MA 638 - Section 8.3 Homework

- 1. Let $R = \mathbb{Z}[\sqrt{-n}]$ where n is a squarefree integer greater than 3.
- (a) Prove that $2, \sqrt{-n}$, and $1 + \sqrt{-n}$ are irreducibles in R.
- (b) Prove that R is not a UFD. Conclude that the quadratic integer ring \mathcal{O} is not a UFD for $D \equiv 2, 3 \pmod{4}$, D < -3 (so also not an ED and not a PID). [Hint: Show that either $\sqrt{-n}$ or $1 + \sqrt{-n}$ is not prime].
 - (c) Give an explicit ideal in R that is not principal.
- (a) Proof: Suppose 2=ab then N(2)=4=N(a)N(b). Then N(a) can only be 1, 2, or 4. If N(a)=1 then a is a unit, and therefore there is nothing to prove. If N(a)=4 then N(b)=1 so b is a unit, and there is nothing to prove. So consider N(a)=2. If $a=x+y\sqrt{-n}\in\mathbb{Z}[\sqrt{-n}]$ then $2=x^2+ny^2$. Now if $y\neq 0$ then $x^2+ny^2\geq n>3$ and therefore this case is impossible, so y=0. But then $x^2=2$ which has no solution in the integers, so this also is impossible. Hence $N(a)\neq 2$ and so 2 is irreducible.

Next suppose $\sqrt{-n} = ab$ so that $N(\sqrt{-n}) = n = N(a)N(b)$. If $a = x + y\sqrt{-n}$ and $b = w + z\sqrt{-n}$ then

$$N(a)N(b) = (x^{2} + ny^{2})(w^{2} + nz^{2})$$

$$= n$$

$$= (xw)^{2} + n([xz]^{2} + [yw]^{2}) + n^{2}(yz)^{2}.$$

Now if yz > 0 then $N(a)N(b) \ge n^2 > n$ which is impossible, so either y or z is zero. Without loss of generality suppose y = 0. But then a = x is just an integer, and then $ab = x(w + z\sqrt{-n}) = \sqrt{-n}$. Therefore xw = 0 and xz = 1. The latter requires $x = \pm 1$ since no other number can divide 1 in $\mathbb Z$ and therefore a is a unit. So $\sqrt{-n}$ is irreducible.

(b) *Proof:* Suppose that D = -n is congruent to 2 mod 4. We will show that $\sqrt{-n}$ is not prime in $\mathbb{Z}[\sqrt{-n}]$. First note that in this case n is even, since -n = 2 + 4k = 2(1 + 2k) for some integer k. So let n = 2m.

We will use the fact that an element is prime if and only if it generates a prime ideal. So it suffices to show that $(\sqrt{-n})$ is not prime. First note that $n=(-\sqrt{-n})\sqrt{-n}$ so that $2m=n\in(\sqrt{-n})$. However, $2\not\in(\sqrt{-n})$ since if it were, $2=a\sqrt{-n}$ for some a but then $N(2)=4=N(\sqrt{-n})N(a)=nN(a)$. However, n>3 would entail that N(a)=1 and then $\sqrt{-n}=\pm 2$ which is impossible. Also we have that $m\not\in(\sqrt{-n})$ for if $m=a\sqrt{-n}$ then $2m=n=2a\sqrt{-n}$. From this it would follow that $n^2=2an$ and so $n^2-2an=0$ so that

$$n(n-2a) = 0 \Rightarrow$$

$$n = 2a = 2m \Rightarrow$$

$$a = m$$

But then $a = a\sqrt{-n}$ so that n = 1 which contradicts n > 3. Hence $(\sqrt{-n})$ is not a prime ideal and therefore $\sqrt{-n}$ is not prime. Since \mathcal{O} then has some irreducible element that is not prime, it must not be a UFD.

Next consider D=-n is congruent to 3 mod 4 so that -n=3+4k for some k. Then we show that $1+\sqrt{-n}$ is not prime. First note that because $(1+\sqrt{-n})(1-\sqrt{-n})=1-n\in(1+\sqrt{-n})$ then therefore $1+3+4k=4(k+1)\in(1+\sqrt{-n})$. However $4\not\in(1+\sqrt{-n})$ because if it were and $4=a(1+\sqrt{-n})$ then we would have N(4)=16=N(a)(1+n). Now since n>3 and since n is squarefree, then also $n\neq 4$ so that in fact $n\geq 5$. For N(a)(1+n) to have exactly 4 factors of 2, we must have 1+n equal to either 8 or 16. If 1+n=8 so that n=7 then $4=a(1+\sqrt{-7})$. If we call $a=x+y\sqrt{-7}$ then

$$4 = (x+y\sqrt{-7})(1+\sqrt{-7}) = (x-7y) + (x+y)\sqrt{-7} \implies$$

$$4 = x-7y \text{ and }$$

$$0 = x+y$$

But this implies x=-y and therefore 4=-y-7y=-8y which is not true for any integer y. On the other hand we also have $k+1\not\in (1+\sqrt{-n})$ since then $4(k+1)=1-n=4a(1+\sqrt{-n})$ so that