CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 2

Posted Monday 13 January 2014. Due 1pm Monday 27 January 2014.

2. [25 points]

Suppose $N \ge 1$ is an integer and define h = 1/(N+1) and $x_k = kh$ for k = 0, ..., N+1. Consider the N+2 hat functions, defined for $x \in [0,1]$ as

$$\phi_{j}(x) = \begin{cases} \frac{(x - x_{j-1})}{h} & \text{if } x \in [x_{j-1}, x_{j}), \\ \frac{(x_{j+1} - x)}{h} & \text{if } x \in [x_{j}, x_{j+1}), \\ 0 & \text{otherwise,} \end{cases}$$

for $j = 1, \ldots, N$, with

$$\phi_0(x) = \begin{cases} \frac{x_1 - x}{h} & \text{if } x \in [x_0, x_1), \\ 0 & \text{otherwise,} \end{cases}$$

and

$$\phi_{N+1}(x) = \begin{cases} \frac{x - x_N}{h} & \text{if } x \in [x_N, x_{N+1}], \\ 0 & \text{otherwise.} \end{cases}$$

We call these piecewise linear functions hat functions because of their shape. They will be important functions later in the course. For example, when N=9 and j=3, ϕ_j takes the following form.

- (a) Write a MATLAB function for $\phi_j(x)$. It should take in as input x, j, and N. It should return the value $\phi_j(x)$. It should also be able to take in a vector for $\mathbf{x} = (\hat{x}_1, \dots, \hat{x}_m)$ and return the vector $\phi_j(\mathbf{x}) = (\phi_j(\hat{x}_1), \dots, \phi_j(\hat{x}_m))$.
- (b) Let N=9. Plot $\phi_0(x), \phi_4(x), \phi_5(x), \phi_6(x), \phi_{10}(x)$ on the same figure. Make sure to:
 - plot each function with a different color;
 - label the axes and provide a title;
 - create an accurate legend for the figure;
 - adjust the text sizes if necessary to make everything easily legible;
 - use the LATEX interpreter to make your labels, titles, and legend look stylish.