

CLAIMS

We claim:

1 1. An apparatus comprising:

2 a data aligner to receive a data stream from a data transmission link and to
3 separate the received data stream into a segment of predefined number of bytes to
4 identify data bytes for alignment, wherein the data has a granularity of less than a width
5 of an internal data path, the data aligner to align a fragment of data with a current
6 segment or delay the fragment to combine with a next segment for alignment into interim
7 storage for subsequent output onto the internal data path; and

8 a buffer to receive aligned data from the data aligner for interim storage and to
9 output data onto the internal data path.

1 2. The apparatus of claim 1 further including a control decode logic to separate
2 commands from data at an input to the data aligner and to process commands to align the
3 data.

1 3. The apparatus of claim 2, wherein the data aligner includes a multiplexing circuit
2 to multiplex certain minimum contiguous bytes of data for the alignment into the interim
3 storage, the multiplexing circuit selecting from current and delayed fragments to obtain
4 alignment of data.

1 4. The apparatus of claim 3, wherein the data aligner includes a multiplexer control
2 logic to control the multiplexing circuit.

1 5. The apparatus of claim 4, wherein the multiplexer control logic includes at least
2 one state machine to generate a select signal to the multiplexing circuit to control
3 fragment byte selection for alignment.

1 6. The apparatus of claim 5, wherein the at least one state machine enables bytes
2 output from the multiplexing circuit when the output bytes are data bytes.

1 7. The apparatus of claim 6, wherein the data aligner to receive data is based on the
2 SPI-4 protocol.

1 8. An apparatus comprising:

2 a data aligner to receive a data stream from a data transmission link and to
3 separate the received data stream into a segment of eight bytes to identify data bytes for
4 alignment, wherein the data has a granularity set to two bytes (double-byte) and in which

5 the aligner to align a double-byte fragment of data with a current segment or delay the
6 fragment to combine with a next segment for alignment into interim storage for
7 subsequent output onto an internal data path; and

8 a buffer to receive aligned data from the data aligner for interim storage and to
9 output data onto the internal data path.

1 9. The apparatus of claim 8 further including a control decode logic to separate
2 commands from data at an input to the data aligner and to process commands to align the
3 data.

1 10. The apparatus of claim 9, wherein the data aligner includes a multiplexing circuit
2 to multiplex two pairs of double-byte words, but in which alignment of the pairs of
3 double-byte words places even numbered double-byte data word at a beginning of the
4 eight-byte segment to alignment the data.

1 11. The apparatus of claim 10, wherein the data aligner includes a multiplexer control
2 logic to control the multiplexing circuit, wherein the multiplexer control logic includes at
3 least one state machine to generate a select signal to the multiplexing circuit to control
4 double-byte fragment selection for output from the multiplexing circuit to obtain
5 alignment of data.

1 12. The apparatus of claim 11, wherein the at least one state machine enables certain
2 double-byte output from the multiplexing circuit when the certain double-byte output is a
3 double-byte data word.

1 13. The apparatus of claim 12, wherein the data aligner to receive data is based on the
2 SPI-4 protocol.

1 14. An integrated circuit comprising:
2 an interface unit to receive incoming data stream from a data transmission link for
3 use by the integrated circuit;
4 a control decode logic operably coupled to the interface unit to receive and
5 separate commands from the incoming data stream for use to align data;
6 a data aligner to receive data from the interface unit and to segment the received
7 data into a segment of eight bytes to identify data bytes for alignment, wherein the data
8 has a granularity set to two bytes (double-byte) and in which the data aligner to align a
9 double-byte fragment of data with a current segment or delay the fragment to combine

10 with a next segment for alignment into interim storage for subsequent output onto an
11 internal data path; and

12 a buffer to receive aligned data from the data aligner for interim storage and to
13 output data onto the internal data path.

1 15. The integrated circuit of claim 14, wherein the data aligner includes a
2 multiplexing circuit to multiplex two pairs of double-byte words, but in which alignment
3 of the pairs of double-byte words places even numbered double-byte data word at a
4 beginning of the eight-byte segment to obtain alignment of data.

1 16. The integrated circuit of claim 15, wherein the data aligner includes a multiplexer
2 control logic to control the multiplexing circuit, wherein the multiplexer control logic
3 includes at least one state machine to generate a select signal to the multiplexing circuit
4 to control double-byte fragment selection for output from the multiplexing circuit to
5 obtain alignment of data.

1 17. The integrated circuit of claim 16, wherein the at least one state machine enables
2 certain double-byte output from the multiplexing circuit when the certain double-byte
3 output is a double-byte data word.

1 18. The integrated circuit of claim 17, wherein the data aligner to receive data is
2 based on the SPI-4 protocol.

1 19. A method comprising:

2 segmenting a data stream received from a data transmission link by separating the
3 received data stream into a segment of eight bytes to identify data bytes for alignment,
4 wherein the data has a granularity set to two bytes (double-byte);

5 aligning the eight bytes so that a double-byte fragment is aligned with the current
6 segment or delayed to combine with a next segment for alignment into interim storage for
7 subsequent output onto an internal data path;

8 multiplexing two pairs of double-byte word groups for output, but in which
9 alignment of the pairs of double-byte words places even numbered double-byte data word
10 at a beginning of the eight-byte segment to obtain alignment of data; and

11 buffering aligned data into interim storage to output data onto the internal data
12 path.

1 20. The method of claim 19, wherein the segmenting the data stream segments data
2 based on SPI-4 protocol.