1. TEORETICKÝ ÚVOD

- Operační zesilovač je univerzální zesilovací elektrický obvod, jehož úkolem je zesílení vstupního signálu na výstupu.
- Lze jej zapojit jako invertující či neinvertující na výstupu. Při plnění této úlohy jsme operační zesilovač zapojili jako neinvertující.
- Zesílení na výstupu se dá vypočítat vztahem:

$$A_U = 1 + \frac{R_2}{R_1}$$

$$[-; -; \Omega]$$

2. SCHÉMA ZAPOJENÍ

Schéma č. 1 - Měření napěťové nesymetrie

Schéma č. 2 - Rychlost přeběhu SR

3. TABULKA POUŽITÝCH PŘÍSTROJŮ

Označení v zapojení	Přístroj	Тур	Inventární číslo	Poznámky
G	Generátor	Rigol DG1022Z	Stůl č. 1	25 MHz, 2 ch
OSC	Osciloskop	OWON SDS5032EV	Stůl č. 1	30MHZ, 2 ch
V	Voltmetr	Mastech MY65	10-1347/01	$3^{1/2}$, MR=200mV, δ =±0,05%rdg+3dgt
Z	Symetrický zdroj		Stůl č. 1	+-15V
R ₁	Odporová dekáda	RLC-D1000	10-1370/12	1 až 999999Ω, tolerance 1%
R ₂	Odporová dekáda	RLC-D1000	19-0047/07	1 až 999999Ω, tolerance 1%
R ₃	Odporová dekáda	RLC-D1000	10-1370/02	1 až 999999Ω, tolerance 1%
OZ MAA 741	Operační zesilovač	OZ MAA 741		Přípravek

Tabulka č. 1 - Použité přístroje

4. Postup měření

- 1a Zapojili jsme obvod podle daného schématu, který jsme obohatili symetrickým zdrojem. Voltmetrem jsme změřili U₂ a následovně vypočítali U₁₀ a absolutní chybu.
- 1b Zapojili jsme obvod podle daného schématu, který jsme museli mírně opravit.
 Nastavili jsme generátor na požadované parametry a sledovali osciloskop. Použili jsme funkci kursor, díky které jsme vyčetli hodnoty potřebné k výpočtu slow rate. Následně jsme slow rate vypočítali a porovnali s katalogem.

- 2 Zapojení jsme nechali z předchozího bodu a podle zadaného zesílení jsme vypočítali a zapojili odpor R₂, pak jsme vypočítali A_U a a_U.
- 3 Zapojení jsme opět neměnili (kromě hodnot rezistorů) a nastavili jsme kurzor na 70% hodnoty napětí. Na vstupu jsme měnili frekvenci, dokud nebyly sinusovky pod kurzorem.

5. TABULKY ZMĚŘENÝCH A VYPOČÍTANÝCH HODNOT

U ₂ [mV]	Uιο [μV]	Δ [mV]
80,38	803,8	0,2

Tabulka č. 2 - Měření napěťové nesymetrie

Δt [μs]	ΔU [V]	SR [V/μs]	Katalog [V/μs]
18,1	6	0,495	0,5

Tabulka č. 3 - Měření rychlosti přeběhu SR

R_1 [k Ω]	R2 [kΩ]	A _U [–]	au [dB]
10	70	8	18,06

Tabulka č. 4 - Měření zesílení neinvertujícího zesilovače

f _h [kHz]	f _d [kHz]
170	0

Tabulka č. 5 - Měření fd a fh zesilovače

6. Vzor výpočtu

1. Výpočet U10

$$U_{IO} = U_2 * \frac{R_1}{R_1 + R_2} = 0.08038 * \frac{1000}{100000} = 0.0008038V = 803.8 \mu\text{V}$$

2. Výpočet slow rate

$$SR = \frac{\Delta U}{\Delta t} = \frac{18.1 * 10^{-6}}{6} = 0.495 V/\mu s$$

3. Výpočet R₂, a_U

$$A_U = 1 + \frac{R_2}{R_1} = R_2 = (A_U - 1) * R_1 = 7 * 10 = 70k\Omega$$

$$a_U = 20log \frac{U_2}{U_1} = 20log \frac{8}{1} = 18,06dB$$

7. GRAFY

8. ZÁVĚR

Chyby měřících přístrojů:

- 1. Odhad chyby měření nap. Nesymetrie a rychlosti přeběhu
 - Protože se naměřené hodnoty skoro nelišily od katalogových, lze uznat, že chyba byla prakticky zanedbatelná.
- 2. Odhad chyby měření zesílení
 - Zesílení se dokáže jak změřit, tak vypočítat. Vypočítaná a změřená hodnota se nám podobala, a tak lze posoudit, že chyba byla opět zanedbatelná.
- 3. Odhad chyby mezního kmitočtu
 - Měření mezního kmitočtu bylo ze všech měření určitě nejméně přesné, protože spodní mez nelze změřit kvůli vlastnímu napětí OZ. Horní mez se nám změřit podařilo.

Zhodnocení:

- 1. Zhodnocení a porovnání parametrů OZ s katalogovými hodnotami
 - Katalogové hodnoty odpovídaly nám změřeným hodnotám.
- 2. Zhodnocení přesnosti nastavení hodnoty zesílení pomocí rezistorů
 - Teoreticky je ovšem zesílení větší. Prakticky kvůli parazitním odporům je zesílení o něco menší.
- 3. Zhodnocení frekvenční přenosové charakteristiky
 - Frekvenční přenosová charakteristika odpovídá teoretickým předpokladům.