Recall

Topology	Gain	Rout	Rin
CM source	high	high	high
CM gate	high	high	low
CM drain	low	low	high

Basic Current Mirror

For an ideal current mirror the output current is independent of V_{out} .

→ large r_{out} desired

Cascode Current Mirror

Increased output resistance due to cascoding.

Cascode Current Mirror

Reduced swing compared to basic current mirror.

High Swing Cascode Current Mirror

How to increase the output swing?

High Swing Cascode Current Mirror

Use long (L > W) diode connected transistor to generate $V_{\rm bias}$.

High Swing Cascode Current Mirror

Use long (L > W) diode connected transistor to generate $V_{\rm bias}$.

Recall

Current Mirror	Rout	Swing
Basic	-	++
Cascode	+	_
Wilson	+	*:
High Swing	+	+

• Consider a general system transfer function: $H(s) = \frac{P(s)}{Q(s)} = b_0 \frac{(s-z_1)(s-z_2)\cdots(s-z_N)}{(s-\lambda_1)(s-\lambda_2)\cdots(s-\lambda_N)} \quad \text{poles at } \lambda_1 \lambda_2 \cdots \lambda_N$ • The value of the transfer function at some complex frequency s=p is: $\frac{P(s)}{P(s)} = \frac{P(s)}{Q(s)} = \frac{P(s)}{P(s-\lambda_1)(s-\lambda_2)\cdots(s-\lambda_N)} = \frac{P(s)}{P(s-\lambda_1)(p-\lambda_2)\cdots(p-\lambda_N)} = \frac{P(s)}{P(s-\lambda_1)(p-\lambda_2)\cdots(p-\lambda_N)} = \frac{P(s)}{P(s-\lambda_1)(p-\lambda_2)\cdots(p-\lambda_N)} = \frac{P(s)}{P(s-\lambda_1)(p-\lambda_2)\cdots(p-\lambda_N)} = \frac{P(s)}{P(s)} = \frac{P(s)}{P(s$

Notch tilter could in theory be realised with two zeros placed at $\pm j\omega_0$. However, such a filter would not have unity gain at zero frequency, and the notch will not be sharp • To obtain a good notch filter, put two poles close to the two zeros on the semicircle as shown. Since the both pole/zero pair are equal-distance to the origin, the gain at zero frequency is exactly one. Same for $\omega=\infty$.

Apply feedback for linearization:

$$V_{out} = A \cdot \left(V_{in} - \frac{R_2}{R_1 + R_2}V_{out}\right) \implies V_{out} = \frac{A \cdot V_{in}}{1 + A \cdot \frac{R_2}{R_1 + R_2}} \approx \left(1 + \frac{R_1}{R_2}\right) \cdot V_{in}$$

gain is only defined by external resistors wery linear & deterministic

$$\frac{\sqrt{2}}{\sqrt{1}} = \frac{R_1 + R_2}{R_2} = \frac{R_1}{R_2}$$

Black' s Formula

Let's generalize:

In our example: G = A $H = \frac{R_2}{R_2 + R_1} = \frac{V_1 G_1 G_2 G_3}{V_1 G_1 G_2 G_3} - \frac{V_1 G_1 G_2 G_3}{V_2 G_1 G_2 G_3} - \frac{V_1 G_1 G_2 G_3}{V_2 G_2 G_3}$

⇒ Build amplifiers with high open loop gain to satisfy G >> 1/H.

Typically: 1000 < A < 100000

GH 环路增益

HGH 反港深度

Example: Wilson Current Mirror

1 Vds; =0/,
1 Vds; =0/,

Stability

Stability

Positive feedback makes the loop unstable.

BIBO

A general stability criteria is that for a bounded input there must be a bounded output (BIBO).

Stability Criteria

厚用

stable system im

U: Lero

 $A_{cl} = \frac{(s - z_1)(s - z_1) \cdots (s - z_n)}{(s - p_1)(s - p_1) \cdots (s - p_n)}$

A system is stable if all poles of the closed loop response lie on the left half plane (LHP).

Any pole in the right half plane (RHP) results in instability

Intution on Stability

Gain Bandwidth (GBW) Product is a constant.

➡ Increasing closed loop gain decreases closed loop bandwidth.

Tradeoff: gain 🕽 BW