

Državni izpitni center

JESENSKI IZPITNI ROK

NAVODILA ZA OCENJEVANJE

Sreda, 29. avgust 2018

SPLOŠNA MATURA

Odgovor

⊕ • • A D A D D A

Naloga 28 29 30 31 32 33 34 35

IZPITNA POLA 1

Naloga	Odgovor
1	4 B
7	□ ◆
8	0 ◆
4	₽
9	4 B
9	0
2	□ •
8	0
6	A +

Odgovor	В	၁	A	S	В	A	В	D	Ω
Od	→)	1 +)	•	1 +	→ E] +	•
Naloga	10	11	12	13	14	15	16	47	18

Naloga	Odgovor
19	٧.
20	O •
21	り •
22	□ •
23	♦ B
24	○
25	□ •
76	Q •
27	□ •

točka.
$\overline{}$
Vor
Ô
ñ
õ
odgo
en
=
ā
ם
$\boldsymbol{\prec}$
sak
>
ſα.

Skupno število točk IP 1: 35

IZPITNA POLA 2

1. Merjenje

Dodatna navodila		Za eno točko je lahko napačen en izračun teže; rezultat je ustrezen, če je napisan na dve ali tri števliska mesta. 2 2,2 3 3,1 Pravilno označene osi 1 točka. Pravilno vnesene točke 1 točka. Pravilno vnesene točkam najbolj prilega 1 točka.
	FVerma	Z, 45 1,96 1,96 2,94 5,89 5,89 5,89
Odgovor	asile:	• dopolnjen drugi stolpec: m kg] F 0,15 0,20 0,20 0,20 0,40 0,60 4 Fviecna N 1 1 1
Točke 0	<u> </u>	÷
Vpr.	<u>.</u>	5.7

1.4	7	• koeficient: $k = 0.54$ $k = \frac{F_{v2} - F_{v1}}{F_{g2} - F_{g1}} = 0.54$	Postopek 1 točka. Izračun 1 točka.
1.5	7	$lacktriangle$ absolutna napaka: $\Delta k=0.04$ $\delta_k=\delta_{F_{ m tr}}+\delta_{F_{ m p}}=8~\%$ $\Delta k=\delta_k$, $k=8~\%$.0,54 $=0,04$	Relativna napaka 1 točka. Absolutna napaka 1 točka.
1.6	7	• koeficient trenja z absolutno napako: $k_{\rm tr}=0,54\pm0,04$ • koeficient trenja z relativno napako: $k_{\rm tr}=0,54(1\pm8~\%)$	Zapis z absolutno napako 1 točka. Zapis z relativno napako 1 točka.
1.7	-	• vlečna sila: $F_{ m vlečna}=53~{ m N}$ $F_{ m vlečna}=k_{ m tr}\cdot F_g=0,54\cdot 98~{ m N}=53~{ m N}$	
1.8	7	 sila teže: se ne spremeni sila trenja: se zmanjša 	Vsaka sila 1 točka.
1.9	-	 odgovor: Izračunan koeficient trenja je manjši. utemeljitev: Dijak je izmeril manjšo vlečno silo, kot bi bila, če bi vlekel v vodoravni smeri. Torej bo sklepal, da je sila trenja manjša, in bo izračunal manjši koeficient trenja. 	

ဖ

2. Mehanika

Vpr.	Točke	Točke Odgovor	Dodatna navodila
2.1	8	• vektorja hitrosti in pospeška: $\vec{a} \sqrt{\frac{\vec{v}}{a}}$	Vektor hitrosti 1 točka. Vektor pospeška 1 točka.
2.2	-	$lacktriangle$ čas: $t=0.64$ s $t=\sqrt{rac{2h}{g}}=0.64$ s	
2.3	ო		Hitrost 1 točka. Gibalna količina 1 točka. Kinetična energija 1 točka.
2.4	-	\bullet kot: $\varphi=45^\circ$	
2.5	2	• domet: $d=2,0$ m $d=v\sqrt{\frac{2h'}{g}}=2,0 \text{ m}$	Izraz, v katerem nastopa višina klanca in ne višina, s katere spustimo kroglico 1 točka. Rezultat 1 točka.
2.6	က	♦ hitrost: $v' = 7,0 \text{ m s}^{-1}$ $v' = \sqrt{v^2 + 2gh'} = 7,0 \text{ m s}^{-1}$	Navpična komponenta hitrosti ali povečanje kinetične energije zaradi spremembe potencialne energije 1 točka. Izraz za velikost hitrosti 1 točka. Rezultat 1 točka. Kandidat lahko tudi računa iz potencialne energije.

domet je enak višini klanca $d = h' = 0.5$ m začetna hitrost pri vodoravnem metu: $t = \sqrt{\frac{2h}{g}}, v = \frac{h'}{t} = \sqrt{\frac{gh'}{2}} = 1.6 \text{ ms}^{-1}$ višina, s katere moramo spusti kroglico, da pade s to hitrostjo: $h'' = \frac{v^2}{2\sigma} = \frac{h'}{4} = 0,125 \text{ m}$
--

3. Termodinamika

Vpr.	Točke	Točke Odgovor	Dodatna navodila
3.1	2	$lacktriangle$ masa: $m=8,3\cdot 10^{-2}~{ m g}$	Določeno izražena masa iz splošne plinske enačbe 1 točka.
		$m = M \frac{p V}{RT} = 29 \frac{\text{kg}}{\text{kmol}} \frac{1 \cdot 10^5 \text{N} \cdot \text{70} \cdot 10^{-6} \text{m}^3 \text{K kmol}}{\text{8314 J 293 K m}^2} = 8, 3 \cdot 10^{-5} \text{kg}$	Rezultat I tocka.
3.2	1	$lacktriangle$ višina: $h=1,6~\mathrm{m}$	
		$h = \frac{V}{\pi r^2} = \frac{0.05 \text{ m}^3}{0.031 \text{ m}^2} = 1.59 \text{ m}$	
3.3	~	• tlak: $p_1 = 1,2 \text{ bar} = 1,2 \cdot 10^5 \text{ N m}^{-2}$	
		$p_1 = p_0 + \rho g h =$	
		= $10^5 \text{ Nm}^{-2} + 10^3 \text{ kgm}^{-3} \cdot 9.8 \text{ m s}^{-2} \cdot 1.6 \text{ m} = 1,16 \cdot 10^5 \text{ Nm}^{-2}$	
3.4	7	$lacktriangle$ prostornina zraka: $V_1 = 58 \text{ ml}$	Povezava med tlakom in prostornino pri stalni temperaturi 1 točka.
		$V_1 = \frac{V_0 p_0}{p_1} = \frac{7 \cdot 10^{-5} \text{ m}^3 \cdot 10^5 \text{ Nm}^{-2}}{12 \cdot 10^5 \text{ Nm}^{-2}} = 5.8 \cdot 10^{-5} \text{ m}^3 = 58 \text{ mI}$	Rezultat 1 točka.
3.5	2	• čas: $t = 1,5 \text{ h}$	Izračunana dovedena toplota $Q \dots $ 1 točka.
		$t = \frac{Q}{P} = \frac{mc_p \Delta T}{P} = \frac{50 \text{ kg} \cdot 4200 \text{ Jkg}^{-1} \text{ K}^{-1} \cdot 60 \text{ K}}{2400 \text{ W}} =$	Izračunan čas 1 točka.
		$= \frac{12,6 \text{ MJ}}{2400 \text{ W}} = 5250 \text{ s} = 1,46 \text{ h}$	
3.6	1	$lacktriangle$ prostornina zraka: $V_2=70~\mathrm{ml}$	
		$V_2 = rac{V_1 T_2}{T_1} = rac{58 \; ext{ml} \cdot 353 \; ext{K}}{293 \; ext{K}} = 69,8 \; ext{ml}$	
3.7	-	$lacktriangleright$ masa: $m=8,3\cdot 10^{-2}$ g	
		Masa Ustaja ves cas ellana.	
ა: დ	7	$lacktriangle$ zmesna temperatura vode: $T_3 = 35 ^{\circ}\text{C} = 308 \text{K}$ $T_3 = \frac{m_V T_V + m_H T_H}{m_V + m_H} = \frac{50 \text{kg} \cdot 80 ^{\circ}\text{C} + 70 \text{kg} \cdot 2 ^{\circ}\text{C}}{120 \text{kg}} = 34,5 ^{\circ}\text{C}$	Enačba 1 točka. Rezultat 1 točka.

Izračunan tlak na dnu posode 1 točka. Povezava med tlakom, temperaturo in prostornino plina v dveh stanjih 1 točka.		
٠ •	$= 1 \text{ bar} + \frac{10^3 \text{ kgm}^{-3} \cdot 9.81 \text{ ms}^{-2} \cdot 0.12 \text{ m}^3}{0.031 \text{ m}^2} = 1.38 \text{ bar}$	$V_3 = \frac{V_2 p_1 T_3}{p_3 T_2} = \frac{70 \text{ ml} \cdot 1,2 \text{ bar} \cdot 308 \text{ K}}{1,38 \text{ bar} \cdot 353 \text{ K}} = 53,1 \text{ ml}$
9. 6.		

10

4. Elektrika in magnetizem

Vpr.	Točke	Odgovor	Dodatna navodila
4.1	7	$lacktriangle$ levi priključek pozitiven, desni negativen $lacktriangle$ $I_0 = I_1 + I_3$	Oznake priključkov 1 točka. Zveza med tokovi 1 točka.
4.2	7	• nadomestni upor: $R = 11 \Omega$ $R_{42} = R_1 + R_2 = 10 \Omega + 15 \Omega = 25 \Omega$ $\frac{1}{R_{123}} = \frac{1}{R_{42} \cdot R_3} + \frac{1}{R_3}$ $R_{423} = \frac{25 \Omega \cdot 20 \Omega}{R_{12} + R_3} = \frac{25 \Omega \cdot 20 \Omega}{25 \Omega + 20 \Omega} = 11 \Omega$	$R_{ m 4_2}$ 1 točka Nadomestni upor 1 točka.
4.3	7	\bullet naboj: 4,5 As $e = It = \frac{Ut}{R_{123}} = \frac{50 \text{V} \cdot 1 \text{s}}{11 \Omega} = 4,5 \text{As}$	Enačba1 točka. Izračun 1 točka.
4.4	7	• napetost: $U=20 \text{ V}$ $U=R_{12}I_{12}, \ U_1=I_{12}R_1=\frac{U}{R_{12}}R_1=\frac{50 \text{ V}}{25 \Omega} \text{ 10 } \Omega=20 \text{ V}$	Enačba 1 točka. Izračun 1 točka.
4.5	~	• odgovor: Tok se poveča. $R_{13} = R_1 + R_3 = 10 \ \Omega + 20 \ \Omega = 30 \ \Omega$ $\frac{1}{R_{132}} = \frac{1}{R_{13}} + \frac{1}{R_2} \ , \ R_{132} = \frac{R_{13} \cdot R_2}{R_{13} + R_2} = \frac{30 \ \Omega \cdot 15 \ \Omega}{30 \ \Omega + 15 \ \Omega} = 10 \ \Omega$ $U = R_{132}I_{132}, \ I_{132} = \frac{U}{R_{132}} = \frac{50 \ V}{10 \ \Omega} = 5,0 \ A$	Nov nadomestni upor 1 točka. Tok 1 točka.
4.6	м	• odgovor: Skupna moč bo največja, če bo nadomestni upor R_x najmanjši, to bo, če zamenjamo upora R_1 in R_3 . • moč: $P=320$ W $R_{23}=R_2+R_3=15~\Omega+20~\Omega=35~\Omega$ $\frac{1}{R_{432}}=\frac{1}{R_{23}}+\frac{1}{R_1},~R_{432}=\frac{R_{23}\cdot R_1}{R_{23}+R_1}=\frac{10~\Omega\cdot 35~\Omega}{10~\Omega+35~\Omega}=7,8~\Omega$ $P=\frac{U^2}{R_x}=\frac{2500~V^2}{7,8~\Omega}=320~W$	Ugotovitev konfiguracije 1 točka. Nadomestni upor 1 točka. Moč 1 točka.

Enačba1 točka.	Izračun 1 točka.	
$lacktriangle$ novi upor: $R_{novi}=$ 16,5 Ω	$R = \frac{l\zeta}{S} = \frac{l\zeta}{\pi r^2}$	$R_{ m novi} = rac{l\zeta}{\pi r^2} rac{1,04}{0.97^2} = R \cdot (1,1) = 15 \; \Omega \cdot (1,1) = 16,5 \; \Omega$
2		
4.7		

12

5. Nihanje, valovanje in optika

Vpr.	Točke	Odgovor	Dodatna navodila
5.1	-	• koeficient vzmeti: 24 N m $^{-1}$ $k = \frac{F}{x} = \frac{0,15 \text{ kg} \cdot 9,81 \text{ m}}{0,062 \text{ m s}^{-2}} = 23,7 \text{ N m}^{-1}$	
5.2	-	$lacktriangle$ nihajni čas: 0,50 s $t_0 = 2\pi \sqrt{rac{m}{k}} = 0,50$ s	Postopek 1 točka. Izračun 1 točka.
5.3	7	• amplituda: 6,2 cm • raztezek: 12,4 cm • $\frac{1}{2}kx'^2 = mgx' \Rightarrow x' = \frac{2mg}{k} = 12,4$ cm ali $x' = 2x$ ($x = 6,2$ cm)	Amplituda1 točka. Raztezek1 točka.
5.4	8	ullet hitrost: 0,78 m s ⁻¹ $v_0 = \frac{2\pi x_0}{t_0} = 0,78 \; \mathrm{m s^{-1}}$	Postopek 1 točka. Izračun 1 točka.
5.5	2	• pospešek: 3,2 m s ⁻² $a = \left(\frac{2\pi}{t_0}\right)^2 x = \left(\frac{2\pi}{0.5 \text{ s}}\right)^2 \text{ 0,02 m} = 3,16 \text{ ms}^{-2}$	Postopek 1 točka. Izračun 1 točka.
5.6	7	$ullet$ kinetična energija: 46 mJ $W_{ m k}=rac{1}{2}mv^2=rac{1}{2}$ 0,15 kg $\left(0,78~{ m ms^{-1}} ight)^2=45$,6 mJ	Postopek 1 točka. Izračun 1 točka.
5.7	7	• graf: W_k W_0	Oblika grafa 1 točka. Ustrezno merilo 1 točka.

t_{1}^{1} iri čas: 0,25 s $t_{2}^{1}=t_{2}^{0}=t_{2}^{0}=t_{2}^{0}=t_{2}^{0}$	Oblika grafa1 točka. Ustrezno merilo1 točka. v_0
1 • nihajni čas: 0,25 s $t_0' = \frac{t_0}{2} = 0,25$	
5.8	e.

4

6. Moderna fizika in astronomija

Vpr.	Točke	Odgovor	Dodatna navodila
6.1	2	• energiji fotonov: 1,7 eV; 3,1 eV $W = \frac{hc}{\lambda}, \ W_1 = \frac{1240 \text{ eVnm}}{750 \text{ nm}} = 1,7 \text{ eV}; \ W_2 = \frac{1240 \text{ eVnm}}{400 \text{ nm}} = 3,1 \text{ eV}$	Postopek 1 točka. Izračun 1 točka.
6.2	1	$^{\bullet}$ energija fotonov pri prehodu: $W=10,2$ eV $W=W_{\rm 1}-W_0=-3,4$ eV $+13,6$ eV $=10,2$ eV	
6.3	7	\bullet najkrajša valovna dolžina: $\lambda=430$ nm $W_{\rm max}=W_{\rm 5}-W_{\rm 2}=-0,54~{\rm eV}+3,4~{\rm eV}=2,9~{\rm eV}$ $\lambda=\frac{hc}{W}=\frac{1240~{\rm eV}{\rm nm}}{2,9~{\rm eV}}=430~{\rm nm}$	Izračun energije 1 točka. Izračun valovne dolžine 1 točka.
6.4	7	• število fotonov: $N = 2, 2 \cdot 10^{15}$ $P = \frac{W}{t} = \frac{W_{\text{max}} N}{t}$ $N = \frac{Pt}{W_{\text{max}}} = \frac{10^{-3} \text{ W} \cdot 1 \text{ s}}{2,9 \cdot 1,6 \cdot 10^{-19} \text{ J}} = 2, 2 \cdot 10^{15}$	Postopek 1 točka. Izračun 1 točka.
6.5	ო		Število atomov 1 točka. Postopek 1 točka. Izračun 1 točka.
9.9	-	$ullet$ kinetična energija: $W_{ m kin}=$ 1,4 eV $W_{ m kin}=W-A_{ m k}=$ 2,9 eV $-$ 1,5 eV $=$ 1,4 eV	
6.7	-	* zaporna napetost: $U_{\rm zap}=$ 1,4 V $U_{\rm zap}=\frac{W-A_{\rm i}}{e}=$ 2,9 V $-$ 1,5 V $=$ 1,4 V	

15

Kinetična energija 1 točka. Izpeljava hitrosti 1 točka. Izračun 1 točka.	
	m s ⁻¹
introst: $v=6,8\cdot 10^5~{\rm ms^{-1}}$ $W_{\rm kin}=W-U_{\rm z}e=1,4~{\rm eV}-0,1~{\rm eV}=1,3~{\rm eV}$	$w_{\text{kin}} = \frac{1}{2} m v^{-1}$ $v = \sqrt{\frac{2W'_{\text{k}}}{m}} = \sqrt{\frac{2 \cdot 13 \cdot 16 \cdot 10^{-19} \text{ J}}{9.1 \cdot 10^{-31} \text{ kg}}} = 6.8 \cdot 10^{5} \text{ m s}^{-1}$
• hitrost: $v = 6,8.10^5 \text{ m s}^{-1}$ $W_{\text{kin}} = W - U_{\text{z}}e = 1,4 \text{ eV} - U_{\text{z}}e = 1$	$W_{\text{kin}} = \frac{1}{2}mv^{-1}$ $v = \sqrt{\frac{2W'_{\text{k}}}{m}} = \sqrt{\frac{1}{2}}$
ო	

Skupno število točk IP 2: 45