APPENDIX A

% BEGINNING OF PSEUDO CODE

% compute scale factor A, and time constants a, b from physical system parameters

$$A = Vmax * Kt / (Re * Rm + Kt * Kb) * 1 * k;$$

$$p2 = 1/Jm/Ie * (-Ie * Rm - Re * Jm - sqrt(Ie^2 * Rm^2 - 2 * Re * Rm * Ie * Jm + Re^2 * Jm^2 - 4 * Kt * Kb * Ie * Jm)) / 2;$$

15
$$a = max(-p1,-p2)$$

 $b = min(-p1,-p2)$

% make initial guesses for step durations

% set maximum iteration count

25 Nmax = 1000;

for j = 1:Nmax

% save old values of step time intervals

30 et3old = et3;

```
et2old = et2;
et1old = et1;
```

% iterate for switch times using fixed voltage level Vmax

5

10

end

15

error(['error - failure to converge after ', num2str(Nmax),'
iterations'])

end

end

20

% round up pulse duration to nearest sample interval, % convert to intervals between steps to make sure that voltage

% requirements will not increase (beyond Vmax).

25 dt1=ceil((et1 - et2) / dt) * dt;

dt3=ceil((et3) / dt) * dt;

$$et123 = [et1, et2, et3]$$

30 % convert back to total step duration.

% In the following, the original constraints equations involving XF1, XF2, was and XF3 have been modified to include a variable voltage level applied at

% each step (instead of the fixed maximum (+/-) Vmax).

10 % The original equations for XF1, XF2, and XF3 follow:

%
$$XF_1(t_{end}) = V_0F_1(t_{tend} - t_0) - 2V_0F_1(t_{end} - t_1) + 2V_0F_1(t_{end} - t_2)$$

%
$$XF_2(t_{end}) = V_0F_2(t_{tend} - t_0) - 2V_0F_2(t_{end} - t_1) + 2V_0F_1(t_{end} - t_2)$$

%
$$XF_3(t_{end}) = V_0F_3(t_{tend} - t_0) - 2V_0F_2(t_{end} - t_1) + 2V_0F_1(t_{end} - t_2)$$

15 % And the modified equation including adjustable relative levels of voltage

% L1, L2 and L3 are:

%
$$XF_1(t_{end}) = L_1V_0F_1(t_{tend} - t_0) - L_2V_0F_1(t_{end} - t_1) + L_3V_0F_1(t_{end} - t_2)$$

%
$$XF_2(t_{end}) = L_1V_0F_2(t_{tend} - t_0) - L_2V_0F_2(t_{end} - t_1) + L_3V_0F_1(t_{end} - t_2)$$

20
$$XF_3(t_{end}) = L_1V_0F_3(t_{tend} - t_0) - L_2V_0F_2(t_{end} - t_1) + L_3V_0F_1(t_{end} - t_2)$$

% And the corresponding constraint equations are:

$$% XF_1(t_{end}) = Finalpos$$

$$\% XF_2(t_{end}) = 0$$

25 %
$$XF_3(t_{end}) = 0$$

- % Where all of the times indicated have discrete values, e.g. corresponding to
 - % the controller update rate.

30

20

25

% It should be noted that after the digital switch times are fixed, the constraint

% equations derived from the equations above form a linear set of equations in

5 % the unknown relative voltage levels L1, L2 and L3 and any standard linear

% method can be used to solve for the relative voltage levels. In the equations

% for (L1, L2 and L3) that follow, the solution was obtained by algebraic % means (and are not particularly compact.)

% compute new relative voltage step levels

% L1, L2 and L3 are nominally assigned to "1", "-2" and "+2", respectively

L1 = s1 * s2;

L2 = s1 * s2;

% convert accumulated voltage steps to sequential voltage level

V1 = Vmax * (L1);

25 V2 = Vmax * (L1 + L2);

V3 = Vmax * (L1 + L2 + L3);

% END OF PSEUDO CODE