LAB4. Flow Control Optimizations

Loop unrolling and Inlining

```
a)
i)
lab4_session/matriu4x4> ../../../scripts/autopca -e ./matriu4x4.opt.g2 -g ./matriu4x4.g2 -n 10
[i] Comparant els outputs dels executables...
[ij
        Acounting de ./matriu4x4.g2, numero de repeticions: 10
        Max. elapsed:
                         .52 seconds
                         .51 seconds
        Min. elapsed:
                         .5110 seconds
        Avg. elapsed:
        Max. CPU time: .51 seconds
        Min. CPU time: .51 seconds
        Avg. CPU time: .5100 seconds
        Max. CPU:
                         100%
        Min. CPU:
                         99\%
                         99.30%
        Avg. CPU:
[i]
        Acounting de ./matriu4x4.opt.g2, numero de repeticions: 10
                         .46 seconds
        Max. elapsed:
        Min. elapsed:
                         .46 seconds
                          .4600 seconds
        Avg. elapsed:
        Max. CPU time:
                         .46 seconds
        Min. CPU time: .45 seconds
        Avg. CPU time: .4590 seconds
        Max. CPU:
                         100%
        Min. CPU:
                         99%
                         99.10%
        Avg. CPU:
[i]
        Calcul del Speedup
        Speedup elapsed: 1.1108
        Speedup CPU: 1.1111
ii)
Samples: 1K of event 'branches', Event count (approx.): 844111092
                                Shared Object
Overhead
                                                      Symbol
           Command
                                                      [.] main
[k] perf_event_exec
            matriu4x4.opt.q matriu4x4.opt.q2
```

[kernel.kallsyms]

844M de branches

perf

0.00%

```
%rsp,%r11
%rdi,%rbp
0x40(%rsp),%r8
          88:
                mov
  0.43
                mov
          8e:
                lea
                       %rbp,%r10
                mov
                       (%r10),%esi
          96:
  0.33
                mov
                       0x40(%r8),%r9
                       %r11,%rcx
                mov
              ↑ jne
                       a3
                       $0x4,%r8
  0.04
                add
                       %esi,(%r10)
                       %rbx,%r8
                cmp
                jne
                       96
                add
                       $0x10,%r11
                add
                       $0x10,%rbp
  0.05
  1.95
                jne
                       8e
                       $0x1,%r13d
                add
                       %r13d,%r14d
                cmp
                ja
         de: → callq
                       print_matriu
iii)
multiplica: //(6*n_iter)*(7*4)*(7*4)*(8*4) = 150528*n_iter
for_ITER:
                   // 6 ins * niter
mov
      -0x8(%rsp),%r11
mov
       %r15,%r12
       %rdi,%rbp
mov
for_I:
                     // 7 ins * 4
lea
       -0x10(%r12),%r10
mov
       %rsi,%rbx
for_J:
                     // 7 ins * 4
mov
       (%r10),%r9d
       %rbx,%r8
mov
       %rbp,%rax
mov
                     // 8 ins * 4
for K:
       (%rax),%edx
mov
add
       $0x4,%rax
add
       $0x10,%r8
       -0x10(%r8),%edx
imul
add
       %edx,%r9d
cmp
       %rax,%r11
       %r9d, (%r10)
mov
       for_K
jne
add
       $0x4,%r10
add
       $0x4,%rbx
cmp
      %r10,%r12
       for_J
jne
add
       $0x10,%rbp
add
       $0x10,%r12
       $0x10,%r11
add
cmp
       %r13,%rbp
       for_I
jne
add
       $0x1,%r14d
       %ecx,%r14d
cmp
```

for ITER

jne

i)

Timing de inlining - unrolling amb només inlining

```
lab4_session/matriu4x4> ../../.scripts/autopca -e ./matriu4x4.optk.g2 -g ./matriu4x4.opt.g2 -n 10
[i] Comparant els outputs dels executables...
[i] Acounting de ./matriu4x4.opt.g2, numero de repeticions: 10
         Max. elapsed:
Min. elapsed:
                             .46 seconds
                             .46 seconds
          Avg. elapsed:
                             .4600 seconds
         Max. CPU time: .46 seconds
         Min. CPU time:
                             .45 seconds
          Avg. CPU time: .4590 seconds
         Max. CPU:
                             100%
                             99%
99.30%
         Min. CPU:
         Avg. CPU:
[i]
          Acounting de ./matriu4x4.optk.g2, numero de repeticions: 10
          Max. elapsed:
                             .22 seconds
         Min. elapsed:
                             .21 seconds
          Avg. elapsed:
                             .2110 seconds
          Max. CPU time: .21 seconds
                             .21 seconds
          Min. CPU time:
          Avg. CPU time:
                             .2100 seconds
          Max. CPU:
                             100%
         Min. CPU:
Avg. CPU:
                             99\%
                             99.10%
         Calcul del Speedup
[i]
          Speedup elapsed: 2.1800
          Speedup CPU: 2.1857
```

Timing amb la versió original.

```
lab4_session/matriu4x4> ../../scripts/autopca -e ./matriu4x4.optk.g2 -g ./matriu4x4.g2 -n 10
[i] Comparant els outputs dels executables...
[i] Acounting de ./matriu4x4.g2, numero de repeticions: 10
             Max. elapsed:
Min. elapsed:
Avg. elapsed:
                                         .53 seconds
                                         .51 seconds
                                         .5150 seconds
             Max. CPU time:
Min. CPU time:
Avg. CPU time:
                                        .53 seconds
.51 seconds
                                         .5130 seconds
             Max. CPU:
Min. CPU:
Avg. CPU:
                                         100%
99%
                                         99.40%
[i]
              Acounting de ./matriu4x4.optk.g2, numero de repeticions: 10
                                         .22 seconds
             Max. elapsed:
             Min. elapsed:
Avg. elapsed:
                                         .21 seconds
                                         .2180 seconds
                                        .22 seconds
.21 seconds
.2110 seconds
             Max. CPU time:
             Min. CPU time:
Avg. CPU time:
             Max. CPU:
Min. CPU:
Avg. CPU:
                                         100%
                                         99\%
                                         99.30%
             Calcul del Speedup
Speedup elapsed: 2.3623
Speedup CPU: 2.4312
[i]
```

um

ii)

```
Samples: 874 of event 'cycles', 4000 Hz, Event count (approx.): 746435319
main /home2/users/alumnes/1227356/PCA/PCA-FIB/LAB4/lab4_session/matriu4x4/matriu4x4.optk.g2
                  unsigned int n_iter=N_ITER, i,j;
Percent
                               %r13d,%r13d
                     xor
                     lea
                               0x10(%r12),%rbx
                     nop
                  mov %rsp,%rsi
mov %rdi,%rbp
n_iter = atoi(argv[1]);
   0.11
   0.11
                  MULTIPLICA(A, B, C, n_iter);
                               0x40(%rsp),%rdx
0x8(%rsi),%r9d
                               0xc(%rsi),%r8d
                     imul
   3.68
   4.99
                     imul
                               %r10d,%r15d
                               0x1c(%rdx),%r15d
   4.99
                               %eax,-0x4(%rcx)
   7.76
                     mov
                               %rdx,%rbx
                               $0x10,%rsi
                               $0x10,%rbp
                               %rsi,%r12
                     cmp
                               $0x1,%r13d
                               %r13d,%r14d
                     cmp
   0.11
                  t ja
Samples: 878 of event 'branches', Event count (approx.): 210320059
Overhead Command Shared Object Symbol
99.96% matriu4x4.optk. matriu4x4.optk.g2 [.] main
                                                                Symbol
[.] main
[k] unmap_page_range
[k] prepend_name
                                      [kernel.kallsyms]
[kernel.kallsyms]
    0.04%
             matriu4x4.optk.
    0.00%
             matriu4x4.optk.
                                                                [k] __vma_adjust
[k] rcu_irq_exit
                                      [kernel.kallsyms]
    0.00%
             matriu4x4.optk.
    0.00\%
             matriu4x4.optk.
                                      [kernel.kallsyms]
    0.00%
                                      [kernel.kallsyms]
                                                                [k] perf_event_exec
             perf
```

210M branches \rightarrow s'han reduit considerablement.

```
mov
                     %rsp,%rsi
                    %rdi,%rbp
             moν
           n_iter = atoi(argv[1]);
           MULTIPLICA(A, B, C, n_iter);
0.91
                     0x4(%rsi),%r10d
             mov
             lea
                     0x40(%rsp),%rdx
                     0x8(%rsi),%r9d
             mov
             mov
                     0xc(%rsi),%r8d
             mov
                     %rbp,%rcx
                    %r11d,%eax
0.81
0.23
             add
                     -0x4(%rcx),%eax
                     %r15d,%eax
4.83
4.84
           ↑ jne
                     a5
                     $0x10,%rsi
           t jne
                     8e
0.46
             add
                     $0x1,%r13d
                     %r13d,%r14d
             cmp
           t ja
                     88
```

17*4 *10*4*5*N_iter = **13600 * N_iter**

c)

i)

```
lab4_session/matriu4x4> ../../scripts/autopca -e ./matriu4x4.optj.g2 -g ./matriu4x4.g2 -n 10
[i] Comparant els outputs dels executables...
         Acounting de ./matriu4x4.g2, numero de repeticions: 10
         Max. elapsed:
                           .51 seconds
         Min. elapsed:
                           .51 seconds
         Avg. elapsed:
                           .5100 seconds
         Max. CPU time:
                           .51 seconds
         Min. CPU time:
                           .51 seconds
         Avg. CPU time:
                           .5100 seconds
         Max. CPU:
                           100%
         Min. CPU:
                           99%
                           99.40%
         Avg. CPU:
[i]
         Acounting de ./matriu4x4.optj.g2, numero de repeticions: 10
         Max. elapsed:
                           .19 seconds
                           .19 seconds
         Min. elapsed:
                           .1900 seconds
         Avg. elapsed:
         Max. CPU time:
                           .18 seconds
         Min. CPU time:
Avg. CPU time:
                           .18 seconds
                           .1800 seconds
         Max. CPU:
                           99\%
         Min. CPU:
Avg. CPU:
                           98%
                           98.90%
         Calcul del Speedup
Speedup elapsed: 2.6842
Speedup CPU: 2.8333
[i]
lab4_session/matriu4x4> ../../scripts/autopca -e ./matriu4x4.optj.g2 -g ./matriu4x4.optk.g2 -n 10
[i]
[i]
         Comparant els outputs dels executables...
         Acounting de ./matriu4x4.optk.g2, numero de repeticions: 10
         Max. elapsed:
                           .22 seconds
         Min. elapsed:
                           .21 seconds
         Avg. elapsed:
                           .2110 seconds
        Max. CPU time: .21 seconds
Min. CPU time: .21 seconds
                           .21 seconds
         Avg. CPU time:
                          .2100 seconds
        Max. CPU:
Min. CPU:
                           99%
                           99%
         Avg. CPU:
                           99.00%
[i]
         Acounting de ./matriu4x4.optj.g2, numero de repeticions: 10
         Max. elapsed:
                           .19 seconds
         Min. elapsed:
                           .19 seconds
         Avg. elapsed:
                           .1900 seconds
        Max. CPU time:
Min. CPU time:
                           .18 seconds
                          .18 seconds
         Avg. CPU time: .1800 seconds
         Max. CPU:
                           99\%
         Min. CPU:
                           98%
         Avg. CPU:
                           98.90%
[i]
         Calcul del Speedup
         Speedup elapsed: 1.1105
         Speedup CPU: 1.1666
```

ii)

Cicles:

```
Samples: 753 of event 'cycles', 4000 Hz, Event count (approx.): 645840077
main /home2/users/alumnes/1227356/PCA/PCA-FIB/LAB4/lab4_session/matriu4x4/matriu4x4.optj.g2 [Percent
Percent
                  MULTIPLICA(A, B, C, n_iter);
mov 0x94(%rsp),%eax
                               0x80(%rsp),%r15d
                     mov
                               0x100(%rsp),%r11
0x90(%rsp),%r14d
                     lea
                     mov
                               0xa0(%rsp),%r13d
                     mov
                               0xb0(%rsp),%r12d
0x84(%rsp),%ebp
                     mov
                     mov
                               %eax,0x8(%rsp)
                     mov
                              0xa4(%rsp),%eax
0xbc(%rsp),%ebx
$0x0,0x38(%rsp)
                     mov
                     mov
                     movl
                               %eax,0xc(%rsp)
0xb4(%rsp),%eax
%eax,0x10(%rsp)
                     mov
                     mov
                     mov
                               0x88(%rsp),%eax
%eax,0x14(%rsp)
0x98(%rsp),%eax
                     mov
                     mov
                     mov
                               %eax,0x18(%rsp)
                     mov
                              0xa8(%rsp),%eax
%eax,0x1c(%rsp)
0xb8(%rsp),%eax
                     mov
                     mov
                     mov
                               %eax,0x20(%rsp)
                     mov
                               0x8c(%rsp),%eax
%eax,0x24(%rsp)
                     mov
                     mov
                               0x9c(%rsp),%eax
                     mov
                               %eax,0x28(%rsp)
0xac(%rsp),%eax
                     mov
                     mov
                               %eax,0x2c(%rsp)
                     mov
                     lea
                               0xc0(%rsp),%rax
%rax,0x30(%rsp)
                     xchg
                               %ax,%ax
                     mov
                               0x30(%rsp),%r9
  0.26
                               (%r10),%ecx
                     mov
                               0x8(%r10),%eax
  0.39
                     mov
                               %ecx,%r8d
                     mov
  0.26
                     imul
                               %r15d,%r8d
                     add
  0.26
                     imul
                               %r14d,%edi
  0.39
                               %eax,%edi
                     mov
  0.26
                     add
                               %r8d,%edi
  0.13
                     imul
                               %r12d,%r8d
   1.99
                     add
                               %ecx,%r8d
                     mov
  0.13
                     mov
                               0x8(%rsp),%edi
  0.26
                               0x4(%r9),%r8d
                     add
   3.93
                     imul
                               %edi,%r8d
                     add
  2.63
                               0xc(%rsp),%edi
                     mov
```

Branches:

```
Samples: 760 of event 'branches', Event count (approx.): 50208700
                                                 Symbol
Overhead
         Command
                            Shared Object
  99.87%
          matriu4x4.optj
                            matriu4x4.optj.g2
                                                  .] main
                                                 [.] _dl_addr
[k] perf_event_exec
   0.13%
                            libc-2.26.so
          matriu4x4.optj.
                            [kernel.kallsyms]
   0.00%
          perf
```

50M de branches

iii)

```
33 (tots els moves de l'inici) + 57*4 * 6 * N iter = 33 + 1368 * N iter
```

d)

i) No s'ha pogut fer el timing amb el GNU time ja que aquest només permet precisió fins a les centèsimes de segon. Hem usat el time de bash que te precisió fins als mil·lisegons per a poder calcular el speedup.

Speedup respecte la versió anterior:

```
dhap@@kali:~/UNI/pca/PCA-FIB/LAB4/lab4_session/matriu4×4$ time
                                                                ./matriu4×4.opti.g2
1400780143 -768217222 804885694 1856772449
197236110 1678700198 -487200378 1332173696
1284348296 -1124999449 1954104691 -232562345
-1547499970 -879578979 1049980953 -877687785
real
        0m0.004s
user
        0m0.003s
        0m0.002s
SVS
dhap@@kali:~/UNI/pca/PCA-FIB/LAB4/lab4_session/matriu4×4$ time ./matriu4×4.optj.g2
1400780143 -768217222 804885694 1856772449
197236110 1678700198 -487200378 1332173696
1284348296 -1124999449 1954104691 -232562345
-1547499970 -879578979 1049980953 -877687785
real
        0m0.313s
       0m0.309s
user
        0m0.005s
sys
dhap@@kali:~/UNI/pca/PCA-FIB/LAB4/lab4_session/matriu4×4$ python -c "print(0.313/0.004)"
```

Speedup respecte la versió original:

```
dhap@@kali:~/UNI/pca/PCA-FIB/LAB4/lab4_session/matriu4×4$ time ./matriu4×4.opti.g2
1400780143 -768217222 804885694 1856772449
197236110 1678700198 -487200378 1332173696
1284348296 -1124999449 1954104691 -232562345
-1547499970 -879578979 1049980953 -877687785
real
        0m0.002s
        0m0.001s
user
        0m0.000s
SVS
dhap@@kali:~/UNI/pca/PCA-FIB/LAB4/lab4_session/matriu4×4$ time ./matriu4×4.opt.g2
1400780143 -768217222 804885694 1856772449
197236110 1678700198 -487200378 1332173696
1284348296 -1124999449 1954104691 -232562345
-1547499970 -879578979 1049980953 -877687785
real
        0m0.636s
        0m0.636s
user
        0m0.001s
dhap@@kali:~/UNI/pca/PCA-FIB/LAB4/lab4_session/matriu4×4$ python -c "print(0.636/0.002)"
318.0
```

ii)
Hem reduït considerablement el nombre de branches de 50 milions a 36.237.

```
Samples: 27 of event 'branches:u', Event count (approx.): 36237

Overhead Command Shared Object Symbol

25,99% matriu4x4.opti. ld-2.33.so [.] __GI___tunables_init

24,06% matriu4x4.opti. ld-2.33.so [.] _dl_relocate_object

14,21% matriu4x4.opti. ld-2.33.so [.] _dl_map_object_from_fd

13,56% matriu4x4.opti. ld-2.33.so [.] intel_check_word.constprop.0

11,02% matriu4x4.opti. ld-2.33.so [.] _dl_lookup_symbol_x
```

iii)

gracies a:

https://stackoverflow.com/questions/13313510/quick-way-to-count-number-of-instructions-ex ecuted-in-a-c-program

```
if (argc > 1) {
     n_iter = atoi(argv[1]);
       struct perf_event_attr pe;
       long long count;
       int fd;
       memset(δpe, 0, sizeof(struct perf_event_attr));
       pe.type = PERF_TYPE_HARDWARE;
       pe.size = sizeof(struct perf_event_attr);
       pe.config = PERF_COUNT_HW_INSTRUCTIONS;
       pe.disabled = 1;
       pe.exclude_kernel = 1;
       pe.exclude_hv = 1;
       fd = perf_event_open(&pe, 0, -1, -1, 0);
       if (fd = -1) {
           fprintf(stderr, "Error opening leader %llx\n", pe.config);
           exit(EXIT_FAILURE);
       ioctl(fd, PERF_EVENT_IOC_RESET, 0);
       ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
       MULTIPLICA(A, B, C, n_iter);
       ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
       ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
       read(fd, &count, sizeof(long long));
       printf("Used %lld instructions\n", count);
146
```

```
dhap@mkali:~/UNI/pca/PCA-FIB/LAB4/lab4_session/matriu4×4$ sudo !!
sudo ./matriu4×4.opti.g2
Used 430 instructions
1400780143 -768217222 804885694 1856772449
197236110 1678700198 -487200378 1332173696
1284348296 -1124999449 1954104691 -232562345
-1547499970 -879578979 1049980953 -877687785
```

hem passat de les (33 + 1368 * N_iter) instruccions a nomes 430

(e)
La versió més ràpida amb diferència és la del full-unroll, ja que obte un speedup de 318 respecte l'original i passa dels 844 milions de salts que tenia la primera versió del codi a nomes 36.237 salts.

(f)

```
33 void multiplica(int A[4][4], int B[4][4], int C[4][4], unsigned int n_iter)
32 {
31
     int iter;
     int i,j,k;
      for (iter=0; iter<n_iter; iter++)</pre>
         C[0][0] = C[0][0] + A[0][0] * B[0][0];
25 C[0][0] = C[0][0] + A[0][1] * B[1][0];
24 C[0][0] = C[0][0] + A[0][2] * B[2][0];
23 C[0][0] = C[0][0] + A[0][3] * B[3][0];
22 C[0][1] = C[0][1] + A[0][0] * B[0][1];
21 C[0][1] = C[0][1] + A[0][1] * B[1][1];
20 C[0][1] = C[0][1] + A[0][2] * B[2][1];
19 C[0][1] = C[0][1] + A[0][3] * B[3][1];
18 \ C[0][2] = C[0][2] + A[0][0] * B[0][2];
17 C[0][2] = C[0][2] + A[0][1] * B[1][2];
16 \ C[0][2] = C[0][2] + A[0][2] * B[2][2];
15 C[0][2] = C[0][2] + A[0][3] * B[3][2];
14 \ C[0][3] = C[0][3] + A[0][0] * B[0][3];
13 C[0][3] = C[0][3] + A[0][1] * B[1][3];
12 C[0][3] = C[0][3] + A[0][2] * B[2][3];
11 C[0][3] = C[0][3] + A[0][3] * B[3][3];
10 C[1][0] = C[1][0] + A[1][0] * B[0][0];
9 C[1][0] = C[1][0] + A[1][1] * B[1][0];
8 C[1][0] = C[1][0] + A[1][2] * B[2][0];
7 C[1][0] = C[1][0] + A[1][3] * B[3][0];
6 C[1][1] = C[1][1] + A[1][0] * B[0][1];
5 C[1][1] = C[1][1] + A[1][1] * B[1][1];
4 C[1][1] = C[1][1] + A[1][2] * B[2][1];
3 C[1][1] = C[1][1] + A[1][3] * B[3][1];
2 C[1][2] = C[1][2] + A[1][0] * B[0][2];
1 C[1][2] = C[1][2] + A[1][1] * B[1][2];
 C[1][2] = C[1][2] + A[1][2] * B[2][2];
                                                                                   36%
/UPC/PCA/PCA-FIB/LAB4/lab4_session/matriu4x4/matriu4x4.unroll_no_inline.c
```

Com podem veure a la captura següent hi ha un canvi considerable entre els 0,004s que triga la versió amb inlining i els 0,291 que es triguen sense inlining:

```
16:40 quim: ~/UPC/PCA/PCA-FIB/LAB4/lab4_session/matriu4x4 [main]$ time ./matriu4x4.opti.g2
1400780143 -768217222 804885694 1856772449
197236110 1678700198 -487200378 1332173696
1284348296 -1124999449 1954104691 -232562345
-1547499970 -879578979 1049980953 -877687785
real
       0m0,004s
       0m0,001s
user
       0m0,004s
sys
16:41 quim: ~/UPC/PCA/PCA-FIB/LAB4/lab4_session/matriu4x4 [main]$ time ./matriu4x4.unroll_no_inline
1400780143 -768217222 804885694 1856772449
197236110 1678700198 -487200378 1332173696
1284348296 -1124999449 1954104691 -232562345
-1547499970 -879578979 1049980953 -877687785
real
       0m0,291s
        0m0,289s
       0m0,001s
sys
```

Això és degut a que el compilador no pot preveure els paràmetres que es passen a la funció quan no es fa inlining i per tant no pot aplicar certes optimitzacions en el codi de la funció que si que podria fer en el cas de que es fes inlining.

Optimizacions de Pi.c

Unrolling

Fent profiling de la nostra millor versió de la pràctica anterior veiem que hi ha molts salts a les funcions calculate (que executa els divides) i LONGDIV.

```
Samples: 15K of event 'branches', Event count (approx.): 887318439

Overhead Command Shared Object Symbol

79.72% pi.opt3.g3 pi.opt3.g3 [.] calculate

18.32% pi.opt3.g3 pi.opt3.g3 [.] LONGDIV

0.11% pi.opt3.g3 [kernel.kallsyms] [k] psi_group_change
```

887,3 M de branches.

Per a començar apliquem un unroll de 2:

```
#define BODY_FOR_CALCULATE(j) {\
                                         oid DIVIDE( signed char *x, int n )
                                           int j, k;
        DIVIDE_25( a );\
                                           long v;
        DIVIDE_239( b );\
        DIVIDE_239( b );\
                                           for(k = 0; k+1 \le N4; k+=2)
        progress();\
                                                                BODY_FOR_DIVIDE(k)
                                                                BODY_FOR_DIVIDE(k+1)
#define BODY_FOR_DIVIDE(k) {\
                                                        for(;k <= N4; k++) BODY_FOR_DIVIDE(k);</pre>
                                       void DIVIDE_239( signed char *x)
#define BODY_FOR_DIVIDE239(k) {\
                                           int j, k;
                                           unsigned q, r, u;
        x[k] = memo_q239[u]; \
                                           long v;
#define BODY_FOR_DIVIDE25(k) {\
                                           r = 0;
        x[k] = memo_q25[u]; \
                                            for( k = 0; k+1 <= N4; k+=2 )
        r = memo_r25[u];}
                                              BODY_FOR_DIVIDE239(k);
#define BODY_FOR_DIVIDE5(k) {\
                                              BODY_FOR_DIVIDE239(k+1);
        x[k] = memo_q5[u];
                                                        for(;k <= N4; k++) BODY_FOR_DIVIDE239(k);</pre>
oid DIVIDE_25( signed char *x)
```

```
void DIVIDE_25( signed char *x)
{
    int j, k;
    unsigned q, r, u;
    long v;

    r = 0;
    for( k = 0; k+1 <= N4; k+=2 )
    {
        BODY_FOR_DIVIDE25(k);
        BODY_FOR_DIVIDE25(k+1);
    }

        for(;k <= N4; k++) BODY_FOR_DIVIDE25(k);
}
//Dividir entre 25 es dividir entre 5 dos cops
void DIVIDE_5( signed char *x)
{
    int j, k;
    unsigned q, r, u;
    long v;

    r = 0;
    for( k = 0; k+1 <= N4; k+=2 )
    {
        BODY_FOR_DIVIDE5(k);
        BODY_FOR_DIVIDE5(k+1);
    }

        for(;k <= N4; k++) BODY_FOR_DIVIDE5(k);
}</pre>
```

Timing d'aquesta versió anomenada **pi.opt6.c** que obté un speedup respecte el laboratori anterior de **1.0031**:

```
ali:~/UNI/pca/PCA-FIB/LAB4/lab4_session/pi$ ../../../scripts/autopca -e ./pi.opt6.g3 -g ./pi.opt3.g3 -n 5
Comparant els outputs dels executables...
Acounting de ./pi.opt3.g3, numero de repeticions: 5
              Max. elapsed: 3.89 seconds
Min. elapsed: 3.88 seconds
Avg. elapsed: 3.8820 seconds
               Max. CPU time: 3.88 seconds
              Min. CPU time: 3.87 seconds
Avg. CPU time: 3.8780 seconds
              Max. CPU:
Min. CPU:
Avg. CPU:
                                             99.20%
[i]
              Acounting de ./pi.opt6.g3, numero de repeticions: 5
              Max. elapsed: 3.87 seconds
Min. elapsed: 3.87 seconds
Avg. elapsed: 3.8700 seconds
               Max. CPU time: 3.87 seconds
Min. CPU time: 3.86 seconds
Avg. CPU time: 3.8640 seconds
               Max. CPU:
                                             100%
              Min. CPU:
Avg. CPU:
                                             99.20%
[i]
              Calcul del Speedup
Speedup elapsed: 1.0031
Speedup CPU: 1.0036
```

I al profiling veiem que hem reduït el nombre de branches:

```
Samples: 15K of event 'branches', Event count (approx.): 738298132

Overhead Command Shared Object Symbol

75.27% pi.opt6.g3 pi.opt6.g3 [.] calculate

22.25% pi.opt6.g3 pi.opt6.g3 [.] LONGDIV plements Auda

0.14% pi.opt6.g3 [kernel.kallsyms] [k] psi_group_change
```

Si apliquem un unroll de 4 perdem tot l'speedup:

```
~/UNI/pca/PCA-FIB/LAB4/lab4_session/pi$ ../../../scripts/autopca -e ./pi.opt4.g3 -g ./pi.opt3.g3 -n 5
          Comparant els outputs dels executables...
Acounting de ./pi.opt3.g3, numero de repeticions: 5
[i]
[i]
          Max. elapsed: 3.88 seconds
          Min. elapsed:
                             3.88 seconds
3.8800 seconds
          Avg. elapsed:
          Max. CPU time: 3.88 seconds
Min. CPU time: 3.87 seconds
Avg. CPU time: 3.8720 seconds
          Max. CPU:
                                99%
          Min. CPU:
          Avg. CPU:
                                99.00%
[i]
          Acounting de ./pi.opt4.g3, numero de repeticions: 5
          Max. elapsed:
                               3.91 seconds
          Min. elapsed:
                                3.90 seconds
          Avg. elapsed: 3.9040 seconds
          Max. CPU time: 3.90 seconds
Min. CPU time: 3.90 seconds
Avg. CPU time: 3.9000 seconds
          Max. CPU:
                                100%
                                99%
          Avg. CPU:
                                99.20%
[i]
          Calcul del Speedup
          Speedup elapsed: .9938
Speedup CPU: .9928
```

```
15K of event 'branches', Event count (approx.): 661963693
Samples:
Overhead
          Command
                      Shared Object
          pi.opt4.g3
                      pi.opt4.g3
                                          [.] calculate
                                          [.] LONGDIV
          pi.opt4.g3 pi.opt4.g3
                                          [.] DIVIDE_239
          pi.opt4.g3
                      pi.opt4.g3
   4.05%
          pi.opt4.g3
                      pi.opt4.g3
                                          [.] DIVIDE_25
                      [kernel.kallsyms]
                                          [k] psi_group_change
   0.18%
          pi.opt4.g3
```

Doncs la versió definitiva d'aquesta secció de la pràctica és **pi.opt6.c** que ens dona un speedup respecte el pi.c original de **1.0945.**

```
li:~/UNI/pca/PCA-FIB/LAB4/lab4_session/pi$ ../../../scripts/autopca -e ./pi.opt6.g3 -g ./pi.g3 -n 10
[i]
[i]
           Comparant els outputs dels executables...
           Acounting de ./pi.g3, numero de repeticions: 10
           Max. elapsed: 4.25 seconds
Min. elapsed: 4.23 seconds
Avg. elapsed: 4.2360 seconds
           Max. CPU time: 4.24 seconds
Min. CPU time: 4.22 seconds
Avg. CPU time: 4.2280 seconds
          Max. CPU:
                                 100%
           Min. CPU:
                                  99%
           Avg. CPU:
                                 99.10%
[i]
           Acounting de ./pi.opt6.g3, numero de repeticions: 10
           Max. elapsed: 3.87 seconds
Min. elapsed: 3.87 seconds
Avg. elapsed: 3.8700 seconds
           Max. CPU time: 3.87 seconds
Min. CPU time: 3.86 seconds
Avg. CPU time: 3.8650 seconds
           Max. CPU:
                                  100%
           Min. CPU:
                                  99%
           Avg. CPU:
                                 99.10%
[i]
           Calcul del Speedup
           Speedup elapsed: 1.0945
           Speedup CPU: 1.0939
```

LoopFusion

Fusionem els DIVIDE_239 i els SUBSTRACT(a,c,a) i SUBSTRACT (b,c,b) de la següent fracció de codi:

De tal manera que la macro BODY_FOR_CALCULATE quedarà de la següent manera:

i les noves funcions:

```
void SUBTRACT_FUSION_A_B( signed char *x, signed char *x2, signed char *y, signed char *z, signed char *z2)
{
    int j, k;
    unsigned q, r, u;
    long v;
    for ( k = N4; k >= 1; k-- )
    {
        if ( (x[k] = y[k] - z[k]) < 0 )
        {
            x[k] += 10;
            z[k-1]++;
        }
        if ( (x2[k] = y[k] - z2[k]) < 0 )
        {
            x2[k] += 10;
            z2[k-1]++;
        }
        if ( (x[k] = y[k] - z[k]) < 0 )
        {
            x[k] += 10;
        }
        iff( (x2[k] = y[k] - z2[k]) < 0 )
        {
            x[k] += 10;
        }
    }
</pre>
```

```
void DIVIDE_57121( signed char *x)
{
   int j, k;
   unsigned q, r, u, r2;
   long v;

   r = 0;
        r2 = 0;
   for( k = 0; k+1 <= N4; k+=2 )
   {
        BODY_FOR_DIVIDE57121(k);
        BODY_FOR_DIVIDE57121(k+1);
   }
   for(;k <= N4; k++) BODY_FOR_DIVIDE57121(k);
}</pre>
```

Aquesta nova versió que anomenem **pi.loopf.c** aconsegueix un speedup respecte el programa original de **1.2514.**

```
li:~/UNI/pca/PCA-FIB/LAB4/lab4_session/pi$ ../../scripts/autopca -e ./pi.loopf.g3 -g ./pi.g3 -n 3
[i]
[i]
           Comparant els outputs dels executables...
           Acounting de ./pi.g3, numero de repeticions: 3
          Max. elapsed: 4.23 seconds
Min. elapsed: 4.23 seconds
Avg. elapsed: 4.2300 seconds
          Max. CPU time: 4.23 seconds
Min. CPU time: 4.22 seconds
Avg. CPU time: 4.2233 seconds
          Max. CPU:
                                99%
          Min. CPU:
                                99%
          Avg. CPU:
                                99.00%
[i]
          Acounting de ./pi.loopf.g3, numero de repeticions: 3
          Max. elapsed: 3.39 seconds
          Min. elapsed: 3.37 seconds
Avg. elapsed: 3.3800 seconds
          Max. CPU time: 3.38 seconds
Min. CPU time: 3.36 seconds
Avg. CPU time: 3.3700 seconds
          Max. CPU:
                                99%
          Avg. CPU:
                                99.00%
          Calcul del Speedup
[i]
          Speedup elapsed: 1.2514
Speedup CPU: 1.2532
```

Removing Conditional Branches

En aquesta part de la pràctica es treballa en una versió que anomenarem **pi.loopf.opt2.c.**Aquest nou codi incorporarà la millora de les funcions SUBTRACT i LONGDIV per tal
d'eliminar els salts condicionals per mitjà de bithacks. També s'ha afegit unroll a les funcions
SUBTRACT que no s'havia incorporat anteriorment. La funció LONGDIV ha sigut canviada
per la funció DIVIDE optimitzada amb unrolling.

Canvis a la funció SUBTRACT:

Canvis a la funció SUBTRACT_FUSION_A_B:

```
void SUBTRACT_FUSION_A_B( signed char *x, signed char *x2, signed char *y, signed char *z, signed char *z2)
{
    int j, k;
    unsigned q, r, u;
    long v;
    signed char t, t2;
    for( k = N4; k-1 >= 1; k-= 2 )
    {
        BODY_SUBTRACT_FUSION_A_B(k);
        BODY_SUBTRACT_FUSION_A_B(k-1);
    }
    for (; k >= 1; k--) BODY_SUBTRACT_FUSION_A_B(k);

    t = y[k] - z[k];
    x[k] = t + (10 & (t>>7));

    t = y[k] - z2[k];
    x2[k] = t + (10 & (t>>7));
}
```

La funció LONGDIV ha sigut substituida per la funció DIVIDE i s'ha aplicat l'unroll com als altres DIVIDEs:

```
#define BODY_FOR_DIVIDE(k) {\
    u = r * 10 + x[k];\
    q = u/n;\
    r = u - q * n; \
    x[k] = q;}
```

Aquesta versió del codi és la definitiva. Entregada per l'usuari **pca06**, anomenat **pi.loopf.opt2.c** amb un speedup respecte l'original de **1.8851**.

```
| 00:14:40 | dhap0@bunker:[pi]$ ../../.scripts/autopca -e ./pi.loopf.opt2.g3 -g ./pi.g3 -n 10 |
| Comparant els outputs dels executables... |
| Acounting de ./pi.g3, numero de repeticions: 10 |
| Max. elapsed: 2.30 seconds |
| Min. elapsed: 2.26 seconds |
| Avg. elapsed: 2.2810 seconds |
| Max. CPU time: 2.29 seconds |
| Min. CPU time: 2.26 seconds |
| Avg. CPU time: 2.2710 seconds |
| Max. CPU: 99% |
| Min. CPU: 99% |
| Avg. CPU: 99.00% |
| Acounting de ./pi.loopf.opt2.g3, numero de repeticions: 10 |
| Max. elapsed: 1.23 seconds |
| Max. elapsed: 1.23 seconds |
| Avg. elapsed: 1.20 seconds |
| Avg. elapsed: 1.210 seconds |
| Avg. elapsed: 1.22 seconds |
| Max. CPU time: 1.22 seconds |
| Min. CPU time: 1.2020 seconds |
| Max. CPU time: 1.2020 seconds |
| Max. CPU: 99% |
| Min. CPU: 99% |
| Avg. CPU: 99.00% |
| Calcul del Speedup |
| Speedup elapsed: 1.8851 |
| Speedup CPU: 1.8893
```

La taula següent mostra els diferents speedups que s'han anat aconseguint en les diferents versions del codi pi.c.

