Bayesian Statistics

Fabio Sigrist

ETH Zurich, Autumn Semester 2019

Today's topics

Point estimation & decision theory

Testing and Bayes factor

Fabio Sigrist 1/27

Summary of important quantities in Bayesian statistics

- ▶ Likelihood: $f(x|\theta)$
- Prior: $\pi(\theta)$
- ▶ Posterior: $\pi(\theta|x) = \frac{\pi(\theta)f(x|\theta)}{f(x)} \propto \pi(\theta)f(x|\theta)$
- Marginal likelihood (=prior predictive density): $f(x) = \int f(x \mid \theta)\pi(\theta)d\theta$
- ▶ Posterior predictive density: $f(y \mid x) = \int f(y \mid \theta, x) \pi(\theta \mid x) d\theta$

Fabio Sigrist 2/27

Point estimation and decision theory

Fabio Sigrist 3/27

Bayesian point estimates

A Bayesian point estimate summarizes the posterior distribution in a number. The following estimates for the location are often used:

Posterior mean

$$\widehat{\theta} = \mathbb{E}(\theta \mid \mathbf{x}) = \int_{-\infty}^{\infty} \theta \pi(\theta \mid \mathbf{x}) d\theta$$

Posterior median: solution of the equation

$$\int_{-\infty}^{\theta} \pi(\theta) f(x \mid \theta) d\theta = \frac{1}{2} \int_{-\infty}^{\infty} \pi(\theta) f(x \mid \theta) d\theta$$

Posterior mode

$$\widehat{\theta} = \arg\max_{\theta} \pi(\theta \mid x) = \arg\max_{\theta} (\log \pi(\theta) + \log f(x \mid \theta))$$

▶ **Comment**: If the prior $\pi(\theta)$ is uniform $\pi(\theta) \propto 1$, the posterior mode equals the maximum likelihood estimator

Fabio Sigrist 4/27

Bayesian decision theory

Bayesian decision theory provides a unified approach for the above point estimates:

1. Choose a loss function

$$L:\Theta\times\Theta\to[0,\infty)$$

2. Minimize the posterior risk:

$$\widehat{ heta} = rg \min_{ extstyle T}
ho(extstyle T(extstyle x), \pi)$$

$$\rho(T(x),\pi) = \mathbb{E}(L(T(X),\theta) \mid x) = \int_{\Theta} L(T(x),\theta)\pi(\theta \mid x)d\theta$$

L(T(x), θ) is the loss if the true value is θ and the estimate is T(x)

Fabio Sigrist 5/27

Bayesian decision theory

We have the following relationship between loss functions and Bayesian point estimates:

- ▶ If $L(T, \theta) = (T \theta)^2$, we obtain the posterior mean
- ▶ If $L(T, \theta) = |T \theta|$, we obtain the posterior median
- If $L(T, \theta) = \mathbf{1}_{[-\varepsilon, \varepsilon]^c}(T \theta)$ and we let ε go to zero, we obtain the posterior mode

Fabio Sigrist 6/27

Bayesian decision theory

Comments

- The posterior risk $\rho(T(x), \pi)$ is the expected loss under the posterior
 - It is obtained by integrating the loss function over the posterior of the parameter θ
 - It depends on the data x but not on the parameter θ
- We call an estimator T that minimizes the posterior risk a Bayes estimator

Fabio Sigrist 7/27

Comparison to frequentist approach

In frequentist decision theory

- 1. One also chooses a loss function $L: \Theta \times \Theta \rightarrow [0, \infty)$
- And considers the frequentist risk

$$R(T,\theta) = \mathbb{E}_{\theta}(L(T(X),\theta)) = \int_{\mathbf{X}} L(T(X),\theta) f(X \mid \theta) dX$$

- The frequentist risk is obtained by integrating the loss function over the data x
- It depends on the parameter θ but not on the data
- How can we minimize the frequentist risk? There are the following approaches:
 - 1. Simultaneously for all θ ? \rightarrow not possible (*see next slide*)
 - Minimax
 - 3. Minimize weighted risk
 - 4. Admissibility

Fabio Sigrist 8/27

Frequentist decision theory: minimize risk simultaneously for all θ ?

It is usually not possible to find an estimator that minimizes the frequentist risk for all θ

Example

 $R(T_2, \theta_1) < R(T_1, \theta_1)$ and $R(T_2, \theta_2) > R(T_1, \theta_1)$.

Fabio Sigrist 9/27

Frequentist decision theory: minimax approach

▶ **Minimax** approach: choose estimator T which minimizes the maximal risk: $\sup_{\theta \in \Theta} R(T, \theta)$

Example

 \Rightarrow choose T_1

Fabio Sigrist 10/27

Frequentist decision theory: weighted risk approach

➤ A less conservative approach is to choose the estimator T which minimizes the weighted risk

$$R(T, w) = \int_{\Theta} R(T, \theta) w(\theta) d\theta$$

R(T, w) is also called the **Bayes risk**

One can show that the frequentist estimator which minimizes the weighted risk is the Bayes estimator with prior $\pi(\theta) = w(\theta)$ which minimizes the posterior risk (see next slide)

Fabio Sigrist 11/27

Weighted risk and Bayes estimator

Theorem

Assume that $\int w(\theta)d\theta = 1$ and choose w as the prior for θ . If

$$T(x) = \arg\min_{T} \rho(T(x), w) = \arg\min_{T} \mathbb{E}(L(T, \theta) \mid x)$$

is well defined for almost all x with respect to the prior predictive distribution $f(x) = \int f(x \mid \theta) w(\theta) d\theta$, then T minimizes the weighted risk R(T, w). Any other minimizer T' is almost surely equal to T.

Proof: see blackboard

Conclusion: Even if you are a frequentist, the posterior can be considered as a technical device to compute the estimator which minimizes the weighted risk

Fabio Sigrist 12/27

Frequentist decision theory: admissibility approach

- An estimator T is called **admissible** if no other estimator T' exists which is uniformly better than T. I.e., if $R(T', \theta) \leq R(T, \theta)$ for all θ , then we must have $R(T', \theta) = R(T, \theta)$ for all θ
- One can show that a Bayes estimator is admissible if the frequentist risk is continuous in θ for any estimator with finite risk and if the prior density is strictly positive everywhere
- There is a large literature showing that under certain conditions any admissible estimator is a limit (in a sense to be made precise) of Bayes estimators

Fabio Sigrist 13/27

Comment on bias of Bayes estimator

Bayes estimators are often biased due to the influence of the prior

See blackboard for example

 However, also from a frequentist point of view, this is not a major disadvantage since modern frequentist statistics tends to deemphasize unbiasedness

Clicker question

Fabio Sigrist 14/27

Testing and Bayes factor

Fabio Sigrist 15/27

Comment on bias of Bayes estimator

- In Bayesian statistics, we can make statements about "the probability that the null hypothesis is true" or "the probability that θ belongs to some interval"
- In frequentist statistics, such statements have no meaning, and one has to be very careful if one wants to explain the meaning of a p-value or a confidence interval in words

Fabio Sigrist 16/27

Bayesian testing

Goal: test a null hypothesis $\theta \in \Theta_0 \subset \Theta$ against the alternative $\theta \in \Theta_1 = \Theta_0^c$

Posterior probability of the null hypothesis is given by

$$\pi(\Theta_0 \mid x) = \int_{\Theta_0} \pi(\theta \mid x) d\theta = \frac{\int_{\Theta_0} f(x \mid \theta) \pi(\theta) d\theta}{\int_{\Theta} f(x \mid \theta) \pi(\theta) d\theta}$$

Clicker question

Fabio Sigrist 17/27

Bayesian testing

- Quantify the loss in case of an error of the first kind as a₁ and in case of an error of the second kind as a₂
- ▶ Posterior expected loss of a test φ : $\mathbf{X} \to \{0,1\}^*$ equals

$$\begin{cases} a_2(1 - \pi(\Theta_0 \mid x)) & \text{if } \varphi(x) = 0 \\ a_1\pi(\Theta_0 \mid x) & \text{if } \varphi(x) = 1 \end{cases}$$

Posterior expected loss is minimized if

$$\varphi(x) = \begin{cases} 0 & \text{if } \pi(\Theta_0 \mid x) > a_2/(a_1 + a_2) \\ 1 & \text{if } \pi(\Theta_0 \mid x) < a_2/(a_1 + a_2) \end{cases}$$

See blackboard

^{*&}quot;1" means reject null hypothesis, "0" means do not reject null hypothesis

Bayes factor

Instead of $\pi(\Theta_0 \mid x)$, Bayesians often consider the **Bayes factor**:

$$B(x) = \frac{\pi(\Theta_0 \mid x)}{\pi(\Theta_1 \mid x)} \frac{\pi(\Theta_1)}{\pi(\Theta_0)} = \frac{\frac{\pi(\Theta_0 \mid x)}{\pi(\Theta_1 \mid x)}}{\frac{\pi(\Theta_0)}{\pi(\Theta_1)}}$$
"Prior odds"

The Bayes factor tells us how the prior odds are modified to obtain the posterior odds:

$$\frac{\pi(\Theta_0 \mid x)}{\pi(\Theta_1 \mid x)} = B(x) \frac{\pi(\Theta_0)}{\pi(\Theta_1)}$$

Idea of the Bayes factor: partially eliminate the influence of the prior and give more weight to the data

Fabio Sigrist 19/27

Dependence on prior of Bayes factor

If $\Theta = \{\theta_0, \theta_1\}$, the Bayes factor is independent of the prior and equal to the likelihood ratio

$$B(x) = f(x \mid \theta_0) / f(x \mid \theta_1)$$

For composite hypotheses, the Bayes factor still depends on the prior

Fabio Sigrist 20/27

Bayes factor for composite hypotheses

► If

$$\pi_0(\theta) = \frac{\pi(\theta) \mathbf{1}_{\Theta_0}(\theta)}{\pi(\Theta_0)}, \quad \pi_1(\theta) = \frac{\pi(\theta) \mathbf{1}_{\Theta_1}(\theta)}{\pi(\Theta_1)}$$

denote the conditional priors under the null and the alternative, respectively, then

$$B(x) = \frac{\int_{\Theta} f(x \mid \theta) \pi_0(\theta) d\theta}{\int_{\Theta} f(x \mid \theta) \pi_1(\theta) d\theta} = \frac{f(x \mid \theta \in \Theta_0)}{f(x \mid \theta \in \Theta_1)}$$

 Conclusion: the Bayes factor can be seen as a Bayesian likelihood ratio

Fabio Sigrist 21/27

Decisions based on Bayes factors

- ▶ $1 \ge B(x) \ge \frac{1}{3}$ is considered as **weak**
- ▶ $\frac{1}{3} \ge B(x) \ge 0.1$ is considered as **substantial**
- ▶ $0.1 \ge B(x) \ge 0.01$ is considered as **strong**
- ▶ $0.01 \ge B(x)$ is considered as **decisive**

... evidence against the null hypothesis according to Jeffreys (1961)

Fabio Sigrist 22/27

Bayesian testing: point null hypothesis

- In many applications the null hypothesis consists of a subset with Lebesgue measure zero
 - ▶ E.g., for $\mathcal{N}(\mu, \sigma^2)$ -observations $\Theta_0 = \{(\mu, \sigma^2); \mu = \mu_0\}$
- If we choose a prior that has a density w.r.t. the Lebesgue measure, the prior and the posterior give zero probability to the null hypothesis ⇒ no need to collect data

Fabio Sigrist 23/27

Bayesian testing: point null hypothesis

▶ We need to choose a prior which assigns to Θ_0 a probability strictly between 0 and 1

This can be achieved by a mixture

$$\pi(d\theta) = \rho_0 \pi_0(d\theta) + (1 - \rho_0) \pi_1(\theta) d\theta$$

where π_0 is a distribution which is concentrated on Θ_0 and ρ_0 is the prior probability of Θ_0

▶ With such a prior, the posterior probability of Θ_0 is

$$\pi(\Theta_0 \mid x) = \frac{\rho_0 \int_{\Theta_0} f(x \mid \theta) \pi_0(d\theta)}{\rho_0 \int_{\Theta_0} f(x \mid \theta) \pi_0(d\theta) + (1 - \rho_0) \int_{\Theta} f(x \mid \theta) \pi_1(\theta) d\theta}$$

Fabio Sigrist 24/27

P-value vs. posterior probability

- In frequentist statistics, the p-value is taken as a measure of evidence against the null hypothesis
- However, the p-value is not the same as the posterior probability of the null hypothesis

How close are these two values?

Fabio Sigrist 25/27

P-value vs. posterior probability

▶ Consider $\Theta_0 = \{\theta_0\}$. Then for $\rho_0 = \frac{1}{2}$

$$\pi(\Theta_0 \mid x) = \frac{f(x \mid \theta_0)}{f(x \mid \theta_0) + \int_{\Theta} f(x \mid \theta) \pi_1(\theta) d\theta}$$

This depends on the chosen prior for the alternative. But we have a (conservative) lower bound:

$$\inf_{\pi_1} \pi(\Theta_0 \mid x) = \frac{f(x \mid \theta_0)}{f(x \mid \theta_0) + \sup_{\theta} f(x \mid \theta)}$$

Further, if one assumes θ to be scalar and restricts π_1 to the class S of symmetric unimodal densities, then one can show that

$$\inf_{\pi_1 \in \mathcal{S}} \pi(\Theta_0 \mid X) = \frac{f(X \mid \theta_0)}{f(X \mid \theta_0) + \sup_{c} \frac{1}{2c} \int_{\theta_0 - c}^{\theta_0 + c} f(X \mid \theta) d\theta}$$

Fabio Sigrist 26/27

P-value vs. posterior probability

Example:* null hypothesis $\mu = \mu_0$ for i.i.d normal observations with mean μ and known variance, $\rho_0 = \frac{1}{2}$

<i>p</i> -value	0.10	0.05	0.01	0.001
$\inf_{\pi_1} \pi(\Theta_0 \mid x)$	0.205	0.128	0.035	0.004
$\inf_{\pi_1 \in \mathcal{S}} \pi(\Theta_0 \mid x)$	0.392	0.290	0.109	0.018

Conclusions

- Posterior probabilities can be substantially larger than p-values
- p-values can be misleading measures of evidence against the null hypothesis

Fabio Sigrist 27/27

^{*}Source: Tables 4 and 6 in Berger and Selke, JASA 82 (1987)