Formulário - Intervalos de confiança

Parâmetro	Distribuição	Dimensão da		Variável fulcral
a estimar	da população	amostra (n)		e sua distribuição
m	normal	qualquer	σ conhecido	$\frac{\overline{X} - m}{\sigma / \sqrt{n}} \sim N(0, 1)$
m	normal	qualquer	σ desconhecido	$\frac{\overline{X} - m}{\widehat{S}/\sqrt{n}} \sim T(n-1)$
σ ou σ^2	normal	qualquer	m conhecido	$\frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - m)^2 \sim \chi^2(n)$
σ ou σ^2	normal	qualquer	m desconhecido	$\frac{(n-1)\widehat{S}^2}{\sigma^2} \sim \chi^2(n-1)$
m	não normal	n > 30	σ conhecido	$\frac{\overline{X} - m}{\sigma / \sqrt{n}} \stackrel{\bullet}{\sim} N(0, 1)$
m	não normal	n > 30	σ desconhecido	$\frac{\overline{X} - m}{\widehat{S}/\sqrt{n}} \stackrel{\bullet}{\sim} N(0, 1)$
p	Bernoulli	n > 30	_	$\frac{\overline{Y} - p}{\sqrt{\overline{Y}(1 - \overline{Y})/n}} \stackrel{\bullet}{\sim} N(0, 1)$

Formulário - Testes paramétricos

Parâmetro	Distribuição	Dimensão da		Estatística de teste e
a testar	da população	amostra (n)		sua distribuição, sob H_0
m	normal	qualquer	σ conhecido	$\frac{\overline{X} - m_0}{\sigma / \sqrt{n}} \sim N(0, 1)$
m	normal	qualquer	σ desconhecido	$\frac{\overline{X} - m_0}{\widehat{S}/\sqrt{n}} \sim T(n-1)$
σ ou σ^2	normal	qualquer	m conhecido	$\frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - m)^2 \sim \chi^2(n)$
σ ou σ^2	normal	qualquer	m desconhecido	$\frac{(n-1)\widehat{S}^2}{\sigma_0^2} \sim \chi^2(n-1)$
m	não normal	n > 30	σ conhecido	$\frac{\overline{X} - m_0}{\sigma / \sqrt{n}} \stackrel{\bullet}{\sim} N(0, 1)$
m	não normal	n > 30	σ desconhecido	$\frac{\overline{X} - m_0}{\widehat{S}/\sqrt{n}} \stackrel{\bullet}{\sim} N(0, 1)$
p	Bernoulli	n > 30	_	$\frac{\overline{Y} - p_0}{\sqrt{p_0(1 - p_0)/n}} \stackrel{\bullet}{\sim} N(0, 1)$

Teste de ajustamento do quiquadrado

Estatística de teste: $\sum_{i=1}^{k} \frac{(N_i - e_i)^2}{e_i} \stackrel{\bullet}{\sim} \chi^2(k-1)$, sob H_0 .