Computación y Estructuras Discretas I

Andrés A. Aristizábal P. aaaristizabal@icesi.edu.co

Departamento de Tecnologías de Información y Comunicaciones

2024-2

Agenda del día

- Métodos de Demostración
 - Presentación del tema
 - Ejercicios

- Presentación del siguiente tema
 - Introducción a Coq

Agenda del día

- Métodos de Demostración
 - Presentación del tema
 - Ejercicios

- Presentación del siguiente tema
 - Introducción a Coq

Preguntas de interés

• ¿Qué es una demostración? Es un argumento en que se ha empleado una razonamiento lógico para demostrar la veracidad de algo.

- ¿Qué es una demostración? Es un argumento en que se ha empleado una razonamiento lógico para demostrar la veracidad de algo.
- ¿Cuándo un argumento es válido?

- ¿Qué es una demostración? Es un argumento en que se ha empleado una razonamiento lógico para demostrar la veracidad de algo.
- ¿Cuándo un argumento es válido? Cuando las premisas o hipótesis verdaderas dan como resultado la conclusión verdadera.

- ¿Qué es una demostración? Es un argumento en que se ha empleado una razonamiento lógico para demostrar la veracidad de algo.
- ¿Cuándo un argumento es válido? Cuando las premisas o hipótesis verdaderas dan como resultado la conclusión verdadera.
- 3 ¿Qué forma tiene un teorema?

- ¿Qué es una demostración? Es un argumento en que se ha empleado una razonamiento lógico para demostrar la veracidad de algo.
- ¿Cuándo un argumento es válido? Cuando las premisas o hipótesis verdaderas dan como resultado la conclusión verdadera.
- 3 ¿Qué forma tiene un teorema? $\mathbf{p} \rightarrow \mathbf{q}$

- ¿Qué es una demostración? Es un argumento en que se ha empleado una razonamiento lógico para demostrar la veracidad de algo.
- ¿Cuándo un argumento es válido? Cuando las premisas o hipótesis verdaderas dan como resultado la conclusión verdadera.
- 3 ¿Qué forma tiene un teorema? $\mathbf{p} \rightarrow \mathbf{q}$
- 4 ¿Qué tipo de demostraciones existen?

- ¿Qué es una demostración? Es un argumento en que se ha empleado una razonamiento lógico para demostrar la veracidad de algo.
- ¿Cuándo un argumento es válido? Cuando las premisas o hipótesis verdaderas dan como resultado la conclusión verdadera.
- 3 ¿Qué forma tiene un teorema? $\mathbf{p} \rightarrow \mathbf{q}$
- ¿Qué tipo de demostraciones existen? Directas e Indirectas ...

Se supone la(s) hipótesis y se emplea un proceso lógico deductivo para demostrar de manera directa la conclusión.

Se supone la(s) hipótesis y se emplea un proceso lógico deductivo para demostrar de manera directa la conclusión.

Ejemplo

La suma de enteros pares es par.

Se supone la(s) hipótesis y se emplea un proceso lógico deductivo para demostrar de manera directa la conclusión.

Ejemplo

La suma de enteros pares es par. Escribimos este enunciado en la forma ${m p} \, o \, {m q}$

Se supone la(s) hipótesis y se emplea un proceso lógico deductivo para demostrar de manera directa la conclusión.

Ejemplo

La suma de enteros pares es par. Escribimos este enunciado en la forma $\mathbf{p} \to \mathbf{q}$ Si n es par y m es par, entonces n + m es par

Se supone la(s) hipótesis y se emplea un proceso lógico deductivo para demostrar de manera directa la conclusión.

Ejemplo

La suma de enteros pares es par. Escribimos este enunciado en la forma ${m p} \, o \, {m q}$

Si n es par y m es par, entonces n+m es par Suponemos que la hipótesis de esta implicación es verdadera, es decir n=2k y m=2l donde k y l son enteros.

Se supone la(s) hipótesis y se emplea un proceso lógico deductivo para demostrar de manera directa la conclusión.

Ejemplo

La suma de enteros pares es par. Escribimos este enunciado en la forma ${m p} \, o \, {m q}$

Si n es par y m es par, entonces n+m es par Suponemos que la hipótesis de esta implicación es verdadera, es decir n=2k y m=2l donde k y l son enteros. Se sigue que n+m=2k+2l=2(k+l) y sabemos que k+l es un entero.

Se supone la(s) hipótesis y se emplea un proceso lógico deductivo para demostrar de manera directa la conclusión.

Ejemplo

La suma de enteros pares es par. Escribimos este enunciado en la forma $\mathbf{p} \to \mathbf{q}$ Si n es par y m es par, entonces n + m es par Suponemos que la hipótesis de esta implicación es verdadera, es decir n = 2k y m = 2l donde k y l son enteros. Se sigue que

n = 2k y m = 2l donde k y l son enteros. Se sigue que n + m = 2k + 2l = 2(k + l) y sabemos que k + l es un entero. Por tanto n + m es par.

Para mostrar $p \rightarrow q$ se muestra $\neg q \rightarrow \neg p$.

• ¿Por qué es válido el método de la contrarecíproca?

Para mostrar $p \rightarrow q$ se muestra $\neg q \rightarrow \neg p$.

• ¿Por qué es válido el método de la contrarecíproca? $p \rightarrow q$ es lógicamente equivalente a $(\neg q \rightarrow \neg p)$.

- ¿Por qué es válido el método de la contrarecíproca?
 p → q es lógicamente equivalente a (¬q → ¬p).
- ¿Qué significa que dos fórmulas sean lógicamente equivalentes?

- ¿Por qué es válido el método de la contrarecíproca?
 p → q es lógicamente equivalente a (¬q → ¬p).
- ¿Qué significa que dos fórmulas sean lógicamente equivalentes? Los valores de verdad de ambas fórmulas siempre son iguales.

- ¿Por qué es válido el método de la contrarecíproca?
 p → q es lógicamente equivalente a (¬q → ¬p).
- ¿Qué significa que dos fórmulas sean lógicamente equivalentes?
 Los valores de verdad de ambas fórmulas siempre son iguales .
- En ocasiones es más fácil demostrar su contrarecíproca que la implicación inicial

Ejemplo

Para todo entero n, si n^2 es impar entonces n es impar.

Ejemplo

Para todo entero n, si n^2 es impar entonces n es impar. Como $p \rightarrow q \equiv \neg q \rightarrow \neg p$ lo anterior es equivalente a decir que para

Ejemplo

Para todo entero n, si n² es impar entonces n es impar.

Como $p \to q \equiv \neg q \to \neg p$ lo anterior es equivalente a decir que para todo entero n, si n es par, n^2 es par.

Suponemos que la hipótesis de esta implicación es verdadera, es decir n = 2k donde k es un entero.

Ejemplo

Para todo entero n, si n² es impar entonces n es impar.

Como $p \to q \equiv \neg q \to \neg p$ lo anterior es equivalente a decir que para todo entero n, si n es par, n^2 es par.

Suponemos que la hipótesis de esta implicación es verdadera, es decir n=2k donde k es un entero. Se sigue que $n^2=4k^2=2(2k^2)$.

Ejemplo

Para todo entero n, si n² es impar entonces n es impar.

Como p $\rightarrow q \equiv \neg q \rightarrow \neg p$ lo anterior es equivalente a decir que para todo entero n, si n es par, n² es par.

Suponemos que la hipótesis de esta implicación es verdadera, es decir n=2k donde k es un entero. Se sigue que $n^2=4k^2=2(2k^2)$. Por tanto n^2 se puede representar como 2m donde m=2k y concluimos que n^2 es par.

Ejemplo

Para todo entero n, si n² es impar entonces n es impar.

Como $p \to q \equiv \neg q \to \neg p$ lo anterior es equivalente a decir que para todo entero n, si n es par, n^2 es par.

Suponemos que la hipótesis de esta implicación es verdadera, es decir n=2k donde k es un entero. Se sigue que $n^2=4k^2=2(2k^2)$. Por tanto n^2 se puede representar como 2m donde m=2k y concluimos que n^2 es par.

¿Porqué es necesario la contrarrecíproca para probar esta propiedad?

Ejemplo

Para todo entero n, si n² es impar entonces n es impar.

Como $p \to q \equiv \neg q \to \neg p$ lo anterior es equivalente a decir que para todo entero n, si n es par, n^2 es par.

Suponemos que la hipótesis de esta implicación es verdadera, es decir n = 2k donde k es un entero. Se sigue que $n^2 = 4k^2 = 2(2k^2)$. Por tanto n^2 se puede representar como 2m donde m = 2k y concluimos que n^2 es par.

¿Porqué es necesario la contrarrecíproca para probar esta propiedad? En este caso la demostración directa no nos muestra un camino muy obvio.

Ejemplo

Para todo entero n, si n² es impar entonces n es impar.

Como $p \to q \equiv \neg q \to \neg p$ lo anterior es equivalente a decir que para todo entero n, si n es par, n^2 es par.

Suponemos que la hipótesis de esta implicación es verdadera, es decir n = 2k donde k es un entero. Se sigue que $n^2 = 4k^2 = 2(2k^2)$. Por tanto n^2 se puede representar como 2m donde m = 2k y concluimos que n^2 es par.

¿Porqué es necesario la contrarrecíproca para probar esta propiedad? En este caso la demostración directa no nos muestra un camino muy obvio.

Si suponemos que $n^2=2k+1$ tenemos que $n=\pm\sqrt{2k+1}$ lo cual no es muy útil.

Para probar que p es verdadero,

Para probar que *p* es verdadero,

• Suponemos que podemos encontrar una contradicción q tal que $\neg p \rightarrow q$ es verdadera.

Para probar que *p* es verdadero,

- Suponemos que podemos encontrar una contradicción q tal que $\neg p \rightarrow q$ es verdadera.
- Como $\neg p \rightarrow q \equiv \neg p \rightarrow F \neg p$ debe ser falsa y por tal p es verdadera.

Para probar que *p* es verdadero,

- Suponemos que podemos encontrar una contradicción q tal que $\neg p \rightarrow q$ es verdadera.
- Como $\neg p \rightarrow q \equiv \neg p \rightarrow F \neg p$ debe ser falsa y por tal p es verdadera.
- Esta técnica se utiliza cuando podemos encontrar una contradicción.

Para probar que *p* es verdadero,

- Suponemos que podemos encontrar una contradicción q tal que $\neg p \rightarrow q$ es verdadera.
- Como $\neg p \rightarrow q \equiv \neg p \rightarrow F \neg p$ debe ser falsa y por tal p es verdadera.
- Esta técnica se utiliza cuando podemos encontrar una contradicción.
- Consecuentemente para probar $p \to q$ debemos probar que $(p \land \neg q) \to C$, tal que C es una contradicción.

Ejemplo

Si n^2 es par entonces n es par $(p \rightarrow q)$

Ejemplo

Si n^2 es par entonces n es par $(p \rightarrow q)$ Suponemos que n^2 es par y n es impar $(p \land \neg q)$.

Ejemplo

Si n^2 es par entonces n es par $(p \to q)$ Suponemos que n^2 es par y n es impar $(p \land \neg q)$. Por lo tanto existe un entero k tal que n=2k+1

Ejemplo

Si n^2 es par entonces n es par $(p \rightarrow q)$ Suponemos que n^2 es par y n es impar $(p \land \neg q)$. Por lo tanto existe un entero k tal que n = 2k + 1 ahora, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

Ejemplo

Si n^2 es par entonces n es par $(p \rightarrow q)$ Suponemos que n^2 es par y n es impar $(p \land \neg q)$. Por lo tanto existe un entero k tal que n=2k+1 ahora, $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$ por tal $n^2=2l+1$ donde $l=2k^2+2k$

Ejemplo

Si n^2 es par entonces n es par $(p \rightarrow q)$ Suponemos que n^2 es par y n es impar $(p \land \neg q)$. Por lo tanto existe un entero k tal que n=2k+1 ahora, $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$ por tal $n^2=2l+1$ donde $l=2k^2+2k$ entonces n^2 es impar.

Ejemplo

Si n^2 es par entonces n es par $(p \rightarrow q)$ Suponemos que n^2 es par y n es impar $(p \land \neg q)$. Por lo tanto existe un entero k tal que n=2k+1 ahora, $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$ por tal $n^2=2l+1$ donde $l=2k^2+2k$ entonces n^2 es impar. Hemos llegado a una contradicción pues n^2 es par y n^2 es impar

Para demostrar una implicación de la forma, $p = p_1 \lor p_2 \lor \ldots \lor p_n \to q$.

Para demostrar una implicación de la forma,

$$p = p_1 \vee p_2 \vee \ldots \vee p_n \rightarrow q.$$

ullet Se demuestra que $p_1 o q \wedge p_2 o q \wedge p_3 o q \wedge \ldots \wedge p_n o q$

Ejemplo

 $\forall x, y \in \mathbb{R}$, |xy| = |x||y|, donde x e y son números reales

Ejemplo

 $\forall x,y \in \mathbb{R}, \, |xy|=|x||y|, \, donde \, x \, e \, y \, son \, n\'umeros \, reales$ Tenemos $p=x\, e \, y \, son \, n\'umeros \, reales, \, q=|xy|=|x||y|$

Ejemplo

```
\forall x, y \in \mathbb{R}, |xy| = |x||y|, donde x e y son números reales
Tenemos p = x e y son números reales, q = |xy| = |x||y|
Sabemos que p \equiv p_1 \lor p_2 \lor p_3 \lor p_4 donde p_1 = x \ge 0 \land y \ge 0,
p_2 = x \ge 0 \land y < 0, p_3 = x < 0 \land y \ge 0, p_4 = x < 0 \land y < 0
```

Ejemplo

```
\forall x,y \in \mathbb{R}, |xy| = |x||y|, donde x e y son números reales
Tenemos p = x e y son números reales, q = |xy| = |x||y|
Sabemos que p \equiv p_1 \lor p_2 \lor p_3 \lor p_4 donde p_1 = x \ge 0 \land y \ge 0, p_2 = x \ge 0 \land y < 0, p_3 = x < 0 \land y \ge 0, p_4 = x < 0 \land y < 0
Por tanto para demostrar p_1 \lor p_2 \lor p_3 \lor p_4 \to q probamos p_1 \to q \land p_2 \to q \land p_3 \to q \land p_4 \to q
```

Ejemplo

 $p_1 o q$: suponemos p_1 , lo cual nos dice que $x \ge 0 \, \land \, y \ge 0$, entonces $xy \ge 0$ por lo que |xy| = xy = |x||y|

Ejemplo

 $p_1 o q$: suponemos p_1 , lo cual nos dice que $x \ge 0 \land y \ge 0$, entonces $xy \ge 0$ por lo que |xy| = xy = |x||y| $p_2 o q$: suponemos p_2 , lo cual nos indica que $x \ge 0 \land y < 0$, entonces xy < 0 por lo que |xy| = -xy = x(-y) = |x||y|

Ejemplo

```
\begin{array}{l} p_1 \rightarrow q: suponemos \ p_1, \ lo \ cual \ nos \ dice \ que \ x \geq 0 \ \land \ y \geq 0, \\ entonces \ xy \geq 0 \ por \ lo \ que \ |xy| = xy = |x||y| \\ p_2 \rightarrow q: suponemos \ p_2, \ lo \ cual \ nos \ indica \ que \ x \geq 0 \ \land \ y < 0, \\ entonces \ xy \leq 0 \ por \ lo \ que \ |xy| = -xy = x(-y) = |x||y| \\ p_3 \rightarrow q: suponemos \ p_3, \ lo \ cual \ nos \ lleva \ a \ x < 0 \ \land \ y \geq 0, \ entonces \\ xy \leq 0 \ por \ lo \ que \ |xy| = -xy = (-x)y = |x||y| \end{array}
```

Ejemplo

```
p_1 
ightarrow q: suponemos p_1, lo cual nos dice que x \geq 0 \land y \geq 0, entonces xy \geq 0 por lo que |xy| = xy = |x||y| p_2 
ightarrow q: suponemos p_2, lo cual nos indica que x \geq 0 \land y < 0, entonces xy \leq 0 por lo que |xy| = -xy = x(-y) = |x||y| p_3 
ightarrow q: suponemos p_3, lo cual nos lleva a x < 0 \land y \geq 0, entonces xy \leq 0 por lo que |xy| = -xy = (-x)y = |x||y| p_4 
ightarrow q: suponemos p_4, lo cual nos dice que x < 0 \land y < 0, entonces xy > 0 por lo que |xy| = (-x)(-y) = |x||y| Hemos completado la demostración.
```

Contraejemplo

Un teorema que tenga la forma $\forall x P(x)$ y del cual tengamos duda que sea verdadero o que no se pueda encontrar una demostración, se halla un elemento $x' \in D$, en donde P(x') sea falso.

Ejemplo

"Todos los números primos son impares"

Contraejemplo

Un teorema que tenga la forma $\forall x P(x)$ y del cual tengamos duda que sea verdadero o que no se pueda encontrar una demostración, se halla un elemento $x' \in D$, en donde P(x') sea falso.

Ejemplo

"Todos los números primos son impares"

Podemos demostrar que esta sentencia es falsa si encontramos un contraejemplo. Es decir, si encontramos un número primo que sea par.

Contraejemplo

Un teorema que tenga la forma $\forall x P(x)$ y del cual tengamos duda que sea verdadero o que no se pueda encontrar una demostración, se halla un elemento $x' \in D$, en donde P(x') sea falso.

Ejemplo

"Todos los números primos son impares"

Podemos demostrar que esta sentencia es falsa si encontramos un contraejemplo. Es decir, si encontramos un número primo que sea par. 2 es un número par y es un número primo. Hemos probado que la sentencia "Todos los números primos son impares" es falsa.

Un teorema que tenga la forma $p\leftrightarrow q$, siendo p,q proposiciones, se demuestra empleando la tautología $(p\leftrightarrow q)\Leftrightarrow ((p\to q)\land (q\to p))$. Cada implicación se demuestra de forma independiente, empleando métodos no necesariamente iguales. En ocasiones la doble implicación se demuestra de forma similar de ida y vuelta.

Ejemplo

Si $p_1=n$ es un entero par y $p_2=n+1$ es un entero impar, $p_1\equiv p_2$

Un teorema que tenga la forma $p\leftrightarrow q$, siendo p,q proposiciones, se demuestra empleando la tautología $(p\leftrightarrow q)\Leftrightarrow ((p\to q)\land (q\to p))$. Cada implicación se demuestra de forma independiente, empleando métodos no necesariamente iguales. En ocasiones la doble implicación se demuestra de forma similar de ida y vuelta.

Ejemplo

Si $p_1=n$ es un entero par y $p_2=n+1$ es un entero impar, $p_1\equiv p_2$ Debemos probar $p_1\leftrightarrow p_2$

Un teorema que tenga la forma $p\leftrightarrow q$, siendo p,q proposiciones, se demuestra empleando la tautología $(p\leftrightarrow q)\Leftrightarrow ((p\to q)\land (q\to p))$. Cada implicación se demuestra de forma independiente, empleando métodos no necesariamente iguales. En ocasiones la doble implicación se demuestra de forma similar de ida y vuelta.

Ejemplo

Si $p_1=n$ es un entero par y $p_2=n+1$ es un entero impar, $p_1\equiv p_2$ Debemos probar $p_1\leftrightarrow p_2$ $p_1\to p_2$: Suponemos p_1 lo cual nos dice que n=2k siendo k un entero.

Un teorema que tenga la forma $p\leftrightarrow q$, siendo p,q proposiciones, se demuestra empleando la tautología $(p\leftrightarrow q)\Leftrightarrow ((p\to q)\land (q\to p))$. Cada implicación se demuestra de forma independiente, empleando métodos no necesariamente iguales. En ocasiones la doble implicación se demuestra de forma similar de ida y vuelta.

Ejemplo

Si $p_1=n$ es un entero par y $p_2=n+1$ es un entero impar, $p_1\equiv p_2$ Debemos probar $p_1\leftrightarrow p_2$

 $p_1 \rightarrow p_2$: Suponemos p_1 lo cual nos dice que n = 2k siendo k un entero. Se sigue que n + 1 = 2k + 1 luego n + 1 es un entero impar.

Un teorema que tenga la forma $p\leftrightarrow q$, siendo p,q proposiciones, se demuestra empleando la tautología $(p\leftrightarrow q)\Leftrightarrow ((p\to q)\land (q\to p))$. Cada implicación se demuestra de forma independiente, empleando métodos no necesariamente iguales. En ocasiones la doble implicación se demuestra de forma similar de ida y vuelta.

Ejemplo

Si $p_1 = n$ es un entero par y $p_2 = n + 1$ es un entero impar, $p_1 \equiv p_2$ Debemos probar $p_1 \leftrightarrow p_2$

 $p_1 \rightarrow p_2$: Suponemos p_1 lo cual nos dice que n=2k siendo k un entero.

Se sigue que n + 1 = 2k + 1 luego n + 1 es un entero impar.

 $p_2 \rightarrow p_1$: Suponemos p_2 . Esto nos indica que n+1=2k+1 siendo k un entero.

Un teorema que tenga la forma $p\leftrightarrow q$, siendo p,q proposiciones, se demuestra empleando la tautología $(p\leftrightarrow q)\Leftrightarrow ((p\to q)\land (q\to p))$. Cada implicación se demuestra de forma independiente, empleando métodos no necesariamente iguales. En ocasiones la doble implicación se demuestra de forma similar de ida y vuelta.

Ejemplo

Si $p_1 = n$ es un entero par y $p_2 = n + 1$ es un entero impar, $p_1 \equiv p_2$ Debemos probar $p_1 \leftrightarrow p_2$

 $p_1 \rightarrow p_2$: Suponemos p_1 lo cual nos dice que n=2k siendo k un entero.

Se sigue que n + 1 = 2k + 1 luego n + 1 es un entero impar.

 $p_2 \to p_1$: Suponemos p_2 . Esto nos indica que n+1=2k+1 siendo k un entero. Se sigue que n=2k luego n es un entero par.

Agenda del día

- Métodos de Demostración
 - Presentación del tema
 - Ejercicios

- Presentación del siguiente tema
 - Introducción a Coq

Ejercicio

Demuestre que el cuadrado de un número par es un número par utilizando una demostración directa.

Ejercicio

Demuestre que el cuadrado de un número par es un número par utilizando una demostración por reducción al absurdo.

Ejercicio

Demuestre que todo entero impar es una diferencia de cuadrados utilizando una demostración directa.

Ejercicio

Demuestre que la suma de dos impares es par.

Ejercicio

Demuestre que si n es un entero y 3n + 2 es par, entonces n es par usando:

- Una demostración indirecta.
- Una demostración por reducción al absurdo.

Ejercicio

Demuestre que se cumple, o que no, que el producto de dos números irracionales es irracional.

Ejercicio

Demuestre que se cumple, o que no, que el producto de dos números racionales es racional.

Ejercicio

Demuestre que se cumple, o que no, que el producto de un número racional distinto de cero y un número irracional es un número irracional.

Ejercicios

Ejercicio

Demuestre que si x es un número racional distinto de cero, entonces 1/x es racional.

Ejercicios

Ejercicio

Sea n un entero positivo, demuestre que n es par si y sólo sí 7n+4 es par.

Agenda del día

- Métodos de Demostración
 - Presentación del tema
 - Ejercicios

- Presentación del siguiente tema
 - Introducción a Coq

¿Qué es Coq?

- Se trata de un asistente de demostraciones.
- Un programa que ayuda a llevar a cabo pruebas matemáticas e indica con seguridad que lo que se ha verificado sea cierto.
- Coq tiene diversas aplicaciones.
 - Formalizar pruebas ya existentes para comprobar con seguridad que son ciertas.
 - Ayudar a demostrar nuevos teoremas.
 - Extraer programas correctos por construcción.
 - Probar que determinado programa, lenguaje, función, o sistema de tipos preserva una invariante.
 - (semi)automatizar todas estas tareas.

¿Algo adicional?

- A partir de especificaciones en Coq se pueden extraer programas ejecutables en Objective Caml o Haskell.
- En Coq todo se formaliza en una lenguaje que se denomina CIC (Calculus of Inductive Constructions).
 - CoC (Calculus of Constructions) es una teoría de tipos que puede servir como un lenguaje funcional tipado o una base de construcción matemática.
 - CIC es una variante de CoC que añade tipos inductivos.
 - La importancia de los tipos inductivos es que permite la creación de nuevo tipos a partir de constantes y funciones.
 - Características que permiten bridar un rol similar a las estructuras de datos.
 - Permite una teoría de tipos que adiciona conceptos como números, relaciones y árboles.

Ejemplo de definición inductiva de los números naturales en coq

```
Inductive nat : Set :=
    | 0 : nat
    | S : nat -> nat.
```

- Este es el ejemplo estándar de como codificar números naturales usado la codificación de Peano.
- Un número natural se crea a partir de la constante "0"
- La función "S" a otro número natural.
- "S" es la función sucesor que representa sumar 1 a un número
- "0" es cero, "S 0" es uno, "S (S 0)" es dos, "S (S (S 0))" es tres, etc.

Además...

- Todos los juicios lógicos en Coq son juicios tipados.
- El eje de Coq es de hecho un algoritmo de verificación de tipos.
- Algoritmos ejecutables

(Paréntesis - ¿Qué es la programación funcional?)

(Paréntesis - ¿Qué es la programación funcional?)

- Tanto Objective Caml como Haskell son ejemplos de lenguajes funcionales.
- Otros lenguajes como C++, Python, Scala o el mismo Java soportan elementos de este paradigma.
- La programación funcional es un paradigma de programación en donde los programas se construyen aplicando y componiendo funciones.
- Es un paradigma de programación declarativo (declara lo que el programa debe cumplir más no como lo ha de hacer, a diferencia del imperativo que se basa en una secuencia de pasos detallados que modifican el estado del programa).
- Se basa en funciones que no modifican variables pero si generan nuevas como salida.
- La salida de una función pura solamente depende de sus parámetros de entrada (no hay impactos externos y se evitan efectos secundarios)

(Paréntesis - ¿Por qué es importante la programación funcional?)

(Paréntesis - ¿Por qué es importante la programación funcional?)

- Funciones puras garantizan que el estado fuera del programa no se altere.
- Más fáciles de probar.
- Conducen a menos bugs.
- Código funcional tiende a ser más fácil de comprender.
- La recursión es más simple.
- Entre otros.

Función imperativa de potencia

```
function pow(x, n) {
    let res = 1;
    for (let i = 0; i < n; i++) {
        res *= x;
    }
    return res;
}</pre>
```

Función funcional de potencia

```
function pow(x, n) {
    if (n == 1) {
        return x;
    }
    return x * pow(x, n - 1);
}
```


¿Por qué es relevante Coq?

- En la práctica, hay muchos programas con errores que tienen un coste tremendo, desde fallos de seguridad, hasta errores de cálculo.
- En general, las metodologías de desarrollo intentan evitar estos problemas siguiendo una serie de técnicas como el uso de tests.
- Desafortunadamente estas técnicas no pueden asegurar que el programa sea correcto, sólo que no tenga fallos conocidos.
- Mediante los métodos formales podemos asegurarnos de que un programa cumpla con determinadas propiedades matemáticamente demostrables:
 - Que una función acabe en tiempo finito
 - Que converja correctamente a un resultado.
 - Que no traspase información que ha de permanecer secreta.

Vistazo general

- Coq actúa como todo REPL (read-print-evaluate loop).
- Lee las declaraciones que introducimos, las evalúa e imprime el resultado.

Ejemplos sobre verificación de tipos

```
Coq < Check 0.
0
: nat
```

Coq < Check Nat.add.

Nat.add

: nat -> nat -> nat

Verificación de tipos

- Check es un comando que nos da el tipo de una expresión.
- En el primer caso, el 0 es un número natural.
- El tipo de Nat.add, viene dado como nat -> nat -> nat.
- Esto indica que add toma un número natural (nat), devuelve algo que toma otro natural y devuelve un natural (nat -> nat).

Funciones y parámetros

- En Coq se utiliza la noción de función de modo m\u00e1 formal que en otros lenguajes.
- Estamos acostumbrados a tener funciones que toman varios parámetros, como int suma (int a, b).
- En Cog las funciones toman un parámetro y devuelven un parámetro.
- Estas funciones se trabajan mediante el uso de funciones parciales y la técnica denominada "currying".
- Una función como suma, en Coq, toma un número natural, devuelve una función que toma un sólo número natural, le suma el anterior, y devuelve el resultado, que es otro natural.
- A las funciones que toman o devuelven otras funciones como parámetros se las denomina funciones de orden superior.
- Simplemente, add es una función que, a efectos prácticos, toma dos naturales y nos devuelve otro, mediante una función intermedia de orden superior.

Ejemplo sobre el cómputo de funciones

Coq < Compute Nat.add 2 3.

= 5

: nat

¿Qué nos presenta el anterior ejemplo?

¿Qué nos presenta el anterior ejemplo?

- add se aplica sobre el parámetro 2 y retorna otra función que se aplica sobre 3 para retornarnos el valor 5.
- Adicionalmente nos indica el tipo del valor de retorno, un natural.

¿Qué nos presenta el anterior ejemplo?

- add se aplica sobre el parámetro 2 y retorna otra función que se aplica sobre 3 para retornarnos el valor 5.
- Adicionalmente nos indica el tipo del valor de retorno, un natural.

¿Pero qué es un tipo en Coq?

¿Qué nos presenta el anterior ejemplo?

- add se aplica sobre el parámetro 2 y retorna otra función que se aplica sobre 3 para retornarnos el valor 5.
- Adicionalmente nos indica el tipo del valor de retorno, un natural.

¿Pero qué es un tipo en Coq?

- Función de primera clase (se puede tratar como otro valor del lenguaje).
- Se construye de manera inductiva.

Ejemplo sobre definición inductiva en Coq

```
Coq < Print nat.
Inductive nat : Set := O : nat | S : nat -> nat
```

¿Qué nos presenta el anterior ejemplo?

¿Qué nos presenta el anterior ejemplo?

- nat es un tipo inductivo (perteneciente a Set (conjunto)) que se puede formar mediante dos constructores:
 - O que representa el cero.
 - Una función S (función sucesor) que toma un nat y devuelve otro nat.

Ejemplo de verificación de tipo de sucesor

```
Coq < Check S (S (S O)). 3 : nat
```

¿Qué aprendemos del ejemplo anterior?

¿Qué aprendemos del ejemplo anterior?

- 3 es simplemente azúcar sintáctico para S (S (S O))
- Es la codificación de Peano que vimos previamente.
- Utiliza un sólo dígito y aunque es poco eficiente permite realizar pruebas inductivas con mayor facilidad.

Ejemplo de verificación de tipo de add

```
Coq < Print Nat.add.
Nat.add =
fix add (n m : nat) {struct n} : nat :=
  match n with
  | 0 => m
  | S p => S (add p m)
  end
  : nat -> nat -> nat
```

- fix es un operador para definir funciones recursivas (se llama a sí misma).
- (n m : nat) {struct n} : nat. indica que toma 2 parámetros, n y m, de tipo nat
- struct n indica que la recursión es estructural en n, es decir, que cuando add se llama a sí misma, n va a ser siempre inferior.
- Esto garantiza que add siempre devuelva un resultado en tiempo finito.
- El último nat es el tipo del valor de retorno de la función.
- Decimos que toma dos parámetros porque el currying es automático.

- Luego del := viene el cuerpo en de la función.
- match es un operador para encajar patrones.
- Se indica la variable para hacer el match junto a with y los patrones respectivos.
- En este caso se encaja con n
- En el primer caso si n encaja con 0, la función devuelve m pues 0 + m = m.
- Si n encaja con S p, es decir, cuando n es el sucesor de otro nat p, la función devuelve S (add p m), el sucesor de añadir p a m.
- Aquí se percibe la recursión estructural en n, porque al llamarse a sí misma, el valor de n siempre tendrá que disminuir para llegar al caso base.
- Finalmente, end cierra la función, y se presenta el tipo, nat -> nat -> nat.

Ejercicio

Defina la función recursiva del factorial en Coq

Solución

```
Fixpoint factorial (n:nat): nat := match n with | O => (S O) | S p => (S p) * (factorial p) end.
```

Ejercicio

Defina la función recursiva de la multiplicación de dos números n y m en Coq

Solución

```
Fixpoint multiplicar (n m:nat) : nat := match n with | O => O | S p => m + (multiplicar p m) end.
```

Primer ejemplo de demostración

 $Coq < Theorem add_0_m: forall m:nat, 0 + m = m.$

```
add_0_m < reflexivity.
No more subgoals.</pre>
```

```
add_0_m < Qed.
intros.
simpl.
reflexivity.
Qed.
add_0_m is defined
Coq <</pre>
```