1.30 \end{array}$	1.04 1.03 1.02 1.02 1.01 1.00	. 380 . 375 . 369 . 363 . 357 . 351	. 45 . 45 . 44 . 44 . 44	A28
1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.01	1.18 1.21 1.23 1.25 1.27 1.29 1.32 1.34 1.36	3.56 4.18 4.76 5.32 5.86 6.37 6.86 7.32 7.77	1.26 1.50 1.72 1.93 2.15 2.35 2.56 2.75 2.92	1.26 1.25 1.24 1.23 1.23 1.22 1.21 1.20 1.19	.757 .755 .753 .750 .747 .742 .738 .734 .730	.73 .73 .72 .72 .72 .72 .72 .72 .72 .72	A26
. \$8 . \$6 . \$5 . \$5 . \$5 . \$3 . \$3 . \$2 . \$1	1.47 1.49 1.51 1.54 1.56 1.58 1.60 1.63 1.65	4. 69 5. 50 6. 29 7. 04 7. 75 8. 44 9. 10 9. 73 10. 33	1.54 1.83 2.10 2.37 2.64 2.89 3.14 3.38 3.62	1.44 1.44 1.43 1.42 1.41 1.40 1.39 1.39 1.38	.444 .440 .437 .431 .428 .424 .419 .414 .410	.66 .65 .65 .64 .64 .64 .64	A62
1.20 1.19 1.18 1.18 1.17 1.16 1.15 1.15 1.14	1.53 1.55 1.57 1.60 1.62 1.64 1.66 1.68	8. 14 9. 32 10. 46 11. 55 12. 61 13. 62 14. 60 15. 54 16. 42	2. 34 2. 70 3. 05 3. 39 3. 73 4. 05 4. 37 4. 69 4. 99	1.59 1.58 1.57 1.56 1.55 1.54 1.54 1.53 1.52	. 631 . 629 . 626 . 623 . 620 . 617 . 614 . 611 . 608	. 85 . 85 . 85 . 85 . 84 . 84 . 84 . 84	A25

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Box Girders Composed of
Two IO" Beams and Two I2" x ½" Plates

			. 14.5	72.≯				
Distance, Center to Center of Bearings, Feet		" Beams ds per Foo	t e		2-12" x ½" Steel Plates			
Distance, Center Bearings,	Safe Load Including Weight of Girder Tons Weight of Girder Pounds		Add to Safe Load for 5 Pounds In- crease in Weight of Beam	Add to Safe Load for 14" Increase in Thickness of Plates	Add to Weight of Girder for 5 Pounds Increase in Weight of Beam	Add to Weight of Girder for La" Increase in Thickness of Plates		
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	40.0 36.9 34.3 32.0 30.0 28.2 26.7 25.3 24.0 22.8 21.7 20.9 20.0 19.2 18.5 17.8 17.1 16.5 16.0 15.5 14.1 13.7 13.3 13.0 12.6	1114 1206 1299 1392 1485 1578 1670 1763 1856 1949 2042 2134 2227 2320 2413 2506 2598 2691 2784 2877 2970 3062 3155 3248 3341 3434 3526	1.92 1.77 1.64 1.54 1.44 1.35 1.28 1.20 1.14 1.09 1.04 1.00 0.96 0.92 0.89 0.84 0.82 0.79 0.76 0.76 0.74 0.71 0.70 0.68 0.65 0.62 0.60	2.89 2.67 2.48 1.31 1.16 1.04 1.93 1.82 1.73 1.64 1.57 1.51 1.44 1.39 1.33 1.28 1.28 1.19 1.16 1.12 1.08 1.04 1.02 1.00 0.96 0.93 0.86	120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380	61 66 71 77 82 87 92 97 102 107 112 117 122 128 133 138 143 148 153 168 163 168 173 179 184 189 194		

Above values are based on maximum fiber strain of 16,000 pounds per square inch, $\frac{13}{16}$ -inch rivet holes deducted. Weights correspond to lengths, center to center of bearings.

SAFE LOADS IN TONS OF 2000 POUNDS Uniformly Distributed, for Box Girders Composed of Two I2" Steel Beams and Two I4" x 1/2" Steel Plates

Distance, Center to Center of Bearings, Feet	0778	Girder ds	Pounds In- in Weight Beam	oad 2-12" Beams Weight 40 Pounds per Foot der	Girder ds	to Safe Load Spounds In- se in Weight Steel Plates of Beam	to Safe Load for July Increase in Thickness of Plates	Add to Weight of Girder for 1," Increase in Thickness of Flange Plates
Distan	Safe Load Including We of Girder Tons	Weight of Girder Pounds	Add to Safe for 3½ Pound crease in W of Beam	Safe Load Including Weight of Girder Tons	Weight of Girder Pounds	Add to Safe L. for 5 Pounds crease in Wei of Beam	Add to S	Add to We
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	58.7 54.2 50.3 46.9 44.0 41.4 39.1 37.1 35.2 33.5 32.0 30.6 29.3 28.2 27.1 26.1 25.1 24.3 23.5 22.7 22.0 21.3 20.7 20.1 19.5 19.0 18.5	1351 1464 1576 1689 1802 1914 2027 2139 2252 2365 2477 2590 2702 2815 2928 3040 3153 3265 3378 3491 3603 3716 3828 3941 4054 4166 4279	1.82 1.68 1.57 1.46 1.38 1.30 1.22 1.14 1.10 1.04 1.00 0.96 0.92 0.87 0.82 0.78 0.76 0.74 0.72 0.72 0.68 0.66 0.62 0.62 0.58 0.57	65.2 60.2 55.9 52.1 48.9 46.0 43.5 41.2 39.1 37.2 35.5 34.0 32.6 31.3 30.1 29.0 27.9 27.0 26.1 25.2 24.4 23.7 23.0 22.3 21.7 21.1 20.6	1555 1685 1814- 1944 2074 2203 2333 2462 2592 2722 2851 2981 3110 3240 3370 3499 3629 3758 3888 4018 4147 4277 4406 4536 4666 4795 4925	2.62 2.42 2.24 2.08 1.96 1.86 1.74 1.66 1.58 1.50 1.42 1.38 1.30 1.26 1.22 1.16 1.12 1.08 1.02 1.09 0.98 0.96 0.92 0.88 0.86 0.84	4.47 4.12 3.83 3.57 3.35 3.15 2.98 2.82 2.68 2.56 2.44 2.33 2.24 2.15 2.06 1.98 1.91 1.84 1.78 1.68 1.53 1.49 1.45 1.41	71 77 83 89 95 101 107 113 119 125 131 137 143 149 155 161 167 173 179 184 190 196 202 208 214 220 226

Above values are based on maximum fiber strain of 16,000 pounds per square inch, 13-inch rivet holes deducted. Weights correspond to length, center to center of bearings.

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Box Girders Composed of Two
15" Steel Beams and Two I4" x 5%" Steel Plates

	1							
	2-15" Beams Pounds per Foot	K6>	<u> </u>	2-15" Beams Pounds per Foot	'< -6½.''>		se	/In-
of	Beams per Fo	7	dp x 5%″ Plates	2-15" Beams Pounds per F		x 5%" Plates	Add to Safe Load for 14" Increase in Thickness of Plates	Add to Weight of Girder for 14" Increase in Thickness of Flange Plates
ter	Bea		x § Pla	3ea pe		x % Pla	ncı	re J
ent	, ds			y I	1 1	7	" I ate	for ang
to Co Feet	2-15" Pound		2-14" Steel	-15 oun	1 1	2-14" Steel		E E
			2 3100	2 G		2	for	Add to Weight of Girder for I'A'' crease in Thickness of Flange Pl
se, Center Bearings,	<u> </u>) <u> </u>	# 1 # 1	<u> </u>		77 1 #	safe Load f Thickness	f C ess
Cel	lgh	.qe	oac In Igh	igh	.de	oad In- ight	kn kn	kn
e, Beg	ad Vei Ier	Gin	N Se	oad Weight rder	Gin	L L L L L L L L L L L L L L L L L L L	lhio l	igh
anc	Safe Load uding We of Girder Tons	ht of C Pounds	to Safe Load 1 Pound In- se in Weight of Beam	Safe Load uding We of Girder Tons	ht of C Pounds	Safe ounds in W Beam	Sa	We Ye
ist	Hing To	Por	to Se ii P	T. C. T.	nt o	to S Po Po e ir of B	ð:	e ii
Ω	Saf ludi of	ig.	d t 1 ase	Saluci	isi Tari	t to	dd	ld t
	Safe Load Including Weight of Girder Tons	Weight of Girder Pounds	Add to for 1 crease of	Safe Load Including Wei of Girder Tons	Weight of Girder Pounds	Add to Safe Load for 5 Pounds In- crease in Weight of Beam	A	Accre
$\overline{12}$	94.3	1746	0.60	111.0	2178	3.03	5.17	$\overline{72}$
13	87.1	1891	0.55	102.4	2359	2.80	4.77	78
14	80.8	2037	0.51	$\begin{vmatrix} 102.4 \\ 95.1 \end{vmatrix}$	2541	2.60	4.43	84
15	75.5	2182	0.48	88.8	2722	2.43	4.13	90
16	70.7	2328	0.45	83.2	2904	2.27	3.87	96
17	66.6	2473	0.42	78.3	3085	2.14	3.65	102
18	62.9	2619	0.40	74.0	3267	2.02	3.44	108
19	59.6	2764	0.38	70.1	3448	1.91	3.26	114
20	56.6	2910	0.36	66.6	3630	1.82	3.10	120
21	53.9	3055	0.34	63.4	3811	1.73	2.95	126
22	51.4	3201	0.33	60.5	3993	1.65	2.82	132
23	49.2	3346	0.31	57.9	4174	1.58	2.70	138
24	47.1	3492	0.30	55.5	4356	1.51	2.58	144
25	45.3	3637	0.29	52.2	4537	1.45	2.48	150
26	43.5	3783	0.28	51.2	4719	1.40	2.38	156
27	41.9	3928	0.27	49.3	4900	1.35	2.29	162
28	40.4	4074	0.26	47.5	5082	1.30	2.21	168
29	39.0	4219	0.25	46.1	5263	1.25	2.14	174
30	37.7	4365	0.24	44.4	5445	1.21 1.17	$\frac{2.07}{2.00}$	180
31	36.5	4510	0.23	42.9	5626			186
32	35.4	4656	0.22	41.6	5808	1.13	1.94	192
33	34.3	4801	0.22	40.3	5989	1.10	1.88	198
34	33.3	4947	0.21	39.1	6171	1.07	1.82	204
35	32.3	5092	0.20	38.0	6352	1.04	1.77	210
36	$\begin{vmatrix} 31.4 \\ 30.6 \end{vmatrix}$	5238	0.20	37.0	6534	1.01	1.72	216
37	30.6	5383	0.19	$\frac{36.0}{25.0}$	6715	0.98	1.67	222
38	29.8	5529	0.19	35.0	6897	0.95	1.63	228
4.1		1						

Above values are based on maximum fiber strain of 16,000 pounds per square inch, $\frac{13}{16}$ -inch rivet holes deducted. Weights correspond to lengths, center to center of bearings.

SAFE LOADS IN TONS OF 2000 POUNDS Uniformly Distributed, for Box Girders Composed of Two I8" Steel Beams and Two I6" x 3/4" Steel Plates

	1 +							
	2-18" Beams 70 Pounds per Foot	<u> </u>		2-18" Beams Pounds per Foot	\\\ -6¾'>	O	se	n-
of	L E E		4," tes	Land Land	725	tes tes	rea	" I es
Distance, Center to Center Bearings, Feet	2-18" Beams Pounds per F	1 1	x 34" Plates	2-18" Beams Pounds per F		x 34" Plates	1," Increase Plates	Add to Weight of Girder for " Increase in Thickness of Plates
en	lds		\	// l nds			ı," In Plates	G
to Ce Feet	-18 om		2-16" Steel	-18 om		2-16" Steel		ler s ol
، ۲ تر	101 T		2	21 7		J. W.	Add to Safe Load for in Thickness of	irc
e, Center Bearings,		J					ad	Ski
Cel	Safe Load huding Weight of Girder Tons	Weight of Girder Pounds	to Safe Load ", Increase Thickness of Plates	oad Weight der	Weight of Girder Pounds	Add to Safe Load for 5 Pounds Increase in Weight of Beam	kn	Hi.o
e, Ee,	ad Vei	Gir	cre	ad Vei er	Sir	ind Beg	hic	legi.
ınc	fe Load ing We Girder Tons) f nd	afe In sne tes		nd.	afe Pou	Sal	.Ve
ista	Safe uding of G	nt of G Pounds	to Safe L	Safe Load Including We of Girder Tons	ht of C Pounds	dd to Safe Load for 5 Pounds Increase in Veight of Beam	0.ii	o v
Ä	Saf	ligh T		Salud	light H	r fr	ا ت	d t cr
	ncl	Vej	Add for in	ncl	V e.	Add fo We	Ad	Ad
$\overline{12}$	$\frac{-}{162.6}$			i — — — —				
13	150.1	2712	6.68	151.3	2352	3.92	6.68	82
14	139.4	2938	6.17	139.7	2548	3.62	6.17	88
15	130.1	3164	5.73	129.7	2744	3.36	5.73	95
16	i	3390	5.35	121.1	2940	3.14	5.35	102
17	121.9	3616	5.01	113.5	3136	2.94	5.01	109
	114.8	3842	4.72	106.8	3332	2.77	4.72	116
18 19		4068	4.45	100.9	3528	$\frac{2.61}{2.47}$	4.45	122
20	102.7	4294	4.22	95.6	3724	2.47	4.22	129
21	97.5	4520	4.01	90.8	3920	2.35	4.01	136
$\frac{21}{22}$	92.9 88.7	4746	3.82	86.5	4116	2.24	3.82	143
23		4972	3.64	81.7	4312	2.14	3.64	150
	84.8	5198	3.49	78.9	4508	2.04	3.49	156
24	81.3	5424	3.34	75.7	4704	1.96	3.34	163
25	78.0	5650	3.21	72.6	4900	1.88	3.21	170
26	75.0	5876	3.08	69.8	5096	1.81	3.08	177
27	72.2	6102	$\begin{bmatrix} 2.97 \\ 2.96 \end{bmatrix}$	67.2	5292	1.74	2.97	184
28	69.7	6328	$\begin{bmatrix} 2.86 \\ 2.76 \end{bmatrix}$	64.8	5488	1.68	2.86	190
29	67.3	6554	$\begin{bmatrix} 2.76 \\ 2.67 \end{bmatrix}$	$\frac{62.6}{60.5}$	5684	1.62	$\frac{2.76}{9.67}$	197
30	65.0	6780	$\frac{2.67}{2.59}$	60.5	5880	1.57	2.67	204
31	62.9	7006	2.58	58.6	6076	1.52	2.58	211
$\frac{32}{2}$	$\frac{61.0}{50.1}$	7232	$\begin{bmatrix} 2.50 \\ 2.40 \end{bmatrix}$	$\begin{bmatrix} 56.7 \\ 54.5 \end{bmatrix}$	6272	$\begin{bmatrix} 1.47 \\ 1.49 \end{bmatrix}$	$\frac{2.50}{2.43}$	218
33	59.1	7458	$\frac{2.43}{2.00}$	54.5	6468	1.42	$\begin{bmatrix} 2.43 \\ 2.26 \end{bmatrix}$	224
34	57.4	7684	$\frac{2.36}{2.00}$	53.4	6664	1.38	2.36	231
35	55.7	7910	2.29	51.9	6860	1.34	2.29	238
36	54.2	8136	2.23	50.4	7056	1.30	2.23	245
37	52.7	8362	2.17	49.1	7252	1.26	2.17	252
38	51.3	8588	2.11	47.8	7448	1.23	2.11	258

Above values are based on maximum fiber strain of 16,000 pounds per square inch, 13-inch rivet holes deducted. Weights correspond to lengths, center to center of bearings,

SAFE LOADS IN TONS OF 2000 POUNDS
Uniformly Distributed, for Box Girders Composed of Two
Steel Beams and Two 16" Steel Plates

f Bearings, Feet	2-20" Steel Beams 65 Pounds per Foot	9	734">	2-16" x 34" Steel Plates	2-24" Steel Beams 80 Pounds per Foot	0 1	8"-\k'-\k'-\k'-\k'-\k'-\k'-\k'-\k'-\k'-\k'	2-16" x 34" Steel Plates	I," Increase in tes
Distance, Center to Center of Bearings,	Safe Load, Including Weight of Girder Tons	Weight of Girder, Pounds	Add to Safe Load for 5 Pounds Increase in Weight of Beams	Add to Safe Load for 16" Increase in Thickness of Plates	Safe Load, Including Weight of Girder Tons	Weight of Girder, Pounds	Add to Safe Load for 5 Pounds Increase in Weight of Beams	Add to Safe Load for 1," Increase in Thickness of Plates	Add to Weight of Girder for 1,6" Increase in Thickness of Plates
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	183.0 168.8 156.8 146.4 137.2 129.2 122.0 115.5 109.8 104.5 99.8 95.4 91.5 87.8 84.4 81.3 78.4 75.7 73.2 70.8 68.6 66.5 64.6 62.7 61.0 59.3 57.7	2563 2777 2990 3204 3418 3631 3845 4058 4272 4486 4699 4913 5126 5340 5554 5767 5981 6194 6408 6622 6835 7049 7262 7476 7690 7903 8117	4.36 4.02 3.74 3.48 3.26 3.02 2.90 2.76 2.62 2.50 2.38 2.28 2.18 2.08 2.00 1.92 1.86 1.80 1.74 1.68 1.58 1.52 1.46 1.40 1.38 1.36	8.00 7.38 6.85 6.40 6.00 5.64 5.33 5.05 4.80 4.56 4.36 4.17 4.00 3.84 3.69 3.55 3.43 3.31 3.20 3.09 3.00 2.91 2.82 2.74 2.66 2.59 2.52	256.6 236.8 219.9 205.2 192.4 181.1 171.0 162.1 153.9 146.6 139.9 128.3 123.1 118.4 114.0 109.9 106.1 102.6 99.3 96.2 93.3 90.5 88.0 85.5 83.2 81.0	2923 3167 3410 3654 3898 4141 4385 4628 4872 5116 5359 5603 5846 6090 6334 6577 6821 7064 7308 7552 7795 8039 8282 8770 9013 9257	5.23 4.83 4.48 4.18 3.92 3.70 3.49 3.30 3.14 2.99 2.85 2.73 2.61 2.51 2.24 2.16 2.09 2.02 1.96 1.90 1.85 1.79 1.74 1.70 1.65	9.58 8.84 8.21 7.66 7.18 6.76 6.39 6.05 5.75 5.47 5.22 5.00 4.79 4.60 4.42 4.25 4.10 3.96 3.83 3.71 3.59 3.48 3.38 3.19 3.02	82 88 95 102 109 116 122 129 136 143 150 156 163 170 177 184 190 197 204 211 218 224 231 238 245 252 258

Above values are based on maximum fiber strain of 16,000 pounds per square inch, $\frac{13}{16}$ -inch rivet holes deducted. Weights correspond to lengths, center to center of bearings.

SAFE LOADS IN TONS OF 2000 POUNDS Uniformly Distributed, for Steel Plate Girders

Distance Center to Center of Bearings Feet			30" x ½" Web Plate	5" x 3½" x ½" Angles		33" x ½" Web Plate 12" x ¾" Flange Plates 5" x 3½" x ½" Angles				
Distance Center t	Safe Load, Including Weight of Girder Tons	Weight of Girder Tons	Increase in Safe Load for the Therease in Thickness of Flange Plates	Increase in Weight of Girder for Th' Increase in Thickness of Flange Plates	Safe Load, Including Weight of Girder Tons	Weight of Girder Tons	Increase in Safe Load for 1, // Increase in Thickness of Flange Plates	Increase in Weight of Girder for 16" Increase in Thickness of Flange Plates		
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	99.91 95.15 90.82 86.87 83.25 79.92 76.85 74.00 71.36 68.90 66.60 64.45 62.44 60.55 58.77 57.08 55.50 54.00 52.58 51.23 49.95	1.62 1.69 1.76 1.86 1.93 2.01 2.07 2.14 2.21 2.31 2.38 2.45 2.52 2.59 2.66 2.73 2.83 2.90 2.97 3.04 3.11	4.92 4.67 4.46 4.26 4.08 3.92 3.77 3.63 3.50 3.38 3.27 3.17 3.07 2.97 2.87 2.79 2.72 2.65 2.58 2.52 2.46	.05 .05 .06 .06 .06 .07 .07 .07 .07 .08 .08 .08 .08 .09 .09 .09 .10 .10	112.87 107.49 102.60 98.14 94.05 90.29 86.82 83.60 80.63 77.84 75.24 72.82 70.55 68.41 66.40 64.49 62.70 61.01 59.40 57.88 56.43	2.02 2.09 2.17 2.24 2.31 2.42 2.49 2.56 2.64 2.71 2.78 2.85 2.96 3.03 3.11 3.18		.05 .05 .06 .06 .06 .07 .07 .07 .07 .08 .08 .08 .09 .09 .09		

The above values are founded on the moments of inertia of the sections using a maximum fiber strain of 16,000 pounds per square inch for steel; 13-inch rivet holes in both flanges deducted. Weights of girders correspond to lengths center to center of bearings and include rivet heads, stiffeners and fillers.

SAFE LOADS IN TONS OF 2000 POUNDS Uniformly Distributed, for Steel Plate Girders

Distance Center to Center of Bearings Feet			$36'' \times \frac{1}{2}''$ Web Plate $12'' \times \frac{3}{2}''$ Flange Plates	5" x 3½" x ½" Angles			42" x 5/8" Web Plate 14" x 3/8" Flange Plates	6" x 6" x 76" Angles
Distance Center to	Safe Load, Including Weight of Girder Tons	Weight of Girder Tons	Increase in Safe Load for 1, "Increase in Thickness of Flange Plates	Increase in Weight of Girder for "" Increase in Thickness of Flange Plates	Safe Load, Including Weight of Girder Tons	Weight of Girder Tons	Increase in Safe Load for 14" Increase in Thickness of Flange Plates	Increase in Weight of Girder for Increase in Thickness of Flange Plates
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	72.13 70.13 68.23 66.44 64.74	$ \begin{array}{c} 1.92 \\ 2.04 \\ 2.17 \\ 2.19 \\ 2.26 \\ 2.34 \\ 2.41 \\ 2.53 \\ 2.60 \end{array} $	3.94 3.81 3.69 3.58 3.47 3.37 3.27 3.18 3.10 3.03	.05 .06 .06 .06 .06 .07 .07 .07 .07 .08 .08 .08 .08 .09 .09 .09	96.27	2.84 2.95 3.12 3.24 3.36 3.48 3.59 3.71 3.88 4.00 4.12 4.23 4.35 4.47 4.59 4.76	6.59 6.34 6.11 5.88 5.69 5.51 5.32 5.15 5.00 4.85 4.71 4.58 4.45 4.45 4.21	.06 .06 .07 .07 .07 .08 .08 .08 .09 .09 .10 .10 .10 .11 .11 .11

The above values are founded on the moments of inertia of the sections using a maximum fiber strain of 16,000 pounds per square inch for steel; $\frac{13}{16}$ -inch rivet holes in both flanges deducted. Weights of girders correspond to lengths center to center of bearings and include rivet heads, stiffeners and fillers.

SAFE LOADS IN TONS OF 2000 POUNDS Uniformly Distributed, for Steel Box Girders

Distance Center to Center of Bearings			30" x ½" Web Plates	16" x 3%" Flange Plates 35" x 35" x ½" Angles			33" x ½" Web Plates	20" x 1"," Flange Plates 3½" x 3½" x ½" Angles
Distance Center	Safe Load, Including Weight of Girder Tons	Weight of Girder Tons	Increase in Safe Load for 1," Increase in Thickness of Flange Plates	Increase in Weight of Girder for 16" Increase in Thickness of Flange Plates	Safe Load, Including Weight of Girder Tons	Weight of Girder Tons	Increase in Safe Load for 1,4 "Increase in Thickness of Flange Plates	Increase in Weight of Girder for 1,4 "Increase in Thickness of Flange Plates
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	120.00 114.28 109.09 104.34 100.00 96.00 92.30 88.88 85.71 82.76 80.00 77.42 75.00 72.72 70.59 68.57 66 66 64.86 63.16 61.54 60.00	3.64 3.76 3.86 3.95 4.05	7.04 6.70 6.40 6.12 5.86 5.63 5.41 5.21 5.03 4.85 4.69 4.54 4.40 4.26 4.14 4.02 3.91 3.80 3.70 3.61 3.52	.07 .07 .08 .08 .08 .09 .09 .10 .10 .11 .11 .11 .12 .12 .12 .13 .13	82.1	2.44 2.55 2.66 2.80 2.91 3.03 3.14 3.25 3.36 3.50 3.61 3.72 3.83 3.95 4.06 4.17 4.31 4.41 4.53 4.65 4.76	9.54 9.08 8.67 8.29 7.95 7.63 7.34 7.07 6.82 6.58 6.36 6.15 5.96 5.78 5.60 5.44 5.29 5.14 5.01 4.88 4.77	.09 .09 .09 .10 .11 .11 .12 .12 .12 .13 .13 .14 .14 .14 .15 .15 .16 .16

The above values are founded on the moments of inertia of the sections using a maximum fiber strain of 16,000 pounds per square inch for steel; $\frac{13}{16}$ -inch rivet holes in both flanges deducted. Weights of girders correspond to lengths center to center of bearings and include rivet heads, stiffeners and fillers.

SAFE LOADS IN TONS OF 2000 POUNDS Uniformly Distributed, for Steel Box Girders

Distance Center to Center of Bearings Feet			36" x 1/2" Web Plates	24" x 14" Flange Plates 4" x 3½" x ½" Angles			42" x 1/2" Web Plates	30" x 14" Flange Plates 5" x 4" x 1/2" Angles
Distance Center t	Safe Load, Including Weight of Girder Tons	Weight of Girder Tons	Increase in Safe Load for 14"/Increase in Thickness of Flange Plates	Increase in Weight of Girder for Ta Increase in Thickness of Flange Plates	Safe Load, Including Weight of Girder Tons	Weight of Girder Tons	Increase in Safe Load for 14" Increase in Thickness of Flange Plates	Increase in Weight of Girder for The Crease in Thickness of Flange Plates
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	126.4 123.0 119.7	2.92 3.06 3.19 3.36 3.49 3.63 3.76 3.89 4.03 4.15 4.33 4.45 4.60 4.74 4.87 5.00 5.17 5.31 5.44 5.58 5.71	7.38 7.17 6.98 6.80 6.62	.10 .11 .11 .12 .12 .13 .13 .14 .14 .15 .15 .16 .16 .17 .17 .17 .18 .18 .19 .20 .20	355.0 338.1 322.8 308.7 296.0 284.0 273.1 263.0 253.6 244.8 236.7 229.0 215.2 208.8 202.9 197.2 191.9 186.8 182.1 177.5	6.47 6.69 6.86 6.94 7.20	11.10 10.79 10.50 10.22 9.96	.13 .13 .14 .15 .15 .16 .17 .17 .18 .19 .20 .20 .21 .22 .22 .22 .23 .24 .24 .25 .26

The above values are founded on the moments of inertia of the sections using a maximum fiber strain of 16,000 pounds per square inch for steel; 13" rivet holes in both flanges deducted. Weights of girders correspond to lengths center to center of bearings and include rivet heads, stiffeners and fillers.

Steel Columns in Fireproof Buildings

The construction of steel-frame fireproof buildings is becoming general in cities and towns. In the business centers of our great cities no other form can be used to advantage, and the architects who are keeping pace with improvements recognize the desirability of the improved construction. This change has been facilitated in no small degree by the great improvements made in the art of fireproof construction, insuring not only a higher degree of efficiency, but a considerable reduction in cost, as compared with methods formerly practiced.

The old style of solid brick or stone arch, at one time so common, has been almost wholly supplanted by the modern forms of hollow tile and terra cotta, and roofs, ceilings and partition walls are now largely constructed of these refractory materials.

The substitution of steel for iron in beams has hastened this radical improvement. Our patterns of beams and channels, having the highest efficiency, are well adapted for this purpose.

For some time past another change which has gradually taken place has been the substitution of steel for cast-iron in the composition of columns, cast-iron being a material so uncertain in character that its use in bridge construction has long since been abandoned. In buildings the loads are generally quiescent, and the liability of sudden shocks is more remote than in bridges; yet on the other hand, the columns seldom receive their loads as favorably as in bridges. In many cases there exists considerable eccentricity, that is, the loads on one side of the column are heavier than on the other side, and the bending strains arising therefrom increase the strains from direct compression materially.

The following are some of the contingencies which may arise in the manufacture of castings, and which preclude anything approaching uniformity in the product:

In the case of hollow cast-iron columns, while the metal is yet in a molten state, the buoyancy of the central core tends to cause it to rise, thereby reducing the thickness of the metal above and increasing the same below. When columns are of such lengths as to make it necessary to pour the metal into the molds from both ends, it sometimes occurs that the iron becomes too much chilled on the surface to properly mix and unite, thus creating a weak seam at the very point where the greatest strength will be needed. The presence of confined air, producing "blowholes" and "honeycomb," and the collection of impurities at the bottom of the mold, may be further mentioned as frequent sources of weakness in cast-iron.

The most critical condition, however, is that due to the unequal contraction of the metal during the process of cooling, thereby giving rise to initial strains, at times of sufficient force to produce rupture in the column or in its lugs on the slightest provocation. In many cases the trouble can be ascribed to faulty designing or carelessness in the execution of the work, yet even under favorable conditions it is so difficult to secure equal radiation from the molds in all directions, that castings, entirely exempt from inherent shrinkage strains, are probably seldom produced.

As a protection against these contingencies, resort must be had either to the crude or uncertain expedient of a high safety factor, not less than 8 or 10, or a material, such as rolled steel, must be adopted, of a more uniform and reliable character than cast-iron.

Steel columns fail either by deflecting bodily out of a straight line, or by buckling of the metal between rivets or other points of support. Both actions may take place at the same time, but if the latter occurs alone, it may be an indication that the rivet spacing or the thickness of the metal is insufficient.

The rule has been deduced from actual experiments upon steel columns, that the distance between centers of rivets should not exceed, in the line of strain, sixteen times the thickness of metal of the parts joined, and that the distance between rivets or other points of support, at right angles to the line of strain, should not exceed thirty-two times the thickness of the metal.

On page 64 are shown sections of some of the most common forms of built columns. Figs. 5, 6 and 7 are known as closed columns. As it is impracticable to repaint the inner surface of such columns, it is preferable to use them only for interior

work where the changes in temperature are not considerable and the air is dry. In places exposed to the extremes of temperature and unprotected from rain, the paint on the inner surface of the column will sooner or later cease to be a protection. Corrosion will set in, and, once begun, will continue as long as there is unoxidized metal left in the column. The remaining figures on this page represent columns with open sections or latticed columns, which admit of repainting and are suitable for out-of-door work.

Cast and steel bases are shown on page 64. Complete tables giving the safe loads in tons for plate and channel columns or plate and angle columns shown by Figures 5 and 10 on same page, are given on pages 152 to 169.

SAFE LOADS IN TONS OF 2000 POUNDS 6" Channel Column. Square Ends.

×--57/21->

Allowable strain per square inch equals 12,000 pounds for lengths of 90 radii or less; $17,100-57\frac{1}{2}$ for lengths over

90 radii. Safety factor = 4.

Section: $2-6'' \rightarrow \text{laced with } 1\frac{1}{2}'' x \frac{5}{16}'' \text{ bars};$

Holes in flanges, $\frac{1}{16}$ or less. Rivets in flanges, $\frac{1}{8}$ or less.

Section	ea in Sq. Inches	eight in unds per neal Foot Columns	ıst r	Uns	uppor	ted C Fe		Len,	gths
Section	Area in Inche	Weight i Pounds F Lineal Fc of Colum	Pounds Lineal F of Colun Least		16	18	20	22	24
Pounds Bars $2-6''-8$ laced $2-6''-8$ $2-8\times \frac{1}{4}$ " $2-6''-8$ $2-8\times \frac{5}{16}$ " $2-6''-8$ $2-8\times \frac{7}{16}$ " $2-6''-8$ $2-8\times \frac{1}{16}$ "	4.76 8.76 9.76 10.76 11.76 12.76 13.76 14.76 15.76	22.75 31.6 35.0 38.4 41.8 45.2 48.6 52.0 55.4	2.34 2.32 2.32 2.32 2.32 2.32 2.32 2.32		28.6 52.6 58.6 64.6 70.6 76.6 82.6 88.6 94.6	28.2 51.6 57.5 63.4 69.3 75.2 81.1 87.0 92.9	26.8 49.1 54.7 60.3 65.9 71.5 77.1 82.7 88.3	25.4 46.5 51.8 57.1 62.4 67.7 73.0 78.3 83.6	24.0 44.0 49.0 54.0 59.0 64.0 69.0 74.0 79.1
$\begin{array}{c} 2-6''-10\frac{1}{2} \operatorname{laced} \dots \\ 2-6''-10\frac{1}{2} 2-8\times\frac{1}{4}'' \\ 2-6''-10\frac{1}{2} 2-8\times\frac{5}{16}'' \\ 2-6''-10\frac{1}{2} 2-8\times\frac{5}{16}'' \\ 2-6''-10\frac{1}{2} 2-8\times\frac{7}{16}'' \\ 2-6''-10\frac{1}{2} 2-8\times\frac{9}{16}'' \\ 2-6''-10\frac{1}{2} 2-8\times\frac{9}{16}'' \\ 2-6''-10\frac{1}{2} 2-8\times\frac{5}{16}'' \\ 2-6''-10\frac{1}{2} 2-8\times\frac{1}{16}'' \end{array}$	6.18 10.18 11.18 12.18 13.18 14.18 15.18 16.18 17.18	43.4 46.8 50.2 53.6 57.0	2.21 2.25 2.25 2.26 2.26 2.26 2.26 2.27 2.27		37.1 61.1 67.1 73.1 79.1 85.1 91.1 97.1	35.6 59.2 65.0 70.9 76.8 82.6 88.4 94.5 100.3		31.8 52.9 58.1 63.6 68.8 74.0 79.3 84.5 89.9	29.9 49.9 54.8 59.9 64.8 69.7 74.7 79.8 84.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.64 12.64 13.64 14.64 15.64 17.64 18.64 19.64	48.4 51.8 55.2 58.6 62.0 65.4	2.13 2.20 2.21 2.22 2.22 2.23 2.23 2.24 2.24		75.8 81.8 87.8 93.8	78.6 84.5 90.4 96.3 102.2 108.1	74.4 80.0 85.5 91.1 96.7 102.3	96.6	65.9 70.9 75.9 80.8 85.8 90.8
2-6" — 15½ laced 2-6" — 15½ 2-8 \times %" 2-6" — 15½ 2-8 \times %" 2-6" — 15½ 2-8 \times %" 2-6" — 15½ 2-8 \times ½" 2-6" — 15½ 2-8 \times %" 2-6" — 15½ 2-8 \times %"	18. 12 19. 12 20. 12	50.0 53.4 56.8 60.2 63.6 67.0 70.4	2.06 2.15 2.17 2.17 2.18 2.20 2.20 2.21		90.7 96.7 102.7 108.7 114.7 120.7	80.3 86.4 92.1 98.0 104.0 115.8	75.8 81.5 87.0 92.6 98.3 104.0 3109.6	71.3 76.7 82.0 87.3 92.7 98.0	66.8 71.8 76.9 81.9 787.0

SAFE LOADS IN TONS OF 2000 POUNDS 7" Channel Column. Square Ends

Allowable strain per square inch equals 12,000 pounds for lengths of 90 radii or less; $17,100 - 57\frac{l}{r}$ for lengths over 90 radii. Safety factor = 4.

Section: $2-7'' \rightarrow$ laced with $1\frac{3}{4}'' \times \frac{5}{16}''$ bars; or $2-7'' \rightarrow$ and 2-9'' bars. Holes, $\frac{1}{16}''$; rivets, $\frac{3}{4}''$ diameter.

Section	in Sq.	ight.Lbs. Lin. Ft.	st 7	Un	suppo		olumn Feet	Leng	ths
	Area in Inche	Weigh per Li	Least	18	20	22	24	26	28
Pounds Bars $2-7''-934$ laced $2-7''-934$ $2-9 \times \frac{1}{16}''$ $2-7''-934$ $2-9 \times \frac{5}{16}''$ $2-7''-934$ $2-9 \times \frac{5}{16}''$ $2-7''-934$ $2-9 \times \frac{7}{16}''$ $2-7''-934$ $2-9 \times \frac{1}{16}''$ $2-7''-934$ $2-9 \times \frac{9}{16}''$ $2-7''-934$ $2-9 \times \frac{9}{16}''$ $2-7''-934$ $2-9 \times \frac{9}{16}''$ $2-7''-934$ $2-9 \times \frac{9}{16}''$	5.70 10.20 11.32 12.45 13.58 14.70 15.85 16.95	27.1 36.8 40.6 44.5 48.3 52.1 55.9	2.72 2.67 2.67 2.66 2.66 2.65 2.65	88.2 95.0	34.2 61.2 67.9 74.7 81.5 87.8 94.4 101.0	33.0 58.5 64.9 71.2 77.6 83.9 90.3 96.6	31.5 55.9 62.0 68.0 74.1 80.1 86.2 92.2	30.1 53.2 59.0 64.7 70.5 76.3 82.0 87.8	28.7 50.6 56.1 61.5 67.0 72.5 77.9 83.4
$\begin{array}{c} 2-7''-12\frac{1}{4} \ \text{laced} \dots \\ 2-7''-12\frac{1}{4} \ 2-9\times\frac{1}{4}'' \\ 2-7''-12\frac{1}{4} \ 2-9\times\frac{5}{16}'' \\ 2-7''-12\frac{1}{4} \ 2-9\times\frac{7}{16}'' \\ 2-7''-12\frac{1}{4} \ 2-9\times\frac{7}{16}'' \\ 2-7''-12\frac{1}{4} \ 2-9\times\frac{9}{16}'' \\ 2-7''-12\frac{1}{4} \ 2-9\times\frac{9}{16}'' \\ 2-7''-12\frac{1}{4} \ 2-9\times\frac{5}{8}'' \end{array}$	11.70 12.82 13.95 15.08 16.20 17.35	41.8 45.6 49.5 53.3 57.1 60.9	2.59 2.59 2.59 2.59 2.59		42. 5 69. 1 75. 8 82. 4 89. 1 95. 7 102. 4 109. 0	40.6 66.0 72.4 78.7 85.1 91.4 97.8 104.1	38.7 62.9 69.0 75.0 81.1 87.2 93.2 99.3	36.8 59.9 65.7 71.4 77.2 82.9 88.7 94.4	34.9 56.8 62.3 67.7 73.2 78.6 84.1 89.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.68 13.18 14.30 15.43 16.56 17.68 18.81 19.93	46.8 50.6 54.5 58.3 62.1 65.9	2.53 2.54 2.54 2.55 2.55 2.55	112.9	110.5	48.1 73.5 79.9 86.3 92.7 99.0 105.4 111.8	45.7 69.9 76.0 82.1 88.2 94.3 100.4 106.5	43.3 66.4 72.2 78.0 83.8 89.6 95.4 101.2	41.0 62.9 68.4 73.8 79.3 84.8 90.2 95.7
$2-7'' - 17\frac{1}{4} \operatorname{laced} \dots$ $2-7'' - 17\frac{1}{4} 2-9 \times \frac{1}{4}''$ $2-7'' - 17\frac{1}{4} 2-9 \times \frac{3}{8}''$ $2-7'' - 17\frac{1}{4} 2-9 \times \frac{1}{2}''$ $2-7'' - 17\frac{1}{4} 2-9 \times \frac{5}{8}''$	10.14 14.64 16.89 19.14 21.39	51.8 59.5 67.1	2.49 2.50 2.51	87.8 101.3 114.8				49.6 72.9 84.4 95.9 107.4	46.7 68.9 79.8 90.7 101.6
$2-7''-19\overset{3}{\cancel{4}}\overset{2}{\cancel{4}}\overset{2-9}{\cancel{4}}\overset{\cancel{4}}{\cancel{4}}''$ $2-7''-19\overset{3}{\cancel{4}}\overset{2-9}{\cancel{4}}\overset{\cancel{4}}{\cancel{4}}''$ $2-7''-19\overset{3}{\cancel{4}}\overset{2-9}{\cancel{4}}\overset{\cancel{4}}{\cancel{4}}''$ $2-7''-19\overset{3}{\cancel{4}}\overset{2-9}{\cancel{4}}\overset{\cancel{4}}{\cancel{4}}''$	11. 62 16. 12 18. 37 20. 62 22. 87 25. 12	56.8 64.5 72.1 79.8	2.45 2.46 2.47 2.48	123.7 137.2	$119.2 \\ 132.5$	$\frac{113.6}{126.2}$	119.9	113.6	52.8 74.8 85.7 96.5 107.4 118.2

SAFE LOADS IN TONS OF 2000 POUNDS

8" Channel Column. Square Ends

Allowable strains per square inch = 12,000 pounds for lengths of 90 radii or less. 17,100 pounds $-57\frac{1}{r}$ for lengths over 90 radii.

Safety factor = 4.

Section: $2-8'' \rightarrow \text{laced with } 1\frac{3}{4}'' \times \frac{5}{16}''$ bars. Holes, $\frac{1}{16}''$; rivets, $\frac{3}{4}''$ diameter, or $2-8'' \rightarrow \text{and } 2-10''$ bars.

Section	Area in Sq. Inches Veight, Lbs. oer Lin. Ft. Least	Unsupporte	ed Column Len Feet .	gths
	Area in Inche Weight, per Lin. Leas	20 22	24 26 28	30
Pounds Bars $2-8''-11\frac{1}{4}$ laced $2-8''-11\frac{1}{4}$ $2-10\times\frac{1}{4}''$ $2-8''-11\frac{1}{4}$ $2-10\times\frac{5}{16}''$ $2-8''-11\frac{1}{4}$ $2-10\times\frac{5}{16}''$ $2-8''-11\frac{1}{4}$ $2-10\times\frac{7}{16}''$ $2-8''-11\frac{1}{4}$ $2-10\times\frac{7}{16}''$ $2-8''-11\frac{1}{4}$ $2-10\times\frac{9}{16}''$ $2-8''-11\frac{1}{4}$ $2-10\times\frac{9}{16}''$ $2-8''-13\frac{3}{4}$ laced $2-8''-13\frac{3}{4}$ $2-10\times\frac{1}{4}''$ $2-8''-13\frac{3}{4}$ $2-10\times\frac{5}{16}''$	6.70 30.13.11 11.70 41.53.03 12.95 45.73.02 14.20 50.03.02 15.45 54.23.01 16.70 58.53.00 17.95 62.73.00 19.20 67.02.99 8.08 35.12.98 13.08 46.53.00 14.33 50.72.99 15.58 55.02.98 16.83 59.22.98 18.08 63.52.97 19.33 67.72.96	$\begin{array}{c} 70.2 \\ 77.7 \\ 85.2 \\ 92.7 \\ 100.2 \\ 107.7 \\ 115.2 \\ 1 \\ 48.5 \\ 78.5 \\ 86.0 \\ 93.5 \\ 101.0 \\ 108.5 \\ 116.0 \\ 1 \\ 116.0 \\ 1\end{array}$	39.6 38.1 36.7 68.3 65.7 69.6 82.7 79.5 76.2 89.9 86.4 82.8 97.1 93.3 89.5 04.3 100.2 96.1 11.5 107.1 102.7 46.8 45.0 73.0 70.1 83.2 79.9 76.6 90.3 86.7 83.2 79.9 76.6 90.3 86.7 83.2 97.5 93.5 89.8 04.6 100.4 96.3 11.7 107.2 102.8	60.4 66.7 73.0 79.3 85.7 92.0 98.3 41.3 67.1 73.4 79.6 85.9 92.1 98.3
2-8"— 13¾ 2-10×½" 2-8"— 16¼ laced 2-8"— 16¼ 2-10×¾" 2-8"— 16¼ 2-10×¼" 2-8"— 16¼ 2-10×¼" 2-8"— 16¼ 2-10×¾" 2-8"— 16¼ 2-10×¼" 2-8"— 16¼ 2-10×¼" 2-8"— 16¼ 2-10×¾" 2-8"— 16¼ 2-10×¾" 2-8"— 16¾ 2-10×¾" 2-8"— 18¾ 2-10×¾" 2-8"— 18¾ 2-10×¾" 2-8"— 18¾ 2-10×¾" 2-8"— 18¾ 2-10×¾" 2-8"— 18¾ 2-10×¾" 2-8"— 21¼ laced 2-8"— 21¼ laced 2-8"— 21¼ 2-10×¾" 2-8"— 21¼ 2-10×¾" 2-8"— 21¼ 2-10×¾" 2-8"— 21¼ 2-10×¾" 2-8"— 21¼ 2-10×¾" 2-8"— 21¼ 2-10×¾" 2-8"— 21¼ 2-10×¾" 2-8"— 21¼ 2-10×¾"	$\begin{array}{c} 9.56 \\ 17.06 \\ 60.02.93 \\ 18.31 \\ 64.22.93 \\ 19.56 \\ 68.52.92 \\ 20.81 \\ 72.72.92 \\ 22.06 \\ 77.02.92 \\ 23.33 \\ 81.22.92 \\ 24.56 \\ 85.52.92 \\ 11.02 \\ 45.12.82 \\ 18.52 \\ 65.02.89 \\ 21.02 \\ 73.52.89 \\ 23.52 \\ 82.02.89 \\ 26.02 \\ 90.52.89 \\ 12.5 \\ 50.12.77 \\ 20.0 \\ 70.02.83 \\ 22.5 \\ 78.52.83 \\ 27.5 \\ 95.52.84 \end{array}$	57.4 56.8 102.4 102.1 109.9 109.5 1017.4 117.0 1 124.9 124.4 1 132.4 131.8 1 139.9 139.3 1 147.4 146.7 1 126.1 125.0 1 141.1 139.8 1 156.1 154.7 1 175.0 72.9 120.0 117.9 1 135.0 147.6 1 150.0 147.6 1 150.0 162.5 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47.8 86.2 7 92.5 98.7 105.0 4 111.2 117.5 4 123.7 54.1 92.6 1 105.1 2 117.6 3 130.1 7 60.6 4 98.5 5 111.0 5 123.5 6 135.0

SAFE LOADS IN TONS OF 2000 POUNDS 9" Channel Column. Square Ends

Allowable strain per square inch = 12,000 pounds for lengths of 90 radii

or less. 17,100 pounds $-57\frac{1}{r}$ for lengths over 90 radii.

Safety factor = 4.

Section: $2-9'' \rightarrow \text{laced with } 2'' \times \frac{5}{16}''$ bars. Holes, $\frac{13}{16}''$; rivets, $\frac{3}{4}''$ diameter, or $2-9'' \rightarrow \text{and } 2-11''$ bars.

Sec	tion ,	Area in Sq. Inches	ght, Lbs. Lin. Ft.	east	Un	suppo	rted C Fe	olumn	Leng	ths
		Ar Sq.	Weight, per Lin.	口	22	24	26	28	30	32
Pounds 2-9"— 1314 2-9"— 1314 2-9"— 1314 2-9"— 1314 2-9"— 1314 2-9"— 1314 2-9"— 1314	laced	14.66 16.03 17.41 18.78 20.16	47.2 57.9 56.6 61.2 65.9 70.6	3.40 3.38 3.37 3.35 3.34		$112.7 \\ 121.0$	46.7 78.9 86.8 94.7 102.6 110.6 118.5 126.4	114.4		42.1 70.9 78.0 85.0 92.1 99.1 106.2 113.2
2-9"— 15 2-9"— 15 2-9"— 15 2-9"— 15 2-9"— 15 2-9"— 15 2-9"— 15 2-9"— 15	laced $2-11 \times \frac{1}{4}$ " $2-11 \times \frac{5}{6}$ " $2-11 \times \frac{7}{16}$ " $2-11 \times \frac{7}{16}$ " $2-11 \times \frac{9}{16}$ " $2-11 \times \frac{9}{5}$ 8"	15.70 17.07 18.45 19.82 21.20	50.7 55.4 60.1 64.7 69.4 74.1	3.36 3.34 3.33 3.32 3.31 3.30		118.9 127.2	108.3 116.2	112.1 119.7	108.0 115.3	47.0 75.9 82.9 89.9 96.9 103.9 110.9
2-9"— 20 2-9"— 20 2-9"— 20 2-9"— 20 2-9"— 20 2-9"— 20 2-9"— 20 2-9"— 20 2-9"— 20	laced $2-11 \times \frac{5}{16}$ " $2-11 \times \frac{3}{16}$ " $2-11 \times \frac{7}{16}$ " $2-11 \times \frac{1}{2}$ " $2-11 \times \frac{9}{16}$ " $2-11 \times \frac{1}{16}$ " $2-11 \times \frac{1}{34}$ "	20.01 21.39 22.76 24.14 25.51 26.89	65.4 70.1 74.7 79.4 84.1	3.26 3.26 3.25 3.25 3.25 3.25		120. 1 128. 3 136. 6 144. 8 153. 1 161. 3	132.4 140.3 148.2	112.4 120.0 127.6 135.3 142.9 150.5	108. 2 115. 5 122. 8 130. 2 137. 5 144. 8	125.1 132.1
2-9" 25 2-9" 25		14.70 22.95 24.33 25.70 27.08 28.45 29.83 31.20 32.58 33.95	84.7 89.4 94.1 98.8 103.4 108.1 112.8 117.5	3. 18 1 3. 18 2	137.8 146.0 154.2 162.5 170.7 179.0 187.2 195.5 203.7	186.3 194.5 202.7	140.0 147.9 155.8 163.7 171.6 179.5 187.4	134.7 142.3 150.0 157.6 165.2 172.8 180.4 188.1	129.5 136.8 144.1 151.5 158.8 166.1 173.4	124.3 131.3 138.3 145.3 152.4 159.4 166.4 173.4

SAFE LOADS IN TONS OF 2000 POUNDS 10" Channel Column. Square Ends

Allowable strain per square inch = 12,000 pounds for lengths of 90 radii

or less. $17,100 - 57\frac{1}{r}$ for lengths over 90 radii.

Safety factor = 4.

 $\frac{1}{2}$ - Section: 2-10" \longrightarrow laced with 2" x $\frac{5}{16}$ " bars. Holes, $\frac{13}{16}$ "; rivets, $\frac{3}{4}$ " diameter, or 2-10" \longrightarrow and 2-12" plates.

	n Sq.	ht, Lbs. in. Ft. east	Un	suppo	rted C Fe		Leng	gths
Section	Area in Sq. Inches	Weight, per Lin. Leas	24	26	28	30	32	34
Pounds Plates $2-10''-15$ laced $2-10''-15$ 2- $12 \times \frac{1}{4}$ " $2-10''-15$ 2- $12 \times \frac{5}{16}$ " $2-10''-15$ 2- $12 \times \frac{5}{16}$ " $2-10''-15$ 2- $12 \times \frac{7}{16}$ " $2-10''-15$ 2- $12 \times \frac{7}{16}$ " $2-10''-15$ 2- $12 \times \frac{7}{16}$ " $2-10''-15$ 2- $12 \times \frac{9}{16}$ " $2-10''-15$ 2- $12 \times \frac{9}{16}$ " $2-10''-15$ 2- $12 \times \frac{5}{5}$ "	8.92 14.92 16.42 17.92 19.42 20.92 22.42 23.92	$\begin{array}{c} 52.43.76 \\ 57.53.74 \\ 62.63.73 \\ 67.73.71 \\ 72.83.69 \\ 77.93.68 \end{array}$		$\begin{vmatrix} 116.5 \\ 125.5 \\ 134.5 \end{vmatrix}$	53.5 89.5 98.5 107.2 115.9 124.6 133.2 141.9	86.9 95.4 103.8 112.2 120.6 129.0	84.2 92.3 100.5 108.6 116.7 124.8	82.5 89.3 97.2 105.0 112.8 120.7
$\begin{array}{c} 210'' & \hspace{-0.5cm} - \hspace{-0.5cm} 20 \hspace{0.1cm} \text{laced} \dots \\ 210'' & \hspace{-0.5cm} - \hspace{-0.5cm} 20 \hspace{0.1cm} 212 \times \frac{3}{5} \%'' \\ 210'' & \hspace{-0.5cm} - \hspace{-0.5cm} 20 \hspace{0.1cm} 212 \times \frac{7}{16} \%'' \\ 210'' & \hspace{-0.5cm} - \hspace{-0.5cm} 20 \hspace{0.1cm} 212 \times \frac{9}{16} \%'' \\ 210'' & \hspace{-0.5cm} - \hspace{-0.5cm} 20 \hspace{0.1cm} 212 \times \frac{1}{16} \%'' \\ 210'' & \hspace{-0.5cm} - \hspace{-0.5cm} 20 \hspace{0.1cm} 212 \times \frac{3}{3} 4 \%'' \end{array}$	11.76 20.75 22.26 23.76 25.26 26.76 28.26 29.76	$\begin{array}{c} 72.63.65 \\ 77.73.64 \\ 82.83.63 \\ 87.93.62 \end{array}$		$ \begin{vmatrix} 124.5 \\ 133.5 \\ 142.6 \\ 151.6 \\ 160.6 \\ 169.6 \end{vmatrix} $	69.8 123.0 131.7 140.4 149.1 157.8 166.6 175.3	119.1 127.5 135.9 144.4 152.8 161.2	115.2 123.3 131.5 139.6 147.7 155.9	111.3 119.1 127.0 134.8 142.6 150.5
$\begin{array}{c} 210'' \ 25 \ \text{laced} \dots \\ 210'' \ 25 \ 212 \times \frac{1}{2}\frac{4}{2}'' \\ 210'' \ 25 \ 212 \times \frac{9}{16}i'' \\ 210'' \ 25 \ 212 \times \frac{5}{16}i'' \\ 210'' \ 25 \ 212 \times \frac{3}{16}i' \\ 210'' \ 25 \ 212 \times \frac{1}{16}i' \\ 210'' \ 25 \ 212 \times \frac{7}{8}i' \end{array}$	$\begin{vmatrix} 31.20 \\ 32.70 \\ 34.20 \end{vmatrix}$	92.83.57		169. 2 178. 2 187. 2 196. 2 205. 2	156.7 165.4 174.0 182.7 191.4	151. 5 159. 9 168. 3 176. 7 185. 1 193. 5	154.5 162.5 170.6 178.7 186.8	141. 2 149. 0 156. 8 164. 6 172. 4 180. 2
2-10'' $30 laced2-10'' 30 2-12 \times 5 \%''2-10'' 30 2-12 \times 3 4''2-10'' 25 2-12 \times 7 \%''2-10'' 30 2-12 \times 1''$	$\begin{vmatrix} 32.64 \\ 35.64 \\ 38.64 \end{vmatrix}$	68.43.42 113.03.50 123.23.50 133.43.50 143.63.49)))	$\begin{vmatrix} 195.8 \\ 213.8 \\ 231.8 \end{vmatrix}$	$ \begin{array}{c} 189.8 \\ 207.1 \\ 224.4 \end{array} $	$ \begin{array}{c} 183.4 \\ 200.1 \\ 216.9 \end{array} $	177.0 193.1 209.3	90.8 170.6 186.2 201.7 217.3
2-10"— 35 laced 2-10"— 35 2-12×5%" 2-10"— 35 2-12×34" 2-10"— 35 2-12×7%" 2-10"— 35 2-12×1" 2-10"— 35 2-12×11"	35.58 38.58 41.58 44.58	8 78.43.35 8 124.03.45 8 133.23.45 8 143.43.45 8 153.63.45 8 163.83.45	$egin{smallmatrix} 5 & 213 & 5 \ 231 & 5 \ 249 & 5 \ 267 & 5 \end{bmatrix}$	$egin{array}{c} 212.5 \\ 230.4 \\ 248.3 \\ 266.2 \\ \end{array}$	205.5 222.8 240.1 257.4	198.4 215.1 231.8 248.6	$\begin{vmatrix} 191.3 \\ 207.5 \\ 223.6 \\ 239.7 \end{vmatrix}$	184.3 199.8 215.4 230.9

SAFE LOADS IN TONS OF, 2000 POUNDS 12" Channel Column. Square Ends

8½" - 11½" - 12" S

Allowable strain per square inch= 12,000 pounds for lengths of 90 radii or less. $17,100 - 57 \frac{1}{r}$ for lengths over 90 radii.

Safety factor = 4.

Section: $2-12'' - \text{laced with } 2'' \times \frac{5}{16}''$ bars. Holes, $\frac{1}{16}''$; rivets, $\frac{3}{4}''$ diameter, or 2-12'' - and 2-14'' plates.

Section	ea in Sq. Inches	t, Lbs. n. Ft.	ıst	Un	suppor		Column eet	n Leng	gths
Section	Area in Inche	Weight,I per Lim.	Lea	30	32	34	36	38	40
	20.81 22.56 24.31 26.06 27.81 29.56 31.31	72.7 78.7 84.6 90.6 96.5 102.5 108.4	4.39 4.37 4.35 4.33 4.32 4.30 4.28		135.4 145.9 156.4 166.9	122.8 132.7 142.7 152.6 162.6 172.5 182.5	119.6 129.2 138.9 148.5 158.2 167.8 177.1	$ \begin{bmatrix} 125.7 \\ 135.0 \\ 144.4 \\ 153.7 \\ 163.1 \\ 172.5 $	113.1 122.1 131.2 140.3 149.3 158.4 167.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25. 20 26. 95 28. 70 30. 45 32. 20 33. 95 35. 70 37. 45	87.7 93.6 99.6 105.5 111.5 117.4 123.4 129.3	4.30 4.29 4.28 4.27 4.26 4.25 4.23 4.22	193. 2 203. 7 214. 2 224. 7	151. 2 161. 7 172. 2 182. 7 192. 6 202. 8 212. 9 223. 1	147.3 157.3 167.2 177.2 187.1 197.0 207.0 216.9	143.3 158.0 162.6 172.3 181.9 191.6 201.2 210.9	148.7 158.0 167.4 176.8 186.1 195.5 204.8	135.3 144.4 153.4 162.5 171.5 180.6 189.7 198.7
$2-12" \leftarrow 30$ $2-14 \times 58"$ $2-12" \leftarrow 30$ $2-14 \times 34"$ $2-12" \leftarrow 30$ $2-14 \times 78"$	31.64 35.14 38.64 42.16	109.6 121.5 133.4 145.3	4. 22 4. 21 4. 19 4. 18	189.8 210.8 231.8 252.8	18S. 5 209. 0 229. 5	183.3 203.2 223.2 243.1	178.2 197.5 216.9 236.2	173.1 191.8 210.5 229.2	168. 0 186. 1 204. 3 222. 4
$2-12'' - 35$ $2-14 \times \frac{3}{4}''$ $2-12'' - 35$ $2-14 \times \frac{7}{4}''$	38.08 41.58 45.08	$113.5 \\ 143.4 \\ 155.3$	4. 163 4. 153 4. 143	228.5 249.5 270.5	121.9 224.4 245.2 265.9 286.6	218.4 238.5 258.5	212.4 231.8 251.1	206.4 225.1 243.8	200.3 218.4 236.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44. 52 48. 02 51. 52 55. 02	153.4 165.3 177.2 189.1	4.103 4.103 4.103 4.093	$267.1 \\ 288.1 \\ 309.1 \\ 330.1$	261.8 282.3 302.8 323.3	254.4 274.3 294.2 314.1	247. 0 266. 3 285. 6 304. 9	239.5 258.3 277.0 295.7	232.1 250.2 268.4 286.5

SAFE LOADS IN TONS OF 2000 POUNDS 15" Channel Column. Square Ends

Allowable strains per square inch = 12,000 pounds for lengths of 90 radii

or less. $17,100-57 \frac{1}{r}$ for lengths over 90 radii.

Safety factor = 4.

Section: $2-15'' \rightarrow$ laced with $2\frac{1}{4}'' \times \frac{3}{8}''$ bars. Holes, $\frac{13}{16}''$; rivets, $\frac{3}{4}''$ diameter, or $2-15'' \rightarrow$ and 2-16'' plates.

Section	n Sq. hes	t,Lbs. n. Ft.	ıst	Un	suppo	rted C Fe	olumn eet	Leng	ths
Section	Area in S Inches	Weight, per Lin.	Least	35	37	39	41	43	45
Pounds Plates 2-15" — 33 laced 2-15" — 33 2-16×3/8" 2-15" — 33 2-16×1/6" 2-15" — 33 2-16×1/6" 2-15" — 33 2-16×1/6" 2-15" — 33 2-16×1/6" 2-15" — 33 2-16×1/6" 2-15" — 33 2-16×1/6" 2-15" — 33 2-16×1/6" 2-15" — 33 2-16×1/6" 2-15" — 33 2-16×1/2" 2-15" — 35 2-16×1/2" 2-15" — 35 2-16×1/2" 2-15" — 35 2-16×1/4" 2-15" — 35 2-16×1/4" 2-15" — 40 2-16×1/4" 2-15" — 40 2-16×1/4" 2-15" — 40 2-16×1/4" 2-15" — 40 2-16×1/4" 2-15" — 40 2-16×1/4" 2-15" — 40 2-16×1/4" 2-15" — 45 2-16×1/4" 2-15" — 45 2-16×1/4" 2-15" — 45 2-16×1/4" 2-15" — 45 2-16×1/4" 2-15" — 45 2-16×1/4" 2-15" — 50 2-16×1/4" 2-15" — 50 2-16×1/4" 2-15" — 50 2-16×1/4" 2-15" — 50 2-16×1/4" 2-15" — 50 2-16×1/4" 2-15" — 50 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4" 2-15" — 55 2-16×1/4"	19.80 31.80 33.80 35.80 37.80 41.80 43.80 45.80 45.80 46.58 40.58 44.58 44.58 44.58 44.58 52.58 23.52 55.52 63.52 71.52 26.48 59.40	76. 6 108. 8 115. 6 122. 4 136. 6 142. 8 149. 6 163. 2 176. 8 18 126. 8 112. 8 18 126. 8 112. 8 18 126. 8 140. 6 163. 2 163. 2 163. 2 163. 2 163. 2 163. 2 163. 2 163. 3 164. 8 165. 8 1	$\begin{array}{c} 85.08 \\ 5.07 \\ 45.05 \\ 5.07 \\ 45.05 \\ 5.07 \\ 45.05 \\ 65.07 \\ 64.98 \\ 44.96 \\ 44.96 \\ 44.96 \\ 45.07 \\ 66$	310.8 2 31 315.5 1 3315.5 3	202.8 214.8 226.8 238.8 250.8 262.8 274.8 286.8 310.8 195.5 243.5 291.5 313.8 237.1 285.1 300.6 377.2 423.8 158.9 254.5 347.4 5 347.4 5 347.4 5 347.4 6 347.	188.4 199.8 211.2 222.6 233.9 245.3 256.7 268.1 279.4 302.2 123.5 192.9 215.6 228.3 261.0 277.4 322.8 368.2 4141.1 232.0 277.4 322.8 368.2 415.4 429.8 439.8 445.9 445.9 445.9 445.9 445.9 445.9 446.0	184. 1 195. 2 206. 3 217. 4 228. 5 239. 5 250. 6 261. 7 272. 8 295. 0 121. 7 188. 5 210. 6 232. 7 248. 8 277. 0 299. 1 137. 8 242. 6 250. 6 261. 7 272. 8 270. 8 270. 8 315. 0 340. 5 340. 5 340. 5 340. 5 340. 6 340. 6	190. 6 201. 4 212. 2 223. 0 233. 8 244. 6 255. 4 266. 2 287. 7 119. 1 184. 1 205. 6 227. 1 248. 7 270. 2 291. 8 134. 7 270. 2 307. 3 350. 3 350. 3 350. 3 350. 3 365. 7 2408. 6 3423. 7 365. 7 284. 8 284. 8 285. 8	175.6 186.0 196.5 207.0 217.5 228.0 238.5 249.0 259.5 280.5 116.4 179.7 200.6 242.5 263.5 284.4 131.6 215.8 257.6 299.5 341.4 383.2 272.7 314.4 356.2 398.0 161.4 286.8 370.7 412.6 302.0 343.8 385.6

SAFE LOADS IN TONS OF 2000 POUNDS Single Beam Columns. Square Ends

Assumed strains per square inch Factor of safety=4
$$= \frac{50000}{1 + \frac{(12 \, l)^2}{36000 \, r^2}} \times \frac{1}{4}$$

DEPTH OF BEAM INCHES	Weight Per Foot Pounds	LEAST r	1	Unsupported Length of Beam in Inches *									
DEPTH	WEIGHT	7	4	6	8	10	12	14	16	18	20	22	
24 24 20 20 20 18 18 15 15 15 12 12 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3	$7\frac{1}{2}$	1.29 1.36 1.34 1.39 1.21 1.09 1.15 1.31 1.32 1.22 1.08 1.04 1.08 1.01 0.90 0.84 0.90 0.84 0.74 0.68 0.72 0.68 0.72 0.63 0.65 0.57 0.52 0.53	33 25 28 20 24 15 16 12 11 9	89 66 51 62 40 53 34 38 27 29 22 24 17 20 13 13 10 9 7	106 83 160 128 94 64 81 60 47 56 36 47 30 33 24 25 20 20 15 16 11 11 8 7 5	148 117 151 123 94 96 -77 149 120 87 58 74 55 42 49 32 41 26 28 21 17 17 13 12 9 6	135 110 140 114 86 87 70 138 111 80 53 66 50 37 43 28 35 23 24 18 14 11	124 102 129 105 78 63 126 102 72 47 58 44 33 37 25 30 20 21 15	94 117	89 63 62 50 105 85 59 37	93 78 98 81 57 95 77 53	84 71 89 74 86 70	

SAFE LOADS IN TONS OF 2000 POUNDS

For radius of gyration axis X-X using 12,000 pounds per square inch for lengths of 90 radii or less. Over 90 radii $17,100-57\frac{1}{r}$ = pounds per square inch.

Size of Angles Inches	Size of Web Plates Inches	Area of Column Square Inches	Weight per Foot of Column Pounds	Radius of Gyration Axis X-X Inches
$\begin{array}{c} 3 \times 2^{1} /_{2} \times \frac{1}{4} \\ 3 \times 2^{1} /_{2} \times \frac{5}{16} \\ 3 \times 2^{1} /_{2} \times \frac{5}{16} \\ 3 \times 2^{1} /_{2} \times \frac{7}{16} \\ 3 \times 2^{1} /_{2} \times \frac{7}{16} \\ 3 \times 2^{1} /_{2} \times \frac{1}{16} \\ 3 \times 2^{1} /_{2} \times \frac{9}{16} \\ 3 \times 2^{1} /_{2} \times \frac{5}{8} \end{array}$	$\begin{array}{c c} 6 \times \frac{1}{4} \\ 6 \times \frac{5}{16} \\ 6 \times \frac{3}{8} \\ 6 \times \frac{7}{16} \\ 6 \times \frac{1}{2} \\ 6 \times \frac{9}{16} \\ 6 \times \frac{5}{8} \end{array}$	6.78 8.40 9.97 11.51 13.00 14.50 15.95	23.1 28.6 33.9 39.1 44.2 49.3 54.2	1.24 1.27 1.30 1.33 1.36 1.39 1.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 8 \times \frac{5}{16} \\ 8 \times \frac{3}{8} \\ 8 \times \frac{7}{16} \\ 8 \times \frac{1}{2} \\ 8 \times \frac{9}{16} \\ 8 \times \frac{5}{8} \\ 8 \times \frac{11}{16} \\ 8 \times \frac{3}{44} \\ 8 \times \frac{13}{16} \end{array}$	10.86 12.96 15.02 17.00 19.02 20.96 22.86 24.76 26.62	36.9 44.1 51.07 57.8 64.7 71.3 77.7 84.2 90.5	1.67 1.70 1.73 1.76 1.79 1.82 1.86 1.89 1.92

FOR PLATE AND ANGLE COLUMNS Square Ends

Rivets, $\frac{3}{4}$ " diameter. Holes, $\frac{13}{16}$ " diameter. Short legs of angles riveted to web plates. Column weights do not include rivets.

Length in Feet													
9	10	12	14	16	18	20	22	24					
40.4 50.1 59.6 69.0	39.0 49.0 58.7 68.7 78.0 86.9	37.6 46.5 55.3 64.2 73.1 81.9	36.2 44.0 51.9 59.7 67.5 75.4	34.8 41.6 48.4 55.1 61.9 68.7	33.4 39.2 44.9 50.7 56.4 62.2								
• • • •	95.9	90.8	83.2	75.5	67.9		• • • • •						
		65.2 77.5 89.9 102.0 113.9 125.5 137.2	61.7 74.1 86.6 99.0 111.5 123.9 136.3 148.6 159.7	57.3 69.1 80.9 92.7 104.5 116.3 128.1 139.9 151.7	52.9 64.1 75.2 86.4 97.5 108.7 119.9 131.0 142.2	48.4 58.9 69.5 80.0 90.6 101.1 111.6 122.2 132.7	44.0 53.9 63.8 73.7 83.6 93.5 103.5 113.4 123.3	39.6 48.9 58.1 67.7 76.7 86.0 95.2 104.5 113.8					

SAFE LOADS IN TONS OF 2000 POUNDS

For radius of gyration axis X-X using 12,000 pounds per square inch for lengths of 90 radii or less. Over 90 radii $17,100-57\frac{1}{r}$ = pounds per square inch.

Size of Angles Inches	Size of Web Plates Inches	Area of Column Square Inches	Weight per Foot of Column Pounds	Radius of Gyration Axis X-X Inches
$\begin{array}{c} 5 \times 3 \times \frac{5}{16} \\ 5 \times 3 \times \frac{3}{8} \\ 5 \times 3 \times \frac{7}{16} \\ 5 \times 3 \times \frac{1}{2} \\ 5 \times 3 \times \frac{9}{16} \\ 5 \times 3 \times \frac{5}{8} \\ 5 \times 3 \times \frac{11}{16} \\ 5 \times 3 \times \frac{13}{16} \\ 5 \times 3 \times \frac{7}{8} \end{array}$	$\begin{array}{c} 10 \times \frac{5}{16} \\ 10 \times \frac{3}{8} \\ 10 \times \frac{7}{16} \\ 10 \times \frac{1}{2} \\ 10 \times \frac{9}{16} \\ 10 \times \frac{5}{8} \\ 10 \times \frac{11}{16} \\ 10 \times \frac{3}{4} \\ 10 \times \frac{13}{16} \\ 10 \times \frac{7}{8} \end{array}$	12.77 15.19 17.62 20.00 22.38 24.69 27.00 29.26 31.48 33.71	43.4 51.6 59.9 68.0 76.1 83.9 91.8 99.5 107.0 114.6	2.13 2.15 2.18 2.21 2.24 2.27 2.30 2.34 2.37 2.40
$\begin{array}{c} 6\times4\times\frac{3}{8} \\ 6\times4\times\frac{7}{16} \\ 6\times4\times\frac{1}{2} \\ 6\times4\times\frac{9}{16} \\ 6\times4\times\frac{5}{8} \\ 6\times4\times\frac{11}{16} \\ 6\times4\times\frac{3}{4} \\ 6\times4\times\frac{13}{16} \\ 6\times4\times\frac{15}{16} \\ 6\times4\times\frac{15}{16} \\ 6\times4\times1 \end{array}$	$\begin{array}{c} 12 \times \frac{3}{8} \\ 12 \times \frac{7}{16} \\ 12 \times \frac{1}{2} \\ 12 \times \frac{9}{16} \\ 12 \times \frac{5}{8} \\ 12 \times \frac{11}{16} \\ 12 \times \frac{3}{4} \\ 12 \times \frac{13}{16} \\ 12 \times \frac{7}{8} \\ 12 \times \frac{15}{16} \\ 12 \times 1 \end{array}$	18.94 22.01 25.00 27.99 30.94 33.89 36.76 39.63 42.46 45.25 48.00	64.4 74.8 85.0 95.2 105.2 115.2 125.0 134.7 144.4 153.9 163.2	2.51 2.54 2.57 2.60 2.63 2.66 2.69 2.72 2.75 2.78 2.81

FOR PLATE AND ANGLE COLUMNS Square Ends

Rivets, $\frac{3}{4}$ " diameter. Holes, $\frac{13}{16}$ " diameter. Short legs of angles riveted to web plates. Column weights do not include rivets.

Length in Feet

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	18	20	22	24	26	28	30	32	34
$ \begin{array}{c} \dots & 167.9 & 163.8 & 158.2 & 152.7 & 147.2 & 141.6 & 136.1 & 130.6 & 125.0 \\ \dots & 185.6 & 182.3 & 175.9 & 169.5 & 163.1 & 156.7 & 150.3 & 143.9 & 137.0 \\ \dots & 203.3 & 200.8 & 193.5 & 186.3 & 179.0 & 171.7 & 164.4 & 157.2 & 149.9 \\ \dots & & & 220.6 & 211.2 & 203.1 & 194.9 & 186.8 & 178.6 & 170.5 & 162.3 \\ \dots & & & 237.8 & 228.9 & 219.8 & 210.8 & 201.8 & 192.8 & 183.8 & 174.8 \\ \dots & & & & 254.8 & 246.5 & 226.6 & 226.7 & 216.8 & 207.0 & 197.1 & 187.2 \\ \dots & & & & & 271.5 & 264.2 & 253.4 & 242.6 & 231.9 & 221.1 & 210.4 & 199.6 \\ \dots & & & & & & 288.0 & 281.8 & 270.2 & 258.6 & 246.9 & 235.3 & 223.7 & 212.0 \\ \end{array} $	76.3 91.1 105.7 120.0 134.1 148.1 162.0 175.6 188.9 202.0	72.0 86.4 100.8 115.2 129.2 143.9 158.3 172.7 187.1 201.5 113.7 131.8 150.0 167.9 185.6 203.3	67.9 81.7 95.5 109.3 123.0 136.8 150.6 164.4 178.1 191.9 108.2 126.7 145.2 163.8 182.3 200.8 220.6 237.8 271.5	63.8 77.0 90.2 103.3 116.5 129.7 142.8 156.0 169.2 182.3 105.3 122.9 140.6 158.2 175.9 193.5 211.2 228.9 246.5 264.2	59.8 72.3 84.9 97.4 110.0 122.5 135.1 147.6 160.2 172.7 102.3 119.1 135.9 152.7 169.5 186.3 203.1 219.8 226.6 253.4	55.7 67.6 79.6 91.5 103.4 115.4 127.3 139.3 151.2 163.1 99.4 115.3 131.3 147.2 163.1 179.0 194.9 210.8 226.7 242.6	51.6 62.9 74.3 85.6 96.9 108.2 119.5 130.9 142.2 153.5 96.5 111.6 126.6 141.6 156.7 171.7 186.8 201.8 216.8 231.9	93.6 107.8 121.9 136.1 150.3 164.4 178.6 192.8 207.0 221.1	90.7 104.0 117.3 130.6 143.9 157.2 170.5 183.8 197.1 210.4	87.7 100.2 112.6 125.0 137.0 149.9 162.3 174.8 187.2 199.6

SAFE LOADS IN TONS OF 2000 POUNDS

For radius of gyration axis $\times - \times$ using 12,000 pounds per square inch for lengths of 90 radii or less. Over 90 radii 17,100 - 57 $\frac{1}{r}$ = pounds per square inch.

Size of Angles Inches	Size of Web Plates Inches	Size of Cover Plates Inches	Area of Column Square Inches	Weight per Foot of Column Pounds	Radius of Gyration Axis X-X Inches
$\begin{array}{c} 6\times 4\times \ \ 3/8 \\ 6\times 4\times \ \ 3/8 \\ 6\times 4\times \ \ \frac{7}{16} \\ 6\times 4\times \ \ \frac{7}{16} \\ 6\times 4\times \ \ \frac{1}{2} \\ 6\times 4\times \ \ \frac{1}{2} \\ 6\times 4\times \ \ \frac{9}{16} \\ 6\times 4\times \ \ \frac{9}{16} \\ 6\times 4\times \ \ \frac{5}{8} \\ 6\times 4\times \ \ \frac{11}{16} \\ 6\times 4\times \ \ \frac{11}{16} \\ 6\times 4\times \ \ \frac{3}{4} \\ 6\times 4\times \ \ \frac{3}{4} \\ 6\times 4\times \ \ \frac{7}{8} \\ 6\times 4\times 1 \\ 6\times 4\times 1 \\ \end{array}$ $\begin{array}{c} 6\times 4\times 1 \\ \end{array}$ Additional	$ \begin{array}{c} 12 \times \frac{3}{8} \\ 12 \times \frac{7}{16} \\ 12 \times \frac{7}{16} \\ 12 \times \frac{1}{2} \\ 12 \times \frac{1}{2} \\ 12 \times \frac{9}{16} \\ 12 \times \frac{9}{16} \\ 12 \times \frac{5}{8} \\ 12 \times \frac{5}{8} \\ 12 \times \frac{11}{16} \\ 12 \times \frac{11}{16} \\ 12 \times \frac{3}{4} \\ 12 \times \frac{7}{8} \\ 12 \times 1 \\ 12 \times 1 \end{array} $ for	$\begin{array}{c} 14 \times \frac{1}{4} \\ 14 \times 1 \\ 15 \times 10 \times 10 \\ 10 \times 10 \times 10 \times 10 \\ 10 \times 10 \times$	25.94 46.94 29.01 50.01 32.00 53.00 34.99 55.99 37.94 58.94 40.89 61.89 43.76 64.76 49.46 70.46 55.00 76.00	88.2 159.6 98.6 170.0 108.8 180.2 119.0 190.4 129.0 200.4 139.0 210.4 148.8 220.2 168.2 239.6 187.0 258.4	3.00 3.50 3.00 3.48 3.00 3.46 3.00 3.44 3.00 3.42 3.00 3.41 3.00 3.39 3.00 3.35 3.00 3.35

FOR PLATE AND ANGLE COLUMNS Square Ends

Rivets, $\frac{3}{4}$ " diameter. Holes, $\frac{13}{16}$ " diameter. Short legs of angles riveted to web plates. Column weights do not include rivets.

	Length in Feet												
22	24	26	28	30	32	34	36	38	40				
281.6 173.8 300.0 192.0 318.0 209.9 335.9 227.6 353.6 245.3 371.3 262.6 388.6 296.8	281.6 167.6 300.0 184.5 318.0 201.3 335.9 218.1 353.6 234.9 371.3 251.7 388.6 285.4 422.8 319.0	144.9 281.6 161.1 299.8 177.2 318.0 193.4 335.9 209.6 353.6 225.7 364.1 241.9 380.5 274.2 413.4 306.6 446.2	272.9 154.5 288.7 170.0 304.4 185.5 320.2 201.0 335.9 216.6 351.7 232.1 367.4 263.1 398.9 294.1	263.7 147.9 278.8 162.8 293.9 177.6 309.0 192.5 324.1 207.4 339.2 222.2 354.2 251.9 384.5 281.7	254.6 136.1 269.0 150.9 283.5 165.8 297.9 180.7 312.3 195.5 326.7 210.4 341.2 240.1 370.0 269.2	245.5 134.8 259.2 148.3 273.0 161.9 286.8 175.5 300.5 189.0 314.3 202.6 328.0 229.7 355.5 256.8	236.3 128.2 249.4 141.1 262.5 154.0 275.6 166.9 288.7 179.8 301.8 192.7 314.9 218.5 341.1 244.3	227.2 121.7 239.6 133.9 252.0 146.1 264.5 158.4 276.9 170.6 289.3 182.9 301.8 207.4 326.6 231.9	218.0 115.1 229.8 126.7 241.6 138.3 253.4 149.9 265.1 161.5 276.9 173.1 288.7 196.3 312.2 219.4				
10.5	10.5	11.5	11.3	11.0	10.7	10.4	10.2	9.9	9.6				

SAFE LOADS IN TONS OF 2000 POUNDS

For radius of gyration axis $\times - \times$ using 12,000 pounds per square inch for lengths of 90 radii or less. Over 90 radii $17,100-57\frac{1}{r}$ pounds per square inch.

Size of Angles Inches	Size of Web Plates Inches	Size of Cover Plates Inches	Area of Column Square Inches	Weight per Foot of Column Pounds	Radius of Gyration AxisX-X Inches
$\begin{array}{c} 6\times 6\times \frac{3}{8} \\ 6\times 6\times \frac{3}{8} \\ 6\times 6\times \frac{7}{16} \\ 6\times 6\times \frac{7}{16} \\ 6\times 6\times \frac{1}{2} \\ 6\times 6\times \frac{1}{2} \\ 6\times 6\times \frac{9}{16} \\ 6\times 6\times \frac{9}{16} \\ 6\times 6\times \frac{5}{8} \\ 6\times 6\times \frac{11}{16} \\ 6\times 6\times \frac{11}{16} \\ 6\times 6\times \frac{11}{3} \\ 6\times 6\times \frac{13}{16} \\ 6\times 6\times \frac{7}{8} \\ 6\times 6\times \frac{7}{8} \\ \end{array}$ Additional	$14 \times \frac{3}{8}$ $14 \times \frac{7}{16}$ $14 \times \frac{7}{16}$ $14 \times \frac{7}{16}$ $14 \times \frac{1}{2}$ $14 \times \frac{9}{16}$ $14 \times \frac{9}{16}$ $14 \times \frac{5}{8}$ $14 \times \frac{11}{16}$ $14 \times \frac{11}{16}$ $14 \times \frac{11}{16}$ $14 \times \frac{13}{16}$ $14 \times \frac{13}{16}$ $14 \times \frac{7}{8}$ $14 \times \frac{7}{8}$ $14 \times \frac{7}{8}$	$\begin{array}{c} 14 \times \frac{5}{16} \\ 14 \times \frac{3}{4} \\ \\ 14 \times$	31.44 43.69 35.12 47.37 38.75 51.00 42.39 54.64 45.94 58.19 49.50 61.75 53.01 65.26 56.49 68.74 59.96 72.21	106.9 148.5 119.4 161.1 131.8 173.4 144.1 185.8 156.2 197.8 168.3 209.9 180.2 221.9 192.1 233.0 203.9 245.5	2.89 3.25 2.85 3.20 2.82 3.16 2.80 3.12 2.79 3.08 2.79 3.06 2.79 3.06 2.79 3.06 2.79 3.06 2.79 3.06 2.79 3.06 2.79 3.06

FOR PLATE AND ANGLE COLUMNS Square Ends

Rivets, ¾" diameter.

Holes, $\frac{13}{16}$ " diameter.

Column weights do not include rivets.

Length	in	Feet
Trengui.	TIT	T. CC!

20	22	24	26	28	30	32	34	36	38	40
			172.2							
			254.0 190.5							
284.2	284.2	284.2	273.3	263.2	253.1	243.0	232.9	222.8	212.7	202.6
			209.1 292.5							
254.0	248.5	238.2	227.9	217.6	207.3	197.0	186.6	176.3	166.0	155.7
			311.5 246.5							
349.1	349.1	343.4	330.6	317.7	304.9	292.0	279.2	266.3	253.5	240.6
			265.3 349.4							
318.0	310.0	297.0	284.0	271.0	258.0	245.0	232.0	219.0	206.0	193.0
			368.6 302.9			- 1				
412.4	412.4	402.6	387.2	371.8	356.4	341.0	325.6	310.2	294.8	279.4
			322.2 406.4							
10.5	10.5	12.0			11.4				10.6	10.4
10.5	10.5	12.0	11.0	11.0	11.4	11.2	11.0	10.8	10.0	10.4

SAFE LOADS IN TONS OF 2000 POUNDS

For radius of gyration axis X-X using 12,000 pounds per square inch for lengths of 90 radii or less. Over 90 radii $17,100-57\frac{1}{r}$ = pounds per square inch.

Size of Angles Inches	Size of Web Plates Inches	Size of Cover Plates Inches	Area of Column Square Inches	Weight per Foot of Column Pounds	Radius of Gyration Axis X-X Inches
$\begin{array}{c} 6 \times 6 \times \frac{3}{8} \\ 6 \times 6 \times \frac{7}{16} \\ 6 \times 6 \times \frac{7}{16} \\ 6 \times 6 \times \frac{9}{16} \\ 6 \times 6 \times \frac{9}{16} \\ 6 \times 6 \times \frac{11}{16} \\ 6 \times 6 \times \frac{11}{16} \\ 6 \times 6 \times \frac{13}{16} \\ 6 \times 6 \times \frac{13}{16} \\ 6 \times 6 \times 1 \\ 6 \times 6$	$\begin{array}{c} 14 \times \begin{array}{c} 3 \\ 8 \\ 14 \times \begin{array}{c} 7 \\ 16 \\ 14 \times \begin{array}{c} 4 \\ 2 \\ 14 \times \begin{array}{c} 9 \\ 16 \\ 14 \times \begin{array}{c} 3 \\ 16 \\ 14 \times \begin{array}{c} 4 \\ 16 \\ 14 \times \begin{array}{c} 16 \\ 14 \times 1 \\ 14 \times$	14× 1/4 14× 3/8 14× 3/8 14× 3/4 14× 7/8 14× 1/8	22.69 26.37 30.00 33.64 37.19 40.75 44.26 47.74 51.21 54.65 58.00 65.00 68.50 72.00 75.50 79.00 82.50 86.00	77.15 89.66 102.00 114.38 126.45 138.55 150.48 162.32 174.11 185.81 197.20 221.00 232.90 244.80 256.70 268.60 280.50 292.40	2.29 2.32 2.35 2.38 2.41 2.44 2.47 2.50 2.53 2.56 2.59 2.78 2.86 2.93 2.99 3.04 3.09 3.14

FOR PLATE AND ANGLE COLUMNS Square Ends

Rivets, ¾" diameter. Holes, $\frac{13''}{16}$ diameter. Column weights do not include rivets.

Length in Feet

16	18	20	22	24	26	28	30	32	34	36	38	40
100	100	100	110	110	100	-00	-00	0.0		1		
136	133	126	119	113	106	99	92	86	79			
158	156	148	140	133	125	118	111	103	94			
180	178	170	161	153	145	137	129	119	108			
202	201	191	182	173	165	156	148	135	123			
223	223	213	202	193	184	175	166	152	138			
245	245	235	223	213	204	194	184	168	153			
266	266	256	244	233	223	213	203	185	167			
286	286	278	264	254	243	232	221	202	182			
307	307	300	285	274	262	251	240	218	197			
328	328	321	306	294	283	270	258	235	212			
348	348	343	327	314	301	289	276	251	226			,
390	390	390	380	364	348	332	316	300	284	268	252	236
411	411	411	405	388	372	355	339	323	306	290	273	257
432	432	432	429	413	397	379	362	345	328	311	295	278
453	453	453	453	437	420	402	385	368	350	333	316	299
474	474	474	474	461	444	426	308	390	373	355	337	320
495	495	495	495	486	467	449	431	413	395	377	359	340
516	516	516		510	491	473	454	436	417	399	380	361

	Holt hour-	Diameter of $C=3$
rs	H	8,2,8,8 8,2,8,8,
Bars	H	18 8 L L L L L L L L L L L L L L L L L L
of Z	Ü	222118 22316 16334
38 0	뇬	10,10,10,10,
knes	田	2000
hic	A	2010101 /2/2/2/2/ /2/2/2/2/
534" X Thickness	O	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
34"	m	20000 147274 167274 167274
te 5	V	11115 121/8 121/8
Bars and I Web Plate	Thick- ness of Metal	
Vel	1	/ <-1->}
N I	本一	V 0
put	+ 4	A O
IS	Y -	
Ba	K-8	.k-B-¾<-E
Z	H :	23.47 27.80
4 3′	H	10.80.80 /c1/8/4
ed of 4 3"	Ü	252 2134 1634 1634 1634 1634 1634 1634 1634 1
	<u> </u>	12/12/12/ 12/12/12/ 12/12/12/
Bar Column Form	户	202121
nu	D	2007 12/2/7 8/8/8
nnlc	C	Sylvadia Tologoda
Ü	B	3.7.8 3.3.7.8 1.6.7.8
	A	1216 1238 1238
7	ck- of tal	
,′9	This ness Med	74.0 E%
1	Bolt A-inch	Diameter of or Rivet = $\frac{1}{3}$

Allowable strains per square inch=12,000 pounds for lengths of 90 radii or under. 17,100—57½ for lengths over 90 radii. Safety factor=4 For Z Bar Columns with Square Ends SAFE LOADS IN TONS OF 2000 POUNDS.

				LENGTH	OF	COLUMN IN	FEET			
6" Z BAR COLUMN	12 and under	14	16	18	20	22	24	26	28	30
14" Metal = 31.7 Lbs. = 9.31 Sq. In. R Minimum = 1.88	55.9	55.7	52.3	48.8	45.4	42.0	38.6	35.2	31.7	28.3
$_{16}''$ Metal = 39.8 Lbs. = 11.7 Sq. In. R Minimum = 1.90	70.3	70.3	66.5	62.3	58.1	53.9	49.7	45.5	41.3	37.1
3%" Metal = 47.8 Lbs.= 14.1 Sq. In. R Minimum = 1.94	84.6	84.6	80.8	75.8	70.8	0.99	61.0	56.0	51.0	46.0
17, Metal = 52.1 Lbs.=15.3 Sq. In. R Minimum = 1.85	91.8	91.2	85.6	79.9	74.2	68.6	62.9	57.3	51.6	46.0
1/2" Metal = 59.9 Lbs.= 17.6 Sq. In. R Minimum = 1.90	105.7	105.7	99.9	93.6	87.2	80.9	74.6	68.2	61.9	55.5
$_{16}^{9}$ // Metal = 67.9 Lbs.= 20.0 Sq. In. R Minimum = 1.95	119.8	119.8	114.8	107.8	100.8	93.8	86.8	79.8	72.8	65.8
%" Metal = 76.0 Lbs.= 22.4 Sq. In. R Minimum = 2.00	134.4	134.4	130.2	122.6	114.9	107.3	99.6	91.9	84.3	76.6

SAFE LOADS IN TONS OF 2000 POUNDS Hollow Cylindrical Cast-Iron Columns

OUTSIDE DIAMETER INCHES	THICKNESS OF METAL		L	ENGTI	H OF (Colum	INS IN	v Fee	T		SECTIONAL AREA INCHES	LENGTH OF
Oursid	THIC	8	10	12	14	16	18	20	22	24	SECTION	WEIGHT PER OF LENGTH COLUMNS, PC
6 6 6 6 6 7 7 7 8 8 8 9 9 9 9 9 9 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1/2/4 7/8 1 1/8/4 1 1/4/2 1 1/4/2	163.5 185.7 206.6 128.0 156.4 183.3 208.7 232.7 141.2 172.8 203.0 258.9 154.3 189.2 222.6 254.4 284.8 167.4 205.5 242.1 277.2	95.9 116.5 135.8 153.8 109.4 133.3 155.9 177.1 196.9 122.9 150.1 175.9 200.4 223.4 136.3 166.8 195.9 223.6 249.9 149.6 183.4 215.8 246.7 276.2 162.9 200.0 235.7 269.8	120.8 89.8 109.1 127.3 144.1 103.5 126.1 147.5 167.5 186.3 117.2 143.1 167.7 191.0 213.0 130.7 160.0 187.9 214.5 239.7 144.3 176.9 208.1 157.8 157	134.1 97.3 118.6 138.6 157.5 175.1 111.0 135.7 159.0 181.1 201.9 124.7 179.3 204.7 138.5 169.7 199.7	77. 4 94. 1 109. 7 124. 2 91. 0 110. 9 128. 7 147. 3 163. 8 104. 7 127. 9 170. 7 190. 4 118. 5 145. 0 170. 3 194. 4 217. 3 132. 3 162. 2 190. 8 1244. 2 146. 0 179. 3 211. 2 241. 9	103 3 120.8 137.2 152.6 98.4 120.2 140.9 160.4 178.9 112.1 137.2 161.1 183.9 205.5 125.9 154.4 181.7 207.6 232.4 139.7 171.5 202.1 231.4	144.4 92.2 112.6 132.0 150.3 167.6 105.8 129.4 152.0 173.5 193.9 119.5 146.5 172.3 197.0 220.6 133.3 163.6 192.8 220.7	156.6 99.5 121.8 143.1 163.3 182.5 113.1 138.6 163.1 186.5 208.8 126.8 155.7 183.5 210.1	26.1 33.6 40.5 34.1 44.1 53.4 62.0 69.9 55.5 67.5 78.7 89.1 67.7 82.5 96.4 109.5 121.8 80.4 98.2 115.1 131.1 146.1 93.5 114.4 134.3 153.3 171.3 106.8 131.0 154.1 176.2 197.2 199.5	30.4 35.3 39.9 28.3 34.4 40.1 45.4 31.4 38.3 44.8 50.9 56.6 42.2 49.5 56.4 62.8 37.7 46.1 54.2 61.9 69.1 40.8 158.9 67.4 44.0 63.6 72.9	139.68 158.68 176.44

SAFE LOADS IN TONS OF 2000 POUNDS For Equal Leg Angle Struts

Assumed strain per square inch=12,500 pounds. Reduced by Gordon's formulæ.

Size of Angles in				LE	NGTH	IN F	EET			
Inches	6	8	10	12	14	16	18	20	22	24
8×8×1½ 8×8×½						74.33 34.64				
6×6×1 6×6× 3/8	62.15 24.41									
5×5×1 5×5× 3/8	48.60 19.49									
4×4× 7/8 4×4× 1/6	31.20 12.05									
$3\frac{1}{2}\times3\frac{1}{2}\times\frac{7}{8}$ $3\frac{1}{2}\times3\frac{1}{2}\times\frac{5}{16}$	25.90 10.03									
$3\times3\times\frac{11}{16}\dots$ $3\times3\times\frac{1}{4}\dots$	15.73 6.33	12.81 5.18								
$2\frac{1}{2} \times 2\frac{1}{2} \times \frac{9}{16}$ $2\frac{1}{2} \times 2\frac{1}{2} \times \frac{3}{16}$		7.25 2.73						-		
$2 \times 2 \times \frac{1}{2} \dots $ $2 \times 2 \times \frac{3}{16} \dots$	5.41 2.30									

ULTIMATE STRENGTH OF STEEL STRUTS

For different proportions of length in feet=1.
To least radius of gyration in inches=r.
Ultimate strength in pounds per square inch=
Column
Column

Square Bearing $\frac{50000}{1 + \frac{(12 \text{ l})^2}{36000 \text{ r}^2}}$

Pin and Square Bearing $\frac{50000}{1 + \frac{(12 \text{ l})^2}{24000 \text{ r}^2}}$

Column Pin Bearing 50000 (12 1)² 1+(18000r²)

To obtain safe { For quiescent loads, as in buildings, divide by 4. resistance { For moving loads, as in bridges, divide by 5.

1		ate Streng e Inch, Po		1	Ultim Squa	ate Streng	gth per ounds
r 	Square	Pin and Square	Pin	r	Square	Pin and Square	Pin
3.0	48262	47437	46637	11.6	32500	27662	24087
3.2	48037	47100	46212	11.8	32112	27250	23662
3.4	47787	46750	45762	12.0	31725	26825	23237
3.6	47537	46387	45300	12.2	31337	26412	22825
3.8	47275	46012	44825	12.4	30962	26012	22425
4.0	46987	45625	44325	12.6	30587	25612	22025
4.2	46700	45212	43812	12.8	30212	25225	21637
4.4	46400	44800	43300	13.0	29837	24825	21250
4.6	46087	44375	42762	13.2	29462	24450	20887
4.8	45775	43925	42212	13.5	28925	23887	20350
5.0	45450	43475	41662	13.8	28375	23337	19812
5.2	45112	43025	41112	14.0	28025	22975	19475
5.4	44775	42562	40550	14.2	27687	22625	19137
5.6	44425	42087	39975	14.5	27175	22112	18650
5.8	44075	41600	39400	14.8	26650	21612	18162
6.0	43706	41112	38825	15.0	26312	21275	17862
6.2	43337	40625	38237	15.2	25987	20950	17550
6.4	42962	40137	37662	15.5	25362	20487	17112
6.6	42575	39637	37087	15.8	25025	20012	16687
6.8	42187	39137	36500	16.0	24700	19712	16400
7.0	41800	38637	35925	16.2	24387	19425	16137
7.2	41412	38137	35337	16.5	23937	18987	15737
7.4	41012	37637	34775	16.8	23487	18562	15350
7.6	40612	37137	34200	17.0	23187	18287	15100
7.8	40212	36637	33637	17.2	22900	18012	14850
8.0	39812	36125	33075	17.5	22475	17625	14487
8.2	39400	35625	32512	17.8	22050	17237	14150
8.4	38987	35125	31962	18.0	21775	16987	13925
8.6	38587	34625	31412	18.2	21500	16737	13700
8.8	38175	34137	30875	18.5	21100	16375	13375
9.0	37762	33650	30337	18.8	20712	16025	13062
9.2	37350	33162	29812	19.0	20462	15787	12862
9.4	36937	32675	29287	19.2	20212	15562	12662
9.6	36537	32200	28785	19.5	19837	15237	12362
9.8	36125	31712	28275	19.8	19462	14912	12087
10.0	35712	31250	27775	20.0	19225	14700	11900
10.2	35312	30787	27287	20.2	19000	14500	11725
10.4	34900	30325	26800	20.5	18650	14200	11462
10.6	34500	29862	26325	20.8	18312	13900	11212
10.8	34087	29412	25862	21.0	18140	13710	11040
11.0	33687	28962	25412	21.2	17870	13520	10880
11.2	33300	28525	24950	21.5	17550	13250	10640
11.4	32900	28087	24512	21.8	17240	12980	10410

RADII OF GYRATION
For Two Equal Legged Angles, Placed Back to Back

Size	Thickness	Weight per Foot of		Radii of	Gyration	
Inches	Inches	Single Angle Pounds	r ₀	, r ₁	r ₂	r ₃
8 ×8	1½ 1½	26.4 56.9	$2.50 \\ 2.42$	3.32 3.42	3.49 3.60	3.58 3.69
6 ×6	3/8	14.9 37.4	1.88 1.80	$2.49 \\ 2.59$	2.67 2:77	2.76 2.87
5 ×5	3/8	12.3 30.6	1.56 1.48	2.09 2.19	$2.26 \\ 2.38$	$2.35 \\ 2.48$
4 ×4	$\begin{array}{c} \frac{1}{4} \\ \frac{13}{16} \end{array}$	6.6 19.9	1.25 1.18	1.65 1.75	1.84 1.94	1.93 2.04
3½×3½	$\begin{array}{c} 1/4\\ \frac{13}{16} \end{array}$	7.2 17.1	1.09 1.02	1.46 1.55	1.64 1.74	1.73 1.85
3 ×3 ·	1/4 5/8	4.9 11.5	0.93 0.88	1.25 1.32	1.43 1.51	1.53 1.62
2¾×2¾	1/4 1/2	4.5 8.5	0.84 0.80	1.15 1.18	1.34	1.44
2½×2½	$\begin{array}{c c} \frac{3}{16} \\ \frac{1}{2} \end{array}$	3.1 7.7	$0.78 \\ 0.74$	1.04 1.10	1.22 1.29	1.32 1.40
2½×2½	$\begin{array}{c} \frac{3}{16} \\ \frac{1}{2} \end{array}$	2.7 6.8	$\begin{array}{c} 0.70 \\ 0.65 \end{array}$	0.94 0.98	1.12 1.18	1.23 1.29
2 ×2	$\frac{\frac{3}{16}}{\frac{1}{2}}$	$\begin{array}{c} 2.5 \\ 6.0 \end{array}$	0.62 0.58	0.84 0.89	1.03	1.13 1.20

RADII OF GYRATION

For Two Unequal Legged Angles, Placed with Longer Legs Back to Back

Size	Thickness	Weight per Foot of		Radii of	Gyration	
Inches	Inches	Single Angle Pounds	r ₀	r ₁	r ₂	r ₃
6 ×4	3/8	12.3 30.6	1.93 1.85	1.50 1.60	1.67 1.79	1.76 1.89
6 ×3½	3/8	$ \begin{array}{c} 11.7 \\ 28.9 \end{array} $	$1.94 \\ 1.85$	1.26 1.37	$\frac{1.43}{1.56}$	1.53 1.67
5×4	3/8 7/8	11.0 24.2	$\frac{1.59}{1.52}$	1.58 1.66	1.75 1.85	1.85 1.95
5 ×3½	5 16 7/8	$\begin{array}{c} 8.7 \\ 22.7 \end{array}$	$\frac{1.61}{1.53}$	1.33 1.42	1.50 1.61	$1.59 \\ 1.71$
5 ×3	5 16 7/8	$\begin{array}{c} 8.2 \\ 21.3 \end{array}$	$\frac{1.61}{1.54}$	$\frac{1.09}{1.20}$	$\frac{1.26}{1.39}$	1.35 1.49
4 ×3½	5 16 13 16	7.7 18.5	$\frac{1.26}{1.19}$	$\frac{1.42}{1.50}$	1.60 1.69	$\frac{1.69}{1.79}$
4 ×3	5 16 13 16	$\begin{array}{c} 7.2 \\ 17.1 \end{array}$	$\frac{1.27}{1.21}$	$\frac{1.17}{1.25}$	1.35 1.45	$\begin{array}{c} 1.44 \\ 1.55 \end{array}$
3½×3	$\begin{array}{c} 1/4 \\ 1\overline{1} \\ \overline{16} \end{array}$	5.3 13.6	1.11 1.02	1.20 1.28	1.38 1.48	1.47 1.58
3½×2½	1/4 11/6	$\begin{array}{c} 4.9 \\ 12.5 \end{array}$	1.12 1.06	$0.96 \\ 1.03$	1.13 1.23	1.23 1.33
$3 \times 2\frac{1}{2}$	1/4 5/8	$\begin{array}{c} 4.5 \\ 10.5 \end{array}$	$0.95 \\ 0.90$	1.00 1.06	1.18 1.26	1.28 1.36
3½×2	$\frac{\frac{1}{4}}{\frac{9}{16}}$	4.3 9.0	1.04 1.00	$0.74 \\ 0.79$	$0.92 \\ 0.99$	1.02 1.10
3×2	$\frac{\frac{3}{16}}{\frac{1}{2}}$	$\begin{array}{c} 3.1 \\ 7.7 \end{array}$	$0.97 \\ 0.92$	$0.75 \\ 0.80$	$0.93 \\ 1.00$	1.03 1.10
2½×2	$\frac{3}{16}$ $1/2$	2.8 6.8	0.79 0.75	0.79 0.84	$0.97 \\ 1.04$	1.07 1.15

RADII OF GYRATION

For Two Unequal Legged Angles, Placed with Shorter Legs Back to Back

Size	Thickness	Weight per Foot of		Radii of	Gyration	
Inches	Inches	Single Angle Pounds	r _o	r ₁	r ₂	r ₃
6 ×4	3/8 1	12.3 30.6	1.17 1.09	2.74 2.85	2.92 3.04	3.01 3.14
6 ×3½	3/8 1	$ \begin{array}{c} 11.7 \\ 28.9 \end{array} $	$0.99 \\ 0.92$	2.81 2.93	3.00 3.13	3.10 3.23
5 ×4 .	3/8 7/8	$11.0 \\ 24.2$	$\frac{1.20}{1.14}$	$2.20 \\ 2.29$.	2.38 2.48	2.48 2.58
5 ×3½	5 16 7/8	$ \begin{array}{c c} 8.7 \\ 22.7 \end{array} $	$\frac{1.03}{0.96}$	$\frac{2.26}{2.36}$	$2.44 \\ 2.55$	$2.54 \\ 2.65$
5 ×3	5 16 7/8	8.2 21.3	$0.85 \\ 0.79$	2.33 2.43	$\frac{2.51}{2.64}$	$\frac{2.61}{2.74}$
4 ×3½	5 16 13 16	7.7 18.5	1.07 1.01	1.73 1.81	1.91 2.01	$2.00 \\ 2.11$
4 ×3	5 16 13 16	7.2 17.1	0.89 0.83	1.79 1.88	1.97 2.08	2.07 2.18
3½×3	$\begin{array}{c} 1/4 \\ 11 \\ \hline 16 \end{array}$	5.3 13.6	$0.91 \\ 0.86$	1.51 1.59	1.70 1.78	1.79 1.88
3½×2½	1/4 11 16	4.9 12.5	$0.74 \\ 0.67$	1.58 1.66	1.76 1.86	1.86 1.96
3 ×2½	1/4 5/8	4.5 10.5	$0.75 \\ 0.72$	1.31 1.38	$1.50 \\ 1.57$	1.59 1.67
3½×2	1/4 9 16	4.3 9.0	$0.57 \\ 0.53$	1.51 1.57	$1.70 \\ 1.77$	1.80 1.88
3 ×2	$\frac{3}{16}$ $\frac{1}{2}$	3.1 7.7	$0.59 \\ 0.55$	$1.37 \\ 1.42$	$\frac{1.55}{1.62}$	$1.65 \\ 1.73$
2½×2	$\begin{array}{c} \frac{3}{16} \\ \frac{1}{2} \end{array}$	2.8 6.8	$0.60 \\ 0.56$	1.10 1.16	1.28 1.35	1.39 1.46

CAST WASHERS

Diameter of bolt = d

$$A = 4d + \frac{1}{4}$$
-inch $C = d + \frac{1}{8}$ -inch
 $B = 2d + \frac{1}{4}$ -inch $D = d$

For sizes not given below.

STANDARD CAST WASHER

Diameter of Bolt=d-inch	A	В	С	D	Weight in Pounds
$\frac{1}{2}$ $\frac{5}{8}$ $\frac{3}{4}$ $\frac{7}{8}$ $\frac{1}{1}$ $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{2}{4}$ $\frac{2^{1}}{2}$ $\frac{2^{3}}{4}$ $\frac{3}{4}$	25/8 3 31/4 33/4 4 43/4 6 61/4 71/4 81/4 91/4 101/4 111/4 121/4	$1\frac{3}{4}$ $1\frac{7}{8}$ $2\frac{1}{8}$ $2\frac{1}{2}$ $2\frac{3}{4}$ $3\frac{1}{4}$ $3\frac{3}{4}$ $4\frac{1}{4}$ $4\frac{3}{4}$ $5\frac{1}{4}$ $5\frac{3}{4}$ $6\frac{1}{4}$	$\begin{array}{c} 9\\ 16\\ 11\\ 16\\ 116\\ 13\\ 16\\ 15\\ 16\\ 1\\ 16\\ 1\\ 16\\ 1\\ 1\\ 16\\ 1\\ 1\\ 16\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	5/8 3/4 7/8 7/8 11/8 11/8 11/2 13/4 2 21/4 21/2 23/4 3	1/2 3/4 11/4 11/2 21/2 3 53/4 6 91/2 171/4 20 271/4 36 46

WOODEN BEAMS

Table of safe quiescent loads in pounds for horizontal rectangular beams of white pine or spruce one inch broad, supported at both ends, the load being equally distributed over the span.

FEET				DEP	гн оғ	BEAN	I IN I	NCHES			
SPAN IN FEE	6	7	8	9	10	11	12	13	14	15	16
5	800	1090	1420	1800	2220	2690	3200	3750	4350	5000	5690
6	670	910	1180	1500	1850	2240	2670	3130	3630	4170	4740
7	570	780	1010	1290	1590	1920	2280	2680	3110	3570	4060
8	500	680							2720		3560
9	440	600							2420		3160
10	400	540	710						2180		2840
11	360	490	650	820	1010	1220	1450	1710	1980	2270	2590
12	330	450	590	750	930	1120	1330	1560	1810	2080	2370
13	310	420	550	690	850	1030	1230	1440	1680	1920	2190
. 14	290	390	510	640	790	960	1140	1340	1560	1790	2030
15	270	360	470	600	740	900	1070	1250	1450	1670	1900
16	250	340							1360		1780
17	230	320							1280		1670
18	220	300				1	890	1	1	1390	1580
19	210	290	380	470	590	710	840	990	1150	1320	1500
20	200	270		· ·		670	800	940	1090	1250	1420
21	190	260	1		530	640			1040	1190	1350
22	180	250			1	1		1			1290
23	170	240						1		1	1230
24	160	230	290	370	460	560	670	780	910	1040	1180
25	160	220	280	350	440	540	640	750	870	1000	1130
26	150	210					610	720	840	960	1090
27	150	200									•
28	140	190				1		670			1010
29	140	190						3	750	860	980
30	130	180	240	$\frac{1}{2}$ 300	370	450	530	630	730	830	950
		8	U.				1				

This table has been calculated for extreme fiber strain of 1000 pounds per square inch, being one-sixth the breaking strain, ordinary building timber of fair quality.

Oak and yellow pine will carry a load one-fourth greater.

When more accuracy is required, the weight of the beam itself must be deducted.

Care must be taken to let the beams rest for a sufficient distance on their supports to guard against crushing at the ends, especially in placing very heavy loads upon short but deep and strong beams.

SAFE LOADS IN TONS OF 2000 POUNDS Square Wooden Posts

Half seasoned white or common yellow pine

C. Shaler Smith's Formula. Safe load in pounds per square inch

$$= \frac{1250}{1 \times \left(\frac{1^2}{d^2} \times .004\right)}$$

l=Length of post in inches. d=Width of side in inches

Неібнт Геет				SIDE	of Squ Inch	JARE PO	ST		
	4	6	8	10	12	14	16	18	20
4 6 8 10	6.4 4.4 3.0 2.2	17.8 14.3 11.1 8.6	35.0 30.2 25.4 21.1	57.2 51.6 45.7 39.7	84.6 78.7 71.4 64.3	117.0 110.0 102.8 94.9	154.6 147.3 140.0 130.5	196.8 189.3 181.7 171.4	244. 2 237. 2 229. 0 218. 4
12 14 16 18 20	1.6 1.2 1.0 .8 .6	6.8 5.4 4.4 3.6 3.0	17.5 14.5 12.2 10.2 8.7	34.2 29.4 25.3 21.8 18.9	57.1 50.5 44.5 39.2 34.6	86.0 77.6 70.0 62.7 56.3	121.0 111.2 101.6 92.7 84.3	161.3 150.1 139.2 128.2 118.2	207.2 194.9 182.6 170.2 158.5
22 24 26 28 30	• • • •	2.6 2.2 1.9 1.6 1.5	7.5 6.5 5.6 5.0 4.4	16.5 14.5 12.8 11.3 10.1	30.7 27.2 24.3 21.8 19.6	51.0 45.6 41.4 37.2 33.9	76.7 69.7 63.3 57.7 52.9	108.6 100.0 91.8 84.6 77.8	147.3 136.6 126.8 117.6 108.9
32 34 36 38 40		1.3 1.1 1.0 .9	3.9 3.5 3.2 2.9 2.6	9.0 8.2 7.4 6.7 6.1	17.6 16.0 14.5 13.3 12.2	30.5 27.7 25.5 23.5 21.6	48. 4 44. 5 40. 9 37. 5 34. 7	71.7 66.4 61.3 56.8 52.6	101.1 93.8 87.4 81.2 75.6
42 44 46 48 50			2.4 2.2 2.0 1.8 1.7	5.6 5.1 4.7 4.4 4.2	11.2 10.3 9.5 8.8 8.2	19.9 18.5 17.1 16.0 14.8	32.2 30.0 27.7 25.8 24.1	49.0 45.6 42.6 39.8 37.2	70.8 66.1 61.9 58.0 54.3
52 54 56 58 60					7.6 7.1 6.6 6.2 5.9	14.0 13.2 12.3 11.5 10.6	22.7 21.3 19.9 18.8 17.6	34.7 32.8 30.8 28.8 27.4	51.0 48.2 45.4 42.8 40.3

Note.—Oak posts will carry loads 15 per cent greater than given above. Southern yellow pine will carry loads 40 per cent greater than given above. The loads given in table are for posts in permanent structures. For posts in temporary structures add 25 per cent to the above loads.

STANDARD DETAIL FOR ROOF TRUSSES

Load per square foot of roof (horizontal) = W

Distance center to center of trusses

= mNumber of panels in truss = nLength of span in feet = l Load on purlin = $P = \frac{W \times m \times l}{n}$

Load on truss = $W \times m \times l$

W is usually 30 to 40 lbs.

Notes.—Coefficients given in table on opposite page are for dead load on roof from purlins and for additional stress from concentrated loads, L, L_1 and L_2 , suspended from bottom chord as shown.

Distance from center to center of purlins should not exceed six feet.

Roof covering generally used, No. 20 corrugated steel.

ROOF TRUSSES

Table of Coefficients for Finding Stresses in Members of Roof Trusses of Any Span Note.—For loads corresponding to coefficients,

see opposite page.

To find stresses in pounds in roof truss members, multiply the coefficients sub. dead load with load on one truss (= span in feet X distance between the trusses in feet X weight per square foot = 1 X m X w).

Xw).

To find the maximum stresses from concentrated loads, multiply coefficients sub. L, L, or L, with corresponding actual suspended loads in pounds.

in pounds.

These stresses have to be added to those obtained from dead load to get the total stresses in roof truss members.

	ted	L2										i c	1.35 2.3	1.35	1.35	1.25	1.23	30	00.	00.	88	38	288
	Concentrated	L										7	1.910	0		1.775					88		1.45
- PO	Coo	H	1.91	1.78	203	1.45	1.91	1.91	73	00	00.	1.45	200	95	95	2.14			1.45	.54	8.8	325	333
*	no b	Load	1.010	. 938	232	1, 120	. 928	1.995	625	205	. 202	.417	1.178	1.085	1.038	1.094	. 200 200 200 200	116	.156	232	.156	469	313
	ted	L ₂		•		• •	•	•	• •	• •	•	• •	1. I.2	1.12	1.12	88	36	30	88	8	8.8	38	88
	Concentrated	L		•	• •		•	•	• •		•	• 1	1.04	1.54	1.54	1.38	1.00	700	88.	00.	88	1.25	1.25
1 1/4	CoI	L	1.54	1.38	383	1.25	1.54	1.54	.62	00.	00.	1.25	1.0x	76	92.	1.68	200	38	1.25	.56	88	939	.03
	no b	Pos	.838	.750	224	020.	.757	. 783	200	. 180	. 180	. 333	060	866	.810	.875		. 112	. 125	. 224	. 125	375	250
	ted	L ₂		•				•	• •	•	•			66.	66.	9 9 9	00.	80	00.	00.	88	88	90.0
0	Concentrated	L		•	•	• •	•	•	• •	•	•	1 99	1.00	1.33	1.33	1.15	1.10	8	00.	8.9	88	1.16	1.16
300	Cor	L	1.33	1.15	89	1.33	1.33	1.33	.57	00.	8	1.16	1.66	99.	99	1.44 o6	000	200	1.15	. 58	88	350	928
	bsa no b loo	Pog	.750	.650	.217	833	999.	. 556	. 433	.167	. 167	2888	812	.750	.687	. 758 650	433	108	. 108	.216	108	325	.00
	ted	Ţ.	• •	• •	•	• •	•		•	•		:5	16	.91	.91	76	76	8	00.	88	38	88	90.0
	Concentrated Loads	L_1			•	• •	•		•	•	•	. 10	1.15	1.15	1.15	000	545	8	00.	00.	38	1.09	1.09
1,3	Con	T	1.15	.06 40.	0.00	1.15	1.13	96°.	.54	00.	88	1.09	1.47	200	200	1.23 81	27	00.	1.09	09.	35	54	.00
	ead no ba	Los	.537	.563	208	750	900	.625	.375	.155	.155	788	718	.649	580	.055	375	.104	. 093	.208	104	.280	. 187
PITCH	Member	sen i i io		SUR Ab	2.4 2.5	AB	RC	АР Ар	<u> </u>		25	A K	BC	CĎ	DE AL	AD Pc	_	E < Bb	51 C		Dq	Ed	Ge Ee

LENGTH OF RIVETS FOR VARIANT GRIPS

TES	D1	AMET	ER IN	Inch	ES	TES	D_1	AMET	ER IN	Inch	ES
GRIP INCHES	1/2	5/8	3/4	7/8	1	GRIP INCHES	1/2	5/8	3/4	7/8	1
Z		Lengt	h in I	nches		Z		Leng	th in I	nches	
1/2 5/8 3/4 7/8	15/8 13/4 17/8 2	$ \begin{array}{c} 1\frac{7}{8} \\ 2 \\ 2\frac{1}{8} \\ 2\frac{1}{4} \end{array} $	2 2½8 2½4 2¾ 2¾8	$\begin{array}{c} 2\frac{1}{8} \\ 2\frac{1}{4} \\ 2\frac{3}{8} \\ 2\frac{1}{2} \end{array}$	$2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$	1/2/5/8/3/4 7/8	1 ¹ / ₄ 1 ³ / ₈ 1 ¹ / ₂ 1 ⁵ / ₈	$ \begin{array}{c} 13/8 \\ 11/2 \\ 15/8 \\ 13/4 \end{array} $	$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \\ 1\frac{7}{8} \end{array} $	$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$
1 1½ 1¼ 1¾ 13% 1½ 15% 134 17%	21/8 21/4 23/8 21/2 23/4 27/8 3 31/8	23/8 21/2 25/8 23/4 3 31/8 31/4 33/8	2 ¹ / ₂ 2 ⁵ / ₈ 2 ³ / ₄ 2 ⁷ / ₈ 3 ¹ / ₈ 3 ¹ / ₄ 3 ³ / ₈ 3 ¹ / ₂	25/8 23/4 27/8 3 31/4 33/8 31/2 35/8	23/4 27/8 3 31/8 33/8 31/2 35/8 33/4	1 1 ¹ / ₈ 1 ¹ / ₄ 1 ³ / ₈ 1 ¹ / ₂ 1 ⁵ / ₈ 1 ³ / ₄ 1 ⁷ / ₈	$ \begin{array}{c} 134 \\ 178 \\ 2 \\ 218 \\ 214 \\ 238 \\ 212 \\ 258 \end{array} $	17/8 2 21/8 21/4 23/8 21/2 25/8 23/4	17/8 2 21/8 21/4 21/2 25/8 23/4 27/8	2 21/8 21/4 23/8 21/2 25/8 23/4 27/8	2 2½8 2½4 2¾8 2½8 2½8 2½8 2¾4 2 ⁷ / ₈ 3
2 21/8 21/4 23/8 21/2 25/8 23/4 27/8	31/4 33/8 31/2 35/8 33/4 37/8 4 41/8	3½ 35/8 33/4 37/8 4 4½ 4½ 43/8	35/8 33/4 37/8 4 41/8 41/4 43/8 41/2	$ \begin{array}{c} 334 \\ 378 \\ 4 \\ 418 \\ 414 \\ 438 \\ 412 \\ 458 \end{array} $	37/8 4 41/3 41/4 43/8 41/2 45/8 43/4	2 2 ¹ / ₈ 2 ¹ / ₄ 2 ³ / ₈ 2 ¹ / ₂ 2 ⁵ / ₈ 2 ³ / ₄ 2 ⁷ / ₈	23/4 27/8 3 31/8 31/4 33/8 31/2 35/8	27/8 3 31/8 31/4 33/8 31/2 35/8 33/4	3 1/8 31/4 33/8 31/2 35/8 33/4 37/8	3 3 ¹ / ₈ 3 ¹ / ₄ 3 ³ / ₈ 3 ¹ / ₂ 3 ⁵ / ₈ 3 ³ / ₄ 3 ⁷ / ₈	31/8 31/4 33/8 31/2 35/8 33/4 37/8 4
3 3½ 3½ 3½ 3½ 3½ 35/3 33/4 37/8	4 ³ / ₈ 4 ¹ / ₂ 4 ⁵ / ₈ 4 ³ / ₄ 4 ⁷ / ₈ 5 5 ¹ / ₈ 5 ¹ / ₄	45/8 43/4 47/8 5 51/8 51/4 53/8 51/2	4 ³ / ₄ 4 ⁷ / ₈ 5 5 ¹ / ₈ 5 ¹ / ₄ 5 ³ / ₈ 5 ¹ / ₂ 5 ⁵ / ₈	47/8 5 51/8 51/4 53/8 51/2 55/8 53/4	5 51/8 51/4 53/8 51/2 55/8 55/8 57/8	3 1/8 31/8 31/4 33/8 31/2 35/8 33/4 37/8	37/8 4 41/8 41/4 43/8 41/2 45/8 43/4	37/8 4 41/4 43/8 41/2 45/8 43/4 47/8	4 4 ¹ / ₈ 4 ¹ / ₄ 4 ³ / ₈ 4 ¹ / ₂ 4 ⁵ / ₈ 4 ³ / ₄ 4 ⁷ / ₈	4½8 4¼4 4¾8 4½2 45/8 4¾4 47/8 5	4 ¹ / ₄ 4 ³ / ₈ 4 ¹ / ₂ 4 ⁵ / ₈ 4 ³ / ₄ 4 ⁷ / ₈ 5 5 ¹ / ₈
4 4½ 4½ 4¾ 4¾ 4½ 4½ 45/3 43/4 47/8	53/8 51/2 55/5 53/4 6 61/8 61/4 63/8	55/8 53/4 57/8 6 61/4 63/8 61/2 65/8	53/4 57/s 6 61/s 63/8 61/2 65/8 63/4	578 6 618 614 612 658 634 678	6 6 ¹ / ₈ 6 ¹ / ₄ 6 ³ / ₈ 6 ⁵ / ₈ 6 ³ / ₄ 6 ⁷ / ₈ 7	4 4 ¹ / ₈ 4 ¹ / ₄ 4 ³ / ₈ 4 ¹ / ₂ 4 ⁵ / ₈ 4 ³ / ₄ 4 ⁷ / ₈	47/8 5 51/8 51/4 	5 5½ 5½ 5½ 538 	5½ 5½ 5½ 5¾ 5½ 	5½8 5¼4 5¾8 5½2 55√8 5¾4 5 ⁷ /8 6	51/4 53/8 51/2 55/8 53/4 57/8 6 61/8
5 5½ 5¼ 5¼ 5¾	$\begin{array}{c} 6\frac{1}{2} \\ 6\frac{5}{8} \\ 6\frac{3}{4} \\ 6\frac{7}{8} \end{array}$	63.4 67.8 7 71.8	67/8 7 71/8 71/4	7 7½8 7¼ 7¾ 7¾	7½ 7½ 7¾ 7¾ 7½	5 5½ 5½ 5¼ 5¾ 53⁄s		• • •	• • •	6½ 6½ 6¼ 6¾ 6½	6½ 6¾ 6½ 6½ 65/8

CONVENTIONAL SIGNS FOR RIVETING

Maximum height of heads marked $a=\frac{1}{8}$, $b=\frac{1}{4}$, $c=\frac{3}{8}$. Sho	p Flel d
Two full heads — or	
Countersunk and chipped other side (or side not visible	
Countersunk and chipped this side (or side visible)	
Countersunk and chipped both sides	
Other side This (Not Visible) (Visi	
Countersunk but not chipped limit %"high	
Flattened head ¼ high and countersunk	
Flattened head % high and not countersunk	Y W

AS FOR QUIESCENT LOADS USED IN BUILDINGS SHEARING AND BEARING VALUE OF RIVETS

	r Inch 38 Inch 17 Inch 17 Inch 18 Inch			0			0	0 19690 0 20780
tre inch	13 Incl						17270	19300
per squ 0 lbs.)	34 Inch						15000 15940	16880 17810
0,000 lbs. X 20,00	11 Inch					12890	13750	15470 16330
Plate at 2 s of Plate	5% Inch				10160	10940 11720	12500 13280	14060 14840
esses of Thicknes	18 Inch				8440 9140	9840	11250	12660 13360
nt Thickn Rivet X	½ Inch	,		0889	7500	8750 9380	10000	11250 11880
Bearing Value for Different Thicknesses of Plate at 20,000 lbs. per square inch (= Diameter of Rivet \times Thickness of Plate \times 20,000 lbs.)	7 Inch		4920	5470 6020	6560	7660	8750	9840
Value for (= Dia)	38 Inch		3750 4220	4690	5630	6570 7030	7500	8440 8910
Bearing	re Inch	2730	3130 3520	3910	4690	5470 5860	6250	7030
	1/4 Inch	1880 2190	2500 2810	3130	3750 4060	4380	5000	5630 5940
Single Shear	lbs. per	1100	1960 2490	3070	4420 5190	0069	7850 8870	9940
Area	+	.1104	.1963	.3068	.5185	.6013	.7854	.9940
Diameter of Rivet in Ins.	Fraction Decimal	.375	.5625	.625	.75	.9375	1.0625	1.125 .9940 9940 3 1.1875 1.1075 11080
Dian Rivel	Frac-	1282	7000	<u>~</u> 199	% T 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	7000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1138

SHEARING AND BEARING VALUE OF RIVETS AS USED FOR MOVING LOADS IN BRIDGES, CRANEWAYS, ETC.

	9 Inch 58 Inch 11 Inch 34 Inch 13 Inch 78 Inch							14770
are inch.	13 Inch			-			12950	12660 13710 13360 14470
per squ 300 lbs.)	34 Inch						11250	12660
15,000 lbs te X 15,0	11 Inch				,	0296	10310	11600
Plate at	5% Inch				7620	8200 8790	9380	10550
Bearing Value for Different Thicknesses of Plate at 15,000 lbs. per square inch. (= Diameter of Rivet X Thickness of Plate X 15,000 lbs.)	Ing Inch				6330	7380 7910	8440 8960	9490 10020
nt Thickn Rivet X	% Inch To Inch 1/2 Inch			5160	5630	6560	7500	8440 8910
r Differe meter of	7 Inch		3690	4100	4920 5330	5740 6150	6560	7380
Value fo (= Dia			2810	3520 3870	4220	4920 5270	5620 5980	6330
Bearing	fe Inch	2050	2340 2640	2930 3220	3520	4100	4690 4980	5270 5570
	14 Inch	1410 1640	1880 2110	2340	2810	3280 3520	3750 3980	4220 4450
Single Shear at	per sq. inch ¼ Inch	828 1130	1470 1860	2300 2780	3310	4510 5180	5890 6650	7460
	Rivet	.1104	.1963	.3068	.4418	.6903	.7854	.9940
Jiam. of Rivet in Inches	Decimal	.4375	.5625	.625	.75	.875 .9375	$\frac{1}{1.0625}$	1.125 .9940 1.1875 1.1075
Diam.	Frac-	12 % 10 10 10 10 10 10 10 10 10 10 10 10 10 1	72.05	100	% c 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16	1111	110000

Standard specifications governing the chemical and physical properties of structural and special open-hearth plate and rivet steel, as adopted by the Association of American Steel Manufacturers.— Revised February 6, 1903.

STRUCTURAL STEEL

PROCESS OF MANUFACTURE

1. Steel may be made by either the open-hearth or Bessemer process.

TESTING AND INSPECTION

2. All tests and inspections shall be made at the place of manufacture prior to shipment.

TEST PIECES

3. The tensile strength, limit of elasticity and ductility shall be determined from a standard test piece cut from the finished material. The standard shape of the test piece for sheared plates shall be as shown by the following sketch:

On tests cut from other material the test piece may be either the same as for sheared plates or it may be planed or turned parallel throughout its entire length, and in all cases where possible two opposite sides of the test piece shall be the rolled surfaces. The elongation shall be measured on an original length of 8 inches, except as modified in section 12, paragraph c. Rivet rounds and small bars shall be tested of full size as rolled.

Two test pieces shall be taken from each melt or blow of finished material, one for tension and one for bending; but in case either test develops flaws, or the tensile test piece breaks outside of the middle third of its gauged length, it may be discarded and another test piece substituted therefor.

ANNEALED TEST PIECES

4. Material which is to be used without annealing or further treatment shall be tested in the condition in which it comes from the rolls. When material is to be annealed or otherwise treated before use, the specimen representing such material shall be similarly treated before testing.

MARKING

5. Every finished piece of steel shall be stamped with the blow or melt number, and steel for pins shall have the blow or melt number stamped on the ends. Rivet and lacing steel, and small pieces for pin plates and stiffeners, may be shipped in bundles securely wired together, with the blow or melt number on a metal tag attached.

FINISH

6. Finished bars shall be free from injurious seams, flaws or cracks, and have a workmanlike finish.

CHEMICAL PROPERTIES

- 7a. Steel for buildings, train sheds, highway bridges and similar structures, maximum phosphorus .10 per cent.
- 7b. Steel for railway bridges, maximum phosphorus .08 per cent.

PHYSICAL PROPERTIES

8. Structural steel shall be of three grades, Rivet, Railway Bridge and Medium.

RIVET STEEL

9. Ultimate strength, 48,000 to 58,000 pounds per square inch. Elastic limit, not less than one-half the ultimate strength. Percentage of elongation,

1,400,000

ultimate strength Bending test, 180 degrees flat on itself, without fracture on outside of bent portion.

STEEL FOR RAILWAY BRIDGES

10. Ultimate strength, 55,000 to 65,000 pounds per square inch. Elastic limit, not less than one-half the ultimate strength. Percentage of elongation,

1,400,000

ultimate strength Bending test, 180 degrees to a diameter equal to thickness of piece tested, without fracture on outside of bent portion.

MEDIUM STEEL

11. Ultimate strength, 60,000 to 70,000 pounds per square inch. Elastic limit, not less than one-half the ultimate strength. Percentage of elongation,

1,400,000

ultimate strength Bending test, 180 degrees to a diameter equal to thickness of piece tested, without fracture on outside of bent portion.

Modifications in Elongation for Thin and Thick Material

12. For material less than $\frac{5}{16}$ -inch and more than $\frac{3}{4}$ -inch in thickness, the following modifications shall be made in the

requirements for elongation:

- a. For each increase of ½-inch in thickness above ¾-inch, a deduction of 1 per cent. shall be made from the specified elongation, except that the minimum elongation shall be 20 per cent. for eye-bar material and 18 per cent. for other structural material.
- b. For each decrease of $\frac{1}{16}$ -inch in thickness below $\frac{5}{16}$ -inch, a deduction of $2\frac{1}{2}$ per cent. shall be made from the specified elongation.

- c. In rounds of $\frac{5}{8}$ -inch or less in diameter, the elongation shall be measured in a length equal to eight times the diameter of section tested.
- d. For pins made from any of the before-mentioned grades of steel, the required elongation shall be 5 per cent. less than that specified for each grade, as determined on a test piece, the center of which shall be 1 inch from the surface of the bar.

VARIATION IN WEIGHT

- 13. The variation in cross-section or weight of more than $2\frac{1}{2}$ per cent. from that specified will be sufficient cause for rejection except in the case of sheared plates, which will be covered by the following permissible variations:
- a. Plates $12\frac{1}{2}$ pounds per square foot or heavier, up to 100 inches wide, when ordered to weight, shall not average more than $2\frac{1}{2}$ per cent. variation above or $2\frac{1}{2}$ per cent. below the theoretical weight. When 100 inches wide and over, 5 per cent. above or 5 per cent. below the theoretical weight.
- b. Plates under $12\frac{1}{2}$ pounds per square foot, when ordered to weight, shall not average a greater variation than the following:

Up to 75 inches wide, $2\frac{1}{2}$ per cent. above or $2\frac{1}{2}$ per cent. below the theoretical weight. 75 inches wide up to 100 inches wide, 5 per cent. above or 3 per cent. below the theoretical weight. When 100 inches wide and over, 10 per cent. above or 3 per cent. below the theoretical weight.

c. For all plates ordered to gauge there will be permitted an average excess of weight over that corresponding to the dimensions on the order equal in amount to that specified in the following table: TABLE OF ALLOWANCES FOR OVERWEIGHT FOR RECTAN-GULAR PLATES WHEN ORDERING TO GAUGE

Plates will be considered up to gauge if measuring not over $\frac{1}{100}$ -inch less than the ordered gauge

PLATES 4-INCH AND OVER IN THICKNESS

THICKNESS		WIDTH OF PLATE								
OF PLATE INCH	Up to 75 Inches Per Cent	75 Inches to 100 Inches Per Cent	Over 100 to 115 Inches Per Cent	Over 115 Inches Per Cent						
$\frac{\frac{1}{4}}{\frac{5}{16}}$	10 8 7	14 12 10	18 16 13							
$ \begin{array}{c} 7 \\ 16 \\ 1/2 \\ 9 \\ 16 \end{array} $	6 5 41%	8 7 6½	10	13 12						
Over $\frac{16}{5/8}$	$\begin{array}{c} 4\\4\\31/2\end{array}$	$\begin{bmatrix} 6\\6\\5 \end{bmatrix}$	8 ¹ / ₂ 8 6 ¹ / ₂	10 9						

PLATES UNDER 4-INCH IN THICKNESS

THICKNESS	WIDTH OF PLATE							
of Plate Inch	Up to 50 inches Per Cent	50 Inches to 70 Inches Per Cent	Over 70 inches Per Cent					
$\frac{1}{8}$ up to $\frac{5}{32}$ $\frac{5}{32}$ up to $\frac{3}{16}$ $\frac{3}{16}$ up to $\frac{1}{4}$	$ \begin{array}{c} 10 \\ 81/2 \\ 7 \end{array} $	$ \begin{array}{c} 15 \\ 12\frac{1}{2} \\ 10 \end{array} $	20 17 15					

Note.—The weight of 1 cubic inch of rolled steel is assumed to be 0.2833 pound.

STRUCTURAL CAST-IRON

1. Except when chilled iron is specified, all castings shall be tough gray iron, free from injurious cold-shuts or blow-holes, true to pattern, and of a workmanlike finish. Sample pieces one inch square, cast from the same heat of metal in sand molds, shall be capable of sustaining on a clear span of 4 feet 8 inches a central load of 500 pounds when tested to the rough bar.

SPECIAL OPEN-HEARTH PLATE AND RIVET STEEL-

TESTING AND INSPECTION

1. All tests and inspections shall be made at the place of manufacture prior to shipment.

TEST PIECES

2. The tensile strength, limit of elasticity and ductility shall be determined from a standard test piece cut from the finished material. The standard shape of the test piece for sheared plates shall be as shown by the following sketch:

On tests cut from other material the test piece may be either the same as for sheared plates or it may be planed or turned parallel throughout its entire length, and in all cases where possible two opposite sides of the test piece shall be the rolled surfaces. The elongation shall be measured on an original length of 8 inches, except as modified in section 12, paragraph c. Rivet rounds and small bars shall be tested of full size as rolled. Four test pieces shall be taken from each melt of finished material, two for tension and two for bending; but in case either

ANNEALED TEST PIECES

another test piece substituted therefor.

test develops flaws, or the tensile test piece breaks outside of the middle third of its gauged length, it may be discarded and

3. Material which is to be used without annealing or further treatment shall be tested in the condition in which it comes from the rolls. When material is to be annealed or otherwise

treated before use, the specimen representing such material shall be similarly treated before testing.

MARKING

4. Every finished piece of steel shall be stamped with the melt number. Rivet steel may be shipped in bundles securely wired together, with the melt number on a metal tag attached.

FINISH

5. All plates shall be free from injurious surface defects and have a workmanlike finish.

CHEMICAL PROPERTIES

6a. Flange or Boiler Steel, maximum phosphorus .06 per cent., maximum sulphur .04 per cent.

6b. Extra Soft and Fire Box Steel, maximum phosphorus .04 per cent., maximum sulphur .04 per cent.

PHYSICAL PROPERTIES

7. Special Open-hearth Plate and Rivet Steel shall be of three grades, Extra Soft, Fire Box and Flange or Boiler Steel.

EXTRA SOFT STEEL

8. Ultimate strength, 45,000 to 55,000 pounds per square inch. Elastic limit, not less than one-half the ultimate strength. Elongation, 28 per cent. Cold and Quench Bends, 180 degrees flat on itself, without fracture on outside of bent portion.

FIRE BOX STEEL

9. Ultimate strength, 52,000 to 62,000 pounds per square inch. Elastic limit, not less than one-half the ultimate strength. Elongation, 26 per cent. Cold and Quench Bends, 180 degrees flat on itself, without fracture on outside of bent portion.

FLANGE OR BOILER STEEL

10. Ultimate strength, 55,000 to 65,000 pounds per square inch. Elastic limit, not less than one-half the ultimate strength.

Elongation, 25 per cent. Cold and Quench Bends, 180 degrees flat on itself, without fracture on outside of bent portion.

BOILER RIVET STEEL

11. Steel for boiler rivets shall be made of the extra soft grade specified in paragraph No. 8.

Modifications in Elongation for Thin and Thick Material

- 12. For material less than $\frac{5}{16}$ -inch and more than $\frac{3}{4}$ -inch in thickness, the following modifications shall be made in the requirements for elongation:
- a. For each increase of $\frac{1}{8}$ -inch in thickness above $\frac{3}{4}$ -inch, a deduction of 1 per cent. shall be made from the specified elongation.
- b. For each decrease of $\frac{1}{16}$ -inch in thickness below $\frac{5}{16}$ -inch, a deduction of $2\frac{1}{2}$ per cent. shall be made from the specified elongation.
- c. In rounds of $\frac{5}{8}$ -inch or less in diameter, the elongation shall be measured in a length equal to eight times the diameter of section tested.

VARIATION IN WEIGHT

- 13. The variation in cross-section or weight of more than $2\frac{1}{2}$ per cent. from that specified will be sufficient cause for rejection except in the case of sheared plates, which will be covered by the following permissible variations:
- a. Plates $12\frac{1}{2}$ pounds per square foot or heavier, up to 100 inches wide, when ordered to weight, shall not average more than $2\frac{1}{2}$ per cent. variation above or $2\frac{1}{2}$ per cent. below the theoretical weight. When 100 inches wide and over, 5 per cent. above or 5 per cent. below the theoretical weight.
- b. Plates under $12\frac{1}{2}$ pounds per square foot, when ordered to weight, shall not average a greater variation than the following:

Up to 75 inches wide, $2\frac{1}{2}$ per cent. above or $2\frac{1}{2}$ per cent. below the theoretical weight. 75 inches wide up to 100 inches

wide, 5 per cent. above or 3 per cent. below the theoretical weight. When 100 inches wide and over, 10 per cent. above or 3 per cent. below the theoretical weight.

c. For all plates ordered to gauge there will be permitted an average excess of weight over that corresponding to the dimensions on the order equal in amount to that specified in the following table:

TABLE OF ALLOWANCES FOR OVERWEIGHT FOR RECTAN-GULAR PLATES WHEN ORDERED TO GAUGE

Plates will be considered up to gauge if measuring not over $\frac{1}{100}$ -inch less than ordered gauge

PLATES 1/4-INCH AND OVER IN THICKNESS

(II)		WIDTH OF PLATE									
THICKNESS OF PLATES INCHES	Up to 75 Inches Per Cent	75 Inches to 100 Inches Per Cent	Over 100 Inches to 115 Inches Per Cent	Over 115 Inches Per Cent							
1/4 5/16 3/8 7/7 1/2 9/16 5/8 Over 5/8	$ \begin{array}{c c} 10 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4\frac{1}{2} \\ 4 \\ 3\frac{1}{2} \end{array} $	$ \begin{array}{c} 14 \\ 12 \\ 10 \\ 8 \\ 7 \\ 6 \\ 5 \end{array} $	18 16 13 10 9 8 ¹ / ₂ 8 6 ¹ / ₂	17 13 12 11 10 9							

PLATES UNDER 4-INCH IN THICKNESS

Т	WIDTH OF PLATE						
THICKNESS OF PLATE INCHES	Up to 50 Inches Per Cent	50 Inches to 70 Inches Per Cent	Over 70 Inches Per Cent				
$\frac{1}{8}$ up to $\frac{5}{32}$ up to $\frac{5}{32}$ up to $\frac{3}{16}$ up to $\frac{1}{4}$	10 8½ 7	$15 \\ 12\frac{1}{2} \\ 10$	20 17 15				

Note.—The weight of 1 cubic inch of rolled steel is assumed to be 0.2833 pound.

For thicknesses from $\frac{3}{16}$ " to 2" and widths from 1" to $12\frac{3}{4}$ "

NESS	Width in Inches										
THICKNESS	1	11/4	1½	13/4	2	21/4	2½	23/4	12		
$\frac{\frac{3}{16}}{\frac{1}{4}}$.797 1.06	.957 1.28	1.11 1.49			$1.59 \\ 2.12$		7.65 10.20		
$\frac{3}{8}$	1.28	1.33 1.59 1.86 2.12	1.59 1.92 2.23 2.55	1.86 2.23 2.60 2.98	2.55	2.87 3.35	3.19	$\frac{3.51}{4.09}$	12.75 15.30 17.85 20.40		
5/8 11 16	1.92 2.12 2.34 2.55	2.39 2.65 2.92 3.19	2.87 3.19 3.51 3.83	3.35 3.72 4.09 4.47	4.25 4.67	4.78	5.31	6.43	22.95 25.50 28.05 30.60		
$\frac{7}{8}$ $\frac{15}{16}$	2.76 2.98 3.19 3.40	3.45 3.72 3.99 4.25	4.14 4.47 4.78 5.10	4.84 5.20 5.58 5.95	5.95 6.38	$6.69 \\ 7.18$	7.97	8.18 8.77	33.15 35.70 38.25 40.80		
$\frac{1\frac{1}{8}}{1\frac{3}{16}}$	3.61 3.83 4.04 4.25	4.52 4.78 5.05 5.31	5.42 5.74 6.06 6.38	6.32 6.70 7.07 7.44	7.65 8.08	8.61 9.09	9.03 9.57 10.10 10.63	$10.52 \\ 11.11$	45.90 48.45		
$\frac{13}{8}$ $1\frac{7}{16}$	4.46 4.67 4.89 5.10	5.58 5.84 6.11 6.38	6.69 7.02 7.34 7.65	8.56	9.35	$10.52 \\ 11.00$	12.22	12.85 13.44	56.10 58.65		
15/8 1 \frac{11}{16}	5.52 5.74	6.64 6.90 7.17 7.44	7.97 8.29 8.61 8.93	$9.67 \\ 10.04$	10.63 11.05 11.47 11.90	$12.43 \\ 12.91$	13.81 14.34	15.19 15.78	66.30		
$\frac{17/8}{1\frac{15}{16}}$	6.38 6.59	7.70 7.97 8.24 8.50		11.15 11.53	12.33 12.75 13.18 13.60	14.34 14.83	15.94 16.47	17.53 18.12	76.50		

NES		Width in Inches										
THICKNESS INCHES	3	31/4	3½	33/4	4	41/4	4½	43/4	12			
$\frac{3}{16}$ $\frac{1}{4}$	1.91 2.55					2.71 3.61	2.87 3.83		7.65 10.20			
$\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$ $\frac{1}{2}$	3.19 3.83 4.46 5.10	4.15 4.83	$\begin{array}{ c c c } 4.47 \\ 5.20 \end{array}$		5.10 5.95	$5.42 \\ 6.32$		$6.06 \\ 7.07$	12.75 15.30 17.85 20.40			
9 16 5/8 11 16 3/4	5.74 6,38 7.02 7.65	6.91 7.60	7.44 8.18	7.97 8.76	$8.50 \\ 9.35$	9.03	$9.57 \\ 10.52$	10.10 11.11	28.05			
$\frac{13}{16}$ $\frac{7}{8}$ $\frac{15}{16}$	8.93	8.98 9.67 10.36 11.05	$10.41 \\ 11.16$	$11.16 \\ 11.95$	$11.90 \\ 12.75$	$12.65 \\ 13.55$	13.39 14.34	14.13 15.14	$35.70 \\ 38.25$			
$1\frac{1}{16}$ $1\frac{1}{8}$ $1\frac{3}{16}$ $1\frac{1}{4}$	$\begin{vmatrix} 11.48 \\ 12.12 \end{vmatrix}$	11.74 12.43 13.12 13.81	13.39 14.13	$14.34 \\ 15.14$	15.30 16.15	$16.26 \\ 17.16$	17.22 18.17	18.17 19.18	$\frac{45.90}{48.45}$			
$1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$ $1\frac{1}{2}$	$\begin{vmatrix} 14.03 \\ 14.66 \end{vmatrix}$	14.50 15.20 15.88 16.58	$16.36 \\ 17.10$	17.53 18.33	$18.70 \\ 19.55$	19.87 20.77	21.04 21.99	$22.21 \\ 23.22$	56.10 58.65			
15/8	16.58	17.27 17.96 18.65 19.34	19.34 20.08	20.72 21.51	22.10 22.95	23.48 24.38	$24.87 \\ 25.82$	26.25 27.26	66.30 68.85			
$ \begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array} $	18.49 19.13 19.77 20.40	20.03 20.72 21.41 22.10	21.57 22.31 23.06 23.80	23.11 23.91 24.70 25.50	24.65 25.50 26.35 27.20	26.19 27.10 28.00 28.90	27.73 28.69 29.64 30.60	29.27 30.28 31.29 32.30	73.95 76.50 79.05 81.60			

NESS	- Width in Inches								
THICKNESS INCHES	5	51/4	5½	53/4	6.	61/4	6½	63/4	12
$\frac{\frac{3}{16}}{\frac{1}{4}}$	$\begin{vmatrix} 3.19 \\ 4.25 \end{vmatrix}$		$\begin{vmatrix} 3.51 \\ 4.67 \end{vmatrix}$						7.65 10.20
$\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$ $\frac{1}{2}$	5.31 6.38 7.44 8.50	6.69		7.34 8.56	7.65 8.93	7.97 9.29		$\begin{array}{c} 8.61 \\ 10.04 \end{array}$	15.30 17.85
$\frac{9}{16}$ $\frac{5}{8}$ $\frac{11}{16}$ $\frac{3}{4}$	10.63 11.69	$11.16 \\ 12.27$	10.52 11.69 12.85 14.03	12.22 13.44	$12.75 \\ 14.03$	13.28 14.61	$ \begin{array}{c} 13.81 \\ 15.20 \end{array} $	14.34 15.78	$25.50 \\ 28.05$
$ \begin{array}{c} \frac{13}{16} \\ 7/8 \\ \frac{15}{16} \end{array} $	14.87 15.94	$15.62 \\ 16.74$	15.19 16.36 17.53 18.70	17.10 18.33	17.85 19.13	$\frac{18.60}{19.92}$	$ \begin{array}{r} 19.34 \\ 20.72 \end{array} $	20.08 21.51	35.70 38.25
$\frac{1\frac{1}{8}}{1\frac{3}{16}}$	$\begin{vmatrix} 19.13 \\ 20.19 \end{vmatrix}$	$\begin{vmatrix} 20.08 \\ 21.20 \end{vmatrix}$	19.87 21.04 22.21 23.38	$21.99 \\ 23.22$	$22.95 \\ 24.23$	$23.91 \\ 25.23$	$24.87 \\ 26.24$	$25.82 \\ 27.25$	45.90 48.45
$\frac{1\frac{3}{8}}{1\frac{7}{16}}$	23.38 24.44	$24.54 \\ 25.66$	24.54 25.71 26.88 28.05	26.88 28.10	$28.05 \\ 29.33$	29.22 30.55	$ \begin{array}{c} 30.39 \\ 31.77 \end{array} $	$\frac{31.56}{32.99}$	56.10 58.65
$1\frac{5}{8}$ $1\frac{11}{16}$	27.63 28.69	$\begin{vmatrix} 29.01 \\ 30.12 \end{vmatrix}$	29.22 30.39 31.55 32.73	$31.77 \\ 32.99$	$33.15 \\ 34.43$	34.53 35.86	$35.91 \\ 37.30$	$37.29 \\ 38.73$	66.30 68.85
$1\frac{7}{8}$ $1\frac{15}{16}$	31.87 32.94	$\begin{vmatrix} 33.47 \\ 34.59 \end{vmatrix}$	33.89 35.06 36.23 37.40	36.65 37.88	$38.25 \\ 39.53$	39.85 41.17	$ \begin{array}{c} 41.44 \\ 42.82 \end{array} $	43.03 44.46	76.50

NESS	WIDTH IN INCHES								
THICKNESS INCHES	7	71/4	7½	73/4	8	81/4	8½	83/4	12
$\frac{\frac{3}{16}}{\frac{1}{4}}$	4.46 5.95	4.62 6.16		4.94 6.58			5.42 7.22		7.65 10.20
$\frac{\frac{5}{16}}{\frac{3}{8}}$ 8 $\frac{7}{16}$ 1/2	8.93	7.70 9.25 10.78 12.32	$9.57 \\ 11.16$	$9.88 \\ 11.53$	$10.20 \\ 11.90$	$10.52 \\ 12.27$	10.84 12.64	11.16 13.02	15.30 17.85
$\frac{9}{16}$ $\frac{5}{8}$ $\frac{11}{16}$ $\frac{3}{4}$	$\begin{vmatrix} 14.87 \\ 16.36 \end{vmatrix}$	13.86 15.40 16.94 18.49	15.94 17.53	$16.47 \\ 18.12$	17.00 18.70	$17.53 \\ 19.28$	18.06 19.86	18.59 20.45	$25.50 \\ 28.05$
$1 \\ \frac{13}{16} \\ \frac{7}{8} \\ \frac{15}{16} \\ 1$	$\begin{vmatrix} 20.83 \\ 22.32 \end{vmatrix}$	20.03 21.57 23.11 24.65	$22.32 \\ 23.91$	$23.05 \\ 24.70$	$23.80 \\ 25.50$	$24.55 \\ 26.30$	$25.30 \\ 27.10$	26.04 27.89	35.70 38.25
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	$26.78 \\ 28.26$	26.19 27.73 29.27 30.81	$28.68 \\ 30.28$	$29.64 \\ 31.29$	$30.60 \\ 32.30$	$31.56 \\ 33.31$	$32.52 \\ 34.32$	33.47 35.33	45.90 48.45
$1\frac{\frac{5}{16}}{1\frac{3}{8}}$ $1\frac{7}{16}$ $1\frac{1}{2}$	$32.72 \\ 34.21$	32.35 33.89 35.44 36.98	35.06° 36.66°	36.23 37.88	$37.40 \\ 39.10$	$38.57 \\ 40.32$	$39.74 \\ 41.54$	$40.91 \\ 42.77$	56.10 58.65
15/8 1 1 1 1 1 1 1 1 1 1	38.67 40.16	38.51 40.05 41.59 43.14	41.44 43.03	42.82 44.47	44.20 45.90	45.58 47.33	46.96 48.76	48.34 50.20	66.30 68.85
$1\frac{7}{8}$ $1\frac{15}{16}$	$\frac{44.63}{46.12}$	44.68 46.22 47.76 49.30	47.82 49.41	49.40 51.05	$51.00 \\ 52.70$	52.60 54.35	54.20 56.00	55.79 57.64	76.50 79.05

NESS		WIDTH IN INCHES							
THICKNESS INCHES	9	91/4	91/2	93/4	10	101/4	10½	103/4	12
$\begin{array}{c} \frac{3}{16} \\ \frac{1}{4} \end{array}$							6.70 8.92		
$ \begin{array}{r} 5 \\ \hline{16} \\ 3/8 \\ 7 \\ \hline{16} \\ 1/2 \end{array} $	11.48 13.40	11.80 13.76	12.12 14.14	$12.44 \\ 14.51$	$12.75 \\ 14.88$	13.07 15.25	11.16 13.39 15.62 17.85	$13.71 \\ 15.99$	15.30 17.85
5/8 11 16	$19.13 \\ 21.04$	$\begin{array}{c} 19.65 \\ 21.62 \end{array}$	20.19 22.21	$20.72 \\ 22.79$	$21.25 \\ 23.38$	$21.78 \\ 23.96$	20.08 22.32 24.54 26.78	$22.85 \\ 25.13$	25.50 28.05
7/8	$26.78 \\ 28.69$	27.52 29.49	$28.26 \\ 30.28$	$\frac{29.01}{31.08}$	$29.75 \\ 31.88$	$30.50 \\ 32.67$	29.00 31.24 33.48 35.70	31.98 34.28	35.70 38.25
$1\frac{1}{8}$ $1\frac{3}{16}$	$34.43 \\ 36.34$	35.38 37.35	$\frac{36.34}{38.36}$	37.29 39.37	38.25 40.38	$39.21 \\ 41.39$	37.92 40.17 42.40 44.63	$\frac{41.12}{43.40}$	45.90 48.45
$\frac{13}{8}$ $1\frac{7}{16}$	42.08 44.00	43.25 45.22	$\frac{44.41}{46.44}$	45.58 47.66	$46.75 \\ 48.88$	$47.92 \\ 50.10$	46.86 49.08 51.32 53.55	$50.25 \\ 52.54$	56.10 58.65
$1\frac{5}{8}$ $1\frac{11}{16}$	$49.73 \\ 51.64$	$51.10 \\ 53.07$	$52.49 \\ 54.51$	53.87 55.94	55.25 57.38	56.63 58.81	55.78 58.02 60.24 62.48	$59.40 \\ 61.68$	66.30 68.85
$1\frac{7}{8}$	57.38 59.29	$58.97 \\ 60.94$	$60.56 \\ 62.58$	$62.16 \\ 64.23$	$63.75 \\ 65.88$	$65.35 \\ 67.52$	64.70 66.94 69.18 71.40	68.53 70.83	76.50 79.05

NESS		WIDTH IN INCHES						
THICKNESS INCHES	11	111/4	11½	113/4	12	121/4	12½	123/4
$\frac{3}{16}$	$\begin{vmatrix} 7.02 \\ 9.34 \end{vmatrix}$	7.17	7.32 9.78	7.49 10.00	$7.65 \\ 10.20$	7.82 10.42	7.98 10.63	8.13 10.84
$\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$ $\frac{1}{2}$	14.03 16.36	11.95 14.35 16.74 19.13	14.68 17.12	14.99 17.49	15.30 17.85	15.62 18.23	15.94 18.60	16.26 18.97
9 16 5/8 11 16 3/4	$\begin{vmatrix} 23.38 \\ 25.70 \end{vmatrix}$	21.51 23.91 26.30 28.68	$24.44 \\ 26.88$	24.97 27.47	$25.50 \\ 28.05$	26.03 28.64	$26.56 \\ 29.22$	27.09 29.80
$\frac{13}{16}$ $\frac{15}{16}$ 1	32.72 35.06	31.08 33.47 35.86 38.25	$\frac{34.21}{36.66}$	34.95 37.46	$35.70 \\ 38.25$	$36.44 \\ 39.05$	37.19 39.84	37.93 40.64
	42.08 44.42	40.64 43.04 45.42 47.82	$\frac{44.00}{46.44}$	$\frac{44.94}{47.45}$	45.90 48.45	46.86 49.46	47.82 50.46	48.77 51.48
$\frac{1\frac{3}{8}}{1\frac{7}{16}}$	51.42 53.76	50.20 52.59 54.99 57.37	$53.76 \\ 56.21$	54.93 57.43	$\frac{56.10}{58.65}$	57.27 59.87	$58.44 \\ 61.10$	59.60 62.32
15/8 1 	$60.78 \\ 63.10$	59.76 62.16 64.55 66.93	$63.54 \\ 65.98$	$64.92 \ 67.42$	$66.30 \ 68.85$	$67.68 \\ 70.29$	69.06 71.72	70.44 73.15
$\frac{17/8}{1\frac{15}{16}}$	70.12 72.46	69.33 71.72 74.11 76.50	73.31 75.76	74.90° 77.41°	76.50 3 79.05 8	78.09°	$79.698 \\ 82.34$	00.00

WEIGHTS AND AREAS

Square and Round Steel, and also Circumference of Round Bars

Thickness or	Weight of	Weight of	Area of	Area of	Circumference
Diameter	Square Bar	Round Bar	Square Bar	Round Bar	of Round Bar
Inches	1 Foot Long	1 Foot Long	Square Inches	Square Inches	Inches
$\frac{3}{16}$.120	.094	.0352	.0276	.5890
$\frac{1}{4}$ $\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$.213	.167	.0625	.0491	.7854
	.332	.261	.0977	.0767	.9817
	.478	.375	.1406	.1104	1.1781
	.651	.511	.1914	.1503	1.3744
$\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{8}$ $\frac{11}{16}$.851	.668	.2500	.1963	1.5708
	1.076	.845	.3164	.2485	1.7671
	1.329	1.044	.3906	.3068	1.9635
	1.608	1.263	.4727	.3712	2.1598
$ \begin{array}{r} 3/4 \\ \hline 13 \\ \hline 16 \\ 7/8 \\ \hline 15 \\ \hline 16 \\ \end{array} $	1.914 2.246 2.605 2.990	1.503 1.764 2.046 2.348	.5625 .6602 .7656 .8789	.4418 .5185 .6013 .6903	$\begin{array}{c} 2.3562 \\ 2.5525 \\ 2.7489 \\ 2.9452 \end{array}$
$ \begin{array}{c} 1 \\ \frac{1}{16} \\ \frac{1}{8} \\ \frac{3}{16} \end{array} $	3.402	2.672	1.0000	.7854	3.1416
	3.841	3.017	1.1289	.8866	3.3379
	4.306	3.382	1.2656	.9940	3.5343
	4.798	3.768	1.4102	1.1075	3.7306
$\frac{1}{4}$ $\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$	5.316	4.175	1.5625	1.2272	3.9270
	5.861	4.603	1.7227	1.3530	4.1233
	6.432	5.052	1.8906	1.4849	4.3197
	7.030	5.521	2.0664	1.6230	4.5160
$\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{8}$ $\frac{11}{16}$	7.655 8.306 8.984 9.688	$\begin{array}{c} 6.012 \\ 6.524 \\ 7.056 \\ 7.609 \end{array}$	2.2500 2.4414 2.6406 2.8477	1.7671 1.9175 2.0739 2.2365	4.7124 4.9087 5.1051 5.3014
$ \frac{3}{4} $ $ \frac{13}{16} $ $ \frac{7}{8} $ $ \frac{15}{16} $	10.419	8.183	3.0625	2.4053	5.4978
	11.177	8.778	3.2852	2.5802	5.6941
	11.961	9.394	3.5156	2.7612	5.8905
	12.772	10.031	3.7539	2.9483	6.0868

In the above table one cubic foot is assumed to weigh 490 pounds.

WEIGHTS AND AREAS Square and Round Steel, and also Circumference of Round Bars

Thickness or	Weight of	Weight of	Area of	Area of	Circumference
Diameter	Square Bar	Round Bar	Square Bar	Round Bar	of Round Bar
Inches	1 Foot Long	1 Foot Long	Square Inches	Square Inches	Inches
$ \begin{array}{c} \frac{1}{16} \\ \frac{1}{8} \\ \frac{3}{16} \end{array} $	13.61	10.69	4.0000	3.1416	6.2832
	14.47	11.36	4.2539	3.3410	6.4795
	15.36	12.06	4.5156	3.5466	6.6759
	16.28	12.79	4.7852	3.7583	6.8722
$\frac{1}{4}$ $\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$	17.22	13.52	5.0625	3.9761	7.0686
	18.19	14.29	5.3477	4.2000	7.2649
	19.19	15.07	5.6406	4.4301	7.4613
	20.21	15.87	5.9414	4.6664	7.6576
$\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{8}$ $\frac{11}{16}$	21.26	16.70	6.2500	4.9087	7.8540
	22.34	17.55	6.5664	5.1572	8.0503
	23.44	18.41	6.8906	5.4119	8.2467
	24.57	19.30	7.2227	5.6727	8.4430
$\frac{3}{4}$ $\frac{13}{16}$ $\frac{7}{8}$ $\frac{15}{16}$	$25.73 \\ 26.91 \\ 28.12 \\ 29.36$	20.21 21.14 22.09 23.06	7.5625 7.9102 8.2656 8.6289	5.9396 6.2126 6.4918 6.7771	8.6394 8.8357 9.0321 9.2284
$\begin{array}{c} 3 \\ \frac{1}{16} \\ 1/8 \\ \frac{3}{16} \end{array}$	30.62 31.91 33.23 34.57	$\begin{array}{c} 24.05 \\ 25.06 \\ 26.10 \\ 27.15 \end{array}$	9.0000 9.3789 9.7656 10.160	7.0686 7.3662 7.6699 7.9798	9.4248 9.6211 9.8175 10.014
$\frac{1}{4}$ $\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$	35.94	28.23	10.563	8.2958	10.210
	37.33	29.32	10.973	8.6179	10.407
	38.75	30.43	11.391	8.9462	10.603
	40.20	31.57	11.816	9.2806	10.799
$\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{8}$ $\frac{11}{16}$	41.68	32.74	12.250	9.6211	10.996
	43.17	33.91	12.691	9.9678	11.192
	44.71	35.12	13.141	10.321	11.388
	46.26	36.33	13.598	10.680	11.585
$ \begin{array}{r} 3/4 \\ 13 \\ 16 \\ 7/8 \\ \underline{15} \\ 16 \end{array} $	47.84	37.57	14.063	11.045	11.781
	49.45	38.84	14.535	11.416	11.977
	51.09	40.13	15.016	11.793	12.174
	52.75	41.43	15.504	12.177	12.370

In the above table one cubic foot is assumed to weigh 490 pounds.

WEIGHTS AND AREAS
Square and Round Steel, and also Circumference of Round Bars

Thickness or Diameter Inches	Weight of	Weight of	Area of	Area of	Circumference
	Square Bar	Round Bar	Square Bar	Round Bar	of Round Bar
	1 Foot Long	1 Foot Long	Square Inches	Square Inches	Inches
4	54.45	42.77	16.000	12.566	12.566
1/8	57.90	45.47	17.016	13.364	12.959
1/4	61.47	48.28	18.063	14.186	13.352
3/8	65.13	51.15	19.141	15.033	13.744
1/2	69.81	54.83	$20.250 \\ 21.391 \\ 22.563 \\ 23.766$	15.904	14.137
5/8	72.79	57.17		16.800	14.530
3/4	76.78	60.30		17.721	14.923
7/8	80.87	63.52		18.665	15.315
5	85.08	66.82	25.000	19.635	15.708
1/8	89.38	70.20	26.266	20.629	16.101
1/4	93.80	73.67	27.563	21.648	16.493
3/8	98.31	77.21	28.891	22.691	16.886
1/2	102.94	80.85	30.250	23.758	17.279
5/8	107.67	84.56	31.641	24.850	17.671
3/4	112.52	88.37	33.063	25.967	18.064
7/8	117.45	92.25	34.516	27.109	18.457
6	122.51	96.22	36.000	28.274	18.850
1/8	127.66	100.26	37.516	29.465	19.242
1/4	132.94	104.41	39.063	30.680	19.635
3/8	138.30	108.62	40.641	31.919	20.028
1/2	143.78	112.92	42.250	33.183	20.420
5/8	149.35	117.30	43.891	34.472	20.813
3/4	155.05	121.78	45.563	35.785	21.206
7/8	160.84	125.32	47.266	37.122	21.598
7	166.75	130.97	49.000	38.485	21.991
1/8	172.75	135.68	50.766	39.871	22.384
1/4	178.87	140.48	52.563	41.282	22.777
3/8	185.08	145.36	54.391	42.718	23.169
1/2	191.42	150.34	56.250	44.179	23.562
5/8	197.85	155.39	58.141	45.664	23.955
3/4	204.39	160.53	60.063	47.173	24.347
7/8	211.03	165.74	62.016	48.707	24.740

In the above table one cubic foot is assumed to weigh 490 pounds.

WEIGHTS AND AREAS Square and Round Steel, and also Circumference of Round Bars

Thickness or	Weight of	Weight of	Area of	Area of	Circumference
Diameter	Square Bar	Round Bar	Square Bar	Round Bar	of Round Bar
Inches	1 Foot Long	1 Foot Long	Square Inches	Square Inches	Inches
8	217.78	171.04	64.000	50.265	25.133
1/8	224.64	176.43	66.016	51.849	25.525
1/4	231.61	181.91	68.063	53.456	25.918
3/8	238.68	187.46	70.141	55.088	26.311
1/2	245.86	193.10	72.250	56.745	26.704
5/8	253.14	198.82	74.391	58.426	27.096
3/4	260.54	204.63	76.593	60.132	27.489
7/8	268.03	210.51	78.766	61.862	27.882
9	275.64	216.49	81.000	63.617	28.274
1/8	283.34	222.54	83.266	65.397	28.667
1/4	291.16	228.68	85.563	67.201	29.060
3/8	299.08	234.90	87.891	69.029	29.452
1/2	307.11	241.20	90.250	70.882	29.845
5/8	315.24	247.59	92.641	72.760	30.238
3/4	323.49	254.07	95.063	74.662	30.631
7/8	331.83	260.62	97.516	76.589	31.023
10	340.29	267.16	100.00	78.540	31.416
1/8	348.85	273.99	102.52	80.516	31.809
1/4	357.52	280.80	105.06	82.516	32.201
3/8	366.29	287.68	107.64	84.541	32.594
1/2	375.17	294.66	110.25	86.590	32.987
5/8	384.15	301.71	112.89	88.664	33.379
3/4	393.25	308.86	115.56	90.763	33.772
7/8	402.44	316.08	118.27	92.886	34.165
11	411.75	323.39	121.00	95.033	34.558
1/8	421.16	330.78	123.77	97.205	34.950
1/4	430.68	338.26	126.56	99.402	35.343
3/8	440.30	345.81	129.39	101.62	35.739
1/2	450.03	353.45	132.25	103.87	36.128
5/8	459.87	361.18	135.14	106.14	36.521
3/4	469.81	368.99	138.06	108.43	36.914
7/8	479.86	376.88	141.02	110.75	37.306

In the above table one cubic foot is assumed to weigh 490 pounds.

AVERAGE WEIGHT PER 100 Round Head Rivets

Length				DIAN	IETER			
Inches	3-8	1-2	5-8	3-4	7-8	I	I I-8	I I-4
$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{array} $	5.5 6.3 7.0 7.9	12.9 14.2 15.6 16.9		29.3 32.4 35.6 38.7	44.0 48.2 52.4 56.7	$72.1 \\ 77.7$	93.3 100.4 107.1 114.2	135.7 144.8
2½ 2½ 2¾ 34		18.4 19.8 21.1 22.5	30.6 32.8 35.0 37.1	41.8 45.0 48.0 51.2	64.3	100.0	121.4 128.5 135.7 142.8	$170.3 \\ 179.5$
$ \begin{array}{r} 3\frac{1}{4} \\ 3\frac{1}{2} \\ 3\frac{3}{4} \\ 4 \end{array} $	12.5	$ \begin{array}{c} 24.0 \\ 25.3 \\ 26.7 \\ 28.1 \end{array} $	39.4 41.5 43.7 45.9	54.4 57.5 60.6 63.8	82.3 86.5	111.2 116.3 122.4 127.5	$157.1 \\ 164.2$	$205.0 \\ 214.2$
$ \begin{array}{c} 4\frac{1}{4} \\ 4\frac{1}{2} \\ 4\frac{3}{4} \\ 5 \end{array} $	14.9 15.7 16.5 17.2	30.9	48.0 50.2 52.4 54.6	66.9 70.0 73.1 76.3	99.3	138.7 144.8		$\begin{vmatrix} 240.7 \\ 248.9 \end{vmatrix}$
$ 5\frac{1}{4} $ $ 5\frac{1}{2} $ $ 5\frac{3}{4} $ $ 6 $	18.1 18.8 19.6 20.4	35.1 36.4 37.8 39.3	56.7 58.9 61.1 63.2	82.5 85.7	112.2 116.3 120.4 124.4	$161.2 \\ 166.3$	$\begin{bmatrix} 213.2 \\ 220.3 \end{bmatrix}$	266.2 275.4 283.6 292.7
$ \begin{array}{c} 61/2 \\ 7 \\ 71/2 \\ 8 \end{array} $	21.9 23.5 25.1 26.6	47.5	71.9 76.3	95.1 101.3 108.1 114.2	$141.8 \\ 149.9$	$\begin{vmatrix} 194.8 \\ 206.0 \end{vmatrix}$	$\begin{vmatrix} 255.0 \\ 269.3 \end{vmatrix}$	$\begin{vmatrix} 327.4 \\ 344.8 \end{vmatrix}$
$ \begin{array}{c} 8^{1/2} \\ 9 \\ 9^{1/2} \\ 10 \end{array} $	28.2 29.8 31.3 32.8	55.9 58.8	89.4 93.6	120.3 126.5 132.6 138.7	$176.5 \\ 184.6$	$\begin{vmatrix} 238.7 \\ 249.9 \end{vmatrix}$	$\begin{vmatrix} 312.1 \\ 325.4 \end{vmatrix}$	$\begin{vmatrix} 396.8 \\ 410.1 \end{vmatrix}$
Heads	1.8	5.8	11.1	13.7	22.6	38.8	58.1	83.6

In the above table the length is from under the head.

AVERAGE WEIGHT PER 100 Square Head Machine Bolts

	,			Di	AMET	ER			
LENGTH	I-4	5-16	3-8	7-16	I-2	.5-8	3-4	7-8	I
1½ 1¾ 2 1¾ 2 2½ 2¾ 2½ 2¾ 3 3 3½ 4 4½ 5 5½ 6 6½ 7 7½ 8 9 10 11 12 13 14 15 16 17 18 19 20	4.0 4.4 4.7 5.1 5.8 6.1 6.8 7.5 8.2 8.9 9.6 10.3 11.0 11.7 12.4 13.1 	6.8 7.3 7.8 8.4 8.9 9.5 10.0 11.1 12.2 13.2 14.3 15.4 16.5 17.6 18.6 19.7 20.8	10.6 11.3 12.0 12.6 13.3 14.0 14.7 16.0 17.4 18.7 20.0 21.4 22.8 24.1 25.9 27.7 29.5 33.1 36.7 40.4 44.0	15.0 16.1 17.2 18.2 19.2 20.2 21.2 23.2 27.2 29.1 31.2 33.1 35.1 37.1 39.1 41.0 49.0 53.0 57.0 	23.9 25.1 26.3 27.7 29.0 30.4 31.8 34.7 37.5 40.2 43.0 45.7 48.4 51.2 54.0 56.7 59.4 64.8 81.3 75.8 81.3 75.8 81.3 97.7 103.1 119.5 125.0	40.5 42.7 44.8 47.0 49.2 51.4 53.5 57.9 62.3 66.7 71.0 75.4 79.8 84.1 88.5 92.9 97.2 106.0 114.7 123.5 132.2 140.7 149.2 157.6 183.1 191.5 200.0	70.0 73.1 76.2 79.3 82.4 85.5 88.7 95.0 101.2 107.5 113.7 120.0 126.2 132.5 138.7 145.0 151.2 163.7 176.2 188.7 201.0 213.4 225.9 238.3 250.8 263.2 275.6 288.1 300.5	120.5 124.7 128.9 137.4 145.8 159.2 167.7 176.1 184.6 193.0 201.4 209.9 218.3 240.2 257.1 273.9 290.0 307.7 324.5 341.4 358.3 375.2 392.0 408.9 425.8	185.0 196.0 207.0 213.0 229.0 240.0 251.0 262.0 273.0 284.0 295.0 317.0 339.0 360.0 382.0 404.0 426.0 448.0 470.0 492.0 514.0 536.0 558.0
Per inch addi- tional	1.4	2.2	3.6	4.0	5.5	8.5	12.4	16.9	22.0

APPROXIMATE WEIGHT IN POUNDS Nuts and Bolt Heads

Diameter of Bolt, Inches	1/4	5 16	3/8	7 16	1/2	5/8	3/4
Weight of Hexagon Nut) and Head	. 017	. 042	.057	.109	. 128	. 267	. 43
Weight of Square Nut and Head	.021	.049	.069	. 120	. 164	. 320	.55
Diameter of Bolt, Inches	7/8	1	11/4	1½	13/4	2	2½
Weight of Hexagon Nut and Head	.73	1.10	2.14	3.78	5.6	8.75	17.0
Weight of Square Nut	.88	1.31	2.56	4.42	7.0	10.5	21.0

SIZES AND WEIGHTS, U. S. STANDARD Hot Pressed Square Nuts

DIMEN	ISIONS	THICKNESS	Size	of Hole	Size of Bolt	Weight of 100 Nuts	Number of Nurs in 100 Pounds
<i>a</i>	В	Тн			SE	WEI 100	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
$\begin{array}{c} 1 \\ 2 \\ \frac{1}{3} \frac{9}{2} \\ \frac{11}{16} \\ \frac{2}{3} \frac{5}{2} \end{array}$.71 .84 .97 1.11	$\frac{\frac{1}{4}}{\frac{5}{16}}$ $\frac{\frac{5}{16}}{\frac{3}{8}}$ $\frac{7}{16}$	0.185 0.240 0.294 0.344	$\frac{3}{16}$ scant $\frac{1}{4}$ scant $\frac{19}{64}$ scant $\frac{11}{32}$	$\frac{1}{4}$ $\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$	1.4 2.2 4.3 6.1	7270 4700 2350 1630
$\begin{array}{c} 7_{8} \\ \frac{3}{3}\frac{1}{2} \\ 1\frac{1}{16} \\ 1\frac{1}{4} \end{array}$	1.24 1.37 1.50 1.77	$\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{8}$ $\frac{3}{4}$	0.400 0.454 0.507 0.620	$\frac{\frac{1}{3}\frac{3}{2}}{\frac{2}{6}\frac{9}{4}}$ scant $\frac{\frac{2}{9}\frac{9}{4}}{\frac{1}{2}}$ full $\frac{5}{8}$ scant	$\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{8}$ $\frac{3}{4}$	9.0 11.2 15.6 26.3	1120 890 640 380
$1\frac{7}{16}$ $1\frac{5}{8}$ $1\frac{13}{16}$ 2	2.03 2.30 2.56 2.83	7/8 1 11/8 11/4	0.731 0.837 0.940 1.065	$\frac{\frac{4}{6}\frac{7}{4}}{\frac{3}{6}\frac{7}{4}}$ scant $\frac{\frac{27}{7}}{\frac{16}{16}}$ full $1\frac{1}{16}$ full	$\frac{7}{8}$ $\frac{1}{1\frac{1}{8}}$ $\frac{11}{4}$	35.7 58.8 76.9 104.2	280 170 130 96
$\begin{array}{c} 2\frac{3}{16} \\ 2\frac{3}{8} \\ 2\frac{9}{16} \\ 2\frac{3}{4} \end{array}$	3.09 3.36 3.62 3.89	$ \begin{array}{c} 1\frac{3}{8} \\ 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \end{array} $	1.160 1.284 1.389 1.491	$1\frac{5}{32}$ full $1\frac{9}{92}$ full $1\frac{25}{64}$ scant $1\frac{1}{2}$ scant	$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	142.8 172.4 227.3 294.1	70 58 44 34
$\begin{array}{c} 2\frac{15}{16} \\ 3\frac{1}{8} \\ 3\frac{5}{16} \\ 3\frac{1}{2} \end{array}$	4.15 4.42 4.68 4.95	17/8 2 21/8 21/4	1.616 1.712 1.836 1.962	$1\frac{5}{8}$ scant $1\frac{2}{3}\frac{3}{2}$ scant $1\frac{27}{3}\frac{7}{2}$ scant $1\frac{3}{3}\frac{1}{2}$ scant	$ \begin{array}{c} 17/8 \\ 2 \\ 21/8 \\ 21/4 \end{array} $	370.4 416.7 500.0 588.2	27 24 20 17

Note.—Both weights and sizes are for unfinished nuts.

SIZES AND WEIGHTS, U. S. STANDARD Hot Pressed Hexagon Nuts

Dime:	NSIONS &	THICKNESS	Size	OF HOLE	SIZE OF BOLT	Weight of 100 Nuts	NUMBER OF NUTS IN 100 POUNDS
$\begin{array}{c} 1/2 \\ \frac{1}{3} \frac{9}{2} \\ \frac{11}{16} \\ \frac{2}{3} \frac{5}{2} \end{array}$.58 .68 .79 .90	$\frac{1}{4}$ $\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$	0.185 0.240 0.294 0.344	$\begin{array}{c} \frac{3}{16} \text{ scant} \\ \frac{1}{4} \text{ scant} \\ \frac{1}{6} \frac{9}{6} \text{ scant} \\ \frac{1}{3} \frac{1}{2} \end{array}$	$\frac{1}{4}$ $\frac{5}{10}$ $\frac{3}{8}$ $\frac{7}{16}$	1.3 1.9 3.3 5.0	7615 5200 3000 2000
$ \begin{array}{c} 7/8 \\ \frac{3}{3}\frac{1}{2} \\ 1\frac{1}{16} \\ 1\frac{1}{4} \end{array} $	1.01 1.12 1.23 1.44	1/2 9 16 5/8 3/4	0.400 0.454 0.507 0.620	$\begin{array}{c} \frac{1}{3}\frac{3}{2} \text{ scant} \\ \frac{2}{6}\frac{9}{4} \\ \frac{1}{2} \text{ full} \\ \frac{5}{8} \text{ scant} \end{array}$	1/2 9 16 5/8 3/4	7.0 9.1 13.5 22.2	1430 1100 740 450
$1\frac{7}{16} \\ 1\frac{5}{8} \\ 1\frac{13}{16} \\ 2$	1.66 1.88 2.09 2.31	7/8 1 1 ¹ / ₈ 1 ¹ / ₄	0.731 0.837 0.940 1.065	$rac{47}{64}$ scant $rac{27}{32}$ scant $rac{15}{16}$ full $1rac{1}{16}$ full	$\frac{7}{8}$ $\frac{1}{11/8}$ $\frac{11}{4}$	32.4 46.3 67.6 90.1	309 216 148 111
$ \begin{array}{c} 2\frac{3}{16} \\ 2\frac{3}{8} \\ 2\frac{9}{16} \\ 2\frac{3}{4} \end{array} $	2.53 2.74 2.96 3.18	$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	1.160 1.284 1.389 1.491	$1\frac{5}{32}$ full $1\frac{9}{32}$ full $1\frac{2}{64}$ scant $1\frac{1}{2}$ scant	$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	117.5 147.1 178.6 250.0	85 68 56 40
$ \begin{array}{c} 2\frac{15}{16} \\ 3\frac{1}{8} \\ 3\frac{5}{16} \\ 3\frac{1}{2} \end{array} $	3.39 3.61 3.82 4.04	17/8 2 21/8 21/4	1.616 1.712 1.836 1.962	$1\frac{5}{8}$ scant $1\frac{2}{3}\frac{3}{2}$ scant $1\frac{2}{3}\frac{7}{2}$ scant $1\frac{3}{3}\frac{1}{2}$ scant	17/8 2 21/8 21/4	285.7 344.8 384.6 434.8	35 29 26 23

Note.—Both weights and sizes are for unfinished nuts.

UPSET SCREW ENDS
For Round and Square Bars

ND CE		Round	Bars			Square	BARS	
DIAMETER OF ROUND OR SIDE OF SQUARE BAR, INCHES	Diameter of Upset Screw End Inches	Diameter of Screw at Root of Thread Inches	Threads per Inch No.	Excess of Effective Area of Screw End over Bar, Per Cent	Diameter of Upset Screw End Inches	Diameter of Screw at Root of Thread Inches	Threads per Inch No.	Excess of Effective Area of Screw Endover Bar, Per Cent
$\frac{\frac{1}{2}}{\frac{9}{16}}$	3/4 3/4	.620	10 10	54 21	3/4 7/8	.620 .731	10 9	21 33
5/8 11 16	7/8 1	.731 .837	9 8	37 48	1 1	.837 .837	8	41 17
$\frac{3}{4}$ $\frac{13}{16}$	1 1½	.837	8 7	25 34	$1\frac{1}{8}$ $1\frac{1}{4}$.940 1.065	7 7	23 35
$\frac{7}{8}$	$\frac{1\frac{1}{4}}{1\frac{1}{4}}$	1.065 1.065	7	48 29	13/8 13/8	1.160 1.160	6	38 20
$\begin{bmatrix} 1 \\ 1 & 1 \end{bmatrix}$	$\frac{13}{8}$ $\frac{13}{8}$	1.160 1.160	$\begin{bmatrix} 6 \\ 6 \end{bmatrix}$	35 19	$1\frac{1}{2}$ $1\frac{5}{8}$	1.284 1.389	$\frac{6}{5\frac{1}{2}}$	29 34
$\frac{1\frac{1}{8}}{1\frac{3}{16}}$	$\frac{1\frac{1}{2}}{1\frac{1}{2}}$	1.284 1.284	6	30 17	$1\frac{5}{8}$ $1\frac{3}{4}$	1.389 1.490	$\frac{51/_{2}}{5}$	20 24
$\begin{vmatrix} 1\frac{1}{4} \\ 1\frac{5}{16} \end{vmatrix}$	$1\frac{5}{8}$ $1\frac{3}{4}$	1.389 1.490	$5\frac{1}{2}$	23 29	17/8 17/8	1.615 1.615	5 5	31 19
$1\frac{3}{8}$ $1\frac{7}{16}$	$\frac{13/4}{17/8}$	1.490 1.615	5 5	18 26	2 21/8	1.712 1.837	$\frac{41/2}{41/2}$	22 28
$1\frac{1}{2}$ $1\frac{9}{16}$	2 2	1.712 1.712	$\frac{41/2}{41/2}$	30 20	$ \begin{array}{c c} 2\frac{1}{8} \\ 2\frac{1}{4} \end{array} $	1.837 1.962	$\frac{4\frac{1}{2}}{4\frac{1}{2}}$	18 24
$1\frac{5}{8}$ $1\frac{11}{16}$	$\frac{21}{8}$ $\frac{21}{8}$	1.837 1.837	$\frac{41/_{2}}{41/_{2}}$	28 18	$\frac{2\frac{3}{8}}{2\frac{3}{8}}$	2.087 2.087	$\frac{41/2}{41/2}$	30 20
$\begin{array}{c} 1\frac{3}{4} \\ 1\frac{13}{16} \end{array}$	$\frac{2\frac{1}{4}}{2\frac{1}{4}}$	$\begin{bmatrix} 1.962 \\ 1.962 \end{bmatrix}$	$\frac{41}{2}$ $\frac{41}{2}$	26 17	$ \begin{array}{c c} 2\frac{1}{2} \\ 2\frac{5}{8} \end{array} $	$2.175 \\ 2.300$	4 4	21 26
$1\frac{7}{8}$ $1\frac{15}{16}$	$\frac{23/8}{21/2}$	$2.087 \\ 2.175$	$\begin{bmatrix} 4\frac{1}{2} \\ 4 \end{bmatrix}$	$\begin{bmatrix} 24 \\ 26 \end{bmatrix}$	$2\frac{5}{8}$ $2\frac{3}{4}$	$2.300 \\ 2.425$	$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$	18 23
$\begin{array}{c} 2\\2\frac{1}{16} \end{array}$	$\frac{21/2}{25/8}$	$\begin{bmatrix} 2.175 \\ 2.300 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$	18 24	27/8 27/8	$2.550 \\ 2.550$	4 4	28 20
$\begin{array}{c c} 2\frac{1}{8} \\ 2\frac{3}{16} \end{array}$	$\frac{25}{8}$ $\frac{23}{4}$	$\begin{bmatrix} 2.300 \\ 2.425 \end{bmatrix}$	4 4	17 23	31/8	$2.629 \\ 2.754$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$	20 24

UPSET SCREW ENDS
For Round and Square Bars

ND EE		Round	Bars			Square	BARS	
DIAMETER OF ROUND OR SIDE OF SQUARE BAR, INCHES	Diameter of Upset Screw End Inches	Diameter of Screw at Root of Thread Inches	Threads per Inch No.	Excess of Effective Area of Screw End over Bar, Per Cent	Diameter of Upset Screw End Inches	Diameter of Screw at Root of Thread Inches	Threads per Inch	Excess of Effective Area of Screw End over Bar, Per Cent
$ \begin{array}{c} 2\frac{1}{4} \\ 2\frac{5}{16} \end{array} $	$\frac{27/8}{27/8}$	$2.550 \\ 2.550$	4	28 22	3½ 3½ 3¼	2.754 2.879	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$	18 22
$2\frac{3}{8}$ $2\frac{7}{16}$	$\frac{3}{3\frac{1}{8}}$	2.629 2.754	3½ 3½	23 28	3 ³ / ₈ 3 ³ / ₈	3.004 3.004	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$	26 19
$\frac{2\frac{1}{2}}{2\frac{9}{16}}$	3½ 3½ 3¼	2.754 2.879	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$	21 26	3½ 35/8	3.100 3.225	$\frac{31/4}{31/4}$	$\begin{array}{c} 21 \\ 24 \end{array}$
$2\frac{5}{8}$ $2\frac{11}{16}$	3½ 3½ 3½	2.879 3.004	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$	20 25	35/8 33/4	3.225 3.317	31/4	19 20
$\begin{array}{c c} 2\frac{3}{4} \\ 2\frac{13}{16} \end{array}$	$\frac{3^{3}/8}{3^{1}/2}$	3.004 3.100	3½ 3¼	19 22	37/8 37/8	3.442 3.442	3 3	23 18
$ \begin{array}{c c} 2\frac{7}{8} \\ 2\frac{15}{16} \end{array} $	35/8 35/8	3.225 3.225	3½ 3½ 3½	26 21	$\frac{4}{4^{1}/8}$	3.567 3.692	3 3	21 24
3 1/8	3 ³ / ₄ 3 ⁷ / ₈	3.317 3.442	3	22 21	$\frac{41/_{8}}{43/_{8}}$	3.692 3.923	3 27/8	19 24
$\frac{3\frac{1}{4}}{3\frac{3}{8}}$	$\frac{4}{4\frac{1}{8}}$	3.567 3.692	3 3	20 20	$\frac{4\frac{1}{2}}{4\frac{5}{8}}$	4.028 4.153	23/4 23/4	21 19
$\frac{31/2}{35/8}$	$\frac{4\frac{1}{4}}{4\frac{1}{2}}$	3.798 4.028	$2\frac{7}{8}$ $2\frac{3}{4}$	18 23				
3¾ 3½ 3½	$4\frac{5}{8}$ $4\frac{3}{4}$	4.153 4.255	23/4 25/8	23 21				

Remarks.—As upsetting reduces the strength of iron, bars having the same diameter at root of thread as that of the bar invariably break in the screw end, when tested to destruction, without developing the full strength of the bar. It is therefore necessary to make up for this loss in strength by an excess of metal in the upset screw ends over that in the bar.

The screw threads in the above table are the Franklin Institute standard.

To make one upset end for 5-inch length of thread, allow 6-inch length of rod additional.

STANDARD SCREW THREADS, NUTS AND BOLT HEADS

Recommended by Franklin Institute, December 15, 1864, and adopted by Navy Department of the United States, by the R. R. Master Mechanics' and Master Car-Builders' Associations, by the Jones & Laughlin Steel Company, and by many other of the prominent engineering and mechanical establishments of the country.

Angle of thread 60°. Flat at top and bottom 1/8 of pitch.

Diameter of Screw	Threads per Inch	Diameter at Root of Thread	Diameter of Screw	Threads per Inch	Diameter at Root of Thread
$\frac{1}{4}$ $\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$	20 18 16 14	.185 .240 .294 .344	$ \begin{array}{c c} 2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4} \end{array} $	$ \begin{array}{c c} 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4 \\ 4 \end{array} $	1.712 1.962 2.176 2.426
16 1/2 9 16 5/8 3/	13 12 11 10	.400 .454 .507 .620	$ \begin{array}{c c} 2/4 \\ 3 \\ 31/4 \\ 31/2 \\ 33/4 \end{array} $	3½ 3½ 3½ 3¼ 3 3	2.629 2.879 -3.100 3.317
7/8 1 11/8	9 8 7 7	.731 .837 .940 1.065	$\begin{array}{ c c c } & 4 & & \\ & 4\frac{1}{4} & & \\ & & 4\frac{1}{2} & & \\ & & & & \end{array}$	$ \begin{array}{c c} 3 \\ 27/8 \\ 23/4 \end{array} $	3.567 3.798 4.028
$1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$	$\begin{bmatrix} 6 \\ 6 \\ 5\frac{1}{2} \end{bmatrix}$	1.160 1.284 1.389	$\begin{array}{ c c c }\hline & 4\sqrt[3]{4} \\ & 5 \\ & 5\sqrt[1]{4} \\ & 5\sqrt[1]{2} \\ \end{array}$	$ \begin{array}{c c} 25/8 \\ 21/2 \\ 21/2 \\ 23/8 \end{array} $	4.256 4.480 4.730 4.953
$\frac{1\frac{3}{4}}{1\frac{7}{8}}$	5 5	$1.491 \\ 1.616$	$\begin{array}{c c} 5\frac{3}{4} \\ \hline 6 \end{array}$	$2\frac{3}{8}$ $2\frac{1}{4}$	5.203 5.423

Nuts and bolt heads are determined by the following rules, which apply to both square and hexagon nuts:

Short diameter of rough nut = $1\frac{1}{2}$ × diameter of bolt + $\frac{1}{8}$ -inch. Short diameter of finished nut = $1\frac{1}{2}$ × diameter of bolt + $\frac{1}{16}$ -inch.

Thickness of rough nut = diameter of bolt.

Thickness of finished nut = diameter of bolt $-\frac{1}{16}$ -inch.

Short diameter of rough head = $1\frac{1}{2} \times$ diameter of bolt + $\frac{1}{16}$ -inch. Short diameter of finished head = $1\frac{1}{2} \times$ diameter of bolt + $\frac{1}{16}$ -inch.

Thickness of rough head = $\frac{1}{2}$ short diameter of head. Thickness of finished head = diameter of bolt — $\frac{1}{16}$ -inch. The long diameter of a hexagon nut may be obtained by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and the long diameter of a square nut by multiplying the short diameter by 1.155 and 1.156 and plying the short diameter by 1.414.

WEIGHT PER SUPERFICIAL FOOT Sheet Iron and Steel

Birmingham		GHT	Birmingham	WEIGHT Pounds		
Gauge	Iron	Steel	GAUGE	Iron	Steel	
No. 1=.3 " 2=.284 " 3=.259 " 4=.238 " 5=.22 " 6=.203 " 7=.18 " 8=.165 " 9=.148	12.12 11.48 10.47 9.62 8.89 8.20 7.27 6.67 5.98	12.36 11.71 10.68 9.81 9.07 8.36 7.42 6.80 6.10	No. 16=.065 " 17=.058 " 18=.049 " 19=.042 " 20=.035 " 21=.032 " 22=.028 " 23=.025 " 24=.022	2.63 2.34 1.98 1.70 1.56 1.40 1.25 1.12	2.68 2.39 2.02 1.73 1.59 1.43 1.28 1.14 1.02	
" 10=.134 " 11=.12 " 12=.109 " 13=.095 " 14=.083 " 15=.072	5.42 4.85 4.41 3.84 3.35 2.91	5.53 4.95 4.50 3.92 3.42 2.97	" 25=.02 " 26=.018 " 27=.016 " 28=.014 " 29=.013 " 30=.012	.9 .8 .72 .64 .56	.92 .82 .73 .65 .57	

Tank Iron and Steel

THICKNESS		IGHT INDS	THICKNESS	Wei Pou	GHT NDS
Inches	Iron	Steel	Inches	Iron	Steel
$ \frac{\frac{1}{32}}{\frac{1}{16}} = .03125 $ $ \frac{\frac{1}{16}}{\frac{1}{16}} = .0625 $ $ \frac{\frac{3}{32}}{\frac{3}{2}} = .09375 $ $ \frac{\frac{5}{32}}{\frac{3}{2}} = .125 $ $ \frac{\frac{5}{32}}{\frac{3}{6}} = .1875 $ $ \frac{\frac{7}{2}}{\frac{7}{2}} = .21875 $ $ \frac{\frac{1}{4}}{\frac{4}{4}} = .25 $ $ \frac{\frac{9}{32}}{\frac{3}{2}} = .28123 $	1.27 2.52 3.79 5.05 6.32 7.58 8.84 10.10 11.38	1.30 2.57 3.87 5.15 6.45 7.73 9.02 10.30 11.61	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.63 15.16 17.68 20.21 22.73 25.26 30.31 35.37 40.42	12.88 15.46 18.03 20.61 23.19 25.77 30.92 36.08 41.23

The low temperature (as compared with iron) at which steel plates have to be finished, causes a slight springing of the rolls, leaving the plate thicker in the center. This, combined with greater density, causes steel plates, if kept up to full thickness on the edges, to weigh more than iron. Both iron and steel over 72 inches wide are apt to run even heavier than the weights given above.

STANDARD STEAM, GAS AND WATER PIPE

Not Manufactured by Jones & Laughlin Steel Co.

нез	Ori	DINARY F	IPE	X S	TRONG	PIPE	XXS	TRONG	PIPE
Size in Inches	Nominal Inside Diameter	Actual Outside Diameter	Weight per Foot	Nominal Inside Diameter	Actual Outside Diameter	Weight per Foot	Nominal Inside Diameter	Actual Outside Diameter	Weight . per Foot
1/8	. 27	. 405	. 24	. 205	. 405	.29			
1/4	. 364	. 540	. 42	. 294	. 540	.54			
3/8	. 494	. 675	. 56	. 421	. 675	.74			
1/2	. 623	.84	.84	. 542	. 84	1.09	.244	.84	1.70
3/4	. 82,4	1.05	1.12	.736	1.05	1.39	.422	1.05	2.44
L	1.048	1.315	1.67	. 951	1.315	2.17	. 587	1.315	3.65
11/4	1.38	1.66	2.24	1.272	1.66	3.00	. 885	1.66	5.20
1½	1.611	1.90	2.68	1.494	1.90	3.63	1.088	1.90	6.40
2	2.067	2.375	3.61	1.933	2.375	5.02	1.491	2.375	9.02
$2\frac{1}{2}$	2.468	2.875	5.74	2.315	2.875	7.67	1.755	2.875	13.68
3	3.067	3.50	7.54	2.892	3.50	10.25	2.284	3.50	18.56
$3\frac{1}{2}$	3.548	4.00	9.00	3.358	4.00	12.47	2.716	4.00	22.75
4	4.026	4.50	10.66	3.818	4.50	14.97	3.136	4.50	27.48
$4\frac{1}{2}$	4.508	5.00	12.49	4.28	5.00	18.22	3.564	5.00	32.53
5	5.045	5.563	14.50	4.813	5.563	20.54	4.063	5.563	38.12
6	6.065	6.625	18.76	5.75	6.625	28.58	4.875	6.625	53.11
7	7.023	7.625	23.27	6.625	7.625	37.67	5.875	7 625	62.38
8	7.982	8.625	28.18	7.625	8 625	43.00	6.875	8.625	71.62
9	8.937	9.625	33.70						
10	10 019	10.75	40.00						

WEIGHT PER CUBIC FOOT OF SUBSTANCES

Name of Substances			Averag P	ge Weight ounds
Aluminum, cast				. 160
Aluminum, rolled				
Anthracite, solid, of Pennsylvania				
Anthracite, broken, loose				
Anthracite, broken, moderately shake	en			. 58
Anthracite, heaped bushel, loose		0		. (80)
Ash, American white, dry			•	. 38
Asphaltum				
Brass (copper and zinc), cast .	٠			. 504
Brass, rolled				. 524
Brick, best pressed				. 150
Brick, common hard				. 125
Brick, soft, inferior		•		. 100
Brickwork, pressed brick				
Brickwork, ordinary				
Cement, hydraulic, ground, loose, Am				
Cement, hydraulic, ground, loose, Ar				
Cement, hydraulic, ground, loose, Er				
Concrete				
Cinder concrete			5	8 to 102
Cherry, dry	٠	•		. 42
Chestnut, dry			•	. 41
Clay, potters', dry				. 119
Clay, in lumps, loose				. 63
Coal, bituminous, solid	0	•	•	. 84
Coal, bituminous, broken, loose .		•		. 49
Coal, bituminous, heaped bushel, loo	se	•		
Coke, loose, of good coal				
Coke, loose, heaped bushel .		٠	•	. (40)
Copper, cast				. 549
Copper, rolled	•			. 556
Earth, common loam, dry, loose.				. 76
Earth, common loam, dry, moderate	ly rai	nmed	1.	. 95
Earth, as a soft flowing mud .		•		. 108
Ebony, dry			•	. 76
Elm, dry				. 35
Flint				. 162
Glass, common window				. 157
Gneiss, common			٠	. 168

WEIGHT PER CUBIC FOOT OF SUBSTANCES

Name of Substances	Aver	age Weight Pounds
Gold, cast pure, or 24-carat	•	. 1204
Gold, pure hammered		
Grain, at 60 pounds per bushel		. 48
Granite		
Gravel, about the same as sand (see Sand)		
Gypsum (plaster of paris)		. 142
Hemlock, dry		
Hickory, dry		
Hornblende, black		. 203
Ice		
Iron, cast		. 450
Iron, wrought, purest		. 485
Iron, wrought, average		
Iron, ore		
Ivory		. 114
Lead		. 711
Lignum-vitæ, dry		. 83
Lime, quick, ground, loose, or in small lumps		
Lime, quick, ground, loose, thoroughly shaken		. 75
Lime, quick, ground, loose, per struck bushel	•	. (66)
Limestones and marbles		. 168
Limestones and marbles, loose, in irregular frag	gme	nts 96
Magnesium		. 109
Mahogany, Spanish, dry		. 53
Mahogany, Honduras, dry		. 35
Maple, dry		. 49
Marbles (see Limestones)		
Masonry, of granite or limestone, well dressed		. 165
Masonry, of mortar rubble		. 154
Masonry, of dry rubble, well scabbled.		. 138
Masonry, of sandstone, well dressed		. 144
Mercury, 32° Fahrenheit		. 849
Mica		. 183
Mortar, hardened		. 103
Mud, dry_r close	•	80 to 110
Mud, wet, fluid, maximum	٠	. 120
Oak, live, dry		. 59
Oak, white, dry		. 50
Oak, other kinds		32 to 45

WEIGHT PER CUBIC FOOT OF SUBSTANCES

Name of Substances		Average Weight Pounds
Paper		. 48 to 50
Petroleum		55
Pine, white, dry		
Pine, yellow, Northern		34
Pine, yellow, Southern		1~
Platinum		1342
Quartz, common, pure		
Resin		
Salt, coarse, Syracuse, N. Y.		45
Salt, fine, Liverpool, for table use		40
Sand, of pure quartz, dry, loose .		
Sand, well shaken		
Sand, perfectly wet		. 120 to 140
		151
Shales, red or black		162
Silver		655
Slate		175
Snow, freshly fallen		
Snow, moistened and compacted by	rain .	. 15 to 50
Spruce, dry		
Steel		
Sulphur	. 4	125
Sulphur		37
Tar		62
Tin, cast		/~ ^
Turf or peat, dry, unpressed .		
Walnut, black, dry		
Water, pure rain or distilled at 60° F	ahrenhe	
Water, sea		
Wax, bees		20 ~
Zinc or spelter		
Zine of sperier		

Green timbers usually weigh from one-fifth to one-half more than dry.

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
0.0			4.0	12.5664	12.5664
.1	.007854	.31416	.1.	13.2025	12.8805
.2	.031416	. 62832	.2	13.8544	13.1947
.3	.070686	.94248	.3	14.5220	13.5088
.4	.12566	1.2566	.4	15.2053	13.8230
.5	. 19635	1.5708	.5	15.9043	14.1372
. 6	.28274	1.8850	.6	16.6190	14.4513
.7	.38485	2.1991	.7	17.3494	14.7655
.8	.50266	2.5133	.8	18.0956 18.8574	15.0796
.9	.63617	2.8274			15.3938
1.0	.7854	3.1416 3.4558	5.0	19.6350	$15.7080 \\ 16.0221$
.1 $.2$.9503	$\frac{3.4558}{3.7699}$	$\begin{array}{c} .1 \\ .2 \end{array}$	$\begin{vmatrix} 20.4282 \\ 21.2372 \end{vmatrix}$	16.0221 16.3363
.3	1.3273	4.0841	.3	22.0618	16.6504
.4	1.5394	4.3982	.4	22.9022	16.9646
.5	1.7671	4.7124	.5	23.7583	17.2788
.6	2.0106	5.0265	6.6	24.6301	17.5929
.7	2.2698	5.3407	.7	25.5176	17.9071
.8	2.5447	5.6549	.8	26.4208	18.2212
.9	2.8353	5.9690	.9	27.3397	18.5354
2.0	3.1416	6.2832	6.0	28.2743	18.8496
.1	3.4636	6.5973	.1	29.2247	19.1637
.2	3.8013	6.9115	.2	30.1907	19.4779
.3	4.1548	7.2257	.3	31.1725	19.7920
.4	4.5239	7.5398	.4	32.1699	20.1062
.5	4.9087	7.8540	.5	33.1831	20.4204
.6	5.3093	8.1681	.6	34.2119	20.7345
.7	5.7256	8.4823	.7	35.2565	21.0487
.8 .9	$\begin{vmatrix} 6.1575 \\ 6.6052 \end{vmatrix}$	8.7965 9.1106	.8	36.3168 37.3928	21.3628 21.6770
3.0	7.0686	9.4248	7.0		1
3.0 .1	7.0080	9.4248	1.0	38.4845 39.5919	21.9911 22.3053
.2	8.0425	10.0531	.2	40.7150	22.6195
.3	8.5530	10.3673	.3	41.8539	22.9336
.4	9.0792	10.6814	.4	43.0084	23.2478
.5	9.6211	10.9956	.5	44.1786	23.5619
.6	10.1788	11.3097	.6	45.3646	23.8761
.7	10.7521	11.6239	.7	46.5663	24.1903
.8	11.3411	11.9381	.8	47.7836	24.5044
.9	11.9459	12.2522	.9	49.0167	24.8186

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
8.0	50.2655	25.1327	12.0	113.0973	37.6991
.1	51.5300	25.4469	.1	114.9901	38.0133
.2	52.8102	25.7611	.2	116.8987	38.3274
.3	54.1061 55.4177	$26.0752 \\ 26.3894$.3	118.8229 120.7628	38.6416 38.9557
.4					
.5	56.7450	26.7035	.5	122.7185	39.2699
.6 .7	58.0880 59.4468	$\begin{bmatrix} 27.0177 \\ 27.3319 \end{bmatrix}$.6 .7	124.6898 126.6769	39.5841 39.8982
.8	60.8212	27.6460	.8	128.6796	40.2124
.9	62.2114	27.9602	.9	130.6981	40.5265
9.0	63.6173	28.2743	13.0	132.7323	40.8407
.1	65.0388	28.5885	.1	134.7822	41.1549
.2	66.4761	28.9027	.2	136.8478	41.4690
.3	67.9291	29.2168	.3	138.9291	41.7832
.4	69.3978	29.5310	.4	141.0261	42.0973
.5	70.8822	29.8451	.5	143.1388	42.4115
.6	72.3823	30.1593	.6	145.2672	42.7257
.7	73.8981	30.4734	. 7	147.4114	43.0398
.8	75.4296	30.7876	.8	149.5712	43.3540
.9	76.9769	31.1018	.9	151.7468	43.6681
10.0	78.5398	31.4159	14.0	153.9380	43.9823
.1	80.1185	31.7301	.1	156.1450	44.2965
.2	81.7128	32.0442	.2	158.3677	44.6106
.3	83.3229	32.3584	.3	160.6061	44.9248
.4	84.9487	32.6726	.4	162.8602	45.2389
.5	86.5901	32.9867	.5	165.1300	45.5531
.6	88.2473	33.3009	.6	167.4155	45.8673
.7	89.9202	33.6150	.7	169.7167 172.0336	46.1814 46.4956
.8	91.6088 93.3132	33.9292 34.2434	.8	174.3662	46.8097
.9				174.3002	47.1239
11.0	95.0332	34.5575	15.0	170.7140	47.1239
.1	96.7689 98.5203	34.8717 35.1858	.2	181.4584	47.4500
.2 .3	98.3205 100.2875	35.5000	.3	183.8539	48.0664
.4	100.2373	35.8142	.4	186.2650	48.3805
	103.8689	36.1283	.5	188.6919	48.6947
.5 .6	105.6832	36.4425	.6	191.1345	49.0088
.7	107.5132	36.7566	.7	193.5928	49.3230
.8	109.3588	37.0708	.8	196.0668	49.6372
.9	111.2202	37.3850	.9	198.5565	49.9513

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
16.0	201.0619	50.2655	20.0	314.1593	62.8319
.1	203.5831	50.5796	.1	317.3087	63.1460
.2	206.1199	50.8938	.2	320.4739	63.4602
.3	208.6724	51.2080	.3	323.6547	63.7743
4	211.2407	51.5221	.4	326.8513	64.0885
.5	213.8246	51.8363	.5	330.0636	64.4026
.6	216.4243	52.1504	$\frac{1}{2}$	333.2916	64.7168
.7	219.0397	52.4646 52.7788	$\parallel \cdot \cdot \cdot \cdot \cdot \rangle$	336.5353	65.0310
.8 .9	221.6708 224.3176	53.0929	.8	343.0698	$65.3451 \\ 65.6593$
$17.0 \\ .1$	226.9801 229.6583	53.4071 53.7212	$\begin{vmatrix} 21.0 \\ .1 \end{vmatrix}$	346.3606 349.6671	65.9734 66.2876
$\overset{\cdot 1}{.2}$	232.3522	54.0354	$\stackrel{\cdot}{\overset{\cdot}{\overset{\cdot}{\cdot}}}_{2}$	352.9894	66.6018
.3	235.0618	54.3496	.3	356.3273	66.9159
.4	237.7871	54.6637	$\parallel \cdot	359.6809	67.2301
.5	240.5282	54.9779	.5	363.0503	67.5442
.6	243.2849	55.2920	.6	366.4354	67.8584
.7	246.0574	55.6062	.7	369.8361	68.1726
.8	248.8456	55.9203	.8	373.2526	68.4867
.9	251.6494	56.2345	.9	376.6848	68.8009
18.0	254.4690	56.5486	22.0	380.1327	69.1150
.1	257.3043	56.8628	.1	383.5963	69.4292
.2	260.1553	57.1770	\parallel .2	387.0756	69.7434
.3	263.0220	57.4911	.3	390.5707	70.0575
.4	265.9044	57.8053	.4	394.0814	70.3717
.5	268.8025	58.1195	.5	397.6078	70.6858
.6	271.7164	58.4336	.6	401.1500	71.0000
.7	274.6459	58.7478	$\frac{1}{2}$	404.7078	71.3142
.8	277.5911	59.0619	.8	408.2814	71.6283
.9	280.5521	59.3761	.9	411.8707	71.9425
19.0	283.5287	59.6903	23.0	415.4756	72.2566
.1	286.5211	60.0044	$\frac{1}{2}$	419.0963	72.5708
.2 .3	289.5292	$60.3186 \\ 60.6327$.2	422.7327	72.8849
.4	292.5930	60.0327 60.9469	.3	426.3848 430.0526	73.1991 73.5133
.5	298.6477	61.2611			
.6	301.7186	$61.2611 \ 61.5752$.5	433.7361 437.4354	73.8274
.7	304.8052	61.8894	.6	437.4354 441.1503	74.1416 74.4557
.8	$\begin{vmatrix} 304.8032 \\ 307.9075 \end{vmatrix}$	62.2035	.8	444.8809	74.4557 74.7699
.9	311.0255	62.5177	.9	448.6273	75.0841
		3-10-11		220.0273	70.0011

For diameters from 100, advancing by tenths.

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
24.0	452.3893 456.1671 450.0606	75.3982 75.7124	28.0	615.7522 620.1582	87.9646 88.2788
$\begin{array}{c} .2 \\ .3 \\ .4 \end{array}$	459.9606 463.7698 467.5947	76.0265 76.3407 76.6549	.2 .3 .4	624.5800 629.0175 633.4707	88.5929 88.9071 89.2212
.5	471.4352 475.2916	76.9690 77.2832	.5	637.9397 642.4243	89.5354 89.8495
.7 .8 .9	479.1636 483.0513 486.9547	77.5973 77.9115 78.2257	.7 .8 .9	646.9246 651.4407 655.9724	90.1637 90.4779 90.7920
$25.0 \\ .1 \\ .2$	490.8739 494.8087 498.7592	78.5398 78.8540 79.1681	29.0 .1 .2	660.5199 665.0830 669.6619	91.1062 91.4203 91.7345
.3	502.7255	79.4823	.3	674.2565	92.0487 92.3628
.5 .6 .7 .8	510.7052 514.7185 518.7476 522.7924	80.1106 80.4248 80.7389 81.0531	.5 .6 .7 .8	683.4928 688.1345 692.7919 697.4650	92.6770 92.9911 93.3053 93.6195
.9 26.0	526.8529 530.9292	81.3672 81.6814	30.0	702.1538 706.8583	93.9336 94.2478
.1 .2 .3	535.0211 539.1287 543.2521	81.9956 82.3097 82.6239	$\begin{array}{c c} & .1 \\ .2 \\ .3 \end{array}$	711.5786 716.3145 721.0662	94.5619 94.8761 95.1903
.4 .5	547.3911 551.5459	82.9380 83.2522	.4	725.8336 730.6167	95.5044 95.8186
.6 .7	555.7163 559.9025	83.5664 83.8805	.6	735.4154 740.2299	96.1327 96.4469
.8	564.1044 568.3220	84.1947 84.5088	.8	745.0601 749.9060	$\begin{array}{ c c c c c c }\hline 96.7611 \\ 97.0752 \\ \hline \end{array}$
$27.0 \\ .1$	572.5553 576.8043	84.8230 85.1372	31.0	754.7676 759.6450	97.3894 97.7035
.2	581.0690 585.3494	85.4513 85.7655	.3	764.5380 769.4467 774.3712	98.0177 98.3319 98.6460
.4	589.6455 593.9574	86.0796	.5	779.3113	98.9602
.6	598.2849	86.7080	.6	784.2672 789.2388 704.2260	99.2743
.8	606.9871	87.3363 87.6504	.8	794.2260 799.2290	99.9026

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
32.0	804.2477	100.5310	36.0	1017.8760	113.0973
.1	809.2821	100.8451	.1	1023.5387	113.4115
.2	814.3322	101.1593	.2	1029.2172	113.7257
.3	819.3980	101.4734 101.7876	.3	1034.9113 1040.6212	114.0398 114.3540
.4	824.4796				
.5	829.5768	102.1018 102.4159	.5	1046.3467 1052.0880	114.6681 114.9823
.6 .7	834.6898 839.8185		.7	1052.0880	114.9825
.8	844.9628	103.0442	.8	1063.6176	115.6106
.9	850.1229	103.3584	.9	1069.4060	115.9248
33.0	855.2986	103.6726	37.0	1075.2101	116.2389
.1	860.4902	103.9867	.1	1081.0299	116.5531
.2	865.6973	104.3009	.2	1086.8654	116.8672
.3	870.9202		.3	1092.7166	117.1814
.4	876.1588	104.9292	.4	1098.5835	117.4956
.5	881.4131	105.2434	.5	1104.4662	117.8097
.6	886.6831	105.5575	.6	1110.3645	118.1239
.7	891.9688		.7	1116.2786	118.4380
.8 .9	897.2703 902.5874	106.1858 106.5000	.8	1122.2083 1128.1538	118.7522 119.0664
34.0	907.9203	106.8142	38.0	1134.1149	
.1	913.2688		.1	1134.1149	119.3805 119.6947
.2	918.6331		.2	1146.0844	120.0088
3	924.0131	107.7566	.3	1152.0927	120.3230
.4	929.4088	108.0708	.4	1158.1167	120.6372
.5	934.8202	108.3849	.5	1164.1564	120.9513
.6	940.2473	108.6991	.6	1170.2118	121.2655
.7	945.6901	109.0133	.7	1176.2830	121.5796
.8	951.1486	109.3274	.8	1182.3698	121.8938
.9	956.6228	109.6416	.9	1188.4724	122.2080
35.0	962.1128	109.9557	39.0	1194.5906	122.5221
.1		110.2699 110.5841	.1	$\begin{array}{c} 1200.7246 \\ 1206.8742 \end{array}$	122.8363 123.1504
.3	978.6768		.3	1213.0396	123.1304 123.4646
.4	984.2296		.4	1219.2207	123.7788
.5	989.7980		.5	1225.4175	124.0929
.6	995.3822	111.8407	.6	1231.6300	124.4071
.7	1000.9821	112.1549	.7	1237.8582	124.7212
.8	1006.5977		.8	1244.1021	125.0354
.9	1012.2290	112.7832	.9	1250.3617	125.3495

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
40.0 .1 .2 .3		125.9779 126.2920 126.6062	44.0 .1 .2 .3	1520.5308 1527.4502 1534.3853 1541.3360	138.2301 138.5442 138.8584 139.1726
.4 .5 .6 .7	1281.8955 1288.2493 1294.6189 1301.0042		.4 .5 .6 .7	1548.3025 1555.2847 1562.2826 1569.2962	139.4867 139.8009 140.1153 140.4292
.8 .9 41.0 .1	1307.4052 1313.8219 1320.2543 1326.7024 1333.1663	128.4911 128.8053 129.1195	.8 .9 45.0 .1 .2	1576.3255 1583.3706 1590.4313 1597.5077 1604.5999	140.7434 141.0575 141.3717 141.6858 142.0000
$.3 \\ .4 \\ .5 \\ .6$	1339.6458 1346.1410 1352.6520 1359.1786	129.7478 130.0619 130.3761 130.6903	.3 .4 .5 .6	1611.7077 1618.8313 1625.9705 1633.1255	142.3142 142.6283 142.9425 143.2566
.8 .9 42.0	1378.8529 1385.4424	131.3186 131.6327 131.9469	.7 .8 .9 46.0	1640.2962 1647.4826 1654.6847 1661.9025	143.5708 143.8849 144.1991 144.5133
.1 .2 .3 .4	1392.0476 1398.6685 1405.3051 1411.9574	132.8894 133.2035	.1 .2 .3 .4	1669.1360 1676.3853 1683.6502 1690.9308	144.8274 145.1416 145.4557 145.7699
.5 .6 .7 .8	1425.3092	134.1460 134.4602	.5 .6 .7 .8	1698.2272 1705.5392 1712.8670 1720.2105 1727.5697	146.0841 146.3982 146.7124 147.0265 147.3407
43.0 .1 .2 .3	1452.2012 1458.9635 1465.7415 1472.5352	135.4026 135.7168 136.0310	47.0 .1 .2 .3	1734.9445 1742.3351 1749.7414 1757.1635	147.6550 147.9690 148.2832 148.5973
.7	1486.1697 1493.0105 1499.8670	136.9734 137.2876	.4 .5 .6 .7	1764.6012 1772.0546 1779.5237 1787.0086	148.9115 149.2257 149.5398 149.8540
.8	1506.7393 1513.6272		.8	1794.5091 1802.0254	150.1681 150.4823

DIAM.	AREA	CIRCUM.	DIAM.	Area	CIRCUM.
48.0	1809.5574		52.0	2123.7166	163.3628
.1	1817.1050		.1	2131.8926	163.6770
.2	1824.6684		.2	2140.0843	163.9911
.3	1832.2475		.3	2148.2917	164.3053
.4	1839.8423	152.0531	.4	2156.5149	164.6195
.5	1847.4528		.5	2164.7537	164.9336
.6	1855.0790	152.6814	.6	2173.0082	165.2479
.7	1862.7210	152.9956	.7	2181.2785	165.5619
.8 .9	1870.3786 1878.0519		.8	2189.5644 2197.8661	165.8761 166.1903
	i i				
49.0	1885.7409 1893.4457	153.9380 154.2522	53.0	$\begin{vmatrix} 2206.1834 \\ 2214.5165 \end{vmatrix}$	}
.2	1901.1662	154.2522 154.5664	.2	2222.8653	166.8186 167.1327
.3	1908.9024		.3	2231.2298	
.4	1916.6543	155.1947	.4	2239.6100	
.5	1924.4218	155.5088	.5	2248.0059	168.0752
.6	1932.2051	155.8230	.6	2256.4175	
.7	1940.0042		.7	2264.8448	
.8	1947.8189		.8	2273.2879	169.0177
.9	1955.6493	156.7655	.9	2281.7466	
50.0	1963.4954	157.0796	54.0	2290,2210	169.6460
.1	1971.3572	157.3938	.1	2298.7112	169.9602
.2	1979.2348		.2	2307.2171	170.2743
.3	1987.1280		.3	2315.7386	
.4	1995.0370	158.3363	.4	2324.2759	170.9026
.5	2002.9617	158.6504	.5	2332.8289	171.2168
.6	2010.9020		$\frac{6}{}$	2341.3976	171.5310
.7	2018.8581	159.2787	.7	2349.9820	
.8	2026.8299 2034.8174	159.5929	.8	2358.5821	172.1593
		159.9071	.9	2367.1979	172.4735
51.0	2042.8206 2050.8395	_	55.0	2375.8294	
.2	2050.8595		.1	2384.4767 2393.1396	
.3	2066.9245		.3	2401.8183	
.4	2074.9905		.4	2410.5126	
.5	2083.0723		.5	2419.2227	
.6	2091.1697		.6	2427.9485	
.7	2099.2829		.7	2436.6899	
.8	2107.4118	162.7345	.8	2445.4471	175.3009
.9	2115.5563		.9	2454.2200	
					•

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
56.0	2463.0086	175.9292	60.0	-	
.1	2471.8130	176.9292 176.2433	11	2827.4334 2836.8660	
$\dot{\hat{2}}$	2480.6330	176.5575	2	2846.3144	188.8097 189.1239
.3	2489.4687	176.8717	$\parallel .3 \vert$	2855.7784	189.4380
.4	2498.3201	177.1858	.4	2865.2582	189.7522
.5	2507.1873	177.5000	.5	2874.7536	190.0664
.6	2516.0701	177.8141	$\parallel \vdots \\ 6 \parallel$	2884.2648	190.3805
.7	2524.9687	178.1283	.7	2893.7917	190.6947
.8	2533.8830	178.4425	.8	2903.3343	191.0088
.9	2542.8129	178.7566	.9	2912.8926	191.3230
57.0	2551.7586	179.0708	61.0	2922.4666	191.6372
.1	2560.7200	179.3849	. 1	2932.0563	191.9513
.2	2569.6971	179.6991	.2	2941.6617	192.2655
.3	2578.6899	180.0133	.3	2951.2828	192.5796
.4	2587.6985	180.3274	.4	2960.9197	192.8938
.5	2596.7227	180.6416	.5	2970.5722	193.2079
.6		180.9557	.6	2980.2405	193.5221
.7		181.2699	.7		193.8363
.8	i l	181.5841 181.8982	.8	2999.6241 3009.3395	194.1504 194.4646
58.0		182.2124			
.1		$182.2124 \mid 182.5265 \mid$	1 1		194.7787 195.0929
$\dot{\hat{2}}$		182.8407	1		195.0929 195.4071
$\ddot{3}$		183.1549			195.7212
.4		183.4690			196.0354
.5	2687.8289	183.7832	.5	3067.9616	196.3495
		184.0973	.6	3077.7869	196.6637
-		184.4115			196.9779
		184.7256		1	197.2920
1		185.0398			197.6062
	2733.9710			3117.2453	
		185.6681		3127.1492	
		185.9823			198.5487
		86.2964			198.8628
1		86.6106			199.1770
		86.9248			199.4911
		$87.2389 \parallel 87.5531 \parallel$		$3176.9043 \mid 1 \ 3186.9023 \mid 2 \$	
		87.8672			200.1195.
		88.1814		3206.9456 2	
	2010.0100 1	00.1011		200.0100 2	

DIAM. AREA CIRCUM. DIAM. AREA CIRCUM. 64.0 3216.9909 201.0620 68.0 3631.6811 213.6283 .1 3227.0518 201.3761 .1 3642.3704 213.9425 .2 23237.1285 201.6902 .2 3653.0754 214.5768 .4 3257.3289 202.3186 .4 36674.5324 214.5768 .5 3267.4527 202.6327 .5 3685.2845 215.1991 .6 3277.5922 202.9469 .6 3696.0523 215.5274 .8 3227.9183 203.5752 .8 3717.6351 216.1416 .9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 .9 3739.2807 216.7699 .1 33285.553 204.5318 .2 3760.9891 217.3982 .3 3349.0085 205.1460 .3 3771.8668 217.7124 .4 3359.2736						
.1 3227.0518 201.3761 .2 3237.1285 201.6902 .3 3663.0754 214.2566 .3 3247.2222 202.0044 .3 3663.7960 214.5708 .4 3257.3289 202.3186 .4 3674.5324 214.8849 .5 3267.4527 202.6327 .5 3685.2845 215.1991 .6 3277.5922 202.9469 .6 3696.0523 215.5133 .7 3287.7474 203.2610 .7 3706.8359 215.8274 .8 3297.9183 203.5752 .8 3717.6351 216.1416 .9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 .9 3729.2807 216.76699 .1 3328.5253 204.5176 .1 3750.1270 217.0841 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 349.96545 205.7743 .5 3793.6695 217.7124 .4 3359.8510 206.0885 .6 3804.5944 <td< th=""><th>DIAM.</th><th>AREA</th><th>CIRCUM.</th><th>DIAM.</th><th>AREA</th><th>CIRCUM.</th></td<>	DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
.1 3227.0518 201.3761 .2 3237.1285 201.6902 .3 3663.0754 214.2566 .3 3247.2222 202.0044 .3 3663.7960 214.5708 .4 3257.3289 202.3186 .4 3674.5324 214.8849 .5 3267.4527 202.6327 .5 3685.2845 215.1991 .6 3277.5922 202.9469 .6 3696.0523 215.5133 .7 3287.7474 203.2610 .7 3706.8359 215.8274 .8 3297.9183 203.5752 .8 3717.6351 216.1416 .9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 .9 3729.2807 216.76699 .1 3328.5253 204.5176 .1 3750.1270 217.0841 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 349.96545 205.7743 .5 3793.6695 217.7124 .4 3359.8510 206.0885 .6 3804.5944 <td< td=""><td>64.0</td><td>3216.9909</td><td>201.0620</td><td>68.0</td><td>3631.6811</td><td>213.6283</td></td<>	64.0	3216.9909	201.0620	68.0	3631.6811	213.6283
.2 3237.1285 201.6902 .2 3653.0754 214.2566 .3 3247.2222 202.0044 .3 3663.7960 214.5708 .4 3257.3289 202.3186 .4 3674.5324 214.8849 .5 3267.4527 202.6327 .5 3685.2845 215.1991 .6 3277.5922 202.9469 .6 3696.0523 215.5133 .7 3287.7474 203.2610 .7 3706.8359 215.8274 .8 3297.9183 203.5752 .8 3717.6351 216.1416 .9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 69.0 3739.2807 216.7699 .1 3328.553 204.5176 .1 3750.1270 217.0841 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.14602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3473					3642.3704	213.9425
.3 3247.2222 202.0044 .4 3663.7960 214.5708 .4 3257.3289 202.3186 .4 3674.5324 214.8849 .5 3267.4527 202.6327 .6 3277.5922 202.9469 .6 3696.0523 215.5133 .7 3287.7474 203.2610 .7 3706.8359 215.8274 .8 3297.9183 203.5752 .8 3717.6351 216.1416 .9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 .1 3328.5253 204.5176 .1 3750.1270 217.0841 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.1460 .3 3771.8668 217.7124 .4 3359.2736 205.4602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 38793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0310 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 70.0 3848.4510 219.9115 .1						
.4 3257.3289 202.3186 .4 3674.5324 214.8849 .5 3267.4527 202.6327 .6 3277.5922 202.9469 .6 3696.0523 215.5133 .7 3287.7474 203.2610 .7 3706.8359 215.8274 .8 3297.9183 203.5752 .8 3717.6351 216.1416 .9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 .9 3739.2807 216.7699 .1 3328.5253 204.5176 .1 3750.1270 217.0841 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.1460 .3 3771.8668 217.7124 .4 3359.2736 205.4602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .6 3879.36695 218.3407 .6 3379.8510 206.0885 .6 3845.5463 219.913 .1 3431.5695 207.6593 .8 3826.4913						
.5 3267.4527 202.6327 .6 3277.5922 202.9469 .6 3696.0523 215.5133 .7 3287.7474 203.2610 .7 3706.8359 215.8274 .8 3297.9183 203.5752 .8 3717.6351 216.1416 .9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 .1 3328.5253 204.5176 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.1460 .3 3771.8668 217.7124 .4 3359.2736 205.4602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3411.846 207.3451 70.0 3848.4510 219.9115 .1 3431.5695 207.6593 .2 3441.9603 207.9734 .3 .3 3859.4644 220.2256 .4 3462.7891 208.6017 .4 3892.5590 221.1681 .1 3859.4644 220.2256						
.6 3277.5922 202.9469 .6 3696.0523 215.5133 .7 3287.7474 203.2610 .7 3706.8359 215.8274 .8 3297.9183 203.5752 .8 3717.6351 216.1416 .9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 .1 .3750.1270 217.0841 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.4602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .8 3840.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0310 .9 3837.4633 219.9115 .1 3434.5695 .1 3859.4544 220.2256 .2 3441.9603 207.9734 .2 3870.4736 220.5398 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
.7 3287.7474 203.2610 .7 3706.8359 215.8274 .8 3297.9183 203.5752 .8 3717.6351 216.1416 .9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 .9 .3728.4500 216.7699 .1 3328.5253 204.5176 .1 3750.1270 217.0841 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.1460 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3411.9603 207.0344 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 .0 3881.5084 220.2536 .2 344						
.8 3297.9183 203.5752 .8 3717.6351 216.1416 .9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 .1 3328.5253 204.5176 .1 3750.1270 217.0841 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.1460 .3 3771.8668 217.7124 .4 3359.2736 205.4602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0310 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 .1 3859.4544 220.2556 .2 3441.9603 207.9734 .2 3870.4736 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
.9 3308.1049 203.8894 .9 3728.4500 216.4556 65.0 3318.3072 204.2035 69.0 3739.2807 216.7699 .1 3328.5253 204.5176 .1 3750.1270 217.0841 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.4602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0510 .9 3837.4633 219.9973 66.0 3421.1944 207.3451 70.0 3848.4510 219.9115 .1 3431.5695 207.6593 .1 3859.4544 220.2556 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3						
65.0 3318.3072 204.2035 69.0 3739.2807 216.7699 .1 3328.5253 204.5176 .1 3750.1270 217.0841 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.1460 .3 3771.8668 217.7124 .4 3359.2736 205.4602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0310 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 70.0 3848.4510 219.9115 .1 3431.5695 207.6593 .1 3859.4544 220.2256 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3 3452.3669 208.2876 .3 3881.5084 220.8540 .4 3462.7891 208.6017 .4 3892.5590 221.1681 .5 3473.2270 208.9159 .5 3903.6252 221.4823 .6 3483.6807 209.5844 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>		1				
.1 3328.5253 204.5176 .2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.1460 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0310 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 .1 3452.3669 208.2876 .1 3859.4544 220.2556 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3 3881.5084 220.2558 .3 3452.3669 208.2876 .3 3881.5084 220.5599 221.1681 .5 3473.2270 208.9159 .5 3903.6252 221.4823 .6 3483.6807 209.2842 .7 3925.8049						}
.2 3338.7590 204.8318 .2 3760.9891 217.3982 .3 3349.0085 205.1460 .3 3771.8668 217.7124 .4 3359.2736 205.4602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0310 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 .0 3848.4510 219.9115 .1 3431.5695 207.6593 .1 3859.4544 220.2256 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3 3452.3669 208.2876 .3 3881.5084 220.8540 .4 3462.7891 208.6017 .4 3892.5804 221.1681 .5 3473.2						
.3 3349.0085 205.1460 .3 3771.8668 217.7124 .4 3359.2736 205.4602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0310 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 .1 3431.5695 207.6593 .1 3859.4544 220.2256 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3 3881.5084 220.256 .4 3462.7891 208.6017 .4 3892.5590 221.1681 .4 3892.5590 221.1681 .5 3473.2270 208.9159 .5 3903.6252 221.4823 .6 3914.7072 221.7964 .8 3504.6351 209.8584 .9 .9 3515.1359 210.1725 .9 3948.0473 222.7389 67.0 3525.6524 210.4867 71.0 3959.1921 223.0531 .1 3567.8754 211.7433 .4 4003.9284 224.3097 .2 3546.7324 2						
.4 3359.2736 205.4602 .4 3782.7603 218.0265 .5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0310 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 .1 .3431.5695 207.6593 .1 3859.4544 220.2256 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3 3452.3669 208.2876 .3 .3 3881.5084 220.25590 .4 3462.7891 208.6017 .4 3892.5590 221.1681 .5 3473.2270 208.9159 .5 3903.6252 221.4823 .6 3483.6807 209.2301 .7 3948.0473 222.7389 67.0 3525.6524 210.4867 71.0 3						
.5 3369.5545 205.7743 .5 3793.6695 218.3407 .6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0310 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 .0 3848.4510 219.9115 .1 3431.5695 207.6593 .1 3859.4544 220.2256 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3 3452.3669 208.2876 .3 3881.5084 220.5398 .3 3452.3669 208.2876 .4 3892.5590 221.1681 .5 3473.2270 208.9159 .5 3903.6252 221.4823 .6 3483.6807 209.2301 .6 3914.7072 221.7964 .7 3494.1500 209.5442 .7 3925.8049 222.1106 .8 3515.1						
.6 3379.8510 206.0885 .6 3804.5944 218.6548 .7 3390.1633 206.4026 .7 3815.5350 218.9690 .8 3400.4913 206.7168 .8 3826.4913 219.2832 .9 3410.8350 207.0310 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 70.0 3848.4510 219.9115 .1 3431.5695 207.6593 .1 3859.4544 220.2256 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3 3452.3669 208.2876 .3 3881.5084 220.5398 .3 3452.3669 208.2876 .4 3892.5590 221.1681 .5 3473.2270 208.9159 .5 3903.6252 221.4823 .6 3483.6807 209.2301 .6 3914.7072 221.7964 .7 3494.1500 209.5442 .7 3925.8049 222.1106 .8 3515.1359 210.1725 .9 3948.0473 222.7389 67.0 35						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5	3369.5545				
.8 3400.4913 206.7168 .9 3410.8350 207.0310 .9 3837.4633 219.2832 .6 .0 3421.1944 207.3451 70.0 3848.4510 219.9115 .1 3431.5695 207.6593 .1 3859.4544 220.2256 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3 3452.3669 208.2876 .3 3881.5084 220.5398 .4 3462.7891 208.6017 .4 3892.5590 221.1681 .5 3473.2270 208.9159 .5 3903.6252 221.4823 .6 3483.6807 209.2301 .6 3914.7072 221.7964 .7 3494.1500 209.5442 .7 3925.8049 222.1106 .8 3504.6351 209.8584 .8 3936.9182 222.4248 .9 3515.1359 210.1725 .9 3948.0473 222.7389 67.0 3525.6524 210.4867 .1 3970.3526 223.3672 .2 3546.7324 211.1150 .2 3981.		3379.8510				
.9 3410.8350 207.0310 .9 3837.4633 219.5973 66.0 3421.1944 207.3451 70.0 3848.4510 219.9115 .1 3431.5695 207.6593 .1 3859.4544 220.2256 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3 3452.3669 208.2876 .3 3881.5084 220.8540 .4 3462.7891 208.6017 .4 3892.5590 221.1681 .5 3473.2270 208.9159 .5 3903.6252 221.4823 .6 3483.6807 209.2301 .6 3914.7072 221.7964 .7 3494.1500 209.5442 .7 3925.8049 222.1106 .8 3504.6351 209.8584 .8 3936.9182 222.4248 .9 3515.1359 210.1725 .9 3948.0473 222.7389 67.0 3525.6524 210.4867 71.0 3959.1921 223.0531 .1 3536.1845 210.8009 .1 3970.3526 223.3672 .2 3546.7324 211.7433 .4 4003.9284 224.3097 .5 3578.4704 212.0575 .5 4015.1518 224.6239 .6 3589.0811 212.3717 .6 4026.3908 224.9380 .7 3599.7075 212.6858 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
66.0 3421.1944 207.3451 70.0 3848.4510 219.9115 .1 3431.5695 207.6593 .2 3441.9603 207.9734 .2 3870.4736 220.5398 .3 3452.3669 208.2876 .4 3462.7891 208.6017 .4 3892.5590 221.1681 .5 3473.2270 208.9159 .5 3903.6252 221.4823 .6 3483.6807 209.2301 .6 3914.7072 221.7964 .7 3494.1500 209.5442 .7 3925.8049 222.1106 .8 3504.6351 209.8584 .8 3936.9182 222.4248 .9 3515.1359 210.1725 .9 3948.0473 222.7389 67.0 3525.6524 210.4867 71.0 3959.1921 223.0531 .1 3536.1845 210.8009 .1 3970.3526 223.3672 .2 3546.7324 211.1150 .2 3981.5289 223.6814 .3 3557.2960 211.4292 .3 .3992.7208 223.9956 .4 3567.8754 211.7433 .4 4003.9284 224.3097 .5 3589.0811 212.3717 .6 4026.3908 224.9380 .7 3599.7075 212.6858 .7 4037.6456 225.2522 .8 3610.3497 213.0000 .8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.9	3410.8350	207.0310	.9	3837.4633	3 219.5973
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66.0	3421.1944	207.3451	70.0	3848.4510	219.9115
.3 3452.3669 208.2876 .3 3881.5084 220.8540 .4 3462.7891 208.6017 .4 3892.5590 221.1681 .5 3473.2270 208.9159 .5 3903.6252 221.4823 .6 3483.6807 209.2301 .6 3914.7072 221.7964 .7 3494.1500 209.5442 .7 3925.8049 222.1106 .8 3504.6351 209.8584 .8 3936.9182 222.4248 .9 3515.1359 210.1725 .9 3948.0473 222.7389 67.0 3525.6524 210.4867 71.0 3959.1921 223.0531 .1 3536.1845 210.8009 .1 3970.3526 223.3672 .2 3546.7324 211.1150 .2 3981.5289 223.6814 .3 3557.2960 211.4292 .3 3992.7208 223.9956 .4 3567.8754 211.7433 .4 4003.9284 224.6239 .6 3589.0811 212.3717 .6 4026.3908 224.9380 .7 3599	.1	3431.5695	5 207.6593	.1	3859.4544	220.2256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2	3441.9603	3 207.9734	.2	3870.4736	3 220.5398
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3	3452.3669	208.2876	.3	3881.5084	220.8540
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.4	3462.7891	208.6017	.4	3892.5590	221.1681
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5	3473.2270	208.9159	.5	3903.6252	2 221 .4823
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3504.6351			3936.9182	
67.0 3525.6524 210.4867 71.0 3959.1921 223.0531 .1 3536.1845 210.8009 .1 3970.3526 223.3672 .2 3546.7324 211.1150 .2 3981.5289 223.6814 .3 3557.2960 211.4292 .3 3992.7208 223.9956 .4 3567.8754 211.7433 .4 4003.9284 224.3097 .5 3578.4704 212.0575 .5 4015.1518 224.6239 .6 3589.0811 212.3717 .6 4026.3908 224.9380 .7 3599.7075 212.6858 .7 4037.6456 225.2522 .8 3610.3497 213.0000 .8 4048.9160 225.5664		3515.1359	9 210.1725			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3525 6524	4 210 4867			
.2 3546.7324 211.1150 .2 3981.5289 223.6814 .3 3557.2960 211.4292 .3 3992.7208 223.9956 .4 3567.8754 211.7433 .4 4003.9284 224.3097 .5 3578.4704 212.0575 .5 4015.1518 224.6239 .6 3589.0811 212.3717 .6 4026.3908 224.9380 .7 3599.7075 212.6858 .7 4037.6456 225.2522 .8 3610.3497 213.0000 .8 4048.9160 225.5664						
.3 3557.2960 211.4292 .3 3992.7208 223.9956 .4 3567.8754 211.7433 .4 4003.9284 224.3097 .5 3578.4704 212.0575 .5 4015.1518 224.6239 .6 3589.0811 212.3717 .6 4026.3908 224.9380 .7 3599.7075 212.6858 .7 4037.6456 225.2522 .8 3610.3497 213.0000 .8 4048.9160 225.5664						
.4 3567.8754 211.7433 .4 4003.9284 224.3097 .5 3578.4704 212.0575 .5 4015.1518 224.6239 .6 3589.0811 212.3717 .6 4026.3908 224.9380 .7 3599.7075 212.6858 .7 4037.6456 225.2522 .8 3610.3497 213.0000 .8 4048.9160 225.5664						
.5 3578.4704 212.0575 .5 4015.1518 224.6239 .6 3589.0811 212.3717 .6 4026.3908 224.9380 .7 3599.7075 212.6858 .7 4037.6456 225.2522 .8 3610.3497 213.0000 .8 4048.9160 225.5664						
.6 3589.0811 212.3717 .6 4026.3908 224.9380 .7 3599.7075 212.6858 .7 4037.6456 225.2522 .8 3610.3497 213.0000 .8 4048.9160 225.5664						
.7 3599.7075 212.6858 .7 4037.6456 225.2522 .8 3610.3497 213.0000 .8 4048.9160 225.5664						
.8 3610.3497 213.0000 .8 4048.9160 225.5664						
				11		
1000.2022 223.0000					4060 202	2 225 8805
	====	3021.001	210.0111	• •	1000.202	

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
72.0	4071.5041		76.0	4356.4598	
.1	4082.8217		.1	4548.4057	
.2	4094.1550 4105.5040	226.8230 227.1371	.2	4560.3673 4572.3446	239.3894
.4	4116.8687	227.4513	.4	4584.3377	
.5	4128.2491	227.7655	.5	4596.3464	
.6	4139.6452		.6	4608.3708	
.7	4151.0571	228.3938	.7	4620.4110	
.8	4162.4846	228.7079	.8	4632.4669	241.2743
.9	4173.9279	229.0221	.9	4644.5384	241.5885
73.0	4185.3868	229.3363	77.0	4656.6257	241.9026
.1	4196.8615	229.6504	.1	4668.7287	
.2	4208.3519		.2	4680.8474	
.3	4219.8579	230.2787	.3	4692.9818	242.8451
.4	4231.3797	230.5929	.4	4705.1319	243.1592
.5	4242.9172	230.9071	.5	4717.2977	243.4734
.6 .7	4254.4704 4266.0394	231.2212 231.5354	.6 .7	4729.4792 4741.6765	
.8	4277.6240		.8	4753.SS94	244.1017
.9	4289.2243	232.1637	.9	4766.1181	244.7301
74.0	4300.8403	232.4779	78.0	4778.3624	245.0442
.1	4312.4721	232.7920	.1	4790.6225	
.2	4324.1195	233.1062	.2	4802.8983	245.6725
.3	4335.7827	233.4203	.3	4815.1897	245.9867
.4	4347.4616	233.7345	.4	4827.4969	246.3009
.5	4359.1562	234.0487	.5	4839.8198	246.6150
.6	4370.8664		.6	4852.1584	
.7	4382.5924 4394.3341	234.6770 234.9911	.7	4864.5128 4876.8828	247.2433 247.5575
.9	4406.0916	235.3053	.9	4889.2685	247.8717
75.0	4417.8647		79.0	4901.6699	
.1	4417.8047		.1	4914.0871	
.2	4441.4580		.2	4926.5199	
.3	4453.2783		.3	4938.9685	
.4	4465.1142	236.8761	.4	4951.4328	249.4425
.5	4476.9659	237.1902	.5	4963.9127	249.7566
.6	4488.8332		.6	4976.4084	
.7	4500.7163		.7	4988.9198	
.8	4512.6151		.8	5001.4469	
.9	4524.5296	238.4469	.9	5013.9897	251.0133

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
80.0	5026.5482		84.0	5541.7694	
.1	5039.1225		.1	5554.9720	
.2	5051.7124		.2	5568.1902	
.3	5064.3180		.3	5581.4242	264.8363
.4	5076.9394	252.5840	.4	5594.6739	265.1514
.5	5089.5764	252.8982	.5	5607.9392	265.4646
.6	5102.2292	253.2124	.6	5621.2203	
.7	5114.8977	253.5265	.7	5634.5171	266.0929
.8	5127.5819 5140.2818	253.8407 254.1548	.8	5647.8296 5661.1578	266.4071 266.7212
81.0	5152.9973 5165.7287	254.4690 254.7832	85.0	5674.5017 5687.8614	267.0354 267.3495
.2	5178.4757	255.0973	$\overset{\cdot}{\overset{\cdot}{\cdot}}_{2}$	5701.2367	267.6637
.3	5191.2384	255.4115	.3	5714.6277	267.0037
.4	5204.0168	255.7256	.4	5728.0345	268.2920
. 5	5216.8110	256.0398	.5	5741.4569	268.6062
.6	5229.6208	256.3540	.6	5754.8951	268.9203
.7	5242.4463	256.6681	.7	5768.3490	269.2345
.8	5255.2876	256.9823	.8	5781.8185	269.5486
.9	5268.1446	257.2966	.9	5795.3038	269.8628
82.0	5281.0173	257.6106	86.0	5808.8048	270.1770
.1	5293.9056	257.9247	.1	5822.3215	270.4911
.2	5306.8097	258.2389	.2	5835.8539	270.8053
.3		258.5531	.3	5849.4020	271.1194
.4	5332.6650	258.8672	.4	5862.9659	271.4336
. 5	5345.6162	259.1814	.5	5876.5454	271.7478
.6		259.4956	.6	5890.1407	272.0619
.7		259.8097	$\frac{7}{2}$	5903.7516	272.3761
.8	5384.5641	260.1239	8	5917.3783	272.6902
.9		260.4380	.9	5931.0206	
83.0	5410.6079		87.0	5944.6787	
.1	$\begin{bmatrix} 5423.6534 \\ 5436.7146 \end{bmatrix}$.1		273.6327
.3	5449.7915		$\frac{.2}{.3}$	5972.0420 5985.7472	273.9469
.4		262.0088	.4	5999.4681	274.2610 274.5752
.5		262.3230	.5	6013.2047	
.6	5489.1163		.6		274.8894 275.2035
.7		262.9513	.7	6020.9570 6040.7250	275.2035
.8	5515.4115		.8	6054.5088	275.8318
.9		263.5796	.9	6068.3082	276.1460
				330.002	

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
88.0	-6082.1234	276.4602	92.0	6647.6101	289.0265
.1	6095.9542	276.7743	.1	6662.0692	289.3407
.2	6109.8008	277.0885	.2	6676.5441	289.6548
.3	6123.6631		.3	6691.0347	289.9690
.4	6137.5411	277.7168	.4	6705.5410	290.2832
.5	6151.4348	278.0309	.5	6720.0630	290.5973
.6	6165.3442		.6	6734.6008	290.9115
.7	6179.2693	278.6593	.7	6749.1542	291.2256
.8	6193.2101	278.9740	.8	6763.7233	291.5398
.9	6207.1666	279.2876	.9	6778.3082	291.8540
89.0	6221.1389	279.6017	93.0	6792.9087	292.1681
.1	6235.1268		.1	6807.5250	292.4823
.2	6249.1304		.3	6822.1569	292.7964
.3	6263.1498	280.5442	.3	6836.8046	293.1106
.4	6277.1849	280.8584	.4	6851.4680	293.4248
.5	6291.2356	281.1725	.5	6866.1471	293.7389
.6	6305.3021	281.4867	.6	6880.8419	294.0531
.7	6319.3843	281.8009	.7	6895 5524 6910.2786	294.3672 294.6814
.8	6333.4822 6347.5958	282.1150 282.4292	.8	6925.0205	294.0014
90.0	$\begin{bmatrix} 6361.7251 \\ 6375.8701 \end{bmatrix}$	282.7433 283.0575	94.0	$6939.7782 \ 6954.5515$	295.3097 295.6239
.1	$\begin{bmatrix} 6375.8701 \\ 6390.0309 \end{bmatrix}$	283.3717	.2	6969.3106	295.9380
.3	6404.2073	283.6858	.3	6984.1453	296.2522
.4	6418.3995	284.0000	.4	6998.9658	296.5663
.5	6432.6073	284.3141	.5	7013.8019	296.8805
.6	6446.8309	284.6283	.6	7028.6538	297.1947
.7	6461.0701	284.9425	.7	7043.5214	297.5088
.8	6475.3251	285.2566	.8	7058.4047	297.8230
.9	6489.5958	285.5708	.9	7073.3033	298.1371
91.0	6503.8822	285.8849	95.0	7088.2184	298.4513
.1	6518.1843	286.1991	.1		298.7655
.2	6532.5021	286.5133	.2	7118.1950	
.3		286.8274	.3	7133.0568	299.3938
.4	6561.1848	287.1416	.4	7148.0343	299.7079
.5	6575.5498	287.4557	.5	7163.0276	300.0221
.6	00000	287.7699	.6	7178.0366	300.3363
.7		288.0840		7193.0612	300.6504
.8		288.3982		7208.1016	
.9	6633.1666	288.7124	.9	7223.1577	301.2787

DIAM.	AREA	CIRCUM.	DIAM.	AREA	CIRCUM.
96.0 .1 .2 .3 .4	7238.2295 7253.3170 7268.4202 7283.5391 7298.6737	301.9071 302.2212 302.5354	98.0 .1 .2 .3 .4	7542.9640 7558.3656 7573.7830 7589.2161 7604.6648	308.1902 308.5044 308.8186
.5 .6 .7 .8	7313.8240 7328.9901 7344.1718 7359.3693 7374.5824	303.7920 304.1062	.5 .6 .7 .8 .9	7620.1293 7635.6095 7651.1054 7666.6170 7682.1444	309.7610 310.0752 310.3894
97.0 .1 .2 .3 .4	7389.8113 7405.0559 7420.3162 7435.5922 7450.8839	305.0486 305.3628 305.6770	99.0 .1 .2 .3 .4	7697.6893 7713.2461 7728.8206 7744.4107 7760.0166	311.3318 311.6460 311.9602
.5 .6 .7 .8	7466.1913 7481.5144 7496.8532 7512.2078 7527.5780	306.6194 306.9336 307.2478	.5 .6 .7 .8 .9	7775.6382 7791.2754 7806.9284 7822.5971 7838.2815 7853.9816	312.9026 313.2168 313.5309 313.8451

For diameters from $\frac{1}{10}$ to 100, advancing by tenths.

To compute the area or circumference of a diameter greater than 100 and less than 1001:

Take out the area or circumference from table as though the number had one decimal, and move the decimal point two places to the right for the area, and one place for the circumference.

Example.—Wanted, the area and circumference of 567. The tabular area for 56.7 is 2524.9687, and circumference 178.1283. Therefore area for 567=252496.87 and circumference=1781.283.

To compute the area or circumference of a diameter greater than 1000:

Divide by a factor, as 2, 3, 4, 5, etc., if practicable, that will leave a quotient to be found in table, then multiply the tabular area of the quotient by the *square* of the factor, or the tabular circumference by the factor.

Example.—Wanted, the area and circumference of 2109. Dividing by 3, the quotient is 703, for which the area is 388150.84, and the circumference 2208.54. Therefore area of $2109 = 388150.84 \times 9 = 3493357.56$ and circumference= $2208.54 \times 3 = 6625.62$.

RAILROAD SPIKES

Size Measured Under Head Inches		Number Required per Mile, for Ties 2 Feet on Centers, 4 Spikes per Tie	USED FOR RAILS OF WEIGHT PER YARD
$5\frac{1}{2} \times \frac{9}{16}$	360	5920 lbs.=29 ½ kegs	45 to 100
$5 \times \frac{9}{16}$	405	5230 lbs.=26 kegs	40 to 56
$4\frac{1}{2} \times \frac{9}{16}$	460	4606 lbs.=23 kegs	35 to 40
$5 \times \frac{1}{2}$	475	$4460 \text{ lbs.} = 23\frac{3}{10} \text{ kegs}$	35 to 40
$4\frac{1}{2}\times\frac{1}{2}$	518	$4080 \text{ lbs.} = 20\frac{4}{10} \text{ kegs}$	28 to 35
$4 \times \frac{1}{2}$	605	$3515 \text{ lbs.} = 17\frac{1}{2} \text{ kegs}$	24 to 35
$3\frac{1}{2} \times \frac{1}{2}$	670	$3180 \text{ lbs.} = 15\frac{7}{8} \text{ kegs}$	20 to 30
$4\frac{1}{2} \times \frac{7}{16}$	690	$3090 \text{ lbs.} = 15\frac{1}{2} \text{ kegs}$	20 to 30
$4 \times \frac{7}{16}$	780	$2730 \text{ lbs.} = 13 \frac{3}{5} \text{ kegs}$	20 to 30
$3\frac{1}{2} \times \frac{7}{16}$	890	2377 lbs.=12 kegs	16 to 25
$4\frac{1}{2}\times\frac{3}{8}$	780	$2730 \text{ lbs.} = 13 \frac{3}{5} \text{ kegs}$	16 to 25
$4 \times \frac{3}{8}$	1025	$2044 \text{ lbs.} = 10\frac{1}{5} \text{ kegs}$	16 to 25
$3\frac{1}{2} \times \frac{3}{8}$	1250	$1740 \text{ lbs.} = 8\frac{1}{2} \text{ kegs}$	16 to 20
$3 \times \frac{3}{8}$	1380	1592 lbs. = 8 kegs	16 to 20
$2\frac{1}{2}\times\frac{3}{8}$	1650	1280 lbs.= $6\frac{2}{5}$ kegs	12 to 16
$3 \times \frac{5}{16}$	1880	$1152 \text{ lbs.} = 5\frac{3}{4} \text{ kegs}$	12 to 16
$2\frac{1}{2} \times \frac{5}{16}$	2230	$948 \text{ lbs.} = 4\frac{3}{4} \text{ kegs}$	8 to 12

BOAT SPIKES

34 inch square, 12 to 24 inches in length 58 inch square, 8 to 16 inches in length 12 inch square, 8 to 16 inches in length 6 to 12 inches in length 16 inch square, 4 to 12 inches in length 17 inch square, 4 to 12 inches in length 17 inch square, 3 to 8 inches in length 18 inch square, 3 to 8 inches in length

TWISTED BARS

ARE	OF	ELA	stic Lin	IIT	ULTIMATE TENSILE STRENGTH			
SIZE OF SQUARENT IN INCH	ZE OF SQUARE IN INCHAR IN INCHER FOR SERVER	ore tin	Twisted	Increase due to Twisting Per Cent	Before Twisting	Twisted	Increase due to Twisting Per Cent	
1/4 3/8 1/2 3/4 1 11/4	4 3½ 3 1½ 1 1 34	38400 39130 38600 39120 37400 38250	78400 71160 66000 72720 67500 62510	104 82 71 86 80 63	68800 61180 60400 60080 61000 61300	91200 85380 83200 81060 74000 79270	32 39 38 35 21 29	

THICKNESS				Wid	тн, Ім	CHES			
INCHES	12	13	14	15	16	17	18	19	20
$\frac{3}{16}$	7.65 10.2	8.28 11.05	8.92 11.9	$9.56 \\ 12.75$	10.2 13.6	10.84 14.44	11.48 15.3	12.1 16.16	12.7 17.0
76 16 1/2	12.75 15.3 17.85 20.4	13.81 16.58 19.34 22.1	14.88 17.86 20.82 23.8	15.94 19.14 22.32 25.5	17.0 20.4 23.8 27.2	18.06 21.68 25.28 28.89	19.12 22.96 26.76 30.6	20.2 24.25 28.28 32.31	21.2 25.5 29.7 34.0
16 5/8 -11 16 3/4	22.95 25.5 28.05 30.6	24.86 27.62 30.39 33.16	26.78 29.74 32.72 35.71	28.7 31.88 35.06 38.26	30.6 34.0 37.4 40.8	32.52 36.12 39.72 43.36	34.44 38.25 42.08 45.92	36.34 40.37 44.42 48.46	42.5
730 789 16	33.15 35.7 38.25 40.8	35.91 38.62 41.44 44.2	38.67 41.65 44.63 47.63	41.43 44.62 47.82 51.0	44.2 47.6 51.0 54.4	46.96 50.6 54.2 57.8	49.72 53.56 57.38 61.2	52.48 56.52 60.57 64.6	55.2 59.5 63.7 68.0
1 16 1 1/8 1 18 1 14	43.35 45.9 48.45 51.0	46.96 49.72 52.48 55.25	50.57 53.55 56.52 59.5	54.2 57.37 60.56 63.76	57.8 61.2 64.6 68.0	61.4 65.04 68.64 72.26	65.02 68.85 72.68 76.5	68.64 72.68 76.72 80.74	72.2 76.5 80.7 85.0
$1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$ $1\frac{1}{2}$	53.55 56.1 58.65 61.2	58.02 60.77 63.54 66.3	62.47 65.45 68.42 71.4	66.95 70.12 73.32 76.51	71.4 74.8 78.2 81.6	75.86 79.48 83.08 86.7	80.33 84.15 88.0 91.8	84.8 88.83 92.88 96.9	$ \begin{array}{r} 89.2 \\ 93.5 \\ 97.7 \\ 102.0 \end{array} $
196 15/8 1118 13/4	63.75 66.3 68.85 71.4	69.06 71.83 74.58 77.35	74.38 77.35 80.33 83.3	79.69 \$2.88 86.06 89.25	85.0 88.4 91.8 95.2	90.31 93.93 97.54 101.5	95.63 99.45 103.3 107.1	100.9 105.0 109.0 113.1	106.3 110.5 114.8 119.0
$1\frac{13}{16}$ $1\frac{7}{8}$ $1\frac{16}{16}$ 2	73.95 76.5 79.05 81.6	80.11 82.88 85.64 88.4	86.28 89.25 92.23 95.2	92.44 95.63 98.81 102.0		104.8 108.4 112.0 115.6	110.9 114.8 118.6 122.4	117.1 121.1 125.2 129.2	123.3 127.5 131.8 136.0

				Width,	INCHE	S	•		
21	22	23	24	25	26	27	28	29	30
13.4	14.04	14.64	16.85	17.56	18.22	18.92	19.62	20.32	21.03
17.84	18.69	19.56	22.44	23.39	24.33	25.26	26.18	27.1	28.05
22.32	28.06	24.44	27.56	27.89	29.83	30.97	32.14	33.26	34. 43
26.78		29.36	32.74	34.11	35.48	36.85	38.22	39.56	40. 96
31.24		34.24	37.86	39.43	41.0	42.58	44.15	45.73	47. 32
35.7		39.1	42.82	44.62	46.41	.48.21	49.98	51.74	53. 55
40. 16	46.76	44.0	47.99	49.95	51.97	53.97	55.97	57. 98	59.98
44. 64		48.88	53.01	55.25	57.45	59.66	61.87	64. 06	66.31
49. 08		53.76	58.09	60.49	62.91	65.32	67.73	70. 14	72.59
53. 56		58.66	63.34	65.99	68.64	71.29	73.92	76. 56	79.21
58.01	60.79	63.53	68.61	71.48	74.34	77.19	80.05	82.9	85.76
62.49	65.44	68.43	73.90	76.99	80.07	83.14	86.22	89.31	92.37
66.96	70.13	73.32	79.18	82.47	85.78	89.08	92.39	95.68	99.99
71.4	74.8	78.2	84.46	87.98	91.5	95.01	98.53	102.1	105.6
75.85	79.48	83.08	89.74	93.48	97.21	101.0	104.7	108.4	112.2
80.33	84.16	88.0	95.01	98.99	102.9	106.9	110.9	114.8	118.7
84.79	8S.83	92.88	100.3	104.5	108.6	112.8	117.0	121.2	125.4
89.26	93.52	97.76	105.6	110.0	114.4	118.8	123.2	127.6	132.0
93.72	98.16	102.6	110.9	115.6	120.1	124.7	129.3	133.9	138.6
98.17	102.8	107.5	116.1	121.0	125.8	130.7	135.5	140.3	145.2
102.7	107.5	112.4	121.4	126.5	131.5	136.6	141.6	146.7	151.8
107.1	112.2	117.3	126.7	132.0	137.2	142.5	147.8	153.1	158.4
111.6	116.9	122.2	132.0	137. 5	143.0	148.5	154.0	159.5	164.9
116.0	121.6	127.1	137.2	143. 0	148.7	154.4	160.1	165.8	171.6
120.5	126.2	132.0	142.5	148. 5	154.4	160.3	166.3	172.2	178.2
125.0	130.9	136.9	147.8	154. 0	160.1	166.3	172.4	178.6	184.1
129.4	135.6	141.8	153. 1	159. 5	165.8	172.2	178.6	185. 0	191. 4
133.9	140.3	146.5	158. 4	164. 9	171.6	178.2	184.8	191. 4	198. 0
138.3	144.9	151.5	163. 6	170. 5	177.3	184.1	190.9	197. 7	203. 6
142.8	149.6	156.4	168. 9	176. 0	183.0	190.0	197.1	204. 1	211. 1

Allowances for overweight added to plates 24 inches wide and upwards, according to Manufacturers' Standard Specifications on page 191.

THICKNESS	1			Widt	rh, Ind	CHES			
Inches	31	32	33	34	35	36	38	40	42
$\frac{3}{16}$	21.73	22.44	23.14	23.85	24.55	25.26	26.62	28.07	29.4
	29.0	29.92	30.84	31.77	32.69	33.65	35.55	37.04	39.2
16	35.57	36.72	37.84	39.0	40.13	41.3	43.62	45.88	48.2
3/3	42.31	43.66	45.03	46.39	47.76	49.14	51.87	54.57	57.3
16	48.89	50.46	52.03	53.6	55.2	56.80	59.95	63.07	66.2
1/2	55.34	57.12	58 91	60.67	62.48	64.26	67.85	71.4	74.9
9 16 5/8 11 16 3/1	61.99 68.52 75.02 81.85	63.98 70.72 77.43 84.47	65.96 72.94 79.82 87.11	67.97 75.13 82.22 89.75	69.97 77.33 84.66 92.43	70.98 79.56 87.11 95.07	75.95 83.97 91.95 100.3	79.99 88.44 96.75 105.6	83.9 92.8 101.6 110.9
13 16 18 15 16	88.62 95.43 102.3 109.1	91.48 98.53 105.6 112.6	94.34 101.6 108.9 116.1	97.2 104.8 112.2 119.7	100.1 107.8 115.5 123.2	102.9 110.9 118.8 126.7	108.6 117.0 125.4 133.7	114.4 123.2 132.0 140.8	120.1 129.4 138.6 147.8
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{6} \\ 1\frac{1}{4} \end{array} $	115.9	119.6	123 4	127.1	130.8	134.6	142.1	149.6	157.0
	122.7	126.7	130.7	134.6	138.6	142.5	150.4	158.4	166.3
	129.5	133.7	137.9	142.1	146.3	150.5	158.8	166.7	175.5
	136.4	140.8	145.2	149.6	154.0	158.4	167.0	176.0	184.8
$1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$ $1\frac{1}{2}$	143.2 150.0 156.8 163.6	147.8 154.8 161.9 168.9	152.4 160.7 166.9 174.2	157.0 164.4 172.0 179.5	161.7 169.4 177.1 184.8	166.2 174.2 182.2 190.0	175.5 183.9 192.3 200.6	184.8 193.6 202.3 211.1	194.0 203.3 212.5 221.7
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	170.5	176.0	181.5	186. 5	192.4	198.0	208.9	219.9	231.0
	177.3	183.0	188.7	194. 4	200.2	205.9	218.0	228.7	240.2
	184.1	190.0	196.0	201. 9	207.8	213.8	225.7	237.5	249.4
	190.9	197.1	203.2	209. 3	215.5	221.7	234.0	246.3	258.6
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array} $	197.7	204.1	210.5	216.9	223.3	229.6	242.4	255.1	267.9
	204.6	211.1	217.8	224.3	231.0	237.5	250.7	263.9	277.1
	211.4	218.2	225.0	231.8	238.7	245.5	259.1	272.7	286.4
	218.2	225.2	232.3	239.3	246.3	253.4	267.5	281.5	295.6

Allowances for overweight added to plates 24 inches wide and upwards, according to Manufacturers' Standard Specifications on page 191.

			Width	IN INCH	ES			
44	46	48	50	52	54	56	58	60
30.89	32.22	33.7	35.11	36.43	37.84	39.25	40.66	42.06
41.12	43.02	44.88	46.77	48.66	50.51	52.36	54.21	56.10
50.46	52.79	55.13	57.37	59.66	61.95	64.27		68.86
60.05	62.82	65.48	68.22	70.96	73.7	76.44		81.92
69.37	72.58	75.73	78.86	82.01	85.16	88.3		94.64
78.54	82.11	85.68	89.25	92.82	96.43	99.96		107.1
87.88	91.96	95.97	99.9	103.9	107.9	111.9	116.0	120.0
97.26	101.7	105.1	110.5	114.9	119.3	123.7	128.1	132.6
106.4	111.3	116.2	121.0	125.8	130.6	135.5	140.3	145.2
116.1	121.4	126.7	132.0	137.3	142.6	147.9	153.1	158.4
125.8	131.5	137.2	143.0	148.7	154.4	160.1	165.8	171.5
135.5	141.7	147.8	154.0	160.1	166.3	172.4	178.6	184.7
145.2	151.8	158.4	164.9	171.6	178.2	184.8	191.4	198.0
154.8	161.9	168.9	176.0	183.0	190.0	197.1	204.1	211.1
164. 6	172.0	179.5	187.0	194. 4	201.9	209.3	216.8	224.3
174. 2	182.1	190.0	198.0	205. 8	213.8	221.7	229.6	237.5
183. 9	192.3	200.6	208.9	217. 3	225.7	234.0	242.4	250.7
193. 6	202.4	211.1	219.9	228. 8	237.6	246.3	255.1	264.0
203. 2	212.5	221.7	230.9	240.2	249.4	258.6	267.9	277.2
212. 9	222.6	232.4	241.9	251.6	261.3	271.0	280.7	290.3
222. 6	232.7	242.8	253.0	263.1	273.2	283.3	293.4	303.5
232. 3	242.8	253.8	263.9	274.5	285.1	295.6	306.2	316.7
241.9	252.9	263. 9	274.9	285.9	296.9	307.9	318.9	329.9
251.6	263.1	274. 5	285.9	297.4	308.8	320.2	331.7	343.1
261.3	273.2	285. 0	296.9	308.8	320.7	332.6	344.4	356.3
271.0	283.3	295. 6	307.9	320.2	332.6	344.9	357.2	369.5
280.7	293. 4	306. 1	318.9	331.7	344.4	357.2	370.0	382.7
290.3	303. 5	316. 7	329.9	343.1	356.3	369.5	382.7	385.9
300.0	313. 6	326. 3	340.9	354.5	368.2	381.8	395.5	409.1
309.7	323. 8	337. 8	351.0	366.0	380.1	394.1	408.2	422.3

Allowances for overweight added to plates 24 inches wide and upwards, according to Manufacturers' Standard Specifications on page 191.

RADII OF GYRATION Two Equal Legged Angles—Star Section

Radii corresponding to direction of arrows

$\delta \times \delta$, Inches	Inches	Area 2 Angles	Weight per Ft. 2 Angles	r ₀	r ₁	r ₂
2×2	1/4 5 16 3/8 1/2	1.88 2.30 2.72 3.12	6.4 8.0 9.4 10.6	.75 .74 .73 .72	.96 .97 .99 1.00	1.12 1.15 1.17 1.20
2½×2½	$ \begin{array}{c} 1/4 \\ 5 \\ 16 \\ 3/8 \\ 7 \\ 16 \\ 1/2 \end{array} $	2.38 2.94 3.46 4.00 4.50	8.2 10.0 11.8 13.6 15.4	.96 .95 .94 .93 .92	1.16 1.17 1.18 1.20 1.21	1.32 1.35 1.38 1.41 1.43
3 ×3	1/4 5/6 3/8 7/6 1/2 9/7 16 5/8	2.88 3.56 4.22 4.86 5.50 6.12 6.72	9.8 12.2 14.4 16.6 18.8 20.8 23.0	1.17 1.16 1.14 1.13 1.12 1.11 1.10	1.36 1.37 1.38 1.39 1.40 1.42 1.43	1.52 1.55 1.59 1.61 1.64 1.67 1.70
3½×3½	1/4 5/16 3/8 7/6 1/2 9/16 5/8	3.38 4.18 4.96 5.74 6.50 7.24 7.96	11.6 14.4 17.0 19.6 22.2 24.8 27.2	1.37 1.36 1.35 1.34 1.32 1.31 1.30	1.56 1.57 1.58 1.59 1.60 1.62 1.63	1.72 1.75 1.78 1.81 1.84 1.87 1.90

RADII OF GYRATION Two Equal Legged Angles—Star Section

Radii corresponding to direction of arrows

δ x δ, Inches	Inches	Area 2 Angles	Weight per Ft. 2 Angles	r ₀	r ₁	r_2
4×4 ·	5 16 3/8 716 1/2 9 16 5/8 11 16 3/4	4.80 5.72 6.62 7.50 8.36 9.22 10.06 10.88	16.4 19.6 22.6 25.6 28.6 31.4 34.2 37.0	1.57 1.55 1.54 1.53 1.51 1.50 1.49 1.48	1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85	1.96 1.98 2.01 2.04 2.07 2.10 2.13 2.16
5×5	3/8 7/6 1/2 9 16 5/8 116 3/4 13 16 7/8	7.22 8.36 9.50 10.62 11.72 12.82 13.88 14.94 15.98	24.6 28.6 32.4 36.2 40.0 43.6 47.2 50.8 54.4	1.96 1.95 1.94 1.92 1.91 1.90 1.89 1.88 1.86	2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27	2.39 2.42 2.45 2.47 2.50 2.53 2.56 2.59 2.62

RADII OF GYRATION Two Equal Legged Angles—Star Section

Radii corresponding to direction of arrows

b x b, Inches	Inches	Area 2 Angles	Weight per Ft. 2 Angles	r ₀	r ₁	r ₂
. 6×6	3/8 76 1/2 916 5/8 116 3/4 136 7/8	8.72 10.12 11.50 12.86 14.22 15.56 16.88 18.18 19.48	29.8 34.4 39.2 43.8 48.4 53.0 57.4 62.0 66.2	2.36 2.35 2.34 2.33 2.32 2.31 2.30 2.28 2.27	2.59 2.60 2.61 2.63 2.64 2.65 2.66 2.67 2.68	2.80 2.82 2.85 2.88 2.91 2.94 2.96 2.99 3.02
8×8	$\begin{array}{c} 1/2 \\ 9 \\ \hline 16 \\ 5/8 \\ \frac{1}{16} \\ 3/4 \\ \frac{13}{16} \\ 7/8 \\ \frac{15}{16} \\ 1 \\ 1 \\ 1 \\ 1/8 \\ \end{array}$	15.50 17.36 19.22 21.06 22.88 24.68 26.46 28.24 30.00 31.74 33.46	52.8 59.2 65.4 71.6 77.8 84.0 90.0 96.2 102.0 108.0 113.8	3.16 3.15 3.14 3.12 3.11 3.10 3.09 3.08 3.06 3.05 3.04	3.42 3.43 3.44 3.45 3.46 3.48 3.49 3.50 3.51 3.52 3.53	

METRIC CONVERSION TABLE

Arranged by C. W. Hunt, New York

Millimetres \times .03937 = inches. Millimetres \div 25.4 = inches Centimetres \times .3937 = inches. Centimetres \div 2.54 = inches. Metres \times 39.37 = inches. (Act Congress.) Metres \times 3.281 = feet. Metres $\times 1.094 =$ yards. Kilometres \times .621 = miles. Kilometres \div 1.6093 = miles. Kilometres \times 3280.8693 = feet. Square millimetres \times . 00155 = square inches. Square millimetres \div 645.1 = square inches. Square centimetres \times . 155 = square inches. Square centimetres \div 6. 451 = square inches. Square metres \times 10. 764 = square feet. Square kilometres \times 247.1 = acres. Hectare $\times 2.471 = acres.$ Cubic centimetres \div 16.383 = cubic inches. Cubic centimetres \div 3.69 = fluid drams (U. S. Phar.). Cubic centimetres \div 29.57 = fluid ounce (U. S. Phar.). Cubic metres \times 35.315 = cubic feet. Cubic metres \times 35.315 = cubic feet. Cubic metres \times 1.308 = cubic yards. Cubic metres \times 264.2 = gallons (231. cubic inches). Litres \times 61.022 = cubic inches (Act Congress). Litres \times 33.84 = fluid ounces (U. S. Phar.). Litres \times .2642 = gallons (231, cubic inches). Litres \div 3.78 = gallons (231, cubic inches) Litres \div 28.316 = cubic feet. Hectolitres \times 3.531 = cubic feet. Hectolitres \times 2.84 = bushels (2150.42 cubic inches). Hectolitres \times . 131 = cubic yards. Hectolitres \times 26. 42 = gallons (231. cubic inches). Grammes \times 15.432 = grains (Act Congress). Grammes \div 981. = dynes. Grammes (water) \div 29.57 = fluid ounces. Grammes \div 28.35= ounces avoirdupois. Grammes per cubic centimetre $\div 27.7 =$ pounds per cubic inch. Joule × .7373 = foot pounds. Kilo-grammes × 2.2046 = pounds. Kilo-grammes × 35.3 = ounces avoirdupois. Kilo-grammes $\div 907.2 = \text{tons}$ (2000 pounds). Kilo-grammes per square centimetre \times 14. 223 = pounds per square inch. Kilo-gram-metres \times 7.233 = foot pounds. Kilo-grammes per metre \times .672 = pounds per foot. Kilo-grammes per cubic metre \times .062 = pounds per cubic foot. Kilo-grommes per cheval \times 2.235 = pounds per horse-power. Kilo-grommes per cheval $\times 2.235$ = pounds Kilo-watts $\times 1.34$ = horse-power. Watts $\div 746$. = horse-power. Watts $\times .7373$ = foot pounds per second. Calorie $\times 3.968$ = B. T. U. Cheval vapeur \times .9863 = horse-power. (Centigrade \times 1.8) + 32 = degrees Fahrenheit. Franc \times .193 = dollars. Gravity Paris = 980.94 centimetres per second. Tonneau \times 1.1023 = tons (2000 pounds).

AREAS OF ANGLES AND PLATES Plate and Angle Columns

1	THICKNESS OF TETAL, INCHES	Size of Angles Inches	AREA		Area 13-inch Plate		AREA 14-INCH PLATE		THICKNESS OF METAL, INCHES
	THICKN METAL,	Size	2 Angles	4 Angles	1 Plate	2 Plates	1 Plate	2 Plates	THI MET
	3/8 7/6 1/2 9/6 1/6 1/6 3/4 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6	6×6	8.72 10.12 11.50 12.88 14.22 15.56 16.88 18.18 19.48 20.76 22.00	17.44 20.24 23.00 25.76 28.44 31.12 33.76 36.36 38.96 41.52 44.00	4.88 5.69 6.50 7.31 8.13 8.94 9.75 10.56 11.38 12.19 13.00	9.76 11.38 13.00 14.62 16.26 17.88 19.50 21.12 22.76 24.38 26.00	5.25 6.13 7.00 7.88 8.75 9.63 10.50 11.38 12.25 13.13 14.00	10.50 12.26 14.00 15.76 17.50 19.26 21.00 22.76 24.50 26.26 28.00	3/8 7/6 1/2 9/6 5/8 11/6 3/4 13/6 7/8 15/6 1
	THICKNESS OF METAL, INCHES	SIZE OF ANGLES INCHES	AREA		AREA 13-INCH PLATE 1 Plate 2 Plates		AREA 12-INCH PLATE 1 Plate 2 Plates		THICKNESS OF METAL, INCHES
	ME	Siz							T. I.
	3/8 7 16 1/2 9 16 5/8 11 16 3/4 136 7/8 15 16	6×4 or 5×5	8.38	29.88 31.96 34.00		14.62 16.26 17.88 19.50 21.12 22.76 24.38	4.50 5.25 6.00 6.75 7.50 8.25 9.00 9.75 10.50 11.25 12.00	10.50 12.00 13.50 15.00 16.50 18.00 19.50 21.00 22.50	3/8 7 16 1/2 9 16 5/8 11 13 16 7/8 15 16 17 18 18 18 18 18 18 18 18 18 18

THICKNESS OF METAL, INCHES	Size of Angles Inches		REA	12-INCH	REA PLATE	AF 13-INCH	THICKNESS OF	
Tim	Size	2 Angles	4 Angles	1 Plate	2 Plates	1 Plate	2 Plates	THIC MET.
3/8 7-6 1/2/9-16 5/8/16 16/3/4/136 17/8/16 1	6×3½	6.86 13.78 7.94 15.88 9.00 18.00 10.06 20.12 11.10 22.20 12.12 24.24 13.14 26.28 14.12 28.24 15.10 30.20 16.06 32.12 17.00 34.00		4.50 5.25 6.00 6.75 7.50 8.25 9.00 9.75 10.50 11.25 12.00	9.00 10.50 12.00 13.50 15.00 16.50 18.00 19.50 21.00 22.50 24.00	4.88 5.69 6.50 7.31 8.13 8.94 9.75 10.56 11.38 12.19 13.00	9.76 11.38 13.00 14.62 16.26 17.88 19.50 21.12 22.76 24.38 26.00	3/8 7/6 1/2 9/6 5/8 11/6 3/4 13/6 7/8 15/6 1
THICKNESS OF METAL, INCHES	OF ANGLES INCHES	AR	EA	AR 10-inch	ea Plate		EA PLATE	THICKNESS OF METAL, INCHES
THICKN	Size of Inc	2 Angles	4 Angles	1 Plate	2 Plates	1 Plate	2 Plates	THICKNESS NETAL, INC.
5 16 3/8 76 1/2 9 16 5/8 116 3/4 116 7/8 15 16	5×3½	5.12 6.10 7.06 8.00 8.94 9.86 10.76 11.64 12.50 13.36 14.18	10.24 12.20 14.12 16.00 17.88 19.72 21.52 23.28 25.00 26.72 28.36	3.13 3.75 4.38 5.00 5.63 6.25 6.88 7.50 8.13 8.75 9.38	6.26 7.50 8.76 10.00 11.26 12.50 13.76 15.00 16.26 17.50 18.76	3.75 4.50 5.25 6.00 6.75 7.50 8.25 9.00 9.75 10.50 11.25	7.50 9.00 10.50 12.00 13.50 15.00 16.50 18.00 19.50 21.00 22.50	$\begin{array}{c} 5 \\ \hline 16 \\ 3 \\ 8 \\ 7 \\ \hline 16 \\ 3 \\ 8 \\ 7 \\ \hline 16 \\ 5 \\ 8 \\ 11 \\ 6 \\ 3 \\ 4 \\ 13 \\ 6 \\ 7 \\ 8 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 $

ESS OF INCHES	Asserted	AR	EA	Area, Pla			10-inch	IESS OF INCHES
THICKNESS OF METAL, INCHE	ANGLES INCHES	2 Angles	4 Angles	1 Plate	2 Plates	1 Plate	2 Plates	THICKNESS METAL, INC
5 16 3/8 7 16 1/2 ² 9 16 5/8 11 16 3/4 13 6 7/8	5×3 or 4×4	4.82 5.72 6.62 7.50 8.38 9.22 10.06 10.88 11.68 12.48	9.64 11.44 13.24 15.00 16.76 18.44 20.12 21.76 23.36 24.96	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00	5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00	3.75 4.38 5.00 5.63 6.25		5 16 3/8 1/2 9 16 5/8 11 16 3/4 13 16 7/8
THICKNESS OF IETAL, INCHES	Size of Angles	Ar	EA	Area, PL	8-inch ate		10-INCH ATE	THICKNESS OF JETAL, INCHES
THICKN	Inches	2 Angles	4 Angles	1 Plate	2 Plates	1Plate	2 Plates	THICKI METAL,
5 16 3/8 7 16 1/2 9 16 5/8 116 3/4 136 17/8	4×3 or 3½×3½	4.18 4.98 5.76 6.50 7.26 7.98 8.68 9.38 10.06 10.72	8.36 9.96 11.52 13.00 14.52 15.96 17.36 18.76 20.12 21.44	5.50 6.00 6.50	5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00	3.75 4.38 5.00 5.63 6.25 6.88 7.50 8.13	7.50 8.76 10.00 11.26 12.50 13.76 15.00 16.26	$\begin{array}{c c} 11 \\ 16 \\ 3/4 \end{array}$

THICKNESS OF METAL, INCHES	Size of Angles	AR	REA	AREA, PL	8-inch ate	AREA Pi	THICKNESS OF METAL, INCHES	
THICK	INCHES	2 Angles	4Angles	1Plate	2Plates	1 Plate	2 Plates	THICK!
5 16 3/8 7 16 1/2 9 16 5/8 11 16 3/4 13 16 7 8	3½×3	3.88 4.60 5.32 6.00 6.68 7.36 8.00 8.64 9.26 9.86	7.76 9.20 10.64 12.00 13.36 14.72 16.00 17.28 18.52 19.72	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00		3.13 3.75 4.38 5.00 5.63 6.25 6.88 7.50 8.13 8.75	6.26 7.50 8.76 10.00 11.26 12.50 13.76 15.00 16.26 17.50	5 16 3 8 7 16 12 9 16 16 16 3 4 16 16 3 16 3 16 3 16 3 16
THICKNESS OF METAL, INCHES	Size of Angles	AR	EA		8-INCH ATE		, 10-inch Late	THICKNESS OF METAL, INCHES
THICK	Inches	2Angles	4Angles	1Plate	2Plates	1Plate	2 Plates	THICK
$\begin{array}{c} 1 \\ 4 \\ 5 \\ \hline 16 \\ 3 \\ 8 \\ \hline 7 \\ \hline 16 \\ 1 \\ 2 \\ 9 \\ \hline 16 \\ 5 \\ 8 \\ \hline 11 \\ 6 \\ 3 \\ 4 \\ \end{array}$	3½×2½ or 3×3	7.32	5.76 7.12 8.44 9.76 11.00 12.24 13.44 14.64 15.76	2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00	5.00 6.00 7.00 8.00 9.00 10.00 11.00	6.25	5.00 6.26 7.50 8.76 10.00 11.26 12.50 13.76 15.00	$ \begin{array}{c c} 1/4 \\ 5 \\ 16 \\ 3/8 \\ 76 \\ 1/2 \\ 9 \\ 16 \\ 5/8 \\ 11 \\ 16 \\ 3/4 \end{array} $

ESS OF INCHES	Size of	AR	EA	Area, Pl	6-INCH ATE	Area Pi	ESS OF INCHES	
THICKNESS METAL, INC	Angles Inches	2Angles	4 Angles	1 Plate	2Plates	1 Plate	2 Plates	THICKNESS METAL, INC
1/4 5 16 3/8 7 16 1/2 9 16 5/8	3 ×2½	2.64 3.26 3.86 4.44 5.00 5.56 6.10	5.28 6.52 7.72 8.88 10.00 11.12 12.20	1.50 1.88 2.25 2.63 3.00 3.38 3.75	3.00 3.76 4.50 5.26 6.00 6.76 7.50	2.00 2.50 3.00 3.50 4.00 4.50 5.00	4.00 5.00 6.00 7.00 8.00 9.00 10.00	$ \begin{array}{c} 1/4 \\ \underline{5} \\ 16 \\ 3/8 \\ 7 \\ 16 \\ 1/2 \\ \underline{9} \\ 16 \\ 5/8 \end{array} $
1/4 5 16 3/8 7 16 1/2 9	2½×2½	2.38 2.94 3.48 4.00 4.50 5.00	4.76 5.88 6.96 8.00 9.00 10.00	1.50 1.88 2.25 2.63 3.00 3.38	3.00 3.76 4.50 5.26 6.00 6.76	2.00 2.50 3.00 3.50 4.00 4.50	4.00 5.00 6.00 7.00 8.00 9.00	$ \begin{array}{c} 1/4 \\ \frac{5}{16} \\ \frac{3}{8} \\ \frac{7}{16} \\ 1/2 \\ \frac{9}{16} \end{array} $
1/4 5/16 3/8 7/6 1/2 9/6	2½× 2	2.14 2.62 3.10 3.56 4.00 4.44	4.28 5.24 6.20 7.12 8.00 8.88	1.50 1.88 2.25 2.63 3.00 3.38	3.00 3.76 4.50 5.26 6.00 6.76	2.00 2.50 3.00 3.50 4.00 4.50	4.00 5.00 6.00 7.00 8.00 9.00	$ \begin{array}{c c} 1/4 \\ \frac{5}{16} \\ \frac{3}{8} \\ \frac{7}{16} \\ 1/2 \\ \frac{9}{16} \end{array} $

LOGARITHMS OF NUMBERS

No.	0	-1	2	3	4	5	6	7	8	9	Diff.
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	40
П					0569						
12					0934			1038			
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	31
14					1584						
15					1875						
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	25
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	24
18					2648			2718			
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	21
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	21
0.1	2000	20.40	0000	2004	2204	2004	00.45	2205	0005	0.40.4	00
21 22					3304 3502			3560			
23					3692			3747			
					1						
24					3874			3927			, -
25					4048			4099			
26	4150	4166	4183	4200	4210	4232	4249	4265	4281	4298	16
27	4314	4330	4346	4362	4378			4425			
28					4533		1	4579		1	
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	14
30	$\overline{4771}$	4786	4800	$\frac{1}{4814}$	4829	4843	4857	4871	4886	4900	14
0.1	1014	1000	10.10	1055	1060	1000	4007	5011	5004	5020	10
31	4914	5065	5070	4900	4969 5105	4900	4997 5139	5145	5150	5179	13 13
33					5237						
00	0100		0211	ODD I	0201	0200	0200	02.0	0200	0002	10
34					5366						
35					5490						
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	12
37	5682	5694	5705	5717	5729						
1	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	12
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	11
No.	0	-	2	3	4	5	6	7	8	9	Diff.

LOGARITHMS OF NUMBERS

No.	0	1	2	3	4	.5	6	7	8	9	Diff.
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	11
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	10
						6284					10
					6375			6405			10
						6484					10
						6580					10
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	9
						6767					9
						6857					9
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	9
50	<u>6990</u>	6998	7007	7016	7024	7033	7042	7050	7059	7067	9
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	8
52					7193					7235	8
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	S
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	8
55						7443					8
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	8
57						7597					7
58						7672					8
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	8
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	7
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	7
62						7959					6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	7
64	1					8096				1	7
65						8162					6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	7
67						8293					
68						8357					
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	6
No.	0	1	2	3	4	5	6	7	8	9	Diff

LOGARITHMS OF NUMBERS

No.	0	1	2	3	4	5	6	7	8	9	Diff
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	7
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	6
72	8573	8579	8585	8591	8597			8615			
73	8633	8639	8645	8651	8657			8675			
74					8716		8727	8733	8739	8745	6
75					8774		8785	8791	8797	8802	6
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	6
77					8887						
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	6
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	6
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	5
82					9159						
83					9212						
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	5
85					9315						
86					9365	1		9380			5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	5
					9465						5
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	5
92					9657						5
	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	4
	0-01		0-11	0=15	0==0	0== 4	0==0	0=00	0=00	0==0	lis
					9750						4
		9782				9800					
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	5
97	9868	9872	9877	9881	9886	9890					
		9917				9934					4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	4
No.	0	1	2	3	4	5	6	7	8	9	Diff

DEGREES	MINUTES	Sine	TANGENT	SECANT	DEGREES	MINUTES	SINE	TANGENT	SECANT
0	00 10 20	.0000 .0029 .0058	.0000 .0029 .0058	1.0000 1.0000 1.0000	5	00 10 20	.0872 .0901 .0929	.0875 .0904 .0934	1.0038 1.0041 1.0043
	30 40 50	.0087 .0116 .0145	.0087 .0116 .0145	1.0000 1.0001 1.0001		30 40 50	.0958 .0987 .1016	.0963 .0992 .1022	1.0046 1.0049 1.0052
-1	00 10 20	.0175 .0204 .0233	.0175 .0204 .0233	1.0002 1.0002 1.0003	6	00 10 20	.1045 .1074 .1103	.1051 .1080 .1110	1.0055 1.0058 1.0061
	30 40 50	.0262 .0291 .0320	.0262 .0291 .0320	1.0003 1.0004 1.0005		30 40 50	.1132 .1161 .1190	.1139 .1169 .1198	1.0065 1.0068 1.0072
2	00 10 20	.0349 .0378 .0407	.0349 .0378 .0407	1.0006 1.0007 1.0008	7	00 10 20	.1219 .1248 .1276	.1228 .1257 .1287	1.0075 1.0079 1.0082
	30 40 50	.0436 .0465 .0494	.0437 .0466 .0495	1.0010 1.0011 1.0012		30 40 50	.1305 .1334 .1363	.1317 .1346 .1376	1.0086 1.0090 1.0094
3	00 10 20	.0523 .0552 .0581	.0524 .0553 .0582	1.0014 1.0015 1.0017	8	00 10 20	.1392 .1421 .1449	.1405 .1435 .1465	1.0098 1.0102 1.0107
	30 40 50	.0610 .0640 .0669	.0641	1.0019 1.0021 1.0022		30 40 50	.1478 .1507 .1536	.1495 .1524 .1554	1.0111 1.0116 1.0120
4	00 10 20	.0698 .0727 .0756	.0699 .0729 .0758	1.0024 1.0027 1.0029	9	00 10 20	.1564 .1593 .1622	.1584 .1614 .1644	1.0125 1.0129 1.0134
	30 40 50	.0785 .0814 .0843	.0816	1.0031 1.0033 1.0036		30 40 50	.1650 .1679 .1708	.1673 .1703 .1733	1.0139 1.0144 1.0149

DEGREES	Minutes	SINE	TANGENT	SECANT	DEGREES	MINUTES	SINE	TANGENT	SECANT
10	00 10 20	.1765	.1763 .1793 .1823	1.0154 1.0160 1.0165	15	00 10 20	.2588 .2616 .2644	.2679 .2711 .2742	1.0353 1.0361 1.0369
	30 40 50	.1851	.1853 .1883 .1914	1.0170 1.0176 1.0181		30 40 50	.2672 .2700 .2728	.2773 .2805 .2836	1.0377 1.0386 1.0394
11	00 10 20	.1908 .1937 .1965	.1944 .1974 .2004	1.0187 1.0193 1.0199	16	00 10 20	.2756 .2784 .2812	.2867 .2899 .2931	1.0403 1.0412 1.0421
	30 40 50	.1994 .2022 .2051	.2035 .2065 .2095	1.0205 1.0211 1.0217		30 40 50	.2840 .2868 .2896	.2962 .2994 .3026	1.0429 1.0439 1.0448
12	00 10 20	.2079 .2108 .2136	.2156	1.0223 1.0230 1.0236	17	00 10 20	.2924 .2952 .2979	.3057 .3089 .3121	1.0457 1.0466 1.0476
	30 40 50	.2164 .2193 .2221	.2247	1.0243 1.0249 1.0256		30 40 50	.3007 .3035 .3062	.3153 .3185 .3217	1.0485 1.0495 1.0505
13	00 10 20	.2250 .2278 .2306	.2339	1.0263 1.0270 1.0277	18	00 10 20	.3090 .3118 .3145	.3249 .3281 .3314	1.0515 1.0525 1.0535
	30 40 50	.2334 .2363 .2391	.2432	1.0284 1.0291 1.0299		30 40 50	.3173 .3201 .3228	.3346 .3378 .3411	1.0545 1.0555 1.0566
14	00 10 20	.2419 .2447 .2476	.2524 1	1.0306 1.0314 1.0321	19	$\begin{vmatrix} 00 \\ 10 \\ 20 \end{vmatrix}$.3256 .3283 .3311	.3443 .3476 .3508	1.0576 1.0587 1.0598
	30 40 50	.2504 .2532 .2560	.2617 1	.0329		30 40 50	.3338 .3365 .3393	.3541 .3574 .3607	1.0608 1.0619 1.0631

DEGREES	Minutes	SINE	TANGENT	SECANT	DEGREES	MINUTES	SINE	TANGENT	SECANT
20	00 10 20	.3420 .3448 .3475	.3673	1.0642 1.0653 1.0665	25	00 10 20	.4226 .4253 .4279	.4663 .4699 .4734	1.1034 1.1049 1.1064
	30 40 50	.3502 .3529 .3557	.3739 .3772 .3805	1.0676 1.0688 1.0700		30 40 50	.4305 .4331 .4358	.4770 .4806 .4841	1.1079 1.1095 1.1110
21	00 10 20	.3584 .3611 .3638		1.0711 1.0723 1.0736	26	00 10 20	.4384 .4410 .4436	.4877 .4913 .4950	1.1126 1.1142 1.1158
	30 40 50	.3665 .3692 .3719	.3973	1.0748 1.0760 1.0773		30 40 50	.4462 .4488 .4514	.4986 .5022 .5059	1.1174 1.1190 1.1207
22	00 10 20	.3746 .3773 .3800	.4074	1.0785 1.0798 1.0811	27	00 10 20	.4540 .4566 .4592	.5095 .5132 .5169	1.1223 1.1240 1.1257
	30 40 50	.3827 .3854 .3881	.4176	1.0824 1.0837 1.0850		30 40 50	.4617 .4643 .4669	.5206 .5243 .5280	1.1274 1.1291 1.1308
23	00 10 20	.3907 .3934 .3961	.4279	1.0864 1.0877 1.0891	28	00 10 20	.4695 .4720 .4746	.5317 .5354 .5392	1.1326 1.1343 1.1361
	30 40 50	.3987 .4014 .4041	.4383	1.0904 1.0918 1.0932		30 40 50	.4772 .4797 .4823	.5430 .5467 .5505	1.1379 1.1397 1.1415
24	00 10 20	.4067 .4094 .4120	.4452 .4487 .4522		29	00 10 20	.4848 .4874 .4899	.5543 .5581 .5619	1.1434 1.1452 1.1471
	30 40 50	.4147 .4173 .4200	.4592	1.0989 1.1004 1.1019	ŀ	30 40 50	.4924 .4950 .4975	.5658 .5696 .5735	1.1490 1.1509 1.1528

DEGREES	MINUTES	SINE	TANGENT	SECANT	DEGREES	MINUTES	SINE	TANGENT	SECANT
30	00 10 20	.5025	.5812	1.1547 1.1566 1.1586		00 10 20	.5760	.7002 .7046 .7089	1.2208 1.2233 1.2258
	30 40 50	.5100	.5930	1.1606 1.1626 1.1646	-	30 40 50	.5831	.7133 .7177 .7221	1.2283 1.2309 1.2335
31	00 10 20	.5150 .5175 .5200	.6048	1.1666 1.1687 1.1707	36	00 10 20	.5878 .5901 .5925	.7265 .7310 .7355	1.2361 1.2387 1.2413
	30 40 50	.5225 .5250 .5275	.6168	1.1728 1.1749 1.1770	1	30 40 50	.5948 .5972 .5995	.7400 .7445 .7490	1.2440 1.2467 1.2494
32	00 10 20	.5299 .5324 .5348	.6289	1.1792 1.1813 1.1835	37	00 10 20	.6018 .6041 .6065	.7536 .7581 .7627	1.2521 1.2549 1.2577
	30 40 50	.5373 .5398 .5422	.6412	1.1857 1.1879 1.1901		30 40 50	.6088 .6111 .6134	.7673 .7720 .7766	1.2605 1.2633 1.2661
33	00 10 20	.5446 .5471 .5495	. 6536	1.1924 1.1946 1.1969	38	00 10 20	.6157 .6180 .6202	.7813 .7860 .7907	1.2690 1.2719 1.2748
	30 40 50	.5519 .5544 .5568	1	1.1992 1.2015 1.2039		30 40 50	.6225 .6248 .6271	.7954 .8002 .8050	1.2778 1.2808 1.2837
34	00 10 20	.5592 .5616 .5640	.6787 1	.2062 .2086 .2110	39	00 10 20	.6293 .6316 .6338	.8098 .8146 .8195	1.2868 1.2898 1.2929
	30 40 50	.5664 .5688 .5712	.6873 1 .6916 1 .6959 1	.2158		30 40 50	.6361 .6383 .6406	.8292	1.2960 1.2991 1.3022

DEGREES	MINUTES	Sine	TANGENT	SECANT	DEGREES	MINUTES	SINE	TANGENT	SECANT
40	00 10 20	.6428 .6450 .6472	.8441	1.3054 1.3086 1.3118	45	00 10 20	.7092	1.0000 1.0058 1.0117	
	30 40 50	.6494 .6517 .6539	.8591	1.3151 1.3184 1.3217		30 40 50	.7153		1.4267 1.4310 1.4352
41	00 10 20	.6561 .6583 .6604	.8744	1.3250 1.3284 1.3318	46	00 10 20	.7214	1.0416	1.4396 1.4439 1.4483
	30 40 50	.6626 .6648 .6670	.8899	1.3352 1.3386 1.3421		30 40 50	.7274	1.0599	1.4527 1.4572 1.4617
42	00 10 20	.6691 .6713 .6734	.9057	1.3456 1.3492 1.3527	47	00 10 20	.7333	1.0786	1.4663 1.4709 1.4755
	30 40 50	.6756 .6777 .6799	.9217	1.3563 1.3600 1.3636		30 40 50	.7392	1.0977	1.4802 1.4849 1.4897
43	00 10 20	.6820 .6841 .6862	.9380	1.3673 1.3711 1.3748	48	00 10 20	.7451	1.1171	1.4945 1.4993 1.5042
	30 40 50	.6884 .6905 .6926	.9545	1.3786 1.3824 1.3863	j.	30 40 50	.7509	1.1369	1.5092 1.5141 1.5192
44	00 10 20	.6947 .6967 .6988	.9713	1.3902 1.3941 1.3980		00 10 20	.7566	1.1571	1.5243 1.5294 1.5345
	30 40 50	.7009 .7030 .7050	.9884	1.4020 1.4061 1.4101		30 40 50	.7623	1.1778	3 1.5398 3 1.5450 7 1.5504

DEGREES	MINUTES	SINE	TANGENT	SECANT	DEGREES	Minutes	SINE	TANGENT	SECANT
50	00 10 20	.7679	1.1918 1.1988 1.2059	1.5611	55	00 10 20	.8192 .8208 .8225	1.4370	1.7434 1.7507 1.7581
	30 40 50	.7735	1.2131 1.2203 1.2276	1.5777		30 40 50	.8258	1.4641	1.7655 1.7730 1.7806
51	00 10 20	.7790	1.2349 1.2423 1.2497	1.5948	56	00 10 20	.8307		1.7883 1.7960 1.8039
	30 40 50	.7844	1.2572 1.2647 1.2723	1.6123		30 40 50	.8355	1.5108 1.5204 1.5301	1.8198
52	00 10 20	.7898	1.2799 1.2876 1.2954	1.6303		00 10 20	.8403		1.8361 1.8443 1.8527
	30 40 50	.7951	1.3032 1.3111 1.3190	1.6489		30 40 50	.8450	1.5697 1.5798 1.5900	
53	00 10 20	.8004	1.3270 1.3352 1.3432	1.6681			.8496	1.6003 1.6107 1.6213	1.8959
	30 40 50	.8056	1.3514 1.3597 1.3680	1.6878		30 40 50	.8542		1.9139 1.9230 1.9323
54		.8107	1.3764 1.3848 1.3934	1.7081	59	00 10 20	.8587		1.9416 1.9511 1.9606
-	30 40 50	.8158	1.4019 1.4106 1.4193	1.7291			.8631	1.7090	1.9703 1.9801 1.9900

DEGREES	MINUTES	SINE	TANGENT	SECANT	DEGREES	MINUTES	SINE	TANGENT	SECANT
60	00 10 20	.8660 .8675 .8689	1.7437	2.0000 2.0101 2.0204	65	00 10 20	.9075	$ \begin{array}{c} 2.1445 \\ 2.1609 \\ 2.1775 \end{array} $	2.3811
	30 40 50	.8704 .8718 .8732	1.7796	2.0308 2.0413 2.0519		30 40 50	.9112	2.1943 2.2113 2.2286	2.4269
61	00 10 20	.8746 .8760 .8774	1.8165	2.0627 2.0736 2.0846	66	00 10 20	.9147	2.2460 2.2637 2.2817	2.4586 2.4748 2.4912
	30 40 50	.8788 .8802 .8816	1.8546	2.0957 2.1070 2.1185		30 40 50	.9182	2.2998 2.3183 2.3369	
62	00 10 20	.8829 .8843 .8857	1.8940	2.1301 2.1418 2.1537	67	00 10 20	.9216	2.3559 2.3750 2.3945	
	30 40 50	.8870 .8884 .8897		2.1657 2.1786 2.1902		30 40 50		2.4141 2.4342 2.4545	2.6131 2.6316 2.6504
63	00 10 20		1.9768	2.2027 2.2153 2.2282	68	00 10 20		2:4751 2:4960 2:5172	2.6888
	30 40 50	.8962	2.0204	2.2412 2.2543 2.2677		30 40 50	.9315	2.5605	2.7285 2.7488 2.7695
64	00 10 20	.9001	2.0655	2.2812 2.2949 2.3088	69	00 10 20	.9346	2.6279	2.7904 2.8117 2.8334
	30 40 50	.9038	2.1123	2.3228 2.3371 2.3515		30 40 50	.9377	2.6985	2.8555 2.8779 2.9006

DEGREES	MINUTES	Sine	TANGENT	SECANT	DEGREES	MINUTES	SINE	TANGENT	SECANT
70	00 10 20	.9407		2.9238 2.9474 2.9713	75	00 10 20	.9667		3.8637 3.9061 3.9495
	30 40 50	.9426 .9436 .9446	2.8502	2.9957 3.0206 3.0458		30 40 50	.9689	3.8667 3.9136 3.9617	4.0394
71	00 10 20	.9465	2.9319	3.0716 3.0977 3.1244	76	00 10 20	.9710	1	4.1336 4.1824 4.2324
	30 40 50	.9492	3.0178	3.1515 3.1792 3.2074		30 40 50	.9730		4.2837 4.3362 4.3901
72	00 10 20	.9520	3.1084	3.2361 3.2653 3.2951	77	00 10 20	.9750		4.4454 4.5022 4.5604
	30 40 50	.9546	3.2041	3.3255 3.3565 3.3881		30 40 50	.9769	4.5736	4.6202 4.6817 4.7448
. 73	00 10 20	.9572	3.3052	3.4203 3.4532 3.4867	78	00 10 20	.9787	4.7729	4.8097 4.8765 4.9452
	30 40 50	.9596	3.4124	3.5209 3.5559 3.5915		30 40 50	.9805	4.9894	5.0159 5.0886 5.1636
74	00 10 20	.9621	3.5261	3.6280 3.6652 3.7032	79	00 10 20	.9822	5.2257	5.2408 5.3205 5.4026
	30 40 50	.9644	3.6470	3.7420 3.7817 3.8222		30 40 50	.9838	5.4845	5.4874 5.5749 5.6653

DEGREES	MINUTES	SINE	TANGENT	SECANT	DEGREES	MINUTES	SINE	TANGENT	SECANT
80	00 10 20	.9848 .9853 .9858	5.6713 5.7694 5.8708	5.7588 5.8554 5.9554	85	00 10 20	.9962 .9964 .9967	11.430 11.826 12.251	11.474 11.868 12.291
	30 40 50	.9863 .9868 .9872	5.9758 6.0844 6.1970	6.0589 6.1661 6.2772		30 40 50	.9969 .9971 .9974	13.197	12.745 13.235 13.763
81	10	.9877 .9881 .9886	6.3138 6.4348 6.5606	6.3925 6.5121 6.6363	86	00 10 20	.9976 .9978 .9980	14.301 14.924 15.605	14.336 14.958 15.637
	40	.9890 .9894 .9899	6.6912 6.8269 6.9682	6.7655 6.8998 7.0396		30 40 50	.9981 .9983 .9985	16.350 17.169 18.075	16.380 17.198 18.103
82	10	.9903 .9907 .9911	7.1154 7.2687 7.4287	7.1853 7.3372 7.4957	87	00 10 20	.9986 .9988 .9989	19.081 20.206 21.470	19.107 20.230 21.494
	40	.9914 .9918 .9922		7.8344		30 40 50	.9990 .9992 .9993	22.904 24.542 26.432	22.926 24.562 26.451
83	$\begin{vmatrix} 00\\10\\20 \end{vmatrix}$.9925 .9929 .9932	8.3450		88	00 10 20	.9994 .9995 .9996	28.636 31.242 34.368	28.654 31.258 34.382
	30 40 50	.9939		8.8337 9.0652 9.3092		30 40 50	.9997	42.964	38.202 42.976 49.114
84		.9948	9.5144 9.7882 10.0780	9.8391		00 10 20	9999	68.750	57.299 68.757 85.946
		.9957	10.3854 10.7119 11.0594	10.7585		40	1.0000	171.885	114.593 171.888 343.775
-					90	00	1.0000	Infinite	Infinite

NUMBERS	SQUARES	Cubes	SQUARE	CUBE	NUMBERS	SQUARES	Сивея	SQUARE ROOT	CUBE
1 2 3 4 5	1 9 16 25	1 8 27 64 125	1.000 1.414 1.732 2.000 2.236	1.000 1.260 1.442 1.587 1.710	51 52 53 54 55	26 01 27 04 28 09 29 16 30 25	132 651 140 608 148 877 157 464 166 375	7.141 7.211 7.280 7.349 7.416	3.708 3.733 3.756 3.780 3.803
6 7 8 9	36 49 64 81 1 00	216 343 512 729 1 000	2.449 2.646 2.828 3.000 3.162	1.817 1.913 2.000 2.080 2.154	56 57 58 59 60	31 36 32 49 33 64 34 81 36 00	175 616 185 193 195 112 205 379 216 000	7.483 7.550 7.616 7.681 7.746	3.826 3.849 3.871 3.893 3.915
11 12 13 14 15	1 21 1 44 1 69 1 96 2 25	1 331 1 728 2 197 2 744 3 375	3.317 3.464 3.606 3.742 3.873	2.224 2.289 2.351 2.410 2.466	61 62 63 64 65	37 21 38 44 39 69 40 96 42 25	226 981 238 328 250 047 262 144 274 625	7.810 7.874 7.937 8.000 8.062	3.937 3.958 3.979 4.000 4.021
16 17 18 19 20	2 56 2 89 3 24 3 61 4 00	4 096 4,913 5 832 6 859 8 000	4.000 4.123 4.243 4.359 4.472	2.520 2.571 2.621 2.668 2.714	66 67 68 69 70	43 56 44 89 46 24 47 61 49 00	287 496 300 763 314 432 328 509 343 000	8. 124 8. 185 8. 246 8. 307 8. 367	4.041 4.062 4.082 4.102 4.121
21 22 23 24 25	4 41 4 84 5 29 5 76 6 25	9 261 10 648 12 167 13 824 15 625	4.583 4.690 4.796 4.899 5.000	2.759 2.802 2.844 2.885 2.924	71 72 73 74 75	50 41 51 84 53 29 54 76 56 25	357 911 373 248 389 017 405 224 421 875	8.426 8.485 8.544 8.602 8.660	4. 141 4. 160 4. 179 4. 198 4. 217
26 27 28 29 30	6 76 7 29 7 84 8 41 9 00	17 576 19 683 21 952 24 389 27 000	5.099 5.196 5.292 5.385 5.477	2.963 3.000 3.037 3.072 3.107	76 77 78 79 80	57 76 59 29 60 84 62 41 64 00	438 976 456 533 474 552 493 039 512 000	8.775 8.832 8.888	4.236 4.254 4.273 4.291 4.309
31 32 33 34 35	9 61 10 24 10 89 11 56 12 25	29 791 32 768 35 937 39 304 42 875	5.568 5.657 5.745 5.831 5.916	3. 141 3. 175 3. 208 3. 240 3. 271	81 82 83 84 85	65 61 67 24 68 89 70 56 72 25	531 441 551 368 571 787 592 704 614 125	9.055 9.110 9.165	4.327 4.345 4.362 4.380 4.397
36 37 38 39 40	12 96 13 69 14 44 15 21 16 00	46 656 50 653 54 872 59 319 64 000	6.000 6.083 6.164 6.245 6.325	3.302 3.332 3.362 3.391 3.420	86 87 88 89 90	73 96 75 69 77 44 79 21 81 00	636 056 658 503 681 472 704 969 729 000	9.327 9.381 9.434	4.414 4.431 4.448 4.465 4.481
41 42 43 44 45	16 81 17 64 18 49 19 36 20 25	68 921 74 088 79 507 85 184 91 125	6.403 6.481 6.557 6.633 6.708	3.448 3.476 3.503 3.530 3.557	91 92 93 94 95	82 81 84 64 86 49 88 36 90 25	753 571 778 688 804 357 830 584 857 375	9.644 9.695	4.498 4.514 4.531 4.547 4.563
46 47 48 49 50	21 16 22 09 23 04 24 01 25 00	97 336 103 823 110 592 117 649 125 000	6.782 6.856 6.928 7.000 7.071	3.583 3.609 3.634 3.659 3.684	96 97 98 99 100	92 16 94 09 96 04 98 01 1 00 00	884 736 912 673 941 192 970 299 1 000 000	9.849 9.900 9.950	4.579 4.595 4.610 4.626 4.642

Numbers	SQUARES	Cubes	SQUARE	CUBE	NUMBERS	SQUARES	CUBES	SQUARE	CUBE
101 102 103 104 105	1 02 01 1 04 04 1 06 09 1 08 16 1 10 25	1 030 301 1 061 208 1 092 727 1 124 864 1 157 625	10.0499 10.0995 10.1489 10.1980 10.2470	4.6723 4.6875 4.7027	151 152 153 154 155	2 28 01 2 31 04 2 34 09 2 37 16 2 40 25	3 442 951 3 511 808 3 581 577 3 652 264 3 723 875	12.3288 12.3693 12.4097	5.3368 5.3485 5.3601
106 107 108 109 110	1 12 36 1 14 49 1 16 64 1 18 81 1 21 00	1 191 016 1 225 043 1 259 712 1 295 029 1 331 000	10.2956 10.3441 10.3923 10.4403 10.4881	4.7475 4.7622 4.7769	156 157 158 159 160	2 43 36 2 46 49 2 49 64 2 52 81 2 56 00	3 944 312	$12.5300 \\ 12.5698 \\ 12.6095$	5.3947 5.4061 5.4175
111 112 113 114 115	1 23 21 1 25 44 1 27 69 1 29 96 1 32 25	1 367 631 1 404 928 1 442 897 1 481 544 1 520 875	10.5357 10.5830 10.6301 10.6771 10.7238	4.8203 4.8346 4.8488	161 162 163 164 165	2 68 96	4 173 281 4 251 528 4 330 747 4 410 944 4 492 125	12.7279 12.7671 12.8062	5.4514 5.4626 5.4737
116 117 118 119 120	1 34 56 1 36 89 1 39 24 1 41 61 1 44 00	1 560 896 1 601 613 1 643 032 1 685 159 1 728 000	10.7703 10.8167 10.8628 10.9087 10.9545	4.8910 4.9049 4.9187	166 167 168 169 170		4 574 296 4 657 463 4 741 632 4 826 809 4 913 000	12.9228 12.9615 13.0000	5.5069 5.5178 5.5288
121 122 123 124 125	1 46 41 1 48 84 1 51 29 1 53 76 1 56 25	1 771 561 1 815 848 1 860 867 1 906 624 1 953 125	11.0000 11.0454 11.0905 11.1355 11.1803	4.9597 4.9732 4.9866	171 172 173 174 175	2 92 41 2 95 84 2 99 29 3 02 76 3 06 25	5 000 211 5 088 448 5 177 717 5 268 024 5 359 375	13.1149 13.1529 13.1909	5.5613 5.5721 5.5828
126 127 128 129 130	1 58 76 1 61 29 1 63 84 1 66 41 1 69 00	2 048 383 2 097 152 2 146 689	11.2250 11.2694 11.3137 11.3578 11.4018	5.0265 5.0397 5.0528	176 177 178 179 180	3 16 84 3 20 41	5 451 776 5 545 233 5 639 752 5 735 339 5 832 000	13.3041 13.3417 13.3791	5.6147 5.6252 5.6357
131 132 133 134 135	1 71 60 1 74 24 1 76 89 1 79 56 1 82 25	2 248 091 2 299 968 2 352 637 2 406 104 2 460 375	11.4455 11.4891 11.5326 11.5758 11.6190	5.0916 5.1045 5.1172	181 182 183 184 185	3 27 61 3 31 24 3 34 89 3 38 56 3 42 25	5 929 741 6 028 568 6 128 487 6 229 504 6 331 625	13.4907 13.5277 13.5647	5.6671 5.6774 5.6877
136 137 138 139 140	1 84 96 1 87 69 1 90 44 1 93 21 1 96 00	2 515 456 2 571 353 2 628 072 2 685 619 2 744 000	11.6619 11.7047 11.7473 11.7898 11.8322	5. 1551 5. 1676 5. 1801	188 189	3 53 44	6 434 856 6 539 203 6 644 672 6 751 269 6 859 000	13.6748 13.7113 13.7477	5.7185 5.7287 5.7388
141 142 143 144 145	1 98 81 2 01 64 2 04 49 2 07 36 2 10 25	2 803 221 2 863 288 2 924 207 2 985 984 3 048 625	11.8743 11.9164 11.9583 12.0000 12.0416	5.2171 5.2293 5.2415	192 193 194	3 68 64 3 72 49 3 76 36	6 967 871 7 077 888 7 189 057	13.8203 13.8564 13.8924 13.9284	5.7590 5.7690 5.7790 5.7890
146 147 148 149 150	2 13 16 2 16 09 2 19 04 2 22 01 2 25 00	3 112 136 3 176 523 3 241 792 3 307 949 3 375 000	12.0830 12.1244 12.1655 12.2066 12.2474	5.2776 5.2896 5.3015	197 198 199	3 96 01	7 529 536	14.0000 14.0357 14.0712 14.1067	5.8088 5.8186 5.8285 5.8383

NUMBERS	SQUARES	CUBES	Square Root	CUBE	NUMBERS	SQUARES	CUBES	SQUARE	CUBE
202 203 204	4 04 01 4 08 04 4 12 09 4 16 16 4 20 25	8 120 601 8 242 408 8 365 427 8 489 664 8 615 125	14.2127 14.2478 14.2829	5.8675 5.8771	252 253 254	6 35 04 6 40 09 6 45 16	15 813 251 16 003 008 16 194 277 16 387 064 16 581 375	15.8745 15.9060 15.9374	6.3080 6.3164 6.3247 6.3330 6.3413
207 208 209	4 24 36 4 28 49 4 32 64 4 36 81 4 41 00	8 741 816 8 869 743 8 998 912 9 129 329 9 261 000	14 3875 14.4222 14.4568	5.9250 5.9345	257 258 259	6 60 49 6 65 64 6 70 81	16 777 216 16 974 593 17 173 512 17 373 979 17 576 000	16.0312 16.0624 16.0935	6.3496 6.3579 6.3661 6.3743 6.3825
212 213 214	4 45 21 4 49 44 4 53 69 4 57 96 4 62 25	9 393 931 9 528 128 9 663 597 9 800 344 9 938 375	14.5602 14.5945 14.6287	5.9627 5.9721 5.9814	262 263 264	6 86 44 6 91 69 6 96 96	17 779 581 17 984 728 18 191 447 18 399 744 18 609 625	16.1864 16.2173 16.2481	6.3907 6.3988 6.4070 6.4151 6.4232
217 218 219	4 66 56 4 70 89 4 75 24 4 79 61 4 84 00	10 077 696 10 218 313 10 360 232 10 503 459 10 648 000	14.7309 14.7648 14.7986	6.0092 6.0185 6.0277	267 268 269	7 12 89 7 18 24 7 23 61	18 821 096 19 034 163 19 248 832 19 465 109 19 683 000	16.3401 16.3707 16.4012	6. 4312 6. 4393 6. 4473 6. 4553 6. 4633
222 223 224	4 88 41 4 92 84 4 97 29 5 01 76 5 06 25	10 793 861 10 941 048 11 089 567 11 239 424 11 390 625	14.8997 14.9332 14.9666	6.0550 6.0641 6.0732	272 273 274	7 39 84 7 45 29 7 50 76	19 902 511 20 123 648 20 346 417 20 570 824 20 796 875	16.4924 16.5227 16.5529	6.4713 6.4792 6.4872 6.4951 6.5030
227 228 229	5 10 76 5 15 29 5 19 84 5 24 41 5 29 00	11 543 176 11 697 083 11 852 352 12 008 989 12 167 000	15.0665 15.0997 15.1327	6.1002 6.1091 6.1180	277 278 279	7 67 29 7 72 84 7 78 41	21 024 576 21 253 933 21 484 952 21 717 639 21 952 000	16.6433 16.6733 16 7033	6.5108 6.5187 6.5265 6.5343 6.5421
232 233 234	5 33 61 5 38 24 5 42 89 5 47 56 5 52 25	12 326 391 12 487 168 12 649 337 12 812 904 12 977 875	15. 2315 15. 2643 15. 2971	6. 1446 6. 1534 6. 1622	282 283 284	7 95 24 8 00 89 8 06 56	22 188 041 22 425 768 22 665 187 22 906 304 23 149 125	16.7929 16.8226 16.8523	6.5499 6.5577 6.5654 6.5731 6.5808
237 238 239	5 66 44.	13 144 256 13 312 053 13 481 272 13 651 919 13 824 000	15. 3948 15. 4272 15. 4596	6. 1885 6. 1972 6. 2058	287 288 289	8 23 69 8 29 44 8 35 21	23 393 656 23 639 903 23 887 872 24 137 569 24 389 000	16.9411 16.9706 17.0000	6.5885 6.5962 6.6039 6.6115 6.6191
241 242 243 244	5 80 81 5 85 64 5 90 49 5 95 36 6 00 25	13 997 521 14 172 488 14 348 907 14 526 784 14 706 125	15. 5242 15. 5563 15. 5885 15. 6205	6.2231 6.2317 6.2403 6.2488	292 293 294	8 52 64 8 58 49 8 64 36	24 642 171 24 897 088 25 153 757 25 412 184 25 672 375	17. 0880 17. 1172 17. 1464	6.6267 6.6343 6.6419 6.6494 6.6569
246 247 248 249	6 05 16 6 10 09 6 15 04 6 20 01	14 886 936 15 069 223 15 252 992 15 438 249 15 625 000	15.6844 15.7162 15.7480 15.7797	6. 2658 6. 2743 6. 2828 6. 2912	297 298 299	8 82 09 8 88 04 8 94 01	25 934 336 26 198 073 26 463 592 26 730 899 27 000 000	17.2337 17.2627 17.2916	6.6644 6.6719 6.6794 6.6869 6.6943

NUMBERS	Squares	CUBES	Souare Root	CUBE	NUMBERS	SQUARES	Совеѕ	Square Root	CUBE
301 302 303 304 305 306	9 12 04 9 18 09 9 24 16 9 30 25	27 270 901 27 543 608 27 818 127 28 094 464 28 372 625 28 652 616	17.3781 17.4069 17.4356 17.4642	6.7092 6.7166 6.7240 6.7313	352 353 354 355	12 39 04 12 46 09 12 53 16 12 60 25	43 243 551 43 614 208 43 986 977 44 361 864 44 738 875 45 118 016	18.7617 18.7883 18.8149 18.8414	7.0607 7.0674 7.0740 7.0807
307 308 309 310 311	9 42 49 9 48 64 9 54 81 9 61 00 9 67 21	28 934 443 29 218 112 29 503 629 29 791 000 30 080 231	17.5214 17.5499 17.5784 17.6068 17.6352	6.7460 6.7533 6.7606 6.7679 6.7752	357 358 359 360 361	12 74 49 12 81 64 12 88 81 12 96 00 13 03 21	45 499 293 45 882 712 46 268 279 46 656 000 47 045 881	18.8944 18.9209 18.9473 18.9737 19.0000	7.0940 7.1006 7.1072 7.1138 7.1204
312 313 314 315 316 317	9 79 69 9 85 96 9 92 25 9 98 56	30 371 328 30 664 297 30 959 144 31 255 875 31 554 496 31 855 013	17.6918 17.7200 17.7482 17.7764	6.7897 6.7969 6.8041 6.8113	363 364 365 366	13 17 69 13 24 96 13 32 25 13 39 56	47 437 928 47 832 147 48 228 544 48 627 125 49 027 896 49 430 863	19.0526 19.0788 19.1050 19.1311	7. 1335 7. 1400 7. 1466 7. 1531
318 319 320 321 322	10 11 24 10 17 61 10 24 00 10 30 41 10 36 84	32 157 432 32 461 759 32 768 000 33 076 161 33 386 248 33 698 267	17.8326 17.8606 17.8885 17.9165 17.9444	6.8256 6.8328 6.8399 6.8470 6.8541	368 369 370 371 372	13 54 24 13 61 61 13 69 00 13 76 41 13 83 84	49 836 032 50 243 409 50 653 000 51 064 811 51 478 848 51 895 117	19.1833 19.2094 19.2354 19.2614 19.2873	7.1661 7.1726 7.1791 7.1855 7.1920
324 325 326 327 328	10 49 76 10 56 25 10 62 76 10 69 29 10 75 84	34 012 224 34 328 125 34 645 976 34 965 783 35 287 552	18.0000 18.0278 18.0555 18.0831 18.1108	6.8683 6.8753 6.8824 6.8894 6.8964	374 375 376 377 378	13 98 76 14 06 25 14 13 76 14 21 29 14 28 84	52 313 624 52 734 375 53 157 376 53 582 633 54 010 152	19.3391 19.3649 19.3907 19.4165 19.4422	7.2048 7.2112 7.2177 7.2240 7.2304
330 331 332 333 334	10 89 00 10 95 61 11 02 24 11 08 89 11 15 56	35 611 289 35 937 000 36 264 691 36 594 368 36 926 037 37 259 704	18.1659 18.1934 18.2209 18.2483 18.2757	6.9104 6.9174 6.9244 6.9313 6.9382	380 381 382 383 384	14 44 00 14 51 61 14 59 24 14 66 89 14 74 56	54 439 939 54 872 000 55 306 341 55 742 968 56 181 887 56 623 104	19.4936 19.5192 19.5448 19.5704 19.5959	7.2432 7.2495 7.2558 7.2622 7.2685
336 337 338 339	11 28 96 11 35 69 11 42 44 11 49 21	37 595 375 37 933 056 38 272 753 38 614 472 38 958 219 39 304 000	18.3303 18.3576 18.3848 18.4120	6.9521 6.9589 6.9658 6.9727	386 387 388 389	14 89 96 14 97 69 15 05 44 15 13 21	57 066 625 57 512 456 57 960 603 58 411 072 58 863 869 59 319 000	19.6469 19.6723 19.6977 19.7231	7.2811 7.2874 7.2936 7.2999
341 342 343 344 345	11 62 81 11 69 64 11 76 49 11 83 36 11 90 25	39 651 821 40 001 688 40 353 607 40 707 584 41 063 625	18.4662 18.4932 18.5203 18.5472 18.5742	6.9864 6.9932 7.0000 7.0068 7 0136	391 392 393 394 395	15 28 81 15 36 64 15 44 49 15 52 36 15 60 25	59 776 471 60 236 288 6C 698 457 61 162 984 61 629 875	19.7737 19.7990 19.8242 19.8494 19.8746	7.3124 7.3186 7.3248 7.3310 7.3372
347 349 349	12 04 09 12 11 04 12 18 01	41 421 736 41 781 923 42 144 192 42 508 549 42 875 000	18.6279 18.6548 18.6815	7.0271 7.0338 7.0406	397 398 399	15 76 09 15 84 04 15 92 01	62 099 136 62 570 773 63 044 792 63 521 199 64 000 000	19.9249 19.9499 19.9750	7.3496 7.3558 7.3619

Numbers	Squares	CUBES	SOUARE	CUBE ROOT	NUMBERS	SQUARES	CUBES	SQUARE ROOT	CUBE
401 402 403 404	16 08 01 16 16 04 16 24 09 16 32 16	64 481 201 64 964 808 65 450 827 65 939 264	20.0250 20.0499 20.0749 20.0998	7.3803 7.3864 7.3925	451 452 453 454	20°34 01 20 43 04 20 52 09 20 61 16	92 959 677 93 576 664	21.2368 21.2603 21.2838 21.3073	7,6744 7,6801 7,6857
406 407 408 409	16 48 36 16 56 49 16 64 64 16 72 81	66 430 125 66 923 416 67 419 143 67 917 312 68 417 929 68 921 000	20.1494 20.1742 20.1990 20.2237	7.4047 7.4108 7.4169 7.4229	456 457 458 459	20 70 25 20 79 36 20 88 49 20 97 64 21 06 81	94 818 816 95 443 993 96 071 912 96 702 579	21.3542 21.3776 21.4009 21.4243	7.6970 7.7026 7.7082 7.7138
411 412 413 414	16 89 21 16 97 44 17 05 69 17 13 96	69 426 531 69 934 528 70 444 997 70 957 944 71 473 375	20.2731 20.2978 20.3224 20.3470	7.4350 7.4410 7.4470 7.4530	461 462 463 464	21 16 00 21 25 21 21 34 44 21 43 69 21 52 96	97 972 181 98 611 128 99 252 847	21.4709 21.4942 21.5174 21.5407	7.7250 7.7306 7.7362 7.7418
416 417 418 419	17 30 56 17 38 89 17 47 24 17 55 61	71 991 296 72 511 713 73 034 632 73 560 059 74 088 000	20.3961 20.4206 20.4450 20.4695	7.4650 7.4710 7.4770 7.4829	466 467 468 469	21 71 56 21 80 89 21 90 24 21 99 61	100 544 625 101 194 696 101 847 563 102 503 232 103 161 709 103 823 000	21.5870 21.6102 21.6333 21.6564	7.7529 7.7584 7.7639 7.7695
421 422 423 424	17 72 41 17 80 84 17 89 29 17 97 76	74 618 461 75 151 448 75 686 967 76 225 024 76 765 625	20.5183 20.5426 20.5670 20.5913	7.4948 7.5007 7.5067 7.5126	471 472 473 474	22 18 41 22 27 84 22 37 29 22 46 76	104 487 111 105 154 048 105 823 817 106 496 424 107 171 875	21.7025 21 7256 21.7486 21.7715	7.7805 7.7860 7.7915 7.7970
426 427 428 429	18 14 76 18 23 29 18 31 84 18 40 41	77 308 776 77 854 483 78 402 752 78 953 589 79 507 000	20.6398 20.6640 20.6882 20.7123	7.5244 7.5302 7.5361 7.5420	476 477 478 479	22 65 76 22 75 29 22 84 84 22 94 41	107 850 176 108 531 333 109 215 352 109 902 239 110 592 000	21.8174 21.8403 21.8632 21.8861	7.8079 7.8134 7.8188 7.8243
431 432 433 434	18 57 61 18 66 24 18 74 89 18 83 56	80 062 991 80 621 568 81 182 737 81 746 504 82 312 875	20.7605 20.7846 20.8087 20.8327	7.5537 7.5595 7.5654 7.5712	481 482 483 484	23 13 61 23 23 24 23 32 89 23 42 56	111 284 641 111 980 168 112 678 587 113 379 904 114 084 125	21.9317 21.9545 21.9773 22.0000	7.8352 7.8406 7.8460 7.8514
436 437 438 439	19 00 96 19 09 69 19 18 44 19 27 21	82 881 856 83 453 453 84 027 672 84 604 519 85 184 000	20.8806 20.9045 20.9284 20.9523	7.5828 7.5886 7.5944 7.6001	486 487 488 489	23 61 96 23 71 69 23 81 44 23 91 21	114 791 256 115 501 303 116 214 272 116 930 169 117 649 000	22.0454 22.0681 22.0907 22.1133	7.8622 7.8676 7.8730 7.8784
441 : 442 : 443 : 444 :	19 44 81 8 19 53 64 8 19 62 49 8 19 71 36 8	85 766 121 86 350 888 86 938 307 87 528 384 88 121 125	21.0000 (21.0238 (21.0476 (21.0713 (7.6117 7.6174 7.6232 7.6289	491 492 493 494	24 10 81 24 20 64 24 30 49 24 40 36	118 370 771 119 095 488 119 823 157 120 553 784 121 287 375	22.1585 22.1811 22.2036 22.2261	7.8891 7.8944 7.8998 7.9051
446 1 447 1 448 2 449 2	19 89 16 8 19 98 09 8 20 07 04 8 20 16 01 9	88 716 536 5 89 314 623 5 89 915 392 5 90 518 849 5 91 125 000 5	21.1187 (21.1424 (21.1660 (21.1896 (7.6403 7.6460 7.6517 7.6574	496 497 498 499	24 60 16 24 70 09 24 80 04 24 90 01	122 023 936 122 763 473 123 505 992 124 251 499 125 000 000	22.2711 22.2935 22.3159 22.3383	7.9158 7.9211 7.9264 7.9317

NUMBERS	SQUARES	CUBES	SQUARE	CUBE	NUMBERS	SQUARES	CUBES	SQUARE	CUBE
502 503 504	25 20 01 25 30 09 25 40 1 6	125 751 501 426 506 008 127 263 527 128 024 064 128 787 625	22.4054 22.4277 22.4499	7.9476 7.9528 7.9581	552 553 554	30 47 04 30 58 09 30 69 16	167 284 151 168 196 608 169 112 377 170 031 464 170 953 875	23.4947 23.5160 23.5372	8.2031 8.2081 8.2130
506 507 508 509	25 60 36 25 70 49 25 80 64 25 90 81	129 554 216 130 323 843 131 096 512 131 872 229 132 651 000	22.4944 22.5167 22.5389 22.5610	7.9686 7.9739 7.9791 7.9843	556 557 558 559	30 91 36 31 02 49 31 13 64 31 24 81	171 879 616 172 808 693 173 741 112 174 676 879 175 616 000	23.5797 23.6008 23.6220 23.6432	8.2229 8.2278 8.2327 8.2377
511 512 513 514	26 11 21 26 21 44 26 31 69 26 41 96	133 432 831 134 217 728 135 005 697 135 796 744	22.6053 22.6274 22.6495 22.6716	7.9948 8.0000 8.0052 8.0104	561 562 563 564	31 47 21 31 58 44 31 69 69 31 80 96	176 558 481 177 504 328 178 453 547 179 406 144	23.6854 23.7065 23.7276 23.7487	8.2475 8.2524 8.2573 8.2621
516 517 518 519	26 62 56 26 72 89 26 83 24 26 93 61	136 590 875 137 388 096 138 188 413 138 991 832 139 798 359	22.7156 22.7376 22.7596 22.7816	8.0208 8 0260 8.0311 8.0363	566 567 568 569	32 03 56 32 14 89 32 26 24 32 37 61	180 362 125 181 321 496 182 284 263 183 250 432 184 220 009	23.7908 23.8118 23.8328 23.8537	S.2719 S.2768 S.2816 8.2865
521 522 523 524	27 14 41 27 24 84 27 35 29 27 45 76	140 608 000 141 420 761 142 236 648 143 055 667 143 877 824	22.8254 22.8473 22.8692 22.8910	8.0466 8.0517 8.0569 8.0620	571 572 573 574	32 60 41 32 71 84 32 83 29 32 94 76	185 193 000 186 169 411 187 149 248 188 132 517 189 119 224	23.8956 23.9165 23.9374 23.9583	8.2962 8.3010 8.3059 8.3107
526 527 528 529	27 66 76 27 77 29 27 87 84 27 98 41	144 703 125 145 531 576 146 363 183 147 197 952 148 035 889	22.9347 22.9565 22.9783 23.0000	8.0723 8.0774 8.0825 8.0876	576 577 578 579	33 17 76 33 29 29 33 40 84 33 52 41	190 109 375 191 102 976 192 100 033 193 100 552 194 104 539	24.0000 24.0208 24.0416 24.0624	S.3203 8.3251 8.3300 8.3348
531 532 533 534	28 19 61 28 30 24 28 40 89 28 51 56	148 877 000 149 721 291 150 568 768 151 419 437 152 273 304	23.0434 23.0651 23.0868 23.1084	8.0978 8.1028 8.1079 8.1130	581 582 583 584	33 75 61 33 87 24 33 98 89 34 10 56	195 112 000 196 122 941 197 137 368 198 155 287 199 176 704	24.1039 24.1247 24.1454 24.1661	8.3443 8.3491 8.3539 8.3587
536 537 538 539	28 72 96 28 83 69 28 94 44 29 05 21	153 130 375 153 990 656 154 854 153 155 720 872 156 590 819	23.1517 23.1733 23.1948 23.2164	8.1231 8.1281 8.1332 8.1382	586 587 588	34 33 96 34 45 69 34 57 44	200 201 625 201 230 056 202 262 003 203 297 472 204 336 469	24.2074 24.2281 24.2487	8.3682 8.3730 8.3777
541 542 543	29 26 81 29 37 64 29 48 49	157 464 000 158 340 421 159 220 088 160 103 007 160 989 184	23.2594 23.2809 23.3024	8.1483 8.1533 8.1583	590 591 592 593	34 81 00 34 92 81 35 04 64 35 16 49	205 379 000 206 425 071 207 474 688 208 527 857 209 584 584	24.2899 24.3105 24.3311 24.3516	8.3872 8.3919 8.3967 8.4014
545 546 547 548	29 70 25 29 81 16 29 92 09 30 03 04	161 878 625 162 771 336 163 667 323 164 566 592 165 469 149	23.3452 23.3666 23.3880 23.4094	8.1683 8.1733 8.1783 8 1833	595 596 597 598	35 40 25 35 52 16 35 64 09 35 76 04	210 644 875 211 708 736 212 776 173 213 847 192	24.3926 24.4131 24.4336 24.4540	S.4108 8.4155 8.4202 8.4249
550	30 25 00	166 375 000	23.4521		600	36 00 00	214 921 799 216 000 000	24.4745	8.4296

NUMBERS	SQUARES	CUBES	SQUARE	CUBE	NUMBERS	SQUARES	CUBES	SQUARE ROOT	CUBE
602 603 604	36 24 04 36 36 09 36 48 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	824.5357 724.5561 424.5764	8.4437 8.4484 8.4530	$652 \\ 653 \\ 654$	42 51 04 42 64 09 42 77 16	275 894 451 277 167 808 278 445 077 279 726 264 281 011 375	25.5343 25.5539 25.5734	8.6713
607 608 609 610	36 84 49 36 96 64 37 08 81 37 21 00	223 648 543 224 755 712 225 866 529 226 981 000	3 24 6374 2 24.6577 9 24.6779 9 24.6982	8.4670 8.4716 8.4763 8.4809	657 658 659 660	43 16 49 43 29 64 43 42 81 43 56 00	282 300 416 283 593 393 284 890 312 286 191 179 287 496 000	25.6320 25.6515 25.6710 25.6905	8.6890 8.6934 8.6978 8.7022 8.7066
612 613 614 615	37 45 44 2 37 57 69 2 37 69 96 2 37 82 25 2	229 220 928 230 346 397 231 475 544 232 608 375	$\begin{array}{c} 324.7386 \\ 24.7588 \\ 24.7790 \\ 24.7992 \end{array}$	8.4902 8.4948 8.4994 8.5040	662 4 663 4 664 4 665 4	43 82 44 43 95 69 44 08 96 14 22 25	288 804 781 290 117 528 291 434 247 292 754 944 294 079 625	25.7294 25.7488 25.7682 25.7876	8.7110 8.7154 8.7198 8.7241 8.7285
617 618 619 620	38 06 89 2 38 19 24 2 38 31 61 2 38 44 00 2	234 885 113 236 029 032 237 176 659 238 328 000	24.8395 8 24.8596 8 24.8797 8 24.8998 8	8.5132 8.5178 8.5224 8.5270	667 4 668 4 669 4 670 4	14 48 89 14 62 24 14 75 61 14 89 00	295 408 296 296 740 963 298 077 632 299 418 309 300 763 000	25.8263 25.8457 25.8650 25.8844	8.7329 8.7373 8.7416 8.7460 8.7503
622 3 623 3 624 3 625 3	38 68 84 2 38 81 29 2 38 93 76 2 39 06 2 5 2	240 641 848 241 804 367 242 970 624 244 140 625	24.9399 8 24.9600 8 24.9800 8 25.0000 8	3.5362 3.5408 3.5453 3.5499	672 4 673 4 674 4 675 4	5 15 84 5 29 29 5 42 76 5 56 25	302 111 711 3 303 464 448 3 304 821 217 3 306 182 024 3 307 546 875 3	25.9230 25.9422 25.9615 25.9808	8.7547 8.7590 8.7634 8.7677 8.7721
627 3 628 3 629 3 630 3	39 31 29 2 39 43 84 2 39 56 41 2 39 69 00 2	246 491 883 247 673 152 248 858 189 250 047 000	25.0400 8 25.0599 8 25.0799 8 25.0998 8	3.5590 3.5635 3.5681 3.5726	677 4 678 4 679 4 680 4	5 83 29 3 5 96 84 3 6 10 41 3 6 24 00 3	308 915 7762 310 288 733 2 311 665 752 2 313 046 839 2 314 432 000 2	26.0192 26.0384 26.0576 26.0768	8.7764 8.7807 8.7850 8.7893 8.7937
632 3 633 4 634 4 635 4	39 94 24 2 0 06 89 2 0 19 56 2 0 32 25 2	52 435 968 53 636 137 54 840 104 56 047 875	25.1396 8 25.1595 8 25.1794 8 25.1992 8	3.5817 3.5862 3.5907 3.5952	682 4 683 4 684 4 685 4	6 51 24 3 6 64 89 3 6 78 56 3 6 92 25 3	315 821 241 2 317 214 568 2 318 611 987 2 320 013 504 2 321 419 125 2	6.1151 6.1343 6.1534 6.1725	8.7980 8.8023 8.8066 8.8109 8.8152
637 4 638 4 639 4 640 4	0 57 69 2 0 70 44 2 0 83 21 2 0 96 00 2	59 694 072 : 60 917 119 : 62 144 000 :	25.2389 8 25.2587 8 25.2784 8 25.2982 8	.6043 (.6088 (.6132 (.6177 (687 4 688 4 689 4 690 4	7 19 69.3 7 33 44 3 7 47 21 3 7 61 00 3	322 828 856 2 324 242 703 2 325 660 672 2 327 082 769 2 328 509 000 2	6.2107 6.2298 6.2488 6.2679	8.8194 8.8237 8.8280 8.8323 8.8366
642 4 643 4 644 4 645 4	1 21 64 20 1 34 49 20 1 47 36 20 1 60 25 20	65 847 7072 67 089 9842 68 336 1252	25.3377 8 25.3574 8 25.3772 8 25.3969 8	.6267 6 .6312 6 .6357 6 .6401 6	692 4′ 693 48 694 48 695 48	7 88 64 3 8 02 49 3 8 16 36 3 8 30 25 3	29 939 371 2 31 373 888 2 32 812 557 2 34 255 384 2 35 702 375 2	6.3059 6.3249 6.3439 6.3629	8.8408 8.8451 8.8493 8.8536 8.8578
647 4 648 4 649 4	1 86 09 27 1 99 04 27 2 12 01 27	70 840 023 2 72 097 792 2 73 359 449 2	25.4362 8 25.4558 8 25.4755 8	.6490 6 .6535 6 .6579 6	597 48 598 48 599 48	8 58 09 ¹ 3 8 72 04 3 8 86 01 3	37 153 536 2 38 608 873 2 40 068 392 2 41 532 099 2 43 000 000 2	6.4008 6.4197 6.4386	8.8621 8.8663 8.8706 8.8748 8.8790

NUMBERS SQUARES	Cubes	SQUARE ROOT	Cuse	NUMBERS	SQUARES		CUBES	SQUARE	Cube Roor
701 49 14 01 702 49 28 04 703 49 42 09 704 49 56 16	345 948 408 347 428 927 348 913 664	26.4764 26.4953 26.5141 26.5330	8.8875 8.8917 8.8959	751 752 753 754	56 40 56 55 56 70 56 85	$\begin{array}{c} 04 \\ 09 \\ 16 \end{array}$	423 564 75 425 259 00 426 957 77 428 661 06	1 27.4044 8 27.4226 7 27.4408 4 27.4591	9.0896 9.0937 9.0977 9.1017
705 49 70 25 706 49 84 36 707 49 98 49 708 50 12 64 709 50 26 81	351 895 816 353 393 243 354 894 912	26.5707 26.5895 26.6083	8.9043 8.9085 8.9127	756 757 758 759	57 15 57 30 57 45 57 60	36 49 64 81	430 368 87 432 081 21 433 798 09 435 519 51 437 245 47	6 27.4955 3 27.5136 2 27.5318 9 27.5500	9.1057 9.1098 9.1138 9.1178 9.1218
711 50 55 21 712 50 69 44 713 50 83 69	357 911 000 359 425 431 360 944 128 362 467 097 3363 994 344	26.6646 26.6833 26.7021	8.9253 8.9295 8.9337	761 762 763	57 91 58 06 58 21	21 44 69	438 976 00 440 711 08 442 450 72 444 194 94 445 943 74	1 27.5862 8 27.6043 7 27.6225	9.1258 9.1298 9.1338 9.1378 9.1418
716 51 26 56 717 51 40 89 718 51 55 24	5365 525 875 5367 061 696 5368 601 813 1370 146 232 1371 694 959	$\frac{26.7582}{26.7769}$	8.9462 8.9503 8.9545	766 767 768	58 67 58 82 58 98	56 89 24	447 697 12 449 455 09 451 217 66 452 984 83 454 756 60	6 27.6767 3 27.6948 2 27.7128	9.1458 9.1498 9.1537 9.1577 9.1617
721 51 98 41 722 52 12 84 723 52 27 29 724 52 41 76	0 373 248 000 1 374 805 361 1 376 367 048 0 377 933 067 6 379 503 424	26.8514 326.8701 726.8887 126.9072	8.9670 8.9711 8.9752 8.9794	771 772 773	59 44 59 59 59 75	41 84 29	456 533 00 458 314 01 460 039 64 461 889 91 463 684 82	1 27.7669 8 27.7849 7 27.8029	9.1657 9.1696 9.1736 9.1775 9.1815
726 52 70 76 727 52 85 29 728 52 99 84 729 53 14 41	5 381 078 125 6 382 657 176 9 384 240 583 4 385 828 352 1 387 420 489	6 26.9444 3 26.9629 2 26.9813 9 27.0000	8.9876 98.9918 68.9959 9.0000	776 777 778 779	60 21 60 37 60 52 60 68	76 29 84 41	5 465 484 37 5 467 288 57 5 469 097 43 5 470 910 93 5 472 729 13	76 27.8568 33 27.8747 52 27.8927 39 27.9106	9.1855 9.1894 9.1933 9.1973 9.2012
731 53 43 63 732 53 58 24 733 53 72 89	0 389 017,,000 1 390 617 '891 4 392 223 163 9 393 832 831 6 395 446 90	1 2 <mark>7.0</mark> 370 8 27.0553 7 27.0740	9.0082 5 9.0123 9.0164	781 ·782 783	60 99 61 15 61 30	61 6 24 6 89	0 474 552 00 1 476 379 54 4 478 211 76 9 480 048 68 5 481 890 30	11 27.9464 58 27.9643 37 27.9821	9.2170
736 54 16 96 737 54 31 69 738 54 46 4- 739 54 61 2	5 397 065 37 6 398 688 25 9 400 315 55 4 401 947 27 1 403 583 41	6 27.1293 3 27.147 2 27.1663 9 27.184	3 9.0287 7 9.0328 2 9.0369 6 9.0410	786 787 788	661 77 761 93 862 09	96 3 69 9 4 4	5 483 736 65 5 485 587 65 9 487 443 46 4 489 303 87 I 491 169 06	56 28.0357 03 28.0535 72 28.0713	
740 54 76 00 741 54 90 8 742 55 05 64 743 55 20 49	0 405 224 000 1 406 869 02 4 408 518 483 9 410 172 400 6 411 830 780	0 27.2029 1 27.2213 8 27.239 7 27.258	99.0450 39.0491 79.0532 09.0572	790 791 792 793	0 62 41 1 62 56 2 62 72 3 62 88	00 6 81 2 64 8 49	0 493 039 00 1 494 913 6 4 496 793 03 9 498 677 2 3 500 566 1	00 28.1069 71 28.1247 88 28.1425 57 28.1603	9.2443 9.2482 9.2521 9.2560
745 55 50 26 746 55 65 10 747 55 80 09 748 55 95 0	5 413 493 623 6 415 160 93 9 416 832 723 4 416 508 99 1 426 189 74	527.294 627.313 327.331 227.349	79.0654 09.0694 39.0735 69.0775	798 796 797 798	5 63 20 5 63 36 7 63 52 8 63 68	0 28 6 10 2 09 8 04	5 502 459 8 5 504 358 3 9 506 261 5 4 508 169 5 1 510 082 3	75 28.1957 36 28.2135 73 28.2312 92 28.2489	9.2638 9.2677 9.2716 9.2754
	0 421 875 00						0 512 000 0		

NUMBERS SQUARES	CUBES	SQUARE	CUBE	NUMBERS	SQUARES	CUBES	SQUARE	CUBE
801 64 16 01 802 64 32 04 803 64 48 03 804 64 64 16 805 64 89 25	515 849 608 517 781 627 519 718 464 521 660 125	28.3196 28.3373 28.3549 28.3725	9.2909 9.2948 9.2986 9.3025	852 853 854	72 59 04 72 76 09 72 93 16	616 295 051 618 470 208 620 650 477 622 835 864 625 026 375	29.1890 29.2062 29.2233	9.4891 9.4838 9.4875
803 64 96 36 807 65 12 49 803 65 23 64 803 65 44 81 810 65 61 00	525 557 943 527 514 112 529 475 129	28.4077 28.4253 28.4429	9.3102 9.3140 9.3179	857 858 859	73 44 49 73 61 64 73 78 81	627 222 016 629 422 793 631 628 712 633 833 779 636 056 000	29.2746 29.2916 29.3087	9.4986 9.5023 9.5030
811 65 77 21 812 65 93 44 813 66 00 69 814 66 25 96 815 66 42 25	535 387 328 537 367 797 539 353 144	28.4956 28.5132 28.5307	9.3294 9.3332 9.3370	862 863 864	74 30 44 74 47 69 74 64 96	638 277 381 640 503 928 642 735 647 644 972 544 647 214 625	29.3598 29.3769 29.3939	9.5171 9.5207 9.5244
816 63 53 56 817 66 74 89 818 66 91 24 819 67 07 61 820 67 24 00	545 333 513 547 343 432 549 353 259	28.5\$32 28.6007 28.6182	9.3485 9.3523 9.3561	867 869 869	75 16 89 75 34 24 75 51 61	649 461 896 651 714 363 653 972 032 656 234 903 658 503 000	29.4449 29.4618 29.4788	9.5354 9.5391 9.5427
821 67 40 41 822 67 56 84 823 67 73 29 824 67 89 76 825 68 06 25	555 412 248 557 441 767 559 476 224	28.6705 28.6330 28.7054	9.3675 9.3713 9.3751	872 873 874	76 03 84 76 21 29 76 38 76	660,776 311 663,054 848 665 333 617 667 627 624 669 921 875	29.5296 29.5466 29.5635	9.5537 9.5574 9.5610
826 68 22 76 \$27 68 39 29 \$23 68 55 84 \$23 68 72 41 \$30 68 89 00	565 609 283 567 663 552 569 722 789	28.7576 28.7750 28.7924	9.3365 9.3302 9.3940	877 878 879	76 91 29 77 08 84 77 26 41	672 221 376 674 526 133 676 836 152 679 151 439 681 472 000	29.6142 29.6311 29.6479	9.5719 9.5756 9.5792
831 69 05 61 832 69 22 24 833 69 38 89 834 69 55 56 835 69 72 25	575 930 368 578 009 537 580 093 704	28.8444 28.8617 28.8791	9.4053 9.4031 9.4129	832 883 884	77 79 24 77 96 89 78 14 56	683 797 841 686 128 968 688 465 387 690 807 104 693 154 125	29.6985 29.7153 29.7321	9.5901 9.5937 9.5973
836 69 88 96 837 70 05 69 838 70 22 44 839 70 39 21 840 70 56 00	586 376 253 588 480 472 590 589 719	28.9310 23.9432 28.9655	9.4241 9.4279 9.4316	887 888 889	78 67 69 78 85 44 79 03 21	695 506 456 697 864 103 700 227 072 702 595 369 704 969 000	29.7825 29.7993 29.8161	9.6032 9.6118 9.6154
841 70 72 81 842 70 89 64 843 71 06 49 844 71 23 36 845 71 40 25	596 947 688 : 599 077 107 : 601 211 584 :	29.0172 29.0345 29.0517	9.4429 9.4468 9.4503	892 893 894	79 56 64 79 74 49 79 92 36	707 347 971 709 732 288 712 121 957 714 516 984 716 917 375	29.8664 29.8831 29.8998	9.6262 9.6298 9.6334
846 71 57 16 847 71 74 03 848 71 91 04 849 72 08 01 850 72 25 00	607 645 423 : 609 800 192 : 611 960 049 :	29 1033 29.1204 29.1376	9.4615 9.4652 9.4690	897 898 899	80 46 09 80 64 04 80 82 01	719 323 136 721 734 273 724 150 792 726 572 699 729 000 000	29.9500 29.9666 29.9833	9.6442 9.6477 9.6513

-									
NUMBERS	SQUARES	CUBES	SQUARE	CUBE	NUMBERS	SQUARES	CUBES	SQUARE	CUBE
902 903 904	81 36 04 81 54 09 81 72 16	731 432 701 733 870 808 736 314 327 738 763 264 741 217 625	30.0333 30.0500 30.0666	9.6620 9.6656 9.6692	951 952 953 954 955	90 44 01 90 63 04 90 82 09 91 01 16 91 20 25	860 085 351 862 801 408 865 523 177 868 250 664 870 983 875	30.8545 30.8707 30.8869	9.8339 9.8374 9.8408 9.8443 9.8477
906 907 908 909	82 08 36 82 26 49 82 44 64 82 62 81	743 677 416 746 142 643 748 613 312 751 089 429	30.0998 30.1164 30.1330 30.1496	9.6763 9.6799 9.6834 9.6870	956 957 958 959 960	91 39 36 91 58 49 91 77 64 91 96 81 92 16 00	873 722 816 876 467 493 879 217 912 881 974 079 884 736 000	30.9192 30.9354 30.9516 30.9677	9.8511 9.8546 9.8580 9.8614 9.8648
911 912 913 914	82 99 21 83 17 44 83 35 69 83 53 96	753 571 000 756 058 031 758 550 528 761 048 497 763 551 944	30.1828 30.1993 30.2159 30.2324	9.6941 9.6976 9.7012 9.7047	961 962 963 964	92 35 21 92 54 44 92 73 69 92 92 96	887 503 681 890 277 128 893 056 347 895 841 344	31.0000 31.0161 31.0322 31.0483	9.8683 9.8717 9.8751 9.8785
916 917 918 919	83 90 56 84 08 89 84 27 24 84 45 61	766 060 875 768 575 296 771 095 213 773 620 632 776 151 559	30.2655 30.2820 30.2985 30.3150	9.7118 9.7153 9.7188 9.7224	965 966 967 968 969	93 12 25 93 31 56 93 50 89 93 70 24 93 89 61	898 632 125 901 428 696 904 231 063 907 039 232 909 853 209	31.0805 31.0966 31.1127 31.1288	9.8819 9.8854 9.8888 9.8922 8.8956
921 922 923 924	84 82 41 85 00 84 85 19 29 85 37 76	778 688 000 781 229 961 783 777 448 786 330 467 788 889 024	30.3480 30.3645 30.3809 30.3974	9.7294 9.7329 9.7364 9.7400	970 971 972 973 974	94 09 00 94 28 41 94 47 84 94 67 29 94 86 76	912 673 000 915 498 611 918 330 048 921 167 317 924 010 424	31.1609 31.1769 31.1929 31.2090	9.8990 9.9024 9.9058 9.9092 9.9126
926 927 928 929	85 74 76 85 93 29 86 11 84 86 30 41	791 453 125 794 022 776 796 597 983 799 178 752 801 765 089	30.4302 30.4467 30.4631 30.4795	9.7470 9.7505 9.7540 9.7575	975 976 977 978 979	95 06 25 95 25 76 95 45 29 95 64 84 95 84 41	926 859 375 929 714 176 932 574 833 935 441 352 938 313 739	31.2410 31.2570 31.2730 31.2890	9.9160 9.9194 9.9227 9.9261 9.9295
931 932 933 934	86 67 61 86 86 24 87 04 89 87 23 56	804 357 000 806 954 491 809 557 568 812 166 237 814 780 504	30.5123 30.5287 30.5450 30.5614	9.7645 9.7680 9.7715 9.7750	980 981 982 983 984	96 04 00 96 23 61 96 43 24 96 62 89 96 82 56	941 192 000 944 076 141 946 966 168 949 862 087 952 763 904	31.3209 31.3369 31.3528 31.3688	9.9329 9.9363 9.9396 9.9430 9.9464
936 937 938 939	87 60 96 87 79 69 87 98 44 88 17 21	817 400 375 820 025 856 822 656 953 825 293 672 827 936 019	30.5941 ¹ 30.6105 30.6268 30.6431	9.7819 9.7854 9.7889 9.7924	985 986 987 988 989	97 02 25 97 21 96 97 41 69 97 61 44 97 81 21	955 671 625 958 585 256 961 504 803 964 430 272 967 361 669	31.4006 31.4166 31.4325	9.9497 9.9531 9.9565 9.9598 9.9632
941 942 943	88 54 81 88 73 64 88 92 49	830 584 000 833 237 621 835 896 888 838 561 807 841 232 384	30.6757 30.6920 30.7083	9.7993 9.8028 9.8063	990 991 992 993 994	98 01 00 98 20 81 98 40 64 98 60 49 98 80 36	970 299 000 973 242 271 976 191 488 979 146 657 982 107 784	31.4802 31.4960 31.5119	9.9666 9 9699 9.9733 9.9766 9.9800
945 946 947 948	89 30 25 89 49 16 89 68 09 89 87 04	843 908 625 846 590 536 849 278 123 851 971 392 854 670 349	30.7409 30.7571 30.7734 30.7896	9.8132 9.8167 9.8201 9.8236	995 996 997 998 999	99 00 25 99 20 16 99 40 09 99 60 04	985 074 875 988 047 936 991 026 973 994 011 992	31.5436 31.5595 31.5753 31.5911	9.9833 9.9866 9.9900 9.9933
950	90 25 00	857 375 000	30.8221	9.8305	1000	99 80 01 100 00 00	997 002 999	31.6228	10.0000

PATENT COLD ROLLED STEEL SHAFTING, Piston Rods, Etc.

		Ro	UND			Sq	UARE
Diameter Inches	Weight Per Foot	Diameter Inches	Weight Per Foot	Diameter Inches	Weight Per Foot	Side Inches	Weight Per Foot
6 515 51/2 576	96.22 94.23 80.85 79.01	23/8 21/8 21/4 23/4 23/6	15.07 14.29 13.52 12.79	1569 564 252 237 8	2.35 2.27 2.19 2.05	4 3 ³ / ₄ 3 ¹ / ₂ 3 ¹ / ₄	54.45 47.84 41.68 35.94
$\begin{array}{c} 5\\ 4\frac{15}{16}\\ 4\frac{3}{4}\\ 4\frac{1}{2} \end{array}$	66.82 65.15 60.30 54.83	$ \begin{array}{r} 2\frac{1}{8} \\ 2\frac{1}{16} \\ 2 \\ 1\frac{15}{16} \end{array} $	12.06 11.36 10.69 10.03	277 353 64 13 156	1.90 1.83 1.76 1.70	$\begin{array}{c} 3 \\ 2\sqrt[3]{4} \\ 2\sqrt[1]{2} \\ 2\sqrt[1]{4} \end{array}$	$egin{array}{c} 30.62 \\ 25.73 \\ 21.26 \\ 17.22 \\ \end{array}$
$\begin{array}{c} 4\frac{7}{16} \\ 4\frac{1}{4} \\ 4\frac{3}{16} \\ 4 \end{array}$	52.62 48.28 46.87 42.77	$1\frac{7}{8}$ $1\frac{37}{3}$ $1\frac{13}{16}$ $1\frac{3}{4}$	9.39 9.09 8.78 8.18	25 32 3/4 47 64 23 32	1.63 1.50 1.44 1.38	$\begin{array}{c} 2 \\ 1\frac{3}{4} \\ 1\frac{5}{8} \\ 1\frac{1}{2} \end{array}$	13.61 10.42 8.98 7.66
$3\frac{15}{16}$ $3\frac{7}{8}$ $3\frac{3}{4}$ $3\frac{11}{16}$	41.43 40.13 37.57 36.33	$1\frac{1}{16}$ $1\frac{5}{8}$ $1\frac{9}{16}$ $1\frac{1}{2}$	7.61 7.06 6.52 6.01	116 433 64 222 341	1.26 1.21 1.15 1.10	$ \begin{array}{c} 13/8 \\ 11/4 \\ 11/8 \\ 11/6 \end{array} $	6.43 5.32 4.31 3.84
$3\frac{5}{8}$ $3\frac{1}{16}$ $3\frac{1}{2}$ $3\frac{7}{16}$	35. 12 33. 91 32. 74 31. 57	$1\frac{15}{32}$ $1\frac{9}{16}$ $1\frac{13}{32}$ $1\frac{3}{8}$	5.77 5.52 5.29 5.05	5/8 19 32 9 16 17 32	1.04 .94 .85 .74	1 15 16 7/8 13 16	3.40 2.99 2.61 2.25
$3\frac{3}{8}$ $3\frac{1}{4}$ $3\frac{3}{16}$ $3\frac{1}{8}$	30.43 28.23 27.15 26.10	$1\frac{5}{16}$ $1\frac{9}{32}$ $1\frac{1}{4}$ $1\frac{7}{32}$	4.60 4.38 4.18 3.97	1/2 155 32 16 13 32	.67 .59 .51 .44	3/4 11 16 5/8 9	1.91 1.61 1.33 1.08
$\begin{array}{c} 3 \\ 2\frac{15}{16} \\ 2\frac{7}{8} \\ 2\frac{13}{16} \end{array}$	24.05 23.06 22.09 21.14	$\begin{array}{c} 1\frac{2}{100} \\ 1\frac{3}{16} \\ 1\frac{5}{32} \\ 1\frac{1}{8} \end{array}$	3.85 3.77 3.57 3.38	3/8 11 32 56 16 1/4	.38 .32 .26 .17	1/2 76 3/8 11 32	.85 .65 .48 .40
$ \begin{array}{c} 2\frac{3}{4} \\ 2\frac{11}{16} \\ 2\frac{5}{8} \\ 2\frac{9}{16} \end{array} $	20.21 19.30 18.41 17.55	$1\frac{3}{32}$ $1\frac{5}{64}$ $1\frac{1}{16}$ $1\frac{1}{32}$	3.20 3.11 3.02 2.84	37 37 16	.13	$\begin{array}{r} \frac{5}{16} \\ \frac{9}{32} \\ 1/4 \\ \frac{7}{32} \end{array}$.33 .27 .21 .16
$2\frac{1}{2}$ $2\frac{7}{16}$	16.70 15.87	$\frac{1}{\frac{31}{32}}$	2.67 2.51		!		

Made to Whitworth's Standard Gauge, and accurately straightened. The shafts are kept on hand at the mill, in lengths of 24 feet, and are cut to any length desired.

SEND FOR OUR SHAFTING CATALOGUE.

STANDARD TURNBUCKLES

Cleveland City Forge and Iron Company
(For reference only. Not made by Jones & Laughlin Steel Co.)

Size D Inches	Length L Inches	Weight of Buckle Pounds	Weight of Buckle and Bolt Ends Pounds	Size D Inches	Length L Inches	Weight of Buckle Pounds	Weight of Buckle and Bolt Ends Pounds
3/8 7/6 1/2 9/6 5/8 3/4 7/8 1 11/8 11/4 13/8 11/2 15/8 13/4 17/8	22 22 22 22 22 23 24 25 26 27 27 28 28 29	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{array} $ $ 2\frac{1}{2} \\ 3 $ $ 4 $ $ 6 $ $ 8 $ $ 11 $ $ 13 $ $ 16 $ $ 19 $ $ 23 $ $ 26 $ $ 30 $	2 2½ 2½ 2½ 2 ³ / ₈ 2½ 2 ⁵ / ₈ 2 ³ / ₄ 2 ⁷ / ₈ 3 3½ 3 ¹ / ₄ 3 ³ / ₈ 3 ¹ / ₂ 3 ³ / ₄	29 29 30 31 32 32 33 34 36 36 37 37 39 41	14 17 20 22 25 30 33 36 40 65	35 41 47 53 61 70 78 86 96 120

- D. Size = Outside diameter of screws.
- A. Length in clear between heads = 6 inches first length for all sizes.
 - B. Length of tapped heads $= 1\frac{1}{2}$ D.
- C. Total length of buckle without bolt ends = 6 inches + 3 D, nearly.
 - L. Total length of buckle and stub ends when open.

L.—A = Length of two stub ends.

The "size" of the buckle is the outside diameter of the screw, same as bolts, nuts, etc.

STANDARD CLEVISES

King Bridge Company, Cleveland, Ohio (For reference only. Not made by Jones & Laughlin Steel Co.)

W varies to suit connections

DIMENSIONS IN INCHES

D	Min.	Max.	Н	M	L .	Т	G	A
$\begin{array}{c} 1 \\ 1^{1/8} \\ 1^{1/4} \\ 1^{3/8} \\ 1^{1/2} \\ 1^{5/8} \\ 1^{3/4} \\ 1^{7/8} \\ 2 \\ 2^{1/8} \\ 2^{1/4} \\ 2^{3/8} \\ 2^{1/2} \\ 2^{5/8} \\ 2^{3/4} \\ 2^{7/8} \\ 3 \\ \end{array}$	$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{5}{16} \\ 1\frac{5}{16} \\ 1\frac{9}{16} \\ 1\frac{13}{16} \\ 1\frac{13}{16} \\ 2\frac{1}{16} \\ 2\frac{5}{16} \\ 2\frac{9}{16} \\ 2\frac{13}{16} \\ 2\frac{13}{16} \\ 3\frac{1}{16} \\ 3\frac{1}{16} \\ 3\frac{1}{16} \\ 3\frac{1}{16} \end{array}$	$\begin{array}{c} 2\frac{5}{16} \\ 2\frac{5}{16} \\ 2\frac{5}{16} \\ 2\frac{9}{16} \\ 2\frac{9}{16} \\ 2\frac{13}{16} \\ 2\frac{13}{16} \\ 3\frac{1}{16} \\ 3\frac{5}{16} \\ 3\frac{1}{16} \\ 3\frac{1}{16} \\ 3\frac{1}{16} \\ 3\frac{1}{16} \\ 4\frac{1}{16} \\ 4\frac{1}{16} \\ 4\frac{1}{16} \end{array}$	$4\frac{1}{4}$ $4\frac{1}{4}$ $4\frac{1}{4}$ $4\frac{1}{4}$ $4\frac{3}{4}$ $4\frac{3}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{3}{4}$ $6\frac{1}{4}$ $6\frac{3}{4}$ $7\frac{1}{4}$ 8 8	3/8/8/8/1/2/29/6/8/8/1/6/4/43/63/6/8/8 1/2/29/6/8/8/1/6/4/43/6/3/6/8/8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2\\ 2\\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3\frac{1}{4} \\ 3\frac{1}{4} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	1½ 1½ 1½ 1½ 2 2 2 ½ 2¼ 2¼ 2¼ 2¾ 3 3 3 ¼ 3¼ 3¼ 3½ 3½ 3½ 3½	21/8 21/8

STANDARD SLEEVE NUTS

King Bridge Company, Cleveland, Ohio

(For reference only. Not made by Jones & Laughlin Steel Co.)

Threads, U.S. Standard

E DIAMETER OF SCREW •INCHES	S Length of Nut Inches	T Length OF THREAD INCHES	W DIAMETER OF HEXAGON INCHES	WEIGHT OF ONE NUT POUNDS	WEIGHT OF ONE NUT AND TWO SCREW ENDS POUNDS
3/4 7/8	8 8	1 1½			**
1 11/8 11/4 13/8 11/2 15/8 13/4 17/8	8 8 8 8 8 8	11/4 13/8 11/2 15/8 13/4 17/8 2 21/8			
2 21/8 21/4 23/8 21/2 25/8 23/4 27/8	10 10 10 10 10 10 10	21/4 23/8 21/2 25/8 23/4 27/8 3			
3 3½ 3½ 3½ 3½ 35/8 33/4 37/8	10 12 12 12 12 12 12 12 12	314 33/8 31/2 35/8 33/4 37/8 4 41/8			
4 4½	12 12	4½ 43/8			

STANDARD SHOULDERED PINS

King Bridge Company, Cleveland, Ohio (For reference only. Not made by Jones & Laughlin Steel Co.)

Eight threads per inch.

I	DIMENSI	ONS IN	Inche	s		DIMENS	SIONS IN	INCHE	S
P	S	D	F	н	P	S	D	F	Н
1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/4 3/4 1 1 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1	27/8 27/8 31/8 31/2 31/2 4 4 43/8 43/8 45/8 45/8 45/8 45/8 45/8 61/8 61/8 65/8 65/8 67 7 71/4 71/2 71/2	3/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8	2½2 2½2 2¾4 3 3 3½2 3½2 3¾4 4 4¼4 4½4 4½4 4½2 4¾4 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4	5½2 5½5 5¾6 5¾6 6¼8 6¼6 6¾6 6¾6 6¾6 6¾6 6¾6 6¾6 6¾6	4 4 4 4 1 2 4 1 2 4 1 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7	734 734 734 814 814 814 834 834 838 858 858 9 9 9 978 978 978 978 978 978 978 1034 1158 1158 1158 1158 1158 114 1134 1134 1134 1134 1134 11434 11434 11434 11434	7/8 7/8 3/4 7/8 3/4 7/8 1 1 1 1 1 1 1 1 1 1 1 1 1	634 634 7 7 714 714 714 714 714 714 714 734 734 734 734 812 914 914 10 10 10 10 10 10 11 11 11 11 11 11 11

STANDARD LOOPED EYES AND UPSETS

King Bridge Company, Cleveland, Ohio (For reference only. Not made by Jones & Laughlin Steel Co.)

P = Diameter of pin. Threads, U. S. Standard.

D, Side of Square, Inches	E, Diameter of Upset, Inches	U, Length of Upset, Inches	L, Add for Upset, Inches	F, Squarefor Double Loop, Inches	Length of Material for Double Loop Feet and Inches	D, Side of Square, Inches	E, Diameter of Upset, Inches	U, Length of Upset, Inches	L, Add for Upset, Inches	F, Squarefor Double Loop, Inches	Length of Material for Double Loop Feet and Inches
1/2 96 5/8 116/43 17/35 16	3/4 7/8 1 1 1/8 1/4 13/8 13/8	5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5	3/9 1/2/2 1/2/9 1/2/2 1/6 1/6 1/6 1/6	2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9	113 7/8 15 16 1/8 3 16	25/8 25/8 23/4 27/8 3 31/8	6 6 6 6 7	5 5 5 5 5 6 6	15/16 13/8 13/8 13/8 11/2 11/2 11/6 11/6	3 0 3 0 3 0 3 0 3 0 3 0 3 6
1 16 1/8 3 16 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1½2 15/8 15/8 13/4 17/8 2 2½8 2½8 2½8 2½8 2½2	6 6 6 6 6 6 6 6 6 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3/4 3/4 136 7/85 156 116 116 116 116 117 117 117 117 117 11	3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0	16 1/8 3 6 1/4 5 6 1/2 9 6 5/8 1 6 6 1/2 1 5 6 1/8 1 5 6	27/8 27/8 3 31/8 31/8 31/4 33/8 31/2 35/8 35/8 37/8 4 41/8	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	176 11/2 196 196 15/8 11/3 11/3 11/3 11/3 11/3 11/3 11/3 11	3 0 3 0 3 0 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6

ADJUSTABLE EYE BARS

King Bridge Company, Cleveland, Ohio

(For reference only. Not made by Jones & Laughlin Steel Co.)

Lengths of upsets are for King Bridge Company's standard sleeve nuts.

Add two inches for Cleveland turnbuckles.

A, Inches	B, Inches	E, Inches	Area of Bar	Area at Root of Thread	U, Inches	Add for Upset Inches	A, Inches	B, Inches	E, Inches	Area of Bar	Area of Root of Thread	U, Inches	Add for Upset Inches
7 7 7 7	1½ 1¾ 1¼ 1½ 1	4½ 4¼ 4 4 3¾	10.5 9.63 8.75 7.88 7.	12.57 12.41 9.99 9.99 8.64	9 8½ 8 7½ 7½	18 17 16 16 15	4 4 4 4 4 4	1 ³ / ₄ 1 ⁵ / ₈ 1 ¹ / ₂ 1 ³ / ₈ 1 ¹ / ₄ 1 ¹ / ₈	3 ³ / ₄ 3 ¹ / ₂ 3 ¹ / ₂ 3 ¹ / ₄ 3 ¹ / ₄ 3 2 ³ / ₄ 2 ⁵ / ₈ 2 ¹ / ₂	7. 6.5 6. 5.5 4.5 4.	8.64 7.55 7.55 6.51 6.51 5.43 4.62	$ \begin{bmatrix} 7^{1}/2 \\ 7 \\ 7 \\ 6^{1}/2 \\ 6 \\ 6 \end{bmatrix} $	15 14 14 13 13 12 12
6 6 6	15/8 11/2 13/8 11/4 11/8	$4\frac{1}{2}$ $4\frac{1}{4}$ 4 $3\frac{3}{4}$	9.75 9. 8.25 7.5 6.75	12.57 11.41 9.99 8.64	$ \begin{array}{c c} 9. \\ 8\frac{1}{2} \\ 8 \\ 7\frac{1}{2} \\ 7\frac{1}{2} \end{array} $	18 17 16 15	4 4 4	7/8 3/4		4. 3.5 3.	4.16 3.72	6	12
6 6 6 6 6	1½8 1 7/8 3/4	3 ³ / ₄ 3 ¹ / ₂ 3 ¹ / ₄ 3	6.75 6. 5.25 4.5	8.64 7.55 6.51 5.43	7½ 7 6½ 6	15 14 13 12	3½ 3½ 3½ 3½ 3½ 3½ 3½	1½ 1½ 1 7/8 3/4	$ \begin{array}{c} 3 \\ 2^{3}/4 \\ 2^{5}/8 \\ 2^{1}/2 \\ 2^{3}/8 \end{array} $	4.38 3.94 3.5 3.06 2.63	5.43 4.62 4.16 3.72 3.30	6 6 6 6	12 12 12 12 12
555555555	13/4 15/8 11/2 13/8 11/4 11/8	4½ 4 3¾ 3¾ 3½ 3½ 3¼ 3¼ 3¼ 3¼	8.75 8.13 7.5 6.88 6.25 5.63 5.	11.41 9.99 8.64 8.64 7.55 6.51 6.51 5.43	8½ 8 7½ 7½ 7 6½ 6½ 6 6	17 16 15 15 14 13 13	3 3 3 3 3 3 3	1½ 13/8 1¼ 1½ 1 7/8 3/4	3 27/8 23/4 25/8 21/2 21/4 21/4	4.5 4.13 3.75 3.38 3. 2.63 2.25	5.43 4.92 4.62 4.16 3.72 3.02 3.02	6 6 6 6	12 12 12 12 12 12 12 12
	7/8 3/4 11/2 13/8 11/4 11/8	3 2 ³ / ₄ 3 ³ / ₄ 3 ¹ / ₂ 3 ¹ / ₄	4.38 3.75 6.75 6.19 5.63	4.62 8.64 7.55 6.51 6.51	6 6 7 ¹ / ₂ 7 6 ¹ / ₂ 6 ¹ / ₂	15 14 13 13	2½ 2½ 2½ 2½ 2½ 2½ 2½	1½ 1½ 1½ 1 7/8 3/4	2½ 2¾ 2¼ 2¼ 2½ 2½ 2	3.13 2.81 2.5 2.19 1.88	3.72 3.30 3.02 2.65 2.30	6 6 6	12 12 12 12 12 12
4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½	11/8 1 7/8 8/4	31/4 3 27/8 25/8	5.06 4.5 3.94 3.38	6.51 5.43 4.92 4.16	61/2 6 6 6	13 12 12 12 12	2 2 2	1 7/8 3/4	2½ 2 1½ 1½	$\begin{bmatrix} 2. \\ 1.75 \\ 1.5 \end{bmatrix}$	2.65 2.30 2.05	6 6	12 12 12

STANDARD EYE BARS

For reference only.
Not made
by Jones &
Laughlin
Steel Co.

				NCHES						NCHES	
A	Minimum	চ্য	D Maximum	Excess Section S-S	G For Eye	A	B	(+	D Maximum	Excess Section S-S	G For Eye
$\begin{array}{c} 12 \\ 12 \\ 12 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	13/4 13/4 13/4 13/4 13/4 13/4 13/4 13/4	24 22 26½ 24 22 21 20 20 19 18 14 18 17 16 15 17½ 16 15½ 16 15½ 11 11 10 1½ 11 11 10 1½ 11 11 10 1½ 11 11 10 1½ 11 11 10 1½ 11 11 10 1½ 11 11 11 11 11 11 11 11 11 11 11 11	7 16 5 7 6 5 7 6 5 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 7 6 5 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 7 7 7 7	40% 40% 40% 40% 40% 40% 40% 40% 40% 40%	31 25½2 39½4 39 32 29 26 31 30 34½2 27 19 32 28½2 21 35½2 21 22 29 27 25 24 21½2 20½2 30 27½2 21½2 21½2 21½2 21½2 21½2 21½2 21½2 21½2 21½2 21½2 21½2 21½2 20½2 30 27½2 24½2 20½2 30 27½2 24½2 20½2 30 27½2 20½2 30 27½2 20½2 30 27½2 20½2 30 27½2 20½2 30 27½2 20½2 30 27½2 20½2 30 20½2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 1/2 3 1/2 3 1/2 2 1/2 2 1/2 2 1/2 2 1/2 2 1/2 2 1/2 2 1/2 2 1/2 2 1/2 2 1/2 1/	3/	10 9½2 9 8½2 8 10 9½2 9 8½2 7 10 9½2 9 8½2 7 10 9½2 9 8½2 7 6½2 7 6½2 6 5½2 5 4¾4 4 3¾4 4 3¾4 4 3¾4 4 3¾4 4 3¾4 3¾	43/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8	40% 40% 40% 40% 40% 40% 40% 40% 40% 40%	17 15½ 14½ 13 12 20½ 18 16 14 13 12 11 27 24 19 17 16 14 13 12 10¾ 17 14½ 13 12 11 10 9 15 13 11 10 9 15 16 14 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19

King Bridge Company's Steel Eye Bars

Notes

King Bridge Company's standard eye bars are hydraulic forged without the addition of extraneous metal and without buckles or welds, and are guaranteed under the conditions given in the preceding table to develop value of the bar when tested to destruction.

The heads on standard eye bars are finished of the same thickness (B) as body of bar.

We contract only for finished eye bars, that is, with the eyes bored at distances apart from center to center as required, and of right diameter to fit the size of pin to be used.

Unless otherwise specified, steel of the following quality will be used: Ultimate strength, 60,000 to 68,000 pounds per square inch.

Elastic limit not less than one-half the tensile strength.

Elongation from 17 to 20 per cent; the elongation to be measured after breaking on an original length of ten times the shortest dimensions of the test piece. Reduction of area 34 to 40 per cent. To all bars 1 inch thick and under add ½ inch to above adds.

DATA TO BE FURNISHED JONES & LAUGHLIN STEEL
COMPANY WHEN REQUESTING A TENDER
FOR STEEL EYE BARS

ER 3BD	Sı	ZE OF BA	AR	НЕА	AD A	НЕА	рΒ	RKS
Numb Requir	Width	Thickness	Length c to c holes	Diameter Pin	Diameter Head	Diameter Pin	Diameter Head	Rema

DECIMALS OF A FOOT FOR EACH 1-64 INCH

СН						Inci	HES					
INCH	0	1	2	3	4	5	6	7	8	9	10	11
0	. 0	. 0833	. 1667	. 2500	.3333	.4167	. 5000	. 5833	. 6667	. 7500	. 8333	.9167
$\frac{1}{64}$ $\frac{3}{32}$ $\frac{3}{64}$ $\frac{1}{16}$	0.0026 0.0039	0.0859 0.0872	. 1680 . 1693 . 1706 . 1719	.2526 $.2539$.3359	. 4193	. 5026 . 5039	.5846 .5859 .5872 .5885	.6693	.7526 .7539	.8359 .8372	.9193 $.9206$
$\frac{5}{64}$ $\frac{3}{32}$ $\frac{7}{64}$ $\frac{1}{8}$.0078	.0898 .0911 .0924 .0937	.1745	.2578 $.2591$.3411 .3424	.4245 $.4258$. 5078 . 5091	.5898 .5911 .5924 .5937	.6745 .6758	.7578	.8411	.9243 $.9253$
9 64 5 32 11 64 3	.0130	.0964	. 1810	$.2630 \\ .2643$	3464 3477	. 4297 . 4310	. 5130 . 5143	. 5951 . 5964 . 5977 . 5990	.6797	$.7630 \\ .7643$.8464	.9297
$\frac{13}{64}$ $\frac{7}{32}$ $\frac{15}{64}$ $\frac{1}{4}$.0169 .0182 .0195 .0208	. 1016	. 1836 . 1849 . 1862 . 1875	$2682 \\ 2695$	3516 3529	$.4349 \\ .4362$. 5182 . 5195	. 6003 . 6016 . 6029 . 6042	.6849	.7682 $.7695$.8516 $.8529$.9349 $.9362$
17 64 9 32 19 64 5	.0221 .0234 .0247 .0260	. 1068	. 1901	.2734 .2747	.3568 $.3581$.4401	.5234 $.5247$. 6055 . 6068 . 6081 . 6094	.6901 $.6914$.7734 .7747	.8568	.940:
21 64 11 32 23 64 3/8	.0273 .0286 .0299 .0312	.1120	. 1940 . 1953 . 1966 . 1979	.2786 $.2799$	3620 3633	$.4453 \\ .4466$.5286 .5299	.6107 .6120 .6133 .6146	.6953 $.6966$.7786 .7799	.8607 .8620 .8633 .8646	.945
25 13 27 16 7 16	$\begin{bmatrix} .0339 \\ .0352 \end{bmatrix}$.1172		.2852	$\begin{bmatrix} .3672 \\ .3685 \end{bmatrix}$.4505 $.4518$	5339 5352	.6159 .6172 .6185 .6198	.7005 $.7018$.7839 $.7852$.8672 $.8685$.9503 $.9513$
29 64 15 32 31 64 1/2	.0391	. 1211 . 1224 . 1237 . 1250	.2057	.2891 $.2904$.3724	.4557	.5391	.6237	.7057 $.7070$.7891 .7904	.8724	.955

DECIMALS OF A FOOT FOR EACH 1-64 INCH

INCH						Inc	CHES				1	
Z	0	1	2	3	4	5	6	7	8	9	10	11
1/2	.0417	. 1250	. 2083	.2917	. 3750	.4583	. 5417	. 6250	.7083	.7917	.8750	.9583
$\frac{17}{32}$	0430 0443 0456 0469	.1276 $.1289$.2109 $.2122$.2943 $.2956$. 3776	.4609 $.4622$	0.5443 0.5456	. 6276	.7109 $.7122$	1.7943 1.7956	.8776 .8789	.9609
37 64 19 32 64 5/8	0.0495 0.0508	. 1328 . 1341	$.2161 \\ .2174$	$.2995 \\ .3008$.3841	$.4661 \\ .4674$. 5495 . 5508	.6328	.7161 .7174	.7995	.8828	$9661 \\ 9674$
41 64 21 32 43 64 11	.0534 .0547 .0560 .0573	.1380	.2214 $.2227$	3047 3060	3880 3893	.4714 $.4727$. 5547	.6380 $.6393$.7214 $.7227$.8060	.8880	.9714
45 643,27 464 344 468 4	.0586 .0599 .0612 .0625	.1432	$.2266 \\ .2279$.3099	.3945	.4766 $.4779$	5599 5612	.6432	.7266 $.7279$.8099 .8112	.8932 .8945	.9766 .9779
49 64 25 32 56 43 16	.0638 .0651 .0664 .0677	. 1484	.2318	$.3151 \\ .3164$.3984	. 4818 . 4831	$.5651 \\ .5664$	$.6484 \\ .6497$.7318 .7331	.8151 .8164	.8984	.9805 .9818 .9831 .9844
55	.0690 .0703 .0716 .0729	. 1536 . 1549	.2370	3203 3216	.4036 $.4049$	$.4870 \\ .4883$. 5703 . 5716	.6536 $.6549$.7370 .7383	.8203 .8216	0.9036 0.9049	.9857 .9870 .9883 .9896
57 64 32 35 64 15 16	.0742 .0755 .0768 .0781	. 1576 . 1589 . 1602 . 1615	. 2409 . 2422 . 2435 . 2448	. 3242 . 3255 . 3268 . 3281	. 4076 . 4089 . 4102 . 4115	. 4909 . 4922 . 4935 . 4948	. 5742 . 5755 . 5768 . 5781	.6576 .6589 .6602 .6615	.7409 .7422 .7435 .7448	.8242 .8255 .8268 .8281	.9076 .9089 .9102 .9115	.9909 .9922 .9935 .9948
31	.0794 .0807 .0820	1641 .	.2474	. 3307	. 4141	.4974	. 5807	. 6641	.7474	. 8307	.9141	.9961 .9974 .9987 1.0000

DECIMALS OF AN INCH FOR EACH I-64TH

32 DS	1 THS	DECIMAL	FRACTION	32DS	LATHS	DECIMAL	FRACTION
1 2	1 2 3 4	.015625 .03125 .046875 .0625	1–16	17 18	33 34 35 36	.515625 .53125 .546875 .5625	9–16
3	5 6 7 8	.078125 .09375 .109375 .125	1-8	19 20	37 38 39 40	.578125 .59375 .609375 .625	5-8
5	9 10 11 12	.140625 .15625 .171875 .1875	3–16	21 22	41 42 43 44	.640625 .65625 .671875 .6875	11–16
7	13 14 15 16	.203125 .21875 .234375 .25	1–4	23	45 46 47 48	.703125 .71875 .734375 .75	3-4
9	17 18 19 20	.265625 .28125 .296875 .3125	5–16	25 26	49 50 51 52	.765625 .78125 .796875 .8125	13-10
11 12	21 22 23 24	.328125 .34375 .359375 .375	3-8	27 28	53 54 55 56	.828125 .84375 .859375 .875	7-8
13 14	25 26 27 28	.390625 .40625 .421875 .4375	7–16	29	57 58 59 60	.890625 .90625	
15	29 30 31	.453125 .46875 .484375		31	61 62 63	.9375 .953125 .96875 .984375	15-1
16	32	.5	1-2	32	64	1.	1

TABLE CONVERTING INCHES AND FEET TO METRIC MEASURES

INCHES	METRES	FEET	METRES	FEET	METRES	FEET	Metres
$\begin{array}{c} -\frac{1}{64} \\ \frac{1}{32} \\ \frac{1}{36} \\ \frac{1}{16} \\ \frac{1}{8} \\ \frac{3}{16} \\ \frac{1}{4} \end{array}$.000397 .000794 .001588 .003175 .004763	1 2 3 4 5	.3048 .6096 .9144 1.2192 1.5240	36 37 38 39 40	10.9727 11.2775 11.5823 11.8871 12.1919	71 72 73 74 75	21.6406 21.9454 22.2502 22.5550 22.8598
16 14 5 16 3/8 76 1/2	.006350 .007938 .009525 .011113 .012700	6 7 8 9 10	1.8288 2.1336 2.4384 2.7432 3.0480	41 42 43 44 45	12.4967 12.8015 13.1063 13.4111 13.7159	76 77 78 79 80	23.1646 23.4694 23.7742 24.0790 24.3838
9 16 5/8 11 16 3/4	.014287 .015875 .017462 .019050	11 12 13 14 15	3.3528 3.6576 3.9624 4.2672 4.5720	46 47 48 49 50	14.0207 14.3255 14.6303 14.9351 15.2399	81 82 83 84 85	24.6886 24.9934 25.2982 25.6030 25.9078
$\frac{13}{16}$ $\frac{1}{7}$ $\frac{15}{16}$ 1 2 3	.020637 .022225 .023812 .0254 .0508	16 17 18 19 20	4.8768 5.1816 5.4864 5.7912 6.0959	51 52 53 54 55	15.5447 15.8495 16.1543 16.4591 16.7638	86 87 88 89 90	26.2126 26.5174 26.8222 27.1270 27.4318
3 4 5 6	.0762 .1016 .1270 .1524 .1778	21 22 23 24 25	6.4007 6.7055 7.0103 7.3151 7.6199	56 57 58 59 60	17.0686 17.3734 17.6782 17.9830 18.2878	91 92 93 94 95	27.7366 28.0414 28.3461 28.6509 28.9557
8 9 10 11 12	.2032 .2286 .2540 .2794 .3048	26 27 28 29 30	7.9247 8.2295 8.5343 8.8391 9.1439	61 62 63 64 65	18.5926 18.8974 19.2022 19.5070 19.8118	96 97 98 99 100	29.2605 29.5653 29.8701 30.1749 30.4797
	1	31 32 33 34 35	9.4487 9.7535 10.0583 10.3631 10.6679	66 67 68 69 70	20.1166 20.4214 20.7262 21.0310 21.3358	101 102 103 104 105	30.7845 31.0893 31.3941 31.6989 32.0037

Example for explanation: 90 ft. = 27.4318 m. = 27 m. 43 cm. 1.8 mm., or = 27 metres, 43 centimetres, 1_{10}^{8} millimetres.

METRIC MEASURE CONVERTED INTO INCHES

KES					MILLI	METRE	s			
METRES	0	1	2	3	4	5	6	7	8	9
) 1 2 3 4	.00	.04	.08	.12	. 16	.20	.63	.28	.31	.35
	1.18	.83 1.22	.87 1.26	.91	.94	. 98 1. 38	1.02	1.06	1.10 1.50	1.14 1.54
	1.57	$1.61 \\ 2.01$	$1.65 \\ 2.05$	$1.69 \\ 2.09$	$1.73 \\ 2.13$	1.77 2.17	$\begin{array}{ c c c c }\hline 1 & 81 \\ 2 & 20 \\ \end{array}$	$1.85 \\ 2.24$	$\begin{vmatrix} 1.89 \\ 2.28 \end{vmatrix}$	1.93 2.32
	$\begin{bmatrix} 2.36 \\ 2.76 \end{bmatrix}$	2.40 2.80	2.44 2.83	$2.48 \\ 2.87$	$2.52 \\ 2.91$	$2.56 \\ 2.95$	$2.60 \\ 2.99$	2.64 3.03	$\frac{2.68}{3.07}$	$\frac{2.75}{3.1}$
	3.15	3.19	3.23	3.27	3.31	3.35	3.39	3.43	3.46	3.5
	3.54 3.94	3.58	$\frac{3.62}{4.02}$	3.66 4.06	3.70 4.09	3.74 4.13	3.78 4.17	$\begin{vmatrix} 3.82 \\ 4.21 \end{vmatrix}$	$\begin{vmatrix} 3.86 \\ 4.25 \end{vmatrix}$	$\frac{3.90}{4.29}$
	4.33	4.37	4.41	4.45	4.49	4.53	4.57	4.61	4.65	4.69
	$\begin{vmatrix} 4.72 \\ 5.12 \end{vmatrix}$	4.76 5.16	4.80 5.20	4.84 5.24	4.88 5.28	4.92 5.32	4.96 5.35	5.00	5.04 5.43	5.08 5.4
	5.51 5.91	5.55 5.95	5.59 5.98	$5.63 \\ 6.02$	5.67 6.06	5.71 6.10	5.75 6.14	5.79 6.18	5.83 6.22	$\begin{array}{c} 5.8 \\ 6.2 \end{array}$
	6.30	6.34	6.38	6.42	6.46	6.50	6.54	6.57	6.61	6.6
	6.69 7.09	6.73	6.77 7.17	$6.81 \\ 7.20$	6.85 7.24	6.89 7.28	$\begin{bmatrix} 6.93 \\ 7.32 \end{bmatrix}$	$\begin{vmatrix} 6.97 \\ 7.36 \end{vmatrix}$	7.01 7.40	$7.0 \\ 7.4$
	7.48 7.87	7.52 7.91	7.56 7.95	7.60 7.99	7.64	7.68	7.72	7.76	7.80	7.8
	8.27	8.31	8.35	8.39	8.03 8.43	8.07 8.46	8.11	8.15 8.54	8.19	8.2
	8.66 9.06	8.70 9.09	8.74 9.13	8.78 9.17	8.82 9.21	8.86 9.25	8.90 9.29	8.94	8.98	9.0
-	9.45	9.49	9.53	9.57	9.61	9.65	9.69	9.33 9.72	$9.37 \\ 9.76$	$9.4 \\ 9.8$
	9.84	9.88	9.92 10.32	9.96 10.35	10.00 10.39	10.04 10.43	10.08 10.47	10. 12 10. 51	10.16 10.55	$10.2 \\ 10.5$
	10.63 11.02	10.67 11.06	10.71	10.75	10.79	10.83	10.87	10.91	10.95	10.9
	11.42	11.46	11.10 11.50	11.14 11.54	11.18 11.58	11.22 11.61	11.26 11.65	11.30 11.69	11.34 11.73	$\frac{11.3}{11.7}$
	11.81	11.85 12.24	11.89 12.28	11.93 12.32	11.97	12.01 12.40	12.05 12.44	12.09 12.48	12.13	12.1
	12.60	12.64	12.68	12.72	$12.36 \\ 12.76$	12.80	12.83	12.87	$12.52 \\ 12.91$	$12.5 \\ 12.9$
	12.99 13.39	13.03 13.43	13.07 13.46	13.11 13.50	13.15 13.54	13.19 13.58	$\begin{vmatrix} 13.23 \\ 13.62 \end{vmatrix}$	13.27 13.66	13.31 13.70	13.3 13.7
	13.78 14.17	13.82 14.21	13.86 14.25	13.90 14.29	13.94	13.98	14.02	14.06	14.09	14.1
	14.57	14.61	14.65	14.69	$14.33 \\ 14.72$	14.37 14.76	14.41 14.80	14.45 14.84	14.49 14.88	14.5 14.9
	14.96 15.35	15.00 15.39	15.04 15.43	15.08 15.47	15. 12 15. 51	15.16 15.55	15.20 15.59	15.24 15.63	15.28 15.67	15.3 15.7
	15.75	15.79	15.83	15.87	15.91	15.95	15.98	16.02	16.06	16.1
	16.14 16.54	16.18 16.58	16.22 16.61	16.26 16.65	16.30 16.69	16.34 16.73	16.38 16.77	16.42 16.81	16.46 16.85	16.5 16.8
	16.93 17.32	16.97 17.36	17.01 17.40	17.05	17.09	17.13	17.17	17.20	17.24	17.2
	17.72	17.76	17.80	17.44 17.84	17.48 17.87	17.52 17.91	17.56 17.95	17.60 17.99	17.64 18.03	17.6 18.0
	18.11 18.50	18.15 18.54	18.19 18.58	18.23 18.62	18.27 18.66	18.31 18.70	18.35 18.74	18.39 18.78	18.43 18.82	18.4 18.8
	18.90	18.94	18.98	19.02	19.06	19.09	19.13	19.17	19.21	19.2
	19.29 19.69	19.33 19.72	19.37 19.76	19.41 19.80	19.45 19.84	19.49 19.88	19.53 19.92	19.57 19.96	$\begin{vmatrix} 19.61 \\ 20.00 \end{vmatrix}$	19.6 20.0
	0	1	2	3	4	5	6	7	8	9

Note.— mm. = millimetre; 10 mm. = 1 cm. (centimetre); 100 cm. = 1 m. (metre).

METRIC MEASURE CONVERTED INTO INCHES

CENTI-]	MILLIN	IETRES				
CENTI-	0	1	Ź	3	4	5	6	7	8	9
50 51 52 53 54 55 56 57 58 59 60	19.69 20.08 20.47 20.87 21.26 21.65 22.05 22.44 22.84 23.23 23.62	19.72 20.12 20.51 20.91 21.30 21.69 22.09 22.48 22.87 23.27 23.66	19.76 20.16 20.55 20.95 21.34 21.73 22.13 22.52 22.91 23.31 23.70	19.80 20.20 20.59 20.98 21.38 21.77 22.17 22.56 22.95 23.35 23.74	19.84 20.24 20.63 21.02 21.42 21.81 22.21 22.60 22.99 23.39 23.78	19.88 20.28 20.67 21.06 21.46 21.85 22.24 22.64 23.03 23.43 23.82	20. 32 20. 71 21. 10 21. 50 21. 89 22. 28 22. 68 23. 07 23. 47	19.96 20.35 20.75 21.14 21.54 21.93 22.32 22.72 23.11 23.50 23.90	20.00 20.39 20.79 21.18 21.58 21.97 22.36 22.76 23.15 23.54 23.94	20.04 20.48 21.22 21.6 22.0 22.40 23.19 23.58 23.98
	24.02 24.41 24.80 25.20 25.59 25.98 26.38 26.77 27.17 27.56	24.06 24.45 24.84 25.24 25.63 26.02 26.42 26.81 27.21 27.60	24.09 24.49 24.88 25.28 25.67 26.06 26.46 26.85 27.24 27.64	24. 13 24. 53 24. 92 25. 32 25. 71 26. 10 26. 50 26. 89 27. 28 27. 68	24.17 24.57 24.96 25.35 25.75 26.14 26.54 26.93 27.32 27.72	24.21 24.61 25.00 25.39 25.79 26.18 26.58 26.97 27.36 27.76	24. 25 24. 65 25. 04 25. 43 25. 83 26. 22 26. 61 27. 01 27. 40	24.29 24.69 25.08 25.47 25.87 26.26 26.65 27.05 27.44 27.84	24.33 24.72 25.12 25.51 26.30 26.69 27.09 27.48 27.87	24. 3° 24. 7° 25. 1° 25. 5° 25. 9° 26. 3° 26. 7° 27. 1° 27. 5° 27. 9°
	27.95 28.35 28.74 29.13 29.53 29.92 30.32 30.71 31.10 31.50	27.99 28.39 28.78 29.17 29.57 29.96 30.35 30.75 31.14 31.54	28.03 28.43 28.82 29.21 29.61 30.00 30.39 30.79 31.18 31.58	28.07 28.47 28.86 29.25 29.65 30.04 30.43 30.83 31.22 31.61	28.11 28.50 28.90 29.29 29.69 30.08 30.47 30.87 31.26 31.65	28. 15 28. 54 28. 94 29. 33 29. 73 30. 12 30. 51 30. 91	28.19 28.58 28.98 29.37 29.76 30.16 30.55 30.95 31.34	28.23 28.62 29.02 29.41 29.80 30.20 30.59 30.98 31.38 31.77	28.27 28.66	28.3 28.7 29.1 29.4 29.8 30.2 30.6 31.0 31.4 31.8
	31.89 32.28 32.68 33.07 33.47 33.86 34.25 34.65 35.04 35.43	31.93 32.32 32.72 33.11 33.50 33.90 34.29 34.69 35.08 35.47	31.97 32.36 32.76 33.15 33.54 34.33 34.73 35.12 35.51	32.01 32.40 32.80 33.19 33.58	32.05 32.44 32.84 33.23 33.62 34.02 34.41 34.80 35.20 35.59	35.24	32.52 32.91 33.31 33.70 34.10 34.49	32. 17 32. 56 32. 95 33. 35 33. 74 34. 13 34. 53 34. 92 35. 32 35. 71	32.21 32.60 32.99 33.39 33.78 34.17 34.57 34.96 35.36 35.75	32.2 32.6 33.0 33.4 33.8 34.2 34.6 35.0 35.4
	35.83 36.22 36.61 37.01 37.40 37.80 38.19 38.58 38.98 39.37	35.87 36.26 36.65 37.05 37.44 37.84 38.23 38.62 39.02 39.41	35.91 36.30 36.69 37.09 37.48 37.87 38.27 38.66 39.06 39.45	35.95 36.34 36.73 37.13 37.52 37.91 38.31 38.70 39.10 39.49	35.98 36.38 36.77 37.17 37.56 37.95 38.35 38.74 39.13 39.53	36.42 36.81 37.21 37.60 37.99 38.39 38.78 39.17	36.06 36.46 36.85 37.24 37.64 38.03 38.43 38.82 39.21 39.61	36.10 36.50 36.89 37.28 37.68 38.07 38.47 38.86 39.25 39.65	36. 14 36. 54 36. 93 37. 32 37. 72 38. 11 38. 50 38. 90 39. 29 39. 69	38.9 39.3
0	0	1	2	3	4	5	6	7	8	9

Note.—mm. = millimetre; 10 mm. = 1 cm. (centimetre); 100 cm. = 1 m. (metre).

TABLE OF WEIGHTS
Interchangeable between U. S. and Metric Systems

Number	Avoirdupois Ounces to Grams	KILOGRAMS TO OUNCES AVOIRDUPOIS	Avoirdupois Pounds to Kilograms	Kilograms to Pounds Avoirdupois	NET TONS TO METRIC TONS	METRIC TONS TO NET TONS
1 2 3 4 5	28. 3495 56. 6990 85. 0485 113. 3980 141. 7475	35.274 70.548 105.822 141.096 176.370	0.4536 0.9072 1.3608 1.8144 2.2680	2.2046 4.4092 6.6138 8.8184 11.0230	0.9072 1.8144 2.7216 3.6288 4.5360	1.1023 2.2046 3.3069 4.4092 5.5115
6 7 8 9 10	170.0970 198.4464 226.7959 255.1454 283.4949	211.644 246.918 282.192 317.466 352.740	2.7216 3.1752 3.6288 4.0824 4.5360	13.2276 15.4322 17.6368 19.8414 22.0460	5.4432 6.3504 7.2576 8.1648 9.0720	6.6138 7.7161 8.8184 9.9207 11.0230
11 12 13 14 15	311.8444 340.1939 368.5434 396.8928 425.2423	388.014 423.288 458.562 493.836 529.110	4.9896 5.4432 5.8968 6.3504 6.8040	24.2506 26.4552 28.6598 30.8644 33.0690	9.9792 10.8864 11.7936 12.7008 13.6080	12.1253 13.2276 14.3299 15.4322 16.5345
16 17 18 19 20	453.5918	564.384	7. 2576 7. 7112 8. 1648 8. 6184 9. 0720	35. 2736 37. 4782 39. 6828 41. 8874 44. 0920	14.5152 15.4224 16.3296 17.2368 18.1440	17. 6368 18. 7391 19. 8414 20. 9437 22. 0460
21 22 23 24 25			9.5256 9.9792 10.4328 10.8864 11.3400	46. 2966 48. 5012 50. 7058 52. 9104 55. 1150	19.0512 19.9584 20.8656 21.7728 22.6800	23.1483 24.2506 25.3529 26.4552 27.5575

- 1 metric ton=1000 kg. (kilograms).
- 1 kilogram =1000 g. (grams).
- 1 gram=10 dg. (decigrams)=100 cg. (centigrams)=1000 mg. (milligrams).

Weight of 1 cubic mm. of water=1 milligram.

Weight of 1 cubic cm. of water=1 gram.

Weight of 1 cubic dm. of water (=1000 grams) = 1 litre=1 kg.

Weight of 1 cubic m. of water (=1000 dm³)=1 metric ton.

Note.—10 mm.=1 cm; 10 cm.=1 dm. (decimetre); 10 dm.=1 m. (metre); mm=millimetre; cm.=centimetre.

1 cubic cm. = 1 cm³.

TABLE OF LIQUID AND DRY MEASURE Interchangeable between U. S. and Metric Systems

Number		TRES JARTS		ARTS	C METRES GALLONS LIQUID	STETRES	LITRES TO SSHELS DRY	HEES TO FOLITRES DRY
	Liquid	Dry	Liquid	Dry	CUBIC METRES TO GALLONS LIQUID	GALLONS TO CUBIC METRES	HECTOLITRES BUSHELS DRY	BUSHEES TO HECTOLITRES DRY
1	1.0567	0.908	0.9463	1.1013	264.17	0.0038	2.8375	0.3524
2	2.1134	1.816	1.8927	2.2026	528.35	0.0076	5.6750	0.7048
3	3.1701	2.724	2.8390	3.3040	792.52	0.0114	8.5125	1.0573
4	4.2268	3.632	3.7854	4.4053	1056.70	0.0151	11.3500	1.4097
5	5.2835	4.540	4.7317	5.5066	1320.87	0.0189	14.1875	1.7621
6	6.3402	5.448	5.6781	6.6079	1585.05	0.0227	17.0250	2. 1145
7	7.3969	6.356	6.6244	7.7093	1849.22	0.0265	19.8625	2. 4669
8	8.4536	7.264	7.5707	8.8106	2113.40	0.0303	22.7000	2. 8194
9	9.5103	8.172	8.5171	9.9119	2377.57	0.0341	25.5375	3. 1718
10	10.5670	9.080	9.4634	11.0132	2641.75	0.0379	28.3750	3. 5242
11	11.6237	9.988	10.4098	12.1145	2905.92	0.0416	31.2125	3.8766
12	12.6804	10.896	11.3561	13.2158	3170.10	0.0454	34.0500	4.2290
13	13.7371	11.804	12.3024	14.3172	3434.27	0.0492	36.8875	4.5815
14	14.7938	12.712	13.2488	15.4185	3698.45	0.0531	39.7250	4.9339
15	15.8505	13.620	14.1951	16.5198	3962.62	0.0569	42.5625	5.2863
16	16.9072	14.528	15.1415	17.6211	4226.80	0.0606	45.4000	5.6387
17	17.9639	15.436	16.0878	18.7224	4490.97	0.0644	48.2375	5.9911
18	19.0206	16.344	17.0341	19.8238	4755.15	0.0682	51.0750	6.3436
19	20.0773	17.252	17.9805	20.9251	5019.32	0.0720	53.9125	6.6960
20	21.1340	18.160	18.9268	22.0264	5283.50	0.0758	56.7500	7.0484
21	22.1907	19.068	19.8732	23.1277	5547.67	0.0796	59.5875	7.4008
22	23.2474	19.976	20.8195	24.2290	5811.85	0.0833	62.4250	7.7532
23	24.3041	20.884	21.7658	25.3304	6076.02	0.0871	65.2625	8.1057
24	25.3608	21.792	22.7122	26.4317	6340.20	0.0909	68.1000	8.4581
25	26.4175	22.700	23.6585	27.5330	6604.37	0.0947	70.9375	8.8105

¹ cu. metre (m^3) = 1000 l. (litres) = 1000 d m^3 (cu. decimetres).

¹ hectolitre (hl.) = 100 litres.

¹ litre = 1 dm^3 (cu. 'decimetre) = 10 dl. (decilitre) = 1000 ml. (millilitres).

¹ millilitre = 1 cm³ (cu. centimetre).

$$\pi = 3.1415926536$$

$$\frac{\pi}{2} = 1.5708$$

$$\frac{\pi}{3} = 1.0472$$

$$\frac{\pi}{4} = 0.7854$$

$$\frac{\pi}{12} = 0.2618$$

$$\frac{\pi}{64} = 0.04909$$

$$\frac{1}{\pi} = 0.31831$$

$$\frac{1}{\pi^2} = 0.10132$$

$$\pi^2 = 9.86960$$

$$\pi^3 = 31.00628$$

$$\log \frac{\pi}{\sqrt{\pi}} = 0.4971499$$

$$\sqrt{\pi} = 1.77245$$

$$\sqrt{\frac{1}{\pi}} = 0.56419$$

log. $\sqrt{\pi} = 0.2485749$

$$h = r - \sqrt{r^2 - \frac{s^2}{4}}$$
or very nearly = $\frac{s^2}{8r}$

 $c = 2 \pi r \times \frac{c \text{ in degrees}}{360} = .01745 \times r \times c \text{ in degrees}$

Circle

$$A = \text{area}$$
 $d = \text{diameter}$ $r = \text{radius}$

$$A = \frac{\pi \times d^2}{4} = 0.7854 \ d^2 \qquad d = 1,12838 \ \sqrt{A}$$

Circumference = $2 \pi r = \pi d$

Sector of circle = length of arc \times half radius.

Segments of circle = area of sector less triangle, also for

flat segments very nearly =
$$\frac{4h}{3} \sqrt[4]{0.388h^2 + s^2}$$

Triangle

$$A = \sqrt{s \times (s-a)(s-b)(s-c)}$$

if s is half of the sum of the sides a, b, and c, or = base \times half perpendicular height.

Polygons

Area of any regular or irregular polygon can be found by dividing the polygon into triangles and taking the sum of the areas. Area of any regular polygon

$$= \frac{\text{No. of sides}}{2} \times \text{(circumscribed rad.)}^2 \times \sin \frac{2 \pi}{\text{(No. sides)}}$$

Ellipse. $A = \pi a b$

Parabola. $A = \frac{2}{3} s h$

Area of any Irregular Plane Surface

Divide the surface into any number, say n, parallel strips of equal widths, d, whose middle ordinates are represented by

then is, after Poncelet's rule,

$$A = d \sum h + \frac{1}{12} d (a - h) + \frac{1}{12} d (b - h)$$

but more exact after Francke's rule,

$$A = d \sum h + \frac{1}{72} d (8a + h - gh) + \frac{1}{72} d (8b + h - gh)$$

$$A = \pi dh + \left[\frac{\pi d^2}{4}\right] 2 \qquad V = \text{contents}$$

$$V = \frac{\pi d^2}{4} h$$

Sphere

$$A = \pi d^2$$

Pyramid and Cone

A = periphery or circumference of base \times half slant height. V = area of base $+ \frac{1}{3}$ perpendicular height.

Frustum

A = sum of peripheries or circumferences of the two ends \times half slant height + area of both ends.

Frustum of a cone. $V = \frac{1}{3} \pi h \left(R^2 + r^2 + Rr \right)$

Frustum of pyramid. $V = \frac{1}{3} h (B + \sqrt{Bb} + b)$ (h being the distance of the two parallel end surfaces B and b).

Properties of the Circle

Circumference = Diam. $\times 3.1416$ or $3\frac{1}{2}$.

Diam. \times .8862 = Side of an equal square.

Diam. \times .7071 = Side of an inscribed square.

Diam. $^2 \times .7854 =$ Area of circle.

Radius \times 6.2832 = Circumference.

Circumference = $3.5446 \sqrt{\text{area of circle.}}$

Diam. = 1.1283 $\sqrt{\text{area of circle.}}$

Length of arc = No. of degrees \times .017453 radius.

Degrees in arc whose length equals radius = 57.2957°.

Length of an arc of 1° = Radius \times .017453.

Length of an arc of $1' = \text{Radius} \times .0002909$.

Length of an arc of 1''= Radius \times .0000048.

 π = Proportion of circumference to diam.= 3.1415926.

 $\pi^2 = 9.8696044.$

$$\sqrt{\pi} = 1.7724538.$$

Log.
$$\pi = 0.4971499$$
.

$$\frac{1}{2}$$
 = 0.3183001.

$$\frac{1}{360} = .002778.$$

$$\frac{360}{\pi}$$
 = 114.59.

Trigonometrical Formulæ General Equivalents

The diagram shows the different trigonometrical expressions in terms of the angle A.

In the following formulæ Radius = 1.

Complement of an angle = its difference from 90°. Supplement of an angle = its difference from 180°.

$$Sin. = \frac{1}{cosec.} = \frac{cos.}{cot.} = \sqrt{(1-cos.^2)}$$

$$Tan = \frac{\sin}{\cos} = \frac{1}{\cot}$$

Sec.
$$= \sqrt{\text{Rad}^2 + \tan^2} = \frac{1}{\cos \cdot} = \frac{\tan \cdot}{\sin \cdot}$$

Cos. =
$$\sqrt{(1-\sin^2)} = \frac{\sin^2 + \sin^2 +$$

$$Cot. = \frac{\cos}{\sin} = \frac{1}{\tan} \qquad Cosec. = \frac{1}{\sin}.$$

Versin. = Rad. -cos. Coversin. = Rad. -sin.

Rad.=
$$tan.\times cot.=\sqrt{\sin^2 + \cos^2}$$

Solution of Right-Angled Triangles

 $Hypoth.^2 = base^2 + perpend.^2$

Base² = (hyp.+ perp.)
$$\times$$
 (hyp.—perp.)

Perp.² = (hyp.+ base)
$$\times$$
 (hyp.—base).

Sin.
$$a = \frac{A}{C}$$

Sin.
$$a = \frac{A}{C}$$
 Cot. $a = \frac{B}{A}$

$$\cos a = \frac{B}{C}$$

Tan.
$$a = \frac{A}{B}$$
 Cot. $b = \frac{A}{B}$

Cosec.
$$a = \frac{C}{A}$$

$$b = 90^{\circ} - a$$

$$A = B \tan a$$

Cos. $b = \frac{A}{C}$

Sec.
$$a = \frac{C}{B}$$

$$A = C \sin a$$

$$B = C \cos a = A \cot a =$$

$$\sqrt{(C+A)(C-A)}$$

$$C = \sqrt{A^2 + B^2} = \frac{A}{\sin a} = \frac{B}{\cos a}$$

Solution of Oblique-Angled Triangles

Value of any side C is:

$$C = \frac{A \sin \cdot c}{\sin \cdot a} = \frac{B \sin \cdot c}{\sin \cdot b} = \frac{A}{\cos \cdot b + \sin \cdot b \cot \cdot c}$$

$$C = \frac{B}{\cos a + \sin a \cot c} = A \cos b + A$$

$$C = \sqrt{A^2 + B^2 - 2AB\cos c} =$$

$$B\cos a + B\sin a \cot b$$

Value of any angle a is:

Sin.
$$a = \frac{A \sin c}{c} = \frac{A \sin b}{B} = \sin (b + c)$$

Sin. $a = \sin b \cos c + \cos b \sin c$

Cos.
$$a = \sin b \sin c - \cos b \cos c$$

Cos.
$$a = \frac{C^2 + B^2 - A^2}{2 B C}$$

Tan.
$$a = \frac{A \sin c}{B - A \cos c} = \frac{A \sin b}{C - A \cos b}$$

Tan.
$$a = \frac{\tan b + \tan c}{\tan b \tan c - 1}$$

STRENGTH OF MATERIALS

Ultimate Resistance to Tension in Pounds per Square Inch

Metals and Alloys

Aluminum Bronze, AVERAGE
10 per cent Al. and 90 per cent copper 85000
1¼ per cent Al. and 98¾ per cent copper . 28000
Brass, cast
Brass, wire
Bronze or gun metal
Copper, cast
Copper, sheet
Copper, bolts
Copper, wire, unannealed
Iron, cast, 13,400 to 29,000
Iron, wrought, round or square bars of 1 to 2-inch
diameter, double refined 50000 to 54000
Iron, wrought specimens ½-inch square, cut from
large bars of double refined iron . 50000 to 53000
Iron, wrought, double refined, in large bars of about
7-square-inch section 46000 to 47000
Iron, wrought, universal mill plates, angles and
Iron, wrought, universal mill plates, angles and other shapes 48000 to 51000
other shapes

STRENGTH OF MATERIALS

Stool			φ					0 = 0		AVERAGE
Steel										
Tin, cas	t		•	٠	0	٠	٠	*	•	4600
Zinc		٠	•	٠	•	•	٠		000	to 8000
67 .1										
Ti	mbei	r, Se	asc	oned,	and	other	Org	ganic	Fib	er
Tak	en larg	gely fro	om [Frautwii	ie's po	ocket l	ook (edition	of 190	92).
Ash, En	glish		٠	٠	٠	6	ė			16000
Ash, Am	nerica	.n	٠	٠			٠	٠		16500
Beech, E	Englis	h			4	•	0			11500
Birch	•		٠		٠					15000
Cedar of	Leb	anon	٠				٠		٠	11400
Cedar, A										
Fir or Sp	ruce	•				•			٠.	10000
Hempen	Rop	es					٠	120	00 to	15000
Hickory,	Ame	rican	٠	= .						11000
Mahogan										16000
Oak, Am	erica	n whi	te				•		٠	10000
Oak, Eur	opear	n		•						10000
Pine, Am	erica	n whi	ite,	red an	d pit	ch, M	[eme]	l, Riga	i.	10000
Pine, Am	eriça	n lon	g le	af yell	ow			126	00 to	19200
Poplar	•		•	•						7000
Silk fiber										
Walnut, 1										
	,	Ston	e, 1	Natura	al an	d Ar	tifici	al		
Brick							. 4	10 to 4	100	220
Glass										
Slate										
Mortar, o										
		1								

STRENGTH OF MATERIALS

Ultimate Resistance to Compression

Metals

	AVERAGE
. Duran saat usdussid	$\frac{1}{10}$ part in length by 51000
Brass, cast, reduced {	$\frac{1}{10}$ part in length by 51000 $\frac{1}{2}$ part in length by 16500
Iron, cast	82000 to 125000
Iron, wrought, within elastic limit	22400 to 35800
Steel, rolled, within elastic limit	. 47000

General Instructions to Customers Ordering Structural Material

Architect's and engineer's drawings and specifications are usually definite enough to enable us to execute them without loss of time in correspondence. Small orders from contractors and others are frequently very indefinite in specifying just what is desired, making correspondence necessary and often resulting in great loss of time in shipping the material. We therefore invite your attention to the following data which should accompany the order:

- 1. Size of holes should be given, or better, the size of bolts or rivets to be used. If same are not especially specified, we will punch all beams and channels $\frac{1}{16}$ -inch holes for $\frac{3}{4}$ -inch rivets or bolts in webs. Flange holes we will punch of size given in table of beams and channels on pages 56 and 57.
- 2. In ordering beams to be punched for and provided with separators, state width of walls to be supported, or give width lintel should be over all after assembling. Further, state if separator bolts are to be used only to assemble lintel, or if some wood furring, either on one or both sides of lintel or twin beam, has to be fastened to beam webs by said bolts,

in which case we would add to length of bolts 2 inches or 4 inches respectively.

- 3. If beam ends are not to be square, it would be well to distinguish between mitered as per sketch No. 1, or beveled as per sketch No. 2. Better still, to accompany same with a clear sketch, giving the required angle either in degrees or in proportion of 12-inch to x as shown on sketch.
 - 4. In ordering bent beams or channels, state if same are to be

cambered as per sketch No. 3, giving besides the required length, L, either height of camber, h, or radius, r or R. Further state if ends have to be cut off square to chord, on

line nn, or radial, on line mm. beams or channels are to be bent vertical to their web as in sketch Nos. 4, 5 or 6, similar data should be given as for cambered beams or channels, but in this case for channels or angles it is necessary to state if web of channel or vertical leg of angle is to be outside, as in sketch No. 5, or inside as in No. 6; further, in case of angles of unequal legs, state which leg is to be vertical to curve. In all these cases, a simple sketch will explain more than many words.

5. State in each order if steel should be painted before

shipment, and if field connections are to be bolts or rivets.

INDEX

INDEX

Α	1								PAGE
A	nchors:								00
	Standard types	•	•	٠	•	•	٠	•	69
A	ngles:								
	Areas of				•				55
	Diagrams of								13-19
	Equal legs .	•							52
	Maximum lengths	;	•		•	•	•	•	54
	Maximum size of	rivet	s and	gaug	ge for	punc	hing		59
	Minimum spans f	or St	andai	d co	nnect	ion a	ngles		60
	Properties of	•	•	•	•	•	•		128–139.
	Radii of gyration,	two	angle	s bac	k to	back	•		174–176
	Radii of gyration,		_						236-238
	Radii of gyration,	sing	le ang	gle	•		•	•	128–139
			•						106–108
	Safe loads, single	-							172
	Standard connects								
	Standard connecti								
	Standard connecti	ions i	for op	posit	te fra	ming	•	٠	62
Aı	ches:								
,	Types of fireproof	:							67
	Weights of .								
	eas:								
	Of angles and plat					•			240–244
									218–230
	Methods of increa	sing	for sl	napes		۰	•	٠	39
Ва	rs:								
]	Beveled edges	•	•	•	•				43
]	Flat—sizes and ma	axim	um le	ngths	8				46, 47
	Flat—sizes and we								196–201
	Half rounds								44
	Hexagons .								
(Ovals and half-ova	ıls							44
]	Round		•			٠			42

Round edges .							PAGE 12 15
Twisted .							43,45 235
		·	·			•	200
Beams:		,					
Bending moments and						*	115
Deflection coefficients						•	85
Diagrams of Formulæ on flexure							
Formulæ on flexure Properties of							
Properties of . Sizes and maximum le							56
Standard framing of							
Standard gauges for p							59
Tables of safe loads							00 0-
Tables, explanation of						•	81–84
Without lateral suppor	rt						
Wooden, strength of							
Bearing Plates ·	•						63
Beveled Edged Bars							
Boat Spikes: Weights and sizes			·	٥		•	235
Bolts:							,
Machine, weights of							207
Standard screw threads					•	•	212
Diandara soro ii mirata	,	10 0.1	u 1101	143			212
Brick Walls: Weight of		•	٠		٠		80
Duidana.							
Bridges: Beam, details of .							186
Cast Washers:							
Table of				•			177
Chains:							
Diagrams of						٠	40
Sizes, strength and weig							41

Channels: Diagrams of		PAGE
Properties of	Channels:	
Sizes and maximum lengths 98–105 Tables of safe loads 98–105 Channel Tires 25 Circles: Areas and circumferences of 218–230 Circular Plates: Sizes 49 Clevises 269 Columns: Areas of angles and plates for 240–244 Details of concrete fireproofing 71 Diagrams of sections 64 General notes on 149–151 Notes on splicing and connections 66 Strength and weights of angle and plate 160–169 Strength and weights of cast-iron 171 Strength and weights of single angle 172 Strength and weights of single beams 159 Strength and weights of Z bar 170 Strength of wooden 179 Cold Rolled: Reaper and harvester finger bars 32, 33 Shafting, etc. 267 Corrugated Sheets: Weights of Substances: Weights of Substances: Weights of Substances:	Diagrams of	. 10–12
Tables of safe loads 98–105 Channel Tires 25 Circles: Areas and circumferences of 218–230 Circular Plates: Sizes 49 Clevises 269 Columns: Areas of angles and plates for 240–244 Details of concrete fireproofing 71 Diagrams of sections 64 General notes on 149–151 Notes on splicing and connections 66 Strength and weights of angle and plate 160–169 Strength and weights of channel 152–158 Strength and weights of single angle 172 Strength and weights of single beams 159 Strength and weights of Z bar 170 Strength of wooden 179 Cold Rolled: Reaper and harvester finger bars 32, 33 Shafting, etc. 267 Corrugated Sheets: Weights and strength of 111 Cubic Foot of Substances: Weights of . 215–217	Properties of	. 120–123
Channel Tires	Sizes and maximum lengths	. 57
Circles: Areas and circumferences of 218–230 Circular Plates: Sizes	Tables of safe loads	. 98–105
Areas and circumferences of 218–230 Circular Plates: Sizes	Channel Tires · · · · · ·	. 25
Circular Plates: Sizes	Circles:	
Sizes	Areas and circumferences of	. 218–230
Columns: Areas of angles and plates for	Circular Plates:	
Columns: Areas of angles and plates for	Sizes	. 49
Areas of angles and plates for	Clevises	. 269
Areas of angles and plates for	Columns:	
Details of concrete fireproofing 71 Diagrams of sections		. 240–244
Diagrams of sections		. 71
General notes on		
Notes on splicing and connections		
Strength and weights of angle and plate Strength and weights of channel	Notes on splicing and connections	. 66
Strength and weights of channel		. 160–169
Strength and weights of single angle		
Strength and weights of single beams	Strength and weights of cast-iron	171
Strength and weights of Z bar	Strength and weights of single angle	. 172
Strength of wooden	Strength and weights of single beams	. 159
Cold Rolled: Reaper and harvester finger bars	Strength and weights of Z bar	. 170
Reaper and harvester finger bars	Strength of wooden	. 179
Reaper and harvester finger bars	Cold Rolled .	
Shafting, etc		າດ າາ
Corrugated Sheets: Weights and strength of		
Weights and strength of	Sharting, etc.	. 207
Cubic Foot of Substances: Weights of	Corrugated Sheets:	
Weights of	Weights and strength of	. 111
	Cubic Foot of Substances:	
Decimals of a Foot for each $\frac{1}{27}$ of an Inch \cdot 276, 277	Weights of	. 215–217
0.4	Decimals of a Foot for each $\frac{1}{64}$ of an Inch	276, 277

Pocimals of an Inch	for	each	$\frac{1}{64}$	of an	Inch	PAGE 278	
etion Coefficien	ts			•		. 85	
Explanation of Table	es					. 112, 113	
Eye Bars:							
Standard	٠					. 274	
Adjustable	٠	•	٠	٠	ø	. 273	
Notes on							
Finger Bars	•	٠	•	•	•	. 32, 33	
Fireproofing:							
General notes on .							
Styles of floors .	٠	•	٠	٠	•	. 68–70	
Floors:						00	
Details of connections General notes on firep							
Girders for							
Styles of fireproofing		٠	ø	٠		. 67, 70	
Formulæ:							
General	٠	٠			•	. 114	
Framing:							
Standard diagrams of					٠	. 62	
General Instructions							
General Instructions	101	Orde	11115	111.00	CITAI		
Girders:						440 444	
Beam, strength and we Built, strength and we							
Grooved Steel .	•	*.	•		٠	. 23, 24	
Half Rounds .		•			•	. 44	
Harvester Tires .						. 25	
Hexagons · ·		٠				. 44	

Hoops ·	•				٠			•	PAGE 45
Inertia, M	oments	of		•	•			•	116, 117
Logarithm	s ·	•	•	•				• •	245-247
Looped Ey	yes		•	•	•		•		272
Manufactu	rers' S	tand	ard	Spec	cifica	tions	;	•	187–195
Mensuratio	on ·		٠		٠	•	•		284–289
Metric Co	nversio	n Ta	able			•		•	239
Miscellane	ous St	eel							27-31
Moments of	of Iner	tia	*	•				٠	116, 117
Natural Si	nes, etc	С.	٠		•	•		•	248-256
Nuts: Sizes and Sizes and Pin Sleeve	weights	of he	exag	on					208 209 271 270
Nut Steel			•	٠					47
Ovals and	Half-(Ovals		٠		•	٠	•	44
Partitions Details of		ıction		•	٠			٠	71
Plates:									
Bearing	•		٠		4				63
Circular	•			٠		٠	٠	٠	49
Rolled ed	ges.	•				•			46
Sheared e	edges								48, 49
Weights	of .								
Pipe: For steam	n, water	and §	gas		٠	•		٠	214

301

		PAGE
Round Edge Steel Tires:		45
Sizes	٠	. 45
Sectional Areas:		20 -
Methods of increasing	٠	. 39
Separators:		* 0
Standard sizes and weights		
Sheared Plates:		
Sizes		. 48, 49
Shafting:		
Cold rolled		. 267
Sheet Iron and Steel:		
Weights of		. 213
Sleeve Nuts · · · · · · ·		. 270
Specifications, Manufacturers' Standa	rd	. 187–195
*		
Spikes: Boat		. 235
Railroad		
Square Bars:		
Sizes	٠	. 43
Squares, Cubes, etc.		. 257–266
Standard Framing:		
Diagrams of	٠	. 62
Spacing in flanges of rolled sections .	٠	. 59
Screw threads	٠	212
Strength of Material · · · ·	٠	. 290–292
Struts:		
771		179
Ultimate strength of	٠	. 173

Substances:					PAGE
Weights per cubic foot	•	•	•	•	. 215–217
Tables:					
Converting inches and feet	to m	netric	meas	sure	279
Converting metric measure					· _
Of weights, interchanging U					
Of liquid and dry measure, i Metric systems		_	-		
Of strength of materials					
Tank Iron and Steel					
Weights of					. 213
	•	•	•	•	• 210
Tees:					22.22
Diagrams of Properties of					
Sizes and weights of .					. 50
Table of safe loads .					. 109
Tires:					
Channel		•		٠	. 25
Harvester			٠		. 25
Round edge	*	٠	•	•	. 45
Twisted Bars · ·	•	٠	٠	•	. 235
Upset Screw Ends for Rou	ınd a	and S	Squa	re Ba	ars 210, 211
Weights:					
Bolts, machine		٠			. 207
Brick walls	٠	٠	0		. 80
Cubic foot of substances					. 215–217
Flat bars					
Nuts and holt heads					00=
Nuts and bolt heads . Pipe for steam, water and a					. 207
Rivets, round headed .					
Separators					~~

JONES & LAUGHLIN STEEL CO.

304

Sheet and tank steel Terra cotta arches		•					PAGE 213 74
Wooden Posts: Strength of	•	•	٠.	٠		•	179
Zees:							
Diagrams of	•	٠	•				20-22
Properties of .	•				\$. 12	24, 125
Sizes and weights		•	•			•	51
Table of safe loads					•	•	110

We Manufacture the Following Articles

Bessemer, Basic and Acid Open Hearth Steel Blooms

Slabs and Billets

Beams

Channels

Angles

Tees and Zees

Rounds and Squares

Flats

Hexagons

Sheets

Rectangular and Circular Plates

Hoops and Bands

Chains

Special Sections for Structural and Agricultural purposes Tee Rails (8 to 40 pounds per yard)

Railroad Spikes

Structural and Boiler Rivets

Boat and Barge Spikes

Cold Rolled Shafting

Squares

Hexagons

Flats

Zees

Angles

Finger Bars and Special Shapes

Couplings

Hangers

Pillow Blocks

Pulleys

Forgings, etc., etc.

