REINFORCED CONCRETE BEAM DESIGN ACCORDING TO TS500

AHMET BAHADDİN ERSÖZ

OUTLINE

- Introduction
- Object and Scope of the Program
- Limitations of the Program
- Input Data
- Structure of the program
- Example Problem
- Conclusion

OBJECT AND SCOPE OF THE PROGRAM

- REINFORCED CONCRETE
 BEAM DESIGN v1.0 (TS500-2000)
- To compute the tension and compression reinforcements of beam with given material strengths under a given moment in accordance with TS500-2000
- It is also possible to calculate the shear reinforcement

LIMITATIONS OF THE PROGRAM

- Valid only (+) moment in the span
- (-) moments in the supports.
- Valid only for beams; depth < 600 mm
- Does not consider hanger bars area.

INPUT DATA

- Material strengths
 - Concrete compressive strength (fck)
 - Steel yield strength (fyk)
- Dimensions of cross section
 - Web Width (bw)
 - Section Depth (h)
 - Flange thickness (t)
 - Clear cover

INPUT DATA

- Force and Moments
 - Support 1 Moment (Md1)
 - Span Moment (Md2)
 - Support 2 Moment (Md3)
 - Shear force (Vd)
 - Axial force (Nd)
- Bentbar availability

STRUCTURE OF THE PROGRAM

FLEXURAL DESIGN

$$K = \frac{b_w * d^2}{M_d} \quad \text{is } K > K_l ?$$

$$is K > K_m ?$$

$$A_{s(ref)} = \frac{M_d}{f_{yd} * j * d}$$

$$jd \to Max \left(d - \frac{t}{2}; 0,9d \right) \text{ (for T-Beam)}$$

j=0.861 (for rectangular beams)

SHEAR DESIGN

EXAMPLE PROBLEM

Vd= 93 kN, Nd=100 kN, S420 Rebar, S220 Stirrups, C16 Concrete Preliminary Design Beam= 250x400, Slab thickness 120 mm

REFERENCES

- Ersoy, U., Ozcebe, G., & Tankut, T. (2008). Reinforced concrete. Ankara: Middle East Tecnical University.
- TOPÇU, P. D. A. (n.d.). Betonarme 1 ders notları. Retrieved from http://mmf2.ogu.edu.tr/atopcu/index_dosyalar/Betonarme1.ht m
- TS500/February 2000-Requirements for Design Construction of Reinforced Concrete Structures