Health Monitoring System and Opportunities

Agenda

- Introduction to Asmaitha
- Health Monitoring and IoT
- Global health Market in IoT space
- Gaps and Opportunities
- What we offer in HealthCare
- Customers
- Road Map
- Asmaitha Algorithms and Patents

Introduction to Asmaitha

- 14yrs young innovation company
- Avg age is ~28 yrs

MCx Comm/5G/6G

Smart Patch/watch/Ring/Pain Mngt

PoE/LAN/Call Buffer/Robotic Automation

Smart Seat/Handle/Pedal

Introduction to Asmaitha

Product Roadmap 2015 -2020

Product Roadmap 2021 - 2030

System Dev HW/SW

ML/AI

Meta -Metal Telecom (CISCO, Intel, CommScope, Radisys, Ransons etc)

IxOT (SAP, Ricoh, Comminnent etc)

Healthcare (Scoor, Vios Medical, DNA Vibe, Nsqared etc)

E-Mobility (Foviatech)

Optical Electronics

Global health Market in IoT Space

- Reasons for Health Monitoring
 - Post covid
 - Health Insurance cost
 - Govt focus to reduce mortality using early detection
 - Well being as opportunity

- Growth Projection
 - The global IoT Healthcare market size surpassed USD 36.20 billion by 2022
 - Project market size is USD 300 billion by 2032
 - Projected market size growth at 23.4% CAGR

Gaps and Opportunities

- Intimate and non invasive
- Continuous, wireless monitoring
- Diagnosis
- Treat and track
- Post operational cost
- Life style changes

What Asmaitha offer in Healthcare

- Early health detection
- Stress Monitoring
- Anxiety Monitoring
- Activity monitoring
- Adolescence monitoring

- Golden age:
 - Remote Monitoring by their Children
 - Blood pressure monitoring
 - Aadhar based health monitoring
 - Respiratory solution

SAAS based solution

- "SAAS based solution for real-time Monitoring of Vital parameters"
- Mission:-

To provide real-time vital measurement and analysis to Patch/device vendors, Chipset vendors, Home-health care solution providers.

Problem Statement

- BP Accuracy for real-time monitoring using wearables, Patches, holsters ..etc. is a challenge
- Limitation in the processing capabilities of the wearable devices to provide accurate BP
- Realtime Digital signal processing of the PPG and ECG data is a limitation in wearable devices
- Non-invasive blood pressure monitors often suffer from data inaccuracies due to external factors like movement, skin type, Skin color, wrist size, emotions, ambient environment ..etc.
- Non-invasive blood pressure monitors often depend on specific body sites for data collection, limiting their flexibility and convenience
- Non-invasive blood pressure monitors often depend on specific signal characteristics, such as wavelength, which
 can limit their flexibility and accuracy.
- Current non-invasive blood pressure monitors are limited by their reliance on specific light wavelengths (e.g., red, infrared, green), which can restrict flexibility and accuracy.
- Traditional ECG signals are complex and challenging to analyze, making it difficult to diagnose a wide range of heart diseases accurately.

Solution Statement

- Using powerful machine learning and AI models, we can analyze PPG and ECG data for accurate and efficient blood
 pressure monitoring. Cloud-based platforms provide the computational power and scalability to handle complex
 algorithms and large datasets, overcoming wearable device limitations and enhancing measurement reliability.
- Leveraging cloud-based platforms enables the use of powerful machine learning and AI models for data analysis, providing real-time and precise blood pressure monitoring. This approach enhances the efficiency and reliability of measurements.
- Cloud-based solutions offer scalable, high-performance computing resources, enabling real-time digital signal processing. Pay-as-you-go models make these solutions cost-effective and globally accessible.
- Implementing advanced algorithms and machine learning and AI techniques to filter and compensate for noise and
 variability can improve data accuracy. Real-time adjustments based on detected motion or skin type variations can
 further refine measurements.
- Developing a site-independent system that can take ECG and PPG data from the wrist, chest, or finger ensures
 versatility and ease of use. This flexibility allows for continuous monitoring regardless of the device's location on the
 body.
- Developing a wavelength-independent system using advanced algorithms and adaptive signal processing techniques
 ensures accurate measurement of blood pressure and heart rate from signals like ECG and PPG, regardless of the
 light color used. This approach enhances versatility and reliability.
- Utilize AI and machine learning models to analyze ECG signals more efficiently. These advanced models can identify patterns and anomalies, enabling the detection of over 200 different heart conditions with greater accuracy. This approach enhances diagnostic precision and supports early detection and management of cardiovascular diseases.

Bp algorithm Signal acquisition

BP Algorithm flow

BP Algorithm flow

ECG and PPG signal acquisition

Digital signal processing

Feature extraction

AI/ML/DL

Data post processing

BP Output

SUMMARY

	No. of Measurements	No. of beats in million	Range in mmHg	Mean Absolute Deviation(MAD in mmHg)	
	SBP 28561	1.2 M	<120mmHg	4.019978	3.917271
SBP			120mmHg- 139mmHg	2.882649	
			140mmHg- 160mmHg	2.290621	
555	20564	1.2 M	<80mmHg	3.88704	0.046607
DBP	28561		80mmHg- 89mmHg	2.188553	3.046627
			90mmHg - 100mmHg	3.002575	

Health Care Customers

Chest Patch

Medical Grade

RPM Vendors

Home Devices

Wrist Watch

Ring

Ear Pod

Patents Filed and in process

- ECG based algorithm/method to detect arrythmia
- Non invasive Blood pressure monitoring method/algorithm
- Respiratory device with warning alert mechanism

BP Algorithm Chest Data (continuous) Results- 8 Users

SBP: 90 – 160, DBP: 60 - 110

m	No. of Measurements	No. of beats	Range in mmHg	Mean Absolute DemmHg)	Mean Absolute Deviation(MAD in nmHg)	
	SBP 25000	1M	<120mmHg	1.5513	1.3725	
SBP			120mmHg - 139mmHg	1.2306		
			140mmHg- 160mmHg	1.3356		
2.22	DBP 25000	1M	<80mmHg	0.7656		
DBP			80mmHg - 89mmHg	0.5009	0.745	
			90mmHg - 100mmHg	0.9685		

Accuracy Table

Person 1 (No. of MSRID's: 11)

Systolic Blood Pressure (MAE: 5.02) (Min diff: 0.0) (Max diff: 13.64)

Diastolic Blood Pressure (MAE: 1.78) (Min diff: 0.0) (Max diff: 9.0)

Continuous 48 hours of data recorded every 15 minutes

Person 2 (No. of MSRID's: 26)

Systolic Blood Pressure (MAE: 1.11) (Min diff: 0.01) (Max diff: 14.58) Diastolic Blood Pressure (MAE: 1.79) (Min diff: 0.0) (Max diff: 9.68)

Person 3 (No. of MSRID's: 9)

Systolic Blood Pressure (MAE: 0.18) (Min diff: 0.0) (Max diff: 1.14)

Diastolic Blood Pressure (MAE: 0.04) (Min diff: 0.0) (Max diff: 0.32)

Person 4 (No. of MSRID's: 10)

Systolic Blood Pressure (MAE: 1.46) (Min diff: 0.0) (Max diff: 14.59) Diastolic Blood Pressure (MAE: 0.96) (Min diff: 0.0) (Max diff: 9.62)

Person 5 (No. of MSRID's: 14)

Systolic Blood Pressure (MAE: 2.26) (Min diff: 0.0) (Max diff: 15.0)

Diastolic Blood Pressure (MAE: 0.83) (Min diff: 0.0) (Max diff: 9.67)

Person 6 (No. of MSRID's: 16)

Systolic Blood Pressure (MAE: 0.22) (Min diff: 0.0) (Max diff: 1.49)

Diastolic Blood Pressure (MAE: 0.47) (Min diff: 0.0) (Max diff: 6.11)

Person 7 (No. of MSRID's: 12)

Systolic Blood Pressure (MAE: 0.59) (Min diff: 0.0) (Max diff: 6.9)

Diastolic Blood Pressure (MAE: 0.04) (Min diff: 0.0) (Max diff: 0.12)

Person 8 (No. of MSRID's: 12)

Systolic Blood Pressure (MAE: 0.14) (Min diff: 0.0) (Max diff: 0.47)

Diagtalia Blood Pressure (MAE: 0.05) (Min diff: 0.0) (Max diff: 0.63)

BP Algorithm Finger Data (Generalized) Results- 7 Users

SBP: 90-180, DBP: 60 - 110

Accuracy information:

	No. of Measurements	No. of beats	Range in mmHg	Mean Absolute Deviation(MAD in mmHg)	
			<120mmHg	3.66960789	3.66374084
SBP	550	25000	120mmHg - 139mmHg	3.375734532	
			140mmHg - 160mmHg	1.096507289	
	550	25000	<80mmHg	3.54649073	3.500
DBP			80mmHg - 89mmHg	2.954679775	
			90mmHg - 100mmHg	1.694455892	

Bland-Altman plot for finger data

Mean Reference SBP: 119.75 ± 10.48 mmHg, Mean Reference DBP: 73.05 ± 6.58 mmHg,

Physiological Data Representation in the Wrist Data

Physiological Data Representation in the Wrist Data

BP Algorithm Wrist Data (Generalized) Results- 1702 Users SBP: 90-180, DBP: 60 - 110

Accuracy information:

	No. of Measurements	No. of beats	Range in mmHg	Mean Absolute Deviation(MAD in mmHg)	
	3000		<120 mmHg	4.999892	
SBP		1,50,000	120mmHg - 139mmHg	4.041613	4.773743
			140mmHg- 160mmHg		4.439756
			>160mmHg	7.382514	
	3000	1,50,000	<80mmHg	4.729259	3.0007582
DBP			80-89mmHg	4.518468	
			90-100mmHg	6.34477	
			>100mmHg	7.5087	

Bland-Altman plot for wrist data

Mean Age: 52.07 ± 20.87 years, Mean Height: 158.28 ± 10.80 cm, Mean Weight: 64.51 ± 14.80 kg Mean Reference SBP: 123.49 ± 19.18 mmHg, Mean Reference DBP: 68.85 ± 9.86 mmHg,

Reference DBP in mmHg

Mean Age: 52.07 ± 20.87 years, Mean Height: 158.28 ± 10.80 cm, Mean Weight: 64.51 ± 14.80 kg Mean Reference SBP: 123.49 ± 19.18 mmHg, Mean Reference DBP: 68.85 ± 9.86 mmHg,

BP Algorithm for Wrist Data from Huawei (Personalized for 2 Users one month every week three readings)

	No. of Measurements	No. of beats	Range in mmHg	Mean Absolute I in mmHg)	Deviation(MAD
			<120mmHg	5.8591	
SBP	11	500	120mmHg - 139mmHg	-	5.8591
			140mmHg - 160mmHg	-	
			<80mmHg	6.50681	
DBP 11	500	80mmHg - 89mmHg	0.780164	4.94075	
			90mmHg - 100mmHg	-	

Bland-Altman plot for Wrist Data from Huawei (Personalized)

Mean Age: 60.72 ± 3.28 years, Mean Height: 153.65 ± 0.94 cm, Mean Weight: 56.22 ± 1.78 kg Mean Reference SBP: 100.21 ± 8.73 mmHg, Mean Reference DBP: 69.91 ± 7.07 mmHg,

Mean Age: 60.72 ± 3.28 years, Mean Height: 153.65 ± 0.94 cm, Mean Weight: 56.22 ± 1.78 kg Mean Reference SBP: 100.21 ± 8.73 mmHg, Mean Reference DBP: 69.91 ± 7.07 mmHg,