MA4702. Programación Lineal Mixta 2020.

Profesor: José Soto.

Tarea 5.

Fecha entrega: Viernes 24 de Julio, 23:59. Por u-cursos. (Se recomienda entregar el Miércoles para acelerar corrección)

Instrucciones:

- 1. Extensión máxima: Entregue su tarea en a lo más 6 planas.
- 2. Formato: La tarea debe entregarse en formato pdf, con fondo de un solo color (blanco de preferencia), letra legible en manuscrito y clara. (No se aceptarán documentos tipeados o generados por computador, pero si tiene alguna manera de escribir en manuscrito directamente de manera digital lo puede hacer). Si desarrolla su tarea en papel, entréguelo escaneados o en fotos de alta calidad, via ucursos.
- 3. **Tiempo de dedicación:** El tiempo estimado de desarrollo de la tarea es de 2.5 horas de dedicación. Esto no considera el tiempo de estudio previo, el tiempo dedicado en asistir a cátedras y auxiliares, ni el tiempo para ponerse al día. Tendrá un plazo de 7 días para entregarlo. No espere hasta el último momento para escanear o fotografiar adecuadamente su tarea y cambiarla al formato solicitado (pdf). Entregue con suficiente anticipación a la hora límite.
- 4. Revisión: Se podrá descontar hasta 1 punto en la nota final por falta de formato o extensión.
- 5. Esta tarea está pensada para ser hecha en forma individual.

Definiciones:

Llamamos rango de Chvátal de un poliedro P, y lo denotamos $\operatorname{Ch}(P)$, al valor mínimo k tal que la k-ésima cerradura de Chvátal, $P^{(k)}$ es igual a $\operatorname{conv}(P \cap \mathbb{Z}^n)$. Por ejemplo, si P es integral, $\operatorname{Ch}(P) = 0$.

Si $\alpha^T x \leq \beta$ es una desigualdad válida para $\operatorname{conv}(P \cap \mathbb{Z}^n)$, llamamos rango de Chvátal de la desigualdad en P al menor valor k tal que la desigualdad es válida para $P^{(k)}$

Ejercicios:

Cada uno vale 1.5 puntos.

(a) Edmonds demostró que para todo grafo G = (V, E), conv (χ^F) : F matching perfecto de G) es igual al poliedro

$$P = \{ x \in \mathbb{R}_+^E \colon x(\delta(v)) = 1, \forall v \in V; x(\delta(U)) \ge 1, \forall U \subseteq V, |U| \text{ impar} \}$$

Decimos G es cúbico si el grado de cada vértice es 3. Es fácil ver (no lo demuestre) que en este caso G tiene un número par de vértices.

Decimos que G es 2-arista-conexo si para todo conjunto de vértices U, $\emptyset \neq U \neq V$, $|\delta(U)| \geq 2$. Use todo lo anterior para demostrar el siguiente teorema de Petersen.

Si G tiene una cantidad par de vértices, y es 2-arista-conexo y cúbico, entonces G tiene un matching perfecto.

Solución

Como el politopo P es igual a la envoltura convexa de las indicatricez de matchings perfectos de G nos queda demostrar que P es no vacío. Para probar lo anterior utilizaremos el hecho de que el grafo es cúbico (de cada vertice salen exactamente tres arcos) y propondremos una solución simétrica con grado 1 en cada vértice, para

esto usaremos $\hat{x} = \frac{1}{3}$, como el grafo es cúbico se tiene que $\hat{x}(\delta(v)) = 1$. Nos queda probar que $\hat{x}(\delta(U)) \geq 1$, $\forall U \subseteq V, |U|$ impar, para esto utilizaremos el hecho de que $\sum_{v \in U} |\delta(v)| = 2|E(U)| + |\delta(U)| = 3|U|$, esto implica que $|E(U)| = \frac{3|U| - |\delta(U)|}{2}$, por lo que si |U| es impar $|\delta(U)|$ debe ser impar y como G es 2-arista-conexo se tiene que $|\delta(U)| \geq 2$, por ende $|\delta(U)| \geq 3$ si U es impar, con esto se tiene que $x(\delta(U)) = \frac{1}{3}|\delta(U)| \geq 1$, luego P es no vacío y por tanto tiene un matching perfecto.

(b) Sea $k \geq 0$ entero y sea Q un poliedro en \mathbb{R}^2 tal que $Q \supseteq \{(0,0),(0,1),(1/2,k)\}$ y $Q \cap \mathbb{Z}^2 = \{(0,0),(0,1)\}$. Pruebe que $Ch(Q) \geq k$.

Indicación: Use inducción.

Solución

Probaremos esto por inducción. Si k=1 se tiene que (1,1/2) no es punto entero y no pertenece a la combinación convexa de $\{(0,0),(0,1)\}$, por lo que se requiere de al menos una cerradura de Chvátal para eliminarlo, por lo que $Ch(Q) \geq 1$. Para k>1, probaremos que si $\operatorname{conv}(\{(0,0),(0,1),(k,1/2)\}) \subseteq Q$, entonces, $\operatorname{conv}(\{(0,0),(0,1),(k-1,1/2)\}) \subseteq Q^{(1)}$, de hecho basta probar que $(k-1,1/2) \in Q^{(1)}$ ya que $\{(0,0),(0,1)\}$ pertenence a todas las cerraduras de Chvátal ya que está en $Q \cap \mathbb{Z}^2$.

Consideremos el siguiente corte de Chvátal $a^Tx \leq \lfloor b \rfloor$, obtenido de redondear el lado derecho de una desigualdad valida $a^Tx \leq b$ de Q, con $a \in \mathbb{Z}^2$. Como (0,0) satisface $a^Tx \leq b$ se tiene que $b \geq 0$. Ahora consideraremos los siguientes dos casos:

Caso 1 $(a_1 > 0)$: Como a_1 es entero positivo, $a_1 \ge b - \lfloor b \rfloor$, por tanto, $\lfloor b \rfloor \ge b - a_1 \ge ka_1 + \frac{a_2}{2} - a_1 = (k-1)a_1 + \frac{a_2}{2}$, luego $a_1x_1 + a_2x_2 \le |b|$ es valida para (k-1, 1/2).

Caso 2 ($a_1 \le 0$): Como (0,1) satisface $a_1x_1 + a_2x_2 \le b$ se tiene que $a_2 \le b$, además, como $b \ge 0$ se cumple $a_2/2 \le \lfloor b \rfloor$. Debido a que $a_1 \le 0$ se tiene que $(k-1)a_1 \le 0$ puesto que k > 1, por tanto, se cumple que $(k-1)a_1 + \frac{a_2}{2} \le \frac{a_2}{2} \le \lfloor b \rfloor$.

En consecuencia, el punto (k-1,1/2) satisface todos los cortes de Chvátal por lo que $\operatorname{conv}(\{(0,0),(0,1),(k-1,1/2)\}) \subseteq Q^{(1)}$. Finalmente, por la hipótesis de inducción $\operatorname{conv}(\{(0,0),(0,1),(k,1/2)\})$ tiene al menos rango k y por ende Q también.

(c) Considere una mochila que soporta un peso máximo de W y n objetos, donde el i-ésimo objeto tiene peso $0 < a_i \le W$ (no necesariamente enteros).

Decimos que un conjunto $S \subseteq [n]$ es un packing, si los objetos indexados por S caben en la mochila, es decir $\sum_{i \in S} a_i \leq W$. Decimos que $C \subseteq [n]$ es un cover, si C no es un packing. Decimos que C es un cover minimal si C es un cover pero $C \setminus \{j\}$ no es cover para todo $j \in C$.

La envoltura convexa de las indicatrices de todos los packings es $P \cap \mathbb{Z}^n$ donde P es el polítopo de mochila siguiente:

$$P = \{x \in \mathbb{R}^n : \sum_{i=1}^n a_i x_i \le W; x_i \ge 0, \forall i \in [n], x_i \le 1, \forall i \in [n] \}$$

Notamos que si C es un cover minimal entonces todo packing puede contener a lo más |C|-1 elementos de C. En particular, la desigualdad de cover

$$\sum_{i \in C} x_i \le |C| - 1$$

es válida para $P \cap \mathbb{Z}^n$.

Demuestre que para todo C cover, la desigualdad de cover asociada tiene rango de Chvátal 1 en P (es decir, es un corte de Chvátal de P).

Indicación: Encuentre una combinación cónica adecuada de las desigualdades de P.

Solución

Para todo $i \in C$ multiplicamos por $\frac{W+1-a_i}{W+1}$ la desigualdad $x_i \le 1$, para todo $i \notin C$ multiplicamos por $\frac{a_i}{W+1}$ la desigualdad $-x_i \le 0$ y multiplicamos por $\frac{1}{W+1}$ la desigualdad $\sum_{i \in [n]} a_i x_i \le W$, luego sumamos obteniéndose la siguiente desigualdad:

$$\sum_{i \in C} \frac{W + 1 - a_i}{W + 1} x_i + \sum_{i \notin C} \frac{-a_i}{W + 1} x_i + \sum_{i \in [n]} \frac{a_i}{W + 1} x_i \le |C| - \frac{1}{W + 1} \sum_{i \in C} a_i + \frac{W}{W + 1}$$
$$\sum_{i \in C} x_i \le |C| + \frac{W - \sum_{i \in C} a_i}{W + 1}$$

Como C es un cover se tiene que $W - \sum_{i \in C} a_i < 0$ y como es minimal $\sum_{i \in C} a_i - a_j \le W$ para todo $j \in C$, así $\sum_{i \in C} a_i - W \le a_j \le W$, por lo que $\frac{\sum_{i \in C} a_i - W}{W+1} \in (0,1)$, finalmente si tomamos cajon inferior se tiene $\sum_{i \in C} x_i \le |C| - 1$.

(d) Sea G=(V,E) un grafo. Un conjunto estable de G es un conjunto de vértices $S\subseteq V$ tal que $E(S)=\emptyset$. Definamos

$$P_G = \{ x \in \mathbb{R}^E \colon x_u + x_v \le 1, \forall uv \in E; x_v \ge 0, \forall v \in V \}$$

No es difícil probar que P_G es una formulación para el conjunto de las indicatrices de conjuntos estables, es decir

$$\operatorname{conv}(\chi^S \colon S \text{ conjunto estable de } G) = P_G \cap \mathbb{Z}^V.$$

Un conjunto K de vértices es un clique de G si E contiene todas las aristas entre pares de vértices de K. Claramente, si S es un conjunto estable entonces para todo clique K, S contiene a lo más un vértice de K. Esto prueba que para todo K clique, la desigualdad de clique:

$$\sum_{v \in K} x_v \le 1$$

es válida para $P_G \cap \mathbb{Z}^V$.

Demuestre por inducción que si K es un clique con $|K| \le k$ entonces la desigualdad de clique de K tiene rango de Chvátal a lo más k-2 en P_G .

Bonus: Tendrá 0.5 puntos adicionales que puede agregar a cualquier tarea si demuestra que el rango de Chvátal es en realidad $O(\log k)$. (Esta pregunta es binaria, no puede estar explicada a medias)

Solución

Probaremos que el rango de Chvátal de la desigualdad de clique sobre un clique con k vértices es a lo más k-2 por inducción en k. Cuando k=2, tenemos que $x_u+x_v\leq 1$ con $(u,v)=K\in E$, desigualdad que ya está incluida en P_G , por lo que su rango es 0, satisfaciéndose el caso base. Consideremos un clique K de tamaño k para algún $k\geq 3$, luego por hipótesis de inducción para todo subclique $K'\subseteq K$ de tamaño k-1 se cumple $\sum_{v\in K'}x_v\leq 1$. Luego, si sumamos todas esas k desigualdades (ya que existen k subcliques de tamaño k-1) y dividimos por k-1 se obtiene la desigualdad $\sum_{v\in K}x_v\leq \frac{k}{k-1}$. Finalmente, como $k\geq 3$, $\lfloor\frac{k}{k-1}\rfloor=1$, obteniéndose la desigualdad clique que buscamos.