Лабораторная №5

1) В классе MODEL реализовать функцию data = harm(N, A_0 , f_0 , Δt , ...), рассчитывающую гармонический процесс по формуле:

$$x(t) = \{x_k\} = A_0 \sin(2\pi f_0 \cdot \Delta t \cdot k), \qquad k = 0,1,2,...,N-1$$

и отобразить ее график.

Рекомендуемые значения:

N = 1000 - длина данных;

$$A_0 = 100;$$

$$f_0 = 15$$
 [Гц];

$$\Delta t = 0.001$$
 [cek].

- 2) Итерационно повышая f_0 с инкрементом 100 Гц до значения 515 Гц наблюдать изменения на графике и объяснить эффекты;
- 3) В классе MODEL реализовать функцию data = polyHarm($N, A_i, f_i, M, \Delta t, ...$), рассчитывающую полигармонический процесс по формуле:

$$x(t) = \{x_k\} = \sum_{i=1}^{M} A_i \sin(2\pi f_i \cdot \Delta t \cdot k), \qquad k = 0, 1, 2, ..., N - 1$$

и отобразить ее график.

Рекомендуемые значения:

$$N=1000$$
 — длина данных; $M=3$ — количество гармоник; $A_1=100$ $f_1=33$ [Гц]· $A_2=15$ $f_2=5$ [Гц] $A_3=20$ $f_3=170$ [Гц] $\Delta t=0.002$ [сек]

Чему равно значение $f_{
m rp}$ для этого процесса?

4) В классе MODEL реализовать функцию аддитивной модели addModel(data1, data2, N, ...) для поэлементного сложения:

$$x(t) = x1(t) + x2(t)$$

или в дискретной форме

$$data_k = data1_k + data2_k,$$

$$k = 0, 1, 2, ... N-1$$

и отобразить результаты data на графиках для двух вариантов аддитивных моделей, используя реализованные ранее функции trend, noise, harm:

а) линейного тренда *trend* и гармонического процесса *harm*:

$$x1(t) = a \cdot x(t) + b$$
, $a = 0.3, b = 20$
 $x2(t) = A \cdot \sin(2 \cdot \pi \cdot f \cdot t)$, $A = 5, f = 50$
 $\Delta t = 0.002$ [cek]
 $N = 1000$

б) экспоненциального тренда trend и случайного шума noise:

$$x1(t) = b \cdot \exp(a \cdot t), \ a = 0.05, b = 10$$

 $x2(t) = noise(N, R, ...), \ R = 10.$

5) По аналогии с функцией аддитивной модели addModel() в классе MODEL реализовать функцию мультипликативной модели multModel(data1, data2, N, ...) для поэлементного перемножения данных длины N:

$$x(t) = x1(t) \cdot x2(t)$$

или в дискретной форме

$$data_k = data1_k \cdot data2_k$$
,
 $k = 0, 1, 2, ... N-1$.

Применить эту функцию к данным из п. 4а и 4б, отобразить графики функций и объяснить результаты.