QR factorization by Givens rotations

Rafikul Alam
Department of Mathematics
Indian Institute of Technology Guwahati
Guwahati - 781039, INDIA

Outline

- Rotation in \mathbb{R}^2
- Givens rotation in \mathbb{R}^n
- QR factorization by Givens rotations

Definition: Let $\theta \in [0, 2\pi]$. A rotation in \mathbb{R}^2 is a matrix $G(\theta) \in \mathbb{R}^{2 \times 2}$ that rotates each vector in \mathbb{R}^2 by an angle θ in the anti-clock-wise direction.

Definition: Let $\theta \in [0, 2\pi]$. A rotation in \mathbb{R}^2 is a matrix $G(\theta) \in \mathbb{R}^{2 \times 2}$ that rotates each vector in \mathbb{R}^2 by an angle θ in the anti-clock-wise direction.

Obviously $G(\theta): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation and $G(\theta)v$ is the anti-clock-wise rotation of v by an angle θ .

Definition: Let $\theta \in [0, 2\pi]$. A rotation in \mathbb{R}^2 is a matrix $G(\theta) \in \mathbb{R}^{2 \times 2}$ that rotates each vector in \mathbb{R}^2 by an angle θ in the anti-clock-wise direction.

Obviously $G(\theta): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation and $G(\theta)v$ is the anti-clock-wise rotation of v by an angle θ . The rotation $G(\theta)$ is given by

$$G(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}.$$

Definition: Let $\theta \in [0, 2\pi]$. A rotation in \mathbb{R}^2 is a matrix $G(\theta) \in \mathbb{R}^{2 \times 2}$ that rotates each vector in \mathbb{R}^2 by an angle θ in the anti-clock-wise direction.

Obviously $G(\theta): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation and $G(\theta)v$ is the anti-clock-wise rotation of v by an angle θ . The rotation $G(\theta)$ is given by

$$G(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}.$$

Note that e_1 and $G(\theta)e_1$ are points on the unit circle $x^2 + y^2 = 1$.

Definition: Let $\theta \in [0, 2\pi]$. A rotation in \mathbb{R}^2 is a matrix $G(\theta) \in \mathbb{R}^{2 \times 2}$ that rotates each vector in \mathbb{R}^2 by an angle θ in the anti-clock-wise direction.

Obviously $G(\theta): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation and $G(\theta)v$ is the anti-clock-wise rotation of v by an angle θ . The rotation $G(\theta)$ is given by

$$G(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}.$$

Note that e_1 and $G(\theta)e_1$ are points on the unit circle $x^2+y^2=1$. Hence $G(\theta)e_1=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}$. Also, note that $G(\theta)e_2=G(\pi/2+\theta)e_1$.

Definition: Let $\theta \in [0, 2\pi]$. A rotation in \mathbb{R}^2 is a matrix $G(\theta) \in \mathbb{R}^{2 \times 2}$ that rotates each vector in \mathbb{R}^2 by an angle θ in the anti-clock-wise direction.

Obviously $G(\theta): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation and $G(\theta)v$ is the anti-clock-wise rotation of v by an angle θ . The rotation $G(\theta)$ is given by

$$G(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}.$$

Note that e_1 and $G(\theta)e_1$ are points on the unit circle $x^2+y^2=1$. Hence $G(\theta)e_1=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}$. Also, note that $G(\theta)e_2=G(\pi/2+\theta)e_1$.

Consequently,
$$G(\theta)e_2 = G(\pi/2 + \theta)e_1 = \begin{bmatrix} \cos(\pi/2 + \theta) \\ \sin(\pi/2 + \theta) \end{bmatrix} = \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$$
.

Definition: Let $\theta \in [0, 2\pi]$. A rotation in \mathbb{R}^2 is a matrix $G(\theta) \in \mathbb{R}^{2 \times 2}$ that rotates each vector in \mathbb{R}^2 by an angle θ in the anti-clock-wise direction.

Obviously $G(\theta): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation and $G(\theta)v$ is the anti-clock-wise rotation of v by an angle θ . The rotation $G(\theta)$ is given by

$$G(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}.$$

Note that e_1 and $G(\theta)e_1$ are points on the unit circle $x^2+y^2=1$. Hence $G(\theta)e_1=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}$. Also, note that $G(\theta)e_2=G(\pi/2+\theta)e_1$.

Consequently,
$$G(\theta)e_2 = G(\pi/2 + \theta)e_1 = \begin{bmatrix} \cos(\pi/2 + \theta) \\ \sin(\pi/2 + \theta) \end{bmatrix} = \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$$
.

Hence we have
$$G(\theta) = \begin{bmatrix} G(\theta)e_1 & G(\theta)e_2 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
.

We have
$$G(\theta) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix}$$
.

We have
$$G(\theta) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix}$$
.

We have
$$G(\theta) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix}$$
.

We have
$$G(\theta) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix}$$
.

We have
$$G(\theta) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix}$$
.

We have
$$G(\theta) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix}$$
.

The rotation $G(\theta)$. Note that $G(\theta)e_2 = G(\pi/2 + \theta)e_1$.

• Consider $G(\theta) := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Then $G(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ and $G(\theta)^{\top} = G(-\theta)$. Thus $G(\theta)^{\top}$ is a clock-wise rotation by an angle θ .

- Consider $G(\theta) := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Then $G(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ and $G(\theta)^{\top} = G(-\theta)$. Thus $G(\theta)^{\top}$ is a clock-wise rotation by an angle θ .
- Fact: Let $G(\theta)$ and $G(\phi)$ be rotations in \mathbb{R}^2 . Then $G(\phi)G(\theta)$ is a rotation in \mathbb{R}^2 and $G(\theta)G(\phi)=G(\phi)G(\theta)=G(\theta+\phi)$.

- Consider $G(\theta) := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Then $G(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ and $G(\theta)^{\top} = G(-\theta)$. Thus $G(\theta)^{\top}$ is a clock-wise rotation by an angle θ .
- Fact: Let $G(\theta)$ and $G(\phi)$ be rotations in \mathbb{R}^2 . Then $G(\phi)G(\theta)$ is a rotation in \mathbb{R}^2 and $G(\theta)G(\phi)=G(\phi)G(\theta)=G(\theta+\phi)$.
- Proof: Note that $G(\phi)G(\theta)v$ is the anti-clock-wise rotation of v by an angle θ followed by an angle ϕ . Thus $G(\phi)G(\theta)v = G(\phi + \theta)v$ for all $v \in \mathbb{R}^2$. Hence $G(\phi)G(\theta) = G(\theta + \phi)$.

- Consider $G(\theta) := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Then $G(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ and $G(\theta)^{\top} = G(-\theta)$. Thus $G(\theta)^{\top}$ is a clock-wise rotation by an angle θ .
- Fact: Let $G(\theta)$ and $G(\phi)$ be rotations in \mathbb{R}^2 . Then $G(\phi)G(\theta)$ is a rotation in \mathbb{R}^2 and $G(\theta)G(\phi)=G(\phi)G(\theta)=G(\theta+\phi)$.
- Proof: Note that $G(\phi)G(\theta)v$ is the anti-clock-wise rotation of v by an angle θ followed by an angle ϕ . Thus $G(\phi)G(\theta)v = G(\phi + \theta)v$ for all $v \in \mathbb{R}^2$. Hence $G(\phi)G(\theta) = G(\theta + \phi)$.
- We have $G(\theta)G(\theta)^{\top} = G(\theta)G(-\theta) = G(0) = I$ which shows that $G(\theta)$ is unitary and $G(\theta)^{-1} = G(\theta)^{\top} = G(-\theta)$.

- Consider $G(\theta) := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Then $G(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ and $G(\theta)^{\top} = G(-\theta)$. Thus $G(\theta)^{\top}$ is a clock-wise rotation by an angle θ .
- Fact: Let $G(\theta)$ and $G(\phi)$ be rotations in \mathbb{R}^2 . Then $G(\phi)G(\theta)$ is a rotation in \mathbb{R}^2 and $G(\theta)G(\phi)=G(\phi)G(\theta)=G(\theta+\phi)$.
- Proof: Note that $G(\phi)G(\theta)v$ is the anti-clock-wise rotation of v by an angle θ followed by an angle ϕ . Thus $G(\phi)G(\theta)v = G(\phi + \theta)v$ for all $v \in \mathbb{R}^2$. Hence $G(\phi)G(\theta) = G(\theta + \phi)$.
- We have $G(\theta)G(\theta)^{\top} = G(\theta)G(-\theta) = G(0) = I$ which shows that $G(\theta)$ is unitary and $G(\theta)^{-1} = G(\theta)^{\top} = G(-\theta)$.

Example:
$$G(\pi/6) = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
 and $G(\pi/2) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

For simplicity, we write $G:=\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$, where $c:=\cos\theta$ and $s=\sin\theta$.

For simplicity, we write $G:=\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$, where $c:=\cos\theta$ and $s=\sin\theta$.

Moreover, we require only c and s and not the angle θ . Hence in order to generate G, we need c and s such that $c^2 + s^2 = 1$.

For simplicity, we write $G:=\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$, where $c:=\cos\theta$ and $s=\sin\theta$.

Moreover, we require only c and s and not the angle θ . Hence in order to generate G, we need c and s such that $c^2 + s^2 = 1$.

Let
$$v := \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
. Define $c := \frac{v_1}{\sqrt{v_1^2 + v_2^2}}$ and $s := \frac{v_2}{\sqrt{v_1^2 + v_2^2}}$. Consider the rotation $G := \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$. Then we have $G^\top v = \begin{bmatrix} \|v\|_2 \\ 0 \end{bmatrix} = \|v\|_2 e_1$.

For simplicity, we write $G:=\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$, where $c:=\cos\theta$ and $s=\sin\theta$.

Moreover, we require only c and s and not the angle θ . Hence in order to generate G, we need c and s such that $c^2 + s^2 = 1$.

Let
$$v := \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
. Define $c := \frac{v_1}{\sqrt{v_1^2 + v_2^2}}$ and $s := \frac{v_2}{\sqrt{v_1^2 + v_2^2}}$. Consider the rotation $G := \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$. Then we have $G^\top v = \begin{bmatrix} \|v\|_2 \\ 0 \end{bmatrix} = \|v\|_2 e_1$.

Note that v makes an angle $\theta := \arctan(v_2/v_1)$ with e_1 (the x-axis) and G^{\top} rotates v clock-wise by an angle θ to align with e_1 .

For simplicity, we write $G:=\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$, where $c:=\cos\theta$ and $s=\sin\theta$.

Moreover, we require only c and s and not the angle θ . Hence in order to generate G, we need c and s such that $c^2 + s^2 = 1$.

Let
$$v := \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
. Define $c := \frac{v_1}{\sqrt{v_1^2 + v_2^2}}$ and $s := \frac{v_2}{\sqrt{v_1^2 + v_2^2}}$. Consider the rotation $G := \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$. Then we have $G^\top v = \begin{bmatrix} \|v\|_2 \\ 0 \end{bmatrix} = \|v\|_2 e_1$.

Note that v makes an angle $\theta := \arctan(v_2/v_1)$ with e_1 (the x-axis) and G^{\top} rotates v clock-wise by an angle θ to align with e_1 . Also, we can construct a rotation G such that $Gv = -\|v\|_2 e_1$.

For simplicity, we write $G:=\begin{bmatrix}c&-s\\s&c\end{bmatrix}$, where $c:=\cos\theta$ and $s=\sin\theta$.

Moreover, we require only c and s and not the angle θ . Hence in order to generate G, we need c and s such that $c^2 + s^2 = 1$.

Let
$$v := \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
. Define $c := \frac{v_1}{\sqrt{v_1^2 + v_2^2}}$ and $s := \frac{v_2}{\sqrt{v_1^2 + v_2^2}}$. Consider the rotation $G := \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$. Then we have $G^\top v = \begin{bmatrix} \|v\|_2 \\ 0 \end{bmatrix} = \|v\|_2 e_1$.

Note that v makes an angle $\theta := \arctan(v_2/v_1)$ with e_1 (the x-axis) and G^{\top} rotates v clock-wise by an angle θ to align with e_1 . Also, we can construct a rotation G such that $Gv = -\|v\|_2 e_1$.

Similarly, we can construct a rotation G such that $Gv = ||v||_2 e_2$ or $G^\top v = -||v||_2 e_2$.

For simplicity, we write $G:=\begin{bmatrix}c&-s\\s&c\end{bmatrix}$, where $c:=\cos\theta$ and $s=\sin\theta$.

Moreover, we require only c and s and not the angle θ . Hence in order to generate G, we need c and s such that $c^2 + s^2 = 1$.

Let
$$v := \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
. Define $c := \frac{v_1}{\sqrt{v_1^2 + v_2^2}}$ and $s := \frac{v_2}{\sqrt{v_1^2 + v_2^2}}$. Consider the rotation $G := \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$. Then we have $G^\top v = \begin{bmatrix} \|v\|_2 \\ 0 \end{bmatrix} = \|v\|_2 e_1$.

Note that v makes an angle $\theta := \arctan(v_2/v_1)$ with e_1 (the x-axis) and G^{\top} rotates v clock-wise by an angle θ to align with e_1 . Also, we can construct a rotation G such that $Gv = -\|v\|_2 e_1$. Take $c := -v_1/(\operatorname{sqrt}(v_1^2 + v_2^2))$, $s := v_2/(\operatorname{sqrt}(v_1^2 + v_2^2))$

Similarly, we can construct a rotation G such that $Gv = ||v||_2 e_2$ or $G^\top v = -||v||_2 e_2$.

Example: Consider
$$v := \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. Then $\begin{bmatrix} c & -s \\ s & c \end{bmatrix}^{\top} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}$, where $c = 1/\sqrt{2} = s$. Note that $\theta = \pi/4$.

Definition: A Givens rotation in \mathbb{R}^3 is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Definition: A Givens rotation in \mathbb{R}^3 is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Let $\theta \in [0, 2\pi]$. Then a Givens rotation in the x_1 - x_2 plane in \mathbb{R}^3 is a matrix $G_{12}(\theta) \in \mathbb{R}^{3\times 3}$ that rotates each vector in the x_1 - x_2 plane in \mathbb{R}^3 by an angle θ in the anti-clock-wise direction and $G_{12}(\theta)e_3 = e_3$.

Definition: A Givens rotation in \mathbb{R}^3 is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Let $\theta \in [0, 2\pi]$. Then a Givens rotation in the x_1 - x_2 plane in \mathbb{R}^3 is a matrix $G_{12}(\theta) \in \mathbb{R}^{3\times 3}$ that rotates each vector in the x_1 - x_2 plane in \mathbb{R}^3 by an angle θ in the anti-clock-wise direction and $G_{12}(\theta)e_3 = e_3$.

Consequently, the rotation $G_{12}(\theta)$ is given by

$$G_{12}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c & -s & 0 \\ s & c & 0 \\ \hline 0 & 0 & 1 \end{bmatrix}.$$

Definition: A Givens rotation in \mathbb{R}^3 is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Let $\theta \in [0, 2\pi]$. Then a Givens rotation in the x_1 - x_2 plane in \mathbb{R}^3 is a matrix $G_{12}(\theta) \in \mathbb{R}^{3\times 3}$ that rotates each vector in the x_1 - x_2 plane in \mathbb{R}^3 by an angle θ in the anti-clock-wise direction and $G_{12}(\theta)e_3 = e_3$.

Consequently, the rotation $G_{12}(\theta)$ is given by

$$G_{12}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c & -s & 0 \\ s & c & 0 \\ \hline 0 & 0 & 1 \end{bmatrix}.$$

Similarly, the Givens rotation $G_{23}(\theta) \in \mathbb{R}^{3\times 3}$ in the x_2 - x_3 plane leaves e_1 unchanged, that is, $G_{23}(\theta)e_1 = e_1$, and is given by

Definition: A Givens rotation in \mathbb{R}^3 is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Let $\theta \in [0, 2\pi]$. Then a Givens rotation in the x_1 - x_2 plane in \mathbb{R}^3 is a matrix $G_{12}(\theta) \in \mathbb{R}^{3\times 3}$ that rotates each vector in the x_1 - x_2 plane in \mathbb{R}^3 by an angle θ in the anti-clock-wise direction and $G_{12}(\theta)e_3 = e_3$.

Consequently, the rotation $G_{12}(\theta)$ is given by

$$G_{12}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c & -s & 0 \\ s & c & 0 \\ \hline 0 & 0 & 1 \end{bmatrix}.$$

Similarly, the Givens rotation $G_{23}(\theta) \in \mathbb{R}^{3\times 3}$ in the x_2 - x_3 plane leaves e_1 unchanged, that is, $G_{23}(\theta)e_1 = e_1$, and is given by

$$G_{23}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix}.$$

The Givens rotation $G_{13}(\theta)$ is a rotation in x_1 - x_3 plane. Hence we have

$$G_{13}(\theta)e_1 = egin{bmatrix} \cos \theta \ 0 \ \sin \theta \end{bmatrix}$$
 and $G_{13}(\theta)e_3 = egin{bmatrix} -\sin \theta \ 0 \ \cos \theta \end{bmatrix}$.

The Givens rotation $G_{13}(\theta)$ is a rotation in x_1 - x_3 plane. Hence we have

$$G_{13}(\theta)e_1 = \begin{bmatrix} \cos \theta \\ 0 \\ \sin \theta \end{bmatrix}$$
 and $G_{13}(\theta)e_3 = \begin{bmatrix} -\sin \theta \\ 0 \\ \cos \theta \end{bmatrix}$.

Since $G_{13}(\theta)$ leaves e_2 unchanged, that is, $G_{13}(\theta)e_2 = e_2$, we have

The Givens rotation $G_{13}(\theta)$ is a rotation in x_1 - x_3 plane. Hence we have

$$G_{13}(\theta)e_1 = \begin{bmatrix} \cos \theta \\ 0 \\ \sin \theta \end{bmatrix}$$
 and $G_{13}(\theta)e_3 = \begin{bmatrix} -\sin \theta \\ 0 \\ \cos \theta \end{bmatrix}$.

Since $G_{13}(\theta)$ leaves e_2 unchanged, that is, $G_{13}(\theta)e_2 = e_2$, we have

$$G_{13}(\theta) = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} = \begin{bmatrix} c & 0 & -s \\ 0 & 1 & 0 \\ s & 0 & c \end{bmatrix}.$$

The Givens rotation $G_{13}(\theta)$ is a rotation in x_1 - x_3 plane. Hence we have

$$G_{13}(\theta)e_1 = \begin{bmatrix} \cos \theta \\ 0 \\ \sin \theta \end{bmatrix}$$
 and $G_{13}(\theta)e_3 = \begin{bmatrix} -\sin \theta \\ 0 \\ \cos \theta \end{bmatrix}$.

Since $G_{13}(\theta)$ leaves e_2 unchanged, that is, $G_{13}(\theta)e_2 = e_2$, we have

$$G_{13}(\theta) = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} = \begin{bmatrix} c & 0 & -s \\ 0 & 1 & 0 \\ s & 0 & c \end{bmatrix}.$$

• It follows that $G_{13}(\theta)G_{13}(\phi) = G_{13}(\theta + \phi)$ and $G_{13}(0) = I$ which shows that $G_{13}(\theta)$ is unitary and $G_{13}(\theta)^{-1} = G_{13}(-\theta) = G_{13}(\theta)^{\top}$.

The Givens rotation $G_{13}(\theta)$ is a rotation in x_1 - x_3 plane. Hence we have

$$G_{13}(\theta)e_1 = \begin{bmatrix} \cos \theta \\ 0 \\ \sin \theta \end{bmatrix}$$
 and $G_{13}(\theta)e_3 = \begin{bmatrix} -\sin \theta \\ 0 \\ \cos \theta \end{bmatrix}$.

Since $G_{13}(\theta)$ leaves e_2 unchanged, that is, $G_{13}(\theta)e_2 = e_2$, we have

$$G_{13}(\theta) = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} = \begin{bmatrix} c & 0 & -s \\ 0 & 1 & 0 \\ s & 0 & c \end{bmatrix}.$$

- It follows that $G_{13}(\theta)G_{13}(\phi) = G_{13}(\theta + \phi)$ and $G_{13}(0) = I$ which shows that $G_{13}(\theta)$ is unitary and $G_{13}(\theta)^{-1} = G_{13}(-\theta) = G_{13}(\theta)^{\top}$.
- Ditto for the rotations $G_{12}(\theta)$ and $G_{23}(\theta)$.

The Givens rotation $G_{13}(\theta)$ is a rotation in x_1 - x_3 plane. Hence we have

$$G_{13}(\theta)e_1 = \begin{bmatrix} \cos \theta \\ 0 \\ \sin \theta \end{bmatrix}$$
 and $G_{13}(\theta)e_3 = \begin{bmatrix} -\sin \theta \\ 0 \\ \cos \theta \end{bmatrix}$.

Since $G_{13}(\theta)$ leaves e_2 unchanged, that is, $G_{13}(\theta)e_2 = e_2$, we have

$$G_{13}(\theta) = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} = \begin{bmatrix} c & 0 & -s \\ 0 & 1 & 0 \\ s & 0 & c \end{bmatrix}.$$

- It follows that $G_{13}(\theta)G_{13}(\phi) = G_{13}(\theta + \phi)$ and $G_{13}(0) = I$ which shows that $G_{13}(\theta)$ is unitary and $G_{13}(\theta)^{-1} = G_{13}(-\theta) = G_{13}(\theta)^{\top}$.
- Ditto for the rotations $G_{12}(\theta)$ and $G_{23}(\theta)$.
- There are three Givens rotations in \mathbb{R}^3 , namely, $G_{12}(\theta)$, $G_{23}(\theta)$ and $G_{13}(\theta)$.

Definition: A Givens rotation in \mathbb{R}^n is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Definition: A Givens rotation in \mathbb{R}^n is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Let $\theta \in [0, 2\pi]$. Then a Givens rotation in the x_i - x_j plane in \mathbb{R}^n is a matrix $G_{ij}(\theta) \in \mathbb{R}^{n \times n}$ that rotates each vector in the x_i - x_j plane in \mathbb{R}^n by an angle θ in the anti-clock-wise direction and $G_{ij}(\theta)e_k = e_k$ for $k \notin \{i, j\}$.

Definition: A Givens rotation in \mathbb{R}^n is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Let $\theta \in [0, 2\pi]$. Then a Givens rotation in the x_i - x_j plane in \mathbb{R}^n is a matrix $G_{ij}(\theta) \in \mathbb{R}^{n \times n}$ that rotates each vector in the x_i - x_j plane in \mathbb{R}^n by an angle θ in the anti-clock-wise direction and $G_{ij}(\theta)e_k = e_k$ for $k \notin \{i, j\}$.

Thus the Givens rotation $G_{ij}(\theta)$ differs from the identity matrix I only in the i-th and the j-th columns.

Definition: A Givens rotation in \mathbb{R}^n is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Let $\theta \in [0, 2\pi]$. Then a Givens rotation in the x_i - x_j plane in \mathbb{R}^n is a matrix $G_{ij}(\theta) \in \mathbb{R}^{n \times n}$ that rotates each vector in the x_i - x_j plane in \mathbb{R}^n by an angle θ in the anti-clock-wise direction and $G_{ij}(\theta)e_k = e_k$ for $k \notin \{i, j\}$.

Thus the Givens rotation $G_{ij}(\theta)$ differs from the identity matrix I only in the i-th and the j-th columns.

Note that if $x := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ then the map $x \longmapsto G_{ij}(\theta)x$ alters only the components x_i and x_j by their linear combinations

Definition: A Givens rotation in \mathbb{R}^n is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Let $\theta \in [0, 2\pi]$. Then a Givens rotation in the x_i - x_j plane in \mathbb{R}^n is a matrix $G_{ij}(\theta) \in \mathbb{R}^{n \times n}$ that rotates each vector in the x_i - x_j plane in \mathbb{R}^n by an angle θ in the anti-clock-wise direction and $G_{ij}(\theta)e_k = e_k$ for $k \notin \{i, j\}$.

Thus the Givens rotation $G_{ij}(\theta)$ differs from the identity matrix I only in the i-th and the j-th columns.

Note that if $x := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ then the map $x \longmapsto G_{ij}(\theta)x$ alters only the components x_i and x_j by their linear combinations

$$\begin{bmatrix} x_i \\ x_j \end{bmatrix} \longrightarrow \begin{bmatrix} x_i \cos \theta - x_j \sin \theta \\ x_i \sin \theta + x_j \cos \theta \end{bmatrix}$$

and leaves other components of x unchanged.

Definition: A Givens rotation in \mathbb{R}^n is a rotation in the coordinate plane, that is, in the plane spanned by two coordinate axes.

Let $\theta \in [0, 2\pi]$. Then a Givens rotation in the x_i - x_j plane in \mathbb{R}^n is a matrix $G_{ij}(\theta) \in \mathbb{R}^{n \times n}$ that rotates each vector in the x_i - x_j plane in \mathbb{R}^n by an angle θ in the anti-clock-wise direction and $G_{ij}(\theta)e_k = e_k$ for $k \notin \{i, j\}$.

Thus the Givens rotation $G_{ij}(\theta)$ differs from the identity matrix I only in the i-th and the j-th columns.

Note that if $x := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ then the map $x \longmapsto G_{ij}(\theta)x$ alters only the components x_i and x_j by their linear combinations

$$\begin{bmatrix} x_i \\ x_j \end{bmatrix} \longrightarrow \begin{bmatrix} x_i \cos \theta - x_j \sin \theta \\ x_i \sin \theta + x_j \cos \theta \end{bmatrix}$$

and leaves other components of x unchanged.

Hence $G_{ij}(\theta)e_i = e_i\cos\theta + e_j\sin\theta$ and $G_{ij}(\theta)e_j = -e_i\sin\theta + e_j\cos\theta$.

For simplicity, we denote a Givens rotation in the x_i - x_j plane in \mathbb{R}^n by G_{ij} . For i < j, we have

	1										-	
		٠.	1									
				С				<u>-s</u>				
					1							
$G_{ij} =$						٠.,						
							1					
				5				С				
									1			
										٠.,		
										•	1	

For simplicity, we denote a Givens rotation in the x_i - x_j plane in \mathbb{R}^n by G_{ij} . For i < j, we have

Note that G_{ij} differs from the identity matrix I in four enties (i, i), (i, j), (j, i) and (j, j). These entries are c, -s, s and c, respectively.

• Let $G_{ij}(\theta)$ and $G_{ij}(\phi)$ be Givens rotations in \mathbb{R}^n . Then $G_{ij}(\theta)G_{ij}(\phi)=G_{ij}(\phi)G_{ij}(\theta)=G_{ij}(\theta+\phi)$ and $G_{ij}(0)=I$.

- Let $G_{ij}(\theta)$ and $G_{ij}(\phi)$ be Givens rotations in \mathbb{R}^n . Then $G_{ij}(\theta)G_{ij}(\phi) = G_{ij}(\phi)G_{ij}(\theta) = G_{ij}(\theta + \phi)$ and $G_{ij}(0) = I$.
- $G_{ij}(\theta)$ is unitary and $G_{ij}(\theta)^{-1} = G_{ij}(-\theta) = G_{ij}(\theta)^{\top}$.

- Let $G_{ij}(\theta)$ and $G_{ij}(\phi)$ be Givens rotations in \mathbb{R}^n . Then $G_{ij}(\theta)G_{ij}(\phi)=G_{ij}(\phi)G_{ij}(\theta)=G_{ij}(\theta+\phi)$ and $G_{ij}(0)=I$.
- $G_{ij}(\theta)$ is unitary and $G_{ij}(\theta)^{-1} = G_{ij}(-\theta) = G_{ij}(\theta)^{\top}$.
- The map $x \mapsto G_{ij}(\theta)x$ alters only the *i*-th and *j*-th components of

$$x \in \mathbb{R}^n$$
 and requires 8 flops as $G_{ij}(\theta)$ $\begin{bmatrix} x_1 \\ \vdots \\ x_j \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ cx_i - sx_j \\ \vdots \\ sx_i + cx_j \\ \vdots \\ x_n \end{bmatrix}$.

- Let $G_{ij}(\theta)$ and $G_{ij}(\phi)$ be Givens rotations in \mathbb{R}^n . Then $G_{ij}(\theta)G_{ij}(\phi)=G_{ij}(\phi)G_{ij}(\theta)=G_{ij}(\theta+\phi)$ and $G_{ij}(0)=I$.
- $G_{ij}(\theta)$ is unitary and $G_{ij}(\theta)^{-1} = G_{ij}(-\theta) = G_{ij}(\theta)^{\top}$.
- The map $x \mapsto G_{ij}(\theta)x$ alters only the *i*-th and *j*-th components of

$$x \in \mathbb{R}^n$$
 and requires 8 flops as $G_{ij}(\theta)$ $\begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_j \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ cx_i - sx_j \\ \vdots \\ sx_i + cx_j \\ \vdots \\ x_n \end{bmatrix}$.

• The transformation $A \mapsto G_{ij}(\theta)A$ alters only the *i*-th and *j*-th rows of $A \in \mathbb{R}^{n \times p}$ and requires 8p flops as

$$e_i^{\top}(G_{ij}(\theta)A) = c(e_i^{\top}A) - s(e_j^{\top}A) \text{ and } e_j^{\top}(G_{ij}(\theta)A) = s(e_i^{\top}A) + c(e_j^{\top}A).$$

Let $x := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$. We can choose a rotation to transform x to a vector y with a specified component zero.

Let $x:=\begin{bmatrix}x_1 & \cdots & x_n\end{bmatrix}^{\top} \in \mathbb{R}^n$. We can choose a rotation to transform x to a vector y with a specified component zero. For example, consider the rotation G_{ij} in the x_i - x_j plane with $c:=\frac{x_i}{\sqrt{x_i^2+x_i^2}}$ and $s:=\frac{x_j}{\sqrt{x_i^2+x_i^2}}$.

Let $x:=\begin{bmatrix}x_1&\cdots&x_n\end{bmatrix}^{\top}\in\mathbb{R}^n$. We can choose a rotation to transform x to a vector y with a specified component zero. For example, consider the rotation G_{ij} in the x_i - x_j plane with $c:=\frac{x_i}{\sqrt{x_i^2+x_j^2}}$ and $s:=\frac{x_j}{\sqrt{x_i^2+x_j^2}}$.

Then the *j*-th component of $y := G_{ij}^{\top} x$ is zero. In fact, we have $y_j = 0$, $y_i = \sqrt{x_i^2 + x_i^2}$ and $y_k = x_k$ for $k \notin \{i, j\}$.

Let $x:=\begin{bmatrix}x_1 & \cdots & x_n\end{bmatrix}^{\top} \in \mathbb{R}^n$. We can choose a rotation to transform x to a vector y with a specified component zero. For example, consider the rotation G_{ij} in the x_i - x_j plane with $c:=\frac{x_i}{\sqrt{x_i^2+x_j^2}}$ and $s:=\frac{x_j}{\sqrt{x_i^2+x_j^2}}$.

Then the *j*-th component of $y := G_{ij}^{\top} x$ is zero. In fact, we have $y_j = 0$, $y_i = \sqrt{x_i^2 + x_i^2}$ and $y_k = x_k$ for $k \notin \{i, j\}$.

Several rotations can be used to transfrom x to $||x||_2 e_1$.

Let $x:=\begin{bmatrix}x_1 & \cdots & x_n\end{bmatrix}^{\top} \in \mathbb{R}^n$. We can choose a rotation to transform x to a vector y with a specified component zero. For example, consider the rotation G_{ij} in the x_i - x_j plane with $c:=\frac{x_i}{\sqrt{x_i^2+x_j^2}}$ and $s:=\frac{x_j}{\sqrt{x_i^2+x_j^2}}$.

Then the *j*-th component of $y := G_{ij}^{\top} x$ is zero. In fact, we have $y_j = 0$, $y_i = \sqrt{x_i^2 + x_j^2}$ and $y_k = x_k$ for $k \notin \{i, j\}$.

Several rotations can be used to transfrom x to $||x||_2 e_1$. Choose G_{12} so that the 2nd component of $G_{12}^\top x$ is zero.

Let $x:=\begin{bmatrix}x_1 & \cdots & x_n\end{bmatrix}^{\top} \in \mathbb{R}^n$. We can choose a rotation to transform x to a vector y with a specified component zero. For example, consider the rotation G_{ij} in the x_i - x_j plane with $c:=\frac{x_i}{\sqrt{x_i^2+x_j^2}}$ and $s:=\frac{x_j}{\sqrt{x_i^2+x_j^2}}$.

Then the *j*-th component of $y := G_{ij}^{\top} x$ is zero. In fact, we have $y_j = 0$, $y_i = \sqrt{x_i^2 + x_j^2}$ and $y_k = x_k$ for $k \notin \{i, j\}$.

Several rotations can be used to transfrom x to $\|x\|_2 e_1$. Choose G_{12} so that the 2nd component of $G_{12}^\top x$ is zero. Then choose G_{13} so that the 3rd component of $G_{13}^\top (G_{12}^\top x)$ is zero and so on.

Let $x:=\begin{bmatrix}x_1 & \cdots & x_n\end{bmatrix}^{\top} \in \mathbb{R}^n$. We can choose a rotation to transform x to a vector y with a specified component zero. For example, consider the rotation G_{ij} in the x_i - x_j plane with $c:=\frac{x_i}{\sqrt{x_i^2+x_j^2}}$ and $s:=\frac{x_j}{\sqrt{x_i^2+x_j^2}}$.

Then the *j*-th component of $y := G_{ij}^{\top} x$ is zero. In fact, we have $y_j = 0$, $y_i = \sqrt{x_i^2 + x_j^2}$ and $y_k = x_k$ for $k \notin \{i, j\}$.

Several rotations can be used to transfrom x to $\|x\|_2 e_1$. Choose G_{12} so that the 2nd component of $G_{12}^{\top}x$ is zero. Then choose G_{13} so that the 3rd component of $G_{13}^{\top}(G_{12}^{\top}x)$ is zero and so on. Cost: 8n flops.

Let $x:=\begin{bmatrix}x_1 & \cdots & x_n\end{bmatrix}^{\top} \in \mathbb{R}^n$. We can choose a rotation to transform x to a vector y with a specified component zero. For example, consider the rotation G_{ij} in the x_i - x_j plane with $c:=\frac{x_i}{\sqrt{x_i^2+x_j^2}}$ and $s:=\frac{x_j}{\sqrt{x_i^2+x_j^2}}$.

Then the *j*-th component of $y:=G_{ij}^{\top}x$ is zero. In fact, we have $y_j=0, \ y_i=\sqrt{x_i^2+x_j^2}$ and $y_k=x_k$ for $k\notin\{i,j\}$.

Several rotations can be used to transfrom x to $\|x\|_2 e_1$. Choose G_{12} so that the 2nd component of $G_{12}^\top x$ is zero. Then choose G_{13} so that the 3rd component of $G_{13}^\top (G_{12}^\top x)$ is zero and so on. Cost: 8n flops.

$$G_{12}^{\top} x = \begin{bmatrix} \sigma_1 \\ 0 \\ x_3 \\ x_4 \\ \vdots \\ x_n \end{bmatrix}$$

Let $x:=\begin{bmatrix}x_1 & \cdots & x_n\end{bmatrix}^{\top} \in \mathbb{R}^n$. We can choose a rotation to transform x to a vector y with a specified component zero. For example, consider the rotation G_{ij} in the x_i - x_j plane with $c:=\frac{x_i}{\sqrt{x_i^2+x_j^2}}$ and $s:=\frac{x_j}{\sqrt{x_i^2+x_j^2}}$.

Then the *j*-th component of $y := G_{ij}^{\top} x$ is zero. In fact, we have $y_j = 0$, $y_i = \sqrt{x_i^2 + x_j^2}$ and $y_k = x_k$ for $k \notin \{i, j\}$.

Several rotations can be used to transfrom x to $\|x\|_2 e_1$. Choose G_{12} so that the 2nd component of $G_{12}^\top x$ is zero. Then choose G_{13} so that the 3rd component of $G_{13}^\top (G_{12}^\top x)$ is zero and so on. Cost: 8n flops.

$$G_{12}^{\top} x = \begin{bmatrix} \sigma_1 \\ 0 \\ x_3 \\ x_4 \\ \vdots \\ x_n \end{bmatrix} \longrightarrow G_{13}^{\top} G_{12}^{\top} x = \begin{bmatrix} \sigma_2 \\ 0 \\ 0 \\ x_4 \\ \vdots \\ x_n \end{bmatrix}$$

Let $x:=\begin{bmatrix}x_1 & \cdots & x_n\end{bmatrix}^{\top} \in \mathbb{R}^n$. We can choose a rotation to transform x to a vector y with a specified component zero. For example, consider the rotation G_{ij} in the x_i - x_j plane with $c:=\frac{x_i}{\sqrt{x_i^2+x_j^2}}$ and $s:=\frac{x_j}{\sqrt{x_i^2+x_j^2}}$.

Then the j-th component of $y:=G_{ij}^{\top}x$ is zero. In fact, we have $y_j=0, y_i=\sqrt{x_i^2+x_j^2}$ and $y_k=x_k$ for $k\notin\{i,j\}$.

Several rotations can be used to transfrom x to $\|x\|_2 e_1$. Choose G_{12} so that the 2nd component of $G_{12}^\top x$ is zero. Then choose G_{13} so that the 3rd component of $G_{13}^\top (G_{12}^\top x)$ is zero and so on. Cost: 8n flops.

$$G_{12}^{\top} x = \begin{bmatrix} \sigma_1 \\ 0 \\ x_3 \\ x_4 \\ \vdots \\ x_n \end{bmatrix} \longrightarrow G_{13}^{\top} G_{12}^{\top} x = \begin{bmatrix} \sigma_2 \\ 0 \\ 0 \\ x_4 \\ \vdots \\ x_n \end{bmatrix} \longrightarrow G_{1n}^{\top} \cdots G_{12}^{\top} x = \begin{bmatrix} \sigma_{n-1} \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

We now use rotations for introducing zeros below the diagonal entries of a matrix. For i < j, we denote a rotation in the x_i - x_j plane G_{ji} .

We now use rotations for introducing zeros below the diagonal entries of a matrix. For i < j, we denote a rotation in the x_i - x_j plane G_{ji} .

Let $A \in \mathbb{R}^{n \times n}$. First, we choose rotations G_{21}, \ldots, G_{n1} that introduce zeros at $(2,1), (3, 1), \ldots, (n, 1)$ entries of A. Schematically

We now use rotations for introducing zeros below the diagonal entries of a matrix. For i < j, we denote a rotation in the x_i - x_j plane G_{ji} .

Let $A \in \mathbb{R}^{n \times n}$. First, we choose rotations G_{21}, \ldots, G_{n1} that introduce zeros at $(2,1), (3, 1), \ldots, (n, 1)$ entries of A. Schematically

$$\underbrace{\begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}}_{A} \longrightarrow \underbrace{\begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ \times & \times & \times \end{bmatrix}}_{G_{21}^{\top}A} \longrightarrow \underbrace{\begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}}_{G_{31}^{\top}G_{21}^{\top}A}.$$

We now use rotations for introducing zeros below the diagonal entries of a matrix. For i < j, we denote a rotation in the x_i - x_j plane G_{ji} .

Let $A \in \mathbb{R}^{n \times n}$. First, we choose rotations G_{21}, \ldots, G_{n1} that introduce zeros at $(2,1), (3, 1), \ldots, (n, 1)$ entries of A. Schematically

$$\underbrace{\begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}}_{A} \longrightarrow \underbrace{\begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ \times & \times & \times \end{bmatrix}}_{G_{21}^{\top}A} \longrightarrow \underbrace{\begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}}_{G_{31}^{\top}G_{21}^{\top}A}.$$

Next, choose rotations G_{32}, \ldots, G_{n2} that introduce zeros at (3, 2), (4, 2), \ldots , (n, 2) entries of $G_{n1}^{\top} \cdots G_{21}^{\top} A$ and so on. Schematically

We now use rotations for introducing zeros below the diagonal entries of a matrix. For i < j, we denote a rotation in the x_i - x_j plane G_{ji} .

Let $A \in \mathbb{R}^{n \times n}$. First, we choose rotations G_{21}, \ldots, G_{n1} that introduce zeros at $(2,1), (3, 1), \ldots, (n, 1)$ entries of A. Schematically

$$\underbrace{\begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}}_{A} \longrightarrow \underbrace{\begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ \times & \times & \times \end{bmatrix}}_{G_{21}^{\top}A} \longrightarrow \underbrace{\begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}}_{G_{31}^{\top}G_{21}^{\top}A}.$$

Next, choose rotations G_{32}, \ldots, G_{n2} that introduce zeros at (3, 2), (4, 2), \ldots , (n, 2) entries of $G_{n1}^{\top} \cdots G_{21}^{\top} A$ and so on. Schematically

$$\underbrace{ \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}}_{A} \longrightarrow \underbrace{ \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}}_{G_{31}^{\top}G_{21}^{\top}A} \longrightarrow \underbrace{ \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix}}_{G_{32}^{\top}G_{31}^{\top}G_{21}^{\top}A}.$$

Theorem: Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Then A = QR, where $Q \in \mathbb{R}^{m \times m}$ is unitary and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

Theorem: Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Then A = QR, where $Q \in \mathbb{R}^{m \times m}$ is unitary and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

Proof: Choose a rotation G_{21} in the x_1 - x_2 plane such that

$$G_{21}^{\top} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix} = \begin{bmatrix} \sigma_1 \\ 0 \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix}.$$

Theorem: Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Then A = QR, where $Q \in \mathbb{R}^{m \times m}$ is unitary and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

Proof: Choose a rotation G_{21} in the x_1 - x_2 plane such that

$$G_{21}^{\top} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix} = \begin{bmatrix} \sigma_1 \\ 0 \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix}. \text{ Then } G_{21}^{\top} A = \begin{bmatrix} \sigma_1 & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Theorem: Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Then A = QR, where $Q \in \mathbb{R}^{m \times m}$ is unitary and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

Proof: Choose a rotation G_{21} in the x_1 - x_2 plane such that

$$G_{21}^{\top} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix} = \begin{bmatrix} \sigma_1 \\ 0 \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix}. \text{ Then } G_{21}^{\top}A = \begin{bmatrix} \sigma_1 & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Next, choose a rotation G_{31} that creates a zero at (3, 1) entry of $G_{21}^{\top}A$. Since G_{31} is a rotation in x_1 - x_3 plane, it leaves the zero at (2, 1) entry of $G_{21}^{\top}A$ unchanged.

Theorem: Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Then A = QR, where $Q \in \mathbb{R}^{m \times m}$ is unitary and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

Proof: Choose a rotation G_{21} in the x_1 - x_2 plane such that

$$G_{21}^{\top} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix} = \begin{bmatrix} \sigma_1 \\ 0 \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix}. \text{ Then } G_{21}^{\top}A = \begin{bmatrix} \sigma_1 & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Next, choose a rotation G_{31} that creates a zero at (3, 1) entry of $G_{21}^{\top}A$. Since G_{31} is a rotation in x_1 - x_3 plane, it leaves the zero at (2, 1) entry of $G_{21}^{\top}A$ unchanged. Hence $G_{31}^{\top}G_{21}^{\top}A$ has zeros at (2, 1) and (3, 1) entries.

Theorem: Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Then A = QR, where $Q \in \mathbb{R}^{m \times m}$ is unitary and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

Proof: Choose a rotation G_{21} in the x_1 - x_2 plane such that

$$G_{21}^{\top} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix} = \begin{bmatrix} \sigma_1 \\ 0 \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix}. \text{ Then } G_{21}^{\top} A = \begin{bmatrix} \sigma_1 & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Next, choose a rotation G_{31} that creates a zero at (3, 1) entry of $G_{21}^{\top}A$. Since G_{31} is a rotation in x_1 - x_3 plane, it leaves the zero at (2, 1) entry of $G_{21}^{\top}A$ unchanged. Hence $G_{31}^{\top}G_{21}^{\top}A$ has zeros at (2, 1) and (3, 1) entries.

Continuing in this manner, choose rotations G_{41}, \ldots, G_{m1} such that $G_{m1}^{\top} \cdots G_{21}^{\top} A$ has zeros in the first column at $(2, 1), \ldots, (m, 1)$ entries.

Similarly, choose rotations G_{32}, \ldots, G_{m2} that create zeros at $(3, 2), \ldots, (m, 2)$ entries of $G_{m1}^{\top} \cdots G_{21}^{\top} A$.

Similarly, choose rotations G_{32}, \ldots, G_{m2} that create zeros at $(3, 2), \ldots, (m, 2)$ entries of $G_{m1}^{\top} \cdots G_{21}^{\top} A$. Then $G_{m2}^{\top} \cdots G_{32} (G_{m1}^{\top} \cdots G_{21}^{\top} A)$ has zeros in the first and second columns below the diagonals.

Similarly, choose rotations G_{32}, \ldots, G_{m2} that create zeros at $(3, 2), \ldots, (m, 2)$ entries of $G_{m1}^{\top} \cdots G_{21}^{\top} A$. Then $G_{m2}^{\top} \cdots G_{32} (G_{m1}^{\top} \cdots G_{21}^{\top} A)$ has zeros in the first and second columns below the diagonals.

Continuing in this manner, choose rotations that introduce zeros in the 3rd, 4th, \ldots , nth columns below the diagonals.

Similarly, choose rotations G_{32}, \ldots, G_{m2} that create zeros at $(3, 2), \ldots, (m, 2)$ entries of $G_{m1}^{\top} \cdots G_{21}^{\top} A$. Then $G_{m2}^{\top} \cdots G_{32} (G_{m1}^{\top} \cdots G_{21}^{\top} A)$ has zeros in the first and second columns below the diagonals.

Continuing in this manner, choose rotations that introduce zeros in the 3rd, 4th, ..., nth columns below the diagonals. Thus we create rotations $G_{21}, \ldots, G_{m1}, G_{32}, \ldots, G_{m2}, \ldots, G_{n+1,n}, \ldots, G_{mn}$ such that

$$R = G_{mn}^{\top} G_{m-1,n}^{\top} \cdots G_{n+1,n}^{\top} \cdots G_{m1}^{\top} \cdots G_{21}^{\top} A$$

is upper triangular.

Similarly, choose rotations G_{32}, \ldots, G_{m2} that create zeros at $(3, 2), \ldots, (m, 2)$ entries of $G_{m1}^{\top} \cdots G_{21}^{\top} A$. Then $G_{m2}^{\top} \cdots G_{32} (G_{m1}^{\top} \cdots G_{21}^{\top} A)$ has zeros in the first and second columns below the diagonals.

Continuing in this manner, choose rotations that introduce zeros in the 3rd, 4th, ..., nth columns below the diagonals. Thus we create rotations $G_{21}, \ldots, G_{m1}, G_{32}, \ldots, G_{m2}, \ldots, G_{n+1,n}, \ldots, G_{mn}$ such that

$$R = G_{mn}^{\top} G_{m-1,n}^{\top} \cdots G_{n+1,n}^{\top} \cdots G_{m1}^{\top} \cdots G_{21}^{\top} A$$

is upper triangular. Set $Q:=G_{21}\cdots G_{m1}G_{32},\cdots G_{m2}\cdots G_{n+1,n}\cdots,G_{mn}$. Then Q is unitary and A=QR.

Similarly, choose rotations G_{32}, \ldots, G_{m2} that create zeros at $(3, 2), \ldots, (m, 2)$ entries of $G_{m1}^{\top} \cdots G_{21}^{\top} A$. Then $G_{m2}^{\top} \cdots G_{32} (G_{m1}^{\top} \cdots G_{21}^{\top} A)$ has zeros in the first and second columns below the diagonals.

Continuing in this manner, choose rotations that introduce zeros in the 3rd, 4th, ..., nth columns below the diagonals. Thus we create rotations $G_{21}, \ldots, G_{m1}, G_{32}, \ldots, G_{m2}, \ldots, G_{n+1,n}, \ldots, G_{mn}$ such that

$$R = G_{mn}^{\top} G_{m-1,n}^{\top} \cdots G_{n+1,n}^{\top} \cdots G_{m1}^{\top} \cdots G_{21}^{\top} A$$

is upper triangular. Set $Q:=G_{21}\cdots G_{m1}G_{32},\cdots G_{m2}\cdots G_{n+1,n}\cdots,G_{mn}$. Then Q is unitary and A=QR.

Cost: At the 1st step, the cost of applying m-1 rotators $G_{21}^{\top}, \ldots, G_{m1}^{\top}$ is 8(m-1)n.

Similarly, choose rotations G_{32}, \ldots, G_{m2} that create zeros at $(3, 2), \ldots, (m, 2)$ entries of $G_{m1}^{\top} \cdots G_{21}^{\top} A$. Then $G_{m2}^{\top} \cdots G_{32} (G_{m1}^{\top} \cdots G_{21}^{\top} A)$ has zeros in the first and second columns below the diagonals.

Continuing in this manner, choose rotations that introduce zeros in the 3rd, 4th, ..., nth columns below the diagonals. Thus we create rotations $G_{21}, \ldots, G_{m1}, G_{32}, \ldots, G_{m2}, \ldots, G_{n+1,n}, \ldots, G_{mn}$ such that

$$R = G_{mn}^{\top} G_{m-1,n}^{\top} \cdots G_{n+1,n}^{\top} \cdots G_{m1}^{\top} \cdots G_{21}^{\top} A$$

is upper triangular. Set $Q:=G_{21}\cdots G_{m1}G_{32},\cdots G_{m2}\cdots G_{n+1,n}\cdots,G_{mn}$. Then Q is unitary and A=QR.

Cost: At the 1st step, the cost of applying m-1 rotators $G_{21}^{\top}, \ldots, G_{m1}^{\top}$ is 8(m-1)n. At the 2nd step, the cost is 8(m-2)(n-1) and, at the j-th step, the cost is 8(m-j)(n-j+1) flops.

Similarly, choose rotations G_{32}, \ldots, G_{m2} that create zeros at $(3, 2), \ldots, (m, 2)$ entries of $G_{m1}^{\top} \cdots G_{21}^{\top} A$. Then $G_{m2}^{\top} \cdots G_{32} (G_{m1}^{\top} \cdots G_{21}^{\top} A)$ has zeros in the first and second columns below the diagonals.

Continuing in this manner, choose rotations that introduce zeros in the 3rd, 4th, ..., nth columns below the diagonals. Thus we create rotations $G_{21}, \ldots, G_{m1}, G_{32}, \ldots, G_{m2}, \ldots, G_{n+1,n}, \ldots, G_{mn}$ such that

$$R = G_{mn}^{\top} G_{m-1,n}^{\top} \cdots G_{n+1,n}^{\top} \cdots G_{m1}^{\top} \cdots G_{21}^{\top} A$$

is upper triangular. Set $Q:=G_{21}\cdots G_{m1}G_{32},\cdots G_{m2}\cdots G_{n+1,n}\cdots,G_{mn}$. Then Q is unitary and A=QR.

Cost: At the 1st step, the cost of applying m-1 rotators $G_{21}^{\top},\ldots,G_{m1}^{\top}$ is 8(m-1)n. At the 2nd step, the cost is 8(m-2)(n-1) and, at the j-th step, the cost is 8(m-j)(n-j+1) flops. Hence the total cost is

$$\sum_{i=1}^{n} 8(m-j)(n-j+1) = 8 \int_{0}^{n} (m-x)(n-x) dx = 4(mn^{2} - \frac{n^{3}}{3}).$$

Stable generation of rotations

A naive method to generate a rotation such that $\begin{bmatrix} c & -s \\ s & c \end{bmatrix}^{\top} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \sigma \\ 0 \end{bmatrix}$

is to define
$$c := \frac{x_1}{\sqrt{x_1^2 + x_2^2}}$$
 and $s := \frac{x_2}{\sqrt{x_1^2 + x_2^2}}$.

Stable generation of rotations

A naive method to generate a rotation such that $\begin{bmatrix} c & -s \\ s & c \end{bmatrix}^{\top} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \sigma \\ 0 \end{bmatrix}$ is to define $c := \frac{x_1}{\sqrt{x_1^2 + x_2^2}}$ and $s := \frac{x_2}{\sqrt{x_1^2 + x_2^2}}$. This method may not

be numerically stable. A stable method is given by the following.

Stable generation of rotations

end

A naive method to generate a rotation such that $\begin{bmatrix} c & -s \\ s & c \end{bmatrix}^{\top} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \sigma \\ 0 \end{bmatrix}$ is to define $c := \frac{x_1}{\sqrt{x_1^2 + x_2^2}}$ and $s := \frac{x_2}{\sqrt{x_1^2 + x_2^2}}$. This method may not

be numerically stable. A stable method is given by the following.

```
function [c,s] = Rotation(x1,x2);
% Input: x1,x2 scalars
% Output: c,s such that c^2 + s^2 = 1
% and -s * x1 + c * x2 = 0.
    if x^2 == 0 c = 1: s = 0:
    else
    if abs(x2) > = abs(x1) k = x1/x2; % computes cot(\theta)
    s = 1/sqrt(1+k^2); c = s*k;
    else
    t = x2/x1; % computes tan(\theta)
    c = 1/sqrt(1+ t^2); s = c*t;
    end
```

Let
$$A := \begin{bmatrix} 4 & 5 & 8 \\ 6 & 7 & 9 \\ 3 & 6 & 4 \end{bmatrix}$$
 . We use rotation to compute QR factorization of A .

Let
$$A := \begin{bmatrix} 4 & 5 & 8 \\ 6 & 7 & 9 \\ 3 & 6 & 4 \end{bmatrix}$$
. We use rotation to compute QR factorization of A .

The rotation G_{21} with c := 0.5547 and s := 0.8321 gives

$$G_{21}^{\top}A = \begin{bmatrix} 7.2111 & 8.5979 & 11.9261 \\ 0 & -0.2774 & -1.6641 \\ 3.0000 & 6.0000 & 4.0000 \end{bmatrix}.$$

Let
$$A := \begin{bmatrix} 4 & 5 & 8 \\ 6 & 7 & 9 \\ 3 & 6 & 4 \end{bmatrix}$$
. We use rotation to compute QR factorization of A .

The rotation G_{21} with c := 0.5547 and s := 0.8321 gives

$$G_{21}^{\top} A = \begin{bmatrix} 7.2111 & 8.5979 & 11.9261 \\ 0 & -0.2774 & -1.6641 \\ 3.0000 & 6.0000 & 4.0000 \end{bmatrix}.$$

The rotation G_{31} with c := 0.9233 and s := 0.3841 gives

$$G_{31}^{\top}G_{21}^{\top}A = \begin{bmatrix} 7.8102 & 10.2430 & 12.5476 \\ 0 & -0.2774 & -1.6641 \\ 0 & 2.2372 & -0.8878 \end{bmatrix}.$$

Let
$$A := \begin{bmatrix} 4 & 5 & 8 \\ 6 & 7 & 9 \\ 3 & 6 & 4 \end{bmatrix}$$
. We use rotation to compute QR factorization of A .

The rotation G_{21} with c := 0.5547 and s := 0.8321 gives

$$G_{21}^{\top} A = \begin{bmatrix} 7.2111 & 8.5979 & 11.9261 \\ 0 & -0.2774 & -1.6641 \\ 3.0000 & 6.0000 & 4.0000 \end{bmatrix}.$$

The rotation G_{31} with c := 0.9233 and s := 0.3841 gives

$$G_{31}^{\top}G_{21}^{\top}A = \begin{bmatrix} 7.8102 & 10.2430 & 12.5476 \\ 0 & -0.2774 & -1.6641 \\ 0 & 2.2372 & -0.8878 \end{bmatrix}.$$

Finally, the rotation G_{32} with c:=-0.1230 and s:=0.9924 gives

$$G_{32}^{\top}G_{31}^{\top}G_{21}^{\top}A = \begin{bmatrix} 7.8102 & 10.2430 & 12.5476 \\ 0 & 2.2543 & -0.6763 \\ 0 & 0 & 1.7607 \end{bmatrix}.$$

