Laboratorio di Calcolo Numerico

Aritmetica di macchina. Stabilità degli algoritmi.

Ángeles Martínez Calomardo http://www.math.unipd.it/~acalomar/DIDATTICA/ angeles.martinez@unipd.it

> Laurea in Informatica A.A. 2018–2019

Lo standard ANSI IEEE-754r

- Scritto nel 1985 e modificato nel 1989 e, più recentemente, nel 2008
 costituisce lo standard ufficiale per la rappresentazione binaria dei numeri
 all'interno del calcolatore e l'aritmetica di macchina (il nome dello standard
 in inglese "Binary floating point arithmetic for microprocessor systems").
- Secondo lo standard un numero non nullo normalizzato si scrive come

$$x = (-1)^s \cdot (1+f) \cdot 2^{e^*-bias}.$$

- La mantissa si rappresenta dunque come $1.d_1d_2...d_{\tau}$ essendo $f=0.d_1d_2...d_{\tau}$.
- ullet au identifica il numero di bit usato per codificare la parte frazionaria della mantissa. Il numero di cifre totali per la mantissa è t= au+1.
- Il vero esponente del numero e si immagazzina in traslazione come e*=e+bias.
- In questa maniera non serve un bit di segno per l'esponente.
- Il bias in singola precisione vale 127 mentre in doppia 1023.

Doppia precisione

 Ogni numero macchina occupa 64 bit, distribuiti nei tre campi segno, esponente e mantissa come segue:

1	11	52
s esponente		mantissa

- L'insieme di numeri macchina in doppia precisione è: F(2,53,-1022,1023).
- Con 52 bit si codificano 53 cifre della mantissa (1 bit nascosto).
- Dei $2^{11} = 2048$ esponenti possibili, 2 si riservano per usi speciali.
- I numeri rappresentabili in doppia precisione sono $2\cdot (U-L+1)\cdot (B-1)\cdot B^{t-1}+1=2\cdot 2046\cdot 1\cdot 2^{52}\approx 1.8438\cdot 10^{19}.$

Distanza assoluta tra due numeri macchina consecutivi

- L'insieme \mathbb{R} dei numeri reali è denso.
- Il sottoinsieme dei numeri macchina \mathcal{F} , oltre ad essere limitato inferiormente e superiormente, è anche *bucato*, ovvero attorno ad ogni elemento x di \mathcal{F} esiste un piccolo intervallo vuoto, tra x e il suo successivo numero macchina x_+ .
- Essendo $x=(-1)^s\cdot (1+0.d_1d_2d_3\cdots d_{\tau})\cdot 2^E$ e $x_+=(-1)^s\cdot (1+0.d_1d_2d_3\cdots d_{\tau}+1)\cdot 2^E$, la distanza assoluta tra x e x_+ è:

$$\Delta x = |x - x_+| = 2^{-52} \cdot 2^E.$$

- Questo valore in MATLAB/OCTAVE si ottiene scrivendo eps(x).
- Si noti che questa distanza è uguale per tutti i numeri macchina aventi lo stesso esponente.
- I numeri macchina sono più addensati quanto più piccoli sono e la loro separazione aumenta man mano che aumenta il loro valore assoluto.

Sulla distanza assoluta tra numeri macchina

Esempi

La distanza $|x - x_+|$ determina l'ordine di grandezza del minor numero che sommato ad un numero macchina x fornirà come risultato un numero maggiore di x. Ad esempio:

```
>> 1+eps(1)
ans = 1.00000000000000e+00

>> 1+eps(1) -1
ans = 2.22044604925031e-16

>> 1000+eps(1)
ans = 1.00000000000000e+03

>> 1000+eps(1)-1000
ans = 0.00000000000000e+00
```

vediamo che il calcolatore non è in grado di interpretare come un incremento diverso da zero il numero eps(1) quando viene sommato a 1000, mentre lo riconosce come numero non nullo quando viene sommato a 1. Il più piccolo incremento del numero 1000 riconosciuto dal calcolatore e dell'ordine di eps(1000):

Sulla distanza assoluta tra numeri macchina

Esercizio

Esercizio

Al variare di $x = 10^{-1}, 10^{-2}, 10^{-3}, \dots, 10^{-15}$, si calcoli (1+x)-1. Si confronti il valore numerico calcolato con Matlab/Octave con il valore esatto, cioè x (impostare il formato di visualizzazione a format long e).

Calcolare l'errore relativo e commentare l'andamento degli errori al variare di x.

Qual è la percentuale dell'errore relativo per $x = 10^{-15}$?

Distanza relativa e precisione di macchina

• La distanza relativa tra x e il suo elemento successivo x_+ si ottiene dividendo quella assoluta per il numero x:

$$\frac{|x - x_+|}{|x|} = \frac{2^{e-\tau}}{p \cdot 2^e} = \frac{2^{-\tau}}{p}.$$

- Si può vedere che la distanza relativa tra due numeri macchina consecutivi ha un andamento periodico.
- La massima distanza relativa tra due numeri macchina consecutivi è:

$$\epsilon_M = 2^{-\tau}$$

che si ottiene quando la mantissa p è uguale a 1.

- Nello standard IEEE 754 in doppia precisione $\epsilon_M = 2^{-52}$.
- La precisione di macchina definita anteriormente come il massimo errore relativo di arrotondamento, coincide anche con

$$\mathbf{u} = \frac{\epsilon_M}{2}.$$

- Infatti in doppia precisione secondo lo standard IEEE 754 il valore della precisione di macchina u è pari a $2^{-53} \approx 1.11 \cdot 10^{-16}$, poiché $\epsilon_M = 2^{-52}$.
- In Matlab/Octave $\epsilon_M = 2^{-52}$ è rappresentato dalla variabile eps

Aritmetica di macchina e propagazione degli errori

Domanda: Come si propagano gli errori di rappresentazione quando si effettuano delle operazioni aritmetiche con i numeri macchina?

Si può dimostrare che

$$\epsilon_{x,y}^{\oplus} \leq \left| \frac{x}{x+y} \right| \epsilon_x + \left| \frac{y}{x+y} \right| \epsilon_y$$
 $\epsilon_{x,y}^{\otimes} \stackrel{\leq}{\approx} \epsilon_x + \epsilon_y$
 $\epsilon_{x,y}^{\oslash} \leq |\epsilon_x - \epsilon_y|$

dove ϵ_x e ϵ_y sono tali che $\epsilon_x, \epsilon_y < \mathbf{u}$

- Le operazioni macchina prodotto e divisione introducono un errore dell'ordine della precisione di macchina.
- Con la somma (sottrazione) non si può garantire che il risultato dell'operazione sia affetto da un errore relativo piccolo. In particolare l'errore per la somma è grande quando $x \approx -y$ (Cancellazione numerica).

Cancellazione numerica e stabilità di un algoritmo

Definizione

Un metodo numerico (formula, algoritmo) si dice **stabile** se non propaga gli errori (inevitabili) dovuti alla rappresentazione dei numeri nel calcolatore. Altrimenti si dice **instabile**.

- La cancellazione numerica genera delle formule instabili.
- Per evitare i problemi legati alla cancellazione numerica occorre trasformare le formule in altre numericamente più stabili.
- La stabilità è un concetto legato all'algoritmo usato per risolvere un determinato problema.

Esempio di cancellazione numerica

Formula risolutiva dell'equazione di secondo grado

- Si vuole risolvere l'equazione $ax^2 + bx + c = 0$.
- Se $a \neq 0$ le radici sono:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Quando $4ac \ll b^2$ sarà $b^2 4ac \approx b^2$ e quindi $\sqrt{b^2 4ac} \approx |b|$.
- Come conseguenza si avrà cancellazione numerica nel calcolo di quella radice in cui si sottraggono due numeri quasi uguali:

In
$$x_1$$
 se $b>0$ poichè $\sqrt{b^2-4ac}\approx b \longrightarrow x_1\approx \frac{-b+b}{2a}$
In x_2 se $b<0$ poichè $\sqrt{b^2-4ac}\approx -b \longrightarrow x_2\approx \frac{-b-(-b)}{2a}$

 Per risolvere il problema si calcola una radice con una formula stabile nella quale non si manifesta cancellazione numerica

$$x_1 = \frac{-b - sign(b)\sqrt{b^2 - 4ac}}{2a}$$

e si ricava l'altra radice da $\frac{c}{a} = x_1 \cdot x_2$

Calcolo π

Eseguiamo un codice Matlab che valuti le successioni $\{u_n\}$, $\{z_n\}$, definite rispettivamente come

$$\begin{cases} s_1 = 1, \ s_2 = 1 + \frac{1}{4} \\ u_1 = 1, \ u_2 = 1 + \frac{1}{4} \\ s_{n+1} = s_n + \frac{1}{(n+1)^2} \\ u_{n+1} = \sqrt{6 \, s_{n+1}} \end{cases}$$

е

$$\begin{cases} z_1 = 1, \ z_2 = 2 \\ z_{n+1} = 2^{n-\frac{1}{2}} \sqrt{1 - \sqrt{1 - 4^{1-n} \cdot z_n^2}} \end{cases}$$
 (1)

che *teoricamente* convergono a π .

Calcolo π

Implementiamo poi la successione, diciamo $\{y_n\}$, che si ottiene *razionalizzando* (1), cioè moltiplicando numeratore e denominatore di

$$z_{n+1} = 2^{n-\frac{1}{2}} \sqrt{1 - \sqrt{1 - 4^{1-n} \cdot z_n^2}}$$

per

$$\sqrt{1+\sqrt{1-4^{1-n}\cdot z_n^2}}$$

e calcoliamo u_m , z_m e y_m per $m=2,3,\ldots,40$ (che teoricamente dovrebbero approssimare π).

Infine disegniamo in un unico grafico l'andamento dell'errore relativo di u_n , z_n e y_n rispetto a π aiutandoci con l'help di Matlab relativo al comando semilogy.

Calcolo π : metodo 1

In seguito scriviamo un'implementazione di quanto richiesto commentando i risultati. Si salvi in un file pigreco.m il codice

```
% SEQUENZE CONVERGENTI "PI GRECO".
% METODO 1.
s(1)=1; u(1)=1;
s(2)=1.25; u(2)=s(2);
for n=2:40
    s(n+1)=s(n)+(n+1)^{(-2)};
    u(n+1) = sqrt(6*s(n+1));
end
rel_err_u=abs(u-pi)/pi;
fprintf('\n');
```

Calcolo π : metodo 2

Aritmetica di macchina

Calcolo π : metodo 3

```
% METODO 3.
y(1)=1;
y(2)=2;
for n=2:40
    num=(2^(1/2)) * abs(y(n));
    c=(4^(1-n)) * (y(n))^2;
    inner_sqrt=sqrt(1-c);
    den=sqrt(1+inner_sqrt);
    y(n+1)=num/den;
end
rel_err_y=abs(y-pi)/pi;
```

Calcolo π : plots

```
% SEMILOGY PLOT.
semilogy(1:length(u),rel_err_u,'k.');
hold on;
semilogy(1:length(z),rel_err_z,'m+');
semilogy(1:length(y),rel_err_y,'ro');
hold off;
```

Di seguito digitiamo sulla shell di Matlab/Octave

```
>> pigreco
```

Aritmetica di macchina

Plot risultati

Figura: Errore relativo commesso con le 3 successioni, rappresentate rispettivamente da ., + e o.

Discussione risultati

- La prima successione converge molto lentamente a π , la seconda diverge mentre la terza converge velocemente a π .
- Per alcuni valori $\{z_n\}$ e $\{y_n\}$ coincidono per alcune iterazioni per poi rispettivamente divergere e convergere a π . Tutto ciò è naturale poichè le due sequenze sono analiticamente (ma non numericamente) equivalenti.
- Dal grafico dell'errore relativo, la terza successione, dopo aver raggiunto errori relativi prossimi alla precisione di macchina, si assesta ad un errore relativo di circa 10^{-15} (probabilmente per questioni di arrotondamento).

L'algoritmo 2 in dettaglio

Successione approssimante π

Nell'approssimare il valore di π con la formula ricorsiva

$$z_2 = 2$$

 $z_{n+1} = 2^{n-0.5} \sqrt{1 - \sqrt{1 - 4^{1-n} z_n^2}}, \quad n = 2, 3, \dots,$

si ottiene la seguente successione di valori (dove si è posto $c=4^{1-n}z_n^2$).

n+1	c	$1 - \sqrt{1 - c}$	z_{n+1}	$\frac{ z_{n+1}-\pi }{\pi}$
• • •				
10	1.505e-04	7.529e-05	3.14157294036	6.27e-06
11	3.764e-05	1.882e-05	3.14158772527	1.57e-06
12	9.412e-06	4.706e-06	3.14159142150	3.92e-07
13	2.353e-06	1.176e-06	3.14159234561	9.80e-08
14	5.882e-07	2.941e-07	3.14159257654	2.45e-08
15	1.470e-07	7.353e-08	3.14159263346	6.41e-09
16	3.676e-08	1.838e-08	3.14159265480	3.88e-10
17	9.191e-09	4.595e-09	3.14159264532	2.63e-09
18	2.297e-09	1.148e-09	3.14159260737	1.47e-08
19	5.744e-10	2.872e-10	3.14159291093	8.19e-08
28	2.220e-15	1.110e-15	3.16227766016	6.58e-03
29	5.551e-16	3.330e-16	3.46410161513	1.03e-01
30	1.665e-16	1.110e-16	4.00000000000	2.73e-01
31	5.551e-17	0.000e + 00	0.00000000000	1.00e+00
32	0.000e + 00	0.000e + 00	0.00000000000	1.00e+00

Una successione ricorrente.

Consideriamo la successione $\{I_n\}$ definita da

$$I_n = e^{-1} \int_0^1 x^n \, e^x \, dx \tag{2}$$

- n = 0: $I_0 = e^{-1} \int_0^1 e^x dx = e^{-1}(e^1 1)$.
- integrando per parti

$$I_{n+1} = e^{-1} \left(x^{n+1} e^x \mid_0^1 - (n+1) \int_0^1 x^n e^x dx \right)$$
$$= 1 - (n+1) I_n.$$

Aritmetica di macchina

• $I_n > 0$, decrescente e si prova che $I_n \to 0$ come 1/n.

Problema.

Calcoliamo I_n per $n=1,\ldots,100$:

mediante la successione in avanti

$$\begin{cases}
I_0 = e^{-1}(e^1 - 1) \\
I_{n+1} = 1 - (n+1)I_n.
\end{cases}$$
(3)

mediante la successione all'indietro

$$\begin{cases} I_{1000} = 0 \\ I_{n-1} = (1 - I_n)/n. \end{cases}$$

Si noti che se $I_{n+1} = 1 - (n+1) I_n$ allora $I_n = (1 - I_{n+1})/(n+1)$ e quindi $I_{n-1} = (1 - I_n)/n$.

Successione ricorrente IMPLEMENTAZIONE in Matlab

- Scriviamo il codice in un file succricorrente.m.
- Occorre salvare i valori calcolati in due vettori chiamati s (successione in avanti) e t (successione all'indietro).
- Per la successione in avanti partire da I_1 anziché da I_0 .
- Per la successione all'indietro partire da $I_{1000} = 0$.
- Creare un grafico semilogaritmico con i valori $I_1, I_2, \ldots, I_{100}$ calolati dai due algoritmi che, ricordiamo, sono matematicamente equivalenti ma non numericamente equivalenti.