rtklib 深入解读

1 单站误差源处理 (rtkpos/zdres)

I opt : options

opt->exsats/opt->navsys: 需要排除的卫星/需要处理的 GNSS 系统

opt->elmin: 计算单站非差残差的最小卫星高度角

opt->pcvr: 基准站/流动站的 pco/pcv

opt->antdel:基准站/流动站的天线参考点(ARP)相对于地面标识的偏移

opt->posopt[1]: 是否改正测站的 pcv (0:off,1:on)

(opt)->ionoopt: 观测值组合是否是无电离层类型, 如果是, 频率数量设为1

opt->snrmask: 观测值单频的信噪比阈值

opt->tidecorr: (0:off,1:solid,2:solid+otl+pole)

I svh : sat health flags

用于筛选卫星,卫星缺失(svh<0)或者 QZSS 卫星标识不为 0

I nav : sat nav data

nav->lam[obs->sat-1]: 所有卫星各个频率的波长

1.1 Sagnac 效应改正

r+OMGE*(rs[0]*rr[1]-rs[1]*rr[0])/CLIGHT;

$$xs = xs_o + \delta xs \quad ys = ys_o + \delta ys \quad zs = zs_o + \delta zs$$

$$d_o = \sqrt{(xs_o - xr)^2 + (ys_o - yr)^2 + (zs_o - zr)^2}$$

$$\theta = w_e \cdot d / c \approx w_e \cdot d_o / c$$

$$\begin{bmatrix} xs \\ ys \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} xs_o \\ ys_o \end{bmatrix} \approx \begin{bmatrix} 1 & \theta \\ -\theta & 1 \end{bmatrix} \cdot \begin{bmatrix} xs_o \\ ys_o \end{bmatrix}$$

$$\delta xs = \theta \cdot ys_o \quad \delta ys = -\theta \cdot xs_o$$

$$d = \sqrt{(xs - xr)^2 + (ys - yr)^2 + (zs - zr)^2}$$

$$\approx d_o + \frac{xs_o - xr}{d_o} \delta xs + \frac{ys_o - yr}{d_o} \delta ys + \frac{zs_o - zr}{d_o} \delta zs$$

$$= d_o + \theta \cdot \left(\frac{xs_o - xr}{d_o} \cdot ys_o - \frac{ys_o - yr}{d_o} \cdot xs_o \right)$$

$$= d_o + \frac{w_e}{c} \cdot (yr \cdot xs_o - xr \cdot ys_o)$$

1.2 方位角/高度角的计算

xyz2enu(pos,E);

matmul("NN",3,1,3,1.0,E,r,0.0,e);

方位角/高度角的计算需要计算当地水平 enu 坐标系下卫星的位置,目前已知有卫星在 ECEF 坐标系下的位置,因此,我们还需要计算 ECEF 坐标系到 enu 坐标系的**变换矩阵**。

由于变换矩阵涉及到 enu 坐标系三轴在空间的朝向, 我们首先需要把测站的 xyz 坐标转换到某个参考椭球的经纬高, 由经纬高得到的变换矩阵公式如下:

$$l := longitude \qquad p := latitude$$

$$E = \begin{bmatrix} -\sin l & \cos l & 0 \\ -\sin p \cdot \cos l & -\sin p \cdot \sin l & \cos p \\ \cos p \cdot \cos l & \cos p \cdot \sin l & \sin p \end{bmatrix}$$

注意, rtklib 的矩阵存储方式为列优先, 并且有配套的矩阵乘法运算。坐标变换公式如下:

$$r_{enu} = E \cdot r_{ECEF}$$

az=dot(enu,enu,2)<1E-12?0.0:atan2(enu[0],enu[1]);</pre>

if (az<0.0) az+=2*PI;</pre>

Tip: 此三目运算主要是考虑到卫星处于近天顶方向时,方位角也就失去了其含义,因此,人为赋值为 0; 并且 atan2 函数中的变量顺序也说明了方位角的含义是与北方向的夹角,从天顶看顺时针为正. 范围在【0~2 Π 】。

1.3 卫星观测值的排除

- 1. 卫星星历缺失 svh<0
- 2. 人为排除某颗卫星 opt->exsats[sat-1]==1
- 3. 不属于所选卫星系统!(sys&opt->navsys)
- 4. 在选择 QZSS 的情况下, 星历标识不健康 (≠0) if (sys==SYS_QZS) svh&=0xFE
- 5. 用户距离精度(URA)标准差大于设定阈值(300m)

URA I	NDEX	URA (meters)	
0	0.00	< URA ≤	2.40
1	2.40	$<$ URA \le	3.40
2	3.40	$<$ URA \le	4.85
3	4.85	$<$ URA \le	6.85
4	6.85	$<$ URA \le	9.65
5	9.65	$<$ URA \le	13.65
6	13.65	$<$ URA \le	24.00
7	24.00	$<$ URA \le	48.00
8	48.00	$<$ URA \le	96.00
9	96.00	$<$ URA \le	192.00
10	192.00	<ura≤< th=""><th>384.00</th></ura≤<>	384.00
11	384.00	<ura≤< th=""><th>768.00</th></ura≤<>	768.00

1.4 对流层误差的计算

1.4.1 标准大气值的计算

$$p = 1013.25 \times (1 - 2.2557 \times 10^{-5} h)^{5.2568}$$

$$T = 15.0 - 6.5 \times 10^{-3} h + 273.15$$

$$e = 6.108 \times \exp\left\{\frac{17.15T - 4684.0}{T - 38.45}\right\} \times \frac{h_{rel}}{100}$$

1.4.2 Saas 模型天顶干延迟和湿延迟的计算

$$T_{h} = \frac{0.0022768p}{1.0 - 0.00266cos(2\phi) - 2.8h \times 10^{-7}} \times \frac{1}{cosz}$$

$$T_{w} = 0.0022768(\frac{1255.0}{T} + 0.05)e \times \frac{1}{cosz}$$

$$T_{r} = T_{h} + T_{w}$$

1.4.3 对流程延迟投影函数 NMF/GMF

1.5 接收机天线偏移的计算

- a) 天线相位偏移 (PCO) ARP ->APC (天线参考点到天线平均相位中心)
- b) 天线相位变化 (PCV) APC -> IPC (平均相位中心到瞬时相位中心)

$$l = P - \left(r_{pco} + PCV\right)$$

c) 天线参考点 (ARP) 相对于地面标识的偏移

dant[i]=-dot(off,e,3)+(opt?interpvar(90.0-azel[1]*R2D,pcv-> var[i]):0.0);


```
ant1-antdele
                 =0
                            # (m)
                 =0 流动站
ant1-antdeln
                            # (m)
ant1-antdelu
                 =0
                            # (m)
ant2-postype
                 =llh
                            # (0:llh,1:x)
ant2-pos1
                 =35.87298031 # (deg|m)
ant2-pos2
                 =138.38966505 # (deg|m)
ant2-pos3
                 =1003.852 # (m|m)
ant2-anttype
ınt2-antdele
                 =0
                            # (m)
                 =0 基准站 # (m)
nt2-antdeln
nt2-antdelu
                 =0
                            # (m)
```

ASH701073.	1 N	ONE					TYPE	/ SERIAL	NO										
COPIED		TUM			0	27-JAN-6	3 METH	/ BY / #	/ DATE										
5.0							DAZI												
0.0	90.0	5.0					ZEN1	/ ZEN2 /	DZEN										
2							# OF	FREQUENC	IES										
IGS05_1627	IGS05_1627					SINEX	SINEX CODE												
COPIED FROM	M AOAD/	M_T					COMME	NT											
G01							START	OF FREQ	UENCY										
0.60	- 0	.46	91.24				NORTH	/ EAST	/ UP										
NOAZI	0.00	-0.24	-0.92	-1.97	-3.28	-4.69	-6.05	-7.19	-7.97	-8.30	-8.14	-7.46	-6.27	-4.54	-2.20	0.87	4.79	9.56	14.88
0.0	0.00	-0.28	-1.01	-2.12	-3.49	-4.95	-6.35	-7.52	-8.32	-8.63	-8.43	-7.72	-6.51	-4.78	-2.47	0.58	4.48	9.16	14.25
5.0	0.00	-0.28	-1.01	-2.12	-3.48	-4.94	-6.34	-7.50	-8.30	-8.62	-8.42	-7.70	-6.48	-4.75	-2.42	0.63	4.53	9.23	14.33
10.0	0.00	-0.28	-1.01	-2.11	-3.46	-4.92	-6.32	-7.48	-8.27	-8.59	-8.39	-7.68	-6.46	-4.72	-2.38	0.69	4.60	9.32	14.45
15.0	0.00	-0.27	-1.00	-2.10	-3.45	-4.90	-6.29	-7.46	-8.25	-8.57	-8.37	-7.65	-6.43	-4.68	-2.33	0.75	4.69	9.43	14.61

BLOCK IIA	G06	G036	1994-016A TYPE / SERIAL NO
	GFZ/TUM	0	20-APR-05 METH / BY / # / DATE
0.0			DAZI
0.0 14.0	1.0		ZEN1 / ZEN2 / DZEN
2			# OF FREQUENCIES
1994 3	10 0 0	0.0000000	VALID FROM
IGS05_1627			SINEX CODE
G01			START OF FREQUENCY
279.00	0.00 2676.00		NORTH / EAST / UP
NOAZI -0.	80 -0.90 -0.90	-0.80 -0.40	0.20 0.80 1.30 1.40 1.20 0.70 0.00 -0.40 -0.70