

MARIA TERESA KRAVETZ ANDRIOLI

TITULO

Trabalho apresentado como requisito parcial para a obtenção do grau de Bacharel em Ciência da Computação no curso de Ciência da Computação, Setor de Ciências Exatas da Universidade Federal do Paraná.

Orientador: Prof. Dr. Luiz Carlos P. Albini

TERMO DE APROVAÇÃO

MARIA TERESA KRAVETZ ANDRIOLI

TITULO

Trabalho apresentado como requisito parcial para a obtenção do grau de Bacharel em Ciência da Computação no curso de Ciência da Computação, Setor de Ciências Exatas da Universidade Federal do Paraná, pela seguinte banca examinadora:

Prof. Dr. Luiz Carlos P. Albini Orientador
Professora UFPR
Professora
Professora

Curitiba, Maio de 2022.

Este trabalho é dedicado às crianças adultas que, quando pequenas, sonharam em se tornar cientistas.

AGRADECIMENTOS

Os agradecimentos principais são direcionados à Gerald Weber, Miguel Frasson, Leslie H. Watter, Bruno Parente Lima, Flávio de Vasconcellos Corrêa, Otavio Real Salvador, Renato Machnievscz¹ e todos aqueles que contribuíram para que a produção de trabalhos acadêmicos conforme as normas ABNT com LATEX fosse possível.

Agradecimentos especiais são direcionados ao Centro de Pesquisa em Arquitetura da Informação² da Universidade de Brasília (CPAI), ao grupo de usuários *latex-br*³ e aos novos voluntários do grupo $abnT_EX2^4$ que contribuíram e que ainda contribuirão para a evolução do abn T_EX2 .

Os agradecimentos principais são direcionados à Gerald Weber, Miguel Frasson, Leslie H. Watter, Bruno Parente Lima, Flávio de Vasconcellos Corrêa, Otavio Real Salvador, Renato Machnievscz⁵ e todos aqueles que contribuíram para que a produção de trabalhos acadêmicos conforme as normas ABNT com LATEX fosse possível.

Os nomes dos integrantes do primeiro projeto abnTEX foram extraídos de http://codigolivre.org.br/projects/abntex/

http://www.cpai.unb.br/

http://groups.google.com/group/latex-br

⁴ http://groups.google.com/group/abntex2 e http://abntex2.googlecode.com/

Os nomes dos integrantes do primeiro projeto abnTEX foram extraídos de http://codigolivre.org.br/projects/abntex/

RESUMO

O resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser precedido da referência do documento, com exceção do resumo inserido no próprio documento. (...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave:, separadas entre si por ponto e finalizadas também por ponto. Ter no máximo 500 palavras!!! As palavras chave são separadas por ponto e vírgula.

Palavras-chaves: latex; abntex; editoração de texto.

ABSTRACT

This is the english abstract.

 $\textbf{Key-words} : \ \mathsf{latex}. \ \ \mathsf{abntex}. \ \ \mathsf{text} \ \ \mathsf{editoration}.$

LISTA DE CÓDIGOS

2.1	Exemplo de função Map em pseudocódigo adaptado de (DEAN; GHEMAWAI,	
	2008)	13
2.2	Exemplo de função Reduce em pseudocódigo adaptado de (DEAN; GHEMAWAT,	
	2008)	13

LISTA DE ILUSTRAÇÕES

FIGURA	1 -	EXECUÇÃO GENÉRICA DO MAPREDUCE	14
FIGURA	2 –	EXEMPLO DE EXECUÇÃO DO MAPREDUCE	15
FIGURA	3 –	NOVA ARQUITETURA DO HADOOP 2.0	17

SUMÁRIO

1	INTRODUÇÃO	10
1.1	CONTEXTO	10
1.2	OBJETIVO	11
1.3	ESTRUTURA DO TRABALHO	11
2	REFERENCIAL TEÓRICO	12
2.1	CLUSTERS	12
2.2	MAPREDUCE	12
2.2.1	Modelo de programação	13
2.2.2	Execução do MapReduce	14
2.3	HADOOP	15
2.3.1	Terminologia	16
2.3.2	Hadoop Common	16
2.3.3	Hadoop HDFS	16
2.3.4	Hadoop MapReduce	16
2.3.5	Hadoop YARN	16
2.4	DOCKER	17
	REFERÊNCIAS	18

1 INTRODUÇÃO

1.1 CONTEXTO

O uso, armazenamento e controle de dados é um tema muito discutido na área de computação desde seus primórdios até os dias de hoje. Por causa disso, muitos métodos e algoritmos e termos surgiram ao longo do tempo com o objetivo de gerenciar de forma eficiente esses dados. O surgimento dessas novas ferramentas computacionais e métodos de armazenamento foi importantíssimo para a evolução da área.

Atualmente, os métodos mais comuns são os bancos de dados relacionais e *datas* warehouses usando computação em nuvem (KUO; KUSIAK, 2019). Além disso, pesquisas nos campos de mineração de dados e aprendizagem de máquina cresceram bastante recentemente de modo a prover técnicas que permitissem analisar dados complexos e variados entre si (BELCASTRO et al., 2022). Um grande desafio é o fato de algoritmos sequenciais não serem otimizados o suficiente para lidar com dados em grande quantidade. Por causa disso, computadores de alta performance, com múltiplos *cores*, sistemas na nuvem e algoritmos paralelos e distribuídos são usados para lidar com esses empecilhos de *Big Data* (BELCASTRO et al., 2022).

Big Data refere-se a grandes conglomerados de dados complexos sobre os quais não é possível aplicar ferramentas tradicionais de processamento, armazenamento ou análise (KHA-LEEL; AL-RAWESHIDY, 2018). Estima-se que em 2025. os dados atuais criados, capturados ou replicados atinjam 175 Zettabytes, ou seja 175,000,000,000 Gigabytes (RYDNING, 2018).

A fim de lidar com essa enorme quantidade de dados, foi desenvolvido pelo Google o *MapReduce*, que é um modelo com uma implementação associada feito para processar e gerar grandes conglomerados de dados. Esse modelo é inspirado nos conceitos de mapear e reduzir, ou seja, aplicar uma operação que conecta cada item da base de dados a um determinado par de chaves e valores e então aplicar uma operação de reduzir, que junta os valores que compartilham chaves (DEAN; GHEMAWAT, 2008). Com essas operações é possível paralelizar dados em grandes quantidades e utilizar mecanismos de reutilização para facilitar a busca e manipulação destes.

Um dos *frameworks* mais populares que utiliza o *MapReduce* é o *Hadoop*, que foi desenvolvido pela Apache em 2006 e é capaz de armazenar e processar de giga a petabytes de dados eficientemente. Essa ferramenta é capaz de fazer isso optando por usar múltiplos computadores (*clusters*) em paralelo (WHITE, 2015).

11

1.2 OBJETIVO

O Hadoop MapReduce é um framework extremamente personalizável e adaptável. Por

causa disso, frequentemente usa-se o processo de tuning, que consiste em modificar os mais

de 190 parâmetros desse framework de modo a maximizar a eficiência de um cluster Hadoop.

Esses parâmetros podem ser alterados em diversas combinações e podem ter efeitos tanto no

cluster quantos nas tarefas (jobs) do processo.

Esse trabalho tem como objetivo avaliar o comportamento do Hadoop MapReduce

antes e depois do tuning de alguns parâmetros de configuração, observando através de métricas

de benchmark se houve melhora na performance considerando medidas como tempo e uso de

memória.

1.3 ESTRUTURA DO TRABALHO

[TODO: ESTRTURA DO TRABALHO]

2 REFERENCIAL TEÓRICO

Esse capítulo tem como objetivo apresentar detalhadamente os conceitos técnicos que serão utilizados ao longo do trabalho. A seção 2.1 introduz o conceito de *clusters*. A seção 2.2 apresenta o *MapReduce*, o modelo de manipulação de dados feito pelo Google e a seção 2.3 trata do *Hadoop*, o *framework* desenvolvido pela Apache. A ?? explica então o *Hadoop MapReduce* e, por fim, a seção 2.4 explica virtualização, contêiners e a ferramenta Docker.

2.1 CLUSTERS

Um *cluster* é um conjunto de computadores que trabalham juntos paralelamente em uma determinada aplicação. Cada computador desse conjunto é usualmente chamado de nodo. Além disso, existem diversas categorias de clusters dependendo do problema que eles buscam computar.

Algumas aplicações comuns de *clusters* são modelagem de clima, simulação de acidentes automotivos, mineração de dados e aplicações da área de astrofísica. Além disso, é comumente visto em aplicações comerciais como bancos e serviços de email (SADASHIV; KUMAR, 2011).

Uma das maiores vantagens desse tipo de instalação é a tolerância de falhas, pois os sistemas conseguem continuar suas tarefas caso um nodo pare de funcionar. Ainda, é altamente escalável com a adição de novos nodos, não precisa de manutenção frequente e tem um gerenciamento centralizado. Por fim, uma das suas maiores possíveis vantagens é o balanceamento de carga, que busca atingir o equilíbrio entre as tarefas de cada nodo de modo a otimizar os recursos.

2.2 MAPREDUCE

MapReduce é um modelo de programação associado a uma implementação que tem como objetivo processar, manipular e gerar grandes datasets de modo eficiente, escalável e com aplicações no mundo real. As computações acontecem de acordo com funções de mapeamento e redução e o sistema do MapReduce paraleliza essa computações entre grandes clusters, lidando com possíveis falhas, escalonamentos e uso eficiente de rede e discos (DEAN; GHEMAWAT, 2008).

As operações de mapeamento e redução são baseadas em conceitos presentes em linguagens funcionais e fazem com que seja possível fazer diversas reutilizações, assim lidando com tolerância de falhas (DEAN; GHEMAWAT, 2008).

2.2.1 Modelo de programação

A computação recebe um conjunto de pares (VALOR, CHAVE) e produz um conjunto de pares de (VALOR, CHAVE). O usuário cria as funções *Map* e *Reduce* de acordo com seu caso de uso. *Map* recebe um único par (VALOR, CHAVE) e produz um conjunto intermediário de pares. Em seguida, a biblioteca *MapReduce* agrupa os valores com a mesma chave e esses valores servirão de entrada para a função *Reduce*. A função *Reduce* então junta os valores com a mesma chave de modo a criar um conjunto menor, sendo possível dessa forma lidar com listas muito grandes para a memória disponível (DEAN; GHEMAWAT, 2008). Entre o momento que são executadas as funções *Map* e *Reduce*, existe a fase *Shuffle*, que é criada automaticamente em tempo de execução e executa operações de ordenação (*sort*) e junção (*merge*) (VENNER, 2009). Ainda, segundo White (2015), a operação *Shuffle* é um dos fatores mais influentes no bom desempenho de aplicações *MapReduce*, já que operações de ordenação e junções podem prejudicar ou melhorar muito um algoritmo conforme sua implementação.

Como exemplo, considere o problem de contar quantas vezes determinada palavra aparece em um documento. Nesse problema, as funções *Map* e *Reduce* seriam similares aos seguintes pseudocódigos (DEAN; GHEMAWAT, 2008):

```
map(String chave, String valor):

// chave: nome do documento

// valor: conteudo do documento

para cada palavra W em valor:

criaIntermediario(W, 1);
```

CÓDIGO 2.1 – Exemplo de função Map em pseudocódigo adaptado de (DEAN; GHEMAWAT, 2008)

```
reduce(String chave, Iterador valores):
// chave: uma palavra
// valores: lista de contagens

int resultado = 0;
para cada V em valores:
    resultado = resultado + 1;
cria(resultado);
```

CÓDIGO 2.2 – Exemplo de função Reduce em pseudocódigo adaptado de (DEAN; GHEMAWAT, 2008)

A função Map gera um objeto intermediário de cada palavra associada a uma lista do

seu número de occorrências no texto e a função *Reduce* soma os valores até ter o total de ocorrências por palavra. Além disso, o usuário cria um configuração de *MapReduce* com os parâmetros de entrada e saída e eventuais parâmetros de *tuning*.

Para exemplificar ainda mais, considere um arquivo de texto com três linhas nas quais estão as seguintes frases, respectivamente, uma em cada linha: "vamos para casa", "na minha casa", "para na casa". Nesse exemplo, a função *Map* é chamada três vezes, uma para cada linha, gerando os pares (CHAVE, VALOR) intermediários, um para cada palavra encontrada no texto, como é exemplificado na FIGURA 1. Para cada palavra distinta ("vamos", "para", "casa", "na", "minha"), é executada a função *Reduce*, que soma quantas vezes cada uma dessas palavras apareceu no texto e gera um arquivo de saída.

FIGURA 1 - EXECUÇÃO GENÉRICA DO MAPREDUCE

FONTE: A autora (2022)

2.2.2 Execução do MapReduce

O MapReduce funciona usando uma estrutura Cliente/Servidor sobre um cluster, que segundo Dean e Ghemawat (2008) consiste em primeiramente particionar os dados de entrada em bloco de tamanho já definidos e distribuir cópias do programa MapReduce entre cada um desses blocos. Existe uma cópia Master, que é responsável por distribuir as tarefas (tasks). O restante das cópias são denominadas Workers e elas recebem da Master as tarefas junto com os arquivos de entrada. Ao finalizar a execução de uma tarefa do tipo Map, a cópia Worker responsável repassa à Master os arquivos de saída e esta repassa à um Worker esse arquivo com a tarefa de Reduce. Então, esse worker executa a redução, lendo os pares intermediários que passaram pela fase Shuffle e agrupando as instâncias de mesma chave. Quando todas as tarefas Map e Reduce forem executadas, o programa é finalizado.

Na FIGURA 1 foi possível ver como o *MapReduce* funcionaria em pequena escala. Uma das maiores vantagens do *MapReduce* é, no entanto, sua escalabilidade, visto que ele permite

uma execução distribuída entre uma grande quantidade de nodos. A FIGURA 2 representa uma execução genérica do *MapReduce*, descrita no parágrafo acima.

FIGURA 2 – EXEMPLO DE EXECUÇÃO DO MAPREDUCE

FONTE: Adaptado de (DEAN; GHEMAWAT, 2008)

2.3 HADOOP

Hadoop é um framework desenvolvido na linguagem Java pela Apache Software Foundation com os seguintes princípios arquiteturais, segundo Navarro Belmonte (2018):

- A possibilidade de escalar o sistema ao adicionar nodos no cluster.
- Possibilidade de funcionar bem em hardware não necessariamente caro e de luxo.
- Tolerância a falhas, com implementações que identificam estas e permitem que o sistema funcione independente delas acontecerem.
- Fornecimento de serviços transparentes de modo que o usuário possa focar no problema que ele quer resolver.

Esse framework disponibiliza ferramentas para que o usuário possa escrever as funções necessárias em diversas linguagens de programação, conforme a necessidade do programador. O framework funciona na mesma estrutura de Cliente/Servidor apresentada anteriormente e que é usada pelo MapReduce. Além disso, oferece ao programador um sistema paralelo e distribuído (Hadoop HDFS), com os recursos ocultos do usuário, mas capaz de lidar com a comunicação entre as máquinas, quaisquer falhas que possam vir a ocorrer e o escalonamento das tarefas.

Além do *Hadoop Map Reduce* e do *Hadoop HDFS*, existem outros subprojetos do Hadoop que compôe sua estrtutura principal: o *Hadoop Common*, que fornece ferramentas comuns aos outros subprojetos e *Hadoop YARN*, um *framework* para escalonamento de tarefas e gerenciamento de recursos em *clusters*.

2.3.1 Terminologia

Para entender o *Hadoop*, antes é necessário que sejam estabelecidades algumas terminologias. Um *job* é uma unidade do que será processado: consiste nos dados de entrada, o programa *MapReduce* em si e as informações de configuração. O *Hadoop* executa essas unidade separando-a em tarefas (*tasks*), que podem ser do tipo de mapeamento (*map*) ou redução (*reduce*). O escalonamento dessas tarefas é feito automaticamento e cada uma roda em um nodo do *cluster*. Com existe a tolerância de falhas já implementada, se uma tarefa falha, ela é reescalonada (WHITE, 2015).

2.3.2 Hadoop Common

Esse subprojeto contém os utilitários e bibliotecas comuns aos outros subprojetos. Por exemplo, funções de manipulação de arquivos, funções auxiliares de serialização de dados, etc.

2.3.3 Hadoop HDFS

Segundo Borthakur (2020)

2.3.4 Hadoop MapReduce

2.3.5 Hadoop YARN

O Hadoop YARN é um subprojeto que tem como objetivo dividir as funcionalidade de gerenciamento de recursos de escalonamento de tarefas em módulos diferentes tendo, então, um gerenciador global de recursos de um gerenciado local por aplicação.

O gerenciador global trabalha em conjunto com um gerenciador de nodos que é responsável pelos contêiners e pelo monitoramento de uso de recursos, como CPU, memória, uso de disco e uso de redes, assim como o repasse dessas informações para o gerenciador global (APACHE..., 2022).

O YARN foi adicionado ao *Hadoop* versão 2.0 e com isso permitiu que exista a separação das camadas de gerenciamento de recursos e que estes pudessem ser alocados pela aplicação. Com essa camada independente, como é visto na FIGURA 3 é possível que aplicações *MapReduce* possam ser utilizadas em conjunto com aplicações não *MapReduce*. Além disso, esse formato de implementação possibilita economizar custos com o melhor aproveitamento dos nodos (KOBYLINSKA; MARTINS, 2014).

MapReduce
(distributed batch processing
of big data)

Apache Tez
(interactive SQL queries)

Apache Storm/S4
(distributed computing of incoming
data streams in real time)

Apache HBase
(random read/write access
of big data in real time)

Apache Giraph
(interactive visualization)

Apache Spark
(in-memory analytics)

OpenMPI
(HPC MPI-2)

Others
(search, Weave, ...)

FIGURA 3 - NOVA ARQUITETURA DO HADOOP 2.0

FONTE: (KOBYLINSKA; MARTINS, 2014)

2.4 DOCKER

Virtualização é o processo de criar um ambiente ou uma versão virtual de algum componente computacional, tal como *hardwares*, dispositivos de armazenamento e recursos de rede. A virtualização permite que haja economia nos custos de *hardware*, melhoria na recuperação em caso de falhas e redução da necessidade de espaço físico para *datacenters*. Uma das técnicas da virtualização é a utilização de contêiners. Contêiners, uma virtualização a nível de sistema, permite que existam múltiplos espaços do usuário por cima de um determinada kernel de sistema.

Docker é uma ferramenta que tem como objetivo automatizar a implantação de aplicações em contêiners. Essa ferramenta empilha uma implantação de uma aplicação em cima de um ambiente de execução em um contêiner. Ou seja, simula um ambiente virtual de modo que o programador possa trabalhar com sua aplicação em produção de forma extremamente configurável para as necessidades dele. Para fazer isso, o Docker utiliza um recurso de imagem, que nada mais é que uma referência aos arquivos de sistemas que determinada aplicação necessita para ser executada. Esse arquivos são, então, empilhados um em cima do outro e servem como uma receita para construção de um ou múltiplos contêiners (TURNBULL, 2014).

Nesse trabalho será utilizada a imagem do Hadoop distribuída pela Apache de modo que o framework possa ser devidamente simulado, configurado e testado.

REFERÊNCIAS

APACHE Hadoop YARN. [S.I.: s.n.], 2022. Disponível em:

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html. Citado 1 vez na página 16.

BELCASTRO, L.; CANTINI, R.; MAROZZO, F.; ORSINO, A.; TALIA, D.; TRUNFIO, P. Programming big data analysis: principles and solutions. **Journal of Big Data**, SpringerOpen, v. 9, n. 1, p. 1–50, 2022. Citado 2 vez na página 10.

BORTHAKUR, D. **HDFS** architecture guide. [S.I.: s.n.], out. 2020. Disponível em: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. Citado 1 vez na página 16.

DEAN, J.; GHEMAWAT, S. MapReduce: simplified data processing on large clusters. **Communications of the ACM**, ACM New York, NY, USA, v. 51, n. 1, p. 107–113, 2008. Citado 12 vezes nas páginas 7, 10, 12–15.

KHALEEL, A.; AL-RAWESHIDY, H. Optimization of computing and networking resources of a Hadoop cluster based on software defined network. **IEEE Access**, IEEE, v. 6, p. 61351–61365, 2018. Citado 1 vez na página 10.

KOBYLINSKA, A.; MARTINS, F. **Big data tools for midcaps and others**. [S.l.: s.n.], 2014. Disponível em:

https://www.admin-magazine.com/Archive/2014/20/Big-data-tools-for-midcaps-and-others. Citado 1 vezes nas páginas 16, 17.

KUO, Y.-H.; KUSIAK, A. From data to big data in production research: the past and future trends. **International Journal of Production Research**, Taylor & Francis, v. 57, n. 15-16, p. 4828–4853, 2019. DOI: 10.1080/00207543.2018.1443230. eprint: https://doi.org/10.1080/00207543.2018.1443230. Disponível em: https://doi.org/10.1080/00207543.2018.1443230. Citado 1 vez na página 10.

NAVARRO BELMONTE, V. P. **Improving Real Time Tuning on YARN**. 2018. Tese (Doutorado) – Carleton University. Citado 1 vez na página 15.

RYDNING, D. R.-J. G.-J. The digitization of the world from edge to core. **Framingham: International Data Corporation**, p. 16, 2018. Citado 1 vez na página 10.

SADASHIV, N.; KUMAR, S. D. Cluster, grid and cloud computing: A detailed comparison. In: IEEE. 2011 6th international conference on computer science & education (ICCSE). [S.I.: s.n.], 2011. P. 477–482. Citado 1 vez na página 12.

TURNBULL, J. **The Docker Book: Containerization is the new virtualization**. [S.I.]: James Turnbull, 2014. Citado 1 vez na página 17.

VENNER, J. Pro hadoop. [S.I.]: Apress, 2009. Citado 1 vez na página 13.

WHITE, T. **Hadoop: The definitive guide**. [S.I.]: "O'Reilly Media, Inc.", 2015. Citado 3 vezes nas páginas 10, 13, 16.