系級班別:_____ 學號:____ 姓名:____ 姓名:____

(無參考資料,可用計算機)請在答案卷右上方畫上成績欄,謝謝。

- (30%) 1. (a) Consider the input circuit of the 741 op amp of Fig.1a below, when the emitter current of Q_8 is about 20uA. If β of Q_1 is 200 and that of Q_2 is 250, find the input bias current I_B and the input offset current I_{OS} of the op amp. (10%)
 - (b) Design the Widlar current source of Fig.1b to generate a current I_{CI0} =10uA given that I_{REF} =1mA, if at a collector current of 1mA, V_{BE} =0.7V, find V_{BEII} , V_{BEI0} , and R_4 . (10%)
 - (c) For a modified 741 whose second pole is at 5MHz, what dominant-pole frequency is required for 45° phase margin with a close-loop gain of 40dB? Assuming Cc continues to control the dominant pole. What value of Cc would be required? Assume $g_m=2\times10^{-3}$, A0=105dB (10%)

- (30%) 2. (a) Find intermediate node voltage at Vx during the operation of the 3-bit charge-redistribution converter shown in Fig. 2 when V_{in} =1.24V and V_{ref} =5V. (15%)
 - (b) Describe the operational principle of a 2-bit R-2R D/A converter. (15%) (Show figures if necessary)

Fig. 2

- (25%) 3. (a) For the emitter follower of Fig. 3, let $V_{CC}=10V$, I=100mA, and $R_L=100\Omega$. If the output voltage is an 8-V-peak sinusoid, find the following: (i) the power delivered to the load (5%) (ii) The average power drawn from the supplies (5%) (iii) The power-conversion efficiency, ignore the loss in Q₃ and R. (5%)
 - (b) Explain why 78.5% maximum efficiency can be achieved by a class-B output stage. (10%) (Show figures if necessary)

Fig. 3

(15%) 4. A BJT is specified to have $T_{Jmax}=150^{\circ}$ C and to be capable of dissipating maximum power as follows: 40W at $T_C=25^{\circ}C$, 2W at $T_A=25^{\circ}C$

Above 25°C, the maximum power dissipation is to be derated linearly with θ_{IC} =3.12°C/W and θ_{JA} =62.5°C/W. Find

- (a) The maximum power that can be dissipated safely by this transistor when operated in free air at T_A =50°C. (5%)
- (b) The maximum power that can be dissipated safely by this transistor when operated at an ambient temperature of 50°C, but with a heat sink for which θ_{CS} =0.5°C/W and θ_{SA} =4°C/W. Find the temperature of the case and of the heat sink. (5%)
- (c) The maximum power that can be dissipated safely if an *infinite heat sink* is used and $T_A=50^{\circ}$ C. (5%)

