Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних циклічних

алгоритмів»

Варіант 15

Виконав студент	ІП-12, Кириченко Владислав Сергійович
·	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота № 5

Назва роботи: Дослідження складних циклічних алгоритмів

Мета:дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 15

Умова задачі:

Дано цілі числа р і q. Визначити всі дільники числа р, взаємно прості з q.

Постановка задачі: Задано змінні p та q, знайти всі дільники числа p, взаємно прості з q. Результатом розв'язку задачі ϵ ряд чисел.

Побудова математичної моделі:

Розіб'ємо задачу на два етапи:

- 1. Знаходження дільників числа р.
- 2.Знаходження серед дільників числа р чисел взаємнопростих з q.

Перший етап реалізуємо за допомогою арифметичного циклу.

Другий етап реалізуємо за допомогою алгоритму Евкліда, описаного ітераційним циклом.

Пояснення другого етапу:

Для знаходження взаємнопростих з деяким числом чисел з деякого ряду потрібно перевірити на цю властівість кожний з членів ряду. Тобто потрібен алгоритм перевірки чи ϵ два числа взаємнопростими.

Два числа ϵ взаємнопротими якщо ії НОД (найбільший спільний дільник дорівню ϵ 1). Тобто потрібно знайти НОД двух чисел і перевірити чи це число дорівню ϵ одиниці.

Найпростіший у реалізації метод знаходження НОД - алгоритм Евкліда, його і використаємо.

Псевдокод алгоритму Евкліда:

```
поки a!=0 & b!=0
якщо a > b
то a %= b
інакше b %= а
виведення (a+b)
```

Щоб виконання алгоритму Евкліда не впливало на лобальні значення змінних, що перевіряються, скористаємося тимчасовими зміннми а=і та b=q.

Складемо таблицю змінних:

Змінна	Тип	Ім'я	Призначення
Перша змінна	Цілочисельний	p	Початкові дані
Друга змінна	Цілочисельний	q	Початкові дані
Лічильник	Натуральний	i	Проміжкове
			значення
Тимчасова	Цілочисельний	a	Проміжкове
змінна для			значення
перевірки чи			
число з ряду			
дільників \mathbf{p} ϵ			
взаємнопростим			
із q .(і)			
Тимчасова	Цілочисельний	b	Проміжкове
змінна для			значення
перевірки чи			
число з ряду			
дільників \mathbf{p} ϵ			
взаємнопростим			
із q .(q)			
Значення НОД	Цілочисельний	biggestCommonDivisor	Проміжкове
змінних			значення
Дільник числа р	Цілочисельний	pDivisor	Проміжкове
			значення

- 3.Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.
- Крок 1. Визначимо основні дії.
- **Крок 2.** Деталізація арифметичного циклу, який перебирає всі натуральні значення, які менша за **р**.
- **Крок 3.** Деталізація перевірки чи ϵ число і дільником р.
- **Крок 4.**Деталізація ітераційного циклу, який обумовлює реалізацію алгоритму Евкліда
- **Крок 5.** Деталізація знаходження НСД кожного дільника числа ${\bf p}$ і числа ${\bf q}$.(алгоритм Евкліда)
- **Крок 6.** Деталізація перевірки чи НСД чисел **і** та **q** 1 (чи ϵ число **і** одним із шуканих значень).

```
Псевдокод:
Крок 1.
початок
  введення р, q
  арифметичний цикл, який перебирає всі натуральні значення, які менші за р.
  перевірка чи \epsilon число і дільником \mathbf{p}.
  ітераційний цикл, який обумовлює реалізацію алгоритму Евкліда
  знаходження НСД кожного дільника числа р і числа q.(алгоритм Евкліда)
  перевірка чи НСД чисел і та \mathbf{q} - 1 (чи \epsilon число і одним із шуканих значень).
кінець
Крок 2.
початок
  введення р, q
  повторити
          для і від 1 до p+1
          перевірка чи \epsilon число і дільником р.
          ітераційний цикл, який обумовлює реалізацію алгоритму Евкліда
          знаходження НСД кожного дільника числа р і числа q.(алгоритм
          Евкліда)
          перевірка чи НСД чисел і та \mathbf{q} - 1 (чи \epsilon число і одним із шуканих
          значень).
  все повторити
кінець
Крок 3.
початок
  введення р, а
  повторити
          для і від 1 до p+1
```

якщо р % i == 0

pDivisor = i

T0

```
ітераційний цикл, який обумовлює реалізацію алгоритму
                  Евкліда
                  знаходження НСД кожного дільника числа р і числа
                  q.(алгоритм Евкліда)
                  перевірка чи НСД чисел i та q - 1 (чи \epsilon число i одним із
                  шуканих значень).
          все якщо
  все повторити
кінець
Крок 4.
початок
  введення р, q
  повторити
          для і від 1 до p+1
          якщо р % i == 0
              T0
                  pDivisor = i
                  a = pDivisor
                  \mathbf{b} = \mathbf{q}
                  поки (a!=0 & b!=0) повторити
                        знаходження НСД кожного дільника числа р і числа
                        q.(алгоритм Евкліда)
                  перевірка чи НСД чисел i та q - 1 (чи \epsilon число i одним із
                  шуканих значень).
          все якщо
  все повторити
кінець
Крок 5.
початок
  введення р,q
  повторити
          для і від 1 до p+1
          якщо р % i == 0
              TO
                  pDivisor = i
                  a = pDivisor
                  \mathbf{b} = \mathbf{q}
                  поки (a!=0 & b!=0) повторити
                        якщо а>b
```

T0

```
інакше
                                     b \% = a
                  все поки
                  biggestCommonDivisor = a+b
                  перевірка чи НСД чисел і та q - 1 (чи є число і одним із
                  шуканих значень).
          все якщо
  все повторити
кінець
Крок 6.
початок
  введення р,q
  повторити
          для і від 1 до р+1
          якщо р \% i == 0
              T0
                  pDivisor = i
                  a = pDivisor
                  \mathbf{b} = \mathbf{q}
```

a%=b

все поки biggestCommonDivisor = a+b

інакше

якщо а>b

T0

якщо biggestCommonDivisor == 0

a%=b

b % = a

поки (a!=0 & b!=0) повторити

10

виведення pDivisor

все якщо все повторити кінець

Блок схема:

4. Перевірка алгоритму

Блок	Дія
	Початок
1	Введення
	x=16, n=7,
2	iteration: 1
3	(p % i == 0) = true

1
pDivisor = 1
a = 1
b = 7
Euclid algorithm
(a != 0 && b != 0) = true
a <b =="" false<="" td="">
a = 1
$\mathbf{b} = 0$
biggestCommonDivisor = 1
(biggestCommonDivisor == 1) = true
виведення 1
iteration: 2
(p % i == 0) = true
pDivisor = 2
a = 2
$\mathbf{b} = 7$
Euclid algorithm
(a != 0 && b != 0) = true
a <b =="" false<="" td="">
a=2
b = 1
(a != 0 && b != 0) = true
a <b =="" td="" true<="">
a = 0
b = 1
biggestCommonDivisor = 1
(biggestCommonDivisor == 1) = true

виведення 2
iteration: 3
(p % i == 0) = false
iteration: 4
(p % i == 0) = true
pDivisor = 4
a = 4
$\mathbf{b} = 7$
Euclid algorithm
(a != 0 && b != 0) = true
a <b =="" false<="" th="">
a = 4
$\mathbf{b} = 3$
(a != 0 && b != 0) = true
a <b =="" th="" true<="">
a = 1
b = 3
(a != 0 && b != 0) = true
a <b =="" false<="" th="">
a = 1
$\mathbf{b} = 0$
biggestCommonDivisor = 1
(biggestCommonDivisor == 1) = true
виведення 4
iteration: 5
(p % i == 0) = false
iteration: 6
(p % i == 0) = false

iteration: 7
(p % i == 0) = false
iteration: 8
(p % i == 0) = true
pDivisor = 8
a = 8
b = 7
Euclid algorithm
(a != 0 && b != 0) = true
a <b= th="" true<=""></b=>
a = 1
b = 7
(a != 0 && b != 0) = true
a <b =="" false<="" th="">
a = 1
$\mathbf{b} = 0$
biggestCommonDivisor = 1
(biggestCommonDivisor == 1) = true
виведення 8
iteration: 9
(p % i == 0) = false
iteration: 10
(p % i == 0) = false
iteration: 11
(n 0/ ; 0) - falsa
(p % i == 0) = false iteration: 12
(p % i == 0) = false
iteration: 13

(p % i == 0) = false
iteration: 14
(p % i == 0) = false
iteration: 15
(p % i == 0) = false
iteration: 16
(p % i == 0) = true
pDivisor = 16
a = 16
b = 7
Euclid algorithm
(a != 0 && b != 0) = true
a <b =="" false<="" th="">
a = 2
b = 7
(a != 0 && b != 0) = true
a <b =="" false<="" th="">
a = 2
b = 1
(a != 0 && b != 0) = true
a <b =="" th="" true<="">
$\mathbf{a} = 0$
b = 1
biggestCommonDivisor = 1
(biggestCommonDivisor == 1) = true
виведення 16

Висновок - Було досліджено особливості роботи складних циклів та набуто практичних навичок їх використання під час складання програмних специфікацій.