Suites numériques

1. Rappel de l'an dernier

Définition 1.

- Une *suite* est une application $u : \mathbb{N} \to \mathbb{R}$.
- Pour $n \in \mathbb{N}$, on note u(n) ou u_n le n-ème terme ou terme général de la suite.

La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) . Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel n_0 plus grand que 0, on note alors $(u_n)_{n\geq n_0}$.

Exemples.

- $(\sqrt{n})_{n>0}$ est la suite de termes : 0, 1, $\sqrt{2}$, $\sqrt{3}$,...
- $(F_n)_{n\geq 0}$ définie par $F_0=1$, $F_1=1$ et la relation $F_{n+2}=F_{n+1}+F_n$ pour $n\in\mathbb{N}$ (suite de Fibonacci). Les premiers termes sont 1, 1, 2, 3, 5, 8, 13, ... Chaque terme est la somme des deux précédents.

2. Suite majorée, minorée, bornée

Définition 2.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est **majorée** si : $\exists M\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\leq M$.
- $(u_n)_{n\in\mathbb{N}}$ est **minorée** si : $\exists m\in\mathbb{R} \quad \forall n\in\mathbb{N} \quad u_n\geq m$.
- $(u_n)_{n\in\mathbb{N}}$ est bornée si elle est majorée et minorée, ce qui revient à dire :

$$\exists (m, M) \in \mathbb{R}^2 \quad \forall n \in \mathbb{N} \quad m \le u_n \le M.$$

Mini-exercice. Démontrer que la suite (u_n) définie sur \mathbb{N} par $u_n = \sin(n^2) + 2$ est bornée.

3. Sens de variation d'une suite

Définition 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est *croissante* si $\forall n\in\mathbb{N}$
- $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si $\forall n\in\mathbb{N}$
- $(u_n)_{n\in\mathbb{N}}$ est **décroissante** si $\forall n\in\mathbb{N}$
- $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante si $\forall n\in\mathbb{N}$
- $(u_n)_{n\in\mathbb{N}}$ est *monotone* si elle est croissante ou décroissante.
- $(u_n)_{n\in\mathbb{N}}$ est *strictement monotone* si elle est strictement croissante ou strictement décroissante.

Exemple. Cas d'une suite croissante mais non strictement croissante.

Remarques.

- Il peut arriver qu'une suite soit *croissante* (resp. décroissante) à partir d'un certain rang n_0 : pour tout $n \ge n_0$, $u_{n+1} \ge u_n$ (resp. $u_{n+1} \le u_n$).
- Il existe des suites *ni croissantes ni décroissantes*, par exemple la suite *u* définie pour tout entier naturel non nul par $u_n = \frac{(-1)^n}{n}$:

- $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si : $\forall n\in\mathbb{N}$ $u_{n+1}-u_n\geq 0$.
- Si $(u_n)_{n\in\mathbb{N}}$ est une suite à termes strictement positifs, elle est croissante si et seulement si :

$$\forall n \in \mathbb{N}, \quad \frac{u_{n+1}}{u_n} \ge 1.$$

 $\mathbf{Mini\text{-}exercices.}$ Étudier le sens de variation des suites u et v définies par :

1. $u_{n+1} = 2u_n^2 + u_n$ et $u_0 = -3$ avec $n \in \mathbb{N}$.

2.
$$v_n = \frac{2^n}{n}$$
 pour $n \in \mathbb{N}^*$.

4. Limite infinie d'une suite

4.1 Limite infinie

Définition 4.

Une suite (u_n) a pour limite $+\infty$ quand n tend vers $+\infty$, si tout intervalle de la forme A; $+\infty$ [contient tous les termes u_n à partir d'un certain rang.

Autrement dit, pour tout réel A, il existe un entier n_0 tel que pour tout entier $n \ge n_0$, on ait $u_n > A$.

On note:

$$\lim_{n \to +\infty} u_n = +\infty$$

On dit dans ce cas que la suite (u_n) diverge vers $+\infty$.

Définition 5.

De même, une suite (u_n) a pour limite $-\infty$ quand n tend vers $+\infty$ si tout intervalle de la forme $]-\infty$; A[contient tous les termes u_n à partir d'un certain rang.

On dit dans ce cas que la suite (u_n) diverge vers $-\infty$.

4.2 Premières limites à connaître

Théorème.

- $\lim_{n \to +\infty} n = \cdots$
- $\lim_{n \to +\infty} n^2 = \cdots$

- $\lim_{n \to +\infty} \sqrt{n} = \cdots$
- $\lim_{n \to +\infty} n^k = \cdots$ pour tout entier $k \geqslant 1$

Mini-exercice. Soit la suite (u_n) définie sur \mathbb{N} par $u_n = 2n + 1$.

- 1. Conjecturer la limite de la suite (u_n) en $+\infty$.
- 2. Résoudre l'inéquation $u_n > A$ où A est un réel donné.
- 3. Justifier alors que la suite (u_n) a pour limite $+\infty$.

5. Limite finie d'une suite

5.1 Suite convergente

Définition 6.

Une suite (u_n) admet pour limite le réel ℓ quand n tend vers $+\infty$, si tout intervalle ouvert contenant ℓ contient tous les termes de la suite \hat{a} partir d'un certain rang n_0 .

On note:

$$\lim_{n \to +\infty} u_n = \ell$$

On dit dans ce cas que la suite (u_n) converge vers ℓ .

Mini-exercice.

Soit u définie sur \mathbb{N} par $u_n = \frac{1}{6n+2}$.

Conjecturer la limite de la suite u avec votre calculatrice puis prouver le résultat affiché par la calculatrice.

Point d'accumulation

Suites de référence 5.2

Théorème.

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

$$\lim_{n \to +\infty} \frac{1}{n^2} = 0$$

$$\lim_{n \to +\infty} \frac{1}{n^2} = 0$$

$$\bullet \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

•
$$\lim_{n \to +\infty} \frac{1}{n^k} = 0$$
 pour tout entier $k \geqslant 1$

Théorème. Si une suite (u_n) admet une limite le réel ℓ quand n tend vers $+\infty$ alors cette limite est unique et on note :

$$\lim_{n \to +\infty} u_n = \ell$$

5.3 Des suites sans limite

Une suite n'a pas nécessairement de limite. C'est le cas par exemple pour les suites « alternées » ou celles dont les valeurs oscillent. Dans ces cas, on dira que ces suites sont également divergentes.

Exemple. La suite (u_n) définie sur \mathbb{N} par $u_n = (-1)^n$ alterne entre les valeurs -1 et 1:

6. Théorèmes d'encadrement et de comparaison

6.1 Théorème des gendarmes ou d'encadrement des limites

Théorème.

Si les suites (u_n) , (v_n) et (w_n) sont telles que :

- à partir d'un certain rang $v_n \leq u_n \leq w_n$;
- (v_n) et (w_n) ont la même limite finie ℓ ,

alors la suite (u_n) converge et a pour limite ℓ .

Démonstration

Soit I un intervalle ouvert contenant ℓ .

Comme la suite (w_n) converge vers ℓ l'intervalle I contient tous les termes v_n à partir d'un certain rang n_0 . De même pour la suite (v_n) , à partir d'un certain rang n_1 tous les termes $v_n \in I$.

On pose $N = max(n_0, n_1)$ d'où pour $n \ge N$ tous les termes v_n et tous les w_n sont dans l'intervalle I. Or pour tout $n \in \mathbb{N}$ on a $v_n \le u_n \le w_n$ d'où à partir du rang N tous les termes $u_n \in I$.

D'après la définition la suite (u_n) converge et sa limite est ℓ

Mini-exercice.	. Déterminer la limi	ite de la suite v d	léfinie sur \mathbb{N}^* j	$par v_n = \frac{1+}{}$	$\frac{\cos n}{n}$.

6.2 Théorème de comparaison

Théorème.

Soit (u_n) , (v_n) deux suites définies sur \mathbb{N} .

Si à partir d'un certain rang, $u_n \geqslant v_n$ et si $\lim_{n \to +\infty} v_n = +\infty$ alors :

$$\lim_{n \to +\infty} u_n = +\infty$$

Démonstration

Soit I un intervalle de la forme A; $+\infty$, où A est un réel.

On sait que $\lim_{n\to +\infty} v_n = +\infty$ donc d'après la définition il existe un rang n_0 à partir duquel l'intervalle contient tous les v_n c'est-à-dire pour tout $n \ge n_0$ on a $v_n > A$. Or on sait par hypothèse qu'à partir d'un certain rang n_1 on a $u_n \ge v_n$.

Posons $N = max(n_0, n_1)$, pour $n \ge N$ on a $u_n \ge v_n > A$, donc l'intervalle I contient tous les termes de la suite (u_n) à partir du rang N: on en déduit que $\lim_{n \to +\infty} u_n = +\infty$.

Le même type de théorème existe pour $-\infty$ et il se démontre de la même manière.

Théorème.

Soit (u_n) et (v_n) deux suites définies sur \mathbb{N} .

Si à partir d'un certain rang, $u_n \leq v_n$ et si $\lim_{n \to +\infty} v_n = -\infty$ alors :

$$\lim_{n \to +\infty} u_n = -\infty$$

Opérations et limites 7.

7.1Somme

Limite de (u_n)	ℓ	ℓ	$+\infty$	$-\infty$
Limite de (v_n)	ℓ'	$\pm \infty$	$+\infty$	$-\infty$
Limite de $(u_n + v_n)$	$\ell + \ell'$	$\pm \infty$	$+\infty$	$-\infty$

Dans le cas où $\lim_{n\to +\infty}u_n=-\infty$ et $\lim_{n\to +\infty}v_n=+\infty$ on ne peut pas tirer de conclusion générale pour $(u_n + v_n)$, il s'agit d'une **forme indéterminée**, forme que l'on essaiera de lever en fonction de l'expression donnée. En tout état de cause, il n'y a pas de résultat général.

7.2**Produit**

Limite de (u_n)	ℓ	$\ell \neq 0$	$+\infty$	$+\infty$	$-\infty$
Limite de (v_n)	ℓ'	$\pm \infty$	$+\infty$	$-\infty$	$-\infty$
Limite de $(u_n \times v_n)$	$\ell \times \ell'$	$*\infty$	$+\infty$	$-\infty$	$+\infty$

*: + ou – appliquer la règle des signes.

Dans le cas où $\lim_{n\to+\infty}u_n=0$ et $\lim_{n\to+\infty}v_n=\pm\infty$, on ne peut pas tirer de conclusion générale pour $(u_n \times v_n)$, il s'agit d'une forme indéterminée qui nécessitera une étude particulière.

7.3 Quotient

Limite de (u_n)	ℓ	ℓ	$+\infty$	$-\infty$
Limite de (v_n)	$\ell' \neq 0$	$\pm\infty$	$\ell' \neq 0$	$\ell' \neq 0$
Limite de $\left(\frac{u_n}{v_n}\right)$	$\frac{\ell}{\ell'}$	0	*∞	*∞

*: + ou - appliquer la règle des signes.

Dans les cas où $\lim u_n = \pm \infty$ et $\lim v_n = \pm \infty$, $\lim u_n = 0$ et $\lim v_n = 0$, on ne peut pas tirer de conclusion générale pour $\left(\frac{u_n}{v_n}\right)$, il s'agit de **formes indéterminées**.

ъл	α 1 1	1 1,	1 • ,	• ,
Mini-exercices.	Calcular	la limita	CLOC CILIT	ac cilitrantac •
MIIII-CVCI CICCO	Carculer	ia minic	uco outo	co ourvanteo .

1.
$$(u_n)$$
 définie sur \mathbb{N}^* par $u_n = 4n\left(1 - \frac{1}{n}\right)$.
2. (v_n) définie sur \mathbb{N} par $v_n = \frac{n+1}{n^2+1}$.

2.
$$(v_n)$$
 définie sur \mathbb{N} par $v_n = \frac{n+1}{n^2+1}$.

8. Limites de suites monotones

Propriété 1. Si une suite croissante a pour limite ℓ , alors tous les termes de la suite sont inférieurs ou égaux à ℓ .

Démonstration

Soit une suite (u_n) croissante de limite ℓ .

Raisonnons **par l'absurde**, supposons qu'il existe un terme u_k strictement supérieur à ℓ .

Comme la suite (u_n) est croissante pour tout $n \ge k$ on a $u_n \ge u_k > \ell$.

L'intervalle ouvert $I =]\ell - 1$; $u_k[$ contient ℓ mais pas les u_n pour n > k.

On obtient une contradiction avec le fait que $\lim_{n\to+\infty}u_n=\ell$ donc pour tout $n\in\mathbb{N}$ on a $u_n\leqslant\ell$.

Théorème.

- Une suite croissante majorée converge, c'est-à-dire admet une limite finie.
- Une suite décroissante minorée converge, c'est-à-dire admet une limite finie.

Ce théorème est un théorème d'existence, il justifie l'existence d'une limite finie mais ne précise pas cette limite.

Théorème.

- Une suite **croissante non majorée** a pour limite $+\infty$.
- Une suite **décroissante non minorée** a pour limite $-\infty$.

Démonstration

Soit une suite (u_n) croissante non majorée et A un réel. La suite est non majorée alors il existe donc un entier k tel que $u_k > A$. La suite est croissante donc pour tout $n \ge k$ on a $u_n \ge u_k > A$. Tous les termes de la suite appartiennent à]A; $+\infty[$ à partir du rang k, donc $\lim_{n \to +\infty} u_n = +\infty$.

9. Limites de suites arithmétiques et géométriques

9.1 Suites arithmétiques

Propriété 2. Soit (u_n) une suite arithmétique de raison r.

- Si r < 0 on a $\lim_{n \to +\infty} (u_n) = -\infty$.
- Si r=0 alors la suite est **constante** et égale à u_0 , $\lim_{n\to+\infty}(u_n)=u_0$.
- Si r > 0 alors on a $\lim_{n \to +\infty} (u_n) = +\infty$.

9.2 Suites géométriques

Propriété 3. Soit la suite géométrique (q^n) définie sur \mathbb{N} avec q un réel.

- Si q > 1 alors $\lim_{n \to +\infty} (q^n) = +\infty$.
- Si q = 1 alors $\lim_{n \to +\infty} (q^n) = 1$.
- Si -1 < q < 1 alors $\lim_{n \to +\infty} (q^n) = 0$.
- Si $q \leq -1$ alors la suite (q^n) n'a pas de limite.

<u>Démonstration</u>

- Pour q>1 il existe un réel a>0 tel que q=1+a, on utilise l'inégalité de Bernoulli vue au chapitre 1 d'où pour tout $n\in\mathbb{N}$ on a $(1+a)^n\geqslant 1+na$ soit $q^n\geqslant 1+na$ or $\lim_{n\to +\infty}1+na=+\infty$ d'après le théorème de comparaison on a $\lim_{n\to +\infty}q^n=+\infty$.
- Pour -1 < q < 1, le cas q = 0 se résume à une suite constante égale à 0. Si $q \neq 0$ alors on peut considérer la suite $\left(\frac{1}{|q|}\right)^n$. On a $\frac{1}{|q|} > 1$ comme vu précédemment on a $\lim_{n \to +\infty} \left(\frac{1}{|q|}\right)^n = +\infty$. Par passage à l'inverse on en déduit que $\lim_{n \to +\infty} |q|^n = 0$ soit $\lim_{n \to +\infty} q^n = 0$.

Propriété 4. Soit (u_n) une suite géométrique de raison q et de premier terme u_0 .

	$u_0 < 0$	$u_0 > 0$	
$q \leqslant -1$	Pas de limite		
-1 < q < 1	la suite (u_n) tend vers 0		
q = 1	la suite (u_n) tend vers u_0		
q > 1	la suite (u_n) tend vers $-\infty$	la suite (u_n) tend vers $+\infty$	

Mini-exercice. Soit la suite (u_n) définie par $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = 2u_n + 1$.

- 1. Démontrer par récurrence que pour tout entier $n \ge 1$, $u_n \ge 2^{n-1}$.
- 2. En déduire que la suite (u_n) diverge vers $+\infty$.