→ IRIS FLOWER CLASSIFICATION

The Iris dataset is a widely used benchmark dataset in the field of machine learning and statistics for classification tasks.

This dataset consists of 150 samples of iris flowers, with each sample belonging to one of three species: setosa, versicolor, or virginica. Each sample comprises four features: sepal length, sepal width, petal length, and petal width, all measured in centimeters.

The purpose of this dataset is to classify iris flowers based on these four features. It is often used for teaching and practicing various machine learning algorithms, especially for tasks related to classification, clustering, and dimensionality reduction.

The Iris dataset is relatively small, making it easily manageable for testing and implementing machine learning algorithms. It is considered a good starting point for beginners due to its simplicity and clear classification task.

Import the libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Load the dataset

df=pd.read_csv('/content/Iris.csv')
df

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris- virginica
146	147	6.3	2.5	5.0	1.9	Iris- virginica
147	148	6.5	3.0	5.2	2.0	Iris- virginica
148	149	6.2	3.4	5.4	2.3	Iris- virginica

Data Exploration

df.head()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	III
0	1	5.1	3.5	1.4	0.2	Iris-setosa	ılı
1	2	4.9	3.0	1.4	0.2	Iris-setosa	
2	3	4.7	3.2	1.3	0.2	Iris-setosa	
3	4	4.6	3.1	1.5	0.2	Iris-setosa	
4	5	5.0	3.6	1.4	0.2	Iris-setosa	

df.tail()

Species	PetalWidthCm	PetalLengthCm	SepalWidthCm	SepalLengthCm	Id	
Iris- virginica	2.3	5.2	3.0	6.7	146	145
Iris- virginica	1.9	5.0	2.5	6.3	147	146
Iris- virginica	2.0	5.2	3.0	6.5	148	147
Iris-	2.2	- 1	2.4	2.2	4.40	4.40

```
df.shape
```

(150, 6)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
dtvp	es: float64(4).	int64(1), objec	t(1)

dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB

df.columns

Index(['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm', 'Species'], dtype='object')

df.dtypes

Id	int64
SepalLengthCm	float64
SepalWidthCm	float64
PetalLengthCm	float64
PetalWidthCm	float64
Species	object

dtype: object

df.describe()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	
count	150.000000	150.000000	150.000000	150.000000	150.000000	ıl
mean	75.500000	5.843333	3.054000	3.758667	1.198667	
std	43.445368	0.828066	0.433594	1.764420	0.763161	
min	1.000000	4.300000	2.000000	1.000000	0.100000	
25%	38.250000	5.100000	2.800000	1.600000	0.300000	
50%	75.500000	5.800000	3.000000	4.350000	1.300000	
75%	112.750000	6.400000	3.300000	5.100000	1.800000	
max	150.000000	7.900000	4.400000	6.900000	2.500000	

df.dropna()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	lris- virginica
146	147	6.3	2.5	5.0	1.9	lris- virginica
147	148	6.5	3.0	5.2	2.0	Iris- virginica
148	149	6.2	3.4	5.4	2.3	lris- virginica

df.isnull().sum()

0
0
0
0
0
0

df=df.drop(['Id'],axis=1)
df

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
0	5.1	3.5	1.4	0.2	Iris-setosa	ılı
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	17	2.0	4.0	0.0	lria aataaa	

Data Visualization

```
y_counts=df['Species'].value_counts()
y_counts
```

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50

Name: Species, dtype: int64

mylabels=['Iris-setosa','Iris-versicolor','Iris-virginica ']
plt.pie(y_counts,labels=mylabels,autopct="%1.1f%%")
plt.title('Species_count')
plt.legend(loc='upper left')
plt.show()

sns.histplot(df['PetalLengthCm'],color='r')

<Axes: xlabel='PetalLengthCm', ylabel='Count'>

sns.histplot(df['PetalWidthCm'],color='y')

<Axes: xlabel='PetalWidthCm', ylabel='Count'>

sns.histplot(df['SepalLengthCm'],color='b')

<Axes: xlabel='SepalLengthCm', ylabel='Count'>

sns.histplot(df['SepalWidthCm'],color='g')

<Axes: xlabel='SepalWidthCm', ylabel='Count'>

sns.countplot(x='SepalLengthCm',hue='Species',data=df)

<Axes: xlabel='SepalLengthCm', ylabel='count'>

sns.countplot(x='PetalLengthCm',hue='Species',data=df)

sns.countplot(x='SepalWidthCm',hue='Species',data=df)

<Axes: xlabel='SepalWidthCm', ylabel='count'>

sns.countplot(x='PetalWidthCm',hue='Species',data=df)

sns.boxplot(x=df['PetalLengthCm'],y=df['Species'])

<Axes: xlabel='PetalLengthCm', ylabel='Species'>

sns.boxplot(x=df['SepalLengthCm'],y=df['Species'])

<Axes: xlabel='SepalLengthCm', ylabel='Species'>

sns.boxplot(x=df['PetalWidthCm'],y=df['Species'])

<Axes: xlabel='PetalWidthCm', ylabel='Species'>

sns.boxplot(x=df['SepalWidthCm'],y=df['Species'])

<Axes: xlabel='SepalWidthCm', ylabel='Species'>

sns.pairplot(df)

sns.heatmap(df.corr(),annot=True)

6 7 SepalLengthCm

SepalWidthCm

PetalLengthCm

PetalWidthCm

Splitting training and testing data

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42)

x_train

```
[-1.3/805400, 0.4/2/5553, -1.50218532, -1.401/3542],
[0.3100623, -0.25367584, 0.48403749, 0.21861991],
 0.79238143, -0.49582097, 0.42561917, 0.35364985],
[0.43064208, -0.49582097, 0.54245581, 0.75873969],
[ 1.39528035, 0.47275953, 0.48403749, 0.21861991],
[0.67180165, 0.47275953, 0.8345474, 1.43388941],
[-0.89573553, 1.92563026, -1.32693037, -1.40173942],
[1.27470056, 0.2306144, 0.89296572, 1.16382952],
[0.06890273, -0.01153072, 0.1919459, 0.35364985],
[ 0.79238143, -0.01153072, 0.77612908,
                                       1.02879957],
[-0.17225683, -0.98011121, -0.21698232, -0.32149987],
[-0.77515575, -0.73796609, 0.01669095, 0.21861991],
[ 0.3100623 , -0.01153072, 0.42561917, 0.21861991],
[-1.61921423, -1.70654658, -1.50218532, -1.26670948],
[0.91296121, -0.25367584, 0.42561917, 0.08358997],
[-0.4134164, -0.98011121, 0.30878254, -0.05143998],
[-0.65457597, 1.68348514, -1.38534869, -1.40173942],
[-0.29283662, -0.01153072, 0.13352758, 0.08358997],
[ 1.7570197 , -0.25367584, 1.41873058, 0.75873969],
[ 1.033541 , 0.71490465, 1.06822067, 1.16382952],
[-0.89573553, 1.68348514, -1.38534869, -1.13167953],
[-1.1368951, -1.46440146, -0.33381896, -0.32149987],
[ 1.033541 , 0.71490465, 1.06822067, 1.7039493 ],
[ 1.63643991, -0.01153072, 1.12663899, 0.4886798 ],
[-1.1368951, 0.2306144, -1.38534869, -1.53676936],
[ 1.033541 , 0.2306144 , 1.00980236, 1.56891935],
[-1.1368951, -0.01153072, -1.443767, -1.40173942],
 1.27470056, 0.2306144, 0.60087413, 0.35364985],
[ 1.87759948, -0.49582097, 1.30189395, 0.89376963],
[0.55122187, -0.25367584, 1.00980236, 0.75873969],
[-0.17225683, -0.49582097, 0.13352758, 0.08358997],
[0.79238143, -0.01153072, 0.95138404, 0.75873969],
[0.55122187, -1.70654658, 0.30878254, 0.08358997],
[0.67180165, -0.25367584, 0.25036422, 0.08358997],
[-0.29283662, -0.49582097, 0.60087413,
                                      1.02879957],
[0.06890273, -0.01153072, 0.71771076, 0.75873969],
[-0.53399618, 0.95704977, -1.26851205, -1.40173942],
[ 0.3100623 , -0.49582097, 0.07510927,
                                      0.08358997],
[-1.1368951, -1.22225633, 0.36720086, 0.62370974],
[-0.05167705, 2.40992051, -1.56060364, -1.40173942],
[-0.05167705, -0.98011121, 0.07510927, -0.05143998],
[ 1.51586013, -0.01153072, 1.18505731, 1.16382952]])
```

x test

```
array([[ 0.3100623 , -0.49582097, 0.48403749, -0.05143998],
       [-0.17225683, 1.92563026, -1.26851205, -1.26670948],
        2.23933883, -0.98011121, 1.76924049, 1.43388941],
       [ 0.18948252, -0.25367584, 0.36720086,
                                             0.35364985],
       [ 1.15412078, -0.49582097, 0.54245581, 0.21861991],
       [-0.53399618, 0.95704977, -1.38534869, -1.13167953],
       [-0.29283662, -0.25367584, -0.15856401, 0.08358997],
       [1.27470056, 0.2306144, 0.71771076, 1.43388941],
       [0.43064208, -1.9486917, 0.36720086, 0.35364985],
       [-0.05167705, -0.73796609, 0.01669095, -0.05143998],
       [0.79238143, 0.47275953, 0.71771076, 1.02879957],
       [-1.25747488, -0.01153072, -1.443767 , -1.53676936],
       [-0.4134164 , 1.19919489, -1.50218532, -1.40173942],
       [-1.1368951, 0.2306144, -1.38534869, -1.53676936],
       [-0.89573553, 1.92563026, -1.38534869, -1.26670948],
```

```
[ 0.55122187, 0.71490465, 0.48403749, 0.4886798 ],
[0.79238143, -0.01153072, 1.12663899, 1.29885946],
[-0.29283662, -1.22225633, 0.01669095, -0.18646992],
[-0.17225683, -0.49582097, 0.36720086,
                                       0.083589971.
[0.67180165, -0.49582097, 1.00980236, 1.29885946],
[-1.37805466, 0.47275953, -1.32693037, -1.40173942],
[ 0.3100623 , -0.01153072, 0.60087413,
                                       0.75873969],
[-1.01631531, 0.95704977, -1.32693037, -1.13167953],
[0.67180165, -0.49582097, 1.00980236, 1.16382952],
[ 2.4804984 , 1.92563026,
                          1.4771489 ,
                                       1.02879957],
[ 1.033541 , -0.01153072, 0.77612908,
                                      1.43388941],
          , -1.22225633, 1.12663899, 0.75873969],
[ 1.033541
[ 1.15412078, 0.47275953, 1.18505731, 1.43388941],
[-1.25747488, -0.01153072, -1.443767, -1.26670948],
[-1.25747488, 0.2306144, -1.32693037, -1.40173942],
              1.44134002, -1.67744028, -1.40173942],
[-1.49863445,
[-0.17225683, 3.378501, -1.38534869, -1.13167953],
[ 1.033541 , 0.2306144 , 0.30878254, 0.21861991],
[-1.25747488, 0.95704977, -1.32693037, -1.40173942],
[-1.73979401, 0.47275953, -1.50218532, -1.40173942],
[0.55122187, -1.22225633, 0.65929245, 0.89376963],
[0.67180165, 0.47275953, 0.36720086, 0.35364985],
[-0.77515575, 1.19919489, -1.38534869, -1.40173942],
[-1.01631531, 1.44134002, -1.443767, -1.40173942],
[-0.77515575, 2.65206563, -1.38534869, -1.53676936],
[-0.05167705, -0.73796609, 0.71771076, 0.89376963],
[ 0.18948252, 0.95704977, 0.36720086, 0.4886798 ],
[ 1.033541 , 0.2306144 , 0.48403749, 0.35364985],
             2.16777538, -1.50218532, -1.13167953],
[-0.53399618,
[-0.53399618, 1.68348514, -1.38534869, -1.40173942]])
```

y_train

```
81
       Iris-versicolor
133
        Iris-virginica
137
        Iris-virginica
75
       Iris-versicolor
109
        Iris-virginica
71
       Iris-versicolor
106
        Iris-virginica
14
           Iris-setosa
92
       Iris-versicolor
102
        Iris-virginica
Name: Species, Length: 105, dtype: object
```

y_test

```
73
       Iris-versicolor
18
           Iris-setosa
118
        Iris-virginica
78
       Iris-versicolor
76
       Iris-versicolor
31
           Iris-setosa
64
       Iris-versicolor
141
        Iris-virginica
68
       Iris-versicolor
82
       Iris-versicolor
```

```
110
        Iris-virginica
12
           Iris-setosa
36
           Iris-setosa
9
           Iris-setosa
19
           Iris-setosa
56
       Iris-versicolor
104
        Iris-virginica
69
       Iris-versicolor
55
       Iris-versicolor
        Iris-virginica
132
29
           Iris-setosa
        Iris-virginica
127
           Iris-setosa
26
        Iris-virginica
128
131
        Iris-virginica
145
        Iris-virginica
108
        Iris-virginica
143
        Iris-virginica
45
           Iris-setosa
30
           Iris-setosa
22
           Iris-setosa
15
           Iris-setosa
       Iris-versicolor
65
11
           Iris-setosa
42
           Iris-setosa
146
        Iris-virginica
51
       Iris-versicolor
           Iris-setosa
27
4
           Iris-setosa
32
           Iris-setosa
142
        Iris-virginica
85
       Iris-versicolor
       Iris-versicolor
86
16
           Iris-setosa
10
           Iris-setosa
```

Name: Species, dtype: object

Performing Normalization

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x_train)
x_train=scaler.transform(x_train)
x_test=scaler.transform(x_test)
```

Model Creation

```
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n neighbors=5)
knn.fit(x_train,y_train)
y_pred=knn.predict(x_test)
y_pred
     array(['Iris-versicolor', 'Iris-setosa', 'Iris-virginica',
             'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa',
```

```
'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor',
'Iris-versicolor', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica',
'Iris-versicolor', 'Iris-versicolor', 'Iris-virginica',
'Iris-setosa', 'Iris-virginica', 'Iris-setosa', 'Iris-virginica',
'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-versicolor', 'Iris-setosa', 'Iris-setosa',
'Iris-virginica', 'Iris-versicolor', 'Iris-setosa', 'Iris-setosa',
'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-setosa', 'Iris-setosa'], dtype=object)
```

from sklearn.metrics import accuracy_score,classification_report,confusion_matrix,Confus:
print("accuracy score is",accuracy_score(y_test,y_pred))

accuracy score is 1.0

print("classification report is",classification_report(y_test,y_pred))

classification repo	precision	recall	f1-score	support		
Iris-setosa	1.00	1.00	1.00	19		
Iris-versicolor	1.00	1.00	1.00	13		
Iris-virginica	1.00	1.00	1.00	13		
accuracy			1.00	45		
macro avg	1.00	1.00	1.00	45		
weighted avg	1.00	1.00	1.00	45		

```
labels=['Iris-setosa','Iris-versicolor','Iris-virginica']
result=confusion_matrix(y_test,y_pred)
cmd=ConfusionMatrixDisplay(result,display_labels=labels)
cmd.plot()
print(result)
```

[[19 0 0] [0 13 0] [0 0 13]]

