Handling Non-Record Data

Most data mining algorithms are designed for record data or its variations, such as transaction data and data matrices. Record-oriented techniques can be applied to non-record data by extracting features from data objects and using these features to create a record corresponding to each object. Consider the chemical structure data that was described earlier. Given a set of common substructures, each compound can be represented as a record with binary attributes that indicate whether a compound contains a specific substructure. Such a representation is actually a transaction data set, where the transactions are the compounds and the items are the substructures.

In some cases, it is easy to represent the data in a record format, but this type of representation does not capture all the information in the data. Consider spatio-temporal data consisting of a time series from each point on a spatial grid. This data is often stored in a data matrix, where each row represents a location and each column represents a particular point in time. However, such a representation does not explicitly capture the time relationships that are present among attributes and the spatial relationships that exist among objects. This does not mean that such a representation is inappropriate, but rather that these relationships must be taken into consideration during the analysis. For example, it would not be a good idea to use a data mining technique that assumes the attributes are statistically independent of one another.

2.2 Data Quality

Data mining applications are often applied to data that was collected for another purpose, or for future, but unspecified applications. For that reason, data mining cannot usually take advantage of the significant benefits of "addressing quality issues at the source." In contrast, much of statistics deals with the design of experiments or surveys that achieve a prespecified level of data quality. Because preventing data quality problems is typically not an option, data mining focuses on (1) the detection and correction of data quality problems and (2) the use of algorithms that can tolerate poor data quality. The first step, detection and correction, is often called **data cleaning**.

The following sections discuss specific aspects of data quality. The focus is on measurement and data collection issues, although some application-related issues are also discussed.

2.2.1 Measurement and Data Collection Issues

It is unrealistic to expect that data will be perfect. There may be problems due to human error, limitations of measuring devices, or flaws in the data collection process. Values or even entire data objects may be missing. In other cases, there may be spurious or duplicate objects; i.e., multiple data objects that all correspond to a single "real" object. For example, there might be two different records for a person who has recently lived at two different addresses. Even if all the data is present and "looks fine," there may be inconsistencies—a person has a height of 2 meters, but weighs only 2 kilograms.

In the next few sections, we focus on aspects of data quality that are related to data measurement and collection. We begin with a definition of measurement and data collection errors and then consider a variety of problems that involve measurement error: noise, artifacts, bias, precision, and accuracy. We conclude by discussing data quality issues that may involve both measurement and data collection problems: outliers, missing and inconsistent values, and duplicate data.

Measurement and Data Collection Errors

The term **measurement error** refers to any problem resulting from the measurement process. A common problem is that the value recorded differs from the true value to some extent. For continuous attributes, the numerical difference of the measured and true value is called the **error**. The term **data collection error** refers to errors such as omitting data objects or attribute values, or inappropriately including a data object. For example, a study of animals of a certain species might include animals of a related species that are similar in appearance to the species of interest. Both measurement errors and data collection errors can be either systematic or random.

We will only consider general types of errors. Within particular domains, there are certain types of data errors that are commonplace, and there often exist well-developed techniques for detecting and/or correcting these errors. For example, keyboard errors are common when data is entered manually, and as a result, many data entry programs have techniques for detecting and, with human intervention, correcting such errors.

Noise and Artifacts

Noise is the random component of a measurement error. It may involve the distortion of a value or the addition of spurious objects. Figure 2.5 shows a time series before and after it has been disrupted by random noise. If a bit

Figure 2.5. Noise in a time series context.

Figure 2.6. Noise in a spatial context.

more noise were added to the time series, its shape would be lost. Figure 2.6 shows a set of data points before and after some noise points (indicated by '+'s) have been added. Notice that some of the noise points are intermixed with the non-noise points.

The term noise is often used in connection with data that has a spatial or temporal component. In such cases, techniques from signal or image processing can frequently be used to reduce noise and thus, help to discover patterns (signals) that might be "lost in the noise." Nonetheless, the elimination of noise is frequently difficult, and much work in data mining focuses on devising **robust algorithms** that produce acceptable results even when noise is present.

Data errors may be the result of a more deterministic phenomenon, such as a streak in the same place on a set of photographs. Such deterministic distortions of the data are often referred to as **artifacts**.

Precision, Bias, and Accuracy

In statistics and experimental science, the quality of the measurement process and the resulting data are measured by precision and bias. We provide the standard definitions, followed by a brief discussion. For the following definitions, we assume that we make repeated measurements of the same underlying quantity and use this set of values to calculate a mean (average) value that serves as our estimate of the true value.

Definition 2.3 (Precision). The closeness of repeated measurements (of the same quantity) to one another.

Definition 2.4 (Bias). A systematic variation of measurements from the quantity being measured.

Precision is often measured by the standard deviation of a set of values, while bias is measured by taking the difference between the mean of the set of values and the known value of the quantity being measured. Bias can only be determined for objects whose measured quantity is known by means external to the current situation. Suppose that we have a standard laboratory weight with a mass of 1g and want to assess the precision and bias of our new laboratory scale. We weigh the mass five times, and obtain the following five values: {1.015, 0.990, 1.013, 1.001, 0.986}. The mean of these values is 1.001, and hence, the bias is 0.001. The precision, as measured by the standard deviation, is 0.013.

It is common to use the more general term, **accuracy**, to refer to the degree of measurement error in data.

Definition 2.5 (Accuracy). The closeness of measurements to the true value of the quantity being measured.

Accuracy depends on precision and bias, but since it is a general concept, there is no specific formula for accuracy in terms of these two quantities.

One important aspect of accuracy is the use of **significant digits**. The goal is to use only as many digits to represent the result of a measurement or calculation as are justified by the precision of the data. For example, if the length of an object is measured with a meter stick whose smallest markings are millimeters, then we should only record the length of data to the nearest millimeter. The precision of such a measurement would be \pm 0.5mm. We do not

review the details of working with significant digits, as most readers will have encountered them in previous courses, and they are covered in considerable depth in science, engineering, and statistics textbooks.

Issues such as significant digits, precision, bias, and accuracy are sometimes overlooked, but they are important for data mining as well as statistics and science. Many times, data sets do not come with information on the precision of the data, and furthermore, the programs used for analysis return results without any such information. Nonetheless, without some understanding of the accuracy of the data and the results, an analyst runs the risk of committing serious data analysis blunders.

Outliers

Outliers are either (1) data objects that, in some sense, have characteristics that are different from most of the other data objects in the data set, or (2) values of an attribute that are unusual with respect to the typical values for that attribute. Alternatively, we can speak of **anomalous** objects or values. There is considerable leeway in the definition of an outlier, and many different definitions have been proposed by the statistics and data mining communities. Furthermore, it is important to distinguish between the notions of noise and outliers. Outliers can be legitimate data objects or values. Thus, unlike noise, outliers may sometimes be of interest. In fraud and network intrusion detection, for example, the goal is to find unusual objects or events from among a large number of normal ones. Chapter 10 discusses anomaly detection in more detail.

Missing Values

It is not unusual for an object to be missing one or more attribute values. In some cases, the information was not collected; e.g., some people decline to give their age or weight. In other cases, some attributes are not applicable to all objects; e.g., often, forms have conditional parts that are filled out only when a person answers a previous question in a certain way, but for simplicity, all fields are stored. Regardless, missing values should be taken into account during the data analysis.

There are several strategies (and variations on these strategies) for dealing with missing data, each of which may be appropriate in certain circumstances. These strategies are listed next, along with an indication of their advantages and disadvantages.

Eliminate Data Objects or Attributes A simple and effective strategy is to eliminate objects with missing values. However, even a partially specified data object contains some information, and if many objects have missing values, then a reliable analysis can be difficult or impossible. Nonetheless, if a data set has only a few objects that have missing values, then it may be expedient to omit them. A related strategy is to eliminate attributes that have missing values. This should be done with caution, however, since the eliminated attributes may be the ones that are critical to the analysis.

Estimate Missing Values Sometimes missing data can be reliably estimated. For example, consider a time series that changes in a reasonably smooth fashion, but has a few, widely scattered missing values. In such cases, the missing values can be estimated (interpolated) by using the remaining values. As another example, consider a data set that has many similar data points. In this situation, the attribute values of the points closest to the point with the missing value are often used to estimate the missing value. If the attribute is continuous, then the average attribute value of the nearest neighbors is used; if the attribute is categorical, then the most commonly occurring attribute value can be taken. For a concrete illustration, consider precipitation measurements that are recorded by ground stations. For areas not containing a ground station, the precipitation can be estimated using values observed at nearby ground stations.

Ignore the Missing Value during Analysis Many data mining approaches can be modified to ignore missing values. For example, suppose that objects are being clustered and the similarity between pairs of data objects needs to be calculated. If one or both objects of a pair have missing values for some attributes, then the similarity can be calculated by using only the attributes that do not have missing values. It is true that the similarity will only be approximate, but unless the total number of attributes is small or the number of missing values is high, this degree of inaccuracy may not matter much. Likewise, many classification schemes can be modified to work with missing values.

Inconsistent Values

Data can contain inconsistent values. Consider an address field, where both a zip code and city are listed, but the specified zip code area is not contained in that city. It may be that the individual entering this information transposed two digits, or perhaps a digit was misread when the information was scanned

from a handwritten form. Regardless of the cause of the inconsistent values, it is important to detect and, if possible, correct such problems.

Some types of inconsistences are easy to detect. For instance, a person's height should not be negative. In other cases, it can be necessary to consult an external source of information. For example, when an insurance company processes claims for reimbursement, it checks the names and addresses on the reimbursement forms against a database of its customers.

Once an inconsistency has been detected, it is sometimes possible to correct the data. A product code may have "check" digits, or it may be possible to double-check a product code against a list of known product codes, and then correct the code if it is incorrect, but close to a known code. The correction of an inconsistency requires additional or redundant information.

Example 2.6 (Inconsistent Sea Surface Temperature). This example illustrates an inconsistency in actual time series data that measures the sea surface temperature (SST) at various points on the ocean. SST data was originally collected using ocean-based measurements from ships or buoys, but more recently, satellites have been used to gather the data. To create a long-term data set, both sources of data must be used. However, because the data comes from different sources, the two parts of the data are subtly different. This discrepancy is visually displayed in Figure 2.7, which shows the correlation of SST values between pairs of years. If a pair of years has a positive correlation, then the location corresponding to the pair of years is colored white; otherwise it is colored black. (Seasonal variations were removed from the data since, otherwise, all the years would be highly correlated.) There is a distinct change in behavior where the data has been put together in 1983. Years within each of the two groups, 1958–1982 and 1983–1999, tend to have a positive correlation with one another, but a negative correlation with years in the other group. This does not mean that this data should not be used, only that the analyst should consider the potential impact of such discrepancies on the data mining analysis.

Duplicate Data

A data set may include data objects that are duplicates, or almost duplicates, of one another. Many people receive duplicate mailings because they appear in a database multiple times under slightly different names. To detect and eliminate such duplicates, two main issues must be addressed. First, if there are two objects that actually represent a single object, then the values of corresponding attributes may differ, and these inconsistent values must be

Figure 2.7. Correlation of SST data between pairs of years. White areas indicate positive correlation. Black areas indicate negative correlation.

resolved. Second, care needs to be taken to avoid accidentally combining data objects that are similar, but not duplicates, such as two distinct people with identical names. The term **deduplication** is often used to refer to the process of dealing with these issues.

In some cases, two or more objects are identical with respect to the attributes measured by the database, but they still represent different objects. Here, the duplicates are legitimate, but may still cause problems for some algorithms if the possibility of identical objects is not specifically accounted for in their design. An example of this is given in Exercise 13 on page 91.

2.2.2 Issues Related to Applications

Data quality issues can also be considered from an application viewpoint as expressed by the statement "data is of high quality if it is suitable for its intended use." This approach to data quality has proven quite useful, particularly in business and industry. A similar viewpoint is also present in statistics and the experimental sciences, with their emphasis on the careful design of experiments to collect the data relevant to a specific hypothesis. As with quality

44 Chapter 2 Data

issues at the measurement and data collection level, there are many issues that are specific to particular applications and fields. Again, we consider only a few of the general issues.

Timeliness Some data starts to age as soon as it has been collected. In particular, if the data provides a snapshot of some ongoing phenomenon or process, such as the purchasing behavior of customers or Web browsing patterns, then this snapshot represents reality for only a limited time. If the data is out of date, then so are the models and patterns that are based on it.

Relevance The available data must contain the information necessary for the application. Consider the task of building a model that predicts the accident rate for drivers. If information about the age and gender of the driver is omitted, then it is likely that the model will have limited accuracy unless this information is indirectly available through other attributes.

Making sure that the objects in a data set are relevant is also challenging. A common problem is **sampling bias**, which occurs when a sample does not contain different types of objects in proportion to their actual occurrence in the population. For example, survey data describes only those who respond to the survey. (Other aspects of sampling are discussed further in Section 2.3.2.) Because the results of a data analysis can reflect only the data that is present, sampling bias will typically result in an erroneous analysis.

Knowledge about the Data Ideally, data sets are accompanied by documentation that describes different aspects of the data; the quality of this documentation can either aid or hinder the subsequent analysis. For example, if the documentation identifies several attributes as being strongly related, these attributes are likely to provide highly redundant information, and we may decide to keep just one. (Consider sales tax and purchase price.) If the documentation is poor, however, and fails to tell us, for example, that the missing values for a particular field are indicated with a -9999, then our analysis of the data may be faulty. Other important characteristics are the precision of the data, the type of features (nominal, ordinal, interval, ratio), the scale of measurement (e.g., meters or feet for length), and the origin of the data.

2.3 Data Preprocessing

In this section, we address the issue of which preprocessing steps should be applied to make the data more suitable for data mining. Data preprocessing

is a broad area and consists of a number of different strategies and techniques that are interrelated in complex ways. We will present some of the most important ideas and approaches, and try to point out the interrelationships among them. Specifically, we will discuss the following topics:

- Aggregation
- Sampling
- Dimensionality reduction
- Feature subset selection
- Feature creation
- Discretization and binarization
- Variable transformation

Roughly speaking, these items fall into two categories: selecting data objects and attributes for the analysis or creating/changing the attributes. In both cases the goal is to improve the data mining analysis with respect to time, cost, and quality. Details are provided in the following sections.

A quick note on terminology: In the following, we sometimes use synonyms for attribute, such as feature or variable, in order to follow common usage.

Aggregation 2.3.1

Sometimes "less is more" and this is the case with aggregation, the combining of two or more objects into a single object. Consider a data set consisting of transactions (data objects) recording the daily sales of products in various store locations (Minneapolis, Chicago, Paris, ...) for different days over the course of a year. See Table 2.4. One way to aggregate transactions for this data set is to replace all the transactions of a single store with a single storewide transaction. This reduces the hundreds or thousands of transactions that occur daily at a specific store to a single daily transaction, and the number of data objects is reduced to the number of stores.

An obvious issue is how an aggregate transaction is created; i.e., how the values of each attribute are combined across all the records corresponding to a particular location to create the aggregate transaction that represents the sales of a single store or date. Quantitative attributes, such as price, are typically aggregated by taking a sum or an average. A qualitative attribute, such as item, can either be omitted or summarized as the set of all the items that were sold at that location.

The data in Table 2.4 can also be viewed as a multidimensional array, where each attribute is a dimension. From this viewpoint, aggregation is the

Transaction ID	Item	Store Location	Date	Price	
1		***	360	:	
101123	Watch	Chicago	09/06/04	\$25.99	
101123	Battery	Chicago	09/06/04	\$5.99	
101124	Shoes	Minneapolis	09/06/04	\$75.00	
8		8			
20		10		100	

Table 2.4. Data set containing information about customer purchases.

process of eliminating attributes, such as the type of item, or reducing the number of values for a particular attribute; e.g., reducing the possible values for date from 365 days to 12 months. This type of aggregation is commonly used in Online Analytical Processing (OLAP), which is discussed further in Chapter 3.

There are several motivations for aggregation. First, the smaller data sets resulting from data reduction require less memory and processing time, and hence, aggregation may permit the use of more expensive data mining algorithms. Second, aggregation can act as a change of scope or scale by providing a high-level view of the data instead of a low-level view. In the previous example, aggregating over store locations and months gives us a monthly, per store view of the data instead of a daily, per item view. Finally, the behavior of groups of objects or attributes is often more stable than that of individual objects or attributes. This statement reflects the statistical fact that aggregate quantities, such as averages or totals, have less variability than the individual objects being aggregated. For totals, the actual amount of variation is larger than that of individual objects (on average), but the percentage of the variation is smaller, while for means, the actual amount of variation is less than that of individual objects (on average). A disadvantage of aggregation is the potential loss of interesting details. In the store example aggregating over months loses information about which day of the week has the highest sales.

Example 2.7 (Australian Precipitation). This example is based on precipitation in Australia from the period 1982 to 1993. Figure 2.8(a) shows a histogram for the standard deviation of average monthly precipitation for 3,030 0.5° by 0.5° grid cells in Australia, while Figure 2.8(b) shows a histogram for the standard deviation of the average yearly precipitation for the same locations. The average yearly precipitation has less variability than the average monthly precipitation. All precipitation measurements (and their standard deviations) are in centimeters.

- (a) Histogram of standard deviation of average monthly precipitation
- (b) Histogram of standard deviation of average yearly precipitation

Figure 2.8. Histograms of standard deviation for monthly and yearly precipitation in Australia for the period 1982 to 1993.

2.3.2 Sampling

Sampling is a commonly used approach for selecting a subset of the data objects to be analyzed. In statistics, it has long been used for both the preliminary investigation of the data and the final data analysis. Sampling can also be very useful in data mining. However, the motivations for sampling in statistics and data mining are often different. Statisticians use sampling because obtaining the entire set of data of interest is too expensive or time consuming, while data miners sample because it is too expensive or time consuming to process all the data. In some cases, using a sampling algorithm can reduce the data size to the point where a better, but more expensive algorithm can be used.

The key principle for effective sampling is the following: Using a sample will work almost as well as using the entire data set if the sample is representative. In turn, a sample is representative if it has approximately the same property (of interest) as the original set of data. If the mean (average) of the data objects is the property of interest, then a sample is representative if it has a mean that is close to that of the original data. Because sampling is a statistical process, the representativeness of any particular sample will vary, and the best that we can do is choose a sampling scheme that guarantees a high probability of getting a representative sample. As discussed next, this involves choosing the appropriate sample size and sampling techniques.

Sampling Approaches

There are many sampling techniques, but only a few of the most basic ones and their variations will be covered here. The simplest type of sampling is simple random sampling. For this type of sampling, there is an equal probability of selecting any particular item. There are two variations on random sampling (and other sampling techniques as well): (1) sampling without replacement—as each item is selected, it is removed from the set of all objects that together constitute the population, and (2) sampling with replacement—objects are not removed from the population as they are selected for the sample. In sampling with replacement, the same object can be picked more than once. The samples produced by the two methods are not much different when samples are relatively small compared to the data set size, but sampling with replacement is simpler to analyze since the probability of selecting any object remains constant during the sampling process.

When the population consists of different types of objects, with widely different numbers of objects, simple random sampling can fail to adequately represent those types of objects that are less frequent. This can cause problems when the analysis requires proper representation of all object types. For example, when building classification models for rare classes, it is critical that the rare classes be adequately represented in the sample. Hence, a sampling scheme that can accommodate differing frequencies for the items of interest is needed. Stratified sampling, which starts with prespecified groups of objects, is such an approach. In the simplest version, equal numbers of objects are drawn from each group even though the groups are of different sizes. In another variation, the number of objects drawn from each group is proportional to the size of that group.

Example 2.8 (Sampling and Loss of Information). Once a sampling technique has been selected, it is still necessary to choose the sample size. Larger sample sizes increase the probability that a sample will be representative, but they also eliminate much of the advantage of sampling. Conversely, with smaller sample sizes, patterns may be missed or erroneous patterns can be detected. Figure 2.9(a) shows a data set that contains 8000 two-dimensional points, while Figures 2.9(b) and 2.9(c) show samples from this data set of size 2000 and 500, respectively. Although most of the structure of this data set is present in the sample of 2000 points, much of the structure is missing in the sample of 500 points.

Figure 2.9. Example of the loss of structure with sampling.

Example 2.9 (Determining the Proper Sample Size). To illustrate that determining the proper sample size requires a methodical approach, consider the following task.

Given a set of data that consists of a small number of almost equalsized groups, find at least one representative point for each of the groups. Assume that the objects in each group are highly similar to each other, but not very similar to objects in different groups. Also assume that there are a relatively small number of groups, e.g., 10. Figure 2.10(a) shows an idealized set of clusters (groups) from which these points might be drawn.

This problem can be efficiently solved using sampling. One approach is to take a small sample of data points, compute the pairwise similarities between points, and then form groups of points that are highly similar. The desired set of representative points is then obtained by taking one point from each of these groups. To follow this approach, however, we need to determine a sample size that would guarantee, with a high probability, the desired outcome; that is, that at least one point will be obtained from each cluster. Figure 2.10(b) shows the probability of getting one object from each of the 10 groups as the sample size runs from 10 to 60. Interestingly, with a sample size of 20, there is little chance (20%) of getting a sample that includes all 10 clusters. Even with a sample size of 30, there is still a moderate chance (almost 40%) of getting a sample that doesn't contain objects from all 10 clusters. This issue is further explored in the context of clustering by Exercise 4 on page 559.

- (a) Ten groups of points.
- (b) Probability a sample contains points from each of 10 groups.

Figure 2.10. Finding representative points from 10 groups.

Progressive Sampling

The proper sample size can be difficult to determine, so **adaptive** or **progressive sampling** schemes are sometimes used. These approaches start with a small sample, and then increase the sample size until a sample of sufficient size has been obtained. While this technique eliminates the need to determine the correct sample size initially, it requires that there be a way to evaluate the sample to judge if it is large enough.

Suppose, for instance, that progressive sampling is used to learn a predictive model. Although the accuracy of predictive models increases as the sample size increases, at some point the increase in accuracy levels off. We want to stop increasing the sample size at this leveling-off point. By keeping track of the change in accuracy of the model as we take progressively larger samples, and by taking other samples close to the size of the current one, we can get an estimate as to how close we are to this leveling-off point, and thus, stop sampling.

2.3.3 Dimensionality Reduction

Data sets can have a large number of features. Consider a set of documents, where each document is represented by a vector whose components are the frequencies with which each word occurs in the document. In such cases,

there are typically thousands or tens of thousands of attributes (components), one for each word in the vocabulary. As another example, consider a set of time series consisting of the daily closing price of various stocks over a period of 30 years. In this case, the attributes, which are the prices on specific days, again number in the thousands.

There are a variety of benefits to dimensionality reduction. A key benefit is that many data mining algorithms work better if the dimensionality—the number of attributes in the data—is lower. This is partly because dimensionality reduction can eliminate irrelevant features and reduce noise and partly because of the curse of dimensionality, which is explained below. Another benefit is that a reduction of dimensionality can lead to a more understandable model because the model may involve fewer attributes. Also, dimensionality reduction may allow the data to be more easily visualized. Even if dimensionality reduction doesn't reduce the data to two or three dimensions, data is often visualized by looking at pairs or triplets of attributes, and the number of such combinations is greatly reduced. Finally, the amount of time and memory required by the data mining algorithm is reduced with a reduction in dimensionality.

The term dimensionality reduction is often reserved for those techniques that reduce the dimensionality of a data set by creating new attributes that are a combination of the old attributes. The reduction of dimensionality by selecting new attributes that are a subset of the old is known as feature subset selection or feature selection. It will be discussed in Section 2.3.4.

In the remainder of this section, we briefly introduce two important topics: the curse of dimensionality and dimensionality reduction techniques based on linear algebra approaches such as principal components analysis (PCA). More details on dimensionality reduction can be found in Appendix B.

The Curse of Dimensionality

The curse of dimensionality refers to the phenomenon that many types of data analysis become significantly harder as the dimensionality of the data increases. Specifically, as dimensionality increases, the data becomes increasingly sparse in the space that it occupies. For classification, this can mean that there are not enough data objects to allow the creation of a model that reliably assigns a class to all possible objects. For clustering, the definitions of density and the distance between points, which are critical for clustering, become less meaningful. (This is discussed further in Sections 9.1.2, 9.4.5, and 9.4.7.) As a result, many clustering and classification algorithms (and other

data analysis algorithms) have trouble with high-dimensional data—reduced classification accuracy and poor quality clusters.

Linear Algebra Techniques for Dimensionality Reduction

Some of the most common approaches for dimensionality reduction, particularly for continuous data, use techniques from linear algebra to project the data from a high-dimensional space into a lower-dimensional space. Principal Components Analysis (PCA) is a linear algebra technique for continuous attributes that finds new attributes (principal components) that (1) are linear combinations of the original attributes, (2) are orthogonal (perpendicular) to each other, and (3) capture the maximum amount of variation in the data. For example, the first two principal components capture as much of the variation in the data as is possible with two orthogonal attributes that are linear combinations of the original attributes. Singular Value Decomposition (SVD) is a linear algebra technique that is related to PCA and is also commonly used for dimensionality reduction. For additional details, see Appendices A and B.

2.3.4 Feature Subset Selection

Another way to reduce the dimensionality is to use only a subset of the features. While it might seem that such an approach would lose information, this is not the case if redundant and irrelevant features are present. **Redundant features** duplicate much or all of the information contained in one or more other attributes. For example, the purchase price of a product and the amount of sales tax paid contain much of the same information. **Irrelevant features** contain almost no useful information for the data mining task at hand. For instance, students' ID numbers are irrelevant to the task of predicting students' grade point averages. Redundant and irrelevant features can reduce classification accuracy and the quality of the clusters that are found.

While some irrelevant and redundant attributes can be eliminated immediately by using common sense or domain knowledge, selecting the best subset of features frequently requires a systematic approach. The ideal approach to feature selection is to try all possible subsets of features as input to the data mining algorithm of interest, and then take the subset that produces the best results. This method has the advantage of reflecting the objective and bias of the data mining algorithm that will eventually be used. Unfortunately, since the number of subsets involving n attributes is 2^n , such an approach is impractical in most situations and alternative strategies are needed. There are three standard approaches to feature selection: embedded, filter, and wrapper.

Embedded approaches Feature selection occurs naturally as part of the data mining algorithm. Specifically, during the operation of the data mining algorithm, the algorithm itself decides which attributes to use and which to ignore. Algorithms for building decision tree classifiers, which are discussed in Chapter 4, often operate in this manner.

Filter approaches Features are selected before the data mining algorithm is run, using some approach that is independent of the data mining task. For example, we might select sets of attributes whose pairwise correlation is as low as possible.

Wrapper approaches These methods use the target data mining algorithm as a black box to find the best subset of attributes, in a way similar to that of the ideal algorithm described above, but typically without enumerating all possible subsets.

Since the embedded approaches are algorithm-specific, only the filter and wrapper approaches will be discussed further here.

An Architecture for Feature Subset Selection

It is possible to encompass both the filter and wrapper approaches within a common architecture. The feature selection process is viewed as consisting of four parts: a measure for evaluating a subset, a search strategy that controls the generation of a new subset of features, a stopping criterion, and a validation procedure. Filter methods and wrapper methods differ only in the way in which they evaluate a subset of features. For a wrapper method, subset evaluation uses the target data mining algorithm, while for a filter approach, the evaluation technique is distinct from the target data mining algorithm. The following discussion provides some details of this approach, which is summarized in Figure 2.11.

Conceptually, feature subset selection is a search over all possible subsets of features. Many different types of search strategies can be used, but the search strategy should be computationally inexpensive and should find optimal or near optimal sets of features. It is usually not possible to satisfy both requirements, and thus, tradeoffs are necessary.

An integral part of the search is an evaluation step to judge how the current subset of features compares to others that have been considered. This requires an evaluation measure that attempts to determine the goodness of a subset of attributes with respect to a particular data mining task, such as classification

Figure 2.11. Flowchart of a feature subset selection process.

or clustering. For the filter approach, such measures attempt to predict how well the actual data mining algorithm will perform on a given set of attributes. For the wrapper approach, where evaluation consists of actually running the target data mining application, the subset evaluation function is simply the criterion normally used to measure the result of the data mining.

Because the number of subsets can be enormous and it is impractical to examine them all, some sort of stopping criterion is necessary. This strategy is usually based on one or more conditions involving the following: the number of iterations, whether the value of the subset evaluation measure is optimal or exceeds a certain threshold, whether a subset of a certain size has been obtained, whether simultaneous size and evaluation criteria have been achieved, and whether any improvement can be achieved by the options available to the search strategy.

Finally, once a subset of features has been selected, the results of the target data mining algorithm on the selected subset should be validated. A straightforward evaluation approach is to run the algorithm with the full set of features and compare the full results to results obtained using the subset of features. Hopefully, the subset of features will produce results that are better than or almost as good as those produced when using all features. Another validation approach is to use a number of different feature selection algorithms to obtain subsets of features and then compare the results of running the data mining algorithm on each subset.

Feature Weighting

Feature weighting is an alternative to keeping or eliminating features. More important features are assigned a higher weight, while less important features are given a lower weight. These weights are sometimes assigned based on domain knowledge about the relative importance of features. Alternatively, they may be determined automatically. For example, some classification schemes, such as support vector machines (Chapter 5), produce classification models in which each feature is given a weight. Features with larger weights play a more important role in the model. The normalization of objects that takes place when computing the cosine similarity (Section 2.4.5) can also be regarded as a type of feature weighting.

2.3.5 Feature Creation

It is frequently possible to create, from the original attributes, a new set of attributes that captures the important information in a data set much more effectively. Furthermore, the number of new attributes can be smaller than the number of original attributes, allowing us to reap all the previously described benefits of dimensionality reduction. Three related methodologies for creating new attributes are described next: feature extraction, mapping the data to a new space, and feature construction.

Feature Extraction

The creation of a new set of features from the original raw data is known as feature extraction. Consider a set of photographs, where each photograph is to be classified according to whether or not it contains a human face. The raw data is a set of pixels, and as such, is not suitable for many types of classification algorithms. However, if the data is processed to provide higher-level features, such as the presence or absence of certain types of edges and areas that are highly correlated with the presence of human faces, then a much broader set of classification techniques can be applied to this problem.

Unfortunately, in the sense in which it is most commonly used, feature extraction is highly domain-specific. For a particular field, such as image processing, various features and the techniques to extract them have been developed over a period of time, and often these techniques have limited applicability to other fields. Consequently, whenever data mining is applied to a relatively new area, a key task is the development of new features and feature extraction methods.

Figure 2.12. Application of the Fourier transform to identify the underlying frequencies in time series data.

Mapping the Data to a New Space

A totally different view of the data can reveal important and interesting features. Consider, for example, time series data, which often contains periodic patterns. If there is only a single periodic pattern and not much noise, then the pattern is easily detected. If, on the other hand, there are a number of periodic patterns and a significant amount of noise is present, then these patterns are hard to detect. Such patterns can, nonetheless, often be detected by applying a **Fourier transform** to the time series in order to change to a representation in which frequency information is explicit. In the example that follows, it will not be necessary to know the details of the Fourier transform. It is enough to know that, for each time series, the Fourier transform produces a new data object whose attributes are related to frequencies.

Example 2.10 (Fourier Analysis). The time series presented in Figure 2.12(b) is the sum of three other time series, two of which are shown in Figure 2.12(a) and have frequencies of 7 and 17 cycles per second, respectively. The third time series is random noise. Figure 2.12(c) shows the power spectrum that can be computed after applying a Fourier transform to the original time series. (Informally, the power spectrum is proportional to the square of each frequency attribute.) In spite of the noise, there are two peaks that correspond to the periods of the two original, non-noisy time series. Again, the main point is that better features can reveal important aspects of the data.

Many other sorts of transformations are also possible. Besides the Fourier transform, the **wavelet transform** has also proven very useful for time series and other types of data.

Feature Construction

Sometimes the features in the original data sets have the necessary information, but it is not in a form suitable for the data mining algorithm. In this situation, one or more new features constructed out of the original features can be more useful than the original features.

Example 2.11 (Density). To illustrate this, consider a data set consisting of information about historical artifacts, which, along with other information, contains the volume and mass of each artifact. For simplicity, assume that these artifacts are made of a small number of materials (wood, clay, bronze, gold) and that we want to classify the artifacts with respect to the material of which they are made. In this case, a density feature constructed from the mass and volume features, i.e., density = mass/volume, would most directly yield an accurate classification. Although there have been some attempts to automatically perform feature construction by exploring simple mathematical combinations of existing attributes, the most common approach is to construct features using domain expertise.

2.3.6 Discretization and Binarization

Some data mining algorithms, especially certain classification algorithms, require that the data be in the form of categorical attributes. Algorithms that find association patterns require that the data be in the form of binary attributes. Thus, it is often necessary to transform a continuous attribute into a categorical attribute (**discretization**), and both continuous and discrete attributes may need to be transformed into one or more binary attributes (**binarization**). Additionally, if a categorical attribute has a large number of values (categories), or some values occur infrequently, then it may be beneficial for certain data mining tasks to reduce the number of categories by combining some of the values.

As with feature selection, the best discretization and binarization approach is the one that "produces the best result for the data mining algorithm that will be used to analyze the data." It is typically not practical to apply such a criterion directly. Consequently, discretization or binarization is performed in

Categorical Value	Integer Value	x_1	x_2	x_3
awful	0	0	0	0
poor	1	0	0	1
OK	2	0	1	0
good	3	0	1	1
$egin{aligned} good \\ great \end{aligned}$	4	1	0	0

Table 2.5. Conversion of a categorical attribute to three binary attributes.

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	x_4	x_5
awful	0	1	0	0	0	0
poor	1	0	1	0	0	0
OK	2	0	0	1	0	0
good	3	0	0	0	1	0
great	4	0	0	0	0	1

a way that satisfies a criterion that is thought to have a relationship to good performance for the data mining task being considered.

Binarization

A simple technique to binarize a categorical attribute is the following: If there are m categorical values, then uniquely assign each original value to an integer in the interval [0, m-1]. If the attribute is ordinal, then order must be maintained by the assignment. (Note that even if the attribute is originally represented using integers, this process is necessary if the integers are not in the interval [0, m-1].) Next, convert each of these m integers to a binary number. Since $n = \lceil \log_2(m) \rceil$ binary digits are required to represent these integers, represent these binary numbers using n binary attributes. To illustrate, a categorical variable with 5 values $\{awful, poor, OK, good, great\}$ would require three binary variables $x_1, x_2,$ and x_3 . The conversion is shown in Table 2.5.

Such a transformation can cause complications, such as creating unintended relationships among the transformed attributes. For example, in Table 2.5, attributes x_2 and x_3 are correlated because information about the good value is encoded using both attributes. Furthermore, association analysis requires asymmetric binary attributes, where only the presence of the attribute (value = 1) is important. For association problems, it is therefore necessary to introduce one binary attribute for each categorical value, as in Table 2.6. If the

number of resulting attributes is too large, then the techniques described below can be used to reduce the number of categorical values before binarization.

Likewise, for association problems, it may be necessary to replace a single binary attribute with two asymmetric binary attributes. Consider a binary attribute that records a person's gender, male or female. For traditional association rule algorithms, this information needs to be transformed into two asymmetric binary attributes, one that is a 1 only when the person is male and one that is a 1 only when the person is female. (For asymmetric binary attributes, the information representation is somewhat inefficient in that two bits of storage are required to represent each bit of information.)

Discretization of Continuous Attributes

Discretization is typically applied to attributes that are used in classification or association analysis. In general, the best discretization depends on the algorithm being used, as well as the other attributes being considered. Typically, however, the discretization of an attribute is considered in isolation.

Transformation of a continuous attribute to a categorical attribute involves two subtasks: deciding how many categories to have and determining how to map the values of the continuous attribute to these categories. In the first step, after the values of the continuous attribute are sorted, they are then divided into n intervals by specifying n-1 split points. In the second, rather trivial step, all the values in one interval are mapped to the same categorical value. Therefore, the problem of discretization is one of deciding how many split points to choose and where to place them. The result can be represented either as a set of intervals $\{(x_0, x_1], (x_1, x_2], \ldots, (x_{n-1}, x_n)\}$, where x_0 and x_n may be $+\infty$ or $-\infty$, respectively, or equivalently, as a series of inequalities $x_0 < x \le x_1, \ldots, x_{n-1} < x < x_n$.

Unsupervised Discretization A basic distinction between discretization methods for classification is whether class information is used (supervised) or not (unsupervised). If class information is not used, then relatively simple approaches are common. For instance, the equal width approach divides the range of the attribute into a user-specified number of intervals each having the same width. Such an approach can be badly affected by outliers, and for that reason, an equal frequency (equal depth) approach, which tries to put the same number of objects into each interval, is often preferred. As another example of unsupervised discretization, a clustering method, such as K-means (see Chapter 8), can also be used. Finally, visually inspecting the data can sometimes be an effective approach.

Example 2.12 (Discretization Techniques). This example demonstrates how these approaches work on an actual data set. Figure 2.13(a) shows data points belonging to four different groups, along with two outliers—the large dots on either end. The techniques of the previous paragraph were applied to discretize the x values of these data points into four categorical values. (Points in the data set have a random y component to make it easy to see how many points are in each group.) Visually inspecting the data works quite well, but is not automatic, and thus, we focus on the other three approaches. The split points produced by the techniques equal width, equal frequency, and K-means are shown in Figures 2.13(b), 2.13(c), and 2.13(d), respectively. The split points are represented as dashed lines. If we measure the performance of a discretization technique by the extent to which different objects in different groups are assigned the same categorical value, then K-means performs best, followed by equal frequency, and finally, equal width.

Supervised Discretization The discretization methods described above are usually better than no discretization, but keeping the end purpose in mind and using additional information (class labels) often produces better results. This should not be surprising, since an interval constructed with no knowledge of class labels often contains a mixture of class labels. A conceptually simple approach is to place the splits in a way that maximizes the purity of the intervals. In practice, however, such an approach requires potentially arbitrary decisions about the purity of an interval and the minimum size of an interval. To overcome such concerns, some statistically based approaches start with each attribute value as a separate interval and create larger intervals by merging adjacent intervals that are similar according to a statistical test. Entropy-based approaches are one of the most promising approaches to discretization, and a simple approach based on entropy will be presented.

First, it is necessary to define **entropy**. Let k be the number of different class labels, m_i be the number of values in the i^{th} interval of a partition, and m_{ij} be the number of values of class j in interval i. Then the entropy e_i of the i^{th} interval is given by the equation

$$e_i = \sum_{i=1}^k p_{ij} \log_2 p_{ij},$$

where $p_{ij} = m_{ij}/m_i$ is the probability (fraction of values) of class j in the i^{th} interval. The total entropy, e, of the partition is the weighted average of the individual interval entropies, i.e.,

Figure 2.13. Different discretization techniques.

$$e = \sum_{i=1}^{n} w_i e_i,$$

where m is the number of values, $w_i = m_i/m$ is the fraction of values in the i^{th} interval, and n is the number of intervals. Intuitively, the entropy of an interval is a measure of the purity of an interval. If an interval contains only values of one class (is perfectly pure), then the entropy is 0 and it contributes

nothing to the overall entropy. If the classes of values in an interval occur equally often (the interval is as impure as possible), then the entropy is a maximum.

A simple approach for partitioning a continuous attribute starts by bisecting the initial values so that the resulting two intervals give minimum entropy. This technique only needs to consider each value as a possible split point, because it is assumed that intervals contain ordered sets of values. The splitting process is then repeated with another interval, typically choosing the interval with the worst (highest) entropy, until a user-specified number of intervals is reached, or a stopping criterion is satisfied.

Example 2.13 (Discretization of Two Attributes). This method was used to independently discretize both the x and y attributes of the two-dimensional data shown in Figure 2.14. In the first discretization, shown in Figure 2.14(a), the x and y attributes were both split into three intervals. (The dashed lines indicate the split points.) In the second discretization, shown in Figure 2.14(b), the x and y attributes were both split into five intervals.

This simple example illustrates two aspects of discretization. First, in two dimensions, the classes of points are well separated, but in one dimension, this is not so. In general, discretizing each attribute separately often guarantees suboptimal results. Second, five intervals work better than three, but six intervals do not improve the discretization much, at least in terms of entropy. (Entropy values and results for six intervals are not shown.) Consequently, it is desirable to have a stopping criterion that automatically finds the right number of partitions.

Categorical Attributes with Too Many Values

Categorical attributes can sometimes have too many values. If the categorical attribute is an ordinal attribute, then techniques similar to those for continuous attributes can be used to reduce the number of categories. If the categorical attribute is nominal, however, then other approaches are needed. Consider a university that has a large number of departments. Consequently, a department name attribute might have dozens of different values. In this situation, we could use our knowledge of the relationships among different departments to combine departments into larger groups, such as engineering, social sciences, or biological sciences. If domain knowledge does not serve as a useful guide or such an approach results in poor classification performance, then it is necessary to use a more empirical approach, such as grouping values

Figure 2.14. Discretizing x and y attributes for four groups (classes) of points.

together only if such a grouping results in improved classification accuracy or achieves some other data mining objective.

2.3.7 Variable Transformation

A variable transformation refers to a transformation that is applied to all the values of a variable. (We use the term variable instead of attribute to adhere to common usage, although we will also refer to attribute transformation on occasion.) In other words, for each object, the transformation is applied to the value of the variable for that object. For example, if only the magnitude of a variable is important, then the values of the variable can be transformed by taking the absolute value. In the following section, we discuss two important types of variable transformations: simple functional transformations and normalization.

Simple Functions

For this type of variable transformation, a simple mathematical function is applied to each value individually. If x is a variable, then examples of such transformations include x^k , $\log x$, e^x , \sqrt{x} , 1/x, $\sin x$, or |x|. In statistics, variable transformations, especially sqrt, log, and 1/x, are often used to transform data that does not have a Gaussian (normal) distribution into data that does. While this can be important, other reasons often take precedence in data min-

ing. Suppose the variable of interest is the number of data bytes in a session, and the number of bytes ranges from 1 to 1 billion. This is a huge range, and it may be advantageous to compress it by using a \log_{10} transformation. In this case, sessions that transferred 10^8 and 10^9 bytes would be more similar to each other than sessions that transferred 10 and 1000 bytes (9 - 8 = 1 versus 3 - 1 = 2). For some applications, such as network intrusion detection, this may be what is desired, since the first two sessions most likely represent transfers of large files, while the latter two sessions could be two quite distinct types of sessions.

Variable transformations should be applied with caution since they change the nature of the data. While this is what is desired, there can be problems if the nature of the transformation is not fully appreciated. For instance, the transformation 1/x reduces the magnitude of values that are 1 or larger, but increases the magnitude of values between 0 and 1. To illustrate, the values $\{1,2,3\}$ go to $\{1,\frac{1}{2},\frac{1}{3}\}$, but the values $\{1,\frac{1}{2},\frac{1}{3}\}$ go to $\{1,2,3\}$. Thus, for all sets of values, the transformation 1/x reverses the order. To help clarify the effect of a transformation, it is important to ask questions such as the following: Does the order need to be maintained? Does the transformation apply to all values, especially negative values and 0? What is the effect of the transformation on the values between 0 and 1? Exercise 17 on page 92 explores other aspects of variable transformation.

Normalization or Standardization

Another common type of variable transformation is the **standardization** or **normalization** of a variable. (In the data mining community the terms are often used interchangeably. In statistics, however, the term normalization can be confused with the transformations used for making a variable **normal**, i.e., Gaussian.) The goal of standardization or normalization is to make an entire set of values have a particular property. A traditional example is that of "standardizing a variable" in statistics. If \bar{x} is the mean (average) of the attribute values and s_x is their standard deviation, then the transformation $x' = (x - \overline{x})/s_x$ creates a new variable that has a mean of 0 and a standard deviation of 1. If different variables are to be combined in some way, then such a transformation is often necessary to avoid having a variable with large values dominate the results of the calculation. To illustrate, consider comparing people based on two variables: age and income. For any two people, the difference in income will likely be much higher in absolute terms (hundreds or thousands of dollars) than the difference in age (less than 150). If the differences in the range of values of age and income are not taken into account, then the comparison between people will be dominated by differences in income. In particular, if the similarity or dissimilarity of two people is calculated using the similarity or dissimilarity measures defined later in this chapter, then in many cases, such as that of Euclidean distance, the income values will dominate the calculation.

The mean and standard deviation are strongly affected by outliers, so the above transformation is often modified. First, the mean is replaced by the **median**, i.e., the middle value. Second, the standard deviation is replaced by the **absolute standard deviation**. Specifically, if x is a variable, then the absolute standard deviation of x is given by $\sigma_A = \sum_{i=1}^m |x_i - \mu|$, where x_i is the i^{th} value of the variable, m is the number of objects, and μ is either the mean or median. Other approaches for computing estimates of the location (center) and spread of a set of values in the presence of outliers are described in Sections 3.2.3 and 3.2.4, respectively. These measures can also be used to define a standardization transformation.

2.4 Measures of Similarity and Dissimilarity

Similarity and dissimilarity are important because they are used by a number of data mining techniques, such as clustering, nearest neighbor classification, and anomaly detection. In many cases, the initial data set is not needed once these similarities or dissimilarities have been computed. Such approaches can be viewed as transforming the data to a similarity (dissimilarity) space and then performing the analysis.

We begin with a discussion of the basics: high-level definitions of similarity and dissimilarity, and a discussion of how they are related. For convenience, the term **proximity** is used to refer to either similarity or dissimilarity. Since the proximity between two objects is a function of the proximity between the corresponding attributes of the two objects, we first describe how to measure the proximity between objects having only one simple attribute, and then consider proximity measures for objects with multiple attributes. This includes measures such as correlation and Euclidean distance, which are useful for dense data such as time series or two-dimensional points, as well as the Jaccard and cosine similarity measures, which are useful for sparse data like documents. Next, we consider several important issues concerning proximity measures. The section concludes with a brief discussion of how to select the right proximity measure.