

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники

КУРСОВАЯ РАБОТА

По дисциплине			«Объектно-ориентированное программирование»				
					(наименование дисциплины)		
Гема курсовой ра	боты	Модел	иров	ание рабо	ты инженерного арг	ифметического	
				(наименованив калькулят			
Студент группы		D-01-21		Рутковск	ая Анастасия Алекс	еевна А	
		ная группа,)	(Par	илия Имя Отчество)	(nothiges cmydenma)	
Руководитель кур	совой ј	работы	СТ.	преп. Гра	ач Е.П.		
				(Должносі	пь, звание, ученая степень)	(подпись руководителя)	
Консультант			до	ц. каф.ВТ	Унгер А.Ю.		
				(Должност	пь, звание, ученая степень)	(подпись консультанта)	
X							
Работа представле	на к заг	ците	«	>>	2022 г.		
Допущен к защите	e «	>>		2022 г.			

Москва 2022 г.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» РТУ МИРЭА

	PI	у МИРЭА		
	Институт инфо	рмационных	технологий	
		числительной		
	На выполно	ВАДАНИЕ ение курсовой	Платонова О.Б <i>ФИО</i> «_14_» марта 202 г работы	Подпись 322г.
	о дисциплине «Объектно-о			
Студент _ Р	утковская Анастасия Алекс	сеевна	Группа	ИМБО-01-21
Тема 	Моделирование ј	работы инжене	рного арифмети	ческого
 Описа Множ 	ания исходной иерархии дерание схемы взаимодействия кество команд для управлен вопросов, подлежащих	объектов. ия функциониј		
материала:				
 Постр Взаим Блок- Управ 	ооение версий программ. ооение и работа с деревом и подействия объектов посред схемы алгоритмов. вление функционированием гавления к защите курсов	ством интерфе	ейса сигналов и с	
	курсовую работу выдал курсовую работу получил		Подпись (Грац Б. Т. Тутуридзе 3.Ш.) ФИО консультанта февраля 2022 г. МОО СИЙА Д) ФИО исполнителя февраля 2022 г.
	N.	2022		

Москва 2022г.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	8
1 ПОСТАНОВКА ЗАДАЧИ	9
1.1 Описание входных данных	11
1.2 Описание выходных данных	11
2 МЕТОД РЕШЕНИЯ	13
3 ОПИСАНИЕ АЛГОРИТМОВ	21
3.1 Алгоритм функции main	21
3.2 Алгоритм конструктора класса cl_1	21
3.3 Алгоритм конструктора класса сl_2	22
3.4 Алгоритм метода handler_reader класса cl_2	22
3.5 Алгоритм метода signal_operation класса cl_2	23
3.6 Алгоритм конструктора класса сl_3	23
3.7 Алгоритм метода plus класса cl_3	23
3.8 Алгоритм метода minus класса cl_3	24
3.9 Алгоритм метода umn класса cl_3	24
3.10 Алгоритм метода del класса cl_3	24
3.11 Алгоритм метода ost класса cl_3	25
3.12 Алгоритм метода handler_operation класса cl_3	25
3.13 Алгоритм метода signal_print класса cl_3	31
3.14 Алгоритм метода signal_num_to_4 класса cl_3	31
3.15 Алгоритм метода signal_oper_to_4 класса cl_3	32
3.16 Алгоритм метода signal_res_to_4 класса cl_3	32
3.17 Алгоритм метода handler_num_to_3 класса cl_3	32
3.18 Алгоритм метода handler_oper_to_3 класса cl_3	33
3.19 Алгоритм метода handler_res_to_3 класса cl_3	33
3.20 Алгоритм конструктора класса сl_4	33

3.21 Алгоритм метода sdv_lev класса cl_4	34
3.22 Алгоритм метода sdv_prav класса cl_4	34
3.23 Алгоритм метода handler_operation класса cl_4	35
3.24 Алгоритм метода signal_print класса cl_4	37
3.25 Алгоритм метода signal_num_to_3 класса cl_4	38
3.26 Алгоритм метода signal_oper_to_3 класса cl_4	38
3.27 Алгоритм метода signal_res_to_3 класса cl_4	38
3.28 Алгоритм метода handler_num_to_4 класса cl_4	39
3.29 Алгоритм метода handler_oper_to_4 класса cl_4	39
3.30 Алгоритм метода handler_res_to_4 класса cl_4	40
3.31 Алгоритм конструктора класса сl_5	40
3.32 Алгоритм метода handler_operation класса cl_5	40
3.33 Алгоритм метода signal_res_5 класса cl_5	41
3.34 Алгоритм метода signal_num_5 класса cl_5	41
3.35 Алгоритм метода signal_oper_5 класса cl_5	42
3.36 Алгоритм конструктора класса сl_6	42
3.37 Алгоритм метода handler_print класса cl_6	43
3.38 Алгоритм метода HEX_16 класса cl_6	45
3.39 Алгоритм метода BIN_2 класса cl_6	48
3.40 Алгоритм метода signal_res_6 класса cl_6	49
3.41 Алгоритм метода signal_num_1_6 класса cl_6	50
3.42 Алгоритм конструктора класса cl_application	50
3.43 Алгоритм метода build_tree_objects класса cl_application	50
3.44 Алгоритм метода exec_app класса cl_application	54
3.45 Алгоритм метода signal_reader класса cl_application	55
3.46 Алгоритм метода handler_operation класса cl_application	55
3.47 Алгоритм конструктора класса cl_base	56

3.48 Алгоритм деструктора класса cl_base	56
3.49 Алгоритм метода get_name класса cl_base	57
3.50 Алгоритм метода set_name класса cl_base	57
3.51 Алгоритм метода get_parent класса cl_base	58
3.52 Алгоритм метода set_parent класса cl_base	58
3.53 Алгоритм метода get_ptr_by_name класса cl_base	59
3.54 Алгоритм метода get_state класса cl_base	60
3.55 Алгоритм метода set_state класса cl_base	60
3.56 Алгоритм метода print_state класса cl_base	61
3.57 Алгоритм метода set_connection класса cl_base	62
3.58 Алгоритм метода delete_connection класса cl_base	62
3.59 Алгоритм метода emit_signal класса cl_base	63
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	65
5 КОД ПРОГРАММЫ	17
5.1 Файл cl_1.h	17
5.2 Файл cl_2.cpp	17
5.3 Файл cl_2.h	18
5.4 Файл cl_3.cpp	18
5.5 Файл cl_3.h	21
5.6 Файл cl_4.cpp	22
5.7 Файл cl_4.h	24
5.8 Файл cl_5.cpp	24
5.9 Файл cl_5.h	25
5.10 Файл cl_6.cpp	25
5.11 Файл cl_6.h	28
5.12 Файл cl_application.cpp	29
5.13 Файл cl_application.h	31

5.14 Файл cl_base.cpp	132
5.15 Файл cl_base.h	135
5.16 Файл main.cpp	136
6 ТЕСТИРОВАНИЕ	137
ЗАКЛЮЧЕНИЕ	139
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	140

ВВЕДЕНИЕ

Объектно-ориентированное программирование может использоваться во многих сферах, связанных со специальностью "Прикладная математика". Так, ООП во многих языках программирования можно использовать, например, для построения различных графиков или вычислений функций. Использование ООП в области хранения "больших данных" является актуальным в современном мире. Обладание навыками данной парадигмы программирования будет полезно для профессиональной деятельности.

1 ПОСТАНОВКА ЗАДАЧИ

Надо моделировать работу калькулятора следующей конструкции:

в вычислении участвуют целые числа объемом памяти 2 байта;

допустимые операции: +, -, *, / (целочисленное деление), % (деление с остатком), << (побитовый сдвиг влево), >> (побитовый сдвиг в право);

операции выполняются последовательно, для выполнения операции необходимы два аргумента и знак операции;

после выполнения каждой операции фиксируется и выводится результат;

последовательность операций и аргументов образует выражение;

результат отображается в 16, 10 и 2-ой системе счисления;

при возникновении переполнения выдается Overflow;

при попытке деления на 0 выдается Division by zero;

при вводе знака "С" калькулятор приводиться в исходное состояние, первый аргумент выражения принимает значение 0 и готов для ввода очередного выражения;

при вводе знака "Off" калькулятор завершает работу.

Нажатие на клавиши калькулятора моделируется посредством клавиатурного ввода. Ввод делится на команды:

- 1. «целое число» первый аргумент выражения, целое не отрицательное число, можно последовательно вводить несколько раз, предыдущее значение меняется. При вводе не первым аргументом выражения игнорируется;
- 2. «знак операции» «целое число» второе и последующие операции выражения;
- 3. «С» приведение калькулятора в исходное состояние;
- 4. «Off» завершение работы калькулятора.

Вывод результата моделируется посредством вывода на консоли. Результат

выводиться в следующей форме:

«выражение» НЕХ «16-ое число» DEC «10-ое число» ВІП «2-ое число»

«16-ое число» выводиться в верхнем регистре с лидирующими нулями (пример 01FA).

«10-ое число» (пример 1765).

«2-ое число» выводиться разбивкой по четыре цифры с лидирующими нулями (пример 0000 0100 0111 0101).

Построить систему, которая использует объекты:

- Объект «система».
- Объект для чтения команд. После чтения очередной команды объект выдает сигнал с текстом, содержащим команду. Все команды синтаксический корректны (моделирует пульт управления калькулятора).
- Объект для выполнения арифметических операции. После завершения выдается сигнал с текстом результата. Если произошло переполнение или деление на нуль, выдается сигнал об ошибке. После выдачи сообщения калькулятор переводится посредством соответствующего сигнала в исходное положение.
- Объект для выполнения операции побитового сдвига. После завершения выдается сигнал с текстом результата.
- Объект для выполнения операции «С».
- Объект для вывода очередного результата на консоль.

Написать программу, реализующую следующий алгоритм:

- 1. Вызов метода объекта «система» build_tree_objects ().
- 1.1. Построение дерева иерархии объектов.
- 1.2. Установка связей сигналов и обработчиков между объектами.
- 2. Вызов метода объекта «система» exec_app ().

- 2.1. Приведение всех объектов в состояние готовности.
- 2.2. Цикл для обработки вводимых команд.
- 2.2.1. Выдача сигнала объекту для ввода команды.
- 2.2.2. Отработка команды.
- 2.3. После ввода команды «Off» завершить работу.

Все приведенные сигналы и соответствующие обработчики должны быть реализованы.

Все сообщения на консоль выводятся с новой строки.

В набор поддерживаемых команд добавить команду «SHOWTREE» и по этой команде вывести дерево иерархии объектов системы с отметкой о готовности и завершить работу программы.

1.1 Описание входных данных

Построчно множество команд, в любом количестве. Перечень команд:

«целое не отрицательное число»

«знак операции» «целое число»

C

Последняя команда присутствует всегда:

Off

Пример ввода

$$5 + 5 \ll 1 / 0 + 5 C 7 8 / -3 C 9 \% -4 + 7 * 11 Off$$

1.2 Описание выходных данных

Построчно выводиться результат каждой операции по форме:

«выражение» НЕХ «16-ое число» DEC «10-ое число» BIN «2-ое число»

Если произошло переполнение:

«выражение» Overflow

Если произошло переполнение:

«выражение» Division by zero

Пример вывода:

- 5 + 5 HEX 000A DEC 10 BIN 0000 0000 0000 1010
- 5 + 5 << 1 HEX 0014 DEC 20 BIN 0000 0000 0001 0100
- $5 + 5 \ll 1 / 0$ Division by zero
- 0 + 5 HEX 0005 DEC 5 BIN 0000 0000 0000 0101
- 8/-3 HEX FFFE DEC -2 BIN 1111 1111 1111 1110
- 9 % -4 HEX 0001 DEC 1 BIN 0000 0000 0000 0001
- 9 % -4 + 7 HEX 0008 DEC 8 BIN 0000 0000 0000 1000
- 9 % -4 + 7 * 11 HEX 0058 DEC 88 BIN 0000 0000 0101 1000

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- Оператор цикла
- Условный оператор
- Стандартные объекты потока ввода/вывода cin/cout
- Объекты классов

Иерархия наследования отображена в таблице 1.

Таблица 1 – Иерархия наследования классов

№	Имя класса	Классы-	Модификатор	Описание	Номер	Комментари
		наследник	доступа при			И
		И	наследовании			
1	cl_base			Базовый класс в		
				иерархии		
		cl_1	public		2	
		cl_applicati	public		3	
		on				
		cl_2	public		4	
		cl_3	public		5	
		cl_4	public		6	
		cl_5	public		7	
		cl_6	public		8	
2	cl_1			Класс,		
				наследуемый от		
				cl_base		
3	cl_applicati			Класс для		
	on			построения		

		дерева иерархии
		и выполнения
		команды
		«SHOWTREE»
4	cl_2	Класс
		для чтения
		команд
5	cl_3	Класс для
		выполнения
		арифметических
		операций
	1.4	TC.
6	cl_4	Класс для
		выполнения
		операции
		побитового
		сдвига
7	cl_5	Класс для
		выполнения
		операции «С»
8	cl_6	Класс для
		вывода
		очередного
		результата на
		консоль
		ACIT COSTS

Класс cl base:

- Поля/свойства:
 - Имя объекта:
 - Наименование пате
 - Тип данных string (строковый)
 - Модификатор доступа private (закрытый)
 - о Указатель на родителя:
 - Наименование parent
 - Тип данных указатель на объект класса cl base
 - Модификатор доступа private (закрытый)
 - о Вектор указателей на наследников:
 - Наименование children
 - Тип данных вектор указателей на объекты класса cl_base
 - Модификатор доступа private (закрытый)
 - Глубина рекурсии:
 - Наименование num_rec
 - Тип данных int (целочисленный)
 - Модификатор доступа private (закрытый)
 - Готовность объекта (состояние):
 - Наименование state
 - Тип данных int (целочисленный)
 - Модификатор доступа private (закрытый)
 - о Вектор указателей на соединения:
 - Hаименование connections
 - Тип данных вектор указателей на объекты структуры o_sh
 - Модификатор доступа private (закрытый)
 - Флаг для определения операции С:

- Наименование flag_C
- Тип данных bool (логический)
- Модификатор доступа protected
- о Структура сигнала и обработчика:
 - Наименование o_sh
 - Тип данных struct (структура)
 - Модификатор доступа private (закрытый)
- Методы:
 - cl_base(cl_base *parent, string name="")
 - Функционал параметризированный конструктор
 - o ~cl_base()
 - Функционал деструктор
 - o get_name()
 - Функционал возврат имени
 - set_name(string name)
 - Функционал запись имени
 - o get_parent()
 - Функционал возврат родителя
 - set_parent(cl_base *parent)
 - Функционал установка значения родителя
 - get_ptr_by_name (string name)
 - Функционал поиск указателя на объект по имени
 - o get_state()
 - Функционал возврат готовности
 - o set_state(int state1)
 - Функционал установка значения готовности
 - o print_state(int num_rec2)

- Функционал вывод иерархии с готовностью объектов
- set_connection(TYPE_SIGNAL signal, cl_base* target_obj,
 TYPE_HANDLER handler)
 - Функционал установка связи
- delete_connection (TYPE_SIGNAL signal, cl_base* target_obj, TYPE_HANDLER handler)
 - Функционал удаление связи
- emit_signal(TYPE_SIGNAL signal, string& msg)
 - Функционал выдача сигнала от заданного по координате объекта

Класс cl application:

- Поля/свойства:
 - Флаг для ввода:
 - Haименование flag_input
 - Тип данных bool (логический)
 - Модификатор доступа private (закрытый)
- Методы:
 - cl_application(cl_base*parent)
 - Функционал параметризированный коструктор
 - build_tree_objects()
 - Функционал построение дерева иерархии
 - exec_app(bool b)
 - Функционал начало работы калькулятора
 - signal_reader(string &msg)
 - Функционал сигнал для считывания данных
 - handler_operation(string msg)
 - Функционал обрабочик сигнала для вывода иерархии

Класс с1 1:

- Поля/свойства:
 - о Отсутствуют
- Методы:
 - o cl_1(cl_base *parent, string name)
 - Функционал параметризированный конструктор

Класс с1 2:

- Поля/свойства:
 - о Отсутствуют
- Методы:
 - o cl_2(cl_base *parent, string name)
 - Функционал параметризированный конструктор
 - handler_reader(string msg)
 - Функционал обработчик сигнала для чтения даннных
 - o signal_operation(string &msg)
 - Функционал сигнал для выполнения операций

Класс cl_3:

- Поля/свойства:
 - о Текущее значение числа
 - Наименование num_1
 - Тип данных int (целочисленный)
 - Модификатор доступа private (закрытый)
 - о Выражение, записанное в калькулятор
 - Hаименование result
 - Тип данных string (строковый)
 - Модификатор доступа private (закрытый)
 - Текущая операция

- Наименование operation
- Тип данных string (строковый)
- Модификатор доступа private (закрытый)
- Методы:
 - o cl_3(cl_base *parent, string name)
 - Функционал параметризированный конструктор
 - o plus (int num_1, int num_2)
 - Функционал сложение двух чисел
 - o minus (int num_1, int num_2)
 - Функционал разность двух чисел
 - o umn (int num_1, int num_2)
 - Функционал произведение двух чисел
 - del (int num_1, int num_2)
 - Функционал целочисленное деление
 - o ost (int num_1, int num_2)
 - Функционал остаток от деления
 - handler_operation(string msg)
 - Функционал обработчик для выполнения операций
 - signal_print(string &msg)
 - Функционал сигнал для вывода
 - signal_num_to_4(string &msg)
 - Функционал сигнал для передачи числа в класс cl_4
 - o signal_oper_to_4(string &msg)
 - Функционал сигнал для передачи операции в класс cl_4
 - signal_res_to_4(string &msg)
 - Функционал сигнал для передачи результата в класс cl_4
 - o handler_num_to_3(string msg)

- Функционал обработчик для переданного числа из класса cl 4
- handler_oper_to_3(string msg)
 - Функционал обработчик для переданной операции из класса cl_4
- handler_res_to_3(string msg)
 - Функционал обработчик для переданного результата из класса cl_4

Класс cl_4:

- Поля/свойства:
 - о Текущее значение числа
 - Наименование num_1
 - Тип данных int (целочисленный)
 - Модификатор доступа private (закрытый)
 - о Выражение, записанное в калькулятор
 - Hаименование result
 - Тип данных string (строковый)
 - Модификатор доступа private (закрытый)
 - о Текущая операция
 - Наименование operation
 - Тип данных string (строковый)
 - Модификатор доступа private (закрытый)
- Методы:
 - cl_4(cl_base *parent, string name)
 - Функционал параметризированный конструктор
 - sdv_lev (int num_1, int num_2)
 - Функционал побитовый сдвиг влево
 - o sdv_prav (int num_1, int num_2)

- Функционал побитовый сдвиг вправо
- handler_operation(string msg)
 - Функционал обработчик для выполнения операций
- signal_print(string &msg)
 - Функционал сигнал для вывода
- signal_num_to_3(string &msg)
 - Функционал сигнал для передачи числа в класс cl 3
- signal_oper_to_3(string &msg)
 - Функционал сигнал для передачи операции в класс cl 3
- signal_res_to_3(string &msg)
 - Функционал сигнал для передачи результата в класс с1 3
- handler_num_to_4(string msg)
 - Функционал обработчик для переданного числа из класса cl_3
- handler_oper_to_4(string msg)
 - Функционал обработчик для переданной операции из класса cl_3
- handler_res_to_4(string msg)
 - Функционал обработчик для переданного результата из класса cl_3

Класс с1 5:

- Поля/свойства:
 - о Текущее значение числа
 - Наименование num_1
 - Тип данных int (целочисленный)
 - Модификатор доступа private (закрытый)
 - о Выражение, записанное в калькулятор
 - Наименование result

- Тип данных string (строковый)
- Модификатор доступа private (закрытый)
- о Текущая операция
 - Haumeнoвaние operation
 - Тип данных string (строковый)
 - Модификатор доступа private (закрытый)

• Методы:

- cl_5(cl_base *parent, string name)
 - Функционал параметризированный конструктор
- handler_operation(string msg)
 - Функционал обработчик для выполнения операций
- signal_res_5(string &msg)
 - Функционал сигнал для передачи результата из класса cl_5
- signal_num_5(string &msg)
 - Функционал сигнал для передачи числа из класса cl 5
- o signal_oper_5(string &msg)
- Функционал сигнал для передачи операции из класса cl_5 Класс cl_6:

• Поля/свойства:

- 。 Флаг для вывода endl
 - Наименование flagg
 - Тип данных bool (логический)
 - Модификатор доступа private (закрытый)
- о Текущее значение числа
 - Наименование num_1
 - Тип данных int (целочисленный)
 - Модификатор доступа private (закрытый)

- Методы:
 - o cl_6(cl_base *parent, string name)
 - Функционал параметризированный конструктор
 - handler_print(string msg)
 - Функционал обработчик для вывода
 - HEX_16(int number)
 - Функционал перевод для шестнадцатиричную систему счисления
 - o BIN_2(int number)
 - Функционал перевод в двоичную систему счисления
 - signal_res_6(string &msg)
 - Функционал сигнал для передачи результата из класса cl_6
 - o signal_num_1_6(string &msg)
 - Функционал сигнал для передачи числа из класса cl_6

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.0 Алгоритм функции main

Функционал: основная функция.

Параметры: Отсутствуют.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 2.

Таблица 2 – Алгоритм функции main

No	Предикат Действия		№
			перехода
1		Создание объекта cl_application_obj(nullptr) класса cl_application	2
2		Объявление логической переменной b	3
3		Присвоение переменной b результата вызова метода build_tree_objects для объекта cl_application_obj	4
4		Вызов метода ехес_арр с передачей параметра в	Ø

3.1 Алгоритм конструктора класса cl_1

Функционал: Вызов конструктора класса cl_base.

Параметры: cl_base *parent, string name.

Алгоритм конструктора представлен в таблице 3.

Таблица 3 – Алгоритм конструктора класса cl 1

№	Предикат	Действия			
			перехода		
1		Вызов конструктора класса cl_base с передачей параметров cl_base	Ø		
		*parent, string name			

3.2 Алгоритм конструктора класса cl 2

Функционал: Вызов конструктора класса cl base.

Параметры: cl_base *parent, string name.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса cl 2

N	Предикат	Действия			
			пеј	рехода	
1		Вызов конструктора класса cl_base с передачей параметров cl_base	Ø		
		*parent, string name			

3.3 Алгоритм метода handler_reader класса cl_2

Функционал: Обработчик сигнала чтения даннных.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода handler_reader класса cl_2

J	Vō	Предикат	действия				
				перехода			
	1		Объявление скоровой переменной znak	2			
4	2		Ввод znak				
	3		Вызов метода emit_signal с передачей параметров SIGNAL_D(cl_2::signal_operation), znak	Ø			

3.4 Алгоритм метода signal_operation класса cl_2

Функционал: Сигнал для выполнения операций.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода signal_operation класса cl_2

№Предикат	Действия	№
		перехода

No	Предикат	Действия	№
			перехода
1			Ø

3.5 Алгоритм конструктора класса cl_3

Функционал: Вызов конструктора класса cl base.

Параметры: cl_base *parent, string name.

Алгоритм конструктора представлен в таблице 7.

Таблица 7 – Алгоритм конструктора класса cl 3

No	Предикат	Действия	
			перехода
1		Вызов конструктора класса cl_base с передачей параметров cl_base	Ø
		*parent, string name	

3.6 Алгоритм метода plus класса cl_3

Функционал: сложение двух чисел.

Параметры: int num 1, int num 2.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 8.

Таблица 8 – Алгоритм метода plus класса cl_3

N	Предикат	Действия	No
			перехода
1		Возврат num_1+num_2	Ø

3.7 Алгоритм метода minus класса cl 3

Функционал: разность двух чисел.

Параметры: int num_1, int num_2.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода minus класса cl 3

No	Предикат	Действия	№	ì
			перехода	ì
1		Возврат num_1-num_2	Ø	Ì

3.8 Алгоритм метода umn класса cl_3

Функционал: Произведение чисел.

Параметры: int num_1, int num_2.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 10.

Таблица 10 – Алгоритм метода umn класса cl 3

№	Предикат	Действия	№
			перехода
1		Возврат num_1*num_2	Ø

3.9 Алгоритм метода del класса cl_3

Функционал: Целочисленное деление.

Параметры: int num_1, int num_2.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 11.

Таблица 11 – Алгоритм метода del класса cl_3

No	Предикат	Действия	№
			перехода
1		Возврат num_1/num_2	Ø

3.10 Алгоритм метода ost класса cl_3

Функционал: Остаток от деления.

Параметры: int num_1, int num_2.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 12.

Таблица 12 – Алгоритм метода ost класса cl 3

No	Предикат	Действия	№	
			перехода	
1		Возврат num_1%num_2	Ø	

3.11 Алгоритм метода handler_operation класса cl_3

Функционал: Обработчик для выполнения операций.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 13.

Таблица 13 – Алгоритм метода handler_operation класса cl_3

№	Предикат	Действия	№
			перехода
1		Инициализация логической переменной tem = false	2
2	Значение msg не равно "Off"	Присвоение operation=msg	3
	и значение msg не равно "С"		
	и (значение msg равно "+"		
	или значение msg равно "-"		
	или значение msg равно "*"		
	или значение msg равно "/"		
	или значение msg равно "%")		
	и значение msg не равно		
	"SHOWTREE"		
			7
3		Присвоение result+=" "+operation	4
4		Вызов метода emit_signal с передачей параметров	5
		SIGNAL_D(cl_3::signal_res_to_4), result	
5		Вызов метода emit_signal с передачей параметров	6
		SIGNAL_D(cl_3::signal_oper_to_4), operation	
6		Присвоение flag_C=false	Ø
7	Значение msg не равно "Off"		8

№	Предикат	Действия	№ перехода
	и значение msg не равно "С" и значение msg не равно "SHOWTREE"		переходи
			Ø
8	Значение operation не равно "" и значение operation не равно "<<" и значение operation не равно ">>"		9
			55
9		Инициализация целочисленной переменной num_2=stoi(msg)	10
1 0	Значение operation равно "+"	Присвоение num_1 результата вызова метода plus с передачей параметров num_1, num_2	11
			11
1	Значение operation равно "+"	Присвоение num_1 результата вызова метода minus с передачей параметров num_1, num_2	12
			12
1 2	Значение operation равно "*"	Присвоение num_1 результата вызова метода umn с передачей параметров num_1, num_2	13
			13
1	Значение operation равно "/"		14
3			25
1	Значение msg не равно "0"	Присвоение num_1 результата вызова метода del с	25
4		передачей параметров num_1, num_2	15
1 5		Присвоение result+=" Division by zero"	16
1		Вызов метода emit_signal с передачей параметров SIGNAL_D(cl_3::signal_print), result	17

No	Предикат	Действия	№ перехода
1		Присвоение num_1=0	18
7			
1		Присвоение result="0"	19
8			
1		Инициализация строковой переменной	20
9		numb=to_string(num_1)	
2		Вызов метода emit_signal с передачей параметров	21
0		SIGNAL_D(cl_3::signal_num_to_4), numb	
2		Присвоение tem=true	22
1			
2		Вызов метода emit_signal с передачей параметров	23
2		SIGNAL_D(cl_3::signal_res_to_4), result	
2		Присвоение operation=""	24
3			
2		Вызов метода emit_signal с передачей параметров	25
4		SIGNAL_D(cl_3::signal_oper_to_4), operation	
2	Значение operation равно "%"		26
5			37
2	Значение msg не равно "0"	Присвоение num_1 результата вызова метода ost с	37
6		передачей параметров num_1, num_2	
			27
2		Присвоение result+=" Division by zero"	28
7			
2		Вызов метода emit_signal с передачей параметров	29
8		SIGNAL_D(cl_3::signal_print), result	
2		Присвоение num_1=0	30
9			
3		Присвоение result="0"	31
0			

Nº	Предикат	Действия	№ перехода
3		Инициализация строковой переменной numb=to_string(num_1)	
3		Вызов метода emit_signal с передачей параметров	33
2		SIGNAL_D(cl_3::signal_num_to_4), numb	
3		Присвоение tem=true	34
3			25
3		Вызов метода emit_signal с передачей параметров	35
4		SIGNAL_D(cl_3::signal_res_to_4), result	26
3 5		Присвоение operation=""	36
3		Вызов метода emit_signal с передачей параметров	37
6		SIGNAL_D(cl_3::signal_oper_to_4), operation	
3	Значение tem paвно false	, , , , , , , , , , , , , , , , , , , 	38
7			Ø
3	Значение num_1 меньше или	Присвоение operation=""	39
8	равно 32767 и значение		
	num_1больше или равно -		
	32768		
			45
3		Инициализация строковой переменной	40
9		nu=to_string(num_1)	4.1
4		Вызов метода emit_signal с передачей параметров	41
0		SIGNAL_D(cl_3::signal_num_to_4), nu	10
4		Инициализация строковой переменной prin=result	42
1		+" "+ to_string(num_1)	42
2		Вызов метода emit_signal с передачей параметров SIGNAL_D(cl_3::signal_print), prin	43
4		Вызов метода emit_signal с передачей параметров	44
3		SIGNAL_D(cl_3::signal_res_to_4), result	77
ر		SIGIAL_D(CI_3Signai_ics_to_4), iesuit	

Nº	Предикат	Действия	№ перехода
4		Вызов метода emit_signal с передачей параметров	
4		SIGNAL_D(cl_3::signal_oper_to_4), operation)	
4		Присвоение result+=" Overflow"	46
5			
4		Вызов метода emit_signal с передачей параметров	47
6		SIGNAL_D(cl_3::signal_print), result	
4		Присвоение num_1=0	48
7			
4		Присвоение result="0"	49
8			
4		Инициализация строковой переменной	50
9		numb=to_string(num_1)	
5		Вызов метода emit_signal с передачей параметров	51
0		SIGNAL_D(cl_3::signal_num_to_4), numb	
5		Присвоение tem=true	52
1			
5		Вызов метода emit_signal с передачей параметров	53
2		SIGNAL_D(cl_3::signal_res_to_4), result	
5		Присвоение operation=""	54
3			
5		Вызов метода emit_signal с передачей параметров	Ø
4		SIGNAL_D(cl_3::signal_oper_to_4), operation	
5	Значение msg не равно "<<"	Присвоение num_1=stoi(msg)	56
5	и значение msg не равно		
	">>" и значение operation не		
	равно "<<" и значение		
	operation не равно ">>" и		
	значение msg не равно		
	"SHOWTREE"		

№	Предикат	Действия	№ перехода
			Ø
5	Значение result не равно "" и	Присвоение result+=" "+to_string(num_1)	60
6	значение operation не равно		
	""		
			57
5	Значение flag_C не равно	Присвоение result+=msg	60
7	false		
			58
5		Присвоение result=msg	59
8			
5		Присвоение flag_C=false	60
9			
6		Инициализация строковой переменной	61
0		nu=to_string(num_1)	
6		Вызов метода emit_signal с передачей параметров	62
1		SIGNAL_D(cl_3::signal_num_to_4), nu	
6		Вызов метода emit_signal с передачей параметров	63
2		SIGNAL_D(cl_3::signal_res_to_4), result	
6		Вызов метода emit_signal с передачей параметров	Ø
3		SIGNAL_D(cl_3::signal_oper_to_4), operation	

3.12 Алгоритм метода signal_print класса cl_3

Функционал: Сигнал для вывода.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 14.

Таблица 14 – Алгоритм метода signal print класса cl 3

Nο	Предикат	Действия	№
			перехода
1			Ø

3.13 Алгоритм метода signal_num_to_4 класса cl_3

Функционал: Сигнал для передачи числа в класс cl 4.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 15.

Таблица 15 – Алгоритм метода signal num to 4 класса cl 3

N	Предикат	Действия	№
			перехода
1			Ø

3.14 Алгоритм метода signal_oper_to_4 класса cl_3

Функционал: Сигнал для передачи операции в класс cl_4.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 16.

Таблица 16 – Алгоритм метода signal_oper_to_4 класса cl_3

J	Vο	Предикат	Действия	Nº
				перехода
	1			Ø

3.15 Алгоритм метода signal_res_to_4 класса cl_3

Функционал: Сигнал для передачи результата в класс cl_4.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 17.

Таблица 17 – Алгоритм метода signal res to 4 класса cl 3

No	Предикат	Действия	№
			перехода
1			Ø

3.16 Алгоритм метода handler_num_to_3 класса cl_3

Функционал: Обработчик для переданного числа из класса cl 4.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 18.

Таблица 18 – Алгоритм метода handler num to 3 класса cl 3

No	Предикат	Действия	№
			перехода
1		Присвоение num_1=stoi(msg)	Ø

3.17 Алгоритм метода handler oper to 3 класса cl 3

Функционал: Обработчик для переданной операции из класса cl 4.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 19.

Таблица 19 – Алгоритм метода handler_oper_to_3 класса cl_3

N	Предикат	Действия	Nº
			перехода
1		Присвоение operation=msg	Ø

3.18 Алгоритм метода handler_res_to_3 класса cl_3

Функционал: Обработчик для переданного результата из класса cl_4.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 20.

Таблица 20 – Алгоритм метода handler res to 3 класса cl 3

ĺ	No	Предикат	Действия	№
				перехода
	1		Присвоение result=msg	Ø

3.19 Алгоритм конструктора класса cl_4

Функционал: Вызов конструктора класса cl base.

Параметры: cl_base *parent, string name.

Алгоритм конструктора представлен в таблице 21.

Таблица 21 – Алгоритм конструктора класса с1_4

No	Предикат	Действия		
			перехода	
1		Вызов конструктора класса cl_base с передачей параметров cl_base	Ø	
		*parent, string name		

3.20 Алгоритм метода sdv lev класса cl 4

Функционал: Побитовый сдвиг влево.

Параметры: int num 1, int num 2.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 22.

Таблица 22 – Алгоритм метода sdv_lev класса cl_4

№	Предикат	Действия	№
			перехода
1		Инициализация целочисленной переменной	2
		num_num=num_1	
2	Значение num_2 больше 0	Присвоение num_num*=2	3
		Возврат пит_пит	Ø
3		Значение num_2	2

3.21 Алгоритм метода sdv_prav класса cl_4

Функционал: Побитовый сдвиг вправо.

Параметры: int num 1, int num 2.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 23.

Таблица 23 – Алгоритм метода sdv prav класса cl 4

No	Предикат	Действия	№
			перехода
1		Инициализация целочисленной переменной	2
		num_num=num_1	
2	Значение num_2 больше 0	Присвоение num_num/=2	3
		Возврат num_num	Ø
3		Значение num_2	2

3.22 Алгоритм метода handler_operation класса cl_4

Функционал: Обработчик для выполнения операций.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 24.

Таблица 24 – Алгоритм метода handler_operation класса cl_4

No	Предикат	Действия	№
1	Значение msg не равно "Off" и значение msg не равно "С" и (значение msg равно "<<" или значение msg равно ">>")и значение msg не равно "SHOWTREE"	Присвоение operation=msg	перехода 2
			5
2		Присвоение result+=" "+operation	3
3		Вызов метода emit_signal с передачей параметров SIGNAL_D(cl_4::signal_res_to_3), result	4
4		Вызов метода emit_signal с передачей параметров SIGNAL_D(cl_4::signal_oper_to_3), operation	Ø

Nº	Предикат	Действия	№ перехода
5	Значение msg не равно "Off"		перехода 6
	и значение msg не равно "С"		
	и (значение msg не равно "+"		
	и значение msg не равно "-"		
	и значение msg не равно "*"		
	и значение		
	msg не равно "/" и значение		
	msg не равно "%"		
			Ø
6	Значение operation не равно	Присвоение result+=" "+msg	7
			Ø
7	Значение operation равно	Присвоение num_1 результата вызова метода	8
	"<<"	sdv_lev с передачей параметров num_1, stoi(msg)	
			8
8	Значение operation равно	Присвоение num_1 результата вызова метода	9
	">>"	sdv_prav с передачей параметров num_1, stoi(msg)	
			9
9	Значение num_1 меньше или	Присвоение operation=""	10
	равно 32767 и значение		
	num_1 больше или равно -		
	32768		
			15
1		Инициализация строковой переменной	11
0		nu=to_string(num_1)	
1		Вызов метода emit_signal с передачей параметров	12
1		SIGNAL_D(cl_4::signal_num_to_3), nu	
1		Вызов метода emit_signal с передачей параметров	13
2		SIGNAL_D(cl_4::signal_res_to_3), result	

Nº	Предикат	Действия	№ перехода
1		Вызов метода emit_signal спередачей параметров	
3		SIGNAL_D(cl_4::signal_oper_to_3), operation	
1		Инициализация строковой переменной prin=result	Ø
4		+" "+ to_string(num_1)	
1		Присвоение result+=" Overflow"	16
5			
1		Вызов метод emit_signal с передачей параметров	17
6		SIGNAL_D(cl_4::signal_print), result	
1		Присвоение num_1=0	18
7			
1		Присвоение result="0"	19
8			
1		Инициализация строковой переменной	20
9		numb=to_string(num_1)	
2		Вызов метода emit_signal с передачей параметров	21
0		SIGNAL_D(cl_4::signal_num_to_3), numb	
2		Вызов метода emit_signal с передачей параметров	22
1		SIGNAL_D(cl_4::signal_res_to_3), result	
2		Присвоение operation=""	23
2			
2		Вызов метода emit_signal с передачей параметров	Ø
3		SIGNAL_D(cl_4::signal_oper_to_3), operation	

3.23 Алгоритм метода signal_print класса cl_4

Функционал: Сигнал для вывода.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 25.

Таблица 25 – Алгоритм метода signal print класса cl 4

Nο	Предикат	Действия	No	
			перехода	
1			Ø	

3.24 Алгоритм метода signal_num_to_3 класса cl_4

Функционал: Сигнал для передачи числа в класс с1 3.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 26.

Таблица 26 – Алгоритм метода signal num to 3 класса cl 4

N	Предикат	Действия	№
			перехода
1			Ø

3.25 Алгоритм метода signal_oper_to_3 класса cl_4

Функционал: Сигнал для передачи операции в класс cl_3.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 27.

Таблица 27 – Алгоритм метода signal_oper_to_3 класса cl_4

Ŋ	Предика т	Действия	№
			перехода
1			Ø

3.26 Алгоритм метода signal_res_to_3 класса cl_4

Функционал: Сигнал для передачи результата в класс cl 3.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 28.

Таблица 28 – Алгоритм метода signal res to 3 класса cl 4

No	Предикат	Действия	№	
			перехода	
1			Ø	

3.27 Алгоритм метода handler_num_to_4 класса cl_4

Функционал: Обработчик для переданного числа из класса cl 3.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 29.

Таблица 29 – Алгоритм метода handler num to 4 класса cl 4

No	Предикат	Действия	№
			перехода
1		Присвоение num_1=stoi(msg)	Ø

3.28 Алгоритм метода handler_oper_to_4 класса cl_4

Функционал: Обработчик для переданной операции из класса с1 3.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 30.

Таблица 30 – Алгоритм метода handler_oper_to_4 класса cl_4

N	Предикат	Действия	Nº
			перехода
1		Присвоение operation=msg	Ø

3.29 Алгоритм метода handler_res_to_4 класса cl_4

Функционал: Обработчик для переданного результата из класса cl_3.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 31.

Таблица 31 – Алгоритм метода handler res to 4 класса cl 4

No	Предикат	Действия	№	
			перехода	
1		Присвоение result=msg	Ø	

3.30 Алгоритм конструктора класса cl_5

Функционал: Вызов конструктора класса cl base.

Параметры: cl_base *parent, string name.

Алгоритм конструктора представлен в таблице 32.

Таблица 32 – Алгоритм конструктора класса с1_5

No	Предикат	Действия		
			перехода	
1		Вызов конструктора класса cl_base с передачей параметров cl_base	Ø	
		*parent, string name		

3.31 Алгоритм метода handler_operation класса cl_5

Функционал: Обработчик для выполнения операций.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 33.

Таблица 33 – Алгоритм метода handler_operation класса cl_5

№	Предикат	Действия	№ перехода
1	Значение msg равно "С" и		2
	значение msg не равно		
	"SHOWTREE"		
			Ø
2		Присвоение num_1="0"	3
3		Присвоение operation = ""	4
4		Вызов метода emit_signal с передачей параметров	5
		SIGNAL_D(cl_5::signal_oper_5), operation	

№	Предикат	Действия	№
			перехода
5		Вызов метода emit_signal с передачей параметров	6
		SIGNAL_D(cl_5::signal_num_5), num_1	
6		Вызов метода emit_signal с передачей параметров	7
		SIGNAL_D(cl_5::signal_res_5), result	
7		Присвоение flag_C=true	Ø

3.32 Алгоритм метода signal_res_5 класса cl_5

Функционал: Сигнал для передачи результата из класса cl 5.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 34.

Таблица 34 – Алгоритм метода signal res 5 класса cl 5

No	Предикат	Действия	No
			перехода
1			Ø

3.33 Алгоритм метода signal_num_5 класса cl_5

Функционал: Сигнал для передачи числа из класса cl_5.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 35.

Таблица 35 – Алгоритм метода signal num 5 класса cl_5

J	Vο	Предикат	Действия	№
				перехода
	1			Ø

3.34 Алгоритм метода signal oper 5 класса cl 5

Функционал: Сигнал для передачи операции из класса cl 5.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 36.

Таблица 36 – Алгоритм метода signal oper 5 класса cl 5

No	Предикат	Действия	№
			перехода
1			Ø

3.35 Алгоритм конструктора класса cl_6

Функционал: Вызов конструктора класса cl base.

Параметры: cl_base *parent, string name.

Алгоритм конструктора представлен в таблице 37.

Таблица 37 – Алгоритм конструктора класса cl_6

No	Предикат	Действия		
			перехо	да
1		Вызов конструктора класса cl_base с передачей параметров cl_base	Ø	
		*parent, string name		

3.36 Алгоритм метода handler_print класса cl_6

Функционал: Обработчик для вывода.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 38.

Таблица 38 – Алгоритм метода handler_print класса cl_6

No	Предикат	Действия	No
			перехода
1	Значение msg.size() больше 8		2
			25

№	Предикат	Действия	№ перехода
2	Значение		3
	msg.substr(msg.size()-8)		
	равно "Overflow"		
			11
3	Значение flagg равно true	Вывод endl	4
			4
4		Вывод msg	5
5		Присвоение flagg=true	6
6		Инициализация строковой переменной result=""	7
7		Присвоение num_1=0	8
8		Инициализация строковой переменной	9
		nu=to_string(num_1)	
9		Вызов метода emit_signal с передачей параметров	10
		SIGNAL_D(cl_6::signal_res_6), result	
1		Вызов метода emit_signal с передачей параметров	Ø
0		SIGNAL_D(cl_6::signal_num_1_6), nu	
1	Значение		12
1	msg.substr(msg.size()-4)		
	равно "zero"		
			20
1	Значение flagg равно true	Вывод endl	13
2			13
1		Вывод msg	14
3			
1		Присвоение flagg=true	15
4			
1		Инициализация строковой переменной result=""	16
5			
1		Присвоение num_1=0	17

Nº	Предикат	Действия	№ перехода
6			перехода
1		Инициализация строковой переменной	18
7		nu=to_string(num_1)	
1		Вызов метода emit_signal с передачей параметров	19
8		SIGNAL_D(cl_6::signal_res_6), result	
1		Вызов метода emit_signal с передачей параметров	Ø
9		SIGNAL_D(cl_6::signal_num_1_6), nu	
2		Инициализация целочисленной переменной	21
0		ind=msg.rfind(" ")	
2		Инициализация целочисленной перемнной	22
1		num_print=stoi(msg.substr(ind+1))	
2	Значение flagg равно true	Вывод endl	23
2			23
2		Вывод msg.substr(0, ind) и " и "HEX " и	24
3		результата вызова метода НЕХ_16 с передачей	
		параметра num_print и " и "DEC " и num_print и "	
		" и "BIN " и результат вызова метода BIN_2 с	
		передачей параметра num_print	
2		Присвоение flagg=true	Ø
4			
2		Инициализация целочисленной переменной	26
5		ind=msg.rfind(" ")	
2		Инициализация целочисленной перемнной	27
6		num_print=stoi(msg.substr(ind+1))	
2	Значение flagg равно true	Вывод endl	28
7			28
2		Вывод msg.substr(0, ind) и " и "HEX " и	29
8		результата вызова метода НЕХ_16 с передачей	
		параметра num_print и " и "DEC " и num_print и "	

N	Предикат	Действия	N₂
			перехода
		" и "BIN " и результат вызова метода BIN_2 с	
		передачей параметра num_print	
2		Присвоение flagg=true	Ø
9			

3.37 Алгоритм метода HEX_16 класса cl_6

Функционал: Перевод для шестнадцатиричную систему счисления.

Параметры: int number.

Возвращаемое значение: string.

Алгоритм метода представлен в таблице 39.

Таблица 39 – Алгоритм метода HEX_16 класса cl_6

No	Предикат	Действия	No
			перехода
1		Инициализация логической переменной tem=true	2
2	Значение number меньше 0	tem=false	3
			3
3	Значение tem равно true	Инициализация строковой перемнной hex_num1=""	4
			15
4		Объявление строковой переменной hex_number	5
5		Инициализация целочисленной переменной	6
		num=abs(number)	
6	Значение пит больше 0	Инициализация целочисленной переменной	7
		ost=num%16	
			9
7	Значение ost меньше или	Присвоение hex_num1+=(ost+'0')	8
	равно 9		
		Присвоение hex_num1+='A'+(ost-10)	8
8		Присвоение num/=16	6
9	Значение hex_num1.size()	Привоение hex_num1+="0"	9

№	Предикат	Действия	№ перехода
	меньше 4		
			10
1	Значение счетчика меньше	Объявление переменной типа char temp	11
0	(hex_num1.size())/2		
			14
1		Присвоение temp = hex_num1[i]	12
1			
1		Присвоение	13
2		hex_num1[i]=hex_num1[hex_num1.size()-i-1]	
1		Присвоение hex_num1[hex_num1.size()-i-1]=temp	10
3			
1		Возврат hex_num1	Ø
4			
1		Инициализация целочисленной переменной	16
5		num_h=0	
1		Инициализация строковой переменной hex=""	17
6			
1		Инициализация строковой переменной	18
7		numb=BIN_2(number)	
1		Вызов метода строк erase(14, 1) для numb	19
8			
1		Вызов метода строк erase(9, 1) для numb	20
9			
2		Вызов метода строк erase(4, 1) для numb	21
0			
2	Счетчик цикла меньше		22
1	numb.size()-1		
			23
2	Значение numb[i] равно '1'	Присвоение num_h+=pow(2, numb.size()-i-1)	21

№	Предикат	Действия	№
			перехода
2			21
2	Значение num_h больше 0	Инициализация целочиселлной переменной	24
3		ost=num_h%16	
			26
2	Значение ost больше или	Присвоение hex+=(ost+'0')	25
4	равно 9		
		Присвоение hex+='A'+(ost-10)	25
2		Присвоение num_h/=16	23
5			
2	Значение hex.size() меньше 4	Присвоение hex+="0"	26
6			27
2	Значение счетчика меньше	Объявление переменной типа char temp	28
7	(hex.size())/2		
			31
2		Присвоение temp = hex[i]	29
8			
2		Присвоение hex[i]=hex[hex.size()-i-1]	30
9			
3		Присвоение hex[hex.size()-i-1]=temp	27
0			
3		Возврат ћех	Ø
1			

3.38 Алгоритм метода BIN_2 класса cl_6

Функционал: Перевод в двоичную систему счисления.

Параметры: int number.

Возвращаемое значение: string.

Алгоритм метода представлен в таблице 40.

Таблица 40 – Алгоритм метода BIN_2 класса cl_6

№	Предикат	Действия	№ перехода
1		Инициализация логической переменной temp=true	2
2	Значение number меньше 0	Присвоение temp=false	3
			3
3		Инициализация целочисленных переменных	4
		bin_number=0, k=1, num=abs(number)	
4		Инициализация строковой переменной num_BIN	5
5	Значение num больше 0	Присвоение num_BIN+=to_string(num%2)	6
			7
6		Присвоение num/=2	5
7	Значение num_BIN.size()	Присвоение num_BIN+="0"	7
	меньше 16		
			8
8		Вызов метода insert(4, 1, ' ') для строки num_BIN	9
9		Вызов метода insert(9, 1, ' ') для строки num_BIN	10
1		Вызов метода insert(14, 1, ' ') для строки num_BIN	11
0			
1	Счетчик цикла меньше	Объявление переменной типа char temp	12
1	(num_BIN.size())/2		
			15
1		Присвоение temp =num_BIN[i]	13
2			
1		Присвоение num_BIN[i]=num_BIN[num_BIN.size()-	14
3		i-1]	
1		Присвоение num_BIN[num_BIN.size()-i-1]=temp	11
4			
1	Значение temp равно true	Возврат num_BIN	Ø
5		Инициализация целочисленной переменной	16
		ind_1=num_BIN.rfind("1")	

No	Предикат	Действия	№
			перехода
1	Значение ind_1 не равно -1		17
6		Возврат num_BIN	Ø
1	Счетчик цика меньше ind_1		18
7		Возврат num_BIN	Ø
1	Значение num_BIN[i] равно	Присвоение num_BIN[i]='0'	17
8	'1'		
		Присвоение num_BIN[i]='1'	17

3.39 Алгоритм метода signal_res_6 класса cl_6

Функционал: Сигнал для передачи результата из класса cl_6.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 41.

Таблица 41 – Алгоритм метода signal_res_6 класса cl_6

J	νo	Предикат	Действия	№
				перехода
-	1			Ø

3.40 Алгоритм метода signal_num_1 6 класса cl_6

Функционал: Сигнал для передачи числа из класса cl_6.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 42.

Таблица 42 – Алгоритм метода signal num 1 6 класса cl 6

No	Предикат	Действия	№
			перехода
1			Ø

3.41 Алгоритм конструктора класса cl_application

Функционал: Вызов конструктора базового класса.

Параметры: cl base*parent.

Алгоритм конструктора представлен в таблице 43.

Таблица 43 – Алгоритм конструктора класса cl_application

No	Предикат				Действ	ия					No	
											переход	(a
1		Вызов	конструктора	класса	cl_base	c	передачей	параметра	cl_	base	Ø	
		*parent										

3.42 Алгоритм метода build_tree_objects класса cl_application

Функционал: Построение дерева иерархии.

Параметры: .

Возвращаемое значение: bool.

Алгоритм метода представлен в таблице 44.

Таблица 44 – Алгоритм метода build_tree_objects класса cl_application

№	Предикат	Действия	№ перехода
1		Объявление указателей на объекты класса cl_base *parent_ptr, *child_ptr_1, *child_ptr_2, *child_ptr_3, *child_ptr_4, *child_ptr_5	
2		Объявление строковых переменных parent_name, child_name, name_cin, name_1	3
3		Присвоение parent_name="SYSTEM"	4
4		Вызов метода set_name с передачей параметра parent_name	5
5		Присвоение parent_ptr=this	6
6		Вызов метода set_state с передачей параметра 1 для parent_ptr	7
7		child_ptr_1 присваивается конструктор класса cl_2 с передачей параметров parent_ptr, "READER"	8
8		Вызов метода set_state с передачей параметра 1 для child_ptr_1	9
9		child_ptr_2 присваивается конструктор класса cl_3 с передачей параметров parent_ptr, "OPERATION"	10
1 0		Вызов метода set_state с передачей параметра 1 для child_ptr_2	11

№Предикат	Действия	№
1 1	child_ptr_3 присваивается конструктор класса cl_4 с передачей параметров parent_ptr, "BIN_SDV"	перехода 12
1 2	Вызов метода set_state с передачей параметра 1 для child_ptr_3	13
1 3	child_ptr_4 присваивается конструктор класса cl_5 с передачей параметров parent_ptr, "COM_C"	14
1 4	Вызов метода set_state с передачей параметра 1 для child_ptr_4	15
5	child_ptr_5 присваивается конструктор класса cl_6 с передачей параметров parent_ptr, "PRINT"	16
1 6	Вызов метода set_state с передачей параметра 1 для child_ptr_5	17
7	Вызов метода set_connection с передачей параметров SIGNAL_D(cl_application::signal_reader), child_ptr_1, HANDLER_D(cl_2::handler_reader)	18
1 8	Вызов метода set_connection с передачей параметров SIGNAL_D(cl_2::signal_operation), child_ptr_2, HANDLER_D(cl_3::handler_operation) для child_ptr_1	19
1 9	Вызов метода set_connection с передачей параметров SIGNAL_D(cl_2::signal_operation), child_ptr_3, HANDLER_D(cl_4::handler_operation) для child_ptr_1	
2 0	Вызов метода set_connection с передачей параметров SIGNAL_D(cl_2::signal_operation), child_ptr_4, HANDLER_D(cl_5::handler_operation) для child_ptr_1	21
2 1	Вызов метода set_connection с передачей параметров SIGNAL_D(cl_2::signal_operation), this, HANDLER_D(cl_application::handler_operation) для child_ptr_1	22
2 2	Вызов метода set_connection с передачей параметров SIGNAL_D(cl_3::signal_num_to_4), child_ptr_3,	23

№ Предикат								
	HANDLER_D(cl_4::handler_num_to_4) для child_ptr_2	перехода						
2	Вызов метода set_connection с передачей параметро	ов 24						
3	SIGNAL_D(cl_4::signal_num_to_3), child_ptr_3	2,						
	HANDLER_D(cl_3::handler_num_to_3) для child_ptr_3							
2	Вызов метода set_connection с передачей параметро	ов 25						
4	SIGNAL_D(cl_3::signal_oper_to_4), child_ptr_3	3,						
	HANDLER_D(cl_4::handler_oper_to_4) для child_ptr_2							
2	Вызов метода set_connection с передачей параметро	ов 26						
5	SIGNAL_D(cl_4::signal_oper_to_3), child_ptr_3	2,						
	HANDLER_D(cl_3::handler_oper_to_3) для child_ptr_3							
2	Вызов метода set_connection с передачей параметро	ов 27						
6	SIGNAL_D(cl_3::signal_res_to_4), child_ptr_3	3,						
	HANDLER_D(cl_4::handler_res_to_4) для child_ptr_2							
2	Вызов метода set_connection с передачей параметро	ов 28						
7	SIGNAL_D(cl_4::signal_res_to_3), child_ptr_3	2,						
	HANDLER_D(cl_3::handler_res_to_3) для child_ptr_3							
2	Вызов метода set_connection с передачей параметро	ов 29						
8	SIGNAL_D(cl_3::signal_print), child_ptr_s	5,						
	HANDLER_D(cl_6::handler_print) для child_ptr_2							
2	Вызов метода set_connection с передачей параметро	ов 30						
9	SIGNAL_D(cl_4::signal_print), child_ptr_:	5,						
	HANDLER_D(cl_6::handler_print) для child_ptr_3							
3	Вызов метода set_connection с передачей параметро	ов 31						
0	SIGNAL_D(cl_5::signal_res_5), child_ptr_3	2,						
	HANDLER_D(cl_3::handler_res_to_3) для child_ptr_4							
3	Вызов метода set_connection с передачей параметро	ов 32						
1	SIGNAL_D(cl_5::signal_res_5), child_ptr_	3,						
	HANDLER_D(cl_4::handler_res_to_4) для child_ptr_4							
3	Вызов метода set_connection с передачей параметро	ов 33						

Nº	Предикат	Действия	№ перехода
2		SIGNAL_D(cl_5::signal_num_5), child_ptr_	
		HANDLER_D(cl_3::handler_num_to_3) для child_ptr_4	
3		Вызов метода set_connection я с передачей параметр	ов 34
3		SIGNAL_D(cl_5::signal_num_5), child_ptr_	_3,
		HANDLER_D(cl_4::handler_num_to_4) для child_ptr_4	
3		Вызов метода set_connection с передачей параметр	ов 35
4		SIGNAL_D(cl_5::signal_oper_5), child_ptr_	_2,
		HANDLER_D(cl_3::handler_oper_to_3) для child_ptr_4	
3		Вызов метода set_connection с передачей параметр	ов 36
5		SIGNAL_D(cl_5::signal_oper_5), child_ptr_	_3,
		HANDLER_D(cl_4::handler_oper_to_4) для child_ptr_4	
3		Вызов метода set_connection	37
6		с передачей параметров SIGNAL_D(cl_6::signal_res_6), child_ptr_	_2,
		HANDLER_D(cl_3::handler_res_to_3) для child_ptr_5	
3		Вызов метода set_connection с передачей параметр	ов 38
7		SIGNAL_D(cl_6::signal_res_6), child_ptr_	.3,
		HANDLER_D(cl_4::handler_res_to_4) для child_ptr_5	
3		Вызов метода set_connection с передачей параметр	ов 39
8		SIGNAL_D(cl_6::signal_num_1_6), child_ptr_	_2,
		HANDLER_D(cl_3::handler_num_to_3) для child_ptr_5	
3		Вызов метода set_connection с передачей параметр	ов 40
9		SIGNAL_D(cl_6::signal_num_1_6), child_ptr_	_3,
		HANDLER_D(cl_4::handler_num_to_4) для child_ptr_5	
4		Возврат true	Ø
0			

3.43 Алгоритм метода exec_app класса cl_application

Функционал: Начало работы калькулятора.

Параметры: bool b.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 45.

Таблица 45 – Алгоритм метода exec app класса cl application

No	Предикат	Действия	№
			перехода
1		Инициализация строковой пременной ms=""	2
2		Присвоение flag_input=true	3
3	Значение flag_input истинно	Вызов метода emit_signal с передачей параметров	3
		SIGNAL_D(cl_application::signal_reader), ms	
		Возврат 0	Ø

3.44 Алгоритм метода signal_reader класса cl_application

Функционал: Сигнал для считывания данных.

Параметры: string &msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 46.

Таблица 46 – Алгоритм метода signal_reader класса cl_application

Vō	Предикат	Действия	№
			перехода
1			Ø

3.45 Алгоритм метода handler_operation класса cl_application

Функционал: Обрабочик сигнала для вывода иерархии.

Параметры: string msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 47.

Таблица 47 – Алгоритм метода handler_operation класса cl_application

No	Предикат		Действия	№
				перехода
1	Значение msg	равно	Присвоение flag_input=false	Ø
	"Overflow"			
				2

№	Предикат	Действия	№
			перехода
2	Значение msg равно	Вывод "Object tree"	3
	"SHOWTREE"		
			7
3		Присвоение flag_input=false	4
4		Вывод endl и "SYSTEM"	5
5	Значение	Вывод " is ready"	6
	get_ptr_by_name("SYSTEM")		
	->get_state() равно 1		
		Вывод " is not ready"	6
6		Вызов метода print_state с передачей параметра 1	Ø
7	Значение msg равно "Off"	Присвоение flag_input=false	Ø
			Ø

3.46 Алгоритм конструктора класса cl_base

Функционал: Добавление объекта в вектор.

Параметры: cl_base *parent, string name="".

Алгоритм конструктора представлен в таблице 48.

Таблица 48 – Алгоритм конструктора класса cl_base

No	Предикат	Действия	№
			перехода
1		Текущий name=name	2
2		Текущий parent = parent	3
3	Значение parent	Вызв метода children.push_back с передачей	Ø
	не равно nullptr	параметра this для parent	
			Ø

3.47 Алгоритм деструктора класса cl_base

Функционал: Удаление вектора.

Параметры: .

Алгоритм деструктора представлен в таблице 49.

Таблица 49 – Алгоритм деструктора класса cl base

No	Предикат	Действия	№
			перехода
1	Счетчик цикла меньш	е Удаление children[i]	1
	children.size()		
			2
2	Счетчик цикла меньш	e Удаление connections[i]	2
	connections.size()		
			Ø

3.48 Алгоритм метода get_name класса cl_base

Функционал: Возврат имени.

Параметры: .

Возвращаемое значение: string.

Алгоритм метода представлен в таблице 50.

Таблица 50 – Алгоритм метода get name класса cl base

J	νo	Предикат	Действия	№
				перехода
-	1		Вызврат пате	Ø

3.49 Алгоритм метода set_name класса cl_base

Функционал: Заполение поля пате.

Параметры: string name.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 51.

Таблица 51 – Алгоритм метода set_name класса cl_base

,	No	Предикат	Действия	№
				перехода
	1		Присвоение name=name1	Ø

3.50 Алгоритм метода get parent класса cl_base

Функционал: Возврат указателя на родителя.

Параметры: .

Возвращаемое значение: cl base*.

Алгоритм метода представлен в таблице 52.

Таблица 52 – Алгоритм метода get_parent класса cl_base

ĺ	Nο	Предикат	Действия	№
				перехода
	1		Возврат parent	Ø

3.51 Алгоритм метода set_parent класса cl_base

Функционал: Установка родительского объекта.

Параметры: cl_base *new_parent.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 53.

Таблица 53 – Алгоритм метода set parent класса cl base

No	Предикат	Действия	N₂
			перехода
1	Значение parent не равно		2
	nullptr		
			5
2	Значение счетчика цикла		3
	меньше		
	размера вектра children для		
	parent		
			5
3	Значение parent->children[i]	Вызов children.erase(parent->children.begin()+i) для	4
	равно this	parent	
			2
4		break	2
5		Присвоение parent = new_parent	6
6	Значение parent не равно	Вызов children.push_back(this) для parent	Ø

№	Предикат	Действия	№
			перехода
	nullptr		
			Ø

3.52 Алгоритм метода get_ptr_by_name класса cl_base

Функционал: Нахождение указателя по имени объекта.

Параметры: string name.

Возвращаемое значение: cl base*.

Алгоритм метода представлен в таблице 54.

Таблица 54 – Алгоритм метода get ptr by name класса cl base

№	Предикат	Действия	№
			перехода
1	Значение get_name() для this	Возврат this	Ø
	равно пате		
			2
2	Счетчик цикла меньше	Инициализация указателя на объект класса cl_base	3
	размера вектора children для	buff = children[i]->get_ptr_by_name(name)	
	this		
		Возврат nullptr	Ø
3	Значение buff не равно	Возврат buff	2
	nullptr		
			2

3.53 Алгоритм метода get_state класса cl_base

Функционал: Возврат готовности.

Параметры: .

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 55.

Таблица 55 – Алгоритм метода get state класса cl base

•	No	Предикат	Действия	№	
				перехода	
	1		Возврат state	Ø	

3.54 Алгоритм метода set_state класса cl_base

Функционал: Установка готовности.

Параметры: int state1.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 56.

Таблица 56 – Алгоритм метода set_state класса cl_base

No	Предикат	Действия	№
	-		перехода
1	Значение parent не равно		2
	nullptr		
			4
2	Значение get_state() для	Присвоение state=state1	Ø
	parent не равно 0 и значение		
	state1 не равно 0		
		Присвоение state=0	3
3	Счетчик цикла меньше	Вызов метода set_state с передачей параметра 0 для	Ø
	размера вектора children для	children[i]	
	this		
			Ø
4		Присвоение state=state1	5
5	Значение state равно 0		6
			Ø
6	Счетчик цикла меньше	Вызов метода set_state с передачей параметра 0 для	Ø
	размера вектор children для	children[i]	
	this		
			Ø

3.55 Алгоритм метода print state класса cl base

Функционал: Вывод дерева иерархии.

Параметры: int num_rec2.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 57.

Таблица 57 – Алгоритм метода print_state класса cl_base

No	Предикат	Действия	N_2
			перехода
1		Присвоение num_rec=num_rec2	2
2	Значение размера вектора		3
	children не равно 0		
			Ø
3	Счетчик цикла меньше	Инициализация строковой переменной	4
	размера вектора children	len=children[i]->get_name()	
			Ø
4	Значение get_state() для	Присвоение len+=" is not ready"	5
	children[i] равно 0		
		Присвоение len+=" is ready"	5
5		Вывод endl и setw(len.size()+4*num_rec) и len	6
6		Значение num_rec++	7
7		Вызов метода print_state с передачей параметра	8
		num_rec для children[i]	
8		Значение num_rec	Ø

3.56 Алгоритм метода set_connection класса cl_base

Функционал: Установка связи.

Параметры: TYPE_SIGNAL signal, cl_base* target_obj, TYPE_HANDLER handler.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 58.

Таблица 58 – Алгоритм метода set connection класса cl base

N	Предикат	Действия	\mathcal{N}_{2}
			перехода
1		Инициализация указателя на структуру connection=new o_sh(signal,	2
		target_obj, handler)	
2		Добавление в вектор connections элемента connection	Ø

3.57 Алгоритм метода delete_connection класса cl_base

Функционал: Удаление связи.

Параметры: TYPE_SIGNAL signal, cl_base* target_obj, TYPE_HANDLER handler.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 59.

Таблица 59 – Алгоритм метода delete connection класса cl base

No	Предикат	Действия	N₂
			перехода
1	Значение счетчика меньше		2
	размера вектора connections		
			Ø
2	Значение (connections[i]-	Удаление элемента с индексом счетчика	1
	>signal) равно signal и		
	(connections[i])->target_obj		
	равно target_obj		
			1

3.58 Алгоритм метода emit_signal класса cl_base

Функционал: выдать сигнал от заданного по координате объекта.

Параметры: TYPE_SIGNAL signal, string& msg.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 60.

Таблица 60 – Алгоритм метода emit_signal класса cl_base

No	Предикат	Действия	№
1		Объявление указателя на объект класса cl_base target_obj_ptr	перехода 2
2		Объявление переменной типа TYPE_HANDLER handler_obj	3
3	Значение метода get_state() для this не равно 0	Вызов (this->*signal)(msg)	4
			Ø
4	Счетчик цикла меньше размера вектора connections		5
			Ø
5	Значение connections[i]- >signal равно signal	Присвоение target_obj_ptr=connections[i]-> target_obj	6
			Ø
6		Присвоение handler_obj= connections[i]-> handler	7
7	Значение target_obj_ptr- >get_state() истинно	Вызов (target_obj_ptr->*handler_obj)(msg)	4
			4

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-52.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

Рисунок 6 – Блок-схема алгоритма

Рисунок 7 – Блок-схема алгоритма

Рисунок 8 – Блок-схема алгоритма

Рисунок 9 – Блок-схема алгоритма

Рисунок 10 – Блок-схема алгоритма

Рисунок 11 – Блок-схема алгоритма

Рисунок 12 – Блок-схема алгоритма

Рисунок 13 – Блок-схема алгоритма

Рисунок 14 – Блок-схема алгоритма

Рисунок 15 – Блок-схема алгоритма

Рисунок 16 – Блок-схема алгоритма

Рисунок 17 – Блок-схема алгоритма

Рисунок 18 – Блок-схема алгоритма

Рисунок 19 – Блок-схема алгоритма

Рисунок 20 – Блок-схема алгоритма

Рисунок 21 – Блок-схема алгоритма

Рисунок 22 – Блок-схема алгоритма

Рисунок 23 – Блок-схема алгоритма

Рисунок 24 – Блок-схема алгоритма

Рисунок 25 – Блок-схема алгоритма

Рисунок 26 – Блок-схема алгоритма

Рисунок 27 – Блок-схема алгоритма

Рисунок 28 – Блок-схема алгоритма

Рисунок 29 – Блок-схема алгоритма

Рисунок 30 – Блок-схема алгоритма

Рисунок 31 – Блок-схема алгоритма

Рисунок 32 – Блок-схема алгоритма

Рисунок 33 – Блок-схема алгоритма

Рисунок 34 – Блок-схема алгоритма

Рисунок 35 – Блок-схема алгоритма

Рисунок 36 – Блок-схема алгоритма

Рисунок 37 – Блок-схема алгоритма

Рисунок 38 – Блок-схема алгоритма

Рисунок 39 – Блок-схема алгоритма

Рисунок 40 – Блок-схема алгоритма

Рисунок 41 – Блок-схема алгоритма

Рисунок 42 – Блок-схема алгоритма

Рисунок 43 – Блок-схема алгоритма

Рисунок 44 – Блок-схема алгоритма

Рисунок 45 – Блок-схема алгоритма

Рисунок 46 – Блок-схема алгоритма

Рисунок 47 – Блок-схема алгоритма

Рисунок 48 – Блок-схема алгоритма

Рисунок 49 – Блок-схема алгоритма

Рисунок 50 – Блок-схема алгоритма

Рисунок 51 – Блок-схема алгоритма

Рисунок 52 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.0 Файл cl_1.h

Листинг $1 - cl_1.h$

```
#ifndef __CL_1_H__
#define __CL_1_H__
#include <iostream>
#include "cl_base.h"
using namespace std;
class cl_1:public cl_base
{
public:
        cl_1(cl_base *parent, string name): cl_base(parent, name) {};
};
#endif
```

5.1Файл cl_2.cpp

Листинг $2 - cl_2.cpp$

```
#include <iostream>
#include <string>
#include <vector>
#include <iomanip>
#include "cl_2.h"
using namespace std;

void cl_2::handler_reader(string msg)
{
    string znak;
    cin>>znak;
    emit_signal(SIGNAL_D(cl_2::signal_operation), znak);
}
```

5.2Файл cl_2.h

Листинг $3 - cl_2.h$

5.3 Файл cl_3.cpp

Листинг $4 - cl_3.cpp$

```
#include <iostream>
#include <string>
#include <vector>
#include <iomanip>
#include "cl 3.h"
using namespace std;
void cl 3::handler operation(string msg)
      bool tem=false;
               (msq!="Off"&&
                                 msq!="C"
                                                  & &
                                                            (msq=="+"||
                                                                             msq=="-
"||msq=="*"||msq=="/"||msg=="%")&& msg!="SHOWTREE")
            operation=msg;
            result+=" "+operation;
            emit signal(SIGNAL D(cl 3::signal res to 4), result);
            emit signal(SIGNAL D(cl 3::signal oper to 4), operation);
            flag C=false;
      }
      else
            if (msg!="Off" && msg!="C"&& msg!="SHOWTREE")
                  if (operation!=""&& operation!="<<"&&operation!=">>")
                  {
                        result+=" "+msq;
                        int num 2=stoi(msg);
                        if (operation=="+")
                              num_1=plus(num_1, num_2);
                        if (operation=="-")
                              num 1=minus(num 1, num 2);
                        if (operation=="*")
                               num 1=umn(num 1, num 2);
                        if (operation=="/")
                               if (msg!="0")
                                     num 1=del(num 1, num 2);
                               else
                               {
                                     result+="
                                                   Division by zero";
                                     emit signal(SIGNAL D(cl 3::signal print),
result);
                                     num 1=0;
                                     result="0";
                                     string numb=to string(num 1);
                                     emit signal(SIGNAL D(cl 3::signal num to 4),
numb);
                                     tem=true;
                                     emit signal(SIGNAL D(cl 3::signal res to 4),
```

```
result);
                                     operation="";
                                     emit signal(SIGNAL D(cl 3::signal oper to 4),
operation);
                         if (operation=="%")
                               if (msq!="0")
                                     num 1=ost(num 1, num 2);
                               else
                               {
                                     result+="
                                                    Division by zero";
                                     emit signal(SIGNAL D(cl 3::signal print),
result);
                                     num 1=0;
                                     result="0";
                                     string numb=to string(num 1);
                                     emit signal(SIGNAL D(cl 3::signal num to 4),
numb);
                                     tem=true;
                                     emit signal(SIGNAL D(cl 3::signal res to 4),
result);
                                     operation="";
                                     emit signal(SIGNAL D(cl 3::signal oper to 4),
operation);
                               }
                         if (tem==false)
                               if (num 1 <= 32767 \&\& num 1>= -32768)
                                     operation="";
                                     string nu=to string(num 1);
                                     emit signal(SIGNAL D(cl 3::signal num to 4),
nu);
                                     string prin=result +" "+ to string(num 1);
                                     emit signal(SIGNAL D(cl 3::signal print),
prin);
                                     emit_signal(SIGNAL_D(cl_3::signal_res_to_4),
result);
                                     emit signal(SIGNAL D(cl 3::signal oper to 4),
operation);
                               else
                                     result+="
                                                    Overflow";
                                     emit signal(SIGNAL D(cl 3::signal print),
result);
                                     num 1=0;
                                     result="0";
                                     string numb=to string(num_1);
                                     emit signal(SIGNAL D(cl 3::signal num to 4),
numb);
                                     tem=true;
                                     emit signal(SIGNAL D(cl 3::signal res to 4),
result);
```

```
operation="";
                                     emit_signal(SIGNAL_D(cl_3::signal_oper_to_4),
operation);
                               }
                  }
                                                                          msg!=">>"
                                            (msg!="<<"
                  else
                                if
                                                               & &
&&(operation!="<<"&&operation!=">>") &&msg!="SHOWTREE")
                        num 1=stoi(msg);
                        if (result!=""&& operation!="")
                              result+=" "+to_string(num_1);
                        else
                              if (flag C!=false)
                                    result+=msg;
                              else
                               {
                                    result=msg;
                                    flag_C=false;
                        string nu=to_string(num_1);
                        emit signal(SIGNAL D(cl 3::signal num to 4), nu);
                        emit signal(SIGNAL D(cl 3::signal res to 4), result);
                        emit signal(SIGNAL D(cl 3::signal oper to 4), operation);
                  }
            }
int cl 3::plus (int num 1, int num 2)
      return num 1+num 2;
int cl 3::minus (int num 1, int num 2)
     return num 1-num 2;
int cl_3::umn (int num_1, int num_2)
      return num 1*num 2;
int cl 3::del(int num 1, int num 2)
     return num 1/num 2;
int cl 3::ost (int num 1, int num 2)
     return num 1%num 2;
void cl 3::handler num to 3(string msg)
```

```
num_1=stoi(msg);
}

void cl_3::handler_oper_to_3(string msg)
{
    operation=msg;
}

void cl_3::handler_res_to_3(string msg)
{
    result=msg;
}
```

5.4Файл cl_3.h

Листинг $5 - cl_3.h$

```
#ifndef
          CL 3 H
#define
        CL 3 H
#include <iostream>
#include "cl base.h"
using namespace std;
class cl 3:public cl base
      int num 1;
      string result;
      string operation;
public:
      cl 3(cl base *parent, string name): cl base(parent, name){};
      int plus (int num 1, int num 2);
      int minus (int num 1, int num 2);
      int umn (int num_1, int num 2);
      int del (int num_1, int num_2);
      int ost (int num_1, int num_2);
      void handler_operation(string msg);
      void signal print(string &msg){};
      void signal num to 4(string &msg){};
      void signal oper to 4(string &msg){};
      void signal res to 4(string &msg){};
      void handler num to 3(string msg);
      void handler oper to 3(string msg);
      void handler res to 3(string msg);
};
#endif
```

5.5Файл cl_4.cpp

Листинг $6 - cl_4.cpp$

```
#include <iostream>
#include <string>
#include <vector>
#include <iomanip>
#include <cstdlib>
#include "cl_4.h"
using namespace std;
```

```
void cl 4::handler operation(string msg)
      if (msq!="Off"&& msq!="C" && (msq=="<<"|| msq==">>")&& msq!="SHOWTREE")
            operation=msq;
            result+=" "+operation;
            emit signal(SIGNAL D(cl 4::signal res to 3), result);
            emit signal (SIGNAL D(cl 4::signal oper to 3), operation);
      else
      {
                    (msg!="Off"
                                    & &
                                            msq!="C"
                                                           && (msq!="+"&&
                                                                              msq!="-
"&&msg!="*"&&msg!="/"&&msg!="%") && msg!="SHOWTREE")
                  if (operation!="")
                   {
                         result+=" "+msg;
                         if (operation=="<<")</pre>
                               num 1=sdv lev(num 1, stoi(msg));
                         if (operation = \overline{"} >> ")
                               num_1=sdv_prav(num_1, stoi(msg));
                         if (num_1 \le 32767 \&\& num 1 \ge -32768)
                               operation="";
                               string nu=to string(num 1);
                               emit signal(SIGNAL D(cl 4::signal num to 3), nu);
                               emit signal (SIGNAL D(cl 4::signal res to 3),
result);
                               emit signal(SIGNAL D(cl 4::signal oper to 3),
operation);
                               string prin=result +" "+ to string(num 1);
                               emit signal(SIGNAL D(cl 4::signal print), prin);
                         }
                         else
                               result+="
                                            Overflow";
                               emit signal(SIGNAL D(cl 4::signal print), result);
                               num 1=0;
                               result="0";
                               string numb=to_string(num_1);
                               emit signal(SIGNAL D(cl 4::signal num to 3), numb);
                               emit signal (SIGNAL D(cl 4::signal res to 3),
result);
                               operation="";
                               emit signal(SIGNAL D(cl 4::signal oper to 3),
operation);
                        }
                  }
            }
      }
int cl 4::sdv lev (int num 1, int num 2)
      int num num=num 1;
      while (num 2>0)
            num num*=2;
```

```
num 2--;
      }
      return num num;
}
int cl 4::sdv prav (int num 1, int num 2)
      int num num=num 1;
      while (num 2>0)
            num num/=2;
            num 2--;
      return num num;
void cl 4::handler num to 4(string msg)
      num 1=stoi(msg);
void cl 4::handler oper to 4(string msg)
      operation=msg;
void cl 4::handler res to 4(string msg)
      result=msg;
```

5.6Файл cl_4.h

Листинг $7 - cl_4.h$

```
#ifndef
          CL 4 H
#define CL 4 H
#include <iostream>
#include "cl base.h"
using namespace std;
class cl 4:public cl base
      int num 1;
      string result;
      string operation;
public:
      cl 4(cl base *parent, string name): cl base(parent, name){};
      int sdv lev (int num 1, int num 2);
      int sdv prav (int num 1, int num 2);
      void handler operation(string msg);
      void signal print(string &msg){};
      void signal_num_to_3(string &msg){};
      void signal_oper_to_3(string &msg){};
      void signal_res_to_3(string &msg){};
      void handler_num_to_4(string msg);
      void handler oper to 4(string msg);
      void handler res to 4(string msg);
#endif
```

5.7 Файл cl_**5.**cpp

Листинг $8 - cl_5.cpp$

```
#include <iostream>
#include <string>
#include <vector>
#include <iomanip>
#include "cl_5.h"
using namespace std;

void cl_5::handler_operation(string msg)
{
    if (msg=="C" && msg!="SHOWTREE")
        {
            result="";
            num_1="0";
            operation = "";
            emit_signal(SIGNAL_D(cl_5::signal_oper_5), operation);
            emit_signal(SIGNAL_D(cl_5::signal_num_5), num_1);
            emit_signal(SIGNAL_D(cl_5::signal_res_5), result);
            flag_C=true;
    }
}
```

5.8Файл cl_5.h

Листинг $9 - cl_5.h$

```
#ifndef __CL_5_H
#define __CL_5_H__
#include <iostream>
#include "cl base.h"
using namespace std;
class cl 5:public cl base
      string result;
      string num 1;
      string operation;
public:
      cl 5(cl base *parent, string name): cl base(parent, name){};
      void handler operation(string msg);
      void signal_res_5(string &msg){};
      void signal_num_5(string &msg){};
      void signal oper 5(string &msg){};
};
#endif
```

5.9Файл cl_6.cpp

Листинг 10 – cl_6.cpp

```
#include <iostream>
```

```
#include <string>
#include <vector>
#include <iomanip>
#include <cmath>
#include "cl 6.h"
using namespace std;
void cl 6::handler print(string msg)
      if(msg.size()>8)
            if (msg.substr(msg.size()-8) == "Overflow")
                  if (flagg==true)
                         cout << endl;
                  cout << msq;
                  flagg=true;
                  string result="";
                  num 1=0;
                  string nu=to string(num 1);
                  emit signal(SIGNAL D(cl 6::signal res 6), result);
                  emit signal(SIGNAL D(cl 6::signal num 1 6), nu);
            else if (msg.substr(msg.size()-4) == "zero")
                  if (flagg==true)
                         cout << endl;
                  cout << msg;
                  string result="";
                  num 1=0;
                  string nu=to string(num 1);
                  emit signal(SIGNAL D(cl 6::signal res 6), result);
                  emit signal(SIGNAL D(cl 6::signal num 1 6), nu);
                  flagg=true;
            else
                  int ind=msg.rfind(" ");
                   int num print=stoi(msg.substr(ind+1));
                  if (flagg==true)
                         cout << endl;
                                                     "<<"HEX "<<HEX 16(num_print)<<"
                  cout<<msg.substr(0, ind)<<"</pre>
"<<"DEC "<<num print<<" "<<"BIN "<<BIN 2 (num print);
                  flagg=true;
      }
      else
            int ind=msg.rfind(" ");
            int num print=stoi(msg.substr(ind+1));
            if (flagg==true)
                  cout << endl;
            cout<<msq.substr(0, ind)<<"</pre>
                                                     "<<"HEX "<<HEX 16(num print) <<"
"<<"DEC "<<num print<<" "<<"BIN "<<BIN 2 (num print);
            flagg=true;
      }
```

```
string cl_6::BIN_2(int number)
      bool temp=true;
      if (number<0)
            temp=false;
      int bin number=0, k=1, num=abs(number);
      string num BIN;
      while (num>0)
            num BIN+=to string(num%2);
            num/=2;
      }
      while (num BIN.size()<16)
            num BIN+="0";
      num BIN.insert(4, 1, ' ');
      num_BIN.insert(9, 1, ' ');
      num_BIN.insert(14, 1, '');
      for (int i=0; i<(num BIN.size())/2;i++)
            char temp;
            temp =num BIN[i];
            num BIN[i]=num BIN[num BIN.size()-i-1];
            num BIN[num BIN.size()-i-1]=temp;
      if (temp==true)
            return num BIN;
      else
            int ind 1=num BIN.rfind("1");
            if (ind 1!=-1)
                  for (int i=0; i<ind 1; i++)
                         if (num BIN[i] == '1')
                               num BIN[i]='0';
                         else if (num BIN[i]=='0')
                               num BIN[i]='1';
                   }
                  return num BIN;
            else return num BIN;
string cl 6::HEX 16(int number)
      bool tem=true;
      if (number<0)
            tem=false;
      if (tem==true)
            string hex num1="", hex number;
            int num=abs(number);
            while (num>0)
```

```
int ost=num%16;
            if (ost <= 9)
                   hex num1+=(ost+'0');
            else
                   hex num1+='A'+(ost-10);
            num/=16;
      while (hex num1.size()<4)
            hex num1+="0";
      for (int i=0; i<(hex num1.size())/2;i++)</pre>
            char temp;
            temp = hex num1[i];
            hex num1[i]=hex num1[hex num1.size()-i-1];
            hex num1[hex num1.size()-i-1]=temp;
      return hex_num1;
}
else
      int num h=0;
      string hex="";
      string numb=BIN 2(number);
      numb.erase(14, 1);
      numb.erase(9, 1);
      numb.erase(4, 1);
      for (int i=0; i<numb.size()-1; i++)</pre>
            if (numb[i] == '1')
                   num h += pow(2, numb.size()-i-1);
      while (num h>0)
            int ost=num h%16;
            if (ost<=9)
                   hex+=(ost+'0');
            else
                   hex += 'A' + (ost -10);
            num h/=16;
      while (hex.size()<4)</pre>
            hex+="0";
      for (int i=0; i<(hex.size())/2;i++)
            char temp;
            temp = hex[i];
            hex[i]=hex[hex.size()-i-1];
            hex[hex.size()-i-1]=temp;
      return hex;
```

5.10 Файл cl_6.h

Листинг $11 - cl_6.h$

```
#ifndef
          CL 6 H
#define
          CL 6 H
#include <iostream>
#include <string>
#include "cl base.h"
using namespace std;
class cl_6:public cl_base
      bool flagg=false;
      int num 1;
public:
      cl 6(cl base *parent, string name): cl base(parent, name) { };
      void handler print(string msg);
      string HEX 16(int number);
      string BIN 2(int number);
      void signal res 6(string &msg){};
      void signal num 1 6(string &msg) {};
};
#endif
```

5.11 Файл cl_application.cpp

Листинг 12 – cl_application.cpp

```
#include <iostream>
#include <string>
#include <stdio.h>
#include "cl application.h"
#include "cl base.h"
#include "cl 2.h"
#include "cl 3.h"
#include "cl 4.h"
#include "cl 5.h"
#include "cl 6.h"
using namespace std;
bool cl application::build tree objects()
      cl base *parent ptr, *child ptr 1, *child ptr 2, *child ptr 3, *child ptr 4,
*child ptr_5;
      string parent name, child name, name cin, name 1;
      parent name="SYSTEM";
      set name (parent name);
      parent ptr=this;
      parent ptr->set state(1);
      child_ptr_1 = new cl_2(parent_ptr, "READER");
      child_ptr_1->set_state(1);
      child_ptr_2 = new cl_3(parent_ptr, "OPERATION");
```

```
child ptr 2->set state(1);
     child_ptr_3 = new cl_4(parent_ptr, "BIN_SDV");
     child ptr 3->set state(1);
     child ptr 4 = new cl 5(parent ptr, "COM C");
     child ptr 4->set state(1);
     child ptr 5 = new cl 6(parent ptr, "PRINT");
     child ptr 5->set state(1);
     set connection(SIGNAL D(cl application::signal reader), child ptr 1,
HANDLER D(cl 2::handler reader));
     child ptr 1->set connection(SIGNAL D(cl 2::signal operation), child ptr 2,
HANDLER D(cl 3::handler operation));
     child ptr 1->set connection(SIGNAL D(cl 2::signal operation),
                                                                   child ptr 3,
HANDLER D(cl 4::handler operation));
     child ptr 1->set connection(SIGNAL D(cl 2::signal operation),
                                                                   child ptr 4,
HANDLER D(cl 5::handler operation));
     child ptr 1->set connection(SIGNAL D(cl 2::signal operation),
                                                                           this,
HANDLER D(cl application::handler operation));
     child ptr 2->set connection(SIGNAL D(cl 3::signal num to 4), child ptr 3,
HANDLER D(cl 4::handler num to 4));
     child ptr 3->set connection(SIGNAL D(cl 4::signal num to 3),
                                                                   child ptr 2,
HANDLER D(cl 3::handler num to 3));
     child ptr 2->set connection(SIGNAL D(cl 3::signal oper to 4), child ptr 3,
HANDLER D(cl 4::handler oper to 4));
     child ptr 3->set connection(SIGNAL D(cl 4::signal oper to 3),
                                                                   child ptr 2,
HANDLER D(cl 3::handler oper to 3));
     child ptr 2->set connection(SIGNAL D(cl 3::signal res to 4),
                                                                   child ptr 3,
HANDLER D(cl 4::handler res to 4));
     child ptr 3->set connection(SIGNAL D(cl 4::signal res to 3),
                                                                  child ptr 2,
HANDLER D(cl 3::handler res to 3));
     child ptr 2->set connection(SIGNAL D(cl 3::signal print), child ptr 5,
HANDLER D(cl 6::handler print));
     child ptr 3->set connection(SIGNAL D(cl 4::signal print), child ptr 5,
HANDLER D(cl 6::handler print));
     child ptr 4->set connection(SIGNAL D(cl 5::signal res 5), child ptr 2,
HANDLER D(cl 3::handler res to 3));
     child ptr 4->set connection(SIGNAL D(cl 5::signal res 5),
                                                                   child ptr 3,
HANDLER D(cl 4::handler res to 4));
     child ptr 4->set connection(SIGNAL D(cl 5::signal num 5), child ptr 2,
HANDLER D(cl 3::handler num to 3));
     child ptr 4->set connection(SIGNAL_D(cl_5::signal_num_5), child_ptr_3,
HANDLER D(cl 4::handler num to 4));
     child ptr 4->set connection(SIGNAL D(cl 5::signal oper 5), child ptr 2,
HANDLER D(cl 3::handler oper to 3));
     child ptr 4->set connection(SIGNAL D(cl 5::signal oper 5), child ptr 3,
HANDLER D(cl 4::handler oper to 4));
     child ptr 5->set connection(SIGNAL D(cl 6::signal res 6), child ptr 2,
HANDLER D(cl 3::handler res to 3));
     child ptr 5->set connection(SIGNAL D(cl 6::signal res 6), child ptr 3,
```

```
HANDLER D(cl 4::handler res to 4));
      child ptr 5->set connection(SIGNAL D(cl 6::signal num 1 6),
                                                                        child ptr 2,
HANDLER D(cl 3::handler num to 3));
      child ptr 5->set connection(SIGNAL D(cl 6::signal num 1 6),
                                                                        child ptr 3,
HANDLER D(cl 4::handler num to 4));
      return true;
int cl application::exec app(bool b)
      string ms="";
      flag input=true;
      while(flag input)
            emit signal(SIGNAL D(cl application::signal reader), ms);
      return 0;
}
void cl application::handler operation(string msg)
      if (msg=="Overflow")
      {
            flag input=false;
      else if (msg=="SHOWTREE")
            cout<<"Object tree";</pre>
            flag input=false;
            cout<<endl<<"SYSTEM";</pre>
            if (get ptr by name("SYSTEM")->get state()==1)
                  cout<<" is ready";
            else cout<<" is not ready";
            print state(1);
      else if (msq=="Off")
      {
            flag input=false;
      }
```

5.12 Файл cl_application.h

Листинг 13 – cl_application.h

```
#ifndef __CL_APPLICATION_H__
#define __CL_APPLICATION_H__
#include <iostream>
#include "cl_base.h"
#include "cl_1.h"
using namespace std;
class cl_application:public cl_base
{
    bool flag_input;
public:
    cl_application(cl_base*parent):cl_base(parent) {};
```

```
bool build_tree_objects();
  int exec_app(bool b);
  void signal_reader(string &msg){};
  void handler_operation(string msg);
};
#endif
```

5.13 Файл cl_base.cpp

Листинг $14 - cl_base.cpp$

```
#include <iostream>
#include <string>
#include <vector>
#include <iomanip>
#include <cmath>
#include "cl base.h"
using namespace std;
cl base :: cl base(cl base *parent, string name)
      this->name=name;
      this->parent = parent;
      if(parent !=nullptr)
            parent->children.push back(this);
}
cl base :: ~cl base()
      for(int i=0; i<children.size(); i++)</pre>
            delete children[i];
      for(int i=0; i<connections.size(); i++)</pre>
            delete connections[i];
      }
void cl base::set parent(cl base * new parent)
      if(parent!=nullptr)
            for(int i=0; i<parent->children.size(); i++)
                  if (parent->children[i]==this)
                         parent->children.erase(parent->children.begin()+i);
                         break;
                   }
      parent = new parent;
      if(parent!=nullptr)
```

```
parent->children.push back(this);
      }
}
string cl base::get name()
      return name;
void cl base::set name(string name1)
      name=name1;
cl base * cl base::get parent()
      return parent;
cl_base * cl_base::get_ptr_by_name(string name)
      if(this->get_name() ==name)
            return this;
      for (int i=0; i<this->children.size(); i++)
            cl base* buff = children[i]->get ptr by name(name);
            if(buff!=nullptr)
                  return buff;
      return nullptr;
int cl base::get state()
      return state;
void cl_base::set_state(int state1)
      if (parent!=nullptr)
            if(parent->get state()!=0 && state1!=0)
                  state=state1;
            else
            {
                  state=0;
                  for (int i=0; i < this->children.size(); i++)
                        children[i]->set state(0);
      }
      else
```

```
state=state1;
            if (state==0)
                  for (int i=0; i < this->children.size(); i++)
                        children[i]->set state(0);
                  }
      }
void cl base::print state(int num rec2)
      num rec=num rec2;
      if (children.size()!=0)
            for (int i=0; i<children.size(); i++)</pre>
                  string len=children[i]->get name();
                  if((children[i]->get state())==0)
                        len+=" is not ready";
                  else len+=" is ready";
                  cout<<endl<<setw(len.size()+4*num rec)<<len;</pre>
                  num rec++;
                  children[i]->print state(num rec);
                  num rec--;
            }
      }
void cl_base::set_connection(TYPE_SIGNAL signal, cl_base* target obj, TYPE HANDLER
handler)
      o sh* connection=new o sh(signal, target obj, handler);
      connections.push back(connection);
       cl base::delete connection(TYPE SIGNAL signal, cl base*
void
                                                                       target obj,
TYPE HANDLER handler)
      for(int i=0; i<this->connections.size(); i++)
                   ((connections[i]->signal) == signal &&
                                                                   (connections[i]) -
>target obj==target obj)
                  this->connections.erase(this->connections.begin()+i);
            }
      }
void cl base::emit signal(TYPE SIGNAL signal, string& msg)
      cl base* target obj ptr;
      TYPE HANDLER handler obj;
      if (this->get state()!=0)
            (this->*signal) (msg);
```

5.14 Файл cl_base.h

Листинг $15 - cl_base.h$

```
#ifndef
       CL BASE H
#define CL BASE H
#include <iostream>
#include <string>
#include <vector>
using namespace std;
class cl base;
typedef void(cl base::*TYPE SIGNAL)(string&);
typedef void(cl base::*TYPE HANDLER)(string);
#define SIGNAL D(signal f) (TYPE SIGNAL) (&signal f)
#define HANDLER D(handler f) (TYPE HANDLER) (&handler f)
class cl base
private:
      struct o_sh
            TYPE SIGNAL signal;
            cl base* target obj;
            TYPE HANDLER handler;
            o sh (TYPE SIGNAL signal, cl base* target obj, TYPE HANDLER handler):
signal(signal), target obj(target obj), handler(handler){};
private:
      string name;
      cl base* parent;
      vector <cl base*> children;
      int num rec;
      int state=1;
      vector <o sh*> connections;
protected:
      bool flag_C=false;
public:
      cl base(cl base *parent, string name="");
      ~cl base();
      string get name();
      void set name(string name);
      cl base * get parent();
      void set parent(cl base *new parent);
```

```
cl_base * get_ptr_by_name (string name);
   int get_state();
   void set_state(int state1);
   void print_state(int num_rec2);
   void set_connection(TYPE_SIGNAL signal, cl_base* target_obj, TYPE_HANDLER
handler);
   void delete_connection (TYPE_SIGNAL signal, cl_base* target_obj,
TYPE_HANDLER handler);
   void emit_signal(TYPE_SIGNAL signal, string& msg);
};
#endif
```

5.15 Файл таіп.срр

Листинг 16 – main.cpp

```
#include "cl_application.h"
using namespace std;
int main()
{
      cl_application cl_application_obj(nullptr);
      bool b;
      b=cl_application_obj.build_tree_objects();
      return cl_application_obj.exec_app(b);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 61.

Таблица 61 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные							
	данные	данные							
5		5 + 5 HEX 000A DEC 10							
+ 5		BIN 0000 0000 0000 1010							
<< 1		5 + 5 << 1 HEX 0014							
/ 0	DEC 20 BIN 0000 0000 0001								
+ 5		0100							
C		5 + 5 << 1 / 0							
7		Division by zero							
8 / -3	0 + 5 HEX 0005 DEC 5	0 + 5 HEX 0005 DEC 5 BIN 0000 0000 0000 0101							
· -		8 / -3 HEX FFFE DEC -							
C 9	2 BIN 1111 1111 1111 1110								
% - 4		9 % -4 HEX 0001 DEC 1							
+ 7		BIN 0000 0000 0000 0001							
* 11		9 % -4 + 7 HEX 0008							
Off	DEC 8 BIN 0000 0000 0000								
		1000							
		9 % -4 + 7 * 11 HEX							
		0058 DEC 88 BIN 0000							
	0000 0101 1000	0000 0101 1000							
5	7 + 5 HEX 000C DEC 12	7 + 5 HEX 000C DEC 12							
7	BIN 0000 0000 0000 1100	BIN 0000 0000 0000 1100							
+ 5		7 + 5 << 1 HEX 0018							
<< 1		DEC 24 BIN 0000 0000 0001							
>> 2		1000							
/ 0		7 + 5 << 1 >> 2 HEX							
+ 5	0006 DEC 6 BIN 0000 0000								
C 7		0000 0110							
	7 + 5 << 1 >> 2 / 0								
8 % 0	Division by zero 0 + 5 HEX 0005 DEC 5	Division by zero 0 + 5 HEX 0005 DEC 5							
° C		BIN 0000 0000 0000 0101							
9	8 % 0 Division by zero								
+ 32767	_	9 + 32767 Overflow							
8 -4	0 % -4 HEX 0000 DEC 0								
+ 7	BIN 0000 0000 0000 0000								
* 11		0 % -4 + 7 HEX 0007							
С	DEC 7 BIN 0000 0000 0000								
1	0111	0111							
- 32770	0 % -4 + 7 * 11 HEX	0 % -4 + 7 * 11 HEX							
5	004D DEC 77 BIN 0000								
* 5	0000 0100 1101	0000 0100 1101							
/ 5	1 - 32770 Overflow	1 - 32770 Overflow							
/ 3	5 * 5 HEX 0019 DEC 25								
Off	BIN 0000 0000 0001 1001								
	5 * 5 / 5 HEX 0005								
	DEC 5 BIN 0000 0000 0000								
	0101	0101							

Входные данные	Ожидаемые выходные						Фактические выходные							
	данные						данные							
	5 *	5 /	5 /	3	HEX	00015	5 *	5	/	5 /	3	HEX	0001	
	DEC	1	BIN	0000	0000	00001	DEC	1		BIN	0000	0000	0000	
	0001					(000	1						

ЗАКЛЮЧЕНИЕ

В процессе изучения ООП во втором семестре я научилась таким парадигмам ООП, как наследование, инкапсуляция, полиморфизм. Я научилась использовать классы и дружественные функции, создавать методы и макросы для реализации сигналов и обработчиков.

Полученные знания помогут мне в будущем для анализа "больших данных" в различных сферах специальности "Прикладная математика".

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).