

Imperas Peripheral Model Guide

Model Specific Information for national.ovpworld.org / 16450

Imperas Software Limited

Imperas Buildings, North Weston Thame, Oxfordshire, OX9 2HA, U.K. docs@imperas.com.

Author	Imperas Software Limited	
Version	20150901.0	
Filename	OVP_Peripheral_Specific_Information_16450.pdf	
Created	26 August 2015	
Status	OVP Standard Release	

Copyright Notice

Copyright 2015 Imperas Software Limited. All rights reserved. This software and documentation contain information that is the property of Imperas Software Limited. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas Software Limited, or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Imperas permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the readers responsibility to determine the applicable regulations and to comply with them.

Disclaimer

IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Model Release Status

This model is released as part of OVP releases and is included in OVPworld packages. Please visit OVPworld.org.

Copyright (c) 2015 Imperas Software Limited

Table Of Contents

1.0 Model Specific Information	. 4
1.1 Licensing	. 4
1.2 Description	. 4
1.3 Limitations	. 4
1.4 Reference	. 4
1.5 Location	. 4
2.0 Peripheral Instance Parameters	. 4
3.0 Net Ports	. 5
4.0 Bus Slave Ports	. 5
4.1 Bus Slave Port: bport1	. 5
5.0 Peripheral components in the library	. 7
6.0 General Information on Peripheral Models	. 9
6.1 Background	. 9
7.0 Building peripherals easily with Imperas iGen	. 9
8.0 Peripheral model internals	. 9
9.0 Parts of peripheral models	10
9.1 Configuring the Peripheral Instance with Parameters	10
9.2 Net Ports	10
9.3 Bus master ports	10
9.4 Bus slave ports	10
9.5 Packetnets	10
10.0 More information (documentation) on peripheral models and modeling	10

1.0 Model Specific Information

This document provides usage information for an Imperas OVP peripheral behavioral model.

The document is split into sections providing specific information for this peripheral, including any ports for connecting into a platform, registers, other component parts, and configuration options and general information for peripheral modeling with Imperas OVP.

1.1 Licensing

Open Source Apache 2.0

1.2 Description

Model of 16550/16450 UART.

Connects to a bus by a slave port and optionally to a processor by an interrupt signal.

The serial input/output ports are modelled by socket connection which must be attached to aprocess outside the simulation environment. Note that on start:up, the UART model will blockthe simulator, pending a connection to the socket.

1.3 Limitations

Simplified baud:rate.

No modem support (DTR etc).

No support for parity.

No means to simulate errors.

1.4 Reference

Based upon 16450 features of http://www.ti.com/lit/ds/symlink/pc16550d.pdf

1.5 Location

The 16450 peripheral model is located in an Imperas/OVP installation at the VLNV: national.ovpworld.org / peripheral / 16450 / 1.0.

2.0 Peripheral Instance Parameters

This model accepts the following parameters:

Table 1. Peripheral Parameters

Name	Туре	Description
console	bool	Standard Serial Socket Parameter: See OVP BHM
		and PPM API Function Reference: Enables automatic

		console
portnum	uns32	Standard Serial Socket Parameter: See OVP BHM and PPM API Function Reference: Specify port to open for a connection. A value of zero causes the OS to select the next available port.
infile	string	Standard Serial Socket Parameter: See OVP BHM and PPM API Function Reference: UART takes input from this serial input source file
outfile	string	Standard Serial Socket Parameter: See OVP BHM and PPM API Function Reference: Serial output file
portFile	string	Standard Serial Socket Parameter: See OVP BHM and PPM API Function Reference: When portnum is set to zero, write the assigned port number to this file
log	bool	Standard Serial Socket Parameter: See OVP BHM and PPM API Function Reference: Report serial output in the simulator log
finishOnDisconnect	bool	Standard Serial Socket Parameter: See OVP BHM and PPM API Function Reference: When set the, simulation will be terminated if the port is disconnected
simulatebaud	bool	If non:zero, transmit at the programmed baud rate Default is to transmit without any delay.
defaultbaud	uns32	Set the baud rate multiplier. Default is 9.
charmode	bool	Puts the telnet server into char mode. Default is line mode
record	string	Enable record model
replay	string	Enable replay mode
uart16550	bool	Enable 16550 mode (with FIFOS)

3.0 Net Ports

This model has the following net ports:

Table 2. Net Ports

Name	Туре	Must Be Connected	Description
intOut	output	F (False)	Interrupt output.

4.0 Bus Slave Ports

This model has the following bus slave ports:

4.1 Bus Slave Port: bport1

Table 3. Bus Slave Port: bport1

Name	Size (bytes)	Must Be Connected	Description
bport1	0x8	T (True)	Byte:wide access to control and status
			registers.

Table 4. Bus Slave Port: bport1 Registers:

Name	Offset	Width (bits)	Description	R/W	is Volatile
rbr	0x0	8	receive byte		
tbr	0x0	8	transmit byte		
ier	0x1	8	interrupt enable		

iir	0x2	8	interrupt input	
ler	0x3	8	line control	
mcr	0x4	8	modem control	
lsr	0x5	8	line status	
msr	0x6	8	modem status	
scr	0x7	8	status/control	

5.0 Peripheral components in the library

Table 5. Publicly available Impera	s/OVP peripheral models (158 mod	
Peripheral	Peripheral	Peripheral
national.ovpworld.org/16550	ovpworld.org/Alpha2x16Display	ovpworld.org/dummyPort
ovpworld.org/DynamicBridge	ovpworld.org/FlashDevice	ovpworld.org/ledRegister
ovpworld.org/SerInt	ovpworld.org/SimpleDma	ovpworld.org/VirtioBlkMMIO
philips.ovpworld.org/ISP1761	renesas.ovpworld.org/adc	renesas.ovpworld.org/bcu
renesas.ovpworld.org/brg	renesas.ovpworld.org/can	renesas.ovpworld.org/can
renesas.ovpworld.org/clkgen	renesas.ovpworld.org/crc	renesas.ovpworld.org/csib
renesas.ovpworld.org/csie	renesas.ovpworld.org/dma	renesas.ovpworld.org/intc
renesas.ovpworld.org/memc	renesas.ovpworld.org/rng	renesas.ovpworld.org/taa
renesas.ovpworld.org/tms	renesas.ovpworld.org/tmt	renesas.ovpworld.org/uartc
renesas.ovpworld.org/UPD70F3441Logic	smsc.ovpworld.org/LAN9118	smsc.ovpworld.org/LAN91C111
ti.ovpworld.org/UartInterface	xilinx.ovpworld.org/mdm	xilinx.ovpworld.org/mpmc
xilinx.ovpworld.org/xps-gpio	xilinx.ovpworld.org/xps-iic	xilinx.ovpworld.org/xps-intc
xilinx.ovpworld.org/xps-ll-temac	xilinx.ovpworld.org/xps-mch-emc	xilinx.ovpworld.org/xps-sysace
xilinx.ovpworld.org/xps-timer	xilinx.ovpworld.org/xps-uartlite	altera.ovpworld.org/dw-apb-timer
altera.ovpworld.org/dw-apb-uart	altera.ovpworld.org/IntervalTimer32Core	altera.ovpworld.org/IntervalTimer64Core
altera.ovpworld.org/JtagUart	altera.ovpworld.org/PerformanceCounterCore	altera.ovpworld.org/RSTMGR
altera.ovpworld.org/SystemIDCore	altera.ovpworld.org/Uart	amd.ovpworld.org/79C970
arm.ovpworld.org/AaciPL041	arm.ovpworld.org/CompactFlashRegs	arm.ovpworld.org/CoreModule9x6
arm.ovpworld.org/DebugLedAndDipSwitch	arm.ovpworld.org/DMemCtrlPL341	arm.ovpworld.org/IcpControl
arm.ovpworld.org/IcpCounterTimer	arm.ovpworld.org/IntICP	arm.ovpworld.org/IntICP
arm.ovpworld.org/KbPL050	arm.ovpworld.org/L2CachePL310	arm.ovpworld.org/LcdPL110
arm.ovpworld.org/MmciPL181	arm.ovpworld.org/RtcPL031	arm.ovpworld.org/SerBusDviRegs
arm.ovpworld.org/SmartLoaderArm64Linux	arm.ovpworld.org/SmartLoaderArmLinux	arm.ovpworld.org/SMemCtrlPL354
arm.ovpworld.org/SysCtrlSP810	arm.ovpworld.org/TimerSP804	arm.ovpworld.org/TzpcBP147
arm.ovpworld.org/UartPL011	arm.ovpworld.org/VexpressSysRegs	arm.ovpworld.org/WdtSP805
atmel.ovpworld.org/AdvancedInterruptController	atmel.ovpworld.org/ParallelIOController	atmel.ovpworld.org/PowerSaving
atmel.ovpworld.org/SpecialFunction	atmel.ovpworld.org/TimerCounter	atmel.ovpworld.org/UsartInterface
atmel.ovpworld.org/WatchdogTimer	cirrus.ovpworld.org/GD5446	freescale.ovpworld.org/KinetisADC
freescale.ovpworld.org/KinetisAIPS	freescale.ovpworld.org/KinetisAXBS	freescale.ovpworld.org/KinetisCAN
freescale.ovpworld.org/KinetisCMP	freescale.ovpworld.org/KinetisCMT	freescale.ovpworld.org/KinetisCRC
freescale.ovpworld.org/KinetisDAC	freescale.ovpworld.org/KinetisDDR	freescale.ovpworld.org/KinetisDMA
freescale.ovpworld.org/KinetisDMAC	freescale.ovpworld.org/KinetisDMAMUX	freescale.ovpworld.org/KinetisENET
freescale.ovpworld.org/KinetisEWM	freescale.ovpworld.org/KinetisFB	freescale.ovpworld.org/KinetisFMC
freescale.ovpworld.org/KinetisFTFE	freescale.ovpworld.org/KinetisFTM	freescale.ovpworld.org/KinetisGPIO
freescale.ovpworld.org/KinetisI2C	freescale.ovpworld.org/KinetisI2S	freescale.ovpworld.org/KinetisLLWU
freescale.ovpworld.org/KinetisLPTMR	freescale.ovpworld.org/KinetisMCG	freescale.ovpworld.org/KinetisMPU
freescale.ovpworld.org/KinetisNFC	freescale.ovpworld.org/KinetisOSC	freescale.ovpworld.org/KinetisPDB
freescale.ovpworld.org/KinetisPIT	freescale.ovpworld.org/KinetisPMC	freescale.ovpworld.org/KinetisPORT
freescale.ovpworld.org/KinetisRCM	freescale.ovpworld.org/KinetisRFSYS	freescale.ovpworld.org/KinetisRFVBAT
freescale.ovpworld.org/KinetisRNG	freescale.ovpworld.org/KinetisRTC	freescale.ovpworld.org/KinetisSDHC
freescale.ovpworld.org/KinetisSIM	freescale.ovpworld.org/KinetisSMC	freescale.ovpworld.org/KinetisSPI
freescale.ovpworld.org/KinetisTSI	freescale.ovpworld.org/KinetisUART	freescale.ovpworld.org/KinetisUSB
freescale.ovpworld.org/KinetisUSBDCD	freescale.ovpworld.org/KinetisUSBHS	freescale.ovpworld.org/KinetisVREF

freescale.ovpworld.org/KinetisWDOG	freescale.ovpworld.org/Uart	freescale.ovpworld.org/VybridADC
freescale.ovpworld.org/VybridANADIG	freescale.ovpworld.org/VybridCCM	freescale.ovpworld.org/VybridDMA
freescale.ovpworld.org/VybridGPIO	freescale.ovpworld.org/VybridI2C	freescale.ovpworld.org/VybridLCD
freescale.ovpworld.org/VybridQUADSPI	freescale.ovpworld.org/VybridSDHC	freescale.ovpworld.org/VybridSPI
freescale.ovpworld.org/VybridUART	freescale.ovpworld.org/VybridUSB	intel.ovpworld.org/82077AA
intel.ovpworld.org/82371EB	intel.ovpworld.org/8253	intel.ovpworld.org/8259A
intel.ovpworld.org/NorFlash48F4400	intel.ovpworld.org/PciIDE	intel.ovpworld.org/PciPM
intel.ovpworld.org/PciUSB	intel.ovpworld.org/Ps2Control	marvell.ovpworld.org/GT6412x
mips.ovpworld.org/16450C	mips.ovpworld.org/MaltaFPGA	mips.ovpworld.org/SmartLoaderLinux
motorola.ovpworld.org/MC146818	national.ovpworld.org/16450	

6.0 General Information on Peripheral Models

This document provides usage information for an Imperas OVP peripheral behavioral model.

The document is split into sections providing specific information for this peripheral, including any ports for connecting into a platform, registers etc. and configuration options and general information for peripheral modeling with Imperas OVP.

6.1 Background

Imperas OVP simulation technology enables very high performance simulation, debug and analysis of platforms containing multiple processors and peripheral models. The technology is designed to be extensible: you can create new models of processors, peripherals and other platform components using interfaces and libraries defined by OVP.

The peripheral models created using the OVP APIs run on the Peripheral Simulation Engine (PSE).

The model is typically written in C and compiled into an executable for the PSE processor architecture. The model is compiled for speed of execution and to protect IP. It is dynamically loaded by the simulator at run time.

7.0 Building peripherals easily with Imperas iGen

To aid with model creation, Imperas products include iGen, a model generation tool. iGen takes the laborious and error-prone task of constructing the various hardware model and software element files required for a typical model, and automates this process. iGen creates the needed C files. iGen also creates the C++ SystemC TLM2 interface files needed to run peripheral models in SystemC simulations.

iGen takes as input a simple script specification that includes device internals such as registers and memories, port information, component descriptors, and other elements. iGen then builds the C code model files and user editable templates. These include model frameworks with registers, function calls, memory map, and other items. It ensures that all component parts of the model are well-structured using best practices, and are consistent throughout the files, thus eliminating a common source of errors.

More information on iGen can be found: <u>imperas.com/products</u>.

Please contact Imperas to get access to the Imperas documents: Imperas_Model_Generator_Guide.pdf and Imperas_Peripheral_Generator_Guide.pdf.

8.0 Peripheral model internals

Each instance of a peripheral model runs on its own virtual machine with an address space large enough for the model. This processor (the PSE) and its memory are separate from any processors, memories and buses

Copyright (c) 2015 Imperas Software Limited www.imperas.com

OVP License. Release 20150901.0 Page 9 of 11

in the platform being simulated; they exist only to execute the code of the peripheral model.

Interception of functions defined in the peripheral model allows the use of features of the host system in the implementation of the behavior of a peripheral. As an example, a real platform might contain a video display device. When simulating this system, it is generally more convenient not to simulate the complete video display device but to use a video package available on the host machine, such as SDL, and to use this to render to the host display. Also models of uarts, ethernet devices and USB components can make use of the host PC resources during simulation, to allow, for example, a simulation to browse the real internet, or the simulation to connect to a real USB device.

9.0 Parts of peripheral models

9.1 Configuring the Peripheral Instance with Parameters

A peripheral can include the behaviour of several configurations. These are controlled when the peripheral is instanced in the platform by setting parameters defined on the peripheral.

9.2 Net Ports

Peripherals may be connected to other peripherals or processors with signal wires (nets). These can be used to act as interrupt signals or used to control behavior between peripherals.

The wires are created in the platform as nets and this net is connected into the peripheral using a net port.

9.3 Bus master ports

A bus master port initiates (and controls the address of) a bus cycle. Bus cycles are generated by behavioral code within the peripheral model.

9.4 Bus slave ports

A peripheral can be defined as having several bus slave ports. The bus slave ports can be split into several address blocks. Each address block be either local memory or memory mapped registers. Both of these can have associated callback functions. A memory mapped register can also be defined as specific read/write access, whether it is volatile, and also whether it is associated with a reset pin and mask. A memory mapped register can also have specific bit fields defined.

9.5 Packetnets

A peripheral can be defined as being connected to packetnet ports. A packetnet is used to model packet based communication such as Ethernet, CAN bus or GSM. A packetnet is created in a platform, then connected to packetnet ports on model instances. A packetnet can have many connections, each able to send or receive packets. A packetnet is used as an efficient method of communication within OVP models.

For more information on modeling with packetnets, please see the peripheral modeling documentation: OVP_Peripheral_Modeling_Guide.pdf, OVPsim_and_CpuManager_User_Guide.pdf and the example: \$IMPERAS_HOME/Examples/Models/Peripherals/packetnet.

Copyright (c) 2015 Imperas Software Limited www.imperas.com

OVP License. Release 20150901.0 Page 10 of 11

10.0 More information (documentation) on peripheral models and modeling
More information on modeling and APIs can be found at: OVPworld.org/technology_apis.
Specifics on modeling peripherals can be found: OVP Peripheral Modeling Guide.pdf.

A full list of the currently available OVP documentation is available: OVPworld.org/documentation.
#