- 1. Generate random 100 MVN data, p=20. The covariance matrix should be positive semi-definite symmetric matrix.
 - 1. (1) Calculate sample covariance matrix.
 - (2) Find out the first three principal components.
 - (3) Calcuate the proportions of the variability of data that can be explained by the first K principal components and find the value of K that it reaches to 99% of the variability.

```
R = randn(20);

sigma = R*R'; %symmetric sigma

mu = [ 5,1,2,3,5 , 4,1,8,3,5, 5,4,6,7,8, 1,11,5,2,1];%set the mu
n=150;

X = mvnrnd(mu,sigma,n); % observations are generated

%1-a)

var = cov(X)
sig = corrcov(var)|
e = eig(sig); %eigenvalue of sig
[V,D] = eig(sig); % V is eigen vetors of sig(correlation matrix)
```

(1) Cov(X)

V	ar ×																			
20	x20 doubl	e																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	15.4497	0.4564	1.3497	-2.1537	-4.9102	0.8224	-3.5111	-6.6709	-0.9782	-3.4445	1.9665	-0.9059	0.3552	-2.9340	-1.9577	-1.8037	2.5537	1.1206	-7.0101	-5.8229
2	0.4564	11.1701	2.6244	3.7152	-10.4055	1.6966	1.0522	1.1147	0.8878	-3.3279	1.1361	-2.6064	-6.0301	5.7606	-2.5030	3.1432	2.4510	-2.2830	-9.1339	-3.4205
3	1.3497	2.6244	11.6888	4.3205	-0.1686	-0.2521	-0.2788	1.9578	-2.6956	-0.1804	4.6513	7.9374	-6.8456	6.0087	3.0858	2.2927	-4.6581	0.2021	-6.2113	1.7661
4	-2.1537	3.7152	4.3205	30.5402	-1.2587	-4.3651	5.9921	4.3175	3.3201	1.4799	3.4362	-8.0529	-0.6823	5.5645	-0.3765	5.7472	-4.4645	8.8598	-2.7013	2.6278
5	-4.9102	-10.4055	-0.1686	-1.2587	29.5863	-6.2397	11.9993	1.4810	-6.3495	-0.2171	-4.2691	2.8222	7.8963	0.0460	12.3564	0.0605	-0.7393	4.5035	14.3602	4.1072
6	0.8224	1.6966	-0.2521	-4.3651	-6.2397	17.8579	0.3154	-0.9830	-3.4776	0.2309	2.8128	-3.7818	4.4105	3.2583	-1.9189	-11.1423	-1.3084	-0.9707	0.4092	4.5339
7	-3.5111	1.0522	-0.2788	5.9921	11.9993	0.3154	24.1682	5.8798	-1.0549	1.7140	-5.1218	-3.2643	8.8680	9.3018	3.1483	5.4860	-0.4789	5.7413	7.3503	-0.2810
8	-6.6709	1.1147	1.9578	4.3175	1.4810	-0.9830	5.8798	16.3374	3.9008	3.8131	-1.6285	0.7392	-1.1920	-0.2096	-5.3964	8.9982	-2.6149	3.2528	0.0798	2.8631
9	-0.9782	0.8878	-2.6956	3.3201	-6.3495	-3.4776	-1.0549	3.9008	20.7545	-3.7402	-1.6999	-6.8080	-5.1420	-2.0327	-4.5208	4.3311	-4.9368	-4.0927	-2.7733	-1.7580
.0	-3.4445	-3.3279	-0.1804	1.4799	-0.2171	0.2309	1.7140	3.8131	-3.7402	16.7950	-0.2326	2.5071	6.1804	-4.3214	-0.6449	-0.9106	-0.7378	1.1024	0.8421	6.9177
.1	1.9665	1.1361	4.6513	3.4362	-4.2691	2.8128	-5.1218	-1.6285	-1.6999	-0.2326	10.0590	4.0652	-0.5316	1.5746	-0.1449	-3.7392	-4.2304	-1.7660	-0.8436	3.8571
.2	-0.9059	-2.6064	7.9374	-8.0529	2.8222	-3.7818	-3.2643	0.7392	-6.8080	2.5071	4.0652	30.9733	-9.2443	3.9886	3.6013	-0.5359	-2.2971	2.5910	-5.0437	-2.9408
.3	0.3552	-6.0301	-6.8456	-0.6823	7.8963	4.4105	8.8680	-1.1920	-5.1420	6.1804	-0.5316	-9.2443	30.4518	-5.6796	2.8388	-6.5881	-3.3971	-2.6261	14.5441	3.4030
.4	-2.9340	5.7606	6.0087	5.5645	0.0460	3.2583	9.3018	-0.2096	-2.0327	-4.3214	1.5746	3.9886	-5.6796	19.5284	-0.4552	2.0481	-2.3094	1.2376	-3.2054	-1.0668
.5	-1.9577	-2.5030	3.0858	-0.3765	12.3564	-1.9189	3.1483	-5.3964	-4.5208	-0.6449	-0.1449	3.6013	2.8388	-0.4552	18.7634	-5.1106	2.2791	-2.4710	1.9603	0.3560
.6	-1.8037	3.1432	2.2927	5.7472	0.0605	-11.1423	5.4860	8.9982	4.3311	-0.9106	-3.7392	-0.5359	-6.5881	2.0481	-5.1106	26.0029	0.8028	1.5162	-1.8570	-5.5812
.7	2.5537	2.4510	-4.6581	-4.4645	-0.7393	-1.3084	-0.4789	-2.6149	-4.9368	-0.7378	-4.2304	-2.2971	-3.3971	-2.3094	2.2791	0.8028	13.8659	2.9977	-5.0731	-7.7031
.8	1.1206	-2.2830	0.2021	8.8598	4.5035	-0.9707	5.7413	3.2528	-4.0927	1.1024	-1.7660	2.5910	-2.6261	1.2376	-2.4710	1.5162	2.9977	13.6057	0.0685	-0.6033
.9	-7.0101	-9.1339	-6.2113	-2.7013	14.3602	0.4092	7.3503	0.0798	-2.7733	0.8421	-0.8436	-5.0437	14.5441	-3.2054	1.9603	-1.8570	-5.0731	0.0685	21.0125	6.9498
20	-5.8229	-3.4205	1.7661	2.6278	4.1072	4.5339	-0.2810	2.8631	-1.7580	6.9177	3.8571	-2.9408	3.4030	-1.0668	0.3560	-5.5812	-7.7031	-0.6033	6.9498	15.0496

(2)

%first three largest PCA component means three largest variability %[7.3224, 3.7299, 3.1905] = [Z17, Z14, Z15]

(3) Calculate the proportions of the variability of data that can be explained by the first K principal components and find the value of K that it reaches to 99% of the variability.

```
total_var = sum(lamda_sort); %36.9097
```

ninty_nine = total_var*0.99

difference = total_var-ninty_nine % minmum variability(0.35) is smaller than the difference(0.36)

% Therefore we need all K except for mimimum one(0.3501)

```
%%%
%total variability is sum of lamda

total_var = sum(lamda_sort); %36.9097

ninty_nine = total_var*0.99
difference = total_var-ninty_nine % minmum variablity is smaller than the difference % Therefore we need all K except for mimimum one(0.3501)
```

2. Generate Y values using the following regression functions:

```
%Q2)

%x = randn(150,21);
mu2 = mean(X);
Cov2 = cov(X);
coeff = pca(X);
er = normrnd(0,3,[150,1]);
X2 = [ones(150,1) , X];
X2_train = X2(1:100 , 1:21);
X2_test = X2(101:150 , 1:21);

%%%

Y = 5 + 2*X2(:,2) + 5*X2(:,4) + 3*X2(:,20) + er;
```

1) Estimate the regression line using the least square method and find out the predicted values, residuals for each observation and the mean square errors.

```
%%%
%Fit regression
beta = inv(X2'*X2)*X2'*Y;
Y_pred = X2_test * beta;
plot(Y_pred,'*')
%%

Y_MSE = Y_test - Y_pred;%residual
Y_MSE1 = Y_MSE.*Y_MSE;
plot(Y_MSE1,'*')

MSE = sum(Y_MSE1)/49;
%11.55
```

a.Fit for regression line = Beta.

	beta ×	
-	21x1 double	2
	1	
1	-3.4341	
2	2.0882	
3	0.0769	
4	5.4483	
5	0.1224	
6	0.1585	
7	0.3536	
8	-0.0315	
9	0.0825	
10	-0.0853	
11	-0.1855	
12	0.0999	
13	0.2783	
14	-0.2648	
15	0.4704	
16	-0.0024	
17	-0.0102	
18	0.1877	
19	0.1383	
20	2.4270	
21	0.1326	

b.Y-pred by plot from the $code(1\ by\ 50)$

c. residual plot from the code(1 by 50)

d. MSE

2) Estimate the regression line using the least square method based on the first 5 principal components and find out the predicted values, residuals for each observation and the mean square errors.

```
%%%
%2-b
%Find PCA Beta

For t = 1:20

PCA5 = [];
PCA5_tr = [];
PCA5_test = [];
beta_pca = [];
Y_pred_pca = [];

PCA_5 = X * coeff(:,1:t);
PCA_5 = [cones(150,1) , PCA_5];

PCA5_tr = PCA_5(1:100 ,:);
PCA5_test = PCA_5(101:150 ,:);
beta_pca = inv(PCA5_tr'*PCA5_tr)*PCA5_tr'*Y_tr_Y_pred_pca = PCA5_test * beta_pca;

end
```

a.

Fit for regression line, LSE = Beta.

b. predicted value

		OXT GORDIE				
	Y_pred_pca		1			
<u> </u>	0x1 double	23	67.0668			
	1	24	39.0358			
1	32.8902	25	46.3573			
2	22.3129	26	23.0892			
3	67.6907	27	33.6309			
4	18.8198	28	33.1214			
5	7.6983	29	19.1545			
6	24.0680	30	12.4204			
7	28.1318	31	26.1698			
8	25.2328	32	41.9105			
9	36.3521	33	53.5379			
10	-2.5989	34	65.4663			
11	42.8137	35	31.5359			
12	30.7353	36	46.0288			
13	22.8755	37	14.0483			
14	20.6438	38	44.4703			
15	28.6523	39	25.6945			
16	28.1545	40	14.3405			
17	37.0842	41	96.8072			
18	46.4016	42	29.5457			
19	57.1977	43	10.4278			
20	39.6214	44	41.3893			
21 	51.8950	14E	15 2160			

	1
33	53.5379
34	65.4663
35	31.5359
36	46.0288
37	14.0483
38	44.4703
39	25.6945
40	14.3405
41	96.8072
42	29.5457
43	10.4278
44	41.3893
45	15.2169
46	47.3251
47	9.7459
48	35.5810
49	35.6708
50	40.5248
51	
52	
53	
54	
55	

Plot for Y-predicted value

c. Residual and MSE

```
%%
plot(Y_pred_pca,'*')
```

```
%%%

Z_MSE = Y_test - Y_pred_pca;

Z_MSE1 = Z_MSE.*Z_MSE;
plot(Z_MSE1, '*')

MSE_Z = sum(Z_MSE1)/50;
```


Plot for residuals from the code(Z_MSE)

MSE = 14.1523

3) Compare the results

MSE from the data, 11.15

MSE from the PCA-5 14.15

PCA-5 could explain most of the data.

PCA-% could fit the regression line with smaller data.

In that sense, using all original data might be overfitted.