Cognome	
Nome	
Matricola	
Aula	

Domande a risposta multipla (indicare con X la risposta corretta nella tabella)

Quesito	1	2	3	4	
Risposta a	Х				
Risposta b		Χ		Χ	
Risposta c					
Risposta d			Χ		
Punteggio totale					

1) Un voltmetro per misure in DC ha la seguente tabella delle incertezze:

Accuracy = \pm (% of reading + number of digit)

Range	Resolution	Accuracy
100 mV	0.01 mV	±(0.06 % + 2)
1 V	0.1 mV	±(0.06 % + 2)
10 V	1 mV	±(0.06 % + 2)

Volendo misurare una tensione di circa 0.5 V, l'incertezza di misura è pari a:

- a) 0.5 mV
- b) 5 mV
- c) 50 mV
- d) Nessuna risposta proposta

Soluzione: Il fondo scala scelto è di 1V da cui l'incertezza è pari a $\pm (0.06 \% \cdot 0.5 \text{ V} + 2 \cdot 0.1 \text{mV}) = 0.3 \text{ mV} + 0.2 \text{ mV} = 0.5 \text{ mV}$

- 2) Avete a disposizione un amperometro con resistenza interna R_A da 100 Ω ed un voltmetro con resistenza di ingresso R_V di 100 k Ω . Con questi due strumenti volete misurare, con metodo voltamperometrico un resistore R_X il cui codice a colori corrisponde al valore di 20 k Ω ed incertezza pari all' 1%. Al fine di minimizzare l'errore di consumo relativo
 - a) Utilizzerò uno schema con voltmetro a valle
 - b) Utilizzerò uno schema con voltmetro a monte
 - c) Non sono in grado di decidere quale schema utilizzare (schema con voltmetro a monte o a valle) in quanto non dispongo dei dati di incertezza degli strumenti
 - d) Nessuna risposta proposta

Soluzione: con voltmetro a monte l'errore di consumo relativo è pari a $\Delta R/R_X = R_A/R_X = 100/20000 = 0.5\%$. Con voltmetro a valle l'errore di consumo relativo è pari a $\Delta R/R_X = R_A/(R_X + R_V) = 2 \cdot 10^4/(2 \cdot 10^4 + 10^5) = -16\%$ quindi il metodo da utilizzare è il metodo con voltmetro a monte. La risposta c è ovviamente da scartare.

- 3) Il circuito di ingresso di un oscilloscopio
 - a) Equivale al parallelo di una resistenza di 1 Ω ed una capacità di circa 10 pF
 - b) Equivale alla serie di una resistenza di 1 Ω ed una capacità di circa 10 nF
 - c) Equivale al parallelo di una resistenza di $10~\Omega$ ed una capacità di circa 10~pF
 - d) Nessuna risposta proposta

Soluzione: v. teoria svolta a lezione

- 4) Un voltmetro basato su un integratore a doppia rampa è
 - a) Indipendente dalle variazioni della tensione di riferimento presente nel circuito integratore
 - b) Indipendente dalle variazioni della capacità presente nel circuito integratore
 - c) Un convertitore analogico digitale con frequenza di campionamento superiore a 20 MHz
 MHz
 - d) Uno strumento sensibile ai disturbi sinusoidali a 50 Hz sovrapposti alla tensione continua che si vuole misurare

Soluzione: v. teoria svolta a lezione

ESERCIZIO

Si vuole misurare il tempo di salita di un segnale con un oscilloscopio con le seguenti caratteristiche:

$$B = 2$$
 GHz; resistenza di ingresso: 1 MΩ; capacità di ingresso = (10 ± 0.5) pF incertezza relativa del fattore di taratura orizzontale: ± 0.5 %

Il generatore di segnale, che presenta una resistenza di uscita di $(50 \pm 5) \Omega$, è collegato all'oscilloscopio attraverso un cavo coassiale della lunghezza di 90 cm (incertezza trascurabile) e capacità distribuita pari a 100 pF/m, $\pm 10\%$.

Impostando il fattore di taratura orizzontale dell'oscilloscopio al valore $K_X = 5$ ns/div si ottiene una lettura del tempo di salita sullo schermo dell'oscilloscopio pari a (8 ± 0.1) div.

Valutare valore nominale e incertezza del tempo di salita t_X del segnale.

Soluzione

Modello di misura

Il tempo di salita t_{sm} misurato dall'oscilloscopio può essere valutato come:

$$t_{sm} = L_{ts} \cdot K_X = 8 \cdot 5 = 40 \ ns$$

da cui deriva che l'incertezza relativa è pari a:

$$\varepsilon t_{sm} = \varepsilon L_{ts} + \varepsilon K_X = \frac{\delta L_{ts}}{L_{ts}} + \varepsilon K_X = \frac{0.1}{8} + 0.005 = 0.0125 + 0.005 = 0.0175$$

che corrisponde ad un incertezza assoluta:

$$\delta t_{sm} = \varepsilon t_{sm} \cdot t_{sm} = 0.0175 \cdot 40 = 0.70 \ ns$$

Tenendo conto dell'effetto di carico dovuto alla banda limitata dell'oscilloscopio¹ e del circuito di ingresso, il tempo di salita t_X del segnale può essere stimato come:

$$t_X = \sqrt{t_{sm}^2 - t_{so}^2 - t_{slN}^2} \approx \sqrt{t_{sm}^2 - t_{slN}^2} =$$

$$= \sqrt{(L_{ts} \cdot K_X)^2 - (0.35 \cdot 2 \cdot \pi \cdot R_g \cdot C_{tot})^2} \approx 38.46 \text{ ns}$$

dove $C_{\text{tot}} = 90 \text{ pF} + 10 \text{ pF} = 100 \text{ pF}.$

L'effetto sistematico è, in valore assoluto, pari a $(t_{sm} - t_X) = 1.54$ ns, che è dello stesso ordine di grandezza dell'incertezza valutata per t_{sm} , per cui il modello di misura da utilizzare è il seguente:

$$t_{X} = \sqrt{\left(L_{ts} \cdot K_{X}\right)^{2} - \left(0.35 \cdot 2 \cdot \pi \cdot R_{g} \cdot C_{tot}\right)^{2}}$$

Valutazione del misurando

Sostituendo i valori numerici nel modello di misura si ottiene:

$$t_{\rm X} \approx 38.459 \, ... \, ns$$

¹ In questo caso trascurabile.

Valutazione dell'incertezza

$$\begin{split} \delta t_{\mathrm{X}} &= \left| \frac{\partial t_{\mathrm{X}}}{\partial L_{\mathrm{ts}}} \right| \cdot \delta L_{\mathrm{ts}} + \left| \frac{\partial t_{\mathrm{X}}}{\partial K_{\mathrm{X}}} \right| \cdot \delta K_{\mathrm{X}} + \left| \frac{\partial t_{\mathrm{X}}}{\partial R_{\mathrm{g}}} \right| \cdot \delta R_{\mathrm{g}} + \left| \frac{\partial t_{\mathrm{X}}}{\partial C_{\mathrm{tot}}} \right| \cdot \delta C_{\mathrm{tot}} = \\ &= \frac{1}{t_{\mathrm{X}}} \cdot L_{\mathrm{ts}} \cdot K_{\mathrm{X}}^{2} \cdot \delta L_{\mathrm{ts}} + \frac{1}{t_{\mathrm{X}}} \cdot K_{\mathrm{X}} \cdot L_{\mathrm{ts}}^{2} \cdot \delta K_{\mathrm{X}} + \\ &+ \frac{1}{t_{\mathrm{X}}} \cdot \left(0.35 \cdot 2 \cdot \pi \cdot C_{\mathrm{tot}} \right)^{2} \cdot R_{\mathrm{g}} \cdot \delta R_{\mathrm{g}} + \frac{1}{t_{\mathrm{X}}} \cdot \left(0.35 \cdot 2 \cdot \pi \cdot R_{\mathrm{g}} \right)^{2} \cdot C_{\mathrm{tot}} \cdot \delta C_{\mathrm{tot}} \end{split}$$

Le incertezze assolute delle grandezze presenti nel modello di misura sono ottenute a partire dai dati forniti:

$$\begin{array}{l} \delta L_{ts} = 0.1 \ div; \quad \delta K_X = 0.005 \cdot 5 \cdot 10^{-9} = 25 \ ps/div \\ \delta R_g = 5 \ \Omega \\ \delta C_{tot} = \delta C_d + \delta C_{IN} = 0.1 \cdot 90 \cdot 10^{-12} + 0.5 \cdot 10^{-12} = 9.5 \ pF \end{array}$$

Infine si ottiene:

$$\delta t_X = 5.20 \cdot 10^{-9} \cdot 0.1 + 8.32 \cdot 25 \cdot 10^{-12} + 6.29 \cdot 10^{-11} \cdot 5 + 31.4 \cdot 9.5 \cdot 10^{-12} = 5.20 \cdot 10^{-10} + 2.08 \cdot 10^{-10} + 3.14 \cdot 10^{-10} + 2.99 \cdot 10^{-10} \approx 1.341 \dots ns$$

Dichiarazione finale della misura

$$t_X = (38.5 \pm 1.3) \ ns$$