Test Plot 1#: GSM 850_Head Left Cheek_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: 836.6 MHz; σ = 0.914 S/m; ϵ_r = 40.48; ρ = 1000 kg/m³;

Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.268 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.352 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.293 W/kg

SAR(1 g) = 0.213 W/kg; SAR(10 g) = 0.148 W/kg

Maximum value of SAR (measured) = 0.272 W/kg

0 dB = 0.272 W/kg = -5.65 dBW/kg

Test Plot 2#: GSM 850_Head Left Tilt_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: 836.6 MHz; σ = 0.914 S/m; ϵ_r = 40.48; ρ = 1000 kg/m³;

Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.116 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.356 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.122 W/kg

SAR(1 g) = 0.096 W/kg; SAR(10 g) = 0.070 W/kg

Maximum value of SAR (measured) = 0.115 W/kg

Test Plot 3#: GSM 850_Head Right Cheek_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: 836.6 MHz; σ = 0.914 S/m; ϵ_r = 40.48; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.327 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.504 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.348 W/kg

SAR(1 g) = 0.258 W/kg; SAR(10 g) = 0.185 W/kg

Maximum value of SAR (measured) = 0.301 W/kg

Test Plot 4#: GSM 850_Head Right Tilt_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: 836.6 MHz; σ = 0.914 S/m; ϵ_r = 40.48; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.127 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.598 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.130 W/kg

SAR(1 g) = 0.104 W/kg; SAR(10 g) = 0.076 W/kg

Maximum value of SAR (measured) = 0.123 W/kg

0 dB = 0.123 W/kg = -9.10 dBW/kg

Test Plot 5#: GSM 850_Body Worn Back_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: 836.6 MHz; σ = 1.006 S/m; ϵ_r = 54.117; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.675 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.97 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.736 W/kg

SAR(1 g) = 0.551 W/kg; SAR(10 g) = 0.403 W/kg

Maximum value of SAR (measured) = 0.673 W/kg

Test Plot 6#: GSM 850_Body Back_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GPRS-2 slots; Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: 836.6 MHz; σ = 1.006 S/m; ϵ_r = 54.117; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.926 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.60 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.704 W/kg; SAR(10 g) = 0.493 W/kg

Maximum value of SAR (measured) = 0.895 W/kg

Test Plot 7#: GSM 1900_Head Left Cheek_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: 1880 MHz; σ = 1.374 S/m; ϵ_r = 39.399; ρ = 1000 kg/m³;

Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.634 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.54 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.822 W/kg

SAR(1 g) = 0.431 W/kg; SAR(10 g) = 0.243 W/kg

Maximum value of SAR (measured) = 0.675 W/kg

0 dB = 0.675 W/kg = -1.71 dBW/kg

Test Plot 8#: GSM 1900_Head Left Tilt_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: 1880 MHz; σ = 1.374 S/m; ϵ_r = 39.399; ρ = 1000 kg/m³;

Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.324 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.99 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.320 W/kg

SAR(1 g) = 0.180 W/kg; SAR(10 g) = 0.099 W/kg

Maximum value of SAR (measured) = 0.259 W/kg

Test Plot 9#: GSM 1900_Head Right Cheek_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: 1880 MHz; σ = 1.374 S/m; ϵ_r = 39.399; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.468 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.794 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.599 W/kg

SAR(1 g) = 0.341 W/kg; SAR(10 g) = 0.183 W/kg

Maximum value of SAR (measured) = 0.492 W/kg

Test Plot 10#: GSM 1900_Head Right Tilt_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: 1880 MHz; σ = 1.374 S/m; ϵ_r = 39.399; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.265 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.24 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.303 W/kg

SAR(1 g) = 0.190 W/kg; SAR(10 g) = 0.110 W/kg

Maximum value of SAR (measured) = 0.258 W/kg

Test Plot 11#: GSM 1900_Body Worn Back_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: 1880 MHz; σ = 1.531 S/m; ϵ_r = 52.117; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.373 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.350 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.401 W/kg

SAR(1 g) = 0.234 W/kg; SAR(10 g) = 0.145 W/kg

Maximum value of SAR (measured) = 0.342 W/kg

Test Plot 12#: GSM 1900_Body Back_Middle

DUT: mobile phone; Type: A9; Serial: 17033000620

Communication System: Generic GPRS-2 slots; Frequency: 1880 MHz;Duty Cycle: 1:4 Medium parameters used: 1880 MHz; σ = 1.531 S/m; ϵ_r = 52.117; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (101x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.610 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.89 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.655 W/kg

SAR(1 g) = 0.357 W/kg; SAR(10 g) = 0.209 W/kg

Maximum value of SAR (measured) = 0.536 W/kg

