

KARL-FRANZENS-UNIVERSITÄT GRAZ INSTITUT FÜR PHYSIK

23S PHY.L02UB FORTGESCHRITTENENPRAKTIKUM 2

678 Bachelorstudium Physik, UG2002/2021W

I. Compton Effekt & Röntgenfloureszenzanalyse

Wachmann Elias Zach Andreas 12004232 12004790 Gruppe 12

Betreut von Thomas Georg Boné, BSc MSc

17.03.2023

Wachmann Elia	s (12004232
Zach Andreas	(12004790)

Interferometrie

10.03.2023

Inhaltsverzeichnis

1	Aufgabenstellung	3
2	Grundlagen	4
3	Geräteliste	4
4	Versuchsaufbau	Ę
5	Versuchsdurchführung	Ę
6	Auswertung6.1 Röntgenfloureszenzanalyse6.2 Unbekannte Proben	Ć
7	Diskussion17.1 Compton-Streuung17.2 Röntgenfluoreszenzanalyse17.3 Unbekannte Proben1	12
ጸ	7usammenfassung 1	-

1 Aufgabenstellung [1]

Der folgende Laborversuch besteht aus vier separaten Teilversuchen, welche sich abermals wie folgt in Unterversuche gliedern:

• Young'scher Doppelspalt

- Aufzeichnen des Beugungsmusters von vier Doppelspalten mit unterschiedlichen Spaltbreiten und Spaltabständen
- Berechnen der Wellenlänge des Lasers
- Erklären der aufgezeichneten Beugungsmuster durch Vergleich mit theoretisch errechneten Mustern
- Aufzeichnen des Beugungsmusters eines Liniengitters
- Bestimmen der Gitterkonstante

• Wellenfront-Analyse / Shearing Interferometer

- Vermessen des Interferenzmusters
- Berechnen des Wellenfrontradius

Polarisation

- Darstellen der winkelabhängigen Transmission zusammen mit dem theoretischen Verlauf
- Verifizieren des Gesetzes von Malus
- Untersuchen des Einflusses des Durchlasswinkels eines weiteren Polarisators zwischen zwei gekreuzten Polarisatoren

• Michelson Interferometer

- Justieren und generieren von konzentrischen Interferenzmustern
- Bestimmen der Wellenlänge des Lasers durch Weglängenänderung
- Untersuchen des absoluten Weglängenunterschieds in den beiden Interferometerarmen sowie Auflösung und Stabilität des Interferometers
- Justieren und generieren von streifenförmigen Interferenzmustern
- Untersuchen der Rolle der Polarisation auf die Interfenzfähigkeit des Laserlichts

2 Grundlagen [1]

3 Geräteliste

Für den praktischen Aufbau und die Messungen der geforderten Größen wurden die in Tabelle 3.1 aufgelisteten Geräte und Hilfsmittel verwendet.

Tabelle 3.1: Verwendete Geräte und wichtige Materialien

Gerät	Hersteller	Modell	Messsbereich / Unsicherheit	Inventar-Nr.
Laser	Thorlabs	CPS532	$\lambda = 532\mathrm{nm}$	22442-S01
diverse Spiegel	Thorlabs	KM100	-	-
Graufilter	Thorlabs	NX1N/M	-	-
Doppelspalte	Phywe	0852300	-	-
Gitter	Phywe	0852400	-	-
Optischer Tisch	-	-	-	-
diverse Halterungen	Thorlabs	-	-	-
Sammellinse	Thorlabs	FMP1/M	$f = 40 \mathrm{mm}$	-
Zerstreuungslinse	Thorlabs	FMP1/M	$f = -16\mathrm{mm}$	-
Shearing- Interferometer	Thorlabs	nicht vorhanden	-	-
Lichtintensitätsmes	ser Sauter	SO 200k	$\Delta I = (\pm 3 \% \text{rdg} \pm 0.5 \% \text{fs}) \cdot I$	51152203
Polarisationsfolie	Nitto denko	-	-	-
Maßband	Schuller Eh klar	Power Tape 3 m	Klasse II	-
Michelson Interferometer	-	-	-	-
Rohr	-	-	-	-
diverse Abbil- dungsschirme	Wand, Papier, Tür, etc.	-	-	-
Mobiltelefon	OnePlus	8 Pro	-	-

Anmerkung zu den Unsicherheiten: Zur Unsicherheitsangabe werden die jeweiligen Unsicherheitsmaße der Geräte, welche aus den Datenblättern (sofern vorhanden) entnommen werden, verwendet. Für die analogen Messgeräte wird eine kombinierte Ablese- und Messunsicherheit von ± 1 Skalenstrich verwendet.

Alle Teilversuche wurden bei einer Umgebungstemperatur von (24 ± 1) °C einem Luftdruck von (1000 ± 10) hPa und einer relativen Luftfeuchtigkeit von (33 ± 1) % durchgeführt.

4 Versuchsaufbau

5 Versuchsdurchführung

6 Auswertung

Die gegeben der Beschreibung in ?? erhaltenen Messwerte in .csv - Form werden nun für die jeweiligen Stellungen des Messarms in ?? und ?? dargestellt.

Abbildung 6.1: Messwerte bei gegebenem Winkel des Messarms?? (1)

Abbildung 6.2: Messwerte bei gegebenem Winkel des Messarms ?? (2)

Anschließend werden jeweiligen Maxima in den Daten ausgewertet, diese ergeben sich zu folgenden Werten in Tabelle 6.1.

Tabelle 6.1: Energie E_S der Countmaxima der Compton-Streuung (mit $\Delta E_S = 0,2 \,\mathrm{keV}$) für verschiedene Winkel φ (mit $\Delta \varphi = 0,1^\circ$) des Messarms. Zudem ist der Winkel zur Probenoberfläche ϑ (mit $\Delta \vartheta = 0,1^\circ$) angegeben. Der Winkel des Probentisches mit Ψ wird bei 20° konstant gehalten.

φ/°	E_S / keV	θ / °
28,4	17,4	6,8
43,4	17,3	21,8
58,4	17,2	36,8
73,4	17,1	51,8
88,4	16,9	66,8
103,4	16,7	81,8
118,4	16,7	96,8
133,4	16,6	111,8
148,4	16,4	126,8

Die so erhaltenen Daten werden nun mittels ?? in Abbildung 6.3 gefittet um auf diesem Wege die Elektronenmasse zu bestimmen. So ergibt sich im vorliegenden Versuch die Elektronenmasse zu

$$m_e = (1.07 \pm 0.11) \cdot 10^{-30} \,\mathrm{kg}$$

Abbildung 6.3: Gestreute Energie E_S aus Tabelle 6.1 aufgetragen gegen den Winkel φ des Messarms. Fitkurve mit 2- σ -Unsicherheitband.

6.1 Röntgenfloureszenzanalyse

Auch für den zweiten Teilversuch liegen die Daten in .csv - Form vor. Diese werden nun in Abbildung 6.4 und Abbildung 6.5 für die benutzten zu untersuchenden Materialien dargestellt. Zusätzlich sind die Energien der bestimmten K_{α} - und K_{β} - Linien ebenfalls in den beiden Abbildungen angeführt.

Abbildung 6.4: Messwerte und K_{α} - und K_{β} -Linien für die zu untersuchenden bekannten und unbekannten Materialien. (1)

Abbildung 6.5: Messwerte und K_{α} - und K_{β} -Linien für die zu untersuchenden bekannten und unbekannten Materialien. (2)

Die ermittelten Werte für die K_{α} - und K_{β} -Linien werden in Tabelle 6.2 nochmals angeführt.

Tabelle 6.2: Bestimmte K_{α} - und K_{β} -Linien aus Abbildung 6.4 und Abbildung 6.5. Die Unsicherheit der bestimmten Energien in beiden Fällen $\Delta E = 0.1 \, \text{keV}$.

Ordnungszahl	Elementformel	$E_{K_{\alpha}}$ / keV	$E_{K_{\beta}}$ / keV
47	Ag	21,47	24,10
29	Cu	7,91	8,75
26	Fe	6,27	
42	Mo	17,24	19,15
28	Ni	7,39	
22	Ti	4,54	
30	Zn	8,51	9,40
40	Zr	15,51	17,50
	Probe1	7,91	
	Probe2	16,63	
	Ring	6,18	

Trägt man nun die charakteristischen Übergangsenergien aus Tabelle 6.2 – leicht modifiziert als $\sqrt{E/R_y}$, R_y meint dabei die Rydbergkonstante – gegen die Ordnungszahl auf, so kann über die Steigung eines linearen Fits die Abschirmkonstante ermittelt werden. In Abbildung 6.6 ist dieser Fit für die K_{α} -Linien und K_{β} -Linien dargestellt. Die Abschirmkonstanten für die K_{α} -Linien und K_{β} -Linien wurden somit zu:

$$\sigma_{2,1,\text{exp}} = 1.06 \pm 0.09$$

$$\sigma_{3,1,\text{exp}} = 2.14 \pm 0.10$$

Abbildung 6.6: Mosley-Gesetz für die K_{α} - und K_{β} -Linien. $\sqrt{E/R_y}$ gegen die Ordnungszahl aufgetragen. Die Abschirmkonstante wird aus der Steigung der beiden Fits ermittelt.

6.2 Unbekannte Proben

TODO

7 Diskussion

7.1 Compton-Streuung

Die Ergebnisse des Compton-Streuungs-Teilversuchs zeigen, dass die gemessenen Energien der gestreuten Photonen in Tabelle 6.1 in guter Übereinstimmung mit den theoretischen Erwartungen des Compton-Effekts stehen. Die Abhängigkeit der gestreuten Energie von dem Winkel des Messarms wurde in Abbildung 6.3 dargestellt, und es zeigt sich eine klare Tendenz, die dem Compton-Effekt entspricht.

7.2 Röntgenfluoreszenzanalyse

Die Ergebnisse der Röntgenfluoreszenzanalyse zeigen, dass die gemessenen Energien der K_{α} - und K_{β} -Linien in guter Übereinstimmung mit den theoretischen Erwartungen stehen. Bei genauer Betrachtung der Abbildung 6.6 erkennt man, dass ein Fit der ersten

paar Punkte – mit Kernladungszahlen < 35 – zu einer Gerade mit höherer Steigung führen würde als einer, welcher lediglich durch die Elemente höherer Ordnungszahlen gegeben wäre. Hier spielt der Einfluss der äußeren Elektronen, welche sich mit steigender Schalenzahl immer weiter von dem Kern entfernen, eine Rolle. Die Abschirmkonstante für die K_{α} -Linien und K_{β} -Linien ist eben nur eine Näherung, wie jedoch auch der Abbildung ersichtlich wird, für viele Fälle eine Gute.

7.3 Unbekannte Proben

TODO unbekannte Proben

8 Zusammenfassung

Im ersten Teilversuch, der Compton-Streuung, wurden die Energien der Compton-Streuung für verschiedene Winkel gemessen. Die Messwerte sind in Tabelle 6.1 dargestellt. Aus den Messwerten wurde mittels einer Fitkurve in Abbildung 6.3 die Elektronenmasse bestimmt: $m_e = (1,07\pm0,11)\cdot10^{-30}$ kg. Der Literaturwert der Elektronenmasse beträgt etwa $9,11\cdot10^{-31}$ kg, was zeigt, dass der ermittelte Wert in der richtigen Größenordnung liegt.

Im zweiten Teilversuch, der Röntgenfluoreszenzanalyse, wurden die K_{α} - und K_{β} -Linien für verschiedene Elemente und Proben untersucht. Die Messwerte und bestimmten Energien sind in Tabelle 6.2 aufgeführt. Durch Auftragen von $\sqrt{E/R_y}$ gegen die Ordnungszahl und Anpassung einer linearen Fitkurve in Abbildung 6.6 wurden die experimentellen Abschirmkonstanten für die K_{α} -Linien und K_{β} -Linien ermittelt: $\sigma_{2,1,\rm exp}=1,06\pm0,09$ und $\sigma_{3,1,\rm exp}=2,14\pm0,10$. Die ermittelten Abschirmkonstanten zeigen eine gute Übereinstimmung mit den bekannten Literaturwerten, die in der Regel nahe bei 1 und 2 liegen.

TODO unbekannte Proben

Literaturverzeichnis

[1] J. Krenn. Interferenz und Polarisation. 2022.

Abbildungsverzeichnis

6.1	Messwerte bei gegebenem Winkel des Messarms ?? (1)	6
6.2	Messwerte bei gegebenem Winkel des Messarms ?? (2)	7
6.3	Gestreute Energie E_S aus Tabelle 6.1 aufgetragen gegen den Winkel φ des	
	Messarms. Fitkurve mit 2- σ -Unsicherheitband	8
6.4	Messwerte und K_{α} - und K_{β} -Linien für die zu untersuchenden bekannten	
	und unbekannten Materialien. (1)	9
6.5	Messwerte und K_{α} - und K_{β} -Linien für die zu untersuchenden bekannten	
	und unbekannten Materialien. (2)	10
6.6	Mosley-Gesetz für die K_{α} - und K_{β} -Linien	12
Tabel	lenverzeichnis	
3.1	Geräteliste	4
6.1	Messwerte Compton-Energiemaxima	7
6.2	Bestimmte K_{β} - und K_{β} -Linien	