## 1 Section 2.5

Question 1

Question 3

Question 5

Question 7

Question 9

Question 11

# 2 Section 3.2

Question 1

Question 3

## 3 Section 3.3

Question 1

# Question 3

Determine the asymptotic curves of the catenoid

$$\mathbf{x}(u, v) = (\cosh v \cos u, \cosh v \sin u, v).$$

Solution. We have

$$\mathbf{x}_{u} = (-\cosh v \sin u, \cosh v \cos u, 0),$$

$$\mathbf{x}_{v} = (\sinh v \cos u, \sinh v \sin u, 1),$$

$$\mathbf{x}_{uu} = (-\cosh v \cos u, -\cosh v \sin u, 0),$$

$$\mathbf{x}_{uv} = (-\sinh v \sin u, \sinh v \cos u, 0),$$

$$\mathbf{x}_{vv} = (\cosh v \cos u, \cosh v \sin u, 0).$$

Hence,

$$N = \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{|\mathbf{x}_u \wedge \mathbf{x}_v|}$$

$$= \frac{(\cosh v \cos u, \cosh v \sin u, -\cosh v \sinh v)}{(\cosh v)^2}$$

$$= \frac{1}{\cosh v} (\cos u, \sin u, -\sinh v).$$

Then

$$e = \langle N, \mathbf{x}_{uu} \rangle = -1,$$
  
 $f = \langle N, \mathbf{x}_{uv} \rangle = 0,$   
 $g = \langle N, \mathbf{x}_{vv} \rangle = 1.$ 

This implies that the asymptotic directions correspond to  $\langle u', v' \rangle$  satisfies

$$e(u')^{2} + 2fu'v' + g(v')^{2} = 0$$
  
 $\Rightarrow -(u')^{2} + (v')^{2} = 0$   
 $\Rightarrow u' = v' \text{ or } u' = -v'.$ 

This shows that the asymptotic curves are the traces of v = u + a or v = -u + b for some  $a, b \in \mathbb{R}$ , which are

$$\alpha_a(u) = \mathbf{x}(u, u+a) = (\cosh(u+a)\cos u, \cosh(u+a)\sin u, u+a),$$
  
 $\beta_b(u) = \mathbf{x}(u, -u+b) = (\cosh(-u+b)\cos u, \cosh(-u+b)\sin u, -u+b).$ 

The collection of all  $\alpha_a, \beta_b$  are all the asymptotic curves.

#### Question 9

(Contact of Curves.) Define contact of order  $\geq n$  (n integer  $\geq 1$ ) for regular curves in R3 with a common point p and prove that

- a. The notion of contact of order  $\geq n$  is invariant by diffeomorphisms.
- b. Two curves have contact of order  $\geq 1$  at p if and only if they are tangent at p.

Solution. We say two surfaces S and  $\bar{S}$  with a common point p to have contact of order  $\geq n$  at p if there exist parametrizations  $\mathbf{x}(u,v)$  and  $\tilde{\mathbf{x}}(u,v)$  in p of S and  $\bar{S}$  such that the partial derivatives of  $\mathbf{x}$  and  $\tilde{\mathbf{x}}(u,v)$  agree up to order n.

a. Let  $\psi: \mathbb{R}^3 \to \mathbb{R}^3$  be a diffeomorphism. Then for any partial derivative operator  $\partial_I$  of order less than n on u-v space. Then

$$\partial_I \psi(\mathbf{x}) = J_{\psi}(\mathbf{x}) \partial_I \mathbf{x} = J_{\psi}(\tilde{\mathbf{x}}) \partial_I \tilde{\mathbf{x}} = \partial_I \psi(\tilde{\mathbf{x}}),$$

where  $J\psi(\cdot)$  is the Jacobian of  $\psi$ . This shows that the notion of contact is invariant by diffeomorphisms.

b. It is easy to see that the contact of order  $\geq 1$  implies that the two surfaces are tangent. For the converse, we suppose S and  $\bar{S}$  are tangent at p with parametrizations  $\mathbf{x}(\mathbf{u}, \mathbf{v})$  and  $\tilde{\mathbf{x}}(u, v)$  respectively. Then at the point p,  $\tilde{\mathbf{x}}_u$ ,  $\tilde{\mathbf{x}}_v \in T_{\mathbf{x}}(p)$  we can write

$$\tilde{\mathbf{x}}_u = a_1 \mathbf{x}_u + a_2 \mathbf{x}_v, 
\tilde{\mathbf{x}}_v = b_1 \mathbf{x}_u + b_2 \mathbf{x}_v.$$

Note that since  $\tilde{\mathbf{x}}_u, \tilde{\mathbf{x}}_v$  are linearly independent, we have  $a_1b_2 - a_2b_1 \neq 0$ . Now let  $w = \frac{b_2u - a_2v}{a_1b_2 - a_2b_1}$ ,  $l = \frac{b_1u - a_1v}{a_2b_1 - a_1b_2}$  and  $\mathbf{y}(w, l) = \tilde{\mathbf{x}}(u, v)$ . Then

$$\mathbf{y}_{w} = \frac{b_{2}}{a_{1}b_{2} - a_{2}b_{1}} \tilde{\mathbf{x}}_{u} - \frac{a_{2}}{a_{1}b_{2} - a_{2}b_{1}} \tilde{\mathbf{x}}_{v} = \mathbf{x}_{u},$$

$$\mathbf{y}_{l} = \frac{b_{1}}{a_{2}b_{1} - a_{1}b_{2}} \tilde{\mathbf{x}}_{u} - \frac{a_{1}}{a_{2}b_{1} - a_{1}b_{2}} \tilde{\mathbf{x}}_{v} = \mathbf{x}_{v}.$$

This shows that S and  $\bar{S}$  have contact of order  $\geq 1$  at p.

#### Question 15

Give an example of a surface which has an isolated parabolic point p (that is, no other parabolic point is contained in some neighborhood of p).

Solution. Consider the graph  $(x, y, xy^2)$ . Let  $h(x, y) = xy^2$ . Then we have

$$K = \frac{h_{xx}h_{yy} - (h_{xy})^2}{(1 + h_x^2 + h_y^2)^2} = \frac{-2y}{(1 + y^4 + 4x^2y^2)^2},$$

$$e = \frac{h_{xx}}{(1 + h_x^2 + h_y^2)^{1/2}} = 0,$$

$$f = \frac{h_{xy}}{(1 + h_x^2 + h_y^2)^{1/2}} = \frac{2y}{(1 + h_x^2 + h_y^2)^{1/2}},$$

$$g = \frac{h_{yy}}{(1 + h_x^2 + h_y^2)^{1/2}} = \frac{2}{(1 + h_x^2 + h_y^2)^{1/2}}.$$

Then K = 0 only at (0,0,0), at which f and g are nonzero. This shows that the graph has an isolated parabolic point.

## Question 19

Obtain the asymptotic curves of the one-sheeted hyperboloid  $x^2 + y^2 - z^2 = 1$ . Solution. Note that the hyperboloid is a surface of revolution parametrized by

$$\mathbf{x}(u,v) = (\phi(v)\cos u, \phi(v)\sin u, \psi(v)),$$

where  $\phi(v) = \cosh v$ ,  $\psi(v) = \sinh v$  and  $u \in (0, 2\pi)$ . Then

$$e = -\phi \psi' = -\cosh^2(v),$$
  
 $f = 0,$   
 $g = \psi' \phi'' - \psi'' \phi' = \cosh^2(v) - \sinh^2(v) = 1.$ 

Then solving  $e(u')^2 + 2fu'v' + g(v')^2 = 0$ , we have

$$v' = u' \cosh(v)$$
 or  $v' = -u' \cosh(v)$ .

Solving the ODE, we have

$$u(t) = \pm \tan^{-1}(\sinh v(t)) + C, \qquad C \in \mathbb{R}$$

Hence, the asymptotic curves will be the trace of  $\gamma_C(v) = (\pm \tan^{-1}(\sinh v) + C, v), v \in R$ . They are

$$\alpha_C(v) = \mathbf{x}(\tan^{-1}(\sinh v) + C, v)$$

or

$$\beta_C(v) = \mathbf{x}(-\tan^{-1}(\sinh v) + C, v)$$

#### Question 21

Let S be a surface with orientation N. Let  $V \subset S$  be an open set in S and let  $f: V \subset S \to R$  be any nowhere-zero differentiable function in V. Let  $v_1$  and  $v_2$  be two differentiable (tangent) vector fields in V such that at each point of V,  $v_1$  and  $v_2$  are orthonormal and  $v_1 \wedge v_2 = N$ .

a. Prove that the Gaussian curvature K of V is given by

$$K = \frac{\langle df N(v_1) \wedge df N(v_2), fN \rangle}{f^3}.$$

b. Apply the above result to show that iff is the restriction of

$$\sqrt{\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}}$$

to the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$$

then the Gaussian curvature of the ellipsoid is

$$K = \frac{1}{a^2 b^2 c^2} \frac{1}{f^4}.$$

Solution. Since f is a smooth function on  $V = \mathbf{x}(u, v)$ , if  $\alpha'(0) = v_i = \frac{d}{dt}\mathbf{x}(\beta(t))|_{t=0}$ , we have

$$df N(v_i) = \frac{d}{dt} f(\alpha(t)) N(\alpha(t))$$

$$= (\frac{d}{dt} f(\alpha(t))) N(\alpha(t))|_{t=0} + f(\alpha(t)) \frac{d}{dt} N(\alpha(t))|_{t=0}$$

$$= (\nabla (f \circ \mathbf{x}) \cdot \beta'(0)) N + f dN(v_i).$$

Hence,

$$df N(v_1) \wedge df N(v_2) = (C_1 N + f dN(v_1)) \wedge (C_2 N + f dN(v_2))$$

$$= C_1 N \wedge f dN(v_2) - C_2 N \wedge f dN(v_1) + f^2 (dN(v_1) \wedge dN(v_2))$$

$$= C_1 N \wedge f dN(v_2) - C_2 N \wedge f dN(v_1) + f^2 \det(dN)(v_1 \wedge v_2)$$

$$= C_1 N \wedge f dN(v_2) - C_2 N \wedge f dN(v_1) + f^2 \det(dN)N.$$

Therefore.

$$dfN(v_1) \wedge dfN(v_2) \cdot fN = C_1N \wedge fdN(v_2) \cdot fN - C_2N \wedge fdN(v_1) \cdot fN + f^2 \det(dN)N \cdot fN$$
$$= f^3KN \cdot N = f^3K.$$

Thus

$$\frac{dfN(v_1) \wedge dfN(v_2) \cdot fN}{f^3} = K.$$

b. We know that

$$N(x, y, z) = \frac{\left(\frac{2x}{a^2}, \frac{2y}{b^2}, \frac{2z}{c^2}\right)}{\left|\left(\frac{2x}{a^2}, \frac{2y}{b^2}, \frac{2z}{c^2}\right)\right|}$$

$$= \frac{\left(\frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2}\right)}{\left|\left(\frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2}\right)\right|}$$

$$= \frac{\left(\frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2}\right)}{f(x, y, z)}.$$

Therefore,  $fN = (\frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2})$ . Then

$$\begin{split} \frac{d}{dt}fN(\alpha(t)) &= (\frac{x'(t)}{a^2}, \frac{y'(t)}{b^2}, \frac{z'(t)}{c^2}) \\ &= \begin{pmatrix} a^{-2} & \\ & b^{-2} \\ & & c^{-2} \end{pmatrix} \alpha'(t). \end{split}$$

Hence, 
$$df N(v_i) = \begin{pmatrix} a^{-2} & & \\ & b^{-2} & \\ & & c^{-2} \end{pmatrix} v_i$$
 and thus

$$K = \frac{df N(v_1) \wedge df N(v_2) \cdot fN}{f^3}$$

$$= \det(df N) \frac{(df N^{-1})^T (v_1 \wedge v_2) \cdot fN}{f^3}$$

$$= (abc)^{-2} \frac{(df N^{-1}) N \cdot fN}{f^3}$$

$$= (abc)^{-2} \frac{1}{f^3} \begin{pmatrix} a^2 \\ b^2 \\ c^2 \end{pmatrix} \frac{(\frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2})}{f(x, y, z)} \cdot (\frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2})$$

$$= (abc)^{-2} \frac{1}{f^3} \frac{(x, y, z)}{f} \cdot (\frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2})$$

$$= \frac{1}{a^2 b^2 c^2} \frac{1}{f^4}$$