

Introduction >>> Motivation

Earthquake Localization

https://www.usgs.gov/faqs/how-do-seismologists-locate-earthquake

Catalog

https://www.sciencedirect.com/topics/earthand-planetary-sciences/earthquake-catalogue

Introduction >>> Goal

Given

Target

Introduction >>> Goal

Given

Target

Seemingly easy? Just take peaks?

Introduction >>> Challenges

- Irregular Shapes
- Great Noise
- S-wave Missing

Data

- Dataset
- Preprocessing
- Labeling

Single-Trace

- Traditional Method
- Learning-Based Method
- Results
- Ideas

- Motivation
- Ideas

Data

►►► Dataset

- About 50,000 earthquakes
- 1.2 million 3-component waveform traces
- Each with more than 100 parameters

Large

Comprehensive

Suitable for Machine Learning

Data

- Dataset
- Preprocessing
- Labeling

Single-Trace

- Traditional Method
- Learning-Based Method
- Results
- Ideas

- Motivation
- Ideas

Data

Preprocessing

12,000 Original

6,000 Is Enough

Distribution of arrival times

Data

Preprocessing

Normalization Needed!

$$Unbiased_i = x_i - \overline{x_i},$$

$$Normed_i = \frac{Unbiased_i}{\max\{|Unbiased_i|\}}$$

A very wide range

Distribution of peak values

Data

- Dataset
- Preprocessing
- Labeling

Single-Trace

- Traditional Method
- Learning-Based Method
- Results
- Ideas

- Motivation
- Ideas

Data

►►► Labeling

Uncertainty

P: $1828 \pm \sigma$, S: $2621 \pm \sigma$

Missing Waves

P: $1518 \pm \sigma$, S: None

Numbers

Distribution

Data

- Dataset
- Preprocessing
- Labeling

Single-Trace

- Traditional Method
- Learning-Based Method
- Results
- Ideas

- Motivation
- Ideas

Single-Trace >>> Traditional Method AR Pick

- Hard to design
- Complicated
- Not precise enough
- Not robust enough

We'll see from the results (to be presented later)

Data

- Dataset
- Preprocessing
- Labeling

Single-Trace

- Traditional Method
- Learning-Based Method
- Results
- Ideas

- Motivation
- Ideas

Single-Trace >>> Learning-Based Method CNN-Based: PhaseNet

Single-Trace >>> Learning-Based Method

Transformer-Based: EQTransformer

Data

- Dataset
- Preprocessing
- Labeling

Single-Trace

- Traditional Method
- Learning-Based Method
- Results
- Ideas

- Motivation
- Ideas

Single-Trace >>> Results EQTransformer P arrival EQTransformer S arrival AR Pick P arrival AR Pick S arrival

Ground Truth P arrival Ground Truth S arrival

Slight noise, both work well EQTransformer a bit more precise

Single-Trace >>> Results

Stronger noise, AR Pick cheated EQTransformer still works well

Data

- Dataset
- Preprocessing
- Labeling

Single-Trace

- Traditional Method
- Learning-Based Method
- Results
- Ideas

- Motivation
- Ideas

Single-Trace >>> Ideas

- AR Pick: Traditional method
- PhaseNet: Convolution Network
- PpkNet: Recurrent Network
- EQTransform: Conv + LSTM + Transformer

Single-Trace >>> Ideas

- AR Pick: Traditional method
- PhaseNet: Convolution Network
- PpkNet: Recurrent Network

Attention is ALL you need!

EQTransform: Conv + LSTM + Transformer

Single-Trace >>> Ideas

- AR Pick: Traditional method
- PhaseNet: Convolution Network
- PpkNet: Recurrent Network

Attention is ALL you need!

EQTransform: Conv + LSTM + Transformer

What about a PURE Transformer Net?

Single-Trace ►►► Ideas

A Vision Transformer Model: TransFG

Data

- Dataset
- Preprocessing
- Labeling

Single-Trace

- Traditional Method
- Learning-Based Method
- Results
- Ideas

- Motivation
- Ideas

Multi-Trace >>> Motivation

Is EQTransformer good enough?

Multi-Trace >>> Motivation

Is EQTransformer good enough?

Cannot recognize P-wave at all!

Multi-Trace ►►► Motivation

Different Stations

More relevant data

Informational Combination

Deeper Understanding

Same Earthquake

More precise

More robust

Anti-ambiguous

Data

- Dataset
- Preprocessing
- Labeling

Single-Trace

- Traditional Method
- Learning-Based Method
- Results
- Ideas

- Motivation
- Ideas

Multi-Trace ►►► Ideas

Figure 1. Network architecture. (a) The components of EQTransfromer and inserted Edge Convolution module. (b) The process of collecting messages (m_{ij}) from neighboring nodes, and aggregation to enhanced representations. (c) The neural network in constructing messages (m_{ij}) between two nodes. The operation \oplus represents concatenation of two latent representations along the channel dimension.

Use Graph to integrate information

Thanks for listening

Yuchen Wang, Ruihuan Wang