Dimostrazioni

Prof. Rocco Zaccagnino 2022/2023

Dimostrazioni

- Una **dimostrazione** è un ragionamento corretto che stabilisce la verità di un asserzione matematica (detto **teorema**) attraverso l'uso di altre asserzioni vere:
 - ipotesi del teorema,
 - assiomi che si assumono essere veri,
 - teoremi dimostrati precedentemente
- Problemi importanti:
 - Quando un ragionamento è corretto?
 - Come seguire un ragionamento corretto? Quale metodo usare?

Teoremi

- Un **teorema** è una asserzione che si può dimostrare essere vera.
- Tipicamente un teorema lo si può vedere in questo modo:

Esempio: Teorema di Fermat

Se p è un primo ed a è un numero non divisivile per p Premesse (ipotesi) allora $a^{p-1} \equiv 1 \mod p$ conclusione

Metodi di dimostrazione

- Dimostrazione diretta
- Dimostrazione per contrapposizione
- Dimostrazione per contraddizione (assurdo)
- Dimostrazione di equivalenza
- Dimostrazione banale
- Dimostrazione vuota
- Dimostrazione per analisi dei casi
- Dimostrazione con quantificatori

Dimostrazione diretta

p → q viene dimostrata mostrando che" se p è T allora q è T "

in maniera diretta:

- si parte dal fatto che p è T
- si fanno una serie di deduzioni, usando assiomi, definizioni e teoremi precedentemente provati per arrivare a dire che anche q è T

Dimostrazione diretta

Esempio: Sia n un intero. Provare che "Se n è dispari, allora nº è dispari"

Dim.

- Assumiamo che l'ipotesi sia vera, cioè n è dispari
- Allora $\mathbf{n} = 2\mathbf{k} + \mathbf{1}$, dove \mathbf{k} è un qualunque intero

•
$$n^2 = (2k + 1)^2$$

= $4k^2 + 4k + 1$
= $2(2k^2 + 2k) + 1$

Perciò, n² è dispari

Dimostrazione diretta

Esempio: Siano n ed m interi. Provare che "Se n ed m sono dispari, allora n + m è pari"

Dim.

- Assumiamo che l'ipotesi sia vera, cioè n ed m siano dispari
- Allora $\mathbf{n} = 2\mathbf{k} + 1$ e $\mathbf{m} = 2\mathbf{h} + 1$ dove \mathbf{k} ed \mathbf{h} sono due qualunque interi
- n+m = (2k + 1) + (2h + 1)
- = 2k + 2h + 2
- = 2(k + h + 1)
- Perciò, **n+m** è pari

Dimostrazione per contrapposizione

```
p → q viene dimostrata mostrando che "se (¬q è T) allora (p è F) "
```

Nota: Ciò che si dimostra è che "se $\neg q$ è T allora $\neg p$ è T "

Si ricordi che $\neg q \rightarrow \neg p \equiv p \rightarrow q$ contronominale

p → q viene dimostrata mostrando che "se (¬q è T) allora (¬p è T) "

Dimostrazione per contrapposizione

Esempio: Provare che "Se 3n + 2 è dispari, allora n è dispari"

Dim.

- Assumiamo al contrario che n è pari, cioè n = 2k, k intero
- 3n + 2 = 3(2k) + 2
- = 6k + 2
- = 2(3k + 1)
- Così 3**n + 2** è pari.

p → q viene dimostrata mostrando che "se (p è T) e (¬q è T) allora F "

Cioè:

- si parte dal fatto che ¬q è T e p è T
- si fanno una serie di deduzioni, usando assiomi, definizioni e teoremi precedentemente provati per arrivare ad una asserzione F

p → **q** viene dimostrata mostrando che

" se (pèT) e (¬qèT) allora F"

L'approccio è corretto perché:

$$(p \land \neg q) \rightarrow F \equiv \neg (p \land \neg q) \lor F$$

$$\equiv \neg (p \land \neg q)$$

$$\equiv \neg p \lor q$$

$$\equiv p \rightarrow q$$

Esempio: Provare che "Se 3n + 2 è dispari, allora n è dispari"

Dim.

- Assumiamo al contrario che n è pari, cioè n = 2k, k intero
- Per ipotesi sappiamo che 3n + 2 è dispari, cioè 3n + 2 = 2h + 1, h intero

•
$$= 3(2k) + 2$$

•
$$= 6k + 2$$

$$= 2(3k + 1)$$

• Che è pari.

Esempio: Siano x e y due numeri reali. Provare che "Se 5x + 25y = 1723, allora x o y non sono interi"

Dim.

- Assumiamo al contrario che x e y sono interi
- 5X + 25y = 1723
- 5(x + 5y) = 1723
- x + 5y = 1723/5
- Ma 1723 non è divisibile per 5, quindi x + 5y non è un intero, che è assurdo poiché sappiamo che x e y sono interi

p ↔ q viene dimostrata mostrando che

$$(p \rightarrow q) \land (q \rightarrow p)$$

Esempio: Provare che "n è dispari se e solo se n² è dispari "

Dim. $(p \rightarrow q)$

- Dobbiamo provare che: Se n è dispari allora n² è dispari
- Usiamo la dimostrazione diretta
- Supponiamo che n sia dispari. Allora n = 2k + 1, dove k è un intero
- $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
- Perciò, n² è dispari

p ↔ **q** viene dimostrata mostrando che

$$(\mathsf{p}\to\mathsf{q})\land(\mathsf{q}\to\mathsf{p})$$

Esempio: Provare che "n è dispari se e solo se n² è dispari "

Dim. $(q \rightarrow p)$

- Dobbiamo provare che: Se n² è dispari allora n è dispari
- Usiamo la dimostrazione per contrapposizione, i.e., proviamo (¬p → ¬q)
- Supponiamo che n sia pari. Allora n = 2k, dove k è un intero
- $n^2 = (2k)^2 = 4k^2$
- Perciò, **n**² è pari

A volte i teoremi affermano che più proposizioni sono equivalenti:

$$\mathbf{p_1} \leftrightarrow \mathbf{p_2} \leftrightarrow ... \leftrightarrow \mathbf{p_n}$$

dove tutte le proposizioni p₁, p₂, , p_n hanno lo stesso valore di verità

Equivalente a
$$(\mathbf{p_1} \rightarrow \mathbf{p_2}) \land (\mathbf{p_2} \rightarrow \mathbf{p_3}) \land \dots \land (\mathbf{p_n} \rightarrow \mathbf{p_1})$$

Esempio: Provare che le seguenti asserzioni sono equivalenti:

- p₁: n è pari
- **p**₂ : n-1 è dispari
- **p**₃: n² è pari

Dim. Proveremo che $(\mathbf{p_1} \rightarrow \mathbf{p_2})$, $(\mathbf{p_2} \rightarrow \mathbf{p_3})$, $(\mathbf{p_3} \rightarrow \mathbf{p_1})$

- $(\mathbf{p}_1 \rightarrow \mathbf{p}_2)$
- Se n è pari allora n = 2k, k intero
- Allora n 1 = 2k 1 = 2(k 1) + 1, è dispari

A volte i teoremi affermano che più proposizioni sono equivalenti:

$$\mathbf{p_1} \leftrightarrow \mathbf{p_2} \leftrightarrow ... \leftrightarrow \mathbf{p_n}$$

dove tutte le proposizioni p₁, p₂, , p_n hanno lo stesso valore di verità

Equivalente a
$$(\mathbf{p_1} \rightarrow \mathbf{p_2}) \land (\mathbf{p_2} \rightarrow \mathbf{p_3}) \land \dots \land (\mathbf{p_n} \rightarrow \mathbf{p_1})$$

Esempio: Provare che le seguenti asserzioni sono equivalenti:

- p₁: n è pari
- **p**₂ : n-1 è dispari
- **p**₃: n² è pari

Dim. Proveremo che $(p_1 \rightarrow p_2)$, $(p_2 \rightarrow p_3)$, $(p_3 \rightarrow p_1)$

- $(p_2 \rightarrow p_3)$
- Se n-1 è dispari, allora n-1 = 2k+1, k intero
- Allora $n^2 = (2k + 2)^2 = 4k^2 + 8k + 4 = 2(2k^2 + 4k + 2)$, che è un intero pari

A volte i teoremi affermano che più proposizioni sono equivalenti:

$$\mathbf{p_1} \leftrightarrow \mathbf{p_2} \leftrightarrow ... \leftrightarrow \mathbf{p_n}$$

dove tutte le proposizioni p₁, p₂, , p_n hanno lo stesso valore di verità

Equivalente a
$$(\mathbf{p_1} \rightarrow \mathbf{p_2}) \land (\mathbf{p_2} \rightarrow \mathbf{p_3}) \land \dots \land (\mathbf{p_n} \rightarrow \mathbf{p_1})$$

Esempio: Provare che le seguenti asserzioni sono equivalenti:

- p₁: n è pari
- **p**₂ : n-1 è dispari
- **p**₃: n² è pari

Dim. Proveremo che $(p_1 \rightarrow p_2)$, $(p_2 \rightarrow p_3)$, $(p_3 \rightarrow p_1)$

- $(p_3 \rightarrow p_1)$
- Per contrapposizione supponiamo che n sia dispari, cioè n = 2k+1, k intero
- Allora $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, che è un intero dispari

Dimostrazione banali

- Vogliamo provare che p → q
- Se la conclusione \mathbf{q} è sempre vera allora $\mathbf{p} \rightarrow \mathbf{q}$ è banalmente vera

Esempio: Sia P(n): "se $a \ge b$ allora $a^n \ge b^n$ ". Mostrare che $P(n) \to P(o)$ Dim.

 $\mathbf{a}^{\circ} > = \mathbf{b}^{\circ}$ è **1=1** che è banalmente vera indipendentemente da **n**.

Dimostrazione vuote

- Vogliamo provare che $\mathbf{p} \rightarrow \mathbf{q}$
- Se l'ipotesi \mathbf{p} è sempre falsa allora $\mathbf{p} \rightarrow \mathbf{q}$ è banalmente vera

Esempio: Sia P(n): "se $n \ge 1$ allora $n^2 \ge 1$ ". Mostrare che (se n = 0) $\rightarrow P(0)$ Dim.

Per n=o l'ipotesi di P(n) è falsa. Così P(o) è sempre vera.

Dimostrazione per analisi dei casi

- Vogliamo provare che $(\mathbf{p_1} \vee \mathbf{p_2} \vee ... \vee \mathbf{p_n}) \rightarrow \mathbf{q}$
- E' equivalente a $(\mathbf{p_1} \rightarrow \mathbf{q}) \land (\mathbf{p_2} \rightarrow \mathbf{q}) \land ... \land (\mathbf{p_n} \rightarrow \mathbf{q})$

Perché?

• $(p_1 \lor p_2 \lor ... \lor p_n) \rightarrow q \equiv$ implicazione

• $\neg (p_1 \lor p_2 \lor ... \lor p_n) \lor q \equiv$ De Morgan

• $(\neg p_1 \land \neg p_2 \land ... \land \neg p_n) \lor q \equiv$ distributiva

• $(\neg p_1 \lor q) \land (\neg p_2 \lor q) \land ... \land (\neg p_n \lor q) \equiv$ implicazione

• $(p_1 \rightarrow q) \land (p_2 \rightarrow q) \land ... \land (p_n \rightarrow q)$

Dimostrazione per analisi dei casi

- Vogliamo provare che $(p_1 \lor p_2 \lor ... \lor p_n) \rightarrow q$
- E' equivalente a $(\mathbf{p_1} \rightarrow \mathbf{q}) \land (\mathbf{p_2} \rightarrow \mathbf{q}) \land ... \land (\mathbf{p_n} \rightarrow \mathbf{q})$

Esempio: Mostrare che |x||y| = |xy| per x e y reali

Dim.

- 1. $X \ge 0, Y \ge 0$
- 2. $X \ge 0, y < 0$
- 3. $x<0, y \ge 0$
- 4. X<0,, y<0

Dimostrazione per analisi dei casi

- Vogliamo provare che $(p_1 \lor p_2 \lor ... \lor p_n) \rightarrow q$
- E' equivalente a $(\mathbf{p_1} \rightarrow \mathbf{q}) \land (\mathbf{p_2} \rightarrow \mathbf{q}) \land \dots \land (\mathbf{p_n} \rightarrow \mathbf{q})$

Esempio: Mostrare che |x||y| = |xy| per x e y reali

Dim.

Sono possibili 4 casi:

- 1. $x \ge 0, y \ge 0 => xy \ge 0 e |xy| = xy = |x||y|$
- 2. $x \ge 0$, $y < 0 => xy \le 0$ e |xy| = -xy = x(-y) = |x||y|
- 3. $x < 0, y \ge 0 \implies xy \le 0 \in |xy| = -xy = (-x)y = |x||y|$
- 4. x < 0, y < 0 => xy > 0 e |xy| = (-x)(-y) = |x||y|

Dimostrazione esaustive

 Alcuni teoremi possono essere provati esaminando un numero relativamente piccolo di esempi

Esempio: $(n+1)^3 \ge 3^n$ se n è un intero positivo con $n \le 4$

Dim.

Bisogna verificare $(n+1)^3 \ge 3^n$ solo nei casi n = 1, 2, 3, 4

1.
$$n=1$$
 $(n+1)^3 = (1+1)^3 = 8$ $3^n = 3^1 = 3$

$$3^n = 3^1 = 3$$

2.
$$n=2$$
 $(n+1)^3 = (2+1)^3 = 27$ $3^n = 3^2 = 9$

$$3^n = 3^2 = 9$$

- Esistono asserzioni con un quantificatore esistenziale ∃x P(x)
- Costruttiva: trovare un esempio che mostri che l'asserzione vale

Esempio: Esiste un intero che può essere scritto in 2 diversi modi come la somma di cubi di interi positivi

Dim.

- Esistono asserzioni con un quantificatore esistenziale ∃x P(x)
- Non costruttiva: se non si riesce a trovare un esempio allora si opta per una dimostrazione per assurdo in cui si nega l'asserzione esistenziale e si mostra che ciò implica una contraddizione
 - si assume che vale $\neg \exists x P(x) \equiv \forall x \neg P(x)$
 - si arriva ad una contraddizione

Esempio (Pigeon Hole Principle):

Se n+1 oggetti sono distribuiti in n scatole, allora qualche scatola deve contenere almeno 2 oggetti

Dim.

- Assumiamo di avere n+1 oggetti, e n scatole identificate con $B_1, B_2, ..., B_n$
- Per assurdo supponiamo che **nessuna** scatola contiene più di 1 oggetto

k_i = il numero di oggetti posti nella scatola **Bi** , per **i=1,..., n, ki ≤ 1**

- Allora $k_1 + k_2 + \dots + k_n \le 1 + 1 + \dots + 1 = n$
- Ma questo contraddice l'ipotesi $\mathbf{k_1} + \mathbf{k_2} + \dots + \mathbf{k_n} = \mathbf{n} + \mathbf{1}$

- Esistono asserzioni con un quantificatore universale ∀x P(x)
- Provare che la proprietà vale per tutti i valori nel dominio
- Possiamo provare che $\neg \forall x P(x) \equiv \exists x \neg P(x)$

Controesempi: Simile alla dimostrazione costruttiva di esistenzialità