

You can download full ML slide in Notion

Slide and data in our school Google Drive

Simple pipeline to build ML models

Build your first model with Azure ML Studio

Machine Learning

When a computer can learn to recognize pattern

R Essential ML

- what exactly is machine learning
- supervised vs. unsupervised
- regression vs. classification
- train test split vs. cross validation
- model selection + hyperparameter
- model evaluation

What is Machine Learning

Field of study that gives computers the ability to learn without being explicitly programmed.

Arthur Samuel (1959)

- dataset
- data points
- features
- label or target

_	crim ‡	zn ‡	indus ‡	chas [‡]	nox ‡	rm ÷	age ‡	dis ‡	rad ÷	tax ‡	ptratio *	b ÷	Istat ‡	medv
1	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
2	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
3	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
4	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
5	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
6	0.02985	0.0	2.18	0	0.4580	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
7	0.08829	12.5	7.87	0	0.5240	6.012	66.6	5.5605	5	311	15.2	395.60	12.43	22.9
8	0.14455	12.5	7.87	0	0.5240	6.172	96.1	5.9505	5	311	15.2	396.90	19.15	27.1
9	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2	386.63	29.93	16.5
10	0.17004	12.5	7.87	0	0.5240	6.004	85.9	6.5921	5	311	15.2	386.71	17.10	18.9
11	0.22489	12.5	7.87	0	0.5240	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15.0
12	0.11747	12.5	7.87	0	0.5240	6.009	82.9	6.2267	5	311	15.2	396.90	13.27	18.9
13	0.09378	12.5	7.87	0	0.5240	5.889	39.0	5.4509	5	311	15.2	390.50	15.71	21.7
14	0.62976	0.0	8.14	0	0.5380	5.949	61.8	4.7075	4	307	21.0	396.90	8.26	20.4
15	0.63796	0.0	8.14	0	0.5380	6.096	84.5	4.4619	4	307	21.0	380.02	10.26	18.2

Dataset: BostonHousing

Data Point

Features (X)

_	crim ÷	zn 🗘	indus ‡	chas	nox	rm ÷	age *	dis	rad =	tax	ptratio [©]	b ÷	Istat =	medv
1	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
2	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
3	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
4	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
5	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
6	0.02985	0.0	2.18	0	0.4580	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
7	0.08829	12.5	7.87	0	0.5240	6.012	66.6	5.5605	5	311	15.2	395.60	12.43	22.9
8	0.14455	12.5	7.87	0	0.5240	6.172	96.1	5.9505	5	311	15.2	396.90	19.15	27.1
9	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2	386.63	29.93	16.5
10	0.17004	12.5	7.87	0	0.5240	6.004	85.9	6.5921	5	311	15.2	386.71	17.10	18.9
11	0.22489	12.5	7.87	0	0.5240	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15.0
12	0.11747	12.5	7.87	0	0.5240	6.009	82.9	6.2267	5	311	15.2	396.90	13.27	18.9
13	0.09378	12.5	7.87	0	0.5240	5.889	39.0	5,4509	5	311	15.2	390.50	15.71	21.7
14	0.62976	0.0	8.14	0	0.5380	5.949	61.8	4.7075	4	307	21.0	396.90	8.26	20.4
15	0.63796	0.0	8.14	0	0.5380	6.096	84.5	4.4619	4	307	21.0	380.02	10.26	18.2

Dataset: BostonHousing

Label / Target (Y)

•	crim ‡	zn ÷	indus ‡	chas [‡]	nox ‡	rm ÷	age *	dis ‡	rad [‡]	tax ‡	ptratio [‡]	b ÷	Istat ‡	medv [‡]
1	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
2	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
3	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
4	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
5	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
6	0.02985	0.0	2.18	0	0.4580	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
7	0.08829	12.5	7.87	0	0.5240	6.012	66.6	5.5605	5	311	15.2	395.60	12.43	22.9
8	0.14455	12.5	7.87	0	0.5240	6.172	96.1	5.9505	5	311	15.2	396.90	19.15	27.1
9	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2	386.63	29.93	16.5
10	0.17004	12.5	7.87	0	0.5240	6.004	85.9	6.5921	5	311	15.2	386.71	17.10	18.9
11	0.22489	12.5	7.87	0	0.5240	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15.0
12	0.11747	12.5	7.87	0	0.5240	6.009	82.9	6.2267	5	311	15.2	396.90	13.27	18.9
13	0.09378	12.5	7.87	0	0.5240	5.889	39.0	5.4509	5	311	15.2	390.50	15.71	21.7
14	0.62976	0.0	8.14	0	0.5380	5.949	61.8	4.7075	4	307	21.0	396.90	8.26	20.4
15	0.63796	0.0	8.14	0	0.5380	6.096	84.5	4.4619	4	307	21.0	380.02	10.26	18.2

Dataset: BostonHousing

Features (X)

	crim ‡	zn 🖑	indus ‡	chas [‡]	nox [©]	rm ÷	age ‡	dis [‡]	rad [‡]	tax 0	ptratio [‡]	p ÷	Istat	medv
1	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
2	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
3	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
4	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
5	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
6	0.02985	$\boldsymbol{\alpha}$			•		7	T			•		5.21	28.7
7	0.08829	51	1n	PT		SF	7		P 2	rı	nir	Jσ	12.43	22.9
8	0.14455		ユレ								, , , , ,			
												70	19.15	27.1
9	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2	386.63	19.15	27.1 16.5
	0.21124													
	0.17004	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2	386.63	29.93	16.5
10	0.17004 0.22489	12.5	7.87 7.87	0	0.5240	5.631 6.004	100.0 85.9	6.0821 6.5921	5	311 311	15.2 15.2	386.63 386.71	29.93 17.10	16.5 18.9
10 11	0.17004 0.22489 0.11747	12.5 12.5 12.5	7.87 7.87 7.87	0 0	0.5240 0.5240 0.5240	5.631 6.004 6.377	100.0 85.9 94.3	6.0821 6.5921 6.3467	5 5 5	311 311 311	15.2 15.2 15.2	386.63 386.71 392.52	29.93 17.10 20.45	16.5 18.9 15.0
10 11 12 13	0.17004 0.22489 0.11747	12.5 12.5 12.5 12.5	7.87 7.87 7.87 7.87	0 0 0	0.5240 0.5240 0.5240 0.5240	5.631 6.004 6.377 6.009	100.0 85.9 94.3 82.9	6.0821 6.5921 6.3467 6.2267	5 5 5	311 311 311 311	15.2 15.2 15.2 15.2	386.63 386.71 392.52 396.90	29.93 17.10 20.45 13.27	16.5 18.9 15.0 18.9

Dataset: BostonHousing

Mapping

Features (X)

^	crim =	zn 🖺	indus	chas ‡	nox	rm ÷	age *	dis [‡]	rad [‡]	tax	ptratio *	b	Istat
1	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
2	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
3	0.02729	0.0	7.07	0	0,4690	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
4	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
5	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	3	222	18.7	396.90	5.33
6						•		٦.	T				
7	U	ns	su	pe	rr	VIS	se	\mathfrak{a} .	Le	a	rn	ın	g
	0.21124	12.5	SU	pe	0.5240	V1 S	5e	6.0821	LE	2a]	rn]	ln 386.63	
7 8 9				_									29.9
7 8 9 10	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2	386.63	29.9
7 8 9 10	0.21124	12.5	7.87 7.87	0	0.5240	5.631 6.004	100.0 85.9	6.0821 6.5921	5	311	15.2 15.2	386.63 386.71	29.9 17.1 20.4
7 8 9 10	0.21124 0.17004 0.22489	12.5 12.5 12.5	7.87 7.87 7.87	0 0	0.5240 0.5240 0.5240	5.631 6.004 6.377	100.0 85.9 94.3	6.0821 6.5921 6.3467	5 5 5	311 311 311	15.2 15.2 15.2	386.63 386.71 392.52	29.9 17.1 20.4 13.2
7 8 9 10 11	0.21124 0.17004 0.22489 0.11747	12.5 12.5 12.5 12.5	7.87 7.87 7.87 7.87	0 0 0	0.5240 0.5240 0.5240 0.5240	5.631 6.004 6.377 6.009	100.0 85.9 94.3 82.9	6.0821 6.5921 6.3467 6.2267	5 5 5	311 311 311 311	15.2 15.2 15.2 15.2	386.63 386.71 392.52 396.90	29.9 17.1 20.4 13.2 15.7 8.26

Dataset: BostonHousing

Supervised Learning	Unsupervised Learning				
Has features (x) and labels (y)	Has features (x) without labels (y)				
The goal is PREDICT	The goal is to SUMMARISE				
Example algorithms - Regression - Classification	Example algorithms - Clustering - Association Rules - Principal Component Analysis				

คอร์สเราโฟกัสที่ supervised learning

AIS อยากจะทำ market survey กับ ลูกค้า (ทุกค่าย) ทั้งหมด 3000 คน เพื่อ จะดูว่าตลาดคนไทยมีลูกค้าอยู่กี่ประเภท? i.e. customer segmentation

Gmail มีตัวกรอง email ว่าอันไหนคือ spam อันไหนคือ ham (อีเมล์ดี)

R Problem 03

อั้งเขียนโค้ดทำ web scraping จากเว็บไซต์ขายรถยนต์มือสอง เพื่อจะดูว่ารถยนต์ Toyota รุ่น 2015 เครื่อง 1.5 ลิตร ขับมาแล้ว 20000 โล ควรจะซื้อราคาเท่าไรดี?

น้องอิ้ง!

R Types of Supervised Learning

1. Regression	2. Classification
Predict numeric labels	Predict categorical labels
Exampleshouse pricecustomer satisfactionpersonal incomehow much a customer will spend	Examples - yes/ no question - churn prediction - conversion - weather forecast - default prediction
100, 200, 250, 190, 300, 500, etc.	0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, etc.

Now let's get into the details:)

- prepare data
- train algorithm
- test/ evaluate algorithm

- train test split
- training set
- testing/ validation set
- overfitting

Full data

Testing data

80%

200

Training / Fitting Model

Generalization

Testing data

เราต้องถามคำถามนี้เสมอ โมเดลที่เราสร้างขึ้นมาเอาไปใช้จริงได้หรือเปล่า? i.e. ความถูกต้องของโมเดลกับ test data เป็นเท่าไร

Accuracy = 98%

กรณีนี้เรียกว่า <mark>Overfitting</mark> โมเดลที่เราสร้างขึ้นมาฟิตกับข้อมูล Training มากเกินไปจนไม่สามารถนำไป ใช้กับ Testing/ Unseen data ได้ Testing data

Training / Fitting Model

Accuracy = 23%

Training / Fitting Model

Accuracy = 98%

This looks OK!

Testing data

Accuracy = 97%

เราจะไม่ทดสอบโมเดลด้วยข้อมูลชุดเดิมที่ใช้เท รนโมเดล

i.e. เราจะไม่ใช้ training data วัดผลว่าโมเดลข องเราทำงานดีไหม? แต่ต้องเป็น unseen data ที่<mark>โมเดลไม่เคยเห็นมาก่อน</mark>

R

Our goal is in the middle -> Just Right

https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76

Discuss: Overfitting คืออะไร?

เขียนคำตอบได้ที่นี่

Discuss: ແລ້ວຄ້າ Underfitting ລ່ະ?

เขียนคำตอบได้ที่นี่

ใช่วิธีที่ดีที่สุดในการสร้างโมเดล ML

ในทางปฏิบัติ Train Test Split (ส่วนมาก) จะไม่

เราใช้เทค_ุนิคที่เรียกว่า **Resampling** สำหรับเทรน

โมเดลเพื่อผลลัพธ์ที่ดีกว่า

- resampling
 - leave one out CV
 - bootstrap
 - k-fold cross validation

Full data

n=1000

Training data

n=999

Testing data

n=1

ทำซ้ำไปเรื่อยๆจนกว่าจะเทรนโมเดลครบ 1000 รอบ (ตามจำนวน n) แล้วหาค่า เฉลี่ย error หรือ accuracy ของโมเด ลทั้งหมด

R

Leave One Out CV

1	2	3	4			997	998	999	1000
1	2	3	4	•••	•••	997	998	999	1000
1	2	3	4			997	998	999	1000
1	2	3	4			997	998	999	1000
1	2	3	4			997	998	999	1000

iteration 1
iteration 2
iteration 3
iteration 4
iteration 5

1	2	3	4	•••	 997	998	999	1000
1	2	3	4		 997	998	999	1000

iteration 999 iteration 1000

Full data

n=1000

Training data

Testing data n=300

Sampling with replacement ใช้การสุ่มซ้ำ n=1000 เหมือน full dataset

R Bootstrap

The error will be averaged over 500 training iterations

K-Fold Cross Validation

1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5

iteration 1: train {2,3,4,5} test {1} -> error 18% iteration 2: train {1,3,4,5} test {2} -> error 20% iteration 3: train {1,2,4,5} test {3} -> error 30% iteration 4: train {1,2,3,5} test {4} -> error 15% iteration 5: train {1,2,3,4} test {5} -> error 19%

Average error = (18+20+30+15+19) / 5 = 20.4%

ปกติเรานิยมใช้ค่า **K=5** หรือ **K=10**

Discuss: LOOCV, Bootstrap, K-Fold ทั้งสามวิธีแตกต่างกันอย่างไร?

```
## เขียนคำตอบได้ที่นี่
```


Essential ML

OK what exactly is machine learning

OK supervised vs. unsupervised

OK regression vs. classification

OK train test split vs. cross validation

- model selection + hyperparameter
- model evaluation