Нахождение обратной матрицы методом Жордана с выбором главного элемента по строке

Смирнов Георгий

310 группа

1. Блочный метод Жордана.

Дана матрица $A^{n \times n}$. Требуется найти обратную к ней матрицу A^{-1} , используя блочный метод Жордана с выбором главного элемента по строке. Пусть $n = m \cdot l + s$. Тогда матрицу A можно представить в виде:

$$\begin{pmatrix} A_{11}^{m \times m} & A_{12}^{m \times m} & \dots & A_{1l}^{m \times m} & A_{1,\ l+1}^{m \times s} \\ A_{21}^{m \times m} & A_{22}^{m \times m} & \dots & A_{2l}^{m \times m} & A_{2,\ l+1}^{m \times s} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A_{l1}^{m \times m} & A_{l2}^{m \times m} & \dots & A_{ll}^{m \times m} & A_{l,l+1}^{m \times s} \\ A_{l+1,\ l}^{s \times m} & A_{l+1,\ 2}^{s \times m} & \dots & A_{l+1,\ l}^{s \times m} & A_{l+1,\ l+1}^{s \times s} \end{pmatrix}$$

Обратную матрицу находим, используя присоединённую матрицу $B = E^{n \times n}$, так же разделённую на блоки.

1.1 Шаги блочного метода Жордана.

Все шаги метода Жордана будут описаны для произвольного $k=1\dots l$. Шаги для k=l+1 будут описаны отдельно. Начинаем с k=1:

- 1. В k-ой строке матрицы A считаем обратные матрицы для тех блоков $A_{kj}^{m \times m}$ $(j=k\dots l)$, для которых это возможно. Если нет обратимых блоков, метод не применим для заданного m. Иначе выберем в качестве главного элемента $A_{kk}^{m \times m}$ такой блок $A_{kj}^{m \times m}$, что норма $\|(A_{kj}^{m \times m})^{-1}\|$ минимальна¹. Для этого меняем k-й и j-й столбцы матрицы A (столбцы матрицы B на данном этапе не меняем).
- 2. С помощью обычного метода Жордана находим $(A_{kk}^{m \times m})^{-1}$.
- 3. Для $j=k+1\dots l$ умножаем блоки $A_{kj}^{m\times m}$ слева на $(A_{kk}^{m\times m})^{-1}$, а для j=l+1 умножаем блок $A_{k,\ l+1}^{m\times s}$ слева на $(A_{kk}^{m\times m})^{-1}$:

$$\begin{array}{cccc} A_{kj}^{m\times m} & \longrightarrow & (A_{kk}^{m\times m})^{-1} \times A_{kj}^{m\times m} \\ A_{k,\;l+1}^{m\times s} & \longrightarrow & (A_{kk}^{m\times m})^{-1} \times A_{k,\;l+1}^{m\times s} \end{array}$$

4. Для $j=1\dots l$ умножаем блоки $B_{kj}^{m\times m}$ слева на $(A_{kk}^{m\times m})^{-1}$, а для j=l+1 умножаем блок $B_{k,\ l+1}^{m\times s}$ слева на $(A_{kk}^{m\times m})^{-1}$:

$$\begin{array}{ccc} B_{kj}^{m\times m} & \longrightarrow & (A_{kk}^{m\times m})^{-1} \times B_{kj}^{m\times m} \\ B_{k,\ l+1}^{m\times s} & \longrightarrow & (A_{kk}^{m\times m})^{-1} \times B_{k,\ l+1}^{m\times s} \end{array}$$

 $^{^1}$ В качестве нормы матрицы A принимаем $\|A^{m \times m}\| := \max_{i=1,\dots,m} \sum_{j=1}^m |a_{ij}|$

5. Для $i=1\dots k-1, k+1, \dots l+1$ в матрицах A и B из i-той строки вычитаем k-ую, умноженную на $A_{ik}^{m\times m}$:

$$\begin{split} i = \ 1 \dots k-1, \ k+1, \dots l, & \ j = \ k+1 \dots l \\ & \ j = l+1 \\ & \ l+1, \quad j = k \dots l \\ & \ j = l+1 \\ & \ l+1, \quad j = k \dots l \\ & \ j = l+1 \\ & \ l+1, \quad j = k \dots l \\ & \ l+1, \quad j = k \dots l \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (A_{l+1, \ j}^{m \times m} - A_{l+1, \ k}^{m \times m} \times A_{k, \ l+1}^{m \times m}) \\ & \ j = l+1 \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (A_{l+1, \ j}^{s \times m} - A_{l+1, \ k}^{s \times m} \times A_{kj}^{m \times m}) \\ & \ j = l+1 \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (A_{l+1, \ l+1}^{s \times m} - A_{l+1, \ k}^{s \times m} \times A_{k, \ l+1}^{m \times m}) \\ & \ j = l+1 \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{m \times m} - A_{l+1, \ k}^{m \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ j = l+1 \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ j}^{s \times m} - A_{l+1, \ k}^{s \times m} \times B_{kj}^{m \times m}) \\ & \ j = l+1 \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ k}^{s \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ j = l+1 \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ k}^{s \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ j = l+1 \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ k}^{s \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ k}^{s \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ k}^{s \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ k}^{s \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ l+1}^{s \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ l+1}^{s \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ l+1}^{s \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ l+1}^{s \times m} \times B_{k, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ l+1}^{s \times m} \times B_{l+1, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ l+1}^{s \times m} \times B_{l+1, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1 \xrightarrow{S \times m} (B_{l+1, \ l+1}^{s \times m} - A_{l+1, \ l+1}^{s \times m} \times B_{l+1, \ l+1}^{m \times m}) \\ & \ l+1, \quad l+1$$

- 6. Если $k \neq l$ увеличиваем k на 1 и переходим к 1-ому шагу. Иначе переходим на 6-ой шаг.
- 7. С помощью обычного метода Жордана находим $(A_{l+1,\ l+1}^{s\times s})^{-1}$. Если блок необратим, то метод не применим для заданного m.
- 8. Для $j=1\dots l$ умножаем блоки $B_{l+1,\ j}^{s\times m}$ слева на $(A_{l+1,\ l+1}^{s\times s})^{-1}$, для j=l+1 умножаем блок $B_{l+1,\ l+1}^{s\times s}$ слева на $(A_{l+1,\ l+1}^{s\times s})^{-1}$:

9. Для $i=\ 1\dots l$ в матрице B из i-той строки вычитаем (l+1)-ую, умноженную на $A_{i,\ l+1}^{m\times s}$:

В результате вышепредставленных шагов получим следующую матрицу:

$$\begin{pmatrix} E_{11}^{m \times m} & 0 & \dots & 0 & 0 \\ 0 & E_{22}^{m \times m} & \dots & 0 & 0 & | & \tilde{B}_{11}^{m \times m} & \tilde{B}_{12}^{m \times m} & \dots & \tilde{B}_{1l}^{m \times m} & \tilde{B}_{1,\ l+1}^{m \times s} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & E_{ll}^{m \times m} & 0 & | & \tilde{B}_{21}^{m \times m} & \tilde{B}_{22}^{m \times m} & \dots & \tilde{B}_{2l}^{m \times m} & \tilde{B}_{2,\ l+1}^{m \times s} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & E_{l+1,\ l+1}^{m \times m} & 0 & | & \tilde{B}_{l1}^{m \times m} & \tilde{B}_{l2}^{m \times m} & \dots & \tilde{B}_{ll}^{m \times m} & \tilde{B}_{l,\ l+1}^{m \times s} \\ 0 & 0 & \dots & 0 & E_{l+1,\ l+1}^{s \times s} & | & \tilde{B}_{l+1,\ l+1}^{s \times m} & \tilde{B}_{l+1,\ l+1}^{s \times m} & \dots & \tilde{B}_{l+1,\ l+1}^{s \times m} & \tilde{B}_{l+1,\ l+1}^{s \times s} \end{pmatrix}$$

Если бы мы искали матрицу, обратную к матрице A, методом Жордана с выбором главного элемента по столбцу, переставляя только строки матрицы A, в правой части мы получили бы обратную матрицу. Однако в методе Жордана с выбором главного элемента по строке в матрице A мы переставляем не строки, а столбцы. Пусть U_1, U_2, \ldots, U_l - элементарные матрицы, соответствующие перестановкам столбцов. Тогда перестановки столбцов меняют матрицу следующим образом:

$$A \longrightarrow AU_1 \dots U_l$$

Так как $AU_1 \dots U_l = E$, то $(AU_1 \dots U_l)^{-1} = U_l^{-1} \dots U_1^{-1} A^{-1} = E$. Откуда обратная матрица равна $A^{-1} = U_1 \dots U_l$. Следовательно, чтобы получить ответ, необходимо поменять у матрицы \tilde{B} строки так, как у матрицы A менялись столбцы:

$$A^{-1} = U_1 \dots U_l \tilde{B}.$$

1.2 Функции getBlock и putBlock.

```
void getBlock(const double* matrix, double* bl, int g, int h, int n, int m)
       int k = (n/m);
 3
       if(g == k)
 5
         if(h == k)
 6
            memcpy(bl, matrix + (g * n * m + h * (n % m) * m), sizeof(double) * (n % m) * (n % m));
 9
         else
10
         -{
11
           memcpy(bl, matrix + (g * n * m + h * (n % m) * m), sizeof(double) * (n % m) * m);
12
         }
       }
14
       else
15
16
         if(h == k)
18
           memcpy(bl, matrix + (g * n * m + h * m * m), sizeof(double) * (n % m) * m);
19
20
21
         else
         {
            memcpy(bl, matrix + (g * n * m + h * m * m), sizeof(double) * m * m);
23
24
       }
2.5
     }
26
27
     void putBlock(double* matrix, const double* bl, int g, int h, int n, int m)
28
       int k = (n/m);
29
       if(g == k)
30
31
         if(h == k)
32
33
            memcpy(matrix + (g * n * m + h * (n % m) * m), bl, sizeof(double) * (n % m) * (n % m));
34
         }
35
         else
            memcpy(matrix + (g * n * m + h * (n % m) * m), bl, sizeof(double) * (n % m) * m);
38
3.9
40
       }
       else
41
42
         if(h == k)
43
44
            \texttt{memcpy}(\texttt{matrix} + (\texttt{g} * \texttt{n} * \texttt{m} + \texttt{h} * \texttt{m} * \texttt{m}), \texttt{bl}, \\ \texttt{sizeof}(\texttt{double}) * (\texttt{n} \% \texttt{m}) * \texttt{m});
46
47
         else
48
            memcpy(matrix + (g * n * m + h * m * m), bl, sizeof(double) * m * m);
         }
       }
51
     }
52
```

1.3 Оценка числа операций.

- 1. Для нахождения обратной $m \times m$ матрицы обычным методом Жордана требуется порядка $3m^3 \frac{m^2}{2} \frac{m}{2}$ операций.
- 2. Количество операций для умножения двух матриц $m \times m$: $m \cdot m \cdot (m + m 1) = 2m^3 m^2$.
- 3. Количество операций для умножения двух матриц $m \times s$ и $s \times m$: $m \cdot m \cdot (s+s-1) = 2m^2s m^2$.
- 4. Количество операций для умножения двух матриц $m \times m$ и $m \times s$: $m \cdot s \cdot (m + m 1) = 2m^2s ms$
- 5. Количество операций для всех обращений в методе Жордана порядка: $(\sum_{i=0}^{l-1} (3m^3 \frac{m^2}{2} \frac{m}{2}) \cdot (l i)) + (3s^3 \frac{s^2}{2} \frac{s}{2}) = (3m^3 \frac{m^2}{2} \frac{m}{2}) \cdot \frac{(l^2 + l)}{2} + (3s^3 \frac{s^2}{2} \frac{s}{2})$
- 6. Количество операций при реализации умножения матриц в пунктах 3, 4 и 8: $(\sum_{i=1}^{l} (l + l i) \cdot (2m^3 m^2)) + (l+l) \cdot (2m^2s ms) + l \cdot (2s^2m ms) + 2s^3 s^2 = (\sum_{i=1}^{l} (2l i) \cdot (2m^3 m^2)) + 2l \cdot (2m^2s ms) + l \cdot (2s^2m ms) + 2s^3 s^2$
- 7. Количество операций при реализации пунктов 5 и 9: $(\sum_{i=1}^{l}((l-1)\cdot(l+l-i)\cdot(2m^3-m^2)+(l-1)\cdot(l+l-i)\cdot m\cdot m+(l-1)\cdot(2sm^2-sm)\cdot 2+(l-1)\cdot 2sm)+(l+l-i)\cdot (2sm^2-ms)+(l+l-i)\cdot ms+2\cdot(2ms^2-s^2)+2\cdot s^2)+l^2\cdot(2m^2s-m^2)+l^2\cdot m^2=(\sum_{i=1}^{l}(l-1)\cdot((2l-i)\cdot 2m^3+4sm^2)+2(2l-i)\cdot sm^2+4ms^2)+2sl^2m^2+2lms^2$
- 8. Суммируем результаты, полученные в пунктах 5, 6, 7: $(3m^3 \frac{m^2}{2} \frac{m}{2}) \cdot \frac{(l^2 + l)}{2} + (3s^3 \frac{s^2}{2} \frac{s}{2}) + (\sum_{i=1}^{l} (2l i) \cdot (2m^3 m^2)) + 2l \cdot (2m^2s ms) + l \cdot (2s^2m ms) + 2s^3 s^2 + (\sum_{i=1}^{l} (l 1) \cdot ((2l i) \cdot 2m^3 + 4sm^2) + 2(2l i) \cdot sm^2 + 4ms^2) + 2sl^2m^2 + 2lms^2 = m^3 \cdot (0.5l^2 + 1.5l + 3l^3) + m^2 \cdot (\frac{l-7l^2}{4} + 5ls + 6sl^3 3sl^2) + m \cdot (-0.25l^2 0.25l 3ls + 8ls^2) + 5s^3 1.5s^2 0.5s$
- 9. Для m = 1: $3n^3 + O(n^2)$
- 10. Для m = n: $5n^3 + O(n^2)$

2. Блочный р - поточный метод Жордана.

Дана матрица $A^{n\times n}$. Требуется найти обратную к ней матрицу A^{-1} , используя блочный р - поточный метод Жордана с выбором главного элемента по строке. Пусть $n=m\cdot l+s$. Тогда матрицу A можно представить в виде:

$$\begin{pmatrix} A_{11}^{m \times m} & A_{12}^{m \times m} & \dots & A_{1l}^{m \times m} & A_{1,\ l+1}^{m \times s} \\ A_{21}^{m \times m} & A_{22}^{m \times m} & \dots & A_{2l}^{m \times m} & A_{2,\ l+1}^{m \times s} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A_{l1}^{m \times m} & A_{l2}^{m \times m} & \dots & A_{ll}^{m \times m} & A_{l,l+1}^{m \times s} \\ A_{l+1,\ l}^{s \times m} & A_{l+1,\ l}^{s \times m} & A_{l+1,\ l}^{s \times s} & A_{l+1,\ l+1}^{s \times s} \end{pmatrix}$$

Для нахождения обратной матрицы используем присоединённую матрицу $B = E^{n \times n}$, разделённую на блоки аналогичным образом.

2.1 Разделение на потоки.

Теперь разделим строки матриц A и E между p потоками. 1-й поток - родительский. Далее, потоку с номером q ($q \leq p$) будут соответствовать строки с номерами $q + p \cdot t$ ($t \in \mathbb{N}, \ q + p \cdot t \leq (l + 1)$).

2.2 Шаги блочного р - поточного метода Жордана.

Все шаги метода Жордана будут описаны для произвольного $k=1\dots l$. Шаги для k=l+1 будут описаны отдельно. Начинаем с k=1:

- 1. В k-ой строке матрицы A хотим посчитать обратные для тех блоков $A_{kj}^{m\times m}$ ($j=k\dots l$), для которых это возможно. Для этого распределим блоки $A_{kj}^{m\times m}$ ($j=k\dots l$) между потоками таким образом, как в начале распределили строки (в силу того, что матрица квадратная и количество блоков в строке равно количеству блоков в столбце, нумерация столбцов согласно их потокам соответствует аналогичной нумерации строк). После этого, в каждом потоке найдем обратные матрицы (обычным методом Жордана) для тех блоков, для которых это возможно. Среди них в каждом потоке выберем блок с минимальной нормой². Если ни в одном из потоков не удалось найти обратимые блоки, метод не применим для заданного m. Иначе, среди уже найденных минимальных выберем в качестве главного элемента $A_{kk}^{m\times m}$ такой блок $A_{kj}^{m\times m}$, что норма $\|(A_{kj}^{m\times m})^{-1}\|$ будет минимальна для всех (первая точка синхронизации для текущего k). Далее, в каждом из потоков меняем k-й и j-й столбцы матрицы A (столбцы матрицы B на данном этапе не меняем).
- 2. С помощью обычного метода Жордана обращаем $A_{kk}^{m \times m}$.
- 3. В потоке, который соответствует k-ой строке, для $j=k+1\dots l$ умножаем блоки $A_{kj}^{m\times m}$ слева на $(A_{kk}^{m\times m})^{-1}$, а для j=l+1 умножаем блок $A_{k,\ l+1}^{m\times s}$ слева на $(A_{kk}^{m\times m})^{-1}$:

$$\begin{array}{ccc} A_{kj}^{m\times m} & \longrightarrow & (A_{kk}^{m\times m})^{-1} \times A_{kj}^{m\times m} \\ A_{k,\;l+1}^{m\times s} & \longrightarrow & (A_{kk}^{m\times m})^{-1} \times A_{k,\;l+1}^{m\times s} \end{array}$$

В этом же потоке, для $j=1\dots l$ умножаем блоки $B_{kj}^{m\times m}$ слева на $(A_{kk}^{m\times m})^{-1}$, а для j=l+1 умножаем блок $B_{k,\ l+1}^{m\times s}$ слева на $(A_{kk}^{m\times m})^{-1}$:

$$\begin{array}{ccc} B_{kj}^{m\times m} & \longrightarrow & (A_{kk}^{m\times m})^{-1} \times B_{kj}^{m\times m} \\ B_{k,\ l+1}^{m\times s} & \longrightarrow & (A_{kk}^{m\times m})^{-1} \times B_{k,\ l+1}^{m\times s} \end{array}$$

 $^{^2}$ В качестве нормы матрицы A принимаем $\|A^{m imes m}\| := \max_{i=1,\dots,m} \sum_{j=1}^m |a_{ij}|$

На этом шаге **вторая** точка синхронизации для текущего k.

4. Замечание. Этот шаг выполняется всеми потоками параллельно. Шаг описан для q-го потока. Для $i=q+p\cdot t$ $(t\in\mathbb{N},\ q+p\cdot t\ <\ (l+1),\ q\neq k)$ в матрицах A и B из i-той строки вычитаем k-ую, умноженную на $A_{ik}^{m\times m}$:

$$\begin{split} j &= k+1 \dots l: & A_{ij}^{m \times m} \longrightarrow (A_{ij}^{m \times m} - A_{ik}^{m \times m} \times A_{kj}^{m \times m}) \\ j &= l+1: & A_{i,\ l+1}^{m \times s} \longrightarrow (A_{i,\ l+1}^{m \times m} - A_{ik}^{m \times m} \times A_{k,\ l+1}^{m \times m}) \\ j &= 1 \dots l: & B_{ij}^{m \times m} \longrightarrow (B_{ij}^{m \times m} - A_{ik}^{m \times m} \times B_{kj}^{m \times m}) \\ j &= l+1: & B_{i,\ l+1}^{m \times s} \longrightarrow (B_{i,\ l+1}^{m \times m} - A_{ik}^{m \times m} \times B_{k,\ l+1}^{m \times s}) \end{split}$$

Если (l+1)-я строка попала в поток с номером q:

$$\begin{split} i = l+1, & j = k \dots l: & A_{l+1,\ j}^{s \times m} \longrightarrow (A_{l+1,\ j}^{s \times m} - A_{l+1,\ k}^{s \times m} \times A_{kj}^{m \times m}) \\ & j = l+1: & A_{l+1,\ l+1}^{s \times s} \longrightarrow (A_{l+1,\ l+1}^{s \times m} - A_{l+1,\ k}^{s \times m} \times A_{k,\ l+1}^{m \times s}) \\ i = l+1, & j = 1 \dots l: & B_{l+1,\ j}^{s \times m} \longrightarrow (B_{l+1,\ j}^{s \times m} - A_{l+1,\ k}^{s \times m} \times B_{kj}^{m \times m}) \\ & j = l+1: & B_{l+1,\ l+1}^{s \times s} \longrightarrow (B_{l+1,\ l+1}^{s \times s} - A_{l+1,\ k}^{s \times m} \times B_{k,\ l+1}^{m \times s}) \end{split}$$

- 5. Дожидаемся, пока все потоки закончат выполнение предыдущего шага (**третья** точка синхронизации для текущего k). Если $k \neq l$ увеличиваем k на 1 и переходим к 1-ому шагу. Иначе переходим на следующий шаг.
- 6. С помощью обычного метода Жордана в потоке, который соответствует l+1 ой строке, находим $(A_{l+1,\ l+1}^{s\times s})^{-1}$ Если блок необратим, то метод не применим для заданного m.
- 7. В этом же потоке для $j=1\dots l$ умножаем блоки $B_{l+1,\ j}^{s\times m}$ слева на $(A_{l+1,\ l+1}^{s\times s})^{-1}$, для j=l+1 умножаем блок $B_{l+1,\ l+1}^{s\times s}$ слева на $(A_{l+1,\ l+1}^{s\times s})^{-1}$:

Два последних шага - **первая** точка синхронизации для k = l + 1.

8. Замечание. Этот шаг выполняется всеми потоками параллельно. Шаг описан для q-ого потока. Для $i=q+p\cdot t$ $(t\in\mathbb{N},\ q+p\cdot t\ <\ (l+1))$ в матрице B из i-той строки вычитаем (l+1)-ую, умноженную на $A_{i,\ l+1}^{m\times s}$:

$$j = 1 \dots l: \qquad B_{ij}^{m \times m} \longrightarrow (B_{ij}^{m \times m} - A_{i, \ l+1}^{m \times s} \times B_{l+1, \ j}^{s \times m})$$

$$j = l+1: \qquad B_{i, \ l+1}^{m \times s} \longrightarrow (B_{i, \ l+1}^{m \times s} - A_{i, \ l+1}^{m \times s} \times B_{l+1, \ l+1}^{s \times s})$$

9. Дожидаемся выполнения всех потоков (**вторая** точка синхронизации для k=l+1) и выходим из алгоритма.

В результате вышепредставленных шагов получим следующую матрицу:

$$\begin{pmatrix} E_{11}^{m \times m} & 0 & \dots & 0 & 0 & | \tilde{B}_{11}^{m \times m} & \tilde{B}_{12}^{m \times m} & \dots & \tilde{B}_{1l}^{m \times m} & \tilde{B}_{1,\ l+1}^{m \times s} \\ 0 & E_{22}^{m \times m} & \dots & 0 & 0 & | \tilde{B}_{21}^{m \times m} & \tilde{B}_{22}^{m \times m} & \dots & \tilde{B}_{2l}^{m \times m} & \tilde{B}_{2,\ l+1}^{m \times s} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & E_{ll}^{m \times m} & 0 & | \tilde{B}_{l1}^{m \times m} & \tilde{B}_{l2}^{m \times m} & \dots & \tilde{B}_{l}^{m \times m} & \tilde{B}_{l,\ l+1}^{m \times s} \\ 0 & 0 & \dots & 0 & E_{l+1,\ l+1}^{s \times s} & | \tilde{B}_{l+1,\ l}^{s \times m} & \tilde{B}_{l+1,\ l}^{s \times m} & \dots & \tilde{B}_{l+1,\ l}^{s \times m} & \tilde{B}_{l+1,\ l}^{s \times s} \\ \end{pmatrix}$$

Если бы мы искали матрицу, обратную к матрице A, методом Жордана с выбором главного элемента по столбцу, переставляя только строки матрицы A, в правой части мы получили бы обратную матрицу. Однако в методе Жордана с выбором главного элемента по строке в матрице A мы переставляем не строки, а столбцы. Пусть U_1, U_2, \ldots, U_l - элементарные матрицы, соответствующие перестановкам столбцов. Тогда перестановки столбцов меняют матрицу следующим образом:

$$A \longrightarrow AU_1 \dots U_l$$

Так как $AU_1 \dots U_l = E$, то $(AU_1 \dots U_l)^{-1} = U_l^{-1} \dots U_1^{-1} A^{-1} = E$. Откуда обратная матрица равна $A^{-1} = U_1 \dots U_l$. Следовательно, чтобы получить ответ, необходимо поменять у матрицы \tilde{B} строки так, как у матрицы A менялись столбцы:

$$A^{-1} = U_1 \dots U_l \tilde{B}.$$

2.3 Точки синхронизации.

Все точки синхронизации были отмечены в течение описания алгоритма. Всего их $3 \cdot k + 2$.

2.4 Оценка числа операций.

- 1. Для нахождения обратной $m \times m$ матрицы обычным методом Жордана требуется порядка $3m^3 \frac{m^2}{2} \frac{m}{2}$ операций.
- 2. Количество операций для умножения двух матриц $m \times m$: $m \cdot m \cdot (m + m 1) = 2m^3 m^2$.
- 3. Количество операций для умножения двух матриц $m \times s$ и $s \times m$: $m \cdot m \cdot (s+s-1) = 2m^2s m^2$.
- 4. Количество операций для умножения двух матриц $m \times m$ и $m \times s$: $m \cdot s \cdot (m + m 1) = 2m^2s ms$.
- 5. Количество операций при реализации умножения блоков в пунктах 3 и 7: $(\sum_{i=1}^{l} (l + l i) \cdot (2m^3 m^2)) + (l+l) \cdot (2m^2s ms) + l \cdot (2s^2m ms) + 2s^3 s^2 = (\sum_{i=1}^{l} (2l i) \cdot (2m^3 m^2)) + 2l \cdot (2m^2s ms) + l \cdot (2s^2m ms) + 2s^3 s^2$
- 6. Не ограничивая общности, считаем, что $p \mid l$, так как иначе в качетстве l всегда можем взять такое $\tilde{l} \in \mathbb{N}, \ \tilde{l} > l$, что $p \mid \tilde{l}$ и ограничить наше оценку сверху. Тогда, каждому потоку(кроме родительского, у которого будет на 1 поток больше) принадлежит $i = \frac{l}{p}$ строк.
- 7. Количество операций для всех обращений в одном потоке порядка: $(3m^3 \frac{m^2}{2} \frac{m}{2}) \cdot \frac{(l^2 + 1)}{p}$
- 8. Количество операций при реализации пунктов 4 и 8: $(\sum_{i=1}^{\frac{l}{p}+1}(l+1)\cdot((2l-p\cdot[\frac{i}{p}])\cdot 2m^3+4sm^2)+2(2l-i)\cdot sm^2+4\frac{ms^2}{p})$
- 9. Суммируем результаты, получаем: $\frac{m^3}{p} \cdot (3l^3 + 0.5(3l^2 + l)) + m^2l^2 + \frac{m^2}{p} \cdot (8sl^3 3sl^2 + 6ls) + 2m^2 + \frac{m}{p} \cdot (8ls^2 0.5l^2 0.25l 3ls) + 6s^3 + ml 3ls^2$
- 10. В итоге, для m = 1, p = 1: $3n^3 + O(n^2)$
- 11. Для $m = n, p = 1:5n^3 + O(n^2)$