Topic 30 - Logistic Regression

STAT 525 - Fall 2013

STAT 525

Outline

- Logistic Regression
 - Background
 - Model
 - Inference
 - Diagnostics

Topic 30

STAT 525

Background

- In many applications, the response variable Y has only two possible outcomes, labeled numerically 0 and 1
 - Not diseased (Y = 0) vs Disease (Y = 1)
 - Unemployed (Y = 0) vs Employed (Y = 1)
- Response is binary or dichotomous
- Can model response using Bernoulli distribution

$$\begin{split} \Pr(Y_i = 1) &= \pi_i \\ \Pr(Y_i = 0) &= 1 - \pi_i \end{split} \quad \rightarrow \quad E(Y_i) = \pi_i \end{split}$$

• Goal is to <u>link</u> $E(Y_i) = \pi_i$ with covariates X_i

STAT 525

Topic 30

Just use the linear link?

• Suppose we consider the linear model (with one X_i)

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- If Y_i only takes values 0 and 1, then
 - We have non-normal error terms

when
$$Y_i = 0$$
: $\varepsilon_i = -\beta_0 - \beta_1 X_i$
when $Y_i = 1$: $\varepsilon_i = 1 - \beta_0 - \beta_1 X_i$

- We have nonconstant variance

$$Var(Y_i) = \pi_i(1 - \pi_i)$$

- Need parameter bounds so $0 \le \pi_i \le 1$

Logistic Response Function

- Need alternate function to link $E(Y_i) = \pi_i$ and X
- Common to consider the sigmoidal function

$$E(Y_i) = \frac{\exp(\beta_0 + \beta_1 X_i)}{1 + \exp(\beta_0 + \beta_1 X_i)}$$
$$= (1 + \exp(-\beta_0 - \beta_1 X_i))^{-1}$$

- Example of a **nonlinear** model
- Other sigmoidal functions (e.g., normal CDF) possible

Topic 30

5

STAT 525

Logistic model

- Assume the Y_i are independent Bernoulli random variables with means π_i
- Could express model as $Y_i = E(Y_i) + \varepsilon_i$ but the error terms ε_i depend on the Bernoulli distribution of Y_i
- Better to express

$$Y_i \sim \text{Bernoulli}(\pi_i)$$

 $\text{logit}(\pi_i) = \beta_0 + \beta_1 X_i$

Properties of Logistic Function

- Monotonic increasing/decreasing function
- Restricts $0 \le E(Y_i) \le 1$
- Can be linearized through the *logit* transformation

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 X_i$$

- Use logit link function to relate π_i with X_i
- Other link functions possible (i.e., probit, complementary log-log)

Topic 30

STAT 525

Estimation

• Given the distributions of Y_i , we can formulate the likelihood function and obtain MLE estimates

$$\log(L) = \log(\prod \pi_i^{Y_i} (1 - \pi_i)^{1 - Y_i})$$

$$= \sum Y_i \log(\pi_i) + \sum (1 - Y_i) \log(1 - \pi_i)$$

$$= \sum Y_i \log(\frac{\pi_i}{1 - \pi_i}) + \sum \log(1 - \pi_i)$$

$$= \sum Y_i (\beta_0 + \beta_1 X_i) - \sum \log(1 + \exp(\beta_0 + \beta_1 X_i))$$

- MLEs do not have closed forms
- SAS performs iterative reweighted least squares

Topic 30

7

Topic 30

-

Interpretation

• Given b_0 and b_1 , can calculate $\hat{\pi}_i$

$$\hat{\pi}_i = \exp(b_0 + b_1 X_i) / (1 + \exp(b_0 + b_1 X_i))$$

- $\hat{\pi}_i$ is the estimated probability of individual *i* having response $Y_i = 1$
- b_1 is now the "slope" of the logit relationship $\operatorname{logit}(\hat{\pi}(X_i+1)) \operatorname{logit}(\hat{\pi}(X_i)) = b_1$
- Logit transform is the log of the **odds**
- Thus, $\exp(b_1)$ becomes the **odds ratio**
- Popular summary in epidemiologic studies

Topic 30

 \bullet Particularly in designed experiments will have repeat observations at certain levels of X

Repeat Observations

- Allows for assessment of model fit (recall Section 3.7)
- Label X levels as $X_1, X_2, ..., X_c$ such that there are n_j replicates at level X_i with Y_{ij} the ith replicate at X_j
- Can simplify log-likelihood function by considering the sums $Y_{,i}$, which are binomially distributed

$$Y_{.j} \sim \text{Binomial}(n_j, \pi_j)$$

 $\text{logit}(\pi_j) = \beta_0 + \beta_1 X_j$

Topic 30

STAT 525

Example Page 625

- Board of directors interested in estimating the effect of a due increase on membership
- Randomly surveyed n = 30 members
- X_i is the due increase posited to the member
- X_i varied between \$30 and \$50
- Repeat observations for certain X_i
- Y_i is whether the member would continue membership

STAT 525

SAS Commands

```
data a1;
  infile 'u:\.www\datasets525\CH14PR07.txt';
  input norenew increase;
  renew=1-norenew;

proc print data=a1;
  var renew increase;

symbol1 v=circle i=sm70;
proc gplot;
  plot renew*increase;
```

The Data - Single Trials

0bs	renew	increase
1	1	30
2	0	30
3	1	30
4	1	31
5	1	32
6	1	33
7	0	34
8	1	35
9	1	35
10	0	35
11	0	36
12	1	37
:	:	:
27	0	48
28	1	49
29	0	50
30	0	50

Topic 30

Statterplot

Scatterplot

1.0
0.0
0.8
0.7
0.8
0.5
0.4
0.3
0.3
0.2

Topic 30

increase

STAT 525

Topic 30

SAS Commands

```
***Converting data set to events/trials format****
proc sort data=a1; by renew;
proc freq data=a1; tables increase / out=a1c; by renew;

data renew0;
set a1c; if renew=0; n0=count; drop count;

data renew1;
set a1c; if renew=1; n1=count; drop count;

data a1c;
merge renew0 renew1; by increase;
if n0=. then n0=0; if n1=. then n1=0;
tot=n0 + n1;

proc print data=a1c;
var increase n1 tot;
run;
```

STAT 525

The Data - Grouped trials

0bs	increase	n1	tot
1	30	2	3
2	31	1	1
3	32	1	1
4	33	1	1
5	34	0	1
6	35	2	3
7	36	0	1
8	37	1	1
9	38	1	1
10	39	0	1
11	40	1	3
:	:	:	:
16	45	1	3
17	46	1	1
18	47	0	1
19	48	0	1
20	49	1	1
21	50	0	2

STAT 525

SAS Commands

```
proc logistic data=a1 descending;
                                           **single trial form
   model renew = increase;
   output out=a2 p=pred;
proc print;
symbol1 v=circle i=none;
symbol2 v=star i=sm30;
proc gplot data=a2;
   plot renew*increase pred*increase /overlay;
proc logistic data=a1c;
   model n1 / tot = increase;
                                           **grouped trial form
run;
```

Topic 30

Output The LOGISTIC Procedure ***Single trials model*** Response Profile Ordered Total renew Frequency Probability modeled is renew=1. ****Be wary**** Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and

37.465 Topic 30

41.465

44.267

Difference in -2 Log L

3.990

Covariates

STAT 525

Output

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	3.9906	1	0.0458	**see prev page
Score	3.8265	1	0.0504	
Wald	3.5104	1	0.0610	

Analysis of Maximum Likelihood Estimates

			Standard	wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	4.8075	2.6558	3.2769	0.0703
increase	1	-0.1251	0.0668	3.5104	0.0610

Odds Ratio Estimates

	Point	95% Wald	l	**Wald	test	like	squared**
Effect	Estimate	Confidence L	imits		z	test	
increase	0.882	0.774	1.006				

Topic 30

STAT 525

19

Criterion

-2 Log L

ATC

SC

Only

43.455

44.857

41.455

Output

The LOGISTIC Procedure

Grouped trials model

Response Profile

Ordered	Binary	Total
Value	Outcome	Frequency
1	Event	14
2	Nonevent	16

Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

		Intercept and	d Covariates	
	Intercept	Log	Full Log	
Criterion	Only	Likelihood	Likelihood	
AIC	43.455	41.465	32.676	**Last column considers
SC	44.857	44.267	35.478	binomial likelihood
-2 Log L	41.455	37.465	28.676	

Topic 30

Output

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	3.9906	1	0.0458
Score	3.8265	1	0.0504
Wald	3.5104	1	0.0610

Analysis of Maximum Likelihood Estimates

Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 4.8075 2.6558 3.2769 0.0703 1 -0.1251 0.0668 3.5104 0.0610 increase

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits ***Same results as before

22

increase 0.882 0.774 1.006

Topic 30

STAT 525

Alternate Approaches

```
***Logistic regression is an example of a generalized model so***
```

we can consider generalized linear model procedures

proc genmod data=a1 descending;

model renew = increase / dist=bin aggregate=increase;

**Without aggregate fits single trial model

proc genmod data=a1c descending;

model n1 / tot = increase / dist=bin;

**Fits grouped trial model run;

proc glimmix data=a1;

model renew(descending) = increase / chisq dist=binary;

**Fits single trial model

proc glimmix data=a1c;

model n1/ tot = increase / chisq dist=binomial;

**Fits grouped trial model run;

Topic 30

STAT 525

23

GENMOD Output

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	19	22.1885	1.1678
Scaled Deviance	19	22.1885	1.1678
Pearson Chi-Square	19	17.9966	0.9472
Scaled Pearson X2	19	17.9966	0.9472
Log Likelihood		-18.7324	
Full Log Likelihood		-14.3379	**1st and 3rd columns
AIC (smaller is better)		32.6759	only provided with
AICC (smaller is better)		33.1203	grouped model
BIC (smaller is better)		35.4783	

Analysis Of Maximum Likelihood Parameter Estimates

				Standard	Wald 95%	Confidence	e Wald	
Ι	Parameter	DF	Estimate	Error	Lim	its	Chi-Square	Pr > ChiSq
1	Intercept	1	4.8075	2.6558	-0.3977	10.0127	3.28	0.0703
-	increase	1	-0.1251	0.0668	-0.2559	0.0058	3.51	0.0610
5	Scale	0	1.0000	0.0000	1.0000	1.0000		

STAT 525

GLIMMIX Output

Fit Statistics		
-2 Log Likelihood	37.46	
AIC (smaller is better)	41.46	**Single trial model
AICC (smaller is better)	41.91	
BIC (smaller is better)	44.27	**Likelihood and model
CAIC (smaller is better)	46.27	selection criteria
HQIC (smaller is better)	42.36	based on single trial
Pearson Chi-Square	30.10	likelihood
Pearson Chi-Square / DF	1.08	

Type III Tests of Fixed Effects

Effect	DF	DF	Chi-Square	F Value	Pr > ChiSq	Pr > F
increase	1	28	3.51	3.51	0.0610	0.0715

Will not discuss F test but Den df = 30-1-1

Topic 30

GLIMMIX Output

TIU DUAUTBUICB		
-2 Log Likelihood	28.68	
AIC (smaller is better)	32.68	**Grouped trial model
AICC (smaller is better)	33.34	
BIC (smaller is better)	34.76	**Likelihood and model
CAIC (smaller is better)	36.76	selection criteria
HQIC (smaller is better)	33.13	based on grouped trial
Pearson Chi-Square	18.00	likelihood
Pearson Chi-Square / DF	0.95	

Fit Statistics

Type III Tests of Fixed Effects

	Num	Den				
Effect	DF	DF	Chi-Square	F Value	Pr > ChiSq	Pr > F
increase	1	19	3.51	3.51	0.0610	0.0765

Den df = 21-1-1

Topic 30

STAT 525

Nıım

Den

Comparison of Global Tests

- Likelihood ratio test compares $-2 \log(L)$ of two nested models. The df equals the difference in the number of model parameters
- Wald test requires fit only to full model. Assesses how far estimated parameters are from hypothesized values in terms of standard errors. Uses asymptotic normality of MLEs. When considering only one parameter, test just the squared-z test.
- Score test requires fit only to H_0 model. Test is based on the slope of the log-likelihood function at the values specified by the null hypothesis. Describes expected change in chi-squared statistic if variables were added.

STAT 525

Topic 30

Deviance

- Recall hypothesis testing can be done using a likelihood ratio test, which is similar to the general linear test
- Consider the grouped trials form. The <u>deviance</u> of the fitted model is the difference in the log-likelihood of the fitted model and the most general model, which has a parameter (π_i) for each X_i
- The MLEs for this full model are $p_j = Y_{.j}/n_j$ for j = 1, 2, ..., c so the deviance for the fitted model is

$$\begin{aligned} &-2\left(\log(L(\mathbf{R})) - \log(L(\mathbf{F}))\right) \\ -2\sum \left(Y_{.j}log\left(\frac{\hat{\pi}_{j}}{p_{j}}\right) + (n_{j} - Y_{.j})log\left(\frac{1 - \hat{\pi}_{j}}{1 - p_{j}}\right)\right) \end{aligned}$$

Using the Deviance

- If the logistic model is correct, then the deviance will be approximately chi-square with c-p df.
- Since the mean of the chi-square is its df, we'd expect the deviance/df to be approximately 1. This is commonly used to assess goodness of fit.
- Can also use deviance to compare two hierarchical models $\begin{array}{rcl} \text{DEV}(X_q,...,X_{p-1}|X_0,...,X_{q-1}) & = & \text{DEV}(X_0,...,X_{q-1}) \\ & & \text{DEV}(X_0,...,X_{p-1}) \end{array}$
- Partial deviance approx χ^2 with p-q df
- Must compute by hand or with GENMOD
- Will use this in multiple logistic regression

Topic 30

Pearson Goodness of Fit Test

- Alternative goodness of fit test using same principals as deviance goodness of fit test.
- For each observed X_j , can compute the expected number of events and nonevents.

$$X^{2} = \sum_{c} \left(\frac{(Y_{.j} - n_{j}\hat{\pi}_{j})^{2}}{n_{j}\hat{\pi}_{j}} + \frac{(n_{j} - Y_{.j} - n_{j}(1 - \hat{\pi}_{j}))^{2}}{n_{j}(1 - \hat{\pi}_{j})} \right)$$

• This also will approximately follow a chi-square distribution with c-p df.

Topic 30

STAT 525

Wald's Test

- Can also use Wald's Test for $H_0: \mathbf{L}'\boldsymbol{\beta} = \mathbf{C}$
- Described on page 578 for single parameter tests

$$S = (\mathbf{L}'\hat{\boldsymbol{\beta}} - \mathbf{C})'(\mathbf{L}'\hat{\boldsymbol{\Sigma}}\mathbf{L})^{-1}(\mathbf{L}'\hat{\boldsymbol{\beta}} - \mathbf{C})$$

where $\hat{\Sigma}$ is the estimate covariance matrix of $\hat{\boldsymbol{\beta}}$

- Under H_0 , $S \sim \chi_r^2$ where r is rank of **L**
- Available in GENMOD and LOGISTIC

STAT 525

Alternative Goodness of Fit Test

- Have previously described goodness of fit tests when there is replication
- For unreplicated studies, can consider the Hosemer-Lemeshow goodness of fit
 - Group observations into classes (usually around 10) according to fitted logit values.
 - Assess overall fit to each class using a Pearson goodness of fit approach.

Topic 30

31

- Divide obs up into ≈ 10 groups of equal size based on percentiles of the estimated probabilities
- Expected # of 1's is $\sum \hat{\pi}_i$
- Expected # of 0's is $n_i \sum \hat{\pi}_i$
- Compare expected with observed through

$$\chi^2 = \sum \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- In the example
 - $E_{11} = (.19056 + .19056 + .21060) = 0.59 \rightarrow E_{10} = 2.41$
 - $-E_{21} = (.23214 + .25518 + .27967) = 0.77 \rightarrow E_{20} = 2.23$

Topic 30

SAS Commands

```
data a1:
   infile 'u:\.www\datasets525\CH14PR07.txt';
   input norenew increase;
   renew=1-norenew;
proc logistic data=a1 descending;
   model renew = increase / lackfit;
                                         ******NEW*****
   output out=a2 p=pred;
run;
proc print;
run;
```

Topic 30

STAT 525

Topic 30

Additional Output

Association of Predicted Probabilities and Observed Responses

Percent Concordant 68.3 Somers' D 0.402 Percent Discordant Gamma 0.417 Percent Tied 3.6 0.207 Tau-a Pairs 224 0.701

Partition for the Hosmer and Lemeshow Test					
		renev	7 = 1	renew	= 0
Group	Total	Observed	Expected	Observed	Expected
1	3	1	0.59	2	2.41
2	3	1	0.77	2	2.23
3	3	1	0.92	2	2.08
4	3	0	1.08	3	1.92
5	4	2	1.77	2	2.23
6	3	2	1.54	1	1.46
7	4	2	2.39	2	1.61
8	3	2	1.99	1	1.01
9	4	3	2.94	1	1.06
Hosmer and Lemeshow Goodness-of-Fit Test					

Chi-Square DF Pr > ChiSq 2.6526 7 0.9152 STAT 525

STAT 525

Output

Obs	norenew	increase	renew	_LEVEL_	pred
1	1	50	0	1	0.19056
2	1	50	0	1	0.19056
3	0	49	1	1	0.21060
4	1	48	0	1	0.23214
5	1	47	0	1	0.25518
6	0	46	1	1	0.27967
:	:	:	:	:	:
17	1	39	0	1	0.48237
18	0	38	1	1	0.51363
19	0	37	1	1	0.54478
24	1	34	0	1	0.63526
25	0	33	1	1	0.66372
26	0	32	1	1	0.69104
27	0	31	1	1	0.71709
28	0	30	1	1	0.74177
29	1	30	0	1	0.74177
30	0	30	1	1	0.74177

Measures of Agreement

- \bullet Have N observations
- Consider all pairs of distinct responses
 - In this example $t = 16 \times 14 = 224$
- Compare predicted probabilities
 - Concordant if $\hat{\pi}_{Y=1} > \hat{\pi}_{Y=0}$
 - Discordant if $\hat{\pi}_{Y=1} < \hat{\pi}_{Y=0}$
 - Tie if $\hat{\pi}_{Y=1} = \hat{\pi}_{Y=0}$
- Measures of agreement
 - Somers' D : (#C #D)/t
 - Goodman-Kruskal Gamma : (#C #D)/(#C + #D)
 - Kendall's Tau-a : (#C #D)/(.5N(N-1))
 - c : (#C + .5(t #C #D))/t

Topic 30

37

STAT 525

Background Reading

- KNNL Chapter 14
- knnl555.sas
- KNNL Chapter 14