행하였으며, 재료 비선형을 고려하기 위하여 MIDAS FEA에서 지원되는 이론으로 콘크리트의 경우 Total Strain Crack를 적용하였고, 강선 및 강재는 Von mises를 적용하였다.

(2) 재료 적용 강도

[표 3.6.7] 재료 강도

구 분	교대	슬래브	거더	합성말뚝		기초부	강연선	철근
丁 亚				콘크리트	강재	기조ㅜ	/ଟପଥ	설 디
설계강도(MPa)	30	30	60	30	400	60	2400	400
균열발생응력(MPa)	3.45	3.45	4.90	3.45	240	4.90	_	180
강선 도입긴장력(MPa)	_	_	_	_	_	_	1680	-
강재 항복강도(MPa)	_	_	_	_	400	_	2400	_

라. 구조해석모델링 및 검토위치

본 비선형해석에서는 Solid요소와 beam요소를 이용하여 모델링을 수행하였다.

[그림 3.6.62] 구조해석 검토 위치

검토 항목은 다음과 같다.

[표 3.6.8] 구조해석 검토 항목

구분	콘크리트		철	근	강연선		
	응력	변형률	응력	변형률	응력	변형률	
① 중앙부	압축·인장	압축·인장	인장	인장	인장	인장	
② 분절부	압축·인장	압축·인장	인장	인장	인장	인장	
③ 단부	압축·인장	압축·인장	인장	인장	_	_	
④ 교대부	압축·인장	압축·인장	인장	인장	-	_	
⑤ 말뚝부	압축·인장	압축·인장	인장	인장	-	-	
⑥ 기초부	압축·인장	압축·인장	-	_	_	-	