Теория фигур планет и гравиметрия 2018

Домашнее задание № 3

Крайний срок сдачи: 26 марта 2018 г.

- 1. Пусть Земля однородный шар радиусом $R=6371\,\mathrm{km}$. Геоцентрическая гравитационная (1 б.) постоянная $GM=3{,}986\times10^{14}\,\mathrm{m}^3\mathrm{c}^{-2}$.
 - (а) Найти значение средней плотности Земли.
 - (b) Вычислить потенциал и силу притяжения на заданных расстояниях от центра планеты:
 - 1. $r_1 = 3.00 \times 10^6$ м (внутренняя точка),
 - 2. $r_2 = 6.371 \times 10^6 \,\mathrm{M}$ (точка на поверхности),
 - 3. $r_3 = 6{,}384 \times 10^6 \,\mathrm{M}$ (вершина вулкана Чимборасо),
 - 4. $r_4 = 6.42 \times 10^6$ м (50 км над поверхностью верхняя граница стратосферы),
 - 5. $r_5 = 26.4 \times 10^6$ м (20000 км над поверхностью высота полета спунтиков GPS).

(1 6.)

 $(1 \, 6.)$

- 2. Построить графики зависимости силы и потенциала притяжения от расстояния до притягиваемой точки для притягивающих однородных сферы, шара и шарового слоя. Рассматривать случай, когда расстояние меняется от -4R до 4R, где R внешний радиус притягивающего тела.
- 3. По сейсмическим данным известно, что Землю приближённо можно представить состоящей из четырёх однородных шаровых слоёв: внутреннее ядро, внешнее ядро, мантия и кора. Написать выражения, необходимые для вычисления потенциала и силы притяжения каждого слоя на единичную массу, находящуюся на поверхности планеты (шара). Вычислить эти величины. Найти полный потенциал и результирующую силу. Данные взять из таблицы:

	Слой	R_1	R_2	Средняя плотность
		KM	KM	Γ/cm^3
1	Внутреннее ядро	0	1300	13
2	Внешнее ядро	1200	3500	11
3	Мантия	3500	6350	4,5
4	Kopa	6350	6400	2,7

- 4. Определить притяжение атмоферы на высоте H над Землёй. Считать, что атмосфера состоит из сферических слоёв, плотность меняется по закону $\delta=1{,}3333e^{-0{,}13H}\,{\rm kr/m}^3$.
- 5. Вычислить притяжение колец Сатурна на оси вращения планеты. Найти значение притяжения на высоте $z=100\times i$ км (i- вариант). Масса колец Сатурна 9.6×10^{20} кг, внутренний радиус $\rho_1=72\,\,000$ км, внешний $\rho_2=139\,\,000$ км, толщиной колец пренебречь. Полярный радиус Сатурна $54\,\,400$ км.
- 6. Центр однородного шара радиуса R находится под землёй на глубине a~(R < a). Плотность шара δ больше, чем плотность поверхностных слоёв Земли Δ . Землю считать плоской.
 - (a) Определить потенциал T на земной поверхности, вызванный аномальной массой шара.
 - (b) Определить производные потенциала $\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}$ и $\frac{\partial T}{\partial z}$.
 - (c) Построить графики $T, \, \frac{\partial T}{\partial x}$ и $\frac{\partial T}{\partial z}$ в плоскости (xz).