DONE BY ATHAVAN T

Importing the necessary libraries for EDA and data preprocessing

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import folium
from scipy import stats
```

Converting csv file into dataframe

```
In [3]: df=pd.read_csv('C:/Users/Reshma/Downloads/House Price India.csv')
In [4]: df=df.drop(['Date'],axis=1)
In [5]: df
```

Out[5]:

	id	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	condition of the house	grade of the house	 Built Year	Renovatio Yea
0	6762810145	5	2.50	3650	9050	2.0	0	4	5	10	 1921	
1	6762810635	4	2.50	2920	4000	1.5	0	0	5	8	 1909	
2	6762810998	5	2.75	2910	9480	1.5	0	0	3	8	 1939	
3	6762812605	4	2.50	3310	42998	2.0	0	0	3	9	 2001	
4	6762812919	3	2.00	2710	4500	1.5	0	0	4	8	 1929	
***	***		***	***	***	***		111	***	***	 	
14615	6762830250	2	1.50	1556	20000	1.0	0	0	4	7	 1957	
14616	6762830339	3	2.00	1680	7000	1.5	0	0	4	7	 1968	
14617	6762830618	2	1.00	1070	6120	1.0	0	0	3	6	 1962	
14618	6762830709	4	1.00	1030	6621	1.0	0	0	4	6	 1955	
14619	6762831463	3	1.00	900	4770	1.0	0	0	3	6	 1969	200

14620 rows × 22 columns

In [6]: df.head()

Out[6]:		id	number of bedrooms		ber of ooms	living area		ot o	of oors	waterfront present		nber con of ews	dition of the house	_	ś	Buil Yea		ovation Year	F
	0	6762810145	5		2.50	3650	905	0	2.0	0		4	5	10)	192	1	0	13
	1	6762810635	4		2.50	2920	400	0	1.5	0		0	5		3	190	9	0	13
	2	6762810998	5		2.75	2910	948	0	1.5	0		0	3	i i	3	193	9	0	13
	3	6762812605	4		2.50	3310	4299	8	2.0	0		0	3	9	·	200	1	0	13
	4	6762812919	3		2.00	2710	450	0	1.5	0		0	4		3	192	9	0	13
In [7]:		ws × 22 colu tail()		of	numbe bathroo		iving area	lot area	numb	of water	front esent	number of views	of	the	grade of the nouse		Built Year		tio Yea
	14	615 6762830	0250	2		1.5	1556	20000		1.0	0	0		4	7		1957		
	14	516 6762830	0339	3		2.0	1680	7000		1.5	0	0		4	7	***	1968		
	14	617 6762830	0618	2		1.0	1070	6120		1.0	0	0		3	6		1962		
	14	618 6762830		Sat.		1.0	1030	6621			0	0		4	6		1955		
			0709	4		1.0	1030	0021		1.0	0	U		7			1000		

Checking for null and duplicated values

Out[6]:

```
In [8]; df.isna().sum()
Out[8]: id
                                                  0
                                                  0
         number of bedrooms
         number of bathrooms
         living area
         lot area
         number of floors
         waterfront present
         number of views
         condition of the house
         grade of the house
         Area of the house(excluding basement)
         Area of the basement
         Built Year
                                                  0
         Renovation Year
         Postal Code
                                                  0
         Lattitude
         Longitude
                                                  0
         living_area_renov
         lot area renov
         Number of schools nearby
         Distance from the airport
         Price
         dtype: int64
In [9]: df.duplicated().sum()
Out[9]: 0
In [10]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14620 entries, 0 to 14619
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	id	14620 non-null	int64
1	number of bedrooms	14620 non-null	int64
2	number of bathrooms	14620 non-null	float64
3	living area	14620 non-null	int64
4	lot area	14620 non-null	int64
5	number of floors	14620 non-null	float64
6	waterfront present	14620 non-null	int64
7	number of views	14620 non-null	int64
8	condition of the house	14620 non-null	int64
9	grade of the house	14620 non-null	int64
10	Area of the house(excluding basement)	14620 non-null	int64
11	Area of the basement	14620 non-null	int64
12	Built Year	14620 non-null	int64
13	Renovation Year	14620 non-null	int64
14	Postal Code	14620 non-null	int64
15	Lattitude	14620 non-null	float64
16	Longitude	14620 non-null	float64
17	living_area_renov	14620 non-null	int64
18	lot_area_renov	14620 non-null	int64
19	Number of schools nearby	14620 non-null	int64
20	Distance from the airport	14620 non-null	int64
21	Price	14620 non-null	int64
dtvn	es: float64(4), int64(18)		

dtypes: float64(4), int64(18)

memory usage: 2.5 MB

In [11]: df.describe()

	id	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	cond the
count	1.462000e+04	14620.000000	14620.000000	14620.000000	1.462000e+04	14620.000000	14620.000000	14620.000000	14620.
mean	6.762821e+09	3.379343	2.129583	2098.262996	1.509328e+04	1.502360	0.007661	0.233105	3:
std	6.237575e+03	0.938719	0.769934	928.275721	3.791962e+04	0.540239	0.087193	0.766259	0.
min	6.762810e+09	1.000000	0.500000	370.000000	5.200000e+02	1.000000	0.000000	0.000000	1.
25%	6.762815e+09	3.000000	1.750000	1440.000000	5.010750e+03	1.000000	0.000000	0.000000	3.
50%	6.762821e+09	3.000000	2.250000	1930.000000	7.620000e+03	1.500000	0.000000	0.000000	3:
75%	6.762826e+09	4.000000	2.500000	2570.000000	1.080000e+04	2.000000	0.000000	0.000000	4.
max	6.762832e+09	33.000000	8.000000	13540.000000	1.074218e+06	3.500000	1.000000	4.000000	5.

8 rows × 22 columns

UNIVARIATE ANALYSIS

Checking for outliers

```
In [12]: sns.boxplot(df['number of bedrooms'])
```

Out[12]: <AxesSubplot:>


```
In [13]; z=np.abs(stats.zscore(df['number of bedrooms']))
In [14]: threshold=3
         print(np.where(z>3),len(np.where(z>3)[0]))
       (array([
                 76,
                        243,
                              268,
                                     275,
                                          624,
                                                   785, 1512, 1519, 1553,
               1706, 2814, 3109, 3114, 3322, 3532, 3600, 4207, 4486,
               4658, 4680, 6591, 6596, 6730, 6982, 6998, 7003, 7454,
               8559, 8650, 9282, 9629, 9810, 9955, 10168, 10177, 10676,
              10748, 10916, 10944, 11247, 11441, 11547, 11877, 12273, 13048,
              13444, 13825, 14220, 14481]),) 49
In [15]: print(np.where(z<-3))</pre>
       (array([], dtype=int64),)
```

There are 138 outliers in number of bedrooms as proved from the boxplot and the fact that there are observations whose z-score is beyond 3

In [18]; df1

Out[18]:

		id	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	condition of the house	grade of the house	•••	Built Year	Renovatio Yea
	0	6762810145	5	2.50	3650	9050	2.0	0	4	5	10		1921	
	1	6762810635	4	2.50	2920	4000	1.5	0	0	5	8		1909	
	2	6762810998	5	2.75	2910	9480	1.5	0	0	3	8		1939	
	3	6762812605	4	2.50	3310	42998	2.0	0	0	3	9		2001	
	4	6762812919	3	2.00	2710	4500	1.5	0	0	4	8		1929	
				***	***	***	**1		111	***	***			
3	14615	6762830250	2	1.50	1556	20000	1.0	0	0	4	7		1957	
3	L4616	6762830339	3	2.00	1680	7000	1.5	0	0	4	7		1968	
3	L4617	6762830618	2	1.00	1070	6120	1.0	0	0	3	6		1962	
3	14618	6762830709	4	1.00	1030	6621	1.0	0	0	4	6		1955	
3	14619	6762831463	3	1.00	900	4770	1.0	0	0	3	6		1969	200

14571 rows × 22 columns

In [19]: sns.boxplot(df1['number of bathrooms'])

Out[19]: <AxesSubplot:>

In [25]; df1

200				40.7	pm'	-	
CN				70			
10.71	ш				Э.		
-		-	ш.	_	-		

	id	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	condition of the house	grade of the house	 Built Year	Renovatio Yea
0	6762810145	5	2.50	3650	9050	2.0	0	4	5	10	 1921	
1	6762810635	4	2.50	2920	4000	1.5	0	0	5	8	 1909	
2	6762810998	5	2.75	2910	9480	1.5	0	0	3	8	 1939	
3	6762812605	4	2.50	3310	42998	2.0	0	0	3	9	 2001	
4	6762812919	3	2.00	2710	4500	1.5	0	0	4	8	 1929	
	191		***	***	***	***	***		***	***	 	
14615	6762830250	2	1.50	1556	20000	1.0	0	0	4	7	 1957	
14616	6762830339	3	2.00	1680	7000	1.5	0	0	4	7	 1968	
14617	6762830618	2	1.00	1070	6120	1.0	0	0	3	6	 1962	
14618	6762830709	4	1.00	1030	6621	1.0	0	0	4	6	 1955	
14619	6762831463	3	1.00	900	4770	1.0	0	0	3	6	 1969	200

14447 rows × 22 columns

There are 124 outliers in number of bathrooms as proved from the boxplot and the fact that there are observations whose z-score is beyond 3

In [26]: sns.boxplot(df1['living area'])

Out[26]: <AxesSubplot:>


```
In [27]: z=np.abs(stats.zscore(df1['living area']))
In [28]: len(np.where(z>3)[0])
Out[28]: 136
In [29]: len(np.where(z<-3)[0])
Out[29]: 0
In [30]: df1=df1[(z<3)]
In [31]: sns.boxplot(df1['living area'])</pre>
Out[31]: <AxesSubplot:>
```



```
In [32]: z=np.abs(stats.zscore(df1['living area']))
In [33]: len(np.where(z>3)[0])
Out[33]: 67
In [34]: df1=df1[(z<3)]
In [35]: sns.boxplot(df1['living area'])
Out[35]: <AxesSubplot:>
```


In [36]: df1

	id	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	condition of the house	grade of the house	 Built Year	Renovatio Yea
0	6762810145	5	2.50	3650	9050	2.0	0	4	5	10	 1921	
1	6762810635	4	2.50	2920	4000	1.5	0	0	5	8	 1909	
2	6762810998	5	2.75	2910	9480	1.5	0	0	3	8	 1939	
3	6762812605	4	2.50	3310	42998	2.0	0	0	3	9	 2001	
4	6762812919	3	2.00	2710	4500	1.5	0	0	4	8	 1929	
	***			***			***	111		***	 ***	
14615	6762830250	2	1.50	1556	20000	1.0	0	0	4	7	 1957	
14616	6762830339	3	2.00	1680	7000	1.5	0	0	4	7	 1968	
14617	6762830618	2	1.00	1070	6120	1.0	0	0	3	6	 1962	
14618	6762830709	4	1.00	1030	6621	1.0	0	0	4	6	 1955	
14619	6762831463	3	1.00	900	4770	1.0	0	0	3	6	 1969	200

14244 rows × 22 columns

There are 205 outliers in living as proved from the boxplot and the fact that there are observations whose z-score is beyond 3

In [37]: sns.boxplot(df1['number of floors'])

Out[37]: <AxesSubplot:>


```
In [38]: z=np.abs(stats.zscore(df1['number of floors']))
In [39]: len(np.where(z>3)[0])
Out[39]: 3
In [40]: df1=df1[(z<3)]
In [41]: sns.boxplot(df1['number of floors'])
Out[41]: <AxesSubplot:>
```


There are 3 outliers in number of floors

In [42]: sns.boxplot(df1['Price'])

Out[42]: <AxesSubplot:>


```
In [43]: z=np.abs(stats.zscore(df1['Price']))
In [44]: len(np.where(z>3)[0])
Out[44]: 259
In [45]: df1=df1[(z<3)]
In [46]: df1</pre>
```

Out[46]:

	id	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	condition of the house	grade of the house	•••	Built Year	Renovatio Yea
2	6762810998	5	2.75	2910	9480	1.5	0	0	3	8		1939	
3	6762812605	4	2.50	3310	42998	2.0	0	0	3	9		2001	
4	6762812919	3	2.00	2710	4500	1.5	0	0	4	8		1929	
5	6762813105	3	2.50	2600	4750	1.0	0	0	4	9		1951	
6	6762813157	5	3.25	3660	11995	2.0	0	2	3	10		2006	
	***			***	***	***	***	111	***	***			
14615	6762830250	2	1.50	1556	20000	1.0	0	0	4	7		1957	
14616	6762830339	3	2.00	1680	7000	1.5	0	0	4	7		1968	
14617	6762830618	2	1.00	1070	6120	1.0	0	0	3	6		1962	
14618	6762830709	4	1.00	1030	6621	1.0	0	0	4	6		1955	
14619	6762831463	3	1.00	900	4770	1.0	0	0	3	6		1969	200

13982 rows × 22 columns

In [47]: df1=df1.drop(['Renovation Year'],axis=1)

In [48]; df1

		id	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	condition of the house	grade of the house	 Area of the basement	Built Year
	2	6762810998	5	2.75	2910	9480	1.5	0	0	3	8	 0	1939
	3	6762812605	4	2.50	3310	42998	2.0	0	0	3	9	 0	2001
	4	6762812919	3	2.00	2710	4500	1.5	0	0	4	8	 830	1929
	5	6762813105	3	2.50	2600	4750	1.0	0	0	4	9	 900	1951
	6	6762813157	5	3.25	3660	11995	2.0	0	2	3	10	 0	2006
		***	•••	***						***		 	
14	615	6762830250	2	1.50	1556	20000	1.0	0	0	4	7	 0	1957
14	616	6762830339	3	2.00	1680	7000	1.5	0	0	4	7	 0	1968
14	617	6762830618	2	1.00	1070	6120	1.0	0	0	3	6	 0	1962
14	618	6762830709	4	1.00	1030	6621	1.0	0	0	4	6	 0	1955
14	619	6762831463	3	1.00	900	4770	1.0	0	0	3	6	 0	1969

13982 rows × 21 columns

BI - VARIATE ANALYSIS

The column Renovation year have been removed. This is because most of the Renovation Year are 0 and proves to be of no use to the model

Clear indication of Price increasing with number of bedrooms

```
In [50]: sns.barplot(data=df1,x='number of bathrooms',y='Price')
```

Out[50]: <AxesSubplot:xlabel='number of bathrooms', ylabel='Price'>

Clear indication of Price increasing with number of bathrooms

```
In [51]: plt.figure(figsize=(12,18))
    sns.countplot(data=df1,y='Built Year')
    plt.show()
```


Most of the houses were listed for sale in 2017

```
In [52]: plt.figure(figsize=(12,18))
    sns.countplot(data=df1,y='Postal Code')
    plt.show()
```

12 200 3 12 2004 12 200 5 12 2006 12 200 7 12 2008 12 2009 12 2010 122011 12 2012 12 2013 12 2014 12 2015 12 20 lfi 12 2017 122018 122019 12 20 20 12 2021 12 20 22 12 202 3 12 20 24 12 202 5 12 20 26 12 2027 12 2028 12 2029 12 2030 12 2031 12 2032 12 2033 12 2034 12 2035 12 2036 12 2037 12 2038 12 2039 12 2040 12 2041 12 2042 12 2043 12 2044 122045 122046 -

Most of the houses listed for sale are from the Pincode 122028

```
In [53]: df1[df1['Built Year']==2014]['Lattitude'].mean()
Out[53]: 52.77583376963351
In [54]: df1[df1['Built Year']==2014]['Longitude'].mean()
```


In [56]: df1[df1['Built Year']>=2014]['Lattitude'].mean()

The houses listed for sale in this dataset are located in Alberta, Canada

```
In [59]: df1=df1.drop(['id'],axis=1)

In [60]: df1=df1.drop(['Postal Code'],axis=1)
```

MULTI - VARIATE ANALYSIS

Columns ID and Postal Code have been dropped from df as an increase or decrease in Postal Code shall not directly impact the Price of the property

```
In [61]: plt.figure(figsize=(15,15))
    sns.heatmap(df1.corr(),linewidths=0.5,annot=True,cmap='Blues')
    plt.show()
```


Columns like 'lot area', 'condition of the house', 'Built Year', 'lot_area_renov', 'Number of schools nearby', 'Distance from the airport', 'Longitude' contribute minimal to Price which is the Target variable. Hence it is removed before training

```
In [62]: df1=df1.drop(['lot area','condition of the house','Built Year','lot_area_renov','Number of schools nearby','Distance
In [63]: plt.figure(figsize=(15,15))
    sns.heatmap(df1.corr(),linewidths=0.5,annot=True,cmap='Blues')
    plt.show()
```


Training of Model, Splitting of Dataset into Train and Test Set

```
In [64]: from sklearn.model_selection import train_test_split

In [65]: X=df1.drop(['Price'],axis =1)

In [66]: X.shape
Out[66]: (13982, 11)

In [67]: y=df1['Price']

In [68]: y.shape
Out[68]: (13982,)

In [69]: X_train,X_test,y_train,y_test= train_test_split(X,y,test_size=0.2,random_state=11)

In [70]: X_train.shape
Out[70]: (11185, 11)

In [71]: X_test.shape
```

```
Out[71]: (2797, 11)
In [72]: from sklearn.pipeline import make pipeline
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear model import ElasticNet, Lasso,LinearRegression,RidgeCV
         from catboost import CatBoostRegressor
         from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
         from xgboost import XGBRegressor
         from sklearn.tree import DecisionTreeRegressor
         from sklearn.ensemble import StackingRegressor
         from sklearn.svm import SVR
In [73]: pipelines = {
              'en':make pipeline(StandardScaler(), ElasticNet()),
             'lasso':make pipeline(StandardScaler(), Lasso()),
             'Rcv':make pipeline(StandardScaler(), RidgeCV()),
             'CatB':make_pipeline(StandardScaler(), CatBoostRegressor(eval metric='RMSE',verbose=1000)),
             'lr':make_pipeline(StandardScaler(), LinearRegression()),
             'rf':make pipeline(StandardScaler(), RandomForestRegressor()),
             'gb':make pipeline(StandardScaler(), GradientBoostingRegressor()),
             'dtc':make_pipeline(StandardScaler(),DecisionTreeRegressor()),
              'xg':make pipeline(StandardScaler(),XGBRegressor())
In [74]: fit models = {}
         for algo, pipeline in pipelines.items():
             model = pipeline.fit(X train, y train)
             fit models[algo] = model
        /opt/conda/lib/python3.7/site-packages/sklearn/linear model/ coordinate descent.py:648: ConvergenceWarning: Objective
        did not converge. You might want to increase the number of iterations, check the scale of the features or consider inc
        reasing regularisation. Duality gap: 4.781e+12, tolerance: 5.929e+10
          coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive
        Learning rate set to 0.05996
                learn: 221490.1496581 total: 61.4ms remaining: 1m 1s
        0:
        999:
               learn: 77595,2298921
                                       total: 2.85s
                                                        remaining: Ous
In [75]: from sklearn.metrics import mean absolute error, mean squared error
         maes=[]
         al=[]
         for algo, model in fit models.items():
```

```
yhat = model.predict(X_test)
al.append(algo)
maes.append(mean_squared_error(y_test,yhat)**0.5)
print(algo,'MEAN ABSOLUTE ERROR', mean_absolute_error(y_test,yhat))
print(algo,'ROOT MEAN SQUARED ERROR',mean_squared_error(y_test,yhat)**0.5)
en MEAN ABSOLUTE ERROR 104444.32355671145
```

en ROOT MEAN SQUARED ERROR 140011.53917862213 lasso MEAN ABSOLUTE ERROR 97479.23118789196 lasso ROOT MEAN SQUARED ERROR 132916.1566456281 RCV MEAN ABSOLUTE ERROR 97481.91673717603 RCV ROOT MEAN SQUARED ERROR 132918.333682342 CatB MEAN ABSOLUTE ERROR 66637.30790160663 CatB ROOT MEAN SQUARED ERROR 97508.34029611414 1r MEAN ABSOLUTE ERROR 97574.48622571728 Ir ROOT MEAN SQUARED ERROR 132952.7515959945 rf MEAN ABSOLUTE ERROR 69217.89879907611 rf ROOT MEAN SQUARED ERROR 102292.3632979867 gb MEAN ABSOLUTE ERROR 69874.84067217445 gb ROOT MEAN SQUARED ERROR 101056.41447857216 dtc MEAN ABSOLUTE ERROR 96944.72285782386 dtc ROOT MEAN SQUARED ERROR 143316.21683052482 xg MEAN ABSOLUTE ERROR 69035.05210660976 xg ROOT MEAN SQUARED ERROR 100694.41040458805

```
In [76]: plt.figure(figsize=(5,5))
  plt.xlabel('ML Algorithms...')
  plt.ylabel('Root Mean Squared Errors...')
  ax=sns.barplot(x=al,y=maes)
  plt.show()
```



```
# Generate predictions on the test set
        y_pred = pipeline.predict(X_test)
        # Evaluate the model
        print("Root Mean Squared Error: %.4f" % mean squared error(y test,y pred)**8.5)
       Learning rate set to 0.05996
       0:
               learn: 221490.1496581
                                       total: 4.18ms
                                                       remaining: 4.18s
       999:
               learn: 77595,2298921
                                       total: 2.81s
                                                       remaining: Ous
       Learning rate set to 0.057883
               learn: 222091.4863333
                                       total: 3.52ms
                                                       remaining: 3.51s
       0:
               learn: 76337.1933964
                                       total: 2.52s
       999:
                                                       remaining: Ous
       Learning rate set to 0.057883
       0:
               learn: 222546.8538661
                                       total: 2.94ms
                                                       remaining: 2.94s
       999:
               learn: 75466.5961681
                                       total: 2.51s
                                                       remaining: Ous
       Learning rate set to 0.057883
               learn: 223455.5230951
                                       total: 3.2ms
       0:
                                                       remaining: 3.2s
       999:
               learn: 75656.3661258
                                       total: 2.52s
                                                       remaining: Ous
       Learning rate set to 0.057883
       0:
               learn: 221606,9467960
                                       total: 3.71ms
                                                       remaining: 3.7s
               learn: 75195.9699196
                                       total: 2.46s
                                                       remaining: Ous
       999:
       Learning rate set to 0.057883
               learn: 219316.0911020
                                       total: 2.47ms
                                                       remaining: 2.47s
       0:
In [ ]: mean squared error(v test, v pred)**0.5
In [3]: al.append('stacked model')
        maes.append(mean_squared_error(y_test,y_pred)**0.5)
In [ ]: for i in range(10):
            print("The RMSE of",al[i],'is',maes[i])
In [ ]: plt.figure(figsize=(9,5))
        plt.xlabel('ML Algorithms...')
        plt.ylabel('Root Mean Squared Errors...')
        ax=sns.barplot(x=al,y=maes)
        plt.show()
```