PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 96/31517
C07D 513/04, A01N 43/90, C07D 231/12, 249/08, 487/04, 231/16, 249/10 // (C07D 513/04, 277:00, 249:00) (C07D 487/04, 249:00, 237:00)	A1	(43) International Publication Date:	10 October 1996 (10.10.96)

(21) International Application Number: PCT/US96/03803

20 March 1996 (20.03.96) (22) International Filing Date: (74) Agent: GREGORY, Theodore, C.; E.I. du Pont de Nemours

Street, Wilmington, DE 19898 (US). (30) Priority Data: 4 April 1995 (04.04.95) US

(60) Parent Application or Grant (63) Related by Continuation

08/416 415 (CIP) 4 April 1995 (04.04.95) Filed on

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and (75) Inventors/Applicants (for US only): PETERSEN, Wallace, Christian [US/US]; 413 Topsfield Road, Hockessin, DE 19707-9716 (US). PIFFERITTI, Michael, Anthony

[US/US]; 1700 North Union Street, Wilmington, DE 19806-2502 (US). STEVENSON, Thomas, Martin [US/US]; 103 Iroquois Court, Newark, DE 19702-1908 (US). TSENG, Chi-Ping [US/US]; 1103 Artwin Road, Wilmington, DE 19803-2701 (US). and Company, Legal Patent Records Center, 1007 Market

(81) Designated States: AL, AU, BB, BG, BR, CA, CN, CZ, EE, GE, HU, IS, JP, KP, KR, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ,

VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AM, AL, B.I., KLJ, KL, MID, KU, IJ, IM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: HERBICIDAL HETEROARYL-SUBSTITUTED ANILIDES

(57) Abstract

Compounds of formula (I), and their -oxides and agriculturally-suitable salts. are disclosed which are useful for controlling undesired vegetation. In said formula, O is (O-1), (O-2), (O-3), T is O or S; X is a single bond, O. S. or NR5; Y is O. S. NR6 -CH-CH-, or -CH-N-, where the -CH=N- can be attached in either possible orientation; Z is CH or N; W is CH or N; V is CH, CCH₃ or N, provided that V is CH or CCH₃ when W is CH; n is 0 or 1: and R1-R6 are as defined in the disclosure. Also disclosed are compositions containing the compounds of formula (I) and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an

effective amount of a compound of formula (I).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hunsary	NO	Norway
BF	Burkina Feso	12	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	.ne	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Cenada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korta	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Camemon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
čz	Czech Republic	LU	Luxemboure	TG	Togo
DE	Germany	LV	Latvia	TJ	Telikisten
DK	Denmark	мс	Monaco	ŤŤ	Trinidad and Tobago
R.E.	Retonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascer	UG	Uganda
FI	Finland	ML.	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ	Uzbekistm
GĀ	abon	MR	Menritania	VN	Viet Nam

WO 96/31517 PCT/US96/03803

TITLE

HERBICIDAL HETEROARYL-SUBSTITUTED ANILIDES BACKGROUND OF THE INVENTION

This invention relates to certain heteroaryl-substituted anilides, their N-oxides, agriculturally-suitable salts of the anilides and compositions, and methods of their use for controlling undesirable vegetation.

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, com (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

WO 93/11097 discloses anilides of Formula i as herbicides:

wherein

O is, among others, O-1

20

25

0-1

R is, among others, C_1 - C_2 haloalkyl, C_1 - C_2 haloalkoxy, C_1 - C_2 haloalkylthio, halogen, cyano, or nitro;

Y is NR7C(O)XR3;

X is a single bond, O, S or NR4;

R¹ is, among others, H, C₁-C₃ alkyl, C₁-C₃ alkoxy, C₁-C₃ alkylthio, C₂-C₃ alkoxyalkyl, C₂-C₃ alkylthioalkyl, halogen, NO₂, CN, NHR⁵ or NR⁵R⁶; and

W 96/31517 PCT/US96/03803

2

R³ is, among others, C₁-C₅ alkyl optionally substituted with C₁-C₂ alkoxy, OH, 1-3 halogen, or C₁-C₂ alkylthio; CH₂(C₃-C₄ cycloalkyl); C₃-C₄ cycloalkyl optionally substituted with 1-3 CH₃'s; C₂-C₄ alkenyl; or C₂-C₄ haloalkenyl.

The heteroaryl-substituted anilides of the present invention are not disclosed

5 therein.

10

15

20

25

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I, geometric isomers, stereoisomers, N-oxides, and agriculturally suitable salts thereof as well as agricultural compositions containing them and their use for controlling undesirable vegetation:

wherein

Q is

(CH2)n

N Z = W R^4

Q-I

T is O or S:

X is a single bond, O, S, or NR5:

Y is O, S, NR^6 , -CH=CH-, or -CH=N-, where the -CH=N- can be attached in either possible orientation;

Z is CH or N:

W is CH or N:

V is CH, CCH3 or N, provided that V is CH or CCH3 when W is CH;

$$\begin{split} R^{I} & is \ C_{1}\text{-}C_{5} & \text{alkyl optionally substituted with } C_{1}\text{-}C_{2} & \text{alkoxy, OH, } 1\text{-}7 & \text{halogen, or} \\ & C_{1}\text{-}C_{2} & \text{alkylthio}; \ CH_{2}(C_{3}\text{-}C_{4} & \text{cycloalkyl)}; \ C_{3}\text{-}C_{6} & \text{cycloalkyl optionally} \\ & \text{substituted with } 1\text{-}3 & \text{halogen or } 1\text{-}4 & \text{methyl groups; } C_{2}\text{-}C_{4} & \text{alkenyl; } C_{2}\text{-}C_{4} \\ & \text{haloalkenyl; or phenyl optionally substituted with } C_{1}\text{-}C_{4} & \text{alkyl, } C_{1}\text{-}C_{4} \end{split}$$

10

haloalkyl, C1-C4 alkoxy, 1-2 halogen, nitro, or cyano; provided that when X is O, S, or NR5, then R1 is other than C2 alkenyl and C2 haloalkenyl; R2 is H, halogen, C1-C2 alkyl, C1-C2 alkoxy, C1-C2 alkylthio, C2-C3 alkoxyalkyl, C2-C3 alkylthioalkyl, cyano, nitro, NH(C1-C2 alkyl), or N(C1-C2 alkyl)2; R3 is H, halogen, C1-C2 alkyl, C1-C2 alkoxy, C1-C2 alkylthio, C2-C3 alkoxyalkyl, C2-C3 alkylthioalkyl, cyano, nitro, NH(C1-C2 alkyl), or N(C1-C2 alkyl); R4 is C1-C4 haloalkyl, C1-C4 haloalkoxy, C1-C4 haloalkylthio, C1-C4 alkylsulfonyl, C1-C4 haloalkylsulfonyl, halogen, cyano, or nitro; R5 is H, CH3, or OCH3;

R6 is H or CH3; and

n is 0 or 1.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl or pentyl isomers. The term "1-4 methyl groups" indicates that one to four of the available positions for that substituent may be methyl. "Alkenyl" includes straight-chain or branched alkenes such as vinyl. 1-propenyl, 2-propenyl, and the different butenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl. "Alkoxy" includes, for example, methoxy, ethoxy. n-propyloxy, isopropyloxy and the different butoxy isomers. "Alkoxyalkyl" denotes 20 alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH2OCH2. CH₂OCH₂CH₂ and CH₂CH₂OCH₂. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio and butylthio isomers. "Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl" include CH3SCH2, CH3SCH2CH2 and CH3CH2SCH2. Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₃)₂CHS(O)₂ and the different butylsulfonyl isomers. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. One skilled in the art will appreciate that not all nitrogen containing heterocycles can form N-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those 30 nitrogen containing heterocycles which can form N-oxides.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. The term "1-7 halogen" indicates that one to seven of the available positions for that substituent may be halogen which are independently selected; the terms "1-3 halogen" and "1-2 halogen" are defined analogously. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different.

Examples of "haloalkyl" include F₃C, ClCH₂. CF₃CH₂ and CF₃CCl₂. The terms
"haloalkenyl", "haloalkoxy", and the like, are defined analogously to the term
"haloalkyl". Examples of "haloalkenyl" include (Cl)₂C=CHCH₂ and CF₃CH=CHCH₂.
Examples of "haloalkoxy" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and CF₃CH₂O.
Examples of "haloalkylthio" include CCl₃S, CF₃S, CCl₃CH₂S and ClCH₂CH₂CH₂S.
Examples of "haloalkylsulfonyl" include CF₃S(O)₂, CCl₃S(O)₂, CF₃CH₂S(O)₂ and
CF₃CF₅S(O)₂.

The total number of carbon atoms in a substituent group is indicated by the "C₁-C₃" prefix where i and j are numbers from 1 to 5. For example, C₁-C₃ alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C₂ alkoxyalkyl designates CH₃OCH₂; and C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃), CH₃OCH₂CH₂ or CH₃CH₂OCH₂.

When a group contains a substituent which can be hydrogen, for example \mathbb{R}^2 or \mathbb{R}^5 , then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I, N-oxides and agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The salts of the compounds of the invention also include those formed with organic bases (e.g., pyridine, ammonia, or triethylamine) or inorganic bases (e.g., hydrides, hydroxides, or carbonates of sodium, potassium, lithium, calcium, magnesium or barium) when the compound contains an acidic group.

25

30

Preferred compounds for reasons of better activity and/or ease of synthesis are:

Preferred 1. Compounds of Formula I above, and N-oxides and
agriculturally-suitable salts thereof, wherein:

10

15

20

25

5

R¹ is C₁-C₄ alkyl optionally substituted with methoxy or 1-3 halogen; C₃-C₄ cycloalkyl optionally substituted with one methyl group; C₂-C₄ alkenyl; or C₂-C₄ haloalkenyl;

 R^2 is chlorine, bromine, C_1 - C_2 alkyl, C_1 - C_2 alkoxy, cyano, nitro, NH(C_1 - C_2 alkyl), or N(C_1 - C_2 alkyl); and

Preferred 2: Compounds of Preferred 1 wherein:

X is a single bond; and

R⁴ is C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy, C₁-C₂ haloalkylthio, chlorine,

Preferred 3: Compounds of Preferred 2 wherein:

O is O-1.

R³ is H

Preferred 4: Compounds of Preferred 2 wherein:

O is O-2.

Preferred 5: Compounds of Preferred 2 wherein:

Q is Q-3.

Most preferred are compounds of Preferred 2 selected from the group:

3-methyl-N-[4-methyl-2-[2-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6vllohenyl|butanamide:

N-[4-methyl-2-[2-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6yllphenyl]cvclopropanecarboxamide:

2-methyl-N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1yl]phenyl]propanamide:

N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1-

vl]phenvl]cvclopropanecarboxamide:

3-methyl-N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1-

vllphenvllbutanamide;

2-methyl-N-[4-methyl-2-[[3-(trifluoromethyl)-1H-pyrazol-1-

yl]methyl]phenyl]propanamide; and

 2,2-dimethyl-N-[4-methyl-2-[3-(trifluoromethyl)-1,2,4-triazolo[4,3-b]pyridazin-6-yl]phenyl]propanamide.

This invention also relates to herbicidal compositions comprising herbicidally effective amounts of the compounds of the invention and at least one of a surfactant, a solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

25

30

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-34. The definitions of Q, T, X, Y, Z, W, V, R1-R6 and n in the compounds of Formulae 1-48 below are as defined above in the Summary of the Invention. Compounds of Formulae Ia-Ic are various subsets of the compounds of Formula I, and all substituents for Formulae Ia-Ic are as defined above for Formula I.

$$R^2$$
 R^3
 R^3

Scheme 1 illustrates the preparation of compounds of Formula Ia where T = Owhereby substituted phenyl compounds of Formula 1a wherein X2 is trialkyltin (e.g., 15 Me₃Sn), trialkylsilyl (e.g., Me₃Si), or a boronic acid derivative (e.g., B(OH)₂) are coupled with heterocycles of Formula 2a wherein X1 is chlorine, bromine, iodine or trifluoromethylsulfonyloxy (OTf). The coupling is carried out by methods known in the art: for example, see Tsuji, J., Organic Synthesis with Palladium Compounds. Springer-Verlag, Berlin (1980); Negishi, E., Acc. Chem. Res. (1982), 15, 340; Stille, J. 20 K., Angew. Chem. (1986), 98, 504; Yamamoto, A. and Yamagi, A., Chem. Pharm. Bull. (1982), 30, 1731 and 2003; Dondoni et al., Synthesis (1987), 185; Dondoni et al., Synthesis (1987), 693; Hoshino et al., Bull. Chem. Soc. Jpn. (1988), 61, 3008; Sato, M. et al., Chem. Lett. (1989), 1405; Miyaura et al., Synthetic Commun. (1981), 11, 513; Siddiqui and Sniekus, Tetrahedron Lett. (1988), 29, 5463; Sharp at al., Tetrahedron Lett. (1987), 28, 5093; Hatanaka et al., Chem. Lett. (1989), 1711; Bailey, T. R., Tetrahedron Lett. (1986), 27, 4407; Echavarren, A. M. and Stille, J. K., J. Am. Chem. Soc. (1987), 109, 5478; and Ali et al., Tetrahedron Lett. (1992), 48, 8117. The coupling of 1a and 2a is carried out by heating the mixture in the presence of a transition metal catalyst such as tetrakis(triphenylphosphine) palladium(0) or bis(triphenylphosphine)palladium (II) dichloride in a solvent such as toluene, acetonitrile, glyme, or

WO 96/31517 PCT/US96/03803

5

15

7

tetrahydrofuran optionally in the presence of an aqueous inorganic base such as sodium hydrogen carbonate or an organic base such as triethylamine. One skilled in the art will recognize that when 2a contains more than one reactive substituent, then the stoichiometric ratios of reagents will need to be adjusted to minimize bis-coupling.

SCHEME 1

1a: X² = trialkyhin, trialkyhilyl, or a 2a: X¹ = Cl, Br, I, or OTf boronic acid derivative

1b: X² = Cl, Br, I, or OTf

2b: X¹ = trialkyltin, trialkylsilyl, or a
boronic acid derivative

la (T = O)

Conversely, the anilides of Formula Ia where T=0 can be prepared by reversing the reactivity of the two substrates. Substituted phenyl compounds of Formula 1b wherein X^2 is chlorine, bromine, iodine or trifluoromethylsulfonyloxy (OTf) can be coupled with heteroaromatic compounds of Formula 2b wherein X^1 is trialkyltin (e.g., Me₃Sn), trialkylsilyl (e.g., Me₃Si), or a boronic acid derivative (e.g., B(OH)₂). The procedure for conducting the coupling is the same as those described and referenced above.

By methods also reported in the above cited literature, compounds of Formula 1a and 2b are prepared by treating the corresponding halide (i.e., wherein X^1 and X^2 is bromine or iodine) with a metalating agent such as n-butyllithium followed by quenching with a trialkyltin halide, trialkylsilyl halide, boron trichloride, or trialkyl borate.

Some compounds of Formula 1a can also be prepared from the corresponding ortho-unsubstituted compound (i.e., wherein X^2 is hydrogen) by treatment with a base such as n-butyllithium followed by quenching with a trialkyltin halide, trialkylsilyl halide, or trialkyl borate as reported in the same literature references. This preparation requires

25

that -NHC(=0)XR¹ is an *ortho*-metalation directing group known in the art (e.g., trimethylacetylamido): see for example, Fuhrer, W., J. Org. Chem. (1979), 44, 1133.

Anilides and heteroaromatics of Formulae 1 and 2 wherein X1 and X2 are chlorine, bromine, iodine, OTf, and hydrogen are either known or readily prepared by procedures and techniques well known in the art, for example: D. E. Pereira, et al., Tetrahedron (1987), 43, 4931-4936; K. Senga, et al., J. Med. Chem. (1981), 24, 610-613;
T. Novinson, et al., J. Med. Chem. (1976), 19, 512-516; Makisumi, K., Chem. Pharm. Bull. (1959), 7, 907, 909; Sirakawa, Yakugaku Zasshi (1959), 79, 903, 907;
J. J. Kaminski, et al., J. Med. Chem. (1987), 30, 2047-2051; E. S. Hand, et al., J. Org. Chem. (1980), 45, 3738-3745; Finkelstein, B. L., J. Org. Chem. (1992), 57, 5538-5540; Tschitschibabin, D. R. P. 464,481; C. Sablayrolles, et al., J. Med. Chem. (1984), 27, 206-212; Vercek et al., Tetrahedron Lett. (1974), 4539; and S. Polanc, et al., J. Org. Chem. (1974), 39, 2143-2147.

Compounds of Formula 1a can also be prepared by one skilled in the art from anilines of Formula 3 by treatment with an appropriate acyl chloride or acid anhydride (T = O, X = direct bond), chloroformate (T = O, X = O), chlorothiolformates (T = O, X = S), carbamoyl chloride $(T = O, X = NR^5)$, isothiocyanate (T = S, X = NH), isocyanate (T = O, X = NR) or xanthyl chlorides (T = S, X = S) under conditions well known in the literature, for example: Sandler, R. S. and Karo, W., Organic Functional Group Preparations, 2nd Edition, Vol. 1, p 274 and Vol. 11, pp 152, 260, Academic Press (Scheme 2).

SCHEME 2

Alternatively, anilines of Formula 3 can be converted into the corresponding isocyanate by treatment with phospene or known phospene equivalents (e.g., CIC(=0)OCCl₃), and then condensed with an appropriate alcohol or amine of Formula 4 to afford anilides of Formula Ia (Scheme 3). These techniques are well known in the literature. For example, see Sandler, R. S. and Karo, W., Organic Functional Group Preparations, 2nd Edition, Vol. II, 152, 260, Academic Press;

W 96/31517 PCT/US96/03803

5

15

20

9

Lehiman, G. and Teichman, H. in Preparative Organic Chemistry, 472, Hilgetag, G. and Martini, A., Eds., John Wiley & Sons, New York, (1972); Eckert, H. and Forster, B., Angew. Chem., Int. Ed. (1987), 26, 894; Babad, H. and Zeiler, A. G., Chem. Rev. (1973), 73, 75.

SCHEME 3

In some cases, it is desirable to perform the palladium coupling reaction on an N-protected form of the aniline, for example the 2,2-dimethylpropanamide. Upon completion of the coupling reaction, the N-protecting group can be removed, for

example by treatment of the 2,2-dimethylpropanamide with acid, to liberate the amino group.

Anilines of Formula 3 are readily prepared by palladium catalyzed coupling of an ortho-substituted nitrophenyl compound of Formula 5a, wherein X^2 is as defined above, with a heteroaromatic compound of Formula 2a, wherein X^1 is as defined above, followed by catalytic or chemical reduction of the nitro group (Scheme 4). As described for Scheme 1, the reactivity of the substrates can be reversed, i.e., the coupling is carried out using an ortho-substituted nitrophenyl compound of Formula 5b and a heteroaromatic compound of Formula 2b.

Reduction of nitro groups to amino groups is well documented in the chemical literature. See for example, Ohme, R. and Zubek, A. R. and Zubek, A. in *Preparative Organic Chemistry*, 557, Hilgetag, G. and Martini, A., Eds., John Wiley & Sons, New York: (1972).

W 96/31517

10 SCHEME 4

5b: X² = Cl, Br, I, or OTf

The VI - said Hardein and the said

Br, I, or OTY 2b: X¹ = trialkyltin, trialkylsilyl, or a boronic acid derivative

In other cases, it is advantageous to prepare compounds of Formula 3, not by the cross-coupling methods described above, but rather by elaboration of a ortho-substituted nitrophenyl compound of Formula 6, under any of a number of ring closure methodologies (Scheme 5). Subsequent reduction of the nitro compounds of Formula 7 provides compounds of Formula 3.

SCHEME 5

10.

wherein

 X^3 can be any of a number of heterocycle building blocks, including, but not limited to those shown below:

X³ = COCH₂NH₂, COCH₂-halogen,

Compounds of Formula 6 are well known in the art or may be made by simple functional group interconversions on *ortho*-substituted nitrophenyl compounds.

WO 96/31517 PCT/US96/03803

11

Numerous methods for conversion of these X³ substituents into Q-1 heterocycles are well known in the literature and can be applied by those skilled in the art for the preparation compounds of Formula 7. For example, see Katritzky, A. R. and Rees, C. W., Comprehensive Heterocyclic Chemistry, Vol. 6, pp. 992-993, Pergamon 5 Press, London (1984); Flament et al., Helv. Chim. Acta. (1977), 60, 1872-1882; Kasuga et al., Yakugaku Zasshi (1974), 94, 952-962; E. Abignente, et al., J. Heterocycl. Chem. (1986), 23, 1031-1034; O. Chavignon, et al., J. Heterocycl. Chem. (1992), 29, 691-697; Buchan et al., J. Org. Chem. (1977), 42, 2448-2451; Allen et al. J. Org. Chem. (1959), 24, 796-801; Balicki, R., Pol. J. Chem. (1983), 57, 1251-1261; J. P. Dusza, et al., U.S. 4178449; D. W. Hansen Jr., et al., World Patent Publication WO 91/08211; M. L. Bode,

- 4178449; D. W. Hansen Jr., et al., World Patent Publication WO 91/08211; M. L. Bode et al., J. Chem. Soc., Perkin Trans. J. (1993), 1809-1813; I. Anitha, et al., J. Indian Chem. Soc. (1989), 66, 460-462; Y. Tominaga, et al., J. Heterocycl. Chem. (1989), 26, 477-487; S. Branko, et al., J. Heterocycl. Chem. (1993), 30, 1577; M. Mukoyama, Jpn. Kokai Tokkyo Koho JP 06 16667; Y. Tominaga, et al., Heterocycles (1988), 27,
- 15 2345-2348; P. L. Anderson, et al., J. Heterocycl. Chem. (1981), 18, 1149-1152; F. Compernolle, et al., J. Heterocycl. Chem. (1986), 23, 541-544; L. F. Miller, et al., J. Org. Chem. (1973), 38, 1955-1957; R. Faure, et al., Tetrahedron (1976), 32, 341-348; A. Terada, Eur. Pat. Appl. EP-A-353,047; Reid, D. H., J. Chem. Soc., Perkin Trans. J (1979), 2334-2339; J. C. Brindley, et al; J. Chem. Soc., Perkin Trans. J (1986),
- 20 1255-1259; R. L. Harris, et al., Aust. J. Chem. (1986), 39, 887-892; J. P. Henichart, et al., J. Heterocycl. Chem. (1986), 23, 1531-1533; I. A. Mazur, et al., Chem. Heterocycl. Compd. (1970), 6, 474-476; I. A. Mazur, et al., Khim. Geterotsikl. Soedin. (1970), 512-514; Meakins, G. D., J. Chem. Soc., Perkin Trans. 1 (1989), 643-648; and E. Campaigne, et al., J. Heterocycl. Chem. (1978), 15, 401-411.
- 25. One skilled in the art will recognize that these same ring closure methodologies can be used to elaborate an ortho-substituted aniline of Formula 8, or a derivative thereof, into compounds of Formula 3 (Scheme 6). This strategy is illustrated in Examples 1 and 2.

.....

30

20.

25

wherein

X3 is as previously defined in Scheme 5.

Compounds of Formula 8 are well known in the art (see for example, H. Gunter, et al., Liebigs Ann. Chem. (1987), 765-770) or may be made by simple functional group interconversions on ortho-substituted anilines or a derivative thereof.

In some instances, it may be necessary, or more convenient, to introduce the desired substituents after the coupling reaction was performed. This can be accomplished by electrophilic substitution (Scheme 7), or nucleophilic substitution and functional group modifications (Schemes 8 and 9) using procedures well documented in the literature.

SCHEME 7

La (R² = Br. NO₂)

Variation of the substituent R4 on the heterocycle O-1 of compounds of Formula Ia may be achieved by one of three ways. First, one skilled in the art may simply select the appropriate heteroaromatic compound of Formula 2a,b for the palladium coupling in Schemes 1 and 4 to give examples with a variety of values for R4. Alternatively, it may at times be convenient to vary R4 by performing various functional group transformations on compounds of Formula 9, which can be prepared by the same methods for the preparation of the aryl-substituted heterocycles of Formula Ia, as shown in Scheme 8. Alternatively, it may at times be convenient to vary R4 by performing various functional group transformations on compounds of Formula 10, which can be prepared by the same methods for the preparation of the ortho-substituted nitrophenyl compounds of Formula 7, and then converting the product to compounds of Formula Ia (using methods discussed previously) as shown in Scheme 9. Methods to perform these transformations are well known in the literature. Some examples include conversion of chloro to bromo (L. J. Street, et al., J. Med. Chem. (1992), 35, 295-304), bromo to trifluoromethyl (J. Wrobel, et al., J. Med. Chem. (1989), 32(11), 2493-2500), cyano (Ellis, G. P., T. M. Romney-Alexander, Chem. Rev. (1987), 87, 779-794), aldehyde to

difluoromethyl (Middleton, W. J., J. Org. Chem. (1975), 40, 574-578), thiol to trifluoromethylthio (Popov, V. I., Boiko, V. N., Yagupolskii, L. M., J. Fluor. Chem. (1982), 21, 365-369) and amino to a variety of substituents via the diazonium salts. Electrophilic aromatic substitution or metallation chemistry are also useful methods for incorporating certain substituents.

SH, OH, CHO, NH2)

2 R¹X-H 4

As shown in Scheme 10, compounds of Formula Ia where T = S can be prepared by one skilled in the art from compounds of Formula Ia where T = O by treatment with P₂S₅ or Lawesson's reagent under conditions well known in the literature, for example:

T. P. Sychera, et al., J. Gen. Chem. U.S.S.R. (1962), 32, 2839; K. Yoshino, et al., J.

Heterocycl. Chem. (1989), 26, 1039-1043; E. C. Taylor Jr., et al., J. Amer. Chem. Soc. (1953), 75, 1904; and O. P. Gool, et al., Synthesis-Stuttgart (1987), 2, 162-164.

SCHEME 10 P2S5 R2 R3

ia (T = O) ia (T = S)

10 Alternatively, anilines of Formula 3 can be converted into the corresponding isothiocyanate by treatment with thiophosgene or known thiophosgene equivalents (e.g., 1,1'-thiocarbonyldimidazole) and then condensed with an appropriate alcohol or amine of Formula 4 or a Grignard-reagent to afford compounds of Formula Ia where T = S (Scheme 11). These techniques are well known in the literature. For example, see Y. M. Zhang, et al., Tetrahedron Lett. (1987), 28, 3815-3816; Ares, J. J., Synthetic Commun. (1991), 21, 625-623; S. Roy, et al., Indian. J. Chem. B (1994), 33, 291-292; J. Garin, et al., J. Heterocycl. Chem. (1991), 28, 359-363; and I. Sircar, et al., J. Med. Chem. (1985), 28, 1405.

SCHEME 11

As shown in Scheme 12, compounds of Formula Ib can be prepared by one skilled in the art from anilines of Formula 11 by treatment with an appropriate acyl chloride or acid anhydride (T = O, X = direct bond), chloroformate (T = O, X = O).

20

10

chlorothiolformates (T = O, X = S), carbamoyl chloride ($T = O, X = NR^5$), isothiocyanate (T = S, X = NH) isocyanate (T = O, X = NH), or xanthyl chlorides (T = S, X = S) as described for Scheme 2.

SCHEME 12

Alternatively, anilines of Formula 11 can be converted into the corresponding isocyanate and then condensed with an appropriate alcohol or amine to afford anilides of Formula Ib (Scheme 13). These techniques were described for Scheme 3.

SCHEME 13

Anilines of Formula 11 can be prepared by the reduction of compounds of
Formula 12 by methods well documented in the literature (Scheme 14). See for
example, Ohme, R. and Zubek, A. R. and Zubek, A. in Preparative Organic Chemistry,
557; Hilgetag, G. and Martini, A. Eds., John Wiley & Sons, New York: (1972).

SCHEME 14

10

20

Many compounds of Formula 12 can be prepared by the introduction of the Q-2 substituent by displacement of an appropriate leaving group (X^5) by the appropriate heterocycle of Formula 14 (Scheme 15).

SCHEME 15

X5 = C1, Br. I, OTY

In other cases, it is advantageous to prepare compounds of Formulae Ib, 11, or 12 by elaboration of an appropriate substituent, X6 ortho to the amido, amino or nitro group, respectively. This strategy is illustrated in Scheme 16 for the preparation of compounds of Formula 12.

SCHEME 16

2

wherein X^6 can be any number of substituents useful in the synthesis of nitrogen heterocycles, including, but not limited to those shown below: $X^3 = NO_2$, NH₂, NHNH₂, X^5 , CH₂ X^5 , CHO, CO₂H, COCI, CN; and $X^5 = Cl$, Br. I. OTf.

Compounds of Formula 15 are well known in the art or may be made by simple functional group interconversions on *ortho*-substituted nitrobenzenes.

Some of the numerous methods for conversion of these X⁶ substituents into the 5-membered nitrogen heterocycles of Q-2 shown in Scheme 16 and the direct displacement reactions of Scheme 15 are illustrated below.

Scheme 17 shows a direct displacement reaction with an appropriately substituted pyrrole of Formula 14. For example, see: Katritzky, A. R. and Rees, C. E., Eds., Comprehensive Heterocyclic Chemistry, Vol. 4, p. 235 ff., Pergamon Press, London (1984); Smith, L. R., Chem. Heterocycl. Compd. (1972), 25-2, 127; Santaniello, E., Farachi, C., Ponti, F., Synthesis (1979), 617; Jones, R. A. and Bean, G. P., The Chemistry of Pyrroles, Academic Press, London, 1977, Chapter 4, pp. 205-11; Rubottom, G. M. and Chabala, J. C., Org. Synth. (1974), 54, 60.

10

The synthesis of the pyrrole ring system by ring construction is illustrated in Scheme 18 by one of the best procedures. This procedure and others are extensively reviewed in the literature: Katritzky, A. R. and Rees, C. E., Eds., Vol. 4, pp. 313-352, derivatives, pp 353-368, Pergamon, (1984); Kiedy, J. S., Huang, S., J. Heterocycl. Chem. (1987), 24, 1137; Hamdan, A., Wasley, J. W. F., Synth. Commun. (1983), 13, 741; Josey, A. D., Org. Synth. Coll. Vol. V (1973), 716.

SCHEME 18

$$R^2$$
 R^3
 NH_2
 R^3
 R_4
 R_4
 R_5
 R_4
 R_5
 R_6
 R_6
 R_7
 R_8

Scheme 19 shows an alkylation reaction of an imidazole by compounds of Formula 13.

5

The reactions of Scheme 19 can be run by the methods of Ginda, W. C. and Mathre, D. J., J. Org. Chem. (1980), 45, 3172; Mathias, L. R. and Burkett, D., Tetrahedron Lett. (1979), 4709; Dorr, H. J. M. and Metzger, J., Bull. Soc. Chim. Fr. (1976), 1861; A. F. Pozharskii, et al., Zh. Obshch. Khim (1963), 33, 1005; (1964), 34, 1371; (Chem. Abstr. 59: 7515; 61: 1849; 65: 88955; 65: 13684).

The preparation of imidazole compounds of Formula 19 (wherein n = 0) by ring construction methods are well known in the literature. An illustrative example is shown in Scheme 20.

15

SCHEME 20

$$R^2$$
 R^3
 NO_2
 NO_2

The method of Scheme 20 and many others are taught and reviewed in Katritzky, A. R. and Boulton, A. J., Advances in Heterocyclic Chemistry, Vol. 12,

pp 166-183, Academic, New York, 1970; Bacon, R. G. R. and Hamilton, S. D., J. Chem. Soc. Perkin Trans. 1 (1974), 1970, and Katritzky, A. R. and Rees, C. E., Comprehensive Heterocyclic Chemistry Vol. 5, pp 457-482, Pergamon, London, 1984. Pyrazole compounds of Formula 23 can be prepared by direct displacement

ryrazoie compounds of Formula 23 can be prepared by direct displacement reactions as shown in Scheme 21.

SCHEME 21

$$R^2$$
 R^3
 R^4
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

N-alkylation and N-arylation are taught by Dorr, H. J. M., Elguero, J., Espada, M.
and Hassanaly, P., An Quim. (1978), 74, 1137; Khan, M. A. and Lynch, B. M., J.
Heterocycl. Chem. (1970), 7, 1237; Elguero, J., Espada, M., Mathier, D. and
Lun, R. P. T., An Quim. (1979), 75, 729; Guida, W. C. and Mathre, D. J., J. Org. Chem.
(1980), 45, 3172; J. Elguero, et al., Bull. Chem. Soc. Fr. (1970), 1121; (1968), 707,
5019; (1967), 1966, 619, 775, 2833, 3727; Khan, M. A., Rec. Chem. Prog. (1970), 31,
43.

A synthesis of an N-aryl pyrazole by a ring construction method is illustrated in Example 3. Numerous other methods are reviewed in Katritzky, A. R. and Rees, C. E., Comprehensive Heterocyclic Chemistry, Vol. 5, p 272 ff.

The preparations of the 2-substituted-1,2,3-triazoles of this invention are reviewed by Katrizky, A. R. and Rees, C. E. Comprehensive Heterocyclic Chemistry, Vol. 5, p 690 ff., Pergamon, London, 1984; and Elderfield, R. E., Ed. Heterocyclic Compounds, Vol. 7, p 384, John Wiley & Sons, New York, 1961. One of the various syntheses is illustrated in Scheme 22.

WO 96/31517 PCT/US96/03803

20 SCHEME 22

$$\begin{bmatrix}
N-NH-Ph & ox & N=N-Ph \\
N-NH-Ph & & HCl & N-Ph
\end{bmatrix}$$
24
25
26

This procedure and others are taught by Coles, R. F. and Hamilton, C. F., J. Am. Chem. Soc. (1946), 68, 1179; Riebsomer, J. L., J. Org. Chem. (1948), 13, 815; Stolle, R., Ber. (1926), 59, 1742; Finley, K. T., Chem. Heterocycl. Compd. (1980), 39, 1; Carboni, R. A., Kauer, J. C., Hatcher, W. R., Harder, R. J., J. Amer. Chem. Soc. (1967), 89, 2626.

The preparation of the 1-substituted -1,2,4-triazoles of Formula 28 by direct displacement reactions on compounds of Formula 13 are reviewed and taught in Schofield, K., Grimmett, M. R. and Keene, B. R., Heteroaromatic Nitrogen Compounds: The Azoles, pp 735-757, Cambridge University, Cambridge, 1976, Potts, K. T., Chem. Rev. (1961), 61, 87, Kahn, M. A. and Polya, J. B., J. Chem. Soc. (C) (1970), 85.

Alternatively, the 1,2,4-triazole compounds of Formula 28 can be prepared by ring

construction methods well known in the literature. An illustrative example is given in

Scheme 23.

The method of Scheme 23 and many others are taught and reviewed in Katrizky, A. R. and Rees, C. E., Comprehensive Heterocyclic Chemistry, Vol. 5, p 762 ff., Pergamon, London, 1984; K. Matsumoto, et al., Synthesis (1975), 609;

20

Huisgen, R., Grashey, R., Aufderhaar, E., Kung, Z., Chem. Ber. (1965), 98, 642, Grundman, C. and Ratz, R., J. Org. Chem. (1956), 21, 1037.

The preparation of the 2-substituted tetrazoles of Formula 33 by direct displacement on a compound of Formula 13 is reviewed and taught by Katritzky, A. R. and Rees, C. E., Comprehensive Heterocyclic Chemistry, Vol. 5, p 817 ff.; Pergamon, London, 1984; general alkylation - Butler, R. N., Garvin, V. C., and McEvoy, T. M., J. Chem. Res. (S) (1981), 174; benzylation - Doderhack, D., Chem. Ber. (1975), 108, 887; with activated aryl halides - Komecke, A., Lepom, P., and Lippmann, E., Z. Chem. (1978), 81, 214.

The preparation of 2-substituted tetrazoles of Formula 33 by ring construction methods are well known in the literature. Illustrative examples are shown in Scheme 24.

10

SCHEME 24

$$R^4$$
CH = NNHSO₂Ar + R^3 NO_2 NO_2

U. Saha, et al., J. Inst. Chem (India) (1980), 52, 196; Baldwin, J. E., J. Heterocycl. Chem. (1968), 5, 565; Hong, S.-Y. and Baldwin, J. E., Tetrahedron (1968), 24, 3787; Ito, S., Tanaka, Y., Kakehi, A. and Kondo, K., Bull. Chem. Soc. Jpn. (1976), 49, 1920.

Variation of the substituent R⁴ on the heterocycle Q-2 of compounds of
Formula Ib may be achieved by one of two ways. First, one skilled in the art may simply
select the appropriate heteroaromatic compound of Formula 14, in Scheme 15 to give
examples with a variety of values for R⁴. Alternatively, it may at times be convenient to
10 vary R⁴ by performing various functional group transformations on compounds of
Formula 37, which can be prepared by the same methods for the preparation of the
aryl-substituted heterocycles of Formula Ib, as shown in Scheme 25. Methods to
perform these transformations are well known in the literature and were described in the
discussion for Schemes 8 and 9.

15

SCHEME 25 R3 NH NH XR1 nucleophilic substitution and/or functional group modifications (CH₂)_n (CH₂)_n (CH₂)_n N (CH₂)_n (CH₂)_n (CH₂)_n (CH₂)_n (CH₂)_n (CH₂)_n

37 (X⁴ = H, Br, Cl, SCH₃, SO₂CH₃, SH, OH, CHO, NH₂)

(1979), 241.

Scheme 26 illustrates the preparation of compounds of Formula Ic (Formula I where Q is Q-3) whereby an appropriately substituted pyridazine of Formula 38 is reacted with a suitably substituted condensing agent such as hydrazides, anhydrides, orthoesters, β-dicarbonyl compounds and others. Much work has been published with regard to cyclizations of this type. For example see: Katritzky, A. R. and Rees, C. W., Comprehensive Heterocyclic Chemistry, Vol. 5, pp 607-668; Vol. 4, 443-495, Pergamon, London (1984); Pollak, A., Stanovnik, V. and Tisler, M., Tetrahedron (1968), 2623; L. M. Berbel, M. L. Zamura, Tetrahedron (1965), 287; Stanovnik, B., Tisler, M., Tetrahedron (1967), 2739; Fraser, M., J. Org. Chem. (1971), 3087; F. D. Popp, et al., J. Heterocyclic Chem. (1981), 443; Thompson, R. D., Castle, R. N., J. Heterocyclic Chem. (1981), 1523-1527; J. D. Albright, et al., J. Med. Chem. (1981), 592-600; Legraverend, M., Bisagn, C., Lhoste, J. M., J. Heterocyclic Chem. (1981), 893-898; Pollak, A., Tisler, M., Tetrahedron (1966), 2073-2079; Letsinger, R. L., Lasco, R., J. Org. Chem. (1956), 764; Ohsaua, A., Abe, Y., Igeta, H., Chem. Lett.

SCHEME 26

The substituent R⁴ may often be incorporated by selection of the proper condensing agent. However, it may at times be necessary or convenient to introduce the desired substituents after the cyclization has occurred. This strategy is shown in Scheme 27. Numerous methods for such transformations are known to those skilled in the art. For example: Stanovnik, B., Tisler, M., Tetrahedron, (1967), 387-395; Kobe, J., Stanovnik, B., Tisler, M., Terrahedron, (1968), 239-245, and methods discussed in Schemes 8 and 9. Compounds of Formula 39 can be prepared by the same methods shown in Scheme 26.

The arylpyridazines of Formula 38 can be prepared by palladium-catalyzed coupling of an arylboronic acid of Formula 40 with a pyridazine of Formula 41 as shown in Scheme 28. The pyridazines of Formula 41 are commercially available or can be prepared by methods known in the art. One skilled in the art will notice that for X⁷ = NHNH₂, compounds of Formula 38b can be prepared by nucleophilic displacement of chlorine as shown in Scheme 28. The coupling is carried out by methods known in the literature as discussed for Scheme 1. The coupling is carried out by heating the mixture of 40 and 41 in the presence of a transition metal catalyst such as tetrakis(triphenylphosphine)palladium (0) or bis(triphenylphosphine)palladium (II) dichloride in a solvent such as toluene, acetonitrile, glyme or tetrahydrofuran optionally in the presence of bases such as aqueous sodium carbonate or triethylamine. One skilled in the art will recognize that when X⁷ is chlorine, the stoichiometric ratios of reagents will need adjustment in order to avoid bis-coupling.

WO 96/31517 PCT/US96/03803

25 SCHEME 28

$$R^{2}$$

$$R^{3}$$

$$R^{3$$

The requisite boronic acid can be prepared according to literature cited for Scheme 1 as shown in Scheme 29. This involves treating a bromide or iodide of Formula 42 with a metallating agent such as butyllithium followed by quenching with a trialkyl borate and, finally, treating with dilute acid to give the desired boronic acids of Formula 40. One skilled in the art will further note that when $X^0 = H$, this constitutes an ortho-metallation for which there is ample precedent. As an example, see Fuhrer, W., J. Org. Chem. (1979), 1138.

10

The anilides of Formula 42 are either known or readily prepared by procedures and techniques well known in the art, for example: Houben-Weyl, Methoden der Organische Chemie, IVth Ed., Eugen Muller, Ed., George Thieme Verlag; I. J. Turchi, The Chemistry of Heterocyclic Compounds, Vol. 45, pp 36-43, J. Wiley & Sons, New York, (1986); L. S. Wittenbrook, G. L. Smith, R. J. Timmons, J. Org. Chem. (1973), 465-471; P. Reynard, et al., Bull. Soc. Chim. Fr. (1962), 1735-1738.

Compounds of Formula Ic can also be prepared by coupling of the boronic acids of Formula 40 with a heterocycle of Formula 43 as depicted in Scheme 30. One skilled in the art will recognize that the heterocycles of Formula 43 can be prepared according to procedures previously referenced for ring annulation as described for Scheme 26. This is also true with respect to the variation of substituent R4.

SCHEME 30

 $X^1 = CLB_T, LOTY$

Another method for the preparation of Ic, especially where Z = CH and W = N or CH, is described in Scheme 31. For example, a suitably substituted N-aminopyrrole (44a) or N-aminoimidazole (44b) can be condensed with a B-dicarbonyl compound of Formula 45 to give the desired products. Several methods for this transformation are known in the art. For example, see Flitsch, W.; Kritmer, V. Liebigs Ann. Chem. (1970) 735, 35; Blewith, H. L., Chem. Heterocyclic Compd. (1977) 30, 117; Maury, G., Chem. Heterocyclic Compd. (1977) 30, 179; Coppola, G. M.; Hardmann, G. E.; Huegi, B. S. J. Heterocyclic Chem. (1974) 11, 51; Golubusuma, G. M.; Posntarck, G. N.; Chuguk, V. A. Khim. Geterotsikl. Soedin. (1974) 846; Brückner, R.; Lavergne J.- P.; Vailfont, P., Liebigs Ann. Chem. (1979), 639; A. A. Tomaswin, et al., Ukr. Khim. (1988), 54, 612.

W 96/31517 PCT/US96/03803

27 SCHEME 31

Numerous methods for the preparation of the required N-aminoheterocycles of Formula 44a and 44b and β -dicarbonyl compounds (45) or their equivalents (for example, compounds of Formula 46) are well known in the literature. For example, see:

$$X^{9}$$
 X^{9}
 X^{10} = alkyl or together forma ring

Stetter, H., Jones, F., Chem. Ber. (1981), 564; M. Somei, et al., Chem. Pharm, Bull.
(1978), 2522; Somei, M., Natsume, M., Tetrahedron Lett. (1974), 461;
Schweitzer, E. L., Kopey, C. M., J. Org. Chem. (1972), 1561; Perveev, F. Y.,
Ershova, V., Zh. Org. Khim. (1961), 3554; Sitte, A., Paul, H., Hilgetag, G., Z. Chem. (1967), 341; R. N. Neylor, et al., J. Chem. Soc. (1961), 4845; Frohlisch, B., Chem. Ber. (1971), 3610; Sherif, J. E., Rene, L., Synthesis (1988), 138; J. T. Gupton, et al., J. Org.
Chem. (1980), 4522; Tsuge, O., Limune, T., Horie, M., Heterocycles (1976), 13;
Kreutzenberger, A., Kreutzenberger, E., Tetrahedron (1976), 2603.

Compounds of Formula Ic can also be prepared by one skilled in the art from anilines of Formula 47 by treatment with an appropriate acyl halide or acid anhydride (T=O,X=direct bond), chloroformates (T=O,X=O), chlorothiolformates (T=O,X=O)

X=S), carbamoyl chlorides ($T=O, X=NR^5$), isothiocyanates, (T=S, X=NH), isocyanates (T=O, X=NH) or xanthyl chlorides (T=S, X=S). Treatment of compounds such as amides (X= bond, T=O) with Lawesson's reagent will give thioamides (X= bond, T=S). This is illustrated in Scheme 32 and is well known to those skilled in the art. For example: Sandler, R. S., Karo, W., Organic Functional Group Preparations, 2nd Ed., Vol. 1, p 274 and Vol. 2, pp 152, 260, Academic.

SCHEME 32

Alternatively, compounds of Formula 47 can be converted to compounds of Formula Le by first treating the anilines with thiophosgene or phosgene (or a phosgene equivalent such as triphosgene) followed by condensation with an appropriate alcohol, thiol, or amine, as shown in Scheme 33. These techniques are also well known in the literature. For example, see Sandler, R. S., Karo, W., Organic Functional Group Preparation, 2nd Ed., Vol. 2, pp 152, 260, Academic; Lehman, G., Teichman, H., Preparative Organic Chemistry, p 472, John Wiley & Sons, New York, (1972); Eckert, H., Forster, B., Angew. Chem. Int. Ed. Eng. (1987), 894; Babed, H., Zeiler, A. G., Chem. Rev. (1973), 75.

SCHEME 33

20

Anilines of Formula 47 are readily prepared by palladium-catalyzed coupling of an ortho-substituted nitrophenyl compound of Formula 48 with a heterocycle of Formula 43 (described previously), followed by catalytic hydrogenation or chemical reduction of the

15

20

25

compounds of Formula I.

nitro group as shown in Scheme 34. Reduction of nitro groups is well documented in the literature. See for example, Ohme, R., Zubek, A. R. in *Preparative Organic Chemistry*, 557, Hilgetag, G. and Martini, A., Eds. John Wiley & Sons, New York (1972).

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

order other than that implied by the particular sequence presented to prepare the

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated.

 I H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, d = doublet, t = triplet, p = pentet, m = multiplet, br s = broad singlet.

EXAMPLE 1

Step A: Preparation of 1-(2-amino-5-methylphenyl)-2-[[5-(trifluoromethyl)-4H-1.2.4-triazol-3-vllthiolethanone

0.33 g (0.0144 mol) of sodium was dissolved under nitrogen in 50 mL of methanol, 2.55 g (0.0151 mol) of 5-(trifluoromethyl)-4H-1,2,4-triazole-3(2H)-thione hydrate (purchased from Lancaster) was added, and the mixture was stirred at room temperature for 1 h, after which 2.52 g (0.0137 mol) of 1-(2-amino-5-methylphenyl)-2-chloroethanone was added. After stirring overnight, the reaction mixture was evaporated to dryness. The crude product was washed with water and purified by recrystallization from chloroform to yield 2.40 g of the title compound of Step A as a powder melting at 205°C (dec.). ¹H NMR (Me₂SO-46): δ 2.20 (s,3H), 4.98 (s,2H), 6.71-7.61 (m.4H).

5 Step B: Preparation of 4-methyl-2-[2-(trifluoromethyl)thiazolo[3,2-bl[1,2,4]triazol-6-yl]benzenamine

5

20

1.30 g (0.0041 mol) of the title compound of Step A was dissolved under nitrogen in 5 mL of concentrated sulfuric acid. The reaction mixture was stirred at about 100°C for 2 h. After cooling to about 0°C, 1N sodium hydroxide was added slowly until the reaction mixture reached pH 7. The crude product was filtered and washed with hexane to yield 1.0 g of the title compound of Step B as a powder melting at 132-133°C.

1H NMR (CDCl3): 8 2.31 (s,3H), 6.78-7.29 (m,4H).

Step C: Preparation of 3-methyl-N-[4-methyl-2-[2-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-v]lphenyl]butanamide

0.50 g (0.0017 mol) of the title compound of Step B was added to 50 mL of diethyl ether, and the suspension was cooled under nitrogen to about 0°C. 0.25 mL (0.0020 mol) of isovaleryl chloride was added, followed by 0.30 mL (0.0022 mol) of triethylamine, and the mixture was stirred at room temperature for about 4 h. The reaction mixture was filtered and the filtrate was evaporated to dryness. Water was added and the mixture was extracted with diethyl ether (3 x 25 mL), dried (MgSO₄), and evaporated to dryness. The crude product was chromatographed on silica gel eluting with ethyl acetate/hexane (2:8, and then 3:7) mixture to yield 0.04 g of the title compound of Step C, a compound of the invention, as a powder melting at 177-178°C. 1H NMR (Me₂SO-d₆): 8 0.79 (d,6H), 1.9 (m,1H), 1.97 (d,2H), 2.34 (s,3H), 7.3-7.7
(m,4H), 9.3 (s,1H).

15

25

30

31

EXAMPLE 2

Step A: Preparation of 1-[(5-methyl-2-nitrophenyl)methyl]-3-(trifluoromethyl)
1H-pyrazole

5.65 g (0.030 mol) of 5-methyl-2-nitrobenzyl chloride (purchased from Aldrich Chemical Company), 5.0 g (0.036 mol) of 3-(trifluoromethyl)pyrazole (purchased from Maybridge), and 12.4 g (0.090 mol) of potassium carbonate were added to 25 mL acctonitrile. The reaction mixture was stirred under nitrogen overnight, and then was evaporated to dryness. The crude product was purified by recrystallization from methanol. The solid was washed with water, dissolved in ethyl acetate, dried (MgSO₄), and evaporated to dryness to yield 6.26 g of the title compound of Step A as a powder. Water was added to the mother liquor to yield after filtration an additional 1.2 g of the title compound of Step A as a solid melting at 70-71.5°C. ¹H NMR (CDCl₃): δ 2.38 (s.3H), 5.76 (s.2H), 6.60-8.07 (m.5H).

Step B: Preparation of 4-methyl-2-f[3-(trifluoromethyl)-1H-pyrazol-1yllmethyllbenzenamine

3.2 g (0.011 mol) of the title compound of Step A was added to a solution of 15 mL acetic acid and 6 mL water. The mixture was warmed to about 65°C, the heat was shut off, and 2.1 g (0.037 mol) of iron was added in portions maintaining the temperature below 91°C. The mixture was warmed to about 75°C for 15 min., gravity filtered onto about 100 g of ice, and then extracted with methylene chloride (3 x 50 mL). The organic extracts were washed with saturated aqueous sodium bicarbonate, dried (MgSO4), and evaporated to dryness to yield 1.8 g of the title compound of Step B as an oil. ¹H NMR (CDC13): 8 2.25 (s,3H), 5.0 (br s,2H), 5.22 (s,2H), 6.49-7.40 (m,5H). Step C:

Step C: Preparation of 2-methyl-N-[4-methyl-2-[[3-(trifluoromethyl)-1H-pyrazol-1-yllmethyllphenyllpropanamide

0.55 g (0.0022 mol) of the title compound of Step B was dissolved under nitrogen in 50 mL of diethyl ether. The solution was cooled to about 0°C, 0.27 mL (0.0026 mol) of isobutyryl chloride was added followed by 0.39 mL (0.0028 mol) of triethylamine. The reaction mixture was stirred over 3 days and was then filtered. The filtrate was evaporated to dryness, the resulting residue was suspended in water, and the crude product was then filtered and washed with hexane to yield 0.36 g of the title compound of Step C, a compound of the invention, as a powder melting at 125-125.5°C. 1 H NMR (CDCl₃): δ 1.31 (d,6H), 2.32 (s,3H), 2.7 (m,1H), 5.21 (s,2H), 6.52-7.8 (m,5H), 9.3 (br s,1H).

EXAMPLE 3

Step A: Preparation of (5-methyl-2-nitrophenyl)hydrazine

1-Fluoro-5-methyl-2-nitrobenzene (Aldrich, 20 g, 129 mmol) was treated with hydrazine hydrate (7.0 g, 140 mmol) in DMF (100 mL) at 25°C for 3 h. The mixture was drowned in water (1000 mL) and the precipitated product filtered. The filtrate was extracted with ethyl acetate and the combined product purified by flash chromatography to give 8.38 g of the title compound of Step A as a solid melting at 128-130°C. IR (mineral oil) 3320, 3330 cm⁻¹; 1¹H NMR (300 MHz, CDCl₃): δ 2.38 (s,3H), 3.75 (s,2H), 6.5 (d,1H), 7.38 (s,1H), 8.0 (d,1H), 8.9 (br s,1H).

10 Step B: Preparation of 2.2.2-trifluoroethanone (5-methyl-2-nitrophenyl)hydrazone

The title compound of Step A (3.0 g, 18 mmol) in dioxane (30 mL) was heated at reflux with trifluoroacetaldehyde hydrate (3.0 g, 26 mmol) and a catalytic amount of p-toluenesulfonic acid (0.1 g) for 20 h. The product was isolated by evaporation of the solvent and recrystallization from methanol/water to give 3.87 g of the title compound of

Step B as a solid melting at 159-160°C. IR (mineral oil) 3368, 1612 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): 8 2.44 (s,3H), 6.8 (d,1H), 7.25 (s,1H), 7.65 (s,1H), 8.1 (d,1H), 11.15 (br s,1H).

Step C: Preparation of 2.2.2-trifluoro-N-(5-methyl-2-

20

nitrophenyl)ethanehydrazonovl bromide

A DMF solution (35 mL) of the title compound of Step B (3.8 g, 15.4 mmol) was treated with N-bromosuccinimide (2.9 g, 16.3 mmol) at 25°C for 3 h. The reaction mixture was drowned in water (250 mL) and extracted with ethyl acetate. The product, isolated by evaporation of the solvent, was slurried with hexane and purified to give 4.2 g of the title compound of Step C as a solid melting at 135-139°C. IR (mineral oil) 3264, 1618 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.46 (s,3H), 6.9 (d,1H), 7.6 (s,1H), 8.15 (d,1H), 11.3 (s,1H).

Step D: Preparation of 5-butoxy-4,5-dihydro-1-(5-methyl-2-nitrophenyl)-1Hpyrazole

A benzene (75 mL) and toluene (30 mL) solution of the title compound of Step C

(4.0 g, 12.25 mmol), butyl vinyl ether (6.5 g, 6.5 mmol), and triethylamine (1.3 g,
13 mmol) was heated at 90°C for 12 h. Isolation by flash chromatography
(1-chlorobutane) gave 2.3 g of the title compound of Step D as an oil. ¹H NMR
(300 MHz, CDCl₃): 80.76 (t,3H), 1.05 (p,2H), 1.3 (p,2H), 2.43 (s,3H), 3.0-3.25
(m,4H), 5.8 (d,1H), 7.05 (d,1H), 7.4 (s,1H), 7.8 (d,1H).

Step E: Preparation of 1-(5-methyl-2-nitrophenyl)-3-(trifluoromethyl)-1H-

An ethyl acetate solution (25 mL) of the title compound of Step D (2.3 g, 6.7 mmol) was treated with a catalytic amount of p-toluenesulfonic acid (<0.1 g) at 25°C for 1 h. Flash chromatography gave 1.69 g of the title compound of Step E as a crystalline solid melting at 84-86°C. ¹H NMR (300 MHz, CDCl₃): \$2.52 (s,3H), 6.7 (d,1H), 7.4 (m,2H), 7.7 (s,1H), 7.95 (d,1H).

Alternatively, the title compound of Step E can be prepared directly from 1-fluoro-5-methyl-2-nitrobenzene. A solution of 1-fluoro-5-methyl-2-nitrobenzene (6.04 g, 39 mmol) and 3-(trifluoromethyl)pyrazole (5.05 g, 37.1 mmol) and potassium carbonate (5.63 g, 40.8 mmol) was heated in dimethyl sulfoxide (30 mL) at 50 °C for 18 h. The cooled mixture was diluted with water (100 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with water (2 x 50 mL) and saturated aqueous NaCl (2 x 50 mL). The organic layer was dried over magnesium sulfate and evaporated. The resulting yellow solid was triturated with hexane to give 9.5 g of the title compound of Step E melting at 84-86 °C. ¹H NMR (300 MHz, CDCl₃): 82.52 (s.3H), 6.75 (s.1H), 7.4 (m.2H), 7.72 (s.1H), 7.95 (d.1H).

Step F: Preparation of 4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1-

p F: Preparation of 4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1yllbenzenamine

An ethanol solution (250 mL) of the title compound of Step E (1.65 g, 6.1 mmol) and palladium catalyst (10% Pd/C, 0.5 g) was pressurized to 3.45×10^5 Pa with hydrogen in a Paar hydrogenation apparatus at 25° C for 5 h. The reaction mixture was filtered through Celite® and the solvent was evaporated to give, after crystallization from 1-chlorobutane, 0.77 g of the title compound of Step F as a solid melting at $66-68^{\circ}$ C. IR (mineral oil) 3469, 3365 cm⁻¹; 1 H NMR (300 MHz, CDCl₃): 8 2.28 (s,3H), 4.36 (br s,2H), 6.7 (d,1H), 6.70 (d,1H), 7.02 (d,2H), 7.75 (s,1H).

Step G: Preparation of 2-methyl-N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1-vllphenyllpropanamide

To a benzene solution (30 mL) at 25°C was added the title compound of Step F

30 (0.75 g, 3.14 mmol), pyridine (0.5 g, 6.3 mmol), and isobutyryl chloride (2.0 g, 19 mmol). The mixture was stirred at 25°C for 18 h. Water (100 mL) was added to the mixture and the products were extracted by the addition of ethyl acetate. The product was a mixture of the mono- and bis-acylated aniline. A brief treatment of the mixture with dilute sodium hydroxide in methanol and reisolation by drowning in water and ethyl acetate extraction gave 0.58 g of the title compound of Step G, a compound of the

10

25

invention, as a solid melting at 99-100°C. ¹H NMR (300 MHz, CDCl₃): δ 1.2 (d,6H), 2.38 (s,3H), 2.5 (p,1H), 6.8 (s,1H), 7.2 (s,1H), 7.3 (m,1H), 7.8 (s,1H), 8.3 (d,1H). EXAMPLE 4

Step A: Preparation of N-(2-borono-4-methylphenyl)-2.2-dimethylpropanamide A solution of 72.4 g N-(4-methylphenyl)-2.2-dimethylpropanamide in 1000 mL of dry THF was cooled to -70°C under nitrogen and 480 mL of 2.5M n-BuLi in hexanes was added dropwise over 1 h while maintaining the temperature below -60°C. Stirring was continued at -70°C for 1 h, and then the reaction was allowed to warm to room temperature with stirring overnight.

The reaction mixture was then cooled to -10°C and 200 mL of trimethyl borate was added dropwise while maintaining the temperature below 0°C. Stirring was continued at 0°C for 2.5 h, 50 mL of water was added dropwise over 0.5 h, and then concentrated HCl was added to acidify the reaction. The solvents were removed in vacuo, 200 mL of water was added to form a slurry which was shaken (or stirred) thoroughly with ether. The white precipitate was collected by filtration, washed well with a 1:1 ether/hexane mixture, and then suspended in acetone and stirred for 20 min. While stirring, 600 mL of water was added slowly in portions (more water may be necessary if precipitation is not complete). The white solid was collected by filtration, washed with water, and then dried in a vacuum oven to yield 56.8 g of the title

compound of Step A as a white powder. ¹H NMR (CDCl₃): δ 1.03 (s,9H), 2.40 (s,3H), 7.20 (d,1H), 7.80 (s,1H), 7.96 (d,1H), 9.8 (s,1H).

Step B: Preparation of N-[2-(6-chloro-3-pyridazinyl)-4-methylphenyl]-2.2dimethylpropanamide

To a stirred mixture of 8.4 g (0.056 mol) of 3,6-dichloropyridazine, 0.3 g of tetrakis(triphenylphosphine)palladium (0), and 6.6 g (0.028 mol) of the title compound of Step A was added 110 mL of a 1 molar aqueous solution of sodium carbonate. The resulting mixture was heated at reflux for 4 h. After cooling to room temperature, the reaction mixture was poured into 200 mL of saturated aqueous NaCl and extracted three times with 50 mL portions of ethyl acetate. The combined extracts were washed once with water and then dried over anhydrous magnesium sulfate. The solution was filtered and evaporated to dryness. The crude product was purified by chromatography on silica gel using 20% ethyl acetate/hexane as eluent to afford 4.42 g (52%) of the title compound of Step B as a white solid melting at 144-148°C. ¹H NMR (CDCl₃): δ 1.31 (s,9H), 2.39 (s,3H), 7.26-734 (m,2H), 7.35(s,1H), 7.63-7.66 (m,1H), 7.86-7.89 (m,1H), 8.46-8.49 (m,1H), 11.59 (br s,1H).

25

30

Step C: Preparation of N-[2-(6-hydrazino-3-pyridazinyl)-4-methylphenyl]-2.2dimethylpropanamide

A solution of the title compound of Step B (1.0 g, 3.3 mmol) and hydrazine monohydrate (0.5 mL, 9.9 mmol) in 20 mL of n-butanol was heated at reflux for 4 h. After cooling to room temperature, the butanol was removed under vacuum and the residue so obtained was taken up in 80 mL diethyl ether. The organic solution was washed successively with 40 mL portions each of water and saturated aqueous NaCl, and then was dried over anhydrous magnesium sulfate. The solution was filtered and evaporated to dryness. The crude product was purified by chromatography on silica gel eluting with 5% methanol-dichloromethane to give 0.68 g (68%) of the title compound of Step C as a white solid melting at 153-156°C. 1H NMR (CDCl₃): δ 1.30 (s,9H), 2.37 (s,3H), 4.00 (br s,2H), 6.27 (s,1H), 7.21-7.24 (m,2H), 7.30 (s,1H), 7.68-7.70 (m,1H), 84-8.46 (m,1H), 11.83 (br s,1H).

Step D: Preparation of 2.2-dimethyl-N-[4-methyl-2-[3-(trifluoromethyl)-1,2.4-triazolo[4.3-b]pyridazin-6-yllphenyllpropanamide

A stirred solution of the title compound of Step C (0.68 g, 2.3 mmol) and 0.5 mL (3.6 mmol) of trifluoroacetic anhydride in 20 mL of pyridine was heated at reflux for 5 h. The dark solution was allowed to cool to room temperature. The volatiles were removed under reduced pressure and the residue was purified by chromatography on silica gel eluting with 50% ethyl acetate/hexane to afford 0.8 g (94%) of the title compound of Step D, a compound of the invention, as an oil. ¹H NMR (CDCl₃): δ 1.18 (s.9H), 2.42 (s.3H), 7.29 (s.1H), 7.37-7.40 (m.1H), 7.55-7.59 (m.1H), 7.90-7.93 (m.1H), 8.31-8.34 (m.1H), 8.77 (br s.1H).

EXAMPLE 5

Preparation of N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1yllphenyllcyclopropanecarboxamide

To a solution of the title compound of Step F in Example 3 (0.75 g, 3.1 mmol) and pyridine (0.49 g, 6.2 mmol) in benzene (30 mL) was added cyclopropanecarbonyl chloride (0.42 g, 4.0 mmol). The mixture was stirred at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate (25 mL) and treated with 1N aqueous hydrochloric acid (10 mL). The organic layer was further washed with water and saturated aqueous NaCl (10 mL each), dried over magnesium sulfate and the solvent was then evaporated. The solid residue was triturated with hexane to give 0.72 g of the title compound of Example 5, a compound of the invention, as a solid melting at 106-107 °C. IR (mineral oil) 3300, 1674 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): 5.09 (m,2H), 1.0

(m,2H), 1.4 (m,1H), 2.4 (s,3H), 6.77 (s,1H), 7.14 (s,1H), 7.2 (d,1H), 7.85 (s,1H), 8.3 (d,1H), 9.7 (s,1H).

EXAMPLE 6

Preparation of 3-methyl-N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1yllphenyllbutanamide

To a solution of the title compound of Step F in Example 3 (0.75 g, 3.1 mmol) and pyridine (0.49 g, 6.2 mmol) in benzene (30 mL) was added isovaleryl chloride (0.48 g, 4.0 mmol). The mixture was stirred at 25 °C for 18 h. The reaction mixture was then diluted with ethyl acetate (25 mL) and treated with 1N aqueous hydrochloric acid (10 mL). The organic layer was further washed with water and saturated aqueous NaCl (10 mL) each), dried over magnesium sulfate and the solvent was then evaporated. The solid residue was triturated with hexane to give 0.86 g of the title compound of Example 6, a compound of the invention, as a solid melting at 102-103 °C. IR (mineral oil) 3280, 1682 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.92 (d,6H), 2.1 (m,1H), 2.2 (d,2H), 2.38 (s,3H), 6.8 (s,1H), 7.15 (s,1H), 7.2 (d,1H), 7.8 (s,1H), 8.23 (d,1H), 9.5 (s,1H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 11 can be prepared. The following abbreviations are used in the Tables which follow: Me = methyl, $C_6H_5 = phenyl$ and CN = cyano.

20

5

TABLE 1

$T = 0$, $R^3 = H$, $Y = S$, $W = N$, $Z = N$,								
XX 1	\mathbb{R}^2	R ⁴	XR ¹	R ²	R ⁴			
C(CH ₃) ₃	СН3	CF ₃	осн ₃	CH ₃	CF ₃			
C(CH ₃) ₃	н	CF ₃	осн ₃	н	CF ₃			
CH(CH ₃) ₂	CH ₃	CF ₃	осн(сн ₃) ₂	CH ₃	CF ₃			
$CH_2CH(CH_3)_2$	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃			
CH ₂ CH(CH ₃) ₂	CI	CF ₃	CF ₃	CI	CF ₃			

l-Me-cyclopropyl	Cl	CF ₃	C ₆ H ₅	Br	CF ₃
CH2CHCI2	NO ₂	CF ₃	1-Me-cyclopropyl	CH ₃	CF ₃
C(CH ₃) ₂ Br	CH ₃	SCF ₃	CH(CH ₃) ₂	CH ₃	SCHF ₂
C(CH ₃) ₃	H	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	CF ₃	CH ₃	SCF ₃
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	CI	SCF ₃
CH(CH ₃) ₂	Br	C1	CF ₃	CH ₂ CH ₃	CI
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	Cl	OCH ₂ CH ₃	СН3	Br
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	CH ₃	OCH ₂ CF ₃
осн ₃	CH ₂ CH ₃	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	СН3	CF ₂ C1
cyclopropyl	CH ₃	CF ₂ CI	CH ₂ CH(CH ₃) ₂	OCH ₃	CF ₂ CI
cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃) ₂	СН2СН3	CF ₃
cyclopropyl	CH ₂ CH ₃	NO ₂	CH(CH ₃) ₂	CH ₃	NO ₂
cyclopropyl	сн ₂ сн ₃	OCHF ₂	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	CH ₃	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
$T=S, R^3=H, Y$					
XR ¹	R ²	R ⁴	XR ¹	R ²	R ⁴
C(CH ₃) ₃	н	CF ₃	СН3	СН3	CF ₃
cyclopropyl	СН3	CF ₃	СН ₂ СН(СН ₃) ₂	СН3	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	сн ₃	Br
CH(CH ₃) ₂	Н	Br	осн ₂ сн ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
CH=C(CH ₃) ₂	Br	CF ₂ C1	СH(СН ₃) ₂	CH ₃	CF ₃
•					
$T = 0$, $R^3 = H$, Y	= S, W = N, 2				
XR ¹	R ²	<u>R</u> 4	XR ¹	\mathbb{R}^2	R ⁴
C(CH ₃) ₃	CH ₃	CF ₃	осн ₃	CH ₃	CF ₃

C(CH ₃) ₃	н	CF ₃	OCH ₃	н	CF ₃
СH(СН ₃) ₂	CH ₃	CF ₃	осн(сн ₃) ₂	СН3	CF ₃
СH ₂ СH(СH ₃) ₂	СН3	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CI	CF ₃	CF ₃	CI	CF ₃
l-Me-cyclopropy	l CI	CF ₃	C ₆ H ₅	Br	CF ₃
CH ₂ CHCl ₂	NO ₂	CF ₃	I-Me-cyclopropy	I СН ₃	CF ₃
C(CH ₃) ₂ B _f	CH ₃	SCF ₃	CH(CH ₃) ₂	CH ₃	SCHF ₂
C(CH ₃) ₃	н	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	CF ₃	CH ₃	SCF ₃
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	CI	SCF ₃
CH(CH ₃) ₂	Br	CI	CF ₃	CH ₂ CH ₃	CI.
cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	СН3	CF ₃
cyclopropyl	CH ₃	Cl	OCH ₂ CH ₃	СН3	Br
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	СН3	OCH ₂ CF ₃
осн ₃	сн2сн3	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	СН3	CF ₂ CI
cyclopropyl	CH ₃	CF ₂ C1	CH ₂ CH(CH ₃) ₂	осн ₃	CF ₂ CI
cyclopropyl	сн ₂ сн ₃	CF ₃	CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃
cyclopropyl	CH_2CH_3	NO ₂	CH(CH ₃) ₂	CH ₃	NO ₂
cyclopropyl	сн ₂ сн ₃	OCHF ₂	СН(СН ₃) ₂	СН3	OCHF ₂
cyclopentyl	сн ₃	CF ₃	cyclopentyl	СН2СН3	CF ₃
•					,
$T = S$, $R^3 = H$, Y	= S, W = N,				
XIR I	R ²	R ⁴	, X2R¹	R ²	R ⁴
C(CH ₃) ₃	Н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	СН ₂ СН(СН ₃) ₂	СН3	CF ₃
CF ₃	сн ₃	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	сн ₃	SCHF ₂	cyclobutyl	н	SCF ₃
СH(СН ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	H	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
СH(СН ₃) ₂	Н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	I-Me-cyclopropyl	СН3	CF ₃
cyclopropyi	СН3	OCF ₃	C ₆ H ₅	CN	OCF ₃
осн(сн ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
CH=C(CH ₃) ₂	Br	CF ₂ CI	СH(СH ₃) ₂	СН3	CF ₃

* -					
$T = 0$, $R^3 = H$, Y	Y=S, W=C	H, Z = N.			
XR ¹	\mathbb{R}^2	R ⁴	XXI ¹	R ²	R ⁴
C(CH ₃) ₃	CH ₃	CF ₃	осн ₃	CH ₃	CF ₃
C(CH ₃) ₃	Н	CF ₃	OCH ₃	н	CF ₃
CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CI	CF ₃	CF ₃	CI	CF ₃
1-Me-cyclopropyl	ÇI	CF ₃	C ₆ H ₅	Br	CF ₃
CH ₂ CHCl ₂	NO ₂	CF ₃	1-Me-cyclopropyl	CH ₃	CF ₃
C(CH ₃) ₂ Br	СН3	SCF ₃	CH(CH ₃) ₂	CH ₃	SCHF ₂
C(CH ₃) ₃	Н	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃
CH(CH ₃) ₂	сн ₃	SCF ₃	CF ₃	CH ₃	SCF ₃
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	Cl	SCF ₃
CH(CH ₃) ₂	Br	CI	CF ₃	CH ₂ CH ₃	а
cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CI	OCH ₂ CH ₃	CH ₃	Br
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	CH ₃	OCH ₂ CF ₃
OCH ₃	CH ₂ CH ₃	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	CH ₃	CF ₂ C1
cyclopropyl	CH ₃	CF ₂ CI	CH ₂ CH(CH ₃) ₂	OCH ₃	CF ₂ CI
cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃) ₂	сн2сн3	CF ₃
cyclopropyl	сн ₂ сн ₃	NO ₂	CH(CH ₃) ₂	СН3	NO ₂
cyclopropyl	CH ₂ CH ₃	OCHF ₂	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	СН3	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
T=S, R ³ =H, Y=	S W=CH	7 - N			
XR ¹	R ²	R ⁴	XR ¹	R ²	<u>R</u> ⁴
C(CH ₃) ₃	н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	СН3	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	СН3	SCHF ₂	cyclobutyl	н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	СН3	SCF ₃	cyclobutyl	H	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br Br
CH(CH ₃) ₂	н	Br	осн ₂ сн ₃	NO ₂	Br
				-	

CH2CH(CH3)2	CN	CI	I-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	СН3	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
CH=C(CH ₃) ₂	Br	CF ₂ CI	CH(CH ₃) ₂	CH ₃	. CF ₃
			3.2	3	
$T = 0, R^3 = H, T$	Y = S, W = C	H, Z = CH,			
XXR ¹	R ²	R ⁴	XR ¹	R ²	<u>R</u> 4
C(CH ₃) ₃	CH ₃	CF ₃	осн ₃	СН3	CF ₃
C(CH ₃) ₃	H	CF ₃	осн ₃	н	CF ₃
$CH(CH_3)_2$	CH ₃	CF ₃	ОСН(СН ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	`ĊF₃	CF ₃	СН3	CF ₃
CH ₂ CH(CH ₃) ₂	CI	CF ₃	CF ₃	a	CF ₃
1-Me-cyclopropyl	CI	CF ₃	C ₆ H ₅	Br	CF₃
CH ₂ CHCl ₂	NO ₂	CF ₃	1-Me-cyclopropyl	CH ₃	CF ₃
C(CH ₃) ₂ Br	CH ₃	SCF ₃	CH(CH ₃) ₂	CH ₃	SCHF ₂
C(CH ₃) ₃	Н	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	CF ₃	СН3	SCF ₃
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	CI	SCF ₃
CH(CH ₃) ₂	Br	CI	CF ₃	CH ₂ CH ₃	CI
cyclopropyl	СН3	CF ₃	осн ₂ сн ₃	СН3	CF ₃
cyclopropyl	СН3	CI	OCH ₂ CH ₃	CH ₃	Br
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	CH ₃	OCH ₂ CF ₃
OCH ₃	CH_2CH_3	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	CH ₃	CF ₂ CI
cyclopropyl	CH ₃	CF ₂ CI	CH ₂ CH(CH ₃) ₂	осн ₃	CF ₂ C1
cyclopropyl	CH_2CH_3	CF ₃	CH(CH ₃) ₂	СН ₂ СН ₃	CF ₃
cyclopropyl	CH_2CH_3	NO ₂	СH(СН ₃) ₂	CH ₃	NO ₂
cyclopropyl	CH_2CH_3	OCHF ₂	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	CH ₃	CF ₃	cyclopentyl	СH ₂ СH ₃	CF ₃
2					
$T = S$, $R^3 = H$, Y :	= S, W = CH,			4	
XR I	<u>R</u> ²	R ⁴	, XER I	R ²	R ⁴
C(CH ₃) ₃	н	CF ₃	СН3	сн ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₂	SCHF ₂	cyclobutyl	н	SCF ₂

CH(CH ₃) ₂	СН3	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	н	Br	осн ₂ сн ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
CH=C(CH ₃) ₂	Br	CF ₂ CI	CH(CH ₃) ₂	CH ₃	CF ₃
$T = 0$, $R^3 = H$, Y	= O, W = N,	Z = CH,			
XR ¹	R ²	R ⁴	, XR ¹	R ²	R ⁴
C(CH ₃) ₃	CH ₃	CF ₃	осн ₃	CH ₃	CF ₃
C(CH ₃) ₃	н	CF ₃	осн ₃	н	CF ₃
CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CI	CF ₃	CF ₃	CI	CF ₃
1-Me-cyclopropyl	CI	CF ₃	C ₆ H ₅	Br	CF ₃
CH ₂ CHCl ₂	NO ₂	CF ₃	1-Me-cyclopropyl	CH ₃	CF ₃
C(CH ₃) ₂ Br	CH ₃	SCF ₃	CH(CH ₃) ₂	CH ₃	SCHF ₂
C(CH ₃) ₃	н	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃
CH(CH ₃) ₂	СН3	SCF ₃	CF ₃	СН3	SCF ₃
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	Cl	SCF ₃
CH(CH ₃) ₂	Br	CI	CF ₃	СН ₂ СН ₃	Cl
cyclopropyl	СН3	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CI	OCH ₂ CH ₃	CH ₃	Br
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	CH ₃	OCH ₂ CF ₃
OCH ₃	CH ₂ CH ₃	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	CH ₃	CF ₂ CI
cyclopropyl	CH ₃	CF ₂ CI	CH ₂ CH(CH ₃) ₂	осн ₃	CF ₂ CI
cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃
cyclopropyl	СН ₂ СН ₃	NO ₂	CH(CH ₃) ₂	CH ₃	NO ₂
cyclopropyl	CH ₂ CH ₃	OCHF ₂	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	CH ₃	CF ₃	cyclopentyl	СН ₂ СН ₃	CF ₃

$T = S$, $R^3 = H$, $Y = O$, $W = N$, $Z = CH$,								
XR I	R ²	R ⁴	, XIR ¹	\mathbb{R}^2	R ⁴			
C(CH ₃) ₃	H	CF ₃	СН3	CH ₃	CF ₃			
cyclopropyl	СН3	CF ₃	СН ₂ СН(СН ₃) ₂	СН3	CF ₃			
CF ₃	сн ₃	CF ₃	C ₆ H ₅	CI	CF ₃			
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	H	SCF ₃			
· CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃			
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	н	NO ₂			
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	СН3	Br			
CH(CH ₃) ₂	H	Br	OCH ₂ CH ₃	NO ₂	Br			
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	СН3	CIF ₃			
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃			
OCH(CH ₃) ₂	сн ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI			
CH=C(CH ₃) ₂	Br	CF ₂ CI	CH(CH ₃) ₂	CH ₃	CF ₃			
2								
$T = O$, $R^3 = H$, Y			Q	_				
XR ¹	R ²	R ⁴	, XIR ¹	R ²	<u>R</u> 4			
C(CH ₃) ₃	CH ₃	CF ₃	осн ₃	CH ₃	CF ₃			
C(CH ₃) ₃	н	CF ₃	осн ₃	H	CF ₃			
CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃			
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃			
CH ₂ CH(CH ₃) ₂	Cl	CF ₃	CF ₃	CI	CF ₃			
1-Me-cyclopropyl	CI	CF ₃	C ₆ H ₅	Br	CF ₃			
CH ₂ CHCl ₂	NO ₂	CF ₃	1-Me-cyclopropyl	СН3	CF ₃			
C(CH ₃) ₂ Br	CH ₃	SCF ₃	CH(CH ₃) ₂	СН3	SCHF ₂			
C(CH ₃) ₃	н	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃			
CH(CH ₃) ₂	СН3	SCF ₃	CF ₃	CH ₃	SCF ₃			
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	CI	SCF ₃			
CH(CH ₃) ₂	Br	CI	CF ₃	CH ₂ CH ₃	Cl			
cyclopropyl	СН3	CF ₃	OCH ₂ CH ₃	СН3	CF ₃			
cyclopropyl	CH ₃	CI	OCH ₂ CH ₃	CH ₃	Br			
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	CH ₃	OCH ₂ CF ₃			
OCH ₃	CH ₂ CH ₃	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃			
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	CH ₃	CF ₂ CI			
cyclopropyl	CH ₃	CF ₂ CI	CH ₂ CH(CH ₃) ₂	осн ₃	CF ₂ Cl			
cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃			

cyclopropyl	СН ₂ СН ₃	NO ₂	CH(CH ₃) ₂	СН3	NO ₂
cyclopropyl	CH ₂ CH ₃	OCHF ₂	CH(CH ₃) ₂	CH ₃	OCHF ₂
	CH ₃	-		•	_
cyclopentyl	CH3	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
$T = 0$, $R^3 = H$, Y	= 0, W = CH	I, Z = N,			
XIR ¹	R ²	R ⁴	XXR ¹	\mathbb{R}^2	R ⁴
C(CH ₃) ₃	н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	СН3	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	СН3	SCHF ₂	cyclobutyl	н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	H	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	СН3	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	СН3	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
CH=C(CH ₃) ₂	Br	CF ₂ CI	CH(CH ₃) ₂	CH ₃	CF ₃
$T = O$, $R^3 = H$, Y					
XIR I	R ²	R ⁴	XR ¹	<u>R</u> ²	R ⁴
C(CH ₃) ₃	н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	СН3	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	СН3	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	Н	SCF ₃
CH(CH ₃) ₂	СН3	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	H	NO ₂
CH ₂ CF ₃	СН3	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	Н	Br	осн ₂ сн ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	СН3	CF ₃
cyclopropyl	СН3	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl
CH=C(CH ₃) ₂	Br	CF ₂ Cl	СН(СН3)2	CH ₃	CF ₃

$T = 0$, $R^3 = H$,	Y=NH, W=	N, Z=N			
XIR ¹	\mathbb{R}^2	R ⁴	XR ¹	R ²	R ⁴
C(CH ₃) ₃	Н	CF ₃	CH ₃	СН3	CF ₃
cyclopropyl	СН3	CF ₃	CH ₂ CH(CH ₃) ₂	СН3	CF ₃
CF ₃	СН3	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	СН3	SCHF ₂	cyclobutyl	Н	SCF ₃
CH(CH ₃) ₂	СН3	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	СН3	Br
CH(CH ₃) ₂	Н	Br	осн ₂ сн ₃	NO ₂	Br
$CH_2CH(CH_3)_2$	CN	а	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ C1
$CH=C(CH_3)_2$	Br	CF ₂ CI	CH(CH ₃) ₂	СН3	CF ₃
_				-	-
$T = 0$, $R^3 = H$, Y		N, Z≃CH			
XIR ¹	R ²	R ⁴	_ XR ¹	R ²	R ⁴
C(CH ₃) ₃ .	Н	CF ₃	CH ₃	СН3	CF ₃
cyclopropyl	СН3	CF ₃	CH ₂ CH(CH ₃) ₂	СН3	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	СН3	SCHF ₂	cyclobutyl	H	SCF ₃
СH(СН ₃) ₂	сн3	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	СН3	Br
CH(CH ₃) ₂	н	Br	осн ₂ сн ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	Cl	l-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ C1
$CH=C(CH_3)_2$	Br	CF ₂ C1	CH(CH ₃) ₂	CH ₃	CF ₃
$T = 0$, $R^3 = H$, Y					
XR ¹	R ²	R ⁴	XR I	\mathbb{R}^2	₽ ⁴
C(CH ₃) ₃	Н	CF ₃	CH ₃	СН3	CF ₃
cyclopropyl	CH ₃	CF ₃	СH ₂ СH(СH ₃) ₂	СН3	CF ₃
CF ₃	сн3	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	СН3	SCHF ₂	cyclobutyl	Н	SCF ₃

CH(CH ₃) ₂	СН3	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	H	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	а	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
$CH=C(CH_3)_2$	Br	CF ₂ CI	СH(СН ₃) ₂	СН3	CF ₃
T=0, R ³ =H,	Y=NH W:	=CH 7 =CH			
XR ¹	R ²	R ⁴	XR ¹	\mathbb{R}^2	R ⁴
C(CH ₃) ₃	н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	н	NO ₂
CH ₂ CF ₃	СН3	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	СН3	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
CH=C(CH ₃) ₂	Br	CF ₂ CI	СН(СН3)2	СН3	CF ₃
T=0, R ³ =H,	V - NCU - V	V-N 7-N			
XR ¹	R ²	R ⁴	XR ¹	R ²	R ⁴
C(CH ₃) ₃	Н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	СН3	Br
CH(CH ₃) ₂	н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	СН3	OCF ₃	C ₆ H ₅	CN	OCF ₃
	_	-			-

OCH(CH.)	~.		1							
OCH(CH ₃) ₂	СН3	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI					
CH=C(CH ₃) ₂	Br	CF ₂ CI	СH(СН ₃) ₂	CH ₃	CF ₃					
$T = 0$, $R^3 = H$, $Y = NCH_3$, $W = N$, $Z = CH$										
XIR ¹	R ²	R ⁴	XR ¹	R ²	R ⁴					
C(CH ₃) ₃	н	CF ₃	CH ₃	CH ₃	Σ CF ₃					
cyclopropyi	СН3	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃					
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃					
СН(СН ₃)2	CH ₃	SCHF ₂	cyclobutyl	н	SCF ₃					
CH(CH ₃) ₂	СН3	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃					
cyclopropyi	СН3	SCF ₃	cyclobutyl	Н	NO ₂					
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br					
CH(CH ₃) ₂	н	Br	OCH ₂ CH ₃	NO ₂	Br					
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃					
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN CN	OCF ₃					
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI					
CH=C(CH ₃) ₂	Br	CF ₂ C1	СН(СН3)2	CH ₃	CF ₃					
		-	1 . 3.2	3	3					
$T = 0$, $R^3 = H$, Y										
XIR ¹	R ²	R ⁴	, XXR ¹	R ²	R ⁴					
C(CH ₃) ₃	Н	CF ₃	СН3	CH ₃	CF ₃					
cyclopropyl	CH ₃	CF ₃	СН ₂ СН(СН ₃) ₂	СН3	CF ₃					
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃					
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	н	SCF ₃					
CH(CH ₃) ₂	СН3	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃					
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO ₂					
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br					
CH(CH ₃) ₂	Н	Br .	OCH ₂ CH ₃	NO ₂	Br					
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃					
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃					
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI					
$CH=C(CH_3)_2$	Br	CF ₂ CI	CH(CH ₃) ₂	сн ₃	CF ₃					
•										
$T = O, R^3 = H, Y$	= -CH=CH-,			_						
XR ¹	R ²	R ⁴	, X2R¹	R ²	R ⁴					
C(CH ₃) ₃	Н	CF ₃	CH ₃	CH ₃	CF ₃					

cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	Н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	н	NO_2
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	Н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	СН3	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	СН3	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ C
CH=C(CH ₃) ₂	Br	CF ₂ CI	CH(CH ₃) ₂	сн ₃	CF ₃
T=0, R ³ =H, Y	=-CH=N-, W	'=N. Z=N			
XR ¹	R ²	R ⁴	XIR ¹	R^2	R ⁴
C(CH ₃) ₃	Н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	a	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	н	SCF ₃
СН(СН3)2	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	СН3	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
CH=C(CH ₃) ₂	Br	CF ₂ CI	CH(CH ₃) ₂	СН3	CF ₃
T=0, R ³ =H, Y	= -CH=N- W	=N 7=CH			
XR ¹	R ²	R ⁴	XR ¹	\mathbb{R}^2	R ⁴
C(CH ₃) ₃	н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	Н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	H H	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
	3		C(C113)3	3	ال

CH(CH ₃) ₂	н	Br	осн ₂ сн ₃	NO ₂	Br
$CH_2CH(CH_3)_2$	CN	CI	I-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl
$CH=C(CH_3)_2$	Br	CF ₂ C1	СH(СН ₃) ₂	CH ₃	CF ₃

T = O, R' = H,	n = 0				
XIR ¹	\mathbb{R}^2	R ⁴	XIR ¹	R ²	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	СН3	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
$CH_2CH(CH_3)_2$	CH ₃	OCF ₃	OCH(CH ₃) ₂	СН3	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH2CH(CH3)2	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH2CH(CH3)2	Br	CN
I-Me-cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
I-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
l-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cycl butyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cycl butyl	CH ₃	OCF ₃

			1		
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ F	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
CH ₂ CH ₂ CI	сн ₂ сн ₃	CF ₃	CF ₃	Br	Br
C(CH ₃) ₃	CH_2CH_3	CF ₃	CCI ₂ CH ₃	CH ₃	Br
C(CH ₃) ₂ Br	CH ₃	Br	CHC12	СН3	Cl
CHCICH ₃	Н	CF ₃	СH(СН ₃) ₂	н	CF ₃
CH(CH ₃) ₂	NO ₂	Br	CH ₂ CH(CH ₃) ₂	NO ₂	Br
NHCH ₃	CH ₃	CF ₃	N(CH ₃) ₂	CH ₃	CF ₃
NHCH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	CH ₃	CF ₃	cyclopentyl	СН ₂ СН ₃	CF ₃
					-
$T = S, R^3 = H, n =$	= 0		$T = 0$, $R^4 = CF_3$,	n = 0	
XR ¹	\mathbb{R}^2	R ⁴	XR ¹	\mathbb{R}^2	\mathbb{R}^3
CH(CH ₃) ₂	СН3	CF ₃	СН(СН3)2	Н	3-CH ₃
			cyclopropyl	н	5-Br
			CH ₂ CH(CH ₃) ₂	н	6-CN
$T = 0, R^3 = H, n$					
XIR ¹	R ²	R ⁴	XR ¹	R ²	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	СН3	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	осн(сн ₃₎₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	осн(сн ₃)2	Br	NO ₂
cyclopropyl	СН3	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyi	СН3	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyi	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
1-Me-cyclopropyl	СН3	OCF ₃	осн ₂ сн ₃	СН3	OCF ₃
i-Me-cyclopropyl		-		-	-
1-Mic-cyclopropyi	Br	Br	OCH ₂ CH ₃	Br	Br

I-Me-cyclopropyl	Br	SCF ₃	осн ₂ сн ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyi	Br	CF ₃	cyclobutyl	Br	CF ₃
СН3	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ F	СН3	CF ₃	CF ₃	СН3	OCF ₃
CH ₂ CH ₂ CI	СН ₂ СН ₃	CF ₃	CF ₃	Br	Br
C(CH ₃) ₃	сн ₂ сн ₃	CF ₃	CCI ₂ CH ₃	CH ₃	Br
C(CH ₃) ₂ Br	CH ₃	Br	CHCl ₂	CH ₃	CI
CHCICH ₃	H	CF ₃	CH(CH ₃) ₂	н	CF ₃
CH(CH ₃) ₂	NO ₂	Br	CH ₂ CH(CH ₃) ₂	NO ₂	Br
NHCH ₃	сн3	CF ₃	N(CH ₃) ₂	CH ₃	CF ₃
NHCH(CH ₃) ₂	СН3	CF ₃	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	сн3	CF ₃	cyclopentyl	СН2СН3	CF ₃
T=S, R ³ =H, n=	1		$T = 0$, $R^4 = CF_3$,	n = 0	
XR ¹	\mathbb{R}^2	R ⁴	XR ¹	R ²	\mathbb{R}^3
CH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	н	3-CH ₃
		-	cyclopropyl	н	5-Br
			CH2CH(CH2)2	н	6-CN

$T = O$, $R^3 = H$	i, n = 0				
XIR ¹	R^2	R ⁴	XR ¹	R ²	R ⁴
CH(CH ₃) ₂	СН3	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₂

CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	СН3	OCF ₃	ОСН(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
$CH_2CH(CH_3)_2$	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH2CH(CH3)2	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	-	OCF ₃
cyclopropyl	Br	Br	OCH2CH(CH3)2	-	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	СН3	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	СН3	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	осн ₂ сн ₃	Br	SCF ₃
2-Me-cyclopropy!	CH ₃	CF ₃	cyclobutyl	СН₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br .	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CHCI ₂	СН3	CF ₃	CF ₃	СН3	CF ₃
CH ₂ SCH ₃	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
(CH ₂) ₄ CH ₃	CH ₃	CF ₃	CF ₃	Br	Br
CH ₂ CH ₂ CI	CH ₃	CF ₃	CH(CH ₃) ₂	СН ₂ СН ₃	CF ₃
CH ₂ CH ₂ CF ₃	CH_2CH_3	CF ₃	CHIPCH ₃	CH ₃	Br
Ph	CH ₃	Вг	CH(CH ₃)SCH ₃	CH ₃	CI
C(CH ₃) ₃	Н	CF ₃	CF ₃	н	CF ₃
C(CH ₃) ₃	NO ₂	Br	CH ₂ OCH ₃	осн ₃	Br
N(CH ₃)CH(CH ₃) ₂	CH ₃	CF ₃	N(CH ₃)OCH ₃	СН3	CF ₃
cyclopentyl	CH ₃	CF ₃	cyclopentyl	СН ₂ СН ₃	CF ₃
T = S, R ³ = H, n =	0		T = 0, R ⁴ = CF ₃ ,	n = 0	
XR ¹	\mathbb{R}^2	R ⁴	XR ¹	R ²	R ³
СН ₂ СН(СН ₃) ₂	СН3	CF ₃	CH(CH ₃) ₂	н	3-Br
	-	-	cyclopropyl	Н	5-CN
			CH ₂ CH(CH ₃) ₂	н	6-NO ₂

$T = 0$, $R^3 = H$,	n = 1				
XR ^I	\mathbb{R}^2	R ⁴	XR ¹	R ²	R ⁴
СH(СН ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	СН3	CF ₃
CH(CH ₃) ₂	СН3	OCF ₃	C(CH ₃) ₃	СН3	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	осн(сн ₃₎₂	СН3	CF ₃
СH ₂ СH(СH ₃) ₂	СН3	OCF ₃	осн(сн ₃₎₂	CH ₃	OCF ₃
СH ₂ СH(СH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
$CH_2CH(CH_3)_2$	Br	NO ₂	осн(сн ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	СН3	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH2CH(CH3)2	Br	CN
1-Me-cyclopropyl	СН3	CF ₃	OCH ₂ CH ₃	СН3	CF ₃
1-Me-cyclopropyl	СН3	OCF ₃	OCH ₂ CH ₃	СН3	OCF ₃
I-Me-cyclopropyl	Br	Br	осн ₂ сн ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	осн ₂ сн ₃	Br	SCF ₃
2-Me-cyclopropyl	СН3	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	СН3	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CHCI ₂	СН3	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ SCH ₃	СН3	CF ₃	CF ₃	CH ₃	OCF ₃
(CH ₂) ₄ CH ₃	СН3	CF ₃	CF ₃	Br	Br
CH ₂ CH ₂ CI	CH ₃	CF ₃	CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃
CH ₂ CH ₂ CF ₃	CH_2CH_3	CF ₃	СНРСН3	CH ₃	Br
Ph .	CH ₃	Br	CH(CH ₃)SCH ₃	CH ₃	CI
C(CH ₃) ₃	н	CF ₃	CF ₃	н	CF ₃
C(CH ₃) ₃	NO ₂	Br	СН ₂ ОСН ₃	осн ₃	Br
N(CH ₃)CH(CH ₃) ₂	СН3	CF ₃	N(CH ₃)OCH ₃	CH ₃	CF ₃
cyclopentyl	CH ₃	CF ₃	cyclopentyl	СН ₂ СН ₃	CF ₃
- 2					
$T = S, R^3 = H, n = 0$,	$T = 0$, $R^4 = CF_3$, n	= 0	_
XR ¹	R ²	R ⁴	, XR ¹	R ²	R ³
$CH_2CH(CH_3)_2$	CH ₃	CF ₃	CH(CH ₃) ₂	Н	3-Br

6-NO₂

53		
cyclopropyl	н	5-CN
CH2CH(CH2)2	н	6-NC

TABLE 4

CH2CH(CH3)2

T=0. R3=H n=0 XR1 R^4 XR1 R² R⁴ CH(CH₂)₂ СН3 CF₃ C(CH₃)₃ CH2 CF₃ CH(CH₃)₂ СН₃ OCF₃ C(CH₂)₃ CH₃ OCF₃ CH(CH₃)₂ Br Вг C(CH₃)₃ Br Br CH(CH₃)₂ Βτ CI C(CH₃)₃ Br CI CH₂CH(CH₃)₂ CH₂ CF₃ OCH(CH₃)₂ CH₂ CF₃ CH2CH(CH3)2 OCF₃ CH₃ OCH(CH₃)₂ CH₂ OCF₂ CH2CH(CH3)2 OCH(CH₃)₂ Br Br Br Br CH₂CH(CH₃)₂ Br NO₂ OCH(CH₃)₂ Br NO₂ cyclopropyl CH₃ CF₃ OCH₂CH(CH₃)₂ CH₃ CF₃ cyclopropyl CH₃ OCF₂ OCH₂CH(CH₃)₂ CH₂ OCF₃ cyclopropyl Br Вr OCH2CH(CH3)2 Br Br cyclopropyl Br CN OCH2CH(CH3)2 Br CN l-Me-cyclopropyl СН₃ CF₂ OCH₂CH₃ CH₃ CF₃ 1-Me-cyclopropyl CH2 OCF₂ OCH2CH2 CH₃ OCF₂ I-Me-cyclopropyl Br Br OCH2CH3 Br Br 1-Me-cyclopropyl SCF₃ Br OCH2CH2 SCF₃ Br 2-Me-cyclopropyl CH₃ CF₃ cyclobutyl CH₃ CF₃ 2-Me-cyclopropyl СН₃ OCF₂ cyclobutyl CH₂ OCF₃ 2-Me-cyclopropyl Br Br cyclobutyl Вr Вr 2-Me-cyclopropyl Br CF₃ cyclobutyl Br CF₃ CH2CH2Br CH₃ CF₃ CF₃ СН3 CF3

			t		
(CH ₂) ₂ CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	OCF3
CHBrCH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	Br	Br
CH=C(CH ₂ CI) ₂	CH ₃	CF ₃	cyclopropyi	CH ₂ CH ₃	CF ₃
C(CH ₃) ₂ CH ₂ Cl	CH ₂ CH ₃	CF ₃	C(CH ₃) ₂ OCH ₃	CH ₃	Br
CH ₂ C(CH ₃)=CH		CI	CH ₂ CHF ₂	Br	Br
C(CH ₃) ₂ OCH ₃	SCH ₃	Br	CF ₃	CH ₂ CH ₃	Br
NHCH ₂ CH ₃	Br	CF ₃	N(CH ₃)CH ₂ CH ₃		CF ₃
T=S, R ³ =H, r	ı = 0		$T=0$, $R^4=CF_3$	- 0	
XR ¹	R ²	R ⁴	XR ¹	s. n=0 R ²	\mathbb{R}^3
C(CH ₃) ₃	CH ₃	CF3	CH(CH ₃) ₂	_	
3/3	,	u 3	CH(CH ₃) ₂ CH(CH ₃) ₂	н	3-F
			CH(CH ₃) ₂ CH(CH ₃) ₂	н	5-SCF ₃
			Cn(Cn3)2	н	6-Ci
$T = 0$, $R^3 = H$,	n = 1				
XR ¹	\mathbb{R}^2	R ⁴	XIR ¹	R ²	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₂	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br .	Br
CH(CH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	CI
СH ₂ СH(СH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	осн(сн ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	СН₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyi	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	СН3	CF ₃
i-Me-cyclopropyi	CH ₃	OCF ₃	осн ₂ сн ₃	СН3	OCF ₃
i-Me-cyclopropyi	Br	Br	OCH ₂ CH ₃	Br	Br
l-Me-cyclopropyl	Br	SCF ₃	осн ₂ сн ₃	Br	SCF ₃
2-Me-cyclopropy!	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
					•

•					
СН ₂ СН ₂ Вг	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
(CH ₂) ₂ CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
CHBrCH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	Br	Br
CH=C(CH ₂ Cl) ₂	CH ₃	CF ₃	cyclopropyl	СН ₂ СН ₃	CF ₃
C(CH ₃) ₂ CH ₂ CI	CH_2CH_3	CF ₃	C(CH ₃) ₂ OCH ₃	CH ₃	Br
$CH_2C(CH_3)=CH_2$	СН3	CI	CH ₂ CHF ₂	Br	Br
C(CH ₃) ₂ OCH ₃	SCH ₃	Br	CF ₃	CH ₂ CH ₃	Br
NHCH ₂ CH ₃	Br	CF ₃	N(CH ₃)CH ₂ CH ₃	Br	CF ₃
$T = S, R^3 = H, n = 0$)		T=0, R ⁴ =CF ₃ , r	ı = 0	
XR ¹	R ²	R ⁴	XR ¹	R ² .	\mathbb{R}^3
C(CH ₃) ₃	CH ₃	CF ₃	CH(CH ₃) ₂	Н	3-F
			CH(CH ₃) ₂	Н	5-SCF ₃
			CH(CH ₃) ₂	Н	6-CI

$T = 0, R^3 = H, $	n = 0				
XR ¹	R ²	R ⁴	XR ¹	R ²	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	СН3	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	СН3	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	СН3	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	осн(сн ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cycl propyl	CH ₃	CF ₃	осн ₂ сн(сн ₃) ₂	СН3	CF ₃

cyclopropyl	CH ₃	OCF ₃		осн ₂ сн(сн ₃) ₂	СН3	OCF ₃
cyclopropyl	Br	Br		OCH2CH(CH3)2	Br	Br
cyclopropyl	Br	CN		OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃		осн ₂ сн ₃	CH ₃	CF ₃
I-Me-cyclopropyl	CH ₃	OCF ₃		OCH ₂ CH ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br		OCH ₂ CH ₃	Br	Br
I-Me-cyclopropyl	Br	SCF ₃		OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃		cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃		cyclobutyl	СН3	OCF ₃
2-Me-cyclopropyl	Br	Br		cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃		cyclobutyl	Br	CF ₃
CH ₂ -cyclopropyl	CH ₃	CF ₃	- 1	CF ₃	СН3	CF ₃
СН ₂ ОСН ₃	CH ₃	CF ₃		CF ₃	CH ₃	OCF ₃
$C(CH_3)=CH_2$	CH ₃	CF ₃	ı	CF ₃	Br	Br
C(CH ₃) ₂ Br	СН3	CF ₃	- 1	CH ₂ CH(CH ₃) ₂	СН2СН3	CF ₃
1-Me-cyclopropyl	сн2сн3	CF ₃	.	СН(СН3)СН2СН3	CH ₃	Br
CH=C(CH ₃) ₂	CH ₃	Br		CH ₂ SCH ₃	CH ₂ SCH ₃	Br
СH(СН ₃) ₂	СН ₂ ОСН ₃	CF ₃	- 1	N(CH ₃)OCH ₃	СН3	CF ₃
					-	-
T=S, R3=H, n=				T = 0, R ⁴ = CF ₃ , 1	1 = 0	
XIR ¹	R ²	R ⁴		XIR ¹	R ²	R ³
cyclopropyl	CH ₃	CF ₃	- [-	СН(СН ₃) ₂	H	3-CH ₂ OCH ₃
cyclobutyl	CH ₃	CF ₃	- 1	CH(CH ₃) ₂	Н	5-N(CH ₃) ₂
			- 10	CH(CH ₃) ₂	н	6-CH ₂ SCH ₃
$T = 0$, $R^3 = H$, n				9		
XR ¹	R ²	.R ⁴		XIR ¹	R ²	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	1	C(CH ₃) ₃	СН3	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	- 1	C(CH ₃) ₃	СН3	OCF ₃
СH(СН ₃) ₂	Br	Br	- 0	C(CH ₃) ₃	Br	Br
СH(СН ₃) ₂	Br	CI	10	C(CH ₃) ₃	Br	CI
СН ₂ СН(СН ₃) ₂	CH ₃	CF ₃	1	осн(сн ₃) ₂	СН3	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	1	ОСН(СН ₃) ₂	СН3	OCF ₃
СH ₂ СH(СН ₃) ₂	Br	Br	0)СH(CH ₃) ₂	Br	Br
СH ₂ СH(СН ₃) ₂	Br	NO ₂	c	CH(CH ₃) ₂	Br	NO ₂
cyclopropyl	СН3	CF ₃		CH ₂ CH(CH ₃) ₂	СН3	CF ₃
				_	-	-

cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	СН3	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
I-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
I-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
I-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
I-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	СН3	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropy!	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₂ -cyclopropyl	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ OCH ₃	CH ₃	CF ₃	CF ₃	СН3	OCF ₃
$C(CH_3)=CH_2$	CH ₃	CF ₃	CF ₃	Br	Br
C(CH ₃) ₂ Br	CH ₃	CF ₃	CH2CH(CH3)2	CH ₂ CH ₃	CF ₃
I-Me-cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃)CH ₂ CH ₃	СН3	Br
CH=C(CH ₃) ₂	CH ₃	Br	CH ₂ SCH ₃	CH ₂ SCH ₃	Br
СH(СН ₃) ₂	CH_2OCH_3	CF ₃	N(CH ₃)OCH ₃	СН3	CF ₃
$T = S, R^3 = H, n =$			$T = 0$, $R^4 = CF_3$, n	= 0	
XX 1	R ²	R ⁴	XR ¹	\mathbb{R}^2	\mathbb{R}^3
cyclopropyl	CH ₃	CF ₃	CH(CH ₃) ₂	Н	3-CH ₂ OCH ₃
cyclobutyl	CH ₃	CF ₃	CH(CH ₃) ₂	Н	5-N(CH ₃) ₂

н

58 TABLE 6

$T = 0$, $R^3 = H$,	n = 0	•			
XR ¹	R ²	R ⁴	XR ¹	R ²	R^4
CH(CH ₃) ₂	СН3	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	СН3	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
СH(СН ₃) ₂	Br	CI	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
$CH_2CH(CH_3)_2$	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	СН3	OCF ₃	OCH ₂ CH(CH ₃) ₂	СН3	OCF ₃
cyclopropyl	Br	Br	осн ₂ сн(сн ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyi	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	осн ₂ сн ₃	СН3	OCF ₃
1-Me-cyclopropyl	Br	Br	осн ₂ сн ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	осн ₂ сн ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CF ₃	сн ₃	CF ₃	CF ₃	CH ₃	OCF ₃
CF ₃	Br	Br	СH(СН ₃) ₂	сн ₃	OCHF ₂

$T = 0$, $R^3 = H$,	n = 1				
XR ^I	\mathbb{R}^2	R ⁴	XR ¹	\mathbb{R}^2	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
СH(СН ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	СН3	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	осн ₂ сн(сн ₃₎₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	ОСН ₂ СН(СН ₃) ₂	Br	Br
cyclopropyl	Br	CN	осн ₂ сн(сн ₃) ₂	Br	CN
I-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
i-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
1-Me-cyclopropyi	Br	Br	осн ₂ сн ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	СН3	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CF ₃	CH ₃	CF ₃	CF ₃	СН3	OCF ₃
CF ₃	Br	Br	CH(CH ₃) ₂	CH ₃	OCHF ₂
					-

60 TABLE7

$T = O, R^3 = H,$	n = 0				
XR ¹	R ²	R ⁴	XR ¹	\mathbb{R}^2	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	осн(сн ₃) ₂	CH ₃	CF ₃
СH ₂ СH(СH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	СН3	OCF ₃
$CH_2CH(CH_3)_2$	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	осн(сн ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	СН3	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	СН3	OCF ₃
cyclopropyl	Br	Br	OCH2CH(CH3)2	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
l-Me-cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	осн ₂ сн ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CF ₃	СН3	CF ₃	CF ₃	CH ₃	OCF ₃
CF ₃	Br	Br	СH(СН ₃) ₂	CH ₃	OCHF ₂

T = O, R ³ = H, 1	n = 1				
XR ¹	R ²	R ⁴	XR ¹	\mathbb{R}^2	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	Cl
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	СН3	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	· CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	осн ₂ сн(сн ₃₎₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	осн ₂ сн ₃	СН3	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CF ₃	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
CF ₃	Br	Br	СH(СН ₃)2	СН3	OCHF ₂
					_

T = 0, $R^3 = H$

1 - 0, K - 11					
XIR ¹	R ²	R ⁴	XR ¹	R ²	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
СH(СН ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	СН3	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	СН3	CF ₃
$CH_2CH(CH_3)_2$	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	ОСH(СН ₃) ₂	Br	Br
$CH_2CH(CH_3)_2$	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	СН3	CF ₃
cyclopropyl	CH ₃	OCF ₃	осн ₂ сн(сн ₃) ₂	СН3	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	СН3	CF ₃
I-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	СН3	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
I-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br -	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ F	CH ₃	CF ₃	CF ₃	СН3	OCF ₃
CH ₂ CH ₂ CI	CH ₂ CH ₃	CF ₃	CF ₃	Br	Br
CCI2CH3	CH ₃	Br	C(CH ₃) ₂	СH ₂ СH ₃	CF ₃
CHCI ₂	СН3	CI	C(CH ₃) ₂ Br	СН3	Br
				-	

(2)			

CH(CH ₃) ₂	н	CF ₃	сисісн3	н	CF ₃
$CH_2CH(CH_3)_2$	NO ₂	Br	CH(CH ₃) ₂	NO ₂	Br
N(CH ₃) ₂	CH ₃	CF ₃	NHCH ₃	СН3	CF ₃
CH(CH ₃) ₂	СН3	OCHF ₂	NHCH(CH ₃) ₂	СН3	CF ₃
T=S, R ³ =H			T=0, R ⁴ =CF ₃		
XXR ¹	\mathbb{R}^2	R ⁴	XR ¹	<u>R</u> ²	R ³
CH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	H	3-CH ₃
•			cyclopropyl	Н	5-Br
			CH2CH(CH2)2	н	6-CN

$T = 0, R^3 = H$					
XIR 1	R^2	R ⁴	XR ¹	\mathbb{R}^2	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
СH(СH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	Ci
$CH_2CH(CH_3)_2$	CH ₃	CF ₃	OCH(CH ₃) ₂	СН3	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
$CH_2CH(CH_3)_2$	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	осн(сн ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	осн ₂ сн(сн ₃) ₂	Br	Br
cyclopropyl	Br	CN	осн ₂ сн(сн ₃) ₂	Br	CN
l-Me-cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
1-Me-cycl propyl	CH ₃	OCF ₃	OCH ₂ CH ₃	СН3	OCF ₃

I-Me-cyclopropyl	Br	Br	осн ₂ сн ₃	Br	Br
I-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
СН3	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CHCI ₂	СН3	CF ₃	CF ₃	CH ₃	OCF ₃
CH ₂ SCH ₃	CH ₃	CF ₃	CF ₃	Br	Br
(CH ₂) ₄ CH ₃	CH ₃	CF ₃	CH ₂ CH ₂ CI	CH ₃	CF ₃
CH(CH ₃) ₂	СН ₂ СН ₃	°CF3	CH ₂ CH ₂ CF ₃	СН2СН3	CF ₃
СНРСН ₃	CH ₃	Br	Ph	CH ₃	Br
CH(CH ₃)SCH ₃	CH ₃	Cl	C(CH ₃) ₃	н	CF ₃
CF ₃	Н	CF ₃	C(CH ₃) ₃	NO ₂	Br
СН ₂ ОСН ₃	осн ₃	Br	N(CH ₃)CH(CH ₃) ₂	CH ₃	CF ₃
N(CH ₃)OCH ₃	CH ₃	CF ₃	CH(CH ₃) ₂	СН3	OCHF ₂
$T = S, R^3 = H$			T=0, R ⁴ =CF ₃		
XR ¹	R ²	R ⁴	XR ¹	R ²	R ³
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	_	_
	,	43		H	3- B r
			cyclopropyl	н	5-CN
			CH ₂ CH(CH ₃) ₂	H	6-NO ₂

$T = 0, R^3 = H$					
XR I	R ²	R ⁴	XR ¹	R ²	R ⁴
$CH(CH_3)_2$	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₂

	CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
	CH(CH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	CI
	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	ОСН(СН ₃)2	CH ₃	CF ₃
	CH ₂ CH(CH ₃) ₂	СН3	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
	CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
	CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
	cyclopropyl	СН3	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
	cyclopropyl	СН3	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
	cyclopropyl	Br	Br	осн ₂ сн(сн ₃) ₂	Br	Br
	cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
	l-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
	1-Me-cyclopropyl	CH ₃	OCF ₃	осн ₂ сн ₃	CH ₃	OCF ₃
	1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
	l-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
	2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
	2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
:	2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
:	2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
•	CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
•	⊂н ₂ ⊂н ₂ вг	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
(CH ₂) ₂ CH ₃	CH ₃	CF ₃	CF ₃	Br	Br
•	CHBrCH(CH ₃) ₂	СН3	CF ₃	CH=C(CH ₂ Cl) ₂	СН3	CF ₃
•	yclopropyl	сн ₂ сн ₃	CF ₃	C(CH ₃) ₂ CH ₂ Cl	CH ₂ CH ₃	CF ₃
(C(CH ₃) ₂ OCH ₃	СН3	Br	CH ₂ C(CH ₃)=CH ₂	CH ₃	CI
(CH ₂ CHF ₂	Br	Br	C(CH ₃) ₂ OCH ₃	SCH ₃	Br
C	F 3	СН ₂ СН ₃	Br	NHCH ₂ CH ₃	Br	CF ₃
ì	(CH ₃)CH ₂ CH ₃	Br	CF ₃	СН(СН ₃)2	CH ₃	OCHF ₂
7	=S, R ³ =H			T=0, R ⁴ =CF ₃		
	R ^l	\mathbb{R}^2	R ⁴	XR ¹	R ²	_3
	(CH ₃) ₃	E CH ₃		. —	_	R ³
٠	(0113/3	Cn3	CF ₃	CH(CH ₃) ₂	H	3-F
				CH(CH ₃) ₂	H	5-SCF ₃
				CH(CH ₃) ₂	Н	6-CI

TABLE II

		<u>.</u>			
$T = 0, R^3 = H$					
XR ¹	R ²	R ⁴	XR ¹	R ²	R ⁴
CH(CH ₃) ₂	сн ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Ci	C(CH ₃) ₃	Br	CI
$CH_2CH(CH_3)_2$	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
$CH_2CH(CH_3)_2$	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
$CH_2CH(CH_3)_2$	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	СН3	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	СН3	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	осн ₂ сн ₃	СН3	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	осн ₂ сн ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	СН3	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	СН3	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₃	CH ₃	CF ₃	CF ₃	СН3	CF ₃
CH ₂ -cyclopropyl	CH ₃	CF ₃	CF ₃	СН3	OCF ₃
CH ₂ OCH ₃	сн ₃	CF ₃	CF ₃	Br	Br
C(CH ₃)=CH ₂	CH ₃	CF ₃	СH ₂ CH(СH ₃) ₂	СН ₂ СН ₃	CF ₃
C(CH ₃) ₂ Br	CH ₃	CF ₃	СН(СН3)СН2СН2	СН3	Br

			67		
I-Me-cyclopropyl CH=C(CH ₃) ₂ CH(CH ₃) ₂	СН ₂ СН ₃ СН ₃ СН ₂ ОСН ₃	CF ₃ Br CF ₃	CH ₂ SCH ₃ N(CH ₃)OCH ₃ CH(CH ₃) ₂	CH ₂ SCH ₃ CH ₃ CH ₃	Br CF ₃ OCHF ₂
T = S, R ³ = H XR ¹ cyclopropyl cyclobutyl	В ² СН ₃ СН ₃	R ⁴ CF ₃ CF ₃	$T = 0$, $R^4 = CF_3$ XR^1 $CH(CH_3)_2$ $CH(CH_3)_2$ $CH(CH_3)_2$	R ² н н	R ³ 3-CH ₂ OCH ₃ 5-N(CH ₃) ₂ 6-CH ₂ SCH ₃

Formulation/Utility

5

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

15

20

25

٠.	Weight Percent		
	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5–90	0-94	1-15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	40-95	0-15
Dusts Granules and Peliets	1-25 0.01-99	70-99 5-99.99	0-5 0-15
High Strength Compositions	90-99	0-10	0-2

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide
Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical
liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New
York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp.,
Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active
Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended
uses. All formulations can contain minor amounts of additives to reduce foam, caking,
corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, NN-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, tale, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, N.N-dimethylformamide, dimethyl sulfoxide, N-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, com, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the

active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in

- 5 U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.
- For further information regarding the art of formulation, see U.S. 3,235,361,

 10 Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed.,
- 5 Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-D.

	Example A	
20	High Strength Concentrate	
	Compound 4	98.5%
	silica aerogel	0.5%
	synthetic amorphous fine silica	1.0%.
	Example B	
25	Wettable Powder	
	Compound 41	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
30	montmorillonite (calcined)	23.0%.
	Example C	
	Granule	
	Compound 4	10.0%
	attapulgite granules (low volatile matter,	
35	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%,

20

70

Example D

Extruded Pellet	
Compound 41	25.09
anhydrous sodium sulfate	10.09
crude calcium ligningulfonate	

crude calcium ligninsulfonate 5.0% sodium alkylnaphthalenesulfonate 1.0% calcium/magnesium bentonite 59.0%

Test results indicate that the compounds of the present invention are highly active preemergent and postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Some of the compounds are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops which include but are not limited to barley, cotton, wheat, rape, sugar beets, corn (maize), soybeans, rice, oats, peanuts, vegetables, tomato, potato, and plantation crops including coffee, cocca, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea, forests such as eucalyptus and conifers, e.g., loblolly pine, and turf species, e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass. Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

Compounds of this invention can be used alone or in combination with other commercial herbicides, insecticides or fungicides. Compounds of this invention can also be used in combination with commercial herbicide safeners such as benoxacor, 25 dichlormid and furilazole to increase safety to certain crops. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, ametryn, amidosulfuron, amitrole, ammonium sulfamate, anilofos, 30 asulam, atrazine, azimsulfuron, benazolin, benazolin-ethyl, benfluralin, benfuresate. bensulfuron-methyl, bensulide, bentazone, bifenox, bromacil, bromoxynil, bromoxynil octanoate, butachlor, butralin, butylate, chlomethoxyfen, chloramben, chlorbromuron, chloridazon, chlorimuron-ethyl, chlornitrofen, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, cinmethylin, cinosulfuron, clethodim, clomazone, 35 clopyralid, clopyralid-olamine, cyanazine, cycloate, cyclosulfamuron, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its

- dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, dichlobenil, dichloprop, diclofop-methyl, 2-(4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid (AC 263,222), difenzoquat metilsulfate, difluenican, dimepiperate, dimethenamid, dimethylarisnic acid and its sodium salt, dinitramine, dibenamid, diguat dibromide, dithogy, dispos DNOC
- metilsulfate, diflufenican, dimepiperate, dimethenamid, dimethylarsinic acid and its sodium salt, dinitramine, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfuralin, ethametsulfuron-methyl, ethofumesate, ethyl α,2-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-ανο-1H-1,2,4-triazol-1-yl]-4-fluorobenzenepropanoate (F8426), fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenuron,
- fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, fluazifop-butyl, fluazifop-P-butyl, fluchloralin, flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, fluridone, flurochloridone, fluroxypyr, fomesafen, fosamine-ammonium, glufosinate, glufosinate-ammonium, glyphosate, glyphosate-isopropylammonium.
- 5 glyphosate-sesquisodium, glyphosate-trimesium, halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox (AC 299 263), imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazoulfuron, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isoxaben, isoxaflutole (RPA 201772), lactofen, lenacil, linuron, maleic hydrazide, MCPA and its
- 20 dimethylammonium, potassium and sodium salts, MCPA-isoctyl, mecoprop, mecoprop-P, mefenacet, mefluidide, metam-sodium, methabenzthiazuron, methyl [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1,3,4]thiadiazolo[3,4-a]pyridazin-1-yliden-plamino]phenyl]thioacetate (KIH 9201), methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyl [[I]-15-I2-chloro-4-
- (trifluoromethyl)phenoxy]-2-nitrophenyl]-2-methoxyethylidene]amino]oxy]acetate (AKH-7088), methyl 5-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1H-pyrazole-4-carboxylate (NC-330), metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, napropamide, naptalam, neburon, nicosulfuron, norflurazon, oryzalin, oxadiazon,
- 30 3-oxetanyl 2-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoate (CGA 277476), oxyfluorfen, paraquat dichloride, pebulate, pendimethalin, perfluidone, phenmedipham, picloram, picloram-potassium, pretilachlor, primisulfuron-methyl, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propyzamide, prosulfuron, pyrazolynate, pyrazosulfuron-ethyl, pyridate, pyrithiobac,
- 35 pyrithiobac-sodium, quinclorac, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, sethoxydim, siduron, simazine, sulcotrione (ICIA0051), sulfentrazone, sulfometuron-methyl, TCA, TCA-sodium, tebuthiuron,

terbacil, terbuthylazine, terbutryn, thenylchlor, thiafluamide (BAY 11390), thifensulfuron-methyl, thiobencarb, tralkoxydim, tri-allate, triasulfuron, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane, trifluralin, triflusulfuron-methyl, and vernolate.

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for preventing the development of resistant weeds.

Preferred for better control of undesired vegetation (e.g., lower use rate, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds are mixtures of a compound of this invention with a herbicide selected from the group atrazine, chlorimuron-ethyl, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, norflurazon, and pyrithiobac. Specifically preferred mixtures (compound numbers refer to compounds in Index Tables A-D) are selected from the group: compound 1 and atrazine; compound 1 and chlorimuron-ethyl; compound 1 and imazaquin; compound 1 and imazethapyr; compound 1 and norflurazon; compound 1 and pyrithiobac; compound 4 and atrazine; compound 4 and chlorimuron-ethyl; compound 4 and imazaquin; compound 4 and imazethapyr; compound 4 and norflurazon; compound 4 and pyrithiobac; compound 40 and atrazine; compound 40 and chlorimuron-ethyl; compound 40 and imazaquin; compound 40 and imazethapyr; compound 40 and norflurazon; compound 40 and pyrithiobac; compound 41 and atrazine; compound 41 and chlorimuron-ethyl; compound 41 and imazaquin; compound 41 and imazethapyr; compound 41 and norflurazon; compound 41 and pyrithiobac; compound 42 and atrazine; compound 42 and chlorimuron-ethyl; compound 42 and imazaquin; compound 42 and imazethapyr; compound 42 and norflurazon; compound 42 and pyrithiobac; compound 46 and atrazine; compound 46 and chlorimuron-ethyl; compound 46 and imazaquin; compound 46 and imazethapyr; compound 46 and norflurazon; compound 46 and pyrithiobac; compound 133 and atrazine; compound 133 and chlorimuron-ethyl; compound 133 and imazaquin; compound 133 and imazethapyr; compound 133 and norflurazon; and compound 133 and pyrithiobac.

20

25

30

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is 0.001 to 20 kg/ha with a preferred range of 0.004 to $1.0 \, \text{kg/ha}$. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A-D for compound descriptions. The following abbreviations are used in the Index Tables which follow: n = normal, i i = iso, Pr = propyl, i-Pr = isopropyl, Bu = butyl, Ph = phenyl, and NO₂ = nitro. The abbreviation "dec" indicates that the compound agreement to decompose on patting. The abbreviation "dec" indicates that the compound agreement to decompose on patting.

abbreviation "dee" indicates that the compound appeared to decompose on melting. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

INDEX TABLE A

Cn	npd No.	X	¥	Z	\mathbf{w}	\mathbb{R}^{1}	<u>R²</u>	<u>R</u> 4	m.p. (°C
1	Ex. 1	bond	S	N	N	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	177-178
2		0	S	N	N	CH(CH ₃) ₂	CH ₃	CF ₃	149-150
3		bond	S	N	N	CH(CH ₃) ₂	CH ₃	CF ₃	197-198
4		bond	S	N	N	cyclopropyl	CH ₃	CF ₃	200-201
5		bond	S	N	N	CF ₃	CH ₃	CF ₃	64 (dec)
6		bond	S	N	N	C(CH ₃) ₃	СН3	CF ₃	168-170
7		bond	S	N	N	cyclobutyl	CH ₃	CF ₃	200-201
8		bond	S	N	N	cyclopentyl	СН3	CF ₃	179-182
9		bond	S	N	N	1-CH ₃ -cyclopropyl	CH ₃	CF ₃	152-155
10		bond	S	N	N	2-CH ₃ -cyclopropyl	CH ₃	CF ₃	180-184
11		bond	S	N	N	CF ₂ CI	CH ₃	CF ₃	104-106
12		bond	S	N	N	cyclopentyl	СН ₂ СН ₃	CF ₃	167-170
13		bond	s	N	N	cyclobutyl	CH ₂ CH ₃	CF ₃	176-178
14		bond	S	N	N	cyclopropyl	CH ₂ CH ₃	CF ₃	184-186
15		bond	S	N	N	1-CH3-cyclopropyl	СН ₂ СН ₃	CF ₃	139-142
16		bond	S	N	N	1-CH ₃ -cyclopropyl	CI	CF ₃	150-153
17		bond	S	N	N	cyclopentyl	CI	CF ₃	178-181

18.	bond	s	N	N	cyclobutyl	. CI	CF ₃	185-188	
19	bond	S	N	N	cyclopropyl	CI	CF ₃	195-198	
20	bond	S	N	N	CF ₂ CI	CH ₂ CH ₃	CF ₃	123-125	
21	bond	S	N	N	CF ₂ CI	Ci	CF ₃	103-109	
22	bond	S	N	N	2-CH ₃ -cyclopropyl	CH ₂ CH ₃	CF ₃	167-170	
23	bond	S	N	N	2-CH ₃ -cyclopropyl	CI	CF ₃	180-182	
24	bond	S	N	N	CF ₂ CF ₃	CH ₃	CF ₃	126-129	
25	bond	S	N	N	CF ₂ CF ₃	CH ₂ CH ₃	CF ₃	145-147	
26	bond	S	N	N	CF ₂ CF ₃	Cı	CF ₃	118-120	
27	bond	S	N	N	CF ₂ CF ₃	Br	CF ₃	94-100 (dec)	
28	bond	S	N	N	cyclopentyl	Br	CF ₃	181-183	
29	bond	S	N	N	cyclobutyl	Br	CF ₃	187-190	
30	bond	S	N	N	cyclopropyl	Br	CF ₃	200-202	
31	bond	S	N	N	2-CH ₃ -cyclopropyl	Br	CF ₃	185-187	
32	bond	S	N	N	1-CH3-cyclopropyl	Br	CF ₃	165-168	
33	bond	S	N	N	CF ₂ C1	Br	CF ₃	156-159	
34	bond	S	N	N	CH(CH ₃) ₂	СН2СН3	CF ₃	154-157	
35	bond	S	N	N	CH(CH ₃) ₂	Cı	CF ₃	189-192	
36	bond	S	N	N	CH(CH ₃) ₂	Br	CF ₃	188-190	
37	bond	S	N	N	cyclopropyl	осн ₃	CF ₃	189-193	
38	bond	S	N	N	CH(CH ₃) ₂	осн ₃	CF ₃	173-175	
39	bond	S	N	N	CF ₂ CF ₃	осн ₃	CF ₃	112-115	

INDEX TABLE B

Ç	mpd No.	I	X	Z	w	¥	<u>R1</u>	<u>R</u> 2	R ⁴	D	m.p. (°C)
40	Ex. 3	0	bond	CH	N	CH	CH(CH ₃) ₂				99-100
41	Ex. 5	0	bond	CH	N		cyclopropyl	-			

	_	Ex. 6	C		d CH	i N	CH	СH ₂ СH(СH ₃) ₂	CH ₃	CF ₃	C	102-103
	43		C		d CH	I N	СН	2-CH ₃ -cyclopropyl	СН3	CF ₃	0	122-123
	44		С	bone	CH	I N	CH	CH=C(CH ₃) ₂	CH ₃	CF ₃	0	90-91
	45		0	0	CH	N	CH	CH(CH ₃) ₂	CH ₃	CF ₃	0	63-65
		Ex. 2	0	bono	CH	N	CH	CH(CH ₃) ₂	CH ₃	CF ₃	1	125-125.5
	47		0		CH	N	CH	$CH_2CH(CH_3)_2$. СН3	CF ₃	1	125-125.5
	48		0		CH	N	CH	CF ₃	CH ₃	CF ₃	1	158-160
	49		0	0	CH	N	CH	CH(CH ₃) ₂	CH ₃	CF ₃	1	123-123.5
	50		0	bond	CH	N	CH	cyclopropyl	CH ₃	CF ₃	1	145-145.5
	51		0	bond	CH		CH	C(CH ₃) ₃	CH ₃	CF ₃	1	122-123
	52		0	bond	CH	Ñ	ссн3	cyclopropyl	CH ₃	CF ₃	1	137-138
	53		0	bond	CH	N	CCH ₃	CH(CH ₃) ₂	CH ₃	CF ₃	1	112-113
	54		0	0	CH	N	ссн3	CH(CH ₃) ₂	CH ₃	CF ₃	1	101-102
	55		0	bond	CH	N	CCH ₃	CF ₃	CH ₃	CF ₃	1	120-121
	56		0	bond	CH	N	CH	CF ₃	CI	CF ₃	1	114-115
	57		0	0	CH	N	CH	CH(CH ₃) ₂	CI	CF ₃	1	127-129
	58		0	bond	CH	N	CH	CH(CH ₃) ₂	Cl	CF ₃	1	132-133
	59		0	bond	CH	N	CH	cyclopropyl	CI	CF ₃	1	150-151
	60		0	bond	CH	N	CH	CH(CH ₃) ₂	CH_3	Br	1	130-132
	61		0	bond	CH	N	CH	cyclopropyl	CH ₃	Br	1	126 (dec)
	62		0	0	CH	N	CH	CH(CH ₃) ₂	CH ₃	Br	1	90 (dec)
	63		0	bond	CH	N	CH	CF ₃	CH ₃	Br	1	188-189
	64		0	bond	CH	N	CH	CH(CH ₃) ₂	Н	CF ₃	1	111-113
	65		0	bond	CH	N	CH	cyclopropyl	H	CF ₃	1	146-147
	66		0	0	CH	N	CH	CH(CH ₃) ₂	H	CF ₃	1	143-144
	67		О	bond	CH	N	CH	CF ₃	H	CF ₃	1	102-103
	68		О	bond	CH	N	CH	CF ₂ CI	CH ₃	CF ₃	1	136-137
	69		0	bond	CH	N	CH	CH(CH ₃) ₂	CH ₃	CF ₂ Cl	1	126-127
	70		0	bond	CH	N	CH	CH ₂ CI	CH ₃	CF ₃	1	106-107
	71		0	bond	CH	N	CH	CHCI ₂	CH ₃	CF ₃	1	108-109
	72		0	bond	CH	N	CH	CCI ₃	CH_3	CF ₃	1	114-115
	73		0	bond	CH	N	CH	cyclopropyl	СН3	CF ₂ C1	1	138-139
	74		0	bond	CH	N	CH	1-CH ₃ -cyclopropyl	CH ₃	CF ₃	1	162-163
	75		0	bond	CH	N	CH	cyclobutyl	CH ₃	CF ₃	1	135-136
	76		0	bond	CH	N	CH	CHCICH ₃	СН3	CF ₃	1	121-122
7	77		S	bond	CH	N	CH	CH(CH ₃) ₂	СН3	CF ₃	1	117-118

78	c) bond	d CI	i N	CH	2-CH ₃ -cyclopropy	СН3	CF ₃	1	132-134
79	C	bono	CIH	I N	CH	2,2,3,3-tetra-CH ₃ -	CH ₃	CF ₃	1	161-162
						cyclopropyl				
80	c	bond	CH	N	CH	2,2-diCl-1-CH ₃ -	СН3	CF ₃	1	oil*
						cyclopropyl				
81	О		СН	N	CH	cyclopentyl	CH ₃	CF ₃	1	128-129
82	0		CH	N	CH	2,4-diF-Ph	CH ₃	CF ₃	1	96-98
83	0		N	N	CH	CH(CH ₃) ₂	CH ₃	Br	1	164-165
84	0	bond	N	N	CH	cyclopropyl	CH ₃	Br	1	164-166
85	0	bond	CH	N	CH	4-CH ₃ -Ph	CH ₃	CF ₃	1	374**
86	0	bond	CH	N	CH	4-n-Pr-Ph	CH ₃	CF ₃	1	402**
87	0	bond	CH	N	CH	3-NO ₂ -Ph	CH ₃	CF ₃	1	405**
88	0	bond	CH	N	CH	$C(CH_3)=CH_2$	CH ₃	CF ₃	1	324**
89	0	bond	CH	N	CH	CH=C(CH ₃) ₂	CH ₃	CF ₃	1	338**
90	0	bond	CH	N	CH	СН=СНСН ₃	CH ₃	CF ₃	1	324**
91	О	0	CH	N	CH	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	1	356**
92	0	0	CH	N	CH	СН2СН3	CH ₃	CF ₃	1	328**
93	0	bond	CH	N	CH	2-CI-Ph	CH ₃	CF ₃	1	394**
94	0	bond	CH	N	CH	2-F-Ph	CH ₃	CF ₃	1	378**
95	0	bond	CH	N	CH	2,4-diCl-Ph	CH ₃	CF ₃	1	428**
96	0	bond	CH	N	CH	2-CH ₃ O-Ph	CH ₃	CF ₃	1	390**
97	0	bond	CH	N	CH	2-CF ₃ -Ph	CH ₃	CF ₃	1	428**
98	0	bond	CH	N	CH	2-CH ₃ -Ph	CH ₃	CF ₃	1	374**
99	0	bond	CH	N	CH	3-Br-Ph	CH ₃	CF ₃	1	438**
100	0	bond	CH	N	CH	3-Cl-Ph	CH ₃	CF ₃	1	394**
101	0	bond	CH	N	CH	3,4-diCl-Ph	CH ₃	CF ₃	1	428**
102	0	bond	CH	N	CH	3-CH ₃ O-Ph	CH ₃	CF ₃	1	390**
103	0	bond	CH	N	CH	4-Cl-Ph	CH ₃	CF ₃	1	394**
104	0	bond	CH	N	CH	4-CH ₃ O-Ph	CH ₃	CF ₃	1	390**
105	0	bond	CH	N	CH	4-CH ₃ CH ₂ O-Ph	СН3	CF ₃	1	404**
106	0	bond	CH	N	CH	4-n-BuO-Ph	СН3	CF ₃	1	432**
107	0	0	CH	N	CH	CH ₂ CCI ₃	СН3	CF ₃	1	430**
108	0	bond	CH	N	CH	4-NO ₂ -Ph	СН3	CF ₃	1	405**
109	0	bond	CH	N	CH	2,5-diF-Ph	СН3	CF ₃	1	396**
110	0	bond	CH	N	CH	CH ₂ CH ₂ SCH ₃	CH ₃	CF ₃	1 .	358**
111	0	bond	CH	N	CH	3-F-Ph	CH ₃	CF ₃	1	378**

112	0	bond	CH	N	CH	CF ₂ CF ₃	СН3	CF ₃	1	104-106
113	0	bond	CH	N	CH	cyclobutyl	CH ₃	CF ₂ CF ₃	1	134
i 14	0	bond	CH	N	CH	cyclopropy1	CH ₃	CF ₂ CF ₃	1	131-133
115	0	bond	CH	N	CH	cyclobutyl	CH ₃	CF ₂ CI	1	125-127
116	0	bond	CH	N	CH	CF2CF2CF3	CH ₃	CF ₃	1	oil*
117	0	bond	CH	N	CH	CH ₃	CH ₃	CF ₃	1	298**
118	0	NH	CH	N	CH	2,4-diCl-Ph	CH ₃	CF ₃	1	443**
119	0	NH	CH	N	CH	2-CH ₃ O-Ph	CH ₃	CF ₃	1	405**
120	0	NH	CH	N	CH	3-CH ₃ O-Ph	CH ₃	CF ₃	1	405**
121	0	NH	CH	N	CH	4-Cl-Ph	CH ₃	CF ₃	1	409**
122	0	NH	CH	N	, CH	4-CH ₃ -Ph	CH ₃	CF ₃	1	389**
123	0	NH	CH	N	CH	4-i-Pr-Ph	CH ₃	CF ₃	1	417**
124	0	NH	CH	N	CH	4-n-BuO-Ph	СН3	CF ₃	1	447**
125	0	NH	CH	N	CH	cyclohexyl	СН3	CF ₃	1	381**
126	0	NH	CH	N	CH	2-NO ₂ -Ph	СН3	CF ₃	1	420**
127	0	NH	CH	N	CH	4-NO ₂ -Ph	CH ₃	CF ₃	1	420**
128	0	NH	CH	N	CH	2,5-diF-Ph	CH ₃	CF ₃	1	411**
129	0	NH	CH	N	CH	3-CH ₃ CH ₂ -Ph	CH ₃	CF ₃	1	403**
130	0	bond	CH	N	CH	СН=СН ₂	СН3	CF ₃	1	310**
131	0	bond	CH	N	CH	CH=CHCF3	CH ₃	CF ₃	1	378**
132	0	bond	CH	N	CH	CCI=CCI ₂	CH ₃	CF ₃	1	412**

^{*} See Index Table D for ¹H NMR data.

^{**} Protonated parent molecular ion (m/e) measured by mass spectrometry using atmospheric pressure chemical ionization in the positive ion mode (APCI*). The ion shown corresponds to the M+H* ion calculated from the integral values of the atomic weights of the most abundant isotope of each element present.

10

15

20

/8 INDEX TABLE C

Cmpd No. X Z W R¹ R² R⁴ m.p.(*C

*See Index Table D for 1H NMR data.

INDEX TABLE D

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
80	δ 1.5 (d,1H), 1.8 (s,3H), 2.3 (s,3H), 2.4 (d,1H), 5.2 (d,1H), 5.3 (d,1H),
	6.5-7.7 (m,5H), 9.8 (br s,1H).
116	δ 2.35 (s,3H), 5.2 (s,2H), 6.5-7.8 (m,5H), 11.1 (br s,1H).
133	δ 1.18 (s,9H), 2.42 (s,3H), 7.29 (s,1H), 7.37-7.40 (m,1H), 7.55-7.59
	(m,1H), 7.90-7.93 (m,1H), 8.31-8.34 (m,1H), 8.77 (br s,1H).

a ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (m)-multiplet, (br s)-broad singlet.

BIOLOGICAL EXAMPLES OF THE INVENTION

TEST A

Seeds of barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), crabgrass (Digitaria spp.), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), momingglory (Ipomoea spp.), sorghum (Sorghum bicolor), velvetleaf (Abutilon theophrasti), and wild oat (Avena fatua) were planted into a sandy loam soil and sprayed preemergence (PRE) or treated by soil drench (PDRN) with test chemicals formulated in a non-phytotoxic solvent mixture which includes a surfactant. At the same time, these crop and weed species were also sprayed postemergence (POST) or sprayed to runoff (STRO) with test chemicals formulated in the same manner.

Plants ranged in height from two to eighteen cm and were in the two to three leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately eleven days, after which all treated plants were compared to untreated controls and visually evaluated for injury. Plant response

5 ratings, summarized in Table A, are based on a 0 to 10 scale where 0 is no effect and 10 is complete control. A dash (-) response means no test results.

													3	2	COMPOUND									
Rate	Rate 2000 g/ha 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 105 107 108	a 85	98	87	88	89	8	12	2 9	9	9	9	5 97	8	66	100	101	102	103	104	50	90		8
PDRN																					1	3		3
Barny	Barnyardgrass	7	П	7	2 10	8 10	9	9 10	9		6	~	۰		۰	-	0	9	4	80	•	0	~	~
Cocklebur	ebur	•	0	0	1	7	4	•	0			۰	•	•	0	0	0	0	•					۰ -
Crabgrass	rass	2	3	7	10	9	2 10 10 10 10 10	01	0		۲.	~	-	ın	7	~	-	7	~	~	0	0	· m	. "
Бомпу	Downy brome	e	0	0	7	e	2 3 7 0 3	0		0	-	_		~	0	7	0	~	0	0	0	0	•	-
Giant	Giant foxtail	20	9		10	10	2 10 10 10 10 10 7 10	91	9	7			~	9	-	~	-	7	7	•	-	0	-	
Morni	Morningglory		0	-	'n	4	10 1 10	-	0	-		_	•	۰	-	-	0	ч	~	-	0			٠-
Sorghum	5	-	-	0	٣	٣	7	0	0		۰	_	•	0	0	0	•	0	0	0	•	-		٠ ،
Velvetleaf	tleaf	7	-	•	6	-	0	~	6		_	_	•	0	-	-	, 0	•		-		• •	-	٠.
Wild oats	oats	5	0	0	9	4	0	~	6		_	0	-	-	0	۰	0	~		, ,	•	•	٠.	٠.
TABLE A	<	õ	COMPOUND	2														ı	,	•	•	•	•	•
Rate	2000 g/ha 110 111	11(11	==																				
PDRN																								
Barny	Barnvardorase	0		r																				

Giant foxtail Cocklebur Crabgrass Downy brome Morningglory

Velvetleaf

TABLE A	Š	COMPOUND	TABLE A	COMPOUND	2
Rate 2000 g/ha 40 133	\$	133	4/2	9	
PRE			FOOL	;	3
Barnyardgrass	20	10 10	Barnvarderase	0	۰
Cocklebur	2	3	Cocklebur	٠, ٠	٠ ٧
Crabgrass	10	10	Crabarass		•
Downy brome	5	4	Down home	, ,	, ,
Giant foxtail	6	10	Giant fortail o	٠.	•
Morningglory	9		Morningalov	` =	٠ ٥
Sorghum	6	s	o mideros		•
Velvetleaf	10	10	Velverlanf	۰ ،	9 4
Wild oats	10	6	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	, ,	٠,

TABLE A												-	COMPOUND	Ş	9					-				
Rate 1000 g/ha	ha 85	96	5 87	88	8	9	91	92	93	94	95	96	6	86	85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 105 105	0 10	=	5	2	2	4	ž	5	5
STRO																			3	,	3	3	3	8
Barnyardgrass	•	-			2	9	9	9	4	4	2	-	9	~		4	~	m	4	•	-		~	٩
Cocklebur	7	~	0		7	4	7	7	~	7	٣	0	0	-	_	~		~	۰ ،	, -				• •
Crabgrass	un	4			7	9	9	9	4	2	5	~	N	6		4		-			, –		4 4	9 1
Downy brome	~	-	2	m	7	.7	7	0	7	-	н	0	-	-	-	-		-	-	-				, ,
Giant foxtail	ď		2	7	7	7	3	9	4	9	2	0	6	~	e				-	ı v			. ~	
Morningglory	е.	<u>-</u>	-	7	2	7		8	S	6	4	0	-	6	~				~	~			. 4	۰ ۵
Sorghum	~1	<u>۳</u>	-	~	٣	4	~	4	~	~	6	0	7	-				е	_				٠,	- ۱
Velvetleaf	9	4	7	9	9	7	50	4	6	٣	8	-	~	~	-	~		4					۰,	. 4
Wild oats	7		2 1	٣	7	3	8	٣	7	7	~	0	-	~	_	~		~					, ,	• •
TABLE A	COMPOUND	Š	£																		,	,	•	•

Barnyardgrass

Rate 1000 g/ha 110 111

Giant foxtail Morningglory Downy brome Crabgrass Cocklebur Sorghum

Velvetleaf

Wild oats

TABLE A		õ	COMPOUND	3	_	A START			Ę	i di di	- 2
Rate 800 g/ha 41 42 43 44 45	4	42	43	4	45	ted 400	į	;	5 9	ξ:	ξ.
PRE							400 g/na 41 42 43 44	į	Ş	Ç	ě
Barnyardgrass	6	9 10 9 9	6	6	80	Barnesdores			•	•	•
Cocklebur	7	2 0 0 0	0	0	0	Cocklabur	20	٠,	٠.	,	., .
Crabgrass	10	10	10	2	10 10 10 10 10	1000110000		۰ ،	٠,	າ ເ	
Downy brome	7	e	7	~	7 3 2 2 1			٠,		າ ເ	., ,
Giant foxtail	10	10	10	10	10 10 10 10 10	Ciaty of take		٠ ،	٠ .	- 4	,
Morningglory	7	10	-	7	7 10 1 7 2	Morning	: :		n •	0 1	, ,
Sorghum	7	7 4 1	ч	-	8	ATOTAR MINISTER STATE OF THE ST		, ,		٠,	٠,
Velvetleaf	10	10 10	7	2	0	Velvetlenf		4 6	٠.	٧ -	, ,
Wild oats	10	10 7	S	80	m	Wild oats			4 (9	- ~	٠.

TEST B

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), com (Zea mays), cotton (Gossypium

- 5. hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), rape (Brassica napus), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild oat (Avena
 - fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which includes a surfactant.

At the same time, these crop and weed species were also treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

	89		•		•	٠ ،				9	80	•	• •			•	5		, ,			٠ ٥	٠ ،		
	67		0	-	4	, ,	, -	١ ٥	-	9	N	•	, -	۳.	~	•	4	0	•	· ·	, "	, -			•
	65 66 67		-	· m	7	-		-	2	80	1	•	, -	7		•		-	•	. 4		-	, ,	α	0
	65		-	. 2	4	-	ı m		-	9	~	0	4	9	7	•	•	-	•	α	•	-		• •	•
	64		0	0	~	-	١ ٥	~	п	9	н	0	0	9	~	0	4	0	0	٠		~	•	•	0
	63		н	8	œ	•	• •	~	9	9	80	-	•	6	m	-	6	~	-	-	6		•	•	2
	62		~	4	7	-	~	9	~	80	9	0	7	6	10	•	6	~	-	α		~	-		7
	19		00	6	6	•	6	8	80	4	6	7	0	0	6	4	10	8	5	6	6	8	7	6	6
	9		8	6	6	•	6	m	9	80	6	-	6	6	9	4	10	2	٣	•	10	'n	-	4	7
	29		9	6	6	•	0	8	,	10	6	7	6	6	10	9	6	7	S	6	6	8	7	6	8
	57 58 59 60 61 62 63 64		7	80	6	6	0	7	9	80	6	9	. 0	6	80	0	10	4	~	0	10	80	s	80	ø
	57		8	4	4	2	٣	2	7	6	9	7	2	6	6	1	8	٣	٣	4	6	7	2	9	7
	53 54 55 56		4	7	2	7	10	9	7	10	6	4	6	6	13	7	10	e	~	7	6	6	4	10	œ
Ę	55		4	6	6	0	6	9	9	10	6	4	80	0	6	7	6	4	6	6	10	0	٣	6	4
COMPOUND	54		3	S	S	ď	9	3	8	10	e	7	4	6	10	-	7	7	7	9	10	~	8	7	-
ð	53		80	6	9	6	6	9	80	10 10	6	6	0	6	10 10	9	6	8	7	6	10	6	7	80	.0
	22		8	6	6	6	6	7	80	10	6	6	0	6	6	4	0	6	7	60	10	80	4	6	o,
	51		7	æ	6	6	8	7	9	6	80	6	6	6	80	٣	6	80	4	6	10	80	7	8	8
	50 51		6	6	6	6	6	6	6	10	6	6	6	6	97	6	10	6	8	6	10	6	6	6	6
	49		٣	80	8	8	7	80	9	10 10 10	7	s	6	6	6	н	6	S	7	6	6	80	٣	8	9
	48		٣	6	6	6	6	6	9	10	6	9	6	6	10	9	10	2	S	6	3	6	3	6	∞
	47		7	6	6	0	80	7	7	6	6	80	6	6	80	9	9	9	٣	6	10	8	4	9	6
	46		6	6	6	Ó	6	6	00	10	6	6	0	6	9	8	9	6	8	6	10	6	8	6	6
	9		6	6	6	6	6	80	6	10 10	6	6	6	6	8	8	6	9	0	6	10 10	80	6	6	6
	S		9	6	6	6	6	80	7	10	6	80	6	6	9	7	6	9	S	6	10	7	9	10	6
	4		0	6	6	0	6	6	6	6	6	6	6	6	9	6	10	6	6	0	10	80	6	6	6
			0	6	0	0	6	н	6	6	6	6	6	6	6	0	6	0	6	6	10	8	6	6	6
	~		80	80	6	6	6	80	7	6	6	80	6	6	6	9	6	∞	80	80	10	80	7	8	6
TABLE B	Rate 2000 g/ha	POSTEMERGENCE	Barley	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy brome	Giant foxtail	Lambsquarter	Morningglory	Nutsedge	Rape	Rice	Sorghum	Soybean	Sugar beet	Velvetleaf	Wheat	Wild buckwheat	Wild oat
H	CK I	Δ,	Ø	m	ď	m	Ü	Ú.	Ü	ŭ	ΰ	Δ	Ö	ä	Σ	Ž	œ	œ	Ñ	Ñ	Ś	ž	3	3	3

133	•	٠.	n (, ,	30	ס נ	n (,	,	ν,	٠ ،	,	D	0	0	8	80	α	,	י ת	7	9	9	•	'n
116	,	• •	, ,	n .	٠.	• (٠,	۰,		• •	۰ د	, ,		80	0	7	-	0			80	7	0	ď	
115	α	•	•	h (,		• •	• •	3 9	, ,	٠ ،	h (,	20	9	10	6	7		. :	2	80	8	-	. 6
114	٧		•	٠ ،	, ,	י י	۰,	٠.	3 .				י ע	-	0	œ	7	9	•	٠,	3	œ	4	7	٠
113 114 115	-		•	•	,	י ר				, ,	• -	٠.	۰ ،	,	•	4	9	H	ď	,		6	~		4
112	-	6	α	u	, ,	- α		, ,	٠ ۵	٠.		٠ ۵	,		~	6	•	9	•	٠ .		80	1	e	8
8	-	œ	4		, ,	۰ ،				, ,			•	,	ı	8	0		7		, ,	m	-	7	۰
83	0	~	-	,		٠ ،	-	-	4					,		S	0	0	4	٧		0	-	~	7
82	~	0	œ	-		, ,	m	•	~	-	9	œ	α	, ,	4	10	6	~	Ŋ	•		7	~	6	6
81	4	0	6	•	•	, ,	н	10	٠	7	8	•		٠.	-	0	7	~	œ	4		٥	m	~	6
80	-	9	٣	~	-	۳.	7	10	٥	н	~	7	~		>	4	н	0	9	4		0	0	6	н
74 75 76 77 79	0	-	0	~	0	~	+	~	Н	~	0	φ	-		>	S	0	0	7	4	•	v	0	~	0
77	00	6	6	6	6	•	89	10	6	6	6	6	6		,	80	7	7	6	œ	•	h	8	7	6
76	7	0	4	3	٣	5	'n	8	3	н	4	4	٠	្ទ	,	80	4	~	6	4	~	,	0	7	-
75	8	6	8	80	9	80	4	10	6	9	6	œ	80	0	, ,	9	6	7	9	9	α		S	7	6
4	9	0	80	6	8	4	9	6	80	7	6	6	8	α	•	~	7	9	6	6	7		m	0	7
73	6	6	6	0	6	œ	6	10	6	0	6	6	0	•	•	2	8	0	6	6	œ	, ,	œ	6	6
72	S	6	7	6	8	7	9	10	ø	9	6	6	6	-		y	m	4	œ	6	6			9	m
71	-	S	9	0	3	4	7	10	3	7	N	9	3	,	•	•	-	~	9	4	7		0	9	0
70	0	г	7	7	7	~	-	9	7	н	-	4	~	•	r	•	0	0	٣	~	٦	,	7	4	0
Rate 2000 g/ha POSTEMERGENCE	Barley	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy brome	Giant foxtail	Lambsquarter	Morningglory	Nutsedge	Rane		WICE.	Sorghum	Soybean	Sugar beet	Velvetleaf	Wheat		Wild buckwheat	Wild oat

															,													
Rate 2000 g/ha	7	3	4	'n		46	6 46 47 48	8	49	20	51	22	53 5	54 5	55 5	56 57	7 58	8 59	9	61	62	63	9	9	99	29	89	9
PREEMERGENCE																											}	;
Barley	2	7	80	٣	7	4	4	٣	т	0	e	4	'n	-	~		-		•	7	0	-	~	~	c	•	4	4
Barnyardgrass	6	10	6	0	2	2	6	10 10	9	91	10 10 10		10	9			6 10	01 0		-			. 4		•		, =	٠,
Bedstraw	80	10	6	10	9	6	10	8	6	6	80	ខ	6	7	9	101	3 10	10			7		-	, 6			, ,	, .
Blackgrass	6	10	10	0	9	9	2	0	9	9	2	91	10 10 10 10	0	10	9		97		_	. ~		,	7	٠ 4	,	٠ :	, 5
Chickweed	6	9	10	6	6	10	2	10	0	2	10 10	2	6		6	6	6	9 10	-		۰ «	, 5		, α		, ,	2 5	2 5
Cocklebur	4	9	80	٣	6	9	ъ	3	н	6	'n	•										-	•	• •	• •		3 0	3 4
Corn	9	ដ	0	2	6	7	ın	9	6	80	6	ø	9		9	. ~					, -	4	, -		,	•	> 4	
Cotton	0	9	2	9	9	0	00	6	9	19	r.	5 10 10		2	9					• •	٠ -			, r	4 4	•	, ,	٠ ج
Crabgrass	10	10	10 10		10 10	2	10 10 10	9	10 10	8	10 10 10	2		9		10 10 10 10 10	10	, 5		, 5	, 5	, 5		, 5	, ,	, -		3 5
Downy brome	6	6	80	4	80	7	8	9	4	6	œ	7		4	9 10	, m	. 4		٠,	,			٠,	•	٠.			2 :
Giant foxtail	9	10	10 10		9 10 10	10	ដ	10 10 10	10		ន	6	6			91		. :	, 5	10 10 10 10 10 10	-	1 5		• •	, u			2 5
Lambsquarter	9	10	10 10 10	9	10 10 10 10	9	9	10 10 10	10	91	10	9	10 10 10 10 10 10	1			01 6	1 2	2	10 10 10 10 10	: :				,			3 5
Morningglory	9	2	10 10 10	8	8 10 10 10	9	. 8	10	6	9	9	101	10	9	2		7 10	1 2	10 10 10 10	1	, 4			, 5				2 5
Nutsedge	ç	9	80	9	10 10	9	9	٣	0	6	ч	6		۰				2	9	. «				, -	, -			3 '
Rape	6	9	10	7	ដ	10 10	10	6	6	10	6	5	10	6	9 10			1	_	-	•	• •				, ,		٠
Rice	٣	80	9	9	8	'n	3	٣	~	8	'n	9		-		_	7	~	4			, ,			, -	,		
Sorghum	9	2	7	4	8	4	٣	٣	-	9	٣	9	7	.,	6	_	_	•	4				, ,	٠.				, ,
Soybean	2	6	10	9	6	10	6	8	'n	6	7	80	6	-				•		•				1 0	٠,		, ,	٠.
Sugar beet	10	9	ព	9	6	2	8	10	8	10 10	0.	10 1	10 10 10	1		10 10 10	9	-	9	, 5	, 5	, 5		٠ ٥	• •		,	, ;
Velvetleaf	ដ	9	6	8	9	10 10		10	6	9	9	10 1	10	4 10		8	•	1	9	: :		: :	, ,	, 5				2 9
Wheat	4	7	0	7	7	'n	s	7	7	6	4	9	7	•			٠,	,		,	•			2 .				
Wild buckwheat	0	9	10	6	10	9	10	6	6	10	7 1	ព								. 5	, r		,	۰, ۱	٠,	,	• •	. .
Wild oat	6	8	6	8	a	9	6	6	8	9	10 10 10 10	0					6		10 10	۰	۰ ،	٠ ٦		, -		•	, ,	n

COMPOUND

TABLE B

Ξ	1			-	•					-		-	-	Ã	-	Ŧ	1	•				4 ;	ર્વ `	
116	2	•	ο α		· (c	ο α			~		-	١ ٩	•		0	м	0	~	-	, 5	2 -	٠.	ء د	. 4
115	1	~	, 5	2	1 9	•	٠ ٣	~	•	9	•	9	10	10	9	10	œ	7		- 5	2	,		1 01
114		•	. 6	9	10	,	-	9	۰	10	٣	9	10	10	-	10	-	8	0		: :		י ב	6
113		•		10	6	•	0	0	4	-	~	2	9	N	0	80	-	N	1	9	•		٠ -	4
112		-	10	2	10	6	~	4	6	6	œ	6	10	ដ	4	10	2	e	9	10	9	,		6
84		4	00	٣	٣	8	2	7	7	6	7	6	9	S	80	9	00	~	6	9	4	~		4
83		0	0	0	3	8	0	3	~	6	~	6	6	0	0	e	~	5	7	10	0	~		7
82		7	6	6	8	9	0	н	3	6	-	10,	10	7	1	6	0	-	-	10	6	~	~	•
81		~	10	6	7	10	-	0	8	10	2	10	10	10		8	5	7	7	91	9	6	•	9
8		0	S	٣	٣	9	0	0	~	7	-	6	œ	-	0	m	0	0	0	80	6	0	-	4
79		0	8	0	٣	٣	0	0	0	~	•	m	9	~	0	4	0	0	0	۳	6	0	0	0
77		æ	10	6	10	9	2	7	8	10	6	10	9	9	8	10	4	'n	0	10	9	7	2	o
76		0	6	7	6	9	н	4	10	6	e	6	10	7	9	80	ø	0	~	9	7	-	-	м
75		4	10	10	.0	9	3	7	6	10	3	10	9	6	5	0	9	2	0	9	6	٣	0	9
74		7	10	2	9	0	9	9	8	10	5	2		10	•	10	9	4	6	2	10	~	0	6
73		7	10	10	10	10	6	6	10	9	10	9	10 10	10	1	97	10	œ	9	9	9	6	80	10
72		4	6	10	6	10	н	4	9	6	9	10	9	9	0	6	н	7	9	91	10	4	9	6
11		0	4	٣	4	-	0	0	0	7	-	9	80	-	1	80	•	0	0	9	9	0	-	7
70		0	0	0	0	0	0	0	0	9	0	-	1	0	•	0	0	0	0	0	0	0	0	0
Rate 2000 g/ha	PREEMERGENCE	Barley	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy brome	Giant foxtail	Lambsquarter	Morningglory	Nutsedge	Rape	Rice	Sorghum	Soybean	Sugar beet	Velvetleaf	Wheat	Wild buckwheat	Wild oat

TABLE B												U	COMPOUND	50	_											
Rate 1000 g/ha	7	8	6	10	11	12	13	7	15	91	- 11	18	6	7		,	24	5	96	,	9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 26 25 26 27 33					
POSTEMERGENCE														•	:	:	•	3	9	3	8	,	, 5		32	
Barley	6	9	9	7	4	٣	4	6	6	4	4	80		~		,	·	·	۰	۰	•	•	,		,	,
Barnyardgrass	0	0	0	80	0	80	6	0	6	0	0	6					٠ :	4 L	, ;	• •	, ,	• •		າ ເ	n (٠ ,
Bedstraw	0	80	0	9	6	4	4	6	7	80	60				, ,	, ,	9		3 5	3						.
Blackgrass	0	80	6	0	80	7	9	8	~	9	L.					٠ ۵	•		3 0	٥, ١		٠.				
Chickweed	80	5	6	80	0	8	7	80	9	7	-			, ,			•	י י	٠ ،	٠	n r	0 1			Λ (
Cocklebur	7	0	7	2	80	0	0	9		_				, ,				•	, 5	3 0	, ,	٠ ،	n r			
Corn	80	7	6	80	7	9	7	80	80	80	2	_				000	, ,	•	₹, 4	٠ ٩		٦ د	٠,	,		
Cotton	7	~	6	80	6	8	4	o	0	6	6	6	9 10	100	۰	7	10	9	, 5		, -	۰ ۵	, a	, ,		
Crabgrass	80	8	6	9	80	9	9	6	7	6	9	0	6		0	6	00	~	10 10			, ,				
Downy brome	6	6	2	9	٣	-	-	9	-	9	ч	4		~	7	4	~	-		4	, ,	٠,	. ~			
Giant foxtail	6	80	6	6	8	80	7	6	6	6	80	6		6	0	6	80	4	6	• •						
Lambsquarter		7	7	6	0	2	ņ	6	4	6	9	9	6	9	9	6	•		, 5	•	, L	, ,			-	
Morningglory	ь	6	6	8	0	6	٣	7	80	80	9			: :			, 5	٠ •	, ,	, ;	٠,	٠,				
Nutsedge	7	w.	•	2	- 1	•	-	80	8	4		_					7	, ,	2 4	3 -	, ,	, ,	, .			
Rape	-	-	6	9	8	н	0	80	ĸ	6		_		1 2	, 6		4 00	·	, 5		٠,				,	
Rice	9	4	9	7	4	N	7	7	6	9	0	10	_	ď		,		, -		, ,					= `	
Sorghum	0	^	8	7	4	•	7	80	2	80	9	8	<u>س</u>	'n	9	9	~					, ,	, ,			
Soybean	1	~	6	7	6	~	m	80	7				~	9		80					, ,					_
Sugar beet	80	7	0	6	6	7	7	80	8	6	6	6	10		9	01 01 01 01 01 01 01	, 5	, ,	, ;	٠ .	, ,	, ,				
Velvetleaf	٢	7	80	7	7	6	~	7	7	7		-	`		"	, "	, .	2	2	2 0	٠,	h . L			= '	
Wheat	0	m	7	7	9	٠ ٦	~	S	~		_			~	·		, ,		, .		٠,	n 1	,			-
Wild buckwheat	6	6	8	8	6	2	۳	v	9					, 5	, ,	•	٠ ،	٠,	n :	n :	, ,	,		_	-	
Wild oat	0		10 10	9	80	9	80								2	٠ ،	, ,	, ,	9 9	9 (n	20 1			2	-

COMPOUND

TABLE B

Wild buckwheat

		80	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	٦	0	0	0	0	0	0	0	0	0	0
8	60	80	•	0	0	0	0	0	0	0	0	0	7	0
8	•	6	0	•	0	0	0	0	0	0	0	0	0	0
7	0	80	0	•	0	0	0	0	•	1	0	•	,	- 1
0		9	0	0	0	0	0	0	0	0	•	0	0	٥
8	8	7	0	0	0	0	0	•	0	0	0	0	0	0
10 10	6	2	0	0	н	0	0	-	N	8	7	4	4	7
6	6	7	0	8	0	0	0	0	0	0	0	•	•	0
9	6	e	0	0	0	0	0	0	0	0	0	۰	۰	۰
6	6	6	0	0	0	0	0	0	0	0	0	0	0	0
8	8	6	e	0	۰	7	0	0	0	~	0	N	۲	۰
6	2	7	0	0	г	-	0	7	~	~	0	-	٣	0
9 /	9	0	0	0	0	•	0	0	0	0	0	0	0	0
7	6	8	0	0	0	۰	0	0	۰	-	0	ч	7	0
8 7	٣	8	0	0	0	0	0	0	0	0	0	0	0	•
9	9	2	0	0	0	0	0	0	0	0	0	0	0	•
10 9	7	10	0	0	0	0	0	0	7	٣	8	0	4	0
8	80	7	0	0	0	0	0	0	0	ю	8	7	e	0
8	5	6	0	0	0	0	0	0	0	0	0	0	0	0

													ี	COMPOUND	200														
Rate 1	Rate 1000 g/ha	7	8	6	9	7	12	13	7	5	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	7	3 15	20	21	22	23	24	25	92	27	8 2	6	9	1 3	33	34	33 34 35	
PREEME	PREEMERGENCE																							,		;	;	3	
Barley		7	9	3	7	7	0	0	4	~	~	~		•	-	~	4	8	-	4	~	~	~	~	4	,	"	~	
Barnya	Barnyardgrass	6	0	6	6	6	٣	9	6	6	80			0	8	6	0	10	6	9 10	6			. 6			, 6	, 01	
Bedstraw	WB.	22	2	6	10	a	œ	6	01	7		6		9	80	10	9	0	6	•	. 6		10 1	9					
Blackgrass	rass	9	6	9	10	6	9	9	80	S		·		~	٣	8	2	10	8	•	•	٠				. ~			
Chickweed	peed	10	6	9	0	6	6	6	6		00	6	2	6	0	6	-	٥	٥	۰				, 6			٠ -		
Cocklebur	bur	0	6	8		9	0	7	2		4	۰		'n	0	9	4	г	~	9	~						٠ ،	٠ ،	
Corn		80	7	6	9	S	e	4	9	4	_	10	-	2	9	9	8	9	-	4	6	'n	9	80	4	~		8	
Cotton		4	9	ю	~	e	8	-	7	-	٠		-	4	0	~	6	н	~	0	н	0			۰	· -	10	ب ر	
Crabgrass	ass	2	2	10 10 10 10 10	5	ដ	6	8	10 10 10 10	0		9 10	10 10	80	0	9	10	9	9	10 10 10 10	9	10 1	10 10	-	10 10	α	5	10 10	
Downy brome	brome	4	4	6	4	6	٣	-	2	6	٠		-	7	9	N	7	8	~	'n	-	_			. "		, ,	, ,	
Giant	Giant foxtail	10	9	10 10 10 10 10	9	10	6	8	9	0	10 10 10 10 10 10	1	9	80	6	6	10	9	9	0	-		10 10		, 01		01 01	. 5	
Lambsq	Lambsquarter	2	10	10 10 10 10 10	9	9	6	7	2	9 1	10	8	2	9 10 10 10 10 10 10	91	q	10	2	•	2	9 10 10 10	0	10 10		9		•		
Mornin	Morningglory	7	7	10	6	9	٣	6	2	5 1	. 01	7 10 10	9	н	٣	9	9	2	9 10	2	-	4	7 10					2	
Nutsedge	ge	80	9	•	8	7	0	н	9	9			٠	0	0	4	S	0							, -		٠ ۵		
Rape		н	7	6	6	7	0	•	7	2 1	9		9	7	0	8	9	-	-	. 01	9	. 4			, 10		ο α	, ;	
Rice		4	8	2	9	~	0	-	-	~	4	~		0	۰	9	'n	ľ											
Sorghum	E	7	6	7	9	0	0	9	٠,		Ţ	رب -	7	4	4	7	80	3	0	60	٠						, α	, 5	
Soybean	e	8	9	80	N	9	0	3	80			_		9	9	2	80	9	-	80		٠					•	•	
Sugar beet	beet	10	10	10	9	0	9	8	101	10 1	10 10	2	ដ	10	00	10	10	9	9	2	91			10 10		, ,	٠ ٥	, 5	
Velvetleaf	leaf	10	6	10 10	9	٣	7	9	10	6 1	10			6	0	6	6	9	9		٠	LC.					, 5	1 5	
Wheat		80	80	2	9	4	7	0	S	2	.,	<u>س</u>	-	0	7	0	8	4	-	m	-						4	7	
Wild bu	Wild buckwheat	6	н	10	9	7	4	4	91	7 1	9		10	9	80	3	7	6	7	6	2						' α	٠ :	
Wild oat	at	6	6	9	10	7	7	6	9	4	9	-	7	9	7	9	9	5	~	2	6	'n			, 6		, 5		

TABLE B									COM	COMPOUND	_							
Rate 1000 g/ha	36	37	38	33	å	78	118	119	120	FC1 221 121 122	122	123	124	125	126	;		:
PREEMERGENCE												}		3	97	121	971	123
Barley	S	4	ø	0	9	9	0	0	0	۰	۰	•	•	•	•	•	•	٠
Barnyardgrass	6	10	0	6	0	10	0	0	0	0	0	•	• •	•	•	•	•	•
Bedstraw	ø	6	10	8	8	6	0	۰	•	•		•	•	•	•	•	٠ د	•
Blackgrass	7	유	6	6	10	10	c	•	•	•	,	,	•		•		0	0
Chickweed	6	10	10	6	9	•	•	•	•	•	•	•	•	٠ -	0	•	0	0
Cocklebur	٦	80			-	, ,	•	•	•	•	•	•	0	0	•	•	•	•
Corn	7	5	5	· a			•	•		٠ د	•	0	•	0	0	•	ó	•
Cotton	•	6		•	, ,		•	•	•	•	0 1	•	•	0	0	0	•	•
Crabgrass	9	10		10	9	, 01	• •	•	•	•		- 0	• •	•	0	0	0	•
Downy brome	4	2	5	4	6	4	•	•	, ,	•	•	•	•		0	•	•	0
Giant foxtail	10	10	10	97	9	9	•		•	•	•	•	•		0	0	0	•
Lambsquarter	10	9	13	9	9	9		•	•	•	•	•		-	0	•	•	0
Morningglory	10	10	9	5	4	:	•	•	•	•		•	•	0	•	•	0	•
Nutsedge	•	,		,		٠ ۽	•	•	>	•	0	•	•	0	0	0	0	0
Rane		,	•	۷ ،	ю с	۰		•	0	0	•	0	0	0	0	0	0	0
e o la		3 '	, ,	۰ م	ν.	2	•	•	0	•	0	0	0	0	0	0	0	•
		7	0	~	m	4	•	•	0	0	0	0	0	•	0	0	۰	0
Sorghum	7	9	2	4	9	S	0	•	0	•	0	0	0	0	0	•		
Soybean	80	10	9	ø	н	8	•	0	0	0	0	۰	•			•	•	•
Sugar beet	10 10		10	9	2	10	0	0	0	0	0	0	• •		, ,	•	,	•
Velvetleaf	80	2	9	2	8	10	0	0	0	0	0	•		•	•	•	٠ ،	•
Wheat	'n	2	'n	~	ß	4	0	0	0	•			•	•	•	٠ .		0
Wild buckwheat	6	6	10	10	7	~	0	•			•	•	۰ ،				0	0
Wild oat	α	,	•	٠	9			,	•	•	>	>	>	0	•	•	0	0
	٥	-	,		2	00	0	0	0	0	0	0	0		•	•	•	•

TABLE B Rate 400 g/ha	-	8	m	4	S	ý	1	2	ŭ.	4	4	8 5	COMPOUND 47 48 49	₽ \$	5	5	5		u	2	2	25 P.	54 55 56 57 59	03 03 LY YY 54 PS	07 03 03 L3 93 P8	COMPOUND 6 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 55 50 50 50 50 50 50 50 50 50 50
POSTEMERGENCE						,	ļ						•	;	ñ	7		90		0 80 50 90	G CC 96 56 56	5 35 54 55 56 56	36 76 96 55 36 56 36	54 55 56 55 56 57 58 59	54 53 54 55 56 57 58 59 60	54 55 54 55 56 57 58 59 60 61
Barley	80	9	6	•	3	80	4		-	_		2	8	-	7	~		9	9	6 5 2	6 5 2 1	6 5 2 1 2 ;	6 5 2 1 2 2 2	6 5 2 1 2 2 2 3	6 5 2 1 2 2 2 3 1	6 5 2 1 2 2 2 3 1 1
Barnyardgrass	0	7	6	æ	6	0	8	•	m	., m	_	7	•	3	6	S	٠.		6	6 6	7 2 6 6	9 9 2 7 4 3	9 9 2 7 4 2 6	9 9 2 7 4 2 6 8	9 9 2 7 4 2 6 8 3	9 9 2 7 4 2 6 8 3 8
Bedstraw	œ	6	6	6	6	0	^	ın	m	~	٥,	•	6	4	6	7	8		6	9	6 9 6	8 6 9 6	9 6 9 8 4 7	9 6 9 8 4 7 8	9 6 9 8 4 7 8 6	969847868
Blackgrass	O)	S	6	6	0	0	m	~	~	m	_		7	3	6	4	8		6	9	9 1 6	9 1 6 3 ;	916324	9 1 6 3 2 4 5	9 1 6 3 2 4 5 2	9 1 6 3 2 4 5 2 3
Chickweed	c	∞	6	0	0	6	2	9	~	2	~		80	9	6	2	7		6	6	9 3 9	9 3 9 9	9 3 9 9 3 7	9 3 9 9 3 7 8	9 3 9 9 3 7 8 3	9 3 9 9 3 7 8 3 2
Cocklebur	9	9	0	ß	2	9	m	~	2	.,	_	'n	2	3	80	4	٣		4		4 3 5 2	4 3 5 2 4	4 3 5 2 4 5	4 3 5 2 4 5 6	4 3 5 2 4 5 6 3	4 3 5 2 4 5 6 3 6
Corn	∞	9	0	∞	9	^	7	4	~	· 7		-	٣	7	7	4	9		4	2	4 2 1 1	4 2 1 1 1	4 2 1 1 1 3	4211133	42111331	421113312
Cotton	4	8	m	80	10	6	0	.0	. 0		-	9	9	4	10	6	•		6	9 9 10	9 9 10 5	9 9 10 9 5	9 9 10 9 5 8	9 9 10 9 5 8 10	9 9 10 9 5 8 10 5	9 9 10 9 5 8 10 5 5
Crabgrass	6	6	0	6	6	•	8	9	5	.,	•	7	6	4	0	۳	∞			7	8 2 7 6	8 2 7 6 2	8 2 7 6 2 4	8 2 7 6 2 4 4	8 2 7 6 2 4 4 4	8 2 7 6 2 4 4 4 7
Downy brome	7	4	6	7	S	4	~	-	_			8	7	-	80	~	~				1 1 2	1 1 2 1	1 1 2 1 1	1 1 2 1 1 3	1121131	11211311
Giant foxtail	6	6	6	6	0	6	7	2	-	9	•	80	6	•	6	4	0		_	~	2 5 6	2 5 6 2	1 2 5 6 2 8	1 2 5 6 2 8 5	2562856	125628568
Lambsquarter	80	6	6	6	0	0	е	9	~	7	6	0	0	6	6	6	6			80	8	8 9 9 7	8 9 9 7 9	8 9 9 7 9 9	8 9 9 7 9 9 8	8 9 9 7 9 9 8 9
Morningglory	80	80	6	6	10	9	7	9	- m		6	80	9	6	6	6	2	•		6 10	6 10 6	6 10 6 2	6 10 6 2 9	6 10 6 2 9 9	6 10 6 2 9 9 9	6 10 6 2 9 9 9 9
Nutsedge	7	7	80	9	4	9		,	-		m		-	0	'n	0	-	m	_	0	0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 1 0	0 0 0 0 0 0 0
Rape	٣	•	6	7	80	6	2	7	m		0	6	0	8	•	4	6		-	7	7 9 10	7 9 10 6	7 9 10 6 9	7 9 10 6 9 9	7 9 10 6 9 9 8	7 9 10 6 9 9 8 8
Rice	80		6	6	2	80				~		3	~	-	80	•	9	vo		-	1 2 2	1 2 2 1	1 2 2 1 2	1 2 2 1 2 2	1 2 2 1 2 2 2	1 2 2 1 2 2 2 3
Sorghum	80	4	œ	80	•	7	-	-	-	_	7	7	~	~	9	-	~	~		-	1 1 2	1 1 2 1	1 1 2 1 2	1 1 2 1 2 1	1 1 2 1 2 1 1	1 1 2 1 2 1 1 2
Soybean	ю	9	9	6	8		c	2	. ·		6	0	6	0	0	8	7	•	_	9	9	9	9 9 9	9 9 9		
Sugar beet	∞	0	6	8	6	6	9		m		6	6	6	7	2	8	10 1	_	•		6 6	6 6 6	6 6 6 6	6 6 6 6 6	8 6 6 6 6 6	8 8 6 6 6 6 6
Velvetleaf	4	9	9	4	~	4	7	9	٠		9	3	•	7	∞	'n	'n	-			2 7 3	2 7 3 2	2 7 3 2 2	2 7 3 2 2 2	2 7 3 2 2 2 2 2	27322233
Wheat	∞	s	6	6	8	4	e	~	_	_	4	7	7	н	8	7	m			7	2 1 3	2 1 3 1	2 1 3 1 3	2 1 3 1 3 3	2 1 3 1 3 1	2 1 3 1 3 1 2
Wild buckwheat	80	7	6	0	6		~	~		-	9	4	6	2	6	'n			•	~			. 4	3 8 9 4 7 7	3 8 9 4 7 7 1	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wild oat	6	c	6	6	4	80	7		,,	٥	~	~	c	•	۰				•							

TABLE B													COMPOUND	P00	ð													
Rate 400 g/ha		9	99	63	8	69	70	71	72	73	74	75	9.	11	6	80	18	22	5	- Z	5	80	6	6	1 9	2	64 65 66 67 68 69 70 71 72 73 74 75 76 77 79 80 81 82 83 84 85 88 89 90 91 92 94 104	7
POSTEMERGENCE																										•		
Barley	0	0	0	•	4	S	0	0	4	7	٣	7	0	4	0	-	7	-	0		۰	۰	۰	0	۰			-
Barnyardgrass	0	0	۰	۰	6	0	0	٣	4	0	7	0	6	6	~	7	9	4		-					, ,		, ,	, ,
Bedstraw	7	9	2	٣	6		7		7	6	ß	۵	٣	6	0	٣	8	9	-	~	~	4		4				, ~
Blackgrass	0	0	۰	•	۰	80		-	8	6	4	9	-	8	-	N	m	~	N	2	-	_						, ,
Chickweed	-	2	-	0		7	7	3	9	8	3	٣	7	9	0	~	4	4	N	2	-		-					٠.
Cocklebur	7	7	0	0	'n	4	0	S	3	7	S	2	5	4	-	~	'n	m		N		ı m						۰ ۳
Corn	0	0	0	۰	ß	9	0	н	-	7	7	8	~	7	-	-	-	c			~	_	_	٠	-			. ~
Cotton	٣	S	S	7	2	6	~	7	9	9	•	80	80	10	-	6	6	6		6					_			
Crabgrass	7	0	0	-	7	8	0	7	٣	6	٣	9	~	4	-	~	~	7	-	~								, ,
Downy brome	0	0	۰	•	9	7	0	7	г	4	0	-	0	6	0	0		-	۰									
Giant foxtail	0	0	•	•	9	80	0	~	3	6	s	7	۳	s	-	2	4	~	۰		~	_	-					, ,
Lambsquarter	s	2	2	7	8	6	Т	٣	8	6	80	9	٣	6	e	4	80	7										۰ ۵
Morningglory	7	7	7	7	6	6	1	7	6	6	6	4	m	7	~	N	2	~	-									,
Nutsedge	•	0	0	٥	'	0	0	1	-	1	0	٣	н	-	0	0		-				_					, ,	, ,
Rape	-	7	7	7	6	80	0	9	80	6	ĸ	80	4	80	~	m	9	6	~									, ,
Rice	•	0	•	0	e	4	0	٦	г	80	6	9	~	4	0	-	m		۰			_				. ~		, -
Sorghum	0	0	0	•	9	~	0	-	7	9	0	٣	0	-	0	0	-	-	۰			_						
Soybean	4	9	~	~	6	80	н	6	7	6	80	9	4	0	2	7		. ~										, a
Sugar beet	7	7	7	~	6	8	0	6	6	6	60	9	N	9	6	~	9				_							
Velvetleaf	7	7	1	-	,	4	0	9	8	80	٣	4	٣		-	m	4					. ~						
Wheat	0	0	7	0	e	m	0	0	٣	4	-	~	0	m	0		-	н		_								
Wild buckwheat	-	3	9	4	9	~	٣	4	9	0	0	н	~	4		N	۱ ۸											۰,
Wild oat	•	c	•	•	•	•	•	•	•	•	,		,	,														,

							Ö	COMPOUN	_				
Rate 4	Rate 400 g/ha	110 111	111	112	113	112 113 114	115	116	117	130	131	14 115 116 117 130 131 112 11	-
POSTEMERGENCE	RGENCE												í
Barley		0	0	۰	0	•	,	•	•	•	•	0 0	٠

				•	•		•	•	•	>	-	9
Barnyardgrass	0	~	S	4	7	6	2	0	7	•	•	-
Bedstraw	1	4	'n	٣	80	7	'n	-	4		-	
Blackgrass	7	н	~	~	~	6	0	•	, ,	, ,		• •
Chickweed	0	7	٣	~	e	~	· ~	•		•	•	n 4
Cocklebur	н	4	4	-	٣	-	· m	0				יט פ
Corn	•	~	. m	-	4	н	-	0	. ~		•	, ,
Cotton	4	9	6	S	•	7	7	4	, 5t			
Crabgrass	7	~	~	~	ю	9	~	0	7		0	
Downy brome	0	~	0	~	-	~	0	0	0	0	0	-
Giant foxtail	-	-	е	S	7	80	~	0	4	0		۳.
Lambsquarter	4	2	'n	8	80	6	9	0	,	7	4	• •
Morningglory	~	9	7	-	-	7	-	7	'n		۰ ،	• •
Nutsedge	0	•	0	0	0	-	0	0	0	•	0	
Rape	0	7	80	•	٠	80	10	0	•			
Rice	0	-	0	7	ю	8	•	0	-	-		,
Sorghum	0	0	е	-	-	ю	-	0	0			
Soybean	•	4	7	'n	6	8	s	~	7	4		, α
Sugar beet	٣	6	9	9	0	6	ĸ	N	·			
Velvetleaf	0	2	~	9	9	8	,	4	-	8	0	
Wheat	0	~	0	-	•		0	0	0	0	0	
Wild buckwheat	~		7	~	9	~	٣	0	e	•	-	
Wild oat	0	7	0	-	-	. نو		0	0			, ,

												_	000	COMPOCIND	٥													
Rate 400 g/ha	-	7	۳	4	2	9	41	42	43	4	45	9	41 42 43 44 45 46 47 48 49 50 51	8	9	0			2	ř	ž	52 53 54 55 56 57 50	9	5	;		;	;
PREEMERGENCE															•	•	•	•	5	3	5	ñ	ñ	ņ	2		62	63
Barley	co	Н	٣	4	н	4	8	0	0	0	0	4	0	0							•	•	•	•	•	٠	•	
Barnyardgrass	6	8	10	80	6	7	6	2	4	6	00	9	•								•	٠,	* (٧ (n ,	n ;		0
Bedstraw	10	7	10	0	6	9	•	•	-				, ,	٠.			9 5				າ (-		•	۰	2	0	0
Blackgrass	6	6	9	0	7	•	•	. α	۳.	4						n 6			- '		20		0	2	7	6	1	80
Chickeed	۰	٩		, ;	•	٠ ،	•	•	, ,		i,	2			7	2		_	_		S	~	m	9	9	7	-	٣
Cocklebur	٠,	3 .	3	3 '	ν,	ויי	ν.		-	~	0	0	80	6	_			_	~	•	6	2	6	6	80	6	1	9
Topy	۱ ۱۷	٠.	9	•	-	7	-	•	•	0	•	~	0			S	_	_	_	•	0	0	•	7	0	6	0	0
Corn	1	m	œ	7	4	7	S	3	~	4	-	s	~		_		~	_	۰.		-	0	7	~	4	6	0	0
Cotton	4	9	m	-	٣.	n	0	0	•	0	0	4	~	_			_		-	~	~	0	-	~	•	•	•	
Crabgrass	10	9	10 10 10 10	9	6	6	10 10	9	0	9	6	0	v	9	10 1		9 10	2		•	•			, ;	, ;	, ,	,	,
Downy brome	Ŋ	4	7	S	7	80	7	-	0	-	~	N	~	4	~		~			, ,	, ,	,	3 -	3 '	3 .	3 '		3 '
Giant foxtail	10	2	10 10 10 10	10	8	6	10	10 10 10 10	10	9	9	9	9 10		9 10					, 4	, 5	,	٠,	֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֓֝	• •	n (٠.	- 9
Lambsquarter	9	2	10 10 10 10 10	10	10	9	6	6	9	80	9		10 10 10 10 10				. 5	. 5			, ,	٠,	3 :	3 9	o 9	۰ ۱	4	9 9
Morningglory	7	0	10	œ	٣	7	~	m	0	-	-	. =									3 '	•	3	10 10 10 10	3	9		2
Nutsedge	1	6	6	0	•	7	5	•	•	•								•	•	0	-	~	٥	2	10	2	~	٠
Rane	·	•		•	r		, ,	•	•		,	_	_	_	_	_	_	4	0	0	0	0	0	0	٣	0	0	0
Dice		2 4		ν.			•	~	0	~		6	0		~	_		6	7	6	7	~	6	9	٣	0	1	6
	-	4	10	4	4	•	0	0	0	0	0	4	_	_	_		٠.	۰	0	Н	0	•	0	0	0	-	0	-
Sorghum	φ	m	9	4	~	9	4	0	0	0		8		_		_	4	٣	0	-	0	•	c	•	-	-		
Soybean	80	4	6	6	9	6	•	-	0	0			2			_	7	7	0	_	•		· ·	• •	•		, ,	, ,
Sugar beet	10	6	6	10	6	20	97	٣	9	7	3 1	9	9 10		9 10		10 10	=	•	•	•	•	•				,	,
Velvetleaf	10	6	9	10	7	6	٣	7	0	0	1		10 10				3	3. 6	٠.	٠,	י ע	ю (,			9		0
Wheat	80	~	9	S	m	7	~	-	-									, ,	•	₹ '	00	7	2	2	2	10	0	6
Wild buckwheat	7	7	6	0	9	10	6	-			, ,	, ,	, ,				n (າ (0	-	0	0	m	m	0	9	0	
Wild oat	œ	4	α	•	4	5			, ,	, ,	, ,					•	•	7	0	0	1	m	8	8	4	9		
			,	١	•	2	'n	0	0	0	n	,		_	<u>ه</u>	4	2	6	m	4	c	-	٠	r	,	·		,

1												U	ě	COMPOUND	_												
Rate 400 g/ha	64	65	99	63	89	69	20	17	72	23	74	64 65 66 67 68 69 70 71 72 73 74 75 76 77 79	7	7	8	ā	ç	6	3	ä				;			
PREEMERGENCE														:	5	3			5	B	8	5	5	90 91 92 94 104		=	•
Barley	0	0	0	0	0	4	0	0	-		0	_		,		-	•	•	•		•						
Barnyardgrass	0	9	0	0	10	9	0	0	S	9								•	•	٠,	۰ د	٠,					
Bedstraw	,	0	1	0	6	0	0	N		: :						٠ .	۰ ۱	• (- 0	٠,			x 0	-		_	9
Blackgrass	7	4	7	0	9	0	0		4	•		٠.				•	۰ ،	٠ (٠ د					•	_	_	e
Chickweed	6	2	ч	0	•	•	•				٠.	, ,				•	٧.	ν,	N .	0	~	0	9	-	•	_	-
Cocklebur	0	0	0	0					٠ ،	, ,	٠.				-	n	-	•	•	9	0	9	7		_	_	9
Corn	۰	0	Ċ	٠	~	٠ -	•	, ,		, ,	,				-	0	0	0	0	•	0	0	0			_	
Cotton	•	-		, ,	۰ ۰	• •	•	,		٠,	, ,			•	•	•	0	0	0	0	0	0	~	Ó	_	_	
Crabarasa	•		•	•	٠,	٠:				3	-	•	_	-	•	•	-	0	0	0	0		20	•		_	
Downy hroms	•		•	•	07 07 0	3	0	•	5	9	6		10	-	0	8	7	7	5	9	80	9	9	E			_
amo to firmo	>	•	0	0	•	m	0	0	4	4	9	-		•	0	~	н	0	•	0	0		0	_			
Giant foxtail	•	-	~	0	10 10	9	0	-	9	0	9 10 10 10		10	-	~	•	•	-	-	•				, ,			
Lambsquarter	4	7	0	0	10 10	9	0	-	9	-	10 10 10 10		•						, .		٠.		,			_	20
Morningglory	0	6	0	0	2	6	0	0	4	91	· -	_			•	•	٠.	٠ ،		, ,		, ,		-			r.
Nutsedge	0	0	0	0	0	œ	•		١,			, ,		•	•	•	4	-	٧	-	N		N		_		
Rape	m	,	-		۰		, ,	, ,			. '	٠ .		•	0	ı	ı	0	0	0	0	,	,	,	Ċ		0
90.00			,	•	٠,	,		-	_	2		-	•	0	0	6	4	0	N	~	0			9	_		4
O complete	•		-	>	-	-	•	0	0	_	4	9	•	0	0	٣	0	0	0	0			_	0	-	Ī	
aor gram	0	0	0	0	-	4	•	0		9		0	<u>-</u>	0	0	0	0	0	0			۰		-			
Soybean	-	9	0	0	•	6	•		-	6	2	9	6	0	0	٣	0	4	v	-	_			, ,			
Sugar beet	7		0	0	2	0	0		9	10 10	0 10	2	10	-	-	۰	α					,	,				
Velvetleaf	0	N	0	0	80	10	0	۰	7	10 10					٠.	٠.	•	4 (_		_	_	•
Wheat	~	~	0	0	-	ın	0		_			۰	٠,	•	• •		•			4	N		N	0	•	_	_
Wild buckwheat	0	-	0	0	9	-	۰						•	•		٠ ،		-					-	0	•	Ŭ	
Wild oat	•	,	•	_	۰							•	•	•	>	0	0	0	•	0			.,	~	0	٠	_
	,	4	,	•	'n	,	5	5	9 10		8	•	6	0	0	'n	m	~			_				٠	٠	,

TABLE B					Ü	COMPOUND	QNS					
Rate 400 g/	g/ha 110	111	112	113	114	115	116	117	130	131	132	133
PREEMERGENCE												
Barley	0	•	0	0	0	ī	0	0	•	۰	0	~
Barnyardgrass	0 8	1	6	9	0	6	0	-	9	0	0	9
Bedstraw	•	•	7	80	10	6	г	0	ю	۰	0	~
Blackgrass	۰	7	10	80	'n	σ.	г	۰	9	0	0	
Chickweed	0	1	7	7	S	7	S	0	0	0	0	9
Cocklebur	•	0	•	0	0	0	0	0	0	0	0	1
Corn	•	0	_	0	~	0	0	۲	~	0	0	9
Cotton	1	7	~	-	4	9	0	0	4	0	ь	~
Crabgrass	9	-	7	7	9	10	7	m	6	0	•	6
Downy brome	•	-	-	7	~	e	0	•	7	0	0	~
Giant foxtai	1 1	٣	10	6	10	10	9	~	8	0	0	6
Lambsquarter	7	9	10	6	6	10	8	0	•	e	0	6
Morningglory	1	-	9	1	7	9	-	0	6	7	0	٠
Nutsedge	۰	0	1	0	0	0	0	0	0	0	0	1
Rape	•	7	10	4	0	6	0	0	7	0	0	7
Rice	-	۰	п	0	П	s	0	0	٣	0	0	٣
Sorghum	0	•	0	0	0	•	•	0	0	0	0	0
Soybean	7	0	64	0	2	4	•	0	7	0	0	7
Sugar beet	0	6	10	6	2	6	*	0	8	~	0	0
Velvetleaf	0	0	10	7	4	10	~	0	7	0	0	2
Wheat	0	0	0	•	•	~	0	•	н	0	0	6
Wild buckwheat	at 0	۰	10	7	S	0	г	0	6	7	0	4
Wild oat	0	1	9	٧	-	u	•	•	•	•	•	

												ŏ	COMPOUND	ž	_												
Rate 200 g/ha	7	8	6	10	11	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 28 39	2	-	5.1	9	7	1	20	2	22	23	24	25	36	27	80	9	ç		,	;	•
POSTEMERGENCE																	•	1	:		2	2	3	;	,	2	•
Barley	4	3	9	4	-	-	~	2	-	N			~		-	,	,	-	,	u	•	•	•	•	•		
Barnyardgrass	6	7	œ	7	9	S	4	6	7							۰ «		• •	•	, ,	9 0	۷ .	٠.	۷ (۰,	•	20 (
Bedstraw	7	2	7	9	0	٣	е	4		ú						, ~		• a	٠ ٥	• •	י י	, ,	n	٧.	• (- (.
Blackgrass	80	~	4	9	2	,-1	e	. ທ	~	N		. ~		, ,		٠ ،	, ,	٠ ،	,	,	۰ ،	٠,	ъ .	•		ъ .	ο.
Chickweed	7		•	4	4	0	~	m	m	4				. 4		, ,	۰ «	9 (• •	n 1	٠,	n u	•	n .	,	•	•
Cocklebur	н	0	m	~	5	0	0	6	7	,	_			· w		• 10			•	٠.	• 0	۰ د	• 4	n 1		י עב	m (
Corn	7	S	æ	7	S	3	-	80		4	_		4	~	2	9	4	~	7	۳.	~ ~	, m		~	۰ ،	. ,	۰ د
Cotton	~	0	0	8	8	4	4	6		_	~	•	5	ដ	9	9	25	6	9	6	7	7				, 01	
Crabgrass	9	9	2	۳	4	6	m	80		,			. 4	٣	9	8	N	н	8	~	~	4	4	~	٠,		, 4
Downy brome	٣	-	7	-	~	0		-	_	_	Ξ.	-	-	-	0	7	-	-	~	~	-		, ,			, ,	, ,
Giant foxtail	80	9	7	9	2	S	9	,			_		-	7	7	8	4	•	~							, ,	4 (
Lambsquarter		2	9	8	6	-	N	9	_	9			•	•		, ,		• •	, ,	, ,	, ,	٠.		n (n (20	
Morningglory	8	~	7	8	2		9	m				. «	۰ «	, 5	, "		n a	n a	۰ ۵	n 0	• (۰ ،	» a		- (. .	n e
Nutsedge	9	-	~	1	-	0		~		~		, ~	, ,	; -	۰ ۳	,	٠.	• •	n 0	,	۷ (7 (N (N (Ν,	.	N .
Rape	0		2	9	9	0		m	~		-	•	, ,	1 0	٠ -	۷ د	1 1	·		٠,	٠ ،	٠.	٠ ,			~	-
Rice	4	0	۳	4	2			ο.	_		· -	. 4	, -	, 4		٠ ٧				3 .	۷ (, م	٠ .	Γ,		~
Sorghum	7	~	9	4	~	0	-	5	_	~			٠,	٠,	٠-	,		٠,	4 .	, ,	٠ ،	٠,				m ,	ω.
Soybean	9		6	9	7	~	~	,		. 4					1 0	a 00	۹ α	۰ ،	n a	۷ و	۷ ,	,	,	N 1	N (m (m .
Sugar beet	7		œ	80	9	9				~	•	•	10			, 5	•			, ;		n 6		, م			
Velvetleaf	e	4	2	~	~	7	~	'n	_		9	7	~	~	٠,٠	٠,	۰ α	٠ α		2 .	٠,		ь.	٠.			
Wheat	5		4	4	~	0	_	~	_	۰	-	~	-		•			, ,	, ,			٠,		٠.	,	·	^
Wild buckwheat	m		7	2	6	6	_				9		٠ ٧	- α	•		- a	• •	n 0	n 0	٧,		,	n ı		m ,	
Wild oat		4	7	6	ç	~				-			•	, ,	•	•		٠.	,	Α.	~ ,	Λ.	۰	S.			

COMPOUND

TABLE B

Wild oat

Rate 200 g/ha	36	37	38	33	40	78	118	119	120	121	122	123	124	125	126	127	128	120
POSTEMERGENCE																i		ì
Barley	S	4	4	7	7	~	0	0	۰	•	0	0	0	•	•	•	•	•
Barnyardgrass	S	6	7	7	6	80	0	0	0	0	0		• •	•	•	•	•	•
Bedstraw	S	80	80	80	9	9	0	0	0	0		• •	•	•	•	•	•	
Blackgrass	ĸ	7	8	9	8	9	0	•	0	•	•	• •	•	•	•	•	•	
Chickweed		80	2	7	7	9	0	0	0	•		• •	•	•	•	•	•	•
Cocklebur	0	٣	0	80	0	4	0	0	0	•	0	• •	• •	•	•			
Corn	4	80	6	4	4	~	0	0	0	•	•	0		• •	• •	•	•	•
Cotton	80	9	6	10	~	6	0	0	0	0	0	0	•	, -	•	•	-	•
Crabgrass	S	80	8	6	6	8	0	0	0	0	0	•			• •	•		
Downy brome	~	3	7	6	7	8	0	0	0	۰	۰	0	•	• •		•	•	•
Giant foxtail	80	6	6	0	0	N	0	0	0	0	0	•			•	•	•	
Lambsquarter	9	7	7	7	9	80	0	۰	0	•	•		•	•	•	•	•	
Morningglory	80	80	6	6	-	8	0	•	•	•	•	•	,	•	•	•	•	-
Nutsedge	•	-	~	•			•	•	•	•	•	>	-	>	>	0	0	0
0000	•		, ,	٠.		>	•	0	•	0	0	0	0	0	0	0	0	0
aria .	7	00	m	2	9	7	0	0	0	0	0	0	0	0	0	0	0	0
Rice	4	2	8	m	0	-	0	0	0	0	0	0	0	0	0	0	0	0
Sorghum	m	9	8	٣	-	~	0	0	0	0	0	0	0	0	0	0	0	
Soybean	8	6	6	6	0	7	0	0	0	0	0	0	7	•	0	•		
Sugar beet	80	9	9	6	9	s	0	0	0	•	0	0	0	+	•	•		
Velvetleaf	-	9	s	6	s	'n	0	0	0	•	0	0	0	0				•
Wheat	9	9	9	۳	ø	0	•	0	0	0	0	0				•	•	
Wild buckwheat	9	7	۵		7	~	c	-	•	•	•	•		, ,	,	•	>	>

IABLE B												_	SOM	COMPOUND	g													
Rate 200 g/ha	7	8		=	Ξ	12	13	14	15	16	17	8	6	,	;	·		,		9 10 11 12 13 14 15 16 17 18 19 20 23 23 24 25 25 22 20 20 20 20 20 20 20 20 20 20 20 20		8	:	;	:			
PREEMERGENCE										;	;	2	1	2	:	4	?	,	0	2	78	29	30	31	32	23	4	ñ
Barley	4	m	4		-	•	0	г	N	0	0	-	-	•	-	,					•	•	•	•				
Barnyardgrass	6	7	9	8	7		4	9	4	-	4				۰,	٠ .				- ·		- '	-	0	7	-	4	m
Bedstraw	6	10	6	6	4	7	9	6	-				, ,			, ,		,				20	80	Ŋ	-	9	80	œ
Blackgrass	9	7	6	6	4		~	9	· m		, ~	. 4		, ,	, -	. ,	n .		,			m	e .	4	4		6	
Chickweed	6	8	6	7	7	e	7	80	,	· v	, ,					٠ .	, ,		าน	, ,		m t	m (m v	e ('n.	ι.
Cocklebur	0	0	٣	0	0	0	0	0	0	•			, m					· -			۰ ،	٠ ،	x	•	.		σ,	6
Corn	9	9	2	4	7	0	0	4	0	S	0	~	-	~							۰ ،	٠ ،	•	, ,	, .			
Cotton	٣	н	0	7	7	0	7	7	0	0	0	0	,				_				, ,	4	• -	4	n (, م	٠ م
Crabgrass	70	2	10 10 10 10	9	7	80	œ	6	œ	6	۵	6	6		4	•	1			•	•	1 5	1 5			,	, ,	
Downy brome	٣	~	3	4	7	0	0	8	-	~	~	~			_		; "				,		3 '		9	7 10 10	0	
Giant foxtail	10	10	10 10 10 10	10	7	7	Ŋ	7	7	•	00									7 (٧ ،	0	m	~	~	~	.	_
Lambsquarter	10	9	10 10 10 10	10	6	'n	0	10	•			, 5	, ,	, ,	, ;	:			- :	20 (6	6	0	0	6	7 1	10 10	
Morningglory	7	7	5	9	۳	~	0	-			. "	, ~	- 1	, ` , .	; °	- '		. ·	= '	0	9	6	9	6	6	6	6	
Nutsedge	6	7	٣	,	0	0	- 1		ب ر		, ,	, ,	, ,						-	m .	-	1	S	m	-	C)	5	_
Rape	0	0	3	7	0	0	0	0		·	,	٠.	, .	- '	., (-	•	0	0	0	0			~	_
Rice	4	н	0	٣	0	0	•	•			, ,		, -			- (-		9	~	0	9	S		_		_
Sorghum	S	٣	٣	4	0	0	~	~			, ,	, ,			- 1			-	-	0	0	0		0	_	_		۵.
Soybean	S	4	9	9	-	•	0	. 4		·	, ,					- 1	_	-	4	~	m	7	m	~	9			_
Sugar beet	10	10	10 10 10 10	10	6	6	1 0	. 6		, ,	, ,	, ,							~ ~	7	~	4	7		4		٠.	_
Velvetleaf	9	4	10	8	8	6	~	~		. ~	. 4	, ,	. ~		n (; ;	, ;	o ۱	σ.	6	9	œ	6	6	7	~	ä	_
Wheat	7	~	6	4	~	-	0	-									3 '	n ,	•	~	0	~	m		_		_	_
Wild buckwheat	9	0	4	٣	4	0	-	~			, ,	,		, ,		٠ ،	- 1	٠,	٠,		-	-	m	0	~	~		_
Wild oat	6	4	4 10	80		-	~	-								•	•	~	7	~	~	0	~	~	-		Ξ	_
								,	•		,	•	_	_	•	_	٩	0	α	u	~	•	•	,				

TABLE B									ຽ	COMPOUND	Q.							
Rate 200	200 g/ha	36	37	38	39	40	78	118	119	120	121	122	123	124	125	126	127	128
PREEMERGENCE	CE																	
Barley		Э	7	3	0	4	0	0	•	•	0	0	0	0	0	0	0	0
Barnyardgrass	a88	7	9	6	6	80	8	0	0	0	0	0	0	0	0	•	0	•
Bedstraw		0	7	8	œ	4	7	0	0	0	•	•	0	0	0	0	۰	0
Blackgrass		9	2	9	7	6	'n	0	0	0	0	0	0	۰	0	۰	۰	•
Chickweed		8	6	6	6	6	s	0	0	0	0	0	•	۰	0	0	•	•
Cocklebur		•		0	~	0	0	0	0	0	•	0	0	0	۰	•	0	•
Corn		4	7		4	~	4	0	0	0	0	•	0	0	0	•	0	•
Cotton			3	9	8	0	0	0	0	0	0	0	0	0	0	0	0	•
Crabgrass		91	9	10	01	10	6	0	0	0	0	0	0	0	0	0	0	
Downy brome	ø		3	S	3	7	н	0	•	0	0	0	•	0	0	0	0	•
Giant foxtail	a11	6	ů,	10	6	10	10	0	0	0	0	0	0	0	0	0	•	0
Lambsquarter	r e	6	2	10	9	6	10	0	0	0	0	•	0	0	0	0	0	0
Morningglory	5	3	20	9	9	7	7	0	0	0	0	0	0	•	0	•	0	٥
Nutsedge		0	7	2	7	0	0	0	0	0	0	0	•	0	0	•	•	•
Rape		7	7	Э	0	8	4	0	0	0	0	0	0	0	0	0	0	0
Rice		0	~	٣	-	0	6	0	0	0	0	•	0	•	0	0	0	0
Sorghum		3	'n	9	3	0	0	0	0	0	0	0	0	0	0	0	0	0
Soybean		ß	6	6	3	0	2	0	0	0	0	0	0	0	0	0	0	0
Sugar beet		9	20	10	10	6	2	0	0	0	0	0	0	0	•	•	0	۰
Velvetleaf		s	10	10	10	-	9	0	0	0	0	0	0	0	0	•	•	0
Wheat		-	0	4	0	S	-	0	0	0	0	•	0	0	0	•	0	0
Wild buckwheat	eat	4	6	6	c o	4	0	0	0	0	0	•	0	0	0	0	0	•
Wild oat		4	~	4	~	6		0	0	0	0	0	0	0	0	•	•	•

TABLE B									ü	COMPOUND	S									
Rate 100 g/ha	1	41	42	43	44	45	85	88	89	8	91	5	94 1	104	110	=	117	13	:	:
POSTEMERGENCE														:	}	1	ì	2	1	
Barley	7	0	0	۰	0	0	0	0	0	0	0	0	۰	-	•	c	•	•	•	•
Barnyardgrass	80	7	-	н	П	0	7	ч	0	-	~	-	-	. ~		۰ ،		•	•	•
Bedstraw	4	4	4	7	7	7	7	٣	0	٣	0	-	~	-		-			, ,	•
Blackgrass	4	3	7	-	т	7	н	7	0	٣	N	~	~	•		,		, -	٠ ،	1 0
Chickweed	4	3	7	-	7	-	н	-	0	0	0	-				٠,	•	1 0	•	•
Cocklebur	-	-	7	~	7	~	~	7	н	7	-				0		•	•	-	> "
Corn	•	7	Т	1	ч	7	-	7	7	-	4	-		-	0	7	0	•		, ,
Cotton	٣	0	0	0	0	0	7	8	~	9	~	~		~	~	6	~	. ~	, ,	-
Crabgrass	7	e	1	н	-	-	7	-	~	-	4	-	~		0		, ,	, ,	, ,	٠ ,
Downy brome	7	т	0	0	0	0	0	0	0	0	0			0	0	-	•	•	• •	•
Giant foxtail	80	m	н	н	-	0	-	7	-	7	2	ra ra	~	~	0	-		• •	•	•
Lambsquarter	80	•	N	~	1	+	m	4	7	7	7	4		7	~	4		, ,	, ,	•
Morningglory	9	-	٣	7	7	7	~	6	7	4	-	~	~	~	-	٠,		·	, ,	•
Nutsedge	4	- 1	0	1	-	0	0	0	0	-						• •	٠ ,	۹ (۹ (٠ ،
Rape	7	7	7	7	-	1	6	~	н	٣	m	~	_				•	•	•	
Rice	9	0	0	0	0	0	-	-	0	0	-		_				•	•	۹ د	•
Sorghum	-	0	0	0	0	0	-	0	0	0	0		_				•	•	•	•
Soybean	m	0	0	7	7	0	4	9	S	80	4	۳.		•	~		• •	•	•	٠.
Sugar beet	9	0	•	7	7	1	7	9	7	6	9		_	-	. ~			٠ ،	, ,	٠ ،
Velvetleaf	٣	2	9	2	н	0	~	-	-	-	~	2		~	-		۰ ،	-	۰ ،	•
Wheat	4	-	0	0	0	0	0	0	0	0						-	•		•	•
Wild buckwheat	7	г	н	0	н	-	ď	0	0	8			_				•	,	۰ د	٠,
Wild oat	s		0	0	0	c	c	-								٠,	٠ د	4	n	4

1 41 42 43 44 45 85 88 89 90 91 92 94 104 110 111 117 130 131 132 COMPOUND Rate 100 g/ha Wild buckwheat Barnyardgrass PREEMERGENCE Giant foxtail Lambsquarter Morningglory Downy brome Blackgrass Sugar beet Velvetleaf Crabgrass Chickweed Cocklebur Bedstraw Nutsedge Wild oat Soybean Cotton Sorghum Corn Rice

15

25

30

TEST C

The compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application), to water that covered the soil surface (flood application), and to plants that were in the one-to-four leaf stage (postemergence application). A sandy loam soil was used for the preemergence and postemergence tests, while a silt loam soil was used in the flood test. Water depth was approximately 2.5 cm for the flood test and was maintained at this level for the duration of the test.

Plant species in the preemergence and postemergence tests consisted of barnyardgrass (Echinochloa crus-galli), barley (Hordeum vulgare), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), com (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), johnsongrass (Sorghum halepense), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), ryegrass (Lolium multiflorum), soybean (Glycine max), speedwell (Veronica persica), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), and wild oat (Avena fatua). All plant species were planted one day before application of the compound for the preemergence portion of this test. Plantings of these species were adjusted to produce plants of appropriate size for the postemergence portion of the test. Plant species in the flood test consisted of rice (Oryza sativa), umbrella sedge (Cyperus difformis), duck salad (Heteranthera limosa), barnyardgrass (Echinochloa crus-galli) and late watergrass (Echinochloa oryzicola) grown to the 2 leaf stage for testing.

All plant species were grown using normal greenhouse practices. Visual evaluations of injury expressed on treated plants, when compared to untreated controls, were recorded approximately fourteen to twenty one days after application of the test compound. Plant response this ratings, summarized in Table C, were recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means not test result.

2.22										
TABLE C			OMPO	UND		TABLE C		C	OMPO	UND
Rate 1000 g/ha	2	2 4	6 4	7 4	8	Rate 1000 g/ha	. :	2 46	5 4	7 48
POSTEMERGENCE						PREEMERGENCE				
Barley Igri	80	65	5 6	0 3	5	Barley Igri	9	95	8 8	5 50
Barnyardgr Floo	d 95	95	5 9	5 9	0	Barnyardgrass	9	100	100	100
Barnyardgrass	90	90	9 9	9	0	Bedstraw	100	100	100	95
Bedstraw	65	90	9 (6	5	Blackgrass				100
Blackgrass	70	95	65	5 9	5	Chickweed		100		100
Chickweed	95	90	90	9	0	Cocklebur	40	90		
Cocklebur	60	90	75	7)	Corn	60	90		
Corn	80	85	35	. 5		Cotton	75		35	
Cotton	70	90	90	10)	Crabgrass	100	100	- 1	
Crabgrass	90	90	85	90)	Downy Brome		100	75	50
Downy Brome	80	95	20	50)	Giant foxtail		100		
Duck salad	95	100	95	95	;	Italn Ryegrass		100	95	90
Giant foxtail	90	90	90	90		Johnsongrass	90	90	90	80
Italn Ryegrass	85	90	80	75		Lambsquarter		100		100
Johnsongrass	80	90	50	70		Morningglory		100		85
Lambsquarter	100	100	95	95		Rape		100		
Morningglory	95	90	90	90		Redroot Pigweed		100		100
Rape .	100	95	85	100		Soybean		100	90	70
Redroot Pigweed	90	90	70	90		Speedwell		100		
Rice Japonica	80	95	85	90		Sugar beet		100		
Soybean	60	90	90	90		Velvetleaf		100		
Speedwell	90	100	100	100		Wheat	95	95	95	60
Sugar beet	90	95	100	100		Wild buckwheat	100	95	25	
Umbrella sedge	90	90	90	90		Wild oat	90	95	90	
Velvetleaf	50	90		. 85		WIII OUL	90	95	90	80
Watergrass 2	90	95	80	90						
Wheat	70	65	10	35						
Wild buckwheat	90	95	25	90						
Wild oat	85	90	80	70						
		- 0		, 0						

									S	COMPOUND											
Mate 500 g/ha	~		23	42	46	4	48	52	ç	ď	ů	Ş	:	5							
Barley Igri	8		75	0	65	20	۶	8	3	3 2		1 2	2 .	8				7	7 112	ř	Ξ
Barnyardgr Flood	d 85	95	9	80			8	3	3 8	9 6	3 6	2 :	٠,	9		9		35	Ä	_	9
Barnyardgrass	80		90				3	3	2	2 6		c :	0	92		20		5 90	8	6	9
Bedstraw	9	95		5			2	2	מ מ	3		8	82	92		8			8	8	•
Blackgrass	70						ם פ	2 2	2	2		ş	9	8		8		٠	- 60	85	
Chickweed	. 6		2 4	3			6	5	8	72	2	32	30	75		35	90		9		
Cocklebur	3 6	•	3 8				92		92	95		8	20	0		8			9		
Corn	3 8		2 :	9			2		20	75		101	8	8		00					
Cotton	9 6		9 8	e :	22		20		2	32	20	20	10	65		22					
Crabgrass	2 2	9 8	8 .	2 2	8 8	8 8	100	90	92	100	90 1	00	1001	100	100 1	100 100		100	9 5	2	
Downy Brome				3	2 2		3 (8	8	8	80	30	80		5	5 70				
Duck salad	90			۶,	8 8				32	9	2	0	8	6		0					
Giant foxtail				8 8	3				٠,	١,	9	92	9	82		6	5		8		
Italn Ryegrass					2 8			2 5	5	۶ :	8	8	2	75		9	0 7	90			
Johnsongrass				3 %	2 5				200	9	20	30	•	8		6	5 88				
Lambsquarter		2 5		, ,	? ;				8	S	20	٠ 8	9	82		6	8				
Morningglory		3 5		9 5	3 3				8	100	8	8	90	00		6	5				
Rape		9		9 4	2 8				32	00	8	20	2	32		9 9	5	8			
Redroot Pigweed		90		3 5	6 8	6 6	2 5		8 8	8 :	8	92	32	200		- 10	100	'	70		
Rice Japonica		95	2		3	2 8			8 8	32	8	8	2	8		6 06	8	8	8	100	
Soybean		2		3 8					2 2	8 :	9	2	0		90		5 75	82	70	8	95
Speedwel1		100		22		3 5	2 5	2 5	2 5	9	8	2 :	5		5		06 (8	75	80
Sugar beet		100		45						007	8	8				Ĭ,	91	•	95	8	65
Umbrella sedge		100		. "		3 8		3 5			8	2	2				96	. '	70	95	9
Velvetleaf		40		5	2	3	2 8				9	S.	9	0 100	0 10		100	8	95	95	95
Watergrass 2	80	95	6	2 5	2 8	8 8	2 2		9 1			55	9				8	8	95	20	9
Wheat	9	8	8	2	2	2	2 5	מ מ		_				0 100	0 10		95	6	75	95	95
Wild buckwheat	8	95	85	12	. 4	•	2 6		•	3 3			0				35	١	15	0	30
Wild oat	82	95	65	25	8	. 6	2 4	ם מ	֡֜֝֜֜֜֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜		8 8	90 10	-		30 30	95	•	1	52	100	0
						;	:						9	6 6	0	100	75	•	15	9	90

TABLE C POSTEMERGENCE

TABLE C	COMPOUND
Rate 500 g/h	133
POSTEMERGENCE	
Barley Igri	35
Barnyardgr Flo	od 25
Barnyardgrass	45
Bedstraw	40
Blackgrass	65
Chickweed	70
Cocklebur	80
Corn	20
Cotton	100
Crabgrass	30
Downy Brome	10
Duck salad	35
Giant foxtail	55
Italn Ryegrass	40
Johnsongrass	10
Lambsquarter	95
Morningglory	60
Rape	90
Redroot Pigweed	1 80
Rice Japonica	40
Soybean	90
Speedwell	95
Sugar beet	95
Umbrella sedge	50
Velvetleaf	60
Watergrass 2	25
Wheat	10
Wild buckwheat	85
Wild oat	50

TABLE C										Š	COMPORTING											
Rate 500 g/ha	7	9	23	42	46	.,	9	5	5			:										
PREEMERGENCE					;		ļ	ř	â	c		1	9	9	69 7	71 73	74	7	112	114	115	
Barley Igri	75	95	35	4	90	70	35	9	9	30	20	2						5		:	;	
Barnyardgrass	90	100	95	100	100	95	100						5	100	·		' 8	•	2 2	9	9 5	
Bedstraw	100	100	80	9	100	100	95	100	100		100			, ,					•	3 6	9 5	
Blackgrass	90	100	80	100	95	65	90	100	95	100	Ş		. 01					-		2	907	
Chickweed	100	100	95	75	100	95	95	100	100	-					,				-	3 1	907	
Cocklebur	20	8	30	20	80	25	9	35	20				100 30	5	50 20	6	2			n c	ה ה	
Corn	9	92	9.	20	82	65	32	90	82	40	0,	35	09					, 27	, ,	, (3	
Cotton	Ş		\$	20	90	9	20	30	20	9	35	20 7	70 100	100		-			202	2 0	, 5	
Crabgrass	92	-	-	-	100	8	8	100	100	1001	100	100	65 100	100	25		-	-	65		100	
Downy Brome	82	90	45	32	90	20	35	65	65	45	\$,	i								
Giant foxtail	100	100	100	100	100	92	100	100	95	85 1	100	100	75 100	100	25	100	100	-	-		8 5	
Italn Ryegrass	92	95	95	100	100	82	75	95	95	22	95	45									3 8	
Johnsongrass	8	100	82	75	8	70	9	95	90	8		•	02 02	_	•	٠	٠	2 8	;	6	2	
Lambsquarter	100	100	100	100	100	35	100	100	100		-								2	2	2 :	
Morningglory	75	100	100	80	100	100	70	100				-	۰	÷	' '			-			95	
Rape	95	20	100	82	100	9	95	100								6	?	6			100	
Redroot Pigweed	9	100	100	8	100	80	100					•							100		100	
Soybean	22	90	80	5	ď									007 007			-		100	100	100	
Speedwel1	100	2											75 40	100	20	100	82	8	0	75	9	
Sugar beet		2					3			100						'	1	8	100	95	82	
Valueties			3				100	100	100	100	100 100	0 100	-				. ,	100	100	100	100	
vervectear			100	001	100	100	90	1001	100	100	100 8	85	90 100	100	9	100	100	901			2	
Wheat	82	92	9	92	92	6	45	75	65	20	35 2	20	- 0								3 5	
Wild buckwheat	8	100	75	20	82	0	95 1	100	65 1	100	001 06	•						2	•	0 1	6	
Wild oat	8	100	65	9	90	6	9	56	ŗ						'	'	1	2	100	32	•	
														'	•	'	•	95	52	9	92	

TABLE C.	COMPOUND
Rate 500 g/ha	133
PREEMERGENCE	
Barley Igri	35
Barnyardgrass	95
Bedstraw	25
Blackgrass	55
Chickweed	90
Cocklebur	65
Corn	65
Cotton	30
Crabgrass	100
Downy Brome	40
Giant foxtail	90
Italn Ryegrass	90
Johnsongrass	60
Lambsquarter	100
Morningglory	100
Rape	95
Redroot Pigweed	60
Soybean	90
Speedwell	95
Sugar beet	95
Velvetleaf	40
Wheat	15
Wild buckwheat	100

												•	_						-	-			-	-	-	-	-	-	•	-
	32	0	82	20	65	\$	0	20	10	30	30	40	90	20	20	9	0	70	8	•	55	70	0	80	95	20	85	0	80	82
	31	•	70	•	1	•	٠	٠	•	١	٠	١	55	1	١	١	١	١	1	٠	22	٠	١	٠	20	- 1	9	,	,	•
	30	20	90	9	45	9	65	9	35	90	9	•	95	8	90	90	95	82	95	90	65	82	100	90	95	35	95	0	80	82
	53	50	8	9	40	45	9	10	32	82	75	0	9	9	45	2	9	2	0	8	70	8	9	75	95	30	8	10	30	ş
	56	45	82	100	80	75	100	95	20	70	75	30	9	82	9	8	100	100	100	100	9	8	٠	100	95	8	8	10	92	82
	25	1	82		١		٠	•	1	١	١	1	9	ı	1	1	1	1	٠	٠	35	•	1	,	95	1	2	1	1	•
	24	20	95	8	82	20	82	95	9	100	82	0	90	20	82	9	95	6	8	8	75	8	100	92	92	80	92	9	35	45
	23	45	82	8	90	2	22	80	45	8	8	40	80	9	82	75	8	70	8	9	92	75	95	8	80	4	9	8	0,	9
	22	١	82	٠	٠	1	•	1	1	١	٠	1	95	1	•	1	١	1	١	٠	82	1	٠	1	95	1	9	1	1	٠
	18	32	90	82	95	20	80	0	45	70	8	10	9	8	8	6	32	70	30	100	80	8	001	100	8	\$	8	35	70	2
	7	9	9	8	9	2	82	9	0,	8	82	40	8	8	80	82	80	82	40	90	8	75	100	95	82	22	8	40	90	2
	ដ	70	90	8	82	20	9	0,	45	8	82	30	82	9	90	8	80	8	49	80	80	90	901	8	90	20	90	9	90	70
	6	65	90	8	90	9	8	75	20	5	82	40	96	90	90	90	75	8	90	80	80	9	100	8	82	8	90	40	001	70
	œ	20	90	80	65	9	22	0	9	20	20	0	22	82	92	75	65	32	9	82	75	65		95	8	20	95	32	32	20
ē	7	65	92	80	40	95	9	32	75	20	65	2	9	8	75	90	0	20	20	0,	90	22	65	80	82	65	92	9	30	90
COMPOUND	9	90	90	95	82	95	95	90	90	90	90	20	•	9	95	95	8	40	20	90	92	20	100	92	95	ı	9	90	90	95
Ŝ	4	25	95	90	95	95	6	40	92	22	9	32		90			95 1		30	88	95	20		001	95	9	95	25	92	5
	٣	92	92	8	22	9	65	0	20	45	8	0,	00	8	92	8	92	20	32	8	8	2		92	92	32	92	8	92	82
M	7	9	82	8	9	65	80	6	6	20	20	2	75 3	80	65	9	92	90	8	92	9	6	82 1	8	8	40	75	9	80	20
GEN	-	92	8	8	22	82	8	32	75	20	8	45	20	9	80	2	75.	20	45	9	82	9	72	82	92	30	8	65	80	80
TABLE C POSTEMERGENCE	Rate 250 g/ha	Barley Igri	Barnyardgr Flood	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy Brome	Duck salad	Giant foxtail	Italn Ryegrass	Johnsongrass	Lambsquarter	Morningglory	Rape	Redroot Pigweed	Rice Japonica	Soybean	Speedwell	Sugar beet	Umbrella sedge	Velvetleaf	Watergrass 2	Wheat	Wild buckwheat	Wild oat

TABLE C POSTEMERGENCE

					;																		
Rate 250 g/ha	36	39	40	41	42	46	41	48	49	20	51	52	5	ç	ď	5	8	9	5	i	í	i	
Barley Igri	9	45	20	0	0	9	20	9	30	45	45	80	40	2	, E	:	3	3 8	9 6	7 :	2 ;	7	
Barnyardgr Flood	95	9	85	9	9	85	70	90	9	5	2	8 6	3	3 8	2 4	2 8) د	2 5	? ;	10	7.5	32	
Barnyardgrass	80	9	8	20	35	90	20	6	3	3	2 5	2 8	2	2 :	0 0	8	2	9.5	95	0	100	82	
Bedstraw	9	82	20	15	5	ď	6		2 4	1	2 5	2 8	2 3	3	2	8	2	9	8	20	92	8	
Blackgrass	55	9	2	5	. "	8	2	3 5	3 :	9 6	0 1	2 3	3	3	90	Ş	0	8	75	30	90	8	
	40	9	9	, 4	3 5	3	3 4		9 1	מ מ	9 ;	8 8	8	2	8		30	75	92	10	95	20	
	2	, 4	3 6	3 4	3 2	2 2	6	2	9	S.	9	82	82	92	١		,	100	8	\$	8	20	
	3	3 6	? ;	2	? ;	8 3	3	20	20	8	9	20	ş	20	70		100	20	20	20	90	20	
9	3 6	2	9 1	9	£ ;	20	20	32	8	20	32	32	32	•	\$		0	45	2	20	8	9	
	2 8	3 8	ñ. 6	3	2	8	8	92		100	90	90	92		90		95		100	90	100	90	
1	2 3	9	90	20	20	8	22	80		92	ç	75	20	20	80		50		20	3	85	20	
	2	2	70	0	0	30	0	0	0	0	9	52	2		0		0	40		c	5	5	
	82	8	65	10	52	8	82	75		100	9	1	•	•	9		9	5		•	2	2 4	
	20	90	8	32	\$	8	90	9		95	35	8			90		2	2 2		, 5	2 8	2 4	
88	82	90	95	9	2	80	45	•	35	90	9		80		20		0	9	8 8	2	2 4	,	
_	80	70	30	45	10	2	9	9		9	45				40		,	6		, 5	3 8	3	
Lambsquarter	2	92	95	20	8	100	8	95		100	ě				2		2	3		,	2	9	
Morningglory	20	8	80	35	ş	90	90	45		100	2				3 8		2 3	ς :		•	92	92	
Rape	9	85	90	20	25	Š	6	: 5		2	3 8				3		8	80		9	82	20	
Redroot Pigweed	90	06	8	5	5	:	3 5	2		2 6	6	2 :			9		92	8		\$	8	7	
Rice Japonica	95	82	35	, F	3 8	2	2 5	2 6		2 2	3 3				90		80	8		22	80	80	
Soybean	80	80	10	2	; ;	3 6	2 6	2 5		2 6	R :	8 3		2	20	65	9	20		10	8	9	
Speedwel1		100	00	: :	; K	3	3 8										90	90		20	90	90	
Sugar beet		100	5	, 2	2	,	3 8									0		8		90	8	8	
Umbrella sedge		2	3		3 6	2	2 5				95	901				8	95 1	8		30	90	90	
Velvetleaf	40	2 2	2 5	3	2 2	2 8	2 1	8 :					8			9		95	95	0	95	95	
Watergrass 2		2 4	2 8	3	,	2 :	٠,	3	20	90	80		9	8		20		90		30	80	35	
	2 2	3 6	2 4	2 5	;	6 4	0 0	9	£ ;	32			82		9	9	40	95	95	0	8	8	
Wild buckwheat	_	0	9	2 5	2 -	C 4		٠,	្ន	12	52		32	0		0				30	75	35	
Wild oat	08	2	2	3 4	, 5	2 5	٠,	0	9 1	8 1	52	92	30			90	90		20	0	90	0	
	;	?	3	2	2	?	2	0	52	2	75		80			20	0			35	ü	9	

TABLE C			COMP	OUND	
Rate 250 g/ha	77	112	114	115	133
POSTEMERGENCE					
Barley Igri	-	0	0	60	0
Barnyardgr Flood	90	80	80	95	20
Barnyardgrass	75	70	80	80	25
Bedstraw	-	50	65	90	10
Blackgrass	-	60	10	50	30
Chickweed	-	30	40	90	70
Cocklebur	80	25	55	40	50
Corn	30	30	30	10	10
Cotton	90	95	60	90	70
Crabgrass	70	20	40	70	20
Downy Brome	-	0	0	25	10
Duck salad	95	65	65	90	30
Giant foxtail	90	40	40	90	30
Italn Ryegrass	-	25	50	80	0
Johnsongrass	30	30	30	40	10
Lambsquarter	-	95	95	95	90
Morningglory	80	90	70	60	60
Rape	-	70	90	90	90
Redroot Pigweed	80	90	100	90	80
Rice Japonica	80	50	70	90	40
Soybean	80	70	75	80	90
Speedwell	-	95	-	65	90
Sugar beet	-	70	95	90	65
Umbrella sedge	85	90	95	95	20
Velvetleaf	80	95	35	40	60
Watergrass 2	90	65	85	85	20
Wheat	-	15	0	0	0
Wild buckwheat	-	10	70	0	30
Wild oat	-	15	20	75	10

													•												
	ş	90	90	25	95	100	20	9	0	100	82	100	95	80	100	9	90	90	10	100	100	9	95	ę	8
	39	•	95	100	9	95	9	55	20	100	2	100	90	90	95	100	2	100	8	100	100	100	20	100	75
	36	20	90	95	8	100	30	20	20	100	70	100	90	90	100	100	82	100	85	100	100	100	9	100	82
	35	65	9	100	8	100	20	75	8	100	82	100	100	8	100	100	100	100	9	100	100	100	9	100	90
	34	20	95	100	95	100	0	75	30	100	95	100	95	95	100	100	•	100	2	100	100	100	82	30	95
	32	•	0	۰	65	10	0	0	ដ	30	0	50	•	ដ	90	0	20	•	30	9	20	ş	0	65	45
	30	10	90	95	70	20	9	20	55	100	70	100	65	90	100	100	30	100	45	901	100	100	35	90	70
	29	0	95	82	35	70	70	35	30	100	•	95	35	95	95	100	15	100	\$	8	100 100	100	0	25	45
	36	30	9	100	95	95	0	ŝ	20	100	2	100	82	8	9	20	100	100	15	100	100	100 100 100	0	92	75
	24	•	8	100	95	95	0	20	0	100	3	82	95	20	100 100	20	0	8	2	100 100	100	100	0	90	9
	23	35	90	8	20	95	3	20	1	100	30	90	82	82	100	100	100	100	9	100 100	100 100 100 100	100	35	2	9
	18	75	9	90	95	100	30	65	20	100	45	100	82	90	100	100	25	100	35	100		100	65	\$	70
6	14	20	95	82	82	100	\$	75	20	100	20	100	95	90	95	90	ដ	100	9	100	95	6	65	ş	82
COMPOUND	10	8	95	90	8	95	2	8	20	100	20	100	9	100	100	100	95	100	2	100	100	9	90	8	8
Ŝ	6	70	95	8	70	95	45	75	•	100	90	100	95	95	95	100	65	100	75	95	100	100	8	100	82
	80	70	9	20	20	82	30	70	30	95	65	95	95	80	2	20	0	8	20	100	82	9	82	20	9
	7	90	95	100	95	95	•	90	0	100	S	95	95	95	8	75	0	20	82	8	100	92	95	70	95
	9	6	95	95	100	•	82	9	30	100	8	100	95	100	100	82	20	8	90	90	100	9	95	100	92
	4	70	100	100	100	90	8	90	35	100	100	100	9	100	100	100	95	8	90	100	100	100	100	100	95
	e	100	90	100	100	100	20	2	9	100	20	100	100	100	100	100	45	90	6	100	100	100	100	100	90
ω	7	20	8	95	75	95	9	8	10	8	82	95	9	8	100	35	20	8	35	100	95	75	2	90	8
GENC	-	6	9	100	20	75	30	8	20	100	9	100	100	92	95	100	9	75	8	75	90	100	8	8	100
TABLE C PREEMERGENCE	Rate 250 g/ha	Barley Igri	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy Brome	Giant foxtail	Italn Ryegrass	Johnsongrass	Lambsquarter	Morningglory	Rape	Redroot Pigweed	Soybean	Speedwel1	Sugar beet	Velvetleaf	Wheat	Wild buckwheat	Wild oat

COMPOUND

TABLE C PREEMERGENCE

Rate 250 g/ha	41	42	46	47	48	\$	20	21	22	23	22	28	61	63	89	69	17	73	74	11	112,114	Ξ
Barley Igri	22	10	8	22	0	30	95	2	20	9	30	40	0	0	•	•	. •	•	•	20	2	8
Barnyardgrass	95	100 100	100	8	90	65	100	90	100	95	95	100	90	45	95 100	8	2	100	8	92	96	. 6
Bedstraw	10	9	60 100	100	95	0	100	20	9	20	92	100	8	•	•	•	•		•	9	8	۰
Blackgrass	95	8	95	9	82	20	100	9	100	95	95	25	20	9	•	•	•	•	•	95	95	8
Chickweed	45	9	100	95	90	8	100	32	9	82	100	100	95	•	•	•	•	•	•	9	95	3
Cocklebur	100	9	20	9	0	2	8	20	20	20	•	65	0	8	9	9	0	90	20	0	0	۰
Corn	75	22	8	20	20	20	80	65	8	2	30	9	35	•	40	80	0	82	55	22	32	45
Cotton	•	•	20	0	9	0	100	0	20	9	9	30	2	6	82	95	0	100	20	20	20	2
Crabgrass	100	100	100	8	8	8	100	8	100	100	100	100	90	30 '100		100	0	100	96	100	32	÷
Downy Brome	70	ដ	2	0	32	2	70	20	20	9	9	30	0	0	•	•	•	•		5	0	8
Giant foxtail	100	100	100	95	100	100	100	100	82	8			100	65 1	65 100 100	8	2	100	85.	8	85 100 100 100	8
Italn Ryegrass	9	20	80	8	9	30	95	8	8	82	20	75	30	0	•	•	1	ı		85	\$	8
Johnsongrass	90	ş	80	22	35	70	90	65	8	8	9	9	30	8	\$	70	10	90	20	20	8	ñ
Lambsquarter	100	92	100	95	100 100	90	100	8	100	100	100	100	100	9	•	•	•	•	7		100	. 6
Morningglory	82	\$	100	92	30	70	100	20	100	100	80	100	20	0,	6	100	0	100	20	8	9	2
Rape	9	32	-	65	8	•	100	6	9	20	0	100	8	95	•	•		1	- 1	9	45	2
Redroot Pigweed	100	20	95	\$	95	75	100	8	8	8	100	100	100	80	100 100	8	0	100	Ş	96	100	95
Soybean	20	•	95	å	40	2	10 100	40	ş	20	20	9	30	9	20	95	0	95	20	65	0	9
Speedwe11	100	9	100	100 100	100	100 100	100	95	100	8	100	100	100	2	1		- 1	1	- 1		100	95
Sugar beet	100	9	100 100 100	100	100	8	90 100 100 100	001	8	100	100	100	100	6	•		1	•	7	100	100	100
Velvetleaf	80	32	100	8	90	•	100	20	100	100	100	95	9	75 1	100	100	0	100	8	100	8	8
Wheat	75	•	80	80	30	0	90	\$	35	9	50	30	9	0				•		20		25
Wild buckwheat	25	9	70	0	95	9	100	9	82	55	95	35	95	9				,	- 1	50	. 27	2
Wild oat	75	30	90	20	20	20	95	9	8	8	35	9	20	0		,	•	•	,	06	: :	30

TABLE C	COM	POUND
Rate 250 g/ha	115	133
PREEMERGENCE		
Barley Igri	60	0
Barnyardgrass	95	90
Bedstraw	95	10
Blackgrass	95	10
Chickweed	80	25
Cocklebur	0	35
Corn	0	10
Cotton	40	20
Crabgrass	100	90
Downy Brome	80	0
Giant foxtail	100	30
Italn Ryegrass	90	40
Johnsongrass	50	30
Lambsquarter	95	100
Morningglory	75	50
Rape	90	70
Redroot. Pigweed	100	30
Soybean	50	65
Speedwell	40	65
Sugar beet	100	95
Velvetleaf	90	30
Wheat	40	10
Wild buckwheat	0	35
Wild oat	70	10

	34		96	80	80	40	: 0		0,	20	80	55	45	9		. 8	40	. 02	35	2 2	. 6	: 16	09	0,		9			: 2	2
	32		. 6	9	9	40			97	2	0	•	28	9				•			40		-	-			_		•	•
	33		9		•	,	•	1		1			20			,			1	•	20			,	20	,	5			
	30	20	80	80	45	9	9	9	25	9	20	•	8	9	9	9	95	9	20	8	5	82	8	90	82	25	8	0	8	75
	29	0	82	55	9	35	9	101	25	8	25	0	75	20	40	9	9	20	0	90	9	82	65	20	90	30	96	10	30	9
	28		85	١	1	١	1	- 1	1	•	1	•	9	1	•	٠	•	٠	1	•	6		٠	٠	9	1	90	•	1	•
	26	45	80	90	70	20	95	90	40	9	5	0	30	20	9	80	100	95	100	9	9	9	100	95	9	9	85	0	95	80
	25	'	8	٠	•	1	١	1	١	ť	•	1	20	•	•	٠	1	1	•	•	25	•	•	٠	9	•	9	1	•	1
	24	0	90	80	9	9	85	70	70	100	20	·	8	9	75	4	95	90	8	1	65	80	95	95	95	20	8	0	35	45
	53	40	75	80	8	2	20	9	40	2	30	30	8	9	20	9	90	2	2	9	2	9	95	9	80	25	8	9	9	20
	22	•	80	1	•	•	1	1	٠	١	1	1	75	•	1	1	١	١	1	١	2	١	1	•	95	1	82	•	•	•
	18	30	90	2	9	ş	80	0	40	70	20	0	9	8	9	70	30	70	20	90	70	80	100	100	70	40	82	25	70	22
	7	\$	82	8	8	9	80	35	9	70	65	30	2	8	9	9	8	1	2	80	8	75	100	8	75	1	8	20	70	9
	10	20	90	80	9	9	9	40	9	80	9	30	8	8	9	9	80	2	30	70	2	90	100	8	8	20	80	40	90	9
GND	6	45	85	80	80	20	70	20	\$	2	20	20	2	75	45	8	20	80	2	80	70	90	100	8	75	9	82	20	82	9
COMPOUND	80	35	82	70	20	\$	25	0	20	20	70	0	20	8	9	9	92	30	9	8	75	9	52	95	9	\$	82	2	35	65
·	7	30	90	80	30	45	45	1	8	20	20	20	35	ş	8	8	•	49	0	9	8	45	9	8	20	30	82	40	20	80
	9	80	75	82	9	65	80	20	20	8	82	2	1	90	8	2	100	ş	65	90	8	1	100	95	92	\$	75	ŝ	65	82
	4	20	90	90	82	92	20	35	20	32	8	35	8	90	\$	90	95	8	30	80	90	40	90	90	82	\$	90	25	9	9
		20	82	8	20	8	65	0	9	32	8	20	95	8	80	80	90	9	2	80	82	70	8	95	80	30	95	35	90	80
ACE.	7	55	75	70	20	20	80	1	\$	•	49	45	2	5	65	9	92	82	8	2	9	1	82	8	8	25	20	32	80	9
ERGE	1	55	3 80	2	45	75	55	25	9	\$	2	32	20	8	20	20	75	9	Ş	9	70	49	20	8	6	25	90	20	9	20
TABLE C POSTEMERGENCE	Rate 125 g/ha	Barley Igri	Barnyardgr Flood	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy Brome	Duck salad	Giant foxtail	Italn Ryegrass	Johnsongrass	Lambsquarter	Morningglory	Rape	Redroot Pigweed	Rice Japonica	Soybean	Speedwell	Sugar beet	Umbrella sedge		Watergrass 2	Wheat	Wild buckwheat	Wild oat

			_		_	_		_								18																	
			20		8				20				¥	3 8	3 3	2 5	2	8	9	70	95	9	70	8	100	8	;	, 5	2 8	6 6	2 5	2 6	80
						8	65	95	70	35	-		35	, ,	3	2 ;	9	32	92	20	100	90	65	75	100	100	S	6	, ,	2 5	2 5	2 1	Ç
	(2 '	• !	9	30		20	20	100	۰	8	10	0	40	: :	•	٠:	2	2	100	80	70	20	4	9	95	5	6	,	3 0	9	2	•
	5			٥ ;		40	52	2	0	20	8	40	0	2	3	3	3. 3	2	8	ş	8	8	25	\$	100	95	5	35	4	3	9	2 5	7
	ů	8 8		•		?	45	90	2	۰	85	9	0	25	8	2	2 2	0 1	9	8	2	8	8	80	100	80	55	20	7	9	, 5	2 5	3
	2,5	3 5					8	8	S	30	95	35	0	•	5	3	, ,	9 8	ç	80	80	90	20	22	100	100	75	9	5	, -	, 5	2	;
	č	3 8	2 1	2 5	2 8	2	82	65	22	20	8	\$	•	1	30	; -	, ,	3	3	80	80	80	22	2	Q	8	90	6	25	0	۶,	202	,
	5			_		2	8	8	20	20	90	75	0	1	5		3 6			8	9	80	20	9	100	100	82	20	20	9	8	8	;
	5		3	3 \$	2	3	Ç	ş	9	52	8	õ	2	70	,	5	\$,	2 1	3	Ş	80	52	82	100	8	100	9	6	20	25	9	;
	20	45	8	3 8	3	3 8	22	8	8	22	92	8	0	•	8	06	6	8	2 :	2	92	80	75	8		100	100	Ġ	95	15	8	9	
	49	30		•		3 5	2	20	ş	20	8	30	0	•	52	•	20	8	2	2	9	20	30		100	92	•	4	20	9	6	15	
	48		90	9	, 4	3 6	2	80	20	35	92	20	۰	75	40	•	,	ě	;	5	90	90	9			92	80	ş	75	0	75	0	
COMPOUND	47	10	9	5	8	, ,	3	2	8	1	22	32	0	75	22	52	25	6	, ,	2 ;	٥.	45	5	80	100	90	9	9	32	0	0	0	
9	46	9	70	80	ď	8	3	3	22	32	8	8	30	8	90	70	35	100		3 8	£ :	6			92	٠	80	8	2	10	95	9	
ŭ	42	0	35	50	2	:	3 :	6	2	10	0	ş	0	0	30	0	10	25	,	;	9	52	2 :	2	52	ន	32	2	20	10	•	20	
	41	0	8	\$	10	5	3 :	Ç :	÷	20	10	Ş	0	•	52	10	35	9	5	; ;	2 :	2 1	? ?	2 :	e .	32	9	30	8	0	20	15	
	40	35	85	8	20	20	2	2 :	2	52	32	8	15	32	8	80	20	0	9	9	3 8	2 5	9	3 3	00 :	96	82	20	82	52	30	9	
	39	\$	80	75	85	2	3	3	2	\$	8	20	20	70	2	90	\$	95	80	8	3 8	2 1	2 5	2 5	8 8	8 8	2	20	6	52	\$	9	
	38	55	80	90	20	9	3 4	3	٠:	2	£ :	8	30	20	8	92	90	9	80	20	3	2 5	2 8				2 :	£.	90	65	92	92	
	37	45	85	9	65	75	. 4	3 6	9 8	? ?	2	8	32	2	6	8	82	82	8	95	3	9 4	2 6			2	2 :	6	2	20	80	82	
CE	36	\$	82	20	45	5	40	;	3 6	2 2	2 1	Š	8	75	20	75	2	9	20	20	6	2 4	3 8			2 1	2 5	2 1	ŝ	0	\$	20	
ERGE	35	70	1 95	90	80	9	ű	; •	,	? ;	3	٠.	9	8	2	8	80	5	8	80	,	6	8	2	2 8	2 8	2	١ ;	ç :	9	20	8	
TABLE C POSTEMERGENCE	Rate 125 g/ha	Barley Igri	Barnyardgr Flood	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	, and	Corton	Craptura	Separate se	Downy Brome	Duck salad	Glant foxtail	Italn Ryegrass	Johnsongrass	Lambsquarter	Morningglory	Rape	Redroot Pigweed	Rice Japonica	Sovbean	Speedwell	Sugar beet	Umbrella sedae	Velvetles	E CONTRACTOR OF THE PARTY OF TH	950 16	Wheat	Wild buckwheat	Wild oat	

TABLE C			-	COMP	OUND	,			
Rate 125 g/ha	71	. 73	74	77	112	114	115	133	
POSTEMERGENCE									
Barley Igri	0	70	0	-	0	0	40	0	
Barnyardgr Floo	a o	95	75	85	75	80	80	20	
Barnyardgrass	10	95	80	40	60	40	70	10	
Bedstraw	30	85	20	-	50	60	90	10	
Blackgrass	10	95	70	-	50	10	50	20	
Chickweed	40	90	50	-	25	40	80	50	
Cocklebur	40	80	50	70	20	55	30	50	
Corn	0	70	40	20	20	20	0	0	
Cotton	80	95	90	90	95	60	70	50	
Crabgrass	20	70	40	50	15	40	50	10	
Downy Brome	0	40	0	-	0	0	10	10	
Duck salad	0	90	70	95	35	45	90	20	
Giant foxtail	10	80	20	75	35	35	75	10	
Italn Ryegrass	0	95	30	-	25	10	65	0	
Johnsongrass	35	50	20	20	25	20	30	0	
Lambsquarter	0	95	90	-	95	95	90	90	
Morningglory	20	70	45	80	85	40	40	50	
Rape	40	95	70	-	70	75	90	80	
Redroot Pigweed	45	70	60	75	90	100	80	60	
Rice Japonica	0	85	30	70	40	60	85	40	
Soybean	35	90	80	80	70	65	60	80	
Speedwell	40	100	60	-	95	70	60	-	
Sugar beet	10	70	90	-	70	90	85	65	
Umbrella sedge	0	85	85	80	85	95	95	0	
Velvetleaf	20	75	25	80	90	35	35	35	
Watergrass 2	0	95	65	75	50	75	70	10	
Wheat	20	70	30	-	10	0	0	0	
Wild buckwheat	0	80	0	-	0	40	0	30	
Wild oat	10	95	30	-	15	10	65	0	

WO 96/31517

	0 0 0 0 60 65 40 70 90	50 90 80 0 95 90 90 90 100	60 85 0 85 100 90 100 100	45 60 80 80 65 65 100	0 95 100 95 95 95	0 20 20 50 20	70 65 60 75 75	- 35 30 20 70	100 100 100 100	80 40 85 95	100 100 100 100	85 95 95	80 100 100	100 95 100	90 100 100	65 100 40	100 100 100	70 90 90	100 100 100	100 100 100	85 100 100	40 90 95	30 100 100	75 85 85
	0 0 0 60 65 40	06 06 56 0 08 06	85 0 85 100 90	60 80 80 65	95 100 95	0 20 20	65 60	35 30	100	\$	00 100 100	82			90 100	65 100	00 100		00 100	100 100				
	0 0 0 60 65	90 80 0 95 90	85 0 85 100	60 80 80	95 100	0 50	9	35	100 100		00 100		80	100	90	65	8	5	8	8	85	ş	30	75
	09 0 0 0	90 80 0 95	85 0 85	08 09	95	0			100	8	9								-	-				
	0 0	0 08 06	85 0	9			2				2	100	90	100	90	95	100	90	100	100	100	8	100	85
	0	90 80	82		0			•	100	8	90	8	70	100	90	0	100	\$	60 100	100	100	2	30	9
	0	96		5		0	0	0	20	•	2	0	0	82	0	1	•	0	9	20	35	0	69	45
			9	-	9	30	9	•	95	10	95	30	80	95	90	١	100	10	100	100	70	35	9	0
	0	0	-	35	20	2	25	97	95	•	75	32	8	90	9	0	100	50	30 100	20	8	0	15	25
		un	100	82	9	0	20	0	8	a	8	8	9	100	70	80	100	9	100	100	20	0	9	ដ
	0	2	95	9	82	•	6	•	20	0	9	95	20	95	20	0	•	•	100	100	8	0	8	35
	35	75	20	22	90	20	\$	20	100	0	8	82	20	100	9	95	75	ş	95	100	20	0	20	20
	65	8	35	82	95	2	22	20	100	9	100	8	8	95	82	0	95	30	100	82	100	25	9	65
	20	8	2	65	2	30	92	2	100	20	90	8	90	95	70	0	20	40	100	82	80	S	20	82
	20	90	0	8	92	9	20	20	100	9	75	9	8	100	8	32	8	40	95	9	8	90	9	8
	\$	6	0	9	95	35	2	0	9	9	92	8	8	32	2	9	8	20	8	100	100	20	0	8
	70	8	20	70	75	20	20	30	8	4	8	8	2	9	ş	0	20	\$	65	20	8	75	70	90
	82	82	8	92	2	0	8	0	100	2	8	95	95	3	30	0	45	\$	20	30	92	90	a ,	6
	80	92	32	90	100	2	8	20	92	2	100	92	95	100	6	30	9	75	92	100	100	9	95	80
	20	100	100	100	100	65	8	20	100	100	100	95	100	100	100	95	8	90	100		100	100	100	92
	100	8	100	100	32	30	2	S	100	8	001		100	9	9	\$	8	8	00	100	9			001
	20	80	8	92	95	a	30	0	20	82		75	9	90		20	6	9	92	1		9		9
	8	90	8	20	75	50	72	20	9	20	100	6			00	30	20	8	75	92	8	8	8	90
PREEMERGENCE	ley Igri	Barnyardgrass	Bedstraw	Blackgrass	chickweed	klebur	Corn	Cotton	Crabgrass	y Brome	it foxtail	n Ryegrass	songrass	squarter	ingglory		root Pigweed	ean	edwell	ar beet	vetleaf	ıt.	d buckwheat	Wild oat
acriacida	CHENCENCE	90 70 100 70 80 85 70 40 70 50 65	90 70 100 70 80 85 70 40 70 50 65 90 80 90 100 95 85 90 90 90 90	90 70 100 70 80 85 70 40 70 50 65 90 80 90 100 95 85 90 90 90 90 90 90 90 100 100 35 90 50 0 0 70 35	90 70 100 70 80 85 70 40 70 50 65 90 80 80 90 100 95 85 90 90 90 90 90 90 90 90 90 90 90 90 90	90 70 100 70 80 85 70 40 70 50 85 90 80 90 100 95 85 90	90 70 100 70 80 85 70 40 70 50 65 90 80 90 100 95 85 90	Activity 2	Action 2.	### 2	90 70 100 70 80 85 70 40 70 50 65 90 90 90 90 90 90 90 90 90 90 90 90 90	90 70 100 70 80 85 70 40 70 50 65 90 90 90 90 90 90 90 90 90 90 90 90 90	90 70 100 70 80 85 70 40 70 50 65 90 90 90 90 90 90 90 90 90 90 90 90 90	90 70 100 70 80 85 70 40 70 50 65 90 90 90 90 90 90 90 90 90 90 90 90 90	90 70 100 70 80 85 70 40 70 50 65 90 90 90 90 90 90 90 90 90 90 90 90 90	90 70 100 70 80 85 70 40 70 50 65 95 90 90 90 90 90 90 90 90 90 90 90 90 90	90 70 100 70 80 85 70 40 70 50 65 90 90 90 90 90 90 90 90 90 90 90 90 90	90 70 100 70 80 85 70 40 70 50 80 90	90 70 100 70 80 85 70 40 70 50 65 95 90 90 90 90 90 90 90 90 90 90 90 90 90	90 70 100 70 80 85 70 40 70 80 80 70 80 80 70 80	90 70 100 70 80 85 70 40 70 80 85 70 40 70 80 80 90	90 70 100 70 80 85 70 40 70 80 80 90	10 10 10 10 10 10 10 10	File Series Seri

	11		. 45			£	64	•	40	0	95	40	06	5	2	ŧ,	2 0	20	; ;	, 4	3 6	100		85	10
	74		•	85		'		۰	. 2	20	30	•	20		35	'	20		۶		3 '	- 1		20	20
	73		1	100	1	•	'	8	8	95	100	•	100	'	8	•	100	'	9	, ,	'	'		100	100
	1,		'	0	•	•	•	0	0	0	0	: 1	0	•	0	•	0	•	•		• •	•		0	0 1
	69		,	95	•	•	•	35	70	8	82	•	80	•	9	,	75	•	95	5	: :	•	į	0	۱ ۲
	89		•	75	•	•	•	0	25	\$	30	•	82	•	20	•	20	1	100	2	,	1	5	2	י מ
	.6		0	45	•	0	•	2	0	2	20	0	55	0	20	40	•	8	20		•	•	ä	n	9 0
	19		0	20	ដ	2	82	0	0	٠	75	0	8	2	2	100	9	9	8	20	92	100	۶	2	۰
	28		2	8	S	.22	95	20	45	0	100	10	100	70	20	8	75	20	90	9	100		59		2
·	55		8	70	•	70	8	0	30	20	8	9	9	30	9	100	8	0	100	9	100	100	20		50
٥	53		9	8	10	85	9	2	20	0	100	32	75	8	75	95	100	20	75	45	8	100	82		35
COMPOUND	22		30	95	5	9	8	0	20	0	100	8	22	82	2	95	5	30	82	20	100	100	85		30
Ö	5		35	8	•	9	35	20	45	0	09	20	90	75	20	30	20	35	80	30	38	65	3		. 0
	20		90	100	100	100	95	80	8	90	100	9	100	8	8	100	100	100	100	95	100	100	100		80
	49		9	30	0	52	0	0	10	•	30	ព	9	30	10	60	0	0	9	0	0	80	0		0
	8		•	6	75	6	8	0	2	8	20	30	95	8	30	100	12	35	95	20	100	100	8		0
	41		32	80	0	20	35	0	32	0	65	0	95	9	20	95 1	9	9	20	9	100	95 1	90		25
	46		65	95	95	70	95	32	2	22	100	9	100	8	2	100	100	100	8	8	8	100	100		20
	Ç		9	8	0	6	9	•	20	•	100	10	100	20	ន	95	20	9	8	0	20	0	•		0
	4		10	9	9	80	9	2	20	0	100	40	001	20	40	8	35	40	8	a	8	100	20		45
	\$		8	90	20	95	100	9	40	0	100	82	8	98	20	100	40	9	9	10	100	8	30		90
	39		•	82	90	22	ï	30	40	20	100	9	92	90	70	7	80	0	100	30	100	100	100		0
TABLE C	Rate 125 g/ha	PREEMERGENCE	Barley Igri	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy Brome	Giant foxtail	Italn Ryegrass	Johnsongrass	Lambsquarter	Morningglory	Rape	Redroot Pigweed	Soybean	Speedwell	Sugar beet	Velvetleaf		Wheat

TABLE C		COM	POUNI	•
Rate 125 g/ha	112	114	115	133
PREEMERGENCE				
Barley Igri	10	15	40	0
Barnyardgrass	90	80	90	40
Bedstraw	35	0	90	10
Blackgrass	85	35	75	0
Chickweed	95	30	70	0
Cocklebur	0	0	0	20
Corn	20	20	0	0
Cotton	0	0	30	10
Crabgrass	25	30	85	30
Downy Brome	0	20	65	0
Giant foxtail	90	100	100	20
Italn Ryegrass	30	70	80	0
Johnsongrass	25	10	35	20
Lambsquarter	100	95	95	95
Morningglory	60	70	70	30
Rape	25	0	90	70
Redroot Pigweed	100	80	50	10
Soybean	0	20	40	35
Speedwell	100	60	40	60
Sugar beet	95	95	100	90
Velvetleaf	80	50	60	15
Wheat	0	0	25	0
Wild buckwheat	70	30	0	20
Wild oat	10	20	70	10

														12																
	35	30	.6	20	9	20	35	0	20	9	2	30	85	9	20	8	2	80	8	8	85	90	2	8	85	9	95	2	2	20
	34	45	85	20	5	30	30	0	20	40	6	35	52	20	20	6	9	6	20	20	8	80	,	20	10	٠	85	2	30	9
	32	0	40	0	30	40	0	0	•	0	0	0	9	20	0	9	0	30	9	•	25	40	•	9	85	3	20	•	92	2
	31	•	20	١	1	. 1	•	١	•	•	٠	٠	20	'	•	1	٠	•	1	1	35	•	٠	٠	20	•	9	•	•	٠
	38	9	70	20	45	9	65	30	. 02	9	45	0	75	9	45	40	•	20	2	1	30	80	001	9	8	20	9	۰	20	9
	53	0	70	45	35	10	9	0	20	9	45	0	20	9	25	40	9	9	•	•	40	80	65	9	80	30	75	0	30	35
	28	٠	9	١	•	•	1	٠	٠	1	1	٠	9	•	1	1	1	1	•	1	9	1	1	•	9	ı	9	•	•	•
	56	10	70	80	9	25	9	9	9	35	20	0	15	20	3	. 6	100	8	95	75	20	8	95	90	9	8	0,	0	20	80
	25	٠	9	١	•	١	1	١	٠	ı	٠	•	35	•	•	•	7	•	1	•	2	•	1	•	45	•	\$	•	•	1
	24	0	80	45	65	30	85	02	35	90	40	0	9	40	20	30	95	75	20	80	45	75	•	90	95	35	9	0	35	40
	23	35	75	55	20	20	6	20	30	1	20	10	80	20	9	9	90	9	2	90	65	9	95	82	80	25	20	20	30	35
	22	٠	20	٠	1	•	٠	٠	1	•	٠	1	22	٠	٠	٠	٠		1	1	20	•	•	•	90	•	80	•	•	•
	18	52	2	35	75	30	9	0	30	20	4	0	35	9	20	35	20	9	30	80	25	9	8	90	2	30	20	15	20	45
25	14	20	75	45	80	35	9	35	35	0,	20	20	20	75	8	9	20	80	20	80	20	5	90	9	22	S	9	•	40	20
COMPOUND	9	35	20	45	9	20	20	20	20	0,	40	10	45	9	40	30	9	9	20	•	20	90	85	20	0,	20	45	20	65	20
٠	6	40	9	20	9	\$	40	40	30	25	35	10	40	9	35	35	\$	9	22	ı	9	90	20	20	9	20	65	0	20	45
	œ	35	9	20	40	52	70	•	20	30	\$	0	35	20	9	20	\$	20	0	20	9	20	22	90	30	20	20	0	35	35
	٢	20	80	9	30	45	10	•	20	10	35	9	52	20	30	20	0	30	0	\$	65	32	20	80	\$	20	9	40	20	20
	9	20	65	25	35	30	80	20	9	80	35	0		90	80	30	8	35	9	20	40	÷	90	90	20	32	32	25	20	2
	4	01	82	9	75	90	30	30	9	35	20	0	82	80	\$	45	90 1	02	30	2	75	30	82	82	8	30	8	9	20	45
ω	m	20	75	20	45	65	22	0	20	52	32	0	20	45	80	45	82	40	0	9	92	20	20	20	20	25	80	2	80	80
GEN	H	32	9	20	•	20	\$	20	45	30	ş	20	30	80	40	20	9	40	\$	20	45	30	40	80	90	20	20	30	9	30
TABLE C POSTEMERGENCE	Rate 62 g/ha	Barley Igri	Barnyardgr Flood	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy Brome	Duck salad	Giant foxtail	Italn Ryegrass	Johnsongrass	Lambsquarter	Morningglory	Rape	Redroot Pigweed	Rice Japonica	Soybean	Speedwel1	Sugar beet	Umbrella sedge		Watergrass 2	Wheat	Wild buckwheat	Wild oat

TABLE C POSTEMERGENCE	RGEN	CE							COMPOUND	QNDC												
Rate 62 g/ha	36	33	38	33	49	4	42	49	20	21	25	53	55	S	5	ç	8	9	;	;	;	
Barley Igri	15	49	30	35	0	0	0	30	40	52	0	20	•	2	; ;	3 -	9 0	6 5		2 8	2 (
Barnyardgr Flood	1 70	65	20	75	65	9	30	20	2	12	92		, %	2	3 5	,	,	; ;		2 :	٠,	١. ;
Barnyardgrass	9	75	80	20	20	30	2	10	06	30	200	2	3 5	2 5	2 5	, ,	2 5	2 2		£ 6	Q :	2
Bedstraw	35	9	40	82	•	9	10	20	9	9	6	4	2	2	2 5	; <	2	2 3	- 5	2 5	9	20
Blackgrass	20	40	9	40	40	9	•	5	9		; ;	; ;	3	3	; ;	٠,	6	2	2	2	20	1
Chickweed	2	40	Ş	5	6	1	, ;	;	3 5	; ;	3 8	9 ;	3	2	9	2	9	9	9	92	30	٠
Cocklebur		2	3	3	3 :	3 ;	3 '	3 :	9	3	2	õ	0,	72	9	20	52	30	\$	82	20	•
	,	3	•	3	3	ç	•		80	9	\$	0	20	8	0	92	20	9	33	9	20	9
Cother	3	3	9	20	9	0	•		52	52	9	9	52	•	9	•	25	35	0	9	30	0
Cocton	9	8	82	90	22	0	0	8	95	8	82	8	9	8	82		8	8	35		90	90
Crangrass	8	20	20	32	20	30	9		20	25	32	3	22	25,	20		30		10		98	52
Downy Brome	•	30	0	0	0	0	0	0	0	0	0	0	0		0		35					'
Duck salad	20	20	8	2	20	0	•		001	15	,	٠	•	0	0	0	10	88		; ;	. 4	۶
Giant foxtail	20	82	8	22	20	12	9		8	30	45	20	20		15			6			: :	, ,
Italn Ryegrass	49	8	2	20	20	10	0		20	0	20	0	0		2						2	2
Johnsongrass	2	5	20	35	9	52	0		30	9	20	30	20		: :							٠.
Lambsquarter	40	75	9	95	0	9	15		95	75	;		9	2 5	2 5						2 :	20
Morningglory	49	8	8	2	30	25	25		8			2 6	2			2 :					2	•
Rape	40	80	2	,	5	2	: :	3 8	2 :	2 6	2 6	2 :	2 ;		22	100		5			30	8
Redroot Digused	6	2	2	? ?	3	3 9	3 :		2	2	2	8	8			70 1						•
Dice Janonia	3 8	2 8	? ;	8	9	9	12		8	22	9	20	8	20		0,			35			6
Coupons	? ;	2 2	3	9	52	•	•		65	12	45	12	10	91	•	0		25				30
or real	2	?	9	9	2	0	0	\$	8	20	45	65	\$	80	35	32		90			2	8
Speedwell	20	8	8	92	100	20	9		100	20	90	40 1	8	90 1	100							3
Sugar beet	80	9	80	8	2	•	•	9	8	80	82		100				95				3 6	
Umbrella sedge	20	9	9	8	9	9	20			95	75	30	55								2 6	•
	20	45	9	20	32	20	2	9	8	9	20	35	20		30	75		-				2 6
Watergrass 2	82	20	8	2	75	9	9	0	82	15	9	25	5	15								2 :
wheat	•	20	2	ដ	0	•	•	9	91	20	0							•				2
Wild buckwheat	30	9	80	52	2	12	•	0	35	52	20	20	9			, ,					<u> </u>	
Wild oat	\$	8	8	40	20	15	9	10	8	8	35	25	20					2 5	, ,	3 :		•
															2	•		0			ū	2

TABLE C		COM	POUN	D
Rate 62 g/ha	112	114	115	133
POSTEMERGENCE				
Barley Igri	0	0	20	. 0
Barnyardgr Floo-	đ 65	50	75	20
Barnyardgrass	50	0	65	10
Bedstraw	30	40	90	10
Blackgrass	-	0	45	0
Chickweed	25	40	60	35
Cocklebur	10	40	30	40
Corn	15	0	0	0
Cotton	95	50	70	40
Crabgrass	10	40	40	10
Downy Brome	0	0	0	10
Duck salad	35	30	90	20
Giant foxtail	10	30	60	0
Italn Ryegrass	25	0	35	0
Johnsongrass	20	20	20	0
Lambsquarter	95	70	90	90
Morningglory	85	40	40	50
Rape	50	65	80	10
Redroot Pigweed	85	90	80	60
Rice Japonica	25	35	80	40
Soybean	70	60	60	70
Speedwell	85	55	45	25
Sugar beet	70	70	80	60
Umbrella sedge	80	90	95	0
Velvetleaf	50	20	30	35
Watergrass 2	40	40	70	10
Wheat	10	0	0	0
Wild buckwheat	0	35	0	30
Wild oat	15	10	60	0

C2 g/ha 1 3 4 6 7 8 9 10 14 18 23 24 26 29 30 32 34 35 16 37 BROGENCE 1 2 0 10 10 10 10 10 10 10 10 10 10 10 10 1		38 39		. •	0	0	45			5 25	30	06 0	30	26	08	0,		0, 0	0	100	20	-	100	96		0
A 1 3 4 6 7 8 9 10 14 18 23 24 26 29 30 32 32 32 32 32 32 32 32 32 32 32 32 32				٥								01 0								0 10			10	9		90 85
A 1 3 4 6 7 8 9 10 14 18 23 24 26 29 30 32 32 32 32 32 32 32 32 32 32 32 32 32												01		9						0 10		0 10	0 10	2 10		Š
A 1 3 4 6 7 8 9 10 14 18 23 24 26 29 30 32 32 32 32 32 32 32 32 32 32 32 32 32				2	-			'n	۰											0 10			0 70			
A 1 3 4 6 7 8 9 10 14 18 23 24 26 29 30 32 32 32 32 32 32 32 32 32 32 32 32 32				-																		0 10	0.10	8		
A 1 3 4 6 7 8 9 10 14 18 23 24 26 29 30 18 9 10 14 18 23 24 26 29 30 18 9 10 14 18 23 24 26 29 30 18 9 19 9 19 14 18 23 24 26 29 30 18 9 19 9 19 14 18 23 24 26 29 30 18 9 19 18 29 29 18 18 18 23 24 26 29 30 18 18 29 19 19 19 19 19 19 19 19 19 19 19 19 19				_	-		9												0							
A 1 3 4 6 7 8 9 10 14 18 23 24 26 29 18 9 10 14 18 23 24 26 29 18 9 10 14 18 23 24 26 29 18 9 10 14 18 23 24 26 29 18 9 19 9 19 14 18 23 24 26 29 18 9 19 9 19 14 18 23 24 26 29 18 9 19 19 14 18 23 24 26 29 18 9 19 19 19 19 19 19 19 19 19 19 19 19 1				0	0,	52	12	22	2	00	0				2	52				0					,	,
A 1 3 4 6 7 8 9 10 14 18 23 24 26 85 90 95 90 80 45 35 65 50 35 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					. 05		2	2	2																	,
A 1 3 4 6 7 8 9 10 14 18 23 24 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10				0	35	5	52	75	0	0	•		2						9		,	32	92		-	,
1 3 4 6 7 8 9 10 14 18 23 23 24 25 25 25 25 25 25 25		24		0	9	8	9	9	0	30	•	20	•								0				-	,
1 3 4 6 7 8 9 10 14 14 6 7 8 9 10 14 14 6 7 8 9 10 14 15 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	g	23		•	20	20	35	30	50	10	9	75	•	6	2				0		20				0	
1 3 4 6 7 8 9 10 14 14 6 7 8 9 10 14 14 6 7 8 9 10 14 15 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	MPOU	18		35	75	9	40	8	20	9	9	90	9	8	8				•	20				2	25	
1 3 4 6 7 8 9 10 10 10 10 10 10 10 10	8	7		20	80	40	20	10	20	9	1	8	25	90	90	0,	95	30	0	20	20		52	9	30	
1 3 4 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		10		9	96	0	9	65	33	9	,				82				•	20				30	8	
a 1 3 4 6 7 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9		6		35	90	0	20	92	30	20	0		20	6	80	82	92	20	10	\$	40	\$	10	5	10	
1 3 4 6 10 10 10 10 10 10 10 10 10 10 10 10 10 1		œ		45	80	10	70	0	0	9	•		•	9	20	20	09	30	0	20	10	20	20	20	25	
8 1 3 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		7		8	80	8	90	70	•	75	0	9	30	9	8	90	20	ន	0	•	35	20	25	30	9	
a 1 3 4 6 6 100 100 6 6 100 100 100 100 100 100		9		8	90	0	80	30	32	8	ដ	8	22	9	80	75	8	32	ព្	90	02	45	80	\$	75	
ed 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4		70	95	901	100	20	9	82	•	001	45	9	8	95		75	75	9	70	100	100	90	95	
ed 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		٣		8	90			95	•	Ģ .	20		80	001	92	80	00	8	\$	90	80				95	
g 9		-		20	82		9	75	0	75	12	82	32		2	75	32	9	10	20	40				80	
			PREEMERGENCE	Barley Igri	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy Brome		Itain Ryegrass	Johnsongrass	Lambsquarter	Morningglory	Rape	Redroot Pigweed	Soybean	Speedwell	Sugar beet	Velvetleaf	Wheat	

••

,										S	COMPOUND		٠										
Rate 62 g/ha	40	41	42	49	20	51	52	53	55	28	61	63	89	6	7	5	7		::		:	:	
PREEMERGENCE													:	}	•	?			7		1	5	
Barley Igri	65	0	0	10	70	10	1	9	30	0	0	0	٠,	,				5	5	•	5	٠. ٩	
Barnyardgrass	75	9	20	91	95	45	8	8	55	65	20	. 55	9	6		8	, 5	2 4	3 \$	- 5	3 8	٠ :	
Bedstraw	0	•	0	0	85	0	9	•	•	25			; •	٠		2	2	9	3 5	6	2 :	9 4	
Blackgrass	55	10	20	25	75	30	75	8	70	,								٠ ;	2 1	- :	9 :		
Chickweed	9	10	30		2	0	01	9	8	2	, ,	, ,		,				? :	6 8	g (÷ ;		
Cocklebur	10	۰	0	•	65	•	0	2	9 0	•	3 -	۶ ۵		۽ ،		٠ و		3 0	8 6		۶ ،	٠ ;	
Corn	70	35	•	•	65	20	30	35	•	20			, ,	2 4		3 6	, ,	٠,	٠ ,	>		3	
Cotton	•	0	0	0	70	۰	۰	۰	10	•			, ,	;		2 8	2 6	,	9 '		- :	•	
Crabgrass	90	90	100	10	100	39	100	95	2	, 8		, 2	2 5	۶ د		2 5	2 5	٠ ا			2 5		
Downy Brome	9	2	10	2	20	0	20	52	۰	•		-	; ,			3	2	2 2	3 0		2 ;	g (
Giant foxtail	96	100	100	35	100	9	35	65		100	. 85		2	5		. 6			- 5	2 2	e 6	- :	127
Italn Ryegrass	82	20	10	20	80	25	75	80		,	, -		,	3		3		0 :			3 3	01	•
Johnsongrass	32	40	0	0	20	:		6	2	3	,		٠ :	٠ ;				20	9		20	•	
Lambsquarter	100	10	82	4	100	9	8		3 5	,	2 2		2	ç	5	2	20	90			20	2	
Morningglory	40	52	20		100	, 0	3 5		3 2	2	0 6		, ,	, ,		. ;		0			95	95	
Rape	5	0	•		2	•	2	3	; •	3	2 :		2	2		90	•	12	8	6	45	10	
Redroot Pigues	S	8	, 5		3	,	7	3	•	3	₹		,	ı	ı	ı		20	2	•	8	9	
555 E	?	2	9		100	č	80	9	95	8	90	30 1	100	82	0	95	2	52	06	8	30	0	
soypean	•	0	0	0	90	20	10	52	0	9	01	0		20		96	20	20		2	5	5	
Speedwell	100	30	30	0	100	25	100	8	100	82	8	•	,	,		,						2 5	
Sugar beet	9	80	0	20	100	20	100	8	100	100	0	-		,								2	
Velvetleaf	20	30	0	0	90	0	20	30		6	5										2	0	
Wheat	9	20	۰	•	5	•	5	•	;	3	? •		2	2		3	2	R	9	e e	9		
Wild buckwheat	30	0	0	•	2		2	, 4	3	3 :		٠ ،		ı							52		
Wild oat	5	-				•	3	3 8	,	3	>	>					-	2	2		。	2	
	3	•	•	•	C	>	Š	2	2	0	0		,	,		,	,	30	10		2	_	

TABLE C POSTEMERGENCE

															1	28																	
	,	,	9 .	52	32	65	30	6	30	30	2	;	; '	٠ :	2 :	9	20	Ç	6	20	80	20	25	9	95	9	55	£	: :	ş (۰,	32	\$
	ž	3	2	9	30	30	0	25	0	10	40	,	•	9	2 5	2	30	20	\$	40	30	80	9	6		2	6	20		2 0	۰,	9	32
	ř	3	2	82	2	9	30	30	0	30	30	5	3 :	3 8	2	9	20	ç	9	75	65	8	75	90		8	8	35	S	2 4	٠,		8
	34	: :	3	8	9	ŝ	2	2	0	6	6	5		3 :	2 6	2 :	22	40	40	ı	0	9	6	8	,	40	0	9	4	3 6	٠,		8
	32	•	,	?	0	0	32	0	0	0	0	0	•	٠,	3 5	3 '	0	40	0	20	0	,	25	35	•	9	2	20	2		٠	•	8
	33		٠,	Ç		1	•	•	1	1	1	1		9	3				ı		ï		30	1	ı	1	8	,	90				,
	30	•	,	9	2	\$	ŝ	65	30	15	9	20	•	, ,	3 6	3	٠,	32	20	65	9	9	20	2	90	35	8	2	52			2 9	2
	29	•	, 5	3	9	32	ខ	32	0	10	9	35	0	. 6	, ,	,		ş	45	9	•	9	3	8		8	2	2	6		, ,		
	8	•	Š	3		•	•	٠	1	•	•	•		30	, ,		,		ı	ı	,		ş	ī		ī	8	ï	8		,		,
	56	0	, 6	3 2	3 (ş	52	8	9	20	20	30	0	10	30		,	2 :	32	8	2			2	92	82	2	52	65	۰		: 5	,
	25	1	40	;		,	,	,	•	,	ı	,	,	30						,			 2		,	,	9	,	\$,		,
	24	0	6		; ;	2	20	9	20	20	90	30	0	9	25	. 02		2	٠,	9	20			5	5	8	•	32	2	۰	2	5	,
	22	•	45						ı	ī	,		•	9	,	,							 D		,		8		8		,	,	•
	18	9	9	9	: 6	2 8	2	20	0	20	ç	2	0	30	9	9	: 5	3 5	2 :	2 9	2		0		06		•	52	~ ≘	2	8	2	,
Š	14	ព	9	6	: 5	2 :	9	90	22	20	\$	8	2	8	20	30							•				•		30		5	10	
	10	52	20	35		3 ;	6	8	2	2	8	9	0	98	8	2						2 9	-	- '			-		32		50 4	35 4	
	0	33	20	35	ç	3 8	2 :	2	6	20	8	22		8	55	2	9									_			•••		2	40	
	8	20	20	6	9		9 9	3 '	0	22		2	0	35	20	20	35								2 6			•	2		35 4	35 4	
	7	2	75	9	20		: :	3 '	٠,		0	22	0		20		35												•	2	•	20 3	
	4	0	. 07	52	9			2 2	2 :	R :		9	0	20	15		9							• •			2 6	•	-		_	25 2	
	6	0	9	20	90			2 4				22		9	6	2	35 4	92	_		•					•			-			30 2	
		0	40	30	,	9							2			20	91	9			-	•	_					•				30 3	
	Rate 31 g/ha	Barley Igri	Barnyardgr Flood	Barnyardgrass	Bedstraw	Blackgrass				,			a u			Italn Ryegrass 2	Johnsongrass 1	Lambsquarter 6	Morningglory		ot Pigweed					a L					kwheat	Wild oat 30	

TABLE C				OMPO	TINI)		
Rate 31 g/h	1a 38	39			-	50	51
POSTEMERGENCE	2				•		-
Barley Igri	10	30	0	0	20	30	20
Barnyardgr Fl	.ood 30	60	55	40	15	65	10
Barnyardgrass	35	40	20	20	c	90	30
Bedstraw	40	80	0	0	20	50	25
Blackgrass	40	35	40	0	10	30	10
Chickweed	55	35	85	30	. 0	30	40
Cocklebur	0	75	. 0	30	30	80	40
Corn	30	10	10	0	0	10	20
Cotton	85	90	25	0	90	90	80
Crabgrass	50	25	45	20	20	70	20
Downy Brome	0	0	0	0	0	0	0
Duck salad	25	40	20	0	0	70	10
Giant foxtail	70	35	45	10	15	70	20
Italn Ryegras:	s 60	40	10	0	0	0	0
Johnsongrass	40	30	0	15	0	20	35
Lambsquarter	50	95	0	0	20	80	70
Morningglory	80	70	30	25	70	90	35
Rape	0	65	30	0	10	65	20
Redroot Pigwee	ed 60	80	-	20	45	75	35
Rice Japonica	20	50	-	0	0	50	10
Soybean	70	60	. 0	0	40	90	50
Speedwell	50	70	100	10	55	100	50
Sugar beet	45	90	70	0	60	65	55
Umbrella sedge	0	80	40	40	0	100	10
Velvetleaf	40	35	30	10	20	60	45
Watergrass 2	20	70	45	30	0	65	0
Wheat	0	10	0	0	0	10	0
Wild buckwheat	20	20	0	10	0	0	0
Wild oat	45	30	0	15	10	50	0

7										Ö	COMPOUND	ē										
Rate 31 g/ha	-	٣	4	7	80	6	10	7	18	7	26	29	30	2	72	ž	,	;				
PREEMERGENCE												i	;	;					9	39 40	4	
Barley Igri	20	85	9	9	30	25	6	25	10	c	c	•	•	•	,	,			,		٠.	
Barnyardgrass	80	20	90	70	40	9	80	6		, 5	, ,	, ;	,	,	2 :	٠ :		-		-		
Bedstraw	20	95	20	10				,	3	;	2 6	;	,		ρ.	2		•		50 40	÷	_
Blackgrass	,	8	8	: :	, ,	•	۲ (٠,	3	3	2	ç	22	0	2	<u>۾</u>	2	8 8	82	0		
Chickney	; ;	3 8	2	9	3	2	20	30	20	22	10	0	0	10	•	9	25	9 02	9	35 45	2	_
CHICKWEED		č	20	20	0	10	0	0	20	10	•	0	0	0	0	90	0	95	95 95	5	•	_
Cocklebur	0	0	12	•	0	10	10	10	20	•	ı	0	10	0	0	10		10				
Corn	65	20	80	40	20	9	25	45	20	01	0	0	20	0	40				45 25			
Cotton	10	10	•	•	0	0	0	10	10	•	0	0		0	- 1							
Crabgrass	70	75 1	100	9	65	95	82	8	20	40	20	80	80	20	95			-		۰	٠	
Downy Brome	52	9	32	10	•	10	0	10	0	0	10											
Giant foxtail	45	70 1	100	20	65	70	25	. 69	70	20	20		9									
Italn Ryegrass	45	82	20	75	9	20	85	2	9	ž	٠		: :								_	
Johnsongrass	9	6	ê	8	۶.		;	3 5					2					80 75	5 75		2	
Lambsquarter			3 5	3 8	3 8		2	3 :			-		30			9 59	6 09	90 90	20	20	10	
Morningalory			3 5	3	2 8	2 3	2	£ :			-			20	95 100		95 9	- 56	- 95	100	2	
Rane	3	2	2 :	•	9	9	0	20		20	9	30	52		0	75 3	35 4	40 90	65	30	20	
adio.	9	0	91	0	0	9	0	0	0	0	0		2		0	10	0	20 10	۰	15		
Redroot Pigweed	20	22	30	0	20	ę	9	30	20	ī	9	95	30	,	75 100		001 06	-	-		,	
Soybean	22	32	20	10	•	30	20	0	9	0	0				10 6			9				
Speedwel1	20	90 1	100	9	20	40	9	90	75 10	100	85	,	,							•		
Sugar beet	20	30 1	100	10	9	10	25	25	10	100	85	9	٠ د		2 2 2	•			2		2	
Velvetleaf	50	20	35	25	20	20	c	5					,		2 '			_	_	9	ដ	
Wheat	40	8	80	8	-	5	,	•		, ,	, ,	,		,		22	5 5	8	75	10	20	
Wild buckwheat	0	06	5	•	-			,						-			9	30	۰	20	0	
Wild oat	20		, ,	, 8	2 6	,	٠ (2 '	0				0 85		0 20	40	30	10	•	
			2	2	2		9	2	9	0	0		0	20 7	70 60	0 40	45	5	20	,	•	

TABLE C	c	ОМРО	JND
Rate 31 g/ha	49	50	51
PREEMERGENCE			
Barley Igri	10	65	0
Barnyardgrass	0	90	45
Bedstraw	0	80	0
Blackgrass	10	50	20
Chickweed	0	70	0
Cocklebur	0	65	0
Corn	0	55	10
Cotton .	0	10	0
Crabgrass	0	80	20
Downy Brome	10	0	0
Giant foxtail	20	100	35
Italn Ryegrass	20	60	0
Johnsongrass	0	30	10
Lambsquarter	20	100	0
Morningglory	0	90	0
Rape	0	95	0
Redroot Pigweed	15	100	50
Soybean	0	75	10
Speedwell	0	95	0
Sugar beet	10	100	0
Velvetleaf	0	90	0
Wheat	0	20	0
Wild buckwheat	0	10	0
Wild oat	0	70	0

TABLE C	COM	POUND	TABLE C	COM	IPOUND
Rate 16 g/ha	37	38	Rate 16 g/ha	37	38
POSTEMERGENCE			PREEMERGENCE		
Barley Igri	40	10	Barley Igri	20	0
Barnyardgr Flood	1 0	0	Barnyardgrass	40	50
Barnyardgrass	20	20	Bedstraw	0	25
Bedstraw	65	40	Blackgrass	10	10
Blackgrass	30	30	Chickweed	90	90
Chickweed	40	40	Cocklebur	0	0
Cocklebur	10	0	Corn	0	10
Corn	20	20	Cotton	0	0
Cotton	70	85	Crabgrass	40	40
Crabgrass	40	30	Downy Brome	30	20
Downy Brome	0	0	Giant foxtail	60	90
Duck salad	35	20	Italn Ryegrass	0	60
Giant foxtail	50	40	Johnsongrass	30	50
Italn Ryegrass	0	0	Lambsquarter	95	90
Johnsongrass	20	20	Morningglory	10	30
Lambsquarter	65	45	Rape	10	0
Morningglory	60	70	Redroot Pigweed	100	90
Rape	20	0	Soybean	0	20
Redroot Pigweed	50	40	Speedwell	90	95
Rice Japonica	25	0	Sugar beet	95	100
Soybean	70	60	Velvetleaf	10	30
Speedwell	50	35	Wheat	0	0
Sugar beet	60	40	Wild buckwheat	0	30
Umbrella sedge	0	0	Wild oat	25	0
Velvetleaf	30	30			
Watergrass 2	20	10			
Wheat	0	0			
Wild buckwheat	35	10			
Wild oat	20	20			

TEST D

Seeds of barnyardgrass (Echinochloa crus-galli), bindweed (Convolvulus arvensis), black nightshade (Solanum ptycanthum dunal), cassia (Cassia obtusifolia), cocklebur (Xanthium strumarium), common ragweed (Ambrosia artemisiifolia), com (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria spp.), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberii), green foxtail (Setaria viridis), jimsonweed (Datura stramonium), johnsongrass (Sorghum halepense), lambsquarter (Chenopodium album), morningglory (Ipomoea spp.), pigweed (Amaranthus retroflexus), prickly sida (Sida spinosa), shattercane (Sorghum vulgare), 10 signalgrass (Brachiaria platyphylla), smartweed (Polygonum pensylvanicum), soybean (Glycine max), sunflower (Hellanthus annuus), velvetleaf (Abutilon theophrasti), wild proso (Panicum miliaceum), woolly cupgrass (Eriochloa villosa), yellow foxtail (Setaria lutescens) and purple nutsedge (Cyperus rotundus) tubers were planted into a sandy loam or clay loam soil. These crops and weeds were grown in the greenhouse until the 15 plants ranged in height from two to eighteen cm (one to four leaf stage), then treated postemergence with the test chemicals formulated in a non-phytotoxic solvent mixture which includes a surfactant. Pots receiving preemergence treatments were planted immediately prior to test chemical application. Pots treated in this fashion were placed in the greenhouse and maintained according to routine greenhouse procedures.

Treated plants and untreated controls were maintained in the greenhouse approximately 14-21 days after application of the test compound. Visual evaluations of plant injury responses were then recorded. Plant response ratings, summarized in Table D, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control.

TABLE D	COMPOUND	TABLE D	COMPOUND
Rate 560 g/h	a 41 42	Rate 280 g/ha	41 42
PREEMERGENCE		PREEMERGENCE	
SANDY LOAM SO	IL.	SANDY LOAM SOI	L .
Barnyardgrass	100 100	Barnyardgrass	100 100
Bindweed	100 50	Bindweed	100 40
Blk Nightshade	100 80	Blk Nightshade	100 80
Cassia	80 10	Cassia	10 0
Cocklebur	70 10	Cocklebur	50 O
Corn	90 60	Corn	80 40
Cotton	40 0	Cotton	10 0
Crabgrass	100 100	Crabgrass	100 100
Fall Panicum	100 100	Fall Panicum	100 95
Giant Foxtail	100 100	Giant Foxtail	100 100
Green Foxtail	100 100	Green Foxtail	100 100
Jimsonweed	100 20	Jimsonweed	90 0
Johnson Grass	100 90	Johnson Grass	90 60
Lambsquarter	100 100	Lambsquarter	100 100
Morningglory	90 100	Morningglory	50 100
Nutsedge	95 50	Nutsedge	90 30
Pigweed	100 100	Pigweed	100 85
Prickly Sida	100 0	Prickly Sida	50 0
Ragweed	100 80	Ragweed	100 50
Shattercane	95 100	Shattercane	90 70
Signalgrass	100 100	Signalgrass	100 100
Smartweed	100 30	Smartweed	100 0
Soybean	30 0	Soybean	10 0
Sunflower	90 10	Sunflower	70 20
Velvetleaf	100 100	Velvetleaf	100 100
Wild Proso	100 95	Wild Proso	90 85
Woolly cupgrass	85 100	Woolly cupgrass	70 80
Yellow Foxtail	100 95	Yellow Foxtail	100 100

TABLE D	c	OMPO	UND	TABLE D		COM	IPOUI	ND
Rate 140 g/ha	41	42	73	Rate 70 g/ha		4 41	4:	2 73
PREEMERGENCE				PREEMERGENCE				
SANDY LOAM SOI	L			SANDY LOAM SOI	L			
Barnyardgrass	95	50	100	Barnyardgrass	85	80	10	100
Bindweed	100	10	100	Bindweed	20	100	(80
Blk Nightshade	95	50	95	Blk Nightshade	100	50	10	95
Cassia	0	0	80	Cassia	20	0	c	80
Cocklebur	30	0	40	Cocklebur	50	0	0	20
Corn	80	20	70	Corn	70	60	10	50
Cotton	10	0	90	Cotton	30	0	0	10
Crabgrass	100	100	100	Crabgrass	100	100	100	100
Fall Panicum	100	90	100	Fall Panicum	100	95	50	100
Giant Poxtail	100	100	100	Giant Foxtail	100	100	100	100
Green Foxtail	100	100	100	Green Foxtail	100	100	100	100
Jimsonweed	50	0	100	Jimsonweed	100	10	0	100
Johnson Grass	95	30	80	Johnson Grass	100	80	10	50
Lambsquarter	100	100	100	Lambsquarter	100	100	100	100
Morningglory	50	20	100	Morningglory	50	40	0	70
Nutsedge	80	30	90	Nutsedge	70	60	10	70
Pigweed	100	40	100	Pigweed	100	100	-	85
Prickly Sida	10	0	100	Prickly Sida	100	0	0	100
Ragweed	95	0	100	Ragweed	100	100	0	100
Shattercane	90	30	90	Shattercane	50	50	10	60
Signalgrass	100	100	100	Signalgrass	95	95	95	80
Smartweed	95	0	80	Smartweed	20	100	0	40
Soybean	0	0	95	Soybean	50	0	0	70
Sunflower	30	10	70	Sunflower	70	10	0	50
Velvetleaf	100	100	100	Velvetleaf	100	100	0	100
Wild Proso	80	40	L00	Wild Proso	90	40	10	100
Woolly cupgrass	40	50	70	Woolly cupgrass	90	10	10	70
Yellow Foxtail	100	80 1	00	Yellow Foxtail	90	90	50	100

TABLE D		COM	POUND	TABLE D	c	OMPOUNT
Rate 35 g/ha	. 4	42	73	Rate 17 g/ha	-	
PREEMERGENCE				SANDY LOAM SOIL	,	
SANDY LOAM SOI	L			PREEMERGENCE		
Barnyardgrass	50	10	90	Barnyardgrass	30	30
Bindweed	10	0	0	Bindweed	10	0
Blk Nightshade	95	10	95	Blk Nightshade	40	80
Cassia	0	0	60	Cassia	0	0
Cocklebur	20	0	10	Cocklebur	0	0
Corn	60	10	40	Corn	40	5
Cotton	10	0	-	Cotton	0	0
Crabgrass	100	100	100	Crabgrass	100	40
Fall Panicum	100	10	100	Fall Panicum	70	60
Giant Foxtail	100	00	100	Giant Foxtail	90	60
Green Foxtail	100	00	100	Green Foxtail	60	50
Jimsonweed	80	0	100	Jimsonweed	10	70
Johnson Grass	50	10	20	Johnson Grass	30	0
Lambsquarter	100	180	100	Lambsquarter	50	100
Morningglory	20	0	50	Morningglory	-	0
Nutsedge	40	0	50	Nutsedge	10	10
Pigweed	90	1 0	80	Pigweed	40	70
Prickly Sida	80	0	70	Prickly Sida	10	40
Ragweed	100	0	50	Ragweed	40	30
Shattercane	50	10	50	Shattercane	30	0
Signalgrass	95	60	70	Signalgrass	70	50
Smartweed	30	0	40	Smartweed	0	0
Soybean	40	0	50	Soybean	10	20
Sunflower	20	0	50	Sunflower	0	30
Velvetleaf	100	0 :	100	Velvetleaf	0	0 ,
Wild Proso	90	10	70	Wild Proso	30	30
Woolly cupgrass	90	10	50	Woolly cupgrass	30	0
Yellow Foxtail	60	20	90	Yellow Foxtail	40	50

TABLE D	COMPOUND	TABLE D COMPOUND
Rate 8 g/ha	4 73	Rate 560 g/ha 41
PREEMERGENCE		PREEMERGENCE
SANDY LOAM SOIL		CLAY LOAM SOIL
Barnyardgrass	10 0	Barnyardgrass 100
Bindweed	0 0	Bindweed 100
Blk Nightshade	0 0	Blk Nightshade 100
Cassia	0 0	Cassia 0
Cocklebur	0 0	Cocklebur 5
Corn	10 0	Corn 100
Cotton	0 0	Cotton 10
Crabgrass	10 0	Crabgrass 100
Fall Panicum	10 50	Fall Panicum 100
Giant Foxtail	30 0	Giant Foxtail 100
Green Foxtail	0 0	Green Foxtail 100
Jimsonweed	0 30	Jimsonweed 100
Johnson Grass	10 0	Johnson Grass 100
Lambsquarter	0 50	Lambsquarter 100
Morningglory	0 0	Morningglory 70
Nutsedge	0 0	Nutsedge 10
Pigweed	0 30	Pigweed 100
Prickly Sida	0 0	Prickly Sida 30
Ragweed	0 0	Ragweed 100
Shattercane	0 0	Shattercane 90
Signalgrass	0 30	Signalgrass 100
Smartweed	0 0	Smartweed 100
Soybean	0 0.	Soybean 0
Sunflower	0 0	Sunflower 90
elvetleaf	0 0	Velvetleaf 95
ild Proso	10 0	Wild Proso 100
cupgrass toolly cupgrass	10 0	Woolly cupgrass 60
ellow Foxtail	0 20	Yellow Foxtail 100

TABLE D	COMPOUND	TABLE D	COMPOUN
Rate 280 g/ha	41	Rate 140 g/ha	41
PREEMERGENCE		PREEMERGENCE	
CLAY LOAM SOII		CLAY LOAM SOIL	
Barnyardgrass	70	Barnyardgrass	60
Bindweed	100	Bindweed	80
Blk Nightshade	100	Blk Nightshade	100
Cassia	0	Cassia	0
Cocklebur	0	Cocklebur	0
Corn	70	Corn	60
Cotton	0	Cotton	-
Crabgrass	100	Crabgrass	100
Fall Panicum	100	Fall Panicum	90
Giant Foxtail	100	Giant Foxtail	100
Green Foxtail	100	Green Foxtail	100
Jimsonweed	80	Jimsonweed	80
Johnson Grass	60	Johnson Grass	55
Lambsquarter	100	Lambsquarter	100
Morningglory	70	Morningglory	5
Nutsedge	0	Nutsedge	0
Pigweed	100	Pigweed	100
Prickly Sida	30	Prickly Sida	10
Ragweed	90	Ragweed	90
Shattercane	80	Shattercane	20
Signalgrass	100	Signalgrass	100
Smartweed	100	Smartweed	100
Soybean	0	Soybean	0
Sunflower	80	Sunflower	40
Velvetleaf	70	Velvetleaf	0
Wild Proso	70	Wild Proso	20
Woolly cupgrass	50	Woolly cupgrass	40
Yellow Foxtail	100	Yellow Foxtail	-

TABLE D	COMPOUND	TABLE D	COMPOUN	D
Rate 70 g/ha	41	Rate 35 g/ha	41	
PREEMERGENCE		PREEMERGENCE		
CLAY LOAM SOIL	,	CLAY LOAM SOIL		
Barnyardgrass	30	Barnyardgrass	20	
Bindweed	80	Bindweed	20	
Blk Nightshade	100	Blk Nightshade	80	
Cassia	0	Cassia	0	
Cocklebur	0	Cocklebur	0	
Corn	50	Corn	10	
Cotton	0	Cotton	-	
Crabgrass	100	Crabgrass	100	
Fall Panicum	90	Fall Panicum	70	
Giant Foxtail	100	Giant Foxtail	80	
Green Foxtail	100	Green Foxtail	70	
Jimsonweed	40	Jimsonweed	0	
Johnson Grass	20	Johnson Grass	20	
Lambsquarter	100	Lambsquarter	100	
Morningglory	5	Morningglory	0	
Nutsedge	0	Nutsedge	0	
Pigweed	100	Pigweed	100	
Prickly Sida	0	Prickly Sida	0	
Ragweed	45	Ragweed	40	
Shattercane	10	Shattercane	10	
Signalgrass	90	Signalgrass	70	
Smartweed	100	Smartweed	0	
Soybean	0	Soybean	0	
Sunflower	40	Sunflower	0	
Velvetleaf	0	Velvetleaf	0	
Wild Proso	20	Wild Proso	0	
Woolly cupgrass	0	Woolly cupgrass	0	
Yellow Foxtail	100	Yellow Foxtail	70	

TEST E

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods 5 of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test. Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include american black nightshade (Solanum americanum), arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia). com (Zea mays), cotton (Gossypium hirsutum). eastern black nightshade (Solanum ptycanthum), fall panicum (Panicum dichotomiflorum), field bindweed (Convolvulus arvensis), Florida beggarweed (Desmodium purpureum), giant foxtail (Setaria faberii), hairy beggarticks (Bidens pilosa), ivyleaf morningglory (Ipomoea hederacea), johnsongrass (Sorghum halepense), ladysthumb (Polygonum persicaria), large crabgrass (Digitaria sanguinalis), purple nutsedge (Cyperus rotundus), redroot pigweed (Amaranthus retroflexus), soybean (Glycine max), surinam grass (Brachiaria decumbens), velvetleaf (Abutilon theophrasti) and wild poinsettia (Euphorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 14 to 21 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table E, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response () means no test result.

TABLE E	COMPOUND	TABLE E	COMPOUND
Rate 280 g/ha	41	Rate 280 g/ha	41
POSTEMERGENCE		PREEMERGENCE	
Arrowleaf Sida	35	Arrowleaf Sida	75
Barnyardgrass	30	Barnyardgrass	95
Cocklebur	25	Cocklebur	20
Common Ragweed	35	Common Ragweed	90
Corn	0	Corn	65
Cotton	40	Cotton	-
Estrn Blknight	40	Fall Panicum	95
Fall Panicum	35	Field Bindweed	95
Field Bindweed	30	Fl Beggarweed	0
Fl Beggarweed	25	Giant Foxtail	100
Giant Foxtail	25	Hairy Beggartic	80
Hairy Beggartic	45	Ivyleaf Mrnglry	60
Ivyleaf Mrnglry	25	Johnsongrass	85
Johnsongrass	15	Ladysthumb	100
Ladysthumb	55	Lambsquarters	100
Lambsquarters	15	Large Crabgrass	100
Large Crabgrass	80	Purple Nutsedge	-
Purple Nutsedge	0	Redroot Pigweed	100
Redroot Pigweed	45	Soybean	-
Soybean	20	Surinam Grass	100
Surinam Grass	25	Velvetleaf	25
Velvetleaf	20	Wild Poinsettia	0
Wild Poinsettia	20		

TABLE E	COMPOUND	TABLE E	COMPOUND
Rate 140 g/ha	41	Rate 140 g/ha	41
POSTEMERGENCE		PREEMERGENCE	
Arrowleaf Sida	20	Arrowleaf Sida	30
Barnyardgrass	20	Barnyardgrass	85
Cocklebur	-	Cocklebur	0
Common Ragweed	20	Common Ragweed	90
Corn	0	Corn	50
Cotton	35	Cotton	-
Estrn Blknight	20	Fall Panicum	-
Fall Panicum	30	Field Bindweed	55
Field Bindweed	25	Fl Beggarweed	0
Fl Beggarweed	15	Giant Foxtail	100
Giant Foxtail	15	Hairy Beggartic	65
Hairy Beggartic	35	Ivyleaf Mrnglry	10
Ivyleaf Mrnglry	15	Johnsongrass	65
Johnsongrass	10	Ladysthumb	85
Ladysthumb	25	Lambsquarters	95
Lambsquarters	0	Large Crabgrass	100
Large Crabgrass	50	Purple Nutsedge	45
Purple Nutsedge	0	Redroot Pigweed	100
Redroot Pigweed	35	Soybean	0
Soybean	15	Surinam Grass	100
Surinam Grass	20	Velvetleaf	0
Velvetleaf	15	Wild Poinsettia	0
Wild Poinsettia	15		

TABLE E	COMPOUND	TABLE E	COMPOUND
Rate 70 g/ha	41	Rate 70 g/ha	41
POSTEMERGENCE		PREEMERGENCE	
Arrowleaf Sida	10	Arrowleaf Sida	15
Barnyardgrass	10	Barnyardgrass	75
Cocklebur	10	Cocklebur	0
Common Ragweed	15	Common Ragweed	45
Corn	0	Corn	0
Cotton	30	Cotton	0
Estrn Blknight	10	Fall Panicum	80
Fall Panicum	10	Field Bindweed	0
Field Bindweed	10	Fl Beggarweed	-
F1 Beggarweed	0	Giant Foxtail	90
Giant Fortail	10	Hairy Beggartic	25
Hairy Beggartic	30	Ivyleaf Mrnglry	0
Ivyleaf Mrnglry	0	Johnsongrass	15
Johnsongrass	0	Ladysthumb	55
Ladysthumb	0	Lambsquarters	85
Lambsquarters	0	Large Crabgrass	100
Large Crabgrass	25	Purple Nutsedge	40
Purple Nutsedge	0	Redroot Pigweed	100
Redroot Pigweed	25	Soybean	0
Soybean	0	Surinam Grass	55
Surinam Grass	15	Velvetleaf	0
Velvetleaf	10	Wild Poinsettia	0
Wild Poinsettia	10		

TABLE E	COMPOUND	TABLE E	COMPOUNT
Rate 35 g/ha	41	Rate 35 g/ha	41
POSTEMERGENCE		PREEMERGENCE	
Arrowleaf Sida	0	Arrowleaf Sida	0
Barnyardgrass	0	Barnyardgrass	65
Cocklebur	0	Cocklebur	0
Common Ragweed	10	Common Ragweed	30
Corn	0	Corn	0
Cotton	10	Cotton	0
Estrn Blknight	0	Fall Panicum	60
Fall Panicum	0	Field Bindweed	0
Field Bindweed	0	F1 Beggarweed	-
Fl Beggarweed	0	Giant Foxtail	90
Giant Foxtail	0	Hairy Beggartic	0
Hairy Beggartic	25	Ivyleaf Mrnglry	0
Ivyleaf Mrnglry	0	Johnsongrass	15
Johnsongrass	0	Ladysthumb	-
Ladysthumb	0	Lambsquarters	20
Lambsquarters	0	Large Crabgrass	95
Large Crabgrass	10	Purple Nutsedge	35
Purple Nutsedge	0	Redroot Pigweed	95
Redroot Pigweed	15	Soybean	0
Soybean	0	Surinam Grass	15
Surinam Grass	10	Velvetleaf	0
Velvetleaf	0	Wild Poinsettia	0
Wild Poinsettia	· o		

TABLE E	COMPOUND	TABLE E	COMPOUND
Rate 17 g/ha	41	Rate 17 g/ha	41
POSTEMERGENCE		PREEMERGENCE	
Arrowleaf Sida	0	Arrowleaf Sida	0
Barnyardgrass	0	Barnyardgrass	35
Cocklebur	0 -	Cocklebur	-
Common Ragweed	5	Common Ragweed	10
Corn	0	Corn	0
Cotton	0	Cotton	-
Estrn Blknight	0	Fall Panicum	50
Fall Panicum	0 .	Field Bindweed	-
Field Bindweed	0	Fl Beggarweed	0
Fl Beggarweed	0	Giant Foxtail	70
Giant Foxtail	0	Hairy Beggartic	0
Hairy Beggartic	15	Ivyleaf Mrnglry	0
Ivyleaf Mrnglry	0	Johnsongrass	0
Johnsongrass	0	Ladysthumb	-
Ladysthumb	0	Lambsquarters	-
Lambsquarters	0	Large Crabgrass	65
Large Crabgrass	0	Purple Nutsedge	-
Purple Nutsedge	0	Redroot Pigweed	65
Redroot Pigweed	10	Soybean	-
Soybean	0	Surinam Grass	10
Surinam Grass	10	Velvetleaf	0
Velvetleaf	0	Wild Poinsettia	0
Wild Poinsettia	0		

TEST F

Plastic pots were partially filled with silt loam soil. The soil was then saturated with water. Rice (Oryza sativa) seed or seedlings at the 2.0 to 3.5 leaf stage; seeds tubers or plant parts selected from barnyardgrass (Echinochloa crus-galli), duck salad 5 (Heteranthera limosa), early watergrass (Echinochloa oryzoidas), junglerice (Echinochloa colonum), late watergrass (Echinochloa oryzoidas), junglerice (Echinochloa colonum), late watergrass (Echinochloa oryzoidas), redstem (Ammania spp.), rice flatsedge (Cyperus iria), smallflower flatsedge (Cyperus difformis) and tighthead sprangletop (Leptochloa fasicularis), were planted into this soil. Plantings and waterings of these crops and weed species were adjusted to produce plants of appropriate size for the test. At the two leaf stage, water levels were raised to 3 cm above the soil surface and maintained at this level throughout the test. Chemical treatments were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied directly to the paddy water, by pipette, or to the plant foliage, by an air-pressure assisted, calibrated belt convever spray system.

Treated plants and controls were maintained in a greenhouse for approximately
21 days, after which all species were compared to controls and visually evaluated. Plant
response ratings, summarized in Table F, are reported on a 0 to 100 scale where 0 is no
effect and 100 is complete control. A dash (·) response means no test result.

PCT/US96/03803

TABLE F	COMPOUND	TABLE F	COMPOUND
Rate 90 g/ha	69	Rate 375 g/ha	30
PD/TA		PD/TA	
barnyardgrass	55	barnyardgrass	55
ducksalad	100	ducksalad	90
early watergrass	68	early watergrass	60
junglerice	-	junglerice	-
late watergrass	35	late watergrass	50
redstem	98	redstem	100
rice flatsedge	95	rice flatsedge	100
smallflower flatsedge	95	smallflower flatsedge	95
tighthead sprangletop	43	tighthead sprangletop	75
2 LF direct seeded indic	a rice -	2 LF direct seeded indi-	_
2 LF transp. indica rice	30	2 LF transp. indica rice	e 15
2 LF transp. japonica ri	ce 45	2 LF transp. japonica r	

TABLE F					Ü	COMPOUND	QND					
64 g/ha	6	11	22	24		3	4	25 30 41 42	43 44	4	9	7
PD/TA									:	:	3	2
barnyardgrass	35	45	30	9	20	20	92	35	0	20	30	5
ducksalad	90	0	33	30	35	15			45	3	93	8
early watergrass	1	•	١.	20	20	15	•	•	1	1	32	'
junglerice	•	•	68	45	1	•	•	70	0	•	•	,
late watergrass	20	70	23	35	10	25	0	20	9	•	20	20
redst m	9	75	0	65	45	45	28	45	32	0	82	85
rice flatsedge	65	82	75	100	75 100 100	2	53	1	1	-	80	9
smallflow r flatsedge	86	8	82	100	22	8	23	8	9	2	8	6
tighthead sprangletop	•	,	20	39	0	15	•	32	75	0	20	13
2 LF direct seeded indica rice	9	35	20	35	15	20	13	20	25	25	٠	18
2 LF transp. indica rice	9	10	30	10	•	•	0	2	9	2	18	13
2 LF transp. japonica rice	•	•	•	1	1		•	1	٠	•	25	- 1

	69	۰	0	95	- 1	9	۰			90	,	75	~
		35 100	85 100				60 100	100	95 100				•
	2			'	82	15	9	•	95	20	9	20	'
	€	35	85	•	30	20	8	'	82	80	9	20	•
	42	80	95	•	- 100	9	85	•	9	9	9	30	
	41	90	83	1	•	40 100 60	95 100 90	88	93	•	38	13	•
	30	45	82	55	1		100	9	9	30	9	10	
Q	25	40	30	35	•	25		95	82	20	35	10	•
COMPOUND	22 24	82	82	70	83 100	8	85	100	95	65	70	45	,
8	22	45	9	•	83	48	95	0 100 100	90	75	75	45 43	1
	21	9	0	1	2	20	95		28	75	65	45	١
	20 21	45	32	•	6	28	95 100	82	82	9	9	å	•
	11	65	45	,	•	82	95	86	95	•	75	35	٠
	6	90	86	•	•	100	8	82	86	•	95	20	, 1
TABLE F	Rate 250 g/ha PD/TA	barnyardgrass	ducksalad	early watergrass	junglerice	late watergrass	redstem	rice flatsedge	smallflower flatsedge	tighthead sprangletop	2 LF direct seeded indica rice	2 LF transp. indica rice	2 LF transp. japonica rice

TABLE F			COME	COMPOUND	_		
Rate 32 g/ha	22	25	41	44	69	73	
PD/TA							
barnyardgrass	35	15	5	9	23	20	
ducksalad	0	0	8	35	82	20	
early watergrass	1	20	•	•	52	,	
junglerice	8	•	•	0	٠	,	
lat watergrass	2	10	0	0	18	0	
redstem	0	35	13	0	65	78	
rice flatsedge	18	18 100	73	1	9	45	
smallfl wer flatsedge	75	30	18	8	9	88	
tighthead sprangletop	53	20	,	0	0	•	
2 LF direct seeded indica rice	30	10	0	8	•	13	
2 LF transp. indica rice	20	10	0	0	10	0	
2 LF transp. japonica rice	1	١	- 1	,	10	,	

						ฮ	COMPOUND	2						
Rate 125 g/ha	6	=	11 20 21 22 24 25 30	21	22	24	25	3	4	42	43	44	ŝ	•
PD/TA										,			;	
barnyardgrass	82	8	52	30	45	2	35 35	35	82	5	30		30 88	•
ducksalad	82	\$	0	•	90	95		30	2	82			55 100	
early watergrass	•	1	•	•	•	\$	35 . 40	9	'	•	•	- 1	- 100	
junglerice	•	•	35	22	8	20	•	- 1	•	- 100	45	82	٠	
late wat rgrass	9	65	65 33	30	33	22	25	30	97	97 35	15	10	45	0
redstem	. 6	8	93	8	93	85	20	90	9	75	40	0	0 100	6
rice flatsedge	2	90	90 100	3	100	40 100 100	95	8	8	1	- 1		93	
smallflower flatsedge	86	82	90	0	8	90 100	9	8	78	8	80	95	6	
tighthead sprangletop	1	•	20	9	78	20	20	22	- 1	20	82	•	82	, ,
2 LF direct seeded indica rice	9	9	8	45	9	45	20	40	35	35	25	9	'	. 6
2 LF transp. indica rice	45	30	ß	32	30	15	91	9	0	25	30	20	55	٠
2 LF transp. japonica rice	•	1	•	٠	•	•	•	•	•	ı	•		89	

TABLE F	COMP	COMPOUND	TABLE F	COMPOTIND
Rate 16 g/ha	22	22 73	Rate 8 g/ha	7.3
PD/TA			PD/TA	?
barnyardgrass	20	•	barnyardgrass	0
ducksalad	0	88	ducksalad	30
early watergrass	•	,	early watergrass	1
junglerice	73		junglerice	
late watergrass	80	•	late watergrass	0
redstem	10	18	redsten	
rice flatsedge	0	38	rice flatsedge	, ,;
smallfl wer flatsedge	65	78	smallflower flatsedge	3 6
tighth ad sprangletop	33	0	tighthead sprangletop	, -
2 LF direct seeded indica rice	1.5	0	2 LF direct seeded indica rice	
2 LF transp. indica rice	10	0	2 LF transp, indica rice	
2 LF transp. japonica rice	,		7 LP transfer dans C	•

			Š	COMPOUND	_		
Rate 1000 g/ha	6		11 20 21	21	42	43	
PD/TA							
barnyardgrass	98	100	98 100 65		70 85	9	
ducksalad	100	82	89		25 100 100	100	
early watergrass	1	1	'	•	1	1	
junglerice	'	'	65	100	65 100 100 100	100	
late watergrass	9	100 100	9		65 85	40	
redstem	65	86	100	100	98 100 100 100 100	100	
rice flatsedge	98	9	98 100 100	73	'	1	
smallflower flatsedge	100		98 90		83 . 95	98	
tighthead sprangletop		·	82	95	100	95	
2 LF direct seeded indica rice 100	100	95	73	82	8	45	
2 LF transp. indica rice	90	9	55	75	20	15	
2 LF transp. japonica rice	'	1	'	'	'	•	

TABLE F				ີ່ວ	COMPOUND	è				
Rate 500 g/ha	6	11	9 11 20 21 25 30 41 42 43	21	25	30	41	42	43	44
PD/TA										
barnyardgrass	95	100	95 100 63 65 45 65 95 85	65	45	65	95	82	5	\$
ducksalad	100	100 90	22	0	95	95	88	88 100		98 100
early watergrass	•	1	1	1	\$	9	- 1	•	1	•
jungl rice	1	•	8	75	'	1	- 100 85 100	100	82	100
late watergrass	100	100 100	22	9	25	8	80 100 75	75	30	20
redstem	20	50 95 100	100	88	95	95	95 95	90	90 100	80
rice flatsedge	100	100 100 100		73	100	73 100 100	93	,	•	•
smallflower flatsedge	86	98	90	9	65 90 95	95	95	95	95	95
tighth ad sprangletop	1	•	80	93	9	65 100	•	95	82	8
2 LF direct seeded indica rice	95	82	63	89	8	70	9	2	5	20
2 LF transp. indica rice	70	20	5	28	25	9	30	45	25	40
2 LF transp. japonica rice	1	•	٠	•	,	•	1	1	•	1

TABLE F COI	COMPOUND	TABLE F	TATACAMO
Rate 300 g/ha	24	Bate 200 c/he	THOO JEGO
PD/TA		BII/6 002 0000	7
		PD/TA	
barnyardgrass	06	barnyardgrass	8
ducksalad	06	ducksalad	8 8
early watergrass	. 09	early watergrass	? ?
junglerice	100	funglerice	
late watergrass	85	late watergrans	3 4
redstem	06	redstem	3 4
rice flatsedge	100	rice flatandan	3
smallflower flatsedge	95	emall flower flattering	8 8
tighthead sprangletop	65	tighthead entangleton	2 :
2 LF direct seeded indica rice	e 75	2 In direct seeded today	
2 LF transp. indica rice	55	2 LF transm indica rice	
2 LF transp. japonica rice		2 LF transp. japonica rice	ĝ,

TEST G

Seeds, tubers, or plant parts of alexandergrass (Brachiaria plantaginea), alfalfa (Medicago sativa), bermudagrass (Cynodon dactylon), broadleaf signalgrass (Brachiaria platyphylla), common purslane (Portulaca oleracea), common ragweed (Ambrosia elatior), cotton (Gossypium hirsutum), dallisgrass (Paspalum dilatatum), goosegrass (Eleusine indica), guineagrass (Panicum maximum), itchgrass (Rottboellia exaltata). iohnsongrass (Sorghum halevense), large crabgrass (Digitaria sanguinalis), peanuts (Arachis hypogaea), pitted morningglory (Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), sandbur (Cenchrus echinatus), sourgrass (Trichachne insularis), surinam 10 grass (Brachiaria decumbens) and Texas panicum (Panicum Texas) were planted into greenhouse pots or flats containing greenhouse planting medium. Plant species were grown in separate pots or individual compartments. Test chemicals were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied preemergence and postemergence to the plants. Preemergence applications were made within one day of planting the seed or plant part. Postemergence applications were applied when the plants were in the two to four leaf stage (three to twenty cm).

Untreated control plants and treated plants were placed in the greenhouse and visually evaluated for injury 13 to 21 days after herbicide application. Plant response ratings, summarized in Table G, are based on a 0 to 100 scale where 0 is no injury and 100 is complete control. A dash (-) response means no test result.

PCT/US96/03803

TABLE G	COM	POUND	TABLE G COM	POUND
Rate 250 g/ha	50	73	Rate 250 g/ha 3 5	0 73
POSTEMERGENCE			PREEMERGENCE	
Alexandergrass	0	40	Alexandergrass 100 10	100
Alfalfa Var.	50	-	Alfalfa Var 99	5 -
Bermudagrass	10	40	Bermudagrass 100 99	100
Brd1f Sgnlgrass	10	70	Brdlf Sgnlgrass 100 100	100
Cmn Purslane	50	15	Cmm Purslane 100 100	100
Cmn Ragweed	65	50	Cmn Ragweed 100 98	100
Cotton	-	90	Cotton 35 65	100
Dallisgrass	0	30	Dallisgrass 100 100	100
Goosegrass	5	50	Goosegrass 100 99	100
Guineagrass	5	65	Guineagrass 100 100	100
Itchgrass	5	20	Itchgrass 90 53	75
Johnson grass	0	20	Johnson grass 100 83	80
Large Crabgrass	0	40	Large Crabgrass 100 99	100
Peanuts	10	50	Peanuts 35 50	30
Pit Morninglory	30	75	Pit Morninglory 100 93	100
Purple Nutsedge	20	75	Purple Nutsedge 75 65	80
Sandbur	0	20	Sandbur 100 95	35
Sourgrass	0	20	Sourgrass 100 100	100
Surinam grass	-	35	Surinam grass 90 40	100
Texas Panicum	5	-	Texas Panicum - 100	-

TABLE G	CO	MPOUND	TABLE G		COM	POUND
Rate 125 g/ha	3 :	35 46	Rate 125 g/ha	3	35	46 50
POSTEMERGENCE			PREEMERGENCE			
Alexandergrass	10	0 75	Alexandergrass	80	10	0 100
Alfalfa Var.	10	- 20	Alfalfa Var.	100	_	0 -
Bermudagrass	0	5 100	Bermudagrass	100	80	100 100
Brdlf Sgnlgrass	30 6	0 100	Brdlf Sgnlgrass	90	100	90 95
Cmm Purslane	35 9	8 20	Cmn Purslane	88	0	0 100
Cmn Ragweed	10	0 0	Cmn Ragweed	93	0	0 50
Cotton	- 3	5 -	Cotton	5	0	- 35
Dallisgrass	0 1	5 98	Dallisgrass	100	0	80 100
Goosegrass	5 6	0 95	Goosegrass	94	-	98 100
Guineagrass	20 7	5 80	Guineagrass	100	-	95 100
Itchgrass	30 5	0 95	Itchgrass	88	60	10 50
Johnson grass	70 6	5 100	Johnson grass	95	35	0 80
Large Crabgrass	5 4	0 85	Large Crabgrass	94	70	80 100
Peanuts	10 3	5 40	Peanuts	25	0	0 30
Pit Morninglory	20 9	0 0	Pit Morninglory	95	80	0 98
Purple Nutsedge	20 2	0 10	Purple Nutsedge	50	0	100 75
Sandbur	0 3	5 98	Sandbur	85	20	- 35
Sourgrass	10 2	0 100	Sourgrass	100	100	100 100
Surinam grass	- 1	5 -	Surinam grass	60	5	- 35
Texas Panicum	5 -	- 100	Texas Panicum	98	-	90 -

PCT/US96/03803

TABLE G	CO	MPOUND		TABL	E G		COM	POUND
Rate 64 g/ha	3	35		Rate	64 g/ha	. :	3 3	5 50
POSTEMERGENCE				PREE	IERGENCE			
Alexandergrass	0	0		Alexa	andergrass	4	0 10	70
Alfalfa Var.	-	-		Alfal	fa Var.			
Bermudagrass	40	0		Berm	dagrass	9:	8 8	100
Brdlf Sgnlgrass	75	10	:	Brd1f	Sgnlgras	s 78	3 10	100
Cmn Purslane	30	98		Cran F	urslane	65	, ,	100
Cmn Ragweed	10	0		Cmn R	agweed	85		50
Cotton	15	20		Cotto	n	5	. 0	10
Dallisgrass	65	0 *	1	Dalli	sgrass	53	_	100
Goosegrass	50	10	(Goose	grass	94	_	100
Guineagrass	25	10	c	uine	agrass	100	_	90
Itchgrass	20	10	1	tchg	rass	63	30	35
Johnson grass	20	10	a	ohns	on grass	73	20	60
Large Crabgrass	10	10	I	arge	Crabgrass	94	10	100
Peanuts	10	20	P	eanu	ts	15	0	10
Pit Morninglory	60	70	P	it Mo	rninglory	28	65	80
Purple Nutsedge	35	5	P	urple	Nutsedge	30	0	50
Sandbur	5	0	s	andbu	ır	13	0	50
Sourgrass	15	10	s	ourgi	ass	100	100	100
Surinam grass	10	10	s	urina	m grass	20	0	30
Texas Panicum	-	-	T	exas	Panicum	_	_	_

TABLE G	COMPOUND	TABLE G		COMP	OUND
Rate 32 g/ha	35	Rate 32 g/ha	3	35	50
POSTEMERGENCE		PREEMERGENCE			
Alexandergrass	0	Alexandergrass	0	5	20
Alfalfa Var.	-	Alfalfa Var.	_	_	_
Bermudagrass	0	Bermudagrass	0	0	100
Brdlf Sgmlgrass	0	Brdlf Sgnlgrass	30	0	75
Cmn Purslane	30	Cmn Purslane	60	0	80
Cmn Ragweed	0	Cmn Ragweed	20	0	50
Cotton	0	Cotton	0	0	0
Dallisgrass	0	Dallisgrass	10	0	0
Goosegrass	0	Goosegrass	65	_	95
Guineagrass	10	Guineagrass	65	-	100
Itchgrass	0	Itchgrass	35	50	35
Johnson grass	0	Johnson grass	40	0	65
Large Crabgrass	0	Large Crabgrass	20	0	90
Peanuts	10	Peanuts	0	0	0
Pit Morninglory	10	Pit Morninglory	0	0	75
Purple Nutsedge	0	Purple Nutsedge	0	0	10
Sandbur	0	Sandbur	0	0	0
Sourgrass	0	Sourgrass	90	0 :	100
Surinam grass	0	Surinam grass	0	0	10
Texas Panicum	-	Texas Panicum	_	_	_

TEST H

10

25

30

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were in the one-to four leaf stage (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include annual bluegrass (Poa annua), black nightshade (Solanum nigrum), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), deadnettle (Lamium amplexicaule), downy brome (Bromus tectorum), field violet (Viola arvensis), galium (Galium aparine), green foxtail (Setaria viridis), jointed goatgrass (Aegilops cylindrica), kochia (Kochia scoparia), lambsquarters (Chenopodium album), littleseed canarygrass (Phalaris minor), rape (Brassica napus), redroot pigweed (Amaranthus retroflexus), ryegrass (Lolium multiflorum), scentless chamomile (Matricaria inodora), speedwell (Veronica persica), spring barley (Hordeum vulgare cv. 'Klages'), spring wheat (Triticum aestivum cv. 'ERA'), sugar beet (Beta vulgaris cv. 'US1'), sunflower (Helianthus annuus cv. Russian Giant'), wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), windgrass (Apera spica-venti), winter barley (Hordeum vulgare cv. 'Igri') and winter wheat (Triticum aestivum cv. 'Talent'). Wild oat was treated at two growth stages. The first stage (1) was when the plant had two to three leaves. The second stage (2) was when the plant had approximately four leaves or in the initial stages of tillering.

Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table H, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

TABLE H COMPOUND	TABLE H COMPOUND
Rate 250 g/ha 69	Rate 250 g/ha 69
POSTEMERGENCE	PREEMERGENCE
Annual Bluegrass 70	Annual Bluegrass100
Blackgrass 40	Blackgrass 100
Blk Nightshade 75	Blk Nightshade 95
Chickweed 65	Chickweed 65
Deadnettle 75	Deadnettle 100
Downy brome 0	Downy brome 30
Field violet 65	Field violet 80
Galium 70	Galium 100
Jointed Goatgra 20	Green foxtail 100
Kochia 75	Jointed Goatgra 75
Lambsquarters 95	Kochia 80
LS Canarygrass 15	Lambsquarters 70
Rape 65	LS Canarygrass 100
Redroot Pigweed 75	Rape 100
Ryegrass 20	Redroot Pigweed 40
Scentless Chamon 40	Ryegrass 50
Speedwell 70	Speedwell 100
Spring Barley 20	Spring Barley 40
Sugar beet 85	Sugar beet 100
Sunflower 20	Sunflower 30
Wheat (Spring) 10	Wheat (Spring) 20
Wheat (Winter) 10	Wheat (Winter) 20
Wild buckwheat 15	Wild buckwheat 20
Wild mustard 100	Wild mustard 100
Wild oat (1) 25	Wild oat (1) 75
Wild oat (2) 15	Windgrass 70
Winter Barley 20	Winter Barley 40

TABLE H				COM	POUND	1	
Rate 125 g/ha	47	48	58	61	L 68	69	77
POSTEMERGENCE							
Annual Bluegrass	3 -	-	30		- 60	60	40
Blackgrass	-	-	25		- 35	30	25
Blk Nightshade	65	80	70	100	100	75	65
Chickweed	25	35	30	100	65	35	20
Deadnettle	70	85	50	100	75	65	55
Downy brome	-	-	5	-	15	10	0
Field violet	40	80	65	100	75	65	65
Galium	40	65	55	100	70	60	55
Jointed Goatgra	-	-	10	-	20	20	20
Kochia	35	85	80	100	75	75	70
Lambaquarters	65	90	60	100	100	100	75
LS Canarygrass	-	-	10	-	20	10	10
Rape	-	-	65	ą. -	75	65	60
Redroot Pigweed	20	85	75	100	75	65	70
Ryegrass	-	-	5	-	20	5	10
Scentless Chamon	15	35	30	100	55	20	45
Speedwell	70	100	55	100	100	65	55
Spring Barley	0	0	5	80	20	20	30
Sugar beet	-	-	75	-	100	75	70
Sunflower	-	-	20	-	40	10	25
Wheat (Spring)	0	0	25	75	20	10	0
Wheat (Winter)	0	0	10	65	20	10	5
Wild buckwheat	25	30	45	100	60	30	30
Wild mustard	-	-	65	-	100	85	50
Wild oat (1)	-	-	10	-	30	15	10
Wild oat (2)	-	-	10	-	20	10	10
Winter Barley	0	0	25	70	30	20	25

TABLE H	CO	MPOUND
Rate 125 g/ha	68	69
PREEMERGENCE		
Annual Bluegras	s 85	100
Blackgrass	100	100
Blk Nightshade	90	75
Chickweed	75	75
Deadnettle	100	100
Downy brome	20	20
Field violet	80	85
Galium	100	100
Green foxtail	100	100
Jointed Goatgra	30	75
Kochia	60	70
Lambsquarters	. 85	70
LS Canarygrass	40	80
Rape	65	85
Redroot Pigweed	50	85
Ryegrass	40	30
Speedwell	95	85
Spring Barley	40	15
Sugar beet	100	100
Sunflower	30	20
Wheat (Spring)	40	10
Wheat (Winter)	20	10
Wild buckwheat	100	85
Wild mustard	100	100
Wild oat (1)	10	30
Windgrass	30	40
Winter Barley	35	10

TABLE H			c	OMP	OUND			
Rate 62 g/ha	47	48	58	6	1 68	69	77	
POSTEMERGENCE								
Annual Bluegras	s -	-	10		- 20	30	20	
Blackgrass	-	-	10		- 20	20	10	
Blk Nightshade	65	65	50	35	70	65	55	
Chickweed	20	20	50	20	55	35	45	
Deadnettle	70	65	30	70	50	40	30	
Downy brome	-	-	0	-	10	20	10	
Field violet	30	70	60	20	60	55	50	
Galium	65	35	35	65	60	65	50	
Jointed Goatgra	-	-	0	-	20	10	15	
Kochia	35	70	75	40	75	70	55	
Lambsquarters	40	85	60	60	80	75	60	
LS Canarygrass	-	-	5	-	10	20	10	
Rape	-	-	50	-	75	55	35	
Redroot Pigweed	10	75	65	25	75	65	75	
Ryegrass	-	-	5	-	10	0	10	
Scentless Chamon	0	30	10	10	35	20	30	
Speedwell	60	90	50	70	75	55	45	
Spring Barley	0	0	10	0	20	10	10	
Sugar beet	-	-	65	-	100	70	50	
Sunflower	-	-	10	-	30	20	15	
Wheat (Spring)	0	0	10	0	15	10	0	
Wheat (Winter)	0	. 0	10	0	15	0	0	
Wild buckwheat	20	70	65	30	30	10	20	
Wild mustard	-	- .	30	-	100	55	30	
Wild oat (1)	-	-	10	-	20	10	10	
Wild oat (2)	-	-	0	-	15	10	0	
Winter Barley	0	0	10	0	20	25	10	

TABLE H	CO	MPOU
Rate 62 g/ha	61	8 6
PREEMERGENCE		
Annual Bluegras	s 75	8 6
Blackgrass	100	8 (
Blk Nightshade	30	8 (
Chickweed	40	5
Deadnettle	80	100
Downy brome	10	10
Field violet	60	40
Galium .	80	100
Green foxtail	100	100
Jointed Goatgra	20	20
Kochia	85	30
Lambsquarters	70	70
LS Canarygrass	20	80
Rape	50	80
Redroot Pigweed	70	60
Ryegrass	30	50
Speedwell	100	60
Spring Barley	10	20
Sugar beet	100	80
Sunflower	35	20
Wheat (Spring)	0	10
Wheat (Winter)	10	10
Wild buckwheat	40	100
Wild mustard	100	100
Wild oat (1)	20	20
Windgrass	20	30
Winter Barley	20	50

WO 96/31517

TABLE H CO	OMPOUND	TABLE H C	OMPOUNE
Rate 31 g/ha	68	Rate 31 g/ha	68
POSTEMERGENCE		PREEMERGENCE	
Annual Bluegrass	: 10	Annual Bluegras	s 20
Blackgrass	15	Blackgrass	85
Blk Nightshade	50	Blk Nightshade	30
Chickweed	30	Chickweed	50
Deadnettle	40	Deadnettle	60
Downy brome	10	Downy brome	10
Field violet	60	Field violet	40
Galium .	50	Galium	100
Jointed Goatgra	15	Green foxtail	85
Kochia	70	Jointed Goatgra	10
Lambsquarters	100	Kochia	85
LS Canarygrass	0	Lambsquarters	70
Rape	60	LS Canarygrass	10
Redroot Pigweed	70	Rape	35
Ryegrass	10	Redroot Pigweed	70
Scentless Chamon	. 30	Ryegrass	10
Speedwell	60	Speedwell	75
Spring Barley	10	Spring Barley	10
Sugar beet	85	Sugar beet	60
Sunflower	15	Sunflower	20
Wheat (Spring)	10	Wheat (Spring)	0
Wheat (Winter)	.10	Wheat (Winter)	0
Wild buckwheat	65	Wild buckwheat	40
Wild mustard	65	Wild mustard	100
Wild oat (1)	10	Wild oat (1)	10
Wild oat (2)	10	Windgrass	10
Winter Barley	10	Winter Barley	10

TEST I

20

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test, and 13 days after the last postemergence planting.

10 Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include alexandergrass (Brachiaria plantaginea), american black nightshade (Solanum americanum), apple-of-Peru (Nicandra physaloides), arrowleaf sida (Sida rhombifolia), brazilian sicklepod (Cassia 15 tora Brazilian), brazilian signalgrass (Brachiaria decumbens), capim-colchao (Digitaria horizontalis), cristalina soybean (Glycine max Cristalina), florida beggarweed (Desmodium purpureum), hairy beggarticks (Bidens pilosa), slender amaranth (Amaranthus viridis), southern sandbur (Cenchrus echinatus), tall morningglory (Inomoea purpurea), tropical spiderwort (Commelina benghalensis), W20 Soybean (Glycine max W20), W4-4 Soybean (Glycine max W4-4) and wild poinsettia (Eupohorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 13 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table I, are based 25 upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

PCT/US96/03803

TABLE I	COMPOUND	TABLE I	COMPOUND
Rate 560 g/ha	41 42	Rate 280 g/ha	41 42
PREEMERGENCE		PREEMERGENCE	
Alexandergrass	100 100	Alexandergrass	100 100
Apple-of-Peru	50 30	Apple-of-Peru	10 20
Arrowleaf Sida	80 65	Arrowleaf Sida	70 60
B. Signalgrass	100 100	B. Signalgrass	100 100
Bl. Nightshade	100 70	Bl. Nightshade	100 60
Braz Sicklepod	55 100	Braz Sicklepod	40 70
Capim-Colchao	100 100	Capim-Colchao	100 70
Crist. Soybean	40 50	Crist. Soybean	40 50
F1. Beggarweed	100 60	F1. Beggarweed	100 60
H. Beggarticks	100 25	H. Beggarticks	75 25
Morningglory	100 100	Morningglory	- 60
S1. Amaranth	100 100	Sl. Amaranth	100 100
Southern Sandur	100 100	Southern Sandur	90 85
Tr. Spiderwort	100 75	Tr. Spiderwort	100 20
Wld Pointsettia	50 50	Wld Pointsettia	0 50
W20 Soybean	15 50	W20 Soybean	15 40
W4-4 Soybean	25 50	W4-4 Soybean	25 40
		-	

TABLE I	COMPOUN	D TABLE I	CO	1POUND
Rate 140 g/ha	41 42	Rate 70 g/ha	41	42
PREEMERGENCE		PREEMERGENCE		
Alexandergrass	100 100	Alexandergrass	80	50
Apple-of-Peru	0 10	Apple-of-Peru	0	0
Arrowleaf Sida	70 50	Arrowleaf Sida	60	50
B. Signalgrass	85 85	B. Signalgrass	70	65
Bl. Nightshade	85 60	Bl. Nightshade	75	20
Braz Sicklepod	40 30	Braz Sicklepod	0	10
Capim-Colchao	100 70	Capim-Colchao	100	70
Crist. Soybean	25 30	Crist. Soybean	10	25
Fl. Beggarweed	100 60	Fl. Beggarweed	100	
H. Beggarticks	70 20	H. Beggarticks	-	20
Morningglory	70 60	Morningglory	60	50
Sl. Amaranth	100 100	S1. Amaranth	100	20
Southern Sandur	80 80	Southern Sandur	55	50
Tr. Spiderwort	55 20	Tr. Spiderwort	55	0
Wld Pointsettia	0 45	Wld Pointsettia	0	45
W20 Soybean	15 25	W20 Soybean	10	20
W4-4 Soybean	20 40	W4-4 Soybean	20	15

TABLE I	COMPOUND
Rate 35 g/ha	42
PREEMERGENCE	
Alexandergrass	45
Apple-of-Peru	0
Arrowleaf Sida	50
B. Signalgrass	50
Bl. Nightshade	20
Braz Sicklepod	0
Capim-Colchao	70
Crist. Soybean	25
Fl. Beggarweed	-
H. Beggarticks	20
Morningglory	40
Sl. Amaranth	15
Southern Sandur	40
Tr. Spiderwort	0
Wld Pointsettia	. 0
W20 Soybean	15
W4-4 Soybean	10

CLAIMS

What is claimed is:

 A compound selected from Formula I, N-oxides and agriculturally-suitable salts thereof.

5 wherein

O is

10 T is O or S;

15

20

X is a single bond, O, S, or NR5;

Y is O, S, NR^6 , -CH=CH-, or -CH=N-, where the -CH=N- can be attached in either possible orientation;

Z is CH or N:

W is CH or N:

V is CH, CCH3 or N, provided that V is CH or CCH3 when W is CH:

- R¹ is C₁-C₂ alkyl optionally substituted with C₁-C₂ alkoxy, OH, 1-7 halogen, or C₁-C₂ alkythio; CH₂(C₃-C₄ cycloalkyl); C₃-C₆ cycloalkyl optionally substituted with 1-3 halogen or 1-4 methyl groups; C₂-C₄ alkenyl; C₂-C₄ haloalkenyl; or phenyl optionally substituted with C₁-C₄ alkyl, C₁-C₄ haloalkkyl, C₁-C₄ alkoxy, 1-2 halogen, nitro, or cyano; provided that when X is O, S, or NR⁵, then R¹ is other than C₂ alkenyl and C₂ haloalkenyl;
- R² is H, halogen, C₁-C₂ alkyl, C₁-C₂ alkoxy, C₁-C₂ alkylthio, C₂-C₃ alkoxyalkyl, C₂-C₃ alkylthiolkyl, cyano, nitro, NH(C₁-C₂ alkyl), or N(C₁-C₂ alkyl));
- R³ is H, halogen, C₁-C₂ alkyl, C₁-C₂ alkoyy, C₁-C₂ alkylthio, C₂-C₃ alkoxyalkyl, C₂-C₃ alkylthioalkyl, cyano, nitro, NH(C₁-C₂ alkyl), or N(C₁-C₂ alkyl);

20

R⁴ is C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, C₁-C₄ haloalkylthio, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylsulfonyl, halogen, cyano, or nitro;

R5 is H, CH3, or OCH3;

R6 is H or CH3; and

n is 0 or 1.

A compound of Claim 1 wherein:

 R^1 is C_1 - C_4 alkyl optionally substituted with methoxy or 1-3 halogen; C_3 - C_4 cycloalkyl optionally substituted with one methyl group; C_2 - C_4 alkenyl; or C_2 - C_4 haloalkenyl;

10 R² is chlorine, bromine, C₁-C₂ alkyl, C₁-C₂ alkoxy, cyano, nitro, NH(C₁-C₂ alkyl), or N(C₁-C₂ alkyl)₂; and

R³ is H

3. A compound of Claim 2 wherein:

X is a single bond; and

R⁴ is C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy, C₁-C₂ haloalkylthio, chlorine, or bromine.

4. A compound of Claim 3 wherein:

Q is Q-1.

A compound of Claim 3 wherein:

Q is Q-2.

6. A compound of Claim 3 wherein:

O is O-3.

7. The compound of Claim 3 which is selected from the group:

3-methyl-N-[4-methyl-2-[2-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-

25 yl]phenyl]butanamide;
N-[4-methyl-2-[2-(trifluoromethyl]thiazolo[3,2-b][1,2,4]triazol-6-

yl]phenyl]cyclopropanecarboxamide; 2-methyl-N-[4-methyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-

yl]phenyl]propanamide;

30 N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1-

yl]phenyl]cyclopropanecarboxamide;

3-methyl-*N*-[4-methyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]phenyl]butanamide;

2-methyl-N-[4-methyl-2-[[3-(trifluoromethyl)-1H-pyrazol-1-

35 yl]methyl]phenyl]propanamide; and

2,2-dimethyl-N-[4-methyl-2-[3-(trifluoromethyl)-1,2,4-triazolo[4,3-b]pyridazin-6-yl]phenyl]propanamide.

W 96/31517

- A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
- A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/US 96/03803

	(C07D487/04,249:00,237:00)	513/04,277:00,249:00),	487/04
	to International Patent Classification (IPC) or to both national class	ification and IPC	
	SEARCHED		
IPC 6	locumentation searched (desaification system followed by classifica C97D A91N		
	ion marched other than minimum documentations to the catent that		earched
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the s	elevant passages	Relevant to claim No.
٧	WO,A,93 11097 (DU PONT) 10 June cited in the application see meaning of Q-1 (page 2)	1993	1-9
A	EP,A,0 244 098 (SCHERING AGROCHE LTD) 4 November 1987 see abstract	MICALS	1-9
A	US,A,4 810 282 (RORER MORRIS P) : 1989 see formula I (column 2)	7 March	1-9
A	EP,A,0 353 902 (DU PONT) 7 Februa see formula I (page 4) 	ary 1990 -/	1-9
			*
X Furt	her documents are listed in the continuation of box C.	X Patent family members are listed to	3 energ.
"A" docume conside "E" earlier filing o "L" docume which extation "O" docume other i "P" docume later to	not which may throw doubtle on priority claim(s) or is create to establish the publication distor disorders or other special reason (as specified) set referring to an oral disclosure, use, exhibition or means the priority of the international filing date but an deep priority date claimed	T later document published after the inner or princip data and not a conflict with an analysis of the conflict with an analysis of the immunition described the principle or the immunition described the principle or consideration of or cannot be conflicted an invention as present of the cannot be considered to every who the document is combined with one or meants, such combination being obvious as in document is combined with one or meants, such combination being obvious meants, such combination being obvious for any of the art.	claimed invention be considered to trument is taken alone claimed invention rentive stop when the are other much docu- tes to a person skilled family
	actual completion of the international search 5 July 1996	Date of melting of the international ser	
	nsiling address of the ISA European Patent Office, P.B. 5818 Patentiann 2 NL - 2220 HV Ripwijk Td. (+31-70) 340-2040, Tz. 31 651 opo ni,	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo zd. Pazz (+31-70) 340-3016	Steendijk, M	

		PCT/US 9	6/03803
	mon) DOCUMENTS CONSIDERED TO BE RELEVANT		
elegory *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Α .	DATABASE MPI Section Ch, Week 9019 Derwent Publications Ltd., London, GB; Class CG2, AN 90-144329 XPB02099476 & JP,A.02 091 062 (KUMIAI CHEM IND KK), 30 March 1990 see abstract	-1-	1-7
١	US,A,4 236 015 (LUBER EDWARD J JR ET AL) 25 November 1980 see abstract		1-7
P,Y	WO,A,95 09846 (DU PONT ; QENES LUCIAN RADU (US)) 13 April 1995 see formula I (page 1)		1-9
			10
			a

INTERNATIONAL SEARCH REPORT Information on patent family members

In tional Application No PCT/US 96/03803

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9311097	10-06-93	AT-T- 138365 AU-B- 3226993 DE-D- 69211015 EP-A- 0619804 ZA-A- 9209220	15-06-96 28-06-93 27-06-96 19-10-94 27-05-94
EP-A-0244098	94-11-87	AU-B- 574016 AU-B- 7221087 JP-A- 62258385 SU-A- 1678212 US-A- 4795483	23-06-88 10-12-87 10-11-87 15-09-91 03-01-89
US-A-4810282	97-93-89	AU-B- 551920 AU-B- 1021083 CA-A- 123929 DE-A- 3374564 EP-A- 09633975 GB-A,B 2112783 US-A- 4566755 US-A- 4695311	15-05-86 14-07-83 02-08-88 23-12-87 20-07-83 27-07-83 16-04-05 19-08-86 22-09-87
EP-A-9353992	07-02-90	AU-B- 617598 AU-B- 3967789 DE-T- 68966324 EP-A- 9449659 ES-T- 2955973 JP-T- 3596933 WO-A- 9901030 US-A- 5127936 WO-A- 9012012	28-11-91 19-02-90 21-10-93 14-08-91 16-08-94 26-12-91 08-02-90 07-07-92 18-10-90
US-A-4236015	25-11-89	AU-B- 521887 AU-B- 3233178 BE-A- 862698 CA-A- 1149385 CA-A- 1164877 CH-A- 636192 CH-A- 649229 DE-A- 2896488	29-84-82 19-87-79 93-87-78 95-87-83 93-94-84 13-95-83 38-12-83 13-87-78
			χ.

INTERNATIONAL SEARCH REPORT | this coul Application No | DCT/US 96/03803

Patent document cited in search report	Publication date	Patent memi	family per(s)	Publication date
US-A-4236015		DE-C-	2858766	
40 N 4250025		FR-A.B	2376858	05-04-90
		GB-A-	1579498	94-98-78
		GB-A-	1579498	19-11-80 19-11-80
		JP-R-	1030825	22-06-89
		JP-C-	1545999	22-00-89 28-02-90
		JP-A-	61171470	
		JP-C-	1450207	02-08-86 11-07-88
		JP-A-	53887398	01-08-78
		JP-B-	62059110	01-08-78 09-12-87
		LU-A-	78813	18-89-78
		NL-A-	7800114	11-07-78
		SE-B-	436359	03-12-84
		SE-A-	7800138	08-07-78
		SE-B-	460477	16-10-89
		SE-A-	8300945	21-02-83
		US-A-	4225724	30-09-80
		US-A-	4229452	21-10-80
		US-A-	4198508	15-04-80
		US-A-	4191766	04-03-80
		US-A-	4191767	84-83-88
		US-A-	4172947	30-10-79
		US-A-	4168997	03-07-79
		US-A-	4200750	29-04-80
		US-A-	4197403	08-04-80
WO-A-9509846	13-04-95	AU-B-	7024404	01 OF OF
NO-N-2303040	13-04-33	CA-A-	7834494 2173326	01-05-95 13-04-95
		EP-A-	9722441	24-07-96
•••••				24-0/-30