

Duração: 2h00 min

Nome:	Classificação:
No Mec.	-

(40) 1. Considere o seguinte sistema de equações lineares

$$\begin{cases} x + \alpha y + z = \alpha \\ x + y + \alpha z = \alpha^2 \\ (1 - \alpha)(2 - \alpha)z = (1 - \alpha^2)(1 + \alpha) \end{cases}$$

onde α é um parâmetro real.

- a) Indique, justificando, os valores de α para os quais o sistema é:
 - a1) possível e determinado,
 - a2) possível e indeterminado,
 - a3) impossível.

b) Considere $\alpha = 0$. Designando por A a matriz do sistema de equações linear, para este valor de α , determine A^{-1} e apresente o conjunto solução do sistema.

(20) 2. Mostre que para quaisquer valores de $x, y, z \in \mathbb{R}$, se tem

$$\begin{vmatrix} x-y & -10 & 2 & y \\ 0 & z & 0 & 0 \\ x-y & 5 & 2 & 1 \\ x^2-y^2 & 11 & 2x+2y & x \end{vmatrix} = 0.$$

- (60) 3. No espaço vectorial das matrizes quadradas de ordem 2 com entradas reais, $\mathcal{M}_2(\mathbb{R})$, considere o conjunto, $S = \left\{ \begin{bmatrix} a & a+b \\ -a-b & -a \end{bmatrix}, a,b \in \mathbb{R} \right\}$.
 - a) Mostre que S e um subespaço de $\mathcal{M}_2(\mathbb{R})$ e indique uma base ordenada para S.

b) Considere a aplicação linear $\varphi: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}_3[X]$ definida por

$$\varphi(\left[\begin{array}{cc}a&b\\c&d\end{array}\right])=a+(b+c)X+(c+d)X^2+dX^3,$$

onde $\mathbb{R}_3[X]$ designa o espaço vectorial dos polinómios de coeficientes reais na indeterminada X e de grau inferior ou igual a 3.

b1) Determine a matriz da aplicação linear φ relativamente às bases canónicas de $\mathcal{M}_2(\mathbb{R})$ e $\mathbb{R}_3[X]$ e comente a seguinte afirmação " φ é um isomorfismo".

b2) Determine uma base para o subespaço vectorial de $\mathbb{R}_3[X],\ T+\varphi(S),$ onde $T=<1-X^2-X^3,1-X^3,X>.$

(45) 4. Considere em \mathbb{R}^3 o produto interno seguinte:

$$\langle (x_1, x_2, x_3)/(y_1, y_2, y_3) \rangle = x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2 + x_3y_3.$$

a1) Determine a matriz de Gram (matiz da métrica), associada a este produto interno, relativamente à base ordenada canónica de \mathbb{R}^3 .

a
2) Seja T=<(0,1,0)>. Determine uma base para o subespaço
 $T^{\perp}.$

a3) Determine a projecção ortogonal de u = (1, 1, 0) sobre o subespaço T = <(0, 1, 0)>.

(35) 5. Considere a aplicação linear $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por L(x,y,z) = (x,y+2z,2y+z). Averigúe se L é diagonalizável.