

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No: 38002-0023

O/P
1 APP 24 2002
U.S. PATENT & TRADEMARK OFFICE
In re patent application of
LI, Jing et al.

Confirmation No.: 2334

Application No.: 10/073,123

Group Art Unit: 3736

Filed: February 12, 2002

Examiner: Unassigned

For: AMPLIFIED CANCER GENE WIP1

**STATEMENT TO SUPPORT FILING AND SUBMISSION IN
ACCORDANCE WITH 37 C.F.R. §§ 1.821-1.825**

Commissioner for Patents
Washington, D.C. 20231
Box SEQUENCE

Sir:

In connection with a Sequence Listing submitted concurrently herewith, the undersigned hereby states that:

1. the submission, filed herewith in accordance with 37 C.F.R. § 1.821(g), does not include new matter; and

2. the content of the attached paper copy and the attached computer readable copy of the Sequence Listing, submitted in accordance with 37 C.F.R. § 1.821(c) and (e), respectively, are the same.

Respectfully submitted,

John P. Isacson
Reg. No. 33,715

April 24, 2002
Date

Heller Ehrman White & McAuliffe LLP
1666 K Street, N.W.
Suite 300
Washington, D.C. 20006
Telephone: (202) 912-2000
Facsimile: (202) 912-2020

26633

SEQUENCE LISTING

<110> LI, Jing
POWERS, Scott

<120> AMPLIFIED CANCER GENE WIP1

<130> 38002-0023

<140> US 10/073,123
<141> 2002-02-12

<150> US 60/268,362
<151> 2001-02-14

<160> 3

<170> PatentIn version 3.1

<210> 1
<211> 1818
<212> DNA
<213> Homo sapiens

<400> 1
atggcggggc tgtactcgct gggagtgagc gtcttctccg accagggcgg gaggaagtac 60
atggaggacg ttactcaa at cgttgtggag cccgaaccga cggctgaaga aaagccctcg 120
ccgcggcggt cgctgtctca gccgttgctt ccgcggccgt cgccggccgc cttccccgc 180
ggcgaagtct cggggaaagg cccagcggtg gcagcccgg aggttcgcga ccctctcccg 240
gacgcccggg cctccggc acctagccgc tgctgccgcc gccgttcctc cgtggccttt 300
ttcgccgtgt ggcacgggca cggcggcgg gaggcggcac agttgcccgg ggagcacttg 360
tgggtttca tcaagaagca gaagggttcc acctcgatcg agccggctaa gtttgcgt 420
gccatccgca aaggctttct cgcttgcac cttgccatgt ggaagaaact ggcggaatgg 480
ccaaagacta tgacgggtct tcctagcaca tcagggacaa ctgccagtgt gtcatcatt 540
cgccccatga agatgtatgt agtcacgtt ggtgactcg ggggggtct tggatttcag 600
gatgacccga aggatgactt tgctcagatgt gtggaggtga cacaggacca taagccagaa 660
cttcccaagg aaagagaacg aatcgaagga cttgggtggaa gtgtatgaa caagtctggg 720
gtgaatcgatgt tagttggaa acgacccgtt ctcactcaca atggacctgt tagaaggagc 780
acagttattt accagattcc ttttctggca gtagcaagag cacttggatgt tttgtggagc 840
tatgatttct tcagtggatgtt atttgtggatgt tcacctgaac cagacacaag tgtccacact 900
cttggaccctc agaagcacaat gtatattata ttggggagtg atggactttg gaatatgatt 960
ccaccacaag atgccccatctc aatgtgccag gaccaagagg agaaaaaaaata cctgatgggt 1020
gagcatggac aatcttgc caaaatgtt gtgaatcgag cattggccgg ctggaggcag 1080

cgtatgctcc gagcagataa cactagtgcc atagtaatct gcacatctctcc agaagtggac 1140
aatcaggaa actttaccaa tgaagatgag ttatacctga acctgactga cagcccttcc 1200
tataatagtc aagaaaacctg tgtgatgact ccttccccat gttctacacc accagtcaag 1260
tcactggagg aggatccatg gccaaagggtg aattctaagg accatatacc tgccctggtt 1320
cgttagcaatg ccttctcaga gaattttta gaggtttcag ctgagatagc tcgagagaat 1380
gtccaagggtg tagtcatacc ctcaaaagat ccagaaccac ttgaagaaaa ttgcgctaaa 1440
gccctgactt taaggataca tgattcttg aataatagcc ttccaattgg ccttgcgcct 1500
actaattcaa caaacactgt catggaccaa aaaaatttga agatgtcaac tcctggccaa 1560
atgaaagccc aagaaattga aagaacccct ccaacaaact taaaaggac attagaagag 1620
tccaattctg gccccctgat gaagaagcat agacgaaatg gcttaagtcg aagtagtggt 1680
gctcagcctg caagtctccc cacaacctca cagcgaaaga actctgttaa actcaccatg 1740
cgacgcagac ttagggcca gaagaaaatt ggaaatcctt tacttcatca acacaggaaa 1800
actgtttgtg tttgctga 1818

<210> 2
<211> 605
<212> PRT
<213> Homo sapiens

<400> 2
Met Ala Gly Leu Tyr Ser Leu Gly Val Ser Val Val Phe Ser Asp Gln Gly
1 5 10 15

Gly Arg Lys Tyr Met Glu Asp Val Thr Gln Ile Val Val Glu Pro Glu
20 25 30

Pro Thr Ala Glu Glu Lys Pro Ser Pro Arg Arg Ser Leu Ser Gln Pro
35 40 45

Leu Pro Pro Arg Pro Ser Pro Ala Ala Leu Pro Gly Gly Glu Val Ser
50 55 60

Gly Lys Gly Pro Ala Val Ala Ala Arg Glu Ala Arg Asp Pro Leu Pro
65 70 75 80

Asp Ala Gly Ala Ser Pro Ala Pro Ser Arg Cys Cys Arg Arg Ser
85 90 95

Ser Val Ala Phe Phe Ala Val Cys Asp Gly His Gly Gly Arg Glu Ala
100 105 110

Ala Gln Phe Ala Arg Glu His Leu Trp Gly Phe Ile Lys Lys Gln Lys
115 120 125

Gly Phe Thr Ser Ser Glu Pro Ala Lys Val Cys Ala Ala Ile Arg Lys
130 135 140

Gly Phe Leu Ala Cys His Leu Ala Met Trp Lys Lys Leu Ala Glu Trp
145 150 155 160

Pro Lys Thr Met Thr Gly Leu Pro Ser Thr Ser Gly Thr Thr Ala Ser
165 170 175

Val Val Ile Ile Arg Gly Met Lys Met Tyr Val Ala His Val Gly Asp
180 185 190

Ser Gly Val Val Leu Gly Ile Gln Asp Asp Pro Lys Asp Asp Phe Val
195 200 205

Arg Ala Val Glu Val Thr Gln Asp His Lys Pro Glu Leu Pro Lys Glu
210 215 220

Arg Glu Arg Ile Glu Gly Leu Gly Ser Val Met Asn Lys Ser Gly
225 230 235 240

Val Asn Arg Val Val Trp Lys Arg Pro Arg Leu Thr His Asn Gly Pro
245 250 255

Val Arg Arg Ser Thr Val Ile Asp Gln Ile Pro Phe Leu Ala Val Ala
260 265 270

Arg Ala Leu Gly Asp Leu Trp Ser Tyr Asp Phe Phe Ser Gly Glu Phe
275 280 285

Val Val Ser Pro Glu Pro Asp Thr Ser Val His Thr Leu Asp Pro Gln
290 295 300

Lys His Lys Tyr Ile Ile Leu Gly Ser Asp Gly Leu Trp Asn Met Ile
305 310 315 320

Pro Pro Gln Asp Ala Ile Ser Met Cys Gln Asp Gln Glu Glu Lys Lys
325 330 335

Tyr Leu Met Gly Glu His Gly Gln Ser Cys Ala Lys Met Leu Val Asn
340 345 350

Arg Ala Leu Gly Arg Trp Arg Gln Arg Met Leu Arg Ala Asp Asn Thr
355 360 365

Ser Ala Ile Val Ile Cys Ile Ser Pro Glu Val Asp Asn Gln Gly Asn
370 375 380

Phe Thr Asn Glu Asp Glu Leu Tyr Leu Asn Leu Thr Asp Ser Pro Ser
385 390 395 400

Tyr Asn Ser Gln Glu Thr Cys Val Met Thr Pro Ser Pro Cys Ser Thr
405 410 415

Pro Pro Val Lys Ser Leu Glu Asp Pro Trp Pro Arg Val Asn Ser
420 425 430

Lys Asp His Ile Pro Ala Leu Val Arg Ser Asn Ala Phe Ser Glu Asn
435 440 445

Phe Leu Glu Val Ser Ala Glu Ile Ala Arg Glu Asn Val Gln Gly Val
450 455 460

Val Ile Pro Ser Lys Asp Pro Glu Pro Leu Glu Glu Asn Cys Ala Lys
465 470 475 480

Ala Leu Thr Leu Arg Ile His Asp Ser Leu Asn Asn Ser Leu Pro Ile
485 490 495

Gly Leu Val Pro Thr Asn Ser Thr Asn Thr Val Met Asp Gln Lys Asn
500 505 510

Leu Lys Met Ser Thr Pro Gly Gln Met Lys Ala Gln Glu Ile Glu Arg
515 520 525

Thr Pro Pro Thr Asn Phe Lys Arg Thr Leu Glu Glu Ser Asn Ser Gly
530 535 540

Pro Leu Met Lys Lys His Arg Arg Asn Gly Leu Ser Arg Ser Ser Gly
545 550 555 560

Ala Gln Pro Ala Ser Leu Pro Thr Thr Ser Gln Arg Lys Asn Ser Val
565 570 575

Lys Leu Thr Met Arg Arg Arg Leu Arg Gly Gln Lys Lys Ile Gly Asn
580 585 590

Pro Leu Leu His Gln His Arg Lys Thr Val Cys Val Cys
595 600 605

<210> 3

<211> 2973

<212> DNA

<213> Homo sapiens

<400> 3

ctggctctgc tcgctccggc gtcgggccc agctctcgcg gacaagtcca gacatcgcc 60

gccccccctt ctccgggtcc gccccctccc cttctcgcc gtcgtcgaag ataaacaata 120

gttggccggc gagcgcctag tgtgtctccc gcccggat tcggcggct gcgtggacc 180

ggcgggatcc cggccagccg gccatggcgg ggctgtactc gctgggagtg agcgtttct 240

ccgaccaggc cgggaggaag tacatggagg acgttactca aatcggttg gagcccgaac 300

cgtacggctga agaaaagccc tcgcccggc ggctcgatgc tcagccgttgc cttccggc 360

cgtcggccggc cgcccttccc ggccggcaag tctcgaaaa aggcccagcg gtggcagccc 420

gagaggctcg cgaccctctc ccggacgccc gggcctcgcc ggcaccttagc cgctgctgcc 480

ggccgggttc ctccgtggcc ttttcgccc tgtgcacgg gcacggcgg cgggaggcgg 540

cacagttgc cgggagcac ttgtgggtt tcatcaagaa gcagaagggt ttcacctcg 600

ccgagccggc taaggttgc gctgccatcc gcaaaggctt tctcgcttgt cacctggca 660

tgtggaagaa actggcggaa tggccaaaga ctatgacgg tcttccttagc acatcaggga 720

caactgccag tgtggtcatc attcggggca tgaagatgta tgtagctcac gtaggtgact 780

caggggttgtt tcttggattt caggatgacc cgaaggatga ctttgtcaga gctgtggagg 840

tgacacagga ccataagcca gaacttccc aggaaagaga acgaatcgaa ggacttggtg 900
ggagtgtaat gaacaagtct ggggtgaatc gtgttagttg gaaacgacct cgactcactc 960
acaatggacc tgtagaagg agcacagttt ttgaccagat tcctttctg gcagtagcaa 1020
gagcacttgg tgatttgg agctatgatt tcttcagttg tgaatttgg gtgtcacctg 1080
aaccagacac aagtgtccac actcttgacc ctcagaagca caagtatatt atattggga 1140
gtgatggact ttggaatatg attccaccac aagatgccat ctcaatgtgc caggaccaag 1200
aggagaaaaa atacctgatg ggtgagcatg gacaatctt tgccaaaatg cttgtgaatc 1260
gagcattggg ccgctggagg cagcgtatgc tccgagcaga taacactagt gccatagtaa 1320
tctgcatctc tccagaagtg gacaatcagg gaaactttac caatgaagat gagttatacc 1380
tgaacctgac tgacagccct tcctataata gtcaagaaac ctgtgtgatg actccttccc 1440
catgttctac accaccagtc aagtcactgg aggaggatcc atggccaagg gtgaattcta 1500
aggaccatat acctgcctg gttcgtagca atgccttctc agagaatttt ttagaggttt 1560
cagctgagat agctcgagag aatgtccaag gtgttagtcat accctcaaaa gatccagaac 1620
cacttgaaga aaattgcgct aaagccctga cttaaggat acatgattct ttgaataata 1680
gccttccaat tggccttggc cctactaatt caacaaacac tgtcatggac caaaaaaatt 1740
tgaagatgtc aactcctggc caaatgaaag cccaaagaaat taaaagaacc cctccaacaa 1800
actttaaaag gacattagaa gagtccaatt ctggccccct gatgaagaag catagacgaa 1860
atggcttaag tcgaagtagt ggtgctcagc ctgcaagtct ccccacaccc tcacagcgaa 1920
agaactctgt taaactcacc atgcgacgca gacttagggg ccagaagaaa attggaaatc 1980
ctttacttca tcaacacagg aaaactgttt gtgtttgctg aaatgcattt gggaaatgag 2040
gtttttccaa acttaggata taagagggct ttttaaattt ggtgccgatg ttgaactttt 2100
tttaaggggaa gaaaattaaa agaaatatac agtttgactt ttggaaattc agcagttta 2160
tcctggccct gtacttgctt gtattgtaaa tgtggatttt gtagatgtta gggataagt 2220
tgctgtaaaa tttgtgtaaa tttgttatcca cacaaattca gtctctgaat acacagtatt 2280
cagagtctct gatacacagt aattgtgaca atagggctaa atgtttaaag aaatcaaaaag 2340
aatctattag attttagaaa aacatttaaa ctttttaaaa tacttattaa aaaatttgta 2400
taagccactt gtcttgaaaa ctgtgcaact ttttaaagta aattattaag cagactggaa 2460
aagtgatgta ttttcatagt gacctgtgtt tcacttaatg tttcttagag ccaagtgtct 2520
tttaaacatt atttttatt tctgatttca taattcagaa ctaaattttt catagaagtg 2580
ttgagccatg ctacagttag tcttgccca attaaaatac tatgcagtat ctcttacatc 2640

agtagcattt ttctaaaacc ttagtcatca gatatgctta ctaaatcttc agcatagaag 2700
gaagtgtgtt tgccctaaaac aatctaaaac aattcccttc tttttcatcc cagacccaatg 2760
gcattattag gtcttaaagt agttactccc ttctcgtgtt tgcttaaaat atgtgaagtt 2820
ttccttgcta tttcaataac agatggtgct gctaattccc aacatttctt aaattatttt 2880
atatcataca gtttcattt attatatggg tatatattca tctaataaaat cagtgaactg 2940
ttcctcatgt tgctgaaaaa aaaaaaaaaaaa aaa 2973