MA101 Mathematics I

Department of Mathematics Indian Institute of Technology Guwahati

Jul - Nov 2013

Slides originally created by: Dr. Bikash Bhattacharjya

Instructors:

Rafikul Alam, Bhaba K. Sarma, Sriparna Bandyopadhyay, Kalpesh Kapoor

ver. 21 Sept 2013, 10:18 (bks)

1/20

Slides 5

PLAN

- Linear Transformation, Kernel and Range
- Matrix of a Linear Transformation

Linear Transformations

- Suppose $A \in \mathcal{M}_{m \times n}$. Take $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) = A\mathbf{v}$.
- Take $F : \mathbb{R}[x] \to \mathbb{R}[x]$ given by F(p(x)) = p'(x).
- Take $F: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ given by $(F(f))(x) = \int_0^x f(t)dt$.
- Take $F : \mathbb{R}[x] \to \mathbb{R}$ given by F(p(x)) = p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as VS's. What else? We have

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v}), \quad F(\alpha \mathbf{v}) = \alpha F(\mathbf{v}),$$

or, equivalently, $F(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha F(\mathbf{u}) + \beta F(\mathbf{v})$. Such functions are called linear transformations (LT).

3 / 20

Definition

Let \mathbb{V} , \mathbb{W} be VS's over \mathbb{F} . A map $T : \mathbb{V} \to \mathbb{W}$ is a linear transformation (LT) from V into W if $\forall \mathbf{u}, \mathbf{v} \in \mathbb{V}, \alpha \in \mathbb{F}$

 $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$, and $T(\alpha \mathbf{v}) = \alpha T(\mathbf{v})$, or equivalently, $T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v})$, $\forall \mathbf{u}, \mathbf{v} \in \mathbb{V}$, $\alpha, \beta \in \mathbb{F}$. Obvious LT's:

- $T_0: \mathbb{V} \to \mathbb{W}$, $T_0(\mathbf{v}) = \mathbf{0}$, $\forall \, \mathbf{v} \in \mathbb{V}$ (zero transformation). Here, \mathbb{V} , \mathbb{W} are any VS's.
- $I_{\mathbb{V}}: \mathbb{V} \to \mathbb{V}$, $I_{\mathbb{V}}(\mathbf{v}) = \mathbf{v}$, $\forall \mathbf{v} \in \mathbb{V}$ (identity transformation). Here, \mathbb{V} is any VS.

Exercise

Is $T : \mathbb{R}^2 \to \mathbb{R}^2$, where $T([x,y]^T) = [2x, x+y]^T$ an LT? Yes, check using definition, or observe that $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

Result

Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

1
$$T(0) = 0$$
; $[T(0) = T(0+0) = T(0) + T(0) \Rightarrow 0 = T(0)$.]

2
$$T(-\mathbf{v}) = -T(\mathbf{v})$$
 for all $\mathbf{v} \in \mathbb{V}$; $[T(-\mathbf{v}) + T\mathbf{v} = \mathbf{0}]$

3
$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v})$$
 for all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$.

Exercise

Is $T: \mathbb{R} \to \mathbb{R}$, where T(x) = x + 1 is an LT? No. $T(0) \neq 0$.

Exercise

Can there be an LT $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$T([0,1]^T) = [2,3]^T$$
, $T([1,0]^T) = [3,2]^T$ and $T([1,1]^T) = [3,3]^T$?

No,
$$[3,3]^T = T([1,1]^T) = T(\mathbf{e}_1) + T(\mathbf{e}_2) = [5,5]^T$$
, not possible.

5 / 20

Exercise

Suppose $T: \mathbb{R}^2 \to \mathbb{R}_2[x]$ is an LT. Given that $T([1,0]^T) = 2 - 3x + x^2$ and $T([0,1]^T) = 1 - x^2$. What is $T([2,3]^T)$? $T([2,3]^T) = T(2\mathbf{e}_1 + 3\mathbf{e}_2) = 2T(\mathbf{e}_1) + 3T(\mathbf{e}_2) = 2(2 - 3x + x^2) + 3(1 - x^2) = 7 - 6x - x^2$. What is $T([a,b]^T)$?

Result

Let $\{\mathbf v_1, \dots, \mathbf v_n\}$ be a basis of $\mathbb V$ $(dim(\mathbb V) = n)$. Let $\mathbf u_1, \dots, \mathbf u_n$ be arbitrarily chosen in $\mathbb W$. Then there is a unique LT $T: \mathbb V \to \mathbb W$ such that $T(\mathbf v_i) = \mathbf u_i$.

PROOF. Let $\mathbf{v} \in \mathbb{V}$. Then \mathbf{v} equals a unique linear combination $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$. Define $T\mathbf{v} = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_n \mathbf{u}_n \in \mathbb{W}$. The resulting map T is the LT we are looking for.

REMARK: To define (know) an LT, it is enough to define (know) the images of vectors in any basis of the domain.

Example

Consider $T: \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\mathbf{x}) = A\mathbf{x}$, where $A \in \mathcal{M}_{m \times n}$. What is the range of T? It is $\{T(\mathbf{x}) \in \mathbb{R}^m \mid \mathbf{x} \in \mathbb{R}^n\}$ = $\{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\} = \operatorname{col}(A)$. Note that the range is a subspace of \mathbb{R}^m . On the other hand,

 $\operatorname{null}(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \} = \{ \mathbf{x} \in \mathbb{R}^n \mid T(\mathbf{x}) = \mathbf{0} \}$ is a subspace of \mathbb{R}^n .

Kernel and Range: For an LT $T : \mathbb{V} \to \mathbb{W}$ we define:

- Kernel (or null space) of T: $ker(T) := \{ \mathbf{v} \in \mathbb{V} \mid T(\mathbf{v}) = \mathbf{0} \};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

It is easy to see that $\ker(T) \leq \mathbb{V}$ and $\operatorname{range}(T) \leq \mathbb{W}$. Moreover, If $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans V, then $T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ spans $\operatorname{range}(T)$.

7 / 20

8 / 20

Exercise

Let $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ be defined by D(p(x)) = p'(x). Find $\ker(D)$, range(D) and their dimensions.

Definition

For an LT $T: \mathbb{V} \to \mathbb{W}$ we define

- rank(T) := dimension of range(T); and
- $\operatorname{nullity}(T) := \operatorname{dimension of ker}(T).$

Example

For the previous example, rank(D) = 3 and nullity(D) = 1.

Result (THE RANK-NULLITY THEOREM)

If \mathbb{V} is finite dimensional, then for any LT $T: \mathbb{V} \to \mathbb{W}$, rank(T) + nullity(T) = dim(V).

PROOF. Take a basis $B = \{v_1, \dots, \mathbf{v}_k\}$ of ker(T). Extend it to a basis $B \cup \{\mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$ of \mathbb{V} . Then $\{T(\mathbf{v}_{k+1}), \dots, T(\mathbf{v}_n)\}$ spans range(T). Moreover, $\{T(\mathbf{v}_{k+1}), \dots, T(\mathbf{v}_n)\}$ is LI.

Result

Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

- T is one-one iff $ker(T) = \{0\}$.
- $dim(\mathbb{V}) = dim(\mathbb{W}) = n$, then T is onto iff $ker(T) = \{\mathbf{0}\}$.

Definition

For linear transformations $T: \mathbb{V} \to \mathbb{W}, \ S: \mathbb{V} \to \mathbb{W}$ and $\alpha \in \mathbb{F}$ we define $T + S: \mathbb{V} \to \mathbb{W}, \ \alpha T: \mathbb{V} \to \mathbb{W}$ by

$$(T+S)(\mathbf{v}) = T(\mathbf{v}) + S(\mathbf{v}), \ (\alpha T)(\mathbf{v}) = \alpha (T(\mathbf{v})), \ \mathbf{v} \in \mathbb{V}.$$

Exercise

Show that T + S and αT are linear transformations.

Result (Composition of Linear Transformations)

Suppose $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ are LT's. Then the composition $S \circ T: \mathbb{U} \to \mathbb{W}$ is also an LT.

PROOF. Note:
$$(S \circ T)(\mathbf{u}) = S(T\mathbf{u})$$
 for all $\mathbf{u} \in \mathbb{U}$. Now, $(S \circ T)(\alpha \mathbf{u} + \beta \mathbf{v}) = S(\alpha T\mathbf{u} + \beta T\mathbf{v}) = \alpha(S \circ T)\mathbf{u} + \beta(S \circ T)\mathbf{v}$.

9 / 20

Coordinates

Suppose \mathbb{V} is a VS of dimension n. Fix an ordered basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ (i.e., a basis with a specific order of its elements). For $\mathbf{v} \in \mathbb{V}$ we have unique way of writing $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n, \ \alpha_i \in \mathbb{F}$. Define $T(\mathbf{v}) = [\alpha_1, \alpha_2, \dots, \alpha_n]^T$. Then, we have a map $T : \mathbb{V} \to \mathbb{F}^n$.

Definition

Consider the above map $T: \mathbb{V} \to \mathbb{F}^n$. $T(\mathbf{v})$ is called the coordinate vector of \mathbf{v} w.r.t. the ordered basis B. $T(\mathbf{v})$ is denoted by $[\mathbf{v}]_B$. The scalars α_i are called the coordinates of \mathbf{v} w.r.t. B.

Remark

- $[\mathbf{v}]_B$ depends not only on B; but also on the order in which \mathbf{v}_i chosen.
- $T: \mathbb{V} \to \mathbb{F}^n$, where $T(\mathbf{v}) = [\mathbf{v}]_B$ is an LT. Indeed,

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and $[c\mathbf{u}]_B = c[\mathbf{u}]_B$.

Isomorphism

Example

Take the standard (ordered) basis $B = \{1, x, x^2\}$ of $\mathbb{R}_2[x]$. Then,

$$[a+bx+cx^2]_B=egin{bmatrix} a \ b \ c \end{bmatrix}$$
 . Note that the LT $T:\mathbb{R}_2[x] o\mathbb{R}^3$,

 $T(p(x)) = [p(x)]_B$ is one-one and onto (i.e., invertible).

Definition

A linear transformation $T: \mathbb{V} \to \mathbb{W}$ is called an isomorphism of \mathbb{V} onto \mathbb{W} , if it is one-one and onto. In that case, we say that \mathbb{V} is isomorphic to \mathbb{W} and we write $\mathbb{V} \cong \mathbb{W}$.

Example

The LT $T: \mathbb{V} \to \mathbb{F}^n$, where $T(\mathbf{v}) = [\mathbf{v}]_B$, is an isomorphism. Thus, any VS of dimension n over \mathbb{F} is isomorphic to \mathbb{F}^n .

11 / 20

The Matrix of a Linear Transformation

Suppose $\dim(\mathbb{V}) = n$, $\dim(\mathbb{W}) = m$, $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ an ordered basis of \mathbb{V} , $C = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ an ordered basis of \mathbb{W} and $T : V \to W$ an LT. Then the $m \times n$ matrix A defined by

$$A = \left[[T(\mathbf{v}_1)]_C, [T(\mathbf{v}_2)]_C, \dots, [T(\mathbf{v}_n)]_C \right]$$

is called the matrix of T with respect to the bases B and C. The matrix A is written as $[T]_{C \leftarrow B}$.

Example

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$T([x, y, z]^T) = [x - 2y, x + y - 3z]^T$$
.

Consider the bases $B=\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ and $C=\{{\bf e}_1,{\bf e}_2\}$ for \mathbb{R}^3 and \mathbb{R}^2 , respectively. Then

$$A = [T]_{C \leftarrow B} = \begin{bmatrix} T(\mathbf{e}_1), T(\mathbf{e}_2), T(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 1 & -3 \end{bmatrix}.$$

What is $T([1,2,3]^T)$? In general $T([x,y,z]^T) = A[x,y,z]^T$.

Remark

If $\mathbb{V} = \mathbb{W}$ and B = C, then $[T]_{C \leftarrow B}$ is written as $[T]_B$.

Example

Consider $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ defined by D(p(x)) = p'(x). Take the standard (ordered) basis $B = \{1, x, x^2, x^3\}$ of $\mathbb{R}_3[x]$. Since D(1) = 0, D(x) = 1, $D(x^2) = 2x$, $D(x^3) = 3x^2$, we get

$$[D]_B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Consider $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$. Then $D(p(x)) = a_1 + 2a_2x + 3a_3x^2$. Note that

$$[p(x)]_B = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}, \ [D]_B[p(x)]_B = \begin{bmatrix} a_1 \\ 2a_2 \\ 3a_3 \\ 0 \end{bmatrix} = [D(p(x))]_B.$$

13 / 20

Result

Let $A = [T]_{C \leftarrow B}$. Then, for all $\mathbf{v} \in \mathbb{V}$,

$$A[\mathbf{v}]_B = [T(\mathbf{v})]_C, \quad i.e., \quad \left\{ egin{array}{ccc} \mathbf{v} \in \mathbb{V} & \stackrel{T}{\longrightarrow} & T(\mathbf{v}) \in \mathbb{W} \\ \downarrow & & \downarrow \\ [\mathbf{v}]_B \in \mathbb{F}^n & \stackrel{T_A}{\longrightarrow} & [T(\mathbf{v})]_C = A[\mathbf{v}]_B \in \mathbb{F}^m \end{array}
ight\}$$

Here $T_A : \mathbb{F}^n \to \mathbb{F}^m$ is the LT given by $T_A(\mathbf{x}) = A\mathbf{x}$.

Remark

The above result means:

Suppose we know $[T]_{C \leftarrow B}$ w.r.t. given bases B and C. Then we know T in the following sense:

If
$$\mathbf{v} = \sum_{i=1}^{n} \mathbf{a}_i \mathbf{v}_i$$
 and $[T]_{C \leftarrow B} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$, then $T(\mathbf{v}) = \sum_{j=1}^{m} b_j \mathbf{u}_j$.

14 / 20

Result

Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with bases B, C and D, respectively. Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be linear transformations. Then $[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}$.

PROOF. We have

$$[S \circ T]_{D \leftarrow B} = \Big[[(S \circ T)(\mathbf{v}_1)]_D, [(S \circ T)(\mathbf{v}_2)]_D, \dots, [(S \circ T)(\mathbf{v}_n)]_D \Big].$$

Now, the *i*-th column of $[S \circ T]_{D \leftarrow B}$ is

$$[(S \circ T)(\mathbf{v}_i)]_D = [(S(T(\mathbf{v}_i))]_D = [S]_{D \leftarrow C}[T(\mathbf{v}_i)]_C$$
$$= [S]_{D \leftarrow C}[T]_{C \leftarrow B}[\mathbf{v}_i]_B = [S]_{D \leftarrow C}[T]_{C \leftarrow B}\mathbf{e}_i,$$

the *i*-th column of $[S]_{D \leftarrow C}[T]_{C \leftarrow B}$.

Result

Let \mathbb{V} be VS with basis B, resp., and $T,S:\mathbb{V}\to\mathbb{V}$ are linear transformations. Then, $[S\circ T]_B=[S]_B[T]_B$.

15 / 20

Change of Basis:

Let $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ and $C = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be two bases for a vector space \mathbb{V} with dimension n. For $\mathbf{v} \in \mathbb{V}$, both $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$ are in \mathbb{R}^n . How are they related?

Let $P_{C \leftarrow B} := [[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C]$, (called the change of basis matrix from B to C.) Then

- 2 $P_{C \leftarrow B}$ is unique such matrix;
- $P_{C \leftarrow B} \text{ is invertible and } (P_{C \leftarrow B})^{-1} = P_{B \leftarrow C}.$

Example

Find the change of basis matrix $P_{C \leftarrow B}$ and $P_{B \leftarrow C}$ for the bases $B = \{1, x, x^2\}$ and $C = \{1 + x, x + x^2, 1 + x^2\}$ of $\mathbb{R}_2[x]$. Then find the coordinate vector of $p(x) = 1 + 2x - x^2$ w.r.t. respect to the basis C.

Exercises

- Check whether the following are linear transformations, one-one and onto.
 - $T: \mathbb{R} \to \mathbb{R}^2$ defined by $T(x) = [x, 0]^T$, $x \in \mathbb{R}$.
 - $T: \mathbb{R}^2 \to \mathbb{R}$ defined by $T[x, y]^T = x$, for $[x, y]^T \in \mathbb{R}^2$.
 - $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T[x, y]^T = [-x, -y]^T$, for $[x, y]^T \in \mathbb{R}^2$.
- Let $T: \mathbb{V} \to \mathbb{W}$ be a linear transformation, $\mathbf{v}_1, \dots, \mathbf{v}_k$ be in \mathbb{V} such that $T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)$ are linearly independent. Can $\mathbf{v}_1, \dots, \mathbf{v}_k$ be linearly dependent? Justify?
- Let an LT $T: \mathbb{V} \to \mathbb{W}$ is given to be one-one. If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is an LI subset of \mathbb{V} then show that $T(S) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ is LI in \mathbb{W} .

17 / 20

Exercises

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T[x,y]^T = [x-y,-3x+4y]^T$ and $S[x,y]^T = [4x+y,3x+y]^T$ for $[x,y]^T \in \mathbb{R}^2$. Compute $T \circ S$ and $S \circ T$. What is your observation?
- ullet Let $\mathbb V$ and $\mathbb W$ be vector spaces over $\mathbb F.$
 - If $T: \mathbb{V} \to \mathbb{W}$ is an one-one and onto (i.e., invertible). linear transformation, then show that $T^{-1}: \mathbb{W} \to \mathbb{V}$ is an LT.
 - Argue that if \mathbb{V} is isomorphic to \mathbb{W} , then \mathbb{W} is isomorphic to \mathbb{V} .
- Let $\dim(\mathbb{V}) = \dim(\mathbb{W})$. Then show that a linear transformation $T : \mathbb{V} \to \mathbb{W}$ is one-one iff T is onto.
- Let $\dim(\mathbb{V}) = \dim(\mathbb{W})$. Then a one-one linear transformation $T : \mathbb{V} \to \mathbb{W}$ maps a basis for \mathbb{V} onto a basis for \mathbb{W} .

Exercises

- Let \mathbb{V} and \mathbb{W} be two finite dimensional vector spaces. Then \mathbb{V} is isomorphic to \mathbb{W} iff $\dim(\mathbb{V}) = \dim(\mathbb{W})$.
- Show that
 - \mathbb{R}^3 and $\mathbb{R}_2[x]$ are isomorphic.
 - The vector spaces \mathbb{R}^n and $\mathbb{R}_n[x]$ are not isomorphic.
- Let B = {v₁, v₂,..., v_n} be a basis for a vector space V, and let u₁, u₂,..., u_k be vectors in V. Then {u₁, u₂,..., u_k} is linearly independent in V if and only if {[u₁]_B, [u₂]_B,..., [u_k]_B} is linearly independent in Rⁿ.
- Suppose $T, S : \mathbb{V} \to \mathbb{W}$ are LT's, and B and C are ordered bases of \mathbb{V} and \mathbb{W} , resp. Show that

$$[T+S]_{C \leftarrow B} = [T]_{C \leftarrow B} + [S]_{C \leftarrow B},$$
$$[\alpha T]_{C \leftarrow B} = \alpha [T]_{C \leftarrow B}.$$

19 / 20

Exercises

• Let \mathbb{V}, \mathbb{W} be n dimensional with bases B and C, resp., and $T:V\to W$ an LT. Then T is invertible if and only if the matrix $[T]_{C\leftarrow B}$ is invertible. In that case,

$$([T]_{C \leftarrow B})^{-1} = [T^{-1}]_{B \leftarrow C}.$$

• Let $T: \mathbb{R}^2 \to \mathbb{R}_1[x]$ be defined by $T([a,b]^T) = a + (a+b)x$ for $[a,b]^T \in \mathbb{R}^2$. Find $[T]_{C \leftarrow B}$ w.r.t. standard bases, show that T is invertible, and thus find T^{-1} .