## Министерство образования Республики Беларусь

## Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

| Факультет<br>Кафедра                                        | Информационных технологий и управления<br>Интеллектуальных информационных технологий |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
|                                                             | К защите допустить:<br>Заведующий кафедрой<br>Д.В. Шункевич                          |  |
|                                                             | ПОЯСНИТЕЛЬНАЯ ЗАПИСКА<br>к курсовой работе                                           |  |
| по дисципли                                                 | не «Проектирование программ в интеллектуальных системах»:                            |  |
| Нахождение компонент связности в<br>неориентированном графе |                                                                                      |  |
|                                                             | КРЗ 1-40 03 01 01 102 ПЗ                                                             |  |
|                                                             |                                                                                      |  |
| Студент:                                                    | Е.С. Стефаненко                                                                      |  |

Руководитель:

Д.В. Шункевич

## Содержание

| Перечень условных обозначений                      | 5 |
|----------------------------------------------------|---|
| Введение                                           | 6 |
| 1 Теоретико-графовая задача                        | 7 |
|                                                    | 7 |
| 1.2 Разработка алгоритма                           | 7 |
|                                                    | 7 |
| 1.4 Пример работы алгоритма в семантической памяти | 2 |
| 2 Личный вклад в развитие ИС по искусству          | 1 |
| 2.1 Список формализованных понятий                 | 1 |
| 2.2 Примеры реализации формализованных понятий     | 2 |
| Заключение                                         | 6 |
| Список использованных источников                   | 7 |

## Перечень условных обозначений

В курсовой работе используются следующие условные обозначения:

ЯП – язык программирования;

ИС – интеллектуальная система;

SC – Semantic Code;

SCg – Semantic Code graphical;

SCp – Semantic Code programming.

## Введение

Целями курсовой работы по предмету «Проектирование программ в интеллектуальных системах» в данном семестре является анализ и решение поставленной задачи: нахождение компонент связности в неориентированном графе. Решение требуется реализовать в двух видах:

- 1. В виде программы с использованием библиотеки, поддерживающей SC-память, на классическом ЯП (C++);
- 2. В виде программы на ЯП SCp: языке, ориентированном на обработку семантических сетей.

Для достижения этих целей были поставлены следующие задачи: изучение теоретического материала о графах; создание алгоритма решения поставленной теоретико-графовой задачи; изучение необходимых языков программирования, их структуры, семантики, представление информации в памяти.

## 1 Теоретико-графовая задача

#### 1.1 Список основных понятий предметной области

- 1. Граф (абсолютное понятие) совокупность непустого множества вершин и наборов пар вершин (связей между вершинами).
- 2. Неориентированный граф (абсолютное понятие) граф, в котором все связки-ребра.
- 3. Связный граф (абсолютное понятие) граф, содержащий только одну компоненту связности.
  - 4. Компонента связности максимальный связный подграф графа.

#### 1.2 Разработка алгоритма

Для решения задачи по нахождению компонент связности в неориентированном графе потребовалось изучить необходимые сведения из теории графов о графе, неориентированном графе и его свойствах, связном графе, компонентах связности.

#### 1.3 Тестовые примеры

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

#### 1.3.1 Тест 1

#### Вход:

Найти компоненты связности графа. Входные данные представлены на рис. 1.1.



Рисунок 1.1 – Вход теста 1

#### Выход:

Выходные данные представлены на рис. 1.2



Рисунок 1.2 — Выход теста 1

## 1.3.2 Tect 2

## Вход:

Найти компоненты связности графа. Входные данные представлены на рис. 1.3.



Рисунок 1.3 — Вход теста 2

## Выход:

Выходные данные представлены на рис. 1.4.



Рисунок 1.4 – Выход теста 2

## 1.3.3 Tect 3

#### Вход:

Найти компоненты связности графа. Входные данные представлены на рис. 1.5.



Рисунок 1.5 — Вход теста 3

## Выход:

Выходные данные представлены на рис. 1.6.



Рисунок 1.6 – Выход теста 3

#### 1.3.4 Tect 4

## Вход:

Найти компоненты связности графа. Входные данные представлены на рис. 1.7.



Рисунок 1.7 – Вход теста 4

## Выход:

Выходные данные представлены на рис. 1.8.



Рисунок 1.8 — Выход теста 4

#### 1.3.5 Tect 5

## Вход:

Найти компоненты связности графа. Входные данные представлены на рис. 1.9.



Рисунок 1.9 — Вход теста 5

## Выход:

Выходные данные представлены на рис. 1.10.



Рисунок 1.10 – Выход теста 5

#### 1.4 Пример работы алгоритма в семантической памяти

#### 1.4.1 Описание алгоритма

- 1. Добавить все вершины графа во множество нерассмотренных вершин.
- 2. Начало формирования нового подграфа, который является компонентой связности:
  - 2.1 Создать новое множество вершин подграфа.
  - 2.2 Добавить в множество вершин подграфа одну из вершин из множества нерассмотренных вершин. Считать эту вершину рассматриваемой.
  - 2.3 Удалить рассматриваемую вершину из множества нерассмотренных вершин.
    - 3. Добавление элемента в множество вершин подграфа:
  - 3.1 Новым элементом множества вершин подграфа является вершина из множества нерассмотренных вершин, смежная рассматриваемой вершине.
  - 3.2 Если вершина попала в множество вершин подграфа, то удалить ее из множества нерассмотренных вершин.
    - 3.3 Далее считать данную вершину рассматриваемой.

- 4. Если для вершин, принадлежащих множеству вершин подграфа, нет смежных вершин из множества нерассмотренных вершин, то завершить формирование множества вершин подграфа, иначе перейти к пункту 3.
  - 5. Завершение формирования подграфов.
  - 5.1 Если множество нерассмотренных вершин не пустое, то перейти к пункту 2.
  - 5.3 Сформировать из множеств вершин подграфа и соединяющих их ребер новые неориентированные связные графы.
    - 5.4 Завершить алгоритм.

#### 1.4.2 Пример выполнения алгоритма в sc-памяти

#### Соглашения по демонстрации

Для наглядности примеры формализации переменных и их значений будут представлены в кратком виде (опуская отношение значение\*).



Для решения задачи необходимы следующие переменные:

- 1. \_graph, содержащая узел исходного неориентированного графа.
- 2. \_subgraph\_i (где i=1,2,3...), содержащая узел неориентированного связного графа, являющегося подграфом исходного графа.
  - 3. Множество нерассмотренных верших not explored vertices.
- 4. Множество вершин подграфа \_vertices\_of\_subgraf\_i (где i=1,2,3...).
  - 5. \_current\_vertex, содержащая рассматриваемую вершину.

### Демонстрация алгоритма

Исходные данные - некий неориентированный граф (рис. 1.11).



Рисунок 1.11 – Исходные данные

# **Шаг 1** Добавление всех вершин графа во множество \_not\_explored\_vertices (рис. 1.12).



Рисунок 1.12 – Шаг 1

## Шаг 2

Начало формирования нового множества \_vertices\_of\_subgraph\_1 (рис. 1.13).



Рисунок 1.13 – Шаг 2

## Шаги 3,4,5

Добавление элементов во множество \_vertices\_of\_subgraph\_1 (рисунки 1.14, 1.15, 1.16).



Рисунок *1.14* – Шаг 3



Рисунок 1.15 — Шаг 4



Рисунок 1.16 – Шаг 5

## Шаг 6

Начало формирования нового множества \_vertices\_of\_subgraph\_2 (рис. 1.17).



Рисунок *1.17* – Шаг 6

## Шаг 7 Добавление элемента во множество \_vertices\_of\_subgraph\_2 (рис. 1.18).



Рисунок 1.18 – Шаг 7

## Шаг 8

Начало формирования нового множества \_vertices\_of\_subgraph\_3 (рис. 1.19).



Рисунок 1.19 – Шаг 8

## Шаги 9, 10

Завершение формирования подграфов (рис. 1.20). Завершение алгоритма (рис. 1.21).



Рисунок 1.20 – Шаг 9



Рисунок 1.21 — Шаг 10

**Шаг 11** Вывод окончательного результата (рис. 1.22).



Рисунок 1.22 — Шаг 11

## 2 Личный вклад в развитие ИС по искусству

#### 2.1 Список формализованных понятий

Был дополнен раздел "Театр". В рамках этого раздела были формализованы следующие понятия:

- 1. Относительные понятия
  - 1.1. Звукорежиссер'
  - 1.2. Суфлер'
  - 1.3. Реплика\*
- 2. Абсолютные понятия
  - 2.1. Ансамбль
  - 2.2. Сцена
  - 2.3. Реквизит
  - 2.4. Театральная публика
  - 2.5. Занавес
  - 2.6. Костюм
  - 2.7. Грим
  - 2.8. Гардероб
  - 2.9. Театральное действие (акт)
  - 2.10. Бутафория (бутафорский предмет)
  - 2.11. Текст роли/слова актера
  - 2.12. Зрительный зал
- 3. Вспомогательные понятия (которые были формализованы лишь частично и не обязательно относятся к предметной области)
  - 3.1. Руководитель'
  - 3.2. Обмен\*
  - 3.3. Место\*
  - 3.4. Подсказка\*
  - 3.5. Шептать\*
  - 3.6. Необходимость\*
  - 3.7. Ключевая часть\*
  - 3.8. Дешевизна\*
  - 3.9. Непрочность\*
  - 3.10. Книга
  - 3.11. Совокупность
  - 3.12. Музыкальный коллектив
  - 3.13. Предмет
  - 3.14. Подлинная вещь
  - 3.15. Помещение
  - 3.16. Текст
  - 3.17. Звук

- 3.18. Глава
- 3.19. Монолог
- 3.20. Диалог
- 3.21. Лицо
- 3.22. Партер
- 3.23. Амфитеатр
- 3.24. Бенуар
- 3.25. Бельэтаж
- 3.26. Балкон
- 3.27. Эмблема
- 3.28. Одежда

## 2.2 Примеры реализации формализованных понятий

#### 1. Грим

Рассмотрим формализованное на языке SC абсолютное понятие "Грим". На рисунке 2.1 изображен фрагмент базы знаний ИС по искусству, показывающий идентификаторы понятия "Грим".



Рисунок 2.1 – Идентификаторы понятия "Грим"

На рисунке 2.2 изображен фрагмент базы знаний ИС по искусству, показывающий утверждение и определение понятия "Грим".

Рисунок 2.2 – Утверждение и определение понятия "Грим".

На рисунке 2.3 изображен фрагмент базы знаний ИС по искусству, показывающий рисунок понятия "Грим".



Рисунок 2.3 – Рисунок понятия "Грим".

#### 2. Бутафория

Рассмотрим формализованное на языке SC абсолютное понятие "Бутафория".

На рисунке 2.4 изображен фрагмент базы знаний ИС по искусству, показывающий идентификаторы понятия "Бутафория".



Рисунок 2.4 – Идентификаторы понятия "Бутафория"

На рисунке 2.5 изображен фрагмент базы знаний ИС по искусству, показывающий утверждение и определение понятия "Бутафория", а также принадлежность к множеству "Подлинность".

```
Опр. (Бутафория)
⇒ используемые константы*:
...
с трансляция sc-текста*:
...
Бутафория - поддельные, специально изготавливаемые предметы, используемые в театральных спектаклях взамен настоящих
€ Русский язык
Утв. (бутафорский предмет, дешевизна, непрочность)
с трансляция sc-текста*:
...
э пример*:
Бутафорские предметы отличаются дешевизной и непрочностью.
...
с Русский язык
⇒ используемые константы*:
...
с Подлинность
⇒ разбиение*:
предмет
```

Рисунок 2.5 – Утверждение, определение и принадлежность к множеству "Подлинность" понятия "Бутафория".

На рисунке 2.6 изображен фрагмент базы знаний ИС по искусству, показывающий рисунок понятия "Бутафория".



Рисунок 2.6 – Рисунок понятия "Бутафория".

#### 3. Предмет

Рассмотрим формализованное на языке SC абсолютное понятие "Предмет". Оно не пренадлежит предметной области "искусство но необходимо в качестве вспомогательного понятия для формализации понятий, принадлежащих предметной области (пример: Бутафория). На рисунке 2.7 изображен фрагмент базы знаний ИС по искусству, показывающий формализацию понятия "Предмет".



Рисунок 2.7 – Абсолютное понятие "Предмет" в ИС по искусству

#### Заключение

В рамках курсовой работы были решены следующие задачи:

- Разработан алгоритм нахождения компонент связности неориентированного графа;
- Разработанный алгоритм реализован с использованием библиотеки, поддерживающей SC-память, на классическом ЯП (C++);
- Разработанный алгоритм реализован в виде программы на ЯП SCp: языке, ориентированном наобработку семантических сетей.
- Внесен личный вклад в развитие ИС по искусству. В рамках раздела "Театр"было формализовано 15 понятий (3 относительных и 12 абсолютных), а также 28 вспомогательных понятий.

#### Список использованных источников

- [1] Metacuctema IMS. http://ims.ostis.net.
- [2] В.А., Горбатов. Фундаментальные основы дискретной математики. Информационная математика / Горбатов В.А. Наука, Физматлит, 2000.  $544~\rm c.$
- [3] Ф.А., Новиков. Дискретная математика для программистов / Новиков Ф.А. Питер, 2003. 364 с.
- [4] В.Б., Тарасов. От многоагентных систем к интеллектуальным организациям / Тарасов В.Б. Изд-во УРСС, 2002.
  - [5] О., Ope. Теория графов / Ope O. Наука, 1980. 336 с.
- [6] Головко, В. А. Нейроинтеллект: теория и применение. Книга 1: Организация и обучение нейронных сетей с прямыми и обратными связями / В. А. Головко. Брестский политехнический институт., 1999. 265 Р.
- [7] Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика / Борисов В.В. Круглов В.В. Горячая линия-Телеком., 2002. 383 Р.
- [8] Зыков, А.А. Основы теории графов / А.А. Зыков. Издательство «Наука», 1987. 384 с.
- [9] Харарри, Ф. Теория графов / Ф. Харарри. Эдиториал УРСС, 2018. 304 Р.
  - [10] Оре, О. Теория графов / О. Оре. Наука, 1980. 336 Р.
- [11] Кузнецов, О. П. Дискретная математика для инженера / О. П. Кузнецов, Г. М. Адельсон-Вельский. Энергоатомиздат, 1988. 480 Р.
- [12] Кормен, Д. Алгоритмы. Построение и анализ / Д. Кормен. Вильямс, 2015.-1328 Р.
- [13] Нечепуренко М.И., Попков В.К. Алгоритмы и программы решения задач на графах и сетях / Попков В.К. Нечепуренко М.И. Наука. Сиб. отд-ние, 1990.-515 Р.
- [14] Емеличев В.А., Мельников О.И. Лекции по теории графов / Мельников О.И. Емеличев В.А. Наука, 1990. 384 Р.