ROYAUME DU MAROC

UNIVERSITE ABDELMALEK ESSAADI

Ecole Nationale des Sciences Appliquées

Tangier

TD N:4: Electrostatique

Dipôle électrique

L'équilibre des conducteurs

Exercice 1:

Soit un dipôle électrique défini par deux charge -q et +q placées respectivement aux points A et B, séparés par une distance a. On considère un point M très lointain des charges. On donne :

$$\theta = \left(\overrightarrow{OB}, \overrightarrow{OM}\right); \vec{r} = \overrightarrow{OM}; r \gg a; \overrightarrow{e_r} = \frac{\overrightarrow{OM}}{\|\overrightarrow{OM}\|}; \vec{r}_1 = \overrightarrow{AM}; \vec{r}_2 = \overrightarrow{BM}$$

- 1) Tracer un schéma représentatif du dipôle.
- 2) Déterminer V(M) l'expression du potentiel électrique crée par le dipôle en M par la méthode d'approximation :
 - 2.1) Géométrique
 - 2.2) DL de 1^{ere} ordre, on donne : $(\mathbf{1} \pm \boldsymbol{\varepsilon})^n \simeq \mathbf{1} + n\boldsymbol{\varepsilon}$ avec $\boldsymbol{\varepsilon} \ll 1$
 - 2.3) Donner l'expression de moment dipolaire et écrire l'expression de V(M) en fonction de $\overline{\mathfrak{M}}$.
- 3) Déterminer $\vec{E}_r(M)$, $\vec{E}_{\theta}(M)$ les composantes radiale et tangentielle de champ électrique crée par le dipôle en M. On donne : l'expression du gradient en coordonnées polaires : $\overline{grad}(V(M)) = \frac{\partial V}{\partial r} \overrightarrow{e_r} + \frac{1}{r} \frac{\partial V}{\partial \theta} \overrightarrow{e_{\theta}}$
- 4) Montrer que $tan\alpha = \frac{1}{2}tan\theta$, α est l'angle entre la composante de champ $\vec{E}(M)$ et sa composante radiale $\vec{E}_r(M)$.
- 5) Déterminer l'expression de $\vec{E}(M)$ en fonction de $\overline{\mathfrak{M}}$ dans les positions de Gauss :
 - 5.1) $\theta = 0$ et $\theta = \pi$
- 5.2) $\theta = \frac{\pi}{2}$ et $\theta = \frac{3\pi}{2}$
- 6) Montrer que l'équation des lignes de champ en coordonnées polaire s'écrit : $r = K \sin^2 \theta$, K est une constante positive, on donne : $\vec{E}(M) \wedge \overrightarrow{dM} = \vec{0}$.
- 7) Montrer que les surfaces équipotentielles sont définies par l'équation : $r = bcos\theta$ et vérifier que la constante b > 0 si $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ et b < 0 si $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$.
- 8) Dans le plan polaire, tracer les courbes de lignes de champ et celles des surfaces équipotentielles.

Exercice 2:

- 1) Une sphère conductrice (S_1) , de rayon R_1 porte une charge $Q_1 > 0$. Calculer son potentiel V, sa capacité C et sa densité surfacique σ .
- 2) Une seconde sphère conductrice (S_2) initialement neutre, de rayon $R_2 < R_1$ est placé à une distance de (S_1) , suffisamment éloignée pour que l'on puisse négliger les phénomènes d'influence. Les deux sphères sont reliées par un fil conducteur de capacité négligeable.

Calculer, en fonction de R_1 , R_2 et Q_1 les charges Q_1' et Q_2' des deux sphères lorsque l'équilibre est atteint. En déduire en fonction de R_1 et R_2 les densités surfaciques de charge notées respectivement σ_1 et σ_2 . Sur les surfaces de (S_1) et (S_2) . Calculer le rapport σ_1/σ_2 .

3) Enoncer le théorème de Coulomb et déterminer les champs électrostatiques \vec{E}_1 et \vec{E}_2 au voisinage des surfaces de (S_1) et (S_2) . Comparer leurs intensités. Conclure.

Exercice 3:

- 1) Une sphère conductrice pleine S_1 de centre O_1 et de rayon R_1 porte une charge $Q_1 > 0$. Une seconde sphère conductrice pleine S_2 creuse de rayon intérieur $R_2 > R_1$ et de rayon extérieur R_3 porte une charge $Q_2 > 0$. On place S_1 à l'intérieur de S_2 de telle sorte que les sphères soient concentriques. On note respectivement, S_{2int} et S_{2ext} les surfaces interne et externe de S_2 . Et Q_1' , Q_2' et Q_3' les charges de S_1 , S_{2int} et S_{2ex} .
- 1.1) Donner en justifiant, la répartition des charges sur les surfaces de S_1 et S_2 , en fonction de Q_1 et Q_2 .
- 1.2) Calculer le potentiel V_1' de S_1 .
- 2) S_1 étant toujours à l'intérieur de S_2 , on les relie par un fil conducteur de capacité négligeable.
- 2.1) Donner la nouvelle répartition de charges Q_1'' , Q_2'' et Q_3'' sur les surfaces S_1 , S_{2int} et S_{2ext} .
- 2.2) Calculer le nouveau potentiel $V_2^{"}$ de S_1 .
- 3) S_1 étant toujours à l'intérieur de S_2 , on supprime la liaison entre les deux sphères et on relie S_1 au sol, et S_2 au potentiel $V_2 > 0$.
 - 3.1) Indiquer à l'aide d'un schéma la répartition des charges sur les surfaces des sphères. Justifier votre réponse. On note Q_1''' , Q_2''' et Q_3''' , les charges de S_1 , S_{2int} et S_{2ext} .
 - 3.2) Calculer le champ et le potentiel électrostatique en tout point M situé entre S_1 et S_2 et repéré par sa distance r = OM au centre commun O des deux sphères.
 - 3.3) En déduire en fonction de V_2 les charges Q_1''' , Q_2''' et Q_3''' .
- 4) On isole S_1 du sol, (étant toujours à l'intérieur de S_2) elle porte une charge Q > 0; et on relie S_2 au sol.
 - 4.1) Donner la nouvelle répartition des charges sur les surfaces de S_1 et S_2 et exprimer le champ $\vec{E}(M)$ entre les deux conducteurs S_1 et S_2 .
 - 4.2) Calculer $V_1(M)$ le potentiel S_1 et en déduire la capacité C du condensateur sphérique ainsi formé. Calculer en fonction de Q_1 , R et ε_0 l'énergie électrostatique W_e de ce condensateur.
 - 4.3) Au moyen de la densité d'énergie, $\frac{dW_e}{dv} = \varepsilon_0 \frac{E^2}{2}$ retrouver l'expression précédente de W_e .

Exercice 4:

Un condensateur plan, placé dans l'air sec $(\varepsilon = \varepsilon_0)$, est constitué de deux armatures (A_1, A_2) métalliques de surfaces S et distantes de e. On admettra que les deux armatures sont en influence totale (les effets de bords sont négligeables). Le condensateur est porté à une différence de potentiel $U = V_1 - V_2$. Soient Q la charge du condensateur et σ la densité surfacique de charge.

- 1) Déterminer, en fonction de la charge Q le champ \vec{E} entre les armatures.
- 2) Calculer la différence de potentiel $V_1 V_2$ entre les armatures et en déduire la capacité \mathcal{C} du condensateur.
- 3) Calculer en fonction de σ , e, ε_0 et S, l'énergie électrostatique W_e emmagasinée dans ce condensateur. Vérifier que la densité volumique d'énergie est : $\frac{dW_e}{dv} = \varepsilon_0 \frac{E^2}{2}$
- 4) On introduit, parallèlement aux armatures une plaque métallique d'épaisseur *a*. conclure la capacité du condensateur équivalent.

Corrigé de TD N :4 : Electrostatique

Dipôle électrique

L'équilibre des conducteurs

Question de cours concernant le chapitre 3: Dipôle électrique

Exercice 2:

Exercice déjà fait dans le cours

Exercice 3:

1)

1.1) Répartition des charges

- \checkmark S_1 est isolé, conserve sa charge initiale $\Longrightarrow Q_1' = Q_1$
- ✓ $S_2: S_{2in}$ est en influence totale avec S_1 , donc selon le théorème des éléments correspondants on a : $Q_2' = -Q_1' = -Q_1$.

 S_2 est isolé, il conserve sa charge initiale, donc : $Q_2' + Q_3' = Q_2$

 $\Rightarrow Q_3' = Q_1 + Q_2$ est la charge de S_{2ext} .

1.2) Calculons V_1' :

D'après le théorème de superposition on a :

$$V_1' = V(O) = \frac{Q_1'}{4\pi\varepsilon_0 R_1} + \frac{Q_2'}{4\pi\varepsilon_0 R_2} + \frac{Q_3'}{4\pi\varepsilon_0 R_3}$$

Car le potentiel est une fonction continue et que la charge à l'intérieur de S_1 est nulle, \Rightarrow $E_{s1int} = 0 \Rightarrow V_1' = cte$.

En utilisant les expressions de Q'_1 , Q'_2 et Q'_3 ; on obtient :

$$V_1' = V(0) = \frac{Q_1}{4\pi\varepsilon_0 R_1} - \frac{Q_1}{4\pi\varepsilon_0 R_2} + \frac{Q_1 + Q_2}{4\pi\varepsilon_0 R_3}$$

2)

2.1) Répartition des charges

La nouvelle répartition des charges Q_1'' , Q_2'' et Q_3'' successivement sur les surfaces S_1 , S_{2int} , S_{2ext} est donnée par :

On a, les conducteurs S_1 et S_2 sont reliés fortement par un fil conducteur de capacité négligeable. Et l'ensemble semble comme un seul conducteur, alors les charges se répartissent sur sa surface extérieure. D'où :

$$Q_1''' = Q_2'' = 0$$
 et $Q_3'' = Q_1 + Q_2$

2.2) Calculons V_1'' :

$$V(S_1) = V(S_2) = V_1^{\prime\prime} \Longleftrightarrow V_1^{\prime\prime} = V(O) = \frac{Q_1 + Q_2}{4\pi\varepsilon_0 R_3}$$

3)

3.1) Répartition des charges

On a les lignes de champ sont dirigées toujours vers les potentiels décroissent c.à.d vers S_1 .

 S_1 porte une charge négative $Q_1^{\prime\prime\prime} = -q$ avec q > 0

 S_{2int} et S_1 en influence totale car S_1 est toujours à l'intérieur de S_2 .

$$Q_1^{\prime\prime\prime}=q$$

Et S_{2ext} sera chargé par $Q_3^{\prime\prime\prime}$

3.2) Déterminons $\vec{E}(M)$ et V(M)

D'après la raison de symétrie, on a une symétrie sphérique, alors :

$$\vec{E}(M) = E(r)\vec{e}_r$$

Selon Gauss, on a:

$$\vec{E}(M) = \frac{Q_{int}}{4\pi\varepsilon_0 r^2} \vec{e}_r$$

• Pour $R_1 < r < R_2$

$$E(r) = -\frac{q}{4\pi\varepsilon_0 r^2}$$

Et

$$\vec{E}(r) = -\frac{q}{4\pi\varepsilon_0 r^2} \vec{e}_r$$

Calculons V(M):

On a:

$$\vec{E}(r) = -\overrightarrow{grad}V(r)$$

Donc

$$V(r) = -\int E_r(r) dr$$

$$V(r) = -\int \frac{q}{4\pi\varepsilon_0 r^2} dr$$

$$V(r) = -\frac{q}{4\pi\varepsilon_0 r} + C_1$$

Et on a
$$V_1(R_1) = 0$$
 donc $-\frac{q}{4\pi\epsilon_0 R_1} + C_1 = 0$

Donc:

$$C_1 = \frac{q}{4\pi\varepsilon_0 R_1}$$

Finalement:

$$V(r) = -\frac{q}{4\pi\varepsilon_0 r} + \frac{q}{4\pi\varepsilon_0 R_1}$$
$$V_2 = V(R_2) = \frac{q}{4\pi\varepsilon_0} \left(-\frac{1}{R_2} + \frac{1}{R_1} \right)$$

3.3) Les charges en fonction de V_2

On a:

$$V_2 = V(R_2) = \frac{q}{4\pi\varepsilon_0} \left(-\frac{1}{R_2} + \frac{1}{R_1} \right)$$
$$q = \frac{4\pi\varepsilon_0 R_2 R_1 V_2}{R_2 - R_1} > 0$$

Donc:

$$Q_1^{\prime\prime\prime} = -q$$
 et

$$Q_2^{\prime\prime\prime}=q$$

On a aussi:

$$V_{r>R_3}(r) = \frac{Q_3'''}{4\pi\varepsilon_0 r} \Longrightarrow V(R_3) = V_2 = \frac{Q_3'''}{4\pi\varepsilon_0 R_3}$$
$$\Longrightarrow Q_3''' = 4\pi\varepsilon_0 R_3 V_2$$

4)

4.1) Répartition des charges

 S_1 porte une charge Q> 0

Pour S_2 on a:

 S_{2int} et S_1 en influence totale car S_1 est toujours à l'intérieur de S_2 , alors :

$$Q_{2int} = -Q$$

Et que S_2 est lié au sol alors :

$$Q_{2ext} = 0$$

Le champ entre \vec{E} entre S_1 et S_2 . selon Gauss on a :

$$\vec{E}(M) = \frac{Q}{4\pi\varepsilon_0 r^2} \vec{e}_r$$

4.2) Calculons V_1

$$V_{1} = V(O) = \frac{Q}{4\pi\varepsilon_{0}} \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right)$$

$$V_{1} = \frac{Q}{4\pi\varepsilon_{0}r^{2}} \frac{R_{2} - R_{1}}{R_{2}R_{1}}$$

Calculons la capacité :

On a:

$$C = \frac{Q}{V_1} = \frac{4\pi\varepsilon_0 r^2 R_2 R_1}{R_2 - R_1}$$

Calculons l'énergie emmagasiné :

On a:

$$W_e = \frac{1}{2} Q(V_1 - V_{12})$$

Avec $V_2 = 0$

$$W_e = \frac{1}{2}QV_1 = \frac{1}{8\pi\varepsilon_0}Q^2 \frac{R_2 - R_1}{R_2R_1}$$

4.3) La densité d'énergie

$$\frac{dW_e}{dV} = \frac{1}{2}\varepsilon_0 E^2$$

Et

$$W_e = \frac{1}{2}\varepsilon_0 \iiint E^2 dV$$

En coordonnées sphérique : $dV = r^2 sin\theta d\theta d\phi dr$

Donc:

$$\begin{split} W_{e} &= \frac{1}{2} \varepsilon_{0} \int_{R_{1}}^{R_{2}} r^{2} dr \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{2\pi} d\varphi \frac{Q^{2}}{(4\pi \varepsilon_{0} r^{2})^{2}} \\ W_{e} &= \frac{1}{2} \varepsilon_{0} \int_{R_{1}}^{R_{2}} r^{2} \frac{Q^{2}}{(4\pi \varepsilon_{0} r^{2})^{2}} dr \\ W_{e} &= \frac{1}{2} \int_{R_{1}}^{R_{2}} \frac{Q^{2}}{4\pi \varepsilon_{0} r^{2}} dr \\ W_{e} &= \frac{Q^{2}}{8\pi \varepsilon_{0}} \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right) \end{split}$$

$$W_e = \frac{Q^2}{8\pi\varepsilon_0} \left(\frac{R_2 - R_1}{R_2 R_1} \right)$$

Exercice 4:

1) Calcul du champ

Selon le théorème de superposition on a $\vec{E}(M) = \vec{E}_1(M) + \vec{E}_2(M)$, et on a deux :

Entre les deux plans

$$\vec{E}(M) = \frac{\sigma}{2\varepsilon_0} \vec{k} + \frac{\sigma}{2\varepsilon_0} \vec{k}$$
$$= \frac{\sigma}{2\varepsilon_0} \vec{k}$$

Et on : $Q = \sigma$. S Alors :

$$\vec{E}(M) = \frac{Q}{\varepsilon_0 S} \vec{k}$$

A l'extérieur des deux plans

$$\vec{E}(M) = \frac{\sigma}{2\varepsilon_0} \vec{k} - \frac{\sigma}{2\varepsilon_0} \vec{k}$$
$$= \vec{0}$$

2) Calcul de la d.d.p

On a:

$$V_1 - V_2 = -\int_{A_1}^{A_2} \vec{E} \cdot \vec{dl}$$

$$V_1 - V_2 = -\int_{A_1}^{A_2} \frac{Q}{\varepsilon_0 e} dz$$

$$V_1 - V_2 = \frac{Q}{\varepsilon_0} Se$$

$$C = \frac{Q}{V_1 - V_2}$$

$$C = \varepsilon_0 \frac{S}{e}$$

3) Calcul de W_e :

$$W_e = \frac{1}{2}Q(V_1 - V_2) = \frac{Q^2 e}{2\varepsilon_0 S} = \frac{S^2 \sigma^2 e}{2\varepsilon_0 S}$$
$$W_e = \frac{\sigma^2 S e}{2\varepsilon_0} = \frac{\sigma^2 v}{2\varepsilon_0}$$

v est le volume entre les deux plans

Densité d'énergie

A partir de l'équation précédente, on vérifie facilement que:

$$\frac{dW_e}{dv} = \frac{\sigma^2}{2\varepsilon_0} = \frac{1}{2}\varepsilon_0 E^2$$

4) Capacité du condensateur équivalent

 A_1 et A_2 Sont en influence totale avec les faces inférieur et supérieures de la plaque.

Le condensateur équivalent est la mise en série de deux condensateurs de capacités \mathcal{C}_1 et \mathcal{C}_2 et avec :

$$C_1 = \varepsilon_0 \frac{S}{e_1}$$

Et

$$C_2 = \varepsilon_0 \frac{S}{e_2}$$

On a:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{e_1}{\varepsilon_0 S} + \frac{e_2}{\varepsilon_0 S}$$

Donc:

$$C_{eq} = \varepsilon_0 \frac{S}{e_1 + e_2}$$

$$C_{eq} = \varepsilon_0 \frac{S}{e - a}$$