

LOGICA Y ESTRUCTURAS DISCRETAS / **MATEMATICA DISCRETA**

TRABAJO PRACTICO Nº3 **UNIDAD 3: ESTRUCTURAS ALGEBRAICAS**

- 1) Determinar si las siguientes definiciones de * son operaciones binarias en el conjunto especificado:
 - a) $En Z^+$, $a * b = \frac{a}{b}$,
- b) En Z, $a * b = a^b$ c) En Z^+ , a * b = a b,
- d) En Z^{+} , $a*b = a^{b}$
- e) En Z, a * b = 2a + b
- 2) Analizar si las siguientes operaciones binarias son conmutativas y/o asociativas en el conjunto especificado:
 - a) En \mathbb{R} , a*b=ab/3
- b) En \mathbb{R} , a*b=ab+2b
- 3) Sea el conjunto Z y * la ley de composición interna definida por a * b = a + b 1 ¿Qué propiedades caracterizan a (Z, *)?
- 4) La siguiente tabla define a la operación + en el conjunto A = {s, t, x, y}

+	S	t	X	у
S	У	X	S	t
t	Х	У	t	S
Х	S	t	Х	У
У	t	S	У	Х

- ¿Es conmutativa? a)
- ¿Tiene elemento neutro? b)
- ¿Cuáles son los elementos que admiten inverso en A? c)
- 5) Sea A= {a, b}. ¿Cuáles de las leyes de composición interna definidas en A, dadas por las tablas siguientes definen un semigrupo con elemento neutro?

a)	*	а	b
	а	а	b
	h	h	а

b)	*	а	b
	а	а	b
	b	а	а

- 6) Sea el conjunto $\mathbb{R} - 0$ y sea * la operación definida por a * b = ab/2Mostrar que ($\mathbb{R} - \{0\}$, *) es un grupo abeliano.
- 7) Sea A= { x, y, z, t }. Demostrar que (A, *) y (A, #) son grupos

a)	*	X	у	Z	t
	X	X	у	Z	t
	у	у	Х	t	Z
	Z	Z	t	Х	У
	t	t	Z	у	Х

b)	#	X	у	Z	t
	X	Х	у	Z	t
	у	у	Х	t	Z
	Z	Z	t	у	Х
	t	t	Z	Х	У

LOGICA Y ESTRUCTURAS DISCRETAS / MATEMATICA DISCRETA

8) Completar la siguiente tabla buscando que el conjunto $A = \{1, 2, 3, 4\}$ sea grupo respecto de la operación *, de tal modo que 3 sea el elemento neutro y que 2'=4

*	1	2	3	4
1				
2				
3				
4				

9) Completar la siguiente tabla buscando que el conjunto $A = \{1, 2, 3, 4\}$ sea grupo respecto de la operación *, de tal modo que 2 sea el neutro y que las ecuaciones 1 * x = 4 y x * 4 = 2 se satisfagan para x = 3

*	1	2	3	4
1				
2				
3				
4				

- 10) Sea el conjunto B = $\left\{\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} / a \in \mathbb{R} \right\}$ Probar que (B,+) es un subgrupo del conjunto formado por todas las matrices de 2× 2 junto con la suma habitual de matrices.
- 11) Sea el conjunto C = $\left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} / a \in \mathbb{R} \right\}$ Analizar si (C,+) es un subgrupo del conjunto formado por todas las matrices de 2× 2 junto con la suma habitual de matrices.
- 12) Sea A= { a , b , c} un conjunto donde se definen las operaciones + y * por medio de las siguientes tablas

+	а	b	С
а	С	а	۵
b	а	b	C
С	b	С	а

*	а	b	С
а	а	b	C
b	С	а	b
С	b	С	а

Responder, justificando su respuesta: ¿Es (A, +,*) un anillo?

13) Sea A= {0,1, 2, 3} un conjunto donde se definen las operaciones + y * por medio de las siguientes tablas

LOGICA Y ESTRUCTURAS DISCRETAS / MATEMATICA DISCRETA

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

*	0	1	2	3
0	0	0	0	0
1	0	2	0	2
2	0	0	0	0
3	0	2	0	2

Responder, justificando su respuesta: ¿Es (A, +,*) un anillo? ¿Es A un anillo conmutativo con unidad?

14) Sea el conjunto C = { 0 , 1 } y las operaciones + y • dadas por las tablas

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	1	1

Mostrar que (C , + , •) tiene estructura de cuerpo

15) Sea $C = \{ 0, 1, 2 \}$ y las operaciones + y * dadas por las tablas

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Responder, justificando su respuesta: ¿Tiene (C . + , *) estructura de cuerpo?

16) Sea B = { 0 , 1 } y las operaciones + y * dadas por

+	0	1
0	0	1
1	1	1

*	0	1
0	0	0
1	0	1

Demostrar que (B, +, *) tiene estructura de Algebra de Boole

17) Sea P(X) el conjunto Potencia de X, donde $X = \{a, b\}$ y sean las operaciones unión e intersección . Demostrar que $(P(X), \cup, \cap)$ constituye un álgebra booleana.