#### Московский государственный университет экономики, статистики и информатики Московский международный институт эконометрики, информатики, финансов и права

#### КОВАЛЕВСКАЯ Е.В.

#### МЕТРОЛОГИЯ, КАЧЕСТВО И СЕРТИФИКАЦИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Ковалевская Е.В Метрология, качество и сертификация программного обеспечения: / Московский международный институт эконометрики, информатики, финансов и права. – M., 2002. – 69 с.

<sup>©</sup> Ковалевская Е.В, 2002

<sup>©</sup> Московский международный институт эконометрики, информатики, финансов и права, 2002

#### Метрология



**Метрология** — это наука об измерениях, методах, средствах обеспечения их единства и способах достижения требуемой точности.

**Предметом метрологии** является извлечение количественной информации о свойствах объектов и процессов с заданной точностью и достоверностью.

**Средства метрологии** — это совокупность средств измерений и метрологических стандартов, обеспечивающих их рациональное использование.

**Измерение** – это нахождение значения физической величины опытным путем с помощью специальных технических средств.

Ранжирование — это распределение величин по возрастающим или убывающим показателям, характеризующим те или иные свойства этой величины.

**Метрологическое обеспечение** — это установление и применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности измерений.

#### Критерии качества комплексов программ



**Критерии качества** представляют собой измеряемые численные показатели в виде некоторой целевой функции, характеризующие степень выполнения программами своего назначения.

Специалисты стремятся каждый раз выделить некоторый превалирующий показатель для оценки качества системы, к которому предъявляются следующие основные требования:

- критерий должен численно характеризовать степень выполнения основной целевой функции системы, наиболее важной для данного этапа анализа или синтеза;
- критерий должен обеспечивать возможность определения затрат, необходимых для достижения его различных значений, а также степени влияния на показатель качества различных внешних факторов и параметров;
- критерий должен быть по возможности простым по содержанию, хорошо измеряемым и иметь малую дисперсию, т. е. слабо зависеть от множества неконтролируемых факторов.

**Применение метрик** — числовых оценок параметров к комплексам программ позволяет упорядочить их разработку, испытания, эксплуатацию и сопровождение.

Функциональные критерии отражают основную специфику применения и степень соответствия программ их целевому назначению.

**Конструктивные критерии качества** программ достаточно инвариантны к их целевому назначению и основным функциям. К ним относятся сложность программ, надежность функционирования, используемые ресурсы ЭВМ, корректность и т.д. В свою очередь конструктивные характеристики комплексов программ целесообразно разделить на **основные критерии (показатели)** качества и факторы или параметры, влияющие на их значения.

**Критерии качества этапа проектирования** включают, прежде всего, сложность создания комплекса программ и проверки его адекватности поставленным целям. На этапе проектирования основные затраты составляет трудоемкость создания программ заданной сложности и корректности.

**Надежность (безотказность) функционирования** характеризует относительную длительность получения корректных (достоверных) результатов или вероятность правильных (не искаженных за допустимые пределы) выходных данных.

Способность к модернизации комплексов программ определяется четкостью их структурного построения и структурой межмодульных связей. Кроме того, на этот критерий влияет метод распределения ресурсов ВС и наличие резервов для развития программ.

**Мобильность комплексов программ** относительно изменения типа, структуры и системы команд вычислительной машины характеризует возможность сохранения и эффективного использования эксплуатируемых программ в процессе развития аппаратуры ЭВМ.

**Временные показатели жизненного цикла программ:** длительность проектирования, продолжительность эксплуатации очередной версии и длительность проведения каждой модификации.



#### Схема взаимодействия основных критериев качества программ



#### Зависимость эффективности и затрат на единицу времени от этапов жизненного цикла комплексов программ





| Этапы жизненного<br>цикла                           | Проектирование                                                                                                                                                                                                                                                                                                                                                                                         | Эксплуатация                                                                                                                                                                                                     | Сопровождение                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Основные критерии<br>качества комплекса<br>программ | Сложность создания программ Корректность программ Трудоемкость разработки программ                                                                                                                                                                                                                                                                                                                     | 1. Функциональная сложность комплекса программ 2. Надежность функционирования 3. Эффективность использования ресурсов 4. Объем исходных и результирующих данных                                                  | Способность к модернизации программ Мобильность программ относительно типов вычислительных систем Трудоемкость изучения и модификации комплексов программ                                                                                                                                                         |
| Основные факторы,<br>определяющие<br>качество       | 1. Структурная упорядоченность программ и данных 2. Степень стандартизации структуры модулей и переменных 3. Документированност ь компонент и комплекса 4. Методологическая обеспеченность технологии проектирования 5. Степень комплексной автоматизации технологии проектирования 6. Уровень языков спецификаций, программирования и отладки 7. Квалификация специалистов и методы организации работ | 1.Корректность постановки задач 2.Полнота и точность спецификаций 3.Уровень языков программирования 4.Полнота тестирования программ 5.Степень помехозащищенности программ 6.Документированность для эксплуатации | Структурная упорядоченность комплекса программных средств Степень стандартизации структуры модулей и переменных Документированность для модификации Уровень языков программирования Степень комплексной автоматизации технологии проектирования Обеспеченность контроля изменений версий и распространения копий. |

Для анализа требований к качеству, устанавливаемых на этапе выработки требований к системе, существует один полезный метод, основанный на составлении матрицы "требования-свойства". В этой матрице в столбцах располагаются отдельные функциональные требования, а в строках — основные желаемые характеристики качества или свойства программного обеспечения. Возможно и обратное расположение строк и столбцов. Элементы матрицы представляют собой дополнительные функциональные требования, возникающие в ходе детального анализа аспектов качества, связанных с обеспечением каждого необходимого свойства.

| Свойства         | Требования |  |
|------------------|------------|--|
| Оцениваемость    |            |  |
| Модифицируемость |            |  |
|                  |            |  |



#### Корректность программных средств



**Корректность программного средства** — соответствие проверяемого объекта некоторому эталонному объекту или совокупности более или менее формализованных эталонных характеристик и правил.

**Корректность текстов программ** — степень соответствия исходных программ формализованным правилам языков спецификаций и программирования.

**Конструктивная корректность модулей** — соответствие их структуры общим правилам структурного программирования и конкретным правилам оформления и внутреннего построения программных модулей в данном заказе.

**Функциональная корректность модулей** – корректность обработки исходных данных и получения результатов.

**Конструктивная корректность** данных определяется правилами их структурирования и упорядочения.

**Функциональная корректность** данных связана, в основном, с конкретизацией их содержания в процессе исполнения программ, а также при подготовке данных внешними абонентами.

**Конструктивная корректность программных модулей** определяется правилами структурного, модульного построения программных комплексов и общими правилами организации межмодульных связей. Эта составляющая может быть проверена формализованными автоматизированными методами.

**Функциональная корректность комплексов программ** наиболее трудно формируется вследствие большого количества возможных эталонных значений и распределений. В наиболее сложном случае для программ реального времени ее можно разделить на:

- детерминированную корректность должно быть обеспечено однозначное соответствие исходных и результирующих данных исполняемых программ определенным эталонным значениям;
- **стохастическую корректность** статистическое соответствие распределений результирующий случайных величин заданиям эталонным распределениям при соответствующих распределениях исходных данных;
- динамическую корректность соответствие изменяющихся во времени результатов исполнения программ эталонным данным.

**Синтаксический контроль корректности текстов программ** – проверка входного текста программ на соответствие синтаксису языка программирования.

**Семантический контроль текстов программ** — проверка корректности применения и взаимодействия базовых конструкций языка программирования в тексте проверяемых программ.

**Формализованный структурный контроль программ** основывается на статической проверке соответствия структуры программ и последовательности основных операций использования памяти системе эталонных правил.

**Верификация** (подтверждение правильности) состоит в проверке и доказательстве корректности разработанной программы по отношению к совокупности формальных утверждений, представленных в программной спецификации и полностью определяющих связи между входными и выходными данными этой программы.

#### Основные виды корректности комплексов программ



#### Схема взаимодействия компонент, определяющих обнаруживаемые отклонения программ от эталонов



#### Типы эталонов и методы проверки корректности программ



#### Методы получения эталонных значений



#### Блок-схема системы верификации программных модулей



#### Общая схема отладки программы



#### Классификационная схема ошибок



#### Сложность программного обеспечения



**Сложность программы** для систем реального времени преимущественно определяется допустимым временем отклика, а для информационно-поисковых систем — количеством типов обрабатываемых переменных.

**Вычислительная сложность** непосредственно связана с ресурсами вычислительной системы, необходимыми для получения совокупности законченных результатов.

**Временной сложностью** алгоритма называется время счета, затрачиваемое программой для получения результатов на некоторой эталонной ЭВМ, в зависимости от объема исходных данных.

**Программная сложность** характеризуется длинной программы или объемом памяти ЭВМ, необходимой для размещения программного комплекса.

**Информационную сложность** можно представить как объем базы данных, обрабатываемых комплексом программ, или как емкость оперативной и внешней памяти, используемой для накопления и хранения информации при исполнении программ.

Сложность текста — это длина самого короткого двоичного слова, содержащего всю информацию, необходимую для восстановления рассматриваемого текста при помощи некоторого способа декодирования.

**Структурная сложность программ** определяется числом взаимодействующих компонент, числом связей между компонентами и сложностью их взаимодействия.

**Сложность некоторой межмодульной связи** в процессе проектирования можно характеризовать вероятностью ошибки при ее формализации и степенью влияния этой ошибки на последующее функционирование модулей.

#### Сложность программных модулей

Характеризуется конструктивной сложностью создания оформленной компоненты программы и может быть оценена с позиции сложности внутренней структуры и преобразования переменных в каждом модуле, а также интегрально по некоторым внешним статическим характеристикам модулей

#### Сложность структуры комплекса

определяется глубиной взаимодействия модулей и регулярностью структуры межмодульных связей

#### Сложность структуры данных

Определяется количеством и структурой глобальных и обменных переменных, регулярностью их размещения в массивах, а также сложностью доступа к этим переменным

# Основные виды сложности



### Схема взаимодействия показателей вычислительной сложности и основные факторы, влияющие на их значения



#### Теорией сложности установлены явления "сжимания" и "ускорения":

#### Ускорение вычислений Сложность подобной программы растет быстрее любой рекурсивной функции

вычислителя и расширения

алфавита исходных данных

Снижение алгоритмической сложности решаемых задач и

увеличение практически доступной размерности для решения

Сужение классов решаемых задач, выделение алгоритмов, наиболее эффективных для определенных узких подклассов



#### Определение характеристик сложности

| Связи    | Для модуля                      | Для ПС (многомодульная программа)                         |
|----------|---------------------------------|-----------------------------------------------------------|
| 1. Узел  | Точка ветвления модуля          | Модуль, имеющий более одного<br>выхода                    |
| 2. Дуга  | Последовательные участки модуля | Последовательность нескольких модулей, имеющих один выход |
| 3. Петля | Циклические участки модуля      | Циклические участки, состоящие из нескольких модулей      |

#### Надежность программных средств



**Вероятность безотказной работы** — это вероятность того, что в пределах заданной наработки отказ системы не возникает.

**Вероятность отказа** — вероятность того, что в пределах заданной наработки отказ системы возникает.

**Интенсивность отказов системы** — это условная плотность вероятности возникновения отказа ПС в определенный момент времени при условии, что до этого времени отказ не возник.

**Средняя наработка до отказа** – математическое ожидание времени работы ПС до очередного отказа.

Среднее время восстановления — математическое ожидание времени восстановления.

**Коэффициент готовности** — вероятность того, что ПС ожидается в работоспособном состоянии в произвольный момент времени его использования по назначению.

#### Сбор данных, необходимых для расчета матрицы вероятностей Р

Описание ошибки

Каким модулем вызвана ошибка

Действия на другие модули



#### Классификация моделей надежности ПС.



#### Эффективность



**Эффективность** — это мера соотношения затрат и результатов функционирования программного средства.

**Экономический эффект** — это результат внедрения некоторого мероприятия, выраженный в стоимостной форме в виде экономии от его осуществления.

**Коэффициент эффективности капитальных вложений** — это величина годового прироста прибыли, образующегося в результате производства или эксплуатации программного средства на 1 рубль единоразовых капитальных вложений.

**Срок окупаемости** — это величина, обратная коэффициенту эффективности. Представляет собой период времени, в течение которого затраты на программное средство окупятся полученным эффектом.

В процессе разработки программного средства в качестве критериев экономической эффективности могут быть выбраны следующие критерии:

- 1. максимальная экономическая эффективность функционирования программного средства за весь период жизненного цикла при ограниченных затратах на разработку программ;
- 2. минимальные затраты на разработку программ при заданной экономической эффективности применения и заданном качестве программного средства;
- 3. максимальное отношение экономической эффективности применения программного средства в течение времени эксплуатации к затратам на его создание;
- 4. максимальная разность эффекта от функционирования программного средства за весь жизненный цикл и затрат на его разработку, эксплуатацию и сопровождение.



#### Разработка программных средств

Цели технико-экономического анализа разработки ПС



Задачи, возникающие на стадии обоснования и создания методов и средств снижения совокупных затрат и сроков разработки КП



#### Составляющие затрат на разработку программ



#### Факторы, определяющие затраты на создание ПС





#### Методы разработки КП



#### Методы сбора технико-экономической информации о разработках ПС



#### Основные затраты, снижающие идеальную экономическую эффективность ПС



#### Сертификация



Под сертификацией понимается действие третьей стороны, доказывающее, что обеспечивается необходимая уверенность в том, что должным образом идентифицированная продукция, процесс или услуга соответствует конкретному стандарту или другому нормативному документу.

Сертификация может быть обязательной или добровольной.

Решение о выдаче сертификата на ПС основывается на оценке степени его соответствия действующим и/или специально разработанным документам.

#### Tain celindarathn ic

основная

формальная

Защита интересов пользователей

контроль качества

обеспечение высоких потребительских свойств

повышение ээфективности затрат

Выдача сертификата

Полнота, точность эталонных данных

Адекватные показатели качества ПС

Методологии интерпретации данных

#### **Celtronkar**iu

#### Обязательная

Программные средства, выполняющие особо ответственные функции, в которых недостаточное качество, ошибки или отказы могут нанести большой ущерб или опасны для жизни и здоровья людей (авиация, атомная энергетика, системы управления органами власти, банковские системы...)

#### Добровольная

Для удостоверения качества ПС с целью повышения их конкурентоспособности, расширения сферы использования и получения дополнительных экономических преимуществ. Таким сертификационным испытаниям подвергаются компоненты операционных систем и ППП широкого применения, повышение гарантий качества которых выгодно как для поставщиков, так и для пользователей ПС.

Решение о выдаче сертификата на ПС основывается на оценке степени его соответствия действующим и/или специально разработанным документам:

Действующие международные и национальные стандарты на тестирование, испытания, аттестацию программ и БД.

Международные и государственные стандарты на технологию создания компонент ПС и алгоязыки

Стандарты на сопровождающую ПС документацию

Технические условия, описания, спецификации и другие эксплутационные документы по выбору

# CEDINGNESTROHPIC TO THE TOTAL SECTION OF THE TOTAL

Критерии и четко определенные значения показателей качества, которые должны быть достигнуты для выдачи в последующем сертификата соответствия

Значения исходных и результирующих данных, в пределах которых должны удовлетворяться заданные показатели качества

Стандарты, нормативные документы, методики точных воспроизводимых измерений показателей качества, состав и значение исходных и результатных данных

#### Органивационная структура системы сертификации



Испытательные лаборатории сертификации (ИЛС)

- проводят испытания согласно действующим государственным нормативным документам;
- испытывают ПС по поручению органов госнадзора России, заказчиков или разработчиков ПС;
- оформляют в установленном

В процессе испытаний должны проверяться и корректироваться инструкции по эксплуатации комплекса программ в следующих режимах:

- Генерация пользовательской версии ПС и установка ее на аппаратуре пользователя;
- контроль работоспособности программ и функциональный контроль всего ПС перед включением рабочего режима;
- нормальное рабочее функционирование всех программ в условиях и ограничениях, заданных в документации;
- аварийные и критические (стрессовые) ситуации, при которых должна сохраняться работоспособность программ;
- диагностика компонент программ и аппаратуры, поиска неисправностей или источника искажений;
- профилактические работы, контроль носителей информации и программ, их дублирование и т.д.



## OGASAHLOCTAI CHELIVATACTOB CENTACHARATOROB

Обеспечение полноты и объективности проведения испытаний, достоверности и точности их результатов

Соблюдение порядка и сроков проведения испытаний, согласованных с заявителем, а также условий, обеспечивающих конфиденциальность их проведения

Предотвращение распространения сертифицированного продукта с нарушениями порядка, установленного законодательством, заказчиком или разработчиком

Сохранение государственных и фирменных секретов согласно требованиям действующих нормативных документов

Обеспечение соответствия технического состояния контрольно-измерительной аппаратуры требованиям эксплуатационной документации

