Lecturer: Dr. C. Eichler, Teaching assistant: J.-C. Besse

November 8, 2019

Problem Set 8

Problem 1: Measurement induced dephasing

Objective: Understand the concepts of measurement induced dephasing and pointer states.

We consider the dispersive Hamiltonian of a coupled qubit-cavity system

$$\mathcal{H}/\hbar = \omega_{\rm res} a^{\dagger} a + \omega_{ge} \sigma^{+} \sigma^{-} + \chi \sigma_{z} a^{\dagger} a, \tag{1}$$

where $\omega_{\rm res}$ is the resonator frequency, a the ladder operator, ω_{ge} the qubit frequency, $\chi=2\pi\cdot 1$ MHz the dispersive shift, and $\sigma^+=|e\rangle\langle g|, \ \sigma^-=|g\rangle\langle e|=(\sigma^+)^\dagger$ and $\sigma_z=|g\rangle\langle g|-|e\rangle\langle e|$ the Pauli matrices. We perform readout by applying a driving pulse to the resonator, of amplitude Ω_0 , between time $t_i=0$ and $t_f=1$ μ s, corresponding to a drive Hamiltonian $\mathcal{H}_d/\hbar=\Omega(t))(a^\dagger+a)$, see Fig. 1. We pick $t_f\gg 1/\kappa$, with $\kappa=2\pi\cdot 2$ MHz $\approx (80 \text{ ns})^{-1}$ the external linewidth of the cavity, such that we are in a quasi steady-state.

Figure 1: Pulse scheme used for readout of the qubit.

We account for resonator decay by solving the Lindblad master equation

$$\dot{\rho} = -\frac{i}{\hbar} \left[H, \rho \right] + \mathcal{L}(c), \tag{2}$$

where the first part is the standard Schrödinger equation, and $\mathcal{L}(c) = c\rho c^{\dagger} - \frac{1}{2}(c^{\dagger}c\rho + \rho c^{\dagger}c)$ accounts for decay, with a collapse operator $c = \sqrt{\kappa}a$. Collapse operators can be passed as the fourth argument of the function mesolve in qutip.

- a) Show that the dispersive Hamiltonian \mathcal{H} can be seen as a qubit-state dependent cavity frequency $\omega_{\text{res}} \pm \chi$. Argue from your derivations in Problem Set 5 that a two-sided cavity, with a large asymmetry $\kappa \gg \kappa_{\text{in}}$, has a response of the form $S_{21g(e)}(\omega) = \frac{\sqrt{\kappa\kappa_{\text{in}}}}{\kappa/2+i(\omega-\omega_{\text{res}}+\chi)}$. Plot the cavity transmission versus frequency for each of the qubit ground and excited state. At a drive frequency of ω_{res} , plot the steady-state $S_{21g(e)}(\omega_{\text{res}})$ in the complex plane.
- b) Convince yourself that the Hamiltonian \mathcal{H} in a rotating frame of both the cavity and the qubit reads $\mathcal{H}/\hbar = \chi \sigma_z a^{\dagger} a$. With the provided python script, simulate the mean state-dependent intra-cavity field $\alpha_{g(e)} = \langle a \rangle_{g(e)}$, as well as the evolution an initial qubit state $|\psi_0\rangle = |g+e\rangle/\sqrt{2}$. Argue that the amplitude of the integrated output field is $\tilde{\alpha}_{g(e)} \approx \sqrt{\kappa t_f} \alpha_{g(e)}$ resulting in the measurement contrast $s = |\tilde{\alpha}_e \tilde{\alpha}_g| = \sqrt{\kappa t_f} |\alpha_g \alpha_e|$. Plot the coherence (entry ρ_{ge} of the qubit density matrix) versus s and show that it is independent of the exact parameters κ and χ . Explain the observation.
- c) Argue that the qubit state ψ_0 evolves after the measurement to a correlated state $(|\tilde{\alpha}_g g\rangle + |\tilde{\alpha}_e e\rangle)/\sqrt{2}$. Discuss the implications of this state for large measurement contrast.