Black Friday Sales Prediction

In [201]:

```
# manipulation data
import pandas as pd
import numpy as np

#visualiation data
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from plotly.offline import init_notebook_mode, iplot
```

In [202]:

```
df_train=pd.read_csv('train.csv')
df_train.head()
```

Out[202]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Year
0	1000001	P00069042	F	0- 17	10	А	
1	1000001	P00248942	F	0- 17	10	А	
2	1000001	P00087842	F	0- 17	10	А	
3	1000001	P00085442	F	0- 17	10	А	
4	1000002	P00285442	М	55+	16	С	4
4							>

In [203]:

```
df_train.shape
```

Out[203]:

(550068, 12)

In [204]:

```
## import the test data
df_test=pd.read_csv('test.csv')
df_test.head()
```

Out[204]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Year
0	1000004	P00128942	М	46- 50	7	В	
1	1000009	P00113442	М	26- 35	17	С	
2	1000010	P00288442	F	36- 45	1	В	4
3	1000010	P00145342	F	36- 45	1	В	4
4	1000011	P00053842	F	26- 35	1	С	
4							•

In [205]:

```
df=df_train.append(df_test)
df.head()
```

C:\Users\DELL\AppData\Local\Temp\ipykernel_14112\2683340988.py:1: FutureW
arning:

The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.

Out[205]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Year
0	1000001	P00069042	F	0- 17	10	А	
1	1000001	P00248942	F	0- 17	10	А	
2	1000001	P00087842	F	0- 17	10	А	
3	1000001	P00085442	F	0- 17	10	А	
4	1000002	P00285442	М	55+	16	С	4
4							>

```
In [206]:
```

10 Purchase

memory usage: 71.7+ MB

dtypes: float64(3), int64(3), object(5)

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 783667 entries, 0 to 233598
Data columns (total 12 columns):
 #
    Column
                                 Non-Null Count
                                                  Dtype
     -----
                                 -----
---
0
    User ID
                                 783667 non-null int64
                                 783667 non-null object
 1
    Product ID
 2
    Gender
                                 783667 non-null object
 3
                                 783667 non-null object
    Age
 4
    Occupation
                                783667 non-null int64
 5
    City_Category
                                 783667 non-null object
 6
    Stay_In_Current_City_Years 783667 non-null object
 7
    Marital Status
                                783667 non-null int64
 8
    Product_Category_1
                                 783667 non-null int64
 9
    Product_Category_2
                                537685 non-null float64
 10 Product_Category_3
                                237858 non-null float64
 11 Purchase
                                 550068 non-null float64
dtypes: float64(3), int64(4), object(5)
memory usage: 77.7+ MB
In [207]:
df.drop('User_ID',axis=1,inplace=True)
In [208]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 783667 entries, 0 to 233598
Data columns (total 11 columns):
    Column
                                 Non-Null Count
                                                  Dtype
    _____
                                 -----
                                                  ----
 0
    Product ID
                                 783667 non-null
                                                  object
 1
    Gender
                                 783667 non-null object
 2
    Age
                                 783667 non-null object
 3
    Occupation
                                 783667 non-null int64
 4
    City_Category
                                 783667 non-null object
 5
    Stay_In_Current_City_Years 783667 non-null object
 6
    Marital Status
                                 783667 non-null int64
 7
    Product Category 1
                                 783667 non-null int64
 8
    Product_Category_2
                                 537685 non-null float64
 9
    Product_Category_3
                                 237858 non-null
                                                 float64
```

localhost:8888/notebooks/Desktop/Mukund/DATA SCIENCE/Pandas/Self Practice/BlackFriday/Black Friday Sales Prediction.ipynb

550068 non-null

float64

In [209]:

```
df.head()
```

Out[209]:

	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital
0	P00069042	F	0- 17	10	А	2	
1	P00248942	F	0- 17	10	А	2	
2	P00087842	F	0- 17	10	А	2	
3	P00085442	F	0- 17	10	А	2	
4	P00285442	М	55+	16	С	4+	
4							•

In [210]:

```
# Categorical feature to umerical conversion
df.Gender=df.Gender.map({'F':0,'M':1})
```

In [211]:

df.head()

Out[211]:

	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital
0	P00069042	0	0- 17	10	А	2	
1	P00248942	0	0- 17	10	А	2	
2	P00087842	0	0- 17	10	А	2	
3	P00085442	0	0- 17	10	А	2	
4	P00285442	1	55+	16	С	4+	
4							•

In [212]:

```
df.Age.unique()
```

Out[212]:

```
array(['0-17', '55+', '26-35', '46-50', '51-55', '36-45', '18-25'], dtype=object)
```

Dtvpe

```
In [213]:
```

```
df.Age=df.Age.map({'0-17':0,'18-25':1,'26-35':2,'36-45':3,'46-50':4,'51-55':5,'55+':6})
```

In [214]:

```
df.info()
```

			7 F -
0	Product_ID	783667 non-null	object
1	Gender	783667 non-null	int64
2	Age	783667 non-null	int64
3	Occupation	783667 non-null	int64
4	City_Category	783667 non-null	object
5	Stay_In_Current_City_Years	783667 non-null	object
6	Marital_Status	783667 non-null	int64
7	Product_Category_1	783667 non-null	int64
8	Product_Category_2	537685 non-null	float64
9	Product_Category_3	237858 non-null	float64
10	Purchase	550068 non-null	float64

dtypes: float64(3), int64(5), object(3)

memory usage: 71.7+ MB

In [215]:

```
'''# Import label encoder
from sklearn import preprocessing

# label_encoder object knows
# how to understand word labels.
label_encoder = preprocessing.LabelEncoder()

# Encode labels in column 'species'.
df['species']= label_encoder.fit_transform(df['species'])

df['species'].unique()'''
```

Out[215]:

"# Import label encoder\nfrom sklearn import preprocessing\n \n# label_e
ncoder object knows \n# how to understand word labels.\nlabel_encoder = p
reprocessing.LabelEncoder()\n \n# Encode labels in column 'species'.\ndf
['species']= label_encoder.fit_transform(df['species'])\n \ndf['specie
s'].unique()"

```
In [216]:
```

```
df.head()
```

Out[216]:

	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital
0	P00069042	0	0	10	А	2	
1	P00248942	0	0	10	Α	2	
2	P00087842	0	0	10	Α	2	
3	P00085442	0	0	10	А	2	
4	P00285442	1	6	16	С	4+	
4							•

In [217]:

```
## Fixing categorical City_ctegory
df_city=pd.get_dummies(df['City_Category'],drop_first=True)
```

In [218]:

```
df_city
```

Out[218]:

	В	С	
0	0	0	
1	0	0	
2	0	0	
3	0	0	
4	0	1	
233594	1	0	
233595	1	0	
233596	1	0	
233597	0	1	
233598	1	0	

783667 rows × 2 columns

In [219]:

```
df=pd.concat([df,df_city],axis=1)
```

In [220]:

df.head()

Out[220]:

	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital
0	P00069042	0	0	10	А	2	
1	P00248942	0	0	10	Α	2	
2	P00087842	0	0	10	Α	2	
3	P00085442	0	0	10	Α	2	
4	P00285442	1	6	16	С	4+	
4							•

In [221]:

df.drop('City_Category',axis=1,inplace=True)

In [222]:

df.head()

Out[222]:

	Product_ID	Gender	Age	Occupation	Stay_In_Current_City_Years	Marital_Status	Produ
0	P00069042	0	0	10	2	0	
1	P00248942	0	0	10	2	0	
2	P00087842	0	0	10	2	0	
3	P00085442	0	0	10	2	0	
4	P00285442	1	6	16	4+	0	
4							•

Missing values

In [223]:

```
df.dtypes
```

Out[223]:

Product_ID	object
Gender	int64
Age	int64
Occupation	int64
Stay_In_Current_City_Years	object
Marital_Status	int64
Product_Category_1	int64
Product_Category_2	float64
Product_Category_3	float64
Purchase	float64
В	uint8
C	uint8

dtype: object

In [224]:

```
df.isnull().sum()
```

Out[224]:

```
Product_ID
                                     0
Gender
                                     0
                                     0
Age
Occupation
                                     0
Stay_In_Current_City_Years
                                     0
Marital_Status
                                     0
Product_Category_1
                                     0
Product_Category_2
                                245982
Product_Category_3
                                545809
Purchase
                                233599
В
                                     0
                                     0
dtype: int64
```

In [225]:

```
## Replace the missing value with mode
df['Product_Category_2']=df['Product_Category_2'].fillna(df['Product_Category_2'].mode(
df['Product_Category_3']=df['Product_Category_3'].fillna(df['Product_Category_3'].mode()
```

```
In [226]:
```

```
df.head()
```

Out[226]:

	Product_ID	Gender	Age	Occupation	Stay_In_Current_City_Years	Marital_Status	Produ
0	P00069042	0	0	10	2	0	
1	P00248942	0	0	10	2	0	
2	P00087842	0	0	10	2	0	
3	P00085442	0	0	10	2	0	
4	P00285442	1	6	16	4+	0	
4							•

In [227]:

```
df.dtypes
```

Out[227]:

Product_ID	object
Gender	int64
Age	int64
Occupation	int64
Stay_In_Current_City_Years	object
Marital_Status	int64
Product_Category_1	int64
Product_Category_2	float64
Product_Category_3	float64
Purchase	float64
В	uint8
C	uint8
dtype: object	

In [228]:

```
df['Stay_In_Current_City_Years'].unique()
```

Out[228]:

```
array(['2', '4+', '3', '1', '0'], dtype=object)
```

In [229]:

```
df['Stay_In_Current_City_Years']=df['Stay_In_Current_City_Years'].str.replace('+','')
```

C:\Users\DELL\AppData\Local\Temp\ipykernel_14112\2063355665.py:1: FutureW
arning:

The default value of regex will change from True to False in a future ver sion. In addition, single character regular expressions will *not* be tre ated as literal strings when regex=True.

```
In [230]:
```

```
df.head()
```

Out[230]:

	Product_ID	Gender	Age	Occupation	Stay_In_Current_City_Years	Marital_Status	Produ
0	P00069042	0	0	10	2	0	
1	P00248942	0	0	10	2	0	
2	P00087842	0	0	10	2	0	
3	P00085442	0	0	10	2	0	
4	P00285442	1	6	16	4	0	
4							•

In [231]:

```
#Convert object into integer
df['Stay_In_Current_City_Years']=df['Stay_In_Current_City_Years'].astype(int)
```

In [232]:

```
df['B']=df['B'].astype(int)
df['C']=df['C'].astype(int)
```

In [233]:

```
df.dtypes
```

Out[233]:

Product_ID	object
Gender	int64
Age	int64
Occupation	int64
Stay_In_Current_City_Years	int32
Marital_Status	int64
Product_Category_1	int64
Product_Category_2	float64
Product_Category_3	float64
Purchase	float64
В	int32
C	int32
dtype: object	

In [234]:

```
df.drop('Product_ID',axis=1,inplace=True)
```

In [235]:

```
df.head()
```

Out[235]:

	Gender	Age	Occupation	Stay_In_Current_City_Years	Marital_Status	Product_Category_
0	0	0	10	2	0	;
1	0	0	10	2	0	
2	0	0	10	2	0	1:
3	0	0	10	2	0	1:
4	1	6	16	4	0	{
4						•

In [236]:

```
### Visualisation
sns.barplot('Age','Purchase',hue='Gender',data=df)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Fut
ureWarning:

Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Out[236]:

<AxesSubplot:xlabel='Age', ylabel='Purchase'>

In [237]:

```
sns.barplot('Occupation','Purchase',hue='Gender',data=df)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Fut
ureWarning:

Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Out[237]:

<AxesSubplot:xlabel='Occupation', ylabel='Purchase'>

In [238]:

```
sns.barplot('Marital_Status','Purchase',hue='Gender',data=df)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Fut
ureWarning:

Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Out[238]:

<AxesSubplot:xlabel='Marital_Status', ylabel='Purchase'>

In [239]:

```
pd.crosstab(df['Marital_Status'],df['Gender'])
```

Out[239]:

Gender	0	1
Marital_Status		
0	112469	350069
1	81167	239962

In [240]:

```
### Feature scaling
df_test=df[df['Purchase'].isnull()]
```

In [241]:

df_test

Out[241]:

	Gender	Age	Occupation	Stay_In_Current_City_Years	Marital_Status	Product_Cate
0	1	4	7	2	1	
1	1	2	17	0	0	
2	0	3	1	4	1	
3	0	3	1	4	1	
4	0	2	1	1	0	
233594	0	2	15	4	1	
233595	0	2	15	4	1	
233596	0	2	15	4	1	
233597	0	4	1	4	0	
233598	0	4	0	4	1	

233599 rows × 11 columns

In [242]:

```
df_train=df[~df['Purchase'].isnull()]
```

In [243]:

df_train

Out[243]:

	Gender	Age	Occupation	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Proc
0	0	0	10	2	0	3	
1	0	0	10	2	0	1	
2	0	0	10	2	0	12	
3	0	0	10	2	0	12	
4	1	6	16	4	0	8	
550063	1	5	13	1	1	20	- 1
550064	0	2	1	3	0	20	
550065	0	2	15	4	1	20	
550066	0	6	1	2	n	20	•

```
In [244]:
X=df train.drop('Purchase',axis=1)
In [249]:
X.shape
Out[249]:
(550068, 10)
In [247]:
y=df_train['Purchase']
In [250]:
X.shape
Out[250]:
(550068, 10)
In [251]:
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=
In [254]:
df train.drop('Purchase',axis=1,inplace=True)
df_test.drop('Purchase',axis=1,inplace=True)
C:\Users\DELL\AppData\Local\Temp\ipykernel_14112\2261737455.py:1: Setting
WithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-do
cs/stable/user guide/indexing.html#returning-a-view-versus-a-copy (http
s://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returni
ng-a-view-versus-a-copy)
C:\Users\DELL\AppData\Local\Temp\ipykernel 14112\2261737455.py:2: Setting
WithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-do
cs/stable/user guide/indexing.html#returning-a-view-versus-a-copy (http
s://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returni
ng-a-view-versus-a-copy)
```

In [257]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)
print(X_train)
[[ 0.57141282 -1.10505734  0.90867822  ...  0.36891877  1.17569512
  -0.67282374]
 -0.67282374]
 [ 0.57141282  0.37105599  1.36872445  ... -1.09182956  -0.85056064
  1.48627336]
 [-1.75004823 -1.10505734 -1.08485545 ... 0.36891877 1.17569512
  -0.67282374]
 [-1.75004823 -1.10505734 -0.62480922 ... 0.36891877 1.17569512
  -0.67282374]
 [-1.75004823 -1.10505734 -0.93150671 ... 0.36891877 -0.85056064
  -0.67282374]]
In [258]:
print(X_test)
1.490841
 [-1.73937798 0.37396835 0.44724923 ... 0.36853635 1.1720971
  -0.67076234]
 [-1.73937798 0.37396835 -1.23835749 ... 0.36853635 -0.85317164
  -0.67076234]
 [ 0.57491817 -1.10638572 -0.93188354 ... 0.36853635 -0.85317164
  1.490841 ]
 [ 0.57491817  0.37396835 -0.16569867 ...  0.00396261 -0.85317164
  1.490841
          ]
 [ 0.57491817 -1.10638572 -0.62540959 ... 0.36853635 1.1720971
  -0.6707623411
In [ ]:
```