EC504 A1 Advanced Data Structures, Fall 2015 Midterm Exam

Name Nicholas Mosella

1. True False (20 Points)

1/6

Answer True or False to each of the questions below. Answer true only if it is always true as stated, with no additional assumptions. No explanation is needed.

 \vdash a. An algorithm that runs in worst-case $\Theta(n^3)$ time takes longer, on the same input, than an algorithm with worst-case $\Theta(\log n)$ time.

b. $\sqrt[3]{n}$ is o(n). Tree $n > n^{\frac{1}{3}}$

- c. 2 log n is Ω(log n). The logne 2 logn n
- **d.** $2^{\log n}$ is $O(n^2)$. $n^2 > n$

$$= (\mathbf{e}. \ \sum_{k=1}^{n} \frac{1}{2^k} \text{ is } \Theta(\mathbf{n}). \Rightarrow \begin{cases} 1 \\ 2 \\ 2 \end{cases} = \begin{cases} 1 \\ 1 \end{cases}$$

- **f.** Any comparison-based sorting algorithm will take $\Theta(n \log n)$ on a sorted array of size n.
- g. It is possible to find the smallest log(n) elements of an unsorted array of size n in O(n)False
- **h.** Quicksort of a sorted list of n elements has a worst-case run time of O(n log n).
- A binary search tree of height lg(n) will always have at least n elements.
- There are 14 different binary search trees that contain only the numbers 4, 5, 6, 7.

2. Recurrences (24 Points)

For each of the following functions, provide:

- A recurrence T(n) describing the worst-case running time of the function with respect to n as provided (i.e. without optimizations).
- The tightest asymptotic upper and lower bound you can for T(n). Explain your work.

```
a. static public int A(int n) {

if (n == 0) return 1; O(1)

else if (n >= A(n/2)) return A(n/2);

else return 1;

}

** Using weater without we get a tight pand fO(n)
```

```
(b.) static public int B(int n) {

int sum;

if (n \le 2) return 1;

else {

for (int ii=0; ii<4; ii++) \stackrel{?}{\underset{}} 4 + 6

sum += B(n-1);

}

return sum;

}

6 ( n \log n)
```

EC54 Advanced Data Structures - Midterm Exam, Fall 2015

c. static public
$$C(int n)$$
{

if $(n == 0)$ return 1;

else {

int sum = $C(n/2) + C(n/2)$; = $T(\sqrt[n]{n}) + T(\sqrt[n]{n})$

for $(int ii=1; ii != n; ii++) \rightarrow$

for $(int jj=1; jj != n; jj++)$

sum += $ii + jj$

return sum * $C(n/2)$ * $C(n/2)$; \rightarrow

}

T(n) = $T(\frac{h}{n}) + T(\frac{h}{n}) + AT(\frac{h}{n}) + AT(\frac{h}{n})$

d. static public int
$$D(int n)$$
 {

if $(n == 0)$ return 1;

if $(D(n/2) <= D(n/4)) = T(7) = T(4)$

return $D(Math.sqrt(n)) + D(Math.sqrt(n)); = T(4) = T(4)$

else

return $D(n/2); = T(4)$
 $T(n) = T(4) + T(4) + T(4n) - \Theta(4)$

3. More Recurrences (16 Points) Give the tightest upper and lower bounds you can for the following recurrences.

a.
$$T(n) = 8T\left(\frac{n}{2}\right) + 3$$

$$n^{\log_2 n} = n^{\log_3 2} = \frac{\log_2 1}{\log_3 8}$$

$$O\left(n^{\log_2 8}\right)$$

O(n/0828)

height= log n 82. b. T(n) = T(n-1) + n T(n+1) = T(n) + n+1 T(n+1) = T(n) + n+1

0 - (E-1) [(n) = E(n)

=> (E-)(E-1) = annilates function => (E-1)2 = (an+B+1 = (O(n)

c. $T(n) = 2T\left(\frac{n}{2}\right) + \frac{1}{n} \implies \lambda T\left(\frac{h}{\lambda}\right) + n^{-1}$ 4 nog 2-8 n > CL =7 n 69,2-8 7 h 7 C 7 O(n) for 0,70

O (d.) $T(n) = \frac{T(n-1)^2}{T(n-2)}, T(0) = 1, T(1) = \pi > T(n-1)$ T(n-1) T(n) = T(n-1)2 = 18(n2)

4. Short Answer (15 points)

A cyclic permutation of an array involves moving the first element to the end of the array. A cyclically sorted array is one that can be cyclically permuted (possibly several times) to produce a sorted array. For example, <6, 8, 10, 1, 2, 3> is a cyclically sorted array because it can be cyclically permuted 3 times to produce a sorted array:

 $<6, 8, 10, 1, 2, 3> \rightarrow <8, 10, 1, 2, 3, 6> \rightarrow <10, 1, 2, 3, 4, 6, 8, > \rightarrow <1, 2, 3, 4, 6, 8, 10>$

For each of the following, provide an answer and a short explanation:

a. What is the fastest worst-case asymptotic run time needed to find the minimum element of an arbitrary cyclically sorted array?

- The fastest work-case runture would be OCh) since the worke case would need to go through the entire array 4 more the first element to the end of the array & shift the elements to the right

b. What is the fastest worst-case asymptotic run time needed to find the median element of an arbitrary cyclic sorted array?

- The runtime would be $\Theta(n^{logst})$ since it would need to sert the whole array of then find the median which would be $T(n) + \Theta(n)$,

c. What is the fastest worst-case asymptotic run time needed to sort the elements of an arbitrary cyclically sorted array?

- The fastest worst case furtine would G(1) since it would be the case where the array is already Sarted

EC54 Advanced Data Structures - Midterm Exam, Fall 2015

- 5. Short answer (25 points)
 For each of the following, provide an answer and a short explanation:
 - a. Determine the expected time to insert a uniformly random integer between 0 and n into a max heap containing the numbers 0 through n/2.

- The runtime would here 6 (105(n)) since would would need to only bubble up and check half the tree of necessary

b. Determine the worst case time required to sort a list of $\log n$ distinct elements in the range $\{1, ..., n^2\}$ with counting sort.

Threeld be $\Theta(\log n + n^2)$ y which would give a worst case nothing of $\Theta(n^2)$ since it would need to go through any if how an origine raded of logic element strenge through E range 17 n²

c. Determine the worst case time required to sort a list of $\log n$ distinct elements in the range $\{1, ..., n^2\}$ with insertion sort.

- The worst case would be O((bn)2)

d. Determine the best case time required to insert n² elements into an empty max heap.

The best case would \$(1) since it is a lary det structure and will just add all elements to heap was borting -4

e. If you insert the numbers 9, 8, 3, 5, 6, 2 into an initially empty min heap, what will the heap look like?

-Introlly it will violate 5 -5
the nin heap property 5 5 5
bot would need to
bobble 1 work heap of

-Meterm Rev--Part # T/E = 1105,02 => The e) $\frac{1}{2}$ + is $\Theta(n) = \frac{1}{k+1} \cdot \frac{1}{2} = \frac{1}{k+1} \cdot \frac{1}{k+2} \cdot \frac{1}{2} \cdot \frac{1}{k+2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$ 1) Take 3 Bebble sut ex = O(n) = not along cas Direc => Linear Time Select algo => can select it usy the i) False 7 Bin Not Neessaly Balanced =7 so does not alway apply i) True =714 def = 4,5,6,7 30 7 x Weent 6 (2)a) T(n)=2T(\frac{1}{2})+O(1) =7 Mustr Case #1 =7 O(1) O(n) b) +(n) = +((n-1) + O(1) =) Amphlodos = O(4") OT(n) = 4T(=)+n2 = Master Case #2 7 (n/92/logn), G(n2/logn) 2) Hard & and bonds gas 6 points > Prot outlet find bound (3)a)T(n)=8T(+)+3 => Mastr Gsc #1=7 (n3) b) T(u) = T(n-1)+n =7 Iteration or => T(n-2)+n-1+n...=> T(1)+\(\frac{\psi}{2}\cdot\) =\(\frac{\psi}{2}\cdot\) Annihilakos (n+ sue, ignore)

(harder c) Muster Cos # = B(n/32) => O(n) d) Take by & both side, get! log_ T(n) = 2log_ T(n-1) - log_ T(n-2) 75-bst-tite s(n) = log_ T(n) - s(n-2) -> Amililators -> S(n) = (xn+13),1" =)T(w)= 2 and B =) use initial conditions: B=0, &=log_2TT => B(TT)

Scanned by CamScanner