

Q3: a) Since 0=0+0, f(0+0) = f(0) + f(0) $\implies \not\downarrow(0) = \not\downarrow(0) + \not\downarrow(0)$ $\Rightarrow \not \downarrow (0) = 0$ base care n=0, f(0) = 0. f(1) = n f(1) for $n \in \mathbb{N}$ by induction. In the is true. Then, f(n) = n f(1) $\Leftrightarrow f(1) + f(n) = n f(1) + f(1)$ Thus, f(n+1) holds true. Then, by mathematical induction, f(n) = nf(1).

Furthermore, by expressing a rational number as m for n, m \(\int \mathbb{N} \), $f(\frac{n}{m}) = f(\frac{n}{2} + \frac{1}{m}) = n \cdot f(\frac{1}{m})$ by wing the given satisfactory condition and the previous result. Then I(1) can be found by expressing f(1): $f(1) = f(\frac{m}{m}) = m \cdot f(\frac{1}{m})$ (=) /(1) = 1/m /(1). Therefore, $f(\frac{n}{m}) = \frac{n}{m} f(1)$. To go check for negative values, $f(-1) \cdot \frac{n}{m} = \frac{n}{m} f(-1)$, where f(-1) can be found from the condition f(+(-1)) = f(0) = f(1) + f(-1)(=) f(-1) = f(0) - f(1) = -f(1),Thus, $f(-\frac{n}{m}) = -\frac{n}{m} f(1)$. Therefore, f(q) = q f(1) for all $q \in \mathbb{Q}$. c) We may assume that $\forall x \in \mathbb{R}$, $\exists (q_n)_{n=1}^{\infty}$ with $q_n \rightarrow x$ as $n \rightarrow \infty$. From part b), $f(q_n) = q_n f(1)$ for $q \in \mathbb{Q}$. Since $q_n \in dom(f)$ and $x \in dom(f)$ and f is continuous, $q_n \rightarrow x \Rightarrow f(q_n) \rightarrow f(x)$. Thus, f(x) = x f(1) for all $x \in \mathbb{R}$, as required. by the requestial characterisation of continuity