Question Number	Answer		Mark
13(a)	Use of $n_1\sin\theta_1 = n_2\sin\theta_2$	(1)	
	r for violet light = 31.9° or r for red light = 32.3°	(1)	
	Use of trigonometry to calculate horizontal distances whilst in block	(1)	
	For violet, distance = 3.98 cm or for red, distance = 4.05 cm	(1)	
	Distance between points = 0.070 cm / 0.70 mm	(1)	5
	(If working is only shown to 2 significant figures, the distances will come out to be the same. This can score MP1-4 only if all the working is clearly shown) (For MP1, allow use of $n = \sin i / \sin r$) (If candidate has the n values the wrong way round, MP1 can still be awarded if equation used correctly otherwise)		
	Example of calculation $n_1 \sin \theta_1 = n_2 \sin \theta_2$. In air, $n_1 = 1.000$ and $\theta_1 = 54.00^\circ$ so, for violet light, $\sin r = \sin (54.00^\circ) / 1.532$, so $r = 31.88^\circ$ For red light, $\sin r = \sin (54.0^\circ) / 1.513$, so $r = 32.32^\circ$ For violet light, $\tan (31.88^\circ) = x / 6.400$ cm, so $x = 3.981$ cm For red light, $\tan (32.32^\circ) = x / 6.40$ cm, so $x = 4.049$ cm Distance between points = 4.049 cm $- 3.981$ cm $= 0.068$ cm		
13(b)	Use of $n_1\sin\theta_1 = n_2\sin\theta_2$	(1)	
	Calculates $n\sin\theta$ as 0.99 for red Or 1.01 for violet	(1)	
	Red light refracts out of the glass as $n\sin\theta < 1$	(1)	
	Violet light undergoes total internal reflection as $n\sin\theta > 1$	(1)	
	(If candidate has the n values the wrong way round, MP1 can still be awarded if equation used correctly otherwise)		
	OR		
	Use of $\sin C = 1/n$	(1)	
	Critical angle for violet = 40.7° Or critical angle for red = 41.4°	(1)	
	Red light refracts out of the glass as $C > i$	(1)	
	Violet light undergoes total internal reflection as $C \le i$	(1)	4
	Example of calculation		
	$n\sin\theta \text{ for violet light} = 1.532 \sin (41.00^\circ) = 1.005.$		
	$n\sin\theta$ for red light = 1.513 sin (41.00°) = 0.993.		
	Total for question 13		9