BECKHOFF IEC 61131-3

SELECTION OPERATORS

MAX

The IEC operator is used for the maximum function. It yields the greatest value of all inputs.

Syntax

```
OUT := MAX(IN0, IN1, <further inputs>)
```

Permitted data types: All

```
PROGRAM Selection_Operators
VAR
 rRoomTemp: REAL := 22.5; // Room temperature
 rExtTemp : REAL := 18.3; // External temperature
 rMaxTemp: REAL; // Maximum temperature
 iMaxAge: INT; // Maximum age of the plant workers
END_VAR
```



```
// Get the highest temperature between the two
rMaxTemp22.5 := MAX(rRoomTemp22.5, rExtTemp18.3);

// Result is the maximum age of the plant workers
iMaxAge39 := MAX(32, 25, 36, 24, 18, 39, 30);
```

LIMIT

The IEC selection operator is used for limitation.

Syntax

OUT := LIMIT(Min, IN, Max)

Permitted data types: All.

Input Value (IN)	Output (OUT)	Explanation
IN < Min	OUT = Min	The value is below the lower limit.
$Min \le IN \le Max$	OUT = IN	The value is within the specified range.
IN > Max	OUT = Max	The value exceeds the upper limit.

The LIMIT function ensures that the output remains within a defined range. The following table demonstrates how it behaves with different input values.

Input	Min Limit	Max Limit	Output
(iInPressure)	(cMinPressure)	(cMaxPressure)	(iPressure)
80	100	150	100
120	100	150	120
170	100	150	150

The LIMIT operator, conceptually is: OUT := MIN(MAX(IN, Min), Max).

MIN

The IEC operator is used for the minimum function. It yields the least value of all inputs.

Syntax

```
OUT := MIN(IN0, IN1, <further inputs>)
```

Permitted data types: All.

```
PROGRAM Selection_Operators

VAR

rRoomTemp: REAL := 22.5; // Room temperature

rExtTemp: REAL := 18.3; // External temperature

rMinTemp: REAL; // Minimum temperature

iMinAge: INT; // Minimum age of the plant workers

END_VAR

// Get the lowest temperature between the two

rMinTemp 18.3 := MIN(rRoomTemp 22.5, rExtTemp 18.3);
```



```
// Result is the minimum age of the plant workers

iMinAge 18 := MIN(32, 25, 36, 24, 18, 39, 30);

// Result is 18, the minimum age of the plant workers
```

MUX

The IEC operator is used as a multiplexer.

```
Syntax
OUT := MUX(K, IN0, ..., INn)
```

This means OUT takes the value of IN_K, where K is the specified index.

Permitted data types:

- K: e BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, LINT, ULINT, UDINT.
- IN0, ..., INn and OUT: Any identical data type.

BECKHOFF

IEC 61131-3


```
PROGRAM Selection_Operators

VAR

nSelectedValue: INT; // The selected value
 iK: INT:= 2; // The index (K), initialized with 2

END_VAR

// iK=2, so the selected value will be 30

nSelectedValue 30 := MUX(iK2, 10, 20, 30, 40, 50);
```

When the index iK is negative (e.g., iK = -1), the MUX operator selects the last value (IN4).

When iK exceeds the number of available inputs (e.g., iK = 5 for a 5-input MUX), the operator will also select the last value (IN4).

Values	(OUT)	
IN0, IN1, IN2, IN3, IN4	nSelectedValue	
10, 20, 30, 40, 50	50	
10, 20, 30, 40, 50	10	
10, 20, 30, 40, 50	20	
10, 20, 30, 40, 50	30	
10, 20, 30, 40, 50	40	
10, 20, 30, 40, 50	50	
10, 20, 30, 40, 50	50	
	IN0, IN1, IN2, IN3, IN4 10, 20, 30, 40, 50 10, 20, 30, 40, 50 10, 20, 30, 40, 50 10, 20, 30, 40, 50 10, 20, 30, 40, 50 10, 20, 30, 40, 50	

SEL

The IEC operator is used for bitwise selection.

Syntax

OUT := SEL(G, IN0, IN1)

Permitted data types:

G OUT
FALSE IN0
TRUE IN1

- IN0, ..., INn and OUT: any identical data type.
- G: BOOL

END_VAR

VAR

```
iVarSel: INT; // Result of SEL
```

```
iVarSel := SEL(FALSE, 3, 4); (* Result: 3 *)
```

iVarSel := SEL(TRUE, 3, 4); (* Result: 4 *)