$$(x^{10})' = 10 \cdot x$$

$$e^{7\times}$$

$$(e^{x^2}) = 2e^{x^2}$$

$$f(g(x)) \cdot g'(x)$$

$$x \cdot e^{x^2}$$

$$(e^{x^2}) = 2e^{x^2}$$

$$(e^{x^2}) =$$

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \int_{\alpha}^{++}$$

3 Distribution de Maxwell-Boltzmann des vitesses

On rappelle que la densité de probabilisé qu'une molécule de masse se d'un système à l'équilibre à la température T ait une vitesse d'à di' près est donnée, selon Maxwell, per :

$$P(\vec{v}) = Ce^{-\beta \frac{m^2}{2}}$$
,

Sugaronni

TD2 — Fluctuations & distribution Gaussienne DUSPY105 où $S = \frac{1}{1-p}$ et où C est une constante.

- 1 Déterminer C' (la distribution de probabilité doit être normalisée).
- 2 En dédaire la denetté de probabilité F(v_s) que la projection selon l'ane Ox du vecteur vitesse d'une molécule soit égale à v_o à du_r près.
- 3 Calculer la vitosse movenne $\langle \vec{v} \rangle$ d'one molécule.
- 4 Calculer la vitesse quadratique movenne v_o d'une molécule, définie par $v_o^2=(\phi^2)$.
- 5 Montrer que l'énergie cinétique de translation moyenne d'une molècule est $\langle e \rangle = \frac{9}{3} k_B T$

$$Q_{1} = Q_{2} = Q_{3}$$

$$Q_{1} = Q_{4}$$

$$Q_{1} = Q_{4}$$

$$Q_{1} = Q_{4}$$

$$Q_{2} + y_{2}^{2} + V_{2}^{2}$$

$$Q_{3} = Q_{4}$$

$$Q_{4} + y_{2}^{2} + V_{2}^{2}$$

$$Q_{5} = Q_{5}$$

$$Q_{7} + y_{2}^{2} + V_{2}^{2}$$

$$Q_{7} + y_{2}^{2} + V_{2}^{2} + V_{2}^{2}$$

$$Q_{7} + y_{2}^{2} + V_{2}^{2} + V_{2}^{2}$$

$$Q_{7} + y_{2}^{2} + V_{2}^{2} + V_{2}^{2} + V_{2}^{2}$$

$$Q_{7} + y_{2}^{2} + V_{2}^{2} +$$

$$2^{3} = 6$$

$$2^{-3} = 60$$

$$2^{-10} = \frac{1}{2^{10}}$$

$$P(X=2) = \frac{1}{5}$$

$$P(X=3) = \frac{2}{5}$$

$$P(X=-1) = \frac{1}{5}$$

$$P(X=-1) = \frac{1}{5}$$

$$P(X=3) = 2 \cdot P(X=2)$$

$$+ 3 \cdot P(X=3)$$

$$+ 2 \cdot P(X=3)$$

$$+ 3 \cdot P(X$$

LU4PV105 TD2 — Fluctuations & distribution Gaussienne Superiest

où $\beta = \frac{1}{k_B T}$ et où C est une constante.

- 1 Déterminer C (la distribution de probabilité doit être normalisée).
- 2 En déduire la densité de probabilité F(v_x) que la projection selon l'axe Ox du vocteur vitesse d'une molécule: soit égale à v_x à dv_x près.
- 3 Calculor la vitesse moyenne (v) d'une molècule.
- 4 Calculer la vitesse quadratique moyenne v_{q} d'une molécule, définie par $v_{q}^{2}=\left(0^{2}\right) .$
- 5 Montrer que l'énergie cinétique de translation moyenne d'une molécule est $\langle e \rangle = \frac{3}{2}k_BT$.

$$\int x \cdot e^{x^2} dx = \frac{e^{5x^2}}{2}$$

$$\int x \cdot e^{x^2} dx = \frac{e^{5x^2}}{20}$$

$$\int x \cdot e^{x^2} dx = \frac{e^{5x^2}}{20}$$

$$\left\langle \overrightarrow{V} \right\rangle = \left\langle \left\langle \overrightarrow{V_x} \right\rangle \\ \left\langle \overrightarrow{V_y} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle \overrightarrow{V_z} \right\rangle = \left\langle \left\langle 0 \right\rangle \right\rangle = \left\langle \left\langle 0 \right\rangle \\ \left\langle 0 \right\rangle = \left\langle \left\langle 0 \right\rangle \right\rangle = \left\langle \left\langle 0 \right\rangle \right\rangle$$

$$f(x) = x e^{-x^2}$$

$$f(-x) = -x e^{-x^2}$$

$$= -f(x)$$

TD2 — Fluctuations & distribution Gaussienne LU4PY105 où $\beta = \frac{1}{k_B T}$ et où C est une constante. 1 – Déterminer C (la distribution de probabilité doit être normalisée). soit égale à u_x à du_x près.

- 2 En déduire la densité de probabilité $F(v_x)$ que la projection selon l'axe Ox du vecteur viteuse d'une molécule
- 3 Calculer la vitesse moyenne $\langle \vec{v} \rangle$ d'une molècule.
- 4 Calculer la vitesse quadratique moyenne v_q d'une molécule, définie par $v_q^2=(\vec{v}^2).$
- 5 Moestrer que l'énergie cinétique de translation moyenne d'une molécule est $\langle e \rangle = \frac{3}{2} k_B T$.

où $\beta = \frac{1}{k_B T}$ et où C est une constante.

- 1 Déterminer ${\cal C}$ (la distribution de probabilité doit être normalisée).
- 2 En déduire la densité de probabilité $F(v_x)$ que la projection selon l'axe Ox du vecteur vitesse d'une molécule soit égale à v_x à dv_x près.
- 3 Calculer la vitesse moyenne $\langle \vec{v} \rangle$ d'une molécule.
- 4 Calculer la vitesse quadratique moyenne v_q d'une molécule, définie par $v_q^2 = \langle \vec{v}^2 \rangle.$
- 5 Montrer que l'énergie cinétique de translation moyenne d'une molécule est $\langle e \rangle = \frac{3}{2} k_B T$.

Figure 2 mm =
$$\frac{1}{2}$$
 mm (v^{1})

$$= \frac{1}{2}$$
 m (v^{1})

$$= \frac{1}{2}$$
 m (v^{1})

$$= \frac{3}{2}$$
 m (v^{2})

$$= \frac{3}{2}$$
 of $b = \frac{1}{kbT}$

$$= \frac{3}{2}$$
 kbT

$$= \frac{3}{2}$$
 kbT

$$= \frac{3}{2}$$
 kbT

$$= \frac{3}{2}$$

V= 0 N=100 N=1010

N = NA