Digitale technieken – Sequentiële logica

Les 7: Latches

- Verschil combinatorische logica met sequentiële logica.
 - Combinatorische logica:

Uitgang enkel afhankelijk van ingang.

Sequentiële logica:

Uitgang afhankelijk van ingang en vorige toestand van uitgang.

- Voorbeelden sequentiële logica:
 - Latch: Betekenis: grendel

Meest elementaire sequentiële schakeling.

Flipflop (FF): Vroeger: ook gebruikt voor een latch.

Nu: bij complexere schakelingen (klok).

Hiermee vorm je geheugenschakelingen, tellers, schuifregisters en sequentiële systemen.

Achtergrondinformatie: wat is een relais?

Latch

Overneemcontact = 'grendelfunctie' = latch

Latch

$$Y = (S + Y) \cdot \overline{R}$$

digitaal equivalent

Latch: met 2 NOR poorten

Latch: met 2 NOR poorten

IEC symbool

<u>Uitgangen</u> in IEC symbool bij latch en flipflop

De inverse uitgang wordt genoteerd met ofwel een polariteitindicator, ofwel een Q- invers $(\overline{\mathbb{Q}})$, maar niet beide tegelijk!

De complementaire uitgang van een flipflop kan op drie geldige manieren voorgesteld worden.

verboden notatie voor de uitgang

Bespreking van een kloksignaal

de klok kan actief zijn (dit wil zeggen: effect hebben) bij een niveau
(hoog of laag) of bij een flank (stijgend of dalend) van het aangelegde
signaal

Ook: stijgende en dalende flank

Latch – soorten uitvoeringen – IEC symbolen

Asynchrone
 (= niet synchroon)

Synchrone: met C-ingang (clock of klok, controle of commando)

Niveaugetriggerd

- Flankgetriggerd

a) Stijgende flank

Bemerk de afhankelijkheidsnotatie!

Asynchrone latch van NOR naar NAND

Asynchrone latch

Werking NAND-poort: nodig voor oefening

NAND geeft enkel 0 op de uitgang als beide ingangen hoog zijn, bij de andere combinaties is de uitgang altijd hoog!

В	A	Y
0	0	1
0	1	1
1	0	1
1	1	0

Asynchrone Latch: werking

Ga de werking van de asynchrone latch na via het invulblad!

Asynchrone Latch: werking

hold

set

reset

forbidden

met de ingangen

 $\bar{S} = 1$ en $\bar{R} = 1$

blijft de bestaande toestand behouden met de ingangen

 $\bar{S} = 0$ en $\bar{R} = 1$

wordt de uitgang

hoog gemaakt

met de ingangen

 $\bar{S} = 1$ en $\bar{R} = 0$

wordt de uitgang

laag gemaakt

met de ingangen

 $\bar{S} = 0$ en $\bar{R} = 0$

ontstaat een

verboden toestand

Asynchrone Latch

s	R	Q⁺	functie
1	1	Q	hold
0	1	1	set
1	0	0	reset
0	0	[1]	fost

omschrijving

de latch bewaart de laatste stand (freeze)
de uitgang wordt of blijft hoog
de uitgang wordt of blijft laag
de latch staat in de verboden toestand

fost =
$$\underline{\text{fo}}$$
rbidden $\underline{\text{st}}$ ate
 $Q^+ = Q_{t+dt} = \text{een beetje later dan } Q$

Asynchrone SR latch

 Toestandentabel = toestand na de wijziging van de ingangen EN de toestand van de uitgang van voor de wijziging (= WT met ingangen en huidige toestand van de uitgang)

Asynchrone SR latch

 Karakteristieke tabel: bevat enkel de nieuwe toestanden van de uitgang na een verandering van de ingangen (= beperkte toestandentabel)

Asynchrone SR latch

 Excitatietabel = geeft de nodige en voldoende ingangstoestanden weer om een bepaalde uitgangstoestand te bekomen (= een soort omgekeerde WT)

Je kan deze tabel steeds afleiden uit de toestandentabel (zonder rekening te houden met de verboden toestand!)

Toepassing: dendereffect

Ontdendering

Via wisselschakelaar:

- Via enkelpolige schakelaar:
 - Zie labcursus: appendix A (zelfstudie te kennen!)
- Via software bij µC:
 Korte tijd wachten om niveau in te lezen, na indrukken schakelaar.

Oefening:

Stel de toestandentabel op voor de volgende schakeling (m.a.w. zoek uit wat de schakeling doet).

