Principes de fonctionnement des machines binaires

2019/2020

Pierluigi Crescenzi

Université de Paris, IRIF

- Tests et examens
 - CC : résultat des tests en TD / TP (semaine 4 et cette semaine ou la prochaine)
 - E0 : partiel (samedi 26 octobre)
 - E1: examen (19 décembre de 8h30 à 11h:30)
 - Examen écrit
 - E2 : examen fin juin
- Notes finales
 - Note session 1:25% CC + 25% E0 + 50% E1
 - Note session 2 : max(E2, 33% CC + 67% E2)
- Rappel
 - Pas de note ⇒ pas de moyenne ⇒ pas de semestre
- Site web
 - moodlesupd.script.univ-paris-diderot.fr

- Numération et arithmétique
- Numération et arithmétique en machine
- Numérisation et codage (texte, images)
- Compression, cryptographie, contrôle d'erreur
- Logique et calcul propositionnel
- Circuits numériques

- Questions
 - Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes et et non

- Questions
 - Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes et et non

$$\circ \ a \lor b \Leftrightarrow \neg(\neg a \land \neg b)$$
 (De Morgan)

a	$\mid b \mid$	a	V	b		$\neg a$	\wedge	$\neg b$
			上	上		T	T	\Box
		上	T	T	T	T	上	
T		T	T	上	一			\Box
	T		H	T	T			

- Questions
 - Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes et et non
 - $\circ \ a \lor b \Leftrightarrow \neg(\neg a \land \neg b)$ (De Morgan)
 - $\circ \neg ((a \lor b) \land c) \Leftrightarrow \neg (\neg (\neg a \land \neg b) \land c)$

- Questions
 - Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes et et non
 - $\circ \ a \lor b \Leftrightarrow \neg(\neg a \land \neg b)$ (De Morgan)
 - $\circ \neg ((a \lor b) \land c) \Leftrightarrow \neg (\neg (\neg a \land \neg b) \land c)$
 - Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes non-ou $(p \downarrow q = \top \text{ ssi } p = \bot \text{ et } q = \bot)$

- Questions
 - Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes et et non
 - $\circ \ a \lor b \Leftrightarrow \neg(\neg a \land \neg b)$ (De Morgan)

$$\circ \neg ((a \lor b) \land c) \Leftrightarrow \neg (\neg (\neg a \land \neg b) \land c)$$

■ Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes non-ou $(p \downarrow q = \top \text{ ssi } p = \bot \text{ et } q = \bot)$

$$\circ \neg a \Leftrightarrow a \downarrow a$$

$\mid a$,	$\mid \neg a \mid$	a	+	a
	-	T		T	
	-				

- Questions
 - Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes et et non
 - $\circ \ a \lor b \Leftrightarrow \neg(\neg a \land \neg b)$ (De Morgan)

$$\circ \neg ((a \lor b) \land c) \Leftrightarrow \neg (\neg (\neg a \land \neg b) \land c)$$

- Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes non-ou $(p \downarrow q = \top \text{ ssi } p = \bot \text{ et } q = \bot)$
 - $\circ \neg a \Leftrightarrow a \downarrow a$
 - $\circ \ a \lor b \Leftrightarrow (a \downarrow b) \downarrow (a \downarrow b)$

a	$\mid b \mid$	$\mid a \mid$	V	$\mid b \mid$	$\mid a \mid$	\	b	\	a	\downarrow	b
						Τ				T	上
	T		T	T			T	T		\Box	T
			T		T		丄	T	一	\Box	上
T	T	T	T	T	T		T	T	T		T

- Questions
 - Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes et et non
 - $\circ \ a \lor b \Leftrightarrow \neg(\neg a \land \neg b)$ (De Morgan)
 - $\circ \neg ((a \lor b) \land c) \Leftrightarrow \neg (\neg (\neg a \land \neg b) \land c)$
 - Réaliser le circuit de la fonction $\neg((a \lor b) \land c)$ en utilisant que des portes non-ou $(p \downarrow q = \top \text{ ssi } p = \bot \text{ et } q = \bot)$
 - $\circ \neg a \Leftrightarrow a \downarrow a$
 - $\circ \ a \lor b \Leftrightarrow (a \downarrow b) \downarrow (a \downarrow b)$
 - $\circ \ a \wedge b \Leftrightarrow (a \downarrow a) \downarrow (b \downarrow b)$

a	$\mid b \mid$	a	Λ	$\mid b \mid$	a	+	a	+	b	\	b
			上			T				T	
	T			T		T			T		T
T		T		上	T		T		上	T	上
	一	T	T	一	T		T	T	一		十

- Question
 - $\neg((a \lor b) \land c)$ en utilisant que des portes non-ou
- $\bullet \neg a \Leftrightarrow a \downarrow a$
- $a \lor b \Leftrightarrow (a \downarrow b) \downarrow (a \downarrow b)$ $a \land b \Leftrightarrow (a \downarrow a) \downarrow (b \downarrow b)$

- Question
 - \neg \neg $((a \lor b) \land c)$ en utilisant que des portes non-ou

$$\bullet \neg a \Leftrightarrow a \downarrow a$$

•
$$a \lor b \Leftrightarrow (a \downarrow b) \downarrow (a \downarrow b)$$

$$ullet \ a \wedge b \Leftrightarrow (a\downarrow a)\downarrow (b\downarrow b)$$

$$\neg((a \lor b) \land c) \Leftrightarrow \\ \neg(((a \downarrow b) \downarrow (a \downarrow b)) \land c) \Leftrightarrow \\ \neg((((a \downarrow b) \downarrow (a \downarrow b)) \downarrow ((a \downarrow b) \downarrow (a \downarrow b))) \downarrow (c \downarrow c)) \Leftrightarrow \\ ((((a \downarrow b) \downarrow (a \downarrow b)) \downarrow ((a \downarrow b) \downarrow (a \downarrow b))) \downarrow (c \downarrow c)) \downarrow ((((a \downarrow b) \downarrow (a \downarrow b)) \downarrow ((a \downarrow b))) \downarrow (c \downarrow c))$$

- Question
 - \neg $((a \lor b) \land c)$ en utilisant que des portes non-ou
- $\bullet \neg a \Leftrightarrow a \downarrow a$
- $a \lor b \Leftrightarrow (a \downarrow b) \downarrow (a \downarrow b)$
- $a \wedge b \Leftrightarrow (a \downarrow a) \downarrow (b \downarrow b)$

$$\neg((a \lor b) \land c) \Leftrightarrow \\ \neg(((a \downarrow b) \downarrow (a \downarrow b)) \land c) \Leftrightarrow \\ \neg((((a \downarrow b) \downarrow (a \downarrow b)) \downarrow ((a \downarrow b) \downarrow (a \downarrow b))) \downarrow (c \downarrow c)) \Leftrightarrow \\ ((((a \downarrow b) \downarrow (a \downarrow b)) \downarrow ((a \downarrow b) \downarrow (a \downarrow b))) \downarrow (c \downarrow c)) \downarrow ((((a \downarrow b) \downarrow (a \downarrow b)) \downarrow ((a \downarrow b))) \downarrow (c \downarrow c))$$

 Puisqu'il existe différentes réalisations, on peut se poser la question du coût ?

- Puisqu'il existe différentes réalisations, on peut se poser la question du coût ?
 - Par exemple, peut-on minimiser le nombre de portes ?

- Puisqu'il existe différentes réalisations, on peut se poser la question du coût?
 - Par exemple, peut-on minimiser le nombre de portes ?
 - Nous avons déjà donné quelques propriétés des connecteurs

- Puisqu'il existe différentes réalisations, on peut se poser la question du coût ?
 - Par exemple, peut-on minimiser le nombre de portes ?
 - Nous avons déjà donné quelques propriétés des connecteurs
 - Ces propriétés permet de simplifier un circuit
 - Comparons les deux

- En appliquant les propriétés déjà données on peut donc simplifier une expression (et donc un circuit)
 - Mais dans quel ordre doit-on appliquer les règles ?
 - La méthode de Karnaugh permet de simplifier les expressions lorsque la fonction ne possède pas trop de variables
 - C'est une méthode visuelle/graphique
 - L'idée de base est d'utiliser dans les mintermes de la FND les propriétés
 - $egin{array}{ll} \circ & a ee
 eg a ee \neg a \Leftrightarrow op \ & \circ & (a \wedge b_1 \wedge \cdots b_k) ee (
 eg a \wedge b_1 \wedge \cdots \wedge b_k) ee (b_1 \wedge \cdots \wedge b_k) \end{array}$
 - \circ Cela conduit à éliminer ces instances de la variable a dans l'expression et donc diminuer la taille du circuit

- Il faut fabriquer un tableau de Karnaugh
 - C'est la représentation d'une fonction booléenne dans laquelle les valuations sont ordonnées de sorte que d'une ligne/colonne à l'autre une seule variable change de valeur
 - C'est possible ça?
 - Oui, c'est le code de Gray ou code binaire réfléchi

Code 1b

0

1

Rajoute 0/1

Code 1b	Symétrise N	Code 2b 00
1	1	01
•	1	11
	0	10

Rajoute 0/1

	C '4'		C / L!
Code 1b	Symétrise	Code 2b	Symétrise
0	Ü	00	00
1	1	01	01
	1	11	11
	0	10	10
			10
			11
			01
			00

		Rajoute 0/1	R	ajoute 0/1
Code 1b	Symétrise	Code 2b	Symétrise	Code 3b
0	0	00	00	000
1	1	01	01	001
	1	11	11	011
	0	10	10	010
			10	110
			11	111
			01	101
			00	100

		Rajoute 0/1	F	Rajoute 0/1	
Code 1b 0	Symétrise 0	Code 2b 00	Symétrise 00	Code 3b 000	Symétrise 000
1	1	01	01	001	001
	1	11	11	011	011
	0	10	10	010	010
			10	110	110
			11	111	111
			01	101	101
			00	100	100
					100
					101
					111
					110
					010
					011
					001
					000

cu	its numériq	ues		Code	e de Gray			
			Rajoute 0/1		Rajoute 0/1		Rajoute 0/1	
	Code 1b 0	Symétrise 0	Code 2b 00	Symétrise 00	Code 3b 000	Symétrise 000	Code 4b 0000	
	1	1	01	01	001	001	0001	
		1	11	11	011	011	0011	
		0	10	10	010	010	0010	
				10	110	110	0110	
				11	111	111	0111	
				01	101	101	0101	
				00	100	100	0100	
						100	1100	
						101	1101	
						111	1111	
						110	1110	
						010	1010	
						011	1011	
						001	1001	
						000	1000	

Circuits numériques		Code	de Gray		
	Rajoute 0/´	1 F	Rajoute 0/1		Rajoute 0/1
Code 1b Symétris 0 0	e Code 2b 00	Symétrise 00	Code 3b 000	Symétrise 000	Code 4b 0000
1 1					
1	01	01	001	001	0001
1	11	11	011	011	0011
0	10	10	010	010	0010
		10	110	110	0110
		11	111	111	0111
		01	101	101	0101
		00	100	100	0100
				100	1100
On remarque que que que que que que que que que	ue d'une lig	gne à l'au	tre un	101	1101
seul bit est mod	lifié et ceci	est valab	le	111	1111
aussi en passan	t de la deri	nière lign	e à la	110	1110
première		O		010	1010
'		011	1011		
■ Même de la	ere	001	1001		
○ Le code d	le Gray est	un tore		000	1000
nierluigi crescenzi@irif fr		DF1			

- Comment passer de la représentation binaire à celle de Gray ?
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Règle

$$\circ \ g_{n-1} = b_{n-1}$$

$$\circ \ g_i = b_{i+1} \oplus b_i$$

- Comment passer de la représentation binaire à celle de Gray ?
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Règle

$$\circ \ g_{n-1} = b_{n-1}$$

$$\circ \ g_i = b_{i+1} \oplus b_i$$

- Exemple: 1100
 - 1 1 0 0

- Comment passer de la représentation binaire à celle de Gray ?
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Règle

$$\circ \ g_{n-1} = b_{n-1}$$

$$\circ \ g_i = b_{i+1} \oplus b_i$$

- Comment passer de la représentation binaire à celle de Gray ?
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Règle

$$\circ \ g_{n-1} = b_{n-1}$$

$$\circ \ g_i = b_{i+1} \oplus b_i$$

- Comment passer de la représentation binaire à celle de Gray?
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Règle

$$\circ \ g_{n-1} = b_{n-1}$$

$$\circ \ g_i = b_{i+1} \oplus b_i$$

- Comment passer de la représentation binaire à celle de Gray?
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Règle

$$\circ \ g_{n-1} = b_{n-1}$$

$$\circ \ g_i = b_{i+1} \oplus b_i$$

- Comment passer de la représentation binaire à celle de Gray?
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Règle
 - $\circ \ g_{n-1} = b_{n-1}$
 - $g_i = v_{i+1}$ Exemple: $1100^{t_{reizième}} code de Gray$
 - |0|

- Code 0000 0001
 - 0011
 - 0010
 - 0110
 - 0111
 - 0101
 - 0100
 - 1100
 - 1101
 - 1111

 - 1010
 - 1011
 - 1001
 - 1000

- Comment passer de la représentation de Gray à celle binaire ?
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Règle
 - $\circ \ b_{n-1} = g_{n-1}$
 - $\circ \ b_i = g_i \oplus b_{i+1}$
 - Exemple: 0110

- Comment passer de la représentation de Gray à celle binaire ?
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Règle

$$\circ \ b_{n-1} = g_{n-1}$$

$$\circ \ b_i = g_i \oplus b_{i+1}$$

- Comment passer de la représentation de Gray à celle binaire ?
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Règle

$$\circ \ b_{n-1} = g_{n-1}$$

$$\circ \ b_i = g_i \oplus b_{i+1}$$

- Comment passer de la représentation de Gray à celle binaire ?
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Règle

$$\circ \ b_{n-1}=g_{n-1}$$

$$\circ \ b_i = g_i \oplus b_{i+1}$$

- Comment passer de la représentation de Gray à celle binaire ?
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Règle

$$\circ \ b_{n-1} = g_{n-1}$$

$$\circ$$
 $b_i = g_i \oplus b_{i+1}$

- Comment passer de la représentation de Gray à celle binaire ?
 - Gray $g_{n-1}g_{n-2}\cdots g_1g_0$
 - Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
 - Règle

$$\circ \ b_{n-1} = g_{n-1}$$

$$\circ \ b_i = g_i \oplus b_{i+1}$$

0110 ₅

 Comment passer de la représentation de Gray à celle binaire ?

■ Gray
$$g_{n-1}g_{n-2}\cdots g_1g_0$$

- Binaire $b_{n-1}b_{n-2}\cdots b_1b_0$
- Règle

$$\circ \ b_{n-1} = g_{n-1}$$

$$\circ \ b_i = g_i \oplus b_{i+1}$$

■ Exemple: 0110

cinquierne code de Gray

- Un tableau de Karnaugh consiste à exprimer la valeur de la fonction sous la forme d'un tableau torique dans lequel les variables sont également réparties en entrées des lignes et colonnes et listées selon le code de Gray
- Exemple : pour une fonction a 5 variables

abc de	000	001	011	010	110	111	101	100
00								
01								
11								
10								

• Dans un tel tableau la méthode de Karnaugh consiste à rechercher des rectangles dont les dimensions sont de la forme 2^p (1, 2, 4, 8, 16, etc), dans lesquels la fonction vaut 1 partout et dont p variables sont non-constantes les autres étant fixées

Exemple

abc de	000	001	011	010	110	111	101	100
00	0	1	1	0	0	0	1	1
01	0	0	0	0	1	0	0	0
11	1	1	1	1	0	1	0	0
10	1	1	1	1	0	0	1	1

• Dans un tel tableau la méthode d rechercher des rectangles dont le 2^p (1, 2, 4, 8, 16, etc), dans lesquel dont p variables sont non-constar

Exemple

abc de	000	001	011	010	•	1 v (e)
00	0	1	1	0		1 \
01	0	0	0	0	1	(
11	1	1	1	1	0	

- Longueur : $4=2^2$
 - 2 variables non constantes (b et c)
 - 1 variable constante (a)
- ullet Hauteur : $2=2^1$
 - 1 variable non constante(e)
 - 1 variable constante (*d*)

()

0

0

0

10

- Dans un tel tableau la méthode de Karnaugh consiste à rechercher des rectangles dont les dimensions sont de la forme 2^p (1, 2, 4, 8, 16, etc), dans lesquels la fonction vaut 1 partout et dont p variables sont non-constantes les autres étant fixées
- Exemple

consiste à

Dans un recherch 2^p (1, 2, 4 dont p va

Exemple

- Longueur : $2 = 2^1$
 - 1 variable non constante (c)
 - 2 variable constantes (a et b)
- Hauteur : $2 = 2^1$
 - 1 variable non constante (d)

s sont de la forme vaut 1 partout et es étant fixées

abc	•	1 vari		101	100			
de								
00	0	1	1	0	0	0	1	1
01	0	0	0	0	1	0	0	0
11	1	1	1	1	0	1	9	0
10	1	1	1	1	0	0	1	1

• On ne peut pas regrouper ainsi

abc de	000	001	011	010	110	111	101	100
00	0	1	1	1	1	0	0	0
01	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0

■ Le paquet est de longueur 2^2 , mais a, b, c changent toutes les trois, c'est donc un mauvais regroupement

• On ne peut que regrouper de la façon suivante

abc de	000	001	011	010	110	111	101	100
00	0	1	1	1	1	0	0	0
01	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0

abc de	000	001	011	010	110	111	101	10
00	0	1	1	0	0	0	1	
01	0	0	0	0	1	0	0	(
11	1	1	1	1	0	1	0	(
10	1	1	1	1			b prendes autre	

- La variable b prend les valeurs 0 et 1 alors que les autres variables sont fixes
 - Les mintermes correspondants peuvent être simplifiés en le simple terme $\neg a \land c \land \neg d \land \neg e$
 - 2 mintermes à 5 variables remplacés par un terme a 4 variables

• Les variables *b,c,e* prennent les valeurs 0 et 1 alors que les variables a et d sont fixes

> Les mintermes correspondants peuvent être simplifiés en le simple terme $\neg a \land d$

 8 mintermes à 5 variables remplacés par un simple terme à 2 variables

abc de	000	001	011	010	110	111	101	100
00	0	1	1	0	0	0	1	1
01	0	0	0	07	1	0	0	0
11 es ne se	1	1	1	1	0>	1	0	0
les ne so	onic pas			1	Ω	0	1	1

- Ces rectangles ne sont pas simplifiables
 - On conserve les mintermes initiaux $a \wedge b \wedge \neg c \wedge \neg d \wedge e$ et $a \wedge b \wedge c \wedge d \wedge e$

abc de	000	001	011	010	110	111	101	100
00	0	1	1	0	0	0	1	1
01	0	0	0	0	1	0	0	0
11	1	1	1	1	0	1	0	0
10	1	1	1	1	0	0	1	1

abc de	000	001	011	010	110	111	101	100
00	0	1	1	0	0	0	1	1
01	0	0	0	0	1	0	0	0
11	1	1	1	1	0	1	0	0
10	1	1	1	1	0	0	1	1

- Fonction original
 - 16 mintermes à 5 variables

abc de	000	001	011	010	110	111	101	100
00	0	1	1	0	0	0	1	1
01	0	0	0	0	1	0	0	0
11	1	1	1	1	0	1	0	0
10	1	1	1	1	0	0	1	1

- Fonction original
 - 16 mintermes à 5 variables
- Fonction simplifiée

$$(\neg a \land c \land \neg d \land \neg e) \lor (\neg a \land d) \lor (a \land \neg b \land \neg e) \lor (a \land b \land \neg c \neg d \land e) \lor (a \land b \land c \land d \land e)$$

abc de	000	001	011	010	110	• On a	urait plus	us simp	lifier encore
00	0	1	1	Û	U	■ ¬($a \wedge c \wedge \overline{}$		remplacé par
01	0	0	0	0	1	U	$a \land \neg c \land$		
11	1	1	1	1	0	1	0	0	
10	1	1	1	1	0	0	1	1	

abc de	000	001	011	010	110	• On a	urait plus	us simp	lifier encore
00	0	1	1	O	U	■ ¬	$a \wedge c \wedge \overline{}$		remplacé par
01	0	0	0	0	1	U	$a \land \neg c \land$	U	
11	1	1	1	1	0	1	0	0	
10	1	1	1	1	0	0	1	1	

• Fonction simplifiée

$$(\neg a \land c \land \neg e) \lor (\neg a \land d) \lor (a \land \neg b \land \neg e) \lor (a \land b \land \neg c \neg d \land e) \lor (a \land b \land c \land d \land e)$$

abc de	000	001	011	010	110	• On a	urait plus	us simp	lifier encore
00	0	1	1	Û	U	■ ¬($a \wedge c \wedge \overline{}$		remplacé par
01	0	0	0	0	1	U	$a \land \neg c \land$	$oxed{U}$	
11	1	1	1	1	0	1	0	0	
10	1	1	1	1	0	0	1	1	

- Fonction simplifiée $(\neg a \land c \land \neg e) \lor (\neg a \land d) \lor (a \land \neg b \land \neg e) \lor (a \land b \land \neg c \neg d \land e) \lor (a \land b \land c \land d \land e)$
- Il faut toujours essayer de combiner les 1 dans des rectangles aussi grands que possible

L'afficheur à 7 segments pour les chiffres décimaux codés en binaire

- Écrire les fonctions associés à chaque segment sous la FND
- Simplifier les fonctions par la méthode de Karnaugh

$\mid n \mid$	$\mid d \mid$	c	b	$\mid a \mid$	$\mid s \mid \mid$
0	0	0	0	0	
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

$\mid n \mid$	$\mid d \mid$	c	b	$\mid a \mid$	$\mid s \mid \mid$
0	0	0	0	0	
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	
4	0	1	0	0	$\mid 0 \mid \mid$
5	0	1	0	1	1
6	0	1	1	0	$\mid 1 \mid \mid$
7	0	1	1	1	$\mid 1 \mid \mid$
8	1	0	0	$\mid 0 \mid$	$\mid 1 \mid \mid$
9	1	0	0	$\mid 1 \mid$	$\mid 1 \mid \mid$
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

$\mid n \mid$	$\mid d \mid$	c	b	$\mid a \mid$	s
$\begin{bmatrix} 0 \end{bmatrix}$	0	0	0	0	1
1	0	0	0	1	0
	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	$\mid 0 \mid$

$\mid n \mid$	$\mid d \mid$	c	b	$\mid a \mid$	$\mid s \mid \mid$
0	0	0	0	0	
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

$\mid n \mid$	$\mid d \mid$	c	b	$\mid a \mid$	$\mid s \mid \mid$
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	$\mid 1 \mid \mid$
$\mid 6 \mid$	0	1	1	0	$\mid 1 \mid \mid$
7	0	1	1	1	$\mid 1 \mid \mid$
8	1	0	0	$\mid 0 \mid$	$\mid 1 \mid \mid$
9	1	0	0	$\mid 1 \mid$	$\mid 1 \mid \mid$
10	1	0	1	0	$\mid 0 \mid \mid$
11	1	0	1	1	$\mid 0 \mid \mid$
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

$\mid n \mid$	$\mid d \mid$	c	b	$\mid a \mid$	$\mid s \mid \mid$
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
$\mid 4 \mid$	0	1	0	0	$\mid 0 \mid \mid$
$\mid 5 \mid$	0	1	0	1	1
$\mid 6 \mid$	0	1	1	0	$\mid 1 \mid$
7	0	1	1	1	1
8	1	0	0	0	$\mid 1 \mid$
9	1	0	0	1	$\mid 1 \mid$
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	$\mid 0 \mid \mid$

• 8 mintermes à 4 variables

$\mid\mid n\mid$	$\mid d \mid$	c	b	$\mid a \mid$	$\mid s \mid \mid$
0	0	0	0	0	
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
$\parallel 4 \parallel$	0	1	0	0	$\mid 0 \mid \mid$
$\parallel 5 \parallel$	0	1	0	1	1
$\mid \mid 6 \mid \mid$	0	1	1	0	1
$\parallel 7 \parallel$	0	1	1	1	1
$\mid 8 \mid$	1	0	0	0	$\mid 1 \mid$
$\parallel 9 \parallel$	1	0	0	1	$\mid 1 \mid$
10	1	0	1	0	$\mid 0 \mid \mid$
11	1	0	1	1	$\mid 0 \mid \mid$
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	

Tableau de Karnaugh

$\mid n \mid$	$\mid d \mid$	c	b	a	s
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

Tableau de Karnaugh

|--|

$\parallel n \parallel$	$\mid d \mid$	c	b	$\mid a \mid$	$\mid s \mid$
$\begin{bmatrix} 0 \end{bmatrix}$	0	0	0	0	$\mid 1 \mid$
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
$\parallel 4 \parallel$	0	1	0	0	$\mid 0 \mid$
$\parallel 5 \parallel$	0	1	0	1	$\mid 1 \mid$
$\mid 6 \mid$	0	1	1	0	$\mid 1 \mid$
7	0	1	1	1	$\mid 1 \mid$
8	1	0	0	0	$\mid 1 \mid$
$\parallel 9 \parallel$	1	0	0	1	$\mid 1 \mid$
$\parallel 10 \parallel$	1	0	1	0	0
11	1	0	1	1	$\mid 0 \mid$
12	1	1	0	0	$\mid 0 \mid$
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

• Tableau de Karnaugh

 $(b \wedge \neg d)$

Tableau de Karnaugh

$\mid\mid n\mid$	$\mid d \mid$	c	b	$\mid a \mid$	$\mid s \mid$
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0

• Tableau de Karnaugh

$$(b \wedge \neg d) \vee (a \wedge c \wedge \neg d)$$

Tableau de Karnaugh

$\mid n \mid$	$\mid d \mid$	c	b	a	s
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

$$(b \wedge \neg d) \lor (a \wedge c \wedge \neg d) \lor (\neg b \wedge \neg c \wedge d)$$

Tableau de Karnaugh

$\mid n \mid$	$\mid d \mid$	c	b	a	$\mid s \mid$
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	$\mid 1 \mid$
8	1	0	0	0	$\mid 1 \mid$
9	1	0	0	1	$\mid 1 \mid$
10	1	0	1	0	0
11	1	0	1	1	$\mid 0 \mid$
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

$$(b \wedge \neg d) \vee (a \wedge c \wedge \neg d) \vee (\neg b \wedge \neg c \wedge d) \vee (\neg a \wedge \neg b \wedge \neg c)$$

Tableau de Karnaugh

$\mid n \mid$	$\mid d \mid$	c	b	$\mid a \mid$	s
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

$$(b \wedge \neg d) \vee (a \wedge c \wedge \neg d) \vee (\neg b \wedge \neg c \wedge d) \vee (\neg a \wedge \neg b \wedge \neg c)$$