MY457/MY557: Causal Inference for Observational and Experimental Studies

Week 11: Difference-in-Differences 2

Daniel de Kadt Department of Methodology LSE

Winter Term 2025

Course Outline

- **Week 1:** The potential outcomes framework
- Week 2: Randomized experiments
- Week 3: Estimation under selection on observables I
- Week 4: Estimation under selection on observables II
- Week 5: Estimation under selection on observables III
- Week 6: Reading week
- Week 7: Instrumental variables I
- Week 8: Instrumental variables II
- Week 9: Regression discontinuity
- Week 10: Difference-in-differences I
- Week 11: Difference-in-differences II

Difference-in-Differences So Far

Last week we studied the canonical 2-period difference-in-differences (DiD) design, with a brief foray into a special 3-period case.

Identification and estimation was reasonably straightforward:

- Key identification assumption is parallel trends, plus no anticipation
- Use either a plug-in or regression-based estimator

However, we often encounter DiD settings that are more complex:

- More than 2 time periods
- Treatment is assigned variably over time
- Treatment effects are heterogeneous
- Treatment is non-binary

Today we will consider identification and estimation in such settings.

- Motivating Example
- 2 Fixed Effects
- Variable Treatment Timing
- Multi-Period Designs with Heterogeneous Treatment Effects
- 5 Synthetic Control Method Primer

- Motivating Example
- 2 Fixed Effects
- Variable Treatment Timing
- Multi-Period Designs with Heterogeneous Treatment Effects
- 5 Synthetic Control Method Primer

Minimum Wages and Employment

Do higher minimum wages decrease employment?

Card and Krueger (1994) consider impact of New Jersey's 1992 minimum wage increase from \$4.25 to \$5.05 per hour.

Compare employment in 410 fast-food restaurants in New Jersey and eastern Pennsylvania before and after the rise.

Survey data on wages and employment from two waves:

- Wave 1: March 1992, one month before the minimum wage increase
- Wave 2: December 1992, eight month after increase

Minimum Wages and Employment

7 / 47

Minimum Wages and Employment

Variable	Stores by state		
	PA (i)	NJ (ii)	Difference, NJ – PA (iii)
FTE employment before, all available observations	23.33 (1.35)	20.44 (0.51)	-2.89 (1.44)
2. FTE employment after, all available observations	21.17 (0.94)	21.03 (0.52)	-0.14 (1.07)
3. Change in mean FTE employment	-2.16 (1.25)	0.59 (0.54)	2.76 (1.36)

Treatment: Increase of minimum wage in New Jersey

Difference 1: Pre-minimum wage - Post-minimum wage

Difference 2: New Jersey- Pennsylvania

Minimum Wage and Employment

Card & Krueger (1994) found a positive effect of minimum wage on employment.

Card & Krueger (2000) revisited this design and setting with better data, and found no effect either way.

Lots of debate – many papers reconsidered this question using a more general approach: Leveraging cross- and within-state variation throughout the USA. They largely find negative effects on employment.

Dube, Lester, and Reich (2010) revisit this debate:

- Find all cross-state-border changes in MW policies (1990 2006)
- Collect earnings and employment data for every county in the USA in this time period.
- Generalize the DiD case study approach.

Variation in Space

Estimated Dynamic Effects – Entire Sample

Ln Earnings

1. All County Sample, Common Period Effects

Ln Employment

Estimated Dynamic Effects – Border Sample Only

5. Contiguous Border County-Pair Sample, Common Period Effects

- Motivating Example
- 2 Fixed Effects
- Variable Treatment Timing
- Multi-Period Designs with Heterogeneous Treatment Effects
- 5 Synthetic Control Method Primer

Fixed Effects Estimation and Difference in Differences

Recall the additive linear model for panel data with 2 periods:

$$Y_{it}(z) = \alpha_i + \gamma t + \tau z + \varepsilon_{it}$$

where

- $i \in \{0, ..., N\}$: Unit indicator
- $t \in \{0,1\}$: Time indicator
- $Y_{it}(z)$: potential outcome under treatment status $Z \in \{0,1\}$
- α_i : time-invariant unobserved effect
- ε_{it} : idiosyncratic error term
- τ : (homogeneous, constant) treatment effect of interest

In a 2-period design, we saw that the first-difference regression:

- ullet Unbiasedly estimates au under parallel trends and no anticipation assumptions
- \bullet τ will coincide with τ_{ATE} and τ_{ATT} if assumed model is correct

Fixed effects estimation generalises this to t > 2

Panel Data Notation and Setup

Let's introduce some new-ish notation for panel data:

 y_{it} : Vector of observed outcomes for unit i in period t

 $\mathbf{x}_{it} \equiv [\mathbf{z}_{it}, \mathbf{x}_{it1}, ..., \mathbf{x}_{it(K-1)}]^{\top}$: Matrix of explanatory variables for unit i in period i

<u>Note</u>: The matrix \mathbf{x}_{it} includes both treatment indicator (\mathbf{z}_{it}) and other observed covariates (\mathbf{x}_{itk}) .

In a given panel, we observe a sample of i = 1, 2, ..., N distinct units at t = 1, 2, ..., T time periods (a "balanced panel")

Panel Data Notation and Setup

Collect variables for unit i:

$$\mathbf{y}_{i} = \begin{pmatrix} y_{i1} \\ \vdots \\ y_{it} \\ \vdots \\ y_{iT} \end{pmatrix}_{T \times 1} \qquad \mathbf{X}_{i} = \begin{pmatrix} \mathbf{x}_{i1}^{\top} \\ \vdots \\ \mathbf{x}_{it}^{\top} \\ \vdots \\ \mathbf{x}_{iT}^{\top} \end{pmatrix} = \begin{pmatrix} z_{i1} & x_{i11} & \cdots & x_{i1(K-1)} \\ \vdots & \vdots & & \vdots \\ z_{it} & x_{it1} & \cdots & x_{it(K-1)} \\ \vdots & \vdots & & \vdots \\ z_{iT} & x_{iT1} & \cdots & x_{iT(K-1)} \end{pmatrix}_{T \times K}$$

And stack them for all units (a "long panel"):

$$\mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_i \\ \vdots \\ \mathbf{y}_N \end{pmatrix}_{NT \times 1} \qquad \mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_i \\ \vdots \\ \mathbf{X}_N \end{pmatrix}_{NT \times K}$$

Pooled OLS Model

Let's start by ignoring the panel structure entirely, and assume:

$$y_{it} = \mathbf{x}_{it}^{\top} \mathbf{\tau} + v_{it}, \qquad t = 1, 2, ..., T$$

with composite error $\mathbf{v}_{it} \equiv \alpha_i + \varepsilon_{it}$

The estimator $\widehat{ au_{OLS}}$ will be unbiased and consistent when:

$$E[v_{it}|\mathbf{x}_{it}] = 0$$
 for $t = 1, 2, ..., T$

That is, when \mathbf{x}_{it} is strictly exogenous.

<u>Read</u>: the composite error v_{it} in each time period is uncorrelated with the past, current, and future regressors.

Equivalent to strict conditional ignorability of potential outcomes

Unit Fixed Effects Model

Now consider a "unit fixed effects" assumed model:

$$\mathbf{y}_{it} = \mathbf{x}_{it}^{\top} \boldsymbol{\tau} + \alpha_i + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

We can estimate both τ and α_i via OLS:

$$(\widehat{\boldsymbol{\tau_{FE}}}, \widehat{\alpha}_1, \dots, \widehat{\alpha}_N) = \operatorname*{argmin}_{\boldsymbol{\tau}, \alpha_1, \dots, \alpha_N} \sum_{i=1}^N \sum_{t=1}^T (y_{it} - \boldsymbol{x}_{it}^\top \boldsymbol{\tau} - \alpha_i)^2$$

This is called the least squares dummy variables (LSDV) estimator

If the assumed model is correct, then $\widehat{ au_{FE}}$ is a generalization of the pre-post design we discussed last week.

(Unit) Fixed Effects Estimation

- 1. We have already seen the LSDV estimator for au :
 - a. Regress y_{it} on x_{it} and unit dummies Note 1: Here we directly estimate α_i Note 2: With large N, this can be computationally expensive
- 2. Can also be obtained via within estimation:
 - a. Create demeaned variables: $\ddot{\pmb{x}}_{it} \equiv \pmb{x}_{it} \bar{\pmb{x}}_i$ and $\ddot{y}_{it} \equiv \pmb{y}_{it} \bar{\pmb{y}}_i$
 - b. Regress \ddot{y}_{it} on \ddot{x}_{it} Note 1: By within-demeaning we "purge" the fixed effects α_i Note 2: The point estimate $\widehat{\tau_{FE}}$ here is exactly equivalent to case (1)
- 3. Finally, can be obtained via first differences estimation (like last week):
 - a. Create differenced variables: $\Delta \mathbf{x}_{it} = \mathbf{x}_{it} \mathbf{x}_{i,t-1}$ and $\Delta y_{it} = y_{it} y_{i,t-1}$
 - b. Regress Δy_{it} on Δx_{it} Note 1: First differencing purges the fixed effects α_i Note 2: Can be more efficient under serial correlation

All consistent with T fixed and $N \to \infty$ under the same assumptions.

Fixed Effects Estimators: Assumptions and Uncertainty

Assumptions:

- 1. Strict exogeneity conditional on the unobserved effect
 - $\mathbb{E}[\varepsilon_{it}|\mathbf{x}_{i1},\mathbf{x}_{i2},...,\mathbf{x}_{iT},\alpha_i]=0, t=1,2,...,T$
 - allows \mathbf{x}_{it} to be arbitrarily related to α_i
 - SUTVA is implicitly assumed both across units and time periods
- 2. No carryover effects
 - ullet Treatment status for any Z_{it} does not directly affect outcome $Y_{it'>t}$
- 3. Rank condition
 - Regressors vary over time for at least some *i* and are not perfectly collinear

Under these assumptions, $\widehat{\tau_{FE}}$ is unbiased and consistent as $N \to \infty$ (But note that $\hat{\alpha}_i$ via LSDV is *inconsistent* for fixed T and $N \to \infty$)

Uncertainty Estimation:

- Usually SEs should be clustered by unit
- If N is small use block bootstrap

Adding Time Effects

Consider again our assumed "unit fixed effects" model:

$$\mathbf{y}_{it} = \mathbf{x}_{it}^{\top} \boldsymbol{\tau} + \alpha_i + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

Typical violation of strict exogeneity assumption: Common shocks that affect all units' y_{it} in the same way and are correlated with \mathbf{x}_{it} .

Examples include typical history or maturation effects.

More realistic models might include time effects:

- linear time trends
- non-linear time trends
- unit-specific time trends
- time fixed effects

Two-Way Fixed Effects Regression

Let's add time fixed effects to our assumed model:

$$\mathbf{y}_{it} = \mathbf{x}_{it}^{\top} \boldsymbol{\tau} + \alpha_i + \delta_t + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

where

- α_i represents the unit effect
- δ_t represents common shocks in each time period

This is the two-way fixed effects (TWFE) model.

If our model is correct and \mathbf{x}_{it} includes binary \mathbf{z}_{it} , then the $\widehat{\boldsymbol{\tau}_{TWFE}}$ is generalized difference-in-differences.

Use typical FE estimators (FD, within, LSDV) with both unit and time effects; in R:

- lm (slow!)
- plm
- fixest

Dynamic Two-Way Fixed Effects

We can specify a TWFE model allowing dynamic (time-varying) treatment effects:

$$\mathbf{y}_{it} = \alpha_i + \delta_t + \sum_{r \neq 0} \mathbf{1}[R_{it} = r] \tau_r + \varepsilon_{it}$$

where

- \bullet α_i represents the unit effect
- δ_t represents common shocks in each time period
- R_{it} is the period relative to treatment for unit i
- τ_r is a relative-period treatment effect

<u>Read</u>: This "event study" estimator allows for heterogeneous treatment effects of a specific form: constant τ_r across treatment cohorts.

- Motivating Example
- 2 Fixed Effects
- Variable Treatment Timing
- Multi-Period Designs with Heterogeneous Treatment Effects
- 5 Synthetic Control Method Primer

Variable Treatment Timing

Multi-period treatment regimes usually vary over two dimensions:

- Uniform vs. Staggered: Does treatment occur simultaneously, or over time?
- Absorbing vs. Non-absorbing: Once treatment occurs, can it switch off?

With anything other than uniform and absorbing treatment timing, TWFE for DiD may not behave well. For synthesis, see:

- Baker, Larcker, and Wang (2022)
- Roth, Sant'Anna, Bilinski, and Poe (2023)

Short of further assumptions, the estimand targeted by TWFE is not easily interpretable \rightsquigarrow it is a weighted average of many different treatment effects.

These weights can be negative (!), are generally non-intuitive, and can potentially severely mislead (e.g. sign-flips).

$\widehat{\tau_{\mathit{TWFE}}}$ Decomposition

To see this, we can decompose $\widehat{\tau_{TWFE}}$. We focus on Goodman-Bacon (2021).

Define three groups: never treated (U), early treated (k), and late treated (I)

 $\widehat{\tau_{TWFE}}$ is the weighted average of these four 2x2 treatment effects.

$$\widehat{\tau_{\textit{TWFE}}} = \sum_{k \neq \textit{U}} \textbf{s}_{\textit{kU}} \; \hat{\tau}_{\textit{kU}}^{\textit{2x2}} + \sum_{k \neq \textit{U}} \sum_{\ell > \textit{k}} [\textbf{s}_{\textit{kI}}^\textit{k} \; \hat{\tau}_{\textit{k\ell}}^{\textit{2x2},\textit{k}} + \textbf{s}_{\textit{kI}}^\textit{I} \; \hat{\tau}_{\textit{k\ell}}^{\textit{2x2},\ell}]$$

where

- $\hat{\tau}^{2x2}$ are different 2x2 estimators
- s are estimator-specific weights

The weights are a function of three things:

- 1. 2x-2 subsample size (higher, ↑ weight)
- 2. Ratio of treated to control (closer to 0.5, ↑ weight)
- 3. Relative timing of treatment (more central, ↑ weight)

<u>Problem</u>: Some of these comparisons may be "forbidden" such that already-treated units used as controls after they are treated.

Intuition: We subtract off changes in untreated outcomes and treatment effects.

MY457 Week 11 Winter Term 2025 28 / 47

au_{TWFE} Decomposition

Weighting is heavily dependent on timing:

Key Assumptions for TWFE as Generalised DID

This decomposition reveals the assumptions under which traditional TWFE might be trusted with multi-period panel data and a DiD design.

A causal DiD interpretation with TWFE requires either:

- 1. Parallel trends, no anticipation, and homogenous au Or:
- 2. Parallel trends, no anticipation, and uniform timing (constant au over time)

Quickly explore how much of a problem this may be using bacondecomp in R.

- Motivating Example
- 2 Fixed Effects
- Variable Treatment Timing
- Multi-Period Designs with Heterogeneous Treatment Effects
- 5 Synthetic Control Method Primer

Two Classes of 'Modern' Estimators

Multi-period DiD with non-uniform (staggered or non-staggered) treatment timing should be approached with caution.

Two general types of modern estimators that can help:

- 1. Flexible matching and re-weighting estimators:
 - Make the 'right' comparisons only, weight appropriately, and recover τ_{ATT} .
 - Many estimators exist: Strezhnev (2018), de Chaisemartin and D'Haultfœuille (2020), Sun and Abraham (2021), Imai and Kim (2021), Dube et al. (2023), de Chaisemartin and D'Haultfœuille (2024)
 - We will focus on Callaway and Sant'Anna (2021)
- Counterfactual estimators:
 - ullet Estimate only Y_0 , thus avoiding forbidden comparisons, and recover au_{ATT} .
 - Many estimators exist: Gobillon and Magnac (2016), Xu (2017), Borusyak et al. (2021), Gardner (2021), Wooldridge (2021)
 - We will focus on Liu, Wang, and Xu (2022)

Callaway and Sant'Anna (2021): Setup

Callaway and Sant'Anna (2021) study a DiD setting with multiple time periods, staggered treatment timing, there may be heterogeneous τ , and parallel trends may hold only conditional on \boldsymbol{X} .

They begin by defining a new estimand, the group-time ATT:

$$\tau_{g,t}^{ATT} = \mathbb{E}[Y_t(1) - Y_t(0)|G_g = 1]$$

where

- there are $T = t \in \{1, ..., T\}$ time periods
- ullet $G_g \in \{0,1\}$ indicates whether a unit is first treated in period g
- ullet $Y_t(1)$ and $Y_t(0)$ are potential outcomes under treatment and control, at T=t

Intuitively, this has already brought us a long way. We can now reason in abstraction about every 2x2 comparison in our data.

MY457 Week 11 Winter Term 2025 33 / 47

Callaway and Sant'Anna (2021): Identification

If parallel trends holds, this group-time ATT can be identified as:

$$\tau_{g,t}^{ATT} = \mathbb{E}[\underbrace{Y_t - Y_{g-1}}_{\text{Long difference}} | G_g = 1] - \mathbb{E}[\underbrace{Y_t - Y_{g-1}}_{\text{Long difference}} | C = 1]$$

where $C \in \{0,1\}$, taking 1 if never treated (no forbidden comparisons!)

Read: For any treated cohort, at any time period, conduct a diff-in-diff where:

- Difference 1: T = t vs. T = g 1 (long difference)
- Difference 2: G_g (cohort) vs. C (never treated)

Long difference in Y: change in Y between any time period t and the last pre-treatment period, g-1.

Callaway and Sant'Anna (2021): Identification

If conditional parallel trends holds:

$$\tau_{g,t}^{ATT} = \mathbb{E}\left[\left(\frac{G_g}{\mathbb{E}[G_g]} - \frac{\frac{p_g(X)C}{1 - p_g(X)}}{\mathbb{E}\left[\frac{p_g(X)C}{1 - p_g(X)}\right]}\right) \underbrace{\left(Y_t - Y_{g-1}\right)}_{\text{Long difference}}\right]$$

$$p_g(X) = P(G_g = 1|X, G_g + C = 1)$$
 is a propensity score

Read: Up-weight control units where $p_g(X)$ is similar to the group-specific treated units

MY457 Week 11 Winter Term 2025 35 / 47

Callaway and Sant'Anna (2021): Estimation

Estimation proceeds as follows:

- 1. Estimate $\hat{m{p}_g}$ for each group $m{g}$
- 2. Estimate $au_{g,t}^{\widehat{ATT}}$ by plugging in fitted values and observed ${\bf Y}$ into the (estimator-version) of the expression on the previous slide
- 3. Combine the estimated values of $\widehat{ au_{g,t}^{ATT}}$ to retrieve quantities of interest

Some quantities of interest:

- ullet Simple average of $\widehat{ au_{g,t}^{ATT}}$ across t and g
- ullet Weighted average of $\widehat{ au_{g,t}^{ATT}}$ weighting by group sizes
- Any other principled summary measure!

Callaway and Sant'Anna (2021) on the Minimum Wage

Liu, Wang, and Xu (2022): Setup

Liu, Wang, and Xu (2022) consider DiD settings with multiple time periods, staggered treatment timing that may or may not be absorbing, and there may be heterogeneous τ .

Define the estimand of interest as:

$$\tau_{ATT} = \mathbb{E}[Y_{it}(1) - Y_{it}(0) \mid Z_{it} = 1, C_i = 1]$$

where

- Zit is our DiD treatment indicator
- C_i is an indicator for 'ever treated' units
- $Y_{it}(1)$ and $Y_{it}(0)$ are potential outcomes under treatment and control

<u>Idea</u>: Estimate only $Y_{it}(0)$ using pre-treatment data, taking $Y_{it}(1)$ as missing.

Estimate τ_{ATT} by taking differences between Y(1) and Y(0).

Note: This is a philosophical departure from TWFE!

Liu, Wang, and Xu (2022): Estimation

Authors offer three estimators:

FEct Estimator:

$$Y_{it}(0) = \mathbf{x}_{it}^{\top} \boldsymbol{\tau} + \alpha_i + t_t + \varepsilon_{it}$$

• IFEct Estimator:

$$Y_{it}(0) = \mathbf{x}_{it}^{\top} \boldsymbol{\tau} + \alpha_i + t_t + \lambda_i' f_t + \varepsilon_{it}$$

MC Estimator:

$$\mathbf{Y}(\mathbf{0}) = \mathbf{x}_{it}^{ op} \mathbf{ au} + \mathbf{L} + \mathbf{arepsilon}$$

Liu, Wang, and Xu (2022): Simulated Example

Some Practical Advice

For computation, most of these routines are well packaged in most software:

- 1. For Callaway & Sant'Anna package {did} in R.
- 2. For Liu et al, package {fect} in R.
- 3. See Asjad Naqvi's summary: https://asjadnaqvi.github.io/DiD/

Be aware, however:

- TWFE is often okay! Try a number of estimators, report honestly.
- "Modern" estimators have low power (see Chiu et al, 2025, and Weiss, 2025)
- Low power may mean quite variable point estimates.
- Focus on research design and falsification first!

Design precedes estimation!

- Motivating Example
- 2 Fixed Effects
- Variable Treatment Timing
- Multi-Period Designs with Heterogeneous Treatment Effects
- 5 Synthetic Control Method Primer

Synthetic Control Method: Primer

DiD requires parallel trends in the expected value of potential outcomes. Generally cannot help where there are time- and unit-varying confounders.

Synthetic Control Methods (SCM) take a different approach:

1. Find \mathbf{W}^* , an N-1 length vector of unit weights that minimizes $||\mathbf{X}_1 - \mathbf{X}_0 w||$ for \mathbf{X}_1 a matrix of pre-treatment outcomes and covariates for the treated unit, and \mathbf{X}_0 likewise for the control.

<u>Read</u>: Find the weighted combination of control units that best matches – in both levels and trend – the treated unit in the pre-treatment period.

This weighted set of control units is the synethic control.

2. An approximately unbiased estimator of the unit-specific effect in the post-treatment period is:

$$\widehat{ au}_{1t} = Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt}$$
 for $t \in \{T_0 + 1, \dots, T\}$

3. Inference uses placebos (roughly, randomization inference).

For primer on use, see Abadie (2020).

SCM Example: California Prop 99 (Abadie et al. 2010)

SCM Example: California Prop 99 (Abadie et al. 2010)

SCM Example: California Prop 99 (Abadie et al. 2010)

"Be very very quiet, we're hunting identifying variation in D"