Improved Performance in hBN encapsulated MoS₂ Field-Effect Transistors Contacted by Highly Doped Graphene Electrodes.

Meeghage Madusanka Perera, Hsun-Jen Chuang, Bhim Prasad
Chamlagain and Zhixian Zhou*
(Department of Physics and Astronomy, Wayne State University)

Outline

- Motivation
- Results
 - A. Graphene contacted MoS₂ FETs encapsulated by hBN.
 - B. Using molecular doping with Benzyl Viologen (BV) to tune the contact barrier.
 - C. Four-probe measurement to understand the intrinsic channel properties and scattering mechanisms.
- Conclusions

Motivation

For large band gap semiconductors such as MoS₂, a significant Schottky barrier may form at the metal/semiconductor contact, yielding a high contact resistance. To optimize the performance of MoS₂ FETs, it is crucial to use low resistance Ohmic contacts.

Our Approaches

•Reducing Schottky barrier height by heavily n-doping the graphene contacts using strong electron donating Benzyl Vologen (BV)

semiconductor

•Using hBN encapsulation to protect the channel from BV doping and preserve the intrinsic channel properties of MoS₂

metal

Animation for fabrication steps

Graphene contacted MoS₂ FET with hBN encapsulated channel

- L:2.5 um
- W: 4.1 um
- d: 9 nm

I_{ds} Vs V_{ds} of MoS₂ FET with graphene drain/source electrodes at 77K and RT

Before and after BV doping of graphene contacts

I_{ds} Vs V_{ds} at 77K before and after BV doping of graphene contacts

of graphene contacts

2-probe mobility before and after BV doping of graphene contacts

Four probe MoS2 FET ,to understand the intrinsic transport properties and scattering mechanisms

- Inner electrode separation (L): 2.4 um
- Channel Width(W): 2.5 um
- Channel length(length of hBN)= 7.32 um
- d= 4.9 nm

4-probe conductivity vs. gate-voltage of graphene contacted MoS₂

4 –probe mobility of h-BN encapsulated MoS₂ independent of graphene contact doping

Conclusions

- Used molecular doping on graphene to reduce the Schottky barrier height at graphene/MoS2 contacts
- Highly doped graphene contacts lead to improve MoS2 device performance
- Nearly intrinsic electrical transport has seen in hBN encapsulated MoS2, which is independent of contact doping.