符号约定:

- I 代表整型; R 代表实型; C 代表复型; CH 代表字符型; S 代表字符串; L 代表逻辑型; A 代表数组; P 代表指针; T 代表派生类型; AT 为任意类型。
- s:P 表示 s 类型为 P 类型(任意 kind 值)。 s:P(k)表示 s 类型为 P 类型(kind 值=k)。
 - […]表示可选参数。
 - *表示常用函数。

表 1 数值和类型转换函数

表1 数值和类型转换函数	
函数名	说明
ABS(x)*	求 x 的绝对值 x 。x:I、R, 结果类型同 x; x:C, 结果:R
AIMAG(x)	求 x 的实部。x:C, 结果:R
AINT(x[,kind])*	对 x 取整, 并转换为实数(kind)。x:R, kind:I, 结果:R(kind)
$AMAXO(x_1, x_2, x_3, \cdots) *$	求 x ₁ , x ₂ , x ₃ , ··· 中最大值。x ₁ : I, 结果: R
$AMINO(x_1, x_2, x_3, \cdots) *$	求 x_1, x_2, x_3, \cdots 中最小值。 $x_1:I$, 结果:R
ANINT(x[,kind])*	对 x 四舍五入取整,并转换为实数(kind)。x:R, kind:I, 结果:R(kind)
CEILING(x)*	求大于等于 x 的最小整数。x:R, 结果:I
CMPLX(x[,y][,kind]))	将参数转换为 x、(x,0.0)或(x,y)。x:I、R、C, y:I、R,kind:I, 结果:C(kind)
CONJG(x)	求 x 的共轭复数。x:C, 结果:C
DBLE(x)*	将 x 转换为双精度实数。x:I、R、C, 结果:R(8)
DCMPLX(x[, y])	将参数转换为 x、(x, 0.0)或(x, y)。x:I、R、C, y:I、R, 结果:C(8)
DFLOAT(x)	将 x 转换为双精度实数。x:I, 结果:R(8)
DIM(x, y)*	求 x-y 和 0 中最大值, 即 MAX (x-y, 0) 。 x : I 、R, y 的类型同 x, 结果类型同 x
DPROD(x, y)	求 x 和 y 的乘积, 并转换为双精度实数。x:R, y:R, 结果:R(8)
FLOAT(x)*	将 x 转换为单精度实数。x:I, 结果:R
FL00R(x)*	求小于等于 x 的最大整数。x:R, 结果:I
IFIX(x)*	将 x 转换为整数(取整)。x:R, 结果:I
IMAG(x)	同 AIMAG(x)
<pre>INT(x[,kind])*</pre>	将 x 转换为整数(取整)。x:I、R、C, kind:I, 结果:I(kind)
LOGICAL(x[,kind])*	按 kind 值转换新逻辑值。x:L, 结果:L(kind)
$MAX(x_1, x_2, x_3, \cdots) *$	求 x_1, x_2, x_3, \cdots 中最大值。 x_1 为任意类型, 结果类型同 x_1
$MAX1(x_1, x_2, x_3, \cdots) *$	求 x1, x2, x3, ···中最大值(取整)。 x1:R, 结果:I
$MIN(x_1, x_2, x_3, \cdots) *$	求 x ₁ , x ₂ , x ₃ , …中最小值。x ₁ 为任意类型, 结果类型同 x ₁
MIN1 (x ₁ , x ₂ , x ₃ , ···) *	求 x ₁ , x ₂ , x ₃ …中最小值(取整)。x ₁ :R, 结果:I
MOD(x, y)*	求 x/y 的余数, 值为 x-INT (x/y)*y。x:I、R, y 的类型同 x, 结果类型同 x
MODULO(x, y)	求 x/y 余数, 值为 x-FL00R(x/y)*y。x:I、R, y 的类型同 x, 结果类型同 x
NINT(x[,kind])*	将 x 转换为整数(四舍五入)。x:R, kind:I, 结果:I(kind)
REAL(x[, kind])*	将 x 转换为实数。x:I、R、C, kind:I, 结果:R(kind)
SIGN(x, y)*	求 x 的绝对值乘以 y 的符号。x: I、R, y 的类型同 x, 结果类型同 x

SNGL(x)	将双精度实数转换为单精度实数。x:R(8), 结果:R
ZEXT(x)	用 0 向左侧扩展 x。x:I、L, 结果:I

表 2 三角函数

函数名	说明
四数石	געי שש
ACOS(x)*	求 x 的反余弦 arccos(x)。x:R, 结果类型同 x, 结果值域:0~Π
ACOSD(x)*	求 x 的反余弦 arccos(x)。x:R, 结果类型同 x, 结果值域:0~180°
ASIN(x)*	求 x 的反正弦 arcsin(x)。 x:R, 结果类型同 x, 结果为弧度, 值域:0~п
ASIND(x)*	求 x 的反正弦 arcsin(x)。x:R, 结果类型同 x, 结果为度, 值域:0~180°
ATAN(x)*	求 x 的反正切 arctg(x)。x:R, 结果类型同 x, 结果为弧度, 值域:-п/2~п/2
ATAND(x)*	求 x 的反正切 arctg(x)。x:R, 结果类型同 x, 结果为度, 值域:-90~90°
ATAN2(y, x)	求 x 的反正切 arctg(y/x)。y:R, x 和结果类型同 x, 结果值域:-п~п
ATAN2D(y, x)	求 x 的反正切 arctg(y/x)。y:R, x 和结果类型同 x, 结果值域:-180~180°
COS(x)*	求 x 的余弦 cos(x)。x:R、C, x 取值弧度, 结果类型同 x
COSD(x)*	求 x 的余弦 cos(x)。x:R, x 取值度, 结果类型同 x
COSH(x)	求 x 的双曲余弦 ch(x)。x:R, 结果类型同 x
COTAN(x)*	求 x 的余切 ctg(x)。x:R, x 取值度, 结果类型同 x
SIN(x)*	求 x 的正弦 sin(x)。x:R、C, x 取值弧度, 结果类型同 x
SIND(x)*	求 x 的正弦 sin(x)。x:R, x 取值度, 结果类型同 x
SINH(x)	求 x 的双曲正弦 sh(x)。x:R, 结果类型同 x
TAN(x)*	求 x 的正切 tg(x)。x:R, x 取值弧度, 结果类型同 x
TAND(x)*	求 x 的正切 tg(x)。x:R, x 取值度, 结果类型同 x
TANH(x)	求 x 的双曲正切 th(x)。x:R, 结果类型同 x

注: 三角函数名前有 C、D 的函数为复数、双精度型函数。

表 3 指数、平方根和对数函数

函数名	说明
ALOG(x)	求 x 的自然对数 ln(x)。x:R(4),结果:R(4)
ALOG10(x)	求 x 以 10 为底一般对数 log₁₀(x)。x:R(4),结果:R(4)
EXP(x)*	求指数,即 e ^x 。x:R、C, 结果类型同 x
LOG(x)*	求自然对数,即 e ^x 。x:R、C,结果类型同 x
L0G10(x)*	求以 10 为底对数, 即。x:R, 结果类型同 x
SQRT(x)*	求 x 的平方根。x:R、C, 结果类型同 x

注:指数函数名、平方根函数名、对数函数名前有 C、D 的函数为复数、双精度型函数。

表 4 参数查询函数

W- DWEWEN	
函数名	说明
ALLOCATED(a)*	判定动态数组 a 是否分配内存。a:A, 结果:L, 分配:. TRUE., 未分配:. FALSE.
ASSOCIATED(p[,t])*	判定指针 p 是否指向目标 t。p:P, t:AT, 结果:L, 指向:. TRUE., 未指向:. FALSE.
DIGITS(x)	查询 x 的机内编码数值部分二进制位数(除符号位和指数位)。x:I、R, 结果:I
EPSILON(x)*	查询 x 类型可表示的最小正实数。x:R, 结果类型同 x。最小正实数:1.1920929E-07

HUGE(x)*	查询 x 类型可表示的最大数。x:I、R, 结果类型同 x
ILEN(x)	查询 x 的反码值。x: I, 结果类型同 x
KIND(x)*	查询 x 的 kind 参数值。x:I、R、C、CH、L, 结果:I
MAXEXPONENT(x)*	查询 x 的最大正指数值。x:R, 结果: I(4)
MINEXPONENT(x)*	查询 x 的最大负指数值。x:R, 结果: I(4)
PRECISION(x)*	查询 x 类型有效数字位数。x:R、C, 结果:I(4)
PRESENT(x)	查询可选形参 x 是否有对应实参。x:AT, 结果:L。有:. TRUE., 没有:. FALSE.
RADIX(x)	查询 x 类型的基数。x:I、R, 结果:L
RANGE(x)*	查询 x 类型的指数范围。x: I、R、C, 结果: I(4)
SIZEOF(x)*	查询 x 的存储分配字节数。x:AT, 结果:I(4)
TINY(x)*	查询 x 的最小正值。x:R, 结果类型同 x

表 5 实数检测和控制函数

函数名	说明
EXPONENT(x)*	求实数 x 机内编码表示的指数值。x:R, 结果:I
FRACTION(x)*	求实数 x 机内编码表示的小数值。x:R, 结果类型同 x
NEAREST(x, s)	根据 s 的正负号求最接近 x 的值。x:R, 结果:R, 且不为 0
RRSPACING(x)	求 x 与系统最大数之间的差值。x:R, 结果类型同 x
SCALE(x, I)*	求 x 乘以 2 ⁱ 。 x:R, i:I, 结果类型同 x
SET_EXPONENT(x, i)	求由 x 的机内编码小数值与指数 i 组成的实数。x:R, i:I, 结果类型同 x
SPACING(x)*	求 x 与 x 最近值的差值绝对值。x:R, 结果类型同 x

表 6 字符处理函数

函数名	说明
ACHAR(n)	将 ASCII 码 n 转换为对应字符。n:I,n 值域:0~127,结果:CH(1)
ADJUSTL(string)*	将字符串 string 左对齐,即去掉左端空格。string:CH(*),结果类型同 string
ADJUSTR(string)*	将字符串 string 右对齐,即去掉右端空格。string:CH(*),结果类型同 string
CHAR(n)*	将 ASCII 码 n 转换为对应字符。n:I,n 值域:0~255,结果:CH(1)
IACHAR(c)*	将字符 c 转换为对应的 ASCII 码。c:CH(1),结果:I
ICHAR(c)*	将字符 c 转换为对应的 ASCII 码。c:CH(1),结果:I
<pre>INDEX(s, ss[, b])*</pre>	求子串 ss 在串 s 中起始位置。s:CH(*), ss:CH(*), b:L, 结果:I。b 为真从右起
LEN(s)*	求字符串 s 的长度。s:CH(*),结果:I
LEN_TRIM(s)*	求字符串 s 去掉尾部空格后的字符数。s:CH(*),结果:I
LGE(s1, s2)*	按 ASCII 码值判定字符串 s1 大于等于字符串 s2。s1:CH(*), s1:CH(*), 结果:L
LGT(s1, s2)*	按 ASCII 码值判定字符串 s1 大于字符串 s2。s1:CH(*), s1:CH(*), 结果:L
LLE(s1, s2)*	按 ASCII 码值判定字符串 s1 小于等于字符串 s2。s1:CH(*),s1:CH(*),结果:L
LLT(s1, s2)*	按 ASCII 码值判定字符串 s1 小于字符串 s2。s1:CH(*), s1:CH(*), 结果:L
REPEAT(s,n)*	求字符串 s 重复 n 次的新字符串。s:CH(*), n:I, 结果:CH(*)
SCAN(s,st[,b])	求串 st 中任一字符在串 s 中的位置。s:CH(*), ss:CH(*), b:L, 结果:I
TRIM(s)*	求字符串 s 去掉首尾部空格后的字符数。s:CH(*),结果:CH(*)

表 7 二进制位操作函数

函数名	说明
BIT_SIZE(n)*	求 n 类型整数的最大二进制位数。n:I,结果类型同 n
BTEST (n, p)	判定整数 n 的二进制表示右起第 p 位是否为 1。n: I, p:+I, p 值域:0~64 结果:L
IAND(m,n)*	对 m 和 n 进行按位逻辑 "与"运算。m: I, n: I, 结果类型同 m
IBCHNG(n,p)	将整数 n 二进制表示右起第 p 位值取反。n: I, p:+I, p 值域:0~64 结果类型同 n
IBCLR(n, p)	将整数 n 二进制表示右起第 p 位置 0。n: I, p:+I, p 值域:0~64 结果类型同 n
IBITS(i, p, 1)	从整数 n 二进制表示右起第 p 位开始取 l 位。n:I, p:+I, l:+I, 结果类型同 n
IBSET(n, p)	将整数 n 二进制表示右起第 p 位置 1。n:I,p:+I,p 值域:0~64 结果类型同 n
IEOR(m,n)*	对 m 和 n 进行按位逻辑 "异或"运算。m: I, n: I, 结果类型同 m
IOR(m, n)*	对 m 和 n 进行按位逻辑"或"运算。m: I, n: I, 结果类型同 m
ISHA(n,s)*	对 n 向左(s 为正)或向右(s 为负)移动 s 位(算术移位)。n:I, s:I, 结果类型同 n
ISHC(n,s)*	对 n 向左(s 为正)或向右(s 为负)移动 s 位(循环移位)。n:I, s:I, 结果类型同 n
ISHFT(n,s)*	对 n 向左(s 为正)或向右(s 为负)移动 s 位(逻辑移位)。n:I, s:I, 结果类型同 n
<pre>ISHFTC(n,s[,size])</pre>	对 n 最右边 size 位向左(s 为正)或向右(s 为负)移动 s 位(循环移位)
ISHL(n,s)	对 n 向左(s 为正)或向右(s 为负)移动 s 位(逻辑移位)。n:I, s:I, 结果类型同 n
NOT (n) *	对 n 进行按位逻辑"非"运算。n:I,结果类型同 n

表 8 数组运算、查询和处理函数

函数名	说明
ALL(m[,d])*	判定逻辑数组 m 各元素是否都为"真"。m;L-A,d:I,结果:L(缺省 d)或 L-A(d=维)
ALLOCATED(a)*	判定动态数组 a 是否分配存储空间。a:A,结果:L。分配:.TRUE.,未分配.FALSE.
ANY(m[,d])*	判定逻辑数组 m 是否有一元素为"真"。m;L-A,d:I,结果:L(缺省 d)或 L-A(d=维)
COUNT(m[,d])*	计算逻辑数组 m 为"真"元素个数。m;L-A,d:I,结果:I(缺省 d)或 I-A(d=维)
CSHIFT(a,s[,d])*	将数组 a 元素按行(d=1 或缺省)或按列(d=2)且向左(d>0)或向右循环移动 s 次
EOSHIFT(a, s[, b][, d])	将数组 a 元素按行(d=1 或缺省)或按列(d=2)且向左(d>0)或向右循环移动 s 次
LBOUND(a[, d])*	求数组 a 某维 d 的下界。a; A, d: I, 结果: I (d=1 或缺省)或 A (d=2)
MATMUL(ma, mb)*	对二维数组(矩阵)ma 和 mb 做乘积运算。ma:A, mb:A, 结果:A
MAXLOC(a[, m])*	求数组 a 中对应掩码 m 为"真"最大元素下标值。a:A, m:L-A, 结果:A, 大小=维数
MAXVAL(a[, d][, m])*	求数组 a 中对应掩码 m 为"真"元素最大值。a:A, d:I, m:L-A, 结果:A, 大小=维数
MERGE(ts,fs,m)	将数组 ts 和 fs 按对应 m 掩码数组元素合并, 掩码为"真"取 ts 值, 否则取 fs 值
MINLOC(a[, m])*	求数组 a 中对应掩码 m 为"真"最小元素下标值。a:A, m:L-A, 结果:A, 大小=维数
MINVAL(a[, d][, m])*	求数组 a 中对应掩码 m 为"真"元素最小值。a:A, d:I, m:L-A, 结果:A, 大小=维数
PACK(a,m[,v])	将数组 a 中对应 m 掩码数组元素为"真"元素组成一维数组并与一维数组 v 合并
PRODUCT(a[,d][,m])	数组 a 中对应掩码 m 为"真"元素乘积。a:A, d:I, m:L-A, 结果:A, 大小=维数
RESHAPE(a, s)*	将数组 a 的形按数组 s 定义的形转换。数组形指数组维数、行数、列数、…
SHAPE(a)	求数组 a 的形。a: A, 结果: A(一维)
SIZE(a[,d])*	求数组 a 的元素个数。a:A, d:I, 结果:I

SPREAD(a, d, n)	以某维 d 扩展数组 a 的元素 n 次。a:A, d:I, n:I, 结果:A
SUM(a[,d][,m])*	数组 a 中对应掩码 m 为"真"元素之和。a:A, d:I, m:L-A, 结果:A, 大小=维数
TRANSPOSE(a).*	对数组 a 进行转置。a:A, 结果:A
LBOUND(a[, d])*	求数组 a 某维 d 的上界。a; A, d: I, 结果: I (d=1 或缺省)或 A (d=2)
UNPACK(a, m, f)	将一维数组 a、掩码数组 m 值和 f 值组合生成新数组。a; A, m: L-A, f: 同 a, 结果: A

注: 参数 m 指逻辑型掩码数组, 指明允许操作的数组元素。 缺省掩码数组指对数组所有元素进行操作。