

PRACA MAGISTERSKA

Zastosowanie metod sztucznej inteligencji do detekcji arytmii na podstawie sygnałów PPG

Jakub KULA Nr albumu: 296849

Kierunek: Informatyka

Specjalność: Internet i technologie sieciowe

PROWADZĄCY PRACĘ

dr hab. inż. Pander Tomasz, prof. PŚ
KATEDRA Cybernetyki, Nanotechnologii i Przetwarzania Danych
Wydział Automatyki, Elektroniki i Informatyki

Gliwice 2025

Tytuł pracy

Zastosowanie metod sztucznej inteligencji do detekcji arytmii na podstawie sygnałów PPG

Streszczenie

(Streszczenie pracy – odpowiednie pole w systemie APD powinno zawierać kopię tego streszczenia.)

Słowa kluczowe

(2-5 slow (fraz) kluczowych, oddzielonych przecinkami)

Thesis title

Application of artificial intelligence methods for arrhythmia detection based on PPG signal

Abstract

(Thesis abstract – to be copied into an appropriate field during an electronic submission – in English.)

Key words

(2-5 keywords, separated by commas)

Spis treści

1	Wst	5ęp	1					
	1.1	Cel i zakres pracy	1					
	1.2	Aktualny stan wiedzy	1					
	1.3	Charakterystyka rozdziałów	1					
2	Cha	arakterystyka arytmii serca i sygnału PPG	3					
	2.1	Klasyfikacja i mechanizmy arytmii serca	3					
		2.1.1 Arytmie nadkomorowe	3					
		2.1.2 Arytmie komorowe	3					
		2.1.3 Migotanie przedsionków	3					
	2.2	Fotopletyzmografia - zasada działania i zastosowania	3					
3	Met	tody uczenia maszynowego	5					
	3.1	Klasyczne metody	5					
	3.2	Sieci neuronowe	5					
	3.3	Metryki oceny klasyfikatorów	5					
	3.4	Dobór modelu i optymalizacja hiperparametrów	5					
4	\mathbf{Prz}	etwarzanie wybrane zbiory danych	7					
	4.1	Przegląd wykorzystanych zbiorów danych						
		4.1.1 MIMIC PERform AF Dataset	7					
		4.1.2 Zbiór PPG według Lie et al	7					
		4.1.3 Dane syntetyczne	7					
	4.2	Przetwarzanie wstępne	7					
	4.3	Ekstrakcja cech						
		4.3.1 Cechy statystyczne	7					
		4.3.2 Cechy czasowe	7					
		4.3.3 Cechy częstotliwościowe	7					
5	Det	ekcja arytmii serca	9					
	5.1	Architektura i konfiguracja modeli	9					
	5.2	Walidacia wyników	O					

	Ę	5.2.1 5.2.2 Analiz	Walidacja holdout	9
6			vanie i wnioski	11
Bi	ibliogr	afia		13
Sŗ	ois skr	ótów	i symboli	15
Lista dodatkowych plików, uzupełniających tekst pracy				17
Sp	ois rys	unkóv	N.	19
Sį	ois tab	el		21

Wstęp

- 1.1 Cel i zakres pracy
- 1.2 Aktualny stan wiedzy
- 1.3 Charakterystyka rozdziałów

Charakterystyka arytmii serca i sygnału PPG

- 2.1 Klasyfikacja i mechanizmy arytmii serca
- 2.1.1 Arytmie nadkomorowe
- 2.1.2 Arytmie komorowe
- 2.1.3 Migotanie przedsionków
- 2.2 Fotopletyzmografia zasada działania i zastosowania

Metody uczenia maszynowego

- 3.1 Klasyczne metody
- 3.2 Sieci neuronowe
- 3.3 Metryki oceny klasyfikatorów
- 3.4 Dobór modelu i optymalizacja hiperparametrów

Przetwarzanie wybrane zbiory danych

- 4.1 Przegląd wykorzystanych zbiorów danych
- 4.1.1 MIMIC PERform AF Dataset
- 4.1.2 Zbiór PPG według Lie et al.
- 4.1.3 Dane syntetyczne
- 4.2 Przetwarzanie wstępne
- 4.3 Ekstrakcja cech
- 4.3.1 Cechy statystyczne
- 4.3.2 Cechy czasowe
- 4.3.3 Cechy częstotliwościowe

Detekcja arytmii serca

- 5.1 Architektura i konfiguracja modeli
- 5.2 Walidacja wyników
- 5.2.1 Walidacja holdout
- 5.2.2 Walidacja K-Fold
- 5.3 Analiza wyników

Podsumowanie i wnioski

- syntetyczny opis wykonanych prac
- wnioski
- możliwość rozwoju, kontynuacji prac, potencjalne nowe kierunki
- Czy cel pracy zrealizowany?

Dodatki

Spis skrótów i symboli

```
DNA kwas deoksyrybonukleinowy (ang. deoxyribonucleic acid)
```

 $MVC \mod - \text{widok} - \text{kontroler (ang. } model-view-controller)$

 ${\cal N}\,$ liczebność zbioru danych

 $\mu\,$ stopnień przyleżności do zbioru

 $\mathbb E\,$ zbi
ór krawędzi grafu

 ${\cal L}\,$ transformata Laplace'a

Lista dodatkowych plików, uzupełniających tekst pracy

W systemie do pracy dołączono dodatkowe pliki zawierające:

- źródła programu,
- zbiory danych użyte w eksperymentach,
- film pokazujący działanie opracowanego oprogramowania lub zaprojektowanego i wykonanego urządzenia,
- itp.

Spis rysunków

Spis tabel