Texture
Mapping
& Other
Fun Stuff

Last Time?

- Distribution Ray Tracing
- Bounding Boxes
- Spatial Acceleration
 Data Structures
 - Regular Grid
 - Adaptive Grids
 - Hierarchical Bounding Volumes
- Flattening the Transformation Hierarchy

Regular Grid Discussion

- Advantages?
 - easy to construct
 - easy to traverse

- Disadvantages?
 - may be only sparsely filled
 - geometry may still be clumped

Adaptive Grids

• Subdivide until each cell contains no more than *n* elements, or maximum depth *d* is reached

Nested Grids

Octree/(Quadtree)

Primitives in an Adaptive Grid

• Can live at intermediate levels, or be pushed to lowest level of grid

Octree/(Quadtree)

Adaptive Grid Discussion

- Advantages?
 - grid complexity matches geometric density
- Disadvantages?
 - more expensive to traverse (especially octree)

- Find bounding box of objects
- Split objects into two groups

Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

Where to split objects?

- At midpoint *OR*
- Sort, and put half of the objects on each side *OR*
- Use modeling hierarchy

Intersection with BVH

• Check sub-volume with closer intersection first

Intersection with BVH

• Don't return intersection immediately if the other subvolume may have a closer intersection

Bounding Volume Hierarchy Discussion

Advantages

- easy to construct
- easy to traverse
- binary

Disadvantages

- may be difficult to choose a good split for a node
- poor split may result in minimal spatial pruning

Questions?

Today

- 2D Texture Mapping
 - Perspective Correct Interpolation
 - Specifying Texture Coordinates
 - Illumination & Reflectance
- Procedural Solid Textures
- Other Mapping Techniques
- Texture Aliasing

The Problem:

• We don't want to represent all this detail with geometry

The Quest for Visual Realism

Texture Mapping

- Increase the apparent complexity of simple geometry
- Like wallpapering or gift-wrapping with stretchy paper
- Curved surfaces require extra stretching or even cutting

Photo-textures

During rasterization interpolate the coordinate indices into the texture map

Texture Tiling

- Specify a texture coordinate (u,v) at each vertex
- Canonical texture coordinates $(0,0) \rightarrow (1,1)$

Texture Interpolation

- Specify a texture coordinate (u,v) at each vertex
- Can we just linearly interpolate the values in screen space?

Interpolation - What Goes Wrong?

• Linear interpolation in screen space:

Specify More Coordinates?

• We can reduce the perceived artifacts by subdividing the model into smaller triangles.

- However, sometimes the errors become obvious
 - At "T" joints
 - Between levels-of-detail(mipmapping... in a few weeks)

Subdivision

MIT EECS 6.837, Durand and Cutler

Subdivision

what we get

what we want

MIT EECS 6.837, Durand and Cutler

Visualizing the Problem

• Notice that uniform steps on the image plane do not correspond to uniform steps along the edge.

Linear Interpolation in Screen Space

linear interpolation in screen space

$$p(t) = p_1 + t(p_2 - p_1) = \frac{x_1}{z_1} + t(\frac{x_2}{z_2} - \frac{x_1}{z_1})$$

interpolation in 3-space

$$\begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} x_1 \\ z_1 \end{bmatrix} + s \begin{bmatrix} x_2 \\ z_2 \end{bmatrix} - \begin{bmatrix} x_1 \\ z_1 \end{bmatrix} \qquad P \begin{bmatrix} x \\ z \end{bmatrix} = \frac{x_1 + s(x_2 - x_1)}{z_1 + s(z_2 - z_1)}$$

MIT EECS 6.837, Durand and Cutler

Perspective Correct Interpolation

We need a mapping from t values to s values:

$$\frac{x_1}{z_1} + t \left(\frac{x_2}{z_2} - \frac{x_1}{z_1} \right) = \frac{x_1 + s(x_2 - x_1)}{z_1 + s(z_2 - z_1)}$$

Solve for *s* in terms of *t*:

$$s = \frac{t \ z_1}{z_2 + t \ (z_1 - z_2)}$$

Unfortunately, at this point in the pipeline (after projection) we no longer have z. However, we do have $w_1 = 1/z_1$ and $w_2 = 1/z_2$, so:

$$S = \frac{t \frac{1}{w_1}}{\frac{1}{w_2} + t \left(\frac{1}{w_1} - \frac{1}{w_2}\right)} = \frac{t w_2}{w_1 + t \left(w_2 - w_1\right)}$$

Today

- 2D Texture Mapping
 - Perspective Correct Interpolation
 - Specifying Texture Coordinates
 - Illumination & Reflectance
- Procedural Solid Textures
- Other Mapping Techniques
- Texture Aliasing

Texture Mapping Difficulties

- Tedious to specify texture coordinates
- Acquiring textures is surprisingly difficult
 - Photographs have projective distortions
 - Variations in reflectance and illumination
 - Tiling problems

Can't do this!

Common Texture Coordinate Mappings

- Orthogonal
- Cylindrical
- Spherical
- Perspective Projection
- Texture Chart

MIT EECS 6.837, Durand and Cutler

Projective Textures

- Use the texture like a slide projector
- No need to specify texture coordinates explicitly
- A good model for shading variations due to illumination
- A fair model for reflectance (can use pictures)

Projective Texture Example

- Modeling from photographs
- Using input photos as textures

Original photograph with marked edges

Recovered model

Model edges projected onto photograph

Synthetic rendering

Figure from Debevec, Taylor & Malik http://www.debevec.org/Research

Texture Mapping & Illumination

- Texture mapping can be used to alter some or all of the constants in the illumination equation:
 - pixel color, diffuse color, alter the normal,

$$I_{total} = k_a I_{ambient} + \sum_{i=1}^{lights} I_i \left(k_d \left(\hat{N} \cdot \hat{L} \right) + k_s \left(\hat{V} \cdot \hat{R} \right)^{n_{shiney}} \right)$$

Phong's Illumination Model

Texture used as Diffuse Color

Texture Chart

• Pack triangles into a single image

Questions?

Today

- 2D Texture Mapping
- Procedural Solid Textures
- Other Mapping Techniques
- Texture Aliasing

Procedural Textures

 $f(x,y,z) \rightarrow color$

Image by Turner Whitted

Procedural Textures

Advantages:

- easy to implement in ray tracer
- more compact than texture maps
 (especially for solid textures)
- infinite resolution

- non-intuitive
- difficult to match existing texture

Questions?

Ken Perlin

Justin Legakis

Justin Legakis

Today

- 2D Texture Mapping
- Procedural Solid Textures
- Other Mapping Techniques:
 - Bump Mapping
 - Displacement Mapping
 - Environment Mapping (for Reflections)
 - Light Maps (for Illumination)
- Texture Aliasing

What's Missing?

• What's the difference between a real brick wall and a photograph of the wall texture-mapped onto a plane?

 What happens if we change the lighting or the camera position?

MIT EECS 6.837, Durand and Cutler

Remember Gouraud Shading?

• Instead of shading with the normal of the triangle, shade the vertices with the *average normal* and interpolate the color across each face

Phong Normal Interpolation (Not Phong Shading)

• Interpolate the average vertex normals across the face and compute *per-pixel shading*

Bump Mapping

- Use textures to alter the surface normal
 - Does not change the actual shape of the surface
 - Just shaded as if it were a different shape

Swirly Bump Map

Sphere w/Diffuse Texture & Bump Map

Bump Mapping

- Treat the texture as a single-valued height function
- Compute the normal from the partial derivatives in the texture

Another Bump Map Example

What's Missing?

 There are no bumps on the silhouette of a bump-mapped object

 Bump maps don't allow self-occlusion or self-shadowing

Displacement Mapping

- Use the texture map to actually move the surface point
- The geometry must be displaced before visibility is determined

Displacement Mapping

Image from:

Geometry Caching for Ray-Tracing Displacement Maps by Matt Pharr and Pat Hanrahan.

note the detailed shadows cast by the stones

Displacement Mapping

Ken Musgrave

Today

- 2D Texture Mapping
- Procedural Solid Textures
- Other Mapping Techniques:
 - Projective Shadows and Shadow Maps
 - Bump Mapping
 - Displacement Mapping
 - Environment Mapping (for Reflections)
 - Light Maps (for Illumination)
- Texture Aliasing

Environment Maps

• We can simulate reflections by using the direction of the reflected ray to index a spherical texture map at "infinity".

 Assumes that all reflected rays begin from the same point.

What's the Best Chart?

MIT EECS 6.837, Durand and Cutler

Environment Mapping Example

Terminator II

Texture Maps for Illumination

Also called "Light Maps"

Quake

Questions?

Image by Henrik Wann Jensen Environment map by Paul Debevec

Today

- 2D Texture Mapping
- Procedural Solid Textures
- Other Mapping Techniques:
- Texture Aliasing

Textures can Alias

• *Aliasing* is the under-sampling of a signal, and it's especially noticeable during animation

Textures can Alias

• Small details may "pop" in and out of view

nearest neighbor

mipmaps & linear interpolation

Next Time:

Real-Time Shadows