Exemplo:

Considere a operação *r1 mod r0* → com r0 > r1. Para *301 mod 973* faça:

- 1. Calcule o GCD usando o Algoritmo de Euclides (EA).
- a) Algoritmo de Euclides considera que:

$$GCD(r0,r1) = GCD(r0-r1,r1)=GCD(r1,r0 \mod r1)$$

Cálculo

gcd(973,301)=gcd(301,70)=gcd(70,21)=gcd(21,7)=gcd(7,0)=7

GCD(973,301) = 7

- 2. Calcule o GCD e r1-1 mod r0 (Inverso de r1), se existir, usando o Algoritmo de Euclides Estendido (EEA).
- a) Algoritmo de Euclides GCD(r0,r1) = GCD(r1,r0 mod r1)=GCD(r1,r2)

$$r0 = q1*r1 + r2 => r2 = r0 - q1*r1$$

Generalizando, $r_i = r_{i-2} - q_{i-1} * r_{i-1}$ (I)

b) EEA acrescenta o GCD como uma relação entre r0 e r1, como segue:

$$GCD(r0,r1) = s*r0 + t*r1$$

Generalizando, $r_i = s_i * r_0 + t_i * r_1$ (II)

Quando GCD(r0,r1) = 1 existe inverso mod r0, então

$$(s*r0 + t*r1) = 1 \mod r0$$

mas $s*r0 \mod r0 = 0$ então

 $t*r1 = 1 \mod r0$

Logo, $t = r1^{-1} \mod r0$ (inverso de r1)

c) Algoritmo: a cada passo i do Algoritmo de Euclides calcule ri e escreva como função de r0 e r1:

$$r_i = r_{i-2} - q_{i-1} r_{i-1} (1)$$

$$r_i = s_i * r_0 + t_i * r_1 (||)$$

Quando $r_i = 0$, $r_{i-1} \in 0$ GCD e $t_{i-1} \in 0$ inverso de r_1 .

Cálculo para 12 *mod 67* => r0 = 67 e r1 = 12

Passo 0:
$$r0 = 1*r0 + 0*r1 = > r0 = 67$$
, $s0 = 1$, $t0 = 0$

Passo 1:
$$r1 = 0*r0 + 1*r1 = > r1 = 12$$
, $s1 = 0$, $t1 = 1$

Passo 2:
$$gcd(67,12) = gcd(12, 5*12+7) => q1 = 5, r2 = 7$$

$$7 = 67 - 5*12 = r0 - q1*r1$$
 => $s2 = 1$, $t2 = -5$ (-q1)

Passo 3:
$$\gcd(12,7) = \gcd(7,1*7+5)$$
 => q2 = 1, r3 = 5
 $5 = 12 - 1*7 = r1 - q2*r2$
 $r3 = r1 - 1*(r0-5*r1) = -1*r0 + 6*r1$ => s3 = -1, t3 = 6
Passo 4: $\gcd(7,5) = \gcd(5,1*5+2)$ => q3 = 1, r4 = 2
 $2 = 7 - 1*5 = r2 - q3*r3$
 $r4 = (r0 - 5*r1) - 1*(-1*r0 + 6*r1)$
 $r4 = 2*r0 - 11*r1$ => s4 = 2, t4 = -11
Passo 5: $\gcd(5,2) = \gcd(2,2*2+1)$ => q4 = 2, r5 = 1

Passo 5:
$$gcd(5,2) = gcd(2,2\cdot2+1)$$
 => $q4 = 2$, $r5 = 1$
 $1 = 5 - 2*2 = r3 - q4*r4$
 $r5 = (-1*r0 + 6*r1) - 2*(2*r0 - 11*r1)$
 $r5 = -5*r0 + 28*r1$ => $s5 = -5$, $t5 = 28$

Passo 6:
$$gcd(2,1) = gcd(1,2*1+0)$$
 => q5 = 2, r6 = 0 (FIM)

Verificando ...

$$gcd(67,12) = s5*r0 + t5*r1 = -5*67 + 28*12 = 1$$

 $r1*r1^{-1} = 12*28 = 336 \mod 67 = 1 \mod 67$

Generalizando o cálculo de si e ti

$$r_{i} = r_{i-2} - q_{i-1} * r_{i-1} \quad \text{e} \quad r_{i} = s_{i} * r_{0} + t_{i} * r_{1}$$

$$r_{i} = (s_{i-2} * r_{0} + t_{i-2} * r_{1}) - q_{i-1} * (s_{i-1} * r_{0} + t_{i-1} * r_{1}) = (s_{i-2} - q_{i-1} * s_{i-1}) * r_{0} + (t_{i-2} - q_{i-1} * t_{i-1}) r_{1}$$

$$s_{i} = s_{i-2} - q_{i-1} * s_{i-1} \text{ (III)}$$

$$t_{i} = t_{i-2} - q_{i-1} * t_{i-1} \text{ (IV)}$$