Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра ИИТ

Лабораторная работа №1 По дисциплине: «ОМО»

Тема: «Знакомство с анализом данных: предварительная обработка и визуализация»

Выполнил: Студенты 3-го курса Группы АС-65 Осовец М. М. Проверил: Крощенко А. А. **Цель работы:** Получить практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научиться выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.

Вариант 3

Выборка Iris. Классический набор данных для классификации, содержащий измерения длины и ширины чашелистиков и лепестков для трех видов ирисов.

Задачи:

1. Загрузите данные и проверьте, есть ли в них пропущенные значения.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
```

Загружаем CSV (обязательно должен лежать рядом в папке)

```
df = pd.read_csv('iris.csv')
```

Первые 5 строк df.head()

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa

Проверка на пропуски

```
df.isnull().sum()
```

```
sepal.length 0
sepal.width 0
petal.length 0
petal.width 0
variety 0
dtype: int64
```

2. Выведите количество образцов каждого вида ириса.

df['variety'].value_counts()

variety		
Setosa	50	
Versicolor	50	
Virginica	50	
Name: count,	dtype:	int64

3. Постройте парные диаграммы рассеяния (pair plot) для всех признаков, чтобы визуально оценить их разделимость.

```
sns.pairplot(df, hue='variety')
plt.show()
```


4. Для каждого вида ириса рассчитайте среднее значение по каждому из четырех признаков.

df.groupby('variety').mean()

	sepal.length	sepal.width	petal.length	petal.width
variety				
Setosa	5.006	3.428	1.462	0.246
Versicolor	5.936	2.770	4.260	1.326
Virginica	6.588	2.974	5.552	2.026

5. Создайте "ящик с усами" (box plot) для признака Petal Length (cm), чтобы сравнить его распределение по разным видам ирисов.

sns.boxplot(x='variety', y='petal.length', data=df)
plt.title('Распределение Petal Length по видам ирисов')
plt.show()

6. Стандартизируйте данные (приведите к нулевому среднему и единичному стандартному отклонению).

features = df.drop(columns=['variety'])

```
scaler = StandardScaler()
scaled features = scaler.fit transform(features)
df scaled
                             pd.DataFrame(scaled features,
columns=features.columns)
df scaled['variety'] = df['variety']
print("ДО стандартизации:")
print(features.describe())
print("\n" + "="*50 + "\n")
print ("После стандартизации")
print(df scaled.drop(columns=['variety']).describe())
ДО стандартизации:
       sepal.length
                    sepal.width
                                petal.length petal.width
         150.000000
                     150.000000
                                  150.000000
                                              150.000000
count
                       3.057333
                                    3.758000
                                                1.199333
           5.843333
mean
           0.828066
                       0.435866
                                    1.765298
                                                0.762238
std
min
          4.300000
                      2.000000
                                    1.000000
                                                0.100000
25%
           5.100000
                      2.800000
                                    1.600000
                                                0.300000
50%
          5.800000
                      3.000000
                                    4.350000
                                                1.300000
75%
          6.400000
                       3.300000
                                    5.100000
                                                1.800000
                       4.400000
                                    6.900000
                                                2.500000
max
           7.900000
 ______
После стандартизации
       sepal.length sepal.width petal.length
                                              petal.width
 count 1.500000e+02 1.500000e+02 1.500000e+02
                                              1.500000e+02
mean -4.736952e-16 -7.815970e-16 -4.263256e-16 -4.736952e-16
      1.003350e+00 1.003350e+00 1.003350e+00
                                              1.003350e+00
std
      -1.870024e+00 -2.433947e+00 -1.567576e+00 -1.447076e+00
min
25%
      -9.006812e-01 -5.923730e-01 -1.226552e+00 -1.183812e+00
50%
      -5.250608e-02 -1.319795e-01 3.364776e-01 1.325097e-01
75%
      6.745011e-01 5.586108e-01 7.627583e-01 7.906707e-01
       2.492019e+00 3.090775e+00 1.785832e+00 1.712096e+00
max
```

Вывод:

Получили практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научились выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.