MAT 472 - Intermediate Real Analysis I

Instructor: Dr. Steven Kaliszewski Notes written by Brett Hansen

Contents

1	Week of August 21st, 2016 1.1 The Completeness Property of Real Numbers	2 2 2
2	Week of August 28th, 2016 2.1 Cardinality	2 2
3	Week of September 4th, 2016	3
4	Week of September 11th, 2016	3
5	Week of September 18th, 2016	3
6	Week of September 25th, 2016	3
7	Week of October 2nd, 2016	3
8	Week of October 9th, 2016	3
9	Week of October 16th, 2016	3
10	Week of October 23rd, 2016	3
11	Week of October 30th, 2016	3
12	Week of November 6th, 2016	3
13	Week of November 13th, 2016	3
14	Week of November 20th, 2016	3
15	Week of November 27th, 2016	3

1 Week of August 21st, 2016

1.1 The Completeness Property of Real Numbers

 \mathbb{R} and \mathbb{Q} are ordered fields.

- $|\mathbb{Q}| < |\mathbb{R}|$
- \mathbb{Q} is countable, \mathbb{R} is uncountable (cardinality)
- $x^2 2 = 0$ has solutions in \mathbb{R} but none in \mathbb{Q}
- \mathbb{R} has no gaps (order)

1.1.1 Axiom of Completeness

Every non-empty subset of \mathbb{R} that has an upper bound has a least upper bound. Along with the greatest lower bound, these bounds can be classified using the following definitions:

Definition 1 (Upper Bound). Let the set S be a non-empty subset of \mathbb{R} and suppose $b \in \mathbb{R}$. b is an upper bound of the set S if $\forall x \in S, \ x \leq b$.

Definition 2 (Lower Bound). Let the set S be a non-empty subset of \mathbb{R} and suppose $b \in \mathbb{R}$. b is a lower bound of the set S if $\forall x \in S, \ x \geq b$.

Definition 3 (Supremum). Let B be the set of upper bounds of the non-empty subset, S, of \mathbb{R} and suppose $b \in B$. If $\forall x \in B, b \leq x$, then b is the least upper bound of S, or *supremum* of S. This can be denoted as $\sup S = b$.

Definition 4 (Infinum). Let B be the set of lower bounds of the non-empty subset, S, of \mathbb{R} and suppose $b \in B$. If $\forall x \in B, \ b \geq x$, then b is the greatest lower bound of S, or *infinum* of S. This can be denoted as inf S = b.

Example.
$$A = [0, 2] \longrightarrow \sup A = 2$$

 $A = [0, 2) \longrightarrow \sup A = 2$

Definition 5 (Maximum). If the supremum of a set is also a member of the set, then the supremum is also the maximum.

2 Week of August 28th, 2016

2.1 Cardinality

Definition 6 (Finite). A set, S, is finite if $S = \emptyset$ or if there exists a bijection, $f : \{1, 2, \ldots, n\} \longrightarrow S$ for some $n \in \mathbb{N}$.

Definition 7 (Infinite). A set, S, is infinite if it is not finite.

For sets A and B, $A \sim B$ if there exists a bijection, $f: A \longrightarrow B$. \sim is an equivalence relation (symmetric, reflexive, and transitive).

Definition 8 (Finite). A set, S, is finite if $S = \emptyset$ or if $S \sim \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

Definition 9 (Countable). A set, S, is countable if $S \sim \mathbb{N}$.

Definition 10 (Uncountable). A set, S, is uncountable if it is infinite but not countable.

Theorem. \mathbb{Q} is countable, but \mathbb{R} is uncountable.

Proof. \mathbb{R} is uncountable.

Suppose it is not, and so \mathbb{R} is either countable or finite. It is not finite, but this will be left unproven. So then there must exist a function, $f: \mathbb{N} \longrightarrow \mathbb{R}$ that is one-to-one and onto. Choose a closed and bounded interval, I, that doesn't contain f(1). Recursively construct a closed and bounded interval, I_n , $n \in \mathbb{N}$ with $I_n \geq I_{n+1}$ and $f(n) \in I_n \ \forall n$. By the nested interval property, $\bigcup_{n \in \mathbb{N}} (I_n) \neq \emptyset$. Now choose $x \in \bigcup_{n \in \mathbb{N}} (I_n)$ and note that $f(x) \neq x \ \forall n$. This is a contradiction and thus \mathbb{R} is uncountable.

Theorem. Suppose A_n is countable $\forall n \in \mathbb{N}$. Then,

- i) $\bigcup_{n=1}^{N} (A_n)$ is countable $\forall N \in \mathbb{N}$ (finite union of countable sets is countable), and
- ii) $\bigcup_{n\in\mathbb{N}}(A_n)$ is also countable (countable union of countable sets is countable).

Proof. (?)

i) First, we know that $A_1 \cup A_2$ is countable. Equivalently, $\{\text{evens}\} \cup \{\text{odds}\} \sim \mathbb{N} \text{ or } f: A_1 \longrightarrow \mathbb{N} \longrightarrow \{\text{evens}\}$ and $g: A_2 \longrightarrow \mathbb{N} \longrightarrow \{\text{odds}\}$. Thus, if $h: A_1 \cup A_2 \longrightarrow \mathbb{N}$, then $h(x) = \{f^{\sim}(f(x)) \mid x \in A_1, g^{\sim}(g(x)) \mid x \in A_2\}$.

- ii) $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$
- 3 Week of September 4th, 2016
- 4 Week of September 11th, 2016
- 5 Week of September 18th, 2016
- 6 Week of September 25th, 2016
- 7 Week of October 2nd, 2016
- 8 Week of October 9th, 2016
- 9 Week of October 16th, 2016
- 10 Week of October 23rd, 2016
- 11 Week of October 30th, 2016
- 12 Week of November 6th, 2016
- 13 Week of November 13th, 2016
- 14 Week of November 20th, 2016
- 15 Week of November 27th, 2016