

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Μάθημα: "Ρομποτική Ι: Ανάλυση, Έλεγχος, Εργαστήριο" (Ακαδημαϊκό Έτος 2021-22)

2^η ΣΕΙΡΑ ΑΝΑΛΥΤΙΚΩΝ ΑΣΚΗΣΕΩΝ (Course Assignment #2)

Άσκηση 2.1 (Διαφορική κινηματική ανάλυση – Υπολογισμός Ιακωβιανής μήτρας – Ιδιόμορφες διατάξεις)

Έστω ρομποτική κινηματική αλυσίδα τριών βαθμών ελευθερίας (q_1, q_2, q_3) της οποίας η κινηματική δομή περιγράφεται μέσω των ακόλουθων μητρώων μετασχηματισμού συντεταγμένων:

$$A_{\mathbf{i}}^{0}(q_{\mathbf{i}}) = \begin{bmatrix} c_{\mathbf{i}} & 0 & s_{\mathbf{i}} & l_{\mathbf{0}} \\ 0 & 1 & 0 & l_{\mathbf{i}} \\ -s_{\mathbf{i}} & 0 & c_{\mathbf{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{\mathbf{i}}^{1}(q_{2}) = \begin{bmatrix} c_{2} & -s_{2} & 0 & l_{2}c_{2} \\ s_{2} & c_{2} & 0 & l_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \kappa\alpha\mathbf{i} \quad A_{\mathbf{i}}^{2}(q_{3}) = \begin{bmatrix} c_{3} & -s_{3} & 0 & -l_{3}s_{3} \\ s_{3} & c_{3} & 0 & l_{3}c_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \kappa\alpha\mathbf{i} \quad A_{\mathbf{i}}^{2}(q_{3}) = \begin{bmatrix} c_{3} & -s_{3} & 0 & -l_{3}s_{3} \\ s_{3} & c_{3} & 0 & l_{3}c_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \kappa\alpha\mathbf{i} \quad A_{\mathbf{i}}^{2}(q_{3}) = \begin{bmatrix} c_{3} & -s_{3} & 0 & -l_{3}s_{3} \\ s_{3} & c_{3} & 0 & l_{3}c_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- α) Να προσδιοριστεί (με εφαρμογή της γεωμετρικής μεθόδου) η *Ιακωβιανή μήτρα* $J(q_1,q_2,q_3)$ του διαφορικού κινηματικού μοντέλου του ρομποτικού αυτού μηχανισμού.
- β) Να εξετασθεί πότε ο μηχανισμός εμφανίζει *ιδιόμορφες διατάξεις* ως προς τη γραμμική ταχύτητα (v_E) του τελικού στοιχείου δράσης. Να δοθεί γεωμετρική ερμηνεία των ανωτέρω ιδιόμορφων διατάξεων του μηχανισμού.

Άσκηση 2.2 (Μήτρα D-H – Υπολογισμός Ιακωβιανής μήτρας – Ιδιόμορφες διατάξεις)

Έστω ρομποτική κινηματική αλυσίδα τριών βαθμών ελευθερίας (q_1, q_2, q_3) της οποίας η κινηματική δομή περιγράφεται από τον ακόλουθο πίνακα παραμέτρων D-H (όπου l_1, l_2, l_3 : σταθερά μήκη συνδέσμων):

i	$d_{ m i}$	$ heta_{ m i}$	$a_{\rm i}$	$lpha_{ m i}$
1	l_1	$q_1 + \pi/2$	0	$-\pi/2$
2	0	$q_2 - \pi/2$	0	$-\pi/2$
3	l_2	$q_3 + \pi/2$	0	$+\pi/2$

- α) Να προσδιοριστεί η Ιακωβιανή μήτρα $J(q_1,q_2,q_3)$ του διαφορικού κινηματικού μοντέλου του ρομποτικού βραχίονα.
- β) Να εξετασθεί πότε ο μηχανισμός εμφανίζει *ιδιόμορφες διατάξεις* ως προς τη *γωνιακή ταχύτητα* (ω) του τελικού στοιχείου δράσης, και να δοθεί γεωμετρική ερμηνεία των διατάξεων αυτών.

Άσκηση 2.3 (Ρομποτικό δυναμικό μοντέλο)

Έστω ρομποτικό σύστημα (κινούμενος ρομποτικός βραχίονας) δύο βαθμών ελευθερίας, που εικονίζεται στο ακόλουθο Σχήμα 1, με h και l_1 σταθερά μήκη συνδέσμων και (q_1,q_2) γενικευμένες μεταβλητές μετατοπίσεως $(q_1$ γραμμική μετατόπιση της κινούμενης βάσης και q_2 γωνιακή μετατόπιση στη στροφική άρθρωση). Υποθέτουμε ότι η κινούμενη ρομποτική βάση έχει μάζα M. Υποθέτουμε επίσης την ύπαρξη σημειακής μάζας m στο σημείο E (όπως εικονίζεται στο Σχήμα 1) ενώ θεωρούμε τους συνδέσμους κατά τα λοιπά αβαρείς. Υποθέτουμε επίσης ότι ασκείται στο τελικό εργαλείο δράσης σταθερή εξωτερική δύναμη F_x (κατά τη δ/νση του x_0 , όπως εικονίζεται στο σχήμα), καθώς και ότι η διεύθυνση επίδρασης της βαρύτητας g είναι αυτή που σημειώνεται στο σχήμα.

Να γραφούν οι δυναμικές εξισώσεις κίνησης του ρομποτικού μηχανισμού, χρησιμοποιώντας μεθοδολογία Lagrange.

Σχήμα 1: Ρομποτικό σύστημα με 2 β.ε. (κινούμενου ρομποτικού βραχίονα)