CEGEP Linear Algebra Problems

AN OPEN SOURCE COLLECTION OF CEGEP LEVEL LINEAR ALGEBRA PROBLEMS

Edited by

YANN LAMONTAGNE

Contents

1	Systems of Linear Equations	1
	1.1 Gaussian and Gauss-Jordan Elimination	1
	Vector Spaces 2.1 Introduction to Vector Spaces	3
A	Answers to Exercises	5

Chapter 1

Systems of Linear Equations

1.1 Gaussian and Gauss-Jordan Elimination

1.1.1 (by Jim Hefferon [JH]) Use Gauss's Method to find the unique solution for each system.

a.

b.

Chapter 2

Vector Spaces

2.1 Introduction to Vector Spaces

2.1.1 (by Jim Hefferon [JH]) Name the zero vector for each of these vector spaces.

- a. The space of degree three polynomials under the natural operations.
- b. The space of 2×3 matrices.
- c. The space $\{f: [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}.$
- d. The space of real-valued functions of one natural number variable.

2.1.2 (by Jim Hefferon [JH]) Find the additive inverse, in the vector space, of the vector.

- a. In \mathcal{P}_3 , the vector $-3 2x + x^2$.
- b. In the space $\mathcal{M}_{2\times 2}$,

$$\begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}.$$

- c. In $\{ae^x + be^{-x} \mid a, b \in \mathbb{R}\}$, the space of functions of the real variable x under the natural operations, the vector $3e^x 2e^{-x}$.
- **2.1.3** (by Jim Hefferon [JH]) For each, list three elements and then show it is a vector space.
 - a. The set of linear polynomials $\mathcal{P}_1 = \{a_0 + a_1x \mid a_0, a_1 \in \mathbb{R}\}$ under the usual polynomial addition and scalar multiplication operations.
 - b. The set of linear polynomials $\{a_0 + a_1x \mid a_0 2a_1 = 0\}$, under the usual polynomial addition and scalar multiplication operations.

2.1.4 (by Jim Hefferon [JH]) For each, list three elements and then show it is a vector space.

- a. The set of 2×2 matrices with real entries under the usual matrix operations.
- b. The set of 2×2 matrices with real entries where the 2, 1 entry is zero, under the usual matrix operations.

2.1.5 (by Jim Hefferon [JH]) For each, list three elements and then show it is a vector space.

a. The set of three-component row vectors with their

usual operations.

b. The set

$$\{(x, y, z, w) \in \mathbb{R}^4 \mid x + y - z + w = 0\}$$

under the operations inherited from \mathbb{R}^4 .

Appendix A

Answers to Exercises

1.1.1

a.
$$x = 2, y = 3$$

b.
$$x = -1$$
, $y = 4$, and $z = -1$.

2.1.1

a.
$$0 + 0x + 0x^2 + 0x^3$$

b.
$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- c. The constant function f(x) = 0
- d. The constant function f(n) = 0

2.1.2

a.
$$3 + 2x - x^2$$

b.
$$\begin{bmatrix} -1 & +1 \\ 0 & -3 \end{bmatrix}$$

c.
$$-3e^x + 2e^{-x}$$

2.1.3

a.
$$1 + 2x$$
, $2 - 1x$, and x .

b.
$$2 + 1x$$
, $6 + 3x$, and $-4 - 2x$.

2.1.4

a.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

b.

$$\begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} -1 & -2 \\ 0 & -4 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

2.1.5

a.
$$(1,2,3)$$
, $(2,1,3)$, and $(0,0,0)$.

b.
$$(1,1,1,-1)$$
, $(1,0,1,0)$ and $(0,0,0,0)$.

References

[JH] Jim Hefferon, *Linear Algebra*, http://joshua.smcvt.edu/linearalgebra/, Licensed under the GNU Free Documentation License or the Creative Commons License Creative Commons Attribution-ShareAlike 2.5 License, 2014.

Index

Additive inverse, 3
Gaussian Elimination,
Matrix space, 3
Polynomial space, 3
Vector space, 3
Zero vector, 3