LPMS-B2 Series Hardware Manual ver. 1.0

LP-RESEARCH Inc. http://www.lp-research.com

Version History

Date	Revision	Changes	
2020-03-10	1.0	- Initial release.	
		2020-03-10	- Contents extracted from quick start guide.

Table of Contents

6.	Mechanical Information	8 -
	rgingIndication	
	Battery Charging	
4.	Specification	4 -
3.	Coordinate	3 -
2.	System Overview	2 -
1.	Introduction	1 -

1. Introduction

Welcome to the LP-RESEARCH Motion Sensor LPMS-B2 Series hardware manual. In this documentation we will primarily introduce the hardware specifications of LPMS-B2 Series sensors. If you have any further questions or comments regarding this documentation please feel free to contact us anytime.

For more information on the LPMS-B2 or other product series, please refer to related datasheets and user manuals, available from the LP-RESEARCH website at the following address: http://www.lp-research.com.

Table 1-1. LPMS-B2 Series part number information

Part Number	Bluetooth Classic 2.0	Bluetooth Low Energy 4.1	Enclosure Case	Embedded Battery
LPMS-B2	✓	✓	✓	✓
LPMS-B2 OEM	✓	✓	×	×

2. System Overview

Fig. 2.1. LPMS-B2 series sensor structure

3. Coordinate

The LPMS sensor calculates the orientation difference between a fixed sensor coordinate system (S) and a global reference coordinate system (G). Both coordinate systems are defined as right-handed Cartesian coordinate systems. The sensor coordinate system (S) is constructed as following images.

Fig. 3.1. Sensor coordinates of LPMS-B2 and LPMS-B2 OEM

The global reference coordinate system (G) can be divided into two different cases. While the orientation calculation is using all acceleration, gyroscope and magnetic data (sensor filter mode set at acc+gyr+mag), (G) system is defined as following:

- X positive when pointing to the magnetic north
- Y positive when pointing to the magnetic west
- Z positive when pointing up (gravity points vertically down with -1g)

While the orientation calculation is using only acceleration and gyroscope data (sensor filter mode set at acc+gyr), **(G)** system is defined as following:

- X positive aligned to ground plane horizontal projection of x axis of **(S)** when sensor powered on
- Y positive based on right-handed Cartesian coordinate definition
- Z positive when pointing up (gravity points vertically down with -1g)

4. Specification

Table 4-1. Overall parameters

Parameters	LPMS-B2	LPMS-B2 OEM	
Output range of Euler angle	Roll: ±180°; Pitch: ±90°; Yaw: ±180°		
Bandwidth	400Hz		
Resolution		<0.01°	
Accuracy	<0.5° (Static),	<2° RMS (Dynamic)	
Max. instant impact (0.1 ms)	1	0,000g	
Output data type		rnion/Linear acceleration/Air itude/Temperature	
Latency		20 ms	
Internal sampling rate	400Hz		
Communication interface	Bluetooth Classic 2.0 (BLE4.1 Optional)		
Max. baudrate	921600 bps		
Communication protocol	LPBUS		
Size	39x39x8 mm 16x31x4 mm		
Weight	12 g 2g		
Communication distance	<20m		
Max. data update rate	400Hz		
Power consumption	<132mW @ 3.3V		
Power supply	Lithium Battery > 6h (3.7V@230mAh) 3.3-5.5V DC		
Working temperature	-20~+60 °C	-40 ~ +80 °C	
Connector*	Micro USB, type B	Micro USB, type B; SM02B-SURS-TF;	

^{*}LPMS-B2 USB connector is only used for charging, the sensor is powered by the internal embedded lithium battery.

Table 4-2. Accelerometer Specification

Parameters	Typical Value	Unit
Measurement range	±2/±4/±8/±16	g
Sensitivity	0.061/0.122/0.244/0.488	mg/LSB
Linear acceleration sensitivity change vs. temperature	±1	%
Linear acceleration typical zero-g level offset accuracy	±40	mg
Linear acceleration zero-rate change vs. temperature	±0.5	mg/°C
Acceleration noise density	90 (FS= ±2 g ODR = 104 Hz)	μg/√Hz

Table 4-3. Gyroscope Specification

Parameters	Typical Value	Unit
Measurement range	±125/±245/±500/±1000/±2000	dps
Sensitivity	4.375/8.75/17.50/35/70	mdps/LSB
Angular rate sensitivity change vs. temperature	±1.5	%
Angular rate typical zero-rate level	±10	dps
Angular rate typical zero-rate level change vs. temperature	±0.05	dps/°C
Rate noise density	7	mdps/√Hz

Table 4-4. Magnetometer Specification

Parameters	Typical Value		Unit
Measurement range	±4/±8/±12/±16		Gauss
Sensitivity	6842/3421/2281/1711		LSB/gauss
Zero-gauss level	±1 (FS=±4 gauss)		gauss
RMS noise	X axis	3.2	mgauss
(Ultra-high-perform	Y axis	3.2	mgauss
ance mode)	Z axis	4.1	mgauss
Non-linearity	±0.12		%FS

Table 4-5. Pressure and Humidity Sensor Specification

Parameters	Typical Value	Unit
Pressure measurement range	300~1100	hPa
Temperature coefficient of offset	±1.5	Pa/K
Absolute accuracy pressure	±1.0	hPa
Pressure sensitivity	0.18	Pa
Pressure noise	1.3	Pa
Humidity measurement range	0~100	%RH
Humidity accuracy	±3	%RH
Humidity latency (10~90~10 %RH, 25 °C)	±1	%RH
Humidity sensitivity	0.008	%RH
Humidity noise	0.02	%RH
Humidity stability (10~90 %RH, 25 °C)	0.5	%RH/year

5. Battery Charging

Charging

The LPMS-B2 sensor can be charged through the micro USB port. In case of LPMS-B2 OEM, users have to specify the methods of power supply for their own designs.

The charging voltage for LPMS-B2 is 5V and the required power current is at least 100mA for an efficient charging progress. Depending on the remaining power in the battery, the on-board LED will show different charging status by different colors. Detailed information of the LED status is introduced in the following section.

LED Indication

Table 5-1. LED Status Indication

Work Mode		LED Status	LED Color	Remaining Battery
Normal	Connection off	Blinking light	Blue	>10%
			Red	<10%
	Connection on	Pulsating light	Blue	>10%
			Red	<10%
Charging			Green	>90%
		Always on	Blue	20%~90%
			Red	<20%

6. Mechanical Information

Fig. 6.1. LPMS-B2 Dimension

Fig. 6.2. LPMS-B2 OEM Dimension

Copyright © 2020, LP-RESEARCH Inc. All rights reserved. http://www.lp-research.com