Design and Analysis of Alogrithm

Zaeem Yousaf

To: Maryam Bashir (HomeWork # 7)

Contents

1	Q: 1	2
	1.1 Time complexity	2
	1.2 pseudocode	2
2	Q: 2	2
	2.1 time complexity	2
	2.2 Recurrence Relation	2
	2.3 Pseudocode	2
3	Q: 4	3
	3.1 part (a)	3
4	Q: 5	3
	4.1 using Dynamic programming	3
5	Q: 6	4
	5.1 part(a) is correct	4
	5.1.1 proof	4
	5.2 part(b) incorrect	5
	5.2.1 proof	5
6	Q: 7	5
	6.1 Graph	
	6.2 Algorithm	

1 Q: 1

1.1 Time complexity

```
O(nlg(n))
```

1.2 pseudocode

```
int maximizePoints(int points[], int time[], int maxTime){
  pointsPerUnit[points.length] = 0;
  for(int i=0; i< p.length; i++){</pre>
    pointsPerUnit[i] = p[i] / t[i]
  //perform sort on points and respective changes will reflect in t
  int p = 0;
  t = 0;
  i = 0;
  while(i < no_t && t <= total_time){</pre>
    if(t+time[maxTime] < = maxTime){</pre>
      t = t+time[i];
      p = p + points[i];
    i++;
  }
  return p;
}
```

2 Q: 2

2.1 time complexity

 $O(n^2)$

2.2 Recurrence Relation

```
distance[i][j] = 1 + minimu(distance[i][j-1], distance[i-1][j], distance[i-1][j-1])
```

2.3 Pseudocode

```
distance[i][j] = 1 + minimu(distance[i][j-1], distance[i-1][j], distance[i-1][j-1])
```

```
int makeString(string s1, string s2){
    for(int i=0; i < s1.length; i++){</pre>
      for(int j=0; j < s2.length; j++){
if(i == 0 || j == 0) d[i][j] = j;
else if (s1[i-1] == s2[j-1]){
  d[i-1][j-1]);
      }
      else{
d[i][j] = 1 + min(d[i][j-1],d[i-1][j],d[i-1][j-1];
    }
      return d[m][n];
  }
  Q: 4
3
3.1 part (a)
s[i][j] = minimum(c[i-1][j], 1+c[i][j-1]);
int substring(string x, string y){
  for(int i=0; i< x.length; i++){</pre>
    for(int j=0; j< y.length; j++){</pre>
      if(i==0) c[i][j] = j;
      else if(j == 0) c[i][j] = 1;
      else if(x[i-1] == y[j-1]) c[i][j] = 1+ c[i-1][j-1];
c[i][j] = minimum(c[i-1][j], 1+c[i][j-1]);
    }
  }
}
    Q: 5
4
    using Dynamic programming
int maxDiscount(int F[], int D[], int n){
  int discount[n+1];
```

```
discount[0] = 0;
discount[1] = 0;
int stores[n+1];
store[0] = 0;
if(d[0] < 0)d[0] = 0;
else d[0] = 1;

for(int i=2; i < n; i++){
    discount[i] = max(discount[i]-F[i-1]-1) + d[i-1],discount[i-1]);
if(D[i] > D[i-1]
    store[i] = 1;
    else
        store[i] = 0;
    return (discount)
}
```

5 Q: 6

5.1 part(a) is correct

5.1.1 proof

- 1. The problem is to find the smallest average
- 2. let there be 'n' number in set 'h' and 's'
- 3. there will be 'n' terms of differences let smallest height be s_{height} and smallest size be s_s smallest term be s_t smallest average s_{avg}
- 4. $s_{avg} = \frac{s_{t1} + s_{t2} \dots s_{tn}}{n}$
- 5. s_t is only when two numbers are very close to each other
- 6. $\mathbf{s}_{\mathrm{avg}}$ is only when each term is the least one

Hence, this greedy algorithm will give the correct solution

5.2 part(b) incorrect

5.2.1 proof

```
let height = \{87, 82, 80, 75\} and size = \{10,15,20,5\}
```

- 1. smallest smallest may not be the least term
- 2. e.g 75 10 = 65 and 75 20 = 55 which means that smalest-smallest != smalest difference
- 3. Hence, this is incorrect solution

6 Q: 7

6.1 Graph

Shortest Fair problem can be mapped on Graph. where **Vetices: airports** and **weighted Edges: fair** and therefore shortes distance between Vertex 'U' to Vertex 'V' will be the shortest fair. Dijkstra Algorithm can compute the shortest distance between from source to all Vertices.

6.2 Algorithm

```
function Dijkstra(Graph, source, destination):
      create vertex set Q
      for each vertex v in Graph:
          set last[v] to null
  set dist[v] to INFINITY
          add v to Q
      set dist[source] to 0
      while Q has any vertix:
         set u to vertex in Q with min dist[u]
          remove u from Q
          for each adjacent v of u:
              set comulative to dist[u] + weight(u, v)
              if comulative < dist[v]:
                  set dist[v] to comulative
                  set last[v] to u
return dist[destination]
```