San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Nondeterministic Finite Automata (Part 3)

Lecture 11 Day 12/31

CS 154
Formal Languages and Computability
Fall 2019

Agenda of Day 11

- Announcement
- Summary of Lecture 10
- Lecture 11: Teaching ...
 - Nondeterministic Finite Automata (Part 3)
- Solution and Feedback of Quiz +
- Solution of HW1

Announcement

- Wrong file name was ignored only this time!
- We need to read the requirements at least 10 times!
- HW1 was individual assignment but looks like some students forgot!
- Because I found some obvious similarities in some students' solutions, but I ignored!
- It's your job to check Canvas!
- HW2 is posted.

Solution and Feedback of Quiz + (Out of 60)

Section	Average	High Score	Low Score
01 (TR 3:00 PM)	51	59	34
02 (TR 4:30 PM)	51	59	42
03 (TR 6:00 PM)	54	58.5	37

Summary of Lecture 10: We learned ...

λ-transition

- Short circuit is ...
 - ... an edge with no input symbol.
- We represent it with symbol λ.
- The transition is called λ-transition.
 - In fact λ means "NO symbol".
- λ-transition in automata theory is a transition that ...
 - ... the machine can unconditionally transit.
- This is a general definition for all types of automata.

 The sub-rule of the following transition is ...

$$\delta(q_3, a) = \{q_9, q_{21}\}$$

 As a general rule, when NFAs encounter multiple choices, they start parallel processing.

Any question?

Summary of Lecture 10: We learned ...

NFAs Formal Definition

An NFA M is defined by a quintuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

Except δ, the rest items are similar to DFAs'.

$$\delta: Q \times \Sigma \to 2^Q$$

 δ is total function.

Any question?

- What is the relationship between ...
- ... the set of all automata machines and ...
- ... the set of all formal languages?

All Automata Machines

All Formal Languages

One of the most interesting topics of computer science

- We've learned that "every machine has an associated language".
- BUT we don't know yet whether for every language, we can construct a machine!
 - Our knowledge is not enough yet.

A Side Note: Computer Scientists Mission

- Why should we be interested in the relationship between machines and languages?
- We'll see later that we can encode all problems into formal languages.

Formal Language ≡ Problem

Accepting (understanding, recognizing) a language **■ Solving the problem**

- So, as computer scientists, our mission is:
 - To design a machine for every language \equiv To solve the problems
- In other words, when you design a machine, it means you are solving the problem.

- Now, with this background, let's look at the association again.
- Let's rename them to "Solutions" and "Problems".
- Obviously, it's true that every solution is related to a problem!
- But, is this the case that for every problem, there is a solution?

7. DFAs vs NFAs

Objective

- The goal of this section is to compare DFAs and NFAs.
- To compare two classes of automata, we'd need some "metrics".

- We'll use the concept of "power" as the metrics for comparison.
- So, first we need to define "power".

Power of Automata Classes

- Let's assume we have two classes of automata:
 - Class A (e.g. NFAs)
 - Class B (e.g. DFAs)

Question

What is the best criteria to state that:

Class A is "more powerful" than class B?

Answer

 If class A can solve (accept, understand, recognize) more problems, then it is more powerful.

Power of Automata Classes

Definition

 The (automata) class A is "more powerful" than class B if the set of languages recognized by class B is a proper subset of the set of the languages recognized by class A.

U = All Formal Languages

DFAs and NFAs Relationship

Let's get back to our topic in this section:

DFAs vs. NFAs

- If the universal set is the set of all formal languages:
 - 1. What portion of the formal languages can be recognized by DFAs?
 - 2. What portion can be recognized by NFAs?

0

DFAs and NFAs Relationship

Let's use the following definitions and notations:

```
U = \{x : x \text{ is a formal language}\}
```

 $D = \{d : d \in U, d \text{ is recognized by a DFA}\}\$

 $N = \{n : n \in U, n \text{ is recognized by a NFA}\}\$

• What is the relationship between set D and set N?

DFAs and NFAs Relationship

Which one is reasonable relationship between D and N?

U = All Formal Languages

Can NFAs Simulate DFAs?

- Let's assume that we've constructed a DFA for an arbitrary language L.
- Can we always construct an NFA for L?
- Yes! How?
- Mathematically speaking, the only difference between the definition of NFAs and DFAs is their transition function.
 - So, we should prove that we can always convert a DFA's definition to an NFA's definition.

Let's show this through an example.

Can NFAs Simulate DFAs?

Example 19

- Convert the following DFA's definition to an NFA's.
- q₀ is the initial state, and q₁ is the final state.

$$\begin{cases} \delta(q_0,a) = q_0 \\ \delta(q_0,b) = q_1 \\ \delta(q_1,a) = q_2 \\ \delta(q_1,b) = q_2 \\ \delta(q_2,a) = q_2 \\ \delta(q_2,b) = q_2 \end{cases}$$

$$\begin{cases} \delta(q_0,a) = \{q_0\} \\ \delta(q_0,b) = \{q_1\} \\ \delta(q_1,a) = \{q_2\} \\ \delta(q_1,b) = \{q_2\} \\ \delta(q_2,a) = \{q_2\} \\ \delta(q_2,b) = \{q_2\} \end{cases}$$

$$\begin{cases} \delta(q_0,a) = \{q_0\} \\ \delta(q_1,b) = \{q_2\} \\ \delta(q_2,a) = \{q_2\} \\ \delta(q_2,b) = \{q_2\} \end{cases}$$

$$\begin{cases} \delta(q_0,a) = \{q_0\} \\ \delta(q_1,b) = \{q_2\} \\ \delta(q_2,b) = \{q_2\} \end{cases}$$

- Just convert the δ.
- The rest items are the same.

DFAs Can be Converted Directly to NFAs

	DFA	NFA
States	$Q = \{q_0, q_1, q_2\}$	$Q = \{q_0, q_1, q_2\}$
Alphabet	$\Sigma = \{a, b\}$	$\Sigma = \{a, b\}$
Sub-rule	$\delta(q_i, a) = q_j$	$\delta(q_i, a) = \{q_j\}$
Initial state	q_0	q_0
Final states	$F = \{q_1\}$	$F = \{q_1\}$

Can NFAs Simulate DFAs?

 As the previous example showed, there is a simple algorithm to convert a DFA to an NFA.

Algorithm: Converting DFAs' Formal Definition to NFAs'

 Change all DFAs' sub-rules to NFAs format by enclosing the range element with a pair of curly brackets. i.e.:

$$\delta(q_i, x) = q_j$$

changes to

$$\delta(q_i, x) = \{q_j\}$$

- The rest of the items, (i.e. Q, Σ , q_0 , F) don't need to be touched.
- Finding an algorithm is equivalent to mathematical proof.

Can NFAs Simulate DFAs?

Conclusion

- Can NFAs simulate DFAs?
- Yes, the set of all languages recognized by DFAs can be recognized by NFAs too.

U = All Formal Languages

Now, let's ask another question ...

Can DFAs Simulate NFAs?

- Let's assume that we've constructed an NFA for an arbitrary language L.
- Can we always construct a DFA for L?
- The answer of this question is not so obvious.
- Let's take an example to make it clear.

Can DFAs Simulate NFAs?

Example 20

- Can we convert the following NFA to a DFA?
- q₀ is the initial state, and q₁ is the final state.

- Yes, but it needs a special technique to convert an NFA to a DFA.
- We might cover it later if we have time!

DFAs and NFAs are Equivalent

DFAs and NFAs are equivalent as the following theorem states.

Theorem

 The set of languages recognized by NFAs is equal to the set of languages recognized by DFAs.

U = All Formal Languages

 DFAs and NFAs have the same power because both recognize the same portion of languages.

- Later, we'll define other classes of automata
 (i.e. Class X, Y, Z, etc.) to recognize more languages.
- But note that those new classes must recognize NFAs' portion and more!

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790