第二节 基本概念和基本定理

■基本概念

■ 基本定理

基变量、非基变量 基本解、基 基本可行解、可行基 最优基本可行解、最优基 非退化基本可行解 退化基本可行解

线性规划的标准形:

$$\min S = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \qquad \min S = CX$$

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2$$

$$AX = b$$

$$AX = b$$

$$a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n =$$

$$x_{j} \ge 0, \ j = 1, 2, \dots, n$$

$$X \ge 0$$

$$C = (c_1, \begin{cases} (LP)\min S = CX \\ AX = b \\ X = (x_1, X \ge 0) \end{cases}$$

$$\begin{vmatrix} (b_1, b_2, \dots, b_m)^T \\ (a_{ij})_{m \times n} \end{vmatrix}$$

回溯:

消元法
$$\begin{cases} 2x_1 + 2x_2 + 2x_3 = 8 \\ x_1 + 2x_2 = 5 \end{cases} \Rightarrow \begin{cases} x_1 + x_2 + x_3 = 4 \\ x_1 + 2x_2 = 5 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 4 \\ x_1 + 2x_2 = 5 \end{cases}$$

初等行变换
$$\begin{pmatrix} 2 & 2 & 2 & 8 \\ 1 & 2 & 0 & 5 \end{pmatrix}$$

$$\begin{cases} x_1 + x_2 + x_3 = 4 \\ x_2 - x_3 = 1 \end{cases} \Rightarrow \begin{cases} x_1 + 2x_3 = 3 \\ x_2 - x_3 = 1 \end{cases}$$

$$\begin{cases} x_1 + 2x_3 = 3 \\ x_2 - x_3 = 1 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & 1 \end{pmatrix} \qquad \Longrightarrow \qquad \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

左乘逆矩阵
$$B^{-1}\begin{pmatrix} 2 & 2 & 2 & 8 \\ 1 & 2 & 0 & 5 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

消元法

初等行变换

➡ 左乘逆矩阵

$$(LP) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$C=(c_1,$$

$$X = (x_1)$$

$$b=(b_1,$$

$$b = (b_1, A)$$

$$A = (a_{ij})$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

$$a_{m1}$$
 a_{m2} \cdots a_{mn}

因此A中有m列线性无关,不妨设前m列线性无关

$$A = (p_1, p_2^{2}, \dots, p_m, p_{m+1}, p_{m+2}, \dots, p_n) = (B, N)$$

 $B(\overline{\mathbf{D}})$

N(非基矩阵)

称为(LP)的一个基(基矩阵)

注: (LP)的基不惟一。

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$
 $R(A) = 2$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases} A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \\ P_1 & P_2 & P_3 & P_4 \end{pmatrix} b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$x_j \ge 0, \quad j = 1, 2, 3, 4$$

该(LP)有5个基

基变量: 与基列相对应的分量称为基变量

非基变量:与非基列相对应的分量称为非基变量

注释: 基变量, 非基变量由基列, 非基列来确定。

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\int x_1 + x_2 + 0x_3 + x_4 = 1$$

$$A = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix}$$

$$R(A) = 2$$

 $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

$$\begin{cases} x_1 + x_2 + 2x_3 + 2x_4 \\ x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases} A = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & P_1 & P_2 & P_3 & P_4 \end{cases}$$

该(LP)有5个基, 基列决定基变量:

$$B_1 = (P_1, P_2)$$
 $X = (x_1, x_2, x_3, x_4)^T$

$$B_2 = (P_1, P_3)$$
 $X = (x_1, x_2, x_3, x_4)^T$

$$B_3 = (P_2, P_3)$$
 $X = (x_1, x_2, x_3, x_4)^T$

$$B_4 = (P_2, P_4)$$
 $X = (x_1, x_2, x_3, x_4)^T$

$$B_5 = (P_3, P_4)$$
 $X = (x_1, x_2, x_3, x_4)^T$

$$AX = b \longrightarrow (B, N) \begin{pmatrix} X_B \\ X_N \end{pmatrix} = b \longrightarrow BX_B + NX_N = b$$

$$\longrightarrow X_B + B^{-1}NX_N = B^{-1}b \longrightarrow X_B = B^{-1}b - B^{-1}NX_N$$

例:
$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases} A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} R(A) = 2$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad B^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} -2 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$$

$$\begin{cases} x_1 = 0 + 2x_3 - x_4 \\ x_2 = 1 - 2x_3 - 0x_4 \end{cases}$$

$$AX = b \longrightarrow (B, N) {X_B \choose X_N} = b \longrightarrow BX_B + NX_N = b$$

$$\longrightarrow X_B + B^{-1}NX_N = B^{-1}b \longrightarrow X_B = B^{-1}b - B^{-1}NX_N$$

令:
$$X_N = \mathbf{0}$$
 则: $X_B = B^{-1}b \longrightarrow X = \begin{pmatrix} X_B \\ X_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$

基本解:
$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
 是 $AX = b$ 的解,称为(LP)

关于基B的基本解.

注:基本解完全由基来决定,一个基对应一个基本解。

线性规划1-2

$$AX = b \Longrightarrow (B, N) {X_B \choose X_N} = b \Longrightarrow BX_B + NX_N = b$$

$$\longrightarrow X_B + B^{-1}NX_N = B^{-1}b \longrightarrow X_B = B^{-1}b - B^{-1}NX_N$$

例:
$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_3 = x_4 = 0 \end{cases}$$
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 \\ 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \stackrel{\clubsuit \wedge \bowtie}{} \stackrel{\bigstar \wedge \bowtie}{} \stackrel{\bigstar \wedge \bowtie}{}$$

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_1 + 2x_2 + x_3 = 2 \end{cases}$$

$$\min S = x_1 + x_2 + 2x_3 + 2x_4 \qquad R(A) = 2$$

$$\begin{cases}
x_1 + x_2 + 0x_3 + x_4 = 1 \\
x_1 + 2x_2 + 2x_3 + x_4 = 2
\end{cases}
A = \begin{pmatrix} 1 & 1 & 0 & 1 \\
1 & 2 & 2 & 1 \\
P_1 & P_2 & P_3 & P_4
\end{cases}$$

$$b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$X = \begin{pmatrix} X_B \\ X_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

该(LP)有5个基,5个基对应5个基本解:

$$B_1 = (P_1, P_2)$$
 $X^1 = (x_1, x_2, x_3, x_4)^T$ $X^1 = (0, 1, 0, 0)^T$

$$B_2 = (P_1, P_3)$$
 $X^2 = (x_1, x_2, x_3, x_4)^T$ $X^2 = (1, 0, 1/2, 0)^T$

$$B_3 = (P_2, P_3)$$
 $X^3 = (x_1, x_2, x_3, x_4)^T$ $X^3 = (0, 1, 0, 0)^T$

$$B_4 = (P_2, P_4)$$
 $X^4 = (x_1, x_2, x_3, x_4)^T$ $X^4 = (0, 1, 0, 0)^T$

$$B_5 = (P_3, P_4)$$
 $X^5 = (x_1, x_2, x_3, x_4)^T$ $X^5 = (0, 0, 1/2, 1)^T$

$$\begin{pmatrix} x_3 \\ x_3 \end{pmatrix} = B_3^{-1}b = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1/12 \\ 0/12 \end{pmatrix}$$

第二节 基本概念和基本定理

■基本概念

■ 基本定理

基变量、非基变量\基本解、基\基本解、基\基本可行解、可行基\基本可行解、最优基

非退化基本可行解

退化基本可行解

$$(LP) \min S = CX$$

$$AX = b$$
$$X \ge 0$$

基本解:
$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
 是 $AX = b$ 的解,称为(LP) 基:

关于基B的基本解.

基本可行解: 若
$$X = \begin{pmatrix} B^{-1}b \geq 0 \\ 0 \end{pmatrix}$$
 ,则称 X 为(LP)关于可行基:

可行基*B*的基本可行解。 (可行域的顶点)

$$AX = b \longrightarrow (B, N) \begin{pmatrix} X_B \\ X_N \end{pmatrix} = b \qquad X = \begin{pmatrix} X_B \\ X_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \ge 0 \\ 0 \end{pmatrix}$$

$$\longrightarrow X_B + B^{-1}NX_N = B^{-1}b \longrightarrow X_B = B^{-1}b - B^{-1}NX_N$$

M:
$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_3 = x_4 = 0 \end{cases} A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} R(A) = 2$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ B \end{pmatrix}$$
基本解
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ B \end{pmatrix}$$
B是可行基

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_1 + 2x_2 + x_3 = 2 \end{cases}$$

$$\min S = x_1 + x_2 + 2x_3 + 2x_4 \qquad R(A) = 2
\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases} \qquad A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ P_1 & P_2 & P_3 & P_4 \end{pmatrix} \qquad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}
x_j \ge 0, \quad j = 1,2,3,4 \qquad P_1 \qquad P_2 \qquad P_3 \qquad P_4$$

$$X = \begin{pmatrix} X_B \\ X_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

该(LP)有5个基,5个基对应都是基本可行解:

$$\boldsymbol{B}_1 = (\boldsymbol{P}_1, \boldsymbol{P}_2)$$

$$B_1 = (P_1, P_2)$$
 $X^1 = (x_1, x_2, x_3, x_4)^T$ $X^1 = (0, 1, 0, 0)^T$

$$X^1 = (0,1,0,0)^T$$

$$\boldsymbol{B}_2 = (\boldsymbol{P}_1, \boldsymbol{P}_3)$$

$$B_2 = (P_1, P_3)$$
 $X^2 = (x_1, x_2, x_3, x_4)^T$ $X^2 = (1, 0, 1/2, 0)^T$

$$X^2 = (1,0,1/2,0)^T$$

$$\boldsymbol{B}_3 = (\boldsymbol{P}_2, \boldsymbol{P}_3)$$

$$B_3 = (P_2, P_3)$$
 $X^3 = (x_1, x_2, x_3, x_4)^T$ $X^3 = (0, 1, 0, 0)^T$

$$X^3 = (0, 1, 0, 0)^T$$

$$\boldsymbol{B}_4 = (\boldsymbol{P}_2, \boldsymbol{P}_4)$$

$$B_4 = (P_2, P_4)$$
 $X^4 = (x_1, x_2, x_3, x_4)^T$

$$X^4 = (0, 1, 0, 0)^T$$

$$B_5 = (P_3, P_4)$$

$$B_5 = (P_3, P_4)$$
 $X^5 = (x_1, x_2, x_3, x_4)^T$

$$X^5 = (0,0,1/2,1)^T$$

第二节 基本概念和基本定理

■基本概念

■基本定理

基变量、非基变量 < 基本解、基 <

基本可行解、可行基

最优基本可行解、最优基

非退化基本可行解退化基本可行解

$$(LP) \min S = CX$$
 $AX = b \rightarrow X_B = B^{-1}b - B^{-1}NX_N$
 $X \ge 0$
 $S = CX = (c_1, c_2, \dots, c_m, c_{m+1}, c_{m+2}, \dots, c_n)$
 C_B
 C_B

定理1-1(最优性判别定理)

 $\begin{aligned}
\min S &= CX \\
AX &= b \\
X &\ge 0
\end{aligned}$

对于 (*LP*) 的基 *B*, 若有 $X_B^* = B^{-1}b \ge 0$ 且

$$C-C_BB^{-1}A \ge 0$$
 $(C_N-C_BB^{-1}N \ge 0)$,则基本可行解

$$X^* = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
是(*LP*)的最优解,称为最优基本可行解,

B称为最优基。最优值为 $C_R B^{-1}b$ 。

证明: 对 $\forall X \in D$ 有

$$S = CX = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$\geq C_B B^{-1} b = (C_B, C_N) \begin{pmatrix} B^{-1} b \\ 0 \end{pmatrix} = CX^* : X^* \neq \mathbb{R}$$

$$S = CX = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$
 规划1-2

证明:
$$C-C_BB^{-1}A \ge 0 \Leftrightarrow C_N-C_BB^{-1}N \ge 0$$

$$\min S = CX
AX = b
X \ge 0$$

$$C-C_BB^{-1}A = (C_B, C_N) - C_BB^{-1}(B, N)$$

$$= (C_B, C_N) - (C_B, C_BB^{-1}N)$$

$$= (0, C_N - C_BB^{-1}N) \quad X = \begin{pmatrix} X_B \\ X_N \end{pmatrix}$$
定理1-1 (最优性判别定理)

对于 (*LP*) 的基 *B*,若有
$$X_B^* = \underline{B^{-1}b \ge 0}$$
 且
$$C - C_B B^{-1} A \ge 0 \quad (C_N - C_B B^{-1} N \ge 0) \quad , \quad \text{则基本可行解}$$

$$X^* = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
 是(XP)的最优解,称为最优基本可行解,

B称为最优基。检验数向量 非基变量检验数向量

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$
 $R(A) = 2$
$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases} A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $x_j \ge 0, \quad j = 1, 2, 3, 4$ $P_1 \quad P_2 \quad P_3 \quad P_4$

$$X = \begin{pmatrix} X_B \\ X_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
$$b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

该(LP)有5个基,5个基对应都是基本可行解:目标值:

$$B_1 = (P_1, P_2)$$
 $X^1 = (x_1, x_2, x_3, x_4)^T$ $X^1 = (0, 1, 0, 0)^T$

$$B_2 = (P_1, P_3)$$
 $X^2 = (x_1, x_2, x_3, x_4)^T$ $X^2 = (1, 0, 1/2, 0)^T$ 2

$$B_3 = (P_2, P_3)$$
 $X^3 = (x_1, x_2, x_3, x_4)^T$ $X^3 = (0, 1, 0, 0)^T$

$$B_4 = (P_2, P_4)$$
 $X^4 = (x_1, x_2, x_3, x_4)^T$ $X^4 = (0, 1, 0, 0)^T$

$$B_5 = (P_3, P_4)$$
 $X^5 = (x_1, x_2, x_3, x_4)^T$ $X^5 = (0, 0, 1/2, 1)^T$ 3

$$X^{1}, X^{3}, X^{4} = (0,1,0,0)^{T}$$
 是最优解 B_{1}, B_{3}, B_{4} 都是最优基

最优目标值:1

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$x_{j} \ge 0$$
, $j = 1,2,3,4$

$$R(A) = 2$$

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \ge 0$$

$$E \stackrel{\text{def}}{=} \text{ Times } B \stackrel{\text{def}}{=} \text{ Times } B \stackrel{\text{def}}{=} \text{ Times } C_N = (2, 2)$$

$$C = (1, 1, 2, 2)$$
 $C_B = (1, 1)$ $C_N = (2, 2)$

$$: C - C_B B^{-1} A = (1, 1, 2, 2) - (1, 1) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} = (0, 0, 2, 1) \ge 0$$

$$\therefore X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
 是最优基本可行解,B是最优基。最优目标值:1

第二节 基本概念和基本定理

■基本概念

■基本定理

基变量、非基变量 < 基本解、基 < 基本解、基 < 可行基 < 最优基本可行解、可行基 < 最优基本可行解、最优基 <

非退化基本可行解退化基本可行解

对比概念: :: R(A) = m :: A = (B, N), B -可逆

$$B$$
-基(可逆) $X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$ -基本解 $(AX = b)$

$$B-$$
可行基

$$B$$
-可行基
$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} - 基本可行解, B^{-1}b \ge 0$$

$$(AX = b, X \ge 0)$$

$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} - 最优基本可行解$$

$$B^{-1}b \ge 0$$
, $C - C_B B^{-1}A \ge 0$

第二节 基本概念和基本定理

■基本概念

■基本定理

基变量、非基变量\基本解、基\基本解、基\基本可行解、可行基\是\最优基本可行解、最优基\

非退化基本可行解 / 退化基本可行解

非退化的基本可行解:

若基本可行解
$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
中, $B^{-1}b > 0$,则称该

基本可行解为非退化基本可行解。

退化的基本可行解:

若基本可行解
$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
中, $B^{-1}b \ge 0$,且 $B^{-1}b$

中至少有一个分量为 0,则称该基本可行解为退 化基本可行解。

线性规划1-2

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$x_1 + 2x_2 + 2x_3 + x_4 = 2$$

 $x_j \ge 0, \quad j = 1,2,3,4$

$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$B^{-1}b = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \ge 0$$

$$B^{-1}b = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \ge 0$$

$$B^{-1}b = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \ge 0$$

$$C = (1, 1, 2, 2) \quad C_B = (1, 1) \quad C_N = (2, 2)$$

$$C = (1, 1, 2, 2)$$
 $C_B = (1, 1)$ $C_N = (2, 2)$

 $A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

R(A) = 2

$$: C - C_B B^{-1} A = (1, 1, 2, 2) - (1, 1) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} = (0, 0, 2, 1) \ge 0$$

$$\therefore X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
 是最优基本可行解, B 是最优基。

$$C_N - C_B B^{-1} N = (2, 2) - (1, 1) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} = (2, 1) \ge 0$$

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$
 $R(A) = 2$
$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases} A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \\ P_1 & P_2 & P_3 & P_4 \end{pmatrix} b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

该(LP)有5个基,5个基对应都是基本可行解:

$$B_1 = (P_1, P_2)$$
 $X^1 = (x_1, x_2, x_3, x_4)^T$ $X^1 = (0, 1, 0, 0)^T$ 退化 $B_2 = (P_1, P_3)$ $X^2 = (x_1, x_2, x_3, x_4)^T$ $X^2 = (1, 0, 1/2, 0)^T$ 非退化 $B_3 = (P_2, P_3)$ $X^3 = (x_1, x_2, x_3, x_4)^T$ $X^3 = (0, 1, 0, 0)^T$ 退化 $B_4 = (P_2, P_4)$ $X^4 = (x_1, x_2, x_3, x_4)^T$ $X^4 = (0, 1, 0, 0)^T$ 退化 $B_5 = (P_3, P_4)$ $X^5 = (x_1, x_2, x_3, x_4)^T$ $X^5 = (0, 0, 1/2, 1)^T$ 非退化

 $X^{1}, X^{3}, X^{4} = (0,1,0,0)^{T}$ 是最优解 退化 B_{1}, B_{3}, B_{4} 都是最优基

第二节 基本概念和基本定理

■基本概念

基本定理

基变量、非基变量\基本解、基\基本解、基\基本可行解、可行基\基本可行解、最优基\\非退化基本可行解\ 退化基本可行解\ 退化基本可行解\

基本定理:
$$(LP)$$
 min $S = CX$ $AX = b$ $X \ge 0$

对于线性规划问题的标准形有以下两个结论成立:

- 1. 若存在一个可行解,则必存在一个基本可行解;
- 2. 若存在一个最优解,则必存在一个最优基本可行解注释:
 - 1. 若线性规划的可行域非空,则一定有一个顶点;
 - 2. 若线性规划有最优解,则它一定可以在可行域的 一个顶点上达到。

第二节 基本概念和基本定理

■基本概念

✓ 基本定理

基变量、非基变量\基本解、基\基本解、基\基本可行解、可行基\基本可行解、最优基\ 最优基本可行解、最优基\ 非退化基本可行解\ 退化基本可行解\ $\min Z = -3x_1 - x_2 - 2x_3$ 找出所有的基本解,基本可

$$12x_1 + 3x_2 + 6x_3 + 3x_4 = 9$$
 行解,并确定最优解。

$$\begin{cases} 12x_1 + 3x_2 + 6x_3 + 3x_4 = 9 & \text{行解, 并确定最优解。} \\ 8x_1 + x_2 - 4x_3 + 2x_5 = 10 \\ 3x_1 + 0x_2 + 0x_3 - x_6 = 0 & A = \begin{pmatrix} 12 & 3 & 6 & 3 & 0 & 0 \\ 8 & 1 & -4 & 0 & 2 & 0 \\ 3 & 0 & 0 & 0 & 0 & -1 \\ P_1 & P_2 & P_3 & P_4 & P_5 & P_6 \end{pmatrix} b = \begin{pmatrix} 9 \\ 10 \\ 0 \end{pmatrix}$$

$$B_{1}^{-1}b = \begin{pmatrix} 12 & 3 & 6 \\ 8 & 1 & -4 \\ 3 & 0 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 9 \\ 10 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 16/3 \\ -7/6 \end{pmatrix} \quad B_{4}^{-1}b = \begin{pmatrix} 12 & 3 & 0 \\ 8 & 1 & 0 \\ 3 & 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 9 \\ 10 \\ 0 \end{pmatrix} = \begin{pmatrix} 7/4 \\ -4 \\ 21/4 \end{pmatrix}$$

[月]:
$$\min Z = -3x_1 - x_2 - 2x_3$$

$$\begin{cases} 12x_1 + 3x_2 + 6x_3 + 3x_4 = 9 A = \begin{cases} 12 & 3 & 6 & 3 & 6 \\ 8 & 1 & -4 & 0 & 2 \\ 3x_1 + x_2 - 4x_3 + 2x_5 = 10 & 3 & 0 & 0 & 0 \\ 3x_1 + 0x_2 + 0x_3 - x_6 = 0 & P_1 & P_2 & P_3 & P_4 & P_2 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 & X_1 = (0, \frac{16}{3}, -\frac{7}{6}, 0) \end{cases}$$

16个基本解:

X =	(x_1)	x_2	x_3	x_4	x_5	x_6
$\boldsymbol{X_2}$	0	10	0	-7	0	0
X_3	0	3	0	0	7/2	0
X_4	7/4	-4	0	0	0	21/4
X_5	0	0	-5/2	8	0	0
X_6	0	0	3/2	0	8	0
X_7	1	0	-1/2	0	0	3
X_8	0	0	0	3	5	0

	(12	3	6	3	0	0		$\begin{pmatrix} 9 \\ 10 \\ 0 \end{pmatrix}$
=	8	1	-4	0	2	0	b =	10
	3	0	0	0	0	-1		$\left[\begin{array}{c} 0 \end{array}\right]$
	P_1	P_2	P_3	P_4	P_5	P_6		
	X ₁ =	= (0,	$\frac{16}{3}$,	$-\frac{7}{6}$,0,0	$(0,0)^T$		
	X =	= (7	_4	0	0	$\frac{21}{2}$		

X =	(x_1)	\boldsymbol{x}_2	x_3	x_4	x_5	(x_6)
X_9	5/4	0	0	-2	0	15/4
X_{10}	0	3	-7/6	0	0	0
X_{11}	0	0	-5/2	8	0	0
X_{12}	0	0	0	3	5	0
X_{13}	3/4	0	0	0	2	9/4
X_{14}	0	10	0	-7	0	0
X_{15}	0	0	0	0	7/2	0
X_{16}	0	0	3/2	0	8	0

例:

$$A = \begin{pmatrix} 12 & 3 & 6 & 3 & 0 & 0 \\ 8 & 1 & -4 & 0 & 2 & 0 \\ 3 & 0 & 0 & 0 & 0 & -1 \\ P_1 & P_2 & P_3 & P_4 & P_5 & P_6 \end{pmatrix} b = \begin{pmatrix} 9 \\ 10 \\ 0 \end{pmatrix}$$

$$X_1 = (0, \frac{16}{3}, -\frac{7}{6}, 0, 0, 0)^T$$

16个基本解:7个基本可行解:

X =	(x_1)	x_2	x_3	x_4	x_5	x_6
$\overline{X_2}$	0	10	0	-7	0	0
X_3	0	3	0	0	7/2	0
$\overline{X_4}$	7/4	-4	0	0	0	21/4
X_5	0	0	-5/2	8	0	0
$\boldsymbol{X_6}$	0	0	3/2	0	8	0
$\overline{X_7}$	1	0	-1/2	0	0	_3_
X_8	0	0	0	3	5	0

X =	(x_1)	x_2	x_3	x_4	x_5	x_6
$\overline{X_9}$	5/4	0	0	-2	0	15/4
X_{10}	0	3	-7/6	0	0	0
X 11	0	0	-5/2	8	0	0
X_{12}	0	0	0	3	5	0
X_{13}	3/4	0	0	0	2	9/4
\overline{X}_{14}	0	10	0	-7	0	0-
X_{15}	0	3	0	0	7/2	0
X_{16}	0	0	3/2	0	8	0

例:
$$X_3 = X_{15} \qquad X_6 = X_{16} \quad X_8 = X_{12} \qquad \begin{pmatrix} 12 & 3 & 6 & 3 & 0 & 0 \\ 8 & 1 & -4 & 0 & 2 & 0 \\ 3 & 0 & 0 & 0 & 0 & -1 \\ P_1 & P_2 & P_3 & P_4 & P_5 & P_6 \end{pmatrix} b = \begin{pmatrix} 9 \\ 10 \\ 0 \end{pmatrix}$$

$$X_{15}$$
相应的基: $B_{15} = (P_2, P_5, P_6)$

即不同的基对应相同的基本可行解。

7个基本可行解:

X =	(x_1)	x_2	x_3	x_4	x_5	x_6)
X_3	0	3	0	0	7/2	0
$\boldsymbol{X_6}$	0	0	3/2	0	8	0
X_8	0	0	0	3	5	0

X =	(x_1)	$\boldsymbol{x_2}$	x_3	x_4	x_5	x_6
X ₁₂	0	0	0	3	5	0
X_{13}	3/4	0	0	0	2	9/4
X 15	0	3	0	0	7/2	0
X ₁₆	0	0	3/2	0	8	0

$$\begin{array}{c} \text{ [F]: } \min Z = -3x_1 - x_2 - 2x_3 \\ \left\{ \begin{aligned} 12x_1 + 3x_2 + 6x_3 + 3x_4 &= 9 \\ 8x_1 + x_2 - 4x_3 + 2x_5 &= 10 \end{aligned} \right. \\ \left\{ \begin{aligned} 3 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & -1 \\ P_1 & P_2 & P_3 & P_4 & P_5 & P_6 \end{aligned} \right. \\ \left\{ \begin{aligned} 3x_1 + 0x_2 + 0x_3 - x_6 &= 0 \\ x_1, x_2, x_3, x_4, x_5, x_6 &\geq 0 \end{aligned} \right. \end{aligned}$$

7个基本可行解: 4个不同的基本可行解:

	X =	(x_1)	x_2	x_3	x_4	x_5	x_6)	X =	(x_1)	x_2	x_3	x_4	x_5	x_6
-3	X_3	0	3	0	0	7/2	0	-9/4 X ₁₃	3/4	0	0	0	2	9/4
-3	X_6	0	0	3/2	0	8	0							
0	X_8	0	0	0	3	5	0							

$$X_3, X_6$$
是最优解, $\min Z = -3$