Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering

Chenchen Qiu

College of Information Science and Engineering Ocean University of China

VISION@OUC

- Introduction to VQA
- 2 Approach
 - Bottom-Up Attention Model
 - Image Caption
 - Top down Attention LSTM
 - Language LSTM
 - VQA Model
- 3 Experiments

Brief Introduction of VQA

Who is wearing glasses? woman

Is the umbrella upside down?

Where is the child sitting? fridge arms

How many children are in the bed?

Visual Question Answering: given an image and a natural language guestion about the image, the task is to provide an accurate natural language answer.

- Introduction to VQA
- 2 Approach
 - Bottom-Up Attention Model
 - Image Caption
 - Top down Attention LSTM
 - Language LSTM
 - VQA Model
- 3 Experiments

Faster R-CNN

Example output from our Faster R-CNN bottom-up attention model. Each bounding box is labeled with an attribute class followed by an object class. Note however, that in captioning and VQA we utilize only the feature vectors—not the predicted labels.

Structure of Faster R-CNN

In this work we define spatial regions in terms of bounding boxes and implement bottom-up attention using Faster R-CNN Faster R-CNN is an object detection model designed to identify instances of objects belonging to certain classes and localize them with bounding boxes.

- Introduction to VQA
- 2 Approach
 - Bottom-Up Attention Model
 - Image Caption
 - Top down Attention LSTM
 - Language LSTM
 - VQA Model
- 3 Experiments

Overview of the proposed captioning model

Overview of the proposed captioning model. Two LSTM layers are used to selectively attend to spatial image features $v_1, ..., v_k$. These features can be defined as the spatial output of a CNN, or following our approach, generated using bottom-up attention.

Input and Output of Attention LSTM

Input of Attention LSTM

$$x_t^1 = [h_{t-1}^2, \overline{v}, W_e \prod_t]$$

- ullet is the mean-pooled image feature.
- \prod_t is one-hot encoding of the input word at timestep t.
- W_e is a word embedding matrix for a vocabulary.

Attention Weight

$$a_{i,t} = w_a^T tanh(W_{va}v_i + W_{ha}h_t^1)$$

 $\alpha_t = softmax(a_t)$
 $\hat{v_t} = \sum_{i=1}^K \alpha_{i,t}v_i$

Language LSTM

Input of Language LSTM

$$x_t^2 = [\hat{v}_t, h_t^1]$$

• h_t^1 is the current hidden state of attention LSTM.

Conditonal distribution over possible ouput words

$$p(y_t|y_{1:t-1}) = softmax(W_p h_t^2 + b_p)$$

• W_p and b_p are learned weights and bias.

$$p(y_{1:T}) =$$

- Introduction to VQA
- Approach
 - Bottom-Up Attention Model
 - Image Caption
 - Top down Attention LSTM
 - Language LSTM
 - VQA Model
- 3 Experiments

VQA Model

These features can be defined as the spatial output of a CNN, or following our approach, generated using bottom-up attention. Output is generated by a multi-label classifier operating over a fixed set of candidate answers.

Result on VQA v2.0

	Yes/No	Number	Other	Overall
Prior [12]	61.20	0.36	1.17	25.98
Language-only [12]	67.01	31.55	27.37	44.26
d-LSTM+n-I [26, 12]	73.46	35.18	41.83	54.22
MCB [11, 12]	78.82	38.28	53.36	62.27
UPMC-LIP6	82.07	41.06	57.12	65.71
Athena	82.50	44.19	59.97	67.59
HDU-USYD-UNCC	84.50	45.39	59.01	68.09
Ours: Up-Down	86.60	48.64	61.15	70.34

VQA v2.0 test-standard server accuracy as at 8 August 2017, ranking our submission against published and unpublished work for each question type.

Result on Attention

Two hot dogs on a tray with a drink.

Result on Attention

A brown sheep standing in a field of grass.

Q & A

