Graph Theory Theorems, Lemmas, and Corollaries

Week 1

Theorem 1

Let G be a graph of size m, then $\sum_{v \in V} d(v) = 2m$.

中文解释

设 G 是一个边数为 m 的图,则所有顶点的度数之和为 2m。

Corollary 1

In any graph, the number of vertices of odd degree is even.

中文解释

在任何图中,奇数度顶点的数量是偶数。

Theorem 2

Let G be a graph with $\delta(G) \geq 2$. Then G contains a cycle.

中文解释

设 G 是一个最小度数不小于 2 的图,则 G 包含一个环。

Theorem 3

Any simple graph G with $\sum_{v \in V} {d(v) \choose 2} > {n \choose 2}$ contains a quadrilateral.

中文解释

任何简单图 G 如果满足 $\sum_{v \in V} {d(v) \choose 2} > {n \choose 2}$, 则 G 包含一个四边形。

Proposition 1

Let G[X,Y] be a bipartite graph without isolated vertices such that $d(x) \geq d(y)$ for all $xy \in E(G)$, where $x \in X$ and $y \in Y$. Then $|X| \leq |Y|$, with equality if and only if d(x) = d(y) for all $xy \in E(G)$.

中文解释

设 G[X,Y] 是一个没有孤立顶点的二分图,且对于所有 $xy \in E(G)$ 有 $d(x) \ge d(y)$,其中 $x \in X$, $y \in Y$ 。则 $|X| \le |Y|$,且当且仅当对于所有 $xy \in E(G)$ 有 d(x) = d(y) 时取等号。

Theorem 4

If T is a tree, then e(T) = v(T) - 1.

中文解释

如果 T 是一棵树,则 T 的边数等于顶点数减一。

Theorem 5

A graph is connected if and only if it has a spanning tree.

中文解释

图是连通的当且仅当它有一个生成树。

Theorem 6

A graph G is bipartite if and only if it contains no odd cycle.

图 G 是二分图当且仅当它不包含奇数长度的环。

Proposition 2

In a tree, any two vertices are connected by exactly one path.

中文解释

在一棵树中,任意两个顶点之间恰好有一条路径。

Week 2

Theorem 7

Let T be a BFS-tree of a connected graph G, with root r. Then 1. For any $v \in V(G)$, $\ell(v) = d_T(v, r)$. 2. For any $uv \in E(G)$, $|\ell(u) - \ell(v)| \le 1$.

中文解释

设 T 是连通图 G 的一个BFS树,根为 r。则: 1. 对于任何 $v \in V(G)$, $\ell(v) = d_T(v,r)$ 。 2. 对于任何 $uv \in E(G)$, $|\ell(u) - \ell(v)| \le 1$ 。

Theorem 8

Let T be a BFS-tree of a connected graph G, with root r, and $\ell(v)$ be the level function by BFS algorithm. Then $\ell(v) = d_G(v, r)$ for all $v \in V(G)$.

中文解释

设 T 是连通图 G 的一个BFS树,根为 r,且 $\ell(v)$ 是BFS算法的层次函数。则对所有 $v \in V(G)$,有 $\ell(v) = d_G(v, r)$ 。

Theorem 9

Let T be a DFS-tree of a connected graph G. The root r of T is a cut vertex of G if and only if it has at least two children. Any other vertex v of

T is a cut vertex of G if and only if it has a child no descendant of which is adjacent to a proper ancestor of the vertex v.

中文解释

设 T 是连通图 G 的一个DFS树。T 的根 r 是 G 的割项,当且仅当它至少有两个子节点。对于 T 的其他项点 v,当且仅当它有一个子节点,其所有后代都不与 v 的适当祖先相邻时,v 才是 G 的割项。

Theorem 10 (Cayley's Formula)

The number of labelled trees on n vertices is n^{n-2} .

中文解释

有 n 个顶点的标记树的数量是 n^{n-2} 。

Proposition 3

Let u and v be two vertices of G, with f(u) < f(v). 1. If $uv \in E(G)$, then $\ell(v) < \ell(u)$. 2. u is an ancestor of v in T if and only if $\ell(v) < \ell(u)$.

中文解释

设 u 和 v 是图 G 的两个顶点,且 f(u) < f(v)。 1. 如果 $uv \in E(G)$,则 $\ell(v) < \ell(u)$ 。 2. u 是 T 中 v 的祖先,当且仅当 $\ell(v) < \ell(u)$ 。

Proposition 4

Let G be a graph and e an edge of G. Then $t(G) = t(G \setminus e) + t(G/e)$.

中文解释

设 G 是一个图, e 是 G 的一条边。则 $t(G) = t(G \setminus e) + t(G/e)$ 。

Week 3

Theorem 11

Every J-P tree is an optimal tree.

中文解释

每个J-P树都是最优树。

Theorem 12

Let G be a graph with a Hamilton cycle. Then for any $S\subseteq V(G)$, $\omega(G-S)\leq |S|$.

中文解释

设 G 是一个包含哈密顿环的图。则对于任意 $S\subseteq V(G)$,有 $\omega(G-S)\le |S|$ 。

Theorem 13 (Dirac)

Let G be a simple graph of order $n \geq 3$. If $\delta(G) \geq n/2$, then G is Hamiltonian.

中文解释

设 G 是一个阶数为 $n \ge 3$ 的简单图。如果 $\delta(G) \ge n/2$,则 G 是哈密顿图。

Week 4

Theorem 14 (Ore's Theorem)

Let G be a simple graph of order n. If $\sigma_2(G) \geq n$, then G is Hamiltonian. 1. $\sigma_2(G) = \min\{d(u) + d(v) : uv \notin E(G)\}$.

设 G 是一个阶数为 n 的简单图。如果 $\sigma_2(G) \ge n$,则 G 是哈密顿图。 1. $\sigma_2(G) = \min\{d(u) + d(v) : uv \notin E(G)\}$ 。

Lemma 1

Let G be a simple graph and let u and v be nonadjacent vertices in G such that $d(u) + d(v) \ge n$. Then G is Hamiltonian if and only if G + uv is Hamiltonian.

中文解释

设 G 是一个简单图,且 u 和 v 是图 G 中不相邻的顶点,满足 $d(u)+d(v)\geq n$ 。则 G 是哈密顿图当且仅当 G+uv 是哈密顿图。

Lemma 2

The closure of a graph is well defined.

中文解释

图的闭包是良好定义的。

Theorem 15

A simple graph G is Hamiltonian if and only if its closure $\mathrm{cl}(G)$ is Hamiltonian.

中文解释

简单图 G 是哈密顿图当且仅当其闭包 $\operatorname{cl}(G)$ 是哈密顿图。

Lemma 3

Let G be a simple graph and let u and v be nonadjacent vertices in G such that $d(u) + d(v) \ge n - 1$. Then G has a Hamiltonian path if and only if G + uv has a Hamiltonian path.

设 G 是一个简单图,且 u 和 v 是图 G 中不相邻的顶点,满足 $d(u)+d(v)\geq n-1$ 。则 G 有哈密顿路径当且仅当 G+uv 有哈密顿路径。

Theorem 16 (Chvátal and Erdős's Theorem)

Let G be a simple graph of order at least 3. If $\alpha(G) \leq \kappa(G)$, then G is Hamiltonian. 1. $\alpha(G)$ is the independence number. 2. $\kappa(G)$ is the connectivity.

中文解释

设 G 是一个阶数至少为3的简单图。如果 $\alpha(G) \leq \kappa(G)$,则 G 是哈密顿图。 1. $\alpha(G)$ 是独立数。 2. $\kappa(G)$ 是连通度。

Week 5

Theorem 17

A graph G with at least three vertices is 2-connected if and only if any two vertices are connected by at least two internally disjoint paths.

中文解释

一个至少有三个顶点的图 G 是2-连通的,当且仅当任意两个顶点由至少两条内点不相交的路径连接。

Corollary 1

If G is 2-connected, then any two vertices of G lie on a common cycle.

中文解释

如果图 G 是2-连通的,则 G 的任意两个顶点都在一个公共的环上。

Theorem 18 (Brooks' Theorem)

Let G be a connected graph with $\Delta(G) = \Delta$. If G is neither an odd cycle nor a complete graph, then $\chi(G) \leq \Delta$.

中文解释

设 G 是一个连通图,且 $\Delta(G)=\Delta$ 。如果 G 既不是奇数环也不是完全 图,则 $\chi(G)\leq\Delta$ 。

Proposition 6

Let G be a connected graph of order n. Then $\chi(G) \geq \frac{n}{\alpha(G)}$.

中文解释

设 G 是一个阶数为 n 的连通图,则 $\chi(G) \geq \frac{n}{\alpha(G)}$ 。

Theorem 19

If G is k-critical, then $\delta(G) \geq k - 1$.

中文解释

如果图 G 是 k-关键图,则 $\delta(G) \ge k-1$ 。

Theorem 20

If G is k-critical, then G has no clique cut.

中文解释

如果图 G 是 k-关键图,则 G 没有团割集。

Corollary 2

If G is k-critical, then G has no cut vertices.

如果图 G 是 k-关键图,则 G 没有割顶。

Proposition 7

Let G be a connected graph with clique number k, that is, the number of vertices of a maximum complete graph in G. Then $\chi(G) \geq k$.

中文解释

设 G 是一个团数为 k 的连通图,即 G 中最大的完全图的顶点数,则 $\chi(G) \geq k$ 。

Theorem 21

For any positive integer k, there is a triangle-free k-chromatic graph.

中文解释

对于任意正整数 k,存在一个无三角形的 k-色图。

Week 7

Theorem 21

If G is a bipartite graph with $\Delta(G) = \Delta$, then $\chi'(G) = \Delta$.

中文解释

如果 G 是一个二分图且最大度数为 Δ ,则 $\chi'(G) = \Delta$ 。

Theorem 22 (Vizing's Theorem)

For any simple graph G with $\Delta(G) = \Delta$, $\chi'(G) \leq \Delta + 1$.

中文解释

对于任意简单图 G,如果最大度数为 Δ ,则 $\chi'(G) \leq \Delta + 1$ 。

Lemma 4

Let G be a simple graph with $\Delta(G) = \Delta$, v a vertex of G, e an edge of G incident to v, and k an integer, $k \geq \Delta$. Suppose that G has a k-edge-coloring c for which every neighbor of v in G has at least one available color. Then G is k-edge-colorable.

中文解释

设 G 是一个最大度数为 Δ 的简单图,v 是 G 的一个顶点,e 是 G 中与 v 相邻的边,且 k 是一个不小于 Δ 的整数。假设 G 有一个 k-边染色 c,其中 G 中 v 的每个邻居至少有一种可用颜色。则 G 是 k-边可染的。

Proposition 8

Let G be a connected graph with $\Delta(G) = \Delta$. Then $\chi'(G) \geq \Delta$.

中文解释

设 G 是一个最大度数为 Δ 的连通图。则 $\chi'(G) \geq \Delta$ 。

Week 8

Theorem 23 (Jordan Curve Theorem)

Any simple closed curve C in the plane partitions the rest of the plane into two disjoint arcwise-connected open sets.

中文解释

平面上的任何简单闭曲线 C 将平面的其余部分划分为两个不相交的弧连通开集。

Theorem 24

 K_5 is nonplanar.

 K_5 不是平面图。

Theorem 25 (Kuratowski's Theorem)

A graph is planar if and only if it contains no subdivision of either K_5 or $K_{3,3}$.

中文解释

图是平面图当且仅当它不包含 K_5 或 $K_{3,3}$ 的任何细分。

Theorem 26 (Euler's Formula)

For a connected plane graph, v(G) + f(G) - e(G) = 2.

中文解释

对于连通平面图,顶点数与面数之和减去边数等于2。

Proposition 9

A graph G is planar if and only if every subdivision of G is planar.

中文解释

图 G 是平面图当且仅当 G 的每个细分都是平面图。

Proposition 10

If G is a plane graph of size m, then $\sum_{f \in F} d_G(f) = 2m$.

中文解释

如果 G 是一个大小为 m 的平面图,则所有面的度数之和为 2m。

Week 9

Theorem 27 (Kempe's Theorem)

Let G be a smallest counterexample to 4CC. Then G has no vertex of degree four.

中文解释

设 G 是四色问题的最小反例,则 G 中没有度数为4的顶点。

Theorem 28 (Heawood's Theorem)

Every loopless planar graph is 5-colorable.

中文解释

每个无自环的平面图是5-可着色的。

Proposition 11

Let G be a smallest counterexample to the 4CC. Then: 1. G is 5-critical; 2. G is a triangulation; 3. G has no vertex of degree less than four.

中文解释

设 G 是四色问题的最小反例,则: 1. G 是5-关键图; 2. G 是三角剖分图; 3. G 中没有度数小于4的顶点。

Corollary 12

Every loopless planar graph is 5-list-colorable.

中文解释

每个无自环的平面图是5-列表可着色的。

Corollary 13

Every loopless planar graph is 5-colorable.

中文解释

每个无自环的平面图是5-可着色的。

Week 10-11

Theorem 29 (Ramsey's Theorem)

For any two integers $p,q\geq 2$, the Ramsey number R(p,q) is finite, and $R(p,q)\leq R(p-1,q)+R(p,q-1).$

中文解释

对于任意两个整数 $p,q\geq 2$,Ramsey数 R(p,q) 是有限的,并且 $R(p,q)\leq R(p-1,q)+R(p,q-1)$ 。

Theorem 30 (Erdős's Theorem, 1947)

For
$$p \ge 3$$
, $R(p, p) > 2^{p/2}$.

中文解释

对于 $p \geq 3$,Ramsey数 R(p,p) 大于 $2^{p/2}$ 。

Theorem 31 (Erdős and Szekeres's Theorem, 1935)

$$R(p+1,q+1) \le \binom{p+q}{p}.$$

中文解释

$$R(p+1,q+1) \le \binom{p+q}{p}$$

Theorem 32 (Graham and Rödl's Theorem, 1987)

$$R(p+1,q+1) \le \binom{p+q}{p} \log \log (p+q).$$

$$R(p+1, q+1) \le \binom{p+q}{p} \log \log (p+q)$$

Theorem 33 (Conlon's Theorem, 2009)

$$R(p+1, p+1) \le p^{-\log p/\log\log p} \binom{2p}{p}$$
 for some constant c .

中文解释

对于某个常数
$$c$$
,有 $R(p+1,p+1) \le p^{-\log p/\log\log p}\binom{2p}{p}$ 。

Theorem 34 (Sah's Theorem, 2023)

$$R(p+1,p+1) \le e^{-c(\log p)^2} {2p \choose p}$$
 for some constant c .

中文解释

对于某个常数
$$c$$
,有 $R(p+1,p+1) \le e^{-c(\log p)^2} \binom{2p}{p}$ 。

Theorem 35 (Campos, Griffiths, Morris, Sahasrabudhe, 2023)

 $R(p,p) \leq (4-\epsilon)^p$ for some constant ϵ and sufficiently large p.

中文解释

对于某个常数 ϵ 和足够大的 p,有 $R(p,p) \leq (4-\epsilon)^p$ 。

Theorem 36 (General Form of Ramsey's Theorem)

For any two positive integers r, k and any $q_1, q_2, \ldots, q_k \geq r$, there is N such that for any $n \geq N$ and any k-colorings of $[n]^{(r)}$, there exists some i with q_i -set $S_i \subseteq [n]$ such that S_i are in color i.

中文解释

对于任意两个正整数 r,k 和任意 $q_1,q_2,\ldots,q_k\geq r$,存在一个 N,使得对于 $n\geq N$ 和任意 k-种颜色的着色,存在某个 q_i -集合 $S_i\subseteq [n]$ 中的元素都为颜色 i。

Theorem 37 (Schur's Theorem, 1916)

For any given integer k, there exists N, such that if $n \geq N$, then for any k-colorings of [n], there exist $x, y, z \in [n]$ of the same color such that x + y = z.

中文解释

对于任意给定的整数 k, 存在 N, 使得如果 $n \ge N$, 则对于 [n] 的任意 k-种颜色的着色,存在 $x,y,z \in [n]$ 满足 x+y=z 且颜色相同。

Theorem 38 (Van der Waerden's Theorem, 1928)

For any two positive integers ℓ, k , there exists a positive integer W such that for any k-colorings of [W], there exists an arithmetic progression with ℓ terms of the same color.

中文解释

对于任意两个正整数 ℓ, k ,存在一个正整数 W,使得对于 [W] 的任意 k-种颜色的着色,存在一个长度为 ℓ 的等差数列,其所有项颜色相同。

Theorem 39 (Erdős-Szekeres Theorem, 1935)

Let m be a positive integer. Then there is a positive integer N such that for any N points lie in a plane so that no three points form a straight line, there have m points form a convex m-polygon.

中文解释

设 m 为正整数,则存在一个正整数 N,使得对于平面上任意 N 个点,如果没有任意三个点共线,则存在 m 个点组成一个凸 m-边形。

Theorem 40 (Chvátal's Theorem)

Let T_m be a tree of order m, and K_n a complete graph of order n, then $R(T_m, K_n) = (m-1)(n-1) + 1$.

设 T_m 为阶数为 m 的树, K_n 为阶数为 n 的完全图,则 $R(T_m,K_n)=(m-1)(n-1)+1$ 。

Theorem 41 (Burr's Theorem)

If H is a connected graph, and |H| is at least s(G), then $R(G,H) \ge (\chi(G)-1)(|H|-1)+s(G)$.

中文解释

如果 H 是连通图,且 |H| 至少为 s(G),则 $R(G,H) \geq (\chi(G)-1)(|H|-1) + s(G)$ 。

Week 12

Theorem 42 (Turán's Theorem)

Let G be a simple graph which contains no K_k , where $k \geq 2$. Then $e(G) \leq e(T_{k-1,n})$, with equality if and only if $G \cong T_{k-1,n}$.

中文解释

设 G 是一个不包含 K_k 的简单图,其中 $k \geq 2$ 。则 $e(G) \leq e(T_{k-1,n})$, 当且仅当 $G \cong T_{k-1,n}$ 时取等号。

Theorem 43 (Erdős' Theorem)

Let S be a set of diameter one in the plane. Then the number of pairs of points of S whose distance is greater than $\frac{1}{2}$ is at most $\left\lfloor \frac{n^2}{3} \right\rfloor$, where $n = |S| \geq 2$. Moreover, for each n, there is a set of n points of diameter one in which exactly $\left\lfloor \frac{n^2}{3} \right\rfloor$ pairs of points are at distance greater than $\frac{1}{2}$.

中文解释

设 S 是平面上直径为一的点集。则 S 中距离大于 $\frac{1}{2}$ 的点对数最多为 $\left\lfloor \frac{n^2}{3} \right\rfloor$,其中 $n=|S|\geq 2$ 。此外,对于每个 n,存在一个由 n 个点组成的直

径为一的点集,使得恰好有 $\left|\frac{n^2}{3}\right|$ 对点的距离大于 $\frac{1}{2}$ 。

Theorem 45 (Reiman's Theorem)

For all
$$n \ge 4$$
, $ex(n, C_4) < \frac{1}{4}n(1 + \sqrt{4n - 3})$.

中文解释

对于所有
$$n \ge 4$$
,有 $ex(n, C_4) < \frac{1}{4}n(1 + \sqrt{4n-3})$ 。

Theorem 46 (Füredi's Theorem)

For q>13, $ex(q^2+q+1,C_4)\leq \frac{1}{2}q(q+1)^2$, and the equality holds for all prime power q_\circ

中文解释

对于 q>13, 有 $ex(q^2+q+1,C_4)\leq \frac{1}{2}q(q+1)^2$, 且对于所有素数次幂 q 取等号。

Week 13-14

Theorem 47

Let \mathcal{F} be a decomposition of K_n into complete bipartite graphs. Then $k \geq n-1$.

中文解释

设 \mathcal{F} 是 K_n 分解成完全二分图的分解。则 $k \ge n-1$ 。

Theorem 48 (The Friendship Theorem)

Let G be a simple graph of order n in which any two vertices have exactly one common neighbor. Then G has a vertex of degree n-1.

设 G 是一个阶为 n 的简单图,其中任意两个顶点有且只有一个公共邻居。则 G 至少有一个度为 n-1 的顶点。

Theorem 49

Let A be the adjacency matrix of a graph G. The eigenvalues of A are the roots of the characteristic polynomial $P_G(x)$.

中文解释

设 A 是图 G 的邻接矩阵。A 的特征值是特征多项式 $P_G(x)$ 的根。

Lemma~1

A Moore graph is regular.

中文解释

Moore 图是正则图。