Reducing the continuously stratified equations to the shallow water equations

We start with the dry, linearized primitive equations in a continuous atmosphere, and follow a similar procedure as Vallis (section 3.4). We include uniform linear friction α in the momentum and thermodynamic equations. All notations are usual (s is dry static energy divided by c_v).

$$egin{aligned} (\partial_t + lpha) \mathbf{u} + f \mathbf{k} imes \mathbf{u} +
abla \phi = 0, \ (\partial_t + lpha) T + \omega \partial_p s = Q_{diab}, \
abla \cdot \mathbf{u} + \partial_p \omega = 0, \ \partial_p \phi = -RT/p. \end{aligned}$$

We seek a vertical structure function for $\mathbf u$ and ϕ that would make this set of equations equivalent to a shallow water system. Combining the thermodynamic and hydrostatic equations:

$$(\partial_t + lpha) \left[-rac{p}{R\partial_p s} \partial_p \phi
ight] + \omega = rac{Q_{diab}}{\partial_p s}$$

Differentiating with respects to p and using continuity,

$$\left(\partial_t + lpha
ight)\partial_p \left[-rac{p}{R\partial_p s}\partial_p \phi
ight] -
abla \cdot \mathbf{u} = \partial_p \left[rac{Q_{diab}}{\partial_p s}
ight]$$

Suppose that one can find a vertical structure function $V_n(p)$ such that $\partial_p \left[-\frac{p}{R\partial_p s} \partial_p V_n \right] + K_n V_n = 0$ for some eigenvalue K_n (with boundary conditions $\partial_p V_n = 0$ at p=0 and $p=p_s$, in order for the vertical velocity to vanish there). Plugging

$$egin{cases} \mathbf{u}(x,y,p) &= \mathbf{u}_n(x,y) V_n(p), \ \phi(x,y,p) &= \phi_n(x,y) V_n(p), \ Q_{diab}(x,y,p) &= -Q_n(x,y) K_n \partial_p s \int V_n \, dp', \end{cases}$$

our equation set reduces to

$$egin{aligned} (\partial_t + lpha) \mathbf{u}_n + f \mathbf{k} imes \mathbf{u}_n +
abla \phi_n &= 0, \ (\partial_t + lpha) \phi_n + rac{1}{K_n}
abla \cdot \mathbf{u}_n &= Q_n. \end{aligned}$$

which is close to the Gill problem (we would need to add the beta-plane approximation, and the longwave approximation in the meridional momentum equation, to have the exact Gill problem). Another limitation is that the initial equation set assumes a constant, uniform surface pressure p_s , whereas the stationary wave model lets p_s vary.

A particular choice of stratification

One choice that gives simple vertical structure functions is $\partial_p s = -\gamma p$ where γ is a constant. Then, our eigenvalue problem becomes

$$rac{1}{R\gamma}\partial_{pp}V_n+K_nV_n=0$$

and the solutions are $V_n(p)=\cos\left(n\pirac{p}{p_s}
ight)$, along with $K_n=rac{n^2\pi^2}{R\gamma p_s^2}$.

With this choice of stratification, we solve for the vertical temperature profile by solving

$$\partial_p T - rac{\kappa T}{p} = -\gamma p,$$

where $\kappa=R/c_p$. Imposing $T(p=p_s)=T_s$, this gives

$$T(p) = iggl[1 + rac{\gamma p_s^2}{T_s(2-\kappa)} iggr] T_s iggl(rac{p}{p_s} iggr)^{\kappa} - rac{\gamma p^2}{2-\kappa}$$

which looks like (compare to the NCEP-NCAR reanalysis profile):

With this choice of stratification, Q_{diab} is given by $Q_{diab}(x,y,p)=Q_n(x,y)K_n\gamma p \frac{p_s}{n\pi}\sin\left(n\pi\frac{p}{p_s}\right)$

Horizontal structure of the forcing

To stay as close as possible to the Gill model (for which analytical solutions exist - see e.g. Vallis, section 8.5.2), we take the horizontal structure of the forcing to be of the form

$$Q_n(x,y) \propto e^{-y^2/(4L_{eq}^2)} egin{cases} \cos(\pi x/(2L)), & |x| \leq L \ 0, & |x| > L \end{cases}$$

where $L_{eq} = \sqrt{c_n/(2\beta)}$ ($c_n = 1/\sqrt{K_n}$ is the gravity wave speed) is the equatorial Rossby radius.

For the first baroclinic mode (n = 1), the structure of the forcing looks like:

Numerical solutions

- The shallow-water problem is set up and solved in shallow_water_ideal_gill.py.
- The continuously stratified problem is solved using the sigma-level stationary wave model in run_ideal_gill.py. Its basic state and forcing are calculated in the first section of ideal_gill.ipynb
- The solutions are analyzed in the remaining sections of ideal_gill.ipynb