General Relativity

By precise approach

1 Preliminaries

Manifolds

1. Topological Manifolds

Def 1.1 Topological Manifolds

A manifold M of dimension n is a topological space with the following properties.

- 1. M is Hausdorff
- 2. M is locally Euclidean of dimension n
- 3. M has a countable basis of open sets

Why?

- **Hausdorff**: In Hausdorff space, convergent sequences converge to only one point. If you want to do calculus, you should need Hausdorff space.
- Locally Euclidean: This is the main reason that why we require manifolds.
- **Countable Basis**: We need *partition of unity* to bring many properties of Euclidean space. For Hausdorff space, existence of partition of unity require *paracompactness*. And paracompactness follows from *second countability*. It is same as have countable basis.

1.1 Supplement

Thm 1.1.1 Paracompact \simeq Partition of unity

Let (X, τ) be a topological space that is T_1 (all points are closed). Then the following are equivalent:

- I. (X, τ) is paracompact and Hausdorff
- II. Every open cover of (X, τ) admits a subordinate partition of unity

To prove this, we need a wide background knowledge.

Def 1.1.2 Hausdorff

Given points x and y of S, if $x \neq y$, then there exist open neighborhoods U of x and Y of y in S that are disjoint: such that $U \cap V = \emptyset$.

Def 1.1.3 Locally finite cover

Let (X, τ) be a topological space.

An open cover $\{U_i \subset X\}_{i \in I}$ of X is called *locally finite* if $\forall x \in X$, there exists a neighbourhood $U_x \supset \{x\}$ such that it intersects only finitely many elements of the cover, hence such that $U_x \cap U_i \neq \emptyset$ for only a finite number of $i \in I$.

Def 1.1.4 Refinement of open covers

Let (X, τ) be a topological space, and let $\{U_i \subset X\}_{i \in I}$ be a open cover. Then a *refinement* of this open cover is a set of open subsets $\{V_j \subset X\}_{j \in J}$ which is still an open cover in itself and such that for each $j \in J$ there exists an $i \in I$ with $V_j \subset U_i$.

Def 1.1.5 Paracompact topological space

A topological space (X, τ) is called *paracompact* if every open cover of X has a refinement by a locally finite open cover.

Def 1.1.6 Partition of unity

Let (X, τ) be a topological space, and let $\{U_i \subset X\}_{i \in I}$ be an open cover. Then a partition of unity subordinate to the cover is

• a set $\{f_i\}_{i\in I}$ of continuous functions

$$f_i: X \to [0,1]$$

(where $[0,1] \subset \mathbb{R}$ is equipped with the subspace topology of the real numbers \mathbb{R} regarded as the 1D Euclidean space equipped with its metric topology)

such that with

$$Supp(f_i) := Cl\left(f_i^{-1}((0,1])\right)$$

denoting the support of f_i (the topological closure of the subset of points on which it does not vanish) then

- 1) $\bigvee_{i \in I} (Supp(f_i) \subset U_i)$
- 2) $\widehat{\{Supp(f_i)\subset X\}}_{i\in I}$ is a locally finite cover
- 3) $\forall_{x \in X} \left(\sum_{i \in I} f_i(x) = 1 \right)$

Figure 1.1: Gaussian Partition of Unity

Prop 1.1.7 Paracompact - Partition of unity

If (X, τ) is a paracompact topological space, then for every open cover $\{U_i \subset X\}_{i \in I}$ there is a subordinate partition of unity.

Proof will be given later.

Lem 1.1.8 Natural Refinement

Let (X,τ) be a topological space, $\{U_i\subset X\}_{i\in I}$ be an open cover and $\left(\phi:J\to I,\ \{V_j\subset X\}_{j\in J}\right)$ be a refinement to a locally finite cover. Then, for $\{W_i\subset X\}_{i\in I}$ with

$$W_i \equiv \left\{ \bigcup_{j \in \phi^{-1}(\{i\})} V_j \right\}$$

is still a refinement of $\{U_i \in X\}_{i \in I}$ to a locally finite cover.

Proof for 1.1.8

First we know, for $V, V_j \subset U_{\phi(j)=i}$. Conversely, $\forall j \in \phi^{-1}(\{i\}), V_j \subset U_i$. Thus, $W_i \in \bigcup_{j \in \phi^{-1}(\{i\})} V_j \subset U_i$.

Second, since $\{V_j \subset X\}_{j \in J}$ are locally finite, $\exists \mathcal{U}_x \supset \{x\}$ and a finite subset $K \subset J$ such that

$$\bigvee_{j\in J\setminus K} (\mathcal{U}_x\cap V_j=\emptyset)$$

(locally finite: $\mathcal{U}_x \cap V_j \neq \emptyset$ for just finite number of $j \in J$) Then we can get by construction,

$$\bigvee_{i \in I \setminus \phi(K)} (\mathcal{U}_x \cap W_i = \emptyset)$$

Since $\phi(K)$ is still finite, we can find the number of i such that $\mathcal{U}_x \cap W_i = \emptyset$ is also finite. (If for $i \in K', \ \mathcal{U}_x \cap W_i = \emptyset$ then K' should be subset of $\phi(K)$.)

Therefore $\{W_i \in X\}_{i \in I}$ is locally finite.

Lem 1.1.9 Shrinking Lemma

Let X be a topological space which is normal and let $\{U_i \subset X\}_{i \in I}$ be a locally finite open cover. Assuming the axiom of choice then:

There exists another open cover $\{V_i \subset X\}_{i \in I}$ such that the topological closure $Cl(V_i)$ of its elements is contained in the original patches:

$$\underset{i \in I}{\forall} (V_i \subset Cl(V_i) \subset U_i)$$

Now, suggest some fundamental topological concepts to prove prop 1.1.7.

Def 1.1.10 Normal Spaces (T_4)

A topological space X is *normal* if for every two closed disjoint subsets $A, B \subset X$, there are neighborhoods $U \supset A, \ V \supset B$ such that $U \cap V = \emptyset$.

Prop 1.1.11 T_4 in terms of topological closure

X is normal iff for all closed subsets $C \subset X$ with open neighborhood $U \supset C$ there exists a smaller open neighborhood $V \supset C$ whose topological closure Cl(V) is still contained in U:

$$C \subset V \subset Cl(V) \subset U$$

Proof for Prop 1.1.11

Suppose that (X, τ) is T_4 . Consider closed subset $C \subset U$ where U is open neighborhood of C. It implies

$$C\cap X\backslash U=\emptyset$$

Since U is open, $X \setminus U$ is closed. Because of normal space, there are open neighborhoods V, W such that $C \subset V$, $X \setminus U \subset W$ and $V \cap W = \emptyset$. Because of last term, we can find $V \subset X \setminus W \subset U$. Since $X \setminus W$ is closed, we can find next relation :

$$C \subset V \subset Cl(V) \subset X \backslash W \subset U$$

In the other direction, suppose that \forall open neighborhood U of closed subset C, there are smaller open neighborhood with $C \subset V \subset Cl(V) \subset U$. Now, consider disjoint closed subset $C_1, C_2 \subset X$. $C_1 \cap C_2 = \emptyset$ implies $C_1 \subset X \setminus C_2$. Since $X \setminus C_2$ is open neighborhood of C_1 , there exists smaller open neighborhood V such that

$$C_1 \subset V \subset Cl(V) \subset X \backslash C_2$$

And it also implies $X \setminus Cl(V)$ is open neighborhood of C_2 where $V \cap X \setminus Cl(V) = \emptyset$. Therefore X is T_4 .

Def 1.1.12 Urysohn function

Let X be a topological space, and let $A, B \subset X$ be disjoint closed subsets. Then an *Urysohn function* for this situation is a continuous function

$$f: X \to [0, 1]$$

to the closed interval equipped with its Euclidean metric topology, such that

$$f(A) = \{0\}$$
 and $f(B) = \{1\}$

Prop 1.1.13 Urysohn's Lemma

Let X be a normal topological space, and let $A, B \subset X$ be two disjoint closed subsets of X. Then there exists an *Urysohn function*.

This lemma has several **big** applications:

- Urysohn Metrization Thm: If X is a normal space with a countable basis, then we can use the abundance of continuous functions from X to [0,1] to assign numerical coordinates to the points of X and obtain an embedding of X into \mathbb{R}^{ω} . From this we see that every second countable normal space is a metric space.
- Tietze Extension Thm: Suppose A is a subset of a space X and $f:A \to [0,1]$ is a continuous function. If X is normal and A is closed in X, then we can find a continuous function from X to [0,1] that is an extension of f.
- Embedding manifolds in \mathbb{R}^n : Using Urysohn's lemma to develop the tool called *partitions of unity*, we can obtain the following theorem: *Each compact n-manifold is homeomorphic to a subspace of some* \mathbb{R}^n .

Then let's start to prove Urysohn's lemma.

Proof for Urysohn's lemma

(\Leftarrow) Suppose $f(A) = \{0\}$, $f(B) = \{1\}$ for all closed subset $A, B \subset X$. Then $A \subset f^{-1}\left([0, \frac{1}{2})\right)$ and $D \subset f^{-1}\left((\frac{1}{2}, 1]\right)$. We can find these two sets are open and disjoint.^a Thus, X is T_4 .

 (\Rightarrow) Suppose that X is T_4 and consider two disjoint closed sets $A, B \subset X$. Claim there is Urysohn function. To prove this, we should construct continuous function such that $f(A) = \{0\}$, $f(B) = \{1\}$. (Maybe it's a little bit tricky.)

Since X is T_4 , we can find open neighborhood for any closed subsets of X such that satisfies prop 1.1.11. Then we can think next idea :

Let $\{U_p\}_{p\in[0,1]\cap\mathbb{Q}}$ be a collection of open sets such that

$$U_1 = X \backslash B, \ A \subset U_0 \subset Cl(U_0) \subset U_1$$

For convenience, denote $Q = [0,1] \cap \mathbb{Q}$. Since Q is countable, we can enumerate it as

$$Q = \{p_n | n \in \mathbb{N}\}$$

To be more clear, we are going to define by induction a collection $\{U_p|p\in Q\}$ of open subsets with the property:

$$p < q \implies Cl(U_p) \subset U_q$$

By definition of U_p , we know above property is satisfied when $p=0,\ q=1.$ Since $Cl(U_0)$ is also subset of X, by $prop\ 1.1.11$, we can construct $\{U_p\}_{p\in Q}$ completely. Also add some conditions ($p\in (-\infty,0)\cap \mathbb{Q} \Rightarrow U_p=\emptyset,\ p\in (1,\infty)\cap \mathbb{Q} \Rightarrow U_p=X$), then we can extend our collection to whole \mathbb{Q} . Now, we can define new set:

$$\mathbb{Q}(x) \equiv \{ p \in \mathbb{Q} | x \in U_p \}$$

Then we can find $\mathbb{Q}(x)$ has lower bound $0.^b$ Since $\mathbb{Q}(x)$ has a greatest lower bound, we can define $f:X\to [0,1]$ by

$$f(x) = \inf \mathbb{Q}(x) = \inf \{ p \in \mathbb{Q} | x \in U_p \}$$

If we show f satisfies (① $0 \le f(x) \le 1$, ② f is Urysohn function for A, B, ③ $x \in Cl(U_p) \Rightarrow f(x) \le p$, ④ $x \notin U_p \Rightarrow f(x) \ge p$, ⑤ f is continuous) then proof is complete.

^athis will be exercise.

^bthis will be exercise

Proof for Urysohn's lemma (Continued)

① $0 \le f(x) \le 1$

: It's trivial because of next property :

$$f(x) = \begin{cases} 1 & \forall p > 1\\ \text{can't define} & \forall p < 0 \end{cases}$$

② f is Urysohn function for A, B.

: Since $A \subset U_0$, $\forall x \in A$, f(x) = 0 and $B = X \setminus U_1$, $\forall x \in B$, $f(x) = \inf \{(1, \infty) \cap \mathbb{Q}\} = 1$.

(3) If $x \in Cl(U_p)$, then $f(x) \leq p$

: Suppose $x \in Cl(U_p)$, then $x \in Cl(U_p) \subset U_q, \ \forall q \in \mathbb{Q}, \ q > p$. Thus,

$$(p, \infty) \cap \mathbb{Q} \subset \mathbb{Q}(x) \Rightarrow \inf \mathbb{Q}(x) \leq p$$

(4) If $x \notin U_p$, then $f(x) \geq p$

: Suppose $x \notin U_p$, then $x \notin U_q$, $\forall q \leq p$. Thus,

$$(-\infty, p] \cap \mathbb{Q}(x) = \emptyset \implies p \le \inf \mathbb{Q}(x)$$

(5) f is continuous.

: Suppose $U=(a,b)\in\mathbb{R}$ such that $(a,b)\cap[0,1]\neq\emptyset$. Claim $f^{-1}(U)$ is open. Suppose $x\in f^{-1}(U)$. It means $f(x)\in U=(a,b)$. Since U is open, there are $p,q\in\mathbb{Q}$ such that a< p< f(x)< q< b. By ③, ④, we know $x\in U_q\backslash Cl(U_p)$ and $f(U_q\backslash Cl(U_p))\subset (a,b)$. Thus, we can find $\forall x\in f^{-1}(U)$, there are $p,q\in\mathbb{Q}$ such that $x\in U_q\backslash Cl(U_p)\subset f^{-1}(U)$. Since $U_q\backslash Cl(U_p)$ is open, $f^{-1}(U)$ is open. Therefore, f is continuous.

Proof is complete.

^cthis will be exercise.

Now, we can prove *prop 1.1.7*.

2 Appendix

A. Topology

Def A.1 Topological Space

A pair (X, τ) is said to be a *topological space* if X is a set, τ is a collection of subsets of X, which we call the *open subsets* of X, such that

- i) the empty set \emptyset and X are in τ
- ii) the intersection of any two open subsets is also open
- iii) the union of an arbitrary family of open subsets is open

The family τ of open subsets is called the *topology* on X.

Def A.2 Neighborhood

We say that a subset U of X is a *neighborhood* of a point $x \in X$, if there is an open subset V such that $x \in V \subset U$.

Def A.3 Closed

A subset *Y* of a topological space (X, τ) is said to be *closed* if $X \setminus Y$ is open.

Def A.4 Continuous

Let (X,τ) and (Y,τ') be topological spaces. A mapping $f:X\to Y$ is said to be *continuous* at the point x if \forall neighborhood U of f(x)