CLAIMS

What is claimed is:

1	1.	A method comprising:
2		electrically connecting a first kicker device to a first drain bias for a first
3		non-volatile memory cell, wherein said first kicker device comprises a
4		high performance transistor;
5		enabling said first kicker device; and
6		pulling a voltage of said first drain bias towards a voltage potential of a supply
7		source.
1	2.	The method of claim 1, wherein said first non-volatile memory cell is a flash
2		memory cell.
1	3.	The method of claim 1, wherein said high performance transistor is a p-channel
2		semiconductor device.
1	4.	The method of claim 1, wherein said first kicker device is enabled prior to sensing
2		the contents of said first non-volatile memory cell.
1	5.	The method of claim 1, wherein:
2		said first non-volatile memory cell is included in a data array;
3		a second kicker device is electrically connected to a second drain bias for a
4		second non-volatile memory cell;
5		said second non-volatile memory cell is included in a reference array; and

		g
6		said first kicker device and said second kicker device pull a voltage of a sense
7		node for said first non-volatile memory cell and a voltage of a reference
8		node for said second non-volatile memory cell towards the same voltage
9		potential.
1	6.	The method of claim 1, wherein said first drain bias comprises a cascode
2		amplifier.
1	7.	A kicker for a non-volatile memory drain bias circuit, comprising:
2		a high performance transistor, wherein a first terminal of said high performance
3		transistor receives a voltage from a supply voltage and a second terminal
4		of said high performance transistor provides a voltage to said non-volatile
5		memory drain bias circuit; and
6		an enable signal, wherein said enable signal activates said high performance
7		transistor.
1	8.	The kicker for a non-volatile memory drain bias circuit of claim 7, wherein said
2		non-volatile memory drain bias circuit provides the drain bias for a flash memory
3		cell.
1	9.	The kicker for a non-volatile memory drain bias circuit of claim 7, wherein said
2		high performance transistor is a p-channel semiconductor device.
1	10.	The kicker for a non-volatile memory drain bias circuit of claim 7, wherein said
2		kicker pulls the voltage of a node towards the voltage potential of a supply source

1	11.	The kicker for a non-volatile memory drain bias circuit of claim 7, wherein said
2		kicker is enabled prior to sensing the contents of a first non-volatile memory cell.
1	12.	The kicker for a non-volatile memory drain bias circuit of claim 11, wherein:
2		said first non-volatile memory cell is included in a data array;
3		a second kicker is electrically connected to a second drain bias for a second
4		non-volatile memory cell;
5		said second non-volatile memory cell is included in a reference array; and
6		said kickers pull a sense node for said first non-volatile memory cell and a
7		reference node for said second non-volatile memory cell towards the same
8		voltage potential.
1	13.	The kicker for a non volatile memory drain bias circuit of claim 7, wherein said
2		non-volatile memory drain bias circuit comprises a cascode amplifier.
1	14.	A non-volatile memory device, comprising:
2		a first drain bias circuit for a first memory cell;
3		a first kicker circuit for said first drain bias circuit, wherein said first kicker circuit
4		comprises a high performance transistor and wherein said first kicker
5		circuit pulls the voltage of a node towards a voltage potential of a supply
6		source.
1	15.	The non-volatile memory device of claim 14, wherein said non-volatile memory
2		device is a flash memory device.

1	16.	The non-volatile memory device of claim 14, wherein said high performance
2		transistor is a p-channel device.
1	17.	The non-volatile memory device of claim 14, wherein said first kicker circuit acts
2		as a low resistance path to said supply voltage and said first kicker circuit charges
3		the bitline for said first memory cell.
1	18.	The non-volatile memory device of claim 14, wherein said first kicker circuit is
2		enabled prior to sensing the contents of said first memory cell.
1	19.	The non-volatile memory device of claim 14, further comprising:
2		a second drain bias circuit for a second memory cell; and
3		a second kicker circuit for said second drain bias circuit, wherein:
4		said first memory cell is included in a data array;
5		said second memory cell is included in a reference array; and
6		said first kicker circuit and said second kicker circuit pull a sense node for
7		said first memory cell and a reference node for said second
8		memory cell towards the same voltage potential.
1	20.	The non-volatile memory device of claim 14, wherein said first drain bias circuit
2		comprises a cascode amplifier.