- **Q1** (1 point)
  - <u>a)</u> (1/2 point)
    - Flat clustering:
      - high efficiency (1/8 point)
      - o need to decide a K before performing the cluster (1/8 point)
    - Hierarchy clustering:
      - o generates deterministic results and hierarchical structure (1/8 point)
      - K is unknown or hard to decide (1/8 point)

\_\_\_\_\_

**b)** (1/2 point)

\*if they write at least 2 out of 4, they get the whole point\*

- K-means: (1/4 point)
  - o Value of K, or the number of clusters
  - The number of iterations and stopping criteria.
  - Outliers.
  - o Initialization and size of clusters.
- Hierarchical Agglomerative clustering factors: (1/4 point)
  - Metric for measuring similarity.
  - Clustering method used like complete-link, single-link, centroid, group average etc.
  - o Outliers

\_\_\_\_\_\_

## **Q2-1** (2 points)

### (Raw/normalized term frequency vector) (1 points)

|          | Doc 1               | Doc 2     | Doc 3               | Doc 4               | Doc 5     | Doc 6     |
|----------|---------------------|-----------|---------------------|---------------------|-----------|-----------|
| carp     | $1/\sqrt{3} = 0.57$ | 0         | 0                   | 0                   | 0         | 0         |
| dolphins | 0                   | 0         | 0                   | 0                   | 1/2 = 0.5 | 0         |
| elephant | 0                   | 0         | 0                   | $1/\sqrt{3} = 0.57$ | 0         | 0         |
| horse    | 0                   | 1/2 = 0.5 | 0                   | 0                   | 0         | 0         |
| land     | 0                   | 1/2 = 0.5 | $1/\sqrt{3} = 0.57$ | 0                   | 0         | 0         |
| lion     | 0                   | 0         | $1/\sqrt{3} = 0.57$ | 0                   | 0         | 0         |
| lung     | 0                   | 1/2 = 0.5 | $1/\sqrt{3} = 0.57$ | $1/\sqrt{3} = 0.57$ | 1/2 = 0.5 | 0         |
| neck     | 0                   | 1/2 = 0.5 | 0                   | 0                   | 0         | 1/2 = 0.5 |
| seahorse | 0                   | 0         | 0                   | 0                   | 0         | 1/2 = 0.5 |
| snout    | 0                   | 0         | 0                   | $1/\sqrt{3} = 0.57$ | 0         | 0         |
| swim     | $1/\sqrt{3} = 0.57$ | 0         | 0                   | 0                   | 1/2 = 0.5 | 1/2 = 0.5 |
| water    | $1/\sqrt{3} = 0.57$ | 0         | 0                   | 0                   | 1/2 = 0.5 | 1/2 = 0.5 |

### (one iteration of K-means)

#### **Euclidian distance from doc1 and doc2.** (1/4 point)

| doc1 and doc3: $\sqrt{2} = 1.41$ | doc2 and doc3: 0.91                        |
|----------------------------------|--------------------------------------------|
| doc1 and doc4: $\sqrt{2} = 1.41$ | doc2 and doc4: 1.19                        |
| doc1 and doc5: 0.91              | doc2 and doc5: 1.22<br>doc2 and doc6: 1.22 |

Cluster Assignment: (1/4 point)

Doc1: Doc1, Doc2: Doc2, Doc3: Doc2, Doc4: Doc2, Doc5: Doc1, Doc6: Doc1

\*they could also have written it as:\*

Cluster 1: Doc1, Doc5, Doc6 Cluster 2: Doc2, Doc3, Doc4

**New Clusters:** (1/2 point)

Cluster 1: Doc1, Doc5, Doc6

[0.19, 0.16, 0, 0, 0, 0, 0.16, 0.16, 0.16, 0, 0.52, 0.52]

Cluster 2: Doc2, Doc3, Doc4

[0, 0, 0.19, 0.16, 0.36, 0.19, 0.55, 0.16, 0, 0.19, 0, 0]

\_\_\_\_\_\_

# **Q3** (2 points)

**a)** (1 point)



