

Curso:	Ciência da Computação		
Disciplina:	Fundamentos Teóricos da Computação	Valor	0.0
Professor (a):	João Paulo C. Aramuni		0,0
Nome:		Nota	
Nº da Atividade/Nome:	Lista 03	ž	
Data:			
Valor:	0,0 pts		

Assuntos: AFD; AFN; AFNλ.

- 1. Construa **AFDs** para as linguagens:
- **a)** $\{11\}\{0,1\}*\{0,1\}\{1\}$

b) $\{0\}\{1\}(\{0,1\}\{0,1\})^*$

c) $\{1\}*(\{0\}\{11\}\{1\})*$

d) {ab}*{ac}

e) $(\{ab\}^*\{a\})^*(\{ba\}^*\{b\})^*$

AFD MÍNIMO

f) ({aa,bb}*{cc})*

AFD MÍNIMO

UNIVERSIDADE FUMEC

2. Construa **AFDs** para as linguagens: **a)** $L_I = \{0,1\}^*\{11\}\{0,1\}^*;$

b) $L_2 = \{0\}\{0,1\}^*\{0\};$

AFD

AFD MÍNIMO

Página 5 / 9

c) $L = L_1L_2$

Dica para a letra (c): Construa o AFNλ, transforme em AFN e, depois, em AFD.

 $\textbf{AFN}\lambda$

AFN

Página 6 / 9

Construindo o AFD

A	F	N

8	0	1
у	У	1
1	У	{11, i}
11	{11, i}	{11, i}
i	m	{}
m	f	m
f	f	m

AFD

8	0	1
{y}	у	1
{1}	y	{11, i}
{11, i}	{11, i, m}	{11, i}
{11, i, m}	{11, i, m, f}	{11, i, m}
{11, i, m, f}	{11, i, m, f}	{11, i, m}

AFD

- **3.** Considerando a linguagem $L = \{1\}*(\{0\}\{11\})*\{1\}*$
- a) Construa um AFN que reconheça a linguagem.

b) Construa um AFD que reconheça a linguagem.

4. Seja o AFN
λ $M = (\{0,1,2\},\,\{a,b,c\},\,\delta,\,\{0\},\,\{2\})$ sendo δ dada por:

δ	а	b	C	λ
0	{0}	Ø	Ø	{1}
1	Ø	{1}	Ø	{2}
2	Ø	Ø	{2}	Ø

a) Desenhe este AFNλ

b) Determine e desenhe um AFN M' equivalente a M.

c) Determine e desenhe um AFD equivalente a M'.

5. Suponha que você tenha dois AFs M_1 e M_2 . Explique como construir um AF que reconheça $L(M_1)$ U $L(M_2)$ usando, além das transições dos AFs originais, apenas algumas transições adicionais sob λ .

As transições sob λ aplicadas a um conjunto de estados X, fornecem todos os estados alcançáveis a partir dos estados de X. Observe que uma transição sob λ ocorre sem consumo de símbolo algum. Dessa forma, podemos construir AF's que reconheçam uma união de linguagem sem grandes esforços. Construir diretamente um AFD (ou mesmo um AFN comum) para $L(M_1)$ U $L(M_2)$ pode não ser trivial. No entanto é fácil obter AFD's para $L(M_1)$ e $L(M_2)$ e, em seguida, um AFN λ equivalente à união.