NOBEL DANG

™nobeldang@gmail.com

in https://www.linkedin.com/in/nobeldang/

https://github.com/nobeldang

EDUCATION

Clemson University | Doctor of Philosophy in Computer Vision, Ph.D. (GPA: x / 4.0)

SC, USA | (2023 -Present)

 Research Interest: Novel View Synthesis, 3D Reconstruction, Localization, Foundational Models, Vision Language Models, Perception, Geometric Learning.

New York University | Master of Science in Computer Science (GPA: 3.97 / 4.0)

NY, USA | (2021 - 2023)

• Coursework: Computer Vision, Deep Learning, Machine Learning, Big Data, Cloud Computing, Information Visualization, Algorithms.

Guru Gobind Singh Indraprastha University | B.Tech. in Computer Science & Engineering (GPA: 8.16 / 10)

Delhi, India | (2016 - 2020)

Coursework: Artificial Intelligence, Machine Learning, Algorithms, Database Management Systems, Operating System, JAVA.

EXPERIENCE

VIPR, DEVCOM, CU (Research Scientist)

SC, USA | (Aug 2023 - Present)

- · Developing hyperspectral-based foundation model with self-supervised learning.
- · Developing VPR and localization techniques for autonomous AI.

AI4CE, NYU (Research Assistant)

NY, USA | (Jun 2022 - Aug 2023)

 Developing Computer Vision, Deep Learning and Robotics Perception methodologies to solve spatial reasoning and create dataset for autonomous driving for New York City.

Deep Learning, NYU (Teaching Assistant)

NY, USA | (Jan 2023 - May 2023)

• Served as a Teaching Assistant in the Deep Learning course at NYU under Professor Chinmay Hegde.

Libsys Ltd (Software Developer Intern)

Gurugram, India | (Jun 2019 - Aug 2019)

· Developed hybrid application for Library management system that uses RFID, using Flutter.

RESEARCH PROJECTS

Spatial-VPR || *Currently in progress with AutoAl@Clemson

SC, **USA** | (Mar 2024 – Present)

- Introducing new methodology that solves VPR task by combing multiple images to share information across them rather than individual image-based representation.
- Performed fundamental experiments with learnings from CroCo, CLIP, DIFT, MiDaS and DINOv2 to understand how they effect VPR task at scale.

Kinematics Estimation of Carpal Bones (MS Thesis) | Pytorch, Volume Registration, ANTs, Segmentation, HPC NY, USA | Sept 2022 – May 2023

- Evaluated and estimated kinematics from volumetric 4D MR sequences of the carpal wrist bones by generating Dense Displacement vector fields in a novel way and detecting pathology in wrist using geometric learning from motion patterns.
- Performed 3D-segmentations and regression to get smooth trajectories of the carpal bones in SE(3) manifold.
- Created template of volumetric frame sequences of carpal bones using ANTs and ITK-SNAP and transferred the rigid segmentations from a high-resolution static image to the dynamic image sequences.
- Performed a novel quasi rigid image registration between the volume sequences that maintains the rigidity of carpal bones, but the rest of volume is
 deformable with minimum average DICE score ~ 0.9.

PROJECTS

Optical Flow Analysis || Python (Pytorch), CNN, GRU, HPC

Nov 2022 - Dec 2022

Analyzed the optical flow of scene images using RAFT (Recurrent All-Pairs field Transform) on KITTI and Sintel dataset with validation EPE score
of 1.86 on clean and 2.56 on final dataset.

PUBLICATIONS

Co-VisiON Reasoning | *In submission

- Introduced a new task of Co-VisiON reasoning to understand the spatial relationship and co-visible regions among images that are sparsely distributed in a scene
- Curated large-scale dataset using habitat-sim from iGibson and HM3D datasets by parallel processing.
- Introduced baseline methods for co-visibility reasoning; like traditional vision methods (SIFT & RANSAC), contrastive methods (SimCLR with ViT), place recognition (with NetVLAD), 3D reconstruction (MV-DUSt3R) and multimodal methods (GPT4-v and/or SigLIP).
- Malaria Detection on Giemsa-Stained Blood Smears Using Deep Learning and Feature Extraction || AISC 1087, Chapter-7, Springer Detected malarial parasites in the Giemsa-stained blood smears using deep convolutional architecture and SVM with an accuracy of 98.8% and F1-score of 0.9795. Compared the architecture's result with transfer learning on models like RESNET, VGGNet and DenseNet.

SKILLS

• Image Retrieval, Visual Localization, 3D Reconstruction, View Synthesis, Large Language Models (and VLMs), Visual Language Models, Perception, 3D Geometry, Geometric Learning, Scene Understanding, Optical Flow, Depth Estimation.