Introducción al Análisis Matemático Tema 1 Clase Práctica 2

Licenciatura en Matemática Curso 2022

Al estudiante:

Bienvenido a la Clase Práctica 2 del Tema 1 del curso *Introducción al Análisis Matemático*. Los siguientes ejercicios pueden ser abordados con los conocimientos adquiridos en la Conferencia 1.2 sobre polinomio de interpolación. ¡Esperamos que le vaya bien!

Colectivo de la asignatura

EJERCICIOS

Ejercicio 1.

Usa el polinomio de interpolación para demostrar las fórmulas:

a)
$$1+2+3+4+\ldots+n=\frac{n^2}{2}+\frac{n}{2}$$

b)
$$1^2 + 2^2 + 3^2 + 4^2 + \ldots + n^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

Observación: ¿Qué podría asegurarse del grado mínimo del polinomio que interpola los puntos de la forma:

$$(n, 1^k + 2^k + 3^k + 4^k + \dots + n^k) \quad n \in \mathbb{N}, k \in \mathbb{N}?$$

¿Podría ser descrita su expresión?

Ejercicio 2.

Halle el polinomio de interpolación de grado menor que 3 que pasa por los puntos (0;0), (1;1), (2;2) y (3;3). ¿Puede explicar el por qué del resultado obtenido?

Ejercicio 3. (\star)

Pruebe que el polinomio de interpolación que pasa por los puntos:

$$(x_0, y_0)$$

 (x_1, y_1) $x_1 = x_0 + h$
 (x_2, y_2) donde $x_2 = x_0 + 2h$ tiene la forma:
 \dots \dots
 (x_n, y_n) $x_n = x_0 + nh$

$$p(x) = y_0 + \frac{x - x_0}{h} \Delta y_0 + \frac{(x - x_0)(x - x_1)}{2h^2} \Delta^2 y_0 + \dots + \frac{(x - x_0)(x - x_1)\dots(x - x_{n-1})}{n!h^n} \Delta^n y_0$$
(1)

Hint: Considere el cambio de variable $t = \frac{x - x_0}{h}$.

Ejercicio 4.

Pruebe que las diferencias de orden n correspondientes a puntos (con abscisa equidistantes) situados sobre el gráfico de un polinomio de interpolación de grado n son siempre constantes.

a) Explica por qué para cualquier valor de n, las diferencias de orden k+1 correspondientes a los puntos de la forma $(n, 1^k + 2^k + 3^k + 4^k + \ldots + n^k)$ son constantes.

Ejercicio 5. (\star)

Halla el polinomio y = f(x) tal que f(x) y sus diferencias satisfacen las relaciones:

$$f(0) = 3,$$

 $\Delta f(n) = f(n+1) - f(n),$
 $\Delta f(n) = 9n^2 - 3n - 2.$

Ejercicio 6. (\star)

Halle el polinomio de grado mínimo que pasa por los puntos:

a)
$$(n, 3+7+11+\ldots+(4n-1)).$$

b)
$$(n, 1+4+7+\ldots+(3n-2)).$$

Ejercicio 7.

Halla una expresión del polinomio de grado mínimo que interpola los puntos de la forma:

$$(n, 1 \cdot 2 - 2 \cdot 3 + 3 \cdot 4 - 4 \cdot 5 + \ldots + (-1)^{n+1} n(n+1)).$$

- a) Para n impar.
- b) Para n par.
- c) ¿Existirá un polinomio que interpole los puntos anteriores cuando n es un número natural cualquiera? En caso afirmativo, hállelo. En caso negativo, justifique su respuesta.