Problème de révision

Loi de Zipf Énoncé

On note ζ la fonction zeta de Riemann, définie par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$

Partie I: Loi de Zipf

Pour s > 1 et $\lambda \in \mathbb{R}$, on pose: $P_s\left(\{n\}\right) = \frac{\lambda}{n^s}$ pour tout $n \in \mathbb{N}^*$

1. Pour quelle(s) valeur(s), l'application P_s détermine-t-elle une probabilité sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$?

On prend $\lambda = \frac{1}{\zeta(s)}$ et on considère désormais l'espace probabilisé $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*), P_s)$

- 2. Pour $m \in \mathbb{N}^{\star}$, on introduit l'événement: $A_m = m\mathbb{N}^* = \{km \ , \ k \in \mathbb{N}^{\star}\}$ Exprimer simplement la probabilité de l'événement A_m .
- 3. Soit $m, n \in \mathbb{N}^*$. Montrer que A_n et A_m sont indépendants si, et seulement, si $m \wedge n = 1$
- 4. **Application:** On note p_i le *i*-ème nombre premier (avec $i \in \mathbb{N}^*$, $p_1 = 2$, $p_2 = 3...$) et C_n l'ensemble des entiers divisibles par aucun des nombres premiers p_i , pour $1 \le i \le n$
 - (a) Calculer $P_s(C_n)$
 - (b) Déterminer $\bigcap_{n \in \mathbb{N}^*} C_n$
 - (c) En déduire le développement eulérien de ζ

$$\lim_{n \to +\infty} \prod_{i=1}^{n} \left(1 - \frac{1}{p_i^s}\right)^{-1} = \zeta(s)$$

On écrit alors

$$\prod_{i=1}^{+\infty} \left(1 - \frac{1}{p_i^s}\right)^{-1} = \zeta(s)$$

Partie II: Variable aléatoire

Soit $s \in]1, +\infty[$. On se donne une variable aléatoire X_s à valeurs dans \mathbb{N}^* de loi

$$\forall n \in \mathbb{N}^*, \quad P(X_s = n) = \frac{n^{-s}}{\zeta(s)}$$

- 5. Pour quelles valeurs de s, la variable X_s admet une espérance et la calculer
- 6. Pour quelles valeurs de s, la variable X_s admet une variance et la calculer
- 7. Soit $k \in \mathbb{N}^*$. On note B_k l'événement « k divise X_s ».
 - (a) Calculer $P(B_k)$
 - (b) Montrer que si m et n sont premiers entre eux, alors B_n et B_m sont indépendants
- 8. Montrer que la probabilité qu'aucun carré, autre que 1, ne divise X_s est $\frac{1}{\zeta(2s)}$

On pourra utiliser le développement eulérien de ζ