

22883

PATENT TRADEMARK OFFICE

164.1017.01

1 This application is submitted in the name of the following inventor(s):
2

3 *Inventor* *Citizenship* *Residence City and State*
4 Majidi-Ahy, Reza United States Los Altos, California
5 Hakim, Joseph
6 Varma, Subir United States San Jose, California
7

8 The assignee is *Aperto Networks, Inc.*, a corporation having an office at
9 1637 South Main, San Jose California.
10
11
12
13
14
15

TITLE OF THE INVENTION

16 Integrated, Self-Optimizing, Multi-Parameter/Multi-Variable Point-to-Multipoint Com-
17
18 munication System [II]
19
20

Cross Reference to Related Applications

17 This application is a continuation-in-part of the following co-pending ap-
18
19 plication:
20

- 21 • Application Serial No.09/475,716, entitled "Integrated Self-Optimizing Multi-
22 Parameter and Multi-Variable Point-to-Multipoint Communication", Express Mail

1 Mailing number EL 524 780 021 US filed December 30, 1999, Attorney docket num-
2 ber 164.1003.01.

3

4 BACKGROUND OF THE INVENTION

5

6 1. *Field of the Invention*

7

8 This invention relates to wireless communication systems, such as those
including adaptive point to multipoint wireless communication.

9

10 2. *Related Art*

11

12

13 Wireless communication between a sender and a receiver includes sending
information using a wireless communication link, in which the sender modulates infor-
14 mation onto a wireless communication channel (such as a frequency band reserved for
15 wireless communication between the sender and the receiver), and the receiver demodu-
16 lates that information from the wireless communication channel, so as to recover the
17 original information. The wireless communication link includes multiple physical char-
18 acteristics, including characteristics of the sender's equipment and the receiver's equip-
19 ment, characteristics of objects on or near communication pathways between the sender
20 and the receiver, and characteristics of other communications overlapping communica-
21 tion between the sender and the receiver.

1
2 One problem with known systems is that multiple physical characteristics
3 of the communication link between the sender and receiver can change substantially over
4 relatively short time durations (for example, the distance between the sender and receiver
5 or the equipment used by the sender or receiver). This is particularly so for characteris-
6 tics related to interference, such as co-channel interference (CCI), and for multipath and
7 multipoint effects, such as refraction or reflection resulting in intrasymbol interference
8 and intersymbol interference. Moreover, these multiple physical characteristics can
9 change independently of one another, and can have substantial and relatively unpredict-
10 able effects on one another. Selection of a set of parameters with which to optimize the
11 communication link for one such physical characteristic can therefore be rendered less
12 than optimal by changes in other such physical characteristics. As a result, selection of a
13 single set of such physical characteristics can result in relatively ineffective or inefficient
14 communication between the sender and the receiver.

15
16 Accordingly, it would be advantageous to provide a technique for adaptive
17 point to multipoint wireless communication, in which characteristics of the communica-
18 tion techniques between sender and receiver can be changed adaptively in response to
19 changes in the characteristics of the physical communication media, that is not subject to
20 drawbacks of the known art.

21

SUMMARY OF THE INVENTION

The invention provides a method and system for adaptive point to multi-point wireless communication. The method and system integrate adaptive and dynamic responsiveness for communication parameters related to multiple characteristics of wireless communication links, both for a single sender and a single receiver, and for sets of multiple senders and multiple receivers. Moreover, the method and system are self-optimizing in the sense that they are adaptively and dynamically responsive to results of attempts to optimize parameters related to multiple characteristics of wireless communication links. In a preferred embodiment, multiple characteristics of wireless communication links are optimized simultaneously, in that the optimal set of values for a plurality of N characteristics, rather than N individual optimal values for each characteristic, is adaptively and dynamically selected.

In a first aspect of the invention, a wireless physical (PHY) layer and a wireless media-access-control (MAC) layer collectively include a set of communication parameters, each of which is adaptively modified by a base station controller (BSC) for communication with a plurality of customer premises equipment (CPE). The BSC adjusts communication with each CPE individually and adaptively in response to changes in communication characteristics, including both changes in communication characteristics between the BSC and each selected CPE, and changes in communication characteristics induced by concurrent communication between the BSC and multiple CPE. Particular

1 communication characteristics adapted for can include physical characteristics (such as
2 bit error rate), transport characteristics (such as amount of communication traffic), and
3 application characteristics (such as the nature of an application for the communication
4 traffic).

5

6 In a second aspect of the invention, a wireless transport layer includes
7 adaptive and dynamic characteristics responsive to communication characteristics be-
8 tween the BSC and each selected CPE, and between the BSC and multiple CPE. In a pre-
9 ferred embodiment, these communication characteristics are responsive to each individ-
10 ual communication link so as to optimize communication bandwidth between the BSC
11 and each selected CPE. These include (a) BSC control of a time division multiple access
12 (TDMA) protocol, preferably time division duplex (TDD); (b) BSC control of frequency
13 reuse for CPE, and (c) BSC control of spatial separation of line of sight (LOS), ob-
14 structed line of sight (OLOS), or non-line of sight (NLOS) communication paths with
15 CPE; each responsive to measured bit error rate (BER) and requested communication
16 bandwidth demand. The BSC provides point-to-point and point-to-multipoint wireless
17 communication services using parameters continuously adaptive to current conditions,
18 each individualized to one or more selected CPE.

19

20 The TDD aspect of the wireless transport layer includes burst mode mes-
21 sages from the BSC downstream to individual CPE, and similarly includes burst mode
22 messages from individual CPE upstream to the BSC. This allows the BSC and each indi-

1 individual CPE to communicate so as to optimize throughput in a communication direction
2 (downstream or upstream) for each communication link between the BSC and an individ-
3 ual CPE.

4

5 The invention provides an enabling technology for a wide variety of appli-
6 cations for communication, so as to obtain substantial advantages and capabilities that are
7 novel and non-obvious in view of the known art. Examples described below primarily
8 relate to a wireless communication system, but the invention is broadly applicable to
many different types of communication in which characteristics of the communication
link are subject to change.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a block diagram of a portion of a system using adaptive point to multipoint wireless communication.

Figure 2 shows an example of adaptive frequency reuse provided by the BSC in response to robust modulation at the boundary of a cell or a sector.

18

19 Figure 3 shows a chart of reduced bit error rate (BER) and signal to noise
20 (STN) ratio provided by the BSC using antenna selection, antenna polarization selection,
21 and antenna diversity selection.

22

1 Figure 4 shows a chart of reduced bit error rate (BER) and signal to inter-
2 ference (STI) ratio provided by the BSC using antenna selection, antenna polarization
3 selection, and antenna diversity selection.

4

5 Figure 5 shows a chart of reduced signal to interference (STI) ratio pro-
6 vided by the BSC using power level parameter selection.

7

8 Figure 6 shows a chart of reduced bit error rate (BER) ratio provided by the
BSC using modulation and symbol rate selection.

9
10
11
12

13 Figure 7 shows a chart of reduced outage probability provided by the BSC
120 using modulation and symbol rate selection.

14
15

16 Figure 8 shows a chart of reduced frame loss ratio provided by the BSC 120
using modulation and error code selection.

17

18 Figure 9 shows a chart of increased throughput (“goodput”) provided by the
BSC 120 using message size selection.

19

20 Figure 10 shows a chart of increased throughput provided by the BSC 120
21 using acknowledgement and retransmission parameter selection.

22

Figure 11 shows a time division duplex frame used in a system as in figure

Figure 12 shows a process flow diagram of a method for operating a system.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following description, a preferred embodiment of the invention is described with regard to preferred process steps and data structures. Embodiments of the invention can be implemented using general-purpose processors or special purpose processors operating under program control, or other circuits, adapted to particular process steps and data structures described herein. Implementation of the process steps and data structures described herein would not require undue experimentation or further invention.

Related Applications

Inventions described herein can be used in conjunction with inventions described in the following documents.

- U.S. Patent Application Serial No. 09/475,716, Express Mail Mailing No. , filed December 30, 1999 in the name of Reza Majidi-Ahy

1
2
3 and Subir Varma, attorney docket number 164.1003.01, titled "Integrated Self-
Optimizing Multi Parameter and Multi Variable Point to Multi Point Communica-
tion"

4

5 • U.S. Patent Application Serial No.09/475,642, Express Mail Mailing No.
6 EL52478001US, filed December 30, 1999 in the name of Subir Varma, Khuong
7 Ngo, Jean Fuentes, Paul Truong, and Reza Majidi-Ahy, attorney docket number
8 164.1002.01, titled "Adaptive Link Layer for Point to Multipoint Communciation
9 System"

10
11
12
13
14
15
16
17
18 • U.S. Patent Application Serial No. 09/540,674, Express Mail Mailing No.
19 EL524781512US: filed March 31, 2000, in the name of Reza Majidi-Ahy, attorney
20 docket number 164.1001.01, titled "Robust Topology Wireless Communication
21 Using Broadband Access Points"

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100679
100680
100681
10

1 Each of these documents is hereby incorporated by reference as if fully set
2 forth herein. These documents are collectively referred to as the "Incorporated Disclo-
3 sures."

4

5 *Lexicography*

6

7 The following terms refer or relate to aspects of the invention as described
8 below. The descriptions of general meanings of these terms are not intended to be limit-
9 ing, only illustrative.

10
11
12
13
14
15

- **base station controller (BSC)** — in general, a device for performing coordination and control for a wireless communication cell. There is no particular requirement that the base station controller must be a single device; in alternative embodiments, the base station controller can include a portion of a single device, a combination of multiple devices, or some hybrid thereof.
- **communication link** — in general, an element for sending information from a sender to a recipient. Although in a preferred embodiment the communication links referred to are generally wireless line of sight point to point communication links, there is no particular requirement that they are so restricted.

21

- 1 • **customer premises equipment (CPE)** — in general, a device for performing
2 communication processes and tasks at a customer location, and operating in con-
3 junction with the base station controller within a wireless communication cell.
4 There is no particular requirement that the customer premises equipment must be a
5 single device; in alternative embodiments, the customer premises equipment can
6 include a portion of a single device, a combination of multiple devices, or some
7 hybrid thereof.
- 8
- 9 • **IP parameters** — in general, a set of characteristics or parameters relating to an
10 IP layer for a communication link.
- 11
- 12 • **media-access-control (MAC) parameters** — in general, with reference to a
13 wireless communication link, a set of characteristics or parameters relating to me-
14 dia access control of a communication link. For example, MAC parameters can
15 include (a) a number of payload data bytes assigned per message, (b) a frequency
16 of acknowledgement messages and a number of message retransmission attempts,
17 (c) a fraction of the communication link allocated to downstream versus upstream
18 communication, and the like.
- 19
- 20 • **physical (PHY) parameters** — in general, with reference to a wireless communi-
21 cation link, a set of characteristics or parameters relating to physical transmission
22 of information on a communication link. For example, physical characteristics

1 can include (a) a symbol transmission rate, (b) a number of payload data bits as-
2 signed per symbol, (c) a number of error detection or correction bits assigned per
3 symbol, and the like.

- 4
- 5 • **QoS parameters** — in general, a set of characteristics or parameters relating to
6 QoS (quality of service) for a communication link.
- 7
- 8 • **wireless communication system** — in general, a communication system includ-
9 ing at least one communication link that uses wireless communication techniques.
- 10
- 11 • **wireless transport layer** — in general, a set of protocols and protocol parameters
12 for sending and receiving information using wireless transport. In a preferred em-
13 bodiment, the wireless transport layer is part of a multilayer systems architecture,
14 in which the wireless transport layer is built using a physical transport layer, and
15 the wireless transport layer is used by a logical transport layer such as IP.

16

17 As noted above, these descriptions of general meanings of these terms are
18 not intended to be limiting, only illustrative. Other and further applications of the inven-
19 tion, including extensions of these terms and concepts, would be clear to those of ordi-
20 nary skill in the art after perusing this application. These other and further applications
21 are part of the scope and spirit of the invention, and would be clear to those of ordinary
22 skill in the art, without further invention or undue experimentation.

1
2 *System Context*
3
4 The context of the invention is similar to that of the Incorporated Disclo-
5 sures.
6

7 A system using adaptive point to multipoint wireless communication in a
8 wireless communication system operates as part of a system in which devices coupled to
9 a network (such as a computer network) send messages, route and switch messages, and
10 receive messages. In a preferred embodiment, devices coupled to (and integrated with)
11 the network send, route, and receive these messages as sequences of packets, each of
12 which has a header including delivery information and a payload including data. In a
13 preferred embodiment, packet format conforms to the OSI model, in which an application
14 protocol (layer 5, such as FTP), uses a transport protocol (layer 4, such as TCP), which
15 uses a network protocol (layer 3, such as IP), which uses a media access control (MAC)
16 protocol (layer 2), which uses a physical transport technique (layer 1).

17
18 The system using adaptive point to multipoint wireless communication is
19 described herein with regard to layer 1 and layer 2, particularly as it applies to interac-
20 tions between layer 1 and layer 2 and between those layers and layer 3. However, con-
21 cepts and techniques of the invention are also applicable to other layers of the OSI model.
22 The application gives examples of cases where the type of application in the application

1 layer (layer 5) could be incorporated into embodiments of the invention to improve
2 communication. Adapting those concepts and techniques to such other layers would not
3 require undue experimentation or further invention, and is within the scope and spirit of
4 the invention.

5

6 *System Elements*

7

8 Figure 1 shows a block diagram of a portion of a system using adaptive
9 point to multipoint wireless communication.

10

11

12

13

14

15

16

17

18

19

20

21

22

A system 100 includes a wireless communication cell 110 (or a portion thereof), a base station controller (BSC) 120, one or more customer premises equipment (CPE) 130, and one or more (possibly partially) interfering or reflecting obstacles 140.

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

3

1
2 In figure 1, a portion of the cell 110, herein called a “sector” 111, includes a
3 generally triangular-shaped region of local surface area, disposed so that a set of six sec-
4 tors 111 are combined to form a single cell 110. Thus, the BSC 120 is disposed at or near
5 one corner of the sector 111, while CPE 130 are disposed within the sector 111. Moreo-
6 ver, obstacles 140 are disposed within the sector 111 or at junctions of multiple sectors
7 111.
8

9 Although the invention is primarily described with regard to a single sector
10 111, there are substantial applications of the invention to interaction between multiple
11 sectors 111 within a cell 110, and to interaction between sectors 111 in multiple cells
12 110. These substantial applications of the invention are described at least in part in this
13 application. Moreover, other and further substantial applications of the invention with
14 regard to multiple sectors 111, both within a single cell 110 and among multiple cells
15 110, would be clear to those skilled in the art of wireless communication after perusal of
16 this application, and would not require undue experimentation or further invention.
17

18 The BSC 120 includes a processor, program and data memory, mass stor-
19 age, and one or more antennas for sending or receiving information using wireless com-
20 munication techniques.
21

1 Similar to the BSC 120, each CPE 130 includes a processor, program and
2 data memory, mass storage, and one or more antennas for sending or receiving informa-
3 tion using wireless communication techniques.

4

5 Obstacles 140 might include buildings, other construction, electromagneti-
6 cally active elements such as radio transmitters and repeaters, other electromagnetic ele-
7 ments such as power lines or weather effects, and mobile objects such as vehicles.

8

9 Mobile objects can serve as obstacles, due to their electromagnetic charac-
10 teristics, size, or other features. For example, a car or truck can present an obstacle that
11 dampens or prevents transmission of wireless communication. Similarly, an airplanes,
12 dirigibles, or trucks can present surfaces with continual or intermittent reflective features,
13 possibly leading to multipath effects. Moving obstacles 140 can present substantial
14 variation over time in characteristics of communication links between the BSC 120 and
15 selected CPE 130.

16

17 Similarly, non-moving obstacles 140 can also present substantial variation
18 over time in characteristics of communication links between the BSC 120 and selected
19 CPE 130. For example, the electromagnetic reflectivity characteristics of a building
20 might vary with regard to power usage in the building, ambient temperature, and other
21 factors.

22

1 Other and further substantial applications of the invention with regard to
2 both moving and non-moving obstacles 140, both within a single cell 110 and among
3 multiple cells 110, would be clear to those skilled in the art of wireless communication
4 after perusal of this application, and would not require undue experimentation or further
5 invention.

6

7 Communication among devices within the wireless communication cell 110
8 is preferably conducted on a one-to-one basis between each CPE 130 and the BSC 120.

9 Thus, the BSC 120 communicates with each CPE 130, and each CPE 130 communicates
10 with the BSC 120. In a preferred embodiment, CPE 130 do not communicate directly
11 with other CPE 130. However, in alternative embodiments, CPE 130 may communicate
12 directly with other CPE 130, with the characteristics of such communication being con-
13 trolled either by the BSC 120, by one CPE 130 selected by the BSC 120, or by one CPE
14 130 mutually agreed to among the communicating CPE 130.

15

16 Communication between the BSC 120 and each CPE 130 is conducted us-
17 ing a TDD technique, in which time durations are divided into repeated individual
18 frames, each one of which includes a “downstream” portion and an “upstream” portion.
19 Unlike existing protocols in which transmissions are controlled by the transmitting side,
20 the BSC 120 controls transmissions for both upstream and downstream directions, with-
21 out specific requests from CPE 130.

22

1 During the downstream portion of each frame, the BSC 120 transmits, thus
2 sending information to one or more CPE 130. During the upstream portion of each
3 frame, each CPE 130 is potentially allocated a time slot for transmission, thus for sending
4 information to the BSC 120. TDD techniques are known in the art of wireless communica-
5 cation.

6

7 *Adaptive Point to Multipoint Communication*

8

9 The BSC 120 maintains a set of physical (PHY) parameters and media-
10 access-control (MAC) parameters for each CPE 130. In a preferred embodiment, control
11 of each parameter by the BSC 120 is independent and individual with regard to each CPE
12 130. Thus for example, the BSC 120 determines power level and modulation type for
13 each CPE 130 without regard to power level and modulation type for any other CPE 130.
14 Similarly, the BSC 120 determines power level for a particular CPE 130 without regard
15 for modulation type for that particular CPE 130.

16

17 However, in alternative embodiments, the BSC 120 may control multiple
18 parameters in groups, or in a correlated manner . Thus, the BSC 120 may alternatively
19 determine power level and modulation type for a particular CPE 130 as a pair of values,
20 where the pair of values is determined so that an optimal pair (rather than optimal indi-
21 vidual values) is selected. For example, the BSC 120 may notice that a particular CPE
22 130 needs substantially less transmission power level when using a more robust modula-

1 tion type, and thus select the power level and modulation type parameters for that par-
2 ticular CPE 130 jointly so as to be optimal as a pair, rather than as individual values.

3

4 In further alternative embodiments, the BSC 120 may control parameters
5 for multiple CPE 130 in groups, or in a correlated manner. Thus, the BSC 120 may alter-
6 natively select a group of more than one CPE 130 and control physical parameters and
7 MAC parameters for the group as a whole, where the parameters are determined so as to
8 be optimal for the group, rather than for individual CPE 130. For example, the BSC 120
9 might notice that two CPE 130 A and B can generate substantial co-channel interference
10 under selected conditions, and therefore set the channel selection parameters for those
11 two CPE 130 A and B to avoid that co-channel interference.

12
13
14
15
16
17
18
19
20
21

12 As a further alternative embodiment of controlling parameters for multiple
13 CPE 130 in groups, the BSC 120 may control parameters so that (for a group of N CPE
14 130), some portion M of those CPE 130 have a first set of parameters, while some other
15 portion (N – M) of those CPE 130 have a second set of parameters, so that communica-
16 tion with the entire group of N CPE 130 is optimal. For example, the BSC 120 may de-
17 termine, for N = 10 CPE 130, that M = 9 of those CPE 130 communicate with the BSC
18 120 at 20 megasymbols per second, while the remaining (N – M) = 1 of those CPE 130
19 communicate with the BSC 120 at 5 megasymbols per second, so that allocated resources
20 are minimized for communication with the entire group of N = 10 CPE 130.

22

1 In a preferred embodiment, each of the following parameters actually has
2 two values: a first value for transmission by the BSC 120 and a second value for trans-
3 mission by the CPE 130. Thus, the BSC 120 can transmit using a first set of parameters
4 while the CPE 130 is instructed to transmit using a second set of parameters. There is no
5 particular requirement that the first set of parameters and the second set of parameters
6 need be correlated, except for optimizations desirable due to the nature of the communi-
7 cation link between the BSC 120 and the CPE 130.

8

9 In alternative embodiments, the optimizations selected by the BSC 120 may
10 be responsive to optimizations or requirements imposed by higher levels in the OSI
11 model. For example, there are instances noted below in which, if the application level is
12 transmitting voice information or other streaming media, a first set of parameters would
13 be considered optimal; while if the application level is transmitting file data or other rela-
14 tively cohesive information, a second set of parameters would be considered optimal.
15

16 *Preferred Parameters*

17

18 Figure 2 shows an example of adaptive frequency reuse provided by the
19 BSC in response to robust modulation at the boundary of a cell 110 or a sector 111.

20

21 The BSC 120 optimizes its communication link with each selected CPE
22 130 so as to provide (a) robust link performance, (b) avoidance of interference, (c) avoid-

1 ance of multipath effects, (d) amelioration of obstructed or partially obstructed LOS, so
2 as to maximizing bandwidth throughput to each selected CPE 130.

3

4 The BSC 120 notes the effect of frequency separation between pairs of CPE
5 130, so as to optimize frequency division multiple access (FDMA), such as frequency di-
6 vision duplex (FDD) techniques. For example, in a preferred embodiment, the BSC 120
7 provides for spatially closer frequency reuse when relatively lesser frequency separation
8 between pairs of CPE 130 is adequate to provide sufficient communication bandwidth.

9
10
11
12
13
14
15

Similarly, the BSC 120 notes the effect of both spatial and frequency sepa-
ration between pairs of CPE 130, so as to optimize time division multiple access
(TDMA), such as time division duplex (TDD) techniques. For example, in a preferred
embodiment, the BSC 120 provides for temporal allocation of each TDD frame when
relatively lesser temporal separation between pairs of CPE 130 is adequate to provide
sufficient communication bandwidth.

16
17
18
19

In alternative embodiments, the BSC 120 may note the effect of spatial,
frequency and time separation between pairs of CPE 130, so as to optimize code division
multiple access (CDMA), or other spread spectrum techniques, or other techniques avail-
able for sharing communication channels among a plurality of communicating entities.

20
21
22

In a preferred embodiment, physical parameters and MAC parameters in-
clude at least the following physical parameters:

1

2 • **antenna selection** — The BSC 120 includes more than one antenna, and each

3 CPE 130 includes one or more antennas. In a preferred embodiment, the antenna

4 selection parameter includes a choice of which one antenna at the BSC 120 and

5 which one antenna at the each CPE 130.

6
7 The antenna selection parameter allows the BSC 120 to optimize a communication
8 link with a selected CPE 130 in response to both interference effects and multipath
9 effects.

In a preferred embodiment, the antenna selection parameter is supplemented using an antenna polarization parameter. The antenna selection parameter allows the BSC 120 to optimize a communication link with a selected CPE 130 in response to both interference effects and multipath effects.

16 In alternative embodiments, the antenna selection parameter includes the possibil-
17 ity of sending portions of communication signal from each of a plurality of anten-
18 nas (thus, either simultaneously sending from two antennas or sending from one
19 antenna followed by a second antenna) and similarly receiving portions of com-
20 munication signal at each of a plurality of antennas.

1 Figure 3 shows a chart of reduced bit error rate (BER) and signal to noise
2 (STN) ratio provided by the BSC using antenna selection, antenna polarization selection,
3 and antenna diversity selection.

4

5 A chart 300 includes an X-axis 310 representing a signal to noise (STN)
6 ratio, a Y-axis 320 representing a bit error rate (BER) value, and a set of plotted curves
7 330 each representing a function coupling STN on the X-axis 310 with BER on the Y-
8 axis 320 for a selected value of an antenna diversity selection parameter (labeled L = di-
9 versity order in figure 3).

10
11
12
13
14
15
16
17
18
19
20

10 In a preferred embodiment, the BSC 120 selects, for each communication
11 link with selected CPE 130, an antenna diversity selection parameter for the communica-
12 tion link. It would be clear to those of ordinary skill in the art, after perusal of this appli-
13 cation, that selection of the antenna diversity selection parameter, and other antenna se-
14 lection parameters, is a tool for the BSC 120 to maximize the value of its communication
15 link with each selected CPE 130.

16 Figure 4 shows a chart of reduced bit error rate (BER) and signal to inter-
17 ference (STI) ratio provided by the BSC 120 using antenna selection, antenna polariza-
18 tion selection, and antenna diversity selection.

19
20

21 A chart 400 includes an X-axis 410 representing a signal to interference
22 (STI) ratio, a Y-axis 420 representing a bit error rate (BER) value, and a set of plotted

1 curves 430 each representing a function coupling STI on the X-axis 410 with BER on the
2 Y-axis 420 for a selected value of an antenna diversity selection parameter (labeled L =
3 diversity order in figure 3).

4

5 In a preferred embodiment, the BSC 120 selects, for each communication
6 link with selected CPE 130, an antenna diversity selection parameter for the communica-
7 tion link. It would be clear to those of ordinary skill in the art, after perusal of this appli-
8 cation, that selection of the antenna diversity selection parameter, and other antenna se-
9 lection parameters, is a tool for the BSC 120 to maximize the value of its communication
10 link with each selected CPE 130.

- **power level** — The BSC 120 sets the power allocated for transmission.

11
12
13
14
15 The power level parameter allows the BSC 120 to optimize a communication link
with a selected CPE 130 in response to interference effects.

16

17 Figure 5 shows a chart of reduced signal to interference (STI) ratio pro-
18 vided by the BSC 120 using power level parameter selection.

19

20 A chart 500 includes an X-axis 510 representing a distance from interfer-
21 ence source, a Y-axis 520 representing a signal to interference (STI) ratio, and a set of
22 plotted curves 530 each representing a function coupling distance from interference

1 source on the X-axis 510 with STI on the Y-axis 520 for a selected value of an antenna
2 diversity selection parameter (labeled L = diversity order in figure 3). A first curve 530
3 shows a relationship function without power level selection by the BSC 120; a second
4 curve 530 shows a relationship function with power level selection by the BSC 120 si-
5 multaneously at both the BSC 120 and the selected CPE 130; and a third curve 530 shows
6 a relationship function with power level selection by the BSC 120 independently at each
7 of the BSC 120 and the selected CPE 130.

8

9 In a preferred embodiment, the BSC 120 selects, for each communication
10 link with selected CPE 130, a power level selection parameter for the communication
11 link. It would be clear to those of ordinary skill in the art, after perusal of this applica-
12 tion, that selection of the power level selection parameter, is a tool for the BSC 120 to
13 maximize the value of its communication link with each selected CPE 130.

14

- 15 • **channel selection** — The communication link includes more than one frequency
16 channel on which transmissions are sent and received. In a preferred embodiment,
17 the channel selection parameter includes a choice of which one channel the BSC
18 120 uses to transmit and which one channel the each CPE 130 transmit.

19

20 The channel selection parameter allows the BSC 120 to optimize a communication
21 link with a selected CPE 130 in response to both interference effects and multipath
22 effects.

1
2 Similar to antenna selection, in alternative embodiments, the channel selection pa-
3 rameter includes the possibility of sending portions of communication signal from
4 each of a plurality of channels (thus, either simultaneously sending from two
5 channels or sending from one channel followed by a second channel) and similarly
6 receiving portions of communication signal at each of a plurality of channels.

7
8 In alternative embodiments, the communication link may include other types of
9 channel other than frequency division (FDMA), such as spread spectrum code di-
10 vision (CDMA), or some combination of transmission separation techniques, such
11 as a combination of CDMA, FDMA, and TDMA techniques. In such alternative
12 embodiments, the channel selection parameter includes the possibility of selecting
13 one or more of such separation techniques either independently or jointly.

- 14
- 15 • **modulation type** — The BSC 120 and the CPE 130 can exchange information at
16 one of a number of different bit per symbol rates, as determined by the modulation
17 type for transmission of information. In a preferred embodiment, the modulation
18 type parameter selects between QPSK, 16QAM, and 64QAM modulation tech-
19 niques. When the modulation type is QPSK, two bits are transmitted for each
20 symbol. Similarly, when the modulation type is 16QAM, four bits are transmitted
21 for each symbol, and when the modulation type is 64QAM, six bits are transmitted
22 for each symbol.

1
2 The modulation selection parameter allows the BSC 120 to optimize a communica-
3 tion link with a selected CPE 130 in response to both interference effects and
4 multipath effects.

5
6 In alternative embodiments, the modulation type may include other techniques for
7 modulation, such as QFSK or other frequency modulation techniques, spread
8 spectrum modulation techniques, or some combination thereof.

9
10
11
12
13
14 Figure 6 shows a chart of reduced bit error rate (BER) ratio provided by the
15 BSC using modulation and symbol rate selection.

16
17 A chart 600 includes an X-axis 610 representing a C/I_C ratio in decibels
18 (db), a Y-axis 620 representing a bit error rate (BER), and a set of plotted curves 630
19 each representing a function coupling C/I_C ratio on the X-axis 610 with BER on the Y-
20 axis 620 for a selected value of a modulation parameter. The modulation parameter can
21 vary among ¼-QPSK, ½-QPSK, QPSK, 16QAM, and 64QAM.

22
23
24
25
26
27 In a preferred embodiment, the BSC 120 selects, for each communication
28 link with selected CPE 130, a modulation selection parameter for the communication
29 link. It would be clear to those of ordinary skill in the art, after perusal of this applica-

1 tion, that selection of the modulation and symbol rate selection parameter, is a tool for the
2 BSC 120 to maximize the value of its communication link with each selected CPE 130.

3

4 Figure 7 shows a chart of reduced outage probability provided by the BSC
5 120 using modulation and symbol rate selection.

6

7 A chart 700 includes an X-axis 710 representing a normalized delay spread
8 between symbols, a Y-axis 720 representing a C/I_C ratio in decibels (db), and a set of
9 plotted regions 730 each representing a function coupling normalized delay spread on the
10 X-axis 710 with C/I_C ratio on the Y-axis 720 for a selected value of a modulation and
11 symbol rate parameter. The modulation parameter can vary among ¼-QPSK, ½-QPSK,
12 QPSK, 16QAM, and 64QAM.

13

14 In a preferred embodiment, the BSC 120 selects, for each communication
15 link with selected CPE 130, a modulation and symbol rate selection parameter for the
16 communication link. It would be clear to those of ordinary skill in the art, after perusal of
17 this application, that selection of the modulation and symbol rate selection parameter, is a
18 tool for the BSC 120 to maximize the value of its communication link with each selected
19 CPE 130.

20

21 • **symbol rate** — The BSC 120 and the CPE 130 can exchange information at one
22 of a number of different symbol per second rates, as determined by the symbol

1 rate for transmission of information. In a preferred embodiment, the symbol rate
2 parameter selects between transmission rates of five, ten, or twenty megasymbols
3 per second.

4

5 The symbol rate parameter allows the BSC 120 to optimize a communication link
6 with a selected CPE 130 in response to both interference effects and multipath ef-
7 fects.

- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- **error code type** — The BSC 120 and the CPE 130 can exchange information us-
ing one of a number of different error detection and correction techniques. These
error detection and correction techniques can include past error detection and cor-
rection and forward error detection and correction. Various codes and techniques
for error detection and correction are known in the art of information science. In a
preferred embodiment, the error code type parameter selects between Reed-
Solomon codes encoding N payload bits using a block of M transmitted bits,
where M is greater than or equal to N. However, in alternative embodiments,
other error codes could be used, such as Viterbi (concatenated) Turbo codes, MD5
or secure hash codes, or other error codes adaptable to variations in channel, sub-
scriber, or time.
- 20

1 The error code parameter allows the BSC 120 to optimize a communication link
2 with a selected CPE 130 in response to both interference effects and multipath ef-
3 fects.

4

5 Figure 8 shows a chart of reduced frame loss ratio provided by the BSC 120
6 using modulation and error code selection.

7

8 A chart 800 includes an X-axis 810 representing a carrier to noise ratio
9 (CNR) in decibels (db), a Y-axis 820 representing a frame-loss ratio (FLR), and a set of
10 plotted curves 830 each representing a function coupling CNR on the X-axis 810 with
11 FLR on the Y-axis 820 for a selected value of modulation parameter and error code pa-
12 rameter. The modulation parameter is shown as 16QAM; the error code parameter can
13 vary among various strengths of Reid-Solomon codes.

14

15 In a preferred embodiment, the BSC 120 selects, for each communication
16 link with selected CPE 130, a modulation selection parameter for the communication
17 link. It would be clear to those of ordinary skill in the art, after perusal of this applica-
18 tion, that selection of the modulation parameter and the error code parameter, is a tool for
19 the BSC 120 to maximize the value of its communication link with each selected CPE
20 130.

21

- 1 • **equalization** — When BSC 120 and the CPE 130 exchange information, the
2 communication link between the two imposes an impulse response, so that a signal
3 which is transmitted from the sender to the receiver is transformed in a substan-
4 tially nonlinear manner. The impulse response is primarily due to multipath ef-
5 fects of communication between the sender and receiver, but can also be due to
6 other frequency-diverse effects such as weather.

7
8 In a preferred embodiment, the BSC 120 and the CPE 130 include an equalizer
9 element, which attempts to invert the impulse response of the communication link
10 by pre-conditioning the signal before transmission. The equalizer element in-
11 cludes a sequence of coefficients for use in a finite impulse response (FIR) filter,
12 or may include a sequence of coefficients for use in a polynomial for determining
13 values for an infinite impulse response (IIR) filter. The equalization parameter
14 thus includes the sequence of coefficients for the filter used for pre-conditioning
15 the signal before transmission.

16
17 The equalization parameter allows the BSC 120 to optimize a communication link
18 with a selected CPE 130 in response to multipath effects.

19
20 In a preferred embodiment, physical parameters and MAC parameters in-
21 clude at least the following MAC parameters:

- 1 • **message size** — As described in the Incorporated Disclosures, the BSC 120 and
2 the CPE 130 exchange information using (downstream or upstream) payload ele-
3 ments, each of which includes header information and payload information. The
4 message size parameter includes a value for the amount of payload information to
5 be included in each payload element; this value can vary from a relatively small
6 number of payload bytes to the maximum number of payload bytes allowed by the
7 network (layer 2) protocol, typically about 1500.

8

9 In a preferred embodiment, the message size parameter is primarily respon-
10 sive to the bit error rate (BER) experienced for the communication link between the BSC
11 120 and the CPE 130. When the bit error rate is relatively small, the message size pa-
12 rameter can be set to be relatively large, so as to reduce the amount of overhead for
13 header information in each payload element. However, when the bit error rate is rela-
14 tively larger, the message size parameter can be set to be relatively smaller, so as to re-
15 duce the amount of overhead for lost payload elements due to errors in one or more sym-
16 bols of transmitted payload elements. The modulation selection parameter allows the
17 BSC 120 to optimize a communication link with a selected CPE 130 in response to inter-
18 ference effects.

19

20 Those skilled in the art will recognize, after perusal of this application, that
21 there is a relationship between the modulation type, error code type, and message size.
22 Thus, where the modulation type allocates relatively fewer bits per symbol, the likelihood

1 of error for any particular symbol is relatively lower, and the bit error rate will also be
2 relatively lower. Similarly, where the error code type allocates relatively more error de-
3 tection or correction bits per symbol, the likelihood of error for a particular symbol is also
4 relatively lower, and the bit error rate will also be relatively lower. In those cases where
5 the bit error rate is relatively lower, the message size parameter can be set to a relatively
6 larger value.

7

8 Figure 9 shows a chart of increased throughput (“goodput”) provided by the
9 BSC 120 using message size selection.

10

11

12 A chart 900 includes an X-axis 910 representing a message size or frame
13 length for data transmission between the BSC 120 and the selected CPE 130, a Y-axis
14 920 representing a throughput value (in kilobits per second), a set of plotted curves 930
15 each representing a function coupling message size on the X-axis 910 with throughput on
16 the Y-axis 920 for a known value of bit error rate (BER).

17

18 In a preferred embodiment, the BSC 120 selects, for each communication
19 link with selected CPE 130, a message size parameter for the communication link. It
20 would be clear to those of ordinary skill in the art, after perusal of this application, that
21 selection of the message size parameter, is a tool for the BSC 120 to maximize the value
22 of its communication link with each selected CPE 130.

- **acknowledgment and retransmission** — As described in the Incorporated Disclosures, the BSC 120 and the CPE 130 exchange information using acknowledgment (ARQ) messages, so as to indicate to the sender whether or not the receiver has accurately received any particular payload element. If a particular payload element is not received, the sender can decide to retransmit that payload element a number of times, so as to attempt to have received correctly. The acknowledgment parameter selects how frequently acknowledgment messages are used to reply to payload elements, and thus how frequently to let the sender know whether those payload elements have been received. Similarly, the retransmission parameter selects how persistently the sender will attempt to send or resend payload elements to the receiver.

The acknowledgement parameter allows the BSC 120 to optimize a communication link with a selected CPE 130 in response to both interference effects and multipath effects.

16

17 Those skilled in the art will recognize, after perusal of this application, that
18 there is a relationship between the application in use by the layer 5 application protocol
19 and the choice of acknowledgment and retransmission parameters. For example, where
20 the application includes voice transmission or other streaming media, there is little value
21 in retransmitting any particular payload element, as the time for decoding and presenting
22 that payload element is usually well passed by the time that particular payload element

1 can be retransmitted by the sender and received by the receiver. On the contrary, for ex-
2 ample, where the allocation includes file data transfer, there is relatively greater value in
3 retransmitting each lost payload element, as each and every payload element is generally
4 required for useful reception of the entire file data transfer.

5

6 Those skilled in the art will also recognize, after perusal of this application,
7 that there is a relationship between choice of class of service (CoS) and quality of service
8 (QoS) for other protocol layers and the choice of acknowledgment and retransmission pa-
9 rameters. For example, where the application includes data transfer or backup related
10 applications, it might be desirable to assure that data sent from one device to another is
11 well-assured to be correct. Thus, in such case, it might be desirable to adjust acknowl-
12 edgment and retransmission parameters so that data transfer is assured to be as correct as
13 possible as soon as possible.

14

15 Figure 10 shows a chart of increased throughput provided by the BSC 120
16 using acknowledgement and retransmission parameter selection.

17

18 A chart 1000 includes an X-axis 1010 representing a packet error rate
19 (PER) for data transmission between the BSC 120 and the selected CPE 130, a Y-axis
20 1020 representing a normalized throughput value, and a set of plotted curves 1030 each
21 representing a function coupling PER on the X-axis 1010 with throughput on the Y-axis

1 1020 in response to whether dynamic acknowledgement and retransmission parameter
2 selection is used or not.

3

4 In a preferred embodiment, the BSC 120 selects, for each communication
5 link with selected CPE 130, a message size parameter for the communication link. It
6 would be clear to those of ordinary skill in the art, after perusal of this application, that
7 selection of whether or not to use dynamic acknowledgement and retransmission is a tool
8 for the BSC 120 to maximize the value of its communication link with each selected CPE
9 130.

10
11
12
13
14
15

- **TDD duty cycle** — As described in the Incorporated Disclosures, the BSC 120 and the CPE 130 exchange information using a downstream portion and an upstream portion of a TDMA transmission frame. The TDD duty cycle parameter selects how much of the TDMA transmission frame is allocated for downstream information transfer and how much of the team a transmission frame is allocated for upstream information transfer.

16

17

18 The TDD duty cycle parameter allows the BSC 120 to optimize a communication
19 link with a selected CPE 130 in response to interference effects.

20

21 As described below, the BSC 120 maintains these physical parameters and
22 MAC parameters, and adaptively modifies them with changing conditions on the com-

1 munication link between the BSC 120 and the CPE 130. Thus, when the BSC 120 no-
2 tices a change in characteristics of the communication link, it does not immediately alter
3 the physical parameters and MAC parameters to correspond exactly to the new charac-
4 teristics of the communication link. Rather, the BSC 120 maintains a sequence (of at
5 least one) past sets of values of these parameters, and modifies the most recent set of pa-
6 rameters using the new characteristics, so as to adjust the set of parameters dynamically
7 while allowing sets of values of these parameters to have persistent effect on future val-
8 ues.

In a preferred embodiment, the BSC 120 records each current value for the physical parameters and MAC parameters, determines exact values for the physical parameters and MAC parameters in response to characteristics of the communication link, and adaptively selects new values for the physical parameters and MAC parameters (thus, for the next TDMA frame) by linearly mixing current values with dynamic values. Operation of this technique is shown in the following equation 150:

16

17

(150)

18

19

$$\text{value}_{\text{new}} \leftarrow 1 - \text{alpha} * \text{value}_{\text{current}} + \text{alpha} * \text{value}_{\text{exact}}$$

19

30

21

- 22 • value_{new} = the new value of each parameter, for the next TDMA frame;

- 1
- 2 • value _{current} = the current value of each parameter, for the most recent TDMA
- 3 frame;
- 4
- 5 • value _{exact} = the dynamic exact value of each parameter, determined in response to
- 6 characteristics of the communication link;
- 7
- 8 and
- 9 • alpha = a hysteresis parameter for determining how fast to respond to changes in
- 10 characteristics of the communication link.

11

12 In a preferred embodiment, the value of alpha is specific to each individual

13 physical parameter and MAC parameter.

14

15

16 *Method of Operation*

17 Figure 11 shows a time division duplex frame used in a system as in figure

18 1.

19

20 A time division duplex (TDD) frame 1100 includes a time-synchronization

21 portion 1110, a first guard time 1120, a downstream portion 1130, a second guard time

22 1140, a status-synchronization portion 1150, and an upstream portion 1160.

1
2 The time-synchronization portion 1110 includes a first symbol 1111 indi-
3 cating the beginning of the TDD frame 1100, and a sequence of parameter setting values
4 1112 for each CPE 130. The BSC 120 uses the parameter setting values 1112 to inform
5 each selected CPE 130 individually and separately of (a) the PHY and MAC parameters
6 the BSC 120 is using to send messages to that selected CPE 130, and (b) the PHY and
7 MAC parameters the selected CPE 130 should use to send messages to the BSC 120
8 during its allocated part of the upstream portion 1160.

9 The first guard time 1120 includes a time duration sufficient for the BSC
10 120 to assure that all CPE 130 do not interfere with each other when receiving from the
11 BSC 120 or sending to the BSC 120.

12
13 The downstream portion 1130 includes a sequence of downstream payload
14 elements 1131, each sent by the BSC 120 to a selected CPE 130. The BSC 120 deter-
15 mines a length for each of these downstream payload elements 1131 and sends that in-
16 formation with the parameter setting values 1112 in the time-synchronization portion
17 1110. In alternative embodiments, the BSC 120 may divide the CPE 130 into classes and
18 allocate one or more downstream payload elements 1131 for each class of CPE 130. For
19 example, the BSC 120 may allocate one or more downstream payload elements 1131 for
20 broadcast or multicast messages.

21

1 The second guard time 1140 includes a time duration sufficient for the BSC
2 120 to assure that the downstream portion 1130 and the status-synchronization portion
3 1150 do not interfere.

4

5 The status-synchronization portion 1150 includes a sequence of status in-
6 formation so that the BSC 120 can agree with each selected CPE 130 regarding higher-
7 level protocol status out-of-band from those higher-level protocols.

8

9 Similar to the downstream portion, the upstream portion 1160 includes a
10 sequence of upstream payload elements 1161, each sent by a selected CPE 130 to the
11 BSC 120. The BSC 120 (not the CPE 130) determines a length for each of these up-
12 stream payload elements 1161 and sends that information with the parameter setting val-
13 ues 1112 in the time-synchronization portion 1110. In alternative embodiments, the BSC
14 120 may divide the CPE 130 into classes and allocate one or more upstream payload
15 elements 1131 for each class of CPE 130, such as for upstream bandwidth contention.

16

17 Figure 12 shows a process flow diagram of a method for operating a system
18 using adaptive point to multipoint wireless communication in a wireless communication
19 system.

20

21 A method 1200 includes a set of flow points and a set of steps. The system
22 100 performs the method 1200. Although the method 1200 is described serially, the steps

1 of the method 1200 can be performed by separate elements in conjunction or in parallel,
2 whether asynchronously, in a pipelined manner, or otherwise. There is no particular re-
3 quirement that the method 1200 be performed in the same order in which this description
4 lists the steps, except where so indicated.

5

6 At a flow point 1210, the BSC 120 and the CPE 130 are ready to begin a
7 TDMA frame.

8

9 At a step 1211, the BSC 120 and the CPE 130 conduct communication us-
10 ing a TDMA frame. As part of this step, the BSC 120 directs the CPE 130 regarding
11 which physical parameters and MAC parameters to use.

12

13 At a step 1212, the BSC 120 determines characteristics of the communica-
14 tion link with the CPE 130, in response to performance of the communication during the
15 previous TDMA frame.

16

17 At a step 1213, the BSC 120 determines exact values for the physical pa-
18 rameters and MAC parameters in response to characteristics of the communication link.

19

20 At a step 1214, the BSC 120 determines new values for the physical pa-
21 rameters and MAC parameters in response to results of the previous step, and perform-
22 ance of the equation 150.

1
2 After this step, the BSC 120 and the CPE 130 have performed one step of
3 sending and receiving information using a TDMA frame. The flow point 1210 is reached
4 repeatedly and the steps thereafter are performed repeatedly, for each TDMA frame.
5

6 *Generality of the Invention*
7

8 The invention has general applicability to various fields of use, not neces-
9 sarily related to the services described above. For example, these fields of use can in-
10 clude one or more of, or some combination of, the following:

- 11 • The invention is applicable to other forms of wireless communication, such as fre-
12 quency division multiple access (FDMA) or code division multiple access
13 (CDMA, also known as spread spectrum communication);
14
15 • The invention is applicable to any non-wireless communication, in which relative
16 effectiveness or efficiency of communication can be achieved from dynamically
17 adjusting communication parameters, such as physical parameters or MAC pa-
18 rameters. For example, the invention can be generalized to non-wireless commu-
19 nication using modems in which equalization parameters are to be dynamically
20 adjusted.

- 1 • The invention is applicable to other wireless communication systems, such as sat-
2 ellite communication systems and (microwave tower or other) point to point
3 transmission systems.
- 4
- 5 • The invention is applicable to both fixed wireless communication systems, in
6 which customer premises equipment do not move relative to the BSC 120, and to
7 mobile wireless communication systems, and which customer premises equipment
8 move substantially relative to the BSC 120.

9

10

11

12

13

14 Other and further applications of the invention in its most general form,
15 will be clear to those skilled in the art after perusal of this application, and are within the
16 scope and spirit of the invention.

17

18

19

20

21

22

23

24

25 Although preferred embodiments are disclosed herein, many variations are
26 possible which remain within the concept, scope, and spirit of the invention, and these
27 variations would become clear to those skilled in the art after perusal of this application.