Математическая логика

1. Организация учебного процесса

2. Соответствия и функции

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела					
п/п	раздела дисциплины						
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.					
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.					
		Принцип двойственности. Совершенная дизъюнктивная нормальная					
		форма (СДНФ). Совершенная конъюнктивная нормальная форма					
		(СКНФ). Разложение булевых функций по переменным. Построение					
		СДНФ для функции, заданной таблично.					
2.	Минимизация	Проблема минимизации. Порождение простых импликант					
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.					
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий					
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс					
	логических функций	самодвойственных функций. Определение и лемма о					
		несамодвойственной функции. Класс монотонных функций.					
		Определение и лемма о немонотонной функции. Класс линейных					
		функций. Определение и лемма о нелинейной функции.					
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,					
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод					
	предикатов	резолюций для исчисления высказываний. Понятие предиката.					
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм					
		преобразования формул в предваренную нормальную форму.					
		Скулемовская стандартная форма. Подстановка и унификация.					
		Алгоритм унификации. Метод резолюций в исчислении предикатов.					

БРС

Раздел	Тема	Формы контроля уровня освоения ООП				Баллы темы	Баллы раздела
		Выполне ние ДЗ	Активно сть на ЛР	Конт р. тест.	Итог. контр. знаний		
1.	Введение в алгебру логики	2	2	15	6	25	25
2.	Минимизация булевых функций	3	3	15	7	28	28
3.	Полнота и замкнутость систем логических функций	2	2	15	3	22	22
4.	Исчисление высказываний и предикатов	3	3	15	4	25	25
Итого		10	10	60	20	100	100

Литература

- Зарипова Э.Р., Маркова Е.В. Лекции и практикум по математической логике: Учебное пособие. Москва. РУДН, 2016 г. 98 с.
- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Джордж Буль (George Boole 02.11.1815 – 08.12.1864)

Джордж Буль — английский математик, основатель Булевой алгебры, внес вклад в развитие двоичной системы счисления.

Основатель своеобразной алгебры: система обозначений и правил, позволяющая закодировать высказывания-утверждения, истинность или ложность которых требуется доказать.

Прямое произведение множеств

Рассмотрим два множества A и B.

Прямым произведением множеств \pmb{A} и \pmb{B} (обозначение $\pmb{A} \times \pmb{B}$) называется множество упорядоченных пар (a,b) таких, что $a \in \pmb{A}$, $b \in \pmb{B}$.

Если A = B, то такое произведение обозначается A^2 .

Аналогично прямым произведением множеств A_1, \dots, A_n (обозначение $A_1 \times \dots \times A_n$) называется множество всех упорядоченных наборов (a_1, \dots, a_n) длины n таких, что $a_1 \in A_1, \dots, a_n \in A_n$. $A \times \dots \times A$ обозначается A^n .

Прямое произведение множеств. Пример.

Рассмотрим два множества

$$A = \{a,b,c\}$$
 и $B = \{1,2\}$.

Прямое произведение множеств A и B:

$$\mathbf{A} \times \mathbf{B} = \begin{cases} (a,1), (a,2) \\ (b,1), (b,2) \\ (c,1), (c,2) \end{cases}$$

Соответствие. Проекции соответствия.

Соответствием между множествами \pmb{A} и \pmb{B} называется подмножество $\pmb{G} \subseteq \pmb{A} \times \pmb{B}$.

Если $(a,b) \in G$, то говорят, что b соответствует a при соответствии G .

Проекцией подмножества $G \subseteq A \times B$ на множество A называется множество элементов $a \in A$ таких, что $(a,b) \in G$ (обозначение np_AG).

Аналогично $np_{\pmb{B}}\pmb{G}$ — это множество элементов $b\in \pmb{B}$ таких, что $(a,b)\in \pmb{G}$.

Соответствие. Проекции соответствия. Пример.

$$\mathbf{A} \times \mathbf{B} = \left\{ (a,1), (a,2) \\ (b,1), (b,2) \\ (c,1), (c,2) \\ \right\}, \ \mathbf{G} = \left\{ (a,1), (b,2), (c,2) \right\}$$

$$np_{A}G = \{a,b,c\}, np_{B}G = \{1,2\}.$$

Область определения и область значения соответствия

Множество $np_A G$ называется областью определения соответствия,

а множество $np_{\it B}G$ — областью значений соответствия.

Если $np_A G = A$, то соответствие называется всюду определенным (в противном случае соответствие называется частичным);

если $np_{B}G = B$, то соответствие называется **сюръективным**.

Область определения и область значения соответствия. Пример

 $np_{A}G = \{a,b,c\}$ - область определения соответствия $np_{B}G = \{1,2\}$ - область значения соответствия.

- 1) $np_{A}G = \{a,b,c\} = A$, следовательно соответствие G всюду определено.
- $np_{B}G = \{1, 2\} = B$, следовательно соответствие сюръективно.

Образы и прообразы

Множество всех $b \in \mathbf{B}$, соответствующих элементу $a \in \mathbf{A}$, называется **образом** a в \mathbf{B} при соответствии \mathbf{G} .

Множество всех a , которым соответствует b , называется **прообразом** b в A при соответствии G .

Образы и прообразы. Пример.

Образ a в множестве B при соответствии G - элемент 1.

Образ b в множестве B - элемент 2.

Образ c в множестве B - элемент 2.

Прообраз 1 в множестве \boldsymbol{A} при соответствии \boldsymbol{G} - элемент \boldsymbol{a} .

Прообразы 2 в множестве A - элементы b и c .

Функциональное соответствие. Взаимно-однозначное соответствие.

Соответствие G называется функциональным (или однозначным), если образом любого элемента из $np_{A}G$ является единственный элемент из $np_{B}G$.

Соответствие G между A и B называется взаимнооднозначным, если оно

- 1) всюду определено,
- 2) сюръективно,
- 3) функционально
- 4) и прообразом любого элемента из $np_{B}G$ является единственный элемент из $np_{A}G$.

Функциональное соответствие. Взаимнооднозначное соответствие.

Соответствие G - функционально, т.к. образом каждого элемента из A является единственный элемент из B .

Проверка на взаимно-однозначность в примере:

- Соответствие G 1) всюду определено,
- 2) сюръективно, 3) функционально, 4) НО прообраз
- 2 не единственен, следовательно
- G не взаимооднозначное соответствие.

Композиция функций

Пусть даны функции $f: A \to B$ и $g: B \to C$. Функция $h: A \to C$ называется композицией f и g (обозначение $f \circ g$), если имеет место равенство $h(a) = g(f(a)), \ a \in A$.

Композиция f и g представляет собой последовательное применение функций f и g .

Алгебра

Функцию φ типа $\varphi: M^n \to M$ будем называть n -арной операцией на множестве M, n называется арностью операции φ .

Система $A = \{M; \varphi_1, ..., \varphi_m\}$ называется алгеброй,

 ${\it M}$ - основное (несущее) множество алгебры ${\it A}$.

Вектор арностей операций алгебры называется ее типом,

совокупность операций называется Φ - сигнатурой.

Подалгебра

Множество $L\subseteq M$ называется замкнутым относительно n -арной операции φ на M, если $\varphi(L^n)\in L$.

Если L замкнуто относительно всех операций $\varphi_1, ..., \varphi_m$ алгебры A, то система $A' = \{L; \varphi_1, ..., \varphi_m\}$ называется подалгеброй A.

Булеан

Пусть задано множество \boldsymbol{U} .

Множество всех его подмножеств называется $\mathbf{булеаном}\ U$ и обозначается через $\mathbf{\textit{B}}(U)$.

Алгебра $B = \{B(U); \bigcup, \bigcap, \neg\}$ называется булевой алгеброй множеств над U, ее тип (2,2,1).

Для любого $U' \subseteq U$ $B' = \{B(U'); \bigcup, \bigcap, \neg\}$ является подалгеброй B .

Булеан. Пример

Пусть
$$U = \{a, b, c, d\}$$
.

Булеан U будет содержать 16 элементов.

Перечислите эти элементы.

Булеан. Пример

Пусть
$$U = \{a, b, c, d\}$$
.

Булеан U будет содержать 16 элементов.

$$\boldsymbol{B}(\boldsymbol{U}) = \begin{cases} \emptyset, a, b, c, d, ab, ac, ad, bc, \\ bd, cd, adc, abc, abd, bcd, abcd \end{cases};$$

Построим подалгебру алгебры $\mathbf{\textit{B}} = \big\{ \mathbf{\textit{B}} \big(\mathbf{\textit{U}} \big); \bigcup, \cap, \neg \big\}$

Булеан. Пример

Пусть
$$U' = \{a,b\}$$
. Составим булеан $B(U') = \{\emptyset, a, b, ab\}$.

Алгебра $\mathbf{\textit{B}}' = \left\{ \mathbf{\textit{B}} \left(\mathbf{\textit{U}}' \right); \bigcup, \bigcap, \neg \right\}$ будет являться подалгеброй $\mathbf{\textit{B}}$.

Тема следующей лекции:

«Функции алгебры логики».