Лекция 9

Линейная регрессия с точки зрения МО. Задача классификации

Курс: Введение в DS на УБ и МиРА (весна, 2022)

Преподаватель: Владимир Омелюсик

30 мая 2022 г.

В предыдущих сериях

- Тестирование гипотез в линейной регрессии.
- Основные понятия машинного обучения.
- Виды задач машинного обучения.

Линейная регрессия

- Всё то же самое, что обсуждали до этого.
- Важно только качество предсказаний.
- Проблемы с обучением по формулам:

- Если матрица (X^TX) необратима, то будут проблемы с вычислениями.
- Произведение матриц долгая операция.

Обучение: градиентный спуск

$$\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = \int_{x}^{x} (x_0)$$

$$\chi_0 - 3 \kappa$$
 experience u ecru $f_2(\chi_0)$ cyazect. To $f_2(\chi_0) = 0$

f'(n.) nokayork. Hanpaki. Hauckop. kapporem.

 \Rightarrow go a yord. Sortpee been b $\operatorname{Homp.} - f_{z}'(a_{z})$

Ocmanabs., ecu $f'_x(x_i) = 0$

Обучение: градиентный спуск

• В многомерном случае рассчитываем градиент:

$$\nabla_x f(x) = (\frac{df}{dx_1}, \dots, \frac{df}{dx_d})$$
 - yraguerm

• Например, градиент MSE:

$$\nabla_{\beta} MSE = \underbrace{\frac{2}{N} X^{T} (Xw - y)}_{\bullet}$$

• Градиентный спуск для обучения:

Алгоритм градиентного спуска

- 1. Выбираем начальное приближени β_0 .
- 2. Повторяем

$$\widehat{\beta}_{t+1} = \widehat{\beta}_t - \alpha \nabla_{\beta} MSE(\widehat{\beta}_t),$$

3. Останавливаемся, если

$$\|\hat{\beta}_t - \hat{\beta}_{t-1}\|_2 \leqslant \varepsilon$$

Проблема градиентного спуска

- Градиентный спуск находит только локальные минимумы.
- Решение: мультистарт

Длина шага

- Если сделать слишком большой, можно «перепрыгнуть» минимум.
- Гиперпараметр, нужно подбирать.

Обобщающая способность модели

- Обобщающая способность способность модели давать корректные предсказания на новых данных, не участвовавших при обучении.
- Недообучение ситуация, когда модели не удалось правильно «запомнить» зависимости в данных. В этом случае качество будет низким как на обучающей выборке, так и на тестовой.
- Переобучение ситуация, когда модель идеально «запомнила» свойства обучающей выборки, но не общие зависимости в ней. В этом случае качество будет высоким на обучающей выборке, но низким на новых данных.

Обобщающая способность модели

Переобучение в линейной регрессии

• Наблюдение: большие веса могут свидетельствовать о переобучении.

$$\hat{y}_i = 0.2 + 1495.23x_i + \dots,$$

если x_i — вес человека в кг, а y_i — рост человека в см — странно.

• Идея – штрафовать большие веса.

Регуляризация

• Добавим к функции потерь регуляризатор. Например,

• Новая функция потерь:

$$\underbrace{\|y-X\beta\|_2^2 + \lambda \|\beta\|_2^2}_{\text{регул.}},$$
 где λ – коэффициент регуляризации.

- Запускаем градиентный спуск на новой функции потерь.
- Важно не включать в регуляризатор 60.

Метрики качества на тестовой выборке

Всё те же, что были для статистики: MSE, MAE, R^2 , . . .

Метод k ближайших соседей

- Дано: (X) и (y.)
- Решаем задачу многоклассовой классификации: каждое наблюдение может относиться к одному из K классов:

 $y_i \in \{1, 2, \dots, K\}$ upignos

Гипотеза компактности

У «похожих» друг на друга объектов будут «похожие» ответы.

• Как определить похожесть? Для числовых признаков, например, так: $A(x_1, x_2) = \sqrt{(3-1)^2 + (4-2)^2 + (5-3)^2}$

$$\chi_1$$
 3 4 5

$$d(x_1, x_2) = \sqrt{\sum_{j=1}^{k} (x_1^j - x_2^j)^2 - \text{ebunyalo}}$$

Метод k ближайших соседей

- 1. Обучение. В kNN отсутствует. На этапе обучения происходит запоминание обучающей выборки X, y.
- 2. Предсказание.
 - 2.1 Пусть нужно сделать предсказание для нового объекта x_i . Отсортируем объекты обучающей выборки по расстоянию до этого объекта.

$$d(x_i,x_{(1)})\leqslant d(x_i,x_{(2)}\leqslant\ldots$$

2.2 Предсказываем самый популярный класс среди k ближайших соседей.

$$\hat{y}_i = \arg\max_{C} \sum_{i=1}^{k} [y_{(i)} = C]$$

Пример: kNN

Расстояния

- Числовые признаки.
 - Евклидово расстояние.

$$d(x_1, x_2) = \sqrt{\sum_{j=1}^k (x_1^j - x_2^j)^2}$$

• Манхэттэнское расстояние.

$$d(x_1, x_2) = \sum_{j=1}^k |x_1^j - x_2^j|$$

- Категориальные признаки.
 - Считающее расстояние.

$$d(x_1, x_2) = \sum_{j=1}^{k} [x_1^j \neq x_2^j]$$

$$d(x_1, x_2) = 0 + 1 + 0$$

kNN: свойства

(1)
$$\alpha_j := \alpha_j - mean(\alpha_j)$$
 (2) $\alpha_j := \alpha_j - min(\alpha_j)$

$$\frac{1}{s+d(\alpha_j)}$$

$$max(\alpha_j)$$

- Простой метод, основанный на расчётах расстояний.
- ullet Гиперпараметры: число соседей k и функция расстояния.
- Проблема: поиск соседей может занимать долгое время.