1 Евклидовы кольца, кольца главных идеалов, факториальные кольца

Определение 1.1 (Евклидово кольцо). R - ассоциативное, коммутативное кольцо с единицей, R - евклидово, если для каждого элемента a этого кольца существует его норма $\|a\|$.

Определение 1.2 (Евклидова норма). Это некоторая функция элемента кольца, такая что

- 1. $||a|| \in \omega$
- 2. если $a, b \neq 0$, то $||ab|| \ge \max(||a||, ||b||)$
- 3. если $a \neq 0$, то для любого b существуют d и r такие что b = da + r и $\|r\| < \|a\|$ или r = 0

Определение 1.3 (Кольцо главных идеалов). Кольцо главных идеалов - кольцо, в котором все идеалы главные

Теорема 1.1. Каждое евклидово кольцо - кольцо главных идеалов

Теорема 1.2. В кольце главных идеалов не существует бесконечно возрастающей цепи идеалов

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq ...$$

Доказательство.

Определение 1.4 (Простой элемент). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда a - простой, если из a=bc следует что b или c обратимы

Определение 1.5 (Факториальное кольцо). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда R - факториальное кольцо, если для каждого элемента $a \in R$

- 1. существует простые $b_1, ..., b_n$, такие что $a = b_1 ... b_n$
- 2. если a =

Теорема 1.3. R - целостное кольцо и $a \neq 0$, Тогда следующие условия эквивалентны

1.a - необратимый	
2. $aR \neq R$	
3. Для любого $b \neq 0$ $abr \neq bR$	
4. для некоторого $b eq 0$ $abr eq bR$	
Доказательство.	
Теорема 1.4. $nycmb\ R$ - целостное кольцо главных идеалов, факториальное	тогда R -
Доказательство.	