SAYISAL ANALIZ

Yrd. Doç.Dr. Abdullah SEVİN

SAYISAL ANALİZ

EĞRİ UYDURMA

(Curve Fitting)

İÇİNDEKİLER

- **■** Eğri Uydurma (Curve Fitting)
 - ☐ En Küçük Kareler Yöntemi

- ☐ Çoğu mühendislik probleminin çözümünde
 - ☐ Bağımsız değişkenlerden oluşan fonksiyonlara ya da
 - □ x_i, y_i noktalarına verilmiş veri (değer) gruplarına ihtiyaç duyulur.

- Sayısal değerler ile ortaya konan bir fonksiyona ait en doğru eğrinin elde edilebilmesi o fonksiyona ait en uygun fonksiyon ifadesinin tanımlanmasına bağlıdır.
- İhtiyaç duyulan bu verileri sağlayacak polinomların katsayılarını bulmak için çeşitli yöntemler geliştirilmiştir.
 - ☐ En sık kullanılan yöntem eğri uydurmadır.
 - ☐ Fonksiyonlar polinomlara eğri uydurma için kullanılır.

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

Veri aralığı dışında salınan polinom

Eğri Uydurma ile Ara Değer Bulma Arasındaki İlişki

En Küçük Kareler Yöntemi

- ☐ Yaklaşık olarak elde edilen (uydurulan) fonksiyon değerleri ile ölçülerek elde edilen gerçek fonksiyon değerleri arasındaki farkların kareleri toplamı minimum yapılmaya çalışılır.
- ☐ Hedef, bilinen ölçüm sonuçlarına ait değerlere mesafe olarak en az hatalı eğriyi veren fonksiyon ifadesini elde etmektir.

□ Örnek:

- \Box y_i \Rightarrow bilinen sonuçlar
- \Box f(x_i) \Rightarrow işlem sonucunda elde edilecek fonksiyon
- ☐ Bilinen n nokta için;

 $\sum_{i=1}^{n} [f(x_i) - y_i]^2$ formülünün minimum yapılmasını sağlayan $f(x_i)$ fonksiyon katsayılarını elde etme işlemidir.

☐ İşlem sonucunda elde edilecek olan katsayıların dizilişi fonksiyona ait polinom formun derecesini belirler.

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

- En Küçük Kareler Yöntemi
- Örnek: Bir doğru denklemi (birinci dereceden polinom form)

$$f(x) = a_0 + a_1 x$$

- □ Burada amaç, en küçük kareler yöntemi ile a₀ ve a₁ katsayılarını bulmaktır.
- □ Katsayıların adedi (örnekte 2) en küçük kareler yönteminde kullanılacak matrislerin satır sayısını belirler.

$$\sum_{i=1}^{n} [f(x_i) - y_i]^2 = \sum_{i=1}^{n} [a_0 + a_1 x_i - y_i]^2$$

- □ Burada elde edilecek olan farkların karelerinin toplamının a₀ ve a₁ katsayılarına göre minimum olmalıdır.
- \Box Bunun için yukarıda eşitliğin a_0 ve a_1 katsayılarına göre türevleri alınarak sıfıra eşitlenir.

☐ Eşitliğin a₀ ve a₁ katsayılarına göre türevleri alınarak sıfıra eşitlenir.

$$\frac{d\sum_{i=1}^{n} [a_0 + a_1 x_i - y_i]^2}{a_0} = 2\sum_{i=1}^{n} [a_0 + a_1 x_i - y_i] = 0$$

$$\frac{d\sum_{i=1}^{n} [a_0 + a_1 x_i - y_i]^2}{a_1} = 2\sum_{i=1}^{n} [a_0 + a_1 x_i - y_i] x_i = 0$$

□ İşlemler düzenlenirse,

$$a_{0}n + a_{1}\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$$

$$a_{0}\sum_{i=1}^{n} x_{i} + a_{1}\sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i}y_{i}$$

$$\begin{bmatrix}
n & \sum_{i=1}^{n} x_{i} \\
\sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2}
\end{bmatrix} x \begin{bmatrix} a_{0} \\ a_{1} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i}y_{i} \end{bmatrix}$$

Örnek: Aşağıdaki tablo da verilen sayısal değerleri kullanarak en küçük kareler metodu ile $f(x) = a_0 + a_1 x$ fonksiyonunu elde ediniz?

Tablo: x ve y'ye ait sayısal değerler

x	-2	0	1	2	4
У	-3	1	3	5	9

- □ Çözüm:
 - Üretilmesi istenen polinomun derecesi 1
 - $oldsymbol{0}$ Bulunacak katsayılar \mathbf{a}_0 ve \mathbf{a}_1 olduğundan en küçük kareler yöntemindeki eşitliklerde kullanılacak matrislerin satır sayısı 2 olacak.

Tablo: x ve y değerlerine göre gerekli hesaplama sonuçları

х	у	x _i ²	x _i y _i
-2	-3	4	6
0	1	0	0
1	3	1	3
2	5	4	10
4	9	16	36
5	15	25	55

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{bmatrix}^{-1} x \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{bmatrix}$$

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 5 & 25 \end{bmatrix}^{-1} x \begin{bmatrix} 15 \\ 55 \end{bmatrix}$$

□ Örnek (Devam):

$$A = \begin{bmatrix} 5 & 5 \\ 5 & 25 \end{bmatrix} \implies ek(A) = \begin{bmatrix} 25 & -5 \\ -5 & 5 \end{bmatrix}$$
$$|A| = \begin{bmatrix} 5 & 5 \\ 5 & 25 \end{bmatrix} = 100$$

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \frac{1}{100} \begin{bmatrix} 25 & -5 \\ -5 & 5 \end{bmatrix} x \begin{bmatrix} 15 \\ 55 \end{bmatrix} = \frac{1}{100} \begin{bmatrix} 100 \\ 200 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$f(x) = a_0 + a_1 x = 1 + 2x$$

□ Örnek: Aşağıda verilen tablodaki sayısal değerleri kullanarak en küçük kareler metodu ile $f(x) = a_0 + a_1x$ fonksiyonunu elde ediniz.

x	-1	1	2	3
У	-2	0	2	5

- En Küçük Kareler Yöntemi
- □ Eğer elde edilmesi gereken fonksiyonun karşılığı birinci dereceden değil de ikinci dereceden olsaydı bu durumda fonksiyon;

$$f(x) = a_0 + a_1 x + a_2 x^2$$

- □ Burada amaç, en küçük kareler yöntemi ile a₀ , a₁ ve a₂ katsayılarını bulmaktır.
- □ Katsayıların adedi (örnekte 3) en küçük kareler yönteminde kullanılacak matrislerin satır sayısını belirler.

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} \\ \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} & \sum_{i=1}^{n} x_{i}^{4} \end{bmatrix} x \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \\ \sum_{i=1}^{n} x_{i}^{2} y_{i} \end{bmatrix}$$

MATLAB İle Eğri Uydurma

polyfit (x, y, n)

üretilecek olan polinom formun derecesini tanımlar
bilinen Y değerlerinden oluşan <u>sütun vektörü</u>
bilinen X değerlerinden oluşan <u>sütun vektörü</u>

Örnek: Önceki sorudaki işlemi MATLAB'ta polyfit komutu ile çözünüz?

```
>> X = [-2 0 1 2 4];

>> Y = [-3 1 3 5 9];

>> p=polyfit(X,Y,1)

p =

2.0000 1.0000
```


- En Küçük Kareler Yöntemi
 - □ Regresyon Katsayısı
 - □ Eğri uydurma da kullanılacak olan polinom forma sahip fonksiyonun doğruluğu r ile tanımlanan regresyon katsayısı ile belirlenir.
 - □ Regresyon katsayısının 0< r ≤ 1 aralığında değer alması istenir.
 - > r ≈ 0 ⇒ uydurulan fonksiyon iyi değildir.
 - $ightharpoonup r \approx 1 \Rightarrow$ uydurulan fonksiyon iyidir.
 - □ Regresyon katsayısının hesabı için ilk olarak ölçüm sonucu elde edilen sayısal değerlerin aritmetik ortalaması bulunur.

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

□ Sonra ölçüm değerleri ve uydurulan fonksiyona ait hata hesabı için şu işlemler yapılır.

$$\delta_{y} = \sum_{i=1}^{n} [y_{i} - y^{-1}]^{2}$$
 ve $\delta_{f} = \sum_{i=1}^{n} [f(x_{i}) - y^{-1}]^{2}$

ÖDEV

☐ Tablo da verilen sayısal değerleri kullanarak en küçük kareler metodu aşağıda istenenleri bulunuz.

Tablo: x ve y'ye ait sayısal değerler

х	0	2	5	7	9
У	2	6	8	11	15

- $f(x) = a_0 + a_1 x$ fonksiyonunu elde ediniz. Regresyon katsayısını hesaplayınız.
- $f(x) = a_0 + a_1 x + a_2 x^2$ fonksiyonunu elde ediniz. Regresyon katsayısını hesaplayınız.

Not: Ödevi hem el ile hem de matlab ile çözünüz. Matlab çözümünde polyfit komutunun kullanımının yanısıra grafik çizimi de gerçekleştiriniz. (Kaynakçadaki İlyas Beyin kitabından yararlanabilirsiniz)

KAYNAKLAR

- İlyas ÇANKAYA, Devrim AKGÜN, Sezgin KAÇAR "Mühendislik Uygulamaları İçin MATLAB", Seçkin Yayıncılık
- Steven C. Chapra, Raymond P. Canale (Çev. H. Heperkan ve U. Kesgin), "Yazılım ve Programlama Uygulamalarıyla Mühendisler İçin Sayısal Yöntemler", Literatür Yayıncılık.
- Serhat YILMAZ, "Bilgisayar İle Sayısal Çözümleme", Kocaeli Üniv. Yayınları, No:168, Kocaeli, 2005.
- Yüksel YURTAY, Sayısal Analiz Ders Notları, Sakarya Üniversitesi

