10.5.2018 HackerRank

PRACTICE

COMPETE

JOBS

LEADERBOARD

Q Search

lkutsarov 🗸

Practice > Algorithms > Implementation > Ema's Supercomputer

Ema's Supercomputer ☆

Problem	Submissions	Leaderboard	Discussions	Editorial
Ema built a qua	antum computer! Help h	er test its capabilities b	y solving the problem b	oelow.
Given a grid of	size $n imes m$, each cell in	the grid is either <i>good</i>	or bad .	
lengths. These	defined here as the cross lengths must be odd, ar of its vertical segment.			'
In the diagram	below, the blue pluses a	are <i>valid</i> and the orange	e ones are <i>not valid</i> .	

Find the two largest valid pluses that can be drawn on good cells in the grid, and return an integer denoting the maximum product of their areas. In the above diagrams, our largest pluses have areas of 5 and 9. The product of their areas is $5 \times 9 = 45$.

Note: The two pluses *cannot* overlap, and the product of their areas should be maximal.

Input Format

The first line contains two space-separated integers, ${\it n}$ and ${\it m}$.

Each of the next n lines contains a string of m characters where each character is either ${\bf G}$ (good) or ${\bf B}$ (bad). These strings represent the rows of the grid. If the y^{th} character in the x^{th} line is ${\bf G}$, then (x,y) is a good cell. Otherwise it's a bad cell.

Constraints

- $2 \le n \le 15$
- $2 \le m \le 15$

Output Format

Find ${\bf 2}$ pluses that can be drawn on ${\it good}$ cells of the grid, and return an integer denoting the maximum product of their areas.

Sample Input 0

Author	nikasvanidze				
Difficulty	Medium				
-	40				
Max Score 4					
Submitted By	5284				
NEED HELP?					
View discussions					
☐ View editorial					
▼ View top submissions					
RATE THIS CHALLENGE					
$\triangle \triangle \triangle \triangle \triangle \triangle$					
MORE DETAILS					
丛 Download problem stat	ement				
丛 Download sample test of	cases				
Suggest Edits					
f 💆 🛅					

10.5.2018 HackerRank

5 6 GGGGGG GBBBGB GGGGGG GGBBGB GGGGGG

Sample Output 0

5

Sample Input 1

6 6

BGBBGB

GGGGGG

BGBBGB

GGGGGG

BGBBGB

BGBBGB

Sample Output 1

25

Explanation

Here are two possible solutions for Sample 1 (left) and Sample 2 (right):

Explanation Key.

- Green: **good** cell
- *Red*: **bad** cell
- Blue: possible pluses.

For the explanation below, we will refer to a plus of length $m{i}$ as $m{P_i}$.

Sample 0

There is enough good space to color one P_3 plus and one P_1 plus. $Area(P_3)=5$ units, and $Area(P_1)=1$ unit. The product of their areas is $5\times 1=5$.

Sample 1

There is enough good space to color two P_3 pluses. $Area(P_3)=5$ units. The product of the areas of our two P_3 pluses is $5\times 5=25$.

Current Buffer (saved locally, editable)

1 ▼ import java.io.*;
2 import java.util.*;

Java 7

Java 7

Java 7

10.5.2018 HackerRank

```
3 import java.text.*;
  4 import java.math.*;
  5 import java.util.regex.*;
  6
  7 ▼ public class Solution {
  8
  9 🔻
          static int twoPluses(String[] grid) {
  10
             // Complete this function
  11
  12
  13 ▼
          public static void main(String[] args) {
             Scanner in = new Scanner(System.in);
 14
             int n = in.nextInt();
 15
             int m = in.nextInt();
 16
             String[] grid = new String[n];
 17 ▼
             for(int grid_i = 0; grid_i < n; grid_i++){</pre>
 18 ▼
                  grid[grid_i] = in.next();
 19 ▼
  20
  21
             int result = twoPluses(grid);
  22
             System.out.println(result);
  23
             in.close();
  24
  25
     }
  26
                                                                Line: 1 Col: 1
                  Test against custom input
                                                 Run Code
                                                                Submit Code
```

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature