Name		

Find the Missing Force

In each of the problems below, you need to consider a missing force

One possible strategy is to assign directions to the signs of a number:

For horizontal problems:

- All forces to the right are POSITIVE
- All forces to the left are NEGATIVE

For vertical problems:

- All upward forces are POSITIVE
- All downward forces are NEGATIVE

E.1

Three forces act on an object:

345 N left

454 N right

????? N left

Draw a free-body diagram with 3 forces. On of the forces has unknown magnitude:

The net force is 200 N left.

What is the magnitude of the missing force?

E.2

43 down

53 down

??? up

Draw a free-body diagram with 3 forces. On of the forces has unknown magnitude:

The net force is 140 N up.

What is the magnitude of the missing force?

E.3

75 N down 75 N down

??? up

Draw a free-body diagram with 3 forces. On of the forces has unknown magnitude:

The net force is 86 N down.

What is the magnitude of the missing force?

E.4 I'm sitting on a chair.

Name

The chair exerts a force 450 N up.

My weight is ?????? N down.

Draw a free-body diagram:

The net force on me is 0 N.

What is my weight [the magnitude of the downward force]?

E.5

20 N up 18 N down

???????

The net force is 38 N down.

Find the magnitude *and direction* of the missing force:

E.6

95 N left 66 N left

??????

The net force is $500\ N\ right$

E.7

88 N left 66 N right

27 N left

?????

The net force is 100 N right

Find the magnitude *and direction* of the missing force:

E.8

9 N down

39 N up

85 N down

59 N up

?????

The net force is 0 N.

Find the *magnitude* and *direction* of the missing force:

E.9 An object with a mass of 50 kg	g is accelerating at a rate of	$4 \text{ m/s}^2 \text{ upward.}$
------------------------------------	--------------------------------	-----------------------------------

There are two force acting on the object:

500 Newtons down and an unknown force up.

a) Use Newton's Second Law to find the *magnitude* of the net force acting on the object:

Looking For	Formula	,
Already Know		
Tricady Know		
Answer as equation with unit:		

- **b)** What is the *direction* of the net force?
- c) Draw a free-body diagram with two forces. One force has unknown magnitude.
- **d)** What is the magnitude of the unknown force?

E.10 An object with a mass of 10 kg is accelerating at a rate of 3 m/s 2 to the right:

There are two forces acting on this object:

90 Newtons to the right and an unknown force to the left.

a) Use Newton's Second Law to find the *magnitude* of the net force acting on the object:

Formula		
	rormula	rormula

- **b)** What is the *direction* of the net force?
- c) Draw a free-body diagram with two forces. One force has unknown magnitude.
- d) What is the magnitude of the unknown force?

E.11 An object with a mass of 12 kg is accelerating at a rate of 6 m/s ² to the left. There are three forces acting on this object: 100 N to the left 80 N to the right ???? N to the left				
a) Use Newton's Second Law to find the <i>magnitude</i> of the net force acting on the object:				
Looking For	Formula			
Already Know				
Answer as equation with unit:				
b) What is the <i>direction</i> of the net force?				
c) Draw a free-body diagram with two forces. One force has unknown magnitude.				
d) What is the magnitude of the unknown force?				
There are three forces acting of 160 N to the right 75	20 kg is accelerating at a rate of 8 m/s ² to the right. on this object: 5 N to the left 7????? to find the <i>magnitude</i> of the net force acting on the object:			
Looking For	Formula			
Already Know	<u></u>			
Answer as equation with unit:				

- **b)** What is the *direction* of the net force?
- **c)** What are the *magnitude* and *direction* of the unknown force?

Answers:

- **E.1** 309 N
- **E.2** 236 N
- **E.3** 64 N
- **E.4** 450 N
- **E.5** 40 N down
- **E.6** 661 N right
- **E.7** 149 N right
- **E.8** 4 N down