

Erstellt in Zusammenarbeit mit dem Zentralverband Sanitär Heizung Klima, St. Augustin

Informationsdruck i.158

Herausgeber:

Deutsches Kupferinstitut Auskunfts- und Beratungsstelle für die Verwendung von Kupfer- und Kupferlegierungen.

Am Bonneshof 5 40474 Düsseldorf Telefon: (0211) 4 79 63 00 Telefax: (0211) 4 79 63 10 info@kupferinstitut.de www.kupferinstitut.de

Layout und Umsetzung:

Solarpraxis AG © 2001

Überarbeitete Auflage 01/2010

Alle Rechte, auch die des auszugsweisen Nachdrucks und der photomechanischen oder elektronischen Wiedergabe, vorbehalten.

Die fachgerechte Kupferrohr-Installation

Inhalt:

Einle	itung2				
1.	Rohre, Fittings, Löthilfsmittel3	3.1.3	Planung, Bau, Betrieb von Trinkwasser- Installationen	17	
1.1	Rohre	3.2	Heiz- und Kühlsysteme		
1.1.1	Kupferrohre DIN EN 1057	3.3	Erdgas		
1.1.2	Kupferrohre DIN EN 1057 mit Prüfzeichen 4	3.4	Solarthermie		
1.1.3	Kupferrohre DIN EN 1057, Gütegemeinschaft	3.5	Heizölleitungen		
	Kupferrohr e.V. und DVGW-Arbeitsblatt GW 392 -	3.6	Flüssiggas		
	Qualitätsprüfungen	3.7	Löschwasserleitungen		
1.1.4	Werkseitig vorummantelte Kupferrohre nach	3.8	Regenwassernutzungsanlagen		
4	DIN EN 13349	3.9	Technische Druckluft		
1.2	Fittings	3.10	Medizinische Gase		
1.2.1	Kapillarlötfittings nach DIN EN 1254–1 und –4 5	3.11	Technische Gase		
1.2.2	Pressfittings nach prEN 1254-7	3.12	Betriebswässer		
1.2.3	Steckfittings nach prEN 1254-6 6	3.13	Abwasserentsorgung		
1.2.4	Klemmringverschraubungen nach DIN EN 1254-2 7	5.15	Abwasserentsorgang	- 1	
1.2.5	Schweißbogen nach DIN 2607	4.	Planung und Verlegung	2	
1.2.6	Lösbare Verbindungen	4. 1	Trinkwasser-Installationen		
1.3	Weich- und Hartlote, Flussmittel	4.1.1	Zirkulationsleitungen		
1.3.1	Weichlote nach DIN EN ISO 9453	4.2	Leitungsführung		
1.3.2	Flussmittel für Weichlote nach DIN EN 29454-1 8	4.3	Schutz vor Außenkorrosion		
1.3.3	Weichlotpasten	4.5 4.4	Wärmeschutz		
	Hartlote nach DIN EN 1044	4.4 4.5	Schallschutz		
1.3.4 1.3.5	Flussmittel für Hartlote DIN EN 1045	4.5 4.6	Brandschutz	_	
	Ergänzende Hinweise9		Temperaturbedingte Längenausdehnung 2		
1.4	Liganzende innweise	4.7 4.8	Befestigung		
2.	Verarbeitungs- und Verbindungstechniken 10	4.9	Verlegung im Mauerwerk und auf	0	
2.1	Biegen von Kupferrohren	4.9	Rohbetondecken	Q	
	Vorbereiten der Kupferrohre für alle	1. 10	Altbaumodernisierung		
2.2	Verbindungstechniken	4.10 4.11	Vorfertigung		
2.2	Vorbereitungen bei Lötverbindungen10	4.11	Zusammenbau von Kupfer mit anderen Werkstoffen 2		
2.3	Flussmittel		Trinkwasser-Installationen2		
2.3.1	Weichlöten		Heizungsanlagen		
_	Hartlöten		Dichtheitsprüfungen		
2.3.3	Pressverbindungen	4.13	Trinkwasserleitungen		
2.4					
2.5	Steckverbindungen		Erdgasleitungen		
2.6	Klemmringverbindungen		Heizungs- und Kühlleitungen		
2.7	Schweißverbindungen		Ölleitungen		
2.8	Handwerklich gefertigte Abzweige und Muffen 14		Flüssiggasleitungen	37	
2.8.1	Lötverbindungen bei handwerklich gefertigten	4.14	Spülen und Inbetriebnahme von Trinkwasser-		
	Abzweigen und Muffen		Installationen		
2.9	Betriebstemperaturen und Betriebsdrücke15	4.15	Übergabe, Betriebsanleitungen	2	
3.	Anwendungsgebiete	5.	Normen und Regelwerke3	3	
3.1	Trinkwasser 17	_	Index	_	
3.1.1	HIIIKWassei	6.	Index	O	

Einleitung

Kupfer ist mit bis zu 60 Prozent Marktanteil nach wie vor der bevorzugte Werkstoff in der Sanitär- und Heizungstechnik, nicht zuletzt wegen seiner langen Haltbarkeit und gesundheitlichen Unbedenklichkeit. Es ist ein zeitgemäßer Werkstoff, der allen Anforderungen an nachhaltiges Bauen gerecht wird und durch seine ökologischen Vorteile überzeugt.

Im Gegensatz zu vielen anderen Materialien eignet sich Kupfer dank seines breiten Eigenschaftsspektrums für alle Einsatzbereiche in der Hausinstallation. Nicht nur für Trink-wasser- und Heizungsleitungen wird Kupfer eingesetzt; gerade bei hohen Anforderungen an die Sicherheit wie bei der Gasversorgung oder bei außergewöhnlichen Temperaturbeanspruchungen wie beispielsweise in Solaranlagen wird heute fast ausschließlich Kupfer als Werkstoff für Versorgungsleitungen in Gebäuden verwendet.

Für den Einsatz von Kupfer sprechen außerdem seine leichte Verarbeitbarkeit und die nahezu uneingeschränkte Kompatibilität der einzelnen Bauteile untereinander.

Die universelle Einsetzbarkeit von Kupfer in der Versorgungstechnik, die es so bei keinem anderen Werkstoff gibt, bestimmt die Anzahl der zu beachtenden Regelwerke. Dabei sind weder mehr Regelwerke zu beachten als bei anderen Werkstoffen, noch sind die Verarbeitungstechniken komplizierter. Kupferanwendungen sind lediglich vielfältiger.

Dieser Informationsdruck soll dem Planer und Installateur als Hilfe dienen. Er enthält die wichtigsten Aussagen aus den einschlägigen Regelwerken, ohne jedoch vollständig sein zu können. Sollten weiterführende Fragen bestehen, können die technischen Beratungen der Rohr- und Fittinghersteller sowie das Deutsche Kupferinstitut kontaktiert werden.

Wir unterstützen Sie gerne!

Bild 1: Kennzeichnungsbeispiele von Kupferrohren nach DIN EN 1057 mit RAL-Gütezeichen und DVGW-Kennzeichnung (1485)

1. Rohre, Fittings, Löthilfsmittel

1.1 Rohre

Die Anforderungen an Kupferrohre für Installationszwecke werden in folgenden Regelwerken beschrieben:

- DIN EN 1057 "Nahtlose Rundrohre aus Kupfer für Wasser- und Gasleitungen für Sanitärinstallationen und Heizungsanlagen"
- DVGW-Arbeitsblatt GW 392 "Nahtlosgezogene Rohre aus Kupfer für Gas- und Trinkwasser-Installationen und nahtlosgezogene, innenverzinnte Rohre aus Kupfer für Trinkwasser-Installationen; Anforderungen und Prüfungen"
- RAL-RG 641/1 Güte- und Prüfbestimmungen (Gütebedingungen) für das Gütezeichen "Kupferrohr/RAL" der Gütegemeinschaft Kupferrohr e.V.
- DIN EN 13349 "Vorummantelte Rohre aus Kupfer mit massivem Mantel"

1.1.1 Kupferrohre nach DIN EN 1057

Diese Norm beschreibt die Anforderungen an die Eigenschaften, die Zusammensetzung, die Lieferbedingungen und die Prüfung von nahtlosen Rundrohren aus Kupfer mit einem Außendurchmesser von 6 mm bis 267 mm. Sie werden beispielsweise in folgenden Bereichen eingesetzt:

- Kalt- und Warmwasserverteilungssysteme (einschließlich Regenwassernutzung)
- Heizungs- und Kühlsysteme (einschließlich Fußboden-, Wand- und Deckensysteme)
- Verteilung gasförmiger und flüssiger Hausbrennstoffe
- Solaranlagen
- Löschwasserleitungen und Sprinkleranlagen
- Druckluftanlagen
- Betriebswässer
- Abwasserentsorgung (z.B. Druckleitungen für Abwasserhebeanlagen)

Bezüglich weiterer Einsatzbereiche und ihrer Einsatzgrenzen ist Rücksprache mit den Herstellern zu nehmen

Wesentliche Anforderungen an Kupferrohre und deren Eigenschaften sind:

- Zuordnung von Außendurchmessern und Wanddicken (Tabellen 1 und 2)
- eingeengte Außendurchmessertoleranzen für die Kapillarlötung
- nur ein Werkstoff sauerstofffreies Kupfer – der Bezeichnung Cu-DHP (CW 024 A), der zu mind. 99,90 % aus Kupfer, Silber sowie zwischen 0,015 % und 0,040 % Phosphor besteht
- einheitliche Festigkeitszustände (Tabelle 1)
- · einheitliche Lieferlängen (Tabelle 1)
- · Kennzeichnung der Rohre

Von 10 bis 54 mm Durchmesser müssen die Rohre im Abstand von höchstens 600 mm wiederkehrend über ihre Länge gekennzeichnet sein.
Rohre mit einem Durchmesser von 6 mm bis unter 10 mm oder über 54 mm müssen zumindest an beiden Enden in ähnlicher Weise sichtbar gekennzeichnet sein.

Zumindest folgende Angaben müssen bleibend angebracht werden:

- EN 1057
- · Kennzeichen des Herstellers
- Herstelldatum –
 Jahr & Quartal (I bis IV) oder
 Jahr & Monat (1 bis 12)

Des Weiteren sind folgende Kennzeichnungen dauerhaft oder bleibend anzubringen:

- Außendurchmesser & Wanddicke
- Kennzeichnung halbharter Rohre durch folgendes Zeichen: "H"

Zusätzlich für RAL-Güterohre:

- vereinfachtes Gütezeichen (Bild 2)
- Herstellungsland in deutscher Sprache

Zusätzlich für Rohre nach DVGW-Arbeitsblatt GW 392:

 DVGW-Prüfzeichen und Registriernummer des jeweiligen Herstellers "DV-72XX-YZ-XXXX"

Weitere Kennzeichnungen, wie beispielsweise Marken- oder Produktnamen, sind zulässig (Bild 1).

Bild 2: Gütezeichen RAL der Gütegemeinschaft Kupferrohr e.V., rechts das vereinfachte Gütezeichen RAL (0477)

Tab. 1: Lieferform/Außendurchmesser/Festigkeitszustand/Lieferlänge für Rohre nach DIN EN 1057

Lieferform	Außendurchmesser in mm	Zustand R _m MPa*	Lieferlänge
in Ringen**	6 bis 22	R220 (weich)	25 m oder 50 m
gerade Längen	12 bis 28	R250 (halbhart)	5 m
gerade Längen	6 bis 133	R290 (hart)	5 m
	159, 219, 267	R290 (hart)	3 m oder 5 m

- * 1 MPa entspricht 1 N/mm²
- ** Ringaußendurchmesser 500 bis 900 mm

Tab. 2: Abmessungen von Kupferrohren nach DIN EN 1057 mit RAL-Gütezeichen für die Gas- und Trinkwasser-Installation und für andere Anwendungen (z. B. Heizung)

mit [Andere Anwendungen (z.B. Heizung)					
	Stangen			Ringe		
	Durchmesser x Wanddicke in mm					
12 X 0,8	35 X 1,2	76,1 x 2	12 X 0,8	10 X 0,6		
12 X 1	35 X 1,5	88,9 X 2	12 X 1	12 X 0,7		
15 X 1	42 X 1,2	108 X 2,5	15 X 1	14 X 0,8		
18 X 1	42 X 1,5	133 X 3	18 X 1	15 X 0,8		
22 X 1	54 X 1,5	159 X 3	22 X 1	18 X 0,8		
28 X 1	54 X 2	219 X 3				
28 x 1,5	64 X 2	267 X 3				

- DVGW-Abmessungen 12 108 mm sind auch als innenverzinnte Rohre erhältlich
- Rohre vom Ring sind sowohl blank, vorummantelt oder wärmegedämmt erhältlich
- Stangenrohre 12 54 mm sind außerdem mit 100% EnEV-Wärmedämmung erhältlich

Generell gilt, dass Werkstoffe, Bauteile und Apparate für die Trinkwasser-Installation im Rahmen der EU-Bauproduktenrichtlinie und, soweit verfügbar, in Übereinstimmung mit harmonisierten europäischen Normen oder europäischen technischen Zulassungen (ETA) mit "CE" gekennzeichnet sein müssen. Liegen beide Prüfkriterien für ein Produkt (noch) nicht vor, so muss die Kennzeichnung den nationalen Normen (z. B. DIN EN 1057) und dem DVGW-Regelwerk (z. B. DVGW GW 392) entsprechen.

1.1.2 Kupferrohre nach DIN EN 1057 mit Gütezeichen RAL

Die Gütebedingungen der Gütegemeinschaft Kupferrohr e.V. enthalten gegenüber der Norm DIN EN 1057 ergänzende Anforderungen und Vorschriften zur Prüfung solcher Rohre. Das Gütezeichen kann für Kupferrohre für die Trinkwasser-Installation und die Heizungsinstallation (Tabelle 2) vergeben werden.

Bestellbeispiele für Rohre in der Trinkwasser- und Gasinstallation

500 m Kupferrohr in geraden Längen (Stangenrohr) nach DIN EN 1057 mit einem Außendurchmesser von 28 mm und einer Wanddicke von 1,5 mm im Festigkeitszustand R250 (halbhart) mit DVGW-Prüfzeichen und mit RAL-Gütezeichen:

"500 m Kupferrohr DIN EN 1057 - R250 - 28 x 1,5 mm - 5 m Stange mit DVGW-Prüfzeichen und mit RAL-Güte-zeichen"

500 m innenverzinntes Kupferrohr in Ringen nach DIN EN 1057 mit einem Außendurchmesser von 15 mm und einer Wanddicke von 1,0 mm im Festigkeitszustand R220 (weich) mit DVGW-Prüfzeichen und mit RAL-Gütezeichen:

"500 m Kupferrohr, innenverzinnt, DIN EN 1057 - R220 - 15 x 1,0 mm -25 m Ringe mit DVGW-Prüfzeichen und mit RAL-Gütezeichen"

Bestellbeispiele für dünnwandige Rohre (z. B. Heizungsinstallation)

Für 500 m Kupferrohr in geraden Längen (Stangenrohr) nach DIN EN 1057 mit einem Außendurchmesser von 28 mm und einer Wanddicke von 1,0 mm im Festigkeitszustand R250 (halbhart) mit RAL-Gütezeichen:
"500 m Kupferrohr EN 1057 - R250 - 28 x 1,0 mm - 5 m Stange mit RAL-Gütezeichen"

Für 500 m Kupferrohr in Ringen nach DIN EN 1057 mit einem Außendurchmesser von 14 mm und einer Wanddicke von 0,8 mm im Festigkeitszustand R220 (weich) mit RAL-Gütezeichen: "500 m Kupferrohr EN 1057 - R220 -14 x 0,8 mm - 50 m Ringe mit RAL-Gütezeichen"

1.1.3 Kupferrohre nach DIN EN 1057, Gütegemeinschaft Kupferrohr e.V. und DVGW-Arbeitsblatt GW 392 – Qualitätsprüfungen

In DIN EN 1057 sind neben der Produktbeschreibung weit reichende Prüfanforderungen enthalten.

Geprüft werden:

- Werkstoffzusammensetzung
- mechanische Eigenschaften
- · Maße und Grenzmaße
- Fehlerfreiheit
- Oberflächenbeschaffenheit
- Biegeverhalten
- Aufweitverhalten und
- Bördelverhalten

Güte- und DVGW-geprüfte Rohre unterliegen z. T. strengeren und zusätzlichen Anforderungen. So darf z.B. die quantitativ gemessene Kohlenstoffmenge auf der Innenoberfläche fabrikneuer Rohre in Ringen 0,10 mg/dm² nicht überschreiten (DIN EN 1057: 0,20 mg/dm²). Bei Rohren in geraden Längen ist der Restgehalt des für die Fertigung notwendigen Ziehmittels für Rohre bis einschließlich 54 mm auf 0,2 mg/dm² begrenzt.

Das DVGW-Arbeitsblatt GW 392 und die Gütebedingungen der Gütegemeinschaft Kupferrohr e.V. verlangen eigene Überwachungsprüfungen der Rohrhersteller mit Dokumentation, für die ein Mindestumfang festgelegt ist. In jährlichen Überwachungsprüfungen durch neutrale Prüfstellen werden zusätzlich Rohre überprüft, wobei auch kontrolliert wird, ob die Eigenüberwachungen im vorgeschriebenen Umfang durchgeführt wurden

1.1.4 Werkseitig vorummantelte Kupferrohre nach DIN EN 13349

Nach DIN EN 13349 müssen ummantelte Kupferrohre gemäß DIN EN 1057 beschaffen sein und die Ummantelung muss mindestens folgende dauerhafte Kennzeichnungen aufweisen (s. Bild 1):

- · Kennzeichen des Herstellers
- EN 13349
- Außendurchmesser und Wanddicke des Kupferrohres ohne Mantel
- Festigkeitszustand bei halbharten Rohren
- Herstelldatum Jahr & Quartal (I bis IV) oder Jahr & Monat (1 bis 12)

Die Kennzeichnung mit dem Herstelldatum kann jedoch entfallen, wenn Rohr und Ummantelung von demselben Hersteller stammen.

1.2 Fittings

Für Installationsrohre aus Kupfer nach DIN EN 1057 kommen hauptsächlich folgende Form- und Verbindungsstücke zum Einsatz:

- Kapillarlötfittings nach
 DIN EN 1254-1, -4 und den DVGW-Prüfgrundlagen GW 6 & GW 8
- Pressfittings nach prEN 1254-7 und DVGW-Arbeitsblatt W 534 & VP 614
- Klemmringverschraubungen nach DIN EN 1254-2 und DVGW-Arbeitsblatt W 534
- Steckfittings nach prEN 1254-6 und DVGW-Arbeitsblatt W 534
- Bogen aus Kupfer zum Einschweißen nach DIN 2607

1.2.1 Kapillarlötfittings nach DIN EN 1254-1 und -4

Kapillarlötfittings können eingesetzt werden für:

- Kalt- und Warmwasserverteilsysteme (einschließlich Regenwassernutzung)
- Heizungs- und Kühlsysteme (einschließlich Flächenheizung)
- Gas- und Ölleitungen
- Solaranlagen
- Löschwasserleitungen und Sprinkleranlagen 'nass' bis DN 100
- Druckluftanlagen
- Abwasserentsorgung (z.B. Druckleitungen für Abwasserhebeanlagen)
 Bezüglich weiterer Einsatzbereiche ist Rücksprache mit den Herstellern zu nehmen.

Kapillarlötfittings sind für alle Lötverbindungen bei Installationsrohren aus Kupfer nach DIN EN 1057 verwendbar. Die entsprechenden Anforderungen werden in den Regelwerken DIN EN 1254–1 (Kapillarlötfittings), DIN EN 1254–4 (Übergangsfittings), den DVGW-Prüfgrundlagen GW 6 und GW 8 sowie den Güte- und Prüfbestimmungen RAL RG 641/4 der Gütegemeinschaft Kupferrohr e.V. beschrieben.

Fittings nach DIN EN 1254-1 und -4 sind für Kupferrohrabmessungen von 6 bis 108 mm Anschlussdurchmesser und Gewinde-Anschlussgrößen R/Rp 1/8" bis R/Rp 4" lieferbar (R = Außengewinde, Rp = Innengewinde).

Die Fittings werden aus sauerstofffreiem Kupfer oder aus Rotguss hergestellt. Andere Kupferlegierungen, die gleiche Gebrauchseigenschaften aufweisen, können ebenso verwendet werden, wobei alle Werkstoffe den Anforderungen der DIN 50930-6 zum Einsatz in Trinkwasser-Installationen entsprechen müssen.

Um die Kapillarwirkung sicherzustellen, sind enge Fertigungstoleranzen für die Anschlussdurchmesser der Innen- und Außenlötenden festgelegt. Die maximale Einstecktiefe wird durch einen Rohranschlag begrenzt.

Fittings nach DIN EN 1254 werden durch Angabe des Typs, DIN EN 1254, der Bestellnummer und der Anschlussgröße bezeichnet. Die Anschlussgröße benennt den Außendurchmesser des zugehörigen Rohres und bei Gewindeanschlüssen zusätzlich die Gewindegröße.

Bei reduzierten Fittings wird erst der große, dann der kleine Anschlussdurchmesser benannt. Bei T-Stücken ist mit der jeweils größeren Abmessung des Durchganges zu beginnen, an zweiter Stelle wird die Abmessung des Abzweiges genannt (s. Bild 4). Bei Übergangsfittings mit Löt- und Gewindeanschluss wird erst der Anschlussdurchmesser der Lötstelle, dann die Gewindegröße benannt, z.B. 15 x 1/5".

Fittings müssen allgemein- soweit es die Größe des Fittings ermöglicht - mit dem Herstellerzeichen oder -namen und den Anschlussdurchmessern, mindestens jedoch mit dem Herstellerzeichen, dauerhaft und lesbar gekennzeichnet werden (s. Bild 3).

Bild 3: Kennzeichnungsbeispiel eines gütegeprüften Kapillarlötfittings mit RAL-Gütezeichen (3502)

Qualitätsprüfungen von Fittings nach DIN EN 1254-1, DVGW und Gütegemeinschaft Kupferrohr e.V.

In Anlehnung an die Anforderungen an Innenoberflächen bei Rohren werden auch in DIN EN 1254-1 Anforderungen an die Beschaffenheit der Innenoberflächen von Kupferfittings gestellt.

In dieser Norm ist deshalb festgelegt, dass sie – wie die Rohre – frei von Kohlenstofffilmen sein müssen und die Menge des Ziehmittelrestgehalts – als Kohlenstoff bestimmt – den Wert 1,0 mg/dm² nicht überschreiten darf.

Fittings nach den DVGW-Prüfgrundlagen GW 6 und GW 8 müssen mit dem Herstellerzeichen oder -namen und den Anschlussdurchmessern, mindestens jedoch mit dem Herstellerzeichen, dauerhaft lesbar gekennzeichnet werden.

Sie sollen (Kapillarlötfittings aus Rotguss und Übergangsfittings aus Kupfer und Rotguss) bzw. können (Kapillarlötfittings aus Kupfer) darüber hinaus mit den Buchstaben "DVGW" gekennzeichnet sein; andernfalls gilt das Firmenzeichen. In den Katalogen und Verkaufsunterlagen sind die Fittings, die ein DVGW-Prüfzeichen besitzen, deutlich zu kennzeichnen.

Bild 4: Normgerechte Bezeichnung von Fittings (3500)

Die Gütegemeinschaft Kupferrohr e.V. vergibt auch ein Gütezeichen RAL für "Kapillarlötfittings aus Kupfer für Kupferrohr", nicht jedoch für Kapillarlötfittings aus Rotguss und Übergangsfittings aus Kupfer und Rotguss. Die in diesen Gütebedingungen enthaltenen Anforderungen an die Beschaffenheit der Innenoberfläche sind schärfer gefasst als in DIN EN 1254-1. So wird neben der Freiheit von Kohlenstofffilmen gefordert, dass der Ziehmittelrestgehalt - als Kohlenstoff bestimmt - den Wert von 0,5mg/dm² (DIN EN 1254-1: 1,0 mg/ dm²) nicht überschreiten darf.

Damit sind die geprüften Fittings im Hinblick auf die Abwesenheit von Kohlenstofffilmen den Kupferrohren gleichwertig. Wie es auch bei den Kupferrohren üblich ist, erfolgt eine regelmäßige Fremdüberwachung und laufende Fertigungskontrolle der Fittings durch neutrale Prüfstellen, wie dies in den Gütebedingungen der Gütegemeinschaft Kupferrohr e.V. vorgeschrieben ist.

Gütegeprüfte Fittings führen auf der Verpackung das Gütezeichen und auf jedem einzelnen Fitting selbst das vereinfachte Gütezeichen (s. Bild 3).

Bild 5: Pressverbindung; Verpressung über drei Ebenen (5123)

Bestellbeispiele

T-Stück mit reduziertem Durchgang vom Anschlussdurchmesser 22 mm auf 18 mm und mit einem Abzweig des Anschlussdurchmessers 15 mm, Bestellnummer 5130, mit DVGW-Prüfzeichen und mit RAL-Gütezeichen der Gütegemeinschaft Kupferrohr e.V.:

T DIN EN 1254-1 - 5130 - 22-15-18 mit DVGW-Prüfzeichen und RAL-Gütezeichen.

Übergangsnippel aus Rotguss mit Innenlötende 22 mm und Außengewinde ³/₄", Bestellnummer 4243g mit DVGW-Prüfzeichen: Übergangsnippel DIN EN 1254-1 – 4243g – 22 – ³/₄" mit DVGW-Prüfzeichen.

1.2.2 Pressfittings nach DVGW- Arbeitsblatt W 534 und prEN1254-7Pressfittings nach prEN 1254-7 müssen in Deutschland zusätzlich folgenden Regelwerken entsprechen:

- für Kalt- und Warmwasserverteilsysteme DVGW Arbeitsblatt W 534
- für Gasinstallationen DVGW-Prüfgrundlage VP 614.

Für weitere Anwendungsgebiete wie beispielsweise Heizungs- und Kühlsysteme, thermische Solaranlagen, Regenwassernutzungsanlagen, Löschwasserleitungen, Druckluft oder Abwasser sind die jeweiligen Herstellerangaben zu beachten.

Kupferrohre der Abmessungen von 12 – 108 mm können mit Pressfittings aus Kupfer- und Kupferlegierungen verbunden werden (Bilder 5 und 6). Voraussetzung ist, dass die Pressfittings den Anforderungen des DVGW-Arbeitsblattes W 534 bzw. der DVGW-

Bild 6: Pressfitting; Verpressung über zwei Ebenen (6113)

Prüfgrundlage VP 614 entsprechen und dass die Prüfungen mit Kupferrohren nach dem DVGW-Arbeitsblatt GW 392 in den dort vorgesehenen Festigkeitsstufen durchgeführt wurden. Sie müssen ein DVGW-Prüfzeichen besitzen. Innenverzinnte Kupferrohre können in allen Einsatzbereichen (auch Trinkwasser) sowohl mit verzinnten, als auch mit unverzinnten Pressfittings verbunden werden.

Bestellbeispiel

Bestell-Nr. des Herstellers - T-Stück aus Kupfer 22-15-18, geprüft nach DVGW-Arbeitsblatt W 534 mit DVGW-Prüfzeichen

Bestell-Nr. des Herstellers – Übergangsstück – aus Rotguss 22 x ³/₄", geprüft nach DVGW-Arbeitsblatt W 534 mit DVGW-Prüfzeichen

1.2.3 Steckfittings nach DVGW- Arbeitsblatt W 534 und prEN 1254-6Steckfittings können eingesetzt werden für:

- Kalt- und Warmwasserverteilsysteme (einschließlich Regenwassernutzung)
- Heizungs- und Kühlsysteme
- Druckluftanlagen bis PN 16

Obwohl Steckfitting-Verbindungen bei allen auf dem Markt erhältlichen, für Kupferrohre vorgesehenen Systemen mit geeignetem Spezialwerkzeug demontiert werden können, sind diese Verbindungen gemäß den geltenden Regeln als "dauerhaft dicht" klassifiziert, so dass auch eine Verwendung unter Putz möglich ist.

Steckfittings können mit Kupferrohren aller Festigkeitsstufen (weich, halbhart, hart) nach DIN EN 1057 und/oder DVGW-Arbeitsblatt GW 392 verwendet werden.

Die Prüfung nach DVGW-Arbeitsblatt W 534 – erkennbar an der DVGW-Kennzeichnung – bekundet die Verwendbarkeit der Fittings in Trinkwasser-Installationen. Sowohl bei der Modernisierung, als auch bei der Erstellung von Neuanlagen ermöglichen Steckfittings eine Montage ohne spezielle Maschinen oder Werkzeuge wie z.B. Lötbrenner.

Bestellbeispiel

Steckfitting-T-Stück für die Trinkwasser-Installation:

Bestell-Nr. des Herstellers - T-Stück - 28 x 22 x 28, geprüft nach DVGW W 534.

1.2.4 Klemmringverschraubungen metallisch dichtend n. DIN EN 1254-2

Klemmringverschraubungen nach DIN EN 1254-2 können eingesetzt werden in:

- Kalt- und Warmwasserverteilsysteme (einschließlich Regenwassernutzung)
- Heizungs-, Solar- und Kühlsysteme
- Erdgasleitungen bis 28 mm einschl., jedoch nicht als Verbindung für fortlaufende Leitungen
- · Ölinstallationen bis DN 25
- Technische Gase und Druckluft

Für weitere Anwendungsgebiete wie beispielsweise Heizungs- und Kühlsysteme, thermische Solaranlagen, Regenwassernutzungsanlagen, Feuerlöschleitungen, Druckluft oder Abwasser sind die jeweiligen Herstellerangaben zu beachten.

Metallisch dichtende Klemmringverschraubungen gehören zur Gruppe der lösbaren Verbindungen für glatte Rohrenden (Glattrohrverbinder). Sie müssen folgende Anforderungen und Prüfungen der Normen und Regelwerke erfüllen:

- Allgemein: DIN EN 1254-2: Fittings, Klemmringverbindungen für Kupferrohre
- Für Erdgas: DIN 3387-1: Lösbare Rohrverbindungen für metallene Gasleitungen, Glattrohrverbindungen
- Für Trinkwasser: DVGW W 534: Rohrverbinder und Rohrverbindungen

Klemmringverschraubungen (Bild 7) nach DIN EN 1254–2 sind für Kupfer-rohre nach DIN EN 1057 bis zur Nenn-weite 108 mm lieferbar.

Sie sind beispielsweise auch in Erdgasinstallationen bis einschließlich 28 mm z. B. als Anschlussübergang einsetzbar, in Flüssiggasinstallationen jedoch nicht.

Gewindeübergänge gewährleisten die Kompatibilität zu anderen Verbindungssystemen. Diese Anschlussgewinde entsprechen der Norm DIN EN 10226-1 (kegeliges Außengewinde/zylindrisches Innengewinde). Die Kennzeichnung erfolgt dauerhaft und lesbar mit dem Herstellernamen oder -zeichen und dem Anschlussdurchmesser (Rohraußendurchmesser) bzw. der Gewindegröße. Nach Bedarf oder Zweckmäßigkeit können weitere Zeichen aufgebracht sein.

Klemmringverschraubungen werden bezeichnet durch die Angabe des Typs (Formbezeichnung), der Artikel- oder Bestellnummer und den Anschlussabmessungen.

Bestellbeispiel

T-Stück, Bestell-Nr. des Herstellers,

Bild 7: Klemmringverschraubung nach DIN EN 1254-2 (6053)

Abmessung 15 x 15: Reduziertes T-Stück, Bestell-Nr. des Herstellers, Abmessung 22 x 15 x 22

1.2.5 Schweißbogen nach DIN 2607

Schweißfittings können eingesetzt werden für:

- Kalt- und Warmwasserverteilungssysteme (einschließlich Regenwassernutzung)
- Heizungs- und Kühlsysteme (einschließlich Flächenheizung)
- Verteilung gasförmiger und flüssiger Hausbrennstoffe
- Solaranlagen
- Löschwasserleitungen und Sprinkleranlagen
- Druckluftanlagen
- Abwasserentsorgung (z.B. Druckleitungen für Abwasserhebeanlagen)

Bezüglich weiterer Einsatzbereiche und Einsatzgrenzen ist Rücksprache mit den Herstellern zu nehmen.

Bestellbeispiel

Einschweißbogen 90° zum Verbinden von Kupferrohren nach DIN EN 1057

Bild 8: Einschweißbogen (5448)

der Abmessung 133 x 3,0 mm: Einschweißbogen aus Kupfer 90° nach DIN 2607 für Kupferrohre nach DIN EN 1057 – 133 x 3,0.

1.2.6 Lösbare Verbindungen

Mit Ausnahme der Klemmringverschraubungen werden lösbare Verbindungen im Allgemeinen für Armaturen- und Geräteanschlüsse sowie für die Verbindung von Kupferrohren mit Rohren aus anderen Werkstoffen verwendet. Die Verbindungsarten und deren Einsatzgebiete sind in Tabelle 4 aufgeführt.

Soweit Rohrverbindungsstücke zur Anwendung kommen, die bei den zu erwartenden Betriebsbeanspruchungen nicht zugfest sind (z.B. weich dichtende Klemmverschraubungen), ist durch geeignete Rohrführung oder Anordnung von Festpunkten dafür Sorge zu tragen, dass die Rohrenden nicht aus dem Rohrverbindungsstück heraus gleiten können.

Weichdichtende lösbare Verbindungen in Gasleitungen nach TRGI müssen stets zugänglich sein. Bei Unterputzverlegungen sind Revisionsöffnungen vorzusehen.

Werden weiche Rohre (vom Ring) mit Klemmringverschraubungen nach DIN EN 1254–2 verbunden, so sind die Rohrenden von innen mit Stützhülsen zu verstärken.

Für andere Arten von Klemmringverbindungen (z. B. besondere Heizkörper-Anschlusssysteme) sind hinsichtlich des Einsatzes von Stützhülsen in Verbindung mit harten oder halbharten Rohren die jeweiligen Angaben des Fittingherstellers zu beachten. Rohrkupplungen für glatte Rohrenden werden nur für Rohre im Festigkeitszustand hart R290 angewendet.

Tab. 3: Ausgewählte lösbare Verbindungen (weitere Arten und Einsatzgebiete sind den entsprechenden Kapiteln zu entnehmen)

Als Flanschverbindungen sind zulässig:

- Flanschverschraubung mit Lötflansch aus Rotguss
- Flanschverbindung mit Vorschweißbördel aus Kupfer und losem Flansch aus Rotguss oder Stahl
- Flanschverbindungen mit glattem Lötbund aus Rotguss und Iosem Flansch aus Rotguss oder Stahl
- · Gewindeflansch aus Rotguss

Handwerklich umgebördelte Rohrenden als Flanschbord sind nicht zugelassen.

1.3 Weich- und Hartlote, Flussmittel

Lote und Flussmittel werden als geprüfte Produkte gemäß den Vorgaben des DVGW-Prüfgrundlage GW 7 und den Prüfbestimmungen der Gütegemeinschaft Kupferrohr angeboten. Die für die verschiedenen Installationen zugelassenen Lote (Hartlote, Weichlote) werden entsprechend den unterschiedlichen Schmelztemperaturen eingeteilt (siehe Tab. 4 a und 4 b).

Die hygienischen Anforderungen an Trinkwasser-Installationen und insbesondere die Arbeitsschutzrichtlinien lassen den Einsatz kadmium- bzw. bleihaltiger Lote nicht zu.

Bei der Auswahl der Lote für die einzelnen Anwendungsgebiete sind die Regelwerke wie das DVGW-Arbeitsblatt GW 2 zu beachten (s. a. Kap. 2 und 3).

1.3.1 Weichlote nach DIN EN ISO 9453

Weichlote sind nach DIN EN ISO 9453 und die zugehörigen Flussmittel nach DIN EN 29454-1 genormt. Die Zusammensetzung des Weichlotes ist in der Tabelle 4 a) wiedergegeben.

Bestellbeispiel für ein in der Trinkwasser-Installation zugelassenes Weichlot gemäß DVGW-Arbeitsblatt GW 2 mit RAL-Gütezeichen: Weichlot DIN EN ISO 9453, S-Sn97Cu3 mit RAL-Gütezeichen

Verbindungsart		Anwendungsbe	reich	
	Trinkwasser	Erdgas nach TRGI-Bereich	Heizungs- installation	Öl
konisch/konische bzw. konisch/ kugelig oder flachdichtende Verschraubung	innerhalb von Gebäuden ohne Einschränkung	ohne Einschränkung	ohne Einschränkung	nur bis DN 25
Klemmringver- schraubung metall. dichtend ¹ registriert	mindestens mit Hersteller- zeichen	nur, wenn DIN/DVGW- oder DVGW- Prüfzeichen	ohne Einschränkung	nur bis DN 25
Klemmringver- schraubung weichdichtend ²	mindestens mit Hersteller- zeichen	nur mit DVGW- Prüfzeichen	ohne Einschränkung	nur mit DVGW- Prüfzeichen, nur für Armaturen- und Gerätean- schlüsse
Rohrkupplungen ³	nur mit DVGW- Prüfzeichen	nur DVGW- registriert	ohne Einschränkung	nicht zugelassen
Flanschverbin- dung	ohne Einschränkung	nur Flansche aus Rotguss	ohne Einschränkung	ohne Einschränkung

¹ bei Ringrohren nur mit Stützhülsen

Tab. 4 a): Weichlote für die Kupferrohrinstallation

Lote nach DIN EN ISO 9453	Sn*	Cu*	Ag*	Schmelzbereich (°C)
S-Sn97Cu3	Rest	2,5-3,5	-	230-250
S-Sn97Ag3	Rest	-	3,0 - 3,5	221-230

^{*} Angaben in Gew.-%

Tab. 4 b): Hartlote für die Kupferrohr-Installation

Hartlot nach DIN EN 1044 (DIN 8513)	Cu*	Ag*	Zn*	Sn*	P*	Schmelz- bereich (°C)
CP 203 (L-CuP6)	Rest	-	-	-	5,9-6,5	710-890
CP 105 (L-Ag2P)	Rest	1,5-2,5	-	-	5,9-6,7	645-825
AG 106 (L-Ag34Sn)	35,0-37,0	33,0-35,0	Rest	2,5-3,5	-	630-730
AG 104 (L-Ag45Sn)	26,0-28,0	44,0-46,0	Rest	2,5-3,5	-	640-680
AG 203 (L-Ag44)	29,0-31,0	43,0-45,0	Rest	-	-	675-735

^{*} Angaben in Gew.-%

1.3.2 Flussmittel für Weichlote nach DIN EN 29454-1

Die Flussmittelverpackung (Dose oder Tube) muss folgende Angaben aufweisen:

- Hersteller- und Lieferantenzeichen
- · Bezeichnung des Produktes
- Flussmittel-Typ, Kurzzeichen und Kennzeichnung n. DIN EN 29454-1
- Chargen-Nummer
- DVGW-Zeichen und Registernummer

- Hinweise auf die Tauglichkeit für Trinkwasser-Installation
- Kennzeichnung bzgl. rechtlicher Verordnungen und sicherheitstechnischer Aspekte

Bestellbeispiel für ein Weichlotflussmittel des Typs 3.1.1 für die Trinkwasser-Installation:

Flussmittel DIN EN 29454, Typ 3.1.1 mit DVGW-Prüfzeichen und RAL-Gütezeichen

² muss zugänglich verlegt sein

³ nur für Stangenrohre, Festigkeitszustand R290 (hart)

Tabelle 5: Nach DVGW-Arbeitsblatt GW 2 zugelassene kaltwasserlöslichen Flussmittel in Bezug zu den einzelnen Loten (vergl. Tabelle $4 \ a + b$)

Art des Lotes	Zusammensetzung der Lote	Schmelzbereiche (°C)	Flussmittel	Wirkbereich (°C)
Weichlote	S-Sn97Cu3	240	3.1.1	150 - 400
			3.1.2	
	S-Sn97Ag3		2.1.2	
Hartlote	CP 203 (L-CuP6)	710 – 890		
	CP 105 (L-Ag2P)	645 - 825		
	AG 106 (L-Ag34Sn)	630 - 730	FH 10*	550 - 800
	AG 104 (L-Ag45Sn)	640 - 680		
	AG 203 (L-Ag44)	675 - 735		

^{*} Bei Kupfer–Phosphor–Loten sind für Verbindungen von Kupfer an Kupfer keine Flussmittel erforderlich. Bei Verbindungen von Kupfer an Messing oder Rotguss muss jedoch ein Flussmittel eingesetzt werden.

1.3.3 Weichlotpasten

Weichlotpasten bestehen aus den Einzelkomponenten Weichlot (pulverförmig) und Flussmittel sowie einem Bindersystem, so dass eine cremige Paste entsteht, die mind. 60 Gew.-% Lot enthalten muss. Die Pasten tragen Kennzeichnungen gemäß den Prüfbestimmungen des DVGW und der Gütegemeinschaft Kupferrohr.

Bei Bestellung einer Weichlotpaste müssen das Kurzzeichen (DIN EN ISO 9453, s. Tab. 5) und der Metallgehalt (min. 60 %) in Gew.-% ergänzt werden. Eine zusätzliche Sicherheit erreicht man durch Verwendung von Flussmitteln oder Pasten, die das RALGütezeichen tragen.

Bestellbeispiel:

Weichlotpaste DIN EN ISO 9543, S-Sn97Cu3 mit einem Flussmittel 3.1.1 nach DIN EN 29454-1, 97 % Zinn und 3 % Kupfer, mit DVGW-Prüfzeichen und RAL-Gütezeichen.

1.3.4 Hartlote nach DIN EN 1044

Hartlote werden durch die Norm DIN EN 1044 und Flussmittel in DIN EN 1045 beschrieben. Der Einsatz der Hartlote im Trinkwasserbereich muss in Abstimmung mit den Regeln des GW 2 erfolgen (Hartlötverbot bis zur Rohrabmessung 28 x 1,5 mm einschließ-lich). Die Zusammensetzungen der Lote sind in der Tabelle 4b aufgeführt.

Bestellbeispiel für ein nach DVGW-Arbeitsblatt GW 2 zugelassenes Kupfer-Phosphor-Hartlot: Hartlot DIN EN 1044, CP 203 mit RALGütezeichen.

1.3.5 Flussmittel für Hartlote nach DIN EN 1045

Die Flussmittelverpackung (Dose oder Tube) muss folgende Angaben aufweisen:

- · Hersteller- und Lieferantenzeichen
- · Bezeichnung des Produktes
- Flussmittel-Typ, Kurzzeichen und Kennzeichnung nach DIN EN 1045
- · Chargen-Nummer
- DVGW-Zeichen und Registernummer
- Hinweise auf die Tauglichkeit für Trinkwasser-Installationen
- Kennzeichnung bzgl. rechtlicher Verordnungen und sicherheitstechnischer Aspekte.

Bestellbeispiel für ein Hartlötflussmittel, das für die Trinkwasser-Installation zugelassen ist: Flussmittel DIN EN 1045, FH 10 mit DVGW-Prüfzeichen und RAL-Gütezeichen.

1.4 Ergänzende Hinweise

In der fachgerechten Hausinstallation müssen die zum Einsatz vorgesehenen Rohre, Fittings, Lote und Flussmittel nach den anerkannten Regeln der Technik beschaffen sein (Verordnung über allgemeine Bedingungen für die Versorgung mit Wasser, AVBWasserV und Trinkwasserverordnung, TrinkwV2001).

Das Zeichen einer anerkannten Prüfstelle (dies sind DVGW-Prüfzeichen und RAL-Gütezeichen) bekundet, dass diese Voraussetzungen erfüllt sind.

Für Verarbeiter, Planer und Bauherrn ergibt sich daraus die dringende Empfehlung, nur gütegesicherte und DVGW-geprüfte Kupferrohre, Fittings, Lote und Flussmittel zu verwenden. Darüber hinaus haben zahlreiche Hersteller Haftungsübernahmevereinbarungen mit den Interessenverbänden von Handwerk und Industrie (ZVSHK, VDKF, BHKS) für Kupferrohre und -fittings abgeschlossen.

Im nachfolgenden Kapitel 2 werden die jeweiligen Verarbeitungstechniken in Kurzform beschrieben und erläutert

Für das Verbinden von Kupferrohren in der Gas- und Flüssiggasinstallationen nach TRGI und TRF sowie der Trinkwasser-Installationen nach DIN 1988 gelten die im DVGW-Arbeitsblatt GW 2 "Verbinden von Kupferrohren für die Gas- und Wasserinstallation innerhalb von Grundstücken und Gebäuden" festgeschriebenen Bestimmungen.

Für alle anderen Anlagen wie Heizungsanlagen, Ölleitungen, Druckluft-anlagen usw. ist die Anwendung des GW 2 nicht zwingend vorgeschrieben. Die Festlegungen dieses Arbeitsblattes sind jedoch als anerkannte Regel der Technik für das Verbinden von Kupferrohren anzusehen und damit auch für diese Einsatzgebiete anwendbar.

Zusätzlich sind im Video "Verbinden von Kupferrohren" des Deutschen Kupferinstituts die einzelnen Techniken im Bild wiedergegeben.

2. Verarbeitungs- und Verbindungstechniken

2.1 Kaltbiegen von Kupferrohren, Abmessungsreihe nach DVGW-Arbeitsblatt GW 392

Ringrohre - ohne Werkzeuge

Kupferrohre in Ringen im Festigkeitszustand R220 (weich) können mit und ohne Werkzeug gebogen werden. Der Biegeradius beim Biegen ohne Werkzeug liegt erfahrungsgemäß beim sechs- bis achtfachen des Rohraußendurchmessers. Entscheidend bei der Wahl des Biegeradius ist, dass es im Bereich der Biegung keine unzulässigen Querschnittsverengungen, Faltenbildung bzw. Knicke gibt. Dies gilt grundsätzlich auch beim Biegen mit Werkzeug. Kupferrohre mit Kunststoff-Stegmantel oder werkseitig wärmegedämmte Ringrohre können ebenfalls gebogen werden, wobei hier besonders sorgfältig gearbeitet werden muss, denn ein Knick ist unter dem Dämmmantel nicht immer erkennbar.

Ringrohre - mit Werkzeugen

Werden kleinere Biegeradien als das Sechs- bis Achtfache des Rohraußendurchmessers gewünscht, so steht dem Verarbeiter ein entsprechendes Angebot an Biegewerkzeugen namhafter Hersteller zur Verfügung. Einige dieser Werkzeuge sind von den Herstellern auch zum Biegen von mit Kunststoff-Stegmantel ummantelten Rohren entwickelt worden. Wichtig ist hierbei, dass der Stegman-

tel beim Biegen nicht reißt. Es sollten deshalb für diesen Anwendungsbereich nur Werkzeuge eingesetzt werden, bei denen am Gleitschuh keine scharfen Kanten vorhanden sind, die den Mantel beschädigen könnten. Bei wärmegedämmten Ringrohren ist der Dämmmantel vor dem Biegen im Bereich des Bogens zu entfernen.

Stangenrohre

Kupferrohre in gestreckten Längen im Festigkeitszustand R290 (hart) können bis zur Abmessung 18 mm unter Einhaltung des Mindestbiegeradius mit geeigneten Werkzeugen gebogen werden. (Mindestbiegeradien siehe Tabelle 6). Wichtig ist auch hier, dass die Bogen frei von Gleitlinienbildung, Rissen, Falten und Knicken sind.

Tab. 6: Biegeradien für Stangenrohre

Rohr-Außendurchmesser d	Radius der neutralen Achse (Maße in mm)				
	Hart R 290	Halbhart R 250			
8	35	35			
10	40	40			
12	45	45			
15	55	55			
18	70	70			
22	-	77			
28	-	114			

Kupferrohre in Stangen im Festigkeitszustand R250 **(halbhart)** sind bis zur Abmessung 28 mm einschließlich biegbar (DVGW-Arbeitsblatt GW 392, Mindestbiegeradien siehe Tabelle 6).

2.2 Vorbereiten der Kupferrohre für alle Verbindungstechniken

Unabhängig von der im Einzelnen angewendeten Verbindungstechnik sind übereinstimmende Vorbereitungen der Kupferrohre notwendig.

Die Vorbereitung beginnt mit dem **Ablängen** der Rohre. Die Rohre müssen rechtwinklig zur Rohrachse getrennt werden.

Bei Verwendung eines Rohrabschneiders muss darauf geachtet werden, dass die Schneidräder scharf sind und dass nur mit geringem Vorschub gearbeitet wird. Nur so sind insbesondere bei weichen Rohren Verformungen der Rohrenden weitgehend zu vermeiden. Ringrohre sollten daher möglichst mit einer feinzahnigen Metallsäge getrennt werden.

Nach dem Trennen sind die Rohrenden innen **und** außen zu **entgraten**. Stehen gelassene Innengrate bewirken Druckverluste durch Querschnittsverengung. Außengrate können bei Press- und Steckfittings das Dichtelement beschädigen. Weiterhin können Innengrate zu starken Verwirbelungen in Warmwasser-Zirkulationssystemen und nachfolgend u. U. zu Schäden durch Erosion führen.

Die Rohrenden weicher Ringrohre müssen **kalibriert** werden, um die für alle Verbindungstechniken erforderlichen Außenabmessungen zu erhalten. Dazu müssen Kalibrierdorn und Kalibrierring nacheinander und nicht gleichzeitig in bzw. auf das Rohrende getrieben werden.

2.3. Vorbereitungen bei Lötverbindungen (Hart- und Weichlöten)

Die Lötflächen der Rohrenden und Fittings sind metallisch blank (schmutzund oxidfrei) zu machen. Für das Reinigen sind metallfreie Reinigungsvliese, Schmirgelleinen feiner Körnung oder Ringund Rundbürsten mit Drahtborsten geeignet. Reinigungsbedingte Rückstände sind zu entfernen.

Beim Weich- und Hartlöten von Kupferrohren mit Fittings wird die Kapillarlöttechnik angewandt. Das heißt: Der Lötspalt muss gleichmäßig und so eng sein, dass ein Kapillareffekt möglich ist und das Lot auch gegen die Schwerkraft in den Spalt eindringt. Dies ist bei Verwendung von Installationsrohren nach DIN EN 1057 in Verbindung mit Lötfittings nach DIN EN 1254 infolge der eng aufeinander abgestimmten Maßtoleranzen gegeben.

Die Durchmesserdifferenz zwischen Innen- und Außenlötende beträgt min. 0,02 mm und max. 0,3 mm bis zu einem Außendurchmesser von 54 mm, bei darüber liegenden Abmessungen max. 0,4 mm. Daraus ergibt sich bei zentrischer Lage des Außenlötendes im Innenlötende eine Lötspaltbreite von 0,01 – 0,2 mm. Die Lötbohrung darf zur Rohrachse jedoch nicht versetzt sein.

Bild 9: Kalibrierring und Kalibrierdorn (3520)

Tab. 7: Mindesteinstecktiefe und max. Lötspaltbreite für Weichlötverbindungen (DIN EN 1254-1)

Rohr-Außen- durchmesser (mm)	Einstecktiefe (mm)	max. Lötspaltbreite ^{1, 2} (mm)	min Lötspaltbreite ^{1, 2} (mm)
6	5,8	0,10	0,01
8	6,8		
10	7,8		
12	8,6		
15	10,6		
18	12,6		
22	15,6	0,12 0,01	0,01
28	18,4		
35	23,0	0,15 0,015	
42	27,0		
54	32,0		
64 ³	32,5	0,205	0,015
76,1 ³	33,5		
88,9 ³	37,5		
108,03	47,5		

¹ gilt für Hart- und Weichlöten

Die fachgerechte Vorbereitung und Durchführung der Lötung ist von wesentlichem Einfluss auf die spätere Betriebssicherheit der Anlage. Bei Verbindung von werkseitig ummantelten oder wärmegedämmten Kupferrohren sind die Herstellerhinweise zu beachten. Verbindungsstellen sind hier nach der Druckprüfung nachzudämmen (s. a. Kapitel 4).

2.3.1 Flussmittel

Beim Weichlöten ist immer Flussmittel zu verwenden; beim Hartlöten von Kupfer an Kupfer mit phosphorhaltigen Kupferloten (CP 203, CP 105) ist kein Flussmittel notwendig, da der Phosphor als Flussmittel wirkt. Werden jedoch Bauteile aus Kupfer mit solchen aus Messing oder Rotguss durch Hartlöten miteinander verbunden, ist ein Hartlötflussmittel zu verwenden. (FH 10, s. Tabelle 5).

Ein Überhitzen des Flussmittels beim Lötvorgang ist zu vermeiden, da es sonst unwirksam wird. Wichtig ist, dass das Flussmittel nur dünn auf das Außenlötende des Rohres oder Fittings aufgestrichen wird, damit nicht mehr als nur ein geringer, technisch unvermeidbarer Anteil des kaltwasserlöslichen Flussmittels ins Leitungsinnere gelangt. Dieser Anteil wird jedoch bei Flussmitteln nach DVGW-Prüfgrundlage GW 7 durch Spülen wieder entfernt. Von den Außenoberflächen sollten Flussmittelreste aus optischen Gründen nach dem Löten entfernt werden, um die Bildung grüner Korrosionsprodukte (kein Grünspan!) zu vermeiden. Dies Entfernen kann bei Weichlötflussmitteln z.B. mit einem feuchten Lappen erfolgen, bei Hartlötflussmitteln aufgrund ihres glasurartigen Charakters z.B. mit einer Messingbürste. Erfahrungsgemäß haben äußerlich nicht entfernte Flussmittel jedoch keinen Einfluss auf die Betriebssicherheit der Installation.

2.3.2 Weichlöten

Weichlötverbindungen dürfen in Kaltund Warmwasser- sowie in Heiz- und Kühlwasserleitungen mit Betriebstemperaturen bis zu 110 °C eingesetzt werden. Gas-, Flüssiggas-, Öl- und Löschwasserleitungen dürfen keinesfalls weich gelötet werden. Kupferrohre für Flächenheizungen sind – wenn gelötet wird – durch Hartlöten zu verbinden.

Für Trinkwasser-Installationen dürfen nur Weichlote nach DVGW-Arbeitsblatt GW 2 verwendet werden (Tab. 4 a).

Für andere Installationen (z.B. Heizung) ist die Verwendung dieser Lote aus Gründen der Vereinfachung und zur Vermeidung von Verwechslungen dringend zu empfehlen.

Weichlötverbindungen sind immer mit Flussmitteln auszuführen. Das Weichlot ist ohne unmittelbare Flammeneinwirkung an der auf Löttemperatur erwärmten Lötstelle aufzuschmelzen. Anschließend ist nach dem Erkalten die Lötstelle mit einem feuchten Tuch von überschüssigem Flussmittel zu reinigen.

Der Einsatz einer Weichlotpaste (Gemenge aus pulverisiertem Weichlot und Flussmittel) vereinfacht die richtige Dosierung von Flussmittel und zeigt dem Verarbeiter durch die farbliche Veränderung der Paste von grau nach silber (Schmelzen des Lotes) die richtige Arbeitstemperatur an. Wie Flussmittel wird die Weichlotpaste nur dünn auf das Außenlötende (und nicht zusätzlich in den Fitting!) aufgebracht. Nach dem Erreichen der Arbeitstemperatur muss zusätzlich zur Paste ein Festlot gleicher Zusammensetzung des Lotanteils in der Paste zugeführt werden, um die ausreichende Füllung des Kapillarspaltes zu erreichen.

2.3.3 Hartlöten

Hartlötverbindungen dürfen in Trinkwasser-Installationen nach DVGW-Arbeitsblatt GW 2 nur bei Rohren der Abmessung 35 mm und größer angewendet werden.

Die Anmerkungen der europäischen Informationsnorm DIN EN 12502-2 zum Hartlöten finden in Deutschland keine Anwendung, da hier das nationale Arbeitsblatt GW 2 eindeutige Regelungen vorgibt.

Heizungsleitungen können unabhängig von deren Abmessung hartgelötet werden. Bei Flächenheizungen sowie technischen und medizinischen Gasversorgungsanlagen und Solaranlagen mit Temperaturen > 110 °C ist bei Verwendung der Lötverbindung ausschließlich das Hartlöten anzuwenden.

Gas-, Flüssiggas¹-, und Ölleitungen müssen ebenfalls hartgelötet werden.

² bei zentrischer Lage des Außenlötendes (Rohres) im Innenlötende

³ Das Weichlöten stellt bei diesen Durchmessern besondere Anforderungen an die Wärmeführung

¹ Mitteldruckleitungen mit Nennweiten größer DN 32 sind gemäß TRF und TRR 100 zu schweißen.

In Trinkwasser- (erst ab 35 mm!) und Gas-Installationen müssen Hartlote nach DVGW-Arbeitsblatt GW 2 verwendet werden (Tabelle 4 b). Für andere Installationen (z.B. Heizung) ist die Verwendung dieser Lote aus Gründen der Vereinfachung und zur Vermeidung von Verwechslungen dringend zu empfehlen.

Im Gegensatz zum Weichlöten werden beim Hartlöten nicht immer Flussmittel verwendet (s. 2.3.1) und die Lotzufuhr erfolgt in der Streuflamme der kirschrot glühenden Werkstücke. Am Markt werden auch hoch silberhaltige Hartlotstäbe angeboten, die mit Flussmittel umhüllt sind. Diese Flussmittelmenge reicht bei größeren Rohrabmessungen (ab > 22 mm) meist nicht aus, so dass die Verbindungsstellen für fachgerechte Hartlötverbindungen zusätzlich durch dünnes Auftragen auf das Rohrende mit Flussmittel versehen werden müssen.

2.4 Pressverbindungen

Pressverbindungen können in Trink-wasser- und Heizungssystemen bis 110 °C und 16 bar sowie in Gasinstallationen eingesetzt werden. Für Gasinstallationen bis PN 5 sind Pressverbinder nach DVGW Prüfgrundlage VP 614 mit besonderer Kennzeichnung zu verwenden.

Für frei verlegte Außenleitungen ist die Pressverbindung bis zum Nenndruck PN 5 einsetzbar. Für Innenleitungen in Räumen, in denen sich Personen nicht nur vorübergehend aufhalten, müssen die Pressfittings für eine höhere thermische Belastbarkeit geeignet sein. Die Kennzeichnung des Fittings mit "GT/X" gibt Aufschluss darüber, bis zu welchem Nenndruck X (1, 4 oder 5 bar) dieser Fitting bei Innenleitungen verwendet werden darf.

Für den Einsatz in weiteren Anwendungen (z.B. Ölleitungen, Solar-, Druckluft-, Löschwasser- oder Sprinkleranlagen) sind die Herstellerangaben zu beachten.

Tab. 8: Schweißzusatzwerkstoffe für das Schweißen von Kupfer nach DIN EN 14640

Schweißzusatzwerkstoff numerisch	Kurzzeichen chemisch	Schmelzbereich (°C)	Verwendung
S Cu 1897	CuAg1	1070 bis 1080	Gasschweißen WIG-Schweißen
S Cu 1898	CuSn1	1020 bis 1050	MIG-Schweißen

Flussmittel sind nicht erforderlich. Es können jedoch Flussmittel auf der Grundlage von Borverbindungen verwendet werden (z.B. F-SH 20 oder F-SH 30)

Bei der Verarbeitung der Pressfittings ist stets die Montageanweisung des jeweiligen Herstellers einzuhalten.

Im Wesentlichen gelten die folgenden Hinweise: Die Pressfittings sind vor der Nutzung auf den korrekten Sitz des Dichtelements zu überprüfen. Die Rohrenden dürfen keine Reste von Graten oder Verschmutzungen (z.B. durch Mörtel) aufweisen, damit beim Aufschieben des Pressfittings auf das Rohr keine Beschädigung des Dichtelements eintreten kann.

Das Verpressen hat gemäß der Montageanweisung des Herstellers zu erfolgen. Weiterhin ist es erforderlich, die Einstecktiefe des Fittings z.B. mit einem Stift am Rohr zu markieren. Durch die Markierung am Rohr ist eine optische Kontrolle der Einstecktiefe vor der Verpressung möglich. Stützhülsen müssen – auch bei weichen Rohren – nicht verwendet werden.

2.5 Steckverbindungen

Verbindungen mittels Steckfittings können in Trinkwasser-, Heizungsund Wasserkühlsystemen sowie für Druckluftleitungen eingesetzt werden.

Die Rohre sind auch hier, wie bei den vorab beschriebenen Verbindungstechniken, entsprechend vorzubereiten (innen und außen Entgraten, ggf. Kalibrieren).

Ebenso ist auch der Steckfitting vor der Montage auf den korrekten Sitz und Sauberkeit des Dichtelements zu überprüfen.

Zusätzlich ist es hilfreich, die Einstecktiefe des Fittings am Rohr zu markieren, so dass eine optische Kontrolle der fertigen Verbindung möglich ist. Wie Klemmringverschraubungen sind auch Steckverbinder für die Verwendung unter Putz geeignet.

2.6 Klemmringverbindungen

Klemmringverschraubungen können gemäß den Herstellerangaben für nahezu alle Hausinstallationssysteme angewandt werden (s. Kapitel 1) und werden als Verschraubung vormontiert geliefert.

Die entgrateten und von Verschmutzungen gereinigten Rohrenden werden bis zum Anschlag in die Verschraubung eingeschoben, die Überwurfmutter handfest verschraubt und der Dichtanzug anschließend nach Vorgabe des Herstellers mit handelsüblichem Werkzeug (z.B. Rollgabelschlüssel) ausgeführt. Bei diesem Vorgang wird der Klemmring zwischen Rohr, Fittingkörper und Überwurfmutter durch Verformung verklemmt und stellt eine dauerhaft feste und metallisch dichtende Verbindung her, die auch für die Verwendung unter Putz geeignet ist.

Werden weiche Kupferrohre vom Ring mit Klemmringverschraubungen nach DIN EN 1254-2 verbunden, so sind die Rohrenden von innen mit Stützhülsen zu verstärken (s. a. Kap. 1.2.6). Beim Verbinden harter oder halbharter Kupferrohre sind hinsichtlich der Verwendung von Stützhülsen die Angaben des Fittingherstellers zu beachten.

Schneidringverschraubungen dürfen in der Gas- und Wasserinstallation nicht verwendet werden (s. a. Kapitel 3.5 Heizölleitungen).

Tab. 9: Tabellarische Auflistung der wichtigsten Regelwerke für Installationen zum Einsatz von Weich- und/oder Hartloten in Beziehung zu ausgewählten Lötverbindungen. (Weitere Verbindungsarten und Einsatzgebiete sind den entsprechenden Kapiteln zu entnehmen).

Anwendung	Regelwerk		Art der Lötverbindung				
		Fittings nach Di			handwerklich hergestellte Muffenverbindung ³		hergestellte abgänge
		Lötverfahren: weich	hart	Lötverfahren: weich	hart	Lötverfahren: weich	hart
Trinkwasser ¹	DIN 1988, DVGW-Arbeitsblatt GW 2	×	× (nicht ≤ 28 mm)	x² (nicht ≤ 28 mm)	× (nicht ≤ 28 mm)	-	× (nicht ≤ 42 mm) ⁴
Heizung/ Solar		× (bis 110 °C)	×	×	×	-	×
Gas	TRGI, DVGW-Arbeitsblatt GW 2	-	×	-	×	-	-
Flüssiggas ⁵	TRF, DVGW-Arbeitsblatt GW 2	-	×	-	-	-	-
	TRR 100	-	(nicht über 35 mm) ⁶	-	-	-	-
Heizöl	TRbF, DIN 4755	-	×	-	-	-	-

¹ Für Trinkwasser-Installationen sowie teilweise analog für andere Einsatzbereiche ist zu beachten, dass Abmessungen bis 28 mm einschließlich nicht hartgelötet oder ausgeglüht werden dürfen. (siehe Anwendungshinweise des Abschnittes 3)

- 4 Der Durchmesser des abzweigenden Rohres muss kleiner als der Durchmesser des Durchgangs sein. Da im Trinkwasser das Hartlöten von Rohren der Abmessung bis einschließlich 28 mm verboten ist, muss das abzweigende Rohr ≥ 35 mm sein.
- 5 Für die Verlegung von Rohrleitungen, die vom Sachverständigen zu prüfen sind, ist eine zusätzliche Verfahrenslöterprüfung notwendig. 6 größere Nennweiten müssen geschweißt werden.

2.7 Schweißverbindungen

Schweißverbindungen können in allen einschlägigen Anwendungsbereichen eingesetzt werden, wobei in Trinkwasser-Installationen die Beschränkungen des DVGW-Arbeitsblatts GW 2 (Hartlöten und Schweißen nur für Rohre ≧ 35 mm) zu beachten sind.

In Trinkwasser- und Gasinstallationen ist nach DVGW-Arbeitsblatt GW 2 für das Schweißen von Kupferrohren eine Rohrwandstärke von mindestens 1,5 mm vorgeschrieben.

Das Schweißen von Gasleitungen und Leitungen in abnahmepflichtigen Anlagen ist durch einen geprüften Schweißer (Schweißerprüfung nach DIN EN ISO 9606-3) auszuführen.

Für Rohre über 108 mm Außendurchmesser werden keine Lötfittings mehr angeboten. Rohre dieser Abmessungen weisen daher auch nicht mehr die für die Bildung eines Kapillarlötspaltes erforderlichen engen Maßtoleranzen auf. Sie werden daher vorzugsweise miteinander verschweißt.

Bei der Schweißverbindung ist der Stumpfstoß als Nahtform zu wählen. Wird die Durchmesseranpassung bei Reduzierungen durch einseitiges Einziehen des Rohres ausgeführt, so sollte bei waagerecht verlegten Leitungen die Einziehung in der unteren Rohrhälfte angeordnet werden, da andernfalls die Möglichkeit besteht, dass sich im Bereich der Einziehung Luftblasen bilden. T- und Schrägabgänge sind durch Aushalsen – wie im folgenden Kapitel für Hartlötverbindungen beschrieben – herzustellen.

An die Aushalsung, deren Durchmesser auf das abzweigende Rohr abzustimmen ist, ist das abzweigende Rohr mit Stumpfstoß anzuschweißen. Für das Schweißen von Kupferrohren kommen im Wesentlichen das WIG- (Wolfram-Inertgas), das MIG- (Metall-Inertgas) und das Gasschmelzschweißen mit Acetylen-Sauerstoffflamme in Frage. Als Schweißzusatzwerkstoffe sind Schweißdrähte nach Tabelle 8 zu wählen.

² Die Anwendungshinweise und Einschränkungen in Abschnitt 2 sind zu beachten.

³ In Trinkwasser-Installationen ist bei weichen und halbharten Rohren auch das "kalte" Aufmuffen zulässig.

2.8 Handwerklich gefertigte Abzweige und Muffen

Die Einsatzbereiche handwerklich gefertigter Abzweige und Muffen sind im folgenden Abschnitt und in Tabelle 10 wiedergegeben und unbedingt zu beachten.

Des Weiteren ist in Trinkwasser-Installationen das Verbot des Ausglühens zum Aufmuffen und Aushalsen im Abmessungsbereich bis einschließlich 28 mm zu beachten.

Das handwerkliche Herstellen von Tund Schrägabgängen beginnt mit dem Bohren eines Loches in die Wand des durchgehenden Rohres. Dann wird im Bereich des Lochrandes das Material weichgeglüht und anschließend manuell mit einem Aushalshaken oder mit Spezialwerkzeugen in einem oder zwei Arbeitsgängen ausgehalst, so dass die Überlappungsgänge das Dreifache der Wanddicke des abzweigenden Rohres beträgt, mindestens aber 5 mm. Das abzweigende Rohr muss mindestens eine Nennweite kleiner als das Hauptrohr sein (Bild 10).

Bei der Herstellung von Lötmuffen und Aushalsungen mittels Spezialwerkzeugen für Trinkwasserleitungen ist auf ein Gleitmittel zwischen Werkzeug und Rohrmaterial in jedem Falle zu verzichten. Wie in Kapitel 1 erläutert, können fetthaltige Gleitmittel beim Hartlöten in kohlenstoffhaltige Filme umgewandelt werden und im Kaltwasser zu korrosionskritischen Bedingungen führen.

Beim Anpassen des Abgangrohres ist darauf zu achten, dass der Querschnitt des Hauptrohres nicht durch Unrundheit oder zu weites Einführen des Abgangrohres verengt wird (Bild 11). Vor dem Löten muss die Aushalsung kalibriert und die Verbindungsstelle ausgerichtet werden.

2.8.1 Lötverbindungen bei handwerklich gefertigten Abzweigen und Muffen

Der Stumpfstoß der Fügeteile ist bei Lötverbindungen generell unzulässig. Bei **handwerklich** gefertigten Abzweigen darf **nicht weichgelötet** werden, sie müssen hartgelötet werden. In Trinkwasser-Installationen ist das Hartlötverbot bis einschließlich 28 mm zu beachten! Heizungsinstallationen dürfen in allen Abmessungen ohne Kapillarlötfittings hartgelötet werden.

In Trinkwasser- und Heizungsleitungen können Muffenverbindungen gleichen Durchmessers und einstufige Reduzierungen ohne Verwendung von Kapillarlötfittings auch weich gelötet werden.

Wichtige Hinweise hierzu:

- Die handwerkliche Herstellung der Innenlötenden (Aufmuffung) muss mit geeigneten Werkzeugen erfolgen:
- Auf Gleitmittel zwischen Werkzeug und Rohr ist auf jeden Fall zu verzichten:
- Weichglühen zum Aufmuffen des Rohrmaterials ist in Trinkwasser-Installationen nicht zulässig (DVGW-Arbeitsblatt GW 2).

Für Weichlötverbindungen bei Muffen und einstufigen Reduzierungen müssen Lötspalt und Einstecktiefe festgelegten Werten entsprechen. Für Hartlötverbindungen ist nach GW 2 eine Einstecktiefe vom dreifachen der Rohrwandstärke, mindestens aber 5 mm einzuhalten. Die praktischen Erfahrungen haben gezeigt, dass Einstecktiefen von 7 bis 10 mm optimal sind. Näheres regelt das DVGW-Arbeitsblatt GW 2.

In Gas-, Flüssiggas- und Ölinstallationen ist als Lötverbindung nur die Hartlötverbindung zulässig. Lötverbindungen für Leitungen nach TRR 100 dürfen nur bis zur Abmessung 35 mm (DN 32) ausgeführt werden, darüber hinaus ist zu schweißen.

In **Gasinstallationen** sind T- und Schrägabgänge sowie Reduzierungen immer unter Verwendung von Kapillarlötfittings nach DIN EN 1254 auszuführen – handwerklich hergestellte Muffen-Verbindungen nach DVGW-Arbeitsblatt GW 2 sind zulässig! In **Flüssiggas- und Ölinstallationen** sind alle Lötverbindungen unter Verwendung von Kapillarlötfittings nach DIN EN 1254 auszuführen.

Regenwasserinstallationen, Betriebsund Kühlwässer sind bezüglich der Verbindungstechnik wie Trinkwasser-Installationen, Solaranlagen wie Heizungsinstallationen zu handhaben.

Bild 10: Mindesteinstecktiefe bei fittinglos hergestellten T-Abgängen (3569)

Bild 11: Querschnittsverengung durch zu tief eingestecktes Abgangsrohr (3523)

Bild 12: Zulässige Betriebsdrücke von hartgelöteten Kupferrohrleitungen (Sicherheit S = 4) in Abhängigkeit von der Betriebstemperatur (vergl. auch Tab. 10) – (3504)

2.9 Betriebstemperaturen und Betriebsdrücke

Die zulässigen Betriebsdrücke ändern sich in Abhängigkeit von der Betriebstemperatur, sind aber in erster Linie abhängig von der Verbindungsart. Aus Bild 12 ist zu erkennen, dass die in Hausinstallationen zu erwartenden Temperaturen praktisch ohne Einfluss auf die mechanischen Eigenschaften der Kupferrohre sind. Die Betriebstemperatur darf bei Kupferrohren und -fittings aus Cu-DHP 250 °C nicht überschreiten (AD 2000-Merkblatt W 6/2).

Weichgelötete Kupferrohrleitungen können bis zu einer Temperatur von 110 °C dauerbelastet werden. Eine kurzzeitige Überschreitung dieser Temperatur (Störfall) hat keinen negativen Einfluss auf die Dichtheit oder Festigkeit.

Bei höheren Betriebstemperaturen kann hartgelötet, geschweißt, geklemmt oder gepresst (mit geeignetem Dichtelement!) werden.
Rohre, die werkseitig mit einem Kunststoff-Stegmantel umhüllt oder wärmegedämmt sind, können Betriebstemperaturen bis 100 °C ausgesetzt werden. Bei Solaranlagen können im Bereich des Kollektors höhere Temperaturen auftreten. Dies ist bei der Planung und Ausführung zu beachten.

Die Berechnung der Betriebsdrücke und Wanddicken erfolgt nach den AD 2000-Merkblättern Bo "Berechnung von Druckbehältern" und B1 "Zylinder und Kugelschalen unter innerem Überdruck" (s. a. Tabelle 10).

Der **zulässige Betriebsdruck eines Rohres** berechnet sich nach der folgenden Zahlenwertgleichung:
Es bedeuten:

$$p_B = \frac{20 \times R_m \times s}{(d_a - s) \times s}$$

p_B = höchstzulässiger Betriebsdruck in har

20 = Berechnungskonstante mit der Dimension (bar x mm²)/N

R_m = Zugfestigkeit in N/mm²

s = Wanddicke in mm

d_a = Außendurchmesser in mm

5 = Sicherheitsbeiwert

Entsprechend der oben gezeigten Gleichung ist die erforderliche **Wanddicke:**

$$s = \frac{d_a \times p_B}{\left(20 \times \frac{R_m}{S}\right) + p_B}$$

Hinweis: Für dauerhafte Betriebstemperaturen über 100°C sind niedrigere Werte für die Zugfestigkeit (R_m) einzusetzen (s. a. Bild 12). Genaue Daten sind der entsprechenden Fachliteratur und dem AD 2000-Merkblatt W 6/2 (Werkstoffe für Druckbehälter, Kupfer und Kupfer-Knetlegierungen) zu entnehmen.

Tab. 10: Gewicht, Inhalt und Betriebsdrücke von ausgewählten Kupferrohren nach DIN EN 1057. Gerechnet wurde mit der Zugfestigkeit $R_m = 200 \text{ MPA}$ (= 200 N/mm²) für den weichen (ausgeglühten) Werkstoff und für Temperaturen bis 100°C.

Kapillarlötfittings mit Gütezeichen und/oder DVGW-Zeichen sind bauteil- geprüft. Zulässige Betriebsdrücke der Verbindungsstellen – je nach Lötart,
Betriebstemperatur und Abmessung –
sind in DIN EN 1254-1 festgelegt und
erfassen in vollem Umfang die
üblichen Betriebsbedingungen der
Haustechnik (Tabelle 11).
Für die Anwendung bei höheren Be-
triebsdrücken und höheren Betriebs-
temperaturen oder bei industrieller
Anwendung empfiehlt DIN EN 1254,
Hinweise der Fitting- und Lothersteller einzuholen.

Eine fachgerecht ausgeführte Weichlötverbindung ist dicht und hält hohen Drücken stand. Bei einem Berstdruckversuch riss das Rohr und nicht die Lötnaht (Bild 13).

Rohrabmessung	Gewicht	Inhalt	Rohrlänge	zulässiger Betriebsdruck			
(Außendurchmesser ×	in kg/m	in I/ m	pro Liter	in	bar		
Wanddicke in mm)			in m/I	Sicherheit 3,5 ¹	Sicherheit 4 ²		
6 × 1	0,140	0,013	79,58	229	200		
8 × 1	0,196	0,028	35,37	163	143		
10 × 1	0,252	0,050	19,89	127	111		
12 × 1	0,308	0,079	12,73	104	91		
15 × 1	0,391	0,133	7,53	82	71		
18 × 1	0,475	0,201	5,00	67	59		
22 × 1	0,587	0,314	3,18	54	48		
28 × 1,5	1,110	0,491	2,04	65	57		
35 × 1,5	1,410	0,804	1,24	51	45		
42 × 1,5	1,700	1,195	0,84	42	37		
54 × 2	2,910	1,963	0,51	44	38		
64 × 2	3,467	2,827	0,35	37	32		
76,1 × 2	4,144	4,083	0,25	31	27		
88,9 × 2	4,859	5,661	0,18	26	23		
108 × 2,5	7,374	8,332	0,12	27	24		
133 × 3	10,904	12,668	0,08	26	23		
159 × 3	13,085	18,385	0,05	22	19		
219 × 3	18,118	35,633	0,03	16	14		
267 × 3	22,144	53,502	0,02	13	11		

¹ Der Sicherheitsbeiwert S = 3,5 gilt für das nahtlosgezogene Rohr ohne Lötverbindungen und für geschweißte Rohrleitungen.

Tab. 11: Zulässige Betriebsdrücke für Kupferrohrleitungen in Abhängigkeit von Betriebstemperatur und Lötverfahren bei Verwendung von Fittings nach DIN EN 1254, Teil 1.

Art der Lötung ^{1, 2}	Betriebstemperatur		Betriebsüberdruck in bar für Rohraussendurchmesser² (mm)						
		6 bis 28	35 bis 54	64 bis 108					
Weichlöten/	30	25	25	16					
Hartlöten	65	25	16	16					
	110	16	10	10					

¹ Die Wahl ist abhängig vom Anwendungsbereich und den geltenden Vorschriften.

Bild 13: Weichgelötete Kupferrohrkombination, Abmessung: 22×1 mm, nach einer Berstdruckprobe von 280 bar (1063)

² Für Leitungen einschließlich fittinglos hartgelöteter Verbindungsstellen ist nach AD-Merkblatt W 6/2 mit der Sicherheit S = 4 zu rechnen.

² Für Anwendungsfälle mit größeren Betriebsüberdrücken und höheren Betriebstemperaturen sind Weichlot-/Hartlotlegierungen mit geeigneten Flussmitteln nach den Empfehlungen des Lot- oder Fitting-Herstellers zu verwenden.

3. Anwendungsgebiete

Kupferrohre und Fittings werden u. a. für folgende Installationssysteme – eingesetzt:

- · Trinkwasser-Installationen
- Heizungs- und Kühlsysteme (inkl. Fußboden-, Wand- und Deckenheizungen)
- Erdgasinstallationen
- Solaranlagen
- Heizölinstallationen
- Flüssiggasinstallationen
- Löschwasserleitungen und Sprinkleranlagen
- Regenwassernutzungsanlagen
- Druckluftanlagen
- Technische und medizinische Gasversorgungsanlagen
- Betriebswässer
- Abwasserentsorgung (z.B. Druckleitungen für Abwasserhebeanlagen)

Bezüglich weiterer Einsatzbereiche und etwaiger Einsatzgrenzen ist Rücksprache mit den Rohr- und Fittingherstellern oder dem Deutschen Kupferinstitut zu halten.

In der Folge wird nur auf Besonderheiten bei den jeweiligen Anwendungsgebieten eingegangen, wobei einige der Hinweise unter Berücksichtigung der jeweiligen technischen Regel sinngemäß auch auf andere, hier nicht aufgeführte Installationen übertragbar sind.

3.1 Trinkwasser- Installation

3.1.1 Trinkwasser

Trinkwasser ist in DIN 4046 definiert als "Für menschlichen Genuss und Gebrauch geeignetes Wasser mit Güteeigenschaften nach den geltenden gesetzlichen Bestimmungen...". Diese gesetzlichen Bestimmungen sind ins-besondere die Trinkwasserverordnung (TrinkwV2001) sowie die anerkannten Regeln der Technik DIN 2000 und DIN 2001.

Die Definition des Trinkwassers bezieht sich auf kaltes und erwärmtes Trinkwasser. Seit dem in Kraft treten der neuen Trinkwasserverordnung im Januar 2003 sind die Anforderungen an ein Trinkwasser generell an allen Zapfstellen einzuhalten, die der Entnahme von Wasser für den menschlichen Gebrauch dienen. Diese Anforderungen können mit Bauteilen aus Kupfer und Kupferwerkstoffen bei sachgerechtem Einsatz sicher eingehalten werden.

Ein Wasser mit einem pH-Wert kleiner pH 6,5 darf nach TrinkwV und unabhängig vom Werkstoff prinzipiell nicht als Trinkwasser verwendet werden. Solche Wässer kommen insbesondere bei der Eigenwasserversorgung über Hausbrunnen vor. Der Betreiber eines Hausbrunnens muss selbst dafür sorgen, dass das Brunnenwasser regelmäßig kontrolliert und gegebenenfalls auch zu Trinkwasser aufbereitet wird, denn auch Brunnenwässer, die ausschließlich für den privaten "menschlichen Genuss und Gebrauch" verwendet werden, unterliegen den Vorgaben der Trinkwasserverordnung.

Die Verwendung von Kupferrohren und -fittings für die Trinkwasser-Installation ist in sauren Wässern nicht zulässig (s. a. 3.1.2).

Entspricht das für den menschlichen Genuss und Gebrauch bestimmte Wasser nicht den Vorgaben der Trink-wasserverordnung, muss eine geeignete Wasserbehandlung erfolgen (z.B. mittels Belüftung, Aufhärtung und/oder Alkalisierung).

Wenn aus technischen Gründen eine Teilenthärtung des Wassers durchgeführt wird, ist darauf zu achten, dass auch das teilenthärtete Wasser den Vorgaben der Trinkwasserverordnung entspricht. Dazu ist neben der Enthärtung in der Regel auch eine Anhebung des pH-Wertes notwendig.

3.1.2 Einsatzbereiche nach DIN 50930-6

Bauteile aus Kupfer und Kupferwerkstoffen können in allen Trinkwässern eingesetzt werden, wenn die Anforderungen der DIN 50930-6 eingehalten sind. Demnach kann Kupfer ohne weitere Einzelfallprüfung eingesetzt werden, wenn

- der pH-Wert des Trinkwassers größer oder gleich pH 7,4 ist, oder
- im Bereich von pH 7,0 bis kleiner pH 7,4 der TOC-Wert 1,5 mg/l (g/m³) nicht übersteigt.

Dabei ist der TOC-Wert das Maß für die

Gesamtmenge an organischem Kohlenstoff im Wasser. Diese Angaben können den Auflistungen der Wasserdaten entnommen werden, die von den Versorgungsunternehmen auf Nachfrage kostenlos zur Verfügung gestellt werden. Eine spezielle Wasseruntersuchung ist daher für die Beurteilung der Einsatzbereiche nicht erforderlich.

Gern sehen die Rohr- und Fittinghersteller sowie das Deutsche Kupferinstitut die Wasserdaten durch und beurteilen sie schnell und kostenlos – auch im Hinblick darauf, ob ein Trinkwasser gemäß Verordnung vorliegt oder nicht.

Ist beabsichtigt, Bauteile aus Kupfer und Kupferwerkstoffen außerhalb der genannten Einsatzbereiche einzusetzen, so kann eine Einzelfallprüfung (z.B. nach DIN 50931-1) durchgeführt werden.

Bauteile aus Messing (Kupfer-Zink-Legierungen) und Rotguss (Kupfer-Zinn-Zink-Legierungen), die den in der DIN 50930-6 beschriebenen Anforderungen entsprechen (erkennbar an der DVGW-Kennzeichnung), unterliegen keinen hygienisch bedingten Einsatzbeschränkungen. Gleiches gilt für innenverzinnte Kupferrohre in Verbindung mit blanken Kupferpress- oder Lötfittings (nur Weichlöten). Ihr Einsatz ist ohne Einschränkung in allen Trinkwässern gemäß Trinkwasserverordnung möglich. Auch hier bekundet die DVGW-Kennzeichnung, dass die Bauteile den Regelwerken entsprechen.

3.1.3 Planung, Bau und Betrieb von Trinkwasser-Installationen

Trinkwasseranlagen sind gemäß den geltenden Rechtsverordnungen nach DIN 1988 (TRWI) auszuführen.
Als Trinkwasseranlagen gelten nach DIN 1988-1 alle Rohrleitungs- und/oder Apparatesysteme, die der Fortleitung, Speicherung, Behandlung und dem Verbrauch des Trinkwassers dienen und die an eine zentrale und/oder an eine Eigen- bzw. Einzelwasserversorgung angeschlossen sind. Die genaue Abgrenzung ist in der Norm festgelegt.

Bild 14: Herstellen einer Hartlötverbindung in einer Kupferrohr-Fußbodenheizung (2657)

Darüber hinaus sind bei Planung, Bau und Betrieb von Trinkwasser-Installationen unabhängig vom Rohrwerkstoff besondere Anforderungen zu berücksichtigen, die zum Beispiel in den DVGW-Arbeitsblättern W 551 "Trinkwassererwärmungs- und Leitungsanlagen; Technische Maßnahmen zur Verminderung des Legionellenwachstums", und W 553 "Bemessung von Zirkulationssystemen in zentralen Trinkwasser-Erwärmungsanlagen" wiedergegeben sind.

Alle zum Einsatz vorgesehenen Bauteile müssen nach den anerkannten Regeln der Technik beschaffen sein (AvBWasserV § 12 Absatz 4, Verordnung über allgemeine Bedingungen für die Versorgung mit Wasser).

Das Zeichen einer anerkannten Prüfstelle (dies sind DVGW-Prüfzeichen und RAL-Gütezeichen) bekundet, dass diese Voraussetzungen erfüllt sind. Für Verarbeiter, Planer und Bauherrn ergibt sich daraus die dringende Empfehlung, nur gütegesicherte und DVGW-geprüfte Produkte zu verwenden.

Die kleinste zulässige Nennweite für Rohre in der Trinkwasser-Installation ist nach DIN 1988-3 die Nennweite DN 10 (Kupferrohr 12 mm). Der vielfach verwendeten Kupferrohrabmessung 15 x 1 ist dort die Nennweite DN 12 zugeordnet.

Für das Verbinden von Kupferrohren in Trinkwasser-Installationen gelten verbindlich die im DVGW-Arbeitsblatt GW 2 festgeschriebenen Regelungen. Diese Regelungen sind auch im Kapitel 2 des vorliegenden Druckes aufgeführt und erläutert.

Bestimmungen und technische Gesichtspunkte, die bei der Rohrführung, Rohrbefestigung, Inbetriebnahme der Anlage usw. aufgrund der zahlreichen Regelwerke beachtet werden müssen, sind in Kapitel 4 enthalten.

3.2 Heiz- und Kühlsysteme

Für den Einsatz in Heizungsanlagen sind Kupferrohre nach DIN EN 1057 geeignet. Neben den für den Trinkwasserbereich vorgesehenen Abmessungen kommen hier auch Kupferrohre mit verringerten Wanddicken (blank, ummantelt) oder werkseitiger Wärmedämmung zum Einsatz (Tab. 2). Neben der "klassischen" Heizungsinstallation werden Kupferrohre zunehmend auch in Kühldecken, Flächenheizungen (Fußboden- und Wandheizungen) und für solare Anwendungen eingesetzt.

Heizungsleitungen können hart- und weichgelötet (letzteres nur bei Dauertemperaturen bis 110 °C), gepresst, geklemmt, gesteckt oder ab einer Wanddicke von 1,5 mm auch geschweißt werden.

Die beim Verlegen von Heizungsleitungen zu beachtenden Besonderheiten sind in Kapitel 4 aufgeführt.

Kupferrohre für Flächenheizungen (z.B. Fußbodenheizungen, Bild 14) sind, falls gelötet wird, entsprechend den Verlegeanweisungen der Hersteller durch Hartlöten zu verbinden. Außerdem kann die Presstechnik angewendet werden.

Für Fußbodenheizungen in Zementestrichen sind werkseitig ummantelte Kupferrohre zu verwenden. In Estrichen aus Gussasphalt können nur blanke Kupferrohre verwendet werden.

Für Wand- und Deckenheizungen können ummantelte, prinzipiell aber auch blanke Kupferrohre unter Putz verlegt werden.

Da in geschlossenen, nahezu sauerstofffreien (Sauerstoff < 0,1 g/ m³) Heizwasserkreisläufen nach VDI 2035 keine Korrosion auftreten kann, ist die Verwendung von Kupfer auch bei gleichzeitiger Verwendung anderer metallischer Werkstoffe (z. B bei der Sanierung von alten Stahlinstallationen) problemlos möglich.

Gleiches gilt sinngemäß meist auch für die Kreisläufe von Wasser-Kühlsystemen, sofern es sich um geschlossene Systeme mit eigener Druckhaltung und ohne ständigen Sauerstoffeintrag handelt.

Ist in Kühlsystemen hingegen mit einem andauernden Sauerstoffeintrag in das Kühlwasser zu rechnen (z. B. über einen offenen Kühlturm o. ä.), so sind diese Leitungen analog zu den in Trinkwasser-Installationen geltenden Anforderungen zu behandeln. Eine Mischinstallation ist hier nur eingeschränkt möglich (s. Kapitel 4) und Kupferrohre sind entsprechend den im DVGW-Arbeitsblatt GW 2 enthaltenen Vorgaben zu verbinden (s. Kapitel 2).

Wasserbeaufschlagte Kühlleitungen unterscheiden sich grundlegend von Kältemittelleitungen!

Die hierbei zu beachtenden Besonderheiten sind dem Informationsdruck "i.164 – Kupferrohre in der Kälte-Klimatechnik, für technische und medizinische Gase" des Deutschen Kupferinstituts zu entnehmen.

3.3 Erdgas

Gasinstallationen sind nach DVGW-TRGI, "Technische Regeln für Gasinstallationen" zu erstellen.

Danach sind für Gasleitungen Kupferrohre nach DIN EN 1057 und DVGW-Arbeitsblatt GW 392 bis zur Abmessung 267 x 3 mm zugelassen (Tabelle 2). Sie können nach der Hauptabsperreinrichtung sowohl für freiverlegte und erdverlegte Außenleitungen, als auch für Innenleitungen verwendet werden.

Rohrleitungen aus Kupfer für frei- und erdverlegte Außenleitungen müssen mit einem äußeren Korrosionsschutz versehen sein.

Zugelassen sind sowohl Rohre mit werkseitiger Kunststoffumhüllung, als auch Rohre mit nachträglichem Korrosionsschutz Korrosionsschutzbinden, Schrumpfschläuche), wenn für beide Fälle die Anforderungen der DIN EN 12068 erfüllt sind (Gutachten für Zulassung erforderlich).

Für das Verbinden von Kupferrohren in der Gas-Installation gilt DVGW-

Arbeitsblatt GW 2. Danach ist das Weichlöten bei Gasleitungen verboten. Die fittinglose Arbeitstechnik darf nur auf die Muffen-Verbindung gleichen Durchmessers angewendet werden. T-und/oder Schrägabgänge sowie Reduzierungen sind mit Fittings auszuführen. Die in Kapitel 2 ausführlich dargelegten Bestimmungen und Hinweise hierzu sind, ohne Ausnahme, auf erdgasführende Rohrleitungen anzuwenden.

Der Zusammenbau von Kupfer mit anderen Werkstoffen ist in der Gasinstallation unproblematisch. Die verschiedenen, nach DVGW-TRGI '861'96 zugelassenen Werkstoffe dürfen in beliebiger Reihenfolge eingebaut werden. Die in Kapitel 4 aufgeführten Sachverhalte sind auch bei Gasinstallationen zu beachten.

Kupferrohre für die Gasinstallation dürfen unter Berücksichtigung der Mindestbiegeradien nach DVGW-Arbeitsblatt GW 392 außerdem mit geeigneten Werkzeugen gebogen werden

3.4 Solarthermie

Kupferrohre und Fittings eignen sich u. a. durch ihre Temperatur- und UV-Beständigkeit in besonderem Maße für thermische Solaranlagen und die Verteilung des so erwärmten Wassers im Haus (s. a. Deutsches Kupferinstitut, Informationsdruck i.160 "Die fachgerechte Installation von thermischen Solaranlagen").

Wenn allerdings, wie im Solarbereich üblich, Temperaturen von > 110 °C auftreten, muss auf das Weichlöten verzichtet und eine andere zulässige Verbindungstechnik (z.B. Hartlöten, Klemmringverbindung, Pressen mit einem temperaturbeständigen Dichtelement) gewählt werden.

3.5 Heizölleitungen

Für die Erstellung und den Betrieb von Heizölanlagen sind nach TRbF 50 (Technische Regeln für brennbare Flüssigkeiten; Rohrleitungen) und DIN 4755 (Ölfeuerungsanlagen) Kupferrohre für leichtes Heizöl zugelassen. Es dürfen nur Rohre nach DIN EN 1057 in den Festigkeitszuständen R220 und R250 (weich und halbhart) mit RAL-Gütezeichen verwendet werden. Sie können unter Verwendung von Kapillarlötfittings oder Klemmringverschraubungen nach DIN EN 1254 ohne weiteren Eignungsnachweis eingesetzt werden. Für Pressfittings muss eine allgemeine bauartliche Zulassung vorliegen.

Lötverbindungen sind bis DN 25 (Rohrabmessung 28 mm) und PN 10 unter Verwendung von Kapillarlötfittings zugelassen. Als Lötverbindung ist in Heizölleitungen nur die Hartlötverbindung zulässig. Als Lote und Hilfsstoffe können die im DVGW-Arbeitsblatt GW 2 aufgeführten Materialien verwendet werden (s. Kapitel 1, Tabellen 4b und 5). Auch hinsichtlich der Ausführung der Verbindungen ist das Arbeitsblatt GW 2 zu beachten. Schneidringverschraubungen sind als Verbindungselement über DN 32 nicht zulässig; außerdem müssen dabei Stützhülsen verwendet werden. Für Schweißverbindungen bestehen keine abmessungsbedingten Einschränkun-

Flansch-, Schraub-, Schneidring- und Pressverbindungen sind in unterirdischen Leitungsabschnitten nicht zulässig.

Generell gilt: Verbindungselemente zwischen einzelnen Rohren müssen so ausgeführt sein, dass eine sichere Verbindung und die Dichtheit gewährleistet ist. Die Anzahl von lösbaren Verbindungen sollte möglichst gering sein und alle Verbindungen müssen längskraftschlüssig ausgeführt sein. Letzteres gilt u. a. für Hartlöt-, Press- oder Schweißverbindungen.

Heizölleitungen sind gem. DIN 4755 einer Druck- und Funktionsprüfung und weiteren Prüfungen zu unterziehen. Bei der Verlegung sind die in Kap. 4 enthaltenen Ausführungen zu beachten.

3.6 Flüssiggas

Bei Flüssiggasinstallationen werden je nach Druckbehältervolumen, Betriebsdruck der Rohrleitungen sowie Aggregatzustand in den Rohrleitungen unterschiedliche Anforderungen an Kupferrohre gestellt:

1) Für Flüssiggasinstallationen in der Haustechnik mit 50 mbar Betriebsdruck (Niederdruck) gelten die Technischen Regeln Flüssiggas (TRF). Kupferrohre nach DIN EN 1057 sind mit Mindestwanddicken von 1 mm (6-22 mm Außendurchmesser) bzw. 1,5 mm oder größer (ab 28 mm Außendurchmesser) zugelassen. Kupferrohre mit DVGW-Zeichen erfüllen diese Bedingungen.

Bei Kupferrohren ≦ DN 100, die mit dem Zeichen EN 1057 und dem Gütezeichen der Gütegemeinschaft Kupferrohr e.V. bzw. DVGW-Zeichen gekennzeichnet sind, ist ein Abnahmeprüfzeugnis 3.1 nach DIN EN 10204 nicht erforderlich. Diese Anlagen sind von einem Sachkundigen zu prüfen.

2) Flüssiggasinstallationen mit einem Betriebsdruck > 0,1 bar (Mitteldruck), deren Druckbehälter ein Fassungsvermögen von nicht mehr als 3 t aufweist und in denen das Gas im gasförmigen Zustand befördert wird, unterliegen neben der TRF außerdem der TRR 100 und der Betriebssicherheitsverordnung.

Kupferrohre der Festigkeitsstufe R290 (hart) in Stangen dürfen nur verwendet werden, wenn deren Hersteller im Beiblatt das VdTÜV Werkstoffblatts 410 aufgeführt sind. Diese Rohre müssen gemäß VdTÜV Werkstoffblatt 410 in allen Abmessungen gekennzeichnet sein und es muss ein Abnahmeprüfzeugnis 3.1 nach DIN EN 10204 hierfür vorliegen. Diese Anlagen sind von einem Sachkundigen zu prüfen.

3) Flüssiggasinstallationen mit einem Betriebsdruck > 0,1 bar (Mitteldruck), deren Druckbehälter ein Fassungsvermögen von mehr als 3 t aufweist, oder bei denen das Gas in flüssigem Zustand befördert wird oder in mehreren Druckbehältern vorgehalten wird, unterliegen ebenfalls den unter 1) und 2) aufgeführten Regelwerken. Kupferrohre der Festigkeitsstufe R290 (hart) in Stangen dürfen nur verwendet werden, wenn deren Hersteller im Beiblatt des VdTÜV Werkstoffblatts 410 aufgeführt sind.

Die Güteeigenschaften von Kupferrohren in Ringen und Stangen für diese Anwendungen müssen durch ein Abnahmeprüfzeugnis 3.1 nach DIN EN 10204 nachgewiesen werden und die Kupferrohre sind nach den AD 2000-Merkblättern der Reihe W bzw. dem VdTÜV-Werkstoffblatt 410 zu kennzeichnen. Diese Anlagen sind von einem Sachverständigen zu prüfen.

3.7 Löschwasserleitungen

In Feuerlöschleitungen nach DIN 1988-6 und DIN 14462 sind Kupferrohre und innenverzinnte Kupferrohre nach DIN EN 1057 uneingeschränkt verwendbar.

Für Löschwasserleitungen "nass" können mit Ausnahme des Weichlötens sämtliche in Kapitel 2 genannten Verbindungstechniken zum Einsatz kommen; bei innenverzinnten Kupferrohren sind Press-, Klemm- und Steckverbindungen zulässig.

In Löschwasseranlagen "trocken" und "nass/trocken" sind Press-, Klemm- und Steckverbindungen dann zulässig, wenn die zu verwendenden Bauteile auf ihre Einsetzbarkeit in Wasserlöschanlagen (Sprinkler-Trockenanlagen und Sprühwasser-Löschanlagen) von einer anerkannten Prüfstelle geprüft und für geeignet erklärt wurden.

3.8 Regenwassernutzungsanlagen

Die Verwendung von Kupferrohren und innenverzinnten Kupferrohren nach DIN EN 1057 und Fittings nach DIN EN 1254 bzw. DVGW-Arbeitsblatt W 534 in Betriebswasserleitungen von Regenwassernutzungsanlagen entspricht dem Stand und den Regeln der Technik.

Die Verarbeitung hat sich auch hier an den Vorgaben für Trinkwasser-Installationen zu orientieren, obwohl Regenwasser nicht als Trinkwasser genutzt werden darf. Somit sind auch bei Regenwasseranlagen die Vorgaben des DVGW-Arbeitsblattes GW 2 hinsichtlich Verbindungs- und Biegetechniken zu berücksichtigen (s. a. Kap. 2).

In DIN 1989-1 (Regenwassernutzungsanlagen – Teil 1: Planung, Ausführung Betrieb und Wartung) sind konkrete Hinweise zu Planung, Bau, Betrieb und Wartung solcher Anlagen gegeben.

3.9 Technische Druckluft

Kupferrohre nach DIN EN 1057 können in Rohrleitungssystemen für technische Druckluft uneingeschränkt eingesetzt werden (Einschränkungen für medizinische oder andere Anwendungen mit besonderen Anforderungen an die Reinheit in den folgenden Kapiteln sind zu beachten!). Hinsichtlich der Verbindungstechniken kann das DVGW-Arbeitsblatt GW 2 angewendet werden.

Die im Kapitel 2 aufgeführten
Betriebsdrücke für Kupferrohre nach
DIN EN 1057 und Fittings nach DIN
EN 1254 sind zu beachten. Bei der Planung sind prinzipiell die anerkannten
Regeln der Technik für gasführende
Rohrleitungen (z. B. Druckgeräterichtlinie usw.) anzuwenden. Weitere
Besonderheiten können bei den
Herstellern und beim Deutschen
Kupferinstitut erfragt werden.

3.10 Medizinische Gase

Die Verwendung von Kupferleitungen in zentralen medizinischen und technischen Gasversorgungsanlagen in Krankenhäusern oder Kliniken ist die Regel. Der Einsatz von Kupferrohren in medizinischen Versorgungseinheiten wird außerdem durch DIN EN 737-3 (Rohrleitungssysteme für medizinische Gase) und DIN EN 793 (Besondere Anforderungen für die Sicherheit von medizinischen Versorgungseinheiten) dringend empfohlen.

In Anlagen zur Verteilung von Gasen für medizinische Zwecke, zur Verteilung von Druckluft zum Antrieb von chirurgischen Instrumenten und für Vakuumleitungen sind ausschließlich Kupferrohre nach DIN EN 13348 einzusetzen. Für Rohrverbindungen sind in diesen Anlagen Kapillarlötfittings nach DIN EN 1254-1, -4 und -5 zu verwenden.

Kupferrohre nach DIN EN 13348 sind bis zum Außendurchmesser 54 mm erhältlich und werden zur Sicherstellung der Reinheit der Innenoberflächen jeweils an beiden Enden durch Kappen oder Stopfen verschlossen geliefert. Zusätzlich ist durch die Verpackung der Lose ein wirkungsvoller Schutz der Rohre gewährleistet. Kupferrohre nach DIN 13348 sind – ähnlich wie Installationsrohre nach DIN EN 1057 – in Abständen von höchstens 600 mm wiederkehrend mindestens mit folgenden Angaben dauerhaft zu kennzeichnen:

- EN 13348
- Außendurchmesser x Wanddicke
- Kennzeichnung des Zustandes halbhart durch das Zeichen "|-|-|"
- · Kennzeichen des Herstellers
- Herstelldatum: Jahr und Quartal (I bis IV) oder Jahr und Monat (1 bis 12)

Rohrleitungen für medizinische Zwecke sind nur durch Hartlöten oder Schweißen unter Schutzgas zu verbinden. Weitere Hinweise hierzu sind dem Informationsdruck "i.164 – Kupferrohre in der Kälte-Klimatechnik, für technische und medizinische Gase" des Deutschen Kupferinstituts zu entnehmen oder bei den Beratungsdiensten der Hersteller zu erfragen.

3.11 Technische Gase

Für viele technische Gase (und Druckluft) können auch Kupferrohre nach
DIN EN 1057 eingesetzt werden.
Für bestimmte Anwendungen mit
hohen Anforderungen an die Reinheit
der Gase (Reinstgase) wie z.B. Anlagen
zur Verteilung von Gasen für Laborzwecke oder für bestimmte Produktionsprozesse müssen jedoch Kupferrohre nach DIN EN 13348 oder nach
DIN EN 12735-1 (Nahtlose Rundrohre
aus Kupfer für die Kälte- und Klimatechnik, Rohre für Leitungssysteme)
eingesetzt werden.

Als Rohrverbinder kommen meist Kapillarlötfittings nach DIN EN 1254-1, -4 und -5 zum Einsatz, wobei die Rohrleitungen auch hier stets unter Schutzgas hartzulöten sind. Des Weiteren können Klemmringverschraubungen nach DIN EN 1254-2 verwendet werden. Der Einsatz von Pressfittings ist dann zulässig, wenn die Beständigkeit des Dichtelements gegenüber der jeweiligen Gasart gegeben ist. Klärung kann hier durch Rückfrage beim jeweiligen Hersteller oder durch Beachtung der zum Fitting zugehörigen technischen Dokumentation geschaffen werden.

Auch zu diesem Einsatzbereich sind weiterführende Hinweise dem Informationsdruck "i.164 – Kupferrohre in der Kälte-Klimatechnik, für technische und medizinische Gase" des Deutschen Kupferinstituts zu entnehmen.

3.12 Betriebswässer

Unter Betriebswässern versteht
DIN 4046 "Gewerblichen, industriellen, landwirtschaftlichen oder ähnlichen Zwecken dienendes Wasser mit
unterschiedlichen Güteeigenschaften,
worin Trinkwassereigenschaft eingeschlossen sein kann". Für viele dieser
Betriebswässer können Kupferrohre
und Fittings ebenfalls eingesetzt werden. Die Rohr- und Fittinghersteller
sowie das Deutsche Kupferinstitut
nehmen kostenlos eine Einzelfallprüfung der zum Einsatz vorgesehenen
Wässer vor.

3.13 Abwasserentsorgung – Druckleitungen v. Abwasserhebeanlagen

Druckleitungen für Abwasserhebeanlagen sind nach DIN EN 12056-4 auszuführen. Nach der Norm wird unterschieden in fäkalienhaltige und fäkalienfreie Abwasserhebeanlagen. Für fäkalienhaltige Abwässer sind Kupferrohre nach DIN EN 1057 geeignet; bei fäkalienfreien ist eine Einzelfallprüfung durch den Rohrhersteller notwendig.

Druckleitungen können hart- und weichgelötet werden, außerdem können die anderen Verbindungstechniken des DVGW-Arbeitsblattes GW 2 sinngemäß angewendet werden.

4. Planung und Verlegung

4.1 Trinkwasser-Installationen

In Trinkwasser-Installationen muss bei metallenen Werkstoffen nach DIN 1988-2 unmittelbar nach der Wasserzähleranlage ein Filter nach DIN EN 13443-1 eingebaut werden. Rohrleitungen sind möglichst nicht in Außenwänden zu verlegen.

Wasser, das lange Zeit in Leitungsanlagen und Apparaten steht, kann unabhängig vom eingesetzten Werkstoff seine Trinkwasserqualität verlieren (DIN 1988-4, Ziff. 3.5). Aus diesem Grund sind die Leitungsführungen so kurz wie möglich zu halten. Überdimensionierungen sind zu vermeiden (DIN 1988-3) und nicht genutzte Bereiche sind abzutrennen (DIN 1988-4 und Tabelle 12).

4.1.1 Zirkulationsleitungen

Nach DIN 1988-3 und DVGW-Arbeitsblatt W 553 "Bemessung von Zirkulationssystemen in zentralen Trinkwassererwärmungsanlagen" sollten bei der Bemessung der Rohr-Nennweiten für Zirkulationsleitungen Fließgeschwindigkeiten zwischen 0,2 und 0,5 ml s angenommen werden. Diese Geschwindigkeiten reichen in jedem Fall für einen optimalen Wasserwechsel und den Ausgleich der in den Rohrleitungen entstehenden Wärmeverluste aus. Es ist technisch und wirtschaftlich nicht sinnvoll, größere Wassermengen als erforderlich umzuwälzen.

Eine Begrenzung der Fließgeschwindigkeit auf die oben genannten Werte trägt gleichzeitig zur Vermeidung von Erosion bei. Lediglich in Ausnahmefällen kann eine maximale Fließgeschwindigkeit von 1,0 m/s in pumpennahen Zirkulationsleitungen notwendig sein (s. DVGW-Arbeitsblatt W 553).

Generell ist in verzweigten Zirkulationssystemen ein hydraulischer Abgleich der einzelnen Stränge untereinander vorzusehen. Hierzu werden meist spezielle, thermisch auslösende Strangregulierventile verwendet (Bild 15). Die Berechnungen zum hydraulischen Abgleich (Anlagenkennlinie) bilden die Grundlage für die Auswahl einer geeigneten Zirkulationspumpe (Pumpenkennlinie), weshalb hierauf in keinem Fall verzichtet werden kann!

Tabelle 12: Maßnahmen, die unabhängig vom Werkstoff nach DIN 1988 (vor allem nach Teil 4 + 8) bei längerer Stagnation des Trinkwassers in der Hausinstallation zu ergreifen sind

Dauer der Abwesenheit	Maßnahmen vor Antritt der Abwesenheit	Maßnahmen bei der Rückkehr
> 3 Tage	Wohnungen: Schließen der Stockwerksabsperrung	Öffnen der Stockwerksabsperrung Wasser 5 Min. fließen lassen
	Einfamilienhäuser: Schließen der Absperrarmatur hinter der Wasserzählanlage	Öffnen der Absperrarmatur Wasser 5 Min. fließen lassen
> 4 Wochen	Wohnungen: Schließen der Stockwerksabsperrung	Öffnen der Stockwerksabsperrung Spülen der Hausinstallation
	Einfamilienhäuser: Schließen der Absperrarmatur hinter der Wasserzählanlage	Öffnen der Absperrarmatur Spülen der Hausinstallation
> 6 Monate	Schließen der Hauptabsperrarmatur, Entleeren der Leitungen	Öffnen der Hauptabsperrarmatur Spülen der Hausinstallation
> 1 Jahr	Abtrennen der Anschlussleitungen an der Versorgungsleitung	Benachrichtigen von WVU und/ oder Installateur, Wiederanschluss an die Versorgungsleitung

4.2 Leitungsführung

Alle Leitungen der Hausinstallation müssen so angeordnet werden, dass jederzeit und ohne größere Schwierigkeiten die Art der Leitung erkennbar ist. Es empfiehlt sich daher, bei größeren Anlagen mit zahlreichen Leitungen die unterschiedlichen Durchflussstoffe farblich entsprechend DIN 2403 zu kennzeichnen. Bei kleineren Anlagen mit einer verhältnismäßig geringen Anzahl unterschiedlicher Durchflussstoffe können auch Hinweisschilder an den Absperreinrichtungen angebracht werden. Durch beide Maßnahmen können Bedienungsfehler durch ein schnelles Auffinden der entsprechenden Leitungen vermieden werden.

Werden Leitungen für verschiedene Durchflussstoffe übereinander angeordnet, so müssen die Leitungen, bei

PNTO DN15

Bild 15: Strangregulierventil für Zirkulationen (2968)

denen die Gefahr einer Schwitzwasserbildung besteht, zu unterst verlegt werden.

Diese Anordnung muss bei Gasleitungen in jedem Falle – also auch bei Kupferrohren – eingehalten werden, obwohl Kupferrohre durch Schwitz-wasser nicht gefährdet sind. Werden Rohrleitungen für verschiedene Gase übereinander parallel geführt, wie z.B. in Krankenhäusern oder Laboratorien, so muss das leichtere Gas stets über dem schwereren Gas geführt werden.

Erdverlegte Trinkwasserleitungen

sind in frostfreier Tiefe zu verlegen. Von den meisten Wasserversorgungsunternehmen (WVU) wird heute eine Verlegetiefe von mindestens 1,5 m gefordert.

Leitungen sind im Erdreich nach den in DIN 805 festgelegten technischen Regelungen zu verlegen, d. h. die Leitung muss im Rohrgraben auf ihrer ganzen Länge aufliegen. Um eine Beschädigung der Rohrleitung zu vermeiden, müssen das Auflager und die Grabenfüllung bis zu einer Höhe von 30 cm über Rohrscheitel frei von Steinen sein. Die Verfüllung ist lagenweise einzubringen und ausreichend zu verdichten. Es empfiehlt sich, beim Verfüllen des Grabens ein Trassenband als Warnhinweis für spätere Erdarbeiten einzulegen.

Erdverlegte Trinkwasserleitungen sind möglichst gradlinig, rechtwinklig zur Grundstücksgrenze und auf dem kürzesten Wege zu verlegen. Sofern eine Trinkwasserleitung in der Nähe einer Abwasserleitung (bis zu 1 m Abstand), verlegt ist, muss die Trinkwasserleitung nach DIN 1988-2 oberhalb der Abwasserleitung liegen. Zu anderen Rohrleitungen und Kabeln darf ein Abstand der Rohraußenflächen von 0,2 m nicht unterschritten werden. Können die genannten Sicherheitsabstände nicht eingehalten werden, so müssen besondere Schutzmaßnahmen (z. B. Verlegung der Trinkwasserleitung in einem Schutzrohr) getroffen werden. Trinkwasserleitungen dürfen verständlicherweise nicht durch Fäkalien- und Sickergruben, Schächte der Grundstücksentwässerung, Abflusskanäle und dergleichen geführt werden.

Für **erdverlegte Gasleitungen** gelten prinzipiell die gleichen Grundsätze wie oben für Trinkwasserleitungen dargelegt. Für das Herstellen und Verfüllen der Rohrgräben gilt sinngemäß das DVGW-Arbeitsblatt G 461-2. Erdverlegte Gasleitungen dürfen nicht überbaut werden. Ist dies jedoch in Ausnahmefällen unumgänglich, so gilt ebenso wie für Gebäudeeinführungen DVGW-Arbeitsblatt G 459-1.

Erdverlegte Flüssiggasleitungen

müssen nach TRF eine Mindestüberdeckung von 60 cm haben. Sie dürfen nicht in Humus- oder Schlackenerde verlegt werden, sondern sind allseitig mindestens 10 cm in Sand zu betten. Es muss sichergestellt sein, dass sie nicht durch mechanische Belastung beschädigt werden können. Sie dürfen nicht überbaut werden. Der Abstand zu Elektroleitungen muss mindestens 80 cm betragen, bei geschützter Verlegung, z.B. unter Abdecksteinen, sowie zu Steuer- und Fernmeldeeinrichtungen kann dieser Abstand auf 30 cm verringert werden. Die Lage der Leitungen muss durch dauerhafte Hinweisschilder gekennzeichnet oder in einem maßstäblichen Rohrnetzplan aufgezeichnet sein.

Erdverlegte Ölleitungen sind nach TRbF 50 und DIN 4755 gegen mögliche Beschädigungen, z.B. durch chemische oder mechanische Einflüsse zu schützen. Sie müssen in flüssigkeitsdichten Schutzrohren verlegt sein. Undichtigkeiten der Ölleitung müssen leicht erkennbar sein. Dies ist z.B. dann der Fall, wenn das Schutzrohr mit Gefälle zu einer Kontrollstelle verlegt wird.

4.3 Schutz vor Außenkorrosion

Die hohe Beständigkeit des Werkstoffes Kupfer gegen Außenkorrosion macht Korrosionsschutzmaßnahmen meist entbehrlich. In einigen Fällen sind nach DIN 50929 aber auch Kupferrohrleitungen gemäß dem entsprechenden Regelwerk gegen äußere Korrosionseinflüsse zu schützen (DIN 1988, DVGW-TRGI, TRF):

a) Nach DIN 1988, TRGI und TRF sind erdverlegte Leitungen grundsätzlich zu schützen. So z.B. durch werkseitigen Korrosionsschutz durch Kunststoffummantelung der Rohre in den Anforderungen nach DIN EN 12068, Beanspruchungsklasse B.

Nach TRGI gilt wegen des Fehlens einer eigenen Prüfnorm für werkseitig kunststoffummantelte Kupferrohre diese Forderung als erfüllt, wenn der Kunststoffmantel den Anforderungen der DIN EN 12068 in der Beanspruchungsklasse B in folgenden Punkten entspricht: Porenfreiheit, spezifischer Umhüllungswiderstand, Eindruckwiderstand, Schlagbeständigkeit, Reißdehnung und Reißfestigkeit. Ferner müssen vorummantelte Kupferrohre den in DIN EN 13349 geforderten Herstelleigenschaften entsprechen.

Bei Verwendung dieser Rohre ist im Bereich der Verbindungsstellen darauf zu achten, dass diese sorgfältig – wie nachfolgend für den nachträglichen Korrosionsschutz beschrieben – nachisoliert werden.

Weiterhin ist auch ein **nachträglicher Korrosionsschutz** durch Korrosionsschutzbinden und Schrumpfschläuche in der Beanspruchungsklasse A für nicht korrosive Böden bzw. in der Be-

anspruchungsklasse B für korrosive Böden möglich. Da aber in der Regel die Korrosivität von Böden nicht bekannt ist, empfiehlt sich grundsätzlich Korrosionsschutzmaßnahmen der Beanspruchungsklasse B zu wählen. Für Armaturen, Rohrverbindungen und Formstücke können auch Schrumpfschläuche der Klasse C verwendet werden.

b) Freiverlegte Außenleitungen aus Kupfer benötigen in der Regel keinen äußeren Korrosionsschutz. Nur dort, wo dieser dennoch notwendig ist (z. B. in besonders aggressiver Atmosphäre), können Korrosionsschutzbeschichtungen (Anstrichsysteme) in Anlehnung an DIN EN ISO 12944 oder auch vorummantelte Kupferrohre verwendet werden.

Bei **Innenleitungen** können auch Korrosionsschutzbinden und Schrumpfschläuche in der Beanspruchungsklasse A verwendet werden.

Bei erdverlegten Trinkwasserleitungen muss die Bildung galvanischer Elemente vermieden werden. Daher sind, sofern es sich um durchgehende metallene Leitungen handelt, im Gebäude Isolierstücke nach DIN 3389 einzubauen. Diese Isolierstücke müssen mit dem DIN-DVGW-Prüfzeichen und der Registernummer sowie der Kennfarbe "grün" für den Einsatzzweck "Wasser" gekennzeichnet sein. Es ist selbstverständlich streng darauf zu achten, dass die elektrische Trennung der Isolierstücke nicht, z.B. durch falsch durchgeführten Potenzialausgleich, aufgehoben wird. Dies gilt insbesondere beim Einbau elektrischer Betriebsmittel (z.B. Motorschieber) in solche erdverlegten Rohrleitungen.

Der Werkstoff Kupfer weist in Erdböden im Allgemeinen eine gute Korrosionsbeständigkeit auf. Ausnahmen, in denen ein äußerer Korrosionsschutz erforderlich wird, sind die selten vorkommenden korrosiven Böden (z.B. torfhaltige Böden).

DIN 1988-7 schreibt zur Vermeidung

von Elementbildung mit Rohrleitungen aus unedleren Werkstoffen wie z.B. Stahl aber vor, Kupferrohre als zusätzliche Sicherheit zu der elektrischen Trennung durch die Isolierstücke mit Kunststoffen zu umhüllen. Derartige Kunststoffumhüllungen sollen wie unter a) beschrieben beschaffen sein.

Freiverlegte Innenleitungen und Außenleitungen aus Kupfer benötigen im Allgemeinen und auch in Nassräumen keinen Korrosionsschutz. Andere Maßnahmen, wie z.B. Schwitzwasserschutz, Schutz vor Erwärmung oder Wärmeverluste usw. können aufgrund von Regelwerken (DIN 1988, EnEV) notwendig sein.

Freiverlegte Außenleitungen für

Gas müssen wegen der hohen sicherheitstechnischen Anforderungen auch bei Kupfer einen Schutz vor Außenkorrosion aufweisen (TRGI). Dieser ist entweder wie oben unter a), oder wie unter b) für Außenleitungen beschrieben, durchzuführen. Insbesondere Gasleitungen sind zusätzlich gegen mechanische Beschädigungen und bei feuchten Gasen gegen Frosteinwirkung zu schützen.

Für die Fälle, in denen Kupferrohrleitungen und Verbindungsstellen in aggressiver Atmosphäre verlegt werden, sind diese wie unter a) beschrieben zu schützen. Aggressive Atmosphäre herrscht z.B. in Batterieoder Galvanikräumen, aber auch in deutlich ammonium-, nitrit- oder sulfidhaltiger Umgebung. Solche Umgebungsbedingungen können in landwirtschaftlichen Stallungen, in der Tierkörperverwertung infolge Umsetzung von Eiweißprodukten oder im Bereich von Faulgasen (z. B. aus Abwasserleitungen) vorliegen.

Die Verarbeitung von phosphorhaltigen Loten sollte in schwefelhaltigen Medien grundsätzlich vermieden werden, da diese Legierungen durch den Schwefel angegriffen und zerstört werden. In diesen Fällen kommen Hartlote mit hohem Silberanteil (vgl. Tab. 4 b) zum Einsatz. Bei unklaren Bedingungen sollte der Kontakt zu beratenden Stellen aufgenommen

werden, um die Lotauswahl auf die besonderen Atmosphären abzustimmen.

Kupferrohre unter Putz, die in direktem Kontakt mit Mörtel, Kalk oder Gips stehen, benötigen in der Regel keinen speziellen Korrosionsschutz. Schallschutz, Wärmedämmung und -ausdehnung sind jedoch stets zu beachten.

Eine Ausnahme besteht für den Fall, dass die mit dem Kupferrohr in Kontakt stehenden Baustoffe ammoniumhaltige Zusätze wie z.B. Abbindeverzögerer enthalten.

Rohrleitungen – auch solche aus Kupfer – sollten nicht der ständigen Einwirkung von Feuchtigkeit ausgesetzt sein. Besteht die Gefahr einer ständig feuchten Umgebung (z.B. im Fußbodenbereich von Hallenschwimmbädern, in Saunaräumen etc.), so sind die Kupferrohre gegen Außenkorrosion wie unter a) und b) beschrieben zu schützen.

Für **erdverlegte Gasleitungen** ist in der TRGI ebenfalls der Einbau von Isolierstücken nach DIN 3389, jedoch für den Durchflussstoff "Gas", zwingend vorzusehen. Sie müssen mindestens mit "G" gekennzeichnet sein. Isolierstücke von Innenleitungen müssen thermisch höher belastbar sein und die Kennzeichnung "GT" tragen. Auch bei Gasleitungen wird zusätzlich zur elektrischen Trennung eine Kunststoffumhüllung der erdverlegten Kupferleitung entsprechend den Ausführungen unter a) gefordert.

Flüssiggasleitungen aus Kupfer benötigen als freiverlegte Innenleitungen keinen zusätzlichen Korrosionsschutz, es sei denn, die Rohre werden, wie zuvor beschrieben, in Räumen mit aggressiver Atmosphäre verlegt. Sinngemäß gilt dies auch für freiverlegte Außenleitungen. Erdverlegte Flüssiggasleitungen sind mit einer Korrosionsschutzumhüllung zu versehen, wie in a) beschrieben.

Frei verlegte Ölleitungen aus Kupferrohr bedürfen in der Regel keines zusätzlichen Korrosionsschutzes. Bei Verlegung in aggressiver Atmo-

sphäre ist, wie auch zuvor beschrieben, ein Schutz gegen Außenkorrosion entsprechend den Ausführungen nach a) oder b) durchzuführen. Werden Ölleitungen mit Anlageteilen aus elektrochemisch unedleren Werkstoffen wie z.B. Stahl verbunden, so müssen wegen der Gefahr einer galvanischen Elementbildung diese durch Isolierstücke voneinander getrennt werden. Entsprechendes gilt für Isolierung von Rohren gegen Halterungen. Der Einbau von Isolierstücken darf dann selbstverständlich nicht erfolgen, wenn die Leitungen durch eine gemeinsame kathodische Korrosionsschutzanlage geschützt sind.

Die Leitung ist auch dann mit einer kathodischen Korrosionsschutzanlage zu schützen, wenn sie mit einem Behälter verbunden ist, der seinerseits kathodisch geschützt ist.

4.4 Wärmeschutz

Um die Wärmeverluste aus warmgehenden Rohrleitungen (Heizung, erwärmtes Trinkwasser) zu minimieren, sind die Anforderungen der Energieeinsparverordnung (EnEV) und der DIN 4108 (Wärmeschutz im Hochbau) zu beachten.

Die Anforderungen zur Begrenzung der Wärmeabgabe von Wärmeverteilungs- und Warmwasserleitungen sowie Armaturen sind in Anhang 5 der EnEV beschrieben (Tabelle 13). Wird mit Materialien gedämmt, deren Wärmeleitfähigkeit von dem in der EnEV genannten Wert abweicht, sind die Mindestdicken der Dämmschichten entsprechend umzurechnen.

Verschiedene Hersteller bieten werkseitig wärmegedämmte Kupferrohre an, die zu 50 % bzw. 100 % nach EnEV gedämmt sind und durch hohe Wärmedurchgangswiderstände der Dämmung besonders kleine Manteldicken aufweisen (siehe Bild 16).

Die Temperatur von erwärmtem Trinkwasser muss innerhalb des zirkulierenden Systems (Rohrleitungen) mindestens 55 °C betragen. Ausnahmen bilden hier Trinkwasseranlagen, die höhere Temperaturen zwingend erfor-

Tab. 13: Wärmedämmung von Wärmeverteilungs- und Warmwasserleitungen sowie Armaturen

EnEV-	Zeile	Art der Leitungen/	Mindestdicke Dämmschicht, bezogen auf eine Wärmeleit-
Anforderung		Armaturen	fähigkeit von 0,035W/(m·K)
100%	1	Innendurchmesser bis 22 mm	20 mm
	2	Innendurchmesser über 22 mm bis 35 mm	30 mm
	3	Innendurchmesser über 35 mm bis 100 mm	gleich Innendurchmesser
	4	Innendurchmesser über 100 mm	100 mm
50%	5	Leitungen und Armaturen nach den Zeilen	1/2 der Anforderungen
		1-4 in Wand- und Deckendurchbrüchen,	der Zeilen 1 bis 4
		im Kreuzungsbereich von Leitungen, an	
		Leitungsverbindungsstellen, bei zentralen	
		Leitungsnetzverteilern	
	6	Leitungen von Zentralheizungen nach den	1/2 der Anforderungen
		Zeilen 1-4, die nach dem 31.01.2002 in	der Zeilen 1 bis 4
		Bauteilen zwischen beheizten Räumen	
		verschiedener Nutzer verlegt werden	
6 mm	7	Leitungen nach Zeile 6 im Fußbodenaufbau	6 mm
	8	Kälteverteilungs- und Kaltwasserleitung	6 mm
		sowie Armaturen von Raumlufttechnik- und	
		Kältesystemen	

dern. Zirkulationssysteme müssen mit einer selbsttätig wirkenden Einrichtung zur Abschaltung der Zirkulationspumpen versehen sein, wobei die Abschaltung max. 8 h betragen darf. Nach DIN 4108 (Wärmeschutz im Hochbau) muss der Mindestwärmeschutz an jeder Stelle des Gebäudes vorhanden sein.

Leitungen für kaltes Trinkwasser sind so anzuordnen, dass die Qualität des Trinkwassers nicht durch die Wärmebeeinflussung der Umgebung beeinträchtigt wird.

Somit sind entsprechend den Anforderungen der DIN 1988-2 in der Regel auch Kaltwasserleitungen zu dämmen.

Bild 16: Vergleich des Platzbedarfs von werkseitig wärmegedämmten mit bauseits wärmegedämmten Kupferrohren (6366)

a) Rohr 15 × 1 mm mit handelsüblicher Wärmedämmung. λ = 0,040 W/mK

b) Stangenrohr 15 × 1 mm mit werkseitiger Wärmedämmung. $\lambda = 0.025$ W/ mK

Generell müssen die vorgesehenen Dämmstoffe bei den zu erwartenden Betriebstemperaturen beständig sein. Das Dämmmaterial muss vor Feuchtigkeitseinfluss geschützt sein, da sonst die Dämmeigenschaften nachteilig beeinflusst werden. Kaltwasserleitungen sind vor Tauwasserbildung zu schützen. Ein Schutz hiervor ist dann nicht erforderlich. wenn das Rohr eine geeignete Umhüllung (z.B. werkseitige Kunststoffummantelung) aufweist. Rohrleitungen in Kühlwassersystemen sind generell mit speziellen, tauwasserabweisenden und für diesen Einsatzzweck freigegebenen Dämmstoffen von ausreichender Stärke zu versehen.

Weitere Informationen können auch dem ZVSHK-Merkblatt "Dämmung von Sanitär- und Heizungsrohrleitungen" entnommen werden.

4.5 Schallschutz

Rohrleitungen sind in bestimmten, in DIN 4109 (Schallschutz im Hochbau) festgelegten Fällen zur Minderung der Schallübertragung zu dämmen.

Geräusche in Trinkwasserleitungen entstehen üblicherweise nicht in den Rohrleitungen, sondern in den Armaturen und Sanitärgegenständen. Sie können aber durch die Rohrleitungen auf andere Bauteile übertragen werden. Rohrummantelungen (z.B. werk-

seitige Kunststoffummantelung), Rohrschellen mit Gummieinlagen sowie weitere bautechnische Maßnahmen vermeiden derartige Vorgänge. Rohrleitungen im Mauerwerk und im Fußbodenaufbau müssen gegen Körperschallübertragung gedämmt sein und dürfen die Trittschalldämmung des Fußbodens nicht beeinträchtigen.

4.6 Brandschutz

Das Brandverhalten von Installationsbauteilen wird in DIN 4102 (Brandverhalten von Baustoffen und Bauteilen) klassifiziert:

Klasse A: Nicht brennbare Baustoffe A1: nicht brennbar und ohne brennbare Bestandteile A2: nicht brennbar mit geringfügigen brennbaren Bestandteilen

Klasse B: Brennbare Baustoffe B1: schwerentflammbar B2: normalentflammbar B3: leichtentflammbar

Die Brandschutzvorschriften werden in den einzelnen Landesbauordnungen festgelegt. Im Hochbau müssen alle brennbaren Baustoffe mindestens der Brandklasse B2 entsprechen und mit ihrer Brandklasse nach DIN 4102-11 gekennzeichnet sein.

Rohrleitungen sind im Sinne dieser Verordnungen Baustoffe. Kunststoffmäntel und Wärmedämmungen der Rohre müssen somit mindestens der Brandklasse B2 entsprechen und gekennzeichnet sein (Aufdruck: DIN 4102-B2).

Metalle, also auch Kupfer, entsprechen der Klasse A1 und sind nicht brennbar (s. a. DIN EN 1057). Werden Brandabschnitte von Leitungen überbrückt, so sind die diesbezüglichen Bestimmungen der jeweiligen Bauordnungen der Länder zu beachten.

Für Leitungen, die brennbare Medien führen, sind besondere bautechnische Maßnahmen zu berücksichtigen. Nach TRGI wird bei Leitungen, die in Installationsschächten angeordnet werden, bei der Durchführung durch feuerbeständige Decken und Wände auf die bauaufsichtlichen Brandschutzbestimmungen verwiesen. In Treppen-

Tab. 14: Schenkellänge A in Abhängigkeit von der Rohrabmessung und der Ausdehnung (siehe Bilder 17 und 19)

räumen "notwendiger Treppen" dürfen nach TRGI Gasleitungen nur angeordnet werden, wenn sie unter Putz ohne Hohlraum oder in einem längsgelüfteten Schacht, der keinen Luftaustausch mit dem Treppenraum hat und aus nichtbrennbaren Baustoffen
_
austausch mit dem Treppenraum hat
und aus nichtbrennbaren Baustoffen
besteht, verlegt werden. Von dieser
Bestimmung ausgenommen sind
Wohngebäude mit geringen Höhen
und maximal zwei Wohnungen.
S

Werden Gasleitungen auf Putz verlegt, müssen die Rohrbefestigungen (einschließlich der Dübel) aus nicht brennbaren Stoffen bestehen. Die Anordnung der Befestigungselemente ist so zu wählen, dass die Befestigung der Rohrleitung auch dann noch gewährleistet ist, wenn im Brandfall die Festigkeit der Lötverbindungen nicht mehr in vollem Umfang gegeben ist.

Bei allen Montagearbeiten – insbesondere bei Arbeiten in bewohnten Gebäuden – sind die Belange des Brandschutzes zu berücksichtigen. Ebenso sind die einschlägigen Unfallverhütungsvorschriften zu beachten. Im Hinblick auf die Brandverhütung ist in bewohnten Räumen den kalten Verbindungstechniken (Pressen, Klemmen, usw.) der Vorzug zu geben bzw. bei Lötverbindungen ist die Verwendung elektrischer Widerstandslötgeräte für das Weichlöten besonders zweckmäßig.

4.7 Temperaturbedingte Längenausdehnung

Ein Meter Kupferrohr dehnt sich unabhängig vom Rohrdurchmesser bei einer Temperaturerhöhung von 100 K um ca. 1,7 mm aus (Bild 17). Wird diese Tatsache bei der Rohrinstallation von warmwasser- oder heizwasserführenden Leitungen nicht beachtet und den Rohren keine Dehnungsmöglichkeit gegeben, so kann es durch die auftretenden Spannungen zu Rissbildungen im Rohr, im Fitting oder in der Verbindungsstelle und damit zur Undichtigkeit kommen.

Auch Schädigungen der Bausubstanz können prinzipiell nicht ausgeschlossen werden.

Rohraußen-	thermisch bedingte Rohrausdehnung ∆I von								
durchmesser	5 m m	10 mm	15 mm	20 mm					
in mm	kompensierbar durch Mindestschenkellänge A (mm)								
12	475	670	820	950					
15	530	750	920	1060					
18	580	820	1000	1160					
22	640	910	1110	1280					
28	725	1025	1250	1450					
35	810	1145	1400	1620					
42	890	1250	1540	1780					
54	1010	1420	1740	2010					
64	1095	1549	1897	2191					
76,1	1195	1689	2069	2389					
88,9	1291	1826	2236	2582					
108	1423	2012	2465	2846					
133	1579	2233	2735	3158					
159	1727	2442	2991	3453					
219	2026	2866	3510	4053					
267	2237	3164	3875	4475					

Tab. 15: Bestimmungsmaß R von Dehnungsausgleichern aus Kupferrohr für verschiedene Außendurchmesser in Abhängigkeit von der Dehnungsaufnahme

	Außen-	ermitt	ermittelte Dehnungsaufnahme ΔI (mm)								
	durchmesser	12	25	38	50	75	100	125	150		
	in d _a (mm)	Bestin	ımungs	maß R*	der Del	nungs	ausgleid	:her (mn	n)		
	12	195	281	347	398	488	562	627	691		
	15	218	315	387	445	548	649	709	772		
	18	240	350	430	495	600	700	785	850		
	22	263	382	468	540	660	764	850	930		
	28	299	431	522	609	746	869	960	1056		
2R	35	333	479	593	681	832	960	1072	1185		
	42	366	528	647	744	912	1055	1178	1287		
	54	414	599	736	845	1037	1194	1333	1463		
	64	450	650	801	919	1126	1300	1453	1592		
	76,1	491	709	874	1002	1228	1418	1585	1736		
	88,9	531	766	944	1083	1327	1532	1713	1877		
	108	585	844	1041	1194	1463	1689	1888	2068		
	133	649	937	1155	1325	1623	1874	2095	2295		
	159	710	1025	1263	1449	1775	2049	2291	2510		
	219	833	1202	1482	1700	2083	2405	2689	2945		
	267	920	1328	1637	1878	2300	2655	2969	3252		

^{*} Näherungsgleichung

Als Grundregel für die Beachtung der Wärmedehnung gilt: Zwischen zwei Festpunkten muss dem Rohr eine Dehnungsmöglichkeit gegeben werden. Bei kürzeren Leitungsabschnitten kann die erforderliche Dehnungsmöglichkeit meist durch eine sinnvolle Rohrführung und richtige Anordnung der Rohrschellen geschaffen werden (Bild 18).

In Rohrschellen, Wand- und Deckendurchführungen muss sich das Rohr ebenfalls gleitend bewegen können. Der Anordnung der Festpunkte kommt besondere Bedeutung zu (Bild 19).

Reichen bei geraden Rohrstrecken zwischen zwei Festpunkten die Bewegungsmöglichkeiten aufgrund der Rohrführung nicht aus, so sind

Bild 17: Längendehnung von Kupferrohren durch Temperaturerhöhung in Abhängigkeit von der Rohrlänge (3679)

zusätzliche Dehnungselemente in Form von Ausdehnungsbogen oder Kompensatoren einzubauen (Bild 20).

Ausdehnungsbogen können sowohl über den Handel bezogen als auch selbst angefertigt werden.

Bild 18: Rohrschellenabstand bei Wand- und Deckendurchführungen (4760)

Etagenbogen können zum Dehnungsausgleich genutzt werden, wenn die Länge der Rohrschenkel den für das Maß A in Tabelle 14 angegebenen Wert nicht unterschreitet. Da Dehnungsbogen die thermisch bedingten Längenänderungen nur in begrenztem

Bild 19: Anordnung von Rohrschellen bei Umführungen (3533)

Umfang aufnehmen können, müssen Mindestabstände für deren Anordnung eingehalten werden. Tabelle 15 gibt die Dehnungsaufnahme von Ausdehnungsbogen in Abhängigkeit von dem Rohrdurchmesser an.

Kompensatoren sind Dehnungsausgleicher, die besonders bei Platzmangel vorteilhaft sind. Sie sind meist nur
in axialer Richtung beanspruchbar
und bedürfen einer Führung. Sie dürfen nicht überbeansprucht werden.
Die Einbauhinweise der Hersteller
sind zu beachten.

Bei der Verwendung von Kompensatoren mit Führungsteil aus Kupfer und Dehnungsausgleicherteil aus nichtrostendem Stahl ist bei Weichlötverbindungen ein Flussmitteleintrag in innenliegende Ausgleichsteile aus nichtrostendem Stahl aus Korrosionsschutzgründen unbedingt zu vermeiden.

Bei Unterputzinstallationen ist zu beachten, dass die Dehnungsstellen nicht fest eingeputzt werden. Bogen oder Abgänge sind mit geeignetem Dämmstoff zu umhüllen (Bild 21). Diese Anforderung ist durch Wärmeschutz- und Schallschutzmaßnahmen in der Regel meist erfüllt.

In Flächenheizungen mit üblichen Heizungswassertemperaturen (bis zu ca. 50 °C Vorlauftemperatur) können die Rohrschlangen aus werkseitig ummantelten Kupferrohren im Allgemeinen ohne besondere Vorkehrungen zur Dehnungsaufnahme in die Lastverteilschicht (Estrich) eingebettet werden, wenn die Rohrlänge zwischen zwei Bogen 5 m nicht überschreitet.

Bei höheren Vorlauftemperaturen oder Rohrlängen über 5 m zwischen zwei Bogen müssen die Bogen mit elastischem Material gepolstert werden. Für die Erstellung von Fußbodenheizungs-Systemen sind die Angaben der Systemhersteller zu beachten.

Bild 20: Ausdehnungsmöglichkeiten bei Rohrleitungen (4761)

Bild 21: Auspolsterung von Abzweigen und Richtungsänderungen bei Unterputzverlegung (3534)

4.8 Befestigung

Gas- und Wasserleitungen dürfen weder an anderen Leitungen befestigt, noch als Träger für andere Leitungen oder Lasten verwendet werden. In wasserführenden Leitungen muss die Befestigung außerdem den Schallschutz (Kapitel 4.5) gewährleisten; in warmwasserführenden Leitungen muss zusätzlich die Wärmedehnung der Rohrleitungen berücksichtigt werden (Kapitel 4.7). Bei Auswahl und Anordnung der Rohrbefestigungen ist auf diese Anforderungen zu achten. Die Abstände der Rohrschellen für wasserführende Leitungen sind in Tabelle 16 aufgeführt.

Rohrbefestigungen für Gasleitungen müssen nach TRGI brandsicher ausgeführt sein. Kunststoffhalterungen und -dübel dürfen daher für Gasleitungen nicht verwendet werden. Die Halterungen und Dübel müssen aus Metall sein.

4.9 Verlegung im Mauerwerk und auf Rohbetondecken

Bei Verlegung im Mauerwerk muss zwischen bauseitig geplanten (also z.B. im Verband gemauerten) Aussparungen und nachträglich hergestellten Durchbrüchen und Schlitzen unterschieden werden.

In beiden Fällen ist die DIN 1053 (Mauerwerk) zu beachten. Da meist nicht die erforderlichen Schlitztiefen verfügbar sind, ist in diesen Fällen der Vorwandinstallation der Vorzug zu geben. Informationen hierzu sind unter anderem dem ZVSHK-Merkblatt "Vorwandinstallation" zu entnehmen. In den Fällen, in denen eine Vorwandinstallation nicht zu realisieren ist, kann durch die Verwendung werkseitig gedämmter Kupferrohre mit ihren verhältnismäßig geringen Außendurchmessern eine Verlegung oftmals noch möglich sein.

Rohrleitungen in Wänden und Decken sind mit geeigneten, elastischen Umhüllungen zu versehen, um eine weitgehende Entkopplung der Schallübertragung zwischen Rohr und Baukörper zu erzielen. Werkseitig ummantelte oder wärmegedämmte Kupferrohre erfüllen diese Forderung. Werden Rohrleitungen auf Rohbetondecken verlegt, so muss der Fußbodenaufbau nach DIN 18560 (Estriche) ausgeführt werden. Des Weiteren muss der nach DIN 4108 und EnEV vorgeschriebene Wärmeschutz eingehalten werden, einschließlich der Schallschutzforderungen nach DIN 4109.

DIN 18560-2 enthält eine Reihe von Vorschriften über die Verlegung von Rohren auf Rohbetondecken, auf die schwimmende Estriche aufgebracht werden. Danach dürfen Rohbetondecken keine punktförmigen Erhebungen, Rohrleitungen oder ähnliches aufweisen, die zu Schallbrücken und/oder Schwankungen in den Estrichdicken führen können. Nach DIN 18560-2 müssen Rohrleitungen, die auf tragendem Untergrund verlegt sind, fixiert sein.

Weitere Voraussetzungen für ausreichenden Schallschutz sind die fachgerechte Verlegung der Dämmschichten, deren Abdeckung mit PE-Folie und die richtige Estrichausführung nach DIN 18560.

Tab. 16: Befestigungsabstände wasserführender Kupferrohre nach DIN 1988

Außendurchmesser in mm	12	15	18	22	28	35	42	54	64	76,1	88,9	108	133	159
Befestigungsabstand in m	1,25	1,25	1,50	2,00	2,25	2,75	3,00	3,50	4,00	4,25	4,75	5,00	5,00	5,00

Bild 22: Verteilung für erwärmtes Trinkwasser aus Kupferrohr ohne Zirkulation (2849)

Bezogen auf das Trittschallverhalten gilt, dass die Dämmwirkung eines schwimmenden Estrichs nur erreicht ist, wenn der Estrich keine feste Verbindung zu der Rohdecke, z.B. über die Rohrleitung aufweist. Die Trittschalldämmung darf ohne gesonderten Nachweis des ausreichenden Schallschutzes nicht unterbrochen werden. Bei anderen Ausführungen ist der besondere Nachweis in Bezug auf die Trittschalldämmung vom Dämmstoffhersteller einzuholen.

An Wänden und anderen senkrechten, den Estrich durchdringenden Bauteilen, z.B. Rohrleitungen, sind vor dem Einbringen des Estrichs zur Vermeidung von Schallbrücken Randdämmstreifen oder elastische Umhüllungen einzubringen. Bei Gussasphalt muss der Randdämmstreifen hitzebeständig sein.

4.10 Altbaumodernisierung

Durch geringe Außendurchmesser und zeitsparende Verlegetechniken eignen sich Kupferrohre besonders für die Renovierung oder Erweiterung bestehender Anlagen.

Hierbei erleichtert oftmals eine Vorwandinstallation die Einhaltung der Regeln der Technik hinsichtlich der Bauwerksstatik, des Wärme-, Schallund Brandschutzes, da das Mauerwerk weitgehend unbeschädigt bleibt. Bei einer nachträglichen Unterputzverlegung ist dagegen die Einhaltung dieser Regeln sehr aufwendig und mitunter gar nicht möglich.

Ringrohre eignen sich besonders für den nachträglichen Einbau innerhalb von Wohnungen, da sie leicht zu biegen sind und sich einfach den bestehenden baulichen Gegebenheiten anpassen lassen. Sie sind leicht verdeckt zu verlegen, z.B. hinter Sockelleisten.

Stangenrohre (also Rohre in gestreckten Längen) als Steige- und Verteilleitungen haben - bei warmgehenden Leitungen insbesondere dann, wenn sie mit einer werkseitig ummantelten Wärmedämmung versehen sind - geringe Außendurchmesser und somit einen verringerten Platzbedarf.

Für die Errichtung einer Installationswand oder den Einsatz von Installationsbausteinen bieten sich Kupferrohre besonders auch wegen ihrer geringen Außendurchmesser und ihrer guten Biegbarkeit an.

4.11 Vorfertigung

Werkstattmäßige Vorfertigungen eignen sich bei größeren Bauvorhaben mit mehreren Bädern und Küchen gleichen Grundrisses und als objektbezogene, vorgefertigte Teile für Bauvorhaben jeder Größe.

Die Z-Maß-Methode ermöglicht dabei eine Rationalisierung durch serien-mäßige Vorfertigung. Es ist jedoch zu beachten, dass die Z-Maße herstellerspezifisch sind.

Bei der werkstattmäßigen oder industriellen Vorfertigung von Installationsbausteinen herrschen in der Regel günstigere Arbeitsbedingungen als auf der Baustelle. Dies kann bei Anwendung geeigneter Werkzeuge und Maschinen zu anderen Arbeitsweisen bei der Herstellung von Verbindungen führen als im DVGW-Arbeitsblatt GW 2 beschrieben.

4.12 Zusammenbau von Kupfer mit anderen Werkstoffen

4.12.1 Trinkwasser-Installationen

Der Einsatz unterschiedlicher Werkstoffe in einer Trinkwasser-Installation entspricht nach DIN 1988-7 den Regeln der Technik.

Kupfer, innenverzinntes Kupfer, Kupferlegierungen und Edelstahl können problemlos miteinander kombiniert werden; hingegen sind bei Anwesenheit von verzinkten Stahlbauteilen einige Besonderheiten zu beachten.

Die bei Kupferrohren insbesondere während des anfänglichen Betriebs durch Schutz- und Deckschichtbildungsvorgänge in geringen Mengen in Lösung gehenden Kupferionen können in nachgeschalteten Rohrleitungen aus verzinktem Stahl so genannten 'kupferinduzierten Lochfraß' auslösen.

Daher ist in Trinkwasserleitungen stets die so genannte Fließregel einzuhalten: Kupferrohre sind – in Fließrichtung des Wassers gesehen – stets nach Bauteilen aus verzinktem Stahl einzubauen.

Bild 23: Verteilung für erwärmtes Trinkwasser mit Zirkulation, alle Rohrleitungen inkl. Kaltwasserzulauf aus Kupferrohr (2895)

Die Rezirkulation von Wasser aus Kupferleitungen und Bauteilen und Apparaten mit wasserberührten Flächen aus Kupferwerkstoffen in den Bereich von verzinkten Leitungen ist durch geeignete Maßnahmen zu vermeiden (z. B. Verwendung von Rückflussverhinderern).

Bei Kaltwasserleitungsanlagen kann diese Fließregel durch geeignete Vorgehensweisen immer eingehalten werden: Bei Kellerverteilungs- und Steigleitungen aus verzinktem Stahlrohr können z.B. die Stockwerksleitungen in Kupfer ausgeführt werden. Auch in Anlagen für erwärmtes Trinkwasser mit einem Kaltwasseranschluss und einem Trinkwassererwärmer aus verzinktem Stahl können anschlie-Bend Kupferrohre verwendet werden, wenn keine Zirkulation besteht (Rezirkulation ist, wie oben erwähnt, zu verhindern) (Bild 22). Besteht der Trinkwassererwärmer aus Stahl und ist an diesen eine Zirkulationsleitung aus Kupfer angeschlossen (Bild 23), ist die Fließregel verletzt worden. In diesem Fall ist der Trinkwassererwärmer durch Innenbeschichtung (z.B. Emaille) und zusätzlichen kathodischen Korrosionsschutz gegen Schäden zu schützen. Die so genannten Opferanoden des kathodischen Korrosionsschutzes sind entsprechend den Angaben der Gerätehersteller regelmäßig zu warten bzw. zu erneuern.

Werden Werkstoffe unterschiedlichen freien Korrosionspotenzials wie z.B. Kupfer und verzinkter Stahl so zusammengebaut, dass sie sich direkt berühren, kann an dem elektrochemisch unedleren Werkstoff Stahl theoretisch Kontaktkorrosion auftreten. In der Praxis hat die Kontaktkorrosion jedoch kaum Bedeutung. Seit Jahrzehnten werden Armaturen aus Kupferwerkstoffen wie Ventile, Wasserzähler usw. in Rohrleitungen aus verzinktem Stahl eingebaut, ohne dass dadurch bedingte Korrosionsschäden in größerem Umfange bekannt geworden sind. Hierbei spielen die konstruktiven Verhältnisse, insbesondere das Flächenverhältnis von edleren zu unedleren Werkstoffen, eine Rolle. Je kleiner dieses Verhältnis ist, desto geringer ist die Schadenswahrscheinlichkeit.

4.12.2 Heizungsanlagen

In fachgerecht ausgeführten Warm-wasser-Heizungsanlagen besteht nach VDI 2035 bei gemeinsamer Installation von Kupferrohren und Rohren sowie Anlagenteilen aus anderen metallenen Werkstoffen (z.B. schwarzer Stahl) keine Korrosionsgefahr.

Der für die Korrosion wichtige Reaktionspartner Sauerstoff wird schon bei der ersten Aufheizung des Wassers thermisch ausgetrieben. Er entweicht bei der Entlüftung der Anlage. Verbleibende Sauerstoffreste werden durch die Metalloberfläche gebunden. Eine mögliche Zufuhr von Sauerstoff, z.B. durch undichte Stopfbuchsen, muss durch sachgemäße Installation (z.B. Bemessung und Wartung des Ausgleichsgefäßes) verhindert werden.

Bei größeren Heizsystemen lässt sich ein Sauerstoffeintrag nicht immer mit Sicherheit vermeiden. VDI 2035 gibt Hinweise für die dann zu ergreifenden Maßnahmen (z.B. chemische Sauerstoffbindung).

4.13 Dichtheitsprüfungen

Alle Arten von fertig gestellten Rohrleitungsanlagen müssen auf Dichtheit überprüft werden. Die Prüfung muss zu einem Zeitpunkt erfolgen, zu dem alle Verbindungsstellen noch zugänglich und nicht verdeckt sind.

4.13.1 Trinkwasserleitungen

Für Trinkwasserleitungen ist die Druckprobe im ZVSHK-Merkblatt "Dichtheitsprüfungen von Trinkwasser-Installationen" und in DIN 1988-2 geregelt.

Wenn Stillstandszeiten zwischen der Druckprobe und der Inbetriebnahme bzw. der ersten Nutzung der Installation zu erwarten sind und/oder die Stillstandszeit in eine Frostperiode fällt, so ist eine trockene Dichtheitsprüfung mit ölfreier Druckluft oder Inertgas (z. B. Stickstoff) durchzuführen. Dies ist insbesondere für hygienisch sensible Bereiche von Bedeutung, da überlang stagnierendes Wasser durch mögliche Keimvermehrung u. U. auch die späteren hygienischen Eigenschaften des Rohrsystems in Frage stellen kann. Eine trockene Druckprobe schließt derartige Probleme von vornherein aus.

Bei der trockenen Druckprobe wird zunächst eine **Dichtheitsprüfung** mit einem Prüfdruck von 110 mbar und einer Prüfzeit von mindestens 30 Minuten durchgeführt.
Bei Rohrleitungen mit einem Leitungsvolumen über 100 Liter muss die Prüfzeit je weitere 100 Liter Volumen um 10 Minuten erhöht werden.
Der Dichtheitsprüfung folgt eine **Belastungsprüfung** mit einem Prüfdruck von höchstens 3 bar. Nach Aufbringen des Prüfdrucks beträgt die Prüfzeit 10 Minuten.

Tab. 17: Alternative Vorgehensweisen bei Druckprüfung, Spülen, Inbetriebnahme und Übergabe bei Trinkwasser- Installationen

Undichtigkeiten machen sich teilweise schon akustisch bemerkbar. Entstehen Schwierigkeiten bei der Ortung der undichten Stellen, so ist die Anwendung der bei Gasleitungen üblichen Hilfsmittel wie Besprühen oder Bepinseln aufschäumender Lösungen möglich. Wird eine trockene Druckprüfung durchgeführt, so ist besonders auf die Vermeidung möglicher Unfallgefahren zu achten (keine Kunststoff-Baustopfen verwenden!). Eine Dichtheitsprüfung mit Wasser nach DIN 1988-2 sollte nur dann durchgeführt werden, wenn der Zeitraum von der Prüfung bis zur Inbetriebnahme sehr kurz ist und wenn sichergestellt ist, dass der Haus- oder Bauwasseranschluss vorab gespült und vom zuständigen Wasserversorger für den Betrieb freigegeben wurde.

Prüfungen mit Wasser sind grundsätzlich nur über hygienisch einwandfreie Komponenten und mit filtriertem Trinkwasser durchzuführen (Filter nach DIN EN 13443-1). Es ist für eine vollständige Entlüftung der Anlagenteile zu sorgen. Trinkwasser-Installationen sind mit dem 1,5-fachen des höchstmöglichen Betriebsüberdruckes zu prüfen.

Innerhalb einer Prüfzeit von 10 Minuten darf kein Druckabfall am Prüfdruckmessgerät, das ein einwandfreies Ablesen einer Druckänderung von 0,1 bar zulassen muss, feststellbar sein.

Sofern zwischen Füllwassertemperatur und Umgebungstemperatur der Rohrleitung eine Differenz von etwa 10 K oder mehr vorliegt, ist nach dem Aufbau des Prüfdruckes eine Wartezeit von etwa 30 Minuten für den Temperaturausgleich einzuhalten.

Im ZVSHK-Merkblatt "Dichtheitsprüfungen von Trinkwasser-Installationen" sind Vordrucke von Druckprobenprotokollen und weitere detaillierte Hinweise zum Einsatz der verschiedenen Prüfverfahren enthalten.

bei zügigem Baufortschritt	bei langen Zeiträumen zwischen Druckprüfung und Inbetriebnahme				
Variante 1 (nass)	Variante 2 (trocken)				
1. Feinfilter einbauen	Trockene Dichtheitsprüfung auch abschnittsweise				
Erstbefüllung mit filtriertem Trinkwasser und vollständig entlüften	2. Feinfilter einbauen				
3. Druckprobe "nass"	 Erstbefüllung mit filtriertem Trinkwasser kurz vor Betriebsübergabe der Installation 				
4. Spülen der Installation mit filtriertem Trin	kwasser entsprechend ZVSHK-Merkblatt				
 Rohrleitungen entlüften und befüllt unter Druck verwahren; Entleerung bzw. Teilentleerung vermeiden 					
 Betriebsübergabe der Anlage mit Einweisung des Bauherren und Hinweis auf DIN 1988-8 (Vermeidung von längeren Stillstandszeiten) 					

Für vorgefertigte Bauteile, die nach der Fertigstellung und Druckprüfung längere Zeit zwischengelagert werden, ist die trockene Druckprüfung besonders empfehlenswert.

4.13.2 Erdgasleitungen

Gasleitungen sind nach TRGI mit Luft oder einem inerten Gas wie z.B. Stickstoff oder trockenem Kohlendioxid (niemals jedoch Sauerstoff!) zu prüfen. Vorprüfung, Hauptprüfung und die erforderliche Anzeigegenauigkeit der Messgeräte sind in der TRGI eindeutig festgelegt.

Die ZVSHK-Betriebsanleitung "Gasinstallationen" enthält ein Formular eines Druckprobenprotokolls. Die Inbetriebnahme ist ebenfalls in TRGI geregelt.

4.13.3 Heizungs- und Kühlleitungen

Heizungsleitungen (und ähnliche Leitungen wie z. B. Kühlwassersysteme) sind nach DIN 18380 (VOB Teil C) und DIN EN 14336 (Heizungsanlagen in Gebäuden) mit dem 1,3-fachen des Gesamtdruckes der Anlage (min. aber 1 bar Überdruck) zu prüfen. Möglichst unmittelbar nach der Kaltwasserdruckprüfung ist durch Aufheizen auf die höchste, der Berechnung zugrunde gelegte Heizwassertemperatur zu prüfen, ob die Anlage auch bei Höchsttemperatur dicht bleibt.

4.13.4 Ölleitungen

Heizölleitungen müssen nach DIN 4755 einer Druck- und Funktionsprüfung sowie weiteren Prüfungen unterzogen werden. Alle ölführenden Leitungen einschließlich der Absperrorgane sind nach dem Einbau vom Ersteller der Anlage einer Druckprüfung mit Luft bzw. inertem Gas mit dem 1,1-fachen Betriebsdruck oder einer Flüssigkeitsdruckprüfung mit dem 1,3-fachen Betriebsdruck, jedoch mit mindestens 5 bar, auszusetzen.

4.13.5 Flüssiggasleitungen

Druckprüfungen für Flüssiggas-Rohrleitungen sind nach TRF mit dem 1,1-fachen des zulässigen Betriebs-überdruckes, mindestens aber mit 1,0 bar, unter Einbeziehung der Ausrüstungsteile durchzuführen.

4.14. Spülen und Inbetriebnahme von Trinkwasser-Installationen

Grundsätzlich sind alle Trinkwasserleitungen unabhängig von der Art des verwendeten Werkstoffes nach ihrer Fertigstellung gründlich mit filtriertem Trinkwasser (Filter nach DIN EN 13443-1) zu spülen.

Prinzipiell können zwei Spülmethoden angewendet werden:
Das Spülverfahren mit Wasser nach
ZVSHK-Merkblatt kann immer angewendet werden, insbesondere aber auch dann, wenn bereits Armaturen in den Trinkwasserleitungen vorhanden sind, wie z. B. nach einer trockenen Druckprobe.

Das Spülverfahren mit Luft-Wasser-Gemisch nach DIN 1988-2 sollte dann angewendet werden, wenn beim Spülen mit Wasser keine ausreichende Spülwirkung zu erwarten ist.

Für eine uneingeschränkte Betriebssicherheit müssen durch das Spülen folgende Resultate erreicht werden:

- Reinigung der Rohrinnenoberflächen
- · Sicherung der Trinkwassergüte
- Vermeidung von Korrosionsschäden
- Vermeidung von Funktionsstörungen an Armaturen und Apparaten

Wurde eine trockene Dichtheitsprüfung (s. 4.13.1) durchgeführt, so sind die Leitungen in trockenem Zustand zu verwahren und das Spülen hat erst unmittelbar vor der Erstbefüllung / Inbetriebnahme zu erfolgen.

Nach einer Dichtheitsprüfung "nass" ist das in den Rohren verbliebene Wasser immer mit einer Wasserspülung auszuspülen, um einwandfreie hygienische Verhältnisse zu gewährleisten (s. a. Tabelle 17).

In Kupferrohr-Installationen können beide Spülverfahren – fachgerechte Anlagenplanung vorausgesetzt – angewendet werden. Bei der Wahl des Spülverfahrens sind die werkvertraglichen Bedingungen, die Anforderungen des Anlagenbetreibers sowie die Herstelleraussagen und die Erfahrungen des Installateurs zu berücksichtigen.

Lange Stagnationszeiten sind, unabhängig vom verwendeten Werkstoff, aus hygienischen Gründen immer zu vermeiden. Daher ist bei zu erwartenden, längeren Stillstandszeiten stets eine trockene Dichtheitsprüfung mit Erstbefüllung und Spülung unmittelbar vor Inbetriebnahme durchzuführen.

4.15 Übergabe, Betriebsanleitungen

Im Rahmen der werkvertraglich ordnungsgemäßen Erstellung einer Gasoder Wasserinstallation bedarf es zur
Einhaltung der allgemein anerkannten Regeln der Technik auch der
Erfüllung der Forderungen der
DIN 18381 (VOB Teil C). Diese Norm
fordert, dass Unterlagen wie z.B. Protokolle und Anleitungen mitgeliefert
werden und dass das Bedienungsund Wartungspersonal eingewiesen
wird.

In DIN 1988-8 "Betrieb der Anlagen" wird ausführlich dargestellt, wie Betriebssicherheit, Funktionstüchtigkeit und Gebrauchstauglichkeit einer ordnungsgemäß erstellten Trinkwasser-Installation auf Dauer aufrechterhalten werden können.

Die ZVSHK-Betriebsanleitungen für Gas- und Trinkwasseranlagen, die zum Abnahmezeitpunkt an den Bauherren übergeben werden, enthalten jeweils ein Inbetriebnahme-, Einweisungs- und Druckprobenprotokoll sowie Hinweise für den Betreiber und Instandhaltungsmaßnahmen und einen Inspektions- und Wartungsplan.

Neben den Betriebsanleitungen sollten dem Betreiber Wartungsverträge für die Trinkwasser- und Gasanlagen bei der Übergabe der Anlage angeboten werden. Hierfür stellt der ZVSHK seinen Mitgliedsbetrieben Formularmuster von Wartungsverträgen zur Verfügung. Ein Schema für die Vorgehensweise bei Druckprüfung, Spülen, Übergabe und Inbetriebnahme zeigt Tabelle 17.

5. Normen und Regelwerke

Es wurden jeweils die aktuellsten Ausgaben zugrunde gelegt.

Installationsbauteile, Lote, Flussmittel und Schweißzusätze

DIN EN 1044 Hartlöten – Lötzusätze **DIN EN 1045** Hartlöten – Flussmittel zum Hartlöten; Einleitung und technische Lieferbedingungen

DIN EN 1057 Nahtlose Rundrohre aus Kupfer für Wasser- und Gasleitungen in Sanitärinstallationen und Heizungsanlagen

DIN EN 1254-1 Kupfer- und Kupferlegierungen; Fittings; Kapillarlötfittings für Kupferrohre (Weich- und Hartlöten)

DIN EN 1254-2 Kupfer- und Kupferlegierungen; Fittings; Klemmverbindungen für Kupferrohre

DIN EN 1254-4 Kupfer- und Kupferlegierungen; Fittings; Fittings zum Verbinden anderer Ausführungen von Rohrenden mit Kapillarlötverbindungen oder Klemmverbindungen

DIN EN 1254-5 Kupfer und Kupferlegierungen; Fittings; Fittings mit geringer Einstecktiefe zum Verbinden mit Kupferrohren durch Kapillar-Hartlöten

prEN 1254–6 Kupfer und Kupferlegierungen; Fittings; Einsteckfittings **prEN 1254–7** Kupfer und Kupferlegierungen; Fittings; Pressfittings für metallische Rohre

DIN 2607 Rohrbogen aus Kupfer zum Einschweißen

DIN 3387-1 Lösbare Rohrverbindungen für metallene Gasleitungen; Glatt-rohrverbindungen

DIN EN 13349 Vorummantelte Rohre aus Kupfer mit massivem Mantel **DIN EN 14640** Schweißzusätze; Massivdrähte und -stäbe zum Schmelzschweißen von Kupfer und Kupferlegierungen; Einteilung

DIN EN ISO 9453 Weichlote; Chemische Zusammensetzung und Lieferformen **DIN EN 29454-1** Flussmittel zum Weichlöten; Einteilung und Anforderungen; Einteilung, Kennzeichnung und Verpackung

RAL-RG 641/1 Güte- und Prüfbestimmungen (Gütebedingungen) für das Gütezeichen "Kupferrohr/RAL" der Gütegemeinschaft Kupferrohr e.V. RAL-RG 641/2 Güte- und Prüfbestimmungen (Gütebedingungen) für Hartlote und Hartlotflussmittel in Erweiterung des Gütezeichens "Kupferrohr/RAL"

RAL-RG 641/3 Güte- und Prüfbestimmungen (Gütebedingungen) für Weichlote, Weichlötflussmittel und Weichlotpasten in Erweiterung des Gütezeichens "Kupferrohr/RAL"

RAL-RG 641/4 Gütesicherung Kupferrohr – Erweiterung auf Kapillarlötfittings aus Kupferrohren – Güte- und Prüfbestimmungen

DVGW GW 6 Löt-, Übergangs- und Gewindefittings aus Kupfer und Kupferlegierungen

DVGW GW 7 Lote und Flussmittel zum Löten von Kupferrohren in der Gasund Trinkwasser-Installation

DVGW GW 8 Kapillarlötfittings aus Kupferrohr

DVGW GW 392 Nahtlosgezogene Rohre aus Kupfer für Gas- und Trinkwasser-Installationen und nahtlosgezogene, innenverzinnte Rohre aus Kupfer für Trinkwasser-Installationen; Anforderungen und Prüfungen

DVGW W 534 Rohrverbinder und Rohrverbindungen

Trinkwasser-Installation

AVBWasserV Verordnung über allgemeine Bedingungen für die Versorgung mit Wasser

TrinkwV 2001 Verordnung über die Qualität von Wasser für den menschlichen Gebrauch

DIN EN 805 Wasserversorgung – Anforderungen an Wasserversorgungssysteme und deren Bauteile außerhalb von Gebäuden

DIN 1988-1 Technische Regeln für Trinkwasser-Installationen (TRWI); Allgemeines

DIN 1988-2 Technische Regeln für Trinkwasser-Installationen (TRWI); Planung und Ausführung; Bauteile, Apparate, Werkstoffe

DIN 1988-2 Beibl. 1 Technische Regeln für Trinkwasser-Installationen (TRWI); Zusammenstellung von Normen und anderen Technischen Regeln über Werkstoffe, Bauteile und Apparate DIN 1988-3 Technische Regeln für Trinkwasser-Installationen (TRWI); Ermittlung der Rohrdurchmesser DIN 1988-4 Technische Regeln für Trinkwasser-Installationen (TRWI); Schutz des Trinkwassers, Erhaltung der Trinkwassergüte

DIN 1988-5 Technische Regeln für Trinkwasser-Installationen (TRWI); Druckerhöhung und Druckminderung DIN 1988-6 Technische Regeln für Trinkwasser-Installationen (TRWI); Feuerlösch- und Brandschutzanlagen DIN 1988-7 Technische Regeln für Trinkwasser-Installationen (TRWI); Vermeidung von Korrosionsschäden und Steinbildung

DIN 1988-8 Technische Regeln für Trinkwasser-Installationen (TRWI); Betrieb der Anlagen

DIN 2000 Zentrale Trinkwasserversorgung Leitsätze für Anforderungen an Trinkwasser; Planung, Bau und Betrieb der Anlagen

DIN 2001 Eigen- und Einzeltrinkwasserversorgung; Leitsätze für Anforderungen an Trinkwasser. Planung, Bau und Betrieb der Anlagen

DIN 3389 Einbaufertige Isolierstücke für Hausanschlussleitungen in der Gas- und Wasserversorgung; Anforderungen und Prüfungen DIN 4046 Wasserversorgung; Begriffe DIN EN 13443-1 Anlagen zur Behandlung von Trinkwasser innerhalb von Gebäuden; Mechanisch wirkende Filter; Filterfeinheit 80 µm bis 150 µm; Anforderungen an Ausführung und Sicherheit, Prüfung

DIN 18381 VOB Vergabe- und Vertragsordnung für Bauleistungen;
Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV);
Gas-, Wasser- und Entwässerungsanlagen innerhalb von Gebäuden
DVGW GW 2 Verbinden von Kupferund innenverzinnten Kupferrohren für Gas- und Trinkwasser-Installation innerhalb von Grundstücken und Gebäuden

DVGW W 551 Trinkwassererwärmungs- und Leitungsanlagen; technische Maßnahmen zur Verminderung des Legionellenwachstums

DVGW W 553 Bemessung von Zirkulationssystemen in zentralen Trinkwassererwärmungsanlagen

Gas-Installation

TRGI Technische Regeln für Gasinstallationen

DIN 3389 Einbaufertige Isolierstücke für Hausanschlussleitungen in der Gas- und Wasserversorgung; Anforderungen und Prüfungen

DIN 18381 VOB Vergabe- und Vertragsordnung für Bauleistungen; Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV); Gas-, Wasser- und Entwässerungsanlagen innerhalb von Gebäuden

DVGW G 459-1 Gas- und Hausanschlüsse für Betriebsdrücke bis 4 bar; Planung und Errichtung

DVGW G 461–2 Errichtung von Gasleitungen mit Betriebsdrücken von mehr als 4 bar bis 16 bar aus Druckrohren und Formstücken aus duktilem Gusseisen

DVGW VP 614 Unlösbare Rohrverbindungen für metallene Gasleitungen; Pressyerbinder

DVGW GW 2 Verbinden von Kupferund innenverzinnten Kupferrohren für Gas- und Trinkwasser-Installation innerhalb von Grundstücken und Gehäuden

Heizung und Kühlung

DIN EN 14336 Heizungsanlagen in Gebäuden; Installation und Abnahme der Warmwasser-Heizungsanlagen DIN 18380 VOB Vergabe- und Vertragsordnung für Bauleistungen; Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV); Heizanlagen und zentrale Wassererwärmungsanlagen

EnEV Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden; Energieeinsparverordnung

Heizöl & Flüssiggas

TRF Technische Regeln für Flüssiggas **TRbF 50** Technische Regeln für brennbare Flüssigkeiten; Rohrleitungen

DIN 4755 Ölfeuerungsanlagen; Technische Regel Ölfeuerungsinstallation (TRÖ): Prüfung

TRR 100 Technische Regeln zur Druckbehälterverordnung; Rohrleitungen aus metallischen Werkstoffen BetrSichV Verordnung über Sicherheit und Gesundheitsschutz bei der Bereitstellung von Arbeitsmitteln und deren Benutzung bei der Arbeit, über Sicherheit beim Betrieb überwachungsbedürftiger Anlagen und über die Organisation des betrieblichen Arbeitsschutzes; Betriebssicherheitsverordnung

Medizinische Gase

DIN EN 737–3 Rohrleitungssysteme für medizinische Gase; Teil 3: Rohrleitungen für medizinische Druckgase und Vakuum

DIN EN 793 Besondere Anforderungen für die Sicherheit von medizinischen Versorgungseinheiten

DIN EN 13348 Kupfer und Kupferlegierungen – Nahtlose Rundrohre aus Kupfer für medizinische Gase und Vakuum

Korrosionsschutz

DIN EN 12068 Kathodischer Korrosionsschutz - Organische Umhüllungen für den Korrosionsschutz von in Böden und Wässern verlegten Stahlrohrleitungen im Zusammenwirken mit kathodischem Korrosionsschutz; Bänder und schrumpfende Materialien DIN EN ISO 12944 Beschichtungsstoffe; Korrosionsschutz von Stahlbauten durch Beschichtungssysteme DIN EN 12502-2 Korrosionsschutz metallischer Werkstoffe; Hinweise zur Abschätzung der Korrosionswahrscheinlichkeit in Wasserverteilungsund Speichersystemen; Einflussfaktoren für Kupfer und Kupferlegierungen DIN 15664-1 Einfluss metallischer Werkstoffe auf Wasser für den menschlichen Gebrauch, Dynamischer Prüfstandversuch für die Beurteilung der Abgabe von Metallen, Teil 1: Auslegung und Betrieb

DIN 50929-1 Korrosion der Metalle; Korrosionswahrscheinlichkeit metallischer Werkstoffe bei äußerer Korrosionsbelastung; Allgemeines

DIN 50929-2 Korrosion der Metalle; Korrosionswahrscheinlichkeit metallischer Werkstoffe bei äußerer Korrosionsbelastung; Installationsteile innerhalb von Gebäuden

DIN 50929-3 Korrosion der Metalle; Korrosionswahrscheinlichkeit metallischer Werkstoffe bei äußerer Korrosionsbelastung; Rohrleitungen und Bauteile in Böden und Wässern

DIN 50930-6 Korrosion der Metalle; Korrosion metallischer Werkstoffe im Innern von Rohrleitungen, Behältern und Apparaten bei Korrosionsbelastung durch Wässer; Beeinflussung der Trinkwasserbeschaffenheit

VDI 2035 Blatt 2 Vermeidung von Schäden in Warmwasserheizungsanlagen – Heizwasserseitige Korrosion

Weitere Regelwerke

DIN 1053 Mauerwerk **DIN 1989-1** Regenwassernutzungsanlagen; Teil 1: Planung, Ausführung,

Betrieb und Wartung

DIN 2403 Kennzeichnung von Rohrleitungen nach dem Durchflussstoff **DIN 4102** Brandverhalten von Bau-

stoffen und Bauteilen (mehrere Teilnormen)

DIN 4108 Wärmeschutz im Hochbau (mehrere Teilnormen)

DIN 4109 Schallschutz im Hochbau (mehrere Teilnormen) **DIN EN ISO 9606-3** Prüfung von

Schweißern; Schmelzschweißen; Teil 3: Kupfer und Kupferlegierungen **DIN EN 10204** Metallische Erzeugnisse, Arten von Prüfbescheinigungen **DIN EN 10226–1** Rohrgewinde für im Gewinde dichtende Verbindungen; Teil 1: Kegelige Außengewinde und zylindrische Innengewinde; Maße, Toleranzen und Bezeichnung

DIN EN 12056-4 Schwerkraftentwässerungsanlagen innerhalb von Gebäuden. Teil 4: Abwasserhebeanlagen, Planung und Berechnung

DIN EN 12735-1 Kupfer und Kupferlegierungen; Nahtlose Rundrohre aus Kupfer für die Kälte- und Klimatechnik; Teil 1: Rohre für Leitungssysteme **DIN 14462** Löschwassereinrichtungen; Planung und Einbau von Wandhydrantenanlagen und Löschwasserleitungen

DIN 14489 Sprinkleranlagen; Allgemeine Grundlagen

AD 2000-Merkblatt Bo Berechnung von Druckbehältern

AD 2000-Merkblatt B1 Zylinder und Kugelschalen unter innerem Überdruck

AD 2000-Merkblatt W 6/2 Werkstoffe für Druckbehälter - Kupfer und Kupfer-Knetlegierungen

ZVSHK-Regelwerk

ZVSHK Betriebsanleitungen "Trinkwasser-Installation"
ZVSHK Betriebsanleitungen "Gas-Installation DVGW-TRGI 86/96"
ZVSHK Wartungsvertrag für Trinkwasser-, Entwässerungs- und Gasanlagen ZVSHK-Merkblatt "Dichtheitsprüfungen von Trinkwasser-Installationen mit Druckluft, Inertgas oder Wasser"
ZVSHK-Merkblatt "Spülen, Desinfizieren und Inbetriebnahme von Trinkwasser-Installationen"
ZVSHK-Merkblatt "Dämmung von Sanitär- und Heizungsrohrleitungen"

Index

A	н	S
Abmessungen 3, 4	Haftungsübernahmevereinbarungen 9	Schallschutz 25
Abwasserentsorgung 3, 21	Hartlote 8, 9	Schmelztemperaturen 8, 9
Abzweige 13, 14	Hartlöten 10, 11, 13, 14	Schneidringverschraubungen 12, 19
Anforderungen an Kupferrohre 3, 4	Hartlötverbot 9, 11, 13	Schutzgaslöten 21
Anschlussgröße 5		Schweißfittings 7
	Heizölleitungen 19	Schweißverbindungen 13
Ausglühen 13, 14	Heizungsanlagen 18	
Aushalsen 13, 14	Heizungsinstallation 18, 30, 31	Schwitzwasser 22, 25
Außenleitungen 23	Heizungsleitungen 18, 30, 31	Schwitzwasserschutz 25
В	1	Solaranlagen 11, 14, 19
Befestigung 28	Inbetriebnahme 31	Spülen 22, 30, 31, 32
Betriebsdruck 15	Isolierstücke 24	Stagnation 22, 30, 31, 32
Betriebstemperatur 15		Stahl 29, 30
Betriebswässer 21	K	Stützhülsen 7, 12
Biegen von Kupferrohren 10	kalibrieren 10	т
Bögen zum Einschweißen 7	Kälterohre 19	Tauwasserbildung 25
Brandschutz 25	Kaltwasserleitungen 25	technische Druckluft 20
	Kapillarlötfittings 5, 16	
Brunnenwasser 17	Kapillarlöttechnik 10	technische Gase 21
C	kathodischer Korrosionsschutz 30	TOC-Wert 17
Cu-DHP 3	Kennzeichnung 3, 4, 5, 6, 7, 8, 9	Trinkwasser- Erwärmungsanlagen 18, 22, 29
	Klemmringverschraubungen 7	Trinkwasser- Installation 4, 17, 18, 22, 23,
D	Kompensatoren 26	24, 25, 26, 29, 30, 31, 32
Dämmstoffe 24	Kontaktkorrosion 30	Trittschall 25
Dehnungselemente 26	Körperschall 25	Trittschalldämmung 28
Dichtigkeitsprüfung 30	•	U
DIN 50930-6 17	Korrosionsschutz 23, 24, 29, 30	-
Druckbehälter 15, 20	Kühldecken 18	Übergangsfittings 5
Druckluft 20	Kühlsysteme 18, 25, 31	ummantelte Kupferrohre 4, 18, 23, 24, 25
Druckprüfung 30	Kühlwässer 14, 18, 30	Umwälzpumpen 22
DVGW-Prüfzeichen 3, 4, 5, 6, 7	L	Unfallverhütungsvorschriften 26
E	Längendehnung 26	Unter-Putz-Verlegung 24, 26, 27
	Legionellen 18	V
Einsatzbereiche 17	lösbare Verbindungen 7	Verlegung im Mauerwerk 28
Einschweißbogen 7	Lote 8	Vorfertigung 29
Einstecktiefe 5, 10, 14	Lötspalt 10	Vorwandinstallation 29
entgraten 10	·	-
Enthärtung 17	M	W
Entlüftung 31	Maßtoleranzen 10	Wärmedehnung 26
Erdgas 19	Medizinische Gase 20	Wärmeleitfähigkeit 25
erdverlegte Trinkwasserleitungen 22, 23	Messing 17	Wärmeschutz 24
F	MIG-Schweißen 13	Wärmeverluste 25
Festpunkte 26, 27, 28	Mitteldruck 20	Warmwasserleitungen 25
Filter 22, 31	Muffen 14	Wartungsverträge 32
	N	Weichlote 8
Flächenheizungen 18	N N	Weichlöten 10, 11
Flanschverbindungen 8	Nennweite 4, 18	Weichlotpaste 9
Fließgeschwindigkeiten 22	Niederdruck 20	WIG-Schweißen 13
Fließregel 29, 30	0	-
Flüssiggas 20, 31	Ölinstallationen 19	Z
Flüssiggasinstallation 20	Ölleitungen 12, 19, 31	Zirkulationsleitungen 22, 24, 29
Flüssiggasleitungen 20, 31	Opferanoden 30	
Flussmittel 8, 9		
Fußboden- und Wandheizungen 18	P	
G	pH-Wert 17	
Gasinstallation 19, 20	Potentialausgleich 23	
	Pressen 12	
Gasleitungen 19, 20, 21, 23, 31	Pressfittings 6, 12	
gedämmte Kupferrohre 25	R	
Glattrohrverbinder 7		
Gleitführung 27	RAL 3, 4, 5	
Gussasphalt 18, 29	Randdämmstreifen 28	
Gütegemeinschaft Kupferrohr e.V. 4, 5	Reduzierungen 14	

Rohrabschneider 10 Rotguss 5, 6 Rückflussverhinderer 30

Regenwassernutzungsanlagen 14, 20

Gütezeichen 3, 4, 5

Verlagsprogramm

Dach und Wand

Dachdeckung und Außenwandbekleidung mit Kupfer; Bestell-Nr. i. 30

Ausschreibungsunterlagen für Klempnerarbeiten an Dach und Fassade

Blau-Lila-Färbungen an Kupferbauteilen

Sanitärinstallation

Kupfer in Regenwassernutzungsanlagen; Bestell-Nr. s. 174

Kupferwerkstoffe in der Trinkwasseranwendung – den Anforderungen an die Zukunft angepasst; Bestell-Nr. s. 196

Metallene Werkstoffe in der Trinkwasser-Installation; Bestell-Nr. i. 156

Die fachgerechte Kupferrohrinstallation: Bestell-Nr. i. 158

Die fachgerechte Installation von thermischen Solaranlagen; Bestell-Nr. i. 160

Werkstoffe

Schwermetall-Schleuder- und Strangguss - technische und wirtschaftliche Möglichkeiten; Bestell-Nr. s. 165

Zeitstandeigenschaften und Bemessungskennwerte von Kupfer und Kupferlegierungen für den Apparatebau; Bestell-Nr. s. 178

Ergänzende Zeitstandversuche an den beiden Apparatewerkstoffen SF-Cu und CuZn20Al2;

Bestell-Nr. s. 191

Einsatz CuNi10Fe1Mn plattierter Bleche für Schiffs- und Bootskörper Use of Copper-Nickel Cladding on Ship and Boat Hulls; Bestell-Nr. s. 201

Kupfer-Nickel-Bekleidung für Offshore-Plattformen Copper-Nickel Cladding for Offshore Structures; Bestell-Nr. s. 202

Werkstoffe für Seewasser-Rohrleitungssysteme Materials for Seawater Pipeline Systems; Bestell-Nr. s. 203

Kupfer-Zink-Legierungen (Messing und Sondermessing) Bestell-Nr. i. 5

Kupfer-Aluminium-Legierungen Eigenschaften, Herstellung, Verarbeitung, Verwendung Bestell-Nr. i. 6

Kupfer-Zinn-Knetlegierungen (Zinnbronzen) Bestell-Nr. i. 15

Kupfer-Zinn- und Kupfer-Zinn-Zink-Gusslegierungen (Zinnbronzen) Bestell-Nr. i. 25

Kupfer - Werkstoff der Menschheit

Messing - Ein moderner Werkstoff mit langer Tradition

Von Messing profitieren – Drehteile im Kostenvergleich

Messing ja – Entzinkung muss nicht sein!

Bronze - unverzichtbarer Werkstoff der Moderne

Verarbeitung

Kupfer-Zink-Legierungen für die Herstellung von Gesenkschmiedestücken; Restell-Nr s 194

Kleben von Kupfer und Kupferlegierungen; Bestell-Nr. i. 7

Schweißen von Kupfer und Kupferlegierungen; Bestell-Nr. i. 12

Trennen und Verbinden von Kupfer und Kupferlegierungen; Bestell-Nr. i. 16

Richtwerte für die spanende Bearbeitung von Kupfer und Kupferlegierungen; Bestell-Nr. i. 18

Chemische Färbungen von Kupfer und Kupferlegierungen

Elektrotechnik

Optimale Auswahl und Betriebsweise von Vorschaltgeräten für Leuchtstofflampen; Bestell-Nr. s. 180

Verteiltransformatoren; Bestell-Nr. s. 182

Energiesparen mit Spartransformatoren; Bestell-Nr. s. 183

Wechselwirkungen von Blindstrom-Kompensationsanlagen mit Oberschwingungen; Bestell-Nr. s. 185

Messungen und Prüfungen an Erdungsanlagen; Bestell-Nr. s. 190

Sparen mit dem Sparmotor; Bestell-Nr. s. 192

Bedarfsgerechte Auswahl von Kleintransformatoren; Bestell-Nr. s. 193

Kupfer spart Energie

Umwelt/Gesundheit

Antibakterielle Eigenschaften von Kupfer; Bestell-Nr. s. 130

Versickerung von Dachablaufwasser; Bestell-Nr. s. 195

Kupfer in kommunalen Abwässern und Klärschlämmen; Bestell-Nr. s. 197

Sachbilanz einer Ökobilanz der Kupfererzeugung und -verarbeitung; Bestell-Nr. s. 198

Sachbilanz zur Kupfererzeugung unter Berücksichtigung der Endenergien; Bestell-Nr. s. 199

Untersuchung zur Bleiabgabe der Messinglegierung CuZn39PB3 an Trinkwasser - Testverfahren nach British Standards BS 7766 and NSF Standard 61; Bestell-Nr. s. 200

Recycling von Kupferwerkstoffen; Bestell-Nr. i. 27

Kupfer und Kupferwerkstoffe ein Beitrag zur öffentlichen Gesundheitsvorsorge; Bestell-Nr. i. 28

Kupfer - der Nachhaltigkeit

verpflichtet

Doorknobs: a source of nosocomial infection?

Spezielle Themen

Kupferwerkstoffe im Kraftfahrzeugbau; Bestell-Nr. s. 160

Die Korrosionsbeständigkeit metallischer Automobilbremsleitungen - Mängelhäufigkeit in Deutschland und Schweden; Bestell-Nr. s. 161

Ammoniakanlagen und Kupfer-Werkstoffe?; Bestell-Nr. s. 210

Kupferwerkstoffe in Ammoniakkälteanlagen; Bestell-Nr. s. 211

Kupferrohre in der Kälte-Klimatechnik, für technische und medizinische Gase Bestell-Nr. i. 164

DKI-Fachbücher*

Kupfer in der Landwirtschaft

Kupfer im Hochbau EUR 10,00***

Planungsleitfaden Kupfer - Messing - Bronze EUR 10,00***

Architektur und Solarthermie Dokumentation zum Architekturpreis EUR 10.00

CD-ROM des Deutschen Kupferinstituts

Solares Heizen FUR 10.00

Neue Last in alten Netzen EUR 10,00

Faltmuster für Falzarbeiten mit Kupfer Muster für Ausbildungsvorlagen in der Klempnertechnik EUR 10,00

Werkstofftechnik - Herstellungsverfahren EUR 10,00

Lernprogramm

Die fachgerechte Kupferrohr-Installation EUR 10,00***

Filmdienst des DKI

"Kupfer in unserem Leben" ... Videokassette oder DVD, 20 Min. Schutzgebühr EUR 10,00

"Fachgerechtes Verbinden von Kupferrohren" Lehrfilm, DVD, 15 Min. Schutzgebühr EUR 10,00

"Kupfer in der Klempnertechnik" Lehrfilm, Videokassette, 15 Min.

Schutzgebühr EUR 10,00 Fachbücher des DKI sind über den Fachbuchhandel zu beziehen oder ebenso wie Sonderdrucke, Informationsdrucke und Informationsbroschüren direkt vom Deutschen Kupferinstitut, Am Bonneshof

Sonderkonditionen für Berufsschulen

**** Sonderkonditionen auf Anfrage

5, 40474 Düsseldorf.

Auskunfts- und Beratungsstelle für die Verwendung von Kupfer und Kupferlegierungen

Am Bonneshof 5 40474 Düsseldorf Telefon: (0211) 4 79 63 00 Telefax: (0211) 4 79 63 10 info@kupferinstitut.de

www.kupferinstitut.de