Not Closed Sets and Continuous Functions

Colton Grainger MAT-441 Topology

February 22, 2016

Postulate (Archimedes). For any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that x < n.

Definition 17 (convergent sequence). If $\{x_i\}_{i\in\mathbb{N}}\subseteq\mathbb{R}$, then we say *converges to* x, written as $x_i\to x$, if and only if for every open set U containing x, there is an $N\in\mathbb{N}$ such that $x_i\in U$ for all i>N.

Definition 18 (limit point in **R**). Let A be a subset of **R** and x be a point in **R**. Then x is a *limit point* of A if and only if for every open set U containing x, the intersection $(U \setminus \{x\}) \cap A$ is not empty.

Lemma. A real number x is a limit point of the set $A \subseteq \mathbf{R}$ if and only if $x = \lim a_i$ for some sequence of real numbers $\{a_i\}_{i\in \mathbf{N}}$ contained in a set A satisfying $a_i \neq x$ for all $i \in \mathbf{N}$.

Proof. Let A be a subset of the real numbers.

 (\Rightarrow) Suppose a real number x is a limit point of A. Let us construct a sequence: for each $i \in \mathbb{N}$, consider the radius 1/i > 0; by definition 18 there exists an real number not x (call it a_i) such that

$$a_i \in B(x, 1/i) \cap A$$
.

We have defined each term $a_i \neq x$ in the sequence of real numbers $\{a_i\}_{i \in \mathbb{N}} \subseteq A$. To show $\{a_i\}$ converges to x, consider any open set of real numbers U which contains x. By the definition of an open set in \mathbb{R} , there exists $\varepsilon > 0$ such that

$$B(x,\varepsilon)\subseteq U$$
.

We desire to find an index N after which all terms of the sequence $\{a_i\}$ lie within the open ball $B(x,\varepsilon)$. To do this, choose $N \in \mathbb{N}$ such that

$$N > 1/\varepsilon$$
.

Consider the index j > N. It is clear

$$j > \frac{1}{\varepsilon}$$
 if and only if $\varepsilon > \frac{1}{j}$.

 $^{^{1}}$ We know N exists by Archimedes' postulate.

By construction, the term a_j is contained in B(x, 1/j). Further, the radius 1/j is less than ε . Taking both these facts in stride, we know

$$a_j \in B(x, 1/j) \subseteq B(x, \varepsilon).$$

Knowing $B(x,\varepsilon) \subseteq U$, we conclude

$$a_i \in U$$

which is precisely the condition (elaborated in definition 17) to be met for us to say that $\{a_i\}$ converges to x.

(\Leftarrow) Suppose A contains the sequence $\{a_i\}_{i\in\mathbb{N}}$ where $a_i \neq x$ for all $i \in \mathbb{N}$. Further suppose $\{a_i\}$ converges to x. Let U be an open set containing x. As a consequence of definition 17, we know: there exists $N \in \mathbb{N}$ such that i > N implies $a_i \in U$. Choose the least index² j greater than N. Because $a_j \neq x$ is an element of both $\{a_i\}_{i\in\mathbb{N}}$ and U, we know

$$a_j \in (U \setminus \{x\}) \cap \{a_i\}.$$

Because $\{a_i\} \subseteq A$, we know

$$a_i \in (U \setminus \{x\}) \cap A$$
.

It follows that

$$(U \setminus \{x\}) \cap A \neq \emptyset$$

which is exactly the condition (elaborated in definition 18) to be must be met for x to be a limit point of A.

Definition 19 (closed set in **R**). A set in **R** is *closed* if and only if it contains all of its limit points.

Example 40. If $X \subseteq \mathbf{R}$ is finite, then X is closed.

Example 47. Each singleton set $\{1/n\}$ (for all natural numbers n) is closed, but their union (the set of harmonic numbers) is not closed.

Tedious Proof. For all natural numbers n, let $\{1/n\}$ be the singleton set containing the multiplicative inverse of n. Because each set $\{1/n\}$ is finite, each set is closed (see example 40). Let us denote the union

$$\bigcup_{n \in \mathbb{N}} \left\{ \frac{1}{n} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\}$$
$$:= \mathcal{H}.$$

where \mathcal{H} represents the set of harmonic numbers.

We will show that \mathcal{H} does not contain its limit point 0. First, let's verify 0 is a limit point of \mathcal{H} . To do this, assume U is an open set which contains 0. By definition of an open set in \mathbf{R} , there is radius $\varepsilon > 0$ such that the open ball $B(0, \varepsilon)$ is contained in U. We now

²The set $\{i \in \mathbf{N} : i > N\}$ is a nonempty subset of the natural numbers, so it has a least element j.

desire a harmonic number which is less than ε . By Archimedes' postulate, we can find a natural number $N > 1/\varepsilon$ such that the harmonic number

$$\frac{1}{N} < \varepsilon$$
.

So follows

$$\frac{1}{N} \in B(0,\varepsilon) \subseteq U.$$

Because $\frac{1}{N} \neq 0$, we have

$$\frac{1}{N} \in (U \setminus \{0\}) \cap \mathcal{H},$$

which is exactly the condition which must be met for 0 to be a limit point of \mathcal{H} (see definition 18). As the harmonic numbers are the multiplicative inverses of the natural numbers (each of which have finite magnitude), 0 is not contained in \mathcal{H} . We conclude \mathcal{H} is not closed (see definition 19).

Fancy Proof. For each natural number n, consider the set $\{1/n\}$. Because the set $\{1/n\}$ is finite, it is closed. Now see the union

$$\bigcup_{n \in \mathbb{N}} \left\{ \frac{1}{n} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\}$$

is identically the sequence $\{1/n\}_{n\in\mathbb{N}}$ which converges³ to 0. Because there does not exist a natural number n such that 1/n=0, we know the union does not contain 0. But, by the lemma, we know 0 is a limit point of the union. So the union is not closed.

Example 6 (b). The set **Q** of rational numbers is neither open not closed in **R**.

Proof. This is a proof by two contradictions—demonstrating first that \mathbf{Q} cannot be open and second that \mathbf{Q} cannot be closed.

First, suppose that \mathbf{Q} is open. Then there exists an open ball $B(0,\varepsilon)$ containing 0 such that $B(0,\varepsilon) \subseteq \mathbf{Q}$. Because \mathbf{Q} is dense in \mathbf{R} , there exists a rational number r such that $0 < r < \varepsilon$. As $0 < r/\sqrt{2} < \varepsilon$, we know the point $r/\sqrt{2}$ is an element of $B(0,\varepsilon)$. With $r \in \mathbf{Q}$, are we to accept that $r/\sqrt{2} \in \mathbf{Q}$? Certainly not. It follows that \mathbf{Q} cannot be open.

Second, suppose that \mathbf{Q} is closed. Then \mathbf{Q} contains all of its limit points. Consider the sequence of rational⁴ numbers

$${a_i}_{i \in \mathbf{N}} = \left\{1, 1 + \frac{1}{2}, 1 + \frac{1}{2 + \frac{1}{2}}, 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}, \dots\right\}.$$

This proof would be rigorous if we knew the $\{a_i\}$ converge to some real number, call it x. For the sake of example, let's suppose this is a fact. As $a_i \to x$, we have

$$x = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}}.$$

³For any $\varepsilon > 0$, there exists $N > 1/\varepsilon$ such that n > N implies $|1/n - 0| < \varepsilon$.

 $^{^4}$ Because **Q** is an ordered field, i.e., closed under the usual addition and multiplication as well as containing inverses, each term in the sequence is indeed a rational number.

If **Q** is closed (and we are supposing it is closed), then (by the lemma) $x \in \mathbf{Q}$. We will see that $x \in \mathbf{Q}$ produces contradiction. Rearranging,

$$x = 1 + \frac{1}{1 + 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}}.$$

Since x is defined as the limit of the a_i , we may substitute

$$x = 1 + \frac{1}{1+x}.$$

We proceed to find

$$x - 1 = \frac{1}{1+x},$$

$$(x-1)(x+1) = 1,$$

$$x^{2} - 2 = 0,$$

$$x = \sqrt{2}$$

(taking the positive root as x in accordance with the increasing, positive, sequence). Are we to accept that $\sqrt{2} \in \mathbb{Q}$? Certainly not. It follows that \mathbb{Q} cannot be closed.

Definition 20 (continuous function in **R**). A function $f: D \subseteq \mathbf{R} \to \mathbf{R}$ is continuous at x if and only if for every $\varepsilon > 0$ there is a $\delta > 0$ such that if $z \in D$ and $|x - z| < \delta$ then $|f(x) - f(z)| < \varepsilon$. We say that f is continuous if it is continuous for every point x in its domain D.

Definition 21 (continuous function in \mathbf{R}). A function $f: \mathbf{R} \to \mathbf{R}$ is *continuous* if and only if for every open set $U \in \mathbf{R}$, $f^{-1}(U)$ is open in \mathbf{R} .

Theorem 48. The two definitions of continuity for real-valued functions on **R** are equivalent.

Example 6 (c). Every linear polynomial gives a continuous function (from **R** to **R**).

Distance Proof. Suppose we have a linear polynomial $f: \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = kx$$
, for some real k .

Consider a point $x \in \mathbf{R}$ and a real radius $\varepsilon > 0$. Given any point $z \in \mathbf{R}$ within a distance of ε to x, we will demonstrate the existence of a real radius $\delta > 0$ that bounds the the image f(z) within a distance of δ to the image f(x). To do this, let $\varepsilon = |k|\delta$. Then

$$|x-z|<\delta$$

⁵Metonym: "Given open U, f-inverse U is open too."

⁶If k = 0, the image of **R** is 0, which is bounded by any $\delta > 0$.

implies that

$$|x - z| < \frac{\varepsilon}{|k|}$$
$$|k||x - z| < \varepsilon$$
$$|kx - kz| < \varepsilon$$
$$|f(x) - f(z)| < \varepsilon$$

which is exactly the condition which must be met (see definition 20) for f to be continuous at $x \in \mathbf{R}$. Because we have only required x to be real, we may generalize: f is continuous (at all points in \mathbf{R}).

Open Set Proof. Suppose we have a linear polynomial $f: \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = kx$$
, for some real k.

We desire proof 'for every open subset U of the real numbers, the inverse image $f^{-1}(U)$ is an open subset of the real numbers too.' Let us assume we have an open set U that is a subset of the co-domain (\mathbf{R}) of f. Consider a real point 8

$$x_0 \in f^{-1}(U)$$
.

Its image is

$$f(x_0) \in U$$
.

Because U is open, a real radius $\delta > 0$ exists such that U contains the open ball $B(f(x_0), \delta)$. Choose $\varepsilon = \frac{\delta}{k}$. Suppose x is a real number. The following statements are equivalent:

$$x \in B(x_0, \varepsilon),$$

$$x_0 - \varepsilon < x < x_0 + \varepsilon$$

$$x_0 - \frac{\delta}{k} < x < x_0 + \frac{\delta}{k},$$

$$kx_0 - \delta < kx < kx_0 + \delta,$$

$$kx \in B(kx_0, \delta),$$

$$f(x) \in B(f(x_0), \delta).$$

So, whenever x is in $B(x_0, \varepsilon)$, f(x) is in $B(f(x_0), \delta)$. Excellent. Because U contains $B(f(x_0), \delta)$, whenever x is in $B(x_0, \varepsilon)$, we know f(x) is in U. It follows that, whenever x is in $B(x_0, \varepsilon)$, x is in $f^{-1}(U)$. This is exactly the condition which must be met for $f^{-1}(U)$ to be open. Examining definition 21, we conclude that f is continuous on \mathbb{R} .

The function of f for all $x \in \mathbf{R}$, then an open set $U \subseteq$ in the co-domain of f does not exist. In which case f is continuous (if only vacuously.)

⁸Does one always exist? Given f(x) = kx, yes, but for general function $f: R \to R$, I cannot say.

⁹We are assuming $k \neq 0$.