SQL - Álgebra Relacional - Operações Fundamentais - Conceitos básicos

A grande maioria das aplicações que desenvolvemos atualmente utilizam um banco de dados relacional o que implica na utilização de consultas para obtenção de resultados.

Para isso usamos a linguagem SQL que é a linguagem de pesquisa declarativa padrão para banco de dados relacional . Muitas das características originais do SQL foram inspiradas na álgebra relacional e neste artigo eu procuro abordar os conceitos básicos da álgebra relacional.

A Álgebra Relacional é uma linguagem de consulta formal, porém procedimental, ou seja, o usuário dá as instruções ao sistema para que o mesmo realize uma seqüência de operações na base de dados para calcular o resultado desejado.

Na terminologia formal de modelo relacional temos os seguintes conceitos:

- 1. Uma linha é chamada de tupla;
- 2. O cabeçalho da coluna é chamado de atributo;
- 3. Tabela é chamada de relação;
- 4. O tipo de dados que descreve os tipos de valores que podem aparecer em cada coluna é chamado de domínio;

A álgebra relacional é uma forma de cálculo sobre conjuntos ou relações.

A álgebra relacional recebia pouca atenção até a publicação do modelo relacional de dados de <u>E.F Codd</u>, em 1970. Codd propôs tal álgebra como uma base para linguagens de consulta em banco de dados.

(fonte: http://pt.wikipedia.org/wiki/%C3%81lgebra_relacional - consultado em novembro de 2012)

Neste artigo eu vou me ater às principais operações fundamentais da álgebra relacional.

Há seis operações fundamentais na álgebra relacional:

- 1. Seleção
- 2. Projeção
- 3. Produto cartesiano
- 4. União
- 5. Diferença entre conjuntos
- 6. Renomear
- 1- Seleção σ : Seleciona tuplas (linhas) que satisfazem um certo predicado ou condição.

Indicada por σ (letra grega sigma), é uma operação que para um conjunto inicial fornecido como argumento, produz um subconjunto estruturalmente idêntico, mas apenas com os elementos do conjunto original que atendem a uma determinada condição (chamada de predicado). A seleção pode ser entendida como uma operação que filtra as linhas de uma relação(tabela), e é uma operação unária, pois opera sobre um único conjunto de dados.

Notação - $\sigma_{predicado (relação)}$

Alunos

id	nome	sexo
123	Macoratti	M
234	Miriam	F
456	Jefferson	М
567	Janice	F

Ex 1: Selecionar tuplas de Alunos cujo nome = Macoratti

O nome = 'Macoratti' (Alunos) => produz o conjunto dos elementos de alunos que atendem ao predicado [Nome = 'Macoratti'], ou seja, representa um subconjunto dos alunos para o qual essa condição é avaliada como verdadeira.

id	nome	sexo

|123 |Macoratti | M

- Resultado subconjunto horizontal de uma relação
- Operadores de comparação : =, <, <=, >, >=, □
- Operadores lógicos: ^ (and) V (or) ¬ (not)

Ex 2: Selecionar as tuplas de Alunos com id > 123 e id < 567

σ id > 123 ^ id < 567

id	nome	sexo
234	Miriam	F
456	Jefferson	М

O operador de seleção é comutativo => $\sigma_{\text{condição1}}$ ($\sigma_{\text{condição2}}$) = $\sigma_{\text{condição2}}$ ($\sigma_{\text{condição2}}$)

2- Projeção π : Gera novas relações excluindo alguns atributos

Indicada por [¶] (a letra grega pi) produz um conjunto onde há um elemento para cada elemento do conjunto de entrada, sendo que a estrutura dos membros do conjunto resultante é definida nos argumentos da operação. Pode ser entendida como uma operação que filtra as colunas de uma tabela. Por operar sobre apenas um conjunto de entrada é classificada como uma operação unária.

Notação: Tista_nome_atributos (Relação)

Ex. 1 - projete o atributo nome sobre a relação Alunos

π nome (Alunos)

nome Macoratti Miriam Jefferson Janice

Ex. 2: Descobrir o nome e o id de todos os alunos do sexo masculino

Neste caso será necessário combinar uma projeção com uma seleção.

Se decidirmos projetar as colunas desejadas diretamente a partir da relação alunos, estaremos considerando também os elementos do sexo feminino o que não queremos. Como a projeção não permite descartar linhas, apenas colunas, deveremos fornecer a essa operação o subconjunto resultante de uma filtragem (seleção) da relação de alunos original, como mostram as figuras abaixo, que representam as relações e as operações de duas maneiras diferentes.

Definindo a expressão que atende aos requisitos temos:

$$\pi$$
 id,nome (σ sexo = 'M') (Alunos)

id	nome
123	Macoratti
456	Jefferson

O operador Projeção não é comutativo.

A álgebra relacional empresta da teoria de conjuntos quatro operadores: União, Intersecção, Diferença e Produto Cartesiano que veremos a seguir.

3- Produto Cartesiano X: Retorna todas as combinações de tuplas de duas R1 e R2.

O resultado do produto cartesiano de duas relações é uma terceira relação contendo todas as combinações possíveis entre os elementos das relações originais.

Essa relação resultante possuirá um número de colunas que é igual à soma das quantidades de colunas das duas relações iniciais, e um número de linhas igual ao produto do número de suas linhas. Portanto, se fizermos o produto cartesiano de uma relação A que possua 5 colunas e 10 linhas com uma relação B onde existem 3 colunas e 8 linhas, a relação resultante terá 5+3= 8 colunas e 10*8= 80 linhas.

- Total de colunas do produto cartesiano : Número colunas da primeira tabela + número de colunas da segunda tabela
- Número de linhas do produto cartesiano: Número de linhas da primeira tabela x número de linhas da segunda tabela

Assim, cada linha dessa relação corresponderá à concatenação de uma linha da primeira relação com uma linha da segunda.

Notação: relação1 X relação2 (R1 x R2)

Ex 1: Descobrir o nome do aluno, sexo e o nome do curso para cada aluno

Alunos

id	nome	sexo	curso
123	Macoratti	М	100
234	Miriam	F	110
456	Jefferson	М	120
567	Janice	F	100

Cursos

id	nome
100	Quimica
110	Inglês
120	Matemática
130	Física

π nome, sexo, curso (σ Alunos.curso = Cursos.id (Alunos x Cursos))

Resultado:

id	nome	sexo	nome
123	Macoratti	М	Quimica
234	Miriam	F	Inglês
456	Jefferson	М	Matemática
567	Janice	F	Quimica

Note que primeiro fizemos o produto cartesiano (Alunos x Cursos) que resulta em uma relação com 6 colunas e 16 linhas:

id	nome	sexo	curso	id	nome
123	Macoratti	M	100	100	Quimica
123	Macoratti	M	100	110	Inglês
123	Macoratti	M	100	120	Matematica
123	Macoratti	М	100	130	Fisica
234	Miriam	F	110	100	Quimica
234	Miriam	F	110	110	Inglês
234	Miriam	F	110	120	Matematica
234	Miriam	F	1100	130	Fisica

Depois fizemos uma seleção pelo código do curso : • Alunos.curso = Cursos.id

id	nome	sexo	curso	id	nome
123	Macoratti	М	100	100	Quimica
123	Miriam	F			Inglês
123	Jefferson	М			Matematica
123	Janice	F	100	100	Quimica

Em seguida fizemos um projeção de nome, sexo e curso:

nome	sexo	nome
Macoratti	M	Quimica

Miriam	F	Inglês
Jefferson	М	Matemática
Janice	F	Quimica

4- União : Retorna a união das tuplas de duas relações R1 e R2 com eliminação automática de duplicatas;

Produz como resultado uma Relação que contém todas as linhas da primeira Relação seguidas de todas as linhas da segunda tabela. A Relação resultante possui a mesma quantidade de colunas que as relações originais, e tem um número de linhas que é no máximo igual à soma das linhas das relações fornecidas como operandos, já que as linhas que são comuns a ambas as relações aparecem uma única vez no resultado.

Notação: Relação1 ∪ Relação2 (R1 ∪ R2)

Obs: As relações devem possuir o mesmo número de atributos.

Alunos Professores Funcionarios

	id	nome	idade	curso
I	10	Macoratti	45	Quimica
	20	Miriam	43	Artes
	30	Bianca	21	Fisica

id	nome	idade	setor
100	Pedro	50	Quimica
200	Maria	45	Fisica
300	Bianca	21	Artes

id	nome	setor	idade
10	Margarida	Quimica	46
20	Jamil	Fisica	32

Domínio:

id = int
nome = varchar(30)
idade = int
curso = varchar(30)
setor = varchar(30)

A relação Alunos é compatível com Professores mas <u>não é compatível</u> com Funcionarios.

Ex1: Encontre uma relação com todos os alunos e com todos os professores:

resultado: Alunos U Professores

id	nome	idade	curso
10	Macoratti	45	Quimica
	Miriam	43	Artes
30	Bianca	21	Fisica
100	Pedro	50	Quimica
	Maria	45	Fisica
300	Bianca	21	Artes

A operação de união é comutativa => R1 U R2 = R2 U R1

5- Diferença --: Retorna as tuplas presentes em R1 e ausentes em R2;

É uma operação que requer como operandos duas relações união-compatíveis, ou seja, estruturalmente idênticas. O resultado é uma relação que possui todas as linhas que existem na primeira relação e não existem na segunda.

Notação: relação1 - relação2 (R1 - R2)

Alunos (R1) Professores(R2)

id	nome	idade	curso
10	Macoratti	45	Quimica
20	Miriam	43	Artes
30	Bianca	21	Fisica

id	nome	idade	setor
100	Pedro	50	Quimica
200	Maria	45	Artes
300	Bianca	21	Fisica

Domínio:

id = int
nome = varchar(30)
idade = int

curso = varchar(30) setor = varchar(30)

Ex1 : Apresente uma relação de todos os alunos que não são professores

Resultado: Aluno - Professor

id	nome	idade	curso
10	Macoratti	45	Quimica
20	Miriam	43	Artes

Note-se que a DIFERENÇA não é comutativa!

Resultado: Professor - Aluno

	nome		setor
100	Pedro	50	Quimica

200 Maria 45 Artes

6- Interseção (): Retorna as tuplas comuns a R1 e R2;

Esta é uma operação adicional que produz como resultado uma tabela que contém, sem repetições, todos os elementos que são comuns às duas tabelas fornecidas como operandos. As tabelas devem ser união-compatíveis.

Notação: relação1 ∩ relação2 (R1 ∩ R2)

Alunos(R1) Professores(R2)

id	nome	idade	curso
10	Macoratti	45	Quimica
20	Miriam	43	Artes
30	Bianca	21	Fisica

id	nome	idade	setor
100	Pedro	50	Quimica
200	Maria	45	Artes
300	Bianca	21	Fisica

Domínio:

id = int
nome = varchar(30)
idade = int

curso = varchar(30)
setor = varchar(30)

Ex1: Apresente uma relação de todos os alunos que são professores;

Resultado: Alunos \(\cappa\) Professores

	nome		curso
30	Bianca	21	Fisica

Existem operadores de álgebra que são deriváveis de outros. A operação de intersecção é derivável de união e diferença: A

B = A - (A - B)

A operação de intersecção é comutativa => R1 \(\Omega\) R2 = R2 \(\Omega\) R1

7 - Junção Natural | X | : Retorna a combinação de tuplas de duas relações R1 e R2 que satisfazem um predicado;

O resultado da operação junção natural é uma relação com todas as combinações das tuplas na relação1 (R1) e relação2 (R2) nas quais os seus atributos em comum são iguais.

É uma operação que produz uma combinação entre as linhas de uma relação com as linhas correspondentes de outra relação, sendo em princípio correspondente a uma seleção pelos atributos de relacionamento sobre um produto cartesiano dessas relações:

A operação de junção foi criada porque esse tipo de combinação de tabelas é muito comum, facilitando com isso a escrita de expressões. A tabela resultante de uma junção tem todas as colunas da primeira tabela e todas da segunda tabela.

Notação: R1 |x| R2

No exemplo a seguir temos as relações Empregados e Setores a sua junção natural :

Empregados

id	nome	setor
100	Macoratti	Admin
200	Jefferson	Contab
300	Bianca	Admin
400	Janice	Contab

1			
1	setor	gerente	
	Admin	Paulino	IXI
1	Contab	Amelia	1^1
	RH	Francisca	
1			

Setores

id	nome	setor	gerente
100	Macoratti	Admin	Paulino
200	Jefferson	Contab	Amelia
300	Bianca	Admin	Paulino
400	Janice	Contab	Amelia

Empregados |x| Setores

A junção natural pode ser vista como uma combinação de uma operação de seleção aplicada sobre uma operação de produto cartesiano:

o <critério > (<relação 1 > X <relação 2)

8 - Renomeação ho: Altera o nome de uma relação e/ou dos seus atributos

Esta operação unária primitiva redefine o nome de uma tabela em um determinado contexto. É útil para auto-relacionamentos, onde precisamos fazer a junção de uma tabela com ela mesma, e nesse caso cada versão da tabela precisa receber um nome diferente da outra.

Notação: P < novo nome > (R)

Ex1: P < empregados > (funcionarios)

Renomeia a relação funcionarios parra empregados.

9 - Divisão : É uma operação adicional que produz como resultado a projeção de todos os elementos da primeira relação que se relacionam com todos os elementos da segunda relação.

Divisão é uma operação da álgebra relacional utilizada quando se deseja extrair de uma relação R1 uma determinada parte que possui as características (valores de atributos) da relação R2.

Notação: R1 ÷ R2

Ex1: Dada as relações:

Equipes

Projetos

id	NomeProjeto
100	Projeto1
200	Projeto2
300	Projeto3
400	Projeto4

NomeProjeto	descricao
Projeto1	Suporte
Projeto2	Desenvolvimento
Projeto3	Manutenção

Resultado:

id	NomeProjeto		NomeProjeto	1	
100	Projeto1	÷		=>	i.d
200	Projeto2		Projeto1 Projeto2		id
300	Projeto3				<u> </u>
400	Projeto4		Projeto3		

10 - Atribuição : Permite que o conteúdo de uma relação seja atribuído (colocado) em uma variável especial, oferecendo a possibilidade de um tratamento até certo ponto algorítmico para algumas seqüências de operações.

Atribui-se a relação resultante de uma operação à direita de 👉, a uma variável temporária, à esquerda, a qual poderá ser utilizada em relações subseqüentes.

Notação: variável ← operação

Ex1: Resultado
$$\leftarrow$$
 Equipes $\stackrel{\cdot}{\leftarrow}$ (π (Projetos))

A seguir temos uma tabela com um resumo das operações vistas neste artigo:

Símbolo	Operação	Sintaxe	Tipo
σ	Seleção / Restrição	σ _{condição} (Relação)	Primitiva
π	Projeção	π _{expressões} (Relação)	Primitiva
U	União	Relação1 ∪ Relação2	Primitiva
0	Intersecção	Relação1 ∩ Relação2	Adicional
_	Diferença de conjuntos	Relação1 - Relação2	Primitiva
x	Produto cartesiano	Relação1 x Relação2	Primitiva
x	Junção	Relação1 x Relação2	Adicional
÷	Divisão	Relação1 ÷ Relação2	Adicional
ρ	Renomeação	ρ nome (Relação)	Primitiva
←	Atribuição	variável ← Relação	Adicional

Rom 10:9 Porque, se com a tua boca confessares a Jesus como Senhor, e em teu coração creres que Deus o ressuscitou dentre os mortos, será salvo;

Rom 10:10 pois é com o coração que se crê para a justiça, e com a boca se faz confissão para a salvação.

Rom 10:11 Porque a Escritura diz: Ninguém que nele crê será confundido.

Rom 10:12 Porquanto não há distinção entre judeu e grego; porque o mesmo Senhor o é de todos, rico para com todos os que o invocam.

Rom 10:13 Porque: Todo aquele que invocar o nome do Senhor será salvo.

Referências:

- Seção VB .NET do Site Macoratti.net
- Super DVD .NET A sua porta de entrada na plataforma .NET
- Super DVD Vídeo Aulas Vídeo Aula sobre VB .NET, ASP .NET e C#
- Seção C# do site Macoratti.net
- Bases de Dados Parte IV Álgebra e Cálculo Relacional
- <u>Álgebra relacional Wikipédia, a enciclopédia livre</u>
- Modelo Relacional Manipulação Álgebra ... UDESC Joinville

José Carlos Macoratti