Laboratory Report: Analysis of Cosmetic Ingredient Mixtures

Report ID: Report_2292

Introduction

The purpose of this laboratory analysis is to evaluate various cosmetic ingredient mixtures using a series of

sophisticated instruments. The aim is to determine key properties and behaviors of these mixtures to facilitate their

application in cosmetic formulations. Each test sample comprises distinct sets of ingredients, the details of which are

intertwined with both relevant and intentionally placed irrelevant data to ensure the robustness of our assessment

procedures.

Materials and Methods

The analyses were conducted using the following instruments:

-Gas Chromatograph GC-2010-Thermocycler TC-5000-FTIR Spectrometer FTIR-8400-X-Ray Diffractometer

XRD-6000-HPLC System HPLC-9000-Rheometer R-4500-Viscometer VS-300

Each instrument evaluated the mixtures for specific properties, ensuring comprehensive profiling of the samples.

Observations and Measurements

Table 1: Gas Chromatograph Results

	Sample Mixture	Instrument	Property	Value	Units
Joj	oba Oil, Beeswax, Gl yaa	siเ€hromatograph GC-20	10 Concentration	550.0	ppm
	Almond Oil, Gum Ga	s Chromatograph GC-20	10 Concentration	320.0	ppm
ando	m Note: Not relevant dat	a here nan	nan	nan	nan

Notably, Jojoba Oil and Beeswax mixtures demonstrated significant consistency in their GC analyses, providing insights into their stability and performance.

Table 2: Thermocycler Observations

Sample Mixture	Instrument	Temperature	Unit
Almond Oil, Glycerin Thermocycler TC-5000		45.0	°C
Coconut Oil Thermocycler TC-5000		37.0	°C
Irrelevant Data: XY	nan	nan	nan

Almond oil mixtures exhibit temperature stability at 45°C, suitable for applications requiring moderate thermal resilience.

Table 3: Spectrometer and Diffraction Analysis

	Sample Mixture	Instrument	Absorption/Band	Value	Units
Cocor	nut Oil, Cetyl Alcohol, 🔄	Resiprectrometer FTIR-84	100 Wavenumber	1600	1/cm
Almor	d Oil, Cetyl Alcohol, Vita	Rai8pEectrometer FTIR-84	100 Wavenumber	3500	1/cm
Jojob	a Oil, Cetyl Alcohol, Xita	anyn Deffractometer XRD-6	000 Temperature	120	°C

FTIR analyses reveal distinct absorption peaks, indicating the presence of functional groups crucial for cosmetic efficacy.

Table 4: High-Pressure Liquid Chromatography

	Sample Mixture	Instrument	Concentration	Value	Units
Co	conut Oil, Gum, Vitamih	IELC System HPLC-900	O Concentration	0.45	mg/L
C	Coconut Oil, Cetyl Alcoh	IPLC System HPLC-900	O Concentration	75.0	mg/L

HPLC data confirms that Coconut Oil mixtures have a varied range of solute concentrations, impacting their formulation potential.

Table 5: Rheometric and Viscosity Measurements

Sample Mixture	Instrument	Measurement	Value	Units
Jojoba Oil, Glycerin	Rheometer R-4500	Viscosity	350.0	Pa-s
Coconut Oil, Vitamin E	Viscometer VS-300	Viscosity	4825.12	сР
Jojoba Oil, Cetyl Alcohol	Viscometer VS-300	Viscosity	2808.17	сР
dom: No relation data ava	ilable nan	nan	nan	nan

These results showcase the rheological properties and potential application stability within cosmetic formulations of the tested mixtures.

Discussion

The variances observed among the mixtures highlight the intricacy of cosmetic formulations and their dependence on ingredient interactions. Jojoba Oil composites displayed remarkable rheological adaptability, while Coconut Oil mixtures presented higher viscosity profiles beneficial in products requiring thicker consistencies.

Conclusion

This comprehensive analysis underscores the significance of systematic evaluation of cosmetic ingredient mixtures.

Coupled with complex analytical procedures and data organization, this report provides essential insights into the physical characteristics and potential applications of these materials.

Note

Data irrelevant to the core analysis are included sporadically to challenge extraction methodologies and ensure thorough data examination. Further studies are recommended to explore additional derivative properties and interactions.