SESSION 3 : BINARY CLASSIFICATION IN KERAS

UTKARSH GAIKWAD

TOPICS TO BE COVERED TODAY

- Classification in keras
- Dropout layers

BINARY CROSS ENTROPY

$$ext{Loss} = -rac{1}{rac{ ext{output}}{ ext{size}}} \sum_{i=1}^{rac{ ext{output}}{ ext{size}}} y_i \cdot \log \, \hat{y}_i + (1-y_i) \cdot \log \, (1-\hat{y}_i)$$

Actual	Predicted	Entropy	
0	0.6	0.916291	
1	0.9	0.105361	
0	0.2	0.223144	
0	0.1	0.105361	
0	0.3	0.356675	
1	0.9	0.105361	
1	0.8	0.223144	
1	0.7	0.356675	
	sum	2.392009	
	count	8	
	binary cross entropy		0.299001

DROPOUT LAYER IN KERAS

METRICS USING CONFUSION MATRIX

		CONDITION determined by "Gold Standard"			
	TOTAL POPULATION	CONDITION POS	CONDITION NEG	PREVALENCE CONDITION POS TOTAL POPULATION	
TEST OUT- COME	TEST POS	True Pos TP	Type I Error False Pos FP	Precision Pos Predictive Value PPV = TP TEST P	False Discovery Rate FDR = FP TEST P
	TEST NEG	Type II Error False Neg FN	True Neg TN	False Omission Rate FOR = <u>FN</u> TEST N	Neg Predictive Value NPV = TN TEST N
	ACCURACY ACC ACC = <u>TP+TN</u> TOT POP	Sensitivity (SN), Recall Total Pos Rate TPR TPR = TP CONDITION POS Miss Rate False Neg Rate FNR	Fall-Out False Pos Rate FPR FPR = FP CONDITION NEG Specificity (SPC) True Neg Rate TNR	Pos Likelihood Ratio LR + LR + = TPR FPR Neg Likelihood Ratio LR -	Diagnostic Odds Ratio DOR DOR = <u>LR +</u> LR -
		FNR = FN CONDITION POS	TNR = TN CONDITION NEG	LR - = <u>TNR</u> FNR	

THANK YOU

Email –utkarsh.etlhive@gmail.com