Лабораторная работа 4.3.1. ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА

Хайдари Фарид, Б01-901 $5\ {\rm мартa}\ 2021\ {\rm r}.$

Содержание

1	Теоретические сведения	9
2	Экспериментальная установка	4
3	Ход работы	4

Цель работы: исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментовю.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

1 Теоретические сведения

Схема установки для наблюдения дифракции Френеля представле на на рис. 1. Световые лучи освещают щель S_2 и испытывают на ней дифракцию. Дифракционная картина рассматривается с помощью микроскопа , сфокусированного на некоторую плоскость наблюдения

Рис. 1: Схема установки для наблюдения дифракции Френеля

Щель S_2 освещается параллельным пучком монохроматического света с помощью коллиматора, образованного объективом O_1 и щелью S_1 , находящейся в его фокусе. На щель S_1 сфокусировано изображение спектральной линии, выделенной из спектра ртутной лампы при помощи простого монохроматора C, в котором используется призма прямого зрения.

Распределение интенсивности света в плоскости наблюдения проще всего рассчитывать с помощью зон Френеля (для щели их иногда называют зонами Шустера). При освещении щели S_2 параллельным пучком лучей (плоская волна) зоны Френеля представляют собой полоски, параллельные краям щели (рис. 2). Результирующая амплитуда в точке наблюдения определяется суперпозицией колебаний от

тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы — спирали Корню. Суммарная ширина m зон Френеля zm опре- деляется соотношением

$$z_m = \sqrt{am\lambda} \tag{1}$$

где a — расстояние от щели до плоскости наблюдения (рис. 1), а λ — длина волны

Вид наблюдаемой дифракционной картины определяется числом Френеля Ф: квадрат числа Френеля

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}}$$

- это отношение ширины щели D к размеру первой зоны Френеля, т.е. число зон Френеля, которые укладываются на ширине щели. Обратную величину называют волновым параметром

$$p = \frac{1}{\Phi^2} = \frac{D}{\sqrt{a\lambda}}$$

- 2 Экспериментальная установка
- 3 Ход работы