

Source:

UCI Machine Learning Repository

Background:

Extraction was done by Barry
 Becker from the 1994 Census
 database

Stakeholder:

- The Government, NGOs
- Labour Associations
- Business strategies and policies related to income and socioeconomic inequality.

Target:

 Prediction task is to determine whether a person makes over 50K a year

Category:

Classification Problem

Features:

14 Features

Samplesize:

• 32561 Entries

To predict whether an individual's income exceeds \$50,000 per year or not, based on demographic, employment, and socio-economic attributes

Distribution of Annual Income

- Imbalance of Incomes.
- 75.9% Percent of the population below the \$50K Income Level

Distribution of Annual Income

Distribution of Annual Income by Gender

- Males 66.9%.
- Females 33.1%
- More Females than Males are Below the baseline income.
- 89% of the Females are Below \$50k Annual Income.
- The number of Males Below \$50k are twice that of those Above \$50k.
- In those Above_\$50K, the Males are 19.6%
 Higher than The Females

Distribution of Annual Income by Work Class

- Only persons in the Self-emp-inc
 Workclass are Above_\$50K to greater
 percentage as compared to those
 Below_\$50K.
- All other work classes have more persons with the annual Income Below_\$50K more than those with the Annual Income Above_\$50K.

Machine **Learning Models**

- 1. Decision Tree Model
- 2. Random Forest Model
- Logistic Regression Models
- 4. K-Nearest Neighbors Model
- 5. Logistic Regression Model
- 6. Neural networks Model

Performance of Other Models

d	Class	dec_f1-score	rf_f1-score	knn_f1-score	logreg1_f1-score	logreg2_f1-score	NN_f1-score
	0	0.90	0.91	0.90	0.91	0.91	0.91
	1	0.62	0.68	0.65	0.66	0.66	0.66
	accuracy	0.85	0.86	0.84	0.85	0.85	0.85
	macro avg	0.76	0.79	0.77	0.78	0.78	0.79
ı	weighted avg	0.84	0.85	0.84	0.85	0.85	0.85

Precision:

• Weighted Avg: 85.3%

Recall:

Weighted Avg: 85.9%

F1 Score:

- Model's precision and recall for a particular class summarized
- Weighted F1-Score of 85.3% achieved
- High F1 score indicates high precision and high recall
- Model is effective in accurately classifying new data.
- New data can be classified identified while avoiding false positives

False Positives:

- These occur when persons who are Classified by the Model as having income Above \$50K but in reality they are Below \$50K.
- This can lead to these individuals missing out on government relief/aid programs intended for those in need.
- This could result in dire consequences for their well-being.

False Negatives:

- These occur when individuals are classified as having income below \$50K by the model, but in reality, they earn above \$50K.
- This can result in these individuals being subjected to receiving national aid/relief, which they do not require, leading to the misallocation of resources.
- Therefore, it's crucial to adjust the model's parameters to ensure that such misclassifications are minimized.
- Thereby increasing its accuracy and reducing wastage of government resources.

Model Recommendations

Model Performance:

- Inaccurate classifications can result in two types of errors.
- These can have significant consequences for individuals and the government as indicated above.
- To avoid such misclassifications, it's essential to fine-tune the model's parameters to increase its precision.
- It's also crucial to adjust the model's
 parameters to ensure that such
 misclassifications are minimized, thereby
 increasing its accuracy and reducing
 wastage of government resources.