Problem Set #0: Linear Algebra & Multivariable Calculus

Trung H. Nguyen

1. Gradients and Hessians

(a) $f(x) = \frac{1}{2}x^T A x + b^T x$, where A symmetric matrix $\in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. We have:

$$x^{T}Ax = \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} A_{ij}x_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}x_{i}x_{j}$$

$$b^T x = \sum_{i=1}^n b_i x_i$$

Thus,
$$f(x) = \frac{1}{2}x^T A x + b^T x$$
 has $\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$ where,

$$\begin{split} \frac{\partial f(x)}{\partial x_k} &= \frac{\partial}{\partial x_k} \left[\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j + \sum_{i=1}^n b_i x_i \right] \\ &= \frac{\partial}{\partial x_k} \left[\frac{1}{2} \left(\sum_{i \neq k}^n A_{ik} x_i x_k + \sum_{j \neq k}^n A_{kj} x_k x_j + A_{kk} x_k^2 + \sum_{i \neq k}^n \sum_{j \neq k}^n A_{ij} x_i x_j \right) + \sum_{i=1}^n b_i x_i \right] \\ &= \frac{1}{2} \left(\sum_{i \neq k}^n A_{ik} x_i + \sum_{j \neq k}^n A_{kj} x_j + 2A_{kk} x_k \right) + b_k \\ &= \sum_{i=1}^n A_{ki} x_i + b_k \end{split}$$

or $\nabla f(x) = Ax + b$

(b) f(x) = g(h(x)) where $g: \mathbb{R} \to \mathbb{R}$ is differentiable and $h: \mathbb{R}^n \to \mathbb{R}$ is

differentiable. By Chain rule:

$$\begin{split} \nabla f(x) &= \nabla g(h(x)) = \begin{bmatrix} \frac{\partial g(h(x))}{\partial x_1} \\ \vdots \\ \frac{\partial g(h(x))}{\partial x_n} \end{bmatrix} \\ &\frac{\partial g(h(x))}{\partial x_i} = \frac{\partial g(h(x))}{\partial h(x)} \frac{\partial h(x)}{\partial x_i} = g'(h(x)) \frac{\partial h(x)}{\partial x_i} \end{split}$$
 Therefore, $\nabla f(x) = \nabla g(h(x)) = g'(h(x)) \nabla h(x)$

(c) $f(x) = \frac{1}{2}x^TAx + b^Tx$, where A symmetric matrix $\in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. By part (a), we have

$$\frac{\partial f(x)}{\partial x_k} = \sum_{i=1}^n A_{ki} x_i + b_k \Rightarrow \frac{\partial^2 f(x)}{\partial x_k \partial x_j} = A_{kj}$$

or $\nabla^2 f(x) = A$

(d) $f(x) = g(a^T x)$, where $g: \mathbb{R} \to \mathbb{R}$ continuously differentiable and $b \in \mathbb{R}^n$. By part (b), we have:

$$\nabla f(x) = g'(a^T x) \nabla(a^T x) = g'(a^T x) a \Rightarrow \frac{\partial f(x)}{\partial x_i} = g'(a^T x) a_i$$

Taking second derivative, we have:

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial g'(a^T x) a_i}{\partial x_j}$$

$$= a_i \frac{\partial g'(a^T x)}{\partial a^T x} \frac{\partial a^T x}{\partial x_j}$$

$$= a_i g''(a^T x) a_j$$

$$\Rightarrow \nabla^2 f(x) = g''(a^T x) a a^T$$

2. Positive definite matrices

Let $A \in \mathbb{R}^{n \times n}$, we have:

$$A \succeq 0 \Leftrightarrow \begin{cases} A = A^T \\ x^T A x \ge 0, \forall x \in \mathbb{R}^n \end{cases}$$
$$A \succ 0 \Leftrightarrow \begin{cases} A = A^T \\ x^T A x > 0, \forall x \in \mathbb{R}^n \end{cases}$$

(a) $z \in \mathbb{R}^n$, $A = zz^T$. We have for $\forall x \in \mathbb{R}^n$:

$$x^T A x = x^T z z^T x = (x^T z)^2 \ge 0 \Leftrightarrow A \succeq 0$$

(b)
$$z \in \mathbb{R}^n, z \neq \overrightarrow{0}, A = zz^T$$

Since $A = zz^T$, C(A) is subspace spanned by z and then has dimension of 1, or rank(A) = 1. Therefore, N(A) has dimension n-1 and contains all vectors that perpendicular to z.

(c)
$$A \in \mathbb{R}^{n \times n}$$
, $A \succeq 0$, $B \in \mathbb{R}^{m \times n}$. We have $\forall x \in \mathbb{R}^n$:
$$x^T B A B^T x = (B^T x)^T A (B^T x) \succeq 0 \text{ (since } A \succeq 0)$$

3. Eigenvectors, eigenvalues, the spectral theorem

$$A \in \mathbb{R}^{n \times n} \text{ is diagonalizable } A = T\Lambda T^{-1}, \text{where } \begin{cases} T \text{ invertible} \\ \Lambda = diag\left(\lambda_1, \cdots, \lambda_n\right) \end{cases}$$

(a) $A \in \mathbb{R}^{n \times n}$ diagonalizable, $t^{(i)}$: the ith column of T. Since A is diagonalizable, then we have:

$$A = T\Lambda T^{-1}$$

$$AT = T\Lambda$$

$$\left[At^{(1)} \cdots At^{(n)}\right] = \begin{bmatrix} t^{(1)} \cdots t^{(n)} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{bmatrix}$$

$$\left[At^{(1)} \cdots At^{(n)}\right] = \begin{bmatrix} \lambda_1 t^{(1)} \cdots \lambda_n t^{(n)} \end{bmatrix}$$

which makes $At^{(i)} = \lambda_i t^{(i)}$

(b) A symmetric, $U = \begin{bmatrix} u^{(1)} \cdots u^{(n)} \end{bmatrix}$ orthogonal, $A = U\Lambda U^{-1}$.

Since
$$U$$
 is orthogonal $\Rightarrow U^T U = I$
 $\Rightarrow U^T = U^{-1}$
 $\Rightarrow Au^{(i)} = \lambda_i u^{(i)}$ (by part (a))

(c) $A \succeq 0$. Since $A \succeq 0$ then for all (eigenvalue, eigenvector) pairs (x_i, λ_i) of A, we have:

$$x_i^T A x_i \ge 0$$
$$\Rightarrow x^T \lambda_i x_i \ge 0$$

Therefore, $\lambda_i \geq 0$ (since $x_i^T x_i \geq 0$)