# **ANNEXE - Contexte**

## **TechServices SARL**

• Secteur : Services informatiques et maintenance

• Effectif: 15 employés

• Locaux: 350 m² sur 1 étage

• Activité : Maintenance informatique, développement web, formation

## Problématique identifiée

Suite à un incident de sécurité récent (tentative d'intrusion), la direction souhaite équiper les bureaux d'un système d'alerte d'urgence moderne et économique.

#### Cahier des charges:

- Boutons d'alerte dans chaque zone sensible
- Notification immédiate au poste de sécurité
- Système autonome (pas de dépendance Internet)
- Coût maîtrisé (réutilisation matériel existant)
- Extensible (ajout futurs capteurs)

### Plan des locaux



Légende :

= Bouton d'alerte d'urgence (Raspberry Pi + bouton + LED)

= = Serveur central / Poste de surveillance

= Postes de travail développeurs

# Topologie réseau

### Architecture réseau actuelle



# Spécifications techniques

| Zone         | Dispositif      | IP            | Rôle                        |
|--------------|-----------------|---------------|-----------------------------|
| Direction    | RPi-Direction   | 192.168.1.101 | Alerte bureau direction     |
| Commercial   | RPi-Commercial  | 192.168.1.102 | Alerte bureau commercial    |
| Open Space   | RPi-DevTeam     | 192.168.1.103 | Alerte espace développement |
| Accueil      | RPi-Accueil     | 192.168.1.104 | Alerte accueil              |
| Réunion      | RPi-Meeting     | 192.168.1.105 | Alerte salle réunion        |
| Stockage     | RPi-Storage     | 192.168.1.106 | Alerte zone matériel        |
| Surveillance | Serveur-Central | 192.168.1.5   | Réception toutes alertes    |

# Spécifications techniques détaillées

## Matériel par point d'alerte

- Raspberry Pi 3B+ (1GB RAM minimum)
- Bouton d'urgence (ou Touche Entrée du clavier)
- LED d'état (rouge/vert) + Résistances
- Alimentation 5V/3A sécurisée

#### Installation réseau

• Connexion : Wi-Fi WPA3

• **Protocole**: HTTP/HTTPS (port 5000)

• Sécurité : Réseau isolé VLAN (optionnel)

#### Serveur de surveillance

```
Configuration serveur central :
- Services : Flask + Interface web
- Monitoring : Supervision état des dispositifs
```

## Protocole de communication

### Format message d'alerte

```
"appareil_id": "RPi-Direction", // Doit correspondre à APPAREIL_ID dans
config.py
 "priorité": "Niveau 2",
 "message": "Alerte d'urgence déclenchée !",
  "date_heure": "2025-09-22T14:30:25",
 "source": "RPi-01", // Doit correspondre à APPAREIL_ID ou un
identifiant unique
 "nom": "RPi-Direction", // Doit correspondre à APPAREIL_nom dans
config.py
  "ip_source": "192.168.1.101", // IP du Raspberry Pi émetteur
 "type": "intrusion", // Doit correspondre à TYPE_ALERTE_APPAREIL dans
 "system_info": {"cpu_usage": 45, "memory_usage": 60}, // Résultat de
obtenir_info_systeme()
 "temperature": 31.5, // Résultat de obtenir_temperature()
 "localisation": "Direction" // Doit correspondre à LOCALISATION dans
config.py
```

#### Codes de réponse serveur

| Code | Statut | Signification           | Action LED            |
|------|--------|-------------------------|-----------------------|
| 200  | OK     | Alerte reçue et traitée | 2 clignotements verts |

| Code    | Statut       | Signification     | Action LED             |
|---------|--------------|-------------------|------------------------|
| 400     | ERREUR       | Format incorrect  | 3 clignotements rouges |
| 503     | INDISPONIBLE | Serveur surchargé | 4 clignotements rouges |
| Timeout | RÉSEAU       | Pas de connexion  | 6 clignotements rouges |

### Niveaux de logs - Guide d'utilisation

| Niveau   | Utilisation                                    | Exemple                                      |
|----------|------------------------------------------------|----------------------------------------------|
| DEBUG    | Informations techniques détaillées             | Valeurs de variables, état des<br>composants |
| INF0     | Événements normaux importants                  | Démarrage, envoi d'alerte réussie            |
| WARNING  | Problèmes mineurs, situation anormale          | Erreur serveur non bloquante                 |
| ERROR    | Erreurs importantes mais le programme continue | Connexion impossible                         |
| CRITICAL | Erreurs graves, arrêt du programme             | Panne matérielle critique                    |

# Réception automatique de l'alerte

1. Serveur : Enregistrement horodaté de l'alerte

2. Interface : Affichage temps réel sur écran de surveillance

# Ressources techniques

### **Documentation officielle**

- Raspberry Pi GPIO Programming
- Flask Web Framework
- Python Requests Library

# Outils de diagnostic réseau

```
# Vérifier l'IP du Pi
hostname -I

# Test connectivité au serveur
ping 192.168.1.5

# Vérification ports ouverts
nmap -p 5000 192.168.1.5
netstat -tlnp | grep 5000

# Logs système
journalctl -u alerte-service -f
```

```
tail -f logs/RPi-XX_application.log # Suivre les logs en temps réel

# Test charge serveur
curl -X POST http://192.168.1.5:5000/test

curl -X POST http://192.168.1.5:5000/alerte -H "Content-Type:
application/json" -d '{"message":"Test","source":"RPi-XX"}' # Test manuel
d'envoi d'alerte
```

# **Commandes utiles Raspberry Pi**

```
# Processus Python en cours
ps aux | grep python

# Espace disque
df -h

# Température CPU
vcgencmd measure_temp

# Version OS
cat /etc/os-release
```