Natural Language processing

TP 3 – Term Frequency - Inverse Document Frequency (TF – IDF)

LE Do Thanh Dat, YOU Borachhun

Exercice 1 - BOW

```
In [2]: # 1. Importer les dépendances
        ## import statements ##
        import numpy as numpy
        import pandas as pd
        import seaborn as sns
         import matplotlib.pyplot as plt
        import re
        from sklearn.model_selection import train_test_split, cross_val_score
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.feature_extraction.text import TfidfTransformer
        from sklearn.linear_model import LogisticRegression
        from sklearn.pipeline import Pipeline
        from sklearn.metrics import confusion_matrix, classification_report, accuracy_sc
        sns.set_context('talk')
        sns.set color codes()
        plot_kwds = {'alpha' : 0.25, 's' : 80, 'linewidths' : 0}
        import warnings; warnings.simplefilter('ignore')
In [3]: # 2. Importer les données et déclarer quelques variables
        data_files = './data/Comment Spam.xls'
        data = pd.read excel(data files)
        data = data[['Comment', 'Class']]
        train data = data
        train data.head()
Out[3]:
                                                 Comment Class
                                            this song is racist
                  and how many subscribers compared to her over ...
         2 HI! CHECK OUT OUR AWESOME COVERS! AND SAY WHAT...
                                                              1
         3
                                            well done shakira
                                                              0
         4
                               :D subscribe to me for daily vines
In [5]: # 3. Prétraitement des données
        def process_content(content):
             return " ".join(re.findall("[A-Za-z]+", content.lower()))
        train_data['processed_comment'] = train_data['Comment'].apply(process_content)
```

					Comr	nent	Clas	S	processed_comment
			th	is so	ng is ı	racist)	this song is racist
nany	y sub:	scribe	ers co	ompa	ared to	o her ver		1	and how many subscribers compared to her over
CK C	OUT (OUR /			E COV AY WH			1	hi check out our awesome covers and say what y
			We	ell do	ne sh	akira)	well done shakira
:D s	subsc	ribe t	to me	e for	daily	vines		1	d subscribe to me for daily vines
Maı	ıry, pr	ray fo	or us	Holy	Moth	er of 		1	part holy mary pray for us holy mother of god
	39;t c	ompr	reher	nd M	iley Cy	rus , s		1	i really can t comprehend miley cyrus she actu
				Nice	song	^_^	()	nice song
his ı	make	es me	e mis	s the	worlc	d cup	()	this makes me miss the world cup
** Fa	acebo	ook is	LAN		d so 2 Check			1	facebook is lame and so check out swagfriends
ryon	ne is i	in god	od sp	oirits	1'	9;m a h		1	i hope everyone is in good spirits i m a hard
						:)	()	
				S	he is g	good	()	she is good
scril	ibe to	o my '	Youtu	ube (Chann Suscr			1	subscribe to my youtube channe suscribite a m
					bea	utiful	()	beautifu
for	bein	ıg onl	line v	vith () effor	ts!		1	earn money for being online with efforts bit I
HEC	CK OL				IXTAP OUT I			1	check out my new mixtape check out my new mixt
every	yone	e, It Is	not i	my ir	ntentio sp	on to am		1	hello everyone it is not my intention to spam
** Fa	acebo	ook is	LAN		d so 2 Check			1	facebook is lame and so check out swagfriends
oleas	se ch	eck o	out m	y cov	vers o	n my cha		1	could you please check out my covers on my cha
	spli , y_		in,	y_te	est =	tra	in_t	est	c_split(train_data['processed_co train_data['Class'], tes

```
('clf', LogisticRegression()),
In [9]: # 7. Exécuter le pipeline
         #Pipeline execution
         model.fit(X_train, y_train)
         #Prediction with test set
         predicted = model.predict(X_test)
         #Confusion matrix calculation
         confusion_matrix(y_test, predicted)
Out[9]: array([[132, 7],
                [ 9, 112]], dtype=int64)
In [10]: # 8. Imprimer le rapport de performance du modele
         print('accuracy_score', accuracy_score(y_test, predicted))
         print('Reporting...')
         print(classification_report(y_test,predicted))
         accuracy_score 0.9384615384615385
         Reporting...
                       precision recall f1-score support
                            0.94
                                    0.95
                                               0.94
                                                          139
                    0
                            0.94
                                     0.93
                                                0.93
                                                          121
                                               0.94
                                                          260
             accuracy
                          0.94 0.94
                                                          260
            macro avg
                                              0.94
                          0.94
                                     0.94
                                               0.94
         weighted avg
                                                          260
In [11]: # 9. Imprimer les résultats de la validation croisée
         #cross validation on training
         print(cross_val_score(model, X_train, y_train, cv=5))
         #cross validation on test
         print(cross_val_score(model, X_test, y_test, cv = 5))
         [0.94230769 0.95192308 0.94230769 0.9375
                                                     0.908653851
         [0.92307692 0.94230769 0.94230769 0.84615385 0.94230769]
In [15]: # 10. Essayer quelques phrases afin de les classifier comme spam ou ham
         #testing a comment and doing the classification
         c1 = ['Im super happy']
         content = pd.DataFrame(c1, columns=['Comment'])
         content['processed_comment'] = content['Comment'].apply(process_content)
         content_processed = content['processed_comment']
         #prediction of the class: 0=ham, 1=spam
         model.predict(content_processed)
Out[15]: array([0], dtype=int64)
In [16]: # 11. Faire la prédiction sur les diffèrent exemples
         c1 = ['Subscribe to my Youtube Channel!! :)',
               'Hi veronica, hope you are doing good',
               'Earn money for being online with 0 efforts! ...']
         #test data pre treatment
```

```
test_data = pd.DataFrame(c1, columns=['Comment'])
test_data['processed_comment'] = test_data['Comment'].apply(process_content)
x_test_new = test_data['processed_comment']

#prediction of the class: 0=ham, 1=spam
model.predict(x_test_new)
```

Out[16]: array([1, 0, 1], dtype=int64)