Data Mining: Concepts and Techniques

— Chapter 9 — 9.2. Social Network Analysis

Jiawei Han and Micheline Kamber

Department of Computer Science

University of Illinois at Urbana-Champaign

www.cs.uiuc.edu/~hanj

©2006 Jiawei Han and Micheline Kamber. All rights reserved.

Acknowledgements: Based on the slides by Sangkyum Kim and Chen Chen

Social Network Analysis

- Social Networks: An Introduction
- Primitives for Network Analysis
- Different Network Dist. Dations
- Models of Social Network Generation
- Mining on Social Network
- Summary

Social Networks

- Social network: A social structure made of nodes (individuals or organizations) that are related to each other by various interdependencies like friendship, kinship, like, ...
- Graphical representation
 - Nodes = members
 - Edges = relationships

- Examples of typical social networks on the Web
 - Social bookmarking (Del.icio.us)
 - Friendship networks (Facebook, Myspace, LinkedIn)
 - Blogosphere
 - Media Sharing (Flickr, Youtube)
 - Folksonomies

Society

Nodes: individuals

Links: social relationship (family/work/friendship/etc.)

S. Milgram (1967)

John Guare

Six Degrees of Separation

Social networks: Many *individuals* with *diverse social interactions* between them.

Communication networks

The earth is developing an electronic nervous system, a network with diverse **nodes** and **links** are

-computers

-routers

-satellites

-phone lines

-TV cables

-communication lines

Communication networks: Many non-identical components with diverse connections between them

June 1, 2020

Data Mining: Concepts and Techniques

"Natural" Networks and Universality

- Consider many kinds of networks:
 - social, technological, business, economic, content,...
- These networks tend to share certain *informal* properties:
 - Large scale; continual growth
 - Distributed and organic growth: vertices "decide" who to link to
 - Mixture of local and long-district connections
 - Abstract notions of distance: geographical, content, social,...
- Questions:
 - Do natural networks share more quantitative universals?
 - What would these "universals" be?
 - How can we measure them?
- This is the domain of social network theory or link analysis

Social Network Analysis

- Social Networks: An Introduction
- Primitives for Network Analysis

- Different Network Dist. Dations
- Models of Social Network Generation
- Mining on Social Network
- Summary

Networks and Their Representations

- A network (or a graph): G = (V, E), where V: vertices (or nodes), and
 E: edges (or links)
 - Multi-edge: if more than one edge between the same pair of vertices
 - Self-edge (self-loop): if an edge connects vertex to itself
- Simple network/graph if a network/has neither self-edges nor multiedges
- Adjacency matrix:
 - $A_{ii} = 1$ if there is an edge between vertices i and j; 0 otherwise
- Weighted networks:
 - Edges having weight (strength), usually a real number
- Directed network (directed graph): if each edge has a direction
 - $A_{ij} = 1$ if there is an edge from i to j; 0 otherwise

Cocitation and Bibliographic Coupling

 Cocitation of vertices i and j: # of vertices having outgoing edges pointing to both i and j

$$A_{ik}A_{jk} = 1$$
 if i and j are both cited by k

Cocitation of i and j:

$$C_{ij} = \sum_{k=1}^{n} A_{ik} A_{jk} = \sum_{k=1}^{n} A_{ik} A_{kj}^{T}$$

Cociation matrix: It is a symmetric matrix

$$C = AA^T$$

 Bibliographic coupling of vertices i and j: # of other vertices to which both point

$$A_{ki}A_{kj} = 1$$
 if i and j both cite k

Bibliographic coupling of i and j:

$$B_{ij} = \sum_{k=1}^{n} A_{ki} A_{kj} = \sum_{k=1}^{n} A_{ik}^{T} A_{kj}$$

- Cociation matrix: $\mathbf{B} = \mathbf{A}^T \mathbf{A}$
- Diagonal matrix (B_{ii}): total # papers cited by i

Vertices i and j are co-cited by 3 papers

Vertices i and j cite 3 same papers

Cocitation & Bibliographic Coupling: Comparison

- Two measures are affected by the number of incoming and outgoing edges that vertices have
- For strong cocitation: must have a lot of incoming edges
 - Must be well-cited (influential) papers, surveys, or books
 - Takes time to accumulate citations
- Strong bib-coupling if two papers have similar citations
 - A more uniform indicator of similarity between papers
 - Can be computed as soon as a paper is published
 - Not change over time
- Recent analysis algorithms
 - HITS explores both cocitation and bibliographic coupling

Degree and Network Density

- Degree of a vertex i: $k_i = \sum_{j=1}^n A_{ij}$
- \blacksquare # of edges m = 1/2 of sum of degrees of all the vertices:

$$m = \frac{1}{2} \sum_{i=1}^{n} k_i = \frac{1}{2} \sum_{i \neq j} A_{i \neq j}$$

The mean degree c of a vertex in an undirected graph:

$$c = \frac{1}{n} \sum_{i=1}^{n} l_i = \frac{2m}{n}$$

- Density ρ of a graph: $\rho = \frac{m}{\binom{n}{2}} = \frac{2m}{n(n-1)} = \frac{c}{n-1}$
- A network is **dense** if density ρ tends to be a constant as $n \rightarrow \infty$
- A network is **sparse** if density $\rho \rightarrow 0$ as $n \rightarrow \infty$. The fraction of nonzero element in the adjacency matrix tends to zero
- Internet, WWW and friendship networks are usually regarded as sparse

Social Network Analysis

- Social Networks: An Introduction
- Primitives for Network Analysis
- Different Network Dist. Dations

- Models of Social Network Generation
- Mining on Social Network
- Summary

Some Interesting Quantities

- Connected components:
 - how many, and how large?
- Network diameter:
 - maximum (worst-case) or average?
 - exclude infinite distances? (disconnected components)
 - the small-world phenomenor
- Clustering:
 - to what extent links tend to cluster "locally"?
 - what is the balance between local and long-distance connections?
 - what roles do the two types of links play?
- Degree distribution:
 - what is the typical degree in the network?
 - what is the overall distribution?

A "Canonical" Natural Network has...

- A few connected components:
 - often only 1 or a small number, indep. of network size
- Small diameter:
 - often a constant independent of network size (like 6)
 - or perhaps growing only logarithmically with network size or even shrink?
 - typically exclude infinite distances
- A *high* degree of clustering:
 - considerably more so than for a random network
 - Related to small diameter
- A heavy-tailed degree distribution:
 - a small but reliable number of high-degree vertices
 - often of power law form

The Poisson Distribution

- Applies to variables taken on integer values > 0
- Often used to model counts of events
 - number of phone calls placed in a given time period
 - number of times a neuron fires in a given time period
- Single free parameter λ, probability of exactly x events:
 - \bullet exp(- λ) λ^x/x !
 - mean and variance are both λ
- Binomial distribution with *n* large, $p = \lambda/n$ (λ fixed)
 - converges to Poisson with mean λ

single photoelectron distribution

Power Law (or Pareto) Distributions

- Heavy-tailed, pareto, or power law distributions:
 - For variables assuming integer values > 0
 - probability of value $x \sim 1/x^a$
 - Typically 0 < a < 2; smaller a gives heavier tail
 - sometimes also referred to as being scale-free
- For Poisson distributions the tail probabilities approach 0 exponentially fast

What kind of process would generate it?

Distinguishing Distributions in Data

- All these distributions are idealized models
- In practice, we do not see distributions, but data
- Typical procedure to distinguish between Poisson, power law, ...
 - might restrict our attention to a range of values of interest
 - accumulate counts of observed data into equal-sized bins
 - look at counts on a log-log plos
- power law:
 - $\log(\Pr[X = x]) = \log(1/x^a) = -a \log(x)$
 - linear, slope –a
- Poisson:
 - $\log(\Pr[X = x]) = \log(\exp(-1) |x/x!)$
 - non-linear

Logarithmic scales on both axes

Social Network Analysis

- Social Networks: An Introduction
- Primitives for Network Analysis
- Different Network Dist. Dations
- Models of Social Network Generation

- Mining on Social Network
- Summary

Models of Social Network Generation

Random Graphs (Erdös-Rényi models)

Scale-free Networks

The Erdös-Rényi (ER) Model: A Random Graph Model

- A random graph is obtained by starting with a set of N vertices and adding edges between them at random
- Different random graph models produce different probability distributions on graphs
- Most commonly studied is the Erdős–Rényi model, denoted G(N,p)
 - every possible edge occurs in a grandently with probability p
- The usual regime of interest is when $p \sim 1/N$, N is large
 - in expectation, each vertex will have a "small" number of neighbors
 - will then examine what happens when N → infinity
 - can thus study properties of large networks
 - not heavy-tailed

Erdös-Rényi Model (1959)

Connect with probability p

Pál Erdös (1913-1996)

Poisson distribution

- Democratic
- Random

Models of Social Network Generation

- Random Graphs (Erdös-Rényi models)
- Scale-free Networks

World Wide Web

Nodes: WWW documents

Links: URL links

800 million documents (S. Lawrence, 1999)

ROBOT: collects all URL's found in a document and follows them recursively

R. Albert, H. Jeong, A-L Barabasi, Nature, **401** 130 (1999)

World Wide Web

Expected Result

$$P(k=500) \sim 10^{-99}$$

$$N_{WWW} \sim 10^9$$

$$\Rightarrow$$
 N(k=500)~10⁻⁹⁰

Real Result

J. Kleinberg, et. al, Proceedings of the ICCC (1999)

What does that mean?

June 1, 2020

Scale-Free Networks

- The number of nodes (N) is not fixed
 - Networks continuously expand by additional new nodes
 - WWW: addition of new nodes
 - Citation: publication of new papers
- The attachment is not uniform (random)
 - A node is linked with higher probability to a node that already has a large number of links
 - WWW: new documents link to well known sites (CNN, Yahoo, Google)
 - Citation: Well cited papers are more likely to be cited again

Scale-Free Networks

- Start with (say) two vertices connected by an edge
- For i = 3 to N:
 - for each 1 <= j < i, d(j) = degree of vertex j so far</p>
 - let Z = S d(j) (sum of all degrees so far)
 - add new vertex i with k edges back to {1, ..., i-1}:
 - i is connected back 'p'j with probability d(j)/Z
- Vertices j with high degree are likely to get more links!
 - "Rich get richer"
- Natural model for many processes:
 - hyperlinks on the web
 - new business and social contacts
- Generates a power law distribution of degrees
 - exponent depends on value of k

Scale-Free Networks

- Preferential attachment explains
 - heavy-tailed degree distributions
 - small diameter (~log(N), via "hubs")
- Will not generate high clustering coefficient
 - no bias towards local connectivity, but towards hubs

Case 1: Internet Backbone

Nodes: computers, routers

Links: physical lines

(Faloutsos, Faloutsos and Faloutsos, 1999)

Case 2: Actor Connectivity

Nodes: actors

Links: cast jointly

Case 3: Science Citation Index

^{*} citation total may be skewed because of multiple authors with the same name

Case 4: Science Coauthorship

Nodes: scientist (authors)

Links: write paper together

Case 5: Food Web

R. Sole (cond-mat/0011195)

Nodes: trophic species

Links: trophic interactions

R.J. Williams, N.D. Martinez Nature (2000)

Robustness of Random vs. Scale-Free Networks

June 1, 2020

Thanks!

Jiwon Hong (<u>nowiz@hanyang.ac.kr</u>)

