Задача 3.1

Меблева фабрика випускає столи, крісла, бюро і книжкові шафи, використовуючи два типи дощок. Фабрика має 1000 дощок типу 1 и 500 дощок типу 2. Трудові ресурси фабрики складають 800 чоловік на тиждень. Витрати кожного виду ресурсів на виготовлення одного виробу є нечіткими параметрами із функцією приналежності $\mu_{ij}(a_{ij})$ і наведені в таблиці 3.1(а). Прибуток від реалізації виробів C_j є нечіткою величиною із функцією приналежності $\gamma_j(C_j)$ (табл. 3.1(б)), де

$$\mu_{ij}(a_{ij}) = \frac{2}{2 + (a_{ij} - \overline{a}_{ij})^2}, \ \gamma_j(C_j) = \exp\left\{-\frac{(C_j - \overline{C}_j)^2}{2}\right\}$$

Визначити оптимальний асортимент випуску виробів, який забезпечується при умові реалізованості плану максимум очікуваного прибутку. Знайти множину не домінуючих альтернатив зі степенем $\alpha=0.75$

Таблиця 3.1(а)

	Стіл	Крісло	Бюро	Шафа
Дошки типу 1	4	2	8	12
Дошки типу 2	2	4	6	10
Трудові ресурси	5	3	6	12

Таблиця 3.1(б)

	Стіл	Крісло	Бюро	Шафа
$\overline{\overline{C}}_{j}$	12	5	15	20

Задача 3.2

Підприємство володіє ресурсами сировини, робочої сили і обладнання, які необхідні для виробництва чотирьох видів виробів. Нехай питомі витрати ресурсів типу j при виробництві виробів типу i a_{ij} є нечіткими змінними на інтервалі $\left[\eta_{ij}, \delta_{ij}\right]$ з ф.п. $\mu_{ij}\left(a_{ij}\right)$, а прибуток одиниці виробу C_i — нечітка величина з ф.п. $\gamma_i\left(C_i\right)$, де

$$\mu_{ij}(a_{ij}) = \exp\left\{-\frac{(a_{ij} - \overline{a}_{ij})^2}{2}\right\}, \ \gamma_j(C_j) = \frac{1}{1 + (C_j - \overline{C}_j)^2}$$

Початкові дані наводяться у табл. 3.2(а) и табл. 3.2(б). Визначити оптимальний асортимент випуску виробів, який забезпечує максимум очікуваного прибутку при умові реалізованості плану. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha = 0.8$.

Таблиця 3.2(а)

1 aostaga 5.2 (a)					
Вид ресурсу		Об'єм			
	<i>i</i> =1	<i>i</i> =2	<i>i</i> =3	<i>i</i> =4	ресурсів
Сировина	4	6	2	5	80
Робоча сила	20	12	20	40	400
Обладнання	10	15	10	16	150

Таблиця 3. 2(б)

1 0000000000000000000000000000000000000				
Вид виробу	1	2	3	4
Прибуток	30	25	56	48

В кормову суміш входять три продукти: сіно, силос і концентрати, які містять поживні речовини: білок, кальцій і вітаміни. Кількість поживних речовин (таблиця 3.3) є нечіткими величинами у інтервалі $\left[\delta_{ij},\sigma_{ij}\right]$ з ф.п. $\mu_{ij}\left(a_{ij}\right)$. Мінімально необхідні норми споживання білка — -2000 г., кальцію — 120 г., вітамінів — 40 г.

Визначити оптимальний раціон харчування мінімальної вартості, який забезпечує добової норми споживання всіх поживних речовин, якщо ціна 1 кг i-го продукту нечітка величина з ф.п. $\gamma_i(C_i)$. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha=0.75$.

$$\mu_{ij}(a_{ij}) = \exp\left\{-\frac{(a_{ij} - \overline{a}_{ij})^2}{2}\right\}, \ \gamma_j(C_j) = \frac{2}{2 + (C_j - \overline{C}_j)^2}$$

Початкові дані наведені у таблиці.

Таблиця 3.3

Продукт і	Вартість \overline{C}_i	Склад поживних речовин \overline{a}_{ij} (г.)		
	(коп за кг.)	Білок	Кальцій	Вітаміни
Сіно	30	300	4	3
Силос	20	20	6	1
Концентрати	50	150	4	2

Задача 3.4

На трьох ділянках колгоспного поля можна вирощувати три культури: жито, пшеницю і ячмінь. Урожайність цих культур нечітка величина з ф.п. $\mu_{ij}(a_{ij})$. Очікувані затрати — нечітка величина з ф.п. $\gamma_{ij}(C_{ij})$.

Нехай планове завдання із зібрання урожаю кожної культури складає відповідно 500 ц., 600 ц. і 400 ц., а площі ділянок дорівнюють відповідно 30 га., 50 га., 20 га.

Визначити оптимальну структуру посівів, яка мінімізує сумарні очікувані витрати при умові виконання плану. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha = 0.8$.

$$\mu_{ij}(a_{ij}) = \frac{1}{1 + (a_{ij} - \overline{a}_{ij})^2}, \quad \gamma_j(C_j) = \exp\left\{-\frac{(C_{ij} - \overline{C}_{ij})^2}{4}\right\}$$

Початкові дані наведені в таблиці 3.4:

Таблиця 3.4

Ділянка	Урожайність <i>j</i> -тої культури (ц. з га.)		Середні витрати			
	\bar{a}_{ij}	\bar{a}_{ij}	\overline{a}_{ij}	\overline{C}_{i1}	\overline{C}_{i2}	\overline{C}_{i3}
1	10	12	8	2	3	4
2	12	14	18	3	6	8
3	20	16	24	4	7	10

Задача 3.5

Для виготовлення визначеного сплаву із свинцю, цинку і олова використовується сировина у вигляді наступних п'яти сплавів із тих же металів, які відрізняються складом і вартістю 1 кг. Допустимо, що процентний склад металу j у кожній сировині i є нечіткою величиною в інтервалі $\left[a_{ij},b_{ij}\right]$ з ф.п. $\mu_{ij}\left(a_{ij}\right)$, а вартість сплаву C_i — нечітка величина з ф.п. $\gamma_i\left(C_i\right)$, де

$$\mu_{ij}(a_{ij}) = \exp\left\{-\frac{(a_{ij} - \overline{a}_{ij})^2}{4}\right\}, \ \gamma_j(C_j) = \frac{5}{5 + (C_j - \overline{C}_j)^2}$$

Початкові дані наведені в таблицях 3.5(а) і 3.5(б).

Необхідно визначити скільки сировини кожного типу потрібно взяти, щоб виготовити з мінімальною собівартістю сплав, який міститиме не менше 20% свинцю, 30% цинку і 50% олова. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha = 0.7$.

Таблиця 3.5(а)

Матеріал ј	Місткість металу в сировині і, %					
	i=1 i=2 i=3 i=4 i=				i=5	
	\overline{a}_{ij}	\overline{a}_{ij}	\overline{a}_{ij}	\overline{a}_{ij}	\overline{a}_{ij}	
Свинець	10	10	30	30	20	
Цинк	5	20	40	20	10	
Олово	60	40	50	10	20	

Таблиия 3.5(б

i	1	2	3	4	5
\overline{C}_i	4	5	6	8	7

Залача 3.6

На виробництво тканини трьох артикулів витрачаються ресурси двох типів: вовна і барвник. Витрати вовни і фарби (кг на 1 000 м) — нечіткі величини розподілені в інтервалі $[c_{ij}, d_{ij}]$ з ф.п. $\mu_{ii}(a_{ij})$.

Ціна 1 м тканини — нечітка величина з ф.п. $\gamma_j(C_j)$.

Визначити оптимальний асортимент, який максимізує прибуток при умові реалізованості плану, якщо середня собівартість 1 м тканини дорівнює відповідно 8, 5 і 15 гр. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha=0.6$.

$$\mu_{ij}(a_{ij}) = \frac{3}{3 + (a_{ij} - \overline{a}_{ij})^2}, \ \gamma_j(C_j) = \frac{1}{1 + (C_j - \overline{C}_j)^2}$$

Початкові дані наведені в таблицях 3.6(а) і 3.6(б)

Таблиця 3.6(a)

Вид ресурсу ј	Об'єм ресурса	Норми витрат на тканину (кг. на 1 000 м)		
	(тис. кг.)	<i>i</i> =1	<i>i</i> =2	<i>i</i> =3
		_	_	_
		a_{ij}	a_{ij}	a_{ij}
Вовна	30	100	160	180
Барвник	10	5	3	6

Таблиия 3.6(б)

= 0.01101141 0 10 (0)			
Тип тканини	<i>i</i> =1	<i>i</i> =2	<i>i</i> =3
Ціна (гр.)	16	18	20

Задача 3.7

Три сотри взаємозамінної сировини (i=1, 2, 3) у кількості 200, 100 і 300 кг використовується при виробництві чотирьох продуктів (j=1, 2, 3, 4).Норми витрат a_{ij} сировини i на виробництво продукту j нечіткі величини з ф.п. $\mu_{ij}(a_{ij})$, а виробничі витрати нечіткі величини в інтервалі $\left|\gamma_{ij}, \delta_{ij}\right|$ з ф.п. $\gamma_{ij}(C_{ij})$.

Скласти план виробництва виробів, який мінімізує очікувані сумарні витрати при умові реалізованості плану. Знайти підмножину не домінуючих альтернатив зі степенем $\alpha = 0.85$.

$$\mu_{ij}(a_{ij}) = \exp\left\{-\frac{(a_{ij} - \overline{a}_{ij})^2}{2}\right\}, \ \gamma_{ij}(C_{ij}) = \frac{1}{1 + (C_{ij} - \overline{C}_{ij})^2}$$

Початкові дані наведені в таблицях 3.7(a) і 3.7(b).

Таблиця 3.7(a)

Сорт сировини і	Норми витрат на продукт j					
	j=1	j=1 $j=2$ $j=3$ $j=4$				
	a_{ij}	$\stackrel{-}{a}_{ij}$	$-a_{ij}$	\overline{a}_{ij}		
1	2	0.5	3	1		
2	1	2	2	2		
3	2	1	2	2		

Таблиця 3.7(б)

Сорт сировини і	Виробничі витрати на одиницю продукції \overline{C}_{ij}				
	j=1	j=2	j=3	j=4	
1	20	15	10	20	
2	15	20	40	30	
3	10	30	10	25	