CS230-HW8Sol

1. Modeste 8 pts

Basis Step:
$$n = 1$$
, P(1): $f_0 - f_1 + f_2 = f_{2-1} - 1$. Now, $f_0 - f_1 + f_2 = 0 - 1 + 1 = 0$, and $f_{2-1} - 1 = f_1 - 1 = 1 - 1 = 0$

Inductive Step: Assume P(k): $f_0 - f_1 + f_2 - ... - f_{2k-1} + f_{2k} = f_{2k-1} - 1$

Prove P(k+1): $f_0 - f_1 + f_2 - \dots - f_{2k-1} + f_{2k} - f_{2k+1} + f_{2k+2} = f_{2(k+1)-1} - 1$

$$f_0 - f_1 + f_2 - \dots - f_{2k-1} + f_{2k}) - f_{2k+1} + f_{2k+2} = f_{2k-1} - 1 - f_{2k+1} + f_{2k+2}$$
 IH

$$= f_{2k-1} - 1 - f_{2k+1} + f_{2k} + f_{2k+1}$$

$$= f_{2k-1} - 1 + f_{2k}$$

$$= f_{2k-1} + f_{2k} - 1$$

$$= f_{2k+1} - 1$$
 def of f

$$= f_{2(k+1)-1} - 1$$

2. Modeste 12 pts

a) We prove that for all $i \in \mathbb{Z}^+, 4^i \in S$.

Base case: i = 1. We prove that $4^1 \in S$.

Proof: $4^1 = 4$ and $4 \in S$ by the base case of the recursive definition of S. Therefore, for $i = 1, 4^i \in S$.

Inductive step: Assume that $4^k \in S$ for some $k \in \mathbb{Z}^+$. We prove that $4^{k+1} \in S$.

Proof: $4^{k+1} = (4^k)4$. By our inductive hypothesis, $4^k \in S$ and by the base case of the recursive definition of S, $4 \in S$. Then by the inductive step of the recursive definition of S, $(4^k)4 \in S$. Therefore $4^{k+1} \in S$.

Therefore, by the principle of mathematical induction, for all $i \in \mathbb{Z}^+$, $4^i \in S$.

b) We prove that for all $x \in S$, $x = 4^i$ for some $i \in \mathbb{Z}^+$.

Base case: Since $4 \in S$ by the basis step of the inductive definition of S, we prove that $4 \in A$.

Proof: This is true since $4 = 4^1$ and $1 \in \mathbb{Z}^+$. Therefore, $4 \in A$ and the base case holds.

Inductive step: Consider $s \in S$ and $t \in S$. We assume that $s \in A$ and $t \in A$. By the inductive step of the inductive definition of S, $st \in S$. We prove that $st \in A$.

Proof: Since $s, t \in A$, $s = 4^j$ and $t = 4^k$ for some $j, k \in \mathbb{Z}^+$. Therefore $st = (4^j)(4^k) = 4^{j+k}$.

Since $j + k \in \mathbb{Z}^+$, $st \in A$.

Therefore, by structural induction, $S \subseteq A$.

3. **Ying 5 pts**

Base: $1 \in S$.

Induction: If $x \in S$, then 2x, 3x, 5x, x/2, x/3, and $x/5 \in S$.

4. Ying 10 pts

Using the above statement as our inductive hypothesis, we assume that after k steps, we are in state 0 iff k is divisible by 4. Now, if k is divisible by 4, then we are in state 0 after k steps, so we can deduce that k+1 is not divisible by 4 and that we are in state 1 after k+1 steps, as required. On the other hand, if k is not divisible by 4, we cannot tell whether k+1 is divisible by 4 or what state we are in after k+1 steps. We need to strengthen the induction hypothesis to distinguish k based on the value of k mod 4 as follows:

For all $n \ge 0$, after n steps the state machine is in state $n \mod 4$.

Base case At n = 0, the state machine is in state 0, and 0 mod 4 = 0.

Inductive step Assume our strengthened hypothesis is true after k steps. We will show it remains true at k + 1 steps. There are 4 cases to consider.

Case 1: $k \mod 4 = 0$ The state machine is in state 0 after k steps by IH, so it will be in state 1 after k+1 steps. Since k is divisible by 4, k+1 has remainder 1 when divided by 4, so $(k+1) \mod 4 = 1$. So the strengthened hypothesis remains true at k+1.

Case 2: $k \mod 4 = 1$ The state machine is in state 1 after k steps by IH, so it will be in state 2 after k+1 steps. Since k leaves remainder 1 when divided by 4, k+1 has remainder 2 when divided by 4, so $(k+1) \mod 4 = 2$. So the strengthened hypothesis remains true at k+1.

Case 3: $k \mod 4 = 2$ The state machine is in state 2 after k steps by IH, so it will be in state 3 after k+1 steps. Since k leaves remainder 2 when divided by 4, k+1 has remainder 3 when divided by 4, so $(k+1) \mod 4 = 3$. So the strengthened hypothesis remains true at k+1.

Case 4: $k \mod 4 = 3$ The state machine is in state 3 after k steps by IH, so it will be in state 0 after k+1 steps. Since k leaves remainder 3 when divided by 4, k+1 is divisible by 4, so $(k+1) \mod 4 = 0$. So the strengthened hypothesis remains true at k+1.

5. Ling 10 pts

The state machine has states (x, y) where x and y are integers, and every state (x, y) has three outgoing transitions, to (x - 1, y + 3), to (x + 2, y - 2), and to (x + 4, y).

Preserved Invariant: if the robot is in state (x, y), then x - y is a multiple of 4.

Base Case: The robot starts in (0,0). 0-0=0, and 0 is a multiple of 4.

Inductive step: Assume the robot is in state (x, y), where x - y is a multiple of 4. After one step, there are three states the robot could be in.

Case 1: The robot moved to (x-1, y+3). Then (x-1)-(y+3)=x-y-4. Since x-y is a multiple of 4 (by IH), x-y-4 is a multiple of 4.

Case 2: The robot moved to (x+2, y-2). Then (x+2) - (y-2) = x - y + 4. Since x - y is a multiple of 4 (by IH), x - y + 4 is a multiple of 4.

Case 3: The robot moved to (x+4, y). Then (x+4) - y = x - y + 4. Since x - y is a multiple of 4 (by IH), x - y + 4 is a multiple of 4.

Thus, the invariant is preserved by the transitions.

Since the robot can only move to states (x, y) where x - y is a multiple of 4, and 2 - 0 is not a multiple of 4, the robot can never move to (2,0).

6. Jonathan 15 pts

- a) Base: $(0,0) \in L'$. Recursive: if $(a,b) \in L'$ then $(a+1,b+1) \in L'$, $(a-1,b-1) \in L'$, $(a+4,b) \in L'$, and $(a-4,b) \in L'$.
- b) $L' \subseteq L$ means that every ordered pair (a,b) produced in definition (a) has the property that a-b is divisible by 4, i.e., $(a,b) \in L$. By the base case of the definition, $(0,0) \in L'$. Since $0-0=4\times 0$, it follows that $(0,0) \in L$. For the recursive step, assume that ordered pair $(a,b) \in L'$ is such that $(a,b) \in L$, i.e., a-b is divisible by 4. The recursive step allows us to place (a+1,b+1), (a-1,b-1), (a+4,b) and (a-4,b) in L'. We prove that each of these are in L. Now, (a+1)-(b+1)=a-b which is divisible by 4, so $(a+1,b+1) \in L$. Similarly, (a-1)-(b-1)=a-b which is divisible by 4, so $(a-1,b-1) \in L$. Since a-b is divisible by 4, there exists some integer k such that a-b=4k. Now, (a+4)-b=(a-b)+4=4(k+1) for some integer k, so (a+4)-b is divisible by 4, implying that $(a+4,b) \in L$. Finally, (a-4)-b=(a-b)-4=4(k-1) for the same k so (a-4)-b is divisible by 4, implying that $(a-4,b) \in L$. So in every case, the recursive step produces ordered pairs that satisfy membership in L.
- c) if $(m, n) \in L$ then m n = 4k for some integer k, so m = n + 4k. So any element of L will have form $(n + 4k, n) \in L$. We show that $(n + 4k, n) \in L'$, i.e., (n + 4k, n) is reachable by the inductive definition in (a). There are four cases to consider.
 - i. if $n \ge 0$ and $k \ge 0$, we move from (0,0) to (n,n) by using the rule (a+1,b+1), n times, and then move from (n,n) to (n+4k,n) by using the rule (a+4,b), k times.
 - ii. if $n \ge 0$ and k < 0, we move from (0,0) to (n,n) by using the rule (a+1,b+1), n times, then move from (n,n) to (n+4k,n) by using the rule (a-4,b), -k times.
 - iii. if n < 0 and $k \ge 0$, we move from (0,0) to (n,n) by using the rule (a-1,b-1), -n times, and then move from (n,n) to (n+4k,n) by using the rule (a+4,b), k times.
 - iv. if n < 0 and k < 0, we move from (0,0) to (n,n) by using the rule (a-1,b-1), -n times, then move from (n,n) to (n+4k,n) by using the rule (a-4,b), -k times.