ANLIS - Spick

Johanna Koch

Contents

1	Grui	ndlagen 5	
	1.1	Wurzeln	,
	1.2	Potenzen	,
	1.3	Brüche	j
	1.4	Logarithmen	;
	1.5	Binome	;
		1.5.1 1. Binom	;
		1.5.2 2. Binom	;
		1.5.3 3. Binom	
	1.6	Quadratische Gleichung	;
	1.7	Ableitungen/Integrationen	
	1.8	Beispiele	
	1.0	beispiele	
2	SW	01 Funktionen 10)
	2.1	Lineare Funktion)
	2.2	Polynomfunktion)
	2.3	Quadratische Funktionen)
	2.4	Exponentialfunktion)
	2.5	Logarithmusfunktion)
_	G) 4 /		
3		22 Folgen und Reihen 11	
	3.1	Arithmetische Folgen und Reihen	
		3.1.1 Beispiele von Folgen	
		3.1.2 Summe der Glieder einer AF	
		3.1.3 Nützliche andere Formeln	
	3.2	Geometrische Folgen und Reihen	
	3.3	Rechnen mit Folgen, Eigenschaften	,
4	SWI	03 Grenzwerte und Stetigkeit 13	į
•	4.1	Grenzwert	
	7.1	4.1.1 Linksseitiger Grenzwert	
		4.1.2 Rechtsseitiger Grenzwert	
		4.1.3 Zweiseitiger Grenzwert	
		4.1.5 Zweiseitiger Grenzwert	

		4.1.5 Grundlegende Grenzwerte Theorem	13
		4.1.6 Rechnen mit Grenzwerten	14
		4.1.7 Squeezing-Theorem	15
	4.2	Stetigkeit	15
		4.2.1 Grenzwert einer Funktion von x - Theorem	15
		4.2.2 Rechenregeln	16
		4.2.3 Eigenschaften stetiger Funktionen	16
		4.2.4 Regula Falsi	16
	4.3	Beispiele	17
		4.3.1 Geschickt erweitern	17
		4.3.2 GW Polynom	17
		4.3.3 GW Quotient	17
5	SW (5.1	04 Differentialrechnung I – Tangente und Ableitung	18 18
	5.1	Die Sekante	
	F 0	5.1.1 Sekante durch P und Q	18
	5.2	Tangente und Ableitung	18
	- 0	5.2.1 Beispiel Quadratische Funktion	18
	5.3	Ableitung der Potenzfunktion	19
		5.3.1 Beispiel Tangente	19
		5.3.2 Newton-Raphson Verfahren	19
	5.4	Einige Ableitungsregeln	20
		5.4.1 Theorem Faktorregel	20
		5.4.2 Theorem Produkteregel	20
	5.5	Quotientenregel	20
	5.6	Formeln	20
		5.6.1 Ableitungen	21
6	SW	05 Differentialrechnung II — Kettenregel	22
	6.1	Einseitige Ableitung	22
	6.2	Kettenregel	22
	6.3	Umkehrfunktion	22
	6.4	Ableitung Logarithmus	23
	6.5	Ableitung Wurzel	23
	6.6	Ableitungen Arkusfunktionen	23
	6.7	Ableitungen Areafunktionen	23
7	SWI	06 Differentialrechnung III – Differential, höhere Ableitungen	24
•	7.1	Implizite Ableitung	24
		7.1.1 Beispiel	24
		7.1.2 y nach x	25
	7.2	Differential	25
		7.2.1 Beispiel Differential	26
		7.2.2 Rechenregeln für Differentiale	26
	7.3	Monotonie	26
		7.3.1 Lokale oder relative Extrema	27

	7.4	Höhere Ableitungen	27
	7.5	Krümmung	27
8	SWO	07 Differentialrechnung IV – Kurvendiskussion, Optimierung	28
	8.1	Parameterdarstellung von Kurven	28
		8.1.1 Beispiel	28
		8.1.2 Ableitung eines Vektors	29
		8.1.3 Ableitung einer in Parameterform gegebenen Funktion	29
		8.1.4 Krümmungskreismittelpunkt	29
	8.2	Kurven in Polarkoordinaten	30
		8.2.1 Ableitung einer in Polarkoordinaten gegebene Funktion	30
	8.3	Kurvendiskussion	31
		8.3.1 Symmetrien Beispiele	31
		8.3.2 Wende- und Sattelpunkte	32
		8.3.3 Beispiel	32
	8.4	Optimierungsproblem - Allgemeines Vorgehen	33
		8.4.1 Brechungsgesetz	33
	8.5	Regel von de l'Hôpital	33
		8.5.1 Theorem - Regel von de l'Hôpital für unbestimmte Ausdrücke	
		der Form 0/0	33
		8.5.2 Vorgehen	33
		8.5.3 Vorgehen für weitere unbestimmte Ausdrücke $\dots \dots \dots$	34
n	CVV	08 Integralrechnung I – Flächenberechnung und Integral	25
9	SVV	o integralieciniung i – i lachembereciniung unu integral	35
9	9.1	Stammfunktion	35
9		Stammfunktion	
9	9.1	Stammfunktion	35
9	9.1 9.2	Stammfunktion	35 35
9	9.1 9.2	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand	35 35 36
9	9.1 9.2	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand	35 35 36 36 36
	9.1 9.2 9.3	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen	35 35 36 36 36 37
	9.1 9.2 9.3 9.4	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen 9 Integralrechnung II – unbestimmtes Integral und Hauptsatz	35 36 36 36 37
	9.1 9.2 9.3 9.4 SW0 der l	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen D9 Integralrechnung II – unbestimmtes Integral und Hauptsatz	35 36 36 36 37 37
	9.1 9.2 9.3 9.4 SW0 der l	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen 9 Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion	35 36 36 36 37 38
	9.1 9.2 9.3 9.4 SW0 der l	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen Of Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion 10.1.1 Theorem - unbestimmte Integrale	35 36 36 36 37 38 38
	9.1 9.2 9.3 9.4 SW(der 10.1	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen Of Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion 10.1.1 Theorem - unbestimmte Integrale 10.1.2 Beispiel	35 36 36 36 37 38 38 38
	9.1 9.2 9.3 9.4 SWO der 1 10.1	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen Of Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion 10.1.1 Theorem - unbestimmte Integrale 10.1.2 Beispiel Delta × ändern	35 36 36 36 37 38 38 38 39 39
	9.1 9.2 9.3 9.4 SWO der 1 10.1	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen 9 Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion 10.1.1 Theorem - unbestimmte Integrale 10.1.2 Beispiel Delta x ändern Fundamentalsatz der Differential- und Integralrechnung Theorem	35 36 36 36 36 37 38 38 38 39 39
	9.1 9.2 9.3 9.4 SWO der 1 10.1	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen 9 Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion 10.1.1 Theorem - unbestimmte Integrale 10.1.2 Beispiel Delta x ändern Fundamentalsatz der Differential- und Integralrechnung Theorem 10.3.1 Beispiele	35 36 36 36 37 38 38 38 39 39 40
	9.1 9.2 9.3 9.4 SWO der 1 10.1	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen Of Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion 10.1.1 Theorem - unbestimmte Integrale 10.1.2 Beispiel Delta x ändern Fundamentalsatz der Differential- und Integralrechnung Theorem 10.3.1 Beispiele Berechnung bestimmter Integrale mit Stammfunktion	35 35 36 36 36 37 38 38 39 39 40 40
	9.1 9.2 9.3 9.4 SWO der 1 10.1 10.2 10.3	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen O9 Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion 10.1.1 Theorem - unbestimmte Integrale 10.1.2 Beispiel Delta x ändern Fundamentalsatz der Differential- und Integralrechnung Theorem 10.3.1 Beispiele Berechnung bestimmter Integrale mit Stammfunktion 10.4.1 Beispiel	35 36 36 36 37 38 38 39 39 40 40 40
	9.1 9.2 9.3 9.4 SWO der 1 10.1 10.2 10.3	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen Of Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion 10.1.1 Theorem - unbestimmte Integrale 10.1.2 Beispiel Delta x ändern Fundamentalsatz der Differential- und Integralrechnung Theorem 10.3.1 Beispiele Berechnung bestimmter Integrale mit Stammfunktion 10.4.1 Beispiel 1. Substitutionsregel für unbestimmte Integrale - Theorem	35 35 36 36 36 37 38 38 39 39 40 40 41
	9.1 9.2 9.3 9.4 SWO der 1 10.1 10.2 10.3 10.4 10.5	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen Of Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion 10.1.1 Theorem - unbestimmte Integrale 10.1.2 Beispiel Delta × ändern Fundamentalsatz der Differential- und Integralrechnung Theorem 10.3.1 Beispiele Berechnung bestimmter Integrale mit Stammfunktion 10.4.1 Beispiel 1. Substitutionsregel für unbestimmte Integrale - Theorem 10.5.1 Beispiele	35 36 36 36 37 38 38 39 39 40 40 41 41
	9.1 9.2 9.3 9.4 SWO der 1 10.1 10.2 10.3 10.4 10.5	Stammfunktion Umkehrung der Differentiation Bestimmtes Integral Flächenberechnung 9.3.1 Beispiel Rechter Rand 9.3.2 Beispiel Linker Rand Summen vereinfachen Of Integralrechnung II – unbestimmtes Integral und Hauptsatz Infinitesimalrechnung Unbestimmtes Integral und Flächenfunktion 10.1.1 Theorem - unbestimmte Integrale 10.1.2 Beispiel Delta x ändern Fundamentalsatz der Differential- und Integralrechnung Theorem 10.3.1 Beispiele Berechnung bestimmter Integrale mit Stammfunktion 10.4.1 Beispiel 1. Substitutionsregel für unbestimmte Integrale - Theorem	35 35 36 36 36 37 38 38 39 39 40 40 41

11	SW1	0 Integralrechnung III – Integrationstechnik	43
	11.1	2. Substitutionsregel	43
		11.1.1 Theorem - 2. Substitutionsregel für unbestimmte Integrale .	43
		11.1.2 Beispiele	44
		11.1.3 Theorem - 2. Substitutionsregel für bestimmte Integrale	44
		11.1.4 Beispiele	45
	11.2	Häufige Integralsubstitutionen	46
	11.3	Theorem - Partielle Integration - Produktintegration	47
		11.3.1 Beispiel	48
		11.3.2 Rekursionsbeziehung - Beispiel	48
		11.3.3 Nur einen Faktor - Beispiel	49
		11.3.4 Mehrfache partielle Integration - Beispiel	49
	11.4	Theorem - Produktintegration für bestimmte Integrale	49
		11.4.1 Beispiele	49
	11.5	Mittelwerte	50
		11.5.1 Theorem - lineare Mittelwert	50
		11.5.2 Beispiel	50
		11.5.3 Theorem - quadratische Mittelwert	51
		11.5.4 Theorem - Mittelwertsatz der Integralrechnung	51
12	SW1	1 Integralrechnung IV- Anwendungen	52
		Trapezregel	52
		Trapezregel - kurz	52
		12.2.1 Beispiel	53
	12.3	Simpsonregel - kurz	53
		12.3.1 Beispiel	53
	12.4	Definition Bogenlänge	53
		12.4.1 Beispiel	54
	12.5	Kurven in Polarform	54
		12.5.1 Beispiel	54
	12.6	Kurven in Parameterform	_
		Beispiel	

Grundlagen

1.1 Wurzeln

$$\sqrt{x} = x^{\frac{1}{2}}$$

$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$

$$\sqrt{a} + \sqrt{b} \neq \sqrt{a + b}$$

$$\sqrt{a^2 \times b} = a \times \sqrt{b}$$

$$\sqrt[b]{a^b} = (a^b)^{\frac{1}{b}} = a$$

$$\sqrt[a]{x^b} = x^{\frac{b}{a}}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt{a} - \sqrt{b} \neq \sqrt{a - b}$$

$$\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

$$\frac{1}{\sqrt[n]{a}} = a^{-\frac{1}{n}}$$

1.2 Potenzen

$$x^{-a} = \frac{1}{x^a}$$

$$x^a \times x^b = x^{a+b}$$

$$x^{ab} = x^{a \times b}$$

$$\frac{a}{bx^{-c}} = \frac{a}{b}x^{-c}$$
$$\frac{x^a}{x^b} = x^{a-b}$$
$$\frac{a^x}{a^{x+1}} = \frac{1}{a}$$

1.3 Brüche

$$\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{cb}{bd} = \frac{ab+cb}{bd}$$

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{1}{x} = x^{-1}$$

$$\frac{1}{x^3} = x^{-3}$$

$$\frac{x}{5} = \frac{1}{5}x$$

$$\frac{a}{b} - \frac{c}{d} = \frac{ad}{bd} - \frac{cb}{bd} = \frac{ab - cb}{bd}$$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$$

$$\frac{1}{x^2} = x^{-2}$$

$$\frac{4}{3}x^{-4} = \frac{4}{3x^{-4}}$$

$$\frac{x^4}{9} = \frac{1}{9}x^4$$

1.4 Logarithmen

$$y = log_a(x) <=> x = a^y$$
$$\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$$

$$\log_b(xy) = \log_b(x) + \log_b(y)$$
$$\log_b(x^y) = y \log_b(x)$$

1.5 Binome

1.5.1 1. Binom

$$(a+b)^2 = a^2 + 2ab + b^2$$

1.5.2 2. Binom

$$(a-b)^2 = a^2 - 2ab + b^2$$

1.5.3 3. Binom

$$(a+b)(a-b) = a^2 - b^2$$

1.6 Quadratische Gleichung

Für:

$$ax^2 + bx + c = 0$$

Dann:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1.7 Ableitungen/Integrationen

Wenn integrieren, +C nicht vergessen!

f(x)	f'(x)
\overline{x}	1
x^a	ax^{a-1}
$\frac{x^{a+1}}{a+1}$	x^a
$\sqrt[n]{x^m} = x^{\frac{m}{n}}$	$\frac{m}{n}x^{\frac{m}{n}-1}, a \neq -1$
e^x	e^x
a^x	$(\ln(a))a^x(a<0)$
$rac{a^x}{ln(a)}$	a^x
$\ln(x) - x$	$\ln x$
$\ln x $	$\frac{1}{x} = x^{-1}$
$a \times ln(x)$	$\frac{a}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$
$-\cot x$	$\frac{1}{\sin^2 x}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}} +$
$-\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\arctan x$	$\frac{1}{1+x^2}$
$-\arctan x$	$\frac{1}{1+x^2}$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\frac{1}{\cosh^2 x} = 1 + \tanh^2 x$
$\operatorname{arsinh} x$	$\frac{1}{\sqrt{1+x^2}}$
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{1-x^2}}$
$\operatorname{artanh} x$	$\frac{1}{1-x^2}$
$\coth x$	$-\frac{1}{\sinh^2 x}$
* falls $x \in (-1,1)$	

1.8 Beispiele

$$\frac{2}{3\sqrt[4]{x^5}} = \frac{2}{3x^{-\frac{5}{4}}} = \frac{2}{3}x^{-\frac{5}{4}}$$

SW01 Funktionen

2.1 Lineare Funktion

$$f(x) = ax + b$$

 $\mathsf{a} = \mathsf{Steigung}$

2.2 Polynomfunktion

Grad der Funktion: Höchster Exponent von x. Nullstellen: Maximal so viele wie der Grad der Funktion.

$$f(x) = ax^n + bx^{n-1} + cx^{n-2}...$$

2.3 Quadratische Funktionen

Polynomfunktion zweites Grades

$$f(x) = ax^2 + bx + c$$

2.4 Exponentialfunktion

$$f(x) = a \times b^x$$

2.5 Logarithmusfunktion

Umkehrfunktion von Exponentialfunktion

$$f(x) = log_b(x)$$

SW02 Folgen und Reihen

3.1 Arithmetische Folgen und Reihen

$$(a_n) = a_1, a_2, a_3, ..., a_n, ...$$

Differenz d zweier beliebiger aufeinanderfolgender Glieder a_n, a_{n+1} ist konstant.

Eine AF ist eindeutig beschrieben durch zwei Grössen:

- ullet beliebiges Glied a_n und Differenz d
- zwei beliebige Glieder a_n und a_{n+k}

Bildungsgesetz: Funktionsvorschrift nach welcher aus n das n-Glied (a_n) berechnet werden kann.

3.1.1 Beispiele von Folgen

$$(a_n)=-rac{1}{2},-rac{1}{4},-rac{1}{8},\dots$$
 Bildungsgesetz: $a_n=-rac{1}{2n}$

$$(a_n)=1^3,2^3,3^3,\dots$$
 Bildungsgesetz: $a_n=n^3$

$$(a_n)=0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$$
 Bildungsgesetz: $a_n=\frac{n-1}{n}$

3.1.2 Summe der Glieder einer AF

$$\sum_{k=1}^{n} a_k = na_1 + d\frac{n(n-1)}{2} = n\frac{a_1 + a_n}{2}$$

Wobei bei " $n\frac{a_1+a_n}{2}$ " a_1 das erste Glied ist, a_n das letzte, n die Anzahl Glieder und 2 den Mittelwert vom ersten und letzten Glied bildet.

3.1.3 Nützliche andere Formeln

Gegeben:
$$a_n = v$$
, $a_{n+x} = z$

Gesucht
$$d$$
: $d = \frac{z-v}{(n+x)-n}$

3.2 Geometrische Folgen und Reihen

Die geometrische Folge ist dadurch charakterisiert, dass der Quotient q zweier beliebiger aufeinanderfolgender Glieder a_n und a_{n+1} konstant ist.

$$a_{n+1} = qa_n, n = 1, 2$$

$$q = \frac{a_{n+1}}{a_n}$$

Eine GF ist eindeutig beschrieben durch zwei Grössen, entweder:

- durch ein beliebiges Glied a_n und den Quotienten q
- durch zwei beliebige Glieder a_n und a_{n+k}

3.3 Rechnen mit Folgen, Eigenschaften

• Folge (a_n) multipliziert man mit einer reellen Zahl λ , indem man jedes Glied der Folge mit dieser Zahl multipliziert:

$$\lambda(a_n) = (\lambda a_n)$$

• Zwei Folgen (a_n) und (b_n) addiert man, indem man entsprechende Glieder addiert:

$$(a_n) + (b_n) = (a_n + b_n)$$

- Eine Folge heisst **konstante Folge**, falls $a_n=c\in\mathbb{R}, \forall n\in\mathbb{N}$ AF ist konstant wenn d=0, GF ist konstant wenn q=1
- Eine Folge (a_n) ist **streng monoton zunehmend/abnehmend** falls $(a_{n+1}>a_n)$ bzw $(a_{n+1}< a_n)$
- Eine Folge (a_n) ist **beschränkt** (höhö) falls eine positive Zahl c existiert mit $|a_n| \leq c, \forall n$: alle Glieder der Folge liegen im Graphen unter einem Teppich der Breite 2c. Anderfalls heisst die Folge (a_n) **unbeschränkt**

SW03 Grenzwerte und Stetigkeit

4.1 Grenzwert

$$\lim_{x \to a} f(x) = L \text{ oder } f(x) \to L, \text{ falls } x \to a.$$

4.1.1 Linksseitiger Grenzwert

$$\lim_{x \to a^-} f(x)$$

4.1.2 Rechtsseitiger Grenzwert

$$\lim_{x \to a^+} f(x)$$

4.1.3 Zweiseitiger Grenzwert

Der zweiseitige Grenzwert existiert genau dann, wenn links- und rechtsseitiger Grenzwert exisitieren und diese gleich sind:

$$\lim_{x \to a} f(x) = L$$
 genau dann, wenn $\lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x)$

4.1.4 Uneigentliche Grenzwerte

Grenzwert wächst bis über alle Grenzen wenn man \boldsymbol{x} gegen \boldsymbol{a} gehen lässt:

$$\lim_{x \to a} f(x) = \infty$$

4.1.5 Grundlegende Grenzwerte Theorem

$$\lim_{r \to a} k = k$$

$$\lim_{x\to a} x = a$$

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

4.1.6 Rechnen mit Grenzwerten

Theorem Summe

Falls $a \in \mathbb{R} \cup \{-\infty, +\infty\}, \mu, \nu \in \mathbb{R}$ und

$$\lim_{x \to a} f(x) = L_1$$
 und $\lim_{x \to a} g(x) = L_2$ dann gilt:

Der GW einer Summe/Differenz ist gleich der Summe/Differenz der GWs; Konstanten kommen vor den GW:

$$\lim_{x \to a} [\mu f(x) \pm \nu g(x)] = \mu \lim_{x \to a} f(x) \pm \nu \lim_{x \to a} g(x) = \mu L_1 \pm \nu L_2$$

Theorem Produkt

Der GW eines Produkts ist gleich dem Produkt der GWs:

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x) = L_1 L_2$$

Theorem Quotient

Ist $L_2 \neq 0$ und g in einer Umgebung von a verschieden von 0, dann ist der **GW** des **Quotienten gleich dem Quotienten der GWs**:

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{\substack{x \to a \\ x \to a}} f(x) = \frac{L_1}{L_2}$$

Siehe 4.3.3 GW Quotient für Beispiel.

Folgerungen Exponent

$$\lim_{x \to a} x^n = (\lim_{x \to a} x)^n = a^n \qquad \lim_{x \to a} [f(x)]^n = (\lim_{x \to a} f(x))^n$$

Folgerungen Polynom

Für ein Polynom $p(x)=c_0+c_1x+\ldots+c_nx^n=\sum\limits_{k=0}^nc_kx^k$ gilt:

$$\lim_{x \to a} p(x) = c_0 + c_1 x + \dots + c_n x^n = p(a)$$

Siehe 4.3.2 GW Polynom für Beispiel.

Folgerungen Quotient

Für eine rationale Funktion $r(x)=\frac{p(x)}{q(x)}$ (dabei sind p(x) und q(x) Polynome) und eine $a\in\mathbb{R}$ gilt:

- (a) Falls $q(a) \neq 0$, dann ist $\lim_{x \to a} r(x) = r(a)$
- (b) Falls q(a) = 0 und $p(a) \neq 0$, dann existiert $\lim_{x \to a} r(x)$ nicht.
- (c) Falls q(a)=0 und p(a)=0, dann kann der GW existieren, muss aber nicht! Siehe 4.3.3 GW Quotient für Beispiel.

4.1.7 Squeezing-Theorem

Gilt für drei Funktionen f, g und h in einer Umgebung von c (evt. mit Ausnahme von c)

$$g(x) \leq f(x) \leq h(x) \text{ und } \lim_{x \rightarrow c} g(x) = \lim_{x \rightarrow c} h(x) = L$$

 $\text{dann gilt auch } \lim_{x \to c} f(x) = L$

4.2 Stetigkeit

Salopp: Eine Funktion f heisst stetig, wenn man deren Graphen zeichnen kann, ohne den Stift absetzen zu müssen.

Genauer ist eine Funktion f stetig in a, falls:

- Die Funktion f dort existiert, d.h. falls f(a) definiert ist.
- · Links- und rechtsseitiger Grenzwert existieren und gleich sind

$$\lim_{x\to a^-}f(x)=\lim_{x\to a^+}f(x)=\lim_{x\to a}f(x)$$

• Die genannten Grenzwerte mit dem Funktionswert übereinstimmen.

Zusammengefasst: f ist stetig in a, falls

$$\lim_{x \to a} f(x) = f(a)$$

Eine Funktion heisst stetig, falls sie überall, d.h. $\forall x \in D(f)$ stetig ist.

4.2.1 Grenzwert einer Funktion von x - Theorem

Sei $a\in\mathbb{R}\cup\{-\infty,+\infty\}$. Gilt dann $\lim_{x\to c}g(x)=L$ und ist f im Punkt L stetig, dann gilt:

$$\lim_{x\to c} f(g(x)) = f(\lim_{x\to c} g(x))$$

Insbesondere gilt zB

$$\lim_{x\to c}|g(x)|=|(\lim_{x\to c}g(x)|$$

falls $\lim_{x\to c} g(x)$ existiert!

4.2.2 Rechenregeln

- Summe und Differenz stetiger Funktionen sind stetig.
- Der Quotient zweier stetiger Funktionen ist dort stetig, wo der Nenner nicht verschwindet.
- Polynome $p(x) = \sum_{k=0}^{n} a_k x^k$ sind stetig.
- Rationale Funktionen $r(x)=rac{p(x)}{q(x)}$ sind dort stetig, wo das Nennerpolynom q(x) nicht verschwindet.
- Sinus- $(\sin x)$ und Kosinusfunktion $(\cos x)$ sind stetig.
- Der Tangens $(\tan x = \frac{\sin x}{\cos x})$ ist stetig, falls $\cos x \neq 0$, dh falls $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$.
- Exponential- und Logarithmusfunktionen sind in ihrem Definitionsbereichen stetig.
- Zusammensetzung stetiger Funktionen ist stetig.
- Eine zusammegesetzte Funktion kann dort unstetig sein, wo eine der verwendeten Funktionen nicht stetig ist.

4.2.3 Eigenschaften stetiger Funktionen

Theorem Zwischenwertsatz

Ist f im Interval [a,b] stetig, dann nimmt f jeden Wert zwischen f(a) und f(b) (inklusive) mindestens einmal an.

Corollary - Nullstellensatz von Bolzano

Ist f auf [a,b] stetig und gilt f(a)f(b) < 0, dann besitzt f in [a,b] wenigstens eine Nullstelle, dh. $\exists x \in [a,b]$ mit f(x) = 0

In anderen Worten: Wenn eine Funktion im Bereich [a,b] stetig ist und es vom Intervall a zu b einen Vorzeichenwechsel gibt, dann gibt es mindestens eine Nullstelle.

4.2.4 Regula Falsi

Basierend auf dem Nullstellensatz von Bolzano.

Der Schnittpunkt der Sekante (grün) durch (a,f(a)) und (b,f(b)) mit der x-Achse ergibt eine erste Näherung für die Nullstelle (NS) von f:

$$x = a - f(a) \frac{b-a}{f(b) - f(a)} = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

Gilt dann f(x)f(a) < 0, dann liegt die NS im Intervall [a,x], sonst in [b,x].

Wiederhole die Prozedur mit dem Intervall welches die NS enthält!

4.3 Beispiele

4.3.1 Geschickt erweitern

$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} = \lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} \times \frac{\sqrt{x}+1}{\sqrt{x}+1} = \lim_{x \to 1} \frac{(x-1)(\sqrt{x}+1)}{x-1} =$$

$$\lim_{x \to 1} (\sqrt{x} + 1) = \lim_{x \to 1} \sqrt{x} + \lim_{x \to 1} 1 = 1 + 1 = 2$$

4.3.2 GW Polynom

$$\lim_{x \to 1} (x^7 - 2x^5 + 1)^{35} = (1^7 - 2 \times 1^5 + 1)^{35} = 0$$

4.3.3 GW Quotient

$$\lim_{x\to 2}\frac{5x^3+4}{x-3}=\frac{\lim_{x\to 2}5x^3+4}{\lim_{x\to 2}x-3} \text{ und wegen der Regel für Polynome:}$$

$$\lim_{x \to 2} \frac{5x^3 + 4}{x - 3} = \frac{5 \times 2^3 + 4}{2 - 3} = -44$$

SW04 Differentialrechnung I – Tangente und Ableitung

5.1 Die Sekante

Steigung: $m=rac{\Delta y}{\Delta x}$ Wobei $\Delta x=x_1-x_0$ und $\Delta y=y_1-y_0$

5.1.1 Sekante durch P und Q

 $P(x_0|f(x_0)), Q(x_1|f(x_1))$ auf dem Graphen g(f)

Steigung der Sekante durch P und Q:

$$m = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Sekantengleichung (Punkt-Richtungs-Form)

 $(y - y_0) = m(x - x_0)$

Steigung: $m=\frac{\Delta y}{\Delta x}=$ Differenzquotient von f an der Stelle x_0

5.2 Tangente und Ableitung

5.2.1 Beispiel Quadratische Funktion

Gegeben die Funktion (rot) $f(x)=x^2$. Gesucht der Differenzquotient von f an der Stelle x_0 :

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
$$\frac{(x_0 + \Delta x)^2 - x_0^2}{\Delta x}$$
$$\frac{x_0^2 + 2x_0 \Delta x + \Delta x^2 - x_0^2}{\Delta x}$$
$$\frac{2x_0 \Delta x + \Delta x^2}{\Delta x} = 2x_0 + \Delta x$$

Steigung der Sekante : $2x_0 + \Delta x$

Gleichung der Sekante: $y = x_0^2 + (2x_0 + \Delta x)(x - x_0) = (2x_0 + \Delta x)x - (x_0 + \Delta x)x_0.$

Für die Tangente an der Stelle x_0 geht man mit dem Punkt Q immer näher an Punkt P, bis $\Delta x=0$ (Weil die Tangente f nur an einer Stelle berührt)

$$\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}2x_0+\Delta x=2x_0=$$
 Steigung der Tangente

Damit Gleichung der Tangente an f:

$$(y - f(x_0)) = 2x_0(x - x_0)$$

$$y = f(x_0) + 2x_0(x - x_0) = x_0^2 + 2x_0(x - x_0) = 2x_0x - x_0^2$$

5.3 Ableitung der Potenzfunktion

$$f(x) = x^n$$
$$f'(x) = nx^{n-1}$$

5.3.1 Beispiel Tangente

Tangente t(x) an der Stelle P(1,1) an der Kurve $f(x)=x^2$?

$$f(x) = x^2$$
, $f'(x) = 2x$

$$P(1,1), P(x_0/f(x_0))$$

$$f'(x_0) = 2x_0 = 2 \times 1 = 2 =$$
Steigung Tangente

$$t(x) = f(x_0) + f'(x_0) \times (x - x_0)$$

$$= 1 + 2(x - 1) = 1 + 2x - 2 = 2x - 1$$

5.3.2 Newton-Raphson Verfahren

Wir wollen die (nichtlineare) Gleichung f(x)=0 lösen, dh wir wollen ein x_* so finden, dass $f(x_*)=0$. Idee: Starte mit x_0 , und berechne den Schnittpunkt x_1 der Tangente durch $(x_0,f(x_0))$ mit der x-Achse. Wiederhole diesen Schritt!

$$f'(x_k) = \frac{f(x_k)}{x_k - x_{k+1}} = \frac{x_k}{-\Delta x_k}$$

Ausgehend von x_0 , iterieren wir über k = 1, 2, ...

$$f'(x_k)\Delta x_k = -f(x_k)$$

5.4 Einige Ableitungsregeln

5.4.1 Theorem Faktorregel

Falls f'(x) existiert, dann darf ein konstanter Faktor $c \in \mathbb{R}$ vor die Ableitung gezogen werden.

$$[c\times f(x)]'=c\times f'(x)$$
 auch geschrieben als $\frac{d}{dx}[c\times f(x)]=c\times \frac{d}{dx}[f(x)]$

5.4.2 Theorem Produkteregel

Existieren die Ableitungen u'(x) und v'(x), dann gilt für die Ableitungen des Produkts die Regel:

$$[u(x) \times v(x)]' = u'(x)v(x) + u(x)v'(x)$$

auch geschrieben als

$$\frac{d}{dx}(u(x)v(x)) = \frac{d}{dx}[u(x)]v(x) + u(x) \times \frac{d}{dx}[v(x)]$$

5.5 Quotientenregel

Existieren die Ableitungen u'(x) und v'(x), dann gilt für die Ableitungen des Quotienten von u(x) und $v(x) \neq 0$ die Regel:

$$[\tfrac{u(x)}{v(x)}]' = \tfrac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} \text{ kurz } [\tfrac{u}{v}]' = \tfrac{u'v - uv'}{v^2}$$

auch geschrieben als

$$\tfrac{d}{dx}\big[\tfrac{u(x)}{v(x)}\big] = \tfrac{\tfrac{d}{dx}[u(x)]v(x) - u(x)\tfrac{d}{dx}v(x)}{(v(x))^2} \text{ kurz } \big[\tfrac{u}{v}\big]' = \tfrac{u'v - uv'}{v^2}$$

5.6 Formeln

Steigung: $m = \frac{\Delta y}{\Delta x}$

Tangenten Gleichung: $t(x) = f(x_0) + f'(x_0) \times (x - x_0)$

Faktorregel: $[c \times f(x)]' = c \times f'(x)$

Produkteregel: $[u(x)\times v(x)]'=u'(x)v(x)+u(x)v'(x)$

Quotientenregel: $[\frac{u(x)}{v(x)}]' = \frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2} \text{ kurz } [\frac{u}{v}]' = \frac{u'v-uv'}{v^2}$

5.6.1 Ableitungen

f(x)	f'(x)
x^n	nx^{n-1}
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\frac{\frac{1}{\cos^2(x)}}{e^x}$
e^x	e^x
e^{3x}	$3e^{3x}$
$c(c \in \mathbb{R})$	0
x	1
$\sum_{k=0}^{n} c_k x^k$	$\sum_{k=0}^{n} c_k x^{k-1}$

SW05 Differentialrechnung II — Kettenregel

6.1 Einseitige Ableitung

Strebt Δx in der Definition der Ableitung von der positiven Seite gegen Null erhält man die **rechtsseitige Ableitung von der f an der Stelle** x_0 :

$$f'(x_0^+) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \text{ (analog für die linksseitige Ableitung)}$$

6.2 Kettenregel

Auch kombinierbar mit anderen Regeln:

$$(f(g(x)))' = f'(g(x)) \times g'(x)$$

6.3 Umkehrfunktion

Durch die Abbildung f wird der Punkt x auf f(x) abgebildet. Die Umkehrabbildung f^{-1} bildet diesen Punkt wieder auf x ab, dh. es gilt $f(f^{-1}(x)) = Id(x) = x$ (die identische Abbildung Id bildet x auf x ab.)

Leite
$$f(f^{-1}(x)) = x$$
 nach x ab.

$$[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$$

6.4 Ableitung Logarithmus

$$(\ln(x))' = \frac{1}{x}$$
$$(a \times \ln(x))' = \frac{a}{x}$$

6.5 Ableitung Wurzel

$$(\sqrt[n]{x^m})' = (x^{\frac{m}{n}})' = \frac{m}{n} x^{\frac{m}{n} - 1}$$

6.6 Ableitungen Arkusfunktionen

f(x)	f'(x)
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$ *
$\arccos x$	$\frac{1}{\sqrt{1-x^2}} *$ $-\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$
$\arctan x$	$\frac{1}{1+x^2}$
di 5 U	

^{*} falls $x \in (-1, 1)$

6.7 Ableitungen Areafunktionen

f(x)	f'(x)
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\frac{1}{\cosh^2 x} = 1 + \tanh^2 x$
$\operatorname{arsinh} x$	$\frac{1}{\sqrt{1+x^2}}$
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1-x^2}$
$\operatorname{artanh} x$	$\frac{1}{1-x^2}$

SW06 Differentialrechnung III – Differential, höhere Ableitungen

7.1 Implizite Ableitung

Explizite Form: y = f(x)

Man kann für jedes x den Funktionswert berechnen und die Kurve zeichnen.

Implizite Form: F(x,y) = 0

Oft ist eine Auflösung nach y nicht möglich. Leite Gliedweise nach x ab, wobei y=y(x) als Funktion von x betrachtet werden muss und mit der Kettenregel ableiten.

7.1.1 Beispiel

$$x^2 + y^2 = R^2$$

$$F(x,y) = x^2 + y^2 - R^2 = 0$$

 $x^2+(y(x))^2-R^2=0\ |$ differenzieren nach x, Achtung: Leite sowohl was links als auch rechts vom "=" ist!!

$$2x + 2y(x) \times y'(x) - 0 = 0$$

$$y'(x) \times y(x) = -x$$

$$y'(x) = -\frac{x}{y(x)} = -\frac{x}{\sqrt{R^2 - x^2}}$$

7.1.2 y nach x

Kettenregel

$$y^3 = (y(x))^3$$

 $3y(x)^2y'(x) = 3y^2y'$

Produkteregel Kettenregel

$$\begin{split} 2xy^2 &= 2x \times y^2 \mid \mathsf{Produkteregel!} \\ (2x)' \times y^2 + 2x \times (y^2)' \mid \mathsf{Kettenregel f\"{u}r} \ (y^2)' \\ (2x)' \times y^2 + 2x \times (2y^2 \times y') \\ 2y^2 + 2x \times 2yy' &= 2y^2 + 4xyy' \end{split}$$

7.2 Differential

Um wieviel verändert sich die Funktion y=f(x), wenn man sich von x_0 um Δx entfernt?

Es gilt
$$\Delta y = f(x_0 + \Delta x) - f(x_0)!$$

Steigung der Tangente (blau) in x_0

$$f'(x_0) = \frac{dy}{dx}$$

Die Symbole dx und dy nennt man Differentiale. Das Differential von f an der Stelle x_0 ist

$$dy = f'(x_0)dx$$

Es gilt also approximativ:

$$\Delta y \approx dy = f'(x_0)dx$$

Statt dy und Δy verwendet man auch die Bezeichnung $d\tilde{f}$ und Δf .

- Das Differential df=dy=f'(x)dx der Funktion y=f(x) an der Stelle x ist gleich der Änderungen des Ordinaten- oder y-Wertes der Tangente durch P(x,f(x)), wenn man den Abszissen- oder x-Wert um $dx=\Delta x$ ändert.
- Das Differential dy von y=f(x) an der Stelle x wird verwendet, um die wahre Änderung von Δy zu approximieren

$$\Delta y \approx dy = f'(x)dx$$

Diese Approximation ist umso genauer, je kleiner $dx = \Delta x$ ist.

• Das Differential dy ist gleich der Änderung der an der Stelle x linearisierten Funktion, wenn sich x um $dx = \Delta x$ ändert.

25

- Für eine lineare Funktion gilt somit $dy = \Delta y$
- Vorteil gegenüber der exakten Änderung: die Berechnung für ein anderes $dx = \Delta x$ ist lediglich eine Multiplikation mit f'(x)

7.2.1 Beispiel Differential

Sei $f(x)=x^2+e^{x-1}$. Um wieviel verändert sich f, wenn x von 1 auf 1.1 erhöht wird?

$$f(x) = x^2 + e^{x-1}$$
$$x_0 = 1, x_1 = 1.1$$

Exakt:

$$f(x_1) - f(x_0) = 1.1^2 + e^{1.1 - 1} - (1^2 + e^{1 - 1}) = 1.21 + e^0.1 - 2 = 0.315$$

Approximativ:

$$\begin{split} f'(x) &= 2x + e^{x-1} \times 1 \\ f'(x_0) &= 2 \times 1 + e^{1-1} = 3 \\ f'(x) &= 3 = \frac{dy}{dx}; dy = 3dx \mid \text{Differentialschreibweise} \\ \Delta y &= f(x_1) - f(x_0); \Delta x = x_1 - x_0 \\ \Delta y &\approx dy = 3dx \approx \Delta x = 3 \times 0.1 = 0.3 \end{split}$$

7.2.2 Rechenregeln für Differentiale

Ableitungsregeln	Regeln für Differentiale
[c]' = 0	d[c] = 0
[cf]' = cf'	d[cf] = cdf
[f+g]' = f' + g'	d[f+g] = df + dg
[fg]' = f'g + fg'	$d[fg] = df \times g + f \times dg$
$[\frac{f}{g}]' = \frac{f'g - fg'}{g^2}$	$d[\frac{f}{g}] = \frac{df \times g - f \times dg}{g^2}$

7.3 Monotonie

- Gilt f'(x) > 0 in einem Intervall I, dann ist f dort streng monoton wachsend.
- Gilt $f'(x) \ge 0$ in einem Intervall I, dann ist f dort monoton wachsend.
- Gilt f'(x) < 0 in einem Intervall I, dann ist f dort streng monoton fallend.
- Gilt $f'(x) \le 0$ in einem Intervall I, dann ist f dort monoton fallend.

7.3.1 Lokale oder relative Extrema

Notwendige Bedingung für ein lokales Extremum von f in x_0 : $f'(x_0) = 0$ Diese Bedingung ist aber nicht hinreichend, es ist erst ein **kritischer Punkt**

Wenn $f'(x_0) = 0$ und:

 $f''(x_0) > 0$ dann liegt ein lokales (oder relatives) Minimum vor. $f''(x_0) < 0$ dann liegt ein lokales (oder relatives) Maximum vor.

7.4 Höhere Ableitungen

$$y'' = f''(x) = \frac{d}{dx}[f'(x)] = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2}$$

Geometrische Bedeutung: die 2. Ableitung ist positiv wenn die 1. Ableitung (also die Steigung) zunimmt wenn man sich in Richtung zunehmender x entlang der Kurve bewegt.

- Gilt f''(x) > 0 in einem Intervall I, dann weist f dort eine **Linkskrümmung** auf. Wir sagen f ist **konvex**.
- Gilt f''(x) < 0 in einem Intervall I, dann weist f dort eine **Rechtskrümmung** auf. Wir sagen f ist **konkav**.

7.5 Krümmung

Die Krümmung der Kurve y = f(x) an der Stelle x ist:

$$K(x) = \frac{y''(x)}{[1+(y'(x))^2]^{\frac{3}{2}}}$$
 ; Krümmungskreisradius $p(x) = \frac{1}{|K(x)|}$

Für K > 0 hat man eine Links- und für K < 0 eine Rechtskrümmung.

SW07 Differentialrechnung IV – Kurvendiskussion, Optimierung

8.1 Parameterdarstellung von Kurven

Neben der Form y=f(x) kann man Kurven auch in der Parameterform beschreiben. Jedem Wert des Parameters t wird dabei ein Punkt $\vec{x}(t)$ in der Ebene (oder auch im Raum) zugeordnet. Man nennt dies auch Parameterdarstellung der Kurve.

Eine Kurve γ ist eine Abb. der Form:

$$\gamma: [a,b] \to \mathbb{R}^2, t \mapsto \vec{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

Für t=a ist man am Kurvenanfang, für ein beliebiges $t\in [a,b]$ an der Stelle $\vec{x}(t)$ und für t=b am Kurvenende.

Für jeden Punkt \vec{x} auf der Kurve gibt es genau ein $t \in [a,b]$ so, dass $\vec{x}(t)$ (und auch die Umkehrung gibt!)

8.1.1 Beispiel

Funktion: $f:[a,b] \to \mathbb{R}, x \mapsto y = f(x)$

Parameter: t = x

Parameterform:
$$\gamma:[a,b] \to \mathbb{R}^2, t \mapsto \vec{x}(t) = \begin{bmatrix} t \\ f(t) \end{bmatrix}$$

Funktion: $y = x^2$ $f: \mathbb{R} \to \mathbb{R}^+_0, x \mapsto x^2$

Kurve: $c: \mathbb{R} \to \mathbb{R}x\mathbb{R}_0^+, t \mapsto \begin{bmatrix} t \\ t^2 \end{bmatrix}$

8.1.2 Ableitung eines Vektors

Einen Vektor $\vec{x}(t)$ leitet man nach dem Parameter t ab, indem man jede Komponente des Vektors nach t ableitet.

Ableitung einer in Parameterform gegebenen Funktion

Parameterform der Kurve γ

$$\vec{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, a \leq t \leq b.$$

Ist γ gleich dem Graphen von y=f(x) dann gilt für die Steigung der **Tangente**

$$y' = \frac{\dot{y}}{\dot{x}}$$

wobei \dot{y} die Ableitung von y(t), bzw \dot{x} von x(t) nach t ist.

Beachte: die Steigung der Tangente an y' ist die selbe wie die Steigung des Vektors $\vec{x}(t)$. Und diese lässt sich aus den beiden Komponenten $\dot{y}(t)$ und $\dot{x}(t)$ berechnen.

Krümmungskreismittelpunkt

Punkt auf der Kurve $\vec{x}(t) =$ $[x,y(x)]^T$, Tangente $\vec{t}=[1,y'(x)]^T$, Normale $\vec{n}(x)=[-y'(x),1]^T$. Mittelpunkt des Krümmungskreises (rot):

$$\vec{x}_M(x) = \vec{x}(x) + \frac{1}{K(x)} \frac{\vec{n}(x)}{|\vec{n}(x)|}$$

Damit hat man für den Krümmungskreismittelpunkt:

$$\vec{x}_M(x) = \begin{bmatrix} x_M(x) \\ y_M(x) \end{bmatrix} = \begin{bmatrix} x - y'(x) \frac{1 + (y'(x))^2}{y''(x)} \\ y(x) + \frac{1 + (y'(x))^2}{y''(x)} \end{bmatrix} \text{ wobei } K(x) = \frac{y''(x)}{(1 + (y'(x))^2)^{\frac{3}{2}}}$$

Kurven in Polarkoordinaten 8.2

Oft verwendet man anstelle der kartesischen Koordinaten (x,y) Polarkoordinaten (r, ϕ) . Für die Koordinatentransformation gilt:

Polar- zu kartesischen Koordinaten:

$$x = r \cos \phi$$

$$y = r \sin \phi$$

Kartesiche zu Polarkoordinaten:

$$r=\sqrt{x^2+y^2}$$

$$\tan \phi = \frac{3}{2}$$

 $\tan\phi=\frac{y}{x}$ Beachte: Verwendet man $\phi=\arctan(\frac{y}{x})$ erhält man $\phi\in(\frac{-\pi}{2},\frac{\pi}{2})$. Die Vorzeichen von x und y bestimmen, in welchem Quadranten der Punkt P liegt. Damit kann dann $\phi \in [0, 2\pi]$ bestimmt werden.

Eine in Polarkoordinaten gegebene Kurve γ wird durch folgende Abbildung spezifiziert:

$$\gamma: [\alpha, \beta] \to \mathbb{R}, \phi \mapsto r = r(\phi)$$

Jedem Winkel $\phi \in [\alpha, \beta]$ wird der Abstand der Kurve $r = r(\phi)$ vom Ursprung zugeordnet.

Beachte: Alle Winkel werden positiven x-Achse im Gegenuhrzeigersinn gemessen. Hier ist damit $\alpha < 0$ und $\beta > 0$.

Ableitung einer in Polarkoordinaten gegebene Funk-8.2.1

Die gewöhnliche Ableitung einer Funktion wird bestimmt, indem man die Polarkoordinaten in Parameterform transformiert

$$x = x(\phi) = r(\phi)\cos\phi$$

$$xy = y(\phi) = r(\phi)\sin\phi$$

Hier ist jetzt ϕ der Parameter. Formel $y'(x) = \frac{\dot{y}}{\dot{x}}$

$$y'(x) = \frac{dy}{dx} = \frac{\frac{dy}{d\phi}}{\frac{dx}{d\phi}} = \frac{\dot{r}(\phi)\sin\phi + r(\phi)\cos\phi}{\dot{r}(\phi)\cos\phi - r(\phi)\sin\phi}$$

8.3 Kurvendiskussion

Generelles Vorgehen:

- Definitions- und Wertebereich, Definitionslücken, Unstetigkeitsstellen
- Symmetrien: ist f gerade f(x)=f(-x), ungerade f(x)=-f(-x) oder T-periodisch f(x+T)=f(x).
- Nullstellen f(x) = 0; Schnittpunkte mit y-Achse f(0) = y
- Pole: Nenner verschwindet; senkrechte Asymptoten: Polgeraden
- Ableitungen in der Regel bis zur 3. Ordnung
- Relative Extremwerte (Maxima, Minima): Notwendige Bedingung f'(x) = 0, f''(x) > 0 = Minima, f''(x) < 0 = Maxima.
- Monotonieeigenschaften, Wendepunkte, Krümmung
- Asymptotisches Verhalten für $x \to \pm \infty$
- Krümmungskreismittelpunkt
- Graph G(f) der Funktion f skizzieren

8.3.1 Symmetrien Beispiele

Funktion	Bemerkung
x^{2n}	Gerade: x^2, x^4, x^6
x^{2n-1}	Ungerade: x, x^3, x^5
$\cos 3x$	Periodisch: $T = \frac{2\pi}{3}$
e^{-x^2}	Gerade
$\sin 2x$	Ungerade, Periodisch $T=\pi$
$x^3 \sin x$	Gerade

In Quotient-funktion: Zähler gerade, Nenner ungerade = Funktion ungerade.

8.3.2 Wende- und Sattelpunkte

Notwendige und hinreichende Bedingung für einen Wendepunkt der Funktion y =f(x) in x_0 :

$$f''(x_0) = 0$$
, und $f'''(x_0) \neq 0$.

Gilt zudem $f'(x_0) = 0$, dann hat man in x_0 einen Sattelpunkt.

8.3.3 Beispiel

Funktion: $y = \frac{-5x^2+5}{x^3}$

Definitions- und Wertebereich:

$$D = \mathbb{R} \setminus \{0\}, W = \mathbb{R}$$

Symmetrie:

Zähler gerade, Nenner ungerade = Funktion ungerade.

Nullstellen:
$$y = \frac{-5x^2 + 5}{x^3} = 5\frac{1 - x^2}{x^3} = 5\frac{(1 + x)(1 - x)}{x^3}$$

$$x_{1,2} = -1, 1$$

Polstellen bei 0:

$$\lim_{x \to 0^{-}} \frac{-5x^{2} + 5}{x^{3}} = \frac{5}{0^{-}} = -\infty$$

$$\lim_{x \to 0^+} \frac{-5x^2 + 5}{x^3} = \frac{5}{0^+} = \infty$$

Ableitungen:

$$y = \frac{-5x^2 + 5}{x^3}$$

$$y' = 5 \frac{x^2 - 3}{x^4}$$

$$y'' = 5\frac{12-2x^2}{x^5}$$

$$y''' = 30 \frac{x^2 - 10}{x^6}$$

Extrema:
$$y' = 5\frac{x^2 - 3}{x^4} = 0; x^2 - 3 = 0; x_{1,2} = \pm \sqrt{3}$$

$$y''(x_1) = y''(\sqrt{3}) = 5\frac{12 - 2\sqrt{3}^2}{\sqrt{3}^5} > 0$$
 Minimum

$$y''(x_2) = y''(-\sqrt{3}) = 5\frac{12 - 2 \times -\sqrt{3}^2}{-\sqrt{3}^5} < 0$$
 Maximum

Wendepunkte:

$$y'' = 5\frac{12-2x^2}{x^5} = 0; 12 - 2x^2 = 0; 6 = x^2; x = \pm\sqrt{6}$$

$$y'''(\pm\sqrt{6}) = 30 \frac{(\pm\sqrt{6})^2 - 10}{(\pm\sqrt{6})^6} = 30 \frac{-4}{6^3} \neq 0$$

Wendepunkte bei $-\sqrt{6}$ und $\sqrt{6}$

Asymptotisches Verhalten:

$$\lim_{x \to \infty} \frac{5 - 5x^2}{x^3} = \lim_{x \to \infty} 5 \frac{1 - x^2}{x^3} = \lim_{x \to \infty} 5 \left(\frac{1}{x^3} - \frac{1}{x} \right) = 5 \left(\lim_{x \to \infty} \frac{1}{x^3} - \lim_{x \to \infty} \frac{1}{x} \right) = 0$$

8.4 Optimierungsproblem - Allgemeines Vorgehen

Bei Extremalwertprobleme (oder Extremwert- oder Extremalaufgaben) sucht man einen Extremwert für ein bestimmtes Problem, zB maximales Volumen, minimale Distanz, etc.

- Zuerst die Funktion bestimmen, welche das Problem beschreibt.
- Aus den Nullstellen der Ableitung (f'(x) = 0) erhält man Kandidaten für Extrempunkte x_0 (mit zugehörigen Extremwerten $f(x_0)$)
- Mit den höheren Ableitungen überprüft man, ob es sich um Minima, Maxima oder Sattelpunkte handelt:

Rel. Max in x_0 : $f^{(n)}(x_0) < 0$, n gerade und $f^{(k)}(x_0) = 0$, für $1 \le k < n$ **Rel.** Min in x_0 : $f^{(n)}(x_0) > 0$, n gerade und $f^{(k)}(x_0) = 0$, für $1 \le k < n$ **Sattelpunkt** x_0 : $f^{(n)}(x_0) \ne 0$, n ungerade und $f^{(k)}(x_0) = 0$, für $2 \le k < n$

 Die Funktionswerte der gefundenen Maxima (Minima) und die Werte der Funktion an den Rändern werden jetzt verglichen. Das grösste (kleinste) ist der gesuchte Extremwert.

8.4.1 Brechungsgesetz

???

8.5 Regel von de l'Hôpital

8.5.1 Theorem - Regel von de l'Hôpital für unbestimmte Ausdrücke der Form 0/0

Wir nehmen an f und g seien in einer Umgebung von x=a differenzierbar und $\lim_{x\to a}f(x)=0$ und $\lim_{x\to a}g(x)=0$. Dann gilt $\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}$ falls die rechte Seite existiert oder $\pm\infty$ ist.

Weiter gilt die Regel auch für die Grenzübergänge $x\to a^-, x\to a^+, x\to +\infty, x\to -\infty.$

8.5.2 Vorgehen

• Überprüfe, ob $\lim_{x \to a} \frac{f(x)}{g(x)}$ ein unbestimmter Ausdruck der Form 0/0 ist.

- Wenn ja, leite f und g separat ab.
- bestimme den Grenzwert $\lim_{x \to a} \frac{f'(x)}{g'(x)}$. Wenn dieser endlich ist oder $\pm \infty$, dann ist dies der gesuchte Grenzwert.

8.5.3 Vorgehen für weitere unbestimmte Ausdrücke

- Satz gilt entsprechend auch für unbestimmte Ausdrücke der Form $\frac{\infty}{\infty}$
- Unbestimmte Ausdrücke der Form $0 \times \infty$ bringt man mittels der Identität $f(x)g(x)=\frac{f(x)}{\frac{1}{g(x)}}$ auf einen unbestimmten Ausdruck der Form 0/0.
- Unbestimmte Ausdrücke der Form $\infty \infty$ lassen sich of durch geeignete algebraische Umformungen auf unbestimmte Ausdrücke der Form 0/0 zurückführen.
- Unbestimmte Ausdrücke der Form $0^0,\infty^0,1^\infty$ schreiben wir in der Form $y=f(x)^{g(x)}$, logarithmieren beide Seiten und erhalten dann mit $lny=g(x)\times ln(f(x))$ einen der oben besprochenen Ausdrücke.

SW08 Integralrechnung I – Flächenberechnung und Integral

Umkehrung der Differenzierung / Ableitung

9.1 Stammfunktion

Eine differenzierbare Funktion F(x) heisst Stammfunktion von f(x) falls: $F^{\prime}(x)=f(x)$

Eigenschaften der Stammfunktion:

- Zu jeder stetigen Funktion f(x) gibt es ∞ -viele Stammfunktionen
- Zwei beliebige Stammfunktionen $F_1(x)$ und $F_2(x)$ unterscheiden sich nur durch eine additive Konstante, dh

 $F_1(x) - F_2(x) = const$

• Ist $F_1(x)$ eine beliebige Stammfunktion von f(x), dann ist auch $F_2(x)=F_1(x)+C(C\in\mathbb{R})$ eine Stammfunktion von f(x). Daher ist die Menge aller Stammfunktionen von der Form

 $F(x) = F_1(x) + C$, wobei C eine beliebige (reelle) Konstante ist.

9.2 Umkehrung der Differentiation

Für Polynomfunktion:

$$f(x) = x^n \to F(x) = \frac{x^{n+1}}{n+1} + C$$

Für alle anderen Funktionen siehe: 5.6.1 Ableitungen Konstante +C dabei nicht vergessen!

9.3 Bestimmtes Integral Flächenberechnung

$$I = \int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x$$

$$\Delta x = \frac{b-a}{n}$$

$$x_k = a + k\Delta x$$

Wenn rechter Rand: f an der Stelle $x_k^{st} = x_k$

Wenn linker Rand: f an der Stelle $x_k^* = x_{k-1}$

$$S_n = \sum\limits_{k=1}^n f(x_k) \Delta x$$
 auflösen bis alle k weg (siehe 9.4 Summen vereinfachen)

 $\lim_{n o \infty} S_n$ auflösen, Resultat gleich Fläche im Interval [a,b]

9.3.1 Beispiel Rechter Rand

(siehe 9.4 Summen vereinfachen)

$$y = x^2, [0, 1], a = 0, b = 1$$

$$\Delta x = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n}$$

$$x_k = a + k\Delta x = 0 + k\frac{1}{n} = \frac{k}{n}$$

Rechter Rand:
$$x_k^* = x_k, f(x_k^*) = f(x_k) = x_k^2 = (\frac{k}{n})^2$$

$$S_n = \sum_{k=1}^n f(x_k) \Delta x = \sum_{k=1}^n \left(\frac{k}{n}\right)^2 \frac{1}{n} = \sum_{k=1}^n \frac{k^2}{n^3} = \frac{1}{n^3} \sum_{k=1}^n k^2$$

$$= \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = \dots = \frac{1}{6} \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right)$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1}{6} (1 + \frac{1}{n})(2 + \frac{1}{n}) = \frac{1}{6} \lim_{n \to \infty} (1 + \frac{1}{n})(2 + \frac{1}{n}) = \frac{1}{3}$$

9.3.2 Beispiel Linker Rand

(siehe 9.4 Summen vereinfachen)

$$y = x^3, [0, 2], a = 0, b = 2$$

$$\Delta x = \frac{b-a}{n} = \frac{2-0}{n} = \frac{2}{n}$$

$$x_k = a + k\Delta x = 0 + k\frac{2}{n} = \frac{2k}{n}$$

Linker Rand:
$$x_k^* = x_{k-1}, f(x_k^*) = f(x_{k-1}) = x_{k-1}^3 = (\frac{2(k-1)}{n})^3$$

$$S_n = \sum_{k=1}^n f(x_k) \Delta x = \sum_{k=1}^n \left(\frac{2(k-1)}{n}\right)^3 \frac{2}{n} = \sum_{k=1}^n \left(\frac{2}{n}\right)^3 (k-1)^3 \frac{2}{n} = \sum_{k=1}^n \left(\frac{2}{n}\right)^4 (k-1)^3$$

$$(\frac{2}{n})^4 \sum_{k=1}^n (k-1)^3 = (\frac{2}{n})^4 \sum_{k=1}^{n-1} k^3 = (\frac{2}{n})^4 \frac{(n(n-1))^2}{n^4} = 4(1-\frac{1}{n})^2$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} 4(1-\frac{1}{n})^2 = 4 \lim_{n \to \infty} (1-\frac{1}{n})^2 = 4$$

9.4 Summen vereinfachen

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = (\frac{n(n+1)}{2})^2$$

$$\sum_{k=1}^{n} (k-1)^3 = \sum_{k=1}^{\mathbf{n}-1} k^3 = \left(\frac{n(n-1)}{2}\right)^2$$

Chapter 10

SW09 Integralrechnung II – unbestimmtes Integral und Hauptsatz der Infinitesimalrechnung

10.1 Unbestimmtes Integral und Flächenfunktion

$$I(x) = \int_{a}^{x} f(t)dt$$

a ist ein bestimmter Wert, x ist unbestimmt. Darum unbestimmtes Integral.

10.1.1 Theorem - unbestimmte Integrale

- Das unbestimmte Integral $I(x)=\int\limits_a^x f(t)dt$ stellt den Flächeninhalt zwischen y=f(t) über dem Intervall [a,x] in Abhängigkeit von der oberen Grenze x dar.
- Zu jeder Funktion f(t) gibt es ∞ -viele unbestimmte Integrale, die sich nur durch ihre untere Grenze (a) unterscheiden.
- Die Differenz zweier unbestimmter Integrale $I_1(x)$ und $I_2(x)$ ist eine Konstante.

Die geom. Deutung als Fläche ist nur für $f(t) \ge 0$ und $x \ge a$ möglich. Man muss klar zwischen dem bestimmten Integral (das ist eine reelle Zahl) und dem unbestimmten Integral (das ist eine Funktion der oberen Grenze) unterscheiden!

10.1.2 Beispiel

Zwei unbestimmte Integrale der Normalparabel $f(t)=t^2$

$$I_1(x)=\int\limits_0^x t^2 dt$$
 und $I_2(x)=\int\limits_1^x t^2 dt$

Deuten Sie den Unterschied $I_1(x)-I_2(x)$ geometrisch!

$$A = I_1(x) - I_2(x) = \int_0^1 t^2 dt$$

Delta x ändern 10.2

Wir lassen die unterschiedliche Bezeichnung zwischen der Integrationsvariabeln und der oberen Grenze fallen. Aus der Abb. liest man folgendes:

Einerseits hat man $\Delta I = I(x + \Delta x) -$ I(x) anderseits gilt die Approximation $\Delta I \approx f(x)\Delta x$. Also zusammenge-

$$f(x) \approx \frac{I(x + \Delta x) - I(x)}{\Delta x}$$

Man kann zeigen, dass für stetige f gilt:

$$f(x) = \lim_{\Delta x \to 0} \frac{I(x + \Delta x) - I(x)}{\Delta x} = I'(x)$$

Wegen I'(x) = f(x) ist also das unbestimmte Integral (oder die Flächenfunktion) I(x) eine Stammfunktion von f(x).

10.3 Fundamentalsatz der Differential- und **Integralrechnung Theorem**

Jedes unbestimmte Integral $\int\limits_{-x}^{x}f(t)dt$ der stetigen Funktion f(x) ist eine Stammfunktion von f(x):

$$I(x) = \int\limits_a^x f(t)dt \Longrightarrow I'(x) = f(x).$$
 Folgerungen aus dem Fundamentalsatz:

- ullet I(x) ist wegen I'(x) = f(x) eine stetig differenzierbare Funktion (falls f
- Jedes unbestimmte Integral hat die Form

$$I(x) = \int_{0}^{x} f(t)dt = F(x) + C$$

wobei $\overset{\circ}{F}(x)$ irgendeine (spezielle) Stammfunktion von f(x) und C_1 eine geeignete (reelle) Konstante bedeutet (die von a abhängt).

- Die Menge aller unbestimmter Integrale von f(x) hat die Form $\int f(x)dx = F(x) + C$ (F'(x) = f(x)) wobei F(x) irgendeine (spezielle) Stammfunktion von f(x) ist und $C \in \mathbb{R}$ alle reellen Werte durchläuft. Man nennt C Integrationskonstante.
- Für stetige Funktionen sind Stammfunktionen und unbestimmtes Integral das selbe.

10.3.1 Beispiele

$$F_1(x) = \int (2x+1)dx = x^2 + x + C$$

$$F_2(x) = \int e^x dx = e^x + C$$

$$F_3(x) = \int \frac{4}{1+x^2} dx = 4 \arctan(x) + C$$

$$F_4(x) = \int \ln(x)dx = x\ln(x) - x + C$$

Berechnung bestimmter Integrale mit Stammfunktion

$$I(x) = \int\limits_a^x f(t)dt = F(x) + C$$

$$I(a) \int\limits_a^a f(x)dx = F(a) + C = 0 \longrightarrow C = -F(a)$$
 somit gilt:

 $I(x) = \int_{a}^{x} f(t)dt = F(x) - F(a)$, und schliesslich $\int_{a}^{b} f(t)dt = F(b) - F(a)$ Das Integral hängt nicht von der Wahl der Stammfunktion F(x) ab: man kann

10.4.1 Beispiel

Berechnen Sie die bestimmten Integrale $\int_{0}^{1} x^{2} dx$.

irgendeine (spezielle) Stammfunktion wählen!

$$\int_{0}^{1} x^{2} dx = \left[\frac{1}{3}x^{3} + C\right]_{0}^{1} = \left(\frac{1}{3}1^{3} + C\right) - \left(\frac{1}{3}0^{3} + C\right) = \frac{1}{3} + C - 0 - C = \frac{1}{3}$$

ightarrow Hier beim bestimmten Integral zum Flächenberechnen kann man +C weglassen (aber nur hier, da es sich immer rauskürzt)!

Berechnen Sie die bestimmten Integrale
$$\int\limits_0^\pi \sin x dx$$
.
$$\int\limits_0^\pi \sin x dx = [-\cos x]_0^\pi = -[\cos x]_0^\pi = -(\cos \pi - \cos 0) = -(-2) = 2$$

10.5 1. Substitutionsregel für unbestimmte Integrale - Theorem

Es gilt:

$$\int f(g(x))g'(x)dx = \left[\int f(u)du\right]_{u=g(x)}$$
 Vorgehen:

- Substituiere formal g(x) = u, g'(x)dx = du
- Integriere unbestimmt nach u
- Ersetze u wieder durch g(x)

10.5.1 Beispiele

Berechne das unbestimmte Integral $I=\int (x^2+1)^{50}2xdx$ $u=x^2+1$ $\frac{du}{dx}=2x$ du=2xdx

$$I = \int (x^2 + 1)^{50} 2x dx = \int u^{50} du = \frac{1}{51} u^{51} + C = \frac{1}{51} (x^2 + 1)^{51} + C$$

Berechne das unbestimmte Integral $I = \int x \cos x^2 dx$

$$u = x^2$$

$$\frac{du}{dx} = 2x$$

$$du = 2xdx$$

$$\int x \cos x^2 dx = \frac{1}{2} \int \cos x^2 2x dx = \frac{1}{2} \int \cos(u) du = \frac{1}{2} \int \sin(u) + C = \frac{1}{2} \int \sin(x^2) + C$$

10.6 1. Substitutionsregel für bestimmte Integrale - Theorem

Es gilt:

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$$

Vorgehen:

- Substituiere formal g(x) = u, g'(x)dx = du
- Ersetze die x-Grenzen a,b durch die u-Grenzen g(a), g(b)
- Integriere

10.6.1 Beispiele

Berechne das bestimmte Integral $I = \int_{0}^{2} x(x^2 + 1)^3 dx$

$$u = u(x) = x^2 +$$

$$\frac{du}{dx} = 2x$$

$$du = 2xdx$$

$$I = \int_{0}^{2\pi} x(x^{2} + 1)^{3} dx = \frac{1}{2} \int_{0}^{2} 2x(x^{2} + 1)^{3} dx$$

$$\begin{array}{l} u=u(x)=x^2+1\\ \frac{du}{dx}=2x\\ du=2xdx\\ I=\int\limits_0^x x(x^2+1)^3dx=\frac{1}{2}\int\limits_0^2 2x(x^2+1)^3dx\\ \text{Intervallgrenzen: 2, 0. Neue Grenzen: }u(2)=5,u(0)=1\\ \frac{1}{2}\int\limits_1^5 u^3du=\frac{1}{2}\left[\frac{1}{4}u^4\right]_1^5=\frac{1}{8}\left[u^4\right]_1^5=\frac{1}{8}(625-1)=78 \end{array}$$

Berechne das bestimmte Integral $I = \int_{0}^{\frac{\pi}{3}} \frac{\cos x}{1+4\sin^2 x} dx$

$$u = u(x) = \sin x$$
$$\frac{du}{dx} = \cos x$$
$$du = \cos x dx$$

$$\frac{du}{dx} = \cos x$$

$$du = \cos x dx$$

Intervallgrenzen: $\frac{\pi}{3}$, 0. Neue Grenzen: $u(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}, u(0) = 0$

$$\int_{0}^{\frac{\sqrt{3}}{2}} \frac{du}{a+4u^{2}} \int_{0}^{\frac{\sqrt{3}}{2}} \frac{du}{a+(2u)^{2}} \frac{1}{2} \int_{0}^{\frac{\sqrt{3}}{2}} \frac{2du}{a+(2u)^{2}}$$

$$v = v(x) = 2u$$

$$\frac{dv}{du} = 2$$

$$dv = 2du$$

$$v = v(x) = 2i$$

$$\frac{dv}{dv} =$$

$$dv = 2dv$$

Intervallgrenzen: $\frac{\sqrt{3}}{2}$, 0, neue Grenzen: $v(\frac{\sqrt{3}}{2}) = \sqrt{3}, v(0) = 0$

$$\frac{1}{2} \int_{0}^{\sqrt{3}} \frac{dv}{1+v^2} = \frac{1}{2} \left[\arctan(v) \right]_{0}^{\sqrt{3}} = \frac{1}{2} \left(\arctan\sqrt{3} - \arctan 0 \right) = \frac{\pi}{6}$$

Chapter 11

SW10 Integralrechnung III – Integrationstechnik

11.1 2. Substitutionsregel

Die 2. Substitutionsregel ist flexibler und auf beliebige Integrale anwendbar:

$$\int f(x)dx$$

indem man dort x=u(t) setzt und somit wegen $dx=u^{\prime}(t)dt$ schreiben kann.

$$\int f(x)dx = \left[\int f(u(t))u'(t)dt\right]_{t=u^{-1}(x)}$$

u muss im verwendeten t-Intervall umkehrbar sein, damit man x=u(t) nach t auflösen, dh. durch x ausdrücken kann $(t=u^{-1}(x))$.

11.1.1 Theorem - 2. Substitutionsregel für unbestimmte Integrale

Es gilt:
$$\int f(x)dx = \left[\int f(u(t))u'(t)dt\right]_{t=u^{-1}(x)}$$

Vorgehen:

- ullet Wähle eine geeignete invertierbare Substitutionsfunktion u
- Substituiere formal x = u(t), dx = u'(t)dt
- \bullet Integriere nach t
- Drücke t durch x aus

11.1.2 Beispiele

$$\begin{array}{l} \text{Berechne } I = \int x^2\!\sqrt{x-1} dx \\ u = x-1 \\ x = u+1 \\ \frac{du}{dx} = 1 \\ du = dx \\ I = \int x^2\!\sqrt{x-1} dx = \int (u+1)^2\!\sqrt{u} du = \int (u^2+2u+1)u^{\frac{1}{2}} du = \int (u^{\frac{5}{2}}+2u^{\frac{3}{2}}+u^{\frac{1}{2}}) du \\ = \frac{u^{\frac{7}{2}}}{\frac{7}{2}} + \frac{u^{\frac{5}{2}}}{\frac{5}{2}} + \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2}{7}u^{\frac{7}{2}} + \frac{2}{5}u^{\frac{5}{2}} + \frac{2}{3}u^{\frac{3}{2}} + C \\ = (\frac{2}{7}u^{\frac{6}{2}}+\frac{2}{5}u^{\frac{4}{2}}+\frac{2}{3}u^{\frac{2}{2}})u^{\frac{1}{2}} + C = (\frac{2}{7}u^{\frac{6}{2}}+\frac{2}{5}u^{\frac{4}{2}}+\frac{2}{3}u^{\frac{2}{2}})\sqrt{u} + C = (\frac{2}{7}u^3+\frac{2}{5}u^2+\frac{2}{3}u)\sqrt{u} + C \\ = (\frac{2}{7}(x-1)^3+\frac{2}{5}(x-1)^2+\frac{2}{3}(x-1))\sqrt{(x-1)} + C \end{array}$$

Berechne $I=\int \frac{dx}{\sqrt{1+e^x}}$ es werden zwei Substitutionen benötigt.

$$\begin{array}{l} u = e^x \\ \frac{du}{dx} = e^x \\ du = e^x dx \Longrightarrow dx = \frac{du}{e^x} = \frac{du}{u} \\ I = \int \frac{dx}{\sqrt{1 + e^x}} = \int \frac{\frac{du}{v}}{\sqrt{1 + u}} = \int \frac{du}{u\sqrt{1 + u}} \\ v = \sqrt{1 + u} \\ v^2 = 1 + u \Longrightarrow u = v^2 - 1 \\ \frac{du}{dv} = 2v \\ du = 2v dv \\ \int \frac{2v dv}{(v^2 - 1)v} = 2 \int \frac{dv}{v^2 - 1} = \frac{1}{2} 2 \log \left| \frac{v - 1}{v + 1} \right| + C = \log \left| \frac{\sqrt{1 + u} - 1}{\sqrt{1 + v} + 1} \right| + C \\ \end{array}$$

11.1.3 Theorem - 2. Substitutionsregel für bestimmte Integrale

Es gilt:
$$\int\limits_a^b f(x)dx = \int\limits_{u^{-1}(a)}^{u^{-1}(b)} f(u(b))u'(t)dt$$
 Vorgehen:

- ullet Wähle eine geeignete invertierbare Substitutionsfunktion u
- Substituiere formal x = u(t), dx = u'(t)dt
- Ersetze die x-Grenzen a,b durch die t-Grenzen $u^{-1}(a),u^{-1}(b)$
- Integriere

11.1.4 Beispiele

Berechne
$$I = \int_{1}^{2} x^{2}\sqrt{x-1}dx$$

$$t = x - 1$$

$$x = t + 1$$

$$\frac{dx}{dt} = 1$$

$$dx = dt$$

$$\frac{dx}{dx} = 1$$

$$dx = dt$$

Alte Grenzen:
$$a=1,b=2$$
 neue Grenzen: $t(a)=0,t(b)=1$

$$\int_{0}^{1} (t+1) \sqrt[3]{t} dt = \int_{0}^{1} (t^{2} + 2t + 1) t^{\frac{1}{2}} = \int_{0}^{1} (t^{\frac{5}{2}} + 2t^{\frac{3}{2}} + t^{\frac{1}{2}}) dt = \left[\frac{2}{7} t^{\frac{7}{2}} + \frac{4}{5} t^{\frac{5}{2}} + \frac{2}{3} t^{\frac{3}{2}} \right]_{0}^{1}$$

$$= \frac{2}{7} + \frac{4}{5} + \frac{2}{3} - 0 = \frac{184}{105}$$

Berechne $I=\int\limits_0^{\ln 3}\frac{dx}{\sqrt{1+e^x}}$ es werden zwei Substitutionen benötigt. $u=e^x$

$$u = e^x$$

$$x = \ln u$$

$$dx = \frac{1}{u}du$$

$$I = \int_{0}^{\ln 3} \frac{dx}{\sqrt{1 + e^x}} = \int_{0}^{\ln 3} \frac{1}{\sqrt{1 + e^x}} dx$$

Alte Grenzen: $a=0,b=\ln 3$, neue Grenzen: $u(\ln 3)=3,u(0)=1$

$$\int_{1}^{3} \frac{1}{\sqrt{1+u}} \times \frac{1}{u} du$$

$$v = \sqrt{1+u}$$

$$v = v + u$$

$$v^{2} = 1 + u$$

$$u = v^{2} - 1$$

$$\frac{du}{dv} = 2v$$

$$du = 2vdv$$

$$u = v^2 - 1$$

$$\frac{du}{du} - 2u$$

$$du = 2vdv$$

Alte Grenzen: a=1,b=3, neue Grenzen: $v(1)=\sqrt{2},v(3)=2$

$$\int_{\sqrt{2}}^{2} \frac{1}{v} \frac{1}{v^{2}-1} 2v dv = 2 \int_{\sqrt{2}}^{2} \frac{dv}{v^{2}-1} = 2 \left[\frac{1}{2} \log \left| \frac{v-1}{v+1} \right| \right]_{\sqrt{2}}^{2} \approx 0.6641$$

11.2 Häufige Integralsubstitutionen

A) Integraltyp	Substitution
$\int f(ax+b)dx$	$u = ax + b$ $dx = \frac{du}{a}$

Merkmal: Die Variable x tritt in der linearen Form ax + b auf $(a \neq 0)$

A) Beispiele	Substitution
$\int (2x-3)^6 dx$	u = 2x - 3
$\int \sqrt{4x+5}dx$	u = 4x + 5
$\int e^{4x+2}$	u = 4x + 2

B) Integraltyp	Substitution
$\int f(x)f'(x)dx$	u = f(x)
	$dx = \frac{du}{f'(x)}$

Merkmal: Der Integrand ist das Produkt aus einer Funktion f(x) und ihrer Ableitung f'(x)

B) Beispiele	Substitution
$\int \sin(x)\cos(x)dx$	$u = \sin x$
$\int \frac{\ln x}{x} dx$	$u = \ln x$

C) Integraltyp	Substitution
$\int \frac{f'(x)}{f(x)} dx$	$u = f(x)$ $dx = \frac{du}{f'(x)}$
	$ax - \frac{1}{f'(x)}$

Merkmal: Im Zähler steht die Ableitung des Nenners.

C) Beispiele	Substitution
$\int \frac{2x-3}{x^2-3x+1} dx$	$u = x^2 - 3x + 1$
$\int \frac{e^x}{e^x+5} dx$	$u = e^x + 5$

D) Integraltyp	Substitution
$\int f(x; \sqrt{a^2 - x^2}) dx$	$x = a \sin u$ $dx = a \cos(u) du$
Merkmal: Der Integrand enthält eine Wurzel vom Typ $\sqrt{a^2-x^2}$	$\sqrt{a^2 - x^2} = a\cos u$
D) Beispiele	Substitution
$\int \sqrt{r^2 - x^2} dx$	$x = r\sin u$
$\int x \times \sqrt{r^2 - x^2} dx$	$x = r \sin u$
$\int \frac{x}{\sqrt{4-x^2}}$	$x = 2\sin u$
E) Integraltyp	Substitution
$\int f(x; \sqrt{a^2 + x^2}) dx$	$x = a \sinh u$ $dx = a \cosh(u) du$
Merkmal: Der Integrand enthält eine Wurzel vom Typ $\sqrt{a^2+x^2}$	$\sqrt{a^2 + x^2} = a \cosh u$
E) Beispiele	Substitution
$\int \sqrt{x^2 + 1} dx$	$x = \sinh u$
$\int \frac{dx}{\sqrt{x^2+4}}$	$x = 2\sinh u$
F) Integraltyp	Substitution
$\int f(x; \sqrt{x^2 - a^2}) dx$	$x = a \cosh u$ $dx = a \sinh(u) du$
Merkmal: Der Integrand enthält eine Wurzel vom Typ $\sqrt{x^2-a^2}$	$\sqrt{x^2 - a^2} = a \sinh u$
F) Beispiele	Substitution
$\int \sqrt{x^2 - 9}$	$x = 3\cosh u$
$\int \frac{x}{\sqrt{x^2 - 25}} dx$	$x = 5 \cosh u$

11.3 Theorem - Partielle Integration - Produktintegration

Es gilt: $\int u'(x)v(x)dx=u(x)v(x)-\int u(x)v'(x),dx$ Vorgehen (Ziel: das Integral auf der Rechten Seite muss einfacher sein):

- Zerlege den Integranden in ein Produkt von zwei Faktoren
- Ein Faktor ist u'(x), der andere ist v(x)

- $\bullet\,$ Der erste Faktor u'(x) kommt auf die rechte Seite überall in integrierter Form, dh als u(x) vor
- Der zweite Faktor v(x) kommt auf der rechten Seite nur unter dem Integral in abgeleiteter Form, dh als $v^\prime(x)$ vor

Ausserdem:

$$(uv)' = u'v + uv'$$

$$uv = \int u'vdx + \int uv'dx$$

$$uv - \int u'vdx = \int uv'dx$$

11.3.1 Beispiel

```
Berechne I=\int x\cos(x)dx u=x u'=1 v=\sin x v'=\cos x \longrightarrow uv-\int u'vdx=\int uv'dx I=\int x\cos(x)dx=x\sin x-\int 1\sin xdx=x\sin x-(-\cos x)+C =x\sin x+\cos x+C Probe: (x\sin x+\cos x+C)'=1\sin x+x\cos x-\sin x+0=x\cos(x)dx
```

11.3.2 Rekursionsbeziehung - Beispiel

Bei Integralen vom Typus $\int x^n \exp(\lambda x) dx$, $\int x^n \sin x dx$ und $\int x^n \cos x dx$, $(n \in \mathbb{N})$ lässt sich der vorkommende Exponent durch partielle oder Produktintegration um eins erniedrigen und somit rekursiv auf Null bringen.

Beispiel:

Leite eine Rekursionsbeziehung her, um $I_n=\int x^n\exp(\lambda x)dx$ zu berechnen. $u=x^n$ $u'=nx^{n-1}$ $v=\frac{1}{\lambda}e^{\lambda x}$ $v'=e^{\lambda x}$ $v'=e^{\lambda x}$ $\frac{1}{\lambda}e^{\lambda x}x^n-\int nx^{n-1}\frac{1}{\lambda}e^{\lambda x}dx=\frac{1}{\lambda}e^{\lambda x}x^n-\frac{n}{\lambda}\int x^{n-1}e^{\lambda x}dx$ $I_{n-1}=\int x^{n-1}e^{\lambda x}dx$ $I_n=\frac{1}{\lambda}e^{\lambda x}x^n-\frac{n}{\lambda}I_{n-1}; I_0=\frac{1}{\lambda}e^{\lambda x}+C$ $I_1=\frac{1}{\lambda}e^{\lambda x}x^1-\frac{1}{\lambda}I_0=\frac{1}{\lambda}e^{\lambda x}x^1-\frac{1}{\lambda}(\frac{1}{\lambda}e^{\lambda x}+C)$ $=\frac{1}{\lambda}e^{\lambda x}x^1-\frac{1}{\lambda^2}e^{\lambda x}-\frac{C}{\lambda}; -\frac{C}{\lambda}=C_1$

11.3.3 Nur einen Faktor - Beispiel

Künstlich ein Produkt herstellen um partielle oder Produktintegration anwenden.

```
Berechne mit Hilfe partieller Integration I=\int \ln x dx. I=\int \ln x dx=\int 1 \times \ln x dx u=\ln x u'=\frac{1}{x} v=x v'=1 \int 1 \times \ln x dx=x \ln x-\int \frac{1}{x} x dx=x \ln x-x+C Probe: (x\ln x-x+C)'=1\ln x+x\frac{1}{x}-1+0=\ln x
```

11.3.4 Mehrfache partielle Integration - Beispiel

Oft muss man mehrere Male hintereinander partiell integrieren!

```
Berechne mit Hilfe partieller Integration I=\int e^{\alpha x}\sin(\beta x)dx u=\sin(\beta x) u'=\beta\cos(\beta x) v=\frac{1}{\alpha}e^{\alpha x} v'=e^{\alpha x} v'=e^{\alpha x} v'=e^{\alpha x} v'=e^{\alpha x} v'=e^{\alpha x} v'=e^{\alpha x} v'=\cos(\beta x) v'=-\beta\sin(\beta x) v'=-\beta\sin(\beta x) v'=-\beta\sin(\beta x) v'=-\beta\sin(\beta x) v'=-\beta\cos(\beta x)
```

11.4 Theorem - Produktintegration für bestimmte Integrale

Es gilt:
$$\int\limits_a^b u'(x)v(x)dx=\left[u(x)v(x)\right]_a^b-\int\limits_a^b u(x)v'(x),dx$$

Das Vorgehen ist (fast) exakt gleich bei unbestimmten Integralen ausser dass bei bestimmten Integralen die obere und untere Integrationsgrenze ins Spiel kommt.

11.4.1 Beispiele

Berechne mit Hilfe partieller Integration
$$I=\int\limits_0^R xe^{-x}dx.$$
 $u=x$ $u'=1$ $v=-e^{-x}$

$$v' = e^{-x}$$

$$[-xe^{-x}]_0^R + \int_0^R e^{-x} dx = -Re^{-R} + [-e^{-x}]_0^R = -Re^{-R} - e^{-R} - (-1) = 1 - (1 + R)e^{-R} = 1 - \frac{1+R}{e^R}$$

Berechne mit Hilfe partieller Integration $I = \int_{0}^{\pi} \sin^{2} x dx$

$$\begin{split} I &= \int\limits_{0}^{\pi} \sin^{2}x dx = \int\limits_{0}^{\pi} \sin x \sin x dx \\ u &= \sin x \\ u' &= \cos x \\ v &= -\cos x \\ v' &= \sin x \\ [-\sin x \cos x]_{0}^{\pi} + \int\limits_{0}^{\pi} \cos^{2}x dx = 0 + \int\limits_{0}^{\pi} (1 - \sin^{2}x) dx = \int\limits_{0}^{\pi} dx - \int\limits_{0}^{\pi} \sin^{2}x dx \\ I &= [x]_{0}^{\pi} - I \\ 2I &= \pi \\ I &= \frac{\pi}{2} \end{split}$$

11.5 Mittelwerte

Der lineare Mittlwert \overline{y}_{linear} der Funktion y=f(x) über dem Intervall [a,b] gibt an, welchen Wert diese Funktion im Mittel hat.

Die Fläche des Rechtecks der Höhe \overline{y} ist gleich der Fläche der Kurve y=f(x)

$$A = \overline{y}_{linear}(b-a) = \int_{a}^{b} f(x)dx$$

11.5.1 Theorem - lineare Mittelwert

Der lineare Mittelwert von f über [a,b]: $\overline{y}_{linear} = \frac{1}{b-a} \int\limits_a^b f(x) dx$

11.5.2 Beispiel

Berechne den linearen Mittelwert der Funktion $y=\ln x$ im Intervall [1,5]

$$\overline{y}_{linear} = \frac{1}{5-1} \int_{1}^{5} \ln x dx = \frac{1}{4} \left[x(\ln x) \right]_{1}^{5} = \frac{1}{4} (5(\ln 5 - 1)) - 1(0 - 1) \approx 1.012$$

11.5.3 Theorem - quadratische Mittelwert

Der quadratische Mittelwert von y=f(x) über dem Intervall $\left[a,b\right]$ ist definiert durch:

$$\overline{y}_{quadratisch} = \sqrt{\frac{1}{b-a} \int_{a}^{b} [f(x)]^{2} dx}$$

Sowohl lineare wie auch quadratische Mittelwerte werden oft im Zusammenhang mit periodischen Funktionen verwendet. In diesem Fall ist das Intervall [a,b] meist ein Intervall von der Länge einer Periode T. Dabei ist es egal, welches der unendlich vielen Intervalle mit dieser Eigenschaft verwendet wird. Meist verwendet man deshalb das Intervall [0,T].

11.5.4 Theorem - Mittelwertsatz der Integralrechnung

Ist f auf dem Intervall [a,b] stetig, dann gibt es einen Punkt $\epsilon \in [a,b]$ so, dass gilt: $f(\epsilon)(b-a)=\int\limits_a^b f(x)dx$

Chapter 12

SW11 Integralrechnung IV- Anwendungen

12.1 Trapezregel

Unterteile das Intervall [a, b] in n gleich grosse Teilintervalle $[x_{j-i}, x_j], j = 1, 2, ..., n$.

In jedem Teilintervall approximiere man die Funktion f durch eine lineare Funktion. Das Integral über jedes Teilintervall wird approximiert durch die Trapezfläche.

 $x_0 = a$ x_1 x_1 x_2 x_3 x_{n-1} $b = x_n$ Die Summe der Trapezflächen ist dann eine gute Approximation des bestimmten Integrals, vor allem wenn man n genügend gross wählt:

$$\int\limits_a^b f(x) dx \approx \sum\limits_{j=1}^n \tfrac{h}{2} (f(x_{j-1} + f(x_j)) \text{ wobei } h = \tfrac{b-a}{n}.$$

Der bei der Trapezregel

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2}(f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + 2f(x_n)) = I_T(h)$$

gemachte Fehler ϵ_T ist für genügend anständige (zB stückweise stetige) Funktion f beschränkt durch

$$|\epsilon_T| = |\int_a^b f(x)dx - I_T(h)| \le \frac{(b-a)^3}{12n^2} \max_{a \le \epsilon \le b} |f''(\epsilon)|$$

12.2 Trapezregel - kurz

Funktion: f(x)Intervall: [a, b]

Anzahl Teilintervalle: n

Fläche:
$$\int\limits_a^b f(x)dx=\tfrac{1}{2}\tfrac{b-a}{n}(y_0+2y_1+2y_2+\ldots+2y_{n-1}+y_n)$$
 y_i also die versch. y in Formel oben: $y_i=f(x_i)=f(a+i\tfrac{b-a}{n}); 0\leq i\leq n$

12.2.1 Beispiel

$$\begin{split} f(x) &= \frac{3}{x} \\ [a,b] &= [1,4] \\ n &= 3 \end{split}$$

$$\int_{a}^{b} f(x) dx = \frac{1}{2} \frac{b-a}{n} (y_0 + 2y_1 + 2y_2 + \ldots + 2y_{n-1} + y_n) = \frac{1}{2} \frac{4-1}{3} (y_0 + 2y_1 + 2y_2 + y_3) \\ \text{Die versch. } y \text{ herausfinden mit: } y_i = f(x_i) = f(a+i\frac{b-a}{n}) \\ y_0 &= f(x_0) = f(1+0\frac{4-1}{3}) = f(1) = 3 \\ y_1 &= f(x_1) = f(1+1\frac{4-1}{3}) = f(2) = 1.5 \\ y_2 &= f(x_2) = f(1+2\frac{4-1}{3}) = f(3) = 1 \\ y_3 &= f(x_3) = f(1+3\frac{4-1}{3}) = f(4) = 0.75 \end{split}$$
 Einsetzen:
$$\frac{1}{2} \frac{4-1}{3} (3+2(1.5)+2(1)+0.75) = 4.375 \end{split}$$

12.3 Simpsonregel - kurz

Funktion: f(x)Intervall: [a, b]

Anzahl Teilintervalle: n

Fläche:
$$\int\limits_{a}^{b} f(x) dx \approx \frac{b-a}{6n} (y_0 + 4y_1 + 2y_2 + 4y_3 + \ldots + 2y_{2n-2} + 4y_{2n-1} + y_{2n})$$
 y_i also die versch. y in Formel oben: $y_i = f(x_i) = f(a + i\frac{b-a}{2n}); 0 \leq i \leq 2n$

12.3.1 Beispiel

Gleiches Vorgehen wie bei der Trapezregel!

12.4 Definition Bogenlänge

Ist y=f(x) eine glatte Kurve (f' ist stetig) im Intevall [a,b], dann ist die Länge dieser Kurve über [a,b] gegeben durch:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx = \int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^2} dx$$

12.4.1 Beispiel

Berechne die Bogenlänge L der Kurve $y=x^{\frac{3}{2}}$ von (1,1) nach $(2,2\sqrt{2})$.

$$L = \int_{1}^{2} \sqrt{1 + (f'(x))^{2}} dx = \int_{1}^{2} \sqrt{1 + (\frac{3}{2})^{2} x^{(\frac{1}{2})^{2}}} dx = \int_{1}^{2} \sqrt{1 + \frac{9}{4} x} dx$$

$$t = 1 + \frac{9}{4} x$$

$$dt = \frac{9}{4} dx$$

$$dx = \frac{9}{4} dt$$

$$=\int\limits_{\frac{13}{4}}^{\frac{22}{4}}\!\!\sqrt{t}\tfrac{4}{9}dt=\int\limits_{\frac{13}{4}}^{\frac{22}{4}}t^{\frac{1}{2}}\tfrac{4}{9}dt$$

$$\int t^{\frac{1}{2}}dt = \frac{t^{\frac{3}{2}}}{\frac{3}{2}}$$

$$= \frac{4}{9} \left[\frac{2}{3} t^{\frac{3}{2}} \right]_{\frac{13}{4}}^{\frac{22}{4}} = \frac{8}{27} ((\frac{22}{4})^{\frac{3}{2}} - (\frac{13}{4})^{\frac{3}{2}}) = \frac{8}{27(8)} (22 \times \sqrt{22} - 13 \times \sqrt{13})$$

12.5 Kurven in Polarform

Das Bogenelement ist

$$(ds)^{2} = (rd\phi)^{2} + (dr)^{2} = \sqrt{(r(\phi))^{2} + (r'(\phi))^{2}} d\phi$$

Integration von α bis β liefert die Bogenlänge.

Die Bogenlänge einer in Polarkoordinaten gegebenen glatten Kurven (dh r' stetig) $r=r(\phi)$ mit $\alpha \leq \phi \leq \beta$ ist gegeben durch:

$$L = \int_{\alpha}^{\beta} \sqrt{(r(\phi))^2 + (r'(\phi))^2} d\phi$$

12.5.1 Beispiel

Man hat $r(\phi)=R$ und damit, weil r gar nicht von ϕ abhängt $r'(\phi)=0$. Also findet man für den Umfang des Kreises mit Radius R:

$$U = \int_{0}^{2\pi} \sqrt{(r(\phi))^2 + (r'(\phi))^2} d\phi = \int_{0}^{2\pi} \sqrt{R^2 + 0^2} d\phi = \int_{0}^{2\pi} R d\phi = 2\pi R$$

12.6 Kurven in Parameterform

Das infinitesimale Bogenelement der Kuve in Parameterform

$$\gamma: [a,b] \to \mathbb{R}^2, t \mapsto \vec{x}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

ist gegeben durch

$$ds=|\dot{\vec{x}}(t)|dt=\sqrt{(\dot{x}(t))^2+(\dot{y}(t))^2}dt$$

Integration von t=a bis t=b liefert die Bogenlänge der in Parameterform gegebene Kurve

$$L = \int_{a}^{b} ds = \int_{a}^{b} |\dot{\vec{x}}(t)| dt = \sqrt{(\dot{x}(t))^{2} + (\dot{y}(t))^{2}} dt$$

12.7 Beispiel

$$\gamma = \begin{pmatrix} R\cos(t) \\ R\sin(t) \end{pmatrix} = R\begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$

$$\dot{\gamma}(t) = R \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

$$(\dot{x}(t))^2 = (-R\sin(t))^2 = R^2\sin^2 t$$

$$(\dot{y}(t))^2 = (R\cos(t))^2 = R^2\cos^2 t$$

$$(\dot{x}(t))^2 + (\dot{y}(t))^2 = R^2 \sin^2 t + R^2 \cos^2 t = R^2 (\sin^2 t + \cos^2 t) = R^2$$

$$L = \int\limits_{\alpha}^{\beta} \! \sqrt{(\dot{x}(t))^2 + (\dot{y}(t))^2} dt = \int\limits_{0}^{2\pi} \! \sqrt{R^2} dt = \int\limits_{0}^{2\pi} R dt = \ldots = 2\pi R$$