Chapitre: Vecteur

M

Translation et vecteurs.

	1) <u>Tra</u>	<u>ansla</u>	ition																	
	initio	n 1 :	Soie	nt A	et B	deu	ıx pc	oints	disti	nct	s du							6	0	
•	plan.																			
<i>D</i> e	D est l'image de C par la translation qui envoie A en B																			
sign	signifie que : ABDC est un parallélogramme																			
(éve	(éventuellement aplati).																			
`	B B																			
	A																			
Cet	te tra	nslat	tion (est c	aract	éris	ée p	ar le	s 3 p	rop	riété	s su	ivant	es:						
• Les droites (AB) et (CD) ont la même (sont parallèles);																				
	• Les segments [AB] et [CD] ont la même, appelée, appelée																			
-																		١.,	orc E	,
	Le								_ ue :	A ((<u></u>				D /			/ V	eis <i>L</i>	'
((dit) est le sens de C vers D (sens indiqué par la																			
-).																			
On	assoc	ie al	ors à	cett	e tra	nsla	tion	le ve	ecteu	ır n	oté_									
App	olicati	on 1	: 1.	Cons	struir	e le	poin	t M'	, ima	age	de <i>N</i>	1 pai	r la ti	rans	latio	n qu	i tra	nsfo	rme .	A en
<u>B.</u>							•		•	J		•				•				
†	1									† -	+					+	+	-		
				M																
										_										
-		A																	Α	
					В										В _					
					-					-				•						$\overline{}$
										ļ _										

Dans chaque construction, on voit apparaître une figure familière, laquelle ?

2. Quelque cas particuliers:

Exercice 1:

- 1. a. La translation qui transforme A en B, tranforme D en ...
 - b. La translation qui transforme C en B, transforme D en ...
 - c. La translation qui transforme A en B, transforme ... en D
 - d. La translation qui transforme ... en B, tranforme F en D
 - e. La translation qui transforme *E* en *G*, tranforme ... en ...
- 2. a. La translation de vecteur \overrightarrow{DA} , transforme C en ...
 - b. La translation de vecteur \overrightarrow{B} , transforme E en A
 - c. La translation de vecteur \overrightarrow{CD} , transforme ... en E
 - d. La translation de vecteur \overrightarrow{GB} , transforme ... en ...

Exercice 2: Image d'un point par une translation.

- 1. Construire un triangle ABC tel que : AB = 4 cm, BC = 6 cm et AC = 7 cm.
- 2. Construire l'image C' de C par la translation qui transforme A en B.
- 3. Construire l'image A' de A par la translation de vecteur \overrightarrow{BC} .

Exercice 3: Image d'un point par une translation.

- 1. Quelles sont les images de B, C, D et E par la translation qui transforme A en D?
- 2. Quelles sont les images de B, E et F par la translation de vecteur \overrightarrow{CF} ?

Exercice 4: Image d'un rectangle par une translation.

- 1. Tracer un rectangle *ABCD* de centre *O*.
- 2. Construire l'image de ce rectangle par la translation qui transforme D en B.
- 3. Construire l'image de ce rectangle par la translation de vecteur \overrightarrow{AO} .

Exercice 5 : Image d'un point par une translation.

Compléter:

L'image de	par la translation de vecteur	est le point
Ā	\overrightarrow{DE}	
	\overrightarrow{GH}	С
Н		F
В		С

Exercice 6: Image d'un triangle par une translation.

- 1. Construire l'image $A_1B_1C_1$ du triangle ABC par la translation de vecteur \overrightarrow{AB}
- 2. Construire l'image $A_2B_2C_2$ du triangle $A_1B_1C_1$ par la translation de vecteur \overrightarrow{BC}
- 3. Quelle translation transforme le triangle ABC en $A_2B_2C_2$?
- 4. Quelle translation transforme le triangle $A_2B_2\mathcal{C}_2$ en $AB\mathcal{C}$?

2) Egalité de vecteurs

Définition 3:

Deux vecteurs sont dits **égaux** s'ils sont associés à une même

Visuellement, deux vecteurs sont égaux s'ils donnent l'idée du « même déplacement »

Propriété 1: Deux vecteurs sont égaux si et seulement si ils ont même:

<u>Application 2</u>: Expliquer, en utilisant les termes direction, sens, ou norme, pourquoi le vecteur \overrightarrow{AB} n'est égal à aucun des autres vecteurs.

Exercice 7: Vecteurs égaux, vecteurs opposés

ABCDEFGH est un octogone régulier de centre 0.

1. Compléter le tableau suivant en répondant par oui ou non.

Les vecteurs	\overrightarrow{GH} et \overrightarrow{BC}	\overrightarrow{AE} et \overrightarrow{BD}	\overrightarrow{FD} et \overrightarrow{HB}	\overrightarrow{AH} et \overrightarrow{ED}
ont la même				
direction				
ont le même				
sens				
ont la même				
longueur				
sont égaux				
sont opposés				

2. Répondre par vrai ou faux. Justifier les réponses

- a. \overrightarrow{GH} et \overrightarrow{OB} sont égaux
- b. \overrightarrow{GF} et \overrightarrow{OE} sont opposés
- c. \overrightarrow{FE} et \overrightarrow{BA} sont opposés
- d. \overrightarrow{AF} et \overrightarrow{DC} sont de sens opposés

- e. \overrightarrow{GF} et \overrightarrow{CB} sont égaux
- f. \overrightarrow{AB} et \overrightarrow{EF} sont opposés
- g. \overrightarrow{OE} et \overrightarrow{OA} sont opposés
- h. \overrightarrow{AF} et \overrightarrow{FC} sont de sens opposés

Exercice 8 : Carré et vecteurs égaux

ABCD est un carré de centre I, les points E, F, G et H sont les milieux respectifs des segments [AD], [AB], [BC] et [DC].

Répondre par vrai ou faux. Justifier les réponses

a. $\overrightarrow{AB} = \overrightarrow{EG}$

d. $\overrightarrow{BF} = \overrightarrow{EI}$

b. $\overrightarrow{AC} = \overrightarrow{BD}$

e. $\overrightarrow{IG} = \overrightarrow{DH}$

c. $\overrightarrow{GH} = \overrightarrow{BD}$

f. $\overrightarrow{FD} = \overrightarrow{BH}$

Exercice 9 : Hexagone et vecteurs égaux

ABCDEF est un hexagone régulier de centre 0.

Répondre aux questions suivantes en utilisant uniquement les points de la

- 1. Trouver tous les vecteurs égaux au vecteur \overrightarrow{CD}
- 2. Trouver un vecteur égal au vecteur \overrightarrow{AC}
- 3. Peut-on trouver un vecteur égal au vecteur égal au vecteur \overline{BE}
- 4. Citer tous les vecteurs opposés à \overrightarrow{AO}

Exercice 10: Vecteurs égaux

a. Reproduire la figure et placer les points D, E et F tel que :

$$\overrightarrow{CD} = \overrightarrow{AB}, \overrightarrow{CE} = \overrightarrow{BC} \text{ et } \overrightarrow{BF} = \overrightarrow{CA}$$

- b. Trouver tous les vecteur égaux à \overrightarrow{AF}
- c. Trouver tous les vecteurs égaux à \overrightarrow{FB}

On a vu précédemment que :

- D est l'image de C par la **translation** de vecteur \overrightarrow{AB} si et seulement si le quadrilatère ABDC est un parallélogramme (éventuellement aplati).
- Si les translations de vecteur \overrightarrow{AB} et de vecteur \overrightarrow{CD} étaient les mêmes alors $\overrightarrow{AB} = \overrightarrow{CD}$

Propriété 2 : Soient quatre points A, B, C et D tels que A différent de B. $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si _____ est un _____. $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si les ______.

Remarque: Attention à l'ordre des lettres.

Application 3 : Soit ABDC et ABFE deux parallélogrammes. Montrons que CDFE est un parallélogramme puis que $\overrightarrow{CE} = \overrightarrow{DF}$

Propriété 3: Soient 3 points A, I et B. $\overrightarrow{AI} = \overrightarrow{IB}$, si et seulement si,

Notation \vec{u}

Sur le schéma ci-contre, on a $\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}$. On pose alors $\overrightarrow{u} = \overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}$. \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} sont appelés des *représentants* du vecteur \overrightarrow{u} .

Exercice 11 : Parallélogramme et vecteurs égaux

On considère le parallélogramme ABCD.

Construire ce parallélogramme, en prenant soin de représenter un parallélogramme quelconque.

Construire les points E, F, G et H tels que :

$$\overrightarrow{AE} = \overrightarrow{CD}$$
 $\overrightarrow{BG} = \overrightarrow{AC}$ $\overrightarrow{FC} = \overrightarrow{DB}$ $\overrightarrow{AH} = \overrightarrow{DB}$

Exercice 12 : Vecteur égaux et nature d'un quadrilatère

ABCD est un parallélogramme. A est le milieu du segment [IB] et C est le milieu du segment [DJ]

Quelle est la nature du quadrilatère *IAJC* ? Le démontrer.

Exercice 13 : Vecteur égaux et nature d'un quadrilatère

Soit *ABCD* un parallélogramme.

Construire ce parallélogramme, en prenant soin de représenter un parallélogramme quelconque.

- 1. Construire les points E et F, images respectives de B et de D par la translation de vecteur \overrightarrow{AC} .
- 2. Démontrer que C est le milieu des segments [DE] et [BF].

Exercice 14 : Vecteur égaux et nature d'un quadrilatère

Soit *ABC* un triangle.

On considère le point D, image du point B par la translation de vecteur \overrightarrow{AB} , et le point E, image du point B par la translation de vecteur \overrightarrow{CB} .

Quelle est la nature du quadrilatère *ACDE* ? Le démontrer.

3) Ve	ecteur nul
-------	------------

<u>Définition 4</u> : On appelle	, noté	, tout
vecteur dont son origine et son extrémité sont _		•

Coordonnées de vecteurs

1) Coordonnées d'un vecteur dans une base					
<u>Définition 5 :</u> Unedu plan est un couple (\vec{t}, \vec{j}) formé de deux					
vecteurs non nuls qui n'ont pas la même					
La base est dans le cas où \vec{i} et \vec{j} ont					
des directions et ont pour norme					
unité de longueur.					
<u>Définition 6</u> : Soit (\vec{i}, \vec{j}) une base orthonormée.					
Pour tout vecteur \vec{u} , il existe un unique couple de nombres $(x;y)$ tels que : $\vec{u} = \underline{\qquad}$					
On dit que \vec{u} a pour coordonnées $\left(\right)$, dans la base (\vec{i},\vec{j}) .					
On appelle <i>x</i> et <i>y</i>					
du vecteur \vec{u} .					
2) Coordonnées de points et vecteurs dans un repère					
<u>Définition 7</u> : On pose $\vec{i} = \overrightarrow{OI}$ $\bigg()$, $\vec{j} = \overrightarrow{OJ} \bigg()$ ainsi on obtient un repère					
<u>orthonormé</u> $(0; \vec{\iota}, \vec{j})$ formé d'un point 0 et d'une base <u>orthonormée</u> $(\vec{\iota}, \vec{j})$ du plan.					
Remarque : Les coordonnées du vecteur \vec{u} dans un repère $(0,I,J)$ sont celles du point M tel que $\overrightarrow{OM}=$.					
<u>Définition 8</u> : Pour tout point M du plan, le couple coordonnées de M dans le repère					
$(0; \vec{\iota}, \vec{j})$ est le couple $(x; y)$ tel que $\overrightarrow{OM} =$					
On appelle x et y du point M dans le					
repère $(0; \vec{\iota}, \vec{j})$.					
Remarque : La notion de vecteur permet de représenter une translation par les coordonnées du vecteur associé dans un repère.					
<u>Propriété 4 :</u> Soient A de coordonnées $(x_A; y_A)$ et B de coordonnées $(x_B; y_B)$, deux points du plan dans un repère orthonormé $(0; \vec{i}, \vec{j})$.					
Le vecteur \overrightarrow{AB} a pour coordonnées $\bigg($					

Application 4: Soit (1;2), B(4;4), C(2;1) et D(5;3) quatre points. Donner les coordonnées de \overrightarrow{AB} ? \overrightarrow{CD} .

Python: Coordonnée d'un vecteur \overrightarrow{AB}

def vec(xA,yA,xB,yB):

x=

y=

return(x,y)

Exercice 15 : Nature d'un quadrilatère

Dans un repère orthonormé (O, I, J), on considère les points A, B, C et D suivants.

Montrer dans chaque cas, de deux façons

différentes, que *ABCD* est un parallélogramme :

- 1. A(-1; 2), B(5; 3), C(4; 0) et D(-2; -1).
- 2. A(1;1), B(7;2), C(6;-1) et D(0;-2).
- 3. A(-1;1), B(3;1), C(2;-1) et D(-2;-1).

Python: Parallélogramme?

def parall(xA,yA,xB,yB,xC,yC,xD,yD):

return

Exercice 16 : Lecture graphique de coordonnées de vecteurs et construction de vecteurs

On se place dans un repère $(0; \vec{i}, \vec{j})$

- 1. Trouver, par lecture graphique, les coordonnées des vecteurs $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{CB}, \overrightarrow{AF}, \overrightarrow{DG}, \overrightarrow{OF}, \overrightarrow{FC}, \overrightarrow{GB}, \overrightarrow{EC}, \overrightarrow{BC}, \overrightarrow{OE}$ et \overrightarrow{DA} .
- 2. Lire les coordonnés des vecteurs $\overrightarrow{u_1}$ à $\overrightarrow{u_6}$.
- 3. Placer les points H, K, L et M tels que :
 - a. $\overrightarrow{AH} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$
 - b. $\overrightarrow{CK} \begin{pmatrix} 2 \\ 0 \end{pmatrix}$
 - c. $\overrightarrow{DL} \begin{pmatrix} -3 \\ -1 \end{pmatrix}$
 - d. $\overrightarrow{GM} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$

Propriété 5 : Deux vecteurs sont égaux, si et seulement si, ils ont les

Autrement dit : Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs, $\vec{u} = \vec{v}$ équivaut à ______

Exercice 17 : Coordonnées de vecteurs et équation

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

Soit
$$A(-5; 4), B(2; 6), C(-1; -3)$$
 et $\vec{u} \begin{pmatrix} 4 \\ -1 \end{pmatrix}$.

- 1. Calculer les coordonnés des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 2. Calculer les coordonnées du point D tel que $\overrightarrow{AD} = \overrightarrow{u}$.

Exercice 18 : Coordonnées de vecteurs et équation

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

Soit
$$E(-10; 5)$$
, $F(0; -4)$, $G(-7; -2)$ et $\vec{v} \begin{pmatrix} 7 \\ 5 \end{pmatrix}$.

- 1. Calculer les coordonnés des vecteurs \overrightarrow{EF} et \overrightarrow{GE} .
- 2. Calculer les coordonnées du point H tel que $\overrightarrow{HE} = \overrightarrow{v}$.

<u>Exercice 19 : Coordonnées de vecteurs et quadrilatère</u>

Le plan est muni d'un repère orthonormée $(0; \vec{i}, \vec{j})$.

Soit
$$A(-2;5)$$
, $B(6;1)$, $C(\frac{5}{2};-2)$ et $D(-\frac{11}{2};2)$.

- 1. Calculer les coordonnés des vecteurs \overrightarrow{AB} et \overrightarrow{DC} .
- 2. Que peut-on en déduire pour le quadrilatère *ABCD* ?

Exercice 20 : Coordonnées de vecteurs et parallélogramme

Le plan est muni d'un repère orthonormée $(0; \vec{\iota}, \vec{j})$. Soit A(-4; 1), B(-2; 5) et C(4; 2)

- 1. Placer les points A, B et C dans le repère.
- 2. Calculer les coordonnées du vecteur \overrightarrow{AB} .
- Placer le point D tel que ABCD est un parallélogramme.
 Calculer les coordonnées du point D.

Exercice 21 : Cordonnées de vecteurs égaux et équations

Le plan est muni d'un repère orthonormée $(0; \vec{l}, \vec{j})$.

Soit A(-1; 2), B(1; 4) et C(x; 6). Déterminer le réel x tel que les vecteurs \overrightarrow{AB} et \overrightarrow{BC} soient égaux.

Exercice 22 : Coordonnées de vecteurs et parallélogramme

Le plan est muni d'un repère orthonormée $(0; \vec{i}, \vec{j})$. Soit A(2;3), B(6;1) et C(-1;-3).

- 1. Calculer les coordonnées du vecteur \overrightarrow{AB} .
- 2. Construire le point D, image du point B par la translation de vecteur \overrightarrow{AC} .
- 3. Calculer les coordonnées du point D.
- 4. Démontrer que le quadrilatère *ABDC* est un parallélogramme.
- 5. Calculer les valeurs exactes des longueurs AD et BC. Que peut-on en déduire pour ABDC.

III. Géométrie

1) Propriété des triangles

Définition 9 : Un triangle ABC est isocèle en A s'il vérifie l'une des propriétés suivantes :

<u>Définition 10</u> : Un triangle ABC est équilatéral s'il vérifie l'une des propriétés suivantes :							
<u>Définition 11</u> : Un triangle <i>ABC</i> est rectangle e	n A si l'angle en A est						
On appelle le côté [BC]	du triangle rectangle.						
append to core [2 0]							
<u>Définition 12</u> : Un triangle est quelconque s'il n'est ni isocèle, ni équilatéral ou ni rectangle.							
2) Propriétés du parallélogramme							

Quadrilatère ABCD

- $\overrightarrow{AB} = \overrightarrow{DC}$
- Diagonales qui se coupent en leur milieu (formule du milieu)
- Côtés opposés deux à deux de même longueur (formule de la norme/distance)
- Côtés opposés parallèle deux à deux
- 2 de ses côtés opposés parallèle et de même longueur
- Angles opposés 2 à 2 de même mesure.

Parallélogramme

- Deux côtés consécutifs de même longueur. (formule de la norme/distance)
- Diagonales perpendiculaires (formule de la norme/distance + réciproque du théorème de Pythagore)

Losange

- Diagonales de même longueur (formule de la norme/distance)
- Deux côtés consécutifs perpendiculaires (angle droit).
 - (formule de la norme/distance + réciproque du théorème de Pythagore)

- Diagonales de même longueur (formule de la norme/distance)
- Deux côtés consécutifs perpendiculaires (angle droit).

(formule de la norme/distance + réciproque du théorème de Pythagore)

Rectangle

- Deux côtés consécutifs de même longueur.
 - (formule de la norme/distance)
- Diagonales perpendiculaires (formule de la norme/distance + réciproque du théorème de Pythagore)

Carré

3) Coordonnées du milieu d'un segment

<u>Propriété 7</u>: Soit $(0; \vec{\iota}, \vec{j})$ un repère du plan et A, B deux points du plan de coordonnées respectives $(x_A; y_A)$ et $(x_B; y_B)$.

Alors le point M milieu de [AB] a pour coordonnées :

<u>Application 5</u>: Soit A(-2;3) et B(1;5) deux points dans un repère orthonormé. Calculer le milieu M de [AB].

Python: Milieu

def distance(xA,yA,xB,yB):

x=

y=

return(x,y)

Exercice 23: Milieu

Le plan est muni d'un repère (0, I, J).

Déterminer dans chaque cas :

- 1. Les coordonnées du point M, milieu du segment [AB].
- 2. Les coordonnées du point M', symétrique du point M par rapport au point A.
 - a. A(0;0) et B(1;1)
 - b. A(1;1) et B(0;0)
 - c. A(-5;3) et B(-5;-10)
 - d. A(3;0) et B(0;3)
 - e. $A(\frac{2}{3}; \frac{3}{4})$ et $B(-\frac{5}{3}; \frac{1}{2})$
 - f. A(2,5;0) et B(-3;-5,2)

Exercice 24 : Milieu et nature d'un quadrilatère

Dans un repère orthonormé (0,I,J), on considère les points A(1;3), B(7;2), C(4;-2) et D(-2;-1).

- 1. Calculer les coordonnées des milieux des segments [AC] et [BD].
- 2. Que peut-on en déduire pour le quadrilatère *ABCD* ?

Exercice 25 : Milieu et nature d'un quadrilatère

Dans un repère orthonormé (0,I,J), on considère les points E(-7;-1), F(-2;1), G(1;-1) et H(-4;-3).

Démontrer que *EFGH* est un parallélogramme.

Exercice 26 : Milieu et parallélogramme

On considère trois points A,B et C dont on donne les coordonnées dans un repère (O,I,J) du plan.

Pour chacun des cas suivants ; déterminer les coordonnées d'un quatrième point D tel que le quadrilatère ABCD soit un parallélogramme :

- a. A(1;1), B(5;2) et C(3;4).
- b. A(-1;2), B(5;-2) et C(1;-5).
- c. A(-3; 2), B(2; 0) et C(-1; -1).

Exercice 27 : Milieu et repère quelconque

Sur la figure suivante, OKIJ est un parallélogramme, J est le milieu du segment [OM] et K celui du segment [OL].

Le point I est-il le milieu du segment [ML]?

4) Norme d'un vecteur et distance

<u>Définition 13</u>: Soit \vec{u} un vecteur et A,B deux points du plan tels $\vec{u} = \overrightarrow{AB}$.

On appelle _ du vecteur \vec{u} , noté ______, la ______du segment [AB].

On a donc $||\vec{u}|| = AB$.

Propriété 6: Soit $\vec{u} \binom{x}{y}$ un vecteur et A, B deux points du plan dans le repère orthonormé $(0; \vec{\iota}, \vec{\jmath})$.

Soit $k \in \mathbb{R}$.

1. $\|\vec{u}\| =$ 2. $\|k\vec{u}\| = |k| \|\vec{u}\|$ 3. $\|\overrightarrow{AB}\| = AB =$ (formule de la distance).

Application 6: Soit (1;2), B(4;4), C(2;1) et D(5;3) quatre points. Calculer AB et CD.

Python: Distance

def distance(xA,yA,xB,yB):

D=

return(D)

Exercice 28 : Distance

Le plan est muni d'un repère orthonormé (0, I, I).

Calculer dans chaque cas la distance AB.

- a. A(0;0) et B(1;1)
- b. A(1;1) et B(0;0)
- c. A(3;0) et B(0;3)
- d. A(-1;5) et B(3;-7)
- e. $A\left(\frac{2}{3}; \frac{3}{4}\right)$ et $B\left(-\frac{5}{3}; \frac{1}{2}\right)$
- f. A(2,5;0) et B(-3;-5,2)
- g. $A(1-\sqrt{2};1)$ et $B(1+\sqrt{2};-1)$

Exercice 29 : Distance et nature d'un triangle

Dans un repère orthonormé (O,U,V) du plan, donner la nature du triangle TRI pour chacun des cas suivants :

- a. T(3;3), R(2;-2) et I(-8;0).
- b. T(4;-6), R(2;0) et I(5;-1).
- c. T(-2;3), R(8;4) et I(-1;-6).
- d. T(3;5), R(-3;1) et $I(5;-\frac{9}{2})$.
- e. T(-2;-1), R(3;1) et $I(-\frac{7}{2};10)$.
- f. T(1;-2), R(6;0) et I(-1;9).
- g. T(-1;1), $R(\sqrt{2}+1;\sqrt{2}+1)$ et $I(\sqrt{2}+1;-\sqrt{2}+1)$.
- h. T(1;2), R(5;2) et $I(3;3+2\sqrt{2})$.

Exercice 30 : Distance et triangle

(O,I,J) est un repère orthonormé du plan. Soit les points $A(-5\,;\,-1)$, $B(4\,;\,-1)$ et $M(x\,;\,2)$. Déterminer dans chacun des cas suivants la ou les valeur(s) de x telle(s) que M vérifie :

- a. le triangle ABM est isocèle en M.
- b. le triangle *ABM* est rectangle en *A*.
- c. le triangle *ABM* est rectangle en *B*.

Exercice 31: Distance et alignement de points

Dans un repère orthonormé, dire si les points A, B et C sont alignés dans les cas suivants :

- a. A(-1;4), B(1;1) et C(5;-5).
- b. A(4;-3), B(13,5;4) et C(1;-1).
- c. A(-3;6), B(3;2) et C(16;-7).
- d. A(-3;-5), B(4;-4) et C(38;1).

Exercice 32 : Distance et quadrilatère

(O, I, J) est un repère orthonormé du plan. Soit les points A(3; 2), B(2; 0), C(4; -1) et D(5; 1).

- 1. Montrer que le quadrilatère *ABCD* est un parallélogramme
- 2. Montrer que le parallélogramme *ABCD* est un rectangle
- 3. Montrer que le parallélogramme *ABCD* est un losange.
- 4. En déduire la nature de ABCD.

Exercice 33: Distance et losange

Dans un repère orthonormé, on considère les points

A(-1;4), B(4;5), C(3;0) et D(-2;-1). Démontrer que le quadrilatère ABCD est un losange.

Exercice 34 : Distance et cercle

(O, I, J) est un repère orthonormé du plan. Soit les points A(-3; -1), B(-2; 4) et C(3; -1).

- 1. Calculer *JA*, *JB* et *JC*.
- 2. Que représente le point J(0;1) pour le triangle ABC?

Exercice 35 : Nature d'un quadrilatère

Dans un repère orthonormé (O, I, J), on considère les points A, B, C et D suivants.

Montrer dans chaque cas, que ABCD est un carré :

- 1. A(0; 1), B(2; 1), C(2; -1) et D(0; -1).
- 2. A(-1;1), B(2;1), C(2;-2) et D(-1;-2).
- 3. A(-3;5), B(1;5), C(1;1) et D(-3;1).

Exercice 36 : Nature d'un quadrilatère

Dans un repère orthonormé (O,I,J), on considère les pointsA,B,C et D suivants.

Donner dans chaque cas, la nature exacte du quadrilatère *ABCD*.

- 1. A(-4;2), B(1;2), C(1;-1) et D(-4;-1).
- 2. A(-3;1), B(1;1), C(1;-3) et D(-3;-3).
- 3. A(-1;3), B(1;-1), C(-1;-5) et D(-3;-1).

IV. Somme de vecteurs

1) Vecteur somme

Définition 14 : Soit \vec{u} et \vec{v} deux vecteurs.

La **somme** de deux vecteurs \vec{u} et \vec{v} est le vecteur associé à la translation résultant de

_____ de vecteur $ec{u}$ et de vecteur $ec{v}$.

En enchainant ces deux translations, un point A a pour image le point B vérifiant $\overrightarrow{AB} = \overrightarrow{u}$, et le point B a pour image le point C avec $\overrightarrow{BC} = \overrightarrow{v}$.

Par définition, le point C est l'image du point A par la translation de vecteur $\vec{w} = \vec{u} + \vec{v}$.

Exemple: Pour aller de Paris à Lille, on peut aussi faire Paris – Reims puis Reims – Lille.

Propriété 8 : Relation de Chasles : D'après ce qui vient d'être vu, on a toujours :

Quels que soient les points A, B, C du plan, ____

Application 7:
$$\overrightarrow{IB} + \overrightarrow{BJ} = \overrightarrow{...E} = \overrightarrow{F} \cdot \overrightarrow{...} + \overrightarrow{G} \cdot \overrightarrow{...}$$
 $\overrightarrow{XK} = \overrightarrow{XL} + \overrightarrow{...K}$

Exercice 37: Relation de Chasles

Compléter les égalités suivantes en utilisant la relation de Chasles.

a.
$$\overrightarrow{AB} + \overrightarrow{BD} = \overline{\dots}$$

e.
$$\overrightarrow{BE} + \overrightarrow{EF} = \overrightarrow{\dots}$$

b.
$$\overrightarrow{B} \cdot \overrightarrow{\cdot} + \overrightarrow{AC} = \overrightarrow{\cdot} \cdot \overrightarrow{C}$$

f.
$$\overrightarrow{B} + \overrightarrow{BC} = \overrightarrow{A} ...$$

c.
$$\overrightarrow{\dots} + \overrightarrow{A} \overrightarrow{\dots} = \overrightarrow{OE}$$

g.
$$\overrightarrow{EG} + \overrightarrow{\dots} = \overrightarrow{EO}$$

d.
$$\overrightarrow{B} \cdot \overrightarrow{...} + \overrightarrow{C} \cdot \overrightarrow{...} + \overrightarrow{A} \cdot \overrightarrow{...} = \overrightarrow{...} \overrightarrow{F}$$

h.
$$\overrightarrow{R} + \overrightarrow{M} + \overrightarrow{M} = \overrightarrow{V}$$

Exercice 38 : Somme et différence de vecteurs

Compléter les égalités suivantes :

a.
$$\overrightarrow{A} \cdot \overrightarrow{...} + \overrightarrow{C} \cdot \overrightarrow{...} = \overrightarrow{0}$$

b.
$$\overrightarrow{D} \cdot ... \overrightarrow{-} \cdot ... \overrightarrow{F} = \overrightarrow{0}$$

c.
$$\overrightarrow{B} \cdot ... + \overrightarrow{HD} + \overrightarrow{...} = \overrightarrow{0}$$

d.
$$\overrightarrow{...}\overrightarrow{C} - \overrightarrow{EA} + \overrightarrow{...}\overrightarrow{..} = \overrightarrow{0}$$

Propriété 9 : Règle du parallélogramme :

Soit \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs de même origine A. Pour tous points A, B, C et D on a : _______, si, et seulement si, D est le point tel que _______ soit un parallélogramme (éventuellement aplati).

<u>Remarque</u>: Ceci nous donne une autre méthode de construction du vecteur somme $\vec{w} = \vec{u} + \vec{v}$. En effet, soit A un point du plan, on trace la translation de vecteur \vec{AB} (origine A, extrémité B). Puis on trace la translation de vecteur \vec{AC} (origine A, extrémité C). Enfin on trace le point D tel que ABDC forme un parallélogramme. Alors \vec{AD} est le vecteur associé à la translation de vecteur $\vec{w} = \vec{u} + \vec{v}$.

Exercice 39 : Règle du parallélogramme

A l'aide du parallélogramme *ABCD*, compléter les égalités suivantes :

a.
$$\overrightarrow{AC} + \overrightarrow{CD} = \overline{\dots}$$

b.
$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{\dots}$$

c.
$$\overrightarrow{BA} + \overrightarrow{\dots} = \overrightarrow{BD}$$

d.
$$\overrightarrow{\dots} + \overrightarrow{CD} = \overrightarrow{CD}$$

Exercice 40 : Somme et différence de vecteurs

Soit A et B deux points du plan et \vec{u} et \vec{v} deux vecteurs.

Sur la figure ci-dessous, identifier les points M, NP et Q tels que :

a.
$$\overrightarrow{AM} = \overrightarrow{u}$$

b.
$$\overrightarrow{BN} = -\vec{v}$$

c.
$$\overrightarrow{CP} = \overrightarrow{u} + \overrightarrow{v}$$

$$d. \ \, \overrightarrow{DQ} = -\vec{u} + \vec{v}$$

Propriétés 10 :

$$1. \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$$

(symétrique)

2.
$$\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$$

3.
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

(associative)

Propriété 11 :

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs.

La somme des vecteurs \vec{u} et \vec{v} est le vecteur $\vec{w} = \vec{u} + \vec{v}$ de coordonnées :

2) Vecteur opposé

La relation de Chasles nous donne : $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$ pour tous points A et B du plan, donc on peut définir le vecteur \overrightarrow{BA} comme l'opposé du vecteur \overrightarrow{AB} .

On écrit $\overrightarrow{BA} = -\overrightarrow{AB}$

Définition 15:

L'opposé du vecteur \vec{u} est le vecteur

L'opposé du vecteur \overrightarrow{AB} est le vecteur

Application 8: Etant donné le parallélogramme \overrightarrow{ABCD} , on pose $\overrightarrow{u} = \overrightarrow{AD}$ et $\overrightarrow{v} = \overrightarrow{AB}$.

Écrire les vecteurs suivants à l'aide des vecteurs \vec{u} et \vec{v} seulement:

- \overrightarrow{DA} = ...; \overrightarrow{CB} = ...; \overrightarrow{DC} = ...; \overrightarrow{DC} = ...; \overrightarrow{BD} = ...; \overrightarrow{BD} = ...;
- \overrightarrow{CD} =

Propriété 12:

Le plan est muni d'un repère (O; I; J)

Soit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur.

L'**opposé** du vecteur \vec{u} est le vecteur de coordonnées :

Propriété 13:

Le plan est muni d'un repère (O;I,J)

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ v' \end{pmatrix}$ deux vecteurs.

La **différence** des vecteurs \vec{u} et \vec{v} est le vecteur $\vec{w} =$ de coordonnées :

Exercice 41 : Coordonnées de somme et différence de vecteurs

Le plan est muni d'un repère orthonormée $(0; \vec{i}, \vec{j})$.

Soit les vecteurs $\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} -6 \\ 4 \end{pmatrix}$

Calculer les coordonnées des vecteurs suivants :

- 1. $\vec{u} + \vec{v}$
- 2. $\vec{u} \vec{v}$
- 3. $-\vec{u} + \vec{w}$
- 4. $\vec{u} + \vec{v} + \vec{w}$
- 5. $\vec{u} + \vec{v} \vec{w}$

Exercice 42 : Coordonnées de somme et différence de vecteurs et équation

Le plan est muni d'un repère orthonormée $(0; \vec{i}, \vec{j})$.

Soit A(-5; 6), B(7; 4) et C(-4; -1).

1. Calculer les coordonnées du point *D* vérifiant :

$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{OB}$$

2. Calculer les coordonnées du point E vérifiant :

$$\overrightarrow{AE} = \overrightarrow{OA} + \overrightarrow{OB}$$

3. Calculer les coordonnées du point F vérifiant :

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$$

Exercice 43: Somme de vecteurs

Compléter les égalités suivantes à l'aide de la figure.

- a. $\overrightarrow{u_2} + \overrightarrow{u_5} = \overrightarrow{...}$
- b. $\overrightarrow{u_1} + \overrightarrow{\dots} = \overrightarrow{u_5}$
- c. $\overrightarrow{...} + \overrightarrow{u_3} = \overrightarrow{u_4}$
- d. $\overrightarrow{u_3} + \overrightarrow{u_1} = \overrightarrow{\dots}$

Exercice 44 : Somme de vecteurs et parallélogramme

- 1. Construire un parallélogramme *ABCD* de centre *O*.
- 2. En utilisant uniquement les points de la figure, trouver un vecteur égal aux sommes suivantes :
- a. $\overrightarrow{AD} + \overrightarrow{DC}$
- b. $\overrightarrow{AO} + \overrightarrow{BO}$
- c. $\overrightarrow{BC} + \overrightarrow{AB}$
- d. $\overrightarrow{OA} + \overrightarrow{OC}$
- e. $\overrightarrow{OD} + \overrightarrow{OC}$

Exercice 45 : Construction de sommes et différences de vecteurs

- 1. Construire le vecteur d'origine \vec{A} égal à $\vec{u} + \vec{v}$.
- 2. Construire le vecteur d'origine \vec{A} égal à $\vec{u} \vec{v}$.

Exercice 46 : Carré et somme de vecteurs

ABCD est un carré de centre O.

I, I, K et L sont les milieux respectifs des côtés [AB], [BC], [CD] et [DA].

Compléter les égalités suivantes :

a.
$$\overrightarrow{LK} + \overrightarrow{OB} = \overrightarrow{\dots}$$

b.
$$\overrightarrow{OL} + \overrightarrow{OK} = \overrightarrow{\dots}$$

c.
$$\overrightarrow{OC} + \overrightarrow{LI} + \overrightarrow{BK} = \overrightarrow{\dots}$$

d.
$$\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{\dots}$$

e.
$$\overrightarrow{AB} + \overrightarrow{AL} = \overrightarrow{\dots}$$

f.
$$\overrightarrow{DK} + \overrightarrow{CO} + \overrightarrow{JO} = \overrightarrow{\dots}$$

Exercice 47 : Parallélogramme et somme de vecteurs

ABCD est un parallélogramme.

I, J, K et L sont les milieux respectifs des côtés [AB], [BC], [CD] et [DA].

Compléter les égalités suivantes :

a.
$$\overrightarrow{AL} + \overrightarrow{KJ} = \overrightarrow{A...}$$
 c. $\overrightarrow{BD} + \overrightarrow{CJ} = \overrightarrow{...D}$

c.
$$\overrightarrow{BD} + \overrightarrow{CJ} = \overline{...D}$$

b.
$$\overrightarrow{LJ} - \overrightarrow{AC} = \overrightarrow{D} ...$$

b.
$$\overrightarrow{LI} - \overrightarrow{AC} = \overrightarrow{D...}$$
 d. $\overrightarrow{AK} - \overrightarrow{LD} + \overrightarrow{BI} = \overrightarrow{...C}$