	algoritm	no prop	uesto	es co	brrect	0.												
)	Dijk	stra (lgn)		de	\$	en	G	para	. ca	lcul	or	J (5,	· v)	٧v	€V(6) .		
		•																
2)	Dijks	stra Ilar						G cov	n la	٥ ك	eris:	las	inv	ert	idas)	sara	,
	0 (n	+m) ar (+ 0					(m l	ąn)									
3)	Recor	Temos	i to	das	las	ar	iste	s de	G	bu	S CO.1	ndo	la	de	mo	yor	pe	l o
	tq el	62 1	o de	el c	am	ino	en	tre	s y	Ł	Sec	٦ (C	•	O(m)		
	m e	- Ø																
	e +			(a).														
		1'← d V→W]	c(v.	→W) + ,	d (w, t	(،									
	,F	- m'≪			M' >	m:												
			- v -															

Notemos que basta con mirar los caminos simples pues cualquier recorrido que tiene ciclos podemos transtormarlo en un camino simple sacando todos los ciclos, y el peso del comino seraí « al del recorrido por que sacamos aristas de peso no negativo.

Si el camino mínimo entre sy t resulta o enlonces no existe camino que conecta sy t, por lo tanto nunca vamos a poder encontrar una arista que cumpla la condición del enunciado. En este caso el algoritmo tetorna L

De forma similar, si d(s,t) > c no puede existir arista que mejore el camino mínimo entre s y t pues sería absurdo. En este caso también retornamos 1.

Suponiendo d(s,t) & c, queremos ver cuál es la arista de peso máximo to el peso del camino entre s y t que pasa por esa arista sea « c.

Sea Pst algún camino entre s y t que pasa por la arista v-v.
Notemos entonces que Pse = Psv + v->w + Pvut. Supongamos además
que construimos los subcaminos Psv y Pvut de Forma óptima, así
permitimos tomar una arista v->w tan grande como sea posible.

$$C(P_{SE}) = c(P_{SV}) + c(V \rightarrow W) + C(P_{WE})$$

$$= d(S,V) + c(V \rightarrow W) + d(W,E) \leqslant C$$

Luego la arista que buscamos es la de Mayor peso entre todos aquellas que cumplen la designaldad anterior.