

Cpr E 281 LAB07 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Lab 7 Answer Sheet

Name and Std ID: Hosam Abaletawab 838973172 Lab Section: K

Date: October 19, 2016

PRELAB:

Q1. Before you fill in the answers to this prelab make sure that you understand binary arithmentic, especially signed number representation (2's Complement) and overflow in arithmetic addition and subtraction Do the following arithmetic operations and write down the expected sum, carry and overfow:

In case of subtraction, since we are doing a 2's Complement addition Cout is the carryout of the adder.

Binary numbers to add/subtract	Sum	Cout	Overflow 1 1	
1011 - 0110	0101	1		
1001 - 0010	0111	1		
0001 + 0111	1600	O	1	
1100 + 0110	0010	1	* 0	
0011 – 1101	0110	0	\$ 0	
0101 + 1011	0000	1	0	

Cpr E 281 LAB07 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Lab 7 Answer Sheet

• Q2. Complete the truth table for a full adder:

X	Υ	Cin	Cout	S		
0	0	0	0	0	mo	
V150	0	1	0	1	MM	
0	1	0	0	1	m ₂	
0	1	1	1	0	m ₃	
1	0	0	Ø	1	my	
1	0	1	1	0	m s	
1	1	0	3 1	3 O	m6	
1	1	1	1	1	m	

Q3. Complete the assignment expressions for S and Cout below:

module FA (Cin, X, Y, S, Cout); input Cin, X, Y; output Cout, S; assign S = (expression for S); assign Cout = (expression for Cout);

Expression for S:

for Cout: $S = \chi^{\prime} y^{\prime} Cin$

Expression for Cout:

Cout = (x&y) 1 (x/y) & Cm);

TA Initials:

LAB:

Hardware demonstrates a good circuit. TA Initials:

