Chapitre II

Continuité des Fonctions d'une Variable Réelle

I. Définition

Soit f, définie sur un intervalle I, et soit a, un réel de I. La fonction f est continue si et seulement si :

$$\lim_{x \to a} f(x) = f(a)$$

f est continue sur l'intervalle I, si et seulement si, quel que soit le réel $x \in I$, f est continue en x.

I.1. EXEMPLE

La fonction inverse est continue sur $]-\infty;0[$, et sur $]0;+\infty[$. La fonction "Partie Entière" est définie sur \mathbb{R} , mais pas continue sur \mathbb{R} .

FIGURE 2.1. – Représentation Graphique de la Fonction "Partie Entière", continue sur [n; n+1] avec $n \in \mathbb{Z}$.

FIGURE 2.2. – Représentation Graphique de la Fonction Absolue

I.2. Propriété

La somme, le produit et la composée de deux fonctions continues est continue. L'inverse d'une fonction continue est continue sur tout intervalle où elle ne s'annule pas.

$$f:x\mapsto x^2\quad\text{continue}$$

$$g:x\mapsto \frac{1}{x^2}\quad\text{D\'efinie sur }\mathbb{R}^*,\text{ continue sur }]-\infty;0\big[\text{ et }]0;+\infty\big]$$

II. Théorème des Valeurs Intermédiaires

II.1. THÉORÈME

Si une fonction f est continue sur un intervalle [a;b] alors, pour tout réel $k \in [\min(f(a);f(b));\max(f(a);f(b))]$ il existe au moins un réel $c \in [a;b]$ tel que f(c) = k

C'est-à-dire, pour tout réel k, compris entre f(a) et f(b), il existe un réel $c \in [a;b]$ tel que f(c) = k

FIGURE 2.3. – Exemple du Théorème des Valeurs Intermédiaires Pour tout k appartenant à [f(b); f(a)], il existe au moins un réel $c \in [a; b]$, tel que f(c) = k

II.2. COROLLAIRE

Si une fonction f est continue et strictement monotone sur un intervalle [a;b], alors, pour tout $k \in [\min(f(a);f(b));\max(f(a);f(b))]$, il existe un unique réel $c \in [a;b]$, tel que f(c) = k.

FIGURE 2.4. – Illustration du Corollaire du Théorème des Valeurs Intermédiaires

II.2.A. CAS PARTICULIER

Si une fonction f est continue sur un intervalle [a;b], et si f(a) et f(b) sont de signes contraires, alors il existe au moins une solution à f(x) = 0, sur [a;b].