Content Moderation and Migration in Social Media: Evidence from Musk's Twitter Acquisition

Iván Rendo (TSE)

Motivation

- Increased interest in online hateful/extreme/unsafe content:
 - E.g. spread of jihadism, bullying, food disorders...
 - Jiménez-Durán (2022) links online hate to offline violence
 - → EU Response: Digital Services Act (DSA)
- Different complementary views on content moderation:
 - "Old Internet" Duch-Brown's perspective:
 - → Constant unsafe content across time BUT today good and bad people together
 - Lefouili & Madio (2022): migration = ↓ impact and enforcement costs
 - Anti Defamation League (ADL) viral video: trading-off moderation in Twitter and migration to other (hateful, small) environments

Today

Platforms' competition model to analyze the interaction between:

Content Moderation, Content (Un)safety, Migration (to other platforms)

... for an ad-funded platform

- → How migration is affected by content moderation policies
- → How unsafe content is affected by migration
- → What incentives do the platforms have to self-regulate
- → Characterize the **optimal regulation** to **minimize** unsafe content

+ Empirical evidence through Musk's acquisition of Twitter

Main Features of the Model

Users:

- Create + consume content on platforms
- Common preferences for network size + quality of the platform
- Heterogeneous preferences for unsafe content

2 Asymmetric **Platforms**:

Twitter

- A Regulated one, higher quality platform: moderates (bans) content
 - Maximizes profits from advertisers (averse to unsafe content = pay less)
- An Unregulated one, lower quality platform: no content moderation 8Chan
- Endogenous composition ~ migration
 - Users' trade-off: network size, quality vs (un)safe content
 - Platform's trade-off: participation vs unsafe content

Preview of the Main Results

1. Prevalence of unsafe content:

- i. **U-shaped** function of moderation intensity, w large network effects
- ii. Decreasing in moderation intensity in, w small network effects

2. Policy:

- Incentives misalignment between platform & regulator (min unsafe content)
- Imposing a minimal content moderation intensity (policy):
 - i. W Large network effects: always superfluous
 - ii. w Mid to small network effects: can be useful

Roadmap

- Theoretical Model
 - Characterization of the Equilibrium
 - Optimal Regulation

II. Empirical Evidence

THEORY

Model

- A unit mass of **individuals**, heterogeneous in their preferences for unsafe content: $\theta_i \sim U(0,1)$
- 2 platforms j = 1,2
 - with $K_j = \max$ unsafety level allowed

$$(K_2 = 1)$$

- Individual i in platform j creates 1 unit of content of unsafety θ_i^C

$$\theta_i^C = \min\{\theta_i, K_j\}$$

- Each individual i in platform j reads all the content, of avg unsafety $\bar{\theta}_j$

$$\bar{\theta}_j = \frac{1}{N_j} \sum_{i \in j} \theta_i^C = \text{average unsafety of content in platform } j$$

• Platform 1, regulated, is intrinsically better than 2, unregulated

• Utilities of user i joining j = 1,2 are defined as:

Users in the Platform

Average "Unsafety" of the Created Content

$$U_1(\theta_i) = \frac{N_1}{N_1} - \alpha |\theta_i - \bar{\theta}_1| + \Delta$$

$$U_2(\theta_i) = N_2 - \alpha \left| \; \theta_i - \bar{\theta}_2 \; \right|^{\text{Intrinsic Quality of the Reg. Platform}}$$

Inverse of network effects*

User i joins (only!) the platform that maximizes their utility

Rk: No outside option!

Advertisers

Buy a fixed amount of ads in the regulated platform (1)

Are averse to unsafe content

Price of ads: $1 - b\bar{\theta}_1$

Regulated Platform

The regulated platform (1) chooses a content moderation policy

 $K:=K_1\in [0,1]$: perfectly and costlessly bans any content $\theta_i>K$

Platform (1) maximizes revenues:

Advertisers aversion to unsafe content

$$\Pi(K) = N_1(K) \times (1 - b\bar{\theta}_1(K))$$
 Average content unsafety Price of ads

...platform (2) just exists with $K_2=1$

Timing

1. The regulated platform (1) chooses the content moderation policy K and commits to it

2. All the users simultaneously choose whether to join platform (1) xor (2) depending on their θ_i

3. Agents derive the corresponding payoffs from the composition of the social network

Threshold Equilibrium

User i joins platform (1) iff $\theta_i < t^*$, otherwise, they join (2)

Under some conditions on α (not too low), for any K, there exist a **unique threshold equilibrium**, which takes one of these two forms:

$$K < t^*$$

Characterization of the Equilibrium

Strong network effects

Policy (to min unsafe content)

Advertisers aversion to unsafe content (b)

 (α^{-1})

Green Area: Nothing to do!

Blue Area:

The regulator can impose a minimum content moderation level, and it would be beneficial: there won't be too much migration

Orange Area: the policy wouldn't bind as the minimum content imposed is higher than the optimal for the platform

(We saw this in the DSA)

EMPIRICS

Event: Musk buys Twitter: *exogenous* $\uparrow K$

Hypothesis to take to the Data (from the model)

- 1. More unsafe content in Twitter. Hickey et al. (2023)
- 2. More 'hate' from 'hateful users'. Hickey et al. (2022)
- 3. "Migration" from Telegram to TW from creators of unsafe content:
 - i. Hateful for Twitter standards

Today

- ii. Decrease of unsafe content in Telegram from these users
- (4). Total unsafe content increases or decreases?

Review of the Data I Have:

12 million tweets around the invasion of Ukraine

- Checked if created by a "Telegram User"
- Computed "toxicity" levels of a sample of >100k
 of them using a extremely good Google API
 (Perspective)

Example

In terms of *toxicity*:

"You are great hahaha" > "You are great"

"Son of a bitch" > "Son of a bitch hahaha"

Review of the "Evidence" I Got:

"Diff-in-diff" 1 month before and after Musk's acquisition

 ∇ Toxicity Telegram users - ∇ Toxicity Non-Telegram users

Telegram users' unsafe content descends less after Musk's acquisition

Observations:

- Downwards trend of toxicity (natural for an invasion?)
- Robust to the temporal window chosen
- Activity
 - ... a lot of Telegram-based bots/heavy users
 - Telegram users in both highest and lowest percentiles of unsafe content

(Lot of) Next Steps...

Theoretically:

Difficult model to extend (low analytical tractability)

Empirically:

Make a proper empirical model (structural, with a stochastic part) Migration of Activity ≠ Migration?

- + Fancy things to try:
 - Find bots? (It used to be possible before Musk)
 - Match (some) users from Telegram to Twitter

Main takeaway

- A policy (e.g. a stronger version of the DSA) can have unintended effects due to migration to non-regulated platforms
 - → greatly depends on the network effects, advertisers' aversion to unsafe content, and quality of the outside platform

Not shown today: Monopolist model

- If a monopoly faces entry
 - ▶ ↓ strictness of moderation just enough to deter entry
 - min (unsafe content) = max (profits) at that point
 - There is no need of regulation

Most Importantly: Merry Christmas!

Appendix

Literature

- · Closest Paper: Madio & Quinn (2023).
 - Rich ads model, but exogenous creation of content.
 - Focuses in the monopolist + pricing of ads.

· Liu et al (2021) focuses on the (imperfect) technology

Empirical Side

- Jiménez Durán (2022), Jiménez Durán, Müller & Schwarz (2022)
- Some CS Literature: Schmitz, Muric, et al. (2022 and 2023)

Remarks

 Only in terms of total hate, leaving aside CS (the analysis is less neat, but possible)

- The regulator might care more about the hate experienced by low-hate people:
 - there is a rational for stricter policy if this is the case
 - but could end up "throwing to the lions" to
 - "median" users