Задачи

λ -исчисление, 2024

Конверсия и редукция

- 1. Перепишите в формальной нотации: $y(\lambda x. \ xy(\lambda z. w. \ yz))$
 - Перепишите в упрощённом виде: $(\lambda v'(\lambda v''((((\lambda vv)v')v'')((v''(\lambda v'''(v'v'')))v''))))$
- 2. Положим $X \equiv \mathsf{SI}$. Покажите, что XXXX = X(X(XX)). Правда ли, что $X^nX = XX^{\sim n}$ справедливо для всех $n \in \mathbb{N}_0$?
- 3. Покажите, что выражение имеет нормальную форму:

[a] $(\lambda y. yyy)((\lambda a, b. a)I(SS)),$

[b] SSSS,

 $[c]^*$ S(SS)(SS)S.

- 4. Найдите λ -выражение M, такое, что $\forall N \in \Lambda: MN = MM$.
- 5. Докажите, что **не** существует такого $F \in \Lambda$, что $\forall M, N \in \Lambda : F(MN) = M$.
- 6. Пусть $A \equiv \mathsf{SKKK}$. Постройте такое λ -выражение M, чтобы выполнялась конверсия $\mathsf{SI}M\mathsf{K}A =$ SMSKA.
- 7. Докажите, что правило η -конверсии ($\lambda x.\ Mx = M,\ \forall M, x: x \notin \mathrm{TV}(M)$) эквивалентно тому, что «функции равны, если равны их значения»:

$$Mx = Nx \Rightarrow M = N, \quad \forall M, N, x : x \notin TV(MN).$$

8. • Докажите, что:

[a] **I**#**K**,

[b] I # S, $[c]^* xy \# xx$.

- Постройте последовательность $M_0, M_1, ...$, такую, что $M_i \,\#\, M_i$, если $i \neq j$.
- 9. Докажите, что $P \# Q \iff (\lambda + (P = Q)) \vdash \mathbf{K} = \mathbf{K}_*$
- 10. Постройте последовательность λ -выражений M_0, M_1, \dots так, чтобы $M_0 = v$ и для любого $n \in \mathbb{N}_0$ выполнялось $M_{n+1} = M_{n+2} M_n$.
- 11. Докажите, что $\forall M \in \Lambda: \ \exists N \in \Lambda: \ N$ І M, причём M в β -нормальной форме.
- 12. Обозначим через $M \uparrow N$ условие $\exists L : (L \twoheadrightarrow M) \land (L \twoheadrightarrow N)$. Покажите, что:

[a] $(\lambda x. ax)b \uparrow (\lambda y. yb)a$,

[b] $(\lambda x. xc)c \uparrow (\lambda x. xx)c$,

[c] $(\lambda x. bx)c \uparrow (\lambda x. x)bc$

13. Постройте λ -выражения со следующими редукционными графами:

14. Нарисуйте редукционные графы следующих λ -выражений:

[a] $(\lambda x. \mathbf{I} xx)(\lambda x. \mathbf{I} xx)$,

[b] $(\lambda x. \mathbf{I}(xx))(\lambda x. \mathbf{I}(xx))$

15. Пусть $M \equiv AAx$, где $A \equiv \lambda a, x, z.$ z(aax). Докажите, что редукционный граф $\mathrm{Gr}(M)$ содержит n-мерный куб при всех $n \in \mathbb{N}_0$.

16. Покажите, что концептуально существует только одно λ -выражение (а именно Ω), имеющее следующий редукционный граф:

17. Расширим множество λ -выражений двумя константами δ, ε . Также добавим новое правило редукции: $\delta MM \to \varepsilon$ для любого $M \in \Lambda \cup \{\delta, \varepsilon\}$. Докажите, что в получившейся системе **не** выполняется теорема Чёрча-Россера.

Подсказка: найдите выражения $C.\ D$ такие, что

$$Cx \twoheadrightarrow \delta x(Cx),$$

 $D \twoheadrightarrow CD.$

Докажите, что $D \twoheadrightarrow \varepsilon$ и $D \twoheadrightarrow C\varepsilon$, но у ε и $C\varepsilon$ нет общего редукта.

- 18. Пусть \beth_1 и \beth_2 коммутирующие отношения на множестве X. Покажите, что $\mathrm{Trans}(\beth_1)$ и $\mathrm{Trans}(\beth_2)$ также коммутируют.
- 19. λ -выражение M сильно нормализуется (нотация SN(M)), если **не** существует бесконечного редукционного пути, начинающегося в M. Докажите, что:
 - [а] $SN(M) \Rightarrow M$ имеет нормальную форму;
 - [b] $SN(M) \Rightarrow Gr(M)$ конечен. Верно ли обратное?
- 20. Рассмотрим

$$\begin{split} \operatorname{SN}_0 &\coloneqq \{M \in \Lambda \mid \operatorname{SN}(M)\}, \\ \operatorname{SN}_{n+1} &\coloneqq \{M \in \Lambda \mid \forall N_1, N_2, ..., N_k \in \operatorname{SN}_n : MN_1N_2...N_k \in \operatorname{SN}_n\}. \end{split}$$

Докажите, что

- [а] $SN_1 \subset SN_0$, но $SN_1 \neq SN_0$.
- [b] $SN_1 = SN_2 = SN_3 = ...$
- 21. Нарисуйте редукционные графы выражений:
 - [а] HIH, где $H \equiv \lambda x, y. \ x(z. \ yzy)x;$
 - [b] LLI, где $L \equiv \lambda x, y. \ x(yy)x;$
 - [c] PQ, где $P \equiv \lambda u. u \mathbf{I} u, Q \equiv \lambda x, y. xy \mathbf{I}(xy).$
- 22. Постройте λ -выражения с редукционными графами:

23. Покажите, что **ни одно** λ -выражение не имеет редукционный граф

24. Найдите λ -выражение M_0 с редукционным путём

$$M_0 \xrightarrow[\beta]{} M_1 \xrightarrow[\eta]{} M_2 \xrightarrow[\beta]{} M_3 \xrightarrow[\eta]{} M_4 \xrightarrow[\beta]{} \cdots$$

25. Пусть $M_1 \equiv (\lambda x.\ bx(bc))c,\ M_2 \equiv (\lambda x.\ xx)(bc)$. Докажите, что **не** существует такого выражения M, что $M \twoheadrightarrow M_1$ и $M \twoheadrightarrow M_2$.

λ -представимость

1. Пусть $M_1, M_2, ..., M_k$ и $N_1, N_2, ..., N_k$ — два набора λ -выражений. Покажите, что

$$\langle M_1, M_2, ..., M_k \rangle = \langle N_1, N_2, ..., N_k \rangle \iff M_1 = N_1, M_2 = N_2, ..., M_k = N_k$$

- 2. Постройте λ -выражения $A,B\in\Lambda$ таким образом, чтобы Ax=A и Bx=xB.
- 3. Постройте выражения $F, \pi \in \Lambda^0$, такие, что:
 - $\forall n \in \mathbb{N} : F \lceil n \rceil xy = xy^{\sim n}$
 - $\forall n \in \mathbb{N}, \ \forall i \leqslant n : \pi \lceil n \rceil \lceil i \rceil = \pi_i^n$
- 4. Постройте λ -выражение **Mult**, такое, что **Mult** $\lceil n \rceil \lceil m \rceil = \lceil mn \rceil$ для любых $m, n \in \mathbb{N}_0$.
 - Постройте λ -выражение **Fac**, такое, что **Fac** $\lceil n \rceil = \lceil n! \rceil$ для любого $n \in \mathbb{N}_0$.
- 5. Элементарная функция Aккермана φ определяется следующими соотношениями:

$$\varphi(0,n) = n+1,$$

$$\varphi(m+1,0) = \varphi(m,1),$$

$$\varphi(m+1,n+1) = \varphi(m,\varphi(m+1,n)).$$

Покажите, что φ рекурсивна, и найдите λ -выражение, которое её λ -представляет.

- 6. Постройте функцию предшествующего элемента для чисел Чёрча: \mathbf{P}_c^- такое, что $\mathbf{P}_c^-c_{n+1}=c_n$ при всех $n\in\mathbb{N}_0$.
- 7. Допустим, что каждый символ в упрощённой записи λ -выражения (переменная, скобка, точка, запятая, лямбда) занимает 0.5см пространства на бумаге. Найдите λ -выражение длиной менее 25см, имеющее нормальную форму длиной не менее $10^{10^{150}}$ световых лет (скорость света составляет $3\cdot 10^{10}$ см/сек.)
- 8. Пусть

Покажите, что \$ — комбинатор неподвижной точки.

9. Докажите, что $M \in \Lambda$ — комбинатор неподвижной точки $\iff M = (SI)M$.

- 10. Пусть $f,g-\lambda$ -выражения. Положим $X\equiv \mathbf{\Theta}(f\circ g)$. Докажите, что g(X) неподвижная точка выражения $g\circ f$.
- 11. Положим $\mathbf{Y}_M \equiv \lambda f.~WWM$, где $W \equiv \lambda x, z.~f(xxz)$. Докажите, что \mathbf{Y}_M комбинатор неподвижной точки для любого $M \in \Lambda$.
- 12. Докажите, что $\mathbf{Y}_M = \mathbf{Y}_N \,\Rightarrow\, M = N.$ (\mathbf{Y}_M и \mathbf{Y}_N определены как в предыдущей задаче)
- 13. Пусть $f:\mathbb{N}_0^2 \to \mathbb{N}_0$ рекурсивная функция. Постройте последовательность X_0,X_1,\dots λ выражений, такую, что при всех $n\in\mathbb{N}_0$ выполняется $X_nX_m=X_{f(n,m)}.$
 - Пусть $X=\{x_1,x_2,...,x_n\}$, и пусть \times бинарная операция на X. Постройте λ -выражения $X_1,X_2,...,X_n$ таким образом, чтобы выполнялось $X_iX_j=X_k\iff x_i\times x_j=x_k$ при всех i,j,k.
- 14. Пусть d числовая система. Докажите, что d адекватна тогда и только тогда, когда

$$\exists F, F^{-1} \in \Lambda : \forall n \in \mathbb{N}_0 : (F \lceil n \rceil = d_n) \land (F^{-1}d_n = \lceil n \rceil).$$

- 15. Пусть $d_0, d_1, \ldots -$ адекватная числовая система. Положим $d'_n \equiv \mathbf{YC} d_n$, где $\mathbf{C} \equiv \lambda x, y, z.$ x(zy). Покажите, что все рекурсивные функции одного аргумента $\varphi: \mathbb{N}_0 \to \mathbb{N}_0$ λ -представляются с помощью d'. (подсказка: рассмотрите $F' \equiv \lambda x.$ xF)
- 16. Пусть $f_0 \equiv \lambda x, y, z.$ y и $\mathbf{S}_f^+ \equiv \lambda x.$ $\langle x \rangle$. Покажите, что функции $\mathbf{P}_f^- \equiv \langle I \rangle$ и $\mathbf{Zero}_f \equiv \lambda x, y, z.$ $x(\lambda x', y', z'. z')yz$ превращают (f_0, \mathbf{S}_f^+) в адекватную числовую систему.
- 17. Рассмотрим последовательность $a_n \equiv \mathbf{K}^n \mathbf{I}$. Покажите, что $a-\mathbf{he}$ числовая система.
- 18. Покажите, что множество $\{M \in \Lambda \mid M = \mathbf{I}\}$ **не** рекурсивное.
- 19. Докажите, что существует λ -выражение M, такое, что $M=\lceil M \rceil$. (подсказка: обратите внимание на доказательство теоремы Скотта-Карри о неразрешимости)
- 20. Докажите вторую теорему о неподвижной точке: $\forall F \in \Lambda : \exists X \in \Lambda : F \lceil X \rceil = X$.