SIO 207A: Fundamentals of Digital Signal Processing Class 2

Florian Meyer

Scripps Institution of Oceanography
Electrical and Computer Engineering Department
University of California San Diego

UC San Diego

JACOBS SCHOOL OF ENGINEERING

C

Infinite Impulse Response (IIR) Filter

• Consider IIR filter with just a single coefficient:

• A: The feedback creates poles $a_1=+1,$ system perfectly reinforces the unit step sequence, $\ u[n]= egin{cases} 1, & n\geqslant 0 \\ 0, & \text{otherwise} \end{cases}$

 $a_1=-1, {\rm system}$ perfectly reinforces the unit alternating sequence unstable when $|a_1|\geqslant 1$

4

Infinite Impulse Response (IIR) Filters

- B: Unit sample response is a geometric sequence: $h[n]=(a_1)^n$
- Examples

$$a_1 = 0.9$$

Convolution:

$$y[n] = h[0]x[n] + h[1]x[n-1] + \dots$$

= $\sum_{k=0}^{\infty} h[k]x[n-k]$

• C: Filter Description (input/output)

Difference Equation:

$$y[n] = a_1 y[n-1] + a_2 y[n-2] + \dots + a_N y[n-N] + x[n]$$

$$= \sum_{k=1}^{N} a_k y[n-k] + x[n]$$

2

General Infinite Impulse Response (IIR) Filters

- In general, IIR filters have both feedforward and feedback sections
- A. Filter description (input/output)

• Difference Equation: $y[n] = \sum_{k=1}^N a_k y[n-k] + \sum_{r=0}^M b_r x[n-r]$

• Convolution: $y[n] = \sum_{k=0}^{\infty} h[k]x[n-k]$

3

Analog System Output

 Analog system output is obtained after digital and analog (D/A) conversion as well as lowpass filtering

- D/A converter
 - "holds" the digital value
 - can be modeled as analog filter with impulse response

Δ

Linear Shift-Invariant System

Arbitrary Input Signal:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \, \delta[n-k]$$

(representation in terms of delayed unit sample functions)

Transformation $T(\cdot)$

Output Signal:

$$y[n] = T\bigg(\sum_{k=-\infty}^\infty x[k]\,\delta[n-k]\bigg)$$

$$= \sum_{k=-\infty}^\infty x[k]\,T\bigl(\delta[n-k]\bigr) \qquad \text{Linearity}$$

$$= \sum_{k=-\infty}^{\infty} x[k] T(\delta[n-k])$$
 Linearit
$$= \sum_{k=-\infty}^{\infty} x[k] h_k(n)$$

Unit sample response $\,h[n]\,$ is a fundamental quantity of interest since it fully describes the linear shift-invariant system

5

Important Class of Linear Shift-Invariant System

• An important class of linear shift-invariant systems consist of those whose input/output relation satisfies a linear constant coefficient difference equation

$$y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{r=0}^{M} b_r x[n-r]$$

6

Stability and Causality

- Stable System: Every bounded input produces a bounded output
- · Linear Shift-Invariant system stable iff

$$S riangleq \sum_{k=-\infty}^{\infty} \left| h[k] \right| < \infty$$
 absolutely summable

• Causal system is one in which changes in the output do not precede changes in the input (i.e., non-anticipating)

7

Discrete-Time Convolution

• The output of a linear shift-invariant system is the convolution of the input signal and the unit sample response:

$$y[n] = \sum_{m=-\infty}^{\infty} x[m] h(n-m)$$

= $x[n] * h[n]$

Frequency Domain Representation

- Often decompositions of the input signal are valuable
- Assume:

$$x[n] = e^{jwn}$$
$$= \cos(wn) + j\sin(wn)$$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k] e^{jw(n-k)}$$
$$= e^{jwn} \sum_{k=-\infty}^{\infty} h[k] e^{-jwk}$$

$$-\infty < n < \infty$$

 $-\infty < n < \infty$ complex exponential sequence

Define:
$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k] e^{-jwk}$$

$$\longrightarrow y[n] = H(e^{j\omega}) e^{j\omega n}$$

 $H(e^{j\omega})$ Describes alternation in phase and magnitude of the complex signal passing through system

Frequency Domain Representation

- $H(e^{j\omega})$ is
 - the frequency response of a system with unit sample response h[n]
 - is a complex quantity, i.e., $H(e^{j\omega}) = |H(e^{j\omega})|e^{j\arg\{H(e^{jw})\}}$

• Note:
$$x[n] = A\cos\omega n = \frac{A}{2}\left[e^{j\omega n} + e^{-j\omega n}\right]$$

 $H(e^{j\omega})$ is in ω with period 2π

10

10

Frequency Domain Representation

• Since $H(e^{j\omega})$ is periodic it can be represented as a Fourier series (i.e., harmonically related sinusoids)

$$H(e^{j\omega}) \triangleq \sum_{n=-\infty}^{\infty} h[n] e^{-j\omega n}$$
 (1)

ullet Fourier coefficients are the unit sample response $\ h[n]$ and from the definition of Fourier series

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (2)$$

• Equations (1) and (2) are a Fourier transform pair

4.4

Frequency Domain Representation

• In more general context, we will write the Fourier transform and inverse transform as

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$
 periodic with period $\,2\pi$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

 Four ways to represent frequency domain axis is discrete-time signal processing

(Note that $\,T\,$ and $\,f_{
m s}=1/T\,$ are sampling interval and sampling frequency, respectively.)

12

12

Input/Output Relation in Frequency Domain

- The response of a linear system due to each complex exponential into which the input x[n] is decomposed is $H(e^{j\omega})$
- Thus, we have

$$y[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) X(e^{j\omega}) e^{j\omega n} d\omega$$

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

Sampling Theorem

- Sampling of continuous-time signals
- Recall sampling ←⇒ periodicity
- Sampling Theorem:

If the Fourier transform of a continuous-time signal x(t) is zero for all $\omega>2\pi B$ ("Bandwidth" in Hz:B)

$$X(j\omega) = 0, \quad \omega > 2\pi B$$

Then x(t) is uniquely determined from its uniformly sampled values if the sampling period is selected to satisfy $T \leq 1/2B$, i.e., sampling rate $f_{\rm s} \geq 2B$

1.1

14

Aliasing

• Spectral representation after sampling:

no aliasing

• In ① the original analog time-series can be recovered from its samples and in ② it cannot due to aliasing

4.0