

TP Lernfeld 5

Halbleiterdiode

	171		\neg
Name	Klasse	Datum	
100000000000000000000000000000000000000			

Halbleiterdioden sind zweipolige Bauelemente deren Widerstandswert von der Polarität der angelegten Spannung abhängt.

Durchlassrichtung (Forward):

Des Pluspol der außeren Spannungsquelle wird an die Anode der Diode, der Minuspol an der Worthode angeschlossen.

Sperrrichtung (Reverse):

Der Minuspol des angeren spanningsspielle wird om die Anole des Disde, des Pluspel an der Karlode angeschlossen.

Bauformen und Kennzeichnung der Katode:

Kennzeichnung durch zwei oder drei Buchstaben:

1. Buchstabe: Halbleits material A=Germanium, B= Silitium, C=Gallium-Arsen of

2. Buchstabe: Funtion A=Diode, J= Lastungsdiode, Q= Lendifdiode

3. Buchstabe: Inhastrictope and Typennummer x, J, Z 65 (Zahl = Typennummer)

Beispiel: BAY 89 = Silibium - Diole - Typ y89

Kennlinie der Halbleiterdiode 1N5406.

Messschaltung: Durchlassrichtung (Forward):

<i>I</i> ⊧ in mA	10	25	50	100	200	400	600	1000
<i>U</i> _F in V	0,650	0,650	0,720	U2510	0,78	0,810	013527	0,850
5) US	0 (3.1	0 (91)	07	221	- 366	2201	2.84	D 97 LJ

Messschaltung: Sperrrichtung (Reverse):

<i>U</i> _R in V	0,7	1	5	10	20	30
I _R in mA	OA	OA	OA	OA	OA	OA

Diagramm:

Kennwerte der Halbleiterdiode

Schleusenspannung

Us:

Maximale Sperrspannung

U_R max:

Differenzieller Widerstand

$$r_F = \frac{\Delta U}{\Delta I_F} = \frac{O_178V - 0.76V}{UOQMA - ZOOMA}$$

$$r_F = \frac{O_11}{O_1} SZ$$

Vergleich von Germanium- und Siliziumdioden

Kenngröße	Germaniumdioden	Siliziumdioden
Schwellwert der Durchlassspannung <i>U</i> _S (Schleusenspannung)	012 -014U & 013V	0,6-0,80 20,70
Stromdichte J	0,8 A/mm2	1,5A /mm2
Minimale / Maximale Betriebstemperatur $g_{min/max}$	-55°C 65+75°C	-40°C bis +150°C
Wirkungsgrad η	55%	95%
Spitzensperrspannung <i>U</i> _{Rmax}	30U - 120U	300-3,5 60

TP Lernfeld 5

Halbleiterdiode

Aufgabe:

Die Leistung eines Verbrauchers (Glühlampe 230 V / 40W) soll mit Hilfe einer Diode halbiert werden. Bestimmen Sie durch indirekte und direkte Leistungsmessung die jeweiligen Leistungen für Halb- und Volllast.

Messschaltung:

Messwertetabelle:

medatrer tetabelle.		
P Halblast indirekt	118 mA	/2350
P Volllast indirekt	180 mA	/ ZJSU
P Halblast direkt	23 L	
P Volllast direkt	39,5 W	

Anwendungen: Hazerfor

Anwendungen:

Freilaufdiode:

Dic Diode ist for die beim Schalten entstehende Indultionspacenung in Dwellasinchtuz geschaltet und schligt diese ben der Entstehung lang.

(Volunded Kontahtbrand, Edulug der Behindssich obert, Jehnte von Halbleiter-bountilen)

Amplitudenbegrenzung:

Wird die Amplifide der Eingangsspannung zu groß, werden beide Disden leitend und begrenzen die Ausgangsspannung. (Gehörsduntz im Telefonhirer)

Entladeschutz:

Verpolungsschutz:

Die Diode verhindert, dass sich des Alaha mulater Thor der Ladesorat entlädt. Die Vopdungsschatzdiode sperf die gegebouonfalle falsch gepolk Betrickspanning

Löten >> Weichlöten

Name	Klasse	Datum	10.01.23
------	--------	-------	----------

Zu erlernende Fertigkeiten und Kenntnisse

- 1. Weich- u. Hartlöten / Lötverfahren
- 2. Weichlöten /Weichlote
- 3. Bleifreies Löten
- 4. Flussmittel
- 5. Lötkolben
- 6. Lötvorgang / Lötübungen
- 7. Gedruckte Schaltungen

1. Löten

Nach erforderlicher Arbeitstemperatur unterscheidet man Weichlöten (bis 450°C) und Hartlöten (über 450°C).

Einteilung der Lötverfahren

Nach der Arbeitstemperatur:

Nach Art der Lötstelle:

Nach Art der Oxidbeseitigung:

Nach Art der Lotzuführung:

Nach Art der Fertigung:

Löten >> Weichlöten

2. Weichlöten

Beim Löten erwärmt man Werkstück und Lot auf die erforderliche Arbeitstemperatur. Das Lot schmilzt, verdrängt das Flussmittel, benetzt die Werkstückoberfläche und bildet mit dem zu verbindenden Grundwerkstoff Mischkristalle, somit eine unlösbare Verbindung zwischen Werkstück und Lot.

➤ Gut lötbare Metalle sind z.B.:

> Das bilden von Mischkristallen nennt man:

Kupfer, Silber and Messing

> Schwer lötbare Metalle sind z.B.:

Alaminium, Magnesium

> Kaum lötbare Metalle sind z.B.:

Chrom und Titan

Voraussetzungen für Weichlötverbindungen:

> Zum Loten unuss eine unchallisch reine Oberfläche vorliegen.

> Der Lilluben muss sine Arteitstemperatur von ca. 300°C bis 350°C

erreicht haben.

> Die Schnelztemperatur des Lotes mus unterhalle des Arbeitstemperatur

der Lotholben liegen.

Temperatur-Zeit-Diagramm beim Löten:

Weichlote

Alle Weichlote (Werkstoffkurzzeichen "S*") sind Legierungen, z.B. S-Sn 95,5Ag 3,8 Cu0,7, mit einem hohen Anteil von Zinn (Sn) und mit geringen Zusätzen von Kupfer (Cu), Silber (Ag) oder Gold (Au). Blei (Pb) darf in Weichloten nur noch im Hobby- und Kleinserienbereich verwendet werden, wenn diese Geräte <u>nicht</u> weiterverkauft werden.

Die Zusammensetzung des Lotes bestimmt den Schmelzbereich und die Arbeitstemperatur.

*S für Solder (engl.) = Lot

Löten >> Weichlöten

3. Bleifreies Löten

Nach dem Elektro- und Elektronikgerätegesetz (ElektroG) sowie den EU-Richtlinien dürfen seit dem 01. Juli 2006 elektrisch Geräte kein Blei enthalten. Dies gilt bei Geräten mit eingebauten Elektronikplatinen auch für die Lötstellen.

Folgende bleifreie Lote werden eingesetzt:

Weichlot z.B.	Schmelztemperatur	Eigenschaften
Nusce nz	2272	Zinn-lupto ist die preiswoteste Legierung u. wird bei einfachen Leitoplatten eingeselzt. Hoher Schundzpunkt.
Sn 95,5 Ag3,8Cn	0,7 ZA°C	Diedrigster Schmelepunkt aller bleifreien Weichlote. Mit dieses Cezierung hönnen auch hirtische Banteile, wie Halbleiter oder SMD-Banteile
		gelitet weden.

Was ist beim Einsatz von bleifreien Loten zu beachten?

>	Hahoe	. Lättemp	poatur, da	her besoud	oe Vorsicht	beī	empfiellichen	Elektronikbaufeilen.	
>3	یاد ه	douflache	der zu le	Henden Ba	uteile ma	iss Selv	sauber Sein.		
>:	Dic C	bofladic,	der Lötstelle	glanet nich	t melv, sou	len w	ird matt.		
				oird night v					

4. Flussmittel

In der Elektrotechnik verwendet man für Handlötungen meist Röhrenlot mit Flussmittelseele mit einem Durchmesser von z.B. 1 mm, 1,5 mm oder 2 mm.

Flussmittel der Elektrotechnik bestehen meist aus Kolophonium, einem Harz. Kolophonium wirkt nicht korrodierend und muss nach dem Lötvorgang nicht beseitigt werden.

Welche Aufgabe hat das Flussmittel?

Sic ha	æn d	lic Aufgabe,	dic zu	. Tender	, Mefalloto,	flächen von	- und			
wahend	des	Lit vorgang	s Von	Oxiden	en befreien	und eine	Deubildung	Non	Oriden zu	vehinden.

Löten >> Weichlöten

5. Lötkolben

Zum Schmelzen des Lotes benötigt man Wärme, diese wird meist im Lötkolben erzeugt. Elektrisch beheizte Lötkolben werden mit Leistungen von 5 W bis etwa 750 W hergestellt. Beim Löten ist die Lötkolbenleistung der Bauteilgröße anzupassen.

Art und Leistungsangabe	Verwendung
5 Watt	Für feinste Lötungen, z.B. in der Mikroelektronik.
25 Watt	Zum Löten an gedruck- ten Schaltungen und Steckern. Für Leitungen bis 1,5 mm ²
50 bis 150 Watt	Für Leitungen und Kabelschuhe bis etwa 4 mm². Bleche bis etwa 1,5 mm Dicke.
200 bis 750 Watt	Für Leitungen über 10 mm². Löten der Pole an Akkumulatoren, Bleche über 2 mm Dicke, für Spenglerarbeiten.

Lötstation temperaturgeregelt

Temperaturgeregelte Lötkolben arbeiten mit Kleinspannung, z.B. 24 V. Temperaturbereich etwa 150°C bis 450°C. Z.B. für Lötungen an Leiterplatten.

6. Lötvorgang

Drei Phasen: Erwärmen → Lötzinnfluss → Abkühlen

Aussehen von Lötstellen

> Moballisch glate oberfläche > Beneteunswinkel ca. 30° Gute Lötstellen:

Schlechte Lötstellen: > Olooflache int van

> Winhel zur blein bew. zur grafs > Litstelle mit Kumpen O. Kuzeln

Löten >> Weichlöten

7. Herstellen gedruckter Schaltungen

Aufgabe der gedruckten Schaltung:

> Sic ubonehmen zuverlassig die Funktion der Verdrahtung.

> Sic bieten den Banelementen den mechanischen Halt

Aufbau der Leiterplatten:

> Bestachungoseite: bastlot aux d. Basis material (Isdicmaterial) 2 B. Phenolhaz - Hartpapier Epondhaz - Hartgewebe, Payestofolic

> Litseite: bestelf aux d. Leitermatrial, lupter angloze; Didne des Kupteranflage betragt meist 35 pm

Herstellungsverfahren von Leiterplatten (gedruckten Schaltungen):

Beim Herstellen von Leiterplatten unterscheidet man die Subtraktiv- und die Additivtechnik.

Additivtechnik:

> Luftragen des Ceitesbahnen und Lotpunkte auf der Casismaterial Z.B. Aufhleben der Ceitobohnen,

Aufgalvanisienn

Subtraktivtechnik: > Atrazen überschüsizes Rupfoleile des Kupforbexhichtung

Z.B. Abatzen der Kupforbockichtung (Leiterbild worker aktost übertragen).

Abfrasen des Unpferbeschichtung

Löten >> Weichlöten

Zurichten elektronischer Bauelemente zum einlöten auf Leiterplatten:

Danteilansdouse Symmetrisch Eurichten, Ansdaluss rechtwinklig U. parallel führen.

> Banteile liegen auf der Leiteplatte auf, Leistungs widerlande auf Abstand zur Platinensberfläche seten.

> Lesbarheit des Bauteilwetz von einer Seite aus locachten.
> Bei Halbleiterborn elementen, Z.B. Transistoren, Bourfeilderland
Zur Platinon docsfläche 5 unn einhalten (Warme abfahr)

