CME 252: Support Vector Machines

AJ Friend ICME, Stanford University

Introduction

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Sparse Violation Classifier

Support Vector Classifier

Loss Functions

Nonlinear Separators

Multiclass SVN

Support Vector Machines

- many related/overlapping names:
 - maximum margin classifier
 - support vector classifier
 - ▶ (robust) linear discrimination/classification
 - support vector machine
- ▶ I won't always use the right name
- ▶ we'll start with:
 - find a hyperplane to separate data points into two classes
 - use hyperplane to classify new (unseen) points

Support Vector Machines

Scenarios

- classify data in increasingly sophisticated scenarios:
 - strictly linearly separable
 - approximately (not strictly) linearly separable
 - approximately non-linearly separable (hyperplanes won't work)

Strictly Linearly Separable Data

Approximately Linearly Separable Data

Approximately Non-linearly Separable

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Sparse Violation Classifier

Support Vector Classifier

Loss Functions

Nonlinear Separators

Multiclass SVN

- ▶ data: $x_i \in \mathbf{R}^n$ with labels $y_i \in \{+1, -1\}$ for i = 1, ..., N
- assume strictly linearly separable
- find hyperplane $\{x \mid a^Tx = b\}$ that separates points by label

$$a^T x_i - b > 0$$
 if $y_i = +1$
 $a^T x_i - b < 0$ if $y_i = -1$

▶ rescale *a*, *b* so that

$$a^T x_i - b \ge +1$$
 if $y_i = +1$
 $a^T x_i - b \le -1$ if $y_i = -1$

▶ for all *i*, rewrite constraints as

$$y_i\left(a^Tx_i - b\right) \ge 1$$

get feasibility problem

minimize
$$0$$
 subject to $y_i\left(a^Tx_i-b\right)\geq 1$ for $i=1,\ldots,N$

with variables $a \in \mathbf{R}^n$, $b \in \mathbf{R}$

CVXPY for Separable Problem

```
a = Variable(n)
b = Variable()

obj = Minimize(0)
constr = [mul_elemwise(y, X*a - b) >= 1]
Problem(obj, constr).solve()
```

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Sparse Violation Classifier

Support Vector Classifier

Loss Functions

Nonlinear Separators

Multiclass SVN

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Sparse Violation Classifier

Support Vector Classifier

Loss Functions

Nonlinear Separators

Multiclass SVN

- ▶ infinitely many choices for separating hyperplane
- choose one which maximizes width of separating slab

$$\{x \mid -1 \le a^T x - b \le +1\}$$

"maximum margin" or "robust linear" classifier

margin, or width of separating slab

$$\{x \mid -1 \le a^T x - b \le +1\}$$

is $2/||a||_2$ (via linear algebra)

suggests optimization problem

maximize
$$2/\|a\|_2$$
 subject to $y_i\left(a^Tx_i-b\right)\geq 1$ for $i=1,\ldots,N$

but not convex!

reformulate:

maximize
$$2/\|a\|_2 \iff \text{minimize } \|a\|_2$$

gives

minimize
$$\|a\|_2$$
 subject to $y_i\left(a^Tx_i-b\right)\geq 1$ for $i=1,\ldots,N,$

the maximum margin classifier (MMC) problem

CVXPY

```
a = Variable(n)
b = Variable()

obj = Minimize(norm(a))
constr = [mul_elemwise(y, X*a - b) >= 1]
Problem(obj, constr).solve()
```

Example

- note that max margin depends on only 3 tangent data points, called support vectors
- could throw away remaining data and get same solution

Non-separable Linear Classification

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Sparse Violation Classifier

Support Vector Classifier

Loss Functions

Nonlinear Separators

Multiclass SVN

Non-separable Linear Classification

Non-separable Linear Classification

- no separating hyperplane exists
- try finding linear separator

```
obj = Minimize(0)
constr = [mul_elemwise(y, X*a - b) >= 1]
prob = Problem(obj, constr)
prob.solve()
```

results in prob.status == 'infeasible'

Sparse Violation Classifier

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Sparse Violation Classifier

Support Vector Classifier

Loss Functions

Nonlinear Separators

Multiclass SVN

Sparse Violation Classifier

- ▶ idea: "relax" constraints to make problem feasible
- \blacktriangleright add ${\bf slack}$ variables $u\in {\bf R}_+^N$ to allow data points to be on "wrong side" of hyperplane

$$y_i\left(a^Tx_i-b\right) \ge 1-u_i, \quad u_i \ge 0$$

- $u_i = 0$: x_i on **right** side of hyperplane
- ▶ $0 < u_i < 1$: x_i on **right** side, but **inside slab** $\{x \mid -1 \le a^T x b \le +1\}$
- $u_i > 1$: x_i on **wrong** side of hyperplane

Sparse Violation Classifier

- u gives measure of how much constraints are violated
- ▶ for large *u* can make **any** data feasible
- want u "small"; minimize its sum

minimize
$$\mathbf{1}^T u$$
 subject to $y_i \left(a^T x_i - b \right) \geq 1 - u_i$ for $i = 1, \dots, N$ $u \geq 0$

- ▶ I'll call it sparse violation classifier (SpVC)
- ▶ $\mathbf{1}^T u = \|u\|_1$, since $u \ge 0$; good **heuristic** for separator with few (sparse) violations

CVXPY

```
a = Variable(n)
b = Variable()
u = Variable(N)

obj = Minimize(sum_entries(u))
constr = [mul_elemwise(y, X*a - b) >= 1 - u, u >= 0]
Problem(obj, constr).solve()
```

Example

▶ solution depends only on points inside of, tangent to, or on wrong side of slab

Example

- ▶ "+" class has 3 misclassified points
- ▶ "—" class has 2 correctly classified, but inside slab

Support Vector Classifier

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Sparse Violation Classifier

Support Vector Classifier

Loss Functions

Nonlinear Separators

Support Vector Classifier

- idea: combine aspects of last two classifiers
 - sparse violations of SpVC
 - robustness of large separating slab in MMC
- optimize both:

minimize
$$\|a\|_2 + \rho \mathbf{1}^T u$$

subject to $y_i \left(a^T x_i - b \right) \ge 1 - u_i$ for $i = 1, \dots, N$
 $u \ge 0$

- ho > 0 trades-off between margin $2/\|a\|_2$ and classification violations $\mathbf{1}^T u$ (multi-objective optimization)
- support vector classifier (SVC)

CVXPY

```
a = Variable(n)
b = Variable()
u = Variable(N)
rho = .1

obj = Minimize(norm(a) + rho*sum_entries(u))
constr = [mul_elemwise(y, X*a - b) >= 1 - u, u >= 0]
Problem(obj, constr).solve()
```

Example with $\rho = .1$

Example with $\rho = 10$

Loss Functions

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Sparse Violation Classifier

Support Vector Classifier

Loss Functions

Nonlinear Separators

Multiclass SVN

Hinge Loss

▶ in SpVC, it follows from $y_i\left(a^Tx_i-b\right)\geq 1-u_i$, $u_i\geq 0$, that

$$u_i = \begin{cases} 0 & y_i \left(a^T x_i - b \right) \ge 1\\ 1 - y_i \left(a^T x_i - b \right) & y_i \left(a^T x_i - b \right) < 1 \end{cases}$$

lacktriangleright rewrite as $u_i = \ell_h \left[y_i \left(a^T x_i - b
ight)
ight]$, where

$$\ell_h(z) = \begin{cases} 0 & z \ge 1\\ 1 - z & z < 1 \end{cases}$$

is the **hinge loss** function, equivalently: $\max(0, 1-z)$ or $(1-z)_+$

Hinge Loss

- $\begin{array}{l} \blacktriangleright \ u_i = \ell_h \left[y_i \left(a^T x_i b \right) \right] \\ \\ \blacktriangleright \ \ \text{no penality if} \ y_i \left(a^T x_i b \right) \geq 1 \end{array}$
- ► linear penalty otherwise

Hinge Loss SpVC

lacktriangleright note that ℓ_h is convex, so we can rewrite SpVC as the **equivalent problem**

minimize
$$\sum_{i=1}^{N} \ell_h \left[y_i \left(a^T x_i - b \right) \right]$$

- unconstrained (non-differentiable) convex problem
- ▶ in CVXPY:

```
def hinge(z):
    return pos(1-z)

r = mul_elemwise(y, X*a - b)
obj = Minimize(sum_entries(hinge(r)))
Problem(obj).solve()
```

Why Hinge Loss?

• "0-1" loss:
$$\ell_{0-1}(z) = \begin{cases} 0 & z \ge 0 \\ 1 & z < 0 \end{cases}$$

can't solve nonconvex, combinatorial problem to minimize (discrete) number of violations with

minimize
$$\sum_{i=1}^{N} \ell_{0-1} \left[y_i \left(a^T x_i - b \right) \right]$$

▶ hinge loss gives a **convex** approximation to 0-1 loss

Why Hinge Loss?

but not the only convex approximation

Hinge Loss SVC

can rewrite SVC as the unconstrained problem

minimize
$$\|a\|_2 + \rho \sum_{i=1}^N \ell_h \left[y_i \left(a^T x_i - b \right) \right]$$

- completely equivalent to the SVC formulation from before
- common form for classification problems:

minimize
$$r(a) + \rho \sum_{i=1}^{N} \ell \left[y_i \left(a^T x_i - b \right) \right]$$

- \blacktriangleright ℓ is a **loss function** (fit to data)
- ightharpoonup r is a **regularizer** (prior on parameters)
- ▶ mix and match regularizers and loss functions for different types of classification

Logistic Loss

▶ logistic loss is an alternative to hinge loss:

$$\ell_L(z) = \log(1 + \exp(-z))$$

convex, but not immediately obvious (2nd derivative test)

Logistic Regression

get classic logistic regression with

minimize
$$r(a) + \rho \sum_{i=1}^{N} \ell \left[y_i \left(a^T x_i - b \right) \right]$$

when:

- $r(a) \equiv 0$
- $\ell(z) = \ell_L(z)$
- nice probabilistic interpretation
- **regularized** logistic regression when r(a) is $||a||_2$ or $||a||_1$ (sparsity)

Logistic Loss in CVXPY

- $\ell_L(z) = \log(1 + \exp(-z))$ doesn't follow convex composition rules
- ▶ to represent in CVXPY, use existing convex atom **log-sum-exp**:

$$f(x) = \log\left(e^{x_1} + \dots + e^{x_n}\right)$$

convexity follows from Hessian argument

$$\ell_L(z) = \log(1 + \exp(-z)) = \log(e^0 + e^{-z})$$

```
def logistic(x):
    elems = []
    for xi in x:
        elems += [cvx.log_sum_exp(cvx.vstack(0, xi))]
```

return cvx.vstack(*elems)

Logistic Regression in CVXPY

```
a = Variable(n)
b = Variable()

r = mul_elemwise(y, X*a - b)
obj = Minimize(sum_entries(logistic(r)))
Problem(obj).solve()
```

Logistic Regression in CVXPY

SpVC (for comparison)

Other Loss Functions

many loss functions are available to modeler

- exponential loss: $\ell_{\exp}(z) = \exp(-z)$
- quadratic loss: $\ell_2(z) = (1-z)_+^2$

Other Loss Functions

Unified Models

many classification models fall into the form

minimize
$$r(a) + \rho \sum_{i=1}^{N} \ell \left[y_i \left(a^T x_i - b \right) \right]$$

unified way to think about many of these models

Unified Models

- ▶ linear separator feasibility problem: $\ell_{\rm hard}$, $r \equiv 0$
- ▶ MMC: ℓ_{hard} , $r(a) = ||a||_2$
- ▶ SpVC: ℓ_h , $r \equiv 0$
- ▶ SVC: ℓ_h , $r(a) = ||a||_2$
- ▶ Logistic regression: ℓ_L , $r \equiv 0$
- "boosting": $\ell_{\rm exp}$, $r \equiv 0$
- many other options for modeling
 - ▶ loss for max violation instead of sum
 - sparse a for feature selection
 - one-sided Huber loss for outliers?

Nonlinear Separators

64

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Sparse Violation Classifier

Support Vector Classifier

Loss Functions

Nonlinear Separators

Nonlinear Separators

Nonlinear Separators 66

Nonlinear Separators

- don't expect a linear separator to work
- ▶ to get nonlinear separators, we need to generalize our classification function

$$f(x) = a^T x + b$$

▶ consider polynomials of $x \in \mathbf{R}^n$ of degree d:

$$f(x) = \sum_{j_1 + \dots + j_n \le d} a_{j_1 \dots j_n} x_1^{j_1} \dots x_n^{j_n}$$

lacktriangle a little messy, but **still linear** in decision variable a

Support Vector Machines

- ▶ follow the same setup as before: data x_i with labels $y_i \in \{+1, -1\}$
- positive and negative examples on opposite "sides" of the classification function

$$f_a(x_i) > 0 \text{ if } y_i = +1$$

 $f_a(x_i) < 0 \text{ if } y_i = -1$

which we simplify to

$$y_i f_a(x_i) > 0$$

Nonlinear Separators 68

Support Vector Machines

quantify our dislike of violations with any loss function we like

$$\ell \left[y_i f_a(x_i) \right]$$

add regularization to get the same general set up as before:

minimize_a
$$r(a) + \rho \sum_{i=1}^{N} \ell \left[y_i f_a(x) \right]$$

- not really different from linear classification problem before
- we've just expanded the number of **features** for each point by considering polynomials
- support vector machine is usually ℓ_h , $r(a) = ||a||_2$

Multiclass SVM

Outline

Introduction

Linearly Separable Problem

Which Separator?

Maximum Margin Classifier

Non-separable Linear Classification

Sparse Violation Classifier

Support Vector Classifier

Loss Functions

Nonlinear Separators

Multiclass SVM

Multiclass SVM

- what if you have more than 2 labels?
- example: handwritten digit classification

Multiclass SVM Approaches

- one-vs-one
 - for each pair of classes, train an SVM
 - $ightharpoonup \frac{K(K-1)}{2}$ problems!
 - ▶ for a new observation, choose most frequently predicted label among all SVMs
- one-vs-all
 - train K SVMs: one single class vs. all others grouped
 - ▶ for new observation, choose label furthest away from separating hyperplane

Single-model Multiclass SVM

► TODO