

International Organization for Medical Physics

> International Union for Physical and Engineering Science in Medicine

X International Conference on Medical Physics

XVII International Conference on Medical and Biological Engineering



International Federation
For Medical and Biological
Engineering

Il National Forum of Science and Technology in Health

V Brazilian Congress of Physicists in Medicine

XIV Brazilian Congress on Biomedical Engineering

Il Argentinean Congress on Bioengineering and Medical Physics

An official Journal of the International Organization for Medical Physics

## PS34 - 2.8

## CLOSED-LOOP CONTROL OF AMPLITUDE FOR MICE DURING KHZE EXTENSION

D.B.Lázari, M.C.F.Castro, L.Gallo Jr., A. Cliquet Jr., Dept. de Engenharia Biomédica - Fac. de Engenharia Elétrica - UNICAMP Caixa Postal 6040 - CEP (13081-970) - Campinas - SP - Brazil

[Introduction] When applying NMES for therapeutic purposes in spinal cord injured patients, the therapist has to alter the signal amplitude when fatigue is observed. To solve this problem, a closed-loop control system has been implemented for automatic NMES signal amplitude variation.
[Materials and Methods] The control signal responsible for amplitude modulation of the stimulator output is generated by a computer, through a D/A board. The induced degree of knee extension is obtained by digitizing an electrogoniometer signal simultaneously to quadriceps stimulation. Data analysis is then performed and if maximum knee extension is twice below a previously set threshold, the control signal will be increased, thus resulting in a higher amplitude for the stimuli applied to the patient. The software was written in C language and an IBM compatible microcomputer, was used, working as an acquisition and generation controller and deciding when to increase the stimuli intensity.

[Results] This system was applied to a patient with C5 lesion, with no voluntary control of knee extension. The generated wave had a duty cycle of 33%. The initial control signal was 7.5%. The threshold in volts was 0.5 and the control signal increment was 0.5%. There follows below some of results obtained during therapeutic exercises:

8.50

0.45

Control Signal 7.50 7.50 8.00 8.00 8.00 8.00 Maximum Extension 0.63 0.60 0.48 0.47 0.55 0.61

[Conclusions] The system showed efficiency. It was the first step to get a closed-loop ambulation system. The system could be improved by using other sensors and a more complex algorithm with the goal of getting smooth movements.

- This work has been sponsored by CAPES -

1