Lecture 2: Concept Learning and the General-to-Specific Ordering (Mitchell Chapter 2)

CS 167: Machine Learning

Training Examples for *EnjoySport*

Sky	Temp	Humid	Wind	Water	Forecast	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

What is the general **concept**?

Sky, Temp, Humid, Wind, Water, Forecast are attributes

 $\textbf{Boolean target function} \\ \textit{c}: \langle \textit{Sky}, \textit{Temp}, \textit{Humid}, \textit{Wind}, \textit{Water}, \textit{Forecast} \rangle \rightarrow \{0,1\} \\$

Find-S and Candidate-Elimination Algorithms

Warning: the algorithms in this chapter aren't the best for actually doing practical machine learning

So why do we care?

- simple algorithm, gets the basic set up for ML algorithms
- gets us talking about properties of hypotheses and target functions
- deficiencies get us talking about features of good learners

First, what is a hypothesis? What is a function?

CS 167: Machine Learning

Lecture 2: Concept Learning and the General-

2 / 20

Representing Hypotheses

Many possible representations

Here; a **hypothesis**, h, is conjunction of constraints on attributes

Each constraint can be

- a specific value (e.g., Water = Warm)
- don't care (e.g., "Water =?")
- no value allowed (e.g., "Water= \emptyset ")

For example, (we guess EnjoySpt is true in cases like these)

Sky AirTemp Humid Wind Water Forecast $\langle Sunny \ ? \ Strong \ ? \ Same \rangle$

CS 167: Machine Learning Lecture 2: Concept Learning and the General 3 / 20 CS 167: Machine Learning Lecture 2: Concept Learning and the General 4 / 20

Our Goal

H: set of all possible hypotheses of this form

Our goal: find a **consistent** hypothesis, that is, an h in H such that h(x) = c(x) for all x in the training examples

This is an important term - write down an easier-to-remember definition in your notes!

The inductive learning hypothesis: Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

CS 167: Machine Learning

Lecture 2: Concept Learning and the General-

5 / 20

Instance, Hypotheses, and More-General-Than

CS 167: Machine Learning

Lecture 2: Concept Learning and the General-

6 / 20

First Try: Find-S Algorithm

- Initialize h to the most specific hypothesis in H
- For each positive training instance x
 - ► For each attribute constraint a_i in h

If the constraint a_i in h is satisfied by x

Then do nothing

Else replace a_i in h by the next more general constraint that is satisfied by x

Output hypothesis h

Algorithm Trace

 $\begin{array}{l} \textit{k}_{0} = \langle \textit{Sunny}, \textit{Warm}, \textit{Normal}, \textit{Strong}, \textit{Warm}, \textit{Same} \rangle, + \\ \textit{k}_{2} = \langle \textit{Sunny}, \textit{Warm}, \textit{High}, \textit{Strong}, \textit{Warm}, \textit{Same} \rangle, + \\ \textit{k}_{3} = \langle \textit{Rainy}, \textit{Cold}, \textit{High}, \textit{Strong}, \textit{Warm}, \textit{Change} \rangle, - \\ \textit{k}_{4} = \langle \textit{Sunny}, \textit{Warm}, \textit{High}, \textit{Strong}, \textit{Cool}, \textit{Change} \rangle, + \\ \end{array} \\ \begin{array}{l} \textit{h}_{0} = \langle \textit{\emptyset}, \textit{\emptyset}, \textit{\emptyset}, \textit{\emptyset}, \textit{\emptyset} \rangle \\ \textit{h}_{1} = \langle \textit{Sunny}, \textit{Warm}, \textit{Normal}, \textit{Strong}, \textit{Warm}, \textit{Same} \rangle \\ \textit{h}_{2} = \langle \textit{Sunny}, \textit{Warm}, ?, \textit{Strong}, \textit{Warm}, \textit{Same} \rangle \\ \textit{h}_{3} = \langle \textit{Sunny}, \textit{Warm}, ?, \textit{Strong}, \textit{Warm}, \textit{Same} \rangle \\ \textit{h}_{4} = \langle \textit{Sunny}, \textit{Warm}, ?, \textit{Strong}, ?, ? \rangle \end{array}$

CS 167: Machine Learning Lecture 2: Concept Learning and the General 7 / 20 CS 167: Machine Learning Lecture 2: Concept Learning and the General 8 / 20

Discussion Questions

Training Examples:

```
x_1 = \langle Sunny, Warm, Normal, Strong, Warm, Same \rangle, +
```

 $\textit{x}_2 = \langle \textit{Sunny}, \textit{Warm}, \textit{High}, \textit{Strong}, \textit{Warm}, \textit{Same} \rangle, +$

 $x_3 = \langle Rainy, Cold, High, Strong, Warm, Change \rangle, -$

 $x_4 = \langle Sunny, Warm, High, Strong, Cool, Change \rangle, +$

Find-S Hypothesis: $h_4 = \langle Sunny, Warm, ?, Strong, ?, ? \rangle$

How does this hypothesis classify the following examples?

 $v_1 = \langle Sunny, Warm, Normal, Weak, Warm, Same \rangle$

 $v_2 = \langle Sunny, Warm, Normal, Strong, Cool, Change \rangle$

Does it seem right? How do you know if it is right?

Does x_3 tell us anything useful?

What if v_r — / Sunny Warm High Strong Cool Change \ — were 3 CS 167: Machine Learning Lecture 2: Concept Learning and the General 9 / 20 training example?

How do we find the version space?

Obvious algorithm: LIST-THEN-ELIMINATE Algorithm

- List all hypotheses
- For each training Example, remove inconsistent hypotheses

Downside: most of the time ∞ hypotheses or too many to list

Another Way: Candidate-Elimination Algorithm - keep track of **specific boundary** and **general boundaries**, the set of maximally specific and general hypotheses

- Adjust specific boundary with positive training example
- Adjust general boundary with negative training example

Version Space

Version Space: The set of all hypotheses that are consistent with the training examples.

```
x_1 = \langle Sunny, Warm, Normal, Strong, Warm, Same \rangle, +
```

 $x_2 = \langle Sunny, Warm, High, Strong, Warm, Same \rangle, +$

 $x_3 = \langle Rainy, Cold, High, Strong, Warm, Change \rangle, -$

 $x_4 = \langle Sunny, Warm, High, Strong, Cool, Change \rangle, +$

Version Space of Training Examples:

```
⟨Sunny, Warm, ?, Strong, ?, ?⟩
⟨Sunny, ?, ?, Strong, ?, ?⟩
⟨Sunny, Warm, ?, ?, ?, ?⟩
⟨?, Warm, ?, Strong, ?, ?⟩
⟨?, Warm, ?, ?, ?, ?⟩
⟨Sunny, ?, ?, ?, ?, ?⟩
```

Why not $\langle ?,?,?,?,?,? \rangle$?

CS 167: Machine Learning

Lecture 2: Concept Learning and the General-

10 / 20

Example Boundary Adjustment

S₀: {<Ø, Ø, Ø, Ø, Ø, Ø>}

G₀:

{<?, ?, ?, ?, ?, ?>}

Example Boundary Adjustment

$$G_0$$
 , G_1 , G_2 : $\{,?,?,?,?,?\}$

Training examples:

- 1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
- 2. < Sunny, Warm, High, Strong, Warm, Same >, Enjoy Sport = Yes

CS 167: Machine Learning

Lecture 2: Concept Learning and the General

13 / 20

Example Boundary Adjustment

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

Why not add $\langle ?, ?, Normal, ?, ?, ? \rangle$ or $\langle ?, ?, ?, Weak, ?, ? \rangle$?

CS 167: Machine Learning

Lecture 2: Concept Learning and the General-

14 / 20

Example Boundary Adjustment

Training Example:

4.<Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

Final Version Space

The final version space lies between these boundaries

CS 167: Machine Learning Lecture 2: Concept Learning and the General 15 / 20 CS 167: Machine Learning Lecture 2: Concept Learning and the General 16 / 20

Exercise

How should we classify these new examples?

```
⟨Sunny, Warm, Normal, Strong, Cool, Change⟩
⟨Rainy, Cool, Normal, Light, Warm, Same⟩
⟨Sunny, Warm, Normal, Light, Warm, Same⟩
⟨Sunny, Cold, Normal, Strong, Warm, Same⟩
```

CS 167: Machine Learning

Lecture 2: Concept Learning and the General-

17 / 20

CS 167: Machine Learning

Lecture 2: Concept Learning and the General-

18 / 20

Exercise

Let's expand the hypothesis space to allow for *ands*, *ors*, and *nots*. So we can get hypotheses like

 $\langle Sunny, Warm, Normal, ?, ?, ? \rangle$ or $(not(\langle ?, ?, ?, ?, Change \rangle))$

Now what are S and G?

 $\langle Sunny, Warm, Normal, Strong, Cool, Change \rangle, + \langle Cloudy, Warm, Normal, Strong, Cool, Change \rangle, + \langle Rainy, Warm, Normal, Strong, Cool, Change \rangle, - \langle Rainy, Warm, Normal, Change \rangle, - \langle Rainy, Warm, Normal, Change \rangle, - \langle Rainy, Warm, Normal, Change \rangle, - \langle Rainy, Warm, Marm, Warm, Marm, Warm, Warm,$

Exercise

What happens when you run the algorithm on these training examples?

```
⟨Sunny, Warm, Normal, Strong, Cool, Change⟩, +
⟨Cloudy, Warm, Normal, Strong, Cool, Change⟩, +
⟨Rainy, Warm, Normal, Strong, Cool, Change⟩, -
```

Inductive Bias

Inductive Bias: assumptions you make about the target concept and corresponding training examples

Examples:

inductive bias of CANDIDATE-ELIMINATION algorithm: the target concept is contained in the hypothesis space

inductive bias of FIND-S algorithm: the target concept is contained in the hypothesis space and examples not included within its knowledge base are all negative, i.e., more specific is better

Take-Away 1: you can't generalize without bias. All learners have bias. Take-Away 2: the more correct the bias, the better you can learn.

CS 167: Machine Learning Lecture 2: Concept Learning and the General 19 / 20 CS 167: Machine Learning Lecture 2: Concept Learning and the General 20 / 20