Introduction to Data Science and Programming, Fall 2019

Class 24: Network models

Instructor: Michael Szell

Nov 22, 2019

IT UNIVERSITY OF COPENHAGEN

Today you will learn about generating synthetic networks

Erdős-Rényi networks

Barabási-Albert networks

Watts-Strogatz networks

What is the simplest possible network model?

What is the simplest possible network model?

The Erdős-Rényi (ER) model creates a random graph

Take N nodes, connect each pair of nodes with probability p

The Erdős-Rényi (ER) model creates a random graph

Take N nodes, connect each pair of nodes with probability p

What is the degree distribution?

The Erdős-Rényi (ER) model creates a random graph

Take N nodes, connect each pair of nodes with probability p

What is the degree distribution?

A single coin toss is modeled by a Bernoulli random variable

Consider a biased coin, probability for head is p.

$$X = \begin{cases} 1 & \text{if a head,} \\ 0 & \text{if a tail.} \end{cases}$$

A single coin toss is modeled by a Bernoulli random variable

Consider a biased coin, probability for head is p.

$$p(x) = \begin{cases} p & \text{if } x = 1, \\ 1 - p & \text{if } x = 0. \end{cases}$$

Bernoulli distribution

Multiple tosses are modeled by a Binomial random variable

Consider a biased coin, probability for head is p. The coin is tossed n times.

Multiple tosses are modeled by a Binomial random variable

Consider a biased coin, probability for head is p. The coin is tossed n times.

The probability to toss k heads is:

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Multiple tosses are modeled by a Binomial random variable

Consider a biased coin, probability for head is p. The coin is tossed n times.

The probability to toss k heads is:

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

The ER network has a binomial degree distribution

The ER network has a binomial degree distribution

Is this network from Mediocristan or Extremistan?

The normal distribution is an approximation to a binomial

ER networks are from Mediocristan.

20th century statistics

21th century statistics add:

Mediocristan

Extremistan

20th century statistics

p = 0.5Mediocristan

21th century statistics add:

Extremistan

The Barabási-Albert (BA) network models "rich getting richer"

Start with a single node. New nodes arrive and link randomly to an old node. They prefer to link to a high-degree node.

The Barabási-Albert (BA) network models "rich getting richer"

Start with a single node.

New nodes arrive and link randomly to an old node. They prefer to link to a high-degree node.

This preferential attachment mechanism leads to a power law degree distribution.

The Barabási-Albert (BA) network models "rich getting richer"

Start with a single node. New nodes arrive and link randomly to an old node. They prefer to link to a high-degree node.

This preferential attachment mechanism leads to a power law degree distribution.

Also called scale-free

20th century statistics

GD 9 6 7 4 1 7 5 N 9

p = 0.5Mediocristan

21th century statistics add:

Extremistan

Their degree distributions

Their degree distributions

The BA model is not realistic for social networks. What is missing?

The Watts-Strogatz model implements a small world network with high clustering

The configuration model is another way of building random networks

a. $k_1=3$ $k_2=2$ $k_3=2$ $k_4=1$

Start with a degree sequence

The configuration model is another way of building random networks

The configuration model is another way of building random networks

Jupyter

For next class, install:

Gephi gephi.org

Today you learned the 3 most important network models

Erdős-Rényi networks

Barabási-Albert networks

Watts-Strogatz networks

