Metode

Metode Quine McKluskey dan Program Bantu Komputer

Kuliah#5 TSK205 Sistem Digital - TA 2013/2014

Eko Didik Widianto

Sistem Komputer - Universitas Diponegoro

Penyederhanaan Persamaan Logika

Metode Quine McKluskey dan Program Bantu Komputer

@2014,Eko Didik Widianto

Quine-McKluske Program Bantu

Komputer Ringkasan

Metode

isensi

- Perancangan rangkaian logika minimal memerlukan teknik penyederhanaan persamaan logika
 - secara aljabar
 - peta Karnaugh
 - metode tabular Quine-McCluskey
- Metode tabular Quine-McCluskey lebih efisien digunakan di program komputer daripada peta Karnaugh

Metode

- Sebelumnya dibahas tentang optimasi rangkaian dengan penyederhanaan ekspresi logika secara Aljabar, peta Karnaugh dan rangkaian multi-output untuk rangkaian SOP maupun POS
- Dalam kuliah ini, akan dibahas tentang:
 - penyederhanaan fungsi logika menggunakan metode tabular Quine-McCluskey
 - program bantu komputer Bmin untuk melakukan sintesis rangkaian logika minimum
 - program bantu komputer simulator rangkaian Ques untuk analisis rangkaian

Metode

- Setelah mempelajari bab ini, mahasiswa akan mampu:
 - 1. [C5] menganalisis dan merancang rangkaian logika minimal dengan menggunakan algoritma/metode tabular Quine-McCluskey
 - 2. [C3] menggunakan perangkat lunak komputer Bmin untuk menyederhanakan rangkaian logika
 - 3. [C6] mengevaluasi hasil rancangan rangkaian logika menggunakan program simulasi Qucs
- ► Link
 - Website: http://didik.blog.undip.ac.id/2014/02/25/ tkc205-sistem-digital-2013-genap/
 - Email: didik@undip.ac.id

Bahasan

@2014,Eko Didik Widianto

Metode Quine-McKluskev

Ringkasan

Metode Quine-McKluskey Metode QM untuk SQP Metode QM untuk POS Minimal

Program Bantu Komputer

Bmin: Visualisasi Penyederhanaan Boolean Qmls: Quine-McCluskey Logic Simplifier

Qucs: Simulator Rangkaian

Ringkasan

Lisensi

Metode Quine-McKluskey (QM)

- Digunakan untuk menyederhanakan fungsi logika sehingga dihasilkan rangkaian logika minimal
 - Disebut juga metode tabular, karena menggunakan tabulasi
 - Dikembangkan oleh W.V. Quine and Edward J. McCluskey Algoritma ini memberikan hasil yang deterministik untuk memastikan bahwa fungsi logika yang minimal telah tercapai
 - Fungsinya seperti peta Karnaugh, namun lebih efisien untuk digunakan di program komputer

- Untuk fungsi dengan lebih dari 4 variabel
- Namun, jumlah variabel akan menaikan waktu eksekusi^{Eko Didik Wi}

(Willard Quine, Wikipedia)

Metode Quine McKluskey dar Program Bantu

@2014,Eko Didik Widianto

Metode Quine-McKluskey Metode QM untuk SOP

Program Bantu Komputer

iiiigkasai

Algoritma Quine McKluskey:

- Bangkitkan prime implicant
- Susun tabel prime implicant
- Sederhanakan tabel.
 - 3.1 Buang prime implicant esensial. Note: nanti disertakan dalam fungsi akhirnya
 - 3.2 Menghapus row dominance (Maxterm/minterm terbanyak yang dicover oleh prime implicant)
 - 3.3 Memilih column dominance (prime implicant yang mengcover paling banyak Maxterm/minterm)
- Selesaikan tabel

Tujuannya mencari **prime implicant esensial** (primer, sekunder, dst)

Bahasan

Metode Quine McKluskey dan Program Bantu Komputer

@2014,Eko Didik Widianto

Metode Quine-McKluskey Metode QM untuk SOP Metode QM untuk POS

Komputer

Ringkasan

isensi

Metode Quine-McKluskey Metode QM untuk SOP

Metode QM untuk POS Minimal

Program Bantu Komputer

Bmin: Visualisasi Penyederhanaan Boolean Qmls: Quine-McCluskev Logic Simplifier

Qucs: Simulator Rangkaiaı

Ringkasar

Lisensi

Buat Prime Implicant

Diinginkan rangkaian:

 $f(x_1, x_2, x_3, x_4) = \sum m(0, 2, 5, 6, 7, 8, 10, 12, 13, 14, 15)$

Langkah 1: Bangkitkan Prime Implicant

	_					· · · · · · · · · · · · · · · · · · ·			
	Kolom	1	K	olom 2		Kol	om 3]
0	0000	V	(0,2)	00-0	V	(0,2,8,10)	-0-0	X2X4	
2	0010	V	(0,8)	-000	٧				Duplikat
8	1000	V	(2,6)	0-10	V	(2,6,10,14)	10	X3X4	- 12E
5	0101	V	(2,10)	-010	V				Duplikat
6	0110	V	(8,10)	10-0	V	(8,10,12,14)	10	X1X4	100 1 2000 000
10	1010	V	(8,12)	1-00	٧				Duplikat
12	1100	V	(5,7)	01-1	V	(5,7,13,15)	-1-1	X2X4	- 12E
7	0111	V	(5,13)	-101	V				Duplikat
13	1101	V	(6,7)	011-	V	(6,7,14,15)	-11-	X2X3	100 1 2000 000
14	1110	V	(6,14)	-110	٧				Duplikat
15	1111	V	(10,14)	1-10	V	(12,13,14,15)	11	X1X2	
			(12,13)	110-	٧				Duplikat
			(12,14)	11-0	V				
			(7,15)	-111	V				
			(13,15)	11-1	V				
			(14,15)	111-	٧				

Baris duplikat dihapus

@2014,Eko Didik Widianto

Metode

Quine-McKluskey Metode QM untuk SOP

Komputer

Langkah 2: Susun Tabel Prime Implicant

Disusun dari langkah 1, kolom 3

	X2X4	X3X4	X1X4	X2X4	X2X3	X ₁ X ₂
	(0,2,8,10)	(2,6,10,14)	(8,10,12,14)	(5,7,13,15)	(6,7,14,15)	(12,13,14,15)
0	X					
2	Х	X				
5	•			X		
6		X			X	
7				X	X	
8	Х		Х			
10	X	X	Х			
12			X			X
13				Х		X
14		X	Х		X	X
15				X	X	X

Hapus Prime Implicant Esensial

Langkah 3a: Hapus Prime Implicant Essensial dari Tabel (Iterasi #1)

	X1X2	X2X3		X1X4	X3X4		
	(12,13,14,15)	(6,7,14,15)		(8,10,12,14)	(2,6,10,14)		
Distinguish ro						Х	0
					X	X	2
Distinguish ro			Х	10			5
		X			X		6
		X	X				7
				X		X	8
				X	X	X	10
	X			X			12
	X		X				13
	X	X		X	X		14
	X	X	X				15

- ▶ Prime implicant esensial: $\overline{x}_2\overline{x}_4$ dan x_2x_4
 - dibuang untuk penyederhanaan lebih lanjut
 - b ditambahkan di solusi akhir

Metode Quine McKluskey dar Program Bantu

@2014,Eko Didik Widianto

Metode

Quine-McKluskey Metode QM untuk SOP Metode QM untuk POS

> ogram Bantu mputer

Ringkasan

isensi

Langkah 3b: Hapus Baris yang Mendominasi (Dominationg Row)

	X3X4	X1X4	X2X3	X1X2
	(2,6,10,14)	(8,10,12,14)	(6,7,14,15)	(12,13,14,15)
6	Х		X	
12		Х		Х

Dominating row

Baris ke-14 dihapus karena setiap term perkalian yang mengkover 6 atau 12 akan mengcover 14

Langkah 3c: Pilih Kolom

	X3X4	X1X4	X2X3	X1X2
	(2,6,10,14)	(8,10,12,14)	(6,7,14,15)	(12,13,14,15)
6	Х		Х	
12		Х		Х

- ▶ prime implicant $x_3\overline{x}_4$ dan x_2x_3 saling mendominasi, bisa dipilih salah satu
- $ightharpoonup x_1\overline{x}_4$ dan x_1x_2 saling mendominasi, bisa dipilih salah satu

Kemungkinan Solusi Pemilihan Prime **Implicant**

		X3X4	X1X4		
		(2,6,10,14)	(8,10,12,14)		
	6	Х			
	12		Х		
Solusi 1					

	X3X4	X1X2			
	(2,6,10,14)	(12,13,14,15)			
6	Х				
12		Х			
Solusi 2					

	X1X4	X2X3			
	(8,10,12,14)	(6,7,14,15)			
6		Х			
12	Х				
Solusi 3					

	X2X3	X ₁ X ₂			
	(6,7,14,15)	(12,13,14,15)			
6	Х				
12		Х			
Solusi 4					

@2014,Eko Didik Widianto

Metode Metode QM untuk SOP

Hapus Prime Implicant Esensial Sekunder

Langkah 3a: Hapus Prime Implicant Essensial Sekunder (Iterasi #2)

Terdapat 2 solusi

- ▶ Prime implicant esensial sekunder: $x_3\overline{x}_4$ dan $x_1\overline{x}_4$ atau x_2x_3 dan x_1x_2
 - dibuang untuk penyederhanaan lebih lanjut
 - ditambahkan di solusi akhir

Metode Quine McKluskey dar Program Bantu Komputer

@2014,Eko Didik Widianto

Metode

Quine-McKluskey
Metode QM untuk SOP
Metode QM untuk POS

rogram Bantu omputer

Ringkasan

isens

Langkah 4: Solusi Akhir

- Tidak ada lagi baris yang perlu disederhanakan
- Solusi minimum akan berisi prime implicant esensial primer dan sekunder

$$f_{min} = \underbrace{\overline{X}_2 \overline{X}_4 + X_2 X_4}_{PIE \ primer} + \underbrace{\left\{ \begin{array}{c} x_3 \overline{X}_4 + X_1 \overline{X}_4 \\ x_3 \overline{X}_4 + X_1 X_2 \\ x_2 X_3 + X_1 \overline{X}_4 \\ x_2 X_3 + X_1 X_2 \end{array} \right\}}_{PIE \ sekunder}$$

Bahasan

Metode Quine McKluskey dan Program Bantu Komputer

Metode Quine-McKluskey

Metode QM untuk SOP Metode QM untuk POS Minimal

Komputer Ringkasan

icanci

@2014,Eko Didik Widianto

Metode Quine-McKluskey
Metode QM untuk SOP
Metode QM untuk POS Minimal

Program Bantu Komputer

Rmin: Visualisasi Penyederhanaan Boolean Qmls: Quine-McCluskey Logic Simplifier

Qucs: Simulator Rangkaiar

Ringkasar

isensi

@2014.Eko Didik Widianto

Ringkasan

Diinginkan rangkaian POS dari

$$f(x_1, x_2, x_3, x_4) = \sum m(0, 2, 5, 6, 7, 8, 10, 12, 13, 14, 15)$$

$$= \prod M(1, 3, 4, 9, 11)$$

Langkah 1: membangkitkan prime implicant

Kolom 1			Kolom 2			Kolom 3			
1	0001	V	(1,3)	00-1	V	(1,3,9,11)	-0-1	X2+X4	
4	0100	X1+X2+X3+X4	(1,9)	-001	V		-0-1		Duplikat
3	0011	V	(3,11)	-011	V				
9	1001	V	(9,11)	10-1	V				
11	1011	V							

Minimal

Langkah 2: Susun Tabel Prime Implicant

	X2+X4	X1+X2+X3+X4
	(1,3,9,11)	(4)
1	X	
4		X
3	Х	
9	Х	
11	X	

Hapus Prime Implicant Esensial

Langkah 3a: Hapus Prime Implicant Essensial dari Tabel (Iterasi #1)

	X2+X4	X1+X2+X3+X4	
	(1,3,9,11)	(4)	
1	Х		Distinguish row
4		Х	Distinguish row
3	Х		Distinguish row
9	Х		Distinguish row
11	Х		Distinguish row
	Column Removed		•

Prime implicant: $x_2 + \overline{x}_4$ dan $x_1 + \overline{x}_2 + x_3 + x_4$ Solusi akhir

$$f_{min} = (x_2 + \overline{x}_4)(x_1 + \overline{x}_2 + x_3 + x_4)$$

@2014,Eko Didik Widianto

Metode

Quine-McKluskey Metode QM untuk POS

Komputer

Ringkasan

Metode

- Program bantu komputer (CAD: Computer-Aided Design) dapat dimanfaatkan untuk desain dan simulasi rangkaian logika
 - program desain: untuk mensintesis rangkaian logika dari suatu fungsi logika
 - menghasilkan rangkaian logika minimal
 - Bmin Visualizer of Boolean Minimization (http://bukka.eu/bmin/0.5.0). Program GUI Qt untuk minimalisasi fungsi logika dengan K-Map dan tabular Quine-McKluskey
 - Qmls Quine-McCluskey Logic Simplifier (http://sourceforge.net/projects/gmls/). Program CLI untuk minimalisasi fungsi logika dengan tabular Quine-McCluskey
 - program simulasi/analisis rangkain logika
 - Qucs Quite Universal Circuit Simulator (http://qucs.sourceforge.net/). Program GUI Qt untuk desain dan simulasi rangkaian elektronik, termasuk rangkaian digital

Bahasan

@2014,Eko Didik Widianto

Metode Quine-McKluskey Program Bantu

Komputer Bmin: Visualisasi Penyederhanaan Boolean

Program Bantu Komputer

Bmin: Visualisasi Penyederhanaan Boolean

Metode

Komputer

- Program GUI untuk meminimalkan fungsi logika
 - Dibuat oleh Jakub Zelenka. Versi terbaru 0.5.0
 - Pustaka grafis: Qt
 - Masukan: Maxterm dan minterm, don't care
 - Metode minimalisasi: peta Karnaugh dan Quine-McCluskey
 - Representasi fungsi minimal: SOP dan POS
 - Batasan:
 - Peta Karnaugh untuk fungsi sampai 6 variabel
 - Quine-McCluskey untuk fungsi sampai 10 variabel
 - Nama variabel harus satu buah karakter ASCII.
 - Alamat website: http://bukka.eu/bmin/0.5.0

Menu Utama Bmin

Metode Quine McKluskey dan Program Bantu

@2014,Eko Didik Widianto

Metode Quine-McKlus

Program Bantu Komputer

Penyederhanaan Boolean Qmls: Quine-McCluskey Logic Simplifier

Ques: Simulator Rangkaia

...

Jumlah variabel masukan maksimal 10

- Nama variabel: karakter ascii
- Nilai variabel: 0, 1, X (don't care)

- Masukan: $f(d, c, b, a) = sum \ m(2, 3, 7, 8, 11, 13) + sum \ d(0, 10, 15)$
- Fungsi sederhana: f(d, c, b, a) = ab + a'c' + acd (output)

@2014,Eko Didik Widianto

Metode

Program Bantu Bmin: Visualisasi

- Masukan: f(d, c, b, a) = prod m(1, 4, 5, 6, 9, 12, 14) * prod d(0, 10, 15)
- Fungsi sederhana: f(d, c, b, a) = (b + d)(a + c')(a' + b + c) (output)

@2014,Eko Didik Widianto

Metode Quine-McKluskey

Program Bantu Bmin: Visualisasi

Hasil Desain Bmin dengan QM

- Masukan: $f(d, c, b, a) = sum \ m(2, 3, 7, 8, 11, 13) + sum \ d(0, 10, 15)$
- **Fungsi sederhana**: f(d, c, b, a) = ab + a'c' + acd (output)

@2014,Eko Didik Widianto

Metode Quine-McKluskey

Program Bantu Bmin: Visualisasi

Komputer

Normal form: $f(d,c,b,a) = \operatorname{prod} m(1,4,5,6,9,12,14) * \operatorname{prod} d(0,10,15)$ Minimal form: $f(d,c,b,a) = (b+d)(a+c')(a'+b+c)$ Representation of logic function: $\operatorname{Product}$ of Sums	Edit
Representation of logic function: Product of Sums	
	(Minimize)
Finding Prime Implicants	(2)
Size 1 primes Size 2 primes Size 4 primes	- 1
Number of 8s Maxterm 0-cube Maxterm 1-cube Maxterm 2-cube 0 HI5 1111 M(14.15) 111-8 M(14.15) 111	- 1
0 M15 1111 M(14,15) 111-*	
M(14) 1110 M(6,14) -110 M(4,6,12,14) -1-0* M(10,14) 1-10* M(10,14) 11-0*	
2 MS 0101 M(1,5) 0-01 M(0,1,4,5) 0-0-* M0 0110 M(1,9) -0-0-* M9 1001 M(4,5) 010- M10 1010 M(4,6) 010- M12 1100 M(4,12) -100 M(4,6) 010- M12 1100 M(4,12) -100 M(4,6) 010- M12 M10 M(4,12) -100 M(4,12) -	
3 M1 0001 M(0,1) 000- 0100 M(0,4) 0-00	
4 M0 0000	

Masukan: $f(d, c, b, a) = prod \ m(1, 4, 5, 6, 9, 12, 14) * prod \ d(0, 10, 15)$

M(10,14)

Persamaan 10 Variabel

Nyatakan persamaan minimal fungsi f(j, i, h, g, f, e, d, c, b, a) = \sum (1, 73, 75, 77, 79, 203, 205, 207, 329, 331, 335, 463, 1023) + $\overline{d(201,333,457,459,461)}$ menggunakan bmin

@2014,Eko Didik Widianto

Quine-McKluskey Program Bantu

Metode

Komputer Bmin: Visualisasi Penyederhanaan Boolean

Bahasan

@2014,Eko Didik Widianto

Metode Quine-McKluskey Program Bantu

Omls: Quine-McCluskey Logic Simplifier

Program Bantu Komputer

Qmls: Quine-McCluskey Logic Simplifier

- Program CLI (command line interface) untuk meminimalkan fungsi logika
 - Dibuat oleh Dannel Albert <dalbert@capitol-college.edu>. Versi terbaru 0.2
 - CLI, masukan diberikan dari command line atau file teks
 - Masukan: minterm, don't care
 - Nama variabel: string sebarang, bisa dengan indeks (misalnya: x4, a1 dan seterusnya)
 - Metode minimalisasi: Quine-McCluskey
 - Representasi fungsi minimal: SOP
 - Alamat website:

http://sourceforge.net/projects/qmls/

Masukan Fungsi dari File Teks

```
didik@didik-laptop:/media/DATA/Kuliah-UMDIP/TSK285-SistemDigital/Files/qmls-0.25 cat problem01.txt ff1x1,z2,x3,x4) = m(2,37,8,511,13) + d(0,10,13) ff1x1,z3,x4) = m(2,37,13,13) ff1x1,z3,x4) ff1x1,z3,x4)
```

- ▶ Dari fungsi $f(x_1, x_2, x_3, x_4) = m(2, 3, 7, 8, 11, 13) + d(0, 10, 15)$
- Menghasilkan fungsi sederhana yang sama: $f(x_1, x_2, x_3, x_4) = x_3x_4 + x_2'x_4' + x_1x_2x_4$

Metode Quine McKluskey dar Program Bantu Komputer

@2014,Eko Didik Widianto

Quine-McKluskey

Metode

Program Bantu Komputer

Penyederhanaan Boolean Qmls: Quine-McCluskey Logic Simplifier

Qucs: Simulator Rangkaia

ingkasan

Lisens

Fungsi dengan 10 Variabel (Qmls)

```
didik@didik-laptop:/media/DATA/Kuliah-UNDIP/TSK205-SistemDiqital/Files/qmls-0.2$ cat problem02.txt
f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}) = m(1023, 73, 75, 77, 79, 203, 205, 207, 329, 331, 335, 463, 1) + d(201, 333, 457, 459, 461)
didik@didik-laptop:/media/DATA/Kuliah-UNDIP/TSK205-SistemDigital/Files/gmls-0.2$ ./gmls/gmls < problem02.txt > solution02.txt
didik@didik-laptop:/media/DATA/Kuliah-UNDIP/TSK205-SistemDigital/Files/gmls-0.2$ tail -n14 solution02.txt
[PT]
1 PI#1
1023 PI#2
73.75.77.79.201.203.205.207.329.331.333.335.457.459.461.463 (2.4.128.256) PI#3
           1023 73 75 77 79 203 205 207 329 331 335 463
f(x1.x2.x3.x4.x5.x6.x7.x8.x9.x10) = x1x2x3x4x5x6x7x8x9x10 + x1'x4x5'x6'x7x10 + x1'x2'x3'x4'x5'x6'x7'x8'x9'x10
didik@didik-laptop:/media/DATA/Kuliah-UNDIP/TSK205-SistemDigital/Files/qmls-0.2$
```

- Fungsi: $f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}) =$ m(1023, 73, 75, 77, 79, 203, 205, 207, 329, 331, 335, 463, 1) +d(201, 333, 457, 459, 461)
- Fungsi sederhana: $f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}) = x_1x_2x_3x_4x_5x_6x_7x_8x_9x_{10} + x_1x_2x_3x_4x_5x_6x_7x_8x_9x_{10}$ x1'x4x5'x6'x7x10 + x1'x2'x3'x4'x5'x6'x7'x8'x9'x10

@2014.Eko Didik Widianto

Metode Quine-McKluskey

Program Bantu Komputer

Qmls: Quine-McCluskey Logic Simplifier

Bahasan

@2014,Eko Didik Widianto

Metode Quine-McKluskey

Program Bantu

Qucs: Simulator Rangkaian

Program Bantu Komputer

Qucs: Simulator Rangkaian

- Qucs (Quite Universal Circuit Simulator)
 - untuk mensimulasikan rangkaian elektronika secara umum. termasuk rangkaian digital (logika)
 - dikembangkan oleh Michael Margraf dan berbasis pustaka grafis Qt
 - dapat dijalankan di Linux atau Windows
 - masukan program adalah berupa skematik rangkaian logika yang tersusun atas gerbang logika dan interkoneksinya
 - Alamat website: http://qucs.sourceforge.net/

- Metode Quine McKluskey dan Program Bantu Komputer
- @2014,Eko Didik Widianto

Metode Quine-McKluskey

Program Bantu Komputer

Bmin: Visualisasi Penyederhanaan Boolean Qmls: Quine-McCluskey Logic Simplifier

Qucs: Simulator Rangkaian

.

Lisen

- Skematik rangkaian $f_{min} = \overline{x}_2 \overline{x}_4 + x_2 x_4 + x_3 \overline{x}_4 + x_1 \overline{x}_4$
- Simulasi digital menggunakan tabel kebenaran

Hasil Simulasi dengan Qucs

@2014,Eko Didik Widianto

Metode Quine-McKluskey

Program Bantu

Qucs: Simulator Rangkaian

Qucs: Simulator Rangkaian

3 ...

► Verifikasi rangkaian logika fungsi $f(x_1, x_2, x_3, x_4) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(0, 10, 15)$

Contoh: Hasil Simulasi

Metode Quine McKluskey dan Program Bantu Komputer

@2014,Eko Didik Widianto

Metode Quine-McKluskey

Program Bantu Komputer

Penyederhanaan Boolean Qmls: Quine-McCluskey Logic Simplifier

Qucs: Simulator Rangkaian

· iiiigitac

Metode

- Yang telah kita pelajari hari ini:
 - Penyederhanaan fungsi logika menggunakan metode tabular Quine-McKluskey untuk aplikasi komputer
 - Program bantu komputer untuk melakukan sintesis rangkaian logika minimum dan analisis rangkaian, yaitu Bmin, Qmls dan Qucs
- Latihan:
 - Lihat Tugas#3
- Yang akan kita pelajari di pertemuan berikutnya adalah teknologi CMOS dan chip terintegrasi TTL (transistor-transistor logic) untuk mengimplementasikan gerbang logika
 - ► Pelajari: http://didik.blog.undip.ac.id/2014/02/25/ tkc205-sistem-digital-2013-genap/

Metode

Creative Common Attribution-ShareAlike 3.0 Unported (CC **BY-SA 3.0)**

- Anda bebas:
 - untuk Membagikan untuk menyalin, mendistribusikan, dan menyebarkan karya, dan
 - untuk Remix untuk mengadaptasikan karya
- Di bawah persyaratan berikut:
 - Atribusi Anda harus memberikan atribusi karya sesuai dengan cara-cara yang diminta oleh pembuat karya tersebut atau pihak yang mengeluarkan lisensi. Atribusi yang dimaksud adalah mencantumkan alamat URL di bawah sebagai sumber.
 - ▶ **Pembagian Serupa** Jika Anda mengubah, menambah, atau membuat karya lain menggunakan karya ini. Anda hanya boleh menyebarkan karya tersebut hanya dengan lisensi yang sama, serupa, atau kompatibel.
- ▶ Lihat: Creative Commons Attribution-ShareAlike 3.0 Unported License
- ► Alamat URL: http://didik.blog.undip.ac.id/2014/02/25/tkc205-sistemdigital-2013-genap/