Escolha e faça 16 exercícios abaixo

6.3 EXERCÍCIOS

1. Seja
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x, y) \mapsto (y, 2y).$

Mostre que $\lambda = 2$ é um autovalor de T e vetores da forma (x, 2x) são os autovetores correspondentes.

195

Ache os autovalores e autovetores correspondentes das transformações lineares dadas:

- 2. $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(x, y) = (2y, x)
- 3. $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(x, y) = (x + y, 2x + y)
- 4. $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $(x, y, z) \mapsto (x + y, x y + 2z, 2x + y z)$
- 5. $T: P_2 \to P_2$ tal que $T(ax^2 + bx + c) = ax^2 + cx + b$
- 6. $T: M_2 \to M_2$ tal que $A \mapsto A'$ (Isto é, T é a transformação que leva uma matriz na sua transposta.)
- 7. $T: \mathbb{R}^4 \to \mathbb{R}^4$ tal que T(x, y, z, w) = (x, x + y, x + y + z, x + y + z + w)
- 8. Encontre a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, tal que T tenha autovalores -2 e 3 associados aos autovetores (3y, y) e (-2y, y) respectivamente.

Ache os autovalores e autovetores correspondentes das matrizes:

$$\mathbf{9. \ A} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$

$$\mathbf{10. \ A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

11.
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

12.
$$\mathbf{A} = \begin{bmatrix} 3 & -3 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$

13.
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

14.
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

15.
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

16.
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & -3 \\ 0 & 4 & 0 \\ -3 & 3 & 1 \end{bmatrix}$$

17.
$$\mathbf{A} = \begin{bmatrix} -1 & -4 & 14 \\ 2 & -7 & 14 \\ 2 & -4 & 11 \end{bmatrix}$$

18.
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 12 & 0 & 3 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

19. Seja
$$A = \begin{bmatrix} -1 & -2 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
. Quais são os autovalores e autovetores de A de

um espaço vetorial:

- a) Real
- b) Complexo
- 20. Se λ é autovalor da transformação linear $T: V \to V$ e v é um autovetor associado a ele, mostre que
 - a) $k\mathbf{v}$ é outro autovetor associado a λ se $k \neq 0$.
 - b) O conjunto formado pelos autovetores associados a λ e o vetor nulo é subespaço de V.
- 21. Suponha que λ_1 e λ_2 sejam autovalores distintos e diferentes de zero de $T: \mathbb{R}^2 \to \mathbb{R}^2$. Mostre que
 - a) Os autovetores v₁ e v₂ correspondentes são LI.
 - b) $T(\mathbf{v}_1)$ e $T(\mathbf{v}_2)$ são LI.
- 22. Seja $A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$.
 - a) Ache os autovalores de A e de A^{-1} .
 - b) Quais são os autovetores correspondentes?
- 23. Suponha que λ seja autovalor de $T: V \to V$ com autovetor \mathbf{v} e α um número não nulo. Ache os autovalores e autovetores de αT .
- 24. Suponha que $v \in V$ seja autovetor de $T: V \to V$ e $S: V \to V$, ao mesmo tempo com autovalores λ_1 e λ_2 respectivamente. Ache autovetores e autovalores de
 - a) S + T.

- b) $S \circ T$.
- 25. Seja $T: V \rightarrow V$ linear
 - a) Se $\lambda = 0$ é autovalor de T, mostre que T não é injetora.
 - b) A recíproca é verdadeira? Ou seja, se T não é injetora, $\lambda = 0$ é autovalor de T?
- 26. Sejam $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ e $\mathbf{B} = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

matrizes inversíveis.

- a) Calcule AB e BA e observe que estes produtos são distintos.
- b) Encontre os autovalores de AB e os de BA. O que você observa?

- c) Encontre os autovetores de AB e os de BA. O que você nota?
- d) Motivado pelos itens anteriores, mostre que: se A e B são matrizes inversíveis de mesma ordem, os autovalores de AB e BA são os mesmos. Mostre mais ainda: se λ_1 é um autovalor de AB com autovetor v, então λ_1 é autovalor de BA com autovetor Bv. Da mesma forma, se λ_2 é um autovalor de BA com autovetor v, então v0 é autovalor de v1 cm autovetor v2 é autovalor de v3 cm autovetor v4 então v6 autovalor de v7 cm autovetor v8 então v9 é autovalor de v9 cm autovetor v9 então v9 é autovalor de v9 cm autovetor v9 então v9 é autovalor de v9 então v9 então v9 é autovalor de v9 então v9 entã

6.3.1 Respostas

3.
$$\lambda_1 = 1 + \sqrt{2}$$
, $v_1 = (x, \sqrt{2}x)$; $\lambda_2 = 1 - \sqrt{2}$, $v_2 = (x, -\sqrt{2}x)$

5.
$$\lambda = 1$$
, $\mathbf{v} = ax^2 + bx + b$

7.
$$\lambda = 1$$
, $\mathbf{v} = (0, 0, 0, w)$

8.
$$T(x, y) = (-6y, -x + y)$$

9.
$$\lambda_1 = 1$$
, $\mathbf{v_1} = (x, 0)$; $\lambda_2 = -1$, $\mathbf{v_2} = (-y, y)$

11.
$$\lambda = 1$$
, $\mathbf{v} = (x, 0, 0)$

13.
$$\lambda_1 = 1$$
, $\mathbf{v_1} = (-y, y, 0)$; $\lambda_2 = -1$, $\mathbf{v_2} = (x, 2x, -x)$; $\lambda_3 = 3$, $\mathbf{v_3} = (x, 0, x)$

16.
$$\lambda_1 = 4$$
, $\mathbf{v}_1 = (y - z, y, z)$; $\lambda_2 = -2$, $\mathbf{v}_2 = (x, 0, x)$ ou $\lambda_1 = 4$, $\mathbf{v}_1 = (y, y, 0)$; $\lambda_2 = 4$, $\mathbf{v}_2 = (-z, 0, z)$; $\lambda_3 = -2$, $\mathbf{v}_3 = (x, 0, x)$

17.
$$\lambda_1 = -3$$
, $\mathbf{v_1} = (2y - 7z, y, z)$; $\lambda_2 = 9$, $\mathbf{v_2} = (x, x, x)$

18.
$$\lambda_1 = 1$$
, $\mathbf{v}_1 = (0, y, 0, -y)$; $\lambda_2 = -1$, $\mathbf{v}_2 = (x, 0, -2x, 0)$; $\lambda_3 = 6$, $\mathbf{v}_3 = (x, 0, 4x, 0)$

19. a)
$$\lambda = -2$$
, $\mathbf{v} = (2x, x, -x)$
b) $\lambda_1 = -2$, $\mathbf{v}_1 = (2x, x, -x)$; $\lambda_2 = i$, $\mathbf{v}_2 = [(-1 + i)y, y, (1 + i)y]$; $\lambda_3 = -i$, $\mathbf{v}_3 = [(-1 - i)y, y, (1 - i)y]$

22. a) Os de A são -1 e 2; os de
$$A^{-1}$$
, -1 e $\frac{1}{2}$.
b) Os de B são (-2y, y) e (x, 2x); os de A^{-1} , (-2y, y) e (x, x)

23. Autovalor αλ com autovetor v.

- 25. a) Como $\lambda = 0$ é autovalor, existe $\mathbf{v} \neq \mathbf{0}$ tal que $T\mathbf{v} = \mathbf{0} \cdot \mathbf{v} = \mathbf{0}$. Então $T\mathbf{0} = \mathbf{0}$ e $T\mathbf{v} = \mathbf{0}$. Portanto, T não é injetora.
 - b) Como T não é injetora, existe $\mathbf{v} \neq \mathbf{w}$ tal que $T\mathbf{v} = T\mathbf{w}$. Então $T\mathbf{v} - T\mathbf{w} = T(\mathbf{v} - \mathbf{w}) = \mathbf{0} = 0 \cdot (\mathbf{v} - \mathbf{w})$. Portanto, $\mathbf{0}$ é autovalor de T com autovetor $\mathbf{v} - \mathbf{w}$.
- **26.** b) São iguais. $\lambda_1 = 1$, $\lambda_2 = -2$, $\lambda_3 = -3$
 - c) São diferentes. $v_1 = (x, 0, 0), v_2 = (\frac{1}{3}y, y, 0), v_3 = (\frac{5}{4}z, -2z, z)$

Leituras Sugeridas e Referências

¹ Herstein, I. N.; Tópicos de Algebra, Editora Polígono, São Paulo, 1970.

² Hoffman, K. e Kunze, R.; Algebra Linear; Editora Polígono, São Paulo, 1971.