

Report No.: EED32I00292903 Page 1 of 34

TEST REPORT

Product : ALL IN ONE DVD PLAYER

Trade mark : Clarion

Model/Type reference : NX807, VX807

Serial Number : N/A

Report Number : EED32100292903

FCC ID : V8VNX807

Date of Issue : Dec. 13, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

SKYPINE ELECTRONICS (SHEN ZHEN) CO., LTD.
A1 BUILDING, NO.6 XINXING INDUSTRIAL PARK, XINHE VILLAGE,
FUYONG TOWN, BAOAN, SHENZHEN, China, 518000

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by:

Report Seal

Tom-chen

Compiled by:

Kevin Ian (Project Engineer)

Tom chen (Test Project)

Approved by:

Sheek Luo (Lab supervisor)

Dec. 13, 2016

Kevin yang (Reviewer)

Check No.: 2402656861

Report No. : EED32I00292903 **2 Version**

Version No.	Date	Description
00	Dec. 13, 2016	Original

Page 3 of 34

3 Test Summary

Test Item	Test Requirement	Test method	Result PASS	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013		
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

NA:The device is used in the vehicle and only DC operated, the test related AC mains is not applicable.

Model No.: NX807, VX807

Only the model NX807 was tested, since the circuitry design, PCB layout, electrical components used, internal wiring and functions were identical for the above models, with difference on front-panel(including colour and decoration of plastic enclosure, position of button and PWB) and NX807 with Navi function and VX807 without Navi function.

4 Content

1 COVER PAGE.......1

2 VERSION		•••••	2
3 TEST SUMMARY			3
4 CONTENT			
5 TEST REQUIREMENT			5
5.1 TEST SETUP			5
5.1.2 For Radiated Emissions test setup5.1.3 For Conducted Emissions test setu			
5.2 TEST ENVIRONMENT	·		6
6 GENERAL INFORMATION			
6.1 CLIENT INFORMATION	THIS STANDARD TIONS E CUSTOMER NFIDENCE LEVELS, K=2)		
7 EQUIPMENT LIST			10
8 RADIO TECHNICAL REQUIREMENTS SP	ECIFICATION		12
Appendix A): 6dB Occupied Bandwidth Appendix B): Conducted Peak Output F Appendix C): Band-edge for RF Conducted Appendix D): RF Conducted Spurious E Appendix E): Power Spectral Density Appendix F): Antenna Requirement	Power eted Emissions		15 17 18

	Appendix A). Odb Occupied Bandwidth		10
	Appendix B): Conducted Peak Output Power		15
	Appendix C): Band-edge for RF Conducted Emissions		
	Appendix D): RF Conducted Spurious Emissions	•••••	18
	Appendix E): Power Spectral Density		
	Appendix F): Antenna Requirement		
	Appendix G): Restricted bands around fundamental frequency (Radiated)		
	Appendix H): Radiated Spurious Emissions		27
PH	IOTOGRAPHS OF TEST SETUP		32

Appendix H): Radiated Spurious Emissions	27
PHOTOGRAPHS OF TEST SETUP	32
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	34

Page 4 of 34

Report No. : EED32I00292903 Page 5 of 34

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Conducted Emissions setup

5.2 Test Environment

Operating Environment:	(24)	
Temperature:	21.5°C	(0)
Humidity:	58% RH	
Atmospheric Pressure:	1010 mbar	

5.3 Test Condition

Test channel:

Test Mode	T _v	RF Channel				
	Tx	Low(L)	Middle(M)	High(H)		
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40		
		2402MHz	2440MHz	2480MHz		
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).					
-0.00		- 6 -	140			

Report No.: EED32I00292903 Page 7 of 34

6 General Information

6.1 Client Information

Applicant:	SKYPINE ELECTRONICS (SHEN ZHEN) CO., LTD.
Address of Applicant:	A1 BUILDING, NO.6 XINXING INDUSTRIAL PARK, XINHE VILLAGE, FUYONG TOWN, BAOAN, SHENZHEN, China, 518000
Manufacturer:	SKYPINE ELECTRONICS (SHEN ZHEN) CO., LTD.
Address of Manufacturer:	A1 BUILDING, NO.6 XINXING INDUSTRIAL PARK, XINHE VILLAGE, FUYONG TOWN, BAOAN, SHENZHEN, China, 518000
Factory:	SKYPINE ELECTRONICS (SHEN ZHEN) CO., LTD.
Address of Factory:	A1 BUILDING, NO.6 XINXING INDUSTRIAL PARK, XINHE VILLAGE, FUYONG TOWN, BAOAN, SHENZHEN, China, 518000

6.2 General Description of EUT

Product Name:	ALL IN ONE DVD PLAYER
Model No.:	NX807, VX807
Test Model No.:	NX807
Trade Mark:	Clarion
EUT Supports Radios application:	BT 4.0 Dual mode(2402-2480MHz), GPS(L1: 1575.42MHz)
Power Supply:	DC 12V
Sample Received Date:	Nov. 18, 2016
Sample tested Date:	Nov. 18, 2016 to Dec. 13, 2016

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		\cdot\)
Bluetooth Version:	BT 4.0 Dual mode	(37)	
Modulation Technique:	DSSS		
Modulation Type:	GFSK		
Number of Channel:	40		
Antenna Type:	PCB Inverted-F Antenna		
Antenna Gain:	0dBi	/	0
Test Power Grade:	255		
Test Software of EUT:	BlueTest 2.5.8		
Test Voltage:	DC 12V		
(6)	(63-)	(6)	(6)

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz

Report No.: EED32I00292903 Page 8 of 34

8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality

Page 9 of 34

assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	RF power, conducted	0.31dB (30MHz-1GHz)	
	Kr power, conducted	0.57dB (1GHz-18GHz)	
3	Padiated Spurious emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
4	Conduction emission	3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	

Page 10 of 34

7 Equipment List

RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017			
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017			
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017			
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017			
PC-1	Lenovo	R4960d	(6)	04-01-2016	03-31-2017			
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017			
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017			

Page 11 of 34

	3IVI S	emi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2017
High-pass filter	MICRO-TRONICS	SPA-F-63029- 4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-12-2016	01-11-2017

Report No.: EED32l00292903 Page 12 of 34

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

CSt Nesults Eist.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

Report No. : EED32l00292903 Page 13 of 34

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6989	1.0491	PASS	
BLE	MCH	0.6925	1.0481	PASS	Peak
BLE	HCH	0.6997	1.0502	PASS	detector

Test Graphs

Report No. : EED32l00292903 Page 15 of 34

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.803	PASS
BLE	MCH	4.939	PASS
BLE	НСН	6.752	PASS

Page 16 of 34

Test Graphs

Report No.: EED32l00292903 Page 17 of 34

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	2.240	-60.476	-17.76	PASS
BLE	HCH	6.429	-44.021	-13.57	PASS

Test Graphs

Report No.: EED32l00292903 Page 18 of 34

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	2.203	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	4.805	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	6.275	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No.: EED32I00292903 Page 21 of 34

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-12.893	8	PASS
BLE	MCH	-10.456	8	PASS
BLE	НСН	-8.554	8	PASS

Page 22 of 34

Test Graphs

Report No.: EED32l00292903 Page 23 of 34

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB Inverted-F Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: EED32l00292903 Page 24 of 34

Appendix G): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	41 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	-07
Test Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-and determine the positio b. The EUT was set 3 m was mounted on the c. The antenna height is determine the maxim polarizations of the aid. For each suspected of the antenna was tuned was turned from 0 de e. The test-receiver sys Bandwidth with Maxim f. Place a marker at the	dure as below: on the top of a ro echoic camber. The n of the highest ra neters away from the top of a variable-ha s varied from one um value of the file ntenna are set to re emission, the EUT ed to heights from togrees to 360 degrees tem was set to Pe mum Hold Mode.	tating table was adiation. the interfer to foeld strengtl make the range of the meter to foeld strengtl make the range of the total meter to fees to find the tak Detect	e 0.8 meter as rotated 3 ence-recei nna tower. our meters h. Both hor neasurement aged to its we 4 meters a the maxim Function a	rs above the gases to a series above the grorizontal and versions and the rotata and the rotata and specified	whice whice which which will be writed to the white which will be writed to the white whit
	frequency to show con bands. Save the specifor lowest and highest Above 1GHz test procest g. Different between about to fully Anechoic Chan 18GHz the distance in h. Test the EUT in the	ompliance. Also me ctrum analyzer plo of channel dure as below: ove is the test site imber change form s 1 meter and table lowest channel, t	easure any ot. Repeat to e, change for n table 0.8 e is 1.5 me the Highes	rom Semi- meter to 1 ter).	s in the restric ower and mod Anechoic Cha .5 meter(Abo	ulatio ambe ve
imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procest g. Different between about to fully Anechoic Chan 18GHz the distance in the interest of the EUT in the interest of the radiation measur that Transmitting mode, and j. Repeat above procest.	ompliance. Also metrum analyzer plot of channel dure as below: ove is the test site of the change form of the second test of the second test of the second found the X axis of the x axis	easure any ot. Repeat of the table 0.8 e is 1.5 me the Highes rmed in X, tis position uencies me	rom Semi- meter to 1 ter). t channel Y, Z axis ping which it	s in the restrict ower and mode Anechoic Cha .5 meter(Aborositioning for t is worse cas	ulatio ambe
imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procest g. Different between about to fully Anechoic Chandle 18GHz the distance in the interest of the EUT in the interest of the radiation measure. Transmitting mode, a	ompliance. Also metrum analyzer plot of channel dure as below: ove is the test site of the change form of the second test of the second test of the channel of the second found the X axis.	easure any e, change for table 0.8 e is 1.5 me the Highes rmed in X, kis position uencies me	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Cha .5 meter(Abo	ulatio ambe
imit:	frequency to show con bands. Save the spect for lowest and highest above 1GHz test procest g. Different between about to fully Anechoic Chan 18GHz the distance in the interest of the EUT in the interest of the	compliance. Also more ctrum analyzer plots to channel dure as below: ove is the test site amber change forms 1 meter and table lowest channel, the ments are performed found the X axis dures until all frequents (dBµV/	easure any ot. Repeat of the table 0.8 e is 1.5 me the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	Anechoic Cha .5 meter(Abo	ulatio ambe
imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procests. Different between about to fully Anechoic Chan 18GHz the distance in the interest of the interest	empliance. Also metrum analyzer plots thannel dure as below: ove is the test site ember change forms 1 meter and table lowest channel, the tements are perfound found the X axioures until all frequency Limit (dBµV/40.0)	easure any ot. Repeat of the highest med in X, tis position uencies med in X (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe
imit:	frequency to show con bands. Save the spect for lowest and highest and highest and highest and highest and to fully Anechoic Channel 18GHz the distance in the interest of the EUT in t	ompliance. Also metrum analyzer plot of channel dure as below: ove is the test site of the change form of the second table of the second found the X axis of the second for the	easure any ot. Repeat of the table 0.8 e is 1.5 me the Highestrand in X, tis position uencies me the me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which ir easured wa Rer Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo oositioning for t is worse cas as complete. mark eak Value	ulatio ambe
Limit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procest g. Different between about to fully Anechoic Chand 18GHz the distance in h. Test the EUT in the instance in the radiation measur that Transmitting mode, and j. Repeat above procest in the same process. Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	empliance. Also metrum analyzer plot of channel dure as below: ove is the test site ember change forms 1 meter and table lowest channel, the rements are perfound found the X axis dures until all frequency Limit (dBµV/40.043.546.0446.0446.0446.0446.0446.0446.0446.	easure any ot. Repeat of the Albert of the Highest	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Characteristics of the control of the cont	ulatio ambe

Test plot as follows:

Worse case mode:	GFSK(1-DH5)		C.
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Page 25 of 34

Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Page 2	26 of	34
--------	-------	----

Worse case mode:	GFSK	(*)	C°D	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32I00292903 Page 27 of 34

Appendix H): Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab 4011-	Peak	1MHz	3MHz	Peak
Above 1GHZ	Peak	1MHz	10Hz	Average
	0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.009MHz-0.090MHz Peak 0.009MHz-0.090MHz Average 0.090MHz-0.110MHz Quasi-peak 0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz	0.009MHz-0.090MHz Peak 10kHz 0.009MHz-0.090MHz Average 10kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 0.110MHz-0.490MHz Peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz -30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz	0.009MHz-0.090MHz Peak 10kHz 30kHz 0.009MHz-0.090MHz Average 10kHz 30kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 30kHz 0.110MHz-0.490MHz Peak 10kHz 30kHz 0.110MHz-0.490MHz Average 10kHz 30kHz 0.490MHz -30MHz Quasi-peak 10kHz 30kHz 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

	ш	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	<u> </u>	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	/ 5	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	37.285	13.78	0.69	18.33	32.80	40.00	-7.20	Horizontal	
2	81.497	9.01	1.57	19.71	30.29	40.00	-9.71	Horizontal	
3 рр	131.758	10.82	1.58	27.01	39.41	43.50	-4.09	Horizontal	
4	297.224	13.44	2.38	20.83	36.65	46.00	-9.35	Horizontal	
5	517.248	18.47	3.16	17.99	39.62	46.00	-6.38	Horizontal	
6	562.662	18.65	3.29	18.82	40.76	46.00	-5.24	Horizontal	

Page 28 of 34

Report No.: EED32I00292903 Page 29 of 34

Test mode: Transmitting Vertical

		Ant	Cable	Read		Limit	0ver			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	36.001	13.58	0.77	21.19	35.54	40.00	-4.46	Vertical		
2	46.503	14.81	1.12	20.86	36.79	40.00	-3.21	Vertical		
3	67.913	11.07	1.45	20.79	33.31	40.00	-6.69	Vertical		
4	107.888	12.54	1.57	23.86	37.97	43.50	-5.53	Vertical		
5 pp	131.758	10.82	1.58	28.08	40.48	43.50	-3.02	Vertical		
6	352.943	14.89	2.72	18.18	35.79	46.00	-10.21	Vertical		

Report No. : EED32l00292903 Page 30 of 34

Transmitter Emission above 1GHz

Worse case	Worse case mode:			Test chani	nel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final Test Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	34.97	47.37	45.13	74.00	-28.87	Pass	• Н
1495.101	30.86	2.82	34.68	46.58	45.58	74.00	-28.42	Pass	H
1865.735	31.50	3.13	34.39	45.03	45.27	74.00	-28.73	Pass	H
4804.000	34.69	5.11	34.35	43.69	49.14	74.00	-24.86	Pass	Н
7206.000	36.42	6.66	34.90	42.42	50.60	74.00	-23.40	Pass	Н
9608.000	37.88	7.73	35.08	38.80	49.33	74.00	-24.67	Pass	Н
1079.357	29.92	2.37	35.10	48.39	45.58	74.00	-28.42	Pass	V
1360.714	30.59	2.69	34.80	50.08	48.56	74.00	-25.44	Pass	V
1593.340	31.04	2.91	34.60	45.50	44.85	74.00	-29.15	Pass	V
4804.000	34.69	5.11	34.35	44.60	50.05	74.00	-23.95	Pass	V
7206.000	36.42	6.66	34.90	42.22	50.40	74.00	-23.60	Pass	V
9608.000	37.88	7.73	35.08	37.78	48.31	74.00	-25.69	Pass	V

Worse case mode:		GFSK		Test chann	nel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final Test Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1079.357	29.92	2.37	35.10	47.51	44.70	74.00	-29.30	Pass	Н
1498.912	30.87	2.83	34.67	46.94	45.97	74.00	-28.03	Pass	ЭН
1938.352	31.61	3.19	34.34	44.89	45.35	74.00	-28.65	Pass	Н
4880.000	34.85	5.08	34.33	43.04	48.64	74.00	-25.36	Pass	Н
7320.000	36.43	6.77	34.90	42.27	50.57	74.00	-23.43	Pass	Н
9760.000	38.05	7.60	35.05	37.41	48.01	74.00	-25.99	Pass	Н
1079.357	29.92	2.37	35.10	48.47	45.66	74.00	-28.34	Pass	V
1395.796	30.66	2.73	34.77	46.94	45.56	74.00	-28.44	Pass	V
1832.785	31.45	3.11	34.41	45.34	45.49	74.00	-28.51	Pass	V
4880.000	34.85	5.08	34.33	45.13	50.73	74.00	-23.27	Pass	V
7320.000	36.43	6.77	34.90	37.20	45.50	74.00	-28.50	Pass	V
9760.000	38.05	7.60	35.05	37.57	48.17	74.00	-25.83	Pass	V

Page 31 of 34

Worse case mode:		GFSK		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final Test Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1060.295	29.87	2.34	35.12	47.31	44.40	74.00	-29.60	Pass	Н
1257.465	30.36	2.58	34.90	45.99	44.03	74.00	-29.97	Pass	Н
1593.340	31.04	2.91	34.60	46.86	46.21	74.00	-27.79	Pass	ŴН/
4960.000	35.02	5.05	34.31	43.69	49.45	74.00	-24.55	Pass	Н
7440.000	36.45	6.88	34.90	39.39	47.82	74.00	-26.18	Pass	Н
9920.000	38.22	7.47	35.02	37.77	48.44	74.00	-25.56	Pass	Н
1222.743	30.28	2.54	34.94	48.33	46.21	74.00	-27.79	Pass	V
1495.101	30.86	2.82	34.68	49.42	48.42	74.00	-25.58	Pass	V
1993.395	31.69	3.23	34.30	47.45	48.07	74.00	-25.93	Pass	V
4960.000	35.02	5.05	34.31	43.50	49.26	74.00	-24.74	Pass	V
7440.000	36.45	6.88	34.90	39.67	48.10	74.00	-25.90	Pass	V
9920.000	38.22	7.47	35.02	37.25	47.92	74.00	-26.08	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

Report No.: EED32I00292903 Page 32 of 34

PHOTOGRAPHS OF TEST SETUP

Test Model No.: NX807

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Report No.: EED32I00292903 Page 34 of 34

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32I00292902 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced

