Electronic Devices

Final Term Lecture - 08

Reference book:

Electronic Devices and Circuit Theory (Chapter-7)

Robert L. Boylestad and L. Nashelsky, (11th Edition)

E-MOSFET VOLTAGE-DIVIDER BIAS

E-MOSFETs use the same procedure to JFETs and D-MOSFETs.

$$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$$

$$V_{GS} = V_G - I_D R_S$$

$$V_{DS} = V_{DD} - I_D(R_D + R_S)$$

$$I_D = k(V_{GS} - V_T)^2$$

FIG. 7.43

Voltage-divider biasing
arrangement for an n-channel
enhancement MOSFET.

E-MOSFET VOLTAGE-DIVIDER BIAS

- Graphical Approach:
 - Calculate the value for

$$k = \frac{I_{D(on)}}{(V_{GS(on)} - V_{GS(Th)})^2}$$

• Plot V_{GS} vs I_D using

$$I_D = k(V_{GS} - V_T)^2$$

• Plot for:

$$V_{GS} = V_G$$
 at $I_D = 0A$
 $V_{GS} = 0V$ at $I_D = V_G/R_S$

$$V_{GS} = V_G - I_D R_S$$

• Identify the Q-point.

E-MOSFET VOLTAGE-DIVIDER BIAS EXAMPLE

• Determine I_D , V_{GS} , and V_{DS} for the following network:

$$V_G = \frac{R_2 V_{DD}}{R_1 + R_2} = \frac{(18 \text{ M}\Omega)(40 \text{ V})}{22 \text{ M}\Omega + 18 \text{ M}\Omega} = 18 \text{ V}$$

$$V_{GS} = V_G - I_D R_S = 18 \text{ V} - I_D (0.82 \text{ k}\Omega)$$

When $I_D = 0 \text{ mA}$,

$$V_{GS} = 18 \text{ V} - (0 \text{ mA})(0.82 \text{ k}\Omega) = 18 \text{ V}$$

When $I_D = 0 \,\mathrm{mA}$,

$$V_{GS} = 18 \text{ V} - (0 \text{ mA})(0.82 \text{ k}\Omega) = 18 \text{ V}$$

as appearing on Fig. 7.45. When $V_{GS} = 0 \text{ V}$,

$$V_{GS} = 18 \text{ V} - I_D(0.82 \text{ k}\Omega)$$

$$0 = 18 \text{ V} - I_D(0.82 \text{ k}\Omega)$$

$$I_D = \frac{18 \text{ V}}{0.82 \text{ k}\Omega} = 21.95 \text{ mA}$$

FIG. 7.44 Example 7.11.

E-MOSFET VOLTAGE-DIVIDER BIAS EXAMPLE

Device

$$V_{GS(Th)} = 5 \text{ V}, \quad I_{D(on)} = 3 \text{ mA with } V_{GS(on)} = 10 \text{ V}$$

Eq. (7.34): $k = \frac{I_{D(on)}}{(V_{GS(on)} - V_{GS(Th)})^2}$
 $= \frac{3 \text{ mA}}{(10 \text{ V} - 5 \text{ V})^2} = 0.12 \times 10^{-3} \text{ A/V}^2$
 $I_D = k(V_{GS} - V_{GS(Th)})^2$

 $= 0.12 \times 10^{-3} (V_{GS} - 5)^2$

and

$$I_{D_Q} \cong 6.7 \text{ mA}$$
 $V_{GS_Q} = 12.5 \text{ V}$
 $V_{DS} = V_{DD} - I_D(R_S + R_D)$
 $= 40 \text{ V} - (6.7 \text{ mA})(0.82 \text{ k}\Omega + 3.0 \text{ k}\Omega)$
 $= 40 \text{ V} - 25.6 \text{ V}$
 $= 14.4 \text{ V}$

FIG. 7.45

Determining the Q-point for the network of Example 7.11.

E-MOSFET FEEDBACK BIAS

$$I_G \approx 0A$$

$$V_{RG} = 0V$$

$$V_{GS} = V_{DS}$$

$$V_{GS} = V_{DD} - I_D R_D$$

Feedback biasing arrangement.

E-MOSFET FEEDBACK BIAS

- Graphical Approach (to find V_{GSQ} and I_{DQ}):
 - Calculate the value for

- Plot V_{GS} vs I_D for the range of interest.
- Plot :

$$V_{GS} = V_{DD} - I_D R_D$$

• Identify the Q-point.

$$k = \frac{I_{D(on)}}{\left(V_{GS(on)} - V_{GS(Th)}\right)^2}$$

E-MOSFET FEEDBACK BIAS EXAMPLE

• **Example 7.10**: Determine I_{DQ} and V_{DSQ} for the following circuit:

$$k = \frac{I_{D(\text{on})}}{(V_{GS(\text{on})} - V_{GS(\text{Th})})^2}$$

$$= \frac{6 \text{ mA}}{(8 \text{ V} - 3 \text{ V})^2} = \frac{6 \times 10^{-3}}{25} \text{ A/V}^2$$

$$= 0.24 \times 10^{-3} \text{ A/V}^2$$

FIG. 7.40 Example 7.10.

E-MOSFET FEEDBACK BIAS EXAMPLE CONTD.

For $V_{GS} = 6 \text{ V}$ (between 3 and 8 V):

$$I_D = 0.24 \times 10^{-3} (6 \text{ V} - 3 \text{ V})^2 = 0.24 \times 10^{-3} (9)$$

= 2.16 mA

as shown on Fig. 7.41. For $V_{GS} = 10 \text{ V}$ (slightly greater than $V_{GS(Th)}$),

$$I_D = 0.24 \times 10^{-3} (10 \text{ V} - 3 \text{ V})^2 = 0.24 \times 10^{-3} (49)$$

= 11.76 mA

For the Network Bias Line

$$V_{GS} = V_{DD} - I_D R_D$$
$$= 12 \text{ V} - I_D (2 \text{ k}\Omega)$$

Eq. (7.37):
$$V_{GS} = V_{DD} = 12 \text{ V}|_{I_D = 0 \text{ mA}}$$

Eq. (7.38):
$$I_D = \frac{V_{DD}}{R_D} = \frac{12 \text{ V}}{2 \text{ k}\Omega} = 6 \text{ mA}|_{V_{GS}=0 \text{ V}}$$

FIG. 7.41

Plotting the transfer curve for the MOSFET of Fig. 7.40.

E-MOSFET FEEDBACK BIAS EXAMPLE CONTD.

$$I_{D_Q} = 2.75 \text{ mA}$$

 $V_{GS_Q} = 6.4 \text{ V}$
 $V_{DS_Q} = V_{GS_Q} = 6.4 \text{ V}$

FIG. 7.42

Determining the Q-point for the network of Fig. 7.40.

p-CHANNEL FETs

- For p-channel FETs the same calculations and graphs are used, except that the voltage polarities and current directions are the opposite.
- The graphs will be mirrors of the n-channel graphs.

End of Lecture-8