Rozpoznawanie mowy w obecności zakłóceń

Rafał Sokołowski Opiekun: dr Marek Skarupski

> Wydział Matematyki Politechnika Wrocławska

20 stycznia 2022

Spis treści

- Rozpoznawanie mowy
- 2 Dane akustyczne
- Ukryte Łańcuchy Markowa
- Szumy Gaussowskie
- 5 Zbiór danych
- O Ukryte Łańcuchy Markowa predykcja
- Model bazowy wyniki
- Model trenowany w obecności szumów wyniki
- 9 Podsumowanie

Czym jest rozpoznawanie mowy?

Rysunek: Źródło: https://developer.nvidia.com/

Dane akustyczne

Rysunek: Źródło: Opracowanie własne

Przygotowane danych - Współczynniki MFCC

Współczynniki MFCC (ang. Mel-frequency cepstrum coefficients, [3]) stanowią reprezentację widma M najistotniejszych zakresów częstotliwości sygnału dźwiękowego.

Rysunek: Źródło: Opracowanie własne

Ukryte Łańcuchy Markowa - własność Markowa

Definicja

Jeśli proces stochastyczny $\{q_t, t \in \mathcal{T}\}$ spełnia tzw. własność Markowa, czyli

$$P(q_{t+1} = i|q_t, q_{t-1}, \dots, q_0) = P(q_{t+1} = i|q_t)$$
 (1)

dla *i* pochodzącego z przestrzeni stanów, to mówimy, że proces jest **łańcuchem Markowa pierwszego rzędu**.

Ukryte Łańcuchy Markowa - łańcuchy Markowa

Definiujemy prawdopodobieństwo przejścia

$$a_{ij} = P(q_{t+1} = s_j | q_t = s_i) \qquad \forall t \in \mathcal{T}, \, \forall s_i, s_j \in \{D, Z, \S\}. \tag{2}$$

Rysunek: Źródło: https://jonathan-hui.medium.com/

Ukryte Łańcuchy Markowa

W przypadku ukrytych łańcuchów Markowa (HMM) mamy do czynienia z dwoma procesami stochastycznymi:

- ullet $\{q_t,t\in\mathcal{T}\}$ przyjmujący wartości z przestrzeni stanów ukrytych Q.
- $\{O_t, t \in \mathcal{T}\}$ przyjmujący wartości z przestrzeni stanów jawnych \mathcal{O} .

Ukryte Łańcuchy Markowa

Dla procesu q_t mamy spełnioną własność Markowa, czyli

$$P(q_{t+1} = i | q_t, q_{t-1}, \dots, q_0) = P(q_{t+1} = i | q_t) \quad \forall i \in Q$$
 (3)

Natomiast dla O_t , mamy spełniony warunek niezależności wyniku z momentu t od poprzednich obserwacji, tzn $\forall i \in Q, \forall j \in \mathcal{O}$:

$$P(O_t = j | q_t, \dots, q_0, O_{t-1}, \dots, O_0) = P(O_t = j | q_t = i).$$
 (4)

Ukryte Łańcuchy Markowa - przykład

Definiujemy prawdopodobieństwo emisji:

$$b_{ij} = P(O_t = j | q_t = i) \qquad \forall i \in Q, \forall j \in \mathcal{O}.$$
 (5)

Rysunek: Źródło: Opracowanie własne

Ukryte Łańcuchy Markowa

Zdefiniujmy wektor stanu początkowego $\pi = \{\pi_i\}$, $i \in Q$, gdzie

$$\pi_i = P(q_0 = i) \tag{6}$$

Wtedy krotka $\lambda = (Q, \mathcal{O}, A, B, \pi)$, gdzie

- A = $\{a_{ij}\}$ macierze prawdopodobieństw przejścia
- ullet B = $\{b_{ij}\}$ macierze prawdopodobieństw emisji

Jednoznacznie wyznacza ukryty łańcuch Markowa (p. [5], [6]).

Ukryte Łańcuchy Markowa w rozpoznawaniu mowy

Rysunek: Źródło: https://jonathan-hui.medium.com

Szumy Gaussowskie

Rozpatrzmy sygnał $\{N_t: t=0,\pm 1,\pm 2,\dots\}$ jako proces gaussowski o średniej 0, tzn.

$$E[N_t] = 0 \quad \forall t \in \mathbb{R}. \tag{7}$$

Zdefiniujemy funkcję autokowariancji procesu N_t jako

$$r(h) = Cov[N_t, N_{t-h}] = E[N_t \cdot N_{t-h}] \quad \forall t, h \in \mathbb{R}.$$
 (8)

Definicja

Niech proces stochastyczny N_t spełnia (7) i (8). Widmowa gęstość mocy $\phi(f)$ (ang. *Power Spectrum Density*, PSD, [7]) zdefiniowana jest jako krótkoczasowa dyskretna transformata Fouriera funkcji autokowariancji r(h), tzn.

$$\phi(f) = \sum_{h=-\infty}^{\infty} r(h)e^{-i\cdot f\cdot h},\tag{9}$$

gdzie f to częstotliwość.

Szumy Gaussowskie

Będziemy rozważać gaussowskie szumy losowe, będące procesami stochastycznymi N_t , których widmowa gęstość mocy $\phi(f)$ będzie proporcjonalna do wartości $(1/f)^{\beta}$. W szczególności (p. [1], [8]):

Definicja

- $\beta = -2$, $\phi(f) \propto f^2$ fioletowy szum.
- $\beta = -1$, $\phi(f) \propto f$ niebieski szum.
- $\beta = 0$, $\phi(f)$ jest stała biały szum.
- $\beta=1$, $\phi(f)\propto f^{-1}$ różowy szum.
- $\beta = 2$, $\phi(f) \propto f^{-2}$ czerwony szum, znany również jako szum brownowski.

Zbiór danych

W celu uzyskania idealnego zbioru danych wykorzystamy narzędzie z biblioteki pythona gTTS (p. [2]). Umożliwi nam on wygenerowanie sygnałów dźwiękowych od zadanych klas słów:

id	Słowo			
0	down			
1	go			
2	left			
3	no			
4	off			
5	on			
6	right			
7	stop			
8	to			
9	yes			

Tabela: Rozpatrywane klasy słów. Źródło: Opracowanie własne

Współczynnik SNR

Definicja

Moc sygnału $\{S_t, t \in \mathcal{T}\}$, który jest procesem stochastycznym definiujemy jako:

$$P = E|S_t|^2 \quad \forall t \in \mathcal{T}, \tag{10}$$

czyli jest to drugi moment rozkładu S_t .

Do zmierzenia poziomu zaszumienia sygnału wykorzystamy współczynnik SNR (ang. *Signal-noise ratio*, [4]) zdefiniowany następująco:

$$SNR = \frac{P_S}{P_N},\tag{11}$$

gdzie P_S , P_N to odpowiednio moc sygnału i moc szumu.

Współczynnik SNR

Wygodniej będzie nam przedstawić równanie (11) w skali decybelowej, uzyskujemy

$$SNR_{dB} = 10 \log_{10} \left(\frac{P_S}{P_N} \right) = 10 \log_{10}(P_S) - 10 \log_{10}(P_N).$$
 (12)

Jak szum wpływa na sygnał?

Rysunek: Przykładowa obserwacja, na którą nałożono bały szum w zależności od współczynnika SNR. Źródło: Opracowanie własne

Ukryte łańcuchy Markowa - predykcja

Zajmujemy się zagadnieniem rozpoznawania izolowanych słów, które można sprowadzić do równania:

$$\hat{w} = \operatorname*{argmax}_{w} \left\{ P(w|O) \right\}, \tag{13}$$

gdzie w to klasa słowa, a $O=(O_1,\ldots,O_T)$ to wektor obserwacji. Z twierdzenia Bayes'a

$$\hat{w} = \underset{w}{\operatorname{argmax}} \left\{ \frac{P(O|w)P(w)}{P(O)} \right\} = \underset{w}{\operatorname{argmax}} \left\{ P(O|w)P(w) \right\}. \tag{14}$$

Uwaga

W zagadnieniu izolowanych słów pomija się P(w), ponieważ prawdopodobieństwo wystąpienia dowolnej klasy słowa powinno być takie samo dla każdej klasy.

Ukryte łańcuchy Markowa - predykcja

W naszym problemie każde osobne słowo możemy przedstawić jako ukryty łańcuch Markowa. Jeśli oznaczymy taki HMM jako λ , to możemy zapisać:

$$\hat{\lambda} = \underset{\lambda}{\operatorname{argmax}} \left\{ P(O|\lambda) \right\}. \tag{15}$$

Czyli problem znajdowania słowa w zastąpiliśmy problemem wybrania najbardziej prawdopodobnego λ odpowiadającego za w.

Model bazowy - wyniki

Rysunek: Źródło: Opracowanie własne

Model bazowy - wyniki

Rysunek: Źródło: Opracowanie własne

Model trenowany na zaszumionych obserwacjach

β	-2	-1	0	1	2
SNR _{dB}					
-2	0.356	0.161	0.294	0.017	-0.072
-1	0.445	0.339	0.539	0.028	0.016
0	0.366	0.461	0.578	0.122	0.083
1	0.494	0.567	0.7	0.178	0.077
2	0.4	0.556	0.628	0.1	0.056
3	0.333	0.35	0.4	0.028	-0.011
4	0.333	0.333	0.228	-0.039	-0.039
5	0.228	0.206	0.117	-0.083	-0.073
6	0.111	0.111	0.111	-0.133	-0.183
7	0.111	0.111	0.111	-0.156	-0.261
8	0.111	0.111	0.111	-0.188	-0.194
9	0.111	0.111	0.111	-0.194	-0.078

Tabela: Zwroty wyników dokładności modelu wytrenowanego na zaszumionych danych do modelu bazowego. Źródło: Opracowanie własne

Model trenowany na zaszumionych obserwacjach - wyniki

Rysunek: Źródło: Opracowanie własne

Model trenowany na zaszumionych obserwacjach - wyniki

Rysunek: Źródło: Opracowanie własne

Podsumowanie

- Ukryte Łańcuchy Markowa są przydatne w zagadnieniu rozpoznawania izolowanych słów.
- Jeśli wiemy, że w naszych obserwacjach będziemy mieli do czynienia z zakłóceniami, to warto w sposób sztuczny zaszumić zbiór treningowy.
- Przy wyborze optymalnych parametrów zaszumienia zbioru kierowaliśmy się poprawą dokładności, lecz można to uogólnić na monitorowanie dowolnej metryki.

Dziękuję za uwagę!

Literatura

- Federal Standard 1037C. Tech. rep. Institute for Telecommunication Sciences. Institute for Telecommunication Sciences, National Telecommunications and Information Administration (ITS-NTIA), 2018.
- [2] Google. Google Text-to-Speech. https://gtts.readthedocs.io/en/latest/index.html. Dostęp: 02.01.2022.
- [3] X. Huang, A. Acero, and H. Hon. Spoken Language Processing: A guide to theory, algorithm, and system development. Prentice Hall, 2001, pp. 314–316.
- [4] D. H. Johnson. "Signal-to-noise ratio". In: Scholarpedia 1.12 (2006). revision #126771, p. 2088. DOI: 10.4249/scholarpedia.2088.
- [5] B. H. Juang and L. R. Rabiner. "Hidden Markov Models for Speech Recognition". In: Technometrics 33.3 (1991), pp. 251–272.
- [6] B. H. Juang L. R. Rabiner. "An introduction to hidden Markov models". In: IEEE ASSP Mag. vol. 3, no. 1 (1986), pp. 4–16.
- [7] Petre Stoica and Randolph L. Moses. Spectral Analysis of Signals. Pearson Prentice Hall, 2005.
- [8] Joseph S. Wisniewski. *Colors of noise pseudo FAQ, version 1.3.*https://web.archive.org/web/20110430151608/https:
 //www.ptpart.co.uk/colors-of-noise. Dostęp: 03.01.2022.