Komplex számok gyakoló feladatok

- 1. Számítsd ki algebrai alakban és az eredményt ábrázold koordináta-rendszerben:
 - Ha z=2+4i és w=2-i, akkor mennyi z·w; $\frac{z}{w}$; $\frac{1}{z}$; i·w; z^2 ; -3·w.
 - **b)** Ha z=1-3i és w=2+2i, akkor mennyi $z \cdot w$; $\frac{z}{w}$; $\frac{1}{z}$; $i \cdot w$; z^2 ; $-3 \cdot w$.
- 2. Számítsd ki az alábbi komplex számok hosszát és argumentumát:
 - a) z=2-i
 - **b)** z=3+i
 - c) $z=1-i\sqrt{2}$
- 3. Írjuk fel trigonometrikus és exponenciális alakban a következő komplex számokat:
 - a) z=-3i
 - **b)** z=1
 - **c)** z=-i
 - d) z=2+i
 - e) $z = \frac{1}{\sqrt{3}} + \frac{1}{2}i$
- 4. Adjuk meg algebrai alakban a következő komplex számokat:
 - **a)** $z = \frac{1}{2} (\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3})$
 - **b)** $z = \sqrt{3}(\cos 120^\circ + i \sin 120^\circ)$
- 5. Adottak $z_1 = -\sqrt{3} + 2i$, $z_2 = 1 i$, $z_3 = -1 + i$ komplex számok. Számítsuk ki az alábbiakat:
 - $|z_1| = ?, |z_2| = ?, |z_3| = ?$ a)
 - **b)** $\operatorname{arc}(\mathbf{z}_2)$ (argumentum)
 - c) $Re(z_1)$
 - d) $Im(z_2)$
 - **e)** $z_1 + z_2$
 - $\mathbf{f)} \quad \mathbf{z}_1 \overline{\mathbf{z}_2}$
 - $\mathbf{g)} \quad \mathbf{z}_1 \mathbf{z}_3$
 - h) $z_1 + z_3$ i) $z_1 z_1$
- 6. Végezzük el a műveleteket!
 - a) $\left(\overline{2-i}\right)^4$
 - $\mathbf{b)} \quad \left(1 + \sqrt{3}\mathbf{i}\right)^7$

d)
$$(1-2i)(3+i)$$

e)
$$(1+i)^7$$

7. Végezzük el a számolást trigonometrikus alakban, és írjuk fel a végeredményt algebrai alakban is!

a)
$$2(\cos 15^{\circ} + i \sin 15^{\circ}) \cdot 4(\cos 105^{\circ} + i \sin 105^{\circ})$$

b)
$$\frac{4}{\cos 210^{\circ} + i \sin 210^{\circ}}$$

c)
$$(2(\cos 40^\circ + i \sin 40^\circ))^9$$

d)
$$3(\cos 60^{\circ} + i \sin 60^{\circ}) \cdot 4(\cos 120^{\circ} + i \sin 120^{\circ})$$

e)
$$[2(\cos 15^{\circ} + i \sin 15^{\circ})]^4$$

f)
$$\frac{\cos 110^{\circ} + i \sin 110^{\circ}}{2(\cos 65^{\circ} + i \sin 65^{\circ})}$$

8. Számítsuk ki a következő kifejezések értékét és az eredményt adja meg algebrai alakban!

a)
$$\frac{z_1^8}{z_2^4} \cdot 32 - \overline{z_2}^2 = ?$$
 ha $z_1 = 2(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4})$, $z_2 = 1 - i\sqrt{3}$

9. Adja meg az alábbi komplex számok értékét:

$$\begin{cases} z_1 = 3 - 3i \\ z_2 = \sqrt{2} \left(\cos 135^\circ + i \sin 135^\circ \right) \end{cases} \Rightarrow \left(2 + \frac{\overline{z_1} - \overline{z_2}}{z_1 + z_2} \right)^4 = ?$$

b)
$$\begin{cases}
z_1 = 8 \cdot (\cos 270^\circ + i \sin 270^\circ) \\
z_2 = \sqrt{2} (\cos 45^\circ + i \sin 45^\circ) \\
z_3 = 1 + \sqrt{3}i
\end{cases} \rightarrow \frac{\overline{z_1 \cdot z_2}}{\overline{z_3^3} + i^{413}} = ?$$

c)

$$\begin{cases} z_1 = 8 \cdot \left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right) \\ z_2 = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) \\ z_3 = 1 - \sqrt{3}i \end{cases}$$

$$\Rightarrow \frac{\left(\frac{5i}{2+i} - \frac{\overline{z_1} \cdot z_2}{z_3^3}\right)^{375}}{= ?}$$

$$\begin{cases} z_{1} = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \\ z_{2} = -1 + i \end{cases} \Rightarrow \frac{(6 - \sqrt{12}i)^{3}}{z_{2}^{8}} + \frac{\overline{z_{1}}}{i^{101}} = ?$$

$$\begin{cases} z_{1} = 4 - 3i \\ z_{2} = \sqrt{8}(\cos 45^{\circ} + i \cdot \sin 45^{\circ}) \end{cases} \Rightarrow \frac{\overline{z_{1}} + \overline{z_{2}}}{z_{1} - z_{2}} = ?$$

$$\begin{cases} z_1 = \cos 35^{\circ} + i \cdot \sin 35^{\circ} \\ z_2 = 1 + \sqrt{3} \cdot i \end{cases} \Rightarrow \frac{z_1^3 \cdot z_2^5}{\overline{z_1} \cdot \overline{z_2}} = ?$$

g)
$$\begin{cases} z_1 = -\sqrt{3} + i \\ z_2 = \sqrt{2} (\cos 75^\circ + i \cdot \sin 75^\circ) \end{cases} \Rightarrow z_1^3 \cdot z_2^6 + \frac{\overline{z_1}}{z_2} = ?$$

$$\frac{1-2i}{2+i} \cdot 5 \cdot i^{173} = ?$$

i)
$$\begin{cases} z_1 = -\sqrt{12} + 2i \\ z_2 = \sqrt{2} (\cos 315^\circ + i \sin 315^\circ) \end{cases} \Rightarrow \frac{z_2^{12}}{z_1^3} + \frac{\overline{z_2}}{i^{677}} = ?$$

j)
$$\begin{cases}
z_1 = 8 \cdot e^{i\frac{\pi}{2}} \\
z_2 = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \\
z_3 = 1 + \sqrt{3}i
\end{cases} \rightarrow \frac{\left(\frac{10i}{4 + 2i} - \frac{z_1 \cdot \overline{z_2}}{z_3^3} \right)^{413}}{\left(\frac{10i}{4 + 2i} - \frac{z_1 \cdot \overline{z_2}}{z_3^3} \right)^{413}} = ?$$

k)
$$\begin{cases} z_1 = -6 + 10i \\ z_2 = \sqrt{2} (\cos 225^\circ + i \sin 225^\circ) \end{cases} \Rightarrow \frac{\left(\overline{z_1} + z_2^8\right)^4}{i^{563}} = ?$$

$$z_{2} = \sqrt{2}(\cos 225^{\circ} + i \sin 225^{\circ})$$

$$z_{1} = 3 - 8i$$

$$z_{2} = \sqrt{2}(\cos 225^{\circ} + i \sin 225^{\circ})$$

$$z_{2}^{1} + \overline{z_{2}} \cdot i^{63} = ?$$

$$z_{2}^{8}$$

m)
$$\begin{cases} z_1 = -\sqrt{12} + 2i \\ z_2 = 2(\cos 150^\circ + i \sin 150^\circ) \end{cases} \Rightarrow \frac{z_2^8}{z_2^3 + \overline{z}_1^4} = ?$$

$$\mathbf{n}) \begin{cases} z_1 = \cos 35^\circ + i \cdot \sin 35^\circ \\ z_2 = 1 + \sqrt{3} \cdot i \end{cases} \Rightarrow \frac{\overline{z_1} \cdot \overline{z_2}}{i^{222} \cdot z_1^3 \cdot z_2^5} = ?$$

$$\begin{cases} z_2 = 1 + \sqrt{3} \cdot 1 \\ z_1 = \sqrt{3} + 3i \\ z_2 = 2(\cos 330^\circ + i \cdot \sin 330^\circ) \end{cases} \Rightarrow \frac{z_1^8}{i^9 \cdot z_2^2} + \frac{z_2}{z_2} = ?$$

$$\mathbf{p}) \begin{cases} z_1 = \sqrt{3} \left(\cos 150^\circ + i \cdot \sin 150^\circ \right) \\ z_2 = 3 + \sqrt{3}i \end{cases} \Rightarrow \frac{i^{11} \cdot z_1}{z_2^6} - \frac{\overline{z_2}}{z_1^2} = ?$$

10. Oldjuk meg az alábbi egyenleteket a komplex számok halmazán!

a)
$$z^2 + z + 1 = 0$$

b)
$$9z^3 + \frac{1}{3} = 0$$

c)
$$16z^2 + 1 = 0$$

11. Számolja ki az alábbi komplex számok megfelelő gyökeit! Adja meg a gyökök algebrai alakját, és ábrázolja őket a komplex számsíkon!

a)
$$z = -3 - \sqrt{27}i$$
 $\sqrt[4]{z} = ?$

b)
$$\sqrt[3]{-27} = ?$$

(c)
$$\sqrt[3]{8} = ?$$

d)
$$z = 1 - \sqrt{3}i \quad \sqrt[2]{z} = ?$$

e)
$$z = -4 - 4i \sqrt[5]{z} = ?$$

$$\sqrt[3]{-8i} = ?$$

a)
$$z = -3 + \sqrt{27} \cdot i$$
 $\sqrt[4]{z} = ?$
b) $z = -8 + 8\sqrt{3} \cdot i$ $\sqrt[4]{z} = ?$
i) $z = -8 - 8\sqrt{3} \cdot i$ $\sqrt[4]{z} = ?$
j) $\sqrt[4]{16i} = ?$

b)
$$z = -8 + 8\sqrt{3} \cdot i$$
 $\sqrt[4]{z} = ?$

i)
$$z = -8 - 8\sqrt{3} \cdot i$$
 $\sqrt[4]{z} = ?$

$$\sqrt[4]{16i} = ?$$

$$\sqrt[5]{1}$$
 k) $\sqrt[5]{1} = ?$

1)
$$\sqrt[6]{1} = ?$$

12. Oldja meg az alábbi másodfokú egyenleteket a komplex számok halmazán!

a)
$$x^2 + 2ix - 1 - 2i = 0$$

e)
$$x^2 + x + 1 = 0$$

b)
$$x^2 - 2ix - 1 - 8i = 0$$

c) $x^2 + 6x + 25 = 0$

$$x^2 + 2ix + 8 = 0$$

(c)
$$x^2 + 6x + 25 = 0$$

f)
$$x^2 + 2ix + 8 = 0$$

g) $x^2 - 4ix - 4 - 8i = 0$

d)
$$x^2 + 8ix - 15 = 0$$

h)
$$x^2 + 4ix - 4 - 2i = 0$$

$$4x^2 + 4ix + 1 + 3i = 0$$

$$(2x^2 + 4x + 2 + i = 0)$$

j)
$$x^2 - ix - 1 = 0$$

- 13. Oldja meg a $z^2 + (2i 3)z 1 3i = 0$ komplex egyenletet! Határozza meg a fenti egyenlet legkisebb képzetes résszel rendelkező gyökének harmadik gyökeit is!
- 14. Oldja meg a $z^2 + (2i-3)z 3 i = 0$ komplex egyenletet! Határozza meg a fenti egyenlet legkisebb abszolút értékű gyökének harmadik gyökeit is!
- 15. Oldja meg az alábbi egyenleteket a komplex számok halmazán:

a)
$$(1+i)z^6 = 1-i$$

b)
$$(1-i\sqrt{3})z^5 = 1+i\sqrt{3}$$

c)
$$x^8 + ix^4 - 1 = 0$$

d)
$$x^8 + 4x^4 + 3 = 0$$

e)
$$x^6 - ix^3 + \frac{3}{4} = 0$$

$$f) x^6 + 3 = -2ix^3$$

g)
$$ix^6 + 2x^3 + 3i = 0$$

h)
$$z + 2z = |z| - 2i$$

i)
$$2z + z = |z| + i$$

j)
$$3z - |z| = \overline{z} + 4\sqrt{3}i$$

k)
$$z \cdot z - 3(z - z) = 2 + 3i$$

Megoldások:

Megoldások ellenőrzéséhez javaslom a MATLAB programot vagy a neten is elérhető MATHEMATICA-t : http://www.wolframalpha.com