

- 1. Consider the schema $R = \{A, B, C, D, E, F\}$ with a set of functional dependencies $\Sigma = \{\{A, B, C\} \rightarrow \{E\}, \{B, D\} \rightarrow \{A\}, \{C, F\} \rightarrow \{B\}\}$.
 - (a) Compute $\{C, D, F\}^+$
 - (b) Find all the candidate keys of R.
- 2. Consider the schema $R = \{A, B, C, D\}$ with a set of functional dependencies $\Sigma = \{\{A\} \rightarrow \{C, D\}, \{A, C\} \rightarrow \{D\}, \{A, D\} \rightarrow \{B\}, \{C\} \rightarrow \{D\}\}$.
 - (a) Find the minimal cover for Σ .
 - (b) Find the canonical cover for Σ .
- 3. Consider the following entity-relationship diagram regarding coffee shops. This involves the branch, the drink, and the coffee bean.

For simplicity, you may use the following characters to represent the attributes.

Attribute	Character
name	A
cultivar	В
region	С
dname	D

Attribute	Character
price	E
qty	F
bname	G
address	Н

- (a) Find the attribute closure of {name, dname}. In other words, find {name, dname}+.
- (b) Let Σ^+ be the closure of the set of functional dependencies that holds according to the entity-relationship diagram. We assume that we are using a single table but with the functional dependencies enforced (e.g., via triggers?). Find the canonical cover of Σ^+ .