School of Mathematics and Statistics

MT5836 Galois Theory

Problem Sheet I: Rings, fields, polynomials and irreducibility (Solutions)

1. Write out the addition and multiplication tables for the field \mathbb{F}_7 of seven elements.

Solution:

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5
	'						
×	0	1	2	3	4	5	6
× 0	0	1 0	0	3	0	5	6
0							
	0	0	0	0	0	0	0
0	0	0	0 2	0	0 4	0 5	0 6
0 1 2	0 0 0	0 1 2	0 2 4	0 3 6	0 4 1	0 5 3	0 6 5
0 1 2 3	0 0 0 0	0 1 2 3	0 2 4 6	0 3 6 2	0 4 1 5	0 5 3 1	0 6 5 4
0 1 2 3 4	0 0 0 0	0 1 2 3 4	0 2 4 6 1	0 3 6 2 5	0 4 1 5 2	0 5 3 1 6	0 6 5 4 3

2. Let F be a field.

- (a) If $\{K_i \mid i \in I\}$ is a collection of subfields of F, show that $\bigcap_{i \in I} K_i$ is a subfield of F.
- (b) Show that the prime subfield of F is the intersection of all the subfields of F.

Solution:

(a) Let $L = \bigcap_{i \in I} K_i$. Since each K_i contain both 0 and 1, the same is true of the intersection L. If $a, b \in L$, then $a, b \in K_i$ for each i. Thus, as each K_i is a subfield,

$$a+b, -a, ab \in K_i$$
 for all i

and if $a \neq 0$ then

$$1/a \in K_i$$
 for all i .

Hence, upon taking the intersection, $a+b,-a,ab\in L$ and, if $a\neq 0,\ 1/a\in L$. This shows that the intersection L is indeed a subfield.

- (b) Let $\{K_i \mid i \in I\}$ be the collection of all subfields of F. By part (a), $L = \bigcap_{i \in I} K_i$ is a subfield of F. However, the prime subfield P of F is the unique minimal subfield of F, contained in all other subfields, so $P \subseteq L$. On the other hand, some K_j equals P, so $L \subseteq K_j = P$ by definition. Hence P = L, the intersection of all the subfields of F.
- 3. Show that every finite integral domain with $1 \neq 0$ is a field.

Solution: Let R be a finite integral domain with $1 \neq 0$. We need to show every non-zero element of R has a multiplicative inverse. Let $a \in R$, $a \neq 0$. Consider the map $\phi \colon R \to R$ given by $x \mapsto ax$. If $x\phi = y\phi$, then ax = ay, so a(x-y) = 0. Since R is an integral domain and $a \neq 0$, we conclude x - y = 0; that is, x = y. Hence ϕ is injective. Now as R is finite, it follows, by the Pigeonhole Principle, that ϕ is also surjective. In particular, there exists some $x \in R$ with $x\phi = ax = 1$. This x is then a multiplicative inverse for a. Hence R is indeed a field.

- 4. Let R be an integral domain containing a subring F that happens to be a field.
 - (a) Show that R has the structure of a vector space over F.
 - (b) Show that if R has finite dimension over F, then R is a field.

Solution:

- (a) Since R is a commutative ring and F is a subring, the following all hold (as they are special cases of the ring axioms):
 - R is an abelian group under addition;
 - multiplication determines a map $F \times R \to R$ given by $(a, x) \mapsto ax$;
 - a(x+y) = ax + ay for all $a \in F$ and $x, y \in R$;
 - (a+b)x = ax + bx for all $a, b \in F$ and $x \in R$;
 - (ab)x = a(bx) for all $a, b \in F$ and $x \in R$;
 - 1x = x for all $x \in R$.

These conditions, together with the fact that F is a field (by assumption), say that R has the structure of a vector space over F.

(b) Since $F \subseteq R$, certainly R satisfies $1 \neq 0$. We must show that every non-zero element of R has a multiplicative inverse. Let $a \in R$, $a \neq 0$. Consider the map $\phi \colon R \to R$ given by $x \mapsto ax$. In our solution to Question 3 we showed that ϕ is injective. (The hypothesis of finiteness in that question is only used at a later stage of the question.) Note also that

$$(x+y)\phi = a(x+y) = ax + ay = x\phi + y\phi$$

and

$$(bx)\phi = a(bx) = b(ax) = b(x\phi)$$

for all $x, y \in R$ and $b \in F$. Thus ϕ is a linear map $R \to R$ when R is viewed as a vector space over F as in (a). Since ϕ is injective, the kernel ker $\phi = \{0\}$. Now the Rank-Nullity Theorem states that

$$\dim \ker \phi + \dim \operatorname{im} \phi = \dim R.$$

Thus dim im $\phi = \dim R$ and, since R is finite-dimensional over F by assumption, we conclude im $\phi = R$; that is, ϕ is surjective. Now (as in Question 3) we conclude there exists $x \in R$ with $x\phi = ax = 1$ and this x is a multiplicative inverse for a, as required.

- 5. Let p be a prime number and consider the finite field \mathbb{F}_p of p elements.
 - (a) Show that $a^{p-1} = 1$ for all non-zero elements a in \mathbb{F}_p .
 - (b) Show that in the polynomial ring $\mathbb{F}_p[X]$,

$$X^{p} - X = X(X - 1)(X - 2) \dots (X - (p - 1)).$$

Solution:

(a) The set of non-zero elements of \mathbb{F}_p comprise the multiplicative group \mathbb{F}_p^* . This is a finite group of order p-1 and, by Lagrange's Theorem, the order of every element a in \mathbb{F}_p^* divides p-1. Hence

$$a^{p-1} = 1$$
 for all $a \in \mathbb{F}_p$, $a \neq 0$.

(b) Using part (a), $a^p = a^{p-1} \cdot a = a$ for all $a \in \mathbb{F}_p$, $a \neq 0$, while $0^p = 0$ is true by definition. Hence all of the elements $0, 1, \ldots, p-1$ of \mathbb{F}_p are roots of the polynomial $X^p - X$. Thus X - a is a divisor of $X^p - X$ for all $a \in \mathbb{F}_p$. Note

$$X(X-1)(X-2)...(X-(p-1))$$

is a polynomial of degree p that is a product of distinct irreducible polynomials (the linear factors) each of which divides $X^p - X$. The uniqueness of factorization in $\mathbb{F}_p[X]$ then tells us

$$X^{p} - X = X(X - 1)(X - 2) \dots (X - (p - 1))$$

as both sides have degree p.

- 6. Let $I = (X^4 + 1)$ be the ideal of the polynomial ring $\mathbb{F}_2[X]$ generated by the polynomial $X^4 + 1$. Let $R = \mathbb{F}_2[X]/I$ be the quotient ring.
 - (a) Show that every element of R can be expressed uniquely in the form

$$I + (aX^3 + bX^2 + cX + d)$$

where $a,b,c,d\in\mathbb{F}_2.$

- (b) Show that |R| = 16.
- (c) Show that $d \mapsto I + d$ determines an isomorphism between \mathbb{F}_2 and a subring of R.
- (d) Show that R can be endowed with the structure of a vector space over the field \mathbb{F}_2 and determine the dimension of this vector space.

Solution:

(a) By definition, every element of $R = \mathbb{F}_2[X]/I$ is a coset I+g(X) for some $g(X) \in \mathbb{F}_2[X]$. Divide such a polynomial g(X) by $X^4 + 1$ in the Euclidean domain $\mathbb{F}_2[X]$ to obtain an expression

$$g(X) = q(X) \cdot (X^4 + 1) + r(X)$$

where r(X) = 0 or $\deg r(X) < 4$. Note $q(X) \cdot (X^4 + 1) \in I$, by definition of $I = (X^4 + 1)$, so

$$I + g(X) = I + r(X).$$

Thus every element of R can be written as I + r(X) where $r(X) \in \mathbb{F}_2[X]$ has degree at most three.

If r(X), s(X) are polynomials of degree at most three and I + r(X) = I + s(X), then

$$r(X) - s(X) \in I = (X^4 + 1);$$

that is,

$$r(X) - s(X) = q(X) \cdot (X^4 + 1)$$

for some polynomial $q(X) \in \mathbb{F}_2[X]$. If $q(X) \neq 0$, then the right-hand side has degree $4 + \deg q(X) \geqslant 4$, contrary to our assumption that $\deg r(X), \deg s(X) \leqslant 3$. Hence q(X) = 0 and we conclude r(X) = s(X).

Thus, every element of $R = \mathbb{F}_2[X]/I$ is uniquely expressible in the form I + r(X) where r(X) = 0 or $\deg r(X) \leq 3$, that is, uniquely expressible in the form

$$I + (aX^3 + bX^2 + cX + d)$$

with $a, b, c, d \in \mathbb{F}_2$.

(b) This follows from part (a). As there are two possible choices for each of a, b, c, d and each different set of choices determine distinct elements of R, we conclude

$$|R| = 2^4 = 16.$$

(c) Define $\iota \colon \mathbb{F}_2 \to R$ by

$$d \mapsto I + d$$
.

If $d, e \in \mathbb{F}_2$,

$$(d+e)\iota = I + (d+e) = (I+d) + (I+e) = d\iota + e\iota$$

and

$$(de)\iota = I + de = (I+d)(I+e) = (d\iota)(e\iota).$$

Hence ι is a ring homomorphism. Note

$$0\iota = I + 0$$
 and $1\iota = I + 1 \neq I + 0$,

so $\ker \iota = \{0\}$ and ι is injective. Hence

$$\mathbb{F}_2 \cong \operatorname{im} \iota$$
,

which is a subring of R.

(d) Identify \mathbb{F}_2 with the subring im ι using the map ι . Thus R is a ring containing \mathbb{F}_2 as a subring. It therefore has the structure of a vector space over \mathbb{F}_2 by the same argument as used in Question 4(a). If $\{v_1, v_2, \ldots, v_n\}$ were a basis for R over \mathbb{F}_2 , then every element of R would be uniquely expressible as

$$a_1v_1 + a_2v_2 + \cdots + a_nv_n,$$

where $a_1, a_2, \ldots, a_n \in \mathbb{F}_2$, and we would conclude $|R| = 2^n$. In view of our answer to part (b) we deduce

$$\dim_{\mathbb{F}_2} R = 4.$$

- 7. Show that the following polynomials are irreducible over \mathbb{Q} :
 - (a) $X^n p$, where n is a positive integer and p is a prime;
 - (b) $X^6 + 168X^2 147X + 63$;
 - (c) $X^3 3X 1$;
 - (d) $X^3 + 2X^2 3X + 5$.

Solution: There are multiple alternative solutions to some of the following. For example, we covered different solutions to (c) in the tutorials. The following are some examples of valid solutions.

- (a) $X^n p$ (p prime) satisfies the conditions of Eisenstein's Criterion (with respect to the given prime p) and so is irreducible over \mathbb{Q} .
- (b) $X^6 + 168X^2 147X + 63$ satisfies the conditions of Eisenstein's Criterion with p = 7 (as 7 divides 63, 147 and 168 but 7^2 does not divide 63). Hence this polynomial is irreducible over \mathbb{Q} .
- (c) Substitute X = Y + 1. The polynomial becomes

$$(Y+1)^3 - 3(Y+1) - 1 = Y^3 + 3Y^2 - 3.$$

This latter polynomial in the indeterminate Y is irreducible as it satisfies Eisenstein's Criterion with p=3. It follows that the original polynomial is irreducible since if it were a product of two polynomials in X of smaller degree then, upon substituting X=Y+1, we would obtain a factorization of Y^3+3Y^2-3 .

(d) Suppose $f(X) = X^3 + 2X^2 - 3X + 5$ is reducible over \mathbb{Q} , then, by Gauss's Lemma, it would be factorizable as a product of two polynomials of smaller degree with integer coefficients. The ring homomorphism $\phi \colon \mathbb{Z} \to \mathbb{F}_2$ determined by reducing an integer modulo 2 induces a ring homomorphism $\bar{\phi} \colon \mathbb{Z}[X] \to \mathbb{F}_2[X]$ by reducing the coefficients of each polynomial modulo 2. Applying $\bar{\phi}$ to the factorization of f(X), we conclude that

$$\bar{f}(X) = (X^3 + 2X^2 - 3X + 5)\bar{\phi} = X^3 + X + 1$$

is reducible over \mathbb{F}_2 . However, $\bar{f}(X)$ would necessarily have a linear factor, but

$$\bar{f}(0) = \bar{f}(1) = 1,$$

so this is not the case. Hence $X^3 + 2X^2 - 3X + 5$ is irreducible over \mathbb{Q} .

- 8. Determine whether or not the following polynomials are irreducible over the given field:
 - (a) $X^4 + 7$ over \mathbb{F}_{17} ;
 - (b) $X^3 5$ over \mathbb{F}_{11} .

Solution:

(a) Let $f(X) = X^4 + 7 \in \mathbb{F}_{17}[X]$. Since $\alpha^4 = (-\alpha)^4$ for all $\alpha \in \mathbb{F}_{17}$, we first calculate:

$$f(0) = 7,$$

 $f(1) = f(16) = 1^4 + 7 = 8,$ $f(2) = f(15) = 2^4 + 7 = 6,$
 $f(3) = f(14) = 3^4 + 7 = 3,$ $f(4) = f(13) = 4^4 + 7 = 8,$
 $f(5) = f(12) = 5^4 + 7 = 3,$ $f(6) = f(11) = 6^4 + 7 = 11,$
 $f(7) = f(1) = 7^4 + 7 = 11,$ $f(8) = f(9) = 8^4 + 7 = 6.$

Thus $f(\alpha) \neq 0$ for all $\alpha \in \mathbb{F}_{17}$ and hence f(X) has no linear factors in $\mathbb{F}_{17}[X]$. Suppose that f(X) is reducible over \mathbb{F}_{17} . Then it would necessarily factorize as a product of two quadratic factors. Since f(X) is monic, we reduce to a factorization of the form

$$X^4 + 7 = (X^2 + \alpha X + \beta)(X^2 + \gamma X + \delta)$$

for some $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{17}$. Equating coefficients yields the following four equations:

$$\alpha + \gamma = 0$$
 $\alpha \gamma + \beta + \delta = 0$ $\alpha \delta + \beta \gamma = 0$ $\beta \delta = 7$

This first equation (X^3 coefficient) yields $\gamma = -\alpha$ which, when subtituted into the third equation (X coefficient), gives

$$\alpha(\delta - \beta) = 0.$$

Hence either $\alpha = \gamma = 0$ or $\beta = \delta$. We split into these cases.

Case 1: $\alpha = \gamma = 0$.

The second equation (X^2 coefficient) then tells us $\delta = -\beta$ and the fourth equation (constant term) gives $-\beta^2 = 7$; that is, $\beta^2 = 10$. To show this is impossible we calculate all squares in \mathbb{F}_{17} :

$$0^{2} = 0,$$
 $1^{2} = 16^{2} = 1,$
 $2^{2} = 15^{2} = 4,$
 $3^{2} = 14^{2} = 9,$
 $4^{2} = 13^{2} = 16,$
 $5^{2} = 12^{2} = 8,$
 $6^{2} = 11^{2} = 2,$
 $7^{2} = 10^{2} = 15,$
 $8^{2} = 9^{2} = 13.$

Hence there is no β in \mathbb{F}_{17} satisfying $\beta^2 = 10$, giving our required contradiction.

Case 2: $\beta = \delta$.

The fourth equation (constant term) then becomes $\beta^2 = 7$, which is impossible by our calculation of squares in Case 1.

In conclusion, f(X) is not factorizable as a product of quadratic polynomials, so is irreducible over \mathbb{F}_{17} .

- (b) Observe $3^3 = 5$ in \mathbb{F}_{11} , so $X^3 5$ has a root in \mathbb{F}_{11} and hence factorizes as a product of a linear factor and a quadratic polynomial over \mathbb{F}_{11} . Hence $X^3 5$ is reducible over \mathbb{F}_{11} .
- 9. Determine all the irreducible polynomials of degree at most four over the field \mathbb{F}_2 of two elements.

Solution: If f(X) is a polynomial over \mathbb{F}_2 , then f(0) equals the constant term and f(1) is congruent to the number of terms in the polynomial modulo 2. Hence if f(X) is irreducible over \mathbb{F}_2 and $\deg f(X) \geq 2$ then f(X) must have constant term 1 and an odd number of terms (so as to avoid having any linear factors).

First note that the two linear polynomials over \mathbb{F}_2 are necessarily irreducible:

$$X$$
 and $X+1$.

By the first paragraph of the solution, the only irreducible polynomial of degree 2 (that is, with no linear factors) is

$$X^2 + X + 1$$
.

Similarly any reducible cubic has a linear factor, so the irreducible polynomials over \mathbb{F}_2 are those produced by the method of the first paragraph:

$$X^3 + X + 1$$
 and $X^3 + X^2 + 1$.

A reducible quartic polynomial over \mathbb{F}_2 either has a linear factor (and is as described in the first paragraph of the solution) or is a product of two irreducible quadratic polynomials. By above, the latter is necessarily

$$(X^2 + X + 1)^2 = X^4 + X^2 + 1.$$

Excluding all such polynomials, we conclude that the irreducible polynomials of degree 4 over \mathbb{F}_2 are

$$X^4 + X + 1$$
, $X^4 + X^3 + 1$ and $X^4 + X^3 + X^2 + X + 1$.

10. Find a reducible polynomial of degree 4 over the field \mathbb{F}_2 of two elements that has no roots in \mathbb{F}_2 .

Solution: We observed in Question 9 that

$$X^4 + X^2 + 1 = (X^2 + X + 1)^2$$

is reducible, but is a product of two irreducible quadratic polynomials, so has no linear factors and hence no root in \mathbb{F}_2 .

6