International Rectifier

IRLB3813PbF

Applications

- Optimized for UPS/Inverter Applications
- High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use
- Power Tools

Benefits

- Very Low R_{DS(on)} at 4.5V V_{GS}
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current
- Lead-Free

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	Qg (typ.)
30V	1.95 m Ω @ $V_{GS} = 10V$	57nC

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{DS}	Drain-to-Source Voltage	30	V	
V_{GS}	Gate-to-Source Voltage	± 20	\ \	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	260©		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	190⑥	Α	
I _{DM}	Pulsed Drain Current ①	1050	1	
$P_{D} @ T_{C} = 25^{\circ}C$	Maximum Power Dissipation ©	230	W/°C	
$P_D @ T_C = 100^{\circ}C$	Maximum Power Dissipation ©	120		
	Linear Derating Factor	1.6		
T_J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		ာင	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)]	
	Mounting torque, 6-32 or M3 screw	10lb·in (1.1N·m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ©		0.64	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient ④		62	

Notes ① through ® are on page 9 www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		11	_	mV/°C	Reference to 25°C, I _D = 1.0mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.60	1.95	mΩ	V _{GS} = 10V, I _D = 60A ③
			2.00	2.60		$V_{GS} = 4.5V, I_D = 48A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.90	2.35	V	$V_{DS} = V_{GS}$, $I_D = 150\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-7.8		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 24V, V_{GS} = 0V$
				100		$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	1	$V_{GS} = -20V$
gfs	Forward Transconductance	140			S	$V_{DS} = 15V, I_D = 48A$
Q_g	Total Gate Charge		57	86		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		16		1	$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		6.7	_	nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		19			I _D = 48A
Q_{godr}	Gate Charge Overdrive	_	15	_	1	See Fig. 16
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		25.7			
Q _{oss}	Output Charge		35		nC	V _{DS} = 16V, V _{GS} = 0V
R _G	Gate Resistance		0.87	1.3	Ω	
t _{d(on)}	Turn-On Delay Time		36			$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		170		ns	$I_D = 48A$
t _{d(off)}	Turn-Off Delay Time		33			$R_G = 1.8\Omega$
t _f	Fall Time		60			See Fig. 14
C _{iss}	Input Capacitance		8420			$V_{GS} = 0V$
C _{oss}	Output Capacitance		1620		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		650]	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ^②		520	mJ
I _{AR}	Avalanche Current ①		48	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current			260®		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			1050		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 48A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		24	36	ns	$T_J = 25^{\circ}C$, $I_F = 48A$, $V_{DD} = 15V$	
Q_{rr}	Reverse Recovery Charge		22	33	nC	di/dt = 244A/µs ③	

2 www.irf.com

International IOR Rectifier

IRLB3813PbF

1000 VGS 10V 9.0V 7.0V 5.5V 4.5V 4.0V 3.5V 3.0V TOP lp, Drain-to-Source Current (A) 100 ≤60µs PULSE WIDT Tj = 175°C 10 0.1 10 100 V_{DS}, Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

 T_J , Junction Temperature (°C)

3

www.irf.com

2.0

I_D = 120A

 $V_{GS} = 10V$

International TOR Rectifier

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

3.0 2.5 2.5 2.0 $I_D = 150 \mu A$ $I_D = 1.0 m A$ $I_D = 1.0 m$

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com 5

International TOR Rectifier

Fig 12. On-Resistance vs. Gate Voltage

Fig 13b. Unclamped Inductive Test Circuit

Fig 14a. Switching Time Test Circuit

Fig 13a. Maximum Avalanche Energy vs. Drain Current

Fig 13c. Unclamped Inductive Waveforms

Fig 14b. Switching Time Waveforms

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16a. Gate Charge Test Circuit

Fig 16b. Gate Charge Waveform

www.irf.com 7

International IOR Rectifier

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

VIEW A-A

- NOTES

 1.— DIMENSIONING AND TOLERANCING AS PER ASME Y14,5 M— 1994.

 2.— DIMENSIONIS ARE SHOWN IN INCHES [MILLIMETERS].

 3.— LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.

 4.— DIMENSION AND FINISH UNCONTROLLED IN L1.

 5.— SHALL NOT EXCEED .005* (0.127) PER SIDE. THESE DIMENSIONS ARE

 MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6.— CONTROLLING DIMENSION: INCHES.

 7.— THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,HI,D2 & E1

 8.— DIMENSION E2 X HI DEFINE A ZONE WHERE STAMPING

 AND SINGULATION IRREQULABILES ARE ALLOWED.

 9.— OUTLING CONFORMS TO SEDEC TO—220 EXCEPT 42 (max.) AND D2 (if

- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIM	ETERS	INC		
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.83	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2,03	2.92	.080	.115	
ь	0.38	1,01	.015	.040	
b1	0.38	0.97	.015	.038	5
b2	1,14	1.78	.045	.070	
b3	1,14	1.73	.045	.068	5
c	0.36	0,61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
e	2.54	BSC	.100 BSC		
e1	5.08	BSC	.200 BSC		
H1	5.84	6.86	.230	.270	7,8
L	12.70	14,73	.500	.580	
L1	3,56	4.06	.140	.160	3
ØΡ	3.54	4.08	.139	.161	
0	2.54	3.42	100	135	

LEAD ASSIGNMENTS
HEXFET
1 GATE 2 DRAIN 3 SOURCE
IGBTs, CoPACK
1 GATE 2 COLLECTOR 3 EMITTER
DIODES
1 ANODE 2 CATHODE 3 ANODE

TO-220AB packages are not recommended for Surface Mount Application.

SECTION C-C & D-D

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

International

TOR Rectifier

IRLB3813PbF

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free"

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\label{eq:lambda} \begin{tabular}{ll} \begin{tabular}{ll} Starting $T_J=25^\circ$C, $L=0.45m$H, $R_G=25\Omega$, \\ I_{AS}=48A. \end{tabular}$
- ③ Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 120A.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/2009

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.