ITC Boss level v1.

Addendum, updates and clarifications to 16 bit CPU specifications shared earlier.

As per the original scope and design document.

Version date: 29/11/24

Minimum requirements

Data Transfers

- Addresses to A and B can only be transferred via MAR A and MAR B.
 Addresses for INST and SYS can only transfer via MARZ.
- Data to ALU can only come through registers. Data to registers can only come through MBR. Data to RAM can only flow through MBRS.
- If you are using a bus terminal, the terminal can only talk to and via MBRS

Hard coding

- Of execution cycles is strictly prohibited in any shape and form.
- Must use program counters for flow of control
- Architectural flow must follow shared data flow and design requirements

Data Flow

Flow summary

Bus Terminal

One possible visual interpretation of the bus terminal. The bus terminal moves and transfers data across block of RAM using the MOVE instructions. See instructions below

OE = Output Enable

B_1 = Control Line

B_2 = Control Line

R_Inst = Instruction RAM

R_Sys = System RAM

RA = RAMA

 $R_B = RAM B$

Terminology

Memory Address Register. MAR.

• 5 bits. 3 count

Memory Buffer Register. MBR.

• 16 bits. 3 count

Register Bank. Reg 1–8.

• 16 bits. 8 count

Random Access Memory. RAM. Read and Write.

• 16 bits. 4 count

Read Only Memory. ROM. Read only.

• 32 bits. 1 count

Program Counter. PC.

• 2 count

Program Control Unit. PCU.

• 1 count

Architecture

Check List

Core Architecture. Checklist

4 x RAM Blocks.

• 5 bit addresses. 16 bit words

3 x MAR Registers

• 5 bit

3 X MBR Registers

• 16 bit

1 X Bus Terminus

• Bus Interchange

8 x CPU Input Registers

• 16 bit

1 x CPU Output Register

• 16 bit

1 X ALU

• 12 – 16 Operations

1 x ROM based Program control Unit (PCU)

 Instead of digital circuit based PCU

3 x 16 Bit buses

 Separate buses for RAM Blocks

Minimum requirements for viva

ROM based PCU

4 RAM Blocks

8 Register across 2 Banks

3 MAR / 3 MBR

12 – 16 Operations

3 Buses

1 Bus Terminus Automated Execution of 12 operations

4 x Assembly
Test Script
execution

Final viva checklist

- Your circuit must work using the ROM based PCU. No other PCU's are allowed.
- Your circuit must implement at least 12 of the specified instruction. MAT MULT / Block Load / Block Store are mandatory instructions.
- Your circuit must execute 3 of the 4 shared test scripts as they are written without any changes or modification to the script or your circuit.
- Your circuit must meet the minimum architecture requirements specified earlier in this note.
- Mat Mult is not mandatory for the TA viva but is mandatory for the final viva

OpCodes

OPCodes

0000	Reserved
0001	• Add
0001. With Flag = 1	• Subtract
0010	• Debug
0011	• Mult
0100	• Store
0100. With Flag = 1	Store Over Flow
0101. Mem Swap	• From A to B
0110. Reg Swap	Swap source with destination

OPCodes

0111	Block Load
1000	Block Store
1001	Mat Mult
1010	Compare
1011	• And
1100	• XOR
1101	• NOT (A)
1110	• NOP
1110. With Flag = 1	• HALT

OPCodes

1111

MOVE A,B (A=Ram A | B=System Ram)

1111. With Flag=1

• MOVE A,B (A=Ram B | B=System Ram)

Instructions

19 Instructions in total

Instructions. A

Reserved. No operation has been assigned to this code

Add, A, B. Add B to A

Sub, A, B. Sub B from A

Mult, A, B. Multiply A and B

Store, C. Store the value in the output register in location C in System RAM

Store OverFlow, C. Store the overflow value in location C in System RAM

Mem Swap, A, B. Swap the value at location A in RAM_A, with value in location B in RAM_B

Instructions. B

Compare A, B. Compare A and B. Store 1 if A is less than B. Store 2 if A = B. Store 4 if A is greater than B. Store results in a specific location in System memory.

AND A, B. Logical Operation AND on A, B

XOR A, B. Logical Operation XOR on A, B

NOT A. Logical Not of Value A

NOP. No Operation.

HALT. Stop Execution

Instructions. C

Reg Swap, A, B. Swap value in register A, with value in register B

Block Load, A, B. Block load 4 values from Address A in RAM_A in Registers 1, 2, 3, 4. Block load 4 values from Address B in RAM_B in Registers 5, 6, 7, 8.

Block Store C. Block store 4 values from output registers in System RAM starting from memory location C.

Mat Mult. Multiply a 2 x 2 Matrix. 4 values x 4 values.

MOVE A,B. Move value in System Ram, at Address B to value in Ram A address A.

MOVE A,B (with flag). Move value in System Ram, Address B to value in Ram B address A.

Debug A. Delay every data cycle by the clock cycle specified in A. So Debug 3, will add a delay of 3 clock cycles to each data transfer between RAM and MBR, MBR and Registers, Registers and ALU, ALU and Output, Output and MBR, MBR and RAM

Boss Level Viva Extensions

To be released on 1st December 2024