Выборный Евгений Викторович email: evybornyi@hse.ru

Математический анализ Тема 6: Функции многих переменных

Москва 2016

Пространство \mathbb{R}^n

Определение. Вещественное n-мерное пространство \mathbb{R}^n

Множество упорядоченных наборов из n действительных чисел называют вещественным n-мерным пространством \mathbb{R}^n :

$$x=(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n.$$

Эти наборы чисел из \mathbb{R}^n называют точками или векторами. В \mathbb{R}^n определена сумма векторов и операция умножения вектора на число:

$$x + y = (x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n),$$

$$\alpha x = \alpha \cdot (x_1, x_2, ..., x_n) = (\alpha x_1, \alpha x_2, ..., \alpha x_n).$$

Определено понятие расстояния между точкам:

$$d(x,y) = ||x-y|| = \sqrt{(x_1-y_1)^2 + \cdots + (x_n-y_n)^2}.$$

Выполнено неравенство треугольника:

$$||x + y|| \le ||x|| + ||y||.$$

Шар в \mathbb{R}^n

Ключевым понятием для определения сходимости в одномерном случае была ε -окрестность точки a. Определим аналогичные понятия в многомерном пространстве \mathbb{R}^n .

Определение. Шар в \mathbb{R}^n

Открытым шаром в \mathbb{R}^n с центром в точке a и радиусом r называют множество точек $x \in \mathbb{R}^n$, удовлетворяющих условию

$$||x - a|| < r \iff (x_1 - a_1)^2 + \dots + (x_n - a_n)^2 < r^2.$$

Иногда это множество называют r-окрестностью точки a, сохраняя обозначение $O_r(a)$. Тогда **проколотой** r-окрестностью точки a, называют множество точек:

$$\dot{O}_r(a) = O_r(a) \setminus \{a\} = \{x \in \mathbb{R}^n \mid 0 < \|x - a\| < r\}.$$

Определение. Ограниченное множество

Множество $A\subset \mathbb{R}^n$ называется **ограниченным**, если A полностью лежит в некотором шаре. В этом случае существует R такое, что

$$||x|| < R \quad \forall x \in A.$$

Предел последовательности точек

Определение. Предел последовательности точек

Говорят, что последовательность точек $\{x^{(k)}\}$, $x^{(k)}\in\mathbb{R}^n$ сходится к точке $y\in\mathbb{R}^n$, пишут $x^{(k)}\to y$, если к нулю стремится расстояние между y и $x^{(k)}$ при $k\to+\infty$:

$$\lim_{k\to+\infty}d(y,\ x^{(k)})=0.$$

Эквивалентные записи имеют вид:

$$\forall \varepsilon > 0 \ \exists N : \quad x^{(k)} \in O_{\varepsilon}(y) \quad \forall k \geq N.$$

$$\forall \varepsilon > 0 \ \exists N : \quad ||x^{(k)} - y|| < \varepsilon \quad \forall k \ge N.$$

Таким образом, последовательность точек стремится к y тогда и только тогда, когда в любом открытом шаре с центром в точке y лежит бесконечно много точек последовательности, а вне его — лишь конечное число.

Упражнение

Докажите, что множество точек сходящейся последовательности является ограниченным.

Предел последовательности точек

Предложение

Сходимость последовательности точек $\{x^{(k)}\}$ к точке y эквивалентна сходимости координат точек $x^{(k)}=(x_1^{(k)},\dots,x_n^{(k)})$ к координатам точки $y=(y_1,\dots,y_n)$:

$$\lim_{k\to+\infty}x^{(k)}=y\quad\iff\quad \lim_{k\to+\infty}x^{(k)}_1=y_1,\ldots,\lim_{k\to+\infty}x^{(k)}_n=y_n.$$

Доказательство

Доказательство теоремы непосредственно следует из очевидных неравенств:

$$|x_j^{(k)} - y_j| \le \sqrt{(x_1^{(k)} - y_1)^2 + \dots + (x_n^{(k)} - y_n)^2} \le n \max_{1 \le j \le n} |x_j^{(k)} - y_j|.$$

Замечание

Иногда в \mathbb{R}^n вводят другое понятие расстояния по формуле:

$$\tilde{d}(x, y) = \max_{1 \le j \le n} |x_j - y_j|.$$

Следовательно, сходимость последовательности точек относительно расстояния d и \tilde{d} эквивалентна.

Открытые множества

Определение. Внутренние точки множества

Точка $a \in A \subset \mathbb{R}^n$, которая принадлежат множеству A вместе с некоторым открытым шаром с центром в точке a, называется **внутренней точкой** множества A.

Определение. Открытое множество

Множество точек $A\subset \mathbb{R}^n$ называется **открытым**, если для каждой точки $a\in A$ этого множества существует открытый шар с центром в точке a, который полностью лежит в A:

$$A$$
 — открыто \iff $\forall a \in A \; \exists r > 0 : \; O_r(a) \subset A.$

Пустое множество ∅ полагается открытым по определению.

Таким образом, открытое множество — это множество, которое полностью состоит из внутренних точек.

Пример

Открытый шар является открытым множеством. Действительно, $\forall x \in A = O_R(a)$ положим $r = R - \|x - a\| > 0$. Тогда

$$y \in \textit{O}_{r}(x) \ \Rightarrow \ \|y - a\| = \|y - x + x - a\| \leq \|y - x\| + \|x - a\| < r + \|x - a\| = R \ \Rightarrow \ y \in \textit{A}.$$

Свойства открытых множеств

Свойства открытых множеств

- lacktriangle Все пространство \mathbb{R}^n является открытым.
- 2 Любое объединение открытых множеств является открытым.
- € Конечное пересечение открытых множеств является открытым.

Замечание

Пересечение бесконечного числа открытых множеств может не быть открыто. Например,

$$A_k = (-1/k, +1/k) \subset \mathbb{R}, \qquad k = 1, 2, \dots$$

Множества A_k открыты, но

$$\bigcap_{k=1}^{+\infty} A_k = \{ x \in \mathbb{R} \mid x \in A_k \ \forall k \} = \{ 0 \},$$

а множество, состоящее только из одной точки, не является открытым.

Замкнутые множества

Определение. Предельные и изолированные точки множества

Точка $a\in\mathbb{R}^n$ называется **предельной точкой** множества A или точкой сгущения, если в любой окрестности точки a существуют точки из множества A, отличные от a:

$$\forall r > 0 \quad O_r(a) \cap A \neq \{a\}.$$

Точка $a\in A$ называется **изолированной точкой** множества A, если существует окрестность точки a, в которой нет других точек из множества A.

Предельные точки могут как принадлежать, так и не принадлежать рассматриваемому множеству.

Определение. Замкнутое множество

Множество называется **замкнутым**, если оно содержит все свои предельные точки. Пустое множество считают замкнутым по определению.

Предложение. Замкнутость в терминах последовательностей

Множество замкнуто тогда и только тогда, когда предел любой сходящейся последовательности точек этого множества также принадлежит этому множеству.

Свойства замкнутых множеств

Свойства замкнутых множеств

 Множество является замкнутым тогда и только тогда, когда его дополнение является открытым:

$$A$$
 — замкнуто \iff $(\mathbb{R}^n \setminus A)$ — открыто.

- f e Все пространство \mathbb{R}^n является замкнутым.
- Любое пересечение замкнутых множеств является замкнутым.

Определение. Компакт

Замкнутое ограниченное множество в \mathbb{R}^n называют компактом.

Понятие компакта является естественным обобщением понятия отрезка в многомерном пространстве.

Предложение. Компактность в терминах последовательностей

Множество является компактом тогда и только тогда, когда из любой последовательности точек множества можно выбрать подпоследовательность, сходящуюся к точке из заданного множества.

Граница множества

Определение. Граница множества

Точка $x \in \mathbb{R}^n$ называется **граничной точкой** для множества $M \subset \mathbb{R}^n$, если в любой окрестности точки x есть как точки из множества M, так и точки не принадлежащие M. Граничные точки могут принадлежать или не принадлежать множеству M.

Множество всех граничных точек для заданного множества M называют **границей** M и обозначают ∂M .

Несложно доказать, что замкнутое множество всегда содержит свою границу.

Объединение множества и его границы всегда является замкнутым. Это множество называют замыканием множества M и обозначают

$$\bar{M} = M \cup \partial M$$
.

Пример

Несложно найти границы следующих множеств:

$$\partial [a, b] = \{a, b\}, \qquad \partial (a, b) = \{a, b\};$$
$$\partial O_r(a) = \{x \in \mathbb{R}^n \mid ||x - a|| = r\},$$
$$\partial \mathbb{R}^n = \emptyset.$$

Область

Определение. Связное множество

Множество $M \subset \mathbb{R}^n$ является **связным** (линейно связным), если для любой пары точек x и y из M существует непрерывный путь (кривая), которая соединяет точки x и y, и при этом полностью лежит в M.

Определение. Область

Областью в $M \subset \mathbb{R}^n$ называют открытое связное множество.

Множество, изображенное на рисунке слева, является связным, а множество, изображенное справа, не является связным (состоит из двух частей).

Функция нескольких переменных

Определение. Функция нескольких переменных

Числовой функцией нескольких переменных называют отображение $f: E \to \mathbb{R}$, где $E \subset \mathbb{R}^n$ — некоторое множество, называемое **множеством определения** функции. Значение функции f в точке $x \in E$ записывают, как $f(x) = f(x_1, \dots, x_n)$, при этом x_j называют независимыми переменными, а z = f(x) — зависимой переменной, так как ее значение определяется выбором точки x.

При рассмотрении функций двух переменных z = f(x,y) можно рассматривать график функции как поверхность Γ в трехмерном пространстве \mathbb{R}^3 :

$$\Gamma = \{(x, y, z) \mid z = f(x, y), (x, y) \in E\}.$$

Линии уровни

Другой способ визуально представить функцию двух независимых переменных — это рассмотреть семейство кривых на плоскости, вдоль которых функция является постоянной

$$f(x, y) = const$$

Данные кривые называют **линиями уровня** для функции f.

Предел функции

Определение. Предел функции

Пусть функция f определена в некоторой проколотой окрестности точки $a\in\mathbb{R}^n$. Говорят, что число f_0 является **пределом** f(x) при $x\to a$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \quad |f(x) - f_0| < \varepsilon, \ \forall x \in \dot{O}_{\delta}(a).$$

В этом случае пишут $\lim_{x \to a} f(x) = f_0$.

В случае двух переменных иногда пишут

$$\lim_{x\to x_0,\ y\to y_0} f(x,y)=f_0,$$

а соответствующий предел называют двойным.

Как и в одномерном случае, можно определить сходимость в терминах последовательностей (по Гейне).

Предел f(x) равен f_0 при $x \to a$ тогда и только тогда, когда для любой сходящейся к a последовательности точек $\{x^{(k)}\}$ из проколотой окрестности точки a последовательность значений функции в этих точках $f(x^{(k)})$ сходится к f_0 :

$$\forall \{x^{(k)}\}: x^{(k)} \to a, x^{(k)} \neq a \Rightarrow f(x^{(k)}) \to f_0.$$

По аналогии с одномерным случаем определяются и бесконечные пределы функций.

Предел функции

Пусть функция f определена на множестве M и точка a является предельной точкой множества M. Тогда уместно говорить о стремлении $x \to a$ при условии $x \in M$, $x \ne a$.

Определение. Предел функции по множеству

Говорят, что число f_0 является пределом функции f(x) при $x \to a$ по множеству M $(x \to a, \ x \in M)$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \quad |f(x) - f_0| < \varepsilon, \ \forall x \in \dot{O}_{\delta}(a) \cap M.$$

B этом случае пишут $\lim_{x\to a, x\in M} f(x) = f_0.$

Частным случаем предела по множеству служат односторонние пределы функции одной переменной.

Определение непрерывности в точке

Говорят, что функция f(x), определенная в некоторой окрестности O(A) точки $A \in \mathbb{R}^n$, непрерывна в точке x = A, если

$$\exists \lim_{x \to A} f(x) = f(A).$$

Предположим, что функция определена на множестве M и точка $A \in M$ является предельной точкой этого множества. Если точка A не является внутренней для множества M, а принадлежит его границе, то рассматривают следующие определение непрерывности:

Определение непрерывности по множеству

Говорят, что функция f(x), определенная на множестве $M\subset \mathbb{R}^n$, непрерывна помножеству M в точке x=A, если

$$\exists \lim_{x \to A, x \in M} f(x) = f(A).$$

Функция считается по определению непрерывной в изолированных точках множества $\it M$

Определение непрерывности в точке

Говорят, что функция f(x), определенная в некоторой окрестности O(A) точки $A \in \mathbb{R}^n$, непрерывна в точке x = A, если

$$\exists \lim_{x \to A} f(x) = f(A).$$

Предположим, что функция определена на множестве M и точка $A \in M$ является предельной точкой этого множества. Если точка A не является внутренней для множества M, а принадлежит его границе, то рассматривают следующие определение непрерывности:

Определение непрерывности по множеству

Говорят, что функция f(x), определенная на множестве $M\subset \mathbb{R}^n$, непрерывна помножеству M в точке x=A, если

$$\exists \lim_{x \to A, x \in M} f(x) = f(A).$$

Функция считается по определению непрерывной в изолированных точках множества M

Определение непрерывности в точке

Говорят, что функция f(x), определенная в некоторой окрестности O(A) точки $A \in \mathbb{R}^n$, непрерывна в точке x = A, если

$$\exists \lim_{x \to A} f(x) = f(A).$$

Предположим, что функция определена на множестве M и точка $A \in M$ является предельной точкой этого множества. Если точка A не является внутренней для множества M, а принадлежит его границе, то рассматривают следующие определение непрерывности:

Определение непрерывности по множеству

Говорят, что функция f(x), определенная на множестве $M\subset \mathbb{R}^n$, непрерывна по множеству M в точке x=A, если

$$\exists \lim_{x \to A, x \in M} f(x) = f(A).$$

Функция считается по определению непрерывной в изолированных точках множества M.

Определение непрерывности по множеству

Говорят, что функция f(x), определенная на множестве $M\subset \mathbb{R}^n$, непрерывна на множестве M, если она непрерывна в каждой точке множества M.

Свойства непрерывных функций многих переменных во многом совпадают со свойствами непрерывных функций одной переменной.

Свойства непрерывных функций

- Сумма и произведение непрерывных функций непрерывны. Частное непрерывных функций заведомо непрерывно, если делитель (знаменатель) не обращается в ноль
- В Композиция непрерывных функций непрерывна.
- ③ Элементарные функции непрерывны на своем множестве определения.

Теорема Вейерштрасса

Пусть функция f(x) непрерывна на компакте $K \subset \mathbb{R}^n$. Тогда она ограничена на множестве K и достигает на нем своей верхней и нижней грани:

$$\exists x_{min} \in K : f(x_{min}) = \inf_{x \in K} f(x).$$

$$\exists x_{max} \in K : \quad f(x_{max}) = \sup_{x \in K} f(x).$$

Определение непрерывности по множеству

Говорят, что функция f(x), определенная на множестве $M\subset \mathbb{R}^n$, непрерывна на множестве M, если она непрерывна в каждой точке множества M.

Свойства непрерывных функций многих переменных во многом совпадают со свойствами непрерывных функций одной переменной.

Свойства непрерывных функций

- Сумма и произведение непрерывных функций непрерывны. Частное непрерывных функций заведомо непрерывно, если делитель (знаменатель) не обращается в ноль.
- Композиция непрерывных функций непрерывна.
- Элементарные функции непрерывны на своем множестве определения.

Теорема Вейерштрасса

Пусть функция f(x) непрерывна на компакте $K\subset \mathbb{R}^n$. Тогда она ограничена на множестве K и достигает на нем своей верхней и нижней грани:

$$\exists x_{min} \in K : \quad f(x_{min}) = \inf_{x \in K} f(x),$$

Определение непрерывности по множеству

Говорят, что функция f(x), определенная на множестве $M\subset \mathbb{R}^n$, непрерывна на множестве M, если она непрерывна в каждой точке множества M.

Свойства непрерывных функций многих переменных во многом совпадают со свойствами непрерывных функций одной переменной.

Свойства непрерывных функций

- Сумма и произведение непрерывных функций непрерывны. Частное непрерывных функций заведомо непрерывно, если делитель (знаменатель) не обращается в ноль.
- Композиция непрерывных функций непрерывна.
- 3 Элементарные функции непрерывны на своем множестве определения.

Теорема Вейерштрасса

Пусть функция f(x) непрерывна на компакте $K \subset \mathbb{R}^n$. Тогда она ограничена на множестве K и достигает на нем своей верхней и нижней грани:

$$\exists x_{min} \in K : f(x_{min}) = \inf_{x \in K} f(x),$$

$$\exists x_{max} \in K : f(x_{max}) = \sup_{x \in K} f(x).$$

Частные производные. Определение

Рассмотрим функцию $f(x)=f(x_1,\dots,x_n)$, заданную в окрестности точки $x^0=(x_1^0,\dots,x_n^0)\in\mathbb{R}^n.$ Тогда можно рассмотреть функцию одной переменной x_k , фиксировав остальные переменные:

$$\phi(x_k) = f(x_1^0, \dots, x_{k-1}^0, x_k, x_{k+1}^0, \dots, x_n^0).$$

Для определения скорости изменения значения функции f(x) при изменении только одной переменной x_k можно рассмотреть производную функции $\phi(x_k)$. Эту производную называют **частной производной** функции f по переменной x_k в точке x^0 и обозначают:

$$\frac{\partial f(x)}{\partial x_k}\Big|_{x=x^0} = \frac{\partial}{\partial x_k}\Big|_{x=x^0} f(x) = \frac{\partial f(x_0)}{\partial x_k} = \frac{\partial f}{\partial x_k}(x^0) = f'_{x_k}(x^0) = f_{x_k}(x^0) = \partial_k f(x_0).$$

Определение

Говорят, что функция f, определенная в окрестности точки $x^0 \in \mathbb{R}^n$, имеет частную производную по переменной x_k в точке x^0 , если существует предел

$$\lim_{h \to 0} \frac{f(x_1^0, \dots, x_{k-1}^0, x_k^0 + h, x_{k+1}^0, \dots, x_n^0) - f(x^0)}{h} = \frac{\partial f(x)}{\partial x_k} \Big|_{x = x^0}.$$

Частные производные. Пример

Пример

Вычислим частные производные функции трех переменных

$$u = x^2 + 2xy + \cos(xz).$$

Тогда

$$\frac{\partial u}{\partial x} = 2x + 2y - \sin(xz)z;$$

$$\frac{\partial u}{\partial y} = 2x;$$

$$\frac{\partial u}{\partial z} = -x \sin(xz)$$
.

В данном случае вычисления производились в произвольной точке $(x,y,z)\in\mathbb{R}^3$. Тогда при дифференцировании по одной из переменных все остальные переменные можно считать постоянными.

Определение. Дифференцируемая функция

Говорят, что функция f, определенная в окрестности точки $x^0\in\mathbb{R}^n$, дифференцируема в точке x^0 , если для любого достаточно маленького приращения Δx переменной x:

$$\Delta x = (\Delta x_1, \ldots, \Delta x_n),$$

приращение значения функции представимо в виде:

$$\Delta f(x^0) = f(x^0 + \Delta x) - f(x^0) = \sum_{k=1}^n A_k \, \Delta x_k + o(\|\Delta x\|),$$

где A_k — постоянные.

Линейную часть приращения функции называют дифференциалом и обозначают:

$$df(x^0)(\Delta x) = \sum_{k=1}^n A_k \, \Delta x_k.$$

Дифференциал является линейной формой порядка n, как функция от Δx , а также неявно зависит от выбора точки x^0 .

Теорема. Необходимое условие дифференцируемости

Пусть функция f дифференцируема в точке $x^0 \in \mathbb{R}^n$ и

$$df(x^0)(\Delta x) = \sum_{k=1}^n A_k \, \Delta x_k.$$

Тогда у функции f существуют частные производные по всем переменным x_k в точке x^0 и

$$A_k = \frac{\partial f}{\partial x_k} (x^0) \,.$$

Таким образом, для дифференцируемости функции f необходимо наличие у нее всех частных производных в заданной точке.

В одномерном случае существования производной было вполне достаточно для дифференцируемости функции, но в многомерном случае это уже не так.

Упражнения

- Проведите доказательство теоремы о необходимом условии дифференцируемости, аналогично доказательству в одномерном случае.
- Докажите, что дифференцируемая функция непрерывна.
- Покажите, что функция

$$f(x,y) = \frac{xy}{x^2 + y^2}, \quad f(0,0) = 0,$$

не является дифференцируемой, но имеет частные производные в точке (0,0). Покажите, что эта функция не является даже непрерывной.

Вычислим дифференциал функции

$$u(x_1,\ldots,x_n)=x_k.$$

Тогда

$$u(x + \Delta x) - u(x) = (x_k + \Delta x_k) - x_k = \Delta x_k.$$

Следовательно, дифференциал имеет вид

$$du(x)(\Delta x) = dx_k(\Delta x) = \Delta x_k.$$

Таким образом, общую формулу для дифференциала функции f можно переписать в виде:

$$df(x^0) = \sum_{k=1}^n \frac{\partial f}{\partial x_k} (x^0) \ dx_k.$$

Упражнение

Проверьте, что

$$d\left(\sqrt{x^2+y^2}\right) = \frac{xdx + ydy}{\sqrt{x^2+y^2}}.$$

Дифференцируемость. Достаточное условие

Теорема. Достаточное условие дифференцируемости

Пусть все частные производные $\frac{\partial f}{\partial x_k}$ функции f(x) определены в окрестности точки x_0 и непрерывны в точке x^0 . Тогда функция f является дифференцируемой в точке x_0 .

Доказательство

Проведем доказательство для n=2. Пусть f=f(x,y). Тогда, применяя формулу конечных приращений, получаем:

$$\begin{split} \Delta f &= f(x,y) - f(x_0,y_0) = f(x,y) - f(x,y_0) + f(x,y_0) - f(x_0,y_0) = \\ &= \frac{\partial f}{\partial y}(x,\eta)(y-y_0) + \frac{\partial f}{\partial x}(\xi,y_0)(x-x_0). \end{split}$$

Из непрерывности частных производных следует, что

$$\frac{\partial f}{\partial y}(x,\eta) = \frac{\partial f}{\partial y}(x_0,y_0) + o(1), \qquad \frac{\partial f}{\partial x}(\xi,y_0) = \frac{\partial f}{\partial x}(x_0,y_0) + o(1).$$

Таким образом,

$$\Delta f = \frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y + o\left(|x - x_0|\right) + o\left(|y - y_0|\right).$$

Частные производные. Градиент

Определение. Градиент

Если функция f(x), $x \in \mathbb{R}^n$, имеет частные производные по всем переменным (n штук) в фиксированной точке x^0 , то числовой вектор

$$\operatorname{grad} f \Big|_{x=x^0} = \left(\frac{\partial f}{\partial x_1} \left(x^0 \right), \dots, \frac{\partial f}{\partial x_n} \left(x^0 \right) \right)$$

называют **градиентом** функции f в точке x^0 . То есть градиент — это вектор, составленный из частных производных функции f в точке x^0 .

Определение. Производные высших порядков

Если частная производная функции f(x) по переменной x_k определена в некоторой окрестности точки $x^0 \in \mathbb{R}^n$, то можно определить **частные производные второго порядка**:

$$\frac{\partial^2 f}{\partial x_k \partial x_m} (x^0) = \frac{\partial}{\partial x_m} \Big|_{x=x^0} \frac{\partial f(x)}{\partial x_k}, \quad k = 1, \dots, n,$$

как частные производные по переменной x_m от функции $\frac{\partial f(x)}{\partial x_k}$. Аналогично определяются производные третьего порядка и далее.

Частные производные. Пример

Пример

Пусть

$$f=x^2+2xy.$$

Тогда

$$\frac{\partial f}{\partial x} = 2x + 2y; \qquad \frac{\partial f}{\partial y} = 2x;$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (2x + 2y) = 2; \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} (2x + 2y) = 2;$$

$$\frac{\partial^2 f}{\partial y \partial y} = \frac{\partial}{\partial y} (2x) = 2; \qquad \frac{\partial^2 f}{\partial y \partial y} = \frac{\partial}{\partial y} (2x) = 0.$$

Таким образом, для функции двух переменных существует четыре частных производных второго порядка. Они образуют матрицу 2×2 . В общем случае размерности n мы получим квадратную матрицу размера $n\times n$.