ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 5
Hierarquia de Chomski,
Gramáticas Regulares e
Linguagens não regulares

Profa. Ariane Machado Lima ariane.machado@usp.br

Lista 1

Entrega dia 27/08

Exercícios: 1.4f,g, 1.5c,g, 1.6e,g,h, 1.7e, 1.12, 1.14, 1.16, 1.21, 1.22, 1.24d,f, 1.27, 1.31

Frase	\rightarrow	sujeito	predicado
sujeito	\rightarrow	artigo	nome
artigo	\rightarrow	а	
artigo	\longrightarrow	0	
nome	\rightarrow	paletó	
nome	\longrightarrow	moça	
nome	\longrightarrow	dia	
predicado	\rightarrow	verbo	adjetivo
verbo	\longrightarrow	é	
verbo	\rightarrow	estava	
adjectivo	\longrightarrow	feliz	
adjectivo	\rightarrow	azul	

conjunto de produções

Gramáticas

símbolos não-terminais

símbolos terminais

- Definição: uma gramática G é uma quádrupla (V, Σ, S, P), onde
 - V é o conjunto de símbolos não-terminais (variáveis)
 - Σ é o conjunto de símbolos terminais
 - S é o símbolo inicial
 - P é o conjunto de produções da forma
 (Σ U V)* V (Σ U V)* → (Σ U V)*

- Uma forma sentencial de uma gramática G é qualquer cadeia obtida pela aplicação recorrente das seguintes regras:
 - S (símbolo inicial de G) é uma forma sentencial
 - Seja $\alpha\rho\beta$ uma forma sentencial de G e $\rho\to\gamma$ uma produção de G. Então $\alpha\gamma\beta$ é também uma forma sentencial de G .

 $(\alpha,\beta,\gamma \in (\Sigma \cup V)^* e \rho \in (\Sigma \cup V)^* \lor (\Sigma \cup V)^*)$

- Uma forma sentencial de uma gramática G é qualquer cadeia obtida pela aplicação recorrente das seguintes regras:
 - S (símbolo inicial de G) é uma forma sentencial
 - Seja $\alpha \rho \beta$ uma forma sentencial de G e $\rho \to \gamma$ uma produção de G. Então $\alpha \gamma \beta$ é também uma forma sentencial de G .

```
(\alpha,\beta,\gamma \in (\Sigma \cup V)^* e \rho \in (\Sigma \cup V)^* \lor (\Sigma \cup V)^*)
```

- Uma forma sentencial de uma gramática G é qualquer cadeia obtida pela aplicação recorrente das seguintes regras:
 - S (símbolo inicial de G) é uma forma sentencial
 - Seja $\alpha \rho \beta$ uma forma sentencial de G e $\rho \to \gamma$ uma produção de G. Então $\alpha \gamma \beta$ é também uma forma sentencial de G .

 $(\alpha,\beta,\gamma \in (\Sigma \cup V)^* e \rho \in (\Sigma \cup V)^* \lor (\Sigma \cup V)^*)$

- Derivação direta:
 - αρβ => αγβ

- Derivação: aplicação de zero ou mais derivações diretas
 - $\alpha = > * \mu$
 - isto é, $\alpha => \beta => ... => \mu$
- Uma cadeia w (w € Σ*) é uma sentença de G se S =>* w
- Linguagem gerada por G:
 - L(G) = { w | S =>* w }

```
• G = (V, \Sigma, S, P), onde
```

```
• V = \{S, A\}
```

- $\Sigma = \{0,1,2,3\}$
- S = S
- $P = \{$ $S \rightarrow 0S33$ $S \rightarrow A$ $A \rightarrow 12$
 - $A \rightarrow \epsilon$

- $G = (V, \Sigma, S, P)$, onde
 - $V = \{S, A\}$
 - $\Sigma = \{0,1,2,3\}$
 - S = S
 - P = {

 $S \rightarrow 0S33$

 $S \rightarrow A$

 $A \rightarrow 12$

 $A \rightarrow \epsilon$

Ex de formas sentenciais:

S, 0S33, 00S3333, 00A3333

- 0S33 => 00S3333
- 0S33 =>* 00A3333
- 0S33 =>* 0S33
- Ex de sentenças:

00123333, 12, ε

- $G = (V, \Sigma, S, P)$, onde
 - $V = \{S, A\}$
 - $\Sigma = \{0,1,2,3\}$
 - S = S
 - P = {

 $S \rightarrow 0S33$

 $S \rightarrow A$

 $A \rightarrow 12$

 $A \rightarrow \epsilon$

Ex de formas sentenciais:

S, 0S33, 00S3333, 00A3333

- 0S33 => 00S3333
- 0S33 =>* 00A3333
- 0S33 =>* 0S33
- Ex de sentenças:

00123333, 12, ε

• L(G) =

- $G = (V, \Sigma, S, P)$, onde
 - $V = \{S, A\}$
 - $\Sigma = \{0,1,2,3\}$
 - S = S
 - P = {

 $S \rightarrow 0S33$

 $S \rightarrow A$

 $A \rightarrow 12$

 $A \to \epsilon$

Ex de formas sentenciais:

S, 0S33, 00S3333, 00A3333

- 0S33 => 00S3333
- 0S33 =>* 00A3333
- 0S33 =>* 0S33
- Ex de sentenças:

00123333, 12, ε

• $L(G) = \{0^m 1^n 2^n 3^{2m} \mid m \ge 0 \text{ e n} = 0 \text{ ou n} = 1\}$

Gramáticas - Simplificação

- $G = (V, \Sigma, S, P)$, onde
 - $V = \{S, A\}$
 - $\Sigma = \{0,1,2,3\}$
 - S = S
 - P = {

 $S \rightarrow 0S33$

 $S \rightarrow A$

 $A \rightarrow 12$

 $A \rightarrow \epsilon$

• $G = (V, \Sigma, S, P),$ onde

```
• V = \{S, A\}
```

•
$$\Sigma = \{0,1,2,3\}$$

•
$$S = S$$

•
$$P = \{$$

 $S \to 0S33 \mid A$

$$A \rightarrow 12 \mid \epsilon$$

- Gramáticas são dispositivos generativos (geram cadeias)
- Dada uma cadeia w, reconhecer se w E L(G) é um processo chamado análise sintática
- Dependendo do formato das produção, a análise sintática pode ser mais ou menos complexa

Gramáticas lineares

$$\alpha \rightarrow \beta$$

- Gramática linear à esquerda:
 - α € V
 - $\beta \in \Sigma$, $\beta \in V$, $\beta \in V\Sigma$, $\beta = \varepsilon$
- Gramática linear à direita:
 - α E V
 - $\beta \in \Sigma$, $\beta \in V$, $\beta \in \Sigma V$, $\beta = \varepsilon$

Gramáticas lineares

- Gramática linear à direita:
 - α E V
 - β ∈ Σ, β ∈ V, β ∈ ΣV, β = ε
- Gramáticas lineares à direita lembram alguma coisa?
- Ex: $G = (V, \Sigma, S, P)$, onde
 - $V = \{S, A\}$
 - $\Sigma = \{0,1,2\}$
 - S = S
 - P = { S \rightarrow 0S, S \rightarrow A, S \rightarrow ϵ , A \rightarrow 1A, A \rightarrow 2}

Gramáticas lineares à direita => autômatos finitos

Gramáticas lineares à direita => autômatos finitos

$$\begin{split} G &= (V, \, \Sigma, \, S, \, P), \quad M = (Q, \, \Sigma, \, q_0, \, \delta, F) \\ Q &= V \, U \, \{Z\}, \, Z \, \text{não pertence a } Q \\ q_0 &= S \\ F &= \{Z\} \\ \delta &= ... \, (\text{vou construir}) \, \delta \leftarrow \varnothing \\ \text{para cada produção em } P \\ \text{se } X \rightarrow \text{aY, então } \delta \leftarrow \delta \, U \, \{ \, (X,a) = Y \, \} \\ \text{se } X \rightarrow Y, \quad \text{então } \delta \leftarrow \delta \, U \, \{ \, (X,\epsilon) = Y \, \} \\ \text{se } X \rightarrow a, \quad \text{então } \delta \leftarrow \delta \, U \, \{ \, (X,\epsilon) = Z \, \} \\ \text{se } X \rightarrow \epsilon, \quad \text{então } \delta \leftarrow \delta \, U \, \{ \, (X,\epsilon) = Z \, \} \end{split}$$

Autômatos finitos => Gramáticas lineares à direita

Autômatos finitos => Gramáticas lineares à direita

$$\begin{split} &M = (Q, \, \Sigma, \, q_{_{0}}, \, \delta, F), \, G = (V, \, \Sigma, \, S, \, P) \\ &V = Q \\ &S = q_{_{0}} \\ &P = ... \, (vou \, construir) \, P \leftarrow \varnothing \\ &\text{para cada transição de } \delta \\ &\text{Se } \delta(X,a) = Y \, então \, P \leftarrow \{X \rightarrow aY\} \\ &\text{Se } \delta(X,\epsilon) = Y \, então \, P \leftarrow \{X \rightarrow Y\} \\ &\text{para cada estado } X \, de \, F \\ &P \leftarrow \{X \rightarrow \epsilon\} \end{split}$$

Gramáticas lineares

- Gramáticas lineares à direita são equivalentes a autômatos finitos (geram a mesma linguagem)
- Duas gramáticas são equivalentes se elas geram a mesma linguagem
- Gramáticas lineares à direita e lineares à esquerda são equivalentes
- Gramáticas lineares geram linguagens regulares
- Uma gramática é regular se ela for linear à esquerda ou linear à direita

- Gramáticas são dispositivos generativos (geram cadeias)
- Dada uma cadeia w, reconhecer se w E L(G) é um processo chamado análise sintática
- Dependendo do formato das produção, a análise sintática pode ser mais ou menos complexa

Hierarquia de Chomsky

- Hierarquia das linguagens em classes de acordo com a sua complexidade relativa (Noam Chomsky, 1956)
- Cada classe de linguagem pode ser gerada por um tipo de gramática (formato das produções)
- Cada tipo de gramática tem uma complexidade de análise sintática diferente
- Na prática: dada uma linguagem, saber qual o dispositivo mais eficiente para análise sintática

Hierarquia de Chomsky α→β

Hierarquia de Chomsky

Tipo	Classe de linguagens	Modelo de gramática	Modelo de reconhecedor
0	Irrestritas ou Recursivamente enumeráveis	Irrestrita	Máquina de Turing
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita limitada
2	Livres de contexto	Livre de contexto	Autômato a pilha
3	Regulares	Regular (linear à direita ou à esquerda)	Autômato finito

Gramáticas estocásticas

P(x, t) = produto das probabilidades das produções usadas na derivação de x

$$P(x) = \sum_{i} P(x, t_i)$$

Gramáticas Estocásticas

- Definição: uma gramática estocática G é uma quíntupla (V, Σ, S, P, ρ), onde
 - V é o conjunto de símbolos não-terminais (variáveis)
 - Σ é o conjunto de símbolos terminais
 - S é o símbolo inicial
 - P é o conjunto de produções da forma
 (Σ U V)* V (Σ U V)* → (Σ U V)*
 - ρ é o conjunto de distribuições de probabilidades sobre as produções de mesmo lado esquerdo

$$\sum_{i} \rho(\alpha \rightarrow \beta_{i}) = 1$$

1.4 – Linguagens não-regulares

Linguagens não-regulares

- A linguagem B = {0¹1 | n >= 0 } é regular?
- Como provar que uma linguagem não pode ser reconhecida por um autômato finito?

TEOREMA 1.70

Lema do bombeamento Se A é uma linguagem regular, então existe um número p (o comprimento de bombeamento) tal que, se s é qualquer cadeia de A de comprimento no mínimo p, então s pode ser dividida em três partes, s = xyz, satisfazendo as seguintes condições:

- 1. para cada $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, e
- 3. $|xy| \leq p$.

Ideia da prova

usamos p = número de estados do AFD

$$s = s_1 s_2 s_3 s_4 s_5 s_6 \dots s_n$$

$$q_1 q_3 q_{20} q_9 q_{17} q_9 q_6 \dots q_{35} q_{13}$$

Prova

PROVA Seja $M=(Q,\Sigma,\delta,q_1,F)$ um AFD que reconhece A e p o número de estados de M.

Seja $s=s_1s_2\cdots s_n$ uma cadeia em A de comprimento n, onde $n\geq p$. Seja r_1,\ldots,r_{n+1} a seqüência de estados nos quais M passa enquanto processa s, de forma que $r_{i+1}=\delta(r_i,s_i)$ para $1\leq i\leq n$. Essa seqüência tem comprimento n+1, que é pelo menos p+1. Entre os primeiros p+1 elementos da seqüência, dois devem ser o mesmo estado, pelo princípio da casa de pombos. Chamamos o primeiro desses de r_j e o segundo de r_l . Como r_l ocorre entre as primeiras p+1 posições da seqüência começando em r_1 , temos que $l\leq p+1$. Agora, seja $x=s_1\cdots s_{j-1},\,y=s_j\cdots s_{l-1}$ e $z=s_l\cdots s_n$.

Como x leva M de r_1 para r_j , y leva M de r_j para r_j e z leva M de r_j para r_{n+1} , que é um estado de aceitação, M deve aceitar xy^iz para $i \geq 0$. Sabemos que $j \neq l$, e portanto |y| > 0; e $l \leq p+1$, e logo $|xy| \leq p$. Dessa forma, satisfizemos todas as condições do lema do bombeamento.

EXEMPLO 1.73

Seja B a linguagem $\{0^n1^n|n \ge 0\}$. Usamos o lema do bombeamento para provar que B não é regular. A prova é por contradição.

Suponha, ao contrário, que B seja regular. Seja p o comprimento de bombeamento dado pelo lema do bombeamento. Escolha s como a cadeia 0^p1^p . Como s é um membro de B e tem comprimento maior que p, o lema do bombeamento garante que s pode ser dividida em três partes, s = xyz, onde para qualquer $i \geq 0$ a cadeia xy^iz está em B. Consideramos três casos para mostrar que esse resultado é impossível.

- 1. A cadeia y contém apenas 0s. Neste caso, a cadeia xyyz tem mais 0s que 1s e, portanto, não é um membro de B, violando a condição 1 do lema do bombeamento. Esse caso é uma contradição.
- 2. A cadeia y contém somente 1s. Esse caso também dá uma contradição.
- 3. A cadeia y contém ambos, 0s e 1s. Nesse caso, a cadeia xyyz pode ter o mesmo número de 0s e 1s, mas eles estarão fora de ordem, com alguns 1s antes de 0s. Logo, ela não é um membro de B, o que é uma contradição.

EXEMPLO 1.74

Seja $C = \{w | w \text{ tem número igual de 0s e 1s} \}$. Usamos o lema do bombeamento para provar que C não é regular. A prova é por contradição.

 $0^{p}1^{p}$

Se fizermos x e z serem a cadeia vazia e y ser a cadeia $0^p 1^p$, então $xy^i z$ sempre terá um número igual de 0s e 1s e, portanto, está em C.

Logo, parece que s pode ser bombeada.

EXEMPLO 1.74

Seja $C = \{w | w \text{ tem número igual de 0s e 1s} \}$. Usamos o lema do bombeamento para provar que C não é regular. A prova é por contradição.

 $0^{p}1^{p}$

Se fizermos x e z serem a cadeia vazia e y ser a cadeia $0^p 1^p$, então $xy^i z$ sempre terá um número igual de 0s e 1s e, portanto, está em C.

Logo, parece que s pode ser bombeada.

Aqui a condição 3 no lema do bombeamento é útil.

Se $|xy| \le p$, então y deve conter somente 0s; $\log p$, $xyyz \notin C$.

Por conseguinte, s não pode ser bombeada.

Seja $C = \{w | w \text{ tem número igual de 0s e 1s} \}$. Usamos o lema do bombeamento para provar que C não é regular. A prova é por contradição.

$$0^{p}1^{p}$$

Se fizermos x e z serem a cadeia vazia e y ser a cadeia $0^p 1^p$, então $xy^i z$ sempre terá um número igual de 0s e 1s e, portanto, está em C.

Logo, parece que s pode ser bombeada.

Aqui a condição 3 no lema do bombeamento é útil.

Se $|xy| \le p$, então y deve conter somente 0s; $\log p$, $xyyz \notin C$.

Por conseguinte, s não pode ser bombeada.

Cuidado:
$$s = (01)^p$$
 $x = \varepsilon, y = 01 \text{ e } z = (01)^{p-1}$

Seja $C = \{w | w \text{ tem número igual de 0s e 1s} \}$. Usamos o lema do bombeamento para provar que C não é regular. A prova é por contradição.

$$0^{p}1^{p}$$

Se fizermos x e z serem a cadeia vazia e y ser a cadeia $0^p 1^p$, então $xy^i z$ sempre terá um número igual de 0s e 1s e, portanto, está em C.

Logo, parece que s pode ser bombeada.

Aqui a condição 3 no lema do bombeamento é útil.

Se $|xy| \le p$, então y deve conter somente 0s; $\log p$, $xyyz \notin C$.

Por conseguinte, s não pode ser bombeada.

Cuidado:
$$s = (01)^p$$
 $x = \varepsilon, y = 01 \text{ e } z = (01)^{p-1}$

Um método alternativo de provar que C é não-regular segue de nosso conhecimento que B é não-regular. Se C fosse regular, $C \cap 0^*1^*$ também seria regular. Os motivos são que a linguagem 0^*1^* é regular e que a classe das linguagens regulares é fechada sob interseção, resultado que provamos na nota de rodapé 3 (página 47). Mas $C \cap 0^*1^*$ é igual a B, e sabemos que B é não-regular do Exemplo 1.73.

$$E = \{\mathbf{0}^i \mathbf{1}^j | i > j\}$$

$$s = 0^{p+1} 1^p.$$

Condição 3 => y contém somente zeros

xyyz ainda está em E

$$E = \{\mathbf{0}^i \mathbf{1}^j | i > j\}$$

$$s = 0^{p+1} 1^p.$$

Condição 3 => y contém somente zeros

xyyz ainda está em E

Mas $xy^0z = xz$ não está

Não esqueça que você pode tentar bombear para baixo!