Logic gates

NAND } universal

NOR } universal

EXOR] exclusion

gates

EXOR] gates

-> exclusive gates are used in arithmetic circuits such as comparators, code converters, parity generators.

	NOT gate	or Inver	ter.
Symbol		To	dh table
$A \longrightarrow Y = \overline{A}$	\	• • A	Y
		0	(
40-13 - 30 - 40		· 111	0
The state of the s			

switch circuit

-> Even no of NOT gate connected gives Buffer

-> odd no. of NOT gate in following manner gives astable

Tout	h to	able	
A	В	1 7	
0	0	0	
	0	D	13

Commulative law!

A.B. B. A satisfied.

Associative law:

Satisfied

AND gate using diodes!

$$A \rightarrow B$$
 D_{A}
 D_{B}

A B	DA	DB	γ !
0 0	on	on	1 O 8
0 1 1	on .	off	, 0,
1 0	off	on	0
1 1	off	off	1

	-1	s wth	tal	le
Λ	1	B	-	Y
	0	0		0
	0)		1
	1	0		1
	1	1)	J

Commulative law:

1+B = B+A

satisfied

Associative law:

A+B+C= (A+B)+C = A-1(B+C)= (A-12)+B

Satisfied

Diode circuit of OR gate!

A

Diode circuit of OR gate!

A — H B — H

A B	DA	DB	y
0 0	open	open	0
.0 (open sc	sc. open	
Shirt The Control of	SC	sc	71 1

NAND gate

$$= A \longrightarrow Y = \overline{A} + \overline{B}$$

-> NAND gate is also called as bubbled or gate.

Transistor diagram:

	A	B	1 7	T2	7
_	0	0	open open	open SC	1
	1	0	Sc. Sc	open SC	1

Associative law;

not satisfied.

$$A \rightarrow B \rightarrow Y = \overline{A+B}$$

$$= \overline{A} : \overline{B}$$

$$\cong \stackrel{\wedge}{B} \longrightarrow \stackrel{\vee}{\longrightarrow} \stackrel{\vee}{\longrightarrow}$$

$$=\frac{A}{B}$$

> NOR, gate is also called bubbled AND.

Touth table

switch det

$$\overline{A+B} = \overline{B+A}$$

$$\overline{A+B+C} \neq \overline{(A+B)} + C$$
 not satisfied.

EX-OR gate!

A
B
$$Y = A \oplus B$$
 $= AB + \overline{A}B$
 $= (A + B) (\overline{A} + \overline{B}) \cdots pos form$

= A (B (B (C))

Imp

*

$$A \oplus A = 0$$
 $A \oplus A = 1$
 $A \oplus 0 = A$
 $A \oplus 1 = \overline{A}$

Note: In EXOR gate, o/p is logic 1 when no of 1's at the i/p is odd no, hence its called odd no. detector circuit'

$$=$$
 $\xrightarrow{\Lambda}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$

Touth table

Α	В	Y	
0	0	в	1
0	,	1	O
1	Ô	₽	Ô
1	1	8	l

Note:
if
$$A=B$$
, $O/P=0$

$$AOB = BOA$$

$$AOB^{\bullet}OC \neq (AOB)OC$$

$$AOBOCOD = (AOB)OC)OD$$

associative law satisfied for on even no. of i/p, not satisfied for odd no. of i/p.

$$AOA = 1$$

$$AOA = 0$$

$$AOO = A$$

$$AO 1 = A$$

* EXNOR gate is also called odd no. of 1's detector circuit since ô/p is 1 for even no. of i/p combination are 1.

NAND as universal gate

NOT:
$$A = \overline{A}$$

AND: $A = \overline{A}$

OR: $A = \overline{A}$

B

 $A = \overline{A}$
 $A = \overline{A}$

EXOR;

Logic gale	No. of NAND	No. of NOR
NOT	2	3 34 .
AND	3, 3,	2 4
OR EXOR	4	5
EXNOR	5.5	1 Mary 188
NOR		
NAND		4