Коллаборативная фильтрация и матричные разложения

K.B.Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ • 26 марта 2021

Содержание

- 🚺 Постановка задачи и приложения
 - Постановка задачи
 - Корреляционные модели
 - Латентные семантические модели
- 2 Учёт дополнительной информации
 - Автокодировщики
 - Факторизационные машины
 - Графовые эмбединги и тематические модели
- Оценивание качества рекомендаций
 - Качество восстановления пропусков и ранжирования
 - Разнообразие, новизна, полнота и другие
 - Качество оффлайн и онлайн

Определения и обозначения

U — множество клиентов (субъектов/пользователей — users) I — множество объектов (товаров/предметов — items)

Типы исходных данных:

- $D = (u_t, i_t, y_t)_{t=1}^T \in U \times I \times Y$ транзакционные данные, Y пространство описаний транзакций
- ullet $R = (r_{ui})_{U imes I}$ матрица отношений (или кросс-табуляции) $r_{ui} = \operatorname{aggr}\{(u_t, i_t, y_t) \in D \mid u_t = u, \ i_t = i\}$
- \bullet $r_{ui} \in \{0,1\}$ бинарные данные
- ullet $r_{ui} \in \{1,2,\ldots,M\}$ рейтинги (порядковые или целые)

Задачи в рекомендательных системах:

- ullet предсказание незаполненных ячеек r_{ui}
- ullet ранжирование списка top-n рекомендаций для u или для i

Пример 1. Рекомендательная система для e-commerce

U — клиенты интернет-магазина I — товары (книги, видео, музыка, курсы, мероприятия и т.п.) $r_{ui} = [$ клиент u посмотрел/заказал/купил товар i]

Задачи персонализации предложений:

- ullet предсказание незаполненных ячеек r_{ui}
- ранжирование списка top-n рекомендаций для клиента *и*
- предложить совместную покупку (cross-selling)
- информировать клиента о новом товаре (up-selling)

Category	Recommender systems
Video	Netflix, Hulu, Youtube, Youku, iQiyi, Tudou, Ku6
News	Google news, ifeng, Toutiao, NetEase news, Digg
Music	Yahoo! Music, Pandora, Douban music, QQ music, Google play, Last.fm
Socia networking services	Facebook, Twitter, sina weibo, QQ, Linkedin
E-business	Amazon, eBay, taobao, JD, Suning

Rui Chen et al. A survey of collaborative filtering-based recommender systems: from traditional methods to hybrid methods based on social networks. 2018.

Пример 2. Рекомендательная система для web-страниц

```
U — пользователи Интернет
I — текстовые документы (сайты/страницы/новости и т.п.)
W — словарь слов (токенов/термов), образующих документы
r_{ui} = [ пользователь u посетил/лайкнул документ i
n_{iw} = частота слова w в документе i
Web Content Mining — анализ данных о контенте (n_{iw})
Web Usage Mining — анализ данных об использовании (r_{ui})
Основная гипотеза WUM: действия пользователя
```

характеризуют его интересы, возможности, привычки, вкусы

Задачи персонализации: найти релевантные документы *і* для пользователя, документа или подборки документов

Примеры: Я.Дзен, http://SurfingBird.ru

Пример 3. Рекомендательная система на основе рейтингов

U — клиенты интернет-магазина I — товары (книги, видео, музыка, курсы, мероприятия и т.п.) $r_{ui} =$ рейтинг, который клиент u поставил товару i

Пример: конкурс Netflix [www.netflixprize.com]

- 2 октября 2006 21 сентября 2009; главный приз \$10⁶
- ullet $|U|=480\,189$ фильмов, $|I|=17\,770$ клиентов
- ullet 108 рейтингов фильмов по шкале $\{1,2,3,4,5\}$
- ullet точность прогнозов оценивалась по тестовой выборке D'

$$\mathsf{RMSE}^{2} = \frac{1}{|D'|} \sum_{(u,i) \in D'} (r_{ui} - \hat{r}_{ui})^{2}$$

• задача: уменьшить RMSE с 0.9514 до 0.8563 (на 10%)

Y.Koren. The BellKor solution to the Netflix Grand Prize. August 2009. A.Töscher, M.Jahrer. The BigChaos solution to the Netflix Grand Prize. 2009.

Основные подходы в коллаборативной фильтрации (СF)

По используемой математической технике:

- корреляционные модели (Memory-Based CF):
 корреляции строк/столбцов исходной матрицы R
- латентные семантические модели (Latent Model-Based CF): векторные представления (эмбединги) клиентов и объектов

По типам используемых данных:

- 2D: только матрица R
- 3D: контекстно-зависимые (context-aware, field-aware)
- учёт содержимого (content-aware, гибридные модели)
- учёт связей доверия между клиентами (trust-aware)
- учёт времени (time-aware)

F.Ricci, L.Rokach, B.Shapira. Recommender Systems Handbook. Springer. 2015. https://shuaizhang.tech/posts/2019/08/blog-post-2

Непараметрическая регрессия для восстановления пропусков

Оценка рейтинга по схожим клиентам (User-Based CF):

$$\hat{r}_{ui} = \bar{r}_u + \frac{\sum_{v \in U(u)} S(u, v)(r_{vi} - \bar{r}_v)}{\sum_{v \in U(u)} S(u, v)}$$

U(u) — множество клиентов, схожих с u

 $ar{r}_u$ — средний рейтинг клиента u

S(u,v) — функция сходства пары клиентов (u,v)

Оценка рейтинга по схожим объектам (Item-Based CF):

$$\hat{r}_{ui} = \bar{r}_i + \frac{\sum_{j \in I(i)} S(i,j)(r_{uj} - \bar{r}_j)}{\sum_{j \in I(i)} S(i,j)}$$

I(i) — множество объектов, схожих с i

 $ar{r}_i$ — средний рейтинг объекта i

S(i,j) — функции сходства пары объектов (i,j)

Функции сходства для рейтинговых данных

I(u) — множество объектов, которые клиент u отрейтинговал I(u,v) — множество объектов, которые отрейтинговали u и v

Корреляция Пирсона:

$$S(u,v) = \frac{\sum_{i \in I(u,v)} (r_{ui} - \bar{r}_u) (r_{vi} - \bar{r}_v)}{\sqrt{\sum_{i \in I(u,v)} (r_{ui} - \bar{r}_u)^2} \sqrt{\sum_{i \in I(u,v)} (r_{vi} - \bar{r}_v)^2}}$$

Косинусная мера сходства:

$$S(u,v) = \frac{\sum_{i \in I(u,v)} r_{ui} r_{vi}}{\sqrt{\sum_{i \in I(u)} r_{ui}^2} \sqrt{\sum_{i \in I(v)} r_{vi}^2}},$$

где неявно предполагается, что $r_{ui}=0$, если i
eq I(u)

Функция сходства S(i,j) пар объектов определяется аналогично

Функции сходства для бинарных данных

Чем больше $I(u) \cap I(v)$, тем более схожи клиенты u и v:

$$U: \qquad |I(u)| = m$$

$$I(u) \cap I(v)$$

$$V: \qquad |I(v)| = n$$

Мера близости Жаккара (Jaccard similarity):

$$S(u,v) = \frac{|I(u) \cap I(v)|}{|I(u) \cup I(v)|}$$

Точный тест Фишера (Fisher's Exact Test, FET) Вероятность пересечения оценок при *нулевой гипотезе*, что клиенты *и* и *v* совершают свой выбор независимо:

$$S(u,v) = -\log P\{|I(u) \cap I(v)| = i\} = -\log \frac{C_m^i C_{|I|-m}^{n-i}}{C_{|I|}^n}$$

Разреженная линейная модель (Sparse Linear Method, SLIM)

Item-Based: оцениваем \hat{r}_{ui} по r_{uj} других объектов, используя обучаемые параметры w_{ij} вместо функции сходства S(i,j):

$$\hat{r}_{ui} = \sum_{j \in I} r_{uj} w_{ij} = \langle r_u, w_i \rangle$$

В матричной записи: |I| линейных регрессий $\hat{r_i} = \mathop{Rw_i}_{U imes 1}, i \in I$

Метод наименьших квадратов с регуляризаторами L_2 и L_1 , с ограничением неотрицательности коэффициентов и условием, что объект не должен оцениваться по самому себе:

$$\frac{1}{2} \|r_i - Rw_i\|^2 + \frac{\beta}{2} \|w_i\|_2^2 + \lambda \|w_i\|_1 \rightarrow \min_{w_i} w_i \geqslant 0, \quad w_{ii} = 0$$

Xia Ning, George Karypis. SLIM: sparse linear methods for top-N recommender systems. 2011.

Преимущества SLIM (Sparse Linear Method)

- Это стандартная задача линейной регрессии (ElasticNet)
- ullet Решение распараллеливается по столбцам $r_i,\ i\in I$
- *L*₁-регуляризация делает решение разреженным
- Дополнительный отбор признаков по косинусной мере: для каждого i берём 10 признаков j с наибольшими S(i,j)
- Успешный метод по качеству ранжирования и скорости

Пример: зависимость LOOCV HitRate от длины списка (на данных Netflix)

Xia Ning, George Karypis. SLIM: sparse linear methods for top-N recommender systems. 2011.

Резюме по Memory-Based методам

Преимущества для бизнес-приложений:

- легко понимать и объяснять:
 «те, кто купил эту книгу, также покупали…» [Amazon.com]
- легко реализовать
- метод SLIM простой и до сих пор один из лучших

Недостатки:

- требуется хранение огромной разреженной матрицы R
- проблема «холодного старта»
 - не ясно, что рекомендовать новым клиентам
 - не ясно, как и кому рекомендовать новые объекты
- иногда рекомендации тривиальны
 - предлагается всё наиболее популярное

Далее: как латентные модели устраняют эти недостатки

Низкоранговые матричные разложения (matrix factorization)

$$T$$
 — множество интересов (тем): $|T| \ll |U|$, $|T| \ll |I|$ p_{ut} — векторное представление клиента u , $P = (p_{ut})_{U \times T}$ q_{it} — векторное представление объекта i , $Q = (q_{it})_{I \times T}$ Залача: найти разложение $\hat{r}_{it} = \sum_{l} p_{ut} q_{it} = (p_{ut})_{l}$

Задача: найти разложение
$$\hat{r}_{ui} = \sum\limits_{t \in \mathcal{T}} p_{ut} q_{it} = \langle p_u, q_i
angle$$

Матричная запись: $\hat{R} = PQ^{\mathsf{T}}$, критерий $\|R - PQ^{\mathsf{T}}\| o \min_{P,Q}$

Вероятностная интерпретация:
$$\underbrace{p(i|u)}_{r_{ui}} = \sum_{t \in T} \underbrace{q(i|t)}_{q_{it}} \underbrace{p(t|u)}_{p_{ut}}$$

Методы решения:

- Сингулярное разложение (singular value decomposition, SVD)
- Неотрицательное матричное разложение (NNMF): $p_{ut}, q_{it} \geqslant 0$
- Стохастическое матричное разложение (Topic Modeling)

Сингулярное разложение (singular value decomposition, SVD)

Постановка задачи:
$$\|R-PQ^{\mathsf{T}}\|^2 o \min_{P,Q}$$
 Сингулярное разложение: $\hat{R} = \underbrace{V\sqrt{D}}_{P}\underbrace{\sqrt{D}U^{\mathsf{T}}}_{Q^{\mathsf{T}}},\ U^{\mathsf{T}}U = I,\ V^{\mathsf{T}}V = I$

Достоинства:

- можно применять готовые библиотеки линейной алгебры
- хорошее ранжирование предложений на некоторых данных

Недостатки:

- если r_{ui} не известно, то полагаем $r_{ui} = 0$ (неявно считаем, что если клиент u никогда не выбирал объект i, то он ему, скорее всего, не интересен)
- ullet ортогональность (собственных) векторов $p_t,\ q_t$
- ullet неинтерпретируемость компонент векторов $p_u,\ q_i$

Cremonesi P., Koren Y., Turrin R. Performance of recommender algorithms on top-n recommendation tasks. RecSys 2010.

Метод чередующихся наименьших квадратов (ALS)

Постановка задачи:

$$\Delta(P, Q) = \|R - PQ^{\mathsf{T}}\|^2 + \lambda \|P\|^2 + \mu \|Q\|^2 \rightarrow \min_{P, Q}$$

Meтод Alternating Least Squares (ALS):

$$\frac{1}{2}\frac{\partial \Delta}{\partial P} = (R - PQ^{\mathsf{T}})Q + \lambda P = 0 \quad \Rightarrow \quad P = RQ(Q^{\mathsf{T}}Q + \lambda I)^{-1}
\frac{1}{2}\frac{\partial \Delta}{\partial Q} = P^{\mathsf{T}}(R - PQ^{\mathsf{T}}) + \mu Q = 0 \quad \Rightarrow \quad Q = R^{\mathsf{T}}P(P^{\mathsf{T}}P + \mu I)^{-1}$$

Задача распадается на независимые линейные регрессии (вычисления легко распараллеливаются):

$$p_u = (Q^{\mathsf{T}}Q + \lambda I)^{-1}Q^{\mathsf{T}}r_u$$
$$q_i = (P^{\mathsf{T}}P + \mu I)^{-1}P^{\mathsf{T}}r_i$$

Модель латентных факторов (LFM, Latent Factor Model)

Постановка задачи для случая разреженных данных:

$$\sum_{(u,i)\in D} \left(\underbrace{r_{ui} - \bar{r}_{u} - \bar{r}_{i} - \sum_{t\in T} p_{ut}q_{it}}\right)^{2} \to \min_{P,Q}$$

Метод стохастического градиента:

перебираем все $(u,i)\in D$ многократно в случайном порядке и делаем каждый раз градиентный шаг для задачи $arepsilon_{ui}^2
ightarrow \mathsf{min}$:

$$p_{ut} := p_{ut} + \eta \varepsilon_{ui} q_{it}, \quad t \in T$$
$$q_{it} := q_{it} + \eta \varepsilon_{ui} p_{ut}, \quad t \in T$$

Можно также обучать \bar{r}_u ($u \in U$) и \bar{r}_i ($i \in I$) как параметры

Tacáks G., Pilászy I., Németh B., Tikk D. Scalable collaborative filtering approaches for large recommendation systems // JMLR, 2009, No. 10, Pp. 623-656.

Модель латентных факторов (LFM, Latent Factor Model)

Преимущества метода стохастического градиента:

• легко вводится регуляризация:

$$\varepsilon_{ui}^2 + \lambda \|p_u\|^2 + \mu \|q_i\|^2 \to \min_{p_u, q_i}$$

• легко вводятся ограничения неотрицательности:

$$p_{ut}\geqslant 0,\;\;q_{it}\geqslant 0$$
 (метод проекции градиента)

• легко вводится обобщение для ранговых данных:

$$\sum_{(u,i)\in D} \left(r_{ui} - \frac{\mu}{r_u} \left(\bar{r}_u + \bar{r}_i + \sum_{t\in T} p_{ut} q_{it}\right)\right)^2 \to \min_{P,Q,\mu},$$

где μ — гладкая монотонная функция с M параметрами, преобразующая оценки \hat{r}_{ui} в шкалу рейтингов $\{1,\ldots,M\}$

- легко реализуются все виды инкрементности добавление ещё одного: клиента u / объекта i / значения r_{ui}
- высокая численная эффективность на больших данных

NNMF (Non-Negative Matrix Factorization)

Метод *чередующихся наименьших квадратов* (Alternating Least Squares, ALS) для неотрицательного матричного разложения:

$$\Delta = \left\|R - \sum_{t \in T} p_t q_t^{\mathsf{T}} \right\|^2 = \left\|R_t - p_t q_t^{\mathsf{T}} \right\|^2 o \min_{\{p_t \geqslant 0, \ q_t \geqslant 0\}}$$

Идея: искать поочерёдно то столбцы p_t , то столбцы q_t при фиксированных остальных: $R_t = R - \sum_{s \in T \setminus t} p_s q_s^{\mathsf{T}}$.

$$\frac{\partial \Delta}{\partial p_t} = 0 \quad \Rightarrow \quad (p_t q_t^\mathsf{T} - R_t) q_t = 0 \quad \Rightarrow \quad p_t = \left(\frac{R_t q_t}{q_t^\mathsf{T} q_t}\right)_+
\frac{\partial \Delta}{\partial q_t} = 0 \quad \Rightarrow \quad p_t^\mathsf{T} (p_t q_t^\mathsf{T} - R_t) = 0 \quad \Rightarrow \quad q_t = \left(\frac{R_t^\mathsf{T} p_t}{p_t^\mathsf{T} p_t}\right)_+$$

(положительная срезка — из условий Каруша-Куна-Таккера)

A.Cichocki, R.Zdunek, S.Amari. Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization. 2007

Мультипликативный алгоритм NNMF

Метод наименьших квадратов с условиями неотрицательности:

$$\|R - PQ^{\mathsf{T}}\|^2 \to \min_{P,Q}, \quad P \geqslant 0, \quad Q \geqslant 0$$

Из условий Каруша-Куна-Таккера получаем систему уравнений, удобную для применения метода простых итераций:

$$p_{ut} := p_{ut} \frac{(RQ)_{ut}}{(PQ^{\mathsf{T}}Q)_{ut}} \qquad q_{it} := q_{it} \frac{(R^{\mathsf{T}}P)_{it}}{(QP^{\mathsf{T}}P)_{it}}$$

Удобная матричная запись, где \otimes и \oslash обозначают покомпонентное (адамарово) умножение и деление матриц:

$$P := P \otimes (RQ) \oslash (PQ^{\mathsf{T}}Q)$$
$$Q := Q \otimes (R^{\mathsf{T}}P) \oslash (QP^{\mathsf{T}}P)$$

Andrzej Cichocki et al. Nonnegative matrix and tensor factorizations. 2009.

Вероятностный латентный семантический анализ (PLSA)

Тематические модели в CF: документ \leftrightarrow клиент, слово \leftrightarrow объект Максимизация правдоподобия для тематической модели PLSA:

$$\sum_{(u,i)\in D} r_{ui} \ln \sum_{t\in T} q_{it} p_{ut} o \max_{P,Q}, \quad q_{it} = p(i|t), \quad p_{ut} = p(t|u)$$

EM-алгоритм (результат Е-шага p(t|u,i) встроен в М-шаг):

$$p_{ut} := \underset{t \in T}{\mathsf{norm}} \bigg(\sum_{i \in I} r_{ui} \frac{q_{it} p_{ut}}{(PQ^{\mathsf{T}})_{ui}} \bigg) \qquad q_{it} := \underset{i \in I}{\mathsf{norm}} \bigg(\sum_{u \in U} r_{ui} \frac{q_{it} p_{ut}}{(PQ^{\mathsf{T}})_{ui}} \bigg)$$

Удобная для реализации матричная запись, где r-norm — нормировка по строкам, с-norm — по столбцам:

$$P := \text{r-norm} (P \otimes (R \oslash PQ^{\mathsf{T}})Q)$$

$$Q := \text{c-norm} (Q \otimes (R^{\mathsf{T}} \oslash QP^{\mathsf{T}})P)$$

M.Shashanka et al. Probabilistic latent variable models as nonnegative factorizations. 2008.

Модель с учётом неявной информации (implicit feedback)

Явные (explicit) предпочтения r_{ui} , более качественные данные:

- покупки товаров в интернет-магазине
- оценки, рейтинги, лайки/дизлайки

Неявные (implicit) предпочтения s_{ui} , большой объём данных:

- посещение страницы товара
- просмотр (какой-то части) фильма

Идея: предсказываем s_{ui} с весом $\mathit{c}_{\mathit{ui}} = 1 + lpha \mathit{r}_{\mathit{ui}}$:

$$\sum_{(u,i)\in D} c_{ui} \left(s_{ui} - \bar{s}_u - \bar{s}_i - \sum_{t\in T} p_{ut} q_{it} \right)^2 + \lambda \sum_{u\in U} \|p_u\|^2 + \mu \sum_{i\in I} \|q_i\|^2 \to \min_{P,Q}$$

Модель с неявными предпочтениями победила в Netflix Prize.

Bell R. M., Koren Y., Volinsky C. The BellKor 2008 solution to the Netflix Prize.

Автокодировщики для коллаборативной фильтрации

$$f: X \to Z$$
 — кодировщик (encoder), кодовый вектор $z = f(x, \alpha)$ $g: Z \to X$ — декодировщик (decoder), реконструкция $\hat{x} = g(z, \beta)$

Суперпозиция $\hat{x} = g(f(x))$ должна восстанавливать исходные x_i :

$$\sum_{i=1}^{\ell} \left(g(f(x_i, \alpha), \beta) - x_i \right)^2 \to \min_{\alpha, \beta}$$

Два варианта автокодировщика, user-based и item-based:

uAE:
$$\sum_{u \in U} (g(f(r_u, \alpha), \beta) - r_u)^2 + \rho(\alpha, \beta) \rightarrow \min_{\alpha, \beta}$$

iAE:
$$\sum_{i \in I} (g(f(r_i, \alpha), \beta) - r_i)^2 + \rho(\alpha, \beta) \rightarrow \min_{\alpha, \beta}$$

где
$$r_i$$
 — столбцы R , r_μ — строки R , $\rho(\alpha,\beta)$ — регуляризатор

Матричное разложение как линейный автокодировщик

Матричное разложение (MF, matrix factorization)

$$||R - PQ^{\mathsf{T}}||^2 + \lambda ||P||^2 + \mu ||Q||^2 \rightarrow \min_{P,Q}$$

ALS с L_2 -регуляризацией, без ограничений неотрицательности:

$$P = RQ(Q^{T}Q + \lambda I)^{-1}$$
 $Q = R^{T}P(P^{T}P + \mu I)^{-1}$

Автокодировщик клиентов $r_u \xrightarrow{f} p_u \xrightarrow{g} \hat{r}_u$ (user-based AE):

uAE:
$$\begin{cases} p_u = f(r_u, Q) = (Q^TQ + \lambda I)^{-1}Q^Tr_u \\ \hat{r}_u = g(p_u, Q) = Qp_u \end{cases}$$

Автокодировщик объектов $r_i \stackrel{f}{\to} q_i \stackrel{g}{\to} \hat{r}_i$ (item-based AE):

iAE:
$$q_i = f(r_i, P) = (P^T P + \mu I)^{-1} P^T r_i$$

 $\hat{r}_i = g(q_i, P) = Pq_i$

 $\mathsf{MF} = \mathsf{матрица}$ параметров imes матрица кодовых векторов

Нейросетевой автокодировщик для СF

Два варианта автокодировщика, user/item-based:

uAE:
$$\hat{r}_{u} = \sigma(W_{2} \sigma(W_{1} r_{u} + b_{1}) + b_{2})$$

iAE: $\hat{r}_{i} = \sigma(W_{2} \sigma(W_{1} r_{i} + b_{1}) + b_{2})$

Шумоподавляющий автокодировщик (Denoising iAE): на вход $\hat{r}_i(r_i, W)$ подаются векторы \tilde{r}_i с шумом, в которых некоторые координаты обнулены, $B_{ui} = [\tilde{r}_{ui} = 0 \neq r_{ui}]$

$$\sum_{(u,i)\in D} (\alpha B_{ui} + \beta \bar{B}_{ui}) ((\hat{r}_i(\tilde{r}_i, W))_u - r_{ui})^2 + \lambda \|W\|^2 \to \min_{W}$$

где штраф за ошибки реконструкции: lpha с шумом, eta без шума

- ullet в экспериментах оптимальными оказались lpha=1, eta=0.65
- іАЕ работает немного лучше, чем иАЕ

F.Strub et al. Hybrid recommender system based on autoencoders. 2017.

Дополнительные данные в МF и автокодировщиках

$$x_u \in \mathbb{R}^n$$
 — вектор признаков клиента $u \in U$ $y_i \in \mathbb{R}^m$ — вектор признаков объекта $i \in I$ Предсказательная модель с параметрами $p_u, p'_u, \ q_i, q'_i$:

$$\hat{r}_{ui} = \langle p_u, q_i \rangle + \langle x_u, q_i' \rangle + \langle p_u', y_i \rangle$$

Матричное разложение:
$$\|PQ^{\mathsf{T}} + XQ'^{\mathsf{T}} + P'Y^{\mathsf{T}} - R\|^2 o \min_{P,Q,P',Q'}$$

Нейросетевые автокодировщики с дополнительными данными:

uAE:
$$\hat{r}_u = \sigma(W_2 \sigma(W_1 r_u + W_1' x_u + b_1) + W_1' x_u + b_2)$$

iAE: $\hat{r}_i = \sigma(W_2 \sigma(W_1 r_i + W_1' y_i + b_1) + W_2' y_i + b_2)$

Недостаток: невозможно одновременно учитывать x_u и y_i

F.Strub et al. Hybrid recommender system based on autoencoders. 2017.

Дополнительные данные в линейной регрессионной модели

$$x_{ui} = (x_{ui1}, \dots, x_{uin})$$
 — вектор признакового описания (u, i)

Примеры признаков:

- для фильмов: текст описания, теги, артисты
- для музыки: жанр, исполнитель, теги
- для событий: текст описания, геолокация, отзывы
- унитарный код (one-hot encoding) клиента и
- унитарный код (one-hot encoding) объекта *i*

Линейная регрессионная модель для r_{ui} :

$$\hat{r}_{ui} = w_0 + \sum_{j=1}^n w_j x_{uij}.$$

Она не описывает связи между клиентами и объектами

Дополнительные данные в квадратичной регрессионной модели

Добавим взаимодействия между признаками:

$$\hat{r}_{ui} = w_0 + \sum_{j=1}^{n} w_j x_{uij} + \sum_{j=1}^{n} \sum_{k=1}^{n} w_{jk} x_{uij} x_{uik}$$

Представим веса w_{jk} низкоранговым матричным разложением:

$$w_{jk} = v_j^\mathsf{T} v_k, \qquad v_i \in \mathbb{R}^{|T|}$$

- регулируемое число параметров
- если нет дополнительных признаков, то получаем LFM
- настраивается с помощью SGD или ALS
- наиболее мощный инструмент библиотека libFM

Дополнительные данные, представимые в виде (гипер)графа

- A словарь атрибутов клиентов (соцдем, регион, хобби...)
- B словарь свойств объектов (слова в текстовых объектах)
- C конечное множество (словарь) ситуативных контекстов
- \mathcal{T} конечное множество (словарь) моментов времени

Виды дополнительных данных:

 r_{ui} — клиент u выбрал объект i

 n_{ua} — клиент u имеет атрибут a

 n_{ib} — объект i имеет свойство b

 n_{uv} — клиент u доверяет клиенту v

 n_{uib} — клиент u отметил i тэгом b

 n_{uic} — клиент u выбрал объект i

в ситуативном контексте *с*

 $n_{uic au}$ — клиент u выбрал объект i в контексте c в момент времени au

Мультимодальная (гипер)графовая тематическая модель

Общая идея графовых эмбедингов и тематических моделей: наблюдаемые рёбра объясняются скрытыми векторами вершин

Оптимизация по всем эмбедингам — векторам вида $p(t|\bullet)$ Для вероятностных тематических эмбедингов — EM-алгоритм Для обычных эмбедингов — стохастический градиент

Измерение качества рекомендаций

RMSE — точность предсказания рейтингов:

$$\mathsf{RMSE}^2 = \sum_{(u,i) \in D} (r_{ui} - \hat{r}_{ui})^2$$

Точность предсказаний не гарантирует хороших рекомендаций

$$R_u(k)\subset I$$
 — первые k рекомендаций для клиента u $L_u\subset I$ — истинные предпочтения клиента u

Более адекватные метрики качества рекомендаций:

• precision@
$$k = rac{|R_u(k) \cap L_u|}{|R_u(k)|}$$
 — точность

• recall@
$$k = rac{|R_u(k) \cap L_u|}{|L_u|}$$
 — полнота

• меры качества ранжирования: MAP, NDCG и др.

Guy Shani, Asela Gunawardana. Evaluating Recommendation Systems. 2017.

Измерение качества рекомендаций

Многокритериальность в рекомендательных системах:

- Разнообразие (diversity): число рекомендаций из разных категорий или степень различия рекомендаций между сессиями клиента
- *Новизна* (novelty): сколько среди рекомендаций объектов, новых для данного клиента
- Покрытие (coverage): доля объектов, которые хотя бы раз побывали среди рекомендованных
- Догадливость (serendipity): способность угадывать неожиданные нетривиальные предпочтения клиентов
- Предвзятость (propensity): прошлые рекомендации влияют на выбор клиентов, смещая последующие рекомендации

Можно оптимизировать линейную комбинацию критериев, либо оптимизировать один при ограничениях на остальные.

Оффлайн- и онлайн- измерения качества рекомендаций

Типичная схема эксперимента:

- разбиваем выборку сессий на обучение и тест
- оптимизируем оффлайн-метрику качества на обучении
- оцениваем качество на тесте и выбираем модель
- внедряем модель в рекомендательный сервис
- проводим AB-тестирование, измеряем онлайн-метрику (деньги или число кликов)

Онлайн- и оффлайн-метрики могут быть слабо связаны:

- в оффлайне не известно, что пользователь мог бы купить
- в оффлайне не известно, что он купил бы без рекомендаций

Выводы из экспериментов: для улучшения онлайн-качества нужно оптимизировать разные аспекты качества в оффлайне.

Коллаборативная фильтрация (Collaborative Filtering) — это набор методов для построения рекомендательных систем (Recommender Systems)

Корреляционные модели — простые, но устаревшие

Латентные модели на основе матричных разложений или автокодировщиков обладают рядом преимуществ:

- сокращается объём хранимых данных
- привлекаются внешние данные для «холодного старта»
- неотрицательные и вероятностные эмбединги интерпретируются как векторы «интересов» или «тем»
- легко добавляются регуляризаторы для многокритериальной оптимизации качества рекомендаций