KUBIG CONTEST

머신러닝 분반 1조 김태영, 주세연, 채윤병

1주차 활동(8/11-18)

- 1. EDA를 통해 데이터의 특성을 파악
- 2. Preprocessing에서의 적합한 방법을 찾기 위해 팀원 세명이 각자 다른 형식으로 전처리를 해봄
- 3. 전처리를 한 후 비교를 위해 선형회귀 모델에 넣어 rmse를 비교하고 이 내용을 공유

1주차 결론 및 2주차 과제 선정

- 1. 전처리에 있어서 결측치, 이상치 처리 및 scaler을 최대한 다양하게 적용해보고 그 결과를 비교해보고자 했음
- 2. 하지만 다양하게 적용한 model의 rmse를 기준으로 비교했을 때 0.5~0.6 사이로 유의미한 차이를 보이지 않음
- 3. 이렇게 전처리 과정에서 다양하게 적용했으나 큰 차이를 보이지 않은 것이 1주차 목표인 linear regression에 적용이라는 한정적인 모델에만 해당하는 것 때문인지 파악하기로 결정함
- 4. 이에 2주차에는 다양하게 전처리 해본 것을 기반으로 다양한 모델에 적용해보고 가장 높은 score를 갖는 모델에 대해 서로 공유하기로 함

] 1 model1.score(X_test1,y_test), model2.score(X_test2,y_test), model3.score(X_test3,y_test)

(0.5682331399366554, 0.5682331399366551, 0.5682331399366551)

```
6 modell=lin.fit(X1_train, y1_train)
7 y1_pred=model1.predict(X1_test)
8 rmse1=np.sqrt(mean_squared_error(y1_test, y1_pred))
9
10 model2=lin.fit(X2_train, y1_train)
11 y2_pred=model2.predict(X2_test)
12 rmse2=np.sqrt(mean_squared_error(y1_test, y2_pred))
13
14 model3=lin.fit(X3_train, y1_train)
15 y3_pred=model3.predict(X3_test)
16 rmse3=np.sqrt(mean_squared_error(y1_test, y3_pred))
17
18 print('scaler적용 안함:', rmse1)
19 print('standardscaler:', rmse2)
20 print('robustscaler:', rmse3)

C scaler적용 안함: 58.48643931229177
standardscaler: 58.52634625753629
```

2주차 결론 및 3주차 과제 선정

- 1. 각자 생각한 전처리 방법으로 전처리 진행(결측치 처리, 이상치 처리)
- 고. 결측치가 있는 column의 corr이 가장 높은 열로 그룹핑을 하고 평균값으로 대체, 이상치는 제거하지 않음.
- L. MICE imputation을 통해서 결측치 처리, 이상치는 제거하지 않고 visibility열에 log변환
- ㄷ. Hour과 corr이 높은 온도, 오존, 풍속, 습도 열은 hour기준 평균값으로 결측치 처리 그 외의 열은 열 기준 전체 평균값으로 결측치 처리, IQR에 벗어나는 값 모두 제거
- 2. 3주차 과제 : 각자의 전처리 방법으로 모델의 성능 최대한 내보기!

3주차 결론 및 4주차 과제 선정

- 1. 개별적으로 그리드 서치를 진행 > 하이퍼 파라미터 설정의 한계
- 2. 랜덤 포레스트의 경우

n_estimators - 결정트리의 개수를 지정, 트리 개수를 늘리면 성능이 좋아질 수 있지만 시간이 오래 걸림 min_samples_split – 노드를 분할하기 위한 최소한의 샘플 데이터 수, 과적합을 제어하는데 사용 min_samples_leaf – 리프노드가 되기 위해 필요한 최소한의 샘플 데이터 수, 과적합을 제어하는데 사용 max_depth – 트리의 최대 깊이, 깊이가 깊어지면 과적합

- 3. 각 모델에서 하이퍼 파라미터 설정을 좀 더 구체화하기
- 4. Voting을 비롯해 Stacking 방법도 고려

CONTENTS

O1 EDA

02 Preprocessing

03 Modeling

EDA EDA

EDA

Overview					
Datase	t Statistics	Dataset Insights			
Number of Variables	11	id is uniformly distributed	Uniform		
Number of Rows	1459	hour_bef_ozone has 76 (5.21%) missing values	Missing		
Missing Cells	300	hour_bef_pm10 has 90 (6.17%) missing values	Missing		
Missing Cells (%)	1.9%	hour_bef_pm2.5 has 117 (8.02%) missing values	Missing		
Duplicate Rows	0	hour_bef_visibility is skewed	Skewed		
Duplicate Rows (%)	0.0%	id is normally distributed	Normal		
Total Size in Memory	125.5 KB	hour_bef_precipitation has constant length 3	Constant Length		
Average Row Size in Memory	88.1 B				
Variable Types	Numerical: 10 Categorical: 1				

01 EDA

EDA

Preprocessing

- 01. 결측치 처리
- 02. 이상치 처리 03. Scaler

01결측치처리

02이상치처리

03 Scaler

결측치처리

```
1 train.isna().sum()
[6]
    id
    hour
    hour_bef_temperature
    hour_bef_precipitation
    hour_bef_windspeed
    hour_bef_humidity
    hour_bef_visibility
                                76
    hour_bef_ozone
                                90
    hour_bef_pm10
                               117
    hour_bef_pm2.5
    count
    dtype: int64
```

```
1 test.isna().sum()
id
hour
hour_bef_temperature
hour_bef_precipitation
hour_bef_windspeed
hour_bef_humidity
hour_bef_visibility
                          35
hour_bef_ozone
                          37
hour_bef_pm10
                          36
hour_bef_pm2.5
dtype: int64
```

01결측치처리

02 이상치 처리

03. Scaler

결측치처리

- 1. Train set에서 934, 1035행이 모든 열에 대해 결측치를 가짐 > 제거
- 2. 결측치가 있는 열을 해당 열과 corr이 높은 다른 열의 그룹핑으로 평균값 대체 (pm2.5>>visibility, pm10>>pm2.5, ozone>>temperature, windspeed>>ozone)

```
l g1 = train.loc[(0 < train['hour_bef_visibility']) & (train['hour_bef_visibility']] <= 500) == True, 'hour_bef_pm2.5']
2 g2 = train.loc[(500 < train['hour_bef_visibility']) & (train['hour_bef_visibility'] <= 1000) == True, 'hour_bef_pm2.5']
3 g3 = train.loc[(1000 < train['hour_bef_visibility']) & (train['hour_bef_visibili|ty'] <= 1500) == True, 'hour_bef_pm2.5']
4 g4 = train.loc[(1500 < train['hour_bef_visibility']) & (train['hour_bef_visibility'] <= 2000) == True, 'hour_bef_pm2.5']
6 gt1 = test.loc[(0 < test['hour_bef_visibility']) & (test['hour_bef_visibility'] k= 500) == True, 'hour_bef_pm2.5']
7 gt2 = test.loc[(500 < test['hour_bef_visibility']) & (test['hour_bef_visibility'] <= 1000) == True, 'hour_bef_pm2.5']
8 gt3 = test.loc[(1000 < test['hour_bef_visibility']) & (test['hour_bef_visibility'] <= 1500) == True, 'hour_bef_pm2.5']
9 gt4 = test.loc[(1500 < test['hour_bef_visibility']) & (test['hour_bef_visibility|'] <= 2000) == True, 'hour_bef_pm2.5']
1 g1.mean(), g2.mean(), g3.mean(), g4.mean()
45.94059405940594, 42.31229235880399, 32.22608695652174, 22.409859154929578)
                                  Distribution of null value of pm2.5 by visibility
                                                                                                     Distribution of null value of pm2.5 by visibility
```

01결측치처리

02 이상치 처리

03. Scaler

이상치 처리

- 1. 사분위표 interquartile 기준 (Q1-IQR, Q3+IQR) 범위에 속하지 않는 이상치를 파악
- 2. 해당 이상치를 제거, 1459행에서 1375행으로 축소

```
1 def outliers(df,n,columns):
      outlier_indices = []
      for col in columns:
          Q1 = np.percentile(df[col],25)
          Q3 = np.percentile(df[col],75)
          IQR = (Q3 - Q1)*1.5
          lowest = Q1 - IQR
          highest = Q3 + IQR
          outlier_index = df[col][(df[col] < lowest)|(df[col]>highest)].index
          outlier_indices.extend(outlier_index)
      outlier_indices = Counter(outlier_indices)
      multiple_outliers = list(k for k, v in outlier_indices.items() if v > n)
14
      return multiple_outliers
1 outliers_to_drop = outliers(train,0,[ 'hour_bef_temperature',
         'hour_bef_windspeed', 'hour_bef_humidity', 'hour_bef_visibility',
         'hour_bef_ozone', 'hour_bef_pm2.5'])
4 train = train.drop(outliers_to_drop,axis=0).reset_index(drop=True)
5 train.shape
(1375, 11)
```

o1 결측치처리

02이상치처리

03. Scaler

Scaler

- 1. Standard Scaler 적용(Hour, Precipitation 제외)
- 2. Minmax Scaler 적용
- 3. Robust Scaler 적용 > 이상치를 사전에 제거할 경우 큰 효과는 없음
- 4. 결론적으로 Standard scaler를 적용했을 때 가장 적합했음

```
1 # 이상치 제거함, scaler 적용 x
2 from sklearn.model_selection import train_test_split
3 x=train_clean[['hour_bef_temperature', 'hour_bef_precipitation', 'hour_bef_windspeed', 'hour_bef_humidity',
           'hour_bef_visibility', 'hour_bef_ozone', 'hour_bef_pm10', 'hour_bef_pm2|.5']]
5 target=train_clean['count'].values
7 X1_train, X1_test, y1_train, y1_test=train_test_split(x, target, test_size=0.3, random_state=42)
9 # 이상치 제거함, standard scaler 적용
10 from sklearn.preprocessing import StandardScaler
 | scaler1=StandardScaler()
13 X2_train=scaler1.fit_transform(X1_train)
IG#이상치 제거함, robustsclaer 적용
17 from sklearn.preprocessing import RobustScaler
8 scaler2=RobustScaler()
20 X3_train=scaler2.fit_transform(X1_train)
?1 X3_test=scaler2.fit_transform(X1_test)
```

```
[] 1 scaler1 = StandardScaler()
2 scaler2 = RobustScaler()
3 scaler3 = MinMaxScaler()

[] 1 X_train1 = scaler1.fit_transform(X_train)
2 X_test1 = scaler1.transform(X_test)
3
4 X_train2 = scaler2.fit_transform(X_train)
5 X_test2 = scaler2.transform(X_test)
6
7 X_train3 = scaler3.fit_transform(X_train)
8 X_test3 = scaler3.transform(X_test)
```

- 01. Best Model
- 02. Grid Search
- 03. Voting & Stacking

01 Best Model

02 Grid search

Best Model – Model List

```
ensemble.AdaBoostClassifier([...])
                                                   An AdaBoost classifier.
ensemble.AdaBoostRegressor([base_estimator, ...]) An AdaBoost regressor.
ensemble.BaggingClassifier([base_estimator, ...]) A Bagging classifier.
ensemble.BaggingRegressor([base_estimator, ...])
                                                   A Bagging regressor.
                                                   An extra-trees classifier.
ensemble.ExtraTreesClassifier([...])
ensemble.ExtraTreesRegressor([n_estimators, ...]) An extra-trees regressor.
                                                   Gradient Boosting for classification.
ensemble.GradientBoostingClassifier(*[, ...])
                                                   Gradient Boosting for regression.
ensemble.GradientBoostingRegressor(*[, ...])
ensemble.IsolationForest(*[, n_estimators, ...])
                                                   Isolation Forest Algorithm.
                                                   A random forest classifier.
ensemble.RandomForestClassifier([...])
                                                   A random forest regressor.
ensemble.RandomForestRegressor([...])
                                                   An ensemble of totally random trees.
ensemble.RandomTreesEmbedding([...])
                                                   Stack of estimators with a final classifier.
ensemble.StackingClassifier(estimators[, ...])
                                                   Stack of estimators with a final regressor.
ensemble.StackingRegressor(estimators[, ...])
                                                   Soft Voting/Majority Rule classifier for unfitted estimators.
ensemble.VotingClassifier(estimators, *[, ...])
                                                   Prediction voting regressor for unfitted estimators.
ensemble.VotingRegressor(estimators, *[, ...])
```

Sklearn.ensemble의 부스팅 모델, 트리 모델 사용 > 성능이 좋은 모델 찾기

01 Best Model

02 Grid search

Best Model – AutolML Pycaret

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	25.1921	1373.3447	36.8115	0.7915	0.5163	0.7901	0.1330
lightgbm	Light Gradient Boosting Machine	25.8581	1448.5111	37.7513	0.7809	0.5558	0.8364	0.0270
rf	Random Forest Regressor	26.5597	1531.6863	38.8407	0.7686	0.5321	0.8494	0.1660
gbr	Gradient Boosting Regressor	27.6909	1601.5385	39.7069	0.7581	0.5658	0.8825	0.0530
knn	K Neighbors Regressor	28.1211	1673.5837	40.6325	0.7466	0.5577	1.0724	0.0110
ada	AdaBoost Regressor	41.8867	2632.4846	51.1874	0.5972	0.8327	1.7634	0.0440
lr	Linear Regression	39.2973	2694.6444	51.4630	0.5966	0.7955	1.2475	0.0110
ridge	Ridge Regression	39.2851	2694.6770	51.4613	0.5966	0.7952	1.2518	0.0090
lar	Least Angle Regression	39.2973	2694.6443	51.4630	0.5966	0.7955	1.2475	0.0100
br	Bayesian Ridge	39.2549	2701.4905	51.5148	0.5958	0.8006	1.2857	0.0060
lasso	Lasso Regression	39.4729	2737.3074	51.8566	0.5905	0.7906	1.3628	0.0080

01 Best Model

02 Grid search

03 Voting & Stacking

Best Model – Model List

- 1. RandomForest, LGBM, GrandientBoosting, ExtraTree, XGBoost를 선정
- 2. 이 때 전처리나 하이퍼파라미터의 설정에 따라 rmse가 많이 변동했음
- 3. Hyperparameter Example Random Forest

n_estimators - 결정트리의 개수를 지정, 트리 개수를 늘리면 성능이 좋아질 수 있지만 시간이 오래 걸림 min_samples_split – 노드를 분할하기 위한 최소한의 샘플 데이터 수, 과적합을 제어하는데 사용 min_samples_leaf – 리프노드가 되기 위해 필요한 최소한의 샘플 데이터 수, 과적합을 제어하는데 사용 max_depth – 트리의 최대 깊이, 깊이가 깊어지면 과적합

01 Best Model

02 Grid search

03 Voting & Stacking

Grid Search

RandomForest: 36.3454

GradientBoost: 36.8457

XgBoost : 35.9662

LGBM: 36.7599

ExtraTree: 36.2187

01 Best Model

02 Grid search

03 Voting & Stacking

Grid Search

```
1 RandomForest_clf = RandomForestRegressor(n_estimators = 1000, max_depth = 10, m|in_samples_split = 3,random_state = 2021)
 2 LGB_clf = LGBMRegressor(learning_rate = 0.01, n_estimators = 1000, num_leaves = 8,max_depth = 3,random_state=2021)
 3 Gradient_clf = GradientBoostingRegressor(learning_rate = 0.01, n_estimators = 1000, max_depth = 3,random_state = 2021)
 4 ExtraTree_clf = ExtraTreesRegressor(max_depth = 11 ,n_estimators = 1500, random_state = 2021)
 5 XGBoost_clf = XGBRegressor(learning_rate = 0.01, n_estimators = 2000,max_depth = 9,random_state = 2021)
 1 estimators = [RandomForest_clf, LGB_clf, Gradient_clf, ExtraTree_clf, XGBoost_clf]
 2 for estimator in estimators :
 3 estimator.fit(x_train_sc, y_train)
[12:58:35] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
 1 for estimator in estimators :
 2 y_pred = estimator.predict(x_val_sc)
 3 mse = mean_squared_error(y_pred, y_val)
 4 rmse = np.sqrt(mse)
 5 print(rmse)
36.34154209734633
36.75993597408493
36.8457160269155
34.842187131709395
35.966223476032326
```

01 Best Model

02 Grid search

03 Voting & Stacking

Voting & Stacking

```
Estimators_voting = [
     ("RandomForest_clf", RandomForest_clf),
    ("LGB_clf", LGB_clf),
    ("Gradient_clf", Gradient_clf),
    ("ExtraTree_clf", ExtraTree_clf),
     ("XGBoost_clf", XGBoost_clf)]
Estimators_stacking = [
     ("RandomForest_clf", RandomForest_clf),
    ("LGB_clf", LGB_clf),
    ("Gradient_clf", Gradient_clf),
    ("ExtraTree_clf", ExtraTree_clf),
     ("XGBoost_clf", XGBoost_clf)]
Voting_clf = VotingRegressor(Estimators_voting)
| Yoting_clf.fit(x_train_sc, y_train)|
| Stacking_clf = StackingRegressor(Estimators_stacking,cv = kfold, n_jobs = -1)
$Stacking_clf.fit(x_train_sc, y_train)
```

```
1 y_pred = Voting_clf.predict(x_val_sc)
2 mse = mean_squared_error(y_pred, y_val)
3 rmse = np.sqrt(mse)
4 print(rmse)
5 y_pred = Stacking_clf.predict(x_val_sc)
6 mse = mean_squared_error(y_pred, y_val)
7 rmse = np.sqrt(mse)
8 print(rmse)
35.07586395859205
33.73938554671867
```

04 Conclusion

```
1 Estimators_final = [
2
3
4    ("Gradient_final", Gradient_final),
5    ("ExtraTree_final", ExtraTree_final),
6    ("XGBoost_final", XGBoost_final)
7 ]

1 Voting_final = VotingRegressor(Estimators_final)
2 Voting_final.fit(X_train_sc, train['count'])
```

12	needmorecaffeine	£	31.00069	4	4분 전
13	윤뱅뱅	£	31.00069	29	2시간 전

04 Conclusion

- 1. EDA의 중요성 -컬럼별로 상호관련성이 높거나 다중공선성을 가지는 등 관련 과제에서 가장 먼저 이루어져야 하는 과정이며 그 내용을 자세히 살펴봐야 함
- 2. 전처리, 즉 결측치 처리, 이상치 처리, scaler의 접근법은 매우 다양하며 이에 따라 모델의 성능의 변동이 큼
- 3. 전처리에서 다양한 방법을 시도하는 것이 중요하고 이 때 original data를 최대한 유지하거나 아니면 지나치게 변형하는 방법은 오히려 성능을 떨어뜨릴 수 있음
- 4. 예측문제 내에서도 통상적으로 알려져있는 모델들의 성능 순위와 달리 data set과 전처리 과정에 따라 그 순위는 바뀔 수 있음
- 5. 모델 선정에 있어서 다양한 방법을 시도해고 특히 단일 모델만이 아닌 voting과 stacking과 같은 시도도 반드시 해볼 필요성이 있음

