Traitement Vidéo et Applications INF6803

TP1: Segmentation d'image en Superpixels

Objectifs:

- Permettre à l'étudiant de s'initier aux opérations de base de traitement d'images et de vidéos avec Matlab ou openCV;
- Permettre à l'étudiant de se familiariser avec la notion de superpixels en implémentant une méthode de l'état de l'art.

Remise du travail :

— 15 février 2016, avant 12h00 (midi), sur Moodle – voir plan de cours.

Documents à remettre :

- Tous vos fichiers .m (Matlab) ou .cpp/.h (openCV)
- Un rapport avec en-tête dans un document texte (.doc/docx, .odt, .pdf, etc.).

Autres directives :

- Assurez-vous de bien commenter chaque étape de traitement dans votre code.
- Utilisez une en-tête minimale dans tous vos fichiers (noms, matricules...).
- Les travaux s'effectuent seul ou en équipe de deux (veuillez en aviser le chargé).

Partie 1 : Quelques opérations classiques (facultatives, sans remise)

- 1. Lisez et entreposez l'image "lena.jpg" (disponible à partir de l'archive compressée du TP1 sur Moodle) dans une variable locale.
- 2. Affichez cette image.
- 3. Annulez les cannaux Rouge et Vert et réaffichez l'image obtenue (note : MATLAB lit une image en ordre RGB tandis qu'openCV lit en BGR)
- 4. Convertissez l'image originale en niveaux de gris.
- 5. Chargez la séquence vidéo "video1.avi" et afficher les 10 premières trames à un taux de 30 trames par seconde.

	MATLAB	openCV
Read image	imread('file.jpg')	imread("file.jpg")
Display image	imshow(matrix)	imshow("nameWin", matrix)
Convert RGB to GRAY	rgb2gray()	cvtColor()
Create Video Object	VideoReader()	VideoCapture()
Read Video	read()	read()

TABLE 1 – Quelques fonctions utiles.

Partie 2: Segmentation en Superpixels

- 1. Programmez la méthode de segmentation en Superpixels SLIC.
 - Les principales étapes sont présentées dans les notes de cours (Chapitre 2, slides 41-45).
 - L'algorithme complet est détaillé à la page 3 de l'article original de Achantal et. al [1].
 - Vous devriez obtenir un résultat similaire à la figure 1 avec N=1200 superpixels et un facteur de compacité m = 35 avec 5 itérations.

2. Pour le rapport :

- Expliquez à quoi servent les superpixels? Quels sont leurs avantages?
- Présentez votre implémentation.
- Discutez du paramètre de compacité *m*.
- Parfois, quelques superpixels seront "orphelins", c'est-à-dire qu'ils seront à l'intérieur d'un autre superpixel. Proposez une méthode pour éviter ce genre de cas (sans l'implémenter).

Informations supplémentaires

- Pour la conversion RGB vers Lab, Matlab et openCV fournissent leur propre fonction que vous pouvez utiliser.
- Si vous avez implémenté SLIC en Matlab, le temps d'exécution peut être assez long (≈ 10s).
- Il est normal que le nombre de superpixels N choisi initialement ne soit pas toujours le même que le nombre final de superpixels que vous obtiendrez, car vous répartissez initialement vos centroides sur une grille uniforme.
- N'hésitez pas à tester votre algorithme avec différents paramètres sur d'autres images, ou même une vidéo.

RÉFÉRENCES

[1] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S., *SLIC superpixels compared to state-of-the-art superpixel methods*. PAMI, 2012

Figure 1 – Segmentation SLIC avec N = 1200, m = 35 et 5 itérations.