# Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

## КУРСОВАЯ РАБОТА

# УПРАВЛЕНИЕ ИНФОРМАЦИОННЫМИ МОДЕЛЯМИ В ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ

Баканов Егор Сергеевич

Руководитель
канд. техн. наук, доцент
\_\_\_\_\_ А. В. Приступа
«\_\_\_\_» \_\_\_\_ 2020 г.
Автор работы
Студент группы № 931907
\_\_\_\_\_ Е.С. Баканов

## Реферат

Курсовая работа 12 стр., 13 источников.

Ключевые слова: информационное моделирование, виртуальная реальность, 3D визуализация, автоматизация, Unity.

Целью работы: разработка приложения визуализации и манипуляции информационными моделями в среде виртуальной реальности.

Методы проведения работ: анализ требований, проектирование системы, разработка приложения.

Полученные результаты: разработан прототип приложения, позволяющего визуализировать информационные модели, производить базовые манипуляции с трехмерным представлением модели в виртуальной реальности; частично автоматизирован процесс экспорта исходных данных информационного моделирования в формат, используемый разработанным приложением.

# Содержание

|                   | Гло        | ссарий                                          | 3  |
|-------------------|------------|-------------------------------------------------|----|
|                   | Вве        | едение                                          | 4  |
| 1                 | Ана        | алитика                                         | 6  |
|                   | 1.1        | Существующие решения                            | 6  |
|                   | 1.2        | Требования к системе                            | 6  |
| 2                 | Пре        | ректирование                                    | 8  |
|                   | 2.1        | Структура предметной области                    | 8  |
|                   | 2.2        | Описание структуры клиентской и серверной части | 8  |
|                   | 2.3        | Оптимизационные подходы                         | 8  |
|                   | 2.4        | Описание взаимодействия с моделью               | 8  |
| 3                 | Реализация |                                                 | 9  |
|                   | 3.1        | Обзор инструментов                              | 9  |
|                   | 3.2        | Серверная часть                                 | 9  |
|                   | 3.3        | Клиентская часть                                | 9  |
|                   | 3.4        | Реализованное взаимодействие с моделью          | 9  |
|                   | 3.5        | Результаты                                      | 10 |
|                   | Зак        | лючение                                         | 11 |
| Список литературы |            |                                                 | 12 |

# Глоссарий

**Полигональная сетка или меш** (англ. polygon mesh) — структура данных, содержащая набор вершин, ребер и граней, определяющих форму многогранного объекта.

**Фреймворк** (англ. framework) – переиспользуемая, "незавершенная" система, которая может использоваться для создания другой производной системы. [1] [2]

**Шейдер** (англ. shader) – разновидность компьютерных программ, запускаемых на графических процессорах, предназначенных для отрисовки изображений.

**BIM** (англ. Building Information Model) — цифровой проект здания или другого объекта инфраструктуры, сопровождаемый базой данных всех его физических и функциональных характеристик. [3]

**HTC Vive** — шлем виртуальной реальности, разрабатываемый компаниями HTC и Valve.

Unity – игровой фреймворк, используемый для трехмерной визуализации. [4]

# Введение

ВІМ – понятие, под которым подразумевают цифровой проект здания или другого объекта инфраструктуры, которая связана с базой данных всех его физических и функциональных характеристик, содержащей подробную информацию обо всех элементах модели: элемент может содержать информацию о габаритах, поставщике и даже серийном номере. Изменения в любом элементе системы здания способны повлечь автоматические изменения параметров и объектов, вплоть до изменения чертежей, визуализаций, спецификаций, календарного графика и сметы. ВІМ – это общий ресурс знаний для получения информации об объекте, который служит надежной основой для принятия решений в течение всего жизненного цикла начиная с самой ранней концепции до сноса. [3] 11 июня 2016 года был утвержден список поручений Правительству Российской Федерации, направленный на развитие правовой базы использования информационного моделирования в сфере строительства. [5]

Информационное моделирование является комплексным процессом, требующим определенной компетенцией в этой области. Для использования ВІМ-методологии необходимы навыки использования специализированного программного обеспечения, коих может быть лишена значительная часть проектной команды. Для обычных людей крайне сложно воспринимать весь объем информации, закладываемой в ВІМ.

В связи с развитием технологий в последнее десятилетие произошел стремительный рост популярности технологии виртуальной реальности. [6] Как показывают многочисленные исследования, использование технологий виртуальной и дополненной реальности может улучшить производительность при валидации и верификации разрабатываемой модели. Применение технологии VR способно значительно повысить презентационные качества модели, что усилит вовлеченность в проект участников, не имеющих специальных профильных навыков. [7] Исходя из этого было принято решение о разработке приложения, способного визуализировать трехмерную репрезентацию информационной модели в VR-среде.

**Цель работы** – разработать прототип приложения, позволяющего инспектировать ВІМ модели в виртуальной реальности.

#### Задачи

- 1. реализовать извлечение атрибутивной информации модели;
- 2. реализовать серверную часть приложения, занимающуюся хостингом и предобработкой моделей;
- 3. автоматизировать перенос моделей из сред разработки в приложение.
- 4. реализовать модуль взаимодействия пользователя с моделью на клиентской части приложения;

Стоит отметить, что данный проект разрабатывается командой из нескольких человек, поэтому в ходе работы не будут представлены те части, в которых автор не принимал непосредственного участия при разработке.

## Глава 1. Аналитика

Данный раздел содержит обзор существующих решений, направленных на визуализацию информационных моделей в виртуальной реальности. В ходе их анализа были выявлены функциональные и нефункциональные требования к реализации системы, приведенные далее.

## 1.1 Существующие решения

В ходе изучения существующих решений был обнаружен ряд продуктов как в индустриальной, так и в академической среде. Ниже приведены несколько примеров, на основе которых были сформулированы требования к разрабатываемому прототипу.

## Индустриальная среда

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. [8]

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. [9]

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. [10]

## Академическая среда

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. [11]

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. [12]

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. [13]

# 1.2 Требования к системе

## Функциональные требования

- выбор ВІМ модели;
- управление масштабом модели;
- управление отображением различных слоев модели;
- загрузка модели на сервер(только для ВІМ-разработчиков).

# Нефункциональные требования

- автоматическая загрузка модели в приложение с сервера;
- приемлемая производительность приложения, когда в кадре находится вся модель целиком.

# Глава 2. Проектирование

## 2.1 Структура предметной области

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

## 2.2 Описание структуры клиентской и серверной части

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

## 2.3 Оптимизационные подходы

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

## 2.4 Описание взаимодействия с моделью

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

# Глава 3. Реализация

## 3.1 Обзор инструментов

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

## 3.2 Серверная часть

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

#### 3.3 Клиентская часть

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

## 3.4 Реализованное взаимодействие с моделью

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

# 3.5 Результаты

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

## Заключение

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

# Список литературы

- 1. Johnson R., Foote B. Designing Reusable Classes // Journal of Object-Oriented Programming. 1988. июнь. т. 1. с. 22—35.
- 2. Schmidt D. Applying Design Patterns and Frameworks to Develop Object-Oriented Communication Software. 2000. aπp.
- 3. Building Sciences N. I. of. Frequently asked questions about the National BIM Standart United States. URL: https://www.nationalbimstandard.org/faqs (дата обр. 01.02.2020).
- 4. Technologies U. Unity User Manual. URL: http://docs.unity3d.com (дата обр. 05.04.2020).
- 5. Перечень поручений Президента Российской Федерации по итогам заседания Государственного совета Российской Федерации 17 мая 2016 г. Пр-1138 ГС. URL: https://tomsk.gov.ru/uploads/ckfinder//userfiles/files/%D0%9F%D1%80-1138%D0%B3%D1%81.PDF (дата обр. 08.04.2020).
- 6. The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature / P. Cipresso [и др.] // Frontiers in Psychology.— 2018. нояб. т. 9.
- 7. Akpan I. J., Shanker M. A comparative evaluation of the effectiveness of virtual reality, 3D visualization and 2D visual interactive simulation: an exploratory meta-analysis // SIMULATION. 2018. февр. т. 95,  $N_2$  2. с. 145—170.
- 8. Technologies U. Unity Reflect. URL: https://unity.com/products/reflect (дата обр. 15.02.2020).
- 9. *IrisVR*. VR for Architecture, Engineering, and Construction. URL: https://irisvr.com/ (дата οбр. 17.02.2020).
- 10. Enscape. Enscape™- Architectural Visualization Software for Revit, SketchUp, Rhino & ArchiCad. URL: https://enscape3d.com/ (дата обр. 17.02.2020).
- 11. Integration of VR with BIM to facilitate real-time creation of bill of quantities during the design phase: a proof of concept study / J. Davidson [и др.] // Frontiers of Engineering Management. 2019. июнь.
- 12. Sampaio A. Z. Enhancing BIM Methodology with VR Technology // State of the Art Virtual Reality and Augmented Reality Knowhow. InTech, 05.2018.
- 13. OpenBIM-Tango integrated virtual showroom for offsite manufactured production of self-build housing / F. [Rahimian] [и др.] // Automation in Construction. 2019. т. 102. с. 1—16. ISSN 0926-5805.