1. One-step error probability in deterministic Hopfield model

-Input patterns:
$$y^{(u)}$$
 - $y^{(u)}$ - $y^{(u)}$ - $y^{(u)}$ - $y^{(u)}$ = $y^{(u)}$ - $y^{(u)}$ = $y^{(u)}$ - $y^{(u)}$ = $y^{(u)}$ - $y^{(u)}$ - $y^{(u)}$ = $y^{(u)}$ - $y^{(u)}$ - $y^{(u)}$ = $y^{(u)}$ - $y^{(u)}$ -

a) andition for bit 3: 10 be stable after a single step of asynchronous update?

Apply
$$g^{(v)}$$
, obtain:
 $S_i = sgn\left[\sum_{j=1}^{N} w_{ij} J_{j}^{(v)}\right]$
For stability of $J_{i}^{(v)}$ require: $\left[S_i \stackrel{!}{=} J_{i}^{(v)}\right]$ (*)

Rewrite the left-hand-side of Eg. (*):

$$Si = sgn \left(\sum_{j=1}^{N} w_{ij} J_{j}^{(u)} \right) = sgn \left[\sum_{j=1}^{N} \left(\sum_{j=1}^{N} J_{j}^{(m)} J_{j}^{(m)} \right) \right]$$

$$= sgn \left[\sum_{j=1}^{N} J_{j}^{(u)} J_{j}^{(u)} J_{j}^{(u)} J_{j}^{(u)} \right]$$

$$= sgn \left[\sum_{j=1}^{N} J_{j}^{(u)} J_{j}^$$

$$Si = sgn \left[\frac{N-1}{N} y_i^{(v)} + \frac{1}{N} \sum_{j=1}^{N} \frac{p}{p+i} y_{j}^{(m)} y_j^{(m)} y_j^{(m)} \right] (\#)$$

	Rewrite the right hand side of (#)
RAS	of (#) = Sgr [Siv] 19(v) 1 2 2 9(1) 5(v) 910) of (#) = Sgr [Siv] 19(v) 1
	j + i M + V "cross-talk term"
) ()	10101
**)	$S_{i}^{(v)} \stackrel{!}{=} Sgn[n-1]S_{i}^{(v)} + \frac{1}{2} \frac{2}{2} \frac{9}{2} (\mu + 9) (\mu + 9) (\nu) \frac{1}{2} \frac{2}{2} \frac{9}{2} \frac{1}{2} \frac{1}{2$
Sta	blity andition satisfied when:
	$\begin{array}{c c} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} & \mathcal{S}^{(N)} \\ & \mathcal{S}^{(N)} & \mathcal{S}^{$
	ternaturely, one can define (i as follows:
	$C_{i}^{(\nu)} = \frac{1}{N} - \frac{1}{N} \sum_{j=1}^{N} \frac{1}{M-1} $
	0 + i M 7 V
(= o	ross-talk term x (-9i(v)) and rewrite the
Mu	tholy (+x) by (-Ji) and rewrite the
Stal	coss-talk term \times (-9i(")) they (+x) by (-9i(")) and rewrite the orbity condition (+x) as follows: -1 = sgn (-1 + Ci("))
Thi,	s andition is satisfied for [Ci" <1].
Note	: no limits were taken so for. In the limit of N>>1, Ci'd is Ci'd ~ - 1 2 2 3: [M] 5: [M) 5: [M] 9: (0) for N>>1

b) Random patterns: $y_i^{(\mu)} = 1 + 1$, with prob $\frac{1}{2}$. Bit Jiv) is stable after a single step of asynchro nous update if $C_i^{(u)} \leftarrow 1$ (taska).

Therefore, the probability that $y_i^{(u)}$ is unstable is: Pernor = PNb (Gi (1) > 1) To evaluate Peror, consider Cicul: $C_{i}(0) = \frac{1}{N} - \frac{1}{N} = \frac{1$ (P-1)(N-1) +c1~3 Since we assume p>>1 and N>>1, we can use the Central limit theorem (patterns are randow!) Variables Xx have the mean o and variance &=1. It follows that Ci(0) has the following properties. - Ci'll is approximately Gaussian distributed - the mean of G(") is equal to 0 (since the mean - of the randon variables Xx is 2)
- the variance 3° of (i'') is: $6^2 = \frac{1}{N^2} \cdot (N-1) \cdot (P-1) \cdot \frac{6x^2}{N} \approx \frac{P}{N}$ =) 2° = (since p>>1, N>>1)

H follows that
$$\frac{2}{5\pi} e^{-\frac{3}{2}} dy$$
Perror =
$$\int \frac{1}{\sqrt{2\pi}} e^{-\frac{3}{2}} dx = \frac{1}{2} \left[1 - erf \left(\frac{1}{\sqrt{2}} e^{-\frac{3}{2}} \right) \right]$$
Gaussian distribution

Perror =
$$\int \frac{1}{\sqrt{2\pi} z^2} e^{-\frac{x^2}{23^2}} dx = \frac{1}{2} \left[1 - erf\left(\frac{1}{\sqrt{2}} e^{-\frac{x^2}{23^2}}\right) \right]$$

Stored pattern:
$$y^{(1)} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

Weight matrix:
$$w = 19(1) 9(1) T$$

$$w = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1$$

$$w = 1 - 1 - 1 - 1 - 1 - 1 - 1$$

$$w = 1 - 1 - 1 - 1 - 1$$

$$w = 1 - 1 - 1 - 1$$

$$w = 1 - 1 - 1 - 1$$

$$w = 1 - 1 - 1 - 1$$

$$w = 1 - 1 - 1 - 1$$

$$w = 1 - 1 - 1 - 1$$

$$w = 1 - 1 - 1 - 1$$

$$w = 1 - 1$$

1)
$$S_0 = -3^{(n)} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
 $S_1 = sgn(w 3^{(n)}) = 1 \cdot 3^{(n)} \cdot 3^{(n)} \cdot 3^{(n)} = \frac{1}{4} \cdot 4 \cdot 3^{(n)} = \frac{1}{4} \cdot 3^{(n)} = \frac{1}{4} \cdot 4 \cdot 3^{(n)} = \frac{1}{4} \cdot$

$$S_{0} = (-1)$$

$$S_{0} = (-1)$$

$$S_{0} = (-1)$$

$$S_{0} = (-1)$$

3)
$$S_1 = sgn(w, S_0) = sgn(1 - 1 - 1 - 1)$$

$$S_0 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \mathcal{Y}^{(n)}$$

$$S_{0} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

$$S_{1} = S_{2} \left[\begin{array}{c} 1 \\ -1 \\ -1 \end{array} \right] \left[\begin{array}{c} 1 \\ -1 \\ -1 \end{array} \right]$$

$$S_{0} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{array} \right]$$

$$S_{0} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{array} \right]$$

$$S_{0} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{array} \right]$$

6)
$$S_1 = Sgn \left[\begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right] = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$S_0 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
Orthogonal pattern to the stored

pattern to the stored pattern. The network doesnot restore the stored pattern. In fact, it retreives zero redor; failure of the network performance.

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

Same as icase 6 corthogonal

3)
$$S_1 = S_2 \left[\left(\frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1} \right) \right] = \left(\frac{8}{8} \right)$$
 $S_0 = \left(\frac{1}{1} \right)$
 $S_0 = \left($

9)
$$S_1 = S_{5n} \begin{bmatrix} -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}$$

So= (1/1) Sauce as cases 6-8.

So =
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 Same as cases 6-9.

11) My S, = SSN $\left(\begin{array}{c} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right) \left(\begin{array}{c} -1 \\ -1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 0 \\ -1 \\ 1 \end{array} \right)$ So = $\left(\begin{array}{c} -1 \\ -1 \\ 1 \end{array} \right)$ Same as cases 6-10.

$$S_1 = SSN \left(\frac{1-1-1}{1} \right) \left(\frac{1}{1} \right) = \left(\frac{1}{1} \right)$$

$$S_1 = Sg_1 \left(\frac{1}{-1} - \frac{1}{-1} - \frac{1}{-1} \right) = \frac{1}{1}$$

$$S_1 = \frac{1}{2} \left(\frac{1}{-1} - \frac{1}{-1} - \frac{1}{-1} - \frac{1}{-1} - \frac{1}{-1} \right) = \frac{1}{1}$$

$$S_1 = \frac{1}{2} \left(\frac{1}{-1} - \frac$$

$$S_1 = SS_1 \left[\begin{pmatrix} 1 & -1 & -1 & -1 \\ -1 & 1 & 1 & 1 \end{pmatrix} \right] = 1$$

$$S_{o} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right)$$

$$S_1 = S_{S_1} \left[\begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right] = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$$

In summary Dintbe forst 5 cases, the network retreives the stored partern. In Note incoses 2,3,4,5 the pattern that was fed had only one distorted bit in comparison to the stored pattern. Case 1: fed pattern = stored pattern.

2) In cases when more than 2 bits are distorted, the network retreves the inverted version of the stored pattern (cases 12-16)

(3) When exactly N=2 bits are distorted, the network fails is:

coss unable to deal with potterns

orthogonal to the stored pattern

(due to Hebbis rule).

BT Back-propagation (two hidden layers)

-Two hidden layers.

-Input patterns $\mathcal{E}^{[M]} = (\xi_1, \xi_2, ..., \xi_N)^T$ - Target output $\mathcal{G}^{[M]}_1$ - Network output $\mathcal{G}^{[M]}_1$

- First hidden layer: $V_{j}^{(1,m)} = g(b_{j}^{(1,m)}), b_{j}^{(1,m)} = \sum_{i}^{(1,m)} \psi_{i}^{(1)} = \sum_{i}^{(m)} -\Theta_{j}^{(n)}$ - Second hidden layer: $V_{k}^{(2,m)} = g(b_{k}^{(2,m)}), b_{k}^{(2,m)} = \sum_{j}^{(2,m)} v_{j}^{(2,m)} -\Theta_{k}^{(2)}$

- Output layer: 01/m = g (51/m), b1/m = ZW1KVK - E1

- Energy function:
$$H = \frac{1}{2} \sum_{M} (g_{1M}^{(M)} - O_{1M}^{(M)})^2$$

- Gradient descent: find the parameters that minimise H.

$$\delta W_{1K} = -2 \frac{\partial H}{\partial W_{1K}} = -2 \frac{\partial}{\partial W_{1K}} \left\{ \frac{1}{2} \sum_{m} \left[y_{1m}^{(m)} - g(b_{1m}^{(m)}) \right]^{2} \right\} =$$

$$=-2\left[\frac{1}{2}\left[\frac{3^{(m)}-3^{(m)}}{9^{(m)}}\right]\left(-\frac{3A^{(m)}}{9^{(m)}}\right)\right]=$$

$$= g!(b_1^{(m)}) \cdot V_K \qquad 11 \text{ Since } \frac{\partial \overline{W}_{1e}}{\partial \overline{W}_{1k}} = \delta e_K$$

$$\frac{1}{5} W_{1x} = \frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \frac{1}{2$$

$$=-2\sum_{m}(3_{1m}-0_{1m})\cdot(-38(p_{1m}))=$$

$$= 2 \left[\frac{1}{3} \left(\frac{1}{1} \right) \cdot \frac{9}{5} \left(\frac{1}{5} \right) \cdot \left(-1 \right) \right]$$

$$= 2 \left[\frac{1}{3} \left(\frac{1}{3} \right) \cdot \frac{9}{5} \left(\frac{1}{5} \right) \cdot \frac{1}{5} \right] \cdot \frac{1}{5} \left(\frac{1}{5} \right) \cdot \frac{1}{5} \left($$

- Second hidden layer

$$\delta w_{k_{3}}^{(2)} = -2 \frac{2H}{2w_{k_{3}}^{(2)}} - 2 \frac{2H}{2w_{k_{3}}^{(2)}} - 2 \frac{2H}{2w_{k_{3}}^{(2)}} \left\{ \frac{1}{2} \sum_{\mu} (e^{\mu n} e^{\mu n})^{2} \right\} =$$

$$= 2 \left[(4^{(\mu)} - 0^{(\mu)}_{4}) \frac{3}{2w_{k_{3}}^{(2)}} \right]$$

$$= 3 \left[\sum_{\mu} (3^{(\mu)} - 0^{(\mu)}_{4}) \frac{3}{2w_{k_{3}}^{(2)}} - 0^{2} \right] =$$

$$= 3 \left[\sum_{\mu} (3^{(\mu)} - 0^{(\mu)}_{4}) \frac{3}{2w_{k_{3}}^{(2)}} - 0^{2} \right] =$$

$$= 3 \left[\sum_{\mu} (3^{(\mu)} - 0^{(\mu)}_{4}) \frac{3}{2w_{k_{3}}^{(2)}} - 0^{2} \right] =$$

$$= 3 \left[(5^{(\mu)}) \cdot \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2w_{k_{3}}^{(2)}} \right] =$$

$$= 3 \left[(5^{(\mu)}) \cdot \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2w_{k_{3}}^{(2)}} \right] =$$

$$= 3 \left[(5^{(\mu)}) \cdot \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2w_{k_{3}}^{(2)}} \right] =$$

$$= 3 \left[(5^{(\mu)}) \cdot \frac{3}{2w_{k_{3}}^{(2)}} - \frac{3}{2$$

δωκ 8⁽²⁾ - 2 δκ (2,μ) V₃ (1,μ)

Thresholds OK :

$$50x^{(2)} = -\eta \frac{3H}{30x^{(2)}} = \eta \frac{2(9_1^{(M)} - O_1^{(M)})}{30x^{(2)}} \frac{30x^{(M)}}{30x^{(2)}}$$

$$= 750 \times 12^{12} = -72 \times (9.1 \times 10^{10}) \cdot 9.1 \cdot (5 \times 10^{10}) \cdot 10^{12} \cdot$$

$$\int_{\mathcal{K}} \left(\frac{2^{1}}{2} \right) = -\eta \frac{2}{5} \int_{\mathcal{K}} \left(\frac{2^{1}}{2} \right) dx$$

For the first hidden layer we should proceed as above. Alternatively, we note that 5's for the 3rd and 2nd layer obey the following relation

We can use this to find the 5's for the brish hidden

ino ole layer δ j = 2 δ (2, M) wkg g' (bj) The update formulae are, therefore, as follows: Output layer: 5 Wax=2 \ \int \ \forall \ \forall \ \forall \ \ \forall \forall \ \forall \fo 5 Q1=-2 Z 5,13,M) Se and hidden layer: $5w_{kj}^{(2)} = 2\left(\frac{5}{\mu}\right)^{(2,\mu)}V_{j}^{(1,\mu)}$ 80K =- 1/2 SK (2,M) First hidden layer: Swill = 2 \Si (1) = 2 \Si (1) \E(m) 50; (1) = -7 25; (1),M) δκ = 513,m) Whx g'(bx), bκ = Zwkj Vj - θκ 5; (n) = 5 5 (2, M) wking g((b(1))), b(1) = 2 wing = 2 wing = 1 m)

(a) Backpropagation II - discussion of the suplementation of the algorithm above. Explain how you program back-propagation.

(7) Oja's rule _ Swj = 25(\(\xi_j - Swj\))

a) Prove that w* maximises < \(\xi_2^2\) using that $|w^*|^2 = 1$ and w^* is the leading eigenvector of C, with elements Cij = < ?; ? j>. $\langle 3^2 \rangle = \langle (\underline{w}^{\mathsf{T}} \underline{\varepsilon}) (\underline{\varepsilon}^{\mathsf{T}} \underline{w}) \rangle = \langle \underline{w}^{\mathsf{T}} \underline{c} \underline{w} \rangle$ For w=w*, And <f2>= <wt Cw*> = nmax<w*tw*> $\frac{2 \operatorname{max} \omega^*}{(f \circ \omega \cdot i)} \qquad \qquad = 1$ => (52)= Amax) where Amax is the maximum eignvalue of C

Since I is symmetric ((\(\frac{\xi}{\xi}\)) = (\(\frac{\xi}{\zi}\)) it has

real eigenvalues tand its eigenvectors tare orthogonal:

Un Up = \(\frac{\zi}{\zi}\), where \(\frac{\zi}{\zi}\) = \(\frac{\zi}{\zi}\), otherwise

Furthermore, all eigenvalues of C are positive, since

For any unit vector $w = \mathbb{Z} \times_{\mathcal{A}} U_{\mathcal{A}}$ that can be represented as a linear combination of the eigenvectors $U_{\mathcal{A}}$ with coefficients $K_{\mathcal{A}}$ (assuming that $|w|^2 = 1$) we find

 $\langle S^{2} \rangle = \langle \overline{\Sigma} K_{A} U_{A} \rangle C(\overline{\Sigma} K_{B} U_{B}) \rangle = \langle \overline{\Sigma} (K_{A} U_{A})^{T} (\overline{\Sigma} K_{B} N_{B} U_{B}) \rangle =$ $= \langle \overline{\Sigma} K_{A} K_{B} N_{B} U_{A}^{T} U_{B} \rangle = \langle \overline{\Sigma} (K_{A})^{2} N_{A} \rangle \leq N_{max} \langle \overline{\Sigma} | k_{A} \rangle$ $= \langle \overline{\Sigma} K_{A} K_{B} N_{B} U_{A}^{T} U_{B} \rangle = \langle \overline{\Sigma} (K_{A})^{2} N_{A} \rangle \leq N_{max} \langle \overline{\Sigma} | k_{A} \rangle$

From |w|2=1, we find \(\frac{2}{2}(k_\pi)^2=1\) Therefore: <92> & 2max < \(\frac{2}{\pi} \) = 2max x Lg2 Du & Amax and < 52 Dw# = Amax This shows that 292) we is maximal in compassion to <522.

Cualinated for any offer w such that [w]=1. b) Assume that w* is a steady state. In other words: 25m) = 0 => <23(£-3m)>=0 / (WTZ) = { (U+1) => < w* \ \frac{\pi}{2} = 0 = = = = T W* (E E W + - W T E E T W W > > =0 Cyt - [w*T Cw*]w = 0

Scalar; let's call it] (++)=) Cw*= 7w* => Thus, w* is an eigenvector of Could cigenvalue Norm of w (property 2) n=w*TCW* = w*Tnw* = nw*To

Now we must show that we has the maximum eigenvalue 2 max Note: Morder for the retwork to converge to a strady state, this steroly state needs to be stable otherwise, the network would not converge to it. Therefore, cheek the stability of w. Frahate (DW) at w=w"+ E, whore 181 is small. < 5 (w) + E)>= 2 < (w*+E) = [= (w*+E) = (w*+E)]) The steady of th + < ET & E > - < ET & (W*T & W*) >
- (E & TE)
- < W*T & W*T & E > - < w*T & E & w*> - < W*TEET W* > - < W*TEET EW') =7[ce-ET Da Ua Ua = ET Us - UJ rouge - rout Eug = $2 \left[\frac{\varepsilon}{\varepsilon} - 2 \lambda \alpha \left(\frac{\varepsilon}{\varepsilon} + \frac{\varepsilon}{u} \right) u_{\alpha} - \lambda \alpha \varepsilon \right]$ Multipery but rodes by UBINIA.

7845 (16)

Up (0 (w) 18) = 2 (up 0 6 -22 (Etua) up 1/2 - Au UB (E)

= 2 (2/5-22a Sas-7x) 45 E

Recall: Da is the eigenvalue assigned to w. Assume that this is not the maximal eigenvolve. In this case, thus, there will be at loost one B with ABDAX. In this case, it follows that aninitially small fluctuation around w edensted by & above) will grow! This is because the right hours sinte of the equality orborne is inthis case, positive:

1 ps 2 = 1 (2p - 2 22 dd p- 2x) = 2p-2x >0

Therefore, in this case w' is not the weight vector to which the network converges.

What happens if 9x15themaximum eigenvalue? From the above argument, find that & will shrink insite in all directions UB (B+d). What happens In the direction Ux = w ? In this direction & also shrinks because the right-hand-side of the equation above is negative:

72-272-72 = - 2 72 < 0

Thus, we have shown that it the network converges to withen wit is the leading organization to,

c) Generalisation of Ojo's rule for learning M principal components for zero-mean data

Julij = 7 Si (Ej - 25 km wxj)

where Si=Zwij Eg

When M=1, this rule reduces to the rule (5) in the exam text.

Weight decary (Second term in the rule) assures that the weight vectors remain hormalised.

1) _1.