	Reading
ı	Fundamentals of Electric Circuits 5th Edition, McGrawHill, 2015
	By Charles K. Alexander and Matthew N. O. Sadiku
	Chapter 1
	Chapter 2
	Chapter 6
'	

Applications

Charge and Current

 $\underline{\text{1 Coulomb } \alpha \text{f electrons}} \approx \underline{\text{6,241,509,074,460,762,607 electrons}}$

Vo	1+ ~	$\alpha \wedge$
VU	ιιa	೫೮

1 volt = 1 joule/coulomb = 1 newton-meter/coulomb

$$\sum p = 0$$

Ohm's Law

Resistivities of common materials.

	Material	Resistivity $(\Omega \cdot m)$	Usage	
١	Silver	1.64×10^{-8}	Conductor	
	Copper —	1.72×10^{-8}	Conductor	
ł	Aluminum	2.8×10^{-8}	Conductor	
	Gold	2.45×10^{-8}	Conductor	
	Carbon	4×10^{-5}	Semiconductor	
	Germanium	47×10^{-2}	Semiconductor	
	Silicon	6.4×10^{2}	Semiconductor	
	Paper	1010	Insulator	
	Mica	5×10^{11}	Insulator 100 miles	
	Glass	10^{12}	Insulator	
	Teflon	3×10^{12}	Insulator	

Short and Open Circuit

Types of Resistors

Kirchhoff's Laws - KCL

$$\sum_{n=1}^{N} i_n = 0$$

KCL

Kirchhoff's Laws - KCL

$$I_1 + I_3 = I_7 + I_n$$

$$I_{\frac{1}{4}} = I_1 + I_3 - I_n$$

Kirchhoff's Laws - KVL

$$\sum_{m=1}^{M} v_m = \underline{0}$$

$$V_4 + \mathcal{N}_1 = \mathcal{N}_2 + \mathcal{N}_3 + \mathcal{N}_5$$

$$O = \mathcal{N}_1 + \left(-\mathcal{N}_2\right) + \left(-\mathcal{N}_3\right) + \mathcal{N}_4 + \left(-\mathcal{N}_5\right)$$

$$R_{\text{eq}} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$

Parallel Resistors and Current Division

$$i_1 = \frac{R_2 i}{R_1 + R_2}, \qquad i_2 = \frac{R_1 i}{R_1 + R_2}$$

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

Capacitance

Types of Capacitors

$$q = Cv$$

$$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{2}} = \frac{1$$

$$w = \int_{-\infty}^{t} p(\tau) d\tau = C \int_{-\infty}^{t} v \frac{dv}{d\tau} d\tau = C \int_{v(-\infty)}^{v(t)} v dv = \frac{1}{2} C v^2 \Big|_{v(-\infty)}^{v(t)}$$

$$C_{\text{eq}} = C_1 + C_2 + C_3 + \dots + C_N$$

$$v \stackrel{i}{\stackrel{}{=}} C_1 \quad C_2 \quad C_3 \quad C_N \\ + v_1 - + v_2 - + v_3 - + v_N -$$

$$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

Inductance

$$L = \frac{N^2 \mu A}{\ell}$$

$$v = L \frac{di}{dt}$$

Types of Inductors (c) variable iron-core air-core iron-core

Inductor

$$V = R U$$

$$v = L \frac{di}{dt}$$

$$T$$

$$w = \int_{-\infty}^{t} p(\tau) d\tau = L \int_{-\infty}^{t} \frac{di}{d\tau} i d\tau = L \int_{-\infty}^{t} i di = \frac{1}{2} L i^{2}(t) - \frac{1}{2} L i^{2}(-\infty)$$

$$w = \frac{1}{2}Li^2$$

$$i \quad L_1 \quad L_2 \quad L_3 \quad L_N \\ + \quad + \quad + \quad v_1 - \quad + \quad v_2 - \quad + \quad v_3 - \quad \cdots \quad + \quad v_N - \quad v$$

$$L_{eq} = L_1 + L_2 + L_3 + \dots + L_N$$

$$\frac{1}{L_{\text{eq}}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_N}$$

Summary

Relation	Resistor (R	Capacitor (C)	Inductor (L)
v-i:	v = iR	$v = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau + v(t_0)$	$v = L \frac{di}{dt}$
i-v:	i = v/R	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$
<i>p</i> or <i>w</i> :	$p = i^2 R = \frac{v^2}{R}$	$w = \frac{1}{2}Cv^2$	$w = \frac{1}{2}Li^2$
Series:	$R_{\rm eq} = R_1 + R_2$	$C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\rm eq} = L_1 + L_2$
Parallel:	$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\rm eq} = C_1 + C_2$	$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$
At dc:		Open circuit	Short circuit
Circuit va			
change ab	ruptly: Not appl	licable v	i