Graphical Models for Categorical Data

Camilla Caroni, Fabio Comazzi, Andrea Deretti, Francesco Rettore, Michele Russo, Luca Zerman

Politecnico di Milano

Tutors: Prof.ssa Lucia Paci, Prof. Federico Castelletti

January 10, 2022

Overview

- Introduction
- 2 Models
 - Multinomial-Dirichlet Model
 - Latent Normal Inverse-Wishart Model
- Next Steps

Introduction

Main Goal: Perform clustering of multivariate categorical data using a mixture of graphical models.

Definition

A graphical model is a probabilistic model for a collection of random variables based on a graph structure.

In particular, we will work with undirected decomposable graphs.

Outline

- **1** Inference on the graph: Find the most suitable graph \mathcal{G} representing the conditional independence relationships among the variables in the dataset. In particular, we consider two models:
 - Multinomial-Dirichlet model;
 - Latent Normal Inverse-Wishart model;
- Clustering: Cluster the observations of the dataset via a Dirichlet Process mixture of graphical models.

Inference on the Graph: General Framework

Ingredients for inference on the graph:

- Data Model: $X_1, \dots X_q \mid \underline{\theta}, \mathcal{G} \sim p(\underline{x} \mid \underline{\theta}, \mathcal{G})$
- Prior on graph-dependent parameter $\underline{\theta}$ (given the graph): $p(\underline{\theta} \mid \mathcal{G})$
- Prior on graph \mathcal{G} : $p(\mathcal{G})$

To proceed, we need to compute the posterior probability of \mathcal{G} given the data \mathbf{X} :

$$p(G \mid \mathbf{X}) \propto p(\mathbf{X} \mid G)p(G)$$

where $p(\mathbf{X} \mid \mathcal{G}) = \int p(\mathbf{X} \mid \underline{\theta}, \mathcal{G}) p(\underline{\theta} \mid \mathcal{G}) d\underline{\theta}$ is the marginal likelihood.

Prior on the Graph

We considered three different choices for p(G):

- Uniform prior: Assigns equal probabilities to all the graphs.
- **Binomial prior:** Assumes $A_{u,v} \mid \pi \stackrel{iid}{\sim} Be(\pi), \pi \in (0,1)$ where $A_{u,v}$ is the (u,v)-element of the upper-triangular adjacency matrix of \mathcal{G} .
- **Beta-Binomial prior:** Assumes $A_{u,v} \mid \pi \stackrel{iid}{\sim} Be(\pi), \pi \sim Beta(a,b)$.

Remark: The last two choices are particularly convenient to include prior information about the sparsity of the graph (whenever available).

Multinomial-Dirichlet Model

The Multinomial-Dirichlet model is defined as:

$$\mathbb{X} \mid \underline{\theta}, \mathcal{G} \sim p(\underline{x}^{(1)}, \dots \underline{x}^{(n)} \mid \underline{\theta}, \mathcal{G}) = \frac{\prod_{C \in \mathcal{C}} \prod_{\underline{x}_C \in \mathcal{X}_C} \pi(\underline{x}_C)^{n(\underline{x}_C)}}{\prod_{S \in \mathcal{S}} \prod_{\underline{x}_S \in \mathcal{X}_S} \pi(\underline{x}_S)^{n(\underline{x}_S)}}$$

$$\underline{\theta} \mid \mathcal{G} \sim \textit{Hyper} - \textit{Dirichlet}(A) \text{ s.t. } \forall C \in \mathcal{C}, \forall S \in \mathcal{S} :$$

$$p(\theta_C \mid \mathcal{G}) = \frac{\Gamma(\sum_{\underline{x}_C \in \mathcal{X}_C} a(\underline{x}_C))}{\prod_{\underline{x}_C \in \mathcal{X}_C} \Gamma(a(\underline{x}_C))} \prod_{\underline{x}_C \in \mathcal{X}_C} \pi(\underline{x}_C)^{a(\underline{x}_C) - 1}$$

$$p(\theta_S \mid \mathcal{G}) = \frac{\Gamma(\sum_{\underline{x}_S \in \mathcal{X}_S} a(\underline{x}_S))}{\prod_{\underline{x}_S \in \mathcal{X}_S} \Gamma(a(\underline{x}_S))} \prod_{\underline{x}_S \in \mathcal{X}_S} \pi(\underline{x}_S)^{a(\underline{x}_S) - 1}$$

$$\mathcal{G} \sim p(\mathcal{G})$$

where $\mathcal C$ and $\mathcal S$ are the set of the cliques and the set of the separators of the graph respectively.

Multinomial-Dirichlet Model: Marginal Likelihood

In this case the marginal likelihood is available in closed form¹:

$$m(N \mid \mathcal{G}) = \frac{\prod_{C \in \mathcal{C}} m(N_C \mid \mathcal{G})}{\prod_{S \in \mathcal{S}} m(N_S \mid \mathcal{G})}$$

$$m(N_C \mid \mathcal{G}) = \frac{\Gamma(\sum_{\underline{x}_C \in \mathcal{X}_C} a(\underline{x}_C))}{\Gamma(\sum_{\underline{x}_C \in \mathcal{X}_C} a(\underline{x}_C) + n(\underline{x}_C))} \prod_{\underline{x}_C \in \mathcal{X}_C} \frac{\Gamma(a(\underline{x}_C) + n(\underline{x}_C))}{\Gamma(a(\underline{x}_C))}$$

$$m(N_S \mid \mathcal{G}) = \frac{\Gamma(\sum_{\underline{x}_S \in \mathcal{X}_S} a(\underline{x}_S))}{\Gamma(\sum_{\underline{x}_S \in \mathcal{X}_S} a(\underline{x}_S) + n(\underline{x}_S))} \prod_{\underline{x}_S \in \mathcal{X}_S} \frac{\Gamma(a(\underline{x}_S) + n(\underline{x}_S))}{\Gamma(a(\underline{x}_S))}$$

where
$$n(\underline{x}) = \sum_{i=1}^{n} \mathbb{I}\{\underline{x}^{(i)} = \underline{x}\}.$$

¹S. L. Lauritzen et al.: Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models, 1993.

Multinomial-Dirichlet Model: MH Algorithm

Algorithm MH algorithm for the Multinomial-Dirichlet Model

```
 \begin{array}{l} \textbf{Input: } \mathcal{G}^{(0)} \text{ (the initial candidate graph), } \textit{M} \text{ (the number of MCMC iterations)} \\ \textbf{Output: } \text{An MCMC sample } \{\mathcal{G}^{(t)}\}_{t=1}^{M} \text{ from } p(\mathcal{G} \mid \textit{N}) \\ \textbf{for } t \leftarrow 1 \textbf{ to } \textit{M} \textbf{ do} \\ & \quad \text{set } \mathcal{G} \leftarrow \mathcal{G}^{(t-1)}; \\ \text{draw a new candidate } \mathcal{G}' \text{ from } q(\mathcal{G}' \mid \mathcal{G}); \\ \text{compute } \alpha(\mathcal{G}' \mid \mathcal{G}) = \min \left\{1, \frac{m(\textit{N} \mid \mathcal{G}')}{m(\textit{N} \mid \mathcal{G})} \cdot \frac{p(\mathcal{G}')}{p(\mathcal{G})} \cdot \frac{q(\mathcal{G} \mid \mathcal{G}')}{q(\mathcal{G}' \mid \mathcal{G})} \right\}; \\ \text{update } \mathcal{G}^{(t)} = \begin{cases} \mathcal{G}', & \text{with probability } \alpha \\ \mathcal{G}^{(t-1)}, & \text{with probability } 1 - \alpha \end{cases}
```

end

Proposal Distribution

Problem: We need to define a suitable proposal distribution $q(\mathcal{G}' \mid \mathcal{G})$ from which we sample a new proposal graph (\mathcal{G}') starting from the current state of the chain.

In particular, we build \mathcal{G}' by either adding (a) or removing (b) an edge from \mathcal{G} according to the following scheme:

- Construct the space $\mathcal{O}_{\mathcal{G}}$ of all possible *undirected* graphs obtained by (a) or (b) (starting from \mathcal{G}).
- **②** Uniformly draw a graph \mathcal{G}' from $\mathcal{O}_{\mathcal{G}}$.
- **3** If \mathcal{G}' is decomposable propose it, otherwise go back to step (2).

Remark: Such approach is computationally efficient as it guarantees that $\frac{q(\mathcal{G}|\mathcal{G}')}{q(\mathcal{G}'|\mathcal{G})}=1$ so that we do not have to evaluate $q(\cdot)$ for the computation of the acceptance probability α in the MH algorithm.

Multinomial-Dirichlet Model: Assessment of the Results

Methodology: We create 20 categorical datasets starting from 20 randomly generated decomposable graphs and we run the MH algorithm on such datasets. After that, we compute the *Structural Hamming Distance* between the original graph and the one estimated from the chain.

Results: In 75% of the cases the reconstructed graph is very similar to the original one ($SHD \le 1$).

Latent Normal Inverse-Wishart Model

In this case we introduce latent Gaussian random variables $(Z_1,...,Z_q)$ in order to define a conjugate model and to be able to sample from the graph posterior distribution in an easy way.

Therefore, we approach the problem as follows:

- Sampling of the latent Gaussian data;
- 2 Inference on the graph given the Gaussian data.

Latent Normal Inv-Wish Model: Inference on the Graph

The Normal-Inverse-Wishart model is defined as:

$$\begin{split} \mathbb{Z} \mid \Sigma, \mathcal{G} \sim \textit{p}(\underline{z}^{(1)}, \dots \underline{z}^{(n)} \mid \Sigma, \mathcal{G}) \propto \frac{\prod_{C \in \mathcal{C}} |\Sigma_C|^{-\frac{n}{2}} \cdot e^{-\frac{1}{2} \sum_{i=1}^n \underline{z}_C^{(i)^T} \Sigma_C^{-1} \underline{z}_C^{(i)}}}{\prod_{S \in \mathcal{S}} |\Sigma_S|^{-\frac{n}{2}} \cdot e^{-\frac{1}{2} \sum_{i=1}^n \underline{z}_S^{(i)^T} \Sigma_S^{-1} \underline{z}_S^{(i)}}} \\ \Sigma \mid \mathcal{G} \sim \textit{HIW}(b, D) \text{ s.t. } \forall C \in \mathcal{C}, \forall S \in \mathcal{S} : \\ \textit{p}(\Sigma_C \mid \mathcal{G}) \propto |\Sigma_C|^{-(\frac{b}{2} + |C|)} \cdot e^{-\frac{1}{2} tr(\Sigma_C^{-1} D_C)} \\ \textit{p}(\Sigma_S \mid \mathcal{G}) \propto |\Sigma_S|^{-(\frac{b}{2} + |S|)} \cdot e^{-\frac{1}{2} tr(\Sigma_S^{-1} D_S)} \\ \mathcal{G} \sim \textit{p}(\mathcal{G}) \end{split}$$

where $\mathcal C$ and $\mathcal S$ are the set of the cliques and the set of the separators of the graph respectively.

Latent Normal Inv-Wish Model: Marginal Likelihood

In this case the marginal likelihood is available in closed form¹:

$$m(\underline{z}^{(1)}, \dots \underline{z}^{(n)} \mid \mathcal{G}) = (2\pi)^{-nq/2} \frac{h(\mathcal{G}, b, D)}{h(\mathcal{G}, b^*, D^*)}$$

$$b^* = b + n$$

$$D^* = D + \sum_{i=1}^n \underline{z}^{(i)} \underline{z}^{(i)^T}$$

where $h(\mathcal{G}, b, D) = \frac{\prod_{C \in \mathcal{C}} |\frac{1}{2}D_C|^{\frac{b+|C|-1}{2}} \Gamma_{|C|} \left(\frac{b+|C|-1}{2}\right)^{-1}}{\prod_{S \in \mathcal{S}} |\frac{1}{2}D_S|^{\frac{b+|S|-1}{2}} \Gamma_{|S|} \left(\frac{b+|S|-1}{2}\right)^{-1}}$ and $\Gamma_p(\cdot)$ denotes the multivariate gamma function.

¹C. M. Carvalho, J. G. Scott: Objective Bayesian Model Selection in Gaussian Graphical Models, 2009

Latent Normal Inv-Wish Model: Assessment of the Results

Methodology: We create 20 gaussian datasets starting from 20 randomly generated decomposable graphs and we run the MH algorithm on such datasets. After that, we compute the *Structural Hamming Distance* between the original graph and the one estimated from the chain.

Results: The reconstructed graph is equal to the original one (SHD=0) in the majority of the cases.

Next Steps

The final steps of the project are the following:

- Complete the Latent Normal-Inverse-Wishart model for categorical data (assuming that categorical data are generated by discretization of their latent counterparts);
- Develop a mixture model whose components are Multinomial Dirichlet models or Latent Normal-Inverse-Wishart models.

The implemented algorithms and the tests we performed are available at the following link.

