

EspnowMqttPeer2Peer Beta version 1.2.2

ESP-NOW/MQTT Hybrid Communication Protocol *Technical Documentation – v2.1.0* **Author: Eng. Marcelo Pimentel**

Table of Contents

- 1. Introduction
- 2. API Reference
- 3. Code Examples
- 4. Project Structure
- 5. Platform Compatibility
- 6. Key Event Sequence
- 7. Troubleshooting
- 8. Revision History

1. Introduction

1.1 Protocol Overview

Inspiration and Core Concept

This system was designed to **unify MQTT and ESP-NOW paradigms**, creating a transparent communication layer where:

ESP-NOW acts as "Wireless MQTT": Messages are routed using topic patterns (source/destination/action), simulating MQTT's publish/subscribe model without requiring a central broker.

This library includes implemented methods for **performing OTA (Over-The-Air) updates using ESP-NOW**, as well as an **abstraction layer for controlling the NTP-based RTC** (Real-Time Clock).

Full Abstraction: Developers interact with a single API while the library automatically chooses between:

ESP-NOW: For local peer-to-peer communication (ESP32/ESP8266)

MQTT: For cloud/remote connectivity (ESP32 Router only)

A hybrid communication system combining:

- ESP-NOW for direct device-to-device messaging
- MQTT for cloud/remote communication
- Unified API for seamless protocol switching
- Hierarchical Tree:

· Linear Chain:

OTA peer device update page in the router

http:// [ROTER_IP_ADDRESS]/

ESP-NOW OTA Update

Source device:

1.2 Key Features

Feature Description

Dual-Mode Operation Automatic ESP-NOW/MQTT selection

Event-Driven Architecture Critical network event callbacks

Feature

Description

Multi-Hop Routing Message forwarding through peers
Cross-Platform Support ESP32 (Router/Peer), ESP8266
(Peer)

1.3 Use Cases

- · Industrial sensor networks
- · Smart home automation
- · Agricultural monitoring systems

2. API Reference

2.1 Core Classes

MqttEspNowRouter (ESP32 Only)

```
срр
```

EspNowPeer

```
срр
```

2.2 Data Structures

```
срр
```

```
struct DeviceInfo {
   String name;
   uint8_t mac[6]; // MAC address in byte array format
   bool online = false;
   unsigned long lastPing = 0;
```

3. Code Examples

3.1 Router Initialization

```
срр
```

```
/* File: examples/Router/RouterBasic.ino */
#include <MqttEspNowRouter.h>
// Network configuration
const uint8 t routerMac[] = \{0x12,0x34,0x56,0x78,0x9A,0xBC\};
std::vector<DeviceInfo> peers = {{"Sensor1", {0xAA,0xBB,0xCC,0xDD,0xEE,0xFF}}};
MqttEspNowRouter router;
wifiConnManager wifi;
void setup() {
  wifi.onWifiReady([]() {
    wifi.onEspNowReady([]() {
      router.begin(6, 6, "MainRouter", routerMac,
                   "CloudBroker", peers, "mqtt.server.com", 1883);
      router.subscribe("CloudBroker", "Sensor1", "LED",
                       [](String msg) { /* Handler */ }, ROUTE MQTT);
    });
  });
  wifi.begin(/* ... parameters ... */);
3.2 Peer Implementation
cpp
/* File: examples/Peer/PeerBasic.ino */
#include <EspNowPeer.h>
EspNowPeer peer;
std::vector<DeviceInfo> routers = {{"MainRouter",
\{0x12,0x34,0x56,0x78,0x9A,0xBC\}\};
void setup() {
 peer.begin(6, "TempSensor1", routers, {});
  peer.subscribe("MainRouter", "TempSensor1", "REPORT",
                 [](String msg) { /* Handle command */ });
}
void loop() {
 peer.publishENow("TempSensor1", "MainRouter", "TEMP", readTemp());
  delay(10000);
```

4. Project Structure

Directory Layout

5. Platform Compatibility

Hardware Support

Feature	ESP32 Router	ESP32 Peer	ESP8266 Peer
MQTT Client	$ \checkmark $	X	×
ESP-NOW Transmitter	⋞	∜	⋞
Dual Protocol Routing	∜	∜	Limited

Software Requirements

- PlatformIO Core 6.1+
- Arduino Framework 3.0+
- ESP32 Arduino Core 2.0.9+

6. Key Event Sequence

Initialization Flow

- 1. WiFi Connection Establishment
- 2. ESP-NOW Protocol Initialization
- 3. MQTT Broker Connection (Router Only)
- 4. Peer/Router Registration
- 5. Message Handler Setup

Event Timeline

[0ms] WiFi.begin() [1200ms] onWifiReady() [1500ms] esp_now_init() [1600ms] onEspNowReady()

7. Troubleshooting

Devices may not automatically install dependencies. If this happens, please install them manually.

Platformio:

```
lib_deps =
  https://github.com/marcelopi/MqttEspNowPeer2Peer@^1.2.0
heman/AsyncMqttClient-esphome@^2.1.0
arduino-libraries/NTPClient@^3.2.1
paulstoffregen/Time@^1.6.1
```

8. Revision History

Version	Date	Changes
V1.2.0	05/20/25	Initial release

^{*}Documentation generated on 2025-05-20 - MIT License*