

CENG371

Scientific Computing

Fall 2022-2023

Homework 3

Due: December 23rd, 2022, 23:55

Question 1 (45 points)

a) (10 pts) Implement the power method.

(filename: power_method.m, inputs: matrix A and (optional) starting vector v, returns: the maximum eigenvalue and the corresponding eigenvector of A)

b) (10 pts) Implement the shifted inverse power method.

(filename: inverse_power.m, inputs: matrix A and the shift value α , returns: the closest eigenvalue to α and the corresponding eigenvector)

c) (10 pts) Find the largest and smallest -in magnitude- eigenvalues and corresponding eigenvectors of

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix}.$$

d) (15 pts) Find the largest eigenvalue and eigenvector of

$$B = \begin{bmatrix} 0.2 & 0.3 & -0.5 \\ 0.6 & -0.8 & 0.2 \\ -1.0 & 0.1 & 0.9 \end{bmatrix}$$

starting with $\mathbf{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ via pen and paper. Do the same using the power method. Reflect on your findings.

Question 2 (55 points)

One can use the power method to find the largest k eigenvalues of a matrix A in an iterative fashion by successively subtracting the value $\lambda_i \frac{v_i v_i^T}{v_i^T v_i}$ from the current matrix at each step.

- a) (10 pts) Show how the above idea works.
- b) (15 pts) Implement the above idea.

(filename: power_k.m, inputs: matrix A and k, returns: the k largest eigenvalues and corresponding eigenvectors of A.)

c) (15 pts) Implement the subspace iterations.

(filename: subspace_iteration.m, inputs: matrix A and k, returns: the k largest eigenvalues and corresponding eigenvectors of A.)

(You can use the function gr provided by MATLAB.)

d) (15 pts) Compare the performances of the above two methods on the matrix can_{229} of University of Florida Sparse Matrix Collection.

Regulations

- 1. Make sure that you reflect **your own reasoning** in a clean and concise manner.
- 2. Your submission should include a single PDF and your .m files.
- 3. Submission will be done via odtuclass.
- 4. Late Submission: Accepted with a penalty of $-5 \times (day)^2$.