

Uvod u Mašinsko Učenje

Predavač: Aleksandar Kovačević

Slajdovi preuzeti sa CS 4641, Georgia Tech

https://www.cc.gatech.edu/~zk15/ML2017/

"Učenje je proces u kome sistem poboljšava svoje performanse kroz iskustvo."

-Herbert Simon

Tom Mitchell (1998):

Mašinsko učenje je proučavanje algoritama koji:

- poboljšavaju svoje performanse P
- za neki zadatak T
- kroz iskustvo E.

Dobro definisan zadatak mašiskog učenja dat je sa <P, T, E>.

Grana (pod-oblast) veštačke inteligencije, koja se bavi konstrukcijom i proučavanjem sistema koji uče iz podataka.

Programiranje računara da optimizuju neki kriterijum performansi koristeći primere (podatke) iz prošlosti.

-- Ethem Alpaydin

Cilj mašinskog učenja je razvoj algoritama koji mogu automatski da detektuju šablone u podacima, i onda da iskoristi te šablone za predviđanje budućih vrednosti.

-- Kevin P. Murphy

Mašinsko Učenje je predikcija budućnosti na osnovu prošlosti.

-- Hal Daume III

Mašinsko Učenje je predikcija budućnosti na osnovu prošlosti.

-- Hal Daume III

Tradicionalno programiranje

Mašinsko Učenje

Slide credit: Pedro Domingos

Kada nam je potrebno Mašinsko Učenje?

ML se koristi kad:

- Ljudska ekspertiza ne postoji (koji ekspert zna kuda robot treba da ide na Marsu?)
- Ljudi ne mogu da objasne ekspertizu (prepoznavanje lica ili govora)
- Nivo kvaliteta, detaljnosti za koji ljudi nemaju vremena (personalizovana medicina)
- Količine podataka koje ljudi ne mogu da savladaju (bioinformatika geni)

Mašinsko učenje nije uvek potrebno:

Npr. ne treba nam ML da izračunamo neto od bruto plate.

Prepoznavanje pisanih cifara (ili slova) je klasičan zadatak za koji je potrebno Mašinsko Učenje

čoveku je jako teško da objasni kako zna da prepozna broj 2

Slide credit: Geoffrey Hinton

Još neki zadaci za koje je prikladna i uspešna primena ML

Prepoznvanje šablona:

- Prepoznvanje lica ili određenih izraza lica
- Prepozvanje pisanih ili izgovorenih reči
- Obrada medicinskih slika (npr. da li određeni snimak sadrži tumor ili ne)
- Generisanje šablona:
 - Generisanje slika, teksta, govora ili muzike
- Detekcija anomalija:
 - Neuobičajene transakcije sa kreditnim karticama
 - Neuobičajne vrednosti na senzorima nuklearne elektrane
- Predikcija:
 - Predikcija vrednosti akcija ili kursa valuta

Slide credit: Geoffrey Hinton

Neki od primera primene

- Web pretraživači (npr. Learn To Rank algoritam)
- Bioinformatika
- Biznis
- Elektronska trgovina
- Istraživanje svemira
- Robotika
- Ekstrakcija informacija
- Analiza društvenih mreža
- Itd.

Jedan od ranih primera: Igranje Mica

"Mašinsko učenje: Naučna disciplina koja omogućava računarima da uče bez eksplicitnog programiranja." -Arthur Samuel (1959)

Definisanje zadataka mašinskog učenja kroz primere

Poboljšati performanse za zadatak T, u odnosu na meru performansi P, na osnovu iskustva E

T: Igranje mica

P: procenat pobeda

E: Igranje sam protiv sebe

T: Prepoznavanje napisanih reči

P: Procenat tačno prepoznatih reči

E: Skup slika sa napisanim rečima koje su ljudi označili sa rečima koje sa njima nalaze

T: Autonomna vožnja po auto-putu

P: Prosečan put pređen do prve potrebe čoveka za intervencijom

E: Niz slika puta i poteza na volanu koje je uradio ljudski vozač

T: Kategorizacija e-mailova u spam i normalne

P: Procenata tačno klasifikovanih e-mailova.

E: Skup e-mailova koje su ljudi označili kao spam i normalne

Slide credit: Ray Mooney

Tipovi Učenja

- Nadgledano (induktivno) učenje
 - Dato: skup podataka + oznake (npr. oznake klasa)
- Nenadgledano učenje
 - Dato: skup podtaka (bez oznaka)
- Polu-nadgledano učenje
 - Dato: skup podataka + vrlo malo označenih podatka
- Učenje Uslovljavanjem
 - Nagrade ili kazne nakon niza akcija

Nadgledano Učenje

oznaka₁ – odnosi se na oznaku baš prvog primera tj. brojevi 1-4 su redni brojevi primera. Primer 1 i 2 mogu imati istu oznaku npr. u smilu da su oba jabuke.

Nadgledano Učenje

Nadgledano Učenje

Kako označiti novi podataka – koji nema oznaku

Nadgledano učenje: klasifikacija

oznaka

jabuka

jabuka

banana

banana

Nadgledano učenje: klasifikacija

- Dato je (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Cilj je naučiti funkciju f(x) koja predviđa y za dato x
 - y je diskretna vrednost

Nadgledano učenje: klasifikacija

- x može biti više-dimezioni
 - Svaka dimenzija je jedan atribut

- Debljina tumora
- Unfiormnost veličine ćelija tumora
- Uniformnost oblika ćelija tumora

Klasifikacija – još primera

Klasifikovati aplikante za kredit u nisko-rizične i visoko-rizične na osnovu prihoda (income) i (ušteđevine)

Klasifikacija

Nadgledano učenje

R	G	В	Klasa
153	141	125	K1
151	139	123	?
152	140	124	?
153	140	123	?
154	142	126	K1
154	141	124	?
156	143	126	?
155	142	125	?
151	138	121	?
155	143	127	?
152	139	122	?
150	138	122	?
197	142	23	?
158	145	128	?
201	146	27	K2
199	144	25	K2
149	136	119	?
156	144	128	?
157	144	127	?

Šta se uči?

Pravila po kojima se neoznačeni podaci klasifikuju u kategorije.

Klasifikacija

Nadgledano učenje

R	G	В	Klasa
153	141	125	K1
151	139	123	?
152	140	124	?
153	140	123	?
154	142	126	K1
154	141	124	?
156	143	126	?
155	142	125	?
151	138	121	?
155	143	127	?
152	139	122	?
150	138	122	?
197	142	23	?
158	145	128	?
201	146	27	K2
199	144	25	K2
149	136	119	?
156	144	128	?
157	144	127	?

Šta se uči?

Pravila po kojima se ne označeni podaci klasifikuju u kategorije.

Ako je vrednost obeležja B<50 tada objekat pripada kategoriji K2 u protivnom pripada kategoriji K1

Klasifikacija

Nadgledano učenje

R	G	В	Region
153	141	125	K1
151	139	123	?
152	140	124	?
153	140	123	?
154	142	126	K1
154	141	124	?
156	143	126	?
155	142	125	?
151	138	121	?
155	143	127	?
152	139	122	?
150	138	122	?
197	142	23	?
158	145	128	?
201	146	27	K2
199	144	25	K2
149	136	119	?
156	144	128	?
157	144	127	,

Ako je vrednost obeležja B<50 tada objekat pripada kategoriji K2 u protivnom pripada kategoriji K1

Da li je B<50 jedino pravilo kojim se u ovom primeru može KVALITETNO izvršiti klasifikacija?

Klasifikacija

Nadgledano učenje

R	G	В	Region
153	141	125	K1
151	139	123	?
152	140	124	?
153	140	123	?
154	142	126	K1
154	141	124	?
156	143	126	?
155	142	125	?
151	138	121	?
155	143	127	?
152	139	122	?
150	138	122	?
197	142	23	?
158	145	128	?
201	146	27	K2
199	144	25	K2
149	136	119	?
156	144	128	?
157	144	127	?

Stabla odlučivanja

Klasifikacija – Probabilističke tehnike

Klasifikacija

Nadgledano učenje

R	G	В	Region
153	141	125	K1
151	139	123	?
152	140	124	?
153	140	123	?
154	142	126	K1
154	141	124	?
156	143	126	?
155	142	125	?
151	138	121	?
155	143	127	?
152	139	122	?
150	138	122	?
197	142	23	?
158	145	128	?
201	146	27	K2
199	144	25	K2
149	136	119	?
156	144	128	?
157	144	127	?

Probabilističke tehnike

Običan BAYES klasifikator

Markovljevi skriveni lanci

BAYES mreže

Klasifikacija – Druge tehnike

Klasifikacija

Nadgledano učenje

R	G	В	Region
153	141	125	K1
151	139	123	?
152	140	124	?
153	140	123	?
154	142	126	K1
154	141	124	?
156	143	126	?
155	142	125	?
151	138	121	?
155	143	127	?
152	139	122	?
150	138	122	?
197	142	23	?
158	145	128	?
201	146	27	K2
199	144	25	K2
149	136	119	?
156	144	128	?
157	144	127	3

Neuronske mreže

Višeslojni perceptron

SVM Suport Vector Machine

Još neki primeri klasifikacije sa ilustracijama: Spam Filter

people who have been using Vital Acai daily to Achieve goals and reach new heights in there dieting that

they never thought they could.
* Rapid WeightL0SS

* Better Mood and Attitude

* More Self Confidence

* Cleanse and Detoxify Your Body

* Much More Energy

* BetterSexLife

* A Natural Colon Cleanse

* Increased metabolism - BurnFat & calories easily!

predikcija

Spam vs. Normalan

Još neki primeri klasifikacije sa ilustracijama: Prepoznavanje lica

Primer iz obučavajućeg skupa – isto lice iz različitih uglova

Još neki primeri klasifikacije sa ilustracijama: Prognoza vremena (u diskretne klase: oblačno, sunčano, kiša....)

Nadgledano Učenje: Regresija

oznaka

-4.5

Regresija: Oznaka tj. cilja vrednot je kontinualna (obično realan broj), a ne diskretna

3.2

4.3

Nadgledano Učenje: Regresija

- Dato je $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Cilj je naučiti funkciju f(x) koja predviđa y za dato x
 - y je kontinunalna vrednost

Regresija – još primera

Cena polovnih automobila

x: atributi automobila (npr. broj pređenih kilometara)

y:cena

Regresija – još primera

Predikcija ishoda utakmica

Regresija – još primera

Ekonomija/Finansije: predikcija vrednosti akcija ili kripto-valuta...

Epidemiologija – predikcija širenja neke bolesti

Navigacija vozila: ugao volana, ubrzanje, ...

Prognoza temeprature vazduha

• • •

Još neki primeri regresije sa ilustracijama: Predikcija vrednosti akcija

Još neki primeri regresije sa ilustracijama: Prognoza vremena (za razliku od klasifikacije sad predviđamo temperaturu tj. kontinualnu vrednost)

Nadgledano učenje: rangiranje

Oznaka 1 4 2 3

Rangiranje: oznaka je rang (npr. 1 je bolje od 2, a 2 od 3 itd.)

Rangiranje - primeri

Web pretraga:
Rangiranje web
strana po relevatnosti
u odnosu na upit

Rangiranje - primeri

Za datu sliku pronaći slične slike

http://www.tiltomo.com/

Rangiranje – Sistemi za preporuke

Rangiranje – Sistemi za preporuke

Takmičenje sa nagradom od milion dolara

Nenadgledno Učenje

Nenadgledno učenje: dati su nam podaci ali bez oznaka

Nenadgledno Učenje

- Dato je $x_1, x_2, ..., x_n$ (bez oznaka)
- Izlaz je neka struktura (šablon) koji važi za x-ove
 - Npr. automatsko grpuisanje (klasterovanje)

Nenadgledno Učenje - Konkretnije

Na osnovu čega se uči?

Nadgledano

(označeni podaci)

Nenadgledano – bez učitelja

(ne označeni podaci)

Sa uslovljavanjem

Nenadgledno Učenje - Konkretnije

Podeliti tačke u dva regiona

R	G	В	Region
153	141	125	
151	139	123	
152	140	124	
153	140	123	
154	142	126	
154	141	124	
156	143	126	
155	142	125	
151	138	121	
155	143	127	
152	139	122	
150	138	122	
197	142	23	
158	145	128	
201	146	27	
199	144	25	
149	136	119	
156	144	128	
157	144	127	

255, 127, 0

192, 192, 192

Još neki primeri nenadglednog učenja sa ilustracijama: Klasterovanje slika

[Goldberger et al.]

Još neki primeri nenadglednog učenja sa ilustracijama: Klasterovanje rezultata Web pretrage

Još neki primeri nenadglednog učenja sa ilustracijama: Klasterovanje ljudi po genetskoj sličnosti

Još neki primeri nenadglednog učenja sa ilustracijama

Kreiranje klastera računara

Otrivanje grupa mušterija

Otkrivanje zajednica u društvenim mrežama

Grupisanje nebskih tela na slikama

Slide credit: Andrew Ng

Nenadgledano učenje – redukcija dimenizonalnosti – Primer:slike

- Slike imaju hiljade ili milione piksela.
- Da li ih možemo nekako predstaviti u 2d tako da su slične slike blizu jedna druge?

[Saul & Roweis '03]

Nenadgledano učenje – redukcija dimenizonalnosti – Primer:reči

Nenadgledano učenje – redukcija dimenizonalnosti – Primer:reči (zoom)

Učenje uslovljavanjem

- Učenje uslovljavanjem je vrsta mašinskog učenja
- Detaljno smo ga razmatrali na prethodnim predavanjima
- Iz tog razloga neće sad biti razmatrano

Preciznije formulisanje rešavanja problema pomoću mašinskog učenja

Kreiranje sistema za učenje

- Biramo iskustvo iz kojeg se uči tj. obučavajući skup
- Biramo šta u stvari želimo da naučimo
 - tj. ciljnu funkciju (ne mora biti funkcija u matematičkom smislu, već na neki način formalizujemo ono što želimo da sistem radi – biće detaljnije objašnjeno tokom kursa)
- Biramo način na koji reprezentujemo ciljnu funkciju
- Biramo algoritam mašinskog učenja koji bi trebalo da nauči ciljnu funkciju od obučavajućeg skupa

Distribucija obučavajućih i test podataka

- Prilikom razvoja ML algoritama generalno se pretpostavlja da su obučavajući i test podaci nezavisno izvučeni iz iste distribucije
 - Tipčna oznaka za to u ML literaturi je "i.i.d" "independent and identically distributed"

ML u suštini

- Desetine hiljada algoritama
 - Stotine novih svake godine

- Svaki algoritam mašinskog učenja ima tri komponente:
 - Reprezentacija
 - Optimizacija
 - Evaluacija

Slide credit: Pedro Domingos

Različiti načini reprezentacije ciljne funkcije

- Numeričke funkcije
 - Linerana regresija
 - Neuronske mreže
 - Mašine potpornih vektora (Support vector machines, SVM)
 - **–** ...
- Simboličke funkcije
 - Stabla odlučivanja
 - Pravila u predikatskim logikama prvog reda
 - **–**
- Funkcije zasnovane na instancama (podacima)
 - K-najbližih komšija
- Probabilistički modeli
 - Naivni Bajes
 - Bajesove mreže
 - Skriveni modeli Markova
 - **–**

Različiti algoritmi za optimizaciju i pretragu

- Gradijentni spust
 - Perceptron
 - Backpropagation
- Dinamičko programiranje
 - Učenje Skrivenih Modela Markova
- "Podeli pa Vladaj" Divide and Conquer
 - Učenje stabala odlučivanja
 - Učenje pravila
- Evolutivni Algoritmi
 - Genetski algoritmi
 - **–** ...

Slide credit: Ray Mooney

Evaluacija

- Tačnost (Accuracy)
- Preciznost i Odziv (Precision and Recall)
- Kvadrat greške (Squared error)
- Verovatnost (Verodostojnost) Likelihood
- Posteriorna verovatnoća (Posterior probability)
- Trošak / Korisnot (Cost / Utility)
- Margina
- Entropija
- K-Ldivergencija
- ...

Mašinsko Učenje u Praksi

- Razumeti problem i domen problema, shvatiti šta je dostupno od podataka, shvatiti šta su ciljevi
- Integracija podataka, selekcija, čišćenje, pred-procesiranje, itd.
- Učenje (obučavanje) modela
- Interpretacija rezultata
- Konsolidacija i upotreba (deployment) dobijenog znanja

Šta smo do sad shvatili o ML?

 Mašinsko učenje se može posmatrati kao upotreba iskustva (podataka) za aproksimaciju neke ciljne funkcije.

 Proces aproksimacije funkcije može se posmatrati kao pretraga u prostoru različitih reprezentacija funkcija (npr. pravih linija) za onom koja se najbolje uklapa u podatke.

 Različiti algoritmi mašinskih učenja koriste različite reprezentacije funkcija i koriste (ili ne) različite tehnike pretrage u tom prostoru.

Slide credit: Ray Mooney

Vrhunske (State-of-the-Art) Primene Mašinskog Učenja

Autonomni Automobili

- Američka država Nevada je 2011 godine dozvolila da upotrebnu autnomih vozila na putevima.
- Još četiri države (Nevada, Florida, Kalifornija i Mičigen su legalizovale autonomne automobile)

Georgia Tech's Autonomous Car 🥒 (Sting Racing Team)

Senzori na autonomnom automobilu

Tehnologije vezane za autonomne automobile

Images and movies taken from Sebastian Thrun's multimedia w e bsite.

Deep Learning u medijima

BUSINESS NEWS

Is Google Cornering the Market on Deep Learning?

A cutting-edge corner of science is being wooed by Silicon Valley, to the dismay of some academics.

By Antonio Regalado on January 29, 2014

How much are a dozen deep-learning researchers worth? Apparently, more than \$400 million.

This week, Google reportedly paid that much to acquire DeepMind Technologies, a startup based in

BloombergBusinessweek Technology

Acquisitions

The Race to Buy the Human Brains Behind Deep Learning Machines

By Ashlee Vance January 27, 2014

intelligence projects. "DeepMind is bona fide in terms of its research capabilities and depth," says Peter Lee, who heads Microsoft Research.

According to Lee, Microsoft, Facebook (FB), and Google find themselves in a battle for deep learning talent. Microsoft has gone from four full-time deep learning experts to 70 in the past three years. "We would have more if the talent was there to

Deep Learning's Role in the Age of Robots

BY JULIAN GREEN, JETPAC 05,02,14 2:56 PM

Deep Belief Net za prepozvanje lica

Učenje karakteristika objekata na slikama

Slide credit: Andrew Ng

Obučavanje na mnogo različitih objekata

Na primer, 4 klase objekata (automobili, motori, lica i avioni).

Drugi sloj: Karakteristike koje su specifične za svaki objekat i karakteristike koje dele svi objekti

Treći sloj: Još specifičnije karakteristike objekata

Slide credit: Andrew Ng

Obeležavanje Scena (*Scene Labeling*) pomoću Deep Learning

Značajan uticaj Deep Learning na sve tehnologije vezane za govor

