

Department of Electrical Engineering and Electronics

ELEC373 - Digital Systems Design

Assignment 3

MIPS Processor

Module	ELEC373		
Coursework name	Assignment 3		
Component weight	Assignment 3 = 20%		
Semester	2		
HE Level	6		
Lab location	EEE Building PC labs 301, 304 as timetabled – Tuesday 9-12		
Work	Individually		
Timetabled time	21 hours (3 hours per week – Tuesday 9am – 12 noon)		
Suggested private study	10 hours including report writing		
How much time did it take you?	Let us know anonymously via https://bit.ly/EEECARES		
Assessment method	Individual, formal word-processed reports (Block diagrams and ASMs can be hand drawn and scanned into the report)		
Submission format	Online via Canvas		
Submission deadline	Assignment 3: Friday week 8 of Semester 2 24 th March 2023		
Late submission	Standard university penalty applies		
Resit opportunity	Students failing the module and Assignment 3 will have an alternative assignment in the Summer		
Marking policy	Marked and moderated independently		
Anonymous marking	Yes		
Feedback	Via comments on CANVAS submission on-line		
Learning outcomes	LO1: Ability to design digital systems using the ASM design method LO2: Ability to implement digital systems using the Verilog Hardware Description Language		
	LO3: Understanding the internal operation of a MIPS processor.		

Marking Criteria

Section	Marks available	Indicative characteristics		
		Adequate / pass (40%)	Very good / Excellent	
Presentation and structure	20%	 Contains cover page information, table of contents, sections with appropriate headings. Comprehensible language; punctuation, grammar and spelling accurate. Equations legible, numbered and presented correctly. Appropriately formatted reference list. 	 Appropriate use of technical, mathematic and academic terminology and conventions. Word processed with consistent formatting. Pages numbered, figures and tables captioned. All sections clearly signposted. Correct cross-referencing (of figures, tables, equations) and citations. 	
Introduction, Method and Design	40%	 Problem background introduced clearly. Evidence of a Top Down Design approach Conceptual Design Choices introduced. Design of each module follows a logical sequence. ASMs correspond to designs for each block. Software is clearly commented 	 Appropriate range of references used. Design decisions justified with alternatives given. Calculations shown in full, justifying and explaining any decisions. Correct ASM Syntax used. Well-structured Verilog Code 	
Results	30%	 Simulation results present for each block and well annotated. Results of full system in both simulation and experimentally presented. Results for each task accompanied by a commentary. Screen shots of results presented. 	 Tests indicate that there are no problems caused by asynchronous inputs. Clear explanation of how the instructions operate correctly 	
Discussion	10%	 Discussion on what worked and what didn't. Critical assessment on the design – strength and weaknesses 	Discussion on how the system was fully tested.	

ELEC373 Verilog Assignment 3 (2022-2023) Synthesising the MIPS Processor

Assignment Outline

Assignment 3 is split into 2 parts, Part A and Part B. The objective of Part A is to get you familiar with the synthesised MIPS single cycle processor and to write some simple programs to control the processor. Part B requires you to extend the processor so that it will implement additional instructions.

MIPS_System

The Verilog Code for the MIPS single cycle implementation are available on CANVAS. Download the ZIP file called MIPS_System and extract it into a suitable location. The synthesised MIPS processor starts executing a program from location 0x0000000. The program is loaded into the FPGA via a Memory Initialisation File, when you program the FPGA. In this design the file is called "insts_data.mif". If you examine this file using the Quartus software you'll find that the data it contains is:

0x3C020000, 0x24420055, 0x3C03FFFF, 0x24632008, 0xAC620000, 0x08000005

If you disassemble this you'll find that the first instruction corresponds to: lui \$2,0x0000 Using the MIPS Instruction Coding available from CANVAS, disassemble the other instructions to understand what the program does.

Memory Map

If you study the "Addr_Decoder.v" file you'll find that the GPIO (General Purpose Input/Output) module is mapped from location 0xFFFF_2000. If you examine the "GPIO.v" file you'll find the individual locations for the LEDs and switches on the DE2 board.

Program Execution

Compile and download the design, you should see that it switches on some of the red LEDs.

SignalTap Logic Analyser

You should configure the SignalTap logic analyser so that you can see the appropriate signals changing in the synthesised MIPS core when the MIPS CPU is running.

Assignment 3 Part A – 40%

- 1. Modify the MIPS assembly language program so that the program displays the lowest 8 digits of your ID on the DE2 board 7 segment display.
- 2. Show that your program functions correctly by taking a screen shot(s) of the SignalTap Logic analyser showing your program executing your modified programme.
- 3. In your report you should include your assembly language code and a screen dump of the SignalTap Logic analyser. Also include a photograph of the 7 segment displays showing your ID.

Assembling

You may find that hand-assembly is quite error prone and laborious. On CANVAS you'll find a MIPS assembler (MARS 4.1) written in JAVA that will help you assemble your code. To get this to assemble code starting at location 0x0000000, select "Settings->Memory Configuration->Compact, Text at Address 0" that will ensure that any jumps have the correct memory location encoded.

Assignment 3 Part B – 60%

The MIPS design presented in MIPS_System only implements a limited number of the MIPS instructions. For the R-Type instructions ADD, ADDU, SUB, SUBU, AND, OR and SLT are implemented. Your task is to modify the MIPS design so that it implements the additional instructions shown in Table 1 whilst still ensuring the existing instructions work correctly. Once you have modified your design you need to write a program to demonstrate that your hardware correctly

implements the instructions. Your results should include print outs of the SignalTap logic analyser showing your program operating. Annotate the print out to explain what is happening. You should submit an electronic copy of your design and assembly language programs onto CANVAS. Your written report should explain what modifications you have made to the Verilog code and include the Verilog code you have developed. There is no need to include the Verilog code for the modules you haven't modified. You should also include ASM/ASMD charts for your modified code. For your report on instruction 3 you should include a block diagram showing the extra data pathways you have added.

Submission Deadline

Electronic copy: Friday 24th March 2023 @ 11:59pm

Table 1 Instructions to implement

ID	Name	Instruction 1	Instruction 2	Instruction 3
201460324	Alhuwayji, Abdullah Ahmed A	nor	andi	lb
201600204	Cao, Zebin	xor	andi	lbu
201600220	Chen, Jialei	nor	andi	lh
201413268	Day, Erik Johan George	xor	xori	lhu
201510374	Denston, Gregory	nor	xori	lb
201600317	Du, Yuang	xor	xori	lbu
201600335	Feng, Haoru	nor	xori	lh
201411100	Fitzsimmons, Joseph	xor	andi	lhu
200956435	Glover, Aaron Phillip	nor	andi	lb
201600366	Gong, Shengwei	xor	andi	lbu
201534766	Haggar, Finlay Michael	nor	xori	lh
201600417	Hou, Menghui	xor	xori	lhu
201600499	Jiao, Tiankuo	nor	xori	lb
201600504	Jin, Hanyu	xor	xori	lbu
201600593	Li, Zekun	nor	andi	lh
201600594	Li, Zhengxing	xor	andi	lhu
201600620	Liu, Binkai	nor	andi	lb
201600670	Liu, Yuanchen	xor	xori	lbu
201600717	Ma, Hanyuan	nor	xori	lh
201460239	Mahmoud, Omran Hussain Ali	xor	xori	lhu
201600730	Mao, Zhenyifan	nor	xori	lb
201600743	Miao, Yue	xor	andi	lbu
201600773	Qian, Shangyuan	nor	andi	lh
	Shen, Zhouyi	xor	andi	lhu
201600887	Tao, Mingrui	nor	xori	lb
201427481	Thompson, Jake	xor	xori	lbu
201600921	Wang, Jiayu	nor	xori	lh
201457862	Wang, Ruoyu	xor	andi	lhu
201600941	Wang, Shibo	nor	andi	lb
201600944	Wang, Shiyan	xor	andi	lbu
201600951	Wang, Xinmi	nor	xori	lh
201600996	Wang, Zhongpei	xor	xori	lhu
201601008	Wen, Qinzheng	nor	xori	lb
201360350	Woodward, Elliot	xor	andi	lbu
201521301	Wu, Fan	nor	andi	lh
201580975	Wu, Xuan	xor	andi	lhu
201601082	Xu, Minghong	nor	xori	lb
201601083	Xu, Nan	xor	xori	lbu
201601154	Yao, Qihang	nor	xori	lh
201601168	Ye, Zhian	xor	andi	lhu
201601191	Yuan, Chenjie	nor	andi	lb
201601215	Zhang, Chao	xor	andi	lbu
201522657	Zhang, Quanze	nor	xori	lh
201601308	Zhao, Yuetian	xor	xori	lhu
201601314	Zheng, Chenyu	nor	xori	lb
201601336	Zhou, Jinkai	xor	andi	lbu
201601355	Zhou, Yiyang	nor	andi	lh
201601371	Zhu, Qilong	xor	andi	lhu
201601384	Zhu, Yuhao	nor	xori	lb