Features

David S. Rosenberg

Bloomberg ML EDU

October 18, 2017

Feature Extraction

The Input Space $\mathfrak X$

- ullet Our general learning theory setup: no assumptions about ${\mathfrak X}$
- But $\mathfrak{X} = \mathbf{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Linear SVM

The Input Space $\mathfrak X$

- Often want to use inputs not natively in R^d:
 - Text documents
 - Image files
 - Sound recordings
 - DNA sequences
- But everything in a computer is a sequence of numbers?
 - The *i*th entry of each sequence should have the same "meaning"
 - All the sequences should have the same length

Feature Extraction

Definition

Mapping an input from \mathfrak{X} to a vector in \mathbb{R}^d is called **feature extraction** or **featurization**.

Raw Input

Feature Vector

David S. Rosenberg (Bloomberg ML EDU)

Feature Templates

Example: Detecting Email Addresses

- Task: Predict whether a string is an email address
- Could use domain knowledge and write down:

- But this was ad-hoc, and maybe we missed something.
- Could be more systematic?

Feature Templates

Definition (informal)

A feature template is a group of features all computed in a similar way.

• Input: abc@gmail.com

Feature Templates

- Length greater than ____
- Last three characters equal ____
- Contains character ____

Feature Template: Last Three Characters Equal

- Don't think about which 3-letter suffixes are meaningful...
- Just include them all.

endsWith_aab : 0
endsWith_aac : 0
...
endsWith_com : 1
...
endsWith_zzz : 0

With regularization, our methods will not be overwhelmed.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

endsWith_aaa : 0

Feature Template: One-Hot Encoding

Definition

A one-hot encoding is a set of features (e.g. a feature template) that always has exactly one non-zero value.

Feature Vector Representations

```
fracOfAlpha: 0.85 contains_a: 0 ... contains_@:1 ...
```

Array representation (good for dense features):

Map representation (good for sparse features):

```
{"fracOfAlpha": 0.85, "contains_0": 1}
```

Feature Vector Representations

Arrays

- assumed fixed ordering of the features
- appropriate when significant number of nonzero elements ("dense feature vectors")
- very efficient in space and speed (and you can take advantage of GPUs)
- Map (a "dict" in Python)
 - best for sparse feature vectors (i.e. few nonzero features)
 - features not in the map have default value of zero
 - Python code for "ends with last 3 characters":

```
{\text{"endsWith}_{-}} + x[-3:]: 1.
```

- On "example string" we'd get {"endsWith_ing": 1}.
- Has overhead compared to arrays, so much slower for dense features

Handling Nonlinearity with Linear Methods

Example Task: Predicting Health

- General Philosophy: Extract every feature that might be relevant
- Features for medical diagnosis
 - height
 - weight
 - body temperature
 - blood pressure
 - etc...

Issues for Linear Predictors

- For linear predictors, it's important how features are added
- Three types of nonlinearities can cause problems:
 - Non-monotonicity
 - Saturation
 - Interactions between features

Non-monotonicity: The Issue

- Feature Map: $\phi(x) = [1, temperature(x)]$
- Action: Predict health score $y \in \mathbf{R}$ (positive is good)
- $\bullet \ \ \mbox{Hypothesis Space } {\mathfrak F} \!=\! \{\mbox{affine functions of temperature}\}$
- Issue:
 - Health is not an affine function of temperature.
- Affine function can either say
 - Very high is bad and very low is good, or
 - Very low is bad and very high is good,
 - But here, both extremes are bad.

Non-monotonicity: Solution 1

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature}(x) - 37\}^2\right],$$

where 37 is "normal" temperature in Celsius.

- Ok, but this requires domain knowledge
 - Do we really need that?

Non-monotonicity: Solution 2

• Think less, put in more:

$$\phi(x) = \left[1, \text{temperature}(x), \{\text{temperature}(x)\}^2\right].$$

• More expressive than Solution 1.

General Rule

Features should be simple building blocks that can be pieced together.

Saturation: The Issue

- Setting: Find products relevant to user's query
- Input: Product x
- Action: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

• We expect a monotonic relationship between N(x) and relevance, but...

Saturation: The Issue

Is relevance linear in N(x)?

- Relevance score reflects confidence in relevance prediction.
- Are we 10 times more confident if N(x) = 1000 vs N(x) = 100?
- Bigger is better... but not that much better.

Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + N(x)\}]$$

- ullet log (\cdot) good for values with large dynamic ranges
- Does it matter what base we use in the log?

Saturation: Solve by discretization

• Discretization (a discontinuous transformation):

$$\phi(x) = (1(5 \leqslant N(x) < 10), 1(10 \leqslant N(x) < 100), 1(100 \leqslant N(x)))$$

Sometimes we might prefer one-sided buckets

$$\phi(x) = (1(5 \leqslant N(x)), 1(10 \leqslant N(x)), 1(100 \leqslant N(x)))$$

- Why? Hint: What's the effect of regularization the parameters for rare buckets?
- Small buckets allow quite flexible relationship

Interactions: The Issue

- Input: Patient information x
- Action: Health score $y \in \mathbf{R}$ (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

- Issue: It's the weight relative to the height that's important.
- Impossible to get with these features and a linear classifier.
- Need some interaction between height and weight.

Interactions: Approach 1

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula (for a male):

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52 + 1.9 [h(x) - 60] - w(x))^{2}$$

WolframAlpha for complicated Mathematics:

$$f(x) = 3.61h(x)^2 - 3.8h(x)w(x) - 235.6h(x) + w(x)^2 + 124w(x) + 3844$$

Interactions: Approach 2

• Just include all second order features:

$$\phi(x) = \left[1, h(x), w(x), h(x)^2, w(x)^2, \underbrace{h(x)w(x)}_{\text{cross term}}\right]$$

• More flexible, no Google, no WolframAlpha.

General Principle

Simpler building blocks replace a single "smart" feature.

Predicate Features and Interaction Terms

Definition

A **predicate** on the input space \mathcal{X} is a function $P: \mathcal{X} \to \{\text{True}, \text{False}\}.$

- Many features take this form:
 - $x \mapsto s(x) = 1$ (subject is sleeping)
 - $x \mapsto d(x) = 1$ (subject is driving)
- For predicates, interaction terms correspond to AND conjunctions:
 - $x \mapsto s(x)d(x) = 1$ (subject is sleeping AND subject is driving)

So What's Linear?

- Non-linear feature map $\phi: \mathcal{X} \to \mathbf{R}^d$
- Hypothesis space:

$$\mathcal{F} = \left\{ f(x) = w^T \phi(x) \mid w \in \mathbf{R}^d \right\}.$$

- Linear in w? Yes.
- Linear in $\phi(x)$? Yes.
- Linear in x? No.
 - ullet Linearity not even defined unless ${\mathcal X}$ is a vector space

Key Idea: Non-Linearity

- Nonlinear f(x) is important for **expressivity**.
- f(x) linear in w and $\phi(x)$: makes finding $f^*(x)$ much easier

Geometric Example: Two class problem, nonlinear boundary

- With linear feature map $\phi(x) = (x_1, x_2)$ and linear models, no hope
- With appropriate nonlinearity $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$, piece of cake.
- Video: http://youtu.be/3liCbRZPrZA

Expressivity of Hypothesis Space

• Consider a linear hypothesis space with a feature map $\phi: \mathfrak{X} \to \mathsf{R}^d$:

$$\mathcal{F} = \left\{ f(x) = \mathbf{w}^T \mathbf{\phi}(x) \right\}$$

Question: does \mathcal{F} contain a good predictor?

We can grow the linear hypothesis space $\mathcal F$ by adding more features.