Lema de Dickson

13 de marzo de 2017

f pertenece a I un ideal monomial si y sólo si todos los términos de f pertenecen a I, o de manera equivalente, todos los monomios de f pertenecen a I.

Lema 1. (de Dickson) Sea $I = \langle x^{\alpha} | \alpha \in A \rangle$ un ideal monomial, entonces existe $\alpha^{(1)}, \ldots, \alpha^{(r)} \in A$ A tales que $I = \langle x^{\alpha^{(1)}}, \dots, x^{\alpha^{(r)}} \rangle$.

Demostración:

Sabemos, por el teorema de la base de Hilbert, que existen polinomios f_1, \ldots, f_k tales que $I = \langle f_1, \ldots, f_k \rangle$. Llamamos $x^{\beta^{(1)}}, \ldots, x^{\beta^{(m)}}$ a todos los monomios de los f_i , y tendremos $I = \langle x^{\beta^{(1)}}, \ldots, x^{\beta^{(m)}} \rangle$.

Ahora, dado $\beta^{(i)}$ tenemos $x^{\beta^{(i)}} \in I$. Entonces, $x^{\beta^{(i)}} = \sum_{\alpha \in A} g_{\alpha} x^{\alpha} \Rightarrow \exists \alpha^{(i)} \in A$ tal que $x^{\beta^{(i)}} = x^{\gamma} \cdot x^{\alpha^{(i)}}$. Como $x^{\beta^{(1)}}, \dots, x^{\beta^{(m)}}$ generan I, se sigue que $x^{\alpha^{(1)}}, \dots, x^{\alpha^{(n)}}$ generan I.

Ahora introduzcamos otro lema sobre bases de Gröbner:

Lema 2. Dado un orden monomial. Entonces cada ideal $I \subset k[x_1, \ldots, x_n]$ distinto del $\{0\}$ tiene una base de Gröbner. Además, cualquier base de Gröbner para un ideal I es una base de I.

Demostración:

Sea I un ideal distinto del $\{0\}$. Consideremos $\underbrace{LT(I)}_{\text{ideal monomial}} = \langle LT(f), f \in I \rangle = \langle LM(f), f \in I \rangle$. Por el lema de Dickson, existen $f_1, \ldots, f_r \in I$ tales que $LT(I) = \langle LM(f_1), \ldots, LM(f_r) \rangle = \langle LM(f_1), \ldots, LM(f_r) \rangle$

Veamos que $I = \langle f_1, \dots, f_r \rangle$ y habremos terminado la prueba.

- Es trivial ya que $f_1, \ldots, f_r \in I$.

 Sea $f \in I$, usando el algoritmo de la división se tiene

$$f = a_1 f_1 + \dots + a_r f_r + r(x)$$

y suponemos que $r(x) \neq 0$, y donde ningún monomio de r(x) es múltiplo de ningún $LT(f_i)$. En particular, $LT(r(x)) \notin \langle LT(f_1), \dots, LT(f_r) \rangle$. Pero, $r(x) = f - a_1 f_1 - \dots - a_r f_r \Rightarrow LT(r(x)) \in LT(I) \underset{\rightarrow}{\Longrightarrow} r(x) = 0 \Rightarrow f = a_1 f_1 + \dots + a_r f_r \Rightarrow f \in \langle f_1, \dots, f_r \rangle$.

Referencias

[1] Cox, D., Little, J., O'Shea, D., Ideals, Varieties, and Algorithms, Springer-Verlag, 2007.