

Real-time Character-driven Motion Effects with Particle-based Fluid Simulation

Tian-Chen Xu*, Wen Wu*, En-Hua Wu*†

- *. Faculty of Science and Technology, University of Macau, Macao, China
- †. State Key Lab of CS, Institute of Software, Chinese Academy of Sciences, Beijing, China

Outline

- > Introduction
- > Related work
- **Emitter Uniformization**
- > Motion Estimation
- > SPH Simulation on GPU
- > Rendering
- **Examples**
- **Conclusions**

Character-driven Fluid Effect

- Some screenshots of our work
 - ◆ Character animation with fluid motion of splash simulated and rendered in real-time

Character-driven Effects

> Effects with high motion coupling

Game: Final Fantasy XIII by Square Enix

- ◆ Special effects in games
 - ✓ Magic effects
 - ✓ Weapon effects
 - ✓ Skill effects
- ◆ Artistic stage effects
 - ✓ Dance
 - ✓ Martial arts
- ➤ Motivation & contributions
 - ◆ Pursuit of immersive effects
 - ◆ Utilizing fluid dynamics
 - ◆ Character coupling
 - ◆ Fast real-time simulation and rendering

Related Work

- > Motion effects
 - ◆ Off-line rendering [Schmid *et al.* 2010]
 - ◆ Geometric based motion blur [Sander *et al.* 2008]
 - ◆ Smoke motion effect without illumination [Xu *et al.* 2011]
- > Smoothed Particle Hydrodynamics
 - ◆ SPH introduction to CG [Muller *et al.* 2003]
 - ◆ GPU acceleration [Harada *et a*l. 2007]
 - ◆ Broad-phase collision detection (CUDA) [Le Grand. 2007]
- > Rendering
 - ◆ Marching cube [Lorensen *et al.* 1987]
 - ◆ Studies of splatting [Van Kooten *et al.* 2007]
 - ◆ Screen space [Van der Laan *et al.* 2009]

Emitter Uniformization

- > 3D character mesh
 - **♦** Vertices
 - ✓ Nonuniform distribution
 - ✓ Weak controllability
 - ◆ Faces/surface
 - ✓ Difficult to be processed
 - ✓ Slow
 - ◆ UV atlas (our choice)
 - ✓ Commonly conformal
 - ✓ Fast mapping (rasterizer)
 - ✓ But overlaps exist
- > Position buffer in UV space
 - ◆ Render the mesh vertices to position buffer
 - ◆ Select the valid area using a preset binary mask

Motion Estimation

 $p_{t-3\Delta t}$

> Current tangent

> Emitter position

◆ Catmull-Rom spline

 $h_{00} \sim h_{11}$: Entries of Hermite Spline matrix

> Emitter velocity

- ◆ Direction: the normalized derivative of the spline
- igoplus Speed: $L/\Delta t$, L is the length of the spline

SPH Simulation on GPU

- > SPH distribution function [Muller *et al.* 2003]
 - ◆ Quantities distributed in the local neighborhood of each particle
 - ◆ Character interaction as external force contribution
- > Neighbor search
 - ◆ Acceleration bottleneck
 - \checkmark searching within the smoothing radius h
 - ◆ Our technique
 - ✓ Fast (GPU based bucket sort)
 - ✓ Less space overhead

Neighbor Search Problem

- > Steps in each time step
 - ◆ Count number of particles for each grid cell
 - ◆ Compute the start and end addresses

$$i_{end}^{j} = \begin{cases} a_{j}, & j = 0\\ i_{end}^{j-1} + a_{j}, & j > 0 \end{cases}$$

♦ Arrangement

$i_{start}^j = i_{end}^j - a_j$

Index buffer.x: N(particles)			
3	7	0	3
2	4	б	1
0	10	0	9
5	8	4	2
(a)			

Index	buffer.x:	Start	address
-------	-----------	-------	---------

0	3	10	10
13	15	19	25
26	26	36	36
45	50	58	62

Offset buffer: relative location

			1		0
	0			3	
	•••		2		
(b)					

Index buffer.y: end address

	-		
3	10	10	13
15	19	25	26
26	36	36	45
50	58	62	64

Neighbor Search Comparison

Rendering

- > Screen space rendering [Van der Laan et al. 2009]
 - **♦** Steps
 - ✓ Render particles as billboards, record depth
 - ✓ Depth buffer (z-buffer) blurring
 - ✓ Normal computing based on z-buffer
 - ◆ Advantages
 - ✓ Fast (billboard-based, image processing)
 - ✓ Illumination supported
- Our improvements
 - Dynamic billboard size control
 - ✓ Liquid surface or splash?
 - ✓ Good quality for even fewer particles
 - Dynamic blur control
 - ✓ View independency(3D space blur)

Examples

- > Testing machine
 - ◆ Intel® Core (TM) i7-2600K CPU
 - ◆ NVIDIA® GTX590 graphic card
 - ◆ Able to use this machine for alive demo as well
 - ✓ Intel® Core (TM) 2 Duo CPU
 - ✓ NVIDIA® GT240M
 - ✓ Real-time for 8K particles
- > Sword dance
 - ◆ Real-time demo
 - ◆ High quality character animation
 - ◆ Immersive fluid coupling
 - ◆ 3D environment

Sword Dance in 3D Environment

Conclusions

- Character-driven fluid motion effect
 - ◆ Character motion estimation and interaction
 - ◆ Algorithmic acceleration of simulation on GPU
 - ◆ Real-time simulation and rendering
- > Future work
 - ◆ More complex fluid interaction
 - ◆ Bidirectional interaction of character by fluid
 - ✓ Passive force impact
 - ✓ Reactions
 - Multiple characters
 - ◆ Multiple fluid blending

Thank you! Q&A

CASA