Exploratory Data Analysis on Haberman's survival dataset

Reference: https://www.kaggle.com/gilsousa/habermans-survival-data-set

Information on dataset

The dataset contains cases from a study that was conducted between 1958 and 1970 at the Uni versity of Chicago's Billings Hospital on the survival of patients who had undergone surger y for breast cancer.

Objective:

To understand survival status of cancer patients for given data in the survival dataset

Number of data points: 304 Number of Attributs: 4

Attribute Information:

1.) Age of Patient at time of operation(Numerical) 2.) Patient's year of operation(year-1900, numerical) 3.) Number of positive auxillary nodes detected(Numerical) 4.) Survival Status (class attribute)1 = patient survived 5 years or longer 2 = patient died within 5 years

CODE:

```
In [31]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#ignoring warnings
import warnings
warnings.filterwarnings('ignore')

#loading dataset in pandas
column = ['p_age','op_year','auxillary_nodes','survival_status']
data = pd.read_csv('haberman.csv', names = column)

#getting size of dataset
print(data.shape)
```

(306, 4)

```
In [3]:
```

```
print("data points in class:")
data['survival_status'].value_counts()
```

data points in class:

```
Out[3]:
1    225
2    81
Name: survival_status, dtype: int64
```

Obervation: a) dataset contains two classes 1 corresponds to patient survived 5 years or longer after the operation and 2 corresponds to patient died within 5 years of operation b) 1 has the data of 225 patients that survived after 5 years and 2 has the data of 81 patients that died within 5 years after operation

In [4]:

```
#printing top 5 values of dataset
print(data.head())
```

	p_age	op_year	auxillary_nodes	survival_status
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1

In [5]:

```
#printing description of dataset
print(data.describe())
```

	p_age	op_year	auxillary_nodes	survival_status
count	306.000000	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144	1.264706
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.00000	1.000000
25%	44.000000	60.000000	0.00000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

In [32]:

```
#classification of data based on survival and death status
data_survived=data.loc[data.survival_status==1]
data_died=data.loc[data.survival_status==2]
data_survived.describe()
```

Out[32]:

	p_age	op_year	auxillary_nodes	survival_status
count	225.000000	225.000000	225.000000	225.0
mean	52.017778	62.862222	2.791111	1.0
std	11.012154	3.222915	5.870318	0.0
min	30.000000	58.000000	0.000000	1.0
25%	43.000000	60.000000	0.000000	1.0
50%	52.000000	63.000000	0.000000	1.0
75%	60.000000	66.000000	3.000000	1.0
max	77.000000	69.000000	46.000000	1.0

In [27]:

```
data_died.describe()
```

Out[27]:

	p_age	op_year	auxillary_nodes	survival_status
count	81.000000	81.000000	81.000000	81.0
mean	53.679012	62.827160	7.456790	2.0
std	10.167137	3.342118	9.185654	0.0
min	34.000000	58.000000	0.000000	2.0
25%	46.000000	59.000000	1.000000	2.0
50%	53.000000	63.000000	4.000000	2.0
75%	61 NNNNNN	65 NNNNNN	11 000000	2 0

1070	01.000000	00.00000	11.000000	2.0
	D age	ob vear	auxiliary noues	Survivai Status
may			รว กกกกักก	20 -
max	00.00000	00.000000	02.00000	2.0

Obervation: 1) according to the above classification the survival chances of patients are higher who has positive auxillary nodes less than 3 and the chances of death are higher whose positive auxillary nodes are greater than 3.

Univariate Analysis on the given dataset:

Plotting PDF on given dataset(AGE)

In [28]:

```
sns.FacetGrid(data, hue='survival_status', size=6).map(sns.distplot, 'p_age').add_legend();
plt.title('PDF for p_age')
plt.show();
```


Observations: Patients with age <20 has higher chances of survival than patients with age >42 to <55 and age >80 has no chances of survival

Plotting PDF on given dataset(Year of operation)

In [9]:

```
sns.FacetGrid(data, hue='survival_status', size=6).map(sns.distplot, 'op_year').add_legend();
plt.title('PDF for op_year');
plt.show();
```


Obervations: patients operated during year 1960-62 has more chances of survival rather than patients operated in year 1963-65

Plotting PDF on given dataset(auxillary nodes)

In [11]:

```
sns.FacetGrid(data, hue='survival_status', size=6).map(sns.distplot, 'auxillary_nodes').add_legend(
);
plt.title('PDF for auxillary_nodes')
plt.show();
```


Obervations: Patients within range of auxillary nodes -2 to 3 has highest chances of survival, rather than patients in range >30 and <0

Plotting PDF,CDF on given dataset(AGE)

In [16]:

```
#pdf,cdf plot for survived patients(age)
counts, bin edges = np.histogram(data survived.p age, bins=10, density = True)
pdf = counts/(sum(counts))
print('survived patients',pdf)
print(bin edges)
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf, label='PDF of patients survived (age)')
plt.plot(bin edges[1:], cdf, label='CDF of patients survived(age)')
#pdf,cdf plot for dead patients(age)
counts, bin edges = np.histogram(data died.p age, bins=10, density=True)
pdf= counts/(sum(counts))
print('dead patients',pdf)
print(bin edges)
cdf = np.cumsum(pdf)
plt.plot(bin edges[1:],pdf,label='PDF of patients dead(age)')
plt.plot(bin edges[1:],cdf,label='CDF of patients dead(age)')
```

```
plt.legend()
plt.grid()
plt.title('PDF and CDF')
plt.xlabel('patients age')
plt.show()
```

```
survived patients [0.05333333 0.10666667 0.12444444 0.09333333 0.16444444 0.16444444 0.09333333 0.11111111 0.06222222 0.02666667] [30. 34.7 39.4 44.1 48.8 53.5 58.2 62.9 67.6 72.3 77. ] dead patients [0.03703704 0.12345679 0.19753086 0.19753086 0.13580247 0.12345679 0.09876543 0.04938272 0.02469136 0.01234568] [34. 38.9 43.8 48.7 53.6 58.5 63.4 68.3 73.2 78.1 83. ]
```


Plotting PDF,CDF on given dataset(OPERATION YEAR)

In [18]:

```
#pdf,cdf plot for survived patients(operation year)
counts, bin edges = np.histogram(data survived.op year, bins=10, density = True)
pdf = counts/(sum(counts))
print('survived patients',pdf)
print(bin edges)
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf, label='PDF of patients survived (operation year)')
plt.plot(bin edges[1:], cdf, label='CDF of patients survived(operation year)')
#pdf,cdf plot for dead patients(operation year)
counts, bin edges = np.histogram(data died.op year, bins=10, density=True)
pdf= counts/(sum(counts))
print('dead patients',pdf)
print(bin edges)
cdf = np.cumsum(pdf)
plt.plot(bin edges[1:],pdf,label='PDF of patients dead(operation year)')
plt.plot(bin_edges[1:],cdf,label='CDF of patients dead(operation year)')
plt.legend()
plt.grid()
plt.title('PDF and CDF')
plt.xlabel('operation year')
plt.show()
```

survived patients [0.18666667 0.10666667 0.10222222 0.07111111 0.09777778 0.10222222 0.06666667 0.09777778 0.09333333 0.07555556] [58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69.] dead patients [0.25925926 0.04938272 0.03703704 0.08641975 0.09876543 0.16049383 0.07407407 0.04938272 0.08641975] [58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69.]

In [19]:

```
#pdf,cdf plot for survived patients(auxillary nodes)
counts, bin_edges = np.histogram(data_survived.auxillary_nodes, bins=10, density = True)
pdf = counts/(sum(counts))
print('survived patients',pdf)
print(bin_edges)
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf, label='PDF of patients survived (auxillary nodes)')
plt.plot(bin_edges[1:], cdf, label='CDF of patients survived(auxillary nodes)')
#pdf,cdf plot for dead patients(auxillary nodes)
counts, bin edges = np.histogram(data died.p age, bins=10, density=True)
pdf= counts/(sum(counts))
print('dead patients',pdf)
print(bin edges)
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf,label='PDF of patients dead(auxillary nodes)')
plt.plot(bin edges[1:],cdf,label='CDF of patients dead(auxillary nodes)')
plt.legend()
plt.grid()
plt.title('PDF and CDF')
plt.xlabel('auxillary nodes')
plt.show()
```

```
survived patients [0.83555556 0.08 0.02222222 0.02666667 0.01777778 0.00444444 0.00888889 0. 0. 0.00444444] [0. 4.6 9.2 13.8 18.4 23. 27.6 32.2 36.8 41.4 46.] dead patients [0.03703704 0.12345679 0.19753086 0.19753086 0.13580247 0.12345679 0.09876543 0.04938272 0.02469136 0.01234568] [34. 38.9 43.8 48.7 53.6 58.5 63.4 68.3 73.2 78.1 83.]
```


Box plot analysis

In [16]:

```
#box plot using patients age
sns.boxplot(x='survival_status', y='p_age', data=data)
plt.title('box plot for p_age');
plt.grid();
plt.show()
```

```
box plot for p_age
```


Observation: patients below age 30 has survived >5 years rather than patients above age 80

In [17]:

```
#box plot using operation year
sns.boxplot(x='survival_status', y='op_year',data=data)
plt.title('box plot for op_year');
plt.grid()
plt.show()
```


Observation: maximum no of patients survived who were operated in year 1960-1966. 75% of patients survived >5 years who were operated in year 1966 rather than patients in 1965

In [18]:

```
#box plot using auxillary nodes
sns.boxplot(x='survival_status', y='auxillary_nodes', data=data)
plt.title('box plot for auxillary_nodes')
plt.grid()
plt.show()
```


observation: Patients with auxillary nodes <3 has survived >5years while patients with auxillary node >3

violin plots

In [21]:

```
sns.set_style('whitegrid')
sns.violinplot(x='survival_status',y='p_age',data=data, size=5)
plt.title('violin plot for p_age')
plt.show()
sns.violinplot(x='survival_status',y='op_year',data=data, size=5)
plt.title('violin plot for op_year')
plt.show()
sns.violinplot(x='survival_status',y='auxillary_nodes',data=data, size=5)
plt.title('violin plot for auxillary_nodes')
plt.show()
```


Observations: 1) patients with age more than age >80 has died <5 year after operation. 2) 75% patients has survived >5 year operated in year 1960-66 3) with auxillary nodes >3 the sruvival rate is very less

Bivariate analysis

In [25]:

```
#2-D scatter plot with color-coding
sns.set_style('whitegrid')
sns.FacetGrid(data,
hue='survival_status',size=4).map(plt.scatter,'p_age','op_year','auxillary_nodes').add_legend();
plt.title('2D scatter plot with color coding')
plt.show()
```


pair plots

In [33]:

```
plt.close();
data['survival_status'] = data['survival_status'].apply(lambda x: 'survived' if x == 1 else 'dead')
sns.set_style("whitegrid")
sns.pairplot(data, hue="survival_status", size=3)
plt.show()
```


p_age op_year auxillary_nodes

Observation: patients age <35 with any auxillary node survived more than 5years where patients with age >75 survived <5 years irrespective of any auxillary nodes . patients age and aurxillary nodes cannot define the survival status of patients

Conclusion

- ~ patients age and auxillary nodes cannot define the survival status.
- ~ patients with age <40 are more likely to survive.
- ~ patients with auxillary nodes >4 are likely to be dead in <5 years.