

Программирование в среде R

Шевцов Василий Викторович, директор ДИТ РУДН, shevtsov_vv@rudn.university

Корреляция и линейная регрессия

Определения

Корреляция (от лат. correlatio «соотношение, взаимосвязь»), или корреляционная зависимость, — статистическая взаимосвязь двух или более случайных величин.

Математической мерой корреляции двух случайных величин служит корреляционное отношение либо коэффициент корреляции R или r

cor.test()

p-value<<0.05 Отклоняем нулевую гипотезу об отсутствии взаимосвязи

method

a character string indicating which correlation coefficient is to be used for the test. One of "pearson", "kendall", or "spearman", can be abbreviated.

cor.test()

```
> f1 <- cor.test(x = df$mpq, y = df$hp)
> str(f1)
List of 9
 $ statistic : Named num -6.74
 ..- attr(*, "names") = chr "t"
 $ parameter : Named int 30
  ..- attr(*, "names") = chr "df"
 $ p.value : num 1.79e-07
 $ estimate : Named num -0.776
 ..- attr(*, "names") = chr "cor"
 $ null.value : Named num 0
  ..- attr(*, "names") = chr "correlation"
 $ alternative: chr "two.sided"
 $ method : chr "Pearson's product-moment correlation"
 $ data.name : chr "df$mpg and df$hp"
 $ conf.int : num [1:2] -0.885 -0.586
  \dots attr(*, "conf.level") = num 0.95
 - attr(*, "class") = chr "htest"
```


Построение графика

```
> ggplot(df, aes(x=mpg,y=hp))+
+ geom_point(size=3)
```


На графике взаимосвязь выражена слабо

Группировка

```
> ggplot(df, aes(x=mpg,y=hp,color=factor(cyl)))+
+ geom_point(size=3)
```


. pairs()

> df2 <- df[,c(1,3:7)]

^	mpg [‡]	disp [‡]	hp [‡]	drat [‡]	wt [‡]	qsec [‡]
Mazda RX4	21.0	160.0	110	3.90	2.620	16.46
Mazda RX4 Wag	21.0	160.0	110	3.90	2.875	17.02
Datsun 710	22.8	108.0	93	3.85	2.320	18.61
Hornet 4 Drive	21.4	258.0	110	3.08	3.215	19.44

> pairs(df2)

Попарный анализ

```
> cor(df2)
                       disp hp drat wt
            mpg
                                                                        qsec
mpg 1.0000000 -0.8475514 -0.7761684 0.68117191 -0.8676594 0.41868403
                 1.0000000 0.7909486 -0.71021393 0.8879799 -0.43369788
disp -0.8475514
                  0.7909486 1.0000000 -0.44875912 0.6587479 -0.70822339
hp
     -0.7761684
drat 0.6811719 -0.7102139 -0.4487591 1.00000000 -0.7124406
                                                                 0.09120476
  -0.8676594 0.8879799 0.6587479 -0.71244065 1.0000000 -0.17471588
wt.
     0.4186840 -0.4336979 -0.7082234 0.09120476 -0.1747159 1.00000000
gsec
> library(psych)
> f3 <- corr.test(df2)
> f3$r
                   disp
                              hp
                                        drat
          mpg
                                                    wt
                                                             gsec
mpg 1.0000000 -0.8475514 -0.7761684 0.68117191 -0.8676594
disp -0.8475514 1.0000000 0.7909486 -0.71021393 0.8879799 -0.43369788
hp -0.7761684 0.7909486 1.0000000 -0.44875912 0.6587479 -0.70822339
drat 0.6811719 -0.7102139 -0.4487591
                                  1.00000000 -0.7124406
wt -0.8676594 0.8879799 0.6587479 -0.71244065
                                             1.0000000 -0.17471588
gsec 0.4186840 -0.4336979 -0.7082234 0.09120476 -0.1747159
> f3$p
                                              drat
                       disp
                                    hp
            mpg
mpg 0.000000e+00 1.219442e-08 1.966619e-06 1.243368e-04 1.811542e-09 0.0525761455
disp 9.380327e-10 0.000000e+00 8.571214e-07 4.784260e-05 1.833479e-10 0.0525761455
    1.787835e-07 7.142679e-08 0.000000e+00 4.994386e-02 2.487496e-04 0.0000478426
drat 1.776240e-05 5.282022e-06 9.988772e-03 0.000000e+00 4.784260e-05 0.6777365683
    1.293959e-10 1.222320e-11 4.145827e-05 4.784260e-06 0.000000e+00 0.6777365683
```

qsec 1.708199e-02 1.314404e-02 5.766253e-06 6.195826e-01 3.388683e-01 0.0000000000

Im()

```
> f4 <- lm(mpg \sim hp, df2)
> summary(f4)
Call:
lm(formula = mpq \sim hp, data = df2)
Residuals:
   Min 10 Median 30 Max
-5.7121 -2.1122 -0.8854 1.5819 8.2360
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.09886 1.63392 18.421 < 2e-16 ***
        -0.06823 0.01012 -6.742 1.79e-07 ***
hp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 3.863 on 30 degrees of freedom
Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892
F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07
```


Линия тренда

```
> ggplot(df, aes(x=hp,y=mpg))+
+ geom_point(size=3)+
+ geom_smooth()
```

100

```
> ggplot(df, aes(x=hp,y=mpg))+
+ geom_point(size=3)+
+ geom_smooth(method = lm)
```


300

200

hp

10 -

```
> ggplot(df, aes(x=hp,y=mpg,color=factor(am)))+
```

- + geom_point(size=3)+
- + geom smooth(method = lm)


```
> ggplot(df, aes(x=hp,y=mpg,color=factor(am)))+
```

- + geom_point(size=3)+
- + geom_smooth(method = lm)+
- + facet_grid(.~cyl)

Предсказание значений

```
> df_lm <- lm(mpg ~ hp, df2)
> df_result <- data.frame(mpg=df2$mpg,fitted <- df_lm$fitted.values)</pre>
```

•	mpg [‡]	fitteddf_lm.fitted.values
Mazda RX4	21.0	22.593750
Mazda RX4 Wag	21.0	22.593750
Datsun 710	22.8	23.753631
Hornet 4 Drive	21.4	22.593750
Hornet Sportabout	18.7	18.158912
Valiant	18.1	22.934891
Duster 360	14.3	13.382932
Merc 240D	24.4	25.868707
Merc 230	22.8	23.617174
Merc 280	19.2	21.706782
Merc 280C	17.8	21.706782
Merc 450SE	16.4	17.817770
Merc 450SL	17.3	17.817770
Merc 450SLC	15.2	17.817770
Cadillac Fleetwood	10.4	16.112064

Showing 1 to 17 of 32 entries, 2 total columns

	- data.frame df lm,df new		,150,200,3	300))
1	2	3	4	
23.276033	19.864619 1	6.453205	9.630377	

^	hp [‡]
1	100
2	150
3	200
4	300

> df_new\$mpg_new <- predict(df_lm,df_new)</pre>

^	hp [‡]	mpg_new [‡]
1	100	23.276033
2	150	19.864619
3	200	16.453205
4	300	9.630377

Линейная модель + номинативная переменная

```
> f lm <- lm(mpg \sim cyl, df)
> summary(f lm)
Call:
lm(formula = mpq \sim cyl, data = df)
Residuals:
   Min 1Q Median 3Q Max
-4.9814 -2.1185 0.2217 1.0717 7.5186
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.8846 2.0738 18.27 < 2e-16 ***
cyl
     -2.8758 0.3224 -8.92 6.11e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 3.206 on 30 degrees of freedom
Multiple R-squared: 0.7262, Adjusted R-squared: 0.7171
F-statistic: 79.56 on 1 and 30 DF, p-value: 6.113e-10
```


Линейная модель + номинативная переменная

Линейная модель + номинативная переменная

```
> df$cyl <- factor(df$cyl,labels=c("4cyl","6cyl","8cyl"))</pre>
> f lm <- lm(mpg \sim cyl, df)
> summary(f lm)
                                                   Значение intercept – в
Call:
                                                   данном случае
lm(formula = mpq \sim cyl, data = df)
                                                   среднеарифметическое
Residuals:
                                                   в группе базового
       10 Median 30
   Min
                                Max
-5.2636 -1.8357 0.0286 1.3893 7.2364
                                                   уровня, далее идут
                                                   значения уменьшения
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 26.6636 0.9718 27.437 < 2e-16 ***
cyl6cyl -6.9208 1.5583 -4.441 0.000119 ***
cyl8cyl -11.5636 1.2986 -8.905 8.57e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 3.223 on 29 degrees of freedom
Multiple R-squared: 0.7325, Adjusted R-squared: 0.714
F-statistic: 39.7 on 2 and 29 DF, p-value: 4.979e-09
                                          > aggregate(mpg ~ cyl, df, mean)
                                             cvl
                                                        mpq
                                          1 4cyl 26.66364
                                          2 6cyl 19.74286
```


3 8cyl 15.10000

Множественная регрессия

swiss

> df <- swiss
> View(df)

^	Fertility [‡]	Agriculture [‡]	Examination [‡]	Education [‡]	Catholic [‡]	Infant.Mortality
Courtelary	80.2	17.0	15	12	9.96	22.2
Delemont	83.1	45.1	6	9	84.84	22.2
Franches-Mnt	92.5	39.7	5	5	93.40	20.2
Moutier	85.8	36.5	12	7	33.77	20.3
Neuveville	76.9	43.5	17	15	5.16	20.6
Porrentruy	76.1	35.3	9	7	90.57	26.6
Broye	83.8	70.2	16	7	92.85	23.6
Glane	92.4	67.8	14	8	97.16	24.9

- Данные 1888-го года по регионам,
- Fertility это количество детей до пяти лет, делённое на количество женщин до 50-ти лет и отмасштабированное, на 1000 домноженное;
- Agriculture это процент мужчин, занятых в сельском хозяйстве;
- Examination процент тех, кто получил высокий результат оценки на призывном пункте
- Catholic процент католиков (?)
- Infant.Mortality Смертность младенцев

swiss

```
> str(df)
'data.frame': 47 obs. of 6 variables:
 $ Fertility
                          80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 ...
 $ Agriculture
                                       36.5 43.5 35.3 70.2 67.8 53.3 45.2 ...
                   : num
 $ Examination
                   : int
                                       9 16 14 12 16 ...
 $ Education
                   : int
 $ Catholic
                   : num
                         9.96 84.84 93.4 33.77 5.16 ...
 $ Infant.Mortality: num 22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4 ...
```

> hist(df\$Fertility)

swiss

```
> f1 <- lm(Fertility ~ Examination + Catholic, data = df)
> summary(f1)
Call:
lm(formula = Fertility ~ Examination + Catholic, data = df)
Residuals:
    Min 10 Median 30
                                      Max
-26.2643 -5.6510 -0.0017 7.7268 17.7103
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.03566 4.97730 16.683 < 2e-16 ***
Examination -0.88619 0.21736 -4.077 0.000188 ***
Catholic 0.04179 0.04158 1.005 0.320322
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 9.641 on 44 degrees of freedom
Multiple R-squared: 0.4302, Adjusted R-squared: 0.4043
F-statistic: 16.61 on 2 and 44 DF, p-value: 4.218e-06
```

Чем выше значение оценки физической подготовки, тем ниже рождаемость

confint()

```
> f1 <- lm(Fertility ~ Examination * Catholic, data = df)
> summary(f1)
Call:
lm(formula = Fertility ~ Examination * Catholic, data = df)
Residuals:
             10 Median
    Min
                           30
                                      Max
-25.5446 -5.3640 0.5461 7.5383 18.5540
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                   80.957567 6.471732 12.509 6.37e-16 ***
(Intercept)
Examination
                   -0.765480 0.323031 -2.370 0.0224 *
                    0.083823 0.092648 0.905 0.3706
Catholic
Examination: Catholic -0.003337 0.006559 -0.509 0.6135
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 9.723 on 43 degrees of freedom
Multiple R-squared: 0.4337, Adjusted R-squared: 0.3941
F-statistic: 10.98 on 3 and 43 DF, p-value: 1.77e-05
```

> confint(f1)

2.5 % 97.5 % (Intercept) 67.90607532 94.009058379 Examination -1.41693405 -0.114025080 Catholic -0.10301954 0.270665084 Examination:Catholic -0.01656482 0.009890962

Расчет доверительных интервалов для оценки коэффициентов: если границы доверительных интервалов пересекают 0, то они не предсказывают зависимую переменную

Добавить категориальную переменную

Histogram of df\$Catholic


```
> df$religious <- ifelse(df$Catholic>60,"Lots","Few")
> df$religious <- factor(df$religious)</pre>
> str(df)
'data.frame': 47 obs. of 7 variables:
 $ Fertility
                   : num 80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 ...
 $ Agriculture
                   : num 17 45.1 39.7 36.5 43.5 35.3 70.2 67.8 53.3 45.2 ...
 $ Examination
                   : int 15 6 5 12 17
                                       9 16 14 12 16 ...
 $ Education
                   : int 12 9 5 7 15 7 7 8 7 13 ...
 $ Catholic
                         9.96 84.84 93.4 33.77 5.16 ...
                   : num
  Infant.Mortality: num 22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4 ...
 $ religious
                   : Factor w/ 2 levels "Few", "Lots": 1 2 2 1 1 2 2 2 2 2 ...
```



```
> f1 <- lm(Fertility ~ Examination + religious, data = df)
> summary(f1)
Call:
lm(formula = Fertility ~ Examination + religious, data = df)
Residuals:
    Min 10 Median 30 Max
-22.9026 -4.8974 0.1926 7.1239 15.4542
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 78.5753 4.7701 16.472 <2e-16 ***
Examination -0.6858 0.2222 -3.086 0.0035 **
religiousLots 8.4469 3.7016 2.282 0.0274 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.221 on 44 degrees of freedom
Multiple R-squared: 0.4788, Adjusted R-squared: 0.4552
F-statistic: 20.21 on 2 and 44 DF, p-value: 5.934e-07
```



```
> f1 <- lm(Fertility ~ Examination * religious, data = df)
> summary(f1)
Call:
lm(formula = Fertility ~ Examination * religious, data = df)
Residuals:
    Min 10 Median 30 Max
-23.6289 -4.2417 0.0795 6.4508 14.0243
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      82.1160 5.0736 16.185 < 2e-16 ***
Examination
                       -0.8617 0.2389 -3.607 0.000801 ***
                       -2.9615 7.4096 -0.400 0.691366
religiousLots
Examination:religiousLots 1.0096 0.5723 1.764 0.084839 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 9.007 on 43 degrees of freedom
Multiple R-squared: 0.514, Adjusted R-squared: 0.4801
F-statistic: 15.16 on 3 and 43 DF, p-value: 7.128e-07
```



```
> f1 <- lm(Fertility ~ religious * Examination, data = df)</pre>
> summary(f1)
Call:
lm(formula = Fertility ~ religious * Examination, data = df)
Residuals:
    Min 10 Median 30 Max
-23.6289 -4.2417 0.0795 6.4508 14.0243
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                     82.1160 5.0736 16.185 < 2e-16 ***
(Intercept)
religiousLots
                      -2.9615 7.4096 -0.400 0.691366
                       -0.8617 0.2389 -3.607 0.000801 ***
Examination
religiousLots:Examination 1.0096 0.5723 1.764 0.084839 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 9.007 on 43 degrees of freedom
Multiple R-squared: 0.514, Adjusted R-squared: 0.4801
F-statistic: 15.16 on 3 and 43 DF, p-value: 7.128e-07
```



```
> ggplot(df,aes(x=Examination,y=Fertility,col=religious))+
+ geom_point()
```



```
> ggplot(df,aes(x=Examination,y=Fertility,col=religious))+
+ geom_point()+
+ geom_smooth()
```


- > ggplot(df,aes(x=Examination,y=Fertility,col=religious))+
- + geom point()+
- + geom smooth(method = "lm")

Спасибо за внимание!

Шевцов Василий Викторович

shevtsov_vv@rudn.university +7(903)144-53-57

