Permutações em Espaços Densos

1 Permutações em espaços densos

Dado $(M, +, \leq)$ um monóide de adição, ordenado e denso de forma que para quaisquer $a, b \in M$ com a < b, existe $c \in M$ tal que a < c < b, definimos a operação p de permutação de par de intervalos para espaços densos que é uma bijeção $p_{\alpha,\beta}: M \to M$ onde $x \in M$ e $\alpha, \beta \in \mathbb{N}$ e escolhemos 2 intervalos arbitrários disjuntos I_{α} e I_{β} em que $||I_{\alpha}|| = ||I_{\beta}||$ ou seja eles tem mesmo tamanho, de forma que:

$$p_{\alpha,\beta}(x) = \begin{cases} x & x \notin I_{\alpha} \land x \notin I_{\beta} \\ x - \min(I_{\alpha}) + \min(I_{\beta}), & x \in I_{\alpha}, \\ x - \min(I_{\beta}) + \min(I_{\alpha}), & x \in I_{\beta} \end{cases}$$
(1)

Outra definição equivalente seria:

$$p_{\alpha,\beta}(x) = \begin{cases} x & x \notin I_{\alpha} \land x \notin I_{\beta} \\ x - \max(I_{\alpha}) + \max(I_{\beta}), & x \in I_{\alpha}, \\ x - \max(I_{\beta}) + \max(I_{\alpha}), & x \in I_{\beta} \end{cases}$$
(2)

Se $I_{\alpha} = I_{\beta}$ temos a permutação identidade de par de intervalos para espaços densos. É facilmente verificável que a fórmula se reduz à seguinte forma: $p_{\beta,\beta}(x) = p_{\alpha,\alpha}(x) = x$.

Repare que também para todo $\alpha, \beta \in \mathbb{N}$ temos $p_{\alpha,\beta} = p_{\beta,\alpha}$ e também que $p_{\alpha,\beta} \circ p_{\alpha,\beta} = \mathrm{id}_M$.

2 Função de permutação de espaços densos

Com isso podemos definir a função de permutação de espaços densos σ onde $\sigma: M \to M$ de forma que dada uma sequência de intervalos arbitrários disjuntos $\{I_n\}_{n\in\mathbb{N}}$ que tem o mesmo tamanho e duas sequências de números naturais $\{a_n\}_{n\in\mathbb{N}}$ e $\{b_n\}_{n\in\mathbb{N}}$, temos então:

$$\sigma = \prod_{n=1}^{\infty} p_{a_n, b_n} \tag{3}$$

De forma intuitiva, a função pode ser tanto composta de infinitas permutações de pares de elementos (é um produtório de composição de funções) ou também pode ser definida de forma que $\exists m \in \mathbb{N}$ onde $\forall n > m : a_n = b_n$, também implicando que $p_{a_n,b_n} = id_M$, fazendo assim que seja composta de uma quantidade limitada de permutação de pares de intervalos. É claro que com esse fato podemos simplificar a equação para:

$$\sigma = \prod_{n=1}^{m} p_{a_n, b_n} \tag{4}$$

Exemplo 3

Considere $M = \mathbb{R}$ (conjunto dos números reais)

3.1Permutação de par de intervalos

Vamos definir dois intervalos:

- $I_1 = [0, 1]$
- $I_2 = [2, 3]$

Agora, vamos aplicar a permutação $p_{1,2}(x)$:

$$p_{1,2}(x) = \begin{cases} x & x \notin [0,1] \land x \notin [2,3] \\ x - \min(I_1) + \min(I_2) = x + 2, & x \in [0,1], \\ x - \min(I_2) + \min(I_1) = x - 2, & x \in [2,3] \end{cases}$$
(5)

Exemplos:

- 1. $p_{1.2}(0.5) = 0.5 + 2 = 2.5$
- 2. $p_{1.2}(2.5) = 2.5 2 = 0.5$
- 3. $p_{1,2}(4) = 4$ (não está em nenhum dos intervalos)

3.2 Função de permutação de espaços densos

Vamos criar uma sequência finita de intervalos e duas sequências finitas de números naturais:

Intervalos: $(I_n)_{n=1}^3 = ([0,1],[2,3],[4,5])$ Sequência a: $(a_n)_{n=1}^3 = (1,2,3)$ Sequência b: $(b_n)_{n=1}^3 = (2,3,1)$

Agora, definimos $\sigma = p_{1,2} \circ p_{2,3} \circ p_{3,1}$

Formalmente, podemos escrever:

$$\sigma = \prod_{n=1}^{3} p_{a_n, b_n} = p_{1,2} \circ p_{2,3} \circ p_{3,1} \tag{6}$$

Vamos aplicar σ a alguns pontos:

- 1. $\sigma(0.5)$:
 - $p_{3,1}(0.5) = 0.5$ (não está em I_3 nem em I_1)
 - $p_{2,3}(0.5) = 0.5$ (não está em I_2 nem em I_3)
 - $p_{1,2}(0.5) = 2.5$ (está em I_1)

Resultado: $\sigma(0.5) = 2.5$

- 2. $\sigma(2.5)$:
 - $p_{3,1}(2.5) = 2.5$ (não está em I_3 nem em I_1)
 - $p_{2.3}(2.5) = 4.5$ (está em I_2)
 - $p_{1,2}(4.5) = 4.5$ (não está em I_1 nem em I_2)

Resultado: $\sigma(2.5) = 4.5$

3. $\sigma(4.5)$:

• $p_{3,1}(4.5) = 0.5$ (está em I_3)

• $p_{2,3}(0.5) = 0.5$ (não está em I_2 nem em I_3)

• $p_{1,2}(0.5) = 2.5$ (está em I_1)

Resultado: $\sigma(4.5) = 2.5$

Observe que esta permutação σ efetivamente "rotaciona" os elementos entre os três intervalos:

- ullet Elementos de I_1 são movidos para I_2
- ullet Elementos de I_2 são movidos para I_3
- \bullet Elementos de I_3 são movidos para I_1

Elementos fora desses intervalos permanecem inalterados, ou seja, $\forall x \notin I_1 \cup I_2 \cup I_3$, $\sigma(x) = x$. Podemos verificar que σ é uma bijeção, pois cada elemento tem uma imagem única e todo elemento do conjunto é atingido pela função. Além disso, podemos observar que $\sigma \circ \sigma \circ \sigma = id_{\mathbb{R}}$, ou seja, aplicar σ três vezes resulta na função identidade.

4 Função de permutação de pares de intervalos de espaços densos com inversão de intervalos

Para maior flexibilidade para permutação de espaços densos é interessante também poder modificar e inverter a ordem de forma que intervalos de x crescentes possam se tornar descrescentes permutando a ordem desses intervalos, definimos um $B = \{\top, \bot\}$ e $s_1, s_2 \in B$ com isso podemos ajustar a função de forma que:

$$^{(a,b)}p_{\alpha,\beta}(x) = \begin{cases} x & x \notin I_{\alpha} \land x \notin I_{\beta} \\ -x - \min(I_{\alpha}) + \max(I_{\beta}), & x \in I_{\alpha} \land s_{1} \text{ \'e Verdadeiro}, \\ x - \min(I_{\alpha}) + \min(I_{\beta}), & x \in I_{\alpha} \land s_{1} \text{ \'e Falso}, \\ -x - \min(I_{\beta}) + \max(I_{\alpha}), & x \in I_{\beta} \land s_{2} \text{ \'e Verdadeiro}, \\ x - \min(I_{\beta}) + \min(I_{\alpha}), & x \in I_{\beta} \land s_{2} \text{ \'e Falso} \end{cases}$$

$$(7)$$

Repare nas seguinte propriedade $({}^{\top,\perp)}p_{\alpha,\beta} \circ ({}^{\top,\perp)}p_{\alpha,\beta} = ({}^{\perp,\perp)}p_{\alpha,\beta} \circ ({}^{\top,\top)}p_{\alpha,\beta}$ que também pode ser generalizada de forma que para sequencia de booleanos $\{q_{1,n}\}_{n\in\mathbb{N}}$ e $\{q_{2,n}\}_{n\in\mathbb{N}}$ e $k\in\mathbb{N}$ e $j_n=[1,2,1,2\dots]$ e $k_n=[2,1,2,1\dots]$:

$$\prod_{n=1}^{k} {}^{(q_{1,n},q_{2,n})} p_{\alpha,\beta} = \left(\prod_{n=1}^{k-1} {}^{(\perp,\perp)} p_{\alpha,\beta}\right) \circ {}^{(\bigoplus q_{j_n,n},\bigoplus q_{k_n,n})} p_{\alpha,\beta} \tag{8}$$

Lembrar que para k impar $\prod_{n=1}^{k-1} {(\perp,\perp) \choose p_{\alpha,\beta}} = \mathrm{id}_M$ e para k par $\prod_{n=1}^{k-1} {(\perp,\perp) \choose p_{\alpha,\beta}} = {(\perp,\perp) \choose p_{\alpha,\beta}}$ como possivel simplificação para essa propriedade generalizada.

Com essa função $^{(a,b)}p_{\alpha,\beta}$ definimos uma sequencia de pares de booleanos $\{s_n\}_{n\in\mathbb{N}}$, de forma a definir nova função de permutação com inversão:

$$\sigma^* = \prod_{n=1}^{\infty} {}^{s_n} p_{a_n, b_n} \tag{9}$$

Seguindo a mesma lógica que anteriormente caso que se $\exists m \in \mathbb{N}$ onde $\forall n > m : a_n = b_n$, logo:

$$\sigma^* = \prod_{n=1}^m {}^{s_n} p_{a_n, b_n} \tag{10}$$

5 Função de permutação de pares de intervalos com intervalos de tamanho váriaveis.

Umas das retrições que colocamos anteriormente era que ambos intervalos I_{α} e I_{β} deveriam ter tamanho iguais, ou seja $||I_{\alpha}|| = ||I_{\beta}||$ assim preservando escala, umas das propriedades das equações (1) e (3) é que para uma função arbitrária f, temos:

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f(p_{\alpha,\beta}(x)) dx = \int_{-\infty}^{\infty} f(\sigma(x)) dx$$
 (11)

Nós podemos fazer uma variação da equação que não satisfaz essa própriedade e não preserva a escala, porém possibilita intervalos I_{α} e I_{β} de tamanhos diferentes, com isso é necessário "alongar" ou "diminuir" esses intervalos, sendo assim há necessidade também de um objeto que possibilite a multiplicação por escalares.

5.1 Nova definição para intervalos de tamanho váriaveis e com inversão de intervalos

Dado $(A, +, *, \leq)$ um campo em A que é ordenado e denso de forma que para quaisquer $a, b \in M$ com a < b, existe $c \in A$ tal que a < c < b, definimos a operação v de permutação de par de intervalos váriaveis para espaços densos que é uma bijeção $(s_1, s_2)v_{\alpha,\beta}: M \to M$ onde $x \in M$ e $\alpha, \beta \in \mathbb{N}$ e escolhemos 2 intervalos arbitrários disjuntos I_{α} e I_{β} e definimos um $B = \{\top, \bot\}$ e $s_1, s_2 \in B$, de forma que:

Da mesma forma temos σ^{**} que não necessáriamente preserva a escala.

$$\sigma^{**} = \prod_{n=1}^{\infty} {}^{s_n} v_{a_n, b_n} \tag{13}$$

E caso a sequencia $\{I_n\}_{n\in\mathbb{N}}$ ter intervalos de tamanhos diferentes, logo:

$$\int_{-\infty}^{\infty} f(x) \, dx \neq \int_{-\infty}^{\infty} f(\sigma^{**}(x)) \, dx \tag{14}$$

6 Teorema do Ponto Fixo

Para qualquer σ^* , existe pelo menos um ponto $x \in M$ tal que $\sigma^*(x) = x$. Este ponto fixo pode ser encontrado nos pontos de fronteira dos intervalos ou nos pontos que não pertencem a nenhum intervalo de uma sequência finita $\{I_n\}_{n\in\mathbb{N}}$.

Teorema 1 (Ponto Fixo) Para qualquer σ^* , existe pelo menos um ponto $x \in M$ tal que $\sigma^*(x) = x$.

Prova. Consideremos duas possibilidades:

- 1) Se existe algum $x \in M$ que não pertence a nenhum intervalo da sequência $\{I_n\}_{n\in\mathbb{N}}$, então pela definição de σ^* , temos $\sigma^*(x) = x$, e o teorema está provado.
- 2) Caso contrário, todos os pontos de M estão em algum intervalo da sequência. Neste caso, consideremos os pontos de fronteira dos intervalos. Seja $x = \min(I_k)$ para algum k. Temos duas subcasos:
- a) Se x é mapeado para outro intervalo I_j , então $\sigma^*(\max(I_j)) = x$, pois σ^* preserva a ordem dentro dos intervalos. Portanto, $\max(I_i)$ é um ponto fixo.
 - b) Se x é mapeado para si mesmo, então x é um ponto fixo.

Em todos os casos, encontramos um ponto fixo, o que prova o teorema.

7 Propriedade de Aproximação

Para qualquer função contínua e bijetiva $f:A\to A$ e $\epsilon>0$, existe uma função de permutação σ^{**} tal que:

$$\sup_{x \in M} d(f(x), \sigma^{**}(x)) < \epsilon \tag{15}$$

onde d é uma métrica adequada em A. Esta propriedade sugere que as funções de permutação podem aproximar arbitrariamente bem qualquer função contínua e bijetiva no espaço.

Teorema 2 (Aproximação) Para qualquer função contínua e bijetiva $f: A \to A$ e $\epsilon > 0$, existe uma função de permutação σ^{**} tal que:

$$\sup_{x \in M} d(f(x), \sigma^{**}(x)) < \epsilon$$

onde d é uma métrica adequada em A.

Esboço da prova. A ideia principal é usar a densidade de A e a continuidade de f para construir σ^{**} :

- 1) Como A é denso, podemos escolher uma sequência de pontos $\{x_n\}_{n\in\mathbb{N}}$ que é $\epsilon/2$ -densa em A.
 - 2) Para cada x_n , escolhemos intervalos I_n e J_n tais que:
 - $x_n \in I_n$
 - $f(x_n) \in J_n$
 - diam $(I_n) < \epsilon/2$ e diam $(J_n) < \epsilon/2$

- 3) Definimos σ^{**} para mapear I_n em J_n de maneira linear (ou preservando a ordem se estivermos trabalhando em um espaço mais geral).
- 4) Para pontos fora dos intervalos escolhidos, definimos σ^{**} de forma a ser uma bijeção (isso é possível porque f é bijetiva).
 - 5) Por construção, para qualquer $x \in A$, existe um x_n tal que $d(x, x_n) < \epsilon/2$. Então:

$$d(f(x), \sigma^{**}(x)) \le d(f(x), f(x_n)) + d(f(x_n), \sigma^{**}(x_n)) + d(\sigma^{**}(x_n), \sigma^{**}(x))$$

Cada termo nesta soma é menor que $\epsilon/3$ (assumindo que escolhemos ϵ suficientemente pequeno na construção), o que completa a prova.

8 Entropia Topológica

Podemos definir a entropia topológica $h(\sigma)$ para a função de permutação σ como:

$$h(\sigma) = \lim_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \tag{16}$$

onde $N(n, \epsilon)$ é o número mínimo de conjuntos de diâmetro menor que ϵ necessários para cobrir o conjunto $\{x, \sigma(x), \sigma^2(x), ..., \sigma^{n-1}(x)\}$ para algum $x \in M$. Esta medida quantifica a complexidade dinâmica da permutação.

Teorema 3 A entropia topológica de σ é finita se e somente se σ é composta de um número finito de permutações de intervalos.

Esboço da prova. 1) Se σ é composta de um número finito k de permutações de intervalos, então para qualquer $x \in M$, o conjunto $\{x, \sigma(x), \sigma^2(x), ..., \sigma^{n-1}(x)\}$ tem no máximo k elementos distintos. Portanto, $N(n, \epsilon)$ é limitado por uma constante independente de n, e $h(\sigma) = 0$.

2) Se σ é composta de um número infinito de permutações de intervalos, podemos construir um ponto $x \in M$ tal que sua órbita $\{x, \sigma(x), \sigma^2(x), ...\}$ é infinita e separada (isto é, existe um $\delta > 0$ tal que $d(\sigma^i(x), \sigma^j(x)) > \delta$ para $i \neq j$). Neste caso, $N(n, \epsilon)$ cresce exponencialmente com n para $\epsilon < \delta/2$, o que implica que $h(\sigma) > 0$.