Homework 1

Sample Solution

January 24, 2013

- 1. See repository on github.com.
- 2. See code in sample-solution.rkt.
- 3. (a) Demonstrate that $f(n) = 2n^2 3n + 4 \in O(n^2)$. That is, choose a specific c > 0 and a specific $n_0 > 0$. Then, show that for any possible $n > n_0$, it must be true that $f(n) \le cn^2$.

Solution: Solving for c and n_0 as we go.

$$\begin{array}{rcl} 2n^2-3n+4 & \leq & cn^2 \\ 2n^2-3n+4n & \leq & cn^2 \\ & 2n^2+n & \leq & cn^2 \\ & 2n^2+n^2 & \leq & cn^2 \\ & 2n^2+n^2 & \leq & cn^2 \\ & 3n^2 & \leq & cn^2 \end{array} \text{ because } n \leq n^2 \text{ given } n_0 \geq 1$$

Therefore, the equation holds for c = 3 and $n_0 = 1$.

(b) Demonstrate that $f(n) = 3\sqrt{n} \in O(n)$. That is, choose a specific c > 0 and a specific $n_0 > 0$. Then, show that for any possible $n > n_0$, it must be true that $f(n) \le cn$.

Solution: Solving for c and n_0 as we go.

$$3\sqrt{n} \le cn$$

 $3n \le cn$ because $\sqrt{n} \le n$ if we choose $n_0 \ge 1$
and this is true if we choose $c \ge 3$

Therefore, the equation holds for c = 3 and $n_0 = 1$.

- (c) Demonstrate that $f(n) = \sum_{i=1}^{n} (2i^2 + 3i + 5) \in O(n^3)$. That is, choose a specific c > 0 and a specific $n_0 > 0$. Then, show that for any possible $n > n_0$, it must be true that $f(n) \le cn^3$.
- (d) Demonstrate that $f(n) = \sqrt{n} \notin O(\log_2 n)$. That is, for any possible c > 0 and for any possible $n_0 > 0$, give a formula for some $n > n_0$ and show that n always satisfies $f(n) > c \log_2 n$.