学号: ZY2206117 姓名: 黄海浪 作业: Assignment_2

题目1:

1. 符号说明

需求量 n_k :表示第k月的产品需求量。 状态变量 s_k :表示第k月的产品库存量。 决策变量 x_k :表示第k月产品生产数量。

状态转移方程: $s_{k+1} = s_k + x_k - n_k$

允许决策集合 $D_k(x_k)$: $D_k(x_k) = \{ \max(n_k - s_k, 0) \le x_k \le 6 \}$

成本 v_k :表示第k月的产生成本。

最优值函数 $f_k(s_k)$:表示第k月到第n月采取最优策略产生的成本最小值。

2. 递推关系式

$$f_k(s_k) = \min \{v_k + f_{k+1}(s_{k+1})\}$$

其中:

$$v_k = \begin{cases} 0.5 * (s_k - n_k), x_k = 0 \\ 3 + x_k + 0.5 * (s_k + x_k - n_k), x_k \neq 0 \end{cases}$$

 $f_5(s_5) = 0 \perp k \in [1,5]$

3. 计算步骤

(1)
$$\exists k = 4 \text{ th}$$
, $\exists B = 4 \text{ th}$, $\exists B =$

S_4	x_4	S ₅	x_5	$f_5(s_5)$	v_4	$v_4 + f_5(s_5)$
0	4	0	0	0	7	7
1	3	0	0	0	6	6
2	2	0	0	0	5	5
3	1	0	0	0	4	4
4	0	0	0	0	0	0

(2) 当
$$k = 3$$
时, 由题 $n_3 = 2$, $D_3(x_3) = {\max (2 - s_3, 0) \le x_3 \le 6}$

s_3	x_3	S_4	x_4	$f_4(s_4)$	v_3	$v_3 + f_4(s_4)$
	2	0	4	7	5	12
	3	1	3	6	6. 5	12. 5
0	4	2	2	5	8	13
	5	3	1	4	9. 5	13.5
	6	4	0	0	11	11
	1	0	4	7	4	11
	2	1	3	6	5. 5	11.5
1	3	2	2	5	7	12
	4	3	1	4	8. 5	12. 5
	5	4	0	0	10	10
2	0	0	4	7	0	7
	1	1	3	6	4.5	10. 5
	2	2	2	5	6	11

	3	3	1	4	7. 5	11.5
	4	4	0	0	9	9
	0	1	3	6	0. 5	6. 5
3	1	2	2	5	5	10
ა	2	3	1	4	6.5	10. 5
	3	4	0	0	8	8
	0	2	2	5	1	6
4	1	3	1	4	5. 5	9. 5
	2	4	0	0	7	7
5	0	3	1	4	1.5	5. 5
	1	4	0	0	6	6
6	0	4	0	0	2	2

因此,k = 3时的最优决策如下:

	**** *** *** *** ***						
s_3	x_3	S_4	x_4	$f_4(s_4)$	v_3	$v_3 + f_4(s_4)$	
0	6	4	0	0	11	11	
1	5	4	0	0	10	10	
2	0	0	4	7	0	7	
3	0	1	3	6	0.5	6. 5	
4	0	2	2	5	1	6	
5	0	3	1	4	1.5	5. 5	
6	0	4	0	0	2	2	

(3) 当k = 2时, 由题 $n_2 = 3$, $D_2(x_2) = \{ \max (3 - s_2, 0) \le x_2 \le 6 \}$

s_2	x_2	s_3	x_3	$f_3(s_3)$	v_2	$v_2 + f_3(s_3)$
	3	0	6	11	6	17
0	4	1	5	10	7. 5	17. 5
0	5	2	0	7	9	16
	6	3	0	6. 5	10.5	17
	2	0	6	11	5	16
	3	1	5	10	6. 5	16. 5
1	4	2	0	7	8	15
	5	3	0	6. 5	9.5	16
	6	4	0	6	11	17
	1	0	6	11	4	15
	2	1	5	10	5. 5	15. 5
2	3	2	0	7	7	14
Δ	4	3	0	6. 5	8.5	15
	5	4	0	6	10	16
	6	5	0	5. 5	11.5	17
3	0	0	6	11	0	11
ა	1	1	5	10	4. 5	14. 5

	2	2	0	7	6	13
	3	3	0	6. 5	7. 5	14
	4	4	0	6	9	15
	5	5	0	5. 5	10. 5	16
	6	6	0	2	12	14
	0	1	5	10	0. 5	10. 5
	1	2	0	7	5	12
4	2	3	0	6. 5	6. 5	13
4	3	4	0	6	8	14
	4	5	0	5. 5	9. 5	15
	5	6	0	2	11	13
	0	2	0	7	1	8
	1	3	0	6. 5	5. 5	12
5	2	4	0	6	7	13
	3	5	0	5. 5	8. 5	14
	4	6	0	2	10	12
C	0	3	0	6. 5	1.5	8
	1	4	0	6	6	12
6	2	5	0	5. 5	7. 5	13
	3	6	0	2	9	11

因此,k = 2时的最优决策如下:

s_2	x_2	s_3	x_3	$f_3(s_3)$	v_2	$v_2 + f_3(s_3)$
0	5	2	0	7	9	16
1	4	2	0	7	8	15
2	3	2	0	7	7	14
3	0	0	6	11	0	11
4	0	1	5	10	0.5	10. 5
5	0	2	0	7	1	8
6	0	3	0	6. 5	1. 5	8

(4) 当k = 1时,由题 $s_1 = 0$, $n_1 = 2$, $D_1(x_1) = \{2 \le x_1 \le 6\}$

s_1	x_1	S_2	x_2	$f_2(s_2)$	v_1	$v_1 + f_2(s_2)$
	2	0	5	16	5	21
	3	1	4	15	6. 5	21.5
0	4	2	3	14	8	22
	5	3	0	11	9. 5	20. 5
	6	4	0	10.5	11	21.5

因此,决策 $P_{1,n} = \{x_1, x_2, x_3, x_4\} = \{5,0,6,0\}$ 可以达到最低成本,最低成本为 20.5。即 1 月生产 5 单位, 3 月生产 6 单位。

题目 2:

1. 符号说明

阶段k: 表示当前已遍历过k个节点,k=1表示从 v_1 出发,k=7表示回到 v_1 。 状态变量 $s_k=(i,N_k)$: 表示第k阶段的目前所在节点i和剩余未遍历的节点 N_k 。 决策变量 $x_k=(i,j)$: 表示第k阶段的目前所在节点i和下一个遍历的点。 状态转移方程: $s_{k+1}=(s_k\to x_k)=(j,N_{k+1})=(j,N_k-\{j\})$ 允许决策集合 $d_k(x_k)$: $d_k(x_k)=\{x_k(j)\in N_k\}$ 成本 $c_k=D(i,j)$: 表示第k阶段产生的花费。 最优值函数 $f_k(s_k)=f_k(i,N_k)$: 从i节点经过 N_k 节点1次且仅1次返回 v_1 采取最优策略产生的最小成本。

2. 递推关系式

$$f_k(s_k) = \min\{c_k + f_{k+1}(s_{k+1})\} = \min\{D(i,j) + f_{k+1}(j,\{N_k - j\})\}\$$

 $f_7(s_7) = 0 \perp k \in [1,7]$

3. 程序伪代码

首先构建 dp 表表示从城市 i 出发经过城市 j 到达城市 1 的最小距离, dp 表如下(假设有 4 个城市):

	0	1	2	3	4	5	6	7
索引	000	001	010	011	100	101	110	111
	{Ø}	{1}	{2}	{1,2}	{3}	{1,3}	{2,3}	{1,2,3}
0								
1								
2								
3								

对于第x个城市,它的二进制可以表示为 $1 \ll (x-1)$,即第x位为 1。同样,判断某个索引是否包含某个城市可以用 $x \gg (i-1)$ &1判断。

算法为代码 TSP:

TSP(D, n)

//旅行商问题动态规划求解

//输入: 邻接矩阵花费 D 和节点个数 n

//输出: 无, 但会更新 dp 表

//init 即各个城市直接到城市1的距离 for 城市 i in 所有的城市 dp[i][0] = D[i][0]

end

//dp

for j in 所有的城市组合 for i in 所有的城市 if i 不在j中

for k in j中城市

// 更新 i 经过 j 的距离,通过与 i-k 再经过 $j-\{k\}$ 的距离比较 dp[i][j] = $min(dp[i][j], d[k][j-\{k\}]+D[i][k])$

```
end
          end
     end
end
算法为代码 getPath:
getPath()
// 根据 dp 表的记录获得路径
// 输入: 无
// 输出: 无(打印路径)
i = 0
while(j中城市不为空) do
     打印 城市 i
     for k in j中所有城市
          // 如果最优值通过 k 城市计算而来
          if dp[i][j] == dp[i][j-\{k\}]+D[i][k]
               i = k
               j = j-\{k\}
               break
          end
     end
end
打印 城市 i
4. 程序相关说明、结果和分析(更多请参考代码文件: main. cpp)
运行环境:
          操作系统: macOS Ventura13.3.1
     lacktriangle
          构建工具: cmake version 3.25.2; GNU Make 3.81
         构建命令: cmake CMakeLists.txt && make
         运行命令: ./algorithm assignment 2
运行结果:
最短路径: 1 -> 2 -> 6 -> 5 -> 4 -> 3 -> 1
最短距离:80
结果截图:
                   ======build: cmake CMakeLists.txt && make====
          -- The C compiler identification is AppleClang 14.0.3.14030022
          -- The CXX compiler identification is AppleClang 14.0.3.14030022
-- Detecting C compiler ABI info
          -- Detecting C compiler ABI info - done
         -- Check for working C compiler: /Library/Developer/CommandLineTools/usr/bin/cc - skipped -- Detecting C compile features
          -- Detecting C compile features - done
          -- Detecting CXX compiler ABI info
          -- Detecting CXX compiler ABI info - done
          -- Check for working CXX compiler: /Library/Developer/CommandLineTools/usr/bin/c++ - skipp
          -- Detecting CXX compile features
          -- Detecting CXX compile features - done
          -- Configuring done
          -- Generating done
          -- Build files have been written to: /Users/lerogo/Desktop/test
          [ 50%] Building CXX object CMakeFiles/algorithm_assignment_2.dir/main.cpp.o [100%] Linking CXX executable algorithm_assignment_2 [100%] Built target algorithm_assignment_2
```

===run: ./algorithm_assignment_2=======

最短路径: 1 -> 2 -> 6 -> 5 -> 4 -> 3 -> 1 最短距离: 80

lerogo@lerogo-mac test %

5. 附录-代码

```
/*
* encoding: utf-8
* */
#include <iostream>
#include <limits.h>
// 6 cities
const int n = 6;
const int m = 1 << (n - 1);
// 6x6 cost matrix
const int D[n][n] = {
      {0, 10, 20, 30, 40, 50},
      {12, 0, 18, 30, 25, 21},
      {23, 19, 0, 5, 10, 15},
      {34, 32, 4, 0, 8, 6},
      {45, 27, 11, 10, 0, 18},
      {56, 22, 16, 20, 12, 0}
};
// 表示从 i 出发经过 j 到城市 1 的距离
int dp[n][m];
void TSP() {
   // init 所有城市到城市1的距离
   for (int i = 0; i < n; i++) {
      dp[i][0] = D[i][0];
   }
   // dp
   for (int j = 1; j < m; j++) {
      for (int i = 0; i < n; i++) {
         dp[i][j] = INT_MAX;
         // if i is not in j 判断 i 是否在 j 中
         // j 是用二进制表示的, j 的第 i 位为 1 表示 i 在 j 中
         if ((j >> (i - 1)) \& 1) {
            continue;
         }
         // 遍历 j 中的每个城市 k, 找到最小的 dp[i][j]
         for (int k = 1; k < n; k++) {
            if ((j >> (k - 1)) \& 1) {
               // j - \{k\} 表示 j 中除了 k 之外的城市
                // 由于 j 中包含 k, 所以 j - \{k\}中的城市数比 j 中的城市数少 1
                // 所以 dp[k][j - \{k\}]已经在上一次循环中计算过了
```

```
dp[i][j] = std::min(dp[i][j], dp[k][j - (1 << (k - 1))] + D[i][k]);
            }
         }
      }
  }
}
void getPath() {
   // j = m - 1 表示所有城市都已经遍历过了
   // i = 0 表示从城市1开始
   int j = m - 1;
   int i = 0;
  while (j > 0) {
      // 从城市1开始,依次输出城市的编号
      std::cout << i + 1 << " -> ";
      for (int k = 1; k < n; k++) {
         if ((j >> (k - 1)) \& 1) {
            // 如果 dp[i][j] == dp[k][j - \{k\}] + D[i][k]
            // 说明从 i 出发经过 j 到城市 1 的距离等于从 k 出发经过 j - \{k\} 到城市 1 的距离加上 i 到 k 的
距离
            // 所以 i 到 k 是最短路径的一部分
            // 所以下一次循环应该从 k 开始
            if (dp[i][j] == dp[k][j - (1 << (k - 1))] + D[i][k]) {
               // j -= (1 << (k - 1)) 表示j中去掉k
               j = (1 << (k - 1));
               i = k;
               break;
            }
         }
      }
   }
   std::cout << i + 1 << " -> 1" << std::endl;
}
int main() {
  TSP();
   std::cout << "最短路径: ";
   getPath();
   std::cout << "最短距离: ";
   std::cout << dp[0][m - 1] << std::endl;</pre>
   return 0;
}
```