Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Tarea semanal 06:

Circuitos lógicos

 $\begin{array}{c} Pablo~A.~Trinidad~Paz\\ 419004279\end{array}$

1. Demuestra que los siguientes circuitos son equivalentes

$$(x_1x_2) + (x_3x_4) \equiv (x_1 + x_3)(x_2 + x_3)(x_2 + x_4)(x_1 + x_4)$$
Por distributibidad:
$$(x_1 + x_3)(x_2 + x_3)(x_2 + x_4)(x_1 + x_4) \equiv (x_1 + x_3)(x_2 + x_3)(x_2 + x_4)(x_1 + x_4)$$

2. Para cado uno de los siguientes incisos decide si la construcción de bloques propuesta es válida y óptima. Si no lo es, indica por qué y genera una válida o bien, mejórala

Sí es válida y óptima. Es válida por la definición de adyacencia que especifica que si sólo cambia el valor de una de las variables por columna y rengón, entonces las celdas son adyacentes.

No es válida porque los bloques tienen que tener n elementos donde n tiene que se potencia de dos. En este caso 3 no es potencia de 2.

La solución válida y óptima sería:

Sí es válida pero no es óptima. El objetivo es crear la menor cantidad de bloques, por lo que la solución óptima sería:

Sí es válida pero no es óptima. La solución óptima sería la versión mostrada en el inciso e, nuevamente por el objetivo de crear la menor cantidad de bloques.

Sí es válida y óptima.

- 3. Un ventilador puede girar en dos sentidos: izquiera o derecha. En el panel de control se encuentran tres botones con las siguientes etiquetas: D, I, C, los cuales corresponden al giro a la derecha, giro a la izquierda y control de selección respectivamente. Las señales enviadas por los botones definen el movimiento del ventilador bajo las siguientes condiciones:
 - Si se pulsa alguno de los botones de giro, entonces el ventilador gira en el sentido correspondiente.
 - Si no se presiona alguno de los botones de giro, el ventilador no gira.
 - Si se presionan los dos botones D e I simultáneamente, el sentido del giro depende del botón de control:
 - Si se presiona C, el ventilador gira a la derecha.
 - \bullet Si no se presiona C, el ventilador gira a la izquierda.
 - a) Construye la tabla que representa el comportamiento del ventilado dadas las entradas C, D, I del panel. (Las salidas S1 y S2 indican si el ventilador gira a la izquierda o derecha respectivamente.)

D	I	C	S1	S2
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

b) Obtén las funciones booleanas para S1 y S2

$$S1(D, I, C) = \bar{D}I\bar{C} + \bar{D}IC + D\bar{I}\bar{C}$$

$$S2(D, I, C) = D\bar{I}\bar{C} + D\bar{I}C + DIC$$

c) Minimiza las funciones obtenidas en b) con el método de tu preferencia.

Karnaugh para $S1$							
	DI	$D\bar{I}$	$\bar{D}\bar{I}$	$\bar{D}I$			
\overline{C}				1			
\bar{C}	1			1			

$$S1(D,I,C) = I + \bar{C}I$$

Karnaugh para $S2$								
	DI	$D\bar{I}$	$\bar{D}\bar{I}$	$\bar{D}I$				
\overline{C}	1	1						
\bar{C}		1						

$$S1(D, I, C) = CD + D$$