Vetorização: Decomposição LU

Flávio Henrique Lopes Barbosa

Jaysa Keylla Siqueira Barbosa

José Augusto Agripino de Oliveira

Decomposição LU Lower Upper

Um dos motivos para introduzir a decomposição LU é que ela fornece uma maneira eficiente de calcular a matriz inversa, a qual tem muitas aplicações na engenharia; ela também fornece um meio de avaliar o condicionamento do sistema.

A decomposição pode ser dividida em dois passos:

- 1 Passo de decomposição: a matriz **A** é fatorada em duas matrizes triangulares, uma inferior L com elementos da diagonal principal iguais a 1, e uma superior **U**, onde, realizando a multiplicação **L×U**, obtemos a matriz **A**.
- 2 Resolução do sistema: **L** e **U** são usadas para determinar a solução do sistema, **x**, através do processo: $\mathbf{A}\mathbf{x} = \mathbf{b}$

Se A = LU, então LUx = y. Defina um vetor de incógnitas auxiliar, y:

Ou seja, Ux = y. Logo, Ly = b.

Observe que no sistema acima, **L** é uma matriz triangular inferior, **b** é a matriz de termos independentes do sistema original e **y** é o vetor de incógnitas auxiliar. Resolvendo **Ly=b** usando substituição progressiva, podemos usar a relação **Ux=y** para encontrar xx por substituição regressiva, já que **U** é triangular superior.

$$LU = \begin{pmatrix} 1 & & & & & \\ \ell_{21} & 1 & & & \bigcirc \\ \ell_{31} & \ell_{32} & 1 & & \\ & \ddots & \ddots & \ddots & \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & \dots & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ & u_{22} & u_{23} & \dots & u_{2n} \\ & & & u_{33} & \dots & u_{3n} \\ & & & \ddots & \vdots \\ & & & & u_{nn} \end{pmatrix}$$

O GCC é um compilador com recursos avançados e com as flags de otimização, o programador pode indicar ao compilador para que procure por laços e otimize-os .Tais recursos foram aplicados ao código de decomposição LU para matrizes.

Resultados

- -Matriz de ordem 4000
- -Matriz de ordem 5657
- -Matriz de ordem 8000
- -Matriz de ordem 11314
- -Matriz de ordem 16000

Comando utilizados

- 1. \$ gcc -pg -O3 -ftree-vectorize -fopt-info-vec-missed -fopt-info-vec-optimized decomposicaoLU.c -o decomposicaoLU
- 2. \$./decomposicaoLU
- 3. \$ gprof decomposicaoLU gmon.out > orden_n.txt
- 4. \$ gprof decomposicaoLU | gprof2dot > out_n.dot

Each s	ample count	s as 0.01	seconds.			
%	cumulative	self		self	total	
time	seconds	seconds	calls	s/call	s/call	name
98.71	72.73	72.73	7998000	0.00	0.00	calculaMatrizes
1.21	73.62	0.89	1	0.89	73.62	gauss
0.08	73.68	0.06	1	0.06	0.06	preencheMatriz

Each s	ample counts	s as 0.01	seconds.	(
%	cumulative	self		self	total	
time	seconds	seconds	calls	us/call	us/call	name
94.97	9.41	9.41	7998000	1.18	1.18	calculaMatrizes
5.19	9.93	0.51				gauss
0.61	9.99	0.06				preencheMatriz

Each s	ample count	s as 0.03	l seconds.			
%	cumulative	self		self	total	
time	seconds	seconds	calls	s/call	s/call	name
99.09	213.03	213.03	15997996	0.00	0.00	calculaMatrizes
0.87	214.90	1.87	1	1.87	214.90	gauss
0.03	214.97	0.07	1	0.07	0.07	preencheMatriz
0.00	214.98	0.01				_init

Each s	ample counts	as 0.01	seconds.		MATERIAL STREET	
%	cumulative	self		self	total	10 10000
time	seconds	seconds	calls	us/call	us/call	name
95.57	21.96	21.96	15997996	1.37	1.37	calculaMatrizes
4.78	23.06	1.10				gauss
0.39	23.15	0.09				preencheMatriz

Each s	ample count	s as 0.03	l seconds.			
%	cumulative	self		self	total	
time	seconds	seconds	calls	s/call	s/call	name
99.32	593.13	593.13	31996000	0.00	0.00	calculaMatrizes
0.64	596.93	3.80	1	3.80	596.93	gauss
0.04	597.17	0.24	1	0.24	0.24	preencheMatriz
0.01	597.20	0.03				_init

Each sa	mple count	s as 0.01	l seconds.			
% с	umulative	self		self	total	
time	seconds	seconds	calls	us/call	us/call	name
96.65	67.89	67.89	31996000	2.12	2.12	calculaMatrizes
3.80	70.56	2.67				gauss
0.32	70.79	0.22				preencheMatriz

Each s	sample count	s as 0.01	l seconds.			
%	cumulative	self		self	total	
time	seconds	seconds	calls	Ks/call	Ks/call	name
99.54	1679.62	1679.62	63997641	0.00	0.00	calculaMatrizes
0.44	1687.05	7.43	1	0.01	1.69	gauss
0.02	1687.33	0.28	1	0.00	0.00	preencheMatriz
0.00	1687.37	0.04				_init

Each s	sample count	s as 0.01	seconds.	(
%	cumulative	self		self	total	
time	seconds	seconds	calls	us/call	us/call	name
97.83	192.50	192.50	63997641	3.01	3.01	calculaMatrizes
2.69	197.79	5.29				gauss
0.22	198.21	0.42				preencheMatriz
0.01	198.22	0.01				libc_csu_init


```
Each sample counts as 0.01 seconds.
     cumulative
                 self
                                   self
                                           total
                           calls Ks/call
       seconds
                 seconds
                                          Ks/call name
time
                                     0.00
 99.37
       2706.73 2706.73 127992000
                                              0.00
                                                   calculaMatrizes
       2723.35
 0.61
                  16.62
                                     0.02
                                             2.72 gauss
 0.02 2723.78
                 0.43
                                     0.00
                                             0.00
                                                   preencheMatriz
 0.00
        2723.84
                   0.06
                                                   init
```



```
Each sample counts as 0.01 seconds.
     cumulative
                  self
                                    self
                                            total
time
       seconds
                 seconds
                            calls us/call
                                           us/call
98.58
         560.87
                  560.87 127992000
                                       4.38
                                               4.38 calculaMatrizes
 2.06
         572.60
                 11.73
                                                     gauss
 0.12
         573.31
                   0.71
                                                     preencheMatriz
```


gauss

99.88%

(2.05%)

97.83%
L27992000×

calculaMatrizes
97.83%
(97.83%)
127992000×

Matriz de ordem 16000

Conclusão

Os resultados obtidos com a auto-vetorização foram muito melhores que os resultados sem a auto-vetorização.

O gargalo, que é a função calculaMatrizes, teve um tempo muito menor de execução com a auto-vetorização.

Conforme a mensagem explicitada pelo GCC após as flags de auto-vetorização, faltaram laços de repetição para serem vetorizados.

- Laços das linhas 20 e 21;
- Laços das linhas 48 e 50.

Sendo assim, é necessário modificar o código para que seja possível a vetorização.