- **8.58.** Вычислить температуру T моля одноатомного газа, состоящего из частиц, имеющих два дискретных уровня энергии: $-\varepsilon_0$ и ε_0 . Разность между числом атомов в состоянии с энергией ε_0 и числом атомов в состоянии с энергией $-\varepsilon_0$ равна ΔN . Построить график зависимости энтропии газа от внутренней энергии: S(U).
- **8.52.** Найти значения средней колебательной энергии теплового движения для двух различных атомных осцилляторов при температуре T=300 К. Частота колебаний осцилляторов $\mathbf{v}_1=10^{13}$ Гц и $\mathbf{v}_2=10^{14}$ Гц. Сравнить полученные значения с соответствующим классическим значением. Найти колебательную теплоемкость C_V одного моля газа таких осцилляторов для случая $\mathbf{v}=4,7\cdot 10^{13}$ Гц (кислород C_2)
- моля газа таких осцилляторов для случая $\mathbf{v} = 4,7 \cdot 10^{13} \, \Gamma_{\mathbf{u}}$ (кислород O_2).

 1) $\mathbf{v} = (1 + e^{-\frac{h^2}{kT}} + e^{-\frac{2h^2}{kT}} + e^{-\frac{h^2}{kT}})^2 \cdot \frac{1}{kT^2}$ 2) $\mathbf{v} = \frac{\partial \mathbf{v}}{\partial t} = \frac{h^2}{(e^{\frac{h^2}{kT}} 1)^2} \cdot \frac{1}{kT^2}$
- **Т-9.** (2017) Ионы солей иттербия имеют спин s=7/2. Во внешнем магнитном поле B энергия иона зависит от ориентации спина и может принимать значения $E_m=m\mu B$, где μ известная константа, и m=-s,-s+1,...,s-1,s. Найти изменение энтропии ΔS и количество теплоты Q, поглощаемое 1 молем соли при её квазистатическом изотермическом размагничивании от очень большого ($B_0\gg kT/\mu$) до нулевого поля ($B_1=0$) при температуре T=1 К. Взаимодействием ионов между собой пренебречь.

-1 -5 - 3 -

9.45. Сосуд разделен перегородкой на два различных объема, так что в одном объеме содержится N_1 атомов газа, в другом N_2 . Температуры и давления газов одинаковы. Затем перегородку убирают, и газы перемешиваются. Вычислить изменение энтропии после смеше-

ния, если: а) газы различны; б) газы одинаковы. Газ одноатомный, идеальный.

Т-8. (2022) Характеристическая вращательная температура молекулы окиси азота NO равна $\theta_{\rm вp} \approx 3$ K, колебательная $\theta_{\rm кол} \approx 2.6 \cdot 10^3$ K. Кроме того, молекула NO имеет низколежащее возбуждённое состояние, энергия которого на $\varepsilon = 0.015$ эВ больше энергии основного состояния. Найдите количество теплоты, которое нужно сообщить молю газообразного NO при

$$\frac{OTBET:}{Q} = 5,7 \text{ кДж/моль.}$$

$$\frac{\xi}{Z} = 1 + e^{-\frac{\xi}{ET}} \Rightarrow U = \frac{\xi}{1 + e^{-\frac{\xi}{ET}}} = \frac{\xi}{e^{\frac{\xi}{ET}} + 1}$$

изохорном увеличении его температуры от
$$T_1 = 50 \, \mathrm{K}$$
 до $T_2 = 300 \, \mathrm{K}$.

$$\frac{\mathrm{Oтвет:}}{\mathrm{C}} \, Q = 5,7 \, \mathrm{KДж/моль.}$$

$$Z = 1 + \mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} \Rightarrow \mathcal{U} = \frac{\mathcal{E}}{1 + \mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}}} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \Rightarrow \mathcal{C} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \approx \mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \Rightarrow \mathcal{C} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \approx \mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \Rightarrow \mathcal{C} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \approx \mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \Rightarrow \mathcal{C} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \approx \mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \Rightarrow \mathcal{C} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \approx \mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \Rightarrow \mathcal{C} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \approx \mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{E}}{\mathrm{KT}}} + 1} \Rightarrow \mathcal{C} = \frac{\mathcal{E}}{\mathrm{e}^{-\frac{\mathcal{$$

8.70. Определить вращательную теплоемкость паров HD вблизи температуры конденсации $T_{\rm K}=2{\rm \check{2}}~{\rm K}$. Для дейтероводорода характеристическая вращательная температура $\theta = \frac{\hbar^2}{2Ik_{\rm B}} = 64~{\rm K}.$