परमाणु एवं अणु Atom & Molecule

A doesn't cut is called Atom. जिसे काटा नहीं जा सकता। उसे परमाणु कहते हैं।

Atom

- (i) कन्नद (i) पाकुधा कत्यायाम (iii) डेमोक्रिटस एवं
- (iv) आंतवाँ एल० लावोजियर लियुसीपस

1.. प्रश्न-: रसायनिक संयोग के नियमों को लिखें।

उत्तर-फ्रांस के वैज्ञानिक आंतवां लावोजियर ने 18वीं सदीं में रसायनिक संयोग के दो महत्व पूर्ण नियमों का प्रतिपादन किया। दो या दो से अधिक पदार्थों के बीच में होने वाली रसायनिक अभिक्रियायें कुछ नियमों का पालन करते हैं। इन्हीं नियमों को रसायनिक संयोग का नियम कहते हैं। रसायनिक संयोग के पाँच नियम हैं।

(i) द्रव्यमान संरक्षण का नियम (Law of Consevation of Matter)-फ्रांस के वैज्ञानिक आंतवां लावोजियर ने इस नियम का प्रतिपादन किया। जिसके अनुसार,

किसी रसायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है न विनाश किया जा सकता है।

जैसे -माना कि पदार्थ Aकी Xमात्रा Bकी yमात्रा से अभिक्रिया कर पदार्थ Cकी mमात्रा तथा Dकी nमात्रा बनाते हैं।

$$A + B \rightarrow C + D$$

 $x + y \rightarrow m + n$

(ii) स्थिर अनुपात का नियम (Law of Constant Proper Hons.)- इस नियम का प्रतिपादन 1789 ई० में जोसेफ लुइस प्राउट ने किया। इस नियम के अनुसार एक ही रसायनिक यौगिक के विभिन्न नमूनों से एक ही प्रकार के तत्व भार के विचार से एक निश्चित अनुपात में है। जैसे-जल हम किसी भी

स्त्रोत से लाये उसे हाइड्रोजन तथा ऑक्सीजन की मात्रा 1:8 है।

2.. डाल्टन के परमाणु सिद्धान्त को लिखें?

उत्तर रसायनिक संयोग के नियमों की व्याख्या करने के प्रयास में अंग्रेज वैज्ञानिक जॉन डाल्टन ने पदार्थ की रचना के संबंध में कुछ सिद्धान्त दिये। जिसे डाल्टन का परमाणु सिद्धान्त कहते हैं। डाल्टन का यह सिद्धान्त रसायनिक संयोग के नियम पर आधारित था। डाल्टन के परमाणु सिद्धान्त में द्रव्यमान के इस संरक्षण के नियम तथा स्थिर अनुपात के नियम की व्याख्या की गयी तथा सत्यता पायी गयी।

इस सिद्धान्त की मुख्य बातें निम्नलिखित हैं:-

- (i) सभी पदार्थ अतिसुक्ष्म अविभाज्य कणों से बना है। इसका न तो निर्माण किया जा सकता है। और न विनाश किया जा सकता है।
- (ii) एक तत्व में जितने परमाणु हैं वे भार के विचार से हमेशा समान होते हैं।
- (iii) भिन्न-भिन्न तत्वों के परमाणु भार के विचार से हमेशा समान होते हैं।
- (iv) दो या दो से अधिक तत्व परमाणु भार के विचार से सरल अनुपात में संयोग कर यौगिक का निर्माण करते हैं।

3. डाल्टन के परमाणु सिद्धान्त के दोषों को लिखें?

उत्तर-डाल्टन के परमाणु सिद्धान्त के दोष निम्नलिखित है-

- (i) डाल्टन के अनुसार परमाणु अविभाज्य हैं लेकिन आधुनिक सिद्धान्त से पता चलता है कि परमाणु को विभाजित किया जा सकता है।
- (ii) डाल्टन के अनुसार समान तत्व के परमाणु समान होते हैं। लेकिन आधुनिक सिद्धान्त से पता चलता है कि समान तत्व के परमाणु असमान भी होते हैं।
- (iii) डाल्टन के अनुसार तत्व तथा यौगिक के बीच अन्तर स्पष्ट नहीं किया जा सकता।
- (iv) इस नियम के अनुसार रसायनिक संयोग के गैसीय आयतन के नियम की व्याख्या नहीं किया जा सकता।

- **4.** डाल्टन के परमाणु सिद्धान्त के विशेषताओं को लिखें? उत्तर डाल्टन के परमाणु सिद्धान्त के निम्नलिखित विशेषतायें हैं-
 - (i) डाल्टन के परमाणु सिद्धान्त के आधार पर वैज्ञानिकों ने अनेक प्रयोग किये।
 - (ii) इस सिद्धान्त को आधार मानकर परमाणु संरचना को विकसित किया गया।
 - (iii) डाल्टन के सिद्धान्त के आधार पर ही तत्व, यौगिक एवं मिश्रण को परिभाषित किया गया।
 - (iv) डाल्टन के सिद्धान्त के आधार पर रसायनिक संयोग के नियम की व्याख्या की गयी।

5. परमाणु क्या है? इसके विशेषताओं को लिखें?

उत्तर तत्व का वह सुक्ष्मतम कण जो रसायनिक अभिक्रिया में भाग लेता है। उसे परमाणु कहते हैं।

पदार्थों की रचनात्मक ईकाई परमाणु होती है। परमाणु की विशेषताएँ निम्नलिखित है:-

- (i) किसी तत्व के परमाणु समान होते हैं किन्तु ये अन्य तत्वों के परमाणु से भिन्न होते हैं।
- (ii) तत्व का प्रत्येक परमाणु तत्व के सभी गुणों को प्रदर्शित करता है।

6. परमाणु के आकार के बारे में संक्षिप्त वर्णन करें?

उत्तर-परमाणु अत्यन्त गोलीय तथा सुक्ष्म कण है। इसे साधारण माइक्रोस्कोप से देखना संभव नहीं है। परमाणु का ब्यास लगभग 10^{-15} m होता है। किसी परमाणु के आकार को उसकी त्रिज्या द्वारा दर्शाया जाता है। जो परमाणु त्रिज्या कहलाती है। परमाणु त्रिज्या को नैनोमीटर में मापा जाता है। इसे न्यूटन मीटर से सूचित करते हैं।

। नैनोमीटर = $1/10^{\circ}$ न्यूटन मीटर (nm)

1 नैनोमीटर = $1/10^{\circ} = 10^{-9}$ मीटर

सबसे छोटा परमाणु हाइड्रोजन परमाणु है। इसकी त्रिज्या 10-10 मीटर होती है।

डाल्टन द्वारा प्रयुक्त कुछ प्रतीक

		•	9		
(i) हाइड्रोजन	lacksquare	(vii) सल्फर	\bigoplus	(xiii) प्लैटिना	(\mathbf{P})
(ii) कार्बन		(viii) पोटैशियम		(xiv) गोल्ड	(G)
(iii)नाइट्रोजन		(ix) आयरन	\bigcirc	(xv) पारा	
(iv) ऑक्सीजन		(x) कॉपर	\bigcirc	(xvi) सीसा	4
(v) सोडियम		(xi) जिंक	\mathbf{Z}		
(vi) फास्फोरस		(xii) सिल्वर	S		

7. तत्वों के संकेत से आप क्या समझते हैं?इसे लिखने की विभिन्न विधियों का वर्णन करें?

उत्तर-किसी तत्व को व्यक्त करने का संक्षिप्त रूप या चिह्न को उस तत्व का संकेत कहते हैं।

सन् 1811 ई० में जे० जे० बर्जीलियस ने सर्व प्रथम किसी तत्व के संकेत को लिखने के लिए अंग्रेजी नाम के पहले अक्षर का उपयोग किया।

- (i) तत्व के अंग्रेजी नाम का प्रथम अक्षर संकेत के लिए लिखा जाता है। जैसे-हाइड्रोजन का H बोरॉन का B
- (ii) जब दो या दो से अधिक तत्वों के नाम अंग्रेजी वर्णमाला के एक ही अक्षर से शुरू हो तो ऐसी स्थिति में उस तत्व का संकेत पहला अक्षर और उसके साथ अन्य मुख्य अक्षर को मिलाकर लिखा जाता है। कैल्शियम Ca ब्रोमीन-Br
- (iii) कुछ तत्वों के संकेत उनके लैटिन नाम के आधार पर लिखे जाते हैं।

 टिन-स्टैनम-Sn

 सोना-औरम-Au

 चाँदी-अर्जेन्टम-Ag

 पारा-हाइड्रागिरम-Hg
- **8.** संकेत का क्या महत्व है? उत्तर-संकेत के महत्व निम्नलिखित है-
 - (i) संकेत के द्वारा तत्वों को प्रकट करने में सुविधा होती है।
 - (ii) किसी तत्व का संकेत उस तत्व के नाम का नहीं बल्कि उसके एक परमाणु का द्योतक होता है। जैसे H का अर्थ है हाइड्रोजन तथा उसका एक परमाणु।
 - (iii) संकेत तत्व के परमाणु द्रव्यमान के अनुपाती मात्रा को भी प्रकट करता है। जैसे O का अर्थ है भार के विचार से 16भाग ऑक्सीजन, चूँकि ऑक्सीजन का परमाणु द्रव्यमान 16 होता है।

- 9. अणु क्या है? (What is molecule)
- उत्तर-इटली के वैज्ञानिक एवोगाड़ों ने यौगिक के सुक्ष्मतम कण का नाम अणु रखा। पदार्थ का सुक्ष्मतम कण जो मुक्त अवस्था में रह सकता है अणु कहलाता है। यह दो या अधिक परमाणुओं के संयोग से बना होता है।
- 10. अणु के प्रकारों को लिखें तथा समझावें?

उत्तर-अणु के प्रकार निम्नलिखित हैं-

(i) तत्व के अणु – किसी तत्व के अणु एक ही प्रकार के परमाणुओं के संयोग से बने होते हैं। जैसे – हाइड्रोजन के दो परमाणु आपस में संयोग कर हाइड्रोजन के एक अणु का निर्माण करते हैं।

 H* + H*----> H2

 परमाणु
 परमाणु

- (ii) यौगिक के अणु किसी यौगिक के अणु में दो या दो से अधिक भिन्न भिन्न तत्वों के परमाणु होते हैं। जैसे जल (H₂O) एक यौगिक हैं।
- 12. अणु के विशेषताओं को लिखें?

उत्तर-अणु की विशेषतायें निम्नलिखित है-

- (i) किसी विशेष पदार्थ के सभी अणु सदृश होते हैं।
- (iii) विभिन्न पदार्थों के अणु भिन्न-भिन्न होते हैं।
- (III) किसी पदार्थ के अणुओं के गुण उस पदार्थ के गुणों का प्रतिनिधित्व करते हैं।
- **13.** परमाणुकता (Atomicity) से आप क्या समझते है? इसके प्रकारों के लिखें तथा समझावें।
- उत्तर-किसी पदार्थ के एक अणु में उपस्थित परमाणुओं की संख्या परमाणुकता कहलाती है। परमाणुकता के आधार पर अणु निम्नांकित प्रकार के होते हैं-
 - (i) द्विपरमाणुक अणु दो परमाणुओं से बने अणु द्वि परमाणुक अणु कहलाते हैं। जैसे H_2 , O_2 , Cl_2
 - (ii) त्रिपरमाणुक अणु तीन परमाणुओं से बने अणु त्रि परमाणुक अणु कहलाते हैं। जैसे O_3 , H_2O , CO_2 , NO_2 , NH_3
 - (iv) चतुर्थ परमाणुक अणु चार परमाणुओं से बने अणु को चतुर्थ परमाणुक कहते हैं। जैसे P_4 , SO_3 , NH_3
 - (v) बहु परमाणुक अणु चार से अधिक परमाणुओं से बने अणु को बहु

परमाणुक कहते हैं। जैसे – S_8 , H_2SO_4 , C_2H_5 OH 14. अणु तथा परमाणु में गुणों के आधार पर अंतर स्पष्ट करें? उत्तर – अणु तथा परमाणु में निम्नलिखित अंतर है –

गुण	परमाणु	अणु
1. अस्तित्व	परमाणु किसी तत्व का छोटा कण है, जो स्वतंत्र अवस्था में नहीं पाया जाता है।	छोटा-से-छोटा कण
2. आकृति	परमाणु गोलीय होता है।	इसकी आकृति रैखिक, कोणीय या त्रिकोणीय होती है।
3. सक्रियता	ये अधिक क्रियाशील रहते हैं।	ये कम क्रियाशील रहते हैं।
4. विभाजन	परमाणु का विभाजन नहीं किया जा सकता।	अणु का विभाजन किया जा सकता है।

- **15.** आयन से आप क्या समझते हैं? इसके प्रकारों को को लिखें? उत्तर-कुछ यौगिक आवेश युक्त कणों के बने होते हैं। आवेशयुक्त कणों को आयन कहते हैं। इसके दो प्रकार होते हैं-
 - (i) धनायन-धन आवेशित आयन को धनायन कहते हैं। जैसे-Na⁺, K⁺,Ca²⁺
 - (ii) ऋणायन-ऋण आवेशित कणों को ऋणायन कहते हैं। जैसे-Cl-, F-, Co²⁻
- **16.** सोडियम परमाणु तथा सोडियम आयन में अंतर स्पष्ट करें? उत्तर-सोडियम परमाणु तथा सोडियम आयन में निम्नलिखित अंतर है-

क्र० सं०	सोडियम परमाणु	सोडियम आयन
	<u>Na</u>	∟ Na⁺
	(2, 8, 1)	(2, 8)
1.	यह विद्युतीय उदासीन होता है।	यह धन आवेशित होता है
2.	इसमें P तथा E की संख्या बराबर होती है।	इसमें प्रोटॉन की संख्या, इलेक्ट्रॉन की संख्या से अधिक होती है।
3.	इसके बाह्रयतम कक्षा में एक इलेक्ट्रॉन रहता है।	
4.	यह बहुत क्रियाशील होता है।	यह निष्क्रिय होता है।
5.	इसका आकार बड़ा होता है।	इसका आकार छोटा होता है।

17. क्लोरीन परमाणु तथा क्लोराइड में अन्तर स्पष्ट करें? उत्तर-क्लोरीन परमाणु तथा क्लोराइड में निम्नलिखित अंतर है:-

क्र० सं०	क्लोरीन परमाणु	क्लोराइड आयन
	CI (2, 8, 7)	Cl ⁻ (2, 8, 8)
1.	यह विद्युतीय उदासीन होता है।	यह ऋण आवेशित होता है
2.	इसमें Pतथा E की संख्या बराबर होती है।	इसमें प्रोटॉन की अपेक्षा इलेक्ट्रॉन संख्या अधिक होती है।
3.	इसके बाहृयतम कक्षा में सात इलेक्ट्रॉन होते है।	इसके बाह्रयतम कक्षा में आठ इलेक्ट्रॉन होते हैं।
4.	यह बहुत क्रियाशील होता है।	यह निष्क्रिय होता है।

18. परमाणु तथा आयन में अन्तर स्पष्ट करें? उत्तर-परमाणु तथा आयन में निम्नलिखित अंतर हैं:-

क्र० सं०	परमाणु	आयन
1.	यह विद्युतीय उदासीन होता है।	यह धन या ऋण आवेशित होता है
2.	इसमें Pतथा E की संख्या बराबर होती है।	इसमें Pतथा E की संख्या बराबर नहीं होती है।
3.	यह क्रियाशील होता है।	यह निष्क्रिय होता है।
4.	इसके बाहृयतम कक्षा में आठ से कम इलेक्ट्रॉन होते है।	इसके बाह्रयतम कक्षा में आठ इलेक्ट्रॉन होते हैं।

19. अणु–सूत्र या रसायनिक सूत्र (Molecular formula or Chemical formula) से आप क्या समझते है?

उत्तर – किसी यौगिक का वह सूत्र जो उसके अणु में उपस्थित तत्वों के परमाणुओं की वास्तविक संख्या को व्यक्त करता है। उसे अणुसूत्र कहते हैं। जैसे – H_2 हाइड्रोजन को बतलाता है, जिसमें हाइड्रोजन के दो परमाणु रहते हैं अर्थात् हाइड्रोजन का एक परमाणु हाइड्रोजन के दो अणुओं से संयोग करता है। अतः इसका अणुसूत्र H_2 लिखा जाता है।

20. मुलानुपाती एवं अणुसूत्र में संबंध स्थापित करें?

उत्तर-अणुसूत्र = $n \times \frac{1}{2}$ स्वानुपाती सूत्र, जहाँ $n \in \mathbb{R}$ शर्थात् n = 1, 2, 3 -----

यह यौगिक के अणुभार एवं मूलानुपाती सूत्र भार का अनुपात व्यक्त करता है। किसी पदार्थ का अणुसूत्र अपने मूलानुपाती सूत्र का सरल गुणक होता है।

21. सरल यौगिकों के सूत्र लिखने की विधि बतावें?

उत्तर-सरल यौगिकों को सूत्र निम्न विधि से लिखा जाता है-

- 1. पहले यौगिक के संघटक तत्वों के प्रतीक को लिखते हैं।
- 2. प्रतीक के नीचे उसकी संयोजकता लिखते हैं।
- 3. संयोजकताओं को क्रॉस करके लिखते हैं। यदि दोनों के संयोगकता का अंक किसी अंक से कटता है तो उसे काटकर छोटा कर देते हैं। ताकि आगे वह किसी दूसरे अंक से नहीं कट सकें।

ा. हाइड्रोजन कलोराइड का सूत्र:-

2. सोडियम हाइड्रोजन सल्फेट का सूत्र:-

3. सोडियम बाई कार्बोनेट का सूत्र: -

22. संयोजकता (Valency) से आप क्या समझते हैं?

उत्तर-तत्व के परमाणु में दूसरे तत्वों के परमाणु के साथ संयोग करने की क्षमता या प्रवृति होती है। किसी तत्व के परमाणु की इसी प्रवृति को तत्व की संयोजन क्षमता कहते हैं। इसे ही संयोजकता कहते हैं।

जैसे-हाइड्रोजन तथा क्लोरीन परस्पर संयोग करके हाइड्रोजन क्लोराइड बनाते हैं। इस यौगिक में हाइड्रोजन तथा क्लोरीन परस्पर संयोग करके हाइड्रोजन का एक परमाणु क्लोरीन के एक परमाणु के साथ संयुक्त रहता है। अतः हाइड्रोजन तथा क्लोरीन की संयोजकता । है।

- 23. रसायनिक सूत्र (Chemical Valency) से आप क्या समझते हैं? उत्तर-किसी पदार्थ के संक्षिप्त रूप को रसायनिक सूत्र कहा जाता है। इसे संकेत एवं संयोजकता के माध्यम से व्यक्त किया जाता है। जैसे: NH, होता है।
- 24. रसायनिक सूत्र कितने प्रकार के होते हैं? परिभाषित करें? उत्तर-रसायनिक सूत्र दो प्रकार के होते हैं:-
- 1. सरल या मूलानुपाती सूत्र (Simple or Empirical Formula):- किसी यौगिक का वह सूत्र जो उस यौगिक के अणु में उपस्थित तत्वों के परमाणुओं की संख्याओं का सरलतम या पारस्परिक अनुपात व्यक्त करता है। उसे मूलानुपाती या सरल

सूत्र कहते हैं। जैसे-बेंजिन (C_6H_6) के एक अणु में कार्बन तथा हाइड्रोजन प्रत्येक के 6 परमाणु है। इसमें कार्बन तथा हाइड्रोजन प्रत्येक परमाणु है। इसमें कार्बन तथा हाइड्रोजन प्रत्येक में संख्याओं का अनुपात ।:। है। अतः इसका मूलानुपाती सूत्र CH होगा।

2. हाइड्रोजन सल्फाइड का सूत्र तत्व प्रतीकः -

3. कार्बन ट्रेटा क्लोराइड तत्व प्रतीक संयोकताः -

4. कार्बनडायऑक्साइड तत्व का प्रतीक संयोकताः -

- 25. द्विअंगी यौगिकों के सूत्र से आप क्या समझते हैं?
 उत्तर-दो भिन्न-भिन्न तत्वों के संयोग से बने यौगिक को द्विअंगी यौगिक कहते हैं।
 जैसे:-HCI,CO, I
- **26.** मूलक किसे कहते हैं? इसके विभिन्न प्रकारों को लिखें तथा समझावें? उत्तर-विभिन्न तत्वों के परमाणुओं का ऐसा समूह जो रसायनिक अभिक्रिया में अपना अलग अस्तित्व रखते हैं तथा एक तत्व जैसा आचरण करते हैं। उसे मूलक कहते हैं। जैसे-सोडियम हाइड्रॅक्साइड (NaOH) सोडियम आयन (Na+) तथा हाइड्रॅक्साइड आयन (OH-) मूलक है। मूलक दो प्रकार के होते हैं:-
 - **1. क्षारीय मूलक:** क्षारीय मूलक विद्युत अपघटन के फलस्वरूप कैथोड पर मुक्त होते हैं तथा विद्युत के धनात्मक होते हैं। जैसे : सोडियम आयन (Na+), कैल्सियम आयन (Ca++)।

2. अम्लीय मूलकः – यह विद्युत अपघटन के फलस्वरूप एनोड पर मुक्त होता है तथा विद्युत का ऋणात्मक होता हैं। जैसे : – क्लोरिन आयन (Cl^-) ।

27. रसायनिक समीकरण से आप क्या समझते हैं?

उत्तर-जिस अभिक्रिया में अभिकारकों तथा उत्पादों के नाम की जगह उनके अणुसूत्र का प्रयोग किया जाता है। उसे रसायनिक समीकरण कहते हैं। जैसे: – हाइड्रोजन तथा ऑक्सीजन के बीच संयोग होने पर जल बनता है।

$$2H_2 + O_2 \rightarrow 2H_2O$$

अभिकारक प्रतिफल

28. रसायनिक समीकरण की क्या त्रुटियाँ हैं?

उत्तर-रसायनिक समीकरण की त्रुटियाँ निम्नलिखित है:-

- **1.** रसायनिक समीकरण से पता नहीं चलता कि प्रतिकारक तथा प्रतिफल की अवस्था क्या है।
- 2. रसायनिक समीकरण यह कभी नहीं बतलाता है कि अभिक्रिया उत्क्रमणीय है या अनुत्क्रमणीय है।
- 3. रसायनिक समीकरण यह कभी नहीं बतलाता है कि अभिक्रिया कब पूर्ण हुई।
- **4.** रसायनिक समीकरण से यह नहीं पता चलता कि अभिक्रिया उष्माशोषी है या उष्माक्षेपी।
- **29.** रसायनिक समीकरण के त्रुटियों का निराकरण कैसे किया जाता हैं? उत्तर-रसायनिक समीकरण की त्रुटियाँ निम्नलिखित हैं:-
 - 1. गैसों को दिखलाने के लिए उपर (↑) की ओर तीर का चिह्न दिया जाता है।
 - 2. अवक्षेप को दिखाने के लिए नीचे (↓) की ओर तीर का चिह्न का प्रयोग किया जाता है।
 - 3. ताप को दिखाने के लिए तीर के उपर ताप का मान (°C) लिखा जाता है।
 - 4. उष्मा को दिखलाने के लिए △ के आकार के चिह्न का प्रयोग किया जाता है।
- **30.** रसायनिक समीकरण $N_2 + 3H_2$ से प्राप्त चार सूचनाओं को लिखें? उत्तर-इस समीकरण से प्राप्त होने वाली चार सूचनाऐं निम्नलिखित है:
 - 1. नाइट्रोजन तथा हाइड्रोजन के संयोग से अमोनिया का निर्माण होता है।

- 2. नाइट्रोजन के एक अणु तथा हाइड्रोजन के तीन अणुओं के संयोग से अमोनिया के दो अणु का निर्माण होता है।
- 3. नाइट्रोजन के (2x14 = 28 gram) तथा हाइड्रोजन के (3x2 = 6 gram) संयोग से अमोनिया गैस के (28+6 = 34 gram) अणु प्राप्त होते हैं।
- **4. S.T.P** पर नाइट्रोजन के 22.4 लीटर तथा हाइड्रोजन (3x22.4 = 67.2 लीटर) के संयोग से अमोनिया गैस के 44.8 लीटर गैस प्राप्त होता है।
- **31.** रसायनिक समीकरण $H_2 + CI_2 = 2HCI$ से प्राप्त होने वाली चार सूचनाओं को लिखें।

उत्तर-इस समीकरण से प्राप्त होने वाली चार सूचनायें निम्नलिखित है:-

- **1.** हाइड्रोजन तथा क्लोरीन के बीच अभिक्रिया होने पर हाइड्रोजन क्लोराइड बनता है।
- 2. हाइड्रोजन का एक अणु तथा क्लोरीन के एक अणु के संयोग से हाइड्रोजन क्लोराइड का दो अणु प्राप्त होता है।
- **3.** भार के विचार से हाइड्रोजन 2x1 = 2 gram तथा क्लोरीन 2x35.5 = 71 gram के संयोग से हाइड्रोजन क्लोराइड के (2+71=73 gram) अणु प्राप्त होते हैं।
- **4. S.T.P** पर हाइड्रोजन के 22.4 लीटर तथा क्लोरीन के 22.4 लीटर के संयोग से हाइड्रोजन क्लोराइड के (2X22.4 =44.8 gram) लीटर प्राप्त होता है।
- **32.** परमाणु द्रव्यमान ईकाई (Atomic Mass Unit) से आप क्या समझते हैं? उत्तर-कार्बन के एक परमाणु के द्रव्यमान के 12 वें भाग को परमाणु द्रव्यमान ईकाई कहते हैं।

परमाणु द्रव्यमान ईकाई =
$$\frac{\mathbf{C}^{12} \, \mathbf{V}^{12} \, \mathbf{V}^{12}}{12}$$

इसे a.m.u से सूचित किया जाता है। अथवा

 C^{12} समस्थानिक के परमाणु द्रव्यमान के 12 वाँ भाग को परमाणु द्रव्यमान ईकाई कहते हैं। 1 a.m.u = 1.66 x 10^{-24} gram

33. सापेक्ष परमाणु द्रव्यमान (Relative Atomic Mass) से आप क्या समझते हैं? उत्तर-किसी तत्व का परमाणु द्रव्यमान एक संख्या है जो यह बतलाती है कि उस तत्व के एक परमाणु का द्रव्यमान कार्बन के समस्थानिक के एक परमाणु के भार के

12 वें भाग से कितना गुणा भारी है।

परमाणु द्रव्यमान ईकाई = $\frac{3 \pi}{2} \times C^{12} \times$

यह 1 a.m.u को एक डाल्टन (Da) भी कहा जाता है।

34. ग्राम परमाणु द्रव्यमान (**Gram Atomic mass**) से आप क्या समझते हैं? उत्तर-परमाणु द्रव्यमान को जब ग्राम परमाणु में व्यक्त किया जाता है तो उसे ग्राम परमाणु द्रव्यमान कहते हैं।

35.मोल संकल्पना (Mole Concept) क्या हैं?

उत्तर-मोल लैटिन भाषा का एक शब्द मोल्स से लिया गया है। जिसका अर्थ ढेर का समूह होता है। यह एक रसायनिक मात्रक है। मोल (Moles) शब्द 1896 ई० में विल्हेल्म ओष्टवाल्ड द्वारा प्रस्तावित किया गया। सन् 1997 ई० में मोल ईकाई IUPACको द्वारा मान्यता मिल गयी।

पदार्थ की मात्रा का मात्रक मोल होता है।

35. मोल क्या हैं?

उत्तर-मोल पदार्थ की वह मात्रा है जिसमें कणों (परमाणुओं अणुओं या आयनों) की उतनी ही संख्या है जितनी कि **C**-12 के 12 ग्राम में कार्बन परमाणु होते हैं।

। मोल = 6.023×10^{23} (परमाणु, अणु या आयन) (मोल संख्या एवं द्रव्यमान दोनों का प्रतीक है।)

36. एवोगाड्रो संख्या (Avogadro number) से आप क्या समझते है?

उत्तर-किसी पदार्थ के एक मोल में कणों (परमाणु, अणु या आयन) की संख्या निश्चित होती है। जिसका मान 6.023 x 10²³ होता है। इस संख्या को इटावली वैज्ञानिक आमिडियों एवोगाड्रो के सम्मान में एवोगाड्रो संख्या या एवोगाड्रो स्थिरांक कहा जाता है।

इसे N_0 या N_A से निरूपित करते है। $N_0 = 6.022 \times 10^{22}$

37. मोलर द्रव्यमान या मोलर आयतन (Molar Mass) से आप क्या समझते हैं? उत्तर-किसी पदार्थ के एक मोल के द्रव्यमान को मोलर द्रव्यमान कहते हैं। इसे M से सूचित करते हैं।

इसका मात्रक ग्राम प्रति मोल (g/mole) होता है। इसे Gram भी लिखा जाता है। इसे ग्राम अणुकता या मोलीय भी कहते हैं।

Atom & Moleculs

कुछ प्रमुख पदार्थी का रासायनिक सूत्र

[Chemical Formulae (Molecular formulae) of Some Important Substances]

	पदार्थ	अणुसूत्र
1.	सोडियम हाइड्रोइड ऑक्साइड	NaOH
2.	पोटाशियम हाइड्रोक्साइड	KOH
3.	कैल्सियम हाइड्रोक्साइड	Ca(OH) ₂
4.	फेरस सल्फेट	FeSO ₄
5.	कॉपर सल्फेट	FeSO ₄ CuSO ₄
6.	जिंक सल्फेट	l ZNSO,
7.	मैग्नीशियम सल्फेट	MgSO ₄
8.	पोटाशियम सल्फेट	K_2SO_4
9.	सोडियम सल्फेट	Na_2SO_4
10.	सल्फ्यूरिक सल्फेट	MgSO ₄ K ₂ SO ₄ Na ₂ SO ₄ H ₂ SO ₄ HNO ₃
11.	नाइट्रिक अम्ल	$H\overline{NO}_3$
12.	हाइड्रोक्लोरिक अम्ल	HCI
13.	सोडियम क्लोराइड	NaCl
14.	पोटाशियम क्लोराइड	KCI
15.	अमोनियम क्लोराइड	NH ₄ CI
16.	कॉपर हाइड्रोक्साइड	Cu(OH) ₂
17.	फेरस हाइड्रोक्साइड	Fe(OH) ₂
	ऐल्युमिनियम हाइड्रोक्साइड	$AI(OH)_3$
19.	मैग्नीशियम क्लोराइड	MgCl ₂
	कैल्सियम क्लोराइड	
21.	जिंक क्लोराइड	
22.	पोटाशियम क्लोरेट	KCIO ₃
1	पोटाशियम नाइट्रेट	KNO ₃
24.	मैग्नेश्यम नाइट्रेट	$Mg(NO_3)_2$
	सोडियम नाइट्रेट	NaNO ₃
26.	कैल्सियम सल्फेट	CaSO ₄
27.	जल (हाइड्रोजन ऑक्साइड)	H_2O

पदार्थ	अणुसूत्र
28. अमोनिया	NH ₃
29. मिथेन	CH ₄
30. मैग्नेशियम ऑक्साइड	MgŌ
31. अमोनिया कार्बोनेट	$(NH_4)_2CO_2$
32. बेरियम सल्फेट	BaSO₄
33. कैल्सियम फॉस्फेट	Ca ₃ (PO ₄) ₂ FeBr ₂
34. फेरस ब्रोमाइड	FeBr ₂

यौगिक का नामकरण (Name Clature of Compound)

दो भिन्न-भिन्न तत्वों के संयोग से बने यौगिक को द्विअंगी (Binary) यौगिक कहते हैं।

(i) धातु एवं अधातु से बने द्विअंगी यौगिक प्रायः आयनिक होते है, इसलिए इसका नाम पहले धातु का पूरा नाम और अधातु के मूल नाम हैं। दूसरे धातु में आइड (ide) जोड़कर कहा जाता है। जैसे-

NaCl - सोडियम क्लोराइड (क्लोरीन को बदलकर क्लोराइड)

MgO - मैग्नेशियम ऑक्साइड (ऑक्सीजन को बदलकर ऑक्साइड)

CuS - कॉपर सल्फाइड (सल्फर को बदलकर सल्फाइड)

 $FeCl_2$ - आयरन (II) क्लोराइड

 $\operatorname{FeCl}_{3}^{-}$ - आयरन (III) क्लोराइड

FeO आयरन ऑक्साइड

(ii) जब दो अधातु तत्व आपस में संयोग कर दो या दो से अधिक यौगिक का निर्माण करते हैं तो यौगिकों में विभिन्न तत्वों की परमाणुओं की संख्या का आदान-प्रदान कर पूर्वलग्नों (Prefixes) कर उपसर्ग के जैसा प्रयोग करते हैं। एक परमाणु के लिए - मोनो (Mono)

दो परमाणुओं के लिए - डाई (Di)

तीन परमाणुओं के लिए - ट्राई (Tri)

चार परमाणुओं के लिए - टेट्रा (Trtra)

पाँच परमाणुओं के लिए - पेंटा (Penta) आदि का उपयोग करते हैं। सूत्र के पहले तत्व के परमाणुओं की संख्या एक रहने पर मोनो शब्द लिखा जाता है। जैसे-

CO - कार्बन मोनो ऑक्साइड (न कि मोनो कार्बन मोनो ऑक्साइड) यहाँ मोनो का अर्थ एक ऑक्सीजन परमाणु है।

 CO_2 - कार्बन डाइऑक्साइड,

PCl₃ - फॉस्फोरस ट्राइक्लोराइड,

 CCl_4 - कार्बन टेट्राक्लोराइड,

PCl₅ - फॉस्पफोरस पेंटाक्लोराइड,

(iii) जब दो अधातु तत्व अनेक भिन्न-भिन्न यौगिक बनाते हैं तब समीकरण में पूर्वलग्न की आवश्यकता होती है। जैसे-

NO - नाइट्रोजन मोनोऑक्साइड,

 $N_2^{}\mathrm{O}$ - डाइनाइट्रोजन ऑक्साइड,

NO2- नाइट्रोजन डाइऑक्साइड,

 N_2O_3 - डाइनाइट्रोजन ट्राइऑक्साइड,

 N_2O_4 - डाइनाइट्रोजन टेट्राऑक्साइड,

 N_2O_5 - डाइनाइट्रोजन पेंटाऑक्साइड,

(iv) जब दो अधातु तत्व आपस में संयोग कर केवल एक यौगिक बनाते है इसका नाम पहले अधातु का पूरा नाम और दूसरे अधातु के मूल नाम के अन्त में 'आइड' जोड़कर कहा जाता है। जैसे-

HCl - हाइड्रोजन क्लोराइड

HBr - हाइड्रोजन ब्रोमाइड

(v) यौगिक के सूत्र में जब प्रथम तत्व हाइड्रोजन होता है तो हाइड्रोजन यौगिक के नाम के पहले कोई पूर्वलग्न नहीं लगाते हैं। चाहे हाइड्रोजन के कितने ही परमाणु क्यों न हों? जैसे-

 H_2S - हाइड्रोजन सल्फाइड (न कि डाइहाइड्रोजन सल्फाइड)

(vi) कुछ यौगिक के उसके सामान्य नाम (Common Name) ही प्रचलित है और उसकी उसी नाम से जाना जाता है। जैसे-

 H_2O - जल (न कि हाइड्रोजन मोनो ऑक्साइड)

 NH_3 - अमोनिया (न कि नाइट्रोजन ट्राइहाइड्रोजन)

 H_2O_2 - हाइड्रोजन परऑक्साइड

PH₃ - फॉस्फीन

HCl - हाइड्रोक्लोरिक अम्ल

 H_2SO_4 - सल्फ्यूरिक अम्ल

HNO3 - नाइट्रिक अम्ल इत्यादि।