Homework-3

1. Let X_1, \ldots, X_n be a random sample of size n from a p-dimensional normal distribution with mean μ and covariance matrix Σ . Show that

$$T^2 = n(\bar{\boldsymbol{X}} - \boldsymbol{\mu})^T \mathbf{S}^{-1}(\bar{\boldsymbol{X}} - \boldsymbol{\mu})) \sim \frac{(n-1)p}{n-p} F_{p,n-p}$$

.

- 2. Show that for $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, non-random matrices $\mathbf{A}_{q \times p}$ and $\mathbf{B}_{r \times p}$, $\mathbf{Y} = \mathbf{A}\mathbf{X}$ and $\mathbf{Z} = \mathbf{B}\mathbf{X}$ are independent if and only if $\mathbf{A}\boldsymbol{\Sigma}\mathbf{B}^T = 0$.
- 3. Let X_1, \ldots, X_{38} be a random sample of size n=32 from a bivariate normal distribution, i.e., $X_I \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. We obtain the sample mean $\bar{\mathbf{X}} = (0.564, 0.603)^T$ and the sample covariance $\mathbf{S} = \begin{pmatrix} 0.0144 & 0.0117 \\ 0.0117 & 0.0146 \end{pmatrix}$. It is desire to construct a confidence region of size α for $\boldsymbol{\mu} = (\mu_1, \mu_2)^T$.
 - a) Find the MLE of Σ .
 - b) Evaluate the expression for 95% elliptical confidence region for μ . Denote this region by R_1 .
 - c) Is $\mu_0 = (0.60, 0.58)^T$ fall in R_1 ?
 - d) Evaluate the simultaneous confidence intervals for μ_1 and μ_2 . Denote this region by R_2 .
 - e) Conduct a hypothesis test for $Ho: \boldsymbol{\mu} = (0.60, 0.58)^T$ versus $H_a: \boldsymbol{\mu} \neq (0.60, 0.58)^T$. Report the details of the test statistics, the distribution of it under the null hypothesis, and the p-value.
- 4. Bonferroni method for multiple comparison. An alternative to the simultaneous confidence interval is the Bonferroni method for multiple comparison. In problem 3, since there are only two parameters μ_1 and μ_2) involved. Notice that Bonferroni method has some advantageous compared to the simultaneous confidence intervals. In general, for m linear combinations $\mathbf{a}_1^T \boldsymbol{\mu}, \mathbf{a}_2^T \boldsymbol{\mu}, \dots, \mathbf{a}_m^T \boldsymbol{\mu}$, assume C_i is the confidence interval for the ith linear combination, $\mathbf{a}_i^T \boldsymbol{\mu}$ with confidence level α_i . Then, we have

$$P(\mathbf{a}_{i}^{T}\boldsymbol{\mu} \in C_{i} \text{ for all } i = 1 - P(\text{at least for one } i, \mathbf{a}_{1}^{T}\boldsymbol{\mu} \notin C_{i})$$

$$= \geq 1 - \sum_{i=1}^{m} P(\mathbf{a}_{i}^{T}\boldsymbol{\mu} \notin C_{i})$$

$$= 1 - (\alpha_{1} + \alpha_{2} + \dots + \alpha_{m})$$
(1)

a) Show that the interval $C_i(\alpha_i) = \mathbf{a}_i^T \bar{\mathbf{x}} \pm t_{n-1}(\alpha_i/2) \sqrt{\mathbf{a}_i^T \mathbf{S} \mathbf{a}_i/n}$ is a confidence interval of $\mathbf{a}_i^T \boldsymbol{\mu}$ with confidence level α_i .

- b) Verify the inequality (1), for m = 3.
- c) verify

$$P(\mathbf{a}_i^T \boldsymbol{\mu} \in C_i(\alpha/m) \text{ for all } i) \geq 1 - \alpha.$$

This gives a Bonferroni type simultaneous confidence intervals $C_i(\alpha/m)$ for level α .

- d) Using the data in problem 3, evaluate the simultaneous confidence intervals for μ_1 and μ_2 using the Bonferroni method. Denote this region by R_3
- e) Sketch a graph for the regions R_1, R_2, R_3 in x y coordinates. Which one do you prefer and why?
- 5. Consider the monthly returns of three stocks (Coke, IBM, and Caterpillar with ticker symbols KO, IBM, and CAT, respectively) and 3 market indexes (value-weighted (VW), equal-weighted (EW), and S&P composite index) from January 1961 to December 2015. The returns include dividends. The data are in the file "three-stocks.txt".
 - a) Are the monthly returns of three stocks jointly normally distributed? Why?
 - b) Consider jointly the returns of the three stocks and three indexes. Test the null hypothesis $Ho: \mu = 0$ versus $H_a: \mu \neq 0$, where μ denotes the mean vector of the monthly simple returns. Perform the test and make your conclusion.
 - c) Provide justifications for the reference distribution used in the testing of part
 - d) Transform the returns to log returns. Construct simultaneous T^2 , Bonferroni, marginal, and asymptotic chi-square confidence intervals for the means of the log returns.
 - e) Now consider again the monthly *log* returns of three stocks and three indexes of part (d). Divide the sample into two parts non-overlapping, part one, from 1 to 330, and part 2 from 331 to 660 in time order.
 - I. Let Σ_i be the covariance matrix of the sub-period i=1,2. Test $H_0: \Sigma_1 = \Sigma_2$ versus $H_a: \Sigma_1 \neq \Sigma_2$. Make your conclusion.
 - II. Let μ_i be the vector of mean returns in the sub-period i=1,2. Based on the result of Part(II), test $H_0: \mu_1 = \mu_2$ versus $H_a: \mu_1 \neq \mu_2$. Make your conclusion.
- 6. Reading assignments: Chapters 5 to 7 of the textbook.