Esercizi

- 1. Dire se i seguenti insiemi sono sottospazi:
 - (a) $W = \{(x, y) \in \mathbb{R}^2 : 2x 3y + 1 = 0\}$
 - (b) $W = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 4x = 0\}$
 - (c) $W = \{(x, y) \in \mathbb{R}^2 : 2x 7y = 0\}$
 - (d) $W = \{(x, y, z) \in \mathbb{R}^3 : x y + 3z = 0\}$
 - (e) $W = \{(x, y, z) \in \mathbb{R}^3 : x + y 3z = 0; 2x 4y + 5z + 1 = 0\}$
 - (f) $W = \{(x, y, z) \in \mathbb{R}^3 : 2x y + 4z = 0; x + 2y z = 0\}$
 - (g) $W = \{(x, y, z) \in \mathbb{R}^3 : (2x y + 4z)^2 + (x + 2y z)^2 = 0\}$
- 2. Dire se $S = \{(1, 2, 1), (1, 1, 1), (0, 1, 0)\}$ genera \mathbb{R}^3 .
- 3. Trovare un insieme di generatori per $W = \{(x, y, z) \in \mathbb{R}^3 : x 2y + 5z = 0\}$.
- 4. Trovare un insieme di generatori per $W=\{(x,y,z)\in\mathbb{R}^3: x-y+2z=0, x+y+6z=0\}.$
- 5. Trovare un insieme di generatori per $W=\{(x+y,2x-y+z,x+z),x,y,z\in\mathbb{R}\}.$
- 6. Verificare se $v_1 = (1, 1, 2)$, $v_2 = (2, 1, 0)$ e $v_3 = (0, 1, 3)$ sono linearmente dipendenti o indipendenti.
- 7. Verificare che l'insieme $S = \{(1,0,0), (0,1,0), (0,0,1)\} \subseteq \mathbb{R}^3$ è costituito da vettori linearmente indipendenti.
- 8. Verificare che l'insieme $S = \{(1,0,0,...,0), (0,1,0,...,0),..., (0,...,0,0,1)\} \subseteq \mathbb{R}^n$ è costituito da vettori linearmente indipendenti.
- 9. Verificare che l'insieme $S=\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}\subseteq V$ è costituito da vettori linearmente indipendenti.
- 10. Verificare che l'insieme $S=\{1,x,x^2,...,x^n\}\subseteq P_n$ è costituito da vettori linearmente indipendenti.
- 11. Verificare se $v_1 = (1, 1, 1), v_2 = (2, 1, 0)$ e $v_3 = (2, 2, 2)$ sono linearmente dipendenti o indipendenti.
- 12. Stabilire se i seguenti insiemi sono linearmente indipendenti.
 - (a) $S = \{(0,0)\} \subseteq \mathbb{R}^2$
 - (b) $S = \{(0,2)\} \subset \mathbb{R}^2$
 - (c) $S = \{(0,0), (1,3)\} \subset \mathbb{R}^2$
 - (d) $S = \{(1,2,3), (2,4,6)\} \subset \mathbb{R}^3$

- (e) $S = \{(1,2,3), (2,4,5)\} \subseteq \mathbb{R}^3$
- (f) $S = \{(1,0,0), (0,1,1), (3,4,4)\} \subset \mathbb{R}^3$
- (g) $S = \{(1,2,4), (2,4,8), (1,2,3)\} \subseteq \mathbb{R}^3$
- (h) $S = \{(1, 2, -1), (2, -3, 5), (7, 9, 26)\} \subseteq \mathbb{R}^3$
- (i) $S = \{2 + 3x + 5x^2, 4 + 6x + 10x^2\} \subseteq P_2(x)$
- (j) $S = \{2 + 3x + 5x^2, 2x + 3x^2 + 5x^3\} \subseteq P_3(x)$
- 13. Dire se è vero o no che
 - (a) $\mathbb{R}^2 \sqsubseteq \mathbb{R}^3$
 - (b) $W = \{(x, y) \in \mathbb{R}^2 : xy > 0\} \subseteq \mathbb{R}^2$
 - (c) $W = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\} \sqsubseteq \mathbb{R}^2$
 - (d) $W = \{(x, y) \in \mathbb{R}^2 : x^2 + 4y^2 = 0\} \subseteq \mathbb{R}^2$
 - (e) $W = \{(x, y, z) \in \mathbb{R}^3 : (x y + 3z)^2 + (2x y + z)^2 = 0\} \subseteq \mathbb{R}^3$
 - (f) $W = \{(x, y, z) \in \mathbb{R}^3 : z \ge 0\} \sqsubseteq \mathbb{R}^3$
 - (g) $W = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 4x = 0\} \subseteq \mathbb{R}^2$
 - (h) $W = \{(x, y) \in \mathbb{R}^2 : (x + y)(x y) = 0\} \subseteq \mathbb{R}^2$
- 14. Verificare che i seguenti insiemi sono sottospazi di \mathbb{R}^3 e per ognuno di essi trovare un insieme di generatori:
 - (a) $W = \{(x, y, z) \in \mathbb{R}^3 : 2x y + 5z = 0\} \subseteq \mathbb{R}^3$
 - (b) $W = \{(x, y, z) \in \mathbb{R}^3 : x y + 3z = 0, x y + 5z = 0\} \subseteq \mathbb{R}^3$
 - (c) $W = \{(x, y, z) \in \mathbb{R}^3 : x 3z = 0\} \sqsubseteq \mathbb{R}^3$
- 15. Dire se i seguenti insiemi sono basi di \mathbb{R}^3 :
 - (a) $S = \{(1,0,0), (1,2,0), (1,2,3)\}$
 - (b) $S = \{(1,0,0), (1,2,1), (5,4,2)\}$
 - (c) $S = \{(1,1,0), (1,-1,0), (1,1,1)\}$
 - (d) $S = \{(1,2,3), (5,4,2)\}$
 - (e) $S = \{(1,2,3), (-3,4,5), (4,3,-2), (1,1,1)\}$
- 16. Stabilire se $S = \{(1,0,0), (1,2,0), (1,2,3)\}$ genera \mathbb{R}^3 .
- 17. Stabilire se $S = \{(1,1,1), (2,-1,1), (3,0,2)\}$ genera \mathbb{R}^3 .
- 18. Dire se in \mathbb{R}^3
 - (a) $(3,2,1) \in [(3,0,1),(0,1,0),(1,0,0)]$
 - (b) $(3,2,1) \in [(3,0,1),(1,-2,1)]$
 - (c) $(3,2,1) \in [(1,0,0),(1,1,0),(1,1,1)]$

- 19. Trovare un insieme di generatori, una base e la dimensione di $W=\{(x,y,z)\in\mathbb{R}^3:2x-3z=0\}\sqsubseteq\mathbb{R}^3$
- 20. Sia $W = \{(x y + z, 2x + y 4z, x z), x, y, z \in \mathbb{R}\} \sqsubseteq \mathbb{R}^3$. Trovare una base e la dimensione di W. Verificare che $(2, -5, -1) \in W$ e trovare le coordinate del vettore rispetto alla base.
- 21. Sia $U = \{(x, y, 0), x, y \in \mathbb{R}\}, V = \{(x, 0, z), x, z \in \mathbb{R}\};$ dimostrare che sono sottospazi di \mathbb{R}^3 . Trovare la loro intersezione e stabilire se è un sottospazio.
- 22. Sia $U = \{(x, y, 0), x, y \in \mathbb{R}\}, W = \{(x, x, x), x \in \mathbb{R}\};$ dimostrare che sono sottospazi di \mathbb{R}^3 . Trovare la loro intersezione e stabilire se è un sottospazio.
- 23. Sia $U = \{(x, y, 0), x, y \in \mathbb{R}\}, V = \{(x, 0, z), x, z \in \mathbb{R}\};$ determinare U + V e verificare se si tratta di una somma diretta.
- 24. Sia $U = \{(x, y, 0), x, y \in \mathbb{R}\}, W = \{(x, x, x), x \in \mathbb{R}\};$ determinare U + W e verificare se si tratta di una somma diretta.
- 25. Sia $U = \{(x, 0, z), x, z \in \mathbb{R}\}, W = \{(y, 0, y), y \in \mathbb{R}\};$ determinare U + W e verificare se si tratta di una somma diretta.
- 26. Dati (1,0,0), (0,1,0), trovare il sottospazio generato dai due vettori di \mathbb{R}^3 .
- 27. Dati (-1,2,3), (0,-1,0), (1,0,1), stabilire se sono linearmente dipendenti o indipendenti.
- 28. Dati (1, 2, 1, 0), (1, -1, 0, 1), (-1, 2, -1, 0), (-1, 1, 0, -1), (1, 1, 0, 1), stabilire se sono linearmente dipendenti o indipendenti.
- 29. Dati (1,2,0), (0,1,a), (1,a,-1), stabilire per quali valori di a i vettori sono linearmente dipendenti o indipendenti.
- 30. Trovare una base di \mathbb{R} .
- 31. Sia $V = \mathbb{R}^2$ e consideriamo due basi distinte:

$$B_1 = \{(1,0), (0,1)\}$$
 $B_2 = \{(1,-2), (4,1)\}$

Sia v un vettore con componenti (0, -1) rispetto alla base B_1 . Trovare le componenti rispetto alla base B_2 .

- 32. Sia $V = \mathbb{R}^4$, $A = \{(x, y, z, t), y = 0, 2z t = 0\}$, $B = \{(x, y, z, t), x t = 0, y + z = 0\}$. Si calcoli dim(A + B).
- 33. Sia $V = \mathbb{R}^3$, $A = \{(a+b,b,a), a,b \in \mathbb{R}^3\}$, $B = \{(x,y,z), x-y=0\}$. Si calcoli dim(A+B).
- 34. Dato A = [(2,0,0,1), (0,0,-2,0), (0,0,1,-1)], B = [(0,1,0,0), (1,1,0,0)]. Trovare la somma dei sottospazi. E' somma diretta?

- 35. Dato A = [(2, -1, 0, 1), (1, 3, 1, -1), (0, 1, -1, -1)], B = [(2, 0, 1, 0), (1, 2, 2, 0)].Trovare la somma dei sottospazi. E' somma diretta?
- 36. Si consideri l'insieme delle successioni di numeri reali S_R . Una successione di numeri reali è una applicazione da $s: \mathbb{N} \to \mathbb{R}$, tale che $s(n) = a_n$. Si indica con $\{a_n\}$ tale successione. Nell'insieme S_R si definiscano le operazioni di somma e di prodotto per uno scalare:

$$\{a_n\} + \{b_n\} = \{a_n + b_n\}$$
$$c\{a_n\} = \{ca_n\} \quad c \in \mathbb{R}$$

Dimostrare che con tali operazioni S_R è uno spazio vettoriale su \mathbb{R} .

- 37. Una successione di numeri reali $\{a_n\}$ si dice limitata se esiste uno scalare $L \in R$ tale che $a_n \leq L$, $\forall n \in \mathbb{N}$. Si dimostri che il sottoinsieme delle successioni limitate è un sottospazio vettoriale di S_R .
- 38. Dimostrare che l'insieme dei polinomi a coefficienti reali di grado miore o uguale a n è uno spazio vettoriale su \mathbb{R} .
- 39. Stabilire quali dei seguenti insiemi di vettori sono linearmente indipendenti, quali sono un sistema di generatori dello spazio e quali costituiscono una base: in \mathbb{R}^2 :
 - (a) $(1, 123), (-\pi, \pi)$
 - (b) (2, -1/3), (-1, 1/6)
 - (c) (4/5, 5/4), (4, 5)
 - (d) $(1,2), (11,-7\sqrt{2}), (-1,1)$

in \mathbb{R}^3 :

- (a) (1,1,3), (2,2,0), (3,3,-3)
- (b) $(1,-1,-\sqrt{5}), (1,1,\sqrt{5})(0,1,2\sqrt{5})$
- (c) (1,0,0), (1,1,1), (0,1,2), (-1,-2,-3)
- 40. Stabilire quali dei seguenti sottoinsiemi di \mathbb{R}^3 sono sottospazi vettoriali:
 - (a) (0,0,0)
 - (b) $\{(t, t, t) : 0 < t < 1\}$
 - (c) $\{(x,0,0): x \in \mathbb{R}, x \neq 0\}$
 - (d) $\{(t,t,t): 0 \le t \le 1\}$
 - (e) $\mathbb{R}^3 [(0,0,1)]$
 - (f) $\{(x, y, z) : x^2 + y^2 + z^2 = 1\}$

- (g) $\{(t, 1, t) : t \in \mathbb{R}\}$
- (h) $\{(x,y,z): x+y-5z=0, 2(x+y)=0\}$
- 41. Sia V uno spazio vettoriale di dimensione 3 e sia i,j,k una base di V. Siano $U=[i+j,i-j],\,W=[j+k,j-k].$ Dimostrare che V=U+W e che la somma non è diretta.
- 42. Dimostrare che $\mathbb{R}^4 = U \oplus W$, dove $U = [(1,0,-\sqrt{5},0),(\sqrt{5},0,-1,0)]$ e W = [(0,-2,0,3),(0,1,0,1)]
- 43. Dimostrare che $\mathbb{R}^3=U\oplus W,$ dove $U=\{(x,y,z):x-y=0\}$ e W=[(1,0,1)]
- 44. Dimostrare che gli n vettori

$$(1, ..., 1), (0, 1, ..., 1), (0, 0, 1, ..., 1), ..., (0, ..., 0, 1, 1), (0, ..., 0, 1)$$

costituiscono una base di \mathbb{R}^n

- 45. Sia V uno spazio vettoriale. Si supponga che $v_1,..,v_n$ siano linearmente indipendenti; dimostrare che $\lambda_1 v_1,..,\lambda_n v_n$ sono linearmente indipendenti per ogni $\lambda_1,...,\lambda_n \in \mathbb{R} \{0\}$.
- 46. Sia $H_i = \{(x_1,...,x_{i-1},0,x_{i+1},...x_n)\}, 1 \leq i \leq n$. Determinare una base del sottospazio di K^n .
- 47. Dimostrare che lo spazio vettoriale delle successioni reali non ha dimensione finita.