Justyna Pluta

Grupa: 6- środa 11:15-12:00

Samolot ultralekki jednomiejscowy górnopłat

Prowadzący: mgr inż. Bogdan Hernik

# Politechnika Warszawska Wydział Mechaniczny Energetyki i Lotnictwa Zakład Samolotów i Śmigłowców

## Budowa i Projektowanie Obiektów Latających Projekty

**WARSZAWA 2020/21** 

Justyna Pluta

Grupa: 6- środa 11:15-12:00

Prowadzący: mgr inż. Bogdan Hernik

# Projekt 7 Obciążenia skrzydła

Data oddania projektu: 20.01.2021 Ocena:......

#### 1. Dane masowe samolotu

Wyznaczając obciążenia skrzydła bazuję na analizie masowej samolotu z *Projektu 3*: przyjmuję II Wariant z maksymalną ilością paliwa w zbiornikach. Podczas obliczeń uwzględniam siły aerodynamiczne, ciężar paliwa oraz ciężar struktury skrzydła. Pomijam zespół napędowy i podwozie, ponieważ w moim samolocie elementy te nie są zamocowane do skrzydeł.

|    |                                                                                             | [kg]  | [m]    |
|----|---------------------------------------------------------------------------------------------|-------|--------|
|    | Element                                                                                     | masa  | X      |
| 1  | Kadłub                                                                                      | 17,00 | 0,5    |
| 2  | Belk ogonowa                                                                                | 6,00  | 2,8    |
| 3  | Skrzydło lewe                                                                               | 15,00 | 0,875  |
| 4  | Skrzydło prawe                                                                              | 15,00 | 0,875  |
| 5  | Statecznik poziomy lewy                                                                     | 2,50  | 4,25   |
| 6  | Statecznik poziomy prawy                                                                    | 2,50  | 4,25   |
| 7  | Statecznik pionowy                                                                          | 3,50  | 4,125  |
| 8  | Podwozie główne prawe                                                                       | 6,00  | 1,075  |
| 9  | Podwozie główne lewe                                                                        | 6,00  | 1,075  |
| 10 | Podwozie przednie                                                                           | 4,00  | -0,725 |
| 11 | Zespół napędowy (silnik, śmigło, chłodnica, instalacja, system paliwowy, strowanie silnika) | 59,00 | -1     |
| 12 | Układ sterowania (linki, popychacze)                                                        | 2,00  | 1,5    |
| 13 | Awionika (oprzyrządowanie, instrumenty pomiarowe, radiostacja)                              | 5,00  | -0,25  |
| 14 | Akumulator                                                                                  | 10,00 | 2,125  |
| 15 | Wyposażenie (fotel, obudowy)                                                                | 1,50  | 0,5    |
| 16 | Zbiornik paliwa w prawym skrzydle                                                           | 45,5  | -0,625 |
| 17 | Zbiornik paliwa w lewym skrzydle                                                            | 45,5  | -0,625 |

#### 2. Punkt obwiedni obciążeń



Wybrano punkt C ze względu na ograniczenie od podmuchu, które wystaje poza obwiednię obciążeń od manewrów

#### Punkt C

| M | Masa projektowa         | 315 <i>kg</i>        |
|---|-------------------------|----------------------|
| g | Przyspieszenie ziemskie | 9,81 $\frac{m}{s^2}$ |
| S | Powierzchnia płata      | $8,54 m^2$           |
| b | Rozpiętość              | 7,69 m               |

$$V_C = 180 \ \frac{km}{h} = 50 \frac{m}{s}$$

$$n = 5,31$$

$$Cz = \frac{2 \cdot n \cdot m \cdot g}{\rho \cdot V^2 \cdot S} = \frac{2 \cdot 5,31 \cdot 315 \cdot 9,81}{1,225 \cdot 50^2 \cdot 8,54} = 1,255$$

#### 3. Rozkład Schrenka

#### 3.1 Tabela

|                  | bezwymiarowo     | Rozkład cięciwy | Współczynnik<br>jednostkowy |         |
|------------------|------------------|-----------------|-----------------------------|---------|
| $\frac{b}{2}[m]$ | $\frac{b}{2}[-]$ | eliptyczny      | trapezowy                   | Cz_1(y) |
| 0                | 0                | 1,41            | 1,48                        | 0,98    |
| 0,19225          | 0,05             | 1,41            | 1,44                        | 0,99    |
| 0,3845           | 0,1              | 1,41            | 1,41                        | 1,00    |
| 0,57675          | 0,15             | 1,40            | 1,37                        | 1,01    |
| 0,769            | 0,2              | 1,39            | 1,33                        | 1,02    |
| 0,96125          | 0,25             | 1,37            | 1,30                        | 1,03    |
| 1,1535           | 0,3              | 1,35            | 1,26                        | 1,04    |
| 1,34575          | 0,35             | 1,32            | 1,22                        | 1,04    |
| 1,538            | 0,4              | 1,30            | 1,18                        | 1,05    |
| 1,73025          | 0,45             | 1,26            | 1,15                        | 1,05    |
| 1,9225           | 0,5              | 1,22            | 1,11                        | 1,05    |
| 2,11475          | 0,55             | 1,18            | 1,07                        | 1,05    |
| 2,307            | 0,6              | 1,13            | 1,04                        | 1,05    |
| 2,49925          | 0,65             | 1,07            | 1,00                        | 1,04    |
| 2,6915           | 0,7              | 1,01            | 0,96                        | 1,02    |
| 2,88375          | 0,75             | 0,94            | 0,93                        | 1,01    |
| 3,076            | 0,8              | 0,85            | 0,89                        | 0,98    |
| 3,26825          | 0,85             | 0,74            | 0,85                        | 0,94    |
| 3,4605           | 0,9              | 0,62            | 0,81                        | 0,88    |
| 3,65275          | 0,95             | 0,44            | 0,78                        | 0,78    |
| 3,845            | 1                | 0,00            | 0,74                        | 0,50    |

### 3.2 Wykresy rozkładu cięciwy i jednostkowego współczynnika siły nośnej wzdłuż rozpiętości





#### Jednostkowy współczynnik siły nośnej



#### 4. Obciążenia skrzydła

#### 4.1 Podział skrzydła

Skrzydło samolotu dzielę na 20 segmentów- pasków o stałej szerokości **0**, **19225** *m*, którym przypisane będą określone parametry:

- ✓ cięciwa danego paska
- ✓ jednostkowy współczynnik siły nośnej
- ✓ obciążenie od sił aerodynamicznych
- ✓ obciążenie od struktury skrzydła
- ✓ obciążenie od ciężaru paliwa (dotyczy tylko segmentów, które obejmują zbiorniki paliwa)

Cięciwy kolejnych segmentów obliczono jako średnią arytmetyczną dwóch sąsiednich punktów z rozkładu trapezowego cięciwy. W taki sam sposób określono wspołczynnik jednostkowej siły nośnej dla danego paska.

Wzory i przykładowe obliczenia dla paska nr 1:

• współczynnik siły nośnej danego segmentu "p"

$$Cz_{pj} = \frac{Cz_i + Cz_{i+1}}{2}$$
,  $gdzie j = 1, 2, ... 20$   $i = 1, 2, ... 21$ 

• cięciwa danego segmentu "p"

$$c_{pj} = \frac{c_i + c_{i+1}}{2}$$

• pole powierzchnii danego segmentu "p"

$$S_{pj} = 0,19225 \cdot c_j$$

$$c_{p1} = \frac{c_1 + c_2}{2} = \frac{1,481 + 1,444}{2} = 1,46 m$$

$$Cz_{p1} = \frac{Cz_1 + Cz_2}{2} = \frac{0,977 + 0,989}{2} = 0,98 [-]$$

$$S_{p1} = 0,19225 \cdot 1,462 = 0,281 m^2$$

#### 4.2 Oszacowanie obciążeń przypadających na jeden segment skrzydła

#### Obciążenia aerodynamiczne

Korzystam ze wzoru opartego na rozkładzie jednostkowej siły nośnej i współczynniku obciążeń *n*:

$$Pz_{j} = Cz_{pj} \cdot \frac{s_{pj}}{s} \cdot m \cdot g \cdot n$$

$$Pz_{1} = 0.983 \cdot \frac{0.281}{8.54} \cdot 315 \cdot 9.81 \cdot 5.31 = 531 N$$

$$Pz_{całkowite} = \frac{1}{2} \cdot m \cdot n \cdot g = \frac{1}{2} \cdot 315 \cdot 5.31 \cdot 9.81 = 8204.3 N$$

#### Obciążenia aerodynamiczne



Wartość obciążenia aerodynamicznego obliczonego jako suma poszczególnych elementów wynosi:

$$Pz_{numerycznie} = 8183,6 \text{ N}$$

Błąd względny pomiedzy wartością obliczoną w sposób ścisły, a metodą numeryczną wynika m.in. z przybliżeń rozkładu cięciwy i współczynnika siły nośnej i wynosi:

$$\frac{\left|\frac{Pz_{calkowite} - Pz_{numerycznie}}{Pz_{calkowite}}\right| \cdot 100\% = 0.25\%$$

#### Obciążenia od ciężaru struktury

$$W_j = ciężar całego płata \cdot \frac{S_{pj}}{S}$$

$$W_1 = 30 \cdot 9,81 \cdot \frac{0,281}{8,54} \cdot 5,31 = 51,4N$$

$$W_{calkowite} = 15 \cdot 9.81 \cdot 5.31 = 781.4 N$$



#### Obciążenia od paliwa

Umieszczenie zbiorników paliwa oszacowano na podstawie rysunku z *Projektu 3*. Uwzględniając zmienną grubość profilu wzdłuż rozpiętości, przyjęto liniowy spadek paliwa w kolejnych segmentach.

Całkowity ciężar paliwa w jednym skrzydle dla wariantu z maksymalną ilością paliwa to:

$$F_{calkowite} = m_f \cdot g \cdot n = 45,5 \cdot 9,81 \cdot 5,31 = 2370,1 \, N$$



#### 4.3 Tabela informacyjna i porównanie wyników

W tabeli zebrano wszystkie obciążenia dla każdego z segmentów:

| Pasek j | Cięciwa<br>[m] | Cz<br>[-] | Pole<br>powierzchnii<br>[m²] | Pz [N] | W [N] | F [N]  |
|---------|----------------|-----------|------------------------------|--------|-------|--------|
| 1       | 1,46           | 0,98      | 0,281                        | 531,0  | 51,4  | 0,0    |
| 2       | 1,43           | 0,99      | 0,274                        | 523,5  | 50,1  | 0,0    |
| 3       | 1,39           | 1,00      | 0,267                        | 515,3  | 48,8  | 628,1  |
| 4       | 1,35           | 1,01      | 0,260                        | 506,5  | 47,5  | 604,2  |
| 5       | 1,31           | 1,02      | 0,253                        | 497,0  | 46,2  | 580,8  |
| 6       | 1,28           | 1,03      | 0,246                        | 486,8  | 44,9  | 557,0  |
| 7       | 1,24           | 1,04      | 0,238                        | 475,8  | 43,6  | 0,0    |
| 8       | 1,20           | 1,04      | 0,231                        | 464,1  | 42,3  | 0,0    |
| 9       | 1,17           | 1,05      | 0,224                        | 451,5  | 41,0  | 0,0    |
| 10      | 1,13           | 1,05      | 0,217                        | 438,1  | 39,7  | 0,0    |
| 11      | 1,09           | 1,05      | 0,210                        | 423,7  | 38,4  | 0,0    |
| 12      | 1,06           | 1,05      | 0,203                        | 408,2  | 37,1  | 0,0    |
| 13      | 1,02           | 1,04      | 0,196                        | 391,6  | 35,8  | 0,0    |
| 14      | 0,98           | 1,03      | 0,189                        | 373,5  | 34,5  | 0,0    |
| 15      | 0,94           | 1,01      | 0,181                        | 353,8  | 33,2  | 0,0    |
| 16      | 0,91           | 0,99      | 0,174                        | 332,0  | 31,9  | 0,0    |
| 17      | 0,87           | 0,96      | 0,167                        | 307,6  | 30,6  | 0,0    |
| 18      | 0,83           | 0,91      | 0,160                        | 279,3  | 29,3  | 0,0    |
| 19      | 0,80           | 0,83      | 0,153                        | 244,3  | 28,0  | 0,0    |
| 20      | 0,76           | 0,64      | 0,146                        | 179,9  | 26,7  | 0,0    |
| Suma    |                |           | 4,27*                        | 8183,6 | 781,4 | 2370,1 |

W ostatnim wierszu tabeli przedstawiono wartości obciążeń po zsumowaniu pasków. Konfrontując wyniki z obliczonymi w punkcie 4.2 przyjmuję, iż obliczenia zostały wykonane poprawnie.

\*Obliczenia wykonywane dla jednego skrzydła, suma powierzchni poszczególnych pasów musi być równa:

$$\frac{S}{2} = \frac{8,54}{2} = 4,27 \ m^2$$

#### 5. Siła tnąca i moment gnący

Obliczenia wytrzymałości skrzydła na zginanie- składowej sił tnącej oraz momentu gnącego wykonano dla poszczególnych segmentów rozpoczynając od końca skrzydła, aż do osi symetrii samolotu. W kolejnych krokach wartości siły i momentu sumowano. Dla segmentów 3-6 uwzględniono ciężar paliwa.

Proces obliczeniowy przedstawiono na schemacie poniżej:

Phytradone oblivenia dla paska nr 20

SiTa thqua i moment gnquy

$$M_{320}$$
 $T_{20}$ 
 $T_{20} + P_{20} - Q_{20} + T_{21} = 0$ 
 $T_{20} = Q_{20} - P_{20} - T_{21} = 26_17 - 179, 9 - 0 = -153, 2 [N]$ 
 $M_{320} - P_{20} \cdot \frac{\Delta l}{2} + Q_{20} \cdot \frac{\Delta l}{2} - M_{321} - T_{21} \cdot \Delta l = 0$ 
 $M_{320} = P_{20} \cdot \frac{\Delta l}{2} - Q_{20} \cdot \frac{\Delta l}{2} + M_{321} + T_{31} \cdot \Delta l = 179, 9 \cdot \frac{018225}{2} - 26_17 \cdot \frac{013225}{2} + 0 + 0 \cdot 0, 19225$ 
 $M_{320} = 14,73$  [Nm]

W tabeli poniżej zebrano wartości sił i momentów dla poszczególnych punktów na brzegach segmentów (konwencja znaków w tabeli i na wykresach odwrotna do umieszczonej na schemacie). Wartość siły tnącej została podzielona na obciążenia- działające dodatnio wywołane siłami aerodynamicznymi oraz odciążenia masowe -działające ujemnie (struktura skrzydła i ciężar paliwa). Chcąc zweryfikować poprawność wykonanych obliczeń porównuję wartość obciążenia w osi symetrii samolotu (zaznaczone na zielono) z całkowitą siłą nośną generowaną na skrzydle.

| Punkt i | Obciążenia [N] | Odciążenia [N] | Siła tnąca [N] | Mg [Nm]  |
|---------|----------------|----------------|----------------|----------|
| 1       | 8183,61        | -3151,44       | 5032,18        | 10504,30 |
| 2       | 7652,65        | -3100,00       | 4552,65        | 9582,96  |
| 3       | 7129,18        | -3049,86       | 4079,32        | 8753,21  |
| 4       | 6613,86        | -2372,95       | 4240,91        | 7953,42  |
| 5       | 6107,37        | -1721,24       | 4386,13        | 7124,15  |
| 6       | 5610,38        | -1094,21       | 4516,17        | 6268,42  |
| 7       | 5123,61        | -492,26        | 4631,35        | 5389,11  |
| 8       | 4647,79        | -448,63        | 4199,15        | 4540,28  |
| 9       | 4183,70        | -406,31        | 3777,38        | 3773,53  |
| 10      | 3732,15        | -365,29        | 3366,86        | 3086,79  |
| 11      | 3294,04        | -325,57        | 2968,47        | 2477,81  |
| 12      | 2870,32        | -287,15        | 2583,17        | 1944,16  |
| 13      | 2462,08        | -250,04        | 2212,04        | 1483,22  |
| 14      | 2070,49        | -214,22        | 1856,27        | 1092,15  |
| 15      | 1696,97        | -179,71        | 1517,26        | 767,87   |
| 16      | 1343,16        | -146,51        | 1196,66        | 507,00   |
| 17      | 1011,12        | -114,60        | 896,52         | 305,79   |
| 18      | 703,53         | -84,00         | 619,53         | 160,06   |
| 19      | 424,25         | -54,70         | 369,56         | 64,98    |
| 20      | 179,94         | -27,70         | 153,24         | 14,73    |
| 21      | 0              | 0              | 0              | 0        |

os symetrii



$$T = F_{\omega t} + W_{\omega t} - P_{z_{\omega}t} =$$

$$= 2370,1 + 781,4 - 8183,6$$

$$T = -5032,18[N]$$

Sprawdzenie poprawności wyników siły tnącej. Siła tnąca obliczona w osi symetrii samolotu (suma sił aerodynamicznych i odciążeń masowych )jest równa wartości uzyskanej w tabeli metoda numeryczną (zaznaczone na niebiesko)





#### 6. Moment skręcający

W celu wyznaczenia momentu skręcającego skrzydła wybieram prostą względem, której będzie liczony moment. Korzystając z *Projektu 3* odczytuję skos krawędzi natarcia skrzydła. Wyznaczam prostą przez środki ciężkości poszczególnych pasów-55% cięciwy. Prostą przechodzącą przez środki aerodynamiczne poszczególnych profilii *NACA 1412-* 25% cięciwy. Z charakterystyk aerodynamicznych odczytuję wspołczynnik momentu aerodynamicznego  $Cm_{SA}=-0.025$  (moment pochylający profilu. Odczytuję odległość środka ciężkości zbiornika paliwa. Poszczególne siły aerodynamiczne umiesczam schematycznie w środku paska w SA, siłę ciężkości od struktury skrzydła i paliwa w ŚC<sub>w</sub> i ŚC<sub>F</sub>.



#### Przykładowe obliczenia:

#### Przekrój na brzegu paska nr 20



| Punkt i | x- odległość do<br>środka pasków<br>[m] | R-odległość osi<br>do noska<br>[m] | 25 % cięciwy<br>[m] | 55% cięciwy<br>[m] | *R_P<br>[m] | *R_Q<br>[m] | Moment<br>aerodynamiczny<br>[Nm] | *Moment<br>skręcający<br>[Nm] |
|---------|-----------------------------------------|------------------------------------|---------------------|--------------------|-------------|-------------|----------------------------------|-------------------------------|
| 1       | 0,096                                   | 0,004                              | 0,37                | 0,80               | 0,370       | 0,809       | 15,74                            | 1158,7                        |
| 2       | 0,288                                   | 0,013                              | 0,36                | 0,78               | 0,370       | 0,797       | 14,95                            | 988,0                         |
| 3       | 0,481                                   | 0,022                              | 0,35                | 0,76               | 0,369       | 0,786       | 14,18                            | 819,5                         |
| 4       | 0,673                                   | 0,031                              | 0,34                | 0,74               | 0,369       | 0,775       | 13,44                            | 1045,9                        |
| 5       | 0,865                                   | 0,040                              | 0,33                | 0,72               | 0,369       | 0,763       | 12,71                            | 1259,9                        |
| 6       | 1,057                                   | 0,049                              | 0,32                | 0,70               | 0,369       | 0,752       | 12,00                            | 1462,1                        |
| 7       | 1,250                                   | 0,058                              | 0,31                | 0,68               | 0,368       | 0,740       | 11,32                            | 1652,6                        |
| 8       | 1,442                                   | 0,067                              | 0,30                | 0,66               | 0,368       | 0,729       | 10,65                            | 1498,4                        |
| 9       | 1,634                                   | 0,076                              | 0,29                | 0,64               | 0,368       | 0,718       | 10,01                            | 1347,8                        |
| 10      | 1,826                                   | 0,085                              | 0,28                | 0,62               | 0,367       | 0,706       | 9,38                             | 1201,1                        |
| 11      | 2,019                                   | 0,094                              | 0,27                | 0,60               | 0,367       | 0,695       | 8,78                             | 1058,8                        |
| 12      | 2,211                                   | 0,103                              | 0,26                | 0,58               | 0,367       | 0,683       | 8,19                             | 921,2                         |
| 13      | 2,403                                   | 0,112                              | 0,25                | 0,56               | 0,367       | 0,672       | 7,63                             | 788,6                         |
| 14      | 2,595                                   | 0,121                              | 0,25                | 0,54               | 0,366       | 0,661       | 7,08                             | 661,5                         |
| 15      | 2,788                                   | 0,130                              | 0,24                | 0,52               | 0,366       | 0,649       | 6,56                             | 540,4                         |
| 16      | 2,980                                   | 0,139                              | 0,23                | 0,50               | 0,366       | 0,638       | 6,05                             | 425,9                         |
| 17      | 3,172                                   | 0,148                              | 0,22                | 0,48               | 0,365       | 0,626       | 5,57                             | 318,8                         |
| 18      | 3,364                                   | 0,157                              | 0,21                | 0,46               | 0,365       | 0,615       | 5,11                             | 220,0                         |
| 19      | 3,557                                   | 0,166                              | 0,20                | 0,44               | 0,365       | 0,604       | 4,66                             | 130,9                         |
| 20      | 3,749                                   | 0,175                              | 0,19                | 0,42               | 0,365       | 0,592       | 4,24                             | 54,0                          |
| 21      | -                                       | -                                  | -                   | -                  | -           | -           | -                                | 0                             |

<sup>\*</sup>Oznaczenia ramion jak na rysunku. Konwencja znaków przeciwna.

