Gramatici de atribute

1. Fie limbajul: $L = \{a^nb^nc^n \mid n - natural\}$ Dati o gramatica de atribute care il genereaza.

	Reguli semantice	
$S \rightarrow \varepsilon$		
$S \rightarrow ABC$	A.nr = B.nr	Predicat
	A.nr = C.nr	- Regula sematica este
		folosita ca o conditie.
$A_0 \rightarrow a A_1$	$A_0.nr \leftarrow A_1.nr+1$	Regula de evaluare
$A \rightarrow a$	A.nr ← 1	
$B_0 \rightarrow b B_1$	$B_0.nr \leftarrow B_1.nr + 1$	
$B \rightarrow b$	B.nr ←1	
$C_0 \rightarrow c C_1$	$C_0.nr \leftarrow C_1.nr + 1$	
$C \rightarrow c$	C.nr ←1	

Exemplu:

Pentru cuvantul aaabbbccc, arborele de derivare si valorile atributelor arata astfel:

2. Descrieti o gramatica de atribute care determina valorile expresiilor aritmetice in forma postfixata. EX: 5 6 + 5 *

Observatii:

- Vom da GIC care generează expresii aritmetice în forma postfixată și adaugam atributul val.
- Evaluarea atributelor (pe arborele de derivare) se face de jos in sus.
- Vom presupune ca singurele valori posibile sunt 5 si 6

(reguli de prod. atr.)

E → E' E" +	(1)	E.val← E'.val+ E".val	
E → E' E" *	(2)	E.val← E'.val* E".val	
$E \rightarrow CONST$	(3)	E.val← CONST.val	
$\begin{array}{c} \text{CONST} \rightarrow 5 \\ \text{CONST} \rightarrow 6 \end{array}$		CONST.val ← 5 $CONST.val ← 6$	2 reguli de productie adaugate pentru ca gramatica sa fie completa.
			Ele suplinesc (/inlocuiesc) informatiile care, in mod normal, vin din partea de analiza lexicala.

EX: 56+5*

- 3. Descrieti o gramatica de atribute care, pentru o expresie aritmetica data in forma infixata, determina expresia aritmetica in forma postfixata. EX: a + b * c
- 4. Dati o gram. de atribute care defineste semantica limbajului numerelor rationale pozitive, scrise cu "." in baza 2.
- 5. Fie urmatoarea gramatica independenta de context

 $N \rightarrow B N$

 $N \rightarrow B$

B -> 0

B -> 1

Atributati gramatica:

atributul v – cu semnificatia "valoarea ca numar" intreg fara semn

Aratati cum se evalueaza atributul pentru secventa 101

(Puteti adauga si alte attribute daca este necesar.)

6. Dati o gramatica care genereaza secvente de 0 si 1 in care nr de 0 este egal cu nr. de 1.

Atributati gramatica:

atributul nr (asociat radacinii arborelui de derivare) este numarul de 0 si este egal si cu numarul de 1 dintr-o secventa data.

Aratati cum se evalueaza atributul pentru secventa 0101.

(Puteti adauga si alte atribute daca este necesar.)

Cod intermediar

1. a) Fie secventa de instructiuni

$$A := B + C*D$$

$$B := B + C*D$$

$$D := B + C*D$$

Traduceti in cod intermediar cu 3 adrese, reprezentare cvadruple

b) codul poate fi optimizat? Traduceti in cod intermediar optimizat

Rezolvare:

a) cod intermediar cu 3 adrese, reprezentare cvadruple

operator	arg1	arg2	rez
*	С	D	T1
+	В	T1	T2
:=	T2		A
*	С	D	T3
-	В	Т3	T4
:=	T4		В
*	С	D	T5
+	В	T5	T6
:=	T6		D

și apoi în cod intermediar cu 3 adrese reprezentare triplete

$$A := B + C*D$$

$$B := B + C*D$$

$$D := B + C*D$$

	operator	arg1	arg2
	• • •	•••	•••
(90)	*	С	D
(91)	+	В	(90)
(92)	:=	A	(91)
(93)	*	С	D
(94)	+	В	(93)
(95)	:=	В	(94)
(96)	*	С	D
(97)	+	В	(96)
(98)	:=	D	(97)

b)

Sugestii:

- C*D poate fi calculat o singura data si folosita valoarea in toate cele 3 instructiuni
- Calculul pentru B+C*D din prima instructiune poate fi folosit si in a doua instructiune
- 2. a) Traduceti in cod intermediar:

$$a := 0$$

for $i := 1$ to 5 do begin
 $a := a+1;$
 $i := i+1$

end

b) Care este valoarea lui a la iesirea din secventa de instructiuni?

Dar valoarea lui i?

a) cod intermediar cu 3 adrese, reprezentare cvadruple:

	operator	arg1	arg2	rez
			•••	•••
	:=	0		a
	:=	1		i
et_for	g>	i	5	et_end
	+	a	1	T1
	:=	T1		a
	+	i	1	T2
	:=	T2		i
	+	i	1	i
	goto			et_for
et_end	•••	• • •		

Observatie:

- Exista variante de traduceri gandite astfel incat, daca i nu se modifica in interiorul ciclului for, la iesire i va avea ultima valoare de ciclare.