

Problem Solving as Search: Deterministic/Single-Agent

Department of Electrical and Electronics Engineering

Dr. Afşar Saranlı

Overview

- Deterministic, single-agent, search problems
- Breadth First Search
- Optimality, Completeness, Time and Space complexity
- Search Trees
- Depth First Search
- Iterative Deepening
- Best First "Greedy" Search

A Search Problem

How do we get from S to G? And what's the smallest possible number of transitions?

Formalizing a Search Problem

A search problem has five components:

Q, S, G, succs, cost

- Q is a finite set of states.
- $S \subseteq Q$ is a non-empty set of start states.
- $G \subseteq Q$ is a non-empty set of goal states.
- succs: Q → P(Q) is a function which takes a state as input and returns a set of states as output. succs(s) means "the set of states you can reach from s in one step".
- cost: Q, Q → Positive Number is a function which takes two states, s and s', as input. It returns the one-step cost of traveling from s to s'. The cost function is only defined when s' is a successor state of s.

Our Search Problem


```
Q = {START, a, b, c, d, e, f, h, p, q, r, GOAL}
S = {START}
G = {GOAL}
succs(b) = {a}
succs(e) = {h, r}
succs(a) = NULL ... etc.
cost(s,s') = 1 for all transitions
```


Our Search Problem


```
Q = \{START, a, b, c, d, e, f, h, p, q, r, GOAL\}
S = \{ START \}
G = \{ GOAL \}
succs(b) = { a }
succs(e) = \{ h, r \}
succs(a) = NULL ... etc.
cost(s,s') = 1 for all transitions
```

Why do we care? What problems are like this?

Search Problems

More Search Problems

Scheduling

More Search Problems

Scheduling

But there are plenty of things which we'd normally call search problems that don't fit our

8-Queens

rigid definition...

- A search problem has five components:
- Q, S, G, succs, cost
- Q is a finite set of states.
- $S \subseteq Q$ is a non-empty set of start states.
- $G \subseteq Q$ is a non-empty set of goal states.
- **succs**: $Q \rightarrow P(Q)$ is a function which takes a state as input and returns a set of states as output. **succs**(s) means "the set of states you can reach from s in one step".
- **cost**: Q, $Q \rightarrow Positive Number$ is a function Can you think of examples? which takes two states, s and s', as input. It returns the one-step cost of traveling from s to s'. The cost function is only defined when s' is vccessor state of s.

Our Definition Excludes...

Our Definition Excludes..

Game against adversary

Hidden State

Continuum (infinite number) of states

All of the above, plus distributed team control

Label all states that are reachable from S in 1 step but aren't reachable in less than 1 step.

Then label all states that are reachable from S in 2 steps but aren't reachable in less than 2 steps.

Then label all states that are reachable from S in 3 steps but aren't reachable in less than 3 steps.

Etc... until Goal state reached.

Remember the Path!

Also, when you label a state, record the predecessor state. This record is called a *backpointer*. The history of predecessors is used to generate the solution path, once you've found the goal:

"I've got to the goal. I see I was at f before this. And I was at r before I was at f. And I was...

.... so solution path is $S \rightarrow e \rightarrow r \rightarrow f \rightarrow G$ "

Backpointers...

Backpointers...

Starting Breadth First Search

For any state *s* that we've labeled, we'll remember:

 previous(s) as the previous state on a shortest path from START state to s.

On the kth iteration of the algorithm we'll begin with V_k defined as the set of those states for which the shortest path from the start costs exactly k steps

Then, during that iteration, we'll compute V_{k+1} , defined as the set of those states for which the shortest path from the start costs exactly k+1 steps

We begin with k = 0, $V_0 = \{START\}$ and we'll define, previous(START) = NULL

Then we'll add in things one step from the START into V_1 . And we'll keep going.


```
V_0 := S (the set of start states)
previous(START) := NIL
k := 0
while (no goal state is in V_k and V_k is not empty) do
         V_{k+1} := \text{empty set}
         For each state s in V_k
                  For each state s'in succs(s)
                          If s'has not already been labeled
                                    Set previous(s') := s
                                   Add s' into V_{k+1}
         k := k+1
```

If V_k is empty signal FAILURE

Else build the solution path thus: Let S_i be the *i*th state in the shortest path. Define $S_k = \text{GOAL}$, and for all i <= k, define $S_{i-1} = previous(S_i)$.

START

Suppose your search space conveniently allowed you to obtain predecessors(state).

- Can you think of a different way to do BFS?
- And would you be able to avoid storing something that we'd previously had to store?

Another Way: Work Back

Label all states that can reach G in 1 step but can't reach it in less than 1 step.

Label all states that can reach G in 2 steps but can't reach it in less than 2 steps.

Etc. ... until start is reached.

"number of steps to goal" labels determine the shortest path. Don't need extra bookkeeping info.

Breadth First Details

- It is fine for there to be more than one goal state.
- It is fine for there to be more than one start state.
- This algorithm works forwards from the start. Any algorithm which works forwards from the start is said to be *forward chaining*.
- You can also work backwards from the goal. This algorithm is very similar to Dijkstra's algorithm.
- Any algorithm which works backwards from the goal is said to be backward chaining.
- Backward versus forward. Which is better?

Costs on Transitions

Notice that BFS finds the shortest path in terms of number of transitions. It does not find the least-cost path.

We will quickly review an algorithm which does find the least-cost path. On the kth iteration, for any state S, write g(s) as the least-cost path to S in k or fewer steps.

Least Cost Breadth First

 V_k = the set of states which can be reached in exactly k steps, and for which the least-cost k-step path is less costly than any path of length less than k. In other words, V_k = the set of states whose values changed on the previous iteration.

```
V_0 := S (the set of start states)
previous(START) := NIL
g(START) = 0
k = 0
while (V_{\nu} is not empty) do
          V_{k+1} := \text{empty set}
          For each state s in V_k
                    For each state s'in succs(s)
                              If s' has not already been labeled
                              OR if g(s) + Cost(s,s') < g(s')
                                        Set previous(s') := s
                                        Set g(s') := g(s) + Cost(s,s')
                                        Add s' into V_{k+1}
          k = k+1
```

If GOAL not labeled, exit signaling FAILURE

Else build the solution path thus: Let S_k be the kth state in the shortest path. Define $S_k = \text{GOAL}$, and forall i <= k, define $S_{i-1} = previous(S_i)$.

Uniform Cost Search

- A conceptually simple BFS approach when there are costs on transitions
- It uses priority queues

Priority Queues

A priority queue is a data structure in which you can insert and retrieve (thing, value) pairs with the following operations:

Init-PriQueue(PQ)	initializes the PQ to be empty.
Insert-PriQueue(PQ, thing, value)	inserts (thing, value) into the queue.
Pop-least(PQ)	returns the <i>(thing, value)</i> pair with the lowest value, and removes it from the queue.

Priority Queues

A priority queue is a data structure in which you can insert and retrieve (thing, value) pairs with the following operations:

For more details, see Knuth or Sedgwick or basically any book with the word "algorithms" prominently appearing in the title.

Init-PriQueue(PQ)	initializes the PQ to be empty.
Insert-PriQueue(PQ, thing, value)	inserts (thing, value) into the queue.
Pop-least(PQ)	returns the <i>(thing, value)</i> pair with the lowest value, and removes it from the queue.

Priority Queues can be implemented in such a way that the cost of the insert and pop operations are

Very cheap (though not absolutely, incredibly cheap!)

O(log(number of things in priority queue))

Uniform Cost Search

- A conceptually simple BFS approach when there are costs on transitions
- It uses a priority queue

PQ = Set of states that have been expanded or are awaiting expansion

Priority of state $s = g(s) = \cos t$ of getting to s using path implied by backpointers.

Starting UCS

$$PQ = \{ (S,0) \}$$

$$PQ = \{ (S,0) \}$$

- 1. Pop least-cost state from PQ
- 2. Add successors

1. Pop least-cost state from PQ

 $PQ = \{ (p, 1), (d, 3), (e, 9) \}$ 2. Add successors

 $PQ = \{ (b,4), (e,5), (c,11), (q,16) \}$

- state from PQ
- 2. Add successors

42

 $PQ = \{ (e,5), (a,6), (c,11), (q,16) \}$

state from PQ

2. Add successors

 $PQ = \{ (a,6), (h,6), (c,11), (r,14), (q,16) \}$

- Pop least-cost state from PQ
- 2. Add successors

 $PQ = \{ (h,6), (c,11), (r,14), (q,16) \}$

2. Add successors

 $PQ = \{ (q, 10), (c, 11), (r, 14) \}$

- Pop least-cost state from PQ
- 2. Add successors

Note what happened here:

- h found a new way to get to p
- but it was more costly than the best known way
- and so p's priority was unchanged

$$PQ = \{ (q, 10), (c, 11), (r, 14) \}$$

1. Pop least-cost state from PQ

GOAL

2. Add successors

 $PQ = \{ (c, 11), (r, 13) \}$

- Pop least-cost state from PQ
- 2. Add successors

 $PQ = \{ (r, 13) \}$

- Pop least-cost state from PQ
- 2. Add successors

$$PQ = \{ (f, 18) \}$$

- Pop least-cost state from PQ
- 2. Add successors

$$PQ = \{ (G,23) \}$$

- 1. Pop least-cost state from PQ
- 2. Add successors

$$PQ = \{ (G,23) \}$$

1. Pop least-cost state from PQ

Iteration:

2. Add successors

UCS Terminates

$$PQ = \{\}$$

2. Add successors

- Completeness: is the algorithm guaranteed to find a solution if a solution exists?
- Guaranteed to find optimal? (will it find the least cost path?)
- Algorithmic time complexity
- Space complexity (memory use)

Variables:

N	number of states in the problem
В	the average branching factor (the average number of successors) (<i>B</i> >1)
L	the length of the path from start to goal with the shortest number of steps

How would we judge our algorithms?

N	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search				
LCBFS	Least Cost BFS				
UCS	Uniform Cost Search				

Ν	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Y	if all transitions same cost		$O(min(N,B^L))$
LCBFS	Least Cost BFS	Y	Υ	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^{L}))$	$O(min(N,B^L))$

Grad course: "Algorithms and Computational Complexity"

Search Tree Representation

Depth First Search

An alternative to BFS. Always expand from the most-recently-expanded node, if it has any untried successors. Else backup to the previous node on the current path.

DFS in Action

START d
START db
START dba
START dc
START dca
START der
START derf
START derfc
START derf GOAL

DFS Search Tree Traversal

Can you draw in the order in which the search-tree nodes are visited?

DFS Algorithm

We use a data structure we'll call a **Path** to represent the path from the START to the current state.

E.G. Path
$$P = \langle START, d, e, r \rangle$$

Along with each node on the path, we must remember which successors we still have available to expand. E.G. at the following point, we'll have

DFS Algorithm

```
Let P = <START (expand = succs(START))>
While (P not empty and top(P) not a goal)
if expand of top(P) is empty
then
remove top(P) ("pop the stack")
else
let s be a member of expand of top(P)
remove s from expand of top(P)
make a new item on the top of path P:
s (expand = succs(s))
```

If P is empty

return FAILURE

Else

return the path consisting of states in P

This algorithm can be written neatly with recursion, i.e. using the program stack to implement P.

Ν	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Y	if all transitions same cost	$O(min(N,B^L))$	$O(min(N,B^L))$
LCBFS	Least Cost BFS	Υ	Υ	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^L))$	$O(min(N,B^L))$
DFS	Depth First Search				

N	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Υ	if all transitions same cost	$O(min(N,B^{L}))$	$O(min(N,B^L))$
LCBFS	Least Cost BFS	Υ	Υ	$O(min(N,B^{L}))$	O(min(N,B ^L))
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^{L}))$	$O(min(N,B^{L}))$
DFS	Depth First Search	N	N	N/A	N/A

N	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Y	if all transitions same cost	$O(min(N,B^{L}))$	$O(min(N,B^L))$
LCBFS	Least Cost BFS	Υ	Υ	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^{L}))$	$O(min(N,B^L))$
DFS**	Depth First				

Assuming Acyclic Search Space

N	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
LMAX	Length of longest path from start to anywhere
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Y	if all transitions same cost	$O(min(N,B^{L}))$	$O(min(N,B^L))$
LCBFS	Least Cost BFS	Υ	Υ	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^{L}))$	$O(min(N,B^L))$
DFS**	Depth First	Υ	N	O(B ^{LMAX})	O(LMAX)

Assuming Acyclic Search Space

Questions to Ponder

 How would you prevent DFS from looping?

 How could you force it to give an optimal solution?

Questions to P Answer 1:

PC-DFS (Path Checking DFS):

 How would you prevent DFS from looping?

 How could you force it to give an optimal solution?

Answer 2:

MEMDFS (Memoizing DFS):

Questions to P Answer 1:

 How would you prevent DFS from looping?

PC-DFS (Path Checking DFS):

Don't recurse on a state if that state is already in the current path

 How could you force it to give an optimal solution?

Answer 2:

MEMDFS (Memorizing DFS):

Remember all states expanded so far. Never expand anything twice.

Questions to P Answer 1:

Are there occasions when reconstructions were reconstructions and reconstructions when reconstructions when reconstructions were reconstructed as a supplication of the reconstruction of the recon

Are there occasions when memors

PC-DFS (Path Checking DFS):

Don't recurse on a state if that state is already in the current path

Answer 2:

MEMDFS (Memoizing DFS):

Remember all states expanded so far. Never expand anything twice.

N	number of states in the problem				
В	the average branching factor (the average number of successors) (B>1)				
L	the length of the path from start to goal with the shortest number of steps				
LMAX	Length of longest cycle-free path from start to anywhere				
Q	the average size of the priority queue				

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Υ	if all transitions same cost	$O(min(N,B^L))$	$O(min(N,B^L))$
LCBFS	Least Cost BFS	Υ	Υ	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^{L}))$	$O(min(N,B^L))$
PCDFS	Path Check DFS				
MEMDFS	Memoizing DFS				

N	number of states in the problem				
В	the average branching factor (the average number of successors) (B>1)				
L	the length of the path from start to goal with the shortest number of steps				
LMAX	Length of longest cycle-free path from start to anywhere				
Q	the average size of the priority queue				

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Y	if all transitions same cost	$O(min(N,B^L))$	$O(min(N,B^L))$
LCBFS	Least Cost BFS	Υ	Υ	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^{L}))$	$O(min(N,B^L))$
PCDFS	Path Check DFS	Υ	Ν	O(B ^{LMAX})	O(LMAX)
MEMDFS	Memoizing DFS	Υ	N	$O(min(N,B^{LMAX}))$	$O(min(N,B^{LMAX}))$

Judging a Search Algorithm

N	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
LMAX	Length of longest cycle-free path from start to anywhere
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Y	if all transitions same cost	$O(min(N,B^L))$	$O(min(N,B^L))$
LCBFS	Least Cost BFS	Υ	Υ	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^{L}))$	$O(min(N,B^L))$
PCDFS	Path Check DFS	Υ	N	O(B ^{LMAX})	O(LMAX)
MEMDFS	Memoizing DFS	Υ	N	$Q(min(N,B^{LMAX}))$	$O(min(N,B^{LMAX}))$

73

Maze Example

Imagine states are cells in a maze, you can move N, E, S, W. What would plain DFS do, assuming it always expanded the E successor first, then N, then W, then S?

Other questions:

What would BFS do?
What would PCDFS do?
What would MEMDFS do?

Two Other DFS examples

Forward DFSearch and Backward DFSearch

If you have a predecessors() function as well as a successors() function you can begin at the goal and depth-first-search backwards until you hit a start.

Why/When might this be a good idea?

Invent an Algorithm!

Here's a way to dramatically decrease costs sometimes. Bidirectional Search. Can you guess what this algorithm is, and why it can be a huge cost-saver?

N	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
LMAX	Length of longest cycle-free path from start to anywhere
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Y	if all transitions same cost	$O(min(N,B^{L}))$	$O(min(N,B^L))$
LCBFS	Least Cost BFS	Υ	Υ	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^L))$	$O(min(N,B^L))$
PCDFS	Path Check DFS	Y	N	O(B ^{LMAX})	O(LMAX)
MEMDFS	Memoizing DFS	Υ	N	$O(min(N,B^{LMAX}))$	$O(min(N,B^{LMAX}))$
BIBFS	Bidirection BF Search				

N	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
LMAX	Length of longest cycle-free path from start to anywhere
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Y	if all transitions same cost	$O(min(N,B^{L}))$	$O(min(N,B^L))$
LCBFS	Least Cost BFS	Υ	Υ	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^L))$	$O(min(N,B^L))$
PCDFS	Path Check DFS	Υ	N	$O(B^{LMAX})$	O(LMAX)
MEMDFS	Memoizing DFS	Υ	N	$O(min(N,B^{LMAX}))$	$O(min(N,B^{LMAX}))$
BIBFS	Bidirection BF Search	Υ	All trans same cost	$O(min(N,2B^{L/2}))$	O(min(N,2B ^{L/2}))

Iterative Deepening

Iterative deepening is a simple algorithm which uses DFS as a subroutine:

- Do a DFS which only searches for paths of length 1 or less. (DFS gives up any path of length 2)
- 2. If "1" failed, do a DFS which only searches paths of length 2 or less.
- 3. If "2" failed, do a DFS which only searches paths of length 3 or less.

....and so on until success

Cost is

$$O(b^1 + b^2 + b^3 + b^4 \dots + b^L) = O(b^L)$$

Maze Example Again

Imagine states are cells in a maze, you can move N, E, S, W. What would **Iterative Deepening** do, assuming it always expanded the E successor first, then N, then W, then S?

Expansion order E, N, W, S

N	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
LMAX	Length of longest cycle-free path from start to anywhere
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Υ	if all transitions same cost	$O(min(N,B^L))$	O(min(N,B ^L))
LCBFS	Least Cost BFS	Y	Y	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^L))$	$O(min(N,B^{L}))$
PCDFS	Path Check DFS	Υ	N	O(B ^{LMAX})	O(LMAX)
MEMDFS	Memoizing DFS	Υ	N	$O(min(N,B^{LMAX}))$	$O(min(N,B^{LMAX}))$
BIBFS	Bidirection BF Search	Υ	All trans same cost	$O(min(N,2B^{L/2}))$	O(min(N,2B ^{L/2}))
ID	Iterative Deepening				82

N	number of states in the problem
В	the average branching factor (the average number of successors) (B>1)
L	the length of the path from start to goal with the shortest number of steps
LMAX	Length of longest cycle-free path from start to anywhere
Q	the average size of the priority queue

Algorithm		Comp lete	Optimal	Time	Space
BFS	Breadth First Search	Υ	if all transitions same cost	$O(min(N,B^L))$	O(min(N,B ^L))
LCBFS	Least Cost BFS	Υ	Y	$O(min(N,B^{L}))$	$O(min(N,B^L))$
UCS	Uniform Cost Search	Υ	Υ	$O(log(Q) * min(N,B^L))$	$O(min(N,B^L))$
PCDFS	Path Check DFS	Υ	N	O(B ^{LMAX})	O(LMAX)
MEMDFS	Memoizing DFS	Υ	N	$O(min(N,B^{LMAX}))$	$O(min(N,B^{LMAX}))$
BIBFS	Bidirection BF Search	Υ	All trans same cost	$O(min(N,2B^{L/2}))$	O(min(N,2B ^{L/2}))
ID	Iterative Deepening	Y	if all transitions same cost	$O(B^L)$	O(L) 83

Searching with Partial Information

What happens if we relax the constraints: Observable and Deterministic

Sensorless (Conformant) Problems

Contingency Problems

Exploration Problems

Searching with Partial Information

What happens if we relax the constraints: Observable and Deterministic

Sensorless (Conformant) Problems

No sensors Need to act in the "belief" space

Contingency Problems

Exploration Problems

Reading Assignment

- Read Chapters 1-3 in Russel & Norvig "Artificial Intelligence: A Modern Approach"
 2nd Ed
- Also read Bibliographical and Historical Notes!!
 (They are interesting and make the connections with many other disciplines)

Next: Informed (Heuristic) Search

