

Funções vetoriais de n variáveis reais

1. Determine o domínio da função definida por cada uma das seguintes expressões:

(a)
$$f(x,y) = \left(\frac{x+y}{x-y}, \log(1-x-y)\right);$$

(b)
$$f(x,y) = (\log(4 - x^2 - y^2), \sqrt{x} + y^2);$$

(c)
$$f(x,y) = \left(x^2, \frac{1}{x} + \log y\right)$$
.

2. Calcule, se existir:

(a)
$$\lim_{(x,y)\to(1,1)} \left(x^7 - 2y, \operatorname{sen}(x^2 - y^3), e^{-x^2 + y^4}\right);$$

(b)
$$\lim_{(x,y)\to(0,0)} \left(\frac{x^3+y^3}{3x^2+5y^2}, \frac{x^2-y^2}{x^2+y^2}, \operatorname{sen} \frac{x^2y}{x^2+5y^2} \right)$$
.

3. Determine as derivadas parciais de primeira ordem das funções definidas por:

(a)
$$f(x,y) = (e^x + y, \log(x - y));$$
 (b) $f(x,y) = (2xy^5, x, -y^2, x + y);$

(c)
$$f(x, y, z) = (1, \cos(xy^2z^3));$$
 (d) $f(x, y, z) = (e^x \cos(-xy), \cos xy).$

4. Calcule $\frac{\partial f}{\partial v}(a)$ para:

(a)
$$f(x,y) = (e^{x+2y}, sen(y+2x)), \quad v = (3,4), \quad a = (0,0);$$

(b)
$$f(x, y, z) = (\cos(xz), \sin(yz)), \quad v = (0, 0, 2), \quad a = (\pi/4, \pi/4, 1).$$

5. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por $f(x, y, z) = \left(e^{x^2 + z}, \operatorname{sen}(x + y)\right)$.

Prove que f é diferenciável e determine $f'(0, \pi/2, 1)$.

6. Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 definida por $f(x,y) = \left(\frac{3x^2 - y^3}{2x^2y^4 + 1}, x + 2xy, \cos(x + y)\right)$.

Prove que f é diferenciável e determine $f'(0,\pi)$.

7. Apresente uma função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 tal que $J_f(x,y) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \ \forall (x,y) \in \mathbb{R}^2.$

- 8. Determine a matriz jacobiana das seguintes funções:
 - (a) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que f(x,y) = (x,y);
 - (b) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $f(x,y) = (xe^y + \cos y, x, x + e^y);$
 - (c) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $f(x,y) = (xye^{xy}, x \operatorname{sen} y, 5xy^2);$
 - (d) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que f(x, y, z) = (x y, y + z);
 - (e) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que $f(x, y, z) = (x + y + e^z, x^2y)$.
- 9. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$. $(x,y) \longmapsto (3x,x+2y)$
 - (a) Calcule a matriz jacobiana de f.
 - (b) Justifique que a função f é diferenciável.
 - (c) Calcule a derivada da função f no ponto (1,2); compare a função f'(1,2) com a função f.
 - (d) Dado $(x_0, y_0) \in \mathbb{R}^2$, calcule $f'(x_0, y_0)$.
- 10. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$. $(x,y) \longmapsto (2x^2,3y,2xy)$
 - (a) Calcule a matriz jacobiana de f.
 - (b) Justifique que a função f é diferenciável.
 - (c) Calcule a derivada da função f no ponto (1,1).
 - (d) Determine f'(1,1)(2,3).
- 11. Sejam $f\colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ uma função de classe $C^1(\mathbb{R}^2)$ tal que

$$f_x(0,1) = f_y(0,1) = (1,1)$$

e $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por $F(x,y) = f(\text{sen} x, \cos y), \, (x,y) \in \mathbb{R}^2$.

Usando a regra da cadeia determine $J_F(0,0)$.

12. Sejam

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 e $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$.
 $(x,y) \longmapsto (x^2,1,x+y)$ $(x,y,z) \longmapsto (\sin(x+y),e^{yz})$

Usando a regra da cadeia, determine $J_{g\circ f}(x,y)$ e $J_{f\circ g}(x,y,z)$

- 13. Sejam $f, g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ com $f(x, y) = (e^x \cos y, e^x \sin y)$ e $g = f \circ f$.
 - (a) Justifique que g é diferenciável em \mathbb{R}^2 .
 - (b) Determine g'(0,0).
- 14. Considere a função $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ e $a \in \mathbb{R}$. $(x,y,z) \longmapsto x^2y xz$
 - (a) Calcule f'(1,0,0)(1,2,2).
 - (b) Sendo $g: \mathbb{R} \longrightarrow \mathbb{R}$ determine a de modo que g tenha derivada nula. $t \longmapsto f(at^2,at,t^3)$

15. Sejam $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ funções duas vezes diferenciáveis e seja

$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
.
 $(x,y) \longmapsto f(x+y) + g(x-y)$

Verifique que $\frac{\partial^2 h}{\partial x^2} - \frac{\partial^2 h}{\partial y^2} = 0$.

16. Sejam $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ e $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ definidas por

$$g(x,y) = (e^{xy}, x^2y)$$
 e $f(r, s, t, u) = (r^2 + t^2, 2su)$.

Prove que $g \circ f$ é diferenciável e determine $J_{q \circ f}(1, 1, 1, 1)$.

17. Seja $f: \mathbb{R}^3 \to \mathbb{R}$ uma função diferenciável no ponto (0, e, 0) tal que $\nabla f(0, e, 0) = (e, -1, e)$. Seja $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $g(x, y) = f(\operatorname{sen}(xy^2), e^y, \log(1 + x^2))$. Mostre que

$$\frac{\partial g}{\partial x}(0,1) + \frac{\partial g}{\partial y}(0,1) = 0.$$

- 18. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por $f(x, y, z) = (x^2 y^2, xy, e^z)$.
 - (a) Determine os pontos (a, b, c) de \mathbb{R}^3 relativamente aos quais o teorema da função inversa garante a invertibilidade local de f.
 - (b) Determine a matriz jacobiana, em f(1,0,0), da inversa local de f em torno de (1,0,0).
- 19. Considere a função $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por $f(x,y) = (e^x \cos y, e^x \sin y)$.

Mostre que f verifica as hipóteses do teorema da função inversa em relação a qualquer ponto $(x,y) \in \mathbb{R}^2$, mas não é globalmente invertível.

20. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por $f(x,y) = ((x+y)^3, (x-y)^3)$.

Verifique que o teorema da função inversa não é aplicável relativamente ao ponto (0,0) e que f é invertível em \mathbb{R}^2 . Comente os resultados.

- 21. Seja $f: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}^2$ definida por $f(x,y) = (x^2 y^2, 2xy)$.
 - (a) Verifique que det $J_f(x,y) \neq 0$, $\forall (x,y) \neq (0,0)$.
 - (b) Justifique que f não é invertível em $\mathbb{R}^2 \setminus \{(0,0)\}$.
 - (c) Mostre que, dado $(a,b) \neq (0,0)$, existe um aberto contendo (a,b), tal que a restrição de f a esse aberto é invertível e diferenciável.
- 22. Sejam $f, g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definidas por $f(x,y) = (x^2y, y x)$ e $g(x,y) = (x^2, y^2)$.
 - (a) Determine $J_{g \circ f}(1,1)$
 - (b) Prove que f é localmente invertível em torno de (1,1).
 - (c) Prove que q não é globalmente invertível.
- 23. Seja $\phi \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por $\phi(x,y) = (e^{xy} + 1, e^{xy} + y^2)$. Verifique que ϕ é invertível em torno de (0,1) e determine $J_{\psi}(\phi(0,1))$, onde ψ é a inversa local de ϕ em torno de (0,1).

3

24. Verifique que, nas condições to teorema da função implícita, o sistema

$$\begin{cases} x + 2x^2y + z = 0 \\ y - e^x = 0 \end{cases}$$

define x e y como funções de z numa vizinhança do ponto (0,1,0). Calcule $x_z(0)$ e $y_z(0)$.

25. Verifique que, nas condições to teorema da função implícita, o sistema

$$\begin{cases} x^2 + y^2 = u^2 + v^2 \\ x^2 - y^2 = 2 - 2u \end{cases}$$

define $u \in v$ como funções de $x \in y$ numa vizinhança do ponto (1,1,1,1). Calcule $u_x(1,1)$, $u_y(1,1), v_x(1,1) \in v_y(1,1).$

26. Considere os caminhos $\alpha: [0,2\pi] \longrightarrow \mathbb{R}^2$ e $\beta: [0,2\pi] \longrightarrow \mathbb{R}^2$. $t \longmapsto (\cos t, \operatorname{sen} t)$ t $\longmapsto (-\operatorname{sen}^2 t, \operatorname{sen} t \cos t)$

- (a) Determine o comprimento da linha Γ descrita pelo caminho β .
- (b) Determine os instantes t_0 para os quais as retas tangentes às curvas α e β nesse instante são ortogonais.
- (c) Determine os instantes t_1 em que a reta ortogonal à curva β nesse instante é vertical.

27. Determine equações da recta normal e do plano tangente a cada uma das superfícies dadas, no ponto indicado:

(a)
$$x^2 + 2y^2 + 3z^2 = 10$$
, $(1, \sqrt{3}, 1)$;

(a)
$$x^2 + 2y^2 + 3z^2 = 10$$
, $(1, \sqrt{3}, 1)$;
 (b) $xyz^2 = 1$, $(1, 1, 1)$;
 (c) $z = x^2 + 3y^3 + \operatorname{sen}(xy)$, $(1, 0, 1)$;
 (d) $x^3 + xyz = 12$, $(2, 2, 1)$.

(b)
$$xyz^2 = 1$$
, $(1, 1, 1)$;

(d)
$$x^3 + xyz = 12$$
, $(2, 2, 1)$

28. Determine os pontos da elipse $2x^2 + y^2 = 1$ cuja tangente passa pelo ponto (1,1).

29. Determine os pontos da curva $x^2 + y^2 - 2x + xy = 0$ cuja normal é paralela à recta y = x.

30. Determine os planos tangentes à esfera de equação $x^2 + y^2 + z^2 = 5$ que contêm a recta de equação

$$\begin{cases} x = 5 - z \\ y = -5 + 2z \end{cases}$$

31. Sejam $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ e A = (-1,0). $(x,y) \longmapsto x-y^2$

- (a) Determine e represente graficamente a curva de nível de f que passa em A.
- (b) Calcule o vector $\nabla f(A)$; coloque no esboço efectuada na alínea anterior, um representante de $\nabla f(A)$ com origem em A.
- (c) Determine uma equação do plano tangente ao gráfico de f em (A, f(A)).

4