

Trabalhos práticos 1 e 2 – Ótica

Nome:	Nmec:	Turma/grupo/

Objetivos

Caracterizar as imagens formadas por lentes convergentes e divergentes.

Determinar a distância focal de uma lente convergente utilizando a equação dos focos conjugados.

Introdução

Quando um objeto é colocado a uma distância p de uma lente (convergente ou divergente), forma-se uma imagem (real ou virtual), a uma distância q, que obedece à chamada equação dos focos conjugados (eq. 1), onde f representa a distância focal da lente.

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$
 Eq. (1)

A representação gráfica da eq. (1) para 2 lentes com valores de f diferentes é a seguinte:

Figura 1

Preparação do trabalho

a)	Baseado	no gráfico da Fig. 1 indique quais das seguintes afirmações são verdadeiras:
	1.	Para um objeto virtual, a imagem dada por uma lente convergente com $\mid f \mid$ = 10 cm é sempre
		real
	2.	Para um objeto virtual, a imagem dada por uma lente divergente com $ f $ =10 cm é sempre virtual.
	3.	Um objeto virtual situado a uma distância inferior a $ f $ de uma lente divergente pode formar imagens reais e virtuais.
	4.	A ampliação dum objeto real, dada por uma lente divergente colocada a uma distância de 30 <i>cm</i> , é maior
		que 3
		122 - 21 <u></u>
b)	Discuta d	com base no gráfico da Fig. 1 onde se forma a imagem quando a distância da lente divergente ao objeto
	tende pa	ra infinito.
\\	0	
c)		e a Fig. 1. Para o caso da lente convergente, que gama de valores da distância objeto-lente lhe parece mais
	adequad	a para identificar a forma da curva descrita pela eq. (1)? Explique sucintamente a sua resposta.
d)	Reescrev	a a eq. (1) de forma a colocar q em evidência. Sabendo que a medida da distância objeto-lente é igual a
•	p±∆p e a	distância focal da lente é $f\pm\Delta f$ determine a expressão do erro associado ao cálculo de q .

e) Sabendo que a ampliação, m, de um objeto pode ser calculada por um dos processos seguintes,

 $m = \frac{y_{imagem}}{y_{objeto}} = -\frac{q}{p}$

Eq. (2)

casos.
Procedimento experimental
Material Necessário
Fonte de Alimentação, foco luminoso, banco de ótica, suporte com objeto e dispersor, lente convergente e len
divergente ($ f =10.0\pm0.1cm$), alvo, papel milimétrico, calculadora com regressão linear, fita métrica, régua e craveira
Trabalho prático 1 1. Estudo de lentes convergentes
Todos os valores medidos deverão ser registados na tabela I
(tenha em atenção a convenção de sinais e os algarismos significativos das grandezas)
(tenha em atenção a convenção de sinais e os algarismos significativos das grandezas) a) Monte o dispositivo experimental de acordo com a Fig. 2 e meça o tamanho, y, do objeto. Esta medição deve se efetuada com a craveira ou com a régua? Porquê? Estime o erro Δy cometido.

Figura 2: Dispositivo experimental e diagrama esquemático

b)	Utilize a lente convergente (distância focal $f=10\ cm$) e coloque-a a uma distância p do objeto tal que $p < f$. Tente
	obter a imagem no alvo e registe o que observa. Utilizando a Eq. (1) e o gráfico da Fig. 1, explique sucintamente as
	suas observações.
c)	Coloque agora a lente a uma distância p do objeto tal que $p = f$. De acordo com a Eq. (1) onde espera observar a
	imagem? Tente obter a imagem e comente as suas observações.

d)	Coloque a lente a uma distância p do objeto tal que p seja pouco maior que f e registe o valor na tabela I abaixo.
	Deslocando o alvo, obtenha a melhor imagem nele formada e caracterize-a (real ou virtual, direita ou invertida,
	ampliada ou reduzida).

e) Meça a distância q_1 da lente à imagem e o tamanho, y_1' , da imagem formada no alvo. Registe os valores na tabela I abaixo.

	D: .^ .	5:	D: 10 : 1	I			I	
Tamanho	Distância	Distância	Distância da	Tamanho da				
do objeto	focal da	do objeto à	imagem à	imagem	_	7	_,	,
	lente	lente	lente		\overline{q}	$a_i =$	\overline{y}'	$a_i =$
		101110	101110			$d_i = \\ q_i - \overline{q} $		$d_i = y_i' - \overline{y}' $
y ±				y' _i ±		191 91		$y_i y_i$
/	£ , 1	p ±	q_i ±	<i>yı</i> –	/		/	
	$f \pm 1$		•		<i>'</i>		/	
						/		/
/		,	,	/				
	/ mm	/	/					
	<u> </u>							

Tabela I

- f) Considerando a dificuldade na localização do ponto de focagem ideal, facilmente notará que a incerteza que afeta esta medição é superior ao erro de leitura. Afim de estimar a incerteza, Δq_i , mantenha constante a distância objetolente p, desfoque e volte a focar a imagem. Obtenha assim duas medidas da distância q_i (i=1,2) da lente à imagem e o tamanho, y_i' , da imagem formada no alvo. Esta operação deverá ser feita por diferentes elementos do grupo e os valores registados na Tabela I.
- g) Repetir o procedimento anterior para uma distância p superior à anterior em 10cm.
- h) Complete a tabela I, de forma a obter o valor mais provável das medições da distância objeto-imagem $(q\pm\Delta q)$ e do respetivo tamanho da imagem $(y'\pm\Delta y')$. Apresente o resultado final destas medições.

i)	Compare o valor da incerteza obtido nas duas situações anteriores (alíneas f e g). Explique, justificando, de que modo este resultado o poderá auxiliar na realização experimental quando o objetivo é medir a localização e o tamanho da imagem formada.
j)	Utilizando a Eq. (1) preveja onde se forma a imagem quando se aumenta cada vez mais (no limite até ao infinito) a distância da lente ao objeto. Faça o paralelismo com o gráfico da Fig. 1.
k)	Utilizando o resultado da questão e) da preparação do trabalho, calcule pelos dois processos o valor do erro relativo da ampliação, para o par de valores ($\overline{p}, \overline{q}$) da tabela I.
l)	Considerando os resultados anteriores, escolha o método mais preciso e determine o valor da ampliação do objeto e o respetivo erro.

2. Estuc	do das imagens	i formadas po	or lentes div	ergentes/	utilizando a	combinacac	de	lentes
----------	----------------	---------------	---------------	-----------	--------------	------------	----	--------

Todos os valores medidos deverão ser registados na tabela II

(tenha em atenção a convenção de sinais e os algarismos significativos das grandezas)

a)	Monte o dispositivo experimental de acordo com a Fig. 2 mas utilize a lente divergente (f=-10 cm) colocada a uma
	distância p do objeto. Tente obter a imagem no alvo. O que verifica?

Tabela II

Tamanho do	Distância focal	Distância do	Distância entre	Distância focal da	Distância da	Tamanho da
objeto	da lente	objeto à lente	as lentes	lente convergente	imagem à lente	imagem
	divergente	divergente			convergente	
				$f_{ m c}\pm 1$		
<i>y</i> ± Δ <i>y</i>	$f_{\sf d}\pm 1$	$p_{\rm d} \pm \Delta p_{\rm d}$	d ± ∆d	/ mm	$q_{\rm c}\pm\Delta q_{\rm c}$	y' ± Δy'
/	/ mm	/	/		/	/

b)	Adicione à montagem experimental a lente convergente, colocando-a 10 cm à frente da lente divergente (mantenha
	esta distância sempre constante). Obtenha a melhor imagem dada pela lente no alvo e caracterize a imagem obtida.

c) Tendo em atenção a imagem dada pela lente convergente, diga se a imagem dada pela lente divergente é direita ou invertida? Explique a sua resposta tendo em atenção as características da imagem dada pela lente convergente na alínea 1d).

- d) Represente no diagrama de raios a imagem obtida pelo par de lentes utilizado, tendo em atenção que:
 - Um raio procedente do objeto e paralelo ao eixo ótico é refratado pela lente divergindo da mesma como se viesse do foco;
 - Um raio procedente do objeto que passa pelo vértice da lente é refratado sem que ocorra alteração da sua direção.

Figura 3: Diagrama de raios

e) Aumente a distância entre o objeto e a lente divergente, mantendo constante a distância entre as duas lentes.

Descreva o que observa depois de focar a imagem dada pela lente convergente. Discuta, com base no diagrama de raios as suas observações.

_	
_	
	Trabalho prático 2
3.	Determinação da Distância Focal de uma Lente Convergente
_	Todos os valores medidos deverão ser registados na tabela III e numa folha de cálculo (Excel)
	(tenha em atenção os algarismos significativos das grandezas)
a)	Monte o dispositivo experimental de acordo com a figura 2 utilizando a lente convergente.
b)	Obtenha 8 medições diferentes – dentro dos limites anteriormente determinados na questão c) da preparação do
	trabalho — das distâncias p e q . Para cada p meça duas vezes q , uma vez para a mínima distância à qual a imagem
	parece focada $(q_{ exttt{MIN}})$ e outra para a máxima distância à qual a imagem ainda parece focada $(q_{ exttt{MAX}})$.
c)	Considerando o processo de medida utilizado escreva a expressão que lhe permite estimar $\Delta\overline{q}$. Explique.
_	

Tabela III

q _{i MAX} ±	q _{i MIN} ±	\overline{q}	$\Delta \overline{q}$
/	/		
		/	/
	q _{i MAX} ±	qi MAX ± qi MIN ± / /	qi MAX ± qi MIN ± q / /

An	álise dos resu	ultados expe	erimentais				
دا/	No follos de eáls	aula da Evaala				fin //	(n f) nama anda valar
d)				a para calcular o valo			
				os resultados experir	nentais de <i>d</i>	g com os val	ores previstos pela
	equação anteri	or, para cada v	alor experimental de	≘ p.			
e)	Algum dos pon	tos experimen	tais está particularm	nente afastado da pre	evisão? Discu	uta os motiv	os que poderão ter
	levado a esse	eventual afast	amento. Discuta co	m o docente a nece	essidade de	eventualme	nte repetir alguma
	medição.						
f)	A relação entre	os dados expe	rimentais obtidos (p_j	, q) não é descrita poi	r uma reta. A	ssim, com o	objetivo de facilitar
	a sua análise, t	ransforme a Ed	q. (1) numa expressã		(processo c	le linearizaçã	ão), evidenciando a
	mudança de va	riáveis necessá	ıria e as definições d	e <i>m</i> e <i>b</i> .			

g) Analisando o resultado da alínea anterior preveja os valores de m e b (note que f=+100 mm).

h)	Determine as expressões que permitem obter o erro a medidas experimentalmente.	ssociado às novas variáveis <i>x</i> e <i>y</i> em função das grandezas

Calcule $x\pm\Delta x$ e $y\pm\Delta y$ para os seus dados experimentais, usando a folha Excel criada anteriormente e preencha-a como se fosse a Tabela IV. Tenha em atenção os algarismos significativos.

Tabela IV

x ≡	Δx	y =	Δγ
/	/	/	/

j) Considere as colunas respeitantes aos erros Δx e Δy . Observa-se algum padrão de comportamento (monotonia)? Existe alguma relação óbvia entre a medida considerada e o seu erro? Que conclusão pode tirar?

k)	Para obter os dados da linearização dos valores experimentais, vamos utilizar as funções respetivas da calculadora
	e posteriormente verificar os resultados obtidos com o Excel (o processo para efetuar esta verificação está descrito
	no ficheiro "Tratamento dos dados experimentais usando Excel" disponível no Moodle).
l)	Utilizando os parâmetros obtidos no Excel, escreva a equação da reta na seguinte forma: $y=(m\pm \Delta m)x+(b\pm \Delta b)$
	Tenha em atenção os algarismos significativos e as unidades.
m)	Os valores obtidos para <i>m</i> e <i>b</i> estão de acordo com o que esperava em função dos resultados previstos na alínea
	g)? Analisando o gráfico dos dados experimentais discuta os possíveis motivos para as eventuais discrepâncias.

n)	Determine, a partir dos parâmetros da reta, a distância focal da lente utilizada e o respetivo erro. Escreva o resultado
	na forma $f\pm \Delta f$. Tenha em atenção as unidades e os algarismos significativos do resultado.

Análise e discussão dos resultados

o) Determine o erro relativo $\frac{\Delta f}{f}$ do resultado obtido na alínea anterior. Avalie se a precisão está dentro do critério convencionado (≤10%).

Bibliografia

Alonso, M. e Finn, E.J., *Física: um curso universitário*, vol. II, Edgard Blucher, São Paulo, 1977, 565 pp. Giancoli, D.C., *Physics: principles with applications*, 5ª edição, Prentice Hall, New Jersey, 1998, 1096 pp. Hecht, E., *Ótica*, Fundação Calouste Gulbenkian, Lisboa, 1991, 720 pp.