The University of Newcastle School of Electrical Engineering and Computer Science

COMP2230/6230 Algorithms

Tutorial Week 3

2 - 6 August 2021

Tutorial

1. Find Θ for the following functions

i.
$$6n^3 + 12n + 1$$

ii.
$$(n+1)(n+3)/(n+2)$$

2. Find Θ for the number of times the statement x=x+1 is executed.

3. Use iteration to solve the following recurrence relations:

i.
$$a_n = a_{n-1} + 3$$
. $n > 1$: $a_1 = 2$

ii.
$$a_n = 2a_{n-1}, n > 0; a_0 = 1$$

4. True or false?

i.
$$n^2 = O(n^3)$$

ii.
$$n^2 = \Omega(n^3)$$

iii.
$$n^2 = \Theta(n^3)$$

- 5. Arrange the following functions in ascending order in their growth rate. That is, if a function g(n) comes after function f(n) then f(n) = O(g(n)). Prove your answers. n^2 , n^3 , $100n^2$, $n \lg n$, 2^n
- **6.** Prove the following:

i.
$$n! = O(n^n)$$

ii.
$$\Sigma_{i=1}^n i \lg i = \Theta(n^2 \lg n)$$

7. Prove that

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \frac{n^k}{k!}$$

- **8.** Prove that n^k is a smooth function.
- **9.** Prove that T(n) is well defined for all n by recurrence relation $T(n) = aT(n/b) + cn^k$ when n/b denotes $\lfloor n/b \rfloor$.
- **10.** Use the Main (Master) Recurrence Theorem to find Θ for each of the following functions:

i.
$$T(n) = 2T(n/2) + f(n)$$
; $f(n) = n^2$

ii.
$$T(n) = 2T(n/2) + f(n)$$
; $f(n) = 5$

Homework

11. Find Θ for the following functions

i.
$$(6n + 1)^2$$

ii.
$$3n^2 + 2n \lg n$$

- 12. Find Θ for the number of times the statement x=x+1 is executed.
 - i. for i=1 to 2n x=x+1
- **13.** Use iteration to solve the following recurrence relations:

i.
$$a_n = 2a_{n-1} + 1$$
, $n > 1$; $a_1 = 1$

ii.
$$a_n = 2^n a_{n-1}$$
, $n > 0$; $a_0 = 1$

- 14. True or false?
 - i. $2^n = O(2^{n+1})$
 - ii. $2^n = \Omega(2^{n+1})$
 - iii. $2^n = \Theta(2^{n+1})$
- **15.** Arrange the following functions in ascending order in their growth rate. That is, if a function g(n) comes after function f(n) then f(n) = O(g(n)). Prove your answers.

$$10^n$$
, $n^{1/3}$, n^n , $\lg n$, $2^{((\lg n)^{1/2})}$

- **16.** Prove the following:
 - i. $2^n = O(n!)$
 - ii. $lg(n^k + c) = \Theta(lg n)$, for every fixed k > 0 and c > 0
- 17. Prove that $n^{log_b a}$ is a smooth function.

18. Use the Main (Master) Recurrence Theorem to find Θ for each of the following functions:

i.
$$T(n) = 4T(n/2) + f(n)$$
; $f(n) = n$

ii.
$$T(n) = 4T(n/2) + f(n)$$
; $f(n) = n^2$

19. Solve the following homogeneous recurrence:

$$T(n) = 6T(n-1) + 9T(n-2), T(0) = 0, T(1) = 3$$

More Exercises

- **20.** Find Θ for the following function: 2 + 4 + 6 + ... + 2n
- **21.** Find Θ for the number of times the statement x=x+1 is executed.

22. Use iteration to solve the following recurrence relations:

$$a_n = 2 + \sum_{i=1}^{n-1} a_i, \ n > 1; \ a_1 = 1$$

23. True or false?

i.
$$n! = O((n+1)!)$$

ii.
$$n! = \Omega((n+1)!)$$

iii.
$$n! = \Theta((n+1)!)$$

24. Arrange the following functions in ascending order in their growth rate. That is, if a function g(n) comes after function f(n) then f(n) = O(g(n)). Prove your answers.

$$n^{2.5}$$
, $(2n)^{1/2}$, $n+10$, 10^n , 100^n , $n^2 \lg n$

- **25.** Prove that $H_n = \sum_{i=1}^n (1/i) = \Theta(\log n)$. (Hint: In the previous tutorial you proved that $1/n \le \log(n+1) \log n \le 2/n$.)
- **26.** Prove the following:

$$1^k + 2^k + ... + n^k = \Theta(n^{k+1})$$

- **27.** Prove that $log(n!) = \Theta(n log n)$.
- **28.** Consider the following algorithm that computes a^n . Let c_n be the number of multiplications required to compute a^n .

```
exp( a,n) {
    if ( n = = 1)
    return a
    m = [n / 2]
    return exp( a, m) * exp( a, n-m)
}
```

- i. Find a recurrence relation and initial conditions for the sequence $\{c_n\}$.
- ii. Solve the recurrence relation in case n is a power of 2.
- iii. Solve the recurrence relation for every positive integer n.
- **29.** Prove that if a and b are numbers such that $0 \le a \le b$ then $(n+1)a^n \le (b^{n+1}-a^{n+1})/(b-a) \le (n+1)b^n$.
- **30.** Prove that the sequence $\{(1+1/n)^n\}$ is increasing and bounded above by 4.
- **31.** Prove that $1/n \le lg(n+1) lg \ n \le 2/n$.
- **32.** Prove that $n^k \log_b n$ is a smooth function.
- 33. Use the Main (Master) Recurrence Theorem to find Θ for the following function: T(n) = 2T(n/2) + f(n); $f(n) = n^3$