LISTA DE EXERCÍCIOS 5

- 1. Mostre que $S = \{(x, y) \in \mathbb{R}^2 / y = 2x\}$ é um subespaço vetorial de \mathbb{R}^2 , com as operações usuais de adição e multiplicação por escalar.
- 2. Mostre que S = $\{(x, y) \in \mathbb{R}^2 / y = x^2\}$ não é um subespaço vetorial de \mathbb{R}^2 .
- 3. Verifique se os seguintes subconjuntos são subespaços vetoriais de \mathbb{R}^3 :

a)
$$S = \{ (x, y, z) \in \mathbb{R}^3 / x = 2y \}$$

b)
$$S = \{ (x, y, z) \in \mathbb{R}^3 / x^2 = y \}$$

c)
$$S = \{(x, y, z) \in \mathbb{R}^3 / z = 3\}$$

d)
$$S = \{(x, y, z) \in \mathbb{R}^3 / y = x + z\}$$
 (S)

(N)

4. Mostre que os seguintes conjuntos de \mathbb{R}^4 são subespaços vetoriais de \mathbb{R}^4 .

a)
$$W = \{ (x, y, z, t) \in \mathbb{R}^4 / x + y = 0 \text{ e } z - t = 0 \}$$

b)
$$\mathcal{U} = \{ (x, y, z, t) \in \mathbb{R}^4 / 2x + y - t = 0 \text{ e } z = 0 \}$$

5. Verifique se os subconjuntos abaixo são subespaços de M_{2 x 2}:

a)
$$\mathcal{V} = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ com a, b, c, d } \in \mathbb{R} \text{ e b = c} \}$$
 (S)

b)
$$\mathcal{W} = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ com a, b, c, d} \in \mathbb{R} \text{ e b = c + 1} \}$$
 (N)

c)
$$\mathcal{U} = \{ \begin{bmatrix} a & a+b \\ a & b \end{bmatrix}$$
, a, b $\in \mathbb{R}$ \} (S)

6. Verifique se são subespaços vetoriais de \mathbb{R}^3 os conjuntos abaixo:

a)
$$\mathcal{V} = \{ (a, a, a) \in \mathbb{R}^3 / a \in \mathbb{R} \}$$

b)
$$\mathcal{W} = \{ (1, a, b) / a, b \in \mathbb{R} \}$$

c)
$$U = \{ (x, x + 3, 2x) / x \in \mathbb{R} \}$$

d)
$$\mathcal{T} = \{(a, 2a, 3a), a \in \mathbb{R}\}$$

- 7. Escreva, se possível, o vetor v = (-2, 1, 0) como combinação linear dos vetores (1, 2, 0) e (0, 1, 0). $(k_1 = -2; k_2 = 5)$
- 8. Escreva, se possível, $p(x) = x^2 + x 1$ como combinação linear de $q(x) = x^2 2x$ e $r(x) = 2x^2 4/3$. ($k_1 = -1/2$; $k_2 = 3/4$)
- 9. Dados os vetores: $\psi_1 = (1, 1, 1)$, $\psi_2 = (0, 2, 3)$ e $\psi_3 = (0, 2, -1)$, escreva, se possível, os vetores abaixo como combinação linear de ψ_1 , ψ_2 e ψ_3 .

a)
$$v = (3, 5, -2)$$

$$(k_1 = 3 ; k_2 = -1 ; k_3 = 2)$$

b)
$$v = (-2, 6, 6)$$

$$(k_1 = -2 ; k_2 = 3 ; k_3 = 1)$$

c)
$$v = (0, -12, -6)$$

$$(k_1 = 0 ; k_2 = -3 ; k_3 = -3)$$

10. Considere o subespaço de \mathbb{R}^4 S = [(1,1,-2,4),(1,1,-1,2),(1,4,-4,8)]

a) o vetor (
$$2/3$$
, 1, -1 , 2) pertence a S?

(S) e (
$$k_1 = 0$$
; $k_2 = 5/9$; $k_3 = 1/9$)