

Exercises in Textbook (6th ed.)

Sections	Exercises	Typical Ones
§6-1	6.1, 6.2	6.2
§6-2	6.3~6.10	6.6, 6.10
§6-3	6.11~6.16	6.12, 6.15*
§6-4	6.17~ 6.23	6.17*, 6.22
§6-5	6.24~6.30	6.24*, 6.29
HDL	6.31~6.59	

* : Answers to problems appear at the end of the text.

J.J. Shann 6-5

=5

6-1

Registers

J.J. Shann

=6

A. Simplest Register

Simplest register:

- consists of only flip-flops
w/o any gates.

- E.g.: a 4-bit register with
asynchronous clear input

REG

Clear

Do Qo

D1 Q1

D2 Q2

D3 Q3

(b) Symbol

=10

=13

- Serial mode of a digital system:
 - Information is transferred and manipulated one bit at a time
- Serial transfer vs. Parallel transfer
 - Serial transfer:
 - > Information is transferred one bit at a time by shifting the bits out of the source register into the destination register.
 - Parallel transfer:
 - All the bits of the register are transferred at the same time.

J.J. Shann 6-15

-15

_ JK flip-flop input equations and output equation:

State Table for Serial Adder

Present State	Inputs		Next State	Output	Flip-Flop Inputs		
Q	x	y	Q ⁺	S	Jq	KQ	
0	0	0	0	0	0	X	
0	0	1	0	1	0	X	
0	1	0	0	1	0	X	
0	1	1	1	0	1	X	
1	0	0	0	1	X	1	
1	0	1	1	0	X	0	
1	1	0	1	0	X	0	
1	1	1	1	1	X	0	

$$J_Q = x y$$

$$K_Q = x' y' = (x + y)'$$

$$S = x \oplus y \oplus Q$$

J.J. Shann 6-20

=20

Capability of a universal shift register:

- 1. A *clock* input to synchronize the operations.
- 2. A *clear* control to clear the register to 0.
- 3. A *shift-right* control to enable the shift right operation and the *serial input* and *output* lines associated w/ the shift right.
- 4. A *shift-left* control to enable the shift left operation and the *serial input* and *output* lines associated w/ the shift left.
- 5. A *parallel-load* control to enable a parallel transfer and the *n parallel input* lines associated w/ the parallel transfer.
- 6. *n parallel output* lines.
- 7. A control state that leaves the information in the register unchanged in the presence of the clock.

J.J. Shann 6-25

-25

Ripple Counters

- Counter:
 - a register that goes through a prescribed sequence of states upon the application of input pulses:
 - ➤ Input pulses:

may be clock pulses or

originate from some external source

> Timing:

may occur at regular or

irregular intervals of time

> The sequence of states:

may follow the binary number sequence (\Rightarrow Binary counter) or any other sequence of states

J.J. Shann 6-31

-31

Categories of counters:

1. Ripple counters: (§6-3)

The flip-flop output transition serves as a source for triggering other flip-flops.

- ⇒ The C input of some or all flip-flops are triggered not by the common clock pulses. (not synchronous)
- **2.** *Synchronous counters*: (§6-4, §6-5)

The C inputs of all flip-flops receive the common clock.

* T or JK flip-flops

J.J. Shann 6-32

=33

Synchronous Counters Sync counter:

- A common clock triggers all flip-flops simultaneously.
- Block diagram: e.g.

* CO: is used to extend the counter to more stages

■ Design procedure:

- We can apply the same procedure of sync seq ckts. (Ch5)
- Sync counter is simpler than general sync seq ckts.
 - \Rightarrow No need to go through a sync seq logic design process.

J.J. Shann 6-44

=50

=53

=55

=60

- Counters:
 - can be designed to generate any desired sequence of states
- Binary counter
- BCD counter
- Divide-by-*N* counter: modulo-N counter
 - a counter that goes through a repeated sequence of N states
 - The sequence may follow the binary count or may be any other arbitrary sequence.

J.J. Shann 6-62

A. Counter w/ Unused States

- n flip-flops $\Rightarrow 2^n$ binary states
- Unused states:
 - states that are not used in specifying the sequential ckt
 - may be treated as don't-care conditions or may be assigned specific next states
- Self-correcting counter:
 - Ensure that when a ckt enter one of its unused states, it eventually goes into one of the valid states after one or more clock pulses so it can resume normal operation.
 - ⇒ Analyze the ckt to determine the next state from an unused state after it is designed.

J.J. Shann 6-63

-63

Example:

Two unused states: 011 & 111

State Table for Counter

Present State			Next State			1	Flip-Flop Inputs					
A	В	C	A	В	c		J _A	K _A	J _B	K _B	Jc	Kc
0	0	0	0	0	1		0	X	0	X	1	X
0	0	1	0	1	0		0	X	1	X	X	1
0	1	0	1	0	0	i	1	X	X	1	0	X
1	0	0	1	0	1		X	0	0	X	1	X
1	0	1	1	1	0	ı	X	0	1	X	X	1
1	1	0	0	0	0	1	X	1	X	1	0	X

The simplified f-f input eqs: Unused states \Rightarrow don't-care conditions $J_A = B$, $K_A = B$; $J_B = C$, $K_B = 1$; $J_C = B'$, $K_C = 1$

J.J. Shann 6-64

Summary:

Johnson counters can be constructed for any # of timing sequences:

```
# of flip-flops = 1/2 (the # of timing signals)
# of decoding gates = # of timing signals
2-input per gate
```

J.J. Shann 6-77

-77

J.J. Shann

HDL for Registers and Counters

- HDL for Shift Register
- HDL for Synchronous Counter
- HDL for Ripple Counter

J.J. Shann 6-79

-79

Chapter Summary

Registers

- _ Simplest register
- Register with parallel load
- Shift registers

Counters

- Ripple counter
- Synchronous binary counters
- Other counters

J.J. Shann 6-80

