

Etapa 2 – Arquitetura e Modelagem

Projeto: Protótipo para Monitoramento de Tensão e Corrente Autores: Gabriel Mattano, Luana Vacari e Marina Donaire

1. Visão Geral do Sistema

O sistema de monitoramento é baseado em uma Raspberry Pi Pico com conectividade Wi-Fi integrada (BitDogLab), sensores analógicos de tensão e corrente, um cartão SD para armazenamento local e a plataforma ThingSpeak para upload e visualização remota dos dados. A lógica do sistema é implementada em tarefas paralelas com auxílio do sistema operacional de tempo real FreeRTOS.

2. Diagrama de Hardware

Figura 01 - Diagrama de funcionamento do hardware.

Figura 02 - Esquemático do hardware.

Componente	Modelo	Função no Sistema	Ligação com a BitDogLab
Sensor de Tensão	ZMPT101B	Mede tensão AC	ADC via ADS1115
Sensor de Corrente	SCT-013	Mede corrente AC de forma não invasiva	ADC via ADS1115
Conversor ADC	ADS1115	Amplia precisão das leituras analógicas	Conversão via I2C (GPIO 0 e 1)
Microcontrolador	Raspberry Pi Pico	Processamento e Controle de tarefas	Principal
Cartão SD	Embutido	Armazena dados localmente	SPI interno
Módulo Wi-Fi	CYW43 (integrado)	Conexão com a internet para envio ao ThingSpeak	Controlado via FreeRTOS
Display OLED	I2C SSD1306	Exibição de Conteúdo	I2C (GPIO 14 e 15)

Tabela 01. Componentes principais.

3. Diagrama de Blocos Funcionais

Figura 03 - Diagrama dos blocos funcionais

4. Explicação da Lógica do Sistema

Figura 04. Fluxograma de funcionamento do projeto.

A lógica do sistema é dividida em **três tarefas concorrentes**, conforme ilustrado no fluxograma:

4.1. Task: WiFiTask

- Inicializa o módulo Wi-Fi CYW43.
- Tenta conectar-se à rede Wi-Fi (máx. 5 vezes).
- Em caso de sucesso, sincroniza o relógio interno via servidor NTP.
- Caso não consiga, segue sem conexão, apenas com salvamento local.

4.2. Task: EnergyMonitorTask

- Realiza leituras dos sensores ZMPT101B (tensão) e SCT013 (corrente) via ADC ADS1115.
- Calcula os valores RMS de corrente e tensão.
- Armazena os dados no buffer compartilhado.
- Salva localmente no cartão SD.
- Exibe os dados no display OLED.
- Roda a cada 1 segundo.

4.3. Task: ThingSpeakTask

- Lê dados do buffer compartilhado.
- Calcula a energia consumida no intervalo.
- Salva localmente os dados no cartão SD.
- Se houver Wi-Fi, envia os dados para o ThingSpeak.
- Executada a cada 10 minutos.

5. Considerações sobre Segurança e Isolamento

A segurança dos usuários e a integridade dos componentes eletrônicos foram prioridades na concepção do sistema. Por esse motivo, adotaram-se as seguintes medidas de proteção e isolamento:

- **Sensores com isolamento galvânico**: Os sensores ZMPT101B (tensão AC) e SCT-013 (corrente AC) são do tipo não invasivo, garantindo que não haja contato direto entre a parte lógica do sistema e a rede elétrica, promovendo segurança tanto para o circuito quanto para o operador.
- Alimentação independente da linha monitorada: A Raspberry Pi Pico (BitDogLab)
 é energizada por uma fonte autônoma, separada da rede elétrica que está sendo
 monitorada. Isso evita riscos de curto-circuito, surtos de tensão ou eletrocussão.
- Isolamento entre alta e baixa tensão: O projeto segue as boas práticas de engenharia elétrica, promovendo total separação entre os circuitos de baixa tensão (lógica, controle e comunicação) e os pontos de alta tensão (rede AC), reduzindo significativamente o risco de falhas, danos a equipamentos ou acidentes.

Essas precauções garantem que o sistema seja seguro para uso residencial ou comercial, mesmo em ambientes com variações acentuadas de tensão.