Machine Learning for Graphs and Sequential Data

Graphs - Ranking

Lecturer: Prof. Dr. Stephan Günnemann

cs.cit.tum.de/daml

Summer Term 2023

Roadmap

Chapter: Graphs

- 1. Graphs & Networks
- 2. Generative Models
- 3. Ranking
- 4. Clustering
- Classification (Semi-Supervised Learning)
- 6. Node/Graph Embeddings
- 7. Graph Neural Networks (GNNs)

Motivation: Ranking of Nodes

- How to organize the Web?
- First try: Human curated Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search

Ranking > Find important / relievant / trusted webset

- Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
- But: Web is huge, full of untrusted documents, randomness, web spam, etc.
- Web pages are not equally "important"
 - www.some-personal-website.com vs. www.tum.de
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

PageRank

- Core idea: A page is important if many important pages point to it
 - recursive formulation
- "Voting" principle
 - each page votes for the importance of the pages it points to
 - a link's vote is proportional to the importance of its source page
 - If page j with importance r_j has n out-links, each link gets $\frac{r_j}{n}$ votes
 - Page j's own importance is the sum of the votes on its in-links
- $lacksquare ext{Rank of page j:} r_j = \sum_{i o j} rac{r_i}{d_i}$
 - $-d_i$... out-degree of node i

Example: PageRank Scores

Computation via Solving Equations

- lacksquare Rank of page j: $r_j = \sum_{i o j} rac{r_i}{d_i}$
 - $-d_i$... out-degree of node i
- Example:
 - 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo a scale factor
 - Additional constraint forces uniqueness: $\sum_i r_i = 1$
 - Solution: $r_y = \frac{2}{5}$, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$
- Gaussian elimination method works for small examples but we need a better method for large web-size graphs

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1
- Rank vector r
 - r_i is the importance score of page i
 - $-\sum_{i} r_{i} = 1$
- Equations $r_j = \sum_{i o j} rac{r_i}{d_i}$ can be written as:

Computation via Eigenvector

- Equations can be written as: $r = M \cdot r$
- lacktriangle The rank vector $m{r}$ is an eigenvector of the stochastic matrix M
 - eigenvector with corresponding eigenvalue 1
 - Math background: largest eigenvalue of M is 1 since M is column stochastic (with non-negative entries)
 - We know r is unit length and each column of M sums to one, so $Mr \leq 1$
- Finding r = finding eigenvector of M corresponding to the largest eigenvalue
 - you know how to do this efficiently (power iteration; see ML slides)

Notes on Computation

- Power iteration: iteratively compute $r \leftarrow \frac{M \cdot r}{\|M \cdot r\|}$ until convergence
- Let $y = M \cdot x$ with $\sum_i x_i = 1$.

- required for PageRank:
$$\sum_i r_i = 1$$
Let $\mathbf{y} = \mathbf{M} \cdot \mathbf{x}$ with $\sum_i x_i = 1$.
Since \mathbf{M} is column stochastic, it holds $\sum_i y_i = 1$

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix}$$

- No need for normalization!
- Start with random (normalized) vector r, and iterate $r \leftarrow M \cdot r$
- Important: Matrix *M* is sparse!
 - we only need to consider the (ingoing) neighbors of each node
- Iteratively compute $r_j \leftarrow \sum_{i \rightarrow j} \frac{r_i}{d_i}$ until convergence
 - first compute the updated value for each r_i , then assign them at once

- Consider a random web surfer that moves between the web pages
 - At time t, the web surfer is in a random webpage i
 - At time t + 1, the surfer follows an out-link from i uniformly at random
- The surfer's path (denoted by $X_1, X_2, X_3, ...$) forms a Markov chain
 - Web pages are the states of the Markov chain
 - The surfer starts from a random webpage: $Pr(X_1 = i) = \pi_i$
 - Transition probabilities: $Pr(X_{t+1} = j | X_t = i) = M_{ii}$
 - Note: the transition probability matrix of the
 Markov chain is $B = M^T$

• Stationary distribution: the vector π^∞ is called stationary distribution if the following equality holds

$$\pi^{\infty} = \pi^{\infty} B$$

- By definition, π^{∞} (if exists) is equal to (transpose of) the rank vector r.
- π^{∞} can be computed by
 - 1. getting the eigenvector of M associated with the unit eigenvalue
 - 2. normalizing it to one.

- Consider a random web surfer that moves between the web pages
 - The surfer's path (denoted by $X_1, X_2, X_3, ...$) forms a Markov chain
- Remember: $Pr(X_t = i) \stackrel{\text{def}}{=} \pi_i(t)$
 - probability of reaching state i (here: page i) in step t

$$\pi(t) = \pi B^{(t-1)}$$

- What happens if the surfer is doing infinitely many steps?
 - $\lim \pi(t)$ is called the limiting distribution (if it exists)
- Under some "technical conditions", a Markov chain has a limiting distribution which is equal to its unique stationary distribution

 - ightharpoonup we have $r = \lim_{t \to \infty} \pi(t)$ // rank score of page $i = r_i = \lim_{t \to \infty} \Pr(X_t = i)$
 - limit of the sequence πB , $(\pi B)B$, $((\pi B)B)B$, ... equals to r

super efficient berton x water

- Given the "technical conditions" we have $r = \lim_{t \to \infty} \pi(t)$
 - limit of the sequence πB , $(\pi B)B$, $((\pi B)B)B$, ... equals to r
- Probability of reaching a node does not depend on start point of surfer

Intuition: Assume that when $t \to \infty$, ${\pmb B}^t$ converges to a matrix whose rows are the same. In this case: one row of $\lim B^t$ specifies the limiting distribution.

$$\lim_{t \to \infty} \mathbf{B}^{(t-1)} = \begin{bmatrix} a & b & c \\ a & b & c \\ \hline a & b & c \end{bmatrix} \Rightarrow \lim_{t \to \infty} \mathbf{\pi}(t) = \lim_{t \to \infty} \mathbf{\pi} \mathbf{B}^{(t-1)} = \begin{bmatrix} \pi_1 & \pi_2 & \pi_3 \end{bmatrix} \begin{bmatrix} a & b & c \\ \hline a & b & c \\ \hline a & b & c \end{bmatrix}$$

$$= \begin{bmatrix} a & b & c \\ \hline a & b & c \end{bmatrix}$$

Existence and Uniqueness

- What are the "technical conditions"?
 - Being Irreducible and Aperiodic

- Irreducible: it is possible to get to any state from any state
- **Aperiodic**: a state i is aperiodic if there exists n such that for all $n' \ge n$: $\Pr(X_{n'} = i | X_1 = i) > 0$
 - A Markov chain is aperiodic if every state is aperiodic

An irreducible Markov chain only needs one aperiodic state to imply all states are aperiodic

0.3

PageRank: Problems

- Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"
- Spider traps: (all out-links are within the group)
 - Random walk gets "stuck" in a trap
 - And eventually spider traps absorb all importance
- Periodic states:
 - If we start at the state, we will return to the state in fixed periods.

not irreducible

not irreducible

Solution: Random Teleports

- At each step, random surfer has two options:
- a
- With probability β , follow a link at random
- With probability 1β , jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \, \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

$$// = \sum_{i \to j} \beta \frac{r_i}{d_i} + \sum_i (1 - \beta) \frac{r_i}{N}$$

- In matrix notation: $A = \beta M + (1 \beta) \left[\frac{1}{N} \right]_{N \times N}$
 - final solution: $r = A \cdot r$

 $[1/N]_{NxN}$ is a N by N matrix where all entries are 1/N

This formulation assumes that **M** has no dead ends. We can either preprocess matrix **M** to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

Illustration: Random Teleports (β = 0.8)

Illustration: Random Teleports (β = 0.8)

 π πB^2 πB^{15} πB^{16} [1/3 1/3 1/3] [0.333 0.2 0.467]...[0.212 0.151 0.636] [0.212 0.151 0.636]

Notes on Computation

- Attention: The matrix A is dense!
 - $-N^2$ non-zero entries
 - \triangleright you should never compute r in such a way
- Consider the teleport by adding constant penalty to each term
 - ightharpoonup iterate $r_j \leftarrow \sum_{i \to j} \beta \; \frac{r_i}{d_i} + (1 \beta) \frac{1}{N}$ until convergence
 - only neighbors need to be considered
- To maintain sparsity in matrix form multiply by eta M then add a vector

$$- \mathbf{r} = \beta \mathbf{M} \mathbf{r} + (1 - \beta) \left[\frac{1}{N} \right]_{N}$$

- Vertex-oriented computation
 - each vertex performs local computations

Systems/Frameworks for Graph Processing

- Specialized systems for such kind of graph processing
 - GraphLab (Dato, Turi)
 - Giraph (open source counterpart to Google's Pregel)
 - GraphX: Library for graph processing on top of Spark
- Crucial aspect: vertex-oriented programming
 - each vertex performs local computations
 - GAS principle gather, apply, scatter: each vertex (a) gathers information from adjacent vertices/edges (b) applies transformation, (c) scatters information to adjacent vertices
 - for PageRank only steps a + b required
- Similar concepts become also more frequent in Deep Learning Frameworks due to popularity of Graph Neural Networks

Some Problems with Page Rank

- **衡量一个页面的通用知名度**
- 对特定主题的权威机构有偏见
- 解决方案: 主题敏感型网页排名

容易受到链接垃圾邮件的影响

- 为了提高PageRank而创建的人工链接拓扑图
- 解决方案: 信仟等级

Measures generic popularity of a page

- Biased against topic-specific authorities
- Solution: Topic-Sensitive PageRank

使用单一的重要性衡量标准

- 其他重要性模型
- 解决方案: 枢纽和权威(HITS, 超链接诱导的主题搜索)。

Susceptible to Link spam

- Artificial link topographies created in order to boost PageRank
- Solution: TrustRank
- Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities (HITS, Hyperlink-Induced Topic Search)

Topic-Sensitive PageRank

- 目标: 评估网页不仅仅是根据它们的受欢迎程度,而是根据它们与某个特定主题的密切程度,例如 "体育 "或 "历史"。
- 允许根据用户的兴趣来回答搜索查询
- Instead of generic popularity, can we measure popularity within a topic?
 - Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history"
 - Allows search queries to be answered based on interests of the user
- Core idea: Bias the random walk
 - When walker teleports, pick a page from a set S
 - Standard PageRank: S = all pages
 - any page with equal probability
 - Topic-Sensitive PageRank: S = set of "relevant" pages
 - E.g., Open Directory (DMOZ) pages for a given topic/query
 - For each teleport set S, we get a different vector r_S

22

Generalizing Topic-Sensitive PageRank

As a matrix equation topic-sensitive PageRank takes the following form

$$r = \beta M r + (1 - \beta) \pi$$
 where $\pi_i = \begin{cases} \frac{1}{|S|} & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$

• We can generalize this further to arbitrary teleport vectors π

$$r = \beta M r + (1 - \beta)\pi$$
 where $\sum_i \pi_i = 1$

- The exact solution is $r = (1 \beta)(I \beta M)^{-1}\pi$
 - Runtime scales worse than $O(N^2)$
 - Use the iterative approximate algorithm in practice
 - Multiply by $\beta \cdot \mathbf{M}$, then add restart vector $(1 \beta)\pi$, repeat, ...
 - Maintains sparsity

Example: Topic-Sensitive PageRank

Suppose $S = \{1\}, \beta = 0.8$

Node	Iteration			
	0	1	2	stable
1	0.25	0.4	0.28	0.294
2	0.25	0.1	0.16	0.118
3	0.25	0.3	0.32	0.327
4	0.25	0.2	0.24	0.261

$$S = \{1\}, \quad \beta = 0.90: \quad S = \{1,2,3\}, \quad \beta = 0.8:$$

 $r = [0.17, 0.07, 0.40, 0.36] \quad r = [0.17, 0.13, 0.38, 0.30]$
 $S = \{1\}, \quad \beta = 0.8: \quad S = \{1,2\}, \quad \beta = 0.8:$

$$r = [0.29, 0.11, 0.32, 0.26]$$

$$S = \{1\}, \quad \beta = 0.70: \quad S = \{1\}, \quad \beta = 0.8:$$

 $r = [0.39, 0.14, 0.27, 0.19] \quad r = [0.29, 0.11, 0.32, 0.26]$

$$r = [0.39, 0.14, 0.27, 0.19]$$

$$S = \{1,2,3,4\}, \quad \beta = 0.8:$$

 $r = [0.13,0.10,0.39,0.36]$
 $S = \{1\}, \quad \beta = 0.90:$
 $S = \{1,2,3\}, \quad \beta = 0.8:$
 $S = \{1,2\}, \quad \beta = 0.8:$

$$S = \{1\}.$$
 $\beta = 0.8$:

$$r = [0.29, 0.11, 0.32, 0.26]$$

Discovering the Topic Set S

Create different PageRanks for different topics

- The 16 DMOZ top-level categories:
 - arts, business, sports,...

Which topic ranking to use?

- User can pick from a menu
- Classify query into a topic
- Can use the context of the query
 - E.g., query is launched from a web page talking about a known topic
 - History of queries e.g., "basketball" followed by "Jordan"
- User context, e.g., user's bookmarks, ...

PageRank: Variants (I)

"Normal" PageRank:

- Teleports uniformly at random to any node
- All nodes have the same teleport probability of surfer landing there:

$$\pi = (0.1 \quad 0.1 \quad 0.1)^T$$

■ Topic-Sensitive PageRank:

- Teleports to a topic specific set of pages
- Nodes can have different probabilities of surfer landing there:

```
\pi = (0.1 \quad 0 \quad 0.2 \quad 0 \quad 0.5 \quad 0 \quad 0 \quad 0.2)^T
```

Personalized PageRank (Random Walk with Restarts):

Teleport is always to the same node:

$$\pi = (0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0)^T$$

PageRank: Variants

- Spam is common in the web
 - Spammer's goal: Maximize the PageRank of target page t
 - Technique:
 - Get as many links from accessible pages as possible to target page t
 - Construct "link farm" to get PageRank multiplier effect
- Combating link spam via TrustRank
 - Topic-sensitive PageRank with a teleport set of trusted pages
 - Example: .edu domains, similar domains for non-US schools

Summary

- Core idea: Ranking of the nodes based on the link structure
- PageRank scores nodes depending on their incoming links
- With a teleport set we can rank nodes based on arbitrary factors, for example
 - Topic
 - Trust
 - Node identity
- Computing PageRank requires sparse matrix products for even moderately sized graphs

Questions

The Fully connected Graph has same to, tepolated is not relumed to the property to the point of the property to the telementage to the telementage

Consider a directed cycle of length 3 as a Markov chain disregarding edge weights

- How does the introduction of random teleports change the above 3-cycle?
- How can you make it aperiodic by inserting just a single edge?