VE401 Recitation 1

About me

box = FindFaces[me];
HighlightImage[me, box]

■ Name: GU Zhenhao

■ Cell Phone: 13818175241

■ WeChat: GaryGZH (or you can find me using the phone number above)

■ E-mail: guzhenhao1@sjtu.edu.cn

■ Office Hour: TBD

■ Recitation Class: TBD

Contacting me via e-mail is preferred!

Introduction to Probability and Counting

Events and Mutually Exclusive Events

Intuition: **Events** are any subset of the sample space S. Events A_1 and A_2 are **mutually exclusive** if they cannot be true at the same time.

Mathematical representation: $A_1 \cap A_2 = \emptyset$.

Cardano's Principle and Tree Diagrams

Intuition: The probability of an outcome A is the proportion of the ways that can lead to A, given that all the ways are equally likely and mutually exclusive.

Mathematical representation:

$$P[A] = \frac{\text{Number of ways leading to outcome } A}{\text{Number of ways experiment can proceed}}$$

Example: Tossing two (unbiased) coins, $P[\text{getting one head}] = \frac{2}{4} = 0.5$.

Counting

The number of ways leading to outcomes is calculated using the following: with a set $A = \{a_1, a_2, ..., a_n\}$ with n objects,

- Ways of picking an object k times, allowing repetition: n^k .
- Ways of choosing ordered k objects from A: $\frac{n!}{(n-k)!}$.
- Ways of choosing unordered k objects from A: $\frac{n!}{k! (n-k)!}$.
- Ways of partitioning A into k subsets, A_1 , ..., A_k , with the number in the ith subset is n_i : $\frac{n!}{n_1! \; n_2! \ldots \; n_k!}.$

Example:

Tossing a coin 4 times, what is the number of all possible outcomes?

 $A = \{\text{heads, tails}\}, n = 2. \text{ Total possible outcomes: } 2^4 = 16.$

Rolling 10 four-sided dice, what is the number of ways of getting 3 ones, 2 twos, 4 threes and 1 four?

 $A = \{1^{st} \text{ dice, } 2^{nd} \text{ dice, } ..., 10^{th} \text{ dice}\}$. We want to divide A into 4 subsets $A_1 := \text{dice with rolling}$ result 1, A_2 := dice with rolling result 2, and same for A_3 , A_4 . In our case we need $|A_1| = 3$,

$$|A_2|=2$$
, $|A_3|=4$, $|A_4|=1$, then the number of total possible ways:
$$\frac{\mathbf{10!}}{\mathbf{3!}\;\mathbf{2!}\;\mathbf{4!}\;\mathbf{1!}}$$
Out[*]= 12 600

Probability Measures & Spaces

Paraphrase: If a function P wants to be a *probability measure*, it needs to

- map an event to its probability, which is in [0, 1],
- map the whole sample (event) space to 1, i.e. P[S] = 1,
- For mutually exclusive events A_1 , ..., A_k , $P[A_1 \cup A_2 \cup ... \cup A_k] = P[A_1] + P[A_2] + ... + P[A_k]$.

Properties:

- P[S] = 1,
- $P[\phi] = 0$,
- $P[S \backslash A] = 1 P[A],$
- $P[A_1 \cup A_2] = P[A_1] + P[A_2] P[A_1 \cap A_2].$

Conditional Probability

Intuition: Given A_2 is true, the probability of A_1 is also true is the **conditional probability** $P[A_1 | A_2]$. We are basically finding where A_1 is true inside the A_2 circle.

Mathematical representation:

$$P[A_1 \mid A_2] = \frac{P[A_1 \cap A_2]}{P[A_2]}$$

$$P[A_1 \cap A_2] = P[A_1 \mid A_2] P[A_2] = P[A_2 \mid A_1] P[A_1]$$

Independence

Intuition: Events A and B are independent if outcome of A does not effect outcome of B, and vice versa.

Mathematical representation:

Summary: given events A and B, what happens to $P[A \cap B]$, $P[A \cup B]$, $P[A \mid B]$, $P[A \mid B]$, and $P[\neg A \mid B]$? You are encouraged to fill out this table by yourself first.

A and B are	mutually exclusive	independent
$P[A \cap B]$		
$P[A \cup B]$		
$P[A \mid B]$		
$P[A \mid \neg B]$		
$P[\neg A \mid B]$		

What does this table imply?

A and B are	mutually exclusive	independent
$P[A \cap B]$	0	P[A] P[B]
$P[A \cup B]$	P[A] + P[B]	P[A] + P[B] - P[A] P[B]
$P[A \mid B]$	0	P[A]
<i>P</i> [<i>A</i> ¬ <i>B</i>]	$\frac{P[A]}{1-P[B]}$	<i>P</i> [<i>A</i>]
$P[\neg A B]$	1	1 – P[A]

This table means if events of zero probability are excluded, mutually exclusive events are not independent and independent events are not mutually exclusive.

Total Probability

Purpose: To write down a probability using the sum of conditional probabilities.

Mathematical representation:

$$P[B] = \sum_{j=1}^n P[B \mid A_j] P[A_j]$$
 if $A_1 \dots A_n \subset S$ are mutually exclusive and $A_1 \cup \dots \cup A_n = S$

Bayes's Theorem

Purpose: To switch sides of a conditional probability, i.e. from $P[A \mid B]$ to $P[B \mid A]$.

Mathematical representation:

$$P[A_k \mid B] = \frac{P[B \cap A_k]}{P[B]} = \frac{P[B \mid A_k] P[A_k]}{P[B \mid A_k] P[A_k] + P[B \mid A_k] P[\neg A_k]}$$

Furthermore, if $A_1 \dots A_n \subset S$ are mutually exclusive and $A_1 \cup \dots \cup A_n = S$,

$$P[A_k \mid B] = \frac{P[B|A_k] P[A_k]}{\sum_{j=1}^{n} P[B|A_j] P[A_j]}$$

Example: I will recommend this video https://www.youtube.com/watch?v=HZGCoVF3YvM, which gives a nice visualization of Bayes's theorem.

Discrete Random Variable

Discrete Random Variable and Probability Density Function (PDF)

Paraphrase: a *discrete random variable* X maps the sample space to a countable subset Ω of \mathbb{R} , with each number representing an event, and the $\it probability density function f_X$ maps the subset to its probability. The PDF must follow

- $f_X(x) > 0$ for all x.

Note: For various distribution of random variable X, we need to know its

- parameter(s),
- E[X],
- Var[X],
- probability density function (PDF),
- cumulative distribution function (CDF),
- moment generating function (MGF), and
- when to use it?

Expectation

Intuition: given a set of data, what would I expect the next number to be?

Mathematical representation: for discrete random variable, $E[X] = \mu_X = \mu = \sum_{x \in \Omega} x f_X(x)$.

Properties: for any random variable X and Y,

- For a constant $c \in \mathbb{R}$, E[c] = c, E[cX] = cE[X],
- E[X + Y] = E[X] + E[Y],
- For any function $\varphi: \Omega \to \mathbb{R}$, $E[\varphi \circ X] = \sum_{x \in \Omega} \varphi(x) f_X(x)$.

What do these properties imply?

 $E[\cdot]$ is a linear operation!

Variance and Standard Variance

Intuition: how much does random variable deviate from the mean?

Mathematical representation:

- Variance: $Var[X] = \sigma_X^2 = \sigma^2 = E[(X E[X])]^2 = E[X^2] E[X]^2$.
- Standard variance: $\sigma_X = \sqrt{\text{Var}[X]}$.

Properties:

- For a constant $c \in \mathbb{R}$, Var[c] = 0, $Var[c X] = c^2 Var[X]$.
- For independent random variable X and Y, Var[X + Y] = Var[X] + Var[Y].

Moment and Moment Generating Function (MGF)

Intuition: MGF encodes the sequence of all *moments*, $E[X^0]$, $E[X^1]$, $E[X^2]$, ... into one function.

Mathematical representation: MGF exists iff $E[e^{tX}]$ exists, in which case

$$m_X(t) = \sum_{k=0}^{\infty} \frac{\mathsf{E}[X^k]}{k!} t^k = \mathsf{E}[e^{tX}]$$

and the k^{th} moment can be calculated using $E\left[X^{k}\right] = \left(\frac{d^{k} m_{X}(t)}{d t^{k}}\right)_{t=0}$

Properties: Assume MGF exists,

- if two distributions have same MGF, then two distributions are identical.
- For any constant α , $\beta \in \mathbb{R}$, $m_{\alpha X+\beta}(t) = e^{\beta t} m_X(\alpha t)$.
- For independent random variable X_1 , X_2 , $m_{X_1+X_2} = m_{X_1} m_{X_2}$.

Cumulative Distribution Function (CDF)

Mathematical representation: $F_X(x) := P[X \le x] = \sum_{y \le x} f_X(y)$.

Bernoulli Distribution

Purpose: the probability of success in 1 trial?

Parameter and properties:

■ $p \in [0, 1]$, describing the probability of success. q := 1 - p.

Mean	Variance	PDF	CDF	MGF

į.	ı		Ī	ı
		$\int q x = 0$	$\int 0 x < 0$	
p	рq	$\begin{cases} p & x = 1 \end{cases}$	$\begin{cases} q & 0 \le x < 1 \end{cases}$	$q + e^t p$
		0 otherwise	1 otherwise	

Binomial Distribution

Purpose: how many successes in n trial(s)?

Parameter and properties:

- lacksquare $p \in [0, 1]$, describing the probability of success in each trial. q := 1 p.
- $n \in \{0, 1, 2, ...\}$ is the number of trials.

Mean	Variance	PDF	MGF
n p	n p q	$\left\{ \binom{n}{x} p^x q^{n-x} 0 \le x \le n \right.$	$(p(e^t-1)+1)^n$
		0 otherwise	

Approximation of PDF: if n is large and p is small, the PDF can be approximated by Poisson distribution with parameter $\lambda = n p$.

Approximation of CDF: if $\begin{cases} n > 10 & \text{if } p \text{ is close to } 1/2 \\ n p > 5 & \text{if } p \le 1/2 \\ n(1-p) > 5 & \text{if } p > 1/2 \end{cases}$, the CDF at $y \in \mathbb{N}$ can be approximated.

mated by normal distribution.

$$P[X \le y] = \sum_{x=0}^{y} {n \choose x} p^{x} (1-p)^{n-x} \approx \Phi\left(\frac{y+1/2-np}{\sqrt{np(1-p)}}\right)$$

Geometric Distribution

Purpose: how many trials until first success?

Parameter and properties:

- $p \in [0, 1]$, describing the probability of success in each trial. q := 1 p.
- $n \in \{0, 1, 2, ...\}$ is the number of trials.

Mean	Variance	PDF	CDF	MGF
$\frac{1}{p}$	$\frac{q}{p^2}$	$\begin{cases} q^{x-1} p & x \ge 1 \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 - q^{\lfloor x \rfloor} & x \ge 1 \\ 0 & \text{otherwise} \end{cases}$	$\frac{p e^t}{1 - q e^t}$

Hypergeometric Distribution

Purpose: Select n samples from N objects (within which r objects have trait), what is the probability of having x objects with trait?

0

Parameter and properties:

- $N \in \{0, 1, 2, ...\}$ is the number of total objects.
- $n \in \{0, 1, 2, ..., N\}$ is the number of samples.
- $r \in \{0, 1, 2, ..., N\}$ is the number of objects with traits. $p := \frac{r}{N}, q := 1 p$.

Mean	Variance	PI)F
n p	$n p q \frac{N-n}{N-1}$	$ \left\{ \begin{array}{c} \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}} \end{array} \right. $	$0 \le x \le N$
		(0	otherwise

Approximation: if n/N is sufficiently small, it can be approximated by binomial distribution with parameter n and p = r/N.

•

- Hypergeometric distribution with N=50, r=25, n=10
- Binomial distribution with n=10, p=0.5

Poisson Distribution

Purpose: how many arrivals in a small time interval?

Parameter and properties:

lacksquare $\lambda > 0$, describing the rate of arrival.

Mean	Variance	PDF	MGF
λ	λ	$\begin{cases} \frac{e^{-\lambda} \lambda^{x}}{x!} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$	$e^{\lambda (e^t-1)}$

