Méthode de Gauss pour les systèmes linéaires et factorisation LU

La méthode de Cholesky (ou Choleski) permet de résoudre des systèmes linéaires dont la matrice est symétrique définie positive. On rappelle que $A \in M_n(\mathbb{R})$ est symétrique définie positive si et seulement si :

- 1. ${}^{t}A = A$
- 2. ${}^{t}XAX \geq 0, \forall x \in \mathbb{R}$
- 3. ${}^{t}XAX = 0 \Rightarrow X = 0$

Pour une matrice $A \in M_n(\mathbb{R})$ symétrique, les propriétés 2) et 3) reviennent à supposer que toutes les valeurs propres de A sont > 0.

On a également :

- 1. A définie positive \Rightarrow A inversible
- 2. A symétrique \Rightarrow A diagonalisable. $\exists P/A = P^{-1}DP$
- 3. A symétrique et définie positive \Rightarrow toutes les valeurs propres de A sont positives et réelles.

Nous allons voir que les matrices pevuent se factoriser sous la forme $A=T\,^tT$ où T est triangulaire inférieure.

Pour résoudre Ax = b $(x, b \in \mathbb{R}^n)$, càd $T^tTx = b$ on résout alors successivement :

$$\left\{ \begin{array}{ll} Ty = & b & \text{ \'etape de "descente"} \\ \\ {}^tTx = & y & \text{ \'etape de "remont\'ee"} \end{array} \right.$$

Cette méthode est bien sûr intéressante lorsqu'on doit résoudre plusieurs systèmes linéaires avec des seconds membres b différents, mais la même matrice A (la factorisation est faite une seule fois, et les étapes de descente et remontée pour chaque second membre).

Theoreme 1 Soit $A \in M_n(\mathbb{R})$ symétrique définie positive. Il existe (au moins) une matrice réelle triangulaire inférieure T telle que :

$$A = T^{t}T$$

De plus, si on impose que les éléments diagonaux de T soient tous positifs, alors la factorisation $A = T^{t}T$ est unique.

Preuve 1 Les n sous-matrices $\Delta_i = \begin{pmatrix} a_{11} & \dots & a_{1i} \\ \vdots & & \vdots \\ a_{i1} & \dots & a_{ii} \end{pmatrix}$ sont inversibles car elles sont sy-

métriques définies positives. En effet, si
$$x=\begin{pmatrix} x_1\\ \vdots\\ x_i \end{pmatrix}$$
 et $X=\begin{pmatrix} x_1\\ \vdots\\ x_i\\ 0\\ \vdots\\ 0 \end{pmatrix}$ on a ${}^tx\Delta_ix={}^tXAX$

Donc, d'après le théorème 2 du chapitre précédent, on a A = LU avec L triangulaire inférieure de diagonale unité, et U triangulaire supérieure inversible ($\rightarrow u_{ii} \neq 0 \forall i$). Notons $D = \text{diag } u_{ii}$

On a :
$$A = {}^t A = {}^t U {}^t L = \underbrace{{}^t U D^{-1}}_{\text{triang. inf de diagonale unit\'e}} \times \underbrace{D^{\,t} L}_{\text{triangulaire sup\'erieure}}$$

Par unicité de la décomposition LU il vient $D^tL=U$ et donc $A=LD^tL$. De plus, si $^tLV_i=e_i$

$$0 < {}^{t}V_{i} A V_{i} = {}^{t}V_{i} L D {}^{t}L V_{i} = {}^{t}e_{i} D e_{i} = u_{ii}$$

Notons maintenant $\sqrt{D}=\operatorname{diag}\sqrt{u_{ii}}$. Alors $A=L\sqrt{D}\ ^t\sqrt{D}\ ^tL$, c'est-à-dire $A=T\ ^tT$ avec $T=L\sqrt{D}$.

L'unicité de la factorisation $A=T^{\,t}T$ vient de l'algorithme de calcul de T décrit plus loin.

Calcul de T:

T peut être calculé à partir d'une factorisation LU, mais on expose ici une méthode moins coûteuse en temps de calcul.

Puisque $A = T^{t}T$ avec T triangulaire inférieure :

$$a_{ij} = \sum_{1 \le k \le \min(i,j)} t_{ik} t_{jk}$$

- Calculons la $1^{\text{ère}}$ colonne de T à partir de celle de A :

$$a_{11}=t_{11}^2 \implies t_{11}=\sqrt{a_{11}} \qquad (a_{11}>0 \text{ car } A \text{ symétrique définie positive})$$

Pour $i \geq 2$:

$$a_{i1} = t_{i1}t_{11} \implies t_{i1} = \frac{a_{i1}}{t_{11}}$$

- Supposons connues les colonnes 1 à p de T, et calculons la colonne p+1:

$$a_{p+1,p+1} = t_{p+1,p+1}^2 + \sum_{1 \le k \le p} (t_{p+1,k})^2 \to \text{calcul\'es pr\'ec\'edemment (colonnes 1 \`a } p)$$

$$\Longrightarrow t_{p+1,p+1}^2 = a_{p+1,p+1} - \sum_{1 \le k \le p} (t_{p+1,k})^2 > 0 \quad \text{puisque } T \text{ existe}$$

$$\Longrightarrow t_{p+1,p+1} = \left(a_{p+1,p+1} - \sum_{1 \le k \le p} (t_{p+1,k})^2\right)^{\frac{1}{2}}$$

Pour $i \ge p+2$:

$$a_{i,p+1} = t_{i,p+1}t_{p+1,p+1} + \sum_{1 \le k \le p} (t_{ik}t_{p+1,k}) \longrightarrow \text{(calculés précédemment)}$$

$$\implies t_{i,p+1} = (a_{i,p+1} - \sum_{1 \le k \le p} t_{ik}t_{p+1,r} \frac{1}{t_{p+1,p+1}})$$

Coût du calcul de T:

On assimile l'extraction de racine carrée à une opération arithmétique élémentaire (ce qui est une approximation, car cette opération est plus compliquée que les opérations élémentaires $\times, +, -\ldots$).

Calcul de la $1^{\text{ère}}$ colonne de T:n opérations.

Calcul de la $(p+1)^{\text{ème}}$ de T:

- Calcul de $t_{p+1,p+1}$:

$$\begin{array}{c} * \ p \ \text{multiplications} \\ * \ p \ \text{soustractions} \\ * \ 1 \ \text{racine} \end{array} \right\} 2p+1 \ \text{op\'erations}$$

- Calcul de $t_{i,p+1}(p+2 \le i \le n)$:

$$\begin{array}{c} * \ p \ \text{multiplications} \\ * \ p \ \text{soustractions} \\ * \ 1 \ \text{divison} \end{array} \right\} 2p+1 \ \text{op\'erations}$$

 $\rightarrow (n-p) \times (2p+1)$ opérations pour le calcul de la colonne p+1.

Coût total =
$$\sum_{p=0}^{n-1} (n-p)(2p+1)$$

= $(2n-1)\left(\sum_{p=1}^{n-1} p\right) + n^2 - 2\sum_{p=1}^{n-1} p^2$
 $\sim_{n\to+\infty} n^3 - \frac{2}{3}n^3$

Donc nombre d'opérations élémentaires $\sim_{n\to+\infty} \frac{1}{3} n^3$. ($\sim \frac{1}{6} n^3$ multiplications et $\frac{1}{6} n^3$ soustractions)

Coût de la résolution de Ax = b

Le coût des étapes des descente et de remontée est $\mathcal{O}(n^2)$.

L'étape la plus coûteuse est donc la factorisation $A=T^tT$, et le coût total est $\sim \frac{1}{3}n^3$. C'est donc mieux que Gauss (coût $\sim \frac{2}{3}n^3$).