# Architecture des Systèmes Théorie

Synthèse





| Rappe  | els                               | 5  |
|--------|-----------------------------------|----|
| Uni    | ités:                             | 5  |
| Ban    | nde passante (bandwidth)          | 5  |
| Late   | ence                              | 5  |
| Sou    | urces d'erreur                    | 5  |
| CPU (0 | Central Processing Unit)          | 6  |
| Util   | lité                              | 6  |
| Con    | mposition                         | 6  |
| (1)    | Unité de contrôle                 | 6  |
| (2)    | ALU (Arithmetic Logical Unit)     | 6  |
| (3)    | Registre                          | 6  |
| (4)    | FPU (Floating Point Unit)         | 6  |
| (5)    | Unité Vectorielle                 | 6  |
| (6)    | Mémoire cache L1                  | 7  |
| (7)    | Mémoire Cache L2                  | 7  |
| (8)    | Entrées-Sorties                   | 7  |
| Hiéi   | rarchie Mémoire                   | 7  |
| Arcl   | hitectures CPU à plusieurs Cœurs  | 7  |
| Spé    | écification CPU                   | 7  |
| F      | inesse de gravure                 | 7  |
| F      | ormat du processeur               | 8  |
| F      | réquence                          | 8  |
|        | Overclocking                      | 8  |
|        | CPU Ration Variable (TurboBoost)  | 8  |
|        | Thermal Throtting                 | 9  |
| Т      | TDP (Thermal Design Power)        | 9  |
| Refr   | roidissement Processeur           | 9  |
| Р      | Passif                            | 9  |
|        | Dissipateur thermique             | 9  |
|        | Caloducs (Heat Pipe)              | 9  |
|        | Chambres à vapeur (Vapor Chamber) | 9  |
| А      | Actif                             | 9  |
|        | Ventirad                          | 9  |
|        | Watercooling                      | 9  |
| Р      | Pates et PAD                      | 10 |



| Amélioration des CPU                      | 10 |
|-------------------------------------------|----|
| Parallélisme                              | 10 |
| CPU superscalaire                         | 10 |
| Pipeline (n° d'instruction par cycle)     | 10 |
| Simultaneous Multithreading (SMT)         | 10 |
| Vitesse d'un CPU                          | 11 |
| Jeu d'instructions                        | 11 |
| Benchmark                                 | 11 |
| RAM (Random acces Memory)                 | 12 |
| Utilité                                   | 12 |
| Type de RAM                               | 12 |
| Généralités                               | 12 |
| Fréquence de fonctionnement               | 12 |
| Calcul des latences                       | 12 |
| Canaux                                    | 13 |
| Mémoires ECC                              | 13 |
| Disque Dur et SSD                         | 14 |
| Périphériques de stockage                 | 14 |
| HDD (Hard Disk Drive)                     | 14 |
| Plateaux                                  | 14 |
| Têtes de lecture/écriture                 | 14 |
| Caractéristiques techniques               | 14 |
| Interface                                 | 14 |
| Temps d'accès                             | 14 |
| IOPS (Input/output operations per second) | 15 |
| Système de suppression des données        | 15 |
| SSD (Solid-State Drive)                   | 15 |
| Généralités                               | 15 |
| Type de mémoire NAND flash                | 15 |
| Autres formats SSD                        | 15 |
| HDD VS SSD                                | 16 |
| RAID                                      | 16 |
| Carte Mère (MotherBoard)                  | 18 |
| Utilité                                   | 18 |
| BIOS                                      | 18 |



# Architecture des systèmes Théorie

Tom Deneyer(discord: littl3t)

| Socket (CPU)                        | 18 |
|-------------------------------------|----|
| Slots Barrettes de RAM              | 18 |
| Connecteurs pour cartes d'extension | 18 |
| Chipset                             | 18 |
| Formats                             | 19 |
| Ordre de priorité pour une Mobo     | 19 |
| Alimentation                        | 20 |
| PSU (Power Supply Unit)             | 20 |
| Calcul de la puissance nécessaire   | 20 |
| Rendements                          | 20 |
| Formats                             | 20 |
| Connectivité                        | 20 |
| Comment choisir ?                   | 20 |
| GPU (Graphics Processing Unit)      | 21 |
| Utilité                             | 21 |
| Format GPU                          | 21 |
| Caractéristiques GPU                | 21 |
| Calcul de puissance                 | 21 |
| Exemple Calcul pratique             | 22 |
| Mémoire graphique                   | 22 |
| Bande passante mémoire              | 22 |
| Interface                           | 22 |
| Consommation (TDP vs TGP)           | 22 |
| Sortie graphiques                   | 22 |
| Boitiers                            | 23 |
| Format                              | 23 |
| Eléments importants                 | 23 |
| Ecrans                              | 23 |
| Généralités                         | 23 |
| OLED                                | 23 |
| Résumé technologies d'écrans        | 21 |



# Rappels

# Unités:

- Bit = Valeur 0 ou 1
- 1 octet = 8bits
- 1 byte = 8bit (1 octet)
- Utilisation du SI

# Bande passante (bandwidth)

bps, b/s ou bit/s (bit pas seconde)
Bps, B/s, Byte/s, octet/s (octet par seconde)

- Pour augmenter le debit
  - 1) Augmenter les fréquences
  - 2) Augmenter le nombre de canaux

#### Latence

- Délai entre les communications (entre A et B)
- Unité : ms, μs, ns
- Anglicisme : Lag, ping
- Bridé par la propagation des électrons (273000km/s) ou vitesse fibre optique
- Même si fréquence augmenté ou plus de canaux, la latence reste la même, seul moyen est de rapprocher A et B

# Sources d'erreur

- L'utilisateur
- Développeurs
- Pannes/usures matérielle



# **CPU (Central Processing Unit)**

#### Utilité

- Faire des calculs
- Gérer les déplacement de données

# Composition

- Transistors:
  - Semiconducteur (comme amplificateur ou interrupteur à commande électrique)
  - → Comme porte logique
- Mémoires :
- Fournir les données aux transistors et stocker le résultat
- Bus de données :
  - Enter et sortir les données du CPU



# (1) Unité de contrôle

- Séquenceur
- Synchronise les différents éléments du CPU
- Prend beaucoup de place
- L'améliorer optimise beaucoup le processeur

# (2) ALU (Arithmetic Logical Unit)

- Calcul des fonctions basiques, calculs arithmétiques et opérations logiques (portes)
- Nombre Entiers seulement

# (3) Registre

- Eplacement mémoire internet au CPU
- Données temporaires
- Débit le plus rapide dans l'ordinateur
- Très cher
- Faible capacité (moins d'1ko)

# (4) FPU (Floating Point Unit)

- Calculs de floats (avec des nombres réels)
- Oprétations complexes (trigonométrie, racines, etc)
- Beaucoup utilisé par le multimédia

# (5) Unité Vectorielle

- Jeux d'instructions complémentaires (MMX, 3Dnow!, SSE...
- Plusieurs données en même temps avec la même opération
- Unité SIMD (Single Instruction Multiple Data), jusqu'à 512bits à la fois



# (6) Mémoire cache L1

- Stock les prochaines instructions à exécuter (buffer ?)
- Très rapide mais moins que le registre
- Ex de taille : 2x32ko

# (7) Mémoire Cache L2

- Même principe que L1
- Plus grande quantité, 256 à 1024ko
- Plus lente que L1

# (8) Entrées-Sorties

- Gère les communications avec l'extérieur du CPU (Ram, GPU, etc)
- Plus ou moins grande en fonction des CPU

#### Hiérarchie Mémoire

| Туре     | Latence<br>(ns) | Débit<br>(Go/s) | Coût  |
|----------|-----------------|-----------------|-------|
| Registre | 0,02            |                 | +++++ |
| Cache L1 | 2               | 210             | +++++ |
| Cache L2 | 5               | 80              | ++++  |
| Cache L3 | 20              | 60              | +++   |
| RAM      | 60              | 40              | +     |

(Cache L3! Liaison des autres caches sur un CPU à plusieurs Cœurs)

# Architectures CPU à plusieurs Cœurs

#### Big Little:



Mélange de gros cœurs performants avec petits cœurs moins gourmants pour optimiser les performances/conssomations

# Deux cœurs:



Une unité de contrôle et d'entrée-sortie globales + Mémoire cahe L3

# Spécification CPU

#### Finesse de gravure

- Plus la finesse est elevée (valeur petite), plus les transistors sont petits
- Plus ils sont petits :
  - Consommation réduite



- Chauffent moins
- Permet d'augmenter les fréquences
- Place réduite
  - Réductions des coûts/surface
  - Augmente le nombre de fonctionnalités
    - Plus ils chauffent
    - Il faut diminuer la fréquence...

# Format du processeur

| constructeur | laptop                                    | desktop                                   | server                     |
|--------------|-------------------------------------------|-------------------------------------------|----------------------------|
| intel        | Socket 1090<br>Socket 1356<br>Socket 1440 | Socket 1151<br>Socket 1200<br>Socket 2066 | Socket 2066<br>Socket 3647 |
| AMD          | Socket FP5<br>Socket FP6                  | Socket TRx4<br>Socket AM4                 | Socket SP3                 |

Les formats changent toutes les deux à quatre générations.

# Fréquence

- Horloge interne du CPU
- Fréquence interne du processeur = CPU Ratio x Fréquence de base
  - Fréquence de base = 100MHz
  - CPU Ratio dépend du CPU

#### Overclocking

- Augmentation de la Fréquence de base et/ou du CPU Ratio
- Ex:
- 100MHz et 38 de base (= 3..8GHz) → 102MHz et 50 (=5.1GHz)
- Problème:
- Chauffe +
- Seulement quelques %
- Coefficients vérouillés sur de nombreux CPU
- Parfois nécessaire d'augmenter la tension → Chauffe plus

# CPU Ration Variable (TurboBoost)

- Overclocking automatique du CPU (ex : de 3.6GHz à 5GHz)
- Meilleur cas :
  - L'ordinateur n'est pas suffisamment refroidit et n'atteint presque jamais voir jamais les fréquences annoncés
- Pire cas : Thermal Throtting



## Thermal Throtting

Lorsque le CPU essaye de varier la fréquence en fonction de la chaleur mais que la chaleur décent, la fréquence augmente donc ça chauffe, donc la fréquence diminue, ainsi de suite...



# TDP (Thermal Design Power)

#### $TDP = k.V^2.f$

- k = constante (fonction du processeur)
- V = tension électrique
- F = fréquence
- TDP watts (W)
- Il faut adapter le refroidissement du CPU en fonction du TDP
- Si la tension est trop basse, l'ordi plante. Ex : Tension entre 0.87V et 1.4V

#### Refroidissement Processeur

#### **Passif**

# Dissipateur thermique

(pour faibles TDP)

Augmenter la surface d'échange avec l'air pour dissiper la chaleur

#### Caloducs (Heat Pipe)

Tubes métalliques, permettant de transférer la chaleur via l'évaporation et la condensation d'un gaz/liquide dans ces tubes.

Très utilisés dans les laptops et ventirads

# Chambres à vapeur (Vapor Chamber)

Même principe qu'un caloduc, avec une surface d'échange plus grande, comme une boite.

#### Actif

## Ventirad

- Dissipateur thermique avec un ventilateur dessus
- Utilisé dans 99% des cas
- Parfois bruyants, plus il est grand moins il est bruyant car tourne moins vite

#### Watercooling

• Meilleur encombrement, donc meilleur airflow



Tom Deneyer(discord: littl3t)

- Dissipation thermique via l'échange de liquide depuis le CPU jusque des ventilateurs qui soufflent en dehors du boitier (meilleur optimisation des chaleurs)
- Besoin d'entretiens réguliers, attentions aux fuites...

#### Pates et PAD

- Surfaces entre dissipateurs et CPU pas totalement planes donc besoin d'un conducteur thermique entre les deux
- ⇒ Pate : Appliquer, liquide. Durée de vie de 1 à 5ans.
- ⇒ PAD : Coller, solide.
- Adapter en fonction des TDP

#### Amélioration des CPU

- La fréquence (+25% en 15ans)
- IPC pour instructions par cycle (= efficacité d'un cœur, +100% en 15ans)
- Parallélisme (+3200% en 15ans)

#### Parallélisme

- Dédoubler certaines unités de calcul
- Aumgenter le nombre d'instructions par cycle
- Multicoeurs, Multiprocesseurs, Multithreading simultané

#### CPU superscalaire

• Augmenter le nombre de ALU / FPU pour pouvoir faire plusieurs calculs en même temps.

# Pipeline (n° d'instruction par cycle)



# Simultaneous Multithreading (SMT)

- Multiplier virtuellement le nombre de cœurs du CPU sans ajouter d'unité de calcul.
- Ex : 4 cœurs avec un SMT de degrés 2 : 8threads



HEHbe

•

Tom Deneyer(discord: littl3t)

# Vitesse d'un CPU

Flops = nombre(cœurs)\*fréquence\*Flop/cycle

Calculé, par défaut, sur des nombres flottants de 32bits



# Jeu d'instructions

- Ensemble des instructions machine qu'un processeur peut exécuter
- Assurer la compatibilité avec le matériel
- Les deux jeux majeurs :
  - X86 (Windows)
  - ARM (Téléphone, tablettes, ... apple)

# Benchmark

- Benchmark synthétique
  - Logiciel dans le seul but d'évaluer les performances
  - Marketing...
- Benchmark Applicatif
  - Mesure dans un jeux vidéo ou logiciel
  - Résultats varient d'un logiciel à l'autre



# RAM (Random acces Memory)

#### Utilité

- Contient les données utilisés par le CPU pour les calculs, les résultats des calculs, programmes en cours d'exécution
- Mémoire vive : données perdues quand l'alimentation est interrompue

# Type de RAM

DRAM:

Mémoire vive du PC, dense, pas cher, assez rapide

SRAM:

Mémoire cache, moins dense, plus cher, plus rapide

- DDR (Double Data Rate, optimisé pour les latences CPU)
- GDDR (Graphics DDR, optimisé pour les débits GPU)
- HBM (Hight Bandwidth Memory, optimisé pour les debit GPU mémoire empilée et soudée)

#### Généralités

- Capacité : Go
- Type de mémoire (DDRx)
- Format (DIMM (pc fixe), SO-DIMM (pc portable))



- Fréquence (MHz)
- Timing (latence)
- Canaux
- Fonctionnalités
- Refroidissement
- Si pas assez de RAM, le CPU utilise le support de stockage (HDD, SSD...) comme RAM

# Fréquence de fonctionnement

Fréquence\*bus = débit Ex : 2800MHz \* 64bits = 179.200 Mb/s = 22.400 Mo/s

#### Calcul des latences

→tCLK pour exprimer les latences en cycles (1/fréquence)

DONC temps de cycle = 
$$\frac{1}{(fréquence\ en\ Hz)/2}$$
 ns (ex : 4000MHz = 4x10^9)

tCAS = temps de cycle \* CASLatency (le CL18 par exemple, CASLatency = 18)

ex : 0.5(ns)\*18(ns) = 9ns



# Canaux

- Canaux mémoire = Multi-channel
- Possibilité d'utiliser plusieurs canaux en même temps suivant la carte mère et le CPU
  - → Dual Channel
- Peut aller jusque dodeca-channel (12)
- ATTENTION, Barrettes identiques

# Mémoires ECC

• Error Correction Code :

Ajouter des bits dédités à la détection et correction d'erreur.



# Disque Dur et SSD

Besoin de sauvegarder les données de manière permanente = mémoire morte :

## Périphériques de stockage

HDD (disques durs, mécaniques/magnétiques)

SSD (disque électronique)

SSHD (HDD avec un petit SSD inclus)

eMMC

• Clé USB et cartes SD

# HDD (Hard Disk Drive)

#### Plateaux

- Plateaux gravés, vitesse constantes
- Plus la vitesse est élevée
  - Meilleur débits
  - Meilleurs latences
  - Moins bonne consommation

# Têtes de lecture/écriture

- Electro-aimants qui se baissent ou se soulève.
- 3nm de la surfaces

Débits Varient en fonction de l'emplacement de la donnée sur le plateau :

# ~80 Mo/s

#### Caractéristiques techniques

- Capacité en Go ou To
- Taille en pouce (2.5 ou 3.5)
- Nombres de plateaux
- Densité en bit per inch (bpi) et track per inch (tpi)
- Interface Stata, temps d'acces, IOPS, mémoire cache...

#### Interface

- SATA (I, II, III)
- Pour disque dur normal : SATA (half duplex)
- Pour disque dur serveur : SAS (full duplex)

#### Temps d'accès

- Temps moyen pour accéder à la bonne piste (seek time)
- Temps de Latence = délai entre trouver la piste et synchroniser les données (= [60/rpm]/2)
- Temps d'accès Réel (access time) = Temps d'accès moyen + temps de latence (en ms)
- Ex: 7200rpm, seek time= 8.7ms  $\rightarrow$  AccesTime = 8.7+ ((60/7200)/2) = 12.96ms



# IOPS (Input/output operations per second)

Sans unites, parfois Mo/s



# Système de suppression des données

Un HDD n'efface jamais, effacer revient à invalider la donnée et donc dire au PC qu'elle n'est plus accessible contrairement à l'emplacement de celle-ci

SEUL moyen d'effacer une donnée est de réécrire 7x par-dessus l'emplacement

# SSD (Solid-State Drive)

# Généralités

- Purement électronique
- Résiste mieux aux chocs + vibrations
- Moins de pannes
- Plus faible consommation, pas de bruit
- Utilisation mémoire flash
- Interface SATA
- Plus cher

# Type de mémoire NAND flash

| Type de mémoire |                      | Taille d'une cellule | Tarif  | Perfs | Durée de vie<br>écritures max |
|-----------------|----------------------|----------------------|--------|-------|-------------------------------|
| SLC             | Single Level Cell    | 1 bit                | €€€€€€ | +++++ | ~ 100 000                     |
| MLC             | Multi Level Cell     | 2 bit*               | €€€€€  | ++++  | ~ 10 000                      |
| TLC             | Triple Level Cell    | 3 bit                | €€€    | +++   | ~ 3 000                       |
| QLC             | Quadruple Level Cell | 4 bit                | €€     | +     | ~ 1 000                       |

# Autres formats SSD

- Carte d'extension PCI-express
- mSATA (SATA3.1) généralement pour PC portable
- Cartes M.2 (SSD SATA, SSD NVMe, PCIe, USB,...)
- U.2 (anciennement SFF-8639, utilise 4 lignes PCI-Express comme les SSD M2 NVMe, jusqu'à 4Go/s)



# HDD VS SSD

| Caractéristique                                                              | SSD                                                          | Disque mécanique                                           |  |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|--|--|
| Temps d'accès aléatoire                                                      | Environ 0,1 ms                                               | 8-16 ms                                                    |  |  |
| Vitesse de lecture/écriture + de 500 Mo/s (format disque) + de 7 Go/s (NVMe) |                                                              | Jusqu'à 300Mo/s                                            |  |  |
| Fragmentation                                                                | Aucun effet                                                  | Ralentissement de l'utilisation des fichiers               |  |  |
| Bruit                                                                        | Aucun                                                        | Variable                                                   |  |  |
| Vulnérabilités                                                               | Usure de la capacité de stockage                             | Chocs et vibration, sensibles aux champs magnétiques       |  |  |
| Masse                                                                        | Quelques dizaines de grammes                                 | Jusqu'à près de 700 g                                      |  |  |
| Durée de vie                                                                 | Bonne pour les MLC 3D, à condition d'utiliser TRIM<br>AFR 1% | MTBF 500.000 heures - 1 500 000 heures (idem SSI<br>AFR 1% |  |  |
| Temps de rétention                                                           | 1 à 10 ans                                                   | minimum 5 ans                                              |  |  |
| Rapport coût-capacité                                                        | <0,1 €/Go (QLC) - 0,2 €/Go (MLC)                             | ~ 0,03 €/Go                                                |  |  |
| Capacité de stockage                                                         | Jusqu'à 8 To pour le peuple (~1000 €)                        | Jusqu'à 18 To (~800 €)                                     |  |  |
| Consommation                                                                 | 0,1 - 0,9 W (veille) jusqu'à 0,9 W (activité)                | 0,5 à 1,3 W (veille) 2 à 4 W (activité)                    |  |  |

# **RAID**

→ Augmenter la fiabilité des données contre les problèmes de stockage.













# Carte Mère (MotherBoard)

#### Utilité

- Permet de connecter tous les composants et de les 'alimenter'
- Détermine complétement les possibilités d'évolutivité

#### **BIOS**

- Programme stocké dans une mémoire morte de la carte mère (ROM)
- Sert à
- Initialiser tous les composants
- Identifier les composants connectés
- Ordre de priorité des périphérique de stockage
- Démarrer l'OS
- Remplace l'UEFI(Unified Extensible Firmware Interface), qui n'est pas le BIOS
- Accessible via une touche lors du démarrage
- Possibilité de modifier les fréquences, vitesse, activer désactiver des connecteurs, etc
- Paramètres conservés dans une petite mémoire CMOS qui reste allimentée en permanence (via une pile ou des condensateurs)
  - On peut clear le CMOS pour rétablir les paramètres par défaut
- Flasher le Bios = Mettre à jour le BIOS

# Socket (CPU)

Placé au milieu généralement, pour y connecter le processeur, il dépend de la marque et du model du CPU qu'on y branche.

## Slots Barrettes de RAM

Emplacement DIMM ou SO-DIMM, pour y brancher de la RAM

# Connecteurs pour cartes d'extension

Slots PCI-Express (tailles  $\rightarrow$  x1, x4, x8, x16... Les x désignent le nombre de canaux de communications)

### Chipset

Chef d'orchestre de la carte mère, souvent soudé à un dissipateur passif

Permet ou non de nombreuses fonctionnalités

- Installations de certains CPU/périphériques
- Overclocking, RAID pseudo-materiel, etc...
- Si problèmes de compatibilités, botleneck possible.



# **Formats**



# Ordre de priorité pour une Mobo

- 1. Socket
- 2. Encombrement
- 3. Chipset
- 4. Connecteurs internes (PCIe, M2, SATA, DIMM)
- 5. Connecteurs entrées/sorties
- 6. VRM, refroidissement
- 7. Fonctionnalités additionnelles
- 8. Prix ???



# Alimentation

# PSU (Power Supply Unit)

- Délivrer des tensions stables
- Fournir une puissance suffisante
- Rendement élevé
- Etre silencieux
- Ne pas réchauffer la machine
- Avoir assez de connecteurs pour tous les composants

## Calcul de la puissance nécessaire

- Petite configuration → ajouter une marge de 25 à 50% à la somme de la consommations de tous les composant en charge (activité maximale)
- Grosse configuration →1.5\*(TDP CPU + TGP GPU + 100W)

#### Rendements

Minimum gold car meilleur rapport rendement/prix, au-dessus trop cher pour pas beaucoup de gain.

#### **Formats**

Format standard = ATX, 80% du marché

#### Connectivité

Modularité = possibilité de brancher ou non les câbles que l'on utilises ou non sur l'alimentation.

- Modulaire
- Semi modulaire
- Non modulaire

#### Comment choisir?

- Calcul de puissance nécessaire
- Format
- Nombre de connecteurs en suffisance (modulaire ?)
- Ventilation et nuisance sonore
- Rendements (gold préféré, bronze minimum)
- Marque/prix



# **GPU (Graphics Processing Unit)**

# Utilité

- Intermédiaire entre ordinateur et écran
- Décharge le + possible le CPU des calculs graphique
- Le plus important pour les performances 3D
- 1<sup>er</sup> élément de priorité pour un jeu vidéo et calcul
- 3 constructeurs :
  - AMD / Nvidia / Intel

# Format GPU

- Intégrés au CPU (peu performant mais suffisant pour de la bureautique (IGP = Inegrated Graphics Processor)
- Soudé sur la carte mère (pour certain serveurs)
- Sur une carte graphique

# Caractéristiques GPU

| GPU : GeForce       | RTX 3070                     |                                                        |
|---------------------|------------------------------|--------------------------------------------------------|
| Référence           | GA104-300                    |                                                        |
| Microarchitecture   | Ampère                       |                                                        |
| Finesse de gravure  | 8 nm                         |                                                        |
| Processeurs de flux | 5888                         | <- Effectuent la majorité des calculs                  |
| Unités FP64*        | 184                          | <- Pour le calcul scientifique (double précision)      |
| TMUs                | 184                          | <- Texturing Memory Units                              |
| ROPs                | 96                           | <- Raster Operations Pipelines                         |
| RT Cores**          | 46                           | <- servent à accélérer les calculs de type Ray Tracing |
| Tensor Cores**      | 184                          | <- servent à accélérer les calculs d'IA                |
| Fréquence de base   | 1500 MHz                     |                                                        |
| Fréquence de boost  | 1725 MHz                     |                                                        |
| Mémoire cache*      | L1 : 46 x 128 Ko<br>L2 : 4Mo | * Rarement indiqu<br>** Optionnel                      |

# Calcul de puissance

Même que les CPU.

FLOPS = Nombre(cœurs)\*fréquence\*FLOP/cycle



Tom Deneyer(discord: littl3t)

# Exemple Calcul pratique



# Mémoire graphique

- VRAM
- Piège commerciale, un peu surestimée
- En avoir de trop ne va pas accélérer les choses, ne pas en avoir assez va fortement ralentir...

# Bande passante mémoire

- Le plus sous-estimé
- Il faut alimenter les cœurs de calculs du GPU très rapidement pour ne pas le brider. → bande passante assez grosse nécessaire
- Fréquence de fonctionnement x largeur de bus = Bande passante mémoire

#### Interface

Interface PCI-Express x16 → version 1,2,3 ou 4



# Consommation (TDP vs TGP)

- TDP = Consommation du GPU seulement
- TGP = Consommation de toute la carte graphique
- (TBP = consommation de toute la carte + refroidissement + LEDs)

# Sortie graphiques





# **Boitiers**

## **Format**

Standard = ATX

Autres: mini-iTX, micro-ATX, EATX... norme serveur = 1U (44.5mm)

# Eléments importants

- Modularité
- Connectivité
- VENTILATION
- Nuisance sonore
- Look (rgb GAY)
- Espace suffisant
- AIRFLOW

# **Ecrans**

# Généralités

- Taille différent de définition...
- Elément super important, souvent négligé
- Taille = diagonale en pouces
- Définition = L x H en pixel
- Luminosité (cd/m²)
- Taux de contraste (ratio)
- Fréquence de rafraichissement
- Temps de réponse
- Type de Dalle
- HDR (high Dynamic range)

## **OLED**

# Organic Light-Emitting Diode

 Plusieurs couches de matière organique, sous l'action d'un signal électrique, un photon est émis → pas besoin de rétro éclairage donc le noir est parfaitement noir



Tom Deneyer(discord: littl3t)

# Résumé technologies d'écrans

| Type de dalle    |                          | LCD                          |                        | OLED                     | MicroLED     |
|------------------|--------------------------|------------------------------|------------------------|--------------------------|--------------|
| Type de dane     | TN                       | VA                           | IPS                    | OLLD                     | WIICIOLED    |
| Pixel coupé      | Blanc                    | Noir                         | Noir                   | Noir                     | Noir         |
| Rendu des        | de mauvais<br>à moyen    | bon                          | de bons<br>à très bons | excellents               | excellents   |
| couleurs         | Un peu m                 | neilleurs si QLED (et p      | plus cher)             |                          |              |
| Contrastes       | de mauvais<br>à moyens   | de bons<br>à très bons       | de moyens<br>à bons    | parfaits                 | parfaits     |
|                  | Un peu meilleur          | s si MiniLED (et beau        | ucoup plus cher)       |                          |              |
| Temps de réponse | de moyens<br>à très bons | de mauvais<br>à presque bons | de mauvais<br>à bons   | excellents               | excellents   |
| Angles de vision | mauvais                  | de moyens<br>à bons          | très bons              | excellents               | excellents   |
| Luminosité       | très bonne               | très bonne                   | très bonne             | de mauvaise<br>à moyenne | excellente   |
| Burn-in          | Non                      | Non                          | Non                    | Oui                      | Non          |
| Prix             | peu cher                 | moyen                        | plus cher              | cher                     | Hors de prix |

