Instructions:

- Write your name and EID on every page.
- Put your answers on the last sheet of paper.
- No other outside resources, such as books, notes, the internet, or other people, are allowed.
- There are 110 possible points. The max possible score is 105. It will be graded out of 100.
- 1. (7 points) If $f(x) = x^2 + 2x + e^{4x}$, find f'(0)
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5
- (F) 6

- 2. (7 points) Find the x-intercept of the line tangent to $f(x) = 3\sin(2x) + 4\cos(x)$ at the point (0, f(0)).

 - (A) 0 (B) $-\frac{1}{4}$ (C) $-\frac{1}{3}$ (D) $-\frac{1}{2}$ (E) $-\frac{2}{3}$ (F) $-\frac{3}{4}$

- 3. (7 points) Let $f(x) = \frac{\sinh(2x)}{\cosh(3x) + 2}$. Find f'(0)

- (A) 0 (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) $\frac{2}{3}$ (E) 1 (F) $\frac{4}{3}$
- 4. (7 points) If $f(x) = x^2 \sin(x) + 2x \cos(x)$, then f'(x) =

- (A) $(x^2 2)\cos(x)$ (B) $(x^2 + 2)\sin(x)$ (C) $(x^2 2)\sin(x)$ (D) $(x^2 + 2)\cos(x)$ (E) None of These

5. (7 points) Let $h(x) = f(f(x)) \cdot g(x)$. Use the table of values below to find h'(1).

	\boldsymbol{x}	f(x)	f'(x)	g(x)	g'(x)
	1	4	2	-1	2
ĺ	2	3	3	3	5
ĺ	3	2	4	-2	-1
ĺ	4	-1	2	3	4

- (A) 0
- (B) -6
- (C) -8
- (D) 4
- (E) 1
- (F) None of These

6. (7 points) The graph f(x) and the tangent line at x=2 are shown below. Let $g(x)=\ln(f(x))$. Find g'(2)

- (A) $\frac{1}{3}$
- (B) $\frac{2}{3}$

- (C) $-\frac{2}{3}$ (D) $-\frac{1}{2}$ (E) $\frac{2}{9}$ (F) $-\frac{1}{9}$

7. (7 points) The function $f(x) = 3x + 2\sin(3x) + 2e^{2x}$ is 1-1, Find $(f^{-1})'(2)$.

- (A) $\frac{1}{15}$ (B) $\frac{1}{13}$ (C) $\frac{1}{12}$ (D) $\frac{1}{9}$ (E) $\frac{1}{6}$ (F) $\frac{1}{5}$

- (A) $\sqrt{11} \pi$
- (B) 4π
- (C) 8π
- (D) $\sqrt{15} \pi$ (E) $\sqrt{19} \pi$ (F) 2π

9. (7 points) Use linearization to estimate the value of $\sqrt{0.9}$.

- (A) $\frac{9}{10}$ (B) $\frac{11}{12}$ (C) $\frac{15}{16}$ (D) $\frac{19}{20}$ (E) $\frac{37}{40}$ (F) $\frac{80}{83}$

10. (7 points) The critical numbers(s) of $f(x) = x^{1/4}(7-x)^{3/4}$ are x = 0, 7, and:

- (A) $\frac{4}{5}$ (B) 1 (C) $\frac{3}{2}$ (D) $\frac{7}{4}$ (E) $\frac{4}{3}$ (F) 2

11. (7 points) Find the absolute minimum value of $f(x) = \cos^2(x) - \cos(x)$ on the interval $[0, \pi/2]$

- (A) 0 (B) $-\frac{1}{12}$ (C) $-\frac{1}{8}$ (D) $-\frac{1}{6}$ (E) $-\frac{1}{4}$ (F) $-\frac{1}{3}$

- 12. (4 points): True or False: The function $f(x) = x^2 2x + 1$ on [0, 2] satisfies the Mean Value Theorem.
- 13. (4 points): True or False: If $f(x) = |x^2 5|$. them f'(2) = -4.
- 14. (4 points): True or False: The function $f(x) = 1 x^{2/3}$ on [-1, 1] satisfies Rolle's Theorem.
- 15. (9 points) Free Response: Find all the critical numbers of $f(x) = \frac{x^2 + 12}{2x + 1}$. Put a box around your final answer.

16. (12 points) Free Response: There is one line tangent to $2xy + y^2 = 5$ that passes through the point (5,0). Find the **slope** of this tangent line. Put a box around your final answer.

Multiple Choice (7 points each):

True or False (4 points each):

