

SCENDS

Bing Lin¹, F. Wallace Harrison¹, Tai-Fang Fan², and LaRC ASCENDS team

¹NASA Langley Research Center, Hampton, Virginia ²SSAI

IWGGMS'15
Pasadena, California, 16-18 June 2015

Sci. & Tech. Demonstration for space lidar missions

ASCENDS

MFLL DC-8 Flight Campaign (28 July – 3 Sept)

- OCO-2 under flights
- Agriculture drawdown and respiration;
- Ocean measurements
- > Forest CO₂ measurements;
- Urban activity

❖ ACES HU-25 Flight Campaign (July 2014)

- Ground & flight tests in relevant environment
- > CO₂ measurements in various surface and weather conditions
- > Technology: increased power, low mass, multi-beam operation

Measurement Results

- > CO₂ column variability: different environmental conditions
- Comparison with in situ derived results
- Summary

CO₂ Measurement Architecture IM-CW Laser Absorption Lidar

- \triangleright Simultaneously transmits λ_{on} and λ_{off} reducing noise from the atmosphere and eliminating surface reflectance variations.
- ➤ Approach is independent of the system wavelength and allows simultaneous CO₂ & O₂ (1.26 μm) number density measurements, combining them to derive XCO₂.

Weighting Functions

Airborne System Demonstration

ASCENDS

ASCENDS CarbonHawk
Experiment Simulator
(ACES developed at LaRC
with support from Exelis)

Multifunctional Fiber
Laser Lidar (MFLL)
(developed by Exelis in 2004
Exelis and Langley since 2005)

advancing key technologies for spaceborne measurements of CO₂ column mixing ratio

2014 ASCENDS DC-8 Campaign & ACES HU-25 Flight Test

SCENDS

In-situ Measurements and Natural variability

(Mid-West Flight: Iowa Box; 02 Sept 2014)

Significant spatiotemporal differences (a few ppm) found when comparing spiral with non-spiral in-situ observational data

OCO-2 Flight: 20140827

Significant range variability observed over both short and long time scales

- Precise DAOD measurements
- ➤ Potentially used in OCO-2 validation, comparison, and evaluation

GPS altitude

GPS – Elevation database

Pseudo-noise (PN) code altimeter range

Attitude corrected PN range CO₂ lidar pathlength

In Situ and Lidar Comparision

(MFLL OCO-2 Under Flight: 20140827)

Northbound

Black curves: lidar measured XCO2

Blue curves: in-situ derived XCO2

In-situ derived (or modeled) Value

- In-situ from Spiral: XCO₂, T/p/q profiles
- Radiative transfer model
- Ranging correction with lidar range data
- In-situ derived (or modeled) DAOD
- In-situ derived (or modeled) XCO₂

difference (ppm): 0.18

Ocean CO₂ Measurements

•Flight over the pacific ocean during the 2014 ASCENDS campaign demonstrates the MFLL instrument's high precision measurements over low reflectivity surfaces

 Initial results from the flight data show the CO₂ measurements are obtained in a condition close to lidar signal power shot noise limit

22 Aug 2014 MFLL flight over ocean

Agricultural CO₂ Drawdown

Column CO₂ measurements over Midwestern farm fields showed much larger drawdown signal in 2011 (~8 ppm) compared with measurements in 2014 (~3 ppm)

 Resulting from differences in meteorological states and phases of growing season

25 August 2014 Midwest Flight

Ranging over Hampton Roads (ACES in June 2014)

Chesapeake Bay Bridge

- Flight campaigns of summer 2014 provide excellent opportunity for the evaluations not only on lidar technology development but also on CO₂ variations at different, especially small, scales.
- Laser absorption lidar at 1.57μm with ranging-encoded IM provides advanced capability in cloud/aerosol discriminations.
- **❖** IM-CW lidar has demonstrated the capabilities of precise CO₂ measurements through the airborne flight campaigns under variety of environment conditions. Over land, clear-sky CO₂ measurement precision within 1-s integration is within 1 ppm while mean bias is much smaller.
- * Ranging uncertainties are shown to be below sub-meter level.
- **Analysis** shows that current IM-CW lidar approach will meet space CO₂ observation requirements and provide precise CO₂ measurements for carbon transport, sink and source studies.

Atmospheric Carbon & Transport (ACT) – America

The ACT-America suborbital mission addresses the three primary sources of uncertainty in atmospheric inversions: atmospheric transport, sources and sinks of carbon, and atmospheric concentration measurements.

Penn State NASA

LaRC, WFF, GSFC, JPL Exelis, Colorado State
NOAA ESRL/U Colorado
DOE Oak Ridge, U Oklahoma
Carnegie Inst. Stanford

