

POWER ENGINEERING

#17 SYNCHRONOUS GENERATORS (II)

Plan for Today:

- Quick recap on Power Lines on Phasor Diagram
- Example
- Grid Connected Generator Summary:
 - Changes to Load
 - Changes to Excitation Voltage
- Operating Limits of a Synchronous Generator

Grid Connected Generator: Example

x2 increase in Output Power (W):

Procedure:

- 1. E_{ph} rotates CCW to P₂ line
- 2. Calculate V_{xs}
- 3. Calculate I_{ph}

Lecture 16 Example:

Part A

A 3 phase Synchronous Generator with a Synchronous Reactance of 25Ω is connected to an 10kV (Phase Voltage) grid and supplies 1MW at a 0.819 lagging Power Factor at its terminals. Calculate the phase current and resultant V_{XS} , and from the phasor diagram graphically determine the required Excitation Voltage (E_{ph}) and Load Angle (δ)

Part B

The load is increased to 3MW, calculate the resultant changes to the phase current, power factor and load angle for constant Excitation Voltage.

Grid Connected Mode: Decrease in Excitation (E_{ph}), no change in Power

Fact: magnitude of Terminal Voltage (V_{ph}) is FIXED

Results:

Synchronous Generator: Operating Limits

'Typical' Phasor Diagram:

Multiply all Voltage Phasors by $3.V_{ph}/X_s$:

Generator Operation Constraints:

Assume connection to Grid (Infinite Bus) so V_{ph} remains constant throughout operation

Assume X_s remains constant throughout operation

Operating Limit #1: Input (Prime Mover) Power

Operating Limit #2: Stator Copper Loss (I_{ph}²R_s)

Operating Limit #3: Rotor Copper Loss (I_f²R_r)

(implies a limit on E_{ph})

Note: magnetic saturation of stator & rotor may also limit $I_{\rm f}$ and $E_{\rm ph}$

All limits shown on the same Phasor Diagram:

Final (possible!) Limitation: operate with as low a value of E_{ph} (I_f) as possible (minimise rotor losses) at any given operating point BUT include a 'Stability Margin'

Changing Eph (in 20% steps) as Power Increases from zero to Pmax

Eph is controlled (according to the power demand) such that it is kept to a 'minimum' value without δmax being exceeded

Starting at zero power a 20% E_{ph} value is selected. As power increases δ increases. When δ equals δ max E_{ph} is increases to its 40% value which causes an instantaneous reduction in δ (etc)

Summary

Synchronous Generators come in 2 flavours:
PM Generators
Wound Field Generators
2 connection options:
Stand Alone Mode
Grid Connected
Operating Limits of a Synchronous Generator:
Power limit from Prime Mover
Stator Current Limit
Rotor Current Limit