1. IMPORT NECESSARY PACKAGES

/kaggle/input/incomeexpenditure-dataset/Inc_Exp_Data.csv

2. LOAD THE FILE

```
In [2]: income_df = pd.read_csv(r'D:\Samsom - All Data\statics\Inc_Exp_Data.csv')
In [3]: income_df
```

[3]:	Mthly_HH_I	ncome	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income	Highest_Qualified_Member
_	0	5000	8000	3	2000	64200	Under-Graduate
	1	6000	7000	2	3000	79920	Illiterate
	2	10000	4500	2	0	112800	Under-Graduate
	3	10000	2000	1	0	97200	Illiterate
	4	12500	12000	2	3000	147000	Graduate
	5	14000	8000	2	0	196560	Graduate
	6	15000	16000	3	35000	167400	Post-Graduate
	7	18000	20000	5	8000	216000	Graduate
	8	19000	9000	2	0	218880	Under-Graduate
	9	20000	9000	4	0	220800	Under-Graduate
•	10	20000	18000	4	8000	278400	Under-Graduate
•	11	22000	25000	6	12000	279840	Illiterate
	12	23400	5000	3	0	292032	Illiterate
•	13	24000	10500	6	0	316800	Graduate
•	14	24000	10000	4	0	244800	Graduate
•	15	25000	12300	3	0	246000	Graduate
•	16	25000	20000	3	3500	261000	Graduate
•	17	25000	10000	6	0	258000	Under-Graduate
•	18	29000	6600	2	2000	348000	Graduate
•	19	30000	13000	4	0	385200	Graduate
2	20	30500	25000	5	5000	351360	Under-Graduate
2	21	32000	15000	4	0	445440	Professiona

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income	Highest_Qualified_Member
22	34000	19000	6	0	330480	Professiona
23	34000	25000	3	4000	469200	Professiona
24	35000	12000	3	0	466200	Graduate
25	35000	25000	4	0	449400	Professiona
26	39000	8000	4	0	556920	Under-Graduate
27	40000	10000	4	0	412800	Under-Graduate
28	42000	15000	4	0	488880	Graduate
29	43000	12000	4	0	619200	Graduate
30	45000	25000	6	0	523800	Graduate
31	45000	40000	6	3500	507600	Professiona
32	45000	10000	2	1000	437400	Post-Graduate
33	45000	22000	4	2500	610200	Post-Graduate
34	46000	25000	5	3500	596160	Graduate
35	47000	15000	7	0	456840	Professiona
36	50000	20000	4	0	570000	Professiona
37	50500	20000	3	0	581760	Professiona
38	55000	45000	6	12000	600600	Graduate
39	60000	10000	3	0	590400	Post-Graduate
40	60000	50000	6	10000	590400	Graduate
41	65000	20000	4	5000	647400	Illiterate
42	70000	9000	2	0	756000	Graduate
43	80000	20000	4	0	1075200	Graduate

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income	Highest_Qualified_Member
44	85000	25000	5	0	1142400	Under-Graduate
45	90000	48000	7	0	885600	Post-Graduate
46	98000	25000	5	0	1152480	Professiona
47	100000	30000	6	0	1404000	Graduate
48	100000	50000	4	20000	1032000	Professiona
49	100000	40000	6	10000	1320000	Post-Graduate

In [4]: income_df.head()

Out[4]:		Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income	Highest_Qualified_Member
,	0	5000	8000	3	2000	64200	Under-Graduate
	1	6000	7000	2	3000	79920	Illiterate
	2	10000	4500	2	0	112800	Under-Graduate
	3	10000	2000	1	0	97200	Illiterate
	4	12500	12000	2	3000	147000	Graduate
	4				_		-

3. ANALYZE THE DATA

In [5]: income_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Mthly_HH_Income	50 non-null	int64
1	Mthly_HH_Expense	50 non-null	int64
2	No_of_Fly_Members	50 non-null	int64
3	Emi_or_Rent_Amt	50 non-null	int64
4	Annual_HH_Income	50 non-null	int64
5	<pre>Highest_Qualified_Member</pre>	50 non-null	object
6	No_of_Earning_Members	50 non-null	int64

dtypes: int64(6), object(1)
memory usage: 2.9+ KB

In [6]: income_df.shape

Out[6]: (50, 7)

In [7]: income_df.describe().T # transforse as T

Out[7]:

	count	mean	std	min	25%	50%	75%	max
Mthly_HH_Income	50.0	41558.00	26097.908979	5000.0	23550.0	35000.0	50375.0	100000.0
Mthly_HH_Expense	50.0	18818.00	12090.216824	2000.0	10000.0	15500.0	25000.0	50000.0
No_of_Fly_Members	50.0	4.06	1.517382	1.0	3.0	4.0	5.0	7.0
Emi_or_Rent_Amt	50.0	3060.00	6241.434948	0.0	0.0	0.0	3500.0	35000.0
Annual_HH_Income	50.0	490019.04	320135.792123	64200.0	258750.0	447420.0	594720.0	1404000.0
No_of_Earning_Members	50.0	1.46	0.734291	1.0	1.0	1.0	2.0	4.0

In [8]: income_df.isna().any()

```
Out[8]: Mthly_HH_Income
                                     False
         Mthly_HH_Expense
                                     False
         No of Fly Members
                                     False
         Emi or Rent Amt
                                     False
         Annual HH Income
                                     False
         Highest_Qualified_Member
                                     False
         No of Earning Members
                                     False
         dtype: bool
         No null values in the dataset
           4. WHAT IS THE MEAN EXPENSE OF A HOUSEHOLD?
 In [9]: income df["Mthly HH Expense"].mean()
Out[9]: 18818.0
           5. WHAT IS THE MEDIAN HOUSEHOLD EXPENSE?
In [10]: income df["Mthly HH Expense"].median()
Out[10]: 15500.0
In [11]: income_df["Mthly_HH_Expense"].mode()
Out[11]: 0
               25000
          Name: Mthly_HH_Expense, dtype: int64
           6. WHAT IS THE MONTHLY EXPENSE FOR MOST OF THE HOUSEHOLDS?
In [12]: mth_exp_tmp = pd.crosstab(index=income_df["Mthly_HH_Expense"], columns="count")
         mth exp tmp.reset index(inplace=True)
         mth_exp_tmp[mth_exp_tmp['count'] == income_df.Mthly_HH_Expense.value_counts().max()]
Out[12]: col 0 Mthly_HH_Expense count
            18
                           25000
                                     8
```

7. PLOT THE HISTOGRAM TO COUNT THE HIGHEST QUALIFIED MEMBER

In [13]: income_df["Highest_Qualified_Member"].value_counts().plot(kind="bar")

Out[13]: <Axes: xlabel='Highest_Qualified_Member'>

8. CALCULATE IQR(DIFFERENCE BETWEEN 75% AND 25% QUARTILE)

Out[14]: 15000.0

9. CALCULATE STANDARD DEVIATION FOR FIRST 4 COLUMNS.

12090.216824

In [15]: pd.DataFrame(income_df.iloc[:,0:5].std().to_frame()).T

Out[15]: Mthly_HH_Income Mthly_HH_Expense No_of_Fly_Members Emi_or_Rent_Amt Annual_HH_Income

6241.434948

1.517382

320135.792123

0

26097.908979

10. CALCULATE VARIANCE FOR FIRST 3 COLUMNS.

```
In [16]: pd.DataFrame(income_df.iloc[:,0:4].var().to_frame()).T
```

Out[16]: Mthly_HH_Income Mthly_HH_Expense No_of_Fly_Members Emi_or_Rent_Amt

0 6.811009e+08 1.461733e+08 2.302449 3.895551e+07

11. CALCULATE THE COUNT OF HIGHEST QUALIFIED MEMBER.

```
In [17]: income_df["Highest_Qualified_Member"].value_counts().to_frame().T
```

Out[17]: Highest_Qualified_Member Graduate Under-Graduate Professional Post-Graduate Illiterate

count 19 10 10 6 5

12. PLOT THE HISTOGRAM TO COUNT THE NO_OF_EARNING_MEMBERS

```
In [18]: income_df["No_of_Earning_Members"].value_counts().plot(kind="bar")
```

Out[18]: <Axes: xlabel='No_of_Earning_Members'>

13. Suppose you have option to invest in Stock A or Stock B. The stocks • have different expected returns and standard deviations. The expected return of Stock A is 15% and Stock B is 10%. Standard Deviation of the returns of these stocks is 10% and 5% respectively.

Which is better investment?

In [19]: #Here we need to calculate the coeff of variation

```
Coeff_of_var_StockA=10/15
print(Coeff_of_var_StockA)
Coeff_of_var_StockB=5/10
print(Coeff_of_var_StockB)
```

0.5

In []: