Universal Quantification Example

```
\mathcal{D} = \{bob, jack, fred\}
\mathcal{I}[Happy] = \{bob, jack, fred\}
\mathfrak{I}[Happy] = \{bob, jack, fred\}
```

- 1. $\mu[x] = \underline{bob}$. $\mathfrak{I}, \mu \models Happy(x)$ iff $||x||_{\mathfrak{I}, \mu} \in \mathcal{I}[Happy]$ iff $\underline{bob} \in \mathcal{I}[Happy]$
- 2. $\mu'[x] = \underline{jack}$. $\mathfrak{I}, \mu' \models Happy(x)$ iff $||x||_{\mathfrak{I}, \mu'} \in \mathcal{I}[Happy]$ iff $\underline{jack} \in \mathcal{I}[Happy]$
- 3. $\mu''[x] = \underline{\text{fred}}$. \mathfrak{I} , $\mu'' = \text{Happy}(x)$ iff $||x||_{\mathfrak{I}, \mu''} \in I$ [Happy] iff $\underline{\text{fred}} \in I$ [Happy]
- Therefore $\Im \models \forall x \; \mathsf{Happy}(x)$

Example: Interpretation

Environment

Language (Syntax)

Constants: a,b,c,e

Functions:

None

Predicates:

On: binary

Above: binary

Clear: unary

OnTable: unary

Example: Interpretation

Language (syntax)

Constants: a,b,c,e

Predicates:

On: binary

Above: binary

Clear: unary

On Table: unary

Think of this as a possible way the world could be

An interpretation 3 (semantics)

$$\mathcal{D} = \{\underline{A}, \underline{B}, \underline{C}, \underline{E}\}$$

$$I(a) = \underline{A}, I(b) = \underline{B},$$

$$I(c) = \underline{C}, I(e) = \underline{E}.$$

$$I(on) = \{(\underline{A}, \underline{B}), (\underline{B}, \underline{C})\}$$

$$I(Above) =$$

 $\{(A,B),(B,C),(A,C)\}$

$$I(Clear) = {A, E}$$

I(OnTable)={<u>C,E</u>}

Example: Interpretation

Interpretation 3

$$\mathcal{D} = \{\underline{A}, \underline{B}, \underline{C}, \underline{E}\}$$

$$I(a) = \underline{A}, I(b) = \underline{B},$$

$$I(c) = \underline{C}, I(e) = \underline{E}.$$

$$I(On) = \{(\underline{A},\underline{B}), (\underline{B},\underline{C})\}$$

$$I(Above) = \{(\underline{A},\underline{B}), (\underline{B},\underline{C}), (\underline{A},\underline{C})\}$$

$$I(Clear) = \{\underline{A},\underline{E}\}$$

$$I(OnTable) = \{\underline{C},\underline{E}\}$$

Are these formulas true/false in this interpretation?

Interpretation 3

D = {A, B, C, E}

$$I(a) = \underline{A}, I(b) = \underline{B}, I(c) = \underline{C}, I(e)$$
 $= \underline{E}.$
 $I(On) = \{(\underline{A},\underline{B}),(\underline{B},\underline{C})\}$
 $I(Above) = \{(\underline{A},\underline{B}),(\underline{B},\underline{C}),(\underline{A},\underline{C})\}$
 $I(Clear) = \{\underline{A},\underline{E}\}$
 $I(OnTable) = \{\underline{C},\underline{E}\}$

```
\forall x,y. \ On(x,y) \supset Above(x,y)
    x=A, y=B \sqrt{}
    x=C, Y=A
 \forall x,y. \ Above(x,y) \supset On(x,y)
      x=\underline{A}, y=\underline{B} \sqrt{ }
      x=A, y=C x
```

Are these formulas true/false in this interpretation?

Interpretation 3

$$\mathcal{D} = \{\underline{A}, \underline{B}, \underline{C}, \underline{E}\}\$$
 $I(a) = \underline{A}, I(b) = \underline{B}, I(c) = \underline{C}, I(e)$
 $= \underline{E}.$
 $I(On) = \{(\underline{A},\underline{B}), (\underline{B},\underline{C})\}$
 $I(Above) = \{(\underline{A},\underline{B}), (\underline{B},\underline{C}), (\underline{A},\underline{C})\}$
 $I(Clear) = \{\underline{A},\underline{E}\}$
 $I(OnTable) = \{\underline{C},\underline{E}\}$

```
\forall x \exists y (Clear(x) \lor On(y,x))
      x = \underline{A} \checkmark
x = \underline{C}, x = \underline{B} \checkmark
\exists y \forall x (Clear(x) \lor On(y,x))
   y=<u>A</u> ? No! (x=<u>C</u>)
   y=\underline{C}? No! (x=\underline{B})
   y=E? No! (x=B)
   y=B? No! (x=B)
```

KB - has many models

