Data-dependent Gaussain Prior Objective for Language Generation

2020 NLP Study

International Conference on Learning Representations (ICLR) 2020

Presented by Miyoung Ko

Background

Language Generation

- Langauge model, NMT, Text summarization, Image captioning etc...
- Sequence predictions

$$m{y} \sim p_{ heta}(m{x})$$
 , $m{y} = \langle y_1, y_2, ..., y_l
angle$

Probability:
$$p_{\theta}(\boldsymbol{y}|\boldsymbol{x}) = p_{\theta}(y_1|\boldsymbol{x})p_{\theta}(y_2|\boldsymbol{x},y_1)...p_{\theta}(y_l|\boldsymbol{x},y_{1:l-1})$$

Maximum likelihood estimation (MLE) Loss:

$$\mathcal{L}_{\mathbf{MLE}}(\theta) = -\log p_{\theta}(\boldsymbol{y}|\boldsymbol{x}) = -\sum_{i=1}^{r} \log p_{\theta}(y_i|\boldsymbol{x},\boldsymbol{y}_{< i}).$$

Background

Maximum likelihood estimation (MLE) Loss:

$$\mathcal{L}_{\mathbf{MLE}}(\theta) = -\log p_{\theta}(\boldsymbol{y}|\boldsymbol{x}) = -\sum_{i=1}^{l} \log p_{\theta}(y_i|\boldsymbol{x},\boldsymbol{y}_{< i}).$$

Exposure Bias: Models is not exposed to the full range of erros during training

→ Reinforcement learning models (training sequences are generated by the model itself)

<u>Loss Mismatch</u>: Maximize log-likelihood during training, evaluate on different metric (BLUE, ROUGE)

→ MIXER, minimum dibergence, mzximum margin

Generation Diversity: Generations are dull, generic, repetitive, short-sighted

→ Adding linguistic features to latent variable and etc...

Negative Dibersity Ignorance: MLE can't assign scores to different incorrect model outputs,

All incorrect outputs are treated equally during training

<u>Armchair</u> → <u>Deckchair</u> vs. <u>Mushroom</u>

D2GPo

D2GPo: Data-dependent Gaussian Prior Objective

- Add extra Gaussian prior objective to MLE loss (KL divergence loss term)
- KL divergence b/w model training prediction and data-dependent Gaussian prior distribution

D2GPo

D2GPo: Data-dependent Gaussian Prior Objective

- Add extra Gaussian prior objective to MLE loss (KL divergence loss term)
- KL divergence b/w model training prediction and data-dependent Gaussian prior distribution

Evaluation Function : $f(ilde{m{y}}, m{y}) \in \mathbb{R}$ ightharpoonup Higher value indicates a better probaility

$$\mathcal{L}_{\mathcal{O}}(\boldsymbol{\theta}, q) = KL(q(\boldsymbol{y}) || p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})) - \alpha \mathbb{E}_q \left[f(\tilde{\boldsymbol{y}}, \boldsymbol{y}) \right],$$

Prior distribution q from the ground-truth data (independent of model parameters) $\Rightarrow \mathbb{E}_q[f(\tilde{\boldsymbol{y}}, \boldsymbol{y})] = 0.$

$$\mathcal{L}_{\mathcal{O}}(\boldsymbol{\theta}, q) = KL(q(\boldsymbol{y}) || p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})),$$

$$KL(q || p_{\boldsymbol{\theta}}) = \mathbb{E}_p(\log(\frac{q}{p})) = \sum_i q_i * \log(q_i) - \sum_i q_i * \log(p_i).$$

$$\min_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{MLE}}(\boldsymbol{\theta}) + \lambda \mathcal{L}_{\mathcal{O}}(\boldsymbol{\theta}, q),$$

D2GPo

D2GPo: Data-dependent Gaussian Prior Objective

$$\mathcal{L}_{\mathcal{O}}(\boldsymbol{\theta}, q) = KL(q(\mathbf{y}) || p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x})),$$

$$KL(q || p_{\boldsymbol{\theta}}) = \mathbb{E}_p(\log(\frac{q}{p})) = \sum_i q_i * \log(q_i) - \sum_i q_i * \log(p_i).$$

$$q(y^*) = \frac{exp(f(\tilde{\boldsymbol{y}}, y^*)/T)}{\sum_{j} exp(f(\tilde{y}_j, y^*)/T)},$$

Evaluation Function:

$$dist_{i,j} = cosine_similarity(emb(y_i), emb(\tilde{y}_j)).$$

 $ORDER(y_i) = sort([dist_{i,1}, dist_{i,2}, ..., dist_{i,N}]).$

Discussion:

- Evaluation function f of q -> Gaussian probability density function
- Linear additive property of word embedding (king man + woman = queen)
- → Gaussian distribution for the embedding-distance-determined order
- Different from data-independent Gaussian prior like L2 regularization (zero-mean Gaussian)

Embedding Pre-training

- Either word embeddings or byte pair-encoding (BPE)
- fastText 512 dim, window size 5, 10 negative samples
- NMT : cross-ligual BPE subword embedding
- Text summarization and others : BPE subword embedding on English monolingual corpora

1) Supervised NMT

- WMT 14 EN-DE / EN-FR, WMT 16 EN-RO

System	EN-DE	EN-FR	EN-RO	EN-RO + STD
Vaswani et al. (2017) (base) Vaswani et al. (2017) (big)	27.30 28.40	38.10 41.00	-	-
Transformer (base)	27.35	38.44	33.22	36.68
+ D2GPo	27.93 ++	39.23 ++	34.00 +	37.11 +
Transformer (big)	28.51	41.05	33.45	37.55
+ D2GPo	29.10 +	41.77 ++	34.13 +	37.92 +

2) Unsupervised NMT

Method	EN-FR	FR-EN	EN-DE	DE-EN	EN-RO	RO-EN
Artetxe et al. (2017)	15.13	15.56	6.89	10.16	_	-
Lample et al. (2017)	15.05	14.31	9.75	13.33	_	-
Yang et al. (2018)	16.97	15.58	10.86	14.62	-	-
Lample et al. (2018)	25.14	24.18	17.16	21.00	21.18	19.44
XLM (Lample & Conneau, 2019)	33.40	33.30	27.00	34.30	33.30	31.80
MASS (Song et al., 2019) MASS + D2GPo	37.50 37.92	34.90 34.94	28.30 28.42	35.20 35.62	35.20 36.31	33.10 33.41

3) Text Summarization

	Model	ROUGE-1	ROUGE-2	ROUGE-L
Supervised	RNN-based seq2seq Nallapati et al. (2016)	35.50 34.97	15.54 17.17	32.45 32.70
Semi-supervised	MLM pre-training (Song et al., 2019) DAE pre-training (Song et al., 2019) MASS pre-training (Song et al., 2019) MASS + D2GPo	37.75 35.97 38.73 39.23	18.45 17.17 19.71 20.11	34.85 33.14 35.96 36.48

4) Storytelling

Model	Params	Valid Perplexity	Test Perplexity
GCNN LM	123.4 M	54.50	54.79
GCNN + self-attention LM	126.4 M	51.84	51.18
LSTM seq2seq	110.3 M	46.83	46.79
Conv seq2seq	113.0 M	45.27	45.54
Conv seq2seq + self-attention	134.7 M	37.37	37.94
Ensemble: Conv seq2seq + self-attention	270.3 M	36.63	36.93
Fusion: Conv seq2seq + self-attention	255.4 M	36.08	36.56
Conv seq2seq + self-attention + D2GPo	134.7 M	35.56	35.74
Fusion: Conv seq2seq + self-attention + D2GPo	255.4 M	33.82	33.90

5) Image Captioning

	BLEU-1	BLEU-4	METEOR	ROUGE-L	CIDEr	SPICE
Att2in (Rennie et al., 2017)	-	31.3	26.0	54.3	101.3	-
Att2all (Rennie et al., 2017)	-	30.0	25.9	53.4	99.4	
Baseline: Top-down Baseline + D2GPo	74.5	33.4	26.1	54.4	105.4	19.2
	75.2	33.6	26.3	55.1	106.6	19.7
Baseline + SCST	77.8	34.4	26.6	56.1	114.3	19.9
Baseline + SCST + D2GPo	78.0	34.7	26.8	56.3	116.8	20.2

4) Storytelling

Model	Params	Valid Perplexity	Test Perplexity
GCNN LM	123.4 M	54.50	54.79
GCNN + self-attention LM	126.4 M	51.84	51.18
LSTM seq2seq	110.3 M	46.83	46.79
Conv seq2seq	113.0 M	45.27	45.54
Conv seq2seq + self-attention	134.7 M	37.37	37.94
Ensemble: Conv seq2seq + self-attention	270.3 M	36.63	36.93
Fusion: Conv seq2seq + self-attention	255.4 M	36.08	36.56
Conv seq2seq + self-attention + D2GPo	134.7 M	35.56	35.74
Fusion: Conv seq2seq + self-attention + D2GPo	255.4 M	33.82	33.90

5) Image Captioning

	BLEU-1	BLEU-4	METEOR	ROUGE-L	CIDEr	SPICE
Att2in (Rennie et al., 2017)	-	31.3	26.0	54.3	101.3	-
Att2all (Rennie et al., 2017)	-	30.0	25.9	53.4	99.4	
Baseline: Top-down Baseline + D2GPo	74.5	33.4	26.1	54.4	105.4	19.2
	75.2	33.6	26.3	55.1	106.6	19.7
Baseline + SCST	77.8	34.4	26.6	56.1	114.3	19.9
Baseline + SCST + D2GPo	78.0	34.7	26.8	56.3	116.8	20.2

Evaluation Function

Evaluation Function	BLEU	Δ
Baseline	27.35	
Gaussian Random Linear Cosine	27.93 26.34 27.45 27.62	0.58 ↑ 1.01 ↓ 0.10 ↑ 0.27 ↑

Low-resource setting

Method	10K	100K	600K
Baseline + D2GPo	1.01	17.80	33.22
	4.33	20.48	34.00

Hyperparameters

Generation diversity

	#GOLD	Baseline	+D2GPo
#LF	4915	3900	3998
#SUM	63086	55234	56129
#RATIO	7.79%	7.06%	7.12%