CS:4330 Theory of Computation Spring 2018

Computability Theory

TM Variants

Haniel Barbosa

Readings for this lecture

Chapter 3 of [Sipser 1996], 3rd edition. Section 3.2.

Variants of Turing Machines

- There are many alternative definitions of Turing machines.
- > Nondeterministic machines or machines with multiple tapes.
- The original model and its variants have the same expressive power: they recognize the same class of languages.
- ▶ We will explore some variants and prove their equivalence in expressive power.
- □ Turing machines are *robust*, allowing several variances without affecting its expressive power.

Variants of Turing Machines

The transition function of a standard TM forces the head to move to left or right after each step. Let us vary the type of transition function permitted:

Suppose that we allow the head to stay put, i.e.

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$

- \triangleright *S* transitions can be represented by two standard transitions: one that moves to the left followed by one that moves to the right
- Since we can convert a TM which stays put into one that does not, the extension does not increase the expressive power of standard TMs.

Variants of Turing Machines

The transition function of a standard TM forces the head to move to left or right after each step. Let us vary the type of transition function permitted:

Suppose that we allow the head to stay put, i.e.

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$

- \triangleright S transitions can be represented by two standard transitions: one that moves to the left followed by one that moves to the right
- Since we can convert a TM which stays put into one that does not, the extension does not increase the expressive power of standard TMs.

General idea for proving equivalences between variants

To show that one type of machine simulates the other.

Multitape Turing Machines

A multitape TM is like a standard TM but with several tapes

- ▷ Initially the input is on tape 1 and other tapes are blank

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L,R\}^k$$
, where k is the number of tapes

 $> \delta(q_i, \mathbf{a}_1, \dots, \mathbf{a}_k) = \langle q_j, \mathbf{b}_1, \dots, \mathbf{b}_k, L, R, \dots, L \rangle \text{ means that if the machine is in state } q_i \text{ and heads 1 through } k \text{ are reading symbols } \mathbf{a}_1 \text{ through } \mathbf{a}_k, \text{ the machine goes to state } q_j, \text{ writes symbols } \mathbf{b}_1 \text{ through } \mathbf{b}_k \text{ and directs each head to move left or right as specified.}$

Example of a Multitape TM

Let
$$L = \{0^a 1^b 2^c \mid c = \lfloor log_a b \rfloor, a > 1, b > 0\}$$
. Note that $a^c \le b < a^{c+1}$.

We may use a three-tape TM to recognize this language: the input tape, the second tape containing x and the third tape containing k, where $x=a^{k+1}$, based on the following algorithm:

```
x = a; k = 0;
while (x \le b)
x = x*a; k = k+1;
return k;
```

Example of a Multitape TM

Let
$$L = \{0^a 1^b 2^c \mid c = \lfloor log_a b \rfloor, a > 1, b > 0\}$$
. Note that $a^c \le b < a^{c+1}$.

M = "On input string w:

- 1. Check if $w \in 00^+1^+2^+$; if not, *reject*
- 2. Copy all 0s on the input tape to tape 2
- If number of 0s on tape 2 exceeds number of 1s on the input tape, go to stage 6
- 4. Multiply 0s on tape 2 by number of 0s on the input tape and keep the result on tape 2
- 5. Add a symbol "2" to tape 3; go to stage 3.
- If number of 2s n tape 3 is the same number of 2s on the input tape, accept; otherwise reject"

Equivalence between multi- and singletape TMs

Theorem

Every multitape Turing machine has an equivalent single-tape Turing machine.

Proof idea

Show how to convert a multitape TM M into a single-tape TM S. The important step is how to simulate M with S.

Assuming M has k tapes:

- $\triangleright S$ simulates the effect of k tapes by storing their information on its single tape
- S uses a new symbol # as a delimiter to separate the contents of different tapes
- S keeps track of the location of the heads by marking with a the symbols where the heads would be.

General construction

- S ="On input string $w = w_1, ..., w_n$:
 - 1. Put *S* in the format that represents all *k* tapes of *M*:

$$S = \# \overset{\bullet}{w_1} w_2 \cdots w_n \# \overset{\bullet}{\sqcup} \# \overset{\bullet}{\sqcup} \# \cdots \#$$

- 2. To simulate a single move, S scans its tape from the first #, which marks the left-hand end, to the (k+1)-st #, which marks the right-hand end, in order to determine the symbols under the virtual heads. Then S makes a second pass to update the tapes according to the way M's transition function dictates.
- 3. If at any point S moves one of the virtual heads to the right onto a #, this action means that M has moved the corresponding head onto the previously unread blank portion of that tape. So S writes a blank symbol on this tape cell and shifts the tape contents, from this cell until the rightmost #, one unit to the right. Then it continues to simulate as before."

Other variants

Notes on Nondeterministic Turing Machines and Enumerators done in class in the blackboard.