Integer Linear Programming

Reference

Ragsdale: Chapter 6

Winston and Albright: Chapter 6

Learning Objectives

- Formulate business scenarios using binary integer variables.
 - Project selection
 - Capital budgeting
 - Fixed charge problems
 - Quantity discounts
 - Contract award problems
 - Set covering- location problems
 - Cutting stock problems

Introduction

- When one or more variables in an LP problem must assume an integer value we have an Integer Linear Programming (ILP) problem.
- Integer variables also allow us to build more accurate models for a number of common business problems.

Integer Linear Programming: ILP

Maximize/Minimize $z = c_1x_1 + c_2x_2 + ... + c_nx_n$

s.t.
$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \begin{cases} \leq \\ \geq \\ = \end{cases} b_i, i = 1,...,m$$

$$0 \le x_j \le u_j, \quad j = 1, \dots, n$$

 x_j integer for some or all j = 1,...,n

Integrality Conditions- Blue Ridge Revisited

```
MAX: 350X_1 + 300X_2 } profit

S.T.: 1X_1 + 1X_2 <= 200 } pumps

9X_1 + 6X_2 <= 1566 } labor

12X_1 + 16X_2 <= 2880 } tubing

X_1, X_2 >= 0 } nonnegativity

X_1, X_2 must be integers } integrality
```

Integrality conditions are easy to state but make the problem much more difficult (and sometimes impossible) to solve.

BINARY INTEGER PROGRAMMING

Binary Integer Programming

- ILP is not simply a matter of adding integer constraints to decision variables, such as the numbers of workers.
- Many inherently nonlinear problems can be transformed into linear models with the use of binary variables.
- The clever use of binary variables allows us to solve many interesting and difficult problems that LP algorithms are incapable of solving.

Binary Variables

- Binary variables are integer variables that can assume only two values: 0 or 1.
- These variables can be useful in a number of practical modeling situations....
- Perhaps the simplest binary IP model is the following capital budgeting example, which illustrates the "go-no go" nature of many IP models.

Making "yes-or-no" type decisions

- Invest in a project?
- Build a factory?
- Manufacture a product?
- Assign a person to a task?

A Capital Budgeting Problem: CRT Technologies

- In a capital budgeting problem, a decision maker is presented with several projects or investment alternatives and must determine which projects or investments to choose.
- The projects or investments typically require different amount of resources and generate cash flows to the company, which are converted to a net present value(NPV).
- Problem: Determine which set of projects or investments to select to achieve the maximum possible NPV.

A Capital Budgeting Problem: CRT Technologies

	Expected NPV	Capital (in \$000s) Required in				
Project	(in \$000s)	Year 1	Year 2	Year 3	Year 4	Year 5
1	\$141	\$75	\$25	\$20	\$15	\$10
2	\$187	\$90	\$35	\$0	\$0	\$30
3	\$121	\$60	\$15	\$15	\$15	\$15
4	\$83	\$30	\$20	\$10	\$5	\$5
5	\$265	\$100	\$25	\$20	\$20	\$20
6	\$127	\$50	\$20	\$10	\$30	\$40

- The company has \$250,000 available to invest in new projects. It has budgeted \$75,000 for continued support for these projects in year 2 and \$50,000 per year for years 3, 4, and 5.
- Unused funds in any year cannot be carried over.

Defining the Decision Variables

$$X_{i} = \begin{cases} 1, & \text{if project } i \text{ is selected} \\ 0, & \text{otherwise} \end{cases}$$
 $i = 1, 2, ..., 6$

Defining the Objective Function

Maximize the total NPV of selected projects.

MAX:
$$141X_1 + 187X_2 + 121X_3 + 83X_4 + 265X_5 + 127X_6$$

Defining the Constraints

Capital Constraints

```
75X_{1} + 90X_{2} + 60X_{3} + 30X_{4} + 100X_{5} + 50X_{6} <= 250 } year 1 25X_{1} + 35X_{2} + 15X_{3} + 20X_{4} + 25X_{5} + 20X_{6} <= 75 } year 2 20X_{1} + 0X_{2} + 15X_{3} + 10X_{4} + 20X_{5} + 10X_{6} <= 50 } year 3 15X_{1} + 0X_{2} + 15X_{3} + 5X_{4} + 20X_{5} + 30X_{6} <= 50 } year 4 10X_{1} + 30X_{2} + 15X_{3} + 5X_{4} + 20X_{5} + 40X_{6} <= 50 } year 5
```

Binary Constraints

All X, must be binary

Binary Variables& Logical Conditions

- Binary variables are also useful in modeling a number of logical conditions.
 - Of projects 1, 3 & 6, no more than one may be selected

$$X_1 + X_3 + X_6 \le 1$$

- Of projects 1, 3 & 6, exactly one must be selected $X_1 + X_3 + X_6 = 1$
- Project 4 cannot be selected unless project 5 is also selected

$$X_4 - X_5 <= 0$$

Value of			
X4	X5	Meaning	Feasible?
0	0	Do not select either project	Yes
1	1	Select both projects	Yes
0	1	Select 5, but not 4	Yes
1	0	Select 4, but not 5	No

The Fixed-Charge Problem

- In many situations, a cost is incurred if an activity is undertaken at any positive level.
 This cost is independent of the level of the activity and is known as a fixed cost (or fixed charge).
- Fixed costs- costs regardless of what decision is made.

The Fixed-Charge Problem

- Many decisions result in a fixed or lump-sum cost being incurred:
 - The cost to lease, rent, or purchase a piece of equipment or a vehicle that will be required if a particular action is taken.
 - The setup cost required to prepare a machine or to produce a different type of product.
 - The cost to construct a new production line that will be required if a particular decision is made.
 - The cost of hiring additional personnel that will be required if a particular decision is made.

Example Fixed-Charge Problem: Remington Manufacturing

- Remington manufacturing is planning its next production cycle. The company can produce three products, each of which must undergo machining, grinding and assemble operations.
- Management of Remington wants to determine the most profitable mix of products to produce.

Example Fixed-Charge Problem: Remington Manufacturing

Hours Required By:

Operation	Prod. 1	Prod. 2	Prod. 3	Hours Available	
Machining	2	3	6	600	
Grinding	6	3	4	300	
Assembly	5	6	2	400	
Unit Profit	\$48	\$55	\$50		
Setup Cost	\$1000	\$800	\$900		

Defining the Decision Variables

 X_i = the amount of product i to be produced, i = 1, 2, 3

Each of the X variables has a corresponding binary variable

$$Y_{i} = \begin{cases} 1, & \text{if } X_{i} > 0 \\ 0, & \text{if } X_{i} = 0 \end{cases} i = 1, 2, 3$$

Defining the Objective Function

Maximize total profit.

MAX:
$$48X_1 + 55X_2 + 50X_3 - 1000Y_1 - 800Y_2 - 900Y_3$$

Defining the Constraints

Resource Constraints

$$2X_1 + 3X_2 + 6X_3 \le 600$$
 } machining
 $6X_1 + 3X_2 + 4X_3 \le 300$ } grinding
 $5X_1 + 6X_2 + 2X_3 \le 400$ } assembly

Nonnegativity conditions

$$X_i >= 0, i = 1, 2, ..., 6$$

- Binary Constraints
 - All Y, must be binary
- Is there a missing link?

Linking Constraints

- We must ensure that the required relationship between X_i and Y_i is enforced.
- In particular, the value of Y_i variables can be determined from the X_i variables.
- We need constraints to establish this link between the value of the Y_i variables and the X_i variables.

Defining the Constraints (cont'd)

Linking Constraints (with "Big M")

$$X_1 \le M_1 Y_1$$
 or $X_1 - M_1 Y_1 \le 0$
 $X_2 \le M_2 Y_2$ or $X_2 - M_2 Y_2 \le 0$
 $X_3 \le M_3 Y_3$ or $X_3 - M_3 Y_3 \le 0$

- If $X_i > 0$ these constraints force the associated Y_i to equal 1.
- If $X_i = 0$ these constraints allow Y_i to equal 0 or 1, but the objective will cause Solver to choose 0.
- Note that M_i imposes an upper bounds on X_i.
- It helps to find reasonable values for the M_i.

Finding Reasonable Values for M₁

Consider the resource constraints

```
2X_1 + 3X_2 + 6X_3 \le 600 } machining

6X_1 + 3X_2 + 4X_3 \le 300 } grinding

5X_1 + 6X_2 + 2X_3 \le 400 } assembly
```

What is the maximum value X₁ can assume?

```
Let X_2 = X_3 = 0

X_1 = MIN(600/2, 300/6, 400/5)

= MIN(300, 50, 80)

= 50
```

• Maximum values for $X_2 \& X_3$ can be found similarly.

Summary of the Model

MAX:
$$48X_1 + 55X_2 + 50X_3 - 1000Y_1 - 800Y_2 - 900Y_3$$

S.T.: $2X_1 + 3X_2 + 6X_3 <= 600$ } machining $6X_1 + 3X_2 + 4X_3 <= 300$ } grinding $5X_1 + 6X_2 + 2X_3 <= 400$ } assembly $X_1 - 50Y_1 <= 0$ $X_2 - 67Y_2 <= 0$ Iinking constraints $X_3 - 75Y_3 <= 0$ All Y_i must be binary $X_i >= 0$, $i = 1, 2, 3$

Minimum Order Size Restrictions

- •Many investment, production, and distribution problems have minimum purchase amounts or minimum production lot size requirements that must be met.
- •Suppose Remington doesn't want to manufacture any units of product 3 unless it produces at least 40 units...

The Constraints

Consider,

$$X_3 \le M_3 Y_3$$

 $X_3 \ge 40 Y_3$

- The first constraint is a linking constraint
- According to second constraint, if Y_3 equals 1, then X_3 must be greater than or equal to 40.
- On the other hand, if X_3 equals 0, Y_3 must also equal 0 in order to satisfy both constraints.

Quantity Discounts

- We have so far assumed that the profit or cost coefficients in the objective function were constant.
- Recall the revised blue ridge hot tubs example

```
• MAX: 350X_1 + 300X_2 } profit 
S.T.: 1X_1 + 1X_2 <= 200 } pumps 
9X_1 + 6X_2 <= 1566 } labor 
12X_1 + 16X_2 <= 2880 } tubing 
X_1, X_2 >= 0 } nonnegativity 
X_1, X_2 must be integers } integrality
```

 AS production of these products increases, quantity discounts might be obtained on component parts that would cause the profit margin on these items to increase.

Assume...

If Blue Ridge Hot Tubs produces more than 75 Aqua-Spas, it obtains discounts that increase the unit profit to \$375.

If it produces more than 50 Hydro-Luxes, the profit increases to \$325.

Formulation- Decision Variables

- X_{11} = Number of Aqua-Spas produced at \$350 per unit
- X_{12} = Number of Aqua-Spas produced at \$375 per unit
- X_{21} = Number of Aqua-Spas produced at \$300 per unit
- X_{22} = Number of Aqua-Spas produced at \$325 per unit

Formulation- With Objective

- MAX: $350X_{11} + 375X_{12} + 300X_{21} + 325X_{22}$ • S.T.: $1X_{11} + 1X_{12} + 1X_{21} + 1X_{22} <= 200$ } pumps • $9X_{11} + 9X_{12} + 6X_{21} + 6X_{22} <= 1566$ } labor • $12X_{11} + 12X_{12} + 16X_{21} + 16X_{22} <= 2880$ } tubing • $X_{ii} >= 0$
 - X_{ij} must be integers, Y_i must be binary
- Is the formulation complete?

The Missing Constraints

• Ensure the model does not allow any units of X_{12} to be produced unless we have produced 75 units of X_{11}

$$-X_{12} < = M_{12}Y_1$$

$$-X_{11}>=75Y_1$$

 Ensure the model does not allow any units of X₂₂ to be produced unless we have produced 50 units of X₂₁

$$-X_{22} < = M_{22}Y_2$$

$$-X_{21}>=50Y_2$$

Quantity Discount Model

```
MAX: 350X_{11} + 375X_{12} + 300X_{21} + 325X_{22}
S.T.: 1X_{11} + 1X_{12} + 1X_{21} + 1X_{22} \le 200
                                                         } pumps
       9X_{11} + 9X_{12} + 6X_{21} + 6X_{22} \le 1566 } labor
       12X_{11} + 12X_{12} + 16X_{21} + 16X_{22} <= 2880 } tubing
       X_{12} <= M_{12}Y_1
       X_{11} > = 75Y_1
       X_{22} <= M_{22}Y_2
       X_{21} > = 50Y_2
       X_{ii} > = 0
       X_{ii} must be integers, Y_i must be binary
```

A Contract Award Problem

 B&G Construction has 4 building projects and can purchase cement from 3 companies for the following costs:

	Cost per Delivered Ton of Cement				Max.
	Project 1	Project 2	Project 3	Project 4	Supply
Co. 1	\$120	\$115	\$130	\$125	525
Co. 2	\$100	\$150	\$110	\$105	450
Co. 3	\$140	\$95	\$145	\$165	550
Needs	450	275	300	350	
(tons)					

A Contract Award Problem

Side constraints:

- Co. 1 will not supply orders of less than 150 tons for any project
- Co. 2 can supply more than 200 tons to no more than one of the projects
- Co. 3 will accept only orders that total 200, 400, or 550 tons

A Contract Award Problem

- B & G can contract with more than one supplier to meet the cement requirements for a given project.
- The problem is to determine what amounts to purchase from each supplier to meet the demands for each project at the least total cost.

Defining the Decision Variables

 X_{ij} = tons of cement purchased from company i for project j

Defining the Objective Function

Minimize total cost

MIN:
$$120X_{11} + 115X_{12} + 130X_{13} + 125X_{14}$$

+ $100X_{21} + 150X_{22} + 110X_{23} + 105X_{24}$
+ $140X_{31} + 95X_{32} + 145X_{33} + 165X_{34}$

Defining the Constraints

Supply Constraints

```
X_{11} + X_{12} + X_{13} + X_{14} \le 525 } company 1

X_{21} + X_{22} + X_{23} + X_{24} \le 450 } company 2

X_{31} + X_{32} + X_{33} + X_{34} \le 550 } company 3
```

Demand Constraints

$$X_{11} + X_{21} + X_{31} = 450$$
 } project 1
 $X_{12} + X_{22} + X_{32} = 275$ } project 2
 $X_{13} + X_{23} + X_{33} = 300$ } project 3
 $X_{14} + X_{24} + X_{34} = 350$ } project 4

Defining the Constraints-I

Company 1 Side Constraints- Minimum Order Size restriction

$$X_{11} <= 525Y_{11}$$

 $X_{12} <= 525Y_{12}$
 $X_{13} <= 525Y_{13}$
 $X_{14} <= 525Y_{14}$
 $X_{11} >= 150Y_{11}$
 $X_{12} >= 150Y_{12}$
 $X_{13} >= 150Y_{13}$
 $X_{14} >= 150Y_{14}$

Linking constraints to ensure if $X_{11,} X_{12,} X_{13}$ or $X_{14,}$ is greater than 0, then its associated binary variable must equal 1.

These constraints ensure that if $X_{11,} X_{12,} X_{13}$ or $X_{14,}$ is greater than 0, then it must be at least 150.

 Y_{ij} binary

Defining the Constraints-II

 Company 2 Side Constraints- it can supply more than 200 tons to no more than one of the projects.

$$X_{21} <= 200 + 250Y_{21}$$
 $X_{22} <= 200 + 250Y_{22}$
 $X_{23} <= 200 + 250Y_{23}$
 $X_{24} <= 200 + 250Y_{24}$
 $Y_{21} + Y_{22} + Y_{23} + Y_{24} <= 1$

Y_{ii} binary

Defining the Constraints-III

Company 3 Side Constraints

$$X_{31} + X_{32} + X_{33} + X_{34} = 200Y_{31} + 400Y_{32} + 550Y_{33}$$

$$Y_{31} + Y_{32} + Y_{33} \le 1$$

Set Covering Models

- Many companies have geographically dispersed customers that they must service in some way.
- To do this, they create service center facilities at selected locations and then assign each customer to one of the service centers.
- Various costs are incurred, including:
 - Fixed costs of locating service centers in particular locations;
 - Operating costs, depending on the service centers' locations; and
 - Transportation costs, depending on the distances between customers and their assigned service centers.

Set Covering Models

- We first examine a particular type of location model called a set-covering model.
- In a set-covering model, each member of a given set (set 1) must be "covered" by an acceptable member of another set (set 2).
- The usual objective in a set-covering problem is to minimize the number of members in set 2 that are needed to cover all the members in set 1.
- Set-covering models have been applied to areas as diverse as site selection, airline crew scheduling, truck dispatching, political redistricting, and capital investment

Applications

- Site Selection
- Crew Scheduling

Selection of Sites for Emergency Services:

The Caliente City Problem

- Caliente City is growing rapidly and spreading well beyond its original borders
- They still have only one fire station, located in the congested center of town
- The result has been long delays in fire trucks reaching the outer part of the city

Goal: Develop a plan for locating multiple fire stations throughout the city

New Policy: Response Time ≤ 10 minutes

Response Time and Cost Data for Caliente City

		Fire Station in Tract									
		1	2	3	4	5	6	7	8		
Response	1	2	8	18	9	23	22	16	28		
times (minutes) for a fire in tract	2	9	3	10	12	16	14	21	25		
	3	17	8	4	20	21	8	22	17		
	4	10	13	19	2	18	21	6	12		
	5	21	12	16	13	5	11	9	12		
	6	25	15	7	21	15	3	14	8		
	7	14	22	18	7	13	15	2	9		
	8	30	24	15	14	17	9	8	3		
Cost of Station (\$thousands)		350	250	450	300	50	400	300	200		

Algebraic Formulation of Caliente City Problem

```
Let x_i = 1 if tract j is selected to receive a fire station; 0 otherwise (j = 1, j)
   2, ..., 8)
Minimize C = 350x_1 + 250x_2 + 450x_3 + 300x_4 + 50x_5 + 400x_6 + 300x_7 +
   200x_{8}
subject to
   Tract 1: x_1 + x_2 + x_4 \ge 1
   Tract 2: x_1 + x_2 + x_3 \ge 1
   Tract 3: x_2 + x_3 + x_6 \ge 1
   Tract 4: x_1 + x_4 + x_7 \ge 1
   Tract 5: x_5 + x_7 \ge 1
   Tract 6: x_3 + x_6 + x_8 \ge 1
   Tract 7: x_4 + x_7 + x_8 \ge 1
   Tract 8: x_6 + x_7 + x_8 \ge 1
and x_i are binary (for j = 1, 2, ..., 8).
```

Southwestern Airways Crew Scheduling

- Southwestern Airways needs to assign crews to cover all its upcoming flights.
- We will focus on assigning 3 crews based in San Francisco (SFO) to 11 flights.

Question: How should the 3 crews be assigned 3 sequences of flights so that every one of the 11 flights is covered?

Data for the Southwestern Airways Problem

	Feasible Sequence of Flights											
Flights	1	2	3	4	5	6	7	8	9	10	11	12
1. SFO–LAX	1			1			1			1		
2. SFO-DEN		1			1			1			1	
3. SFO-SEA			1			1			1			1
4. LAX–ORD				2			2		3	2		3
5. LAX–SFO	2					3				5	5	
6. ORD–DEN				3	3				4			
7. ORD–SEA							3	3		3	3	4
8. DEN-SFO		2		4	4				5			
9. DEN-ORD					2			2			2	
10. SEA–SFO			2				4	4				5
11. SEA–LAX						2			2	4	4	2
Cost, \$1,000s	2	3	4	6	7	5	7	8	9	9	8	9

Algebraic Formulation

```
Let x_j = 1 if flight sequence j is assigned to a crew; 0 otherwise. (j = 1, 2, ..., 12).
Minimize Cost = 2x_1 + 3x_2 + 4x_3 + 6x_4 + 7x_5 + 5x_6 + 7x_7 + 8x_8 + 9x_9 + 9x_{10} + 8x_{11} + 9x_{12} (in $thousands)
```

subject to

Flight 1 covered:
$$x_1 + x_4 + x_7 + x_{10} \ge 1$$

Flight 2 covered:
$$x_2 + x_5 + x_8 + x_{11} \ge 1$$

:

Flight 11 covered:
$$x_6 + x_9 + x_{10} + x_{11} + x_{12} \ge 1$$

Three Crews:
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12} \le 3$$

and

$$x_i$$
 are binary $(j = 1, 2, ..., 12)$.

Southwestern Airways Crew Scheduling

- Southwestern Airways needs to assign crews to cover all its upcoming flights.
- We will focus on assigning 3 crews based in San Francisco (SFO) to 11 flights.

Question: How should the 3 crews be assigned 3 sequences of flights so that every one of the 11 flights is covered?

Southwestern Airways Flights

Data for the Southwestern Airways Problem

	Feasible Sequence of Flights											
Flights	1	2	3	4	5	6	7	8	9	10	11	12
1. SFO–LAX	1			1			1			1		
2. SFO-DEN		1			1			1			1	
3. SFO-SEA			1			1			1			1
4. LAX–ORD				2			2		3	2		3
5. LAX–SFO	2					3				5	5	
6. ORD–DEN				3	3				4			
7. ORD–SEA							3	3		3	3	4
8. DEN-SFO		2		4	4				5			
9. DEN-ORD					2			2			2	
10. SEA–SFO			2				4	4				5
11. SEA–LAX						2			2	4	4	2
Cost, \$1,000s	2	3	4	6	7	5	7	8	9	9	8	9

Algebraic Formulation

```
Let x_j = 1 if flight sequence j is assigned to a crew; 0 otherwise. (j = 1, 2, ..., 12).
Minimize Cost = 2x_1 + 3x_2 + 4x_3 + 6x_4 + 7x_5 + 5x_6 + 7x_7 + 8x_8 + 9x_9 + 9x_{10} + 8x_{11} + 9x_{12} (in $thousands)
```

subject to

Flight 1 covered: $x_1 + x_4 + x_7 + x_{10} \ge 1$

Flight 2 covered: $x_2 + x_5 + x_8 + x_{11} \ge 1$

:

Flight 11 covered: $x_6 + x_9 + x_{10} + x_{11} + x_{12} \ge 1$

Three Crews: $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12} \le 3$

and

 x_j are binary (j = 1, 2, ..., 12).