Messsystemanalyse Gruppe 6

16 November 2020

18:02

%Messwerte des Verfahren 1 data_jan = readtable("MSA_Verfahren1_200ml_Jan.csv")

data_jan = 25×1 table

data_j	an = 25×1 tab
	Gewicht_in_g
1	199
2	213
3	185
4	198
5	205
6	191
7	184
8	193
9	199
10	206
11	207
12	210
13	213
14	197
15	205
16	203
17	196
18	206
19	197
20	204
21	210
22	193
23	195
24	196
25	196

data_benni = readtable("MSA_Verfahren1_200ml_Benjamin.csv")

data_benni = 25×1 table
Gewicht_in_g

	Gewicht_in_g
1	195
2	199
3	201
4	209
5	192
6	193
7	199
8	192
9	201
10	202
11	205
12	210
13	196
14	197
15	195
16	192

202	17	
205	18	
200	19	
202	20	
198	21	
193	22	
195	23	
196	24	
199	25	

data_anna = readtable("MSA_Verfahren1_200ml_Anna.csv")

data_anna = 25×1 table

uata_a	inna = 25×1 tut
	Gewicht_in_g
1	201
2	194
3	192
4	195
5	195
6	204
7	201
8	202
9	195
10	201
11	203
12	201
13	198
14	202
15	200
16	204
17	205
18	201
19	201
20	195
21	203
22	204
23	197
24	198
25	202

data_michael = readtable("MSA_Verfahren1_200ml_Michael.csv")

data_michael = 25×1 table

	Gewicht_in_g
1	205
2	209
3	210
4	204
5	208
6	209
7	208
8	206
9	208
10	205

11	202
12	209
13	204
14	207
15	208
16	204
17	210
18	206
19	209
20	206
21	204
22	209
23	206
24	208
25	208

```
%Statistische Kenngrößen
Mean_Jan = mean(data_jan.Gewicht_in_g)
```

 $Mean_Jan = 200.0400$

Std_Jan = std(data_jan.Gewicht_in_g)

 $Std_Jan = 7.8818$

Mean_Benni = mean(data_benni.Gewicht_in_g)

Mean_Benni = 198.7200

Std_Benni = std(data_benni.Gewicht_in_g)

Std_Benni = 5.0705

Mean_Anna = mean(data_anna.Gewicht_in_g)

Mean_Anna = 199.7600

Std_Anna = std(data_anna.Gewicht_in_g)

Std_Anna = 3.6774

Mean_Michael = mean(data_michael.Gewicht_in_g)

Mean_Michael = 206.8800

Std_Michael = std(data_michael.Gewicht_in_g)

Std_Michael = 2.2045

Messmittel der verschiedenen Kandidaten

```
cg_{Jan} = 0.2 * 500 / (6*Std_{Jan})
```

cg_Jan = 2.1146

 $cg_k_{Jan} = ((0.2/2)*500-abs(Mean_{Jan-200}))/(3*Std_{Jan})$

cg_k_Jan = 2.1129

cg_Benni = 0.2 * 500 / (6*Std_Benni)

cg_Benni = 3.2870

```
cg_k_Benni = ((0.2/2)*500-abs(Mean_Benni-200))/(3*Std_Benni)
 cg_k_Benni = 3.2028
cg_Anna = 0.2 * 500 / (6*Std_Anna)
 cg_{Anna} = 4.5322
cg_anna_matlab = capability(data_anna.Gewicht_in_g,[0,200])
 cg_anna_matlab = struct with fields:
       mu: 199.7600
    sigma: 3.6774
       P: 0.5260
       P1: 0
       Pu: 0.4740
       Cp: 9.0644
      Cpl: 18.1070
      Cpu: 0.0218
      Cpk: 0.0218
cg_k_{Anna} = ((0.2/2)*500-abs(Mean_Anna-200))/(3*Std_Anna)
 cg k Anna = 4.5104
cg_Michael = 0.2 * 500 / (6*Std_Michael)
 cg Michael = 7.5602
cg_k_{ichael} = ((0.2/2)*500-abs(Mean_Michael-200))/(3*Std_Michael)
 cg_k_Michael = 6.5199
x = (1:1:25)
                                    7
                                         8
                                                   10 11
                                                              12 13
                                                                         14
                                                                              15
                                                                                   16
                                                                                          17
% Frau Neff passen diese Werte ? T = 500 oder T=200? Versuch haben wir mit 200 ml gemacht,
% aber Versuch 2 mit 100-500 ml in 100ml-Schritten
Lineare Anpassung
linreg_jan = fitlm(x,data_jan.Gewicht_in_g,"linear")
 linreg_jan =
 Linear regression model:
    y \sim 1 + x1
 Estimated Coefficients:
                  Estimate SE tStat
                                                 pValue
                  199.36
                           3.3157 60.126 8.4599e-27
     (Intercept)
                  0.052308 0.22304 0.23452
     x1
                                                 0.81665
 Number of observations: 25, Error degrees of freedom: 23
 Root Mean Squared Error: 8.04
 R-squared: 0.00239, Adjusted R-Squared -0.041
 F-statistic vs. constant model: 0.055, p-value = 0.817
linreg_anna = fitlm(x,data_anna.Gewicht_in_g,"linear")
 linreg_anna =
```

Linear regression model:

y ~ 1 + x1

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	197.49	1.4512	136.09	6.1999e-35
x1	0.17462	0.097617	1.7888	0.086832

Number of observations: 25, Error degrees of freedom: 23

Root Mean Squared Error: 3.52

R-squared: 0.122, Adjusted R-Squared 0.084

F-statistic vs. constant model: 3.2, p-value = 0.0868

linreg_benni = fitlm(x,data_benni.Gewicht_in_g,"linear")

linreg_benni =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	199.38	2.1298	93.615	3.3318e-31
x1	-0.050769	0.14326	-0.35437	0.72629

Number of observations: 25, Error degrees of freedom: 23

Root Mean Squared Error: 5.17

R-squared: 0.00543, Adjusted R-Squared -0.0378 F-statistic vs. constant model: 0.126, p-value = 0.726

linreg_michael = fitlm(x,data_michael.Gewicht_in_g,"linear")

linreg_michael =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	206.9	0.92849	222.83	7.4203e-40
x1	-0.0015385	0.062457	-0.024632	0.98056

Number of observations: 25, Error degrees of freedom: 23

Root Mean Squared Error: 2.25

R-squared: 2.64e-05, Adjusted R-Squared -0.0435

F-statistic vs. constant model: 0.000607, p-value = 0.981

slope_jan = linreg_jan.Coefficients.Estimate(2)

 $slope_jan = 0.0523$

intercept_jan = linreg_jan.Coefficients.Estimate(1)

intercept_jan = 199.3600

y_jan = slope_jan * x + intercept_jan

```
y_jan =
  199.4123 199.4646 199.5169 199.5692 199.6215 199.6738 199.7262 199.7785 199.8308 199.8831 199.9
slope_anna = linreg_anna.Coefficients.Estimate(2)
slope anna = 0.1746
intercept anna = linreg anna.Coefficients.Estimate(1)
intercept_anna = 197.4900
y_anna = slope_anna * x + intercept_anna
y_anna =
  197.6646 197.8392 198.0138 198.1885 198.3631 198.5377 198.7123 198.8869 199.0615 199.2362 199.4
slope_benni = linreg_benni.Coefficients.Estimate(2)
 slope\_benni = -0.0508
intercept_benni = linreg_benni.Coefficients.Estimate(1)
intercept_benni = 199.3800
y_benni = slope_benni * x + intercept_benni
y_benni =
  199.3292 199.2785 199.2277 199.1769 199.1262 199.0754 199.0246 198.9738 198.9231 198.8723 198.8
slope_michael = linreg_michael.Coefficients.Estimate(2)
 slope_michael = -0.0015
intercept_michael = linreg_michael.Coefficients.Estimate(1)
 intercept_michael = 206.9000
y_michael = slope_michael * x + intercept_michael
v michael =
  206.8985 206.8969 206.8954 206.8938 206.8923 206.8908 206.8892 206.8877 206.8862 206.8846 206.8
%%% Plot MSA
hold on
ms1_jan = plot(x,data_jan.Gewicht_in_g,"rx")
ms1_jan =
  Line with properties:
             Color: [1 0 0]
          LineStyle: 'none'
          LineWidth: 0.5000
            Marker: 'x'
         MarkerSize: 6
    MarkerFaceColor: 'none'
             XData: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]
             YData: [199 213 185 198 205 191 184 193 199 206 207 210 213 197 205 203 196 206 197 204 210 :
             ZData: [1×0 double]
```

```
Show all properties
```

```
plt_linreg_jan = plot(x, y_jan)
plt_linreg_jan =
  Line with properties:
              Color: [0 0.4470 0.7410]
          LineStyle: '-'
          LineWidth: 0.5000
             Marker: 'none'
         MarkerSize: 6
    MarkerFaceColor: 'none'
              XData: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]
               YData: [199.4123 199.4646 199.5169 199.5692 199.6215 199.6738 199.7262 199.7785 199.8308 199
              ZData: [1×0 double]
  Show all properties
ms1_anna = plot(x,data_anna.Gewicht_in_g, "go")
ms1_anna =
  Line with properties:
              Color: [0 1 0]
          LineStyle: 'none'
          LineWidth: 0.5000
             Marker: 'o'
         MarkerSize: 6
    MarkerFaceColor: 'none'
              XData: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]
              YData: [201 194 192 195 195 204 201 202 195 201 203 201 198 202 200 204 205 201 201 195 203 :
              ZData: [1×0 double]
   Show all properties
plt_linreg_anna = plot(x, y_anna)
plt_linreg_anna =
  Line with properties:
              Color: [0.8500 0.3250 0.0980]
          LineStyle: '-'
          LineWidth: 0.5000
             Marker: 'none'
         MarkerSize: 6
    MarkerFaceColor: 'none'
              XData: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]
              YData: [197.6646 197.8392 198.0138 198.1885 198.3631 198.5377 198.7123 198.8869 199.0615 199
              ZData: [1×0 double]
  Show all properties
ms1_benni = plot(x, data_benni.Gewicht_in_g, "b+")
ms1_benni =
  Line with properties:
              Color: [0 0 1]
          LineStyle: 'none'
          LineWidth: 0.5000
             Marker: '+'
         MarkerSize: 6
```

```
MarkerFaceColor: 'none'
              XData: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]
              YData: [195 199 201 209 192 193 199 192 201 202 205 210 196 197 195 192 202 205 200 202 198 :
              ZData: [1×0 double]
  Show all properties
plt_linreg_benni = plot(x, y_benni)
plt_linreg_benni =
  Line with properties:
              Color: [0.9290 0.6940 0.1250]
          LineStyle: '-'
          LineWidth: 0.5000
             Marker: 'none'
         MarkerSize: 6
    MarkerFaceColor: 'none'
              XData: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]
              YData: [199.3292 199.2785 199.2277 199.1769 199.1262 199.0754 199.0246 198.9738 198.9231 198
              ZData: [1×0 double]
  Show all properties
ms1_michael = plot(x, data_michael.Gewicht_in_g, "ms")
ms1 michael =
  Line with properties:
              Color: [1 0 1]
          LineStyle: 'none'
          LineWidth: 0.5000
             Marker: 'square'
         MarkerSize: 6
    MarkerFaceColor: 'none'
              XData: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]
              YData: [205 209 210 204 208 209 208 206 208 205 202 209 204 207 208 204 210 206 209 206 204 :
              ZData: [1×0 double]
  Show all properties
plt_linreg_michael = plot(x, y_michael)
plt_linreg_michael =
  Line with properties:
              Color: [0.4940 0.1840 0.5560]
          LineStyle: '-'
          LineWidth: 0.5000
             Marker: 'none'
         MarkerSize: 6
    MarkerFaceColor: 'none'
              XData: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]
              YData: [206.8985 206.8969 206.8954 206.8938 206.8923 206.8908 206.8892 206.8877 206.8862 206
              ZData: [1×0 double]
  Show all properties
hold off
title("MSA");
xlabel("Messung");
ylabel("ml");
xlim([0.0000 26]);
ylim([180 220]);
```


MSA₂

data_ms2_michael = readtable('Messwerte_MSA2_Micha.xlsx')

data_ms2_michael = 30×4 table

	Operator	Part	Repetition	Measurement
1	'Michael'	1	1	106
2	'Michael'	2	1	205
3	'Michael'	3	1	302
4	'Michael'	4	1	407
5	'Michael'	5	1	507
6	'Michael'	1	2	105
7	'Michael'	2	2	205
8	'Michael'	3	2	303
9	'Michael'	4	2	407
10	'Michael'	5	2	507
11	'Michael'	1	3	105
12	'Michael'	2	3	205
13	'Michael'	3	3	302
14	'Michael'	4	3	408
15	'Michael'	5	3	507
16	'Michele'	1	1	105
17	'Michele'	2	1	205
18	'Michele'	3	1	302
19	'Michele'	4	1	407
20	'Michele'	5	1	507
21	'Michele'	1	2	106
22	'Michele'	2	2	205
23	'Michele'	3	2	302
24	'Michele'	4	2	407
25	'Michele'	5	2	507

26	'Michele'	1	3	105
27	'Michele'	2	3	204
28	'Michele'	3	3	302
29	'Michele'	4	3	406
30	'Michele'	5	3	506

data_ms2_anna = readtable('Messwerte_MSA2_Anna.xlsx')

data_ms2_anna = 30×4 table

	Operator	Part	Repetition	Measurement
1	'Anna'	1	1	100
2	'Anna'	2	1	204
3	'Anna'	3	1	303
4	'Anna'	4	1	409
5	'Anna'	5	1	506
6	'Anna'	1	2	99
7	'Anna'	2	2	201
8	'Anna'	3	2	300
9	'Anna'	4	2	406
10	'Anna'	5	2	503
11	'Anna'	1	3	NaN
12	'Anna'	2	3	NaN
13	'Anna'	3	3	NaN
14	'Anna'	4	3	NaN
15	'Anna'	5	3	NaN
16	'JL'	1	1	103
17	'JL'	2	1	200
18	'JL'	3	1	305
19	'JL'	4	1	400
20	'JL'	5	1	502
21	'JL'	1	2	102
22	'JL'	2	2	198
23	'JL'	3	2	302
24	'JL'	4	2	399
25	'JL'	5	2	502
26	'JL'	1	3	NaN
27	'JL'	2	3	NaN
28	'JL'	3	3	NaN
29	'JL'	4	3	NaN
30	'JL'	5	3	NaN

data_ms2_jan = readtable('Messwerte_MSA2_Jan.xlsx')

data_ms2_jan = 30×4 table

	Operator	Part	Repetition	Measurement
1	'Jan'	1	1	102
2	'Jan'	2	1	200
3	'Jan'	3	1	301
4	'Jan'	4	1	399
5	'Jan'	5	1	502
ŝ	'Jan'	1	2	98
7	'Jan'	2	2	200
8	'Jan'	3	2	299
9	'Jan'	4	2	400

10	'Jan'	5	2	501
11	'Jan'	1	3	NaN
12	'Jan'	2	3	NaN
13	'Jan'	3	3	NaN
14	'Jan'	4	3	NaN
15	'Jan'	5	3	NaN
16	'MJ'	1	1	98
17	'MJ'	2	1	202
18	'MJ'	3	1	302
19	'MJ'	4	1	401
20	'MJ'	5	1	500
21	'MJ'	1	2	100
22	'MJ'	2	2	200
23	'MJ'	3	2	302
24	'MJ'	4	2	399
25	'MJ'	5	2	500
26	'MJ'	1	3	NaN
27	'MJ'	2	3	NaN
28	'MJ'	3	3	NaN
29	'MJ'	4	3	NaN
30	'MJ'	5	3	NaN

data_ms2_benni = readtable('Messwerte_MSA2_Benjamin.xlsx')

data_ms2_benni = 30×4 table

	Operator	Part	Repetition	Measurement
1	'Benjamin'	1	1	101
2	'Benjamin'	2	1	198
3	'Benjamin'	3	1	299
4	'Benjamin'	4	1	402
5	'Benjamin'	5	1	500
6	'Benjamin'	1	2	99
7	'Benjamin'	2	2	202
8	'Benjamin'	3	2	298
9	'Benjamin'	4	2	397
10	'Benjamin'	5	2	503
11	'Benjamin'	1	3	NaN
12	'Benjamin'	2	3	NaN
13	'Benjamin'	3	3	NaN
14	'Benjamin'	4	3	NaN
15	'Benjamin'	5	3	NaN
16	'Marie'	1	1	98
17	'Marie'	2	1	200
18	'Marie'	3	1	301
19	'Marie'	4	1	398
20	'Marie'	5	1	498
21	'Marie'	1	2	100
22	'Marie'	2	2	198
23	'Marie'	3	2	201
24	'Marie'	4	2	302
25	'Marie'	5	2	499
26	'Marie'	1	3	NaN

27	'Marie'	2	3	NaN
28	'Marie'	3	3	NaN
29	'Marie'	4	3	NaN
30	'Marie'	5	3	NaN

```
gscatter(data_ms2_michael.Part,data_ms2_michael.Measurement,data_ms2_michael.Operator)
xlabel("Part")
ylabel("Measurement / unit")
title("operator")
```



```
gscatter(data_ms2_anna.Part,data_ms2_anna.Measurement,data_ms2_anna.Operator)
xlabel("Part")
ylabel("Measurement / unit")
title("operator")
```



```
gscatter(data_ms2_jan.Part,data_ms2_jan.Measurement,data_ms2_jan.Operator)
xlabel("Part")
ylabel("Measurement / unit")
title("operator")
```



```
gscatter(data_ms2_benni.Part,data_ms2_benni.Measurement,data_ms2_benni.Operator)
xlabel("Part")
ylabel("Measurement / unit")
title("operator")

%Boxplot
hold off
```


% @michael kannst du die Farben einfügen, bei meinem Matlab funzt es nicht boxplot(data_ms2_michael.Measurement,{data_ms2_michael.Part,data_ms2_michael.Operator}) legend(findobj(gca,'Tag','Box'),'Michael','Michael')

Warning: Ignoring extra legend entries.

boxplot(data_ms2_anna.Measurement,{data_ms2_anna.Part,data_ms2_anna.Operator})


```
legend(findobj(gca,'Tag','Box'),'Anna','JL')
```

Warning: Ignoring extra legend entries.

```
boxplot(data_ms2_jan.Measurement,{data_ms2_jan.Part,data_ms2_jan.Operator})
legend(findobj(gca,'Tag','Box'),'Jan','MJ')
```

Warning: Ignoring extra legend entries.

boxplot(data_ms2_benni.Measurement,{data_ms2_benni.Part,data_ms2_benni.Operator})


```
legend(findobj(gca,'Tag','Box'),'Benjamin','Marie')
```

Warning: Ignoring extra legend entries.

```
hold on

% GageErr

%GageR&R durchführen
hold on
gagerr(data_ms2_michael.Measurement,{data_ms2_michael.Part,data_ms2_michael.Operator})
```

```
'Source'
                   'Variance'
                                 '% Variance'
                                              'sigma'
                                                           '5.15*sigma'
                                                                         '% 5.15*sigma'
                   [ 0.2500]
'Gage R&R'
                                 [9.8961e-04]
                                             [ 0.5000]
                                                           [ 2.5750]
                                                                              0.3146]
                                                                        Γ
' Repeatability'
                       0.2083]
                                 [8.2468e-04]
                                               [ 0.4564]
                                                              2.3506]
                                                                              0.2872]
                     0.0417]
' Reproducibility'
                                              [ 0.2041]
                                                              1.0512]
                   [
                                 [1.6494e-04]
                                                                        [
                                                                              0.12841
' Operator'
                   [ 0.0417]
                                 [1.6494e-04] [ 0.2041]
                                                             1.0512]
                                                                             0.1284]
                                                          Γ
                                                                        Γ
'Part'
                   [2.5262e+04]
                               [ 99.9990] [158.9406] [ 818.5441]
                                                                             99.9995]
                                                                        Γ
'Total'
                   [2.5262e+04]
                                             [158.9414] [ 818.5481]
                                      100]
```

Number of distinct categories (NDC):450 % of Gage R&R of total variations (PRR): 0.31 Note: The last column of the above table does not have to sum to 100%

```
legend('Location',"northwest")
hold off
```


gagerr(data_ms2_anna.Measurement,{data_ms2_anna.Part,data_ms2_anna.Operator})

'Source'	'Variance'	'% Variance'	'sigma'	'5.15*sigma'	'% 5.15*sigma'
'Gage R&R'	[8.3893]	[0.0331]	[2.8964]	[14.9166]	[1.8184]
' Repeatability'	[7.5214]	[0.0296]	[2.7425]	[14.1240]	[1.7218]
' Reproducibility'	[0.8679]	[0.0034]	[0.9316]	[4.7977]	[0.5849]
' Operator'	[0.8679]	[0.0034]	[0.9316]	[4.7977]	[0.5849]
'Part'	[2.5362e+04]	[99.9669]	[159.2552]	[820.1644]	[99.9835]
'Total'	[2.5371e+04]	[100]	[159.2816]	[820.3000]	1.1

Number of distinct categories (NDC):78 % of Gage R&R of total variations (PRR): 1.82

Note: The last column of the above table does not have to sum to 100%

legend('Location', "northwest")

gagerr(data_ms2_jan.Measurement,{data_ms2_jan.Part,data_ms2_jan.Operator})

'Source'	'Va	ariance'	1%	Variance'	's	igma'	' 5	.15*sigma'	'% 5	5.15*sigma'
'Gage R&R'	[1.8071]	[0.0072]	1	1.3443]	1	6.9231]	[0.8487]
' Repeatability']	1.8071]	[0.0072]]	1.3443]	[6.9231]	Ι	0.8487]
' Reproducibility']	0]	[0]]	0]	[0]]	0]
' Operator'	[0]]	0]	1	0]	1	0]]	0]
'Part'	[2.	5087e+04]	[99.9928]	[1	58.3902]	[815.7097]	1	99.9964]
'Total'	[2.	5089e+04]	[100]	[1	58.3959]	1	815.7391]	2.2	

Number of distinct categories (NDC):167

% of Gage R&R of total variations (PRR): 0.85

Note: The last column of the above table does not have to sum to 100% $\,$

legend('Location', "northwest")

gagerr(data_ms2_benni.Measurement,{data_ms2_benni.Part,data_ms2_benni.Operator})

'Source'	'Variance'	'% Variance'	'sigma'	'5.15*sigma'	'% 5. 1 5*sigma'
'Gage R&R'	[997.2964]	[4.0251]	[31.5800]	[162.6370]	[20.0627]
' Repeatability'	[876.9071]	[3.5392]	[29.6126]	[152.5050]	[18.8128]
' Reproducibility'	[120.3893]	[0.4859]	[10.9722]	[56.5069]	[6.9706]
' Operator'	[120.3893]	[0.4859]	[10.9722]	[56.5069]	[6.9706]
'Part'	[2.3780e+04]	[95.9749]	[154.2062]	[794.1622]	[97.9668]
'Total'	[2.4777e+04]	[100]	[157.4067]	[810.6444]	**

Number of distinct categories (NDC):7

% of Gage R&R of total variations (PRR): 20.06

Note: The last column of the above table does not have to sum to 100%

legend('Location',"northwest")

