Algorithms, Evidence, and Data Science Cookbook

Part I: Classic Statistical Inference

* **Population:** the entire group

* Sample: a subset of the population

* Mean: μ is the mean of the population; \bar{x} is the mean of the sample

$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

* Variance: the dispersion around the mean

Variance of a population:

Variance of a sample:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

* Standard Deviation: square root of the variance

* Standard Error: an estimate of the standard deviation of the sampling distribution

For a mean:

For the difference between two

$$se(\bar{x}) = \sqrt{\frac{s^2}{n}}$$

$$se(\bar{x}) = \sqrt{\frac{s^2}{n}}$$
 means:
$$se(\bar{x_1}, \bar{x_2}) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Algorithms and Inference

- * Algorithm: set of data probability-steps to produce an estimator
- * Inference: measuring the uncertainty around the estimator e.q.: \bar{x} the algorithm, while $se(\bar{x})$ is the inference

A Regression Example

Linear Regression

any regression is a conditional mean $\hat{Y}_i = E(Y_i|X_i)$

- * Y: response variable
- * X : covariate/predictor/feature
- * $\hat{\beta}_0, \hat{\beta}_1$: regression coefficients

$$\hat{\beta}_{0} = \hat{Y} - \hat{\beta}_{1}\hat{X}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$se(\hat{\beta}_{0}) = \hat{\sigma}^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \right]$$

$$se(\hat{\beta}_{1}) = \frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

* predicted values = fitted curve given x:

$$\hat{Y}(x) = \hat{\beta_0} + \hat{\beta_1} x$$

* residuals $\hat{\epsilon}$:

$$\hat{\epsilon}_i = Y_i - \hat{Y}_i = Y_i - \hat{\beta}_0 + \beta_1 X_i$$

* residual sum of squares RSS

$$RSS(\hat{\beta_0}, \hat{\beta_1}) = \sum_{i=1}^{n} \hat{\epsilon_i}^2$$

* mean square error $\hat{\sigma}^2$

$$\hat{\sigma}^2 = \frac{RSS(\hat{\beta_0}, \hat{\beta_1})}{n-2}$$

LOWESS & LOESS

* 1) specify the number of points within the range/window n * 2) neighbour weightings $w(x_k)$

$$w(x_k) = \left(1 - \left|\frac{x_i - x_k}{d}\right|^3\right)^3 \quad \text{d is the distance between } x_i$$
 and the k^{th} neighbouring point

* 3) for each range, estimate a regression function

LOWESS: $\hat{y_k} = a + bx_k$

LOESS: $\hat{y_k} = a + bx_k + cx_k^2$

* 4) robust weightings $G(x_k)$

$$G(x_k) = \begin{cases} \left(1 - \left(\frac{|y_i - \hat{y_i}|}{6median(|y_i - \hat{y_i}|)}\right)^2\right)^2, & \left|\frac{|y_i - \hat{y_i}|}{6median(|y_i - \hat{y_i}|)}\right| < 1 \text{if}(p - value \text{ using } t \text{ and } df \\ < 1 \text{if}(p - value < \alpha) \text{ reject } H_o \text{ and accept } H_a \text{ } \end{cases} \\ \left|\frac{|y_i - \hat{y_i}|}{6median(|y_i - \hat{y_i}|)}\right| \ge 1 * \alpha \text{ is the predetermined value of significance (usually 0.05)} \\ * \text{ if } t \text{ is of the importance of the importa$$

LOWESS:
$$\hat{y_k} = \sum_k w(x_k)G(x_k)(a + bx_k)^2$$

LOESS:
$$\hat{y_k} = \sum_{k} w(x_k)G(x_k)(a + bx_k + cx_k^2)^2$$

* 5) A series of new smoothed values is the result. The procedure can be repeated to get a more precise curve fitting.

Bootstrapping

- * bootstrap principle:
- $\sigma_{\text{(sampling w/replacemnt)}} = \sigma_{\text{(across samples)}}$
- * bootstrap iterations: B
- * original sample: $(x_i, y_i)_{i=1}^N$
- * bootstrap samples: $(x_{j(b)}, y_{j(b)})_{j \in I}$ for b = 1, ..., B,

 $I = \{1, ..., N\}$, and j is the index that is randomly sampled

* for each b, compute $\hat{y}_{i(b)}$ using LOWESS or any other model

* for each j row, the standard deviation σ_i^{boot} is

$$\sigma_j^{boot} = \sqrt{\frac{(\bar{\hat{y}_j} - \bar{\hat{y}_j})^2}{B-1}}$$

* sort i(b) by value from min to max \rightarrow get the 5th and 95th values to get a 90% confidence interval

Hypothesis Testing

T-test, one-sample

- * null hypothesis $H_o: \mu = \mu_0$
- * alternative hypothesis $H_a: \mu\{=, > or <\}\mu_0$
- * t-statistict standarices the difference between \bar{x} and μ_0

$$t = \frac{\bar{x} - \mu_0}{se(\bar{x})}$$

degrees of freedom df = n - 1

* p-value: probability that \bar{x} was obtained by chance given

* algorithm: read the t-distribution critical values (chart) for the p-value using t and df

* if (t is of the 'wrong' sign) $p - value = 1 - p - value_{chart}$

paired two-sample t-test

each value of one group corresponds to a value in the other

* algorithm: subtract the values for each sample to get one set of values and use μ_0 to perform a one-sample t-test

unpaired two-sample t-test

the two populations are independent

- * $H_o: \mu_1 = \mu_2$
- * $H_a: \mu_1 \{=, > or <\} \mu_2$
- * t statistict

$$t = \frac{\bar{x_1} - \bar{x_2}}{se(\bar{x_1}, \bar{x_2})}$$

degrees of freedom $df = (n_1 - 1) + (n_2 - 1)$

- * algorithm: same as in one-sample t-test
- * double the p-value for $H_a: \mu_1 \neq \mu_2$
- * Type I error α : probability of rejecting a true H_{α}
- * Type II error β : probability of failing to reject a false H_0

Notes

- * the OLS confidence intervals work asymptotically \rightarrow they assume the number of available observations is infinite, but it assumes normality
- * in LOWESS, n is not infinite, but it does not assume any distribution

Frequentist Inference

- * assumes the observed data comes from a probability distribution F
- * $x = (x_1, ..., x_n)$ is the data vector (aka. the sample's values) * $X = (X_1, ..., X_n)$ is the vector of random variables (aka. a sample, individual draws of F)
- * the expectation property $\theta = E_F(X_i)$ (aka. the true expectation value of any draw X_i)
- * $\hat{\theta}$ is the best estimate of θ

usually,

$$\hat{\theta} = t(x) \qquad \qquad t(x) = \bar{x}$$

where t(x) is the algorithm

* $\hat{\theta}$ is sample specific, is a realization of $\hat{\Theta} = t(x)$. Typically, μ is the expected value of

$$E_F(\hat{\Theta}) = \mu$$
 producing an estimate using $t(x)$ when x comes from F

- * Bias-Variance Trade-Off: models with lower bias will have higher variance and vice versa.
- * Bias: error from incorrect assumptions to make target function easier to learn (high bias \rightarrow missing relevant relations or under-fitting)
- * Variance: error from sensitivity to fluctuations in the dataset, or how much the target estimate would differ if different training data was used (high variance \rightarrow modelling noise or over-fitting)

$$bias = \mu - \theta$$
 (aka. expected - truevalues)
$$var = E_F\{(\hat{\Theta} - \mu)^2\}$$

Frequentist principles

* usually defines parameters with infinite sequence of trials \rightarrow hypothetical data sets $X^{(1)}, X^{(2)}, \dots$ generate infinite samples $\hat{\Theta}^{(1)}, \hat{\Theta}^{(2)}, \dots * 1$) Plug-in principle: relate the sample $se(\bar{x})$ with the true variance.

$$var_F(x) = va\hat{r}_F = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$
$$se(\bar{x}) = \left[\frac{var_F(x)}{n}\right]^{\frac{1}{2}}$$

* 2) Taylor series approximations: relate t(x) by local linear approximations (aka. compute $\bar{s}e(x)$ of the transformed estimator)

$$se(\hat{\theta}) = se(\bar{x}) \frac{d\hat{\theta}}{d\bar{x}} = se(\bar{x}) \frac{dt(x)}{d\bar{x}}$$

* 3.1) Parametric Families: given $x = (x_1, ..., x_n)$, the Likelihood Function L(x) (aka. the probability to observe x) is given by:

e.q. $\hat{\theta} = \mu$ for a normal distribution

$$P(x|N(\mu,\sigma^2)) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \prod_{i=1}^n e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = L(x)$$

 $P(x|N(\mu,\sigma^2)) = P(x_1|N(\mu,\sigma^2))...P(x_n|N(\mu,\sigma^2))$

$$L(x) = \prod_{i=1}^{n} f_{\theta}(x_i)$$

where f_{θ} is the density function

e.g.

* 3.2) MLE (maximum likelihood estimate): find $\hat{\theta}$ such that L(x) is maximized

$$\hat{\theta}^{\max} L(x) \Rightarrow {}^{\max}_{\mu} L(x) = \hat{\mu}^{MLE}$$

- * 4) Simulation and Bootstrap: estimate F as \hat{F} , then simulate values from \hat{F} to get a prior sample $\hat{\Theta}^{(k)} = t(x^{(b)})$ The empirical standard deviation of the $\hat{\Theta}'s$ is the frequentist estimate for $se(\hat{\theta})$
- * 5) Pivotal Statistics: Frequentist use pivotal statistics whenever they are available to conduct stat, tests e.a. t-test is a pivotal statistic as it does not depend on parameters the distribution might have.

Frequentist Optimality

Nevman-Pearson lemma optimum hypothesis-testing algorithm:

purpose: choose one of the two possible density functions for observed data x

- * null hypothesis density $f_0(x)$
- * alternative density $f_1(x)$

let L(x) be the Likelihood Ratio

$$L(X) = \frac{f_1(X)}{f_0(X)}$$

let the testing rule $t_c x$ be:

$$t_c x = \begin{cases} 1(picf_1(x)), & ln(L(X)) \ge c \\ 0(picf_0(x)), & ln(L(X)) < c \end{cases}$$

- * only rules in the $t_c x$ form can be optimal prblem Steps
- * 1) define the density functions $f_0(x_i)$ and $f_1(x_i)$ for $f_0(x)$ and $f_1(x)$ e.g.

$$\begin{array}{ccc} f_0 \sim N(\mu_0, \sigma^2_{\ 0}) & f_1 \sim N(\mu_1, \sigma^2_{\ 1}) \\ f_0 \sim N(0, 1) & f_1 \sim N(0.5, 1) \\ f_0(x_i) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x_i^2}{2}} & f_1(x_i) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x_i - 0.5^2}{2}} \\ ^* \ 2) \ \text{calculate the likelihood functions} \ f_0(X) \ \text{and} \ f_1(X) \end{array}$$

e.q.

$$f_0(X)$$
) = $\left[\frac{1}{\sqrt{2\pi}}\right]^n e^{-\frac{1}{2}\sum_{i=1}^n x_i^2}$

$$f_1(X) = \left[\frac{1}{\sqrt{2\pi}}\right]^n e^{-\frac{1}{2}\sum_{i=1}^n ((x_i - 0.5)^2)}$$

* 3) calculate the likelihood ratio

e.g.

$$L(X) = \frac{e^{-\frac{1}{2}\sum\limits_{i=1}^{n}((x_i - 0.5)^2)}}{e^{-\frac{1}{2}\sum\limits_{i=1}^{n}x_i^2}}$$

$$L(X) = e^{-\frac{1}{2} \left[n\bar{x} - \frac{n}{4} \right]}$$

* 4) remove all independent variables e.q.

$$e^{-\frac{1}{2}\left[n\bar{x}-\frac{n}{4}\right]}>c_1$$

$$-\frac{1}{2}\left[n\bar{x}-\frac{n}{4}\right]>C_2$$

$$n\bar{x}-\frac{n}{4}>c_3$$
 only the mean depends on the
$$\bar{x}>c_4$$

 $\bar{x} > c$

* 5) the most powerful hypothesis test at any type I error rate α is to compare c to a constant.

sample x

$$\alpha = P(\bar{x} > c|\mu = \mu_0)$$

$$\alpha = P((\bar{x} - \mu)\sqrt{n} > (c - \mu)\sqrt{n}|\mu = 0)$$

$$\alpha = 1 - P(\bar{x}\sqrt{n} \le c\sqrt{n}|\mu = 0)$$

$$\alpha = 1 - \Phi(c\sqrt{n})$$

 Φ is the cumulative density function (CDF) of a normal distribution $N(\mu_0, \sigma^2_0)$

* 6) calculate c

In general: e.g. $\Phi(c\sqrt{n}) = 1 - \alpha$ $c\sqrt{n} = \Phi^{-1}(1-\alpha)$ $c=0+\frac{1}{\sqrt{n}}\Phi^{-1}(1-\alpha) \qquad c=\mu_0+\frac{1}{\sqrt{n}}\Phi^{-1}(1-\alpha)$ * 7) calculate β , such that it's minimized

e.g.

$$\beta = P(\bar{x} \le c | \mu = \mu_1)$$

$$\beta = P((\bar{x} - \mu)\sqrt{n} \le (c - \mu)\sqrt{n} | \mu = 0.5)$$

$$\beta = \Phi((c - 0.5)\sqrt{n})$$

Notes and Details

* $1 - \beta$ is the power of the hypothesis test (probability of correctly rejecting $f_0(x)$)

Bayesian Inference

Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

* Bayes Rule (for one μ) can be written as:

where: μ : an unobserved point in the parameter space Ω x: a point in the sample space

 $g(\mu|x) = c_x L_x(\mu) g(\mu)$ c_x : normalization constant of the posterior distribution $q(\mu|x)$: posterior distribution $L_x(\mu)$: likelihood function $q(\mu)$: prior distribution

* Bayes Rule (for two μ_1, μ_2) can be written as:

$$\frac{g(\mu_1|x)}{g(\mu_2|x)} = \frac{g(\mu_1)}{g(\mu_2)} \frac{L_x(\mu_1)}{L_x(\mu_2)}$$

prior odds ratio times the likelihood ratio

$$L_x(\mu) = \prod_{i=1}^n e^{-\frac{1}{2}(x_i - \mu)^2}$$

Warm-up example

e.q. Find the probability of identical twins. The doctor says that $\frac{1}{2}$ of twin births are identical. A sonogram observed same sex. identical twins are of the same sex, while fraternals have 0.5 probability to be of the same sex.

$$\frac{g(identical|sameSex)}{g(fraternal|sameSex)} = \frac{g(identical)}{g(fraternal)} \times \frac{L_{identical}(sameSex)}{L_{fraternal}(sameSex)}$$

$$\frac{g(identical|sameSex)}{g(fraternal|sameSex)} = \frac{\frac{1}{3}}{1-\frac{1}{3}} \times \frac{1}{\frac{1}{2}}$$

Flaws in Frequentist Inference

- * In Frequentist, if the algorith changes (even if the data points stay exactly the same), the significance level is different for each algorithm.
- * On Bayesian inference, the algorithm stays the same \rightarrow the significance level does not change.

Frequentist:

prior Π

* attention is in choosing a

(specific question) in many

* only computes the expected

value and the variance (each

answer requires an specific

operates with one parameter

A Bayesian/Frequentist Comparison List

Bavesian:

* attention is in choosing an algorithm t(x)

- * operates only in one sample with the whole parameter space
- algorithm) * answers all posible questions * is more flexible than Bayes at once, since the posterior is a as we can come up with many distribution algorithms

Notes and Details

- * like in frequentist, the fundamental unit of inference is a family of probability densities.
- * Bayesian inferences assumes the knowledge of a prior density $g(\mu), \mu \epsilon \Omega$

Fisherian Inference and Maximum Likelihood Estimation

* The log-likelihood function is defined as:

$$\ell_x(\theta) : \text{gets the most likely}$$
 parameters to get the sample x
$$\ell_x(\theta) = Log\{f_\theta(x)\}$$

$$\begin{cases} f_\theta(x) : \text{likelihood function} \\ (\text{aka. family probability} \\ \text{densities}) \theta : \text{vector of} \end{cases}$$

for a fixed x and a variable θ parameters

The posterior odds ratio is the * The MLE is the value of $\theta \epsilon \Omega$ that maximizes $\ell_x(\theta)$

$$MLE: \hat{\theta} = {argmax \atop \theta \in \Omega} \{\ell_x(\theta)\}$$

- * Estimate functions of the true parameter: $\hat{\gamma} = T(\hat{\theta})$
- * Good frequentist properties (good bias & variance):

$$bias = \mu - E(\hat{\mu})$$

$$\mu : \text{true value of the parameter}$$

$$E(\hat{\mu}) : \text{expected value of the}$$

$$variance = \sum_{i=1}^{I} (\hat{\mu}^{(i)} - E(\hat{\mu}))^2$$

 $E(\hat{\mu})$: expected value of the estimate

 $variance = E_F\{(\hat{\mu}^{(i)} - E(\hat{\mu}))^2\}$

* Reasonable Bayesian justification

$$P(\theta|x) = c_x \Pi(\theta) e^{\ell_x(\theta)} \qquad \begin{array}{l} P(\theta|x) : \text{posterior} \\ c_x : \text{constant} \\ \Pi(\theta) : \text{prior} \\ e^{\ell_x(\theta)} : \text{maximum likelihood} \\ \text{estimation} \end{array}$$

- * Fisherian inference assumes a flat prior (aka. unknown prior), so that the MLE $\hat{\theta}^{MLE}$ is a maximizer of $P(\theta|x)$. (The MLE is the highest point of the posterior distribution)
- * As the algorithm does not change, the significance level is not affected by unexpected changes in the algorithm.

e.q. - for a Normal density function

- * let $\theta = (\mu, \sigma^2)$
- * density function $f_{\theta} = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{x_i-\mu}{\sigma}\right)^2}$ * Since: $L(x) = \prod_{1=1}^n f_{\theta}(x_i)$ Log-Likelihood function

$$\ell_x(\theta) = \sum_{i=1}^n Log\{f_{\theta}(x_i)\} = \sum_{i=1}^I \ell_x(\theta)$$

$$\mu^{\hat{MLE}} = \bar{x}$$

$$\sigma^{MLE} = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}{n}}$$

* MLE can cause over-fitting identification problems when we fit a lot of parameters in θ (it would become very specific to our sample \rightarrow may not represent the population)

Fisher Information and the MLE

Log-Likelihood Function

$$\ell_x(\theta) = Log f_{\theta}(x)$$

Score Function

how higher or lower is the likelihood function value of the sample as θ varies?

$$\dot{\ell}_x(\theta) = \frac{\dot{f}_{\theta}(x)}{f_{\theta}(x)}$$

Expectation of $\dot{\ell}_x(\theta)$

f(x): density function

$$E(x) = \int_{x} x f(x) \, dx$$

$$E[\dot{\ell}_x(\theta)] = 0$$

Variance of $\ell_x(\theta)$

$$V[x] = \int_{x} [x - E(x)]^2 f(x) dx$$

$$V[\dot{\ell}_x(\theta)] = \int_{T} \left[\dot{\ell}_x(\theta)\right]^2 f_{\theta}(x) dx$$

Fisher Information I_0

$$I_0 = V[\dot{\ell}_x(\theta)]$$

$$\ddot{\ell}_x(\theta) = \frac{\ddot{f}_{\theta}(x)}{f_{\theta}(x)} - \left(\frac{\dot{f}_{\theta}(x)}{f_{\theta}(x)}\right)^2 \qquad E(\ddot{\ell}_x(\theta)) = -I_0$$

MLE estimator of $\hat{\theta}$: $\hat{\theta}^{MLE}$

$$\hat{\theta}^{MLE} \sim N\left(\theta, \frac{1}{I_0}\right)$$

e.q. for a normal dist.

let $x_i \sim N(\theta, \sigma^2)$

* 1) compute $\ell_{\tau}(\theta)$

density function
$$f_{\theta}(x) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

likelihood function
$$\ell_x(\theta) = -\frac{1}{2} \sum_{i=1}^n \frac{(x_i - \theta)^2}{\sigma^2} - \frac{n}{2} Log(2\pi\sigma^2)$$

* 2) score function $\dot{\ell}_x(\theta) = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \theta)$

$$\ddot{\ell}_x(\theta) = -\frac{n}{\sigma^2}$$

* 3) compute I_0

as $E(\ddot{\ell}_x(\theta)) = -I_0$, Fisher Information $I_0 = \frac{n}{\sigma^2}$

* 4) compute $\hat{\theta}^{MLE}$

$$E(\dot{\ell}_x(\theta)) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \theta) = 0$$
, such that

$$\sum_{i=1}^{n} x_i = n\theta \Rightarrow \hat{\theta}^{MLE} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}$$

* 5) compute $se(\hat{\theta}^{MLE})$

$$\hat{\theta}^{MLE} \sim N\left(\theta, \frac{1}{I_0}\right) \Rightarrow \hat{\theta}^{MLE} \sim N\left(\theta, \frac{\sigma^2}{n}\right)$$

$$se(\hat{\theta}^{MLE}) = \frac{1}{I_0} = \frac{\sigma^2}{n}$$

* 6) $se(\hat{\theta}^{MLE}) = \frac{1}{nI_0}$, by Cramer-Rao lower bound. The MLE has variance at least as small as the best unbiased estimate of θ

Conditional Inference

e.g. An iid sample $x \sim N(\theta, 0)$ has produced estimate $\hat{\theta} = \bar{x}$.

a=25 was declined

$$n = \begin{cases} 25, & \text{prob } \frac{1}{2} \\ 100, & \text{prob } \frac{1}{2} \end{cases}$$

* Classical Frequentist rational

$$sd(\bar{x}) = \sigma_{\bar{x}} = \sqrt{\frac{1}{2} \frac{\sigma^2}{100} + \frac{1}{2} \frac{\sigma^2}{25}} = 0.158$$

* Conditional Inference rational:

$$sd(\bar{x}) = \sqrt{\frac{\sigma^2}{25}} = 0.2$$

- * use the likelihood function (based on observation) without the prior
- * "just take the sample you have"
- 1) more relevant inferences (w/what really happened)
- 2) simpler inferences (no correlation between the result and the sample size selection)
- e.g. Observed Fisher Information $I_{(x)}$

$$I_{(x)} = -\ddot{\ell_x}(\hat{\theta}^{MLE})$$

In large samples $I_{(x)} = I_0$. Use $I_{(x)}$ in small samples

$$E[I_{(x)}] = nI_0$$

* 1) compute the log-likelihood

$$f_{\theta}(x) = \frac{1}{\pi} \frac{1}{1 + (x + \theta)^2} \Rightarrow \text{Cauchi density function}$$

$$\ell_x(\theta) = Log\left(\frac{1}{\pi}\right) + Log(1) - Log(1 + (x + \theta)^2)$$

* 2) get its derivative

$$\dot{\ell}_x(\theta) = \frac{2(x-\theta)}{1 + (x+\theta)^2}$$

* 3) get the 2nd derivative

$$\ddot{\ell}_x(\theta) = \frac{-2(1 + (x - \theta)^2) + 4(x - \theta)^2}{(1 + (x - \theta)^2)^2}$$

* 4) get the observed fisher information

$$I_{(x)} = -\ddot{\ell_x}(\hat{\theta}^{MLE})$$

- * 5) get the variance of the estimate, even if the distribution does not have a defined variance or expected value
- for 10000 samples of size n with $\theta=0,$ compute $1/I_{(x)}$ and $\hat{\theta}^{MLE}$
- group the 10000 $\hat{\theta}^{MLE}$ values according to quantiles of $1/I_{(x)}$ and calculate the empirical variance for each sample.
- * for all samples, the unconditional variance $1/nI_0$ is the same because all the samples are of the same size.
- * on the other hand, $I_{(x)}$ will vary from sample to sample $(\hat{\theta}^{MLE}$ is different for each sample). * $I_{(x)}$ is related to the variance.

Permutation and Randomization

- * when performing a t-test, it's assumed that the data samples come from a normal distribution.
- * small samples may follow a different distribution. Randomization removes the normality assumption
- * Randomization is: taking random groups from the data that are of the same size as the tested groups.
- \ast 1) compute the t-statistic for each randomly sampled pair of groups
- * 2) get the t-statistic histogram

Utilizing random generated groups, it's expected the t-values not to be very high \to construct an empirical distribution of t-values

Parametric Models and Exponential Families Univariate Families

Name	Density	X	Ω	Е
Notation				Var
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$	$\mathbb{R}^{(1)}$	$\mu \epsilon \mathbb{R}^{(1)}$ $\sigma^2 \epsilon \mathbb{R}^+$	$\mu \\ \sigma^2$

- * has two parameters, but they are very specific. μ is the location parameter, and σ^2 is the wide/narrow parameter
- * model quatities that take positive and/or negative continuous values, if the distribution is symetric and if there are no too many extreme values

Name	Density	X	Ω	E
Notation				Var
Poisson $Poi(\lambda)$	$\frac{e^{-\lambda\lambda^x}}{x!}$	\mathbb{N}_0	$\lambda \epsilon \mathbb{R}^+$	$\lambda \\ \lambda$

- * if the mean grows/shrinks the variance also grows/shrinks proportionally
- * λ must stay positive and is the interval of time of an exponential distribution, which is continuous \rightarrow the expected number of successes can have decimals
- * model a quantity that is discrete, it's the number of counts of something
- * It's not very flexible as only has one parameter to tweak

	Name	Density	X	Ω	E
	Notation				Var
ĺ	Binomial	$\binom{n}{x} \theta^n (1-\theta)^{n-x}$	{0,	0 ≤	$n\theta$
	$Bi(n, \theta)$		$,n\}$	$\theta \leq 1$	$n\theta(1-\theta)$

* model the count of successes as Poisson, but we know the number of trials n

Name	Density	X	Ω	Е
Notation				Var
Gamma	$\frac{x^{\nu-1}e^{-\frac{x}{\sigma}}}{\sigma^{\nu}\Gamma(\nu)}$	\mathbb{R}^+	$\nu > 0$	$\sigma \nu$
$Ga(\nu, \sigma)$	()		$\sigma > 0$	$\sigma^2 \nu$

* the Gamma is used to model positive quantities. its common to use the inverse Gamma to model variances.

Name	Density	X	Ω	E
Notation				Var
Beta	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	$0 \le x \le 1$	$\alpha > 0$	$\frac{\alpha}{\alpha + \beta}$
$Be(\alpha,\beta)$			$\beta > 0$	var

$$var = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

- * as x goes from 0 to 1, it's mostly used to talk about probabilities (aka. probability distribution)
- * both the Gamma and Beta have two parameters that convey some degree of flexibility
- * Gamma is flexible but not as flexible as Beta
- * The Binomial can approximate a Poisson with a large n and small probability.

Osamu Katagiri - A01212611, linkedin.com/osamu-katagiri/