

CUDA IS EVOLVING:
THE LATEST DEVELOPER TOOLS ARE
ADAPTING TO KEEP UP

Jackson Marusarz - April 12, 2021

I'M AVAILABLE TO CHAT DURING THIS SESSION

Click on "1:1 Chat," then "Ask the Presenter/Moderator" button to submit your question.

After the session is over, connect with me via attendee chat by searching for my name.

DEVELOPER TOOLS

Debuggers: cuda-gdb, Nsight Visual Studio Edition

Profilers: Nsight Systems, Nsight Compute, CUPTI, NVIDIA Tools eXtension (NVTX)

Correctness Checker: Compute Sanitizer

```
$ compute-sanitizer --leak-check full memcheck_demo
====== COMPUTE-SANITIZER
Mallocing memory
Running unaligned kernel
Ran unaligned kernel: no error
Sync: no error
Running out of bounds kernel
Ran out of bounds kernel: no error
Sync: no error
====== Invalid global write of size 4 bytes
             at 0x60 in memcheck_demo.cu:6:unaligned_kernel(void)
========
             by thread (0,0,0) in block (0,0,0)
_____
             Address 0x400100001 is misaligned
========
```

IDE integrations: Nsight Eclipse Edition
Nsight Visual Studio Edition
Nsight Visual Studio Code Edition

COMPUTE DEBUGGERS

DEBUG GPU KERNELS RUNNING ON DEVICE

Highlights

- Nsight Visual Studio Edition
 - Transitioned to Unified backend (Pascal+)
 - Effort to standardize debuggers
 - Added support for breakpoint "hit count"
 - Added support for display of in-lined functions
 - Implemented "lazy module loading" provides ~3x performance gain for some workloads
- CUDA GDB
 - Upgraded from GDB 8.2 to 8.3.1
 - Added support for display of in-lined functions

COMPUTE SANITIZER

AUTOMATICALLY SCAN FOR BUGS AND MEMORY ISSUES

Highlights

- CUDA graphs support
- Experimental support for NVTX memory API to create custom memory pools
 - Allows use of sanitizer tools when using a custom allocator
 - Support for allocation permissions and allocation naming
- Support for allocation padding
 - Improves off-by-one error detection for contiguous allocations
- CMake 3.19 supports Compute Sanitizer analysis
 - Automatically scan for errors 'ctest -D MemoryCheck'

```
W/m/c/build $ cmake
                         && cmake --build .
  Configuring done
  Generating done
  Build files have been written to: /home/rmaynard/Work/misc/cuda_sanitizer_ctest/build
 2/2] Linking CUDA executable demo
  W/m/c/build $ ctest -D MemoryCheck
  Site: RMAYNARD-DT
  Build name: Linux-unknown
 reate new tag: 20210325-1346 - Experimental
 onfigure project
   Each . represents 1024 bytes of output
   . Size of output: OK
   Each symbol represents 1024 bytes of output.
   '!' represents an error and '*' a warning.
    . Size of output: 0K
  0 Compiler errors
  0 Compiler warnings
 Performing coverage
 Cannot find any coverage files. Ignoring Coverage request.
 lemory check project /home/rmaynard/Work/misc/cuda sanitizer ctest/build
   Start 1: verify
1/1 MemCheck #1: verify ...... Passed 6.77 sec
  0% tests passed, 0 tests failed out of 1
Total Test time (real) = 6.77 sec
  Processing memory checking output:
1/1 MemCheck: #1: verify ...... Defects: 4
 MemCheck log files can be found here: (<#> corresponds to test number)
home/rmaynard/Work/misc/cuda_sanitizer_ctest/build/Testing/Temporary/MemoryChecker.<#>.log/
 Memory checking results:
Invalid __global__ read - 1
 udaErrorLaunchFailure - 3
 ubmit files
  SubmitURL: http://my.cdash.org/submit.php?project=CMakeTutorial
   Uploaded: /home/rmaynard/Work/misc/cuda sanitizer ctest/build/Testing/20210325-1346/Conf
   Uploaded: /home/rmaynard/Work/misc/cuda sanitizer ctest/build/Testing/20210325-1346/Buil
   Uploaded: /home/rmaynard/Work/misc/cuda_sanitizer_ctest/build/Testing/20210325-1346/Dyna
   Uploaded: /home/rmaynard/Work/misc/cuda sanitizer_ctest/build/Testing/20210325-1346/Done
   Submission successful
  W/m/c/build $
```


NSIGHT PROFILING TOOLS WORKFLOW

ITERATIVE OPTIMIZATION FOR COMPUTE AND GRAPHICS

Key Features:

- System-wide application algorithm tuning
 - Multi-process tree support
- Locate optimization opportunities
 - Visualize millions of events on a very fast GUI timeline
 - Or gaps of unused CPU and GPU time
- Balance your workload across multiple CPUs and GPUs
 - CPU algorithms, utilization and thread state GPU streams, kernels, memory transfers, etc
- Command Line, Standalone, IDE Integration

OS: Linux (x86, Power, Arm SBSA, Tegra), Windows, MacOSX (host)

GPUs: Pascal+

Docs/product: https://developer.nvidia.com/nsight-systems

CUDA UNIFIED MEMORY CPU & GPU PAGE FAULT TRACE

FIND PERFORMANCE IMPACTS FROM PAGING

GPU METRICS SAMPLING

Key Features:

- Interactive CUDA API debugging and kernel profiling
- Built-in rules expertise
- Fully customizable data collection and display
- Command Line, Standalone, IDE Integration, Remote Targets

OS: Linux (x86, Power, Tegra, Arm SBSA), Windows, MacOSX (host only)

GPUs: Volta, Turing, Ampere GPUs

Docs/product: https://developer.nvidia.com/nsight-compute

ROOFLINE ANALYSIS

FIND HARDWARE LIMITATIONS FOR CUDA KERNELS

- Graph Performance vs. Arithmetic Intensity
- Identify memory or compute bottlenecks for each kernel
- Built-in "roofs" represent system hardware limitations

PROFILE SERIES (WHAT-IF)

AUTOMATIC PERFORMANCE ANALYSIS OF CONFIGURABLE PARAMETERS

Profile series repeatedly profiles a kernel with a range of configurable parameters to analyze the performance of each combination.

- Number of register per thread
- Shared memory size per block
- Shared memory configuration

NEW NVLINK SECTION

UNDERSTAND THE INTERCONNECT PERFORMANCE

CUPTI

Highlights

New low-overhead GPU PC Sampling APIs (Production CUDA 11.3 GA)

- Collects GPU Program Counter (PC) and Stall reason (if applicable)
- Sampling modes Continuous (concurrent kernels) and Serialized (sequential kernels)
 - Performance Numbers for continuous mode on Volta GPU:
 - Single GPU: <2% for sampling period 11 (2^11 cycles) on CuLaunches, raja-perf, GROMACS
 - 2 GPU: <2% 4 GPU <4% sampling period 15 (GROMACS)
- APIs support offline and runtime correlation of PC samples to CUDA source/GPU assembly
- Volta+ GPUs supported on Linux (x86, ppc64le) and Windows
- HPC Toolkit and LBNL collaboration

Correlation of Graph nodes with Graph and GPU activities

Tracing performance improvements

PC SAMPLING MODES

SERIALIZED KERNELS LIMIT PERFORMANCE

Serialized Mode

PC SAMPLING MODES

CONTINUOUS SAMPLING FOR BETTER REALISTIC PERFORMANCE

Serialized Mode

Grid A

PROCESS SAMPLES

Grid B

Tool Thread GPU

NSIGHT VISUAL STUDIO CODE EDITION

A NEW WAY TO DEVELOP AND DEBUG CUDA

Partnership with Microsoft to enable CUDA as a first-class citizen Visual Studio Code extensions that provide:

- CUDA code syntax highlighting
- CUDA code completion
- Build warning/errors
- Debug CPU & GPU code

https://developer.nvidia.com/nsight-visual-studio-code-edition

HOW WILL I GET NSIGHT VS CODE EDITION?

Ease of discoverability & installation

Options for installation:

- 1. Built-in Visual Studio Code "Marketplace"
- 2. Download VSIX from VS Code "Marketplace" site - manual install

VS CODE DEBUGGING

CALL TO ACTION

- Developer Tools are free and packaged in the 11.3 version of the CUDA Toolkit
 - https://developer.nvidia.com/cuda-downloads
- Most recent versions can also be found in the download center
 - Nsight Systems GPU Metrics are in the latest version here
 - https://developer.nvidia.com/gameworksdownload
- Support is available via:
 - https://forums.developer.nvidia.com/c/development-tools/
- More information at:
 - https://developer.nvidia.com/tools-overview

MORE TO DO @ GTC

GTC Sessions

Performance Tuning CUDA Applications with the Roofline Model [S32062]

Requests, Wavefronts, Sectors Metrics: Understanding and Optimizing Memory-Bound Kernels with Nsight Compute [S32089]

CUDA is Evolving, and the Latest Developer Tools are Adapting to Keep Up [S31747]

Tuning GPU Network and Memory Usage in Apache Spark [31566]

Latest Enhancements to CUDA Debugger IDEs [S31884]

GTC Labs

Optimizing CUDA Machine Learning Codes with Nsight Profiling Tools [T2503]

Debugging and Analyzing Correctness of CUDA Applications [T2504]

