```
?s pn=DE19526886
     S1
                 PN=DE19526886
              1
%type 1/5/1
 1/5/1
DIALOG(R) File 351: Derwent
(c) 2000 Derwent Info Ltd. All rts. reserv.
WPI Acc No: 1996-403186/199641
XRAM Acc No: C96-126697
Methanol reformation giving high methanol conversion and low amts. of
 carbon monooxide - comprises keeping dwell time at gas mixt. inlet
 substantially constant in appts. and varying effective reaction chamber
 vol. in relation to changing hydrogen demand
Patent Assignee: DAIMLER-BENZ AG (DAIM ); DAIMLERCHRYSLER AG (DAIM
Inventor: AUTENRIETH R; WIESHEU N; ZUR MEGEDE D; MEGEDE D Z
Number of Countries: 005 Number of Patents: 007
Patent Family:
Patent No
              Kind
                    Date
                             Applicat No
                                            Kind
                                                   Date
                                                            Week
                             DE 1026886
              C1 19960912
                                             Α
                                                 19950722
                                                           199641
DE 19526886
              A1
                  19970124
                             FR 969091
                                             Α
                                                  19960719
                                                           199713
FR 2736907
GB 2303860
              Α
                   19970305
                             GB 9615145
                                             Α
                                                  19960719
                                                           199713
GB 2303860
               В
                   19971015
                             GB 9615145
                                             Α
                                                  19960719
                                                            199744
                             US 96673085
US 5772707
               Α
                   19980630
                                             Α
                                                  19960701
                                                            199833
                             US 96673085
US 5989503
                   19991123
                                             Α
                                                 19960701
                                                           200002
              Α
                             US 97990721
                                                 19971215
                                             Α
                   19980522 IT 96RM425
IT 1284851
              В
                                             Α
                                                  19960614
                                                           200011
Priority Applications (No Type Date): DE 1026886 A 19950722
Patent Details:
                                     Filing Notes
Patent No Kind Lan Pg
                         Main IPC
DE 19526886
              C1
                     9 C01B-003/32
US 5989503
                       F28D-008/04
                                     Div ex application US 96673085
                                     Div ex patent US 5772707
FR 2736907
             Α1
                    27 C01B-003/48
GB 2303860
                    17 C01B-003/32
             Α
```

Abstract (Basic): DE 19526886 C

В

Α

IT 1284851 GB 2303860

US 5772707

Reformation of methanol comprises passing the methanol gas mixt. through a reaction chamber contg. a catalyst. The effective length and/or effective inlet cross section is so set that the dwell time of the gas mixt. at the entrance of the reaction chamber remains substantially constant. Also claimed is the appts. for carrying out the above process.

C01B-000/00

C01B-003/32

C01B-003/02

PREFERRED APPARATUS - The effective length of the reaction chamber is adjusted, depending on the gas mixt. throughput, by varying the temp. decrease produced. The temp. decrease produced is varied by regulating the vol. flow through a tempering fluid circuit. Variation in the effective inlet cross section can be brought about by arranging reactant chambers in parallel but sepd. from one another and releasing or blocking them.

USE - The method is useful for the prodn. of hydrogen gas, esp. under non-stationary operation conditions. Such conditions are encountered e.g. where hydrogen demand varies, as in the prodn. of H2 gas for use in fuel cells for electric vehicles.

ADVANTAGE - Higher methanol conversion rates are achieved and smaller quantities of unwanted CO is produced as by-prod.

Dwg.0/5

Title Terms: METHANOL; REFORM; HIGH; METHANOL; CONVERT; LOW; AMOUNT; CARBON; MONO; OXIDE; COMPRISE; KEEP; DWELL; TIME; GAS; MIXTURE; INLET; SUBSTANTIAL; CONSTANT; APPARATUS; VARY; EFFECT; REACT; CHAMBER; VOLUME; RELATED; CHANGE; HYDROGEN; DEMAND

Derwent Class: E36; Q78

International Patent Class (Main): C01B-000/00; C01B-003/02; C01B-003/32;
C01B-003/48; F28D-008/04

International Patent Class (Additional): B01J-008/04; F28D-007/00; H01M-008/04; H01M-008/06

		•	٠
			_

29348 IDEIA

(51) Int. Cl.6;

C 01 B 3/32

// B01J 8/06~

19 BUNDESREPUBLIK

DEUTSCHES

PATENTAMT

Aktenzeichen:

195 26 886.5-41

Anmeldetag:

22. 7. 95

Offenlegungstag:

Veröffentlichungstag

der Patenterteilung: 12. 9.96

Patentschrift

® DE 195 26 886 C 1

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Daimler-Benz Aktiengesellschaft, 70567 Stuttgart,

(72) Erfinder:

Wiesheu, Norbert, Dipl.-Ing., 89312 Günzburg, DE; zur Megede, Detlef, Dipl.-Chem. Dr., 89347 Bubesheim, DE; Autenrieth, Rainer, Dipl.-Ing., 89155 Erbach, DE

66 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DE 41 93 026 T1 US 48 65 624 US 40 88 450

JP 60-246202 A In Patents Abstracts of Japan, Sekt. C, Vol. 10 (1986) Nr. 120 (C-343); JP 61-183102 A In Patents Abstracts of Japan, Sekt. C, Vol. 11 (1987) Nr. 3 (C-395);

(S) Verfahren und Vorrichtung zur Methanoireformierung

Verfahren und Vorrichtung zur Methanolreformierung. Die Erfindung bezieht sich auf ein Verfahren zur Methanolreformierung, bei dem das zu reformierende Gasgemisch durch einen katalysatorhaltigen Reaktionsraum hindurchgeleitet wird, sowie auf eine Vorrichtung zu dessen Durchfüh-

Es werden ein Verfahren und eine zu dessen Durchführung geeignete Vorrichtung vorgeschlagen, mit denen die wirksame Länge und/oder der wirksame Eintrittsquerschnitt eines eingangsseitigen, auf hohen Methanolumsatz temperierten Reaktionsraumabschnitts in Abhängigkeit vom Durchsatz an zu reformierendem Gasgemisch so eingestellt werden kann, daß sich eine im wesentlichen konstant bleibende Verweildauer des zu reformierenden Gasgemisches in dem auf hohen Methanolumsatz temperierten Reaktionsraumabschnitt ergibt. Die Methanolreformierung läßt sich damit auch bei merklich schwankenden Durchsätzen an zu reformierendem Gasgemisch mit gleichbleibend hoher Methanolumsetzungsrate und gleichbleibend geringer Bildung unerwünschten Kohlenmonoxids durchführen. Verwendung z. B. zur Wasserstoffgasgewinnung für Brenn-

stoffzellen in Elektrofahrzeugen.

Beschreibung

Die Erfindung bezieht sich auf ein Verfahren zur Methanolreformierung, bei dem das zu reformierende Gasgemisch durch einen katalysatorhaltigen Reaktionsraum hindurchgeleitet wird, sowie auf eine zur Durchführung dieses Verfahrens geeignete Vorrichtung.

Ein derartiges Verfahren wird insbesondere zur Gewinnung von Wasserstoffgas angewendet. Dabei wird das Methanol beispielsweise zusammen mit Wasser in 10 einer Heißdampfreformierung zu Wasserstoff und Kohlendioxid umgesetzt, wobei letzteres zusammen mit dem Wasserstoff wiederum in einem Reaktionsgleichgewicht mit Wasser und Kohlenmonoxid (CO) steht. Methanolumsatz und Kohlenmonoxidproduktion sind 15 folglich Größen, die über die u. a. temperaturabhängigen Reaktionsgleichgewichte miteinander in Verbindung stehen, d. h. je nach dem prozeßtechnisch eingestellten Methanolumsatz ergibt sich bei Verwendung der heutzutage bekannten Katalysatormaterialien eine 20 bestimmte Menge an Kohlenmonoxid. In vielen Fällen stellt das Kohlenmonoxid wegen seiner Giftigkeit für die Umwelt und für die eingesetzten Katalysatormaterialien ein unerwünschtes Nebenprodukt dar, das oftmals in aufwendiger Weise entfernt werden muß. Wäh- 25 rend für einen technischen Großanlagenprozeß unter stationären Bedingungen noch vergleichsweise einfach ein optimaler Betriebspunkt eingehalten werden kann, können besonders bei instationären Bedingungen, worunter vor allem zeitlich schwankende Durchsätze an zu 30 Kohlenmonoxid enthält. reformierendem Gasgemisch und damit einhergehende Änderungen des Katalysator-Belastungszustands im Reformer gemeint sind, Betriebsphasen auftreten, in denen vergleichsweise viel Kohlenmonoxid gebildet wird. Derartige instationare Bedingungen bestehen beispielsweise bei nicht stationären Anwendungen von Wasserstoff als Energieträger, wie zur Spitzenstromerzeugung und in Kraftfahrzeugantrieben, bei denen man auf Methanol als flüssige Wasserstoffquelle zurückgreifen möchte, um keine direkte Wasserstoffgasspeicherung 40 zu benötigen.

Da die Methanolzerfallsreaktion stärker endotherm und die Kohlenmonoxidbildung aus Kohlendioxid schwächer endotherm verläuft, wurde zur Minimierung der CO-Bildung bereits verschiedentlich die Einstellung 45 eines Temperaturgradienten längs des Reaktionsweges des Gasgemisches im Reaktionsraum vorgeschlagen, bei dem die Temperatur von der Eintritts- zur Austrittsseite des Reaktionsraums hin abnimmt. So werden in der Patentschrift US 4.865.624 ein Verfahren und eine 50 Vorrichtung zur Methanolreformierung vorgeschlagen, bei denen durch geeignete Heizkreisläufe eine eintrittsseitige Hälfte eines vom zu reformierenden Gasgemisch durchströmbaren, katalysatorhaltigen Reaktionsraumes im Gleichstromverfahren auf einer höheren Temperatur und eine anschließende austrittsseitige Hälfte im Gegenstromverfahren auf einer niedrigeren Temperatur gehalten wird. Damit sollen in der Eingangsstufe die Methanolumsetzung und in der Ausgangsstufe die Umwandlung von Kohlenmonoxid in Kohlendioxid begün- 60 stigt werden. In ähnlicher Weise wird in der Veröffentlichung DE 41 93 026 T1 die Einstellung von drei hintereinanderliegenden Temperaturzonen von ungefähr 300°C, ungefähr 275°C und ungefähr 225°C längs des Reaktionsweges in einem Methanolreformer vorge- 65 schlagen. In der Offenlegungsschrift JP 63-50302 (A) wird ebenfalls eine stufenweise Temperaturerniedrigung des Reaktionsraums eines Methanolreformers

längs des Gasgemischströmungsweges zwecks verringerter CO-Bildung angegeben. In sämtlichen dieser herkömmlichen Verfahren werden die Parameter für die Reformierungsreaktion unabhängig vom jeweils momentanen Durchsatz an zu reformierendem Gasgemisch vorgegeben.

In der Offenlegungsschrift JP-61-183102 (A) ist eine Reformeranlage beschrieben, bei der ein zu reformierendes Gasgemisch in einem ersten Wärmetauscher auf ca. 200°C vorgeheizt und dann einem zweiten Wärmetauscher zugeführt wird, in welchem eine Wärmeübertragung zwischen diesem anschließend dem Reformer zugeführten Gasgemisch und dem bereits reformierten und dadurch wasserstoffreichen Gas erfolgt. Dabei wird die Temperatur des in den Reformer eintretenden Gasgemischs überwacht und durch entsprechende Steuerung des in den zweiten Wärmetauscher eingeleiteten Anteils an reformiertem Gas konstant in einem Temperaturbereich zwischen 427°C und 510°C gehalten. Das reformierte Gas wird z. B. als Betriebsstoff einer Brennstoffzelle verwendet.

Der Erfindung liegt als technisches Problem die Bereitstellung eines Verfahrens der eingangs genannten Art und einer zu dessen Durchführung geeigneten Vorrichtung zugrunde, mit denen sich Methanol auch bei schwankenden Durchsätzen an zu reformierendem Gasgemisch, z. B. aufgrund von schwankendem Wasserstoffgasbedarf, so reformieren läßt, daß das den Reaktionsraum verlassende Reformat vergleichsweise wenig Kohlenmonoxid enthält.

Dieses Problem wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie durch eine Vorrichtung mit den Merkmalen des Anspruchs 5, 6 oder 7 gelöst. Verfahrensgemäß wird die wirksame Länge des eingangsseitigen, auf die Erzielung einer hohen Methanolumsetzungsrate temperierten Reaktionsraumabschnitts und/oder dessen wirksamer Querschnitt in Abhängigkeit vom jeweiligen Durchsatz an zu reformierendem Gasgemisch variabel so eingestellt, daß die Verweildauer des zu reformierenden Gasgemischs in dem auf die Erzielung einer hohen Methanolumsetzungsrate temperierten Reaktionsraumabschnitt im wesentlichen konstant bleibt. Damit läßt sich auch unter instationären Betriebsbedingungen ein hinsichtlich minimaler CO-Bildung optimaler Betriebszustand im Methanolreformer einstellen.

Dem liegt die experimentell bestätigte Überlegung zugrunde, daß die Methanolzerfallsreaktion einerseits und die CO-Bildungsreaktion andererseits bei unterschiedlichen Parametern, wie Reaktionsraumtemperatur und Verweildauer des zu reformierenden Gasgemischs im Reaktionsraum, unterschiedlich schnell ablaufen, so daß für jede Kombination aus Reaktionsraumtemperatur und Verweildauer ein Betriebszustandsoptimum mit hohem Methanolumsatz und geringer CO-Bildung existiert. Durch das erfindungsgemäße Verfahren kann der Betriebspunkt der Methanolreformierung in Abhängigkeit vom gegebenenfalls schwankenden Gasgemischdurchsatz stets auf diesem optimalen Betriebszustand gehalten werden. Reaktionstechnische, experimentell bestätigte Überlegungen weisen daraufhin, daß bei der Methanolreformierung zuerst das Methanol umgesetzt wird und erst in einem ausgangsseitigen, bei geringen Durchsätzen nicht mehr zur Methanolumsetzung genutzten Teil der Reaktorlauflänge vermehrt Kohlenmonoxid entsteht. Durch Anpassung der wirksamen Länge des zur Erzielung einer hohen Methanolumsetzungsrate temperierten eingangsseitigen Reaktionsraumabschnitts an den jeweils momentanen Gasgemischdurchsatz ist es folglich mit dem vorliegenden Verfahren stets möglich, einen derartigen, hinteren, höher temperierten Reaktionsraumabschnitt, zu dem praktisch kein Methanol mehr gelangt und der vermehrte CO-Bildung verursacht, zu vermeiden. Zusätzlich oder alternativ zu dieser Längenanpassung kann die Verweildauer des zu reformierenden Gasgemisches in dem zur Erzielung einer hohen Methanolumsetzungsrate temperierten, eingangsseitigen Reaktionsraumabschnitt unabhängig vom jeweiligen Gasgemischdurchsatz dadurch im wesentlichen konstant gehalten werden, daß der wirksame eingangsseitige Reaktionsraumquerschnitt in Abhängigkeit vom jeweiligen Gasgemischdurchsatz verändert wird.

In einer Ausgestaltung des Verfahrens nach Anspruch 2 wird die Anpassung der Länge des für die Methanolumsetzung wirksamen, eingangsseitigen Reaktionsraumabschnitts dadurch realisiert, daß der Volumenstrom des für die Temperierung des Reaktionsraumes 20 verwendeten Temperierfluids passend eingestellt wird, wobei der zugehörige Temperierfluidkreislauf im Gleichstrom betrieben wird, d. h. das Temperierfluid strömt im Bereich thermischen Kontaktes mit dem Reaktionsraum parallel zum umzusetzenden Gasgemisch. 25 Auf diese Weise läßt sich der Temperaturgradient längs des Reaktionsraumes und damit die Länge desjenigen Reaktionsraumabschnitts verstellen, der zur Erzielung einer hohen Methanolumsetzungsrate temperiert ist.

In einer alternativen Ausgestaltung des Verfahrens 30 nach Anspruch 3 erfolgt die Längenanpassung dadurch, daß die Länge des mit dem Reaktionsraum in thermischem Kontakt stehenden Teils des Temperierfluidkreislaufs geeignet variiert wird.

Bei einer Ausgestaltung des Verfahrens nach Anspruch 4 wird die Änderung des für hohen Methanolumsatz wirksamen, eingangsseitigen Reaktionsraumquerschnitts dadurch realisiert, daß voneinander getrennte und parallel angeordnete Reaktionsteilräume wahlweise einzeln freigegeben oder abgesperrt werden.

Mit der Vorrichtung nach Anspruch 5 kann der Volumenstrom des zur Temperierung des Reformierungsreaktionsraumes dienenden Temperierfluids im zugehörigen Temperierfluidkreislauf über die dazu vorgesehene Einrichtung verändert werden, was die Durchführung 45 des Verfahrens nach Anspruch 2 ermöglicht.

Bei der Vorrichtung nach Anspruch 6 enthält der Temperierfluidkreislauf zur Temperierung des Reaktionsraums einen mit letzterem in thermischem Kontakt stehenden Temperierraum, der von einer parallel zur 50 Strömungsrichtung des zu reformierenden Gasgemisches verschiebbaren Wand begrenzt ist. Durch Verschieben der Wand läßt sich folglich die Länge des thermischen Kontakts von Temperierraum und Reaktionsraum einstellen und damit z. B. das Verfahren nach Anspruch 3 durchführen.

Die Vorrichtung nach Anspruch 7 bildet einen Rohrbündelreformer, bei dem eine gewünschte Anzahl von Reaktorrohren freigegeben bzw. abgesperrt werden kann, womit z. B. das Verfahren nach Anspruch 4 durch- 60 geführt werden kann.

Bevorzugte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben Hierbei zeigen:

Fig. 1 ein Blockdiagramm eines Methanolreformers 65 mit Temperierfluidkreislauf mit einem Hauptstrom-Stellventil,

Fig. 2 ein Blockdiagramm eines Methanolreformers

mit Temperierfluidkreislauf mit Bypass-Leitung und Stellventil,

Fig. 3 ein Blockdiagramm eines Methanolreformers mit Temperierfluidkreislauf mit Pumpendrehzahlreguierung,

Fig. 4 eine Querschnittsansicht durch einen Methanolreformer mit einem aktiven Temperierraum veränderlicher Länge und

Fig. 5 im unteren Teil eine Draufsicht auf die Eingangsseite eines Rohrbündelreformers mit eingangsseitiger Drehöffnungsscheibe und im oberen Teil eine Querschnittsansicht des eingangsseitigen Bereichs längs der in der unteren Ansicht gezeigten Linie A-A.

Die in Fig. 1 schematisch gezeigte Methanolreformie-15 rungsanlage beinhaltet einen Reformerbehälter (1), der einen Reaktionsraum umfaßt, in den eingangsseitig ein Methanol/Wasserdampf-Gemisch (2) eingeleitet werden kann, um dieses einer Heißdampfreformierungsreaktion zu unterziehen. Dabei können im wesentlichen die üblichen Reaktionsbedingungen eingestellt werden, was z.B. den Druck und die Größenordnung der Temperatur des Reaktionsraums sowie die Wahl geeigneter Katalysatormaterialien im Reaktionsraum anbelangt. Auch der Aufbau des Reaktionsraums kann von einer der bei Rohrbündelreformern oder Plattenreformern bekannten Strukturen sein, ohne daß hierauf näher eingegangen zu werden braucht. Am Ausgang des Reaktionsraums tritt dann das Reformat (3) aus, das im wesentlichen aus Wasserstoffgas besteht.

Um einen maximalen Methanolumsatz von mehr als 95% zu gewährleisten und gleichzeitig die damit einhergehende hohe CO-Bildung zu minimieren, wird mittels eines Thermoöl-Heizkreislaufs ein Temperaturgradient (dT) über die von dem Methanol/Wasserdampf-Gemisch durchströmte Länge des Reaktionsraums hinweg eingestellt. Der Temperaturgradient (dT) ist so ausgelegt, daß der Reaktionsbereich signifikanter CO-Entstehung, der hinter dem anfänglichen Reaktionsbereich hohen Methanolumsatzes liegt, bereits auf einem vergleichsweise niedrigen Temperaturniveau liegt, so daß die CO-Bildung unterdrückt wird. Je nach Lastfall, d. h. je nach Bedarf an produziertem Wasserstoffgas, z. B. für eine an den Reformatausgang (3) des Reformerbehälters (1) anschließende Brennstoffzelle in einem Kraftfahrzeug, und damit verbundener Reformatgasproduktion, wird der Temperaturgradient zwischen der höheren Temperatur an der Reaktionsraumeingangsseite und der niedrigeren Temperatur an der Reaktionsraumausgangsseite passend eingestellt. Zu diesem Zweck beinhaltet der Thermoöl-Heizkreislauf eine Heiz- und Zirkulationseinheit (4) mit Heizeinrichtung und Zirkulationspumpe. Diese Einheit (4) heizt das Thermoöl auf die am Eintritt des Reformerbehälters (1) gewünschte Temperatur auf und befördert das Thermoöl über eine Zuleitung (5) zu einer nicht näher gezeigten Gleichstromwärmetauschereinheit im Reformerbehälter (1), die in thermischem Kontakt mit dem Reaktionsraum steht, wobei das Thermoöl den Wärmetauscher in gleicher Strömungsrichtung durchströmt wie das zu reformierende Methanol/Wasserdampf-Gemisch (2) den Reaktionsraum.

Vom Ausgang der Wärmetauschereinheit führt eine Rückleitung (6) des Heizkreislaufs zur Heiz- und Zirkulationseinheit (4) zurück, wobei in die Rückleitung (6) ein über einen pneumatischen Motor oder dgl. ansteuerbares Regulierventil (7) eingebracht ist. Da die Reformierungsreaktion endotherm verläuft, entzieht diese dem durch die Wärmetauschereinheit zirkulierenden

Thermoöl Wärme, so daß längs des Reaktionsweges im Reformerbehälter (1) das Temperaturgefälle (dT) entsteht, das vor allem auch vom Durchsatz an Methanol/ Wasserdampf-Gemisch und vom Volumenstrom des zirkulierenden Thermoöls abhängt. Je nach Höhe der momentanen Reformerbelastung, d. h. der momentanen Menge an entnommenem Reformat (3), schwankt die Strömungsgeschwindigkeit des zu reformierenden Methanol/Wasserdampf-Gemischs (2) im Reaktionsraum und damit dessen Verweildauer pro Längeneinheit des 10 Reaktionsraums. Dementsprechend wird für gleichbleibend hohen Methanolumsatz bei höherer Reformerbelastung eine größere wirksame Länge eines eingangsseitigen Reaktionsraumabschnitts benötigt, in welchem im wesentlichen die Methanolumsetzung stattfindet.

Dieser Tatsache wird bei der Reformeranlage von Fig. 1 dadurch Rechnung getragen, daß sich das Regulierventil (7), mit dem der Volumenstrom des durch den Heizkreislauf zirkulierenden Thermoöls regulierbar ist in Abhängigkeit von dem erfaßten Temperaturgradien- 20 ten (dT) längs des Reaktionsraumes verstellen läßt, wie durch die gestrichelte Linie symbolisiert. Bei höherer Lastanforderung, d.h. höherer Reformatentnahme, strömt das Methanol/Wasserdampf-Gemisch (2) schneller durch den Reaktionsraum hindurch, so daß eine grö- 25 Bere eingangsseitige Reaktionsraumlänge für effektive Methanolumsetzung und damit ein flacherer Temperaturgradient (dT) erforderlich ist, wobei außerdem wegen der endothermen Reformierungsreaktion ein erhöhter Wärmebedarf entsteht. Der aus diesem Grund 30 drohenden, zu schnellen Temperaturerniedrigung im eingangsseitigen Reaktionsraumabschnitt wird nun dadurch begegnet, daß das Regulierventil (7) weiter geöffnet wird, so daß sich der Volumenstrom im Thermoöl-Heizkreislauf erhöht. Damit kann der erhöhte Wärme- 35 bedarf für die Reformierungsreaktion gedeckt und gleichzeitig aufgrund der höheren Fließgeschwindigkeit des Thermoöls auch im Wärmetauscher der eingangsseitige Reaktionsraumabschnitt passend ausgedehnt werden, so daß seine Länge und Temperatur gerade 40 ausreichen, das Methanol mit größtmöglicher Rate umzusetzen. Verringert sich umgekehrt die Reformerlast, so reduziert sich der Methanol/Wasserdampf-Gemischdurchsatz und der Temperaturgradient (dT) tendiert dazu abzunehmen. Das Regulierventil (7) wird dadurch in 45 Schließrichtung angesteuert, so daß sich der Thermoöl-Volumenstrom im Heizkreislauf und dementsprechend die wirksame Länge des für den Methanolumsatz dienenden, eingangsseitigen Reaktionsraumabschnitts verringern. Je nach Reformerbelastung und damit einhergehender Reformatgasproduktion läßt sich daher das Temperaturgefälle (dT) über die Reaktionsraumlänge hinweg bei dieser Reformieranlage dergestalt angepaßt einstellen, daß unabhängig vom jeweiligen Durchsatz an lichen gleichbleibende Verweildauer desselben in einem für hohen Methanolumsatz geeigneten, höher temperierten, eingangsseitigen Reaktionsraumabschnitt aufrechterhalten wird, ohne daß es aufgrund einer zu kurzen Länge dieses Abschnitts zu vermindert er Methano- 60 lumsetzung oder aufgrund zu großer Länge dieses Abschnitts zu erhöhter CO-Bildung kommt.

Fig. 2 zeigt eine Reformeranlage, deren Aufbau und Funktionsweise im wesentlichen derjenigen von Fig. 1 entspricht, wobei insoweit gleiche Bezugszeichen ver- 65 wendet sind und auf die vorstehende Beschreibung von Fig. 1 verwiesen wird. Die Anlage von Fig. 2 ist gegenüber derjenigen von Fig. 1 dahingehend modifiziert, daß

anstelle eines Regulierventils in der Rückleitung (6) des Thermoöl-Heizkreislaufs eine die Heiz- und Zirkulationseinheit (4) umgehende Bypassleitung (8) und ein Dreiwegeventil (9) angeordnet sind. Dem Dreiwegeventil (9) ist einerseits die Bypassleitung (8) und andererseits die Ausgangsleitung der Heiz- und Zirkulationseinheit (4) zugeführt.

Es speist einen einstellbaren Mischungsanteil aus beiden Zuleitungen in die Thermoölzuleitung (5) zur Gleichstrom-Wärmetauschereinheit im Reformerbehälter (1) ein. Wie gestrichelt angedeutet, wird dieses Dreiwegeventil (9) wiederum von der erfaßten Temperaturdifferenz (dT) zwischen Eingangs- und Ausgangsseite des Reaktionsraums im Reformerbehälter (1) angesteu-15 ert. Da dies eine Steuerung des Volumenstroms an frisch aufgeheiztem Thermoöl in den Wärmetauscher bedeutet, ist der solchermaßen aufgebaute Thermoöl-Heizkreislauf demjenigen von Fig. 1 funktionell vollständig äquivalent, so daß auch hier wiederum eine Anpassung der zur Methanolumsetzung wirksamen, eingangsseitigen Reaktionsraumlänge an die Reformerbelastung über die Einstellung eines geeigneten Temperaturgefälles (dT) durch entsprechende Steuerung des Thermoöl-Volumenstroms im Wärmetauscher bewirkt werden kann.

Eine zweite Variante der Reformeranlage von Fig. 1 ist in Fig. 3 dargestellt, wobei wiederum funktionell gleiche Teile mit gleichen Bezugszeichen versehen sind. Auch bei diesem Methanolreformer ist eine Volumenstromregulierung von in einem Heizfluidkreislauf zirkulierendem Thermoöl zur Erzielung eines gewünschten Temperaturgefälles zwischen Eingangs- und Ausgangsseite des Reaktionsraums im Reformerbehälter (1) vorgesehen. Anstatt über ein ansteuerbares Regulierventil in der Rückleitung (6) des Heizkreislaufs, wie im Reformer von Fig. 1, wird die Volumenstromregulierung des Thermoöls bei diesem Reformer durch Veränderung der Pumpendrehzahl der in einer diesbezüglich modifizierten Zirkulationseinheit (4a) des Heizkreislaufs vorgesehenen Pumpe erzielt. Zu diesem Zweck ist ein Pumpendrehzahlregulierelement (10) an dieser Pumpe angeschlossen, das wiederum von dem Steuersignal bezüglich des erfaßten Temperaturgradienten (dT) angesteuert werden kann, wie durch die gestrichelte Linie symbolisiert. Bei höherem Bedarf an Reformat (3) und damit höherem Durchsatz an zu reformierendem Gasgemisch (2) wird die Pumpendrehzahl erhöht, so daß das Thermoöl schneller durch den Wärmetauscher im Reformerbehälter (1) fließt und eine größere effektive Länge des Reaktionsraumes auf einer erhöhten Temperatur für hohen Methanolumsatz gehalten wird. Entsprechend wird die Pumpendrehzahl verringert, wenn die Reformerlast kleiner wird.

Während bei den drei oben beschriebenen Methanol-Methanol/Wasserdampf-Gemisch stets eine im wesent- 55 reformern das Temperaturgefälle (dT) über die Reaktionsraumlänge hinweg durch Regulierung der Durchflußmenge an aufgeheiztem Thermoöl an die Reformerlast angepaßt wird, ist in Fig. 4 eine Methanolreformereinheit dargestellt, bei der die Länge des für hohen Methanolumsatz temperierten, eingangsseitigen Reaktionsraumabschnitts durch Verändern der Länge der thermischen Kontaktfläche zwischen dem auf erhöhter Temperatur liegend einströmenden Thermoöl und dem Reaktionsraum eingestellt werden kann. Der gezeigte Methanolreformer ist als sogenannter Rohrbundelreformer ausgelegt, bei dem der Reaktionsraum aus einer Mehrzahl von parallel zueinander angeordneten Reaktionsrohren (12) besteht. Die Rohre (12) befinden sich

innerhalb eines Reformerbehälters (11), an dessen einer Stirnseite über einen Einlaß (22) das zu reformierende Gasgemisch (13) zugeführt wird, wobei sich das eintretende Gasgemisch (13) über einen eingangsseitigen Verteilergasraum (14) des Reformerbehälters (11) auf die verschiedenen Reaktionsraumrohre (12) verteilt. Das auf der anderen Seite der Rohre (12) austretende Reformat (13') gelangt in einen ausgangsseitigen Sammelgasraum (24) des Reformerbehälters (11), von wo es über Zum Inneren des Reformerbehälters (11) hin sind der Verteilergasraum (14) und der Sammelgasraum (24) jeweils durch eine Trennwand (23, 25) begrenzt. Der Raum zwischen diesen beiden Trennwänden (23, 25) im re (12) bildet einen mit Thermoöl befüllten Raum, der mittels eines axial verschieblichen Kolbens (17) mit axial aus dem Reformerbehälter (11) herausführend angeformter Kolbenstange (26) in eine eingangsseitige Hälf-

Über einen Einlaß (20) am Reformerbehälter (12) tritt das als Heizfluid dienende Thermool (19) in die eingangsseitige Ölraumhälfte (16a) ein. Von dort tritt es axial verlaufend eingebrachten Kanal (18) wieder aus dem Reformerbehälter (11) aus. Die übrigen Komponenten des Thermoöl-Heizkreislaufs sind hier nicht gezeigt und können z. B. in einer der in den Fig. 1 bis 3 Thermoölzirkulation (19) nicht durch die ausgangsseitige Ölraumhälfte (16b) führt, nimmt das dort befindliche Thermoöl und mithin der von diesem umgebene, ausgangsseitige Reaktionsraumabschnitt eine niedrigere Umgebungstemperatur an, während das aktiv zirkulie- 35 rende Thermool (19) die eingangsseitige Ölraumhälfte (16a) und damit eine entsprechende eingangsseitige Reaktionsraumlänge auf einer erhöhten Temperatur hält. Durch axiales Verschieben des Kolbens (17) in Abhängigkeit vom Gasgemischdurchsatz durch den Reak- 40 tionsraum (12) kann daher die Länge des eingangsseitigen, auf hohen Methanolumsatz temperierten Reaktionsraumabschnitts auf die jeweils passende Länge eingestellt werden, bis zu der gerade eine weitestgehend vollständige Methanolumsetzung, jedoch noch keine 45 merkliche CO-Bildung erfolgt. Ein enger Verbindungskanal (21) zwischen eingangsseitiger und ausgangsseitiger Olraumhälfte (16a, 16b) ermöglicht den zum Verschieben des Kolbens (17) nötigen Thermoölübertritt von der sich verkleinernden in die sich vergrößernde 50 Ölraumhälfte, ohne einen signifikanten Wärmeübertrag von der eingangsseitigen (16a) auf die ausgangsseitige Olraumhälfte (16b) zu verursachen.

Bei dem mit seinem Reformerbehälter (25) in einem oberen Bereich gezeigten Methanolreformer von Fig. 5 55 erfolgt die Anpassung der methanolumsetzenden Reaktionsraumzone an den Reformatbedarf durch Verändern des wirksamen eingangsseitigen Reaktionsraumquerschnitts derart, daß unabhängig vom momentanen Gasgemischdurchsatz jeweils eine annähernd konstante 60 Strömungsgeschwindigkeit des Gasgemisches beibehalten wird. Dementsprechend wird die Verweildauer des Gasgemisches in einem eingangsseitigen, auf hohen Methanolumsatz temperierten Reaktionsraumabschnitt im wesentlichen konstant gehalten. Der Methanolreformer 65 ist wiederum als Rohrbündelreformer ausgelegt und enthält sechs Reaktionsrohre (26). Diese sind parallel zueinander in äquidistantem Abstand so angeordnet,

daß ihre Längsachsen auf einem gemeinsamen Zylinderhalbmantel liegen, wie in der Draufsicht der unteren Figurenhälfte zu erkennen. Der Reformerbehälter (25) ist zur Eingangsseite hin mit einem Deckel (29) abgeschlossen, in den ein Einlaß (30) für das zu reformierende Gasgemisch eingebracht ist. Dieser Einlaß (30) mündet in einen eingangsseitigen Verteilergasraum (32). Zum Inneren des Reformerbehälters (25) hin ist der Verteilergasraum (32) von einer drehbeweglich gelagerten einen Auslaß (15) den Reformerbehälter (11) verläßt. 10 Drehöffnungsscheibe (28) begrenzt, in die eine bogenförmige Ausnehmung (31) dergestalt eingebracht ist, daß durch Drehen der Drehöffnungsscheibe (28) mit oder entgegen dem Uhrzeigersinn, wie durch den Doppelpfeil (R) angedeutet, wahlweise alle sechs oder nur Reformerbehälter (11) und außerhalb der Reformerroh- 15 ein Teil der stirnseitigen Eintrittsöffnungen der Reaktionsrohre (26) in diesem bogenförmigen Ausnehmungsbereich (31) liegen. In diejenigen Reaktionsrohre, deren Eintrittsöffnungen im ausgesparten Bogenbereich (31) der Drehöffnungsscheibe (28) liegen, kann jete (16a) und eine ausgangsseitige Hälfte (16b) abgeteilt 20 weils Gasgemisch zuströmen, während die übrigen Reaktionsrohre von der Drehöffnungsscheibe (28) eintrittsseitig abgedeckt werden. Durch Drehen der Drehöffnungsscheibe (28) läßt sich folglich die Anzahl von aktiv mit zu reformierendem Gasgemisch durchströmüber einen in den Kolben (17) und die Kolbenstange (26) 25 ten Reaktionsrohren einstellen. In der in Fig. 5 gezeigten Situation ist z. B. gerade eines der sechs Reaktionsrohre (26) freigegeben.

Auf diese Weise dann der gesamte, wirksame Reaktionsraumquerschnitt auf den jeweils vorliegenden Gasgezeigten Weisen realisiert sein. Da folglich die aktive 30 gemischdurchsatz angepaßt werden. Bei höherer Reformerlast, d. h. höherem Durchsatz, werden mehr Reaktionsrohre freigegeben, während bei niedrigerer Reformerlast mehr Reaktionsrohre verschlossen werden. Durch geeignete Steuerung der Drehöffnungsscheibe (28) wird dafür gesorgt, daß unabhängig vom schwankenden Gasgemischdurchsatz die Strömungsgeschwindigkeit des zu reformierenden Gasgemischs in den Reaktionsrohren (26) etwa konstant bleibt. Damit braucht die auf hohen Methanolumsatz temperierte, eingangsseitige Reaktionsraumzone bei sich ändernder Reformerlast in ihrer Länge nicht verändert werden, weshalb bei diesem Reformer das Rohrbündel (26) auf einer festen Länge von einem Thermoöl-Heizraum (27) umgeben ist, der nur in seinem reformereingangsseitigen Teil gezeigt ist und in den, analog zu den oben beschriebenen Beispielen, erhitztes, zirkulierendes Thermoöl eintritt. Die aufgrund der konstanten Strömungsgeschwindigkeit unabhängig vom jeweils momentanen Gasgemischdurchsatz gleichbleibende Verweildauer des Gasgemischs in dem vom Heizraum (27) umgebenen, eingangsseitigen Reaktionsraumabschnitt gewährleistet selbst bei schwankender Reaktorlast, daß die eingangsseitige, höher temperierte Reaktionsraumlänge stets derjenigen Länge entspricht, die für hohe Methanolumsetzung benötigt wird, ohne daß eine Überlänge auftritt, die zu höherer CO-Bildung Anlaß geben würde.

Es versteht sich, daß neben den oben beschriebenen Beispielen weitere Modifikationen im Rahmen der durch die Ansprüche festgelegten Erfindung realisierbar sind, insbesondere sind anstelle der beschriebenen Rohrbündelreformer mit einer der Eintrittsseite gegenüberliegenden Austrittsseite auch U-Rohrbündelreformer oder Plattenreformer einsetzbar. Außerdem kann neben der in den Ausführungsbeispielen beschriebenen Verwendung von Thermoöl als Temperierfluid auch jedes andere geeignete Wärmeträgermedium in flüssiger und/oder gasförmiger Form eingesetzt werden. Schließlich ist es auch möglich, eine direkte Beheizung mit Hilfe

10

eines Brenners oder eines katalytischen Brenners vorzusehen.

Patentansprüche

Verfahren zur Methanolreformierung, bei dem

 das zu reformierende Gasgemisch durch einen katalysatorhaltigen Reaktionsraum hindurchgeleitet wird,

dadurch gekennzeichnet, daß

- die wirksame Länge und/oder der wirksame Eintrittsquerschnitt eines eingangsseitigen, zur Erzielung einer hohen Methanolumsetzungsrate temperierten Reaktionsraumabschnitt s in Abhängigkeit vom jeweiligen Durchsatz an zu reformierendem Gasgemisch so eingestellt wird, daß die Verweildauer des Gasgemischs in dem eingangsseitigen, für hohen Methanolumsatz temperierten Reaktionsraumabschnitt im wesentlichen konstant bleibt.
- 2. Verfahren nach Anspruch 1, weiter dadurch gekennzeichnet, daß die wirksame Länge des eingangsseitigen, auf hohen Methanolumsatz temperierten Reaktionsraumabschnitts durch Variieren des durch einen Temperierfluidkreislauf im Reaktionsraum erzeugten Temperaturgefälles (dT) mittels Volumenstromregulierung des Temperierfluids in Abhängigkeit vom Gasgemischdurchsatz eingestellt wird.
- 3. Verfahren nach Anspruch 1, weiter dadurch gekennzeichnet, daß die wirksame Länge des eingangsseitigen, auf hohen Methanolumsatz temperierten Reaktionsraumabschnitts durch Variieren
 der Länge des mit dem Reaktionsraum (12) in thermischem Kontakt stehenden Teils (16a) des Temperierfluidkreislaufs in Abhängigkeit vom Gasgemischdurchsatz eingestellt wird.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, daß der wirksame eingangsseitige Reaktionsraumquerschnitt durch 40 Freigeben oder Absperren von voneinander getrennt parallel angeordneten Reaktionsteilräumen (26) eingestellt wird.

5. Vorrichtung zur Methanolreformierung, mit

- einem vom zu reformierenden Gasgemisch 45 durchströmbaren, katalysatorhaltigen Reaktionsraum und
- einem in thermischem Kontakt zum Reaktionsraum stehenden Temperierfluidkreislauf,

dadurch gekennzeichnet, daß

- sie zur Durchführung des Verfahrens nach Anspruch 1 oder 2 eingerichtet ist und hierzu eine in Abhängigkeit vom Durchsatz an zu reformierendem Gasgemisch ansteuerbare Einrichtung zur variablen Einstellung des Temperierfluid-Volumenstroms im Temperierfluidkreislauf besitzt.
- 6. Vorrichtung zur Methanolreformierung, mit
 - einem vom zu reformierenden Gasgemisch durchströmbaren, katalysatorhaltigen Reak- 60 tionsraum und
- einem in thermischem Kontakt zum Reaktionsraum stehenden Temperierfluidkreislauf, dadurch gekennzeichnet, daß
 - sie zur Durchführung des Verfahrens nach 65 Anspruch 1 oder 3 eingerichtet ist und hierzu einen Temperierraum (16a) aufweist, der mit einem eingangsseitigem, auf hohen Methano-

lumsatz temperierten Reaktionsraumabschnitt in thermischem Kontakt steht und von einer parallel zur Strömungsrichtung des zu reformierenden Gasgemisches (13) verschiebbaren Wand (17) begrenzt ist.

7. Vorrichtung zur Methanolreformierung, mit

— einem vom zu reformierenden Gasgemisch durchströmbaren, katalysatorhaltigen Reaktionsraum in Form eines Rohrbündels (26) aus mehreren, parallel angeordneten Reaktorrohren, dadurch gekennzeichnet, daß

— sie zur Durchführung des Verfahrens nach Anspruch 1 oder 4 eingerichtet ist und hierzu eine Einrichtung (28) zum wahlweisen, eingangsseitigen Freigeben bzw. Absperren einer variablen Anzahl von Reaktorrohren (26) aufweist.

Hierzu 3 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶: DE 195 26 886 C1 C 01 B 3/32

Veröffentlichungstag: 12. September 1996

Fig. 1

Fig. 2

602 137/322

Nummer: Int. Cl.⁶: DE 195 26 886 C1 C 01 B 3/32

Veröffentlichungstag: 12. September 1996

Fig. 3

Fig. 4

Nummer: Int. Cl.⁶:

DE 195 26 886 C1

Int. Cl.⁶: C 01 B 3/32 Veröffentlichungstag: 12. September 1996

Fig. 5

