Assignment #1 Numerical Computing (COMP 350)

Guillaume Labranche (260585371)

due on 23 September 2015

- 1. No. Let x be a real number with finite binary representation and x_i be the ith bit after the point. The integer part can be represented in finite decimal form in all cases. For all x_i in the fractional part, if the digit is 1, its value within x is $1/(2^i)$ and that in decimal form is finite, so adding all x_i 's leads to a finite decimal representation.
- 2. **-23**
- 3. (a) $(2^4)/2 1 = 16/2 1 = 8 1 = 7$
 - (b) Normalized nonnegative range:

	Sign	Exponent	Fraction	Decimal Value
N_{min}	1	$(0001)_2 = 1$	$(00000)_2$	$(1.00000)_2 \cdot 2^{-6} = (1/64)_{10}$
N_{max}	1	$(1110)_2 = 14$	$(111111)_2$	$(1.11111)_2 \cdot 2^7 = (252)_{10}$

(c) Subnormal nonnegative range:

	Sign	Exponent	Fraction	Decimal Value
Smallest	1	$(0000)_2 = 1$	$(00001)_2$	$(0.00001)_2 \cdot 2^{-6} = \mathbf{2^{-11}}$
Largest	1	$(0000)_2 = 15$	$(111111)_2$	$(0.11111)_2 \cdot 2^{-6} = 31/2^{-11}$

- (d) $\epsilon = 2^{-5}$
- (e) 10.75 and 11.15

Sign	Exponent	Fraction	Decimal Value
1	$(1010)_2 = 10$	$(01011)_2$	$(1.01011)_2 \cdot 2^3 = 10.75$
1	$(1010)_2 = 10$	$(01100)_2$	$(1.01100)_2 \cdot 2^3 = 11.0$
1	$(1010)_2 = 10$	$(01101)_2$	$(1.01101)_2 \cdot 2^3 = 11.25$

(f)

$$x = -(1.0110101)_2 \cdot 2^0$$

$$x_+ = -(1.01101)_2 \cdot 2^0$$

$$x_- = -(1.01110)_2 \cdot 2^0$$

• Round down: $x_{-} = -(1.01110)_{2} \cdot 2^{0}$

- Round up: $x_+ = -(1.01101)_2 \cdot 2^0$
- Round towards zero: $x_+ = -(1.01101)_2 \cdot 2^0$
- Round to nearest: $x_{+} = -(1.01101)_{2} \cdot 2^{0}$
- 4. (a) **True**. When adding a number x to itself, we are doubling its value (2x). In binary representation, this comes down to shifting the decimal point 1 position to the right, so the significant stays the same but E is increased by 1 when x is in the form $(b_0.b_1b_2...b_{23})_2 \cdot 2^E$.

$$x \oplus x = 2x$$
$$\operatorname{round}(x+x) = 2x$$
$$\operatorname{round}(2x) = 2x$$
$$\operatorname{round}(2 \cdot (b_0.b_1b_2 \dots b_{23})_2 \cdot 2^E) = 2 \cdot (b_0.b_1b_2 \dots b_{23})_2 \cdot 2^E$$
$$\operatorname{round}((b_0.b_1b_2 \dots b_{23})_2 \cdot 2^{E+1}) = (b_0.b_1b_2 \dots b_{23})_2 \cdot 2^{E+1}$$

(b) False. Counter-example (rounding mode is round down):

```
)_2 \cdot 2^0
                )_2 \cdot 2^0
           )_2 \cdot 2^0
            x - y =
                                         )_2 \cdot 2^0
  oldsymbol{x} \ominus oldsymbol{y} =
               )_2 \cdot 2^0
   y - x =
           )_2 \cdot 2^0
   y \ominus x =
                0.0000000000000000000000001|
                                         )_2 \cdot 2^0
-(y\ominus x)=
                0.000000000000000000000001 \\ |
```

- 5. $\infty/0 = \infty$ (because $a/0 = \infty$)
 - $\infty/(-\infty) = \text{NaN}$ (any operation involving NaN results in NaN)
 - $1^{\text{NaN}} = \text{NaN}$ (same reason)
 - -0/NaN = NaN (same reason)