Olimpiada Națională de Matematică

Etapa finală Iași, 17 Aprilie 2006 SOLUȚII ȘI BAREMURI

CLASA A IX-A

Subiectul 1. Găsiți valoarea maximă a expresiei

$$(x^3+1)(y^3+1),$$

pentru $x, y \in \mathbb{R}$ ce satisfac x + y = 1.

$$[x^3 + (x+y)^3][y^3 + (x+y)^3] \le 4(x+y)^6,$$

cu egalitate dacă și numai dacă $x^2 + 3xy + y^2 = 0$.

Subiectul 2. Se consideră triunghiurile isoscele ABC şi DBC având baza BC şi $\angle ABD = 90^\circ$. Fie M mijlocul segmentului BC. Punctele E, F, P sunt alese astfel încât $E \in (AB), P \in (MC), C \in (AF)$ iar $\angle BDE = \angle ADP = \angle CDF$. Să se arate că P este mijlocul segmentului EF şi $DP \perp EF$.

Soluție. Notăm $u = \angle BDE = \angle MDP = \angle CDF$. În triunghiurile dreptunghice DBE, DMP, DCP avem

$$\cos \angle BDE = \frac{BD}{DE}, \ \cos \angle MDP = \frac{DM}{DP}, \ \cos \angle CDF = \frac{DC}{DF},$$

 Punctul M este mijlocul lui BC, deci P este mijlocul lui EF. Din faptul că $DM \perp BC$ rezultă $DP \perp EF$ 1 punct

Subiectul 3. Se consideră patrulaterul ABCD înscris într-un cerc de rază r, pentru care există un punct P pe latura CD astfel încât CB = BP = PA = AB.

- a) Să se arate că există puncte A, B, C, D, P care îndeplinesc condițiile de mai sus;
 - b) Să se arate că PD = r.

Subiectul 4. La o competiție de tenis de masă desfășurată pe parcursul a 4 zile au participat 2n elevi, $n \geq 5$. În fiecare zi fiecare elev a jucat câte un meci (fiind posibil ca aceeași pereche să se întâlnească în mai multe zile). Demonstrați că această competiție se poate termina cu un singur câștigător, cu trei elevi la egalitate pe locul al doilea și fără să existe vreun jucător care să fi pierdut toate cele 4 partide. Câți elevi au câștigat un singur meci și câți exact două meciuri, în aceste condiții?

Soluţie. Să notăm cu n_k numărul elevilor care au câştigat exact k meciuri, $0 \le k \le 4$; în condiţiile problemei avem

$$n_0 = 0, n_1 + n_2 + n_3 + n_4 = 2n > 10$$
 (1)

Numărul total de meciuri jucate este 4n, deci

$$4n = 1 \cdot n_1 + 2 \cdot n_2 + 3 \cdot n_3 + 4 \cdot n_4$$
 (numărăm câştigătorii) (2)

$$4n = 3 \cdot n_1 + 2 \cdot n_2 + 1 \cdot n_3 + 0 \cdot n_4 \text{ (numărăm învinșii)}$$
 (3)

deci $2n_1 = 2n_3 + 4n_4$ şi înlocuind în (1) obţinem

$$n_2 + 2n_3 + 3n_4 = 2n \tag{4}$$

Aplicând acum restul condițiilor problemei

n_4	n_3	n_2	n_1	$n_2 + 2n_3 + 3n_4$
0	0	1	3	1
0	1	0	3	2
1	0	0	3	3
0	1	3		5
1	0	3		6

conduce imediat la contradicție.....1 punct

Rămâne cazul $n_4=1, n_3=3$, deci $n_2=2n-9, n_1=5\dots 2$ puncte Pentru un model de astfel de competiție, să notăm cu a cîştigătorul; b_1,b_2,b_3 cei trei clasați pe locul al doilea; c unul din cei 2n-9 câștigători de câte două meciuri; d_1,d_2,d_3,d_4,d_5 cei cinci câștigători de câte un meci. Rămân 2n-10 câștigători de câte două meciuri, pe care (pentru n>5) îi vom nota c_1,\ldots,c_{2n-10} . Finalmente, xy este notația faptului că x l-a învins pe y.

Ziua						
1	ab_1	cd_2	b_2d_3	b_3d_4	d_1d_5	$c_i c_{i+1}$
2	ab_2	b_1d_1	cd_3	b_3d_4	d_2d_5	$c_i c_{i+1}$
3	ab_3	b_1d_1	b_2d_2	d_5c	d_3d_4	$c_{i+1}c_i$
4	ac	b_1d_1	b_2d_2	b_3d_3	d_4d_5	$c_{i+1}c_i$
cu $i = 1, 3,, 2n - 11$						3 puncte

Observații.

- 1. Este suficientă scrierea uneia dintre relațiile de tipul (2),(3),(4) pentru obținerea punctului din barem.
- 2. Pentru un model particular (n=5, etc.) corect, se acordă 1 punct.