Целеполагание и планирование

Александр Панов

ИСА РАН

18 октября 2017 г.

David W. Aha

- Дэвид Аха специалист по искусственному интеллекту, планирование для автономных роботов.
- Сотрудник Морского центра прикладных исследований в искусственном интеллекте, Военно-морская исследовательская лаборатория (Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory), Вашингтон, США.

Scopus: 149 статей, 5215 цитирований, h-индекс — 25.

Основные публикации:

- Klenk, M., M. Molineaux, and D.W. Aha. "Goal-driven autonomy for responding to unexpected events in strategy simulations".
- In: Computational Intelligence 29.2 (2013). cited By 21, pp. 187–206.
- Jaidee, U., H. Muñoz-Avila, and D.W. Aha. "Integrated learning for goal-driven autonomy". In: cited By 18. 2011, pp. 2450–2455.
- Molineaux, M., M. Klenk, and D.W. Aha. "Goal-driven autonomy in a Navy strategy simulation". In: vol. 3. cited By 31. 2010, pp. 1548–1554.
- Wettschereck, D., D.W. Aha, and T. Mohri. "A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms". In: Artificial Intelligence Review 11.1-5 (1997), cited By 406, pp. 273–314.
- Aha, D.W. "Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms". In: International Journal of Man-Machine Studies 36.2 (1992). cited By 255, pp. 267–287.
- Aha, D.W., D. Kibler, and M.K. Albert. "Instance-based learning algorithms". In: *Machine Learning* 6.1 (1991). cited By 2311, pp. 37–66.

Мотивация метода целенаправленной автономности (GDA)

Построенные планы требует модификации в связи с:

- недетерминированностью действий агента,
- непредсказуемости окружающей среды (наличие других агентов),
- неполнота информации о состояниях среды (область видимости).

Пути решения:

- вероятностное планирование (экспоненциальный рост числа возможных состояний),
- адаптивное планирование с возвратом (перерасход ресурсов),
- перепланирование (цели не меняются),
- управление множеством целей (GDA).

Концептуальная модель GDA

- *M*_Σ модель среды Σ,
- G_p цели в очереди ожидания,
- s текущее состояние,
- g новая цель,
- d расхождение,
- X ожидаемое состояние среды,
- П планировщик (например, SHOP).

Концептуальная модель GDA

Основные стадии:

- Обнаружение рассогласования, непредвиденные события.
- Объяснение расхождений.
- Формулирование или изменение цели.
- Управление множеством целей.

Концептуальная модель GDA

- Любое расхождение между ожидаемым в плане состояние среды и наблюдаемым.
- Основанный на правилах вывод или прецеденты перепланирования.
- Основанный на правилах вывод или прецеденты типа «расхождение-новая цель».
- Замена текущей цели на новую.

Жизненный цикл целей

- expand выделение подцелей и составление плана,
- dispatch выполнение лучшего плана,
- monitor наблюдение за выполнением плана,
- adjust изменение модели среды.

Память целей

	Priority	Inertia	Mode	Quality Metrics		
	q ₁	q ₂	q ₃	q ₄		q _n
g_1						
g ₂						
g _m						

Задача максимизации общего вознаграждения в случае марковского процесса:

$$V^*(M) = \max_{\pi} (R(M,\pi) + \gamma \sum_{M'} T(M,\pi,M')V^*(M')),$$

M - состояние памяти целей, π - стратегия управления целями, T - функция переходов.

Модельные эксперименты

- Задача овладения командным пунктом
- Задача перемещения в среде с возмущениями
- Управление подводным аппаратом (большая зона покрытия, встреча с другим кораблем).
- Управление БПЛА в военной операции (уменьшение нагрузки на пилота, охрана места крушения).
- Коллаборативное зондирование в чрезвычайных ситуациях (оценка состояние среды и нахождение пострадавших, разгрузка спасателей).

Каузальная матрица

Каузальная сеть на образах

Каузальная сеть на множестве образов знаков $W_p = \langle V_p, E_p \rangle$ - помеченный ориентированный граф, в котором

- каждому узлу $v \in V_p$ ставится в соответствие кортеж казуальных матриц $Z^p(s)$ образа некоторого знака s ($v \to Z^p(s)$);
- ullet ребро $e=(v_1,v_2)$ принадлежит множеству ребер графа E, если $v_1 o Z^p(s_1), v_2 o Z^p(s_2)$ и $s_1 \in S_p(s_2)$;
- каждому ребру графа $e = (v_1, v_2), v_1 \to Z^p(s_1), v_2 \to Z^p(s_2)$ ставится в соответствие метка $\epsilon = (\epsilon_1, \epsilon_2, \epsilon_3)$ кортеж трех натуральных чисел:
 - ϵ_1 индекс исходной матрицы в кортеже $Z^p(s_1)$, может принимать специальное значение 0, если исходными могут служить любые матрицы из кортежа;
 - ϵ_2 индекс целевой матрицы в кортеже $Z^p(s_2)$, строка которой ставится в соответствие признаку s_1 ;
 - ϵ_2 индекс столбца в целевой матрице, в которой в соответствующей признаку s_1 строке стоит 1, может принимать положительные значения (столбцы условий) и отрицательные (столбцы эффектов).

Каузальная сеть на образах: пример

12

Каузальная сеть на значениях: пример

Каузальная сеть на личностных смыслах: пример

Планирование в КМ

Целеполагание в КМ

«Внутреннее» целеполагание - нахождение схематического действия $\hat{\mathcal{Z}}^a_p$ на сети личностных смыслов.

«Внешнее» целеполагание - нахождение конкретизированного действия \hat{z}_{p}^{m} в известных сценариях на сети значений.