Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления» Дисциплина «Технологии машинного обучения»

Отчёт

по рубежному контролю №1

Тема: «Технологии разведочного анализа и обработки данных.» $Bapuahm \ 3$

Студент:

Белкина Е.В.

Группа ИУ5-61Б

Преподаватель:

Гапанюк Ю.Е.

Задание

Задача №1.

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Набор данных:

https://scikit-

<u>learn.org/stable/modules/generated/sklearn.datasets.load_wine.html#sklearn.datasets.load_wine</u>

Дополнительные требования по группам:

Для студентов групп ИУ5-61Б, ИУ5Ц-81Б - для пары произвольных колонок данных построить график "Диаграмма рассеяния".

Выполнение задания

1. Импортируем необходимые библиотеки с помощью команды import.

```
File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

(*)

[4] import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline sns.set(style="ticks")

[5] /usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py import pandas.util.testing as tm
```

2. Импортируем датасет load_wine из sklearn в соответствии с заданием варианта

```
[5] from sklearn.datasets import load_wine
wine = load_wine()
```

3. Преобразуем датасет Scikit-learn в Pandas Dataframe

4. Проверим наличие пропусков данных

Можем видеть, что пропуски данных в датасете отсутствуют.

Таким образом, мы можем построить корректную корреляционную матрицу.

5. Проведём корреляционный анализ

Матрица с коэффициентом корреляции Пирсона:

Матрица с коэффициентом корреляции Кендалла:

Матрица с коэффициентом корреляции Спирмана:

:_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	${\tt nonflavanoid_phenols}$	proanthocyanins	color_intensity	hue	od280/od315_of_diluted_wines	proline	targe
140430	0.243722	-0.306598	0.365503	0.310920	0.294740	-0.162207	0.192734	0.635425	-0.024203	0.103050	0.633580	-0.3541
000000	0.230674	0.304069	0.080188	-0.280225	-0.325202	0.255236	-0.244825	0.290307	-0.560265	-0.255185	-0.057466	0.3469
230674	1.000000	0.366374	0.361488	0.132193	0.078796	0.145583	0.024384	0.283047	-0.050183	-0.007500	0.253163	-0.0539
304069	0.366374	1.000000	-0.169558	-0.376657	-0.443770	0.389390	-0.253695	-0.073776	-0.352507	-0.325890	-0.456090	0.569
080188	0.361488	-0.169558	1.000000	0.246417	0.233167	-0.236786	0.173647	0.357029	0.036095	0.056963	0.507575	-0.250
280225	0.132193	-0.376657	0.246417	1.000000	0.879404	-0.448013	0.666689	0.011162	0.439457	0.687207	0.419470	-0.726
325202	0.078796	-0.443770	0.233167	0.879404	1.000000	-0.543897	0.730322	-0.042910	0.535430	0.741533	0.429904	-0.854
255236	0.145583	0.389390	-0.236786	-0.448013	-0.543897	1.000000	-0.384629	0.059639	-0.267813	-0.494950	-0.270112	0.474
244825	0.024384	-0.253695	0.173647	0.666689	0.730322	-0.384629	1.000000	-0.030947	0.342795	0.554031	0.308249	-0.570
290307	0.283047	-0.073776	0.357029	0.011162	-0.042910	0.059639	-0.030947	1.000000	-0.418522	-0.317516	0.457096	0.131
560265	-0.050183	-0.352507	0.036095	0.439457	0.535430	-0.267813	0.342795	-0.418522	1.000000	0.485454	0.207740	-0.616
255185	-0.007500	-0.325890	0.056963	0.687207	0.741533	-0.494950	0.554031	-0.317516	0.485454	1.000000	0.253266	-0.743
057466	0.253163	-0.456090	0.507575	0.419470	0.429904	-0.270112	0.308249	0.457096	0.207740	0.253266	1.000000	-0.576
346913	-0.053988	0.569792	-0.250498	-0.726544	-0.854908	0.474205	-0.570648	0.131170	-0.616570	-0.743787	-0.576383	1.000

Тепловая карта корреляционной матрицы:

Корреляционный анализ:

Необходимо понять какие признаки (колонки датасета) наиболее сильно коррелируют с целевым признаком (колонка "target"). Именно эти признаки будут наиболее информативными для моделей машинного обучения. Значительнее большинства признаков с target коррелируют alcanlinity_of_ash (0.5), anoid_phenols (0.5), malic_acid (0.4). Эти признаки следует оставить в модели.

Признаки, которые слабо коррелируют с целевым признаком, можно попробовать исключить из построения модели, иногда это повышает качество модели. В данном датасете такими являются flavanolds (-0.8), total_phenols (-0.7), od280/od315_of_diluted_wines (-0.8), hue (-0.6), proline (-0.6).

Линейно зависимые признаки, как правило, очень плохо влияют на качество моделей. Поэтому если признаки линейно зависимы, то для построения модели из них выбирают какой-то один признак. В нашем наборе данных максимально коррелируют между собой flavonoids и total_phenols (0.9), они имеют практически линейную зависимость. Поэтому для построения модели лучше оставить только один из этих признаков, наиболее коррелирующий с целевым. Но оба эти признака так плохо коррелируют с target, что имеет смысл убрать каждый из них.

Диаграмма рассеяния для колонок total_phenols и flavonoids:

6. Выводы

На данном наборе данных (датасет Wine recognition dataset из sklearn) возможно удачно построить модель машинного обучения, так как он не имеет пропусков данных, содержит признаки, значительно коррелирующие с целевым и не зависимые линейно. Для улучшения построенной модели имеется возможность отказаться от линейно зависимых и слабо коррелирующих с целевым признаков.