Open-Loop Analysis

Ghassan Arnouk

SYSC 4505A Fall 2020 Lab 1 Report

Instructor: Howard Schwartz

Lab Period: L1E

Day Preformed: 2020/10/20

Date Submitted: 2020/10/22

Contents

1	The Step Response	4
	1 Step 1	. 4
	2 Step 2	. 6
	3 Step 3	. 7
	4 Step 4	. 8
2	he Frequency Response	8
	1 Step 1	. 8
	2 Step 2	. 9
	3 Step 3	. 9
	4 Step 4	. 10
	5 Step 5	. 10
3	teferences	11

T	• ,	C	\sim 1	1
	.101	α t	Tab	LOC
	1100	OI.	$\pm a n$	כסבי

List of Figures

1	Step input and step response of the DC motor
2	Time response of the error signal
	10% increase in time constant
4	10% decrease in time constant
5	Matlab plot of the DC motor transfer function
6	Frequency response data points

1 The Step Response

1.1 Step 1

Fig. 1 the Matlab Simulink simulation of the DC motor with a step input as the reference signal.

Figure 1: Step input and step response of the DC motor

The transfer function, H(s), of the DC motor can be calculated as follows:

$$H_1(s) = \frac{k_t}{R_a} * \frac{1}{Js+b}$$
$$= \frac{k_t}{R_a(Js+b)} * \frac{\frac{1}{R_aJ}}{\frac{1}{R_aJ}}$$

$$\therefore H_1(s) = \frac{\frac{K_t}{R_a J}}{s + \frac{b}{J}} \tag{1}$$

$$H(s) = \frac{\frac{\frac{k_t}{R_a J}}{s + \frac{b}{J}}}{1 + \frac{\frac{k_t k_m}{R_a J}}{s + \frac{b}{J}}}$$

$$= \frac{\frac{k_t}{R_a J}}{\frac{s + \frac{b}{J} + \frac{k_t k_m}{R_a J}}{s + \frac{b}{J} + \frac{k_t k_m}{R_a J}}}$$

$$\therefore H(s) = \frac{\frac{k_t}{R_a J}}{s + \left[\frac{b}{J} + \frac{k_t k_m}{R_a J}\right]} \tag{2}$$

The steady state gain of the DC motor is calculated as follows:

 \therefore Stady state gain = 0.5254

The time constant, τ , can be calculated as follows:

$$\tau = \frac{1}{a} \tag{3}$$

where $a = \frac{b}{J} + \frac{k_t k_m}{R_a J}$

$$\tau = \frac{1}{\frac{b}{J} + \frac{k_t k_m}{R_a J}}$$

$$= \frac{1}{\frac{0.0412}{0.2296} + \frac{1.8350^2}{(3.0484)(0.2296)}}$$

$$= \frac{1}{4.99}$$

$$\therefore \tau = 0.200\,\mathrm{s}$$

There is another way of finding the time constant, τ . We know that 63.2% of the steady state value is equal to the time constant and thus, we have the following:

$$0.632 * 0.5254 = 0.332$$

Using Fig. 1, the time constant is the x-value when the y-value = 0.332. Therefore, the time constant is approximately $0.200 \, s$.

Explicit equation for the time constant of the DC motor:

$$\therefore \tau = \frac{J}{b + \frac{k_t k_m}{R_*}} \tag{4}$$

Explicit equation for the steady state gain of the DC motor:

$$\therefore k_G = \frac{R_a}{R_a b + k_t k_m} \tag{5}$$

1.2 Step 2

Fig. 2 the Matlab Simulink simulation of the error signal of the DC motor.

Figure 2: Time response of the error signal

The error signal can be calculated as follows:

$$e(t) = V_{in}(t) - \omega(t)$$

= 1 - 0.5254 (6)

$$e(t) = 0.4746$$

It is observed that the error signal is almost half of the input signal which highlights a very important disadvantage of the open loop gain. Ideally, one wants the error signal to be as small as possible, if not negligible.

1.3 Step 3

As shown in Eq. 4, the time constant is directly proportional to the parameter J which means an increase in J would cause an increase in τ , and vice verse. On the other hand, the gain is not affected by the changes done to parameter J as Eq. 5 does not have a parameter J in it.

Fig. 3 and Fig. 4 show an increase and a decrease of 10% in the time constant value respectively.

Figure 3: 10% increase in time constant

Figure 4: 10% decrease in time constant

1.4 Step 4

The bandwidth, BW, of the transfer function can be calculated as follows:

$$BW = \frac{1}{\tau}$$

$$= \frac{1}{0.200}$$
(7)

$$BW = 5 \text{ rad/s}$$

2 The Frequency Response

2.1 Step 1

Fig. 5 shows the bode diagram (magnitude and phase) based on the transfer function obtained using Matlab built in function.

Figure 5: Matlab plot of the DC motor transfer function

2.2 Step 2

Parameters shown in Table 1 are used to construct the frequency response of the system including the phase and the gain using Eq. 8 and Eq. 9.

$$\angle H(j\omega) = -360 \frac{t_{\phi}}{T} \tag{8}$$

$$\mid H(j\omega) \mid = \frac{\Delta Y}{\Delta U} \tag{9}$$

Table 1: Data Points

f (Hz)	T (sec)	t_{ϕ}	ΔY	ΔU	$\angle H(j\omega)$	$ H(j\omega) $	$20\log \mathrm{H}(\mathrm{j}\omega) $ (dB)
0.2	5	0.198	1.017	2	-14.256	0.5085	-5.8741
0.5	2	0.169	0.8819	2	-30.42	0.44095	-7.1122
1	1	0.129	0.6878	2	-46.44	0.3439	-9.2713
2	0.5	0.085	0.4323	2	-61.20	0.21615	-13.3049
4	0.25	0.054	0.1909	2	-77.76	0.09545	-20.4045
6.5	0.153846	0.035	0.134	2	-81.90	0.0670	-23.4785

2.3 Step 3

Fig. 6 shows the bode diagram (magnitude and phase) based on the transfer function plotted by hand using data point in Table 1.

Figure 6: Frequency response data points

2.4 Step 4

Using Fig. 6, the bandwidth, BW, is determined using the 3dB drop from the DC gain of the DC motor.

$$BW \approx -5.8741 \, \mathrm{dB} - 3 \, \mathrm{dB}$$

$$BW \approx -8.8741\,\mathrm{dB}$$

As shown in Eq. 7, the general equation of the bandwidth is:

$$BW = \frac{1}{\tau}$$

2.5 Step 5

Based on this experiment and as shown in Fig. 2, the open loop gain of the DC motor has a very large error signal value which is approximately 50% of the input signal. This highlights a very important disadvantage of the open loop gain. The open loop gain is a type of analysis that can be used to analyze a system of dynamics. However, it should be avoided, if possible, as it has a very large error signal relative to the input signal.

3 References

[1] "Laboratory Experiment #1: Open-Loop Analysis", Carleton University, Ottawa, 2020.