RESUMEN

Aquí va el resumen...

ABSTRACT

quí inicia el abstract...

AGRADECIMIENTOS

Aquí van los agradecimientos...

CONTENTS

R	esum	en		i
Al	bstra	ct		iii
C	onter	nts		vii
Li	st of	Figure	es	ix
Li	st of	Tables	i	хi
1	Inti	oducti	ion	1
	1.1	Preser	ntation	1
	1.2	Object	tives	1
		1.2.1	General objective	1
		1.2.2	Particular objective	1
	1.3	Justifi	ication	1
	1.4	Limita	ations and delimitations of the project	1
	1.5	Resear	rch Problem	1
	1.6	Hypot	hesis	1
	1.7	Projec	t organization	1
2	The	ory an	d conceptual framework	3
	2.1	Prelin	ninaries	3
		2.1.1	The graph partitioning problem	3
		2.1.2	Spectral partitioning and Normalized Cut	3
	2.2	Litera	ture review	3
		2.2.1	Graph Convolutional Neural Networks and GraphSAGE	3
		2.2.2	Generalizable Approximate Graph Partitioning (GAP) Framework	3
		2.2.3	PinSAGE and Markov Chain Negative Sampling (MCNS)	3

CONTENTS

3	3 Proposed solution (Graph Partitioning for Large Graphs)		
4	Experimental Results	7	
5	Conclusion	9	
	5.1 Contributions	9	
	5.2 Recommendations and future work	9	
A	Analisis	11	
Bi	ibliography	13	

LIST OF FIGURES

LIST OF TABLES

INTRODUCTION

El capítulo 1 inicia aquí...

1.1 Presentation

- 1.2 Objectives
- 1.2.1 General objective
- 1.2.2 Particular objective
- 1.3 Justification
- 1.4 Limitations and delimitations of the project
- 1.5 Research Problem
- 1.6 Hypothesis
- 1.7 Project organization

THEORY AND CONCEPTUAL FRAMEWORK

2.1 Preliminaries

Description of concepts

Definition 2.1.1. orthogonal complement

Theorem 2.1.1. For every $n \times n$ symmetric real matrix, the eigenvalues are real and the eigenvectors can be chosen real and orthonormal.

Theorem 2.1.2 (Courant-Fisher Formula). Let A be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and corresponding eigenvectors $v_1, v_2, ..., v_n$. Then

$$\lambda_{1} = \min_{\|x\|=1} x^{T} A x = \min_{x \neq 0} \frac{x^{T} A x}{x^{T} x},$$

$$\lambda_{2} = \min_{\|x\|=1} x^{T} A x = \min_{x \neq 0} \frac{x^{T} A x}{x^{T} x},$$

$$\lambda_{n} = \lambda_{max} = \max_{\|x\|=1} x^{T} A x = \max_{\substack{x \neq 0 \\ x \perp v_{1}}} \frac{x^{T} A x}{x^{T} x}.$$

In general, for $1 \le k \le n$, let S_k denote the span of $v_1, v_2, ..., v_k$ (with $S_0 = \{0\}$). Then

$$\lambda_k = \min_{\substack{\|x\|=1\\x \in S_{k-1}^{\perp}}} x^T A x = \min_{\substack{x \neq 0\\x \in S_{k-1}^{\perp}}} \frac{x^T A x}{x^T x}.$$

Proof. Let $A = Q \Lambda Q^T$ be the eigenvalue decomposition of A, where Q is an orthogonal matrix whose columns are eigenvectors of A, and Λ is a diagonal matrix whose entries are the eigenvalues of A.

2.2 Graphs and Laplacian Matrix

For the rest of the chapter, let G = (V, E) be an undirected graph, where $V = \{v_1, v_2, ..., v_n\}$ is the non-empty set of nodes (or vertices) and E is the set of edges, composed by pairs of the form (v_i, v_j) , where $v_i, v_j \in V$. Let $w : E \to R_{\geq 0}$ be a weight function and define $w_{ij} = w(v_i, v_j)$, for $1 \leq i, j \leq n$, with $w_{ij} = 0$ if there is not an edge connecting the nodes v_i and v_j .

The weighted adjacency matrix of the graph is the matrix defined by $W = [w_{ij}]_{n \times n}$ The degree of a vertex $v_i \in V$ is defined as

$$d_i = \sum_{j=1}^n w_{ij}.$$

The *degree matrix* D is defined as the diagonal matrix with the degrees $d_1, d_2, ..., d_n$ on the diagonal.

The unnormalized graph $Laplacian \ matrix \ L$ is defined as

$$L = D - W$$

The normalized Laplacian matrix L_{sym} is defined as

$$L_{sym} = D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$$

Proposition 2.2.1 (Some properties of L). The matrix L, as defined above, satisfies the following properties:

1. For every vector $x = (x_1, x_2, ..., x_n) \in \mathbb{R}$ we have

$$x^{T}Lx = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_{i} - x_{j})^{2}$$

- 2. L is symmetric and positive semi-definite
- 3. L has n non-negative, real-valued, eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$
- 4. The smallest eigenvalue L is 0, the corresponding eigenvector is the constant one vector $\mathbb{1}$.

Proof. Here is your proof

Definition 2.2.1. Given a graph G = (V, E), a partition of G is a collection of k subsets $P_1, P_2, ..., P_k \subset V$ such that:

1.
$$P_i \cap P_j = \emptyset$$
 for $i \neq j$, where $i, j \in \{1, 2, ..., k\}$

2.
$$\bigcup_{i=1}^{k} P_k = V$$

For a collection $S \subset V$ of vertices, we define the *edge boundary* $\partial(S)$ to consist of all edges in E with exactly one endpoint in S, that is,

$$\partial(S) := \{\{u, v\} \in E \mid u \notin S \text{ and } v \in S\}$$

For two collections of vertices $A,B\subset V$ consider the following quantities related to the edges of

$$W(A,B) := \sum_{v_i \in A} \sum_{v_j \in B} w_{ij}$$

and

$$\mathrm{Vol}(A) := \sum_{v_i \in A} d_i$$

In order to measure the quality of the partition we introduce the following we want to agroupe by similarity so its natural to Cut value of that partition

$$Cut(P_1, P_2, ..., P_k) := \frac{1}{2} \sum_{i=1}^k W(P_i, \overline{P_i})$$

solve the mincut problem

The next consider two different ways of measuring the size of the partitions

$$\begin{aligned} \text{RATIOCUT}(P_1, P_2, ..., P_k) &:= \frac{1}{2} \sum_{i=1}^k \frac{W(P_i, \overline{P_i})}{|P_i|} \\ &= \sum_{i=1}^k \frac{\text{CUT}(P_i, \overline{P_i})}{|P_i|} \end{aligned}$$

$$\begin{aligned} \text{NORMCUT}(P_1, P_2, ..., P_k) &:= \frac{1}{2} \sum_{i=1}^k \frac{W(P_i, \overline{P_i})}{\text{Vol}(P_i)} \\ &= \sum_{i=1}^k \frac{\text{CUT}(P_i, \overline{P_i})}{\text{Vol}(P_i)} \end{aligned}$$

The spectral method

- 1. Let v denote the second smallest eigenvector of \mathcal{L} . Sort the vertices i of G in increasing order of v_i . Let the resulting ordering be $v_1 \leq v_2 \leq \cdots v_n$
- 2. For each i, consider the cut induced by $\{1, 2, ..., i\}$ and its complement. Calculate its conductance.
- 3. Among these n-1 cuts, choose the one with minimum conductance.

Cheeger's inequality

For a graph G = (V, E) the *conductance* or *Cheeger ratio* of a set $S \subset V$ is the ratio of the fraction of edges in the cut (S, \overline{S}) o the volume of S,

$$\phi(S) = \frac{E(S, \overline{S})}{\text{Vol}(S)}$$

The conductance or $Cheeger\ constant$ of a graph G is denoted by

$$\phi(G) = \min_{S} \phi(S)$$

Theorem 2.2.1. In a graph G, the Cheeger constant $\phi(G)$ and the spectral gap λ_G are related as follows:

$$2\phi(G) \geq \lambda_G \geq \frac{\alpha_G^2}{2} \geq \frac{\phi(G)^2}{2}$$

where α_G^2 is the minimum Cheeger ratio of subsets S_i consisting of vertices with the largest i values in the eigenvector associated with $lambda_G$, over all $i \in [n]$

Generalization to many partitions

- 1. Perform eigenvalue decomposition to find the eigenvectors of L_{sym} .
- 2. Select the k largest eigenvectors $e_1, e_2, ..., e_k$ of L_{sym} associated to the largest eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$
- 3. Form the matrix *Y* from the matrix $X = [e_1, e_2, ..., e_k]$ given by

$$Y_{ij} = \frac{X_{ij}}{\left(\sum_{j} X_{ij}^2\right)^{\frac{1}{2}}}$$

- 4. Treating each row of Y as a point in \mathbb{R}^k , cluster them into k clusters using K-means
- 5. Finally, assign the original vertex to cluster j if and only if row i of the matrix was assigned to cluster j

- 2.2.1 The graph partitioning problem
- 2.2.2 Spectral partitioning and Normalized Cut
- 2.3 Literature review
- 2.3.1 Graph Convolutional Neural Networks and GraphSAGE
- 2.3.2 Generalizable Approximate Graph Partitioning (GAP)
 Framework
- 2.3.3 PinSAGE and Markov Chain Negative Sampling (MCNS)

CHAPTER

PROPOSED SOLUTION (GRAPH PARTITIONING FOR LARGE GRAPHS)

CHAPTER

EXPERIMENTAL RESULTS

CHAPTER

CONCLUSION

Las conclusiones y el trabajo a futuro inicia aquí...

5.1 Contributions

5.2 Recommendations and future work

ANALISIS

El apéndice inicia aquí.

BIBLIOGRAPHY

[1] Datos de la publicación.