W207 Final Project

Predicting Sale Price

Allison Godfrey, Jacky Ma, Surya Gutta, and Ian Anderson

Overview of our process

EDA Feature

What does our data look like? Missing values?

Engineering

Which features are most relevant? How to deal with categorical and

numerical features?

Model Setup

How does each model perform? Should we use a blended model?

Final Submission

Base on the best performing model's RMSE

Data Cleaning

How to deal with missing values? Outliers?

Create Train/

Dev Data

How to split? Use CV?

Model Analysis

Which model is best? How do we measure this?

EDA and Data Cleaning: General Approach

- Look at shape of data
 - Train (80 features, 1,460 examples)
 - Test (79 features, 1,459 examples)
- Missing Values
 - See histogram
- Look at data structure
 - Mix of categorical and quantitative features
- Use Median for Outliers
 - o GrLivArea > 4000 and SalePrice < 200000
 - o Total sf > 60000 and SalePrice < 200000
 - LotFrontage > 200
 - o GarageArea > 1200 and SalePrice < 300000

An iterative process			
Dealing with Missing Values	Encoding Non-Numerical Variables	Feature Selection	
Exclude all columns with > 10% missing values	LabelEncoder()	No manual feature selection	
Fill missing categorical values with NA	Hot_encode()	Take 20 most correlated features	
Fill missing categorical values with the most common category	Convert_ordinals()	Add and delete features and evaluate RMSE	
Fill missing numerical values with 0		Use L1 and L2 for model feature selection	
Fill all missing		Remove multicollinear	

numerical values with

the median value

Fill select features'

missing values with

median or mode

Adaboost (base estimator = LR	Random Forest
Bayesian Ridge	Xgboost (base estimator = BR)
Lasso Lars	Linear

Thielsen

Passive

Aggressive

variables

Include features with

Spearman Rank >

abs(0.05)

ARD

Blended

Model

Selecting Models

Other

Find and label

duplicates

Use log scale for Sale

Price

Use log scale for

skewed features

Use 5-fold cross validation instead of

80-20 split

Tuning

Hyperparameters for

each model through CV

Manually sift through

data points whose

predictions are most

off & adjust features

Features Chosen

1stFlrSF

2ndFlrSF

BldgType_X

BsmtExposure

BsmtFinSF1

BsmtQual_X

GarageType_Attc

SaleType_X

YrSold_X

TotalBsmtSF

ExterQual

FireplaceQu_Gd

FireplaceQu_NA

Fireplaces

Foundation_X

FullBath

Functional

GarageArea

GarageCars

total_porch_sf

GarageType_Detc

GrLivArea

has_fireplace

HeatingQC

house_age

KitchenQual

LotArea

LotFrontage

LotShape

MasVnrType_Non

MasVnrType_Ston

MSSubClass_X

MSZoning_RM

Neighborhood_X

OverallCond

OverallQual

SaleCondition_Pa rtial

SaleType_New

total_baths

MasVnrArea

total_sf

TotRmsAbvGrd

WoodDeckSF

YearBuilt

YearRemodAdd

GarageFinish

A closer look at specific features

GarageArea

Model Building Process

Converting Categorical/Ordinal Variables

```
def convert ordinals(data):
    default odinal = {
        'Ex': 5, # Excellent
        'Gd': 4, # Good
        'TA': 3, # Average/Typical
       'Fa': 2, # Fair
       'Po': 1, # Poor
       'NA': 3
    # LotShape: General shape of property
    lot shape = {
       'Reg': 4, # Regular
       'IR1': 3, # Slightly irregular
       'IR2': 2, # Moderately Irregular
       'IR3': 1 # Irregular
```

```
def hot_encode(data):
    categorical_cols = data.select_dtypes(include=
['object'])
    return pd.get_dummies(data, columns = categoric
al_cols.columns)

test_new = hot_encode(test_new)
train_new = hot_encode(train_new)
train_new.head()
```

Using CV and tuning parameters

```
#Validation function
def cross_validation(model):
    kf = KFold(5, shuffle=True, random_state=42).get_n_splits(train_data)
    rmse= np.sqrt(abs(cross_val_score(model, train_data, train_labels, scoring="neg_mean_squared_e
rror", cv = kf)))
    return(rmse)
```

```
def parameter_tuning(model, parameters):
    clf = GridSearchCV(
        model, parameters, cv=5,scoring='neg_mean_squared_error', n_jobs = 5)

clf.fit(train_data,train_labels)

print(clf.best_params_)
    print(np.sqrt(-clf.best_score_))
```

Choosing the final weights

```
sorted models = sorted(models rmse.items(), key =
             lambda kv: (kv[1], kv[0]))
for item in sorted models:
    if item[0] == 'Blended':
        continue
    print ('{:>18} {:>12}'.format(item[0], item[1]))
regression models = [
    {'name': 'AdaBoostRegressor', 'weight': 0.14, 'model': ada model fit},
    {'name': 'XGBoost', 'weight': 0.14, 'model': xgb model fit},
    {'name': 'BayesianRidge', 'weight': 0.14, 'model': br model fit},
    {'name': 'Linear', 'weight': 0.14, 'model': lr model fit},
    {'name': 'TheilSen', 'weight': 0.16, 'model': trs model fit},
    { 'name': 'Random Forest', 'weight': 0.14, 'model': rfr model fit},
    { 'name': 'ARD', 'weight': 0.0, 'model': ardr model fit},
    {'name': 'PassiveAggressive', 'weight': 0.0, 'model': par model fit},
    {'name': 'LassoLars', 'weight': 0.14, 'model': 11 model fit},
```

Comparing the Models

Lowest RMSE (Blended): **0.0845**

While our RMSE decreases with model adjustments, our score in Kaggle stays relatively constant

Are we overfitting our train data?

Final Kaggle Score

RMSE: 0.11743 Place: 525