

Heavy metal tolerance in different willow genotypes cuttings. First stage development analysis

Corneanu Mihaela¹, Hernea Cornelia¹, Corneanu Gabriel², Sărac Ioan¹, Nețoiu Constantin³, Petcov Andreea Adriana¹, Hollerbach Wilhelm⁴

¹USAMVB Timisoara, Faculty of Horticulture and Forestry, Genetic Engineering Dept., Timisoara, Romania, e-mail: micorneanu@yahoo.com; ²University of Craiova, Faculty of Agriculture and Horticulture, Craiova, Romania; d³ Forest Research and Management Institute Bucharest, ⁴REBINA Agrar SRL; Timişoara, Romania

INTRODUCTION

The species of Salix genus, constitute a promising source in the action of fighting against the environment degradation, and offer remedy for about two third from the all degradation types. The majority of the willow species, present a good adaptation to hypoxic conditions, feature which suggest that they manifest a preference for mineral nutrition in comparison with organic one. Thus, many of willow species can be developed on soils with a big amount of minerals and/or radionuclides, being both phytoremediatory species, as well as pioneer ones, contributing to the soil restoration (Landberg and Greger 1994; 1996; Vervaeke et al., 2003; Meers et al., 2005; Wenzel et al., 2005; Borišev et al., 2009; Rowe et al., 2009; Borowiak et al., 2012).

In this paper are present some laboratory preliminary comparative tests of heavy metals tolerance on four Salix sp. genotypes. In order to evaluate the behavior of willow cuttings at different concentrations of heavy metals, has been installed an experiment whose results give us some basic information about the phenotypic response of plants to heavy metals.

MATERIAL AND METHODS

❖Biological material: clone 202 (Salix alba), hybrid 892 (Romanian genotypes); Inger (Salix alba) (Salix viminalis) and Gudrun (Salix viminalis) (Swedish genotypes). As plant material were used one-year-old cuttings (5-10 cm long), with 2-6 buds each.

Experimental design: ten experimental variants for each genotype: three concentrations of Cd, Ni, Pb and Control (tap water).

❖Methods:

> Biometrical observations: the roots number and length, the shoots number and length, the leaves number/shoot, viability of the shoots (days 10th and 20th).

> Statistics

All statistical analyses were performed with commercially available software (STATISTICA 10). The data were analyzed one-way analysis of variance (ANOVA), Duncan test. The differences were considered significant at a probability level of 95% (P < 0.05).

Metal	A (ppm/l)	B (ppm/l)	C (ppm/l)
Cd	1.0	3.0	6.0
Ni	50.0	150.0	450.0
Pb	50.0	150.0	450.0

RESULTS AND DISSCUSIONS

Phenotypic response of Salix genotypes to different concentrations of analyzed heavy metals is dependent by metal, concentration and genotype, as reveals the analysis of variance (Table 1-4).

Genotype										
	SS-Effect	df -Effect	MS - Effect	SS -Error	df - Error	MS - Error	F	P		
roots no./cutting 10 days	2488.8	3	829.59	4867.5	602	8.0855	102.6017	0.000000		
roots no./cutting 20 days	1519.3	3	506.42	7611.1	602	12.6430	40.0554	0.000000		
roots length (mm) 10 days	248 25 9.9	3	82753.29	224690.4	602	37 3.2 398	221.7161	0.000000		
roots length (mm) 20 days	227 44 8.0	3	75816.01	309338.0	602	513.8505	147.5449	0.000000		
%active buds	226610.8	3	75 53 6.93	204863.5	602	340.3048	221.9685	0.000000		
no. s hoots/bud	89.2	3	29.72	88.0	602	0.1461	203.4123	0.000000		
shoots length (cm)	263777.1	3	87925.69	416690.9	602	692.1776	127.0276	0.000000		
Leaves no./shoot	1263.2	3	421.08	4025.0	602	6.6860	62.9798	0.000000		

	ss - Effect	df -Effect	MS - Effect	88 -Error	df - Error	MS - Error	F	P
roots no./cutting 10 days	212.15	3	70.72	7144.1	602	11.867	5.95906	0.000524
roots no./cutting 20 days	695.13	3	231.71	8435.2	602	14.012	16.53664	0.000000
oots length (mm) 10 days	1586.13	3	528.71	471364.1	602	782.997	0.67524	0.567442
oots length (mm) 20 days	190 07 .10	3	6335.70	517778.9	602	86 0.0 98	7.36626	0.000075
%active buds	4393.70	3	1464.57	427 08 0.6	602	709.436	2.06441	0.103776
no. s hoots/bud	4.12	3	1.37	173.0	602	0.287	4.77377	0.002689
shoots length (cm)	76402.52	3	25467.51	604065.4	602	1003.431	25.38043	0.000000
Leaves no./shoot	646.40	3	215.47	4641.8	602	7.711	27.94423	0.000000

Table 4 Analysis of Variance Marked effects are significant at p < 0.05000 Concentration										
	SS-Effect	df -Effect	MS - Effect	\$\$ -Error	df - Error	MS - Error	F	р		
roots no./cutting 10 days	373.11	6	62.18	6983.1	599	11.6580	5.33407	0.000022		
roots no./cutting 20 days	749.37	6	124.90	8381.0	599	13.9916	8.92646	0.000000		
roots length (mm) 10 days	4817.15	6	802.86	468 13 3.1	599	781.5244	1.02730	0.406301		
roots length (mm) 20 days	182 28 .20	6	3038.03	518557.8	599	86 5.7 059	3.50931	0.002023		
%active buds	100 18.55	6	1669.76	421455.7	599	703.5989	2.37317	0.028332		
no. s hoots/bud	7.70	6	1.28	169.4	599	0.2829	4.53877	0.000163		
shoots length (cm)	91385.41	6	15230.90	589 08 2.5	599	983.4433	15.48732	0.000000		
Leaves no./shoot	922.12	6	153.69	4366.1	599	7.2889	21.08488	0.000000		

Cd stimulate significantly roots and shoots meristems differentiation, and slightly the cell division and elongation, as reveals the analysis of variance (Table 5, Figs 1-4). Cd (1-3ppm/l) stimulate foliar organogenesis, in most genotypes. H 892 proved to be resistant, even at a concentrations over the alert limits, Inger was tolerant, while clone 202 and Gudrun proved to be sensitive.

Ni inhibited significantly the shoots development, inducing clorosis of the young shoots and finally necrosis (Table 6, Figs. 5-8). Clone 202 and Inger are most sensitive to Ni, with very few plants survived at the end of experiment.

Pb, in highest concentration, inhibited significantly both rhysogenesis and organogenesis, as well as shoot elongation. A tolerant behavior had H892 and Inger.

Table 5. Analysis of Variance Cd (Marked effects are significant at p < 0.05000)

Table 6.	•		NI (Marked e		•	•	•	
	SS - Effect	df -Effect	MS - Effect	\$\$ -Error	df - Error	MS - Error	F	P
roots no./cutting 10 days	21.85	3	7.28	1690.6	237	7.1333	1.02110	0.383971
roots no./cutting 20 days	8.18	3	2.73	2082.5	237	8.7870	0.31021	0.818001
roots length (mm) 10 days	583.17	3	194.39	180767.8	237	762.7331	0.25486	0.857830
roots length (mm) 20 days	5234.98	3	17 44 .99	207765.6	237	876.6480	1.99053	0.116072
%active buds	62.26	3	20.75	179494.3	237	757.3597	0.02740	0.993866
no. s hoots/bud	1.05	3	0.35	57.0	237	0.2403	1.45903	0.226417
shoots length (cm)	33183.53	3	11061.18	225057.6	237	949.6100	11.64813	0.000000
Leaves no./shoot	224.41	3	74.80	1838.7	237	7.7582	9.64201	0.000005

Table 7	Analysis of \	/ariance P	b (Marked e	ffects are s	ignificant	atp < 0.050	00)	
	-		MS - Effect		_	-	-	р
roots no./cutting 10 days	10.01	3	3.338	1933.1	236	8.191	0.407465	0.747777
roots no./cutting 20 days	116.81	3	38.938	200 4. 2	236	8.492	4.585111	0.003851
roots length (mm) 10 days	3259.35	3	1086.451	192692.6	236	816.494	1.330629	0.265065
roots length (mm) 20 days	1977.83	3	659.277	223 27 2.6	236	946.070	0.696858	0.554797
%active buds	934.14	3	311.380	166 56 0.7	236	705.766	0.441194	0.723756
no. s hoots/bud	3.05	3	1.015	59.6	236	0.253	4.019907	0.008152
shoots length (cm)	24964.09	3	83 21 .36 4	276 48 1.9	236	1171.533	7.102968	0.000137

Table 7 Analysis of Variance Pb (Marked effects are significant at p < 0.05000)											
	ss-Effect	df -Effect	MS - Effect	\$\$ -Error	df - Error	MS - Error	F	P			
roots no./cutting 10 days	10.01	3	3.338	1933.1	236	8.191	0.407465	0.74777			
roots no./cutting 20 days	116.81	3	38.938	200 4. 2	236	8.492	4.585111	0.00385			
roots length (mm) 10 days	3259.35	3	1086.451	192692.6	236	816.494	1.330629	0.26506			
roots length (mm) 20 days	1977.83	3	659.277	223 27 2.6	236	946.070	0.696858	0.55479			
%active buds	934.14	3	311.380	166 56 0.7	236	705.766	0.441194	0.72375			
no. s hoots/bud	3.05	3	1.015	59.6	236	0.253	4.019907	0.00815			
shoots length (cm)	24964.09	3	8321.364	276 48 1.9	236	1171.533	7.102968	0.00013			
Leaves no./shoot	183.60	3	61.200	1897.8	236	8.042	7.610496	0.00007			

CONCLUSIONS

>There are significant differences, regarding the developmental behaviour among the genotypes:

❖CLONE 202 – tollerant; Ni > Pb > Cd ❖H 892- rezistant ; Cd > Ni > Pb ❖INGER- tolerant Ni > Cd > Pb ❖GUDRUN- sensitive; Ni > Pb > Cd

>The best results for all treatment variants were registered in hybrid 892. Clone 202, hybrid 892 and Inger are sensitive to highest concentration of lead (450.0 ppm) and tolerant to all other treatment variants, while Gudrun is sensitive to Ni, but all the concentrations of Cd and Pb presented an incentive effect on shoots development.

First stage development, in the presence of heavy metals may provide guidance in choosing proper genotypes for the field trial on degraded soil (industrial pollution).

Plot of Means and Conf. Intervals (95,00%)

Plot of Means and Conf. Intervals (95.00%)

Categ. Box & Whisker Plot: no. shoots/bud

2,6 2,4 2,2 2,0 1,8 1,6 1,4 1,2 1,0 0,8	Control	Pb A Pb A Pb A	Pb B	J. Box & \	Whisker Plo Control	Pb A Genotyp	Pb B	Pb C	12
2,4 2,2 2,0 1,8 1,6 1,4 1,2 1,0 0,8	Control	Pb A Genotype:	Pb B Inger	Pb C	Control	Pb A Genotype	Pb B	Pb C	■ Mean Mean±SE Mean±1,96*SE

roots no./cutting 10 days Borišev M, Pajević S, Nikolić N, Pilipović A, Krstić B, Orlović S (2009) Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Polish J. Environ. Stud., 18 (4): 553-561

andberg T, Greger M, (1994) Can heavy metal tolerant clones of Salix be used as vegetation filters on heavy metal contaminated land? In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewaters and sludges. A biological purification system Report 50. Swedish Univ. Agric. Sci., Uppsala, pp 133-144. Landberg T, Greger M (1996) Differences in uptake and tolerance to heavy metals in Salix from unpolluted areas. Appl. Geochem. 11:175–180. Mukti G (2014) – Heavy metal stress in plants: a review. International Journal of Advanced Research, 2

Borowiak K, Drzewiecka K, Mogdziak Z, Gaseka M, Mleczek M, (2012) Effects of Ca/Mg ions ratio on copper accumulation, photosynthetic activity and growth of Cu²⁺ - treated Salix viminalis L. "Cannabina". Phytosynthetica 50 (3): 353-361. doi: 10.1007/s11099-

(6): 1043-1055. Meers E, Lamsal S, Vervaeke P, Hopgood M, Lust N, Tack FMG (2005) - Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environ Pollut. 137:354–364.

Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N, (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut. 126:275–282.

Wani BA, Khan A, Bodha RH (2011) Salix: A viable option for phytoremediation. African J., Environ. Science & Technol., 5 (8): 567-571

Wenzel WW, Wieshammer G, Sommer P, Unterbrunner ER, Puschenreiter M, Dos Santos MN (2005) Phytoremediation of metal contaminated soils using trees (Salix, Populusa sp.): prospects and limits. University of Natural Resources and Applied Life Sciences, Vienna, 30 pp. Pulawy/March 10-12, 2005.