Algorithmen und Datenstrukturen Aufgabenblatt 1

Uschi Dolfus, Frederik Wille, Julian Deinert

21. Oktober 2014

Aufgabe 1

(a)
$$\frac{1}{x} \prec 1 \prec \log(\log(x)) \prec \log(x) \approx \log(x^3) \prec \log(x^{\log(x)}) \prec x^{0.01} \prec x^{\frac{1}{2}} \prec x(\log(x)) \prec x^8 \prec 2^x \prec 8^x \prec x! \prec x^x$$

Beweise:

i.
$$\lim_{x \to \infty} \frac{\frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x} = 0$$
ii.
$$\lim_{x \to \infty} \frac{1}{\log(\log(x))} = 0$$

ii.
$$\lim_{x \to \infty} \frac{1}{\log(\log(x))} = 0$$

iii.
$$\lim_{x \to \infty} \frac{\log(\log(x))}{\log(x)} = 0, \text{ da } \log(x) < x \to \log(\log(x)) < \log(x)$$

iv.
$$\lim_{x \to \infty} \frac{\log(x)}{\log(x^3)} = \lim_{x \to \infty} \frac{\log(x)}{3\log(x)} = \frac{1}{3}$$

iv.
$$\lim_{x \to \infty} \frac{\log(x)}{\log(x^3)} = \lim_{x \to \infty} \frac{\log(x)}{3\log(x)} = \frac{1}{3}$$
v.
$$\lim_{x \to \infty} \frac{\log(x^3)}{\log(x^{\log(x)})} = \lim_{x \to \infty} \frac{3\log(x)}{\log(x)^2} = \lim_{x \to \infty} \frac{3}{\log(x)} = 0$$

vi. $\lim_{x\to\infty}\frac{\log(x^{\log(x)})}{x^{0.01}}=0$, da jede Potenz
funktion schneller wächst, als jede Potenz vom Logarithmus

vii.
$$\lim_{x \to \infty} \frac{x^{0.01}}{x^{\frac{1}{2}}} = 0$$

viii.
$$\lim_{x \to \infty} \frac{x^{\frac{1}{2}}}{x \log(x)} = \lim_{x \to \infty} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}} \times x^{\frac{1}{2}} \times \log(x)} = \lim_{x \to \infty} \frac{1}{x^{\frac{1}{2}} \log(x)} = 0$$

ix.
$$\lim_{x \to \infty} \frac{x \log(x)}{x^8} = \frac{\log(x)}{x^7} = 0$$

$$x. \lim_{x \to \infty} \frac{x^8}{2^x} = 0$$

xi.
$$\lim_{x \to \infty} \frac{2^x}{8^x} = \lim_{x \to \infty} \left(\frac{2}{8}\right)^x = \lim_{x \to \infty} \left(\frac{1}{4}\right)^x = \lim_{x \to \infty} \frac{1^x}{4^x} = \lim_{x \to \infty} \frac{1}{4^x} = 0$$
xii.
$$\lim_{x \to \infty} \frac{8^x}{x!} = \lim_{x \to \infty} \frac{8 \times 8 \times 8 \cdots \times 8}{x \times (x-1) \times (x-2) \times \cdots \times 1} = 0$$
xiii.
$$\lim_{x \to \infty} \frac{x!}{x^x} = \frac{x \times (x-1) \times (x-2) \times \cdots \times 1}{x \times x \times x \times x \times \cdots \times x} = 0$$

xii.
$$\lim_{x \to \infty} \frac{8^x}{x!} = \lim_{x \to \infty} \frac{8 \times 8 \times 8 \cdots \times 8}{x \times (x-1) \times (x-2) \times \cdots \times 1} = 0$$

xiii.
$$\lim_{x \to \infty} \frac{x!}{x^x} = \frac{x \times (x-1) \times (x-2) \times \dots \times 1}{x \times x \times x \times \dots \times x} = 0$$

(b) i. Behauptung:

Sei b beliebig und b > 1, so gilt $\log_b(n) \in \Theta(\log_2(n))$

Beweis:

Die Behauptung ist äquivalent zu:

Die Denauptung ist aquivalent zu: $\lim_{n\to\infty}\frac{\log_b(n)}{\log_2(n)}=\text{konstanter Wert. Laut Präsenzaufgaben gilt:}\\ \log_a(x)=\frac{\log_b(x)}{\log_b(a)}<=>\log_b(a)=\frac{\log_b(x)}{\log_a(x)}\text{ also gilt:}\\ \lim_{n\to\infty}\frac{\log_b(n)}{\log_2(n)}=\\ \lim_{n\to\infty}\log_b(2)=\text{konstanter Wert für alle }b>1$

ii. Behauptung:

wenn $f \in \Omega(g)$ ist, so ist $g \in \omega(f)$

Beweis:

Obige Behauptung ist äquivalent zu $\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$. Dies gilt aber nur, wenn g(n) > f(n) (da sonst $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$). daraus folgt, dass der $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$ ist und somit $g \in \omega(f)$

iii. Behauptung:

Für alle
$$c \in \mathbb{R}+$$
 und $f_c(n) := \sum_{i=1}^n (c^i)$ gilt: $f_c(n) \in O(n) \leftrightarrow c = 1$

Beweis: