

University of Padova

Department of Information Engineering

WORD MOVER'S EMBEDDING:

From Word2Vec to Document Embedding

Mario Avdullaj Ilaria Gallo Alessio Mazzetto

Text representation in the literature

Bag of Words (BOW)

semplice, efficiente, alta precisione

non tiene conto della semantica

rappresentazione sparsa con elevato numero di features

Decomposizione ai valori singolari

rappresentazione più significativa

non sempre efficace

Media pesata degli embeddings

tiene conto del contesto

tralascia l'ordine delle parole

Doc2Vec

apprendimento degli embeddings per parole e testi

tiene conto dell'ordine delle parole solo all'interno di una piccola finestra

Fig. 1: Decomposizione ai valori singolari

Fig. 2: Word2Vec: CBOW model

Word Mover's Distance

Word Mover's Distance (WMD): misura la differenza tra due documenti testuali nello spazio degli embeddings prodotto da Word2Vec

Word Mover's Distance

Definizione:

$$\mathrm{WMD}(x,y) := \min_{F \in \mathbb{R}_+^{|x| \times |y|}} \langle C, F \rangle,$$

$$s.t., F\mathbf{1} = \boldsymbol{f}_x, \ F^\mathsf{T}\mathbf{1} = \boldsymbol{f}_y.$$

x, y: documenti

fx, fy: vettori delle

frequenze normalizzate

C: matrice dei costi

F: matrice di flusso

Formulazione equivalente del problema di programmazione lineare:

$$\begin{aligned} \min_{\mathbf{T} \geq 0} \ \sum_{i,j=1}^n \mathbf{T}_{ij} c(i,j) \\ \text{subject to: } \sum_{j=1}^n \mathbf{T}_{ij} \ = d_i \quad \forall i \in \{1,\dots,n\} \\ \sum_{i=1}^n \mathbf{T}_{ij} \ = d_j' \quad \forall j \in \{1,\dots,n\}. \end{aligned}$$

di: frequenza della parola i-esima nel documento x

dj: frequenza della parola j-esima nel documento y

Word Mover's Distance

- Accurato nella misura di distanza tra documenti con parole semanticamente simili ma sintatticamente differenti
- Buone performance se combinato con K-Nearest neighbors per task di classificazione
- Calcolo della distanza computazionalmente oneroso: O(L³log(L)) per una coppia di documenti O(N²L³log(L)) su una collezione di N documenti

Siano x, y due documenti

WMD(x,y)

k(x,y)

Distance metric

Positive-definite kernel

[1] D2ke: From distance to kernel and embedding Wu et Al. (2018)

[2]

[2] Random features for large-scale kernel machine Ali Rahimi and Benjamin Recht. (2007)

Embedding WME

Siano x, y due documenti

$$k(x,y) \coloneqq \int_{w \in \Omega} p(w) \phi_w(x) \phi_w(y) dw$$

$$\phi_{w(x)} = e^{-\gamma \cdot WMD(x,y)}$$

 $\Omega =$ spazio dei documenti randomici

 γ = parametro di smoothing

Siano x, y due documenti

$$k(x,y) \coloneqq \int_{w \in \Omega} p(w) \phi_w(x) \phi_w(y) dw$$

$$k(x,y) = e^{-\gamma \cdot softmin_{p(w)}[WMD(x,w) + WMD(w,y)]}$$

$$softmin_{p(w)}f(w) := -\frac{1}{\gamma}\log\int_{w\in\Omega}p(w)e^{-\gamma f(w)}dw \qquad \xrightarrow{\gamma\to +\infty} \qquad \min_{w\in\Omega}f(w)$$

$$WMD(x,y) \le \min_{\omega \in \Omega} f(w)$$

Approssimazioni:

- Ω contiene documenti con lunghezza uniformemente distribuita tra 1 e D_{max}
- Ogni documento randomico è costituito da parole $u \in \mathbb{R}^d$, con $u_j \sim U[v_{\min}, v_{\max}]$
 - d = dimensione rappresentazione distribuita usata per i termini
 - v_{\min} , v_{\max} = valori minimi e massimi delle coordinate dei termini nel vocabolario

Word Mover's Embedding

Supponendo che $\{\omega_i\}_{i=1}^R$ siano documenti estratti casualmente

$$k(x,y) \coloneqq \int_{w \in \Omega} p(w)\phi_w(x)\phi_w(y)dw$$
$$= e^{-\gamma \cdot softmin_{p(w)}f(w)} \simeq e^{-\gamma \cdot WMD(x,y)}$$

$$k(x,y) \simeq \frac{1}{R} \sum_{i=1}^{R} \phi_{w_i}(x) \cdot \phi_{w_i}(y) = \langle Z(x), Z(y) \rangle$$

Dove
$$Z(x) = \frac{1}{\sqrt{R}} \left(\phi_{w_1}(x), ..., \phi_{w_R}(x) \right)$$
 EMBEDDING DI $x!$

Word Mover's Embedding

Algoritmo WME:

$$Per i = 1,...,R$$
:

- Estraggo $D_i \sim U[1, D_{max}]$
- $w_i = (u_1, u_2, ..., u_{D_i}) : u_j \sim U[v_{min}, v_{max}]^d$
- Per ogni documento x, calcolo $\phi_{w_i}(x)$

L'embedding di un documento x è

$$Z(x) = \frac{1}{\sqrt{R}} \left(\phi_{w_1}(x), \dots, \phi_{w_R}(x) \right)$$

Word Mover's Embedding

Convergenza dell'algoritmo:

Se R =
$$\Omega\left(\frac{dL}{\epsilon^2}\log\left(\frac{\gamma}{\epsilon}\right) + \frac{1}{\epsilon}\log\left(\frac{1}{\delta}\right)\right)$$
, allora con probabilità almeno $1 - \delta$, si ha che

$$|k(x,y)-\langle Z(x),Z(y)\rangle|<\epsilon$$

Vantaggio computazionale:

WMD(x,y) richiede $O(L^3 \log(L))$ Il calcolo di $\phi_w(x)$ richiede $O(D^2L \cdot \log(L))$

Calcolo di WME super lineare in N!

$$O(N \cdot R \cdot L \cdot \log(L))$$

Esperimenti e risultati

- Performance di WME variando i parametri
- Confronto tra KNN + WMD e SVM + WME
- Confronto tra WME e diversi metodi di Document Representation
- Implementazione di WME in Python e risultati sperimentali

Performance di WME variando i parametri

Setup dell'esperimento:

- Cross-validation per la scelta di γ (range di valori [0.01, 10])
- Utilizzo di un modello di classificazione SVM lineare
- 9 Dataset utilizzati, tra cui BBCSPORT, TWITTER, 20NEWS e CLASSIC

Performance di WME variando i parametri

Variando R nel range [4, 4096]:

 All'aumentare di R, abbiamo un aumento di accuratezza

 Il picco di accuratezza viene raggiunto con valori di D bassi (D <= 6)

Confrontotra KNN + WMD e SVM + WME

L'esperimento consiste nel comparare la tecnica Word Mover's Distance accoppiato con il classificatore KNN, con la tecnica Word Mover's Embedding accoppiato con un modello di classificazione SVM

Setup dell'esperimento:

- Dataset utilizzati: uguali all'esperimento precedente
- 10-cross validation per la scelta dei parametri ottimali
- Per ciascun metodo, due varianti: distanza fra tutte le parole del vocabolario della collezione precomputata (+P) o meno
- WME testato con valori alti e valori bassi di R [WME(LR), WME(SR)]

Confrontotra KNN + WMD e SVM + WME

Classifier	KNN-WMD	KNN-WMD+P		WME(SR) WME(SR)+P			WME(LR) WME(LR)+P			
Dataset	Accu	Time	Time	Accu	Time	Time	Accu	Time	Time	Speedup
BBCSPORT	95.4 ± 1.2	147	122	95.5 ± 0.7	3	1	$\textbf{98.2} \pm \textbf{0.6}$	92	34	122
TWITTER	71.3 ± 0.6	25	4	72.5 ± 0.5	10	2	74.5 ± 0.5	162	34	2
RECIPE	57.4 ± 0.3	448	326	57.4 ± 0.5	18	4	$\textbf{61.8} \pm \textbf{0.8}$	277	61	82
OHSUMED	55.5	3530	2807	55.8	24	7	64.5	757	240	401
CLASSIC	$\textbf{97.2} \pm \textbf{0.1}$	777	520	96.6 ± 0.2	49	10	97.1 ± 0.4	388	70	52
REUTERS	96.5	814	557	96.0	50	24	97.2	823	396	23
AMAZON	92.6 ± 0.3	2190	1319	92.7 ± 0.3	31	8	$\textbf{94.3} \pm \textbf{0.4}$	495	123	165
20NEWS	73.2	37988	32610	72.9	205	69	78.3	1620	547	472
RECIPE_L	71.4 ± 0.5	5942	2060	72.5 ± 0.4	113	20	$\textbf{79.2} \pm \textbf{0.3}$	1838	330	103

Risultati:

- Accuratezza di WME(SR) e WMD comparabili. Complessità ridotta!
- WME(LR) ottiene valori di accuratezza maggiori
- Precomputazione delle distanze fra parole -> 3-5x speedup

Confronto tra WME e diversi metodi di Document Representation

Comparazione di WME con 6 metodi di Document Representation

- 1. Smoorth Inverse Frequency (SIF)
- 2. Word2Vec+NBOW
- 3. Word2Vec+TF*IDF
- 4. PV-DBOW
- 5. PV-DM
- 6. Doc2VecC

Linear SVM per tutti i metodi

Confrontotra WME e diversi metodi di Document Representation

Dataset	SIF(GloVe)	Word2Vec+nbow	Word2Vec+tf-idf	PV-DBOW	PV-DM	Doc2VecC	WME
BBCSPORT	97.3 ± 1.2	97.3 ± 0.9	96.9 ± 1.1	97.2 ± 0.7	97.9 ± 1.3	90.5 ± 1.7	$\textbf{98.2} \pm \textbf{0.6}$
TWITTER	57.8 ± 2.5	72.0 ± 1.5	71.9 ± 0.7	67.8 ± 0.4	67.3 ± 0.3	71.0 ± 0.4	$\textbf{74.5} \pm \textbf{0.5}$
OHSUMED	67.1	63.0	60.6	55.9	59.8	63.4	64.5
CLASSIC	92.7 ± 0.9	95.2 ± 0.4	93.9 ± 0.4	97.0 ± 0.3	96.5 ± 0.7	96.6 ± 0.4	$\textbf{97.1} \pm \textbf{0.4}$
REUTERS	87.6	96.9	95.9	96.3	94.9	96.5	97.2
AMAZON	94.1 ± 0.2	94.0 ± 0.5	92.2 ± 0.4	89.2 ± 0.3	88.6 ± 0.4	91.2 ± 0.5	$\textbf{94.3} \pm \textbf{0.4}$
20NEWS	72.3	71.7	70.2	71.0	74.0	78.2	78.3
RECIPE_L	71.1 ± 0.5	74.9 ± 0.5	73.1 ± 0.6	73.1 ± 0.5	71.1 ± 0.4	76.1 ± 0.4	$\textbf{79.2} \pm \textbf{0.3}$

WME performa consistenemente meglio rispetto agli altri metodi sulle collezioni testate

University of Padova

Implementazione di WME in Python e risultati sperimentali