La théorème des nombres premiers

BENSAID Mohamed

April 18, 2025

Introduction

L'objectif de ce texte est de démontrer le théorème des nombres premiers, établi indépendamment par Hadamard et La Vallée Poussin en 1896. Ce théorème peut être formulé comme suit :

$$\sum_{p\in \mathbb{P}, p\leq x} 1 := \pi(x) \sim \frac{x}{\log(x)}$$

où $\pi(x)$ représente le nombre de nombres premiers inférieurs ou égaux à x.

Figure 1: Illustration du théorème des nombres premiers

Dans cet exposé on va discuter de la démonstration du théorème des nombres premiers établie par Newman [3]. On suit la présentation donnée par D.Zagier [4]

Reppels sur les sommes et produits infinis

Definition 1. On definit l'exponentielle complexe par :

$$exp(z) = \sum_{n \ge 0} \frac{z^n}{n!}$$

Definition 2. Soient U un domaine de \mathbb{C} et $f \in \mathcal{H}(U,\mathbb{C}^*)$. On appelle détermination du logarithme de f, toute fonction g continue (donc holomorphe) sur U vérifiant $e^g = f$. On dit aussi que g est **un** logarithme holomorphe de f.

Definition 3 (Logarithme principal). Pour z dans $U := \mathbb{C} \backslash \mathbb{R}^-$. On d'éfinit le Logarithme principal

$$Log(z) = ln(|z|) + iArg(z)$$

Où $Arg(z) \in]-\pi,\pi[$ qui est uniquement déterminé dans U.

Proposition 4. 1. Log coincide avec $\ln sur \mathbb{R}_{>0}$.

- 2. $z = e^{Log(z)} sur U$.
- 3. $\forall z \in \mathbb{C} \ tel \ que \ -\pi < Im(z) < \pi, \ z = Log(e^z).$
- 4. Si $z_1, z_2, z_1z_2 \in U$ il exsite $k \in \mathbb{Z}$ $Log(z_1z_2) = Log(z_1) + Log(z_2) + 2i\pi k$.
- 5. Log est holomorphe sur U, et $Log'(z) = \frac{1}{z}$
- 6. $Log(1+z) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}z^n}{n}$ sur le disque D(0,1)

Definition 5. La famille (a_i) est sommable de somme S si, pour tout $\varepsilon > 0$, il existe un sous-ensemble fini $F \subset I$ tel que, pour tout ensemble fini F' avec $F \subset F' \subset I$ on a

$$\left| \sum_{i \in F'} a_i - S \right| < \varepsilon$$

Si c'est le cas, on note $\sum_{i \in I} a_i = S$.

Fixons une famille $z_i \in \mathbf{C}$, pour $i \in \mathbf{N}$ et pour tout $n \in \mathbf{N}$ notons :

$$P_n = \prod_{i=0}^n z_i$$

Definition 6. Supposons que $P \neq 0$. Le produit infini $\prod_{i=0}^{\infty} z_i$ converge vers P si $\lim_{n\to\infty} P_n = P$. Notation:

$$P = \prod_{i=0}^{\infty} z_i$$

Convention: Par hypothèse, un produit convergent est différent de 0. Ce-pendant, dans un produit infini comme ci-dessus on autorisera que $z_i = 0$ pour un nombre fini de i. S'il existe des indices i avec $z_i = 0$, on dira que le produit converge (vers 0) si le produit des facteurs non nuls converge vers une limite non-nulle.

Exercice 0: Montrer que si le produit $P = \prod_{i=0}^{\infty} z_i$ converge, alors $z_i \longrightarrow 1$

Proposition 7. Le produit $\prod_{i=0}^{\infty} (1+a_i)$ converge, si et seulement si, la série

$$\sum_{\substack{i=0\\a_i\neq -1}}^{\infty} \log\left(1+a_i\right)$$

converge.

Proof. On traite le cas où $a_i \neq -1$, Notons $P_n := \prod_{i=0}^n (1+a_i)$ et $S_n := \sum_{i=0}^n \log(1+a_i)$. Si S_n converge alors par la continuité de l'exp, on déduit que P_n converge vers $e^S \neq 0$ Si P_n converge vers $P \neq 0$ alors pour tout $n \geq 0$ il existe $k_n \in \mathbb{Z}$ tel que

$$Log(\frac{P_n}{P}) = S_n - Log(P) + 2i\pi k_n$$

En particulier

$$2i\pi(k_{n+1} - k_n) = Log(\frac{P_{n+1}}{P}) - Log(\frac{P_n}{P}) - Log(1 + a_n)$$

Ainsi la suite k_n est stationnaire car $k_{n+1}-k_n$ tend vers 0 et $k_n \in \mathbb{Z}$

Puisque $S_n = Log(\frac{P_n}{P}) + Log(P) - 2i\pi k_n$, on en déduit que S_n converge vers $Log(P) - 2i\pi k$ Le cas général se traite de la même manière.

Definition 8. On dit que Le produit $\prod_{i=0}^{\infty} (1+a_i)$ est absolument convergent si la somme $\sum_{\substack{i=0\\a_i\neq -1}}^{\infty} \log(1+a_i)$ l'est aussi.

Lemma 9. Le produit $\prod_{i=0}^{\infty} (1+a_i)$ est absolument convergent, si et seulement si, la somme $\sum a_i$ l'est aussi.

Proof. Utiliser $\lim_{w\to 0} \frac{\log(1+w)}{w} = 1$ et remarquer que, si la série ou le produit converge absolument, on a $a_i \to 0$.

Donc pour tout $\epsilon > 0$ on a

$$(1-\epsilon)|a_i| < |Log(1+a_i)| < (1+\epsilon)|a_i|$$

pour i assez grand.

Lemma 10 (Critère d'Abel). Soient $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes dont les sommes partielles sont bornées et $(b_n)_{n\in\mathbb{N}}$ une suite réelle décroissante qui tend vers 0. Alors la série $\sum_{n=0}^{\infty} a_n b_n$ converge.

Proof. Admis \Box

Fonction zeta de Riemann ζ et fonction Dirichlet L

Theorem 11. Soit Ω ouvert de \mathbb{C} et f_n une suite de fonctions de Ω dans \mathbb{C} . On suppose

- 1. pour tout $n \in \mathbb{N}$, f_n est une fonction holomorphe sur Ω
- 2. pour tout compact K de Ω , la série de fonctions $\sum f_n$ converge normale- ment sur K alors, la fonction F définie sur Ω par $F(z) = \sum f_n(z)$ est bien définie et holomorphe sur Ω .

La fonction zêta de Riemann est définie, pour $s \in \mathbb{C}$ complexe avec $\operatorname{Re} s > 1$, par la série :

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Holomorphe sur ce demi-plan.

Proposition 12. La fonction zeta se prolonge en une fonction méromorphe dans le demi-plan Re(s) > 0 avec un pôle simple en 1.

Proof. Pour Re(s) > 1 on a

$$\zeta(s) - \frac{1}{s-1} = \sum_{n>0} \int_n^{n+1} (n^{-s} - t^{-s}) dt$$

Notons maintenant $\psi_n(s) := \int_n^{n+1} (n^{-s} - t^{-s}) dt$. Il suffit donc de prouver que la série $\sum_n \psi_n(s)$ est normalment convergente dans $\Omega_{\epsilon,K} := \{s \in \mathbb{C} | Re(s) \geq \epsilon, |s| \leq K \}$ pour tous $K, \epsilon > 0$.

On a

$$\left| n^{-s} - t^{-s} \right| = \left| s \int_{ln(n)}^{ln(t)} e^{-ws} dw \right| \le |s| \int_{ln(n)}^{ln(t)} e^{-wx} dw \le \frac{|s|}{x} \left| n^{-x} - t^{-x} \right|$$

Pour $t \in [n, n+1]$ on a par TAF,

$$0 < n^{-x} - t^{-x} < xn^{-x-1}$$

Donc

$$|\psi_n(s)| \le K n^{-\epsilon - 1}$$

Ce qui affirme la convergence normale de la série.

Remark. Cette proposition affirme qu'il existe une fonction holomorphe $\psi(s)$ sur le demi-plan Re(s) > 0 tel que

$$\zeta(s) = \frac{1}{s-1} + \psi(s)$$

Produit d'Euler

Definition 13. Une application

$$f: \mathbf{N}^* \to \mathbf{C}$$

est dite multiplicative si elle vérifie les deux conditions suivantes :

- *i*) f(1) = 1
- *ii*) $f(n_1n_2) = f(n_1) f(n_2)$ pour tous $n_1, n_2 \in \mathbb{N}^*$ premiers entre eux.

Une application multiplicative est dite strictement multiplicative si $f(n_1n_2) = f(n_1) f(n_2)$ pour tous $n_1, n_2 \in \mathbf{N}^*$.

Example 14. L'indicateur d'Euler ϕ est une fonction multiplicative.

Proposition 15. Soit $g: \mathbb{N}^* \to \mathbb{C}$ une fonction multiplicative bornée. Alors pour tout $s \in \mathbb{C}$ avec $\operatorname{Re} s > 1$ on a:

$$f(s) := \sum_{n=1}^{\infty} \frac{g(n)}{n^s} = \prod_{\substack{p \text{ premier}}} \left(\sum_{k=0}^{\infty} \frac{g\left(p^k\right)}{p^{ks}} \right)$$

 $\textit{Proof.} \quad \text{Notons } S_l := \{p_1,...,p_l\} \subset \mathbb{P}, \text{ et on pose } N(S) := \{\prod_{i>0}^l p_i^{k_i} | k_i \in \mathbb{N}\},$

$$\prod_{p \in S} \sum_{k \ge 0} \frac{g(p^k)}{p^{ks}} = \sum_{k_i \ge 0, i = 0, \dots, l} \prod_{i = 1}^{l} \frac{g(p_i^{k_i})}{p_i^{k_i s}} = \sum_{n \in N(S_l)} \frac{g(n)}{n^s}$$

Nous remarquons que la série $\sum \frac{g(n)}{n^s}$ est convergente absolument pour Re(s) > 1, car g bornée donc la convergence est absolue.

Fixos alors Re(s) > 1 et $\epsilon > 0$, il existe $F \subset \mathbb{N}^*$ fini tel que :

$$\left| f(s) - \sum_{n \in F'} \frac{g(n)}{n^s} \right| < \epsilon$$

pour tout F' fini tel que $F \subset F' \subset \mathbb{N}^*$.

Puisque F est fini, on peut dire que les facteurs premiers de $n \in F$ sont dans S_m pour un ceratin m, donc quitte à prendre $l \ge m$ on déduit en que :

$$\left| f(s) - \prod_{p \in S_l} \sum_{k \ge 0} \frac{g(p^k)}{p^{ks}} \right| = \left| f(s) - \sum_{n \in N(S_l)} \frac{g(n)}{n^s} \right| < \epsilon$$

Remark. Remarquons bien que $F \subset N(S_l)$

Il nous reste qu'à prouver que le produit converge absolument, c'est une application directe du lemme 9. \Box

Corollary 16. $\forall s \in \mathbf{C} \ avec \ \operatorname{Re} s > 1 \ on \ a$:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\substack{p \text{ premier}}} \frac{1}{1 - p^{-s}}$$

Proof. Il suffit d'appliquer la proposition précédente dans le cas g=1

Corollary 17. Soit Re(s) > 1 on $a \zeta(s) \neq 0$

Proof. Par la convergence absolue de produit on déduit le résultats.

Corollary 18. On a

$$\sum_{p \in \mathbb{P}} \frac{1}{p^s} \sim_{Re(s) > 1, s \to 1} Log(\frac{1}{s-1})$$

Proof. Par la proposition (12), et comme Log est la détermination principale du logarithme on en déduit qu'au voisinage de s = 1 avec Re(s) > 1 on a :

$$Log(\zeta(s)) = Log(\frac{1}{s-1}(1 + (s-1)\psi(s))) \sim Log(\frac{1}{s-1})$$

D'autre part, dans un voisinage de s = 1 et Re(s) > 1 on a :

$$Log(\zeta(s)) = -\sum_{p \in \mathbb{P}} Log(1 - p^{-s}) = \sum_{p \in \mathbb{P}} \sum_{k \geq 1} \frac{p^{-ks}}{k} = \sum_{p \in \mathbb{P}} p^{-s} + \sum_{p \in \mathbb{P}} \sum_{k \geq 2} \frac{p^{-ks}}{k}$$

(Car si Re(s)>1 alors $|p^{-s}|\leq \frac{1}{2}$ donc la détermination principale de $Log(1-p^{-s})$ est donnée par la série entière habituelle.)

Il est évident de remarquer que la série

$$\sum_{p \in \mathbb{P}} \sum_{k > 2} \frac{p^{-ks}}{k}$$

est bornée lorsque $s \to 1$ tel que Re(s) > 1, il suffit de majorer grossièrement.

$$\left|\sum_{p\in\mathbb{P}}\sum_{k\geq 2}\frac{p^{-ks}}{k}\right|\leq \sum_{p\in\mathbb{P}}\left|\sum_{k\geq 2}\frac{p^{-ks}}{k}\right|\leq \sum_{p\in\mathbb{P}}\sum_{k\geq 2}\left|\frac{p^{-ks}}{k}\right|\leq \sum_{p\in\mathbb{P}}\sum_{k\geq 2}\left|p^{-ks}\right|\leq \sum_{p\in\mathbb{P}}\sum$$

Donc

$$\sum_{p \in \mathbb{P}} p^{-s} = Log(\zeta(s)) - \sum_{p \in \mathbb{P}} \sum_{k \ge 2} \frac{p^{-ks}}{k} \sim Log(\frac{1}{s-1})$$

Théorème des nombres premiers

On définit la première fonction de Tchebychev $\nu(x) := \sum_{p \leq x} log(p)$

Proposition 19 (Tchebychev). Pour tout x > 0 On a

$$\nu(x) \le ax$$

pour une certaine constante a.

Proof. Soit p un nombre premier tel que n . Puisque <math>p divise (2n)! et ne divise pas n!, on déduit que p divise $\binom{2n}{n}$ et en particulier $\prod_{n divise <math>\binom{2n}{n}$, donc

$$= \prod_{n$$

En particulier

$$e^{\nu(2n)-\nu(n)} < 4^n$$

Donc

$$\nu(2n) - \nu(n) \le nlog(4)$$

En particulier pour $n = 2^{m-1}$

$$\nu(2^m) - \nu(2^{m-1}) \le 2^m \log(2)$$

En sommant l'inégalité m = 1, 2, ..., n on a donc :

$$\nu(2^n) < 2^{n+1}log(2)$$

D'autre part, pour chaque x>1, il existe un entier $n\in\mathbb{N}$ tel que $2^{n-1}\leq x<2^n$ d'où

$$\nu(x) \le \nu(2^n) \le 2^{n-1} 4\log(2) \le 4x\log(2)$$

Soit $s \in \mathbb{C}$, par le critère de Bertrand, la série $\Psi(s) := \sum_{p} \frac{\log(p)}{p^s}$ est convergent et holomorphe dans le demi-plan Re(s) > 1 et on a la proposition suivante.

Lemma 20. Soit $s \in \mathbb{C}$ avec Re(s) > 1, on a

$$-\frac{\zeta'(s)}{\zeta(s)} = \Psi(s) + \sum \frac{\log(p)}{p^s(p^s - 1)}$$

Proof. Soit Re(s) > 1, Par le produit d'Euler,

$$Log(\zeta(s)) = -\sum_{p \in \mathbb{P}} Log(1 - p^{-s})$$

On dérive

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{p \in \mathbb{P}} \frac{log(p)}{p^s - 1} = \Psi(s) + \sum_{p \in \mathbb{P}} \frac{log(p)}{p^s(p^s - 1)}$$

Remark. Á partir du lemme, nous remarquons que Ψ se prolonge en une fonction méromorphe dans le demi-plan $Re(s) > \frac{1}{2}$ avec des pôles en s=1 et en les zéros de la fonction zeta $\zeta(s)$. De plus, puisque la fonction $\zeta(s)$ est holomorphe sur Re(s) > 1 alors elle ne s'annule pas dans ce demi-plan.

Lemma 21.

$$\Psi(s) - \frac{1}{s-1}$$

se prolonge en une fonction holomorphe sur $Re(s) \ge 1$

Proof. Pour prouver ce lemme, il suffit de démontrer que la fonction zeta $\zeta(s)$ ne s'annule pas sur la droite Re(s)=1. On va raisonner par l'absurde. Supposons qu'il exsite $t\neq 0$ tel que $\zeta(1+it)=0$ et notons n>0 l'ordre de ce zéro et $m\geq 0$ l'ordre d'annulation de ζ en 1+2it.

Par le lemme précédent, on en déduit facilement que :

$$\lim_{\epsilon \to 0} \Psi(1+\epsilon) = 1$$
$$\lim_{\epsilon \to 0} \Psi(1+\epsilon \pm it) = -n$$
$$\lim_{\epsilon \to 0} \Psi(1+\epsilon \pm 2it) = -m$$

Quitte à remarquer que

$$\sum_{p} \frac{\log(p)}{p^{1+\epsilon}} (p^{yi/2} + p^{-yi/2})^4 = \sum_{l=-2}^{2} {2+l \choose 4} \Psi(1+\epsilon+iyl)$$

et en multipliant par $\epsilon > 0$ puis en passant à la limite on en déduit que

$$6 - 8n - 2m > 0$$

ce qui contredit le fait que n > 0.

Remark. On a $\operatorname{res}_{s=1} \Psi(s) = 1$ il suffit de remplacer la fonction zéta par $\frac{1}{s-1} + \psi(s)$.

Figure 2: Contour

Theorem 22 (Taubérien d'Ikehara). Soit $f: R_+ \longrightarrow R$ une fonction bornée continue par morceaux, et supposons que sa transformée de Laplace $g(s) = \int_0^\infty f(t)e^{-st}dt$ se prolonge en une fonction holomorphe g(s) sur le demi plan $Re(s) \ge 0$, ce qui signifie qu'il existe un ouvert $U, \{Re(s) \ge 0\} \subset U$ tel que g(s) soit holomorphe sur U. Alors l'intégrale $\int_0^\infty f(t)dt$ converge et est égale à g(0).

Proof. Notons C la frontière de $\Omega := \{s \in \mathbb{C} | Re(s) \geq -\delta, |s| \leq R\}$. On fixe R assez grand. On choisit $\delta > 0$ tel que g soit holomorphe sur Ω .

On introduit les trois fonctions :

$$h_T(s) = \int_0^T f(t)e^{-st}dt \ et \ u_T(s) = e^{sT}h_T(s)(\frac{1}{s} + \frac{s}{R^2}) \ et \ v_T(s) = e^{sT}g(s)(\frac{1}{s} + \frac{s}{R^2})$$

La fonction h est holomorphe sur \mathbb{C} , u_T est holomorphe sur \mathbb{C}^* et v_T est holomorphe sur U^* . Par le théorème des résidus, on a :

$$\int_C (u_T(s) - v_T(s))ds = 2i\pi(h_T(0) - g(0))$$

D'autre part

$$\int_{C} (u_{T}(s) - v_{T}(s))ds = \int_{C} (u_{T}(s) - v_{T}(s))ds + \int_{C} u_{T}(s)ds - \int_{C} v_{T}(s)ds$$

Remark. $C_+:=\{Re(s)\geq 0\}\cap C\ et\ C_-:=\{Re(s)< 0\}\cap C,\ où\ C:=\partial\Omega$

Étude sur C_+ : Soit $s \in C_+$,

$$|u_T(s) - v_T(s)| = \left| e^{Ts} \left(\frac{1}{s} + \frac{s}{R} \right) (h_T(s) - g(s)) \right|$$

Or

$$|h_T(s) - g(s)| \le M \frac{e^{-Tx}}{x}$$

où $M := \sup |f|$ et x = Re(s). En particulier :

$$|u_T(s) - v_T(s)| \le \frac{2M}{R^2}$$

Et donc

(1)
$$\int_{C_{+}} |u_{T}(s) - v_{T}(s)| \le \frac{2\pi M}{R}$$

Etude sur C_{-} : Nous rappelons que sur deux chemins homotopes, la valeur de l'intégrale d'une fonction holomotphe sur ses deux chemins, est la même.

Puisque u est holomorphe sur \mathbb{C}^* et que le chemin qui parcourt C_- est homotope au demicercle qui complète C_+ dans \mathbb{C}^* , donc l'intégrale sur ces deux chemins sont égales. Notons Δ_R le chemin construit, on a alors :

$$\int_{C_{-}} u_{T}(s) = \int_{\Delta_{R}} h_{T}(s) ds$$

Soit alors $s \in \Delta_R$ on a :

$$|h_T(s)| \le M \frac{e^{-Tx} - 1}{-x}$$

où x = Re(s) < 0

Donc

$$|u_T(s)| \le \frac{2M}{R^2}$$

En particulier

$$\int_{C_{-}} |u_{T}(s)| \le \frac{2\pi M}{R}$$

Il nous reste à étudier la dernière intégrale $\int_{C_-} v_T(s) ds$. Pour cela, on applique la théorème de convergence dominée à $v_T(s)$. En effet, soit γ le chemin qui paramètre notre C_- , elle est de classe C^1 par morceaux sur [0,1] donc γ' continue par morceaux sur [0,1] donc bornée. Notons $m := \sup |\gamma'(t)|$. D'autre part, on a :

$$\int_{C} v_{T}(s)ds = \int_{0}^{1} e^{T\gamma(t)} g(\gamma(t)) \left(\frac{1}{\gamma(t)} + \frac{\gamma(t)}{R^{2}}\right) \gamma'(t)dt$$

Donc

$$\left| \int_{C_{-}} v_{T}(s)ds \right| \leq \int_{0}^{1} \left| e^{T\gamma(t)}g(\gamma(t)) \left(\frac{1}{\gamma(t)} + \frac{\gamma(t)}{R^{2}}\right)\gamma'(t) \right| dt$$

$$\leq m \int_{0}^{1} e^{TRe(\gamma(t))} |g(\gamma(t))| \left(\frac{1}{|\gamma(t)|} + \frac{|\gamma(t)|}{R^{2}}\right) dt$$

Puisque $\forall t \in [0,1] \ Re(\gamma(t)) < 0 \ \text{on a alors} \ \forall T > 0$

$$e^{TRe(\gamma(t))}|g(\gamma(t))|(\frac{1}{|\gamma(t)|}+\frac{|\gamma(t)|}{R^2})\leq |g(\gamma(t))|(\frac{1}{|\gamma(t)|}+\frac{|\gamma(t)|}{R^2})$$

la dernière fonction est intégrable sur [0,1] car elle est y défnie continue par morceaux sur [0,1]. D'autre part on a

$$e^{TRe(\gamma(t))}|g(\gamma(t))|(\frac{1}{|\gamma(t)|} + \frac{|\gamma(t)|}{R^2}) \xrightarrow[T \to +\infty]{} 0$$

Par le théorème de convergence dominée, on en déduit que

$$\int_{C} v_{T}(s)ds \underset{T \longrightarrow +\infty}{\longrightarrow} 0$$

Conclusion

$$|2i\pi(h_T(0) - g(0))| \le \int_C |(u_T(s) - v_T(s))| ds$$

$$\le \int_{C_+} |u_T(s) - v_T(s)| ds + \int_{C_-} |u_T(s)| ds + \int_{C_-} |v_T(s)| ds$$

$$\le \frac{4\pi M}{R} + \int_{C_-} |v_T(s)| ds$$

En combinant tous les majoration on obtient,

$$\forall \epsilon > 0, \exists R_0 > 0, \forall R > R_0, (\mathbf{1}) < \epsilon \text{ et } (\mathbf{2}) < \epsilon$$

De meme on a

$$\forall \epsilon > 0, \exists R_0, T_0 > 0, \forall R, T > R_0, T_0, (3) < \epsilon$$

D'où

$$|h_T(0) - g(0)| < 3\epsilon$$

Remark. Pour voir les différentes versions de ce théorème, le lecteur peut consulter la référence [1]

Lemma 23. Pour Re(s) > 1, on a

$$\int_0^\infty \nu(e^t)e^{-st}dt = \frac{\Psi(s)}{s}$$

Proof. Commençons par vérifier que l'intégrale est convergente. Elle l'est par la majoration de ν (19).

Pout tout $t \in [log(p_n), log(p_{n+1})]$, on a $\nu(e^t) = \nu(p_n)$. De plus, on a :

$$\int_{log(p_n)}^{log(p_{n+1})} \nu(e^t)e^{-st}dt = \frac{1}{s}\nu(p_n)(p_n^{-s} - p_{n+1}^{-s})$$

Donc

$$\int_0^\infty \nu(e^t)e^{-st}dt = \frac{1}{s}\sum_{n=1}^\infty \nu(p_n)(p_n^{-s} - p_{n+1}^{-s}) = \frac{\Psi(s)}{s}$$

Lemma 24. Pour $Re(s) \ge 0$ On a

$$\int_0^\infty (\nu(e^t)e^{-t} - 1)e^{-st}dt = \frac{\Psi(s+1)}{s+1} - \frac{1}{s}$$

Proof. Calcul élémentaire

Corollary 25. $\int_0^\infty (\nu(e^t)e^{-t} - 1)e^{-st}dt$ est holomorphe sur $Re(s) \ge 0$

Proof. On remarque que

$$\frac{\Psi(s+1)}{s+1} - \frac{1}{s} = \frac{1}{s+1}(\Psi(s+1) - \frac{1}{s}) - \frac{1}{s+1}$$

Par le lemme précédent et le lemme 21 on en déduit le résultat.

Lemma 26. L'intégrale $\int_1^{+\infty} \frac{\nu(t)-t}{t^2} dt$ est convergente.

Proof. En utilisant le théorème Tauberien à $f(t) = \nu(e^t)e^{-t} - 1$ qui est bornée par la majoration de ν , et par le corollaire précédent, on en déduit que $g(s) = \int_0^\infty (\nu(e^t)e^{-t} - 1)e^{-st}dt$ se prolonge en une fonction holomorphe sur $Re(s) \geq 0$ donc

$$\int_0^\infty f(t)dt$$

converge. Puisque $t \longrightarrow e^t$ est un C^{∞} -difféomorphisme de $[0, +\infty[$ de $[1, +\infty[$, on déduit que par un changement de variable, on obtient :

$$\int_0^\infty f(t)dt = \int_1^{+\infty} \frac{\nu(t) - t}{t^2} dt$$

Proposition 27. Soit $h: \mathbb{R}_{\geq 1} \longrightarrow \mathbb{R}$ une fonction croissante et supposons que l'intégrale $\int_1^\infty \frac{h(t)-t}{t^2}$ est convergente, alors $h(x) \sim x$

Proof. Raisonnons par l'absurde et supposons que $\frac{h(x)}{x}$ ne converge pas vers 1. Soit alors c une constante telle qu'il existe des $x \in \mathbb{R}$ arbitrairement grands avec $\frac{h(x)}{x} > c$. Puisque h(x) croissante, on trouve

$$\int_{x}^{cx} \frac{h(t) - t}{t^2} \ge \int_{x}^{cx} \frac{cx - t}{t^2} = \int_{1}^{c} \frac{c - t}{t^2} > 0$$

pour x assez grand, on trouve $0 \ge \int_1^c \frac{c-t}{t^2} > 0$ ce qui est une contradiction.

De même si c < 1 on trouve :

$$\int_{cx}^{x} \frac{h(t) - t}{t^2} \ge \int_{cx}^{x} \frac{cx - t}{t^2} = \int_{c}^{1} \frac{c - t}{t^2} < 0$$

Corollary 28. On a $\nu(x) \sim x$

Theorem 29. On a $\#\{p \in \mathbb{P} | p \leq x\} =: \pi(x) \sim \frac{x}{\log(x)}$

Proof. Commençons par remarquer que

$$\nu(x) \le \pi(x)log(x)$$

De plus, pour chaque $1 > \epsilon > 0$ on a :

$$\begin{split} \nu(x) &\geq \nu(x) - \nu(x^{1-\epsilon}) \\ &\geq (1-\epsilon)log(x) \sum_{x^{1-\epsilon}$$

Ainsi

$$\pi(x) \le \frac{1}{1 - \epsilon} \frac{\nu(x)}{\log(x)} + x^{1 - \epsilon}$$

Donc pour tout $1 > \epsilon > 0$ on a :

$$\frac{\nu(x)}{x} \le \frac{\pi(x)log(x)}{x} \le \frac{1}{1-\epsilon} \frac{\nu(x)}{x} + \frac{log(x)}{x^{\epsilon}}$$

Puisque $\nu(x) \sim x$ on déduit que :

$$\pi(x) \sim \frac{x}{\log(x)}$$

Exercice 1: Soit f une fonction continue definie sur \mathbb{C} à valeurs dans \mathbb{C} et qui satisfait les conditions suivantes :

- i) f(1) > 0
- ii) f(x+y) = f(x)f(y) pour tout $x, y \in \mathbb{C}$
- Démontrer qu'il existe a > 0 tel que $f(z) = a^z$

Exercice 2:[Rivoal] Prouver l'équivalence suivante : $d_n \sim e^n$

Problème:

Soit n un entier naturel et on pose $d_n = ppcm(1, 2, ..., n)$. Le but de ce problème c'est de prouver que la série de terme général $\frac{1}{d_n}$ est irrationnelle.

- 1) Prouver que la série de terme général $\frac{1}{d_n}$ est convergente.
- 2) Prouver que la série $\sum_{p} \frac{(-1)^{\frac{p-1}{2}}}{p}$ est convergente, ensuite en utilisant la divergence de la série $\sum_{p} \frac{1}{p}$ démontrer qu'il existe une infinité de nombres premiers de la forme 4k+1 et 4K+3
- 3) Rappelons le postulat de Bertrand : pour tout n > 1, il existe un nombre premier p tel que

$$n$$

À l'aide du postulat de Bertrand et la question précédente, démontrer qu'il exite une infinité de n tels que

$$p_{n+1} - p_n < p_n - 1$$

- 4) Supposons que la série est rationnelle; c'est-à-dire que $\sum_n \frac{1}{d_n} = \frac{a}{b}$ pour certains $a, b \in \mathbb{N}^*$, et on pose $\sum_{i>1}^n \frac{1}{d_i} = \frac{a_n}{b_n}$.
- et on pose $\sum_{i>1}^n \frac{1}{d_i} = \frac{a_n}{b_n}$.

 i) Justifier pourquoi peut-on choisir des nombres premiers p_1, p_2, \dots tels que $b < p_1 < p_2 < \dots$ avec $p_{n+1} p_n < p_n 1$.
 - ii) Prouver que

$$\frac{a}{b} - \frac{a_{p_1 - 1}}{b_{p_1 - 1}} < \frac{1}{d_{p_1 - 1}}$$

iii) Conclure.

Conjecture 30. $\sum_n \frac{n}{d_n} \notin \mathbb{Q}$. Plus généralement, $\sum_n \frac{P(n)}{d_n} \notin \mathbb{Q}$ pour tout $P \in \mathbb{N}[X]$

Corrections des exercices

Exercice 1 On démontre par récurrence que $f(n) = (f(1))^n$ pour tout $n \in \mathbb{N}$. Ensuite, quitte à poser n par -n on déduit que l'égalité est vraie pour $n \in \mathbb{Z}$. De plus, quitte à écrire $1 = n \cdot \frac{1}{n}$ on déduit que l'égalité est valable pour $\frac{1}{n}$ et donc vraie sur \mathbb{Q} . Par continuité de f et la densité de \mathbb{Q} dans \mathbb{R} on en déduit que l'égalité est vraie sur \mathbb{R} puis en utilisant le theorème de prolongement analytique, on montre que l'égalité est vraie sur \mathbb{C}

Exercice 2 Soit p un nombre premier et x un réel, si $p^x = n$, alors :

$$x = \frac{\log(n)}{\log(p)}$$

Ainsi, $\lfloor x \rfloor = \left\lfloor \frac{\log(n)}{\log(p)} \right\rfloor$ est la plus grande puissance entière de p telle que $p^{\lfloor x \rfloor} < n$. Maintenant, soit l_1, l_2, \ldots, l_n des entiers positifs tels que :

$$l_i = p_1^{\alpha_{i,1}} p_2^{\alpha_{i,2}} \dots p_s^{\alpha_{i,s}}$$

Leur plus petit commun multiple (PPCM) est donné par :

$$lcm(l_1, l_2, \dots, l_n) = p_1^{m_1} p_2^{m_2} \dots p_s^{m_s}$$

avec $m_i = \max(\alpha_{i,j} \text{ pour } i = 1, \dots, n).$

En particulier, on a $l_i = i$, ce qui implique :

$$m_j = \left| \frac{\log(n)}{\log(p_j)} \right|$$

Nous avons:

$$d_n = \prod_{\substack{p \leq n \\ p \text{ est premier}}} p^{\left\lfloor \frac{\log(n)}{\log(p)} \right\rfloor}$$

D'autre part, nous avons :

$$\nu_2(n) := \sum_{p \le n} \left\lfloor \frac{\log(n)}{\log(p)} \right\rfloor \log(p) \sim \sum_{p \le n} \log(n) = \pi(n) \log(n) \sim n$$

De plus

$$d_n = e^{\nu_2(n)}$$

Remark. $\nu_2(n)$ s'appele la seconde fonction de Tchebychev

Remark. Cette équivalence est l'un des points crucial pour prouver le théorème de Rivoal-Ball $\dim_{\mathbb{Q}} \mathbb{Q}(\zeta(3), \zeta(5), ...) = +\infty$

Problème:

- 1. On a $d_n \ge n(n-1)$ donc la série converge.
- 2. Par le critère d'Abel, on en déduit facilement la convergence de la série.
- 3. Posons $A = \{4k+1|k\in\mathbb{N}\} \cap \mathbb{P}$ et $B = \{4k+3|k\in\mathbb{N}\} \cap \mathbb{P}$ on remarque $A\cup B = \mathbb{P}$ et $A\cap B = \emptyset$, donc $\sum_{p\in A\cup B}\frac{1}{p} = \sum_{p\in A}\frac{1}{p} + \sum_{p\in B}\frac{1}{p}$. D'autre part, $\sum_{p}\frac{(-1)^{\frac{p-1}{2}}}{p} = \sum_{p\in A}\frac{1}{p} \sum_{p\in B}\frac{1}{p}$. Maintenant si l'un des ensembles A ou B fini, on déduit que la série $\sum_{p}\frac{1}{p}$ converge ce qui est absurde donc les deux ensembles sont infinis.
- 4. Par le postulat de Bertrand, il existe une infinité de n tels que $p_{n+1}-p_n \le p_n-1$. D'autre part, puisque l'ensemble B est infini la dernière inégalité peut être choisie stricte .
- 5. D'après la question précédente, une telle suite existe.

6.

$$\frac{a}{b} - \frac{a_{p_1-1}}{b_{p_1-1}} = \sum_{i=p_1}^{\infty} \frac{1}{d_i} = \frac{1}{d_{p_1-1}} \sum_{i=1}^{\infty} \sum_{j=p_i}^{p_{i+1}-1} \frac{d_{p_1-1}}{d_j}$$

$$\leq \frac{1}{d_{p_1-1}} \sum_{i=1}^{\infty} \sum_{j=p_i}^{p_{i+1}-1} \frac{1}{p_1 p_2 \cdots p_i}$$
$$< \frac{1}{d_{p_1-1}} \sum_{i=1}^{\infty} \frac{p_i - 1}{p_1 p_2 \cdots p_i}$$

$$\leq \frac{1}{d_{p_1-1}}$$

7.

$$0 < d_{p_1 - 1} \frac{a}{b} - d_{p_1 - 1} \frac{a_{p_1 - 1}}{b_{p_1 - 1}} < 1$$

Or,

$$d_{p_1-1}\frac{a}{b} - d_{p_1-1}\frac{a_{p_1-1}}{b_{p_1-1}} \in \mathbb{N}$$

D'où la contradiction que l'on cherche.

References

- [1] Jan-Hendrik Evertse ,chapter 6, https://www.math.leidenuniv.nl/~evertsejh/ant13-6.pdf
- [2] Edwards, Riemann zeta function, http://www.stat.ucla.edu/~ywu/Riemann.pdf
- [3] D. J. Newman: Simple analytic proof of the prime number theorem. Amer. Math. Monthly
- [4] D. Zagier: Newman's short proof of the prime number theorem. Amer. Math. Monthly.