

CMOS028FDSOI Technology

PN Junction Diode models

DK1.2_RF_mmW

Comparison with DK1.1_RF_mmW model(s)

Please use the bookmark to navigate

General information on models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Device temperature varies from -40 C °C to 150 C °C.

Output parameters definitions

- Model(s): diodenwx, diodenx, diodepnw, diodepwtw, diodetwx, egdiodenx, egdiodepnw
 - ✓ Cj : Junction capacitance at Vj = 1.0V, f = 100KHz.
 - ✓ Ij : Junction leakage current at Vj = 1.0V.

diodenwx Electrical characteristics scaling

Cj and Ij scaling versus Vj for Area diode, Temp=25C & Temp=125C

diodenwx, Cj [F] vs Vj [V]

diodenwx, Ij [A] vs Vj [V]

diodenwx, Cj [F] vs Vj [V]

area==2e-12 and Temp==125

diodenwx, Ij [A] vs Vj [V]

area==2e-12 and Temp==125

ST Confidential

Cj and Ij scaling versus Vj for Peri diode, Temp=25C & Temp=125C

Cj and Ij scaling versus Temp for Area diode

diodenwx, Ij [A] vs Temp [C]

area==2e-12 and Vj==2.0

diodenwx, Cj [F] vs Temp [C]

area==2e-12 and Vj==0.01

Cj and Ij scaling versus Temp for Peri diode

diodenx Electrical characteristics scaling

Cj and Ij scaling versus Vj for Area diode, Temp=25C & Temp=125C

diodenx, Cj [F] vs Vj [V]

diodenx, Ij [A] vs Vj [V]

diodenx, Cj [F] vs Vj [V]

diodenx, Ij [A] vs Vj [V]

area==2e-12 and Temp==125

Cj and Ij scaling versus Vj for Peri diode, Temp=25C & Temp=125C

Cj and Ij scaling versus Temp for Area diode

diodenx, Ij [A] vs Temp [C]

area==2e-12 and Vj==2.0

diodenx, Cj [F] vs Temp [C]

area==2e-12 and Vj==0.01

Cj and Ij scaling versus Temp for Peri diode

diodepnw **Electrical characteristics scaling**

Cj and Ij scaling versus Vj for Area diode, Temp=25C & Temp=125C

diodepnw, Cj [F] vs Vj [V]

diodepnw, Ij [A] vs Vj [V]

diodepnw, Cj [F] vs Vj [V]

diodepnw, Ij [A] vs Vj [V]

area==2e-12 and Temp==125

ST Confidential

Cj and Ij scaling versus Vj for Peri diode, Temp=25C & Temp=125C

Cj and Ij scaling versus Temp for Area diode

diodepnw, Ij [A] vs Temp [C]

area==2e-12 and Vj==2.0

diodepnw, Cj [F] vs Temp [C]

area==2e-12 and Vj==0.01

Cj and Ij scaling versus Temp for Peri diode

dormieub

diodepwtw Electrical characteristics scaling

Cj and Ij scaling versus Vj for Area diode, Temp=25C & Temp=125C

diodepwtw, Cj [F] vs Vj [V]

diodepwtw, Ij [A] vs Vj [V]

diodepwtw, Cj [F] vs Vj [V]

diodepwtw, Ij [A] vs Vj [V]

area==2e-12 and Temp==125

ST Confidential

Cj and Ij scaling versus Vj for Peri diode, Temp=25C & Temp=125C

Cj and Ij scaling versus Temp for Area diode

dormieub

diodepwtw, Ij [A] vs Temp [C]

area==2e-12 and Vj==2.0

diodepwtw, Cj [F] vs Temp [C]

area==2e-12 and Vj==0.01

Cj and Ij scaling versus Temp for Peri diode

diodetwx **Electrical characteristics scaling**

dormieub

Cj and Ij scaling versus Vj for Area diode, Temp=25C & Temp=125C

dormieub

diodetwx, Cj [F] vs Vj [V]

diodetwx, Ij [A] vs Vj [V]

diodetwx, Cj [F] vs Vj [V]

diodetwx, Ij [A] vs Vj [V]

Cj and Ij scaling versus Vj for Peri diode, Temp=25C & Temp=125C

Cj and Ij scaling versus Temp for Area diode

dormieub

diodetwx, Ij [A] vs Temp [C]

area==2e-12 and Vj==2.0

diodetwx, Cj [F] vs Temp [C]

area==2e-12 and Vj==0.01

Cj and Ij scaling versus Temp for Peri diode

dormieub

egdiodenx Electrical characteristics scaling

Cj and Ij scaling versus Vj for Area diode, Temp=25C & Temp=125C

egdiodenx, Cj [F] vs Vj [V]

egdiodenx, Ij [A] vs Vj [V]

egdiodenx, Cj [F] vs Vj [V]

egdiodenx, Ij [A] vs Vj [V]

Cj and Ij scaling versus Vj for Peri diode, Temp=25C & Temp=125C

Cj and Ij scaling versus Temp for Area diode

egdiodenx, Ij [A] vs Temp [C]

area==2e-12 and Vj==2.0

egdiodenx, Cj [F] vs Temp [C]

area==2e-12 and Vj==0.01

Cj and Ij scaling versus Temp for Peri diode

egdiodepnw **Electrical characteristics scaling**

dormieub

Cj and Ij scaling versus Vj for Area diode, Temp=25C & Temp=125C

egdiodepnw, Cj [F] vs Vj [V]

area==2e-12 and Temp==25

egdiodepnw, Ij [A] vs Vj [V]

area==2e-12 and Temp==25

egdiodepnw, Cj [F] vs Vj [V]

area==2e-12 and Temp==125

egdiodepnw, Ij [A] vs Vj [V]

area==2e-12 and Temp==125

ST Confidential

Cj and Ij scaling versus Vj for Peri diode, Temp=25C & Temp=125C

Cj and Ij scaling versus Temp for Area diode

egdiodepnw, Ij [A] vs Temp [C]

area==2e-12 and Vj==2.0

egdiodepnw, Cj [F] vs Temp [C]

area==2e-12 and Vj==0.01

Cj and Ij scaling versus Temp for Peri diode

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model diodenwx (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{X} ams_release = 2018.3
 - **✗** model_version = 1.1
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - \star temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
 - ✓ Extra parameters
- Model diodenx (DK1.2_RF_mmW)

- ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - **✗** model_version = 1.1
 - **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \forall vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - \star temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
- ✓ Extra parameters
- Model diodepnw (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **✗** model_version = 1.1
 - **x** mc_nsigma = 3

- ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - \star temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
- ✓ Extra parameters
- Model diodepwtw (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **✗** model_version = 1.2.a
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - **x** temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
 - ✓ Extra parameters
- Model diodetwx (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V

- \star f_ext = 100K Hz
- **x** sbenchlsf_release = Alpha
- \mathbf{X} ams release = 2018.3
- **✗** model_version = 1.2.a
- **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - \times temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
- ✓ Extra parameters
- Model egdiodenx (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - $v_j = 1.0 \text{ V}$
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - **x** model version = 1.1
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \forall vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - **x** temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
 - ✓ Extra parameters
- Model egdiodepnw (DK1.2_RF_mmW)

- ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - **✗** model_version = 1.1
 - **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \forall vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - **x** temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
- ✓ Extra parameters
- Model diodenwx (DK1.1 RF mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{X} ams release = 2018.3
 - **✗** model_version = 1.1
 - **x** mc_nsigma = 3

- ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - \star temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
- ✓ Extra parameters
- Model diodenx (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - x vj = 1.0 V
 - x f ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **✗** model_version = 1.1
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - **x** temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
 - ✓ Extra parameters
- Model diodepnw (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - **x** temp = $25 \, ^{\circ}$ C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V

- \star f_ext = 100K Hz
- **x** sbenchlsf_release = Alpha
- \mathbf{X} ams release = 2018.3
- \times model version = 1.1
- **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - \times temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
- ✓ Extra parameters
- Model diodepwtw (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - $v_j = 1.0 \text{ V}$
 - X f ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \times ams_release = 2018.3
 - **x** model version = 1.2.a
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \forall vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - **x** temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
 - ✓ Extra parameters
- Model diodetwx (DK1.1_RF_mmW)

- ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - **✗** model_version = 1.2.a
 - **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \forall vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - \star temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
- ✓ Extra parameters
- Model egdiodenx (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{X} ams release = 2018.3
 - **✗** model_version = 1.1
 - **x** mc_nsigma = 3

- ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - \star temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
- ✓ Extra parameters
- Model egdiodepnw (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **✗** model_version = 1.1
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.1, 0.01, -0.1
 - \times temp = -40.0, -25.0, 0.0, 25.0, 50.0, 85.0, 100.0, 125.0, 150.0
 - ✓ Extra parameters

