Serii de funcții

Fie $u_n: X \mapsto R(C)$ un şir de funcţii şi fie $s_n = \sum_{k=1}^n u_n$ şirul sumelor parţiale.

Se spune că seria $\sum_{n} u_n$ este punctual (simplu) convergentă dacă s_n este punctual convergent. Seria este uniform convergentă dacă s_n converge uniform. Suma seriei este limita (punctuală sau uniformă) a şirului sumelor parțiale.

Criteriul lui Weierstrass de convergență uniformă

Dacă există un şir cu termeni pozitivi a_n astfel încât $|u_n(x)| \le a_n, \forall x \in X$ şi seria $\sum_n a_n$ converge, atunci seria $\sum_n u_n$ converge uniform.

Transfer de continuitate

Dacă u_n sunt funcții continue și seria $\sum_n u_n$ converge uniform la f, atunci

funcția f este continuă.

Integrare și derivare termen cu termen

Se spune că o serie de funcții $\sum_{n} f_n$ are proprietatea de integrare termen cu

termen pe intervalul
$$[a,b]$$
 dacă $\int_a^b \left(\sum_n f_n(x)\right) dx = \sum_n \int_a^b f_n(x) dx$.

Se spune că o serie de funcții $\sum_{n} f_n$ are proprietatea de derivare termen

cu termen pe mulţimea
$$D$$
 dacă $\left(\sum_{n=1}^{n} f_n(x)\right)' = \sum_{n=1}^{n} f_n'(x), \forall x \in D.$

Are loc următorul rezultat:

Fie $u_n:[a,b]\mapsto R$ un şir de funcţii continue.

a. Dacă seria $\sum_{n} u_n$ converge uniform la f , atunci f este integrabila și

$$\int_{a}^{b} \sum_{n} u_{n}(x) dx = \sum_{n} \int_{a}^{b} u_{n}(x) dx.$$

b. Presupunem că funcțiile u_n sunt derivabile. Dacă seria $\sum_n u_n$ converge

punctual la f și dacă există $g:[a,b]\mapsto R$ astfel încât $\sum_n u_n'$ converge uni-

form la g, atunci f este derivabilă și f' = g.

Trebuie menționat că ipotezele teoremei de mai sus sunt condiții suficiente (nu şi necesare) pentru ca o serie să se poată integra (respectiv deriva) termen cu termen.

Formula lui Taylor

Fie $I\subseteq R$ un interval deschis și fie $f:I\mapsto R$ o funcție de clasă \mathcal{C}^m pe I. Pentru orice $a\in I$ definim polinomul Taylor de gradul $n\le m$ asociat funcției f în punctul a:

$$T_{n,f,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}.$$

Restul de ordin n este, prin definiție,

$$R_{n,f,a}(x) = f(x) - T_{n,f,a}(x).$$

Polinoamele Taylor de gradul întâi (respectiv de gradul al doilea) se numesc aproximarea liniară (respectiv pătratică) ale funcției în jurul punctului a.

Teoremă (Formula lui Taylor cu restul Lagrange)

Fie $f: I \mapsto R$ de clasă \mathcal{C}^{n+1} și $a \in I$. Atunci, pentru orice $x \in I$, există

 $\xi \in (a,x)$ (sau (x,a)) astfel încât

$$f(x) = T_{n,f,a}(x) + \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi).$$

Observații

1. Restul de ordin n poate fi scris sub forma Peano : $\exists \omega : I \mapsto R$ astfel încât $\lim_{x \to a} \omega(x) = \omega(a) = 0$ și

$$R_{n,f,a}(x) = \frac{(x-a)^n}{n!} \omega(x).$$
2. $\lim_{x \to a} \frac{R_{n,f,a}(x)}{(x-a)^n} = 0.$

2.
$$\lim_{x \to a} \frac{R_{n,f,a}(x)}{(x-a)^n} = 0.$$

3. Restul de ordin n poate fi scris sub forma integrală:

$$R_{n,f,a}(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t) (x-t)^n dt.$$

Seria Taylor

Fie $I\subseteq R$ un interval deschis și fie $f:I\mapsto R$ o funcție de clasă \mathcal{C}^∞ pe I. Pentru orice $x_0 \in I$ definim seria Taylor asociată funcției f în punctul x_0 :

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Observații

1. Seria Taylor asociată funcției f în punctul x_0 este o serie de puteri.

2. Seria Taylor asociată lui f în $x_0 = 0$ se mai numește și serie Mc Laurin.

Teorema de reprezentare a funcțiilor prin serii Taylor

Fie a < b și fie $f \in \mathcal{C}^{\infty}([a,b])$ astfel încât există M > 0 cu proprietatea că $\forall n \in \mathbb{N}, \forall x \in [a,b], |f^{(n)}(x)| \leq M.$ Atunci pentru orice $x_0 \in (a,b)$, seria Taylor a lui f în jurul lui x_0 este uniform convergentă pe [a, b] și suma ei este funcția f, adică $f(x) = \sum_{n \ge 0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$, $\forall x \in [a, b]$.

Fie $(a_n)_{n\in\mathbb{N}}$ un şir de numere complexe şi $a\in C$. Seria $\sum_{n=0}^{\infty}a_n(z-a)^n$ se numește seria de puteri centrată în a definită de șirul a_n .

Formula razei de convergență Fie seria $\sum_{n=0}^{\infty} a_n (z-a)^n$ și fie $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. Raza de convergență a seriei date, (notată R), se definește astfel:

$$R = \left\{ \begin{array}{ll} 0 & \mathrm{dac} \alpha = \infty \\ \infty & \mathrm{dac} & \alpha = 0 \\ \frac{1}{\alpha} & \mathrm{dac} & \alpha \in (0, \infty) \end{array} \right.$$

Teorema lui Abel

Fie $\sum_{n=0}^{\infty} a_n (z-a)^n$ o serie de puteri și fie R raza sa de convergență.

- 1. Dacă R=0, atunci seria converge numai pentru z=a.
- **2.** Dacă $R = \infty$, atunci seria converge absolut pentru orice $z \in C$.
- **3.** Dacă $R \in (0,\infty)$, atunci seria este absolut convergentă pentru |z-a| < R și divergentă pentru |z-a| > R.
- 4. Seria este uniform convergentă pe orice disc închis $|z-a| \le r$, $\forall r \in (0, R)$. Derivare și integrare termen cu termen

Fie
$$\sum_{n=0}^{\infty} a_n (z-a)^n$$
 o serie de puteri și fie $S(z)$ suma sa.

- 1. Seria derivatelor $\sum_{n=1}^{\infty} na_n(z-a)^{n-1}$ are aceeasi rază de convergență cu seria inițială și suma sa este S'(z).
- 2. Seria primitivelor $\sum_{n=0}^{\infty} a_n \frac{(z-a)^{n+1}}{n+1}$ are aceeasi rază de convergență cu seria inițială și suma sa este o primitivă a lui S.

Functii elementare

1.
$$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot z^n, \ \forall z \in C.$$

2.
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \ \forall |z| < 1.$$

3.
$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, \ \forall |z| < 1.$$

4.
$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \cdot z^{2n}, \ \forall z \in C.$$

5.
$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot z^{2n+1}, \ \forall z \in C.$$

6.
$$(1+z)^{\alpha} = \sum_{n\geq 0} \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-n+1)}{n!} z^n, \ \forall |z| < 1, \ \alpha \in R.$$