Теория вероятностей. Лекция шестая Скалярные характеристики случайных величин

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

09.10.2018

Напомним про случайные величины

В заданном измеримом пространстве (Ω, \mathcal{F}) отображение $\xi: \Omega \to \mathbb{R}$ называется дискретной случайной величиной, если оно принимает не более чем счетное число значений x_1, \dots, x_i, \dots , и при этом для всякого числа x_i выполнено

$$H_i = \{ \omega \in \Omega \, | \, \xi(\omega) = x_i \} \in \mathcal{F}.$$

Пусть вероятность $\mathbb P$ также задана. Теперь случайная величина ξ создает свое распределение, дискретное распределение, правилом:

x_1	x_2	x_3	x_4	
$p_1 \stackrel{\triangle}{=} \mathbb{P}(H_1)$	$p_2 \stackrel{\triangle}{=} \mathbb{P}(H_2)$	$p_3 \stackrel{\triangle}{=} \mathbb{P}(H_3)$	$p_4 \stackrel{\triangle}{=} \mathbb{P}(H_4)$	

Упрощение: обычно считается, что все p_i положительны.

Что будет дальше?

- распределение случайных величин
- медиана, математическое ожидание
- независимость случайных величин
- производящие функции
- дисперсия, ковариация и корреляция
- совместное распределение случайных величин, маргинальные распределения
- условное математическое ожидание

Скалярные характеристики дискретной случайной величины: мода

Пусть случайная величина ξ дает дискретное распределение

Модой дискретной случайной величины называют те значения x_i , вероятности которых не меньше всех остальных p_i .

Подумать: у дискретной случайной величины мода всегда есть $\overline{\text{(почему?)}}$, но она не обязана быть единственной.

Пример 1. У биномиального распределения любая мода — целое число в отрезке [np-q, np+p].

Скалярные характеристики дискретной случайной величины: медиана

Медианой случайной величины ξ называют любое число μ , для которого $\mathbb{P}(\xi \le \mu) \ge 1/2$ и $\mathbb{P}(\xi \ge \mu) \ge 1/2$.

Подумать: у дискретной случайной величины медиана всегда есть (почему?), более того, она или единственна, или их континуум. Подумать: какие числа являются медианами для распределения Бернулли.

Скалярные характеристики случайной величины: квантили

Квантилью порядка $p, p \in (0,1)$, случайной величины ξ называют любое число x, для которого $\mathbb{P}(\xi \le x) \ge p$ и $\mathbb{P}(\xi \ge x) \ge 1 - p$.

<u>Подумать</u>: квантиль любого порядка всегда существует, но не всегда однозначно восстанавливается.

Частные случаи: квантиль для p=1/2 — медиана, квантиль для p=1/4 и для p=3/4 — первая и третья квартили, еще есть децили и перцентили.

Математическое ожидание

Для всякой дискретной случайной величины ξ значение выражения

$$\mathbb{E}\xi \stackrel{\triangle}{=} \sum_{i \in \mathbb{N}} p_i x_i$$

назовем математическим ожиданием случайной величины ξ . Будем говорить, что "математическое ожидание существует", если значение корректно определено и конечно.

Терминологическое замечание 1. Достаточно часто также используют обозначение $\mathbf{M}\xi$.

Терминологическое замечание 2. Иногда в книжках допускают значение матожидания, равное $+\infty$.

Подумать: приведите пример дискретной случайной величины, не имеющей математического ожидания.

Посчитать матожидание: индикаторные функции

Рассмотрим произвольное событие $A \in \mathcal{F}$.

 $\sf Индикаторной$ функцией события A называют случайную величину

$$\omega \mapsto 1_A(\omega) \stackrel{\triangle}{=} \left\{ \begin{array}{ll} 1, & \text{если } \omega \in A; \\ 0, & \text{если } \omega \in \Omega \setminus A. \end{array} \right.$$

[С-но]

$$\mathbb{E}1_A = \mathbb{P}(A) \qquad \forall A \in \mathcal{F}.$$

Подумать: всякая дискретная случайная величина является взвешенной суммой не более чем счетного числа индикаторных функций:

$$\xi(\omega) = \sum_{i=1}^{\infty} x_i 1_{H_i}(\omega) \quad \forall \omega \in \Omega.$$

Посчитать матожидание напрямую: распределение Пуассона

Пример 2. Для равномерного дискретного распределения $\xi \in U\{a,b\}$ выполнено

$$\mathbb{E}\xi = \frac{b+a}{2}.$$

Пример 3. Для распределения Пуассона $\xi \in Pois(\lambda)$ выполнено

$$\mathbb{E}\xi = \sum_{k \in \mathbb{N}} k e^{-\lambda} \frac{\lambda^k}{k!}$$

$$= \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = \lambda.$$

Посчитать матожидание через производные: геометрическое распределение

Пример 4. Пусть $\xi \in Geom^0(\lambda)$. Тогда $\mathbb{E}\xi = q/p$ (или $\mathbb{E}\xi = 1/p$ для $\xi \in Geom^1(\lambda)$). Действительно,

$$\mathbb{E}\xi = \sum_{k \in \mathbb{N}} kq^k p = pq \sum_{k=1}^{\infty} kq^{k-1} = pq \sum_{k=1}^{\infty} \frac{dq^k}{dq} = pq \frac{d}{dq} \left(\sum_{k=1}^{\infty} q^k \right)$$
$$= pq \frac{d}{dq} \left(\frac{q}{1-q} \right) = pq \frac{d}{dq} \left(\frac{1}{1-q} - 1 \right) = pq \frac{1}{(1-q)^2} = \frac{q}{p}.$$

Посчитать матожидание "по частям": геометрическое распределение

Теорема 1 [с-но] Пусть ξ принимает лишь целые неотрицательные значения. Тогда

$$\mathbb{E}\xi = \sum_{k\in\mathbb{N}} \mathbb{P}(\xi \ge k).$$

Пример 4'. Пусть $\xi \in Geom^0(\lambda)$. Тогда $\mathbb{E}\xi = q/p$ (или $\mathbb{E}\xi = 1/p$ для $\xi \in Geom^1(\lambda)$)

$$\mathbb{E}\xi = \sum_{k \in \mathbb{N}} \mathbb{P}(\xi \ge k) = \sum_{k \in \mathbb{N}} q^k$$
$$= q + q^2 + \dots = \frac{q}{1 - q} = \frac{q}{p}.$$

Свойства матожидания, І: [с-но]

- $0^0 \mathbb{E}1_A = \mathbb{P}(A);$
- 1^0 $\mathbb{E}\xi \ge 0$, если $\xi \ge 0$ для всех $\omega \in \Omega$, и $\mathbb{E}\xi$ существует;
- 2^0 $\mathbb{E}\xi_1 \ge \mathbb{E}\xi_2$, если $\xi_1(\omega) \ge \xi_2(\omega)$ для всех $\omega \in \Omega$, и все матожидания существуют;
- $3^0 \ \mathbb{E} c = c$ для случайной величины, тождественно равной константе $c \in \mathbb{R}$;
- $4^0 \ \mathbb{E}(c\xi) = c\mathbb{E}\xi$ для любого $c \in \mathbb{R}$; в случае $c \neq 0$, если существует одно, то имеется и другое;
- 5^0 $\mathbb{E}\xi_1 + \mathbb{E}\xi_2 = \mathbb{E}(\xi_1 + \xi_2)$; при этом, если существуют два из них, то существует и третье;
- 6^0 $a\mathbb{E}\xi_1+b\mathbb{E}\xi_2=\mathbb{E}(a\xi_1+b\xi_2)$ при любых $a,b\in\mathbb{R}$; в случае $ab\neq 0$, если существуют два из них, то существует и третье;

Свойства матожидания, произведение

 $7^0~\mathbb{E}(\xi\eta) = \mathbb{E}\xi\mathbb{E}\eta$ для независимых случайных величин ξ,η ; при этом, если матожидания существуют справа, то и слева оно тоже существует.

Подумать: верно ли аналогичное свойство для произведения трех и более дискретных случайных величин?

Дискретные случайные величины $\xi, \eta: \Omega \to \mathbb{R}$ назовем независимыми, если $\mathbb{P}(\xi=x,\eta=y)=\mathbb{P}(\xi=x)\mathbb{P}(\eta=y)$ для всех $x,y\in\mathbb{R}$.

Как и для набора событий, для набора случайных величин вводятся понятия "независимые попарно", "независимые в совокупности".

Свойства матожидания, произведение

 $7^0 \ \mathbb{E}(\xi\eta) = \mathbb{E}\xi\mathbb{E}\eta$ для независимых случайных величин ξ,η ; при этом, если матожидания существуют справа, то и слева оно тоже существует.

Доказательство. Можно положить $\xi = \sum_{i=1}^{\infty} x_i 1_{H_i}$ и $\eta = \sum_{i=1}^{\infty} y_j 1_{K_j}$ для некоторых наборов x_i , y_j , $H_i \left(\bigsqcup_{i=1}^{\infty} H_i = \Omega \right)$ и K_j , $\left(\bigsqcup_{j=1}^{\infty} K_j = \Omega \right)$. Отсюда,

$$\mathbb{E}\xi\mathbb{E}\eta = \left(\sum_{i=1}^{\infty} x_{i}\mathbb{P}(H_{i})\right)\left(\sum_{j=1}^{\infty} y_{j}\mathbb{P}(K_{j})\right) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_{i}y_{j}\mathbb{P}(K_{j})\mathbb{P}(H_{i})$$
$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_{i}y_{j}\mathbb{P}(K_{j} \cap H_{i}) = \mathbb{E}\left(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_{i}y_{j}\mathbb{P}(K_{j} \cap H_{i})\right) = \mathbb{E}(\xi\eta).$$

<u>Подумать</u>: где использовалось свойство независимости, почему можно менять порядок суммирования?

Подумать: как доказать последнее равенство выкладки?

Свойства матожидания, существование: [с-но]

- 8^0 $\mathbb{E}\xi$ существует, и $|\mathbb{E}\xi| \leq \mathbb{E}|\xi|$, если $\mathbb{E}|\xi|$ существует;
- 9^0 $\mathbb{E}\xi$ существует, если ξ ограничена или принимает конечное число значений;
- $10^0~\mathbb{E}|\xi\eta|$ существует, если $\mathbb{E}\xi^2$ и $\mathbb{E}\eta^2$ существуют;
- 11^0 $\mathbb{E}|\xi|, \mathbb{E}\xi$ существуют, если $\mathbb{E}\xi^2$ существует;
- $12^0 \ g(\mathbb{E}\xi) \leq \mathbb{E}g(\xi)$ для любой выпуклой (вниз) скалярной функции g; при этом, если существует матожидание справа, то и слева тоже существует; [доказательство сводится или к неравенству Йенсена, или замечанию, что надграфик выпуклой функции тоже выпуклый]
- 13^0 [1 балл] $\mathbb{E}(\sum_{i=1}^\infty \xi_i)$ существует и равно $\sum_{i=1}^\infty \mathbb{E} \xi_i$, если конечен ряд $\sum_{i=1}^\infty \mathbb{E} |\xi_i|$.

Функции потерь для медианы и матожидания

Задача [0,4 балла] Показать, что для любой дискретной случайной величины ξ и любой её медианы μ выполнено

$$\inf_{a \in \mathbb{R}} \mathbb{E}|\xi - a| = \mathbb{E}|\xi - \mu|.$$

Задача [0,3 балла] Показать, что для любой дискретной случайной величины ξ , для которой существует $\mathbb{E}(\xi^2)$, выполнено

$$\inf_{a \in \mathbb{R}} \mathbb{E}|\xi - a|^2 = \mathbb{E}(\xi - \mathbb{E}\xi)^2.$$

Задача [0,8 баллов] Показать, что для любой дискретной случайной величины ξ ($\mathbb{E}(\xi^2) < +\infty$) и любой её медианы μ выполнено

$$(\mathbb{E}\xi - \mu)^2 \leq \mathbb{E}(\xi - \mathbb{E}\xi)^2$$
.

Моменты случайной величины

Моментом k-го порядка $(k \in \mathbb{N})$ случайной величины ξ называют значение выражения

 $\mathbb{E}\xi^k$.

Для любого r>0 абсолютным моментом r-го порядка случайной величины ξ называют значение выражения

 $\mathbb{E}|\xi|^r$,

а центральным моментом r-го порядка случайной величины ξ называют значение выражения

$$\mathbb{E}|\xi-\mathbb{E}\xi|^r.$$

Дисперсия

Дисперсией называют центральный момент второго порядка

$$\mathbb{D}\xi = \mathbb{E}\Big((\xi - \mathbb{E}\xi)^2\Big).$$

Корень из нее называют среднеквадратичным отклонением:

$$\sigma = \sqrt{\mathbb{D}\xi}.$$

Грубо говоря, дисперсия охарактеризует разбросанность распределения, среднеквадратичное отклонение — типичный размах вокруг матожидания.

Терминологическое замечание 3. В зарубежных книжках обычно дисперсию обозначают $Var\,\xi$, встречалось и обозначение σ^2 .

Что будет дальше?

- распределение случайных величин
- медиана, математическое ожидание
- независимость случайных величин
- производящие функции
- дисперсия, ковариация и корреляция
- совместное распределение случайных величин, маргинальные распределения
- условное математическое ожидание

На пять минут...

- 1. Сопоставьте светофору цепь Маркова. Найдите соответствующее стационарное распределение.
- 2. Даны две случайные величины, распределенные по Бернулли. Чему может быть равно матожидание их произведения?
- 3. Напишите отображение $1_A \# \mathbb{P}$ для события A.