Class 11 Lab Session

Patrick Tran

Section 1. Proportion og G/G in a population

 $Downloaded\ a\ CSV\ file\ from\ ensemble < https://useast.ensembl.org/Homo_sapiens/Variation/Sample?db=core\ 40207112; v=rs8067378; vdb=variation; vf=105535077; sample=Mexican\%20Ancestry\%20in\%20Los\%20Angeles\#>$

Here we read this CSV file.

```
mxl <- read.csv("373531-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378.csv")</pre>
  head(mxl)
  Sample..Male.Female.Unknown. Genotype..forward.strand. Population.s. Father
1
                   NA19648 (F)
                                                       A|A ALL, AMR, MXL
2
                                                       G|G ALL, AMR, MXL
                   NA19649 (M)
3
                   NA19651 (F)
                                                       A|A ALL, AMR, MXL
4
                   NA19652 (M)
                                                       G|G ALL, AMR, MXL
5
                   NA19654 (F)
                                                       G|G ALL, AMR, MXL
                                                       A|G ALL, AMR, MXL
6
                   NA19655 (M)
 Mother
1
2
3
5
  table(mxl$Genotype..forward.strand.)
```

```
A|A A|G G|A G|G
22 21 12 9
```

```
table(mxl$Genotype..forward.strand.) / nrow(mxl) * 100
```

```
A|A A|G G|A G|G
34.3750 32.8125 18.7500 14.0625
```

Now let's look at a different population. I picked the GBR.

```
gbr <- read.csv("373522-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378.csv")</pre>
```

Find proportion of G|G

```
round(table(gbr$Genotype..forward.strand.) / nrow(gbr) * 100, 2)
```

```
A|A A|G G|A G|G
25.27 18.68 26.37 29.67
```

This variant that is associated with childhood asthma is more frequent in the GBR population than the MKL population.

Let's now dig into this further.

Section 4: Population Scale Analysis

One sample is obviously not enough to know what is happening in a population. You are interested in assessing genetic differences on a population scale.

How many samples do we have?

```
expr <- read.table("rs8067378_ENSG00000172057.6.txt")
head(expr)
sample geno exp</pre>
```

```
1 HG00367 A/G 28.96038
2 NA20768 A/G 20.24449
3 HG00361 A/A 31.32628
4 HG00135 A/A 34.11169
5 NA18870 G/G 18.25141
6 NA11993 A/A 32.89721
```

```
nrow(expr)
[1] 462
  table(expr$geno)
A/A A/G G/G
108 233 121
  library(ggplot2)
  library(plotly)
Attaching package: 'plotly'
The following object is masked from 'package:ggplot2':
    last_plot
The following object is masked from 'package:stats':
    filter
The following object is masked from 'package:graphics':
    layout
Let's make a boxplot
  e <- ggplot(expr) + aes(geno, exp, fill=geno) +
    geom_boxplot(notch=TRUE)
```


Q13: Read this file into R and determine the sample size for each genotype and their corresponding median expression levels for each of these genotypes.

ggplotly(e)

Sample size is 462. The median expression levels for each of the genotypes are shown in the boxplot. A/A median is 31.25. A/G median is 25.06. G/G median is 20.07.

Q14: Generate a boxplot with a box per genotype, what could you infer from the relative expression value between A/A and G/G displayed in this plot? Does the SNP effect the expression of ORMDL3?

The relative expression median value for A/A is greater than the median value for G/G. The SNP A/G genotype is about the average expression value of the A/A and G/G genotype.