PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A61K 45/00, C07K 17/00, C12N 5/00

(11) International Publication Number: A1 (43) International Publication Date: 12 September 1996 (12.09.96)

WO 96/27392

(21) International Application Number:

PCT/US96/03249

(22) International Filing Date:

8 March 1996 (08.03.96)

(30) Priority Data: 08/400,338

۵

8 March 1995.(08.03.95)

US

(60) Parent Application or Grant

(63) Related by Continuation US

Filed on

08/400,338 (CIP) 8 March 1995 (08.03.95)

(71) Applicant (for all designated States except US): THE SCRIPPS RESEARCH INSTITUTE [US/US]; Mail Drop TPC-8. 10666 North Torrey Pines Road, La Jolla, CA 92037 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CAI, Zeling [CN/US]; 7984 Avenida Navidad #74, San Diego, CA 92122 (US). SPRENT, Jonathan [GB/US]; 1076 Hymettus Avenue, Leucadia, CA 92122 (US). BRUNMARK, Anders [SE/US]; 3850 Riviera Drive #2C, San Diego, CA 92109 (US). JACK-SON, Michael [GB/US]; 12728 Villa Felino, Del Mar, CA 92014 (US). PETTERSON, Per, A. [SE/US]; P.O. Box 2323, Rancho Santa Fe, CA 92067 (US). LUXEMBOURG, Alain,

M., D., Ph., D. [FR/US]; Apartment 8, 8141 El Paseo Grande, La Jolla, CA 92037 (US). LETURCQ, Didier, Jean [FR/US]; 3991 Crown Point Drive, San Diego, CA 92109 (US). MORIARTY, Ann, M. [US/US]; 13038 Lomas Verdes Drive, Poway, CA 92064 (US).

(74) Agents: OLSON, Ame, M. et al.; Olson & Hierl, Ltd., Suite 3000, 20 North Wacker Drive, Chicago, IL 60606 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: ANTIGEN PRESENTING SYSTEM AND METHODS FOR ACTIVATION OF T-CELLS

(57) Abstract

į,

The present invention relates to synthetic antigen-presenting matrices, their methods of making and their methods of use. One such matrix is cells that have been transfected to produce MHC antigen-presenting molecules and assisting molecules such as co-stimulatory molecules. The matrices can be used to activate CD8+ T-cells to produce cytokines and become cytotoxic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom		
AT	Austria	GE	Georgia	MW	Malawi
AU	Australia	GN	Guinea	MX	Mexico
BB	Barbados	GR	Greece	NE	Niger
BE	Belgium	HU		NL	Netherlands
BF	Burkina Faso	IE	Hungary	NO	Norway
BG	Bulgaria		ireland	NZ	New Zealand
B.J	Benin	IT.	italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belanus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CIF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SG	Singapore
CI.	Côte d'Ivoire	KZ	Kazakhstan	SI	Slovenia
CM	Cameroon	u	Liechtenstein	SK	Slovakia
CN		LK	Sri Lanka	SN	Senegal
CS CS	China	LR	Liberia	SZ	Swaziland
CZ	Czechoslovakia	LT	Lithuania	TD	Chad
	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	ii.	
EE	Estonia	MD	Republic of Moldova	UA	Trinidad and Tobago Ultraine
ES	Spain	MG	Madagascar	UG	
FI	Finland	ML	Mali	US	Uganda United Courses
FR	France	MN	Mongolia	UZ	United States of America
GA	Gabon	MR	Mauritania	VN	Uzbekistan Viet Nam

5

10

15

٠

- 1 -

ANTIGEN PRESENTING SYSTEM AND METHODS FOR ACTIVATION OF T-CELLS

This invention was made with the support of the Government of the United States of America, and the Government of the United States of America has certain rights in the invention.

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. patent application Serial No. 08/400,338 filed March 8, 1995 and having the same title.

TECHNICAL FIELD

The present invention relates to materials and methods of activating T-cells with specificity for particular antigenic peptides, the use of activated T-cells in vivo for the treatment of a variety of disease conditions, and compositions appropriate for these uses.

BACKGROUND

The efficiency with which the immune system cures or protects individuals from infectious disease has always been intriguing to scientists, as it has been 20 believed that it might be possible to activate the immune system to combat other types of diseases. Such diseases include cancer, AIDS, hepatitis and infectious disease in immunosuppressed patients. While various procedures

- involving the use of antibodies have been applied in 25 those types of diseases, few if any successful attempts using cytotoxic T-cells have been recorded. Theoretically, cytotoxic T-cells would be the preferable means of treating the types of disease noted above. $\stackrel{\circ}{\sim}$
- 30 However, no procedures have been available to specifically activate cytotoxic T-cells.

Cytotoxic T-cells, or CD8 cells (i.e., cells expressing the molecule CD8) as they are presently known, represent the main line of defense against virals

35 infections. CD8 lymphocytes specifically recognize and

BAD ORIGINAL

- 2 -

kill cells which are infected by a virus. Thus, the cost of eliminating a viral infection is the accompanying loss of the infected cells. The T-cell receptors on the surface of CD8 cells cannot recognize foreign antigens directly. In contrast to antibodies, antigen must first be presented to the receptors.

The presentation of antigen to CD8' T-cells is accomplished by major histocompatibility complex (MHC) molecules of the Class I type. The major histocompatibility complex (MHC) refers to a large 10 genetic locus encoding an extensive family of glycoproteins which play an important role in the immune response. The MHC genes, which are also referred to as the HLA (human leucocyte antigen) complex, are located on chromosome 6 in humans. The molecules encoded by MHC 15 genes are present on cell surfaces and are largely responsible for recognition of tissue transplants as "non-self". Thus, membrane-bound MHC molecules are intimately involved in recognition of antigens by 20 T-cells.

MHC products are grouped into three major classes, referred to as I, II, and III. T-cells that serve mainly as helper cells express CD4 and primarily interact with Class II molecules, whereas CD8-expressing cells, which mostly represent cytotoxic effector cells, interact with Class I molecules.

25

Class I molecules are membrane glycoproteins with the ability to bind peptides derived primarily from intracellular degradation of endogenous proteins.

Complexes of MHC molecules with peptides derived from viral, bacterial and other foreign proteins comprise the ligand that triggers the antigen responsiveness of T-cells. In contrast, complexes of MHC molecules with peptides derived from normal cellular products play a role in "teaching" the T-cells to tolerate self-peptides,

- 3 -

in the thymus. Class I molecules do not present entire, intact antigens; rather, they present peptide fragments thereof, "loaded" onto their "peptide binding groove".

For many years, immunologists have hoped to raise specific cytotoxic cells targeting viruses, retroviruses and cancer cells. While targeting against viral diseases in general may be accomplished in vivo by vaccination with live or attenuated vaccines, no similar success has been achieved with retroviruses or with

- cancer cells. Moreover, the vaccine approach has not had the desired efficacy in immunosuppressed patients. At least one researcher has taken the rather non-specific approach of "boosting" existing CD8' cells by incubating them in vitro with IL-2, a growth factor for T-cells.
- However, this protocol (known as LAK cell therapy) will only allow the expansion of those CD8' cells which are already activated. As the immune system is always active for one reason or another, most of the IL-2 stimulated cells will be irrelevant for the purpose of combatting
- the disease. In fact, it has not been documented that this type of therapy activates <u>any</u> cells with the desired specificity. Thus, the benefits of LAK cell therapy are controversial at best, and the side effects are typically so severe that many studies have been discontinued.
- Several novel molecules which appear to be involved in the peptide loading process have recently been identified. It has also been noted that Class I molecules without bound peptide (i.e., "empty" molecules) can be produced under certain restrictive circumstances.
- These "empty" molecules are often unable to reach the cell surface, however, as Class I molecules without bound peptide are very thermolabile. Thus, the "empty" Class I molecules disassemble during their transport from the interior of the cell to the cell surface.

- 4 -

The presentation of Class I MHC molecules bound to peptide alone has generally ineffective in activating CD8 cells. In nature, the CD8 cells are activated by antigen-presenting cells which present not only a peptide-bound Class I MHC molecule, but also a costimulatory molecule. Such costimulatory molecules include B7 which is now recognized to be two subgroups designated as B7.1 and B7.2. It has also been found that cell adhesion molecules such as integrins assist in this process.

10

15

30

When the CD8' T-cell interacts with an antigen-presenting cell having the peptide bound by a Class I MHC and costimulatory molecule, the CD8' T-cell is activated to proliferate and becomes an armed effector T-cell. See, generally, Janeway and Travers, Immunobiology, published by Current Biology Limited, London (1994), incorporated by reference.

Accordingly, what is needed is a means to activate T-tells so that they proliferate and become cytotoxic. It would be useful if the activation could be done in vitro and the activated cytotoxic T-cells reintroduced into the patient. It would also be desirable if the activation could be done by a synthetic antigen-presenting matrix comprised of a material such as cells which not only presents the selected peptide, but also presents other costimulatory factors which increase the effectiveness of the activation.

It would also be advantageous if it was possible to select the peptide so that substantially only those CD8 cells cytotoxic to cells presenting that peptide would be activated.

BRIEF SUMMARY OF THE INVENTION

The present invention relates to a synthetic antigen-presenting system for presenting an MHC molecule

- 5 -

complexed to a peptide and an assisting molecule to a T-cell to activate the T-cell.

5

10

35

In one embodiment, the system relates to a synthetic antigen-presenting matrix having a support and at least the extracellular portion of a Class I MHC molecule capable of binding to a selected peptide operably linked to the support. The matrix also includes an assisting molecule operably linked to the support. The assisting molecule acts on a receptor on the CD8. Teell. The MHC and assisting molecules are present in sufficient numbers to activate a population of T-cell lymphocytes against the peptide when the peptide is bound to the extracellular portion of the MHC molecule.

It has been found that an antigen-presenting
matrix having both an MHC molecule or a portion of a MHC
molecule together with an assisting molecule, provides a
synergistic reaction in activating T-cell lymphocytes
against the peptide. Examples of assisting molecules are
costimulatory molecules such as B7.1 and B7.2 or adhesion
molecules such as ICAM-1 and LFA-3. The extracellular
portion of such costimulatory molecules can also be used.
Another type of costimulatory molecule is one that reacts
with the CD28 molecule such as anti-CD28 antibodies or
functional portions thereof, e.g. Fab portions.

It has been found that a specifically effective synergistic reaction results from an antigen-presenting matrix having MHC molecules bound with a peptide, a costimulatory molecule, and an adhesion molecule. In particular, a highly effective synergistic generation of cytotoxic T-cell activity results from the combination of B7.1 and ICAM-1.

The support used for the matrix can take several different forms. Examples for the support include solid support such as metals or plastics, porous materials such as resin or modified cellulose columns,

- 6 -

microbeads, microtiter plates, red blood cells and liposomes.

Another type of support is a cell fragment, such as a cell membrane fragment or an entire cell. In this embodiment, the matrix is actually cells which have 5 been transfected to present MHC molecules and assisting molecules on the cell surface to create an antigenpresenting cell (APC). This is done by producing a cell line containing at least one expressible Class I MHC nucleotide sequence for the MHC heavy chain, preferably a 10 cDNA sequence, operably linked to a first promoter and an expressible β -2 microglobulin nucleotide sequence operably linked to a second promoter. The MHC heavy chain and the β -2 microglobulin associate together form the MHC molecule which binds to the peptide. 15 protein binds with the antigenic peptide and presents it on the surface of the cell. The cell also includes a gene for a nucleotide sequence of an assisting molecule operably linked to a third promoter. The assisting molecule is also presented on the surface of the cell. 20 These molecules are presented on the surface of the cell in sufficient numbers to activate a population of T-cell lymphocytes against the peptide when the peptide is bound to the complexes. Other molecules on the surface of a cell or cell fragment such as carbohydrate moieties may 25 also provide some costimulation to the T-cells.

The cell line is synthetic in that at least one of the genes described above is not naturally present in the cells from which the cell line is derived. It is preferable to use a poikilotherm cell line because MHC molecules are thermolabile. A range of species are useful for this purpose. See, for example, U.S. Patent No. 5,314,813 to Petersen et al. which discusses numerous species for this use and is incorporated by reference.

30

- 7 -

It is preferred to use eukaryotic cells and insect cells in particular.

In one embodiment, it is particularly preferred to have at least two assisting molecules, one being a costimulatory molecule and the other being an adhesion molecule. It has been found that this combination has a synergistic effect, giving even greater T-cell activation than either of the individual molecules combined. It has also been found to be advantageous and preferable to have at least one of the transfected genes under control of an inducible promoter.

5

10

35

Using the present invention, it is possible to introduce the peptide to the cell while it is producing MHC molecules and allow the peptide to bind the MHC molecules while they are still within the cell. Alternatively, the MHC molecules can be expressed as empty molecules on the cell surface and the peptide introduced to the cells after the molecules are expressed on the cell surface. In this latter procedure, the use of poikilotherm cells is particularly advantageous because empty MHC molecules, those not yet complexed or bound with peptides, are thermolabile.

Class I MHC molecules have been expressed in insect cells such as Drosophila melanogaster (fruit fly)

cells. Since Drosophila does not have all the components of a mammalian immune system, the various proteins involved in the peptide loading machinery should be absent from such cells. The lack of peptide loading machinery allows the Class I molecules to be expressed as empty molecules at the cell surface.

Another advantage of using insect cells such as the *Drosophila* system is that *Drosophila* cells prefer a temperature of 28 °C rather than 37 °C. This fact is very important, because empty Class I molecules are thermolabile and tend to disintegrate at 37 °C. By

- 8 -

incubating the Class I-expressing Drosophila cells with peptides that can bind to the Class I molecule, it is possible to get virtually every Class I molecule to contain one and the same peptide. The cells are accordingly very different from mammalian cells, where the Class I molecules contain many different types of peptides, most of which are derived from our own, innocuous cellular proteins.

5

25

30

35

The present invention also relates to methods for producing activated CD8 cells in vitro. One method 10 comprises contacting, in vitro, CD8 cells with one of the antigen-presenting matrices described above for a time period sufficient to activate, in an antigen-specific manner, the CD8 cells. The method may further comprise (1) separating the activated CD8 cells 15 from the antigen-presenting matrix; (2) suspending the activated CD8° cells in an acceptable carrier or excipient; and (3) administering the suspension to an individual in need of treatment. The antigens may comprise native or undegraded proteins or polypeptides, 20 or they may comprise antigenic polypeptides which have been cleaved into peptide fragments comprising at least 8 amino acid residues prior to incubation with the human Class I MHC molecules.

In another variation, the invention relates to methods treating conditions in patients and specifically killing target cells in a human patient. The method comprises (1) obtaining a fluid sample containing resting or naive CD8' cells from the patient; (2) contacting, in vitro, the CD8' cells with an antigen-presenting matrix for a time period sufficient to activate, in an antigen-specific manner, the CD8' cells; and (3) administering the activated CD8' cells to the patient. For example, the use of tumor specific peptides allows for the treatment of tumor related diseases by producing

cytotoxic activated CD8' T-cells. The invention also relates to the method of treating a medical condition by administration of an antigen-presenting matrix in a suitable suspension. In various embodiments the condition may comprise cancer, tumors, neoplasia, viral or retroviral infection, autoimmune or autoimmune-type conditions. In one embodiment, the method of administering the matrix comprises intravenous injection.

BRIEF DESCRIPTION OF THE DRAWINGS

10

15

20

25

30

35

Figures 1-3 diagram the construction of expression plasmids pRmHa-2 and pRmHa-3. In Figure 1, pRmHa-2 construction is shown; in Figure 2, pRmHa-3 construction is shown; and in Figure 3, the pRmHa-3 vector is illustrated, showing the restriction, polylinker, promoter, and polyadenylation sites; as well as a site at which a nucleotide sequence may be inserted for expression;

Figures 4 and 5 show peptide-induced thermostabilization of HLA B27 and HLA A2.1 expressed on the surface of *Drosophila* cells by HIV peptides. The mean fluorescence of each cell population is shown plotted against the incubation conditions:

Figure 6 illustrates data from an experiment designed to determine whether insect cells can process antigen and load it onto the Class I molecules, and whether the latter can present either endogenously or exogenously derived antigen to T-cells. Schneider 2 (SC2) or 3T3 cells transfected with Kh/\beta2 were incubated with ovalbumin protein (OvPro) or ovalbumin peptide, OVA 24 (OvPep) in isotonic (Iso) or hypertonic (Hyp) media. (Murine cell line BALB/3T3 is available from the ATCC under accession number CCL 163.) After treatment, cells were cocultured with the T-cell hybridoma B3/CD8. B3/CD8 is a T-cell hybridoma between B3 (Carbone, et al., J. Exp. Med. 169: 603-12 (1989)), cytotoxic T-cell specific

for ovalbumin peptide 253-276 presented by H-2K" Class I molecules, and CD8- bearing IL-2-secreting cell line. Upon antigenic stimulation, B3/CD8 produces IL-2, measured by 'H:thymidine incorporation in IL-2-dependent cell line CTLL (Gillis, et al., J. Immunol. 120: 2027 91978)). Thus, by measuring the amount of IL-2 produced, one can assay for T-cell recognition. The supernatant from the cocultures were analyzed for IL-2 by 'H thymidine incorporation by the IL-2-dependent cell line CTLL (ATCC No. TIB 214). The amount of 'H thymidine incorporated is plotted against the initial cell treatments;

Figure 7 illustrates the expression of B7.1, ICAM-1 and MHC on the surface of transfected *Drosophila* (fly) cells according to the present invention;

Figure 8 is a graph showing results of a fluorescence-activated cell sorter experiment using recombinant L^d mouse MHC linked to red blood cells;

10

15

20

Figure 9 is a graph showing results of a fluorescence-activated cell sorter experiment using recombinant K^h mouse MHC linked to red blood cells;

Figure 10 is a graph demonstrates binding of recombinant $K^{\rm b}$ to microtiter plates by use of labeled antibodies;

Figure 11 is a series of graphs showing the results from fluorescence-activated cell sorter experiments demonstrating the expression of CD69 and CD25 on CD8. 2C cells stimulated with transfected *Drosophila* cells;

Figure 12 is a pair of bar graphs showing IL-2-dependent proliferative responses of CD8 2C cells elicited by peptides presented by *Drosophila* cells transfected with L^d only;

Figure 13 is a graph showing the influence of peptide concentration on day 3 proliferative responses of

CD8 2C cells elicited by peptides presented by transfected *Drosophila* cells;

5

10

15

20

25

30

Figure 14 is a pair of graphs showing the influence of antigen-presenting cells dose on day 3 proliferative response and IL-2 production of CD8 2C cells elicited by peptides presented by transfected Drosophila cells;

Figure 15 is a series of graphs showing the influence of peptide concentration on the proliferative response of CD8 2C cells elicited by *Drosophila* cells transfected with L'.B7, L'.ICAM and L'.B7.ICAM;

Figure 16 is a series of graphs showing the kinetics of the proliferative response of CD8 and CD8 CC cells elicited by *Drosophila* cells transfected with L^d, L^d.B7, L^d.ICAM and L^d.B7.ICAM plus QL9 peptide;

Figure 17 is a series of graphs showing CTL activity of CD8' 2C cells stimulated by Drosophila cells transfected with L^d.B7, L^d.B7.ICAM or L^d.ICAM antigen-presenting cells plus QL9 peptide (10 μ M) in the absence of exogenous cytokines;

Figure 18 is a pair of graphs showing CTL activity of CD8 2C cells stimulated by *Drosophila* cells transfected with L^d . ICAM antigen-presenting cells plus QL9 peptide (10 μ M) in the absence (left) or presence (right) of exogenous IL-2 (20u/ml);

Figure 19 is a pair of graphs showing the proliferative response of normal (non-transgenic) CD8. T-cells to peptides presented by transfected Drosophila cells (left panel) and the response elicited by graded doses of N B6 and 2C B6 CD8. cells cultured with 5 x 10. E10.D2 (L') spleen cells (2000 cGy) in the absence of peptides for 3 days without the addition of exogenous cytokines (right panel);

Figure 20 is a graph showing stimulated
mitogenesis of purified 2C+ T-cells cultured (50,000

- 12 -

cells per well) in plates coated with immobilized molecules with peptide QL9 (solid line = L^d and anti-CD28 antibody, broken line = L^d only);

Figure 21 is a bar graph showing stimulated mitogenesis of purified 2C+ T-cells at day 5 in culture, with various indicated peptides, cultured in 96-well plates coated with L^d and anti-CD28 antibody (hatched bars = no IL-2, black bars = IL-2 added);

5

25

30

Figure 22 is a graphical representation of the results of cytofluorometric analysis of cells recovered after 12 days of culture in plates coated with L" and anti-CD28 antibody and exposed to peptide QL9, stained using the 2C T-cell receptor specific antibody 1B2 (M2 = positive staining cells, M1 = negative staining cells);

Figure 23 is a graphical representation of the results of cytofluorometric analysis of cells recovered after 12 days of culture in plates coated with L^d and anti-CD28 antibody and exposed to peptide p2Ca, stained using the 2C T-cell receptor specific antibody 1B2 (M2 = positive staining cells, M1 = negative staining cells);

Figure 24 is a graphical representation of the results of cytofluorometric analysis of cells recovered after 12 days of culture in plates coated with L' and anti-CD28 antibody and exposed to peptide SL9, stained using the 2C T-cell receptor specific antibody 1B2 (M2 = positive staining cells, M1 = negative staining cells);

Figure 25 is a graph showing cytolysis of target cells by activated T-cells (solid line = peptide QL9, broken line = control peptide LCMV);

Figure 26 is a graphical representation of the cytotoxic lysis resulting from activation of human CD8.

T-cells with antigen-presenting cells loaded with influenza matrix peptide;

Figure 27 is a graphical representation of the cytotoxic lysis resulting from activation of human CD8.

- 13 -

T-cells with antigen-presenting cells loaded with HIV-RT peptide; and

Figure 28 is a graphical representation of the cytotoxic lysis resulting from activation of human CD8. T-cells with antigen-presenting cells loaded with tyrosinase peptide.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a synthetic antigen-presenting system which can be used to activate T-cell lymphocytes. The activated CD8 T-cells proliferate, produce cytokines, become cytotoxic or some combination of these results. In one preferred embodiment, the system activates cytotoxic CD8 cells which then proliferate and then are activated to seek out and destroy target cells. The present invention can be used to activate T-cells in vitro and the activated T-cells are then returned to the patient from which they were originally derived or may be used in vivo activation of T-cells.

The synthetic antigen-presenting system of the present invention has two major components. The first component is at least the extracellular portion of the Class I MHC molecule which is capable of binding to a selected peptide. The second major component is an assisting molecule which assists in the activation of T-cells. In each case, an extracellular portion of a larger molecule can used, but in certain embodiments, the entire molecules are used.

For ease of description, MHC molecules will be discussed generally, with the understanding that an extracellular portion of the MHC molecule may be used. The portion of the MHC molecule necessary for the present invention is the part which binds to the selected peptide and presents the peptide to the T-cell.

- 14 -

The peptide is selected to activate the appropriate T-cell, depending on the treatment to be conducted. For example, in the treatment of particular cancers, certain antigenic peptides are presented on the surface of the cancer cells which will react with activated T-cells. Thus, it is appropriate to use a peptide selected to activate the appropriate T-cells that will then bind with and destroy the cancer cells.

5

20

25

30

35

The present invention allows the MHC molecules to be produced by cells with the peptide already complexed with the MHC molecule or to produce empty MHC molecules which do not yet have a peptide complexed with them. This latter embodiment is particularly useful since it allows the peptide to be chosen after the MHC molecules are prepared.

A Class I MHC molecule includes a heavy chain, sometimes referred to as an alpha chain, and a β -2 microglobulin. As discussed herein, the extracellular portion of the Class I MHC molecule is made up of an extracellular portion of an MHC heavy chain together with the β -2 microglobulin.

In preparing the extracellular portions of MHC to be linked to a support, soluble molecules are prepared as discussed below. These molecules generally lack the transmembrane and cytoplasmic domain in the MHC molecule.

The assisting molecule helps facilitate the activation of the T-cell when it is presented with a peptide/MHC molecule complex. The present invention includes two major categories of assisting molecules. The first category is composed of costimulatory molecules such as B7.1 (previously known as B7 and also known as CD80) and B7.2 (also known as CD86) which binds to CD28 on T-cells. Other costimulatory molecules are anti-CD28 antibodies or the functional portions of such antibodies, e.g. Fab portions that bind to CD28.

- 15 -

The other major category of assisting molecules of the present invention are adhesion molecules. These include the various ICAM molecules, which include ICAM-1, ICAM-2, ICAM-3 and LFA-3. It has been found that the combination of a peptide bound to an MHC molecule used in conjunction with one of these assisting molecules activates the T-cells to an extent previously not seen.

An even greater synergistic reaction has been achieved by using a peptide-bound MHC molecule in conjunction with both a costimulatory molecule and an adhesion molecule. This has been found to be particularly effective in producing cytotoxic CD8 cells.

10

25

30

35

In accordance with the present invention, the MHC molecule and the assisting molecule are operably
linked to a support such that the MHC and assisting molecules are present in sufficient numbers to activate a population of T-cells lymphocytes against the peptide when the peptide is bound to the extracellular portion of the MHC molecule. The peptide can be bound to the MHC molecule before or after the MHC molecule is linked to the support.

The support can take on many different forms. It can be a solid support such as a plastic or metal material, it can be a porous material such as commonly used in separation columns, it can be a liposome or red blood cell, or it can even be a cell or cell fragment. As discussed in more detail below, in the case where a cell serves as a support, the MHC and assisting molecules can be produced by the cell. The MHC molecule is then linked to the cell by at least the transmembrane domain if not also the cytoplasmic domain which would not be present in a soluble form of MHC.

The extracellular portions of MHC molecule and assisting molecule can be linked to a support by providing an epitope which reacts to an antibody

- 16 -

immobilized on the support. In addition, the MHC or assisting molecules can be produced with or linked to (His), which would react with nickel in forming part of the support. Other means to immobilize or link MHC molecules to a support are well known in the art.

As discussed above, the support can be a cell membrane or an entire cell. In such a case, an eukaryotic cell line is modified to become a synthetic antigen-presenting cell line for use with T-cell lymphocytes. For ease of description, antigen-presenting cells (APC) will also be called stimulator cells. Because empty MHC molecules are thermolabile, it is preferred that the cell culture be poikilotherm and various cell lines are discussed in detail below.

10

30

35

15 A culture of cells is first established. culture is then transfected with an expressible Class I MHC heavy chain gene which is operably linked to a promoter. The gene is chosen so that it is capable of expressing the Class I MHC heavy chain. The cell line is also transfected with an expressible β -2 microglobulin 20 gene which is operably linked to a second promoter. gene is chosen such it is capable of expressing β -2 microglobulin that forms MHC molecules with the MHC heavy chain. In the case of soluble extracellular portions of 25 MHC molecules to be used with solid supports and the like, a truncated MHC heavy chain gene is used as discussed in more detail below.

The culture is also transfected with an expressible assisting molecule gene operably linked to a third promoter. The assisting molecule gene is capable of being expressed as an assisting molecule which interacts with the molecule on the T-cell lymphocytes. As discussed below, each of these genes can be transfected using various methods, but the preferred method is to use more than one plasmid.

- 17 -

The cell line transfected is chosen because it lacks at least one of the genes being introduced. been found that insect cells are advantageous not only because they are poikilothermic, but because they lack these genes and the mechanisms which would otherwise produce MHC molecules bound to peptides. This allows for greater control over the production of peptide-bound MHC molecules, and the production of empty MHC molecules. The MHC heavy chain is preferably from a different species, more preferably, a homeotherm such as mammals and, optimally, humans.

5

10

15

20

25

35

The preferred cell line is a stable poikilotherm cell line that has the first promoter being inducible to control the expression of the MHC heavy chain. It is preferred that the cell assembles empty MHC molecules and presents them on the cell surface so that the peptides can be chosen as desired.

The resulting MHC molecules bind to the peptide and are present in sufficient numbers with the assisting molecules on the surface of the cell to activate a population of T-cell lymphocytes against the peptide when the peptide is bound to the MHC cells.

In a further embodiment, a second assisting molecule gene is also transfected into the cell culture. In this case, the first assisting molecule gene can be for a costimulatory molecule and the second assisting molecule gene can be for an adhesion molecule.

It is preferred that at least one of the genes and, in particular, the MHC heavy chain gene be linked to an inducible promoter. This allows control over the 30 production of MHC molecules so that they are only produced at a time when the peptide of interest is available and presented in the culture to react with the produced MHC molecules. This minimizes undesirable MHC molecule/peptide complexes.

- 18 -

Where the cell line already produces one or more of the desired molecules, it is only necessary to transfect the culture with an expressible gene for the gene which is lacking in the cells. For example, if the cells already present the MHC molecules on their surface, it is only necessary to transfect the culture with an expressible gene for the assisting molecule.

The peptide can be introduced into the cell culture at the time the cells are producing MHC molecules. Through methods such as osmotic shock, the peptides can be introduced in the cell and bind to the produced MHC molecules. Alternatively, particularly in the case poikilotherm cell lines, the MHC molecules will be presented empty on the cell surface. The peptide can then be added to the culture and bound to the MHC molecules as desired.

10

15

20

25

30

35

After the cells are produced having MHC and assisting molecules on their surfaces, they can be lyophilized and the fragments of the cells used to activate the population of T-cell lymphocytes.

Transfected cultures of cells can be used to produced extracellular portions of MHC molecules and assisting molecules. The use of extracellular portions in conjunction with supports such as solid supports has certain advantages of production. Where living cells are used to provide a synthetic antigen-presenting cell, at least three genes, two to produce the MHC molecule and one for the assisting molecule must be introduced to the cell. Often, additional genes such as for antibiotic resistance are also transfected.

Where a solid support system is being used, one cell line can produce the extracellular portions of MHC molecules while another cell line produces the extracellular portion of the assisting molecule. The MHC molecule portions and the assisting molecule portions can

- 19 -

then be harvested from their respective cultures. The molecules are then linked to an appropriate support in sufficient numbers to activate a population of T-cell lymphocytes against a peptide when the peptide is bound to the extracellular portion of the MHC molecule. From a production standpoint, two different cultures can be used, but it is also possible to use the same culture, however, requiring that the culture be transfected with the additional gene for the extracellular portion of the assisting molecule.

A further modification of this embodiment is to provide a third culture of cells which is transfected with an expressible second assisting molecule gene. In this example, the second culture of cells produces extracellular portions of the costimulatory molecule while the third culture of cells produce an extracellular portion of an adhesion molecule. The adhesion molecule portions are harvested and linked to the support.

10

The present invention also relates to a method for activating CD8' T-cells against a selected peptide. The method relates to providing a cell line presenting MHC molecules binding a peptide and assisting molecules on their surfaces. Naive CD8' T-cells can be obtained by removal from a patient to be treated. The cultured cells are then contacted with the CD8' T-cells for a sufficient period of time to activate the CD8' T-cell lymphocytes resulting in proliferation and transforming the T-cells into armed effector cells.

The activated CD8' T-cells can then be
separated from the cell line and put into a suspension in
an acceptable carrier and administered to the patient.
An alternative method involves the use of the synthetic
antigen-presenting matrix to activate the CD8' cells.

It is preferred that human genes are used and, therefore, human molecule analogs are produced. As shown

5

10

15

in prior U.S. Patent No. 5,314,813, murine systems provide particularly useful models for testing the operation of T-cell activation and demonstrate the applicability of the process for human systems. See also Sykulev et al., Immunity 1: 15-22 (1994).

1. Human Class I MHC Molecules

Class I MHC molecules comprise a heavy chain and a β -microglobulin protein. A human Class I MHC heavy chain of the present invention is selected from the group comprising HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G, and more preferably, from the group comprising HLA-A, HLA-B, and HLA-C. The heavy chains are useful in either soluble or insoluble form. In the soluble ("sol") form, a stop codon is engineered into the nucleotide sequence encoding the HLA molecule of choice preceding the transmembrane domain.

While it is possible to isolate nucleotide sequences encoding human Class I MHC heavy chains from known, established cell lines carrying the appropriate variants -- e.g., transformed cell lines JY, BM92, WIN, 20 MOC, and MG -- it is more practical to synthesize the nucleotide sequence from a portion of the gene via polymerase chain reaction (PCR), using the appropriate primers. This method has been successfully used to clone full-length HLA cDNA; for example, the sequences for 25 HLA-A25, HLA-A2, HLA-B7, HLA-B57, HLA-B51, and HLA-B37 are deposited in the GenBank database under accession nos. M32321, M32322, M32317, M32318, M32319 and M32320, respectively. Known, partial and putative HLA amino acid and nucleotide sequences, including the consensus 30 sequence, are published (see, e.g., Zemmour and Parham, Immunogenetics 33: 310-320 (1991)), and cell lines expressing HLA variants are known and generally available as well, many from the American Type Culture Collection ("ATCC"). Therefore, using PCR, it is possible to 35

- 21 -

synthesize human Class I MHC-encoding nucleotide sequences which may then be operatively linked to a vector and used to transform an appropriate cell and expressed therein.

Particularly preferred methods for producing the Class I MHC heavy chain, β -2 microglobulin proteins and assisting molecules of the present invention rely on the use of preselected oligonucleotides as primers in a polymerase chain reaction (PCR) to form PCR reaction products as described herein. Gene preparation is typically accomplished by primer extension, preferably by primer extension in a polymerase chain reaction (PCR) format.

10

30

If the genes are to be produced by (PCR)

amplification, two primers, i.e., a PCR primer pair, must
be used for each coding strand of nucleic acid to be
amplified. (For the sake of simplicity, synthesis of an
exemplary HLA heavy chain variant sequence will be
discussed, but it is expressly to be understood that the

PCR amplification method described is equally applicable
to the synthesis of β-2 microglobulin, costimulatory
molecules, adhesion molecules, and all HLA variants,
including those whose complete sequences are presently
unknown.)

The first primer becomes part of the antisense (minus or complementary) strand and hybridizes to a nucleotide sequence conserved among HLA (plus or coding) strands. To produce coding DNA homologs, first primers are therefore chosen to hybridize to (i.e. be complementary to) conserved regions within the MHC genes, preferably, the consensus sequence or similar, conserved regions within each HLA group -- i.e., consensus sequences within HLA-A, HLA-B, HLA-C, and the less-polymorphic groups, HLA-E, -F, and -G.

- 22 -

Second primers become part of the coding (plus) strand and hybridize to a nucleotide sequence conserved among minus strands. To produce the HLA-coding DNA homologs, second primers are therefore chosen to hybridize with a conserved nucleotide sequence at the 5' end of the HLA-coding gene such as in that area coding for the leader or first framework region. In the amplification of the coding DNA homologs the conserved 5' nucleotide sequence of the second primer can be complementary to a sequence exogenously added using 10 terminal deoxynucleotidyl transferase as described by Loh et al., <u>Science 243</u>: 217-220 (1989). One or both of the first and second primers can contain a nucleotide sequence defining an endonuclease recognition site. site can be heterologous to the immunoglobulin gene being 15 amplified and typically appears at or near the 5' end of the primer.

The high turn over rate of the RNA polymerase amplifies the starting polynucleotide as has been described by Chamberlin et al., The Enzymes, ed. P. 20 Boyer, PP. 87-108, Academic Press, New York (1982). Another advantage of T7 RNA polymerase is that mutations can be introduced into the polynucleotide synthesis by replacing a portion of cDNA with one or more mutagenic oligodeoxynucleotides (polynucleotides) and transcribing 25 the partially-mismatched template directly as has been previously described by Joyce et al., Nuc. Acid Res. 17: 711-722 (1989). Amplification systems based on transcription have been described by Gingeras et al., in PCP Protocols, A Guide to Methods and Applications, pp 30 245-252, Academic Press, Inc., San Diego, CA (1990).

PCR amplification methods are described in detail in U.S. Patent Nos. 4,683,192, 4,683,202, 4,800,159, and 4,965,188, and at least in several texts including "PCR Technology: Principles and Applications

35

for DNA Amplification", H. Erlich, ed., Stockton Press, New York (1989); and "PCR Protocols: A Guide to Methods and Applications", Innis et al., eds., Academic Press, San Diego, California (1990). Various preferred methods and primers used herein are described hereinafter and are 5 also described in Nilsson, et al., Cell 58: 707 (1989), Ennis, et al., <u>PNAS USA 87</u>: 2833-7 (1990), and Zemmour, et al., Immunogenetics 33: 310-20 (1991), for example. In particular, it is preferred to design primers from comparison of 5' and 3' untranslated regions of HLA 10 alleles (e.g., -A, -B, -C, -E, -F, or -G alleles), with selection of conserved sequences. Restriction sites may also be incorporated into the 5' and 3' primers to enable the amplification products to be subcloned into 15 sequencing or expression vectors. It may also be helpful to place a 4-base spacer sequence proximal to the restriction site to improve the efficiency of cutting amplification products with enzymes.

The following primers are preferred for amplification of HLA-A, -B, -C, -E, -F, and -G cDNA, 20 preferably in separate reactions. Resulting cDNAs may then be cloned and sequenced as described herein. These primers are appropriate for use in amplifying all known and presently unknown types of HLA.

25 HLA A

> 5' primer: 5' CC ACC ATG GCC GTC ATG GCG CCC (SEQ ID NO 1)

3' primer: 5' GG TCA CAC TTT ACA AGC TCT GAG

3′

3′

30 (SEQ ID NO 2)

HLA B

5' primer: 5' CC ACC ATG CTG GTC ATG GCG CCC

3 ′

(SEQ ID NO 3)

- 24 -

3' primer: 5' GG ACT CGA TGT GAG AGA CAC ATC 3′ (SEQ ID NO 4) HLA C 5 5' primer: 5' CC ACC ATG CGG GTC ATG GCG CCC 3′ (SEQ ID NO 5) 3' primer: 5' GG TCA GGC TTT ACA AGC GAT GAG 3′ 10 (SEQ ID NO 6) HLA E 5' primer: 5' CC ACC ATG CGG GTA GAT GCC CTC C 3′ (SEQ ID NO 7) 15 3' primer: 5' GG TTA CAA GCT GTG AGA CTC AGA 3' (SEQ ID NO 8) HLA F 5' primer: 5' CC ACC ATG GCG CCC CGA AGC CTC 20 3' (SEQ ID NO 9) 3' primer: 5' GG TCA CAC TTT ATT AGC TGT GAG A 3′ (SEQ ID NO 10) 25 HLA G 5' primer: 5' CC ACC ATG GCG CCC CGA ACC CTC 3′ (SEQ ID NO 11) 3' primer: 5' GG TCA CAA TTT ACA AGC CGA GAG 30 3. (SEQ ID NO 12)

In preferred embodiments only one pair of first and second primers is used per amplification reaction.

The amplification reaction products obtained from a

- 25 -

plurality of different amplifications, each using a plurality of different primer pairs, are then combined. However, the present invention also relates to DNA homolog production via co-amplification (using two pairs of primers), and multiplex amplification (using up to about 8, 9 or 10 primer pairs).

In preferred embodiments, the PCR process is used not only to produce a variety of human Class I-encoding DNA molecules, but also to induce mutations which may emulate those observed in the highly-polymorphic HLA loci, or to create diversity from a single parental clone and thereby provide a Class I MHC molecule-encoding DNA "library" having a greater heterogeneity. In addition to the mutation inducing variations described in the above referenced U.S. Patent No. 4,683,195 and such as discussed in U.S. Patent No. 5,314,813.

2. <u>DNA Expression Vectors</u>

A vector of the present invention is a nucleic acid (preferably DNA) molecule capable of autonomous 20 replication in a cell and to which a DNA segment, e.g., gene or polynucleotide, can be operatively linked so as to bring about replication of the attached segment. One of the nucleotide segments to be operatively linked to vector sequences encodes at least a portion of a 25 mammalian Class I MHC heavy chain. Preferably, the entire peptide-coding sequence of the MHC heavy chain is inserted into the vector and expressed; however, it is also feasible to construct a vector which also includes some non-coding MHC sequences as well. Preferably, 30 non-coding sequences of MHC are excluded. Alternatively, a nucleotide sequence for a soluble ("sol") form of an Class I MHC heavy chain may be utilized; the "sol" form differs from the non-sol form in that it contains a "stop" codon inserted at the end of the alpha 3 domain or 35

- 26 -

prior to the transmembrane domain. Another preferred vector includes a nucleotide sequence encoding at least a portion of a mammalian β -2 microglobulin molecule operatively linked to the vector for expression. Still another preferred vector includes a nucleotide sequence encoding at least a portion of a mammalian assisting molecule operably linked to the vector for expression. It is also feasible to construct a vector including nucleotide sequences encoding a Class I MHC heavy chain and a β -2 microglobulin and an assisting molecule, or some combination of these.

5

10

30

A preferred vector comprises a cassette that includes one or more translatable DNA sequences operatively linked for expression via a sequence of nucleotides adapted for directional ligation. 15 cassette preferably includes DNA expression control sequences for expressing the polypeptide or protein that is produced when a translatable DNA sequence is directionally inserted into the cassette via the sequence of nucleotides adapted for directional ligation. 20 cassette also preferably includes a promoter sequence upstream from the translatable DNA sequence, and a polyadenylation sequence downstream from the mammalian MHC heavy chain sequence. The cassette may also include a selection marker, albeit it is preferred that such a 25 marker be encoded in a nucleotide sequence operatively linked to another expression vector sequence.

The choice of vector to which a cassette of this invention is operatively linked depends directly, as is well known in the art, on the functional properties desired, e.g., vector replication and protein expression, and the host cell to be transformed, these being limitations inherent in the art of constructing recombinant DNA molecules.

5

10

In various embodiments, a vector is utilized for the production of polypeptides useful in the present invention, including MHC variants and antigenic peptides. Exemplary vectors include the plasmids pUC8, pUC9, pUC18, pBR322, and pBR329 available from BioRad Laboratories (Richmond, CA), pPL and pKK223 available from Pharmacia (Piscataway, NJ), and pBS and M13mp19 (Stratagene, La Jolla, CA). Other exemplary vectors include pCMU (Nilsson, et al., Cell 58: 707 (1989)). Other appropriate vectors may also be synthesized, according to known methods; for example, vectors pCMU/Kh and pCMUII used in various applications herein are modifications of pCMUIV (Nilsson, et al., supra).

In addition, there is preferably a sequence upstream of the translatable nucleotide sequence encoding a promoter sequence. Preferably, the promoter is conditional (e.g., inducible). A preferred conditional promoter used herein is a metallothionein promoter or a heat shock promoter.

20 Vectors may be constructed utilizing any of the well-known vector construction techniques. Those techniques, however, are modified to the extent that the translatable nucleotide sequence to be inserted into the genome of the host cell is flanked "upstream" of the sequence by an appropriate promoter and, in some 25 variations of the present invention, the translatable nucleotide sequence is flanked "downstream" by a polyadenylation site. This is particularly preferred when the "host" cell is an insect cell and the nucleotide sequence is transmitted via transfection. Transfection 30 may be accomplished via numerous methods, including the calcium phosphate method, the DEAE-dextran method, the stable transfer method, electroporation, or via the liposome mediation method. Numerous texts are available which set forth known transfection methods and other 35

20

25

30

35

procedures for introducing nucleotides into cells; see, e.g., <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons, NY (1991).

The vector itself may be of any suitable type, such as a viral vector (RNA or DNA), naked straight-chain 5 or circular DNA, or a vesicle or envelope containing the nucleic acid material and any polypeptides that are to be inserted into the cell. With respect to vesicles, techniques for construction of lipid vesicles, such as liposomes, are well known. Such liposomes may be 10 targeted to particular cells using other conventional techniques, such as providing an antibody or other specific binding molecule on the exterior of the liposome. See, e.g., A. Huang, et al., J. Biol. Chem. 255: 8015-8018 (1980). See, e.g., Kaufman, Meth. 15 Enzymol. 185: 487-511 (1990).

In a preferred embodiment, the vector also contains a selectable marker. After expression, the product of the translatable nucleotide sequence may then be purified using antibodies against that sequence. One example of a selectable marker is neomycin resistance. A plasmid encoding neomycin resistance, such as phshsneo, phsneo, or pcopneo, may be included in each transfection such that a population of cells that express the gene(s) of choice may be ascertained by growing the transfectants in selection medium.

A preferred vector for use according to the present invention is a plasmid; more preferably, it is a high-copy-number plasmid. It is also desirable that the vector contain an inducible promoter sequence, as inducible promoters tend to limit selection pressure against cells into which such vectors (which are often constructed to carry non-native or chimeric nucleotide sequences) have been introduced. It is also preferable that the vector of choice be best suited for expression

in the chosen host. If the host cell population is a Drosophila cell culture, then a compatible vector includes vectors functionally equivalent to those such as p25-lacZ (see Bello and Couble, Nature 346: 480 (1990)) or pRmHa-1, -2, or -3 (see Bunch, et al., Nucl. Acids 5 Res. 16: 1043-1061 (1988)). In the preferred embodiment, the vector is pRmHa-3, which is shown in Figure 3. This vector includes a metallothionein promoter, which is preferably upstream of the site at which the MHC sequence is inserted, and the polyadenylation site is preferably 10 downstream of said MHC sequence. Insect cells and, in particular, Drosophila cells are preferred hosts according to the present invention. Drosophila cells such as Schneider 2 (S2) cells have the necessary trans-acting factors required for the activation of the 15 promoter and are thus even more preferred.

The expression vector pRmHa-3 is based on the bacterial plasmid pRmHa-1 (Figure 2), the latter of which is based on plasmid pUC18 and is deposited with the American Type Culture Collection (ATCC, Rockville, MD), 20 having the accession number 37253. The pRmHa-3 vector contains the promoter, the 5' untranslated leader sequence of the metallothionein gene (sequences 1-421, SEQ ID NO 13) with the R1 and Stu sites removed; see Figure 3). It also contains the 3' portion of the 25 Drosophila ADH gene (sequence #6435-7270, SEQ ID NO 14) including the polyadenylation site. Therefore, cloned DNA will be transcriptionally regulated by the metallothionein promoter and polyadenylated. Construction of the pRmHa-1 plasmid is described in 30 Eunch, et al., Nucl. Acids Res. 16: 1043-1061 (1988).

Construction of the pRmHa-1 plasmid is described in Bunch, et al., Nucl. Acids Res. 16: 1043-1061 (1988). Construction of the pRmHa-3 and pRmHa-2 plasmids (the latter of which has a metallothionein promoter sequence that may be removed as an Eco RI fragment) is illustrated in Figures 1, 2, and 3. With regard to pRmHa-3, a

- 30 -

preferred plasmid for use according to the present invention, Pst I, Sph I and Hind III are in the promoter fragment and therefore are not unique. Xba is in the ADH fragment (4 bases from its 3' end) and is also not unique. The following restriction sites are, however, unique in pRmHa-3: Eco RI, Sac I, Kpn I, Sma I, Bam HI, Sal I, Hinc 2, and Acc I.

5

25

30

A cassette in a DNA expression vector of this invention is the region of the vector that forms, upon insertion of a translatable DNA sequence, a sequence of 10 nucleotides capable of expressing, in an appropriate host, a fusion protein of this invention. expression-competent sequence of nucleotides is referred to as a cistron. Thus, the cassette preferably comprises DNA expression control elements operatively linked to one 15 or more translatable DNA sequences. A cistron is formed when a translatable DNA sequence is directionally inserted (directionally ligated) between the control elements via the sequence of nucleotides adapted for that purpose. The resulting translatable DNA sequence, namely 20 the inserted sequence, is, preferably, operatively linked in the appropriate reading frame.

DNA expression control sequences comprise a set of DNA expression signals for expressing a structural gene product and include both 5' and 3' elements, as is well known, operatively linked to the cistron such that the cistron is able to express a structural gene product. The 5' control sequences define a promoter for initiating transcription and a ribosome binding site operatively linked at the 5' terminus of the upstream translatable DNA sequence.

Thus, a DNA expression vector of this invention provides a system for cloning translatable DNA sequences into the cassette portion of the vector to produce a

- 31 -

cistron capable of expressing a fusion protein of this invention.

3. Cell Lines

5

10

30

35

A preferred cell line of the present invention is capable of continuous growth in culture and capable of expressing mammalian Class I MHC molecules and assisting molecules on the surface of its cells. Any of a variety of transformed and non-transformed cells or cell lines are appropriate for this purpose, including bacterial, yeast, insect, and mammalian cell lines. (See, e.g., Current Protocols in Molecular Biology, John Wiley & Sons, NY (1991), for summaries and procedures for culturing and using a variety of cell lines, e.g., E. coli and S. cerevisiae.)

Preferably, the cell line is a eukaryotic cell 15 line. More preferably, the cell line is poikilothermic (i.e., less sensitive to temperature challenge than mammalian cell lines). More preferably, it is an insect cell line. Various insect cell lines are available for use according to the present invention, including moth 20 (ATCC CCL 80), armyworm (ATCC CRL 1711), mosquito larvae (ATCC lines CCL 125, CCL 126, CRL 1660, CRL 1591, CRL 6585, CRL 6586) and silkworm (ATCC CRL 8851). preferred embodiment, the cell line is a Drosophila cell line such as a Schneider cell line (see Schneider, J. 25 Embryol. Exp. Morph. 27: 353-365 (1972)); preferably, the cell line is a Schneider 2 (S2) cell line (S2/M3) adapted for growth in M3 medium (see Lindquist, et al., Drosophila Information Service 58: 163 (1982)).

Schneider cells may be prepared substantially as follows. Drosophila melanogaster (Oregon-R) eggs are collected over about a 4 hour interval and are dechlorinated in 2.5% aqueous sodium hypochlorite and surface-sterilized by immersion in 70% ethanol for 20 minutes, followed by an additional 20 minutes in 0.05%

- 32 -

HgCl₂ in 70% ethanol. After being rinsed thoroughly in sterile distilled water, the eggs are transferred to petri dishes containing sterile Metricel black filters backed with Millipore prefilters, both previously wetted with culture medium. The eggs are placed overnight in a 22 °C incubator and removed for culturing when 20-24 hours old. The embryos are each cut into halves or thirds, then placed in 0.2% trypsin (1:250, Difco) in Rinaldini's salt solution (Rinaldini, Nature (London) 173: 1134-1135 (1954)) for 20-45 minutes at room temperature. From 100-300 embryos are used to initiate each culture.

10

After the addition of fetal bovine serum (FBS), the fragments are centrifuged at 100 X g for 2-3 minutes, resuspended in 1.25ml culture medium and seeded into 15 glass T-9 flasks. The cultures are maintained at about 22-27 °C ± 0.5 °C, with a gaseous phase of ambient air. Schneider's culture medium (Schneider, J. Exp. Zool. 156: 91-104 (1964); Schneider, <u>J. Embryol. Exp. Morph. 15</u>: 271-279 (1966)) containing an additional 500mg 20 bacteriological peptone per 100ml medium and supplemented with 15% inactivated FBS is preferably used. The pH (preferably 6.7-6.8) is monitored with 0.01% phenol red. The cell lines are preferably maintained by subculturing every 3-7 days. The cells readily attach to the glass 25 but not so firmly as to require trypsin treatment; typically, simple pipetting is adequate to flush most of the cells from the bottom of the flasks. The morphological appearance of the cells is described in Schneider, J. Embryol. Exp. Morph. 27: 353-365 (1972). 30 They are essentially epithelial-like in appearance and range from about 5-11 μm in diameter and 11-35 μm in length. Small pockets containing rounded cells may be dispersed randomly throughout the other cells.

5

10

15

Preferably, the Schneider 2 (S2) cells are maintained in Schneider's Drosophila medium plus 10% FBS including penicillin (100 unit/ml) and streptomycin (100mg/ml). It is preferable to keep the cells at a density of more than 0.5 X 105/ml, and to grow them at a 24-30 °C temperature range. The cells tend to double in fewer than 24 hours and grow to high cell density, i.e., about 2 X 107/ml or greater. The cells may also be frozen in 90% FBS and 10% DMSO, for later use or analysis. One may place the cells at -70 °C and then store in liquid nitrogen.

A preferred cell line according to the present invention, identified as Schneider 2 (S2) cells, has been deposited pursuant to Budapest Treaty requirements with the American Type Culture Collection (ATCC), Rockville, MD, on February 18, 1992, and was assigned accession number CRL 10974.

Cells of the present invention are transfected with cDNAs encoding (human) MHC heavy chains, β -2 20 microglobulin and one or more assisting molecules, which have each been inserted into (i.e., operatively linked to) an expression vector. In a more preferred embodiment, the vector comprises Drosophila expression plasmid pRmHa-3, into which expressible nucleotide sequences encoding human Class I MHC heavy chains, human 25 β -2 microglobulin or human assisting molecules have been inserted using techniques disclosed herein. Preferably, the cDNAs encoding MHC heavy chains, those encoding β -2 microglobulin and those encoding assisting molecules are 30 operatively linked to separate expression plasmids and are cotransfected into the cultured cells. Alternatively, the cDNAs encoding MHC heavy chains, microglobulin and assisting molecules may be operatively linked to the same expression plasmid and cotransfected 35 via that same plasmid. In another variation, cDNAs

- 34 -

encoding MHC heavy chains, β -2 microglobulin, assisting molecules, and a cytokine such as IL-2 are operatively linked to expression plasmids and are cotransfected into a cell line of the present invention. Selection of HLA genes, construction of appropriate vectors and primer selection are described in greater detail above.

5

Successfully transformed cells, i.e., cells that contain an expressible human nucleotide sequence according to the present invention, can be identified via well-known techniques. For example, cells resulting from 10 the introduction of a cDNA or rDNA of the present invention can be cloned to produce monoclonal colonies. Cells from those colonies can be harvested, lysed, and their DNA content examined for the presence of the rDNA using a method such as that described by Southern, J. 15 Mol. Biol. 98: 503 (1975). In addition to directly assaying for the presence of rDNA, successful transformation or transfection may be confirmed by well-known immunological methods when the rDNA is capable of directing the expression of a subject chimeric 20 polypeptide. For example, cells successfully transformed with an expression vector may produce proteins displaying particular antigenic properties which are easily determined using the appropriate antibodies. addition, successful transformation/transfection may be 25 ascertained via the use of an additional vector bearing a marker sequence, such as neomycin resistance, as described hereinabove.

It is also preferable that the culture be

stabile and capable of sustained growth at reduced
temperatures. For example, it is preferred that the
culture be maintained at about room temperature, e.g.,
about 24-27 °C. In other embodiments, the culture is
maintained at higher temperatures, particularly during
the process of activating CD8 cells. It is thus

30

preferred that a culture according to the present invention be capable of withstanding a temperature challenge of about 30 °C to about 37 °C. Addition of β -2 microglobulin to a culture stabilizes the Class I MHC to at least a 30 °C challenge; addition of β -2 microglobulin and peptides results in greater thermostability at higher temperatures, i.e., at 37 °C.

In order to prepare the culture for expression of empty -- or more preferably, peptide-loaded -- MHC molecules, the culture may first require stimulation, 10 e.g., via CuSO4 induction, for a predetermined period of time. After a suitable induction period -- e.g., about 12-48 hours, peptides may be added at a predetermined concentration (e.g., about $100\mu g/ml$). Peptides may be prepared as discussed below. After a further incubation 15 period -- e.g., for about 12 hours at 27 °C -- the culture is ready for use in the activation of CD8 cells. While this additional incubation period may be shortened or perhaps omitted, the culture tends to become increasingly stable to temperature challenge if it is 20 allowed to incubate for a time prior to addition of resting or naive CD8' cells. For example, cultures according to the present invention to which peptide has been added are capable of expressing significant amounts of peptide-loaded Class I MHC molecules even when 25 incubated for extended periods of time at 37 °C.

Nutrient media useful in the culturing of transformed host cells are well known in the art and can be obtained from numerous commercial sources. In embodiments wherein the host cell is mammalian, a "serum-free" medium is preferably used.

4. Human β -2 microglobulin and Assisting Molecules

In order to establish a cell line capable of producing therapeutically useful amounts of

10

15

20

surface-expressed human Class I MHC molecules, it is preferable to cotransfect a cell line of the present invention with a vector operably linked to a nucleotide sequence encoding β -2 microglobulin in order to effect appropriate levels of expression of human MHC molecules in the cell line. While the nucleotide sequence encoding mammalian β -2 microglobulin such as mouse β -2 microglobulin increases the stability of the human Class I MHC molecules expressed in the cell lines of the present invention, it is preferable to cotransfect the cell line with a vector operably linked to an expressible nucleotide sequence encoding a human β -2 microglobulin.

As discussed above, a preferred vector according to the present invention includes a nucleotide sequence encoding at least a portion of a mammalian β -2 microglobulin molecule operatively linked to the vector for expression. The gene for the assisting molecules can be linked to the same or another vector. It is also feasible to construct a vector including nucleotide sequences encoding both a Class I MHC heavy chain and a β -2 microglobulin.

The sequencing and primers used for the assisting molecules are discussed in more detail below. However, the protocols are similar.

A human β -2 microglobulin cDNA sequence has been published (see Suggs, et al., <u>PNAS 78</u>: 6613-17, 1981) and the sequence was used as a template for a polymerase chain reaction (PCR) using the following primers:

30 5' primer:

5' GCTTGGATCCAGATCTACCATGTCTCGCTCCGTGGCCTTAGCTGTGCT CGCGCTACTCTC 3' (SEQ ID NO 15)

3' primer

35 5' GGATCCGGATGGTTACATGTCGCGATCCCACTTAAC 3'

30

(SEQ ID NO 16)

The primers are used in a standard PCR reaction (see above and references cited therein). The reaction products are extracted with phenol, purified using a Geneclean kit (Bio 101, San Diego, CA), digested with Bam HI and cloned into the Bam HI site of pBS (Stratagene, La Jolla, CA). After verification of the sequence, this Bam HI fragment is cloned into the Bam HI site of an appropriate expression vector. In the preferred embodiment, human β -2 microglobulin cDNA is synthesized and operably linked to expression vector pRmHa-3.

5. Peptides

Virtually all cellular proteins in addition to viral antigens are capable of being used to generate relevant peptide fragments that serve as potential Class I MHC ligand. In most mammalian cells, then, any particular MHC peptide complex would represent only a small proportion of the total MHC encoded molecules found on the cell surface. Therefore, in order to produce surface-expressed human Class I MHC molecules that have an increased capacity to specifically activate CD8 cells, it is preferable to isolate and load peptide fragments of appropriate size and antigenic

The peptides of the present invention bind to Class I MHC molecules. The binding occurs under biological conditions which can be created *in vivo* as well as *in vitro*. The exact nature of the binding of the peptides need not be known for practice of the invention.

In a preferred embodiment, the peptides to be loaded onto the Class I MHC molecules are antigenic. It is also preferred that the peptides be of a uniform size, preferably 8-mers or 9-mers, and most preferably, 8-mers.

35 It is also preferable that the peptides prepared for

loading onto the MHC molecules be of a single species; i.e., that all peptides loaded onto the MHC be identical in size and sequence. In this manner, it is possible to produce monoantigenic peptide-loaded MHC molecules.

5

10

15

35

Peptides may be presented to the cells via various means. Preferably, peptides are presented in a manner which allows them to enter an intracellular pool of peptides. For example, peptides may be presented via osmotic loading. Typically, peptides are added to the culture medium. The peptides may be added to the culture in the form of an intact polypeptide or protein which is subsequently degraded via cellular processes, e.g., via enzymatic degradation. Alternatively, the intact polypeptide or protein may be degraded via some other means such as chemical digestion (e.g. cyanogen bromide) or proteases (e.g. chymotrypsin) prior to its addition to the cell culture. In other embodiments, the peptides are presented in smaller segments which may or may not comprise epitopic amino acid sequences.

In a preferred embodiment, a sufficient amount of protein(s) or peptide(s) is added to the cell culture to allow the Class I MHC molecules to bind and subsequently present a large density of the peptide -- preferably, with the same kind of peptide attached to each MHC -- on the surface of human Class I MHC-expressing cells of the present invention. It is also preferred to allow the human Class I MHC heavy chains and human β-2 microglobulin to bind -- i.e., to form heterodimers -- prior to presenting peptide to the MHC molecules intracellularly.

In another embodiment of the invention, peptides are added to transfected cells of the present invention in order to enhance the thermostability of the MHC molecules expressed by the cells. As noted above, peptides are preferably added to the culture medium.

WO 96/27392 PCT/US96/03249

- 39 -

Antigenic peptides that bind to the Class I molecules serve to thermostabilize the MHC molecules and also increase the cell surface expression. Cultures with added peptides which bind to the MHC molecules are thus significantly less susceptible to temperature challenge than cultures without added peptide.

5

In one embodiment of the present invention, antigenic peptides are presented to the transformed/transfected cell line in various forms. example, an entire protein or other antigenic polypeptide 10 may be degraded chemically or enzymatically, for example, and added to the cell line in this form. For example, a protein of interest is degraded with chymotrypsin and the resultant mixture of peptide "fragments" is added to a transformed or transfected cell culture; these cells are 15 then allowed to "choose" the appropriate peptides (which are often smaller peptides, preferably 8mers or 9mers) to load onto the Class I MHC molecules. Alternatively, an entire protein or polypeptide sequence may be cloned into an appropriate vector and inserted into a procaryotic 20 cell, whereby the cell generates significant amounts of the antigenic polypeptide which are then harvested, purified, and digested into peptides which are then added to the transformed/transfected eukaryotic cell culture. The cells again would be allowed to "choose" the peptides 25 to load onto the expressed MHC.

6. <u>Isolation of Resting or Precursor CD8</u>.

Resting (or naive or precursor) CD8 cells -
i.e., T-cells that have not been activated to target a

specific antigen -- are preferably extracted from the

patient prior to incubation of the CD8 cells with the

transformed cultures of the present invention. It is

also preferred that precursor CD8 cells be harvested

from a patient prior to the initiation of other treatment

WO 96/27392 PCT/US96/03249

or therapy which may interfere with the CD8' cells' ability to be specifically activated. For example, if one is intending to treat an individual with a neoplasia or tumor, it is preferable to obtain a sample of cells and culture same prior to the initiation of chemotherapy or radiation treatment.

5

10

Methods of extracting and culturing lymphocytes are well known. For example, U.S. Patent No. 4,690,915 to Rosenberg describes a method of obtaining large numbers of lymphocytes via lymphocytopheresis.

Appropriate culturing conditions used are for mammalian cells, which are typically carried out at 37 °C.

Various methods are also available for separating out and/or enriching cultures of precursor CD8 cells. Some examples of general methods for cell separation include indirect binding of cells to specifically-coated surfaces. In another example, human peripheral blood lymphocytes (PBL), which include CD8 cells, are isolated by Ficoll-Hypaque gradient centrifugation (Pharmacia, Piscataway, NJ). PBL lymphoblasts may be used immediately thereafter or may be stored in liquid nitrogen after freezing in FBS containing 10% DMSO (Sigma Chemical Co., St. Louis, MO), which conserves cell viability and lymphocyte functions.

Alternative methods of separating out and/or enriching cultures of precursor cells include both positive and negative selection procedures. For positive selection, after lymphocyte-enriched PBL populations are prepared from whole blood, sub-populations of CD8.

30 lymphocytes are isolated therefrom by affinity-based separation techniques directed at the presence of the CD8 receptor antigen. These affinity-based techniques include flow microfluorimetry, including fluorescence-activated cell sorting (FACS), cell adhesion, and like methods. (See, e.g., Scher and Mage,

10

in <u>Fundamental Immunology</u>, W.E. Paul, ed., pp. 767-780, River Press, NY (1984).) Affinity methods may utilize anti-CD8 receptor antibodies as the source of affinity reagent. Alternatively, the natural ligand, or ligand analogs, of CD8 receptor may be used as the affinity reagent. Various anti-T-cell and anti-CD8 monoclonal antibodies for use in these methods are generally available from a variety of commercial sources, including the American Type Culture Collection (Rockville, MD) and Pharmingen (San Diego, CA).

Negative selection procedures are utilized to effect the removal of non-CD8 from the CD8 population. This technique results in the enrichment of CD8 cells from the T- and B-cell population of leucophoresed

- patients. Depending upon the antigen designation, different antibodies may be appropriate. (For a discussion and review of nomenclature, antigen designation, and assigned antibodies for human leucocytes, including T-cells, see Knapp, et al.,
- Immunology Today 10: 253-258 (1989) and Janeway et al.,

 Immunobiology, supra.) For example, monoclonal
 antibodies OKT4 (anti-CD4, ATCC No. CRL 8002) OKT 5 (ATCC
 Nos. CRL 8013 and 8016), OKT 8 (anti-CD8, ATCC No. CRL
 8014), and OKT 9 (ATCC No. CRL 8021) are identified in
- the ATCC Catalogue of Cell Lines and Hybridomas (ATCC, Rockville, MD) as being reactive with human T lymphocytes, human T-cell subsets, and activated T-cells, respectively. Various other antibodies are available for identifying and isolating T-cell species.
- In a further embodiment, CD8 cells can be isolated by combining both negative and positive selection procedures. (See, e.g. Cai and Sprent, <u>J. Exp. Med. 179</u>: 2005-2015 (1994)).

Preferably, the PBLs are then purified. For example, Ficoll gradients may be utilized for this

10

35

The purified PBLs would then be mixed with purpose. syngeneic Drosophila cells preincubated with the appropriate antigenic peptides.

In Vitro Activation of CD8 Cells 7.

In order to optimize the in vitro conditions for the generation of specific cytotoxic T-cells, the culture of antigen-presenting cells is maintained in an appropriate medium. In the preferred embodiment, the antigen-presenting cells are Drosophila cells, which are preferably maintained in serum-free medium (e.g. Excell 400).

Prior to incubation of the antigen-presenting cells with the cells to be activated, e.g., precursor CD8' cells, an amount of antigenic peptide is added to the antigen-presenting cell culture, of sufficient 15 quantity to become loaded onto the human Class I molecules to be expressed on the surface of the antigen-presenting cells. According to the present invention, a sufficient amount of peptide is an amount that will allow about 200 to about 500,000 and preferably 20 about 200 to 1,000 or more, human Class I MHC molecules loaded with peptide to be expressed on the surface of each antigen-presenting cell. Preferably, the antigen-presenting cells are incubated with $>20\mu g/ml$ 25 peptide.

Resting or precursor CD8 cells are then incubated in culture with the appropriate antigen-presenting cells for a time period sufficient to activate and further enrich for a population of CD8 cells. Preferably, the CD8 cells shall thus be 30 activated in an antigen-specific manner. The ratio of resting or precursor CD8' (effector) cells to antigen-presenting cells may vary from individual to individual and may further depend upon variables such as the amenability of an individual's lymphocytes to

culturing conditions and the nature and severity of the disease condition or other condition for which the within-described treatment modality is used. Preferably, however, the lymphocyte:antigen-presenting cell (e.g.

- Drosophila cell) ratio is preferably in the range of 5 about 30:1 to 300:1. For example, in one embodiment, 3 \times 10' human PBL and 1 X 10' live Drosophila cells were admixed and maintained in 20 ml of RPMI 1640 culture medium.
- 10 The effector/antigen-presenting culture may be maintained for as long a time as is necessary to activate and enrich for a population of a therapeutically useable or effective number of CD8' cells. In general terms, the optimum time is between about one and five days, with a 15
- "plateau" -- i.e. a "maximum" specific CD8' activation level -- generally being observed after five days of culture. In one embodiment of the present invention, in vitro activation of CD8' cells is detected within a brief period of time after transfection of a cell line. In one
- embodiment, transient expression in a transfected cell 20 line capable of activating CD8 cells is detectable within 48 hours of transfection. This clearly indicates that either stable or transient cultures of transformed cells expressing human Class I MHC molecules are effective in activating CD8 cells. 25

Preferably, the enrichment and concordant activation of CD8 cells is optimal within one week of exposure to antigen-presenting cells. Thereafter, in a preferred embodiment, the enriched and activated CD8:

- cells are further purified by isolation procedures 30 including site restriction, rosetting with antibody-red blood cell preparations, column chromatography and the Following the purification, the resulting CD8 cell preparation is further expanded by maintenance in
- culture for a period of time to obtain a population of 35

35

10° activated CD8' cells. This period may vary depending on the replication time of the cells but may generally be 14 days. Activation and expansion of CD8' cells has been described by Riddell et al., <u>Curr. Opin. Immunol.</u>, <u>5</u>: 484-491 (1993).

8. <u>Separation of CD8 Cells</u> from *Drosophila* Cells

Activated CD8' cells may be effectively separated from the stimulator (e.g., Drosophila) cells using one of a variety of known methods. For example, monoclonal antibodies specific for the stimulator cells, for the peptides loaded onto the stimulator cells, or for the CD8' cells (or a segment thereof) may be utilized to bind their appropriate complementary ligand.

- Antibody-tagged cells may then be extracted from the stimulator-effector cell admixture via appropriate means, e.g., via well-known immunoprecipitation or immunoassay methods.
- Administration of Activated CD8 Cells 9. 20 Effective, cytotoxic amounts of the activated CD8 cells can vary between in vitro and in vivo uses, as well as with the amount and type of cells that are the ultimate target of these killer cells. The amount will also vary depending on the condition of the patient and should be determined via consideration of all appropriate 25 factors by the practitioner. Preferably, however, about 1 X 10 to about 1 X 10 12 , more preferably about 1 X 10 $^{\circ}$ to about 1 X 10^{11} , and even more preferably, about 1 X 10° to about 1 X 10^{10} activated CD8 cells are utilized for adult humans, compared to about 5 X 10" - 5 X 10" cells 30 used in mice.

Preferably, as discussed above, the activated CD8 cells are harvested from the *Drosophila* cell culture prior to administration of the CD8 cells to the individual being treated. It is important to note,

W 96/27392 PCT/US96/03249

- 45 -

however, that unlike other present and proposed treatment modalities, the present method uses a cell culture system (i.e., *Drosophila* cells) that are not tumorigenic. Therefore, if complete separation of *Drosophila* cells and activated CD8 cells is not achieved, there is no inherent danger known to be associated with the administration of a small number of *Drosophila* cells, whereas administration of mammalian tumor-promoting cells may be extremely hazardous.

Methods of re-introducing cellular components are known in the art and include procedures such as those exemplified in U.S. Patent No. 4,844,893 to Honsik, et al. and U.S. Patent No. 4,690,915 to Rosenberg. For example, administration of activated CD8 cells via intravenous infusion is appropriate.

10. HLA Typing

5

10

15

As noted previously, HLA haplotypes/allotypes vary from individual to individual and, while it is not essential to the practice of the present invention, it is often helpful to determine the individual's HLA type. The HLA type may be determined via standard typing procedures and the PBLs purified by Ficoll gradients. The purified PBLs would then be mixed with syngeneic Drosophila cells preincubated with the appropriate antigenic peptides -- e.g., in therapeutic applications relating to viral infections, cancers, or malignancies, peptides derived from viral- or cancer-specific proteins.

Continuing to use viral or malignant conditions as an example, in those instances in which specific peptides of a particular viral- or cancer-specific antigen have been characterized, the synthesized peptides encoding these epitopes will preferably be used. In cases in which the preferred antigenic peptides have not been precisely determined, protease digests of viral- or cancer-specific proteins may be used. As a source for

such antigen, cDNA encoding viral- or cancer-specific proteins is cloned into a bacterial expression plasmid and used to transform bacteria, e.g., via methods disclosed herein.

5 After HLA typing, if Drosophila cells expressing the preferred HLA are not available, cDNAs encoding the preferred HLA may be cloned via use of the polymerase chain reaction. The primers disclosed in section B.1. above (SEQ ID NO 1 through SEQ ID NO 12) may be used to amplify the appropriate HLA-A, -B, -C, -E, -F, 10 or -G cDNAs in separate reactions which may then be cloned and sequenced as described in the methods disclosed for HLA A2.1 below. Stable cell lines expressing the cloned HLA may then be established in the Drosophila cells. Alternatively, a population of insect 15 cells transiently expressing a bulk population of cloned recombinant molecules from the PCR reaction may be used for in vitro CD8 activation.

EXAMPLES

The following examples are intended to illustrate, but not limit, the present invention.

Example 1

Expression of Human Class I MHC Molecules

A. <u>Preparation of pRmHa-3 Expression Vector</u>

The pRmHa-3 expression vector for use in expressing MHC proteins in *Drosophila* Schneider 2 (S2) cells as described in this invention was constructed by ligating a Sph I linearized pRmHa-1 DNA expression vector with a DNA fragment resulting from a Sph I restriction digest of a pRmHa-2 expression vector as described below. The ligating of pRmHa-1 with the pRmHa-2 fragment in this manner was performed to remove one of two Eco RI restriction endonuclease cloning sites present in pRmHa-1. Thus, the resultant pRmHa-3 expression vector contained only one Eco RI restriction site in the

multiple cloning site (polylinker) into which various MHC-encoding DNA fragments were inserted as described in the Examples.

1. Preparation of pRmHa-1 Expression Vector

The pRmHa-1 expression vector, containing a metallothionein promoter, metal response consensus sequences (designated MT) and an alcohol dehydrogenase (ADH) gene containing a polyadenylation signal isolated from *Drosophila melanogaster*, was constructed as

- described by Bunch et al., <u>Nucl. Acids Res. 16</u>: 1043-61 (1988). A schematic of the final pRmHa-1 construct is shown in Figure 2. The plasmid expression vector, pUC18, having the ATCC accession number 37253, was used as the source vector from which subsequent vectors described
- herein were derived. The pUC18 plasmid contains the following restriction sites from 5' to 3' in the multiple cloning site, all of which are not illustrated in the schematic representations of the pUC18-derived vectors in Figure 1: Eco RI; Sac I; Kpn I; Sma I and Sma I located
- at the same position; Bam HI; Xba I; Sal I, Acc I and Hinc II located at the same position; Pst I; Sph I and Hind III. The pUC18 vector was first digested with Hind III to form a linearized pUC18. Blunt ends were then created by filling in the Hind III ends with DNA
- polymerase I large fragment as described by Maniatis et al., Molecular Cloning: A Laboratory Manual, eds. Cold Spring Harbor Laboratory, New York (1982).

The resultant linearized blunt-ended pUC18
vector was ligated with a 740 base pair (bp) Hinf I

fragment from the Drosophila melanogaster ADH gene
containing a polyadenylation signal. The ligated ADH
allele was first isolated from the plasmid pSACI,
described by Goldberg et al., PNAS USA 77: 5794-5798
(1980), by digestion with Hinf I followed by blunt ending
with Klenow resulting in the nucleotide sequence listed

in SEQ ID NO 14. The pSACI vector containing the ADH allele was constructed by subcloning into pBR322 (ATCC accession number 31344) a 4.7 kilobase (kb) Eco RI fragment of Drosophila DNA selected from a bacteriophage lambda library containing random, high molecular weight 5 (greater than 15 kb). The 5' Hinf I restriction site occurred naturally in the ADH gene at position 1770 as described by Kreitman, Nature 304: 412-417 (1983). 3' Hinf I site was derived from the pUC18 vector into which the ADH gene had been cloned. This position was 10 four bases 3' to the Xba I site at position 2500 of the ADH gene. The ADH segment extended from the 35 bp upstream of the polyadenylation/cleavage sequence in the 3' untranslated portion of the ADH mRNA to 700 bp downstream of the polyadenylation signal. The resultant 15 pUC18-derived vector containing the ADH gene fragment was designated pHA-1 as shown in Figure 1.

The 421 bp Eco RI/Stu I MT gene fragment was obtained from a clone containing DNA of approximately

15.3 kb in a Drosophila melanogaster genomic DNA library. The library, prepared with a Mbo I partial digestion of imaginal DNA, was cloned in the lambda derivative EMBL4. The fragment contained the MT promoter and metal response consensus elements of the Drosophila MT gene (Maroni et

- al., <u>Genetics 112</u>: 493-504 (1986)). This region, containing the promoter and transcription start site at nucleotide 1+, corresponded to position -370 to nucleotide position +54 of the MT gene (SEQ ID NO 13). The resultant fragment was then ligated into pHA-1
- expression vector prepared above that was previously linearized with Eco RI and Sma I. The 3' blunt end in MT created by the Stu I digest was compatible with the blunt end in pHA-1 created by the Sma I digest. The resultant pUC18-derived vector containing a 5' Drosophila MT gene
- 35 fragment and a 3' ADH gene fragment was designated

The pRmHa-1 expression vector, shown in Figure 2, contained the origin of replication (ori) and the beta-lactamase gene conferring resistance to ampicillin (Amp') from pUC18 as shown in Figure 1 on the pHa-1 vector. The diagram of pRmHa-1 also shows the 5' to 3' contiguous positions of the MT gene fragment, the multiple cloning site and the ADH gene fragment. pRmHa-1 vector was used as described in c. below in the construction of the pRmHa-3 expression vector.

10

Preparation of pRmHa-2 Expression Vector The construction of pRmHa-2 is shown in Figure 1. For constructing the pRmHa-2 expression vector, the MT fragment prepared above was inserted into the pUC18-derived vector pHA-1 as described for constructing pRmHa-1 above with a few modifications. 15 An Eco RI linker was added to the Stu I site of the Eco RI/Stu I-isolated MT gene fragment prepared above to form a metallothionein fragment having Eco RI restriction sites on both ends. The resultant fragment was then ligated into the ADH fragment-containing pUC18 expression 20 vector that was previously linearized with Eco RI. resultant pUC18-derived vector containing a 5' Drosophila MT gene fragment and a 3' ADH gene fragment having two

Eco RI restriction sites 5' to the multiple cloning site was designated pRmHa-2. The pRmHa-2 expression vector, 25 shown in Figure 1, contained the origin of replication (ori) and the beta-lactamase gene conferring resistance to ampicillin (Amp') from pUC18. The diagram of pRmHa-2 also shows the 5' to 3' contiguous positions of the MT gene fragment, the multiple cloning site and the ADH gene 30 fragment. The pRmHa-2 vector was used along with pRmHa-1 as described in c. below in the construction of the pRmHa-3 expression vector.

15

25

30

Preparation of pRmHa-3 Expression Vector

To prepare the pRmHa-3 expression vector that had only one Eco RI restriction site, a fragment from pRmHa-2 was ligated into pRmHa-1. For this construction, pRmHa-2, prepared in b. above, was first digested with 5 Sph I. The resultant Sph I fragment beginning in the middle of the MT gene and extending to the Sph I site in the multiple cloning site was first isolated from the pRmHa-2 vector and then ligated into pRmHa-1 prepared in A.1. above. The pRmHa-1 vector was previously modified to remove the Eco RI restriction site 5' to the MT gene fragment then linearized with Sph I. This process is schematically illustrated in Figure 2. To remove the Eco RI site in pRmHa-1, the vector was first digested with Eco RI to form a linearized vector, then blunt ended with Mung Bean nuclease and religated.

The pRmHa-1 vector lacking an Eco RI site was then digested with Sph I to remove the region corresponding to the Sph I fragment insert from pRmHa-2 and form a linearized pRmHa-1 vector. The Sph I fragment 20 from pRmHa-2 was then ligated into the Sph I linearized pRmHa-1 to form the pRmHa-3 expression vector. A schematic of the pRmHa-3 vector is shown in Figure 3. The relative positions of the various restriction sites from the pUC18 vector from which pRmHa-3 was derived are indicated on the figure. In addition, the relative positions and lengths of the MT and ADH gene fragments separated by the multiple cloning site (polylinker) into which the MHC gene of interest is cloned are indicated on the figure. The pRmHa-3 vector, being derived from pUC18, contains the pUC18 origin of replication and beta-lactamase gene conferring ampicillin resistance. Thus, MHC encoding DNA fragments as prepared in this invention and cloned into the multiple cloning site of

WO 96/27392 PCT/US96/03249

- 51 -

pRmHa-3 were transcriptionally regulated by the MT promoter and polyadenylated via the ADH gene.

B. <u>cDNA Synthesis</u>

Detailed descriptions of the cDNA of Class I

MHC molecules of various HLA groups can be found in U.S.

Patent No. 5,314,813 to Peterson et al. which has been incorporated by reference.

cDNAs encoding any preferred HLA may be cloned via use of the polymerase chain reaction. The primers disclosed in section B.1. above (SEQ ID NO 1 through SEQ 10 ID NO 12) may be used to amplify the appropriate HLA-A, -B, -C, -E, -F, or -G cDNAs in separate reactions which may then be cloned and sequenced as described in the methods disclosed for HLA A2.1 above. Preparation of cDNA from human cells is carried out as described in 15 Ennis, et al., PNAS USA 87: 2833-2837 (1990). Briefly, a blood sample is obtained from the individual and cells are collected after centrifugation and used to prepare total RNA. First strand cDNA is synthesized by using oligo(dT) and avian myeloblastosis virus reverse 20 transcriptase. The resulting cDNA is used in a PCR amplification reaction utilizing the appropriate primer(s) as noted in section B.1. above, and a GeneAmp kit and thermal cycler (Perkin-Elmer/Cetus). Reaction conditions are preferably as follows. 25 100ng cDNA template and 50 picomoles of each oligonucleotide primer are used. Thirty cycles are run as follows: minute at 94 °C; (b) one minute at 60 °C; and (c) one minute, 30 seconds at 72 °C. The PCR reaction is then heated to 100 °C for 10 minutes to kill the Taq 30 polymerase and the ends of the DNA made blunt by T4

polymerase (Stratagene, San Diego, CA).

To synthesize HLA A2.2, cDNA encoding a complete A2.2 (see Holmes, et al., <u>J. Immunol. 139</u>: 936-41 (1987), for the published sequence) is cloned into

35

WO 96/27392 PCT/US96/03249

- 52 -

an M13mp19 plasmid, a commercially available bacteriophage vector (Stratagene, La Jolla, CA). cDNA is synthesized by PCR using primers derived from the published sequence of A2. The cDNA is released from an M13mp19 clone as a Not I (overhang filled with 5 Klenow)/Eco RI fragment. (Klenow fragments are part of the E. coli DNA polymerase I molecule, produced by the treatment of E. coli DNA pol I with subtilisin. used to "fill out" 5' or 3' overhangs at the ends of DNA molecules produced by restriction nucleases.) 10 I/Eco RI fragment is inserted into pSP64T digested with Bg III (ends filled with Klenow) and Eco RI. pSP64T is an SP6 cloning vector designed to provide 5' and 3' flanking regions from an mRNA which is efficiently translated (β -globin) to any cDNA which contains its own 15 initiation codon. This translation SP6 vector was constructed by digesting pSP64-Xetam with Bal I and Bst EII, filling in the staggered ends with T4 DNA polymerase and adding a Bgl II linker by ligation. Bal I cuts the β -globin cDNA two bases upstream of the ATG (start codon) 20 and Bst EII cuts eight bases upstream of the TAA (stop codon). There is only one Bgl II site in pSP64T so that restriction enzymes cutting in the polylinker fragment, from Pst I to Eco RI can still be used to linearize the plasmid for transcription. (See Kreig and Melton, 25 Nucleic Acid Res. 12: 7057-7070, (1984), which also describes the construction of the plasmid pSP64-Xetam.) The resulting plasmid is cleaved with Eco RI (end filled with Klenow) and Hind III which is cloned into the pCMUII polylinker between Hind III (5') and Stu I (3'). 30 Paabo, et al., <u>EMBO J. 5</u>: 1921-1927 (1986).) The entire cDNA is removed as a Hind III (end filled with Klenow) Bam HI fragment which is cloned into pRmHa-3 cleaved with Sma I and Bam HI.

15

HLA A2.2 soluble form was prepared by engineering a stop codon into the above-described A2.2 cDNA immediately preceding the transmembrane domain. The modification is achieved by cleaving the A2.2 cDNA cloned in the eukaryotic expression vector pCMUII between Hind III 5' and Stu I 3' (see above) with Mbo II and Bam HI inserting the following oligonucleotides:

5' primer: 5' GGAGCCGTGACTGAG 3' (SEQ ID NO 17)

3' primer: 5' CCCTCGGCACTGACTCCTAG 3' (SEQ ID NO 18)

The resulting recombinant plasmid is cleaved with Hind III, the overhanging end filled with Klenow, then cut with Bam HI releasing a restriction fragment which is cloned into pRmHa-3 in the same way as A2.2 full length.

Construction of Murine ICAM-1 Expression Vector
 Spleen cells were isolated from Balb/c mice.

The spleen cells were stimulated with conA; mRNA was

isolated using the FastTrack kit (Invitrogen, San Diego,
CA) according to the manufacturers' instructions. cDNA
was synthesized from the mRNA using AMV reverse
transcriptase kit (Promega, Madison, WI) according to the
manufacturers' instructions. Based on the published cDNA
nucleotide sequence (Siu, G. et al., J. lmmunol. 143,
3813-3820 (1989) the following oligonucleotides were
synthesized as PCR primers:

- 5': TTTAGAATTCAC CATGGCTTCA ACCCGTGCCA AG
- 3': TTTAGTCGACTC AGGGAGGTGG GGCTTGTCC
- The cDNA synthesized was subjected to PCR using these primers. The product was cleaved with the restriction enzymes Eco RI and Sal I and ligated into pRmHa-3, which had been digested with the restriction enzymes Eco RI and Sal I.

2. Construction of Murine B7.1 Expression Vector

Spleen calls were isolated from Balb/c mice and stimulated with conA. Messenger RNA was isolated using the FastTrack kit (Invitrogen, San Diego, CA) according to the manufacturer's instructions. cDNA was synthesized from the mRNA using AMV reverse transcriptase kit (Promega, Madison, WI) according to the manufacturer's instructions.

Based on the published cDNA nucleotide sequence (Freeman, et al., J. Exp. Med. 174: 625-631 (1991)) the following oligonucleotides were synthesized as PCR primers:

- 5': TTTAGAATTCAC CATGGCTTGC AATTGTCAGT TG
- 3': TTTAGTCGACCT AAAGGAAGAC GGTCTGTTC
- The cDNA synthesized was subjected to PCR using these primers. The product was cleaved with the restriction enzymes Eco RI and Sal I and ligated into pRmHa-3, which had been digested with the restriction enzymes Eco RI and Sal I.

20 3. Construction of Murine B7.2 Expression Vector

IC-21 cells (obtained from ATCC) were propagated in RPMI 1640 medium containing 10% Fetal Calf Serum. mRNA was isolated from these cells using the FastTrack kit (Invitrogen, San Diego, CA) according to

- the manufacturer's instructions. cDNA was synthesized from the mRNA using AMV reverse transcriptase kit (Promega, Madison., WI) according to the manufacturer's instructions. Based on the published cDNA nucleotide sequence (Freeman, et al., J. Exp. Med. 178: 2185-2192
- 30 (1993)) the following oligonucleotides were synthesized as PCR primers:
 - 5': TTTAGAATTCAC CATGGACCCC AGATGCACCA TGGG
 - 3': TTTAGTCGACTC ACTCTGCATT TGGTTTTGCT GA

The cDNA synthesized was subjected to PCR using these

35 primers. The product was cleaved with the restriction

WO 96/27392 PCT/US96/03249

enzymes Eco RI and Sal I and ligated into pRmHa-3, which had been digested with the restriction enzymes Eco RI and Sal I.

The above expression constructs were transfected into Drosophila S2 cells using the calcium phosphate method as listed in Table 1. Stable cell lines were selected by including 500 $\mu g/ml$ Geneticin in the cell culture medium.

10	TABLE 1							
	Transfected Cells		MHC I	β2 μg	B7.1 (CD 80) μg	87.2 µ9	ICAM-1 (CD54) µg	phsneo µg
15	1	A	12	12				
	2	В	8	8	8			1
	3	С	8	8		8		1
	4	С	8	8		·	8	' 1
	5	٥	6	6	6		_	1
	6	Ε	6	6	Ū	6	6	1
	7	F	6	6	6	6	6	1
	8	G	4.8	4.8	4.8			1
20	ſ				7.0	4.8	4.8	1

25

30

Human accessory and costimulatory molecules were cloned from human cell lines demonstrated to express these proteins by FACS analysis with monoclonal antibodies specific for the particular proteins. Adhesion molecules belonging to the integrin family, ICAM-I (CD54) and LFA-3 (CD58), were cloned from human cell lines K562 and HL60, respectively. The K562 cells, originated from human chronic myelogenous leukemia, were obtained from ATCC (CCL-243) and cultured under conditions recommended (i.e., RPMI with 10% fetal calf serum at 37 degrees C with 5% CO2). HL60 cells, originated from a human promyelocytic leukemia, and were obtained from ATCC (CCL-240) and were cultured according

to ATCC's recommendations. Costimulatory molecules B7.1 and B7.2 were also cloned from K562 and HL60 cells respectively.

4. CDNA

- Messenger RNA samples were prepared from each cell line from RNA isolated by the modified guanidinium thiocyanate method (Chromczynski, et al. <u>Anal. Biochem.</u> 162: 156-159, 1987) followed by poly A+ RNA selection on oligo(dt)-cellulose columns (Sambrook, J., et al,
- Molecular Cloning: A Laboratory Manual, Second Edition, 6.22-6.34, Cold Spring Harbor laboratory, CSH, NY), Induction of HL60 cells with vitamin D3 (usually required to express some cell surface molecules) was not required to obtain the B7.2 and LFA-3 molecules, the proteins were expressed in the absence of induction. cDNA was prepared using AMV reverse transcriptase kit according to the manufacturers' instructions (Promega, Madison WI).

5. PCR Primers

PCR primers were designed and synthesized after obtaining copies of the known sequences from the GENEWORKS database (Intelligenetics) and considering the ends needed to clone into the appropriate vectors. They are as follows with the top sequence of each protein the 5'primer and the bottom one the 3'primer:

- 25 B7.1 5'-ACCCTTGAAT CCATGGGCCA CACACGGAGG CAG-3'
 5'-ATTACCGGAT CCTTATACAG GGCGTACACT TTCCCTTCT-3'
 - B7.2 5'-ACCCTTGAGC TCATGGATCC CCAGTGCACT ATG-3'
 5'-ATTACCCCCG GGTTAAAAAC ATGTATCACT TTTGTCGCAT GA-3'
 - LFA-3 5'-ACCCTTGAGC TCATGGTTGC TGGGAGCGAC GCGGGG-3'
- 30 3'-ATTACCGGAT CCTTAAAGAA CATTCATATA CAGCACAATA CA-3'
 - ICAM-1 5'-ACCCTTGAAT TCATGGCTCC CAGCAGCCCC CGGCCC-3'
 3'-ATTACCGGAT CCTCAGGGAG GCGTGGCTTG TGTGTTCGG-3'

6. Expression of DNA Fragment

The cDNA preparations from each of the cell lines was used to clone the desired proteins. The polymerase chain reaction was used to generate cDNA fragments utilizing the appropriate PCR primer (see above). The appropriate DNA fragments were cloned into the Drosophila fly vector pRMHA-3. Plasmid preparations have been prepared from all of the preparations and are now ready for transfection into the fly cells.

Human β -2 microglobulin cDNA is prepared using a published partial cDNA sequence (see Suggs, et al., PNAS 78: 6613-17, 1981) is used as a template for a polymerase chain reaction (PCR) with the following primers:

15 5' primer

35

5

5' GCTTGGATCCAGATCTACCATGTCTCGCTCCGTGGCCTTAGCTGTGCTCGC
GCTACTCTC 3'
(SEQ ID NO 15)

3' primer

20 5' GGATCCGGATGGTTACATGTCGCGATCCCACTTAAC 3' (SEQ ID NO 16)

The primers are used in a standard PCR reaction (see Nilsson, et al., Cell 58: 707 (1989)). The reaction products are extracted with phenol, purified using a Geneclean kit (Bio 101, San Diego, CA), digested with Bam HI and cloned into the Bam HI site of pBS (Stratagene, La Jolla, CA). After verification of the sequence, this Bam HI fragment is cloned into the Bam HI site of pRmHa-3.

As noted in the Examples, murine Class I cDNA was utilized in various instances. Murine Class I cDNA was prepared as follows.

 $H-2K^b$: cDNA encoding a complete K^b molecule is obtained from an expression plasmid pCMU/ K^b constructed as follows. A partial $H-2K^b$ cDNA missing the leader

sequence and most of the alpha I domain is prepared according to the method of Reyes, et al., PNAS 79: 3270-74 (1982), producing pH202. This cDNA is used to generate a full-length molecule. The missing sequence is provided using a genomic clone encoding H-2Kb (Caligan, 5 et al., <u>Nature 291</u>: 35-39, 1981) as a template in a PCR reaction, using a 5' primer flanked by a Not I site, followed by 21 nucleotides encoding the last seven amino acids of the leader sequence and 18 nucleotides complementary to the beginning of the alpha I domain and 10 a 3' primer complementary to the region encompassing the Sty I site. The resulting fragment is ligated with pH202 at the Sty I site. The 5' sequence encoding the remainder of the signal sequence is obtained form the $D^{\scriptscriptstyle \rm b}$ cDNA (see below) as a Bam HI/Not I fragment. The entire 15 coding sequence is cleaved from the expression plasmid as a Bam HI fragment and cloned into pRmHa-3 cleaved with Bam HI.

H-2L^d: cDNA encoding a complete L^d molecule is obtained from an expression plasmid pCMUIV/L^d (see Joly and Oldstone, <u>Gene 97</u>: 213, 1991). The complete cDNA is cleaved from a eukaryotic expression vector pCMU IV/L^d as a Bam HI fragment and cloned into pRmHa-3 as K^b.

As noted previously, the pCMU vector (pCMUIV) is derived from eukaryotic expression vector pC81G as described in Nilsson, et al., supra. Vector pC81G, in turn, is derived from pA81G (Paabo, et al., Cell 33: 445-453 (1983)) according to the method disclosed in Paabo, et al., EMBO J. 5: 1921-7 (1986).

H-2D': cDNA encoding a complete D' molecule is obtained from expression plasmid pCMUIV/D' (see Joly and Oldstone, Science 253: 1283-85, 1991). The complete cDNA is cleaved from a eukaryotic expression vector pCMUIV/D' as a Bam HI fragment and cloned into pRmHa-3 as K'.

15

Murine β -2 microglobulin: full-length murine β -2 microglobulin cDNA is obtained as a Hind III (5') (filled with Klenow)/Bgl II (3') fragment from pSV2neo (ATCC No. 37-149) mouse β -2 microglobulin cDNA and cloned into pRmHa-3 cleaved with Sma I and Bam HI.

Vector phshsneo confers neomycin (G418) resistance and is a derivative of phsneo (pUChsneo) with an additional heat-shock promoter (hs) sequence, which may be synthesized from commercially-available pUC8 as described in Steller, et al., EMBO J. 4: 167 (1985). The 10 heat shock promoter contained in these vectors is the hsp70 promoter. Other useful vectors conferring neomycin resistance (G418 resistance) include cosmid vector smart2 (ATCC 37588), which is expressed under the control of Drosophila hsp70 promoter, and plasmid vector pcopneo (ATCC 37409).

Insertion of Genes into Expression Vectors C. The restriction products are subjected to electrophoresis on a 1% agarose gel (Maniatis, et al., Molecular Cloning: A Laboratory Manual, Cold Spring 20 Harbor Laboratory (1982)). The restriction fragments encoding the cDNAs are excised from the gel and purified away from the agarose using "Geneclean", according to manufacturers' directions (Bio 101, San Diego, CA). The expression plasmid pRmHa-3 (Figure 3) is cleaved with the 25 appropriate restriction enzymes in One Phor All buffer according to the manufacturer's directions (Pharmacia, Piscataway, NJ) and treated with alkaline phosphatase as described in the manufacturer's literature (Boehringer Mannheim, Indianapolis, IN). One hundred ng of cleaved 30 and phosphatased pRmHa-3 vector is mixed with 300ng of agarose gel purified Class I MHC heavy chain cDNA or eta-2 microglobulin cDNA and ligated using T4 DNA ligase and One Phor all buffer as described in the manufacturers' literature. After incubation at 16 °C for five hours, 35

10

35

the ligation mixture is used to transform competent E. $coli\ JM83\ (Maniatis,\ et\ al.,\ supra\ (1982)).$

Methods disclosed in Maniatis, et al., supra are used to prepare the cDNA needed. The presence of the MHC heavy chain cDNA and its orientation in the vector is determined by restriction mapping. Bacteria containing the vector with the cDNA in the correct orientation relative to the metallothionein promoter are used for large scale preparation of DNA using the alkaline lysis method and cesium chloride gradient purification. The amount of DNA obtained is determined spectrophotometrically.

D. <u>Transfection and Labeling of S2 Cells</u>S2 cells are grown in Schneider medium

- (Gibco/BRL, Grand Island, NY) supplemented with 10% fetal calf serum (heat treated for one hour at 55 °C), 100 units/ml penicillin, 100mg/ml streptomycin, and 1mM glutamine. (For convenience, this supplemented medium is hereinafter referred to as Schneider medium.) Cells are
- grown at 27 °C and typically passaged every seven days by diluting 1:17 in fresh medium. Cells are converted to growth in serum free media (Excell 400 or 401 supplemented with 100 units/ml penicillin, 100 mg/ml streptomycin, lmM glutamine, and 500µg/ml G418 (JRH
- Biosciences, Lenexa, KS) by initial dilution at 50% Schneider/50% Excell 401. One week later, cells may be passaged into 10% Schneider medium/90% Excell 401 and one week later into 100% Excell 401. Cells are maintained in this medium and passaged every seven days by diluting 30 2:17 in fresh medium
 - 15 X 10° S2 cells at a concentration of 10° cells per ml are plated out in 85mm petri dishes. Twelve hours later, calcium phosphate/DNA precipitates, prepared as described below (1 ml) are added dropwise to the cells. After 48 hours, the supernatant is carefully

WO 96/27392 PCT/US96/03249

- 61 -

removed and the cells transferred to a 175cm2 flask in a total volume of 50 ml in Schneider medium containing $500\mu g/ml$ Geneticin (G418) (Gibco/BRL, Grand Island, NY). After 21 days, 20 ml of the culture is removed to a fresh flask containing 30 ml of Schneider medium containing 5 $500\mu g/ml$ G418. Ten days later, a stable population of cells that weakly adhered to the flask and grew with a doubling time of approximately 24 hours is obtained and these cells are subsequently cultured and passaged in the selection media as described above. Frozen aliquots of 10 these cells are prepared by collecting 5-20 \times 10 6 cells by centrifugation and resuspending them in 1 ml of cell freezing media (93% fetal calf serum/7% dimethylsulfoxide). Aliquots are then placed at -70 $^{\circ}\text{C}$ for one week and subsequently transferred to liquid nitrogen storage.

Calcium phosphate precipitates are prepared as described by Paabo, et al. (<u>EMBO J. 5</u>: 1921-27 (1986)), except that $25\mu g$ of DNA is used per transfection.

following combinations of DNA are used to prepare the 20 indicated transfectant: (a)

15

- MHC Class I heavy chain alone: $23\mu g$ heavy chain expression vector DNA + $2\mu g$ of phshsneo DNA.
- (b) MHC Class I heavy chain + β -2 microglobulin:
- 25 11.5 μ g heavy chain expression vector DNA + 11.5 μ g of β -2 microglobulin (human or mouse) expression vector DNA + $2\mu g$ of phshsneo DNA.

Other combinations of mouse genes are presented in Table 1.

30 Twenty-four hours prior to metabolic labeling, cells are plated out at a cell density of 3-5 \times 10" cells/ml (10 ml/85mm petri dish) in Schneider medium containing 1mM CuSO4. Thirty minutes prior to labelling the medium is aspirated from the dishes and the cells are washed with 2 X 10 ml of PBS and then incubated in Graces 35

insect medium minus methionine and cysteine (special order from Gibco/BRL, Grand Island, NY) for 20 minutes, and then in 1 ml of this medium containing 0.1mCi ³⁵S Trans label (New England Nuclear; duPont, Boston, MA).

After the labelling period, the labelling solution is aspirated and the cells are either lysed immediately on ice, with ice cold PBS/1% Triton X100 (1 ml) or after a chase period in the presence of methionine containing Schneider or Excell 400 medium (5 ml) (JRH Biosciences).

The chase medium is collected if soluble Class I MHC molecules are being analyzed.

15

20

25

30

35

The following operations are all carried out with the lysates kept cold (less than 8 °C). The lysates were collected into Eppendorf tubes, centrifuged in a microfuge tube for 15 minutes at 13,000 X g, transferred to a fresh tube containing $100\mu l$ of a 10% slurry of protein A sepharose and placed on an end-over-end rotator for two hours. Following a further centrifugation in the microfuge for 15 minutes, the cell lysates are ready for analysis.

In experiments utilizing murine MHC, S2 cells were transfected with the murine MHC recombinants described above using the CaPO $_4$ precipitation method; each heavy chain is transfected either alone or as a 50:50 mix with the vector encoding β -2 microglobulin. A plasmid encoding neomycin resistance, phshsneo DNA, is included in each transfection such that a population of cells that stably expressed MHC Class I could be obtained by growing the transfectants in selection medium (Geneticin G418-sulphate, Gibco/BRL, Grand Island, NY).

E. <u>Peptide Generation</u>

Antigenic peptides according to the present invention may be obtained from naturally-occurring sources or may be synthesized using known methods. In various examples disclosed herein, peptides are

synthesized on an Applied Biosystems synthesizer, ABI 431A (Foster City, CA) and subsequently purified by HPLC.

Isolation or synthesis of "random" peptides may also be appropriate, particularly when one is attempting to ascertain a particular epitope in order to load an 5 empty MHC molecule with a peptide most likely to stimulate precursor CD8' cells. One may produce a mixture of "random" peptides via use of proteasomes (see, e.g., Example 2.B.6) or by subjecting a protein or polypeptide to a degradative process -- e.g., digestion 10 with chymotrypsin -- or peptides may be synthesized. While we have observed that the cell lines of the present invention are able to degrade proteins and polypeptides into smaller peptides capable of being loaded onto human Class I MHC molecules, it is preferable to introduce smaller peptides -- e.g., 8-mers and 9-mers -- directly into the cell culture to facilitate a more rapid loading and expression process.

If one is synthesizing peptides, e.g., random 8-, 9- and 18-amino acid peptides, all varieties of amino 20 acids are preferably incorporated during each cycle of the synthesis. It should be noted, however, that various parameters --e.g., solvent incompatibility of certain amino acids -- may result in a mixture which contains peptides lacking certain amino acids. The process should 25 thus be adjusted as needed -- i.e., by altering solvents and reaction conditions -- to produce the greatest variety of peptides.

As noted hereinabove, murine heavy chains complexed with human β -2 microglobulin were stable at 30 temperatures approximately 6-8 degrees higher than if complexed with murine $\beta 2$. It was also observed that the stabilities imparted by peptide and xenogeneic β -2 microglobulin are additive. A large increase in the thermostability of the Class I molecules occurs if 8-9 35

10

15

25

mers are used, as compared to 12-25 mers; indeed, the difference between the stabilization imparted by the 8-9 mers compared with the larger peptides might be even greater than what was observed previously, for even though the peptides have been purified by HPLC, it is likely that there is some contamination of the larger peptides by 8-9 mers.

The thermostability of a Class I molecule is apparently dependent on: (1) the origin of β -2 microglobulin; (2) the presence of peptide; and (3) the length and sequence of this peptide.

Previous work (U.S. Patent No. 5,314,813 to Peterson et al.; Jackson et al., <u>PNAS USA 89</u>: 12117-12121 (1992)) has shown that Class I MHC heavy chains can bind peptide either alone or when they are associated with β -2 microglobulin. Surface expression of peptide-loaded human Class I MHC, however, appears to be best facilitated by loading the molecules with peptide after the heavy chains have complexed with β -2 microglobulin.

20 1. Expression of Human MHC

Once we determined that the thermostability of a Class I molecules is dependent on the origin of β -2 microglobulin, the presence of peptide, and the length and sequence of this peptide, we utilized this information in the creation of cell lines capable of specifically activating CD8 cells via the expression of peptide-loaded human Class I MHC molecules.

Thermolability appears to be an inherent property of Class I molecules; it has presumably evolved to ensure that Class I molecules which contain either no peptide or a peptide of poor binding properties (that confers little thermostability) self-destruct. In this way, the cell minimizes the number of empty Class I molecules on its surface, for such a situation would presumably be dangerous in that exogenously derived

peptides could be bound and presented. Human Class I molecules expressed in insect cells with human $\beta 2$ are not stable to extended incubation at 37 °C; neither are human Class I molecules expressed in the mutant cell line T2 which has been shown to be deficient in peptide loading onto the Class I molecules (Hosken and Bevan, Science 248: 367-70 (1990); Cerundolo, et al., Nature 345: 449-452 (1990)). Thus, it seems that the affinity between the heavy chain and β -2 microglobulin has been carefully conserved through co-evolution of the molecules such that empty Class I molecules, or those carrying poorly-binding peptides, self-destruct at the body temperature of the "host" organism.

Human Class I MHC molecules were expressed in S2 cells. Cell lines co-expressing human β -2 15 microglobulin and HLA A2.2Y, HLA A2.1, HLA B7, or HLA B27 were established using previously-described methods. Briefly, cDNAs encoding the above proteins were cloned into the Drosophila expression vector pRmHa-3 and cotransfected with a human β -2 microglobulin-containing 20 plasmid and phshsneo plasmid into S2 cells via methods disclosed herein. Three to four weeks later, the population of G418-resistanT-cells was diluted 1:5 with fresh selection media. Once a healthy growing population of cells was obtained, CuSO, was added to an aliquot of 25 cells and 24 hours later, cells were analyzed via flow cytometry using a monoclonal antibody W6/32 (ATCC HB95, Bethesda, MD) which recognizes a monomorphic determinant of human Class I heavy chains when they are in association with β -2 microglobulin. (See Barnstable, et 30 al., Cell 14: 9 (1978).) High levels of surface expression of each of the human Class I molecules were induced by the addition of CuSO; (data not shown). stable populations were sorted for high expressing cells using cytofluorimetry as described below. It is these 35

sorted populations of cells which were used for all subsequent experiments.

Twenty-four hours prior to FACS analysis, CuSO, is added to the stably transfected S2 cells (3-4 X 10° cells/ml) to a final concentration of 1mM, thereby "switching on" expression from the transfected genes. Cells are plated out in 24-well cluster dishes (2 ml per well). Eight hours prior to FACS analysis, the CuSO, medium is replaced with fresh medium (1 ml) with or without peptide at a concentration of 50µg/ml. 37 °C temperature challenges are carried out by transferring the dishes onto a flat surface in a 37 °C room at various time intervals prior to harvesting the cells for analysis.

15 To analyze surface expression of Class I MHC on the S2 cells, aliquots of cells (5 X 10°) are transferred into tubes on ice, collected by centrifugation (1,000 \times g for 4 minutes), resuspended in 3 ml of PBS/1% BSA, 0.02% sodium azide, collected by centrifugation and resuspended in PBS/BSA (0.5 ml) containing the appropriate primary 20 antibody (ascites fluids Y3, 28:14:85, 30.5.7, W6/32, diluted 1:200). Rabbit antisera are diluted 1:500 and B22.293 hybridoma supernatant is used directly. After a one hour incubation on ice, cells are washed twice in 3 ml of PBS/BSA and resuspended in 0.5 ml of PBS/BSA 25 containing FITC labelled secondary antibody (Cappell, Durham, NC) and 1 ng/ml propidium iodide. After a 30 minute incubation on ice, cells are washed once with PBS/BSA and resuspended in this buffer at a concentration of 1 X 10"/ml. Samples are then analyzed by FACS 440 30 (Becton Dickinson). Dead cells stained with propidium iodide, are excluded by including a live gate in the analysis.

For cell sorting, the same procedure outlined above is used, except that all staining operations are

WO 96/27392 PCT/US96/03249

- 67 -

carried out in a sterile hood. Solutions, including antibodies, are filter-sterilized, and Schneider media or Excell 400 is used in place of PBS/BSA. Cells that specifically bound the primary antibody are sorted using a Becton Dickinson cell sorter. Sorted cells (2-8 X 10⁵) are washed once in medium before plating out at a concentration of 2 X 10⁵ cells/ml.

5

10

15

20

25

F. <u>Loading of Membrane-Bound Empty MHC</u>
<u>Molecules by in vitro Incubation with</u>
Peptides

In order to demonstrate that the human Class I molecules expressed on the surface of the Drosophila cells were empty, the cells were incubated at 37 °C for two hours and the cell surface expression was analyzed by cytofluorimetry. The surface expression of both HLA B27 and A2.1 is greatly reduced if cells are incubated at 37 °C for 2 hours; however, preincubating the cells in HIV peptides known to bind to the Class I molecules affords significant thermal stability to the Class I, while peptides that do not bind have little effect (see Figure 4). (A 9-amino acid peptide ILKEPVHGV (SEQ ID NO 42) from the POL protein of HIV binds and stabilizes HLA A2.1. A nine-amino-acid peptide from the Vpr protein of HIV binds and stabilizes B27 (FRIGCRHSR; SEQ ID NO 41). These data show that the human Class I molecules expressed on the surface of Drosophila cells are empty

and can be stabilized by binding specific HIV peptides.

Figures 4 and 5 show peptide-induced
thermostabilization of HLA B27 and HLA A2.1 expressed on
the surface of Drosophila cells by HIV peptides.
Drosophila cells expressing either HLA B27 or A2.1 were
incubated with peptides where indicated and then either
maintained at 28 °C or incubated at 37 °C for two hours
prior to analysis of the surface expression of the
Class I molecules by use of the antibody W6/32 (from ATCC
HB95) and cytofluorimetry. The mean fluorescence of each

cell population is shown plotted against the incubation conditions The HIV POL peptide (ILKEPVHGV, SEQ ID NO 42) stabilizes A2.1 but not B27 (Figure 4), while the HIV Vpr peptide (FRIGCRHSR, SEQ ID NO 41) stabilizes B27, but not A2.1 (Figure 5).

Example 2

Preparation of Synthetic Antigen-Presenting Cells A. Osmotic Loading

Osmotic loading of SC2 and 3T3 cells with

ovalbumin protein was carried out as described by Moore,
et al., Cell 54: 777-785 (1988). The assay procedure is
as follows. In a 96-well dish, 1 X 10⁵ Drosophila cells
(with or without peptide/protein loaded) or 3T3 cells
were cocultured with 1 X 10⁵ B3/CD8 T-cell hybridoma

cells in 200µl of RPMI media supplemented with 10% fetal bovine serum. After 24 hours of incubation, 100µl of the supernatant from these cultures was added to 100µl of RPMI containing 5,000 CTLL cells. The cells were cocultured for 24 hours at 37 °C when 1µCi of 'H

thymidine (Amersham) was added. After a further incubation of 15 hours at 37 °C, the incorporation of radiolabel into the CTLL cells was determined by scintillation counting.

Assays conducted with murine MHC also verified that the insect cells are capable of loading peptide onto the Class I molecules. Cells expressing as few as 200-500 MHC molecules containing a particular antigen can be detected by a T-cell. As the Drosophila cells do not accumulate chromium, an antigen presentation assay based on B3/CD8, a T-cell hybridoma, was used. B3/CD8 is a hybridoma between B3, cytotoxic T-cell specific for ovalbumin peptide 253-276 presented by H-2K^h Class I molecules, and CD8- bearing IL-2-secreting cell line (see

Carbone, et al., <u>supra</u>, 1989). Upon antigenic stimulation, B3/CD8 produces IL-2, measured by ³H

thymidine incorporation in IL-2-dependent T-cell line CTLL (Gillis, et al., <u>J. Immunol. 120</u>: 2027 91978)). Thus, by measuring the amount of IL-2 produced, one can assay for T-cell recognition.

In order to provide an intracellular pool of ovalbumin protein from which OVA peptides can be derived, ovalbumin (Sigma Chem. Co., MO) was osmotically loaded into the cells as described by Moore, et al. supra
(1988). Immediately after loading, the cells were mixed with the T-cell hybridoma. After two days' incubation, the medium was removed and assayed for IL-2. The amount of IL-2 was determined by the ability of the medium to support the growth of the IL-2-dependenT-cell line CTLL (Gillis, et al., supra, 1978), and growth was quantitated by the amount of radioactive thymidine incorporated into the cells.

S2 or 3T3 cells transfected with $K''/\beta2$ were incubated with ovalbumin protein (OvPro) or ovalbumin peptide, OVA 24 (OvPep) in isotonic (Iso) or hypertonic (Hyp) media. (Murine cell line BALB/3T3 is available 20 from the ATCC under accession number CCL 163.) After treatment, cells were cocultured with the T-cell hybridoma B3/CD8. B3/CD8 is a T-cell hybridoma between B3 (Carbone, et al., <u>J. Exp. Med. 169</u>: 603-12 (1989)), cytotoxic T-cell specific for ovalbumin peptide 253-276 25 presented by H-2K" Class I molecules, and CD8- bearing IL-2-secreting cell line. Upon antigenic stimulation, B3/CD8 produces IL-2, measured by 'H thymidine incorporation in IL-2-dependent cell line CTLL (Gillis, et al., <u>J. Immunol. 120</u>: 2027 91978)). Thus, by 30 measuring the amount of IL-2 produced, one can assay for T-cell recognition. The supernatant from the cocultures were analyzed for IL-2 by 'H thymidine incorporation by the IL-2-dependent cell line CTLL (ATCC No. TIB 214).

WO 96/27392 PCT/US96/03249

- 70 -

The amount of ³H thymidine incorporated is plotted against the initial cell treatments.

5

10

30

35

It can be seen in Figure 6 that the T-cells responded well to the *Drosophila* cells if the ovalbumin peptide was added to the culture medium, but no recognition occurred if the cells were loaded with the ovalbumin protein. The MHC Class I molecules expressed on the cell surface of the insect cell are fully functional in that they can bind peptide if it is added to the culture medium and can present it in the correct context for it to be recognized by a T-cell.

B. Optimization of In Vitro Conditions

For the optimization of in vitro conditions for the generation of specific cytotoxic T-cells, the culture of Drosophila cell stimulator cells is preferably maintained in serum-free medium (e.g. Excell 400).

Drosophila cell stimulator cells are preferably incubated with >20µg/ml peptide. The effector:stimulator ratio (lymphocyte:Drosophila cell ratio) is preferably in the range of about 30:1 to 300:1. The maximum specific CD8 is generally observed after five days of culture. The culture of target cells for killing assay is preferably maintained in a serum-free medium.

Example 3

25 <u>Stimulation of Proliferation and Differentiation</u> of Armed Effector T-Cells

We have found that Drosophila S2 cells transfected with MHC class I molecules and specific assisting molecules are able to stimulate primary responses from T-cells in vitro. We present data below in this example from a mouse model system. In this example, constructs coding for mouse MHC class I (L^d), β 2 microglobulin, specific assisting molecules were used and tested with CD8 cells from lymph nodes of T-cell receptor transgenic mice.

10

20

35

The data in Figure 7 provides evidence that the transfected Drosophila S2 cells express the protein products of the transfected murine genes. Flow cytometry using a fluorescence-activated cell sorter (FACS) and fluorescently labelled antibodies were used to demonstrate the expression of L^{d} (MHC molecule which includes heavy chain and $\beta 2)$ and the specific assisting molecules B7.1 (CD80) and ICAM-1 (CD54) molecules by transfected Drosophila S2 cells. Transfected cells were separated with a FACS to obtain cells expressing $\mathbf{L}^{\mathbf{d}}$ molecules and were then maintained in vitro.

The transfection of Drosophila S2 cells is summarized in Table 2. The data show L^d , B7.1 and ICAM-1 expression measured by flow cytometry on the cell lines after induction with $CuSO_4$. It is apparent that, 15 relative to the control antibody (ctr Ab), all of the transfectants express L^d molecules on the cell surface. Likewise, cells cotransfected with L^d and B7.1 (L^d .B7) express B7.1 but not ICAM-1, whereas cells cotransfected with L^d and ICAM-1 (L^d .ICAM) express ICAM-1 but not B7.1; triple transfection with L^d , B7.1 and ICAM-1 (L^d .B7.ICAM) led to expression of all three molecules.

Using a standard tissue culture system (Cai, Z. and Sprent, J. (1994) <u>J. Exp. Med. 179</u>: 2005-2015), doses of 5 x 10^4 purified CD8 2C lymph node (LN) cells were 25 cultured at 37 °C with doses of 3 x 105 transfected fly cells \pm peptides (10 μM final concentration). Peptides were synthesized by R. W. Johnson Pharmaceutical Research Institute (Sykulev, et al. (1994) Immunity 1: 15-22. Proliferative responses were measured by adding 'HTdR 30 (1 μ Ci/well) 8 hours prior to harvest. IL-2 production was measured by removing supernatants from the cultures at 48 hours and adding 50 μ l supernatant to an IL-2 responsive indicator cell line (CTLL); proliferation of

the indicator line was measured by addition of ³HTdR.

The data shown in Table 2 are the means of triplicate cultures. The transfected *Drosophila* S2 cells die rapidly at 37 °C and fail to incorporate ³HTdR at this temperature.

The data in Table 2 demonstrate that the transfectants are able to stimulate primary responses of mouse T-cells.

Table 2. Capacity of transfected fly cells to stimulate primary proliferative responses and IL-2 production by CD8' lymph node cells from 2C T-cell receptor transgenic mice.

10

TABLE 2

3HTdR incorporation (cpm x 103) with transfected fly cells expressing:

transfected fly cells expressing:						
Assay	Peptides added	Ľª	L ^d + B7.1	L ^d + ICAM-1	L ^d + B7.1 + ICAM-1	L ^d + B7.1 combined with L ^d + ICAM-1
Proliferation	•	0.2	0.1	0.3	0.2	
(Day 3)	p2Ca	0.2	0.3	1.5	142.0	1.5
	QL9	0.2	60.9	73.9	263.7	132.9
IL-2 Production		0.3	0.2	0.1	1.2	
(Day 2)	p2Ca	0.2	0.2	0.1	64.6	0.3
	QL9	0.1	0.4	0.2	158.6	0.5

The 2C T-cell receptor (TCR) is strongly reactive to L⁴

25 molecules complexed with certain peptides, e.g. p2Ca (SEQ ID NO 46) or QL9 (SEQ ID NO 47). These two peptides have moderate to high affinity for soluble L^d molecules, 4 x 10° M³ for p2Ca, and 4 x 10° M³ for QL9 (Sykulev. et al.). When complexed to soluble L^d molecules, the two peptides also have high binding affinity for soluble 2C TCR molecules. However, in both TCR binding and L^d binding, the QL9 peptide clearly has a higher affinity than the p2Ca peptide.

- 73 -

Table 2 shows that proliferative responses and IL-2 production by the responder 2C cells to the weaker peptide, p2Ca, requires that the stimulator Ld-transfected cells coexpress both B7.1 and ICAM-1; a mixture of cells expressing either L^d + B7.1 or L^d 5 + ICAM-1 is nonstimulatory. By contrast, with the stronger peptide, QL9, L^d .fly cells expressing either B7 or ICAM elicit clearly-significant responses, although combined expression of B7 and ICAM generates much higher 10 responses. In contrast to these findings on T-cell proliferation, IL-2 production in response to the QL9 peptide requires joint expression of B7 and ICAM; expression of these molecules on separate cells is ineffective.

The results show that Drosophila cells
transfected with murine class I molecules and
costimulatory molecules induce murine T-cells to mount
primary proliferative responses and lymphokine (IL-2)
production in response to peptide antigens. The system
is also applicable to human T-cells and could be used to
stimulate unprimed (or primed) T-cells specific for
tumor-specific antigens in vitro; in vivo infusion of
clonally-expanded T-cells specific for tumor-specific
antigens might be therapeutic for patients with cancer.
Infusion of T-cells specific for viral antigens would be
useful in patients with viral infections, e.g. HIV.

Example 4

Immobilization of Biotinylated MHC Molecules on Avidin-Coated Red Blood Cells

NHS-LC-biotin, neutravidin and biotin-BMCC were purchased from Pierce (Rockford, IL). Sheep red blood cells were obtained from the Colorado Serum Company (Denver, CO). Drosophila S2 cells expressing L' and recombinant L' were prepared as described in Examples 1 and 2. Monoclonal antibodies 30.5.7 (anti-L') and 1B2

(anti-clonotypic antibody to the 2C T-cell receptor) were used as hybridoma cell culture supernatants.

The protocol used is described by Muzykantov and Taylor (Anal. Biochem. (1994) 223, 142-148). Briefly, SRBC were washed 4 times in phosphate buffered saline (PBS), biotinylated using NHS-LC-biotin, washed again 4 times in PBS, incubated with neutavidin, and finally washed 4 times and stored at 4 °C in PBS containing 3% fetal calf serum and 0.02% sodium azide.

5

20

25

30

35

Recombinant L^d was biotinylated using biotin-BMCC, a maleimide-coupled biotin which reacts with thiol groups. L^d displays a free thiol group, the side chain of cystein 121, which is not in the peptide binding site. Biotinylation was performed as recommended by the manufacturer. Unreacted biotin was removed using Centricon 10.

Biotinylated L^d was immobilized by incubation at a final concentration of 0.2 mg/ml with avidin-coated SRBC for 30 minutes followed by washing in DMEM containing 10% fetal calf serum. SRBC with attached L^d were used immediately.

T-cells expressing the 2C TCR transgene from lymph nodes of mice were purified by magnetic depletion. Purified T-cells were consistently 97-98% positive for staining in flow cytofluorometry using the anti-clonotypic antibody 1B2.

Immobilization of biotinylated L^d on avidin-coated SRBC was done as indicated above. Attachment was assessed using flow cytofluorometry using anti- L^d antibody 30.5.7.

A typical experiment is represented in Figure 8. The negative control (cells minus antibody) is shown in dotted lines. The filled peak comprises cells labeled with fluorescent antibody. 99.78% of the cells were labeled. Fluorescence intensity was in the same

range than the highest levels of intensity that we observed for L^d on synthetic antigen-presenting cells.

 K^b (MHC molecule which includes heavy chain and $\beta 2$) was also biotinylated using the same procedure. We could immobilize biotinylated K^b on avidin-coated SRBC as assessed by flow cytofluorometry (Figure 9). 99.88% of the cells were labeled.

5

Rosetting experiments verified that the attached MHC molecules interacted functionally with T-cells. Drosophila S2 cells expressing L^d , L^d -coated 10 SRBC were incubated with QL9 peptide (0.02 mM) or an irrelevant peptide (MCMV, 0.02mM) for 30 minutes on ice; 2C+ T-cells were then added, the proportion being 10 2C+ T-cells for 1 Drosophila S2 cell, or 10 SRBC for 1 2C+ T-cell; the mixture was pelleted and kept on ice for at 15 least 30 min. Cells were then carefully resuspended and rosettes were counted, a rosette being a Drosophila S2 cell bound to at least 3 2C+ T-cells, or a 2C+ T-cell bound to at least 3 SRBC. Rosettes were observed in all cases. Typically, 30-40% of the lymphocytes were included 20 in rosettes when QL9 peptide was added. No rosette was observed in the presence of the irrelevant peptide, although occasional attachment of a few single cells was observed.

These examples describe a new method to immobilize high amounts of MHC class I molecules on various surfaces (fly cells, red blood cells, latex beads) in native conformation as judged by monoclonal antibody binding and rosetting experiments (T-cell receptor binding). This method can be extended to other synthetic surfaces including artificial phospholipid membranes. Phosphatidylethanolamine as well as avidin-coupled phospholipids are particularly relevant to our studies. These phospholipids are commercially

- 76 -

available from Lipex Biomembrane Inc., Vancouver, BC, Canada.

5

20

Example 5

Immobilization of Biotinylated MHC Molecules on Avidin-Coated Latex Beads

Six micron diameter latex sulfate beads were purchased from Interfacial Dynamics Corporation (Portland, OR) and biotinylated according to the protocol described in Example 4.

Avidin-coated latex beads were prepared using a 1% suspension of the latex beads incubated in PBS containing lmg/ml of neutravidin for one hour at room temperature. An equal volume of PBS containing 10% fetal calf serum was then added. After one hour of incubation at room temperature, the beads were washed 3 times and used for binding of recombinant biotinylated Ld.

Recombinant biotinylated L^d was immobilized by incubation at a final concentration of 0.2 mg/ml with avidin-coated latex beads for 30 minutes followed by washing in DMEM containing 10% fetal calf serum. SRBC with attached L^d were used immediately.

Rosetting experiments verified that the attached MHC molecules on latex beads interacted functionally with T-cells. Drosophila S2 cells expressing recombinant \mathbf{L}^d and \mathbf{L}^d -coated latex beads were 25 incubated with QL9 peptide (0.02 mM) or an irrelevant peptide (MCMV, 0.02mM) for 30 minutes on ice; 2C+ T-cells were then added, the proportion being 10 2C+ T-cells for 1 Drosophila S2 cell, or Ld-coated latex beads for 1 2C+ T-cell; the mixture was pelleted and kept on ice for at 30 least 30 min. Cells were then carefully resuspended and rosettes were counted, a rosette being a Drosophila S2 cell bound to at least 3 2C+ T-cells, or a 2C+ T-cell bound to at least 3 latex beads. Rosettes were observed in all cases. Typically, 30-40% of the lymphocytes were 35

WO 96/27392

included in rosettes when QL9 peptide was added. No rosette was observed in the presence of the irrelevant peptide, although occasional attachment of a few single cells was observed.

5

35

Example 6

Immobilization and Detection of Recombinant Protein Bound to Various Solid Supports Such as Plastic Microwell Plates

The MHC molecules were immobilized by direct binding to microtiter plates (Corning) and detected as follows:

MHC Kb molecules were diluted to desired concentration in PBS, e.g. 0.001mg/ml for 100 ng /well. $100\mu l$ of diluted K^h was added to each well on the plastic microtiter plate. The plate was incubated for 1 hour at 15 room temperature. After incubation, the plate was washed once with PBS and 200 μ l 2% bovine serum albumin (BSA) in PBS + (.05%) and Tween (PBST) was added, and incubated for another hour at room temperature. The plate was washed three times with PBST and biotinylated anti- $K^{\rm b}$ mAb 20 was added (1:2500) in 2% BSA in PBS. The plate was incubated another hour at room temperature and washed three times with PBST. Avidin conjugated HRP was added (1:2500) in 2% BSA in PBS. Following another hour of incubation at room temperature, the plate was washed 25 three times with PBST and $\mathrm{H}_2\mathrm{O}_2$ or thophenyldiamine was added. The reaction was stopped with $\rm H_2SO_4$. Reaction product was detected colorimetrically at 490 nm.

Figure 10 shows the results of detecting the presence of MHC K^I molecules using three different monoclonal antibodies.

Recombinant MHC K' molecules can alternatively be bound through biotin-avidin linked interactions with the substrate. In this embodiment, the microwell plates were coated with $100\mu l$ avidin diluted in PBS to a

concentration of 0.001 mg/ml. Excess avidin was removed by a PBS wash. The above procedure for presenting and detecting K^b binding followed.

Recombinant MHC molecules may alternatively be immobilized by a linkage based on a poly-histidine tag added to the MHC interacting with the nickel bound to the substrate

The above procedure for binding and detection is followed using nickel chelate coated microwell plates (Xenopore) and recombinant MHC molecules with a poly-histidine tag expressed using vector pRmHa/His6 described above.

Example 7

Direct Binding of Peptide to Soluble, Empty Class I MHC Molecules In Vitro

A. <u>Procedures</u>

15

 $H-2K^b$: prepared as described above in Example 1.B.

H-2K^b Sol: K^b sol cDNA is a derivative of K^b,
encoding the extracellular portion of the Class I MHC
molecule. K^b sol cDNA may be produced by PCR according
to known methods, such as those described in Ennis, et
al., PNAS USA 87: 2833-7 (1990) and Zemmour, et al.,
Immunogenetics 33: 310-20 (1991). Specifically, cDNA

- encoding a truncated K^b molecule with a stop codon inserted at the end of the alpha 3 domain at amino acid position +275 is excised from the pCMU expression plasmid as a Bam HI fragment and cloned into pRmHa-3 as K^b cDNA. The K^b sol cDNA is a derivative of the complete K^b cDNA
- (see above) which is used as a template in a PCR reaction using a 5' oligonucleotide that encompassed the Sty I site, and the following 3' oligonucleotide:
 - 5' ATATGGATCCTCACCATCTCAGGGTGAGGGGC 3' (SEQ ID NO 43)

The resulting PCR fragment is blunt-end cloned into the Sma I site of pBS (Stratagene, La Jolla, CA), sequenced, and the remaining 5' sequence of Kb cloned into the Sty I site. A cDNA encoding the complete Kbsol protein could be obtained as a Bam HI restriction fragment.

 $\mbox{$H$-2Db}$ and $\mbox{$H$-2Ld}$ are prepared as discussed in Example 1.B. above.

5

The cDNAs encoding K^b $\alpha 1\alpha 2\alpha 3$ domains (274) residues) and murine β -2 microglobulin (99 residues) were respectively cloned into the unique Bam HI site of an 10 expression vector harboring the metallothionein promoter pRMHa-3 (Bunch, et al., Nucleic Acid Res. 16: 1043-1061 (1988)). Drosophila S2/M3 cells were transformed with these recombinant plasmids in addition to plasmid phshsneo (containing a neomycin-resistance gene) by the 15 calcium-phosphate precipitation method described previously. The transformed cells selected against neomycin-analog antibiotics G418 were grown at 27 °C in serum-free medium and soluble heavy-chain $K^{\rm b}$ and $\beta\text{-}2$ microglobulin were co-expressed by the addition of $0.7 \mathrm{mM}$ 20 CuSO.

The soluble, assembled heterodimer of Kh was purified from the culture supernatants by affinity chromatography using anti-Kh monoclonal antibody Y3, followed by ion-exchange chromatography on a Pharmacia Mono Q FPLC column according to the instructions of the manufacturer (Pharmacia, Piscataway, NJ).

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of the Kh preparation followed by staining with Coomassie blue showed only one band of relative molecular mass (Mr) at about 32,000 and one band of Mr at about 12,000 with no detectable impurities. The highly-purified Kh was dialyzed against phosphate-buffered saline (PBS), filter-sterilized, and used for further study.

25

Extinction coefficient of the soluble K^b (" K^b sol") protein (43.2 kDa) is 69,200 M^{-1} cm⁻¹ at 280 nm.

The purified K^b sol $(0.3\mu\text{M})$ in PBS with or without 1% TX-100 were exposed to varying temperatures (i.e., 4°, 23°, 32°, 37°, 42°, and 47°C) for one hour. The proteins were then immunoprecipitated by incubating with the monoclonal antibody Y3 and protein A sepharose beads (Pharmacia, Piscataway, NJ) at 4 °C for two hours, respectively. The samples were analyzed by 12.5%

- SDS-PAGE, followed by staining with Coomassie blue. The two thick bands on the gel are heavy and light chains of antibody Y3. In another procedure, K^bsol (0.3μM) were incubated with 50μM of peptides in PBS at 23 °C for two hours to allow for K^bsol-peptide complex formation.
- After the addition of 1% TX-100, the samples were exposed to 12 °C, 37 °C, or 47 °C temperatures for one hour. The complexes were immunoprecipitated and analyzed by SDS-PAGE as described above. In a third procedure, K^hsol (2.7μM) were incubated with 50μM of OVA-8, VSV-8 or SEV-9
- peptides, respectively, at 23 °C for two hours. The samples were applied on a 5% polyacrylamide IEF gel. IEF was run from pH 5-7 and the gel was stained with silver.

Next, VSV-8 peptide was radioiodinated using the chloramine-T method (Hunter, et al., Nature 194: 495-6 (1962)) and free 126 I was removed by C_{16} column (OPC cartridge, Applied Biosystems, Foster City, CA). The labelled peptide was further purified by C_{16} reverse-phase HPLC. After elution, the labelled peptide was lyophilized and resuspended in PBS.

The specific activity of [^{125}I]VSV-8 (about 250 Ci/mmole) was determined spectrophotometrically by using extinction coefficient of tyrosine at 274nm (1420 $M^{-1}cm^{-1}$). First, $K^{b}sol$ (0.5 μ M) was mixed with [^{125}I]VSV-8 (1.5nM) and unlabelled VSV-8 (50nM) at 23 °C for 16 hours to allow for complex formation. A portion of the sample

was analyzed by gel filtration (Superose 12, Pharmacia, Piscataway, NJ) in PBS. After elution, radioactivity contained in each fraction (0.05ml) was measured. Protein was monitored by absorbance at 280nm.

5 In a second procedure, [125] VSV-8 (0.39nM) was mixed with various concentrations of K^b sol in PBS containing 1% bovine serum albumin (BSA). After incubation at 23 °C for 2-16 hours, Kbsol-peptide complexes were separated from free peptide by small gel filtration (Bio-Gel P30, BioRad, Richmond, CA) in PBS. 10 P30 gel filtration permitted over 95% separation of bound and free peptide within about 5 minutes. Radioactivity of bound and free peptides was measured and the data were analyzed by linear regression. At maximal levels of K^bsol offered, about 65% of the total labelled peptides 15 were bound. This maximal binding capacity of labelled peptide to Kbsol protein deteriorated over time, presumably due to radiation by 125I bound to VSV-8.

In a third procedure, each sample contained 0.39nM of $[^{125}I]VSV-8$ (about 18,000 cpm), unlabelled 20 peptides at the indicated concentration, and 30nM of K^{b} sol that gives about 50% of the [125I]VSV-8 binding in the absence of unlabelled peptide at a final volume of 72 μ l. All components were dissolved and diluted in PBS containing 1% BSA. After incubation for 2-16 hours at 25 23 °C, $50\mu l$ samples were analyzed by P30 gel filtration as described above. The dissociation constants for unlabelled peptides were determined from molar concentrations of [125] VSV-8 and unlabelled peptides giving 50% inhibition of [^{125}I] VSV-8 binding to K^b sol as 30 described. (See Muller, et al., Meth. Enzymol. 92: 589-601 (1983).)

 $K^h sol~(0.3\mu M)$ and $[^{125}I] VSV-8~(0.39n M)$ were then incubated at 4° C, 23 °C, and 37 °C, and the association was determined at various times by P30 gel filtration.

Murine β -2 microglobulin was added, when necessary, before the incubation at the indicated concentration. The murine β -2 microglobulin was prepared by affinity chromatography using anti- β -2 microglobulin polyclonal antibody K355 from culture supernatants of the 5 recombinant Drosophila cells. (See also Logdberg, et al., Molec. Immun. 14: 577-587 (1979).) In another experiment, K^b sol (0.3 μ M or 1.8 μ M) and [125I]VSV-8 (2.4 μ M) were incubated at 23 °C for two hours, and the peptide-Kbsol complexes were isolated by P30 gel 10 filtration. The samples contained very small amounts of [125 I]VSV-8 and K b sol complexes (at the maximum, 2.4nM) and empty Kbsol at final concentration of about 50 to 300nM. To some samples, $3\mu M$ of β -2 microglobulin, $3\mu M$ of β -2 microglobulin plus 20 μ M of unlabelled VSV-8, 20 μ M of 15 unlabelled VSV-8, or 1% TX-100 were added. The samples were incubated for various times at 37 °C and the degree of dissociation was determined by passage over P30 columns.

B. <u>Discussion</u>

Class I MHC molecules present antigenic peptides to cytotoxic T lymphocytes. Direct binding of peptide to Class I molecules in vitro has been hampered by either the presence of previously bound peptides at the binding site (Chen and Perham, Nature 337: 743-5 25 (1989)) or the lack of binding specificity. Frelinger, et al., <u>J. Exp. Med. 172</u>: 827-34 (1990); Choppin, et al., <u>J. Exp. Med. 172</u>: 889-99 (1990); Chen, et al., <u>J. Exp. Med. 172</u>: 931-6 (1990).) In vitro analysis of peptide binding to soluble, empty Class I 30 molecules purified from Drosophila cells transformed with truncated H-2K $^{\rm h}$ sol and murine β -2 microglobulin genes is disclosed herein. The results demonstrate that peptide binding is very rapid and naturally processed peptides (octapeptides; see, e.g., Van Bleek, et al., Nature 348: 35

213-6 (1990); Falk, et al., Nature 351: 290-6 (1991)) have the highest affinities to K^bsol of the nanomolar range and indicate that K^bsol complexed with octapeptides are stable, whereas those complexed with slightly shorter or longer peptides are short-lived. Interactions between free heavy chain and β-2 microglobulin is basically reversible in the absence of detergent. Peptides spontaneously bind to empty Class I molecules without dissolution of β-2 microglobulin. However, excess β-2
microglobulin apparently promotes the binding of peptide to empty Class I as a consequence of reassociation of free heavy chain with β-2 microglobulin under conditions where the heterodimers are unstable.

Soluble H-2K" molecules (composed of the $\alpha 1\alpha 2\alpha 3$ domain of heavy chain) and murine β -2 microglobulin, were 15 purified from the culture supernatants of Drosophila cells which were concomitantly transformed with the truncated heavy chain and β -2 microglobulin genes. Preliminary examinations suggested that Drosophila cells express Class I MHC molecules devoid of endogenous 20 peptides on the cell surface. Some of the properties of empty Class I molecules include the observation that they are less stable at 37 °C and their structure is stabilized by the binding of peptide. (See, e.g., Schumacher, et al., Cell 62: 563-7 (1990); Ljunggren, et 25 al., Nature 346: 476-80 (1990).) To confirm that purified soluble K^h are also empty, their thermal stability in detergent-free solution was examined. Surprisingly, the proteins heated for one hour at 47 $^{\circ}\text{C}$ were well recovered by immunoprecipitation using a 30 conformational antibody, Y3. This unexpected result led us to add detergent, 1% Triton X-100 (polyoxyethylene (9) octyl phenyl ether), to the protein solution, since similar experiments to test the stability of Class I molecules have always been conducted in detergent lysates 35

(See Schumacher, et al., cited supra). The results obtained in the presence of detergent show that the purified K⁵sol is now unstable at 37 °C. This and other lines of evidence suggest that K⁶sol heterodimer

- disassembles into the heavy chain and β -2 microglobulin at elevated temperatures and that detergent may prevent β -2 microglobulin from reassociating with dissociated free heavy chain (see below). Second, the possibility of stabilizing purified K^bsol with peptides was studied.
- The results of the first-described examination demonstrated that the proteins can be stabilized only when they are mixed with octapeptide (vesicular stomatitis virus nucleocapsid protein [VSV-8], see Table 3 below) which is shown to be a naturally processed
- peptide (see Van Bleek, et al., cited *supra*). These observations are consistent with the characteristics of empty Class I molecules mentioned above.

Independent support that the purified Kbsol molecules are empty is provided by isoelectric focusing (IEF) under native conditions (data not shown). The soluble K' purified from Drosophila cells exhibited a much simpler pattern than HLA-A2 molecules purified from human lymphoblastoid cell lines (see Figure 3 in Silver, et al., Nature 350: 619-22 (1991)). The complicated

- pattern of HLA-A2 on IEF is presumed to be the result of the presence of heterogeneous peptides bound to the molecules. The simple band of purified K*sol indicates the absence of endogenous peptides. In addition, the incubation of K*sol with antigenic peptides caused the
- distinct shifts of band on IEF gel, reflecting the change in isoelectric point of K'sol due to the peptide binding. It should be noted that such band-shifting was not observed in HLA-A2 molecules when they were simply mixed with peptides, unless HLA-A2 are incubated with peptides
- 35 in "reconstituting conditions" after removal of

- 85 -

previously bound endogenous peptides. Taken together, these observations on native IEF also indicate that soluble K^{b} purified from *Drosophila* cells are empty.

The association of 125I-labelled VSV-8 with K^b sol was demonstrated by gel filtration (not shown). 5 The radioactivity of high molecular weight materials corresponds to peptide- K^b sol complexes, while that of low molecular weight materials represents free peptides. Unlabelled VSV and ovalbumin (OVA) peptides could compete with the labelled VSV-8 (see below), arguing that 10 $[^{125}I]$ VSV-8 is bound specifically to K^b sol molecules. Reversed-phase HPLC revealed that Kb-bound [125] VSV-8 has the identical retention time to the input peptide. The binding to K^b sol of the labelled VSV-8 was saturable, exhibiting a dissociation constant (K_D) of about 33nM 15 (not shown). From the x-axis of the Scatchard plot, it was noted that about 65% of the labelled VSV-8 is able to bind to Kb.

To determine affinities of various peptides to Kb, competitive radioimmunoassays (RIA) using [125] VSV-8 were carried out (data not shown). The inhibitory peptides used for the RIA are listed in Table 3. Kp for each peptide is summarized in Table 3 as well.

25 TABLE 3

Various Antiqenic Peptides* Used in Present Studies

		Cherage (Cherage	osed in Present Studies
	<u>Code</u>	<u>Sequence</u>	K_{f} (M)
30	VSV-7	GYVYQGL	5.3 X 10 ⁻⁸
	VSV-8	RGYVYQGL	3.7 X 10.9
	VSV-9N	LRGYVYQGL	7.3 X 10 '
	VSV-10N	DLRGYVYQGL	3.9 X 10 ⁻⁷
	VSV-9C	RGYVYQGLK	6.9 X 10.4
	VSV-10C	RGYVYQGLKS	2.1 X 10 ⁻⁺
	8 - AVO	SIINFEKL	4.1 X 10.9
35	OVA-9N	ESIINFEKL	8.9 X 10 ⁻⁶

- 86 -

5	OVA-10N OVA-9C OVA-10C OVA-24 SEV-9	LESIINFEKL SIINFEKLT SIINFEKLTE EQLESIINFEKLTEWTSSNVMEER FAPGNYPAL	2.8 X 10 ⁻⁷ 1.1 X 10 ⁻⁸ 1.4 X 10 ⁻⁸ 7.1 X 10 ⁻⁵ 2.7 X 10 ⁻⁹
	VSV-8: Ves	sicular stomatitis virus nucl	

VSV-8: Vesicular stomatitis virus nucleocapsid protein 52-59 (Van Bleek, et al., <u>Nature 348</u>: 213-216 (1990)) OVA-8: Ovalbumin 257-264 (Carbone, et al., <u>J. Exp.Med.</u>

10 169: 603-12 (1989));

15

SEV-9: Sendai virus nucleoprotein 324-332 (Schumacher, et al., Nature 350: 703-706 (1991))

* All peptides were purified by C₁₈ reversed-phase HPLC to exclude contaminating shorter peptides with different binding properties. The 3-letter code designations and SEQ ID NO for each peptide are given below.

	VSV-7	GlyTyrValTyrGlnGlyLeu (SEQ ID NO 40, residue nos. 4-10)
20	VSV-8	ArgGlyTyrValTyrGlnGlyLeu (SEQ ID NO 40, residue nos. 3-10)
	VSV-9N	LeuArgGlyTyrValTyrGlnGlyLeu (SEQ ID NO 40, residue nos. 2-10)
	VSV-10N	AspLeuArgGlyTyrValTyrGlnGlyLeu (SEQ ID NO 40)
25	VSV-9C	ArgGlyTyrValTyrGlnGlyLeuLys (SEQ ID NO 44, residue nos. 1-9)
	VSV-10C	ArgGlyTyrValTyrGlnGlyLeuLysSer (SEQ ID NO 44)
	OVA-8	SerIleIleAsnPheGluLysLeu (SEQ ID NO 39, residue nos. 5-12)
30	OVA-9N	GluSerIleIleAsnPheGluLysLeu (SEQ ID NO 39, residue nos. 4-12)
	OVA-10N	LeuGluSerIleIleAsnPheGluLysLeu (SEQ ID NO 39, residue nos. 3-12)
	OVA-9C	
35		residue nos. 5-13)

- 87 -

OVA-10C SerIleIleAsnPheGluLysLeuThrGlu (SEQ ID NO 39, residue nos. 5-14)

OVA-24 GluGlnLeuGluSerIleIleAsnPheGluLysLeuThrGlu-TrpT hrSerSerAsnValMetGluGluArg (SEQ ID NO 39)

5 SEV-9 PheAlaProGlyAsnTyrProAlaLeu (SEQ ID NO 45)

The peptides of naturally processed size (8mer for VSV and OVA, and 9mer for sendai virus nucleoprotein [SEV]) had the highest and remarkably similar affinities from the range of 2.7 to 4.1 nM. this exceedingly high 10 affinity of the natural peptides is consistent with recent observations. (See, e.g., Schumacher, et al., Nature 350: 703-6 (1991); Christnick, et al., Nature 352: 67-70 (1991).) However, peptides that were shorter or longer by as little as one or two residues lowered the 15 affinity by a factor of from 2 to 100. This reduction of the affinity is even more drastic for a much longer peptide; i.e., the affinity of 24mer peptide (OVA-24) is more than 10,000-fold lower than that of OVA-8. results help to explain why earlier reports using longer 20 peptides claim the affinity of micromolar range. e.g., Frelinger, et al. and Choppin, et al., both cited supra.) It is of particular interest that the extension of peptides at the carboxyl terminus is much less destructive of the affinity than extension at the amino 25 terminus. According to the three-dimensional structure of HLA-A2, the peptide-binding groove is formed by two long lpha helices on the antiparallel eta strands, and the cleft is about 25 angstroms long, which is proposed to accommodate an extended peptide chain of about eight 30 residues (see, e.g., Bjorkman, et al., Nature 329: 506-12 (1987)). At one end of the cleft, the $\alpha 1$ and $\alpha 2$ helices come close together tightly, while at the other end, the cleft is fairly open. It is now speculated that both VSV and OVA peptide bind to the cleft in the same orientation 35

- 88 -

*and the carboxyl terminus of the peptides might interact with the relatively open end of the cleft so that the extension of peptide at the carboxyl terminus does not cause severe steric hindrance.

Examinations were then performed to determine 5 the rate of peptide binding to Kb at 4 °C and 23 °C, respectively (not shown). Binding was very rapid, especially at 23 °C, with a half-time of about 5 minutes even in extremely low concentrations of labelled peptides (about 0.4nM). This contrasts with previous 10 observations, which show a half-time of association of about two hours. (See, e.g., Choppin, et al., cited supra.) Again, only 65% of the total labelled peptide was able to bind. The addition of excess β -2 microglobulin did not affect the peptide-binding kinetics 15 at such low temperatures that Kb heterodimer is stable (remained to be assembled). This implies that exchange of β -2 microglobulin is not a prerequisite for peptide binding; i.e., peptides can spontaneously bind to empty Class I molecules without dissociation of β -2 20 microglobulin. In contrast, excess free β -2 microglobulin apparently promotes peptide binding at 37 °C (data not shown). As the concentration of added $\beta\text{--}2$ microglobulin increased, more peptides bound to K^b molecules. Since empty K^b are unstable at 37 °C, a 25 fraction of heterodimers must be dissociated to the heavy chain and β -2 microglobulin and thereby, the heterodimer must be in equilibrium with free heavy chain and free β -2 microglobulin. Then, the addition of β -2 microglobulin should shift the equilibrium toward the formation of 30 heterodimer that can bind peptides. This view is supported by recent observations that there are substantial numbers of Class I free heavy chains on the normal cell surface and exogenously added β -2

microglobulin facilitates peptide binding to empty

35

Class I molecules on cells as a consequence of the reassociation of β -2 microglobulin with free heavy chain. (See, e.g., Rock, et al., Cell 65: 611-620 (1991); Kozlowski, et al., Nature 349: 74-77 (1991); Vitiello, et al., Science 250: 1423-6 (1990).)

The dissociation kinetics of peptide at 37 $^{\circ}\text{C}$ were then observed. Immediately after isolating [^{125}I] VSV-8 and K^b complexes by gel filtration, the samples containing either 50 or 300 nM Kb were exposed to 37 °C temperatures. Some samples were supplemented with 10 $3\mu\text{M}$ $\beta\text{-2}$ microglobulin and/or $20\mu\text{M}$ unlabelled VSV-8, or 1% TX-100. The dissociation of labelled peptides from K^{b} was measured at various times (not shown). presence of a large excess of unlabelled peptides, the dissociation rate of peptide followed first-order 15 kinetics with a half-time dissociation of about 36 minutes (a dissociation rate constant of 3.2 X 10⁻⁴ s⁻¹). This unexpected, relatively rapid dissociation of labelled peptide does not agree with some current views of stable peptide-Class I complexes. In fact, the 20 results ascertained (not shown) demonstrated that Kb and VSV-8 complexes are stable. This discrepancy must arise from the 10-fold lower affinity of radiolabelled VSV-8 (33 nM) compared with that of unlabelled VSV-8 (3.7 nM).

The first-order kinetics were also observed when the detergent was added instead of unlabelled peptide, indicating that the detergent makes the peptide dissociation process irreversible. In contrast, the peptide dissociation profile did not follow the first-order kinetics in the absence of unlabelled peptide or the detergent. This suggests that the peptide association/dissociation is reversible and the binding of peptide is dependent on the concentration of heterodimer (compare the kinetics between 50 nM and 300 nM of K^b).

This became more evident when excess β-2 microglobulin

was added. These results support the previous argument that interaction between the heavy chain, β -2 microglobulin and peptide are basically reversible at 37 °C, if not entirely, in the absence of detergent. is probable that a detergent such as TX-100 may prevent 5 β -2 microglobulin from reassociating with free heavy chain at 37 °C. This could reasonably explain why K^{b} once heated to elevated temperatures in the absence of detergent can be efficiently immunoprecipitated by conformational antibody (not shown). Interestingly, the 10 addition of β -2 microglobulin did not suppress the peptide dissociation in the presence of excess unlabelled peptides, indicating that labelled peptides are released from the complexes without dissociation of β -2 15 microglobulin. It should be remembered, however, that the affinity of [125] VSV-8 is about 10-fold lower than that of the natural peptides. Therefore, this is not necessarily the case for the natural peptides.

The study using in vitro peptide-binding assay

systems suggests that peptide binding to Class I

molecules is a simple mass action and a ligand-receptor
interaction. The approach used herein allows
characterization of the peptide binding specificity to
Class I molecules and of the interaction of

peptide-Class I complexes with the T-cell receptor.

Example 8

Therapeutic Applications

A. Class I Molecule Bank

A reservoir or "bank" of insect cell lines may be established and maintained, with each cell line expressing one of the 50 to 100 most common Class I MHC heavy chain, a β -microglobulin molecule, as well as at least one assisting molecule. cDNAs encoding these proteins may be cloned based on HLA variants obtained from cell lines containing same -- e.g., via the

- 91 -

polymerase chain reaction (see Ennis, et al., <u>PNAS USA</u> 87: 2833-7 (1990)) -- and inserted into the appropriate vector, such as an insect expression vector, to generate cell lines expressing each HLA variant.

5

10

15

35

Testing according to the following protocol, for example, can be used to determine which peptides derived from the virus of choice bind the best to the different Class I MHC molecules. The various cultures may appropriately be labeled or catalogued to indicate which Class I MHC molecules are best for use with particular peptides. Alternatively, transient cultures may be established as needed. As discussed herein, after approximately 48 hours' incubation of a culture of insect cells with a vector, that culture is apparently capable of expressing empty MHC molecules which may be loaded with the peptide(s) of choice for the purpose of activating CD8' cells.

Preparation of "Special" Cell Lines B. After HLA typing, if insect cell lines expressing the preferred HLA are not available, cDNAs 20 encoding the preferred HLA and assisting molecules may be cloned via use of the polymerase chain reaction. primers disclosed in section B.1. above (SEQ ID NO 1 through SEQ ID NO 12) may be used to amplify the appropriate HLA-A, -B, -C, -E, -F, or -G cDNAs in 25 separate reactions which may then be cloned and sequenced as described in the methods disclosed in Example 1, section 1 above. DNA is then purified from the PCR reaction using a Gene Clean kit (Bio 101, San Diego, CA) and ligated directly into the Sma I site of pRmHa-3. 30 Individual clones are isolated, the sequences verified, and stable Drosophila cell lines expressing the HLA established. Alternatively, a bulk population of recombinant plasmids may be grown in large scale and DNA

purified by cesium chloride gradients. The purified DNA

is then used to transfect S2 cells using calcium phosphate precipitation techniques. After 24 hours, the precipitate is washed off the cells and replaced with fresh Schneider media containing 1mM CuSO₄. Forty-eight hours later, the bulk population of transiently transfected cells is used for in vitro activation of CD8 after incubation with syngeneic peptides or protease digests of specific proteins.

Stable cell lines expressing the cloned HLA may then be established. Alternatively, a population of insect cells transiently expressing a bulk population of cloned recombinant molecules from the PCR reaction may be used for *in vitro* CD8° activation.

It is also possible to activate haplotype-specific CD8s in vitro using insect cells 15 expressing Class I MHC incubated with peptides where the cell line-expressed MHC is not the expressed element in vivo. This provides a unique opportunity to proliferate CD8' cells which recognize a specific antigen associated with a particular MHC which would not be possible in vivo 20 due to allelic restriction. For example, a peptide (NP) from the nuclear protein of Influenza virus is ordinarily restricted to the D^b molecule; however, we have found that such a peptide can bind to Kb (albeit more weakly than to D^b) and can generate a degree of thermal 25 stability to the K^b (see Figure 3). Furthermore, Kb-expressing Drosophila cells preincubated with the NP

results in the *in vitro* activation of CD8' which

specifically recognize the K^b molecule associated with
the NP peptide. In addition, the reciprocal experiment
using a K^b-restricted peptide (OVA) derived from
ovalbumin and D^b-expressing *Drosophila* cells results in
the proliferation of CD8' which specifically recognize D^b

containing the OVA peptide. Such CD8s are able to kill

peptide and cocultured with splenocytes from a B6 mouse

15

cells (EL4 OVA) transfected with cDNA encoding the ovalbumin protein, indicating that in vivo, some D^b molecules are loaded with the OVA peptide.

This system therefore provides a unique

opportunity to proliferate CD8' against specific antigens
presented by a Class I molecule which, in vivo, is not
the restriction element for that peptide. Although
enough antigen is presented in vivo by said Class I for
the cell to be recognized by CD8' and killed, it is not
enough to proliferate such CD8s in vivo. By loading
empty Class I molecules expressed by Drosophila cells
with peptide, we are able to override the in vivo
restriction by providing an excess of antigenic peptide
to the Class I molecule in a non-competitive environment
such that enough antigen is presented by the Class I to
activate the specific CD8' recognizing this complex.

C. AIDS Treatment

In vitro activated cells may be administered to patients for in vivo therapy. Preferably, the Class I MHC genotype (haplotype) of the individual is first 20 determined. Conventional tissue typing is appropriate for this purpose and may be performed at the treatment center or by some appropriate commercial operation. the individual's HLA type(s) is (are) determined, the best combination of peptides and Class I MHC molecules 25 suitable for the individual patient is ascertained and prepared as noted above and the appropriate insect cell lines and peptides are provided. Resting or precursor CD8' T-cells from the blood of the patient are then stimulated with the appropriate peptide-loaded MHC 30 produced by the insect cell culture. After activation, the CD8' cells are reintroduced into the patient's bloodstream, and the disease process in the patient continues to be monitored. Methods of removing and re-introducing cellular components are known in the art 35

and include procedures such as those exemplified in U.S. Patent No. 4,844,893 to Honsik, et al. and U.S. Patent No. 4,690,915 to Rosenberg.

Additional treatments may be administered as necessary until the disease is sufficiently remediated. Similar treatment protocols are appropriate for use with other immunosuppressed individuals, including transplant patients, elderly patients, and the like.

D. <u>Cancer Treatment</u>

10 In cancer patients, a treatment procedure similar to that described above is utilized. However, in such patients, it should be anticipated that conventional therapy to reduce the tumor mass may precede the immune therapy described herein. Therefore, it is preferred that blood samples from the putative patient be obtained 15 and stored (e.g. via freezing) prior to the commencement of conventional therapy such as radiation or chemotherapy, which tends to destroy immune cells. Since few, if any, forms of cancer arise in direct response to viral infection, target peptides for immune treatment are 20 less readily observed. However, recent studies indicate that mutations in the oncogenes ras, neu, and p53 contribute to cancer in as much as 50% of all cancer Thus, peptides derived from these mutated regions of the molecules are prime candidates as targets for the 25 present therapy. Pursuant to the protocols disclosed herein, the best combination of peptides and Class I molecules for the individual patient may be determined and administered.

For example, many tumors express antigens that are recognized in vitro by CD8' cells derived from the affected individual. Such antigens which are not expressed in normal cells may thus be identified, as well as the HLA type that presents them to the CD8' cells, for precisely targeted immunotherapy using the methods of the

10

present invention. For example, van der Bruggen, et al. have described an antigen whose expression is directed by a specific gene and which antigen appears to be presented by HLA Al (Science 254: 1643-1647 (1991)). As various human tumor antigens are isolated and described, they become good candidates for immunotherapeutic applications as described herein.

In another, alternative therapeutic mode, it may be feasible to administer the *in vitro* activated CD8' cells of the present invention in conjunction with other immunogens. For example, the Large Multivalent Immunogen disclosed in U.S. Patent No. 5,045,320 may be administered in conjunction with activated CD8' cells.

It is also possible that cytokines such as IL-2 and IL-4, which mediate differentiation and activation of 15 T-cells, may be administered as well, as cytokines are able to stimulate the T-cell response against tumor cells in vivo. It is believed that IL-2 plays a major role in the growth and differentiation of CD8 precursors and in CD8 proliferation. The administration of IL-2 to cancer 20 patients is frequently associated with an improved anti-tumor response which is likely related to induction of tumor-specific T-cells. However, the best therapeutic effects of IL-2 might be obtained by continuous local rather than systemic administration of IL-2, thus 25 minimizing the IL-2 toxicity and prolonging its biological activity. One may achieve local delivery via transfecting tumor cells with an IL-2 gene construct.

IL-2 cDNA is constructed as described by

Karasuyama and Melchers in Eur. J. Immunol, 18: 97-104

(1988). The complete cDNA sequence of IL-2 is obtained as an Xho I fragment from the plasmid pBMGneo IL-2 (see Karasuyama and Melchers, supra) and directly ligated into the Sal I site in pRmHa-3. Recombinant pRmHa-3 plasmid with the insert in the correct orientation (determined)

15

35

via restriction mapping with Hind III) is purified by cesium gradients and used to cotransfect S2 cells using the calcium phosphate technique. (A mixture of plasmid DNA was prepared for this purpose: $10\mu g$ pRmHa-3 containing IL-2 cDNA, $6\mu g$ each of pRmHa-3 plasmid 5 containing MHC Class I heavy chain or $\beta\text{--}2$ microglobulin and $2\mu g$ of phshsneo DNA.) Stable cell lines which are inducible via $CuSO_4$ to express heavy chain, β -2 microglobulin and IL-2 were obtained by growing the transfectants in G418 medium. These stable cell lines were coated with peptide and used in the in vitro assay as described above. Tumor cells transfected with IL-2 are observed to enhance the CTL (CD8) activity against the parental tumor cells and bypass CD4 and T helper function in the induction of an antitumor or cytotoxic response in vivo. Therefore, increasing the potential of the Drosophila system via cotransfection with the IL-2 gene is suggested herein.

Example 9

Dose Dependence of the Production of Activated T-Cells 20 Using the Antigen-Presenting System

Antigen-presenting cells (APC) were produced by transfecting Drosophila cells as described in Example 3 and then tested for their capacity to present antigen to T-cells from the 2C line of transgenic mice. With mouse cells as antigen-presenting cells, this line displays strong alloreactivity for L^d molecules complexed with an endogenous 8-mer peptide, p2Ca (Leu-Ser-Pro-Phe-Pro-Phe-Asp-Leu, SEQ ID NO 46), derived from a Krebs cycle enzyme, 2-oxoglutarate dehydrogenase (OGDH). The p2Ca 30 peptide is exposed naturally bound to L^d on the surface of $H-2^d$ cells such as B10.D2 cells. The p2Ca peptide has intermediate binding affinity for soluble Ld molecules (4 \times 10 6 $M^{-1})$ and high affinity for 2C TCR molecules (2 \times 10 6 M^{-1} to 1 x 10⁷ M^{-1}).

A closely-related 9-mer peptide, QL9 (Gln-Leu-Ser-Pro-Phe-Pro-Phe-Asp-Leu, SEQ ID NO 47), has even higher affinity for these molecules (2 x 10⁸ M⁻¹ for L^d and 2 x 10⁷ M⁻¹ for 2C TCR). Except for one additional amino acid (glutamine) at the N terminus, QL9 has an identical sequence to p2Ca and, like p2Ca, forms part of the native sequence of OGDH.

5

10

15

20

25

30

35

·: .i.

With p2Ca and QL9 peptides (prepared in synthetic form), antigen-presenting cell requirements for mature unprimed 2C CD8' cells were studied in vitro. The responder CD8' cells were purified from pooled lymph nodes (LN) of 2C mice on a C57BL/6 (B6, H-2b) background by first removing CD4' cells, class II-positive cells and B cells by mAb + complement treatment followed by positive panning.

Cell suspensions were prepared from pooled cervical, axillary, inguinal and mesenteric LN of young adult mice using a tissue grinder. For cell purification, LN cells were first treated with a cocktail of mAbs (anti-CD4, anti-HSA, anti-I-Ab) plus complement for 45 minutes at 37 °C. The surviving cells were further separated into CD8 and CD8 (CD4) cells by panning at 4 °C for 60-90 minutes on petri dishes coated with anti-CD8 mAb. The attached CD8 cells were recovered by incubation at 37 °C for 5 minutes followed by vigorous pipetting. Non-attached cells were eluted and treated with anti-CD8 mAb and complement to obtain CD8 1B2 2C cells. More than 95% of the CD8 cells obtained were clonotype-positive (IB2') and 98% of these cells displayed a naive (CD441°) phenotype.

TCR stimulation elicited a complex pattern of intracellular events which lead to early up-regulation of CD69 and CD25 (IL-2 receptor or IL-2R) on the cell surface. These changes are apparent within a few hours of stimulation and are followed by cytokine synthesis and

cell proliferation. Drosophila cells were transfected with genes for L^d , L^d and B7.1 (L^d .B7), L^d and ICAM-1 (L^d .ICAM) or L^d , B7.1 and ICAM-1 (L^d .B7.ICAM). Figure 11 shows CD69 and CD25 expression on purified naive CD8 2C cells stimulated for 12 hours with transfected Drosophila cells and p2Ca versus QL9 peptide at a concentration of 10 μM . Purified CD8° 2C cells were incubated with. various Drosophila cells plus a peptide (either p2Ca or QL9, 10 μM) in bulk (2 ml) culture for 12 hours and then stained for CD69 or CD25. Either p2Ca or QL9 presented 10 by Drosophila cells transfected with Ld.B7, Ld.ICAM or La.B7.ICAM were effective in stimulating the upregulation of CD69 and CD25. However, non cultured 2C cells without either peptide or Drosophila cells did not show up-regulation of CD69 and CD25 (top panel). 15

In the presence of *Drosophila* cells expressing L^d alone, induction of CD69 and CD25 expression on CD8. 2C cells was low, but significant, with the strong QL9 peptide but barely detectable with the weaker p2Ca peptide. With L^d.B7 or L^d.ICAM antigen-presenting cells, both peptides elicited marked up-regulation of CD69 and CD25. However, L^d.B7.ICAM antigen-presenting cells induced even higher expression of these molecules.

Drosophila cells transfected with L^d alone

failed to cause proliferation of 2C CD8 cells to either
p2Ca or QL9 peptide in the absence of exogenous
lymphokines, consistent with the minimal capacity of
these cells as antigen-presenting cells to induce CD69
and CD25 expression. The results are shown in Figure 12.

Responses to p2Ca (above) and QL9 (below) were measured
by culturing 5 x 10' purified CD8' 2C cells with 2 x 10'
Drosophila cells in the presence or absence of the
indicated concentrations of peptides for 3 days. ['H]
TdR was added during the last 8 hours of culture; rIL-2
was added at a final concentration of 20 units/ml. The

data are the mean of triplicate cultures. When supplemented with exogenous IL-2, however, both peptides stimulated significant proliferative responses at high doses (10 μ M). The proliferative responses elicited by QL9 were far stronger than for p2Ca (note the large difference between the scales of x-axes of the upper and the lower panel).

Dose-response relationships for proliferation on day 3 elicited by Drosophila cells transfected with L⁶.B7.ICAM and presenting p2Ca peptide were compared to those elicited by Drosophila cells transfected with L⁶.B7, L⁶.ICAM or L⁶.B7.ICAM presenting QL9 peptide. The results (means of triplicate cultures) are shown in Figure 13. Drosophila APC (2 x 10⁵ cells) were cultured with 5 x 10⁴ CD8⁵ 2C cells for three days in the presence or absence of peptides. [3H] TdR was added during the last 8 hours of culture; no IL-2 was added to the cultures.

Optimal proliferative responses elicited by $L^{\sharp}.B7.ICAM$ antigen-presenting cells on day 3 required 20 high concentrations of p2Ca peptide, e.g. 10 μM (10⁻⁵ M), (Figure 13). The results for QL9 peptide were different. The does-response curves for L⁶.B7 antigen-presenting cells plus QL9 and L^{d} .ICAM antigen-presenting cells plus QL9 approximated the results for Ld.B7.ICAM antigen-25 presenting cells plus p2Ca (Figure 13). However, with La.B7.ICAM antigen-presenting cells, proliferative responses to QL9 on day 3 were maximal with 100 nM (10 $^{-1}$ M) and were clearly apparent with doses as low as 10 pM (10⁻¹¹ M) (Figure 13). At high doses, e.g. 10 μM (10⁻⁵ M), 30 QL9 inhibited the proliferative response on day 3 (Figure 13, note the log scale).

Inhibition of proliferation by Ld.B7.ICAM antigen-presenting cells and QL9 peptide did not apply to IL-2 production (Figure 14, right), and was only seen

- 100 -

with high doses of antigen-presenting cells (Figure 14, left). Ld.B7.ICAM antigen-presenting cells plus QL9 peptide was again found to be more effective in eliciting IL-2 production than Ld.B7.ICAM antigen-presenting cells plus p2Ca peptide (Figure 14, right). The data indicates that antigen-presenting cells without peptides were ineffective in eliciting either response over the 100-fold range of antigen-presenting cells density tested (Figure 14, "-pep," open squares).

Changes in the dose-response relationships of the responses of CD8° 2C cells on Day 3, Day 4 and Day 5 were examined using QL9 peptide with Ld.B7, Ld.ICAM or Ld.B7.ICAM antigen-presenting cells. The results are shown in Figure 15. Responses were measured with 5 x 10^4 CD8° 2C cells and 3 x 10^6 antigen-presenting cells at the indicated peptide concentrations. The data are the mean results of triplicate cultures.

10

15

With an intermediate dose of 100 nM (10⁻⁷ M) QL9 peptide, proliferative responses to L^d.B7.ICAM

antigen-presenting cells were high on Day 3 (Figure 15, left), reached a peak on Day 4 (Figure 15, center) and then declined to low levels on Day 5 (Figure 15, right). With a high dose of 10 µM (10⁻⁵ M) QL9 peptide, however, the response was low on Day 3 (Figure 15, left), but then increased markedly to reach a high peak on Day 5 (Figure 15, right).

Transient inhibition of proliferation induced by QL9 on Day 3 was only seen when the avidity of T-cell/APC interaction was very high. Decreasing the avidity of T-cell/APC interaction by using lower doses of APC (Figure 14, left) or lower doses of QL9 peptide (Figure 15, left) augmented the Day 3 proliferative response. Reducing the avidity of T-cell/APC interaction enhanced the early (Day 3) proliferative response but reduced the late (Day 5) response and also reduced IL-2

production (Figure 16, right). In Figure 16 the results obtained using CD8° 2C and CD8° 2C cells on Days 2, 3, 4 and 5 are compared.

The observations apply with the highly immunogenic L⁴.B7.ICAM antigen-presenting cells. However, with the less immunogenic Ld.B7 or Ld.ICAM antigen-presenting cells, proliferative responses to QL9 peptide required high doses of peptide (Figure 13, Figure 15) and were crucially dependent upon CD8 expression by the responder cells (Figure 16). These responses with L^{d} .B7 and L^{d} .ICAM antigen-presenting cells reached a peak on Days 3 or 4 (rather than Day 5) and were far lower than with L^d .B7.ICAM antigen-presenting cells. With low doses of QL9, e.g. 1 nM (10⁻⁹ M), proliferative responses with L^d .B7 and L^d .ICAM antigen-presenting cells were 15 completely undetectable (< 100 cpm) (Figure 13). This was in striking contrast to the results seen using ${\tt L^4.B7.ICAM}$ antigen-presenting cells, where 1 nM QL9 led to high responses (> 10,000 cpm) (Figure 13). In contrast to the results with high doses of QL9 peptide 20 (10 μM , Table 2), the synergistic interaction between B7 and ICAM for proliferative responses became pronounced at low peptide doses.

As can be seen, Ld.B7.ICAM cells act as

extremely potent antigen-presenting cells for naive 2C cells. Raising the avidity of T-cell/APC interaction to a high level inhibits the early proliferative response but potentiates the late response and IL-2 production is enhanced. For the high-affinity peptides such as QL9, the synergy between B7 and ICAM is pronounced at low doses of antigen.

Example 10

Production of Cytotoxic T-Cells

Using the Antigen Presenting System

Antigen-presenting cells (APC) were produced by transfecting Drosophila cells as described in Example 3 5 and then tested for their ability to induce CTL activity. CTL activity was tested on 51Cr-labelled RMA.S-L6 targets sensitized with QL9 peptide, no peptide or an irrelevant peptide (MCMV). CD8° 2C cells (5 x 10°) were cultured with 2 \times 10 6 transfected Drosophila cells in a volume of 10 2 ml in a 24-well culture plate. Cai, Z., and J. Sprent, (1994). Peptides were present during the culture at a concentration of 10 mM. After 4 days, the cells were pooled and adjusted to the required number. To prepare targets, RMA-S.Ld cells were labeled with $^{\text{51}}\text{Cr}$ (100 15 $mCi/1-2 \times 10^6$ cells) at 37 °C for 90 minutes in the presence or absence of peptides. After labeling, the cells were thoroughly washed and resuspended in medium with or without peptides. Specific **Cr release was calculated according to established procedure. Id. 20 The capacity of La.B7, La.B7.ICAM and La.ICAM antigen-presenting cells to induce CTL activity to 10 μM QL9 peptide in bulk cultures is shown in Figure 17. Strongly immunogenic $L^{\sharp}.37.1CAM$ antigen-presenting cells were efficient in generating QL9-specific CTL (Figure 17, 25 center). Significantly, L^d.B7 antigen-presenting cells were also effective in generating CTL to QL9 (Figure 17, left). The surprising finding, however, was that L^{\pm} . ICAM antigen-presenting cells were totally unable to stimulate CTL generation (Figure 17, right). This result 30 (representative of three different experiments) was unexpected, because L⁴.ICAM antigen-presenting cells were no less efficient than $L^{\pm}.B7$ antigen-presenting cells at inducing proliferative responses to QL9 (Figures 13 and 15). The L^d .ICAM-stimulated cultures in Figure 17 35

- 103 -

contained large numbers of blast cells, and total cell yields were about 3-fold higher than the input number.

The surprising finding that L⁴.ICAM antigen-presenting cells were totally unable to stimulate CTL generation applied to cultures not supplemented with exogenous lymphokines. However, when exogenous IL-2 was added to the cultures, L⁵.ICAM antigen-presenting cells induced strong CTL activity to QL9 (Figure 18, right; 20u/ml exogenous IL-2).

10

5

Example 11

Proliferation of Normal T-Cells

Induced by the Antigen-Presenting System

Antigen-presenting cells (APC) were produced by transfecting Drosophila cells as described in Example 3 and then tested for their ability to induce proliferation in normal (nontransgenic) murine T-cells.

The capacity of L^d.B7.ICAM Drosophila cells to induce a strong primary response of 2C TCR transgenic

CD8 cells raised the question whether Drosophila cells could act as antigen-presenting cells for normal (nontransgenic) CD8 cells. Since the 2C mice were on a B6 (H-2^b) background, the response of normal B6 CD8 cells was tested. Graded doses of CD8 cells from normal B6 mice were cultured with 10 µM QL9 peptide presented by L^d.B7.ICAM Drosophila antigen-presenting cells, i.e. a situation where a diverse repertoire of T-cells was exposed to only a single alloantigen (L^d + QL9) but at high concentration. As shown in Figure 19 (left), presentation of QL9 by L^f.B7.ICAM antigen-presenting

presentation of QL9 by L⁴.B7.ICAM antigen-presenting cells was indeed immunogenic for normal B6 CD8* cells and led to appreciable proliferative responses on Day 3 (80,000 cpm) with large doses of responder cells (1 x 10⁶) in the absence of added cytokines; responses to an unrelated peptide, MCMV, were much lower (though

- 104 -

significant) and no response occurred in the absence of peptide. As expected, the response of normal B6 CD8 cells to QL9 plus Ld.B7.ICAM antigen-presenting cells was substantially lower than with normal B10.D2 spleen cells as antigen-presenting cells (where the allostimulus was provided by a multiplicity of self peptides bound to Ld, Kd and Dd, but at low concentration) (Figure 19, right. Note the difference in the Y axis scales).

10

5

Example 12

Activation Of Cytotoxic T-Cells Using Immobilized Purified Recombinant MHC Class I Molecules And Assisting Molecules

Except as noted, cells, materials and reagents
were prepared as described in Example 4. Biotinylated
anti-mouse CD28 monoclonal antibody (clone 37.51) was
purchased from Pharmingen (San Diego, CA). This antibody
is also available from Caltag (South San Francisco, CA).
This antibody, which binds to CD28 co-stimulatory

- receptor, a ligand of B7.1 and B7.2 on the surface of T-cells, augments the proliferation of T-cells (Gross et al. J. Immunol. 149, 380-388, 1992). IL-2 was used as a concanavalin A supernatant (10% final concentration).
- Substrates were prepared as follows: Fifty

 microliters of PBS containing 1 microgram/ml of
 neutravidin were added to each well of a 96 well cell
 culture plate (Corning cat.#25860). After 2 hours at
 room temperature, the wells were washed 3 times with PBS
 prior to incubation with biotinylated molecules.
- Avidin-coated mouse red blood cells were prepared as described for avidin-coated sheep red blood cells in Example 4. Avidin-coated latex beads were prepared as described Example 4.

Biotinylation of recombinant L^d was performed as described in Example 4. Biotinylated recombinant L^d

- 105 -

was immobilized on the substrate together with biotinylated anti-CD28 antibody. Avidin-coated red blood cells or latex beads were incubated with 0.2 mg/ml biotinylated L^d, 0.025 mg/ml biotinylated anti-CD28, or a mixture thereof for 30 minutes at room temperature, then washed 3 times in DMEM containing 10% FCS and used immediately. Avidin-coated 96 well plates were incubated with 50 microliters per well of 2 microgram/ml biotinylated L^d, 0.25 microgram/ml anti-CD28, or mixtures thereof for 30 minutes at room temperature, then washed 3 times using DMEM containing 10% FCS and used immediately.

2C+ T-cells were prepared as described in Example 4. CD8 cells from C57BL/6 mice were prepared from the lymph nodes of these mice by magnetic depletion.

Purified cells were consistently 90-92% positive for CD8 expression, as assessed by flow cytofluorometry.

10

35

T-cell activation was performed in culture plates coated with purified L^d molecules and anti-CD28 antibody. T-cells and peptide (0.02 πM final

concentration) were added to 96 well plates coated with L^d and/or anti-CD28, in a final volume of 0.2ml/well and cultured for the appropriate time at 37 °C in humid atmosphere containing 5% CO₂.

T-cell activation using red blood cells or
latex beads coated with purified L^d molecules and antiCD28 antibody was performed in uncoated culture plates.
T-cells and peptide (0.02mM) were added to each well,
together with 100,000 red blood cells or latex beads.
Final volume was 0.2ml. Culture conditions were as
described above.

T-cell mitogenesis was assayed by incorporation cf a pulse of 1 μ Ci of tritiated thymidine per well by triplicate cell cultures. Cells were harvested 8 hours later and thymidine incorporation was determined by counting the filters in a scintillation counter.

- 106 -

RMA.S cells (target cells) expressing L⁴ were incubated with radiolabeled chromium for 90 minutes at 37 °C, washed 3 times and distributed in 96 well U-bottom plate (Costar cat#3799) (5000-10000 cells per well) in the presence of the appropriate peptide at 0.01mM. Various amounts of activated T-cells (effector cells) were added to reach effector/target ratios (E/T ratios) ranging between 150 and 1. After 5 hours of incubation at 37 °C, 0.1ml of supernatant was collected from each well and counted in a gamma counter. Percent lysis was determined by a standard method (Coligan et al., Current Protocols in Immunology, section 3.11, Wiley, New York (1991)).

10

Immobilized purified L^d and anti-CD28 antibody were mitogenic for 2C+ T-cells. When QL9 peptide was 15 used, a thymidine incorporation above 100,000 cpm per well was consistently measured by day 3-5 of culture (Figure 20). Maximum thymidine incorporation in that same range was obtained using any of the three methods of activation (molecules immobilized on plastic, on red 20 blood cells or on latex beads). When activation molecules were immobilized on plastic, L^d alone immobilized on plastic induced a transient mitogenesis (Figure 20, broken line) whereas L^4 plus anti-CD28 antibody induced a higher and more sustained mitogenesis 25 (Figure 20, solid line). Anti-CD28 antibody in addition to L^{\sharp} was required for the induction of any mitogenesis in the model using red blood cells. However, anti-CD28 antibody alone did not induce any mitogenesis.

QL9-L^d complexes are recognized by the 2C T-cell receptor with a high affinity. Complexes of other peptides and L^d recognized by this receptor with a lower affinity were able to activate 2C+ T-cells; these included peptides p2Ca and SL9 (Figure 21). However, IL-35 2 added at day 2 of culture was required in order to

5

35

observe mitogenesis using these peptides. Activation was peptide specific since LCMV peptide, a control peptide that is not recognized by the 2C T-cell receptor, did not induce activation. Mitogenesis was measurable starting with as little as 700 T-cells per well (96 plate well), demonstrating that the method activated a very small number of T-cells in a peptide specific manner.

2C+ T-cells were mixed with total CD6 cells from C57BL/6 mice at a 1/99 ratio and cells were cultured with immobilized L^d and anti-CD28 antibody in the 10 presence of peptide QL9. IL-2 was added at day 2 of culture, and subsequently every other day. Cell activation and proliferation was noted, as evidenced by the formation of clumps, presence of enlarged cells that progressively spread in the well. At day 12 of culture, 15 cells were harvested and percentage of cells expressing the 2C T-cell receptor was assessed by staining with the anticlonotypic antibody 1B2 and analysis by flow cytofluorometry: 43% of the cells cultured initially in the presence of peptide QL9 were 2C+, (Figure 22) whereas 20 49% of the cells expressed 2C after stimulation with peptide p2Ca (Figure 23), and 22% with peptide SL9 (Figure 24). This shows a considerable enrichment (43, 49 and 22 times) in specific T-cells after 12 days of culture. Enrichment was observed even with SL9, a 25 peptide that makes a low affinity complex with the 2C Tcell receptor. This method thus can specifically activate and enrich a small subpopulation of antigen specific T-cells out of a heterogenous mixture of T-30 cells.

2C+ T-cells, activated using L^d and anti-CD28 antibody in the presence of QL9 peptide, were cultured for 5 days, then their cytotoxic capacity was assessed. The results, shown in Figure 25, demonstrated that immobilized activation molecules induced the cells to

WO 96/27392 PCT/US96/03249

- 108 -

differentiate into effector cytotoxic T-cells. Lysis was specific, since it was observed in the presence of QL9 peptide but not in the presence of a control peptide (LCMV). Resting T-cells were thus activated using immobilized molecules to differentiate into cytotoxic T-cells able to specifically kill targets.

As can be seen, immobilized purified MHC

Class I and assisting molecules can be used to
specifically activate raive resting T-cells into

10 cytotoxic T-cells. MHC class I and assisting molecules
are sufficient for activation; no additional signal
originating from antigen-presenting cells is necessary.

MHC class I and assisting molecules immobilized on
substrates, such as cell culture plates, provide an

15 appropriate tool for T-cell activation. Several
advantages are offered by such coated substrates. They
are easy to prepare and to manipulate, they can be coated
with well-controlled amounts of molecules, ensuring
reproducible activation conditions.

20

Example 13

Activation of Human Cytotoxic T-Cells

A unit of human blood (450 mls) collected in heparin (10 µ/ml) was obtained through the General Clinical Research Center (GCRC) at Scripps Clinic, La Jolla, CA. The blood was first processed in a Ficoll-Hypaque density gradient in a 50 cc conical centrifuge (Histopaque 1077, Sigma) according to the manufacturer's specifications. Once the buffy coat was obtained, the sample was washed in buffer 1 (D-PBS without Ca⁻⁻ or Mg⁻⁻), then buffer 2 (RPMI with 4% fetal calf serum (FCS)) and a final wash in buffer 3 (D-PBS + 1% human serum albumin (HSA, 25% Buminate/Baxter-Hyland) and 0.2% sodium citrate (w/v)).

The total peripheral blood mononuclear cell (PBMCs) preparation was counted from the washed cells. This preparation was then taken through a MaxSep[™] isolation procedure (Baxter) where CD8 cells were selected by negative selection. A cocktail of mAbs to cells targeted for removal (CD19-PharMingen, CD4-Ortho-mune, CD15-PharMingen, CD56-PharMingen, CD14-PRI) was prepared at 2 μ g/ml of cells. The total PBMC cell count was diluted to 20 x 10⁶/ml in buffer 3 and the antibodies were added.

5

10

15

The mixture (approximately 40 mls) was rotated (4 rpm) on a rotary shaker at 4 °C, so that the tube mixed the sample end over end, for a total of 30 minutes. After the sensitization phase, the cells were washed with buffer 3 and resuspended in the same buffer with magnetic Dynal beads coated with sheep-anti-mouse IgG (SAM) (Dynabeads M450 #110.02). The stock of beads is usually 4 x 10⁶ beads/ml. The final bead:target cell ratio is 10:1.

To determine the final volume of beads to use, the formulas below were followed:

(Total cells sensitized) x (% of population of target cells) = Total theoretical target cell number.

Total theoretical target cell number \times 10 = 25 Total beads required.

Total beads required/Bead concentration of stock = Volume of beads required.

The volume of the final sensitized cells:beads mixture was approximately 50 mls. The mixture was put into a 150 ml Fenwal Transfer Pack (#4R2001), air added with a needle and the mixture rotating under similar conditions as above (30 minutes, 4 °C, 4 rpm, agitated end-over-end). At the end of the incubation period, the target cells were removed with a MaxSepTM separation device according to the manufacture's specifications.

PCT/US96/03249

The separated cells were transferred from the bag and counted to determine recovery. FACS analysis was performed to determine the purity of the sample.

The resulting separated human CD8° cells were stimulated with Drosophila (fly) antigen-presenting cells which were transfected and shown to express human HLA A2.1, B7.1 and/or LFA-3. The fly cells were diluted to 106/ml in Schneider's medium with 10% FCS serum. On the following day CuSO4 was added to the cultured cells which were incubated for 24 hours at 27 °C and harvested. The harvested cells were washed and suspended in Insect X-press medium with a final peptide concentration of 100 µg/ml and incubated for 3 hours at 27 °C.

The peptides used were HIV-RT (ILKEPVHGV) (SEQ ID NO 48), Tyrcsinase (YMNGTMSQV) (SEQ ID NO 49), and Influenza Matrix (GILGFVFTL) (SEQ ID NO 50).

The control peptide was derived from the core of the hepatitis virus and had the sequence FLPSDFFPSV (SEQ ID NO 51).

The fly antigen-presenting cells were added to the CD8 cells at a ratio of 1:10 (APC:CD8 T-cell). The cells were incubated in flat bottom wells (48 wells) for four days at 37 °C. At day 5, IL-2 (10 μ /ml) and IL-7 (10 μ /ml) (Genzyme) were added with a media change. On day 11 a CTL assay was performed.

JY, an EBV-transformed human B cell line expressing HLA 2.1, B7 was used as the target cell in the chromium release assay. Vissereu, M.J.W. et al. J.

Immunol., 154:3991-3998 (1995). JY cells were seeded at 30 3 x 10⁵ cells/ml in RPMI with 10% FCS, 24 hours prior to the assay. The JY cells were counted and washed once in RPMI wash solution (4% Rehautin FCS, 1% HEPES, 0.025% gentamycin in RPMI) to provide 5 x 10⁶ cells per sample. The cell pellet was gently resuspended in 100 μl of 51

Chromium stock (0.1 mCi, NEN) and placed in a 37 °C water

bath for 1 hour with agitation every fifteen minutes. Labelled JY cells were washed four times for 6 minutes each at 1400 rpm in 10 mls of RPMI wash solution. Cells were adjusted to 1 x 10^5 cells/ml in RPMI/10% Hyclone. Efficiency of target cell labelling is confirmed by standard gamma counter techniques.

For peptide loading of target cells, two mls of labelled JY cells (2 x 10^5 cells) were incubated with 10 $\mu g/ml$ peptide for 30 minutes at room temperature. Peptide stock solutions (lmg/ml) were stored at -70 °C. 10 In a 96 well round bottom plate, 100 μl effector cells and 100 μ l peptide loaded target cells were combined at ratios of 84:1, 17:1 and 3.4:1 (effector:target). Controls to measure spontaneous release and maximum release of 51Cr were included in duplicate. Samples were 15 incubated at 37 °C for 6 hours.

K562 cells at a concentration of 107/ml in RPMI with 10% FCS were added at a ratio of 20:1 (unlabelled K562:labelled JY). This erythroleukemic cell line was used to reduce NK background cell lysis in the chromium 20 release assay. Plates were centrifuged at 1000 rpm fcr 5 minutes and 100 μl supernatant from each sample transferred to 96 tube collection tubes. Analysis of cell lysis is determined by standard gamma counting techniques (Gammacell 1000, Nordion). 25

CTL activity produced by activating human CD8. T-cells with antigen-presenting cells loaded with influenza matrix peptide (SEQ ID NO 50) is shown in Figure 26. Prior exposure to influenza virus indicates that this CTL activity was a secondary response. Data 30 points are the mean of values from triplicate cultures. Antigen-presenting cells expressing A2.1, B7.1 and ICAM-1 were more effective than antigen-presenting cells expressing A2.1 and B7.1 cr antigen-presenting cells expressing A2.1, B7.1 and LFA-3.

35

٠.

The results of activating human CD8 T-cells with antigen-presenting cells loaded with HIV-RT peptide (SEQ ID NO 48) are presented in Figure 27. Since screening of the blood of this patient had indicated no prior exposure to HIV, these results indicate the CTL activity was based on a primary response. In this case, only antigen-presenting cells expressing A2.1, B7.1 and ICAM-1 produced CTL activity that was significantly greater than control levels.

10 Figure 28 shows the CTL activity of human CD8⁻
T-cells activated by antigen-presenting cells loaded with
tyrosinase peptide (SEQ ID NO 49). Tyrosinase is a
normally occurring enzyme that is over-expressed in
melanoma tumor cells. Again, the antigen-presenting
15 cells expressing all three molecules, ICAM-1 as well as
A2.1 and B7.1, were most effective, especially at the
lowest effector:target ratio tested.

These results show that the antigen presenting system is capable of producing effective CTL activity in human CD8. T-cells directed against a peptide that is derived from an endogenous protein that is over-expressed in tumor cells. This also demonstrates that this in vitro stimulation of CD5. T-cells using both B7 and ICAM will generate cytotoxic CD8. T-cells even against peptides that would otherwise be recognized as self. This is contrary to present knowledge that such "self" peptides could not be used to create cytotoxic T-cells. This method greatly expands the number of possible tumor

The foregoing is intended to be illustrative of the present invention, but not limiting. Numerous variations and modifications may be effected without departing from the true spirit and scope of the invention.

specific antigens that can be used to activate CD8.

T-cells against the tumor.

30

35

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Cai, Zeling

Sprent, Jonathan Brunmark, Anders Jackson, Michael Peterson, Per A Luxembourg, Alain Leturcq, Didier Jean Moriarty, Ann M.

(ii) TITLE OF INVENTION: ANTIGEN PRESENTING SYSTEM AND METHODS FOR

ACTIVATION OF T-CELLS

- (iii) NUMBER OF SEQUENCES: 51
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Olson & Hierl, Ltd.
 - (B) STREET: 20 North Wacker Drive, Suite 3600
 - (C) CITY: Chicago
 - (D) STATE: Illinois
 - (E) COUNTRY: USA (F) ZIP: 60606
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 8-MAR-1996
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/400,338
 - (B) FILING DATE: 8-MAR-1995
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Olson, Arne M.
 - (B) REGISTRATION NUMBER: 30,203
 - (C) REFERENCE/DOCKET NUMBER: TSRI4711
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (312) 580-1180
 - (B) TELEFAX: (312) 580-1189
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

```
(iii) HYPOTHETICAL: NO
```

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CCACCATGGC CGTCATGGCG CCC 23

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GGTCACACTT TACAAGCTCT GAG

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CCACCATGCT GGTCATGGCG CCC

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

```
(iii) HYPOTHETICAL: NO
```

- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GGACTCGATG TGAGAGACAC ATC 23

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CCACCATGCG GGTCATGGCG CCC

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGTCAGGCTT TACAAGCGAT GAG 23

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

```
(iii) HYPOTHETICAL: NO
```

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CCACCATGCG GGTAGATGCC CTC 23

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGTTACAAGC TGTGAGACTC AGA

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CCACCATGGC GCCCCGAAGC CTC

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GGTCACACTT TATTAGCTGT GAG

23

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CCACCATGGC GCCCGAACC CTC

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GGTCACAATT TACAAGCCGA GAG

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 427 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

AATTCGTTGC AGGACAGGAT GTGGTGCCCG ATGTGACTAG CTCTTTGCTG CAGGCCGTCC

TATCCTCTGG TTCCGATAAG AGACCCAGAA CTCCGGCCCC CCACCGCCCA CCGCCACCCC

CATACATATG TGGTACGCAA GTAAGAGTGC CTGCGCATGC CCCATGTGCC CCACCAAGAG

TTTTGCATCC CATACAAGTC CCCAAAGTGG AGAACCGAAC CAATTCTTCG CGGGCAGAAC

AAAAGCTTCT GCACACGTCT CCACTCGAAT TTGGAGCCGG CCGGCGTGTG CAAAAGAGGT

GAATCGAACG AAAGACCCGT GTGTAAAGCC GCGTTTCCAA AATGTATAAA ACCGAGAGCA

TCTGGCCAAT GTGCATCAGT TGTGGTCAGC AGCAAAATCA AGTGAATCAT CTCAGTGCAA

CTALAGG 427

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 740 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

ATTCGATGCA CACTCACATT CTTCTCCTAA TACGATAATA AAACTTTCCA TGAAAAATAT

GGAAAATAT ATGAAAATTG AGAAATCCAA AAAACTGATA AACGCTCTAC TTAATTAAAA 120

TAGATAAATG GGAGCGGCTG GAATGGCGGA GCATGACCAA GTTCCTCCGC CAATCAGTCG

TAAAACAGAA GTCGTGGAAA GCGGATAGAA AGAATGTTCG ATTTGACGGG CAAGCATGTC 240

WO 96/27392 PCT/US96/03249

- 119 -

TGCTATGTGG CGGATTGCGG AGGAATTGCA CTGGAGACCA GCAAGGTTCT CATGACCAAG

AATATAGCGG TGTGAGTGAG CGGGAAGCTC GGTTTCTGTC CAGATCGAAC TCAAAACTAG

TCCAGCCAGT CGCTGTCGAA ACTAATTAAG TTAATGAGTT TTTCATGTTA GTTTCGCGCT 420

GAGCAACAAT TAAGTTTATG TTTCAGTTCG GCTTAGATTT CGCTGAAGGA CTTGCCACTT

TCAATCAATA CTTTAGAACA AAATCAAAAC TCATTCTAAT AGCTTGGTGT TCATCTTTTT 540

TTTTAATGAT AAGCATTTTG TCGTTTATAC TTTTTTATATT TCGATATTAA ACCACCTATG

AAGTTCATTT TAATCGCCAG ATAAGCAATA TATTGTGTAA ATATTTGTAT TCTTTATCAG

GAAATTCAGG GAGACGGGGA AGTTACTATC TACTAAAAGC CAAACAATTT CTTACAGTTT

TACTCTCTCT ACTCTAGAGT

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 60 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GCTTGGATCC AGATCTACCA TGTCTCGCTC CGTGGCCTTA GCTGTGCTCG CGCTACTCTC

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: GGATCCGGAT GGTTACATGT CGCGATCCCA CTTAAC
- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17: GGAGCCGTGA CTGACTGAG 19
- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CCCTCGGCAC TGACTGACTC CTAG

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

WO 96/27392 PCT/US96/03249

- 121 -

(xi) S	EQUENCE	DES	CRIPTION:	SEQ	ID	NO:19
GATCCTTATT 38	AGATOTO	ACC	ATCACCAT	CA CO	ATI	TGAG

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: TCGACTCAAT GGTGATGGTG ATGGTGAGAT CTAATAAG 38
- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3875 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

TTGCAGGACA	GGATGTGGTG	CCCGATGTGA	CTAGCTCTTT	GCTGCAGGCC	GTCCTATCCT	60
CTGGTTCCGA	TAAGAGACCC	AGAACTCCGG	CCCCCCACCG	CCCACCGCCA	CCCCCATACA	120
TATGTGGTAC	GCAAGTAAGA	GTGCCTGCGC	ATGCCCCATG	TGCCCCACCA	AGAGCTTTGC	180
	AGTCCCCAAA					240
TTCTGCACAC						300
AACGAAAGAC						360
CAATGTGCAT	CAGTTGTGGT	CAGCAGCAAA	ATCAAGTGAA	TCATCTCAGT	GCAACTAAAG	420

GGGAATTCGA GCTCGGTACC CGGGGATCCT TATTAGATCT CACCATCACC ATCACCATTG	480
AGTCGACCTG CAGGCATGCA AGCTATTCGA TGCACACTCA CATTCTTCTC CTAATACGAT	540
ARTARACTT TCCATGARAR ATRIGGRALL RIGHTGARA ATTGAGARAT CCRARLRACT	600
GATAAACGCT CTACTTAATT AAAATAGATA AATGGGAGCG GCAGGAATGG CGGAGCATGG	660
CCAAGTTCCT CCGCCAATCA GTCGTAAAAC AGAAGTCGTG GAAAGCGGAT AGAAAGAATG	720
TTCGATTTGA CGGGCAAGCA TGTCTGCTAT GTGGCGGATT GCGGAGGAAT TGCACTGGAG	780
ACCAGCAAGG TTCTCATGAC CAAGAATATA GCGGTGAGTG AGCGGGAAGC TCGGTTTCTG	840
TCCAGATCGA ACTCAAAACT AGTCCAGCCA GTCGCTGTCG AAACTAATTA AGTLAATGAG	900
TTTTTCATGT TAGTTTCGCG CTGAGCAACA ATTAAGTTTA TGTTTCAGTT CGGCTTAGAT	960
TTCGCTGAAG GACTTGCCAC TTTCAATCAA TACTTTAGAA CAAAATCAAA ACTCATTCTA	1020
ATAGCTTGGT GTTCATCTTT TTTTTTAATG ATAAGCATTT TGTCGTTTAT ACTTTTTATA	1080
TTTCGATATT AAACCACCTA TGAAGTCLAT TTTAATCGCC AGATAAGCAA TATATTGTGT	1140
AAATATTTGT ATTCTTTATC AGGAAATTCA GGGAGACGGG AAGTTACTAT CTACTAAAG	1200
CCAAACAATT TCTTACAGTT TTACTCTCTC TACTCTAGAG TAGCTTGGCA CTGGCCGTCG	1260
TTTTACAACG TCGTGACTGG GAAAACCCTG GCGTTACCCA ACTTAATCGC CTTGCAGCAC	1320
ATCCCCCTTT CGCCAGCTGG CGTAATAGCG AAGAGGCCCG CACCGATCGC CCTTCCCAAC	1380
AGTTGCGCAG CCTGAATGGC GAATGGCGCC TGATGCGGTA TTTTCTCCTT ACGCATCTGT	1440
GCGGTATTTC ACACCGCATA TGGTGCACTC TCAGTACAAT CTGCTCTGAT GCCGCATAGT	1500
TAAGCCAGCC CCGACACCCG CCAACACCCG CTGACGCGCC CTGACGGGCT TGTCTGCTCC	1560
CGGCATCCGC TTACAGACAA GCTGTGACCG TCTCCGGGAG CTGCATGTGT CAGAGGTTTT	1620
CACCGTCATC ACCGAAACGC GCGAGACGAA AGGGCCTCGT GATACGCCTA TTTTTATAGG	1680
TTAATGTCAT GATAATAATG GTTTCTTAGA CGTCAGGTGG CACTTTTCGG GGAAATGTGC	1740
	1800
	1860
	1920
	1980
	2040
	2100
	2160
TCACAGALAA GCATCTTACG GATGGCATGA CAGTAAGAGA ATTATGCAGT GCTGCCATAA	2220
	2280
TAACCGCTTT TTTGCACAAC ATGGGGGATC ATGTAACTCG CCTTGATCGT TGGGAACCGG	2340

3.CCMC1.3.MC1	
AGCTGAATGA AGCCATACCA AACGACGAGC GTGACACCAC GATGCCTGTA GCAATGGCAA	2400
CAACGTTGCG CAAACTATTA ACTGGCGAAC TACTTACTCT AGCTTCCCGG CAACAATTAA	2460
TAGACTGGAT GGAGGCGGAT AAAGTTGCAG GACCACTTCT GCGCTCGGCC CTTCCGGCTG	2520
GCTGGTTTAT TGCTGATAAA TCTGGAGCCG GTGAGCGTGG GTCTCGCGGT ATCATTGCAG	2580
CACTGGGGCC AGATGGTAAG CCCTCCCGTA TCGTAGTTAT CTACACGACG GGGAGTCAGG	2640
CAACTATGGA TGAACGAAAT AGACAGATCG CTGAGATAGG TGCCTCACTG ATTAAGCATT	2700
GGTAACTGTC AGACCAAGTT TACTCATATA TACTTTAGAT TGATTTAAAA CTTCATTTTT	2760
AATTTAAAAG GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA ATCCCTTAAC	2820
GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA GATCAAAGGA TCTTCTTGAG	2880
ATCCTTTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA AAAACCACCG CTACCAGCGG	2940
TGGTTTGTTT GCCGGATCAA GAGCTACCAA CTCTTTTTCC GAAGGTAACT GGCTTCAGCA	3000
GAGCGCAGAT ACCAAATACT GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA	3060
ACTCTGTAGC ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG GCTGCTGCCA	3120
GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGCGC	3120
AGCGGTCGGG CTGAACGGGG GGTTCGTGCA CACAGCCCAG CTTGGAGCGA ACGACCTACA	3240
CCGAACTGAG ATACCTACAG CGTGAGCATT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA	3300
AGGCGGACAG GTATCCGGTA AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC	3360
CAGGGGGAAA CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC	3420
GTCGATTTTT GTGATGCTCG TCAGGGGGGC GGAGCCTATG GAAAAACGCC AGCAACGCGG	
CCTTTTTACG GTCCTGGCCT TTTGCTGGCC TTTTGCTCAC ATGTCTTTCC TGCGTTATCC	3480
CCTGATTCTG TGGATAACCG TATTACCGCC TTTGAGTGAG CTGATACCGC TCGCCGCAGC	3540
CGAACCGACC GAGCGCAGCG AGTCAGTGAG CGAGGAAGCG GAAGAGCGCC CAATACGCAA	3600
ACCGCCTCTC CCCGCGCGTT GGCCGATTCA TTAATGCAGC TGGCACGACA GGTTTCCCGA	3660
CTGGAAAGCG GGCAGTGAGC GCAACGCAAT TAATGTGAGT TAGCTCACTC ATTAGGCACC	3720
CCAGGCTTTA CACTTTATGC TTCCGGCTCG TATGTTGTGT GGAATTGTGA GCGGATAACA	3780
ATTTCACACA GGAAACAGCT ATGACATGAT TACCG	3840
	3875

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

WO 96/27392 PCT/US96/03249

- 124 -

(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
GATCCTTATT AGATCTTACC CATACGACGT CCCAGATTAC GCTCGATCTC ACCATCACCA	
TCACCATTGA G	60
(2)	71
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
TCGACTCAAT GGTGATGGTG ATGGTGAGAT CGAGCGTAAT CTGGGACGTC GTATGGGTAA	60
GATCTAATAA G	60
	71
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3908 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
TTGCAGGACA GGATGTGGTG CCCGATGTGA CTAGCTCTTT GCTGCAGGCC GTCCTATCCT	60
CTGGTTCCGA TAAGAGACCC AGAACTCCGG CCCCCCACCG CCCACCGCCA CCCCCATACA	120
TATGTGGTAC GCAAGTAAGA GTGCCTGCGC ATGCCCCATG TGCCCCACCA AGAGCTTTGC	180
ATCCCATACA AGTCCCCAAA GTGGAGAACC GAACCAATTC TTCGCGGGCA GAACAAAGC	240
TTCTGCACAC GTCTCCACTC GAATTTGGAG CCGGCCGGCG TGTGCAAAAG AGGTGAATCG	300

AACGAAAGAC CCGTGTGTAA AGCCGCGTTT CCAAAATGTA TAAAACCGAG AGCAT	CTGGC 360
CAATGTGCAT CAGTTGTGGT CAGCAGCAAA ATCAAGTGAA TCATCTCAGT GCAAC	TAAAG 420
GGGAATTCGA GCTCGGTACC CGGGGATCCT TATTAGATCT TACCCATACG ACGTC	
TTACGCTCGA TCTCACCATC ACCATCACCA TTGAGTCGAC CTGCAGGCAT GCAAGG	
CGATGCACAC TCACATTCTT CTCCTAATAC GATAATAAAA CTTTCCATGA AAAATA	
ALALTATATG AAAATTGAGA AATCCAALAA ACTGATAAAC GCTCTACTTA ATTAAF	
ATAAATGGGA GCGGCAGGAA TGGCGGAGCA TGGCCAAGTT CCTCCGCCAA TCAGTC	
AACAGAAGTC GTGGAAAGCG GATAGAAAGA ATGTTCGATT TGACGGGCAA GCATGT	
TATGTGGCGG ATTGCGGAGG AATTGCACTG GAGACCAGCA AGGTTCTCAT GACCAA	
ATAGCGGTGA GTGAGCGGGA AGCTCGGTTT CTGTCCAGAT CGAACTCAAA ACTAGT	
CCAGTCGCTG TCGAAACTAA TTAAGTLAAT GAGTTTTTCA TGTTAGTTTC GCGCTG	
ACAATTAAGT TTATGTTTCA GTTCGGCTTA GATTTCGCTG AAGGACTTGC CACTTT	
CAATACTTTA GAACAAAATC AAAACTCATT CTAATAGCTT GGTGTTCATC TTTTTT	
ATGATAAGCA TTTTGTCGTT TATACTTTTT ATATTTCGAT ATTAAACCAC CTATGA	
TATTTTAATC GCCAGATAAG CAATATATTG TGTAAATATT TGTATTCTTT ATCAGG	
TCAGGGAGAC GGGAAGTTAC TATCTACTAA AAGCCAAACA ATTTCTTACA GTTTTAG	
CTCTACTCTA GAGTAGCTTG GCACTGGCCG TCGTTTTACA ACGTCGTGAC TGGGAAA	
CTGGCGTTAC CCAACTTAAT CGCCTTGCAG CACATCCCCC TTTCGCCAGC TGGCGTA	
GCGLAGAGGC CCGCACCGAT CGCCCTTCCC AACAGTTGCG CAGCCTGAAT GGCGAAT	
GCCTGATGCG GTATTTTCTC CTTACGCATC TGTGCGGTAT TTCACACCGC ATATGGT	
CTCTCAGTAC AATCTGCTCT GATGCCGCAT AGTTAAGCCA GCCCCGACAC CCGCCAA	
CCGCTGACGC GCCCTGACGG GCTTGTCTGC TCCCGGCATC CGCTTACAGA CAAGCTG	-
CCGTCTCCGG GAGCTGCATG TGTCAGAGGT TTTCACCGTC ATCACCGAAA CGCGCGA	
GAAAGGGCCT CGTGATACGC CTATTTTTAT AGGTTAATGT CATGATAATA ATGGTTT	
AGACGTCAGG TGGCACTTTT CGGGGAAATG TGCGCGGAAC CCCTATTTGT TTATTTT	
AAATACATTC AAATATGTAT CCGCTCATGA GACAATAACC CTGATAAATG CTTCAAT	
ATTGAAAAAG GAAGAGTATG AGTATTCAAC ATTTCCGTGT CGCCCTTATT CCCTTTT	
CGGCATTTTG CCTTCCTGTT TTTGCTCACC CAGAAACGCT GGTGAAAGTA AAAGATGC	
AAGATCAGTT GGGTGCACGA GTGGGTTACA TCGAACTGGA TCTCAACAGC GGTAAGAT	
TTGAGAGTTT TCGCCCCGAA GAACGTTTTC CAATGATGAG CACTTTTAAA GTTCTGCT	
GTGGCGCGGT ATTATCCCGT ATTGACGCCG GGCAAGAGCA ACTCGGTCGC CGCATACA	
ATTCTCAGAA TGACTTGGTT GAGTACTCAC CAGTCACAGA AAAGCATCTT ACGGATGO	CA 2220

TGACAGTA	AG AGAATTAT	C AGTGCTGCC	'. T		T GCGGCCAACT	
TACTTC	C AACCAMOO	oc acreers	A TAACCATG	AG TGATAACA(T GCGGCCAACT	2280
					C AACATGGGGG	
ATCATGTA	C TCGCCTTG	T CGTTGGGAA	C CGGAGCTG	A TGAAGCCAT	A CCAAACGACG	2400
AGCGTGACA	C CACGATGCC	T GTAGCAATG	G CAACAACGI	T GCGCAAACT	A TTAACTGGCG	2460
AACTACTTA	C TCTAGCTTC	C CGGCAACAA	I TAATAGACT	G GATGGAGGC	G GATAAAGTTG	2520
CAGGACCAC	T TCTGCGCTC	G GCCCTTCCG	G CTGGCTGGT	T TATTGCTGA	T AAATCTGGAG	2580
					T AAGCCCTCCC	2640
GTATCGTAG	T TATCTACAC	G ACGGGGAGT	AGGCAACTA	T GGATGAACG	A AATAGACAGA	2700
TCGCTGAGA	T AGGTGCCTC	A CTGATTAAG	ATTGGTAAC	T GTCAGACCA	A GTTTACTCAT	
ATATACTTT	A GATTGATTT	A AAACTTCATT	TTTAATTTA	A AAGGATCTA	GTGAAGATCC	2760
					TGAGCGTCAG	2820
					GTAATCTGCT	2880
						2940
					CAAGAGCTAC	3000
					ACTGTCCTTC	3060
					ACATACCTCG	3120
					CTTACCGGGT	3180
					GGGGGTTCGT	3240
GCACACAGCC	CAGCTTGGAG	CGAACGACCT	ACACCGAACT	GAGATACCTA	CAGCGTGAGC	3300
ATTGAGAAAG	CGCCACGCTT	CCCGAAGGGA	GAAAGGCGGA	CAGSTATCCG	GTAAGCGGCA	3360
GGGTCGGAAC	AGGAGAGCGC	ACGAGGGAGC	TTCCAGGGGG	AAACGCCTGG	TATCTTTATA	3420
GTCCTGTCGG	GTTTCGCCAC	CTCTGACTTG	AGCGTCGATT	TTTGTGATGC	TCGTCAGGGG	3480
GGCGGAGCCT	ATGGAAAAAC	GCCAGCAACG	CGGCCTTTTT	ACGGTCCTGG	CCTTTTGCTG	3540
GCCTTTTGCT	CACATGTCTT	TCCTGCGTTA	TCCCCTGATT	CTGTGGATAA	CCGTATTACC	3600
		CGCTCGCCGC				3660
					GTTGGCCGAT	3720
					AGCGCAACGC	
					TGCTTCCGGC	
					GCTATGACAT	
GATTACCG					GCIAIGACAT	
						3908

(2) INFORMATION FOR SEQ ID NO:25:

(A) LENGTH: 41 base pairs (B) TYPE: nucleic acid

⁽i) SEQUENCE CHARACTERISTICS:

WO 96/27392 PCT/US96/03249

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

- 127 -

(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
GATCCTTATT AGATCTCACC ATCACCATCA CCATTGTTGA G	41
(2) INFORMATION FOR SEQ ID NO:26:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
TCGACTCAAC AATGGTGATG GTGATGGTGA GATCTAATAA G	41
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3878 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
TTGCAGGACA GGATGTGGTG CCCGATGTGA CTAGCTCTTT GCTGCAGGCC GTCCTATCCT	60
TTGGTTCCGA TAAGAGACCC AGAACTCCGG CCCCCACCG CCCACCGCCA CCCCCATACA	120
PATGTGGTAC GCAAGTAAGA GTGCCTGCGC ATGCCCCATG TGCCCCACCA AGAGCTTTGC	180
ATCCCATACA AGTCCCCAAA GTGGAGAACC GAACCAATTC TTCGCGGGCA GAACAAAAGC	240
TTCTGCACAC GTCTCCACTC GAATTTGGAG CCGGCCGGCG TGTGCAAAAG AGGTGAATCG	300
	-

AACGAAAGAC CCGTGTGTAA AGCCGCGTTT CCAAAATGTA TAAAACCGAG AGCATCTGGC	360
CAATGTGCAT CAGTTGTGGT CAGCAGCAAA ATCAAGTGAA TCATCTCAGT GCAACTAAAG	420
GGGAATTCGA GCTCGGTACC CGGGGATCCT TATTAGATCT CACCATCACC ATCACCATTG	480
TTGAGTCGAC CTGCAGGCAT GCAAGCTATT CGATGCACAC TCACATTCTT CTCCTAATAC	540
GATAATAAAA CTTTCCATGA AAAATATGGA AAAATATATG AAAATTGAGA AATCCAAAAA	600
ACTGATAAAC GCTCTACTTA ATTAAAATAG ATAAATGGGA GCGGCAGGAA TGGCGGAGCA	660
TGGCCAAGTT CCTCCGCCAA TCAGTCGTAA AACAGAAGTC GTGGAAAGCG GATAGAAAGA	720
ATGTTCGATT TGACGGGCAA GCATGTCTGC TATGTGGCGG ATTGCGGAGG AATTGCACTG	780
GAGACCAGCA AGGTTCTCAT GACCAAGAAT ATAGCGGTGA GTGAGCGGGA AGCTCGGTTT	840
CTGTCCAGAT CGAACTCAAA ACTAGTCCAG CCAGTCGCTG TCGAAACTAA TTAAGTLAAT	900
GAGTTTTTCA TGTTAGTTTC GCGCTGAGCA ACAATTAAGT TTATGTTTCA GTTCGGCTTA	960
GATTTCGCTG AAGGACTTGC CACTTTCAAT CAATACTTTA GAACAAAATC AAAACTCATT	1020
CTAATAGCTT GGTGTTCATC TTTTTTTTTA ATGATAAGCA TTTTGTCGTT TATACTTTTT	1080
ATATTTCGAT ATTAAACCAC CTATGAAGTC LATTTTAATC GCCAGATAAG CAATATATTG	1140
TGTAAATATT TGTATTCTTT ATCAGGAAAT TCAGGGAGAC GGGAAGTTAC TATCTACTAA	1200
AAGCCAAACA ATTTCTTACA GTTTTACTCT CTCTACTCTA	1260
TCGTTTTACA ACGTCGTGAC TGGGGAAAACC CTGGCGTTAC CCAACTTAAT CGCCTTGCAG	1320
CACATCCCCC TTTCGCCAGC TGGCGTAATA GCGAAGAGGC CCGCACCGAT CGCCCTTCCC	1380
AACAGTTGCG CAGCCTGAAT GGCGAATGGC GCCTGATGCG GTATTTTCTC CTTACGCATC	1440
TGTGCGGTAT TTCACACCGC ATATGGTGCA CTCTCAGTAC AATCTGCTCT GATGCCGCAT	1500
AGTTAAGCCA GCCCCGACAC CCGCCAACAC CCGCTGACGC GCCCTGACGG GCTTGTCTGC	1560
TCCCGGCATC CGCTTACAGA CAAGCTGTGA CCGTCTCCGG GAGCTGCATG TGTCAGAGGT	1620
TITCACCGTC ATCACCGAAA CGCGCGAGAC GAAAGGGCCT CGTGATACGC CTATTTTTAT	1680
AGGITAATGI CATGATAATA ATGGITTICTI AGAGGIGAGA	1740
TGCGCGGAAC CCCTATTTGT TTATTTTTCT AAATACATTC AAATATGTAT CCGCTCATGA	1800
GACAATAACC CTGATAAATG CTTCAATAAT ATTGAAAAAG GAAGAGTATG AGTATTCAAC	1860
ATTTCCGTGT CGCCCTTATT CCCTTTTTTG CGGCATTTTG CCTTCCTGTT TTTGCTCACC	1920
CAGALACGCT GGTGAAAGTA LAAGATGCTG AAGATCAGTT GGGTGCACGA GTGGGTTACA	1980
TCGAACTGGA TCTCAACAGC GGTAAGATCC TTGAGAGTTT TCGCCCCGAA GAACGTTTTC	2040
CAATGATGAG CACTTTTAAA GTTCTGCTAT GTGGCGCGGT ATTATCCCGT ATTGACGCCG	2100
GGCAAGAGCA ACTCGGTCGC CGCATACACT ATTCTCACAA TCAGTTCGTT CAGT	
CAGTCACAGA AAAGCATCTT ACGGATGGCA TGACAGTAAG COLATTAGGA	2220

- 129 -

TAACCATGAG TGATAACACT GCGGCCAACT TACTTCTGAC AACGATCGGA GGACCGAAGG	2280
AGCTAACCGC TTTTTTGCAC AACATGGGGG ATCATGTAAC TCGCCTTGAT CGTTGGGAAC	2340
CGGAGCTGAA TGAAGCCATA CCAAACGACG AGCGTGACAC CACGATGCCT GTAGCAATGG	2400
CAACAACGTT GCGCAAACTA TTAACTGGCG AACTACTTAC TCTAGCTTCC CGGCAACAAT	2460
TAATAGACTG GATGGAGGTG GATAAAGTTG CAGGACCACT TCTGCGCTCG GCCCTTCCGG	2520
CTGGCTGGTT TATTGCTGAT AAATCTGGAG CCGGTGAGCG TGGGTCTCGC GGTATCATTG	
CAGCACTGGG GCCAGATGGT AAGCCCTCCC GTATCGTAGT TATCTACACG ACGGGGAGTC	
AGGCAACTAT GGATGAACGA AATAGACAGA TCGCTGAGAT AGGTGCCTCA CTGATTAAGC	
ATTGGTAACT GTCAGACCAA GTTTACTCAT ATATACTTTA GATTGATTTA AAACTTCATT	2760
TTTAATTTAA AAGGATCTAG GTGAAGATCC TTTTTGATAA TCTCATGACC AAAATCCCTT	2820
AACGTGAGTT TTCGTTCCAC TGAGCGTCAG ACCCCGTAGA AAAGATCAAA GGATCTTCTT	2880
GAGATCCTTT TTTTCTGCGC GTAATCTGCT GCTTGCAAAC AAAAAAACCA CCGCTACCAG	2940
CGGTGGTTTG TTTGCCGGAT CAAGAGCTAC CAACTCTTTT TCCGAAGGTA ACTGGCTTCA	3000
GCAGAGCGCA GATACCAAAT ACTGTCCTTC TAGTGTAGCC GTAGTTAGGC CACCACTTCA	3060
AGAACTCTGT AGCACCGCCT ACATACCTCG CTCTGCTAAT CCTGTTACCA GTGGCTGCTG	3120
CCAGTGGCGA TAAGTCGTGT CTTACCGGGT TGGACTCAAG ACGATAGTTA CCGGATAAGG	3180
CGCAGCGGTC GGGCTGAACG GGGGGTTCGT GCACACAGCC CAGCTTGGAG CGAACGACCT	3240
ACACCGAACT GAGATACCTA CAGCGTGAGC ATTGAGAAAG CGCCACGCTT CCCGAAGGGA	3300
GAAAGGCGGA CAGGTATCCG GTAAGCGGCA GGGTCGGAAC AGGAGAGCGC ACGAGGGAGC	3360
TTCCAGGGGG AAACGCCTGG TATCTTTATA GTCCTGTCGG GTTTCGCCAC CTCTGACTTG	3420
AGCGTCGATT TTTGTGATGC TCGTCAGGGG GGCGGAGCCT ATGGAAAAAC GCCAGCAACG	3480
CGGCCTTTTT ACGGTCCTGG CCTTTTGCTG GCCTTTTGCT CACATGTCTT TCCTGCGTTA	3540
TCCCCTGATT CTGTGGATAA CCGTATTACC GCCTTTGAGT GAGCTGATAC CGCTCGCCGC	3600
AGCCGAACCG ACCGAGCGCA GCGAGTCAGT GAGCGAGGAA GCGGAAGAGC GCCCAATACG	3660
CAAACCGCCT CTCCCCGCGC GTTGGCCGAT TCATTAATGC AGCTGGCACG ACAGGTTTCC	3720
CGACTGGAAA GCGGGCAGTG AGCGCAACGC AATTAATGTG AGTTAGCTCA CTCATTAGGC	3780
ACCCCAGGCT TTACACTTTA TGCTTCCGGC TCGTATGTTG TGTGGAATTG TGAGCGGATA	3840
ACAATTTCAC ACAGGAAACA GCTATGACAT GATTACCG	3878

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 47 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

- 130 -

(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GATCCTTATT AGATCTGCTT GGCGCCATCC TCAATTTGGG GGTTGAG	4
(2) INFORMATION FOR SEQ ID NO:29:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
TCGACTCAAC CCCCAAATTG AGGATGGCGC CAAGCAGATC TAATAAG	47
(2) INFORMATION FOR SEQ ID NO:30:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 3883 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(IV) ANII-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
TTGCAGGACA GGATGTGGTG CCCGATGTGA CTAGCTCTTT GCTGCAGGCC GTCCTATCCT	60
TGGTTCCGAT AAGAGACCCA GAACTCCGGC CCCCCACCGC CCACCGCCAC CCCCATACAT	120
ATGTGGTACG CAAGTAAGAG TGCCTGCGCA TGCCCCATGT GCCCCACCAA GAGCTTTGCA	180
TCCCATACAA GTCCCCAAAG TGGAGAACCG AACCAATTCT TCGCGGGCAG AACAAAAGCT	240
TCTGCACACG TCTCCACTCG AATTTGGAGC CGGCCGGCGT GTGCAAAAGA GGTGAATCGA	300
ACGALAGACC CGTGTGTALA GCCGCGTTTC CALALTGTAT LABACCGACA GCATCTCCCC	

AATGTGCATC AGTTGTGGTC AGCAGCAAAA TCAAGTGAAT CATCTCAGTG CAACTAAAGG	
GGAATTCGAG CTCGGTACCC GGGGATCCTT ATTAGATCTG CTTGGCGCCA TCCTCAATTT	
GGGGGTTGAG TCGACCTGCA GGCATGCAAG CTATTCGATG CACACTCACA TTCTTCTCCT	
AATACGATAA TAAAACTTTC CATGAAAAAT ATGGAAAAAT ATATGAAAAT TGAGAAATCC	
AAAAAACTGA TAAACGCTCT ACTTAATTAA AATAGATAAA TGGGAGCGGC AGGAATGGCG	
GAGCATGGCC AAGTTCCTCC GCCAATCAGT CGTAAAACAG AAGTCGTGGA AAGCGGATAG	720
AAAGAATGTT CGATTTGACG GGCAAGCATG TCTGCTATGT GGCGGATTGC GGAGGAATTG	780
CACTGGAGAC CAGCAAGGTT CTCATGACCA AGAATATAGC GGTGAGTGAG CGGGAAGCTC	840
GGTTTCTGTC CAGATCGAAC TCAAAACTAG TCCAGCCAGT CGCTGTCGAA ACTAATTAAG	900
TEAATGAGTT TTTCATGTTA GTTTCGCGCT GAGCAACAAT TAAGTTTATG TTTCAGTTCG	960
GCTTAGATTT CGCTGAAGGA CTTGCCACTT TCAATCAATA CTTTAGAACA AAATCAAAAC	1020
TCATTCTAAT AGCTTGGTGT TCATCTTTTT TTTTAATGAT AAGCATTTTG TCGTTTATAC	1080
TTTTTATATT TCGATATTAA ACCACCTATG AAGTCLATTT TAATCGCCAG ATAAGCAATA	1140
TATTGTGTAA ATATTTGTAT TCTTTATCAG GAAATTCAGG GAGACGGGAA GTTACTATCT	1200
ACTARARGCC ARACARTTTC TTACAGTTTT ACTCTCTCTA CTCTAGAGTA GCTTGGCACT	1260
GGCCGTCGTT TTACAACGTC GTGACTGGGA AAACCCTGGC GTTACCCAAC TTAATCGCCT	1320
TGCAGCACAT CCCCCTTTCG CCAGCTGGCG TAATAGCGAA GAGGCCCGCA CCGATCGCCC	1380
TTCCCAACAG TTGCGCAGCC TGAATGGCGA ATGGCGCCTG ATGCGGTATT TTCTCCTTAC	1440
GCATCTGTGC GGTATTTCAC ACCGCATATG GTGCACTCTC AGTACAATCT GCTCTGATGC	1500
CGCATAGTTA AGCCAGCCCC GACACCCCGCT AACACCCGCT GACGCGCCCT GACGGGCTTG	1560
TCTGCTCCCG GCATCCGCTT ACAGACAAGC TGTGACCGTC TCCGGGAGCT GCATGTGTCA	1620
GAGGTTTTCA CCGTCATCAC CGAAACGCGC GAGACGAAAG GGCCTCGTGA TACGCCTATT	1680
TTTATAGGTT AATGTCATGA TAATAATGGT TTCTTAGACG TCAGGTGGCA CTTTTCGGGG	1740
AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA CATTCAAATA TGTATCCGCT	1800
CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA AAAAGGAAGA GTATGAGTAT	1860
TCAACATTTC CGTGTCGCCC TTATTCCCTT TTTTGCGGCA TTTTGCCTTC CTGTTTTTGC	1920
TCACCCAGAA ACGCTGGTGA AAGTAAAAGA TGCTGAAGAT CAGTTGGGTG CACGAGTGGG	1980
TTACATCGAA CTGGATCTCA ACAGCGGTAA GATCCTTGAG AGTTTTCGCC CCGAAGAACG	2040
TTTTCCAATG ATGAGCACTT TTAAAGTTCT GCTATGTGGC GCGGTATTAT CCCGTATTGA	2100
CGCCGGGCAA GAGCAACTCG GTCGCCGCAT ACACTATTCT CAGAATGACT TGGTTGAGTA	2160
CTCACCAGTC ACAGAAAAGC ATCTTACGGA TGGCATGACA GTAAGAGAAT TATGCAGTGC	2220
FGCCATAACC ATGAGTGATA ACACTGCGGC CAACTTACTT CTGACAACGA TCGGAGGACC	2280

GARCACCER ACCOUNTS	
GAAGGAGCTA ACCGCTTTTT TGCACAACAT GGGGGATCAT GTAACTCGCC TTGATCGTTC	3 2340
GGAACCGGAG CTGAATGAAG CCATACCAAA CGACGAGCGT GACACCACGA TGCCTGTAGC	2400
AATGGCAACA ACGTTGCGCA AACTATTAAC TGGCGAACTA CTTACTCTAG CTTCCCGGCA	2460
ACAATTAATA GACTGGATGG AGGCGGATAA AGTTGCAGGA CCACTTCTGC GCTCGGCCCT	. JEJO
TCCGGCTGGC TGGTTTATTG CTGATAAATC TGGAGCCGGT GAGCGTGGGT CTCGCGGTAT	2500
CATTGCAGCA CTGGGGCCAG ATGGTAAGCC CTCCCGTATC GTAGTTATCT ACACGACGGG	2640
GAGTCAGGCA ACTATGGATG AACGAAATAG ACAGATCGCT GAGATAGGTG CCTCACTGAT	2700
TAAGCATTGG TAACTGTCAG ACCAAGTTTA CTCATATATA CTTTAGATTG ATTTAAAACT	2760
TCATTTTTAA TTTAAAAGGA TCTAGGTGAA GATCCTTTTT GATAATCTCA TGACCAAAAT	2700
CCCTTAACGT GAGTTTTCGT TCCACTGAGC GTCAGACCCC GTAGAAAAGA TCAAAGGATC	
TTCTTGAGAT CCTTTTTTTC TGCGCGTAAT CTGCTGCTTG CAAACAAAAA AACCACCGCT	2880
ACCAGCGGTG GTTTGTTTGC CGGATCAAGA GCTACCAACT CTTTTTCCGA AGGTAACTGG	2940
CTTCAGCAGA GCGCAGATAC CAAATACTGT CCTTCTAGTG TAGCCGTAGT TAGGCCACCA	3000
CTTCAAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCAGTGGC	3060
TGCTGCCAGT GGCGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTÄCCGGA	3120
TAAGGCGCAG CGGTCGGGCT GAACGGGGGG TTCGTGCACA CAGCCCAGCT TGGAGCGAAC	3180
GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCATTGA GAAAGCGCCA CGCTTCCCGA	3240
AGGGAGAAAG GCGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGAG AGCGCACGAG	3300
GGAGCTTCCA GGGGGAAACG CCTGGTATCT TTATAGTCCT GTCGGGTTTC GCCACCTCTG	3360
ACTTGAGCGT CGATTTTTGT GATGCTCGTC AGGGGGGCGG AGCCTATGGA AAAACGCCAG	3420
CAACGCGGCC TTTTTACGGT CCTGGCCTTT TGCTGGCCTT TTGCTCACAT GTCTTTCCTG	3480
CGTTATCCCC TGATTCTGTG GATAACCCTA TTAGGGGCTT TTGCTCACAT GTCTTTCCTG	3540
CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT TGAGTGAGCT GATACCGCTC	3600
GCCGCAGCCG AACCGACCGA GCGCAGCGAG TCAGTGAGCG AGGAAGCGGA AGAGCGCCCA	3660
ATACGCAAAC CGCCTCTCCC CGCGCGTTGG CCGATTCATT AATGCAGCTG GCACGACAGG	3720
TTTCCCGACT GGAAAGCGGG CAGTGAGCGC AACGCAATTA ATGTGAGTTA GCTCACTCAT	3780
TAGGCACCCC AGGCTTTACA CTTTATGCTT CCGGCTCGTA TGTTGTGTGG AATTGTGAGC	3840
GGATAACAAT TTCACACAGG AAACAGCTAT GACATGATTA CCG	3883

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 879 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

WO 96/27392 PCT/US96/03249

- 133 -

(ii)	MOLECULE	TYPE:	CDNA
------	----------	-------	------

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GAATTCATGG GCCACACGG GAGGCAGGGA ACATCACCAT CCAAGTGTCC ATACCTCAAT 60 TTCTTTCAGC TCTTGGTGCT GGCTGGTCTT TCTCACTTCT GTTCAGGTGT TATCCACGTG 120 ACCAAGGAAG TGAAAGAAGT GGCAACGCTG TCCTGTGGTC ACAATGTTTC TGTTGAAGAG 180 CTGGCACAAA CTCGCATCTA CTGGCAAAAG GAGAAGAAAA TGGTGCTGAC TATGATGTCT 240 GGGGACATGA ATATATGGCC CGAGTACAAG AACCGGACCA TCTTTGATAT CACTAATAAC 300 CTCTCCATTG TGATCCTGGC TCTGCGCCCA TCTGACGAGG GCACATACGA GTGTGTTGTT 360 CTGAAGTATG AAAAAGACGC TTTCAAGCGG GAACACCTGG CTGAAGTGAC GTTATCAGTC 420 AAAGCTGACT TCCCTACACC TAGTATATCT GACTTTGAAA TTCCAACTTC TAATATTAGA 480 AGGATAATTT GCTCAACCTC TGGAGGTTTT CCAGAGCCTC ACCTCTCCTG GTTGGAAAAT 540 GGAGAAGAAT TAAATGCCAT CAACACAACA GTTTCCCAAG ATCCTGAAAC TGAGCTCTAT 600 GCTGTTAGCA GCAAACTGGA TTTCAATATG ACAACCAACC ACAGCTTCAT GTGTCTCATC 660 AAGTATGGAC ATTTAAGAGT GAATCAGACC TTCAACTGGA ATACAACCAA GCAAGAGCAT 720 TTTCCTGATA ACCTGCTCCC ATCCTGGGCC ATTACCTTAA TCTCAGTAAA TGGAATTTTT 780 GTGATATGCT GCCTGACCTA CTGCTTTGCC CCAAGATGCA GAGAGAGAAG GAGGAATGAG 840 AGATTGAGAA GGGAAAGTGT ACGCCCTGTA TAAGGATTC 279

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 738 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

GAATTCATGG GCCACACGG GAGGCAGGGA ACATCACCAT CCAAGTGTCC ATACCTCAAT 60 TTCTTTCAGC TCTTGGTGCT GGCTGGTCTT TCTCACTTCT GTTCAGGTGT TATCCACGTG 120 ACCAAGGAAG TGAAAGAAGT GGCAACGCTG TCCTGTGGTC ACAATGTTTC TGTTGAAGAG 180

- 134 -

CTGGCACAAA	CTCGCATCTA	CTGGCAAAAG	GAGAACAAAA	maanaan	TATGATGTCT	
			GAGAAGAAAA	TGGTGCTGAC	TATGATGTCT	240
GGGGACATGA	ATATATGGCC	CGAGTACAAG	AACCGGACCA	TCTTTGATAT	CACTAATAAC	300
CTCTCCATTG	TGATCCTGGC	TCTGCGCCCA	TCTGACGAGG	GCACATACGA	GTGTGTTGTT	360
CTGAAGTATG	AAAAAGACGC	TTTCAAGCGG	GAACACCTGG	CTGAAGTGAC	GTTATCAGTC	420
AAAGCTGACT	TCCCTACACC	TAGTATATCT	GACTITGAAA	TTCCAACTTC	TAATATTAGA	480
AGGATAATTT	GCTCAACCTC	TGGAGGTTTT	CCAGAGCCTC	ACCTCTCCTG	GTTGGALLAT	540
ggagaagaat	TAAATGCCAT	CAACACAACA	GTTTCCCAAG	ATCCTGAAAC	TGAGCTCTAT	600
GCTGTTAGCA	GCAAACTGGA	TTTCAATATG	ACAACCAACC .	ACAGCTTCAT	GTGTCTCATC	
AAGTATGGAC	ATTTAAGAGT	GAATCAGACC	TTCAACTGGA .	ATACAACCAA	GCARCACCAR	660
TTTCCTGATA					GCAMGAGCAT	720
(2) TITTODIA		_				738

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1002 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GAGCTCATGG	ATCCCCAGTG	CACTATGGGA	CTGAGTAACA	TTCTCTTTGT	GATGGCCTTC	60
CTGCTCTCTG	GTGCTGCTCC	TCTGAAGATT	CAAGCTTATT	TCAATGAGAC	TGCAGACCTG	120
CCATGCCAAT	TTGCAAACTC	TCAAAACCAA	AGCCTGAGTG	AGCTAGTAGT	ATTTTGGCAG	180
GACCAGGAAA	ACTTGGTTCT	GAATGAGGTA	TACTTAGGCA	AAGAGAAATT	TGACAGTGTT	240
CATTCCAAGT	ATATGGGCCG	CACAAGTTTT	GATTCGGACA	GTTGGACCCT	GAGACTTCAC	300
AATCTTCAGA	TCAAGGACAA	GGGCTTGTAT	CAATGTATCA	TCCATCACAA	AAAGCCCACA	360
GGAATGATTC	GCATCCACCA	GATGAATTCT	GAACTGTCAG	TGCTTGCTAA	CTTCAGTCAA	420
CCTGAAATAG	TACCAATTTC	TAATATAACA	GAAAATGTGT	ACATAAATTT	GACCTGCTCA	480
TCTATACACG	GTTACCCAGA	ACCTAAGAAG	ATGAGTGTTT	TGCŢAAGAAC	CAAGAATTCA	540
ACTATCGAGT	ATGATGGTAT	TATGCAGAAA	TCTCAAGATA	ATGTCACAGA	ACTGTACGAC	600
GTTTCCATCA	GCTTGTCTGT	TTCATTCCCT	GATGTTACGA	GCAATATGAC	CATCTTCTGT	660
ATTCTGGAAA	CTGACAAGAC	GCGGCTTTTA	TCTTCACCTT	TCTCTATAGA	GCTTGAGGAC	720
CCTCAGCCTC	CCCCAGACCA	CATTCCTTGG	ATTACAGCTG	TACTTCCAAC	AGTTATTATA	780

WO 96/27392 PCT/US96/03249

- 135 -

TGTGTGATGG	TTTTCTGTCT	AATTCTATGG	AAATGGAAGA	3633633655	GCCTCGCAAC	
TCTTATAAAT	GTCCANGON		TO CANGA	AGAAGAAGCG	GCCTCGCAAC	840
	GIGGAACCAA	CACAATGGAG	AGGGAAGAGA	GTGAACAGAC	CAAGAAAAGA	900
GALAAAATCC	ATATACCTGA	AAGATCTGAT	GAAGCCCACC	CTCTTTTT	AAGTTCGAAG	300
ል ቦል ፕሮሞሞር አጥ	6662022	_	or proceeding.	GIGITITTAA	AAGTTCGAAG	960
MUNICITUAL	GCGACAAAAG	TGATACATGT	TTTTAAGGGC	CC		1000
						1002

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GAGCTCATGG ATCCCCAGTG CACTATGGGA CTGAGTAACA TTCTCTT	TTGT GATGGCCTTC 60
CIGCICICIG GIGCIGCICC ICIGAAGATI CAAGCITATI ICAAIGA	IGAC TGCAGACCTG 120
CCATGCCAAT TTGCAAACTC TCAAAACCAA AGCCTGAGTG AGCTAGT	AGT ATTTTGGCAG 180
GACCAGGAAA ACTTGGTTCT GAATGAGGTA TACTTAGGCA AAGAGAA	ATT TGACAGTGTT 240
CATTCCAAGT ATATGGGCCG CACAAGTTTT GATTCGGACA GTTGGAC	CCT GAGACTTCAC 300
AATCTTCAGA TCAAGGACAA GGGCTTGTAT CAATGTATCA TCCATCAG	CAA AAAGCCCACA 360
GGAATGATTC GCATCCACCA GATGAATTCT GAACTGTCAG TGCTTGCT	IAA CTTCAGTCAA 430
CCTGAAATAG TACCAATTTC TAATATAACA GAAAATGTGT ACATAAAT	TTT GACCTGCTCA 480
TCTATACACG GTTACCCAGA ACCTAAGAAG ATGAGTGTTT TGCTAAGA	NAC CAAGAATTCA 540
ACTATCGAGT ATGATGGTAT TATGCAGALA TCTCLAGATA ATGTCACA	IGA ACTGTACGAC 600
GTTTCCATCA GCTTGTCTGT TTCATTCCCT GATGTTACGA GCAATATG	AC CATCTTCTGT 660
ATTCTGGAAA CTGACAAGAC GCGGCTTTTA TCTTCACCTT TCTCTATA	GA GCTTGAGGAC 720
CCTCAGCCTC CCCCAGACCA CATTGGGGCC C	751

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1611 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

- 136 -

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GAATTCATGG	CTCCCAGEAG	CCCCCGGCCC	GCGCTGCCCG	CACTCCTGGT	CCTGCTCGGG	60
GCTCTGTTCC	CAGGACCTGG	CAATGCCCAG	ACATCTGTGT	CCCCCTCAAA	AGTCATCCTG	120
CCCCGGGGAG	GCTCCGTGCT	GGTGACATGC	AGCACCTCCT	GTGACCAGCC	CAAGTTGTTG	180
GGCATAGAGA	CCCCGTTGCC	TAAAAAGGAG	TTGCTCCTGC	CTGGGAACAA	CCGGAAGGTG	240
TATGAACTGA	GCAATGTGCA	AGAAGATAGC	CAACCAATGT	GCTATTCAAA	CTGCCCTGAT	300
GGGCAGTCAA	CAGCTAAAAC	CTTCCTCACC	GTGTACTGGA	CTCCAGAACG	GGTGGAACTG	360
GCACCCCTCC	CCTCTTGGCA	GCCAGTGGGC	AAGAACCTTA	CCCTACGCTG	CCAGGTGGAG	420
GGTGGGGCAC	CCCGGGCCAA	CCTCACCGTG	GTGCTGCTCC	GTGGGGAGAA	GGAGCTGAAA	480
CGGGAGCCAG	CTGTGGGGGA	GCCCGCTGAG	GTCACGACCA	CGGTGCTGGT	GAGGAGAGAT	540
CACCATGGAG	CCAATTTCTC	GTGCCGCACT	GAACTGGACC	TGCGGCCCCA	AGGGCTGGAG	600
CTGTTTGAGA	ACACCTCGGC	CCCCTACCAG	CTCCAGACCT	TTGTCCTGCC	AGCGACTCCC	660
CCACAACTTG	TCAGCCCCCG	GGTCCTAGAG	GTGGACACGC	AGGGGACCGT	GGTCTGTTCC	720
CTGGACGGGC	TGTTCCCAGT	CTCGGAGGCC	CAGGTCCACC	TGGCACTGGG	GGACCAGAGG	780
TTGAACCCCA	CAGTCACCTA	TGGCAACGAC	TCCTTCTCGG	CCAAGGCCTC	AGTCAGTGTG	840
ACCGCAGAGG	ACGAGGGCAC	CCAGCGGCTG	ACGTGTGCAG	TAATACTGGG	GAACCAGAGC	900
CAGGAGACAC	TGCAGACAGT	GACCATCTAC	AGCTTTCCGG	CGCCCAACGT	GATTCTGACG	960
AAGCCAGAGG	TCTCAGAAGG	GACCGAGGTG	ACAGTGAAGT	GTGAGGCCCA	CCCTAGAGCC	1020
AAGGTGACGC	TGAATGGGGT	TCCAGCCCAG	CCACTGGGCC	CGAGGGCCCA	GCTCCTGCTG	1080
AAGGCCACCC	CAGAGGACAA	CGGGCGCAGC	TTCTCCTGCT	CTGCAACCCT	GGAGGTGGCC	1140
GGCCAGCTTA	TACACAAGAA	CCAGACCCGG	GAGCTTCGTG	TCCTGTATGG	CCCCCGACTG	1200
GACGAGAGGG	ATTGTCCGGG	AAACTGGACG	TGGCCAGAAA	ATTCCCAGCA	GACTCCAATG	1260
TGCCAGGCTT	GGGGGAACCC	ATTGCCCGAG	CTCAAGTGTC	TAAAGGATGG	CACTTTCCCA	1320
CTGCCCATCG	GGGAATCAGT	GACTGTCACT	CGAGATCTTG	AGGGCACCTA	CCTCTGTCGG	1380
GCCAGGAGCA	CTCAAGGGGA	GGTCACCCGC	GAGGTGACCG	TGAATGTGCT	CTCCCCCGG	1440
TATGAGATTG	TCATCATCAC	TGTGGTAGCA	GCCGCAGTCA	TAATGGGCAC	TGCAGGCCTC	1500
AGCACGTACC	TCTATAACCG	CCAGCGGAAG	ATCAAGAAAT	ACAGACTACA	ACAGGCCCAA	1560
AAAGGGACCC	CCATGAAACC	GAACACACAA	GCCACGCCTC	CCTGAGGATC	С	1611

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1452 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GAATTCATGG CTCCCAGCAG CCCCCGGCCC GCGCTGCCCG CACTCCTGGT CCTGCTCGGG 60 GCTCTGTTCC CAGGACCTGG CAATGCCCAG ACATCTGTGT CCCCCTCAAA AGTCATCCTG 120 CCCCGGGGAG GCTCCGTGCT GGTGACATGC AGCACCTCCT GTGACCAGCC CAAGTTGTTG 180 GGCATAGAGA CCCCGTTGCC TAAAAAGGAG TTGCTCCTGC CTGGGAACAA CCGGAAGGTG 240 TATGAACTGA GCAATGTGCA AGAAGATAGC CAACCAATGT GCTATTCAAA CTGCCCTGAT 300 GGGCAGTCAA CAGCTAAAAC CTTCCTCACC GTGTACTGGA CTCCAGAACG GGTGGAACTG 360 GCACCCCTCC CCTCTTGGCA GCCAGTGGGC AAGAACCTTA CCCTACGCTG CCAGGTGGAG 420 GGTGGGGCAC CCCGGGCCAA CCTCACCGTG GTGCTGCTCC GTGGGGAGAA GGAGCTGAAA 480 CGGGAGCCAG CTGTGGGGGA GCCCGCTGAG GTCACGACCA CGGTGCTGGT GAGGAGAGAT 540 CACCATGGAG CCAATTTCTC GTGCCGCACT GAACTGGACC TGCGGCCCCA AGGGCTGGAG 600 CTGTTTGAGA ACACCTCGGC CCCCTACCAG CTCCAGACCT TTGTCCTGCC AGCGACTCCC 660 CCACAACTTG TCAGCCCCCG GGTCCTAGAG GTGGACACGC AGGGGACCGT GGTCTGTTCC 720 CTGGACGGGC TGTTCCCAGT CTCGGAGGCC CAGGTCCACC TGGCACTGGG GGACCAGAGG 780 TTGAACCCCA CAGTCACCTA TGGCAACGAC TCCTTCTCGG CCAAGGCCTC AGTCAGTGTG 840 ACCGCAGAGG ACGAGGGCAC CCAGCGGCTG ACGTGTGCAG TAATACTGGG GAACCAGAGC 900 CAGGAGACAC TGCAGACAGT GACCATCTAC AGCTTTCCGG CGCCCAACGT GATTCTGACG 960 AAGCCAGAGG TCTCAGAAGG GACCGAGGTG ACAGTGAAGT GTGAGGCCCA CCCTAGAGCC 1020 AAGGTGACGC TGAATGGGGT TCCAGCCCAG CCACTGGGCC CGAGGGCCCA GCTCCTGCTG 1080 AAGGCCACCC CAGAGGACAA CGGGCGCAGC TTCTCCTGCT CTGCAACCCT GGAGGTGGCC 1140 GGCCAGCTTA TACACAAGAA CCAGACCCGG GAGCTTCGTG TCCTGTATGG CCCCCGACTG 1200 GACGAGAGG ATTGTCCGGG AAACTGGACG TGGCCAGAAA ATTCCCAGCA GACTCCAATG 1260 TGCCAGGCTT GGGGGAACCC ATTGCCCGAG CTCAAGTGTC TAAGGATGG CACTTTCCCA 1320 CTGCCCATCG GGGAATCAGT GACTGTCACT CGAGATCTTG AGGGCACCTA CCTCTGTCGG 1380

W 96/27392 PCT/US96/03249

- 138 -

GCCAGGAGCA CTCAAGGGGA GGTCACCCGC GAGGTGACCG TGAATGTGCT CTCCCCCGG	
TATGAGGGAT CC	1440
(2) INFORMATION FOR SEQ ID NO:37:	1452
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 726 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
GAGCTCATGG TTGCTGGGAG CGACGCGGGG CGGGCCCTGG GGGTCCTCAG CGTGGTCTGC	60
CTGCTGCACT GCTTTGGTTT CATCAGCTGT TTTTCCCAAC AAATATATGG TGTTGTGTAT	120
GGGAATGTAA CTTTCCATGT ACCAAGCAAT GTGCCTTTAA AAGAGGTCCT ATGGAAAAA	180
CAAAAGGATA AAGTTGCAGA ACTGGAAAAT TCTGAATTCA GAGCTTTCTC ATCTTTTAAA	240
AATAGGGTTT ATTTAGACAC TGTGTCAGGT AGCCTCACTA TCTACAACTT AACATCATCA	300
GATGAAGATG AGTATGAAAT GGAATCGCCA AATATTACTG ATACCATGAA GTTCTTTCTT	360
TATGTGCTTG AGTCTCTTCC ATCTCCCACA CTAACTTGTG CATTGACTAA TGGAAGCATT	420
GAAGTCCAAT GCATGATACC AGAGCATTAC AACAGCCATC GAGGACTTAT AATGTACTCA	480
TGGGATTGTC CTATGGAGCA ATGTAAACGT AACTCAACCA GTATATATTT TAAGATGGAA	540
AATGATCTTC CACAAAAAT ACAGTGTACT CTTAGCAATC CATTATTTAA TACAACATCA	600
TCAATCATTT TGACAACCTG TATCCCAAGC AGCGGTCATT CAAGACACAG ATATGCACTT	660
ATACCCATAC CATTAGCAGT AATTACAACA TGTATTGTGC TGTATATGAA TGTTCTTTAA	720
GGATCC	726
(2) INFORMATION FOR SEQ ID NO:38:	720
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 657 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

- 139 -

Checreanoc						
					CGTGGTCTGC	60
					TGTTGTGTAT	120
					ATGGAAAAA	180
					ATCTTTTAAA	240
					AACATCATCA	300
					GTTCTTTCTT	360
					TGGAAGCATT	420
GAAGTCCAAT	GCATGATACC	AGAGCATTAC	AACAGCCATC	GAGGACTTAT	AATGTACTCA	480
	CTATGGAGCA					540
					TACAACATCA	600
CAATCATTT	TGACAACCTG	TATCCCAAGC	AGCGGTCATT	CAAGACACAG	AGGATCC	657

- (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
 - Glu Gln Leu Glu Ser Ile Ile Asn Phe Glu Lys Leu Thr Glu Trp Thr 10

Ser Ser Asn Val Met Glu Glu Arg

- (2) INFORMATION FOR SEQ ID NO:40:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Asp Leu Arg Gly Tyr Val Tyr Gln Gly Leu

- (2) INFORMATION FOR SEQ ID NO:41:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Phe Arg Ile Gly Cys Arg His Ser Arg

- (2) INFORMATION FOR SEQ ID NO: 42:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:
 - Ile Leu Lys Glu Pro Val His Gly Val 5
- (2) INFORMATION FOR SEQ ID NO:43:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

ATATGGATCC TCACCATCTC AGGGTGAGGG GC 32

- (2) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

Arg Gly Tyr Val Tyr Gln Gly Leu Lys Ser

- (2) INFORMATION FOR SEQ ID NO:45:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

Phe Ala Pro Gly Asn Tyr Pro Ala Leu

- (2) INFORMATION FOR SEQ ID NO:46:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

Leu Ser Pro Phe Pro Phe Asp Leu

- (2) INFORMATION FOR SEQ ID NO:47:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:
 - Gln Leu Ser Pro Phe Pro Phe Asp Leu

- (2) INFORMATION FOR SEQ ID NO:48:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:
 - Ile Leu Lys Glu Pro Val His Gly Val
- (2) INFORMATION FOR SEQ ID NO:49:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:
 - Tyr Met Asn Gly Thr Met Ser Gln Val
- (2) INFORMATION FOR SEQ ID NO:50:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Gly Ile Leu Gly Phe Val Phe Thr Leu

- (2) INFORMATION FOR SEQ ID NO:51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Phe Leu Pro Ser Asp Phe Phe Pro Ser Val

10

WE CLAIM:

- 1. A synthetic antigen presenting cell line for use with T-cell lymphocytes comprising:
- a) a Class I MHC heavy chain gene operably
 linked to a first promoter and capable of expressing a
 Class I MHC heavy chain;
 - b) a β -2 microglobulin gene operably linked to a second promoter and capable of expressing a β -2 microglobulin that with the MHC heavy chain forms MHC molecules; and
 - c) a gene for an assisting molecule operably linked to a third promoter and capable of expressing an assisting molecule that interacts with a molecule on the T-cell lymphocytes;
- at least one of the MHC gene, β-2 microglobulin gene and assisting molecule genes not being present in the cells from which the cell line is derived, such that the MHC molecules bind to a peptide, and the MHC molecules and assisting molecules are presented on the surface of the cell in sufficient numbers to activate a population of T-cell lymphocytes against the peptide when the peptide is bound to the MHC molecules.
 - 2. The cell line of claim 1 wherein the assisting molecule is a costimulatory molecule.
- 25 3. The cell line of claim 2 wherein the costimulatory molecule is B7.1 or B7.2.
 - 4. The cell line of claim 1 wherein the cell line is derived from a first species and the MHC heavy chain gene is from a second species.
- 5. The cell line of claim 4 wherein the first species is a poikilotherm and the second species is a homeotherm.
 - 6. The cell line of claim 1 wherein the assisting molecule is an adhesion molecule.

- 146 -

- 7. The cell line of claim 6 wherein the adhesion molecule is ICAM-1, ICAM-2, ICAM-3 or LFA-3.
- 8. The cell line of claim 1 having a gene for a first assisting molecule and a gene for a second assisting molecule.
- 9. The cell line of claim 8 wherein the first assisting molecule is a costimulatory molecule and the second assisting molecule is an adhesion molecule.
- 10. The cell line of claim 1 wherein at least one promoter is inducible.
 - 11. The cell line of claim 10 wherein the first promoter is inducible.
 - 12. The cell line of claim 1 wherein the peptide is bound to the MHC molecules within the cell.
- 13. The cell line of claim 1 wherein the MHC molecules are presented empty on the surface of the cell.
 - 14. A stable poikilotherm cell line used to stimulate human T-cell lymphocytes comprising:
- a) a Class I MHC gene operably linked to a first inducible promoter and capable of expressing a Class I MHC heavy chain;

- b) a β -2 microglobulin gene operably linked to a second promoter and capable of expressing a β -2 microglobulin that forms MHC molecules with the MHC heavy chain; and
- c) a gene for an assisting molecule operably linked to a third promoter and capable of expressing an assisting molecule that interacts with a molecule on the T-cell lymphocytes;
- such that the cell assembles empty MHC molecules that are capable of binding to a peptide, and the MHC molecules and assisting molecules are presented on the surface of the cells in sufficient numbers to activate a population of T-cell lymphocytes against the peptide when the peptide is bound to the MHC molecules.

- 147 -

- 15. The cell line of claim 14 wherein the assisting molecule is a costimulatory molecule.
- 16. The cell line of claim 15 wherein the costimulatory molecule is B7.1 or B7.2.
- 5 17. The cell line of claim 14 wherein the assisting molecule is an adhesion molecule.
 - 18. The cell line of claim 17 wherein the adhesion molecule is ICAM-1.
- 19. The cell line of claim 14 having a gene for a first assisting molecule and a gene for a second assisting molecule.
 - 20. The cell line of claim 19 wherein the first assisting molecule is a costimulatory molecule and the second assisting molecule is an adhesion molecule.
- 21. A stable poikilotherm cell line used to stimulate human T-cell lymphocytes comprising:
 - a) a Class I MHC gene operably linked to a first promoter and capable of expressing a Class I MHC heavy chain;
- b) a β -2 microglobulin gene operably linked to a second promoter and capable of expressing a β -2 microglobulin that forms MHC molecules with the MHC heavy chain; and
- c) a gene for a costimulatory molecule

 operably linked to a third promoter and capable of
 expressing a costimulatory molecule that interacts with a
 molecule on the T-cell lymphocytes;
- d) a gene for an adhesion molecule operably linked to a fourth promoter and capable of expressing an adhesion molecule that interacts with a cooperative adhesion molecule on the T-cell lymphocytes;

such that the cell is capable of assembling the MHC heavy chain and the β -2 microglobulin into MHC molecules that bind to a peptide, and transporting MHC molecules, costimulatory molecules and adhesion molecules

- 148 -

to the surface of the cell in sufficient numbers to activate a population of T-cell lymphocytes against the peptide when the peptide is bound to the MHC molecules.

- 22. The cell line of claim 21 wherein the costimulatory molecule is B7.1 or B7.2.
 - 23. The cell line of claim 21 wherein the adhesion molecule is ICAM-1, ICAM-2, ICAM-3 or LFA-3.
 - 24. The cell line of claim 21 wherein at least one of the promoters is inducible.
- 25. The cell line of claim 21 wherein the peptide is bound to the MHC molecules within the cell.
 - 26. The cell line of claim 21 wherein the MHC molecules are presented empty on the surface of the cell.
- 27. Fragments of cells of claim 1 having MHC molecules and assisting molecules operably associated such that they activate the population of T-cell lymphocytes.
 - 28. The cell fragment of claim 27 wherein the MHC molecules are empty.
- 29. The cell fragment of claim 27 wherein the peptide is bound to the MHC molecules.
 - 30. Fragments of cells of claim 21 having MHC molecules, costimulatory molecules and adhesion molecules operably associated such that they activate the
- 25 population of T-cell lymphocytes.

- 31. The cell fragment of claim 27 wherein the peptide is bound to the MHC molecules.
- 32. A method of producing a synthetic antigen presenting a cell line comprising:
- a) establishing of a culture of cells;
 - b) transfecting the culture with an expressible Class I MHC heavy chain gene operably linked to a first promoter;

- c) transfecting the culture with an expressible $\beta\text{--}2$ microglobulin gene operably linked to a second promoter; and
- d) transfecting the culture with an
 5 expressible assisting molecule gene operably linked to a third promoter.
 - 33. The method of claim 32 wherein the assisting molecule is a costimulatory molecule.
- 34. The method of claim 33 wherein the costimulatory molecule is B7.1 or B7.2.
 - 35. The method of claim 32 wherein the cell line is derived from a first species and the MHC heavy chain gene is from a second species.
- 36. The method of claim 35 wherein the first species is a poikilotherm and the second species is a homeotherm.
 - 37. The method of claim 32 wherein the assisting molecule is an adhesion molecule.
- 38. The method of claim 37 wherein the adhesion molecule is ICAM-1, ICAM-2, ICAM-3 or LFA-3.
 - 39. The method of claim 32 including the step of transfecting the culture with a gene for a second assisting molecule.
- 40. The method of claim 39 wherein the first assisting molecule is a costimulatory molecule and the second assisting molecule is an adhesion molecule.
 - 41. The method of claim 32 wherein at least one of the promoters is inducible.
- 42. A method of producing a synthetic antigen presenting cell line comprising:
 - a) establishing a culture of cells lacking a gene to at least one of: Class I MHC heavy chain, $\beta\text{-}2$ microglobulin and assisting molecule; and
- b) transfecting the culture with an
 as expressible gene for each of the genes of (a) lacking in

the culture of cells, the gene being operably linked to a promoter.

- 43. A method of producing a synthetic antigen presenting a cell line comprising:
 - a) establishing of a culture of cells;
- b) transfecting the culture with an expressible Class I MHC heavy chain gene operably linked to a promoter;
- c) transfecting the culture with an expressible β -2 microglobulin gene operably linked to a second promoter;

5

- d) transfecting the culture with an expressible costimulatory molecule gene operably linked to a third promoter; and
- e) transfecting the culture with an expressible adhesion molecule gene operably linked to a third promoter.
 - 44. A method of producing a synthetic antigen presenting cell line comprising:
- a) establishing a culture of cells lacking a gene to at least one of: Class I MHC heavy chain, β -2 microglobulin and co-stimulatory molecule;
 - b) transfecting the culture with an expressible gene for each of the genes of (a) lacking in the culture of cells, the gene being linked to a first operable promoter; and
 - c) transfecting the culture with an expressible adhesion molecule gene, the gene being linked to a second operable promoter.
- 45. A method for activating CD8 T-cells against a selected peptide in vitro, the method comprising:
 - a) providing the cell line of claim 1;

10

- b) culturing the cell line under conditions such that MHC molecules are produced on the surface of the cell line that are bound to the selected peptide; and
- c) contacting the cultured cells with the 5 CD8° T-cells against the selected peptide.
 - 46. The method of claim 45 wherein the cell line is a poikilotherm.
 - 47. The method of claim 45 further comprising the step of separating the activated CD8° T-cells from the cell line.
 - 48. The method of claim 47 further comprising the step of adding the activated CD8 T-cells to an acceptable carrier or excipient to form a suspension.
- 49. The method of claim 48 further comprising the step of administering the suspension to a patient.
 - 50. A synthetic antigen-presenting matrix comprising:
 - a) a support;
- b) extracellular portion of MHC molecules
 capable of binding to a selected peptide and being operably linked to the support; and
 - c) an assisting molecule operably linked to the support such that the extracellular portion of the MHC and assisting molecules are present in sufficient numbers to activate a population of T-cell lymphocytes against the peptide when the peptide is bound to the extracellular portion of the MHC molecule.
 - 51. The matrix of claim 50 wherein the support is a cell fragment.
- 52. The matrix of claim 50 wherein the support is a cell.
 - 53. The matrix of claim 52 wherein the extracellular portion of the MHC molecule is linked to the cell by a transmembrane domain of an MHC molecule.

- 152 -

- 53. The matrix of claim 53 wherein the extracellular portion of the MHC molecule is part of a complete MHC molecule.
- 54. The matrix of claim 50 wherein the support is liposome.
 - 55. The matrix of claim 50 wherein the support is a solid surface.
- 56. The matrix of claim 50 wherein the extracellular portion of the MHC molecule is linked to an epitope which reacts with an antibody to link the portion to the support.
 - 57. The matrix of claim 50 wherein the extracellular portion of the MHC molecule is linked to (His), which reacts with nickel to link the portion to the support.
 - 58. The matrix of claim 50 wherein the support is a porous material.
 - 59. The matrix of claim 50 wherein the assisting molecule is a costimulatory molecule.
- 20 60. The matrix of claim 59 wherein the costimulatory molecule is B7.1 or B7.2.

- 61. The matrix of claim 59 wherein the costimulatory molecule is is at least a portion of an anti-CD80 antibody.
- 25 62. The matrix of claim 50 wherein the assisting molecule is an adhesion molecule.
 - 63. The matrix of claim 62 wherein the adhesion molecule is ICAM-1, ICAM-2, ICAM-3 or LFA-3.
- 64. The matrix of claim 50 having two
 assisting molecules, the first assisting molecule being a
 costimulatory molecule and the second assisting molecule
 being an adhesion molecule.
 - 65. The matrix of claim 50 wherein the extracellular portion of the MHC molecule is empty.

- 153 -

- 66. The matrix of claim 50 wherein the peptide is bound to the extracellular portion of the MHC molecule.
- 67. The matrix of claim 64 wherein the peptide is bound to the extracellular portion of the MHC molecule.
 - 68. A synthetic antigen-presenting matrix comprising:
 - a) a support;
- b) extracellular portion of MHC molecules capable of binding to a selected peptide and being operably linked to the support;
 - c) B-7.1 or B-7.2 molecules or a combination thereof operably linked to the support; and
- d) ICAM-1 molecules operably linked to the support such that the molecules are present in sufficient amount to activate a population of T-cell lymphocytes against the peptide when the peptide is bound to the extracellular portion of the MHC molecule.
- 20 69. A method of producing a synthetic T-cell lymphocyte antigen activating matrix comprising:
 - establishing a first culture of cells;
 - b) transfecting the culture with an expressible Class I MHC heavy chain gene for at least the extracellular portion of the heavy chain operably linked to a promoter;
 - c) transfecting the culture with an expressible $\beta\text{--}2$ microglobulin gene operably linked to a second promoter;
- d) harvesting the produced MHC molecule portions;

- e) establishing a second culture of cells;
- f) transfecting the second culture with an expressible assisting molecule gene for at least the

- 154 -

M I S S I N G P A G E

- 155 -

- b) contacting the matrix cells with the CD8 $^{\circ}$ T-cells.
- 79. A method for generating cytotoxic CD8° T-cells against a selected peptide, the method comprising:

5

15

20

- a) providing the matrix of claim 67;
- b) contacting naive CD8° T-cells with the matrix in vitro.
- 80. The matrix of claim 79 wherein the support is a cell.
 - 81. The method of claim 79 wherein the costimulatory molecule is B7.1 or B7.2.
 - 82. The method of claim 79 wherein the costimulatory molecule is at least a portion of an anti-CD28 antibody.
 - 83. The method of claim 79 wherein the adhesion molecule is ICAM-1, ICAM-2, ICAM-3 or LFA-3.
 - 84. A method of treating a tumor in a patient comprising:
 - a) identifying a tumor specific antigen;
 - b) collecting CD8° T-cells from the patient;
 - c) contacting the CD8 T-cells with the matrix of claim 67 in vitro in a sufficient amount and for a sufficient time to generate cytotoxic CD8 T-cells; and
 - d) returning the cytotoxic CD8' T-cells to the patient.
 - 85. The method of claim 84 wherein the antigen is a self antigen of the patient.
- 30 86. The method of claim 85 wherein the assisting molecule is B7.1 or B7.2 and the adhesion molecule is ICAM-1, ICAM-2 or ICAM-3.
- 87. The method of claim 84 wherein the assisting molecule is B7.1 and the adhesion molecule is ICAM-1.

FIGURE 4

FIGURE 5

FIGURE 7

FIGURE 8

INTENSITY

FIGURE 9

Kb Direct Binding to Microwell Plates

FIGURE 10

11/28

FIGURE 11

[3H] TdR Incorporation (cpm)

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

350000

300000

250000

200000

150000

100000

\$0000

FIGURE 16

FIGURE 17

FIGURE 18

19/28

FIGURE 19

20/28

FIGURE 20

FIGURE 21

FIGURE 22

FIGURE 23

FIGURE 24

25/28

FIGURE 25

A2.1/B7.1/ICAM-1 CTL Activity of Human CD8+ Cells Stimulated with Fly Cells E.T Ratio Loaded with Influenza Matrix (MX) Peptide 123 J 8 25 Specific Lyale (%) Target Cells: JY+Control Peptide A2.1/B7.1/LFA-3 Tank Celle: JY+MX E:T Rado 121 8 75 Specific Lynis (%) A2.1/B7.1 B.T Ratio 8 123 Ŋ Specific Lyals ()

FIGURE 27

CTL Activity of Human CD8+ Calls Stimulated with Fly Cells Loaded with HIV-RT peptide

International application No. PCT/US96/03249

International application No. PCT/US96/03249

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:						
2. X Claims Nos.: 69-78 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: These claims are missing in wholehin part because page 154 of the disclosure is blank and is denoted as "MISSING PAGE".						
Claims Nos.: 53 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).						
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	\dashv					
This International Searching Authority found multiple inventions in this international application, as follows:						
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	ا					
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	ıt					
3. As only some of the required additional search fees were timely paid by the applicant, this international search report cover only those claims for which fees were paid, specifically claims Nos.:	S					
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	•					
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.						

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

International application No. PCT/US96/03249

A. CLASSIFICATION OF SUBJECT MATTER: US CL:	
424/93.21, 195.11, 534; 435/69.3, 240.2, 252.3; 530/403; 536/23.5	
·	
·	
	ĺ

Form PCT/ISA/210 (extra sheet)(July 1992)*

SUPPLEMENTAL SHEET

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/03249

A. CLA	SSIFICATION OF SUBJECT MATTER					
US CL :	:A61K 45/00; C07K 17/00; C12N 5/00 :Please See Extra Sheet.					
According to	o International Patent Classification (IPC) or to b	oth national classification and IPC				
	DS SEARCHED					
11.5	ocumentation searched (classification system follo	wed by classification symbols)				
	424/93.21, 195.11, 534, 435/69.3, 240.2; 530/4	403				
Documentati	on searched other than minimum documentation to	the extent that such documents are include	d in the Caldanas I. I.			
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic da	ita base consulted during the interest in t					
- notomate	ata base consulted during the international search of Patent System (APS) and DIALOG (file = £7, coligand, costum?, antigen(w)present?, T	DIOCUELA:	:. search terms used) rords: MHC?, matrix,			
C. DOCU	JMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.			
Y	US, A, 5,314,813 (PETERSON I entire document, especially claim	ET AL.) 24 May 1994, see n 1.	1-87			
1	Nature, Volume 332, issued 10 let al., "Immunological unres receipient cells transfected with 161-164, see entire article.	noneivenoce induced by	1-87			
1	W. F. PAUL, FUNDAMENTAL 1993 by Raven Press (New York), 133-135.	IMMUNOLOGY, published pages 133-135, see pages	1-87			
Further	documents are listed in the continuation of Box (See patent fanniv annex.				
Miceral	(categories of cited documents	later document published after the inter-	national tiling date or process.			
Go. mii. Ta be o	entactining the general state of the art winch is not considered. It particular relevance	date and not in conflict with the applicate principle or theory underlying the inven-	on but cited to understand the			
dos um	document published on or after the a creational fitting date	"X" document of particular relevance, the considered novel of cannot be considered when the document is taken alone	dained invention cannot be I to involve an inventive step			
and to extensit the publication date of another entation or other		Y document of particular relevance, the considered to involve an inventive of combined with one or more other such d	op when the document is			
docum.	ent patrashed prior to the international Gaiag date but fater Gain only date claimed	being obvious to a person skilled in the "T&" document member of the same patent fa	211			
	and appletion of the internals had search	Date of mailing of the international scare				
2 II NE 199		24 JUL 1996				
annissioner -	ing hadress of the ISA US of Patents and Trademarks	Authorized officer	1/1/14/8			
Box PCT Washington, D.C. = 27231		THOMAS CUNNINGHAM	1/000/			
resimile No. (703) 305-3230		Telephone No. (703) 308-0196				

International application No. PCT/US96/03249

US CL :	
424/93.21, 195.11, 534; 435/69.3, 240.2, 252.3; 530/403;	536/23.5