Другое определение подмногообразия

Теорема

Пусть N — гладкое многообразие.

Множество $M \subset N$ – гладкое подмногообразие $\iff M$ является образом некоторого гладкого вложения.

Док-во теоремы:

(тредыдущая теорема.

 $oldsymbol{ar{ extsf{N}}}$ — подмногообразие $N \Longrightarrow$ включение in : $M \to N$ — гладкое вложение.

Док-во леммы:

- in гладкое отображение. (поскольку in $_{\varphi,\psi}$ стандартное включение \mathbb{R}^k в $\mathbb{R}^n=\mathbb{R}^k \times \mathbb{R}^{n-k}$ в выпрямляющей карте ψ и карте $\varphi=\psi_{|M}$)
- in погружение.
 следует из координатного представления дифференциала

$$(d_p \operatorname{in}(v))_{\psi} = d_{\varphi(p)} \operatorname{in}_{\varphi,\psi}(v_{\varphi}), \qquad \forall v \in T_p M$$

• in – гомеоморфизм на образ (по определению).

26 марта 2022 г.

(1) Сужение гладкого отображения на гладкое подмногообразие — M гладкое отображение (из подмногообразия). M, N-20.MH. F:MAN-- m. 0706p: 14 - nosmy 7-16: fly - 2n. 0500p · (U, 4) - bornp kapte sne K (V, Y) - Kapta gna N · 7.16 f-201., to fq, y- ragresse o feiple(unk) - SSET magross. Van Cyn. M. Gru.

- (1) Сужение гладкого отображения на гладкое подмногообразие гладкое отображение (из подмногообразия).
- (2) Пусть $M \subset N$ подмногообразие. Тогда включение in : $M \to N$ гладкое отображение.

NEMMA UZ NPESUSYUJEN TEOJOEMUS

- (1) Сужение гладкого отображения на гладкое подмногообразие гладкое отображение (из подмногообразия).
- (2) Пусть $M\subset N$ подмногообразие. Тогда включение in: M o N гладкое отображение.
- (3) Пусть N подмногообразие в некотором N. Тогда гладкость f:M o N равносильна гладкости f как отображения из M в Nin: N-7 ñ - 2199608

f= inof: Man

Hazo g-76: f-7n (=>) f-2nage (=>) cb-bo 2 + masse leonin =) (U, I) - leaghta & M.

fey mesure, 5, 22 700 nepour

M - 20,11/19

otosp fa, y- $M=(-E, E): V=S^2, \tilde{V}=R^3$

- (1) Сужение гладкого отображения на гладкое подмногообразие гладкое отображение (из подмногообразия).
- (2) Пусть $M \subset N$ подмногообразие. Тогда включение in : $M \to N$ гладкое отображение.
- (3) Пусть N подмногообразие в некотором \widehat{N} . Тогда гладкость $f:M\to N$ равносильна гладкости f как отображения из M в \widehat{N}

Определение

Пусть \widehat{M} , N – гладкие многообразия, M – подмногообразие в \widehat{M} . Гладкое отображение $f: M \to N$ называется локально гладко продолжимым, если для любой $x \in M$ существует окрестность $U \ni x$ в \widehat{M} и гладкое отображение $\widetilde{f}: U \to N$, продолжающее $f|_{U \cap M}$.

(4) f гладкое $\iff f$ локально гладко продолжимо.

Док-во: \leftarrow свойство (1) + поточечная гладкость.

⇒ в выпрямляющей карте

(4,4)

Лекция 5 26 марта 2022 г.

Транзитивность подмногообразий

Теорема

Пусть N- гладкое многообразие, $M\subset N-$ гладкое подмногообразие, $K\subset M-$ подмножество.

Тогда эквивалентны два свойства:

- (1) К гладкое подмногообразие М;
- (2) К гладкое подмногообразие N.

При этом размерность K и дифференциальная структура на K, получаемые из M и N, совпадают.

Доказательство.

Пусть in: M o N, in₁: K o M, in₂: K o N – включения. Тогда

$$\underbrace{\mathsf{in}_2 = \mathsf{in} \circ \mathsf{in}_1}.$$

Теорема сводится к утверждению: если in_1 — гладкое вложение (относительно некоторой дифференциальной структуры на K), то in_2 тоже, и наоборот.

Это следует из равенства $d ext{ in}_2 = d ext{ in} \circ d ext{ in}_1$

120K:270 in1- 71-61024 In. CARS UT Cb. (3) ecnu Ger ding + (0),

Лекция 5 26 марта 2022 г.

Разные взгляды на касательное пространство подмногообразия

Пусть N^n — гладкое многообразие, $M^k\subset N$ — его подмногообразие, $p\in M$.

Соглашение

Касательное пространство $T_p M$ – линейное подпространство в $T_p N$.

Мотивировки:

- (1) Вектор из $T_p M$, представленный гладкой кривой $\alpha\colon (-\varepsilon,\varepsilon)\to M$, отождествляется с вектором из $T_p N$, представленным той же кривой α .
- (2) Рассмотрим включение $in\colon M\to N$. Так как M подмногообразие N, то in вложение. Поэтому d_pin инъекция, а его образ $d_pin(T_pM)\subset T_pN$ k-мерное линейное подпространство в T_pN .

OT BREYEMUE &

CTOPOHY

BEPHO NU, VD

ECHU M. C.N

OSa IN. MH- &

in: M-N-2n-C,

PM-NOSMU & N

?

Разные взгляды на касательное пространство подмногообразия

Свойство 1

Пусть N,K — гладкие многообразия, $M\subset N$ — гладкое подмногообразие, $f\colon N\to K$ — гладкое отображение. Тогда

$$d_p(f|_M) = (d_p f)|_{T_p M}$$

Док-во:

- $T_pM \subset T_pN$.
- ullet $f|_M=f\circ \mathit{in},$ где $\mathit{in}:M o N$ включение.
- $d_p(f|_M) = d_p f \int d_p \inf \Big| (d_p f)|_{T_p M}$.

Разные взгляды на касательное пространство подмногообразия

Касательное пространство образа вложения

Свойство 2

Пусть $f: M \to N$ — вложение, $p \in M$. Тогда касательное пространство к подмногообразию K = f(M) в точке f(p) — образ дифференциала $d_p f$, т.е.

$$T_{f(p)}K = d_p f(T_p M)$$

Доказательство.

Пусть $\widehat{f}: M \to K$ – то же самое f с заменой формальной области значений. Оно гладкое по свойству 3.

$$\implies f = \operatorname{in} \circ \widehat{f}$$
, где in: $K \to N$ – включение.

$$\implies d_p f = d_{f(p)} \operatorname{in} \circ d_p \widehat{f}$$

$$\implies d_p f(T_p M) = d_{f(p)} i(d_p \widehat{f}(T_p M)).$$

Так как \widehat{f} — диффеоморфизм, $d_p \widehat{f}$ — биекция между $T_p M$ и $T_{f(p)} K$.

$$\implies d_p f(T_p M) = d_{f(p)} \operatorname{in}(T_{f(p)} K).$$

6 / 17

Регулярные точки и регулярные значения

Пусть M^n и K^k — гладкие многообразия, $n \geq k$, $f: M \to K$ — гладкое отображение.

Определение

Точка $p \in M$ — регулярная точка f, если дифференциал $d_p f: T_p M \to T_{f(p)} N$ сюръективен (эпиморфизм). Эквивалентно, rank $d_p f = k$

Точка $q \in K$ — регулярное значение f, если все точки из $f^{-1}(q)$ — регулярные точки.

f - субмерсия, если все точки из M - регулярные точки для f.

Замечание

Множество регулярных точек открыто

(так как регулярность точки эквивалентна тому, что хотя бы один из миноров $k \times k$ матрицы дифференциала не равен 0).

Следовательно, в окрестности регулярной точки отображение является субмерсией.

7 / 17

Прообраз регулярного значения

Теорема

Пусть M^n и K^k — гладкие многообразия, $n \ge k$, $f: M \to K$ — гладкое отображение, $q \in K$ — регулярное значение f.

Тогда $f^{-1}(q)$ — гладкое подмногообразие в M. Его размерность равна n-k.

Док-во: Построим выпрямляющую карту.

- Рассмотрим некоторое $p \in f^{-1}(q)$, а так же карты (U, φ) и (V, ψ) , содержащие точки p и q соответственно. По определению регулярного значения p регулярная точка.
- Далее работаем с картами. Пусть $A = \varphi(U)$, $C = \psi(V)$, $x = \varphi(p)$, $y = \psi(q)$. Можно считать, что U и V выбраны так, что $F = f_{\varphi,\psi} \colon A \to C$.
- Т.к. x регулярная точка F, то rankF = k. Тогда будем считать, что матрица d_xF , образованная из первых k строк и столбцов, имеет ненулевой определитель.

gonywellue gre ynp gok. Yng:, zoz. 76 & odycza czyraz

Прообраз регулярного значения

Продолжаем док-во теоремы:

• Рассмотрим отображение

им отооражение
$$G: A \to \mathbb{R}^k \times \mathbb{R}^{n-k}, \qquad G(a,b) = (F(a,b),b).$$

Тогда определитель $k \times k$ в левом верхнем углу матрицы $d_x G$ отличен от нуля, поэтому $rank_x G = n$.

- По теореме об обратном отображении существуют такие открытые окрестности $E(x) \in A$ и $W(G(x)) \in \mathbb{R}^n$, что $G|_{E(x)} \colon E(x) \to W(G(x))$ —диффеоморфизм.
- По построению, $F \not \circ \varphi$ выпрямляющая карта в точке p.

9 / 17