TEMA 1 SOLUCIONES A LOS PROBLEMAS DE DISTRIBUCIONES DISCRETAS

1. X=número de días de ejecución

$$Y = coste de la obra = \begin{cases} 25000 + 800X & si \ X \le 10 \\ 25000 + 800X + 1000(X - 10) & si \ X > 10 \end{cases}$$

Y=coste	31400	32200	33000	34800	36600
Probabilidad	0,1	0,2	0,4	0,2	0,1

- a) $P[9 \le X \le 11] = 0.8$
- b) $P[X \ge 10 | X \ge 9] = 7/9$
- c) E[Y]= 33400 €
- d) D[Y]=1472,42 €
- 2. Y=beneficio de la inversión E[Y]=0,15*6000*0,70-0,50*6000*0,30=-270 €
- **3.** X=suma de los puntos de 2 dados
 - a) Función de probabilidad

Punt	2	3	4	5	6	7	8	9	10	11	12
Prob	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

- b) E[X] = 7 y Var[X] = 5.83
- **4.** a) E[X] = 3.25 € b) precio = 4 € c) 16250 €
- **5.** a) 0,704 b) 0,23478 c) Media: 11,532 € desviación 5 € d) 12,2739 €
- **6.** a) 0,20 b) 0,2381 c) Media:1,7 llamadas; desviación: 1 llamada d) 2,02 llamadas
- 7. X=número de positivos en 100 controles de alcoholemia → X~Bi(100; 0,1)
 - a) E[X]=10
 - b) $P{X>20}=P{X\geq21}=0,0008$
 - c) $P\{X \le 10\} = 0.5832$
 - d) I= ingresos por multa = 300X; El ingreso medio es E[I]=300·10=3000 €

8. X=número de hijos varones \rightarrow X~Bi(4;0,5)

Y=número de familias con k hijos varones \rightarrow Y~Bi(2000;p) con p=P[X=k]

- a) $E[Y]=1875 (p = P[X \ge 1])$
- b) E[Y]=750 (p = P[X=2])
- c) $E[Y]=1250 (p = P[X=2 \acute{o} 3])$
- d) E[Y]=125 (p = P[X=4])
- **9.** X=número de artículos defectuosos encontrados en la muestra de 20 \sim Bi(20,0.05)
 - a) $P[X>2] = P[X\geq 3] = 0.0755$
 - b) Y = número de días de los 15 en los que es necesario realizar una inspección completa

 $Y \sim Bi(15,0,0755)$ P[Y=2] = 0,2157

c) $Z = \text{inspecciones completas en un mes} \sim Bi(20,0,0755)$ $P[Z \le x] \ge 0.95 \implies x = 4 \text{ días}$

10.

a) $X=n^{\circ}$ reservas que no acuden al restaurante \sim Bi(20; 0,15)

$$P{X \ge 2} = 0.8244$$

b) $Y_n = n$ úmero de reservas que acuden al restaurante ~ Bi(n;0,85)

Máximo n tal que
$$P(Y_n>18) = P(Y_n\ge19) \le 0.05 \Rightarrow n=19$$

11. $X=n^{\circ}$ pasajeros que se presentan al embarque $\rightarrow X \sim Bi(n, 0.80)$

Y=n° pasajeros que no acuden al embarque \rightarrow Y~Bi(n, 0,20)

a) Si n=20 P
$$\{X\geq18\}=P\{Y\leq2\}=1-P\{Y\geq3\}=0,2061$$

b) Si n=20 P
$$\{X \le 16\} = P\{Y \ge 4\} = 0.5885$$

c)
$$P{X \ge 18} = P{Y \le n-18} \le 0.10$$

Para n=19
$$P{Y \le 1} = 0.0829$$

Para n=21 $P{Y \le 3}=0,3704$ Habrá que vender como mucho 19 billetes.

- 12. $X=n^{\circ}$ respuestas correctas en el examen $\rightarrow X\sim Bi(20; 0.25)$
 - a) $P\{acertar\}=0.25$
 - b) $P\{X=0\}=0.0032$
 - c) $P\{X=20\}=9.09 \cdot 10^{-13} \approx 0$
 - d) $P{X>10}=P{Y\geq11}=0,0039$
 - e) $P(X \le x) \ge 0.9 \implies x = 8$

13.

a) X = número de llamadas que resultan en una venta

$$X \sim Bi(250,0.01) P(X \le 5) = 0.9588$$

Independencia entre días y constancia de la proporción de ventas. Puede ser irreal si se tratan de días correspondientes a una promoción

- b) Mínimo x tal que $P[X \le x] \ge 0.90 \rightarrow x = 5$
- c) P[X≥8] = 0,0040. No, es un valor demasiado alto al estar situado muy en la cola derecha de la distribución
- **14.** X=número de transacciones incorrectas en una muestra de $5 \rightarrow X\sim H(25,5,5)$
- a) $P\{X=5\}=0.000019$
- b) $P\{X \ge 2\} = 0.2522$
- c) Mínimo x tal que $P(X \ge x) \le 0.05 \Rightarrow x = 3$
- 15. $X=n^{\circ}$ aciertos en la lotería primitiva $\rightarrow X\sim H(49,6,6)$

a)
$$P\{X=6\}=7,151\ 10^{-8}\cong 0$$

b)
$$P\{X \le 2\} = 0.9814$$

16. X=número de defectuosos en una muestra de 6 \rightarrow X~H(30, 6, 6)

$$P\{X \le 1\} = 0,6562$$

17. X = número de accionistas de la muestra que apoya la propuesta → X~H(1200, 800, 18)

$$P(X=14) = 0,1292$$
. Podría lanzar su propuesta.

18. $X = \text{número de camiones con defectos en la muestra <math>\rightarrow X \sim H(50, 5, 10)$

$$P(X \ge 2) = 0.2581$$

Nos piden el mínimo x tal que $P(X \ge x) \le 0.05 \Rightarrow x = 3$

- **19.** X_i =número de aviones que llegan en i minutos $\rightarrow X_i \sim P(0,9i)$
 - a) $P\{X_5=9\}=0.0232$
 - b) $P\{X_8 < 10 \} = 0.8096$
 - c) $P\{X_{11} \ge 14\} = 0,1284$
 - d) $P(12 \le X_{10} \le 15) = 0.1750$
- **20.** $X=n^{\circ}$ máquinas reparadas en un día $\rightarrow X\sim P(3)$
 - a) $P\{X \ge 5\} = 0.1847$
 - b) $P\{X=5|X>2\}=P\{X=5\}/P\{X>2\}=0,1748$
 - c) Y = número de máquinas reparadas en 5 días ~ P(15)
 - d) $P(12 \le Y \le 16) = 0.4794$
- **21.** Y_i =número de accidentes en i semanas $\rightarrow \sim P(2i)$

Nos piden calcular el valor máximo de x tal que:

- a) $P\{Y_1 \le x\} \le 0.05$ \rightarrow x = no existe
- b) $P\{Y_2 \le x\} \le 0.05 \Rightarrow x = 0$
- c) $P\{Y_4 \le x\} \le 0.05 \Rightarrow x = 3$

- **22.** X=número de errores por factura \rightarrow X~P(λ)
- a) $P\{X=0\}=0.0183 \rightarrow \lambda=4$
- b) $P{X>1}=0,9084$
- c) $P\{X \le 5 | X \ge 1\} = 0.7812$
- 23. $X_i=n^o$ accidentes de trabajo en i semanas $\sim P(\lambda i)$
 - a) $P{X_1=1}=0.5P{X_1=0} \Rightarrow \lambda=0.5$
 - b) $P{X_1=2,X_2=4}=0,00575$
 - c) $X_4 \sim P(2) \Rightarrow P\{X_4 \le 8\} = 0.9998$
- **24.** $X=n^{\circ}$ accidentes diario $\sim P(0,1)$
 - a) $Y=n^{\circ}$ accidentes en dos meses~ $P(40\cdot0,1)=P(4)$

$$P(Y \ge 3) = 0,7619$$

b) Z=nº trabajadores con absentismo laboral~Bi(100, 0,25)

$$P(Z \le 30) = 1 - P\{Z \ge 31\} = 0.8962$$

- **25.** X=número de llamadas en 30 minutos → X~P(10)
- a) $P\{X=15\}=0.0347$
- b) Y=número de reclamaciones en 50 llamadas → Y~Bi(50;0,1)

$$P{Y \ge 8} = 0,1221$$

c) Z=número de reclamaciones en 3 llamadas → Z~Bi(3,0,1)

$$P{Z=3}=0.001$$

26. X= n° clientes que compran de los 100 que entran en la tienda → X~Bi(100; p)

 $p=P\{comprar\}=0,3\cdot0,2+0,5\cdot0,6+0,2\cdot0,8=0,52$ (aplicando el teorema de la probabilidad total)

Y=clientes que no compran~Bi (100; 0,48).

- a) $P\{X \ge 45\} = P\{Y \le 55\} = 1 P\{Y \ge 56\} = 0.9333$ Cada cliente compra de forma independiente y todos tienen la misma probabilidad de comprar.
- b) $Z_1=n^\circ$ clientes que entran en una hora $\rightarrow Z_1\sim P(5)$

 $Z_8=n^{\circ}$ clientes en 8 horas $\rightarrow Z_8\sim P(40)$

$$P\{Z_8 \ge 36\} = 0.7576$$

- 27. X_i =número de personas que acuden a la taquilla en i minutos $\rightarrow X_i \sim P(\lambda i)$
 - a) $\lambda = 4$
 - b) $P\{X_5 \ge 22\} = 0.3563$
 - c) I = ingreso medio en taquilla

- **28.** P{Bocadillo}=0,35
 - a) $X \sim Bi(20; 0.35) \rightarrow P\{X \ge 10\} = 0.1217$
 - b) $Y \sim H(50,30,10) \rightarrow P\{Y=7\}=0,2259$

29.

- a) $X=n^{\circ}$ defectuosos en una muestra de 20 \rightarrow $X\sim Bi(20; 0.03)$
- $P{X \ge 3} = 0.0210$
- b) Z=n° defectuosos en una muestra de $5\sim Bi(5; 0.03)$ P{Z ≥ 1 }=0,1413

Es mejor la segunda opción

30. X_1 =número de hombres en un minuto \rightarrow $X\sim P(1)$

 Y_1 =número de mujeres en un minuto \rightarrow $Y\sim P(2)$

Se tiene que $T_1 = X_1 + Y_1 \sim P(3)$

- a) $P{T_1<3} = 1-P(T_1\geq 3) = 0,4232$
- b) $P{X_{30}=5|X_{30}+Y_{30}=10}=0,1366$
- 31. Sea X = número de antenas defectuosas en la muestra → X~Bi(2000,0,0015) ≈ Poisson(3)
 - a) P(X=0) = 0.0497 (exacta) = 0.0498 (aproximada)
 - b) $P(X \ge 3) = 0.5770$ (exacta) = 0.5768 (aproximada)