Sedem základných NP-úplných problémov

SAT	Vstup:	Booleovská formula f	
	Problém:	Je f splniteľná?	
3-SAT	Vstup:	Booleovská formula f vo forme:	
		$(a_{1,1} \lor a_{1,2} \lor a_{1,3}) \land \cdots \land (a_{n,1} \lor a_{n,2} \lor a_{n,3})$	
	Problém:	Je f splniteľná?	
VC	Vstup:	Graf $G = (V, E)$; číslo K	
	Problém:	Existuje množina vrcholov V' veľkosti $\leq K$	
		taká, že pre ľubovoľnú hranu $e=(u,v)\in E$,	
		$u \in V'$ alebo $v \in V'$?	
HAM	Vstup:	Graf $G = (V, E)$	
	Problém:	Existuje v grafe Hamiltonovská kružnica?	

Sedem základných NP-úplných problémov (pokrač.)

TSP-D	Vstup:	Ohodnotený graf $G = (V, E)$; číslo K
	Problém:	Existuje obchôdzka dĺžky $\leq K$?
CLIQUE	Vstup:	Graf $G = (V, E)$; číslo K
	Problém:	Obsahuje G úplný podraf
		o veľkosti $\geq K$ vrcholov?
SUBSET-SUM	Vstup:	n čísel s_1, s_2, \ldots, s_n ; cieľ t
	Problém:	Existuje podmnožina čísel
		s_1, \ldots, s_n so súčtom presne t ?

Čo je algoritmus?

Študujeme problémy, pre ktoré vieme **dokázať**, že neexistuje žiaden algoritmus, ktorý by ich riešil.

Turingov stroj (TS) – model výpočtov (Allan Turing, cca 1930), videli ste na UTI

Churchova-Turingova téza: Ľubovoľný proces, ktorý prirodzene môžeme volať efektívna procedúra (alebo algoritmus) je zapísateľný ako TS.

Poznámka: Toto nie je matematická veta. Prečo?

Churchova-Turingova téza

Argumenty pre:

- 1. Veľa iných výpočtových modelov ekvivalentných s TS.
- Trieda funkcií, ktorú vedia TS vypočítať je invariantná vzhľadom k rôznym modifikáciám definície TS.
- Nepoznáme žiadnu efektívnu procedúru, ktorá by sa nedala zapísať ako TS.

Poznámka: Churchova-Turingova téza NEHOVORÍ, že TS vie vypočítať všetko **rovnako rýchlo** ako iné výpočtové modely.

RAM model výpočtov

- **Pamäť:** pole registrov R_1, R_2, \ldots v každom registry ľubovoľne veľké celé číslo
- Program: fixná postupnosť inštrukcií, očíslované riadky

Inštrukcie:

```
ℓ: INC op pričítaj jednotku
\ell: DEC op odčítaj jendotku
```

 ℓ : IFZERO op ak je operand nula, choď na $\ell+1$

inak choď na $\ell+2$

 ℓ : GOTO op choď na riadok

Operandy:

i celé číslo i (konštanta)

 R_i hodnota registra R_i

 $@R_i$ hodnota registra R_{R_i}

Vstup a výstup: Vstup je v R_1 , po skončení RAMu výstup v R_2

RAMy sú dostatočne silné na to, aby sme v nich simulovali TS TS dokážu simulovať RAMy

⇒ (Churchova téza) RAMy sú aspoň také silné, ako ľubovoľný iný 4 D > 4 P > 4 B > 4 B > B 9 9 P

výpočtový model.

Príklad:

RAM pre funkciu $f(n) = 2^n$

```
1: INC R2
                 // R2:=1
                              9: IFZERO R3 // R2:=2*R3;
2: IFZERO R1
                 // while
                                              // R3:=0;
                 // R1<>0
                              10: GOTO 15
3: GOTO 17
                              11: INC R2
                 // R3:=R2;
4: IFZERO R2
                              12: INC R2
                 // R2:=0;
                              13: DEC R3
5: GOTO 9
                              14: GOTO 9
6: INC R3
                              15: DEC R1
                                              // R1:=R1-1:
7: DEC R2
                              16: GOTO 2
8: GOTO 4
```

- ► Toto je posledný program, ktorý sme napísali ako RAM :)
- Namiesto toho budeme písať pseudokódy a budeme sa spoliehať na Churchovu tézu, t.j. že sa dajú prepísať do RAMu.

Odbočka: Všetko je prirodzené číslo

Zatiaľ RAMy vedia pracovať len s číslami. Čo keď chceme pracovať s inými objektami?

Zoznam je prirodzené číslo

Zoznam (u_1, u_2, \dots, u_n) môžeme reprezentovať ako prirodzené číslo:

$$2^{u_1} \cdot 3^{u_2} \cdot \cdots \cdot p_i^{u_i} \cdot \cdots \cdot p_n^{u_n}$$

kde p_i je i-te prvočíslo.

Písmeno je prirodzené číslo ... použi ASCII

Reťazec je prirodzené číslo ... zoznam písmen

RAM program je prirodzené číslo ... jednoducho reťazec

Vypočitateľ né funkcie

Keďže všetko je prirodzené číslo, definujme ľubovoľný problém ako $f: \mathbb{N} \to \mathbb{N}$.

(Dodefinujeme f(x) = 0 ak x nereprezentuje platný vstup pre problém.)

Definícia:

Úplná funkcia $f: \mathbb{N} \to \mathbb{N}$ is **rekurzívna**/vypočítateľná akk existuje RAM, ktorý f vypočíta.

Vypočítateľ nost: Osnova

- Čo je algoritmus? Churchova-Turingova téza.
- Model výpočtov: RAM.
- Odbočka: Všetko je prirodzené číslo.
- Nevypočítateľné problémy: Problém zastavenia.
- Turingove redukcie alebo "Ako dokázať, že môj problém nie je vypočítateľný?"
- Užitočné vypočítateľné problémy: Univerzálny RAM.
- Príklady, príklady, príklady. . .

Problém zastavenia

Problém: Daný je RAM program P a vstup x. Zastaví sa P na vstupe x?

$$HALT(P, x) = \begin{cases} 1, & \text{ak sa } P \text{ zastaví na } x, \\ 0, & \text{inak.} \end{cases}$$

Príklad 1:

```
trivial_function(x):
   while x<>1 do x:=x-2
```

Príklad 2:

```
mystery_function(x):
  while x<>1 do
    if (x is even) then x:=x/2
    else x:=3*x+1;
```

Veta:

Neexistuje RAM, ktorý vie vypočítať funkciu HALT. **Dôkaz:** Sporom.

- Predpokladajme, že existuje RAM, ktorý počíta HALT.
- Vytvorme RAM podľa nasledujúceho pseudokódu:

```
NOTHALT(P):
   if HALT(P,P)=1 then loop forever;
   else return 1;
```

Čo sa stane, keď spustíme NOTHALT(NOTHALT)?

- Predpokladajme, že NOTHALT(NOTHALT) zastaví.
 - ightharpoonup Z definície HALT: HALT(NOTHALT, NOTHALT) = 1
 - Z pseudokódu NOTHALT:

NOTHALT(NOTHALT) sa zacyklí

- Ale to vedie k sporu s tým, že sa NOTHALT(NOTHALT) zastaví!
- Predpokladajme, že sa NOTHALT(NOTHALT) zacyklí.
 - ► Z definície HALT: HALT(NOTHALT, NOTHALT) = 0
 - Z pseudokódu NOTHALT:

NOTHALT(NOTHALT) zastaví

Ale to vedie k sporu s tým, že sa NOTHALT(NOTHALT) zacyklí!

Predpoklad, že existuje RAM program pre HALT nás dovedie k tomu, že dokážeme aj tvrdenie aj jeho negáciu ⇒ predpoklad je nesprávny!

Diagonalizácia

H(i,j) – X, ak sa program i zastaví na vstupe j

Môže sa NOTHALT vyskytnúť v tabuľke *H*?

- NIE! Pre ľubovoľný program i sa NOTHALT od neho líši na vstupe i.
- Riadky v tabuľke H reprezentujú všetky RAM programy.
- ▶ ⇒ neexistuje RAM program pre NOTHALT
 - ⇒ neexistuje RAM program pre HALT

Podobné dôkazy v matematike:

Cantorova veta:

"Reálnych čísel je viac ako prirodzených čísel" "Množina reálnych čísel nie je spočítateľná"

Gödelova veta o neúplnosti:

"Každý formálny matematický systém, ktorý zahŕňa aritmetiku je buď nekonzistentný alebo obsahuje tvrdenia, ktoré sa v ňom nedajú dokázať."

Ako dokážete, že vaša obľúbená funkcia Q nie je rekurzívna?

Definícia

Funkcia A je reducibilná (v Turingovom zmysle) na funkciu B (alebo $A \leq^T B$) ak existuje algoritmus, ktorý vypočíta A tak, že používa B ako procedúru.

Rozdiely medzi $A \leq^T B$ a $A \leq_P B$:

- $\triangleright \leq^T$ pre všetky problémy, nie len rozhodovacie.
- Žiadne obmedzenia na zložitosť.
- Žiadne obmedzenia na počet volaní funkcie B.

Lema:

Ak A nie je rekurzívna (nie je vypočítateľná) a $A \leq^T B$, potom B nie je rekurzívna.

Príklad: HALT_ALL

$$\mathsf{HALT_ALL}(P) = \left\{ \begin{array}{ll} 1, & \mathsf{ak} \ \mathsf{sa} \ P \ \mathsf{zastav} \\ 0, & \mathit{inak}. \end{array} \right.$$

Tvrdenie: HALT_ALL nie je vypočítateľná.

Dôkaz: Redukciou z HALT

(t.j., chceme dokázať $HALT \leq^T HALT_ALL$)

Potrebujeme: RAM program pre funkciu HALT používajúci HALT_ALL ako precedúru.

HALT_ALL pokr.

```
HALT(P,x):
Q:=encoding of the program
    ''Q(y): return P(x);''
return HALT_ALL(Q);
```

- Ukážeme: Vyššieuvedené je implementácia funkcie HALT.
 - Predpokladajme, že sa P zastaví na x. Program Q zastaví na ľubovoľnom vstupe y teda HALT_ALL(Q) vráti 1.
 - Predpokladajme, že sa P zacyklí na x. Program Q sa zacyklí na ľubovoľnom vstupe y teda HALT ALL(Q) vráti 0.
- ► Teda HALT ≤^T HALT_ALL a HALT_ALL nie je rekurzívna funkcia (resp. HALT_ALL nie je vypočítateľná).

Typický postup dôkazu nevypočítateľ nosti

Chceme: Dokázať, že Q nie je rekurzívna funkcia.

- 1 Vyber funkciu P o ktorej už vieme, že nie je rekurzívna.
- 2 Napíš pseudokód pre RAM program, ktorý vypočíta funkciu P používajúc Q ako procedúru.
- 3 Zdôvodni, že pseudokód skutočne počíta P.
- 4 Keďže $P \leq^T Q$ a P nie je rekurzívna, tak Q tiež nie je rekurzívna.

Príklad: EQUIV

Dané sú dva programy (P_1, P_2) , správajú sa rovnako?

$$\mathsf{EQUIV}(P_1,P_2) = \left\{ egin{array}{ll} 0, & \mathsf{ak} \ \mathsf{existuje} \ x \ \mathsf{pre} \ \mathsf{ktor\'e} \ P_1(x)
eq P_2(x), \\ 1, & \mathsf{inak}. \end{array}
ight.$$

Tvrdenie

EQUIV nie je rekurzívna.

Dôkaz: Redukciou z HALT_ALL (i.e., chceme ukázať HALT_ALL \leq^T EQUIV)

Chceme: RAM pre HALT_ALL použijúc EQUIV ako procedúru.

EQUIV pokr.

HALT_ALL(P):

```
Q:=encoding of the program ''Q(y): return 0;''
R:=encoding of the program ''R(x): P(x); return 0;''
return EQUIV(Q,R);
```

- Ukážeme: Vyššieuvedené skutočne implementuje HALT_ALL.
 - ▶ **Poznámka:** Program *Q* sa vždy zastaví a vráti 0
 - ▶ Predpokladajme P zastaví na všetkých vstupoch. Program R zastaví na všetkých vstupoch a vráti 0 \Rightarrow EQUIV(Q,R)=1
 - ▶ Predpokladajme P nezastaví na niektorom vstupe x. Program R sa na x zacyklí ale Q sa na x zastaví ⇒ EQUIV(Q, R) = 0
- ► Teda HALT_ALL ≤^T EQUIV a keďže HALT_ALL nie je rekurzívna funkcia, EQUIV takisto nie je rekurzívna funkcia.

