241121 PARAFAC NMBU

2024-11-21

Here follows an analysis of fluorescence EEM data from NMBU. The data was produced from analysing GF filtered water samples from a lake, covering: - 60 samples from the top - 60 samples from the bottom

 $Follow\ this\ procedure:\ https://cran.r-project.org/web/packages/staRdom/vignettes/PARAFAC_analysis_of\ EEM.html\#raman-normalisation$

QUESTIONS to NMBU * negative abs-values, likely to influence? - instrumental correction? likely not necessary - there might be some signal in the blanks - influential? - no dilutions performed? - ok to cut the area with the lowest ex wavelengths?

Preparations

Load required packages

```
Packages <- c("staRdom", "dplyr", "tidyr", "data.table", "reshape")
#"libwgeom",
lapply(Packages, library, character.only = TRUE)</pre>
```

```
## [[1]]
##
    [1] "staRdom"
                      "parallel"
                                                                          "graphics"
                                   "eemR"
                                                "ggplot2"
                                                             "stats"
    [7] "grDevices" "utils"
                                   "datasets"
                                               "methods"
                                                             "base"
##
##
  [[2]]
    [1] "dplyr"
                      "staRdom"
                                   "parallel"
                                               "eemR"
                                                             "ggplot2"
                                                                          "stats"
    [7] "graphics"
                      "grDevices" "utils"
                                                             "methods"
                                                "datasets"
                                                                          "base"
##
##
  [[3]]
##
    [1] "tidyr"
                      "dplvr"
                                   "staRdom"
                                                "parallel"
                                                             "eemR"
                                                                          "ggplot2"
    [7] "stats"
                                   "grDevices" "utils"
                                                                          "methods"
                      "graphics"
                                                             "datasets"
##
   [13] "base"
##
##
## [[4]]
    [1] "data.table" "tidyr"
                                     "dplvr"
                                                   "staRdom"
                                                                 "parallel"
##
    [6] "eemR"
                                     "stats"
##
                       "ggplot2"
                                                   "graphics"
                                                                 "grDevices"
##
  [11] "utils"
                       "datasets"
                                     "methods"
                                                   "base"
##
## [[5]]
##
   [1] "reshape"
                       "data.table" "tidyr"
                                                   "dplyr"
                                                                 "staRdom"
   [6] "parallel"
                       "eemR"
                                     "ggplot2"
                                                   "stats"
                                                                 "graphics"
## [11] "grDevices"
                       "utils"
                                     "datasets"
                                                   "methods"
                                                                 "base"
```

```
cores <- detectCores(logical = FALSE)</pre>
```

Set directories and load data, and check that the lengts are similar

```
folder = "C:/Users/CBG/OneDrive - NIVA/1 Projects/NMBU_PARAFAC/PARAFAC_filer"
eem_list <- eem_read(folder, import_function = "cary", recursive = TRUE)
eem_overview_plot(eem_list[1:9], spp=9, contour = TRUE)</pre>
```

[[1]]

Figure 1: Uncorrected EEMs

```
#Absorbance data
absorbance_dir="C:/Users/CBG/OneDrive - NIVA/1 Projects/NMBU_PARAFAC/Abs_GF_Data_parafac.csv"
absy <- absorbance_read(absorbance_dir, order=TRUE)

metatable = "C:/Users/CBG/OneDrive - NIVA/1 Projects/NMBU_PARAFAC/241121_NMBU_PARAFAC_Metadata.txt"
meta <- read.table(metatable, header = TRUE, sep = "\t", dec = ".", row.names=1)

length(eem_list)</pre>
```

[1] 180

```
ncol(absy)
## [1] 121
nrow(meta)
## [1] 182
```

1) Absorbance wavenegth correction

```
absorbance <- abs_blcor(absy,wlrange = c(680,700))
```

Check the data for inconsistencies

• seems ok (output from test not plotted here)

```
#summary(eem_list)
nrow(meta)

## [1] 182

#problem <- eem_checkdata(eem_list,absorbance, metadata=meta)</pre>
```

2) Spectral correction with instrument file (not done)

- is this necessary for the instrument at NMBU?
- \bullet at NIVA we used, for excorr, measurements from a rhod amineB standard solution at 550nm while nothing for the emcorr

3) Blank subtraction.

```
eemss <- eem_remove_blank(eem_list)
length(eemss)

## [1] 180

eem_overview_plot(eemss[1:9], spp=9, contour = TRUE)

## [[1]]</pre>
```


Figure 2: EEMs blank corrected

4) Inner filter effect correction using absorption data

- all abs data must be below 2.0 at any wavelength (else, dilution).
- Several values from the absorbancy data are negative. Will this cause problems???

```
eemsss <- eem_ife_correction(eemss,absorbance, cuvl = 1)</pre>
```

```
## obenGF115
## Range of IFE correction factors: 1.0227 2.5463
## Range of total absorbance (Atotal): 0.0195 0.8118
##
## untenGF115
## Range of IFE correction factors: 1.0254 2.7616
## Range of total absorbance (Atotal) : 0.0218 0.8823
## obenGF117
## Range of IFE correction factors: 1.0263 2.9619
## Range of total absorbance (Atotal): 0.0225 0.9432
##
## untenGF117
## Range of IFE correction factors: 1.0332 4.2692
## Range of total absorbance (Atotal): 0.0284 1.2607
## obenGF119
## Range of IFE correction factors: 1.0365 3.993
## Range of total absorbance (Atotal): 0.0311 1.2026
## untenGF119
## Total absorbance is > 1.5 (Atotal = 1.608541)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0535 6.3719
## Range of total absorbance (Atotal): 0.0453 1.6085
## obenGF128
## Range of IFE correction factors: 1.0383 4.0193
## Range of total absorbance (Atotal): 0.0327 1.2083
## untenGF128
## Total absorbance is > 1.5 (Atotal = 1.507438)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0501 5.6718
## Range of total absorbance (Atotal): 0.0424 1.5074
## obenGF135
## Range of IFE correction factors: 1.0252 2.4379
## Range of total absorbance (Atotal) : 0.0217 0.774
##
## untenGF135
## Range of IFE correction factors: 1.0266 2.6186
## Range of total absorbance (Atotal): 0.0228 0.8361
```

```
## obenGF136
## Range of IFE correction factors: 1.0204 2.5637
## Range of total absorbance (Atotal): 0.0175 0.8177
##
## untenGF136
## Range of IFE correction factors: 1.0219 3.1473
## Range of total absorbance (Atotal): 0.0188 0.9959
## obenGF139
## Range of IFE correction factors: 1.0364 3.9435
## Range of total absorbance (Atotal): 0.031 1.1918
##
## untenGF139
## Total absorbance is > 1.5 (Atotal = 1.64384)
## A 2-fold dilution is recommended. See ?eem inner filter effect.
## Range of IFE correction factors: 1.0556 6.6362
## Range of total absorbance (Atotal): 0.047 1.6438
## obenGF148
## Range of IFE correction factors: 1.0354 3.6269
## Range of total absorbance (Atotal): 0.0302 1.1191
## untenGF148
## Total absorbance is > 1.5 (Atotal = 1.582363)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0545 6.1827
## Range of total absorbance (Atotal): 0.0461 1.5824
## obenGF155
## Range of IFE correction factors: 1.0225 2.5171
## Range of total absorbance (Atotal): 0.0193 0.8018
## untenGF155
## Range of IFE correction factors: 1.0194 2.4586
## Range of total absorbance (Atotal): 0.0167 0.7814
## obenGF164
## Range of IFE correction factors: 1.0267 3.233
## Range of total absorbance (Atotal): 0.0228 1.0192
##
## untenGF164
## Range of IFE correction factors: 1.0307 3.4176
## Range of total absorbance (Atotal): 0.0263 1.0674
## obenGF166
## Range of IFE correction factors: 1.0191 2.5898
## Range of total absorbance (Atotal): 0.0164 0.8265
##
## untenGF166
## Range of IFE correction factors: 1.0275 3.4491
## Range of total absorbance (Atotal): 0.0236 1.0754
## obenGF167
```

```
## Range of IFE correction factors: 1.024 2.8109
## Range of total absorbance (Atotal): 0.0206 0.8977
##
## untenGF167
## Range of IFE correction factors: 1.038 4.5417
## Range of total absorbance (Atotal): 0.0324 1.3144
## obenGF168
## Range of IFE correction factors: 1.0327 3.436
## Range of total absorbance (Atotal): 0.028 1.0721
## untenGF168
## Total absorbance is > 1.5 (Atotal = 1.521584)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0537 5.7649
## Range of total absorbance (Atotal): 0.0454 1.5216
## obenGF169
## Range of IFE correction factors: 1.0381 4.3459
## Range of total absorbance (Atotal) : 0.0325 1.2762
## untenGF169
## Range of IFE correction factors: 1.0438 4.7315
## Range of total absorbance (Atotal): 0.0373 1.35
## obenGF185
## Range of IFE correction factors: 1.0257 2.5431
## Range of total absorbance (Atotal): 0.022 0.8107
##
## untenGF185
## Range of IFE correction factors: 1.0233 2.526
## Range of total absorbance (Atotal): 0.02 0.8049
## obenGF186
## Range of IFE correction factors: 1.0194 2.5315
## Range of total absorbance (Atotal): 0.0167 0.8067
##
## untenGF186
## Range of IFE correction factors: 1.0245 4.6377
## Range of total absorbance (Atotal) : 0.021 1.3326
## obenGF189
## Range of IFE correction factors: 1.0354 3.9552
## Range of total absorbance (Atotal): 0.0302 1.1943
## untenGF189
## Range of IFE correction factors: 1.0466 5.0685
## Range of total absorbance (Atotal): 0.0395 1.4098
## obenGF194
## Range of IFE correction factors: 1.027 3.1176
## Range of total absorbance (Atotal): 0.0231 0.9876
```

```
##
## untenGF194
## Range of IFE correction factors: 1.0266 3.2096
## Range of total absorbance (Atotal): 0.0228 1.0129
## obenGF197
## Range of IFE correction factors: 1.0268 3.1904
## Range of total absorbance (Atotal): 0.023 1.0077
##
## untenGF197
## Range of IFE correction factors: 1.0396 4.538
## Range of total absorbance (Atotal): 0.0337 1.3137
## obenGF198
## Range of IFE correction factors: 1.0353 3.6572
## Range of total absorbance (Atotal): 0.0301 1.1263
## untenGF198
## Total absorbance is > 1.5 (Atotal = 1.620835)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0567 6.4628
## Range of total absorbance (Atotal): 0.0479 1.6208
## obenGF209
## Range of IFE correction factors: 1.0338 3.799
## Range of total absorbance (Atotal): 0.0289 1.1593
## untenGF209
## Range of IFE correction factors: 1.0374 4.0933
## Range of total absorbance (Atotal): 0.0319 1.2242
## obenGF215
## Range of IFE correction factors: 1.021 2.428
## Range of total absorbance (Atotal): 0.018 0.7705
##
## untenGF215
## Range of IFE correction factors: 1.0272 2.624
## Range of total absorbance (Atotal): 0.0233 0.8379
## obenGF216
## Range of IFE correction factors: 1.0209 3.0832
## Range of total absorbance (Atotal): 0.0179 0.978
## untenGF216
## Range of IFE correction factors: 1.0251 4.1512
## Range of total absorbance (Atotal): 0.0215 1.2363
## obenGF217
## Range of IFE correction factors: 1.0253 2.9214
## Range of total absorbance (Atotal): 0.0217 0.9312
##
## untenGF217
## Range of IFE correction factors: 1.039 4.35
## Range of total absorbance (Atotal): 0.0332 1.277
```

```
## obenGF218
## Range of IFE correction factors: 1.0353 3.6897
## Range of total absorbance (Atotal): 0.0301 1.134
##
## untenGF218
## Range of IFE correction factors: 1.0465 4.9397
## Range of total absorbance (Atotal): 0.0395 1.3874
## obenGF224
## Range of IFE correction factors: 1.0274 3.0756
## Range of total absorbance (Atotal): 0.0235 0.9759
##
## untenGF224
## Range of IFE correction factors: 1.0261 3.0495
## Range of total absorbance (Atotal): 0.0224 0.9684
## obenGF236
## Range of IFE correction factors: 1.0242 3.1998
## Range of total absorbance (Atotal): 0.0208 1.0103
## untenGF236
## Range of IFE correction factors: 1.0291 4.2005
## Range of total absorbance (Atotal): 0.0249 1.2466
## obenGF237
## Range of IFE correction factors: 1.0261 3.0294
## Range of total absorbance (Atotal): 0.0224 0.9627
## untenGF237
## Range of IFE correction factors: 1.0409 4.1546
## Range of total absorbance (Atotal): 0.0348 1.2371
## obenGF238
## Range of IFE correction factors: 1.0339 3.4836
## Range of total absorbance (Atotal): 0.0289 1.084
##
## untenGF238
## Total absorbance is > 1.5 (Atotal = 1.686351)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0573 6.9691
## Range of total absorbance (Atotal): 0.0484 1.6864
## obenGF239
## Range of IFE correction factors: 1.0346 3.7775
## Range of total absorbance (Atotal): 0.0295 1.1544
##
## untenGF239
## Range of IFE correction factors: 1.0389 4.0901
## Range of total absorbance (Atotal): 0.0332 1.2235
## obenGF245
## Range of IFE correction factors: 1.0175 2.3484
```

```
## Range of total absorbance (Atotal) : 0.0151 \ 0.7415
##
## untenGF245
## Range of IFE correction factors: 1.0214 2.5531
## Range of total absorbance (Atotal): 0.0184 0.8141
## obenGF254
## Range of IFE correction factors: 1.0258 2.9847
## Range of total absorbance (Atotal): 0.0221 0.9498
## untenGF254
## Range of IFE correction factors: 1.0259 2.9249
## Range of total absorbance (Atotal): 0.0222 0.9322
## obenGF257
## Range of IFE correction factors: 1.0297 3.3125
## Range of total absorbance (Atotal): 0.0254 1.0403
## untenGF257
## Range of IFE correction factors: 1.042 4.5305
## Range of total absorbance (Atotal): 0.0357 1.3123
## obenGF268
## Range of IFE correction factors: 1.0328 3.6901
## Range of total absorbance (Atotal): 0.0281 1.1341
## untenGF268
## Total absorbance is > 1.5 (Atotal = 1.69006)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0577 6.9989
## Range of total absorbance (Atotal): 0.0487 1.6901
## obenGF27
## Range of IFE correction factors: 1.023 2.7022
## Range of total absorbance (Atotal): 0.0197 0.8634
##
## untenGF27
## Range of IFE correction factors: 1.0258 3.3108
## Range of total absorbance (Atotal): 0.0221 1.0399
## obenGF276
## Range of IFE correction factors: 1.0251 2.972
## Range of total absorbance (Atotal): 0.0216 0.9461
##
## untenGF276
## Range of IFE correction factors: 1.0284 4.1536
## Range of total absorbance (Atotal): 0.0243 1.2368
## obenGF277
## Range of IFE correction factors: 1.0291 3.0901
## Range of total absorbance (Atotal): 0.0249 0.9799
##
```

```
## untenGF277
## Range of IFE correction factors: 1.046 4.7143
## Range of total absorbance (Atotal): 0.039 1.3468
## obenGF28
## Range of IFE correction factors: 1.0309 3.2615
## Range of total absorbance (Atotal): 0.0264 1.0268
## untenGF28
## Total absorbance is > 1.5 (Atotal = 1.656022)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0609 6.7299
## Range of total absorbance (Atotal): 0.0513 1.656
## obenGF285
## Range of IFE correction factors: 1.0175 2.3549
## Range of total absorbance (Atotal): 0.0151 0.7439
## untenGF285
## Range of IFE correction factors: 1.023 2.6704
## Range of total absorbance (Atotal): 0.0197 0.8532
## obenGF288
## Range of IFE correction factors: 1.0298 3.3112
## Range of total absorbance (Atotal): 0.0255 1.04
## untenGF288
## Total absorbance is > 1.5 (Atotal = 1.587833)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0524 6.2218
## Range of total absorbance (Atotal): 0.0444 1.5878
## obenGF29
## Range of IFE correction factors: 1.0332 3.5435
## Range of total absorbance (Atotal): 0.0284 1.0989
##
## untenGF29
## Total absorbance is > 1.5 (Atotal = 1.69642)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0593 7.0503
## Range of total absorbance (Atotal): 0.05 1.6964
## obenGF294
## Range of IFE correction factors: 1.0259 2.9539
## Range of total absorbance (Atotal): 0.0222 0.9408
##
## untenGF294
## Range of IFE correction factors: 1.0264 2.9324
## Range of total absorbance (Atotal): 0.0227 0.9344
## obenGF297
## Range of IFE correction factors: 1.0292 3.0251
```

```
## Range of total absorbance (Atotal) : 0.025 \ 0.9615
##
## untenGF297
## Range of IFE correction factors: 1.0477 5.083
## Range of total absorbance (Atotal): 0.0405 1.4122
## obenGF306
## Range of IFE correction factors: 1.0224 2.7523
## Range of total absorbance (Atotal): 0.0192 0.8794
## untenGF306
## Range of IFE correction factors: 1.0299 4.2174
## Range of total absorbance (Atotal): 0.0256 1.2501
## obenGF308
## Range of IFE correction factors: 1.031 3.2812
## Range of total absorbance (Atotal): 0.0266 1.0321
## untenGF308
## Total absorbance is > 1.5 (Atotal = 1.605173)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0546 6.3473
## Range of total absorbance (Atotal): 0.0462 1.6052
## obenGF315
## Range of IFE correction factors: 1.0177 2.4291
## Range of total absorbance (Atotal): 0.0152 0.7709
## untenGF315
## Range of IFE correction factors: 1.0244 2.8585
## Range of total absorbance (Atotal): 0.0209 0.9123
## obenGF317
## Range of IFE correction factors: 1.0346 3.4756
## Range of total absorbance (Atotal): 0.0296 1.082
##
## untenGF317
## Total absorbance is > 1.5 (Atotal = 1.564761)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0566 6.0587
## Range of total absorbance (Atotal) : 0.0478 1.5648
## obenGF35
## Range of IFE correction factors: 1.0249 2.8964
## Range of total absorbance (Atotal): 0.0213 0.9237
##
## untenGF35
## Range of IFE correction factors: 1.0266 2.9115
## Range of total absorbance (Atotal): 0.0228 0.9282
## obenGF46
## Range of IFE correction factors: 1.0167 2.287
```

```
## Range of total absorbance (Atotal): 0.0144 0.7185
##
## untenGF46
## Range of IFE correction factors: 1.0291 3.0518
## Range of total absorbance (Atotal): 0.0249 0.9691
## obenGF48
## Range of IFE correction factors: 1.0308 3.2513
## Range of total absorbance (Atotal): 0.0263 1.0241
## untenGF48
## Range of IFE correction factors: 1.0513 5.3572
## Range of total absorbance (Atotal): 0.0435 1.4579
## obenGF49
## Range of IFE correction factors: 1.0358 3.7257
## Range of total absorbance (Atotal): 0.0306 1.1424
## untenGF49
## Total absorbance is > 1.5 (Atotal = 1.693917)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.061 7.03
## Range of total absorbance (Atotal): 0.0514 1.6939
## obenGF65
## Range of IFE correction factors: 1.0235 2.7518
## Range of total absorbance (Atotal): 0.0202 0.8792
## untenGF65
## Range of IFE correction factors: 1.0254 3.0469
## Range of total absorbance (Atotal): 0.0218 0.9677
## obenGF68
## Range of IFE correction factors: 1.0329 3.4879
## Range of total absorbance (Atotal): 0.0281 1.0851
##
## untenGF68
## Total absorbance is > 1.5 (Atotal = 1.568013)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0557 6.0814
## Range of total absorbance (Atotal): 0.047 1.568
## obenGF69
## Range of IFE correction factors: 1.0298 3.3352
## Range of total absorbance (Atotal): 0.0255 1.0462
##
## untenGF69
## Total absorbance is > 1.5 (Atotal = 1.563688)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0517 6.0512
## Range of total absorbance (Atotal): 0.0438 1.5637
## obenGF76
```

```
## Range of IFE correction factors: 1.0162 2.4221
## Range of total absorbance (Atotal): 0.014 0.7684
##
## untenGF76
## Range of IFE correction factors: 1.0212 2.7761
## Range of total absorbance (Atotal): 0.0182 0.8869
## obenGF88
## Range of IFE correction factors: 1.0333 3.5659
## Range of total absorbance (Atotal): 0.0285 1.1043
## untenGF88
## Total absorbance is > 1.5 (Atotal = 1.619685)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0577 6.4542
## Range of total absorbance (Atotal): 0.0487 1.6197
## obenGF95
## Range of IFE correction factors: 1.0249 2.6496
## Range of total absorbance (Atotal): 0.0213 0.8464
## untenGF95
## Range of IFE correction factors: 1.0268 2.8095
## Range of total absorbance (Atotal): 0.023 0.8973
## obenGF96
## Range of IFE correction factors: 1.0221 2.5998
## Range of total absorbance (Atotal): 0.019 0.8299
##
## untenGF96
## Range of IFE correction factors: 1.0323 3.6427
## Range of total absorbance (Atotal): 0.0276 1.1228
## obenGF97
## Range of IFE correction factors: 1.026 2.8798
## Range of total absorbance (Atotal): 0.0223 0.9187
##
## untenGF97
## Range of IFE correction factors: 1.0337 3.7367
## Range of total absorbance (Atotal) : 0.0288 1.145
## obenGF99
## Range of IFE correction factors: 1.0325 3.632
## Range of total absorbance (Atotal): 0.0278 1.1203
## untenGF99
## Total absorbance is > 1.5 (Atotal = 1.554391)
## A 2-fold dilution is recommended. See ?eem_inner_filter_effect.
## Range of IFE correction factors: 1.0533 5.9868
## Range of total absorbance (Atotal): 0.0451 1.5544
```

```
eem_overview_plot(eemsss[1:9], spp=9, contour = TRUE)
```

[[1]]

Figure 3: EEMs corrected for blanks and inner filter effects

5) Raman normalization

• could the negative abosrbance data cause problems here?

```
eemsssy <- eem_raman_normalisation2(eemsss, blank = "blank")</pre>
```

Raman area: 214.8339
Raman area: 214.8339
Raman area: 170.342
Raman area: 170.342
Raman area: 170.0362
Raman area: 170.0362

Raman area: 209.9491

Raman area: 209.9491

Raman area: 179.2403

Raman area: 179.2403

Raman area: 177.8661

Raman area: 177.8661

Raman area: 180.432

Raman area: 180.432

Raman area: 177.4727

Raman area: 177.4727

Raman area: 197.6292

Raman area: 197.6292

Raman area: 195.9439

Raman area: 195.9439

Raman area: 218.296

Raman area: 218.296

Raman area: 165.6076

Raman area: 165.6076

Raman area: 181.0322

Raman area: 181.0322

Raman area: 184.0585

Raman area: 184.0585

Raman area: 228.2809

Raman area: 228.2809

Raman area: 250.5522

Raman area: 250.5522

Raman area: 182.8733

Raman area: 182.8733

Kaman area: 182.8733

Raman area: 213.794

Raman area: 213.794

Raman area: 188.0717

Raman area: 188.0717

Raman area: 221.4777

Raman area: 221.4777

Raman area: 220.8581 ## Raman area: 220.8581

Raman area: 179.587 ## Raman area: 179.587

Raman area: 253.4779 ## Raman area: 253.4779

Raman area: 203.78 ## Raman area: 203.78

Raman area: 192.5584 ## Raman area: 192.5584

Raman area: 201.8313 ## Raman area: 201.8313

Raman area: 172.5745 ## Raman area: 172.5745

Raman area: 203.9234 ## Raman area: 203.9234

Raman area: 313.3893 ## Raman area: 313.3893

Raman area: 171.0698 ## Raman area: 171.0698

Raman area: 187.2296 ## Raman area: 187.2296

Raman area: 198.3333 ## Raman area: 198.3333

Raman area: 171.7966 ## Raman area: 171.7966

Raman area: 185.6056 ## Raman area: 185.6056

Raman area: 182.9471 ## Raman area: 182.9471

Raman area: 194.8612 ## Raman area: 194.8612

Raman area: 175.3832 ## Raman area: 175.3832 ## Raman area: 184.2973

Raman area: 184.2973

Raman area: 248.3666

Raman area: 248.3666

Raman area: 197.4343

Raman area: 197.4343

Raman area: 279.647

Raman area: 279.647

Raman area: 176.1771

Raman area: 176.1771

Raman area: 174.7216

Raman area: 174.7216

Raman area: 171.7322

Raman area: 171.7322

Raman area: 273.9418

Raman area: 273.9418

Raman area: 199.7596

Raman area: 199.7596

Raman area: 168.4033

Raman area: 168.4033

Raman area: 183.6553

Raman area: 183.6553

Raman area: 220.3338

Raman area: 220.3338

Raman area: 187.7203

Raman area: 187.7203

Raman area: 239.3028 ## Raman area: 239.3028

Raman area: 166.8044

Raman area: 166.8044

Raman area: 165.7617

Raman area: 165.7617

Raman area: 165.7616

Raman area: 165.7616

```
## Raman area: 224.9515
## Raman area: 220.1393
## Raman area: 220.1393
## Raman area: 208.8049
## Raman area: 208.8049
## Raman area: 173.0365
## Raman area: 173.0365
## Raman area: 175.9874
## Raman area: 175.9874
## Raman area: 185.2848
## Raman area: 185.2848
eem_overview_plot(eemsssy[1:9], spp=9, contour = TRUE)
## [[1]]
# ALTENRATIVE Raman normalization
# because of negative values. Will try alternative-manual way
#raman1 = "C:/Users/CBG/OneDrive - NIVA/1 Projects/1000 Lakes fEEM Data/DOM-1000-lake-PARAFAC/201216_Ra
\#raman2 \leftarrow read.table(raman1, header = TRUE, sep = "\t", dec = ".", row.names=1) \# load data
#eemsss2 <- eem_raman_normalisation2(eemsss, blank = raman2)</pre>
#6) Remove blanks from sample set
eemb <- eem_extract(eemsssy, c("nano", "miliq", "milliq", "mq", "blank", "Blank"),ignore_case = TRUE)</pre>
## Removed sample(s): blank115 blank117 blank119 blank128 blank135 blank136 blank139 blank148 blank155
absorbance <- dplyr::select(absorbance, -matches("nano|miliq|milliq|mq|blank|Blank", ignore.case = TRUE
```

7) Remove and interpolate scattering

Raman area: 224.9515

• seems ok with regards to the Raman and Rayleigh

```
remove_scatter <- c(TRUE, TRUE, TRUE)

remove_scatter_width <- c(13,12,12,13) #is either a number or a vector of wavelength width in nm

eemsc <- eem_rem_scat(eemb, remove_scatter = remove_scatter, remove_scatter_width = remove_scatter_widt

#interpolate the removed datapoints

#different methods are available for interpretting .recommends to start with no 1

eemint <- eem_interp(eemsc, type = 1, extend = FALSE)

eem_overview_plot(eemint[1:9], spp=9, contour = TRUE)
```

[[1]]

Figure 4: EEMs corrected for blanks and inner filter effects, and Raman normalised

 $\label{eq:figure 5: EEMs corrected for blanks and inner filter effects, Raman normalised and scattering removed and interpolated$

8) Taking a look at the blanks

- since the blanks are used both for subtraction and making Raman area, it is worth looking into.
- There is a signal at the shorter ex wavelengths and em 300-400 nm

```
#looking at the blanks
#Finding LOQ
blanks <- eem_extract(eem_list, c("nano", "miliq", "milliq", "mq", "blank", "Blank"),keep = TRUE)

## Extracted sample(s): blank115 blank117 blank119 blank128 blank135 blank136 blank139 blank148 blank15

blanks2 <- eem_rem_scat(blanks, remove_scatter = remove_scatter, remove_scatter_width = remove_scatter_blanks3<- eem_interp(blanks2, type = 1, extend = FALSE)

blanks4 <- blanks3 %>%
    eem_range(ex = c(250,Inf), em = c(0,580))

eem_overview_plot(blanks4[1:9], spp=9, contour = TRUE)
```

[[1]]

Figure 6: EEMs of the blanks with scattering removed and interpolated

```
#could be considered if LOQ is needed
#bix <- eem_biological_index(blanks)
#coble_peaks <- eem_coble_peaks(blanks)
#fi <- eem_fluorescence_index(blanks)
#hix <- eem_humification_index(blanks, scale = TRUE)

#indices_peaks <- bix %>%
# full_join(coble_peaks, by = "sample") %>%
# full_join(fi, by = "sample") %>%
# full_join(hix, by = "sample")

#indices_peaks
#barplot(indices_peaks$a)

#LOQ <- 10*sd(indices_peaks$a[1:10])
#LOQ</pre>
```

9) print a summary table of the samples

• wavelength ranges, and corrections that have been done

```
summary(eemint)
```

```
##
            sample ex_min ex_max em_min em_max is_blank_corrected
## 1
        obenGF115
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 2
       untenGF115
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 3
        obenGF117
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 4
       untenGF117
                       220
                               450
                                      300
                                              700
                                                                  TRUE
                       220
                                              700
## 5
        obenGF119
                               450
                                      300
                                                                  TRUE
## 6
       untenGF119
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 7
        obenGF128
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 8
       untenGF128
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 9
        obenGF135
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 10
       untenGF135
                       220
                              450
                                      300
                                              700
                                                                  TRUE
## 11
                       220
                                      300
                                              700
        obenGF136
                               450
                                                                  TRUE
## 12
       untenGF136
                       220
                              450
                                      300
                                              700
                                                                  TRUE
## 13
        obenGF139
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 14
       untenGF139
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 15
                       220
                               450
                                      300
                                              700
                                                                  TRUE
        obenGF148
                       220
## 16
       untenGF148
                               450
                                      300
                                              700
                                                                  TRUE
## 17
        obenGF155
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 18
       untenGF155
                       220
                              450
                                      300
                                              700
                                                                  TRUE
## 19
        obenGF164
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 20
                       220
                               450
                                      300
                                              700
                                                                  TRUE
       untenGF164
## 21
        obenGF166
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 22
                       220
                                      300
                                              700
       untenGF166
                               450
                                                                  TRUE
## 23
        obenGF167
                       220
                               450
                                      300
                                              700
                                                                  TRUE
                       220
                                      300
                                              700
                                                                  TRUE
## 24
       untenGF167
                               450
## 25
        obenGF168
                       220
                               450
                                      300
                                              700
                                                                  TRUE
## 26
                       220
                               450
                                      300
                                              700
                                                                  TRUE
      untenGF168
```

##	27	obenGF169	220	450	300	700	TRUE
##	28	untenGF169	220	450	300	700	TRUE
##	29	obenGF185	220	450	300	700	TRUE
##	30	untenGF185	220	450	300	700	TRUE
##	31	obenGF186	220	450	300	700	TRUE
##	32	untenGF186	220	450	300	700	TRUE
##	33	obenGF189	220	450	300	700	TRUE
##	34	untenGF189	220	450	300	700	TRUE
##	35	obenGF194	220	450	300	700	TRUE
##	36	untenGF194	220	450	300	700	TRUE
##	37	obenGF197	220	450	300	700	TRUE
##	38	untenGF197	220	450	300	700	TRUE
##	39	obenGF198	220	450	300	700	TRUE
##	40	untenGF198	220	450	300	700	TRUE
##	41	obenGF209	220	450	300	700	TRUE
##	42	untenGF209	220	450	300	700	TRUE
##	43	obenGF215	220	450	300	700	TRUE
##	44	untenGF215	220	450	300	700	TRUE
##	45	obenGF216	220	450	300	700	TRUE
##	46	untenGF216	220	450	300	700	TRUE
##	47	obenGF217	220	450	300	700	TRUE
##	48	untenGF217	220	450	300	700	TRUE
##	49	obenGF218	220	450	300	700	TRUE
##	50	untenGF218	220	450	300	700	TRUE
##	51	obenGF224	220	450	300	700	TRUE
##	52	untenGF224	220	450	300	700	TRUE
##	53	obenGF236	220	450	300	700	TRUE
##	54	untenGF236	220	450	300	700	TRUE
##	55	obenGF237	220	450	300	700	TRUE
##	56	untenGF237	220	450	300	700	TRUE
##	57	obenGF238	220	450	300	700	TRUE
##	58	untenGF238	220	450	300	700	TRUE
##	59	obenGF239	220	450	300	700	TRUE
##	60	untenGF239	220	450	300	700	TRUE
##	61	obenGF245	220	450	300	700	TRUE
##	62	untenGF245	220	450	300	700	TRUE
##	63	obenGF254	220	450	300	700	TRUE
##	64	untenGF254	220	450	300	700	TRUE
	65	obenGF257	220	450	300	700	TRUE
##	66	untenGF257	220	450	300	700	TRUE
##	67	obenGF268	220	450	300	700	TRUE
##	68	untenGF268	220	450	300	700	TRUE
##	69	obenGF27					
##	70	untenGF27	220 220	450 450	300 300	700 700	TRUE TRUE
##	71						
##	72	obenGF276	220	450	300	700	TRUE
		untenGF276	220	450	300	700	TRUE
## ##	73 74	obenGF277 untenGF277	220	450 450	300	700 700	TRUE
##	74 75		220	450 450	300	700 700	TRUE
		obenGF28	220	450 450	300	700 700	TRUE
##	76 77	untenGF28	220	450	300	700	TRUE
##	77 70	obenGF285	220	450 450	300	700 700	TRUE
##	78	untenGF285	220	450	300	700	TRUE
##	79	obenGF288	220	450	300	700	TRUE
##	δÚ	untenGF288	220	450	300	700	TRUE

##	81	obenGF29	220	450	300	700		TRUE
##	82	untenGF29	220	450	300	700		TRUE
##	83	obenGF294	220	450	300	700		TRUE
##	84	untenGF294	220	450	300	700		TRUE
##	85	obenGF297	220	450	300	700		TRUE
##	86	untenGF297	220	450	300	700		TRUE
##	87	obenGF306	220	450	300	700		TRUE
##	88	untenGF306	220	450	300	700		TRUE
##	89	obenGF308	220	450	300	700		TRUE
##	90	untenGF308	220	450	300	700		TRUE
##	91	obenGF315	220	450	300	700		TRUE
##	92	untenGF315	220	450	300	700		TRUE
##	93	obenGF317	220	450	300	700		TRUE
##	94	untenGF317	220	450	300	700		TRUE
##	95	obenGF35	220	450	300	700		TRUE
##	96	untenGF35	220	450	300	700		TRUE
##	97	obenGF46	220	450	300	700		TRUE
##	98	untenGF46	220	450	300	700		TRUE
##	99	obenGF48	220	450	300	700		TRUE
##	100	untenGF48	220	450	300	700		TRUE
##	101	obenGF49	220	450	300	700		TRUE
##	102	untenGF49	220	450	300	700		TRUE
##	103	obenGF65	220	450	300	700		TRUE
##	104	untenGF65	220	450	300	700		TRUE
##	105	obenGF68	220	450	300	700		TRUE
##	106	untenGF68	220	450	300	700		TRUE
##	107	obenGF69	220	450	300	700		TRUE
##	108	untenGF69	220	450	300	700		TRUE
##	109	obenGF76	220	450	300	700		TRUE
##	110	untenGF76	220	450	300	700		TRUE
##	111	obenGF88	220	450	300	700		TRUE
##	112	untenGF88	220	450	300	700		TRUE
##	113	obenGF95	220	450	300	700		TRUE
##	114	untenGF95	220	450	300	700		TRUE
##	115	obenGF96	220	450	300	700		TRUE
##	116	untenGF96	220	450	300	700		TRUE
##	117	obenGF97	220	450	300	700		TRUE
	118	untenGF97	220	450	300	700		TRUE
	119	obenGF99	220	450	300	700		TRUE
	120	untenGF99	220	450	300	700		TRUE
##	120						s_raman_normal	
	1	is_scatter_	TRUE	12_116		TRUE	s_raman_norma	TRUE
##			TRUE			TRUE		TRUE
##			TRUE			TRUE		TRUE
##			TRUE			TRUE		TRUE
##			TRUE					
	-					TRUE		TRUE
##			TRUE			TRUE		TRUE
	7		TRUE			TRUE		TRUE
	8		TRUE			TRUE		TRUE
##			TRUE			TRUE		TRUE
	10		TRUE			TRUE		TRUE
	11		TRUE			TRUE		TRUE
	12		TRUE			TRUE		TRUE
##	13		TRUE			TRUE		TRUE

## 1	1 /	TRUE	TRUE	TRUE
	15	TRUE	TRUE	TRUE
	16	TRUE	TRUE	TRUE
	17	TRUE	TRUE	TRUE
	18	TRUE	TRUE	TRUE
	19	TRUE	TRUE	TRUE
	20	TRUE	TRUE	TRUE
	21	TRUE	TRUE	TRUE
	22	TRUE	TRUE	TRUE
	23	TRUE	TRUE	TRUE
	24	TRUE	TRUE	TRUE
	25	TRUE	TRUE	TRUE
	26	TRUE	TRUE	TRUE
	27	TRUE	TRUE	TRUE
	28	TRUE	TRUE	TRUE
	29	TRUE	TRUE	TRUE
	30	TRUE	TRUE	TRUE
	31	TRUE	TRUE	TRUE
## 3	32	TRUE	TRUE	TRUE
## 3	33	TRUE	TRUE	TRUE
## 3	34	TRUE	TRUE	TRUE
## 3	35	TRUE	TRUE	TRUE
## 3	36	TRUE	TRUE	TRUE
## 3	37	TRUE	TRUE	TRUE
## 3	38	TRUE	TRUE	TRUE
## 3	39	TRUE	TRUE	TRUE
## 4	40	TRUE	TRUE	TRUE
## 4	41	TRUE	TRUE	TRUE
## 4	42	TRUE	TRUE	TRUE
## 4	43	TRUE	TRUE	TRUE
## 4		TRUE	TRUE	TRUE
## 4		TRUE	TRUE	TRUE
## 4		TRUE	TRUE	TRUE
## 4		TRUE	TRUE	TRUE
## 4		TRUE	TRUE	TRUE
## 4		TRUE	TRUE	TRUE
## 5		TRUE	TRUE	TRUE
## 5		TRUE	TRUE	TRUE
## 5		TRUE	TRUE	TRUE
## 5		TRUE	TRUE	TRUE
## 5		TRUE	TRUE	TRUE
## 5		TRUE	TRUE TRUE	TRUE TRUE
## 5		TRUE TRUE	TRUE	TRUE
## 5		TRUE	TRUE	TRUE
## 5		TRUE	TRUE	TRUE
	59 60	TRUE	TRUE	TRUE
	61	TRUE	TRUE	TRUE
	62	TRUE	TRUE	TRUE
	63	TRUE	TRUE	TRUE
## 6		TRUE	TRUE	TRUE
## 6		TRUE	TRUE	TRUE
## 6		TRUE	TRUE	TRUE
## 6		TRUE	TRUE	TRUE
		- 	- · · -	

##	68	TRUE	TRUE	TRUE
	69	TRUE	TRUE	TRUE
	70	TRUE	TRUE	TRUE
	71	TRUE	TRUE	TRUE
	72	TRUE	TRUE	TRUE
	73	TRUE	TRUE	TRUE
	74	TRUE	TRUE	TRUE
	75	TRUE	TRUE	TRUE
	76	TRUE	TRUE	TRUE
##	77	TRUE	TRUE	TRUE
	78	TRUE	TRUE	TRUE
	79	TRUE	TRUE	TRUE
	80	TRUE	TRUE	TRUE
	81	TRUE	TRUE	TRUE
	82	TRUE	TRUE	TRUE
	83	TRUE	TRUE	TRUE
	84	TRUE	TRUE	TRUE
	85	TRUE	TRUE	TRUE
	86	TRUE	TRUE	TRUE
	87	TRUE	TRUE	TRUE
	88	TRUE	TRUE	TRUE
	89	TRUE	TRUE	TRUE
	90	TRUE	TRUE	TRUE
	91	TRUE	TRUE	TRUE
	92	TRUE	TRUE	TRUE
	93	TRUE	TRUE	TRUE
	94	TRUE	TRUE	TRUE
	95	TRUE	TRUE	TRUE
	96	TRUE	TRUE	TRUE
	97	TRUE	TRUE	TRUE
	98	TRUE	TRUE	TRUE
	99	TRUE	TRUE	TRUE
##	100	TRUE	TRUE	TRUE
##	101	TRUE	TRUE	TRUE
##	102	TRUE	TRUE	TRUE
##	103	TRUE	TRUE	TRUE
##	104	TRUE	TRUE	TRUE
##	105	TRUE	TRUE	TRUE
##	106	TRUE	TRUE	TRUE
##	107	TRUE	TRUE	TRUE
##	108	TRUE	TRUE	TRUE
##	109	TRUE	TRUE	TRUE
##	110	TRUE	TRUE	TRUE
##	111	TRUE	TRUE	TRUE
##	112	TRUE	TRUE	TRUE
##	113	TRUE	TRUE	TRUE
##	114	TRUE	TRUE	TRUE
##	115	TRUE	TRUE	TRUE
##	116	TRUE	TRUE	TRUE
##	117	TRUE	TRUE	TRUE
##	118	TRUE	TRUE	TRUE
	119	TRUE	TRUE	TRUE
##	120	TRUE	TRUE	TRUE

10) Remove noisy area at low wavelength excitation

```
eemint4 <- eemint %>% eem_range(ex = c(250, Inf), em = c(300,580))
eem_overview_plot(eemint4[1:9], spp=9, contour = TRUE)
```

[[1]]

Figure 7: EEMS corrected and noisy area removed

11) Peak picking

- $\bullet\,$ smoothing can be performed prior to peak picking (not donw here)
 - from a quick look at BIX there are no big differences between the smoothed and the non-smoothed

```
#WITHOUT SMOOTHING
bix <- eem_biological_index(eemint4)
coble_peaks <- eem_coble_peaks(eemint4)
fi <- eem_fluorescence_index(eemint4)
hix <- eem_humification_index(eemint4, scale = TRUE)</pre>
```

```
indices_peaks <- bix %>%
 full_join(coble_peaks, by = "sample") %>%
 full_join(fi, by = "sample") %>%
 full_join(hix, by = "sample")
#combine with data and depth column from metadata
met <- data.table::fread("C:/Users/CBG/OneDrive - NIVA/1 Projects/NMBU_PARAFAC/241121_NMBU_PARAFAC_Meta
#merging with date from other dataset
df_merge <- merge(indices_peaks, met, by = "sample",</pre>
                  all.x = TRUE)
write.csv(df_merge, "C:/Users/CBG/OneDrive - NIVA/1 Projects/NMBU_PARAFAC/Output/NMBU_indices and peaks_
df_merge$date_analysis<-as.Date(df_merge$date_analysis,format="%d.%m.%Y")
class(df_merge$date_analysis)
## [1] "Date"
ggplot(df_merge, aes(x=date_analysis, y=bix, fill=lake_layer))+
  geom_col(position = position_dodge2(width = 0.4, reverse=TRUE))+
 theme(axis.text.x = element_text(angle = 45, hjust = 1))+
 coord_cartesian(ylim = c(0.3, 0.7))
```


Figure 8: BIX