DOCUMENT RESUME

ED 287 701 SE 048 656

TITLE Physics Data Booklet (Revised 1987).
INSTITUTION Alberta Dept. of Education, Edmonton.

PUB DATE 87
NOTE 9p.

PUB TYPE Reference Materials - General (130)

EDRS PRICE MF01/PC01 Plus Postage.

DESCRIPTORS

*Atomic Structure; Atomic Theory; *College Science; Electricity; Energy; Foreign Countries; Higher Education; Magnets; *Physics; Relativity; Science Education; *Scientific and Technical Information; Secondary Education; *Secondary School Science;

*Trigonometry

ABSTRACT

This booklet was designed as a reference for teachers and students of physics on various types of data. Included are: (1) formulas for various constants involved in the study of gravity, electricity, magnetism, atomic physics, particles, and trigonometry; (2) a chart containing values of trigometric functions; (3) equations used in the study of kinematics, dynamics, momentum and energy, waves and light, electricity and magnetism, atomic physics, and relativity and quantum physics; and (4) a periodic chart of the elements. (TW)

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improve

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as received from the person or organization originating it.

- Minor changes have been made to improve reproduction quality
- Points of view or opinions stated in this document do not necessarily represent official OERI position or policy

PHYSICS DATA BOOKLET

(Revised 1987)

Alberta

PHYSICS

CONSTANTS

GRAVITY, ELECTRICITY, AND MAGNETISM

Acceleration Due to Gravity or Gravitation Field Near Earth

 $g \ \underline{\text{or}} \ a_g = 9.8^{\circ} \ \text{m/s}^2 \ \underline{\text{or}} \ 9.81 \ \text{N/kg}$

Gravitational Constant

 $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

Mass of Earth

 $M_{\rm e} = 5.98 \times 10^{24} \, \rm kg$

Radius of Earth

 $R_{\rm e} = 6.37 \times 10^6 \, \rm m$

Coulomb's Constant

 $k = 8.99 \times 10^9 \,\text{N} \cdot \text{m}^2/\text{C}^2$

Electron Volt

 $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Elementary Charge

 $e = 1.60 \times 10^{-19} \,\mathrm{C}$

Fa: aday's Constant

 $\mathcal{F} = 9.65 \times 10^4 \text{ C/mol}$

Index of Refraction of Air

n = 1.00

Speed of Light in Vacuum

 $c = 3.00 \times 10^8 \text{ m/s}$

ATOMIC PHYSICS

Energy of an Electron in the 1st Bohr Orbit of Hydrogen

 $E_1 = -2.18 \times 10^{-18} \text{ J } \underline{\text{or}} - 13.6 \text{ eV}$

Planck's Constant

 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$

Radius of 1st Bohr Orbit of Hydrogen

 $r_1 = 5.29 \times 10^{-11} \text{ m}$

Rydberg's Constant

 $R_{\rm H} = 1.10 \times 10^7 / {\rm m}$

PARTICLES

	Rest Mass	Charge
Alpha Particle	$m_{\alpha} = 6.65 \times 10^{-27} \text{ kg}$	α^{2+}
Electron	$m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$	e⁻
Neutron	$m_{\rm o} = 1.67 \times 10^{-27} \rm kg$	n ʻ
Proton	$m_{\rm p} = 1.67 \times 10^{-27} {\rm kg}$	p ⁺

TRIGONOMETRY

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$
 $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 $c^2 = a^2 + b^2 - 2ab \cos C$

YALUES OF TRIGONOMETRIC FUNCTIONS

Angle	Sin	Cos	Tan	Angle	Sin	Cos	Tan				
1°	0.0175	0.9998	0.0175	46°	0.7193	0.6947	1.0355				
2 °	0.0349	0.9994	0.0349	47°	0.7314	0.6820	1.0724				
3°	0.0523	0.ე986	0.0524	48°	0.7431	0.6691	1.1106				
4 °	0.0698	0.9976	0.0699	49°	0.7547	0.6561	1.1504				
5°	0.0872	0.9962	0.0875	50°	0.7660	0.6428	1.1918				
6 °	0.1045	0.9945	0.1051	51°	0.7771	0.6293	1.2349				
7°	0.1219	0.9925	0.1228	52°	0.7880	0.6157	1.2799				
8°	0.1392	0.9903	0.1405	53°	0.7986	0.6018	1.3270				
9°	0.1564	0.9877	0.1584	54°	0.8090	0.5878	1.3764				
10°	0.1736	0.9848	0.1763	55°	0.8192	0.5736	1.4281				
11°	0.1908	0.9816	0.1944	56°	0.8290	0.5592	1.4826				
12°	0.2079	0.9781	0.2126	57°	0.8387	0.5446	1.5399				
13°	0.2250	0.9744	0.2309	58°	0.8480	0.5299	1.6003				
14°	0.2419	0.9703	0.2493	59°	0.8572	0.5150	1.6643				
15°	0.2588	0.9659	0.2679	60°	0.8660	0.5000	1.7321				
16°	0.2756	0.9613	0.2867	61°	0.8746	0.4848	1.8040				
17°	0.2924	0.9563	0.3057	62°	0.8829	0.4695	1.8807				
18°	0.3090	0.9511	0.3249	63°	0.8910	0.4540	1.9626				
19°	0.3256	0.9455	0.3443	64°	0.8988	0.4384	2.0503				
20°	0.3420	0.9397	0.3640	65°	0.9063	0.4226	2.1445				
21°	0.3584	0.9336	0.3839	66°	0.9135	0.4067	2.2460				
22°	0.3746	0.9272	0.4040	67°	0.9205	0.3907	2.3559				
23°	0.3907	0.9205	0.4245	68°	0.9272	0.3746	2.4751				
24°	0.4067	0.9135	0.4452	69°	0.9336	0.3584	2.6051				
25°	0.4226	0.9063	0.4663	70°	0.9397	0.3420	2.7475				
26°	0.4384	0.8988	0.4877	71°	0.9455	0.3256	2.9042				
27 °	0.4540	0.8910	0.5095	72°	0.9511	0.3090	3.0777				
28°	0.4695	0.8829	0.5317	73°	0.9563	0.2924	3.2709				
29°	0.4848	0.8746	0.5543	74°	0.9613	0.2756	3.4874				
30°	0.5000	0.8660	0.5774	75°	0.9659	0.2588	3.7321				
31°	0.5150	0.8572	0.6009	76°	0.9703	0.2419	4.0108				
32°	0.5299	0.8480	0.6249	77°	0.9744	0.2250	4.3315				
33°	0.5446	0.8387	0.6494	78°	0.9781	0.2079	4.7046				
34°	0.5592	0.8290	0.6745	79°	0.9816	0.1908	5.1446				
35°	0.5736	0.8192	0.7002	80°	0.9848	0.1736	5.6713				
36°	0.5878	0.8090	0.7265	81°	0.9877	0.1564	6.3138				
37°	0.6018	0.7986	0.7536	82°	0.9903	0.1392	7.1154				
38°	0.6157	0.7880	0.7813	83°	0.9925	0.1219	8.1443				
39°	0.6293	0.7771	0.8098	84°	0.9945	0.1045	9.5144				
40°	0.6428	0.7660	0.8391	85°	0.9962	0.0872	11.4301				
41°	0.6561	0.7547	0.8693	86°	0.9976	0.0698	14.3007				
42°	0.6691	0.7431	0.9004	87°	0.9986	0.0523	19.0811				
43°	0.6820	0.7314	0.9325	88°	0.9994	0.0349	28.6363				
44°	0.6947	0.7193	0.9657	89°	0.9998	0.0175	57.2900				
45°	0.7071	0.7071	1.0000	90°	1.0000	0.0000					

-3- 5

EQUATIONS

Kinematics

$$\vec{v}_{\text{ave}} = \frac{\vec{d}}{t}$$

$$\vec{a} = \frac{\vec{v}_f - \vec{v}_i}{t}$$

$$\vec{d} = \vec{v_i}t + \frac{1}{2}at^2$$

$$\vec{d} = \left(\frac{\vec{v}_f + \vec{v}_i}{2}\right) t$$

$$v_{\rm f}^2 = v_{\rm i}^2 + 2ad$$

Dynamics

$$\vec{F} = m\vec{a}$$

$$\vec{F}t = m\Delta \vec{v}$$

$$\vec{F}_g = m\vec{g}$$

$$F_g = \frac{Gm_1m_2}{R^2}$$

$$g = \frac{Gm_1}{R^2}$$

$$F_{\rm c} = \frac{mv^2}{R}$$

$$F_{\rm c} = \frac{4\pi^2 mR}{T^2}$$

Momentum & Energy

$$\vec{p} = m\vec{v}$$

$$W = Fd$$

$$W = Fd \cos \Theta$$

$$F = \frac{W}{t}$$

$$E_{k} = \frac{1}{2} m v^{2}$$

$$E_p = mgh$$

Waves & Light

$$v = f \lambda$$

$$T=\frac{1}{7}$$

$$\frac{\sin \Theta_1}{\sin \Theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$

$$\lambda = \frac{xd}{nl}$$

$$\lambda = \frac{d \sin \Theta}{n}$$

EQUATIONS

Electricity & Magnetism

$$F_{\rm e}=\frac{kq_1q_2}{R^2}$$

$$V = IR$$

$$|\vec{E}| = \frac{kq_1}{R^2}$$

$$P = IV = I^2R = \frac{V^2}{R}$$

$$|\vec{E}| = \frac{F_e}{a}$$

$$I = \frac{q}{t}$$

$$|\vec{E}| = \frac{V}{d}$$

$$F_{\rm m} = IlB_{\perp}$$

$$V = \frac{\Delta E}{a}$$

$$F_{\rm m} = qvB_{\perp}$$

Atomic Physics

$$m = \frac{It}{9.65 \times 10^4 \text{ C/mol}} \cdot \frac{A}{v}$$

$$E = hf = \frac{hc}{\lambda}$$

$$E_{k_{max}} = hf - W$$

$$\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right)$$

$$W = hf_0$$

$$E_n = \frac{1}{n^2} E_1$$

$$E_{k_{\text{max}}} = qV_{\text{stop}}$$

$$r_n = n^2 r_1$$

Relativity & Quantum Physics

$$E = mc^2$$

$$p = \frac{h}{\lambda} = \frac{hf}{c}$$

$$E_{k} = (m - m_0)c^2$$

$$\Delta x \Delta p \geq \frac{h}{4\pi}$$

$$m=\frac{m_0}{\sqrt{1-v^2/c^2}}$$

$$2\pi r_n = n\lambda$$

PERIODIC CHART OF THE ELEMENTS

IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA or O
			АТС	OMIC NUMI	BER →		← SYMB(END						
3 Li 10 letheum 694	4 Be 15 beryllium 901		NAME OF THE ELEMENT — ATOMIC MASS BASED ON 12 C Earbon 1081 1201														
11 Na 0 9 sodium 22 99	12 Mg 1 2 magnesium 24 31	() INDICATES MASS OF THE MOST STABLE ISOTOPE NOTE: The Legend at right denotes the physical state of the elements at 101 kPa and 298 K (25°C) 12 Al 14 Si 18 21 phosphorous 30 97 32 06													1		
19 K 08 potassium 39 10	20 Ca 10 calcium 108	21 Sc 13 scandium 44 96	22 Ti 15 titanium 47 90	23 V 1 6 vanadium 50 94	24 Cr 16 chromium 52 00	25 Mn 1 S manganese 54 94	26 Fe 1 8 170n 55 85	27 LO 18 cob. 58 93	28 Ni 1.8 nickel 58.71	29 Cu 1 9 copper 63 55	30 Zn 1 6 2inc 65 38	31 Ga 1 6 gallium 69 74	32 Ge 18 germanium 72 59	33 As 20 arsenic 74 92	34 Se 24 selenium 78 96	,	•
37 Rb 0.8 rubidium 85 47	36 Sr 10 strontium 87 62	39 Y 13 yttrium 88 91	40 Zr 14 zirconium 91 22	41 Nb 16 niobium 92 91	42 MO 1 8 molybdenum 95 S4	43 Tc 19 technetium 98 91	44 Ru 22 ruthenium 101 07	45 Rh 2 2 rhodium 102 91	46 Pd 22 patladium 106 40	47 Ag 1 9 silver 107 87	48 Cd 1 7 cadmium 112 41	49 In 17 Indium 114 82	50 Sn 1 8 tin 118 69	51 Sb 19 antimony 121 75	52 Te 2 1 tellurium 127 60	53 2 5 iodine 126 9 0	
#5 Cs 07 cesium 132 91	56 Ba 09 barrum 137 33	57-71	72 Hf 13 hafnium 178 49	73 Ta 15 tantaluin 180 %	74 W 17 tungsten 183 85	75 Re 19 rhenium 186 21	76 Os 2 2 0smium 190 20	77 lr 2 2 indium 192 22	78 Pt 2 2 platinum 195 09	79 Å J 2 4 gold 196 97	Hq ÷≁	81 Ti 1 8 thelium 204 37	82 Pb 1 8 lead 207 19	83 Bi 1 9 bismuth 208 98	84 Po 2 0 polonium (209)	85 At 2 2 astatine (210)	
87 Fr 0.7 frencium (223)	rs Ra 09 radium 2803	39-103	104 Rf — rutherfordium (260)	105 Ha — hahnium (26P)	(263)	107 —											

57 fanthar 138 91		58 cenum 140 12		59 praseo 140 91	60 neodyr 144 24	Nd 12 nuin	61 promet (145)	Pm — thium	62 samar 150 35	Sm 12 ium	63 europi 151 96	Eu - um	64 gadolir 157 25	Gd 11	65 terbiun 158 93		66 dysprot 182 50		67 holmiu 164 93		68 erbium 167 26	Er 12	69 thulic 168 9		70 ytterbi 173 04		71 lutetiun 174 97	Lu 12
89 ectiniu (227)	Ac 11 um	90 thoriun 232 04	Th 13	91 protact 231 04	92 uraniu 238 03	U 17 m	93 neptun 237 05	Np 13 Hum	94 pluton (244)	Pu 13 ium	95 americ (243)	Am 13	96 curium (247)	Cm —	97 berkeli (247)	Sk - um	96 califor (251)	Cf rnium	99 einste (254)	munn -	100 fermiu (257)	Fm -	101 mende (258)	Md — Murvel	102 nobelii (259)	No - um	103 (awrend ,260)	Lr -

9