(Diskret matte SF1688, HT22: F11)

 $U(\mathbb{Z}_m)$ är gruppen av alla inverterbara element i \mathbb{Z}_m .

Cykliska grupper

En grupp G är **cyklisk** om för något $x \in G$ varje $g \in G$ är x^n för något $n \in \mathbb{Z}$. (Om n < 0 skall x^n förstås som $(x^{-1})^{-n}$.)

x generate G, $G = \langle x \rangle$,

$$o(x) = m: C_m = \{1, x, x^2, \dots, x^{m-1}\} \approx (\mathbb{Z}_m, +)$$

$$o(x) = \infty$$
: $C_{\infty} = \{\dots, x^{-2}, x^{-1}, 1, x, x^2, \dots\} \approx (\mathbb{Z}, +)$

Direkt produkt av grupper Om A, B är grupper, är $(A \times B, *)$ med $(a_1, b_1) * (a_2, b_2) = (a_1 a_2, b_1 b_2)$ också en grupp, den **direkta produkten** av A och B.

Enligt kinesiska restsatsen (nästa vecka) gäller om $sgd(m_i, m_j) = 1$ då $i \neq j$:

$$C_{m_1 \cdot \ldots \cdot m_k} \approx C_{m_1} \times \ldots \times C_{m_k}$$

Delgrupper

H är en **delgrupp** till (G, *) om $H \subseteq G$ och (H, *) är en grupp.

Sats: Om G är en grupp och $H \subseteq G$ gäller att

$$H \text{ \"{a}r en delgrupp till } G \quad \Leftrightarrow \quad \begin{cases} S0 & H \neq \varnothing \\ S1 & x,y \in H \Rightarrow xy \in H \\ S2 & x \in H \Rightarrow x^{-1} \in H \end{cases}$$

Om H är **ändlig**, räcker S0 och S1.

Exempel: Om G är en grupp är

$$\mathcal{Z}(G) = \{ z \in G \mid zg = gz \text{ för alla } g \in G \}$$

en delgrupp till G. Den kallas G:s centrum.

Varje $x \in G$ (G en grupp) genererar en cyklisk delgrupp,

$$\langle x \rangle = \{ x^i \mid i \in \mathbb{Z} \}.$$

Då är $o(x) = |\langle x \rangle|$.

Ett exempel: Elementen i G_{\square} är symmetriavbildningar för kvadraten:

Rotationer: speglingar: $i \quad r \quad r^2 \quad r^3 \quad x \quad rx \quad r^2x \quad r^3x$

 $(i \ {\rm \ddot{a}r} \ {\rm identitets av bildning} \ {\rm "flyttar"} \ {\rm kvadraten} \ {\rm från} \ {\rm "standard läget"}, \ {\rm det} \ {\rm vid} \ i \ {\rm ovan.})$

Gruppen **genereras** av $\{x, r\}$, dvs varje element kan som ovan skrivas som $r^j x^i \mod i \in \{0, 1\}, j \in \{0, 1, 2, 3\}$. Gruppen beskrivs helt av **relationerna**

$$x^2 = r^4 = i, \quad xr = r^3 x$$

Grupptabellen blir:

	i	r	r^2	r^3	x	rx	r^2x	r^3x
		r			x	rx	r^2x	r^3x
		r^2			rx	r^2x	r^3x	x
		r^3				r^3x	x	rx
r^3	r^3	i	r	r^2	r^3x	x	rx	r^2x
x	x	r^3x	r^2x	rx	i	r^3	r^2	r
rx	rx	x					r^3	r^2
r^2x	r^2x	rx	x	r^3x	r^2	r	i	r^3
r^3x	r^3x	r^2x	rx	x	r^3	r^2	r	i

Vi ser att r genererar cyklisk delgrupp $\langle r \rangle = \{i, r, r^2, r^3\}$

Om cayleygrafer (orientering, kommer ej på tentan)

En cayleygraf för en grupp (egentligen för en framställning av gruppen med generatorer) beskriver gruppen fullständigt.

Grafen har ett hörn för varje element i gruppen och om gruppen genereras av a, b, \ldots (dvs om varje $g \in G$ kan skrivas som en produkt av sådana och deras inverser) har den riktade kanter med olika mörkningar (eller färger), svarande mot a, b, \ldots En a-kant från hörn g slutar i hörn ag osv. (multiplikationen kan också ske från höger, men vi använder multiplikation från vänster som konvention.)

En cayleygraf för G_{\square} , kvadratens symmetrigrupp: Gruppen genereras ju av r och x med relationerna $r^4 = x^2 = i$, $rx = xr^3$.

Heldragna pilar svarar här mot r, avbrutna mot x. För att t.ex. finna $r^3 \cdot xr^2$ i grafen: gå från hörnet r^3 längs en pilföljd som leder från i till xr^2 , t.ex. x, r, r (eller r, r, x eller r, r, x, r), och hamna i resultatet, xr^3 .

Samma grupp kan beskrivas med denna graf: Här används generatorerna x och y (där y = xr) med relationerna $x^2 = y^2 = (xy)^4 = i$. Heldragna pilar svarar nu mot y, avbrutna mot x.

Ett sådant diagram med punkter och pilar är en cayleygraf för en grupp precis om:

- r^3 xr^2 r^3 xr^2 xr^3 xr^3 xr^3
- 1. Både till och från varje punkt går precis en pil av varje typ.
- 2. Om en pilföljd från en punkt leder tillbaks till startpunkten, gör motsvarande pilföljd från en annan punkt också det (t.ex. r, x, r, r, r, r, r i den övre grafen).

Man kan välja vilken punkt man vill som enhetselement och beräkna vilka element som svarar mot övriga punkter.