Homework 2

1) Sample space

We are operating in graph space, $\mathcal{G}_n = \{\mathcal{V}, \mathcal{E}, \mathcal{Y}\}$ where

$$\mathcal{V} = \{v_1, v_2, \dots, v_n\} \text{ is a set of vertices, }$$

$$\mathcal{E} = \{e_{11}, \dots, e_{nn}\}$$
 is a set of potential edges and

$$\mathcal{Y} = \{0,1\}^n$$
 (each vertex has a label 0 or 1)

2) Model

We used the Stochastic Block Model, $SBM_n^k(\vec{p}, \vec{\beta})$ where $\vec{p} \in \Delta_2$ and $\vec{\beta} \in (0,1)^{2x^2}$. k = 2 since all vertices will be either 0 or 1.

3) Action space

$$\mathcal{A} = \{ y \in \{0,1\}^n \}$$

All possible cluster assignments for each vertex i.

4) Decision Rule class

The clustering method used, e.g. kmeans.

5) Loss function

$$\ell:\mathcal{G}_nx\mathcal{A}\to\mathbb{R}_+$$

The loss could be measured as $\ell = \sum_{i=1}^{n} \mathbb{I}\{\widehat{y}_i = y_i\}$

or a better way to measure the loss would be using the adjusted rand index (ARI) where

$$ARI = \frac{Index - E[I]}{Max(I) - E[I]}$$

6) Risk function

 \mathcal{R} : \mathcal{P} x $\ell \to \mathbb{R}_+$, e.g. $E_p[\ell]$ (the expected value of the loss function)