Systemy Mikroprocesorowe 2

Prowadzący: mgr inż. Sebastian Koryciak

Dokumentacja projektu *Alarm*

Autor:

Łukasz Sajdak

Spis treści

1. Cel projektu	3
2. Hardware	3
2.1 Użyte elementy	3
2.2 Zdjęcie zmontowanego układu	3
2.3 Opis układu	3
3. Software	4
3.1 Opis działanie systemu:	4
3.2 Interfejs użytkownika	4
4. Pliki projektu	5
4.1 main.c	5
4.2 i2c.c oraz i2c.h	5
4.3 klaw.c oraz klaw.h	5
4.4 lcd1602.c oraz lcd1602.h	5
4.5 leds.c oraz leds.h	5
4.6 pir.c oraz pir.h	5
4.7 frdm_bsp.h	5

1. Cel projektu

Celem projektu jest opracowanie systemu alarmowego wykorzystującego platformę FRDM-KL05Z. System umożliwia:

- Uzbrajanie i rozbrajanie alarmu za pomocą kodu wprowadzanego na klawiaturze.
- Powiadamianie o wykryciu ruchu lub zmianie pozycji urządzenia.
- Tryb administratora do zmiany kodu uzbrajającego alarm.

2. Hardware

2.1 Użyte elementy

• Mikrokontroler: FRDM-KL25Z

• Wyświetlacz: LCD1602

• Czujnik ruchu PIR

• Akcelerometr (wbudowany w mikrokontroler).

• Diody RGB LED (wbudowane w mikrokontroler).

• Klawiatura Matrycowa 4x4

2.2 Zdjęcie zmontowanego układu

Zdjęcie układu (rys. 1) przedstawia wszystkie wykorzystane elementy oraz połączenia między nimi.

Rys.1 Zdjęcie zmontowanego układu

2.3 Opis układu

Układ składa się mikrokontrolera FRDM-KL25Z do którego połączone są: wyświetlacz LCD1602 podłączony przez magistralę I2C, klawiatura matrycowa oraz czujnik PIR połączone przez porty GPIO. Akcelerometr oraz Diody RGB są wbudowane w mikrokontroler.

3. Software

3.1 Opis działania systemu:

- 1. Uzbrajanie i rozbrajanie alarmu:
 - Alarm jest uzbrajany po poprawnym wprowadzeniu kodu.
 - Kod wprowadza się za pomocą przycisków S2, S3 i S4.
 - Po aktywacji system monitoruje czujnik PIR oraz akcelerometr.
 - Domyślny kod uzbrajania: S2 -> S3 -> S4
- 2. Wykrywanie ruchu:
 - Jeśli alarm jest aktywny i czujnik PIR wykryje ruch, na wyświetlaczu LCD pojawia się komunikat "Wykryto ruch!" oraz świeci się niebieska dioda LED.
- 3. Wykrywanie zmiany pozycji:
 - Po uzbrojeniu alarmu zapisywana jest pozycja bazowa z akcelerometru (X, Y, Z).
 - Jeśli pozycja płytki zmieni się, uruchamiany jest alarm (czerwona dioda LED) i wyświetlany komunikat "Uwaga złodziej!".
- 4. Tryb administratora:
 - Specjalna kombinacja klawiszy umożliwia wejście w tryb administratora.
 (należy ją wprowadzić trzymając klawisz S1)
 - W trybie tym można zmienić kod uzbrajający alarm.
 - Na wyświetlaczu pojawia się komunikat "Tryb Admina".
 - Kod: S4 -> S3 -> S2 (trzymając klawisz S1)

3.2 Interfejs użytkownika

Interfejs użytkownika został zaprojektowany tak, aby był zarówno przyjazny, jak i intuicyjny w obsłudze (Rys 2-5).

Rys 2-5. Interfejs użytkownika

4. Pliki projektu

4.1 main.c

Główny plik projektu zawierający funkcję główną, która inicjalizuje układ, wywołuje funkcje z pozostałych modułów i zarządza logiką programu.

4.2 i2c.c oraz i2c.h

Implementacja funkcji obsługujących magistralę I2C (inicjalizacja, wysyłanie/odbieranie danych).

4.3 klaw.c oraz klaw.h

Funkcje obsługujące klawiaturę matrycową.

4.4 lcd1602.c oraz lcd1602.h

Funkcje sterujące wyświetlaczem LCD 1602, np. inicjalizacja, wyświetlanie tekstu.

4.5 leds.c oraz leds.h

Funkcje zarządzające diodami LED

4.6 pir.c oraz pir.h

Obsługa czujnika ruchu PIR

4.7 frdm bsp.h

Plik nagłówkowy definiujący konfiguracje sprzętowe specyficzne dla płytki FRDM