Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка инструмента сжатия облаков точек

Выполнил:

Руководитель:

Трушников Андрей, гр. 7381

Заславский Марк Маркович, к.т.н., доцент

Цель и задачи

Актуальность: Облако точек может содержать тысячи или даже миллионы точек данных, из-за чего его обработка является дорогостоящей операцией как с точки зрения вычислений, так и с точки зрения хранения.

Цель: разработать инструмент сжатия облаков точек с графическим и консольным интерфейсом.

Задачи:

- 1. Изучить предметную область, сделать обзор методов сжатия облаков точек
- 2. Реализовать инструмент с выбранными методами сжатия облаков
- 3. Провести эксперимент по сжатию облаков точек, оценить статистики по итогам эксперимента

Облако точек

• Плотность
$$Density = \frac{3 \cdot N}{4 \cdot \pi \cdot r^3}$$
,

где N - это количество ближайших соседей точки из облака внутри сферы с радиусом r.

- Вектор нормали
- Метрика RMSE (среднеквадратичная ошибка)

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} ||\hat{x}_i - x_i||_2^2},$$

где \hat{x}_i - это точка, принадлежащая упрощенному облаку точек, которая является ближайшей точкой к точке x_i , принадлежащей исходному облаку точек. N - размер исходного облака точек.

Обзор методов сжатия облаков точек.

Критерий/Метод	1	2	3	4
Возможность задавать размер сжатого облака точек	+	-	-	-
Возможность сжатия любого облака точек (от размера с кошку до размера с пятиэтажный дом).	+	+	+	+
В упрощенном облаке точек сохраняются граничные точки.	+	+	+	-
Упрощенное облако точек получается однородным	-	-	+-	-

- 1. Point cloud simplification with preserved edge based on normal vector (PCSV)
- 2. A Linear Programming Approach for 3D Point Cloud Simplification
- 3. Feature Preserving and Uniformity-controllable Point Cloud Simplification on Graph (PCSG)
- 4. 3D Point Cloud Simplification Based on k-Nearest Neighbor and Clustering

Реализация метода PCSV

Реализация метода PCSG

Демонстрация графического интерфейса

Результаты экспериментов по сжатию облаков точек

Замеры метрики RMSE:

Результаты экспериментов по сжатию облаков точек

Замеры пиков потребления ОЗУ:

Заключение

- В результате поставленная цель была достигнута.
- В ходе обзора методов сжатия облаков было решено реализовать PCSV и PCSG
- По результатам экспериментов по сжатию облаков выяснилось, что второй метод потребляет примерно в 10-20 раз больше ОЗУ, значения ошибки RMSE методов отличались примерно на 0.009.
 - Дальнейшее развитие:
- Перенести вычисления на GPU

Апробация работы

• Репозиторий проекта https://github.com/moevm/bsc_trushnikov.

Запасные слайды

Математическое описание PCSV

• Поиск и сохранение граничных точек в облаке.

$$||C_i - p_i|| > \lambda \cdot Z_i(V_i),$$

где C_i - центройд множества ближайших соседей точки p_i , λ - фиксированный параметр, $Z_i\left(V_i\right)$ - евклидово расстояние до ближайшей точки p_i .

• Удаление наименее важных неграничных точек.

$$i(p) = \frac{\sum_{i=1}^{k} \left| (p - q_i) n_i \right|}{k},$$

где p - неграничная точка, q_i - точка, принадлежащая множеству ближайших соседей точки p , n_i - вектор нормали в точке q_i .

Математическое описание PCSV

до расчетной касательной плоскости в одной из соседних точек q_1

Евклидово расстояние d от точки p Затронутые точки должны обновить свои нормальные векторы из-за удаления точки p

Математическое описание PCSG

• Потери в геометрических особенностях.

Построение матрицы смежности:

$$W_{i,j} = egin{cases} \exp\left(-rac{\left\|x_i - x_j
ight\|_2^2}{\sigma^2}
ight), j \in N_i \ 0, в противном случае \end{cases}$$

где σ - это параметр, N_i - множество ближайших соседей вершины i

Нормализация матрицы смежности:

$$\tilde{W} = I - \frac{W}{\sum_{j} W_{i,j}},$$

где I - это единичная матрица

Математическое описание Feature PCSG

Матрица Кирхгофа *LX* :

$$(LX)(i) = \tilde{X}_i = x_i - \sum_j \tilde{W}_{i,j} x_j$$

• Потери в геометрических особенностях :

$$l_f(\Psi) = \|\Psi LX - LX\|_2^2$$

• Потери равномерности плотности облака точек.

$$l_{e}(\Psi) = ||A\Psi l - \alpha k l||_{2}^{2}$$

где l - это вектор столбец с единичными элементами,k - количество ближайших соседей, α - скорость упрощения облака, Ψ - диагональная матрица

Математическое описание PCSG

$$\min_{\Psi} \|\Psi LX - LX\|_{2}^{2} + \lambda \|A\Psi l - \alpha kl\|_{2}^{2},$$

$$\Psi_{i,i} \in \{0,1\}, i = 1,2,...,N$$

$$\Psi_{i,j} = 0, i \neq j$$

$$tr(\Psi) = \alpha N$$

После преобразования:

$$\min_{\psi} \psi^{T} \left(F + \lambda A^{T} A \right) \psi - 2 \left(f + \lambda \alpha k A l \right)^{T} \psi$$

$$0 \le \psi \le 1, i = 1, 2, \dots, N$$

$$\psi^{T} l = \alpha N$$

где
$$F \in \mathbb{R}^N \times \mathbb{R}^N$$
 - это $(LX) \cdot (LX)^T$, $f \in \mathbb{R}^N$ - вектор, где $f = F_{i,i}$ $\psi = \Psi_{i,i}$ - вектор, $\psi \in \mathbb{R}^N$

Сложность метода PCSV

Сложность поиска граничных точек:

$$O(N^2 \cdot k \cdot \log^2 N)$$

Сложность вычисления значения важности.

Первый шаг:

$$O(N^3 \cdot k \cdot \log^2 N)$$

Второй шаг:

$$O(N^2 \cdot k \cdot \log(k \cdot N))$$

Третий шаг:

$$O(M \cdot N^2 \cdot k \cdot \log(k \cdot N))$$

где N - количество точек в облаке, k - количество ближайших соседей, M - количество соседей затронутых точек

Сложность метода PCSG

Сложность построения k-nn графа:

$$O(N^2 \cdot k \cdot \log^2 N)$$

Сложность решения задачи квадратичного программирования

$$O(X^3)$$

где N - количество точек в облаке, X - количество ближайших соседей, k - количество переменных (точек)

Таблица результатов экспериментов по сжатию облаков точек

Облако точек	Размер до сжатия (КБ)	Размер после сжатия (КБ)	Продолжитель ность (сек)	Метод
Bunny	629	108	141.198	PCSV
		134	244.251	PCSG
Drill	65	31,9	7.412	PCSV
		14,6	13.8911	PCSG
Armadillo	513	201	122.092	PCSV
On HeadMultiple		116	167.727	PCSG
happyStandRig		283	335.568	PCSV
ht_336		265	536.929	PCSG
chair	3897,854	650	462.75	PCSV
		378	2943.78	PCSG

Демонстрация консольного интерфейса

```
PS D:\4semestr\diploma\pythonProject\console> python main.py drill_1.pcd 1

Cooбщение: Сжатие первым методом

[KSearching... | ######################### | 100%

[KSimplifying... | ####################### | 2/2

Результаты.

Исходное кол-во точек: 4154

После сжатия: 911

RMSE: 0.028595611145592757

Затраченное время: 8.06 секунд

Облако точек сохраненно по пути: D:/4semestr/diploma/pythonProject/console
/drill_1_simplified.pcd
```