

Agenda

- Motivation
- Models
- Ensemble Kalman Filter and Data assimilation
- First results
- Discussion

Background of work – DUST project

- data assimilation for agentbased modelling
- mostly in Urban Analytics
- led by Nick Malleson

Traditionally economic data is slow

and

Economic models focus on "slow"/long-term processes

Example: Economic growth

Solow-Swan growth model

$$\dot{k}(t) = sk(t)^{lpha} - (n+g+\delta)k(t)$$

Today the economy is almost monitored in real-time

And models focus also on high-frequency processes

<u>Home > Economy > Economic output and productivity > Output > Economic activity and social change in the UK, real-time indicators </u>

Economic activity and social change in the UK, real-time indicators: 14 September 2023

Early experimental data on the UK economy and society. These faster indicators are created using rapid response surveys, novel data sources and experimental methods.

This is the latest release. <u>View previous releases</u>

You Work In V Data V

Products V

Insights V

Sup

Our brand is changing to LSEG. Learn more about the changes to our brand

Real Time Economics

Key market moving economic indicators with calendared events updated in real time.

Example: Daily Credit card spending in the UK

Source: https://www.ons.gov.uk/economy/economicoutputandproductivity/output/datasets/ukspendingoncreditanddebitcards

There is much work in economics, especially in econometrics, focusing on high frequency forecasting already.

Yet overall in theoretical models this is still underdeveloped.. And also...

Problem 1:

How do you model such fast-paced processes/data?

Problem 2:

What if a model quickly diverges from reality?

Our use case: American Wealth inequality

Two agent-based models to explain this

Model 1 – by Vallejos, Nutaro, and Perumalla (2018) Not really an ABM, rather individual-based

Back to problem #2: What do we do when a model does not fit the data?

Option 1: Recalibrate

Option 2: Change the model

Option 3: Data assimilation = update the internal model state based on observations

A brief note on data assimilation and weather

The Kalman Filter

Rudolf Emil Kalman 1930 - 2016 Engineer and mathematician

Very general idea

$$X_{estimate,t+1} = (1 - K) * X_{model,t} + K * X_{obs,t}$$

Rocket	Position	Law of motion	Position obs.
System	$X_{estimate,t+1} =$	$(1-K)*X_{model,t}+$	$K * X_{obs,t}$

Economic **GDP** "Law" of growth **Economic activity obs.** growth

Some "Law" of distribution Wealth classes obs.

Wealth inequality inequality /ABM in our case metric

page 18 of 27

The Kalman Filter considers uncertainty

The Kalman Filter considers uncertainty

The Kalman Filter is optimal because weights K minimize uncertainty

If Variance model < Variance Obs then (1-K) > K

The Ensemble Kalman Filter takes uncertainty from an ensemble of models and an ensemble of observations

From Ensemble of ABMs

$$X_{estimate,t+1} = (1 - K) * X_{model,t} + K * X_{obs,t}$$

$$\begin{bmatrix} top \ 1\% \\ middle \ 40\% \\ bottom \ 50 \ \% \end{bmatrix} \qquad \qquad \begin{bmatrix} top \ 1\% \\ middle \ 40\% \\ bottom \ 50 \ \% \end{bmatrix}$$
 Micro to macro

Ensemble of simulation runs model 1

The Ensemble Kalman Filter (ENKF)

Procedural flow

Ensemble of simulation runs with ENKF – unfinished work, not robust yet

Discussion and outlook

- Does the filter work correctly?
 - Is the micro-macro translation correctly?

 We want to test the method during crisis moments like the pandemic 2020

 We hope that this inspires more data-assimilation-based control in economic forecasting