Answer to 17.9(a):

The experiment is a x b design. The levels for factor A is $[a_1, a_2, \ldots, a_a]$, and the levels for factor B is $[b_1, b_2, \ldots, b_b]$

If A and B are both fixed: all the levels of $[a_1, a_2, \ldots, a_a]$ for A and all levels of $[b_1, b_2, \ldots, b_b]$ for B, are included in the design.

If A and B are both random: out of all the levels of $[a_1, a_2, ..., a_a]$ for A, only a subset of the $[a_1, a_2, ..., a_a]$ levels for A is randomly selected and included. For B, only a randomly selected subset of all levels of $[b_1, b_2, ..., b_b]$ for B, are included in the design.

Answer to 17.13(a):

The mixed effects model can be represented as:

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_k + \tau \beta_{ij} + \tau \gamma_{ik} + \beta \gamma_{jk} + \tau \beta \gamma_{ijk} + \epsilon_{l(ijk)}$$

here
$$i = 1, 2, 3, j = 1, 2, ..., 4$$
, and $k = 1, 2, ..., 6$,

Furthermore,

 y_{ijkl} is the l^{th} observation for the level of i, for factor chemical, the level of j, for factor B, and the level of k, for factor C.

 μ = overall mean response which is unknown

 τ_i = the random effect corresponding to the i^{th} level of factor A. The τ_i s have independent normal distribution with mean zero and variance σ^2_A

 β_j = the fixed effect corresponding to the j^{th} level of factor B.

 γ_k = the fixed effect corresponding to the k^{th} level of factor C.

 $\tau\beta_{ij}$ = the random effect due to interaction of the i^{th} level of factor A, and the j^{th} level of factor B. The $\tau\beta_{ij}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\tau\beta}$

 $\tau\gamma_{ik}$ = the random effect due to interaction of the ith level of factor A, and the kth level of factor C. The $\tau\gamma_{ik}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\tau\gamma}$

 $\beta\gamma_{jk}$ = the random effect due to interaction of the j^{th} level of factor B, and the k^{th} level of factor C. The $\beta\gamma_{jk}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\beta\gamma}$

 $\tau\beta\gamma_{ijk}$ = the random effect due to interaction for the ith level of factor A, jth level of factor B, and the kth level of factor C. The $\tau\beta\gamma_{ijk}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\tau\beta\gamma}$

 $\epsilon_{l(ijk)}$ = the random error associated with the l^{th} observation and has an independent distribution with man zero, and variance σ^2

 τ_i , $\tau\beta_{ij}$, $\tau\gamma_{ik}$, and $\tau\beta\gamma_{ijk}$ are mutually independent

Answer to 17.13(b):

Source	Expected Mean Square (EMS)	Degrees of Freedom (df)
A	$\sigma^2 + n\sigma^2_{ABC} + nb\sigma^2_{AC} + nc\sigma^2_{AB}$	a-1=2
	$+ \text{nbc}\sigma^2_A$	
В	$\sigma^2 + n\sigma^2_{ABC} + nc\sigma^2_{AB} + nac\phi^2_{B}$	b-1=3
C	$\sigma^2 + n\sigma^2_{ABC} + nb\sigma^2_{AC} + nab\varphi^2_{C}$	c-1=5
AB	$\sigma^2 + n\sigma^2_{ABC} + nc\sigma^2_{AB}$	(a-1)(b-1) = 6
AC	$\sigma^2 + n\sigma^2_{ABC} + nb\sigma^2_{AC}$	(a-1)(c-1)=10
BC	$\sigma^2 + n\sigma^2_{ABC} + na\varphi^2_{BC}$	(b-1)(c-1)=15
ABC	$\sigma^2 + n\sigma^2_{ABC}$	(a-1)(b-1)(c-1) = 30
Error	σ^2	abc(n-1) = 216

Answer to 17.13(c):

For random effects of A, σ^2_A :

$$H_0$$
: $\sigma^2_A = 0$, H_A : $\sigma^2_A > 0$

Under H₀, $\sigma_{A}^2 = 0$, modified EMS = $\sigma_{ABC}^2 + n\sigma_{ABC}^2 + n\sigma_{AC}^2 + n\sigma_{AB}^2$

This modified EMS is not in the ANOVA table so we need to approximate the F-test is needed, with Satterwithe's degree of freedom formula. The modified EMS can be obtained from $MS_{AB} + MS_{AC} - MS_{ABC}$

For fixed effects of B, ϕ^2_B :

$$H_0$$
: $\varphi^2_B = 0$, H_A : $\varphi^2_B > 0$

Under H_0 , $\phi^2{}_B=0$, modified EMS = $\sigma^2+n\sigma^2{}_{ABC}+nc\sigma^2{}_{AB}$

This modified EMS is in the ANOVA table, as well as with the degrees of freedom so we F-test = MS_B / MS_{AB}

For fixed effects of C, φ^2 C:

$$H_0$$
: $\varphi^2_C = 0$, H_A : $\varphi^2_C > 0$

Under H_0 , ϕ^2_C = 0, modified EMS = $\sigma^2_{}^{} + n\sigma^2_{}^{}_{ABC} + nb\sigma^2_{}_{AC}$

This modified EMS is in the ANOVA table, as well as with the degrees of freedom so we F-test = MS_C / MS_{AC}

For random effects of AB, σ^2_{AB} :

$$H_0$$
: $\sigma^2_{AB} = 0$, H_A : $\sigma^2_{AB} > 0$

Under H_0 , $\sigma^2_{AB} = 0$, modified EMS = $\sigma^2 + n\sigma^2_{ABC} + nc\sigma^2_{AB}$

This modified EMS and degrees of freedom is in the ANOVA table. The F-test = MS_{AB}/MS_{ABC}

For random effects of AC, σ^2_{AC} :

$$H_0$$
: $\sigma^2_{AC} = 0$, H_A : $\sigma^2_{AC} > 0$

Under H₀, $\sigma^2_{AC} = 0$, modified EMS = $\sigma^2 + n\sigma^2_{ABC}$

This modified EMS and degrees of freedom is in the ANOVA table. The F-test = MS_{AC}/MS_{ABC}

For random effects of BC, σ_{BC}^2 :

$$H_0$$
: $\sigma^2_{BC} = 0$, H_A : $\sigma^2_{BC} > 0$

Under H_0 , $\sigma^2_{BC} = 0$, modified EMS = $\sigma^2 + n\sigma^2_{ABC}$

This modified EMS and degrees of freedom is in the ANOVA table. The F-test = MS_{BC}/MS_{ABC}

For random effects of BC, σ^2_{ABC} :

$$H_0$$
: $\sigma^2_{ABC} = 0$, H_A : $\sigma^2_{ABC} > 0$

Under H_0 , $\sigma^2_{ABC} = 0$, modified EMS = σ^2

This modified EMS and degrees of freedom is in the ANOVA table. The F-test = MS_{ABC}/MSE

Answer to 17.10(a):

The mixed effects model can be represented as:

$$y_{ijk} = \mu + \tau_i + \beta_j + \tau \beta_{ij} + \epsilon_{k(ij)}$$

here
$$i = 1, 2, 3, 4$$
, and $j = 1, 2, ..., 5$

Furthermore,

 y_{ijk} is the k^{th} observation for the level of i, for factor chemical, the level of j, for factor location.

 μ = overall mean response which is unknown

 τ_i = the fixed effect corresponding to the i^{th} level of factor 'chemical'.

 β_j = the random effect corresponding to the j^{th} level of factor 'location'. The β_j s have independent normal distribution with mean zero and variance $\sigma^2_{location}$

 $\tau\beta_{ij}$ = the random effect due to interaction of the i^{th} level of factor chemical, and the j^{th} level of factor location. The $\tau\beta_{ij}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\ \tau\beta}$

 $\epsilon_{k(ij)}$ = the random error associated with the k^{th} observation and has an independent distribution with mean zero, and variance σ^2

 $\epsilon_{k(ij)}\,$, $\tau\beta_{ij}$, and β_{j} are mutually independent

Answer to 17.10(b):

Source	d f	Sum of Squar es	Mea n Squa re	Expected mean Square	Error term	Err or DF	F Val ue	p- valu e
Chemical	3	180.1 23	60.0	Var(Residual) + 2 Var (chemical*loc ation) + Q(chemical)	MS (chemical*loc ation)	12	44.5	< 0.00 01
Location	4	3.811	0.95	Var(Residual) + 2 Var (chemical*loc ation) + 8 Var (location)	MS (chemical*loc ation)	12	0.71	0.60
Chemical*loc ation	1 2	16.15 8	1.34	Var(Residual) + 2 Var (chemical*loc ation)	MS(Residual)	20	3.89	0.00 37
Error	2 0	6.925	0.34 6	Var(Residual)				

Answer to 17.11:

Fixed effects for chemical:

 H_0 : $\phi^2_{chemical} = 0$, H_A : $\phi^2_{chemical} > 0$

Decision: With 5% significance level, we reject the null hypothesis

Conclusion: There is significantly sufficient evidence that there is variability amongst the ith levels of chemical.

Random effects for location:

 H_0 : $\sigma^2_{location} = 0$, H_A : $\sigma^2_{location} > 0$

Decision: With 5% significance level, we fail to reject the null hypothesis

Conclusion: There is not significantly sufficient evidence that there is variability amongst the jth levels of location.

Random effects for interaction due to chemical*location:

$$H_0$$
: $\sigma^2_{\text{chemical * location}} = 0$, H_A : $\sigma^2_{\text{chemical * location}} > 0$

Decision: With 5% significance level, we reject the null hypothesis

Conclusion: There is significantly sufficient evidence that there is variability amongst the interaction due to j^{th} levels of location and i^{th} levels of chemical.

Answer to 17.27(a):

The mixed effects model can be represented as:

$$y_{ijk} = \mu + \tau_i + \beta_j + \tau \beta_{ij} + \varepsilon_{k(ij)}$$

here
$$i = 1, 2, 3, 4, \text{ and } j = 1, 2, 3$$

Furthermore,

 y_{ijk} is the k^{th} observation for the level of i, for factor machine, the level of j, for factor operator.

 μ = overall mean response which is unknown

 τ_i = the random effect corresponding to the ith level of factor 'machine'. The τ_i s have independent normal distribution with mean zero and variance $\sigma^2_{machine}$

 β_j = the random effect corresponding to the j^{th} level of factor 'operator'. The β_j s have independent normal distribution with mean zero and variance $\sigma^2_{operator}$

 $\tau\beta_{ij}$ = the random effect due to interaction of the i^{th} level of factor machine, and the j^{th} level of factor operator. The $\tau\beta_{ij}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\ \tau\beta}$

 $\epsilon_{k(ij)}$ = the random error associated with the k^{th} observation and has an independent distribution with mean zero, and variance σ^2

 $\epsilon_{k(ij)}$, $\tau\beta_{ij}$, and $\tau_i,\,\beta_j$ are mutually independent

Answer to 17.27(b):

Source	d	Sum	Mea	Expected	Error term	Err	F	p-
	f	of	n	mean Square		or	Val	valu
		Squar	Squa			DF	ue	e
		es	re					
Machine	3	12.45	60.0	Var(Residual)	MS	6	0.56	0.66
		83	44	+ 2 Var	(machine*oper			19
				(machine*oper	ator)			
				ator) + 6 Var				
				(machine)				
Operator	2	160.3	0.95	Var(Residual)	MS	6	10.7	0.01
		33	2	+ 2 Var	(machine*oper		7	103
				(machine*oper	ator)			
				ator) + 8 Var				
				(operator)				
Machine*Ope	6	44.66	1.34	Var(Residual)	MS(Residual)	12	1.96	0.15
rator		67	6	+ 2 Var				07
				(machine*oper				
				ator)				
Error	1	45.50	0.34	Var(Residual)				
	2		6					

Answer to 17.27(c):

Random effects for machine:

 H_0 : $\sigma^2_{machine} = 0$, H_A : $\sigma^2_{machine} > 0$, p-value =0.6619

Decision: With 5% significance level, we fail to reject the null hypothesis

Conclusion: There is not significantly sufficient evidence that there is variability amongst the ith levels of machine.

Random effects for operator:

$$H_0$$
: $\sigma^2_{operator} = 0$, H_A : $\sigma^2_{operator} > 0$, p-value =0.0103

Decision: With 5% significance level, we reject the null hypothesis

Conclusion: There is not significantly sufficient evidence that there is variability amongst the jth levels of operator.

Random effects for interaction due to machine*operator:

$$H_0$$
: $\sigma^2_{machine * operator} = 0$, H_A : $\sigma^2_{machine * operator} > 0$, p-value =0.1507

Decision: With 5% significance level, we fail to reject the null hypothesis

Conclusion: There is significantly sufficient evidence that there is variability amongst the interaction due to jth levels of operator and ith levels of machine.

Answer to 17.28(a):

Co-variance estimates from Type III:

```
Machine = -0.5486
Operator = 9.0903
Machine * operator = 1.8264
Residual = 3.7917
```

Co-variance estimates from REML:

```
Machine = 0
Operator = 9.2275
Machine * operator = 1.2777
Residual = 3.7917
```

REML is preferred as it includes adjustments needed for degree of freedom for estimating the mean squares. We also see from the output that the co-variance estimates for REML is different to that of Type III. For Type III the co-variance estimate is negative for machine.

Answer to 17.28(c):

The confidence interval for average solder strength = (199.43, 215.16) This value states that with 95% statistical confidence we can state that the true average solder strength lies between 199.43, and 215.16.