52

ABSTRACT

Heterogeneous catalytic component obtainable by reacting a porous inorganic support with a metallocene compound characterized in that the metallocene compound is defined by the following general formulas:

$(LR_k)_z[LR_{k-f}(R^IOH)_f]_xMX_v$ Ι.

$$(R)_{Q_{1}} Q_{1} \qquad (R^{I}OH)_{a}(R)_{k-a-1}$$

$$(HOR^{I})_{c} \qquad X \qquad II$$

$$L(R^{I}OH)_{b}(R)_{k-b-1}$$

L(R^IOH)_a(R)_k - a-1 Ш (HOR1) (R^IOH)_g

L, equal to or different from each other, is selected from the group comprising: cyclopentadienyl,

when L is cyclopentadienyl k is equal to 5, when L is indenyl k is equal to 7, when L is fluorenyl or

benzoindenyl k is equal to 9, when L is tetrahydroindenyl k is equal to 11 and when L is

wherein:

indenyl, tetrahydroindenyl, fluorenyl, octahydrofluorenyl or benzoindenyl; each R is independently selected from hydrogen, C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, C_7 - C_{20} arylalkyl, C_7 - C_{20} alkylaryl, C₈-C₂₀ arylalkenyl, linear or branched, optionally substituted by 1 to 10 halogen atoms, or a group SiR^{π}_{3} ; each R^{i} equal to or different from each other is a divalent aliphatic or aromatic hydrocarbon group containing from 1 to 20 carbon atoms, optionally containing from 1 to 5 heteroatoms of groups 14 to 16 of the periodic table of the elements and boron; each Q is independently selected from B, C, Si, Ge, Sn; M is a metal of group 3, 4 or 10 of the Periodic Table, Lanthanide or Actinide; each X is independently selected from: hydrogen, chlorine, bromine, ORII, NRII2, C1-C20 alkyl or C6-C20 aryl; each $\mathbf{R^{II}} \text{ is independently selected from C_1-C_{20} alkyl , C_3-C_{20} cycloalkyl, C_6-C_{20} aryl, C_3-C_{20} alkenyl, C_7-C_{20} alkenyl, C_7-C_{20} alkenyl, C_7-C_{20} alkenyl, C_8-C_{20} alkenyl, C_8-C_{20} aryl, C_8-C_{20} alkenyl, C_9-C_{20} alkenyl, C_9-C_{20} aryl, C_9-C_{20} alkenyl, C_9-C_{20} aryl, C_9-$C_{20}$$ arylalkyl, C7-C20 arylalkenyl or alkylaryl, linear or branched; R11 is methyl, ethyl, isopropyl; L' is N or O;

5

10

15

20

25

octahydrofluorenyl, k is equal to 17; z is equal to 0, 1 or 2; x is equal to 1, 2 or 3; y is equal to 1, 2 or 3; x + y + z is equal to the valence of M; m is an integer which can assume the values 1, 2, 3 or 4; a and b are integers whose value ranges from 0 to k-1; f is an integer whose value ranges from 1 to k; g is 0 or 1; c and e are equal to 0 or 1; a + b + c is at least 1; a + g + c is at least 1; d is equal to 0, 1 or 2; when Q is B, then c + d = 1; when Q is C, Si, Ge or Sn, then c + d = 2; when L' is N, then g + e = 1; when L' is O, then g = 0 and e = 0.