MATH 381 Section 5.1

Prof. Olivia Dumitrescu

23 February 2024

Gauss' Formula

$$1 + 2 + 3 + 4 + \dots + n = \frac{n(n+1)}{2} = \binom{n+1}{2}$$
$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
$$1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

There is no forumla for an arbitrary power k.

5.1.2 Mathematical Induction

Mathematical Induction can be used to prove statements such as P(n) is true for all positive integers.

Proof of Mathematical Induction

1. Basis step

$$P(1) \equiv T$$

2. Inductive step

$$\forall k \in \mathbb{N}(P(k) \to P(k+1))$$

Example Prove Gauss' Formula

Proof 1.

$$P(1) = 1 = \frac{1 \cdot 2}{2} \equiv T$$

$$\therefore P(1) \equiv T$$

2.

$$P(k) = 1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$$

$$P(k+1) = 1 + 2 + 3 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$1 + 2 + 3 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= (k+1) \left(\frac{k}{2} + 1\right)$$

$$= (k+1) \left(\frac{k}{2} + \frac{2}{2}\right)$$

$$= (k+1) \left(\frac{k+2}{2}\right)$$

$$= \frac{(k+1)(k+2)}{2}$$

$$= \frac{(k+1)((k+1)+1)}{2}$$

$$\therefore P(k) \rightarrow P(k+1)$$

Francesco Maurolico (1494-1575)

Let
$$S \subseteq \mathbb{Z}^+, S \neq \emptyset$$
.

By the well-ordering property, the subset S must have a minimal element. (i.e. $m \in S$ but $m-1 \notin S$)

Mathematical Induction is equivalent to the well-ordering axiom.

Example Prove

$$P(n): 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Proof Mathematical Induction

1.
$$P(1)$$

$$1 = \frac{1(1+1)(2\cdot 1+1)}{6}$$

2. Mathematical Induction Let $k \in \mathbb{Z}$

Assume P(k) holds.

$$1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)[2k^{2} + 7k + 6]}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)((k+1) + 1)(2(k+1) + 1)}{6}$$

$$\therefore P(k) \to P(k+1)$$

Remark Recall

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \left[\sum_{i=1}^{n} f(x_{i}^{*}) \right]$$

Example Compute

$$\int_{a=0}^{b=1} x^2 dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^n f(x_i^*)$$

$$= \lim_{n \to \infty} \frac{1}{n} (f(x_1^*) + f(x_2^*) + \dots + f(x_n^*))$$

$$= \lim_{n \to \infty} \frac{1}{n} \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \dots + f\left(\frac{n}{n}\right) \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \left(\left(\frac{1}{n}\right)^2 + \left(\frac{2}{n}\right)^2 + \dots + \left(\frac{n}{n}\right)^2 \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2}$$

$$= \lim_{n \to \infty} \frac{1}{n} \cdot \frac{n(n+1)(2n+1)}{6n^2}$$

$$= \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3}$$

$$\sim \frac{2n^3}{6n^3} = \frac{1}{3}$$

Example Use Mathematical Induction to prove $7^{n+2} + 8^{2n+1}$ is divisible by 57 for any non-negative integer n.

$$P(k): 57 \mid (7^{n+2} + 8^{2n+1})$$

Proof 1. Basis step

$$P(1): 57 \mid (7^{1+2} + 8^{2 \cdot 1 + 1})$$

 $P(1): 57 \mid (343 + 512)$
 $P(1): 57 \mid 855 \equiv T$

 $\therefore P(1)$

2. Inductive step Let $k \in \mathbb{N}$.

$$7^{n+3} + 8^{2n+3}$$

$$= 7 \cdot 7^{n+2} + 8^2 \cdot 8^{2n+1}$$

$$= 7 \cdot 7^{n+2} + (57+7) \cdot 8^{2n+1}$$

$$= 7 \cdot 7^{n+2} + 7 \cdot 8^{2n+1} + 57 \cdot 8^{2n+1}$$

$$57 \mid 7(7^{n+2} + 8^{2n+1}) \land 57 \mid 57 \cdot 8^{2n+1} \implies 57 \mid (7 \cdot 7^{n+2} + 7 \cdot 8^{2n+1} + 57 \cdot 8^{2n+1})$$

 $\therefore P(k) \to P(k+1) \quad \blacksquare$

Example What is the sum of all positive odd integers?

$$P(k): 1+3+5+\cdots+(2k-1)=k^2$$

Proof 1. Basis step

$$1 = 1$$

 $\therefore P(1)$

2. Inductive step Assume P(k), $k \in \mathbb{N}$.

$$1+3+5+\cdots+(2k-1)=k^2$$

1+3+5+\cdots+(2k-1)+(2k+1)=k^2+(2k+1)
=(k+1)^2

$$\therefore P(k) \rightarrow P(k+1)$$

Example Use mathematical induction to prove

$$P(n): 1 + r + r^2 + \dots + r^n = \frac{r^{n+1} - 1}{r - 1}$$
 $r \neq 1$

Proof 1.
$$P(1): 1 + r = \frac{r^2 - 1}{r - 1} \equiv T$$

 $\therefore P(1)$

2.

$$P(n) + r^{n+1} = 1 + r + r^2 + \dots + r^n = \frac{r^{n+1} - 1}{r - 1} + r^{n+1}$$

$$= \frac{r^{n+1} - 1}{r - 1} + \frac{r^{n+1}(r - 1)}{r - 1}$$

$$= \frac{r^{n+1} - 1 + r^{n+1}(r - 1)}{r - 1}$$

$$= \frac{r^{n+1} - 1 + r^{n+2} - r^{n+1}}{r - 1}$$

$$= \frac{r^{n+2} - 1}{r - 1}$$

$$= P(n + 1)$$

$$\therefore P(n) \to P(n+1)$$

Theorem 0.1 If S is a finite set, $|\mathcal{P}(S)| = 2^{|S|}$.

Proof 1. Let
$$S = \{y\}$$

Subsets of $S = \begin{cases} \emptyset \\ \{y\} \end{cases} \implies |\mathcal{P}(S)| = 2 = 2^{|S|}$
 $P(1)$

2.

$$S = \{x_1, \dots, x_n, A\}$$
 $|S| = n + 1$

 α : Subsets of S that do not include A are subsets of $\{x_1, \ldots, x_n, A\}$. We have 2^n .

 β : Subsets of S that include A are subsets of $\{x_1, \ldots, x_n, A\}$ with an A appended to it. Therefore, we have another 2^n .

$$\alpha + \beta = 2^n + 2^n = 2^{n+1}$$

$$\therefore P(n) \to P(n+1)$$

Example Denote $H_j = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{j}$. Use mathematical induction to prove

$$H_{2^n} \ge 1 + \frac{n}{2}$$

for any non-negative integer n.

Proof Induction on n

1.

$$P(1): 1 + \frac{1}{2} \ge 1 + \frac{1}{2}$$

 $\therefore P(1)$

2.

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} \ge 1 + \frac{n}{2}$$
$$(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n}) + (\frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^{n+1}}) \ge 1 + \frac{n+1}{2}$$

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} + \left(\frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^{n+1}}\right)$$

$$\geq 1 + \frac{n}{2} + \left(\frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^{n+1}}\right)$$

$$1 + \frac{n}{2} + \left(\frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^{n+1}}\right) \geq 1 + \frac{n+1}{2}$$

$$\frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^{n+1}} \geq \frac{1}{2}$$

$$\frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^n + 2^n} \geq \frac{1}{2^{n+1}} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}} = \frac{2^n}{2^{n+1}} = \frac{1}{2}$$

$$\therefore P(n) \rightarrow P(n+1) \quad \blacksquare$$