

Lab 2

Packet Forwarding and DHCP

Data: 2021/03/02

Deadline: 2021/03/15 23:59

Outline

- Objective
- Introduction to DHCP
- Lab environment
- Lab requirement
- Appendix

Objective

- Subnetting and Netmask
- Routing Rule Static Configuration
- DHCP Server configuration
- DHCP 4-Way Handshaking Messages
- Traceroute Observation

Outline

- Objective
- Introduction to DHCP
 - What is DHCP
- Lab environment
- Lab requirement
- Appendix

Dynamic Host Configuration Protocol (DHCP)

- Provide necessary information for a host to access network
 - IP address, Gateway, DNS (Domain Name Server), etc.
- Client and server use UDP port 68 and 67, respectively
- A DHCP transaction consists of 4 messages

Outline

- Objective
- Introduction to DHCP
- Lab environment
 - Environment Setting and DHCP Utilities
 - Lab topology
 - Python script for lab topology
- Lab requirement
- Appendix

Environment and Utility Installation

- Install Ubuntu, mininet and Wireshark as in Lab 1
- Install DHCP Server and Client

```
bash$ sudo apt update && sudo apt upgrade -y bash$ sudo apt install isc-dhcp-server -y bash$ sudo apt install isc-dhcp-client -y
```

- Install traceroute
 - Install traceroute to trace hops details of routing paths

bash\$ sudo apt install traceroute -y

Enabling DHCP Server and Client

- AppArmor:
 - Linux application security system.
 - Proactively protects operating system and applications
- Modify AppArmor settings (done only for the first time)

Start AppArmor after setting

bash\$ sudo /etc/init.d/apparmor start

Outline

- Objective
- Introduction to DHCP
- Lab Environment
 - Environment Setting and DHCP Utilities
 - Lab topology
 - Python script for lab topology
- Lab requirement
- Appendix

Lab Topology

Outline

- Objective
- Introduction to DHCP
- Lab environment
 - Environment
 - DHCP utility setup
 - Lab topology
 - Python script for lab topology
- Lab requirement
- Appendix

Python Script for Lab Topology

- topology.py: a Python script for lab topology
 - Download from E3
- Create and put dhcpd.conf at the same directory as topology.py
 - dhcpd.conf: configuration file for DHCP daemon
- Run topology.py to create the topology

bash\$ sudo python topology.py

Components and Sequence of topology.py

1. topology.py – runDHCP()

runDHCP()

Run DHCP server in mininet node (DHCPServer)

```
# Run DHCP server at node DHCPserver
64
         #runDHCP(net) # if your dhcpd.conf is done, uncomment this line
65
      def runDHCP():
129
                                                          Store PID of dhcpd
          #Run DHCP server on node DHCPServer
130
                                                          for DHCPServer
          print("[+] Run DHCP server")
131
                                                   IPv4
          dhcp = net.getNodeByName('DHCPServer'
132
          dhcp.cmdPrint('/usr/sbin/dhcpd 4 -pf /run/dhcp-server-dhcpd.pid \
133
 Run this demon
                      -cf ./dhcpd.conf %s' % dhcp.defaultIntf())
 (dhcpd)
```

Use this config (dhcpd.conf) Run dhcpd on this Interface of DHCPServer

DHCP Configuration file – dhcpd.conf

- Create dhcpd.conf in the same directory as topology.py
- dhcpd.conf

```
subnet [subnet] netmask [netmask] {
    range [begin] [end];
    option routers [gateway IP];
    option subnet-mask [subnet-mask];
}
```


2. topology.py - config()

- config(): node configuration script (marked and incompleted)
 - Configure IPs and Default gateways for hosts
 - Configure IPs and Static Routes for routers

```
def config(hosts, switches, routers, DHCPServer):
78
         # Hosts interface IP and default gateway configuration
79
         DHCPServer.cmd('ifconfig DHCPServer-eth0 [IP/prefix]')
80
         hosts['h2'].cmd('ifconfig h2-eth0 [IP/prefix]')
81
         hosts['h2'].cmd('route add default gw [gatewayIP]') Prefix Length
82
83
         # ...
84
         #Routers interface IP configuration
         routers['r1'].cmd('ifconfig r1-eth0 [IP/prefix]')
85
                                         Add a static route to a network
86
                       ng table configuration
87
         routers['r1'].cmd('route add -net [networkID/prefix] gw [peer IP]')
88
89
```


3. topology.py - check()

- check()
 - Script that check the correctness of your configuration until now
 - Recall: h1 does not have IP yet
 - All hosts except h1 should be able to ping one another
 - Check starts from h1 to other hosts, then the next to the remaining hosts
 - Print WORNG ANSWER if fails

```
jin@jin-B365-M-AORUS-ELITE:~/Desktop/ICN-lab2$ sudo python lab2_new_ans.py
[+] Run DHCP server
h1 doesn't have connectivity to 192.168.1.65
h1 doesn't have connectivity to 192.168.1.66
h1 doesn't have connectivity to 192.168.3.1
h1 doesn't have connectivity to 192.168.3.2
WRONG ANSWER
```


4. topology.py – Configure by CLI

Launch mininet CLI

```
# Comment this line if you don't need to debug
CLI(net)
```

- to Debug
 - ping hosts, traceroute, ...
- To perform more configuration
 - add routing rules, change IPs, ...
- E.g., Configure IP and Gateway of h1
 - Run DHCP Client on h1 with eth0

mininet> h1 dhclient h1-eth0

5. topology.py – check() (Exiting)

- check()
 - Before exit mininet, topology.py will perform check() again

```
mininet> exit
ACCEPT
[-] Killing DHCP server
jin@jin-B365-M-AORUS-ELITE:~/Desktop/ICN-lab2$
```

- All hosts should now reach one another
 - Print ACCEPT

Outline

- Objective
- Introduction to DHCP
- Lab environment
- Lab requirement
 - Part1: Complete topology.py
 - Part2: DHCP Server configuration
 - Part3: Answer Questions
- Appendix

Step 1: Complete topology.py

- Complete config() function to configure nodes
- Step 1-1. Set IP address of Hosts
- Step 1-2. Configure Routers and default gateway for hosts
 - Set IP address on all interfaces of Routers
 - Gateway address of a subnet must be the second last address of the subnet
 - Set static routing rules
 - Add a static route to each network

Part 1 Questions

- 1. After you complete Steps 1-1
 - a) Can h2 ping h3? Briefly explain why or why not. (5%)
 - b) Can h2 ping h4? Briefly explain why or why not. (5%)

Complete topology.py so that all hosts, except h1, can ping one another.

2. Take screenshot to show that your topology configuration is correct. (10%)

Step 2: DHCP server configuration

- Create and put a dhcpd.conf at the same directory
 - Configuration parameters
 - IPs pool of 192.168.1.0/26
 - Default gateway for 192.168.1.0/26
- Run dhcp on h1

mininet> h1 dhclient h1-eth0

Part 2 Questions

3. Capture DHCP messages and show the IPs and MACs (10%)

```
mininet> h1 wireshark & #listen at h1-eth0
mininet> h1 dhclient h1-eth0 #
```

4. Can hosts other than h1 acquire IP addresses from DHCP server? Briefly explain your answer. (5%)

Part 3 Questions

Invoke wireshark on node r1 and answer questions

```
mininet> r1 wireshark & #listen at r1-eth0
mininet> r1 wireshark & #listen at r1-eth1
mininet> h1 ping h5 -c 1
```

5. What does r1 do on the packets from h1 to h5, and h5 to h1, respectively? Capture packets to explain your answers. (5%)

Part 3 Questions

Activate Wireshark on h1-eth0, and execute traceroute on h1

```
mininet> h1 wireshark & #listen at h1-eth0 mininet> h1 traceroute h5
```

Ultimately, traceroute on h1 may show the following hop details

```
mininet> h1 traceroute h5
traceroute to 192.168.3.2 (192.168.3.2), 30 hops max, 60 byte packets
1 _gateway (192.168.1.62) 0.349 ms 0.255 ms 0.194 ms
2 10.0.1.1 (10.0.1.1) 0.247 ms 0.260 ms 0.242 ms
3 * * *
4 * * *
5 192.168.3.2 (192.168.3.2) 0.186 ms 0.180 ms 0.170 ms
```


Part 3 Questions (cont.)

- 6. Capture all ICMP messages received by h1 and explain why h1 can only derive only 1st, 2nd, and 5th hops details. (10%)
- 7. H1 uses some ICMP messages to derive 1st and 2nd hop details. What are the type(s) and sender(s) of the ICMP messages? (5%)
- 8. H1 uses some ICMP messages to derive 5th hop details. What are the type(s) and sender(s) of the ICMP messages? (5%)

Bonus (10%)

Ideally, we should have all the hop details as follows.

```
mininet> h1 traceroute h5
traceroute to 192.168.3.2 (192.168.3.2), 30 hops max, 60 byte packets
1 _gateway (192.168.1.62) 0.283 ms 0.015 ms 0.006 ms
2 10.0.1.1 (10.0.1.1) 0.017 ms 0.008 ms 0.008 ms
3 10.0.0.2 (10.0.0.2) 0.016 ms 0.009 ms 0.012 ms
4 10.0.2.3 (10.0.2.3) 0.017 ms 0.011 ms 0.018 ms
5 192.168.3.2 (192.168.3.2) 0.193 ms 0.026 ms 0.027 ms
```

- Try to configure the nodes so that traceroute can output the above hop details.
- Describe the configuration you added
 - Add the configuration commands in your python script

Report Submission

- Files
 - <studentID>_topology.py (20%)
 - dhcpd.conf (20%)
 - A report: lab2_<studentID>.pdf (60%+ 10%bonus)
 - Question Answers
- Submit
 - Zip files into a zip file
 - Name: lab2_<studentID>.zip

Q & A

Outline

- Objective
- Introduction to DHCP
- Lab environment
- Lab requirement
- Appendix

Appendix

- route table basic usage (mininet> [node] [command])
 - Check current routing rules bash\$ route
 - Add default gateway on a host bash\$ route add default gw [gateway IP]
 - Add routing rules on router bash\$ route add -net [subnet] gw [gateway IP]
- Change IP address of an interface bash\$ ifconfig [interface] [IP]
- Show all interfaces bash\$ ifconfig

Appendix

- dhcpd.conf man page
 - https://linux.die.net/man/5/dhcpd.conf

- When a host (e.g., h1) attaches to a network
 - Issues DHCPDISCOBER to locate available DHCP servers (broadcast)
- DHCP Servers receive DHCPDISCOVER
 - Reply DHCPOFFER (Broadcast in general, Unicast when renewing)
- Host (e.g., h1) chooses a server to reply DHCPREQUEST (broadcas)
- Server replies with DHCPACK (Broadcast in general, Unicast when renewing)

Src IP: 0.0.0.0

Dst IP: 255.255.255.255

Src MAC: <MAC of h1>

Dst MAC: ff:ff:ff:ff:ff

DHCP DISCOVER

client

DISCOVER

- When a host (e.g., h1) attaches to a network
 - Issues DHCPDISCOBER to locate available DHCP servers (broadcast)
- DHCP Servers receive DHCPDISCOVER
 - Reply DHCPOFFER (Broadcast in general, Unicast when renewing)
- Host (e.g., h1) chooses a server to reply DHCPREQUEST (broadcas
- Server replies with DHCPACK (Broadcast in general, Unicast when renewing)

Src IP: <IP of server>
Dst IP: 255.255.255.255
Src MAC: <MAC of server>
Dst MAC: <MAC of h1>

Your IP address: 10.0.0.2 Subnet Mask: 255.255.255.0

IP Address Lease Time: 3600

DHCP Server h3 h2 h1

DHCP OFFER

client

DISCOVER

OFFER

REQUEST

- When a host (e.g., h1) attaches to a network
 - Issues DHCPDISCOBER to locate available DHCP servers (broadcast)
- DHCP Servers receive DHCPDISCOVER
 - Reply DHCPOFFER (Broadcast in general, Unicast when renewing)
- Host (e.g., h1) chooses a server to reply DHCPREQUEST (broadcast)
- Server replies with DHCPACK (Broadcast in general, Unicast when renewing)

Src IP: 0.0.0.0

Dst IP: 255.255.255.255

Src MAC: <MAC of h1>

Dst MAC: ff:ff:ff:ff:ff

Requested IP address: 10.0.0.2

DHCP Server Identifier: <server IP>

DHCP REQUEST

client

DISCOVER

OFFER

REQUEST

ACK

- When a host (e.g., h1) attaches to a network
 - Issues DHCPDISCOBER to locate available DHCP servers (broadcast)
- DHCP Servers receive DHCPDISCOVER
 - Reply DHCPOFFER (Broadcast in general, Unicast when renewing)
- Host (e.g., h1) chooses a server to reply DHCPREQUEST (broadcast)
- Server replies with DHCPACK (Broadcast in general, Unicast when renewing)

Src IP: <IP of server>
Dst IP: 255.255.255.255
Src MAC: <MAC of server>

Dst MAC: <MAC of h1>

Your IP address: 10.0.0.2 Subnet Mask: 255.255.255.0 IP Address Lease Time: 3600

DHCP ACK

