Trabajo Práctico RNA - 1C 2019: Prediciendo enfermedad cardiaca en individuos

Resumen

En el siguiente trabajo práctico. Utilizaremos el dataset de <u>enfermedad cardiaca proporcionado por Kaggle</u>. Nuestro objetivo es analizarlo a grandes rasgos y construir una Red Neuronal Artifical, utilizando el modelo Multi Layer Perceptron y el método de aprendizaje <u>Back-propagation</u>.

Para esto, utilizaremos Python 3 como lenguaje y <u>sklearn</u> como librería para hacer feature-engineering en el dataset e inicializar la red. Este documento fue generado mediante <u>Jupyter</u>, un proyecto que permite hacer Explanatory Data Analysis mediante código y explicación escrita.

EDA (Explanatory Data Analisys)

El objetivo de un EDA es presentar al lector un análisis estadístico de un set de datos. En el presente trabajo, consideramos que hacer uno añade valor al mismo. Explicaremos paso a paso qué se hace en cada tramo de código y brindaremos explicaciones teóricas del mismo.

1.- Inspeccionemos el dataset

```
In [1]:
```

```
import pandas as pd

df = pd.read_csv('heart.csv')
df.head()
```

Out[1]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

Kaggle nos proporciona la siguiente información (en inglés) de las variables (que en adelante llamaremos features).

- age age in years
- sex (1 = male; 0 = female)
- cp chest pain type
- trestbps resting blood pressure (in mm Hg on admission to the hospital)
- chol serum cholestoral in mg/dl
- fbs (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
- restecg resting electrocardiographic results
- thalach maximum heart rate achieved
- exang exercise induced angina (1 = yes; 0 = no)
- \bullet $\,$ oldpeak ST depression induced by exercise relative to rest
- slope the slope of the peak exercise ST segment
- ca number of major vessels (0-3) colored by flourosopy
- thal 3 = normal; 6 = fixed defect; 7 = reversable defect
- target 1 or 0

Nuestra variable y (dependiente) será target ya que como mencionamos, nuestro objetivo es predecir enfermedad cardiaca en individuos en base a las features proporcionada por el dataset.

Veamos la distribución de las variables

In [3]:

Algunos insights que vemos de las distribuciones:

- La mayoría de individuos tiene entre 40 y 65 años aproximadamente. Con la media estando en 50-55 años.
- La media de colesterol ronda 250mg/dl. Con una persona por arriba de 500mg/dl 🕲
- Hay mitad de personas que presentan dolor de pecho, la mayoría presenta un dolor tipo 2, que consideramos un dolor "medio".
- La mayoría de los individuos del estudio son hombres.
- La mayoría de los individuos presentan un ritmo cardiaco máximo bastante normal (thalach), tomando como referencia la imagen debajo (fuente: *American Heart Association*).

Separamos las features con la variable a predecir.

```
In [5]:
```

```
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
```

2.- Separación del dataset

Dividamos el dataset en un set de entrenamiento y otro para pruebas. Hagamos un 20% para pruebas. Esto nos permite usar el 80% del mismo para entrenar el modelo y el 20% restante para probarlo. Si usaramos el 100% del dataset para entrar y lo probaramos con el mismo dataset, estaríamos cometiendo una suerte de falacia, ya que estamos usando los mismos datos que entraron a la red, para predecir los mismos datos.

```
In [6]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
```

Procesemos un poco el dataset. Hagamos que la media de cada feature sea 0 y su desviación estándar 1. Esto sirve mucho para algoritmos de machine learning en general, como está descrito en este artículo.

```
In [7]:
```

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
# apply same transformation to test data
X_test = scaler.transform(X_test)
```

Ahora la parte divertida! @

3.- Generemos el modelo y alimentémoslo con los datos de entrenamiento

```
In [8]:
```

```
import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
```

Probemos diferentes configuraciones de redes neuronales. Vayamos de 1 hidden layer con 3 neuronas a 5 capas con 6 neuronas cada una. Serían 5 x 4 combinaciones.

```
In [9]:
```

```
mlp_accuracies_df = pd.DataFrame(columns=['neurons', 'layers', 'score'])

for layers in range(1,5+1):
    for neurons in range(3,6+1):
        clf = MLPClassifier(solver='lbfgs', alpha=le-5, hidden_layer_sizes=(neurons, layers), rando
m_state=1)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    mlp_accuracies_df = mlp_accuracies_df.append({'neurons': neurons, 'layers': layers, 'score': accuracy}, ignore_index=True)
```

```
In [10]:
```

```
mlp_accuracies_df.sort_values(by='score', ascending=False)
```

	neurons	layers	score
6	5.0	2.0	0.868852
10	5.0	3.0	0.836066
12	3.0	4.0	0.836066
19	6.0	5.0	0.836066
8	3.0	3.0	0.819672
9	4.0	3.0	0.819672
14	5.0	4.0	0.819672
16	3.0	5.0	0.819672
5	4.0	2.0	0.803279
7	6.0	2.0	0.803279
1	4.0	1.0	0.803279
11	6.0	3.0	0.803279
2	5.0	1.0	0.803279
3	6.0	1.0	0.786885
15	6.0	4.0	0.786885
4	3.0	2.0	0.754098
18	5.0	5.0	0.737705
17	4.0	5.0	0.704918
13	4.0	4.0	0.672131
0	3.0	1.0	0.557377

In [11]:

```
Out[11]:

MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9,
    beta_2=0.999, early_stopping=False, epsilon=1e-08,
    hidden_layer_sizes=(6, 5), learning_rate='constant',
    learning_rate_init=0.001, max_iter=200, momentum=0.9,
    n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5,
    random_state=1, shuffle=True, solver='lbfgs', tol=0.0001,
    validation fraction=0.1, verbose=False, warm start=False)
```

4.- Analicemos el modelo hecho

Podemos ver los atributos que maneja la clase de Multi-Layer Perceptron Classifier. Posee un learning_rate de 1e-5 (alpha) y usa como función de activación la ReLU.

En este caso, podemos ver que comparando el accuracy scoring (acertados/total) que la configuración de 2 capas escondidas con 5 neuronas cada una (hidden layer sizes) es la más óptima para este dataset.

A su vez, la documentación de Sklearn nos dice que su clase utiliza back-propagation aquí.

5.- Veamos qué tan bien va el modelo con los datos de prueba

In [18]:

```
clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
```

Conclusiones

Podemos ver en la variable cm la matriz de confusión. Acertamos a 25 negativos y 28 positivos — ya que en nuestro caso, los indices son 0 para "no tiene enfermedad cardiaca" y 1 para "posee enfermedad cardiaca".

También podemos ver que nuestro mejor scoring de precisión es del 86.89%. Es relativamente bueno teniendo en cuenta que poseemos un dataset relativamente chico de 242 ejemplos.