Statistique mathématique: TD4

Exercice 1. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de loi uniforme sur [0,20]. Les X_i modélisent une note aléatoire obtenue à un examen de probabilité. Soit $M_n = \max_{1 \le i \le n} X_i$ la plus haute valeur obtenue.

- 1. Montrer que, pour tout $w \in \Omega$, la suite $(M_n(w))_{n \in \mathbb{N}}$ est croissante.
- 2. Montrer que, pour tout $0 < \varepsilon < 1$, l'ensemble

$$A_{\varepsilon} = \{ w \in \Omega, \forall n \in \mathbb{N}, M_n(w) \le 20 - \varepsilon \}$$

est négligeable.

3. En déduire que pour tout $\varepsilon > 0$, l'ensemble

$$B_{\varepsilon} = \{ w \in \Omega, \exists N \in \mathbb{N}, \forall n \ge N, M_n(w) > 20 - \varepsilon \}$$

est presque-sûr.

4. En se rappelant qu'une intersection dénombrable d'ensembles presque-sûrs est presque sûre, montrer que la suite $(M_n)_{n\in\mathbb{N}}$ converge presque sûrement vers 20.

Exercice 2. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires à valeurs dans \mathbb{R}^+ , indépendantes, dont la loi a une densité f sur \mathbb{R}^+ . On suppose de plus de f ne s'annule pas.

- 1. Montrer que, pour tout $w \in \Omega$, la suite $(M_n(w))_{n \in \mathbb{N}}$ est croissante.
- 2. Montrer que, pour tout M > 0, l'ensemble

$$A_M = \{ w \in \Omega, \forall n \in \mathbb{N}, M_n(w) \le M \}$$

est négligeable.

3. En déduire que pour tout M > 0, l'ensemble

$$B_M = \{ w \in \Omega, \exists N \in \mathbb{N}, \forall n \ge N, M_n(w) > M \}$$

est presque-sûr.

4. En se rappelant qu'une intersection dénombrable d'ensembles presque-sûrs est presque sûre, montrer que la suite $(M_n)_{n\in\mathbb{N}}$ diverge presque sûrement vers $+\infty$.

Exercice 3. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables indépendantes, satisfaisant

$$\mathbb{P}(X_1 = 1) = p > 1/2 \ et \ \mathbb{P}(X_1 = -1) = 1 - p.$$

On pose $S_n = \sum_{i=1}^n X_i$. Les X_i modélisent les pas d'un marcheur, qui avancerait ou reculerait d'un pas à chaque seconde, de manière aléatoire et indépendante. La variable aléatoire S_n modélise alors la distance du marcheur à 0, son point d'origine.

Montrez que la suite de variables aléatoires S_n diverge presque sûrement vers $+\infty$, c'est à dire

$$\mathbb{P}(\forall M > 0, \exists N \in \mathbb{N}, \forall n \geq N, S_n \geq M) = 1.$$

Exercice 4. Soient $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites de variables aléatoires définies sur le même espace $(\Omega, \mathcal{F}, \mathbb{P})$, qui convergent presque sûrement vers deux variables X et Y. Montrer que $(X_n + Y_n)_{n\in\mathbb{N}}$ converge presque sûrement vers X + Y.

Exercice 5. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires qui converge presque-sûrement vers une variable aléatoire X, et soit f une fonction continue sur \mathbb{R} . Montrer que la suite de variables aléatoires $(f(X_n))_{n\in\mathbb{N}}$ converge presque sûrement vers f(X).

Exercice 6. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires convergeant presque sûrement vers une variable aléatoire X, et soit $(v_n)_{n\in\mathbb{N}}$ une suite de réels qui converge vers $v\in\mathbb{R}$. Montrer que

$$v_n X_n \xrightarrow[n \to \infty]{p.s.} vX.$$

Exercice 7 (Déjà fait en cours mais trop important pour ne pas le refaire). Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires i.i.d. admettant des moments de tous ordres. C'est à dire que pour tout $p\in\mathbb{N}$, $\mathbb{E}(|X_1|^p)<+\infty$.

- 1. Soit $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$. Que peut-on dire de $(\overline{X_n})_{n \ge 1}$?
- 2. Soit $M_n = \frac{1}{n} \sum_{i=1}^n X_i^p$. Que peut-on dire de $(M_n)_{n \geq 1}$?
- 3. Soit $V_n = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X_n})^2$. Que peut-on dire de $(V_n)_{n \ge 1}$?
- 4. Soit $t \in \mathbb{R}$, et $F_n(t) = \frac{1}{n} \sum_{i=1}^n 1_{X_i \le t}$. Que peut-on dire, pour $t \in \mathbb{R}$ fixé, de la suite $(F_n(t))_{n \in \mathbb{N}}$?
- 5. Soit $C_n = \frac{1}{n} \sum_{i=1}^n \cos(X_i)$. Que peut-on dire de $(C_n)_{n \geq 1}$?
- 6. Soit $W_n = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X_n})^p$. Que peut-on dire de $(W_n)_{n \ge 1}$?

Exercice 8. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de loi $\mathcal{N}(m,1)$ où la moyenne m est inconnue.

- 1. Donner un estimateur fortement convergent de m.
- 2. Quelle est la loi de $S_n = \frac{1}{n} \sum_{i=1}^n X_i$?
- 3. Pour une variable Y de loi $\mathcal{N}(0,1)$, donner un intervalle de la forme [-a,a] tel que $\mathbb{P}(Y \in a) \geq 0.95$.
- 4. En déduire un intervalle de confiance de niveau 0.95 pour m.
- 5. Grâce à l'inégalité de Tchebychev, obtenir un autre intervalle de confiance de niveau 0.95 pour m.
- 6. Lequel de ces deux intervalles est le plus précis? Pourquoi?