Mathestützkurs für MB Übung: Differentialrechnung

Fachschaft Maschinenbau Wintersemester 2021/2022

Summenregel:	(f(x) + g(x))' = f'(x) + g'(x)	(u+v)' = u' + v'
Produktregel:	(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)	(uv)' = u'v + uv'
Quotientenregel:	$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
Kettenregel:	$(f(\phi(x)))' = f'(\phi(x))\phi'(x)$	$\frac{df(x)}{dx} = \frac{df}{d\phi} \frac{d\phi}{dx}$

Einige häufig benötigte Ableitungen:

Zimge many benetigie ribierangem				
Funktion $f(x)$	Ableitung $f'(x)$	Funktion $f(x)$	Ableitung $f'(x)$	
x^n	nx^{n-1}	$\sqrt[n]{x}$	$\frac{1}{n \cdot \sqrt[n]{x^{n-1}}}$	
e^x	e^x	$\ln(x)$	$\frac{1}{x}$	
sin(x)	$\cos(x)$	$\cos(x)$	$-\sin(x)$	
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$	
arctan(x)	$\frac{1}{1+x^2}$	tan(x)	$\frac{1}{\cos^2(x)}$	

Extremwerte:	$f'(x) = 0 \rightarrow \text{Extremwert}$ $f''\left(x_{\text{Extrem}}\right) > 0 \rightarrow \text{Minimum}$ $f''\left(x_{\text{Extrem}}\right) < 0 \rightarrow \text{Maximum}$	
Wendepunkte:	$f''(x)=0 o ext{Wendepunkt}$ $f'''(x_{WP})>0 o ext{Rechts} - ext{links} - ext{Wendestelle}$ $f'''(x_{WP})<0 o ext{Links} - ext{rechts} - ext{Wendestelle}$ $f'''(x_{WP})=0 o ext{Sattelpunkt}$	
Grenzwert:	Für den Limes $\lim_{x\to\infty}f(x)$ teile $f(x)$ durch die größte Potenz Alle Terme $\frac{a}{x^n}$ werden null, der Rest bildet den Wert gegen den die Funktion im Unendlichen strebt	

Aufgabe 1:

Berechne jeweils die erste Ableitung:

$$a(x) = 2\sin x + 3\cos x$$

$$f(x) = \left(x^2 + 2x\right)\cos x$$

$$b(x) = \frac{s}{x^2} + \frac{t}{x}, x \neq 0$$

$$g(x) = \frac{\cos x}{1+x}$$

$$c(x) = \frac{x^3 - 2x + 1}{x^4}, x \neq 0$$

$$h(x) = \tan x$$

$$d(x) = x^2 \sin x$$

$$i(x) = \arcsin\left(\frac{2x}{\sqrt{1 + 4x^2}}\right)$$

Aufgabe 2:

Berechne die erste Ableitung mit Hilfe der Kettenregel!

 $e(x) = (x^2 + 2x)\sqrt{x}$

$$f(x) = \cos\left(\left(x^2 - 3\right)^5\right)$$

 $j(x) = \cot(2x)$

Hinweis: $f(x) \Rightarrow y = \cos(v); v = u^5; u = x^2 - 3 \text{ und } f'(x) = y' = \frac{dy}{dx} = \frac{dy}{dv} \cdot \frac{dv}{du} \cdot \frac{du}{dx}$

Aufgabe 3:

Die gebrochen rationale Funktion y=f(x) ist zu diskutieren: $f(x)=\frac{x^2-1}{x^2-4}$

- a) Bestimme die Nullstellen.
- b) Bestimme die Definitionslücken der Funktion.

Wie verhält sich die Funktion, wenn man sich der Stelle von links oder von rechts annähert?

- c) Bestimme die Maxima.
- d) Bestimme den Funktionswert für $x \to \pm \infty$.
- e) Skizziere die Funktion.

Aufgabe 4:

Man bestimme die Gleichung der kubischen Funktion, die im Punkt P(-1,1) ein Maximum und im Punkt Q(1,-1) einen Wendepunkt hat.

Tipp: allgemeine kubische Funktion: $y = ax^3 + bx^2 + cx + d$

Aufgabe 5:

Der Raumvektor von Oo zu Oo wird beschrieben durch:

$$\underline{r_{30}} = \left(\begin{array}{c} l_2 \cos \left(\beta_1\right) \cos \left(\beta_2\right) \\ -l_1 + l_2 \sin \left(\beta_2\right) \\ -l_2 \sin \left(\beta_1\right) \cos \left(\beta_2\right) \end{array} \right)$$

Berechne durch Differentiation der Vektoreinträge mit Hilfe der Produktregel und Kettenregel die Geschwindigkeit $\underline{v_{30}}$ des Punktes O_3 .

Beachte $\beta_1=\beta_1(t)$ und $\beta_2=\beta_2(t)$ sind zeitabhängig, die Ableitung dieser ergeben die Winkelgeschwindigkeiten $\dot{\beta}_1$ und $\dot{\beta}_2$.

Hinweise:

- Aus der Kinematik ergibt sich die Geschwindigkeit \vec{v} aus der zeitlichen Ableitung des Ortsvektors \vec{r} : $\vec{v} = \frac{d\vec{r}}{dt}$
- · Aus der Vektoranalysis ergibt sich die Ableitung eines Vektors aus der Ableitung seiner einzelnen Komponenten:

$$\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = \begin{pmatrix} \frac{\mathrm{d}y_1}{\mathrm{d}x} \\ \frac{\mathrm{d}y_2}{\mathrm{d}x} \\ \frac{\mathrm{d}y_3}{\mathrm{d}x} \\ \dots \end{pmatrix}, \text{ für } \vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \end{pmatrix}.$$

Kontrolllösungen

$$\text{Aufgabe 1: } a'(x) = 2\cos x - 3\sin x, \ b'(x) = -\frac{2s}{x^3} - \frac{t}{x^2}, \ c'(x) = -\frac{1}{x^2} + \frac{6}{x^4} - \frac{4}{x^5}, \ d'(x) = 2x\sin x + x^2\cos x, \ e'(x) = \frac{5x^2 + 6x}{2\sqrt{x}}, \ f'(x) = (2x + 2)\cos x + \left(x^2 + 2x\right)(-\sin x), \ g'(x) = -\frac{\sin x}{1+x} - \frac{\cos x}{(1+x)^2}, \ h'(x) = \frac{1}{\cos^2 x}, \ i'(x) = \frac{2}{1+4x^2}, \ j'(x) = \frac{-2}{\sin^2(2x)}$$

$$\text{Aufgabe 2: } f'(x) = -\sin\left(\left(x^2 - 3\right)^5\right) \cdot 5\left(x^2 - 3\right)^4 \cdot 2x$$

Aufgabe 2:
$$f'(x) = -\sin((x^2 - 3)^5) \cdot 5(x^2 - 3)^4 \cdot 2x$$

Aufgabe 3: a) $x_1 = 1$, $x_2 = -1$, b) $\lim_{x \to -2} f(x) \to +\infty$ (x < -2) $\lim_{x \to -2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (x < -2) $\lim_{x \to 2} f(x) \to -\infty$ (2) $\lim_{x\to 2} f(x) \to +\infty$ (x>2), c) Maximum bei $(0,\frac{1}{4})$, d) Asymptote bei y=1, e) keine Angabe.

Aufgabe 4:
$$f(x) = \frac{1}{8}x^3 - \frac{3}{8}x^2 - \frac{9}{8}x + \frac{3}{8}$$

Aufgabe 5:
$$\underline{v}_{30} = \begin{pmatrix} -l_2 \dot{\beta}_1 \sin \beta_1 \cos \beta_2 - l_2 \dot{\beta}_2 \cos \beta_1 \sin \beta_2 \\ l_2 \beta_2 \cos \beta_2 \\ l_2 \dot{\beta}_2 \sin \beta_1 \sin \beta_2 - l_2 \dot{\beta}_1 \cos \beta_1 \cos \beta_2 \end{pmatrix}$$