

Electrochemistry

Electrochemical and Galvanic Cells

1. Given below are half cell reactions:

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

$$E^o_{Mn^{2+}/MnO_{\overline{4}}} = -1.510\,V$$

$$\frac{1}{2}$$
O₂ + 2H⁺ + 2e⁻ \rightarrow H₂O

$$E_{O_2/H_2O} = +1.223 \text{ V}$$

Will the permanganate ion, MnO₄ liberate O₂ from water in the presence of an acid?

- a. No because $E_{cell}^{o} = -2.733 V$
- b. Yes, because $E_{cell}^o = +0.287 V$
- c. No, because $E_{cell}^{o} = -0.287 \text{ V}$
- d. Yes, because $E_{cell}^{o} = +2.733 \text{ V}$
- 2. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below: (2018)

$$BrO_4^- \xrightarrow{1.82 \text{ V}} BrO_3^- \xrightarrow{1.5 \text{ V}} HBrO$$

Then the species undergoing disproportionation is

- a. BrO₃
- b. BrO
- c. HBrO
- d. Br,
- 3. A button cell used in watches functions as following

$$Zn(s) + Ag_2O(s) + H_2O(l) \rightleftharpoons 2Ag(s) + Zn^{2+} (aq) + 2OH^{-}$$

(aq). If half cell potentials are

$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$$
; $E^{0} = -0.76 \text{ V}$

$$Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^-$$
 (aq), $E^0 = 0.34 \text{ V}$.
The cell potential will be: (2013)

- a. 1.10 V
- b. 0.42 V
- c. 0.84 V
- d. 1.34 V

Nernst Equation

4. At 298 K, the standard electrode potentials of Cu²⁺/Cu, Zn²⁺/ Zn, Fe²⁺/ Fe and Ag⁺/ Ag are 0.34 V, -0.76 V, -0.44 V and 0.80 V, respectively.

On the basis of standard electrode potential, predict which of the following reaction can not occur? (2022)

- a. $2\text{CuSO}_4(\text{aq}) + 2\text{Ag}(\text{s}) \rightarrow 2\text{Cu}(\text{s}) + \text{Ag}_2\text{SO}_4(\text{aq})$
- b. $CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Cu(s)$
- c. $CuSO_4(aq) + Fe(s) \rightarrow FeSO_4(aq) + Cu(s)$
- d. $FeSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Fe(s)$
- 5. Find the emf of the cell in which the following reaction takes place at 298 K

$$Ni(s) + 2Ag^{+}(0.001 \text{ M}) \rightarrow Ni^{2+}(0.001 \text{ M}) + 2Ag(s)$$

(Given that
$$E_{cell}^{\circ} = 10.5 \text{ V}$$
, $\frac{2.303 \text{ RT}}{F} = 0.059 \text{ at } 298 \text{ K}$) (2022)

- a. 1.05 V
- b. 1.0385 V
- c. 1.385 V
- d. 0.9615 V
- **6.** Identify the reaction from following having top position in EMF series (Std. red. potential) according to their electrode potential at 298 K.

 - a. $Fe^{2+} + 2e^{-} \rightarrow Fe(s)$ b. $Au^{3+} + 3e^{-} \rightarrow Au(s)$
 - c. $K^+ + 1e^- \rightarrow K(s)$
- d. $Mg^{2+} + 2e^- \rightarrow Mg(s)$
- 7. For a cell involving one electron $E^{\circ}_{\ cell}$ = 0.59 V at 298 K, the equilibrium constant for the cell reaction is:

Given that
$$\frac{2.303RT}{F} = 0.059V$$
 at $T = 298K$ (2019)

- a. 1.0×10^{2}
- b. 1.0×10^{5}
- c. 1.0×10^{10}
- d. 1.0×10^{30}
- **8.** For the cell reaction

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_{2}(aq)$$

 $E_{cell}^{\Theta} = 0.24 \text{ V}$ at 298 K. The standard Gibbs energy $(\Delta_{\cdot}G^{\Theta})$ of the cell reaction is:

[Given that Faraday constant $F = 96500 \text{ C mol}^{-1}$] (2019)

- a. -46.32 kJ mol⁻¹
- b. -23.16 kJ mol⁻¹
- c. 46.32 kJ mol⁻¹
- d. 23.16 kJ mol⁻¹

- 9. If the E°cell for a given reaction has a negative value, which of the following gives the correct relationships for the values of ΔG° and K_{eq} ? (2016 - II)

- $$\begin{split} &a. \ \Delta G^0 < 0 \ ; \ K_{eq} > 1 \\ &c. \ \Delta G^0 > 0 \ ; \ K_{eq} < 1 \\ &d. \ \Delta G^0 > 0 \ ; \ K_{eq} < 1 \end{split}$$
- 10. The pressure of H₂ required to make the potential of H₂ electrode zero in pure water at 298 K is: (2016 - I)
 - a. 10^{-4} atm
- b. 10^{-14} atm
- c. 10⁻¹² atm
- d. 10⁻¹⁰ atm
- 11. The pair of compounds that can exist together is: (2014)
 - a. HgCl₂, SnCl₂
- b. FeCl, SnCl,
- c. FeCl,, KI
- d. FeCl₂, SnCl₂
- 12. A hydrogen gas electrode is made by dipping platinum wire in a solution of HCl of pH = 10 and by passing hydrogen gas around the platinum wire at one atm pressure. The oxidation potential of electrode would be? (2013)
 - a. 0.059 V
- b. 0.59 V
- c. 0.118 V
- d. 1.18 V

Conductance of **Electrolytic Solutions**

- 13. The molar conductance of NaCl, HCl and CH₂COONa at infinite dilution are 126.45, 426.16 and 91.0 S cm² mol⁻¹ respectively. The molar conductance of CH₂COOH at infinite dilution is. Choose the right option for your answer. (2021)
 - a. 390.71 S cm² mol⁻¹
- b. 698.28 S cm² mol⁻¹
- c. $540.48 \text{ S cm}^2 \text{ mol}^{-1}$
- d. 201.28 S cm² mol⁻¹
- 14. The molar conductivity of 0.007 M acetic acid is 20 S cm² mol-1. What is the dissociation constant of acetic acid? Choose the correct option. (2021)

$$\begin{bmatrix} \Lambda_{H^+}^{\circ} = 350 \text{ S cm}^2 \text{mol}^{-1} \\ \Lambda_{\text{CH}_3\text{COO}^-}^{\circ} = 50 \text{ S cm}^2 \text{mol}^{-1} \end{bmatrix}$$

- a. $2.50 \times 10^{-4} \text{ mol } L^{-1}$
- b. $1.75 \times 10^{-5} \text{ mol } L^{-1}$
- c. $2.50 \times 10^{-5} \text{ mol } L^{-1}$
- d. $1.75 \times 10^{-4} \text{ mol } L^{-1}$
- 15. The molar conductivity of a 0.5 mol dm⁻³ solution of AgNO, with electrolytic conductivity of $5.76 \times 10^{-3} \text{ S cm}^{-1}$ at 298 K (2016 - II) is:
 - a. $0.086 \text{ S cm}^2 \text{ mol}^{-1}$
- b. 28.8 S cm² mol⁻¹
- c. 2.88 S cm² mol⁻¹
- d. 11.52 S cm² mol⁻¹
- 16. At 25°C, molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is 9.54 ohm⁻¹ cm²mol⁻¹ and at infinite dilution its molar conductance is 238 ohm⁻¹ cm²mol⁻¹. The degree of ionisation of ammonium hydroxide at the same concentration and temperature is: (2013)
 - a. 2.080 %
- b. 20.800 %
- c. 4.008 %
- d. 40.800 %

Electrolytic Cells and Electrolysis

- 17. On electrolysis of dil sulphuric acid using Platinum (Pt) electrode, the product obtained at anode will be:
 - a. Oxygen gas
- b. H₂S gas
- c. SO, gas
- d. Hydrogen gas
- 18. The number of Faradays (F) required to produce 20 g of calcium from molten CaCl, (Atomic mass of $Ca = 40 \text{ g mol}^{-1}$) is: (2020)

b. 3

c. 4

- d. 1
- 19. During the electrolysis of molten sodium chloride, the time required to produce 0.10 mol of chlorine gas using a current of 3 amperes is: (2016 - II)
 - a. 220 minutes
- b. 330 minutes
- c. 55 minutes
- d. 110 minutes
- 20. The number of electrons delivered at the cathode during electrolysis by a current of 1 ampere in 60 seconds is: (charge on electron = 1.60×10^{-19} C) (2016 - II)
 - a. 3.75×10^{20}
- b. 7.48×10^{23}
- c. 6×10^{23}
- d. 6×10^{20}
- 21. When 0.1 mol MnO_4^{2-} is oxidised, the quantity of electricity required to completely oxidise MnO_4^{2-} to MnO_4^{-} is: (2014)
 - a. 96500 C
- b. 2 × 96500 C
- c. 9650 C
- d. 96.50 C
- 22. The weight of silver (atomic weight = 108) displaced by a quantity of electricity which displaces 5600 mL of O2 at STP will be: (2014)
 - a. 10.8 g
- b. 54.0 g
- c. 108.0 g
- d. 5.4 g

Batteries, Fuel Cells and Corrosion

- 23. In a typical fuel cell, the reactants (R) and product (P) are
 - a. $R = H_{2(g)}, O_{2(g)}; P = H_2O_{(\ell)}$
 - b. $R = H_{2(g)}, O_{2(g)}, Cl_{2(g)}; P = HClO_{4(aq)}$
 - c. $R = H_{2(g)}$, $N_{2(g)}$; $P = NH_{3(aq)}$
 - d. $R = H_{2(g)}, O_{2(g)}; P = H_2O_{2(\ell)}$
- 24. Zinc can be coated on iron to produce galvanized iron but the reverse is not possible. It is because: (2016 - II)
 - a. Zinc has lower negative electrode potential than iron
 - b. Zinc has higher negative electrode potential than iron
 - c. Zinc is lighter than iron
 - d. Zinc has lower melting point than iron
- 25. A device that converts energy of combustion of fuels like hydrogen and methane, directly into electrical energy is known as: (2015)
 - a. Electrolytic cell
- b. Dynamo
- c. Ni-Cd cell
- d. Fuel cell

Answer Key

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
b	c	a	a	None	b	c	a	c	b	b	b	a	b	d	c	a
18	19	20	21	22	23	24	25									
d	d	a	c	c	a	b	d									

