

Grupo: 4094

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CIENCIAS

Álgebra Superior II

1er Examen parcial

Recuerda escribir en tu resolución: Fecha, Nombre y No. de Cuenta

- 1. Sea X un conjunto no vacío. ¿Son grupos los siguientes? Justifica.
 - a) $\mathcal{P}(X)$ con la unión
 - b) $\mathcal{P}(X)$ con la intersección
 - c) \mathbb{Z} con la operación a * b = a + b ab
 - d) \mathbb{Z} con la operación a * b = ab + 1
 - e) \mathbb{Z} con la operación a * b = a + b 1
- 2. Sean $\langle G_1, *_1 \rangle$ y $\langle G_2, *_2 \rangle$ grupos, $G = G_1 \times G_2$ y la operación * definida como

$$(a_1, b_1) * (a_2, b_2) = (a_1 *_1 a_2, b_1 *_2 b_2)$$

iG es grupo? Justifica tu respuesta.

- 3. Sea G tal que todo elemento es su propio inverso. Demuestra que G es abeliano.
- 4. Sea G un grupo, y sean $a, b \in G$ tales que $(ab)^2 = a^2b^2$. Demuestra que G es abeliano.
- 5. Sea G un grupo y sea $a \in G$. El **normalizador** de G es el conjunto:

$$N(a) = \{x \in G \mid xa = ax\}$$

Demuestra que el conjunto N(a) es un subgrupo de G.

Definición. Una función, f entre dos grupos G, H es un homomorfismo si

$$f(a *_G b) = f(a) *_H f(b)$$

es decir, si la función preserva las operaciones respectivas. Un homomorfismo biyectivo, se llama isomorfismo.

6. Sea G un grupo. Demuestra que la función $f:G\to G$ definida por $f(a)=a^2$ es un homomorfismo si y solo si G es abeliano.

1. Sea $A=\mathbb{Z}$ con las operaciones \oplus y \odot definidas como:

$$a \oplus b = a + b - 1$$
 y $a \odot b = a + b - ab$

 $(\mathbb{Z}, \oplus, \odot)$ ¿Es un anillo?, si tu respuesta es afirmativa ¿es conmutativo? ¿tiene elemento unitario?

2. Sea X un conjunto arbitrario pero fijo, y sea $A = \mathcal{P}(X)$ el conjunto potencia de X con las operaciones \oplus y \odot definidas como:

$$V \oplus W = V \cup W - V \cap W$$
 y $V \odot W = V \cap W$

 (A, \oplus, \odot) ¿Es un anillo? (puedes suponer que unión e intersección son asociativas), si tu respuesta es afirmativa ¿es conmutativo? ¿tiene elemento unitario?

3. Sea $A = \mathbb{Z}$ con las operaciones \oplus y \odot definidas como:

$$a \oplus b = a + b - 7$$
 y $a \odot b = a + b - 3ab$

 $(\mathbb{Z}, \oplus, \odot)$ ¿Es un anillo?, si tu respuesta es afirmativa ¿es conmutativo? ¿tiene elemento unitario?

4. Sea A un anillo con elemento unitario. Una **unidad en** A es un elemento que tiene inverso multiplicativo. Demuestra que si a, b son unidades en A, entonces ab también es una unidad en A.