

SWINBURNE UNIVERSITY OF TECHNOLOGY

Distributed Denial of Service Attacks

Lecture sixteen

Outline of Lecture

- Distributed Denial of Service Attacks
- Classification of attacks
- Types of attacks

Learning Objectives

- At the end of this lecture you should be able to explain
 - What a DDOS attack is it
 - How DDoS attacks can be classified
 - Types of DDoS attacks
 - Reflector and Direct attacks
 - SYN Flooding
 - TCP Reset
 - UDP Flooding
 - ICMP Flooding
 - DNS Request attacks

Denial of service attacks

- Denial of Service attack
 - An incident that disables a victim from receiving or providing normal service.
- Relies on consuming limited or non-renewable system resources.
- Can be launched by using system design weaknesses, CPU intensive tasks, or flooding.
 - Examples: ping of death, teardrop, smurf.

Distributed denial of service attacks (DDoS)

- Do not depend on system or protocol weaknesses.
- DDoS attacks
 - A large number of compromised hosts send overwhelming number of useless packets to jam a victim, or its Internet connection (network) or both.
 - Compromised hosts (handlers and zombies) are vulnerable machine infected by virus or worm, and are used in DDoS attack.
 - DDoS attacks exploit the resource asymmetry between the Internet and the victim
 - Biggest difficult with DDoS attacks is identifying legitimate traffic from attack traffic
- The burst of traffic generated crashes the victim or disables it.

DDoS Attacks

- Hard to detect and stop.
- Can spread within a few minutes.
- Usually period of flooding lasts for a few hours, and is sporadic.
- IP Spoofing makes it hard to identify attackers.

DoS/DDoS Attacks

Source Network

Affected Router

Why do DDoS attacks occur?

- Target of a DDoS attack
 - Host, router, server or entire network
- The purpose of DDoS attacks is to stop a victim providing or receiving normal services in the Internet.
- DDoS can and have been used to disable strategic business, government, public utility and even military sites.
- Potential also for blackmail of companies that rely on Internet connectivity for their revenues
 - Particularly those that have high volume, relatively low value transactions
 - Amazon, eBay etc

How do DDoS attacks occur?

- DoS exploits system design weaknesses (e.g. ping-of-death) or imposes computationally intensive tasks on a victim (e.g. encryption or decryption computation).
- DDoS scan for vulnerable hosts to gain malicious control (handlers and zombies).
- Attacker uses handlers to coordinate the attack, and uses zombies to attack the victim by sending large amount of legitimate traffic to the victim network.

DDoS classification

- Can classify DDoS attacks in a number of ways
- Its architecture
 - Direct
 - Reflector
- The resource it denies
 - Bandwidth exhaustion
 - Either incoming or outgoing
 - Server resource exhaustion
 - Buffer space for SYN-ACK attacks

Direct or Reflector

■ Figure 1. Two types of flooding-based DDoS attack: a) direct; b) reflector.

Direct or Reflector

Direct attack

- An attacker arranges to send a large number of attack packets directly toward the victim
- Probably makes use of compromised hosts (zombies)

Reflector attack

- An indirect attack
- Intermediary nodes are innocently used as attack launchers
- Intermediate nodes may be servers, routers or (less often) hosts
- Attacker sends packets to the reflector that require responses
- Packets spoof victim's IP address as source address

DDoS Architecture

■ Figure 2. DDoS attack architectures for a) direct and b) reflector attacks.

Direct DDoS

- Direct attack contains 2 stages. First is to scan and find vulnerable host in the Internet and install attack tools in them (zombies).
- Secondly, attacker sends command to the zombies to attack through intermediate nodes (handlers).
- The attack traffic with spoofed IP addresses is sent to victim from the zombies.
- Spoofed IP to reduce the risk of tracing back via zombies,
 - Also makes it harder to filter attack traffic without affecting legitimate traffic.

Reflector DDoS

- Reflector attack contains 3 stages. The first one is similar to that of Direct attack.
- Secondly, attacker instruct zombies to send traffic to the third party with victim' spoofed IP address.
- In the third stage, the third party will reply (without knowing) to the victim with attack traffic.
- More dangerous because more distributed and has bandwidth amplification effect

Reflector

	Packets sent by an attacker to a reflector (with a victim's address as the source address)	Packets sent by the reflector to the victim in response
Smurf	ICMP echo queries to a subnet-directed broadcast address	ICMP echo replies
SYN flooding	TCP SYN packets to public TCP servers (e.g., Web servers)	TCP SYN-ACK packets
RST flooding	TCP packets to nonlistening TCP ports	TCP RST packets
ICMP flooding	ICMP queries (usually echo queries)UDP packets to nonlistening UDP portsIP packets with low TTL values	ICMP replies (usually echo replies)ICMP port unreachable messagesICMP time exceeded messages
DNS reply flooding	DNS (recursive) queries to DNS servers	DNS replies (usually much larger than DNS queries)

■ Table 1. A summary of some reflector attack methods.

DDoS Attack types

- Can classify based on resource it denies
 - Bandwidth exhaustion
 - Either incoming or outgoing
 - Server resource exhaustion
 - Buffer space for SYN-ACK attacks
- Bandwidth attacks
 - Aims to disable the services provided by victim or its network by sending an excessive volume of useless traffic.
- Server resource exhaustion
 - SYN-ACK attack exhausting number of connections a common attack (SYN flooding)

Flash crowds and bandwidth attacks

- One of the difficulties in recognising bandwidth attacks is that they can be confused with a flash crowd
 - Measures to prevent bandwidth attacks can affect flash crowds
 - Flash crowds need to be controlled but not eliminated
- Flash Crowds
 - Large number of legitimate users access a network or server at the same time.
- Both Bandwidth attacks and Flash Crowds cause congestion in the victim's network, and overload the victim's servers.

Flash crowds

- Any method of identification needs to be able to distinguish between flash crowds and DDoS attacks
 - May be regular and predictable
 - Stock exchange prices at opening time
 - Irregular and predictable
 - Significant sporting events
 - May be irregular and unpredictable
 - Natural disasters such as bushfires or floods
 - Terrorist attacks
- Traffic from flash crowds need to be controlled while DDoS attacks need to be eliminated

Flash crowds

- Traffic in Bandwidth attacks is unresponsive to traffic controls, while in Flash Crowds they are responsive to traffic control.
 - One way of preventing flash crowds is to get users to verify some aspect of their usage
 - Eg "Captcha".
- Traffic in Flash Crowds is genuine, while in Bandwidth attacks it is not.
- Traffic in Flash Crowds is usually web traffic, while in Bandwidth attacks it can be anything.

Common DDoS Attack Types

- SYN Flooding
- TCP Reset
- UDP Flooding
- ICMP Flooding
- DNS Request

SYN Flooding

- The most common and powerful DDoS attack.
- Attackers send SYN messages with spoofed IP address causes halfopen TCP connections.
- These pending connections are kept in a server's memory at the victim network.
- Once the memory is full, no new request including legitimate requests can be processed and the services of the system are disabled.

TCP Three-Way Handshake

SYN Flooding

SYN Cookies

- A cryptographic approach to dealing with SYN flooding
- Uses cryptographic techniques embedded in the ISN (initial sequence number) to deal with the problem
 - The ISN is the SYN Cookie
- Once the SYN queue fills up, new entries are dropped
- However if an acknowledgement is received there is sufficient information in the acknowledgment to reconstruct the dropped SYN message
- SYN Cookies include authentication information and sufficient information to reconstruct the original SYN request in the ISN

SYN Cookies

- Built around the ISN
 - Rather than choosing a random number the ISN sent in response to a SYN has the following structure:
 - t (time) 5 bits
 - m (maximum segment size) 3 bits
 - s (result of a cryptographic computation based on server and client IP addresses, port numbers, t and secret key)
- If the response is received the host subtracts one from the ISN and then recalculates the above computation
 - t is used to ensure request hasn't timed out and to prevent replay attacks
 - m is information needed during set up
 - s is used to ensure valid SYN cookie

SYN Cookies

- s is the authentication value
- Based on hash functions and secret (sec1)
- s is calculated as follows
 - Concatenate sec1,saddr,sport,daddr,dport,sec1
 - Do an MD5 or SHA-1 hash on concatenated value
 - Additional computations to avoid replay attacks and ISN prediction
 - Another hashed secret and counter
- SYN Cookies work by including authentication information and sufficient information to reconstruct the original SYN request in the ISN
- Implemented in Linux

TCP Reset

- Can be a direct or reflector attack
- TCP packets with spoofed source addresses sent to non-listening ports on reflector host
- Under TCP reset attacks, victim usually responds with RST (Reset) message.
- If a reflector attack causes congestion on the victim's incoming link.
- If a direct attack causes congestion on the victim's outgoing link.

UDP Flooding

- Flood the victim with large UDP packets.
- UDP traffic does not react to the traffic flow control, and therefore difficult to recognize attacks based on the sending rate.
- Will crowd out TCP connections

ICMP Flooding

- Flood the victim with ICMP (Internet Control Message Protocol) packets.
- ICMP can be directed to an individual machine or broadcast to an entire network.
- Smurf attack is a type of ICMP flooding, where attackers use ICMP echo request directed to IP subnet-broadcast addresses
 - Smurf attacks are not DDoS attacks
 - Restricted to a single subnet
 - Easily filtered

Smurf

DNS Request Attacks

- Attack sends DNS recursive queries with spoofed IP address.
- More destructive because this attack triggers a reflected packet (DNS replies) of a much larger packet size (bandwidth amplification).
- Difficult to recognize the attack and to stop it without affecting normal services.
- Can be managed with dynamic firewalls

Conclusion

- DDoS attacks
 - What they are
 - How they are carried out
 - SYN cookies
 - Classifications of DDoS attacks

