Planche nº 8. Petits systèmes d'équations linéaires

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1: (**T)

Résoudre dans l'ensemble proposé les systèmes suivants

$$\begin{array}{l} \textbf{1)} \left\{ \begin{array}{l} 2x+3y-z=1 \\ 4x+y+2z=6 \\ x-3y+z=2 \end{array} \right. \\ \textbf{4)} \left\{ \begin{array}{l} 2x+y+z=7 \\ x+2y+z=8 \\ x-y+z=9 \end{array} \right. \\ \textbf{4)} \left\{ \begin{array}{l} x+y+z=2 \\ 3x-y=1 \\ 3x+y+z=0 \\ -x-3y+z=4 \end{array} \right. \\ \textbf{(dans } \mathbb{R}^3) \end{array} \right. \\ \textbf{5)} \left\{ \begin{array}{l} 2x+y+z=7 \\ x+2y+z=8 \\ x+y+2z=9 \end{array} \right. \\ \textbf{(dans } \mathbb{R}^3) \\ \textbf{3)} \left\{ \begin{array}{l} x+y+z=2 \\ 3x-y=1 \\ 4x+z=4 \end{array} \right. \\ \textbf{(dans } \mathbb{R}^3) \\ \textbf{3x}+y=0 \\ 3x+4y=-1 \end{array} \right. \\ \textbf{(dans } \mathbb{R}^3) \\ \textbf{3x}+y+z+t=3 \\ \textbf{3x}+y+z-t=3 \\ \textbf{3x}+y+z-t=3 \\ \textbf{3x}+y+z-t=3 \end{array} \right. \\ \textbf{(dans } \mathbb{R}^4) \\ \textbf{3x}+y+z-t=1 \end{array}$$

Exercice nº 2: (**T)

L'espace est rapporté à un repère orthonormé $\left(0,\overrightarrow{\mathfrak{i}},\overrightarrow{\mathfrak{j}},\overrightarrow{\mathfrak{k}}\right)$. Déterminer l'intersection des plans \mathscr{P} et \mathscr{P}' d'équations respectives x+y+2z=1 et 2x-y+z=2.

Exercice nº 3: (**)

Résoudre dans \mathbb{R}^3 , en discutant en fonction du paramètre \mathfrak{m} , les systèmes suivants :

1)
$$\begin{cases} 2x + 3y + z = 4 \\ -x + my + 2z = 5 \\ 7x + 3y + (m - 5)z = 7 \end{cases}$$
 2)
$$\begin{cases} 2x + my + z = 3m \\ x - (2m + 1)y + 2z = 4 \\ 5x - y + 4z = 3m - 2 \end{cases}$$

Exercice no 4: (**)

- 1) Déterminer tous les polynômes P de degré 2 tels que P(1) = 1, P'(1) = 1 et P(-1) = 0.
- 2) Déterminer tous les polynômes P de degré 3 tels que P(-1) = 1, P(1) = 0 et P(2) = 1.

Exercice n° 5: (**T)

Le plan est rapporté à un repère orthonormé $\left(0,\overrightarrow{\mathfrak{i}},\overrightarrow{\mathfrak{j}}\right)$. Pour $\mathfrak{m}\in\mathbb{R},$ on note $(\mathscr{D}_{\mathfrak{m}})$ la droite d'équation

$$(3m-1)x + (m+1)y = m-5$$
.

- 1) Montrer que toutes les droites $(\mathscr{D}_{\mathfrak{m}})$ ont en commun un point que l'on note A. Préciser les coordonnées de A.
- 2) Toute droite passant par A est-elle une droite (\mathcal{D}_m) ?