STABLE COMPARISON OF IMESERIES USING JOPOLOGY

Bala Krishnamoorthy Washington State University

Elizabeth Thompson

arXiv: 2501,02817

WADEPS

OMPARING vs volume of trading

COMPARING IME SERIES

stock price

vs volume of trading

river levels

(Image: www)

COMPARING IME SERIES

stock price

vis volume of trading

2/7

river levels

(Image:www)

? How to compare?

CROSS-RECURRENCE (%DET

cross-rewrence

CROSS-RECURRENCE (%DET

cross-rewrence

CROSS-RECURRENCE (%DET

cross-reunnence

CROSS-RECURRENCE (%DET

cross-reunnence

→ % Deferminism (%DET) % of I's in diagonal strips of E

CROSS-KECURRENCE (%DET

cross-rewrence

→ % Deferminism (%DET)

% of 1's in diagonal strips of E

-> four parameters: time lag z, embed. dimension, dist. threshold (tol), # diagonal strips (min DL)

%DET=83 % DET = 95 minDL=7

LNSTABILIT

LNSTABILIT % DET = 95 %DET=88971 minDL= \$5

Define a measure of similarity that is

probably stable?

- small change in input -> small change in measure

? Minimize # parameters? Define a measure of similarity that is provably stable?

- small change in input -> small change in measure

- ? Define a measure of similarity that is - small change in input -> small change in measure
- ? Minimize # parameters?
- ? Effects of large dimensions?

- ? Define a measure of similarity that is - small change in input -> small change in measure
- ? Minimize # parameters?
- ? Effects of large dimensions?
- ? Does it work well in practice?

V sove(f, |f2): conditional periodicity of f, given f2 - persistent homology of a single point cloud

V sove(f, |f2): conditional periodicity of f, given f2 - persistent homology of a single point cloud KESULTS

Theoretical stability under — small changes to periodicity — Gaussian noise

V sove (f, |f2): conditional periodicity of f, given f= - persistent homology of a single point cloud KESULTS

- I theoretical stability under, - small changes to periodicity - Gaussian noise
- ringle parameter: embedding dimension

 min embedding dimension to control precision

 of score(f,1/f)

RESULTS

- V sove (f, |f): conditioned periodicity of f, given f= - persistent homology of a single point cloud
- I theoretical stability under - small changes to periodicity
 - Gaussian noise
- min embedding dimension to control precision of score(f,/f) I stable under PCA truncation

RESULTS

- V sove(f, |f2): conditional periodicity of f, given f2 persistent homology of a single point cloud
- I theoretical stability under - small changes to periodicity
 - Gaussian noise
- min embedding dimension to control precision of score(f./f.) I stable under PCA truncation

V computational evidence

SCORE

ETORIS-KIPS (VR

TETORIS-KIPS (VR) **PERSISTENCE**

Eddsbrunner et al., 2002

BOTTLENECK **DISTANCE**

for two PDs X and $dB(X,Y) = \min_{x \in X} \max_{x \in X} x \in X$ (bijedion $||z-\gamma(z)||_{\infty}$

PERSISTENCE STABILITY

Chazal, de Silva, Oudel- (2014) Chazal, de Silva, Glusse, Oudel- (2016)

 $d_{B}(dgm(vR(x)),dgm(vR(x))) \leq 2d_{GH}(x,Y) \leq 2d_{H}(x,Y)$

Gromer-Housdorff

PERSISTENCE STABILITY

Chazal, de Silva, Glusse, Oudof- (2016) Chazal, de Silva, Oudol- (2014)

 $d_{B}(dgm(vR(x)), dgm(vR(x))) \leq 2d_{GH}(x, Y) \leq 2d_{H}(x, Y)$

Gromer-Housdorff

under all isometric embeddings of X, Y into common metric space

Hausdorth Common metric Space

PERSISTENCE STABILITY

Chazal, de Silva, Oudet (2014) Chazal, de Silva, Glisse, Oudet (2016)

 $d_{\mathsf{B}}(\mathsf{dgm}(\mathsf{VR}(\mathsf{X})),\mathsf{dgm}(\mathsf{VR}(\mathsf{Y}))) \leq 2d_{\mathsf{GH}}(\mathsf{X},\mathsf{Y}) \leq 2d_{\mathsf{H}}(\mathsf{X},\mathsf{Y})$

Chromer-Housderff
under all isometric
embeddings of XiY
into common metro

Hausdorff XX in Space Space

PH: VR Persistent Homology

Space

HOW IME

Perea & Harry (2015) Perea et al. (2015)

PH ON IME SERIES

Perea & Harer (2015) Perea et al. (2015)

PH ON IME

Perea & Harer (2015) Perea etal. (2015)

PH ON えて FRIES

Perea & Harer (2015) Perea et al. (2015)

TH ON ERIES

Perea & Harer (2015) Perea et al. (2015)

, stability closeness of SW(f) and SW(SNf) N-truncated Fourier series of f

CONDITIONAL PERIODICTY SCORE

Def f., f.: [0,27] -> IR continuous, periodic time series f_2 more-periodic than f_1 $\left(\frac{2\pi}{\omega_2} < \frac{2\pi}{\omega_1}\right)$

CONDITIONAL PERIODICTY SCORE

Det f., fz: [0,27] -> IR continuous, periodic time series $8W_{m,z}f_{p}(t) = (f_{1}(t),...,f_{1}(t+Mz))^{T}f_{0}z = \frac{2\pi}{\omega_{2}(m+0)}$ Conditional SW Embedding of f, given 1/2: f_2 more-periodic than $f_1 \left(\frac{2\pi}{\omega_2} \leq \frac{2\pi}{\omega_1} \right)$

CONDITIONAL PERIODICTY SCORE

Def f., fz: [0,27] -> IR continuous, periodic time series score $(f_1|f_2) = \frac{mp \left(dgm \left(SW f_{12}(T)\right)}{\sqrt{3}}, Te[0, \frac{2\pi}{\omega_1}]$ $8W_{M,z}f_{1/2}(t) = (f_1(t),...,f_1(t+Mz))^T for z = \frac{2\pi}{\omega_2(m+1)}$ Conditional SW Embedding of f, given 1/2: f_2 more-periodic than $f_1 \left(\frac{2\pi}{\omega_2} \leq \frac{2\pi}{\omega_1} \right)$

DNDITIONAL PERIODICTY SCORE

Def f., f.: [0,27] -> [K continuous, periodic time series for more-periodic than f

Conditional SW Embedding of f, given -

SW, = f, (t) = (f, (t), ..., f, (t+MT)) br =

score $(f_1|f_2) = \frac{mp}{mp} \left(\frac{dgm}{dgm} \left(\frac{SW}{sW} f_{1/2}(T) \right), Te[0, \frac{2m}{\omega_1}] \right)$

REDUCTION to PERIODICTY SCORE

Proposition 1 2½ → 2¼ -ω, ω, sore (f, 1/2) = sore (f,

SWE(f1|f2) for M=2

Persistence Diagram

sore (f, 1

SWE[,2]

sore (f,

SWE[,2]

0.0

0.5

1.0

1.5

-0.5

-1.0

sore (4, 16)

SWE[,2] 0.0

0.5

1.0

-0.5

-1.0

V small change in periodicity of f=> score(f, |f2) changes only a little UTABILITY **KESULIS**

OTABILITY RESULTS

I small change in periodicity of 1=>
some(f, |f2) changes only a little

Theorem 2 $f_1, f_2, f_{22}: [0,2\pi] \to \mathbb{R}: \frac{2\pi}{\omega_1} \ge \frac{2\pi}{\omega_2} \ge \frac{2\pi}{\omega_2} \ge \frac{2\pi}{\omega_2}$ $\chi_1 = SW_{M,7}, f_{1/21}(T), \quad \chi_2 = SW_{M,72}, f_{1/22}(T)$

dy(xvx) / M+1 | 二二二二十一人工作(公)

DTABILITY RESULTS

I small change in periodicity of 1=>
some(f, |f_z) changes only a little

Theorem 2 $f_1, f_2, f_{22}: [0, 2\pi] \to \mathbb{R}: \frac{2\pi}{\omega_1} \ge \frac{2\pi}{\omega_2} \ge \frac{2\pi}{\omega_2}$ $\chi_1 = SW_{M,7}, f_{1/21}(T), \quad \chi_2 = SW_{M,72}, f_{1/22}(T)$

|Sove(f, |f2) - Sove(f, |f2) | < 4/ \frac{m+1}{3} | \frac{27}{3} - \frac{27}{3} \frac{7}{4} \frac{1}{4} \frac{1}{4 $d_{H}(x_{1},x_{2}) = \sqrt{M+1} \left| \frac{2\pi}{2} - \frac{2\pi}{2} \right| \sqrt{2} |f_{1}'(c_{2})|^{2}$

V Small Gaussian noise added to f₁ → DTABILITY KESULTS some (f, 1/2) changes only a little who

OTABILITY RESULTS

V Small Gaussian noise added to \$1, -> Lemma 3 $f_1^{\sigma}(t) = f_1(t) + \epsilon_L$ for $\epsilon_L \sim N(0, \sigma^2)$ For Se(0,1), it is at least (1-8)-100% Whely that $|score(f,|f_2)-score_{f_1}(f_1)f_2)| \le 4\sqrt{\frac{M+1}{38}}$ some (filfz) changes only a little who

of SW 7,12(t) preserves score (7,1/2) DTABILITY RESULTS

DTABILITY RESULTS

of SW 4,12(t) preserves score (f, 1/2)

Theorem 4 $\phi: \mathbb{R}^{MH} \to \mathbb{R}^K: PCA$ projection with eigenfrectors/values) $\{c_k, \lambda_k\}_{k=1}^N$.

"unused" (N-K)
eigenvalues

L'Embedding dim. It above which score (7,112) does not charge much with dimension MIN. EMBEDDING DIMENSION

MIN. EMBEDDING DIMENSION

Comboding dim. It above which score (7,142) does not charge much with dimension

Theorem 5 For 670, with $\mathcal{L} = \left| \frac{2\pi}{\omega_2 \epsilon} \right|$, for any M2>M1>X

 $|score_{M_{i}}(f_{i}|f_{2})-score_{M_{i}}(f_{i}|f_{2})| \leq \varepsilon \cdot g(M_{i},f_{i}) +$ constants with e 1 5(M, M, f,)

OMPUTATIONAL ESULTS

%DET

under 10% Gaussian noise

%DET

OPEN QUESTIONS

Testing on real data?

OPEN QUESTIONS

? (Bound on) min # PC's needed to "preserve" score (f, 1f2)?

Testing on real data?

OPEN QUESTIONS

(Bound on) min # PC's needed to "preserve" score (f, |f2)? Testing on real data?

Thank You!