Homework 4

Study Section 2.4.

0. The size $|\phi|$ of a formula ϕ is the number of symbol occurrence in ϕ , defined by recursion:

$$\begin{aligned} |p| &= 1 & |\neg \phi| &= 1 + |\phi| \\ |\top| &= 1 & |\bot| &= 1 \\ |\phi \wedge \psi| &= |\phi| + |\psi| + 1 & |\phi \vee \psi| &= |\phi| + |\psi| + 1 \\ |\phi \to \psi| &= |\phi| + |\psi| + 1 & |\phi \leftrightarrow \psi| &= |\phi| + |\psi| + 1 \end{aligned}$$

Note that parentheses do not count as symbols. For instance, $|(p \to q)| = 3$ since there are three symbols p, q, \to . Compute $|\phi|$ for each formula ϕ .

- (a) $\phi = p$
- (b) $\phi = \top$
- (c) $\phi = \neg (p \land q)$
- (d) $\phi = p \vee p$
- (e) $\phi = (p \to (q \land r))$
- (f) $\phi = (\neg(p \lor q) \leftrightarrow (\neg p \land \neg q))$
- 1. We write $Atoms(\phi)$ for the set of all atoms in a formula ϕ .
 - (a) Compute Atoms(ϕ) for each formula ϕ . Note that \top , \bot are not atoms.

i.
$$\phi = p$$

ii. $\phi = \top$
iii. $\phi = \neg (p \land q)$
iv. $\phi = p \lor p$
v. $\phi = (p \to (q \land r))$
vi. $\phi = (\neg (p \lor q) \leftrightarrow (\neg p \land \neg q))$

(b) Define the function Atoms by recursion.

$$\begin{array}{ll} \operatorname{Atoms}(p) = \cdots & \operatorname{Atoms}(\neg \phi) = \cdots \\ \operatorname{Atoms}(\top) = \cdots & \operatorname{Atoms}(\bot) = \cdots \\ \operatorname{Atoms}(\phi \wedge \psi) = \cdots & \operatorname{Atoms}(\phi \vee \psi) = \cdots \\ \operatorname{Atoms}(\phi \rightarrow \psi) = \cdots & \operatorname{Atoms}(\phi \leftrightarrow \psi) = \cdots \end{array}$$

- (c) Show that $|\mathsf{Atoms}(\phi)| \leq |\phi|$ for all formulas ϕ by structural induction on ϕ . Here $|\mathsf{Atoms}(\phi)|$ denotes the *cardinality* of the set $\mathsf{Atoms}(\phi)$, and $|\phi|$ denotes the *size* of the formula ϕ . For instance, $|\mathsf{Atoms}((p \to q) \to r)| = 3$ and $|\mathsf{Atoms}(p \to p)| = 1$.
- 2. In this section we only consider formulas made of \neg , \lor , \land and atoms:

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi$$

For each formula ϕ the formula ϕ^* is defined as follows:

$$p^* = \neg p \qquad (\neg \phi)^* = \neg (\phi^*)$$
$$(\phi \land \psi)^* = \phi^* \lor \psi^* \qquad (\phi \lor \psi)^* = \phi^* \land \psi^*$$

1

Here p denotes an atom.

- (a) Compute ϕ^* for each formula ϕ .
 - i. $\phi = (\neg p)$
 - ii. $\phi = (p \wedge q)$
 - iii. $\phi = (p \lor q)$
 - iv. $\phi = ((p \vee \neg q) \wedge (q \vee r))$
 - v. $\phi = (\neg p \lor \neg q)$
 - vi. $\phi = (\neg p \land \neg q)$
- (b) Show that $\phi^* \approx \neg \phi$ for all formulas ϕ by structural induction on ϕ . Note that the (syntactical) equality = and the logical equivalence \approx must be distinguished in the proof.
- (c) Show that $\neg(\phi \lor \psi) \approx (\neg \phi \land \neg \psi)$ for all formulas ϕ, ψ using the previous result.
- 3. Write a derivation of each formula in the natural deduction.
 - (1) $p \to (p \land p)$
 - $(2) \ (p \land q) \to (q \land p)$
 - $(3) (p \land (q \land r)) \rightarrow ((p \land q) \land r)$
 - $(4) (p \lor p) \to p$
 - (5) $(p \lor q) \to (q \lor p)$
 - $(6) \ (p \lor (q \lor r)) \to ((p \lor q) \lor r)$
 - $(7) (p \land (q \lor r)) \to ((p \land q) \lor (p \land r))$
 - (8) $((p \land q) \lor (p \land r)) \rightarrow (p \land (q \lor r))$
 - $(9) (p \lor (q \land r)) \to ((p \lor q) \land (p \lor r))$
 - $(10) \ ((p \lor q) \land (p \lor r)) \to (p \lor (q \land r))$
 - $(11) \ p \to (q \to p)$
 - (12) $p \to (q \to (p \land q))$
 - $(13) \ (p \to q) \to ((q \to r) \to (p \to r))$
 - (14) $(p \to (q \to r)) \to ((p \land q) \to r)$
 - $(15) \ ((p \land q) \to r) \to (p \to (q \to r))$
 - (16) $(p \rightarrow q) \rightarrow ((p \rightarrow r) \rightarrow (p \rightarrow (q \land r)))$
 - $(17) \ (p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r))$