Complex Analysis I

Minerva

2021-1st

Contents

1	\mathbf{Not}	sure yet	2
	1.1	Basics of analytic functions	2
		1.1.1 Cauchy-Riemann equation	2
		1.1.2 Change of coordinate	3
		1.1.3 Power series	4
		1.1.4 Basic example	7
	1.2	Cauchy theorem	8
		1.2.1 Line integral	8
		1.2.2 Winding number	12
		1.2.3 Simply connected	14
	1.3	Cauchy's integral theorem	16
	1.4	Singularity	20
	1.5	Analytic function as mappings	21
	1.6	Automorphism of unit disk and half plane	24
		1.6.1 Automorphism of unit disk	24
		1.6.2 Automorphism of half plane	25
	1.7	Residue	26
		1.7.1 Laurent series	26
		1.7.2 Evaluation definite integrals	28
		1.7.3 Rouche's theorem	29
	1.8	Sum and product	31
	1.9	Gamma function	35
	1.10	Entire function	37
2	Hon	ework	43
_	2.1	· · · · · · · · · · · · · · · · · · ·	43
	2.2		44
	2.3		45
	2.4		46
	$\frac{2.1}{2.5}$		47

Chapter 1

Not sure yet

1.1 Basics of analytic functions

1.1.1 Cauchy-Riemann equation

Let Ω be a connect open subset of \mathbb{C} and $f:\Omega\to\mathbb{C}$.

Definition 1.1.1. For $a \in \Omega$,

- $\lim_{z \in a} f(z) = A \iff \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall z \in \Omega \text{ and } 0 < |z a| < \delta \leadsto |f(z) A| < \varepsilon.$
- f(z) is **continuous** at a if $\lim_{z\to a} f(z) = f(a)$.
- $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$ provide the limit exists.

Observation: f(z) = u(z) + iv(z) can be regard as f(x,y) = u(x,y) + iv(x,y) where z = x + iy, then $f: (x,y) \mapsto (u(x,y),v(x,y))$. Recall that

- f is conti. at $z_0 = (x_0, y_0) \iff u, v$ are conti. at z_0
- f is differentiable at $z_0 \implies f$ is conti. at z_0 .

Also, $|z - z_0|^2 = (x - x_0)^2 + (y - y_0)^2 = d((x, y), (x_0, y_0))^2$, so we have same result what we learn in calculus in \mathbb{R}^2 .

Now we see some different between \mathbb{C} and \mathbb{R}^2 :

Theorem 1.1.1 (Cauchy Riemann equation). Let $u, v \in C^1(\Omega)$. Then

$$f$$
 is differentiable $\iff \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial x} = -\frac{\partial u}{\partial y}$

Proof: Let $z = x + iy \in \Omega$. Since Ω is open, we can that the line segment $\overline{z(z + \Delta z)} \subseteq \Omega$, where $\Delta z = \Delta x + i\Delta y$.

• (\Rightarrow) : Since f'(z) exists, we have

$$f'(z) = \lim_{\substack{\Delta x \to 0 \\ \Delta y = 0}} \frac{u(x + \Delta x, y) + iv(x + \Delta x, y) - (u(x, y) + iv(x, y))}{\Delta x} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial f}{\partial x}$$

and

$$f'(z) = \lim_{\substack{\Delta x = 0 \\ \Delta y \to 0}} \frac{u(x, y + \Delta y) + iv(x, y + \Delta y) - (u(x, y) + iv(x, y))}{i\Delta y} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} = \frac{1}{i}\frac{\partial f}{\partial y}$$

Hence we have
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial x} = -\frac{\partial u}{\partial y} \end{cases} \text{ or } \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}.$$

• (\Leftarrow) : Since u, v are differentiable,

$$\begin{cases} \Delta u = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + |\Delta z| \psi_1(\Delta z) \\ \Delta v = \frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + |\Delta z| \psi_2(\Delta z) \end{cases}$$

where $\psi_1(\Delta), \psi_2(\Delta z) \to 0$ as $\Delta z \to 0$. Combine with assumption we have

$$\frac{\Delta f}{\Delta z} = \frac{\Delta u}{\Delta z} + i \frac{\Delta v}{\Delta z} = \frac{1}{\Delta z} \left(\left(\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} \right) (\Delta x + i \Delta y) + |\Delta z| (\psi_1(\Delta z) + \psi_2(\Delta z)) \right)$$

$$= \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} + \underbrace{\frac{|\Delta z|}{\Delta z} (\psi_1(\Delta z) + \psi_2(\Delta z))}_{\to 0 \text{ as } \Delta z \to 0}$$

Hence $\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$ exists.

Definition 1.1.2.

- f(z) is said to be **analytic** in open set Ω if it has derivative at each point of Ω .
- f(z) is called an **entire function** if it is analytic in \mathbb{C} .

Example 1.1.1. f(z) = Re z is continuous but nowhere analytic since $\frac{\partial u}{\partial x} = 1 \neq 0 = \frac{\partial v}{\partial y}$.

Corollary 1.1.1. If f'(z) = 0 in open connected subset Ω , then f is constant in Ω .

Proof: By f'(z) = 0, $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$ and thus $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$. Given point $z, z' \in \Omega$, use line segment $\overline{z_k z_{k+1}}$ which parallel x-axis or y-axis to connect $z := z_0, z' := z_n$. By partial derivative of u, v with respect to x, y are all zero we have

$$f(z) = f(z_1) = \dots = f(z_{n-1}) = f(z')$$

1.1.2 Change of coordinate

1. complex conjugate

If z = x + iy, $\overline{z} = x - iy$, then $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2} \rightsquigarrow f(x, y) = f(z, \overline{z})$. By chain rule,

$$\begin{cases} \frac{\partial}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) \\ \frac{\partial}{\partial \overline{z}} = \frac{\partial x}{\partial \overline{z}} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \overline{z}} \frac{\partial}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right) \end{cases} \implies \begin{cases} \frac{\partial}{\partial x} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \overline{z}} \\ \frac{\partial}{\partial y} = i \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial \overline{z}} \right) \end{cases}$$

Hence, f is differentiable $\iff \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y} \iff \frac{\partial f}{\partial \overline{z}} = 0$. So $f'(z) = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}$

Example 1.1.2.
$$f(z) = a_n z^n + \dots + a_1 z + a_0 \in \mathbb{C}[z] \leadsto f'(z) = n a_n z^{n-1} + \dots + a_1$$

3

Theorem 1.1.2 (Lucas's theorem). The half plane that contains the zeros of f(z) also contains the zeros of f'(z).

Proof: Recall that give two point a, b on line ℓ with $b \neq 0$, then we can write ℓ by z = a + tb with $t \in \mathbb{R} \iff \operatorname{Im}\left(\frac{z-a}{b}\right) = 0$. So two half plane cut by ℓ are

$$H^+ := \operatorname{Im}\left(\frac{z-a}{b}\right) > 0 \text{ and } H^- := \operatorname{Im}\left(\frac{z-a}{b}\right) > 0$$

Let $f(z) = a_n(z - \alpha_1) \cdots (z - \alpha_n)$ with $\alpha_i \in H^- \ \forall i = 1, ..., n$. Notice that

$$\frac{f'(z)}{f(z)} = \frac{1}{z - \alpha_1} + \dots + \frac{1}{z - \alpha_n}$$

Assume $z_0 \in H^+ \cup \ell$ i.e. $\operatorname{Im}(\frac{z_0 - a}{b}) \geq 0$, then

$$\operatorname{Im}\left(\frac{z_0 - \alpha_i}{b}\right) = \operatorname{Im}\left(\frac{z_0 - a}{b}\right) - \operatorname{Im}\left(\frac{\alpha_i - a}{b}\right) > 0 \implies \operatorname{Im}\frac{b}{z_0 - \alpha_i} < 0$$

Hence
$$\operatorname{Im} \frac{bf'(z_0)}{f(z_0)} = \sum_{i=1}^n \operatorname{Im} \frac{b}{z_0 - \alpha_i} < 0 \text{ i.e. } bf'(z_0) \neq 0 \leadsto f'(z_0) \neq 0.$$

2. polar coordinate

Let
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \longleftrightarrow \begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \tan^{-1} \frac{y}{x} \end{cases} \Rightarrow f(x, y) = f(r, \theta).$$

$$\begin{cases} \frac{\partial r}{x} = \frac{x}{r} = \cos \theta \\ \frac{r}{y} = \frac{y}{r} = \sin \theta \end{cases} \text{ and } \begin{cases} \frac{\partial \theta}{\partial x} = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{-y}{x^2} = \frac{-y}{r^2} = \frac{-\sin \theta}{r} \\ \frac{\partial \theta}{\partial y} = \frac{x}{r^2} = \frac{\cos \theta}{r} \end{cases}$$

$$\Rightarrow \frac{\partial}{\partial x} = \cos \theta \frac{\partial}{\partial r} - \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \text{ and } \frac{\partial}{\partial y} = \sin \theta \frac{\partial}{\partial r} + \frac{\cos \theta}{r} \frac{\partial}{\partial \theta}$$

Hence

$$\begin{cases}
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} \\
\frac{\partial u}{\partial y} = -\frac{\partial u}{\partial x}
\end{cases} \implies
\begin{cases}
\cos \theta \frac{\partial u}{\partial r} - \frac{\sin \theta}{r} \frac{\partial u}{\partial \theta} = \sin \theta \frac{\partial v}{\partial r} + \frac{\cos \theta}{r} \frac{\partial v}{\partial \theta} & (1) \\
\sin \theta \frac{\partial u}{\partial r} + \frac{\cos \theta}{r} \frac{\partial u}{\partial \theta} = -\cos \theta \frac{\partial v}{\partial r} + \frac{\sin \theta}{r} \frac{\partial v}{\partial \theta} & (2)
\end{cases}$$

$$\begin{cases}
(1) \times \cos \theta + (2) \times \sin \theta & \implies r \frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta} \\
-(1) \times \sin \theta + (2) \times \cos \theta & \implies r \frac{\partial v}{\partial r} = -\frac{\partial u}{\partial \theta}
\end{cases}$$

and

$$f'(z) = (\cos \theta - i \sin \theta) \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) = \left(\frac{\cos \theta - i \sin \theta}{r} \right) \left(\frac{\partial v}{\partial \theta} - i \frac{\partial v}{\partial \theta} \right)$$

1.1.3 Power series

Recall:

• $\{\alpha_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$, let $a_n = \max\{\alpha_1, ..., \alpha_n\} \leadsto a_n \nearrow \text{(non-decrasing)}$, so $\exists A_1 \text{ s.t. } \lim_{n \to \infty} a_n = A_1 \text{ (least upper bound or supremum)}$. Let $A_k = \sup\{\alpha_n\}_{n=k}^{\infty} \leadsto A_k \searrow \text{(non-increasing)}$, so we can define **limit superior**

$$\overline{\lim} \alpha_n = \lim_{k \to \infty} A_k = A \in \mathbb{R} \text{ or } \pm \infty$$

If $A \in \mathbb{R}$, then by definition, $\forall \varepsilon > 0$, $\exists n_0$ s.t. $n \geq n_0$, $A_n < A + \varphi \rightsquigarrow \alpha_n < A + \varepsilon$. Similarly, we can define **limit inferior** by

$$\underline{\lim} \alpha_n = \lim_{k \to \infty} \inf_{n > k} \alpha_n = B$$

If $B \in \mathbb{R}$, then $\forall \varepsilon > 0$, $\exists n_0 \text{ s.t. } n \geq n_0$, $\alpha_n > B - \varepsilon$.

• $\{\alpha_n\}$ converge $(\overline{\lim}\alpha = \underline{\lim}\alpha) \iff \{\alpha_n\}$ is a Cauchy sequence :

Proof:

- •• $(\Rightarrow): \forall \varepsilon > 0, \exists n_0 \text{ s.t. } \forall n \geq n_0, |\alpha_n A| < \varepsilon/2 \leadsto \forall m, n \geq n_0, |\alpha_n \alpha_m| < \varepsilon.$
- •• (\Leftarrow): Assume $A = \overline{\lim} \alpha_n > \underline{\lim} \alpha = B$. Let $\varepsilon = \frac{A-B}{3}$, then $\exists n_0$ s.t.

$$\begin{cases} \forall n \ge n_0, \ B - \varepsilon < \alpha_n < A + \varepsilon \\ \forall n, m \ge n_0, \ |\alpha_n - \alpha_m| < \varepsilon \end{cases}$$

Then $\forall n, m \geq n_0$

$$3\varepsilon = |A - B| \le |A - \alpha_n| + |\alpha_n - \alpha_m| + |\alpha_m - B| < 3\varepsilon$$
 (----)

- Let $S_n = \sum_{k=1}^n \alpha_k$. $\sum_{n=1}^\infty \alpha_n$ converges $\iff \{S_n\}$ converges $\iff \{S_n\}$: Cauchy. Especially $|\alpha_n| < \varepsilon$ i.e. $\lim_{n \to \infty} \alpha_n = 0$.
- Since $|\alpha_n + \cdots + \alpha_{n+p}| \le |\alpha_n| + \cdots + |\alpha_{n+p}|$, $\sum_{n=1}^{\infty} |\alpha_n|$ converges $\implies \sum_{n=1}^{\infty} \alpha_n$ converges, which is call absolutely convergent.
- Uniformly converge : $f_n(x) \xrightarrow{\text{unif.}} f(x)$ on Ω if $\forall \varepsilon > 0, \exists n_0 \text{ s.t. } \forall n \geq n_0$

$$|f(x) - f_n(x)| < \varepsilon \ \forall x \in \Omega$$

• Weierstrass M-test : If $\forall n >> 0$, $|f_n(x)| \leq M_n \ \forall x \in \Omega$. Then

$$\sum_{n=1}^{\infty} M_n \text{ conv.} \implies \sum_{n=1}^{\infty} f_n(x) \text{ unif. conv.}$$

Definition 1.1.3. $\sum_{n=0}^{\infty} a_n z^n \ (a_n \in \mathbb{C})$ is called a **power series**.

Theorem 1.1.3 (Abel's 1st theorem). Given $\sum_{n=0}^{\infty} a_n z^n$, $\exists 0 \leq R \leq \infty$ s.t.

- (1) if |z| < R, then $\sum_{n=0}^{\infty} a_n z^n$ absolutely. converge and for $0 \le \rho < R$, the converge is uniform for $|z| < \rho$
- (2) if |z| > R, then $\sum_{n=0}^{\infty} a_n z^n$ is diverge

(3) if |z| < R, then $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic and $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ converge for |z| < R.

Hadamard's formula : $R^{-1} = \lim \sqrt[n]{|a_n|}$

Proof:

(1) For z with |z| < R, $\exists \rho$ s.t. $|z| < \rho < R \rightsquigarrow 1/\rho > 1/R$. By def of $\overline{\lim}$, $\exists n_0$ s.t. $\forall n \geq n_0$, $\sqrt[n]{|a_n|} < 1/\rho \rightsquigarrow |a_n| < \rho^{-n}$. So $|a_n z^n| < (|z|/\rho)^n \ \forall n \ge n_0$. Since $\sum (|z|/\rho)^n$ converge,

 $\sum_{n=0}^{\infty} |a_n z^n|$ converge.

- For $0 \le \rho < R$, pick ρ' s.t. $\rho < \rho' < R \rightsquigarrow \exists n_0 \text{ s.t. } n \ge n_0, |a_n| < (1/\rho')^n$. So $|a_n z^n| < (\rho/\rho')^n \ \forall |z| \le \rho$ and thus $\sum a_n z^n$ conv. unif. by Weierstrass M-test.
- (2) For \underline{z} with |z| > R, $\exists \rho$ s.t. $|z| > \rho > R \rightsquigarrow 1/\rho < 1/R$. Then exists infinitely n s.t. $\sqrt[n]{|a_n|} > \rho^{-1} \leadsto |a_n z^n| > (\underline{|z|/\rho})^n$ which is unbound i.e. $\lim_{n \to \infty} a_n z^n \neq 0$.
- (3) For |z| < R, write $f(z) = S_n(z) + R_n(z)$ with $S_n(z) = \sum_{k=0}^{n-1} a_k z^k$. Let $f_1(z) = \sum_{k=0}^{\infty} n a_k z^{n-1} = \sum_{k=0}^{\infty} n a_k z^{n-1}$ $\lim_{n\to\infty} S_n'(z).$
 - Let $|z| < \rho < R$. $\exists n_0 \text{ s.t. } n \ge n_0, |a_n| < \rho^{-n}$, then

$$|na_n z^{n-1}| < \frac{n}{\rho} \left(\frac{|z|}{\rho}\right)^{n-1}$$

Let $r = |z|/\rho < 1$, then by ratio test, $\sum nr^{n-1}/\rho$ converges and thus $f_1(z)$ converges in |z| < R.

• Claim : $f'(z_0) = f_1(z_0)$ for $|z_0| < R$ **subproof**: For $n > n_0$,

$$\frac{f(z) - f(z_0)}{z - z_0} - f_1(z_0) = \left(\frac{S_n(z) - S_n(z_0)}{z - z_0} - S'_n(z_0)\right) + \left(S'_n(z_0) - f_1(z)\right) + \underbrace{\frac{R_n(z) - R_n(z_0)}{z - z_0}}_{(3)}$$

where $z \neq z_0$, |z|, $|z_0| < \rho < R$. Also

$$|(3)| = \left| \sum_{k=n}^{\infty} a_k (z^{k-1} + z^{k-2} z_0 + \dots + z_0^{k-1}) \right| \le \sum_{k=n}^{\infty} \frac{k}{\rho} r^{k-1} : \text{converge, where } r = \max \left\{ \frac{|z|}{\rho}, \frac{|z_0|}{\rho} \right\}$$

 $\forall \varepsilon > 0$,

$$\begin{cases} \exists n_1 \text{ s.t. } \forall n \ge n_1, \ |(3)| < \varepsilon/3 \\ \exists n_2 \text{ s.t. } \forall n \ge n_2, \ |S'_n(z_0) - f_1(z_0)| < \varepsilon/3 \end{cases}$$

Choose a fixed $n \ge n_0, n_1, n_2, \exists \delta \text{ s.t. } 0 < |z - z_0| < \delta,$

$$\left| \frac{S_n(z) - S_n(z_0)}{z - z_0} - S'_n(z_0) \right| < \frac{\varepsilon}{3}$$

Hence, $f'(z_0)$ exists and equal to $f_1(z_0)$.

6

Theorem 1.1.4 (Abel's 2nd theorem). If the convergence radius R of $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is 1 and the series converges at z = 1, then $f(z) \to f(1)$ as $z \to 1$ in a such way that |1 - z|/|1 - |z| is bounded.

Proof: Let |1-z|/(1-|z|) < M If $\sum_{n=0}^{\infty} a_n = C$, then we consider $(a_0 - C) + \sum_{n=1}^{\infty} a_n z^n$. So we may assume "f(1) = 0". Write $S_n = \sum_{k=0}^{n} a_k$.

$$S_n(z) = \sum_{k=0}^n a_k z^k = S_0 + \sum_{k=1}^n (S_k - S_{k-1}) z^k = \sum_{k=0}^{n-1} S_k (z^k - z^{k+1}) + S_n z^n$$
$$= (1 - z) \sum_{k=0}^{n-1} S_k z^k + S_n z^n$$

 $S_n z^n \to 0$ as $n \to \infty$ since |z| < 1 and $S_n \to 0$. For |z| < 1, $f(z) = \lim_{n \to \infty} S_n(z) = (1-z) \sum_{n=0}^{\infty} S_n z^n$. Let $n \ge n_0$, $|S_n| < \varepsilon$. Then

$$|f(z)| \le |1 - z| \left| \sum_{k=0}^{n_0 - 1} s_k z^k \right| + \varepsilon |1 - z| \sum_{k=n_0}^{\infty} |z^k|$$

$$= \le |1 - z| \left| \sum_{k=0}^{n_0 - 1} s_k z^k \right| + \underbrace{\varepsilon |1 - z| |z|^{n_0}}_{\text{CM}}$$

As $z \to 1$ subject to |1 - z|/(1 - |z|) < M, $f(z) \to 0 = f(1)$.

1.1.4 Basic example

Problem: Solve f'(z) = f(z) with f(0) = 1.

Ans: Write $f(z) = \sum_{n=0}^{\infty} a_n z^n \rightsquigarrow f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$. By assumption, $a_{n-1} = n a_n$ and thus $a_n = 1/n! \rightsquigarrow f(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ (0! = 1).

Definition 1.1.4. $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

• $R = \overline{\lim} \sqrt[n]{n!} = \infty$:

$$(n!)^2 = \prod_{k=1}^n k(n+1-k) \ge n^n \implies \sqrt[n]{n!} \ge \sqrt{n} \,\forall n$$

So f(z) is entire.

- $e^{z_1+z_2} = e^{z_1} \cdot e^{z_2} : (e^z \cdot e^{c-z})' = e^z e^{c-z} e^z e^{c-z} = 0 \implies e^z e^{c-z}$ is a constant. Substitute $z = 0 \implies e^z e^{c-z} = e^c$.
- $e^z e^{-z} = e^0 = 1 \leadsto e^z \neq 0 \ \forall z$.

For $z = iy \in \text{imaginary axis}$,

$$\begin{cases} e^{iy} = 1 + iy + \frac{(iy)^2}{2!} + \frac{(iy)^3}{3!} + \cdots \\ \overline{e^{iy}} = 1 - iy + \frac{(iy)^2}{2!} - \frac{(iy)^3}{3!} + \cdots = e^{-iy} \end{cases}$$

 $|e^{iy}|^2 = e^{iy}e^{-iy} = 1 \implies |e^{iy}| = 1 \implies |e^{x+iy}| = e^x.$

$$e^{iy} = \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} + \dots\right) + i\left(y - \frac{y^3}{3!} + \frac{y^5}{5!} + \dots\right) = \cos y + i\sin y$$

$$\implies e^z = e^x(\cos y + i\sin y) \text{ and } \begin{cases} \cos y = \frac{e^{iy} + e^{-iy}}{2} \\ \sin y = \frac{e^{iy} - e^{-iy}}{2i} \end{cases}$$

Definition 1.1.5.
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 and $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ $(\leadsto \cos^2 z + \sin^2 z = 1, (\cos z)' = -\sin z, (\sin z)' = \cos z)$

Definition 1.1.6. f(z) has the period ω if $f(z + \omega) = f(z) \ \forall z \in \Omega$ and $z + \omega \in \Omega$.

Proposition 1.1.1. The smallest positive period of e^{iz} is 2π . (then for $\cos z$, $\sin z$)

Proof:

- $e^{i(z+\omega)} = e^{iz} \implies e^{i\omega} = 1 \rightsquigarrow \omega \in \mathbb{R}$.
- Let $\varphi: (\mathbb{R}, +, 0) \to \text{unit circle in } \mathbb{C}$ define by $y \mapsto e^{iy} = \cos y + i \sin y$, then $\ker \varphi = \langle 2\pi \rangle_{\mathbb{Z}}$.

Now we consider the inverse function of e^z , denoted by $\log z$. $z=e^\omega$, where $z=re^{i\theta}$ and $\omega=u+iv$, then $r=e^u$ and $v=\arg z+2k\pi$, so $\log z$ is a multiple-valued function. Note that $\arg z$ is discontinuous on the negative real axis. Let $\log z=\ln|z|+i\arg z$, $-\pi<\arg z<\pi$ which is called **principal branch**.

• $\log z$ is analytic on $\mathbb{C} \setminus \mathbb{R}^-$: $z = re^{i\theta}$, $-\pi < \theta < \pi \leadsto \log z = \ln r + i\theta$.

$$\begin{cases} r\frac{\partial \ln r}{\partial r} = \frac{\partial \theta}{\partial \theta} \\ r\frac{\partial \theta}{\partial r} = -\frac{\partial \ln r}{\partial \theta} \end{cases} \quad \text{and } \frac{1}{r}, 1, 0, 0 \text{ are conti.}$$

$$\implies (\log z)' = (\cos \theta - i \sin \theta) \left(\frac{\partial \ln r}{\partial r} + i \frac{\partial \theta}{\partial r} \right) = \frac{1}{r(\cos \theta + i \sin \theta)} = \frac{1}{z}$$

1.2 Cauchy theorem

1.2.1 Line integral

Definition 1.2.1. Let $f: (a,b) \longrightarrow \mathbb{C}$ $t \longmapsto u(t) + iv(t)$, then define

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt$$

Property 1.2.1. $\left| \int_a^b f(t)dt \right| \leq \int_a^b |f(t)|dt$

Proof: Let $\theta = \arg \left(\int_a^b f(t) dt \right)$, then

$$\left| \int_{a}^{b} f(t)dt \right| = \operatorname{Re}\left(e^{i\theta} \int_{a}^{b} f(t)dt\right) = \int_{a}^{b} \operatorname{Re}\left(e^{i\theta} f(t)\right)dt$$

$$\leq \int_{a}^{b} |e^{i\theta} f(t)|dt = \int_{a}^{b} |f(t)|dt$$

Definition 1.2.2.

- γ is a **piecewise smooth curve (arc)** in $\mathbb C$ if γ is parameterized by z(t) = x(t) + iy(t), $t \in [\alpha, \beta]$ and exists a partition $\{[\alpha_i, \beta_i]\}$ of $[\alpha, \beta]$ s.t. $z|_{[\alpha_i, \beta_i]} \in C^1$.
- Let f be continuous on Ω and $\gamma \subset \Omega$, define

$$\int_{\gamma} f(z)dz := \sum_{i=1}^{n} \int_{\alpha_{i}}^{\beta_{i}} f(z(t))z'(t)dt$$

By chain rule, the definition is independent of the choice of parameters of γ .

••
$$dz = z'(t)dt = (x'(t) + iy'(t))dt$$
, $\overline{dz} = (x'(t) - iy'(t))dt$

••
$$|dz| = \sqrt{x'(t)^2 + y'(t)^2} dt = ds$$

Property 1.2.2.

$$\left| \int_{\gamma} f dz \right| = \left| \int_{a}^{b} f(z(t))z'(t)dt \right| \le \int_{a}^{b} |f(z(t))||z'(t)|dt = \int_{\gamma} |f||dz|$$

Observation: If f = u + iv, then

$$\int_{\gamma} f(z)dz = \int_{\gamma} (u+iv)(x'+iy')dt = \int_{\gamma} (ux'-vy')dt + i \int_{\gamma} (vx'+uy')dt$$
$$= \int_{\gamma} (udx-vdy) + i \int_{\gamma} (vdx+udy)$$

Recall: Ω : open connected in \mathbb{R}^2 , $A, B \in C^1(\Omega)$. Then $\int Adx + Bdy$ is only determined by P, Q in Ω and is independent of arcs connecting P and $Q \iff \exists U \in C^1(\Omega)$ s.t. dU = Adx + Bdy i.e. $\frac{\partial U}{\partial x} = A, \frac{\partial U}{\partial y} = B$. Actually, $U(x,y) = \inf_{\gamma} Adx + Bdy$, where $\gamma \subset \Omega$ is any curve connected P, Q.

Proposition 1.2.1. Let f be continuous on Ω . Then $\int_{\gamma} f dz$ depends only on the end points of $\gamma \iff f$ is the derivative of an analytic function F on Ω .

Proof:

• (
$$\Leftarrow$$
): Say $F = U + iV$, then $f = F' = \frac{\partial U}{\partial x} + i\frac{\partial V}{\partial x} = \frac{\partial V}{\partial y} - i\frac{\partial U}{\partial y} = u + iv$. Then $udx - vdy = dU \ vdx + udy = dV$

By observation, $\int_{\gamma} f dz$ is independent on arcs.

• (\Rightarrow) : By recall, $\exists U, V \in C^1(\Omega)$ s.t.

$$dU = udx - vdy \ dV = vdx + udy$$

Let $F = U + iV \rightsquigarrow F$ is analytic and F' = f.

Example 1.2.1.

• $\forall n \in \mathbb{N}, \ \int_{\gamma} (z-a)^n dz = 0 \ \forall \gamma : \text{closed arc in } \mathbb{C}, \text{ since } \left(\frac{(z-a)^{n+1}}{n+1}\right)' = (z-a)^n.$

• Let $C_r(a) := \{ z \in \mathbb{C} : |z - a| = r \}$, then

$$\int_{C_r(a)} \frac{dz}{z - a} = \int_0^{2\pi} \frac{rie^{i\theta}}{re^{i\theta}} d\theta \ (z = a + re^{i\theta})$$
$$= 2\pi i$$

We can't apply proposition 1.2.1 since we can't define a single-valued branch of $\log(z-a)$ in $B_r(a) := \{z : |z-a| < r\}.$

Theorem 1.2.1 (Cauchy theorem for a rectangle). Let f be analytic in a rectangle R (i.e analytic in an open set containing R). Then

$$\int_{\partial R} f(z)dz = 0$$

where the preset orientation of ∂R is counterclockwise.

Proof: Divide R to four small rectangle $R_1^{(1)}, ..., R_1^{(4)}$. Define $\Gamma(R) := \int_{\partial R} f(z) dz$, then

$$\Gamma(R) = \Gamma(R_1^{(1)}) + \dots + \Gamma(R_4^{(1)})$$

Then exists $R_1^{(k)}$ for some $k \in \{1, ..., 4\}$ s.t. $|\Gamma(R_1^{(k)})| \ge \frac{1}{4}|\Gamma(R)|$. Say $R_1 = R_1^{(k)}$ and define $R_2, ...$ by same method. Let d_i, L_i be the diameter, perimeter of R_i respectively. We obtain a nested rectangles $R \supset R_1 \supset R_2 \supset \cdots$ with $d_i = d_{i-1}/2$, then $\exists ! \ z^* \in R_i \ \forall i \ \text{i.e.} \ \forall \delta > 0, \ \exists n_0 \ge 0$ s.t. $\forall n \ge n_0, R_n \subset B_\delta(z^*)$. Since f is analytic at $z^*, \forall \varepsilon > 0, \ \exists \delta > 0 (\leadsto \exists n_0) \ \text{s.t.}$

$$\left| \frac{f(z) - f(z^*)}{z - z^*} - f'(z^*) \right| < \varepsilon \ \forall z \in R_n, \ n \ge n_0$$

$$\implies |f(z) - f(z^*) - (z - z^*)f'(z^*)| < \varepsilon |z - z^*| \ \forall z \in R_n, \ n \ge n_0$$

By example 1.2.1, $\int_{\partial R_n} dz = 0$ and $\int_{\partial R_n} z dz = 0$, then

$$\Gamma(R_n) = \int_{\partial R_n} (f(z) - f(z') - (z - z^*) f'(z^*)) dz$$

$$\implies \frac{1}{4^n} |\Gamma(R)| \le |\Gamma(R_n)| \le \varepsilon \int_{\partial R_n} |z - z^*| |dz| \le \varepsilon L_n d_n \quad \forall n \ge n_0$$

$$\implies |\Gamma(R)| \le \varepsilon 4^n L_n d_n = \varepsilon L d \quad \forall \varepsilon \implies \Gamma(R) = 0$$

Author: Minerva 10

Theorem 1.2.2 (Stronger form). Let $R' = R \setminus \{\xi_1, ..., \xi_n\}$ with $\xi_i \in (R \setminus \partial R) =: R^o$ and f be analytic in R'. If $\lim_{z \to \xi_i} (z - \xi_i) f(z) = 0$, then

$$\int_{\partial R} f(z)dz = 0$$

Proof:

• $n = 1 : \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } |z - \xi| < \delta \implies |z - \xi||f(z)| < \varepsilon$. Choose a square R_0 with center ξ s.t. $R \subset B_{\delta}(\xi)$. Extend the side length of R_0 and cut R into nine rectangle $R_0, R_1, ..., R_8$. We already know $\Gamma(R_i) = 0$, so $\Gamma(R) = \Gamma(R_0)$.

$$|\Gamma(R)| = |\Gamma(R_0)| = \left| \int_{\partial R_0} f(z) dz \right| \le \varepsilon \int_{\partial R_0} \frac{|dz|}{|z - \xi|} \le \varepsilon \frac{8}{L_0} L_0 = 8\varepsilon$$

where L_0 is the perimeter of R_0 . Hence, $\Gamma(R) = 0$.

• In general n, we just cut R into several rectangle and apply Cauchy theorem for a rectangle and the case of n = 1.

Theorem 1.2.3 (local existence of primitives). Any analytic function f in $B_{\rho}(a)$ has a primitive (antiderivatives) in $B_{\rho}(a)$.

Proof: For $z \in B_r(a)$, let γ_z connected a and z by one horizontal line first and one vertical line. Define $F(z) = \int_{\gamma_z} f(u) du$.

Claim: F is analytic in $B_{\rho}(a)$ and F'(z) = f(z).

subproof: Apply Cauchy theorem for a rectangle we have

$$F(z + \Delta z) - F(z) = \int_{\overline{z(z + \Delta x)}} f(u)du + \int_{\overline{(z + \Delta x)(z + \Delta z)}} f(u)du$$

Since f is continuous at z, we can write $f(u) = f(z) + \delta(u)$, where $\delta(u) \to 0$ as $u \to z$.

$$\int_{\overline{z(z+\Delta x)}} f(z)du + \int_{\overline{(z+\Delta x)(z+\Delta z)}} f(z)du = f(z)\Delta z$$

$$\int_{\overline{z(z+\Delta x)}} |\delta(u)||du| + \int_{\overline{(z+\Delta x)(z+\Delta z)}} |\delta(u)||du| \le (\sup |\delta(u)|)(|\underline{\Delta x}| + |\underline{\Delta y}|)$$

where sup $|\delta(u)|$ is consider $u \in \overline{z(z + \Delta x)} \cup \overline{(z + \Delta x)(z + \Delta z)}$.

$$\implies \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = f(z) + \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left(\quad \bigstar \quad \right)$$

where $|\bigstar| \leq \frac{2|\Delta| \sup \delta(u)}{|\Delta u|} \to 0$ as $\Delta z \to 0$. Hence, F'(z) = f(z).

Theorem 1.2.4 (Cauchy theorem for a disk). If f is a analytic in $B_{\rho}(a)$, then

$$\int_{\gamma} f(z)dz = 0$$

for all closed arc $\gamma \subset B_{\rho}(a)$.

Proof: Since f has a primitive in $B_{\rho}(a)$, by proposition 1.2.1 the statement will holds.

Corollary 1.2.1. If f is analytic in Ω and $B_{\rho}(a) \subset \Omega$, then

$$\int_{C_{\rho}(a)} f(z)dz = 0$$

Proof: Choose a larger $B_{\rho'}(a')$ s.t. $B_{\rho}(a) \subsetneq B_{\rho'}(a') \subseteq \Omega$. Then $\gamma = C_{\rho}(a) \subseteq B_{\rho'}(a')$ and apply Theorem 1.2.4

Theorem 1.2.5 (Stronger form). Let $B = B_{\rho}(a) \setminus \{\xi_1, ..., \xi_n\}$ and f be analytic in B. If $\lim_{z \to \xi_i} (z - \xi_i) f(z) = 0$, then f has a primitive in B. Moreover,

$$\int_{\gamma} f(z)dz = 0$$

for all closed arc in B.

Proof: For $z \in B$, define

$$F(z) = \int_{\gamma_z} f(u) du = \int_{\gamma_z'} f(u) du$$

where γ_z, γ_z' connected a and z and composed by finite horizontal line and vertical line not pass $\{\xi_1, ..., \xi_n\}$. The red equation will holds since $\gamma_z' - \gamma_z = \sum_{\text{finite}} \pm \partial R_i$ and by stronger form of Cauchy theorem for a rectangle $\Gamma(R_i) = 0$. By the similar argument, F'(z) = f(z).

1.2.2 Winding number

Theorem 1.2.6 (winding number). Let γ be a closed arc and $a \notin \gamma$. Then

$$\int_{\gamma} \frac{dz}{z - a} = 2\pi i n$$

for some nonnegative integer n.

Proof: Let $z: [\alpha, \beta] \to \gamma$ with $t \mapsto z(t)$ and $z|_{[\alpha_i, \beta_i]}$: smooth. Consider

$$p(x) = \int_{0}^{x} \frac{z'(t)}{z(t) - a} dt$$

Then we have

$$\begin{cases} p(x) \text{ is continuous on } [\alpha, \beta] \\ p'(x) = \frac{z'(x)}{z(x) - a} \text{ on } (\alpha, \beta) \setminus \{t_1, ..., t_{n-1}\} \\ p(\beta) = \int_{\gamma} \frac{dz}{z - a} \end{cases}$$

Notice that $2\pi i$ is the period of e^x , so hope that $e^{p(\beta)} = 1$. Now

$$\left(e^{-p(x)}\right)' = -p'(x)e^{-p(x)} = \frac{-z'(x)}{z(x) - a}e^{-p(x)} \implies -p'(x)(z(x) - a)e^{-p(x)} + z'(x)e^{-p(x)} = 0$$

$$\implies (e^{-p(x)}(z(x)-a))'=0 \implies e^{-p(x)}(z(x)-a) = \text{constant} = e^{-p(\alpha)}(z(\alpha)-a) = z(\alpha)-a$$

Hence,
$$e^{p(x)} = \frac{z(x) - a}{z(\alpha) - a} \leadsto e^{p(\beta)} = 1 \implies p(\beta) = (2\pi i)n$$
 for some $n \in \mathbb{N}$.

Observation: Define

$$n(\gamma, a) := \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a} \in \mathbb{Z}$$

be the winding number of γ around a. It will be the number of turns of γ around a.

- $n(-\gamma, a) = -n(\gamma, a)$
- If $\gamma \subseteq B_{\rho}(a) \subseteq \Omega$, then $\forall a \in \Omega \setminus B_{\rho}(z)$, $n(\gamma, a) = 0$: Since $(z - a)^{-1}$ is analytic in $B_{\rho}(z)$.
- $n(\gamma, a)$ is constant for each region cut by γ and $n(\gamma, a) = 0 \,\forall a$ in unbounded region.

Claim: If $\gamma \cap \overline{aa'} = \emptyset$, then $n(\gamma, a) = n(\gamma, a')$.

subproof: for $z \in \overline{aa'}$, $\frac{z-a}{z-a'} \in \mathbb{R}_{\leq 0}$ and $\frac{z-a}{z-a'} \notin \mathbb{R}_{\leq 0}$ for all $z \notin \overline{aa'}$. Then $\log\left(\frac{z-a}{z-a'}\right)$ is analytic on $\mathbb{C} \setminus \overline{aa'}$. Hence,

$$0 = \int_{\gamma} \left(\log \left(\frac{z - a}{z - a'} \right) \right)' dz = \int_{\gamma} (\log(z - a) - \log(z - a'))' dz = \int_{\gamma} \left(\frac{1}{z - a} - \frac{1}{z - a'} \right) dz$$

Hence,
$$n(\gamma, a) = n(\gamma, a')$$
.

In the same region, we can connected by polyline, hence $n(\gamma, z)$ is constant on same region. Choose a open ball $B_{\rho}(a)$ that cover γ , and choose a point $b \in \mathbb{C} \setminus B_{\rho}(a)$, then $n(\gamma, b) = 0$. Hence, $n(\gamma, z) = 0$ on unbound region.

• Let γ be the simple curve around 0, then $n(\gamma, 0) = 1$:

Let $C = C_{\rho}(0)$ for some ρ s.t. $C \cap \gamma = \varnothing$. Choose $a_1, a_2 \in \gamma$, $b_1, b_2 \in C$ s.t. $a_2, b_2, 0, b_1, a_1$ collinear as this order. Let γ, C be cut by this line into $\gamma_1 \cup \gamma_2, C_1 \cup C_2$ respectively and C_1, γ_1 are in same side w.r.t. this line. Let $\sigma_1 = \gamma_1 + \overline{a_1b_1} - c_1 - \overline{a_2b_2}$, $\sigma_2 = \gamma_2 + \overline{a_2b_2} - C_1 - \overline{a_1b_1}$. By definition of winding number,

$$n(\gamma, 0) = n(C, 0) + n(\sigma_1, 0) + n(\sigma_2, 0) = 1$$

where $n(\sigma_1, 0) = n(\sigma_2, 0) = 0$ by 0 is in the unbounded region w.r.t. to σ_1, σ_2 .

Let f(z) be analytic in $B_{\rho}(b)$, $\gamma \subset B_{\rho}(b)$ and $a \in B_{\rho}(b) \setminus \gamma$. Then $F(z) = \frac{f(z) - f(a)}{z - a}$ is analytic for $z \neq a$ and $\lim_{z \to a} (z - a)F(a) = \lim_{z \to a} (f(z) - f(a)) = 0$. By Theorem 1.2.5,

$$\int_{\gamma} \frac{f(z) - f(a)}{z - a} dz = 0 \implies \int_{\gamma} \frac{f(z)}{z - a} = f(a) \int_{\gamma} \frac{dz}{z - a}$$

Then we have Cauchy integral formula:

$$f(a) = \frac{1}{2\pi i \cdot n(r, a)} \int_{\gamma} \frac{f(z)}{z - a} dz$$

In particular, if $n(\gamma, z) = 1$, then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

1.2. CAUCHY THEOREM Minerva notes

1.2.3 Simply connected

Set up

• extended complex plane (**Riemann sphere**) : $\widetilde{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ with $a + \infty = \infty + 0 = \infty$, $b \cdot \infty = \infty \cdot b = \infty$ for $b \neq 0$. $a/0 = \infty$ for $a \neq 0$, $b/\infty = 0$ for $b \neq \infty$.

- γ : piecewise-smooth curve $(z|_{[\alpha_i,\beta_i]}:$ smooth i.e. z'(t) continuous and $z'(t)\neq 0)$
 - •• simple : $z(t_1) = z(t_2) \iff t_1 = t_2$
 - •• closed : $z(\alpha) = z(\beta)$
 - .. Jordan curve : simple closed curve
 - •• opposite arc : $-\gamma$ define by z(-t).
- Let $\gamma_1, ..., \gamma_n$ be arcs in Ω . A form sum $\gamma_1 + \cdots + \gamma_n$ is called a **chain** in Ω .
- Define $\gamma_1 + \cdots + \gamma_n \sim \gamma_1' + \cdots + \gamma_m' \iff \int_{\gamma_1 + \cdots + \gamma_n} f dz = \int_{\gamma_1' + \cdots + \gamma_m'} f dz \ \forall f \text{ on } \Omega$, where

$$\int_{\gamma_1 + \dots + \gamma_n} f dz = \sum_{i=1}^n \int_{\gamma_i} f dz$$

In general, we can write a chain $\gamma = b_1 \gamma_1 + \cdots + b_n \gamma_n$, where γ_i are distinct arcs and $b_i \in \mathbb{Z}$.

• γ is a **cycle** if $\forall \gamma_i$ is closed

$$\implies \int_{\gamma} dF = 0$$
 and define $n(\gamma, a) := \sum b_i n(r_i, a)$

Definition 1.2.3. A region $\Omega \subseteq \mathbb{C}$ is simply connected if $\widetilde{\mathbb{C}} \setminus \Omega$ is connected.

Property 1.2.3. Ω is simply connected $\iff n(\gamma, a) = 0 \ \forall \gamma : \text{cycle in } \Omega \text{ and } a \in \widetilde{\mathbb{C}} \setminus \Omega.$

Proof:

- (\Rightarrow) Since $\widetilde{\mathbb{C}} \setminus \Omega$ is connected and $\gamma \subseteq \Omega$, $\widetilde{\mathbb{C}} \setminus \Omega$ is contained in the unbounded region determined by $\gamma \leadsto n(\gamma, a) = 0 \ \forall a \in \widetilde{\mathbb{C}} \setminus \Omega$.
- (\Leftarrow): Assume $\widetilde{\mathbb{C}} \setminus \Omega = A \sqcup B$ with A, B closed and assume A is bounded. Let δ be the shortest distance between A and B. Let

$${Q:Q \text{ is a square of side} = \frac{\delta}{2\sqrt{2}}}$$

covers A and a be a center of some Q in A. Let $\gamma = \sum_{Q_j \cap A \neq \emptyset} \partial Q_j$, then $\gamma \in \Omega$ and

$$n(\gamma, a) = \sum_{Q_j \cap A \neq \varnothing} n(\partial Q_j, a) = n(\partial Q, a) = 1 \ (\longrightarrow -)$$

since ∂Q is a simple curve around a and a is in the unbounded region w.r.t. others ∂Q_i .

Remark 1.2.1. If Ω is not simply connected, then $\exists \gamma$ in Ω s.t. $n(\gamma, a) \neq 0$ for some $a \in \widetilde{\mathbb{C}} \setminus \Omega$. Now $(z - a)^{-1}$ is analytic in Ω , but

$$\int_{\gamma} \frac{1}{z - a} dz = n(\gamma, a) \neq 0$$

i.e. Cauchy theorem doesn't hold in this case.

Definition 1.2.4. γ in Ω is said to be **homologous to** 0 w.r.t. Ω if $n(\gamma, a) = 0 \ \forall a \in \widetilde{\mathbb{C}} \setminus \Omega$, and denoted by $\gamma \sim 0 \pmod{\Omega}$.

For example, $C_1 \sim 0 \pmod{K \setminus H}$, but $C_2 \not\sim 0 \pmod{K \setminus H}$.

Theorem 1.2.7 (Cauchy theorem). If f(z) is analytic in Ω , then $\int_{\gamma} f(z)dz = 0$ for all cycle $\gamma \sim 0$ in Ω .

Corollary 1.2.2. Let Ω be simply connected and f be analytic in Ω . Then

- $\int_{\gamma} f dz = 0$ for all cycle γ in Ω , since $r \sim 0$.
- $\int f dz$ is independent of the path connecting P and Q. Which means f dz = dF for some F i.e. f has a primitive.

Proof: (Cauchy theorem)

• Ω is bounded: For $\delta > 0$, let $\{S_i : i \in I\}$ be a subset of closed squares of side δ which are contained in Ω (Ω : bounded $\leadsto |I| < \infty$). Let $\Gamma_{\delta} = \sum_{i \in I} \partial S_i$, $\Omega_{\delta} = \left(\bigcup_{i \in I} S_i\right)^{\circ}$. Choose δ s.t. $\gamma \subset \Omega_{\delta}$. Let $\xi \in \Gamma_{\delta} \subseteq \Omega \setminus \Omega_{\delta}$, then exists a square $S \notin \{S_i : i \in I\}$ s.t. $\xi \in S$. Let $\xi_0 \in S \setminus \Omega \leadsto \overline{\xi \xi_0} \subset S \leadsto \overline{\xi_0 \xi} \cap \Omega = \emptyset$. Since $\gamma \sim 0 \pmod{\Omega}$, $n(\gamma, \xi_0) = 0$ and thus $n(\gamma, \xi) = n(\gamma, \xi_0) = 0$ since they are in same region w.r.t. Ω .

• If $z \in S_k^o$, then

$$\frac{1}{2\pi i} \int_{\partial S_i} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} f(z) & \text{,if } i = j \\ 0 & \text{, if } i \neq j \end{cases}$$

since $\frac{f(\xi)}{\xi - z}$ is analytic on S_i when $i \neq j$ and by Cauchy integral formula when i = j. Then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \frac{f(\xi)}{\xi - z} d\xi \quad \forall z \in \bigcup_{j \in I} S_j^o \underset{\text{by conti.}}{\Longrightarrow} f(z) = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \frac{f(\xi)}{\xi - z} d\xi \quad \forall z \in \Omega_{\delta}$$

Hence.

$$\int_{\gamma} f(z)dz = \frac{1}{2\pi i} \int_{\gamma} \int_{\Gamma_{\delta}} \frac{f(\xi)}{\xi - z} d\xi dz = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \int_{\gamma} \frac{f(\xi)}{\xi - z} dz d\xi \text{ (since it conti. on } \Gamma_{\delta}, \gamma)$$

$$= \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \left(f(\xi) \int_{\gamma} \frac{-1}{z - \delta} dz \right) d\xi = \frac{-1}{2\pi i} \int_{\Gamma_{\delta}} f(\xi) \underline{n(\gamma, \xi)} d\xi = 0$$

• If Ω is unbound: We replace Ω by $\Omega' := \Omega \cap B_R(0)$ for R large enough to get $\gamma \subset \Omega'$. Then $\forall a \in \widetilde{\mathbb{C}} \setminus \Omega'$,

$$\begin{cases} a \in \widetilde{\mathbb{C}} \setminus \Omega \implies n(\gamma, a) = 0 &, \text{ since } \gamma \simeq 0 \pmod{\Omega} \\ a \in \widetilde{\mathbb{C}} \setminus B_R(0) \implies n(\gamma, a) = 0 &, \text{ since } \frac{1}{z - a} \text{ is analytic on } B_R(0) \end{cases}$$

Hence, $\gamma \sim 0 \pmod{\Omega'}$, which is follow from the bounded case.

1.3 Cauchy's integral theorem

Recall: Let f: analytic in $B_{\rho}(a)$, γ : closed arc in $B_{\rho}(a)$. For $z \neq \gamma$,

$$f(z) = \frac{1}{2\pi i n(\gamma, z)} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

In fact we can have more relax assumption : f : analytic in $B_{\rho}(a) \setminus \{a\}$ with $\lim_{z \to a} (z - a) f(z) = 0$. Then

$$f(z) = \frac{1}{2\pi i n(\gamma, z)} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

Proof: For $z \in B_{\rho}(a)$, let $F(\xi) = \frac{f(\xi) - f(z)}{\xi - z}$, then F analytic on $B_{\rho}(a) \setminus \{a, z\}$. Also

$$\begin{cases} \lim_{\xi \to z} (\xi - z) F(\xi) = 0\\ \lim_{\xi \to a} (\xi - a) F(\xi) = \lim_{\xi \to a} \frac{(\xi - a)(f(\xi) - f(z))}{\xi - z} = 0 \end{cases}$$

By stronger Cauchy theorem,

$$\int_{\gamma} F(\xi) d\xi = 0 \implies f(z) = \frac{1}{2\pi i n(\gamma, z)} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

Author: Minerva 16

Lemma 1.3.1 (key lemma). If $\varphi(\xi)$ is continuous on γ , then

$$F_n(z) := \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n} d\xi$$

is analytic in each regions determined by γ and $F'_n(z) = nF_{n+1}(z)$.

Proof:

- n = 1:
 - •• continuous : $\forall z_0 \notin \gamma$, pick $\delta > 0$ s.t. $B_{\delta}(z_0) \cap \gamma = \emptyset$. If $|z z_0| < \delta/2 \leadsto |\xi z| > \delta/2 \, \forall \xi \in \gamma$. So

$$|F_1(z) - F_1(z_0)| = \left| \int_{\gamma} \varphi(\xi) \frac{z - z_0}{(\xi - z)(\xi - z_0)} dz \right| \le |z - z_0| M \frac{2}{\delta^2} L$$

where $M = \max_{\xi \in \gamma} \varphi(\xi)$ and L be the length of γ . Hence, $F_1(z)$ is continuous.

• differentiable :

$$\frac{F(z) - F(z_0)}{z - z_0} = \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)(\xi - z_0)} d\xi \xrightarrow{z \to z_0} F'(z_0) = \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z_0)^2} d\xi = F_2(z_0)$$

where red approaching is by

$$\left| \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)(\xi - z_0)} d\xi - \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z_0)^2} d\xi \right| \le \int_{\gamma} \left| \frac{\varphi(\xi)(z - z_0)}{(\xi - z)(\xi - z_0)^2} \right| |d\xi| \le \frac{4ML}{\delta^3} |z - z_0|$$

- By induction on n > 1:
 - continuous:

$$|F_n(z) - F_n(z_0)| = \left| \int_{\gamma} \varphi(\xi) \left(\frac{1}{(\xi - z)^n} - \frac{1}{(\xi - z_0)^n} \right) dz \right|$$

$$= \left| \int_{\gamma} \varphi(\xi) \left(\frac{\xi - z + z - z_0}{(\xi - z)^n (\xi - z_0)} - \frac{1}{(\xi - z_0)^n} \right) dz \right|$$

$$= \left| \int_{\gamma} \frac{\varphi(\xi)}{\xi - z_0} \left(\frac{1}{(\xi - z)^{n-1}} - \frac{1}{(\xi - z_0)^{n-1}} \right) d\xi + (z - z_0) \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n (\xi - z_0)} d\xi \right|$$

By induction hypothesis on $\varphi(\xi)/(\xi-z_0)$, we have

$$\left| \int_{\gamma} \frac{\varphi(\xi)}{\xi - z_0} \left(\frac{1}{(\xi - z)^{n-1}} - \frac{1}{(\xi - z_0)^{n-1}} \right) d\xi \right| \to 0$$

and similar method,

$$\left| (z - z_0) \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n (\xi - z_0)} d\xi \right| \le \frac{2^n M L}{\delta^{n+1}} |z - z_0|$$

Hence, $F_n(z)$ is continuous.

• differentiable :

$$\frac{F_n(z) - F_n(z_0)}{z - z_0} = \frac{1}{z - z_0} \int_{\gamma} \left(\frac{\varphi(\xi)/(\xi - z_0)}{(\xi - z)^{n-1}} - \frac{\varphi(\xi)/(\xi - z_0)}{(\xi - z_0)^{n-1}} \right) d\xi + \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n (\xi - z_0)} d\xi$$

$$\longrightarrow (n - 1) \int_{\gamma} \frac{\varphi(\xi)/(\xi - z_0)}{(\xi - z_0)^{n-1}} d\xi + \int_{\gamma} \frac{\varphi(\xi)/(\xi - z_0)}{(\xi - z_0)^{n-1}} d\xi = nF_{n+1}(z)$$

the former is by induction hypothesis.

Corollary 1.3.1. Let f be analytic in Ω . For $a \in \Omega$, $\exists B_{\rho}(a) \subset \Omega$, if $\gamma = C_{\rho}(a)$, then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$
 and $f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(z - \xi)^{n+1}} d\xi$

Hence, if f is analytic in Ω , then $f \in C^{\infty}(\Omega)$.

Theorem 1.3.1 (Removable singularities). If f is analytic in $\Omega' = \Omega \setminus \{\xi_1, ..., \xi_n\}$ and $\lim_{z \to \xi_i} (z - \xi_i) f(z) = 0 \ \forall i$, then $\exists !$ analytic function \widetilde{f} in Ω s.t. $\widetilde{f}|_{\Omega} = f$.

Proof: Let $a = \xi_i \leadsto \exists B_\rho(a) \setminus \{a\} \subseteq \Omega'$. If \widetilde{f} exists, then

$$\begin{cases} \widetilde{f}(a) = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{\widetilde{f}(\xi)}{\xi - a} d\xi = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{f(\xi)}{\xi - a} d\xi \\ \widetilde{f}(z) = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{\widetilde{f}(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{f(\xi)}{\xi - z} d\xi = f(z) \ \forall z \neq a \end{cases}$$

So we should define $\widetilde{f}(a) = \frac{1}{2\pi i} \int_{C_{\sigma}(a)} \frac{f(\xi)}{\xi - a} d\xi$

Observation: Let $F(z) = \frac{f(z) - f(a)}{z - a}$. $\because \lim_{z \to a} (z - a) F(z) = 0$ $\therefore \exists !$ analytic function s.t.

$$f_1(z) = \begin{cases} F(z) & \text{, for } z \neq a \\ f'(z) & \text{, for } z = a \end{cases}$$

 $\therefore \lim_{z \to a} (z - a) \frac{f_1(z) - f_1(a)}{z - a} = 0 \therefore \exists ! \text{ analytic function s.t.}$

$$f_2(z) = \begin{cases} \frac{f_1(z) - f_1(a)}{z - a} & \text{, for } z \neq a \\ f'_1(z) & \text{, for } z = a \end{cases}$$

That is $f_{k-1}(z) = f(a) + (z-a)f_k(z) \ \forall k = 1, ..., n$, where $f_0(z) = f(z)$.

$$\implies f(z) = f(a) + (z - a)f_1(a) + \dots + (z - a)^{n-1}f_{n-1}(a) + (z - a)^n f_n(z)$$

Differentiate n times and evaluation z = a, we can get $f^{(n)}(z) = n! f_n(a)$. Then we have

$$f(z) = f(a) + \frac{f'(a)}{1!}(z-a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(z-a)^{n-1} + (z-a)^n f_n(z)$$

Here for $z \in B_{\rho}(a)$,

$$f_n(z) = \frac{1}{2\pi i} \int_{C_{\rho(a)}} \frac{f_n(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{C_{\rho(a)}} \frac{1}{\xi - z} \left(\frac{f(\xi)}{(\xi - a)^n} - \sum_{k=0}^{n-1} \frac{f^k(a)}{k!(\xi - a)^{n-k}} \right) d\xi$$

Let $G_k(u) = \int_{C_{\rho}(a)} \frac{1/(\xi - z)}{(\xi - u)^k} d\xi$ for $u \in B_{\rho}(a)$. By key lemma, $G_{k+1}(u) = G_1^k(u)/k!$.

$$G_1(u) = \int_{C_{\rho(a)}} \frac{d\xi}{(\xi - u)(\xi - z)} = \frac{1}{u - z} \int_{C_{\rho(a)}} \left(\frac{1}{\xi - u} - \frac{1}{\xi - z} \right) d\xi$$
$$= \frac{2\pi i (n(C_{\rho(a)}, u) - n(C_{\rho(a)}, z))}{u - z} = 0$$

Author: Minerva

18

Hence, $G_k(u) = 0 \ \forall k$ and thus

$$f_n(z) = \frac{1}{2\pi i} \int_{C_o(a)} \frac{f(\xi)}{(\xi - z)(\xi - a)^n} d\xi$$

Theorem 1.3.2 (Cauchy's estimate). Let $M = \max_{\xi \in C_{\rho}(a)} |f(\xi)|$, then

$$|f^{n}(a)| = \left| \frac{n!}{2\pi i} \int_{C_{\rho}(a)} \frac{f(\xi)}{(\xi - a)^{n+1}} d\xi \right| \le \frac{n!}{2\pi} \frac{M \cdot 2\pi \rho}{\rho^{n+1}} \le n! M \rho^{-n}$$

Theorem 1.3.3 (Liouville's theorem). If f is bounded entire function, then f is a constant.

Proof: Say $|f(z)| \leq M \ \forall z \in \mathbb{C}$. For all $a \in \mathbb{C}$, $|f'(a)| \leq M\rho^{-1} \to 0$ as $\rho \to \infty$. Hence, $f'(a) = 0 \ \forall a \in \mathbb{C}$ which means f is constant.

Theorem 1.3.4 (Fundamental theorem of algebra). Given $p(z) = a_n z^n + \cdots + a_1 z + a_0$ with $a_n \neq 0, n \geq 1$, then $\exists \alpha \in \mathbb{C}$ s.t. $p(\alpha) = 0$.

Proof: If $\forall z \in \mathbb{C}$, $p(z) \neq 0$, then 1/p(z) is entire. Also

$$\left| \frac{1}{p(z)} \right| \le \frac{1}{|a_n||z|^n - |a_{n-1}||z|^{n-1} - \dots - |a_1||z| - |a_0|} \to 0 \text{ as } |z| \to \infty$$

Then $\exists R \in \mathbb{R} \text{ s.t. } |z| > R, |1/p(z)| \le 1$. Since $|z| \le R$ is compact set, $M := \max_{|z| \le R} |1/p(z)|$ exists. Then $|1/p(z)| \le \max\{1, M\} \ \forall z \in \mathbb{C}$. By Liouville's theorem, 1/p(z) = c, which contradict to $n \ge 1$.

Theorem 1.3.5 (Morera's theorem). If $\int_{\gamma} f(z)dz = 0 \ \forall \gamma$: closed arc in Ω , then f(z) is analytic in Ω .

Proof: Since the line integral is independent on path, there exists F: analytic s.t. F'(z) = f(z). Then f'(z) = F''(z) i.e. f is analytic.

Theorem 1.3.6 (zero order). If $\exists a \text{ s.t. } f(a) = 0 \text{ and } f^{(k)}(a) = 0 \ \forall k \neq \mathbb{N}, \text{ then } f \equiv 0.$

Proof: $\forall n \in \mathbb{N}, f(z) = f_n(z)(z-a)^n$, for some analytic function $f_n(z)$ in Ω . For $z \in B_\rho(a)$

$$f_n(z) = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{f(\xi)}{(\xi - a)^n (\xi - z)} d\xi$$

$$\implies |f(z)| = |z-a|^n |f_n(z)| \le \frac{|z-a|^n}{2\pi} \frac{M \cdot 2\pi\rho}{\rho^n(\rho - |a-z|)} = \left(\frac{|z-a|}{\rho}\right)^n \frac{M\rho}{\rho - |a-z|} \to 0 \text{ as } n \to \infty$$

Define

$$A_1 = \{z \in \Omega | f(z) = 0, f^{(k)}(z) = 0 \ \forall k \ge 1\}$$
 which is open

 $A_2 = \{z \in \Omega | f(z) \neq 0 \text{ or } f^k(z) \neq 0 \text{ for some } k \geq 1\}$ which is also open

Since $\Omega = A_1 \sqcup A_2$ is open connected and $A_1 \neq 0$, $A_2 = \emptyset$ and thus $f \equiv 0$ in Ω .

Definition 1.3.1. If $f \neq 0$ and f(a) = 0, then \exists the smallest $m \in \mathbb{N}$ s.t. $f^m(a) \neq 0$. This m is called the **zero order** of a. Since we can write $f(z) = (z - a)^m f_m(z)$ with $f_m(z)$ is analytic and $f_m(a) = \frac{1}{m!} f^m(a) \neq 0$.

1.4. SINGULARITY Minerva notes

1.4 Singularity

Recall: If $f \not\equiv 0$ in Ω , m: the zero order of $a \rightsquigarrow f(z) = (z-a)^m f_m(z)$ and $f_m(a) = \frac{1}{m!} f^m(a) \neq 0 \rightsquigarrow \exists$ a neighborhood of a s.t. $f_m(a) \neq 0$ in this neighborhood $\rightsquigarrow f(z) \neq 0$ in this neighborhood except a. Then z = a is an isolated zero.

Proposition 1.4.1. If f, g are analytic in Ω and $U \subset \Omega$ with an accumulation point $a \in U$, then f = g on $U \implies f = g$ on Ω .

Proof: Assume $f \neq g$ on Ω and $(f - g)(a) = 0 \implies a$ is isolated zero $(-\!\!\!-\!\!\!-\!\!\!-)$.

Corollary 1.4.1. $f \equiv 0$ in a subregion of $\Omega \leadsto f \equiv 0$ in Ω .

Corollary 1.4.2. $f \equiv 0$ on an arc $\rightsquigarrow f \equiv 0$ in Ω .

Corollary 1.4.3. Let f be analytic in Ω and $f(z) = f(a) + \frac{f'(a)}{1!}(z-a) + \cdots$ in $B_{\rho}(a)$. Let R be the radius of convergence, then $f(z) = f(a) + \frac{f'(a)}{1!} + \cdots$ in $\Omega \cap B_R(a)$.

Definition 1.4.1. Let f be analytic in $0 < |z - a| < \delta$ except perhaps at a itself. We call a an isolated singularity.

- removable : $\lim_{z \to a} (z a) f(z) = 0 \leadsto f(a)$ can be define s.t. f is analytic in $|z a| < \delta$.
- pole : $\lim_{z \to a} f(z) = \infty \leadsto \exists \delta' \le \delta$ s.t. $f(z) \ne 0$ for $0 < |z a| < \delta' \leadsto g(z) = f(z)^{-1}$ is analytic for $0 < |z a| < \delta' \leadsto \lim_{z \to a} g(z) = \frac{1}{\infty} = 0 \leadsto g(z)$ has removable singularity. $g(z) \ne 0$ in $G(z) \setminus \{a\} : g(z) = (z a)^m g_m(z)$ with $G(z) \ne 0 \leadsto f(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$ and define $G(z) = g(z)^{-1}$ be the **order of pole** $G(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$ and define $G(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$ and define $G(z) = g(z)^{-1}$ be the **order of pole** $G(z) = g(z)^{-1} = (z a)^{-m} \frac{1}{g_m(z)}$
- f(z) is analytic in Ω except for removable singularity or poles $\leadsto f$: meromorphic in Ω .

Property 1.4.1. f, g: analytic in Ω with $g \neq 0 \leadsto \frac{f}{g}$ is meromorphic, since the only possible pole are the zero of g and a common zero of f, g is pole or removable.

Definition 1.4.2.

- An isolated singularity is called an **essential singularity** if is not a removable singularity or a pole.
- $f(\infty)$ is always not defined so ∞ is regard as an isolated singularity

$$\infty$$
 is a $\begin{cases} \text{removable} \\ \text{pole} \\ \text{essential} \end{cases}$ if $g(z) = f(z^{-1})$ is a $\begin{cases} \text{removable} \\ \text{pole} \\ \text{essential} \end{cases}$ at 0

Example 1.4.1. Classify singularity for

(a)
$$\frac{\sin z}{z}$$
:
$$z = 0 \text{ is singularity and } \sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \cdots \implies \frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \cdots \implies \text{removable}$$

- (b) $e^{1/z}$: z = 0 is singularity: It is clear that is not removable. If it is a pole, then $z^m e^{1/z}$ is analytic at z = 0 (\rightarrow). Hence z = 0 is essential and thus $z = \infty$ is essential singularity for e^z .
- (c) $\frac{1}{z^3(z-2)^2}$: z=0 is pole of order 3 and z=2 is pole of order 2
- (d) $\frac{\sin z}{z^4}$ z = 0 is pole of order 4
- (e) $\frac{z+1}{z^{1/2}-1}$ z=1 is pole of order 1, since $\frac{z+1}{z^{1/2}-1} = \frac{(z+1)(z^{1/2}+1)}{z-1}$.

Theorem 1.4.1 (Weierstrass-Casorati). If z = a is an essential singularity of f, then $\forall B_{\rho}(a)$, f comes arbitrary close to any complex value in $B_{\rho}(a)$.

Proof: If not, $\exists B_{\rho}(a), A \in \mathbb{C}, \exists \delta > 0 \text{ s.t. } |f(z) - A| > \delta \text{ for } 0 < |z - a| < \rho, \text{ then}$

$$\lim_{z \to a} \frac{f(z) - A}{z - a} = \infty$$

We can write $\frac{f(z) - A}{z - a} = (z - a)^{-m} \frac{1}{g_m(z)}$ with $g_m(z) \neq 0$.

- If $m = 1 \leadsto f(z) A = \frac{1}{g_m(z)} \leadsto f$ is analytic at z = a
- If $m \ge 2 \leadsto f(z) = A + (z-a)^{-(m-1)} \frac{1}{g_m(z)} \leadsto \lim_{z \to a} f(z) = \infty \leadsto z = a$ is a pole of f(z).

1.5 Analytic function as mappings

f: analytic in Ω , $f:\Omega\to\mathbb{C}$. We say that $\Omega\subseteq\mathbb{C}$ is z-plane and \mathbb{C} is w-plane. Given a curve γ in Ω and a parameterize $z:[\alpha,\beta]\to\gamma$ with $t\mapsto z(t)$, Γ be the image of γ via f can be parameterized by $t\mapsto f(z(t))=:w(t)$.

• w'(t) = z'(t)f'(z(t)): If $z'(t_0) \neq 0$, then $f'(z_0) \neq 0 \implies w'(t_0) \neq 0$. Then we have $\arg w'(t_0) = \arg f'(z_0) + \arg z'(t_0)$

So if $f'(z_0) \neq 0$, then f is conformal in the neighborhood of z_0 .

- Now we still not know the image of analytic function, so we may ask that
 - •• whether $w_0 \in \operatorname{Im} f$ or not.
 - •• and how many such z_0 ? i.e. find the zero order of $f(z) w_0$ at $z = z_0$
- Now we consider $f \not\equiv 0$:

21

•• f has zero $z_1, ..., z_m$ (count multiplicity) in $B_{\rho}(a)$ and $\gamma \subset B_{\rho}(a)$ with $f \neq 0$ on γ .

Write $f(z) = (z - z_1) \cdots (z - z_m) g(z)$ with g(z): $\begin{cases} \text{analytic in } B_{\rho}(a) \\ \text{no zero in } B_{\rho}(a) \end{cases}$, then

$$\frac{f'(z)}{f(z)} = \frac{1}{z - z_1} + \dots + \frac{1}{z - z_m} + \frac{g'(z)}{g(z)}$$

$$\implies \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{m} n(\gamma, z_k) + \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz$$

Since g'(z)/g(z) is analytic in $B_{\rho}(a)$, by Cauchy theorem, $\int_{\gamma} \frac{g'(z)}{g(z)} dz = 0$ and thus

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{m} n(\gamma, z_k)$$

•• f has infinite zero in $B_{\rho}(a)$: Let $\gamma \subset B_{\rho'}(a) \subsetneq B_{\rho}(a)$ Claim: exists only finite many $z_{i_1}, ..., z_{i_m}$ in $B_{\rho'}(a)$ subproof: If \exists infinitely many $z'_j s$ in $B_{\rho'}(a)$, then by Bolzano-Weiestrass theorem, exists an accumulation point of $z'_j s$ in $B_{\rho'}(a) \subseteq B_{\rho}(a) \leadsto f \equiv 0$ on $B_{\rho'}(a) \leadsto f \equiv 0$ in Ω (\longrightarrow).

For $z'_k s$ outside $B_{\rho'}(a)$, $n(\gamma, z_k)$. Hence,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{m} n(\gamma, z_{i_k}) = \sum_{i} n(\gamma, z_i) \text{ (finite sum)}$$

This formula is called **argument principal**.

•• If $\gamma = C_{\rho}(b)$, then $n(\gamma, z_i) = 0$ or 1, then $\int_{\gamma} \frac{f'(z)}{f(z)} dz = \# \text{of zeros inside } \gamma$. Moreover we have it equal to

$$\frac{1}{2\pi i} \int_{\alpha}^{\beta} \frac{f'(z(t))}{f(z(t))} z'(t) dt = \frac{1}{2\pi i} \int_{\alpha}^{\beta} \frac{w'(t)}{w(t)} dt = \frac{1}{2\pi i} \int_{\Gamma} \frac{dw}{w} = n(\Gamma, 0)$$

•• Let $f(z) \neq w_0$ on γ . If $\{z_j(w_0) : j = 1, ...\}$ is the set of zeros of $f(z) = w_0$, then

$$\sum_{j} n(\gamma, z_{j}(w_{0})) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z) - w_{0}} dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{w}{w - w_{0}} dw = n(\Gamma, w_{0})$$

In particular, choose γ be the circle $C_{\rho}(b)$, then # of zeros of $f(z) - w_0$ inside $\gamma = n(\Gamma, w_0)$. Hence, if w_1, w_2 lie in the same region determined by Γ , then $\#f^{-1}(w_1) = \#f^{-1}(w_2)$ inside γ .

Property 1.5.1 (key result). If $f(z) - w_0$ has a zero with order being n, then for small $\varepsilon > 0$, $\exists \delta > 0$ s.t. $0 < |w - w_0| < \delta$, f(z) = w has exactly n roots in $|z - z_0| < \varepsilon$.

Proof: Pick $\varepsilon > 0$ s.t.

$$\begin{cases} f \text{ is analytic for } |z - z_0| < \varepsilon \\ z_0 \text{ is the only zero of } f(z) = w_0 \text{ (since } z_0 \text{ is isolated)} \\ f'(z_0) \neq 0 \text{ for } 0 < |z - z_0| < \varepsilon \end{cases}$$

We can get the third since

fif $f'(z_0) = 0$: since zero point is isolated or $f' \equiv 0$ i.e. f is constant $\leadsto n = \infty$ if $f'(z_0) \neq 0$: we can choose it by continuous

Choose ε suitable s.t. $B_{\delta}(w_0) \cap \Gamma = \emptyset$. Then $n(\Gamma, w_0) = \sum_{n \text{ times}} n(\gamma, z_0) = n$. Now $\forall w$ with $0 < |w - w_0| < \delta$, $\sum_{i=1}^{\infty} n(\gamma, z_i(w)) = n(\Gamma, w) = n(\Gamma, w_0) = n$ and $f'(z_i(w)) \neq 0$. $f'(z_i(w)) \neq 0$. $f'(z_i(w)) \neq 0$. $f'(z_i(w)) \neq 0$. $f'(z_i(w)) \neq 0$.

Corollary 1.5.1.

- f is an open mapping : for U open in Ω , $\forall z_0 \in U$, $\exists N_{\rho}(z_0) \subseteq \Omega$, choose smaller ε with $0 < \varepsilon < \rho$ s.t. if $w_0 = f(z_0)$, $\exists \delta > 0$ s.t. $B_{\delta}(w_0) \subseteq f(B_{\varepsilon}(z_0)) \subseteq f(U) \Longrightarrow f(U)$ is open in \mathbb{C} .
- f is analytic at z_0 and $f'(z_0) \neq 0$. For small ε (in above), there exists δ satisfy key result. We will prove that $B_{\varepsilon}(z_0)$ is homeomorphic to it image. Given a open ball $B_{\rho}(w)$ in $f(B_{\varepsilon}(z_0))$, say w = f(z), then $f^{-1}(B_{\delta}(w)) \stackrel{f}{\to} B_{\delta}(w)$. Since $f'(z) \neq 0$, f will be 1 1 and thus f will be homeomorphism (topologically).

Conversely, if $f'(z_0) = 0$, then f is not topologically. Thus $f'(z_0) \neq 0$.

Theorem 1.5.1 (maximal principal). If f(z) is analytic and non-constant, then |f(z)| has no max in Ω .

Proof: For $z \in \Omega$, if $f(z) = w_0$, then $\exists \delta > 0$ s.t. $B_{\delta}(w_0) \subset f(\Omega)$, and there exists w s.t. $|w| > |w_0|$, so $|w_0|$ is not max.

We have another form of maximal principal.

Theorem 1.5.2. If f is analytic in a bounded region Ω and continuous on $\partial\Omega$, then |f(z)| attains its max on $\partial\Omega$.

Proof: Since $\Omega \cup \partial \Omega$ is a compact set, $M = \max_{z \in \Omega \cup \partial \Omega} |f(z)|$ exists. If $f \neq$ constant, then $M \notin \{|f(z)| : z \in \Omega\} \implies M \in \{|f(z)| : z \in \partial \Omega\}$

Proof: (Another proof for maximal principal) If not, $\exists z_0 \in \Omega$ s.t. $|f(z)| \leq |f(z_0)| \, \forall \Omega$. Let $\gamma = C_{\rho}(z_0) \subseteq \Omega \leadsto z = z_0 + \rho e^{i\theta}, \, \theta \in (-\pi, \pi)$. Then

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{f(z_0 + \rho e^{i\theta}) \cdot i\rho e^{i\theta}}{\rho e^{i\theta}} d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(z_0 + \rho e^{i\theta}) d\theta$$

• If $\exists z \in \gamma$ s.t. $|f(z)| < |f(z_0)| \rightsquigarrow \exists [\theta_1, \theta_2] \subseteq [-\pi, \pi]$ s.t. $|f(z_0 + \rho e^{i\theta})| < |f(z_0)|$ for all $\theta \in [\theta_1, \theta_2]$. So

$$|f(z_0)| = \left| \frac{1}{2\pi} \left(\int_{-\pi}^{\theta_1} + \int_{\theta_1}^{\theta_2} + \int_{\gamma_2}^{\pi} \right) f(z_0 + \rho e^{i\theta}) d\theta \right| < |f(z_0)| \ (\longrightarrow)$$

• $\forall z \in \gamma$, $|f(z)| = |f(z_0)|$. Since ρ is arbitrary (only need $C_{\rho}(z_0) \subseteq \Omega$), $|f(z)| = |f(z_0)| \ \forall z \in B_{\rho}(z_0)$. Set

$$S = \{ z \in \Omega : |f(z)| = |f(z_0)| \}$$

which is open, since for all $z' \in S$, we can replace z_0 in above argument to get $|f(z)| = |f(z')| = |f(z_0)| \ \forall z \in B_{\rho}(z')$. Also $\Omega \setminus S = \{z \in \Omega : |f(z)| < |f(z_0)|\}$ is open. Since Ω is simply connect and $z_0 \in S$, $\Omega = S$ i.e. |f(z)| is constant. Since

$$|f(z)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(z + \rho e^{i\theta}) d\theta \right| \le \int_{-\pi}^{\pi} \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(z_0 + \rho e^{i\theta})| d\theta = |f(z)|$$

the equality holds, which means f(z) is constant on $C_{\rho}(z)$ for all $z \in \Omega$ and suitable ρ i.e. f(z) is constant in Ω .

Theorem 1.5.3 (Schwarz lemma).

- If f is analytic in $B_1(0)$ and $\begin{cases} f(B_1(0)) \subseteq \overline{B_1(0)} \\ f(0) = 0 \end{cases}$, then $|f(z)| \le |z|$ and |f'(0)| = 1
- If |f(z)| = |z| for some $z \neq 0$ or if |f'(0)| = 1, then f(z) = cz with |c| = 1.

Proof:

• Define $g(z) = \begin{cases} \frac{f(z)}{z} & \text{for } z \neq 0 \\ f'(0) & \text{for } z = 0 \end{cases}$. For $0 < \rho < 1, \forall z \in B_{\rho}(0)$, by maximal principal,

$$|g(z)| \le \max_{z \in C_{\rho}(0)} |g(z)| = \frac{|f(z)|}{\rho} < \frac{1}{\rho}$$

As $\rho \to 1$, |g(z)| < 1 on $B_1(0)$ i.e. $|f(z)| \le |z|$ and $|f'(0)| \le 1$.

• If |f(z)| = |z| for some $z \neq 0$ in $B_1(0)$, then $|g(z)| = 1 \rightsquigarrow |g(z)|$ attains a max in $B_1(0) \rightsquigarrow g(z) = c$ is a constant function. Since |f(z)| = |z|, |c| = 1.

1.6 Automorphism of unit disk and half plane

1.6.1 Automorphism of unit disk

- $f(z) = e^{i\theta}z : B_1(0) \to B_1(0)$ is a rotation $\leadsto f \in \text{Aut}(B_1(0))$, the group of **bianalytic map** from $B_1(0)$ to $B_1(0)$.
- For $0 \neq a \in B_1(0)$, $T_a(z) = \frac{a-z}{1-\overline{a}z} \leadsto T_a \in \text{Aut}(B_1(0))$:
 - •• $|a| < 1 \rightsquigarrow |1/\overline{a}| > 1 \rightsquigarrow T_a$ is analytic in $B_1(0)$
 - $\bullet \bullet \ \forall |z|=1,$

$$|T_a(z)| = \frac{|a-z|}{|1-\overline{a}z|} \frac{1}{|\overline{z}|} = \frac{|a-z|}{|\overline{z}-\overline{a}|} = 1$$

By maximal principal, $|T_a(z)| < 1 \ \forall z \in B_1(0)$.

- •• $T_a(0) = a, T_a(a) = 0 \rightsquigarrow T_a \circ T_a(0) = 0, T_a \circ T_a(a) = a \rightsquigarrow T_a \circ T_a(0) = 0, T_a \circ T_a(a) = a$. By Schwarz lemma, $T_a \circ T_a(z) = cz$. Evaluate a, then $c = 1 \rightsquigarrow T_a \circ T_a = id$ on $B_1(0)$
- •• Aut $(B_1(0)) = \{e^{i\theta} \circ T_a : \theta \in \mathbb{R}, a \in B_1(0)\}$: $\forall f \in \text{Aut}(B_1(0)), \text{ let } a \text{ s.t. } f(a) = 0. \text{ Define } g := f \circ T_a \in \text{Aut}(B_1(0)) \leadsto g(0) = 0, g^{-1}(0) = 0. \text{ By Schwarz lemma}, \begin{cases} |g'(0)| \leq 1 \\ |(g^{-1})'(0)| \leq 1 \end{cases} \implies |g'(0)| = 1 \leadsto g(z) = e^{i\theta}z \text{ i.e.}$ $f = e^{i\theta} \circ T_a.$

1.6.2 Automorphism of half plane

Since we already knew all element in $Aut(B_1(0))$, our idea is construct the bianalytic between $B_1(0)$ and half plane \mathbb{H} . Construct

$$S: \mathbb{H} \longrightarrow B_1(0)$$

$$z \longmapsto \frac{i-z}{i+z}$$

which is analytic in \mathbb{H} . $|i+z| < |i-z| \ \forall z \in \mathbb{H}$, since z in the half plane divide by perpendicular bisector of i, -i which contain i. Also $S^{-1}(z) = i\left(\frac{1-z}{1+z}\right)$ will sent $B_1(0)$ to \mathbb{H} , since

$$\operatorname{Im} S^{-1}(z) = \frac{(1 - r^2)\cos^2\theta + (1 + r^2)\sin^2\theta}{(1 + r\cos\theta)^2 + (r\sin\theta)^2} > 0 \text{ if } z = re^{i\theta} \text{ with } r < 1$$

Hence, S is bianalytic from $B_1(0)$ to \mathbb{H} , which will induce the group homomorphism

$$\varphi: \operatorname{Aut}(B_1(0)) \longrightarrow \operatorname{Aut}(\mathbb{H})$$

$$f \longmapsto s^{-1} \circ f \circ s$$

and it clear that the inverse is

$$\varphi^{-1}: \operatorname{Aut}(\mathbb{H}) \longrightarrow \operatorname{Aut}(B_1(0))$$

 $g \longmapsto s \circ f \circ s^{-1}$

Hence, $\operatorname{Aut}(B_1(0)) \simeq \operatorname{Aut}(\mathbb{H})$.

Definition 1.6.1. A linear functional transformation is $F_A(z) = \frac{az+b}{cz+d}$ with $ad-bc \neq 0$, where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$. It is clear that $F_B \circ F_A = F_{AB}$.

Theorem 1.6.1. $\operatorname{Aut}(\mathbb{H}) \simeq \operatorname{SL}_2(\mathbb{R})/\{\pm 1\} \simeq \{A \in \operatorname{SL}_2(\mathbb{R}) : \det A > 0\} =: \overline{\operatorname{SL}_2(\mathbb{R})}$

Proof:

- $A \in \overline{\mathrm{SL}_2(\mathbb{R})} \leadsto F_A \in \mathrm{Aut}(\mathbb{H})$:
 - •• pole is $z = -d/c \in \mathbb{R}$ which is not in $\mathbb{H} \leadsto F_A$ is analytic in \mathbb{H}

••
$$\operatorname{Im} \frac{az+b}{cz+d} = \operatorname{Im} \frac{(az+b)(c\overline{z}+d)}{|cz+d|^2} = \operatorname{Im} \frac{adz+bc\overline{z}}{|cz+d|^2} = \frac{(ad-bc)\operatorname{Im} z}{|cz+d|^2} > 0$$

- •• $F_A^{-1} = F_{A^{-1}} \leadsto F_A : \mathbb{H} \xrightarrow{\sim} \mathbb{H}$
- If $g \in \operatorname{Aut}(\mathbb{H})$ with $g(i) = i \rightsquigarrow \varphi^{-1}(g)(0) = s \circ g \circ s^{-1}(0) = 0$. By Schwarz lemma, $|(\varphi^{-1}(g))'(0)| \leq 1$. Similar we have $|\varphi(g)'(0)| \leq 1$. By Schwarz lemma, $\varphi(g) = e^{i\theta}$. Let

$$B = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \in \overline{\mathrm{SL}_2(\mathbb{R})} \implies \begin{cases} F_B(i) = i \\ F_B'(i) = e^{i\theta} \end{cases} \implies \varphi^{-1}(F_B)(z) = cz$$

Differentiate in both side and substitute z=0 we have $e^{i\theta}=c$. Hence, $\varphi^{-1}(F_B)=\varphi^{-1}(g) \rightsquigarrow g=F_B$.

• $\forall z_0 \in \mathbb{H}, \exists D \in \overline{\mathrm{SL}_2(\mathbb{R})} \text{ s.t. } F_D(i) = z_0 :$

Let
$$D_1 = \begin{pmatrix} \sqrt{\text{Im } z_0} & 0 \\ 0 & \sqrt{\text{Im } z_0}^{-1} \end{pmatrix} \rightsquigarrow F_{D_1}(i) = i \text{ Im } z_0$$
. Let $D_2 = \begin{pmatrix} 1 & \text{Re} z_0 \\ 0 & 1 \end{pmatrix}$, then $F_{D_2} \circ F_{D_1}(i) = z_0$. Let $D = D_2 D_1$, then $F_D(i) = z_0$.

• $\forall f \in \text{Aut}(\mathbb{H}), \ \exists z_0 \text{ s.t.} \ f(z_0) = i \leadsto \exists D \in \overline{\operatorname{SL}_2(\mathbb{R})} \text{ s.t.} \ F_D(i) = z_0 \leadsto g = f \circ F_D \text{ and } g(i) = i \leadsto g = F_B \text{ for some } B \in \overline{\operatorname{SL}_2(\mathbb{R})} \leadsto f = F_D^{-1} \circ F_B = F_{D^{-1}B}$

1.7 Residue

1.7.1 Laurent series

Recall: f(z) is analytic in Ω and $z_0 \in \Omega$.

$$f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \dots + \frac{f^n(z_0)}{n!}(z - z_0)^n + f_{n+1}(z)(z - z_0)^{n+1}$$

where

$$f_{n+1}(z) = \frac{1}{2\pi i} \int_{C_n(z_0)} \frac{f(\xi)}{(\xi - z_0)^{n+1}(\xi - z)} d\xi$$

Then we can general the Taylor expansion.

Theorem 1.7.1 (Laurent series). f: analytic in Ω : $\rho < |z - z_0| < \eta$. Then $f(z) = \sum_{-\infty}^{\infty} a_n (z - z_0)^n$ converge in Ω with $a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)d\xi}{(\xi - z_0)^{n+1}}$, where γ : simple closed arc in Ω , z_0 lies inside γ . The part of $\sum_{-\infty}^{-1} a_n (z - z_0)^n$ is called **singular part**.

Proof: Given $z \in \Omega$, choose $\rho < \rho_1 < \eta_1 < \eta$ such that $\rho_1 < |z - z_0| < \eta$, C_1 contain γ and C_2 inside γ . Choose two line (black) connected C_1 and C_2 do not pass z and let L_1, L_2 be the right and left half curve in below, then $L_1 + L_2 = C_1 - C_2$. WLOG z inside L_1 .

$$f(z) = \frac{1}{2\pi i} \int_{L_1} \frac{f(\xi)}{\xi - z} d\xi + \frac{1}{2\pi i} \int_{L_2} \frac{f(\xi)}{\xi - z} d\xi = \underbrace{\frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)}{\xi - z} d\xi}_{(1)} - \underbrace{\frac{1}{2\pi i} \int_{C_2} \frac{f(\xi)}{\xi - z} d\xi}_{(2)}$$

$$(1) = \frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)}{(\xi - z_0)} \left(1 - \frac{z - z_0}{\xi - z_0} \right) = \frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)}{\xi - z_0} \left(1 + \frac{z - z_0}{\xi - z_0} + \dots + \frac{\left(\frac{z - z_0}{\xi - z_0}\right)^n}{1 - \frac{z - z_0}{\xi - z_0}} \right)$$

$$\implies a_n = \frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi$$

and the error is

$$R_n = \frac{(z - z_0)^n}{2\pi i} \int_{C_1} \frac{f(\xi)d\xi}{(\xi - z_0)^n (z - z_0)} \implies |R_n| \le \frac{|z - z_0|^n}{2\pi} \frac{M \cdot 2\pi \eta_1}{\eta_1^n (\eta_1 - |z - z_0|)} \to 0$$

Similarly, we have

$$-(2) = \int_{C_2} \frac{f(z)}{z - z_0} \left(\frac{1}{\frac{\xi - z_0}{z - z_0} - 1} \right) d\xi \implies a_{-m} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z_0)^{-m+1}} d\xi$$

Remark 1.7.1. z_0 : isolated singularity $\leadsto f$ analytic in $\Omega: 0 < |z - z_0| < \eta \implies f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$

- $a_n = 0 \ \forall n < 0 \leadsto z_0$: removable
- $a_n = 0 \ \forall n < -m \ \text{but} \ a_m \neq 0 \leadsto z_0$: pole of order m
- $a_n \neq 0 \ \forall n \to \infty \leadsto z_0$: essential singularity

If z_0 is a pole of order m, then

$$\frac{1}{2\pi i} \int_{C_{\rho}(z_0)} f(z) dz = \underbrace{\frac{1}{2\pi i} \int_{C_0(z_0)} \frac{a_{-m}}{(z - z_0)^m} dz}_{\text{have primitive}} + \dots + \underbrace{\frac{1}{2\pi i} \int_{C_0(z_0)} \frac{a_{-1}}{(z - z_0)} dz}_{\text{Analytic}} + \underbrace{\frac{1}{2\pi i} \int_{C_0(z_0)} p(z) dz}_{\text{analytic}}$$

$$= a_{-1} n(C_{\rho}(z_0), z_0) = a_{-1} =: \operatorname{Res}_{z=z_0} f(z)$$

Definition 1.7.1.

- A region Ω is called **multiply connected** if it is not simply connected
- Ω has the finite **connectivity** n if $\widetilde{C} \setminus \Omega$ has exactly n connected components $A_1, A_2, ..., A_n$ and usually let $\infty \in A_n$.

Recall $\forall \gamma$: cycle in Ω , $n(\gamma, a)$ is constant in $A_i \ \forall i$ and $n(\gamma, a) = 0$ on A_n . For i = 1, ..., n - 1, since A_i is bounded, as in the proof of fact about simply connectivity, $\exists \gamma_i \subset \Omega$ s.t. $n(\gamma_i, a) = 1 \ \forall a \in A_i$ and $n(\gamma_i, b) = 0 \ \forall b \in A_j \neq A_i$. $\forall \gamma$: cycle in Ω , let $c_i = n(\gamma, a) \ \forall a \in A_i$. Since $\forall a \in \widetilde{\mathbb{C}} \setminus \Omega$, say $a \in A_i$, then

$$n(\gamma - c_1\gamma_1 - \dots - c_{n-1}\gamma_{n-1}, a) = n(\gamma, a) - c_i n(\gamma_i, a) = 0$$

i.e. $\gamma \sim c_1 \gamma_1 + \cdots + c_{n-1} \gamma_{n-1}$ w.r.t. Ω . Hence, if f is analytic in Ω , then

$$\int_{\gamma} f dz = c_1 \int_{\gamma_1} f dz + \dots + c_{n-1} \int_{\gamma_{n-1}} f dz$$

f(z) is analytic in Ω except for isolated singularities $a_1,...,a_n$. Let $\Omega'=\Omega\setminus\{a_1,...,a_n\}$ and $\gamma_i=C_{\rho_i}(a_i)$ with $\begin{cases} 0<|z-a|<\rho_i\subset\Omega'\\ \gamma_i\sim 0 \text{ w.r.t. }\Omega \end{cases}$. Let γ be a cycle in Ω' with $\gamma\sim 0$ w.r.t. Ω . Since

$$n(\sum_{i=1}^{n} n(\gamma, a_i)\gamma_i, a_j) = \sum_{i=1}^{n} n(\gamma, a_i)n(\gamma_i, a_j) = n(\gamma, a_j) \ \forall j$$

and $\gamma \sim \sum_{i=1}^{n} n(\gamma, a_i) \gamma_i$ w.r.t. $\Omega, \gamma \sim \sum_{i=1}^{n} n(\gamma, a_i) \gamma_i$ w.r.t. Ω' . Hence, we have

$$\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{i=1}^{n} n(\gamma, a_i) \left(\frac{1}{2\pi i} \int_{\gamma_i} f(z)dz \right)$$

If a_i is pole, then $\frac{1}{2\pi i} \int_{\gamma_i} f(z) dz = \operatorname{Res}_{z=a_i} f(z)$. If all a_i are pole, we can rewrite it as

$$\sum_{i=1}^{n} n(\gamma, a_i) \operatorname{Res}_{z=a_i} f(z)$$

Property 1.7.1 (key fact). If z_0 is a pole of f of order m, then

$$a_{-1} = \operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} \frac{1}{(m-1)!} \left(\frac{d}{dz}\right)^{m-1} (z-z_0)^m f(z)$$

Proof: Since $(z-z_0)^{m-1}f(z) = a_{-m} + a_{-m+1}(z-z_0) + \dots + a_{-1}(z-z_0)^{m-1} + p(z)(z-z_0)^m$. \square

1.7.2 Evaluation definite integrals

$$(1) \ \int_0^{2\pi} \frac{\sin^2 \theta}{5 + 4\cos \theta} d\theta : z = e^{i\theta} \leadsto dz = ie^{i\theta} = izd\theta, \\ \sin \theta = \frac{z - z^{-1}}{2}, \\ \cos \theta = \frac{z + z^{-1}}{2}.$$

$$L = \frac{-1}{4i} \int_{|z|=1} \underbrace{\frac{(z^2 - 1)^2}{z^2 (2z^2 + 5z + 2)}}_{=f} dz = \frac{-2\pi i}{4i} (\operatorname{Res}_{z=-1/2} f + \operatorname{Res}_{z=0} f) = \frac{-5}{4}$$

(2) $\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2 + 1} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1 - \cos 2x}{x^2 + 1} dx$: Consider the curve Γ consists the segment from -R to R and counterclockwise circular arc γ from R to -R with radius R and center in 0.

$$\int_{\Gamma} \frac{1 - e^{2\pi i z}}{z^2 + 1} dz = \int_{-R}^{R} \frac{1 - (\cos 2x + i \sin 2x)}{x^2 + 1} dx + \int_{\gamma} \frac{1 - e^{2\pi i z}}{z^2 + 1} dz$$

Calculate residue, it will be $2\pi i \operatorname{Res}_{z=i} f = \pi (1 - e^{-2})$. Also,

$$\left| \int_{\gamma} f dz \right| \le \int_{\gamma} \frac{1 + |e^{2zi}|}{|z|^2 - 1} |dz| \le \int_{\gamma} \frac{1 + |e^{-2\operatorname{Im} z}|}{|z|^2 - 1} |dz| \le \frac{2\pi R}{R^2 - 1} \to 0 \text{ as } R \to \infty$$

Hence,

$$\pi(1 - e^{-2}) = \lim_{R \to \infty} \left(\int_{-R}^{R} \frac{1 - (\cos 2x + i \sin 2x)}{x^2 + 1} dx + \int_{\gamma} \frac{1 - e^{2\pi i z}}{z^2 + 1} dz \right)$$
$$= \int_{-\infty}^{\infty} \frac{1 - (\cos 2x + i \sin 2x)}{x^2 + 1} dx$$

Consider the real part and thus $L = \pi(1 - e^{-2})$.

(3) $\int_0^\infty \frac{\ln x}{x^2 + a^2} dx$, a > 0: First we check that will converge.

•
$$\int_{1}^{\infty} \frac{\ln x}{x^2 + a^2}$$
 will converge since $\frac{\ln x}{x^2 + a^2} < \frac{1}{x^{1.5}}$ for x sufficiently large.

•
$$\int_0^1 \frac{\ln x}{x^2 + a^2} dx$$
 will converge since in

$$\int_0^1 \frac{-\ln x dx}{x^2 + a^2} dx \le \int_0^1 \frac{-\ln x dx}{a^2} = \frac{-1}{a^2} \left(x \ln x - x \right) \Big|_0^1 = \frac{1}{a^2}$$

Let C_{ρ} be the curve $\{\rho e^{i\theta}: 0 \leq \theta \leq \pi\}$ and $\gamma = \overline{(-R)(-r)} - C_r + \overline{rR} + C_R$. We define $\ln x$ by branch $-\pi/2$. By residue,

$$\int_{\gamma} \frac{\log z}{z^2 + a^2} dz = 2\pi i \operatorname{Res}_{z=ai} \frac{\log z}{z^2 + a^2} = 2\pi i \lim_{z \to ai} \frac{\log z}{z + ai} = \frac{\pi}{a} \left(\ln a + \frac{\pi}{2} \right)$$

On C_R , $z = Re^{i\theta}$, $0 \le \theta \le \pi$

$$\left| \frac{\log z}{z^2 + a^2} \right| = \left| \frac{\ln R + \theta i}{R^2 - a^2} \right| \le \frac{\ln R + \pi}{R^2 - a^2} \implies \left| \int_{C_R} \frac{\log z}{z^2 + a^2} \right| \le \frac{\pi R (\ln R + \pi)}{R^2 - a^2} \to 0 \text{ as } R \to 0$$

On $-C_r$,

$$\left| \int_{-C_r} \frac{\log z}{z^2 + a^2} dz \right| \le \left(\frac{-\ln r + \pi}{a^2 - r^2} \right) \pi r \to 0 \text{ as } r \to 0$$

Hence,

$$\frac{\pi}{a} \left(\ln a + \frac{\pi}{2} i \right) = \lim_{\substack{r \to 0 \\ R \to \infty}} \left(\int_{-R}^{-r} \frac{\ln z}{z^2 + a^2} dz + \int_{r}^{R} \frac{\ln z}{z^2 + a^2} dz + \int_{C_R} f dz + \int_{-C_r} f dz \right)$$

$$= \int_{0}^{\infty} \frac{\ln x}{x^2 + a^2} dx + \int_{-\infty}^{0} \frac{\ln(-x) + \pi i}{x^2 + a^2} dx = 2 \int_{0}^{\infty} \frac{\ln x}{x^2 + a^2} dx + \pi i \int_{0}^{\infty} \frac{dx}{x^2 + a^2}$$

Hence,
$$\int_0^\infty \frac{\ln x}{x^2 + a^2} dx = \frac{\pi \ln a}{2a}$$

1.7.3 Rouche's theorem

Recall: Argument principle: Let $f \not\equiv 0$ be analytic in $B_{\rho}(a)$ and $\gamma \subseteq B_{\rho}(a)$ with $f \neq 0$ on γ . Let z_i be the roots of f(z) = 0, then

$$\sum_{j} n(\gamma, z_j) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

Theorem 1.7.2 (General form). Let f(z) be meromorphic in Ω with zeros a_i 's and the poles b_k 's. Then $\forall \gamma \sim 0$ w.r.t. Ω and $a_i, b_k \notin \gamma$,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)dz}{f(z)} = \sum_{i} n(\gamma, a_i) - \sum_{k} n(\gamma, b_k)$$

Proof: Rearrange a_i 's and b_k 's s.t. there is $h_i \ \widetilde{a}_i$'s in $\{a_1, a_2, ...\}$ and $\ell_j \ \widetilde{b}_j$'s in $\{b_1, b_2, ...\}$, where $\widetilde{a}_i \neq \widetilde{a}_j, \widetilde{b}_i \neq \widetilde{b}_j \ \forall i \neq j$. Since zero and pole are isolated, $\exists \gamma_i$ and γ_i' s.t.

$$\begin{cases} n(\gamma_i, \widetilde{a}_j) = n(\gamma_i', \widetilde{b}_j) = \delta_{ij} \\ n(\gamma_i, \widetilde{b}_k) = n(\gamma_i', \widetilde{a}_k) = 0 \\ \gamma_i \sim 0, \gamma_i' \sim 0 \text{ w.r.t. } \Omega \end{cases}$$

We have known that $\gamma \sim \sum_{i} n(\gamma, \tilde{a}_i) \gamma_i + \sum_{j} n(\gamma, \tilde{b}) j) \gamma'_j$ w.r.t. $\Omega' = \Omega \setminus \{a_i, b_j \ \forall i, j\}$. Observe that $\frac{f'(z)}{f(z)}$ is meromorphic. By residue formula,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i} n(\gamma, \widetilde{a}_{i}) \operatorname{Res}_{z=\widetilde{a}_{i}} f + \sum_{j} n(\gamma, \widetilde{b}_{j}) \operatorname{Res}_{z=\widetilde{b}_{j}} f$$

Now, for $a = \tilde{a}_i$, $h = h_i$, write $f(z) = (z - a)^h f_h(z)$, $\frac{f'(z)}{f(z)} = \frac{h}{z - a} + \frac{f'_h(z)}{f_h(z)} \rightsquigarrow \operatorname{Res}_{z=a} \frac{f'(z)}{f(z)} = h$. For $b = \tilde{b}_j$, $\ell = \ell_j$, write $f(z) = (z - b)^{-\ell} g_{\ell}(z)$, $\frac{f'(z)}{f(z)} = \frac{-\ell}{z - b} + \frac{g'_{\ell}(z)}{g_{\ell}(z)} \rightsquigarrow \operatorname{Res}_{z=b} \frac{f'(z)}{f(z)} = -\ell$. Hence,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i} n(\gamma, \widetilde{a}_{i}) h_{i} - \sum_{j} n(\gamma, \widetilde{b}_{j}) \ell_{j} = \sum_{i} n(\gamma, a_{i}) - \sum_{k} n(\gamma, b_{k})$$

Remark 1.7.2. More general, if g(z) is analytic in Ω , then

$$\frac{1}{2\pi i} \int_{\gamma} g(z) \frac{f'(z)}{f(z)} dz = \sum_{i} n(\gamma, a_i) g(a_i) - \sum_{j} n(\gamma, b_j) g(b_j)$$

which can prove by same method in above.

Theorem 1.7.3 (Rouche's theorem). Let $\gamma \sim 0$ w.r.t. Ω and $n(\gamma, z) = 0$ or $1 \forall z \notin \gamma$. Let f and g be analytic in Ω . If |f(z) - g(z)| < |f(z)| on γ , then f and g have the same number of zeros inside γ .

Proof: By assumption, $f \neq 0$ and $g \neq 0$ on γ , $\left| \frac{g(z)}{f(z)} - 1 \right| < 1$ on γ . Let $\omega = F(z) = \frac{g(z)}{f(z)} \rightsquigarrow \Gamma := \operatorname{Im} F|_{\gamma} \subset B_1(1) \rightsquigarrow n(\Gamma, 0) = 0$. Then

$$0 = n(\Gamma, 0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{d\omega}{\omega} = \frac{1}{2\pi i} \int_{\gamma} \frac{F'(z)dz}{F(z)}$$

$$= \# \text{ zero of } F - \# \text{ pole of } F \text{ inside } \gamma$$

$$= \# \text{ zero of } g - \# \text{ zero of } f \text{ inside } \gamma$$

Example 1.7.1. Show that $e^z = az^n$ has exactly n solution in |z| < 1, where a > e.

Author: Minerva 30

Proof: $|e^z| = e^x \le e \ \forall z \in C_1(0), \ |-az^n| = a > e \ \forall z \in C_1(0) \implies |-az^n| > |e^z| \ \forall z \in C_1(0) \rightsquigarrow e^z = az^n \text{ and } -az^n \text{ have the same number of zeros in } |z| < 1 \rightsquigarrow e^z = az^n \text{ has exactly } n \text{ solution in } |z| < 1.$

Question 1: Let w = f(z) be analytic in Ω . For $w_0 \in f(\Omega)$, find $z_j(w_0) \in \Omega$ s.t. $f(z_j(w_0)) = w_0$.

Assume that for $|w-w_0| < \delta$, f-w has exactly n roots $z_j(w)$ in $|z-z_0| < \varepsilon$.

• Set $g(z) = z \longrightarrow \sum_{j=1}^n z_j(w) = \frac{1}{2\pi i} \int_{C_{\varepsilon}(z_0)} \frac{f'(z)}{f(z) - w} z dz$. In particular, n = 1 we have

$$f^{-1}(w) = \frac{1}{2\pi i} \int_{C_{\varepsilon}(z_0)} \frac{f'(z)}{f(z) - w} z dz$$

• Set $g(z) = z^m \leadsto \sum_{j=1}^n z_j(w)^m = \frac{1}{2\pi i} \int_{C_{\varepsilon}(z_0)} \frac{f'(z)}{f(z) - w} z^m dz$ which is analytic w.r.t. w. Since the elementary symmetric polynomial of $z_1(w), ..., z_n(w)$ is in the \mathbb{C} -algebra generated by k-power sum $z_k(w)$ of $z_1(w), ..., z_n(w)$ which is also analytic in Ω . Hence, we can calculate the roots of $z^n - s_1(w)z^{n-1} + \cdots + (-1)^n s_n(w)$ which is $z_1(w), ..., z_n(w)$.

Question 2: Find the number of zero of f in |z| < R. Write $f(z) = P_{n-1} + z^n f_n(z)$. If we can choose n s.t. $R^n |f_n(z)| < |P_{n-1}(z)|$ on |z| = R, then # zero of f(z) = # zero of $P_{n-1}(z)$ in |z| < R.

1.8 Sum and product

Definition 1.8.1. We write $f_n \xrightarrow{\overline{\text{unif}}} f$ in Ω if f_n converge uniform on each compact subset in Ω .

Theorem 1.8.1 (Weierstrass theorem). f_n : analytic in Ω_n with $(\Omega_n \subset \Omega_{n+1})$ and $f_n \xrightarrow{\overline{\text{unif}}} f$ in $\Omega = \bigcup_n \Omega_n$. Then f is analytic and $f'_n \xrightarrow{\overline{\text{unff}}} f'$.

Proof:

• For a fixed $\overline{B_{\rho}} \subset \Omega$, $\exists n_0$ s.t. $\overline{B_{\rho}(a)} \subseteq \Omega \ \forall n \geq n_0$. By Cauchy integral formula,

$$f_n(z) = \frac{1}{2\pi i} \int_{C_\rho(a)} \frac{f_n(\xi)}{\xi - z} d\xi \text{ in } B_\rho(a)$$

By assumption, since $f_n \to f$ uniformly converge in $B_{\rho}(a)$

$$f(z) = \lim_{n \to \infty} f_n(z) = \int_{C_{\rho}(a)} \frac{\lim_{n \to \infty} f_n(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{f(\xi)}{\xi - z} d\xi$$

which is analytic.

• $\forall n \geq n_0, f'_n(z) = \frac{1}{2\pi i} \int_{C_{\rho}(a)} \frac{f_n(\xi)}{(\xi - z)^2} d\xi$ in $B_{\rho}(a)$. For all $\delta < \rho$, choose $\delta' \in (\delta, \rho)$. Since f_n uniformly converge to f in $\overline{B_{\delta'}(a)}$, for sufficiently large n, we have

$$|f'(z) - f'_n(z)| \le \frac{1}{2\pi} \int_{C_{\delta'}(a)} \frac{|f(\xi) - f_n(\xi)|}{|\xi - z|^2} |d\xi| \le \frac{\varepsilon \delta \pi}{2\pi |\delta' - \delta|^2} \ \forall z \in \overline{B_{\delta}(a)}$$

and thus f'_n is uniformly converge to f in $\overline{B_\delta(a)}$. Since any compact subset of Ω can be covered by $\{\overline{B(\delta_1)(a_1)},...,\overline{B(\delta_k)(a_k)}\}$, the result follow.

Theorem 1.8.2 (Mittag-Leffler theorem). Let $\{b_n\} \subset \mathbb{C} \setminus \{0\}$ with $\lim_{n \to \infty} b_n = \infty$ and let $P_m(z) \in \mathbb{C}[z]$ with $P_m(0) \neq 0$. Then \exists a meromorphic function f(z) in \mathbb{C} with pole at b_m 's is $P_m(1/(z-b_m))$.

Proof:

• Since $P_m\left(\frac{1}{z-b_m}\right)$ is analytic for $|z|<|b_m|$, consider the Taylor series at z=0

$$F_m(z) := P_m\left(\frac{1}{z - b_m}\right) = a_0^m + a_1^m + \dots + \left(\frac{1}{2\pi i} \int_{C_{|b_m|/2}(0)} \frac{F_m(\xi)}{\xi^{n+1}(\xi - z)} d\xi\right) z^{m+1}$$

Let $M_m := \max_{|z|=|b_m|/2} |F_m(z)|$, $q_m(z) = a_0^m + \dots + a_{n_m}^m z^{n_m}$ and choose n_m s.t. $2^{n_m} \ge M^m \cdot 2^m$.

Then

$$|F_m(z) - q_m(z)| \le \frac{M_m}{2\pi} \frac{|z|^{n_m+1}}{(|b_m|/2)^{n_m+1}} \frac{2\pi |b_m|/2}{|b_m|/4} = \frac{M_m}{2^{n_m}} \le \frac{1}{2^m}$$

 $\forall N \in \mathbb{N}, \exists n_N > 0 \text{ s.t. } n \geq n_N, |b_n| > N. \text{ So for } |z| \leq N/4 < |b_n|/4 \ \forall n \geq n_N,$

$$|F_n(z) - q_n(z)| \le \left(\frac{1}{2}\right)^n \ \forall n \ge n_N, \ |z| \le \frac{|N|}{4}$$

By Weierstrass M-test, $g_N(z) := \sum_{n=n_N}^{\infty} (F_n(z) - q_n(z))$ converge uniformly on $|z| \le N/4$ and thus is analytic in |z| < N/4. Define

$$f_N(z) = \sum_{n=1}^{N_n-1} (F_n(z) - q_n(z)) + g_N(z)$$
: meromorphic $|z| < N/4$ with poles $b_1, ..., b_{n_N-1}$

Notice that

$$|g_{N+1} - g_N| = \left| \sum_{n_N+1}^{n_{N+1}-1} (F_n(z) - q_n(z)) \right| \le \sum_{n_N+1}^{n_{N+1}-1} \frac{1}{2^n} \le \frac{1}{2^{n_N}} \to 0 \text{ as } N \to \infty$$

Then g_N is Cauchy sequence and thus $g_N \to g$ uniformly in \mathbb{C} .

$$|f_{N+1} - f_N| \le \left| \sum_{n=n_N}^{n_{N+1}-1} (F_n(z) - q_n(z)) \right| + |g_{N+1} - g_N| \le \frac{2}{2^{n_N}} \text{ for } |z| \le N/4$$

Then f_N is Cauchy sequence and thus

$$f_n \to f = \sum_{n=1}^{\infty} (F_n(z) - q_n(z)) + g(z) \text{ as } N \to \infty$$

where g(z) is entire function.

Author: Minerva 32

Remark 1.8.1. If we consider $\{b_m\}_{m\in\mathbb{N}}\cup\{0,...,0\}$, then $\widetilde{f}(z)=f(z)+\sum_{i=1}^{\ell}\overline{P}_i(1/z)$.

Example 1.8.1. $f(z) = \frac{\pi^2}{\sin^2 \pi z}$ has pole when $z \in \mathbb{Z}$.

$$\frac{\pi^2}{\sin^2 \pi z} = \frac{\pi^2}{\left(\sum_{n=1}^{\infty} \frac{(-\pi z)^{2n-1}}{(2n-1)!}\right)} = \frac{1}{z^2} \left(1 - \frac{(\pi z)^2}{3!} + \cdots\right) = \frac{1}{z^2} \left(1 - \left(\frac{(\pi z)^2}{3!} + \cdots\right) + \cdots\right)$$

The singularity part at 0 is $\frac{1}{z^2}$. Since $\sin^2 \pi (z-n) = \sin^2 \pi z$. the singularity part at n is $\frac{1}{(z-n)^2}$. Then

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} + g(z)$$

where g(z) analytic in \mathbb{C} . Claim g(z) = 0:

subproof: g has period $\omega = 1$.

$$|\sin \pi z|^2 = \cosh^2 \pi y - \cos^2 \pi x$$

and thus

$$\frac{\pi^2}{|\sin^2 \pi z|} \le \frac{\pi^2}{|\cosh^2 \pi y| - \cos^2 \pi x} \le \frac{\pi^2}{|\cosh^2 \pi y| - 1} \xrightarrow[0 \le x \le 1]{\text{unif.}} 0 \text{ as } |y| \to \infty$$

and $\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} \xrightarrow[0 \le x \le 1]{\text{unif.}} 0$ as $|y| \to \infty \implies g(z) \xrightarrow[0 \le x \le 1]{\text{unif.}} 0$ as $|y| \to \infty$. Then |g(z)| is bounded in $0 \le x \le 1$ and thus bounded in \mathbb{C} . By Lioville's theorem, g=c is constant. Since $\lim_{|y| \to \infty} g(z) = 0 \leadsto g = 0$.

Definition 1.8.2.

- $p_n \neq 0 \ \forall n, \ q_n = p_1 p_2 \cdots p_n, \ \prod_{n=0}^{\infty} p_n = \lim_{n \to \infty} q_n.$
- In general, $\prod_{n=1}^{\infty} p_n$ converge $\iff \#\{p_i|p_i=0\} < \infty$ and $\prod_{p_n \neq 0} p_n$ exists.

Fact 1.8.1.

- $\prod_{n=1}^{\infty} p_n$ converge $\implies \lim_{n\to\infty} p_n = 1 \rightsquigarrow \prod_{n=1}^{\infty} (1+a_n)$ with $\lim_{n\to\infty} a_n = 0$.
- $\prod (1+a_n)$ with $(1+a_n) \neq 0 \iff \sum \log(1+a_n)$ converge (principal branch).
- $\prod (1 + a_n)$ absolutely converge $\iff \sum |a_n|$ converge :

$$\lim_{z \to 0} \frac{\log(1+z)}{z} = 1 \leadsto \forall \varepsilon > 0, \ (1-\varepsilon)|a_n| < |\log(1+a_n)| < (1+\varepsilon)|\varepsilon|$$

• g(z): entire $\leadsto f(z) = e^{g(z)}$: entire and $\neq 0$.

• f(z): entire and never zero, for a fixed z_0

$$g(z) := \int_{\gamma_z} \frac{f'(\xi)}{f(\xi)} d\xi + c_0, \ e^{c_0} = f(z_0)$$

where γ_z . Then $g'(z) = \frac{f'(z)}{f(z)} \rightsquigarrow \frac{d}{dz} \left(f(z)e^{-g(z)} \right) = 0 \rightsquigarrow f(z)e^{-g(z)} = c \xrightarrow{z=z_0} c = 1 \rightsquigarrow f(z) = e^{g(z)}$.

Theorem 1.8.3 (Weierstrass). Given $\{a_n\} \subseteq \mathbb{C} \setminus \{0\}$ with $\lim_{n\to\infty} a_n = \infty$, there exists entire functions with zeros = $\{a_n\}$. possibly including 0.

Proof:

- # of $\{a_n\} < \infty$: $f(z) = z^m e^{g(z)} \prod_{i=1}^n \left(1 \frac{z}{a_i}\right), g(z)$: entire function.
- # of $\{a_n\} = \infty$:
 - •• $\sum |a_n|^{-1}$ converge $\iff \sum \frac{|z|}{|a_n|}$ converge $\forall |z| \leq R \iff \prod \left(1 \frac{z}{a_n}\right)$ converge uniform $\forall |z| < R$. So $f(z) = z^m \prod_{n=1}^{\infty} \left(1 \frac{z}{a_n}\right)$ analytic in \mathbb{C} .
 - •• In general, \exists polynomial $p_n(z)$ s.t. $\prod \left(1 \frac{z}{a_n}\right) e^{p_n(z)}$ converge to entire function. subproof: For R > 0, say $|a_n| > R \ \forall n > N$. For $|z| \le R$, $\forall n \in \mathbb{N}$

$$\log\left(1-\frac{z}{a_n}\right) = \frac{z}{a_n} - \frac{1}{2}\left(\frac{z}{a_n}\right)^2 - \frac{1}{3}\left(\frac{z}{a_n}\right)^3 - \cdots$$

Let $p_n(z) = \sum_{k=1}^{m_n} \frac{1}{k} \left(\frac{z}{a_n} \right)^k$ for some $m_n \in \mathbb{Z}_{\geq 0}$. If $R_n(z) = \log \left(1 - \frac{z}{a_n} \right) + P_n(z)$, then

$$|R_n(z)| \le \frac{1}{m_n + 1} \left(\frac{R}{|a_n|}\right) \left(1 - \frac{R}{|a_n|}\right)^{-1}$$

Choose $m_n = n$, then by root test, $\sum_{n=N}^{\infty} \frac{1}{m_n + 1} \left(\frac{R}{|a_n|}\right)^{m_n + 1}$ converge. Then

- ••• $R_n(z) \to 0 \leadsto -\pi < \operatorname{Im} R_n(z) < \pi \ \forall n \ge N_0 > N.$
- ••• $\sum_{n=N_0}^{\infty}$ converge absolutely convergent and uniformly for $|z| \leq R \leadsto \prod_{n=N_0}^{\infty} \left(1 \frac{z}{a_n}\right) e^{p_n(z)}$ is analytic for $|z| \leq R$ and thus

$$\prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n} \right) e^{p_n(z)}$$

is analytic for $|z| \leq R$, where $p_n(z) \in \mathbb{C}[z]$. By a similar argument for Mittag-Leffler theorem, $\prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right) e^{p_n(z)}$ is analytic in \mathbb{C} .

Hence, in general,

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n} \right) e^{\frac{z}{a_n} + \dots + \frac{1}{m_n} \left(\frac{z}{m_n} \right)^{m_n}}$$

Author: Minerva 34

1.9. GAMMA FUNCTION Minerva notes

Definition 1.8.3.

• $m_n = n$, $E_n(z/m) = \left(1 - \frac{z}{a_m}\right) \exp\left(\frac{z}{a_n} + \dots + \frac{1}{n}\left(\frac{z}{a_n}\right)^n\right)$ is called **canonical factor**

• h is called the **genus of canonical product** of f if h is the smallest integer s.t.

$$\sum \frac{1}{h+1} \left(\frac{R}{|a_n|}\right)^{h+1}$$
 converge i.e. $\sum \frac{1}{|a_n|^{h+1}}$ converge

Example 1.8.2. $f(z) = \sin \pi z = z e^{g(z)} \prod_{n \neq 0} \left(1 - \frac{z}{n}\right) e^{z/n}$, since $\sum n^{-1}$ diverge and $\sum n^{-2}$ converge $\rightsquigarrow m_n = 1 \ \forall n$. Consider f'(z)/f(z), we have

$$\pi \cot \pi z = \frac{1}{z} + g'(z) + \underbrace{\sum_{n \neq 0} \left(\frac{1}{z - n} + \frac{1}{n} \right)}_{\text{(1)}} \rightsquigarrow g'(z) = 0 \rightsquigarrow g(z) \text{ is constant}$$

 $\therefore \lim_{z \to 0} \frac{\sin \pi z}{z} = \pi : e^{g(z)} = \pi. \text{ Now we check that (1) is converge for all } z \in \mathbb{C}.$

$$\sum_{n\neq 0} \left(\frac{1}{z-n} + \frac{1}{n}\right) = z \sum_{n\neq 0} \frac{1}{n(z-n)}$$

which will converge by comparison test with $\sum n^{-2}$.

Proposition 1.8.1. If f(z) is meromorphic in \mathbb{C} , then F(z) = f(z)/g(z), where f(z), g(z): entire.

Proof: Let g(z) be an entire function with zero = poles of $F(z) \rightsquigarrow g(z)F(z)$ is an entire function $f(z) \rightsquigarrow F(z) = f(z)/g(z)$.

1.9 Gamma function

Recall that

$$\frac{\sin \pi z}{\pi} = z \prod_{n \neq 0} \left(1 - \frac{z}{n} \right) e^{z/n} \underbrace{\prod_{n \neq 0} \left(1 + \frac{z}{n} \right) e^{z/n}}_{:=G(z)}$$

Observation: zero of $G(z-1)=\{0,-1,-2,...\} \rightsquigarrow G(z-1)=zG(z)e^{g(z)}$ for some g(z): entire. Consider $\frac{(\cdot)'}{(\cdot)}$, we have

$$\sum_{n=1}^{\infty} \left(\frac{1}{z-1+n} - \frac{1}{n} \right) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z+n} + \frac{1}{n} \right) + g'(z) \implies g'(z) = 0 \text{ i.e. } g(z) = c$$

Let
$$z = 1$$
, $1 = G(0) = e^c \prod_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) e^{-1/n} \leadsto e^{-c} = \prod_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) e^{-1/n} = \lim_{n \to \infty} (n+1) e^{-(1+\dots+1/n)}$, then $c = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log(n+1)\right) = \gamma$ which is Euler's constant. Then $G(z-1) = zG(z)e^c$.

•
$$H(z) := e^{cz}G(z) \leadsto H(z-1) = e^{c(z-1)}G(z-1) = ze^{cz}G(z) = zH(z)$$
.

1.9. GAMMA FUNCTION Minerva notes

•
$$\Gamma(z) := 1/zH(z)$$
, then $\Gamma(z-1) = \frac{1}{(z-1)H(z-1)} = \frac{1}{z(z-1)H(z)} = \frac{1}{z-1}\Gamma(z)$
 $\Longrightarrow \Gamma(z) = (z-1)\Gamma(z-1)$

In particular, $\Gamma(1) = 1/H(1) = 1/e^c G(1) = 1$, $\Gamma(2) = 1$, $\Gamma(n) = (n-1)!$.

•• $\Gamma(z) = 1/ze^{cz}G(z) = z^{-1}e^{-cz}\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1}e^{z/n}$ which is meromorphic function with poles $0, -1, -2, \dots$ and no zero.

••
$$\Gamma(1-z) = (1-z)^{-1} e^{cz-z} \prod_{n=1}^{\infty} \left(1 + \frac{1-z}{n}\right)^{-1} e^{(1-z)/n}$$
. Then

$$\Gamma(z)\Gamma(1-z) = z^{-1}(1-z)^{-1}e^{-c}\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1}\left(1+\frac{1-z}{n}\right)^{-1}e^{1/n}$$

$$= \frac{1}{z(1-z)}\prod_{n=1}^{\infty}\left(\left(1+\frac{z}{n}\right)\left(1+\frac{1-z}{n}\right)\left(\frac{n}{n+1}\right)\right)^{-1}$$

$$= \frac{1}{z(1-z)}\prod_{n=1}^{\infty}\left(\left(1+\frac{z}{n}\right)\left(1-\frac{z}{n+1}\right)\right)^{-1}$$

$$= \frac{1}{z(1-z)}\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1}(e^{z/n})^{-1}\prod_{n=1}^{\infty}\left(1-\frac{z}{n+1}\right)^{-1}(e^{-z/(n+1)})$$

$$= \frac{1}{z(1-z)}\frac{1}{G(z)}\cdot\frac{1-z}{G(-z)} = \frac{\pi}{\sin\pi z}$$

In particular, $\Gamma(1/2)^2 = \frac{\pi}{\sin(\pi/2)} \implies \Gamma(1/2) = \sqrt{\pi}$.

•• Legendre's duplication formula : $\sqrt{\pi}\Gamma(2z)=2^{2z-1}\Gamma(z)\Gamma(z+1/2)$:

•••
$$\frac{\Gamma'(z)}{\Gamma(z)} = \frac{-1}{z} - c + \sum_{n=1}^{\infty} \left(\frac{-1}{z+n} + \frac{1}{n} \right)$$
 and $\frac{d}{dz} \left(\frac{\Gamma'(z)}{\Gamma(z)} \right) = \frac{1}{z^2} + \sum_{n=1}^{\infty} \frac{1}{(z+n)^2} = \sum_{n=0}^{\infty} \frac{1}{(z+n)^2}$ and thus

$$\frac{d}{dz} \left(\frac{\Gamma'(z)}{\Gamma(z)} + \frac{\Gamma'(z+1/2)}{\Gamma(z+1/2)} \right) = 4 \left(\sum_{n=0}^{\infty} \frac{1}{(2z+2n)^2} + \sum_{n=0}^{\infty} \frac{1}{(2z+1+n)^2} \right) = 2 \frac{d}{dz} \left(\frac{\Gamma'(2z)}{\Gamma(2z)} \right)$$

Integral in both side we have

$$\frac{\Gamma'(z)}{\Gamma(z)} + \frac{\Gamma'(z+1/2)}{\Gamma(z+1/2)} = \frac{\Gamma'(2z)}{\Gamma(2z)} + a$$

Integral in both side we have

$$\Gamma(z)\Gamma(z+1/2) = \Gamma(2z)e^{az+b}$$

Substitute z = 1, 1/2, we have

$$\begin{cases} \Gamma(1)\Gamma(3/2) = \Gamma(2)e^{a+b} \\ \Gamma(1/2)\Gamma(1) = \Gamma(1)e^{a/2+b} \end{cases} \implies \begin{cases} e^{a+b} = \sqrt{\pi}/2 \\ e^{a/2+b} = \sqrt{\pi} \end{cases} \implies \begin{cases} e^a = 1/4 \\ e^b = 2\sqrt{\pi} \end{cases}$$

Hence, $2^{2z-1}\Gamma(z)\Gamma(z+1/2) = \Gamma(2z)\sqrt{\pi}$.

1.10 Entire function

Definition 1.10.1. $u: \mathbb{C} \to \mathbb{R}$ is harmonic if u_{xx}, u_{yy} continuous and $\Delta u = u_{xx} + u_{yy} = 0$.

Fact 1.10.1.

- (1) f = u + iv: analytic $\rightsquigarrow u, v \in \mathcal{H}$: By Cauchy Riemann equation, $u_x = v_y, u_y = -v_x \rightsquigarrow u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0$
- (2) $u \in \mathcal{H}(\Omega)$ with Ω : simply connected $\leadsto \exists v \in \mathcal{H}(\Omega)$ s.t. f = u + iv is analytic in Ω :
 - $g = u_x iu_y$ is analytic, since $\begin{cases} u_{xx} = (-u_y)_y & \text{, since } u \in \mathcal{H} \\ u_{xy} = -(-u_y)_x \end{cases}$
 - Since Ω is simply connected, g has a primitive $f(z) = \int_{z_0}^z g(z)dz + u(x_0, y_0)$
 - $f = U + iV \leadsto f' = U_x iU_y$ and equal to $g = u_x iu_y \implies U_x = u_x, U_y = u_y$ and thus U = u + c
 - $f(z_0) = u(x_0, y_0) = U(x_0, y_0) + iV(x_0, y_0) \rightsquigarrow c = 0$
- (3) Mean-value property : $u \in \mathcal{H}$, let $v \in \mathcal{H}$ s.t. f = u + iv is analytic.

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta \implies u(x_0, y_0) = \frac{1}{2\pi i} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$$

(4) Poisson's formula : $u \in \mathcal{H}(\overline{B_R(0)}), \forall z \in B_R(0)$

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} u(Re^{i\theta}) d\theta = \frac{1}{2\pi} \operatorname{Re} \left(\frac{Re^{i\theta} + z}{Re^{i\theta} - z} \right) u(Re^{i\theta}) d\theta$$

proof: For $a \in B_R(0)$, i.e. |a| < R. Consider $w = T(\xi) = \frac{R(R\xi + a)}{R + \overline{a}\xi}$, then

$$T: |\xi| \le 1 \longrightarrow |w| \le R$$

 $\xi = 0 \longmapsto w = a$

Then $u(T(\xi)) \in \mathcal{H}(|\xi| < 1)$, then

$$u(a) = u(T(0)) = \frac{1}{2\pi} \int_{|\xi|=1} u(T(\xi)) d\arg \xi$$

Notice that $\xi = |\xi| e^{i\arg\xi} \leadsto d\xi = i|\xi| e^{i\arg\xi} d\arg\xi \leadsto d\arg\xi = \frac{d\xi}{i\xi}$. Also

$$\xi = \frac{R(w-a)}{R^2 - \overline{a}w} \leadsto \frac{1}{\xi} = \frac{R^2 - \overline{a}w}{R(w-a)} \text{ and } d\xi = \frac{R(R^2 - |a|^2)}{(R^2 - \overline{a}w)^2} dw$$

Also, for $|\xi| = 1$, $|T(\xi)|^2 = \frac{R^2(R\xi + a)(R\overline{\xi} + \overline{a})}{(R + \overline{a}\xi)(R + a\overline{\xi})} = R^2$. Let $w = Re^{i\theta}$, then $-idw = wd\theta$.

$$\frac{d\xi}{i\xi} = \frac{(R^2 - |a|^2)dw}{i(w - a)(R^2 - \overline{a}w)} = -i\left(\frac{1}{w - a} + \frac{\overline{a}}{R^2 - \overline{a}w}\right)dw = \left(\frac{w}{w - a} + \frac{\overline{a}w}{w\overline{w} - \overline{a}w}\right)d\theta$$
$$= \left(\frac{a}{w - a} + \frac{\overline{a}}{\overline{w} - \overline{a}}\right) = \frac{R^2 - |a|^2}{|w - a|^2}d\theta$$

Also,

$$\operatorname{Re}\left(\frac{w+a}{w-a}\right) = \frac{1}{2}\left(\frac{w+a}{w-a} + \frac{\overline{w}+\overline{a}}{\overline{w}-\overline{a}}\right) = \frac{R^2 - |a|^2}{|w-a|^2}$$

which proved the equation.

Notice that $\log(z)$ is analytic in \mathbb{C} except one line, and $\log|z|$ be the real part of $\log(z)$ which is harmonic. Then we have below formula.

Theorem 1.10.1 (Jensen's formula). f: analytic for $|z| \leq \rho$ with $f(0) \neq 0$. Then

$$\log|f(0)| = -\sum_{i=1}^{n} \log\left(\frac{\rho}{|a_i|}\right) + \frac{1}{2\pi} \int_{0}^{2\pi} \log|f(\rho e^{i\theta})| d\theta$$

where $a_1, ..., a_n$ are zero of f in $\overline{B_{\rho}(0)}$.

Proof:

- If $f \neq 0$ in $|z| \leq \rho$: OK!
- $\forall i, |a_i| = \rho$: By induction on n:

$$n=1$$
: Let $g=\frac{f}{z-a} \rightsquigarrow g \neq 0$ in $|z| \leq \rho$ and thus

$$\log|g(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log|g(\rho e^{i\theta})| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \left(\log|f(\rho e^{i\theta})| - \log\rho|e^{i\theta} - e^{i\theta_0}| \right) d\theta$$

where $a_1 = \rho e^{i\theta_0}$. We can calculate that

$$\frac{1}{2\pi} \int_0^{2\pi} \log|1 - e^{i\theta}| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \log 2 \left| \sin \frac{\theta}{2} \right| d\theta = \log 2 + \frac{2}{\pi} \underbrace{\int_0^{\pi/2} \log \sin x dx}_{:-I} \tag{1}$$

Notice that $x^{1/2}\log\sin x|=x^{1/2}\log x+x^{1/2}\log(\sin x/x)\to 0$ as $x\to 0$, so I converge. Consider $x=\pi/2-\theta$, then

$$I = \int_{\pi/2}^{0} \log \cos x (-dx) = \int_{0}^{\pi} \log \cos x dx$$

and thus

$$2I = \int_0^{\pi} \log \sin x dx = 2 \int_0^{\pi/2} \log \sin 2\theta d\theta = \frac{1}{2} \int_0^{\pi/2} \log(2 \sin \theta \cos \theta) d\theta = \pi \log 2 + 4I$$

So we have $I = \frac{-\pi}{2} \log 2$ and thus (1) = 0. So

$$\log |f(0)| - \log |\rho| = \log |g(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log |f(e^{i\theta})| d\theta - \log |\rho| \implies \log |f(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log |f(e^{i\theta})| d\theta - \log |\rho|$$

For n > 1, we can do same argument.

• In general, let $F(z) = f(z) \prod_{i=1}^{n} \frac{\rho^2 - \overline{a_i}z}{\rho(z - a_i)} \neq 0$ in $|z| < \rho$, since $|\rho^2/\overline{a_i}| \ge \rho$. Also, |F(z)| = |f(z)| on $z = \rho$, so

$$\log|f(0)| + \sum_{i=1}^{n} \log \frac{\rho}{|a_i|} = \log|F(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log|F(\rho e^{i\theta})| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \log|f(\rho e^{i\theta})| d\theta$$

Author: Minerva 38

Theorem 1.10.2 (Poisson-Jensen's formula). For $z \in B_{\rho}(0)$ with $f(z) \neq 0$, by Possion formula for $\log |F(z)|$,

$$\log|f(z)| + \sum_{i=1}^{m} \log\left|\frac{\rho^2 - \overline{a_i}z}{\rho(z - a_i)}\right| = \log|F(z)| = \int_0^{2\pi} \operatorname{Re}\left(\frac{\rho e^{i\theta} + z}{\rho e^{i\theta} - z}\right) \log|f(\rho e^{i\theta})| d\theta$$

Definition 1.10.2. Let f be an entire function. The **order** of f is defined by

$$\lambda := \limsup_{r \to \infty} \frac{\log \log M(\rho)}{\log \rho} \text{ where } M(\rho) = \max_{|z| = \rho} |f(z)|$$

Fact 1.10.2. λ is the smallest number s.t. $M(\rho) \leq e^{\rho^{\lambda+\varepsilon}}$ for any $\varepsilon > 0$ as soon as large enough.

Proof:

• $\lambda = \lim_{\delta \to \infty} \sup_{\rho \ge \delta} \frac{\log \log M(\rho)}{\log \rho} \leadsto \forall \varepsilon > 0, \ \exists \delta_0 > 0 \text{ s.t. for all } \delta > \delta_0$

$$\left| \sup_{\rho \ge \delta} \frac{\log \log M(\rho)}{\log \rho} - \lambda \right| < \varepsilon \implies \frac{\log \log M(\rho)}{\log \rho} < \lambda + \varepsilon \ \forall \rho \ge \delta_0$$

and thus $M(\rho) \leq e^{\rho^{\lambda+\varepsilon}}$.

• For $\mu < \lambda$, let $\varepsilon = (\lambda - \mu)/3 \Leftrightarrow \exists \rho > 0 \text{ s.t. } \frac{\log \log M(\rho)}{\log \rho} > \lambda - \varepsilon = \mu + 2\varepsilon \text{ i.e. } M(\rho) > e^{\mu + 2\varepsilon}$.

Theorem 1.10.3 (Main theorem). Let f(z) be the entire function with order $\lambda < \infty$ and h be the largest integer $\leq \lambda$ i.e. $h \leq \lambda < h+1$. If $a_1, a_2, ...$ be the zero of f(z) and $0 \neq a_i \ \forall i$, then

• $\sum |a_n|^{-(h+1)}$ converge

• $f(z) = e^{g(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right) e^{\frac{z}{a_n} + \dots + \frac{1}{h} \left(\frac{z}{a_n}\right)^h}$ with g(z) is a polynomial with $\deg \leq h$.

Proof:

• Assume $\mu(\rho)$ be the number of a_i 's with $|a_i| \leq \rho$, then $n \leq \mu(|a_n|)$. By Jensen's formula,

$$\log|f(0)| = -\sum_{i=1}^{\mu(2\rho)} \log \left| \frac{2\rho}{a_i} \right| + \frac{1}{2\pi} \int_0^{2\pi} |f(2\rho e^{i\theta})| d\theta$$

Observer that if $\rho \leq |a_i| \leq 2\rho \rightsquigarrow 0 \leq \log \left| \frac{2\rho}{a_i} \right| \leq \log 2$. Then

$$\mu(\rho)\log 2 \le \sum_{|a_i| \le \rho} \log \frac{2\rho}{|a_i|} \le \sum_{i=1}^{\mu(2\rho)} = \frac{1}{2\pi} \int_0^{2\pi} \log |f(2\rho e^{i\theta})| d\theta - \log |f(0)|$$

and $\log |f(2\rho e^{i\theta})| \le \log M(2\rho) < (2\rho)^{\lambda+\varepsilon}$.

$$\implies \mu(\rho) \le \frac{1}{\log 2} (2^{\lambda + \varepsilon} \rho^{\lambda + \varepsilon} - \log |f(0)|) < K(2\rho)^{\lambda + \varepsilon}$$

for some constant K > 0. So $n \le \mu(|a_n|) < K(2|a_n|)^{\lambda+\varepsilon}$. Choose $\varepsilon > 0$ s.t. $\lambda + \varepsilon < h + 1$ and thus

$$|a_n|^{-(h+1)} = (n^{-(\lambda+\varepsilon)})^{\frac{h+1}{\lambda+\varepsilon}} \le \frac{2^{h+1} K^{\frac{h+1}{\lambda+\varepsilon}}}{n^{\frac{h+1}{\lambda+\varepsilon}}}$$

Since $\frac{h+1}{\lambda+\varepsilon} > 1$, $\sum |a_n|^{-(h+1)}$ converge.

• By Poisson-Jensen's formula,

$$\log|f(z)| = -\sum_{i=1}^{\mu(\rho)} \log \left| \frac{\rho^2 - \overline{a_i}z}{\rho(z - a_i)} \right| + \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}\left(\frac{\rho e^{i\theta} + z}{\rho e^{i\theta} - z} \right) \log|f(\rho e^{i\theta})| d\theta$$

Note
$$f = u + iv$$
, then $f' = 2\frac{\partial u}{\partial z}$, $\frac{f'(z)}{f(z)} = (\log f(z))' = 2\frac{\partial}{\partial z}\log|f(z)|$

••
$$\frac{\partial}{\partial z} \left(\sum 2 \log \left| \frac{\rho^2 - \overline{a_i} z}{\rho(z - a_i)} \right| \right) = \sum \frac{\partial}{\partial z} \log \left(\frac{\rho^2 - \overline{a_i} z}{\rho(z - a_i)} \right) \left(\frac{\rho^2 - a_i \overline{z}}{\rho(\overline{z} - \overline{a_i})} \right) = -\sum \left(\frac{1}{z - a_i} + \frac{\overline{a_i}}{\rho^2 - \overline{a_i} z} \right)$$

••
$$2\frac{\partial}{\partial z} \operatorname{Re} \left(\frac{\rho e^{i\theta} + z}{\rho e^{i\theta - z}} \right) = \left(\frac{\rho e^{i\theta} + z}{\rho e^{i\theta - z}} \right)' = 2 \cdot \frac{2\rho e^{i\theta}}{(\rho e^{i\theta} - z)^2}$$

Hence,

$$\frac{f'(z)}{f(z)} = \sum_{i=1}^{\mu(\rho)} \frac{1}{z - a_i} + \sum_{i=1}^{\mu(\rho)} \frac{\overline{a_i}}{\rho^2 - \overline{a_i}z} + \frac{2}{\pi} \int_0^{2\pi} \frac{\rho e^{i\theta}}{(\rho e^{i\theta} - z)^2} \log|f(\rho e^{i\theta})| d\theta$$

Differentiate h times, we have

$$\left(\frac{f'(z)}{f(z)}\right)^{(h)} = \sum_{i=1}^{\mu(\rho)} \frac{-h!}{(a_i - z)^{h+1}} + \sum_{\underline{i=1}}^{\mu(\rho)} \frac{h! \cdot \overline{a_i}^{h+1}}{(\rho^2 - \overline{a_i}z)^{h+1}} + \underbrace{\frac{2}{\pi} \int_0^{2\pi} \frac{(h+1)! \rho e^{i\theta}}{(\rho e^{i\theta} - z)^{h+2}} \log|f(\rho^{i\theta})| d\theta}_{(3)}$$

•• (3): If $\rho > 2|z|$, then

$$|(3)| \le \frac{(h+1)! \cdot 2}{\pi} \int_0^{2\pi} \frac{\log M(\rho)}{(\rho - |z|)^{h+2}} d\theta = \frac{4(h+1)! \log M(\rho)}{\rho^{h+1} (1 - |z|/\rho)^{h+2}}$$

since $\log M(\rho) \le \rho^{\lambda+\varepsilon} \ \forall \varepsilon > 0 \leadsto \rho^{-(h+1)} \log M(\rho) \le \rho^{\lambda-h-1+\varepsilon}$. Choose ε s.t. $\lambda - h - 1 + \varepsilon < 0$. Hence, (3) $\to 0$ as $\rho \to \infty$.

•• $(2): \rho > 2|z|, |a_i| \leq \rho, \text{ then}$

$$|(2)| \le h! \sum_{i=1}^{\mu(\rho)} \frac{\rho^{h+1}}{\rho^{2h+2}} (\rho^2/2)^{h+1} = h! \cdot \mu(\rho) 2^{h+1} \rho^{-(h+1)} < h! \cdot K 2^{h+1+\lambda+\varepsilon} \rho^{\lambda+\varepsilon-h-1} \to 0$$

as $\rho \to \infty$.

Therefore,

$$\left(\frac{f'(z)}{f(z)}\right)^{(h)} = -h! \sum_{i=1}^{\infty} \frac{1}{(a_i - z)^{h+1}}$$

Let $p(z) = \prod \left(1 - \frac{z}{a_n}\right) e^{\frac{z}{a_n} + \dots + \frac{1}{h}\left(\frac{z}{a_n}\right)^h}$ and $f(z) = e^{g(z)}p(z)$. Then

$$\left(\frac{p'(z)}{p(z)}\right)^{(h)} = \sum_{n=1}^{\infty} \frac{-h!}{(a_n - z)^{h+1}} = \left(\frac{f'(z)}{f(z)}\right)^{(h)}$$

and
$$g^{(h+1)}(z) = \left(\frac{f'(z)}{f(z)}\right)^{(h)} - \left(\frac{p'(z)}{p(z)}\right)^{(h)} = 0 \implies g(z) \in \mathbb{C}[z] \text{ and } \deg g \leq h.$$

Definition 1.10.3. f has genus h if h is the smallest integer s.t.

$$\begin{cases} \sum |a_n|^{-(h+1)} \text{ converge} \\ \deg g(x) \le h \end{cases}$$

Theorem 1.10.4. Let h be the genus of f and λ be the order of f, then $h \leq \lambda \leq h+1$.

Proof:

• If h is finite, then $\lambda \leq h+1$: Claim: $\log |E_h(z)| \leq (2h+1)|z|^{h+1}$: subproof:

•• If
$$|z| \le 1$$
, $\log(1-z) = -z - \frac{z^2}{2} - \cdots$, then $E_n(z) = e^{\log(1-z) + z + \cdots + \frac{1}{h}z^h} = e^{-\sum_{n=h+1}^{\infty} \frac{z^n}{n}}$

$$\implies |E_n(z)| \le e^{\sum_{n=h+1}^{\infty} \frac{|z|^n}{n}} \implies \log|E_n(z)| \le \sum_{n=h+1}^{\infty} \frac{|z|^n}{n} \le \frac{1}{h+1} \cdot \frac{|z|^{h+1}}{1-|z|}$$

and thus
$$(1 - |z|) \log |E_n(z)| \le \frac{|z|^{h+1}}{h+1} \le |z|^{h+1}$$

••
$$h = 0 : \log |E_0(z)| = \log |1 - z| \le \log(1 + |z|) \le |z|$$

•• For
$$h \ge 1$$
: We induction on h . $\log |E_h(z)| \le \log |E_{h-1}(z)| + \frac{|z|^h}{h} \le \log |E_{h-1}(z)| + |z|^h$

•••
$$|z| \ge 1 : \log |E_h(z)| \le (2h-1)|z|^h + |z|^h \le (2h+1)|z|^{h+1}$$

•••
$$|z| \le 1 : \log |E_h(z)| \le |z| \log |E_h(z)| + |z|^{h+1} \le |z| (2h|z|^h) = (2h+1)|z|^{h+1}$$

By Claim,

$$\begin{aligned} \log |f(z)| &\leq \log |e^{g(z)}| + \log |p(z)| \leq |g(z)| + \sum_n \log |E_h(z/a_n)| \\ &\leq |z|^{h+1} \left(\frac{|b_q|}{|z|^{h+1-q}} + \dots + \frac{|b_0|}{|z|^{h+1}} \right) + (2h+1)|z|^{h+1} \sum_n |a_n|^{-(h+1)} \end{aligned}$$

Hence,

$$\log\log|f|(z)| \le (h+1)\log|z| + \log\left(\frac{|b_q|}{|z|^{h+1-q}} + \dots + \frac{|b_0|}{|z|^{h+1}} + (2h+1)\sum_n |a_n|^{-(h+1)}\right)$$

When z on $C_r(0)$:

$$\frac{\log \log M(r)}{\log r} \le h + 1 + \log \left(O(|r|^{q-h-1}) + (2h+1) \sum_{n} |a_n|^{-(h+1)} \right) / \log r$$

As $r \to \infty$, we have $\lambda \le h+1$ and hence λ is finite.

• If λ is finite, let h_0 be the smallest integer h_0 s.t. $h_0 \leq \lambda$. By Theorem 1.10.3, $\begin{cases} \sum |a_n|^{-(h_0+1)} \text{ converge} \\ \deg g \leq h_0 \end{cases}$ By definition of genus, $h \leq h_0 \leq \lambda$.

Theorem 1.10.5. Let $f(z) = \sum_{n=1}^{\infty} c_n z^n$ and $\alpha = \liminf \frac{\log(1/|c_n|)}{n \log n}$. Then

- $\alpha > 0 \implies f$ is entire of order α
- $\alpha = 0 \implies f$ has infinite order

Also, if f(z) is entire of finite order λ , then $\lambda = 1/\alpha$.

Proof:

- $\alpha > 0$: $\forall \varepsilon > 0$, $\exists n_0$ s.t. $\forall n > n_0$, $\log(1/|c_n|) > (\alpha \varepsilon)n \log n$ i.e. $|c_n| \le n^{-n(\alpha \varepsilon)}$, then $\sum c_n z^n$ converge for all $z \in \mathbb{C} \leadsto f$ is entire.
 - •• α is finite: Notice that $|c_n|$ is bounded, say $|c_n| \leq A$ with A > 1. $\forall r > 1$, for $|z| \leq r$,

$$|f(z)| \le Ar^{n_0} + \sum_{n=n_0+1}^{\infty} r^n n^{-n(\alpha-\varepsilon)}$$

where $n_0 = \lfloor (2r)^{1/(\alpha-\varepsilon)} \rfloor$. Then $\forall n > n_0, n \geq (2r)^{1/(\alpha-\varepsilon)} \leadsto rn^{-(\alpha-\varepsilon)} \leq 1/2$ and thus

$$\sum_{n=n_0+1}^{\infty} r^n n^{-n(\alpha-\varepsilon)} \le \sum_{n=n_0+1}^{\infty} \frac{1}{2^n} \le 1$$

Hence,

$$|f(z)| \le 2Ar^{n_0} \implies \log|f(z)| \le \log 2 + n_0 \log r \le (2r)^{1/\alpha - \varepsilon} \log r$$

$$\implies \frac{\log\log M(r)}{\log r} \le \frac{\frac{1}{\alpha - \varepsilon} \log r + \log\log r}{\log r}$$

as $r \to \infty$, we have $\lambda \le \frac{1}{\alpha - \varepsilon}$ for all $\varepsilon > 0 \implies \lambda \le \frac{1}{\alpha}$.

•• $\alpha = \infty$: By definition, $\forall N > 0, \varepsilon > 0, n_0$ s.t. $\forall n > n_0$,

$$\log(1/|c_n|) > (N - \varepsilon)n\log n \implies \cdots \implies \lambda \le \frac{1}{N} \xrightarrow{N \to \infty} \lambda = 0 = \frac{1}{\infty}$$

•• If $0 < \alpha < \infty \rightsquigarrow \lambda \ge \frac{1}{\alpha} : \forall \varepsilon > 0, \exists n_{\varepsilon} \text{ s.t. } (\alpha + \varepsilon) n_{\varepsilon} \log n_{\varepsilon} > \log(1/|c_{n_{\varepsilon}}|) \text{ i.e.}$

$$|c_{n_{\varepsilon}}| > n^{-n_{\varepsilon}(\alpha+\varepsilon)} \implies |c_{n_{\varepsilon}}| r^{n_{\varepsilon}} > (rn_{\varepsilon}^{-(\alpha+\varepsilon)})^{n_{\varepsilon}}$$

Choose $r = (2n)^{(\alpha+\varepsilon)}$, then

$$|c_{n_{\varepsilon}}|r^{n_{\varepsilon}} > 2^{n_{\varepsilon}(\alpha+\varepsilon)} \implies \log|c_{n_{\varepsilon}}|r^{n_{\varepsilon}} > \frac{r^{1/(\alpha+\varepsilon)}(\alpha+\varepsilon)}{2}\log 2$$

By Cauchy estimate,

$$|c_{n_{\varepsilon}}| = \frac{|f^{(n_{\varepsilon})}(0)|}{n!} \le M(r)r^{-n_{\varepsilon}} \implies \log\log M(r) \ge \frac{1}{\alpha + \varepsilon}\log r + \log\frac{(\alpha + \varepsilon)\log 2}{2}$$

Hence, $\lambda \geq \frac{1}{\alpha + \varepsilon} \ \forall \varepsilon > 0 \leadsto \lambda \geq \frac{1}{\alpha}$.

• If
$$\alpha = 0 : \forall \frac{1}{N}, \ \lambda \ge \frac{1}{1/N + \varepsilon} \xrightarrow{\varepsilon \to 0} \lambda \ge N \xrightarrow{N \to \infty} \lambda = \infty.$$

Author: Minerva 42

Chapter 2

Homework

2.1

Problem 2.1.1. Show that

$$|\cos z|^2 = \sinh^2 y + \cos^2 x = \cosh^2 y - \sin^2 x = \frac{1}{2}(\cosh 2y + \cos 2x)$$

and

$$|\sin z|^2 = \sinh^2 y + \sin^2 x = \cosh^2 y - \cos^2 x = \frac{1}{2}(\cosh 2y - \cos 2x).$$

Problem 2.1.2. Determine all values of $2^i, i^i, (-1)^{2i}$

Problem 2.1.3. Express $\arctan w$ in terms of the logarithm.

Problem 2.1.4. Determine the radius of convergence of the series $\sum_{n=1}^{\infty} a_n z^n$ when:

- (a) $a_n = (\log n)^2$
- (b) $a_n = n!$
- (c) $a_n = \frac{n^2}{4^n + 3n}$
- (d) $a_n = (n!)^3/(3n)!$
- (e) Find the radius of convergence of the hypergeometric series

$$F(\alpha, \beta, \gamma : z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha+1)\cdots(\alpha+n-1)\beta(\beta+1)\cdots(\beta+n-1)}{n!\gamma(\gamma+1)\cdots(\gamma+n-1)} z^{n}.$$

Here $\alpha, \beta \in \mathbb{C}$ and $\gamma \neq 0, -1, -2, \dots$

(f) Find the radius of convergence of the Bessel function of order r:

$$J_r(z) = \left(\frac{z}{2}\right)^r \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+r)!} \left(\frac{z}{2}\right)^{2n}$$

2.2. Minerva notes

Problem 2.1.5. Expand $(1-z)^{-m}$ in powers of z. Here m is a fixed positive integer. Also show that if

$$(1-z)^{-m} = \sum_{n=0}^{\infty} a_n z^n,$$

the one obtains the following asymptotic relation for the coefficients:

$$a_n \sim \frac{1}{(m-1)!} n^{m-1}$$
 as $n \to \infty$.

Problem 2.1.6. Show that for |z| < 1, one has

$$\sum_{n=0}^{\infty} \frac{z^{2^n}}{1 - z^{2^{n+1}}} = \frac{z}{1 - z},$$

and

$$\sum_{n=0}^{\infty} \frac{2^n z^{2^n}}{1 + z^{2^n}} = \frac{z}{1 - z}.$$

justify any change in the order of summation.

2.2

Problem 2.2.1. Let γ be a smooth curve in \mathbb{C} parametrized by $z(t):[a,b]\to\mathbb{C}$. Let γ^- denote the curve with the same image as γ but with the reserve orientation. Prove that for any continuous function f on γ

$$\int_{\gamma} f(z)dz = -\int_{\gamma^{-}} f(z)dz.$$

Problem 2.2.2. The next three calculations provide some insight into Cauchy's theorem, which we treat in the next chapter.

(a) Evaluate the integrals

$$\int_{\gamma} z^n dz$$

for all integers n. Here γ is any circle centered at the origin with the positive (counter-clockwise) orientation.

- (b) Same question as before, but with γ any circle not containing the origin.
- (c) Show that if |a| < r < |b|, then

$$\int_{\gamma} \frac{1}{(z-a)(z-b)} dz = \frac{2\pi i}{a-b}$$

where γ denotes the circle centered at the origin, of radius r, with the positive orientation.

Problem 2.2.3. It is possible to define $n(\gamma, a)$ for any continuous closed curve γ that does not pass through a, whether piecewise differentiable or not. For this purpose γ is divided into subarces $\gamma_1, ..., \gamma_n$, each contained in a disk that does not include a. Let σ_k be the directed line segment from the initial to the terminal point of γ_k , and set $\sigma = \sigma_1 + \cdots + \sigma_n$. We define $n(\gamma, a)$ to be the value of $n(\sigma, a)$. To justify the definition, prove the following:

2.3. Minerva notes

- (a) the result is independent of the subdivision;
- (b) if γ is piecewise differentiable the new definition is equivalent to the old;
- (c) If γ lies inside of a circle, then $n(\gamma, a) = 0$ for all points a outside of the same circle. As a function of a the index $n(\gamma, a)$ is constant in each of the regions determined by γ , and zero in the unbounded region.

Problem 2.2.4. The **Jordan cure theorem** asserts that every Jordan curve in the plane determines exactly two regions. The notion of winding number leads to a quick proof of one part of the theorem, namely that the complement of a Jordan curve γ has at least two components. This will be so if there exists a point a with $n(\gamma, a) \neq 0$.

We may assume that Rez > 0 on γ , and that there are points $z_1, z_2 \in \gamma$ with $\text{Im } z_1 < 0$, $\text{Im } z_2 > 0$. These point may be chosen so that there are no other points of γ on the line segments from 0 to z_1 and from 0 to z_2 . Let γ_1 and γ_2 be the arcs of γ from z_1 to z_2 (excluding the end points).

Let σ_1 be the closed curve that consists of the line segment from 0 to z_1 followed by γ_1 and the segment from z_2 to 0, and let σ_2 be constructed in the same way with γ_2 in the place of γ_1 . Then $\sigma_1 - \sigma_2 = \gamma$ or γ .

The positive real axis intersects both γ_1 and γ_2 . Choose the notation so that the intersection x_2 farthest to the right is with γ_2 .

FIG. 4-6. Part of the Jordan curve theorem.

Prove the following:

- (a) $n(\sigma_1, x_2) = 0$, hence $n(\sigma_1, z) = 0$ for $z \in \gamma_2$;
- (b) $n(\sigma_1, x) = n(\sigma_2, x) = 1 \text{ for small } x > 0;$
- (c) the first intersection x_1 of the positive real axis with γ lies on γ_1 ;
- (d) $n(\sigma_2, x_1) = 1$, hence $n(\sigma_2, z) = 1$ for $z \in \gamma_1$;
- (e) there exists a segment of the positive real axis with one end point on γ_1 , the other on γ_2 , and no other points on γ . The points x between the end points satisfy $n(\gamma, x) = 1$ or -1.

2.3

Example 2.3.1. Compute

$$\int_{|z|=1} \frac{e^z}{z} dz.$$

2.4. Minerva notes

Example 2.3.2. Compute

$$\int_{|z|=2} \frac{dz}{z^2 + 1}$$

by decomposition of the integrand in partial fractions.

Example 2.3.3. Compute

$$\int_{|z|=\rho} \frac{|dz|}{|z-a|^2}$$

under the condition $|a| \neq \rho$.

2.4

Problem 2.4.1. Prove that a function which is analytic in the whole plane and satisfies an inequality $|f(z)| < |z|^n$ for some n and all sufficiently large |z| reduces to a polynomial.

Problem 2.4.2. If f(z) is analytic for |z| < 1 and $|f(z)| \le 1/(1-|z|)$, find the best estimate of $|f^{(n)}(0)|$ that Cauchy's inequality will yield.

Problem 2.4.3. Show that the successive derivatives of an analytic function at a point can never satisfy $|f^{(n)}(z)| > n!n^n$. Formulate a sharper theorem of the same kind.

Problem 2.4.4. Let the function $\varphi(z,t)$ be continuous as a function of both variables when z lies in a region Ω and $\alpha \leq t \leq \beta$. Suppose further that $\varphi(z,t)$ is analytic as a function of $z \in \Omega$ for any fixed t. Then

$$F(z) = \int_{\alpha}^{\beta} \varphi(z, t) dt$$

is analytic in z and

$$F'(z) = \int_{\alpha}^{\beta} \frac{\partial \varphi(z, t)}{\partial z} dt. \tag{1}$$

to prove this represent $\varphi(z,t)$ as a Cauchy integral

$$\varphi(z,t) = \frac{1}{2\pi i} \int_C \frac{\varphi(\xi,t)}{\xi - z} d\xi$$

Fill in the necessary details to obtain

$$F(z) = \int_{C} \left(\frac{1}{2\pi i} \int_{\alpha}^{\beta} \varphi(\xi, t) dt \right) \frac{d\xi}{\xi - z}$$

and use Lemma 3 to prove (1).

Problem 2.4.5. Suppose f is an analytic function defined everywhere in \mathbb{C} and such that for each $z_0 \in \mathbb{C}$ at least one coefficient in the expansion

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

is equal to 0. Prove that f is a polynomial.

2.5. Minerva notes

2.5

Problem 2.5.1. If f(z) and g(z) have the algebraic orders h and k at z = a, show that fg has the order h + k, f/g the order h - k, and f + g an order which does not exceed $\max(h, k)$.

Problem 2.5.2. Show that a function which is analytic in the whole plane and has a nonessential singularity at ∞ reduces to a polynomial.

Problem 2.5.3. Show that any function which is meromorphic in the extended plane is rational.

Problem 2.5.4. Prove that an isolated singularity of f(z) is removable as soon as either Re f(z) or Im f(z) is bounded above or below.

Problem 2.5.5. Show that an isolated singularity of f(z) cannot be a pole of exp f(z).