

Supplemental SequenceDIV3.txt
SEQUENCE LISTING

<110> HO, CHIEN

TSAI, CHING-HSUAN

FANG, TSUEI-YUN

SHEN, TONG-JIAN

<120> LOW OXYGEN AFFINITY MUTANT HEMOGLOBINS

<130> 002547/20118/DIV3

<140> 09/986,666

<141> 2001-11-09

<160> 8

<170> PatentIn version 3.1

<210> 1

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> DESCRIPTION OF ARTIFICIAL SEQUENCE: Primer to introduce betaN108 Q mutation into plasmid pHE2

<400> 1
cgtctgctgg gtcaggtact agtttgcg 28

<210> 2

<211> 30

<212> DNA

<213> Artificial sequence

Supplemental SequenceDIV3.txt

<220>

<223> DESCRIPTION OF ARTIFICIAL SEQUENCE: Primer to introduce mutation
alphaD94A into plasmid pHE2

<400> 2

ctgcgttgtg ctccggtaaa cttcaaaactg

30

<210> 3

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> DESCRIPTION OF ARTIFICIAL SEQUENCE: Primer to introduce betaL105
W mutation into plasmid pHE2

<400> 3

ggaaaacttc cgatggctgg gtaacgtac

29

<210> 4

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> DESCRIPTION OF ARTIFICIAL SEQUENCE: Primer to introduce betaN108
Q mutation into plasmid pHE7

<400> 4

acagaccagt acttgtcccc ggagcct

27

<210> 5

<211> 1140

<212> DNA

<213> Homo sapiens

<400> 5

aatgagctg ttgacaatta atcatcggt cgtataatgt gtggatttgt gagcggataaa 60

caatttcaca caggaaacag aattcgagct cggtacccgg gctacatgga gattaactca 120

Supplemental SequenceDIV3.txt

atcttagaggg tattaataat gtatcgctta aataaggagg aataacatat ggtgctgtct	180
cctgccgaca agaccaacgt caaggccgcc tggggtaagg tcggcgcgca cgctggcgag	240
tatggtrgcgg aggcccctgga gaggatgttc ctgtcccttcc ccaccaccaa gacctacttc	300
ccgcacttcg atctgagcca cggctctgcc caggttaagg gccacggcaa gaagggtggcc	360
gacgcgctga ccaacgcccgt ggcgcacgtg gacgacatgc ccaacgcgct gtccgcctg	420
agcgacctgc acgcgcacaa gcttcgggtg gacccggtca acttcaagct cctaagccac	480
tgcctgctgg tgaccctggc cgccccacctc cccgcccagt tcacccctgc ggtgcacgcc	540
tccctggaca agttcctggc ttctgtgagc accgtgctga cctccaaata ccgttaaact	600
agagggattt aataatgtat cgcttaaata aggaggaata acatatggtg cacctgactc	660
ctgaggagaa gtctgcccgtt actgcctgt ggggcaaggt gaacgtggat gaagttggtg	720
gtgaggccct gggcaggctg ctgggtgtt acccttggac ccagaggttc tttagtgcct	780
ttggggatct gtccactcct gatgctgtta tggcaaccc taaggtgaag gctcatggca	840
agaaaagtgtc cggtgccttt agtgatggcc tggctcacct ggacaacctc aagggcacct	900
ttgccacact gagtgagctg cactgtgaca agctgcacgt ggatcctgag aacttcaggc	960
tcctgggaca agtactggtc tgtgtgtgg cccatcacct tggcaaaagaa ttcacccac	1020
cagtgcaggc tgccatatcg aaagtgggtt ctgggtgtgg taatgcctg gcccacaagt	1080
atcactaagc atgcacatgtt tttggcggat gagagaagat tttagcctg atacagatta	1140

<210> 6

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> DESCRIPTION OF ARTIFICIAL SEQUENCE: Primer to introduce betaL105
W mutation into plasmid pHE7

<400> 6

cctgagaact tcaggtggct aggcaacgtg ctggtc 36

<210> 7

<211> 1140

<212> DNA

<213> Homo sapiens

Supplemental SequenceDIV3.txt

<400> 7
aaatgagctg ttgacaatta atcatcggt cgtataatgt gtggattgt gagcggataa 60
caatttcaca caggaaacag aattcgagct cggtaaccgg gctacatgga gattaactca 120
atcttagaggg tattaataat gtatcgctt aataaggagg aataacatat ggtgctgtct 180
cctgccaca agaccaacgt caaggccgcc tgggttaagg tcggccgcga cgctggcgag 240
tatggtgcgg aggccctgga gaggatgttc ctgtccttcc ccaccaccaa gacctacttc 300
ccgcacttcg atctgagcca cggctctgcc caggttaagg gccacggcaa gaagggtggcc 360
gacgcgctga ccaacgcccgt ggccgcacgtg gacgacatgc ccaacgcgt gtccgcctg 420
agcgcacctgc acgcgcacaaa gttcgggtg gacccggta acttcaagct cctaagccac 480
tgtcctgctgg tgaccctggc cgccccaccc cccgcccagt tcacccctgc ggtgcacgcc 540
tccctggaca agttcctggc ttctgtgagc accgtgctga cctccaaata cctttaaact 600
agagggattt aataatgtat cgcttaata aggaggaata acatatggtg cacctgactc 660
ctgaggagaa gtctgccgtt actgcccgtt gggcaaggta gacgtggat gaagttggtg 720
gtgaggccct gggcaggctg ctgggtgtt acccttggac ccagaggttc tttgagtcct 780
ttggggatct gtccactcct gatgctgtt aaggtaaagggtaaaggtgacatggca 840
agaaagtgtt cggcgcctt agtgtatggcc tggctcacct ggacaaccc aagggcacct 900
ttgccacact gagttagctg cactgtgaca agctgcacgt ggatcctgag aacttcaggt 960
ggctaggcaa cgtgctggc tgggtgttgg cccatcacct tggcaaaagaa ttcacccac 1020
cagtgcaggc tgcctatcag aaagtggggtaatggcttggc taatggctg gcccacaagt 1080
atcactaagc atgcacatgtt tttggcggtt gagaagat tttcagcctg atacagatta 1140

<210> 8

<211> 146

<212> PRT

<213> Homo sapiens

<400> 8

Val	His	Leu	Thr	Pro	Glu	Glu	Lys	Ser	Ala	Trp	Thr	Ala	Leu	Trp	Gly
1				5			10				15				

Lys	Val	Asn	Val	Asp	Glu	Val	Gly	Gly	Glu	Ala	Leu	Gly	Arg	Leu	Leu
					20		25					30			

Val	Val	Tyr	Pro	Trp	Thr	Gln	Arg	Phe	Phe	Glu	Ser	Phe	Gly	Asp	Leu
					35		40				45				

Supplemental SequenceDIV3.txt

Ser Thr Pro Asp Ala Val Met Gly Asn Pro Lys Val Lys Ala His Gly
50 55 60

Lys Lys Val Leu Gly Ala Phe Ser Asp Gly Leu Ala His Leu Asp Asn
65 70 75 80

Leu Lys Gly Thr Phe Ala Thr Leu Ser Glu Leu His Cys Asp Lys Leu
85 90 95

His Val Asp Pro Glu Asn Phe Arg Leu Leu Gly Asn Val Leu Val Cys
100 105 110

Val Leu Ala His His Phe Gly Lys Glu Phe Thr Pro Pro Val Gln Ala
115 120 125

Ala Tyr Gln Lys Val Val Ala Gly Val Ala Asn Ala Leu Ala His Lys
130 135 140

Tyr His
145