FIŞA DISCIPLINEI

1. Date despre program

1.1. Instituția de învățământ superior	Universitatea din București
1.2. Facultatea	Facultatea de Matematică și Informatică
1.3. Departamentul	Informatică
1.4. Domeniul de studii	Informatică
1.5. Ciclul de studii	Licență
1.6. Programul de studii /Calificarea	Informatică
1.7. Forma de învățământ	Învățământ la Distanță

2. Date despre disciplină

Denumirea disciplinei		Logică matematică și computațională				
Codul disciplinei		LI-Y1-D4				
Titularul activităților de curs		Mureşan Claudia				
Anul de studiu: I S	Semestru	l: II	Tipul d	e evaluare:	Examen	
Regimul disciplinei:	categoria formativa		nativă:	fundamenta	lă	
	tipul disciplinei:		impusă			

3. Timpul total estimat (ore pe semestru al activităților didactice)

Total ore de studiu individual	50
Total ore de activități tutoriale	22
Total ore de activități asistate	25
Total ore de examinare	
Total ore pe semestru	
Numărul de credite	

4. Precondiții (acolo unde este cazul)

	,
4.1. de curriculum	
4.2. de competențe	

5. Condiții de desfășurare a cursului (acolo unde este cazul)

Platforma MS Teams, sau Zoom în caz de nefuncționare a MS Teams-ului, pentru cursurile online.

6. Competente specifice acumulate

or competence acamatate			
Competențe profesionale	C4. Utilizarea bazelor teoretice ale informaticii și a modelelor formale.		
Competențe	CT3. Utilizarea unor metode și tehnici eficiente de învățare, informare, cercetare și dezvoltare		
transversale	a capacităților de valorificare a cunoștințelor, de adaptare la cerințele unei societăți dinamice și		
	de comunicare în limba română și într-o limbă de circulație internațională.		

7. **Obiectivele disciplinei** (reieşind din grila competențelor specifice acumulate)

7.1. Obiectivul general	Exersarea unor tehnici fundamentale de raţionament matematic şi a redactării
al disciplinei	demonstrațiilor formalizate.
	Însuşirea unei baze de cunoştinţe de teoria mulţimilor, structuri algebrice ordonate şi logică formală necesare pentru cursurile din semestrele următoare.
	Aspectele principale sub care sunt studiate sistemele logice: sintaxă (limbaj, reprezentarea deducției prin reguli sintactice), algebră (construcția algebrei Lindenbaum-Tarski asociată sistemului logic), semantică (calculul cu valori de adevăr).
	Studiul logicii clasice sub aceste aspecte.
7.2. Obiective specifice	Familiarizarea cu noțiuni de bază din teoria mulțimilor și algebra logicii;
	transpunerea unor proprietăți logice de bază în calcul cu mulțimi și invers; însușirea
	unor noțiuni necesare în capitolele de logică și în cursurile din semestrele

următoare: relații, operatori și sisteme de închidere, mulțimi ordonate, latici, algebre Boole.

Studiul Logicii Propoziționale Clasice: sintaxă, algebră, semantică, rezoluție propozițională, algoritmul Davis-Putnam.

Studiul Logicii Clasice a Predicatelor: sintaxă, semantică, rezoluție în logica de ordinul I, algoritmul Davis-Putnam.

Introducere în programarea logică, în limbajul Prolog.

8. Continuturi

Cuprinsul cursului	Metode de predare
1. Preliminarii algebrice: mulțimi, funcții și relații; relații binare, relații de	Explicația. Demonstrația.
echivalență, relații de ordine; mulțimi (parțial) ordonate, latici, algebre Boole;	Descrierea și exemplificarea.
Teorema de reprezentare a lui Stone.	Conversația euristică.
Introducere în limbajul de programare Prolog.	
2. Logica propozițională clasică: sintaxa (o primă prezentare pentru logica	
propozițională clasică: sistemul Hilbert); algebra Lindenbaum-Tarski;	
semantica; Teorema de completitudine (echivalența deducției sintactice cu	
deducția semantică); rezoluția propozițională (echivalentă cu sistemul	
Hilbert); suplimentar: deducția naturală.	
3. Logica clasică a predicatelor: structuri de ordinul I, sintaxa, semantica,	
Teorema de completitudine, rezoluția în logica clasică a predicatelor.	
4. Introducere în programarea logică, în limbajul Prolog; demonstrații	
matematice efectuate cu ajutorul Prolog-ului.	

Bibliografie:

Cursurile, seminariile și laboratoarele de logică matematică și computațională postate în cursul semestrului pe serverul de cursuri MoodleUB, pe MS Teams și în Google drive: suport de curs, seminar și laborator în format PDF și de fișiere .pl, înregistrări ale lecțiilor online/față în față.

Colecțiile de exerciții date la temele individuale/examenele de logică matematică și computațională postate pe MoodleUB și MS Teams.

Articolele cu probleme date la examenele de logică matematică și computațională din Revista de logică a A. Atanasiu.

- S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, The Millenium Edition, disponibilă online.
- D. Bușneag, D. Piciu, Lecții de algebră, Editura Universitaria Craiova, 2002.
- D. Bușneag, D. Piciu, Probleme de logică și teoria mulțimilor, Craiova, 2003.
- V. E. Căzănescu, Curs de bazele informaticii, Tipografia Universității din București, 1974, 1975, 1976.
- A. A. Fraenkel, Y. Bar-Hillel, A. Levy, Foundations of Set Theory, Studies in Logic and the Foundations of Mathematics, vol. 67, 1973.
- J. Gallier, The Completeness of Propositional Resolution: a Simple and Constructive Proof, Logical Methods in Computer Science 2(5:3) (2006), 1–7.
- G. Georgescu, Elemente de logică matematică, Academia Militară, Bucuresti, 1978.
- G. Georgescu, A. Iorgulescu, Logică matematică, Editura ASE, București, 2010.
- K. Kuratowski, Introducere în teoria mulțimilor și în topologie, traducere din limba poloneză, Editura Tehnică, București, 1969.
- G. Metakides, A. Nerode, Principles of Logic and Logic Programming; traducere de A. Florea, B. Boldur: Principii de Logică și Programare Logică, Editura Tehnică, București, 1998.
- I. Bratko, Prolog Programming for Artifficial Intelligence, Wokingham: Addison-Wesley, 1986.
- S. Rudeanu, Curs de bazele informaticii, Tipografia Universității din București, 1982.
- A. Scorpan, Introducere în teoria axiomatică a mulțimilor, Editura Universității din București, 1996.

Continutul activităților

- 1. Studiul individual prin materiale specifice ID: parcurgerea suportului de curs, seminar și laborator, cu ajutorul înregistrărilor lecțiilor de Logică Matematică și Computațională de la seria ID și seria 14.
- 2. Activități tutoriale: lecții online.
- 3. Activități asistate: teme colective pentru exersarea și aprofundarea materiei parcurse și consultații.
- 4. Examinare: examenul scris, față în față, din sesiune.

9. Coroborarea conținutului disciplinei cu așteptările reprezentanților comunității epistemice, asociațiilor profesionale și angajatori reprezentativi din domeniul aferent programului

Noțiunile introduse în acest curs vor dezvolta capacitatea de analiză a studenților și vor duce la o mai bună și profundă înțelegere a noțiunilor care au stat la baza dezvoltării unor direcții actuale în informatică.

10. Evaluare

Stabilirea notei finale (procente)	evaluare finală prin lucrare scrisă		
	teme colective/individuale cu exerciții tip seminar		
	teme colective/individuale cu exerciții de programare în Prolog 20%		
Standard minim de performanță	Nota 5		

Data completării: 20.09.2024	Semnătura titularului de curs
Semnătura titularului de seminar/laborator	Data avizării în departament:
Semnătura directorului de departament	