6. Newton Method

Cheng Peng

Lecture Note for MAT325 Numerical Analysis

Contents

1	Introduction	1
	Foundations of Newton Method 2.1 The Algorithmic Logic	
3	Algorithm and Code	3
4	Error Analysis	5

1 Introduction

We have introduced bisection and fixed-point methods for finding the root of single-variable equations over a pre-selected interval. Both methods have a linear convergence rate (if the error sequence converges). This note introduces the well-known Newton method for finding the root of non-linear equations. We will see that the Newton method has a quadratic convergence rate (if converges). Unlike the bisection method, this method can be extended to multi-variable nonlinear systems (same as the fixed-point method).

Notation: Big O and Little o

We have introduced the concept of convergence rate at which some function changes as its argument grows (or shrinks), without worrying too much about the detailed form. This is what the $O(\cdot)$ and $o(\cdot)$ notation are. We now give a little more detail about these notations.

A function f(n) is "of constant order", or "of order 1" when there exists some non-zero constant c such that

$$\frac{f(n)}{c} \to 1$$

as $n \to 1$; equivalently, since c is a constant, $f(n) \to c$ as $n \to 1$. It doesn't matter how big or how small c is, just so long as there is some such constant. We then write

$$f(n) = O(1)$$

and say that "the proportionality constant c gets absorbed into the big O". For example, if f(n) = 37, then f(n) = O(1). But if g(n) = 37(1 - 2/n), then g(n) = O(1)

The other orders are defined recursively. Saying

$$g(n) = O(f(n))$$

means

$$\frac{g(n)}{f(n)} = O(1)$$
, or $\frac{g(n)}{f(n)} \to c$,

as $n \to \infty$. This is equivalently to say that g(n) is of the same order as f(n), and they grow at the same rate!

Example 1: a quadratic function $a_1n^2 + a_2n + a_3 = O(n^2)$, no matter what the coefficients are. On the other hand, $b_1n^{-2} + b_1n^{-1}isO(n^-1)$.

Big-O means "is of the same order as". The corresponding little-o means "is ultimately smaller than": f(n) = o(1) means that $f(n)/c \in 0$ for any constant c. Reccursively, g(n) = o(f(n)) means g(n)/f(n) = o(1), or $g(n)/f(n) \to 0$. We also read g(n) = o(f(n)) as "g(n) is ultimately negligible compared to f(n)".

2 Foundations of Newton Method

The Newton method is formulated based on the Taylor series.

2.1 The Algorithmic Logic

Let's consider a general function f(x). For the starting point x_0 , the slope of the tangent line at the point $(x_0, f(x_0))$ is $f'(x_0)$ so the equation of the tangent line is $y - f(x_0) = f'(x_0)(x - x_0)$. We look at the intersection between the tangent line and x-axis: $(x_1, 0)$

where x_1 is the root of $0 - f(x_0) = f'(x_0)(x - x_0)$. solving the equation, we have $x_1 = x_0 - f(x_0)/f'(x_0)$. In the above figure, we can see x_1 is closer to the true root x. If we draw the tangent line at $(x_1, f(x_1))$ and look at the intersection between the x-axis and this tangent line, the x-coordinate $x_2 = x_1 - f(x_1)/f'(x_1)$.

https://github.com/pengdsci/MAT325/raw/main/w04/img/w04-NewtonIterationGIF.gif

Starting with x_1 and repeating this process we have $x_2 = x_1 - f(x_1)/f'(x_1)$, we get $x_3 = x_2 - f(x_2)/f'(x_2)$; and so on.

2.2 Initial Starting Value Matters

Here are a few examples with different starting values. We can see the number of iterations needed to achieve the error tolerance.

Example 2. Find the root of equation $f(x) = x^3 - x + 3 = 0$ using various initial starting values.

Case 1: $x_0 = -1$. The algorithm converges after 6 iterations.

Case 2: $x_0 = -0.1$. The algorithm converges after 33 iterations.

Case 3: $x_0 = 0$. The algorithm diverges with the initial value $x_0 = 0$!

3 Algorithm and Code

Assume that $f(x) \in C^2[a, b]$. Let $x_0 \in [a, b]$ be an approximation to p, the root of f(x) = 0, such that $f(x_0) \neq 0$ and $|p - x_0|$ is "small."

Consider the first Taylor polynomial for f(x) expanded about x_0 and evaluated at x = p.

$$f(p) = f(x_0) + (p - x_0)f'(x_0) + \frac{(p - x_0)^2}{2}f''(\xi(p))$$

where $\xi(p)$ is some number in $[\min x_0, p, \max p, x_0]$. Since f(p) = 0 and $|p - x_0|$ is "small", therefore, $0 \approx f(x_0) - (p - x_0)f'(x_0)$. This yields

$$p \approx x_0 - \frac{f(x_0)}{f'(x_0)} \to x_1$$

As demonstrated in the previous section, continuing this process, we have $\{x_n\}_{n=0}^{\infty}$, where

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 for $n \ge 0$,

to approximate the root of equation f(x) = 0.

Pseudo-code of Newton Method:

```
INPUT:
         initial x0;
         TOL;
         M = maximum iterations.
         f(x)
         f'(x)
OUTPUT:
         Approximated root and optional information.
STEP 1: n = 0
                   (initial counter)
         x = x0
                   (initial value)
         ERR = |f(x)/f'(x)|
STEP 2: WHILE ERR > TOL DO:
           n = n + 1
           x = x - f(x)/f'(x)
           ERR = |f(x)/f'(x)|
           IF ERR < TOL DO:
              OUTPUT (result and related info)
              STOP
           ENDIF
           IF ERR >= TOL DO:
              OUTPUT (intermediate info and messages)
           IF n = M DO:
```

```
OUTPUT (message: max iterations achieved!)
STOP
ENDIF
ENDWHILE
```

Implementation with R

The following code is developed based on the following example.

Example 2 (Revisited): Find the root of equation $f(x) = x^3 - x + 3 = 0$.

```
# Define f(x) and f'(x)
fn = function(x) x^3 - x + 3
dfn = function(x) 3*x^2 - 1
# initial values
n = 0
x = -1
M = 200
TOL = 10^{-6}
ERR = abs(fn(x)/dfn(x))
# loop begins
while(ERR > TOL){
  n = n + 1
  x = x - fn(x)/dfn(x)
  ERR = abs(fn(x)/dfn(x))
  if(ERR < TOL){</pre>
     cat("\n\nAlgorithm converges!")
     cat("\nThe approximated root:", x, ".")
     cat("\nThe absolute error:", ERR, ".")
     cat("\nThe number of iterations n =",n,".")
    } else{
      cat("\nIteration n =",n, ", approximate root:",x,", absolute error:", ERR,".")
    if (n == M){
      cat("\n\nThe maximum iterations attained!")
      cat("\nThe algorithm did not converge!")
    }
}
##
## Iteration n = 1 , approximate root: -2.5 , absolute error: 0.5704225 .
## Iteration n=2 , approximate root: -1.929577 , absolute error: 0.2217111 .
## Iteration n = 3 , approximate root: -1.707866 , absolute error: 0.03530793 .
## Iteration n = 4 , approximate root: -1.672558 , absolute error: 0.0008580914 .
## Algorithm converges!
## The approximated root: -1.6717 .
## The absolute error: 5.002863e-07 .
## The number of iterations n = 5.
```

4 Error Analysis

Assume that $f(x) \in C^2[a, b]$ is continuous and p is a simple zero of f(x) so that $f(p) = 0 \neq f'(p)$. From the definition of the Newton iteration, we have

$$e_{n+1} = x_{n+1} - p = x_n - \frac{f(x_n)}{f'(x_n)} - p = e_n - \frac{f(x_n)}{f'(x_n)}.$$

Using Taylor expansion, we have

$$f(x_n) = f'(p)(x_n - p) + \frac{1}{2}f''(\xi(p))(x_n - p)^2 = f'(p)e_n + \frac{1}{2}f''(\xi(p))e_n^2,$$

where $\xi(p)$ is between x_n and p. Therefore,

$$e_{n+1} = e_n - \frac{f'(p)e_n + \frac{1}{2}f''(\xi(p))e_n^2}{f'(p)} = \frac{f''(\xi(p))}{2f'(p)}e_n^2,$$

that is,

$$\frac{e_{n+1}}{e_n^2} = \frac{f''(\xi(p))}{2f'(p)}.$$

Theorem: Assume f(x) is a continuous function with a continuous second derivative, that is defined on an interval $I = [p - \delta, p +] delta$, with $\delta > 0$. Assume that f(p) = 0, and that $f''(p) \neq 0$. Assume that there exists a constant M such that

$$\left| \frac{f''(x)}{f'(y)} \right| \le M$$
, for $x, y \in I$

If x_0 is sufficiently close to the root p, i.e., if $|x_0 - p| \le \min\{\delta, 1/M\}$, then the sequence $\{x_n\}$ defined in Newton Method converges to the root p with a quadratic convergence order.