wherein:

L₁ is a bifunctional linking moiety;

D is a moiety that is a leaving group, or a residue of a compound to be delivered into a cell;

Z is covalently linked to [D]_y, wherein Z is selected from the group consisting of: a moiety that is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

 Y_1 , Y_2 Y_3 and Y_4 are each independently O, S, or NR₁₂;

R₁₁ is a mono- or divalent polymer residue;

 R_1 , R_4 , R_9 , R_{10} and R_{12} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, arvls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, and substituted C_{1-6} heteroalkyls;

R₂, R₃, R₅ and R₆ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₁₋₆ alkoxy, phenoxy, C₁₋₈ heteroalkyls, C₁₋₈ heteroalkoxy, substituted C₁₋₆ alkyls, C₃₋₈ cycloalkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, halo-, nitro-, cyano-, carboxy, C₁₋₆ carboxyalkyls and C₁₋₆ alkylcarbonyls;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

- (m), (r), (s), (t), and (u) are independently zero or one;
- (p) is zero or a positive integer; and (y) is 1 or 2; wherein Z[D], is capable of crossing the membrane of the target cell and is capable of being hydrolyzed therein to release D.

 Y_3

Please amend claim 2 as follows:

2. (Amended) The compound of claim 1, wherein L_1 is selected from the group consisting of:

$$-M - \begin{pmatrix} R_7 \\ C \\ R_8 \end{pmatrix}_n - \begin{pmatrix} Y_5 \\ R_{15} \\ R_{15} \end{pmatrix}_a , and$$

$$-\begin{pmatrix} Y_5 \\ C \\ R_{15} \\ R_{15} \\ R_{15} \end{pmatrix}_a , and$$

wherein:

M is X or Q; where X is an electron withdrawing group;

Q is a moiety containing a free electron pair positioned three to six atoms from -C-;

- (a) and (n) are independently zero or a positive integer;
- (b) is zero or one;
- (g) is a positive integer;
- (q) is three or four;

 R_7 , R_8 , R_{15} and R_{18} are independently selected from the group which defines R_9 ; and Y_5 and Y_6 are independently O, S, or NR_{12} .

Please amend claim 7 as follows:

7. (Twice Amended) The compound of claim 6 wherein the peptide is Gly-Phe-Leu-Gly (SEQ ID NO:1) or Gly-Phe-Leu.

Please amend claim 18 as follows:

18. (Amended) The compound of claim 2, wherein X is selected from the group consisting of O and NR₁₂

Please amend claim 31 as follows:

31. (Twice Amended) A method of preparing a tetrapartate prodrug comprising reacting a compound of formula:

III $R_{1} = \begin{bmatrix} R_{9} \\ C \\ R_{10} \end{bmatrix}_{m} \begin{bmatrix} Y_{3} \\ C \\ R_{1} \end{bmatrix}_{p} Y_{2} = \begin{bmatrix} R_{2} \end{bmatrix}_{r} \begin{bmatrix} R_{3} \end{bmatrix}_{s} \\ R_{1} \\ C \\ R_{4} \end{bmatrix}_{R_{5} I_{n}} \begin{bmatrix} Y_{4} \\ R_{5} I_{n} \end{bmatrix}$

with a compound of formula:

IV $Lx-Z-[D]_y$;

wherein B is a leaving group for Formula III;

L₁ is a bifunctional linking moiety;

D is a moiety that is a leaving group, or a residue of a compound to be delivered into a cell; Lx is a leaving group for Formula IV;

Z is covalently linked to [D], wherein Z is selected from the group consisting of: a moiety that is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

 R_1 , R_4 , R_9 , R_{10} and R_{12} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, and substituted C_{1-6} heteroalkyls;

R₂, R₃, R₅ and R₆ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₁₋₆ alkoxy, phenoxy, C₁₋₈ heteroalkyls, C₁₋₈ heteroalkoxy, substituted C₁₋₆ alkyls, C₃₋₈ cycloalkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, halo-, nitro-, cyano-, carboxy-, C₁₋₆ carboxyalkyls and C₁₋₆ alkylcarbonyls;

Ar is a moiety which when included in Formula (III) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

(m), (r), (s), (t), and (u) are independently zero or one;

(p) is zero or a positive integer;

(y) is one or two;

 Y_1 , Y_2 , Y_3 and Y_4 are each independently O, S, or NR_{12} ; and R_{11} is a monovalent or divalent polymer residue.

Please amend claim 32 as follows:

32. (Twice Amended) A method of preparing a tetrapartate prodrug comprising reacting a compound of formula

with at least one biologically active material; wherein

L₁ is a bifunctional linking moiety;

La is a leaving group for Formula V;

Z is covalently linked to La and wherein Z is selected from the group consisting of: a moiety that is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

 R_1 , R_4 , R_9 , R_{10} and R_{12} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, and substituted C_{1-6} heteroalkyls;

 R_2 , R_3 , R_5 and R_6 are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{1-6} alkoxy, phenoxy, C_{1-8} heteroalkyls, C_{1-8} heteroalkoxy, substituted C_{1-6} alkyls, C_{3-8} cycloalkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, halo-, nitro-, cyano-, carboxy-, C_{1-6} carboxyalkyls and C_{1-6} alkylcarbonyls;

Ar is a moiety which when included in Formula (V) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

(m), (r), (s), (t), and (u) are independently zero or one;

(p) is zero or a positive integer;

 Y_1 , Y_2 , Y_3 and Y_4 are independently O, S, or NR_{12} ; and

R₁₁ is a monovalent or divalent polymer residue

wherein after the reaction Z is covalently linked to the at least one biologically active material.

Please amend claim 36 as follows:

36. (Amended) A compound of Formula I:

(I)
$$R_{11}$$
 R_{21} R_{21}

wherein:

L₁ is a difunctional linking moiety;

each D moiety is independently a residue of an anticancer agent, an anticancer prodrug, a detectable tag, or combinations thereof;

Z is covalently linked to [D]_y, wherein Z is selected from the group consisting of: a moiety that is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

 Y_1 , Y_2 , Y_3 and Y_4 are each independently O, S, or NR_{12} ;

R₁₁ is a mono- or divalent polymer residue;

R₁, R₂, R₁₀ and R₁₂ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, and substituted C₁₋₆ heteroalkyls;

 R_2 , R_3 , R_5 and R_6 are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{1-6} alkoxy, phenoxy, C_{1-8} heteroalkyls, C_{1-8} heteroalkoxy, substituted C_{1-6} alkyls, C_{3-8} cycloalkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, halo-, nitro-, cyano-, carboxy-, C_{1-6} carboxyalkyls and C_{1-6} alkylcarbonyls;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

(m), (r), (s), (t), and (u) are independently zero or one; and

(p) is zero or a positive integer; and (y) is 1 or 2.

Please amend claim 37 as follows:

37. (Amended) A compound of Formula 1:

(I)
$$R_{11}$$
 R_{10} R_{10}

wherein:

L₁ is a difunctional linking moiety;

D is a moiety that is a leaving group, or a residue of a compound to be delivered into a cell;

Z is covalently linked to [D]_y, wherein Z is selected from the group consisting of: a moiety that is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

 Y_1 , Y_2 , $|Y_3|$ and Y_4 are each independently O, S, or NR_{12} ;

R₁₁ is a mono- or divalent polymer residue;

 R_1 , R_4 , R_9 , R_{10} and R_{12} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, and substituted C_{1-6} heteroalkyls;

 R_2 , R_3 , R_5 and R_6 are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{1-6} alkoxy, phenoxy, C_{1-8} heteroalkyls, C_{1-8} heteroalkoxy, substituted C_{1-6} alkyls, C_{3-8} cycloalkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, halo-, nitro-, cyano-, carboxy-, C_{1-6} carboxyalkyls and C_{1-6} alkylcarbonyls;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

- (m), (r), (s), (t), and (u) are independently zero or one; and
- (p) is zero or a positive integer; and (y) is 1 or 2.