Deep Learning (DL)

Ups and downs of Deep Learning

- 1958: Perceptron
- 1980s: Multi-layer perceptron (MLP)
- 1986: Backpropagation (BP)
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: Restricted Boltzmann Machine (RBM) initialization
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC image competition
- 2015: Image recognition surpassing human-level performance
- 2016: Alpha GO
- 2016: Speech recognition system as good as humans
- 2019: Pretrained language models (PLMs) for NLP tasks
- 2023: Large language models (LLMs)

•

Three Steps for Deep Learning

- Step 1. A neural network is a function composed of simple functions (neurons)
 - Usually we design the network structure, and let machine find parameters from data
- Step 2. Cost function evaluates how good a set of parameters is We design the cost function based on the task
- Step 3. Find the best function (e.g., gradient descent)

Basic Structure: Recurrent Structure

Simplify the network by using the same function again and again

Recurrent Neural Network

h and h' are vectors with the same • Given function f: h', y = f(h, x)dimension

No matter how long the input sequence is, we only need one function f

Deep RNN

$$h', y = f_1(h, x) \quad b', c = f_2(b, y) \cdots$$

Bidirectional RNN

$$h', a = f_1(h, x)$$
 $b', c = f_2(b, x)$

Naïve RNN

• Given function f: h', y = f(h, x)

c changes
slowly
ct is ct-1 added by
something
h changes fast
ht and ht-1 can be very
different

Ct-1

$$z = tanh(W \frac{x^t}{h^{t-1}})$$

$$z^{f} = \sigma(\frac{W^{f}}{h^{t-1}})$$

$$\frac{z}{\circ} = \sigma(\frac{\mathsf{W}^{\circ}}{\mathsf{h}^{\mathsf{t-1}}})$$


```
def LSTMCELL(prev_ct, prev_ht, input):
    combine = prev_ht + input
    ft = forget_layer(combine)
   candidate = candidate_layer(combine)
   it = input_layer(combine)
   Ct = prev_ct * ft + candidate * it
   ot = output_layer(combine)
   ht = ot * tanh(Ct)
    return ht, Ct
ct = [0, 0, 0]
ht = [0, 0, 0]
for input in inputs:
   ct, ht = LSTMCELL(ct, ht, input)
```


$$c^{t} = z^{f} \odot c^{t-1} + z^{i} \odot z$$
$$h^{t} = z^{o} \odot tanh(c^{t})$$
$$y^{t} = \sigma(W'h^{t})$$

Conditional Generation by RNN & Attention

Generating a structured object component-bycomponent

Generation

- Sentences are composed of characters/words
 - Generating a character/word at each time by RNN

- Images are composed of pixels
 - Generating a pixel at each time by RNN

Conditional Generation

- We don't want to simply generate some random sentences.
- Generate sentences based on conditions: Caption Generation

Given condition

Chat-bot

Given condition:

Conditional Generation

 Represent the input condition as a vector, and consider the vector as the input of RNN generator

Conditional Generation

Sequence-tosequence

learning

 Represent the input condition as a vector, and consider the vector as the input of RNN generator

E.g. Machine translation / Chat-bot

Attention

Dynamic Conditional Generation

Dynamic Conditional Generation

Attention-based model

Jointly learned matc with other part of the network h Z

What match is Design by yourself

- Cosine similarity of z and h
- Small NN whose input is z and h, output a scalar $\Rightarrow a = h^T W z$

Definition [edit]

The cosine of two non-zero vectors can be derived by using the Euclidean dot product formula:

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta$$

Given two vectors of attributes, A and B, the cosine similarity, $cos(\theta)$, is represented using a dot product and magnitude as

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

where A_i and B_i are components of vector A and B respectively.

The resulting similarity ranges from -1 meaning exactly opposite, to 1 meaning exactly the same, with 0 indicating orthogonality or decorrelation, while in-between values indicate intermediate similarity or dissimilarity.

For text matching, the attribute vectors A and B are usually the term frequency vectors of the documents. Cosine similarity can be seen as a method of normalizing document length during comparison.

In the case of information retrieval, the cosine similarity of two documents will range from 0 to 1, since the term frequencies (using tf-idf weights) cannot be negative. The angle between two term frequency vectors cannot be greater than 90°.

NIPS17 Attention Is All You Output Need **Probabilities** Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

Figure 1: The Transformer - model architecture.

Scaled Dot-Product Attention

Multi-Head Attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

输入	Thinking	Machines
词嵌入	X1	X2
查询向量	q ₁	q ₂
键向量	k ₁	k ₂
值向量	V ₁	V ₂
打分	$q_1 \cdot k_1 = 112$	q ₁ • k ₂ = 96
除以8($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12
softmax 乘以 值向量	V ₁	V ₂
求和	Z ₁	Z ₂

Attention-based model

Image Caption Generation

Image Caption Generation

Image Caption Generation

Image Caption Generation (positive samples)

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Image Caption Generation (negative samples)

A large white bird standing in a forest.

A woman holding a clock in her hand.

A man wearing a hat and a hat on a skateboard.

A person is standing on a beach with a surfboard.

A woman is sitting at a table with a large pizza.

A man is talking on his cell phone while another man watches.

Leiphone Fansub bilibili

Analysis of Attention for Sentiment

- Sharper attention when 2 passes are allowed.
- Examples that are wrong with just one pass

Stanford University

弹幕礼仪 >

Analysis of Attention for Sentiment

The best was to the tot sustance of indithis the is parting out one

2-iter DMN (pred: negative, ans: negative)

The best was to the for surface of ind this till is the lind out one

Leiphone Fansub bilibili

Analysis of Attention for Sentiment

 Examples where full sentence context from first pass changes attention to words more relevant for final prediction

Stanford University

弹幕礼仪 >

