Solutions to Sheet 12

Exercise 1

Let A be a ring and let G be a finite group acting on A by ring automorphisms. Let A^G be the ring of invariants of G in A.

- 1. Show that A is integral over A^G .
- 2. Assume that A is a domain with quotient field K. Show that $K^G = \text{Quot}(A^G)$.

Solution.

1. Let $x \in A$ be any element. Then

$$P_x(T) = \prod_{g \in G} (T - g(x))$$

is a monic polynimial with coefficients invariant under G (by symmetry). As $P_x(x) = 0$, x is integral over A^G , and we are done.

2. G acts on K via $g(\frac{x}{y}) = \frac{g.x}{g.y}$. One readily verifies $\mathrm{Quot}(A^G) \subseteq K^G$. For the other inclusion, assume $\frac{x}{y} \in K^G$. Now we can write

$$\frac{x}{y} = \frac{x \prod_{i \neq h \in G} h(y)}{\prod_{h \in G} h(y)}.$$

The denominator is G-invariant. But now the denumerator is as well, as

$$x \prod_{i \neq h \in G} h(y) = \frac{x}{y} \prod_{h \in G} h(y)$$

is a product of two G-invariant elements. Hence $\frac{x}{y}$ can be expressed as the quotient of two G-invariant objects. I struggeled way too much with this exercise.

Exercise 2

- 1. Let A be a normal domain with quotient field K and let G be a finite group acting on A by ring automorphisms. Show that A^G is normal.
- 2. Let k be a field of characteristic $\neq 2$. Show that $k[x,y,z]/(z^2-xy)$ is normal.

Solution.

- 1. This is just collecting what we did in exercise 1. A is algebraically closed in its quotient field K. Also, A is integral over A^G and K is integral over $K^G = \operatorname{Quot}(A^G)$. But now K is integral over A^G , in particular $K^G \subseteq K$ is integral over A^G .
- 2. We have $k[x,y,z]/(z^2-xy)\cong k[x^2,xy,y^2]=k[x,y]^G$, where $G=\{\pm 1\}$ acts via

$$(-1).f(x,y) = f(-x,-y).$$

1

Now we are in the situation of part 1, and as k[x,y] is normal, we are done.

Exercise 3

Let L/K be a finite Galois extension of number fields with Galois group G. Show that \mathcal{O}_L is stable under action of G and that $\mathcal{O}_L^G = \mathcal{O}_K$.

Solution. To show that G is invariant under the action of G, let $x \in \mathcal{O}_L$ be an element with f(x) = 0, where $f \in \mathcal{O}_K[T]$ is monic and irreducible. Let $\sigma \in \operatorname{Gal}(L/K)$. Write f^{σ} for the polynomial that arises when applying sigma to the coefficients of f. Now $f^{\sigma}(\sigma x) = \sigma(f(x)) = 0$. (I just realized we have $f^{\sigma} = f$. Whatever.)

We now show the second statement. By Galois theory, we know that $L^G = K$. As $\mathcal{O}_L \subseteq L$ this shows $\mathcal{O}_L^G = \mathcal{O}_L \cap L^G$. By definition, \mathcal{O}_L is the integral closure of \mathcal{O}_K in \mathcal{O}_L . This directly shows $\mathcal{O}_L^G \supseteq \mathcal{O}_K$. The other direction follows because every element in $\mathcal{O}_L \cap K$ is integral over \mathcal{O}_K , which (by the definition of the integral closure) implies that $\mathcal{O}_L \cap K \subseteq \mathcal{O}_K$.

Exercise 4

Let k be a field and let $A := k[x, y]/(y^2 - x^3 - x^2)$.

- 1. Show that A is a domain.
- 2. Show that $t = y/x \in \text{Quot}(A)$ does not lie in A.
- 3. Show that t is integral over A.
- 4. Show that Quot(A) = k(t) and that $k[t] \subseteq Quot(A)$ is the normalization of A.

Solution.

1. We have

$$k(x)[y]/(y^2 - x^2(x+1)) \cong k(x)[y]/((y/x)^2 - (x+1)),$$

and this is a quadratic field extension. In particular, $(y^2 - x^3 - x^2)$ is irreducible in k(x)[y], hence also irreducible in k[x, y]. Alternatively, the Eisenstein criterion over k[x] works.

- 2. Suppose $x/y \in A$. Now we have (x,y) = (x). But in $k[x,y]/(y^2 x^3 x^2)$, we have $y \notin (x)$.
- 3. We have $t^2 = \frac{y^2}{x^2} = x + 1 \in A$.
- 4. What does this even mean?! The normalization is simply the integral closure of A in $\operatorname{Quot}(A)$. First, note $k(t) \subseteq \operatorname{Quot}(A)$ because $t \in \operatorname{Quot}(A)$. For the reverse statement, note that the calculation in part 1 shows that

Quot(A)
$$\subseteq k(x)[y]/(y^2 - x^3 - x^2) = k(x)[t]/(t^2 - x - 1) = k(t).$$

Let $N \subseteq \text{Quot}(A)$ denote the normalization of A. We have $N \supseteq k[t]$ because t is integral over A, and $N \subseteq k[t]$ because k[t] is integrally closed in k(t) = Quot(A).

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: July 11, 2023