Documentation RSSI

Le Received Signal Strength Indication (RSSI) est une mesure de la puissance d'un signal. Cette technique permet, quand 2 signaux sont captés en même temps, de savoir le quel est capté avec le plus de puissance. Dans notre cas, si le lecteur RFID lit 2 tags en même temps, cette technologie nous permet de savoir lequel est « prioritaire », c'est-à-dire celui qui normalement sera le plus proche du lecteur. Cette technologie nous permet alors d'éviter tout quiproquo quant à la position du lecteur dans le musée.

La technologie RSSI repose sur la mesure de puissance d'un signal issu d'une antenne. Le signal perçu peut être mesuré de manière analogique ou continue. Ces mesures sont traditionnellement faites sur des échelles de tensions (V) ou de puissances (mW). Le plus souvent, plus la valeur sur l'échelle est grande, plus la qualité de la transmission est bonne.

La technologie RSSI a été utilisée dans le domaine de la Wifi, mais aussi du partage de données mobiles (choix de l'antenne relais).

Dans ce projet, la présence du RSSI est primordiale, car elle nous permettra d'optimiser la localisation de notre lecteur RFID.

RSSI	Receive sensitivity threshold	Signal strength (%)	Signal-to-noise ratio	Signal quality (%)
30	-30 dBm	100%	70 dB	100%
25	-41 dBm	90%	60 dB	100%
20	-52 dBm	80%	43 dB	90%
21	-52 dBm	80%	40 dB	80%
15	-63 dBm	60%	33 dB	50%
10	-75 dBm	40%	25 dB	35%
5	-89 dBm	10%	10 dB	5%
0	-110 dBm	0%	0 dB	0%

Figure 1 : Exemple d'utilisation du RSSI

https://dot11ap.wordpress.com/cwna/radio-frequency-rf-technologies/rssi/

https://www.sciencedirect.com/topics/computer-science/received-signal-strength

https://www.speedcheck.org/wiki/rssi/