Trabajo Práctico Nro 5 Año 2022. Licenciatura en Informática.

Ejercicio 5.

Probar que para todo estado σ y para todo par de aserciones p, q, se cumple: $val(\pi(S_1, \sigma)) = val(\pi(S_2, \sigma))$ si y sólo si $|= \{p\} S_1 \{q\} \longleftrightarrow |= \{p\} S_2 \{q\}$ Comentario: para facilitar la notación, se puede utilizar $M(S)(\sigma)$ en lugar de $val(\pi(S, \sigma))$.

Resolución.

(sentido \rightarrow) Para todo σ , p, q: $M(S_1)(\sigma) = M(S_2)(\sigma)$ \rightarrow |= {p} S_1 {q} \leftrightarrow |= {p} S_2 {q} Supongamos $M(S_1)(\sigma) = M(S_2)(\sigma)$. Veamos primero que |= {p} S_1 {q} \rightarrow |= {p} S_2 {q}.

- Si $|= \{p\}$ S₁ $\{q\}$, entonces a partir de un estado $\sigma |= p$, si el programa S₁ termina lo hace en un estado $\sigma' |= q$ (y si no termina, lo hace en el estado \bot).
- Como M(S₁)(σ) = M(S₂)(σ), lo anterior se puede formular también así: a partir de un estado σ |= p, si S₂ termina lo hace en un estado σ' |= q (y si no termina, lo hace en el estado \bot). Esta formulación es la de |= {p} S₂ {q}, que es lo que queríamos demostrar.

La prueba del recíproco, $|=\{p\} S_2 \{q\} \rightarrow |=\{p\} S_1 \{q\}$, a partir de $M(S_1)(\sigma) = M(S_2)(\sigma)$, es igual a la anterior cambiando el orden de los S_i .

```
(sentido \leftarrow) Para todo \sigma, p, q: |=\{p\} S_1 \{q\} \leftrightarrow |=\{p\} S_2 \{q\} \rightarrow M(S_1)(\sigma) = M(S_2)(\sigma)
Supongamos |=\{p\} S_1 \{q\} \leftrightarrow |=\{p\} S_2 \{q\}. Veamos que M(S_1)(\sigma) = M(S_2)(\sigma).
```

- Supongamos por el absurdo que para algún estado específico σ_0 , $M(S_1)(\sigma_0) \neq M(S_2)(\sigma_0)$. Llegaremos a una contradicción.
- Hay tres posibilidades para $M(S_1)(\sigma_0) \neq M(S_2)(\sigma_0)$:
 - (a) $M(S_1)(\sigma_0) = \bot y M(S_2)(\sigma_0) \neq \bot$.
 - (b) $M(S_1)(\sigma_0) \neq \bot y M(S_2)(\sigma_0) = \bot$.
 - (c) $M(S_1)(\sigma_0) \neq \bot$ y $M(S_2)(\sigma_0) \neq \bot$.
- (a). Dado algún p, con σ_0 |= p, como para todo p y q vale |= {p} S_1 {q} \leftrightarrow |= {p} S_2 {q), no puede ser que $M(S_1)(\sigma_0) = \bot$ y $M(S_2)(\sigma_0) \ne \bot$ (\bot no satisface ninguna condición q).
- (b). Igual que (a) pero cambiando el orden de los Si.
- (c). Dado algún p, con σ_0 |= p, como para todo p y q vale |= {p} S_1 {q} \leftrightarrow |= {p} S_2 {q), tampoco puede ser que M(S₁)(σ_0) = σ_1 y M(S₂)(σ_0) = σ_2 , con $\sigma_1 \neq \sigma_2 \neq \bot$:
 - σ_1 y σ_2 differen en al menos una variable x. P.ej., supongamos $\sigma_1(x) = 1$ y $\sigma_2(x) = 2$.
 - De esta manera, si por ejemplo q = (x = 1), entonces σ₁ |= q pero σ₂ |≠ q, lo que contradice la hipótesis |= {p} S₁ {q} ↔ |= {p} S₂ {q}.