幾何学 I 演習 3. 多様体の接空間と写像の微分

- 1.~M を n 次元可微分多様体として , $f:M\to M$ を C^∞ 級写像とする . M の点 p において微分 $(df)_p$ のランクは n とする .
- (1) p を含む M の開集合 U で $f:U\to f(U)$ は微分同相写像となるものが存在することを示せ.
- (2) 微分 $(df)_q$ のランクが n となるような M の点 q 全体の集合は M の開集合であることを証明せよ .
- (3) 問 (1) の状況のとき,f は p において局所微分同相であるという.M の各点で局所微分同相な $f:M\to M$ で微分同相写像でないような,多様体 M と C^∞ 級写像 $f:M\to M$ の例を挙げよ.
- $2.~j:S^n o {f R}^{n+1}$ を包含写像とする. S^n の点 $p=(a_1,\cdots,a_{n+1})$ をとる.微分

$$(dj)_p: T_pS^n \to T_{j(p)}\mathbf{R}^{n+1}$$

は単射であることを示し、その像を a_1, \cdots, a_{n+1} で表せ、

3. \mathbf{R}^n の一次独立なベクトル e_1, \dots, e_n に対して

$$\Gamma = \{ m_1 e_1 + \dots + m_n e_n \mid m_1, \dots, m_n \in \mathbf{Z} \}$$

とおく.

- (1) 商空間 $T^n = \mathbf{R}^n/\Gamma$ は可微分多様体の構造をもつことを示せ.
- (2) 射影 $p: \mathbf{R}^n \to T^n$ のランクは各点で n であることを示せ .
- 4. $f: \mathbf{R}P^2 \to \mathbf{R}^3$ を

$$f([x:y:z]) = (xy, yz, zx)$$

で定義する。微分 $(df)_p$ の p によるランクが p によってどのように変化するかを調べよ.ただし, $x^2+y^2+z^2=1$ とする.