Rules for integrands of the form $(d x)^m P_q[x] (a + b x^2 + c x^4)^p$

1:
$$\int (dx)^m P_q[x] (a+bx^2+cx^4)^P dx \text{ when } \neg P_q[x^2]$$

- Derivation: Algebraic expansion
- Basis: $P_q[x] = \sum_{k=0}^{q/2+1} P_q[x, 2k] x^{2k} + x \sum_{k=0}^{(q-1)/2+1} P_q[x, 2k+1] x^{2k}$
- Note: This rule transforms $P_q[x]$ into a sum of the form $Q_r[x^2] + x R_s[x^2]$.
- Rule 1.2.2.6.3: If $\neg P_{q}[x^{2}]$, then

$$\int (dx)^{m} P_{q}[x] \left(a + bx^{2} + cx^{4}\right)^{p} dx \rightarrow \int (dx)^{m} \left(\sum_{k=0}^{\frac{q}{2}+1} P_{q}[x, 2k] x^{2k}\right) \left(a + bx^{2} + cx^{4}\right)^{p} dx + \frac{1}{d} \int (dx)^{m+1} \left(\sum_{k=0}^{\frac{q-1}{2}+1} P_{q}[x, 2k+1] x^{2k}\right) \left(a + bx^{2} + cx^{4}\right)^{p} dx$$

- Program code:

```
Int[(d_.*x_)^m_.*Pq_*(a_+b_.*x_^2+c_.*x_^4)^p_,x_Symbol] :=
    Module[{q=Expon[Pq,x],k},
    Int[(d*x)^m*Sum[Coeff[Pq,x,2*k]*x^(2*k),{k,0,q/2+1}]*(a+b*x^2+c*x^4)^p,x] +
    1/d*Int[(d*x)^(m+1)*Sum[Coeff[Pq,x,2*k+1]*x^(2*k),{k,0,(q-1)/2+1}]*(a+b*x^2+c*x^4)^p,x]] /;
    FreeQ[{a,b,c,d,m,p},x] && PolyQ[Pq,x] && Not[PolyQ[Pq,x^2]]
```

$$2: \quad \left[\mathbf{x}^m \; P_q\left[\mathbf{x}^2\right] \; \left(\mathbf{a} + \mathbf{b} \; \mathbf{x}^2 + \mathbf{c} \; \mathbf{x}^4\right)^p \; \text{d} \mathbf{x} \; \; \text{when} \; \frac{m-1}{2} \; \in \; \mathbb{Z} \right]$$

- **Derivation: Integration by substitution**
- Basis: If $\frac{m-1}{2} \in \mathbb{Z}$, then $\mathbf{x}^m \mathbf{F} \left[\mathbf{x}^2 \right] = \frac{1}{2} \text{ Subst} \left[\mathbf{x}^{\frac{m-1}{2}} \mathbf{F} \left[\mathbf{x} \right], \mathbf{x}, \mathbf{x}^2 \right] \partial_{\mathbf{x}} \mathbf{x}^2$
- Rule 1.2.2.6.4: If $\frac{m-1}{2} \in \mathbb{Z}$, then

$$\int \! x^m \, P_q \left[x^2 \right] \, \left(a + b \, x^2 + c \, x^4 \right)^p \, dx \, \, \rightarrow \, \, \frac{1}{2} \, Subst \left[\int \! x^{\frac{m-1}{2}} \, P_q \left[x \right] \, \left(a + b \, x + c \, x^2 \right)^p \, dx \,, \, \, x \,, \, \, x^2 \right]$$

```
Int[x_^m_.*Pq_*(a_+b_.*x_^2+c_.*x_^4)^p_,x_Symbol] :=
    1/2*Subst[Int[x^((m-1)/2)*SubstFor[x^2,Pq,x]*(a+b*x+c*x^2)^p,x],x,x^2] /;
FreeQ[{a,b,c,p},x] && PolyQ[Pq,x^2] && IntegerQ[(m-1)/2]
```

3: $\int (dx)^m P_q[x^2] (a + bx^2 + cx^4)^p dx$ when $p + 2 \in \mathbb{Z}^+$

Derivation: Algebraic expansion

Rule 1.2.2.6.1: If $p + 2 \in \mathbb{Z}^+$, then

$$\int (d \, \mathbf{x})^{\, \mathbf{m}} \, P_{\mathbf{q}} \Big[\mathbf{x}^2 \, \Big] \, \left(\mathbf{a} + \mathbf{b} \, \mathbf{x}^2 + \mathbf{c} \, \mathbf{x}^4 \right)^{\mathbf{p}} \, d\mathbf{x} \, \rightarrow \, \int \text{ExpandIntegrand} \Big[\, (d \, \mathbf{x})^{\, \mathbf{m}} \, P_{\mathbf{q}} \Big[\mathbf{x}^2 \, \Big] \, \left(\mathbf{a} + \mathbf{b} \, \mathbf{x}^2 + \mathbf{c} \, \mathbf{x}^4 \right)^{\mathbf{p}}, \, \mathbf{x} \Big] \, d\mathbf{x}$$

Program code:

```
Int[(d_.*x_)^m_.*Pq_*(a_+b_.*x_^2+c_.*x_^4)^p_.,x_Symbol] :=
   Int[ExpandIntegrand[(d*x)^m*Pq*(a+b*x^2+c*x^4)^p,x],x] /;
FreeQ[{a,b,c,d,m},x] && PolyQ[Pq,x^2] && IGtQ[p,-2]
```

4:
$$\int (dx)^m P_q[x^2] (a + bx^2 + cx^4)^p dx$$
 when $P_q[x, 0] = 0$

Derivation: Algebraic expansion

Rule 1.2.2.6.2: If $P_{\alpha}[x, 0] = 0$, then

$$\int (d x)^{m} P_{q}[x^{2}] (a + b x^{2} + c x^{4})^{p} dx \rightarrow \frac{1}{d^{2}} \int (d x)^{m+2} \frac{P_{q}[x^{2}]}{x^{2}} (a + b x^{2} + c x^{4})^{p} dx$$

```
Int[(d_.*x_)^m_.*Pq_*(a_+b_.*x_^2+c_.*x_^4)^p_,x_Symbol] :=
    1/d^2*Int[(d*x)^(m+2)*ExpandToSum[Pq/x^2,x]*(a+b*x^2+c*x^4)^p,x] /;
FreeQ[{a,b,c,d,m,p},x] && PolyQ[Pq,x^2] && EqQ[Coeff[Pq,x,0],0]
```

5:
$$\int (d\,x)^m \left(e + f\,x^2 + g\,x^4\right) \left(a + b\,x^2 + c\,x^4\right)^p \,dx \text{ when af } (m+1) - b\,e\ (m+2\,p+3) == 0 \ \land\ ag\ (m+1) - c\,e\ (m+4\,p+5) == 0 \ \land\ m \neq -1$$
 Rule 1.2.2.6.5: If af $(m+1)$ - be $(m+2\,p+3) == 0 \ \land\ ag\ (m+1)$ - ce $(m+4\,p+5) == 0 \ \land\ m \neq -1$, then
$$\left((d\,x)^m \left(e + f\,x^2 + g\,x^4\right) \left(a + b\,x^2 + c\,x^4\right)^p \,dx \ \rightarrow \ \frac{e\ (d\,x)^{m+1} \left(a + b\,x^2 + c\,x^4\right)^{p+1}}{a\,d\ (m+1)} \right)$$

Program code:

6:
$$\left[(d x)^m P_q[x^2] (a + b x^2 + c x^4)^p dx \text{ when } q > 1 \wedge b^2 - 4 a c == 0 \right]$$

- **Derivation: Piecewise constant extraction**
- Basis: If $b^2 4$ a c = 0, then $\partial_x \frac{(a+b x^2+c x^4)^p}{(b+2 c x^2)^{2p}} = 0$
- Rule 1.2.2.6.7: If $q > 1 \land b^2 4 a c = 0$, then

$$\int \left(d\,\mathbf{x} \right)^{\,m}\,P_{\mathrm{q}}\!\left[\mathbf{x}^2 \right] \, \left(a + b\,\mathbf{x}^2 + c\,\mathbf{x}^4 \right)^{\,p}\,d\mathbf{x} \,\,\rightarrow \,\, \frac{\left(a + b\,\mathbf{x}^2 + c\,\mathbf{x}^4 \right)^{\mathrm{FracPart}\,[\mathrm{p}]}}{\left(4\,c \right)^{\,\mathrm{IntPart}\,[\mathrm{p}]} \, \left(b + 2\,c\,\mathbf{x}^2 \right)^{\,2\,\mathrm{FracPart}\,[\mathrm{p}]}} \, \int \left(d\,\mathbf{x} \right)^{\,m}\,P_{\mathrm{q}}\!\left[\mathbf{x}^2 \right] \, \left(b + 2\,c\,\mathbf{x}^2 \right)^{\,2\,\mathrm{p}}\,d\mathbf{x}$$

```
Int[(d_.*x_)^m_.*Pq_*(a_+b_.*x_^2+c_.*x_^4)^p_,x_Symbol] :=
  (a+b*x^2+c*x^4)^FracPart[p]/((4*c)^IntPart[p]*(b+2*c*x^2)^(2*FracPart[p]))*Int[(d*x)^m*Pq*(b+2*c*x^2)^(2*p),x] /;
FreeQ[{a,b,c,d,m,p},x] && PolyQ[Pq,x^2] && GtQ[Expon[Pq,x^2],1] && EqQ[b^2-4*a*c,0]
```

- 7. $\int \mathbf{x}^m \ P_q \left[\mathbf{x}^2 \right] \ \left(\mathbf{a} + \mathbf{b} \ \mathbf{x}^2 + \mathbf{c} \ \mathbf{x}^4 \right)^p \ \mathrm{d} \mathbf{x} \ \text{ when } q > 1 \ \bigwedge \ \mathbf{b}^2 4 \, \mathbf{a} \, \mathbf{c} \neq 0 \ \bigwedge \ p < -1 \ \bigwedge \ \frac{m}{2} \in \mathbb{Z}$ $\text{1:} \quad \int \mathbf{x}^m \ P_q \left[\mathbf{x}^2 \right] \ \left(\mathbf{a} + \mathbf{b} \ \mathbf{x}^2 + \mathbf{c} \ \mathbf{x}^4 \right)^p \ \mathrm{d} \mathbf{x} \ \text{ when } q > 1 \ \bigwedge \ \mathbf{b}^2 4 \, \mathbf{a} \, \mathbf{c} \neq 0 \ \bigwedge \ p < -1 \ \bigwedge \ \frac{m}{2} \in \mathbb{Z}^+$
 - Derivation: Algebraic expansion and trinomial recurrence 2b
 - Rule 1.2.2.6.8.1: If q > 1 $\bigwedge b^2 4$ a $c \neq 0$ $\bigwedge p < -1$ $\bigwedge \frac{m}{2} \in \mathbb{Z}^+$, let $Q \to PolynomialQuotient[x^m P_q[x^2], a + b x^2 + c x^4, x]$ and $d + e x^2 \to PolynomialRemainder[x^m P_q[x^2], a + b x^2 + c x^4, x]$, then

$$\int x^{m} P_{q} \left[x^{2} \right] \left(a + b x^{2} + c x^{4} \right)^{p} dx \rightarrow$$

$$\int \left(d + e x^{2} \right) \left(a + b x^{2} + c x^{4} \right)^{p} dx + \int Q \left(a + b x^{2} + c x^{4} \right)^{p+1} dx \rightarrow$$

$$\frac{x \left(a + b x^{2} + c x^{4} \right)^{p+1} \left(a b e - d \left(b^{2} - 2 a c \right) - c \left(b d - 2 a e \right) x^{2} \right)}{2 a \left(p + 1 \right) \left(b^{2} - 4 a c \right)} +$$

$$\frac{1}{2 a \left(p + 1 \right) \left(b^{2} - 4 a c \right)} \int \left(a + b x^{2} + c x^{4} \right)^{p+1} \cdot$$

$$\left(2 a \left(p + 1 \right) \left(b^{2} - 4 a c \right) Q + b^{2} d \left(2 p + 3 \right) - 2 a c d \left(4 p + 5 \right) - a b e + c \left(4 p + 7 \right) \left(b d - 2 a e \right) x^{2} \right) dx$$

2:
$$\int \mathbf{x}^m P_q \left[\mathbf{x}^2 \right] \left(\mathbf{a} + \mathbf{b} \, \mathbf{x}^2 + \mathbf{c} \, \mathbf{x}^4 \right)^p \, \mathrm{d}\mathbf{x} \text{ when } q > 1 \, \bigwedge \, \mathbf{b}^2 - 4 \, \mathbf{a} \, \mathbf{c} \neq 0 \, \bigwedge \, \mathbf{p} < -1 \, \bigwedge \, \frac{\mathbf{m}}{2} \in \mathbb{Z}^{-1}$$

Derivation: Algebraic expansion and trinomial recurrence 2b

Rule 1.2.2.6.8.2: If q > 1 $\bigwedge b^2 - 4$ a $c \neq 0$ $\bigwedge p < -1$ $\bigwedge \frac{m}{2} \in \mathbb{Z}^-$, let $Q \to PolynomialQuotient <math>\left[x^m P_q\left[x^2\right], a + b x^2 + c x^4, x\right]$ and $d + e x^2 \to PolynomialRemainder \left[x^m P_q\left[x^2\right], a + b x^2 + c x^4, x\right]$, then

$$\int x^{m} P_{q} [x^{2}] (a + b x^{2} + c x^{4})^{p} dx \rightarrow$$

$$\int (d + e x^{2}) (a + b x^{2} + c x^{4})^{p} dx + \int Q (a + b x^{2} + c x^{4})^{p+1} dx \rightarrow$$

$$\frac{x (a + b x^{2} + c x^{4})^{p+1} (a b e - d (b^{2} - 2 a c) - c (b d - 2 a e) x^{2})}{2 a (p+1) (b^{2} - 4 a c)} +$$

$$\frac{1}{2 a (p+1) (b^{2} - 4 a c)} \int x^{m} (a + b x^{2} + c x^{4})^{p+1} .$$

$$(2 a (p+1) (b^{2} - 4 a c) x^{-m} Q + (b^{2} d (2 p+3) - 2 a c d (4 p+5) - a b e) x^{-m} + c (4 p+7) (b d - 2 a e) x^{2-m}) dx$$

Program code:

$$\textbf{X:} \quad \left[\textbf{x}^{m} \; \textbf{P}_{\textbf{q}} \left[\, \textbf{x}^{2} \, \right] \; \left(\textbf{a} + \textbf{b} \; \textbf{x}^{2} + \textbf{c} \; \textbf{x}^{4} \right)^{p} \; \text{dix} \; \; \text{when} \; \textbf{q} > 1 \; \bigwedge \; \, \textbf{b}^{2} - 4 \; \textbf{a} \; \textbf{c} \neq 0 \; \bigwedge \; \; \textbf{p} < -1 \; \bigwedge \; \frac{\textbf{m} - 1}{2} \; \boldsymbol{\epsilon} \; \mathbb{Z} \right]$$

Derivation: Algebraic expansion and trinomial recurrence 2b

Note: Better to use the substitution $x \to x^2$.

Rule 1.2.2.6.8.2: If q > 1 $\bigwedge b^2 - 4$ a $c \neq 0$ $\bigwedge p < -1$ $\bigwedge \frac{m-1}{2} \in \mathbb{Z}$, let $Q \rightarrow PolynomialQuotient <math>\left[\mathbf{x}^m P_q\left[\mathbf{x}^2\right], \ \mathbf{a} + \mathbf{b} \ \mathbf{x}^2 + \mathbf{c} \ \mathbf{x}^4, \ \mathbf{x}\right]$ and $\mathbf{d} \ \mathbf{x} + \mathbf{e} \ \mathbf{x}^3 \rightarrow PolynomialRemainder}\left[\mathbf{x}^m P_q\left[\mathbf{x}^2\right], \ \mathbf{a} + \mathbf{b} \ \mathbf{x}^2 + \mathbf{c} \ \mathbf{x}^4, \ \mathbf{x}\right]$, then

$$\int x^{m} P_{q} [x^{2}] (a + b x^{2} + c x^{4})^{p} dx \rightarrow$$

$$\int (d x + e x^{3}) (a + b x^{2} + c x^{4})^{p} dx + \int Q (a + b x^{2} + c x^{4})^{p+1} dx \rightarrow$$

$$\frac{x^{2} (a + b x^{2} + c x^{4})^{p+1} (a b e - d (b^{2} - 2 a c) - c (b d - 2 a e) x^{2})}{2 a (p+1) (b^{2} - 4 a c)} +$$

$$\frac{1}{a (p+1) (b^{2} - 4 a c)} \int x^{m} (a + b x^{2} + c x^{4})^{p+1} .$$

$$(a (p+1) (b^{2} - 4 a c) x^{-m} Q + (b^{2} d (p+2) - 2 a c d (2 p+3) - a b e) x^{1-m} + 2 c (p+2) (b d - 2 a e) x^{3-m}) dx$$

Program code:

U:
$$\int (d \mathbf{x})^m P_q[\mathbf{x}] (a + b \mathbf{x}^2 + c \mathbf{x}^4)^p d\mathbf{x}$$

Rule 1.2.2.6.U:

$$\int \left(\mathrm{d}\,\mathbf{x}\right)^{\,m}\,P_{\mathrm{q}}\left[\mathbf{x}\right]\,\left(a+b\,\mathbf{x}^{2}+c\,\mathbf{x}^{4}\right)^{\,p}\,\mathrm{d}\mathbf{x}\;\;\rightarrow\;\;\int \left(\mathrm{d}\,\mathbf{x}\right)^{\,m}\,P_{\mathrm{q}}\left[\mathbf{x}\right]\,\left(a+b\,\mathbf{x}^{2}+c\,\mathbf{x}^{4}\right)^{\,p}\,\mathrm{d}\mathbf{x}$$

```
Int[(d_.*x_)^m_.*Pq_*(a_+b_.*x_^2+c_.*x_^4)^p_.,x_Symbol] :=
   Unintegrable[(d*x)^m*Pq*(a+b*x^2+c*x^4)^p,x] /;
FreeQ[{a,b,c,d,m,p},x] && PolyQ[Pq,x]
```