CS 225 Spring 2019 :: TA Lecture Notes 4/10 Graphs II

By Wenjie

Graph ADT

- **Data**: all vertices, all edges, and the structure to maintain relations between vertices and edges.
- Functions:
 - o insert vertex/edge,
 - o remove vertex/edge,
 - o find incident edges,
 - o check if two vertices are adjacent, and
 - In case of directed graph find origin/destination.

Graph implementation 1: Edge List

- **Vertex collection**: Use a hash table (find/remove/insert will be O(1)).
- **Edge collections**: Use a linked list (hash table is not good because we have many collisions (no random distribution, violates SUHA))
- Running time:
 - \circ Insert vertex \rightarrow we are using hash table where insert takes O(1) time.
 - Remove vertex → removing from hash table takes O(1), but we need to remove incident edges which means we need to loop over edges list. We have m edges so it will take O(m)
 - \circ areAdjacent \rightarrow again, we need to loop over the edge list which takes O(m) time.
 - o InsertEdge → add edge to edge list by adding to the front so it takes O(1)
 - o incidentEdges \rightarrow O(m).
 - The running times seem linear however, we know that the relationship between number of nodes and the number of edges could be n^2 ; which means O(m) could in fact be $O(n^2)$

Graph implementation 2: Adjacency Matrix

- Maintain a hash table of vertices and a list of edges.
- Add an $n \times n$ matrix \rightarrow store a pointer to the edge in edge list for every index in the matrix where the two vertices are adjacent.

CS 225 Spring 2019 :: TA Lecture Notes 4/10 Graphs II

By Wenjie

	u	v	w	z
u		1	1	0
v			1	0
w				1
z				

- Number one denotes a pointer to the edge in the edge list when two nodes are adjacent.
- We do not care about the bottom triangle (in red) if the graph is not directed

Insert data into the matrix

- If the table is full, we need to double the size in both dimensions which takes $O(n^2)$ time.
- We have to expand every n inserts, thereby on average resizing is O(n) amortized \rightarrow O*(n). Overall, insertion takes O*(n).

Remove a vertex

- Remove from hash table \rightarrow O(1).
- Remove instance edges: Loop over all rows and columns of that vertex which takes O(n)
 - We will also have an awkward gap in the middle of the matrix after removing a row and a column. So we swap with the empty row/column with the last row/column.
- Total running time is O(n) + O(1) = O(n).
- o incidentEdges \rightarrow we need to loop over row/column which takes O(n).
- \circ InsertEdge \rightarrow O(1)
- Find/check adjacent vertices takes $O(1) \rightarrow just a table lookup$.
- **Space** complexity is $O(n^2)$.