# **GSERM 2017**

Regression III
Varying Coefficients and Mixture
Models, II: Hierarchical Models

June 22, 2017 (morning session)

### **HLM Starting Points**

Begin by considering a two-level "nested" data structure, with:

$$i \in \{1, 2, ...N\}$$
 indexing first-level units, and  $j \in \{1, 2, ...J\}$  indexing second-level groups.

A general two-level HLM is an equation of the form:

$$Y_{ij} = \beta_{0j} + \mathbf{X}_{ij}\beta_j + u_{ij} \tag{1}$$

where  $\beta_{0j}$  is a "constant" term,  $\mathbf{X}_{ij}$  is a  $NJ \times K$  matrix of K covariates,  $\beta_j$  is a  $K \times 1$  vector of parameters, and  $u_{ij} \sim \text{i.i.d.} \ N(0, \sigma_u^2)$  is the usual random-disturbance assumption.

#### HLMs, continued

Each of these K + 1 "level-one" parameters is then allowed to vary across Q "level-two" variables  $\mathbf{Z}_{i}$ , so that:

$$\beta_{0j} = \gamma_{00} + \mathbf{Z}_{i}\gamma_{0} + \varepsilon_{0j} \tag{2}$$

for the "intercept" and

$$\beta_{kj} = \gamma_{k0} + \mathbf{Z}_j \gamma_k + \varepsilon_{kj} \tag{3}$$

for the "slopes" of X. The  $\varepsilon$ s are typically assumed to be distributed multivariate Normal, with parameters for the variances and covariances selected by the analyst. Substitution of (3) and (2) into (1) yields:

$$Y_{ij} = \gamma_{00} + \mathbf{Z}_j \gamma_0 + \mathbf{X}_{ij} \gamma_{k0} + \mathbf{X}_{ij} \mathbf{Z}_j \gamma_k + \mathbf{X}_{ij} \varepsilon_{kj} + \varepsilon_{0j} + u_{ij}$$
 (4)

The form is essentially one of a model with "saturated" interaction effects across the various levels, as well as "errors" which are multivariate Normal.

## Model Assumptions

- Linearity / Additivity
- Normality of us
- Homoscedasticity
- Residual Independence:
  - $\operatorname{\mathsf{Cov}}(\varepsilon_{\cdot j},u_{ij})=0$
  - $\operatorname{\mathsf{Cov}}(u_{ij},u_{i\ell})=0$

## Estimation / Model Fitting

#### Two main alternatives:

- MLE
- "Restricted" MLE ("RMLE")
- Choosing:
  - MLE is biased in small samples, especially for estimating variance effects.
  - RMLE is not, but prevents use of LR tests when the models do not have identical fixed effects.
  - In general: RMLE is better with small sample sizes, but MLE is fine in larger ones.

## An Example: HIV Death Rates, 1978-2008

- > temp<-getURL("https://raw.githubusercontent.com/PrisonRodeo/GSERM-2017-git/master/Data/HIVDeaths.csv")
- > HIV<-read.csv(text=temp, header=TRUE)
  > HIV<-HIV[ which(is.na(HIV\$HIVDeathRate)==FALSE), ]</pre>
- > HIV\$LnDeathPM <- log(HIV\$HIVDeathRate\*1000)
- > cummaru(HTV)

| > summary(HIV) |                 |              |                  |
|----------------|-----------------|--------------|------------------|
| country        | ISO3            | year         | HIVDeathRate     |
| Angola : 18    | AGO : 18        | Min. :1990   | Min. :0.00478    |
| Argentina: 18  | ARG : 18        | 1st Qu.:1995 | 1st Qu.:0.14429  |
| Australia: 18  | AUS : 18        | Median :2000 | Median :0.23303  |
| Benin : 18     |                 | Mean :1999   | Mean :0.26126    |
| Botswana : 18  | BEN : 18        | 3rd Qu.:2004 | 3rd Qu.:0.34889  |
| Brazil : 18    | BFA : 18        | Max. :2007   | Max. :2.48542    |
| (Other) :1540  | (Other):1540    |              |                  |
| CivilWarDummy  | OPENLag         | GDPGrowthLag | POLITYLag        |
| Min. :0.000    | Min. : 1.09     | Min. :-62.3  | 68 Min. :-10.00  |
| 1st Qu.:0.000  | 1st Qu.: 44.31  |              |                  |
| Median:0.000   | Median : 61.21  | Median: 1.9  | 61 Median: 6.00  |
| Mean :0.181    | Mean : 74.29    | Mean : 1.8   | 99 Mean : 2.97   |
| 3rd Qu.:0.000  | 3rd Qu.: 97.37  |              | 28 3rd Qu.: 9.00 |
| Max. :1.000    | Max. :456.56    | Max. : 88.7  | 48 Max. : 10.00  |
|                | NA's :30        | NA's :32     | NA's :63         |
| POLITYSQLag    | InterstateWarLa | g PolityLag  | BatDeaths1000Lag |
| Min. : 0.0     | Min. :0.00000   | Min. : 0     | Min. : 0.000     |
| 1st Qu.: 25.0  | 1st Qu.:0.00000 | 1st Qu.: 6   | 1st Qu.: 0.000   |
| Median: 49.0   | Median :0.00000 | Median :16   | Median: 0.000    |
| Mean : 49.5    | Mean :0.00364   | Mean :13     | Mean : 0.264     |
| 3rd Qu.: 81.0  | 3rd Qu.:0.00000 | 3rd Qu.:19   | 3rd Qu.: 0.000   |
| Max. :100.0    | Max. :1.00000   | Max. :20     | Max. :30.239     |
| NA's :63       |                 | NA's :63     |                  |
| GDPLagK        | LnDeathPM       |              |                  |
| Min. : 0.153   | Min. :1.57      |              |                  |
| 1st Qu.: 1.576 | 1st Qu.:4.97    |              |                  |
| Median : 5.011 | Median:5.45     |              |                  |
| Mean : 8.582   | Mean :5.35      |              |                  |
| 3rd Qu.:10.265 | 3rd Qu.:5.85    |              |                  |
| Max. :42.683   | Max. :7.82      |              |                  |
| 374.120        |                 |              |                  |

# Log? Si.



#### OLS

```
> OLSfit<-with(HIV, lm(LnDeathPM~GDPLagK+GDPGrowthLag+
                      OPENLag+POLITYLag+POLITYSQLag+CivilWarDummy+
                      InterstateWarLag+BatDeaths1000Lag))
> summary(OLSfit)
Call.
lm(formula = LnDeathPM ~ GDPLagK + GDPGrowthLag + OPENLag + POLITYLag +
   POLITYSQLag + CivilWarDummy + InterstateWarLag + BatDeaths1000Lag)
Residuals:
          10 Median
   Min
-3.940 -0.388 0.095 0.447 1.953
Coefficients:
                 Estimate Std. Error t value
                                               Pr(>|t|)
                 5.493740 0.044516 123.41
                                               < 2e-16 ***
(Intercept)
GDPLagK
                -0.027965 0.002509 -11.15
                                                < 2e-16 ***
                                                 0.3524
GDPGrowthLag
                -0.002261 0.002430 -0.93
OPENLag
               0.001972 0.000368
                                       5.35 0.000000099 ***
POLITYLag
               0.010009
                           0.003356
                                       2.98
                                                 0.0029 **
                -0.002182 0.000734 -2.97
POLITYSQLag
                                                 0.0030 **
CivilWarDummy
                 0.051862 0.047026
                                       1.10
                                                 0.2703
                                       0.46
InterstateWarLag 0.129922
                            0.283361
                                                 0.6467
BatDeaths1000Lag -0.024675
                           0.011732 -2.10
                                                 0.0356 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
Residual standard error: 0.651 on 1548 degrees of freedom
  (91 observations deleted due to missingness)
Multiple R-squared: 0.177, Adjusted R-squared: 0.173
F-statistic: 41.7 on 8 and 1548 DF, p-value: <2e-16
```

```
> FEfit<-plm(LnDeathPM~GDPLagK+GDPGrowthLag+OPENLag+POLITYLag+POLITYSQLag+CivilWarDummv+
                      InterstateWarLag+BatDeaths1000Lag,data=HIV,effect="individual", model="within",
                      index=c("ISO3", "year"))
> summary(FEfit)
Oneway (individual) effect Within Model
Call:
plm(formula = LnDeathPM ~ GDPLagK + GDPGrowthLag + OPENLag +
   POLITYLag + POLITYSQLag + CivilWarDummy + InterstateWarLag +
   BatDeaths1000Lag, data = HIV, effect = "individual", model = "within",
   index = c("ISO3", "year"))
Unbalanced Panel: n=117, T=1-18, N=1557
Coefficients :
                  Estimate Std. Error t-value Pr(>|t|)
GDPLagK
              -0.0987550 0.0094605 -10.439 < 2e-16 ***
GDPGrowthLag 0.0045675 0.0020894 2.186
                                                0.029 *
OPENLag
               0.0077044 0.0009468 8.138 8.67e-16 ***
POLITYLag
               0.0505600 0.0051147 9.885 < 2e-16 ***
POLITYSQLag -0.0006743 0.0009589 -0.703
                                             0.482
CivilWarDummy 0.0751139 0.0534712 1.405
                                             0.160
InterstateWarLag -0.3030380 0.2396271 -1.265
                                                0.206
BatDeaths1000Lag 0.0004229 0.0103239 0.041
                                                0.967
Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
                        445.6
Residual Sum of Squares: 378.6
R-Squared:
               0.1505
Adi. R-Squared: 0.1384
F-statistic: 31.7023 on 8 and 1432 DF, p-value: < 2.2e-16
```

## RE (using lmer)

```
> REfit<-lmer(LnDeathPM~GDPLagK+GDPGrowthLag+0PENLag+POLITYLag+POLITYSQLag+CivilWarDummv+
               InterstateWarLag+BatDeaths1000Lag+(1|ISO3),data=HIV,REML=FALSE)
> summary(REfit)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
LnDeathPM ~ GDPLagK + GDPGrowthLag + OPENLag + POLITYLag + POLITYSQLag +
   CivilWarDummy + InterstateWarLag + BatDeaths1000Lag + (1 | ISO3)
  Data: HTV
                 logLik deviance df.resid
    ATC
             BIC
  2698.9 2757.7 -1338.4 2676.9
                                     1546
Random effects:
 Groups Name
                    Variance Std.Dev.
 TSO3
         (Intercept) 0.265
                           0.515
 Residual
                    0.270
                          0.520
Number of obs: 1557, groups: ISO3, 117
Fixed effects:
                Estimate Std. Error t value
(Intercept)
              5.272156 0.086694
                                      60.8
GDPLagK
            -0.050509 0.005092 -9.9
GDPGrowthLag 0.002749 0.002077 1.3
OPENLag
              0.004776 0.000706 6.8
POLITYLag
              0.044502 0.004565 9.7
POLITYSOLag
             -0.000964 0.000888 -1.1
CivilWarDummy 0.060362 0.052101
                                     1 2
InterstateWarLag -0.251942 0.240937 -1.0
BatDeaths1000Lag -0.003502 0.010331
                                     -0.3
Correlation of Fixed Effects:
           (Intr) GDPLgK GDPGrL OPENLg POLITYL POLITYS CvlWrD IntrWL
GDPLagK
           -0.172
GDPGrowthLg -0.032 -0.051
OPENLag
          -0.554 -0.222 -0.015
POLITYLag -0.047 -0.222 0.002 0.017
POLITYSQLag -0.373 -0.341 0.000 0.054 -0.051
CivilWrDmmv -0.194 -0.002 0.076 0.074 0.126
                                             0.060
IntrsttWrLg -0.005 0.014 -0.025 -0.009 -0.028
                                             0.013
                                                   0.023
BtDths1000I, -0.045 -0.013 0.129 0.044 0.056 -0.019 -0.105 -0.329
```

### HLM with Random $\beta$ for GDP

```
> HLMfit1<-lmer(LnDeathPM~GDPLagK+(GDPLagK|ISO3)+GDPGrowthLag+OPENLag+POLITYLag+POLITYSQLag+CivilWarDummy+
              InterstateWarLag+BatDeaths1000Lag,data=HIV,REML=FALSE)
> summary(HLMfit1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
LnDeathPM ~ GDPLagK + (GDPLagK | ISO3) + GDPGrowthLag + OPENLag + POLITYLag + POLITYSQLag + CivilWarDummy +
InterstateWarLag + BatDeaths1000Lag
  Data: HTV
             BIC
    ATC
                 logLik deviance df.resid
  2298.8
          2368.4 -1136.4 2272.8
                                   1544
Random effects:
                    Variance Std.Dev. Corr
 Groups Name
 TSO3
         (Intercept) 9.168
                            3.028
         GDPLagK
                    0.200
                           0.447
                                     -0.74
 Residual
                    0.136
                           0.369
Number of obs: 1557, groups: ISO3, 117
Fixed effects:
                Estimate Std. Error t value
(Intercept)
              4.791024 0.302393 15.84
GDPLagK
              0.155304 0.048233 3.22
GDPGrowthLag 0.000872 0.001555 0.56
OPENLag
              0.005995 0.000834 7.19
POLITYLag
              0.039930 0.003959 10.09
POLITYSQLag -0.003896 0.000770 -5.06
CivilWarDummy 0.009747 0.040489 0.24
InterstateWarLag -0.261331 0.178583 -1.46
BatDeaths1000Lag 0.013020 0.007920 1.64
Correlation of Fixed Effects:
           (Intr) GDPLgK GDPGrL OPENLg POLITYL POLITYS CvlWrD IntrWL
GDPLagK
           -0.686
GDPGrowthLg 0.018 -0.067
OPENLag
          -0.120 -0.085 0.002
POLITYLag -0.018 -0.033 -0.007 -0.074
POLITYSQLag -0.084 -0.055 0.002 -0.019 0.039
CivilWrDmmv -0.041 -0.004 0.080 0.025 0.101
                                             0.052
```

0.017 0.019

IntrsttWrLg -0.009 0.005 -0.020 0.018 -0.039

BtDths1000L -0.009 -0.008 0.101 0.065 0.063 -0.052 -0.095 -0.353

## Testing

```
> anova(REfit.HLMfit1)
Data: HIV
Models:
REfit: LnDeathPM ~ GDPLagK + GDPGrowthLag + OPENLag + POLITYLag + POLITYSQLag +
REfit:
          CivilWarDummy + InterstateWarLag + BatDeaths1000Lag + (1 |
REfit:
         ISO3)
HLMfit1: LnDeathPM ~ GDPLagK + (GDPLagK | ISO3) + GDPGrowthLag + OPENLag +
HLMfit1:
            POLITYLag + POLITYSQLag + CivilWarDummy + InterstateWarLag +
HLMfit1: BatDeaths1000Lag
       Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
REfit 11 2699 2758 -1338
                              2677
HLMfit1 13 2299 2368 -1136 2273 404.1 2 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

#### Random Coefficients

```
> Bs<-data.frame(coef(HLMfit1)[1])
> head(Bs)
    ISO3..Intercept. ISO3.GDPLagK ISO3.GDPGrowthLag ISO3.OPENLag
AGO
             3.96339
                        0.3234238
                                        0.000869237
                                                      0.00598492
             3.57905
ARG
                        0.1164726
                                        0.000869237
                                                      0.00598492
ARM
             5.07487
                        0.1142131
                                        0.000869237
                                                      0.00598492
AUS
             9.97544
                       -0.1999752
                                        0.000869237
                                                      0.00598492
AUT
             7.08153
                       -0.0845660
                                        0.000869237
                                                      0.00598492
AZE
             3.80985
                        0.0133378
                                        0.000869237
                                                      0.00598492...
> mean(Bs$ISO3.GDPLagK)
```

[1] 0.156798



## Wrap-Up & Extensions

- Can expand to 3- and 4- and higher-level models (e.g., students in classrooms in schools in districts)
- Cross-Level Interactions...
- Widely used in education, psychology, ecology, etc. (less so in economics, political science)
- There are many, many excellent books, websites, etc. that address HLMs