Question 1

Correct

Marked out of 15

(Horner's Method). Use Horner's method to evaluate the polynomial

$$f(x) = x^6 + 2x^5 - 3x^4 + 4x^3 + 5x^2 + 6x + 7$$

at the specified points. All numerical answers should be rounded to 7-digit floating-point numbers.

(i) Evaluate the polynomial f(x) at the point lpha=1.45:

k	a_k				b_k	
6	1	~	0	~	1	~
5	2	~	1.45	~	3.45	~
4	-3	~	5.0025	~	2.0025	~
3	4	~	2.903625	~	6.903625	~
2	5	~	10.01026	~	15.01026	~
1	6	~	21.76488	~	27.76488	~
0	7	~	40.25907	~	47.25907	~

Accordingly,

$$f(1.45) \doteq 47.25907$$

(i) Evaluate the polynomial f(x) at the point lpha=-1.45:

k	a_k				b_k	
6	1	~	0	~	1	•
5	2	~	-1.45	~	0.55	~
4	-3		-0.7975	~	-3.7975	~
3	4	~	5.506375	~	9.506375	~
2	5	~	-13.78424	~	-8.784243	~
1	6	~	12.73715	~	18.73715	~
0	7	~	-27.16887	~	-20.16887	~

Accordingly,

$$f(-1.45) \doteq \boxed{ ext{-20.16887}}$$

Check

Previous Activity Jump to... Next Activity