Introduction to Machine Learning

Session 2

Dataviz Dimensionality reduction

Maxime Ossonce

Introduction and Dataviz

1. Introduction and Dataviz

- 1.1 Intro (previous lesson)
- 1.2 Dataviz and dimensionality reduction

- ► Supervised learning predictive models:
 - ▶ trained on **labeled** training set,
 - > expected to generalize on (unseen) **test** samples.
- ▶ Unsupervised learning descriptive models:
 - > study data distribution,
 - extract knowledge for data,
 - **▶ clustering,** dataviz...

ML-Ing1 maxime.ossonce@esme.fr 1/22

Introduction and Dataviz 1.2 Dataviz and dimensionality reduction

Notations

- ▶ The matrix *X* is the **data matrix**. If *p* is the **dimension** of the samples, *X* is of size $n \times p$: the *i*th row of *X* is the *i*th sample $x^i \in \mathbb{R}^d$.
- ▶ The *j*th variable (or **feature**) of x^i , $x_i^i \in \mathbb{R}$ is the component X_{ij} of the data matrix.

$$X = \begin{pmatrix} x_1^1 & \cdots & x_j^1 & \cdots & x_p^1 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_1^i & \cdots & x_j^i & \cdots & x_p^i \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_j^n & \cdots & x_j^n & \cdots & x_p^n \end{pmatrix} \downarrow^{\text{asimples}}$$

ML-Ing1 maxime.ossonce@esme.fr 2/22

	rcc	wcc	hc	hg	ferr	bmi	ssf	pcBfat	lbm	ht	wt
$ \text{row } i \\ \text{sample } x^i $	3.96	7.5	37.5	12.3	60	20.56	109.1	19.75	63.32	195.9	78.9
	4.41	8.3	38.2	12.7	68	20.67	102.8	21.3	58.55	189.7	74.4
	4.14	5	36.4	11.6	21	21.86	104.6	19.88	55.36	177.8	69.1
	4.11	5.3	37.3	12.6	69	21.88	126.4	23.66	57.18	185	74.9
	4.45	6.8	41.5	14	29	18.96	80.3	17.64	53.2	184.6	64.6
	4.1	4.4	37.4	12.5	42	21.04	75.2	15.58	53.77	174	63.7
	4.31	5.3	39.6	12.8	73	21.69	87.2	19.99	60.17	186.2	75.2
	4.42	5.7	39.9	13.2	44	20.62	97.9	22.43	48.33	173.8	62.3
	4.3	8.9	41.1	13.5	41	22.64	75.1	17.95	54.57	171.4	66.5
	4.51	4.4	41.6	12.7	44	19.44	65.1	15.07	53.42	179.9	62.9
	→ 4.71	5.3	41.4	14	38	25.75	171.1	28.83	68.53	193.4	96.3
	4.62	7.3	43.8	14.7	26	21.2	76.8	18.08	61.85	188.7	75.5
	4.35	7.8	41.4	14.1	30	22.03	117.8	23.3	48.32	169.1	63
	4.26	6.2	41	13.9	48	25.44	90.2	17.71	66.24	177.9	80.5
	4.63	6	43.7	14.7	30	22.63	97.2	18.77	57.92	177.5	71.3
	4.36	5.8	40.3	13.3	29	21.86	99.9	19.83	56.52	179.6	70.5
	3.91	7.3	37.6	12.9	43	22.27	125.9	25.16	54.78	181.3	73.2
	4.51	8.3	43.7	14.7	34	21.27	69.9	18.04	56.31	179.7	68.7
	4.37	8.1	41.8	14.3	53	23.47	98	21.79	62.96	185.2	80.5
	4.9	6.9	44	14.5	59	23.19	96.8	22.25	56.68	177.3	72.9
	4.46	5.7	39.2	13.0	43	23.17	80.3	16.25	62.39	179.3	74.5
column <i>j</i>											
feature <i>j</i> (hemoglobine)											

Introduction and Dataviz 1.2 Dataviz and dimensionality reduction

Bivar plot

Figure: Bivariate plot of Australian athletes dataset

Dimension reduction

- $ightharpoonup From X \in \mathbb{R}^{n \times p}$ to $Z \in \mathbb{R}^{n \times q}$.
- ▶ Every sample $x^i \in \mathbb{R}^p$ is projected into \mathbb{R}^q with q < p.
- $ightharpoonup z^i = \operatorname{cod}(x^i)$ $\tilde{x}^i = \operatorname{dec}(z^i)$
- ightharpoonup If x^k is similar to x^l then z^k has to be similar to z^l .
- ightharpoonup q < p: features extraction, hidden structure.
- ▶ If q = 2: visualization.

Figure: Illustration p = 784, q = 2

ML-Ing1 maxime.ossonce@esme.fr 5/22

(b) t-SNE: q = 2

Figure: tSNE applied to MNIST dataset

▶ The data **correlation matrix** *C* of size $p \times p$ is:

$$C = \frac{1}{n} X^{\top} X.$$

► Hypothesis: *X* is **centered reduced** $(C_{kk} = 1 \ \frac{1}{n} \sum_{i} x_i^i = 0)$.

$$x_j^i \leftarrow \frac{x_j^i - \bar{x}_j}{\sqrt{\frac{1}{n} \sum_{l=1}^n (x_j^l - \bar{x}_j)^2}}.$$

Correlation coefficients

$$C_{kl} = \frac{1}{n} \sum_{i=1}^{n} x_k^i x_l^i \quad \forall k, l \in \{1 \dots p\}.$$

ML-Ing1 maxime.ossonce@esme.fr 7/22

Introduction and Dataviz 1.2 Dataviz and dimensionality reduction

Visualization

Figure: Australian athletes dataset correlation matrix

ML-Ing 1 maxime.ossonce@esme.fr 8/22

Diagonalization I

- ▶ *C* is a **definite positive** matrix.
- ightharpoonup Let $\lambda_1, \dots, \lambda_p$ its (positive) **eigenvalues** in decreasing order.
- ightharpoonup Let $u^1, ..., u^p$ the orthonormal diagonalization basis:
 - $\triangleright \sum_{j=1}^{p} u_j^k u_j^l = \delta_{kl}$
 - $ightharpoonup Cu^j = \lambda_j u^j$.
- $ightharpoonup C = UDU^{\top}$ where the columns of U are the **eigenvectors** u^j and D is the **diagonal** matrix of eigenvalues.

ML-Ing 1 maxime.ossonce@esme.fr 9/22

Introduction and Dataviz 1.2 Dataviz and dimensionality reduction

Diagonalization II

ightharpoonup V = XU is the data matrix in the **eigenbasis** $(u^1, \dots u^p)$.

$$v = U^{\top} x$$
 $x = Uv$.

▶ Its covariance matrix is:

$$\frac{1}{n}V^{\top}V = \frac{1}{n}U^{\top}X^{\top}XU$$
$$= U^{\top}CU$$
$$= D.$$

ightharpoonup In the eigenbasis, the coordinates v of x are **uncorrelated**.

ML-Ing 1 maxime.ossonce@esme.fr 10/22

$$\triangleright \lambda_1 = 1 + a$$
,

 $ightharpoonup C = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$

$$\lambda_2 = 1 - a.$$

$$ightharpoonup u^1 = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})^{\top},$$

$$\mathbf{v} \quad u^2 = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})^{\top}$$

normalized data

normalized data in eigenbasis

ML-Ing 1 maxime.ossonce@esme.fr 11/22

Introduction and Dataviz 1.2 Dataviz and dimensionality reduction

Principal component analysis (PCA)

- **▶ Linear** method.
- ▶ *W* orthogonal matrix of size $p \times q$ ($W^T W = I_q$) such that:

$$ightharpoonup z^i = W^{\top} x^i$$
.

$$ightharpoonup \tilde{x}^i = Wz^i$$
.

$$\triangleright Z = XW$$
.

$$X = ZW^{\top} + B$$
.

 \triangleright *B* is a **matrix** noise orthogonal of *W*.

$$W = \underset{\mathbb{R}^{p \times q}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \|x^{i} - \tilde{x}^{i}\|^{2}.$$

ML-Ing 1 maxime.ossonce@esme.fr 12/22

▶ W that minimizes reconstruction error maximizes variance of z:

$$||x - \tilde{x}||^{2} = (x - \tilde{x})^{\top} (x - \tilde{x}) \in \mathbb{R}$$

$$= x^{\top} x - 2\tilde{x}^{\top} x + \tilde{x}^{\top} \tilde{x}$$

$$= ||x||^{2} - 2z^{\top} W^{\top} x + z^{\top} W^{\top} Wz$$

$$= ||x||^{2} - 2z^{\top} z + z^{\top} W^{\top} Wz$$

$$= ||x||^{2} - 2z^{\top} z + z^{\top} z$$

$$= ||x||^{2} - ||z||^{2}.$$

- $ightharpoonup \operatorname{argmin} \sum_{i} \|x^{i} \tilde{x}^{i}\|^{2} = \operatorname{argmax} \sum_{i} \|z^{i}\|^{2}.$
- ightharpoonup The PCA maximizes the projection z variance.

ML-Ing1 maxime.ossonce@esme.fr 13/22

Introduction and Dataviz 1.2 Dataviz and dimensionality reduction

PCA solution q = 1

- ightharpoonup We want to find $w^1 \in \mathbb{R}^d$ that maximizes the variance of $z = Xw^1$.
- \triangleright The variance of z is:

$$\frac{1}{n} \sum_{j=1}^{n} z_j^2 = \frac{1}{n} w^{1 \top} X^{\top} X w_j^{1 \top}$$

$$= w^{1 \top} C w^1$$

$$= w'^{\top} D w' \qquad w' = U^{\top} w^1$$

$$= \sum_{j=1}^{d} \lambda_j w_j'^2$$
(1)

► The vector s.t. $\|w^1\|^2 = \|w'\|^2 = 1$ that maximizes (1) is $w'^\top = (1, 0...0)$: $w^1 = u^1$ the first **eigenvector**.

ML-Ing 1 maxime.ossonce@esme.fr 14/22

Figure: First component of a PCA

15/22

Introduction and Dataviz

PCA general solution

- $ightharpoonup Z = XW \text{ with } W^{\top}W = I_q.$
- ightharpoonup The columns of W are the q first **eigenvectors**.

Figure: PCA on the australian athletes dataset

ML-Ing1 maxime.ossonce@esme.fr 17/22

Introduction and Dataviz 1.2 Dataviz and dimensionality reduction

Choice of q

Figure: Explained variance of PCA components

- ▶ Cross validation.
- ▶ Detection of an **elbow** in the variance explained.
- ▶ 95 % of total variance explained.

Drawbacks of PCA

- ▶ Liner method.
- ▶ Gaussian assumption on the data.
- ▶ Other methods: t-distributed stochastic neighbor embedding (tSNE), autoencoders...

ML-Ing 1 19/22

1.2 Dataviz and dimensionality reduction

Principle of tSNE

- $ightharpoonup d(x^i, x^j) \to p_x(x^j | x^i)$ (probability that x^j is close to x^i).
- ▶ Assume same probability distribution for the projections $p_z(z^j|z^i)$.
- ightharpoonup Find p_z close to p_x .

Details

▶ Distribution $p_x(x^j|x^i)$:

$$p_{x}(x^{j}|x^{i}) = \frac{e^{-d_{ij}^{2}}}{\sum_{k} e^{-d_{ik}^{2}}}$$
$$d_{ij} = \frac{\|x^{i} - x^{j}\|}{\sigma^{2}}.$$

▶ Distribution $p_z(z^j|z^i)$:

$$p_z(z^j|z^i) = \frac{(1+\delta_{ij}^2)^{-1}}{\sum_k (1+\delta_{ik}^2)^{-1}}$$
$$\delta_{ij} = \|z^i - z^j\|.$$

ightharpoonup Find $(z^i)_{i=\{1\dots n\}}$ that minimizes Kullback-Leibler divergence (DKL):

$$\sum_{i,j} p_{x}(x^{j}|x^{i}) \log \left(\frac{p_{x}(x^{j}|x^{i})}{p_{z}(z^{j}|z^{i})} \right).$$

ML-Ing1 maxime.ossonce@esme.fr 21/22

Introduction and Dataviz 1.2 Dataviz and dimensionality reduction

Illustration

Figure: tSNE on MNIST dataset

ML-Ing 1 maxime.ossonce@esme.fr 22/22