Jay Patel

HW3

CS 230

Q1.

$$F: R \rightarrow R$$

$$F9x) = 1 + e^{2\sin^2 x + 3}$$

So,
$$g(x) = 1 + e^x \forall x \in R$$

$$h(x) = 2 \sin^2 x + 3 \ \forall \ x \in R$$

$$f(x) = g^{\circ} h(x) = g(h(x))$$

$$f(x) = g^{\circ} h(x)$$

Q2. Let $a_1 \in A'$

a exist in A such that $k(a) = a_1$

$$k^2 = k$$

$$k(k(a)) = k(a)$$

$$k(a) = a_1$$

$$k(a_1) = a_1$$

 a_1 exist for every in A'

$$k\left(a_{1}\right) = a_{1}$$

$$k k(a_1) = k a_1$$

$$k^2 = k$$

k is deompotent

Jay Patel

HW3

CS 230

Q3.

a. Using the claim from the notes 3.2

Let f:
$$x \rightarrow y$$

f is 1-1 because
$$A_1 A_2 \subseteq x [f(A_1 \cap A_2) = f(A_1) \cap f(A_2)]$$

Let $x \in A_1 \cap A_2$ Then $x \in A_1$ and $x \in A_2$ where $f(x) \in f(A_1)$ and $f(A_2)$

$$f(x) \in f(A_1) \cap (A_2)$$

So let, $y \in f(A_1) \cap f(A_2)$

Since, $y \in f(A_1)$ and $y \in f(A_2)$

So,
$$x \in A_1 \cap A_2$$
 with $f(x) = y$ and $y \in f(A_1 \cap A_2)$

Therefore, $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$

Hence, $x[f(A_1 \cap A_2) = f(A_1) \cap f(A_2)]$

b. Using the claim from the notes 3.3

$$\forall A_1, A_2 \subseteq x [f(A_1 - A_2) = f(A_1) - f(A_2)]$$

Let $x \in A_1 - A_2$ hence, $x \in A_1$ and $x \notin A_2 \exists y = f(x)$

So,
$$f(x) \in f(A_1), f(x) \notin f(A_2), f(x) \in f(A_1) - f(A_2)$$

Where, $\exists x \in A_1 \text{ such that } x \in A_1 \text{ and } x \notin A_2$

$$x\in (A_1-\,A_2)$$

$$f(A_1) - f(A_2) \subseteq f(A_1 - A_2)$$

$$f(A_1) - f(A_2) = f(A_1) - f(A_2)$$

Jay Patel

HW3

CS 230

$$f(A_1 - A_2) = f(A_1) - f(A_2)$$

c. f is $1-1 \rightarrow \forall A_1, A_2 \subseteq x[f(A_1 \oplus A_2) = f(A_1) \oplus f(A_2)]$ so, $x \in A_1 \oplus A_2$ Then, $x \in (A_1 \cap A_2) \cup (A_2 \cap A_1)$ $x \in (A_1 \cap A_2)$ or $x \in A_2 \cap A_1$ $x \in A_1, x \in A_2$ or $x \in A_2$ and $x \in A_1$ $f(x) \in A_1, f(x) \in A_2$ or $f(x) \in A_2$ and $f(x)A_1$ $f(x) \in f(A_1 \oplus A_2)$ since we now know that f is 1-1 $f(A_1 \oplus A_2) \subseteq f(A_1) \oplus f(A_2)$ $f(A_1) \oplus f(A_2) \subseteq f(A_1) \oplus f(A_2)$ $f(A_1 \oplus A_2) = f(A_1) \oplus f(A_2)$