Мощность множеств

Примеры с доказательствами равномощности множеств мощности континуум

3) \mathbb{R} – множество действительных чисел имеет мощность континуум.

$$\mathbb{R} \sim [a; b] \sim \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$$
$$y = \operatorname{arctg} x$$

Или для интервала (0; 1) $y = \frac{1}{\pi} arctg x + \frac{1}{2}$

4) I — множество иррациональных чисел имеет мощность континуум.

$$\mathbb{I} \sim \mathbb{R}$$
$$\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$$

О – рациональное счетное множество.

I – иррациональное несчетное множество.

Действительно, если бы I было счетным, то $\mathbb R$ было бы тоже счетным, т.к. объединение счетных множест счетно.

Таким образом получаем последовательность:

$$m(\mathbb{K}) < m(\mathbb{N}) < m(\mathbb{R}) < \dots$$

m – мощность

Бесконечна ли эта последовательность (увеличения мощности)?

Теорема Кантора-Бернштейна

Пусть A и B — произвольные множества, и существуют подмножества A_1 и B_1 , такие что $A_1 \subseteq A$, $B_1 \subseteq B$. Тогда из $A_1 \sim B$ и $B_1 \sim A \Rightarrow A \sim B$. (Без док-ва).

Из теоремы следует, что возможны четыре случая:

- 1) Если $\exists A_1 \sim B$, $\exists B_1 \sim A$, тогда по теореме m(A) = m(B)
- 2) Если $\exists A_1 \sim B$, не $\exists B_1 \sim A$, тогда m(A) > m(B)
- 3) Если $\exists B_1 \sim A$ не $\exists A_1 \sim B \Rightarrow m(B) > m(A)$
- 4) Не $\exists A_1 \sim B$, не $\exists B_1 \sim A$, тогда множества A и B несравнимы?

Оказывается, что четвертый случай невозможен — все множества сравнимы по мощности (аксиоматика Цермело).

Теорема о мощности множества всех подмножеств.

Мощность P(A) — множества всех подмножеств множества A больше мощности самого множества A:

$$m(P(A)) > m(A)$$
. $A \neq \emptyset, A \neq \{a\}$

Доказательство.

Очевидно, что $m(P(A)) \ge m(A)$.

Докажем, что $m(P(A)) \neq m(A)$.

Пусть $\tilde{A}, X \in P(A), \quad \tilde{a}, x \in A.$

Предположим, что m(P(A)) = m(A), т.е. можно установить биекцию между элементами множества P(A) и элементами множества $A: \tilde{A} \leftrightarrow \tilde{\alpha}$.

Сконструируем множество Х следующим образом:

Если $\tilde{a} \leftrightarrow \tilde{A}$ и $\tilde{a} \notin \tilde{A} \Rightarrow \tilde{a} \in X$.

Если $\tilde{a} \leftrightarrow \tilde{A}$ и $\tilde{a} \in \tilde{A} \Rightarrow \tilde{a} \notin X$.

Покажем, что у X нет прообраза в А. По построению X получим.

Если $x \leftrightarrow X$ и $x \notin X \Rightarrow x \in X$.

Если $x \leftrightarrow X$ и $x \in X \Rightarrow x \notin X$.

И в том, и в другом случае получаем противоречие: $x \in X$ и $x \notin X$ одновременно. Следовательно, у множества X нет прообраза в A. Нарушается сюръективность. Таким образом. нельзя установить биекцию между элементами множеств P(A) и A. Ч.т.д.

Из теоремы в частности следует: $m(P(\mathbb{N})) > m(\mathbb{N}), P(\mathbb{N}) \sim \mathbb{R}, \ m(P(\mathbb{R})) > m(\mathbb{R}).$

МАТЕМАТИЧЕСКАЯ ЛОГИКА

Историческая справка.

Основателем науки ЛОГИКА считается древнегреческий философ и математик АРИСТОТЕЛЬ. Ученик Платона, а Платон – ученик Сократа, преподавал в созданной им школе (IV век до н.э.). Папа Аристотеля был врачом при дворе Македонии. Поэтому Аристотель был учителем Александра Македонского (на Западе – Александра Великого). Название «логика» появилось только через 500 лет. Интересно, что дальнейшее развитие логика получила только с 19 века. В первую очередь это английский математик Джордж Буль (булева алгебра).

Аристотель разработал методы дедукции и индукции — от общего к частному и от частного к общему. Но основное его достижение — СИЛЛОГИСТИКА, наука о непротиворечивых рассуждениях. Во времена Сократа научные доказательства вырабатывались на семинарах. Сократ формулировал вопросы и путем голосования ученики отвечали да или нет. Ему нравилось строить цепь высказываний в рассуждении, где все посылки вроде истинные, а заключение ложное. Силлогистика Аристотеля позволяла выводить по двум истинным посылкам истинное заключение. Академик Поспелов пишет, что за эту теорию Аристотеля причисли ли бы к лику святых, если бы он не родился за 350 лет до рождения Христа.

В основе силлогистики базовые высказывания и схемы вывода заключения по двум посылкам.

Примеры базовых высказываний:

- Всякий М есть Р
- Всякий М не есть Р
- М есть Р
- Ни один М не есть Р
- Некоторые М есть Р
- Некоторые М не есть Р

Примеры схем:

Большая посылка – первая. Малая посылка – вторая. Заключение.

S – малый термин, М – средний термин, Р – большой термин.

Первая схема напоминает свойство транзитивности, если вначале записать второе высказывание, а потом первое.

Примеры силлогизмов.

Рассмотрим вторую схему.

- Всякий М есть Р
- Некоторый S есть M
- Некоторый S есть Р
 - 1. Все люди смертны. Сократ человек. Следовательно, Сократ смертен.
 - 2. Все ящерицы лысые. Лысым не нужна расческа. Следовательно, ящерицам не нужна расческа.

Льюис Кэрролл (Алиса в Стране Чудес).

На силлогизмах основан язык программирования ПРОЛОГ. В настоящее время базовых высказываний уже более тридцати.

ЛОГИКА ВЫСКАЗЫВАНИЙ

Под высказыванием будем понимать предложение, о котором имеет смысл говорить истинно оно или ложно.

Например. Сейчас утро. – высказывание.

Сколько стоит арбуз? – вопросительные предложения не являются высказыванием.

Элементарные высказывания можно соединять союзами.

ЛОГИЧЕСКИЕ ОПЕРАЦИИ НАД ВЫСКАЗЫВАНИЯМИ

Определение 1: Отрицанием высказывания P (¬P) называется высказывание, истинное, тогда и только тогда, когда высказывание P ложно.

Отрицание Р обозначается через ¬ Р и читается как "не Р".

Определение 2. Конъюнкцией двух высказываний Р и Q называется высказывание, истинное ⇔, когда Р и Q истинны одновременно.

Конъюнкция высказываний Р и Q обозначается через Р & Q и читается как "Р и Q".

Определение 3. Дизъюнкцией двух высказываний P и Q называется высказывание, ложное \Leftrightarrow , когда оба высказывания ложны. Дизъюнкция высказываний P и Q обозначается через $P \lor Q$ и читается как "P или Q". (Союз «или» в соединительном смысле).

Определение 4. Импликацией двух высказываний P и Q называется высказывание, ложное \Leftrightarrow , когда P истинно, а Q ложно. Импликация высказываний P и Q обозначается через $P \supset Q$ (или $P \Rightarrow Q$) и читается как "P влечет Q".

Определение 5. Эквиваленцией двух высказываний Р и Q называется высказывание, истинное ⇔, когда истинностные значения Р и Q совпадают.

Обозначается эквиваленция через $P \sim Q$ и читается как "P эквивалентно Q". (Тогда и только тогда).

Определение 6. Исключающее «ИЛИ». Высказывание P + Q истинно \Leftrightarrow , когда истинностные значения P и Q различные. (Либо P, либо Q).

Таблица истинности этих операций:

P	Q	¬P	P & Q	$P \lor Q$	$P \supset Q$	$P \sim Q$	P+Q
И	И	Л	И	И	И	И	Л
И	Л	Л	Л	И	Л	Л	И
Л	И	И	Л	И	И	Л	И
Л	Л	И	Л	Л	И	И	Л
		HE	И	или	Если.то	\leftrightarrow	либо либо

Формула логики высказываний

Определим понятие формулы логики высказываний.

Алфавитом называется любое непустое множество символов.

Слово в алфавите – последовательность символов алфавита (возможно, пустая).

Алфавит логики высказываний содержит следующие символы:

- 1) высказывательные переменные $X_1, X_2, ..., X_n$;
- 2) логические символы операций &, V, \neg , \supset , \sim , +;
- 3) символы скобок (,).

Определение 1. Слово в алфавите логики высказываний называется формулой, если оно удовлетворяет следующим свойствам:

- 1) любая высказывательная переменная формула;
- 2) если A и B формулы, то ($\neg A$), (A & B), ($A \lor B$), ($A \supset B$), ($A \sim B$), (A + B) тоже формулы;
- 3) только те слова являются формулами, для которых это следует из 1) и 2).

Упорядоченный набор переменных $< X_1, ..., X_n >$ называется *списком переменных* формулы F, если все переменные F входят в этот список.

Оценкой списка переменных назовем сопоставление каждой переменной списка некоторого истинностного значения $\{И, \ J\}$.

$$< t_1, \dots t_n > t_i = \begin{cases} H \\ \mathcal{T} \end{cases}$$

Из комбинаторных соображений очевидно, что если список переменных формулы содержит n переменных, то для него существует 2^n различных оценок, и поэтому таблица истинности формулы содержит 2^n строк (также как для характеристической функции).

Формула определяет истинностную функцию:

$$f: \{\mathsf{H}, \mathsf{\Pi}\}^n \longrightarrow \{\mathsf{H}, \mathsf{\Pi}\}.$$

Определим для формулы значение на данной оценке списка.

Пусть формула F зависит от фиксированного списка переменных $< X_1, \ldots, X_n >$. Сопоставим списку $< X_1, \ldots, X_n >$ оценку $< s_1, \ldots, s_n >$ $(s_i \in \{\mathsf{И}, \mathsf{Л}\}, \ i = 1, \ldots, n)$. Обозначим значение формулы F на оценке $< s_1, \ldots, s_n >$ как $F|_{< s_1, \ldots, s_n >}$.

1)
$$F \equiv X_i$$
 . Тогда $F|_{\langle S_1,\dots,S_n \rangle} \equiv X_i|_{\langle S_1,\dots,S_n \rangle} \equiv S_i;$

2)
$$F \equiv \neg A$$
. Тогда, если $A|_{\langle s_1,\dots,s_n \rangle} \equiv s$, то $F|_{\langle s_1,\dots,s_n \rangle} \equiv \neg A|_{\langle s_1,\dots,s_n \rangle} \equiv \neg s$.

3) F имеет вид (A&B) или $(A\lor B)$ или $(A\sim B)$ и т.д. И пусть $A|_{< s_1,\dots,s_n>}\equiv s,$ $B|_{< s_1,\dots,s_n>}\equiv t.$ Тогда $F|_{< s_1,\dots,s_n>}\equiv s\&t;\ s\lor t;\ s\sim t$ и т.д., соответственно.

Составим таблицу	истинности формулы Р	$F = (X_1 \& \neg X_2) \supset \neg X_1$
------------------	----------------------	--

X_1	<i>X</i> ₂	$\neg X_1$	$\neg X_2$	$X_1 \& \neg X_2$	F
И	И	Л	Л	Л	И
И	Л	Л	И	И	Л
Л	И	И	Л	Л	И
Л	Л	И	И	Л	И

ТОЖДЕСТВЕННО-ИСТИННЫЕ ФОРМУЛЫ

Пусть формула A зависит от списка переменных $< X_1, ..., X_n >$.

Определение 2. Формула A называется *тавтологией* или тождественно-истинной формулой, если на любых оценках списка переменных $X_1, \dots, X_n > 0$ она принимает значение И.

Определение 3. Формула A называется выполнимой, если существует оценка списка переменных X_1, \dots, X_n , на которой она принимает значение И.

Определение 4. Формула A называется тождественно-ложной, если на любых оценках списка переменных X_1, \dots, X_n , она принимает значение Л.

Определение 5. Формула A называется опровержимой, если существует оценка списка переменных $< X_1, \dots, X_n >$, на которой она принимает значение Π .

Примеры тавтологии.

- 1) $A \supset A$
- 2) *A* ∨ ¬*A*
- 3) $((A \supset B) \& A) \supset A$
- $4) (A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C)$
- 5) $(A\&B) \supset A$;
- 7) $A \supset (A \vee B)$.

Формулы $X \supset (X\&Y)$; $(X \lor Y) \supset X$ не являются тождественно-истинными.

Методы доказательства тождественной истинности формул:

- составить таблицу истинности для данных формул;
- использовать метод доказательства логическими рассуждениями от «противного».

Пример 1. Первый метод. Табличный.

Составим таблицы истинности для следующих формул

A	В	(A&B)	$(A\&B)\supset A;$	$A \supset (A \& B)$
И	И	И	И	И
И	Л	Л	И	Л
Л	И	Л	И	И
Л	Л	Л	И	И

тожд-ист формула не тожд-ист

Второй метод. Рассуждения от «противного».

Предполагаем, что существует оценка, на которой формула принимает значение Л, и либо получаем эту оценку, либо приходим к противоречию.

Предположим, что существует оценка списка переменных, на которой формула $(X\&Y)\supset X$ принимает значение Л. Из определения импликации следует, что (X&Y)-U,X-J. Но (X&Y)-U только, если X-U и Y-U.

$$(X & Y) \supset X$$

Получаем противоречие, X-U и X- Π одновременно. Следовательно, не существует оценки, на которой формула принимает значение Π и формула тождественно истинна.

Для формулы $X \supset (X\&Y)$, проведя аналогичные рассуждения, получаем оценку X-U, Y-U, на которой формула принимает значение Π . Следовательно, формула не является тождественно-истинной.

$$X \supset (X & Y)$$

$$\downarrow_{\mu} \downarrow_{\pi} \downarrow_{\pi}$$

ПРАВИЛЬНЫЕ РАССУЖДЕНИЯ

Определение 6. Рассуждение называется правильным, если из конъюнкции посылок следует заключение, т.е. всякий раз, когда все посылки истинны, заключение тоже истинно.

$$\frac{P_1, P_2, \dots, P_k}{D}.$$

Для проверки правильности рассуждений, достаточно проверить тождественную истинность данной формулы.

$$(P_1 \& P_2 \& \dots \& P_k) \supset D.$$

Заметим, что, если рассуждение правильное и все посылки истинны, то тогда можно сделать вывод: заключение тоже истинно.

Алгоритм проверки текста на правильность рассуждения

- 1. Разбиваем текст на элементарные высказывания.
- 2. Из каждого предложения составляем формулу-посылку.
- 3. Составляем формулу конъюнкция посылок влечет заключение.
- 4. Проверяем формулу на тождественную истинность. Если формула тавтология, то рассуждение правильное.

Пример 2.

1. Если Петя ходит на все занятия, то он сдаст экзамены (сессию).

Петя ходит на занятия. Следовательно, Петя сдаст экзамены.

Петя ходит на все занятия -A;

Петя сдаст экзамены — B.

$$P_1: A \supset B$$

$$P_2$$
: A

Формула F является тождественно истинной \Rightarrow рассуждение правильное.

2. Если Петя ходит на все занятия, то он сдаст экзамены (сессию).

Петя сдал экзамены. Следовательно, Петя ходил на все занятия.

Петя ходит на все занятия -A;

Петя сдаст экзамены — B.

$$P_1: A \supset B$$

$$P_2: B$$

$$D: A$$

Формула не является тождественно истинной, т. к. на оценке A - J, B - U она принимает значение Ложь. Следовательно, рассуждение не является правильным.

Косвенные методы доказательства

Схему любого доказательства теоремы можно описать формулой ЛВ.

Пусть $A \supset B$ – теорема.

Доказательство теоремы $A \supset B$ можно проводить от противного, согласно, например, следующим формулам:

- 1. $A \supset B \equiv \neg (A \supset B) \supset (C\&\neg C)$ предполагаем, что теорема несправедлива и получаем противоречие: $C\&\neg C \equiv \mathcal{J}$ (например, доказательство ТИ формул).
- 2. $A \supset B \equiv (A \& \neg B) \supset \neg A$ предполагаем, что не выполняется заключение, получаем, что неверна посылка.
- 3. $A \supset B \equiv (A \& \neg B) \supset B$ предполагаем, что не выполняется заключение, получаем, заключение выполняется.

Если в теореме содержится дизъюнкция посылок $A = A_1 \lor A_2 \lor A_3 \lor ... \lor A_k$, то согласно следующей формуле доказательство теоремы будет состоять из одновременного доказательства k утвеждений.

$$A \supset B \equiv (A_1 \vee ... \vee A_k) \supset B \equiv \neg (A_1 \vee ... \vee A_k) \vee B \equiv (\neg A_1 \& ... \& \neg A_k) \vee B \equiv$$
$$\equiv (\neg A_1 \vee B) \& ... \& (\neg A_k \vee B) \equiv (A_1 \supset B) \& ... \& (A_k \supset B).$$

РАВНОСИЛЬНОСТЬ ФОРМУЛ ЛОГИКИ ВЫСКАЗЫВАНИЙ

Определение 1. Формулы ЛВ равносильны $A \equiv B$, если на всех значениях списка своих переменных они принимают одинаковые истинностные значения.

Правило равносильных преобразований.

Лемма 1.

Пусть $A \equiv B$ и C – произвольная формула. Тогда ¬ $A \equiv \neg B$, $A\&C \equiv B\&C$, $A\lor C \equiv B\lor C$ и т.д.

Доказательство. Пусть на произвольной оценке списка переменных формулы A и B принимают одно и то же истинностное значение (s), а формула C — принимает значение (t). Тогда обе части равносильностей будут так же принимать одинаковые значения, например s&t и т.д.

Лемма 2.

Пусть $A \equiv B$ и C — формула, в которой выделено одно вхождение переменной X_i . Пусть C_A получается из C заменой этого вхождения X_i на формулу A, а C_B — заменой этого же вхождения X_i на формулу B. Тогда $C_A \equiv C_B$.

Пусть n=0. Тогда $C\equiv X_i$. Следовательно, $C_A\equiv A$, $C_B\equiv B$ и т.к. $A\equiv B$ получаем $C_A\equiv C_B$.

Предположим, лемма доказана для числа логических символов меньших n.

Докажем справедливость леммы в случае, если C — формула с n логическими символами. Тогда C имеет один из видов: $\neg D$, (D & K), $(D \lor K)$, $(D \sim K)$,

Возьмём, к примеру, случай $C \equiv D\&K$, и пусть выделенное вхождение X_i содержится в D. Заменим в D это вхождение X_i на A и B, получим соответственно формулы D_A и D_B , содержащие меньше, чем n число логических символов, а значит, $D_A \equiv D_B$. Тогда $C_A \equiv D_A\&K$ и $C_B \equiv D_B\&K$ будут также равносильны с учетом леммы 1.

Утверждение (правило равносильных преобразований).

Пусть C_A — формула, содержащая формулу A в качестве своей подформулы. Пусть C_B получается из C_A заменой формулы A в этом вхождении на формулу B. Тогда, если A \equiv B, то C_A \equiv C_B .

Основые равносильности логики высказываний

Основные равносильности логики высказываний справедливы для произвольных формул A, B и C.

1) Коммутативность.

$$A\&B \equiv B\&A$$

$$A \lor B \equiv B \lor A$$

2) Ассоциативность.

$$(A\&B)\&C \equiv A\&(B\&C)$$

$$(A \lor B) \lor C \equiv A \lor (B \lor C)$$

3) Дистрибутивность.

$$A \lor (B\&C) \equiv (A \lor B)\&(A \lor C)$$

$$A&(B \lor C) \equiv (A&B) \lor (A&C)$$

4) Законы де Моргана.

$$\neg (A \& B) \equiv \neg A \lor \neg B$$

$$\neg (A \lor B) \equiv \neg A \& \neg B$$

5) Идемпотентность

$$A \lor A \equiv A$$

$$A&A \equiv A$$

6) Закон поглощения.

$$A&(A \lor B) \equiv A$$

$$AV(A\&B) \equiv A$$

7) Закон расщепления

$$A \equiv (A \& B) \lor (A \& \neg B)$$

$$A \equiv (A \vee B) \& (A \vee \neg B)$$

8) Снятие двойного отрицания

$$\neg \neg A \equiv A$$

Тождества, выражающие одни операции через другие

- 9) $A \lor B \equiv \neg(\neg A \& \neg B)$
- 10) $A\&B \equiv \neg(\neg A \lor \neg B)$
- $11) A \supset B \equiv \neg A \lor B \equiv \neg (A \& \neg B)$
- 12) $A \lor B \equiv \neg A \supset B$
- $13) (A \sim B) \equiv (A \supset B) \& (B \supset A) \equiv (\neg A \lor B) \& (\neg B \lor A)$
- $14) A + B \equiv \neg (A \sim B)$

Обобщенные законы

15) Обобщенные законы де Моргана:

$$\neg (A_1 \lor ... \lor A_k) \equiv \neg A_1 \& \neg A_2 \& ... \& \neg A_k$$
$$\neg (A_1 \& ... \& A_k) \equiv \neg A_1 \lor \neg A_2 \lor ... \lor \neg A_k$$

16) Обобщенные законы дистрибутивности:

$$(A_1 \vee ... \vee A_k) \& (B_1 \vee ... \vee B_m) = (A_1 \& B_1) \vee ... \vee (A_k \& B_k)$$

 $(A_1 \& ... \& A_k) \vee (B_1 \& ... \& B_m) = (A_1 \vee B_1) \& ... \& (A_k \vee B_m)$

Равносильности доказываются:

- 1. Табличный метод.
- 2. Логические рассуждения.
- 3. Преобразования, использующие основные тождества логики высказываний. (аналогично алгебраических).

Пример 3.

Докажем закон де Моргана.

$$\neg (A \& B) \equiv \neg A \lor \neg B$$

1. Составим таблицу истинности

A	В	$\neg A$	¬ B	A& B	$\neg (A \& B)$	$\neg A \lor \neg B$
И	И	Л	Л	И	Л	Л
И	Л	Л	И	Л	И	И
Л	И	И	Л	Л	И	И
Л	Л	И	И	Л	И	И

2. Логическое доказательство закона де Моргана.

$$\neg(A\&B) = Л \Leftrightarrow A\&B = И \Leftrightarrow A = И и B = И \Leftrightarrow \neg A = Л и \neg B = Л \Leftrightarrow \neg A \lor \neg B = Л$$

3. Методом преобразований докажем тождество

$$\neg (A \sim B) \supset A \equiv B \supset A$$

$$\neg (A \sim B) \supset A \equiv \neg \neg (A \sim B) \lor A \equiv (A \sim B) \lor A \equiv ((\neg A \lor B) \& (\neg B \lor A)) \lor A \equiv \\ \equiv (\neg A \lor B \lor A) \& (\neg B \lor A \lor A) \equiv \mathsf{M} \& (\neg B \lor A) \equiv \neg B \lor A \equiv B \supset A$$

4. Покажем, что операция импликация (⊃) не ассоциативна.

$$(A \supset B) \supset C \not\equiv A \supset (B \supset C).$$

Для опровержения тождества можно построить таблицу истинности для левой и правой части, а можно указать одну оценку на которой тождество не выполняется. В этом примере тождество не выполняется на оценке $\langle \Pi, \Pi, \Pi \rangle : (\Pi \supset \Pi) \supset \Pi \not\equiv \Pi \supset (\Pi \supset \Pi)$. Т.е. $\Pi \not\equiv \Pi$.

Закон двойственности

Будем рассматривать формулы, содержащие только логические операции &, V, ¬.

Символы &, V двойственны друг другу.

Это означает следующее. Если поменять значения оценок для операции дизьюнкция и результат операции на противоположные, то получим таблицу для операции конъюнкция. И наоборот. Оценки И и Л также называются двойственными.

P	$\boldsymbol{\varrho}$	$P \vee Q$
И	И	И
И	Л	И
Л	И	И
Л	Л	Л

P	Q	P & Q
Л	Л	Л
Л	И	Л
И	Л	Л
И	И	И

Откуда получаем законы де Моргана.

$$\neg (A \& B) \equiv \neg A \lor \neg B$$

$$\neg (A \lor B) \equiv \neg A \& \neg B$$

В литературе эти законы часто называют принципами двойственности.

Обобщим понятие двойственности для произвольной формулы, содержащей только операции &,V, ¬.

Определение 2. Формула A^* называется двойственной к формуле A, если A^* получена из A одновременной заменой всех символов &, \lor на двойственные.

Пример.

$$(x\&(\neg y\lor z))^*\equiv x\lor(\neg y\&z).$$

Теорема. (Принцип двойственности).

Если
$$A \equiv B$$
, то $A^* \equiv B^*$.

Доказательство рассмотрим позднее, в разделе двойственных булевых функций.

Исходя из принципа двойственности, можно показывать справделивость законов только для одной из операций. Например, доказав равносильность закона дистрибутивности относительно &:

$$A&(B \lor C) \equiv (A&B) \lor (A&C)$$

можно, используя принцип двойственности

$$(A&(B \lor C))^* \equiv ((A&B) \lor (A&C))^*,$$

получить закон дистрибутивности относительно V:

$$A \vee (B\&C) \equiv (A \vee B)\&(A \vee C).$$

Аналогично и остальные парные основные равносильности.

Принцип двойственности будем использовать при доказательстве теорем следующего раздела.