

XAI를 활용한 자기지도학습 기반의 신용카드 이상탐지 분석 기법 연구

A Study on the Analysis of Credit Card Anomaly Detection based on Self-supervised Learning using XAI

빅데이터분석융합학(협동과정)

양소연

목차

1. 연구 문제 및 목적

2. 피드백에 대한 개선점

- 1. 논문 제목 수정
- 2. Flow chart를 통해 모델의 개념과 제안 알고리즘의 novelty 설명
- 3. Sequence data 생성 알고리즘이 아닌 CTGAN을 사용하여 합성데이터를 만든 이유
- 4. Random Forest로 변수선택을 한 이유
- 5. 실험 결과를 한눈에 비교할 수 있도록 구성

1. 연구 문제 및 목적

연구 문제 정의 및 해결방안

데이터 라벨링(Labeling)

- Labeled data 확보가 어려움
- 혼재되어 있음

적은 수의 데이터만으로도 모델의 성능 유지 혹은 향상

- LSTM Autoencoder를 사용한 비지도학습
- TabNet을 활용한 자기지도학습

데이터 불균형

- FDS는 이진 분류 예측 모델
- 정상 / 이상 비율의 차이가 큼

이상 데이터의 수를 오버샘플링하여 비교 실험 진행

- 합성 데이터(Synthetic data)
- CTGAN을 활용하여 이상데이터를 오버샘플링

1. 연구 문제 및 목적

데이터 라벨링

현실적으로 라벨링 된 데이터가 부족하므로 자기지도학습 기반의 모델 사용

- LSTM Autoencoder
- Self-supervised learning TabNet

데이터 불균형

보통의 기계학습 모델은 클래스 비율이 동일하다고 가정

• 이상 데이터의 비율을 각각 0.3%, 0.7%으로 CTGAN을 활용하여 오버샘플링

XAI 기법을 활용한 변수 선택

- Random Forest 기반의 SHAP 모델 사용
- › TabNet Encoder를 활용하여 주요 변수 추출

Time sequence를 반영하여 이상 데이터 탐지

- LSTM Autoencoder의 time steps 파라미터에 변화를 주며 비교 실험
- TabNet의 momentum 파라미터에 변화를 주며 비교 실험

1. 논문 제목 수정

(변경 전)

- 시간대를 고려한 신용카드 이상탐지 기법 연구
- A Study on Credit Card Anomaly Detection Considering Time Sequences

(변경 후)

- XAI를 활용한 자기지도학습 기반의 신용카드 이상탐지 분석 기법 연구
- A Study on the Analysis of Credit Card Anomaly Detection based on Self-supervised Learning using XAI

2. Flow chart를 통해 모델의 개념과 제안 알고리즘의 novelty 설명

LSTM Autoencoder를 활용한 이상치 탐지 기법

2. Flow chart를 통해 모델의 개념과 제안 알고리즘의 novelty 설명

TabNet Self-supervised Learning을 활용한 이상치 탐지 기법

Time	V1	V2	 V27	V28	Amount
0	-1.35981	-0.07278	 0.133558	-0.02105	?
0	?	0.266151	 -0.00898	?	2.69
1	-1.35835	?	 -0.05535	?	378.66
1	-0.96627	-0.18523	 ?	0.061458	123.5
2	-1.15823	5	 0.219422	0.215153	?

Time	V1	V2	•••	V27	V28	Amount
0						149.62
0	1.191857				0.014724	
1		-1.34016			-0.05975	
1				0.062723		
2		0.877737				69.99

Supervised fine-tuning

Time	V1	V2	 V27	V28	Amount
0	-1.35981	-0.07278	 0.133558	-0.02105	149.62
0	1.191857	0.266151	 -0.00898	0.014724	2.69
1	-1.35835	-1.34016	 -0.05535	-0.05975	378.66
1	-0.96627	-0.18523	 0.062723	0.061458	123.5
2	-1.15823	0.877737	 0.219422	0.215153	69.99

3. Sequence data 생성 알고리즘이 아닌 CTGAN을 사용하여 합성데이터를 만든 이유

- Conditional Tabular GAN은 정형 데이터에 좋은 성능을 보이는 알고리즘
- 신용카드 거래 데이터는 시간 순서의 특징도 보이지만 거래 데이터의 개별적 특성 또한 존재하므로 시퀀스 기반의 생성 알고리즘이 아닌 CTGAN 사용

Shared data의 'Time'변수 분포

Fraud 0.3%의 'Time'변수 분포

Fraud 0.7%의 'Time'변수 분포

4. Random Forest로 변수선택을 한 이유

- 이상치 탐지를 위해 보통 비지도학습을 사용하지만 Random Forest는 복잡한 데이터셋에서도 잘 작동하며 과적합 방지에 효과적
- 선행연구를 살펴보면 Random Forest 를 사용하였을 때 98.6%의 정확도
- 이상치 탐지 목적보단 변수 선택을 위해 Random Forest를 사용

5. 실험 결과를 한눈에 비교할 수 있도록 구성

XAI 기법을 활용하여 변수를 선택

5. 실험 결과를 한눈에 비교할 수 있도록 구성

최근 데이터 반영 개수에 따른 모델 성능 비교

이상치 비율이 낮으면 데이터의 전반적인 흐름을 보아야 하지만 이상치 비율이 높으면 최근 데이터만 보는 것이 이상금융거래탐지에 유리

감사합니다

1. 서론

Ⅱ. 관련 연구

2.1. 레이블 유무에 따른 이진 분류 예측 모델 연구

2.2. 데이터 불균형 문제 해결 기법 관련 연구

Ⅲ. 시스템 모델

3.1. 데이터 정의

3.2. 데이터 전처리

3.2.1. 데이터 리샘플링

3.2.2. 변수 선택

3.3. 모델 평가 지표

IV. LSTM Autoencoder를 활용한 이상 탐지

4.1 LSTM Autoencoder 모델

4.2 전통적 비지도학습 기법의 예시

4.2.1. Local Outlier Factor

4.2.2. Isolation Forest

4.2.3. 전통적 비지도 학습과 제안 알고리즘의 비

4.3. Time sequence 변화에 따른 비교

V. TabNet을 활용한 이상 탐지

5.1. Self-supervised learning 모델

5.2. Momentum 변화에 따른 비교

5.3. 설명 가능한 TabNet

Ⅵ. 결론 및 향후 계획

Ⅰ.서론

Ⅱ. 관련 연구

2.1. 레이블 유무에 따른 이진 분류 예측 모델 연구

2.2. 비지도학습을 활용한 이상 거래 탐지 모델 연구

2.3. 데이터 불균형 문제 해결 기법 관련 연구

Ⅲ. 연구 방법

3.1. 데이터 정의

3.2. 데이터 전처리

3.2.1. 생성 알고리즘을 활용한 데이터 리샘플링

3.3. 모델 평가 지표

Ⅳ. 제안 알고리즘

4.1. LSTM Autoencoder 모델

4.2. Self-supervised TabNet 모델

V. 실험 및 성능 비교 분석

5.1 실험 환경

4.1.1. XAI 기법을 활용한 변수 선택 기법

4.1.2. Time sequence 변화에 따른 비교 실험

5.2 실험 결과

4.2.1. TabNet encoder를 활용한 변수 선택 기법

4.2.2. Momentum 변화에 따른 비교 실험

Ⅵ. 결론 및 시사점