CLBsCat: An online Catalog for Changing-Look (Transition) Blazars (A Preliminary Results for CLBs Catalog)

Shi-Ju Kang 101

¹School of Physics and Electrical Engineering, Liupanshui Normal University, Liupanshui, Guizhou, 553004, People's Republic of China

(Received May 28, 2022; Revised May 28, 2022; Accepted August 16, 2022)

Submitted to ApJ or MN, or A&A

5 ABSTRACT

10

11

13

14

15

16

17

18

20

An overview of CLBsCat^{a)}, a new online interactive catalog for the Changing-Look (transition) blazars (CLBs) is presented. As CLB sources (transitional sources) continues to grow, the usefulness of a one-stop clearing house for information on new rare sources is increasingly evident. CLBsCat is intended to be such a resource. With sky maps, scientific information, visibility plotters, an interface with Google Earth "Sky", linked references and a review paper section, CLBsCat enables the world-wide astrophysical community to stay up-to-date and informed on this exciting and rapidly developing field (Copied from the TeVCat http://tevcat.uchicago.edu compiled by Wakely & Horan 2008; Horan & Wakely 2008a,b).

At present, the CLBsCat has not been publicly released, and is only available online at https://orcid.org/0000-0002-9071-5469 for a web link: https://github.com/ksj7924/CLBCat for the convenience of everyone to view, modify and improve until the application is permanently fixed in a network space. Community groups or individuals are welcome to contribute or provide a suitable network for the joint development.

Keywords: Active galactic nuclei (16) — Blazars (164)— BL Lacertae objects (158) — Flat-spectrum radio quasars (2163) — Transitional sources — Changing-Look Blazars

22 Contents

23	1. Introduction	2
24	2. The predictions	2
25	2.1. The predictions in Fan & Wu (2019)	2
26	2.2. The predictions in Cheng et al. (2022)	4
27	2.3. The predictions in Kang et al. 2022	6
28	2.4. The predictions in Pei et al. (2022).	12
29	3. The confirmed changing-look blazars (CLBs)	13
30	3.1. The confirmed CLBs in Foschini et al. (2021)	13
31	3.2. The confirmed CLBs in Peña-Herazo et al. (2021)	14
32	3.3. The confirmed CLBs in Ruan et al. (2014)	15
33	3.4. The transition sources in Shaw et al. (2012)	16

Corresponding author: Shi-Ju Kang kangshiju@alumni.hust.edu.cn

a) https://github.com/ksj7924/CLBCat/

84	3.5. The considered as transition sources in Ghisellini et al. (2011) 3.6. The CLB (transition) sources in other literatures	17 18
36 37	4. The blue quasars 4.1. The Blue Fermi flat spectrum radio quasars in Ghisellini et al. (2012)	19 19
38 39	5. The predictions (check) CLBCs in 2022 5.1. The predictions (check) in Zhang et al. (2022)	20 20
10	6. Summary	21

1. INTRODUCTION

The Changing-Look (transition) blazars (CLBs) are extremely rare astronomical objects. This peculiar rare transition phenomenon between FSRQs and BL Lacs (equivalent width, EW, of the spectral line, become larger or smaller) are common addressed by some possible scenarios in the previous literature.

For instance:

- The broad lines (EW) of some transition sources may be swamped by the strong (beamed) jet continuum variability (e.g., Vermeulen et al. 1995; Giommi et al. 2012; Ruan et al. 2014; Pasham & Wevers 2019), or jet bulk Lorentz factor variability (e.g., Bianchin et al. 2009);
- Some transition sources with weak radiative cooling, the broad lines are overwhelmed by the non-thermal continuum (e.g., Ghisellini et al. 2012).
- Some strong broad lines of the FSRQ type source are missed due to with a high redshift (e.g., z > 0.7, D'Elia et al. 2015), the one of the strongest $H\alpha$ line falls outside the optical window, caused the misclassification.
- Also, several observational effects (e.g., signal-to-noise ratio, and spectral resolution, etc.) may also affected the optical classification (see Peña-Herazo et al. 2021 for the related discussions).

The transitional blazars classification studying will impact studies of the divergent properties of BL Lacs and FSRQs, especially regarding their redshift evolution. Future directions for investigation of these rare transition blazars can focus on understanding the nature of the strong beaming using radio observations, and study of their high-energy inverse-Compton SED peaks to understand why only some of these strongly beamed FSRQs are gamma-ray loud (Copied from Ruan et al. 2014). In-depth research is of great significance to deepen the understanding of the origin of CLB sources, the accretion state transition of supermassive black holes; jet particle acceleration process; and black hole-galaxy co-evolution, etc. (Copied from Mishra 2021)

In the catalog, partial, including but not limited to, the confirmed Changing-Look Blazars (CLBs), the predicted CLBs; and these transitional blazars, or the possible transitional blazars between the standard FSRQs and BL Lac types (EW-based classification); even also including the red or blue (quasars) blazars; and broad line BL Lac types sources, and so on.

Some of the results are described below:

2. THE PREDICTIONS

2.1. The predictions in Fan & Wu (2019)

The jet power of LBLs shows a very broad distribution, which is somewhat bimodal. The bimodal distribution of LBLs suggests that they may contain two populations, one is actually FSRQs as suggested by Giommi et al. (2012). The other is transitional type BL Lac objects, which show weak emission lines and intermediate jet power. They generally divide LBLs into two groups with the limit $10^{44.6} \ erg \ s^{-1}$. Of the 57 LBLs, 33 with the jet power larger than $10^{44.6} \ erg \ s^{-1}$ show similar jet power distribution with FSRQs. (Copied from Fan & Wu 2019). The 33 sources are listed in Table 1

Table 1. The predictions in Fan & Wu (2019)

4ECI	D. A.	D 1	Aggog	D 45	- CI	- CI	
4FGL name	R.A.	Decl.	ASSOC name	Bzcat5 name	$Class_{sed}$	$Class_F$	$Class_p$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
3FGL J0049.7+0237	00 49 43.23	$+02\ 37\ 03.77$	PKS 0047+023	5BZBJ0049+0237	bll	LSP	FSRQ
$3 {\rm FGL}\ J0141.4{-}0929$	$01\ 41\ 25.83$	$-09\ 28\ 43.67$	PKS $0139-09$	5BZBJ0141-0928	bll	LSP	FSRQ
$3 {\rm FGL}\ J0238.6{+}1636$	$02\ 38\ 38.93$	$+16\ 36\ 59.27$	AO $0235+164$	5BZBJ0238 + 1636	bll	LSP	FSRQ
3FGL $J0334.3-4008$	$03\ 34\ 13.65$	$-40\ 08\ 25.39$	PKS 0332-403	5BZBJ0334-4008	bll	LSP	FSRQ
3FGL $J0407.5+0740$	$04\ 07\ 29.08$	$+07\ 42\ 07.47$	TXS $0404+075$	5BZBJ0407 + 0742	bll	LSP	FSRQ
3FGL $J0428.6 - 3756$	$04\ 28\ 40.42$	$-37\ 56\ 19.58$	PKS $0426 - 380$	5BZBJ0428 - 3756	bll	LSP	FSRQ
3FGL $J0433.6+2905$	$04\ 33\ 37.82$	$+29\ 05\ 55.47$	MG2 J043337+2905	5BZBJ0433 + 2905	bll	LSP	FSRQ
$3 {\rm FGL}\ J0434.0{-}2010$	$04\ 34\ 07.91$	$-20\ 15\ 17.13$	TXS $0431-203$	5BZBJ0434 - 2015	bll	LSP	FSRQ
3FGL $J0438.8-4519$	$04\ 39\ 00.85$	$-45\ 22\ 22.56$	PKS $0437 - 454$	5BZBJ0439 - 4522	bll	LSP	FSRQ
3FGL $J0538.8-4405$	$05\ 38\ 50.36$	$-44\ 05\ 08.93$	PKS $0537 - 441$	5BZBJ0538 - 4405	bll	LSP	FSRQ
$3 {\rm FGL}\ J0629.4{-}1959$	$06\ 29\ 23.76$	$-19\ 59\ 19.72$	PKS $0627-199$	5BZBJ0629 - 1959	bll	LSP	FSRQ
3FGL $J0738.1+1741$	$07\ 38\ 07.39$	$+17\ 42\ 18.99$	PKS $0735+17$	5BZBJ0738 + 1742	bll	LSP	FSRQ
3FGL $J0811.3+0146$	$08\ 11\ 26.7$	$+01\ 46\ 52.22$	OJ 014	5BZBJ0811 + 0146	bll	LSP	FSRQ
3FGL J0818.2+4223	08 18 15.99	$+42\ 22\ 45.41$	S4 0814+42	5BZBJ0818+4222	bll	LSP	FSRQ
3FGL $J0826.0+0307$	$08\ 25\ 50.33$	$+03\ 09\ 24.51$	PKS $0823+033$	5BZBJ0825+0309	bll	LSP	FSRQ
3FGL J $1058.5+0133$	$10\ 58\ 29.6$	$+01\ 33\ 58.82$	4C + 01.28	5BZUJ1058+0133	bll	LSP	FSRQ
$3 {\rm FGL} \ J1218.0 {-} 0029$	$12\ 17\ 58.72$	$-00\ 29\ 46.29$	PKS $1215-002$	5BZBJ1217 - 0029	bll	LSP	FSRQ
3FGL J1250.5 $+$ 0217	$12\ 50\ 32.58$	$+02\ 16\ 32.17$	PKS $1247+025$	5BZBJ1250+0216	bll	LSP	FSRQ
3FGL J $1303.0+2435$	$13\ 03\ 03.21$	$+24\ 33\ 55.72$	MG2 J130304+2434	5BZBJ1303 + 2433	bll	LSP	FSRQ
$3 {\rm FGL} \ J1522.6{-}2730$	$15\ 22\ 37.67$	$-27\ 30\ 10.78$	PKS $1519-273$	5BZBJ1522 - 2730	bll	LSP	FSRQ
3FGL J1540.8+1449	$15\ 40\ 49.49$	$+14\ 47\ 45.88$	4C + 14.60	5BZBJ1540+1447	bll	LSP	FSRQ
3FGL J1748.6+7005	$17\ 48\ 32.84$	$+70\ 05\ 50.76$	S4 1749+70	5BZBJ1748 + 7005	bll	LSP	FSRQ
3FGL J $1800.5+7827$	$18\ 00\ 45.68$	$+78\ 28\ 04.01$	S5 1803+784	5BZBJ1800 + 7828	bll	LSP	FSRQ
3FGL J $1824.2+5649$	$18\ 24\ 07.06$	$+56\ 51\ 01.49$	4C + 56.27	5BZBJ1824 + 5651	bll	LSP	FSRQ
3FGL J2031.8+1223	$20\ 31\ 54.99$	$+12\ 19\ 41.34$	PKS $2029+121$	5BZUJ2031+1219	bll	LSP	FSRQ
$3 {\rm FGL}\ J2134.1{-}0152$	$21\ 34\ 10.3$	$-01\ 53\ 17.23$	PKS $2131-021$	5BZBJ2134 - 0153	bll	LSP	FSRQ
$3 {\rm FGL}\ J2152.4{+}1735$	$21\ 52\ 24.81$	$+17\ 34\ 37.79$	$S3\ 2150+17$	5BZBJ2152 + 1734	bll	LSP	FSRQ
$3 {\rm FGL} \ J2206.9{-}0031$	$22\ 06\ 43.28$	$-00\ 31\ 02.49$	PMN J2206-0031	5BZBJ2206-0031	bll	LSP	FSRQ
3FGL J2217.0+2421	$22\ 17\ 00.82$	$+24\ 21\ 45.95$	B2 2214+24B	5BZBJ2217 + 2421	bll	LSP	FSRQ
3FGL J2236.3+2829	$22\ 36\ 22.47$	$+28\ 28\ 57.41$	B2 2234+28A	5BZQJ2236+2828	bll	LSP	FSRQ
3FGL J2243.4 -2541	$22\ 43\ 26.4$	$-25\ 44\ 30.68$	PKS $2240-260$	5BZBJ2243 - 2544	bll	LSP	FSRQ
3FGL J $2244.1+4057$	$22\ 44\ 12.73$	$+40\ 57\ 13.62$	TXS $2241+406$	5BZQJ2244+4057	bll	LSP	FSRQ
3FGL J2315.7-5018	23 15 44.33	$-50\ 18\ 39.7$	PKS 2312-505	5BZBJ2315-5018	bll	LSP	FSRQ

NOTE—The 3FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. The counterpart names and Bzcat5 Counterpart names are listed in Column 4 and 5. Column 6 lists the optical class, column 7 is the spectral energy distribution (SED) class reported in 4FGL catalog. The predictions (optical class) in Fan & Wu (2019) are presented in Columns 8.

77

79

80

81

82

2.2. The predictions in Cheng et al. (2022)

In Cheng et al. (2022), they found that the distribution of the peak frequency of the synchrotron radiation, gammaray photon spectral index, and the X-band (8.4 GHz) flux density showed a similar bimodal for LSP subclass; one distribution hump similar to the BL Lacs and another similar to the FSRQs. These observations indicate that some LSP-BL Lacs may belong to BL Lacs and others are essentially FSRQs. They suggest that 47 LSP-BL Lacs that intrinsically FSRQ are misclassified as BL Lacs, and checked the Compton dominance (CD), 37 of 39 sources with CD > 1, which provides some further evidence that FSRQs may be mistaken for LSP BL Lacs. where, some LSP BL Lacs are essentially FSRQs. (Copied from Cheng et al. 2022). The 47 sources are listed in Table 2

Table 2. The predictions in Cheng et al. (2022)

4FGL name	R.A.	Decl.	ASSOC name	RFC name	SED class	4FGL Class	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
4FGL J1302.8+5748	195.7209	57.8146	TXS 1300+580	J1302+5748	LSP	bll	bll	FSRQ
4FGL J2346.7+8008	356.6867	80.1366	WN B2344.2+7951	J2346+8007	LSP	bll	bll	FSRQ
4FGL J2357.4 -0152	359.3674	-1.8703	PKS $2354-021$	J2357 - 0152	LSP	bll	bll	FSRQ
4FGL J2200.3+1029	330.0887	10.4956	TXS $2157+102$	J2200+1030	LSP	bll	bll	FSRQ
4FGL J2241.2+4120	340.3087	41.3396	B3 2238+410	J2241+4120	LSP	bll	bll	FSRQ
4FGL J1224.9+4334	186.2371	43.5691	B3 1222+438	J1224+4335	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0359.4-}{\rm 2616}$	59.8713	-26.2734	PKS $0357 - 264$	J0359 - 2615	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0403.5-}{\rm 2437}$	60.8989	-24.6168	TXS $0401-248$	J0403 - 2444	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0208.5-0046}$	32.135	-0.7768	PKS $0205-010$	$ m J0208\!-\!0047$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0610.1\!-\!1848}$	92.5455	-18.8076	PMN J0610 - 1847	$ m J0610\!-\!1847$	LSP	bll	bll	FSRQ
4FGL J1439.7 $+4958$	219.9411	49.9775	GB6 J1439+4958	J1439+4958	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1445.9}{-}1626$	221.4978	-16.4498	PKS B1443 -162	J1445 - 1629	LSP	bll	bll	FSRQ
4FGL J1148.6+1841	177.1542	18.6861	TXS $1146+189$	J1148+1840	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1954.6}{-1122}$	298.6693	-11.3815	TXS $1951-115$	J1954-1123	LSP	bll	bll	FSRQ
4FGL J1201.7+1429	180.4471	14.4852	OM 198	J1201 + 1431	LSP	bll	bll	FSRQ
${\rm 4FGL\ J2315.6-5018}$	348.914	-50.3127	PKS $2312 - 505$	J2315 - 5018	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0209.9{+}7229}$	32.4979	72.4877	$S5\ 0205+722$	J0209 + 7229	LSP	bll	bll	FSRQ
4FGL $J0832.4+4912$	128.1078	49.2127	OJ 448	J0832+4913	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1427.6-3305}$	216.913	-33.094	PKS $1424 - 328$	J1427 - 3305	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1329.0-}5607$	202.2672	-56.1186	PMN J1329 - 5608	J1329 - 5608	LSP	bll	bll	FSRQ
4FGL J1500.7 $+4752$	225.1837	47.8716	TXS $1459+480$	J1500+4751	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J1410.1 {+} 0202$	212.5287	2.0354	PKS $1407+022$	J1410+0203	LSP	bll	bll	FSRQ
4FGL J2257.5 $+$ 0748	344.3874	7.8014	OY 91	J2257+0743	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1315.1-5333}$	198.7978	-53.5649	PMN J1315 - 5334	J1315 - 5334	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0113.7}{+}0225$	18.4279	2.4196	UGC 773	J0113+0222	LSP	bll	bll	FSRQ
4FGL J0710.9+4733	107.7323	47.553	S4 0707+47	J0710+4732	LSP	bll	bll	FSRQ
4FGL J2152.5+1737	328.137	17.6173	$S3\ 2150+17$	J2152+1734	LSP	bll	bll	FSRQ
4FGL J0407.5+0741	61.8921	7.6998	TXS $0404+075$	J0407 + 0742	LSP	bll	bll	FSRQ
${\rm 4FGL\ J2056.7\!-\!3209}$	314.178	-32.1612	PKS $2053 - 323$	J2056 - 3208	LSP	bll	bll	FSRQ
4FGL J2050.0+0408	312.5181	4.1401	PKS 2047+039	J2050+0407	LSP	bll	bll	FSRQ

Table 2 continued on next page

Table 2 (continued)

_									
	4FGL name	R.A.	Decl.	ASSOC name	RFC name	SED class	4FGL Class	From class	To class
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	4EGI 10040 0 : 1000	010 4500	10.040	DIZC 2047 - 000	T0040 : 1000	I CD	1.11	1 11	EGDO
	4FGL J2049.9+1002	312.4782	10.0407	PKS 2047+098	J2049+1003	LSP	bll	bll	FSRQ
	4FGL J1516.9+1934	229.2442	19.5805	PKS 1514+197	J1516+1932	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J1717.5-3342}$	259.3985	-33.7003	TXS $1714 - 336$	J1717 - 3342	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J1941.3-6210}$	295.3468	-62.1753	PKS $1936-623$	J1941 - 6211	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J2216.9}{+}{2421}$	334.238	24.3575	B2 2214+24B	J2217+2421	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J0438.9}{-}4521$	69.7447	-45.3584	PKS $0437 - 454$	$ m J0439\!-\!4522$	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J2010.0+7229}$	302.5159	72.4874	4C + 72.28.	J2009+7229	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J1330.4{+}3157}$	202.6002	31.963	$MG2\ J132953+3153$	J1329 + 3154	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J0747.3-3310}$	116.8328	-33.1778	PKS $0745 - 330$	J0747 - 3310	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J1326.8\!-\!5256}$	201.7201	-52.9376	PMN J1326 - 5256	J1326 - 5256	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J2032.0{+}1219}$	308.004	12.3279	PKS 2029+121	J2031+1219	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J1604.5-4441}$	241.1277	-44.6903	PMN J1604-4441	J1604 - 4441	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J1824.1+5651}$	276.0393	56.8585	4C + 56.27	J1824 + 5651	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J1641.9-0621}$	250.4892	-6.3529	TXS $1639-062$	J1642 - 0621	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J1650.3}{-5045}$	252.5894	-50.7515	PMN J1650 - 5044	J1650 - 5044	LSP	bll	bll	FSRQ
	${\rm 4FGL\ J2134.2-0154}$	323.5699	-1.9042	PKS $2131-021$	J2134-0153	LSP	bll	bll	FSRQ
_	4FGL J2025.3+3341	306.3412	33.6891	B2 2023+33	J2025+3343	LSP	bll	bll	FSRQ

NOTE—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. The counterpart names and VLBI Counterpart names are listed in Column 4 and 5. Column 6 lists the optical class, column 7 is the spectral energy distribution (SED) class reported in 4FGL catalog. The based optical class (From class) in Cheng et al. (2022) listed in Columns 8. The predictions (optical class) in Cheng et al. (2022) are presented in Columns 9.

2.3. The predictions in Kang et al. 2022

Based on the 4LAC, 4FGL and RCF catalog, we constructed a sample containing 1680 Fermi sources with known EW-based (optical) classifications (FSRQs and BL Lacs) and SED-based classifications (LSP, ISP, and HSP). Using the random forests supervised machine learning algorithm, 113 actually BL Lac type sources and 157 possible Changing-Look Blazar Candidates that possible intrinsically FSRQs misclassified as BL Lacs are predicted, and 58 remain without a clear prediction; for 328 LSP BL Lacs reported in the high Galactic latitudes ($|b| > 10^{\circ}$) 4LAC-DR2 catalog (Copied from Kang et al. 2022). The 157 possible Changing-Look Blazar Candidates and 58 sources without a clear prediction (UNK) are listed in Table 3

Table 3. The predictions in Kang et al. 2022

4FGL name	R.A.	Decl.	ASSOC name	SED class	$4 {\rm FGL\ Class}$	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J0003.9-1149	0.9986	-11.8251	PMN J0004-1148	LSP	bll	bll	FSRQ
4FGL J0006.3-0620	1.5992	-6.3493	PKS 0003-066	LSP	bll	bll	FSRQ
4FGL J0013.1-3955	3.2802	-39.9272	PKS 0010-401	LSP	bll	bll	FSRQ
4FGL J0014.1+1910	3.5368	19.1713	MG3 J001356+1910	LSP	bll	bll	FSRQ
4FGL J0019.6+2022	4.9070	20.3755	PKS 0017+200	LSP	bll	bll	FSRQ
4FGL J0049.7+0237	12.4377	2.6273	PKS 0047+023	LSP	bll	bll	FSRQ
4FGL J0056.8+1626	14.2020	16.4360	TXS 0054+161	LSP	bll	bll	FSRQ
4FGL J0105.1+3929	16.2913	39.4963	GB6 J0105+3928	LSP	bll	bll	FSRQ
4FGL J0107.4+0334	16.8508	3.5691	PMN J0107+0333	LSP	bll	bll	FSRQ
4FGL J0113.7+0225	18.4279	2.4196	UGC 773	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0125.3-2548}$	21.3474	-25.8074	PKS 0122-260	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0141.4-0928}$	25.3626	-9.4825	PKS 0139-09	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0144.6{+}2705}$	26.1502	27.0899	TXS 0141+268	LSP	bll	bll	FSRQ
4FGL J0202.7+4204	30.6862	42.0714	B3 0159+418	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0203.6{+}7233}$	30.9114	72.5530	$S5\ 0159+723$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0203.7{+}3042}$	30.9327	30.7139	NVSS J020344 $+304238$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0208.5-0046}$	32.1350	-0.7768	PKS $0205-010$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0209.9{+}7229}$	32.4979	72.4877	$S5\ 0205+722$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0217.2}{+}0837$	34.3163	8.6234	ZS 0214+083	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0238.6\!+\!1637}$	39.6680	16.6179	PKS 0235+164	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0301.0\!-\!1652}$	45.2714	-16.8688	${\rm PMN~J0301\!-\!1652}$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0334.2-4008}$	53.5566	-40.1450	PKS $0332-403$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0340.5\!-\!2118}$	55.1477	-21.3158	PKS $0338-214$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0348.6\!-\!1609}$	57.1532	-16.1654	PKS $0346-163$	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J0354.7 {+} 8009$	58.6919	80.1647	$S5\ 0346+80$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0359.4-}{\rm 2616}$	59.8713	-26.2734	PKS $0357-264$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0403.5}{-}2437$	60.8989	-24.6168	TXS $0401-248$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0407.5}{+}0741$	61.8921	7.6998	TXS $0404+075$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0424.7}{+}0036$	66.1945	0.6028	PKS 0422+00	LSP	bll	bll	FSRQ
4FGL J0424.9-5331	66.2498	-53.5257	PMN J0425-5331	LSP	bll	bll	FSRQ

Table 3 continued on next page

Table 3 (continued)

4FGL name	R.A.	Decl.	ASSOC name	SED class	4FGL Class	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J0438.9-4521	69.7447	-45.3584	PKS 0437-454	LSP	bll	bll	FSRQ
4FGL J0502.5+1340	75.6341	13.6685	PKS 0459+135	LSP	bll	bll	FSRQ
4FGL J0513.9 -3746	78.4961	-37.7774	NVSS J051404 -374607	LSP	bll	bll	FSRQ
4FGL J0516.7 -6207	79.1798	-62.1248	PKS $0516-621$	LSP	bll	bll	FSRQ
4FGL J0538.8 -4405	84.7089	-44.0862	PKS $0537-441$	LSP	bll	bll	FSRQ
4FGL J0610.1 -1848	92.5455	-18.8076	PMN J0610 - 1847	LSP	bll	bll	FSRQ
4FGL J0625.3+4439	96.3288	44.6648	$GB6\ J0625+4440$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0628.8\!-\!6250}$	97.2174	-62.8405	PKS $0628-627$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0629.3-1959}$	97.3478	-19.9999	PKS $0627 - 199$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0647.7-6058}$	101.9314	-60.9781	PMN J0647 - 6058	LSP	bll	bll	FSRQ
4FGL J0706.9+6109	106.7319	61.1595	TXS 0702+612	LSP	bll	bll	FSRQ
4FGL J0710.9+4733	107.7323	47.5530	S4 0707+47	LSP	bll	bll	FSRQ
4FGL J0712.7 $+$ 5033	108.1876	50.5506	GB6 J0712 $+5033$	LSP	bll	bll	FSRQ
4FGL J0743.1+1713	115.7753	17.2198	TXS $0740+173$	LSP	bll	bll	FSRQ
4FGL $J0753.0+5353$	118.2530	53.8891	4C + 54.15	LSP	bll	bll	FSRQ
4FGL $J0754.7+4823$	118.6929	48.3932	GB1 0751+485	LSP	bll	bll	FSRQ
4FGL $J0757.1+0956$	119.2856	9.9491	PKS 0754+100	LSP	bll	bll	FSRQ
4FGL J0800.9 $+4401$	120.2457	44.0181	B3 0757+441	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0814.6{+}6430}$	123.6654	64.5050	GB6 J0814 $+6431$	LSP	bll	bll	FSRQ
4FGL J0819.0+2746	124.7636	27.7772	5C 07.119	LSP	bll	bll	FSRQ
4FGL $J0825.8+0309$	126.4567	3.1656	PKS 0823+033	LSP	bll	bll	FSRQ
4FGL J0831.8 $+$ 0429	127.9732	4.4941	PKS 0829+046	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J0832.4{+}4912$	128.1078	49.2127	OJ 448	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J0839.4{+}1803$	129.8695	18.0606	TXS $0836+182$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0847.9-0702}$	131.9945	-7.0434	TXS $0845-068$	LSP	bll	bll	FSRQ
4FGL J0848.9 $+$ 0205	132.2375	2.0870	PMN J0849+0206	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0854.8}{+2006}$	133.7071	20.1159	OJ 287	LSP	bll	bll	FSRQ
4FGL J0901.2 $+6742$	135.3164	67.7129	TXS $0856+679$	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J0925.7{+}3126$	141.4454	31.4470	B2 0922+31B	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0929.3}{+}5014$	142.3265	50.2352	GB6 J0929 $+5013$	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J0930.3{+}8612$	142.5994	86.2021	$S5\ 0916+864$	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J0930.7{+}3502$	142.6813	35.0334	B2 0927+35	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0942.3-}0800$	145.5856	-8.0076	PMN J0942 - 0800	LSP	bll	bll	FSRQ
${\rm 4FGL\ J0958.7{+}6534}$	149.6897	65.5678	$S4\ 0954+65$	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J1001.1{+}2911$	150.2938	29.1880	$GB6\ J1001+2911$	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J1008.0 {+} 0620$	152.0136	6.3475	$MG1\ J100800+0621$	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J1019.7{+}6321$	154.9263	63.3527	GB6 J1019+6319	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1024.8}{+2332}$	156.2101	23.5462	$MG2\ J102456+2332$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1058.0{+}4305}$	164.5181	43.0938	B3 1055+433	LSP	bll	bll	FSRQ
4FGL J1058.4+0133	164.6240	1.5641	4C + 01.28	LSP	bll	bll	FSRQ

 ${\bf Table} \,\, {\bf 3} \,\, continued \,\, on \,\, next \,\, page$

Table 3 (continued)

4FGL name	R.A.	Decl.	ASSOC name	SED class	4FGL Class	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J1058.6-8003	164.6600	-80.0640	PKS 1057-79	LSP	bll	bll	FSRQ
4FGL J1105.8+3944	166.4589	39.7426	GB6 J1105+3946	LSP	bll	bll	FSRQ
4FGL J1128.8+3757	172.2042	37.9657	NVSS J112903+375655	LSP	bll	bll	FSRQ
4FGL J1138.2+4115	174.5711	41.2562	NVSS J113812+411353	LSP	bll	bll	FSRQ
4FGL J1147.0-3812	176.7600	-38.2006	PKS 1144-379	LSP	bll	bll	FSRQ
4FGL J1148.6+1841	177.1542	18.6861	TXS 1146+189	LSP	bll	bll	FSRQ
4FGL J1154.1-3243	178.5423	-32.7189	PKS 1151-324	LSP	bll	bll	FSRQ
4FGL J1201.7+1429	180.4471	14.4852	OM 198	LSP	bll	bll	FSRQ
4FGL J1218.0 -0028	184.5136	-0.4832	PKS $1215-002$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1218.5-0119}$	184.6388	-1.3270	PKS 1216-010	LSP	bll	bll	FSRQ
4FGL J1223.8 $+8039$	185.9707	80.6598	S5 1221+80	LSP	bll	bll	FSRQ
4FGL J1224.9+4334	186.2371	43.5691	B3 1222+438	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1227.1-4437}$	186.7859	-44.6274	PKS 1224-443	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J1239.4{+}0728$	189.8620	7.4709	PKS 1236+077	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1250.6}{+}0217$	192.6513	2.2876	PKS 1247+025	LSP	bll	bll	FSRQ
4FGL J125 $4.9-4426$	193.7280	-44.4441	PKS 1252-441	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1259.7\!-\!3223}$	194.9449	-32.3898	LEDA 4075145	LSP	bll	bll	FSRQ
$4 {\rm FGL\ J} 1302.8 {+} 5748$	195.7209	57.8146	TXS $1300+580$	LSP	bll	bll	FSRQ
4FGL J1303.0+2434	195.7571	24.5821	$MG2\ J130304+2434$	LSP	bll	bll	FSRQ
$4 {\rm FGL} \ J1305.6{+}7853$	196.4126	78.8923	$S5\ 1304+79$	LSP	bll	bll	FSRQ
4FGL J1309.7+1153	197.4377	11.8969	4C + 12.46	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J1330.4{+}3157$	202.6002	31.9630	$MG2\ J132953+3153$	LSP	bll	bll	FSRQ
4FGL J1353.0 -4413	208.2566	-44.2260	PKS 1349-439	LSP	bll	bll	FSRQ
4FGL J1353.3+1434	208.3355	14.5755	OP 186	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1407.6-4301}$	211.9194	-43.0234	$SUMSS\ J140739{-}430231$	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J1410.1 {+} 0202$	212.5287	2.0354	PKS 1407+022	LSP	bll	bll	FSRQ
4FGL J1419.8 $+$ 5423	214.9550	54.3937	OQ 530	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1427.6-3305}$	216.9130	-33.0940	PKS 1424-328	LSP	bll	bll	FSRQ
4FGL J1439.7+4958	219.9411	49.9775	GB6 J1439+4958	LSP	bll	bll	FSRQ
4FGL J1440.0 -1530	220.0072	-15.5154	PKS 1437-153	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1445.9}{-}1626$	221.4978	-16.4498	PKS B1443-162	LSP	bll	bll	FSRQ
4FGL J1458.6+3722	224.6733	37.3726	B3 1456+375	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J1500.7{+}4752$	225.1837	47.8716	TXS $1459+480$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1505.0-3433}$	226.2581	-34.5546	PMN J1505 - 3432	LSP	bll	bll	FSRQ
4FGL J1516.9+1934	229.2442	19.5805	PKS 1514+197	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J1522.6{-}2730$	230.6642	-27.5059	PKS $1519-273$	LSP	bll	bll	FSRQ
$4 {\rm FGL}\ J1536.8{-}3155$	234.2127	-31.9224	PKS 1533-317	LSP	bll	bll	FSRQ
4FGL J1540.7+1449	235.1903	14.8220	4C + 14.60	LSP	bll	bll	FSRQ
4FGL J1546.5+1816	236.6338	18.2826	$MG1\ J154628 + 1817$	LSP	bll	bll	FSRQ
4FGL J1549.6+1710	237.4120	17.1784	$MG1\ J154930+1708$	LSP	bll	bll	FSRQ

 ${\bf Table} \,\, {\bf 3} \,\, continued \,\, on \,\, next \,\, page$

 ${\bf Table} \ {\bf 3} \ (continued)$

4FGL name	R.A.	Decl.	ASSOC name	SED class	4FGL Class	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J1553.3+0600	238.3284	6.0127	NVSS J155331+060143	LSP	bll	bll	FSRQ
4FGL J1603.8+1104	240.9601	11.0701	MG1 J160340+1106	LSP	bll	bll	FSRQ
4FGL J1604.7+1734	241.1857	17.5717	NVSS J160436+173324	LSP	bll	bll	FSRQ
4FGL J1607.0+1550	241.7745	15.8447	4C + 15.54	LSP	bll	bll	FSRQ
4FGL J1624.6+5651	246.1715	56.8504	SBS 1623+569	LSP	bll	bll	FSRQ
4FGL J1641.9 $-$ 0621	250.4892	-6.3529	TXS $1639-062$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1642.3-8108}$	250.5855	-81.1375	PKS 1633-810	LSP	bll	bll	FSRQ
4FGL J1701.3 $+3956$	255.3340	39.9406	B3 1659+399	LSP	bll	bll	FSRQ
4FGL J1751.5+0938	267.8776	9.6456	OT 081	LSP	bll	bll	FSRQ
4FGL J1800.6 $+7828$	270.1730	78.4674	$S5\ 1803+784$	LSP	bll	bll	FSRQ
4FGL J1806.8 $+6949$	271.7108	69.8270	3C 371	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1824.1+5651}$	276.0393	56.8585	4C + 56.27	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1830.0-5225}$	277.5117	-52.4188	$SUMSS\ J183004-522618$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1834.7\!-\!5858}$	278.6874	-58.9818	PKS $1830-589$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1849.4}{+2745}$	282.3543	27.7542	$MG2\ J184929+2748$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1925.8}{-2220}$	291.4665	-22.3410	TXS $1922-224$	LSP	bll	bll	FSRQ
4FGL J1927.5 $+6117$	291.8822	61.2940	S4 1926+61	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1941.3-6210}$	295.3468	-62.1753	PKS $1936-623$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J1954.6}{-1122}$	298.6693	-11.3815	TXS $1951-115$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J2005.5{+}7752}$	301.3930	77.8829	S5 2007+77	LSP	bll	bll	FSRQ
${\rm 4FGL\ J2010.0+7229}$	302.5159	72.4874	4C + 72.28	LSP	bll	bll	FSRQ
${\rm 4FGL\ J2012.2}{-}1646$	303.0719	-16.7729	PMN J2012 - 1646	LSP	bll	bll	FSRQ
${\rm 4FGL\ J2015.2-0137}$	303.8074	-1.6254	PKS $2012-017$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J2022.5{+}7612}$	305.6459	76.2007	$S5\ 2023+760$	LSP	bll	bll	FSRQ
4FGL J2032.0+1219	308.0040	12.3279	PKS 2029+121	LSP	bll	bll	FSRQ
4FGL J2049.9+1002	312.4782	10.0407	PKS 2047+098	LSP	bll	bll	FSRQ
4FGL J2050.0+0408	312.5181	4.1401	PKS 2047+039	LSP	bll	bll	FSRQ
4FGL J2056.7 -3209	314.1780	-32.1612	PKS $2053 - 323$	LSP	bll	bll	FSRQ
4FGL J2134.2-0154	323.5699	-1.9042	PKS 2131-021	LSP	bll	bll	FSRQ
4FGL J2152.5+1737	328.1370	17.6173	S3 2150+17	LSP	bll	bll	FSRQ
4FGL J2200.3+1029	330.0887	10.4956	TXS $2157+102$	LSP	bll	bll	FSRQ
4FGL J2202.7+4216	330.6946	42.2821	BL Lac	LSP	bll	bll	FSRQ
4FGL J2206.8 -0032	331.7087	-0.5461	PMN J2206-0031	LSP	bll	bll	FSRQ
4FGL J2216.9+2421	334.2380	24.3575	B2 2214+24B	LSP	bll	bll	FSRQ
${\rm 4FGL\ J2224.0-1127}$	336.0241	-11.4658	PKS 2221-116	LSP	bll	bll	FSRQ
${\rm 4FGL\ J2236.2}{-1706}$	339.0648	-17.1066	PKS $2233-173$	LSP	bll	bll	FSRQ
${\rm 4FGL\ J2236.5\!-\!1433}$	339.1444	-14.5557	PKS 2233-148	LSP	bll	bll	FSRQ
4FGL J2243.4-2544	340.8654	-25.7363	PKS $2240-260$	LSP	bll	bll	FSRQ
4FGL J2247.4-0001	341.8670	-0.0263	PKS $2244-002$	LSP	bll	bll	FSRQ
4FGL J2250.7-2806	342.6903	-28.1114	PMN J2250-2806	LSP	bll	bll	FSRQ

 ${\bf Table} \,\, {\bf 3} \,\, continued \,\, on \,\, next \,\, page$

Table 3 (continued)

4FGL name	R.A.	Decl.	ASSOC name	SED class	4FGL Class	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J2256.6-2011	344.1728	-20.1986	PKS 2254-204	LSP	bll	bll	FSRQ
4FGL J2257.5+0748	344.3874	7.8014	OY 91	LSP	bll	bll	FSRQ
4FGL J2315.6-5018	348.9140	-50.3127	PKS 2312-505	LSP	bll	bll	FSRQ
4FGL J2330.6-3726	352.6603	-37.4346	PKS 2327-376	LSP	bll	bll	FSRQ
4FGL J2346.7+8008	356.6867	80.1366	WN B2344.2+7951	LSP	bll	bll	FSRQ
4FGL J2353.7-3037	358.4321	-30.6219	PKS 2351-309	LSP	bll	bll	FSRQ
4FGL J2357.4-0152	359.3674	-1.8703	PKS 2354-021	LSP	bll	bll	FSRQ
4FGL J0001.2-0747	0.3151	-7.7971	PMN J0001-0746	LSP	bll	bll	UNK
4FGL J0003.2+2207	0.8058	22.1302	2MASX J00032450+2204559	LSP	bll	bll	UNK
4FGL J0022.5+0608	5.6376	6.1343	PKS 0019+058	LSP	bll	bll	UNK
4FGL J0029.0-7044	7.2509	-70.7414	PKS 0026-710	LSP	bll	bll	UNK
4FGL J $0032.4 - 2849$	8.1076	-28.8224	PMN J0032-2849	LSP	bll	bll	UNK
${\rm 4FGL\ J0124.8-}0625$	21.2178	-6.4328	PMN J0124-0624	LSP	bll	bll	UNK
${\rm 4FGL\ J0142.7-0543}$	25.6754	-5.7332	PKS $0140-059$	LSP	bll	bll	UNK
4FGL J0224.0 -7941	36.0056	-79.6934	PMN J0223 - 7940	LSP	bll	bll	UNK
${\rm 4FGL\ J0241.0-0505}$	40.2509	-5.0943	PKS $0238-052$	LSP	bll	bll	UNK
4FGL $J0314.3 - 5103$	48.5929	-51.0550	PMN J0314 - 5104	LSP	bll	bll	UNK
${\rm 4FGL\ J0422.3}{+}1951$	65.5868	19.8618	MS 0419.3+1943	LSP	bll	bll	UNK
4FGL $J0428.6 - 3756$	67.1730	-37.9403	PKS $0426 - 380$	LSP	bll	bll	UNK
4FGL $J0617.2+5701$	94.3162	57.0249	$87{\rm GB}\ 061258.1 {+} 570222$	LSP	bll	bll	UNK
4FGL J0811.4+0146	122.8610	1.7756	OJ 014	LSP	bll	bll	UNK
${\rm 4FGL\ J0817.8-0934}$	124.4734	-9.5777	TXS $0815 - 094$	LSP	bll	bll	UNK
4FGL $J0818.2+4222$	124.5572	42.3819	S4 0814+42	LSP	bll	bll	UNK
4FGL $J0850.0+4855$	132.5083	48.9217	$GB6\ J0850+4855$	LSP	bll	bll	UNK
${\rm 4FGL\ J0909.6}{+}0159$	137.4222	1.9917	PKS 0907+022	LSP	bll	bll	UNK
4FGL $J0934.3+3926$	143.5861	39.4365	$GB6\ J0934+3926$	LSP	bll	bll	UNK
4FGL $J0941.9+2724$	145.4936	27.4136	GB6 J0941 $+2721$	LSP	bll	bll	UNK
$4 {\rm FGL\ J} 1018.1 {+} 1905$	154.5480	19.0963	NVSS J $101808+190614$	LSP	bll	bll	UNK
${\rm 4FGL\ J1129.1 + 3703}$	172.2959	37.0644	CRATES J112916 $+370317$	LSP	bll	bll	UNK
$4 {\rm FGL}\ J1143.1 {+} 6122$	175.7881	61.3801	$GB6\ J1143+6122$	LSP	bll	bll	UNK
4FGL J1153.7+3822	178.4464	38.3684	B3 1151+386	LSP	bll	bll	UNK
$4 {\rm FGL}\ J1223.3{+}1213$	185.8415	12.2312	$MG1\ J122332+1208$	LSP	bll	bll	UNK
${\rm 4FGL\ J1226.8\!-\!1329}$	186.7188	-13.4940	PMN J1226-1328	LSP	bll	bll	UNK
${\rm 4FGL\ J1238.3}{-}1959$	189.5936	-19.9945	PMN J1238-1959	LSP	bll	bll	UNK
${\rm 4FGL\ J1259.1-2311}$	194.7798	-23.1925	PKS $B1256-229$	LSP	bll	bll	UNK
4FGL J1304.0+3704	196.0075	37.0710	WISE J130407.31 $+$ 370908.1	LSP	bll	bll	UNK
4FGL J1311.8+3954	197.9598	39.9010	${\rm FIRST~J131146.0+395317}$	LSP	bll	bll	UNK
${\rm 4FGL\ J1331.2}{-1325}$	202.8192	-13.4282	PMN J1331-1326	LSP	bll	bll	UNK
${\rm 4FGL\ J1424.2}{+}0433$	216.0508	4.5628	TXS 1421+048	LSP	bll	bll	UNK
4FGL J1431.1-3120	217.7962	-31.3468	PKS 1428-311	LSP	bll	bll	UNK

 ${\bf Table} \,\, {\bf 3} \,\, continued \,\, on \,\, next \,\, page$

Table 3 (continued)

			,				
4FGL name	R.A.	Decl.	ASSOC name	SED class	4FGL Class	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J1451.4+6355	222.8554	63.9172	RX J1451.4+6354	LSP	bll	bll	UNK
4FGL J1455.0+0247	223.7616	2.7958	87GB 145233.9+030210	LSP	bll	bll	UNK
4FGL J1456.0+5051	224.0181	50.8500	RGB J1456+508	LSP	bll	bll	UNK
4FGL J1516.8+3651	229.2217	36.8505	MG2 J151646+3650	LSP	bll	bll	UNK
4FGL J1539.9+4220	234.9771	42.3381	87GB 153741.6+422719	LSP	bll	bll	UNK
·			·				
4FGL J1549.3+6310	237.3324	63.1780	WN B1549+6319	LSP	bll	bll	UNK
4FGL J1558.8+5625	239.7179	56.4268	TXS 1557+565	LSP	bll	bll	UNK
4FGL J1616.7+4107	244.1821	41.1234	B3 1615+412	LSP	bll	bll	UNK
4FGL J $1643.0-7714$	250.7719	-77.2488	PKS 1636-77	LSP	bll	bll	UNK
4FGL J1643.0+3223	250.7585	32.3982	NVSS J $164301+322104$	LSP	bll	bll	UNK
4FGL J1647.5+4950	251.8923	49.8336	SBS 1646+499	LSP	bll	bll	UNK
4FGL J1704.2+1234	256.0599	12.5752	NVSS J170409+123421	LSP	bll	bll	UNK
4FGL J1719.2+1745	259.8062	17.7533	PKS 1717+177	LSP	bll	bll	UNK
4FGL J1745.4 -0753	266.3636	-7.8894	TXS $1742-078$	LSP	bll	bll	UNK
4FGL J1749.0+4321	267.2554	43.3616	B3 1747+433	LSP	bll	bll	UNK
4FGL J1813.6+0614	273.4084	6.2408	TXS 1811+062	LSP	bll	bll	UNK
4FGL J1849.4-4313	282.3623	-43.2214	PMN J1849-4314	LSP	bll	bll	UNK
4FGL J1858.3+4321	284.5967	43.3590	NVSS J185813+432452	LSP	bll	bll	UNK
${\rm 4FGL\ J2017.5\!-\!3753}$	304.3957	-37.8970	PKS 2014-380	LSP	bll	bll	UNK
${\rm 4FGL\ J2039.0-}1046$	309.7581	-10.7731	TXS $2036-109$	LSP	bll	bll	UNK
${\rm 4FGL\ J2115.9}{-}0113$	318.9959	-1.2306	NVSS J211603 -010828	LSP	bll	bll	UNK
${\rm 4FGL\ J2225.5\!-\!1114}$	336.3957	-11.2422	PKS 2223-114	LSP	bll	bll	UNK
4FGL J2241.2+4120	340.3087	41.3396	B3 2238+410	LSP	bll	bll	UNK
4FGL J2307.6+1451	346.9222	14.8644	$MG1\ J230734+1449$	LSP	bll	bll	UNK
4FGL J2311.0+0205	347.7661	2.0995	NVSS J231101+020504	LSP	bll	bll	UNK

NOTE—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. The counterpart names are listed in Column 4. Column 5 and 6 lists the spectral energy distribution (SED) class and the optical class reported in 4FGL catalog, respectively. The based optical class (From class) in **Kang et al. 2022** listed in Columns 7. The predictions (optical class) in Kang et al. 2022 are presented in Columns 8. Where, UNK indicate the sources without a clear prediction.

91

92

93

95

2.4. The predictions in Pei et al. (2022).

Based on the values of $L_{Disk}/L_{Edd} = 0.055$ and 0.024 for the two LSP BL Lacs: 4FGL J0238.6+1637 (PKS 0235+164) and 4FGL J0538.8-4405 (PKS 0537-441) labeled as LSP BL Lacs in 4FGL catalog, which are located in the "appareling zone" that perhaps Changing-Look blazars and the transition of BL Lacs-FSRQs would occur, They consider these two sources to be potential changing-look blazars. Which are listed in Table 4 (Copied from Pei et al. 2022).

Table 4. The predictions in Pei et al. (2022)

4FGL name (1)	R.A. (2)	Decl. (3)	ASSOC name (4)	SED class (5)	4FGL Class (6)	From class (7)	To class (8)
4FGL J0238.6+1637	39.6680	16.6179	PKS 0235 +164	LSP	bll	BL Lacs	FRSQs
${\rm 4FGL\ J0538.8-4405}$	84.7089	-44.0862	PKS $0537 - 441$	LSP	bll	BL Lacs	FRSQs

NOTE—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. The counterpart names are listed in Column 4. Column 5 lists the optical class, column 4 is the spectral energy distribution (SED) class reported in 4FGL catalog, respectively. The optical class before and after the predictions (transition) in Pei et al. (2022) are presented in Columns 7 and 8.

3. THE CONFIRMED CHANGING-LOOK BLAZARS (CLBS)

The confirmed changing-look blazars (CLBs), which are the source that there are optical spectra at different epochs showing radical changes. Clearly these sources are transitional between the standard FSRQs and BL Lac types.

3.1. The confirmed CLBs in Foschini et al. (2021)

Foschini et al. (2021) compiled a gamma-ray jetted AGN sample based on the 4FGL catalog. They reported 11 changing-look AGNs, when there are optical spectra at different epochs showing radical changes, such as from a featureless continuum to strong emission lines, thus indicating a change in the accretion history. 9 of them are blazars labeled as FSRQ in 4FGL catalog, one of them is non-blazar active galaxy labeled as "agn" in 4FGL catalog, and one of them is compact steep spectrum radio source labeled as "css" in 4FGL catalog, based on a featureless spectrum reported in the previous literature (see Foschini et al. 2021 for more details and references therein). The 11 sources are listed in Table 5 (Copied from Foschini et al. 2021).

Table 5. The confirmed CLBs in Foschini et al. (2021)

4FGL name	R.A.	Decl.	ASSOC name	SED class	4FGL Class	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J0134.5+2637	23.6272	26.6294	RX J0134.4+2638	HSP	fsrq	featureless	fsrq
4FGL J0217.8+0144	34.4621	1.7346	PKS $0215+015$	LSP	fsrq	featureless	fsrq
4FGL J0449.1+1121	72.2823	11.3569	PKS 0446+11	LSP	fsrq	featureless	fsrq
$4 {\rm FGL}\ J0509.4{+}1012$	77.3510	10.2008	PKS 0506+101	LSP	fsrq	featureless	fsrq
4FGL J0510.0+1800	77.5181	18.0135	PKS $0507+17$	LSP	fsrq	featureless	fsrq
4FGL J0522.9 -3628	80.7370	-1636.4686	PKS $0521-36$	LSP	agn	featureless	agn
4FGL J0719.3+3307	109.8400	33.1232	B2 0716+33	LSP	fsrq	featureless	fsrq
4FGL J0833.9+4223	128.4759	42.3989	OJ 451	LSP	fsrq	featureless	fsrq
4FGL J0910.0+4257	137.5058	42.9623	$3C\ 216$		css	featureless	css
4FGL J $1037.4 - 2933$	159.3564	-29.5568	PKS 1034-293	LSP	fsrq	featureless	fsrq
4FGL J1124.0+2336	171.0045	23.6159	OM 235	LSP	fsrq	featureless	fsrq

NOTE—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. The counterpart names are listed in Column 4. Column 5 and 6 lists the spectral energy distribution (SED) class and the optical class reported in 4FGL catalog, respectively. The optical class before and after the transition in Foschini et al. (2021) are presented in Columns 7 and 8, respectively.

3.2. The confirmed CLBs in Peña-Herazo et al. (2021)

In Peña-Herazo et al. (2021), they reported 26 Changing-Look (transitional) blazars (CLBs). They discover 26 transitional (i.e., changing-look) blazars that changed their classification. Finally, we are able to confirm the blazar-like nature of six BL Lac candidates. All remaining sources analyzed agree with previous classifications (Copied from Peña-Herazo et al. 2021). Which are listed in Table 6.

Table 6. The confirmed CLBs in Peña-Herazo et al. (2021)

4FGL name	R.A.	Decl.	SED class	4FGL Class	ASSOC name	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J1410.3+1438	212.5908	14.6434		bll	4FGL J1410.3+1438	bll	bzq
4FGL J1503.5+4759	212.3908	47.9959	 LSP	bll	4FGL J1503.5+4759	bll	_
					SDSS J134240.02+094752.4		bzq bzb
•••	•••		•••	•••	·	bzq	
					5BZG J0006+1051	bzg	bzb
4FGL J0022.0+0006	5.5154	0.1134	HSP	bll	5BZG J0022+0006	bzg	bzb
4FGL J0303.3+0555	45.8465	5.9249	HSP	bll	5BZG J0303+0554	bzg	bzb
•••					5BZG J0751+1730	bzg	bzq
•••				•••	5BZG J0756+3834	bzg	bzq
4FGL $J0916.7+5238$	139.1906	52.6454	HSP	bll	5BZG J0916+5238	bzg	bzb
4FGL J1001.1+2911	150.2938	29.1880	LSP	bll	$5BZB\ J1001+2911$	bzb	bzq
4FGL J1043.2+2408	160.8053	24.1460	LSP	fsrq	5BZQ J1043+2408	bzq	bzb
	•••	•••	•••		$5BZQ\ J1054+3855$	bzq	bzb
4FGL J1056.0+0253	164.0027	2.8935		bll	5BZG J1056+0252	bzg	bzb
			•••		5BZG J1103+0022	bzg	bzb
4FGL J1106.0+2813	166.5020	28.2254	LSP	fsrq	5BZQ J1106+2812	bzq	bzb
	•••	•••	•••		5BZQ J1243+4043	bzq	bzb
4FGL J1321.1+2216	200.2958	22.2808	LSP	fsrq	5BZQ J1321+2216	bzq	bzb
4FGL J1326.1+1232	201.5493	12.5348	HSP	bll	$5BZG\ J1326+1229$	bzg	bzb
					5BZQ J1343+2844	bzq	bzb
4FGL J1402.6+1600	210.6584	16.0016	ISP	bll	5BZB J1402+1559	bzb	bzq
4FGL J1449.5+2746	222.3956	27.7686	ISP	rdg	5BZG J1449+2746	bzg	bzb
•••			•••		5BZG J1504-0248	bzg	bzq
4FGL J1512.2+0202	228.0702	2.0403	LSP	fsrq	5BZG J1512+0203	bzg	bzq
4FGL J1730.8+3715	262.7026	37.2641	ISP	bll	5BZG J1730+3714	bzg	bzb
					5BZG J1733+4519	bzg	bzb
					$5BZG\ J2346+4024$	bzg	bzq

NOTE—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. Column 4 is the spectral energy distribution (SED) class and Column 5 lists the optical class reported in 4FGL catalog, respectively. The counterpart names are listed in Column 6. The optical class before and after the transition in Peña-Herazo et al. (2021) are presented in Columns 7 and 8, respectively. Where, BL lacs labeled as BZB and FSRQs labeled as BZQ (or BZG) in the Roma-BZCAT.

108

108

109 110

111

Blazars are classically divided into the BL Lacertae (BLL) and flat-spectrum radio quasar (FSRQ) subclasses, based on the equivalent width (EW) of their optical broad emission lines (BELs). However, EW-based classification criteria are not physically motivated, and a few blazars have previously "transitioned" from one subclass to the other. They present the first systematic search for these transition blazars in a sample of 602 unique pairs of repeat spectra of 354 blazars in the Sloan Digital Sky Survey, finding six clear cases (transition blazars) (**Copied from Ruan et al. 2014**). Which are listed in Table 7.

Table 7. The confirmed CLBs in Ruan et al. (2014)

4FGL name (1)	R.A. (2)	Decl.	SED class (4)	4FGL Class (5)	ASSOC name (6)	From class (7)	To class (8)
	(-)	(0)	(1)	(0)	(0)	(•)	(0)
4FGL J0833.9+4223	128.4759	42.3989	LSP	fsrq	SDSS J083353.88+422401.8	P-BLL	FSRQ-like
4FGL J1016.0+0512	154.0093	5.2089	LSP	fsrq	SDSS J101603.13+051302.3	P-BLL	FSRQ-like
4FGL J1308.5+3547	197.1286	35.7918	LSP	fsrq	SDSS J130823.70+354637.0	$\mathrm{P\!-\!BLL}$	FSRQ-like
$4 {\rm FGL}\ J2206.8{-}0032$	331.7087	-0.5461	LSP	bll	SDSS J220643.28 -003102.5	P-BLL	FSRQ-like
4FGL J1250.6+0217	192.6513	2.2876	LSP	bll	SDSS J125032.57+021632.1	P-BLL	FSRQ-like
					SDSS J143758.67+300207.1	P-BLL	FSRQ-like

NOTE—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. Column 4 lists the spectral energy distribution (SED) class and column 5 lists the optical class reported in 4FGL catalog, respectively. The counterpart names are listed in Column 6. The optical class before and after the transition in Ruan et al. (2014) are presented in Columns 7 and 8.

3.4. The transition sources in Shaw et al. (2012)

Several blazars were classified as BL Lac objects in initial epoch observations. At the "primary" spectrum epoch, with low continuum, each was a nominal FSRQ. The objects which changed (and continuum decrease) were: $J0058+3311(8\times)$, $J0923+4125(4\times)$, $J1001+2911(6\times)$, $J1607+1551(5\times)$, $J2031+1219(4\times)$, and $J2244+4057(10\times)$.

With very high S/N observations, we were able to detect broad lines at high significance at EW levels $< 5\mathring{A}$ in several objects. These were thus "BL Lac objects" at all of our epochs, but can be analyzed along with the FSRQ. The BL Lac objects (and strongest broad-line EWs) were: J0430-2507 (Mgii at EW = 0.9 Å), J0516-6207 (Civ at EW = 1.6 Å; Ciii, Mgii also present), J1058+0133 (Mg ii at EW = 2.2 Å), J2236+2828 (Mgii at EW = 4.9 Å), and J2315-5018 (Mgii at EW = 3.8 Å). These EW measurements are in observed frame. Clearly these sources are transitional between our standard FSRQs and BL Lac types (copied from Shaw et al. 2012). Which are listed in Table 8

Table 8. The 11 transition sources in Shaw et al. (2012)

4FGL name	R.A.	Decl.	SED class	4FGL Class	ASSOC name	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J0058.4+3315	14.6101	33.2505	LSP	fsrq	1FGL J0058.0+3314	BL Lac	nominal_FSRQ
4FGL $J0923.5+4125$	140.8949	41.4283	LSP	fsrq	1FGL J0923.2+4121	BL Lac	$nominal_FSRQ$
4FGL J1001.1+2911	150.2938	29.1880	LSP	bll	1FGL J1000.9+2915	BL Lac	$nominal_FSRQ$
4FGL J1607.0+1550	241.7745	15.8447	LSP	bll	1FGL $J1607.1+1552$	BL Lac	$nominal_FSRQ$
4FGL J2032.0+1219	308.0040	12.3279	LSP	bll	1FGL J2031.5+1219	BL Lac	$nominal_FSRQ$
4FGL J2244.2+4057	341.0614	40.9597	LSP	fsrq	1FGL J2243.4+4104	BL Lac	$nominal_FSRQ$
${\rm 4FGL\ J0430.3-2507}$	67.5751	-25.1283	ISP	bll	1FGL J0430.4-2509	BL Lac	$broad_lines_BLL$
${\rm 4FGL\ J0516.7\!-\!6207}$	79.1798	-62.1248	LSP	bll	$1 {\rm FGL} \ J0516.7 {-} 6207$	BL Lac	$broad_lines_BLL$
4FGL J1058.4+0133	164.6240	1.5641	LSP	bll	1FGL J1058.4+0134	BL Lac	$broad_lines_BLL$
4FGL J2236.3+2828	339.0962	28.4832	LSP	fsrq	1FGL J2236.2+2828	BL Lac	$broad_lines_BLL$
4FGL J2315.6 -5018	348.9140	-50.3127	LSP	bll	1FGL J2315.9-5014	BL Lac	$broad_lines_BLL$

Note—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. Column 4 is the spectral energy distribution (SED) class and Column 5 lists the optical class reported in 4FGL catalog, respectively. The 1FGL counterpart names are listed in Column 6. The optical class before and after the transition in Shaw et al. (2012) are presented in Columns 7 and 8, respectively.

133

Sources classified as BL Lacs with an SED appearing as intermediate between BL Lacs and FSRQs also have relatively weak broad emission lines and small EW, and can be considered as transition sources (**copied from Ghisellini et al. 2011**). Which are listed in Table 10.

Table 9. The considered as transition sources in Ghisellini et al. (2011)

4FGL name	R.A.	Decl.	ASSOC name	SED class	4FGL Class	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J0058.4+3315	14.6101	33.2505	MG3 J005830+3311	LSP	fsrq	BL Lacs	FS
${\rm 4FGL\ J0210.7\!-\!5101}$	32.6946	-51.0218	PKS $0208-512$	LSP	fsrq	BL Lacs	FS
4FGL $J0538.8-4405$	84.7089	-44.0862	PKS $0537 - 441$	LSP	bll	BL Lacs	FS
4FGL J0811.4+0146	122.8610	1.7756	OJ 014.	LSP	bll	BL Lacs	FS
4FGL J0238.6+1637	39.6680	16.6179	PKS $0235+164$	LSP	bll	BL Lacs	FS
4FGL $J0428.6 - 3756$	67.1730	-37.9403	PKS $0426 - 380$	LSP	bll	BL Lacs	FS

NOTE—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. The counterpart names are listed in Column 4. Column 5 is the spectral energy distribution (SED) class and column 6 lists the optical class reported in 4FGL catalog, respectively. The optical class before and after the transition in Ghisellini et al. (2011) are presented in Columns 7 and 8.

18 KANG ET AL.

3.6. The CLB (transition) sources in other literatures

Table 10. The CLB (transition) sources in other literatures

4FGL name	R.A.	Decl.	SED class	4FGL Class	ASSOC name	From class	To class	ref.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
4FGL J2202.7+4216	330.6946	42.2821	LSP	bll	BL Lac (prototype)	BL Lac	FSRQ	a
4FGL J1422.3+3223	215.5772	32.3911	LSP	fsrq	B2 1420+32	FSRQ	BL Lac	b
					$5BZB\ J0724+2621$	BL Lac	FSRQ.	c
				•••	J211354.71 + 112125.3.	FSRQ	no BELs.	d
					AT2019evq	FSRQ	no BELs.	d
4FGL J1153.4+4931	178.3505	49.5169	LSP	fsrq	4C+29.22 (S4 1150+49)	FSRQ	BL Lacs	e
${\rm 4FGL\ J0509.4}{+}0542$	77.3593	5.7014	ISP	bll	TXS $0506+056$	bll	FSRQ	f
${\rm 4FGL\ J2151.8\!-\!3027}$	327.9655	-30.4600	LSP	fsrq	PKS 2149-306			g

NOTE—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. Column 4 is the spectral energy distribution (SED) class and column 5 lists the optical class reported in 4FGL catalog, respectively. The counterpart names are listed in Column 6. The optical class before and after the transition in Ghisellini et al. (2011) are presented in Columns 7 and 8, respectively. Where,

^aVermeulen et al. (1995); based on optical line.

 $^{{}^{}b}$ Mishra et al. (2021); based on optical line.

 $[^]c$ Álvarez Crespo et al. (2016); based on optical line.

^dPasham & Wevers (2019); based on optical line.

^eCutini et al. (2014); based on SED.

 $[^]f$ Padovani et al. (2019); based on Eddington ratio.

^gBianchin et al. (2009). based on SED.

137

138

139

140

141

142

143

144

145

146

4. THE BLUE QUASARS

4.1. The Blue Fermi flat spectrum radio quasars in Ghisellini et al. (2012)

Many blazars detected by the Fermi satellite, observed spectroscopically in the optical, are line-less, and have been classified as BL Lac objects. Optical-ultraviolet (UV) photometry of nearly 100 of them allowed us to determine the redshift for a handful of objects and redshift upper limits in the great majority. A few of these are candidates to be 'blue quasars', namely flat spectrum radio quasars whose broad emission lines are hidden by an overwhelming synchrotron emission peaking in the UV. This implies that the emitting electrons have high energies. In turn, this requires relatively weak radiative cooling, a condition that can be met if the main radiative dissipation of the jet power occurs outside the broad-line region. We confirm this hypothesis by studying and modelling the spectral energy distributions of the four 'blue quasars' recently discovered. Furthermore, we discuss the distribution of Fermi blazars in the gamma-ray spectral index-gamma-ray luminosity plane, and argue that 'blue quasars' objects are a minority within the blazar populations (Copied from Ghisellini et al. 2012). Which are listed in Table 11.

4FGL name R.A. Decl. SED class 4FGL Class ASSOC name From class To class (1)(2)(3)(4)(5)(6)(7)(8)4FGL J2345.2-1555 356.3030 -15.9182LSP fsrq PMN J2345-1555. FSRQ(red) BL Lac(blue) 4FGL J0035.2+1514 RX J0035.2+1515 bll FSRQ(blue) 8.8123 15.2405**ISP** bll 4FGL J0537.7 - 5717SUMMS J053748 - 571828FSRQ(blue) 84.4251-57.2909 **HSP** bll bll 4FGL J0630.9-2406 **HSP** CRATES J0630-2406 97.7414-24.1110 bll bll FSRQ(blue) ${\rm 4FGL\ J1312.4}{-2156}$ 198.1108 -21.9380 **HSP** CRATES 1312-2156 bll bll FSRQ(blue)

Table 11. The becomes blue sources in Ghisellini et al. (2012, 2013)

Note—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. Column 4 is the spectral energy distribution (SED) class and Column 5 lists the optical class reported in 4FGL catalog, respectively. The counterpart names are listed in Column 6. The optical class before and after becomeing blue in Ghisellini et al. (2012, 2013) are presented in Columns 7 and 8.

In addition, the flat spectrum radio quasar PMN J2345-1555 (see, Table 11) is a bright gamma-ray source, that recently underwent a flaring episode in the infrared (IR), ultraviolet (UV) and gamma-ray bands. The flux changed quasi-simultaneously at different frequencies, suggesting that it was produced by a single population of emitting particles, hence by a single and well-localized region of the jet. While the overall spectral energy distribution (SED) before the flare was typical of powerful blazars (namely two broad humps peaking in the far-IR and below 100 MeV bands, respectively), during the flare the peaks moved to the optical-UV and to energies larger than 1 GeV, to resemble low power BL Lac objects, even if the observed bolometric luminosity increased by more than one order of magnitude. We interpret this behaviour as due to a change of the location of the emission region in the jet, from within the broad-line region, to just outside. The corresponding decrease of the radiation energy density as seen in the comoving frame of the jet allowed the relativistic electrons to be accelerated to higher energies, and thus produce a 'bluer' SED (Copied from Ghisellini et al. 2013) .

5. THE PREDICTIONS (CHECK) CLBCS IN 2022

5.1. The predictions (check) in Zhang et al. (2022)

Table 12. The predictions in Zhang et al. (2022)

4FGL name	R.A.	Decl.	ASSOC name	SED class	4FGL Class	From class	To class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4FGL J0114.8+1326	18.7119	13.4342	GB6 J0114+1325	ISP	bll	1bzb/2bzq/3CB/4CB	
4FGL $J0203.7+3042$	30.9327	30.7139	NVSS J020344+304238	LSP	bll	$1 \mathrm{agu} / 2 \mathrm{bzq} / 3 \mathrm{CB} / 4 \mathrm{CB}$	
4FGL J0407.5+0741	61.8921	7.6998	TXS 0404+075	LSP	bll	1bzq/2bzq/3CB/4CB	
4FGL J0433.1+3227	68.2897	32.4614	NVSS J043307+322840	HSP	bll	$1 \mathrm{bzq}/2 \mathrm{bzq}/3 \mathrm{BCU}/4 \mathrm{CB}$	
4FGL J1058.4+0133	164.6240	1.5641	4C + 01.28	LSP	bll	$1\mathrm{bzq}/2\mathrm{bzb}/3\mathrm{CB}/4\mathrm{CB}$	

NOTE—The 4FGL name are presented in Column 1. Columns 2 and 3 are the J2000 coordinates. The counterpart names are listed in Column 4. Column 5 lists the optical class, column 4 is the spectral energy distribution (SED) class reported in 4FGL catalog, respectively. The optical class before and after the predictions (transition) in Zhang et al. (2022) are presented in Columns 7 and 8.

6. SUMMARY

In this work, the CLBsCat: An online Catalog for Changing-Look (Transition) Blazars is is compiled. In the catalog, a total of 297 (33+47+2+157+58) forecast records were collected in Section 2, (also see Table 1, 2, 3, and 4). where, 33 LSP BL Lacs predicted as possible FSRQs in Fan & Wu (2019); 47 LSP BL Lacs predicted as possible FSRQs in Cheng et al. (2022); 2 LSP BL Lacs predicted as possible FSRQs in Pei et al. (2022); and 215 LSP BL Lacs predicted as potential FSRQs in Kang et al. 2022, including 157 possible FSRQs and 58 unknown sources without a clear prediction (see, Table ??).

In Section 3, based on the transition between the standard FSRQs and BL Lac types (EW-based classification), a total of 60 (26+11+6+11+6) records for the CLBs confirmed by EW changes of spectral emission lines are collected. Where, 26 CLBs reported in Peña-Herazo et al. (2021), 9 of 11 changing-look AGNs are CLBs reported in Foschini et al. (2021), and 6 transition sources (CLB type) reported in Ruan et al. (2014), 11 transition sources (CLB type) reported in Shaw et al. (2012), 6 transition sources (CLB type) reported in Ghisellini et al. (2011).

Other CLBs (transition sources)

Furthermore, the 'blue quasars' (e.g., Blue Fermi flat spectrum radio quasars) are also shown in the catalog (see Section 4).

Note:

In addition, in order to describe as accurately as possible, some sentences are directly copied from the original text.

During the collection and sorting process, we try to check every detail, however, errors, omissions, errata, etc. are inevitable, please do not hesitate to enlighten me, thank you, thank you.

Finally, we hope that our manuscript will be helpful and beneficial to you.

Research on CLBs is ongoing. A detailed in-depth discussion of it is in progress.

182

183

184

185

186

187

188

189

190

191

We thank all the people that have made this AASTeX what it is today. This includes but not limited to Qinwen Wu, Yong-Gang Zheng, and Yue Yin. Also special thanks to Xu-Liang Fan and Yi-Ping Cheng for providing their predictions. Considerable help was provided via bug reports and hacks from numerous people including Shi-Ju Kang, Shi-Ju Kang, and Shi-Ju Kang.

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 12163002, 11873043 and 11763005), and the big data astronomy and physics science and technology innovation team of Liupanshui Normal University (LPSSYKJTD201901).

Facilities: Fermi(LAT), Swift(XRT and UVOT), AAVSO, CTIO:1.3m, CTIO:1.5m,CXO

Software: R (R Core Team 2022), FITSio package (Harris 2021), astrolibR package (Chakraborty et al. 2014), reshape package (Wickham 2007)

REFERENCES

```
Álvarez Crespo, N., Masetti, N., Ricci, F., et al. 2016, AJ,
                                                                        Horan, D., & Wakely, S. 2008b, in American Astronomical
192
      151, 32, doi: 10.3847/0004-6256/151/2/32
                                                                          Society Meeting Abstracts, Vol. 211, American
                                                                   227
193
    Bianchin, V., Foschini, L., Ghisellini, G., et al. 2009, A&A,
                                                                          Astronomical Society Meeting Abstracts #211, 160.03
194
      496, 423, doi: 10.1051/0004-6361/200811128
                                                                        Mishra, H. 2021, in American Astronomical Society
195
    Chakraborty, A., Feigelson, E. D., & Babu, G. J. 2014,
                                                                          Meeting Abstracts, Vol. 53, American Astronomical
196
                                                                   230
      astrolabe: Astronomy Users Library for R.
                                                                          Society Meeting Abstracts, 408.07
197
                                                                   231
      http://CRAN.R-project.org/package=astrolibR
198
                                                                        Mishra, H. D., Dai, X., Chen, P., et al. 2021, ApJ, 913, 146,
    Cheng, Y. P., Kang, S. J., & Zheng, Y. G. 2022, MNRAS,
199
                                                                          doi: 10.3847/1538-4357/abf63d
                                                                   233
      515, 2215, doi: 10.1093/mnras/stac1885
200
                                                                        Padovani, P., Oikonomou, F., Petropoulou, M., Giommi, P.,
                                                                   234
    Cutini, S., Ciprini, S., Orienti, M., et al. 2014, MNRAS,
201
                                                                          & Resconi, E. 2019, MNRAS, 484, L104,
                                                                   235
      445, 4316, doi: 10.1093/mnras/stu2011
202
                                                                          doi: 10.1093/mnrasl/slz011
                                                                   236
    D'Elia, V., Padovani, P., Giommi, P., & Turriziani, S. 2015,
203
                                                                        Pasham, D. R., & Wevers, T. 2019, Research Notes of the
      MNRAS, 449, 3517, doi: 10.1093/mnras/stv573
204
                                                                          American Astronomical Society, 3, 92,
                                                                   238
    Fan, X.-L., & Wu, Q. 2019, ApJ, 879, 107,
205
                                                                          doi: 10.3847/2515-5172/ab304a
                                                                   239
      doi: 10.3847/1538-4357/ab25f1
206
                                                                        Peña-Herazo, H. A., Massaro, F., Gu, M., et al. 2021, AJ,
                                                                   240
    Foschini, L., Lister, M. L., Antón, S., et al. 2021, Universe,
207
                                                                          161, 196, doi: 10.3847/1538-3881/abe41d
                                                                   241
      7, 372, doi: 10.3390/universe7100372
208
                                                                        Pei, Z., Fan, J., Yang, J., Huang, D., & Li, Z. 2022, ApJ,
                                                                   242
    Ghisellini, G., Tavecchio, F., Foschini, L., Bonnoli, G., &
209
                                                                          925, 97, doi: 10.3847/1538-4357/ac3aeb
                                                                   243
      Tagliaferri, G. 2013, MNRAS, 432, L66,
210
                                                                        R Core Team. 2022, R: A Language and Environment for
                                                                   244
      doi: 10.1093/mnrasl/slt041
211
                                                                          Statistical Computing, R Foundation for Statistical
                                                                   245
    Ghisellini, G., Tavecchio, F., Foschini, L., & Ghirlanda, G.
212
                                                                          Computing, Vienna, Austria.
                                                                   246
      2011, MNRAS, 414, 2674,
213
                                                                          https://www.R-project.org/
                                                                   247
      doi: 10.1111/j.1365-2966.2011.18578.x
214
                                                                        Ruan, J. J., Anderson, S. F., Plotkin, R. M., et al. 2014,
                                                                   248
    Ghisellini, G., Tavecchio, F., Foschini, L., et al. 2012,
215
                                                                          ApJ, 797, 19, doi: 10.1088/0004-637X/797/1/19
                                                                   249
      MNRAS, 425, 1371,
216
                                                                        Shaw, M. S., Romani, R. W., Cotter, G., et al. 2012, ApJ,
                                                                   250
      doi: 10.1111/j.1365-2966.2012.21554.x
217
                                                                          748, 49, doi: 10.1088/0004-637X/748/1/49
                                                                   251
    Giommi, P., Padovani, P., Polenta, G., et al. 2012, MNRAS,
218
                                                                        Vermeulen, R. C., Ogle, P. M., Tran, H. D., et al. 1995,
      420, 2899, doi: 10.1111/j.1365-2966.2011.20044.x
219
                                                                          ApJL, 452, L5, doi: 10.1086/309716
                                                                   253
    Harris, A. 2021, FITSio: FITS (Flexible Image Transport
220
                                                                        Wakely, S. P., & Horan, D. 2008, in International Cosmic
      System) Utilities.
                                                                   254
221
                                                                          Ray Conference, Vol. 3, International Cosmic Ray
                                                                   255
      https://CRAN.R-project.org/package=FITSio
222
                                                                          Conference, 1341–1344
    Horan, D., & Wakely, S. 2008a, in AAS/High Energy
                                                                   256
223
                                                                        Wickham, H. 2007, Journal of Statistical Software, 21.
      Astrophysics Division, Vol. 10, AAS/High Energy
                                                                   257
224
      Astrophysics Division #10, 41.06
                                                                          http://www.jstatsoft.org/v21/i12/paper
                                                                   258
225
```

²⁵⁹ Zhang, L., Liu, Y., & Fan, J. 2022, ApJ, 935, 4,

doi: 10.3847/1538-4357/ac7bde