Introducción a la Inteligencia Artificial Clase 7

Formulación

parametrus:

U: medias de las

= : matriz de cov.

It: pero de la partición

K: conf. cle porticiones

$$p(x/\overline{u},\overline{z}) = \sum_{i} P_{i} N(x_{i}/u_{i},o_{i}^{2})$$

$$p(x \mid \boldsymbol{\theta}) = 0.5 \mathcal{N}(x \mid -2, \frac{1}{2}) + 0.2 \mathcal{N}(x \mid 1, 2) + 0.3 \mathcal{N}(x \mid 4, 1)$$

Formulación $\geq \pi_{i} = 1$, puedo forzar la forma de \geq_{i}

$$p(x) = \underbrace{0.3}_{\pi_1} \mathcal{N}\left(x \mid \underbrace{\begin{pmatrix} 4 \\ 4.5 \end{pmatrix}}_{\mu_1}, \underbrace{\begin{pmatrix} 1.2 & 0.6 \\ 0.6 & 0.5 \end{pmatrix}}_{\Sigma_1}\right) + \underbrace{0.5}_{\pi_2} \mathcal{N}\left(x \mid \underbrace{\begin{pmatrix} 8 \\ 1 \end{pmatrix}}_{\mu_2}, \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{\Sigma_2}\right) + \underbrace{0.2}_{\pi_3} \mathcal{N}\left(x \mid \underbrace{\begin{pmatrix} 9 \\ 8 \end{pmatrix}}_{\mu_3}, \underbrace{\begin{pmatrix} 0.6 & 0.5 \\ 0.5 & 1.5 \end{pmatrix}}_{\Sigma_3}\right)$$

Gaussian Mixture Models: Estudio de fenómenos naturales

"Old Faithful" dataset. 272 mediciones de erupciones del "Old Faithful" geyser en el Parque Nacional Yellowstone. El eje horizontal representa la duración de una erupción (medida en minutos) y el vertical el tiempo hasta la próxima erupción.

Gaussian Mixture Models: Clustering

Ejemplo de Gaussian Mixture. En la imagen (a) se muestran las tres distribuciones subyacentes indicando con colores sus variables latentes. En la imagen (b) las curvas de nivel de la distribución conjunta y en la (c) la densidad.

KMeans

Gaussian Mixture Models: Clustering L = 20L=2L = 5

-2

GMM

Gaussian Mixture Models - kMeans

Gaussian Mixture Models: Clustering

Gaussian Mixture Models: Detección de anomalías

Gaussian Mixture Models: Inicialización

Formulación

$$p(x) = \sum_{k=1}^{K} \pi_k p_k(x)$$
$$0 \leqslant \pi_k \leqslant 1, \quad \sum_{k=1}^{K} \pi_k = 1,$$

Mixture Models - General

$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
$$0 \leqslant \pi_k \leqslant 1, \quad \sum_{k=1}^{K} \pi_k = 1,$$
$$\boldsymbol{\theta} := \{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k : k = 1, \dots, K\}$$

Gaussian Mixture Models

GMM se optimiza por metoclo EM Expectation Maximization.

Gaussian Mixture Models - Object Tracking

pixel (0-255)

Gaussian Mixture Models - Object Tracking

$$P(\mathbf{X}) \cong \sum_{k=1}^K \omega_k \eta_k(\mathbf{X}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \quad \text{such that } \sum_{k=1}^K \omega_k = 1$$
 where:
$$\eta(\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{X} - \boldsymbol{\mu})^T(\boldsymbol{\Sigma})^{-1}(\mathbf{X} - \boldsymbol{\mu})}$$
 Mean
$$\boldsymbol{\mu} = \begin{bmatrix} \mu_r \\ \mu_g \\ \mu_b \end{bmatrix} \quad \text{Covariance matrix } \boldsymbol{\Sigma} = \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix} \quad \text{(can be a full matrix)}$$

Gaussian Mixture Models - Object Tracking

Gaussian Mixture Models - Object Tracking

GMM y EM - JAMBOARD

Gaussian Mixture Models - Teoría

(b) Dataset colored according to the responsibilities of the mixture components.

Notebooks

Bibliografía

Bibliografía

- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Pattern Recognition and Machine Learning | Bishop
- Gaussian Mixture Model | John McGonagle, Geoff Pilling, Andrei Dobre
- Expectation-Maximization Algorithms | Stanford CS229: Machine Learning
- First Principles of Computer Vision| Computer Science Department, School of Engineering and Applied Sciences, Columbia University

