# **Chapitre 1**

## Fonctions de référence

## I. Fonction valeur absolue

## 1) Valeur absolue

#### **Définition:**

La **valeur absolue** d'un réel x est le nombre, noté |x|, qui est égal au nombre x si x est positif, et au nombre -x si x est négatif.

Donc, 
$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

### **Exemples:**

- |5| = 5 car 5 > 0
- $|3-\pi| = -(3-\pi) = \pi 3$  car  $3-\pi < 0$

• 
$$|2-t| = \begin{cases} 2-t \text{ si } 2-t \ge 0 \text{ soit } t \le 2\\ t-2 \text{ si } 2-t \le 0 \text{ soit } t \ge 2 \end{cases}$$

### **Remarques:**

- Une valeur absolue est toujours positive : pour tout réel x,  $|x| \ge 0$ .
- Deux nombres opposés ont la même valeur absolue : pour tout réel x, |x| = |-x|.
- Pour tout réel x,  $\sqrt{x^2} = |x|$  et pour tout réel  $x \ge 0$ ,  $(\sqrt{x})^2 = |x|$ .

### Propriétés:

- $|x|=0 \Leftrightarrow x=0$
- $|x| = |y| \Leftrightarrow x = y \text{ ou } x = -y$
- Pour tous réels x et y, on a :
  - $\circ |xy| = |x| \times |y|$
  - $\circ$  si  $y \neq 0$ ,  $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$
  - $\circ$   $|x+y| \le |x| + |y|$  (inégalité triangulaire)

### 2) Fonction valeur absolue

#### **Définition:**

La **fonction valeur absolue** est la fonction f définie sur  $\mathbb{R}$  par f(x) = |x|.

On a donc, 
$$f(x) = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

### **Remarque:**

La fonction valeur absolue est une fonction affine par morceaux.

#### Propriété:

La fonction valeur absolue est paire.

Dans un repère orthogonal  $(O; \vec{i}, \vec{j})$ , la courbe représentative de la fonction valeur absolue est donc **symétrique** par rapport à l'**axe des ordonnées**.

#### Démonstration:

Soit *f* la fonction valeur absolue.

Pour tout réel x, on a f(-x)=|-x|=|x|=f(x).

Les deux points de coordonnées (x; f(x)) et (-x; f(-x)) sont donc symétriques par rapport à l'axe des ordonnées.

### **Propriétés:**

La fonction valeur absolue est **strictement décroissante** sur  $]-\infty;0]$ .

La fonction valeur absolue est **strictement croissante** sur  $[0; +\infty[$  .

Son **minimum** sur  $\mathbb{R}$  est 0 et il est atteint pour x = 0.

#### **Démonstration**:

Pour tout réel x positif, f(x)=x donc f est strictement croissante sur  $[0;+\infty[$ .

Pour tout réel x négatif, f(x) = -x donc f est strictement décroissante sur  $]-\infty;0]$ .

Pour tout réel x, on a f(x) = |x| et  $|x| \ge 0$ . De plus f(0) = 0.

Ainsi, pour tout réel  $x, f(x) \ge f(0)$ .

#### Tableau de variations :



### Courbe représentative :



# II. Polynôme du second degré

## 1) Forme d'une fonction trinôme

### Forme réduite

#### **Définition:**

Une fonction **polynôme du second degré** (ou **trinôme**) est une fonction définie sur  $\mathbb{R}$  dont l'expression peut être mise sous la forme  $f(x) = ax^2 + bx + c$  où a, b et c sont des réels  $(a \ne 0)$ .

Les réels a, b et c sont les **coefficients** de la fonction polynôme.

#### **Exemple:**

 $P(x)=2x^2-8x+8$  est une fonction trinôme donnée sous sa forme réduite avec :

$$a = 2$$
,  $b = -8$  et  $c = 8$ .

# Forme canonique

### Propriété:

Tout trinôme  $ax^2 + bx + c$  peut s'écrire sous la forme  $a(x - \alpha)^2 + \beta$  où a,  $\alpha$  et  $\beta$  sont des réels  $(a \neq 0)$ .

Cette forme s'appelle la **forme canonique** du trinôme.

#### Démonstration:

$$ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x\right) + c \text{ avec } (a \neq 0)$$
.

Or 
$$\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2$$
. On en déduit :  $x^2 + \frac{b}{a}x = \left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$ .

On a donc: 
$$ax^2 + bx + c = a \left[ \left( x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} \right] + c = a \left( x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a} + c = a \left( x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a}$$
.

### Propriété:

Pour tous réels a, b et c avec  $a \neq 0$ , on a donc :

$$P(x) = ax^2 + bx + c = a(x - \alpha)^2 + \beta$$
 avec  $\alpha = -\frac{b}{2a}$  et  $\beta = \frac{-b^2 + 4ac}{4a}$ 

### Remarque:

On vérifie que  $\beta = P(\alpha)$ .

En effet, 
$$P(\alpha) = P\left(\frac{-b}{2a}\right) = a\left(\frac{-b}{2a}\right)^2 + b\left(\frac{-b}{2a}\right) + c = \frac{ab^2}{4a^2} - \frac{b^2}{2a} + c = \frac{b^2}{4a} - \frac{2b^2}{4a} + \frac{4ac}{4a} = \frac{-b^2 + 4ac}{4a} = \beta$$

#### **Exemples:**

•  $P(x)=2x^2-8x+8=2(x^2-4x+4)=2(x-2)^2$ 

On obtient donc la forme canonique de P(x) avec a=2,  $\alpha=2$  et  $\beta=0$ .

• On considère le polynôme Q(x)=-2x(x-2)+3

On a  $Q(x)=-2x^2+4x+3$ . (forme réduite avec a=-2, b=4 et c=3)

En calculant 
$$\alpha = -\frac{b}{2a} = -\frac{4}{2 \times (-2)} = 1$$
 et  $\beta = \frac{-4^2 + 4 \times (-2) \times 3}{4 \times (-2)} = \frac{-16 - 24}{-8} = 5$ .

Donc  $Q(x)=-2(x-1)^2+5$  (forme canonique avec a=-2,  $\alpha=1$  et  $\beta=5$ )

## Forme factorisée

### Propriété:

Il est parfois possible de factoriser P(x). On obtient alors  $P(x)=a(x-x_1)(x-x_2)$ .  $a(x-x_1)(x-x_2)$  est la **forme factorisée** de P(x).

### **Exemples:**

•  $P(x)=2(x-2)^2$  (forme factorisée avec a=2,  $x_1=2$  et  $x_2=2$ )

•  $R(x)=x^2-2x-15$  (forme réduite avec a=1, b=-2 et c=-15)

 $R(x)=(x-1)^2-16$  (forme canonique avec a=1,  $\alpha=1$  et  $\beta=-16$ )

R(x)=(x-5)(x+3) (forme factorisée avec a=1,  $x_1=5$  et  $x_2=-3$ )

•  $T(x)=2(x-1)^2+5$  On ne peut pas donner la forme factorisée.

## 2) Sens de variation

### Propriété:

Suivant le signe de a, on obtient le sens de variation de la fonction polynôme du second degré :

$$f: x \mapsto ax^2 + bx + c \text{ avec } a \neq 0 \text{ ; } \alpha = -\frac{b}{2a} \text{ et } \beta = f(\alpha)$$

• a > 0 (positif)



Le **minimum**  $\beta$  de f est atteint pour  $x = \alpha$ .

• a < 0 (négatif)



Le **maximum**  $\beta$  de f est atteint pour  $x = \alpha$ .

#### **Démonstration**:

Pour le cas où a > 0

En mettant f sous sa forme canonique on obtient  $f(x)=a(x-\alpha)^2+\beta$ .

- Pour tout x, on a  $f(x) \ge \beta$  (donc  $\beta$  est un minimum de f sur  $]-\infty$ ;  $+\infty[$ )
- Pour  $x_1$  et  $x_2$  appartenant à ] $-\infty$ ;  $\alpha$ [ (donc  $x_1 < \alpha$  et  $x_2 < \alpha$ ), on a :

Si 
$$x_1 < x_2$$
, (donc  $x_1 - x_2 < 0$ ) alors

$$f(x_1) - f(x_2) = [a(x_1 - \alpha)^2 + \beta] - [a(x_2 - \alpha)^2 + \beta]$$

$$f(x_1) - f(x_2) = a(x_1 - \alpha)^2 - a(x_2 - \alpha)^2 = a[(x_1 - \alpha)^2 - (x_2 - \alpha)^2]$$

$$f(x_1) - f(x_2) = a[(x_1 - \alpha)^2 - (x_2 - \alpha)^2] = a[[(x_1 - \alpha) - (x_2 - \alpha)][(x_1 - \alpha) + (x_2 - \alpha)]]$$

$$f(x_1) - f(x_2) = a[[x_1 - x_2][x_1 + x_2 - 2\alpha]]$$
 avec  $x_1 - x_2 < 0$  et  $x_1 + x_2 < 2\alpha$  donc

$$f(x_1) - f(x_2) > 0$$
 et  $f(x_1) > f(x_2)$ 

Ainsi f est décroissante sur  $]-\infty$ ;  $\alpha[$ 

On démontre les autres cas de la même manière.

## 3) Représentation graphique

#### **Définition:**

La courbe représentative d'une fonction polynôme  $P: x \mapsto ax^2 + bx + c$ , avec  $a \neq 0$ , est une **parabole**.

## Propriétés :

- Son **sommet** S ( $\alpha$ ;  $\beta$ ) a pour abscisse  $\alpha = -\frac{b}{2a}$  et pour ordonnée  $\beta = P(\alpha)$ .
- La droite d'équation  $x = \alpha$  est axe de symétrie de la parabole.

#### Démonstration :

$$P(\alpha+t) = a(\alpha+t)^2 + b(\alpha+t) + c = a\alpha^2 + b\alpha + c + 2a\alpha t + at^2 + bt = P(\alpha) + at^2 + t(2a\alpha + b)$$

Or 
$$\alpha = \frac{-b}{2a}$$
 donc  $2a\alpha + b = 0$ . Ainsi  $P(\alpha + t) = P(\alpha) + at^2$ 

De la même manière on a :

$$P(\alpha-t)=P(\alpha)+at^2-t(2a\alpha+b)=P(\alpha)+at^2$$

Donc, on obtient, pour tout  $t \in \mathbb{R}$ ,  $P(\alpha+t)=P(\alpha-t)$ .

Ainsi  $x = \alpha$  est axe de symétrie de la parabole.





## Remarque:

Le signe de *a* permet de connaître l'allure de la parabole :

Si a>0, alors la parabole est tournée vers le haut.

Si a < 0, alors la parabole est tournée vers le bas.





## **Exemples:**

• La courbe représentative de la fonction P définie sur  $\mathbb{R}$  par  $P(x)=2x^2-8x+8$  est une parabole  $\mathscr{P}$  de sommet S(2;0).

Comme a=2 (positif), la parabole  $\mathcal{P}$  est tournée vers le haut.



• La courbe représentative de la fonction Q définie sur  $\mathbb{R}$  par  $Q(x)=-0.5x^2+4x-2$  est une parabole  $\mathcal{C}_Q$  de sommet S'(4; 6).

Comme a=-0.5 (négatif), la parabole  $\mathcal{C}_{\mathcal{Q}}$  est tournée vers le bas.

