CSC373

Week 11: Randomized Algorithms

Randomized Algorithms

Randomized Algorithms

Running time

- Sometimes, we want the algorithm to always take a small amount of time
 - Regardless of both the input and the random coin flips
- Sometimes, we want the algorithm to take a small amount of time in expectation
 - Expectation over random coin flips
 - Still regardless of the input

Randomized Algorithms

Efficiency

- > We want the algorithm to return a solution that is, in expectation, close to the optimum according to the objective under consideration
 - Once again, the expectation is over random coin flips
 - We want this to hold for every input

 For some problems, it is easy to come up with a very simple randomized approximation algorithm

- Later, one can ask whether this algorithm can be "derandomized"
 - > Informally, the randomized algorithm is making some random choices, and sometimes they turn out to be good
 - > Can we make these "good" choices deterministically?

Recap: Probability Theory

Random variable X

> Discrete

- \circ Takes value v_1 with probability p_1 , v_2 w.p. p_2 , ...
- \circ Expected value $E[X] = p_1 \cdot v_1 + p_2 \cdot v_2 + \cdots$
- \circ Examples: the roll of a six-sided die (takes values 1 through 6 with probability 1/6 each)

> Continuous

- Has a probability density function (pdf) f
- \circ Its integral is the cumulative density function (cdf) F
 - $F(x) = \Pr[X \le x]$
- Expected value $E[X] = \int x f(x) dx$
- \circ Examples: normal distribution, exponential distribution, uniform distribution over [0,1], ...

Recap: Probability Theory

- Things you should be aware of...
 - > Conditional probabilities
 - > Independence among random variables
 - > Conditional expectations
 - Moments of random variables
 - > Standard discrete distributions: uniform over a finite set, Bernoulli, binomial, geometric, Poisson, ...
 - > Standard continuous distributions: uniform over intervals, Gaussian/normal, exponential, ...

Three Pillars

Linearity of Expectation

Union Bound

Chernoff Bound

- Deceptively simple, but incredibly powerful!
- Many many many probabilistic results are just interesting applications of these three results

Three Pillars

- Linearity of expectation
 - E[X + Y] = E[X] + E[Y]
 - > This does *not* require any independence assumptions about *X* and *Y*
 - E.g. if you want to find out how many people will attend your party on average, just ask each person the probability with which they will attend and add up
 - It does not matter that some of them are friends, and will either attend together or not attend together

Three Pillars

Union bound

- \triangleright For any two events A and B, $\Pr[A \cup B] \leq \Pr[A] + \Pr[B]$
- \succ "Probability that at least one of the n events A_1, \ldots, A_n will occur is at most $\sum_i \Pr[A_i]$ "
- \triangleright Typically, A_1, \dots, A_n are "bad events"
 - You do not want any of them to occur
 - o If you can individually bound $\Pr[A_i] \leq \frac{1}{2n}$ for each i, then probability that at least one them occurs $\leq 1/2$
 - \circ So with probability $\geq 1/2$, none of the bad events will occur
- Chernoff bound & Hoeffding's inequality
 - > Read up!

- Problem (recall)
 - ▶ Input: An exact k-SAT formula $\varphi = C_1 \land C_2 \land \cdots \land C_m$, where each clause C_i has exactly k literals, and a weight $w_i \ge 0$ of each clause C_i
 - ightharpoonup Output: A truth assignment au maximizing the number (or total weight) of clauses satisfied under au
 - \succ Let us denote by $W(\tau)$ the total weight of clauses satisfied under τ

- Recall our local search
 - > $N_d(\tau)$ = set of all truth assignments which can be obtained by changing the value of at most d variables in τ
- Result 1: Neighborhood $N_1(\tau) \Rightarrow {}^2/_3$ -apx for Exact Max-2-SAT.
- Result 2: Neighborhood $N_1(\tau) \cup \tau^c \Rightarrow {}^3/_4$ -apx for Exact Max-2-SAT.
- Result 3: Neighborhood $N_1(\tau)$ + oblivious local search $\Rightarrow {}^3/_4$ -apx for Exact Max-2-SAT.

- Recall our local search
 - > $N_d(\tau)$ = set of all truth assignments which can be obtained by changing the value of at most d variables in τ
- We claimed that $\frac{3}{4}$ -apx for Exact Max-2-SAT can be generalized to $\frac{2^k-1}{2^k}$ -apx for Exact Max-k-SAT
 - > Algorithm becomes slightly more complicated
- What can we do with randomized algorithms?

Recall:

- \triangleright We have a formula $\varphi = C_1 \land C_2 \land \cdots \land C_m$
- > Variables = $x_1, ..., x_n$, literals = variables or their negations
- > Each clause contains exactly *k* literals
- The most naïve randomized algorithm
 - > Set each variable to TRUE with probability $\frac{1}{2}$ and to FALSE with probability $\frac{1}{2}$
- How good is this?

Recall:

- \triangleright We have a formula $\varphi = C_1 \land C_2 \land \cdots \land C_m$
- > Variables = $x_1, ..., x_n$, literals = variables or their negations
- \triangleright Each clause contains exactly k literals

• For each clause C_i :

- $\triangleright \Pr[C_i \text{ is not satisfied}] = 1/2^k \text{ (WHY?)}$
- \triangleright Hence, $Pr[C_i \text{ is satisfied}] = (2^k 1)/2^k$

- For each clause C_i :
 - $> \Pr[C_i \text{ is not satisfied}] = 1/2^k \text{ (WHY?)}$
 - \triangleright Hence, $\Pr[C_i \text{ is satisfied}] = (2^k 1)/2^k$
- Let τ denote the random assignment
 - $\triangleright E[W(\tau)] = \sum_{i=1}^{m} w_i \cdot \Pr[C_i \text{ is satisfied}]$

(Which pillar did we just use?)

$$E[W(\tau)] = \frac{2^{k-1}}{2^k} \cdot \sum_{i=1}^m w_i \ge \frac{2^{k-1}}{2^k} \cdot OPT$$

- Can we derandomize this algorithm?
 - > What are the choices made by the algorithm?
 - \circ Setting the values of $x_1, x_2, ..., x_n$
 - > How do we know which set of choices is good?

• Idea:

- > Do not think about all the choices at once.
- > Think about them one by one.

- Say you want to *deterministically* make the right choice for x_1
 - \triangleright Choices of x_2, \dots, x_n are still random

$$E[W(\tau)] = \Pr[x_1 = T] \cdot E[W(\tau)|x_1 = T] + \Pr[x_1 = F] \cdot E[W(\tau)|x_1 = F]$$

= $\frac{1}{2} \cdot E[W(\tau)|x_1 = T] + \frac{1}{2} \cdot E[W(\tau)|x_1 = F]$

- > This means at least one of $E[W(\tau)|x_1 = T]$ and $E[W(\tau)|x_1 = F]$ must be at least as much as $E[W(\tau)]$
 - Moreover, both quantities can be computed, so we can take the better of the two!
 - For now, forget about the running time...

• Once we have made the right choice for x_1 (say T), then we can apply the same logic to x_2

$$E[W(\tau)|x_1 = T] = \frac{1}{2} \cdot E[W(\tau)|x_1 = T, x_2 = T] + \frac{1}{2} \cdot E[W(\tau)|x_1 = T, x_2 = F]$$

- And then we can pick the choice that leads to a better conditional expectation
- Derandomized Algorithm:
 - \succ For i = 1, ..., n
 - Let $z_i = T$ if $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = T] \ge E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = F]$, and $z_i = F$ otherwise
 - \circ Set $x_i = z_i$

- This is called the method of conditional expectations
 - > If we're happy when making a choice at random, we should be at least as happy conditioned on at least one of the possible values of that choice
- Derandomized Algorithm:
 - > For $i=1,\ldots,n$ Let $z_i=T$ if $E[W(\tau)|x_1=z_1,\ldots,x_{i-1}=z_{i-1},x_i=T] \geq E[W(\tau)|x_1=z_1,\ldots,x_{i-1}=z_{i-1},x_i=F]$, and $z_i=F$ otherwise
 - \circ Set $x_i = z_i$
 - > How do we compare the two conditional expectations?

- $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = T]$ vs $E[W(\tau)|x_1 = z_1, ..., x_{i-1} = z_{i-1}, x_i = F]$
 - \triangleright On both sides, we deterministically set x_1, \dots, x_{i-1}
 - > Upon doing this, some clauses resolve to T/F
 - Their weights cancel out on both sides anyway
 - \succ Some do not resolve, but also do not involve x_i or $\bar{x_i}$
 - Their expected weights also cancel out
 - \triangleright For each clause C_r not of above two types
 - \circ C_r contains x_i
 - Contribution to first term is w_r
 - Contribution to second term is $\frac{2^{\ell}-1}{2^{\ell}} \cdot w_r$, where ℓ is the number of literals left in the clause after setting x_1, \dots, x_{i-1} and $x_i = F$

Max-SAT

Simple randomized algorithm

- $\Rightarrow \frac{2^{k}-1}{2^{k}}$ —approximation for Max-k-SAT
- \rightarrow Max-3-SAT \Rightarrow $^{7}/_{8}$
 - \circ [Håstad]: This is the best possible assuming P \neq NP
- \rightarrow Max-2-SAT $\Rightarrow \frac{3}{4} = 0.75$
 - The best known approximation is 0.9401 using semi-definite programming and randomized rounding
- \rightarrow Max-SAT $\Rightarrow \frac{1}{2}$
 - Max-SAT = no restriction on the number of literals in each clause
 - The best known approximation is 0.7968, also using semi-definite programming and randomized rounding

Max-SAT

- Better approximations for Max-SAT
 - > Semi-definite programming is out of the scope
 - > But we will see the simpler "LP + randomized rounding" approach that gives $1 \frac{1}{e} \approx 0.6321$ approximation

Max-SAT:

- ▶ Input: $\varphi = C_1 \land C_2 \land \cdots \land C_m$, where each clause C_i has weight $w_i \ge 0$ (and can have any number of literals)
- Output: Truth assignment that approximately maximizes the number of clauses satisfied

LP Formulation of Max-SAT

• First, IP formulation:

> Variables:

- $y_1, \dots, y_n \in \{0,1\}$
 - $y_i = 1$ iff variable $x_i = TRUE$ in Max-SAT
- $0 \ z_1, \dots, z_m \in \{0,1\}$
 - $z_j = 1$ iff clause C_j is satisfied in Max-SAT
- o Program:

$$\begin{split} & \text{Maximize } \Sigma_j \ w_j \cdot z_j \\ & \text{s.t.} \\ & \Sigma_{x_i \in \mathcal{C}_j} \ y_i + \Sigma_{\bar{x}_i \in \mathcal{C}_j} \ (1-y_i) \geq z_j \quad \forall j \in \{1,\dots,m\} \\ & y_i, z_j \in \{0,1\} \qquad \qquad \forall i \in \{1,\dots,n\}, j \in \{1,\dots,m\} \end{split}$$

LP Formulation of Max-SAT

LP relaxation:

> Variables:

- $y_1, \dots, y_n \in [0,1]$
 - $y_i = 1$ iff variable $x_i = TRUE$ in Max-SAT
- $0 \ z_1, \dots, z_m \in [0,1]$
 - $z_j = 1$ iff clause C_j is satisfied in Max-SAT
- o Program:

```
\begin{aligned} &\text{Maximize } \Sigma_j \ w_j \cdot z_j \\ &\text{s.t.} \\ &\Sigma_{x_i \in C_j} \ y_i + \Sigma_{\bar{x}_i \in C_j} \ (1-y_i) \geq z_j \quad \forall j \in \{1,\dots,m\} \\ &y_i, z_i \in [0,1] \qquad \qquad \forall i \in \{1,\dots,n\}, j \in \{1,\dots,m\} \end{aligned}
```

Randomized Rounding

Randomized rounding

- \triangleright Find the optimal solution (y^*, z^*) of the LP
- \succ Compute a random IP solution \hat{y} such that
 - o Each $\hat{y}_i = 1$ with probability y_i^* and 0 with probability $1 y_i^*$
 - \circ Independently of other \hat{y}_i 's
 - The output of the algorithm is the corresponding truth assignment
- \triangleright What is $Pr[C_j \text{ is satisfied}]$ if C_j has k literals?

$$1 - \Pi_{x_i \in C_j} \left(1 - y_i^*\right) \cdot \Pi_{\bar{x}_i \in C_j} \left(y_i^*\right)$$

$$\geq 1 - \left(\frac{\sum_{x_i \in C_j} \left(1 - y_i^*\right) + \sum_{\bar{x}_i \in C_j} \left(y_i^*\right)}{k}\right)^k \geq 1 - \left(\frac{k - z_j^*}{k}\right)^k$$

$$AM\text{-GM inequality} \qquad \text{LP constraint}$$

Randomized Rounding

Claim

$$> 1 - \left(1 - \frac{z}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z \text{ for all } z \in [0,1] \text{ and } k \in \mathbb{N}$$

Assuming the claim:

$$\Pr[C_j \text{ is satisfied}] \ge 1 - \left(\frac{k - z_j^*}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z_j^* \ge \left(1 - \frac{1}{e}\right) \cdot z_j^*$$
Standard inequality

Hence,

$$\mathbb{E}[\text{\#weight of clauses satisfied}] \ge \left(1 - \frac{1}{e}\right) \sum_{j} w_{j} \cdot z_{j}^{*} \ge \left(1 - \frac{1}{e}\right) \cdot OPT$$

Randomized Rounding

Claim

$$> 1 - \left(1 - \frac{z}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z \text{ for all } z \in [0,1] \text{ and } k \in \mathbb{N}$$

Proof of claim:

- \triangleright True at z=0 and z=1 (same quantity on both sides)
- \rightarrow For $0 \le z \le 1$:
 - LHS is a convex function
 - RHS is a linear function
 - Hence, LHS ≥ RHS ■

Improving Max-SAT Apx

Claim without proof:

- > Running both "LP + randomized rounding" and "naïve randomized algorithm", and returning the best of the two solutions gives $\frac{3}{4} = 0.75$ approximation!
- > This algorithm can be derandomized.

> Recall:

 \circ "naïve randomized" = independently set each variable to TRUE/FALSE with probability 0.5 each, which only gives $^1\!/_2=0.5$ approximation by itself

Back to 2-SAT

- Max-2-SAT is NP-hard (we didn't prove this!)
- But 2-SAT can be efficiently solved
 - > "Given a 2-CNF formula, check whether *all* clauses can be satisfied simultaneously."

Algorithm:

- > Eliminate all unit clauses, set the corresponding literals.
- \triangleright Create a graph with 2n literals as vertices.
- > For every clause $(x \lor y)$, add two edges: $\bar{x} \to y$ and $\bar{y} \to x$.
 - $\circ u \rightarrow v$ means if u is true, v must be true.
- \Rightarrow Formula is satisfiable iff no path from x to \bar{x} or \bar{x} to x for any x
- \triangleright Solve s-t connectivity problem in polynomial time

 Here's a cute randomized algorithm by Papadimitriou [1991]

Algorithm:

- > Start with an arbitrary assignment.
- \triangleright While there is an unsatisfied clause $C = (x \lor y)$
 - o Pick one of the two literals with equal probability.
 - Flip the variable value so that *C* is satisfied.
- But, but, this can hurt other clauses?

• Theorem:

> If there is a satisfying assignment τ^* , then the expected time to reach some satisfying assignment is at most $O(n^2)$.

Proof:

- \succ Fix τ^* . Let τ_0 be the starting assignment. Let τ_i be the assignment after i iterations.
- \succ Consider the "hamming distance" d_i between au_i and au^*
 - Number of coordinates in which the two differ
 - $o d_i \in \{0,1,...,n\}.$
- > We want to show that in expectation, we will hit $d_i=0$ in $2n^2$ iterations, unless the algorithm stops before that.

- Observation: $d_{i+1} = d_i 1$ or $d_{i+1} = d_i + 1$
 - > Because we change one variable in each iteration.
- Claim: $Pr[d_{i+1} = d_i 1] \ge 1/2$
- Proof:
 - \triangleright Iteration i considers an unsatisfied clause $C = (x \lor y)$
 - > τ^* satisfies at least one of x or y, while τ_i satisfies neither
 - > Because we pick a literal randomly, w.p. at least $\frac{1}{2}$ we pick one where τ_i and τ^* differ, and decrease distance.
 - \triangleright Q: Why did we need an unsatisfied clause? What if we pick one of n variables randomly, and flip it?

Answer:

- > We want the distance to decrease with probability at least $\frac{1}{2}$ no matter how close or far we are from τ^* .
- > If we are already close, choosing a variable at random will likely choose one where τ and τ^* already match.
- > Flipping this variable will increase the distance with high probability.
- > An unsatisfied clause narrows it down to two variables s.t. τ and τ^* differ on at least one of them

- Observation: $d_{i+1} = d_i 1$ or $d_{i+1} = d_i + 1$
- Claim: $\Pr[d_{i+1} = d_i 1] \ge 1/2$

How does this help?

Random Walk + 2-SAT

- How does this help?
 - > Can view this as Markov chain and use hitting time results
 - > But let's prove it with elementary methods.
 - > $T_{i+1,i}$ = expected time to go from i+1 to i

$$T_{i+1,i} \le \left(\frac{1}{2}\right) * 1 + \left(\frac{1}{2}\right) * T_{i+2,i} \le \frac{1}{2} + \left(\frac{1}{2}\right) * \left(T_{i+2,i+1} + T_{i+1,i}\right)$$

- o Thus, $T_{i+1,i} \le 1 + T_{i+2,i+1} \to T_{i+1,i} = O(n)$
- $T_{n,0} \le T_{n,n-1} + \dots + T_{1,0} = O(n^2)$

Random Walk + 2-SAT

- Can view this algorithm as a "drunken local search"
 - > We are searching the local neighborhood
 - > But we don't ensure that we necessarily improve.
 - > We just ensure that in expectation, we aren't hurt.
 - > Hope to reach a feasible solution in polynomial time
- Schöning extended this technique to k-SAT
 - Schöning's algorithm no longer runs in polynomial time, but this is okay because k-SAT is NP-hard
 - \triangleright It still improves upon the naïve 2^n
 - Later derandomized by Moser and Scheder [2011]

Schöning's Algorithm for *k*-SAT

Algorithm:

- \gt Choose a random assignment τ .
- > Repeat 3n times (n = #variables)
 - \circ If τ satisfies the CNF, stop.
 - Else, pick an arbitrary unsatisfied clause, and flip a random literal in the clause.

Schöning's Algorithm

- Randomized algorithm with one-sided error
 - > If the CNF is satisfiable, it finds an assignment with probability at least $\left(\frac{1}{2} \cdot \frac{k}{k-1}\right)^n$
 - > If the CNF is unsatisfiable, it surely does not find an assignment.
- Expected # times we need to repeat = $\left(2\left(1-\frac{1}{k}\right)\right)^n$
 - > For k = 3, this gives $O(1.3333^n)$
 - > For k = 4, this gives $O(1.5^n)$

Best Known Results

- 3-SAT
- Deterministic
 - \triangleright Derandomized Schöning's algorithm: $O(1.3333^n)$
 - \triangleright Best known: $O(1.3303^n)$ [HSSW]
 - o If there is a unique satisfying assignment: $O(1.3071^n)$ [PPSZ]
- Randomized
 - Nothing better known without one-sided error
 - > With one-sided error, best known is $O(1.30704^n)$ [Modified PPSZ]

Random Walk + 2-SAT

- Random walks are not only of theoretical interest
 - WalkSAT is a practical SAT algorithm
 - > At each iteration, pick an unsatisfied clause at random
 - > Pick a variable in the unsatisfied clause to flip:
 - With some probability, pick at random.
 - With the remaining probability, pick one that will make the fewest previously satisfied clauses unsatisfied.
 - > Restart a few times (avoids being stuck in local minima)
- Faster than "intelligent local search" (GSAT)
 - > Flip the variable that satisfies most clauses

Random Walks on Graphs

- Aleliunas et al. [1979]
 - Let G be a connected undirected graph. Then a random walk starting from any vertex will cover the entire graph (visit each vertex at least once) in O(mn) steps.
- Also care about limiting probability distribution
 - > In the limit, the random walk with spend $\frac{d_i}{2m}$ fraction of the time on vertex with degree d_i
- Markov chains
 - Generalize to directed (possibly infinite) graphs with unequal edge probabilities

Randomization for Sublinear Running Time

Sublinear Running Time

- Given an input of length n, we want an algorithm that runs in time o(n)
 - > o(n) examples: $\log n$, \sqrt{n} , $n^{0.999}$, $\frac{n}{\log n}$, ...
 - > The algorithm doesn't even get to read the full input!
 - > There are four possibilities:
 - Exact vs inexact: whether the algorithm always returns the correct/optimal solution or only does so with high probability (or gives some approximation)
 - \circ Worst-case versus expected running time: whether the algorithm always takes o(n) time or only does so in expectation (but still on every instance)

Exact algorithms, expected sublinear time

- Input: A sorted doubly linked list with n elements.
 - \triangleright Imagine you have an array A with O(1) access to A[i]
 - $\rightarrow A[i]$ is a tuple (x_i, p_i, n_i)
 - Value, index of previous element, index of next element.
 - > Sorted: $x_{p_i} \le x_i \le x_{n_i}$
- Task: Given x, check if there exists i s.t. $x = x_i$
- Goal: We will give a randomized + exact algorithm with expected running time $O(\sqrt{n})!$

Motivation:

- > Often we deal with large datasets that are stored in a large file on disk, or possibly broken into multiple files
- > Creating a new, sorted version of the dataset is expensive
- > It is often preferred to "implicitly sort" the data by simply adding previous-next pointers along with each element
- Would like algorithms that can operate on such implicitly sorted versions and yet achieve sublinear running time
 - Just like binary search achieves for an explicitly sorted array

Algorithm:

- > Select \sqrt{n} random indices R
- \triangleright Access x_j for each $j \in R$
- \triangleright Find the nearest x_i : $j \in R$ on each side of x
 - $p \in R$ such that $x_p = \max\{x_i : x_i \le x, j \in R\}$
 - $o q \in R \text{ such that } x_q = \min\{x_j : x_j > x, j \in R\}$
 - One of the two must exist (WHY?).
- > If p exists, start at A[p], and keep going next until you discover x, or you reach A[q] or end of list.
- > If q exists, start at A[q], and keep going back until you discover x, or you reach A[p] or beginning of list.

Analysis:

- > Take arbitrary value x. Take the minimum value x_i in the list that is at least x. The algorithm is searching for x_i .
- \succ The algorithm throws \sqrt{n} random "darts" on the list.
- ► Chernoff bounds: the probability that there is no dart in $c\sqrt{n}$ elements to the left (resp. right) of x_i is $2^{-\Omega(c)}$.
 - o Exercise!
- > So, the expected distance of x_i to the dart on its left (and its right) is $O(\sqrt{n})$.
- > The algorithm finds these two darts in $O(\sqrt{n})$ time, and uses $O(\sqrt{n})$ search to locate x_i .

Note:

- > We don't *really* require the list to be doubly linked. Just "next" pointer suffices if we have a pointer to the first element of the list (a.k.a. "anchored list").
- This algorithm is optimal!
- Theorem: No algorithm that always returns the correct answer can run in $o(\sqrt{n})$ expected time.
 - > Can be proved using Yao's minimax principle
 - Beyond the scope of the course, but this is a fundamental result with wide-ranging applications

Sublinear Geometric Algorithms

- Chazelle, Liu, and Magen [2003] proved the $\Theta(\sqrt{n})$ bound for searching in a sorted linked list
 - > Their main focus was to generalize these ideas to come up with sublinear algorithms for geometric problems
 - Polygon intersection: Given two convex polyhedra, check if they intersect.
 - ➤ Point location: Given a Delaunay triangulation (or Voronoi diagram) and a point, find the cell in which the point lies.
 - > They provided optimal $O(\sqrt{n})$ algorithms for both these problems.

Inexact algorithms, expected sublinear time

Estimating Avg Degree in Graph

• Input: Graph G with n vertices, and access to an oracle that returns the degree of a queried vertex in O(1) time.

- Goal: $(2+\epsilon)$ -approximation in expected time $O(\epsilon^{-O(1)}\sqrt{n})$
 - $\succ \epsilon$ is constant \Rightarrow sublinear in input size n

Estimating Avg Degree in Graph

Wait!

- > Isn't this equivalent to "given an array of n numbers between 1 and n-1, estimate their average"?
- \triangleright No! That requires $\Omega(n)$ time for constant approximation!
 - \circ Consider an instance with constantly many n-1's, and all other 1's: you may not discover any n-1 until you query $\Omega(n)$ numbers
- Why are degree sequences more special?
 - o Erdős–Gallai theorem: $d_1 \ge \cdots \ge d_n$ is a degree sequence iff their sum is even and $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n d_i$.
 - \circ Intuitively, we will sample $O(\sqrt{n})$ vertices
 - We may not discover the few high degree vertices, but we'll find their neighbors, and thus account for their edges anyway!

Estimating Avg Degree in Graph

Algorithm:

- > Take $^8/_{\epsilon}$ random subsets $S_i \subseteq V$ with $|S_i| = s$
- \triangleright Compute the average degree d_{S_i} in each S_i .
- ightharpoonup Return $\widehat{d} = \min_i d_{S_i}$

- Analysis beyond the scope of this course
 - But doesn't use anything other than Hoeffding's inequality, Markov's inequality, linearity of expectation, and union bound