Python Lab Exercise #2

Objectives:

- Load .csv files into pandas DataFrames
- Describe and manipulate data in Series and DataFrames
- Visualize data using DataFrame methods and matplotlib


```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

What is Pandas?

Pandas, as the Anaconda docs tell us, offers us "High-performance, easy-to-use data structures and data analysis tools." It's something like "Excel for Python", but it's quite a bit more powerful.

Let's read in the heart dataset.

Pandas has many methods for reading different types of files. Note that here we have a .csv file.

Read about this dataset here.

```
In [2]: heart_df = pd.read_csv('./data/heart.csv')
```

The output of the <code>.read_csv()</code> function is a pandas *DataFrame*, which has a familiar tabaular structure of rows and columns.

```
In [3]: type(heart_df)
```

Out[3]: pandas.core.frame.DataFrame

In [4]:	heart_df
---------	----------

ut[4]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	taı
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	
	•••		•••			•••							•••		
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	

303 rows × 14 columns

DataFrames and Series

Two main types of pandas objects are the DataFrame and the Series, the latter being in effect a single column of the former:

```
In [5]: age_series = heart_df['age']
type(age_series)
```

Out[5]: pandas.core.series.Series

Notice how we can isolate a column of our DataFrame simply by using square brackets together with the name of the column.

Both Series and DataFrames have an index as well:

```
In [6]: heart_df.index
Out[6]: RangeIndex(start=0, stop=303, step=1)
In [7]: age_series.index
Out[7]: RangeIndex(start=0, stop=303, step=1)
```

Pandas is built on top of NumPy, and we can always access the NumPy array underlying a DataFrame using •values .

```
heart_df.values
In [8]:
         array([[63.,
Out[8]:
                                2., ...,
                                            0.,
                                                 2.,
                  [37.,
                          1.,
                                                       1.],
                  [41.,
                                                 2.,
                                                       1.],
                  . . . ,
                  [68.,
                                            2.,
                                                 3.,
                                                       0.],
                                                 3.,
                  [57.,
                          1.,
                                           1.,
                                                       0.],
                  [57.,
```

Basic DataFrame Attributes and Methods

.head()

In [9]:	heart_df.head() age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal targe														
Out[9]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targe
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	

.tail()

```
In [10]:
          heart df.tail()
Out[10]:
                 age sex cp
                               trestbps
                                         chol fbs restecg
                                                             thalach
                                                                      exang
                                                                              oldpeak slope
                                                                                             ca
                                                                                                  thal
           298
                                                 0
                  57
                        0
                            0
                                    140
                                          241
                                                           1
                                                                 123
                                                                           1
                                                                                   0.2
                                                                                            1
                                                                                               0
                                                                                                     3
           299
                  45
                             3
                                     110
                                          264
                                                 0
                                                           1
                                                                 132
                                                                           0
                                                                                            1
                                                                                               0
                                                                                                     3
                         1
                                                                                   1.2
           300
                  68
                             0
                                    144
                                          193
                                                           1
                                                                           0
                                                                                   3.4
                                                                                               2
                                                  1
                                                                 141
           301
                  57
                            0
                                    130
                                           131
                                                 0
                                                           1
                                                                 115
                                                                           1
                                                                                   1.2
                                                                                            1
                                                                                                     3
           302
                                                          0
                  57
                        0
                             1
                                    130
                                          236
                                                 0
                                                                 174
                                                                           0
                                                                                   0.0
                                                                                            1
                                                                                                1
                                                                                                     2
```

.info()

```
In [11]: heart df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns):

#	Column	Non-l	Null Count	Dtype
0	age	303 1	non-null	int64
1	sex	303 1	non-null	int64
2	ср	303 1	non-null	int64
3	trestbps	303 1	non-null	int64
4	chol	303 1	non-null	int64
5	fbs	303 ı	non-null	int64
6	restecg	303 1	non-null	int64
7	thalach	303 1	non-null	int64
8	exang	303 1	non-null	int64
9	oldpeak	303 1	non-null	float6
10	slope	303 1	non-null	int64
11	ca	303 1	non-null	int64
12	thal	303 1	non-null	int64
13	target	303 ı	non-null	int64

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

.describe()

In [12]: heart_df.describe()

0 1		
():::	1111	
Uu L	1 1 4 1	

	age	sex	ср	trestbps	chol	fbs	restecg
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000

.dtypes

In [13]: heart_df.dtypes

```
int64
          age
Out[13]:
                         int64
          sex
          ср
                         int64
          trestbps
                         int64
          chol
                         int64
          fbs
                         int64
          restecg
                         int64
          thalach
                         int64
          exang
                         int64
          oldpeak
                       float64
                         int64
          slope
                         int64
          thal
                         int64
          target
                         int64
          dtype: object
```

.shape

```
In [14]:
          heart_df.shape
          (303, 14)
Out[14]:
```

Exploratory Plots

Let's make ourselves a histogram of ages:

```
In [15]: sns.set_style('darkgrid')
         #sns.distplot(a=heart df['age']);
         # For more recent versions of seaborn:
         sns.histplot(data=heart_df['age'], kde=True);
```


And while we're at it let's do a scatter plot of maximum heart rate vs. age:

```
In [16]:
         sns.scatterplot(x=heart_df['age'], y=heart_df['thalach']);
```


Adding to a DataFrame

Adding Rows

Here are two rows that our engineer accidentally left out of the .csv file, expressed as a Python dictionary:

```
In [17]:
         extra_rows = {'age': [40, 30], 'sex': [1, 0], 'cp': [0, 0], 'trestbps': [120, 1]
                        'chol': [240, 200],
                       'fbs': [0, 0], 'restecg': [1, 0], 'thalach': [120, 122], 'exang':
                        'oldpeak': [0.1, 1.0], 'slope': [1, 1], 'ca': [0, 1], 'thal': [2,
                        'target': [0, 0]}
         extra_rows
         {'age': [40, 30],
Out[17]:
          'sex': [1, 0],
          'cp': [0, 0],
           'trestbps': [120, 130],
           'chol': [240, 200],
          'fbs': [0, 0],
           'restecg': [1, 0],
           'thalach': [120, 122],
          'exang': [0, 1],
           'oldpeak': [0.1, 1.0],
           'slope': [1, 1],
          'ca': [0, 1],
           'thal': [2, 3],
           'target': [0, 0]}
```

How can we add this to the bottom of our dataset?

```
In [18]:
         # Let's first turn this into a DataFrame.
         # We can use the .from dict() method.
         missing = pd.DataFrame(extra rows)
         missing
```

Out[18]:		age	sex	ср	tre	estbps	chol	fbs	restecg	thala	ch e	exang	oldpeak	slope	ca	th	nal ta	arge
	0	40	1	0		120	240	0	1	1	20	0	0.1	1	C)	2	
	1	30	0	0		130	200	0	0	1	22	1	1.0	1	,		3	
In [19]:			_										togethe					
	# 1	Note	the	`ig	gnor	e_inde	x p	arame	eter! W	e'11	set 1	that t	to True.					
	he	art_a	augme	ente	ed =	pd.co			art_df,			,						
							:	ignor	re_inde	K=Tru	e)							
In [20]:	# .	Let's	s ch	eck	the	e end t	o ma.	ke sı	ire we	were	succe	essful	l!					
	he	art a	allame	⊃n+e	. b.	ail()												
	110	ar c_c	augiii.			()												
Out[20]:		ag	je s	ex (ср	trestbp	s ch	ol fb	s reste	g th	alach	exan	g oldpea	ak slo	ре	са	thal	taı
	30	0 6	8	1	0	14	4 19	3	1	1	141		0 3	.4	1	2	3	
	30	1 5	57	1	0	130	0 13	31	0	1	115		1 1	.2	1	1	3	
	30	2 5	57	0	1	130	0 23	6	0	0	174		0 0	.0	1	1	2	
	30	3 4	.0	1	0	120	0 24	.0	0	1	120		0 ().1	1	0	2	

Adding Columns

304 30

Adding a column is very easy in **pandas**. Let's add a new column to our dataset called "test", and set all of its values to 0.

122

1.0

130 200

In [21]:	he	art_a	augme	ente	d['test'] = 0									
In [22]:	he	art_a	augme	ente	d.head()										
Out[22]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targe
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	

I can also add columns whose values are functions of existing columns.

Suppose I want to add the cholesterol column ("chol") to the resting systolic blood pressure column ("trestbps"):

```
In [23]: heart_augmented['chol+trestbps'] = heart_augmented['chol'] + heart_augmented['t
```

In [24]:	he	art_a	augme	ente	d.head()										
Out[24]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targe
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	

Filtering

We can use filtering techniques to see only certain rows of our data. If we wanted to see only the rows for patients 70 years of age or older, we can simply type:

In [25]:	heart	_aug	ment	ed['age'] >=	= 70									
Out[25]:	0 1 2 3 4 300 301 302 303 304 Name:	Fa Fa Fa Fa Fa Fa Fa Fa	lse	ngtl	n: 305, c	ltype									
In [26]:	heart	_aug	ment	ed[]	neart_aug	gment	ed[ˈ	age'] >=	70]						
Out[26]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	taı
00.01.01.											•				
044[10]	25	71	0	1	160	302	0	1	162	0	0.4	2	2	2	
000[20]1	25 60			1 2			0	1 0					2		
000[20]		71	0		160	302			162	0	0.4	2		2	
	60	71 71	0	2	160 110	302 265	1	0	162 130	0	0.4	2	1	2	
	60 129	71 71 74	0 0	2	160 110 120	302 265 269	1 0	0	162 130 121	0 0 1	0.4 0.0 0.2	2 2 2	1	2 2 2	
	60 129 144	71 71 74 76	0 0 0	2 1 2	160 110 120 140	302 265 269 197	1 0 0	0 0 2	162 130 121 116	0 0 1 0	0.4 0.0 0.2 1.1	2 2 2 1	1 1 0	2 2 2 2	
	60 129 144 145	71 71 74 76 70	0 0 0 0	2 1 2 1	160 110 120 140 156	302 265 269 197 245	1 0 0	0 0 2 0	162 130 121 116 143	0 0 1 0	0.4 0.0 0.2 1.1 0.0	2 2 2 1 2	1 1 0 0	2 2 2 2 2	
	60 129 144 145 151	71 71 74 76 70 71	0 0 0 0 1	2 1 2 1 0	160 110 120 140 156 112	302 265 269 197 245 149	1 0 0 0	0 0 2 0	162 130 121 116 143 125	0 0 1 0 0	0.4 0.0 0.2 1.1 0.0	2 2 2 1 2	1 1 0 0	2 2 2 2 2 2	
	60 129 144 145 151 225	71 71 74 76 70 71	0 0 0 0 1 0	2 1 2 1 0	160 110 120 140 156 112 145	302 265 269 197 245 149	1 0 0 0 0	0 0 2 0 1	162 130 121 116 143 125 125	0 0 1 0 0 0	0.4 0.0 0.2 1.1 0.0 1.6 2.6	2 2 2 1 2 1 0	1 1 0 0 0	2 2 2 2 2 2 2 3	

Use '&' for "and" and '|' for "or".

Exercise

Display the patients who are 70 or over as well as the patients whose trestbps score is greater than 170.

In [27]:		_			<i>e here</i> (heart_a	ıgmen	ted['age'] >	-= 70)	(hear	rt_augme	nted['	tres	stbps	']
Out[27]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	taı
	8	52	1	2	172	199	1	1	162	0	0.5	2	0	3	
	25	71	0	1	160	302	0	1	162	0	0.4	2	2	2	
	60	71	0	2	110	265	1	0	130	0	0.0	2	1	2	
	101	59	1	3	178	270	0	0	145	0	4.2	0	0	3	
	110	64	0	0	180	325	0	1	154	1	0.0	2	0	2	
	129	74	0	1	120	269	0	0	121	1	0.2	2	1	2	
	144	76	0	2	140	197	0	2	116	0	1.1	1	0	2	
	145	70	1	1	156	245	0	0	143	0	0.0	2	0	2	
	151	71	0	0	112	149	0	1	125	0	1.6	1	0	2	
	203	68	1	2	180	274	1	0	150	1	1.6	1	0	3	
	223	56	0	0	200	288	1	0	133	1	4.0	0	2	3	
	225	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
	234	70	1	0	130	322	0	0	109	0	2.4	1	3	2	
	238	77	1	0	125	304	0	0	162	1	0.0	2	3	2	
	240	70	1	2	160	269	0	1	112	1	2.9	1	1	3	
	241	59	0	0	174	249	0	1	143	1	0.0	1	0	2	
	248	54	1	1	192	283	0	0	195	0	0.0	2	1	3	
	260	66	0	0	178	228	1	1	165	1	1.0	1	2	3	
	266	55	0	0	180	327	0	2	117	1	3.4	1	0	2	

Exploratory Plot

Using the subframe we just made, let's make a scatter plot of their cholesterol levels vs. age and color by sex:

```
In [28]: at_risk = heart_augmented[(heart_augmented['age'] >= 70 ) | (heart_augmented['t
         sns.scatterplot(data=at risk, x='age', y='chol', hue='sex');
```


.loc and .iloc

We can use loc to get, say, the first ten values of the age and resting blood pressure ("trestbps") columns:

```
In [29]:
          heart_augmented.loc
          <pandas.core.indexing._LocIndexer at 0x7fa6837887c0>
Out[29]:
In [30]:
          heart_augmented.loc[:9, ['age', 'trestbps']]
Out[30]:
             age trestbps
              63
                       145
           1
              37
                       130
          2
               41
                       130
          3
              56
                       120
          4
              57
                       120
          5
              57
                       140
          6
              56
                       140
          7
              44
                       120
          8
              52
                       172
                       150
              57
```

.iloc is used for selecting locations in the DataFrame by number:

```
In [31]:
         heart augmented.iloc
         <pandas.core.indexing._iLocIndexer at 0x7fa6838ac310>
Out[31]:
In [32]:
         heart augmented.iloc[3, 0]
```

163

0.6

2

Out[32]:

In [33]:	heart_augmented.head()	
----------	------------------------	--

Out[33]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targe
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	

Exercise

57

How would we get the same slice as just above by using .iloc() instead of .loc()?

120 354

```
In [34]:
         # Enter your code here
         heart_augmented.iloc[:10,0:4:3]
```

Out[34]:		age	trestbps
	0	63	145
	1	37	130
	2	41	130
	3	56	120
	4	57	120
	5	57	140
	6	56	140
	7	44	120
	8	52	172
	9	57	150

Statistics

```
.mean()
```

```
In [35]:
         heart_augmented.mean()
```

```
54.239344
          age
Out[35]:
                              0.681967
          sex
          ср
                              0.960656
          trestbps
                           131.580328
                           246.091803
          chol
          fbs
                              0.147541
          restecg
                              0.527869
          thalach
                            149.459016
          exang
                              0.327869
          oldpeak
                              1.036393
          slope
                              1.396721
          ca
                              0.727869
          thal
                              2.314754
          target
                              0.540984
          test
                              0.000000
          chol+trestbps
                           377.672131
          dtype: float64
```

Be careful! Some of these will are not straightforwardly interpretable. What does an average "sex" of 0.682 mean?

.min()

```
In [36]:
          heart_augmented.min()
                             29.0
          age
Out[36]:
                              0.0
          sex
          ср
                              0.0
                             94.0
          trestbps
          chol
                            126.0
                              0.0
          fbs
                              0.0
         restecg
          thalach
                             71.0
          exang
                              0.0
                              0.0
          oldpeak
          slope
                              0.0
                              0.0
          ca
          thal
                              0.0
                              0.0
          target
          test
                              0.0
          chol+trestbps
                            249.0
          dtype: float64
           .max()
```

In [37]: heart augmented.max()

```
77.0
          age
Out[37]:
                              1.0
          sex
          ср
                               3.0
          trestbps
                            200.0
                            564.0
          chol
          fbs
                              1.0
          restecg
                               2.0
          thalach
                            202.0
          exang
                               1.0
          oldpeak
                               6.2
                               2.0
          slope
                               4.0
          thal
                               3.0
          target
                               1.0
          test
                               0.0
          chol+trestbps
                            679.0
          dtype: float64
```

Series Methods

.value_counts()

How many different values does slope have? What about sex? And target?

```
In [38]:
         heart_augmented['slope'].value_counts()
               142
Out[38]:
         1
               142
                21
         Name: slope, dtype: int64
In [39]: heart_augmented['sex'].value_counts()
         1
               208
Out[39]:
                97
         Name: sex, dtype: int64
          .sort_values()
In [40]:
         heart_augmented['age'].sort_values()
         72
                 29
Out[40]:
         304
                 30
         58
                 34
         125
                 34
         65
                 35
                 . .
         25
                 71
                 71
         60
                 74
         129
         144
                 76
         238
                 77
         Name: age, Length: 305, dtype: int64
```

pandas - Native Plotting

The .plot() and .hist() methods available for DataFrames use a wrapper around matplotlib:

```
In [41]:
         heart_augmented.plot(x='age', y='trestbps', kind='scatter');
```


In [42]: heart_augmented.hist(column='chol');

Exercises

1. Make a bar plot of "age" vs. "slope" for the heart_augmented DataFrame.

```
In [43]:
         # Enter your code here
         sns.barplot(data = heart augmented, x='slope',y='age')
         <AxesSubplot:xlabel='slope', ylabel='age'>
Out[43]:
```


1. Make a histogram of ages for **just the men** in heart_augmented (heart_augmented['sex']=1).

```
In [48]:
         # Enter your code here
         men = heart_augmented[heart_augmented['sex']==1]
         sns.distplot(a=men['age'])
```

/Users/SFSU/opt/anaconda3/lib/python3.9/site-packages/seaborn/distributions.p y:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figurelevel function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='age', ylabel='Density'> Out[48]:

1. Make separate scatter plots of cholesterol vs. resting systolic blood pressure for the target=0 and the target=1 groups. Put both plots on the same figure and give each an appropriate title.

```
In [70]:
         # Enter your code here
         heart augmented.head()
```

```
target 0 = heart augmented[heart augmented['target'] == 0];
target_1 = heart_augmented[heart_augmented['target'] == 1];
fig, axs = plt.subplots(1,2, figsize=(10,5))
sns.scatterplot(data = target_0, x='trestbps', y='chol', ax=axs[0])
sns.scatterplot(data = target_1, x='trestbps', y='chol', ax=axs[1])
axs[0].set_title("Cholesterol Vs. Resting Blood Pressure, No Heart Disease")
axs[1].set_title('Cholesterol Vs. Resting Blood Pressure, Heart Disease')
```

Text(0.5, 1.0, 'Cholesterol Vs. Resting Blood Pressure, Heart Disease') Out[70]:

In []: