1.) Problem statement

Stage 1.Domain--Machine Learning

Stage 2.Learning method--Supervised

Stage 3. Classification/Regression-- Regression

2.) Basic info about the dataset

Total number of rows -1338 columns-6

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

We are going to use Machine learning domain. ML algorithm we have to pass all input as number. In this problem statement we are going to convert **sex and smoker** column string values as number-nominal data.

4.)To find following the machine learning regression method using in r2 value

1.Multiple Linear Regression(R² value)= 0.78947

2.Support Vector Machine:

S. N O	Hyper Param eter	Linear(r value)	RBF(Non Linear) (r value)	POLY (r value)	SIGMOID (r value)
1	C10	0.56651	-0.01810	0.15939	0.07305
2	C100	0.63595	0.39060	0.75081	0.52756
3	C500	0.76514	0.69646	0.85931	0.49063
4	C1000	0.74409	0.82835	0.86058	0.143775
5	C2000	0.74142	0.86073	0.86018	-2.58403
6	C3000	0.74142	0.86853	0.86001	-6.82618

The **SVM Regression** use R² value (nonlinear (RBF) and hyper parameter (C3000))=0.86853

3.Decision Tree:

S.NO	CRITERION	MAX	SPLITTER	R
		FEATURES		VALUE
1	Mse	auto	best	0.69873
2	Mse	auto	random	0.67270
3	Mse	sqrt	best	0.71419
4	Mse	sqrt	random	0.67173
5	Mse	Log2	best	0.64344
6	Mse	Log2	random	0.59276
7	Mae	auto	best	0.69015
8	Mae	auto	random	0.73781
9	Mae	sqrt	best	0.73385
10	Mae	sqrt	random	0.67806
11	Mae	Log2	best	0.63417
12	Mae	Log2	random	0.66638
13	Friedman_mse	auto	best	0.70494
14	Friedman_mse	auto	random	0.73555
<mark>15</mark>	Friedman_mse	sqrt	best	0.74989
16	Friedman_mse	sqrt	random	0.64825
17	Friedman_mse	Log2	best	0.69597
18	Friedman_mse	Log2	random	0.60541

The **Decision Tree** Regression use R² value (Friedman, sqrt, best)=0.74989

4. Random Forest

SI.NO	CRETERION	MAX FEATURES	N_ESTIMATORS	R VALUE
1	Mse	auto	10	0.83926
2	Mse	auto	100	0.85553
3	Mse	sqrt	10	0.85191
4	Mse	sqrt	100	0.86861
5	Mse	Log2	10	0.86211
6	Mse	Log2	100	0.87033
7	Mae	auto	10	0.85430
8	Mae	auto	100	0.85197
9	Mae	sqrt	10	0.85755
<mark>10</mark>	<mark>Mae</mark>	<mark>sqrt</mark>	<mark>100</mark>	0.87327
11	Mae	Log2	10	0.86010
12	Mae	Log2	100	0.86917
13	Friedman_mse	auto	10	0.83611
14	Friedman_mse	auto	100	0.85786
15	Friedman_mse	sqrt	10	0.86210
16	Friedman_mse	sqrt	100	0.86974
17	Friedman_mse	Log2	10	0.85557
18	Friedman_mse	Log2	100	0.86977

The Random Forest Regression use R² value (Mae,Sqrt, 100)=0.87327

4. AdaBoost

SI.NO	LEARNING_RATE	LOSS	N_ESTIMATORS	R VALUE
<u>1</u>	<mark>1.0</mark>	<mark>linear</mark>	<mark>10</mark>	<mark>0.84474</mark>
<mark>2</mark>	<mark>1.0</mark>	<mark>linear</mark>	<mark>50</mark>	<mark>0.84474</mark>
3	1.0	square	10	0.73062
4	1.0	square	50	0.50780
5	1.0	exponential	10	0.82667
6	1.0	exponential	50	0.62928

The AdaBoost Regression use R² value (1.0, linear, 10 and 50)=0.84474

5. XG Boosting

SI.NO	CRETERION	MAX FEATURES	N_ESTIMATORS	R VALUE
1	Friedman_mse	sqrt	10	0.61652
<mark>2</mark>	Friedman_mse	<mark>sqrt</mark>	<mark>50</mark>	<mark>0.89039</mark>
3	Friedman_mse	sqrt	100	0.89007
4	Friedman_mse	Log2	10	0.61652
<mark>5</mark>	Friedman_mse	Log2	<mark>50</mark>	<mark>0.89039</mark>
6	Friedman_mse	Log2	100	0.89007

The XG Boosting Regression use R² value (Friedman_mse,sqrt and log2, 50)=0.89039

6. Light Gradient Boosting (LightGBM)

SI.NO	Num_Leaves	Learning_Rate	N_ESTIMATORS	R VALUE
1	31	0.1	10	0.78574
<mark>2</mark>	<mark>50</mark>	<mark>0.1</mark>	<mark>50</mark>	<mark>0.87574</mark>
3	100	0.1	100	0.86515
4	500	0.1	10	0.78613
<mark>5</mark>	<mark>1000</mark>	<mark>0.1</mark>	<mark>50</mark>	<mark>0.87574</mark>
6	10000	0.1	100	0.86515

The **LightGBM** Regression use R² value (50 and 1000,0.1,50)=0.87574

- 5.) In the tabulation format, all the research values (r2_score of the models) documented.
- 6.)Developed a good model with r2_score. I have used "XG Boosting" machine learning algorithm to create final model. We have used all machine learning algorithm to test this dataset. Finally for this dataset "XG Boosting" algorithm only provided almost **0.89039** accuracy.