Sprawozdanie 8

Interpolacja funkcjami sklejanymi poprzez wyznaczenie wartości drugich pochodnych w węzłach

1. Wstęp teoretyczny

Interpolacja funkcjami sklejanymi – metoda numeryczna polegająca na przybliżaniu nieznanej funkcji wielomianami niskiego stopnia. W przedziale [a, b] mamy n+1 punktów, takich że:

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

Punkty x_i nazywane są węzłami interpolacji. Punkty te określają podział przedziału [**a**, **b**] na **n** podprzedziałów tj. [x_i , x_{i+1}]. W każdym takim podprzedziale interpoluje się funkcję wielomianem interpolacyjnym. "Połączenie" tych wielomianów ma utworzyć funkcję sklejaną.

Interpolacja funkcjami sklejanymi poprzez wyznaczenie wartości drugich pochodnych w węzłach.

Oznaczmy $m_j = s^2(x_j)$, j = 0,1,2...,n. Zgodnie z założeniem druga pochodna funkcji s(x) jest ciągła i liniowa w każdym z podprzedziałów $[x_{i-1}, x_i]$, więc możemy całkować nasze wyrażenie dwukrotnie. W wyniku dostajemy następujące wyrażenie:

$$s_{i-1} = m_{i-1} \frac{(x_i - x)^3}{6h_i} + m_i \frac{(x - x_{i-1})^3}{6h_i} + A_i (x - x_{i-1}) + B_i$$
 (1)

gdzie: i- numer podprzedziału, w którym leży argument wartości wyznaczanej.

Stałe A_i i B_i można obliczyć korzystając z warunku interpolacji i mają one następującą postać:

$$A_{i} = \frac{y_{i} - y_{i-1}}{h_{i}} - \frac{h_{i}}{6} (m_{i} - m_{i-1})$$
 (2)
$$B_{i} = y_{i-1} - m_{i-1} \frac{h_{i}^{2}}{6}$$
 (3)

Teraz problem sprowadza się do znalezienie m_i i m_{i-1} . Aby go rozwiązać, należy rozwiązać układ równań liniowych:

$$\mathbf{A}\vec{m} = \vec{d} \quad (4)$$

Którego generatorem jest:

$$\mu_i m_{i-1} + 2m_i + \lambda_i m_{i+1} = d_i$$
 (5)

Przy czym m_i , to szukane wartości drugich pochodnych w węzłach. Pozostałe oznaczenia to:

$$\lambda_{i} = \frac{h_{i+1}}{h_{i} + h_{i+1}}$$
 (6)
$$\mu_{i} = 1 - \lambda_{i}$$
 (7)

Wektor wyrazów wolnych inicjalizowany jest w następujący sposób:

$$d_i = \frac{6}{h_i + h_{i+1}} \left(\frac{y_{i+1} - y_i}{h_{i+1}} - \frac{y_i - y_{i-1}}{h_i} \right)$$
 (8)

Odległość międzywęzłową określa h_i :

$$h_i = x_i - x_{i-1}$$
 (9)

Należy określić jeszcze warunki brzegowe:

$$m_0 = \alpha$$
, $m_n = \beta$ (10)

Po wprowadzeniu powyższych warunków układ (4) przyjmuje postać:

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & \cdots & 0 \\ \mu_{1} & 2 & \lambda_{1} & \cdots & \cdots & 0 \\ 0 & \mu_{2} & 2 & \lambda_{2} & \cdots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \mu_{n-2} & 2 & \lambda_{n-2} \\ 0 & \cdots & \cdots & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m_{0} \\ m_{1} \\ \vdots \\ \vdots \\ m_{n-2} \\ m_{n-1} \end{bmatrix} = \begin{bmatrix} \alpha \\ d_{1} \\ \vdots \\ \vdots \\ d_{n-2} \\ \beta \end{bmatrix}$$
 (11)

Po rozwiązaniu układu równań - znalezieniu współczynników m_i – wyznaczamy funkcję sklejaną wg wzoru (1).

2. Problem

Na laboratorium trzeba było wykonać interpolacje funkcjami sklejanymi dla funkcji:

$$f_1(x) = \frac{1}{1+x^2} \quad (12)$$

oraz

$$f_2(x) = \cos(2x) \quad (13)$$

Robiliśmy to dla różnej ilości węzłów $\mathbf{n}=\mathbf{5},\mathbf{8},\mathbf{21}$ w przedziale $\mathbf{x}\in[-5,5]$. Odległość pomiędzy węzłami liczyliśmy za pomocą poniższego wzoru:

$$h = \frac{x_{max} - x_{min}}{n} \quad (14)$$

Trzeba było zaimplementować dwie funkcji. Pierwsza (**wynacz_M**) zwracała wartości drugich pochodnych w węzłach, druga (**wyznacz_Sx**) wyznaczała wartości funkcji w położeniach międzywęzłowych. W funkcji **wynacz_M** aby rozwiązać układ (11) (w naszym przypadku $\alpha = 0, \beta = 0$) korzystaliśmy z funkcji biblioteki **GSL**:

gsl_linalg_HH_svx (gsl_matrix *A, gsl_vector *d),

gdzie: A - jest macierzą układu

d - wektorem wyrazów wolnych \vec{d} , który w wyniku działania funkcji zostanie zamieniony na rozwiązanie \vec{m}_{ullet}

Na końcu dla funkcji danej wzorem (12) oraz dla n = 10 węzłów w przedziale $\mathbf{x} \in [-5, 5]$, wyznaczyliśmy wartości drugich pochodnych za pomocą funkcji **wynacz_M** oraz za pomocą wzoru:

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f(x - \delta x) - 2f(x) + f(x + \delta x)}{\delta x}$$
 (15)

Gdzie: $\delta x = 0.01$

3. Wyniki

Wyniki działania programu zapisaliśmy do pliku, na podstawie którego wygenerowaliśmy wykresy w GnuPlot.

n = 51 $f_1(x) = \frac{1}{(1+x^2)}$ 8.0 $Wezly(x_i, f(x_i))$ 0.6 \cong 0.4 0.2 0 -0.2-4 -2 0 2 4

Wykres (1). Wykres funkcji f_1 oraz jej interpolacji dla n=5

Wykres (2). Wykres funkcji f_2 oraz jej interpolacji dla n=5

Dla pięciu węzłów dopasowanie funkcji f_1 nie jest idealne, dla funkcji f_2 dopasowanie w ogóle jest nieudane.

Wykres (3). Wykres funkcji f_1 oraz jej interpolacji dla n=8

Dla funkcji f_1 zwiększenie liczby węzłów do 8 nie poprawiło sytuacji, dla funkcji f_2 dokładność jest już lepsza, ale nie jest to jeszcze dopasowanie którego oczekujemy.

• n = 21

Wykres (5). Wykres funkcji f_1 oraz jej interpolacji dla n = 21

Wykres (6). Wykres funkcji f_2 oraz jej interpolacji dla n=21

Dla funkcji f_1 oraz f_2 zwiększenie liczby węzłów do 21 poprawiło sytuację. Teraz wykresy funkcji oraz ich dopasowanie pokrywają się ze sobą.

Wykres(7). Wartości drugich pochodnych wyznaczone analityczne oraz numeryczne(n=10)

4.Wnioski

Interpolacja funkcjami sklejanymi poprzez wyznaczenie wartości drugich pochodnych w węzłach pozwala osiągnąć dokładną interpolację funkcji. Im większa ilość węzłów tym dokładniejsze nasze wyniki. Chociaż dla funkcji f_2 oraz ilości węzłów równej 21 nie udało się osiągnąć idealnego dopasowania. Na wykresie (6) widzimy, że na początku oraz na końcu jest rozbieżność wartości.