3章 重積分

練習問題 2-A

1. (1) 領域を図示すると

よって , 領域 D は , 次の不等式で表すことができる .

$$0 \le r \le a, \quad 0 \le \theta \le \frac{\pi}{2}$$

したがって

与式 =
$$\iint_{D} \sqrt{r^{2}} \cdot r \, dr \, d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \left\{ \int_{0}^{a} r^{2} \, dr \right\} d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \left[\frac{1}{3} r^{3} \right]_{0}^{a} \, d\theta$$

$$= \frac{1}{3} a^{3} \int_{0}^{\frac{\pi}{2}} d\theta$$

$$= \frac{1}{3} a^{3} \left[\theta \right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{1}{3} a^{3} \left(\frac{\pi}{2} - 0 \right) = \frac{1}{6} \pi a^{3}$$

(2) 領域を図示すると

よって,領域Dは,次の不等式で表すことができる.

$$1 \le r \le 2, \quad 0 \le \theta \le 2\pi$$

したがって

与式 =
$$\iint_{D} \frac{1}{r^{2}} \cdot r \, dr \, d\theta$$

$$= \iint_{D} \frac{1}{r} \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \left\{ \int_{1}^{2} \frac{1}{r} \, dr \right\} d\theta$$

$$= \int_{0}^{2\pi} \left[\log |r| \right]_{1}^{2} d\theta$$

$$= \int_{0}^{2\pi} (\log 2 - 0) d\theta$$

$$= \log 2 \int_{0}^{2\pi} d\theta$$

$$= \log 2 \left[\theta \right]_{0}^{2\pi}$$

$$= \log 2 \cdot 2\pi = 2\pi \log 2$$

(3) 領域を図示すると

§ 2 変数の変換と重積分 (p.92~p.93)

よって,領域Dは,次の不等式で表すことができる.

$$0 \le r \le 1, \quad 0 \le \theta \le 2\pi$$

したがって

与式 =
$$\iint_D \frac{1}{1+r^2} \cdot r \, dr \, d\theta$$
$$= \iint_D \frac{r}{1+r^2} \, dr \, d\theta$$
$$= \int_0^{2\pi} \left\{ \int_0^1 \frac{r}{1+r^2} \, dr \right\} \, d\theta$$

 $\int_0^1 rac{r}{1+r^2} \, dr$ において , $1+r^2=t$ とおくと , $2r \, dr=dt$

より ,
$$r dr = \frac{1}{2} dt$$

また,r とt の対応に

よって

$$\int_{0}^{1} \frac{r}{1+r^{2}} dr = \int_{1}^{2} \frac{1}{t} \cdot \frac{1}{2} dt$$

$$= \frac{1}{2} \int_{1}^{2} \frac{1}{t} dt$$

$$= \frac{1}{2} \left[\log|r| \right]_{1}^{2}$$

$$= \frac{1}{2} \log 2$$

したがって

$$\begin{split} & = \int_0^{2\pi} \frac{1}{2} \log 2 \, d\theta \\ &= \frac{1}{2} \log 2 \int_0^{2\pi} \, d\theta \\ &= \frac{1}{2} \log 2 \left[\begin{array}{c} \theta \end{array} \right]_0^{2\pi} \\ &= \frac{1}{2} \log 2 \cdot 2\pi = \pi \log 2 \end{split}$$

2. (1) $|x+y| \le 2 \text{ LU }, -2 \le x+y \le 2$

すなわち ,
$$-x-2 \le y \le -x+2$$

$$|2x - y| \le 1$$
 より , $-1 \le 2x - y \le 1$

すなわち , $-2x-1 \leq -y \leq -2x+1$ であるから , $2x-1 \leq y \leq 2x+1$

以上より , 領域 D は図のようになる .

(2)
$$x+y=u\cdots ①$$
, $2x-y=v\cdots ②$ とする.
① $+$ ② より , $3x=u+v$ であるから $x=\frac{u+v}{3}$ よって , $\frac{\partial x}{\partial u}=\frac{1}{3}$, $\frac{\partial x}{\partial v}=\frac{1}{3}$ ① $\times 2-2$ ② より , $3y=2u-v$ であるから $y=\frac{2u-v}{3}$ よって , $\frac{\partial y}{\partial u}=\frac{2}{3}$, $\frac{\partial y}{\partial v}=-\frac{1}{3}$ 表た , $-2\leq u\leq 2$, $-1\leq v\leq 1$, $\frac{\partial (x,y)}{\partial (u,v)}=\left|\frac{1}{3}\frac{1}{3}\frac{1}{3}\right|=-\frac{1}{9}-\frac{2}{9}=-\frac{1}{3}$ であるから 与式 $=\int_D u^2v^4\Big|-\frac{1}{3}\Big|du\,dv$ $=\frac{1}{3}\int_{-1}^1\Big\{\int_{-2}^2 u^2v^4\,du\Big\}\,dv$ $=\frac{1}{3}\int_{-1}^1\Big\{v^4\int_{-2}^2 u^2\,du\Big\}\,dv$ $=\frac{2}{3}\int_{-1}^1 v^4\Big[\frac{1}{3}u^3\Big]_0^2\,dv$ $=\frac{2}{3}\int_{-1}^1 v^4\cdot\frac{8}{3}\,dv$ $=\frac{16}{9}\cdot 2\int_0^1 v^4\,dv$ $=\frac{32}{9}\Big[\frac{1}{5}v^5\Big]_0^1$ $=\frac{32}{9}\cdot\frac{1}{5}=\frac{32}{45}$

3.
$$z=\frac{1}{2}(x^2+y^2) \ \text{について}$$

$$\frac{\partial z}{\partial x}=x, \quad \frac{\partial z}{\partial y}=y$$
 よって,求める面積を S とすると
$$S=\iint_{\mathbb{R}}\sqrt{x^2+y^2+1}\,dx\,dy$$

極座標に変換すると,領域 D は次の不等式で表すことができる. $0 \le r \le 1, \ \ 0 \le \theta \le 2\pi$

よって
$$S = \iint_D \sqrt{r^2+1} \cdot r \, dr \, d\theta$$

$$= \int_0^{2\pi} \left\{ \int_0^1 r \sqrt{r^2+1} \, dr \right\} \, d\theta$$

$$\int_0^1 r \sqrt{r^2+1} \, dr \text{ において }, \, r^2+1=t \text{ とおくと }, \, 2r \, dr = dt \text{ よ}$$
 り , $r \, dr = \frac{1}{2} \, dt$ また , $r \not \ge t$ の対応は

$$\frac{r \mid 0 \rightarrow 1}{t \mid 1 \rightarrow 2}$$

$$\int_{0}^{1} r \sqrt{r^{2} + 1} \, dr = \int_{1}^{2} \sqrt{t} \cdot \frac{1}{2} \, dt$$

$$= \frac{1}{2} \left[\frac{2}{3} t \sqrt{t} \right]_{1}^{2}$$

$$= \frac{1}{2} \cdot \frac{2}{3} (2\sqrt{2} - 1)$$

$$= \frac{1}{3} (2\sqrt{2} - 1)$$

したがって

$$S = \int_0^{2\pi} \frac{1}{3} (2\sqrt{2} - 1) d\theta$$

$$= \frac{1}{3} (2\sqrt{2} - 1) \int_0^{2\pi} d\theta$$

$$= \frac{1}{3} (2\sqrt{2} - 1) \left[\theta \right]_0^{2\pi}$$

$$= \frac{1}{3} (2\sqrt{2} - 1) \cdot 2\pi = \frac{2}{3} \pi (2\sqrt{2} - 1)$$

4. (1)
$$x-1=t$$
 とおくと, $dx=dt$ また, x と t の対応は
$$\frac{x \mid 1 \rightarrow \infty}{t \mid 0 \rightarrow \infty}$$
 よって 与式 = $\int_{-\infty}^{\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$

5. 領域 D は,直線 y=x に関して対称だから, $\overline{x}=\overline{y}$

 $= \sqrt{2} \cdot \sqrt{\pi} = \sqrt{2\pi}$

 $\sqrt{x}+\sqrt{y}=1$ より, $y=(1-\sqrt{x})^2=x-2\sqrt{x}+1$ よって,領域は, $0\le x\le 1$, $0\le y\le x-2\sqrt{x}+1$ 以上より

$$\iint_{D} x \, dx \, dy = \int_{0}^{1} \left\{ \int_{0}^{x-2\sqrt{x}+1} x \, dy \right\} \, dx$$

$$= \int_{0}^{1} x \left[y \right]_{0}^{x-2\sqrt{x}+1} \, dx$$

$$= \int_{0}^{1} x (x - 2\sqrt{x} + 1) \, dx$$

$$= \int_{0}^{1} (x^{2} - 2x^{\frac{3}{2}} + x) \, dx$$

$$= \left[\frac{1}{3} x^{3} - 2 \cdot \frac{2}{5} x^{\frac{5}{2}} + \frac{1}{2} x^{2} \right]_{0}^{1}$$

$$= \frac{1}{3} - \frac{4}{5} + \frac{1}{2} = \frac{1}{30}$$

また

$$\iint_D dx \, dy = \int_0^1 \left\{ \int_0^{x-2\sqrt{x}+1} dy \right\} dx$$

$$= \int_0^1 \left[y \right]_0^{x-2\sqrt{x}+1} dx$$

$$= \int_0^1 (x-2\sqrt{x}+1) \, dx$$

$$= \left[\frac{1}{2} x^2 - 2 \cdot \frac{2}{3} x \sqrt{x} + x \right]_0^1$$

$$= \frac{1}{2} - \frac{4}{3} + 1 = \frac{1}{6}$$
よって
$$\bar{x} = \bar{y} = \frac{\iint_D x \, dx \, dy}{\iint_D dx \, dy} = \frac{\frac{1}{30}}{\frac{1}{6}} = \frac{1}{5}$$
したがって,求める重心の座標は, $\left(\frac{1}{5}, \frac{1}{5} \right)$

練習問題 2-B

1.
$$x^2+y^2 \le x \ \text{より}$$

$$x^2-x+y^2 \le 0$$

$$\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+y^2 \le 0$$

$$\left(x-\frac{1}{2}\right)^2+y^2 \le \frac{1}{4}$$
 領域を図示すると

極座標に変換すると,領域 D は次の不等式で表すことができる. $0 \le r \le \cos \theta, \quad -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

ラズ
$$= \iint_{D} \sqrt{r \cos \theta} \cdot r \, dr \, d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \int_{0}^{\cos \theta} r \sqrt{r \cos \theta} \, dr \right\} \, d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \sqrt{\cos \theta} \int_{0}^{\cos \theta} r \sqrt{r} \, dr \right\} \, d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos \theta} \left[\frac{2}{5} r^{\frac{5}{2}} \right]_{0}^{\cos \theta} \, d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos \theta} \left[\frac{2}{5} r^{2} \sqrt{r} \right]_{0}^{\cos \theta} \, d\theta$$

$$= \frac{2}{5} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2} \theta (\sqrt{\cos \theta})^{2} \, d\theta$$

$$= \frac{2}{5} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{3} \theta \, d\theta$$

$$= \frac{4}{5} \int_{0}^{\frac{\pi}{2}} \cos^{3} \theta \, d\theta \quad (\cos^{3} \theta) \, d\theta$$

$$= \frac{4}{5} \cdot \frac{2}{3} = \frac{8}{15}$$

3. 領域 D 内で , $f(0,\ 0)$ は定義されないので , 図のような領域を考え , これを D_{ε} とする . また , この領域 D 内で , $\frac{x}{x^2+y^2} \ge 0$

 $=rac{1}{4}\pi ab(a^2+b^2)$

$$\begin{split} & = \lim_{\varepsilon \to +0} \iint_{D_{\varepsilon}} \frac{x}{x^2 + y^2} \, dx \, dy \\ & = \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 \left\{ \int_{x^2}^x \frac{x}{x^2 + y^2} \, dy \right\} \, dx \\ & = \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 x \left[\frac{1}{x} \tan^{-1} \frac{y}{x} \right]_{x^2}^x \, dx \\ & = \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 \left(\tan^{-1} 1 - \tan^{-1} x \right) dx \\ & = \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 \left(\frac{\pi}{4} - \tan^{-1} x \right) \, dx \end{split}$$

$$\int \tan^{-1} x \, dx = \int (x)' \tan^{-1} x \, dx
= x \tan^{-1} x - \int x \cdot \frac{1}{1+x^2} \, dx
= x \tan^{-1} x - \int \frac{x}{1+x^2} \, dx
= x \tan^{-1} x - \frac{1}{2} \log(1+x^2)$$

4.
$$x^2 + y^2 \le 2x$$
 & U
 $x^2 - 2x + y^2 \le 0$
 $(x-1)^2 - 1 + y^2 \le 0$
 $(x-1)^2 + y^2 \le 1$

 $=\frac{1}{2}\log 2$

直円柱 F の底面を領域 D として,これを図示すると

極座標に変換すると,領域 D は次の不等式で表すことができる $0 \le r \le 2\cos\theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

(
$$1$$
) 求める体積を V とすると

$$V = \iint_D (x^2 + y^2) dx dy$$

$$= \iint_D r^2 \cdot r dr d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \int_0^{2\cos\theta} r^3 dr \right\} d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\frac{1}{4} r^4 \right]_0^{2\cos\theta} d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{4} \cdot 16\cos^4\theta d\theta$$

$$= 4 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^4\theta d\theta$$

$$= 8 \int_0^{\frac{\pi}{2}} \cos^4\theta d\theta$$

$$= 8 \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{3}{2}\pi$$

(2) 求める体積をVとすると

$$V = \iint_D x^2 dx dy$$

$$= \iint_D r^2 \cos^2 \theta \cdot r dr d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \int_0^{2\cos\theta} r^3 \cos^2 \theta dr \right\} d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \cos^2 \theta \int_0^{2\cos\theta} r^3 dr \right\} d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta \left[\frac{1}{4} r^4 \right]_0^{2\cos\theta} d\theta$$

$$= 4 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta \cdot \cos^4 \theta d\theta$$

$$= 4 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^6 \theta d\theta$$

$$= 8 \int_0^{\frac{\pi}{2}} \cos^6 \theta d\theta$$

$$= 8 \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{5}{4} \pi$$

5. (1)
$$\frac{x-\mu}{\sqrt{2}\sigma}=t$$
 とおくと,
$$\frac{1}{\sqrt{2}\sigma}dx=dt$$
 より,
$$dx=\sqrt{2}\sigma\,dt$$
 また, x と t の対応は
$$x \mid -\infty \rightarrow \infty$$

$$\begin{array}{c|ccc} x & -\infty & \to & \infty \\ \hline t & -\infty & \to & \infty \end{array}$$

左辺 =
$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-t^2} \cdot \sqrt{2}\sigma \, dt$$

= $\frac{1}{\sqrt{2\pi}\sigma} \cdot \sqrt{2}\sigma \int_{-\infty}^{\infty} e^{-t^2} \, dt$

$$\sqrt{2\pi\sigma}$$
 $J_{-\infty}$ $= \frac{1}{\sqrt{\pi}} \cdot \sqrt{\pi} = 1 = 右辺$

(2)
$$\frac{x-\mu}{\sqrt{2}\sigma}=t$$
 とおくと, $\frac{1}{\sqrt{2}\sigma}dx=dt$ より, $dx=\sqrt{2}\sigma\,dt$ $x=\sqrt{2}\sigma t+\mu$

また,x とt の対応は

$$\begin{array}{c|ccc} x & -\infty & \to & \infty \\ \hline t & -\infty & \to & \infty \end{array}$$

左辺 =
$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (\sqrt{2}\sigma t + \mu)e^{-t^2} \cdot \sqrt{2}\sigma dt$$
=
$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} (\sqrt{2}\sigma t + \mu)e^{-t^2} dt$$
=
$$\frac{1}{\sqrt{\pi}} \left(\int_{-\infty}^{\infty} \sqrt{2}\sigma t e^{-t^2} dt + \int_{-\infty}^{\infty} \mu e^{-t^2} dt \right)$$
=
$$\frac{1}{\sqrt{\pi}} \left(\sqrt{2}\sigma \int_{-\infty}^{\infty} t e^{-t^2} dt + \mu \int_{-\infty}^{\infty} e^{-t^2} dt \right)$$

ここで,不定積分 $\int te^{-t^2}\,dt$ を求める.

$$-t^2=u$$
 とおくと , $-2t\,dt=du$ より , $t\,dt=-rac{1}{2}\,du$

$$\int te^{-t^2} dt = \int e^u \cdot \left(-\frac{1}{2} du \right)$$
$$= -\frac{1}{2} \int e^u du$$
$$= -\frac{1}{2} e^u = -\frac{1}{2} e^{-t^2}$$

したがって

$$\begin{split} \int_{-\infty}^{\infty} t e^{-t^2} \, dt &= \lim_{\substack{a \to -\infty \\ b \to \infty}} \int_a^b t e^{-t^2} \, dt \\ &= \lim_{\substack{a \to -\infty \\ b \to \infty}} \left[-\frac{1}{2} e^{-t^2} \right]_a^b \\ &= -\frac{1}{2} \lim_{\substack{a \to -\infty \\ b \to \infty}} (e^{-b^2} - e^{-a^2}) = 0 \end{split}$$
以上より
左辺 = $\frac{1}{\sqrt{\pi}} \left(\sqrt{2} \sigma \int_{-\infty}^{\infty} t e^{-t^2} \, dt + \mu \int_{-\infty}^{\infty} e^{-t^2} \, dt \right)$
 $= \frac{1}{\sqrt{\pi}} (\sqrt{2} \sigma \cdot 0 + \mu \cdot \sqrt{\pi})$
 $= \frac{1}{\sqrt{\pi}} \cdot \mu \sqrt{\pi}$
 $= \mu = \overline{\Delta} \overline{\omega}$