

通信网理论基础

第三章 通信网的结构 第四节 流量分配

北京邮电大学 信息与通信工程学院

授课教师: 武穆清

电子信箱: wumuqing@bupt.edu.cn

课程内容介绍

第一章 引论 通信系统和通信网的种类和基本要求

第二章 通信网的组成要素 通信系统和网络的构成部件、功能、特性

第三章 通信网的结构 图论基础,最短径、最大流、最佳流算法

第四章 网内业务分析 排队论基础,业务模型与分析,网络效率

第五章 通信网的可靠性 可靠性理论,系统可靠性,网络可靠性

第三章 通信网的结构

- 3.1 图论基础
- 3.2 最短径问题
- 3.3 站址问题
- 3.4 流量分配

第四节 流量分配

- 3.4.1 流量优化的一般性问题
- 3.4.2 最大流问题
- 3.4.3 最佳流问题

3.4 流量分配

- = 网的作用: 将业务流从源端输送到宿端
 - △商品在运输网中的传递
 - △邮件在邮政网中的分发
 - △信息在通信网中的输送
 - △ 营养通过血管网输送到全身
 - △ 自来水通过上水管网从自来水厂输送到千家万户
 - △ 废水通过下水道网从千家万户汇聚到污水处理厂
 - Δ 电力通过输电网从发电厂输送到工厂、机关、千家万户

=我们的目标

- ■充分利用网络资源(包括线路和转接设备)
- ≡合理分配流量
- ≡使从源到宿的流量尽可能大
- ■使传输代价尽可能小

= 网内流量分配

- ≡网内流量分配并不是任意的
- ≡它受限于网的结构,受限于边和端的容量
- ≡所以,流量分配实际上是在某些限制条件下的优化问题
- ■流量分配的优劣直接影响到网的使用效率和经济效益
 △是网络运行的重要指标之一

= 流量

- ■单位时间内,在网络的管线中输送的货物量、电量、信息量等
- ≡在通信网中,流量即为传信率
 - △单位是: 比特/秒
 - △ 广义地说,是与边有关的某种权值
- ≡通信流量具有随机性
 - Δ 本节中,只使用平均流量或峰值流量的概念,认为是常量 Δ 其随机性将在下一章讨论

3.4.1 流量优化的一般性问题

- = 用有向图G = {V, E} 来表示一个通信网
 - \equiv 端集 $V = \{v_1, v_2 \cdot v_n\}$
 - ≡边是有向的

 Δ 用 e_{ij} 表示从 v_i 到 v_i 的边

■边集E是所有边eij的集合

= 边的容量

- **■每条边能通过的最大流量称为<u>边的容量</u>**
 - Δ 用 c_{ii} 来表示
- ≡每条边上的实际流量用fii来表示
- ≡ 若 e_{ij} ∉E ,则 c_{ij} = 0 ,且 f_{ij} = 0

- 单源单宿问题

- = 网内只有一个源端和一个宿端
- = 一组流量的安排 $\{f_{ij}\}$ 称为<u>网内的一个流</u>
- = 若网内的一个流, 从源端到宿端有总流量F
 - ■则这些fii必须满足两个限制条件:

 Δ 非负性和有限性: $0 \le f_{ij} \le c_{ij}$

△连续性:

$$\sum_{v_j \in \Gamma(v_i)} f_{ij} - \sum_{v_j \in \Gamma'(v_i)} f_{ji} = \begin{cases} F & \text{若}v_i 为 源端v_s \\ -F & \text{若}v_i 为 宿端v_t \\ 0 & \text{其它} \end{cases}$$

 $\Gamma(v_i)$: 是 v_i 的出向邻端集,即: $\Gamma(v_i) = \{v_i : e_{ij} \in E\}$

- ·亦即:v_i至v_i间有一条有向边,所有这样的v_i组成的集合
- $\Gamma'(v_i)$: 是 v_i 的入向邻端集,即: $\Gamma'(v_i)=\{v_j:e_{ji}\in E\}$
- · 亦即: vi至vi间有一条有向边,所有这样的vi组成的集合

=可行流

- ≡满足非负性、有限性、连续性条件的流称为<u>可行流</u>
- ≡不同的流量分配,可以得到不同的可行流

= 两种可行流的优化问题

≡最大流问题

 Δ 变更可行流中各 f_{ii} 值,使总流量F最大

 Δ 其实质就是,除 v_s 和 v_t 两个端外,在剩余2m+n-2个条件下

· 使目标函数F取得最大的线性规划问题

■最佳流问题(最小费用流问题)

 Δ 若每条边除了有容量 c_{ii} 的限定外,还存在费用 α_{ii} 的问题

• 即单位流量所需的费用为 α_{ii}

 Δ 若给定了F,则选择路由,分配这个流量

• 即调整 f_{ii} , 使总费用 ρ 取得最小。这就是最佳流问题

△显然,这也是一个线性规划问题

$$\phi = \sum_{e_{ii} \in E} \alpha_{ij} f_{ij}$$

• 目标函数就是φ

• 若 α_{ij} 是 f_{ij} 的函数,则变成了非线性规划,求解会困难一些

- 割量

- = 考虑有向图G = {V, E}
 - ≡ X是端集V的真子集: $X \subset V$
 - ≡源端v_s∈X
 - \equiv 宿端 $v_t \in X = G X$

 Δ 即:它是把 v_s 和 v_t 分开的一个割集

 Δ 此割集的方向为从 v_s 到 v_t

△ 属于此割集的边可分为两类

- 前向边:与割集方向一致的边
- 后向边:与割集方向相反的边

 Δ 显然, (X, \overline{X}) 中的前向边集合就能割断 v_s 至 v_t 的通路

=割量的定义

 \equiv 定义割集(X,X)中的前向边的容量之和为它的<u>割容量</u>

△简称: 割量

立 記 が こ
$$C(X, \overline{X}) = \sum_{\substack{v_i \in X \\ v_j \in \overline{X} \\ e_{ij} \in (X, \overline{X})}} C_{ij}$$

 \equiv 当给定任一可行流 $\{f_{ii}\}$ 时

 Δ 割集(X,X)中的前向边上的流量之和记为 $f_+(X,X)$ 或f(X,X)

 Δ 割集(X,X)中的后向边上的流量之和记为 $f_{-}(X,\overline{X})$ 或 $f(\overline{X},X)$

•
$$f_+(X,\overline{X}) = f(X,\overline{X}) = \sum_{\substack{v_i \in X \\ v_i \in \overline{X}}} f_{ij}$$

•
$$f_{-}(X, \overline{X}) = f(\overline{X}, X) = \sum_{\substack{v_i \in X \\ v_i \in \overline{X}}} f_{ji}$$

=割量的性质

≡F为源宿端间的总流量

≡性质1:

$$F = f_{+}(X, \overline{X}) - f_{-}(X, \overline{X})$$

$$\Delta$$
 域 $F = f(X, \overline{X}) - f(\overline{X}, X)$

(3-55)

$$=$$
性质2: $F \leq C(X,\overline{X})$

△【证明】

 Δ 由连续性公式 (3-51), 对于 v_i ∈X, 有:

$$\sum_{v_j \in \Gamma(v_i)} f_{ij} - \sum_{v_j \in \Gamma'(v_i)} f_{ji} = \begin{cases} F, & v_i = v_s \\ 0, & v_i \neq v_s \end{cases}$$

● 北京郵電大學

△下面把(3-51)中的 $\Gamma(v_i)$ 和 $\Gamma'(v_i)$ 改写成全部端集V △其中,当 e_{ii} ∉E时,我们认为 f_{ii} =0

$$\sum_{v_j \in \Gamma(v_i)} f_{ij} - \sum_{v_j \in \Gamma'(v_i)} f_{ji} = \begin{cases} F & v_i = v_s \\ 0 & v_i \neq v_s \end{cases}$$

$$\sum_{v_j \in V} f_{ij} - \sum_{v_j \in V} f_{ji} = \begin{cases} F & v_i = v \\ 0 & v_i \neq v_s \end{cases}$$

 Δ 对所有X中的 ν_i 求和,可得:

$$\sum_{v_i \in X} \left(\sum_{v_j \in V} f_{ij} - \sum_{v_j \in V} f_{ji} \right) = F$$

$$\sum_{v_i \in X} \sum_{v_j \in V} f_{ij} - \sum_{v_i \in X} \sum_{v_j \in V} f_{ji} = F$$

 Δ 实际上: V=X+X , 可得:

$$\sum_{v_i \in X} \sum_{v_j \in X + \overline{X}} f_{ij} - \sum_{v_i \in X} \sum_{v_j \in X + \overline{X}} f_{ji} = F$$

 Δ 注意到对 $v_j \in X$,求和时,一项为正,一项为负,抵消为零

△ 所以可得:

$$\sum_{v_i \in X} \sum_{v_j \in \overline{X}} f_{ij} - \sum_{v_i \in X} \sum_{v_j \in \overline{X}} f_{ji} = F$$

 $\Delta \mathcal{M} f_{+}(X,X)$ 和 $f_{-}(X,X)$ 的定义可知:

・性质一得证
$$f_+(X,X)-f_-(X,X)=F$$

 Δ 由流量的有限性公式(3-50),可得: $f_+(X,\overline{X}) \leq C(X,X)$

 Δ 再由流量的非负性及性质一,可得: $F \leq C(X, \overline{X})$

• 性质二得证

 Δ (证毕)

到北京郵電大學 BEDING UNIVERSITY OF POSTS AND TELECOMM

- 路

- =回顾:两端间的径
 - ≡是无重复边、无重复端的边序列
 - ≡对于有向图, 径也是有向的

 $\Delta \, \text{从v}_{s}$ 到 v_{t} 的径上,所有边都是前向的

图b

- = 路的定义: 与径的定义相似
 - ≡只是路中的边,可以是前向的,也可以是后向的
- = 路的例
 - ≡如图:
 - ■图a是一条有向径
 - ■图b并不能形成从v。至v,的有向径
 - ≡但在分析可行流的性质时,可以 把图a和图b统称为<u>路</u>

△ 可见,路中的边,可以是前向的, 也可以是后向的

图a图中边上的数字: 前一个是容量 c_{ij}

后一个是流量fii

- = 饱和边与非饱和边
 - ≡对前向边而言
 - $= f_{ij} = c_{ij}$ 的前向边称为<u>饱和边</u>
 - $= f_{ij} < c_{ij}$ 的前向边称为<u>非饱和边</u>
 - ≡如前例图a:
 - $\Delta \, \text{从v}_{s}$ 到 v_{1} 的边 e_{s1} 是饱和的前向边
 - Δ 从 v_4 到 v_t 的边 e_{4t} 是非饱和的前向边
- = 零流量与非零流量
 - ≡这是对后向边而言的
 - ≡如前例图b

 Δ 从 v_1 到 v_2 的边 e_{12} 为非零流量的后向边

图a

- 可增流量的路

=定义

- ≡若从v。至vt的一条路P中
- ≡所有前向边都未饱和
- ≡所有后向边都是非零流量的
- **■则这条路称为<u>可增流路</u>**

可增流路例

= 性质:

- ■在可增流路上,所有前向边上的流量均可增加
 △但不破坏流量的有限性
- ■在可增流路上,所有后向边上的流量均可减少
 △但不破坏流量的非负性
- = 增流值: 为路中所有边上能增流(后向边上能减流)的最小值,即: $\delta = \min \left\{ \min_{e_{ij} \in P} (c_{ij} f_{ij}), \min_{e_{ji} \in P} f_{ji} \right\}$ (3-56) Δ 其中: e_{ii} 代表前向边
 - · eii代表后向边

=若在一条路P中,各边上均可增流δ

- ≡但不破坏流量的非负性、有限性和连续性
- ≡则可得到一个新的可行流
- ≡它使源宿间的流量增大
- ≡如前例:

△ 图b为可增流路

△ 图a已不能增流

=源宿间最大流量的充分必要条件

 \equiv 条件1: 可行流 $\{f_{ii}\}$ 已使源宿间的流量达到最大值

■条件2:

△从v。到vi的每一条路上

△都至少有一个饱和的前向边或一个零流的后向边

 Δ 即 v_s 至 v_t 间不存在一条可增流的路

≡二者互为充分必要条件

图a

- 最大流量 - 最小割量定理

- ≡当源宿端的流量达到最大时
- \equiv 每个割集 (X,\overline{X}) 的前向流量 $f_{+}(X,X)$ 减去后向流量 $f_{-}(X,X)$ 都等于最大流量 \mathbf{F}_{\max}
- ■并且总存在这样一个割集,其每条前向边都是饱和的、 后向边都是零流量
- ■其割量在各个割集中达到最小值,且也等于Fmax
- ≡简言之,最大流量等于最小割容量

- 最大流量 - 最小割量定理(2)

=证明:

- \equiv 令 Γ_{max} 是源宿端间所容许的最大流量 $\Delta(X_0, X_0^-)$ 表示 v_s 与 v_t 间具有最小割量的割集
- ≡由割量的性质2,即(3-55)式知,必有:

$$F_{\text{max}} \le C (X_0, X_0^-)$$
 (3-57)

- \equiv 设可行流 $\{f_{ii}\}$ 已使源宿间的流量达到最大值
- \equiv 从源端开始,做割集X,令 $X=\{v_s\}$ 单端集,按下述条件逐步扩大X

 $\Delta \ddot{a} v_a \in X$, $v_b \in X$, $v_a \ddot{a} v_b$ 间有边 $\Delta \ddot{a} \ddot{a} \not\in C_{ab}$ 或 $f_{ba} > 0$ 时 $\Delta M \ddot{a} v_b \not\in X$

=证明: (2)

■这样扩大,一直到X为X',此时已无端可并入

 Δ 则 v_t 必不在X'中,而是在X'中

 Δ 否则, v_s 至 v_t 间必有可增流路

• 这与 $\{f_{ii}\}$ 已使源宿间的流量达到最大值相矛盾

 \equiv 据X的扩大条件可知,若 $v_i \in X'$, $v_j \in X'$,

 Δ 则(X', X'¯)中的前向边上必有 f_{ij} = c_{ij}

 Δ

后向边上必有 $f_{ji} = 0$

≡由割量的性质1,即(3-54)式,可得:

$$F_{\max} = f_{+}(X', \overline{X'}) - f_{-}(X', \overline{X'}) = \sum_{\substack{v_i \in \underline{x'} \\ v_j \in \overline{x'}}} f_{ij} - \sum_{\substack{v_i \in \underline{x'} \\ v_j \in \overline{x'}}} f_{ji} = \sum_{\substack{v_i \in \underline{x'} \\ v_j \in \overline{x'}}} c_{ij}$$
(3-58)

$$= C(X', X') \ge C(X_0, X_0)$$

 \equiv 由(3-57)式和(3-58)式,可得: $F_{max} = C(X_0, X_0^-)$

≡定理得证

- 标志算法 (M算法)

- = 算法目的: 求最大流量
- = 算法思路: 从一个可行流出发
 - ≡搜索每一条从源到宿的路,是否可增流
 - ≡每找到一条可增流的路,就进行增流,总流量得以扩大
 - ≡直至不存在可增流路
 - ≡即得到了源宿端间的最大流量值和相应的流量分配
 - ■起始: 当所有边上的流量都是零时,这个流必为可行流 Δ所以,通常就用全零流作为算法的起始
 - ≡可采用标志各个端的办法来寻找可增流路
 - Δ 从源端 v_s 开始,逐个端作标志
 - △有可能增流时,就在该端作一个增流量及路的走向的标志
 - Δ 不能增流时,就不标
 - Δ 当 v_i 可标时,就找到一条可增流路
 - Δ 当 v_t 不可标时,就已无可增流的路,算法终止

= 算法步骤

- = M_0 : 初始化,令 f_{ij} = 0,对所有i,j
- ≡M₁: 标源端为(+, s, ∞), 作为已标未查端
- $\equiv \mathbf{M_2}$:

△ 查已标未查端v_i

- · 首先:标出vi的所有邻端vj
- 若 $e_{ij} \in E$, $c_{ij} > f_{ij}$,则标 v_j (+, i, ε_j)
- · +:表示可增流; i:表示与i端间可增流,
- ϵ_{j} 是可增流量: $\epsilon_{j} = \min (c_{ij} f_{ij}, \epsilon_{i})$
- $ε_i \not = v_i$ 中的已标值
- 若 $e_{ji} \in E$, $f_{ji} > 0$,则标 $v_j(-, i, \epsilon_j)$
- · -:表示可减流; i:表示与i端间可减流,
- $ε_j$ 是可增流量: $ε_j = min(f_{ji}, ε_i)$
- · 完成以上标示,则v_i为已标未查
- ·若不满足以上条件,则 v_j 不标,表示已无可增流路通过 v_j Δ 若 v_i 的所有邻端都已查完,有的标了值,有的则不标
 - · 则称v_i为已查

\equiv \mathbf{M}_3 :

 Δ 若 v_t 已标,则沿可增流路增流 ε_t

• 返回M₁

 Δ 若 v_t 不标

• 则算法终止

=M算法举例

≡如图:

 $\equiv \mathbf{M_0}$: 初始化,令 $\mathbf{f_{ii}} = \mathbf{0}$

≡ (第1循环)

≡**M**₁: 标源端为**v**_s(+, s, ∞)

 \equiv \mathbf{M}_2 :

Δ 查 \mathbf{v}_{s} :

 $\mathbf{\epsilon}_1$

- 标v₁(+, s, 4) 此时v₁为已标未查端
- 标v₂(+, s, 3) 此时v₂为已标未查端
- 标v₃(+, s, 5) 此时v₃为已标未查端
- 标v₄(+, s, 9) 此时v₄为已标未查端
- · v_s已无其它邻端,:·v_s已查

△ 查v₁:

 $\epsilon_{\scriptscriptstyle t}$

- 出现已标 v_t , 说明已有一条路径抵达终点 v_t , 即 $v_s v_1 v_t$
- 它是可增流路, 增流量 $\Delta f_1 = \varepsilon_t = 4$
- 返回M₁

≡ (第2循环)

≡M₁: 重标源端 $v_s(+, s, ∞)$

 \equiv \mathbf{M}_2 :

△ 查v_s:

- 对于 v_1 端, : $f_{s1} = 4$, $c_{s1} = 4$, $c_{s1} f_{s1} = 0$
- · : 已无富裕容量,则不再标v₁
- $\text{fr} \mathbf{v}_2 (+, \mathbf{s}, 3)$: $\mathbf{c}_{\mathbf{s}} = \infty$, $\mathbf{c}_{\mathbf{s}2} \mathbf{f}_{\mathbf{s}2} = 3 0 = 3$, $\mathbf{c}_{\mathbf{s}2} = 3 0 = 3$

- · v_s已查

Δ Δ δ v_2 : ϵ_1

- 已无其它正向邻端 :.v2已查

Δ Δ δ v_1 : $ε_t$

- 增流: $f_{s2} = 3$, $f_{21} = 3$, $f_{1t} = 4 + 3 = 7$
- 返回M₁

v₁ 4^⅓ +3^⅓

≡ (第3循环)

≡M₁: 重标源端 $v_s(+, s, ∞)$

 $\equiv \mathbf{M}_2$:

△查v_s:

- 标v₃(+, s, 5)
- 标v₄(+, s, 9)
- v_c已查

△ 查v₄:

- 增流: f_{s4} = 3, f_{4t} = 3
- 返回M₁

≡ (第4循环)

≡M₁: 重标源端 $v_s(+, s, ∞)$

 \equiv \mathbf{M}_2 :

△ 查v_s:

- · v_s已查

△ 查v₃:

 Δ 增流: $f_{s3} = 4 f_{3t} = 4$

 Δ 返回 M_1

$$≡$$
M₁: 重标源端 v_s (+, s, ∞)

$$\equiv$$
 \mathbf{M}_2 :

△查v。:

△查v₃:

△ 查v₄:

<mark>△ 查v</mark>1:

$$\equiv \mathbf{M}_1$$
: 重标源端 $\mathbf{v}_{\mathbf{s}}(+,\mathbf{s},\infty)$

 \equiv \mathbf{M}_2 :

△ 查v_s:

· v_s已查

△ 查v₃:

• v₃已查

△ 查v₄:

· v₄已查

△ 查v₂:

4⁸ +3⁸ +1⁸

≡ (第6循环) (2)

$$\equiv \mathbf{M}_2$$
: (续)

△ 查v₁:

• 无端可标

△ 查v₃:

 \mathbf{v}_3 已被查,经 \mathbf{v}_2 至 \mathbf{v}_1 后, \mathbf{v}_1 无端可标 Δ 至此,终止。

≡最大可行流为:

$$\Delta$$
 $f_{s1} = 4$, $f_{s2} = 3$, $f_{s3} = 4$, $f_{s4} = 4$

$$\Delta$$
 $f_{21} = 3$, $f_{41} = 1$

$$\Delta$$
 $f_{1t} = 8$, $f_{3t} = 4$, $f_{4t} = 3$

■最大总流量:

$$\Delta \qquad \mathbf{F}_{\text{tmax}} = \mathbf{f}_{1t} + \mathbf{f}_{3t} + \mathbf{f}_{4t} = 15$$
$$= \mathbf{f}_{s1} + \mathbf{f}_{s2} + \mathbf{f}_{s3} + \mathbf{f}_{s4} = 15$$

=M算法的结果必为最佳解

- ≡但由前面例题中的算法过程可知
- ≡选择已标未查端的次序是任意的
- ≡不同的次序可能得到不同的可行流
- ≡所以,结果并不是唯一的
- ≡但最大流的值则肯定是一样的

=M算法的用途推广

≡无向图情况

△无向图通常是指双工通路

- 即: 边容量既是正向容量, 也是反向容量
- Δ 这时,可以把一条无向边换成两条有向边(如图)
 - 一条是正向的有向边
 - 另一条是反向的有向边
- △然后就可以按有向图计算了

≡端容量问题

△当端的转接能力有限制时

- 可把该端分成两个端
- 一个端与所有射入边相联结
- 另一个与所有射出边相联结
- 这两个端之间加一条有向边,边的容量即为端的转接容量
 △如图:
 - · 其中: Cxx 就是该端的最大转接容量

≡多源多宿情况

△目标:

- 使多源至多宿的流量总和取得最大
- 而不计较各源宿间流量性质的差别

△则可采用下述办法

- 虚设总源端 v_s 和总宿端 v_t
- 如图: 作转换
- 将 v_s 与网内所有源端用容量为 ∞ 的有向边相联
- · 将v_t与网内所有宿端用容量为∞的有向边相联
- 于是,将多源多宿问题 转变成了单源单宿问题
- ·则可以使用前面介绍的 M算法,使从 v_s 至 v_t 的 流量最大
- 也就得到了多源多宿总流量最大的可行流

≡求结合度

 Δ 在M算法中,如置 c_{ij} =1(即将所有边容量置1)

- 这样, 当一个流占用了一条边后,
- 就不会有其它边再占用此边

△于是,求出的总流量就是源宿间

- 不共边的有向径的数目
- 或 边分离的有向径的数目

△即(图的)网的结合度

△亦即:去掉多少条边可使网络分开,使源宿间 断开。

3.4.3 最佳流问题

- 问题的提出
 - = 如果每条边e_{ij}都有各自的费用系数α_{ij}
 - ■也称费率:在eii边上传送单位流量需付出的费用
 - ≡那么当总流量Fst相同时
 - ≡各种可行流的费用可以不同
 - ≡此时如何寻找满足流量要求的、最小费用的可行流
 - ≡例如:

△传送某一信息流时,寻找最小费用路由

=目的: 达到最佳的流量分配

- 负价环算法(N算法)

- =已知条件:
 - ≡给定网络结构G(V,E)
 - ≡给定边容量cij
 - ≡给定边费率α_{ii}(费用/单位流量)
 - ≡给定总流量需求F_{st}
- =待求

 \equiv 如何分配流量,可使费用 $\phi = \sum_{i,j} \alpha_{ij} \cdot f_{ij}$ 最小

 $\Delta \ddot{a}_{ij}$ 为常数,则此问题为线性问题 $\Delta \ddot{a}_{ij}$ 为变量,则此问题为复杂问题

=可行流

- ≡在总流量不变的情况下
- ≡图中通常会有一组可行流
- ≡只要源宿间有两条以上的径
- ≡于是就有改变流量分配的可能性
- ≡这种改变通常会使总费用发生变化
- ≡我们的目的:如何找出总费用最小的那条径
- =方法: 负价环算法(N算法)

= 负价环算法(N算法)中的基本概念

■图a:

 Δv ,到v,间有两条径

- $v_s v_1 v_2 v_3 v_t$
- $v_s v_1 v_3 v_t$

 Δ 边上的数字为: c_{ii} , α_{ii} (容量, 费率)

■图b:

Δ是图a的一组可行流

 Δ 总流量 $F_{st} = 6$

 Δ 总费用 $c_{ost} = 69 = 6 \times 2 + 1 \times 2 + 1 \times 1 + 5 \times 6 + 6 \times 4$

■图c:

△给出了各边上流量改变的可能性

△以及改变单位流量所需的费用

△ 图c称为对于图b中可行流而 得到的补图

△以e₁₂为例

■图c:

△以e₁₂为例

- 它是非饱和边,: 其容量c₁₂=3,而流量f₁₂=1
- 流量尚可增加: Δf₁₂ = c₁₂ − f₁₂ = 3 − 1 = 2
- 增加单位流量所需费用依然是: +2
- 另一方面,流量也可减小f₁₂=1,不致破坏非负性
- 减少单位流量而减少的费用为: -2
- 这两种可能改变的流量用补图中的有向边来表示
- 有向边上前面一个数字代表可增流量
- 有向边上后面一个数字代表单位流量所需的费用

≡负价环

Δ 若补图上,存在一个有向环

- · 环上各边的q_{ii}之和是负数
- 则称此环为负价环

△沿负价环方向增流

- 不会破坏环上各端流量的连续性
- 也不破坏各边的非负性和有限性
- 结果会得到一个总流量 F_{st} 不变的可行流
- 其总费用会有所下降

Δ前例图c中

- (v₁ v₂ v₃ v₁) 环是一个负价环
- 此负价环的单位流量费用是: 2+1-6=-3
- 取环中容量最小值作为可增流的量,即2
- 若增流2,则可节省费用: -3×2=-6
- · 把总费用F_{st}从69可降至63
- 新的可行流如图d所示:

≡结论

- △降低任一可行流的总费用,可归结为
 - 在该流的补图上找负价环
- △当一个可行流的补图上不存在负价环时
 - 此流就是最佳流,或最小费用流

△若在补图上存在零价环

- •则在这环上增流,可得到总费用相同的另一组可行流
- 亦即: 最佳流可以有几种, 但总费用是一样的

= 负价环算法(N算法)步骤

 $\equiv N_0$: 在图上找任一满足总流量 F_{st} 的可行流

△ 最好是,尽可能安排出最佳流量

△这样可以省略几步作补图的过程

■ N₁: 作补图

△对所有边e_{ij}

- 若 c_{ij} > f_{ij} , 即未达最大容量
- 则作边 e_{ij} ,标容量 $c_{ij}' = c_{ij} f_{ij}$,费用为 α_{ij}
- 若 $f_{ij} > 0$,则作边 e_{ji}' ,标容量 $c_{ji}' = f_{ij}$,费用为 α_{ij}

■N₂: 在补图上找负价环

△若无负价环,则算法终止

 Δ 若有负价环,则沿负价环C方向增流

- 增流的量: $\delta = \min[c_{ij}' : e_{ij} \in C环]$
- 修改原图的边流量,得到新的可行流
- 返回N₁

= 负价环算法(N算法)举例

≡如图a

 Δ 要求 $F_{st} = 9$

△求: 最佳流

= N_0 : 在图上找任一总流量 F_{st} = 9的可行流

 Δ 如图 \mathbf{b}

• 在费率小的链路上放尽量大的流量

 Δ 总费用 = 6×1+6×3+4×6+3×5+3×6+5×3+2×3 = 102

图a

图b

■N₁: 作补图

 Δ 若 c_{ij} > f_{ij} , 即未达最大容量

- 则作边e_{ij},
- 标容量c_{ij}'=c_{ij}-f_{ij},
- 标费用α_{ij}

 Δ 若 $f_{ij} > 0$,即只要边上有流量

- •则作边eji',
- 标容量 $\mathbf{c}_{ji}' = \mathbf{f}_{ij}$,
- 标费用 α_{ij}

6, 3

4, 1

■N₂: 在补图上找负价环

 Δ 得到负价环C: $v_2 - v_3 - v_4 - v_2$, 如左图:

 Δ 沿负价环C方向增流: $\delta = min[3, 4, 3] = 3$

△如右图:

 Δ 总费用 = 6×1+6×3+4×6+3×5+3×1+5×3+5×3=96

 Δ 返回 N_1

图c

图d

■N₁: 作补图

 Δ 如图e

■ N₂: 在补图上找负价环

Δ已找不出负价环, 算法终止

△ 结论为:

- 流量分配如图d
- 最小费用为96

图e

=负价环算法(N算法)的辅助手段和推广

≡关于寻找初始可行流

△可以从图上直接试找,如前例

△也可以用标记算法(M算法)来找

- 即从全零流开始
- 逐步增流
- · 直至达到所要求的F_{st}为止
- · 这个可行流可作为N算法的起始可行流
- •若 F_{st} 大于用M算法得到的最大流,则本题无解

≡关于寻找负价环

△可以在补图上直接观察,试找,如前例 △也可以用弗洛埃德算法(F算法)来找

- · 在径长矩阵W中
- · 其元素wii改用补图上的费率作为起始元素
- $\mathbb{F}_{\mathbf{W}_{ij}}(0) = \alpha_{ij}$
- 在计算过程中,当对角线上出现负值时,表示有负价环出现
- · 从R阵可以找出负价环的路由
- · 然后回到负价环算法(N算法)增流

- ■负价环法也可推广到无向图和端有容量的情况
- ≡负价环法也适用于多源多宿的问题
 - △只要能找到起始的可行流
 - △负价环法都是适用的
 - △因为环内增流不会影响源宿间的流量
 - 只是路由有所改变

- -作业
 - = P156. 3.11, 3.13

-作业

= (周先生著) P156. 3.11, 3.13

= (张琳著) P164. 5.1, 5.3

(本节结束)