STA 601/360 Homework 8

Yi Mi

07十一月,2019

Exercise 1

Hoff 8.3

Part (a)

```
### read data
link = c()
Y = data.frame()
for(i in 1:8){
  link = paste0("http://www2.stat.duke.edu/~pdh10/FCBS/Exercises/school
",i,'.dat', collapse = '')
 school = read.table(url(link))
 Y = rbind(Y, data.frame(school = i, h = school))
}
### weakly informative priors
nu0 = 2; s20 = 15
eta0 = 2; t20 = 10
mu0 = 7; g20 = 5
###
### starting values
m = length(unique(Y[, 1]))
n = sv = ybar = rep(NA, m)
for(j in 1:m){
 ybar[j] = mean(Y[Y[, 1] == j, 2])
 sv[j] = var(Y[Y[, 1] == j, 2])
  n[j] = sum(Y[, 1] == j)
}
theta = ybar
sigma2 = mean(sv)
mu = mean(theta)
tau2 = var(theta)
###
### setup MCMC
set.seed(15)
S = 5000
THETA = matrix(nrow = S, ncol = m)
SMT = matrix(nrow = S, ncol = 3)
###
```

```
### MCMC algorithm
for(s in 1:S){
  # sample new values of the thetas
  for(j in 1:m){
    vtheta = 1/(n[j]/sigma2 + 1/tau2)
    etheta = vtheta*(ybar[j]*n[j]/sigma2 + mu/tau2)
    theta[j] = rnorm(1, etheta, sqrt(vtheta))
  }
  # sample new value of sigma2
  nun = nu0 + sum(n)
  ss = nu0*s20
  for(j in 1:m){
    ss = ss + sum((Y[Y[, 1] == j, 2] - theta[j])^2)
  sigma2 = 1/rgamma(1, nun/2, ss/2)
  # sample a new value of mu
  vmu = 1/(m/tau2 + 1/g20)
  emu = vmu*(m*mean(theta)/tau2 + mu0/g20)
  mu = rnorm(1, emu, sqrt(vmu))
  # sample a new value of tau2
  etam = eta0 + m
  ss = eta0*t20 + sum((theta - mu)^2)
  tau2 = 1/rgamma(1, etam/2, ss/2)
  # store results
  THETA[s, ] = theta
  SMT[s,] = c(sigma2, mu, tau2)
}
###
### Assess the convergence of the Markov chain
acf(THETA[,1])
```

Series THETA[, 1]

acf(SMT[,1])

Series SMT[, 1]

acf(SMT[,2])

Series SMT[, 2]

acf(SMT[,3])

Series SMT[, 3]

According to the acf plot, we see that the Markov chain converged quickly.

```
### Compute the effective sample size
effectiveSize(SMT[,1])
##
       var1
## 4441.634
effectiveSize(SMT[,2])
##
       var1
## 3644.017
effectiveSize(SMT[,3])
##
       var1
## 4098.949
Part (b)
### Compute mean and CI
df = data.frame(rbind(Mean = apply(SMT, 2, FUN = mean),
                      apply(SMT, 2, FUN = quantile, probs=c(0.025, 0.97)
5))))
names(df) = c('sigma2', 'mu', 'tau2')
##
           sigma2
                        mu
                                tau2
## Mean 14.48008 7.560600 5.473300
## 2.5% 11.76444 5.976180 1.918859
## 97.5% 17.88119 9.060375 13.980738
### Compare Posterior and Prior density
## sigma2
sigma2.prior = data.frame(sigma2 = 1/rgamma(S, nu0/2, nu0*s20/2),
                          type = 'Prior')
sigma2.post = data.frame(sigma2 = SMT[,1],
                         type = 'Posterior')
sigma2.cp = rbind(sigma2.prior, sigma2.post)
ggplot(data = sigma2.cp, aes(x = sigma2,color=type)) +
  geom_density() +
  labs(title = 'The prior and posterior density of sigma2') +
xlim(0,200)
```

The prior and posterior density of sigma2

The prior and posterior density of mu

What we learn from the data is that we have poor prior for σ^2 and τ^2 , but somewhat proper prior for μ .

Part (c)

The prior and posterior density of R


```
mean(R.prior)
## [1] 0.431837
mean(R.post)
## [1] 0.2594916
```

Between school variance is τ^2 , total variance is $\tau^2 + \sigma^2$. R is the proportion of the between school variance over total variance. The posterior value of R is 0.438, indicating that 43.8.7% of the total variation comes from the between school variation.

Part (d)

```
theta.7 = THETA[,7]
theta.6 = THETA[,6]
mean(theta.7 < theta.6)

## [1] 0.5124

min.theta = apply(THETA,1,min)
mean(theta.7 == min.theta)

## [1] 0.3178</pre>
```

The posterior probability that θ_7 is smaller than θ_6 is 0.5124. The posterior probability that θ_7 is the smallest of all the θ 's is 0.3178.

Part (e)

Sample Averages VS. Posterior Expectations of Theta

From the plot we can see that the sample averages and posterior expectations are roughly equal.

```
mean(Y[,2])

## [1] 7.691278

mean(SMT[,2])

## [1] 7.5606
```

From the plot we can see that the sample mean of all observations and posterior mean μ are roughly equal.

Exercise 2

Hoff 9.1

```
Part (a)
```

```
\beta \sim \text{mvn}(\beta_0, \Sigma_0)
         \beta \mid X, y, \sigma^2 \sim \text{mvn}(E(\beta \mid X, y, \sigma^2), Var(\beta \mid X, y, \sigma^2))
              where Var(\beta \mid X, y, \sigma^2) = (\Sigma_0^{-1} + X^T X / \sigma^2)^{-1},
                 and E(\beta \mid X, y, \sigma^2) = (\Sigma_0^{-1} + X^T X / \sigma^2)^{-1} (\Sigma_0^{-1} \beta_0 + X^T y / \sigma^2)
                   \sigma^2 \sim \text{inverse} - \text{gamma}(v_0/2, v_0\sigma_0^2/2)
         \sigma^2 \mid X, y, \beta \sim \text{inverse} - \text{gamma}(v_1/2, v_1\sigma_1^2/2)
              where v_1 = v_0 + n,
                 and v_1 \sigma_1^2 = v_0 \sigma_0^2 + SSR(\beta)
Gibbs scheme: 1. updating \beta: a) compute V = Var(\beta \mid X, y, \sigma^2) and m = E(\beta \mid X, y, \sigma^2)
(X, y, \sigma^2); b) sample \beta^{(s+1)} \sim \text{mvn}(m, V) 2. updating \sigma^2: a) compute SSR(\beta^{(s+1)}) b)
sample \sigma^{2(s+1)} \mid X, y, \beta \sim \text{inverse} - \text{gamma}((v_0 + n)/2, [v_0 \sigma_0^2 + SSR(\beta)]/2)
swim = read.table(url("http://www2.stat.duke.edu/~pdh10/FCBS/Exercises
/swim.dat"))
Gibbs.swim = function(y){
  X = cbind(rep(1, 6), c(1, 3, 5, 7, 9, 11))
  S = 5000
  BETA = matrix(nrow = S, ncol = 2)
  SIGMA2 = c()
  # prior
  S0 = rbind(c(0.25, 0), c(0, 0.1))
  beta0 = c(23, 0)
  v0 = 1
  s20 = 0.25
  # starting values
  beta = beta0
  sigma2 = 0.49
  for(s in 1:S){
     # update beta
     V = solve(solve(SO) + t(X) %*% X/sigma2)
     m = V \% * (solve(S0) \% * beta0 + (t(X) \% * y)/sigma2)
     beta = mvrnorm(1, m, V)
     # update sigma2
     SSR = t(y) %*% y - 2*t(beta) %*% t(X) %*% y + t(beta) %*% t(X) %*%
X %*% beta
     sigma2 = \frac{1}{rgamma}(1, (v0+n)/2, (v0*s20 + SSR)/2)
     # store values
     BETA[s,] = beta
     SIGMA2[s] = sigma2
```

```
X.pred = c(1, 13)
  y.pred = rnorm(S, BETA *** X.pred, sqrt(SIGMA2))
  y.pred
swimmer.1 = Gibbs.swim(as.numeric(swim[1,]))
swimmer.2 = Gibbs.swim(as.numeric(swim[2,]))
swimmer.3 = Gibbs.swim(as.numeric(swim[3,]))
swimmer.4 = Gibbs.swim(as.numeric(swim[4,]))
Part (b)
swim.df = cbind(swimmer.1, swimmer.2, swimmer.3, swimmer.4)
swim.min = apply(swim.df, 1, min)
mean(swimmer.1 == swim.min)
## [1] 0.9026
mean(swimmer.2 == swim.min)
## [1] 0
mean(swimmer.3 == swim.min)
## [1] 0.0974
mean(swimmer.4 == swim.min)
## [1] 0
```

According to the result, we can see that the probability of first swimmer being the fastest one is 90.14%, meaning that we should recommend the first swimmer.

Exercise 3

$$\begin{array}{rcl} Y_{ijk} & \sim N(\theta_{ij},\sigma^2) \\ \theta_{ij} & = \mu + a_i + b_j + (ab)_{ij} \\ & priors: \\ \mu & \sim N(0,\sigma_{\mu}^2) \\ a_1,\dots,a_{m_1} & \sim N(0,\sigma_a^2) \\ b_1,\dots,b_{m_2} & \sim N(0,\sigma_b^2) \\ (ab)_{11},\dots,(ab)_{m_1m_2} & \sim N(0,\sigma_{ab}^2) \\ \end{array}$$
 Let $\sigma^2 & \sim \text{inverse} - \text{gamma}(v_0/2,v_0\sigma_0^2/2) \\ \sigma_a^2 & \sim \text{inverse} - \text{gamma}(\eta_{a0}/2,\eta_{a0}\tau_{a0}^2/2) \\ \sigma_b^2 & \sim \text{inverse} - \text{gamma}(\eta_{b0}/2,\eta_{b0}\tau_{b0}^2/2) \\ \sigma_{ab}^2 & \sim \text{inverse} - \text{gamma}(\eta_{ab0}/2,\eta_{ab0}\tau_{ab0}^2/2) \\ \sigma_{\mu}^2 & \sim \text{inverse} - \text{gamma}(\eta_{\mu 0}/2,\eta_{\mu 0}\tau_{\mu 0}^2/2) \\ \end{array}$

Full conditional distribution for mu

$$\begin{split} \mu &\sim N(0,\sigma_{\mu}^{2}) \\ p(Y \mid \mu,\sigma^{2},a,b,(ab)) &\propto \exp(-1/2\sigma^{2}\Sigma_{ijk}(y_{ijk}-\theta_{ij})^{2}) \\ &\propto \exp(-1/2\sigma^{2}\Sigma_{ijk}(y_{ijk}-(\mu+a_{i}+b_{j}+(ab)_{ij})^{2}) \\ &\propto \exp(-1/2\sigma^{2}\Sigma_{ijk}(r_{ijk}^{\mu}-\mu)^{2}) \\ &\propto \exp(-1/2\sigma^{2}(nm_{1}m_{2}\mu^{2}-2\mu\Sigma_{ijk}r_{ijk}^{\mu})) \\ &\text{where } r_{ijk}^{\mu} &= y_{ijk}-(a_{i}+b_{j}+(ab)_{ij}) \\ p(\mu \mid Y,\sigma^{2},\sigma_{\mu}^{2},a,b,(ab)) &\propto p(Y \mid \mu,\sigma^{2},a,b,(ab))p(\mu) \\ &\propto \exp(-\frac{1}{2\sigma^{2}}(nm_{1}m_{2}\mu^{2}-2\mu\Sigma_{ijk}r_{ijk}^{\mu}))*\exp(-\frac{1}{2\sigma_{\mu}^{2}}\mu^{2}) \\ &\propto \exp(-\frac{1}{2}[(\frac{nm_{1}m_{2}}{\sigma^{2}}+\frac{1}{\sigma_{\mu}^{2}})\mu^{2}-2\frac{\Sigma_{ijk}r_{ijk}^{\mu}}{\sigma^{2}}\mu]\} \\ &= dnorm(\mu_{1},\sigma_{\mu 1}^{2}) \\ &\text{where } \sigma_{\mu 1}^{2} &= (\frac{nm_{1}m_{2}}{\sigma^{2}}+\frac{1}{\sigma_{\mu}^{2}})^{-1}, \; \mu_{1} = \sigma_{\mu 1}^{2}\frac{\Sigma_{ijk}r_{ijk}^{\mu}}{\sigma^{2}}, \\ &\text{with } r_{ijk}^{\mu} &= y_{ijk}-(a_{i}+b_{j}+(ab)_{ij}) \end{split}$$

Full conditional distribution for sigma^2

$$\begin{split} \sigma^2 &\sim \text{inverse} - \text{gamma}(v_0/2, v_0\sigma_0^2/2) \\ p(Y \mid \mu, \sigma^2, a, b, (ab)) &\overset{\propto}{\sim} (\sigma^2)^{-nm_1m_2/2} exp(-1/2\sigma^2 \Sigma (y_{ijk} - \theta_{ij})^2) \\ p(\sigma^2 \mid Y, \mu, v_0, \sigma_0^2, a, b, (ab)) &\overset{\propto}{\sim} p(Y \mid \mu, \sigma^2, a, b, (ab)) p(\sigma^2) \\ &\overset{\propto}{\sim} \{ (\sigma^2)^{-nm_1m_2/2} exp(-\frac{\Sigma_{ijk}(y_{ijk} - \theta_{ij})^2}{2\sigma^2}) \} * \{ (\sigma^2)^{-v_0/2 - 1} exp(-\frac{v_0\sigma_0^2}{2\sigma^2}) \} \\ &\overset{\propto}{\sim} (\sigma^2)^{-(v_0 + nm_1m_2)/2 - 1} exp(-\frac{v_0\sigma_0^2 + \Sigma_{ijk}(y_{ijk} - \theta_{ij})^2}{2\sigma^2}) \\ &= \text{inverse} - \text{gamma}(\frac{v_1}{2}, \frac{v_1\sigma_1^2}{2}) \\ &\text{where } v_1 &= v_0 + nm_1m_2, \ v_1\sigma_1^2 = v_0\sigma_0^2 + \Sigma_{ijk}(y_{ijk} - \theta_{ij})^2 \end{split}$$

Full conditional distribution for a_i

$$\begin{aligned} a_i &\sim N(0,\sigma_a^2) \\ p(Y \mid \mu,\sigma^2,a,b,(ab)) &\overset{<}{\propto} exp(-1/2\sigma^2 \Sigma_{jk}(y_{ijk}-\theta_{ij})^2) \\ &\overset{<}{\propto} exp(-1/2\sigma^2 \Sigma_{jk}(y_{ijk}-(\mu+a_i+b_j+(ab)_{ij})^2) \\ &\overset{<}{\propto} exp(-1/2\sigma^2 \Sigma_{jk}(r_{ijk}^a-a_i)^2) \\ &\overset{<}{\propto} exp(-1/2\sigma^2 (nm_2a_i^2-2a_i\Sigma_{jk}r_{ijk}^a)) \\ &\overset{<}{\propto} exp(-1/2\sigma^2 (nm_2a_i^2-2a_i\Sigma_{jk}r_{ijk}^a)) \\ &\text{where } r_{ijk}^a &= y_{ijk} - (\mu+b_j+(ab)_{ij}) \\ p(a_i \mid Y,\sigma^2,\sigma_a^2,a,b,(ab)) &\overset{<}{\propto} p(Y \mid \mu,\sigma^2,a,b,(ab))p(a_i) \\ &\overset{<}{\propto} exp(-\frac{1}{2\sigma^2}(nm_2a_i^2-2a_i\Sigma_{jk}r_{ijk}^a)) * exp(-\frac{1}{2\sigma_a^2}a_i^2) \\ &\overset{<}{\propto} exp\{-\frac{1}{2}[(\frac{nm_2}{\sigma^2}+\frac{1}{\sigma_a^2})a_i^2-2\frac{\Sigma_{jk}r_{ijk}^a}{\sigma^2}a_i]\} \\ &= dnorm(\mu_a,\sigma_{a1}^2) \\ &\text{where } \sigma_{a1}^2 &= (\frac{nm_2}{\sigma^2}+\frac{1}{\sigma_a^2})^{-1}, \ \mu_a = \sigma_{a1}^2 \frac{\Sigma_{jk}r_{ijk}^a}{\sigma^2}, \\ &\text{with } r_{ijk}^a &= y_{ijk}-(\mu+b_j+(ab)_{ij}) \end{aligned}$$

Full conditional distribution for b_j

$$\begin{aligned} b_{j} &\sim N(0,\sigma_{b}^{2}) \\ p(Y \mid \mu,\sigma^{2},a,b,(ab)) & \underset{b_{j}}{\propto} exp(-1/2\sigma^{2}\Sigma_{ik}(y_{ijk}-\theta_{ij})^{2}) \\ & \underset{b_{j}}{\propto} exp(-1/2\sigma^{2}\Sigma_{ik}(y_{ijk}-(\mu+a_{i}+b_{j}+(ab)_{ij})^{2}) \\ & \underset{b_{j}}{\propto} exp(-1/2\sigma^{2}\Sigma_{ik}(r_{ijk}^{b}-b_{j})^{2}) \\ & \underset{b_{j}}{\propto} exp(-1/2\sigma^{2}(nm_{1}b_{j}^{2}-2b_{j}\Sigma_{ik}r_{ijk}^{b})) \\ & \underset{b_{j}}{\propto} exp(-1/2\sigma^{2}(nm_{1}b_{j}^{2}-2b_{j}\Sigma_{ik}r_{ijk}^{b})) \\ & \text{where } r_{ijk}^{b} &= y_{ijk}-(\mu+a_{i}+(ab)_{ij}) \\ & p(b_{j}\mid Y,\sigma^{2},\sigma_{b}^{2},a,b,(ab)) & \propto p(Y\mid \mu,\sigma^{2},a,b,(ab))p(b_{j}) \\ & \underset{b_{j}}{\propto} exp(-\frac{1}{2\sigma^{2}}(nm_{1}b_{j}^{2}-2b_{j}\Sigma_{ik}r_{ijk}^{b})) * exp(-\frac{1}{2\sigma_{b}^{2}}b_{j}^{2}) \\ & \underset{b_{j}}{\propto} exp\{-\frac{1}{2}[(\frac{nm_{1}}{\sigma^{2}}+\frac{1}{\sigma_{b}^{2}})b_{j}^{2}-2\frac{\Sigma_{ik}r_{ijk}^{b}}{\sigma^{2}}b_{j}]\} \\ &=dnorm(\mu_{b},\sigma_{b1}^{2}) \\ & \text{where } \sigma_{b1}^{2} &= (\frac{nm_{1}}{\sigma^{2}}+\frac{1}{\sigma_{b}^{2}})^{-1}, \ \mu_{b}=\sigma_{b1}^{2}\frac{\Sigma_{ik}r_{ijk}^{b}}{\sigma^{2}}, \\ & \text{with } r_{ijk}^{b} &= y_{ijk}-(\mu+a_{i}+(ab)_{ij}) \end{aligned}$$

Full conditional distribution for (ab)_ij

$$p(Y \mid \mu, \sigma^{2}, a, b, (ab)) \qquad \underset{(ab)_{ij}}{\propto} exp(-1/2\sigma^{2}\Sigma_{k}(y_{ijk} - \theta_{ij})^{2})$$

$$\underset{(ab)_{ij}}{\propto} exp(-1/2\sigma^{2}\Sigma_{k}(y_{ijk} - (\mu + a_{i} + b_{j} + (ab)_{ij})^{2})$$

$$\underset{(ab)_{ij}}{\propto} exp(-1/2\sigma^{2}\Sigma_{k}(r_{ijk}^{(ab)} - (ab)_{ij})^{2})$$

$$\underset{(ab)_{ij}}{\propto} exp(-1/2\sigma^{2}\Sigma_{k}(r_{ijk}^{(ab)} - (ab)_{ij})^{2})$$

$$\underset{(ab)_{ij}}{\propto} exp(-1/2\sigma^{2}(n(ab)_{ij}^{2} - 2(ab)_{ij}\Sigma_{k}r_{ijk}^{(ab)}))$$

$$\text{where } r_{ijk}^{(ab)} = y_{ijk} - (\mu + a_{i} + b_{j})$$

$$p((ab)_{ij} \mid Y, \sigma^{2}, \sigma_{a}^{2}, a, b, (ab)) \qquad \propto p(Y \mid \mu, \sigma^{2}, a, b, (ab))p((ab)_{ij})$$

$$\underset{(ab)_{ij}}{\propto} exp(-\frac{1}{2\sigma^{2}}(n(ab)_{ij}^{2} - 2(ab)_{ij}\Sigma_{k}r_{ijk}^{(ab)}))$$

$$\underset{(ab)_{ij}}{\approx} exp(-\frac{1}{2\sigma^{2}}(n(ab)_{ij}^{2})$$

$$\underset{(ab)_{ij}}{\approx} exp\{-\frac{1}{2}[(\frac{n}{\sigma^{2}} + \frac{1}{\sigma_{ab}^{2}})(ab)_{ij}^{2} - 2\frac{\Sigma_{k}r_{ijk}^{(ab)}}{\sigma^{2}}(ab)_{ij}]\}$$

$$= dnorm(\mu_{ab}, \sigma_{ab1}^{2})$$

$$= dnorm(\mu_{ab}, \sigma_{ab1}^{2})$$

$$\text{where } \sigma_{ab1}^{2} = (\frac{n}{\sigma^{2}} + \frac{1}{\sigma_{ab}^{2}})^{-1}, \mu_{ab} = \sigma_{ab1}^{2} \frac{\Sigma_{k}r_{ijk}}{\sigma^{2}},$$

$$\text{with } r_{ijk}^{(ab)} = y_{ijk} - (\mu + a_{i} + b_{j})$$

Full conditional distribution for sigma_a^2

$$\begin{split} \sigma_a^2 &\sim \text{inverse} - \text{gamma}(\eta_{a0}/2, \eta_{a0}\tau_{a0}^2/2) \\ p(\sigma_a^2 \mid a_1, \dots, a_{m_1}) &\propto p(a_1, \dots, a_{m_1} \mid \sigma_a^2) p(\sigma_a^2) \\ &\propto \prod_i d \, norm(0, \sigma_a^2) * p(\sigma_a^2) \\ &\propto \{(\sigma_a^2)^{-m_1/2} exp(-\frac{\Sigma_i a_i^2}{2\sigma_a^2})\} * \{(\sigma_a^2)^{-\eta_{a0}/2-1} exp(-\frac{\eta_{a0}\tau_{a0}^2}{2\sigma_a^2})\} \\ &\propto (\sigma_a^2)^{-(\eta_{a0}+m_1)/2-1} exp(-\frac{\eta_{a0}\tau_{a0}^2 + \Sigma_i a_i^2}{2\sigma_a^2}) \\ &= \text{inverse} - \text{gamma}(\eta_{a1}/2, \eta_{a1}\tau_{a1}^2/2) \\ &= \eta_{a0} + m_1, \, \eta_{a1}\tau_{a1}^2 = \eta_{a0}\tau_{a0}^2 + \Sigma_i a_i^2 \end{split}$$

Full conditional distribution for sigma_b^2

$$\begin{split} \sigma_b^2 &\sim \text{inverse} - \text{gamma}(\eta_{b0}/2, \eta_{b0}\tau_{b0}^2/2) \\ p(\sigma_b^2 \mid b_1, \dots, b_{m_2}) &\propto p(b_1, \dots, b_{m_2} \mid \sigma_b^2) p(\sigma_b^2) \\ &\propto \prod_j d \ norm(0, \sigma_b^2) * p(\sigma_b^2) \\ &\propto \{(\sigma_b^2)^{-m_2/2} exp(-\frac{\Sigma_j b_j^2}{2\sigma_b^2})\} * \{(\sigma_b^2)^{-\eta_{b0}/2-1} exp(-\frac{\eta_{b0}\tau_{b0}^2}{2\sigma_b^2})\} \\ &\propto (\sigma_b^2)^{-(\eta_{b0}+m_2)/2-1} exp(-\frac{\eta_{b0}\tau_{b0}^2 + \Sigma_j b_j^2}{2\sigma_b^2}) \\ &= \text{inverse} - \text{gamma}(\eta_{b1}/2, \eta_{b1}\tau_{b1}^2/2) \\ &\text{where } \eta_{b1} &= \eta_{b0} + m_2, \ \eta_{b1}\tau_{b1}^2 = \eta_{b0}\tau_{b0}^2 + \Sigma_j b_j^2 \end{split}$$

Full conditional distribution for sigma_ab^2

$$\begin{split} \sigma_{ab}^2 &\sim \text{inverse} - \text{gamma}(\eta_{ab0}/2, \eta_{ab0}\tau_{ab0}^2/2) \\ p(\sigma_{ab}^2 \mid (ab)_{11}, \dots, (ab)_{m_1m_2}) &\propto p((ab)_{11}, \dots, (ab)_{m_1m_2} \mid \sigma_{ab}^2) p(\sigma_{ab}^2) \\ &\propto \prod_{ij} d \ norm(0, \sigma_{ab}^2) * p(\sigma_{ab}^2) \\ &\propto \{(\sigma_{ab}^2)^{-m_1m_2/2} exp(-\frac{\Sigma_{ij}(ab)_{ij}^2}{2\sigma_{ab}^2})\} \\ &\qquad * \{(\sigma_{ab}^2)^{-\eta_{ab0}/2-1} exp(-\frac{\eta_{ab0}\tau_{ab0}^2}{2\sigma_{ab}^2})\} \\ &\propto (\sigma_{ab}^2)^{-(\eta_{ab0}+m_1m_2)/2-1} exp(-\frac{\eta_{ab0}\tau_{ab0}^2 + \Sigma_{ij}(ab)_{ij}^2}{2\sigma_{ab}^2}) \\ &= \text{inverse} - \text{gamma}(\eta_{ab1}/2, \eta_{ab1}\tau_{ab1}^2/2) \\ &= \eta_{ab0} + m_1m_2, \ \eta_{ab1}\tau_{ab1}^2 = \eta_{ab0}\tau_{ab0}^2 + \Sigma_{ij}(ab)_{ij}^2 \end{split}$$

Full conditional distribution for sigma_mu^2

$$\begin{split} \sigma_{\mu}^2 &\sim \text{inverse} - \text{gamma}(\eta_{\mu 0}/2, \eta_{\mu 0}\tau_{\mu 0}^2/2) \\ p(\sigma_{\mu}^2 \mid \mu) &\propto p(\mu \mid \sigma_{\mu}^2)p(\sigma_{\mu}^2) \\ &\propto dnorm(0, \sigma_{\mu}^2) * p(\sigma_{\mu}^2) \\ &\propto \{(\sigma_{\mu}^2)^{-1/2}exp(-\frac{\mu^2}{2\sigma_{\mu}^2})\} * \{(\sigma_{\mu}^2)^{-\eta_{\mu 0}/2-1}exp(-\frac{\eta_{\mu 0}\tau_{\mu 0}^2}{2\sigma_{\mu}^2})\} \\ &\propto (\sigma_{\mu}^2)^{-(\eta_{\mu 0}+1)/2-1}exp(-\frac{\eta_{\mu 0}\tau_{\mu 0}^2+\mu^2}{2\sigma_{\mu}^2}) \\ &= \text{inverse} - \text{gamma}(\eta_{\mu 1}/2, \eta_{\mu 1}\tau_{\mu 1}^2/2) \\ &\text{where } \eta_{\mu 1} &= \eta_{\mu 0} + 1, \ \eta_{\mu 1}\tau_{\mu 1}^2 = \eta_{\mu 0}\tau_{\mu 0}^2 + \mu^2 \end{split}$$

Get data

```
data(ToothGrowth, package = 'datasets')
ToothGrowth = ToothGrowth %>%
    mutate(i.index=c(rep(1,30), rep(2,30))) %>%
    mutate(j.index = c(rep(1,10),rep(2,10),rep(3,10),rep(1,10),rep(2,10),
    rep(3,10))) %>%
    mutate(k.index = c(rep(1:10,6)))
```

Gibbs sampling

```
S = 5000
m1 = 2
m2 = 3
n = 10
MU = c()
A = matrix(nrow = S, ncol = m1)
B = matrix(nrow = S, ncol = m2)
AB = matrix(nrow = S, ncol = m1*m2)
THETA = matrix(nrow = S, ncol = m1*m2)
SIGMA2 = c()
SIGMA2A = c()
SIGMA2B = c()
SIGMA2AB = c()
SIGMA2MU = c()
# starting values
mu = mean(ToothGrowth$len)
a=c(0,0)
b=c(0,0,0)
ab = matrix(0, nrow = 2, ncol = 3)
```

```
theta = matrix(0, nrow = 2, ncol = 3)
sigma2 = 50
sigma2.a = 50
sigma2.b = 50
sigma2.ab = 50
sigma2.mu = 50
v0 = 1; s20 = 50
eta0.a = 1; t0.a = 50
eta0.b = 1; t0.b = 50
eta0.ab = 1; t0.ab = 50
eta0.mu = 1; t0.mu = 50
for(s in 1:S){
 ### mu
  r.mu = 0
  for(i in 1:m1){
    for(j in 1:m2){
      for(k in 1:n){
        y = ToothGrowth$len[which(ToothGrowth$i.index == i & ToothGrowt
h$j.index == j & ToothGrowth$k.index == k)]
        r.mu = r.mu + y - a[i] - b[j] - ab[i,j]
      }
    }
  }
  vmu = 1/(n*m1*m2/sigma2 + 1/sigma2.mu)
  emu = vmu*r.mu/sigma2
  mu = rnorm(1, emu, sqrt(vmu))
  ### a
  va = 1/(n*m2/sigma2 + 1/sigma2.a)
  ea=c()
  r.a = c(0,0)
  for(i in 1:m1){
    for(j in 1:m2){
      for(k in 1:n){
        y = ToothGrowth$len[which(ToothGrowth$i.index == i & ToothGrowt
h$j.index == j & ToothGrowth$k.index == k)]
        r.a[i] = r.a[i] + y - mu - b[j] - ab[i,j]
      }
    }
    ea[i] = va*r.a[i]/sigma2
    a[i] = rnorm(1, ea[i], sqrt(va))
  }
  ### b
 vb = 1/(n*m1/sigma2 + 1/sigma2.b)
 eb = c(0,0,0)
```

```
r.b = c(0,0,0)
 for(j in 1:m2){
   for(i in 1:m1){
      for(k in 1:n){
        y = ToothGrowth$len[which(ToothGrowth$i.index == i & ToothGrowt
h$j.index == j & ToothGrowth$k.index == k)]
        r.b[j] = r.b[j] + y - mu - a[i] - ab[i,j]
    }
   eb[j] = vb*r.b[j]/sigma2
   b[j] = rnorm(1, eb[j], sqrt(vb))
  }
 ### ab
 vab = \frac{1}{(n/sigma2 + 1/sigma2.ab)}
 eab = matrix(rep(0,6), nrow = 2, ncol = 3)
 r.ab = matrix(rep(0,6), nrow = 2, ncol = 3)
 for(i in 1:m1){
   for(j in 1:m2){
      for(k in 1:n){
        y = ToothGrowth$len[which(ToothGrowth$i.index == i & ToothGrowt
h$j.index == j & ToothGrowth$k.index == k)]
        r.ab[i,j] = r.ab[i,j] + y - mu - a[i] - b[j]
      eab[i,j] = vab*r.ab[i,j]/sigma2
      ab[i,j] = rnorm(1, eab[i,j], sqrt(vab))
  }
 ### sigma2
 s1 = 0
 for(i in 1:m1){
   for(j in 1:m2){
      for(k in 1:n){
        y = ToothGrowth$len[which(ToothGrowth$i.index == i & ToothGrowt
h$j.index == j & ToothGrowth$k.index == k)]
        r = y - mu - a[i] - b[j] - ab[i,j]
        s1 = s1 + r^2
      }
   }
 v1 = v0 + n*m1*m2
  ss1 = v0*s20 + s1
  sigma2 = 1/rgamma(1, v1/2, ss1/2)
 ### sigma2.a
  eta1.a = eta0.a + m1
  ss.a = eta0.a*t0.a + sum((a)^2)
 sigma2.a = 1/rgamma(1, eta1.a/2, ss.a/2)
```

```
### sigma2.b
  eta1.b = eta0.b + m2
  ss.b = eta0.b*t0.b + sum((b)^2)
  sigma2.b = 1/rgamma(1, eta1.b/2, ss.b/2)
  ### sigma2.ab
  eta1.ab = eta0.ab + m1*m2
  ss.ab = eta0.ab*t0.ab + sum((ab)^2)
  sigma2.ab = 1/rgamma(1, eta1.ab/2, ss.ab/2)
  ### sigma2.mu
  eta1.mu = eta0.mu + 1
  ss.mu = eta0.mu*t0.mu + (mu)^2
  sigma2.mu = 1/rgamma(1, eta1.mu/2, ss.mu/2)
  ### theta
  for(i in 1:m1){
    for(j in 1:m2){
     theta[i,j] = mu + a[i] + b[j] + ab[i,j]
   }
  }
 MU[s] = mu
  A[s,] = a
  B[s,] = b
  AB[s,] = c(ab)
 THETA[s,] = c(theta)
  SIGMA2[s] = sigma2
  SIGMA2A[s] = sigma2.a
  SIGMA2B[s] = sigma2.b
  SIGMA2AB[s] = sigma2.ab
  SIGMA2MU[s] = sigma2.mu
}
```

Convergence

traceplot(as.mcmc(A))

traceplot(as.mcmc(AB))

traceplot(as.mcmc(THETA))

effectiveSize(A)

var1 var2 ## 28.80347 27.62700

```
effectiveSize(B)
##
                var2
       var1
                         var3
## 34.82263 27.22128 19.71153
effectiveSize(AB)
##
        var1
                  var2
                            var3
                                                 var5
                                      var4
                                                           var6
## 110.13178 100.98265 72.11270 93.53426 45.54367 53.57694
effectiveSize(MU)
##
      var1
## 11.3708
effectiveSize(THETA)
##
       var1
                var2
                         var3
                                  var4
                                            var5
                                                     var6
## 5226.326 4883.513 5000.000 5000.000 4593.375 5427.124
```

We can see from the traceplot and effective sample size that a_i , b_j , $(ab)_{ij}$ and μ do not converge, but their sum θ do converge.

Factors makes the teeth of guinea pigs grow

```
apply(A,2,mean)
## [1] 3.058649 5.173398
apply(B,2,mean)
## [1] -3.027393 4.160089 8.421595
apply(AB,2,mean)
## [1] -2.2483941 0.7269147 -0.7265177 2.8944289 4.1211944 2.121268
7
```

We can see from the results of the posterior mean of factor a, b and ab, which shows that the orange juice delivery method with all does levels and ascorbic acid delivery method with 2mg/day does level make the teeth of guinea pigs grow.

Justify the prior parameter choice

```
labs(title = 'The prior and posterior density of sigma2') +
xlim(0,200)
```

The prior and posterior density of sigma2

The prior and posterior density of sigma2.a

The prior and posterior density of sigma2.b

The prior and posterior density of sigma2.ab

As for the prior parameter choice, we can see from the comparison prior and posterior density plots of σ^2 , σ_a^2 , σ_b^2 , σ_{ab}^2 and σ_μ^2 above, which shows that the prior parameters set for σ^2 and σ_{ab}^2 may be poor, but those for the others are somewhat proper.