Devoir surveillé n°3

Durée : 3 heures, calculatrices et documents interdits

I. Une équation différentielle.

L'objectif de ce problème est de déterminer toutes les fonctions f deux fois dérivables sur $\mathbb R$ telles que :

$$\forall x \in \mathbb{R} , f''(x) + f(-x) = x + \cos(x).$$
 (E)

I – Questions préliminaires :

1) Résoudre sur \mathbb{R} l'équation différentielle :

$$y'' + y = \cos(x). \tag{\mathcal{E}_1}$$

2) Résoudre sur \mathbb{R} l'équation différentielle :

$$y'' - y = x. (\mathcal{E}_2)$$

II – Analyse:

Soit f une solution de (\mathscr{E}) . On considère les fonctions g et h définies sur \mathbb{R} par :

$$\forall x \in \mathbb{R} , \ g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$.

- 3) Que peut-on dire de la parité de g et de h? Exprimer f en fonction de g et h.
- 4) a) Établir que la fonction g est solution sur \mathbb{R} de l'équation différentielle (\mathscr{E}_1) .
 - b) En déduire qu'il existe $\alpha \in \mathbb{R}$ tel que : $\forall x \in \mathbb{R}$, $g(x) = \alpha \cos x + \frac{1}{2}x \sin(x)$.
- 5) a) Établir que la fonction h est solution sur \mathbb{R} de l'équation différentielle (\mathscr{E}_2).
 - **b)** En déduire qu'il existe $\beta \in \mathbb{R}$ tel que : $\forall x \in \mathbb{R}$, $h(x) = \beta \operatorname{sh} x x$.
- 6) Déduire des questions précédentes la forme nécessaire de la fonction f.

III - Synthèse:

7) Vérifier réciproquement que toutes les fonctions f obtenues précédemment sont bien solutions de l'équation (\mathscr{E}) et donner l'ensemble des solutions de (\mathscr{E}) .

II. Étude d'une homographie.

Dans tout le problème, on confondra le complexe z et le point du plan d'affixe z. a, b, c, d étant quatre complexes deux à deux distincts, on définit le birapport :

$$B(a, b, c, d) = \frac{a - c}{a - d} \times \frac{b - d}{b - c}.$$

Préliminaire : lien entre le birapport et la cocyclicité.

On rappelle le théorème de l'angle au centre :

« Soit A, B et C trois points deux à deux distints et $\mathscr C$ un cercle de centre Ω , passant par A et B. Le point C est sur $\mathscr C$ si et seulement si $\left(\overrightarrow{\Omega A}, \overrightarrow{\Omega B}\right) = 2\left(\overrightarrow{CA}, \overrightarrow{CB}\right) [\pi]$ ».

Soit a, b, c, d quatre nombres complexes, représentant respectivement les points A, B, C et D du plan. On montre dans cette partie que le birapport de ces quatres points est réel si et seulement si ces points sont alignés ou cocycliques (i.e., appartiennent à un même cercle).

- 1) a) Exprimer l'argument de B(a, b, c, d) comme une différence d'angle faisant intervenir les points A, B, C, D.
 - **b)** Montrer que si A, B, C et D sont alignés, alors $\arg(B(a,b,c,d)) = 0[\pi]$.
 - c) Montrer que si A, B, C et D sont cocycliques, alors $\arg(B(a,b,c,d)) = 0[\pi]$.
 - **d)** Que peut-on donc conclure?
- 2) Réciproquement, supposons que $B(a, b, c, d) \in \mathbb{R}$.
 - a) Que peut-on dire si A, C et D sont alignés?
 - b) Sinon, montrer que A, B, C et D sont cocycliques.

Partie principale : étude d'une homographie.

On pose
$$E=\mathbb{C}\setminus\{i,1\}$$
. On définit $f\colon E\to C$.
$$z\mapsto \frac{z+i}{z-i}$$
 Si A est un ensemble, en note $f(A)$ l'image directe d

Si A est un ensemble, on note f(A) l'image directe de A par f. C'est l'ensemble des images des éléments de A par f, soit $\{f(z) \mid z \in A\}$.

- 3) a) Montrer: $\forall z \in E, f(z) \in E$.
 - b) Montrer que pour tout élément z' de E, il existe un unique $z \in E$ vérifiant z' = f(z). Exprimer alors ce z en fonction de z'. On dit alors que f est bijective et l'on vient de trouver l'expression de sa réciproque.
 - c) Calculer $(f \circ f)(z)$ et en déduire que $f \circ f \circ f = Id_E$.
- 4) a) Démontrer que $f(\mathbb{R}\setminus\{1\}) = \mathbb{U}\cap E$, où \mathbb{U} est le cercle unité de \mathbb{C} .

- **b)** Soient $P = \{z \in E \mid \text{Im}(z) < 0\}$ et $D = \{z \in E \mid |z| < 1\}$. Démontrer que f(P) = D.
- 5) Soient a, b, c, d quatre éléments distincts de E et a', b', c', d' leurs images par f.
 - a) Montrer: $\frac{a'-c'}{a'-d'} = \frac{a-c}{a-d} \times \frac{d-i}{c-i}$.
 - **b)** En déduire : B(a', b', c', d') = B(a, b, c, d).
 - c) Que peut-on en déduire si a, b, c, d sont cocycliques ou alignés?
 - d) Montrer que a, c, d sont alignés si et seulement si a', 1, c', d' sont cocycliques ou alignés.
- 6) a) Déterminer les complexes de E tels que f(z) = z.

 On trouvera deux solutions distinctes que l'on notera α et β avec $\text{Re}(\alpha) > 0$.
 - **b)** Vérifier : $\frac{\beta i}{\alpha i} = j^2$ avec $j = \exp(\frac{2i\pi}{3})$.
 - c) Soient $z \in E \setminus \{\alpha, \beta\}$ et z' = f(z). Montrer: $z' \neq \alpha$, $z' \neq \beta$. Etablir $\frac{z' - \alpha}{z' - \beta} = j^2 \frac{z - \alpha}{z - \beta}$.
- 7) Construction géométrique de l'image d'un point

On note Δ la médiatrice de $[\alpha, \beta]$.

- a) Montrer que $f(\Delta \cap E) = \Delta \cap E$.

 Indication: utiliser le résultat de la question précédente.
- b) Montrer que Δ est la droite passant par 1 et i.
- c) Montrer que $\forall z \in E, z \in \Delta \iff f(z) \in \Delta$.
- d) Soit $z \in \Delta \cap E$ et z' = f(z). Montrer que $(\overrightarrow{z\alpha}, \overrightarrow{zi}) = (\overrightarrow{zi}, \overrightarrow{z\beta})$ $[2\pi]$ et $(\overrightarrow{z'\alpha}, \overrightarrow{z'i}) = (\overrightarrow{z'i}, \overrightarrow{z'\beta})$ $[2\pi]$. En déduire que les mesures des angles orientés entre les droites $((\alpha z), (\alpha z'))$ et $((\beta z), (\beta z'))$ valent respectivement $-\frac{\pi}{3}$ et $\frac{\pi}{3}$ (modulo π).
- e) Soit $z \in E$ tel que α, z, β ne soient pas alignés. Alors les droites (αz) et (βz) coupent Δ en deux points distincts a, b de E. Expliquer comment construire géométriquement a' = f(a) et b' = f(b) puis z' = f(z).

Indication : on pourra utiliser le résultat de la question 5)d). Réaliser cette construction pour $z = \frac{1}{2}$ (unité 5cm).

— FIN —