

G53FIV: Fundamentals of Information Visualization Lecture 8: Visual Perception

Ke Zhou School of Computer Science Ke.Zhou@nottingham.ac.uk

https://moodle.nottingham.ac.uk/course/view.php?id=96914

Visual Perception

The ability of viewers to interpret visual encodings of information and thereby decode information in graphs.

Related Disciplines

- Psychophysics
 - Applying methods of physics to measuring human perceptual systems
 - How fast must light flicker until we perceive it as constant?
 - What change in brightness can we perceive?
- Cognitive psychology
 - Understanding how people think, here, how it relates to perception

Effectiveness Ranking

Which one is brighter?

Which one is brighter?

Which one is brighter?

- Ratios more important than magnitude
- Most continuous variation in stimuli are perceived in discrete steps

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

Compare length of bars

Which section is bigger? A or C?

Which section is bigger? A or C?

Effectiveness: Accuracy Ranking

Mackinlay, Automating the design of graphical presentations of relational information, 1986.

Graphical Perception Experiments

Empirical estimates of encoding

Heer & Bostock '10 (Optional Reading) Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess

Log Absolute Estimation Error

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

Conjectured Effectiveness of Encodings by Data Type

Mackinlay, Automating the design of graphical presentations of relational information, 1986.

Perceptual Processing

Perceptual Processing Model

Perceptual Processing Model

- Two stage process
 - Parallel extraction of low-level properties of scene
 - Sequential goal-directed processing

Stage 1

Early, parallel detection of color, texture, shape, spatial attributes

Stage 2

Serial processing of object identification (using memory) and spatial layout, action

Stage 1: Pre-attentive Processing - Low-level, Parallel

- Neurons in eye & brain responsible for different kinds of information
 - Orientation, color, texture, movement, etc.
- Arrays of neurons work in parallel, occurs "automatically" and rapidly
 - Generally less than 200-250 msecs
- Information is transitory, briefly held in iconic store
- Bottom-up data-driven model of processing
- Often called "pre-attentive" processing, i.e. without the need for focused attention

Stage 2 - Sequential, Goal-Directed

- Splits into subsystems for object recognition and for interacting with environment
- Increasing evidence supports independence of systems for symbolic object manipulation and for locomotion & action
- First subsystem then interfaces to verbal linguistic portion of brain, second interfaces to motor systems that control muscle movements
- Slow serial processing
- Involves working and long-term memory

Pre-attentive Processing

How many 3's?

```
1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686
```


Visual Pop-Out: Color (Hue)

Can be done rapidly (preattentively) by people Surrounding objects called "distractors"

Visual Pop-Out: Shape

Can be done preattentively by people

Feature Conjunctions: Color and Shape

Feature Conjunctions: Color and Shape

- Cannot be done preattentively
- Must perform a sequential search
- Conjuction of features (shape and hue) causes it

Pre-Attentive Features

- length
- width
- size
- curvature
- number
- terminators
- intersection
- closure
- hue
- intensity
- flicker
- direction of motion
- binocular lustre
- stereoscopic depth
- 3-D depth cues
- lighting direction

Pre-Attentive Feature Conjunctions

- Spatial conjunctions are often pre-attentive
- Motion and 3D disparity
- Motion and color
- Motion and shape
- 3D disparity and color
- 3D disparity and shape
- Most conjunctions are not pre-attentive

"All else being equal, elements that are related by X tend to be grouped perceptually into higher-order units."

- Proximity
- Similarity
- Connectedness
- Continuity

- Stephen Palmer
- Symmetry
- Closure
- Figure/Ground
- Common Fate

Proximity

Things close together are perceptually grouped together

- Similarity
 - Similar elements get grouped together

Rows dominate due to similarity

Connectedness

Connecting different objects by lines unifies them

Connectedness overrules proximity, size, color shape

Continuity

 More likely to construct visual entities out of smooth, continuous visual elements

Symmetry

Symmetrical patterns are perceived more as a whole

Closure

 A closed contour is seen as an object

- Figure/Ground
 - Figure is foreground, ground is behind
- Common Fate (Synchrony)
 - Elements that move in the same direction are perceived as more related

An Example

Visualisation based on total number of mentions (Source: Recorded Future)

What important Gestalt principles of visual organization are used in this visualisation?

An Example

Visualisation based on total number of mentions (Source: Recorded Future)

Figure & ground Proximity Similarity

Change Blindness

- We don't always see everything that is there!
- Is the viewer able to perceive changes between two scenes?
 - If so, may be distracting
 - Can do things to minimize noticing changes
- Video: http://www.simonslab.com/videos.html

Next Lecture

- Topic:
 - Interaction

- Next Friday (6 March)
 - -13:00 15:00
 - A25, Business South,
 Jubilee Campus

