Problemas de derivabilidad de funciones. Crecimiento, decrecimiento y regla de l'Hôpital

- 1. Dar los extremos relativos y los intervalos de crecimiento y decrecimiento de las funciones siguientes:
 - a) $f(x) = x^2 3x + 5$,
 - b) $h(x) = x^3 3x 4$,
 - c) $k(x) = x^4 + 2x^2 4$.

Solución

a) Para hallar los extremos de $f(x) = x^2 - 3x + 5$, primero tenemos que derivar e igualar la derivada a cero:

$$f'(x) = 2x - 3 = 0, \Rightarrow x = \frac{3}{2}.$$

Miremos los intervalos de crecimiento y decrecimiento a partir de la tabla siguiente:

\overline{x}	$-\infty$		$\frac{3}{2}$		∞
$\overline{f'}$		_		+	
f		\searrow		7	

Para comprobar los signos de la tabla anterior, hemos de hacer lo siguiente:

- Signo de y' en el intervalo $\left(-\infty, \frac{3}{2}\right)$. Consideremos un valor en dicho intervalo, por ejemplo x = 0, el valor de f'(0) vale $f'(0) = 2 \cdot 0 3 = -3 < 0$.
- Signo de y' en el intervalo $(\frac{3}{2}, \infty)$. Consideremos un valor en dicho intervalo, por ejemplo x = 2, el valor de f'(2) vale $f'(2) = 2 \cdot 2 3 = 1 > 0$. La función f(x) crece en el intervalo $(\frac{3}{2}, \infty)$, decrece en el intervalo $(-\infty, \frac{3}{2})$ y tiene un mínimo en el punto

 $\left(\frac{3}{2}, \left(\frac{3}{2}\right)^2 - 3 \cdot \frac{3}{2} + 5\right) = (1.5, 2.75).$

b) Hagamos lo mismo para la función $h(x) = x^3 - 3x - 4$:

$$h'(x) = 3x^2 - 3 = 0, \Rightarrow x = \pm 1.$$

Tabla:

\overline{x}	$-\infty$		-1		1		∞
$\overline{h'}$		+		_		+	
h		7		\searrow		7	

Para comprobar los signos de la tabla anterior, hemos de hacer lo siguiente:

- Signo de y' en el intervalo $(-\infty, -1)$. Consideremos un valor en dicho intervalo, por ejemplo x = -2, el valor de h'(-2) vale $h'(-2) = 3 \cdot (-2)^2 3 = 9 > 0$.
- Signo de y' en el intervalo (-1,1). Consideremos un valor en dicho intervalo, por ejemplo x=0, el valor de h'(0) vale $h'(0)=3\cdot(0)^2-3=-3<0$.
- Signo de y' en el intervalo $(1, \infty)$. Consideremos un valor en dicho intervalo, por ejemplo x = 2, el valor de h'(2) vale $h'(2) = 3 \cdot (2)^2 3 = 9 > 0$. La función h(x) crece en la región $(-\infty, -1) \cup (1, \infty)$, decrece en el intervalo (-1, 1), tiene un máximo en (-1, -2) y un mínimo en (1, -6).
- c) Función $k(x) = x^4 + 2x^2 4$:

$$k'(x) = 4x^3 + 4x = 0, \Rightarrow 4x(x^2 + 1) = 0, \Rightarrow x = 0.$$

Tabla:

\overline{x}	$-\infty$		0		∞
$\overline{k'}$		_		+	
k		\searrow		7	

La función k(x) crece en el intervalo $(0,\infty)$, decrece en el intervalo $(-\infty,0)$ y tiene un mínimo en el punto (0,-4).

2. Dar los extremos relativos y los intervalos de crecimiento y decrecimiento de las funciones siguientes:

a)
$$f(x) = x + \frac{1}{x} \text{ para } x \neq 0,$$

b)
$$h(x) = \sqrt{x} - 2\sqrt{x+1}$$
 para $x > 0$,
c) $g(x) = \frac{x}{x^2+1}$ para $x \in \mathbb{R}$.

c)
$$g(x) = \frac{x}{x^2 + 1}$$
 para $x \in \mathbb{R}$.

Solución

a) Para hallar los extremos relativos de la función $f(x) = x + \frac{1}{x}$ para $x \neq 0$ hay que derivar e igualar a cero la función derivada:

$$f'(x) = 1 - \frac{1}{x^2} = 0, \Rightarrow x = \pm 1.$$

Miremos los intervalos de crecimiento y decrecimiento a partir de la tabla siguiente:

\overline{x}	$-\infty$		-1		0		1		∞
f'		+		_		_		+	
f		7		\searrow		>		7	

La función f(x) crece en la región $(-\infty, -1) \cup (1, \infty)$, decrece en la región $(-1, 0) \cup (0, 1)$, tiene un máximo en el punto (-1, -2) y un mínimo en el punto (1, 2).

b) Estudio para la función $h(x) = \sqrt{x} - 2\sqrt{x+1}$ para x > 0. La derivada y los ceros de la misma son:

$$h'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{\sqrt{x+1}}, \Rightarrow \sqrt{x+1} = 2\sqrt{x}, \Rightarrow x+1 = 4x, \Rightarrow x = \frac{1}{3}.$$

Como hemos elevado al cuadrado, tenemos que comprobar que la solución hallada es efectivamente una solución de h'(x) = 0:

$$h'\left(\frac{1}{3}\right) = \frac{1}{2\sqrt{\frac{1}{3}}} - \frac{1}{\sqrt{\frac{1}{3}+1}} = \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{\frac{4}{3}}} = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = 0.$$

Miremos los intervalos de crecimiento y decrecimiento a partir de la tabla siguiente:

\overline{x}	0		$\frac{1}{3}$		∞
h'		+		_	
h		7		\searrow	

La función h(x) crece en el intervalo $\left(0,\frac{1}{3}\right)$, decrece en el intervalo $\left(\frac{1}{3},\infty\right)$ y tiene un máximo en el punto $\left(\frac{1}{3}, \sqrt{\frac{1}{3}} - 2\sqrt{\frac{1}{3}} + 1\right) = \left(\frac{1}{3}, -\sqrt{3}\right).$

c) Estudio para la función $g(x) = \frac{x}{x^2+1}$. La derivada y los ceros de la misma son:

$$g'(x) = \frac{x^2 + 1 - 2x \cdot x}{(x^2 + 1)^2} = \frac{-x^2 + 1}{(x^2 + 1)^2} = 0, \Rightarrow x = \pm 1.$$

Miremos los intervalos de crecimiento y decrecimiento a partir de la tabla siguiente:

\overline{x}	$-\infty$		-1		1		∞
$\overline{g'}$		_		+		_	
g		\searrow		7		\searrow	

3

La función g(x) crece en el intervalo (-1,1), decrece en la región $(-\infty,-1) \cup (1,\infty)$, tiene un mínimo en el punto $(-1, -\frac{1}{2})$ y un máximo en el punto $(1, \frac{1}{2})$.

3. Usando la regla de L'Hôpital calcular los límites siguientes:

a)
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x}$$
,

b)
$$\lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^4}$$

a)
$$\lim_{x\to 0} \frac{\mathrm{e}^x + \mathrm{e}^{-x} - 2}{1 - \cos x}$$
,
b) $\lim_{x\to 0} \frac{x^2 - \sin^2 x}{x^4}$,
c) $\lim_{x\to \infty} \frac{x^n}{\mathrm{e}^x}$, con n valor entero, $n \ge 1$,
d) $\lim_{x\to \frac{\pi}{2}^-} (\sec x - \tan x)$.

d)
$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$$
.

Solución

a) El valor del límite será:

$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x} = \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} = \frac{2}{1} = 2.$$

b) El valor del límite será:

$$\lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^4} = \lim_{x \to 0} \frac{2x - 2\sin x \cos x}{4x^3} = \lim_{x \to 0} \frac{2 - 2(\cos^2 x - \sin^2 x)}{12x^2} = \lim_{x \to 0} \frac{-4(-\cos x \sin x - \sin x \cos x)}{24x}$$
$$= \lim_{x \to 0} \frac{8\cos x \sin x}{24x} = \lim_{x \to 0} \frac{-8(\sin^2 x - \cos^2 x)}{24} = \frac{8}{24} = \frac{1}{3}.$$

c) El valor del límite será:

$$\lim_{x \to \infty} \frac{x^n}{\mathrm{e}^x} = \lim_{x \to \infty} \frac{n \cdot x^{n-1}}{\mathrm{e}^x} = \dots = \lim_{x \to \infty} \frac{n!}{\mathrm{e}^x} = 0.$$

d) El valor del límite será:

$$\lim_{x \to \frac{\pi}{2}^{-}} (\sec x - \tan x) = \lim_{x \to \frac{\pi}{2}^{-}} \frac{1 - \sin x}{\cos x} = \lim_{x \to \frac{\pi}{2}^{-}} \frac{-\cos x}{-\sin x} = 0.$$