Trajectory Pattern Mining in Social Media

Ling-Yin Wei (魏綾音)

Advisor: Prof. Wen-Chih Peng

Co-Advisor: Prof. Wang-Chien Lee

Institute of Computer Science and Engineering National Chiao Tung University

Outline

- Introduction
- Research work
 - Exploring Pattern-Aware Travel Routes for Trajectory Search
 - Constructing Popular Routes from Uncertain Trajectories
- Conclusion
- Future work

Introduction (1/2)

Social media is everywhere

- E.g., GPS logs, geo-tagged photos, check-ins etc.
 - Spatial information

Introduction (2/2)

- Trajectory
 - A sequence of geo-locations

Work 1: Exploring Pattern-Aware Travel Routes for Trajectory Search

Introduction (1/3)

- Existing GPS-related web services
 - Query: a spatial range (e.g., Kenting)
 - Output: a set of trajectories

Which trajectories are interesting?

Introduction (2/3)

- Existing GPS-related web services
 - Query: a spatial range (e.g., Kenting)
 - Output: a ranked list of trajectories

Kending, Taiwan, Taiwan Road biking | 24.1 miles

Introduction (3/3)

User preferences

- In-breadth trip
 - Visit as many regions-of-interest (ROIs) as possible
- In-depth trip
 - Stop a few ROIs for an in-depth visit

Problem Definition

Data

Travel trajectory dataset

•	E.g.,	tid	index	time	lon	lat
		1		1269130206	120.910332	23.865391
		1	2	1269130210	120.910332	23.865391
				•		

- A spatial range
- A user-preference of depth/breadth

Output

- Top K trajectories from historical data
 - Passed the query range

Related Work

Trajectory search

- Search by a trajectory [Chen et al. SIGMOD'05, Trajcevski et al. ACM GIS'07]
- Search by locations [Chen et al. SIGMOD'10]

Trip planning

- Fastest/Popular routes from a source to a destination [Yuan et al. IEEE TKDE'12, Chen et al. ICDE'11]
- Visiting sequences of regions-of-interest (ROIs) [Zheng et al. WWW'09, Kurashima et al. CIKM'10, Arase et al. ACM MM'10, Yin et al. SDM'11]

Issues (1/2)

- How to formulate a trajectory score?
- Observation
 - Trip planning
 - A travel route passes through some regions-of-interest (ROIs)

Issues (2/2)

 How to efficiently search top K trajectories from historical trajectories?

Idea

- Only compute the scores of candidate trajectories
- Iteratively reduce the searching space

Framework

- Travel behavior exploration (off-line)
 - Regions-of-interest (ROIs) discovery
 - ROIs scoring
 - User movement graph
- Trajectory search (on-line)
 - Trajectory score functions
 - Breadth-trip score
 - Depth-trip score
 - Bounded trajectory search algorithm

Travel Behavior Exploration (1/4)

Phase 1: ROIs discovery

從路徑建立ROI

- Divide a 2D space into non-overlapping cells
 - Uncertainty of GPS logs
 - Discover ROIs instead of points-of-interest (POIs)
- Determine a set of ROIs
 - A cell is a ROI if the number of distinct trajectories that passed the cell is greater than a user-specified threshold

Travel Behavior Exploration (2/4)

Phase 2: ROIs scoring

將路徑轉為ROI順序

- Transform trajectories
 - Transform each trajectory into a sequence of ROIs
 - E.g., Tid Sequence of ROIs (Travel Route) $Tr_1 \quad R_1 \longrightarrow R_4 \longrightarrow R_7$ $Tr_2 \quad R_2 \longrightarrow R_5 \longrightarrow R_7 \longrightarrow R_4 \longrightarrow R_5 \longrightarrow R_6$
- Construct a user movement graph
 - Travel sequential relationships

Travel Behavior Exploration (3/4)

User movement graph

Tid	Sequence of ROIs (Travel Route)
Tr_1	$R_1 \dashrightarrow R_4 \dashrightarrow R_7$
Tr_2	$R_2 \dashrightarrow R_5 \dashrightarrow R_7 \dashrightarrow R_4 \dashrightarrow R_5 \dashrightarrow R_6$
Tr_3	$R_1 \dashrightarrow R_5 \dashrightarrow R_7$
Tr_4	$R_2 \dashrightarrow R_4 \dashrightarrow R_8$
Tr_5	$R_2 \dashrightarrow R_5 \dashrightarrow R_7$
Tr_6	$R_5 \dashrightarrow R_7 \dashrightarrow R_8 \dashrightarrow R_6$
Tr_7	$R_3 \dashrightarrow R_5 \dashrightarrow R_1$
Tr_8	$R_3 \dashrightarrow R_6 \dashrightarrow R_2$
Tr_9	$R_5 \dashrightarrow R_9 \dashrightarrow R_6$
Tr_{10}	$R_4 \dashrightarrow R_7 \dashrightarrow R_9$

• Weight on edge $\langle R_i, R_i \rangle$ is

$$w_{\langle R_i, R_j \rangle} = \frac{\sum_{Tr_h \in TRD, \langle R_i, R_j \rangle \subset Tr_h} \frac{1}{\deg^+(R_i | Tr_h)}}{|\bigcup_{R_l \in \mathfrak{R}, R_i \neq R_l} \{Tr_k | Tr_k \in TRD, \langle R_i, R_l \rangle \subset Tr_k\}|}$$

where $deg^{+}(R_i|Tr) = |\{R_j| < R_i, R_j > \subset Tr, R_i \neq R_j\}|$

Travel Behavior Exploration (4/4)

Attractive scores of ROIs

Iteratively compute it until scores converge

where
$$M = \begin{pmatrix} 1 - \alpha & \alpha \cdot w_{\langle R_1, R_1 \rangle} & \cdots & \alpha \cdot w_{\langle R_m, R_1 \rangle} \\ 1 - \alpha & \alpha \cdot w_{\langle R_1, R_2 \rangle} & \cdots & \alpha \cdot w_{\langle R_m, R_2 \rangle} \\ \vdots & & \ddots & \\ 1 - \alpha & \alpha \cdot w_{\langle R_1, R_m \rangle} & \cdots & \alpha \cdot w_{\langle R_m, R_m \rangle} \end{pmatrix}$$

- parameter $\alpha \in [0, 1)$
- $w_{\langle R_i, R_i \rangle} = 0$

Framework

- Travel behavior exploration (off-line)
 - Regions-of-interest (ROIs) discovery
 - ROIs scoring
 - User movement graph
- Trajectory search (on-line)
 - Trajectory score functions
 - Breadth-trip score
 - Depth-trip score
 - Bounded trajectory search (BTS) algorithm

Trajectory Score Function (1/2)

- In-breadth trip
 - Visit as many ROIs as possible
- In-depth trip
 - Stop a few ROIs for an in-depth visit

Trajectory Score Function (2/2)

Breadth-trip score

$$BT(Tr) = \sum_{\{R_i | R_i \in Tr. VS \cap R_Q\}} S(R_i)$$

Depth-trip score

$$DT(Tr) = \frac{1}{|\{R_i|R_i \in Tr.VS \cap R_Q\}|} \sum_{\{R_i|R_i \in Tr.VS \cap R_Q\}} S(R_i)$$

 R_4

1.11

Query Range Q

$$Tr_1: R_1 \rightarrow R_5 \rightarrow R_7 \rightarrow R_6 \rightarrow R_8$$

$$BT(Tr_1) = 1.45+1.34+1.59+0.97=5.35$$

 $DT(Tr_1) = (1.45+1.34+1.59+0.97)/4$
= 1.338

Trajectory Search (1/2)

Naïve method

 Calculate the scores of the trajectories passing query range Q and then rank them

Tid	Sequence of ROIs (Travel Route)
Tr_1	$R_1 \dashrightarrow R_4 \dashrightarrow R_7$
Tr_2	$R_2 \dashrightarrow R_5 \dashrightarrow R_7 \dashrightarrow R_4 \dashrightarrow R_5 \dashrightarrow R_6$
Tr_3	$R_1 \dashrightarrow R_5 \dashrightarrow R_7$
Tr_4	$R_2 \dashrightarrow R_4 \dashrightarrow R_8$
Tr_5	$R_2 \dashrightarrow R_5 \dashrightarrow R_7$
Tr_6	$R_5 \dashrightarrow R_7 \dashrightarrow R_8 \dashrightarrow R_6$
Tr_7	$R_3 \dashrightarrow R_5 \dashrightarrow R_1$
Tr_8	$R_3 \dashrightarrow R_6 \dashrightarrow R_2$
Tr_9	$R_5 \dashrightarrow R_9 \dashrightarrow R_6$
Tr_{10}	$R_4 \dashrightarrow R_7 \dashrightarrow R_9$

Trajectory Search (2/2)

Idea

Only compute the scores of candidate trajectories

Observation

A trajectory has a higher score if it passed ROIs having higher attractive scores

Bounded Trajectory Search (1/3)

Idea

- Scan ROIs in the query range to select candidate trajectories by ROIs' attractive scores
- Iteratively reduce the searching space by updating the score at rank K in the set of candidate trajectories

Example: Top 5 Trajectories

		_
Tid	Sequence of ROIs (Travel Route)	DT
Tr_1	$R_1 \dashrightarrow R_4 \dashrightarrow R_7$	
Tr_2	$R_2 \dashrightarrow R_5 \dashrightarrow R_7 \dashrightarrow R_4 \dashrightarrow R_5 \dashrightarrow R_6$	1.48
Tr_3	$R_1 \dashrightarrow R_5 \dashrightarrow R_7$	1.395
Tr_4	$R_2 \dashrightarrow R_4 \dashrightarrow R_8$	1.24
Tr_5	$R_2 \dashrightarrow R_5 \dashrightarrow R_7$	1.433
Tr_6	$R_5 \dashrightarrow R_7 \dashrightarrow R_8 \dashrightarrow R_6$	1.338
Tr_7	$R_3 \dashrightarrow R_5 \dashrightarrow R_1$	1.45
Tr_8	$R_3 \dashrightarrow R_6 \dashrightarrow R_2$	1.55
Tr_9	$R_5 \dashrightarrow R_9 \dashrightarrow R_6$	1.52
Tr_{10}	$R_4 \dashrightarrow R_7 \dashrightarrow R_9$	

Scan ROIs in Q by attractive scores:

$$S(R_6) = 1.59 \Rightarrow \{Tr_2, Tr_6, Tr_8, Tr_9\}$$

 $S(R_2) = 1.51 \Rightarrow \{Tr_4, Tr_5\}$
 $S(R_5) = 1.45 \Rightarrow \{Tr_3, Tr_7\}$
 $S(R_7) = 1.34$
 $S(R_8) = 0.97$

Round	T (Candidate trajectories)	LBS_T	SBR_T
Initial	\emptyset	∞	R_8

Top 5 trajectories: $\{Tr_8, Tr_9, Tr_2, Tr_7, Tr_5\}$

Bounded Trajectory Search (2/3)

- Lower bound of the scores of candidate trajectories
 - $LBS_T = DT(Tr)$ or BT(Tr)where T is the candidate trajectories and DT(Tr) or BT(Tr) is the score at rank k in T
- Search bound for examining ROIs w.r.t. LBS_T
 - $SBR_T = R_l^s$ where for trajectory score function DT,

$$l = \max\{i | S(R_i^s) \ge LBS_T, \forall i \in \mathbb{N}, 1 \le i \le |R_Q|\}$$

and for trajectory score function BT,

$$l = \max\{i | \sum_{i \le j \le |R_Q|} S(R_j^s) \ge LBS_T, \forall i \in \mathbb{N}, 1 \le i \le |R_Q|\}$$

Bounded Trajectory Search (3/3)

- Sort ROIs in decreasing order by attractive scores
- Scan ROIs from R_1^s to $SBR_T = R_j^s$
 - The set of candidate trajectories, *T*
 - Add the trajectories passed R_i^s into T and calculate their scores
 - Update LBS_T in T if |T/>k|
 - Update SBR_T w.r.t. LBS_T
- Thm: Correctness of algorithm BTS
 - Proofs in Chap. 2.5.3.

Experiments

Trajectory data

- Travel websites: EveryTrail, Bikemap
- Taiwan
 - 6,548 trajectories
 - 1,301,192 GPS logs

Parameters

- Grid length: 300 meters
- Minimum density threshold: 10
- Rank-threshold K: 10

Top 1 Trajectory in Kenting (1/2)

Query: Kenting

Top 1 Trajectory in Kenting (2/2)

• In-Breadth Trip

• In-Depth Trip

Performance Evaluation (1/3)

- Impact of the number of the trajectories crossing query range Q, $|\mathbf{T}_{\mathbf{Q}}|$
 - The number of ROIs in Q, $|R_Q|=500$

Performance Evaluation (2/3)

- Impact of the number of ROIs in query range Q, $|R_Q|$
 - $|T_{Q}|=3,892$

Performance Evaluation (3/3)

- Impact of the rank-threshold, K
 - $|T_{Q}|=1,600$
 - $|R_Q|=100$

Summary

- Presented a novel trajectory search framework for trip planning by considering different user preferences
- Employed a user movement graph to capture travel patterns hidden in trajectory datasets and developed an algorithm to score ROIs
- Developed an algorithm BTS for efficiently retrieving the top K trajectories

Work 2: Constructing Popular Routes from Uncertain Trajectories

Introduction (1/2)

Trajectory data

- Geo-tagged Flickr photo traces
- Taxicabs' trajectories
- Foursquare check-in sequences

Uncertainty of trajectories

- Energy saving
- Features of applications

Uncertain Trajectories

Introduction (2/2)

Question

What are popular routes between two consecutive geo-locations?

Road Network

2D Free Space

Application scenario

Problem Definition

Data

- Uncertain trajectory dataset
- Road networks

Query

■ A geo-location sequence $q: q_1 \to ... \to q_n$ and $q_{i+1}.t - q_i.t \le \Delta t$ where Δt is a time span

Output

- Top K popular routes
 - Sequentially traverse the geo-locations

Challenges (1/2)

 Road network information is not applicable or not available

 No historical trajectory passes through the given geo-location sequence

Challenges (2/2)

 Uncertain trajectories passing through the given geo-location sequence are not detailed routes

- Which uncertain trajectories have similar movements?
 - Infer popular routes based on collective knowledge

Mutual reinforcement

Related Work (1/3)

Trajectory clustering

- 2D free space [Lee et al.SIGMOD'07, Pelekis et al. ICDM'09]
 - Data: high-sampled trajectories
 - Issue for uncertain trajectories
 - Different geo-spatial representations of a route

- Road network [Kuijpers et al. SSTD'09]
 - Data: low-sampled trajectories
 - Disadvantage: do no detail routes

Related Work (2/3)

Trip planning

- Data: high-sampled/low-sampled trajectories
 [Zheng et al. WWW'09/Kurashima et al. CIKM'10, Arase et al. MM'10, Yin et al. SDM'11]
- Output: visiting sequences of ROIs
- Disadvantage: do not detail routes

Related Work (3/3)

Route planning

- Query: two or more geo-locations
- Output: Top K routes according to the geo-locations

	Trajectory - Sampling Rate	Road Network	Ranking Criteria	Output
Chen et al. SIGMOD'10	High	V	Distance	Historical trajectories
Chen et al. ICDE'11	High		Popularity	Synthetic routes
Yuan et al. TKDE'12	Low	V	Fastest	Synthetic routes
Zheng et al. ICDE'12	Low	V	Popularity	Synthetic routes
Ours	Low		Popularity	Synthetic routes

Framework

- Routable graph construction (off-line)
- Route inference (on-line)

Framework Overview

Routable Graph Construction

- Region: a connected geographical area
- Edges inside a region
- Edges between regions

Routable Graph Construction (1/3)

Space partition

 Divide a space into non-overlapping cells with a given cell length

Routable Graph Construction (2/3)

Region

A connected geographical area

Idea

Merge connected cells to form a region

Observation

Tra₁ and Tra₂ follow the same route but have different sampled geo-locations

Routable Graph Construction (3/3)

- Spatio-temporally correlated relation between trajectories
 - Spatially close

- Temporal constraint θ
 - $\frac{|\Delta t_1 \Delta t_2|}{\max\{\Delta t_1, \Delta t_2\}} \le \theta$
- Connection support of a cell pair
 - Minimum connection support C

Edge Inference (1/2)

[Edges in a region]

- Step 1: Let a region be a bidirectional graph first
- Step 2: Infer the *direction*, *travel time* and *support* between each two consecutive cells
 - Multiple shortest routes between consecutive points and then propagate the weight evenly
 - Aggregate the weights
 - Estimate the travel time of each edge

Edge Inference (2/2)

[Edges between regions]

- Step 1: Build edges between two cells in different regions by trajectories
- Step 2: Replace the redundant edges by constructed edges
 - Redundant edge
 - Exist at least one edge E_2 s.t. E_2 ' support $> E_1$'s support
 - The travel time of the path $p_1{\to}E_2{\to}p_2$ and the travel time of edge E_1 are similar
 - Propagate weights to multiple edges

Route Inference (1/2)

Route Inference (2/2)

Route score

■ Given a graph G = (V, E), a route $\mathcal{P}: \mathcal{P}_1 \to \mathcal{P}_2 \to \cdots \to \mathcal{P}_m$, the score of the route is

$$f(p) = \sum_{i=1}^{m} \rho(p_i)$$

where
$$p_i: g_{i_1} \to g_{i_2} \to \cdots \to g_{i_j}$$

and $\rho(p_i) = \frac{1}{i-1} |\bigcup_{k=1}^{j-1} \{tra | g_{i_k} \to g_{i_{k+1}} \in tra\} |$

Local Route Search

Goal

■ Top K local routes between two consecutive geo-locations q_i, q_{i+1}

Approach

- Determine qualified visiting sequences of regions by travel times
- A*-like routing algorithm
 - $\hat{f}(p) = \rho(p_c) + h(p_f)$ where a route $p: p_c \to p_f$

Global Route Search

- Input
 - Local routes between any two consecutive geo-locations
- Output
 - Top K global routes
- Branch-and-bound search approach
 - E.g., Top 1 global route

Route Refinement

Input

Top K global routes: sequences of cells

Output

Top K routes: sequences of segments

Approach

- Select GPS logs for each grid
- Adopt linear regression to derive regression lines

Experiments

Real dataset

- Check-in records in Manhattan: 6,600 trajectories
- GPS logs in Beijing: 15,000 trajectories

Effectiveness evaluation

- Inferred routes
 - Error:
 - T: NDTW(T, T')= $\operatorname{Avg}_{p_k \in T} \min_{tra \in T'} \operatorname{NDTW}(p_k, tra)$
 - T': top K trajectories (ground truth)

Efficiency evaluation

- Query time
- Competitor
 - MPR [Chen et al. ICDE'11]

Visualization in Manhattan

• Cell length: 500 m

Minimum connection support: 3

• Temporal constraint: 0.2

• Time span Δt : 40 minutes

Performance Comparison

- Competitor: MPR [Chen et al. ICDE'11]
- Parameters
 - |q|:2, K:1, cell length: 300 m
- Factors
 - sampling rate (S), query distance (Δd)

Effectiveness of Route Refinement

Parameters

- K:1
- |q|: 2

Summary

- Developed a route inference framework without the aid of road networks
- Proposed a routable graph by exploring spatiotemporal correlations among uncertain trajectories
- Developed a routing algorithm to construct the top K popular routes

Conclusion

- Proposed a novel trajectory search framework for trip planning
 - Search pattern-aware travel routes from historical trajectories with considering a user-preference of depth/breadth
 - Developed an efficient bounded trajectory search algorithm
- Proposed a route inference framework without the aid of road network information
 - Infer popular routes from uncertain trajectories
 - Developed an effective approach to construct a routable graph
 - Developed efficient and effective approaches to infer popular routes