Deep Learning

Lecture 6: Gradient Descent

Dr. Mehrdad Maleki

Motivation

You have a NN that meant to compute desire function $g(\mathbf{X})$. But your NN actually compute $f(\mathbf{X}, \mathbf{W})$ and you need to find the value of \mathbf{W} such that $\|g(\mathbf{X}) - f(\mathbf{X}, \mathbf{W})\|$ is minimum. But the value of $g(\mathbf{X})$ is not known for all \mathbf{X} . So we sample the function g. On input \mathbf{X}_i if $\mathbf{y}_i = g(\mathbf{X}_i)$ then for $i = 1, \ldots, N$, $\{(\mathbf{X}_i, \mathbf{y}_i) : 1 \le i \le N\}$ is the set of samples.

 x_1 .

 x_2

$$x_1 \qquad \qquad y = \begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_2 \ge 0 \end{cases}$$

We know that,

	Red		Blue
1	g(2,3)=1	7	g(1,-1)=0
2	g(2,4) = 1	8	g(3,0) = 0
3	g(0,1) = 1	9	g(4,3) = 0
4	g(3.5, 4) = 1	10	g(1,0.7)=0
5	g(-1,3)=1		
6	g(-3,3)=1		

we need to find the parameters w_1 , w_2 such that if

$$f(x_1, x_2; w_1, w_2) = \begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_2 \ge 0 \\ 0 & \text{else} \end{cases}$$

then,

$$\sum_{i=1}^{10} \|f(x_1^{(i)}, x_2^{(i)}); w_1, w_2) - g(x_1^{(i)}, x_2^{(i)})\|$$

is minimum.

 x_1 .

 x_2

$$y = \sigma(w_1x_1 + w_2x_2)$$

y is the probability that the output labe is equal to 1 if x_1 and x_2 are given,

$$\sigma(w_1x_1^{(i)} + w_2x_2^{(i)}) = P(label = 1|x_1^{(i)}, x_2^{(i)})$$

 $\sigma(w_1x_1^{(i)} + w_2x_2^{(i)}) = P(label = 1|x_1^{(i)}, x_2^{(i)})$

because,

$$\sigma(w_1x_1^{(i)} + w_2x_2^{(i)}) = P(label = 1|x_1^{(i)}, x_2^{(i)})$$

 $w_1 x_1^{(i)} + w_2 x_2^{(i)} \ge 0 \Rightarrow \sigma(w_1 x_1^{(i)} + w_2 x_2^{(i)}) \ge \frac{1}{2}$

 $w_1 x_1^{(i)} + w_2 x_2^{(i)} < 0 \Rightarrow \sigma(w_1 x_1^{(i)} + w_2 x_2^{(i)}) < \frac{1}{2}$

So the pmf of the output $\hat{y}^{(i)}$ where $\hat{y}^{(i)} \in \{0, 1\}$ is the Bernoulli distribution, i.e.,

P(output =
$$\hat{y}^{(i)}|x_1^{(i)}, x_2^{(i)}$$
) = $\sigma(z^{(i)})^{\hat{y}^{(i)}}(1 - \sigma(z^{(i)})^{1-\hat{y}^{(i)}})$

where $z^{(i)} = w_1 x_1^{(i)} + w_2 x_2^{(i)}$. So we need to solve the optimization problem,

$$\max_{w_1, w_2} P(output = \hat{y}^{(i)} | x_1^{(i)}, x_2^{(i)})$$

but instead we could solve the following minimization problem,

$$\min_{w_1, w_2} -\hat{y}^{(i)} \log(\sigma(z^{(i)})) - (1 - \hat{y}^{(i)}) \log(1 - \sigma(z^{(i)}))$$

If we get average over all sample points we have definition of the **loss function**, i.e. .

$$\mathcal{L}(w_1, w_2) = \frac{1}{N} \sum_{i=1}^{N} -\hat{y}^{(i)} \log(\sigma(z^{(i)})) - (1 - \hat{y}^{(i)}) \log(1 - \sigma(z^{(i)}))$$

So the goal of the learing is to solve the following minimization problem,

$$\min_{w_1,w_2} \mathcal{L}(w_1,w_2)$$

Gradient Descent

To solve unconstraint optimization problem like,

$$\min_{x_1,x_2}f(x_1,x_2)$$

we make a guss (x_1^0, x_2^0) that minimize the function f and we start improving this guess by moving in a direction that have a smaller value than $f(x_1^0, x_2^0)$. But this direction is in the opposite of the gradient at (x_1^0, x_2^0) . So the next step is,

$$(x_1^1, x_2^1) = (x_1^0, x_2^0) - \alpha \mathbf{J}_f(x_1^0, x_2^0)$$

where α is the **learning rate**.

Gradient Descent

- 1. Make a guess: (x_1^0, x_2^0)
- 2. n = 0
- 3. Update: $(x_1^{n+1}, x_2^{n+1}) = (x_1^n, x_2^n) \alpha J_f(x_1^n, x_2^n)$
- 4. n = n + 1
- 5. If $\|(x_1^{n+1}, x_2^{n+1}) (x_1^n, x_2^n)\| < \epsilon$ stop otherwise go to 3.

Figure: Gradient descent for Red/Blue example with 50000 iteration and learning rate $\alpha = 0.001$

Thank You