Multilingualism and Cognitive Ability

Oviya Adhan, Nory Arroyo, Helin Yilmaz DATASCI 203 April 17, 2025

- Introduction
- Dataset
- Models
- Assumptions
- Takeaways

Introduction

Multilingualism is on the rise globally

 Prior studies show mixed cognitive outcomes

 Research Question: Is there a relationship between multilingualism and cognitive ability?

Dataset

- Source: University of Groningen (Netherlands)
- Sample: 387 older adults
- *Region is known for high multilingualism
- **Data**: 2 cognitive tests + language & lifestyle questionnaire
- Key measures:

Multilingualism = # of languages spoken (1–5)Cognitive ability = errors on WCST (4–29)

Model 1

Errors WCST = Number of Languages

Model 2

Errors WCST = Number of Languages + Gender + Age + Education Level + Income Level

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.72152
                     4.71846
                                 2.060 0.04042 *
 number_lang -0.06183
                       0.31530 -0.196
                                       0.84470
 gender
            -1.04945
                       0.62149 -1.689
                                        0.09256 .
             0.15528
                       0.05618 2.764
                                        0.00615 **
 age
            -1.05116
                       0.30150 -3.486
 education
                                       0.00058 ***
            -0.14817
                       0.24136 -0.614 0.53985
income
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Assumptions

- 1. IID
- 2. Linear Conditional Expectation
- 3. No Perfect Collinearity
- 4. Homoscedasticity
- 5. Normally Distributed Errors

Independent and Identically Distributed (IID)

Age vs Errors

Considerations:

- No strong clusters
- Data Collection:
 - Limitedgeneralizability
 - Independent recruitment and testing

Linear Conditional Expectation

No Perfect Collinearity

Variance Inflation Factor (VIF)

Number of languages	Gender	Age	Education	Income
1.058058	1.062037	1.004101	1.16781	1.181965

Homoskedastic Conditional Variance

Normally Distributed Errors

Findings

- Statistically Significant:
 - Age
 - Education Level
- Practically Significant:
 - Education Level
- No Significance:
 - Number of Languages
 - Gender
 - Income Level

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.72152
                     4.71846 2.060 0.04042 *
                     0.31530 -0.196 0.84470
number_lang -0.06183
gender
           -1.04945
                     0.62149 -1.689 0.09256 .
           0.15528
                     0.05618
                               2.764 0.00615 **
age
education
          -1.05116
                    0.30150 -3.486 0.00058 ***
                     0.24136 -0.614 0.53985
           -0.14817
income
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Challenges + Reflections

- Y variable is discrete
 → logistic regression
 ideal
- Limited and localized sample size.
- Further studies could analyze other behavior related to multilingualism.

WCST card game!

Thank You!