Seanch. The

* Reflex Agents

- -> Choose action based on Chrosent percept.

 (and may be memory)
- -> Mary have memory on a model of the world's current state
- Do not consider me fixeme consequence of their actions.

* Planning Agents

- -> Ask "What if"
- -> Decision board on Consequence of action.
- -> Must have a model of how the world evolus in prespose to cetions.
- -> Must famulde a goal.

Planning Algorithm

Optimal

You achive goles In minimum cost.

Complete

> When there exist a solution, you find

- * Search Problems
- => A Search problem consists of:
 - 1 A State Space
 - (2) A Successor function (with actions, costs)
 - (3) A start state & a good test
- => A Solution is a sequence of cetions (a plan) which tonors forms the start state to a good state
- * State Space Chaphs
- => "A Mathematical orepresentation of a Search Problem"
 - * Nodes are obstructed world configurations.
 - + Ancs enconescent successors
 - * The God test is set of god modes (may be only one)

- => An a State space graph, each State occurs only once.
- (its too big) build the fell graph in memory

* Search Tonces

- * A "What if" tree of plans & their Outcomes.
- * The Start State is the groot mode
- * Children Cornespord to Successor
- * Nodes Show States, but Carropord to PLANS and achieve more states.
- * For most problems, we can never setud build the whole tree

* General True Search

- * Expand out potential plans (tree modes)
- * Maintain a foringe of partial plans under consideration.
- * Tony to expand as few tree modes as Possible.

Solution function TREE SEARCH (Poroblem, street ogs) orduns failune

- 1, initialize the Search tree using the mitid State of problem
- 2. 100p do
 - 3. if there is no cardidde for expansion then onetwo false.
 - 4. Chouse a leef node fon expansion cecanding to studegy.
 - 5. if the mode Contains a god stale then statute Cources ponding Solution

1 - 1 - I will all a series and a series and

: 21-214 - W J; WI H

* Depth finst Search

Strategy: Expand decpot mode first

Implementation: Foringe is a LIFO Stark

* Search Algorithm Properties

La Guarante de to find a Solution if one exists.

Lo Guaranteed to find the least cost path

3) Time Complexity L> How long does the compute takes to flida solution.

9 Space Complanity

L> Mow much monory do you need to find a solution.

* Dephi-first Search (DFS) Properties

What modes does DFS expands

Loud process the whole tree

Loud process the whole tree

To mis finite, take time O(6)

how much space does the Ginge take? Loonly has siblings on path to noot, so O(bm)

Is it Complete?

Lom could be infinite, so only if we Prevent cycles.

Is it optimed?

Ly No, it finds the "left most" Solution, onegandless of dopter on Cost.

the state of the s

* Borcoolth - First Search

Stockegy: Expand on Shollowed mude, first Implementation: Eninge is a FIFO Quenc.

What modes does (BFS) expands?

> Process all modes above shallowest solution

> Let depth of Shallowest Solution be 5

Lo Search takes time O(b)

How much space does the Fringe take?

That oroughly the last tien, so \$6 (b)

Is it Complete?

Los most be finite if a solution exists, so yes!

Is it optimal?

Lo Only if Costs are all I

* Italive Deepering

Idea: Get DFS's Opere advantage with BFS's the /Shellow -Sulution advantages.

Isn't that wastefull orcdundent?

L> Generally most of the work happens in the lowest level Seanched, so not so bad!

the many the sent of which the

Lask April 19 1 - in the medical series

* Cost-Sonsitive Sourch

* Uniform Cost Search (UCS).

Stratego: expand a Checpest mode first

Foringe: A Portority quant (Portority: Comulative Cost)

What nodes doo UC expands?

=> Let C* be the Cest of optimed solution

Re Each Individual stop Cost us at least &.

=> So we might have expended all to
Plans todas C*/E Steps.

> Time tellen: O(bc*/2)

How much space does the foil-so talle?

> Mas oranghio the last tien, so O(be)

Is is Complete?

La Assuming bot Solution has a finite Cost & minimum are cost is positive Yes! # Is it Optimal? Yes! Good L> Complet & optimed the state of the s => Exploses Options in every direction > No information about God lucation To the state of th and the second of the second o - itestal i which shows in horse " A The large of the said it is action of the The Care (La trop) to the start to (mind