

## FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION – 2025 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

| Roll | Number |
|------|--------|
|      |        |
|      |        |
|      |        |

## **Chemistry Paper-I**

TIME ALLOWED: THREE HOURS PART-I (MCQS) MAXIMUM MARKS = 20
PART-I(MCQS): MAXIMUM 30 MINUTES PART-II MAXIMUM MARKS = 80

## **NOTE:**

- (i) First attempted **Part-I** (MCQS) on the separate **OMR Answer Book** which shall be taken back after 30 minutes.
- (ii) Overwriting/cutting of the options/answers will not be given credit.
- (iii) There is no negative marking. All MCQs must be attempted.

## PART-I (MCQs) (COMPULSORY)

- Q.1 (i) Select the best option/answer and fill in the appropriate Box on the OMR Answer Sheet.  $(20 \times 1 = 20)$ 
  - (ii) Answers given anywhere else, other than OMR Answer Sheet, will not be considered.
- 1. Which of the following does not have the ground-state configuration 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>?
- (A) Ne
- (B) Na
- (C) C1
- (D) None of these
- **2.** A reaction is exothermic if:
- (A)  $\Delta H > 0$
- (B)  $\Delta H < 0$
- (C)  $\Delta G > 0$
- (D)  $\Delta G < 0$
- **3.** In chemometrics, multivariate calibration involves:
- (A) Using multiple independent variables to predict dependent variables
- (B) Using regression only on X-data
- (C) Performing correlation without regression
- (D) None of these

| <ul> <li>4. Langmuir isotherm assumes:</li> <li>(A) Multilayer adsorption</li> <li>(B) Uniform surface without interactions between adsorbed molecules</li> <li>(C) Monolayer adsorption with interactions</li> <li>(D) None of these</li> </ul> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. A zero-order reaction rate does <i>not</i> depend on:  (A) Temperature (B) Pressure (C) Reactant concentration (D) None of these                                                                                                              |
| 6. Enzymes act as catalysts by: (A) Increasing activation energy (B) Lowering activation energy (C) Changing equilibrium position (D) None of these                                                                                              |
| 7. In an electrolytic cell:  (A) Electrons move from cathode to anode  (B) The anode is negative  (C) Energy is consumed to drive the reaction  (D) None of these                                                                                |
| 8. Silicones are primarily:  (A) Organic polymers  (B) Inorganic polymers  (C) Hybrid organic-inorganic polymers  (D) None of these                                                                                                              |
| 9. The Nernst equation relates electrode potential to: (A) Pressure (B) Temperature and concentration (C) Surface area (D) None of these                                                                                                         |
| <ul><li>10. In solvent extraction, distribution coefficient is:</li><li>(A) Ratio of solute concentration in two phases</li></ul>                                                                                                                |

(B) Ratio of solvents used

(C) Ratio of extractant to sample volume (D) None of these

| 44 7 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11. In gas chromatography, the mobile phase is:                                                                                                                                                                                         |
| (A) Liquid                                                                                                                                                                                                                              |
| (B) Gas                                                                                                                                                                                                                                 |
| (C) Solid                                                                                                                                                                                                                               |
| (D) None of these                                                                                                                                                                                                                       |
| 12. Solubility of a salt is decreased in presence of: (A) Common ion                                                                                                                                                                    |
| (B) High temperature                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                         |
| (C) High pH (D) None of these                                                                                                                                                                                                           |
| (D) None of these                                                                                                                                                                                                                       |
| 13. The solubility of a gas in a liquid is directly proportional to the partial pressure of the gas above the liquid. The solubility of a gas in a liquid is directly proportional to the partial pressure of the gas above the liquid. |
| is based on:                                                                                                                                                                                                                            |
| (A) Raoult's law                                                                                                                                                                                                                        |
| (B) Henry's law                                                                                                                                                                                                                         |
| (C) Kohlrausch's law                                                                                                                                                                                                                    |
| (D) None of these                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                         |
| 14. The heat capacity of a calorimeter is determined using:  (A) A bomb calorimeter  (B) A known standard material  (C) Adiabatic temperature rise  (D) None of these                                                                   |
|                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                         |
| 15. Fugacity is used to measure:                                                                                                                                                                                                        |
| (A) Real gas behavior                                                                                                                                                                                                                   |
| (B) Ideal gas compressibility                                                                                                                                                                                                           |
| (C) Equilibrium constant                                                                                                                                                                                                                |
| (D) None of these                                                                                                                                                                                                                       |
| 16. Lattice enthalpy is always:                                                                                                                                                                                                         |
| (A) Positive and represents energy absorption                                                                                                                                                                                           |
| (B) Positive and represents energy release                                                                                                                                                                                              |
| (C) Negative and represents energy absorption                                                                                                                                                                                           |
| (D) Negative and represents energy release                                                                                                                                                                                              |
|                                                                                                                                                                                                                                         |
| 17. According to Hess's law:                                                                                                                                                                                                            |
| (A) Enthalpy change depends on reaction pathway                                                                                                                                                                                         |
| . ,                                                                                                                                                                                                                                     |

- (B) Enthalpy change is path independent
- (C) Enthalpy depends on final state only
- (D) Enthalpy change includes entropy changes
- **18.** Debye-Hückel theory is used to calculate:
- (A) Solubility of salts
- (B) Ionic strength of solutions
- (C) Gibbs free energy of ions
- (D) None of these
- 19. Potentiometric titration involves measurement of:
- (A) Current in the reaction
- (B) Volume at equivalence
- (C) Electrode potential as a function of titrant added
- (D) None of these
- 20. According to molecular orbital theory, the bond order of O2 is:
- (A) 1.0
- (B) 1.5
- (C) 2.5
- (D) None of these

# **PART-II**

#### NOTE:

- (i) Part-II is to be attempted on the separate Answer Book.
- (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.
- (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
- (iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
- (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
- (vi) Extra attempt of any question or any part of the question will not be considered.
- Q. 2. (a) Define adsorption and explain its types. Derive an expression for the Langmuir adsorption isotherm and discuss factors influencing adsorption on solids.
  - (b) Why are transition metal complexes often colored? Explain using crystal field theory with an example. (07)
  - (c) Compare and contrast the Lewis concept and the Bronsted-Lowry theory of acids and bases. Include relevant examples and limitations. (05) (20)
- Q.3. (a) What is laathanide contraction? Analyze its impact on the atomic radii and chemical properties of lanthanides and post-lanthanides. (08)

|        | (b)        | Analyze the quantum numbers associated with atomic orbitals and describe their importance in explaining electron configurations.                                       | (07)          |
|--------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|        | (c)        | Describe the catalytic activity of transition metals with reference to their variable oxidation states. Support your explanation with one example.                     | (05) (20)     |
| Q.4. ( | (a)        | Derive the Gibbs free energy equation from the first and second laws of thermodynamics and discuss its importance in predicting the spontaneity of chemical reactions. | (10)          |
|        | (b)        | Explain the principle of fractional distillation. Compare it with simple distillation using a diagram and examples of their applications.                              | (05)          |
|        | (c)        | Adsorption isotherms fail at high pressure. Why? Explain with reference to the limitations of the Freundlich isotherm.                                                 | (05) (20)     |
| Q.5.   | (a)        | Why are Lewis acids and bases more versatile in their applications than Bronsted-Lowry acids and bases? Provide two examples to support your answer.                   | (10)          |
|        | (b)        | Derive the integrated rate law for a first-order reaction and explain why the half-life of such a reaction is independent of its initial concentration.                | (05)          |
|        | (c)        | State and explain the Heisenberg Uncertainty Principle. How does it limit our ability to precisely determine the position and momentum of particles?                   | (05) (20)     |
| Q. 6.  | (a)        | Discuss the Freundlich adsorption isotherm. Derive the equation and highlight its limitations.                                                                         | (07)          |
|        | (b)        | Using a diagram, explain the principle and working of a galvanic cell. Discuss its components with the example of a Zn-Cu system.                                      | (07)          |
|        | (c)        | Why does an exothermic reaction sometimes become non-spontaneous at high temperatures?                                                                                 | (06) (20)     |
| Q. 7.  | (a)        | Explain the relationship between entropy, enthalpy, and Gibbs free energy. Derive an expression for equilibrium using these thermodynamic quantities.                  | (08)          |
|        | <b>(b)</b> | Derive the first law of thermodynamics and explain its connection with internal energy and enthalpy.                                                                   | (07)          |
|        | (c)        | Define the concept of activation energy and illustrate its significance in reaction (05) (20) kinetics using the Arrhenius equation.                                   | )             |
| Q. 8.  |            | Define the following:  (a) Difference between Homogenous and Heterogenous Catalysis  (b) Define Molecular Orbital Theory (MOT)                                         | (5 each) (20) |
|        |            | <ul><li>(b) Define Molecular Orbital Theory (MOT)</li><li>(c) Difference between ANOVA and Gaussian Distribution</li></ul>                                             |               |
|        |            | (d) Define Chromatography and write key differences between Paper Chromatography                                                                                       |               |
|        |            | and Gos Chromatography                                                                                                                                                 |               |

and Gas Chromatography