Задача А. Решето Эратосфена

Имя входного файла: sieve.in Имя выходного файла: sieve.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

По введенным числам A и B вывести все простые числа в интервале от A до B включительно.

Формат входных данных

В единственной строке вводятся два числа $1 \leqslant A \leqslant B \leqslant 100000$

Формат выходных данных

Вывести в одну строку все простые числа в интервале от A до B включительно

sieve.in	sieve.out
2 2	2
1 100	2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Задача В. Обратное по модулю

Имя входного файла: inverse2.in Имя выходного файла: inverse2.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны два целых числа — $a, m \ (0 \le a < m)$. Нужно найти такое целое x, что $a \cdot x \equiv 1 \pmod{m}$.

Формат входных данных

На первой строке два целых числа — $a, m \ (0 \le a < m \le 10^{18}).$

Формат выходных данных

Если такого x не существует, выведите -1. Иначе выведите целое x ($0 \leqslant x < m$). Если ответов несколько, выведите любой.

inverse2.in	inverse2.out
7 30	13

Задача С. Китайская теорема

Имя входного файла: chine.in Имя выходного файла: chine.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Решите в целых числах систему уравнений

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m}, \end{cases}$$

где n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Формат входных данных

Входной файл содержит четыре целых числа a, b, n и m $(1 \leqslant n, m \leqslant 10^6, 0 \leqslant a < n, 0 \leqslant b < m).$

Формат выходных данных

В выходной файл выведите искомое наименьшее неотрицательное число x.

chine.in	chine.out
1 0 2 3	3
3 2 5 9	38

Задача D. Система линейных сравнений

Имя входного файла: chinese.in Имя выходного файла: chinese.out Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Дана система из двух линейных сравнений:

$$\begin{cases} x \equiv a \pmod{n}, \\ x \equiv b \pmod{m}; \end{cases}$$

где числа n и m не обязательно взаимно простые. Решите эту систему или определите, что она не имеет решений.

Формат входных данных

В первой строке входного файла записано единственное число $1 \le t \le 100\,000$. В следующих t строках содержатся по четыре целых числа a,b,n,m, задающих одну систему сравнений. Все числа не превосходят по модулю $10^4,\,n>1,\,m>1$.

Формат выходных данных

Программа должна вывести t строк, по одной на каждую систему.

В случае, если система не имеет решений, выведите строку "NO".

В случае, если решение есть, то необходимо вывести слово "YES" и два таких числа x_0 и p, $0 \leqslant x < p$, такие, что множество чисел $x = x_0 + kp$, где k — произвольное целое число является решением данной системы.

chinese.in	chinese.out
3	YES 38 45
3 2 5 9	YES 1 45
1 1 5 9	NO
7 13 20 24	

Задача Е. Проверка на простоту

Имя входного файла: prime.in
Имя выходного файла: prime.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Дано натуральное число N. Определите, является ли оно простым.

Формат входных данных

Программа получает на вход одно целое число $N, 2 \le N \le 10^{18}$.

Формат выходных данных

Если число N простое, программа должна вывести YES, для составного числа программа должна вывести ${\tt NO}$.

prime.in	prime.out
3	YES
4	NO

Задача F. Больше простых!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 15 секунд Ограничение по памяти: 64 мегабайта

Найдите все простые числа не большие n. Поскольку n в этой задаче не просто большое, а прямо здоровенное, для того чтобы проверить, что вы нашли числа правильно, мы попросим вас посчитать от найденных чисел специальный хеш.

Хеш будет считаться по следующему алгоритму. В начале переменная h=0. После каждого очередного встреченного простого числа p_i , будем пересчитывать h по формуле $h=h\cdot x+p_i$, при этом будем игнорировать переполнение знакового 32-битного целого типа. Значение переменной n в конце — это хеш, который вам нужно вывести.

Формат входных данных

Входной файл содержит два числа $n\ (2\leqslant n\leqslant 10^9)$ и $x\ (1\leqslant x\leqslant 10^9).$

Формат выходных данных

Выведите полученный хеш.

стандартный ввод	стандартный вывод
10 10	2357
11 100	203050711
100000000 2	1576840463

Задача G. Циклический шифр

Имя входного файла: circular-cipher.in Имя выходного файла: circular-cipher.out

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Эта задача взята с одного из раундов codeforces.com. Выражаем благодарность координатору Codeforces Глебу GlebsHP Евстропову, а также Михаилу MikeMirzayanov Мирзаянову за системы $Polygon\ u\ Codeforces$.

Вам задан набор из n последовательностей. Каждая из последовательностей состоит из целых положительных чисел, не превосходящих m. Все числа внутри одной последовательности различны, но одно и то же число может встречаться в разных последовательностях. Длина i-й последовательности равна k_i .

Раз в секунду числа в каждой последовательности циклически сдвигаются на одну позицию влево, то есть числа на позициях i>1 переходят на позиции i-1, а первое число становится последним.

Каждую секунду будем выписывать первое число каждой последовательности в новый массив. Для всех чисел 1 до m найдем самый длинный **подотрезок** этого массива, все элементы которого равны этому числу.

Будем проделывать эту операцию на протяжении 10^{100} секунд. Для каждого числа от 1 до m определите самый длинный из подотрезков, найденных за это время.

Формат входных данных

В первой строке входных данных записаны два числа n и m ($1 \le n, m \le 100\,000$) — количество последовательностей и максимальное число, которое может встретиться в последовательностях.

В следующих n строках даны сами последовательности. В каждой строке сначала записано число k_i ($1 \le k_i \le 40$) — количество чисел в последовательности, а затем ещё k_i целых положительных чисел — сама последовательность. Гарантируется, что числа в каждой последовательности попарно различны и не превосходят m.

Суммарная длина всех последовательностей не превосходит 200 000.

Формат выходных данных

Выведите m чисел, i-е из которых равняется длине самого большого подотрезка, все числа в котором равны i и который встретился в выписываемом массиве за первые 10^{100} секунд.

circular-cipher.in	circular-cipher.out
3 4	2
3 3 4 1	1
4 1 3 4 2	3
3 3 1 4	2
5 5	3
2 3 1	1
4 5 1 3 2	4
4 2 1 3 5	0
1 3	1
2 5 3	
4 6	0
3 4 5 3	0
2 6 3	2
2 3 6	1
3 3 6 5	1
	2