

Mobile Terrain Scanning System

Mentor Ivar Sanders

Team 1439

Connor Magness Wesley Folz Jesus Sanchez

Alex Hoobler Christian Magallanes Alex Porter

Sponsor

Justin Mamer Jesse Farmer

Matt Holmes

Tucson Proving Grounds

PROBLEM

Objective

 Develop a mobile terrain scanning system that will use existing equipment from Caterpillar to retrieve surface data from a moving vehicle and produce a virtual surface.

Purpose

- Virtually test and analyze equipment
- Document Testing Conditions

MOUNTING SYSTEM

Design Considerations

- Adaptable to Different Vehicles
- Fix Component Positions
- Adjustable Lidar Angle
- Simple Construction

Design Process and Features

- FEA analysis
- Water Jet Cut Frame

TESTING

Hardware

Correction	Results
Time Sync	

Software

Correction	Results
Coordinates	
Pitch	
Roll	
Yaw	

REQUIREMENTS

Components

- Velodyne HDL64ES3 LiDAR
- Oxford RT4000 IMU
- Garmin GPS 18x LVC

Performance

+/- 25mm point accuracy

GPS

Operational

- Output STL file
- Scan from moving vehicle

SOFTWARE AND DATA

Point Cloud Correction

- Reads IMU and LiDAR data
- Determines the frames needed to map desired surface
- LiDAR and IMU time synchronization
- IMU data Interpolation
- LiDAR data coordinate transformation

Surface Meshing

- Delaunay Triangulation
- Normal Vector Calculation
- Point Cloud to Surface File

Time

RESULTS

Summary

- Mount fixes component location
- Collect IMU and LiDAR data
- Point cloud correction
- Outputs adjusted point cloud and surface mesh

Surface Mesh (STL)

Uncorrected Point Cloud

Corrected Point Cloud