ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Лабораторная работа 5.5 Компьютерная сцинтилляционная γ -спектрометрия

Цель работы: определение энергии и интенсивности дискретных гамма-линий от различных гамма-источников и их идентификация.

1 Теоретические сведения

Основная задача спектрометрических измерений заключается в определении энергии и интенсивности дискретных гамма-линий от различных гамма-источников и их идентификации.

B данной работе исследуются сцинтилляционные гамма-спектрометры на основе неорганического кристалла NaI(Tl).

При прохождении гамма-квантов через материальную среду образуются электроны, возникающие за счет фотоэффекта, комптоновского рассеяния и рождения электрон-позитронных пар. Неупругие соударения могут сопровождаться как ионизацией, так и возбуждением молекул или атомов среды. На промежуточных же стадиях (при переходах возбужденных молекул или атомов в основное состояние, при рекомбинации электрических зарядов и т.п.) в веществе возникают кванты света различных длин волн, присущих данному веществу.

Вообще говоря, возникающее излучение должно сильно поглощаться в сцинтилляторе, так как его энергия в точности равна энергии возбуждения атомов среды. Чтобы избежать этого явления, в кристаллы сцинтиллятора вводят небольшие добавки других атомов. Свободные локальные уровни энергии электрона на примесных атомах таллия располагаются внутри запрещенной зоны кристалла NaI. В процессе релаксации возможны переходы электронов, возбужденных в зону проводимости, на эти уровни. Энергии излучаемых при таких переходах фотонов меньше ширины запрещенной зоны, и они могут поглощаться только атомами таллия. Но концентрация таллия мала (порядка 0,1%), поэтому мало поглощение указанных фотонов, и они имеют все шансы вылететь из сцинтиллятора. В этом случае прохождение ионизирующей частицы через вещество будет сопровождаться световой вспышкой, которая и может быть использована для регистрации частицы.

Современный сцинтилляционный счетчик состоит из сцинтиллятора – вещества, способного испускать видимое или ультрафиолетовое излучение, возникающее под действием заряженных частиц, и фотоэлектронного умножителя, в котором энергия этих световых вспышек через посредство фотоэффекта преобразуется в импульсы электрического тока.

1.1 Процессы взаимодействия гамма-излучения с веществом

Основными процессами взаимодействия гамма-излучения с веществом являются, как было выше указано, фотоэффект, эффект Комптона и образование электрон-позитронных пар. Каждый из этих процессов вносит свой вклад в образование наблюдаемого спектра.

Фотоэффект – процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$, где E_{γ} – энергия гамма-кванта, I_i – потенциал ионизации i-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов.

Эффект Комптона – упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона (реально этот процесс происходит на слабо связанных с атомом внешних электронах). Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 180° и равна

$$E_{max} = \frac{\hbar\omega}{1 + \frac{2\hbar\omega}{mc^2}}. (1)$$

Процесс образования электрон-позитронных пар. При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом — образование электрон-позитронных пар. Процесс образования пар не может происходить в пустоте, так как в этом случае не выполняются совместно законы сохранения энергии и импульса. В присутствии ядра или электрона процесс образования пары гамма-квантом возможен, так как можно распределить энергию и импульс гамма-кванта между тремя частицами без противоречия с законами сохранения. При этом если процесс образования пары идет в кулоновском поле ядра, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта $E_{\text{пор}}$, необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $E_{\text{пор}} \approx 2mc^2 = 1{,}022$ МэВ.

Появившиеся в результате процесса образования пар частицы теряют свою кинетическую энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е., кинетическая энергия позитрона также останется в детекторе. Далее возможны три варианта развития событий:

- а) оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E=E_{\gamma}$;
- б) один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-E_{0}$, где $E_{0}=mc^{2}=511$ кэB;
- в) оба родившихся гамма-кванта покидают детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-2E_{0}$, где $2E_{0}=2mc^{2}=1022$ кэВ.

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Каждый процесс взаимодействия гамма-квантов с веществом вносит свой вклад в образование спектра. Помимо этих процессов, добавляются экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассеяния, образующийся при энергии квантов $E_{\gamma} \gg mc^2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты и последующего фотоэффекта в сцинтилляторе. Положение пика обратного рассеяния определяется по формуле (1)

2 Экспериментальная установка

Принципиальная блок-схема гамма-спектрометра, изучаемого в данной работе, показана на рис. 1.

Рис. 1: Принципиальная блок-схема спектрометра. $(1 - \text{сцинтиллятор}, 2 - \Phi \ni V, 3 - \text{предусилитель импульсов}, 4 - высоковольтный блок питания для <math>\Phi \ni V, 5 - \text{блок преобразования аналоговых импульсов с }\Phi \ni V$ в цифровой код $(A \coprod \Pi), 6 - \text{компьютер для сбора данных}, их обработки и хранения).$

 $\Phi \Im V$ со сцинтиллятором и блоком питания установлены на отдельной подставке. В нашей работе на разных установках в качестве сцинтиллятора используются кристаллы NaI(Tl) с размерами \varnothing 45 × 50 мм и \varnothing 20 × 25 мм.

3 Обработка данных

3.1 Проверка функционирования установки

- 1. Включим измерительные устройства и компьютер, запустим программу и войдём в режим измерения спектра. Проверим функционирование установки в этом режиме: при увеличении угла отклонения фотопик должен смещаться влево, в сторону меньших энергий.
- 2. Подберём напряжение так, чтобы при нулевом угле $\theta=0^\circ$ фотопик был смещен на экране максимально вправо. Дальнейшие измерения были проведены при напряжении V=1,2 В.

3.2 Калибровка зависимости номера канала от энергии

1. По известным значениям энергии поглощения для Co, Na и Cs построим линейную аппроксимацию зависимости номера канала N от соответствующей ему энергии E.

Таблица 1: Номера канала и соответствующие им энергии

	Co		Na		Cs
E, кэ B	1173,2	1332,5	511	1274	661,7
<i>N</i> , номер канала	1570	1800	700	1730	900

3.3 Вычисление энергетического разрешения

1. Определим энергетическое разрешения для каждого измерения по формуле $R_i = \frac{\Delta E_i}{E_i}$. Для перехода от номера канала к энергии будем использовать результат предыдущего пункта.

Таблица 2: Результаты вычисления энергетического разрешения

Источник	N_i	ΔN_i	E_i , кэВ	ΔE_i , кэ ${ m B}$	R_i
Со	1570	76,5	1162,3	102,4	0,09
	1800	82,1	1334,1	109,9	0,08
Na	700	50,1	512,5	67,1	0,13
	1730	80,1	1281,7	107,2	0,08
Cs	900	58,2	661,8	77,9	0,12
Eu	1905	86,2	1412, 5	115,4	0,08
	1490	116,4	1102,5	155,8	0,14
	1054	64,8	777,2	86,8	0,11
	474	37,5	343,8	50,2	0,15
	342	29,7	244,8	39,8	0,16
	241	23,7	169,9	31,7	0,19
Am	97	10,1	61,9	13,5	0,22
	50	13,0	26,7	17,4	0,65

Pабота 5.5 4 BЫВОД

3.4 Вычисление края комптоновского рассеяния

1. Занесём в таблицу номер канал и теоретическое значение энергии, соответствующего максимума энергии комптоновского рассеяния.

Таблица 3: Данные для изучения энергетической границы комптоновского эффекта

	Со	Na		Cs	
E_{γ} , кэ B	1173,2	511	1274	661,7	
N_i	1200	350	1300	625	

4 Вывод

В данной работе исследовался принцип работы сцинтиллятора. В результате удалось:

- получить спектры излучения для Co, Cs, Na, Eu и Am.
- выделить отдельные части спектра, отвечающие за фотоэффект, эффект Комптона, обратное рассеяние и характеристическое излучение свинца.
- измерить энергетическую разрешение, результат с плохой точностью совпал с теорией.

Работа 5.5 4 BЫВОД

$$k=(1{,}338\pm0{,}009)~1/{\rm кэB},\quad \varepsilon_k\approx 0{,}65\%,$$

$$b=13{,}9\pm 6{,}3,\quad \varepsilon_b\approx 45\%.$$

Работа 5.5 — 4—ВЫВОД

$$k = (5,06 \pm 0,7)$$
 кэВ, $\varepsilon_k \approx 14\%$, $b = (6,0 \pm 1,8) \cdot 10^{-3}$, $\varepsilon_b \approx 29\%$.

Работа 5.5 — 4—ВЫВОД

