Experiment I

$$g = g + xa + xb$$

$$Sg = \sqrt{Sq^2 + Sxa^2 + Sxb^2}$$

g in m	0.145	0.258	0.120	0.106	0.349	0.112	0.287
Sg in m	0.008	0.008	0.006	0.003	0.005	0.005	0.004

$$b = e + xs - g - xb$$

$$Sb = \sqrt{Se^2 + Sq^2 + Sxb^2 + Sxs^2}$$

v							
b in m	0.176	0.117	0.255	0.349	0.106	0.293	0.118
Sb in m	0.008	0.008	0.006	0.004	0.006	0.006	0.005

$$f = \frac{(g+xa+xb)(e+xs-g-xb)}{e+xa+xs}$$

$$Sf = \sqrt{Se^2 \left(\frac{g + xa + xb}{e + xa + xs} - \frac{(g + xa + xb)(e + xs - g - xb)}{(e + xa + xs)^2} \right)^2 + Sg^2 \left(\frac{e + xs - g - xb}{e + xa + xs} - \frac{g + xa + xb}{e + xa + xs} \right)^2 + Sxa^2 \left(\frac{e + xs - g - xb}{e + xa + xs} - \frac{(g + xa + xb)(e + xa + xb)}{(e + xa + xs)^2} \right)^2}$$

f in m	0.080	0.080	0.082	0.081	0.081	0.081	0.084
Sf in m	0.001	0.003	0.002	0.002	0.003	0.002	0.002

beta =
$$\frac{e+xs-g-xb}{g+xa+xb}$$

$$Sbeta = \sqrt{\frac{Se^2}{(g+xa+xb)^2} + \frac{Sxs^2}{(g+xa+xb)^2} + Sg^2 \left(-\frac{e+xs-g-xb}{(g+xa+xb)^2} - \frac{1}{g+xa+xb} \right)^2 + Sxb^2 \left(-\frac{e+xs-g-xb}{(g+xa+xb)^2} - \frac{1}{g+xa+xb} \right)^2 + \frac{Sxa^2(g+xa+xb)^2}{(g+xa+xb)^2} + \frac{1}{g+xa+xb} + \frac{1}{g+xa+x$$

Mittelwert: 0.081

Standartabweichung: 0.001

gemessene Brechkraft: $\phi = \frac{1}{f} = 12.305 + -0.176$ theoretische Brechkraft: 12.500

Experiment II 1. g = g + xa + xb

$$Sg = \sqrt{Sq^2 + Sxa^2 + Sxb^2}$$

6 V~9							
g in m	0.101	0.166	0.080	0.150	0.083	0.177	0.076
Sg in m	0.010	0.005	0.005	0.005	0.005	0.005	0.005

$$b = e + xs - g - xb$$

$$Sb = \sqrt{Se^2 + Sg^2 + Sxb^2 + Sxs^2}$$

b in m	0.124	0.089	0.175	0.095	0.162	0.088	0.189
Sb in m	0.010	0.006	0.006	0.006	0.006	0.006	0.006

$$f = \frac{(g+xa+xb)(e+xs-g-xb)}{e+xa+xs}$$

beta =
$$\frac{e+xs-g-xb}{g+xa+xb}$$

$$\begin{aligned} \text{Sbeta} &= \sqrt{\frac{Se^2}{(g+xa+xb)^2} + \frac{Sxs^2}{(g+xa+xb)^2} + Sg^2 \left(-\frac{e+xs-g-xb}{(g+xa+xb)^2} - \frac{1}{g+xa+xb} \right)^2 + Sxb^2 \left(-\frac{e+xs-g-xb}{(g+xa+xb)^2} - \frac{1}{g+xa+xb} \right)^2 + \frac{Sxa^2}{(g+xa+xb)^2} + \frac{Sxa^2}{(g+xa+xb)^2} - \frac{1}{g+xa+xb} \right)^2 + \frac{Sxa^2}{(g+xa+xb)^2} + \frac{Sxa^2}{(g+xa+xb)^2} - \frac{1}{g+xa+xb} + \frac{Sxa^2}{(g+xa+xb)^2} - \frac{$$

Mittelwert: 0.056

Standartabweichung: 0.002

gemessene Brechkraft: $\phi = \frac{1}{f} = 17.743 + -0.546$

theoretische Brechkraft: 17.422

Experiment II 2. g = g + xa + xb

$$Sg = \sqrt{Sg^2 + Sxa^2 + Sxb^2}$$

<u> </u>					
g in m	0.097	0.158	0.072	0.071	0.172
Sg in m	0.010	0.005	0.005	0.005	0.005

$$b = e + xs - g - xb$$

$$Sb = \sqrt{Se^2 + Sg^2 + Sxb^2 + Sxs^2}$$

b in m	1				
Sb in m	0.010	0.006	0.006	0.006	0.006

$$\mathrm{f}=rac{(g+xa+xb)(e+xs-g-xb)}{e+xa+xs}$$

$$Sf = \sqrt{Se^2 \left(\frac{g + xa + xb}{e + xa + xs} - \frac{(g + xa + xb)(e + xs - g - xb)}{(e + xa + xs)^2}\right)^2 + Sg^2 \left(\frac{e + xs - g - xb}{e + xa + xs} - \frac{g + xa + xb}{e + xa + xs}\right)^2 + Sxa^2 \left(\frac{e + xs - g - xb}{e + xa + xs} - \frac{(g + xa + xb)(e + xa + xb)}{(e + xa + xs)^2}\right)^2}$$

beta =
$$\frac{e+xs-g-xb}{g+xa+xb}$$

$$Sbeta = \sqrt{\frac{Se^2}{(g+xa+xb)^2} + \frac{Sxs^2}{(g+xa+xb)^2} + Sg^2 \left(-\frac{e+xs-g-xb}{(g+xa+xb)^2} - \frac{1}{g+xa+xb}\right)^2 + Sxb^2 \left(-\frac{e+xs-g-xb}{(g+xa+xb)^2} - \frac{1}{g+xa+xb}\right)^2 + \frac{Sxa^2}{(g+xa+xb)^2}}$$

$$\boxed{beta \quad 1.320 \quad 0.614 \quad 2.542 \quad 2.732 \quad 0.541} \\ Sbeta \quad 0.242 \quad 0.054 \quad 0.255 \quad 0.273 \quad 0.048}$$

Mittelwert: 0.056

Standartabweichung: 0.004

gemessene Brechkraft: $\phi=\frac{1}{f}=17.902+-1.211$ theoretische Brechkraft: 17.422

Experiment III 1. beta = $\frac{B}{B_{orginal}}$

Sbeta = $\sqrt{\frac{SB^2}{B_{orginal}^2}}$

	¥g					
beta	1.024	1.963	2.963	4.000	5.244	5.889
Sbeta	0.049	0.074	0.074	0.074	0.074	0.074

beta = $\frac{B}{B_{orginal}}$

Sbeta = $\sqrt{\frac{SB^2}{B_{\text{coning}}^2}}$

	V D _{orgin}	al			
beta	5.889	5.185	4.000	2.926	1.926
Sbeta	0.074	0.074	0.074	0.074	0.074