BACCALAUREAT GENERAL

MATHEMATIQUES

Série S

Enseignement de Spécialité

Durée de l'épreuve : 4 heures

Coefficient: 9

Ce sujet comporte 6 pages numérotées de 1 à 6

Du papier millimétré est mis à la disposition des candidats.

L'utilisation d'une calculatrice est autorisée.

Le candidat doit traiter tous les exercices.

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

EXERCICE 1 (7 points)

(Commun à tous les candidats)

Les parties A et B sont indépendantes

Partie A

Une boite contient 200 médailles souvenir dont 50 sont argentées, les autres dorées.

Parmi les argentées 60% représentent le château de Blois, 30% le château de Langeais, les autres le château de Saumur.

Parmi les dorées 40% représentent le château de Blois, les autres le château de Langeais.

On tire au hasard une médaille de la boite. Le tirage est considéré équiprobable et on note :

- A l'évènement « la médaille tirée est argentée » ;
- D l'évènement « la médaille tirée est dorée » ;
- B l'évènement « la médaille tirée représente le château de Blois » ;
- L l'évènement « la médaille tirée représente le château de Langeais » ;
- S l'évènement « la médaille tirée représente le château de Saumur ».
- 1) Dans cette question, on donnera les résultats sous la forme d'une fraction irréductible.
 - a) Calculer la probabilité que la médaille tirée soit argentée et représente le château de Langeais.
 - b) Montrer que la probabilité que la médaille tirée représente le château de Langeais est égale à $\frac{21}{40}$.
 - c) Sachant que la médaille tirée représente le château de Langeais, quelle est la probabilité que celle-ci soit dorée ?
- 2) Sachant que la médaille tirée représente le château de Saumur, donner la probabilité que celle-ci soit argentée.

Partie B

Une médaille est dite conforme lorsque sa masse est comprise entre 9,9 et 10,1 grammes. On dispose de deux machines M_1 et M_2 pour produire les médailles.

- 1) Après plusieurs séries de tests, on estime qu'une machine M_1 produit des médailles dont la masse X en grammes suit la loi normale d'espérance 10 et d'écart-type 0, 06.
 - On note C l'évènement « la médaille est conforme ».
 - Calculer la probabilité qu'une médaille produite par la machine M₁ ne soit pas conforme.
 - On donnera le résultat arrondi à 10^{-3} près.
- 2) La proportion des médailles non conformes produites par la machine M_1 étant jugée trop importante, on utilise une machine M_2 qui produit des médailles dont la masse Y en grammes suit la loi normale d'espérance $\mu=10$ et d'écart-type σ .
 - a) Soit Z la variable aléatoire égale à $\frac{Y-10}{\sigma}$. Quelle est la loi suivie par la variable Z?
 - **b**) Sachant que cette machine produit 6 % de pièces non conformes, déterminer la valeur arrondie au millième de σ .

EXERCICE 2 (3 points)

(commun à tous les candidats)

On considère les fonctions f et g définies sur l'intervalle $[0\ ;\ 16]$ par

$$f(x) = \ln(x+1)$$
 et $g(x) = \ln(x+1) + 1 - \cos(x)$.

Dans un repère du plan $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$, on note \mathscr{C}_f et \mathscr{C}_g les courbes représentatives des fonctions f et g.

Ces courbes sont données en annexe 1.

Comparer les aires des deux surfaces hachurées sur ce graphique.

EXERCICE 3 (6 points)

(Commun à tous les candidats)

Dans le repère orthonormé $\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$ de l'espace, on considère pour tout réel m, le plan P_m d'équation

$$\frac{1}{4}m^2x + (m-1)y + \frac{1}{2}mz - 3 = 0.$$

- 1) Pour quelle(s) valeur(s) de m le point A(1; 1; 1) appartient-il au plan P_m ?
- 2) Montrer que les plans P_1 et P_{-4} sont sécants selon la droite (d) de représentation paramétrique

$$(d) \begin{cases} x = 12 - 2t \\ y = 9 - 2t \\ z = t \end{cases} \text{ avec } t \in \mathbb{R}.$$

- 3) a) Montrer que l'intersection entre P_0 et (d) est un point noté B dont on déterminera les coordonnées.
 - **b**) Justifier que pour tout réel m, le point B appartient au plan P_m .
 - c) Montrer que le point B est l'unique point appartenant à P_m pour tout réel m.
- 4) Dans cette question, on considère deux entiers relatifs m et m' tels que

$$-10 \leqslant m \leqslant 10$$
 et $-10 \leqslant m' \leqslant 10$.

On souhaite déterminer les valeurs de m et de m' pour lesquelles P_m et $P_{m'}$ sont perpendiculaires.

- a) Vérifier que P_1 et P_{-4} sont perpendiculaires.
- **b**) Montrer que les plans P_m et $P_{m'}$ sont perpendiculaires si et seulement si

$$\left(\frac{mm'}{4}\right)^2 + (m-1)(m'-1) + \frac{mm'}{4} = 0.$$

c) On donne l'algorithme suivant :

Variables :	m et m' entiers relatifs
Traitement :	Pour m allant de -10 à 10 : Pour m' allant de -10 à 10 : Si $(mm')^2 + 16(m-1)(m'-1) + 4mm' = 0$ Alors Afficher $(m \; ; \; m')$ Fin du Pour Fin du Pour

Quel est le rôle de cet algorithme?

d) Cet algorithme affiche six couples d'entiers dont (-4; 1), (0; 1) et (5; -4). Écrire les six couples dans l'ordre d'affichage de l'algorithme.

EXERCICE 4 (5 points)

(candidats ayant suivi l'enseignement de spécialité)

Les parties A et B peuvent être traitées de manière indépendante

Partie A

Afin de crypter un message, on utilise un chiffrement affine.

Chaque lettre de l'alphabet est associée à un nombre entier comme indiqué dans le tableau ci-dessous :

A	В	С	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Soit x le nombre associé à la lettre à coder. On détermine le reste y de la division euclidienne de 7x + 5 par 26, puis on en déduit la lettre associée à y (c'est elle qui code la lettre d'origine).

Exemple:

M correspond à x = 12

$$7 \times 12 + 5 = 89$$

Or $89 \equiv 11 \ [26]$ et 11 correspond à la lettre L. Donc la lettre M est codée par la lettre L.

- 1) Coder la lettre L.
- **2) a)** Soit k un entier relatif. Montrer que si $k \equiv 7x$ [26] alors $15k \equiv x$ [26].
 - b) Démontrer la réciproque de l'implication précédente.
 - c) En déduire que $y \equiv 7x + 5$ [26] équivaut à $x \equiv 15y + 3$ [26].
- 3) À l'aide de la question précédente décoder la lettre F.

Partie B

On considère les suites (a_n) et (b_n) telles que a_0 et b_0 sont des entiers compris entre 0 et 25 inclus et pour tout entier naturel n, $a_{n+1} = 7a_n + 5$ et $b_{n+1} = 15b_n + 3$.

pour tout entier naturel $n,\ a_{n+1}=7a_n+5$ et $b_{n+1}=15b_n+3$. Montrer que pour tout entier naturel $n,\ a_n=\left(a_0+\frac{5}{6}\right)\times 7^n-\frac{5}{6}$.

On admet pour la suite du problème que pour tout entier naturel n, $b_n = \left(b_0 + \frac{3}{14}\right) \times 15^n - \frac{3}{14}$.

Partie C

Déchiffrer un message codé avec un chiffrement affine ne pose pas de difficulté (on peut tester les 312 couples de coefficients possibles). Afin d'augmenter cette difficulté de décryptage, on propose d'utiliser une clé qui indiquera pour chaque lettre le nombre de fois où on lui applique le chiffrement affine de la partie A.

Par exemple pour coder le mot MATH avec la clé 2-2-5-6, on applique « 2 » fois le chiffrement affine à la lettre M (cela donne E), « 2 » fois le chiffrement à la lettre A, « 5 » fois le chiffrement à la lettre T et enfin « 6 » fois le chiffrement à la lettre H.

Dans cette partie, on utilisera la clé 2-2-5-6.

Décoder la lettre Q dans le mot IYYQ.

ANNEXE 1 de l'exercice 2

À RENDRE AVEC LA COPIE