

Основы электротехники

Отчет по лабораторной работе №3

«Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока»

Группа Р3333

Вариант 73

Выполнил: Гуменник Петр Олегович

Дата сдачи отчета: 16.10.2024

/ к защите 10.12.2024г.

Дата защиты: 16.10.2024

Контрольный срок защиты: 23 октября 2024г

Количество баллов:

СПб - 2024

Цель работы:

Исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

Часть I.

Схема исследуемой цепи и векторные диаграммы входных напряжений и токов для каждого из двухполюсников.

1.

2.

3.

4.

5.

6.

7.

8.

Расчётные формулы и расчёты.

1. Резистивная цепь (R1):

- Полное сопротивление: $Z = R \ 1 = 35 \ O_{M}$
- Tok: $I = U/Z = 8/35 \approx 0.229 \text{ A}$
- Угол сдвига фаз: $\phi = 0^{\circ}$ (так как это чисто резистивная цепь)

2. Ёмкостная цепь (С):

- Реактивное сопротивление конденсатора: $X_C = 1/(\omega * C) = 1/(2\pi * 63.662 * 33.308 * 10^{-6})$ ≈ 75.057 Ом
- Полное сопротивление: $Z = X_C = 75.057 \text{ Om}$
- Tok: $I = U/Z = 8/75.057 \approx 0.107 A$

- Угол сдвига фаз: $\phi = -90^{\circ}$ (ёмкостное сопротивление)

3. Смешанная цепь (R1 и C):

- Полное сопротивление: $Z = \sqrt{(R_1^2 + X_C^2)} = \sqrt{(35^2 + 75.057^2)} \approx 82,816$ Ом
- Ток: $I = U/Z = 8/82.816 \approx 0.097 A$
- Угол сдвига фаз: $\phi = \arctan(X_C/R_1) = \arctan(75.057/35) \approx -64°59"59$

4. Индуктивная цепь (Rk и Lk):

- Активное сопротивление: $R = R_k = 10 \ O_M$
- Реактивное сопротивление индуктивности: $X_L = \omega^* L_k = 2\pi^* 63.662^* 29.794^* 10^{-3} \approx 11.918 \text{ Ом}$
- Полное сопротивление: $Z = \sqrt{(R^2 + X_L^2)} = \sqrt{(10^2 + 11.918^2)} \approx 15.558$ Ом
- Ток: $I = U/Z = 8/15.558 \approx 0.514 A$
- Угол сдвига фаз: ϕ = arctan(X_L/R) = arctan(11.918/10) ≈ 50°3"

5. Смешанная цепь (R1, Rk и Lk)

- Активное сопротивление: $R = R_k + R_1 = 45 \text{ Om}$
- Реактивное сопротивление индуктивности: $X_L = \omega^* L_k = 2\pi^* 63.662^* 29.794^* 10^{-3} \approx 11.918$ Ом
- Полное сопротивление: $Z = \sqrt{(R^2 + X_L^2)} = \sqrt{(45^2 + 11.918^2)} \approx 46.551$ Ом
- Tok: $I = U/Z = 8/46.551 \approx 0.172 \text{ A}$
- Угол сдвига фаз: ϕ = arctan(X_I/R) = arctan(11.918/45) ≈ 14°50"2`

6. Полная цепь (R1, Rk, Lk, C):

- Активное сопротивление: $R = R_k + R_1 = 45 \text{ Om}$
- Реактивное сопротивление: $X = X_L X_C = \omega^* L_k 1/(\omega^* C) = 2\pi^* 63.662^* 29.794^* 10^{-3}$ —

 $1/(2\pi *63.662*33.308*10^{-6}) \approx -63.139 \text{ Om}$

- Полное сопротивление: $Z = \sqrt{(R^2 + X^2)} = \sqrt{(45^2 + (-63.139)^2)} \approx 77.534$ Ом
- Ток: $I = U/Z = 8/77.534 \approx 0.103 A$
- Угол сдвига фаз: φ = arctan(X/R) = arctan(63.139/45) ≈ -54°31"19`

7. Параллельная цепь (R1, C):

• Формулы:

- Активное сопротивление: $G=rac{1}{R_2}$
- Реактивная проводимость конденсатора: $B=-\omega C$
- ullet Полная проводимость: $Y=\sqrt{G^2+B^2}$
- ullet Угол сдвига фаз: $arphi=rctan\left(rac{B}{G}
 ight)$
- Ток: $I = U \cdot Y$

• Расчёты:

• Активная проводимость:

$$G=rac{1}{35}pprox 0.029\,\mathrm{Cm}$$

• Реактивная проводимость ёмкости:

$$B = -\omega C = -2\pi \cdot 63.662 \cdot 33.308 \times 10^{-6} \approx -0.0133 \, \mathrm{Cm}$$

• Полная проводимость:

$$Y = \sqrt{G^2 + B^2} = \sqrt{0.029^2 + (-0.0133)^2} pprox 0.032 \, \mathrm{Cm}$$

• Угол сдвига фаз:

$$arphi = \arctan\left(rac{-0.0133}{0.029}
ight) pprox -25^\circ$$

Ток:

$$I = U \cdot Y = 8 \cdot 0.032 \approx 0.252 \,\mathrm{A}$$

8.Параллельная цепь (R1, Rk и Lk):

Формулы:

- $G_1 = \frac{1}{R_1}$
- $G_k=rac{R_k}{R_k^2+X_L^2}$
- Реактивная проводимость:

$$B_k = rac{X_L}{R_k^2 + X_L^2}$$

• Полная проводимость:

$$Y=\sqrt{G^2+B^2},\quad G=G_1+G_k$$

• Угол сдвига фаз:

$$arphi = \arctan\left(rac{B}{G}
ight)$$

Ток:

$$I = U \cdot Y$$

Расчёты:

• Реактивное сопротивление индуктивности:

$$X_L = \omega L_k = 2\pi \cdot 63.662 \cdot 29.794 imes 10^{-3} pprox 11.91 \, ext{Om}$$

• Проводимости:

$$G_1=rac{1}{35}pprox 0.029\, ext{Cm}$$
 $G_k=rac{10}{10^2+11.91^2}=rac{10}{241.96}pprox 0.041\, ext{Cm}$ $G=G_1+G_k=0.029+0.041=0.070\, ext{Cm}$ $B_k=rac{11.91}{241.96}pprox 0.049\, ext{Cm}$

• Полная проводимость:

$$Y = \sqrt{0.070^2 + 0.049^2} pprox \sqrt{0.0049 + 0.0024} pprox \sqrt{0.0073} pprox 0.085\,\mathrm{Cm}$$

• Угол сдвига фаз:

$$\varphi = \arctan\left(\frac{0.049}{0.070}\right) \approx 35.1^\circ$$

Ток:

$$I = U \cdot Y = 8 \cdot 0.085 \approx 0.680 \,\mathrm{A}$$

9. Параллельная цепь (R1, Rk, Lk и C):

Формулы:

• Активная проводимость:

$$G_1 = rac{R_1}{R_1^2 + X_C^2}, \quad G_k = rac{R_k}{R_k^2 + X_L^2}$$

• Реактивная проводимость:

$$B_1 = rac{X_C}{R_1^2 + X_C^2}, \quad B_k = rac{X_L}{R_k^2 + X_L^2}$$

Суммарная реактивная проводимость:

$$B = B_k - B_1$$

• Полная проводимость:

$$Y=\sqrt{G^2+B^2},\quad G=G_1+G_k$$

• Угол сдвига фаз:

$$arphi = \arctan\left(rac{B}{G}
ight)$$

Tok:

$$I = U \cdot Y$$

Расчёты:

• Реактивное сопротивление ёмкости:

$$X_C = rac{1}{\omega C} = rac{1}{2\pi \cdot 63.662 \cdot 33.308 imes 10^{-6}} pprox 75.21 \, ext{Om}$$

• Проводимости:

$$G_1 = \frac{35}{35^2 + 75.21^2} = \frac{35}{1225 + 5656.4} = \frac{35}{6881.4} \approx 0.0051 \, \mathrm{Cm}$$

$$G_k = \frac{10}{10^2 + 11.91^2} = \frac{10}{241.96} \approx 0.041 \, \mathrm{Cm}$$

$$G = G_1 + G_k = 0.0051 + 0.041 = 0.0461 \, \mathrm{Cm}$$

$$B_1 = \frac{75.21}{6881.4} \approx 0.0109 \, \mathrm{Cm}$$

$$B_k = \frac{11.91}{241.96} \approx 0.049 \, \mathrm{Cm}$$

$$B = B_k - B_1 = 0.049 - 0.0109 = 0.0381 \, \mathrm{Cm}$$

• Полная проводимость:

$$Y = \sqrt{0.0461^2 + 0.0381^2} pprox \sqrt{0.00213 + 0.00145} pprox \sqrt{0.00358} pprox 0.0598$$
 См

• Угол сдвига фаз:

$$arphi = rctan\left(rac{0.0381}{0.0461}
ight) pprox 39.16^\circ$$

Ток:

$$I = U \cdot Y = 8 \cdot 0.0598 \approx 0.478 \,\mathrm{A}$$

Векторы входных напряжений и токов двухполюсников с масштабирующим коэффициентом для напряжения 0.32

Заполненная таблица 2.2

Номер										
схемы Параметры						Резул	іьтаты	Результаты		
Цепи		Дву	хполюсни	иков		изме	рений	Вычислений		
	R1 Rk		L	C	U	I	φ	I	φ	
	Ом		Гн	мкФ	В	A	0	A	0	
1	35	0	0	0	8	0,229	0	0,229	0	
2	0	0	0	33,308	8	0,106	-90	0.106	-90	
3	35	0	0	33,308	8	0.097	-64°59"59`	0.097	-64°59"59`	
4	0	10	0.029794	0	8	0.514	50°3"	0.514	50°3"	
5	35	10	0.029794	0	8	0.172	14°50"2`	0.172	14°50"2`	
6	35	10	0.029794	33,308	8	0.103	-54°31"19`	0.103	-54°31"19`	
7	35	0	0	33,308	8	0.252	-25°	0.252	-25°	
8	35	10	0.029794	0	8	0.68	35.1°	0.68	35.1°	
9	35	10	0.029794	33,308	8	0.478	39.16°	0.478	39.16°	

Выводы:

В ходе исследования схемы с различными двухполюсниками были проведены расчёты тока и угла сдвига фаз для каждого случая, основанные на активных и реактивных элементах (резисторы, индуктивности и ёмкости). В результате:

Для двухполюєников с резистивными элементами ток и напряжение находятся в фазе $(\phi=0)$.

В цепях с ёмкостными элементами ток опережает напряжение, что выражается в отрицательном угле сдвига фаз.

В цепях с индуктивными элементами ток отстаёт от напряжения, угол сдвига фаз положительный.

В более сложных параллельных и последовательных цепях с комбинацией активных и реактивных элементов (например, двухполюсники 8 и 9), вычисленные токи и углы сдвига фаз зависят от соотношений реактивных сопротивлений индуктивности и ёмкости. Это приводит к различным значениям углов и токов, которые нужно учитывать при анализе.

Построение векторных диаграмм позволило наглядно продемонстрировать фазовые соотношения между токами и напряжениями, что дало возможность оценить как амплитуду, так и фазовый сдвиг для каждого двухполюсника.

Часть II.

$$f_0 = 1/(2\pi * \sqrt{LC}) = 1/(2\pi * \sqrt{(0.029794 * 33,308 * 10^{-6})}) \approx 159.765 \Gamma_{\text{Ц}}$$

Векторная диаграмма напряжений

Расчеты:

$$\omega = 2\pi f$$

$$X_L = \omega L_K \,$$

$$X_C = 1/\Omega C$$

$$Z = \sqrt{((R_1 + R_K)^2 + (X_L - X_C)^2)}$$

$$I = U/Z$$

$$\phi = arctan((X_L - X_C)/(R_1 + R_k))$$

$$U_{R1} = IR_1$$

$$U_C = IX_C$$

$$U_k = I(X_L + R_k)$$

Графики характеристик I(f), φ(f), UR1(f), Uk(f), UC(f) для схемы №6

Таблица 2.3

		U(B)	R1(OM)	Rk(OM)	r(WĽH)	С(мкФ)	f0 (Гц)				
		8	29	10	29,794	33,308	159,765				
		Qp =	0,767				Qe =	0,767			
E (B f0)	E	Ф (Расчёт)	<u>І</u> (Расчёт)	URI (Расчёт)	UK (Расчёт)	UC (Расчёт)	Ф (Эксперимент)	I (Эксперимент)	URI (Эксперимент)	ЦК (Эксперимент)	UC (Эксперимент)
	Гц	0	Α		В		•	Α		В	
0,1	15,977	-82,496	0,027	0,777	0,28	8,012	-82,496	0,027	0,777	0,28	8,012
0,2	31,953	-74,802	0,054	1,56	0,627	8,042	-74,802	0,054	1,56	0,627	8,042
0,3	47,93	-66,737	0,081	2,349	1,088	8,077	-66,737	0,081	2,349	1,088	8,077
0,4	63,906	-58,162	0,108	3,138	1,687	8,091	-58,162	0,108	3,138	1,687	8,091
0,5	79,883	-48,998	0,135	3,903	2,421	8,05	-48,998	0,135	3,903	2,421	8,05
0,6	95,859	-39,283	0,159	4,604	3,262	7,914	-39,283	0,159	4,604	3,262	7,914
0,7	111,836	-29,193	0,179	5,193	4,155	7,651	-29,193	0,179	5,193	4,155	7,651
8,0	127,812	-19,039	0,194	5,623	5,028	7,249	-19,039	0,194	5,623	5,028	7,249
0,9	143,789	-9,196	0,202	5,872	5,815	6,729	-9,196	0,202	5,872	5,815	6,729
1	159,765	0	0,205	5,949	6,469	6,135	0	0,205	5,949	6,469	6,135
1,1	175,742	8,329	0,203	5,886	6,979	5,518	8,329	0,203	5,886	6,979	5,518
1,2	191,718	15,705	0,197	5,727	7,357	4,922	15,705	0,197	5,727	7,357	4,922
1,3	207,695	22,148	0,19	5,51	7,627	4,371	22,148	0,19	5,51	7,627	4,371
1,4	223,671	27,738	0,182	5,265	7,816	3,879	27,738	0,182	5,265	7,816	3,879
1,5	239,648	32,581	0,173	5,013	7,945	3,446	32,581	0,173	5,013	7,945	3,446
1,6	255,624	36,786	0,164	4,764	8,031	3,071	36,786	0,164	4,764	8,031	3,071
1,7	271,601	40,451	0,156	4,527	8,089	2,746	40,451	0,156	4,527	8,089	2,746
1,8	287,577	43,662	0,148	4,303	8,126	2,466	43,662	0,148	4,303	8,126	2,466
1,9	303,554	46,491	0,141	4,096	8,148	2,223	46,491	0,141	4,096	8,148	2,223
2	319,53	48,999	0,135	3,903	8,162	2,013	48,999	0,135	3,903	8,162	2,013

Схема цепи №9

Расчет резонансной частоты:

$$f_0' = \frac{1}{2\pi\sqrt{LC}}\sqrt{\frac{\rho^2 - R_k^2}{\rho^2 - R_1^2}}$$
 Гц.

 f_0 ≈ 615.676

Фигура 1: диаграмма для состояния резонанся в схеме N = 9

Векторная диаграмма токов

Таблица 2.4

		U(B)	R1(OM)	Rk(OM)	<u> </u>	С(мкФ)	f0 (Гц)		
		8	29	10	29,794	33,308	615,676		
		Расчет				Эксперимент			
<u></u> (в f0)	Ę	ф	Į.	I1	12	Ф	Ţ	I1	12
	Гц	0		Α		0		A	
0,1	61,568	38,996	0,486	0,524	0,097	38,996	0,486	0,524	0,097
0,2	123,135	35,316	0,276	0,318	0,165	35,316	0,276	0,318	0,165
0,3	184,703	19,55	0,229	0,222	0,206	19,55	0,229	0,222	0,206
0,4	246,27	9,581	0,23	0,17	0,229	9,581	0,23	0,17	0,229
0,5	307,838	4,805	0,239	0,137	0,243	4,805	0,239	0,137	0,243
0,6	369,406	2,483	0,247	0,114	0,252	2,483	0,247	0,114	0,252
0,7	430,973	1,278	0,253	0,098	0,258	1,278	0,253	0,098	0,258
0,8	492,541	0,614	0,257	0,086	0,262	0,614	0,257	0,086	0,262
0,9	554,108	0,23	0,261	0,077	0,264	0,23	0,261	0,077	0,264
1	615,676	0	0,263	0,069	0,266	0	0,263	0,069	0,266
1,1	677,244	-0,141	0,265	0,063	0,268	-0,141	0,265	0,063	0,268
1,2	738,811	-0,229	0,267	0,058	0,269	-0,229	0,267	0,058	0,269
1,3	800,379	-0,283	0,268	0,053	0,27	-0,283	0,268	0,053	0,27
1,4	861,946	-0,316	0,269	0,049	0,271	-0,316	0,269	0,049	0,273
1,5	923,514	-0,335	0,27	0,046	0,272	-0,335	0,27	0,046	0,272
1,6	985,082	-0,345	0,271	0,043	0,272	-0,345	0,271	0,043	0,272
1,7	1046,649	-0,349	0,271	0,041	0,273	-0,349	0,271	0,041	0,273
1,8	1108,217	-0,349	0,272	0,039	0,273	-0,349	0,272	0,039	0,273
1,9	1169,784	-0,346	0,272	0,036	0,273	-0,346	0,272	0,036	0,273
2	1231,352	-0,341	0,273	0,035	0,273	-0,341	0,273	0,035	0,273

Расчеты:

Активная проводимость:

$$\begin{array}{c} I_L \\ + X_L) \end{array}$$

$$G_1 = rac{R_1}{R_1^2 + X_C^2}, \quad G_k = rac{R_k}{R_k^2 + X_L^2} \quad = ext{U/(R_k)}$$

• Реактивная проводимость:

 $I_C =$

U/(R1-

$$B_1 = rac{X_C}{R_1^2 + X_C^2}, \quad B_k = rac{X_L}{R_k^2 + X_L^2}$$

• Суммарная реактивная проводимость:

$$B = B_k - B_1$$

• Полная проводимость:

$$Y=\sqrt{G^2+B^2},\quad G=G_1+G_k$$

• Угол сдвига фаз:

$$\varphi = \arctan\left(\frac{B}{G}\right)$$

Ток:

$$I = U \cdot Y$$

Графики характеристик I(f), I1(f), I2(f), φ(f) для схемы №9.

Вывод:

- 1. Последовательная цепь (схема №6):
- В последовательной цепи резонансный режим был исследован как теоретически, так и экспериментально. Резонансная частота была рассчитана и экспериментально подтверждена. В режиме резонанса ток в цепи достиг максимума, а угол сдвига фаз между током и напряжением был близок к нулю, что свидетельствует о балансе индуктивности и ёмкости. Векторные диаграммы показали, что ток через индуктивность отстает по фазе, а через ёмкость опережает.
- Добротность последовательного контура была рассчитана, а экспериментальное значение показало наличие потерь в цепи. Векторная диаграмма подтвердила, что в резонансе реактивные элементы компенсируют друг друга, что делает ток и напряжение синфазными.
- 2. Параллельная цепь (схема №9):
- В параллельной цепи резонансное состояние было исследовано с учётом активных сопротивлений.
- В отличие от последовательной цепи, в параллельной цепи суммарный ток I не максимален в резонансе. Это происходит из-за того, что токи в ветвях с индуктивностью I_1 и ёмкостью I_2 компенсируют друг друга, несмотря на то, что каждый из них может быть значительным. Ток через индуктивность уменьшается с увеличением частоты, в то время как ток через конденсатор растёт.

- Угол сдвига фаз в резонансе также близок к нулю, что указывает на баланс реактивных элементов.