

UE19EC203 / UE16EC204 / PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013) UE17EC204 / UE18EC202

DECEMBER 2020: END SEMESTER ASSESSMENT B. Tech. ECE III - SEMESTER (ESA)

UE19EC203 / UE16EC204 / UE17EC204 / UE18EC202 - SIGNALS AND SYSTEMS

		Time: 3 Hours Answer All Questions Max Marks: 100)
	a)	Consider 2 signals defined by $x(t) = cos\left(\frac{t}{6}\right)$ and $y[n] = cos\left(\frac{n}{6}\right)$. Determine if they are periodic . If yes compute their fundamental periods and if not give reasons.	06
1.	b)	Consider a DT sequence $p[n] = \{0, 1, 2, 3, 4, 0\}$. Sketch $p[n]$ and plot $p[2n]$ and $p[2-n]$. The sample at origin is indicated in bold.	07
EV.	c)	Consider a system defined by $y_1(t) = sin(x_1(t))$. Check whether the system is time invariant . Now consider another system defined by $y_2(t) = tx_2(t)$. Check whether this system is linear . Give necessary proofs.	07
	a)	Convolve $x_1(t) = e^{-2t}u(t)$ and $x_2(t) = u(t+2)$.	06
	b)	Convolve $x_1(t) = e^{-u}u(t)$ and $x_2(t) = u(t+2)$. Convolve $x_1[n] = \alpha^n u[n]$ and $x_2[n] = \beta^n u[n]$.	07
2.	c)	Consider an LTI DT system defined by $y[n] - 2y[n-1] - 3y[n-2] = x[n] + 4x[n-1]$. Determine its Total response if input is $x[n] = 2^n u[n]$ and initial conditions being $y[-2] = 0$ and $y[-1] = 5$.	07
	a)	Compute the Fourier Series expansion of $x[n] = cos^2 \left(\frac{\pi}{8}\right) n$.	07
3.	b)	Consider a CT periodic signal having a fundamental period $T = 2$ sec represented by $x(t) = t$ for $-1 < t < +1$ over one period. Compute its Fourier Series coefficients.	07
	c)	Give the mathematical expressions for the properties of time shifting , time reversal and Parseval's Identity as applicable for CTFS and DTFS .	06
	a)	Find the CTFT of the signal $x(t) = \delta(t + 0.5) - \delta(t - 0.5)$. Give the expressions for the magnitude and phase of $X(j\omega)$.	06
١.	b)	Evaluate the DTFT of the signal $x[n] = -a^n u[-n-1]$.	07
	c)	Using the properties of CTFT evaluate the Fourier transform of $x(t) = \sin(\pi t) e^{-2t} u(t)$.	07
	a)	Compute the $X(Z)$ if $x[n] = 3\left(\frac{-1}{2}\right)^n u[n] - 2\{(3)^n u[-n-1]\}$ and plot the ROC.	07
	b)	Evaluate $x[n]$ if $X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}$ for $ z > \frac{1}{3}$ and $ z < \frac{1}{4}$	07
	c)	Using Z-Transform perform the convolution $y[n] = x[n] * h[n]$ where $x[n] = \delta[n] + \delta[n - 1] + 4\delta[n - 2]$ and $h[n] = (1/2)^n$ for $0 \le n \le 2$ and zero elsewhere.	06