

ANNEX E CALIBRATION FOR PROBE AND DIPOLEF

F.1 E-Field Probe

COMOHAC E-Field Probe Calibration Report

Ref: ACR.93.12.17.SATU.A

SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD,

NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055

MVG COMOHAC E-FIELD PROBE

SERIAL NO.: SN 03/16 EPH47

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 03/22/2017

Summary:

This document presents the method and results from an accredited COMOHAC E-Field Probe calibration performed in MVG USA using the CALIBAIR test bench, for use with a MVG COMOHAC system only. All calibration results are traceable to national metrology institutions.

Report No.: BL-EC1780083-701

COMOHAC E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.93.12.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	4/3/2017	25
Checked by:	Jérôme LUC	Product Manager	4/3/2017	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	4/3/2017	Kum Pattiamush

	Customer Name
Distribution :	SHENZHEN
	BALUN
	TECHNOLOGY
	Co.,Ltd.

Issue	Date	Modifications
A	4/3/2017	Initial release
-		- 1

Ref: ACR 93.12.17.SATU.A

TABLE OF CONTENTS

1 D	Device Under Test	
2 P	roduct Description	
2.1	General Information	4
3 N	1easurement Method	
3.1	Linearity	4
3.2		3
3.3	Isotropy	
3.4		
4 M	feasurement Uncertainty5	
5 C	alibration Measurement Results	
5.1	Sensitivity in air	(
5.2		
5.3	Isotropy	
6 L	ist of Equipment	

Ref: ACR.93.12.17.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOHAC E FIELD PROBE		
Manufacturer	MVG		
Model	SCE		
Serial Number	SN 03/16 EPH47		
Product Condition (new / used)	New		
Frequency Range of Probe	0.7GHz-2.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.208 MΩ		
	Dipole 2: R2=0.203 MΩ		
	Dipole 3: R3=0.214 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOHAC E field Probes are built in accordance to the ANSI C63.19 and IEEE 1309 standards.

Figure 1 – MVG COMOHAC E field Probe

Probe Length	330 mm
Length of Individual Dipoles	3.3 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	3 mm

3 MEASUREMENT METHOD

All methods used to perform the measurements and calibrations comply with the ANSI C63.19 and IEEE 1309 standards.

3.1 LINEARITY

The linearity was determined using a standard dipole with the probe positioned 10 mm above the dipole. The input power of the dipole was adjusted from -15 to 36 dBm using a 1dB step (to cover the range 2V/m to 1000A/m).

Ref: ACR 93.12.17.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using the waveguide method outlined in the fore mentioned standards.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps.

3.4 PROBE MODULATION RESPONSE

The modulation factor was determined by illuminating the probe with a reference wave from a standard dipole 10 mm away, applying first a CW signal and then a modulated signal (both at same power level). The modulation factor is the ratio, in linear units, of the CW to modulated signal reading.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528 and IEC/CEI 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$ 1	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1 732%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$ 1.	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					4,509%
Expanded uncertainty 95 % confidence level k = 2	1:				9.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters			
Lab Temperature 21 °C			

Page: 5/8

Report No.: BL-EC1780083-701

COMOHAC E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.93.12.17.SATU.A

Lab Humidity	45 %	

5.1 <u>SENSITIVITY IN AIR</u>

Normx dipole 1 $(\mu V/(V/m)^2)$	Normy dipole 2 $(\mu V/(V/m)^2)$	Normz dipole 3 (μV/(V/m) ²)
3.69	4.41	4.60

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
106	117	121

Page: 6/8

Ref: ACR.93.12.17.SATU.A

5.2 LINEARITY

Linearity: I+/-1.32% (+/-0.06dB)

5.3 ISOTROPY

Page: 7/8

Ref: ACR.93.12.17.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
HAC positioning ruler	MVG	TABH12 SN 42/09	Validated. No cal required.	Validated, No ca required.		
COMOHAC Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Reference Probe	MVG	EPH28 SN 08/11	10/2016	10/2017		
Reference Probe	MVG	HPH38 SN31/10	10/2016	10/2017		
Multimeter	Keithley 2000	1188656	01/2017	01/2020		
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	01/2017	01/2020		
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	150798832	10/2015	10/2017		

F.2 T-coil Probe

COMOHAC T-coil Probe Calibration Report

Ref: ACR.93.14.17.SATU.A

SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD, NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055 MVG COMOHAC T-COIL PROBE

SERIAL NO.: SN 46/15 TCP34

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 03/22/2017

Summary:

This document presents the method and results from an accredited COMOHAC T-coil Probe calibration performed in MVG USA using the COMOHAC test bench, for use with a MVG COMOHAC system only. All calibration results are traceable to national metrology institutions.

Report No.: BL-EC1780083-701

COMOHAC T-COIL PROBE CALIBRATION REPORT

Ref: ACR.93.14.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	4/3/2017	25
Checked by :	Jérôme LUC	Product Manager	4/3/2017	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	4/3/2017	them Puttinnesh

	Customer Name		
	SHENZHEN BALUN		
Description			
Distribution:	TECHNOLOGY		
	Co.,Ltd.		

Issue	Date	Modifications
A	4/3/2017	Initial release

Ref: ACR.93.14.17.SATU.A

TABLE OF CONTENTS

1	De	vice Under Test4	
2	Pro	duct Description4	
	2.1	General Information	4
3	Me	asurement Method	
	3.1	Sensitivity	4
	3.2	Linearity	4
	3.3	Signal to Noise Measurement of the Calibration System	5
4	Me	asurement Uncertainty	
5	Cal	libration Measurement Results	
	5.1	Sensitivity	6
	5.2	Linearity	6
	5.3	Signal to Noise measurement of the Calibration System	6
6	Lis	t of Equipment 7	

Ref: ACR.93.14.17.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type COMOHAC T-COIL PROBE			
Manufacturer	MVG		
Model STCOIL			
Serial Number SN 46/15 TCP34			
Product Condition (new / used) New			
Frequency Range of Probe 200-5000 Hz			

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOHAC T-coil Probes are built in accordance to the ANSI C63.19 and IEEE 1027 standards.

Figure 1 - MVG COMOHAC T-coil Probe

Coil Dimension	6.55 mm length * 2.29 mm diameter		
DC resistance	860.6 Ω		
Wire size	51AWG		
Inductance at 1 kHz	132.1 mH at 1 kHz		

3 MEASUREMENT METHOD

All methods used to perform the measurements and calibrations comply with the ANSI C63.19 and IEEE 1027 standards. All measurements were performed using a Helmholtz coil built according to the specifications outlined in ANSI C63.19 and IEEE 1027.

3.1 SENSITIVITY

The T-coil was positioned within the Helmholtz coil in axial orientation. Using an audio generator connected to the input of the Helmholtz coil, a known field (1 A/m) was generated within the coil and the T-coil probe reading recorded over the frequency range of 100 Hz to 1000 Hz.

3.2 LINEARITY

The T-coil probe was positioned within the Helmholtz coil in axial orientation. The audio generator connected to the input of the Helmholtz coil was adjusted to obtain a field within the coil from 0 dB A/m to -50 dB A/m and the T-coil reading recorded at each power level (10 dB steps).

Page: 4/7

Ref: ACR.93.14.17.SATU.A

3.3 SIGNAL TO NOISE MEASUREMENT OF THE CALIBRATION SYSTEM

The T-coil probe was positioned within the Helmholtz coil in axial orientation. The audio generator connected to the input of the Helmholtz coil was adjusted to obtain a field of -50 dB A/m. The T-coil reading was recorded. The audio generator is then turned off and the T-coil reading recorded.

4 MEASUREMENT UNCERTAINTY

The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the T-coil probe calibration					
Uncertainty Component	Tol. (± dB)	Prob. Dist.	Div.	Uncertainty (dB)	Uncertainty (%)
Current/Volage Accuracy	0.224	R	√3	0.13	
Acoustic/ Signal Source drift	0.008	R	√3	0.00	
Probe coil sensitivity	0.2	R	√3	0.12	
Positioning accuracy	0.4	R	√3	0.23	
Acoustic Signal Receive Accuracy	0.03	R	√3	0.02	
Acoustic Signal Receive Linearity	0.006	R	√3	0.00	
System repeatability	0.4	N	i	0.40	
Combined Standard Uncertainty		N	1	0.49	
Expanded uncertainty (confidence level of 95%, k = 2)		N	k=2	1.00	12.0

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters				
Lab Temperature 21°C				
Lab Humidity	45%			

Ref: ACR.93.14.17.SATU.A

5.1 SENSITIVITY

Probe coil sensitivity relative to sensitivity at 1000 Hz

	Measured	Required
Sensitivity at 1 kHz	-60.19 dB (V/A/m)	-60.5 +/- 0.5 dB (V/A/m)
Max. deviation from Sensitivity	0.40 dB	+/- 0.5 dB

5.2 LINEARITY

	Measured	Required
Linearity Slope	0.09 dB	+/ 0.5 dB

5.3 SIGNAL TO NOISE MEASUREMENT OF THE CALIBRATION SYSTEM

	Measured	Required
Signal to Noise	-63.14 dB A/m	'Reading with -50 dB A/m in coil' - 'no signal applied' > 10 dB

Page: 6/7

Ref: ACR.93.14.17.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
COMOHAC Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.		
Audio Generator	National Instruments	15222AE	02/2017	02/2020		
Reference Probe	MVG	TCP 18 SN 47/10	10/2016	10/2017		
Multimeter	Keithley 2000	1188656	01/2017	01/2020		
Helmholtz Coil	MVG	HC07 SN47/10	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	150798832	10/2015	10/2017		

F.3 800-950MHz Dipole

HAC Reference Dipole Calibration Report

Ref: ACR.75.23.17.SATU.A

SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD, NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055 MVG COMOHAC REFERENCE DIPOLE

FREQUENCY: 800-950MHZ SERIAL NO.: SN 18/12 DHA41

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

02/17/2017

Summary:

This document presents the method and results from an accredited HAC reference dipole calibration performed in MVG USA using the COMOHAC test bench. All calibration results are traceable to national metrology institutions.

Report No.: BL-EC1780083-701

HAC REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.75.19.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	2/25/2017	JES
Checked by:	Jérôme LUC	Product Manager	2/25/2017	JE
Approved by :	Kim RUTKOWSKI	Quality Manager	2/25/2017	there that thouse

	Customer Name		
	SHENZHEN		
Deve to the second	BALUN		
Distribution:	TECHNOLOGY		
	Co.,Ltd.		

Issue	Date	Modifications	
A	2/25/2017	Initial release	

Ref: ACR.75,23.17.SATU.A

TABLE OF CONTENTS

1 Ir	troduction4	
2 D	evice Under TEst	
3 P	roduct Description	
3.1	General Information	4
4 N	Ieasurement Method	
4.1	Return Loss Requirements	5
4.2	Reference Dipole Calibration	5
5 N	Ieasurement Uncertainty	
5.1	Return Loss	5
5.2	Validation Measurement	5
6 C	alibration Measurement Results6	
6.1	Return Loss_	6
6.2	Validation measurement	6
7 L	ist of Equipment8	

Ref: ACR.75.23.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the ANSI C63.19 standard for reference dipoles used for HAC measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOHAC 800-950 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SIDB835			
Serial Number	SN 18/12 DHA41			
Product Condition (new / used)	Used			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOHAC Validation Dipoles are built in accordance to the ANSI C63.19 standard. The product is designed for use with the COMOHAC system only.

Figure 1 – MVG COMOHAC Validation Dipole

4 MEASUREMENT METHOD

The ANSI C63.19 standard outlines the requirements for reference dipoles to be used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standard.

Page: 4/8

Ref: ACR.75.23.17.SATU.A

4.1 RETURN LOSS REQUIREMENTS

The dipole used for HAC system validation measurements and checks must have a return loss of -10 dB or better. The return loss measurement shall be performed in free space.

4.2 REFERENCE DIPOLE CALIBRATION

The IEEE ANSI C63-19 standard states that the dipole used for validation measurements and checks must be scanned with the E and H field probe, with the dipole 10 mm below the probe. The E and H field strength plots are compared to the simulation results obtained by MVG.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Gain		
400-6000MHz	0.1 dB		

5.2 VALIDATION MEASUREMENT

The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	Uncertainty (dB)	Standard Uncertainty (%)
RF reflections	0.1	R	$\sqrt{3}$	0.06	
Field probe conv. Factor	0.4	R	<u></u> —√3 —	0.23	
Field probe anisotropy	0.25	R	<u></u> —√3 —	0.14	
Positioning accuracy	0.2	R	$-\sqrt{3}$	0.12	
Probe cable placement	0.1	R	$-\sqrt{3}$	0.06	
System repeatability	0.2	R	$\sqrt{3}$	0.12	
EUT repeatability	0.4	N	-1-	0.40	
Combined standard uncertainty				0.52	
Expanded uncertainty 95 % confidence level k = 2				1.00	13.0

Ref: ACR.75.23.17.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS

Frequency (MHz)	Worst Case Return Loss (dB)	Requirement (dB)
800-950 MHz	-14.53	-10

6.2 VALIDATION MEASUREMENT

The IEEE ANSI C63.19 standard states that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss requirements. The system validations measurement results are then compared to MVG's simulated results.

Measurement Condition

Software Version	Version OpenHAC V2		
HAC positioning ruler	SN 42/09 TABH12		
E-Field probe	SN 08/11 EPH28		
H-Field probe	SN 31/10 HPH38		
Distance between dipole and sensor center	10 mm		
E-field scan size	X=150mm/Y=20mm		
H-field scan size	X=40mm/Y=20mm		
Scan resolution	dx=5mm/dy=5mm		
Frequency	835 MHz		
Input power	20 dBm		
Lab Temperature	21°C		
Lab Humidity	45%		

Page: 6/8

Ref: ACR.75.23.17.SATU.A

Measurement Result

	Measured	Internal Requirement
E field (V/m)	220.88	220.4
H field (A/m)	0.45	0.445

Page: 7/8

Ref: ACR.75.25.17.SATU.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
HAC positioning ruler	MVG	TABH12 SN 42/09	Validated. No cal required.	Validated. No ca required.		
COMOHAC Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Reference Probe	MVG	EPH28 SN 08/11	10/2016	10/2017		
Reference Probe	MVG	HPH38 SN31/10	10/2016	10/2017		
Multimeter	Keithley 2000	1188656	01/2017	01/2020		
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	01/2017	01/2020		
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017		

F.4 1700-2000MHz Dipole

HAC Reference Dipole Calibration Report

Ref: ACR.75.24.17.SATU.A

SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD, NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055

MVG COMOHAC REFERENCE DIPOLE

FREQUENCY: 1700-2000MHZ SERIAL NO.: SN 18/12 DHB46

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

02/17/2017

Summary:

This document presents the method and results from an accredited HAC reference dipole calibration performed in MVG USA using the COMOHAC test bench. All calibration results are traceable to national metrology institutions.

Report No.: BL-EC1780083-701

HAC REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.75,24,17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	2/25/2017	JES
Checked by:	Jérôme LUC	Product Manager	2/25/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	2/25/2017	there that how the

	Customer Name
Distribution:	SHENZHEN
	BALUN
	TECHNOLOGY
	Co.,Ltd.

Issue	Date	Modifications
A	2/25/2017	Initial release
		1
		1

Ref: ACR.75,24,17.SATU.A

TABLE OF CONTENTS

1	Inti	oduction4	
2	De	vice Under TEst	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method4	
	4.1	Return Loss Requirements	5
	4.2	Reference Dipole Calibration	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss	6
	6.2	Validation measurement	6
7	Lis	t of Equipment8	

Ref: ACR.75.24.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the ANSI C63.19 standard for reference dipoles used for HAC measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOHAC 1700-2000 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SIDB1900	
Serial Number	SN 18/12 DHB46	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOHAC Validation Dipoles are built in accordance to the ANSI C63.19 standard. The product is designed for use with the COMOHAC system only.

Figure 1 - MVG COMOHAC Validation Dipole

4 MEASUREMENT METHOD

The ANSI C63.19 standard outlines the requirements for reference dipoles to be used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standard.

Page: 4/8

Ref: ACR.75,24,17.SATU.A

4.1 RETURN LOSS REQUIREMENTS

The dipole used for HAC system validation measurements and checks must have a return loss of -10 dB or better. The return loss measurement shall be performed in free space.

4.2 REFERENCE DIPOLE CALIBRATION

The IEEE ANSI C63-19 standard states that the dipole used for validation measurements and checks must be scanned with the E and H field probe, with the dipole 10 mm below the probe. The E and H field strength plots are compared to the simulation results obtained by MVG.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Gain
400-6000MHz	0.1 dB

5.2 VALIDATION MEASUREMENT

The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	Uncertainty (dB)	Standard Uncertainty (%)
RF reflections	0.1	R	$\sqrt{3}$	0.06	
Field probe conv. Factor	0.4	R	<u></u> —√3 —	0.23	
Field probe anisotropy	0.25	R	<u></u> —√3 —	0.14	
Positioning accuracy	0.2	R	$-\sqrt{3}$	0.12	
Probe cable placement	0.1	R	$-\sqrt{3}$	0.06	
System repeatability	0.2	R	$\sqrt{3}$	0.12	
EUT repeatability	0.4	N	-1-	0.40	
Combined standard uncertainty				0.52	
Expanded uncertainty 95 % confidence level k = 2				1.00	13.0

Ref: ACR.75,24.17.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS

Frequency (MHz)	Worst Case Return Loss (dB)	Requirement (dB)
1700-2000 MHz	-15.78	-10

6.2 VALIDATION MEASUREMENT

The IEEE ANSI C63.19 standard states that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss requirements. The system validations measurement results are then compared to MVG's simulated results.

Measurement Condition

Software Version	OpenHAC V2	
HAC positioning ruler	SN 42/09 TABH12	
E-Field probe	SN 08/11 EPH28	
H-Field probe	SN 31/10 HPH38	
Distance between dipole and sensor center	10 mm	
E-field scan size	X=150mm/Y=20mm	
H-field scan size	X=40mm/Y=20mm	
Scan resolution	dx=5mm/dy=5mm	
Frequency	1900 MHz	
Input power	20 dBm	
Lab Temperature	21°C	
Lab Humidity	45%	

Page: 6/8

Ref: ACR.75,24.17.SATU.A

Measurement Result

	Measured	Internal Requirement
E field (V/m)	161.34	153.4
H field (A/m)	0.45	0.445

Page: 7/8

Ref: ACR.75,25.17.SATU.A

7 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
HAC positioning ruler	MVG	TABH12 SN 42/09	Validated. No cal required.	Validated. No ca required.
COMOHAC Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Reference Probe	MVG	EPH28 SN 08/11	10/2016	10/2017
Reference Probe	MVG	HPH38 SN31/10	10/2016	10/2017
Multimeter	Keithley 2000	1188656	01/2017	01/2020
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017

F.5 2100-2600MHz Dipole

HAC Reference Dipole Calibration Report

Ref: ACR.75.25.17.SATU.A

SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B. FL. 1. BAISHA SCIENCE AND TECHNOLOGY

BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD,

NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055

MVG COMOHAC REFERENCE DIPOLE

FREQUENCY: 2100-2600MHZ SERIAL NO.: SN 18/12 DHC48

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

02/17/2017

Summary:

This document presents the method and results from an accredited HAC reference dipole calibration performed in MVG USA using the COMOHAC test bench. All calibration results are traceable to national metrology institutions.

Report No.: BL-EC1780083-701

HAC REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.75.25.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	2/25/2017	JE
Checked by:	Jérôme LUC	Product Manager	2/25/2017	JE
Approved by :	Kim RUTKOWSKI	Quality Manager	2/25/2017	ture furtherenshi

	Customer Name
Distribution :	SHENZHEN
	BALUN
	TECHNOLOGY
	Co.,Ltd.

Issue	Date	Modifications
A	2/25/2017	Initial release

Ref: ACR.75.25.17.SATU.A

TABLE OF CONTENTS

1	Inti	oduction4	
2	De	vice Under TEst	
3	Pro	duct Description4	
	3.1	General Information	4
4		asurement Method4	
	4.1	Return Loss Requirements	5
	4.2	Reference Dipole Calibration	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss	6
	6.2	Validation measurement	6
7	Lis	t of Equipment8	

Ref: ACR.75.25.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the ANSI C63.19 standard for reference dipoles used for HAC measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOHAC 2100-2600 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SIDB2450	
Serial Number	SN 18/12 DHC48	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOHAC Validation Dipoles are built in accordance to the ANSI C63.19 standard. The product is designed for use with the COMOHAC system only.

Figure 1 – MVG COMOHAC Validation Dipole

4 MEASUREMENT METHOD

The ANSI C63.19 standard outlines the requirements for reference dipoles to be used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standard.

Page: 4/8

Ref: ACR.75.25.17.SATU.A

4.1 RETURN LOSS REQUIREMENTS

The dipole used for HAC system validation measurements and checks must have a return loss of -10 dB or better. The return loss measurement shall be performed in free space.

4.2 REFERENCE DIPOLE CALIBRATION

The IEEE ANSI C63-19 standard states that the dipole used for validation measurements and checks must be scanned with the E and H field probe, with the dipole 10 mm below the probe. The E and H field strength plots are compared to the simulation results obtained by MVG.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Gair	
400-6000MHz	0.1 dB	

5.2 VALIDATION MEASUREMENT

The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	Uncertainty (dB)	Standard Uncertainty (%)
RF reflections	0.1	R	$\sqrt{3}$	0.06	
Field probe conv. Factor	0.4	R	$\sqrt{3}-$	0.23	
Field probe anisotropy	0.25	R	—√3—	0.14	
Positioning accuracy	0.2	R	$-\sqrt{3}$	0.12	
Probe cable placement	0.1	R	<u></u> —√3 —	0.06	
System repeatability	0.2	R	$\sqrt{3}$	0.12	
EUT repeatability	0.4	N	-1-	0.40	
Combined standard uncertainty			1 1	0.52	
Expanded uncertainty 95 % confidence level k = 2				1.00	13.0

Ref: ACR.75.25.17.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS

Frequency (MHz)	Worst Case Return Loss (dB)	Requirement (dB)
2100-2600 MHz	-12.80	-10

6.2 VALIDATION MEASUREMENT

The IEEE ANSI C63.19 standard states that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss requirements. The system validations measurement results are then compared to MVG's simulated results.

Measurement Condition

Software Version	OpenHAC V2	
HAC positioning ruler	SN 42/09 TABH12	
E-Field probe	SN 08/11 EPH28	
H-Field probe	SN 31/10 HPH38	
Distance between dipole and sensor center	10 mm	
E-field scan size	X=150mm/Y=20mm	
H-field scan size	X=40mm/Y=20mm	
Scan resolution	dx=5mm/dy=5mm	
Frequency	2450 MHz	
Input power	20 dBm	
Lab Temperature	21°C	
Lab Humidity	45%	

Page: 6/8

Ref: ACR.75.25.17.SATU.A

Measurement Result

	Measured	Internal Requirement
E field (V/m)	136.30	134.5
H field (A/m)	0.44	0.439

Page: 7/8

Ref: ACR.75.25.17.SATU.A

7 LIST OF EQUIPMENT

	Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date				
HAC positioning ruler	MVG	TABH12 SN 42/09	Validated. No cal required.	Validated. No ca required.				
COMOHAC Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.				
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019				
Reference Probe	MVG	EPH28 SN 08/11	10/2016	10/2017				
Reference Probe	MVG	HPH38 SN31/10	10/2016	10/2017				
Multimeter	Keithley 2000	1188656	01/2017	01/2020				
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020				
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Power Meter	HP E4418A	US38261498	01/2017	01/2020				
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020				
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017				

F.6 TMFS Calibration Report

COMOHAC TMFS Calibration Report

Ref: ACR.93.17.17.SATU.A

SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD,

NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055

MVG COMOHAC MAGNETIC FIELD SIMULATOR

SERIAL NO.: SN 24/16 TMFS 27

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 03/22/2017

Summary:

This document presents the method and results from an accredited COMOHAC TMFS calibration performed in MVG USA using the COMOHAC test bench, for use with a MVG COMOHAC system only. All calibration results are traceable to national metrology institutions.

Report No.: BL-EC1780083-701

COMOHAC TMFS' PROBE CALIBRATION REPORT

Ref: ACR.93.17.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	4/3/2017	25
Checked by:	Jérôme LUC	Product Manager	4/3/2017	Je5
Approved by :	Kim RUTKOWSKI	Quality Manager	4/3/2017	Mum Phatchoust

	Customer Name
Distribution:	SHENZHEN
	BALUN
	TECHNOLOGY
	Co.,Ltd.

Issue	Date	Modifications
A	4/3/2017	Initial release
-		

Ref: ACR.93.17.17.SATU.A

TABLE OF CONTENTS

1	Device Under Test	
2	Product Description	
	2.1 General Information	4
3	Measurement Method	
	3.1 Maximum Axial and Radial Magnetic Field Values	4
4	Measurement Uncertainty	
5	Calibration Measurement Results	
	5.1 Maximum Axial and Radial Magnetic Field Values	6
6	List of Equipment 7	

Ref: ACR.93.17.17.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOHAC Magnetic Field Simulator		
Manufacturer	MVG		
Model	STMFS		
Serial Number	SN 24/16 TMFS 27		
Product Condition (new / used)	New		
Frequency Range	200-5000 Hz		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOHAC T-coil Probes are built in accordance to the ANSI C63.19 and ANSI S3.22-2003 standards.

Figure 1 - MVG COMOHAC Magnetic Field Simulator

3 MEASUREMENT METHOD

All methods used to perform the measurements and calibrations comply with the ANSI C63.19. All measurements were performed with the TMFS in the standard device test configuration, with the TMFS in free space, 10 mm below the coil center.

3.1 MAXIMUM AXIAL AND RADIAL MAGNETIC FIELD VALUES

An audio signal was fed into the TMFS and the magnetic field measured and recorded over an area scan with the T-coil probe in three orientations; axial and two radial. The maximum magnetic field is recorded for all three T-coil orientations.

4 MEASUREMENT UNCERTAINTY

The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Page: 4/7

Ref: ACR.93.17.17.SATU.A

Uncertainty analysis of the probe calibration in Helmholtz Coil					
Uncertainty Component	Tol. (± dB)	Prob. Dist.	Div.	Uncertainty (dB)	Uncertainty (%)
Reflections	0.1	R	$\sqrt{3}$	0.06	
Acoustic noise	0.1	R	$\sqrt{3}$	0.06	
Probe coil sensitivity	0.49	R	$\sqrt{3}$	0.28	
Reference signal level	0,25	R	$\sqrt{3}$	0.14	
Positioning accuracy	0.2	R	$\sqrt{3}$	0.12	17
Cable loss	0.1	N	1	0.05	
Frequency analyzer	0.15	R	$\sqrt{3}$	0.09	
System repeatability	0.2	N	1	0.20	
Repeatability of the WD	0.1	N	1	0.10	
Combined standard uncertainty		N	1	0.43	
Expanded uncertainty 95 % confidence level k = 2		N	2	0.85	10.3%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters			
Software	OpenHAC V2		
HAC positioning ruler	SN 42/09 TABH12		
T-Coil probe	SN 47/10 TCP18		
Distance between TMFS and coil center	10 mm		
Frequency	1025 Hz		
Scan Size	X=70mm/Y=70mm		
Scan Resolution	dx=5mm/dy=5mm		
Output level	0.5 VAC		
Lab Temperature	21°C		
Lab Humidity	45%		

Ref: ACR.93.17.17.SATU.A

5.1 MAXIMUM AXIAL AND RADIAL MAGNETIC FIELD VALUES

Took Donasiskies	Measured Magnetic Field		
Test Description	Location	Intensity (dB A/m)	
Axial	Max	-13.34	
Radial H	Right side	-19.93	
	Left side	-19.25	
Radial V	Upper side	-19.56	
	Lower side	-18.55	

AXIAL ABM1	RADIAL H ABM1	RADIAL V ABM1
一		
M = -		

Ref: ACR.93.17.17.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
COMOHAC Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.		
HAC positioning ruler	MVG	TABH12 SN 42/09	Validated. No cal required.	Validated. No ca required.		
Audio Generator	National Instruments	15222AE	02/2017	02/2020		
Reference Probe	MVG	TCP 18 SN 47/10	10/2016	10/2017		
Multimeter	Keithley 2000	1188656	01/2017	01/2020		
Temperature / Humidity Sensor	Control Company	150798832	10/2015	10/2017		