

CFA® Program Level I

FORMULA SHEET (2023) Version 1.0

Prepared by: Fabian Moa, CFA, FRM, CTP, FMVA, AFM

FINANCE | RISK | SUSTAINABILITY

FOR REFERENCE ONLY

(Note: Formula Sheet is not provided in the CFA exam)

Follow us on:

YouTube <u>LinkedIn</u> <u>Instagram</u>

Facebook (Malaysia) Facebook (Singapore)

NOESIS EXED SDN BHD

Block VO2, Level 5, Unit 8, Lingkaran SV, Sunway Velocity, 55100 Kuala Lumpur, Malaysia Website: www.noesis.edu.sg

CFA Level 1 - Formula Sheet (2023)

Setting Up the Texas BA II Plus Financial Calculator

Video: https://youtu.be/0MS8d8QOFmc

Using Texas BA II Plus Financial Calculator

Video: https://youtu.be/LWmTTiZz8BU

Video (Requires Login to Facebook): https://fb.watch/nci5V7Dwtj/

QUANTITATIVE METHODS

Learning Module 1: The Time Value of Money

Interest Rates

Interest rate, r = Real risk-free rate + Inflation premium + Default risk premium + Liquidity premium + Maturity premium

Nominal risk-free rate = Real risk-free rate + Inflation premium

Maturity premium = Interest rate on longer-maturity, liquid Treasury debt

- Interest rate on short-term Treasury debt

Single Cash Flow

Annual Compounding

$$FV_N = PV(1+r)^N$$

$$PV = \frac{FV_N}{(1+r)^N}$$
 or $PV = FV_N \times (1+r)^{-N}$

where: FV_N = Future value of the investment N periods from today

PV =Present value of the investment (i.e., principal)

r =Interest rate per period

Video (FV of Single Cash Flow): https://youtu.be/DgnbyYLU1e4

Video (PV of Single Cash Flow): https://youtu.be/nVjPtUWTab4

(Mode: END)

Non-Annual Compounding

$$FV_N = PV \left(1 + \frac{r_s}{m}\right)^{m \times N}$$

$$PV = FV_N \left(1 + \frac{r_s}{m}\right)^{-m \times N}$$

where: $r_s =$ Stated annual interest rate (or quoted interest rate)

m = Number of compounding periods per year

N =Number of years

Continuous Compounding

$$FV_N = PV \times e^{r_S \times N}$$

$$PV = FV_N \times e^{-r_S \times N}$$

Effective Annual Rate (EAR)

Non-Annual Compounding

$$EAR = \left(1 + \frac{r_s}{m}\right)^m - 1$$

Continuous Compounding

$$EAR = e^{r_S} - 1$$

Video 1: https://youtu.be/ubmSCZZKWJE

Video 2: https://youtu.be/a3PcCbjneU8

Annuities

Ordinary Annuity

$$FV_N = A \left[\frac{(1+r)^N - 1}{r} \right]$$

$$PV = A \left[\frac{1 - \frac{1}{(1+r)^N}}{r} \right]$$

Video (FV of Ordinary Annuity): https://youtu.be/ogSu7t0iWr8

Video (PV of Ordinary Annuity): https://youtu.be/VgFQOltNRKO

(Mode: BGN)

Annuity Due

$$FV_N = A \left[\frac{(1+r)^N - 1}{r} \right] \times (1+r)$$

$$PV = A \left[\frac{1 - \frac{1}{(1+r)^N}}{r} \right] \times (1+r)$$

Perpetuity

If first payment starts one period from now:

$$PV = \frac{A}{r}$$

If first payment starts immediately:

$$PV = \frac{A}{r}(1+r)$$

Video: https://youtu.be/bBiVRtsHgUs

Learning Module 2: Organizing, Visualizing, and Describing Data

Frequency Distribution

Range of data = Maximum value - Minimum value

$$Bin\ width = \frac{Range}{Number\ of\ bins}$$

 $First\ bin = Minimum\ value + Bin\ width$

Measures of Central Tendency

Sample Mean,
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Weighted mean,
$$\bar{X}_w = \sum_{i=1}^n w_i X_i$$

where:
$$X_i$$
 = Observation i ($i = 1, 2, 3, ..., n$)
 w_i = Weight of each observation ($i = 1, 2, 3, ..., n$)

Geometric Mean

$$\bar{X}_G = \sqrt[n]{X_1 X_2 X_3 \dots X_n}$$
 $X_i \ge 0 \text{ for } i = 1, 2, 3, \dots, n$

$$X_i \ge 0 \ for \ i = 1, 2, 3, ..., n$$

Geometric Mean Return

$$R_G = [(1 + R_1)(1 + R_2) \dots (1 + R_T)]^{1/T} - 1$$

where: $R_t = \text{Holding period returns, where } t = 1, 2, 3, \dots, T$

Harmonic Mean

$$\bar{X}_H = \frac{n}{\sum_{i=1}^n \frac{1}{X_i}}$$

Median

Position of median = $\frac{n+1}{2}$

Quantiles

Interquartile range = $Q_3 - Q_1$

where: $Q_1 = \text{First quartile}$

 $Q_3 = \text{Third quartile}$

Position of y^{th} percentile, $L_y = (n+1)\frac{y}{100}$

Measures of Dispersion

Range = Maximum value - Minimum value

Mean Absolute Deviation (MAD)

$$MAD = \frac{\sum_{i=1}^{n} |X_i - \bar{X}|}{n}$$

Sample Variance

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n - 1}$$

Sample Standard Deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

Relationship Between Arithmetic and Geometric Mean

$$\bar{X}_G = \bar{X} - \frac{s^2}{2}$$

Sample Target Semideviation

$$s_{Target} = \sqrt{\frac{\sum_{X_i \le B}^n (X_i - B)^2}{n - 1}}$$

where: B = target

n = total number of sample observations

Coefficient of Variation

$$CV = \frac{s}{\bar{x}}$$

Sample Skewness

$$Skewness \approx \left(\frac{1}{n}\right) \frac{\sum_{i=1}^{n} (X_i - \bar{X})^3}{s^3}$$

Sample excess kurtosis

$$K_E \approx \left(\frac{1}{n}\right) \frac{\sum_{i=1}^{n} (X_i - \bar{X})^4}{s^4} - 3$$

Sample covariance

$$s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

Sample correlation coefficient

$$r_{XY} = \frac{s_{XY}}{s_Y s_Y}$$

Learning Module 3: Probability Concepts

Odds

Given a probability P(E),

Odds for
$$E = \frac{P(E)}{1 - P(E)}$$

$$Odds \ against \ E = \frac{1 - P(E)}{P(E)}$$

Conditional Probability

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Addition Rule

$$P(A \text{ or } B) = P(A) + P(B) - P(AB)$$

Multiplication Rule

$$P(AB) = P(A|B)P(B)$$

If two events A and B are **independent**, then P(AB) = P(A)P(B)

Total Probability Rule

$$P(A) = P(AS_1) + P(AS_2) + \dots + P(AS_n)$$

= $P(A|S_1)P(S_1) + P(A|S_2)P(S_2) + \dots + P(A|S_n)P(S_n)$

Expected Value

$$E(X) = \sum_{i=1}^{n} P(X_i) X_i$$

Variance

$$\sigma^{2}(X) = E\{[X - E(X)]^{2}\}$$

$$= \sum_{i=1}^{n} P(X_{i})[X_{i} - E(X)]^{2}$$

Conditional Expected Value

$$E(X|S) = P(X_1|S)X_1 + P(X_2|S)X_2 + \dots + P(X_n|S)X_n$$

Total Probability Rule for Expected Value

$$E(X) = E(X|S_1)P(S_1) + E(X|S_2)P(S_2) + \dots + E(X|S_n)P(S_n)$$

Portfolio Expected Return

$$E(R_P) = w_1 E(R_1) + w_2 E(R_2) + \dots + w_n E(R_n)$$

Covariance

$$Cov(R_i, R_j) = E\{[R_i - E(R_i)][R_j - E(R_j)]\}$$

Sample Covariance

$$Cov(R_i, R_j) = \frac{1}{n-1} \sum_{t=1}^{n} (R_{i,t} - \bar{R}_i) (R_{j,t} - \bar{R}_j)$$

Portfolio Variance

$$\sigma^{2}(R_{P}) = E\{[R_{P} - E(R_{P})]^{2}\}\$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i}w_{j}Cov(R_{i}, R_{j})$$

Requires n variances and $\frac{n(n-1)}{2}$ distinct covariances to estimate portfolio variance.

For a two-asset (n = 2) portfolio:

$$\sigma^{2}(R_{P}) = w_{1}^{2}\sigma_{1}^{2} + w_{2}^{2}\sigma_{2}^{2} + 2w_{1}w_{2}Cov(R_{1}, R_{2})$$

where: $Cov(R_1, R_2) = \rho(R_1, R_2) \times \sigma(R_1) \times \sigma(R_2)$

Video: https://youtu.be/IUwuIZ9ONC0

For a three-asset (n = 3) portfolio:

$$\sigma^{2}(R_{P}) = w_{1}^{2}\sigma_{1}^{2} + w_{2}^{2}\sigma_{2}^{2} + w_{3}^{2}\sigma_{3}^{2} + 2w_{1}w_{2}Cov(R_{1}, R_{2})$$

$$+2w_{1}w_{3}Cov(R_{1}, R_{3}) + 2w_{2}w_{3}Cov(R_{2}, R_{3})$$

Covariance Given a Joint Probability Function

$$Cov(R_A, R_B) = \sum_{i=1}^{N} \sum_{j=1}^{N} P(R_{A,i}, R_{B,j}) \times [R_{A,i} - E(R_A)] \times [R_{B,j} - E(R_B)]$$

If X and Y are uncorrelated, then E(XY) = E(X)E(Y)

If X and Y are independent, then P(X,Y) = P(X)P(Y)

Bayes' Formula

$$P(A|B) = \frac{P(B|A)}{P(B)} \times P(A)$$

$$P(Event|Information) = \frac{P(Information|Event)}{P(Information)} \times P(Event)$$

Video (Bayes' Formula and Total Probability Rule): https://youtu.be/9 h0EzssPZ4

Multiplication Rule for Counting

If Task 1 can be done in n_1 ways, Task 2 can be done in n_2 ways (given Task 1 is done), Task 3 can be done in n_3 ways (given Task 1 and 2 are done), and so on for k tasks.

The number of ways the k tasks can be done is $(n_1 \times n_2 \times ... \times n_k)$.

$$n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$$

Multinomial Formula for Labeling Problems

There are n objects to be labelled with k different labels, with n_1 of the first type, n_2 of the second type, and so on, with $n_1+n_2+\cdots+n_k=1$.

The number of ways to perform this is:

$$\frac{n!}{n_1! \, n_2! \dots n_k!}$$

Combination Formula

The number of ways to choose r objects from a total of n objects (where order does not matter).

$$_{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$$

Permutation Formula

The number of ways to choose r objects from a total of n objects (where order <u>does</u> matter).

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

Learning Module 4: Common Probability Distributions

Cumulative distribution function (CDF)

$$F(x) = P(X \le x)$$

Continuous Uniform Distribution

$$f(x) = \begin{cases} \frac{1}{b-a} & for \ a \le x \le b \\ 0 & otherwise \end{cases}$$

$$F(x) = \begin{cases} 0 & for \ x < a \\ \frac{x - a}{b - a} & for \ a \le x \le b \\ 1 & for \ x > b \end{cases}$$

$$E(X) = \frac{a+b}{2}$$

$$\sigma^2(X) = \frac{(b-a)^2}{12}$$

Binomial Distribution

$$X \sim B(n, p)$$

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$

$$E(X) = np$$

$$\sigma^2(X) = np(1-p)$$

Normal Distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]$$
 for $-\infty < x < +\infty$

Standardized Normal Random Variable

$$Z = \frac{X - \mu}{\sigma}$$

Safety-First Ratio

$$SFRatio = \frac{E(R_P) - R_L}{\sigma_P}$$

$$P(R_P < R_L) = N(-SFRatio)$$

where: $R_L = Minimum$ acceptable return

Video: https://youtu.be/S3x5JrGIOUA

The Lognormal Distribution

Mean of a lognormal random variable, Y

$$\mu_L = \exp(\mu + 0.50\sigma^2)$$

Variance of a lognormal random variable

$$\sigma_L^2 = \exp(2\mu + \sigma^2) \times [\exp(\sigma^2) - 1]$$

where:

 $Y = \exp(X)$, where X is normal

 $\mu =$ Mean of the normal distribution

 $\sigma^2 = \text{Variance of the normal distribution}$

Continuously Compounded Rates of Return

$$S_T = S_0 \exp(r_{0,T})$$

$$r_{0,T} = \ln\left(\frac{S_T}{S_0}\right)$$

In general,

$$r_{t,t+1} = \ln\left(\frac{S_{t+1}}{S_t}\right)$$

$$r_{0,T} = r_{T-1,T} + r_{T-2,T-1} + \dots + r_{0,1}$$

$$E(r_{0,T}) = E(r_{T-1,T}) + E(r_{T-2,T-1}) + \dots + E(r_{0,1}) = \mu T$$

$$\sigma^2(r_{0,T}) = \sigma^2 T$$

Student's t-Distribution

Degrees of freedom, df = n - 1

$$t = \frac{\bar{X} - \mu}{s / \sqrt{n}}$$

where: n = Sample size

Chi-Square Distribution

Degrees of freedom, df = k

where k = Number of independent standard normal random variables

F-Distribution

$$F = \frac{(\chi_1^2/m)}{(\chi_2^2/n)}$$

 χ_1^2 is a chi-square random variable with m degrees of freedom.

 χ_2^2 is a chi-square random variable with n degrees of freedom.

Learning Module 5: Sampling and Estimation

Mean of sampling distribution $= \mu$

Variance of sampling distribution = $\frac{\sigma^2}{n}$

Standard error of the sample mean, $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$ $s_{\bar{X}} = \frac{s}{\sqrt{n}}$

where: $\mu = Population mean$

 σ^2 = Population variance

n = Sample size

Absolute Error = Difference between sample mean and population mean

Confidence Intervals

A $100(1-\alpha)\%$ confidence interval for a parameter has the following structure:

Point estimate \pm Reliability factor \times Standard error

where: $Precision \ of \ the \ estimator = Reliability \ factor \times Standard \ error$

A $100(1-\alpha)\%$ confidence interval for the Population Mean, μ (Normally distributed with known variance)

$$\bar{X} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

A $100(1-\alpha)\%$ confidence interval for the Population Mean, μ (Large sample, population variance unknown)

$$ar{X} \pm z_{lpha/2} \left(rac{s}{\sqrt{n}}
ight)$$
 $ar{X} \pm t_{lpha/2} \left(rac{s}{\sqrt{n}}
ight)$

OR

$$\bar{X} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$

where degrees of freedom for $t_{lpha/2}=n-1$

A $100(1-\alpha)\%$ confidence interval for the Population Mean, μ (Population variance unknown; Sample is small but population is approximately normally distributed)

$$\bar{X} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$

Selection of Sample Size

Sample size,
$$n = \left(\frac{t_{\alpha/2} \times s}{E}\right)^2$$

where $E = t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$

Learning Module 6: Hypothesis Testing

Test of a single mean (df = n - 1):

$$t = \frac{\bar{X} - \mu_0}{s / \sqrt{n}}$$

where: $\bar{X} = \text{Sample mean}$

 $\mu_0=$ Hypothesized population mean

 $\frac{s}{\sqrt{n}}$ = Standard error of the mean

Test of the difference in means ($df = n_1 + n_2 - 2$):

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$$

Test of the mean of differences (df = n - 1):

$$t = \frac{\bar{d} - \mu_{d0}}{s_{\bar{d}}}$$

Test of a single variance (df = n - 1):

$$\chi^2 = \frac{s^2(n-1)}{\sigma_0^2}$$

Test of the differences in variances ($df_1 = n_1 - 1$; $df_2 = n_2 - 1$):

$$F^2 = \frac{s_1^2}{s_2^2}$$

Test of a correlation (df = n - 2)

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

where: r = Correlation

Test of independence (categorical data) df = (r-1)(c-1)

$$\chi^2 = \sum_{i=1}^m \frac{(O-ijE)ij^2}{Eij}$$

where: $O_{ij} = Observed$ frequencies

 $E_{ij} =$ Expected frequencies

 $r=\operatorname{Number}$ of rows in the contingency table

c =Number of columns in the contingency table

Type I and II Error

Significance level (Type I error) = α

Confidence level = $1 - \alpha$

Type II error = β

Power of the test = $1 - \beta$

Confidence Intervals

A 95% confidence interval for the population mean, μ ,

$$\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

Significance Interpretation

$$p(k=1) \le \alpha \times \frac{Rank \ of \ i}{Number \ of \ tests}$$

Learning Module 7: Introduction to Linear Regression

$$Y_i = b_0 + b_1 X_1 + \dots + b_n X_n + \varepsilon_i, \quad i = 1, 2, \dots, n$$

where: Y = Dependent variable

X =Independent variable

 $b_0 = Intercept$

 $b_i = \text{Slope coefficient}, i = 1, 2, ..., n$

 $\varepsilon_i = \text{Error term}$

 $b_0, b_1, \dots, b_n =$ Regression coefficients

$$\hat{Y}_i = \hat{b}_0 + \hat{b}_1 X_i + e_i$$

where: \hat{Y}_i = Estimated value on the regression line for the *i*th observation

 $\hat{b}_0 = Intercept$

 $\hat{b}_1 = \mathsf{Slope}$

 $e_i = \text{Residual for the } i \text{th observation}$

$$\begin{split} \hat{b}_1 &= \frac{Covariance\ of\ X\ and\ Y}{Variance\ of\ X} = \frac{\sum_{i=1}^n (Y_i - \overline{Y})(X_i - \overline{X})}{\sum_{i=1}^n (X_i - \overline{X})^2} \\ \hat{b}_0 &= \overline{Y} - \hat{b}_1 \overline{X} \end{split}$$

Sum of Squares Total, $SST = \sum_{i=1}^n (Y_i - \bar{Y})^2 = SSR + SSE$ Sum of Squares Regression, $SSR = \sum_{i=1}^n (\hat{Y}_i - \bar{Y})^2$ Sum of Squares Error, $SSE = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^n e_i^2$

Coefficient of Determination,

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Correlation coefficient,

$$r = \frac{Covariance \ of \ X \ and \ Y}{(Standard \ deviation \ of \ X)(Standard \ deviation \ of \ Y)}$$

<u>Note</u>: Correlation coefficient = $\sqrt{Coefficient\ of\ determination}$

Sample standard deviation of X

$$S_X = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

Sample standard deviation of Y

$$S_Y = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1}}$$

Homoskedasticity

$$E(\varepsilon_i^2) = \sigma_{\varepsilon}^2, \quad i = 1, 2, ..., n$$

ANOVA F-Test

Mean square regression (MSR)

$$MSR = \frac{SSR}{k}$$

Mean square error (MSE)

$$MSE = \frac{SSE}{n - k - 1}$$

F-distributed test statistic

$$F = \frac{MSR}{MSE}$$

where: n = Number of observations

k =Number of independent variables

Standard error of estimate

$$s_e = \sqrt{MSE} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n - k - 1}}$$

Hypothesis Test of the Slope Coefficient

$$t = \frac{\hat{b}_1 - B_1}{s_{\hat{b}_1}}$$

Degrees of freedom, df = n - k - 1

where: B_1 = Hypothesized population slope $s_{\hat{b}_1} = \text{Standard error of the slope coefficient}$ = $\frac{s_e}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}}$

Hypothesis Test of the Intercept

$$t_{intercept} = \frac{\hat{b}_0 - B_0}{s_{\hat{b}_0}}$$

Standard error of the intercept, $s_{\hat{b}_0}$

$$s_{\hat{b}_0} = \sqrt{\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}$$

Prediction Intervals

$$\hat{Y}_f \pm t_{\alpha/2} \times s_f$$

where: $\hat{Y}_f = \hat{b}_0 + \hat{b}_1 X_f$

Variance of the prediction error of Y, given X

$$s_f^2 = s_e^2 \left[1 + \frac{1}{n} + \frac{\left(X_f - \bar{X} \right)^2}{(n-1)s_X^2} \right]$$

Standard error of the forecast

$$s_f = s_e \sqrt{1 + \frac{1}{n} + \frac{(X_f - \bar{X})^2}{(n-1)s_X^2}}$$

The Log-Lin Model

$$ln Y_i = b_0 + b_1 X_i$$

The Lin-Log Model

$$Y_i = b_0 + b_1 \ln X_i$$

The Log-Log Model

$$ln Y_i = b_0 + b_1 ln X_i$$

ECONOMICS

Learning Module 1: Topics in Demand and Supply Analysis

Inverse demand function (Demand curve), $P_x = a + bQ_x$

Price elasticity of demand

$$E_{P_x}^d = \frac{\% \Delta Q_x^d}{\% \Delta P_x} = \frac{\Delta Q_x^d}{\Delta P_x} \left(\frac{P_x}{Q_x^d}\right)$$

Income elasticity of demand

$$E_I^d = \frac{\%\Delta Q_x^d}{\%\Delta I} = \frac{\Delta Q_x^d}{\Delta I} \left(\frac{I}{Q_x^d}\right)$$

Cross-Price elasticity of demand

$$E_{P_y}^d = \frac{\% \Delta Q_x^d}{\% \Delta P_y} = \frac{\Delta Q_x^d}{\Delta P_y} \left(\frac{P_y}{Q_x^d}\right)$$

Supply Analysis

Total cost of production

$$TC = w \times L + r \times K$$

where: w = Wage rate

L = Labor hours

K = Hours of capital

r =Rental rate of capital

Total product = Q

Average product, $AP = \frac{Q}{L}$

Marginal product, $MP = \frac{\Delta Q}{\Delta I}$.

Economic profit = Total revenue – Total economic costs

Accounting profit = Total revenue – Total accounting costs

 $Total\ revenue = Price \times Quantity = P \times Q$

$$Average\ revenue = \frac{Total\ revenue}{Quantity}$$

$$Marginal\ revenue = \frac{\Delta TR}{\Delta Q} = P + Q\left(\frac{\Delta P}{\Delta Q}\right)$$

$$Marginal\ cost = \frac{\Delta TC}{\Delta Q}$$

Short-run marginal cost

$$SMC = \frac{Wage\ rate}{Marginal\ product\ of\ labor}$$

$$Average \ variable \ cost = \frac{Total \ variable \ cost}{Quantity}$$

$$Average \ fixed \ cost = \frac{Total \ fixed \ cost}{Quantity}$$

Total cost = Total fixed cost + Total variable cost

Average total cost = Average fixed cost + Average variable cost

Total profit = Total revenue - Total cost

Profit maximization occurs when MR = MC and MC is not falling.

Learning Module 2: The Firm and Market Structures

Marginal revenue

$$MR = P\left[1 - \frac{1}{E_P^d}\right]$$

where: P = Price

 $E_P^d =$ Price elasticity of demand

Concentration Ratio

$$Concentration\ ratio = \sum_{i=1}^{n} (Market\ share)_{i}$$

Herfindahl-Hirschman Index (HHI)

$$HHI = \sum_{i=1}^{n} (Market \ share)_{i}^{2}$$

Learning Module 3: Aggregate Output, Prices, and Economic Growth

$$Per\ capita\ real\ GDP = \frac{Real\ GDP}{Size\ of\ population}$$

Nominal $GDP_t = Prices$ in year $t \times Quantity$ produced in year t

Real $GDP_t = Prices$ in Base year \times Quantity produced in year t

GDP deflator =
$$\frac{Value\ of\ current\ year\ output\ at\ current\ year\ prices}{Value\ of\ current\ year\ output\ at\ base\ year\ prices} \times 100$$

$$= \frac{Nominal\ GDP}{Real\ GDP} \times 100$$

Components of GDP

$$GDP = C + I + G + (X - M)$$

where:

GDP = Gross domestic product

C =Consumer spending

I = Gross private domestic investment

G = Government spending

X = Exports

M = Imports

Gross domestic income

GDI = Net domestic income + Consumption of fixed capital + Statistical discrepancy

Gross domestic income = Compensation of employees + Gross operating surplus

- + Gross mixed income + Taxes less subsidies on production
- + Taxes less subsidies on products and imports

Household primary income = Compensation of employees + Net mixed income + Net property income

Household saving = Personal disposable income – Household final consumption expenditure + Change in pension entitlements

Household net saving = Personal disposable income - Net current transfers paid

- Household final consumption expenditure
- + Change in pension entitlements

$$Savings\ rate = \frac{Household\ net\ saving}{Compensation\ of\ employees}$$

$$S = I + (G - T) + (X - M)$$

where S = Domestic savings

T = Net taxes

Marginal propensity to save = 1 – Marginal propensity to consume MPS = 1 - MPC

Marginal propensity to consume, MPC = $\frac{C}{Disposable\ income}$ Average propensity to consume, APC = $\frac{C}{Y}$

The Production Function

$$Y = AF(L,K)$$

where:

Y = Level of aggregate output in the economy

L = Quantity of labor (or number of workers in the economy)

K = Capital stock

A = Total factor productivity (TFP)

Growth Accounting Equation

$$\begin{array}{l} \textit{Growth in} \\ \textit{potential GDP} = \frac{\textit{Growth in}}{\textit{TFP}} + \textit{W}_{\textit{L}} \left(\frac{\textit{Growth in}}{\textit{labor}} \right) + \textit{W}_{\textit{C}} \left(\frac{\textit{Growth in}}{\textit{capital}} \right) \end{array}$$

 W_L = Relative share of labor in national income

 $W_{\mathcal{C}}=$ Relative share of capital in national income

 $= \frac{Corporate\ profits + Net\ interest\ income + Net\ rental\ income + Depreciation}{CDP}$

$$\begin{array}{c} \textit{Growth in per capita} \\ \textit{potential GDP} \end{array} = \begin{array}{c} \textit{Growth in} \\ \textit{TFP} \end{array} + W_{C} \begin{pmatrix} \textit{Growth in capital} \\ \textit{to labor labor} \end{pmatrix}$$

Total hours worked = Labor force × Average hours worked per worker

Labor productivity =
$$\frac{Real\ GDP}{Aggregate\ hours} = \frac{Y}{L}$$

Potential $GDP = Aggregate hours worked \times Labor productivity$

$$\begin{array}{c} \textit{Potential growth} \\ \textit{rate} \end{array} = \begin{array}{c} \textit{Long term growth rate} \\ \textit{of aggregate hours worked} \end{array} + \begin{array}{c} \textit{Long term labor productivity} \\ \textit{growth rate} \end{array}$$

Learning Module 4: Understanding Business Cycles

Measuring Inflation

$$Laspeyres\ price\ index = \frac{Value\ of\ current\ period\ output\ at\ base\ prices}{Value\ of\ base\ period\ output\ at\ base\ prices} \times 100$$

$$Paasche\ price\ index = \frac{Value\ of\ current\ period\ output\ at\ current\ prices}{Value\ of\ base\ period\ output\ at\ current\ prices} \times 100$$

Fisher price index = $\sqrt{Laspeyres\ price\ index} \times Paasche\ price\ index$

Unit labor cost,
$$ULC = \frac{Wage \ per \ hour \ per \ worker}{Output \ per \ hour \ per \ worker}$$

Learning Module 5: Monetary and Fiscal Policy

$$Money\ multiplier = \frac{1}{Reserve\ requirement}$$

$$\textit{Money created from deposit} = \frac{\textit{New deposit}}{\textit{Reserve requirement}}$$

Quantity equation of exchange

$$M \times V = P \times Y$$

where: M = Quantity of money

V =Velocity of circulation of money

P =Average price level

Y = Real output

Fisher effect

$$R_{nominal} = R_{real} + Expected inflation rate$$

The Fiscal Multiplier

$$Fiscal\ multiplier = \frac{1}{1 - c(1 - t)}$$

where: c = Marginal propensity to consume

t = Tax rate

Learning Module 6: Introduction to Geopolitics

No formula

Learning Module 7: International Trade and Capital Flows

Current account balance

$$CA = X - M = S_p + S_q - I$$

where: $S_p = Private savings$

 $S_g = {\it Government surplus} = T - G$

I = Private investments

Learning Module 8: Currency Exchange Rates

Real exchange rate_{d/f} = $S_{d/f} \times \frac{P_f}{P_d}$

% Change in real exchange rate $\approx \% \Delta S_{d/f} + \% \Delta P_f - \% \Delta P_d$

Percentage change in currency f (vs currency d)

$$\frac{E(S_{d/f}) - S_{d/f}}{S_{d/f}}$$

Cross-Rate

$$\frac{A}{B} = \frac{A}{C} \times \frac{C}{D}$$

Forward Rate

$$F_{A/B} = S_{A/B} \times \left[\frac{1 + r_A \times T}{1 + r_B \times T} \right]$$

 $F_{A/B} = S_{A/B} + Forward points (in decimal)$

$$F_{A/B} - S_{A/B} = S_{A/B} \left(\frac{r_A - r_B}{1 + r_B} \right) T$$

Marshall-Lerner Condition

$$\omega_X \varepsilon_X + \omega_M (\varepsilon_M - 1) > 0$$

where: ω_X = Share of exports in total trade

 $\omega_{\it M}=$ Share of imports in total trade

 ε_X = Price elasticity of foreign demand for domestic country exports

 $arepsilon_{\it M}=$ Price elasticity of domestic demand for imports

$$\omega_X + \omega_M = 1$$

FINANCIAL STATEMENT ANALYSIS

Learning Module 1: Introduction to Financial Statement Analysis

Assets = Liabilities + Equity

Net income = Revenue - Expenses

 $Total\ comprehensive\ income = Net\ income + Other\ comprehensive\ income$

Learning Module 2: Financial Reporting Standards

No formula

Learning Module 3: Understanding Income Statements

Gross profit = Revenue - Cost of sales

 $Operating\ profit = Gross\ profit - Operating\ expenses$

Net book value of asset = Asset cost - Accumulated depreciation

$$Basic\ EPS = \frac{Net\ income-Preferred\ dividends}{Weighted\ average\ number\ of\ shares\ outstanding}$$

Diluted EPS (for convertible preferred stock)

$$Diluted \ EPS = \frac{Net \ income}{Weighted \ average \ number} + \frac{New \ common \ shares \ that \ would}{of \ shares \ outstanding} + \frac{New \ common \ shares \ that \ would}{have \ been \ issued \ at \ conversion}$$

Diluted EPS (for convertible debt)

$$Diluted \ EPS = \frac{Net \ income - Preferred \ dividends + \frac{After \ tax \ interest \ expense}{on \ convertible \ debt}}{Weighted \ average \ number} + \frac{New \ common \ shares \ that \ would}{of \ shares \ outstanding} + \frac{New \ common \ shares \ that \ would}{have \ been \ issued \ at \ conversion}$$

Diluted EPS (for options)

Using Treasury stock method,

Additional common New shares that would Shares that could have shares issued upon = have been issued at - been purchased with conversion option exercise cash received option exercise

Video (Basic & Diluted EPS): https://youtu.be/2C-mwVqO2SQ

Learning Module 4: Understanding Balance Sheets

For balance sheet ratios, refer to Learning Module 6: Financial Analysis Techniques.

 $Working\ capital = Current\ assets - Current\ liabilities$

Learning Module 5: Understanding Cash Flow Statements

$$\begin{array}{ccc} \textit{Change in cash} & \textit{Cash flow} & \textit{Cash flow} & \textit{Cash flow} \\ \textit{and cash equivalents} & = \textit{from operating} + \textit{from investing} + \textit{from financing} \\ & \textit{activities} & \textit{activities} & \textit{activities} \end{array}$$

$$\frac{Ending\ accounts}{receivable} = \frac{Beginning\ accounts}{receivable} + Revenue - \frac{Cash\ collected}{from\ customers}$$

$$\frac{Ending}{inventory} = \frac{Beginning}{inventory} + Purchases - \frac{Cost\ of}{goods\ sold}$$

$$\frac{Ending\ accounts}{payable} = \frac{Beginning\ accounts}{payable} + Purchases - \frac{Cash\ paid}{to\ suppliers}$$

$$\frac{Ending\ wages}{payable} = \frac{Beginning\ wages}{payable} + \frac{Wages}{expense} - \frac{Cash\ paid}{to\ employees}$$

$$\frac{Ending\ interest}{payable} = \frac{Beginning\ interest}{payable} + \frac{Interest}{expense} - \frac{Cash\ paid}{for\ interest}$$

$$\frac{Ending\ income}{tax\ payable} = \frac{Beginning\ income}{tax\ payable} + \frac{Income\ tax}{expense} - \frac{Cash\ paid}{for\ income\ taxes}$$

$$Ending \ PP\&E = Beginning \ PP\&E + \frac{Equipment}{purchased} - \frac{Equipment}{sold}$$

$$\frac{Ending\ accumulated}{depreciation} = \frac{Beginning\ accumulated}{depreciation} + \frac{Depreciation}{expense} - \frac{Accumulated}{depreciation\ on\ equipment\ sold}$$

Note:

$$\begin{array}{l} \textit{Gain on sale} \\ \textit{of equipment} \end{array} = \begin{array}{l} \textit{Cash received from} \\ \textit{sale of equipment} \end{array} - \begin{array}{l} \textit{Book value of} \\ \textit{equipment sold} \end{array}$$

$$\frac{Ending\ retained}{earnings} = \frac{Beginning\ retained}{earnings} + \frac{Net}{income} - Dividends$$

Free Cash Flow To Firm (FCFF)

$$FCFF = NI + NCC + Int(1 - Tax \ rate) - FCInv - WCInv$$

where:
$$NI = Net income$$

NCC = Non-cash charges (e.g., depreciation and amortization)

Int = Interest expense

FCInv = Capital expenditures

WCInv = Working capital expenditures

$$FCFF = CFO + Int(1 - Tax \, rate) - FCInv$$

$$CFO = NI + NCC - WCInv$$

Free Cash Flow to Equity (FCFE)

$$FCFE = CFO - FCInv + Net Borrowing$$

where: $Net\ Borrowing = Debt\ issued - Debt\ repaid$

Performance Ratios

Cash flow to revenue =
$$\frac{CFO}{Revenue}$$

$$Cash\ return\ on\ assets = \frac{CFO}{Average\ total\ assets}$$

$$Cash\ return\ on\ equity = \frac{CFO}{Average\ shareholders\ equity}$$

$$Cash \ to \ income = \frac{CFO}{Operating \ income}$$

$$Cash\ flow\ per\ share = \frac{CFO-Preferred\ dividends}{Number\ of\ common\ shares\ outstanding}$$

Coverage Ratios

$$Debt\ coverage\ ratio = \frac{CFO}{Total\ debt}$$

$$Interest\ coverage\ ratio = \frac{CFO + Interest\ paid + Taxes\ paid}{Interest\ paid}$$

$$Reinvestment\ ratio = \frac{CFO}{Cash\ paid\ for\ long\ term\ assets}$$

$$Debt \ payment \ ratio = \frac{CFO}{Cash \ paid \ for \ long \ term \ debt \ repayment}$$

$$Dividend\ payment\ ratio = \frac{CFO}{Dividends\ paid}$$

Investing and financing ratio =
$$\frac{CFO}{Cash flow for investing and}$$
financing activities

Learning Module 6: Financial Analysis Techniques

Activity Ratios

$$Inventory\ turnover = \frac{\textit{Cost of sales}}{\textit{Average inventory}}$$

$$\textit{Days of inventory on hand} = \frac{\textit{Number of days in the period}}{\textit{Inventory turnover}}$$

$$Receivables\ turnover = \frac{Revenue}{Average\ receivables}$$

$$Days \ of \ sales \ outstanding = \frac{Number \ of \ days \ in \ the \ period}{Receivables \ turnover}$$

$$Payables\ turnover = \frac{Purchases}{Average\ payables}$$

$$Number\ of\ days\ of\ payables = \frac{Number\ of\ days\ in\ the\ period}{Payables\ turnover}$$

$$Working\ capital\ turnover = \frac{Revenue}{Average\ working\ capital}$$

$$Fixed \ asset \ turnover = \frac{Revenue}{Average \ net \ fixed \ assets}$$

$$Total \ asset \ turnover = \frac{Revenue}{Average \ total \ assets}$$

Liquidity Ratios

$$Current\ ratio = \frac{Current\ assets}{Current\ liabilities}$$

$$\label{eq:Quick} Quick\ ratio = \frac{Cash + Short\ term\ marketable\ investments + Receivables}{Current\ liabilities}$$

$$Cash\ ratio = \frac{Cash + Short\ term\ marketable\ investments}{Current\ liabilities}$$

$$\frac{Defensive\ interval}{ratio} = \frac{Cash + Short\ term\ marketable\ investments + Receivables}{Daily\ cash\ expenditures}$$

$$\frac{Cash\ conversion}{cycle} = \frac{Days\ of\ inventory}{on\ hand} + \frac{Days\ of\ sales}{outstanding} - \frac{Number\ of\ days}{of\ payables}$$

Video (Cash Conversion Cycle): https://youtu.be/IFsI9c4wUD4

Solvency Ratios

$$Long \ term \ debt \ to \ equity \ ratio = \frac{Total \ long \ term \ debt}{Total \ equity}$$

$$Total\ debt\ ratio = \frac{Total\ debt}{Total\ assets}$$

$$Debt \ to \ capital \ ratio = \frac{Total \ debt}{Total \ debt + Total \ equity}$$

$$Debt \ to \ equity \ ratio = \frac{Total \ debt}{Total \ equity}$$

$$Financial\ leverage\ ratio = \frac{Average\ total\ assets}{Average\ total\ equity}$$

$$Debt \ to \ EBITDA \ ratio = \frac{Total \ debt}{EBITDA}$$

Coverage Ratios

$$Interest\ coverage\ ratio = \frac{EBIT}{Interest\ payments}$$

$$Fixed\ charge\ coverage\ ratio = \frac{EBIT + Lease\ payments}{Interest\ payments + Lease\ payments}$$

Profitability Ratios

$$Gross\ profit\ margin = \frac{Gross\ profit}{Revenue}$$

$$Operating \ profit \ margin = \frac{Operating \ income}{Revenue}$$

$$Pretax\ margin = \frac{EBT}{Revenue}$$

$$Net\ profit\ margin = \frac{Net\ income}{Revenue}$$

$$Operating\ ROA = \frac{Operating\ income}{Average\ total\ assets}$$

$$ROA = \frac{Net\ income}{Average\ total\ assets}$$

$$Return \ on \ total \ capital = \frac{EBIT}{Average \ total \ debt \ and \ equity}$$

$$ROE = \frac{Net \ income}{Average \ total \ equity}$$

$$Return \ on \ common \ equity = \frac{Net \ income - Preferred \ dividends}{Average \ common \ equity}$$

DuPont Analysis

$$ROE = ROA \times Financial Leverage$$

$$ROE = Net\ profit\ margin \times Total\ asset\ turnover \times Financial\ leverage$$

$$ROE = \frac{Tax}{burden} \times \frac{Interest}{burden} \times \frac{EBIT}{margin} \times \frac{Total~asset}{turnover} \times \frac{Financial}{leverage}$$

where:

$$Tax\;burden = \frac{Net\;income}{EBT}$$

$$Interest\ burden = \frac{EBT}{EBIT}$$

Valuation Ratios

$$P/E = \frac{Price\ per\ share}{Earnings\ per\ share}$$

$$P/CF = \frac{Price\ per\ share}{Cash\ flow\ per\ share}$$

$$P/S = \frac{Price\ per\ share}{Sales\ per\ share}$$

$$P/BV = \frac{Price\ per\ share}{Book\ value\ per\ share}$$

$$\textit{Cash flow per share} = \frac{\textit{Cash flow from operations}}{\textit{Weighted average number of shares outstanding}}$$

$$\label{eq:Dividend} \textit{Dividend payout ratio} = \frac{\textit{Common share dividends}}{\textit{Net income attributable to common shares}}$$

Retention rate = 1 - Dividend payout ratio

Sustainable growth rate = Retention rate \times ROE

Business Risk

$$\frac{\textit{Coefficient of variation}}{\textit{of operating income}} = \frac{\textit{Standard deviation of operating income}}{\textit{Average operating income}}$$

$$\frac{\textit{Coefficient of variation}}{\textit{of net income}} = \frac{\textit{Standard deviation of net income}}{\textit{Average net income}}$$

$$\frac{\textit{Coefficient of variation}}{\textit{of revenue}} = \frac{\textit{Standard deviation of revenue}}{\textit{Average revenue}}$$

Financial Sector Ratios

$$Net\ interest\ margin = \frac{\textit{Net interest income}}{\textit{Total interest earning assets}}$$

Credit Ratios

$$EBITDA$$
 interest coverage ratio =
$$\frac{EBITDA}{Interest\ expense}$$

$$FFO$$
 to $debt = \frac{Funds\ from\ operations}{Total\ debt}$

$$Free \ operating \ cash \ flow \ to \ debt = \frac{\mathit{CFO-Capital\ expenditures}}{\mathit{Total\ debt}}$$

$$Debt\ to\ EBITDA = \frac{Total\ debt}{EBITDA}$$

$$Return \ on \ capital = \frac{EBIT}{Average \ capital}$$

Segment Ratios

$$Segment\ margin\ ratio = \frac{Segment\ profit}{Segment\ revenue}$$

$$Segment\ turnover\ ratio = \frac{Segment\ revenue}{Segment\ assets}$$

$$Segment\ ROA\ ratio = \frac{Segment\ profit}{Segment\ assets}$$

$$Segment\ debt\ ratio = \frac{Segment\ liabilities}{Segment\ assets}$$

Learning Module 7: Inventories

Inventory cost (capitalized) = Raw materials + Direct labour + Production overhead + Transportation for raw materials

Inventory cost (expensed) = Abnormal waste + Storage of finished goods inventory

FIFO Inventory value = LIFO Inventory value + LIFO Reserve

FIFO Cost of goods sold = LIFO Cost of goods sold — Change in LIFO Reserve

IFRS

Inventories = Lower of Cost and Net Realizable Value (NRV)

NRV =Estimated selling price less estimated costs of completion and costs necessary to complete the sale

US GAAP

Inventories = Lower of Cost and NRV

For last-in, first-out (LIFO) method or retail inventory methods

Inventories = Lower of Cost and Market Value

Market value = Current replacement cost (subject to lower and upper limits)

Lower limit = $NRV - Normal \ profit \ margin$ Upper limit = NRV

Video: https://youtu.be/V8C31msIBzs

Learning Module 8: Long-Lived Assets

Video (Capitalizing vs. Expensing): https://youtu.be/c-3D1yuH4xU

Property, Plant, and Equipment (PP&E)

Cost Model

Carrying amount of PP&E = Historical cost - Accumulated depreciation - Impairment loss

Historical cost of PP&E = Purchase price + Delivery cost + Cost to make the asset operable

Goodwill

$$Goodwill = {Purchase \atop price} - {Acquirer's \ interest \ in \ the \atop fair \ value \ of \ the \ identifiable \atop assets \ and \ liabilities \ acquired}$$

Straight-line method of depreciation

$$Depreciation \ expense = \frac{Cost - Salvage \ value}{Useful \ life}$$

Double-Declining Balance method

$$Depreciation \ expense = \frac{2}{Useful \ life} \times (Cost - Accumulated \ depreciation)$$

Video: https://youtu.be/6RskYAxdAFk

Units-of-Production method

$$Depreciation \ expense = \frac{Units \ produced}{Total \ units \ over \ useful \ life} \times (Cost - Salvage \ value)$$

Impairment of PP&E (IFRS)

 $Impairment\ loss = Carrying\ amount - Recoverable\ amount$

Recoverable amount = HIGHER of its Fair value less costs to sell AND its value in use

Value in use = Present value of expected future cash flows

Impairment of PP&E (US GAAP)

If carrying amount > Undiscounted expected future cash flows

Impairment loss = Carrying amount of PP&E - Fair value of PP&E

Disclosures

$$Estimated\ total\ useful\ life = \frac{Estimated\ age}{of\ equipment} + \frac{Estimated}{remaining\ life}$$

$$Estimated\ total\ useful\ life = \frac{Gross\ PP\&E}{Annual\ depreciation\ expense}$$

$$Estimated \ age \ of \ equipment = \frac{Accumulated \ depreciation}{Annual \ depreciation \ expense}$$

$$Estimated\ remaining\ life = \frac{Net\ PP\&E}{Annual\ depreciation\ expense}$$

Learning Module 9: Income Taxes

$$Income\ tax\ expense = Income\ tax\ payable + {Changes\ in\ deferred\ tax\over assets\ and\ liabilities}$$

$$\begin{array}{l} \textit{Tax base} \\ \textit{of liability} \end{array} = \begin{array}{l} \textit{Carrying amount} \\ \textit{of liability} \end{array} - \begin{array}{l} \textit{Amounts that will be deductible} \\ \textit{for tax purposes in the future} \end{array}$$

$$Effective \ tax \ rate = \frac{Income \ tax \ expense}{Earnings \ before \ tax}$$

Learning Module 10: Non-Current (Long Term) Liabilities

$$\frac{Interest\ payment}{on\ bonds} = Coupon\ rate \times Face\ value$$

Effective Interest Rate method

$$Interest\ expense = \frac{Beginning\ bond}{liability} \times \frac{Market\ interest}{rate}$$

$$\frac{Ending\ bond}{liability} = \frac{Beginning\ bond}{liability} + \frac{Interest}{expense} - \frac{Interest}{payment}$$

Video: https://youtu.be/wv0gFrbJQu8

Derecognition of Debt

$$\frac{Gain\ on\ extinguishment}{of\ debt} = \frac{Gain\ on\ extinguishment}{of\ debt} - \frac{Cash\ required\ to}{redeem\ the\ debt}$$

Learning Module 11: Financial Reporting Quality

Nothing new

Learning Module 12: Applications of Financial Statement Analysis

 $\frac{\textit{Percentage of asset base being renewed}}{\textit{through new capital investment}} = \frac{\textit{Capex}}{\textit{PP\&E} + \textit{Capex}}$

CORPORATE ISSUERS

Learning Module 1: Corporate Structures and Ownership

No formula.

Learning Module 2: Introduction to Corporate Governance and Other ESG Considerations

No formula.

Learning Module 3: Business Models and Risks

$$Breakeven\ point\ (unit) = \frac{Fixed\ costs}{Contribution\ margin}$$

where: Contribution margin = Selling price per unit - Variable cost per unit

 $Total\ leverage = Operating\ leverage \times Financial\ leverage$

$$Operating\; leverage = \frac{Contribution}{EBIT}$$

$$Financial\ leverage = \frac{EBIT}{EBT}$$

Learning Module 4: Capital Investments

Net Present Value (NPV)

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+r)^t} - Outlay$$

where: $\mathit{CF}_t = \mathsf{After}\text{-tax}\ \mathsf{cash}\ \mathsf{flow}\ \mathsf{at}\ \mathsf{time}\ t$

r = Required rate of return for the investment

Outlay = Investment cash flow at time zero

Internal Rate of Return (IRR)

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1 + IRR)^t} - Outlay = 0$$

Video: https://youtu.be/bzck7QLhICw

Return on Invested Capital (ROIC)

$$ROIC = \frac{After\ tax\ Operating\ Profit}{Average\ Book\ Value\ of\ Invested\ Capital}$$

Real Options

$$Project \ NPV = \frac{NPV \ based \ on}{DCF \ alone} - \frac{Cost \ of}{options} + \frac{Value \ of}{options}$$

Learning Module 5: Working Capital and Liquidity

 $Net\ working\ capital = Current\ assets - Current\ liabilities$

$$Operating \ cash \ flows = \frac{After \ tax \ operating}{cash \ flows} - \frac{Interest \ and \ dividend \ payments}{(adjusted \ for \ taxes)}$$

Effective annual rate on foregone trade credit
$$= \left(1 + \frac{\%Trade\ discount}{100 - \%Trade\ discount}\right)^{\frac{365}{Days\ past\ discount}}$$

Learning Module 6: Cost of Capital – Foundational Topics

Weighted Average Cost of Capital

$$WACC = w_d r_d (1 - t) + w_p r_p + w_e r_e$$

where:

 w_d = Target weight of debt in capital structure

 w_p = Target weight of preferred stock in capital structure

 $w_e = \text{Target weight of common stock in capital structure}$

 r_d = Before-tax marginal cost of debt

t = Marginal tax rate

 $r_d(1-t)$ = After-tax marginal cost of debt

 $r_p = \text{Marginal cost of preferred stock} = \frac{Preferred\ dividend\ per\ share}{Preferred\ stock\ price\ per\ share}$

 r_e = Marginal cost of common stock

Capital Asset Pricing Model (CAPM)

$$E(R_i) = R_F + \beta_i [E(R_M) - R_F]$$

where: $R_F = \text{Risk-free rate}$

 $\beta_i = \text{Beta of stock } i$

 $E(R_M)$ = Expected return on market

 $E(R_M) - R_F =$ Expected market risk premium

Historical Equity Risk Premium

$$ERP = \bar{R}_M - \bar{R}_F$$

Bond Yield Plus Risk Premium Approach

$$r_e = r_d + Risk \ premium$$

where: $r_d = \text{Before-tax cost of debt}$

Estimating Beta for Public Companies

$$Adjusted\ beta = \frac{2}{3} \times Unadjusted\ beta + \frac{1}{3}$$

Estimating Beta for Thinly Traded and Nonpublic Companies

$$\beta_U = \beta_E \left[\frac{1}{1 + (1 - t)\frac{D}{E}} \right]$$

where: β_E = Equity beta of peer company

 $\beta_U =$ Unlevered beta (or asset beta)

 $\frac{D}{E}$ = Debt-to-equity ratio of peer company

t = Marginal tax rate of peer company

$$\beta_E = \beta_U \left[1 + (1 - t) \frac{D}{E} \right]$$

where: $\beta_E =$ Equity beta of nonpublic company

 $\frac{D}{F}$ = Debt-to-equity ratio of nonpublic company

t = Marginal tax rate of nonpublic company

Flotation Costs

(Video: https://youtu.be/T8pJ4bwPo48)

$$r_e = \frac{D_1}{P_0 - F} + g$$

$$r_e = \frac{D_1}{P_0(1-f)} + g$$

where: $r_e = \text{Cost of equity}$

 $D_1 = \text{Expected dividend} = D_0(1+g)$

 $P_0 = \text{Current stock price}$

F = Flotation cost per share (in monetary terms)

f = Flotation cost as a percentage of the issue price

g = Growth rate

Learning Module 7: Capital Structure

 $Net\ debt = Interest\ bearing\ debt - Cash\ and\ cash\ equivalents$

 $Operating\ income = Operating\ revenue - Operating\ expenses$ $= EBIT - Nonoperating\ profit + Nonoperating\ expenses$

EBIT = Net income + interest expense + taxes= EBITDA - Depreciation and amortization expense

Modigliani-Miller Proposition I

$$V_L = V_U + t \times D$$

where: V_L = Value of levered firm

 $V_U = \text{Value of unlevered firm}$

t = Marginal tax rate

D = Debt

 $t \times D = Debt tax shield$

$$V_U = \frac{CF_e(1-t)}{r_{WACC}}$$

$$V_L = \frac{(CF_e - r_D \times D)(1-t)}{r_{WACC}}$$

 CF_e = Annual cash flow to equityholders

Modigliani-Miller Proposition II

$$r_e = r_0 + (r_0 - r_d)(1 - t) \frac{D}{E}$$

$$\beta_e = \beta_a + (\beta_a - \beta_d) \left(\frac{D}{E}\right) (1 - t)$$

$$r_{WACC} = \left(\frac{D}{D+E}\right)r_d(1-t) + \left(\frac{E}{D+E}\right)r_e$$

where: $r_e = \text{Cost of equity}$

 $r_0 = \operatorname{Cost}$ of equity of an unlevered firm

 β_e = Equity beta

 β_a = Asset beta

 β_d = Debt beta

Static Trade-Off Theory of Capital Structure

$$V_L = V_U + t \times D - PV(Costs \ of \ financial \ distress)$$

Learning Module 8: Measures of Leverage

Degree of Operating Leverage

$$DOL = \frac{\% Change in operating income}{\% Change in units sold}$$

$$DOL = \frac{Contribution}{Operating\ income} = \frac{Q(P - V)}{Q(P - V) - F}$$

where: Q = Quantity of units sold

P =Selling price per unit V =Variable cost per unit

F = Fixed operating costs

Degree of Financial Leverage

$$DFL = \frac{\% Change in net income}{\% Change in operating income}$$

$$DFL = \frac{Operating\ income}{Net\ income} = \frac{Q(P-V) - F}{Q(P-V) - F - C}$$

where: C = Fixed financial costs

Degree of Total Leverage

$$DTL = \frac{\% \ Change \ in \ net \ income}{\% \ Change \ in \ number \ of \ units \ sold}$$

$$DTL = \frac{Contribution}{Net\ income} = \frac{Q(P - V)}{Q(P - V) - F - C}$$

$$DTL = DOL \times DFL$$

Breakeven Number of Units

$$Q_{BE} = \frac{F + C}{P - V}$$

Operating Breakeven Number of Units

$$Q_{OBE} = \frac{F}{P - V}$$

EQUITY INVESTMENTS

Learning Module 1: Market Organization and Structure

 $Maximum\ leverage\ ratio = \frac{1}{\text{Minimum\ margin\ requirement}}$

Total return on leveraged stock investment:

$$Total\ Return = \frac{Sales}{proceeds} + \frac{Dividends - Loan - \frac{Margin}{interest} - \frac{Sales}{commission}}{Initial} + \frac{Purchase}{commission} - 1$$

 $Initial\ equity = \frac{Minimum\ margin}{requirement} \times Total\ purchase\ price$

Video (Return on Leveraged Stock Position): https://youtu.be/tZd4Xtvjjll

$$Margin\ Call\ Price = \frac{P_0(1-Initial\ Margin)}{(1-Maintenance\ Margin)}$$

Learning Module 2: Security Market Indexes

Price Return Index,
$$V_{PRI} = \frac{\sum_{i=1}^{N} n_i P_i}{D}$$

where: n_i = the number of units of constituent security i held in the index portfolio

N = the number of constituent securities in the index

 P_i = the unit price of constituent security i

D =value of the divisor

Price return of an index,
$$PR_I = \frac{V_{PRI0} - V_{PRI0}}{V_{PRI0}}$$

Total Return Index,
$$TR_I = \frac{V_{PRI1} - V_{PRI0} + Inc_I}{V_{PRI0}}$$

where: V_{PRI1} = value of the price return index at the **end** of the period

 V_{PRI0} = value of the price return index at the **beginning** of the period

 $Inc_I = \text{total income (dividends and/or interest)}$ from all securities in the index held over the period

Weighting Methods

Price weighting,
$$w_i^P = \frac{P_i}{\sum_{j=1}^N P_j}$$

Video (Recalculating the divisor of a price weighted index): https://youtu.be/eYiZNK-ETrg

Equal weighting,
$$w_i^E = \frac{1}{N}$$

Market-capitalization weighting,
$$w_i^M = \frac{Q_i P_i}{\sum_{j=1}^N Q_j P_j}$$

Float-adjusted market capitalization weighting,
$$w_i^M = \frac{f_i Q_i P_i}{\sum_{j=1}^N f_j Q_j P_j}$$

where: f_i = fraction of shares outstanding in the market float

 Q_i = number of shares outstanding of security i

 P_i = share price of security i

N = number of securities in the index

Fundamental weighting,
$$w_i^F = \frac{F_i}{\sum_{j=1}^N F_j}$$

where: F_i denotes a fundamental size measure of company i

Learning Module 3: Market Efficiency

No formula

Learning Module 4: Overview of Equity Securities

Return on Equity (using average total book value of equity)

$$ROE_t = \frac{NI_t}{(BVE_t + BVE_{t-1})/2}$$

Return on Equity (using beginning book value of equity)

$$ROE_t = \frac{NI_t}{BVE_{t-1}}$$

where BVE = book value (Assets - Liabilities)

Learning Module 5: Introduction to Industry and Company Analysis

No formula.

Learning Module 6: Equity Valuation: Concepts and Basic Tools

Intrinsic value of a share (at t = 0):

$$V_0 = \sum_{t=1}^{n} \frac{D_t}{(1+r)^t} + \frac{P_n}{(1+r)^n}$$

where: $D_t =$ expected dividend in year t

r = required rate of return on stock

 $P_n =$ expected price per share at t = n (terminal value)

Value of preferred stock (non-callable, non-convertible, perpetual)

$$V_0 = \frac{D_0}{r}$$

Value of **preferred stock** (non-callable, non-convertible, maturity at time n)

$$V_0 = \sum_{t=1}^{n} \frac{D_t}{(1+r)^t} + \frac{Par \ value}{(1+r)^n}$$

Gordon Growth Model

$$P_0 = \frac{D_1}{r - q} = \frac{D_0(1 + g)}{r - q}$$

Sustainable growth rate

$$g = b \times ROE$$

where b = earnings retention rate (1 - Dividend payout ratio)

Video: https://youtu.be/MnfRRRhuGpA

Two-Stage Dividend Discount Model

$$V_0 = \sum_{t=1}^n \frac{D_0 (1 + g_s)^t}{(1+r)^t} + \frac{V_n}{(1+r)^t}$$

where: $g_L = \text{Long-term}$ stable growth rate

 $g_s = {\sf Short\text{-}term}$ growth rate

$$V_n = \frac{D_{n+1}}{r - q_I} = \frac{D_0 (1 + g_S)^t (1 + g_L)}{r - q_I}$$

Justified forward P/E

$$\frac{P_0}{E_1} = \frac{Dividend\ payout\ ratio}{r - g}$$

Enterprise Value

$$EV = rac{Market\ value}{of\ equity} + rac{Market\ value}{of\ preferred\ stock} + rac{Market\ value}{of\ debt} - rac{Short\ term}{investments}$$

Asset-based Valuation

$$\frac{Adjusted}{book\ value} = \frac{Market\ value}{of\ assets} - \frac{Market\ value}{of\ liabilities}$$

FIXED INCOME

Learning Module 1: Fixed-Income Securities: Defining Elements

Deferred Coupon Bond

Video: https://youtu.be/erRbAUOGIyM

Convertible Bonds

$$\frac{Conversion}{ratio} = \frac{Par\ value}{Conversion\ price}$$

$$\frac{Conversion}{value} = \frac{Current\ share}{price} \times \frac{Conversion}{ratio}$$

$$\frac{Conversion}{premium} = \frac{Convertible\ bond}{price} - \frac{Conversion}{value}$$

Learning Module 2: Fixed-Income Markets: Issuance, Trading, and Funding

No formula.

Learning Module 3: Introduction to Fixed-Income Valuation

Bond Price =
$$\sum_{t=1}^{n} \frac{Coupon}{(1+Z_t)^t} + \frac{Face\ Value}{(1+Z_n)^n}$$

where: Z_t = spot rate or zero rate for period t n = remaining term to maturity

Full Price, Flat Price, and Accrued Interest

(Video: https://youtu.be/I7G075JAu5w)

$$PV^{Full} = PV^{Flat} + Accrued Interest$$

= $PV_{BOP} \times (1 + r)^{t/T}$

where: Accrued Interest = $\frac{t}{T} \times Coupon$

t = number of days from the last coupon payment to the settlement date

T = number of days in the coupon period

t/T = fraction of the coupon period that has gone by since the last payment

 PV_{BOP} = price on the previous coupon date (before the settlement date)

Value of Floating Rate Note (FRN)

$$PV = \frac{\left(\frac{Index + QM}{m}\right) \times FV}{\left(1 + \frac{Index + DM}{m}\right)^{1}} + \frac{\left(\frac{Index + QM}{m}\right) \times FV}{\left(1 + \frac{Index + DM}{m}\right)^{2}} + \dots + \frac{\left(\frac{Index + QM}{m}\right) \times FV + FV}{\left(1 + \frac{Index + DM}{m}\right)^{n}}$$

where QM = Quoted Margin;

DM = Discount Margin

m = periodicity

FV = Face Value of FRN

Video: https://youtu.be/zqYOtVLkYR8

Periodicity Conversion

$$\left(1 + \frac{APR_m}{m}\right)^m = \left(1 + \frac{APR_n}{n}\right)^n$$

$$\textit{Current yield} = \frac{\textit{Annual Coupon payment}}{\textit{Flat price}}$$

$$Simple\ yield = \frac{Coupon\ + \left(\frac{FV - PV}{N}\right)}{Flat\ price}$$

$$\frac{\textit{Price of}}{\textit{callable bond}} = \frac{\textit{Price of}}{\textit{option free bond}} - \frac{\textit{Value of embedded}}{\textit{call option}}$$

Yield Measures for Money Market Instruments

Discount Rate Basis

$$PV = FV \times \left(1 - \frac{Days}{Year} \times DR\right)$$

where:

PV = present value of money market instrument

FV = future value paid at maturity

Days = number of days between settlement and maturity

Year = number of days in the year

DR =discount rate (stated as annual percentage rate)

Add-on Rate Basis

$$PV = \frac{FV}{\left(1 + \frac{Days}{Year} \times AOR\right)}$$

Forward Rates, IFR

$$(1+z_A)^A \times (1+IFR_{A,B-A})^{B-A} = (1+z_B)^B$$

Note: If YTM is stated as semiannual bond basis, remember to divide YTM by 2

Yield Spreads

$$\textit{G Spread} = \frac{\textit{YTM of}}{\textit{corporate bond}} - \frac{\textit{YTM of}}{\textit{government bond}}$$

$$I Spread = \frac{YTM \ of}{corporate \ bond} - \frac{Swap}{rate}$$

OAS = Z-spread - Option value (in bps)

Learning Module 4: Introduction to Asset-Backed Securities

Single Monthly Mortality Rate (SMM)

$$SMM = rac{Prepayment\ for\ the\ month}{Beginning\ outstanding\ Scheduled\ principal} \ mortgage\ balance\ -\ repayment\ for\ for\ the\ month$$

Learning Module 5: Understanding Fixed-Income Risk and Return

Horizon Yield

$$\frac{\textit{Bond purchase}}{\textit{price}} = \frac{\textit{Sum of reinvested}}{\textit{coupon payments}} + \frac{\textit{Sale price or}}{\textit{redemption amount}}}{(1 + \textit{Horizon yield})^{\textit{Holding period}}}$$

Video: https://youtu.be/Bq1FG1jQV2M

Duration Measures

$$Macaulay\ duration = \frac{1+r}{r} - \frac{1+r+[N\times(c-r)]}{c\times\lceil(1+r)^N-1\rceil+r} - \frac{t}{T}$$

$$Modified\ Duration = \frac{Macaulay\ Duration}{1+r}$$

where r =yield per period

c = coupon rate

N = remaining term to maturity

Video: https://youtu.be/USgjcdCk7Fs

 $\%\Delta PV^{Full} \approx -AnnModDur \times \Delta Yield$

$$ModDur \approx \frac{(PV_{-}) - (PV_{+})}{2 \times (\Delta Yield) \times (PV_{0})}$$

Effective Duration

$$EffDur = \frac{(PV_{-}) - (PV_{+})}{2 \times (\Delta Curve) \times (PV_{0})}$$

Portfolio Duration

Portfolio duration =
$$\sum_{i=1}^{n} w_i \times Duration_i$$

where w_i is the weight of the market value of Bond i

Key Rate Duration

$$KeyRateDur_k = -\frac{1}{PV} \times \frac{\Delta PV}{\Delta r_k}$$

$$\sum_{k=1}^{n} KeyRateDur_{k} = EffDur$$

Money Duration

Money duration = $AnnModDur \times PV^{full}$

$$\Delta PV^{Full} \approx -MoneyDur \times \Delta Yield$$

$$\%\Delta PV^{Full} \approx -AnnModDur \times \Delta Yield + \frac{1}{2} \times AnnConvexity \times (\Delta Yield)^2$$

Convexity

Convexity
$$\approx \frac{(PV_{-}) + (PV_{+}) - 2(PV_{0})}{(\Delta Yield)^{2} \times (PV_{0})}$$

$$\Delta PV^{Full} \approx -MoneyDur \times \Delta Yield + \frac{1}{2} \times MoneyConvexity \times (\Delta Yield)^2$$

$$Effective\ Convexity = \frac{(PV_{-}) + (PV_{+}) - 2(PV_{0})}{(\Delta Curve)^{2} \times (PV_{0})}$$

Duration Gap

Duration gap = Macaulay duration - Investment horizon

Learning Module 6: Fundamentals of Credit Analysis

 $Yield\ spread = Liquidity\ premium + Credit\ spread$

$$\%\Delta PV^{Full} \approx -AnnModDur \times \Delta Spread + \frac{1}{2} \times AnnConvexity \times (\Delta Spread)^2$$

DERIVATIVES

Learning Module 1: Derivative Instrument and Derivatives Market Features

No formula.

Learning Module 2: Forward Commitments and Contingent Claim Features and Instruments

Forward Contract

Long Forward payoff = $S_T - F_0(T)$

Short Forward payoff = $-[S_T - F_0(T)]$

Futures Contract

Long Futures daily mark-to-market = $f_t(T) - f_{t-1}(T)$

Short Futures daily mark-to-market = $-[f_t(T) - f_{t-1}(T)]$

Options Contract

LONG Call option

Payoff or Value at expiration, $c_T = \max(0, S_T - X)$

Profit at expiration, $\Pi = \max(0, S_T - X) - c_0$

where: $c_0 = \text{Call premium}$

X = Exercise/Strike price

 $S_T =$ Spot price at expiration

SHORT Call option

Payoff or Value at expiration, $c_T = -\max(0, S_T - X)$

Profit at expiration, $\Pi = -[\max(0, S_T - X) - c_0]$

LONG Put option

Payoff or Value at expiration, $p_T = \max(0, X - S_T)$

Profit at expiration, $\Pi = \max(0, X - S_T) - p_0$

SHORT Put option

Payoff or Value at expiration, $p_T = -\max(0, X - S_T)$

Profit at expiration, $\Pi = -[\max(0, X - S_T) - p_0]$

Credit Default Swap (CDS)

CDS MTM Change = Δ CDS Spread × CDS Notional × EffDur_{CDS}

In a credit event, payment from CDS seller to CDS buyer $\approx LGD$ (%) \times Notional

Learning Module 3: Derivative Benefits, Risks, and Issuer and Investor Uses

No formula.

Learning Module 4: Arbitrage, Replication, and the Cost of Carry in Pricing Derivatives

If there are no underlying costs or benefits:

Forward price,
$$F_0(T) = S_0(1+r)^T$$

If there are underlying costs or benefits in present value terms:

Forward price,
$$F_0(T) = [S_0 - PV_0(Income) + PV_0(Cost)](1+r)^T$$

where: $S_0 = \text{Current spot price}$

r = Risk-free rate

T = Tenor of forward contract

Under continuous compounding, $F_0(T) = S_0 e^{rT}$

Under continuous compounding, with income (i) and cost (c) expressed in %:

$$F_0(T) = S_0 e^{(r+c-i)T}$$

Foreign Exchange Forward Contract

$$F_{0,f/d}(T) = S_{0,f/d}(T)e^{(r_f - r_d)T}$$

Learning Module 5: Pricing and Valuation of Forward Contracts and for an Underlying with Varying Maturities

Value of LONG Forward Prior to Expiration

$$V_0(T) = 0$$

$$V_t(T) = S_t - \frac{F_0(T)}{(1+r)^{T-t}} = S_t - F_0(T) \times (1+r)^{-(T-t)}$$

$$V_T(T) = S_0 - F_0(T)$$

If the asset incurs cost or generates income from time t through maturity,

$$V_t(T) = [S_t - PV_t(Income) + PV_t(Cost)] - F_0(T) \times (1+r)^{-(T-t)}$$

For foreign exchange forward contract,

$$V_t(T) = S_{t,f/d} - F_{0,f/d}(T) \times e^{-(r_f - r_d)(T - t)}$$

Value of SHORT Forward Prior to Expiration

$$V_0(T) = 0$$

$$V_t(T) = -\left[S_t - \frac{F_0(T)}{(1+r)^{T-t}}\right]$$

$$V_T(T) = -[S_0 - F_0(T)]$$

Interest Rate Forward Contracts (Forward Rate Agreements (FRA))

$$(1+z_A)^A \times (1+IFR_{A,B-A})^{B-A} = (1+z_B)^B$$

where: $z_A = \text{Spot rate for } A \text{ periods}$

 $z_B = \text{Spot rate for } B \text{ periods}$

 $IFR_{A,B-A} = Implied$ forward rate for (B - A) periods, starting in A periods

Payoff for a Long FRA = $(MRR_{B-A} - IFR_{A,B-A}) \times Notional \ principal \times Period$

Payoff for a Short FRA = $-(MRR_{B-A} - IFR_{A,B-A}) \times Notional \ principal \times Period$

Learning Module 6: Pricing and Valuation of Futures Contracts

If there are no underlying costs or benefits:

Futures price,
$$f_0(T) = S_0(1+r)^T$$

If there are underlying costs or benefits in present value terms:

$$f_0(T) = [S_0 - PV_0(Income) + PV_0(Cost)](1+r)^T$$

Under continuous compounding, $f_0(T) = S_0 e^{rT}$

Under continuous compounding, with income (i) and cost (c) expressed in %:

$$f_0(T) = S_0 e^{(r+c-i)T}$$

Foreign Exchange Forward Contract

$$f_{0,f/d}(T) = S_{0,f/d}(T)e^{(r_f - r_d)T}$$

Interest Rate Futures Contract

$$f_{A,B-A} = 100 - (100 \times MRR_{A,B-A})$$

 $f_{A,B-A} =$ Futures price for a market reference rate for (B-A) periods that begins in A periods

Futures contract basis point value, $BPV = Notional\ principal \times 0.01\% \times Period$

Learning Module 7: Pricing and Valuation of Interest Rates and Other Swaps

For a **fixed-rate payer** in an interest rate swap:

Periodic settlement value = $(MRR - s_N) \times Swap Notional \times Period$

For a **fixed-rate receiver** in an interest rate swap:

Periodic settlement value = $(s_N - MRR) \times Swap \ Notional \times Period$

where: $s_N = Fixed swap rate$

MRR = Market reference rate

Value of a pay-fixed interest rate swap on a settlement date after inception

 $= \frac{\textit{Current settlement}}{\textit{value}} + \Sigma(\textit{Floating payments}) - \Sigma(\textit{Fixed payments})$

Value of a receive-fixed interest rate swap on a settlement date after inception

 $= \frac{Current\ settlement}{value} + \Sigma(Fixed\ payments) - \Sigma(Floating\ payments)$

Learning Module 8: Pricing and Valuation of Options

Option value = Exercise value + Time value

Call option exercise value = $Max[0, S_t - X(1+r)^{-(T-t)}]$

Call option time value = $c_t - Max[0, S_t - X(1+r)^{-(T-t)}]$

Put option exercise value = $Max[0, X(1+r)^{-(T-t)} - S_t]$

Put option time value = $p_t - Max[0, X(1+r)^{-(T-t)} - S_t]$

Lower bound of call option value = $Max[0, S_t - X(1+r)^{-(T-t)}]$

Upper bound of call option value = S_t

Lower bound of put option value = $Max[0, X(1+r)^{-(T-t)} - S_t]$

Upper bound of put option value = X

Learning Module 9: Option Replication Using Put-Call Parity

Put-Call Parity

$$S_0 + p_0 = c_0 + X(1+r)^{-T}$$

Put-Call Forward Parity

$$F_0(T)(1+r)^{-T} + p_0 = c_0 + X(1+r)^{-T}$$

Value of the Firm

$$V_0 = c_0 + PV(Debt) - p_0$$

Value of debt = $PV(Debt) - p_0$

Value of equity = c_0

Learning Module 10: Valuing a Derivative Using a One-Period Binomial Model

Risk-neutral probability of a price increase in underlying

$$\pi = \frac{1 + r - R^d}{R^u - R^d}$$

where: $R^u = \text{Up factor} = \frac{S_1^u}{S_0} > 1$

$$R^d = \text{Down factor } = \frac{S_1^d}{S_0} < 1$$

Video: https://youtu.be/ymUlKgz-rAw

Hedge ratio

$$h^* = \frac{c_1^u - c_1^d}{S_1^u - S_1^d}$$

where: $c_1^u = \max(0, S_1^u - X)$ $c_1^d = \max(0, S_1^d - X)$

$$c_1^d = \max(0, S_1^d - X)$$

Riskless portfolio with a Call: h of the underlying, S, and short call position, c

$$V_0 = hS_0 - c_0$$

$$V_1^u = hS_1^u - c_1^u$$

$$V_0 = hS_0 - c_0$$

$$V_1^u = hS_1^u - c_1^u$$

$$V_1^d = hS_1^d - c_1^d$$

Riskless portfolio with a Put: h of the underlying, S, and long put position, p

$$V_0 = hS_0 + p_0$$

$$V_1^u = hS_1^u + p_1^u$$

$$V_1^d = hS_1^d + p_1^d$$

Value of a one-period call option

$$c_0 = \frac{\pi c_1^u + (1 - \pi)c_1^d}{1 + r}$$

Value of a one-period put option

$$p_0 = \frac{\pi p_1^u + (1 - \pi)p_1^d}{1 + r}$$

where:
$$p_1^u = \max(0, X - S_1^u)$$

 $p_1^d = \max(0, X - S_1^d)$

Video: https://youtu.be/bXEC-78y AU

ALTERNATIVE INVESTMENTS

Learning Module 1: Categories, Characteristics, and Compensation Structure of Alternative Investments

No formula.

Learning Module 2: Performance Calculation and Appraisal of Alternative Investments

$$Sharpe\ ratio = \frac{Portfolio\ return - Risk\ free\ rate}{Standard\ deviation\ of\ portfolio}$$

$$Sortino\ ratio = \frac{Portfolio\ return - Risk\ free\ rate}{Downside\ deviation\ of\ portfolio}$$

$$\mathit{MAR\ ratio} = \frac{\mathit{Portfolio\ average\ compounded\ annual\ return\ since\ inception}}{\mathit{Maximum\ drawdown\ since\ inception}}$$

$$Calmar\ ratio = \frac{Portfolio\ average\ compounded\ annual\ return\ for\ a\ period}{Maximum\ drawdown\ during\ period}$$

Multiple on Invested Capital

$$MOIC = \frac{Realized\ value\ of\ investment + Unrealized\ value\ of\ investment}{Total\ amount\ of\ invested\ capital}$$

Calculating Hedge Fund Fees and Returns

Management Fee Based on Beginning Market Value

$$\frac{Management}{Fee} = \frac{\%Management}{Fee} \times \frac{Beginning\ Market}{Value}$$

Management Fee Based on Ending Market Value

$$\frac{Management}{Fee} = \frac{\% Management}{Fee} \times \frac{Ending\ Market}{Value}$$

Incentive Fee Calculated Independent of Management Fee

$$\frac{Incentive}{Fee} = \frac{\%Incentive}{Fee} \times Gain$$

Incentive Fee Calculated Net of Management Fee

$$\frac{Incentive}{Fee} = \frac{\%Incentive}{Fee} \times (Gain-Management\ Fee)$$

Incentive Fee with **Hard Hurdle** (**Independent** of Management Fee)

$$\frac{Incentive}{Fee} = \frac{\%Incentive}{Fee} \times (Gain-Hurdle)$$

Incentive Fee with **Hard Hurdle** (**Net** of Management Fee)

$$\frac{Incentive}{Fee} = \frac{\%Incentive}{Fee} \times (Gain-Management\ Fee-Hurdle)$$

Note: 1) No incentive is paid if hedge fund incurs loss for the year.

2) Gain may be subject to high watermark.

Video: https://youtu.be/0DKmCgsAAdc

Learning Module 3: Private Capital, Real Estate, Infrastructure, Natural Resources, and Hedge Funds

No formula.

PORTFOLIO MANAGEMENT

Learning Module 1: Portfolio Management: An Overview

No formula.

Learning Module 2: Portfolio Risk and Return: Part I

Time-Weighted Rate of Return

$$r_{TW} = [(1 + r_1) \times (1 + r_2) \times ... (1 + r_N)]^{1/N-1}$$

where: r_i = Time-weighted return for year i

Annualized Return

$$r_{annual} = \left(1 + r_{weekly}\right)^{52} - 1$$

$$r_{annual} = \left(1 + r_{monthly}\right)^{12} - 1$$

Holding Period Return

$$R = \frac{Price_1 - Price_0 + Income_1}{Price_0}$$

Real Returns

$$r_{real} = \frac{1 + r_{nominal}}{1 + \pi}$$

where $\pi=\inf$ inflation rate

Indifference Curves

Utility function,
$$U = E(r) - \frac{1}{2}A\sigma^2$$

where: U = utility of an investment

E(r) =expected return

 $\sigma^2 = \text{variance of the investment (use decimal)}$

A =measure of risk aversion

Capital Allocation Line (CAL)

$$E(R_p) = R_f + \left[\frac{E(R_i) - R_f}{\sigma_i}\right] \sigma_p$$

where: $\frac{E(R_i)-R_f}{\sigma_i}$ = market price of risk

Two-asset portfolio

Portfolio expected return, $E(R_p) = w_1 R_1 + w_2 R_2$

Portfolio variance, $\sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 Cov(R_1, R_2)$

Portfolio standard deviation, $\sigma_p = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1w_2Cov(R_1, R_2)}$

Note: 1) $Cov(R_1, R_2) = \rho_{12}\sigma_1\sigma_2$

2) n securities requires n variances and $\frac{n(n-1)}{2}$ covariances

Video: https://youtu.be/IUwuIZ9ONC0

A portfolio that consists of the two-asset portfolio and the risk-free asset will have:

$$E(R) = w_P R_P + w_F R_F$$

$$\sigma(R) = w_P \sigma_P$$

Portfolio of Many Risky Assets

$$\sigma_p^2 = \frac{\bar{\sigma}^2}{N} + \frac{N-1}{N} \overline{Cov} = \frac{\bar{\sigma}^2}{N} + \frac{N-1}{N} \rho \bar{\sigma}^2$$

Condition for adding new asset to current portfolio

$$\frac{E(R_{new}) - R_f}{\sigma_{new}} > \frac{E(R_p) - R_f}{\sigma_p} \times \rho_{new,p}$$

Learning Module 3: Portfolio Risk and Return: Part II

Capital Market Line (CML)

$$E\left(R_{p}\right)=w_{f}R_{f}+(1-w_{f})E(R_{m})=R_{f}+\left[\frac{E(R_{m})-R_{f}}{\sigma_{m}}\right]\sigma_{p}$$

$$\sigma_p = (1 - w_f)\sigma_m$$

Beta of security i

$$\beta_i = \frac{Cov(R_i, R_m)}{\sigma_m^2} = \frac{\rho_{i,m}\sigma_i}{\sigma_m}$$

Portfolio beta, $\beta_p = \sum_{i=1}^n w_i \beta_i$

Total variance = Systematic variance + Nonsystematic variance

$$\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_e^2$$

Total risk,
$$\sigma_i = \sqrt{eta_i^2 \sigma_m^2 + \sigma_e^2}$$

Capital Asset Pricing Model

$$E(R_i) = R_f + \beta_i [E(R_m) - R_f]$$

The Market Model

$$R_i = \alpha_i + \beta_i R_m + e_i$$

Portfolio Performance Appraisal Measures

Sharpe ratio =
$$\frac{R_p - R_f}{\sigma_p}$$

Treynor ratio =
$$\frac{R_p - R_f}{\beta_n}$$

$$M^2 = \left(R_p - R_f\right) \frac{\sigma_m}{\sigma_n} + R_f$$

$$M^{2} \ alpha = \left[\left(R_{p} - R_{f} \right) \frac{\sigma_{m}}{\sigma_{p}} + R_{f} \right] - R_{m}$$

Jensen's Alpha,
$$\alpha_p = R_p - [R_f + \beta_p(R_m - R_f)]$$

Security Characteristic Line (SCL)

$$R_i - R_f = \alpha_i + \beta_i (R_m - R_f)$$

$$\text{Information ratio} = \frac{\alpha_i}{\sigma_{ei}}$$

Note: The ratio above should be called the Appraisal ratio but for consistency with the textbook, I kept the name as Information ratio.

Learning Module 4: Basics of Portfolio Planning and Construction

No formula.

Learning Module 5: The Behavioral Biases of Individuals

No formula.

Learning Module 6: Introduction to Risk Management

No formula.

Learning Module 7: Technical Analysis

Head and Shoulders Pattern

$$Price\ target = Neckline - (Head - Neckline)$$

Inverse Head and Shoulders Pattern

$$Price\ target = Neckline + (Neckline - Head)$$

Double Top Pattern

 $Price\ target = Valley\ low - (High\ of\ double\ top - Valley\ low)$

Rate of Change (ROC) Oscillator

$$M = (V - Vx) \times 100$$

where: M = Momentum oscillator value (oscillates above and below 0)

V = Most recent closing price

Vx =Closing price x days ago, typically 10 days

$$M = \frac{V}{Vx} \times 100$$

where: M = Momentum oscillator value (oscillates above and below 100)

Relative Strength Index

$$RSI = 100 - \frac{100}{1 + RS}$$

where:

 $RS = \frac{\Sigma(\textit{Up changes for the period under consideration})}{\Sigma(\textit{Down changes for the period under consideration})}$

Stochastic Oscillator

$$\%K = 100 \left(\frac{C - L14}{H14 - L14} \right)$$

where:

C =Latest closing price

L14 = Lowest price in the past 14 days

H14 = Highest price in the past 14 days

%D = Average of the last three %K values calculated daily

Learning Module 8: Fintech in Investment Management

No formula.