Annals of International Medical and Dental Research E-ISSN: 2395-2822 | P-ISSN: 2395-2814

Vol-7, Issue-3 | May-June, 2021

Page no- 155-164 | Section- Research Article (Medicine)

Serum Procalcitonin Level as a Predictor of Outcome in Patients with Pulmonary Tuberculosis

Mohammed Kamal Uddin^{1*}, Toufiq Ahmed², Shirajum Monira³, Gulnar Yasmin⁴, Md Rasul Amin⁵, Farzana Reza⁶

¹Medical Officer, Department of Gastroenterology, Sir Salimullah medical College Mitford hospital, Dhaka, Bangladesh. *Corresponding author

²Junior Consultant, Department of Medicine, Sheikh Russel Gastroliver Institute and Hospital, Dhaka, Bangladesh.

³Junior Consultant, Department of Medicine, Dhaka Medical college hospital, Dhaka, Bangladesh.

⁴EMO, Bangladesh secretariet Clinic, Dhaka, Bangladesh.

⁵Associate Professor, Department of Cardiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh.

⁶Medical officer, National Institute of Traumatology & Orthopaedic Rehabilitaion (NITOR), Dhaka, Bangladesh.

Received: March 2021 Accepted: April 2021

Abstract

Background: Tuberculosis (TB) is one of the most important causes of mortality in developing countries and is one of the eight leading causes of death due to diseases in the world. Worldwide 9.6 million people are estimated to have fallen ill with TB in 2014. Among them 6 million new cases of TB were reported to WHO. Aim of the study: To evaluate the role of serum procalcitonin level as a predictor of disease outcome in patients with pulmonary tuberculosis. Methods: This prospective observational study was conducted in the department of Internal Medicine of Bangabandhu Sheikh Mujib Medical University Dhaka, from the period of October 2017 to October 2018. A total of 30 patients were included for the study. Sampling technique of this study was convenient sampling. Patients diagnosed as smear positive for AFB or Gene-Xpert for Mycobacterium Tuberculosis Bacilli (MTB) positive pulmonary tuberculosis were selected. Data was entered in Microsoft Excel and analysis was done in STATA version 14. The research protocol was approved by the Institutional Review Board (IRB). Results: The mean age of all patients was 34.6 years with standard deviation of 14.8 years. Median age was found 30 years with minimum and maximum ranges were 19 and 70 years, respectively. Two third (67%) of the patients were male. Fever was found in 83% respondent, which was highest among all four clinical features included in this study. Most of the patients with cough had more than 3 weeks of duration (85%). Hemoptysis was found in 53% of patients and more than two-third of the patients reported weight loss (70%). Total count of WBC was found high in 97% of patients. A strong positive correlation was found in between before and after blood levels of procalcitonin (r=0.92, p <0.001). In comparison with chest x-ray findings, patchy lesion tended to have higher procalcitonin level in before and after TB treatment. Conclusion: This study assessed serum PCT in patients diagnosed with pulmonary tuberculosis at enrollment and after six months of TB treatment to observe the value of PCT reduction with treatment. PCT level was reduced significantly after getting six-months of TB treatment irrespective of age, sex, BMI and other laboratory parameters.

Keywords: Tuberculosis, Procalcitonin, Predictor.

Page no- 155-164 | Section- Research Article (Medicine)

INTRODUCTION

Tuberculosis (TB) is one of the most important causes of mortality in developing countries and is one of the eight leading causes of death due to diseases in the world. Worldwide 9.6 million people are estimated to have fallen ill with TB in 2014. Among them 6 million new cases of TB were reported to WHO. About 80% of reported TB cases occurred in twenty two (22) high TB burden countries, over 95% of TB cases are in developing countries where about 7% of all deaths are attributed to TB. Bangladesh ranks sixth among the 22 high TB burden countries in the world. Tuberculosis country profile of Bangladesh reported by WHO1 shows that total new and pulmonary relapse tuberculosis 79% tuberculosis is and bacteriologically confirmed pulmonary tuberculosis is 72%. Despite of medical advances, pulmonary tuberculos is (PTB) is still one of the major cause of death and disability in our community. Procalcitonin (PCT) is a pro-peptide calciton in hormone consists of 116amino acids which is secreted from neuro-endocrinecells in the thyroid gland, liver and lung in response to endotoxinsandtumornecros is factor- α (TNF- α). The serum level of PCT has a correlation with the severity of pulmonary infections and also prognosis of patients after pulmonary infection. PCT has been used as a biomarker to differentiate viral from bacterial infections. Rasmussen and colleagues^[2] found that PCT level in pulmonary tuberculos is patients is higher compared to the healthy control

group. They also concluded that the PCT level can be used to predict mortality of TB patients. However it is not exactly known how Mycobacterium tuberculos is infection affects PCT production in adult patients with active pulmonary tuberculos is. It is expected that pro-inflammatory cytokines, TNFand lipoarabinomannan (LAM), important which play roles pulmonary tuberculosis (PTB) pathogenesis, may also increase PCT level s.3 Serum PCT level in active pulmonary tuberculosis increases and it decreases after treatment. So it can be used for follow-up differentiating biomarker between active and cured pulmonary tuberculos is and for prediction of treatment response and observing recovery their although it cannot be an alternative for bacteriological pathological and diagnosis.[4] The usefulness of PCT indiagnos is and prognos is of tuberculosisis still the matter of some controversy. Further studies necessary to assess the potential value of PCT form ensuring disease activity. To our knowledge, there was no study to evaluate serum PCT level pulmonary tuberculosis (PTB) patients in our country. The purpose of this study is to establish the PCT level in PTB patients before & after treatment and evaluate the effect of serum PCT concentration on six-months treatment.

Objectives General objective:

• To evaluate the role of serum procalcitonin level as a predictor of

Page no- 155-164 | Section- Research Article (Medicine)

disease outcome in patients with pulmonary tuberculosis.

Specific Objectives:

- To determine the serum procalcitonin level in pulmonary tuberculos is patients at the time of diagnosis.
- To determine the serum Procalcitonin level in Pulmonary tuberculos is patients after six months of treatment.
- TocomparetheserumPCTlevelsbetween initial&aftersixmonthsoftreatmentinpul monarytuberculosispatients.
- To observe the effect of serum Procalcitonin level on disease outcome at the end of six months treatment in pulmonary tuberculos is patients.

MATERIALS AND METHODS

This prospective observational study was conducted in the department of Internal Medicine of Bangabandhu Sheikh Mujib Medical University Dhaka, from the period of October 2017 to October 2018. A total of 30 patients were included for the study according to following inclusion and exclusion criteria. Sampling technique of this was convenient sampling. Patients diagnosed as smear positive Gene-Xpert for **AFB** or Mycobacterium Tuberculosis Bacilli (MTB) positive pulmonary tuberculosis were selected. The diagnosis of PTB was made throughrelevant history (fever, cough for 3 weeks or more and loss), weight examination and confirmation by sputum for Acid Fast(AFB)or Gene-Xpert MTBpositive.Serum samples were kept at 2°C - 8°C& was measured within 48 of collection.For hours long-term storage of specimens were kept below -20°C. Samples were prepared according to the standards set. Firstly, labeled monoclonal antibodies added to the additional samples were washed and chromogen solutions was added to them and was being awaited for 10 min at 37°C for reactions. After 10 minutes, the preventive solution was added to the sample. Then the optical density (OD) level of samples was measured under light with a wave length of 450 nm. A machine did all of these steps automatically. The study was done with the existing facilities of Indoor and Outdoor of Department of Internal Medicine and DOTS corner of BSMMU. Data was entered in Microsoft Excel and analysis was done in STATA version 14. The research protocol was approved by the Institutional Review Board (IRB).

Inclusion Criteria

- Newly diagnosed cases of pulmonary tuberculosis confirmed by at least one sputum smear-positive for AFB or positive Gene-X-pert for MTB.
- Age: Over 18 years to 70 years
- Any gender

Exclusion Criteria

- Already on anti-tuberculous therapy
- Extra pulmonary tuberculosis
- H/O previous treatment for TB
- Smear-negative pulmonary tuberculosis
- Patients having Pneumonia, Urinary tract infection, meningitis, HIV infection, Sepsis, other suspected bacterial infections

Page no- 155-164 | Section- Research Article (Medicine)

Vol-7, Issue-3 | May-June, 2021

RESULTS

Figure 1: Histogram showing age distribution of participants (n=30).

The mean age of all patients was 34.6 years with standard deviation of 14.8 years. Median age was found 30 years with minimum and maximum ranges were 19 and 70 years, respectively [Figure 1]. Two third (67%) of the patients were male [Figure 2]. Fever was found in 83% respondent, which was highest among all four clinical features included in this study. Most of the patients with cough had more than 3 weeks of duration (85%). Hemoptysis was found in 53% of patients and more than two-third of the patients reported weight loss (70%). Six patients had positive contact with a known case of PTB at the time of enrollment in the study [Table 1]. Two third of the patients had normal BMI and none of them were obese. PCT at enrollment found weakly & positively correlated with BMI (r= 0.04, p>0.84) [Table 2]. Mean ESR was found 73 mm in first hour with standard deviation of 21 mm in first hour. Total count of WBC was found high in 97% of patients. More than five-sixth of the respondents (87%) had lymphocyte

predominant differential count in blood, whereas others showed neutrophil predominant (13%). Almost all patients had abnormal chest x-ray. Only one had normal chest X-ray. chest Abnormal X-ray findings included cavitation (36%),consolidation (20%), military shadow (04%) and patchy opacity (40%).

Figure 2: Pie chart showing sex distribution of the participants

Table 1: Clinical features of patients (n=30)

Clinical	Number	Percentage	
feature	(n=30)	(%)	
Fever	24	83	
Cough	27	90	
Hemoptysis	16	53	
Weight loss	21	70	
Contact with	07	23	
sputum			
positive			
pulmonary			
TB			
Hemoptysis Weight loss Contact with sputum positive pulmonary	16 21	53 70	

Data were expressed as frequency & percentage

Page no- 155-164 | Section- Research Article (Medicine)

Table 2: BMI of patients (n=3

Table	rable 2. Divir of patients (11–30)					
BMI	Level	Numb	Percenta			
	(kg/m	er	ge (%)			
	2)	(n=30)				
Low	0 to	07	23			
Normal	18.4	20	67			
Overweig	18.5 to	03	10			
ht	24.9	00	00			
Obese	25 to					
	30					
	>30					
Data ware expressed as frequency fr						

Data were expressed as frequency & percentage.

Definition of each BMI category was expressed in kg/m2.

Table 3: Laboratory picture of the respondents (n=30)

Laboratory	Frequency	Percentage	
investigation	(n=30)	(%)	
ESR (Mean	73 ± 21 mm in first hour		
±SD)			
Total count			
Normal	01	03	
High	29	97	
Differential			
count	04	13	
Neutrophil	26	87	
predominant			
Lymphocyte			
predominant			
Chest X-ray			
Normal	01	03	
Cavity	10	33	
Consolidation	05	20	

Miliary	01	03
shadow	13	40
Patchy		
Opacity		
Sputum		
AFB (1+)	07	23
AFB (2+)	10	33
AFB (3+)	08	27
Gene-	05	17
Xpert+ve		
MT (mm)		
(n=10)	22	73
Normal	08	27
Positive		
RBS		
Normal	28	93
High	02	07

Figure 3: Boxplot showing difference of procalcitonin level due to treatment in TB patients (n=30)

Table 4: Procalcitonin level among patients before and after TB treatment (n=30)

Measures	Before treatment(n=30)	After treatment(n=30)	p value
Category			
Normal	00 (00)	09 (30%)	
Slightly elevated*	30 (100%)	21 (70%)	
Moderately elevated	00 (00)	00 (00)	
Highly elevated	00 (00)	00 (00)	
Mean \pm SD (ng/ml)	0.87167 ± 0.2958	0.55± 0.2177	<0.001 (Paired sample
(0, /			t-test)

Page no- 155-164 | Section- Research Article (Medicine)

Median (IQR) (ng/ml)	0.9 0.5		<0.001 (Sign rank test)
IQR (ng/ml)	0.7-0.9	0.4-0.6	
Range (Min-Max) (ng/ml)	0.5-1.9	0.3-1.5	
Correlation coefficient	0.92		<0.001

Twenty five patients were positive for AFB in sputum, among them 07 were 1+, 10 were 2+ and remaining 8 were 3+. Patients who were negative for AFB in sputum, undergone Gene X-pert and all had positive in Gene X-pert [Table 3]. Procalcitonin level was measured in two time points: before treatment and after treatment. The blood level of procalcitonin was categorized into normal (0 to 0.5 ng/ml), slightly elevated (0.51 to 2ng/ml), moderately elevated (2.01 to 5 ng/ml) and highly elevated (>5 ng/ml). Before treatment, all patients had slightly elevated serum procalcitonin level. After treatment, serum-level of procalcitonin became normal in 30% respondents. of However, mean procalcitonin level was reduced significantly from 0.87 to 0.55 treatment from before to after (p<0.001). Median treatment

procalcitonin level after treatment was also significantly reduced from before treatment (p<0.001). A strong positive correlation was found in between before and after blood levels of procalcitonin (r=0.92, p <0.001) [Figure 3 and Table 4]. Male gender had higher procalcitonin level in both before and after treatment than female gender. However, procalcitonin level was lowered more in male gender than female (0.34 vs. 0.29) [Table 5]. In comparison with chest x-ray findings, patchy lesion tended to have higher procalcitonin level in before and after TB treatment [Table 6]. Patients having negative sputum for AFB but positive Gene- Xpert, had highest procalcitonin level at enrollment than others. Similar finding was found among patients after getting TB treatment [Table 7].

Table 5: Association of mean procalcitonin level with TB treatment by gender (n=30)

Variables		Procalcitonin level		Mean	p
		Before treatment(n=30) After		difference	value
			treatment(n=30)		
	N	(Mean ± SD)	(Mean ± SD)		
Sex					
Male	20	0.92 ±0.32	0.58 ± 0.25	0.34	< 0.001
Female	10	0.79 ±0.22	0.50 ± 0.12	0.29	< 0.001

Annals of International Medical and Dental Research E-ISSN: 2395-2822 | P-ISSN: 2395-2814

Vol-7, Issue-3 | May-June, 2021

Page no- 155-164 | Section- Research Article (Medicine)

Table 6: Association of mean procalcitonin level with TB treatment by chest x-ray findings at enrollment (n=30)

		Procalcitonin level		Mean	p value
Variables		Before	After	difference	
		treatment(n=30)	treatment(n=30)		
	N	(Mean ± SD)	(Mean ± SD)		
Chest X-ray					
Normal	01	0.80	0.50	0.30	
Cavity	10	0.79 ±0.18	0.50 ±0.09	0.29	< 0.002
Consolidation	05	0.94 ±0.23	0.56 ±0.09	0.38	< 0.002
Milliary	01	1.0	0.60	0.40	
Patchy	13	0.94 ±0.41	0.60 ± 0.33	0.35	< 0.001

Table 7: Association of mean procalcitonin level with TB treatment by sputum examination findings at enrollment (n=30)

		Procalcitonin level		Mean	p value
Variables		Before	After treatment(n=30)	difference	
		treatment(n=30)			
	N	(Mean ± SD)	(Mean ± SD)		
Sputum					
AFB (1+)	07	0.80 ± 0.35	0.51 ±0.19	0.29	< 0.003
AFB (2+)	10	0.80 ± 0.11	0.48 ±0.06	0.32	<0.001
AFB (3+)	08	0.88 ± 0.29	0.58 ±0.13	0.30	<0.002
Gene- X	05	1.1 ±0.45	0.70 ±0.45	0.31	<0.001
pert+					

DISCUSSION

In current study, the mean age was 34.6± 14.8 and the majority of patients (70%) were aged between 18 to 40 years. Age pattern in present study is different from other studies and the mean age was lower. However, there have been studies consistent with present study in which most patients were man. PCT level was high among older age patients probably due to having immune compromised, latent co-infection or other autoimmune disorders. Four patients in 18-20 year age group also had comparatively higher PCT. All patients with age more

than 50 were male (5 in number), resulting higher PCT level in male than female. The finding of this study show that cough (90%) was the most predominant clinical feature, which also found in other related studies. Presence of fever in 83% patients and weight loss in 70% patients at enrollment also correlate clinical evidence of TB infection among patients at enrollment. The assays differ largely in detection method of the antibody-PCTantibody complex and individual characteristics of the assays Gogoset al, Muller et al.^[5,6] In all instances, PCT level was decreased significantly after TB treatment. Due to the non-specific

Page no- 155-164 | Section- Research Article (Medicine)

symptoms related to TB infection, such as weight loss, fatigue, persistent coughing, loss of appetite, and night sweats, TB diagnosis is problematic Jeong & Lee.^[7] The direct approach includes detection of mycobacteria or its products and the indirect approach includes measurements of humoral and cellular responses of the host against Ramchandran tuberculosis Paramasivan.^[8] It is also important to note that various conditions other than bacterial infection may induce PCT elevation, for example, sever trauma, some autoimmune disorder, prolonged cardiogenic shock, following liver transplantation, in patients with heat stroke, severe pancreatitis, rhabdomyolysis Meisner al.^[9]However, most of the patients having normal BMI, reduced the scope to compare outcome with other categories. It is peptide of 116 amino acid with an approximate molecular weight of 14.5 kDa, and its structure can be divided into three sections: amino terminus, immature calcitonin, calcitonin carboxyl-terminus peptide 1 Jinet al.[10] Seven patients had a history of contact with sputum positive pulmonary TB. Mean PCT level was also higher among those having positive contact than those not, indicates possible association between them. Study found evidence of PCT level with prognosis of sepsis patients Nobre et al.[11] The severity of systemic inflammatory response is roughly correlated with the severity of systemic inflammation, although there is no gold standard. Usually, high PCT levels are found in patients with severe sepsis and septic shock Meisner et al9. In this

study, laboratory findings were taken only at enrollment, thus correlation of laboratory parameters during before and after treatment could not be evaluated. Therefore. this study focused more on changing PCT level due to six-month TB treatment and level of prediction by baseline laboratory parameters. Patients having grade at sputum test undergone Gene- X pert had higher PCT than others, which somehow explains relationship of severity of TB infection and PCT level. However, previous studies suggest not conclude severity based on sputum examination (both qualitative quantitative), where there is opportunity to exclude dead bacilli Wallis et al.[12] Future study can assess relationship using culture, which could suggest sensitivity and specificity of PCT level at certain cut-offs. Local bacterial infection does not induce significant amounts of PCT Meisner et al.[13] Similarly, PCT levels may be low, if there is no systemic inflammatory response in patients with bacteremia. ESR, chest x-ray findings and WBC picture are established laboratory parameters for pulmonary tuberculosis. At enrollment, patients mean ESR was 73 ± 21 mm in first hour, which was higher than other studies. Negative correlation in between ESR with PCT in both period was found (-0.13 & -0.14), which could not reach statistical significance. In quadratic curve, PCT level (both before and after treatment) was increasing with ESR up to approximately 70mm in first hour of ESR and then it was gradually declined. Previous study found non-

Page no- 155-164 | Section- Research Article (Medicine)

significant positive correlation between PCT and ESR. In opinion, positive correlation in between PCT and ESR might exist up to certain point of ESR. Beyond that point, further study including number of TB patients with high ESR is needed to explain. In this study, the mean PCT level before treatment was 0.87± 0.29 and after treatment was 0.55± 0.21. Previous studies shows that plasma level of PCT in healthy individuals are quite low (<0.1 ng/mL) Carrol et al.[14] However, as a cut-off for the diagnosis of sepsis, plasma levels of ≥0.5ng/mL interpreted as abnormal and suggest presence of sepsis Meisner al9Therefore, there was limited scope to evaluate relationship of PCT level with multi-organ involvement. The level of procalcitonin in the blood stream of healthy individuals is below the limit of detection (0.01 μ g/L) of clinical assays Dendonaet al.[15] However, patients with patchy lesion in chest x-ray had little higher PCT level than cavitary lesion, explaining above statement of having higher PCT in non-localized infections. A persistent increase or failure to decline in the PCT levels has been related to higher mortality rates in various studies Jensen et al.[16] Thus, procalcitonin is superior in identifying and assessing the severity of the infection Reinhart et al.[17]

Limitations of the study:

The study have some limitations such as low sample size, lack of control group, TB diagnosis was based on sputum smear, not excluding the conditions of concomitant other bacterial infection microbiologically,

not followed the changing trends of PCT in serum at different points of time during the whole treatment period which reduces the validity of study. This study also did not include extrapulmonary and MDR-TB.

CONCLUSION

This study assessed serum PCT in patients diagnosed with pulmonary tuberculosis at enrollment and after six months of TB treatment to observe the value of PCT reduction with treatment. PCT level was reduced significantly six-months after getting treatment irrespective of age, sex, BMI other laboratory parameters. Overall findings indicate significant relationship of PCT level reduction with success of TB treatment. We recommend that PCT should be used as a tool for monitoring of TB patients. Further large-scale study is needed including all type of TB patients (extra pulmonary and MDR-TB) & healthy control group. We also recommend that measurement of PCT should be at points of time during different treatment to observe the changing pattern.

REFERENCES

1. World Health Organization, (2015). Global Tuberculosis Report 2014: WHO Report. Geneva.

Available:http://www.who.int/tb/publication s/global_report/gtbr2015_executive _summary.pdf?ua=1

2. Rasmussen, T., Sogaard, O., Camara, C., Anderson, P., Wejse, C., (2011). Serum procalcitonin in pulmonary tuberculosis. International Journal of Tuberculosis & Lung. vol, 15(2):pp. 251–56

Page no- 155-164 | Section- Research Article (Medicine)

- 3. Baylan, O., Balkan, A., Inal, A. (2006). The predictive value of serum procalcitonin levels in adult patients with active pulmonary tuberculosis. Journal of Infectious Disease. vol. 59,pp. 164–67
- 4. Ghobadi, H., M Lari, S., Amani, F., Habibzadeh, S., &Pourfarzi, F. (2014). The impact of treatment on serum level of procalcitonin in patients with active pulmonary tuberculosis. Journal of Cardio-Thoracic Medicine. Vol. 2(4), pp. 238-42
- 5. Gogos, C. A., Drosou, E., Bassaris, H. P., & Skoutelis, A. (2000). Pro-versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. The Journal of infectious diseases, Vol.181(1), pp. 176-80
- 6. Muller, B., & Becker, K. L. (2001). Procalcitonin: how a hormone became a marker and mediator of sepsis. Swiss medical weekly, Vol. 131(41/42), pp. 595-602
- Jeong, Y.J., Lee, K.S. (2008). Pulmonary Tuberculosis: Up-to-date Imaging and Management. American Journal of Roentgenology, Vol.191, pp.834-44
- 8. Ramachandran, R., Paramasivan, C.N. (2003). What is New in the Diagnosis of Tuberculosis? Part 1: Techniques for Diagnosis of Tuberculosis. Indian Journal of. Tuberculosis, Vol.50, pp.133
- 9. Meisner, M. (2014). Update on procalcitonin measurements. Annals of laboratory medicine, Vol. 34(4), pp. 263-73
- Jin, M., & Khan, A. I. (2010). Procalcitonin: uses in the clinical laboratory for the diagnosis of sepsis. Laboratory Medicine, Vol.41(3), pp. 173-77
- 11. Nobre, V., Harbarth, S., Graf, J. D., Rohner, P., &Pugin, J. (2008). Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. American journal of respiratory and critical care medicine, Vol.177(5), pp. 498
- Wallis, R. S., Perkins, M. D., Phillips, M., Joloba, M., Namale, A., Johnson, J. L., & Mugerwa, R. D. (2000). Predicting the outcome of therapy for pulmonary tuberculosis. American journal of respiratory and critical care medicine, Vol.161(4), pp. 1076-80
- 13. Meisner, M. (2002). Pathobiochemistry and clinical use of procalcitonin. Clinicachimicaacta, Vol.323(1-2), pp. 17-29

- 14. Carrol, E. D., Thomson, A. P. J., & Hart, C. A. (2002). Procalcitonin as a marker of sepsis. International journal of antimicrobial agents, Vol. 20(1), pp. 1-9
- Dandona, P., Nix, D., Wilson, M. F., Aljada, A., Love, J., Assicot, M., &Bohuon, C. L. A. U. D. E. (1994). Procalcitonin increase after endotoxin injection in normal subjects. The Journal of Clinical Endocrinology & Metabolism. Vol.79(6), pp. 1605-8
- 16. Jensen, J. U., Heslet, L., Jensen, T. H., Espersen, K., Steffensen, P., &Tvede, M. (2006). Procalcitonin increase in early identification of critically ill patients at high risk of mortality. Critical care medicine, Vol.34(10), pp. 2596-602
- 17. Reinhart, K., karzai, W., Meisner, M., (2000). Procalcitonin as a marker of systemic inflammatory response to infection. Intensive care medicine.vol. 26,pp 1193-1200

Source of Support: Nil, Conflict of Interest: None declared