Prix gotley 1889 (4)

URINES

DÉPOTS — SÉDIMENTS CALCULS

APPLICATION DE L'ANALYSE UROLOGIQU A LA SÉMÉIOLOGIE MÉDICALE

PAR

E. GAUTRELET

Pharmacien de les classe, ureat (Médaille d'or) de l'École supérieure de Paris Ex-interne et Laureat des hôpitaux,

AVEC DEÉRICE DE

M. le Docteur LECORCHÉ

September 1 | September 2 | Se

PARIS

LIBRAIRIE J.-B. BAILLIÈRE ET FILS

1889

URINES

DÉPOTS — SÉDIMENTS CALCULS

2030-89. — Conrail. Imprimerio Caara.

Prix golley 1889 (4)

URINES

DÉPOTS — SÉDIMENTS

CALCULS

A PPLICATION DE L'ANALYSE UROLOGIQUE A LA SÉMÉIOLOGIE MÉDICALE

E. GAUTRELET

Laurènt (Médaille d'or) de l'Ecole supérieure de Paris, Ex-interne et Laurènt des hôpitaux, Secrétaire de la Société de médecine pratique,

AVEC PRÉPACE DE

M. le Docteur LECORCHÉ

Professeur agrégé à la Faculté de médecine, Médecin des hônitaux.

PARIS

LIBRAIRIE J.-B. BAILLIÈRE ET FILS 19, RUE HAUTEFEUILLE 1889

PRÉFACE

L'analyse chimique de l'urine a pris de nos jours une importance de premier ordre dans la pratique médicale. Pendant longtemps l'intérêt de cette étude est resté borné à la constatation de certains principes anormaux, à la recherche de l'albumine et du sucre. Mais la chimie biologique, en pénétrant plus intimement la constitution élémentaire du liquide urinaire, en décelant dans ce liquide la plupart des produits de l'assimilation et de la désassimilation organique, a conduit les physiologistes et les médecins à des visées plus hautes. Trouver dans la sécrétion rénale la mesure exacte des mutations et des échanges nutritifs de l'économie, apprécier, d'après les variations des principes constituants de cette sécrétion, le mode de réaction des éléments cellulaires est devenu le but principal et le véritable objectif de l'analyse urinaire. Nous-même, étudiant la constitution chimique de l'urine des goutteux, nous avons essayé de montrer le parti que l'on pouvait tirer de ces recherches, soit pour prédire et pronostiquer le développement de la goutte chez les sujets héréditairement prédisposés, soit pour affirmer la nature goutteuse de certaines manifestations viscérales en dehors de toute localisation articulaire.

Malheureusement, si nombreux que soient déjà les travaux faits dans cet ordre d'idées, il ne nous est pas encore donné de posséder une connaissance exacte des transformations chimiques qui se passent dans l'intimité

de nos tissus et la part de l'hypothèse reste encore très grande en cette matière. D'un autre côté, si l'appareil urinaire est la voie d'élimination la plus importante des déchets organiques, on ne doit pas oublier que les poumons, la muqueuse intestinale, la surface cutanée sont des émonctoires dont le rôle n'est pas négligeable et qui dans beaucoup de circonstances influencent ou même suppléent l'élimination rénale, et l'on ne saurait conclure absolument et dans tous les cas des modifications chimiques de l'urine à des modifications nutritives parallèles des organes et du plasma interstitiel. Il v a donc, dans les études de ce genre, un écueil à éviter ; c'est de baser une généralisation hâtive uniquement sur des considérations chimiques tirées du seul examen des liquides prinaires. « Les analyses chimiques, dit Claude Bernard, ne sauraient nous conduire à aucune conclusion utile, si elles sont faites sans préoccupation des causes organiques et physiologiques qui peuvent agir sur la constitution de ce liquide. » L'association du médecin au chimiste nous paraît indispensable pour unc saine interprétation des résultats fournis par l'analyse élémentaire.

Ces réserves faites, aucun mode d'examen ne fournit, à l'égal de l'étude analytique de l'urine, des données plus utiles sur le fonctionnement cellulaire de l'organisme, sur l'activité des échanges intérieurs, par suite sur le degré de résistance et de viaitié de l'individu. Cette vérité ressort à chaque page de la lecture du livre que M. Gaurelet offire au public médical. Chimisté éminent, M. Gaurelet offire au public médical. Chimisté éminent, M. Gaurelet ne s'est pas borné à l'étude isolée de châcun des nombreux principes dont l'analyse révèle la présence normale ou anormale dans l'urine, il s'est attaché à rendre compte de la parenté qui unit les éléments urinaires et à montrer la filiation directe-qui rattache ces éléments aux produits simples ou complexes, soit de l'alimentation.

soit des tissus et des liquides de l'organisme vivant.
Les deux premières parties de son livre sont consacrées

Les ueux premières parties de son invre sont consacrées à l'énumération raisonnée des éléments urinaires, à l'étude du type normal de l'urine, aux modes de recherche et de dosage, aux manipulations chimiques et microscopiques. Toute cette partie technique est remarquable par ac clarté et sa précision scientifique. Les faits principaux de cette étude sont résumés dans des tableaux synthétiques qui fixent d'une manière simple et rationnelle les données pratiques les plus importantes.

Nous signalerons la manière personnelle dont M. Gautrelet envisage la sécrétion urinaire et le rôle spécial qu'il attribue aux anses de Henle et aux tubes contournés. D'après lui le glomérule est le centre unique de la dialyse rénale; les anses de Henle ne sont que des siphons à niveau constant et les tubuli contorti des serpentins multipliant le volume du liquide des vases extérieurs de l'appareil dialysant: siphons et serpentins destinés à assure le contact parfait de la paroi glomérulaire avec la plus grande quantité possible du liquide dialyse, l'urine.

Au point de vue des manipulations chimiques, l'appareil ingénieux imaginé par M. Gautrelet sous le nom d'uro-azotimètre réalise un progrès sérieux pour le dosage des malériaux azotés de l'urine. Cet appareil permet le dosage différentiel volumétique de l'urée, de l'acide urique et de la créatinine par la réaction de l'hypobromite de soude. Trois tableaux annexés traduisent les volumes d'azote obtenus en poids de chacun de ces trois produits.

La troisième partie du livre contient les déductions séméiologiques, l'application pratique des résultats fournis par la technique analytique. Une innovation intéressante est la traduction sous forme de tracés des modifications présentées par les principaux éléments urinaires dans chaque cas particulier. Cette troisième partie est riche d'aperçus nouveaux et de vues originales. M. Gautrelet y aborde non sans hardiesse les questions les plus ardues de la pathologie générale. On lira avec curiosité sa conception propre des diathèses, basée sur les variations de l'acidité urinaire. Cette division des diathèses en diathèses par hyperacidité organique, en diathèses par hypoacidité organique lui a fourni l'occasion d'intéressants développements sur le groupement des diverses maladies, goutte, rhumatisme, glycosurie, dyspepsie, etc.

Bien que nous ne puissions souscrire à toutes les conclusions de l'auteur, le point de départ de cette division essentiellement chimique est certainement rationnel; en tout cas, les faits sont réunis avec une habiteté séduisante aussi bien au point de vue de l'enchaînement des accidents morbides qu'au point de vue de l'interprétation du traitement, applicable à chaque groupe de maladies.

Peut-être pourrait-ou reprocher à M. Gaufrelet de n'avoir pas illustré sa démonstration d'un plus grand nombre d'analyses personnelles. Ses scheïnas sémeiographiques répondent jusqu'à un certain point à ce reproche; nous aurions toutelois vu avec plaisir l'auteur mous ouvrir avec moins de réserve ses riches dossiers de documents et d'observations.

Tel qu'il est, le livre de M. Gautrelet n'en reste pas moins une tentative remarquable d'application raisonnée de l'analyse urinaire à la sémédologie des maladies et en particulier des maladies chroniques; et à et tire il mérite une place à part parmi les ouvrages, même les plus récents, consacrés à l'urologie.

Dr Lecorcue, and ela

Paris, le 25 avril 1889. See 13 the section of the section.

URINES

DÉPOTS - SÉDIMENTS - CALCULS

APPLICATION DE L'ANALYSE UROLOGIQUE

A LA SÉMÉTOLOGIE MÉDICALE

INTRODUCTION

Sous le nom de sémiologie on désigne en médecine cette partie de la pathologie générule qui tunite des signes de la maladie et permet au clinicien d'en concevoir le diagnostie, d'en porter le pronostie et d'en formuler le traitement. Le plus souvent difficlies à saisir à première voe, ces signes ne se révelent qu'à l'aide de moyens d'exploration (thermomètre, stéthoscope, plessimietre, etc.) que le médecin emploie chaque jour au lit du malade. Perfectionner ces divers moyens d'exploration, leur en adjoindre de nouveaux, faciliter l'interprétation des données qu'ils fournissent, tel doit être le but principal-de la sémédiogie.

Appliquer à la sémédolgie médicale les indications que peut donner à l'art de guérir l'analyse urologique, c'est donc faire œurre utile, puisque c'est chercher à diminuer dans une certaine mesure la somme des inconnues qui obscurcissent si fréquemment les origines et la nature de la maladie. Ce' nèst d'ailleurs que développer d'une façon plus spéciale et plus précise les rapports naturels et intimes que présentent avec la diagnose, le pronostic, la thérapeutique et l'hygiène mème, les données analytiques d'un examen raisonné de l'urine.

Toutefois, ce but poursuivi par l'uvologie suppose connue et bien déterminée une base première d'interprétation, qui n'est autre que la fixation du type de l'uvine normate. Lorsque le médecin note la température de son malade, lorsqu'il compte les puisations de son pouls ou écoute les bruits des a respiration, il ne fait autre chose en somme que comparer les données de son examen actuel avec es qu'il sait des conditions qu'i régissen les mêmes phénomènes à l'état normal. Toute conclusion séméloigique basée sur l'examen des urines ne doit être, de même, que la conséquence naturelle d'une comparaison méthodique entre deux factours connus : le premier consistant en résultats docimasiques obleuns sur une urine quelconque, le second fourni par les données analytiques de la même urine supposée normale, cést-à-dire excrétée par le même sujet en état de santé alsoine.

L'idée de demander à l'examen des urines la connaissance de la maladie est aussi vieille que la médecine elle-même. Dis les temps les plus reculés cet examen était en honneur chaz les médecins; mais il est vais de dire que le bagage scientifique des auciens ne justifiait en rien l'emploi qu'ils faissaient de l'étude des urines. Cependant, quelque imparfaites et souvent inexactes qu'alent 6té leurs ves à cet égard, il faut reconnaître qu'elles étaient empreintes d'un très grand sens pratique. Le moyen âge, au contraire, sans rien ajouter aux doctrines uroscopiques anciennes, laissa tomber l'examen des urines dans le plus affeix charlatanisme : c'est l'âge d'or des uromantes et des jugeres à l'eux.

Les progrès récents de la chimie et de la biologie ont enfin permis à la séméiologie urologique de s'éclairer au flambeau de la science, en appuyant ses conclusions sur des bases soclides et indiscutables. Aussi bien constatons-nous avec un vit sentiment de plaisir que l'étude de l'urine prend de jour en jour une plus grande importance en séméiologie générale. Les ouvrages écrits sur cette matière deviennent de plus en plus nombreux (4), et il f'elia paraît avoir été donné tout d'abord en

⁽¹⁾ Voyez Beale, De l'urine, des dépôts urinaires et des calculs, trad. par A. Ollivier et G. Bergeron. Paris, 1865.

Allemagne, nous sommes heureux de reconnaître que la France a suivi de près et n'a rien aujourd'hui à envier sous ce rapport à sa voisine.

Nous ne parlerons que pour mémoire de l'ouvrage de Neubauer et Vogel (1). Si la partie technique de l'analyse v est magistralement traitée, la séméiologie, malgré nombre d'indications utiles, ne s'y rencontre guère qu'à l'état d'ébauche informe et grossière.

Plus récent et par suite plus complet est le Manuel du diaamostic des maladies internes du professeur Von Jaksch. Mais, bien que l'urine occupe à elle seule plus de la moitié de ce volumineux ouvrage, c'est encore à nos yeux une œuvre incomplète.

Combien sont plus utiles à consulter les derniers travaux francais parus sur l'urologie! Il nous suffira de prononcer actuellement les noms du professeur Bouchard (2), de Lecorché (3), de Lecorché et Talamon (4), d'Alb. Robin (5), de Labadie-Lagrave (6); nous aurons fréquemment occasion de citer les uns et les antres.

Toutefois et puisque nous sommes incidemment conduits à parler d'urologie clinique, observons qu'il ne saurait être question en cette matière que d'un examen sommaire de l'urine pratiqué au lit du malade, avec des procédés rapides et partant plus ou moins imparfaits. Sans doute cet examen clinique, que nous appellerons nous l'uroscopie clinique, a savaleur et mérite d'être recommandé au praticien; on sait d'ailleurs à quelle perfection il avait été porté par Gubler et à quels surprenants résultats de diagnose il lui permettait souvent d'arriver. Mais on ne saurait s'en tenir là en urologie, et cet examen clinique superficiel, quoi qu'on fasse, n'offre d'autre intérêt pratique que la constatation de certains éléments mor-

⁽¹⁾ Neubauer et Vogel, De l'arine.

⁽²⁾ Bouchard, Maladies par ratentissement de nutrition. - Autointoxications. (3) Lecorche, Traité théorique et pratique de la goutte. Paris, 1886. — Du diabète sucré chez la femme. Paris, 1876. — Traité des maladies des reins. Paris, 1875.

(3) Lecorché et Talamon, Traité de l'albuminurie et du mal de Bright. Paris,

^{1887.} (5) Albert Robin, Urologie clinique, la fièvre typhoide. Paris, 1877.

⁽⁶⁾ Labadie-Lagrave, article Rux du Nouveau dictionnaire de médecine et de chirurgie pratiques de Jaccoud. Paris, 1881, t. XXX et XXXI. - Urologie clinique. Paris, 1888.

bides, comme le sucre. l'albumine ou les pigments biliaires. Entendue dans ce sens. l'urologie clinique fournira des moyens utiles d'appréciation immédiate dans certains cas aigus, mais elle renseignera à faux ou incomplètement sur les affections chroniques et les diathèses. Écoutons à ce propos la voix autorisée du professeur Félix Guyon : La perfection à laquelle la science moderne est arrivée à cet égard, dit-il à ses élèves en parlant de l'analyse des urines, donne encore plus de valeur aux renseignements que peut fournir une analyse complète, Mais il est rare que le clinicien ait une connaissance suffisante de la chimie pour pouvoir amener à bonne fin une semblable opération. Elle exige d'ailleurs un temps assez long, une surveillance minutieuse, que les praticiens scraient fort en peine de lui consacrer. Vous agirez sagement en confiant à un chimiste de profession les analyses complétes et en ne vous réservant que ce qui est véritablement du ressort de la pratique (1).

Quoi qu'il en soit de la précision des méthodes analytiques actuelles, il faut reconnaître que la sémiologie urinaire cherche encore son il lo conducteur et se véritable voic. Cette voie doit être, ainsi que nous l'établirons dans ce livre, l'étude approfindie des échanges suntritis, d'unde que permet seule de faire la docimasie comparée des éléments urinaires principaux. Le fil conducteur, ce sera la fixation du type normal de l'urine, fixation non plus générale et vaque, mais propre à chaque individu, à chaque eycle de son existence, à chaque climat, à chaque cycle de son existence, à chaque climat, à chaque eycle de son existence, à chaque climat, à

Ainsi posé, le problème urologique, tel que nous le comprenons, comporte la réponse à trois questions : 1° Qu'est-ce que l'urine normale?

2° En quoi une urine quelconque diffère-t-elle de la normale et comment s'en assure-t-on?

3° Que peut-on conclure de cet examen au point de vue médical? La division de ce livre en trois parties correspond à ces trois faces du problème :

Première partie : Unine normale : caractères et composition élémentaire.

. (1) Félix Guyon, Leçon clinique sur les maladies des voies urinaires. 2º édition. Paris, 1885. $\it Deuxième\ partie: Unines anonnales: technique analytique$ et docimasie comparée.

Troisième partie : Sénérologie urologique : physiologie des éléments de l'urine et conclusions séméiologiques.

Pour l'intelligence des doctrines que nous sontenons, il nous a paru utile de faire précéder l'étude de l'urine en général de prolégamène soù se trouveront succinciement exposés L'ANA-TONIE DU REIN et les principes fondamentaux de la firstologie URINAIRE : ces prolégomènes serviront en quelque sorte d'entrée cu matière pour la partie chimique de ce travaire de ce matière pour la partie chimique de ce travaire.

Nous n'avons pas la prétention de tout dire sur un sujet aussi vaste et aussi difficile. Plus modestes, nous essayons simplement de tracer un nouveau sillon sur le terrain de l'urologie. Une expérience déjà longue de ces questions nous donne, croyons-nous, quelque droit d'en parter; mais nous ne nous dérobons nullement aux critiques, et nous les attendons avec la ferme confiance qu'elles ne pourront être qu'utiles à l'urologie, c'est-à-dire en somme à l'Art de graéri.

PROLÉGOMÈNES

APPAREIL URINAIRE

L'appareil urinaire, dans l'espèce humaine, se compose essentiellement :

1º D'un organe d'excrétion, le rein;

Avec lequel viennent concourir:

2º Des canaux collecteurs, constitués par les calices, les bas-

2º Des canaux collecteurs, constitués par les cauces, les bassinets et les uretères;

3º Un réservoir commun, la vessie;

4º Enfin, un canal évecteur unique, l'urêthre.

CHAPITRE PREMIER ANATOMIE URINAIRE

I. ORGANE EXCRÉTEUR. ,- REIN.

A. Anatomic propre.

Sous le nom de rein, on désigne deux organes glandulaires compris dans la cavité abdominale (mais en dehors du péritoine), et situés de l'un et l'autre côté de la colonne vertébrale an niveau de la région lombaire, le rein droit un peu plus bas toutefois que son congénère de gauche.

Les reins possèdent une forme propre, absolument caractéristique, et que l'on a comparée, à juste titre, à celle d'un gros baricot dont le bile serait tourné vers le rachis.

Ordinairement, les deux reins sont à peu près égaux en volume; mais es obume relatif, de même que leur forme générale et leur situation, sont lois d'être constants. Ainsi l'un des deux organes peut présenter un très grand développement, tandis que l'autre sera resté dans un état plus ou moins rudimentaire; cette anomaile est même assez fréquente. Dans quelques cas plus rares, il n'existe qu'un seul rein, formé par la réunion congénitale des deux glandes, et alors placé en travers de la colonne vertébrale au devant de laquelle il représente un fer-à-cheval.

Le solume absolu du rein varie avec l'âge, le sexe, la force plus ou moins grande du sujet, avec son régime, ses habitudes, etc. Néanmoins les dimensions moyennes sont suivantes: longueur, 0",00; largeur, 0",05 à 0",06; épaisseur, 0",03.

Le poids d'un corps étant la résultante de son volume et de sa densité, il s'en suit que le rein, dont la densité à peu près constante est représentée par le chiffer, 1050, varie de poids selon son volume; ce poids oscillant entre 80 et 140 grammes pour le poids absolu de chacun des deux organes.

Quant au poids du rein comparé à celui du sujet, on voit ce poids relatif descendre sans cesse, de l'enfant chiez lequel il équivant aux 12 millièmes cavivon, à l'adolte où il n'en est déjà plus guére que les 4 millièmes, et enfin au vieillard pour lequel il arrive généralement à l'unité (1, p. 1000).

La couleur superficielle du rein est rouge lie-de-vin foncé.

La consistance, variable selon la période physiologique à laquelle on procède à son examen, est cependant en moyenne légèrement supérieure à celle du foie.

Au point de vue chimique d'ensemble, le rein contient : 83 p. 100 d'eau, 1 p. 100 de matières grasses, et est presque exclusivement formé, quant aux 16 p. 100 restants, de principes albuminoides. Pour notre part, nous croyons ne pas devoir comprendre dans la composition élémentaire du tissu rénal certains éléments secondaires : urée, acide urique, taurine, créatinine, etc., etc., qui ne sont autre chose que des déchets résultant de la stagnation de l'urine dans cet organe.

On considère au rein :

Une face anterieure, convexe et lisse, quoique présentant, ainsi que sa congénère, quelques bosselures peu saillantes;

Une face postérieure, un peu moins convexe que l'antérieure; Un bord externe, convexe et lisse;

Un bord interne, concave et profondément échancré à sa partie moyenne, où il présente une scissure dite hile du rein par laquelle pénètrent l'artère et les nerfs rénaux et d'où sortent les veines rénales et les uretères;

Deux extrémités, dont la supérieure, plus volumineuse que l'inférieure, est en rapport avec la eapsule surrénale, appendice pseudo-glandulaire qui coiffe chaque rein tout en restant indépendant;

Enfin, le rein, plongé au sein d'un abondant tissa cellulaire à larges aréoles, est suspendu, mais librement, à la colonne vertébrale par les artères et veines qui portent son nom.

B. Histologie.

Pratiquée parallèlement à ses faces et suivant son axe vertical, la coupe du rein (fig. 1) montre trois substances fonda-

Fig. 1. - Coupe du rein montrant les calices, le bassinet et l'uretère (Beale).

mentales, que font dores et déjà distinguer leur couleur, leur aspect, leur consistance même; on les nomme : substance corticale, médullaire et fibreuse.

La substance corticale, dense et de couleur gris rosé, est parsemée de points rouges (glomérules de Malpighi) qui lui ont encore valu le nom de substance granuleuse.

Irrégulière dans son ensemble, elle forme à la périphérie du rein une couche continue d'environ 1 centimètre d'épaisseur, de la partie centrale de laquelle naissent des prolongements pyramidaux (colonnes de Bertin) dont le sommet se dirige vers le hile.

Les colonnes de Bertin ne sont point adossées les unes aux autres, mais séparent elles-mêmes des cônes plus foncés (pyramides de Malpighi), en nombre très variable (de 7 à 30) formés par la substance médullaire.

Cette substance médullaire présente, elle, un aspect strié que lui communiquent une infinité de petits tubes longitudinaux (tubes de Bellini), placés dans as masse parallelement à l'axe des pyramides (qu'ils forment exclusivement), et qui se pordent ensuite, à leur base, dans la substance granuleuse (corticale) sous forme de colonnes très ténues dénommées pyramides de Pervein

Très courtes dans leur corps (0=,02 à 0=,03) les pyramides de Malpighà viennent toutes converger par leur sommet au hile (dans la région dite sinus du trein et qui comprend les calices et le bassinet), où elles se terminent par une extrémité conique, en forme de mamelon, appelée parille.

Enfin les deux premières substances fondamentales (corticale et médullaire), qui forment la substance glandulaire proprement dite, sont enveloppées par une membrane fibreuse, blanchâtre, très dense, très résistante, et qui envoie de sa face profonde dans le parenchyme rénal des prolongements constituant la charpente fibreuse, le squelette conjonctif du rein; extérieurement cette même tunique fibreuse se continue d'autre part avec les parois de l'uretère, où elle porte (comme dans le rein d'alleurs) le nom de substance fibreuse.

Antāras controlls. — Nées des parois latérales de l'aorte, entre les deux mésentériques, les artères rénales parviennent après un court trajet au hile du rein. Lé, elles se divisent en plusieurs branches (ordinairement 3 ou 4), qui pénietrent alors dans le rein entre les branches veineures (stimées en avant) et dans le rein entre les branches veineures (stimées en avant) et le bassinet (situé en arrière). Après la traversée du sinus du rein où ces branches arlérielles se sont subdivisées de nouvean et ont fourni les rameaux collatéraux (destinés aux calices et bassinet), elles entrent enfin dans la masse glandulaire, où d'emblée elles cheminent dans la portion de la substance cor-

Fig. 2. - Glomérules et vaisseaux rénaux (Beale).

ticale constituant les colonnes de Bertin, c'est-à-dire entre les cônes médullaires.

Artiries à la base de ces pyramides, les dernières branches artérielles s'épanouissent latéralement et marchent à l'encontre les unes des autres, sans toutelois s'anastomoser; de sorte que le premier plan vasculaire (que l'on a encore nommé: voide artérièle du ren) n'est constitute que par des arcades incomplétes dites demi-arcades de Bertin, desquelles naissent une série de prolongements descendants et rectilignes qui cheminent à travers la couche corticale granulouse de la surface du rein pour se continuer jusqu'à la périphérie de l'organe, où elles fournissent un grand nombre de ramifications terminales.

C'est des prolongements artériels rectilignes, dénommés artères radiées (et mesurant de 04,1 à 04,2), que naissent finalement les branches joinnérulaires, ramascules extrémement ténus (04,04) se séparant à angle droit de leur tronc d'origine pour aller peu après constituer les glomérules de Malpighi (fig. 2) sous forme de vas afteres.

GLOUSEULES. — Sous ce nom on comprend un petit peloton vasculaire renfermé dans une membrane particuliere en forme de capsule. Arrivé au niveau de cette membrane, le canalicule artériel, dit vas afgrevas, la perfore, pénètre dans son intérieur, s'y bifurque immédiatement, puis s'y subdivise un nombre de fois considérable pour former un véritable réseau, tout en s'enculant sur lui-même, mais toutefois sans offirir aucune anastomose entre ses diverses branches; celles-ci finalement s'unissent de nouveau les unes aux autres et sont, en définitive, résumées par une artériole unique, le vas efferens, qui perfore de nouveau la capsule glousérulaire en un point tout à la fois voisin de l'orifice d'entrée du vas afferens e topposé à la naissance du tube urinifere. Le diamètre du vas efferens est inférieur à celui de son congénire primitif le vas afferens.

La capsule glonsérulaire, encore désommée membrane de Roument, comporte une couche unique de cellules très minces (0₉,006) qui ne sont point en contact immédiat avec le pelotor vasculaire, mais en sont séparées par une couche épithéliale à cellules épaisses (0₉,01) de nature d'ailleurs d'ifférente. Ces deux couches épithéliales, bien que distinctes en apparence, constituent en réalité un sac à double paroi, lequel renferme la glande excrétante; l'ensemble de la capsule a pour dimensions (9₉,2 en dimatre.

VEIUSS MEXARES.— Peu après sa sortie du peloton glomérulaire, l'artériole dité ess effereus se divise à son tour dans la substance corticale en une infinité de vaisseaux de plus en plus étroits, aboutissant en fin de compte à tout un réseau de optillaires, transition du système artériel du rein à son système veineux. L'ensemble de ce dernier suit alors presque identiquement, mais à contre-covrant, le même trajet que le sang artériel; à chaque tronc artériel correspondant d'une façon générale, plusieurs troncs veineux satellites qui presque tous aboutissent, par deux ou trois ramuscules, à la surface de l'organe en constituant ce que l'on appelle les étoiles de Verkegen. La seule différence existant entre les deux courants circulatoires consiste dans la richesse anastomotique du plexus veineux contrairement aux troncs artériels qui resteut toujours indépendants et sioéls les uns des autres dans le rein.

VAISSAUX MÉDULAIRES. — De la voûte artérielle du rein rétrogradent dans la substance médallaire un certain nombre de trones vasculaires très petits auxquels leur direction générale a fait donner le nom de vaisseaux droits. Après avoir formé latéralement dans les pyramides de Malipéit de nomiveuses et larges mailles polygonales capillaires autour des tubes de Bellini, ces vaisseaux deviennent veineux et vont se jeter pour leur ensemble dans les arvaites veineusse de la voûte vasculaire du rein, après avoir envoyé toutefois quelques anastomoses aux veines du bassinet.

TURES UNINIVARS. — Né de la membrane de Bowman en un point désigné sous le nom de cel de la copsule, le tube urinifere s'étend d'une seule venue du glomérule à la papille des calices, mais offre cependant sur ce trajet trois types histologiques très distincts comme aspect et structure; ce sont :

4º Les tubes contournés (tubuli contorti) qui, comme nous venons de le dire, naissent de la pario capsulaire du glomérule de Malpighi (parcia capsulaire dont, en réalité, lis sont le prolongement immédiat) en un point de rétrécissement (col de la capsule). Ils se présentent sous forme d'un canalicule unique, régulièrement cytindrique, mesurant 09,06 de diamètre et constitué par une membrane propre, asser épaisse, à épithélium polyédrique (09,01) se faisant surtout remarquer par l'aspect fortement granuleux de son protoplasma, sa coloration jaunâtre et son noyau volumineux très apparent.

Inextricable en apparence, le trajet de ces tubes offre en réalité une très grande régularité dans sa disposition et peut. être représenté par une sorte de spirale pyramidale ayant le glomérule pour base (tête) et la pointe d'un tube de Henle pour sommet (queue); point où il s'effile pour se mettre en commupication avec ce prolongement.

2º Les tubes de Henté. — Ainsi à chaque glomérule correspond un tube contourné aboutissant dans la substance médullaire à une unité (tube de Henle) d'une pyramide de Perrein. Chacune de ces unités est ell-emême constituée par un canalicule recourbé, flexaeux, en forme d'anses (d'où le nom d'anses de Hente qu'ils portent encore), dont la flextosité verticale, ascendante, se groupe avec quelques-unes de ses congénères en un faisceau venant à son tour déboucher dans un tube de Relliu.

Les dimensions en diamètre du tube de Henle sont, avonsnous dit, inférieures (0µ,02) à celles du tube contourné; sa membrane propre, à double contour, est constituée par des cellules cuboides épaisses.

3º Les tubes de Bellini. — Sur le sommet des papilles, dans les calices, on trouve une série de petits orifices [pores papillaires] de forme arrondie et mesurant environ 0,2,2. De chacun de ces orifices naît un tube se divisant à courte distance pour former deux canalieules droits, conduits qui se bifurquent à leur tour rapidement un grand nombre de fois, toujours dichotomiquement et à angle très aign, pour constituer finalement des tubes rectificares portant le nom de tubes de Bellini.

Cescanalicules rectifignes, qui vont s'aboucher a vecl'estrémité condiuente de plusieurs anses de Henle réunies, forment la masse de la substance médullaire du rein, Cest-à-dire les pyramides de Malpighi. Ils ont isolément pour dimensions 0,0,0 è de diamètre et sont revêtus d'un épithétim cylindrique, variable en diamètre de 0,0,0 à 0,0,01, et dont le noyau nucléolé est très aparent au milleu d'un protolossam l'écèrement granulé.

LYMPHATIQUES. — Ces vaisseaux, très nombreux à la partie périphérique de la couche corticale du rein, forment en réalité un double réseau dans son parenchyme.

Le premier superficiel et à larges mailles polygonales, le second profond et surtout abondant dans la couche glomérulaire où il entoure les tubes contournés, réunissent finalement leurs branches en troncs suivant les troncs vasculaires proprement dits dans les colonnes de Bertin, pour aboutir également au sinus du rein et rentrer ainsi dans la circulation générale.

Ners. — Appartenant tous au système nerveux ganglionnaire, les nerfs du rein émanent directement du plexus solaire et primitivement, par son entremise, des grand et petit soanchniques.

A prés avoir traversé le ganglion rénal, ces divers rameaux se réunissent en un plezus serré qui accompagne les veines et artères du même nom (en fournissant toutefois cher l'homme une branche spermatique isolée), et les suit dans leur trajet au travers du parenchyme rénal où il a pour décrétulum quel use scélules ganqtionnaires analogues à celles des autres nerfs visoframx.

II. CANAUX COLLECTEURS. CALICES, BASSINETS, URETÉRES.

A. Anatomie propre.

Les calices, le bassinet et l'uretère qui accompagnent chaque rein doivent être considérés comme les parties diverses, mais non moins intégrantes, d'un canal unique s'étendant du pore papillaire rénal au réservoir (commun aux deux organes excréteurs). La vessie.

Le canal proprement dit, uretiere, arrivé dans le rein s'élargit et forme une cauté infundibuliforme, bassine, que le hile du rein partage tout d'abord en deux autres cavités incomplètes (grands calices), elles-mêmes divisées et subdivisées en un certain nombre (13 environ) de cavités secondaires (calices proprement dits).

CALICES. — Les calices sont donc des entonnoirs membraneux qui, d'une part, embrassent les mamelons papillaires des pyramides de Malpighi, et de l'autre se continuent avec le bassinet.

Bassingt. — Autre poche, également membraneuse, résumant les cavités des calices et située en arrière des vaisseaux du rein. Aplait tout d'abord d'avant en arrière, le bassinet (de chaque rein) s'arrondit ensuite en se rétrécissant rapidemant pour former l'uretère. Unities. — Canal fluxueux conduisant l'urine du bassinet à la vesie. Chaque rein ne possède qu'un seul uretère dont la section transverse peut, comme dimensions, être comparée à celle d'une plumë à écrire. Cet uretère, tout d'abord oblique de haut en bas et de debors en dedans, jasqu'un priesu du sacrum, se reporte alors toujours en bas, mais plus en avant et encore en dedans jusqu'au fond de la vessie. Li, après s'être engagé entre les tuniques muqueuse et musculeuse, il chemine environ 3 centimètres pour s'ouvrir en dernière ligne dans la vessie à l'un des angles nostérieurs du trimer vésical.

B. Histologie.

La structure du canal collecteur dans ses diverses parties, calices, bassinets, uretère, est absolument identique.

A chacune de ses parties nous trouvons, en effet, une triple membrane :

Tunique externe, formée de fibres conjonctives serrées, simple prolongement de la charpente fibreuse du rein

Tunique moyenne, comprenant un double plan de fibres musculaires lisses, les unes externes longitudinales, les autres internes transversales;

Tunique interne, muqueuse et absolument analogue aux muqueuses uréthrale et vésicale; cette dernière membrane est constituée par un épithélium pavimenteux à grandes cellules aplaties mesurant 0_{1,2} de diamètre.

III. RÉSERVOIR COMMUN. - VESSIE.

A. Anatomie propre.

La vessie est une poche musculo-membraneuse, d'une assez grande capacité, et située dans la cavité du petit bassin sur la ligne médiane, immédiatement en arrière du pubis et des muscles obturateurs internes qui limitent sa face antérieure.

Ses faces postérieure et latérales sont recouvertes par le péritoine; sa face inférieure (bas-fond de la vessé) erpose chez l'homme sur les vésicules séminales, les vaisseaux déférents et le rectum, et chez la femme sur le vagin et la portion inféroantérieure du col de l'utérus. Telles sont, avec le cordon fibreux nommé ouraque, qui relie le sommet de la vessie à l'ombilic, les relations de la surface externe du réservoir urinaire qui méritent d'être citées.

La surface interne de la vessie, revêtue par la muqueuse, est remarquable, elle, par des sallites, les unes en forme de columnes et produites par la tunique musculaire, les autres en forme de dépressions arrélacetes, dites cellules provenant de la muqueuse elle-même. La base de cette surface interne présente de plus trois ouvertures, situées aux angles d'un triangle courbe équilateral. Ces orifices sont ceux des deux ruetires et celui du canal de l'archire. L'espace compris entre eux a été désigné sous les nomé te trigues vésical, ou trigune de Lieutand, et est limité par trois pits de la muqueuse, plis nettement dessinés et formant à chacun des angles un replis pécial, ardue-laire, dénommé pour les deux orifices postérieurs calvules de Purettre et pour l'orifice anticier hutet vésical en

On appelle enfin col de la vessie le point, habituellement froncé, où commence le canal de l'urêthre.

B. Histologie.

L'enveloppe du réservoir vésical se compose également de trois tuniques ayant la plus grande analogie avec celles des canaux collecteurs.

L'une, tunique péritonéale, ne la tapisse qu'incomplètement, comme nous l'avons déjà vu.

La seconde, tunique "musculcuse, est formée de deux plans de fibres musculaires lisses, qui sont les unes externes et longitudinales, les autres profondes et circulaires. Les premières recouvrent uniformément la vessie dans son ensemble, les secondes forment tout d'abort une série de hisceaux circulaires parallèles, puis autour de l'orifice uréthral un anneau musculaire dit spinieter de la vessé, enfin entre les embouchures des uretères une colonne musculaire qui a reçu le nom de muscel des uretères.

La tunique muqueuse de la vessie, tunique étant la plus interne, est analogue en tous points à celle des uretères et ne présente de remarquable que des follicules extrèmement petits (et visibles seulement lorsqu'ils sont gorgés de mucus), qui se trouvent au voisinage du col et du trigone vésical.

En ce dernier point, toutefois, les éléments histologiques, célulaires, qui dans la muqueuse vésicale affectent généralement la forme paviennetuse, prennent une forme plus spéciale et allongée, représentant vaguement un triungle dont deux colés l'emporteraient de beaucoup sur le troisieme.

Artéres. — La membrane vésicale reçoit des branches artérielles provenant soit directement de l'hypogastrique, soit indirectement de ses rameaux collatéraux.

Veines. — Ces vaisseaux, après avoir affecté la forme transitoire capillaire, se groupent en veines allant toutes se jeter dans l'hypogastrique, non sans avoir formé sur son bas-fond un plexus considérable.

Lymphatiques. — Le réseau lymphatique de la vessie se relie entièrement aux ganglions hypogastriques.

Nerfs. — De même, les nerfs proviennent tous du plexus hypogastrique, dérivant tant du grand sympathique et des nerfs rachidiens que du plexus sacré.

IV. CANAL ÉVECTEUR. - URÉTHRE.

A. Anatomie propre.

Très différent d'aspect, chez l'homme (où il livre également passage au fluide séminal), de chez la femme (où il est exclusivement réservé à l'évection urinaire), l'urédure offre quant à sa portion essentielle, dans l'un et l'autre sexe, une disposition identique.

Chez l'homme comme chez la femme, la première portion du cand urdibral consiste, en effet, essentiellement en un canal partant du sommet antérieur du trigone vésical pour aboutir (après avoir contourné la portion inférieure des pubis) un peu en avant de leur symblyse.

Mais, tandis que chez la femme il se termine en ce point par un petit ceroncule perforé portant le nom de médit urinaire, chez l'homme, il se continue dans la verge et ne s'ouvre finalement, sous le nom d'orifice du canal de l'urêthre, qu'à l'extrémité du gland.

B. Histologie.

A l'urethre proprement dit, dans l'un comme dans l'autre sexe, on ne peut considérer que deux membranes:

L'une externe musculeuse et qui, étant un prolongement réel de la tunique musculeuse de la vessie, offre comme elle deux plans de fibres superposées en sens contraire;

L'autre interne, muqueuse, et à épithélium pavimenteux absolument analogue à celui de la vessie.

CHAPITRE II

PHYSIOLOGIE URINAIRE

I GENÈSE TIRINATRE

La nature intime de l'action du rein dans la production de l'urine a toujours été la préoccupation des physiologistes. En effet, il y a des sieles que l'on se demande si l'urine est une sécrétion véritable ou une simple excrétion; si le rein est un filtre ou une glande servant, pour employer le langage des anciens, à émpure le suna ferment seu de l'action de l'act

Comme celle de l'urologie elle-même, l'histoire de la physiologie winaire comprend trois périodes.

Le premier cycle ou période des hypothèses ne présente comme conclusion que de simples vaes de l'esprit; aussi les erreurs les plus grossières s'y trouvent-elles accumidées. Pour Aristote par exemple, le rein, à l'instar d'ailleurs des autres vischers abdomiaux, n'est qu'un simple directiculum de la circulation veineuse locale. Erasistrate, Asslépiado, etc., déclarent simplement ne lui reconnaître aucune fonction physiologique. Bofin d'autres auteurs de l'époque font de cet organe le facteur de la cénération.

Toutefois, au milieu de ce dédale, naquit la théorie de Galien qui, malgré les épreuves sans nombre auxquelles elle a été soumise, règne encore aujourd'hui dans la science mieux établie, plus irréfutable que jamais (2).

In Diet. encyclopédique, art. Rms, 111° série, t. III, p. 142.
 Art. Rms, loco citato, p. 142.

Cette période d'hypothèses se continua jusqu'aux travaux d'Harvey et d'Aselli (4660), par des controverses futiles et oiseuses sur la doctrine galénique (depuis l'antiquité jusqu'en 4660 après J.-C.).

La seconde période, ou période anatomique, commence avec la découverte de la circulation, Alors les fluides de l'organisme étaient étudiés dans leur composition, dans leur degré de tension , leur origine , chacun cherchant à découvrir l'influence que peut avoir sur leur marche et leur direction le grand courant de la circulation sanguine (1). Malheureusement, les résultats anatomo-histologiques acquis tout d'abord sont insuffisants. et de nouvelles erreurs résultent des travaux originaux correspondant à cette première partie de la seconde période.

Willis, par exemple, affirme que des conduits et des veines invisibles, noros cæcos ac vænas (2), conduisent l'urine dans la vessie sans passer par les reins.

Swalwe professe la même opinion, et Bils décrit même ces canaux imaginaires sous le nom de ductus moscheferes (3),

Gavant admet une circulation directe entre le canal thoracique et les veines émulgentes; et Diemerbroeck compromet sa réputation scientifique en soutenant qu'il existe des conduits qui partent de l'estomac pour se rendre directement dans la vessie, conduits assez volumineux, ajoute-t-il, pour donner passage à des particules solides (4).

Bartholin se rapproche davantage de la vérité en faisant provenir l'urine, ex glandulis et receptaculo lumbari (5).

Malpighi ouvre enfin la seconde partie de la période anatomique par une expérience célèbre, que répéta peu après Bohn (6), et par laquelle il démontre de la facon la plus probante la part que l'on doit attribuer aux reins et à la circulation générale dans le phénomène physiologique de l'excrétion urinaire.

Ce point acquis à la science, les controverses portèrent alors sur le mécanisme même de cette excrétion

⁽i) Ibid., 143.

⁽²⁾ Ibid., 143. (3) Ibid., 143.

⁽⁴⁾ Philosophics transactiones, no 65 et 67. (5) Opuscula nova anatomica. Hof. 1690.

⁽⁶⁾ Circulus anatomicus et physiologicus. Lipsie, 1710.

Bellini voit dans l'urine un produit de la substance corticale du rein, substance corticale dans laquelle, sons l'imfuence de la compression que produisent, dit-il, les viscères abdominaux refoulès lors des mouvements inspiratoires, le sérum est aspiré au moyen de tubes qu'il vient de découvrie et qu'il décni comme autant de petits siphons, uti siphanculi (1), créés par la nature pour cet usage.

Highmore croit à la transsudation du sérum, et Bartholin indique comme siège d'élection de ce phénomène les vaisseaux émulgents trouvés dans le parenchyme rénal.

Pour Veslingias, cette transsudation est le résultat de la séparation du plasma sanguin en sérum et caillot par le fait d'une congulation (analogue à celle qui a lieu à l'air libre), se produisant dans le rein sous l'influence de l'atrabile que Van Helmont prétend y être versée par les capsoles surrénales.

Dans le même ordre d'idées Borelli décrit des espaces libres dans la substance du rein, espaces où s'opérerait cette coagulation.

Vient enfin Duhamel (2), qui croit découvrir dans le rein un ferment spécial susceptible de dissondre le sang et d'en précipiter les matériaux de l'urine. Et voici les physiologistes partagés en deux camps, comme par le passé: les uns affirment de nouveau et démontrent, comme Lower dans son admirable monographie, de motu cordis (3), que toute la masse sunguine du corps peut passer en quelques minutes à travers les viscères en général et le rein en particulier, donc que le rein n'est qu'un filtre ; les autres, de l'école poposée, soutiennent que l'Eliminatiou minaire n'est que la conséquence d'un travail de sécrétion se produisant dans le rein sous l'influence d'un ferment spécial.

Telles sont, en résumé, avec l'explication donnée par Ludwig du rôle du tissu cellulaire périnéphrétique comme agent de neutralisation de la compression viscérale, neutralisation ayant pour résultats la dilatation plus facile des vaisseaux du rein, et par suit l'augmentation de la traussudation; telles sont,

⁽¹⁾ Loc. cit.

⁽²⁾ De corporum affectionibus, t. II, cap. 3. Paris, 1670.

⁽³⁾ In Bibliot. anat. Manget, t. I.

disons-nous, les doctrines ayant eu cours dans cette seconde période qui dura de 1660 à 1773.

La découverte de l'urée, c'est-à-dire la connaissance du produit principal de l'excrétion urinaire ouvre la troisième période que l'on peut caractériser du nom de période chimique, comme pour le cycle urologique à laquelle elle correspond; tous ou presque tous les travaux qu'elle comprend répondent, en effet, à cet ordre d'idées.

Les débuts de cette période chimique ne furent pas heureux par la pissiolège uriaire; il is marquent même plutôt, pourrait-on dire, un pas en arrière pour cette branche de la science. C'est que, l'antique opinion du ferment rénal subsistant encore, le dédoublement possible de Turé en carbonate d'ammoniaque ramena les esprits à l'idée de faire jouer au rein le rôle d'arque séretzeu dans la fonction urinaire; cette manière de voir dura jusqu'aux travaux de Dumas et Prévost en 1823.

Ces deux savants, dans une série d'expériences que répêtérent à leur suite Segalas et Vauquelin, démontrèrent alors la présence de l'urée dans le saug, et son accumulation dans le torrent circulatoire chez les animaux néphrectomisés. De ces faits, l'on dédusti logiquement enfin, par un sain retour d'esprit à la vénité, le role d'excréteur, le role d'émonctoire à attribuer au rein : role que, d'alluers, les analyses pratiquées à Strasbourg en 1836 par Hepp et Picard sur le sang de l'artère et sur le sang de la veine réaule confirmèrent pleinement.

Les recherches de Millon, de Würtz, etc., ayant ensuite montré que l'urée, terme pénultime des oxydations successives qu'éprouvent les matériaux acutés impropres à la vie, se les mait partout dans l'organisme humain, la théorie physiologique de la genèse urinaire (comprise comme résultat de l'excrétion osmotique par le rein des déchets vitaux accumulés dans le sang) semblait avoir acquis la certitude d'un axiome. C'est alors que des expériences spécieuses, pratiquées sur des animaux très éloignés de l'homme dans l'échelle des êtres, firent s'élevre Hoppe-Seyler et Zalesky contre les dogmes physiologiques établis par la suite des recherches et controverses que nous venons de résumer.

Toutefois, les contre-expériences, pratiquées en Allemagne même par Naissner, n'eussent pas été défavorables à la théorie de la sécrétion rénale reprise par Hoppe-Seyler et Zalesky, les belles Recherches sur l'exerction de l'urce de Gréhant et les remarquables Lecons sur les maladies par autointoxication de Bouchard ne laisseraient, dans notre esprit, aucun doute sur le rôle purement excréteur du rein. Ce rôle d'organe excréteur, Bouchard l'explique même par la présence dans le plasmasanguin d'un élément, l'urée, qui serait vis-à-vis du rein un véritable excitant fonctionnel. Excitant fonctionnel analogue à celui que Peyraud et Gautrelet avaient indiqué pour l'acide carbonique (veineux et atmosphérique) vis-à-vis des fonctions respiratoires (1); analogue encore probablement à l'action sialogène que produiraient sur les glandes salivaires les sulfocyanures sanguins que ces mêmes glandes doivent éliminer, pour la plus grande partie au moins, dans l'état normal.

Restait à expliquer pourquoi, étant donné que le rein n'est qu'un osmoseur, un diffuseur, un dialyseur du plasma sanguin, tous les éléments du sang ne passent pas dans l'urine?

A cette question répondent trois théories :

L'une mécanque, esposée par Cl. Bernard (2), repose entièrement sur des considérations anatomiques relatives à la veine cave, les veines hépatiques et la veine porte. Elle a le mérite d'expliquer non seulement ces faits dans leur ensemble, mais encore même la production de ce que l'on a appelé l'urine des aliments; malheureusement elle est combattue par les expériences récentes et très sérieuses de Mao Donnell.

La seconde libéorie, ou théorie chimique, a été diveloppée par Wöhler à la nuite des travuix de Graham relatifs à l'osmose, à la dialyse que produisent les membranes animales. Les substances peuvent se divisier e albuminoides et colloides, nous dit Graham; seults est dernières peuvent, sans changer de nature, traverse les membranes organiques. Le relu représente une membrane organique des plus parfaltes. Il doit done oléri aux.

⁽¹⁾ Peyraud et Gautrelet. Contrib. chimiq. et physiolog. à l'étude thérapeutique des eaux et de l'air de Vichy. Vichy, 1886.

⁽²⁾ Gl. Bernard, Note sur une nouvelle espèce d'anastomoses vasculaires (Archives de médicine, t. XXIII, 1850, p. 366) et Leçons de physiologie expérimentale, t. I, p. 172.

lois de l'osmose, aux lois de la diffusion. C'est done par la nature des éléments à éliminer et du filtre qu'il faut expliquer les phénomènes de la sécrétion du rein (1).

Malgré la fâcheuse expression de sécrétion appliquée au produit de la dialyse rénale, expression qui termine l'exposé de cette théorie, celle-ci nous semble irréfutable; comme nous la développerons à la Physiologie urinaire, en parlant de l'esmose géomérulaire, nous ne nous y attarderons pas plus longtemps ici.

Quant à la troisième théorie, dite héstalogique, elle vient tout à l'encontre de cette manière de voir, mais ne repose toutelois que sur des considérations hypothétiques, réfutées d'allleurs par les expériences postérieures d'Isanes. K'ans, qu'i la
professa, admettait avec Ladwig et Bowman, que les glomérules ne remplissent pas seuls la fonction d'excrétion rénale.
Pour lui, non seuiement les tubuli aisseraient passer l'urée et
les autres sels du plasma sanguin, tandis que les glomérules
d'alyseraient l'ean d'une façon spéciale; mais les canadicules
rénaux, sous l'effet des pressions extérieures, laisseraient
encore passer l'alburmine, que l'on trouve toujours, di-il, au
fond de ces vaisseaux; alburmine ultérieurement résorbée par
les coilluies épithéniales, et par les lymphatiques profonds de
l'organe. En un mot, pour Kins, le rein est un filtre-presse à
l'état d'ordeme continu : ce qui est absolument faux!

Une dernière objection se rapporte à la fois à la théorie de l'excrétion rénale et à la nature des éléments dialysés par le rein. C'est celle soulevée par A. Gautier à propes de la différence de réaction existant entre le plasma sanguin et l'urine. «Le plasma sanguin, dit et auteur, et alealin, tandis que l'urine a toujours chez l'homme et les carnitores une réaction acade (2).» Cette objection, des plus sérieuses en apparence, n'est au fond rien moins que spécieuse.

Le sang possède, il est vrai, une réaction alcaline; mais il faut s'entendre à cet égard. En effet, malgré leur réaction alcaline, les sels du sang sont loin d'être des sels alcalins dans l'acception rigoureuse du mot : ils ne sont pas plus des sels alcalins que ne le sont le bicarbonate ou le biborate de sonde.

⁽¹⁾ Art. Rain, loc. cit. p. 152.

⁽²⁾ A. Gautier, Chimie appliquée à la physiologie, t. 11, p. 9.

sels acides qui cependant font aussi virer au bleu le tournesol rougi.

Si d'ailleurs les phosphates terreux circulatoires étaient alcalins ou même seulement neutres, ils se précipiteraient et ne pourraient circuler dans la masse sanguine; quant aux carbonates du sérum sanguin, ils y sont certainement à l'état de bicarbonates, c'est-à-dire à l'état acide : - nous entendons ainsi évidemment acidité de forme chimique et non acidité de réaction. - La preuve de cette assertion résulte de ce fait que le plasma sanguin, artériel ou veineux, contient toujours à l'état libre un excès (faible il est vrai, mais non moins réel cependant) d'acide carbonique. Or l'acide carbonique ne pouvant exister à l'état de liberté en présence de carbonates neutres, il s'en suit que les carbonates circulatoires sont tous à l'état de bicarbonates, c'est-à-dire, répétons-le, à l'état acide. D'une facon générale d'ailleurs, lorsque dans un mélange de sels divers l'un d'eux est acide, c'est que tous les autres sont saturés; l'ensemble du mélange est alors considéré comme acide.

Si donc les sels du sérum ne présentent tous qu'une alcalinité de réaction et possèdent au contraire une acidité (de forme) réelle, est-il surprenânt que la dialyse rénale puisse séparer du sang une urine acide?

Dans ces conditions le simple échange d'une molécule basique entre deux sels du sérum est suffisant, en présence de l'eau, pour conduire à ce résultat.

Sans vouloir préjuger quelle est dans le sang la répartition des bases et des acides, représentons par M l'ensemble des alcalis du sérum; nous aurons pour le métange des phosphates et des carbonates la formule suivante:

L'échange de bases entre les carbonates et les phosphates fera dériver :

En supposant maintenant que dans le sérum les phosphates E. Gautrellet. — Urines. 2 aient la soude pour base et les carbonates la chaux comme alcali, nous voyons que de cet échange chimique dans le sérum sanguin des vaisseaux glomérulaires aucun précipité ne saurait résulter. L'équivalent de carbonate neutre de chaux insoluble formé

rencontre, en effet, un excès d'acide carbonique libre avec lequel il s'empresse de former un sel acide soluble :

Sel acide qui rentre dans le torrent circulatoire général, tandis que le phosphate acide de soude naissant d'autre part est entraîné dans l'urine par la dialyse glomérulaire.

Quelque paradoxale que puisse paraître à première vue cette théorie, elle a cependant recu deux preuves indirectes.

L'une de ces preuves provient de l'expérimentation chimique et résulte de la constatation du passage au dialyseur d'une quantité toujours supérieure de l'acide à la base lors de l'osmose des phosphates alcalins.

L'autre est fournie par les mensurations comparatives de l'acide carbonique artériel et veineux, avant l'entrée et après la soctie du rein. Ces volumes sont à très peu de chose près égaux; donc, l'acide carbonique a été retenu de l'autre côté de la membrane de diffusion osmotique rénale par un emploi chimique, formation de sels non dialysables.

Quant à cette non-diffusibilité réelle de l'acide carbonique plasmatique au travers de la membrane glomérulaire rénale, remarquons encore ici que Bouchard insiste sur ce fait de l'absence presque absolue de gaz dans l'urine.

Ainsi, pour nous résumer, chimistes et physiologistes ont été jusqu'ici trompés par l'action similaire aux bases des bicarbonates alcalins sur le tournesol ou ses congénères; action que, FACTEURS PHYSIOLOGIQUES DE L'EXCRÉTION URINAIRE. 2

relativement aux autres sels, on convient de nommer alcaline, mais qui, chimiquement parlant, n'est pas moins acide, puisqu'elle provient de produits réellement acides par leur constitution.

Et enfin, les bicarbonates alcalins sanguins, sels essentiellement acides, offrent il est vrai aux réactils généraux une réaction alcaline. Cette réaction, qui repose sur une anomalie, a fait croire à l'alcalinité du sang, tandis que bien au contraire les sels du sang sont réellement acides. Donc, en un mot, l'urite acide d'rive d'un plasma sanguin acide.

Ainsi les découvertes anatomiques et chimiques accumulées dans la suite des siècles n'ont fait au fond que confirmer la manière de voir de Galien relativement à la genése uninaire. La doctrine galénique a pu être perfectionnée dans ses détails, mais dans son ensemble elle est resté debout et immuable à travers les âges: l'urine doit être considérée comme un produit excrémentifiel résultant de l'action de la dischyse rénalesur la masse albancique sonquivie.

II. FACTEURS PHYSIOLOGIQUES DE L'EXCRÉTION URINAIRE.

Les notions d'histologie rénale que nous avons données nous permettent maintenant d'affirmer que le glomérule de Malpighi est le centre actif et unique de l'excrétion urinaire, excrétion dont les facteurs sont d'autre part :

1° La propriété de dissociation osmotique, de dialyse, offerte par la paroi glomérulaire;

2º L'activité circulatoire proprement dite de la masse sanguine rénale;

3º Enfin la tension vasculaire de l'organe rein.

La démonstration de ces données, acquise par l'expérimentation physiologique, est assex simple; nous la résumerons donc en quelques mots seulement en suivant l'ordre d'importance des trois facteurs de l'excrétion urnaire.

A. Osmose glomèrulaire.

Tout d'abord nous rappellerons les propriétés spéciales de dialyse offertes par les membranes animales d'une façon générale: propriétés qui font que la paroi d'une vessie, par exemple, sépare nettement l'eau de l'alcool dans l'eau-de-vie; aise dans le blanc d'œuf l'albumine intacte pour en éliminer les sels solubles (chlorures, phosphates, ct., qu'il comprend), en un mot dissocie dans toute solution les cristalloides des colloides. Ces derniers sont, en effet, réfractaires à la dialyse, c'est-à-dire ne peuvent traverser une membrane animale en des conditions de pression univoque dans les deux sens.

Or, l'analyse du sang, pratiquée à l'entrée et à la sortie du rein, vieut précisément prouver que la circulation réante n'est en rien comparable à la circulation générale. Le fiet (à l'exception de la petite circulation pulmonaire, et pour lors grâce à des causes spéciales bien déterminées d'autre part), tandis que tout sang veineux est noir, le sang veineux réant est rouge comme le sang artériel correspondant. A l'encontre de tout autre sang veineux, celui du rein ne contient aucune surcharge de gaz carbonique. Enfin, contrairement au sang veineux de la grande circulation (6 p. 160), l'e sang veineux réant peste de la grande circulation (6 p. 160), l'e sang veineux réant possède une proportion (16 p. 160) d'oxygène à peu près égale à celle du sang artériel (17 p. 160) de même nom.

En un mot donc, et de toute évidence, le courant sangain réual est soumis (au moins d'une façon générale) en dehors de la fonction de nutrition de l'organe qu'il irrigue, à un travail spécial et bien indépendant de cette fonction de nutrition: telles sont les conclusions qui ressortent de cette étude chimique, parallèle, des sangs veineux et afrèrie franux.

Mais ce travail spécial quel est-il?

A cet égard, l'analyse comparée de l'excrétion urinaire nous répond de la façon la plus précise : osmose glomérulaire!

Car les pertes que le sang artériel subit dans la traversée du rein, et que l'analyse du sang veineux sortant nous fait constater, nous en retrouverons la représentation complete, l'équivalence exacté dans les résultats docimasques de l'excetion urinaire. De telle sorte que pour reconstituer le sang artériel rénal, il sufficial de mêtauger le sang veineux du même organe avec le produit de l'excetion urinaire. De plus, ces mêmes pertes, qui, dans les conditions physiologiques normales, consistent exclusivement en cristaliodés (esu, uvêc, saide urique,

FACTEURS PHYSIOLOGIQUES DE L'EXCRÉTION URINAIRE. :

chlorures, phosphates acides, sulfates, etc.), si haut que nous remontions dans le trajet d'évacuation qu'elles ont à subir, nous 'les constatons précisément unes, identiques, complètes : donc primitives dans leur ensemble, c'est-à-dire remontant à l'organe primitif, le glomérule de Malpighi. Et le phénomène produit par la paroi glomérulaire sur la masse sanguine traversant le pe-loton circulatoire est bien un phénomène de dialyse, et non point, comme quelques-uns l'ont cru, une simple filtration.

D'une part, en effet, les parois animales n'offrent jamais les phénomènes de filtration, tandis qu'elles possèdent au plus

haut point les propriétés dialytiques.

D'autre part, simple filtre, la paroi glomérulaire laisserait passer les colloïdes sanguins (albumines), ce qui n'est point.

Nous ne saurions donc trop le répéter, on doit considérer le rein dans son ensemble comme un daluyeur à costers multiples inimitatismax, représentés par les glomérules de Malpighi; on doit l'assimiler, en tous points, à un osmoseur à divisions inmontrelles agissant sur le sang rénal, liquide soumis à la dialyse. Les produits partiels de chacun de ces minuscules dialyseurs-diffuseurs se totalisent ensuite par l'intermédiaire des canaux rénaux — tubuli contorti, anses de Henle, tubes de Bellini, d'une part; calices, bassinels et uretères, d'autre part; — dans un réservoir commun, la vessie.

Cet osmoseur ou dialyseur complexe, le rein, n'agit pas autrement que n'importe quel diffuseur industriel, sur le courant sanguin qui le baigne pour en extraire la série de produits cristalloïdes (eau comprise) dont l'ensemble constitue l'excrétion urinaire, véritables déchets de l'organisme, scories vivantes de la machine humaine.

R. Activité circulatoire,

Cette fonction osmotique du glomérule de Malpighi sur le sang rénal est constante et proportionnelle aux deux autres facteurs de l'excrétion urinaire, activité circulatoire et tension vasculaire.

De fait, plus rapide est le courant circulatoire général ou local, plus grande est l'irrigation glomérulaire, plus active est l'excrétion rénale : ainsi l'ont montré l'expérimentation tant physique que physiologique et la chinique. Moins grande est l'activité circulatoire générale ou locale, plus faible est le fonctionnement de la glande rénale; l'excrétion urinaire tombe' même à zéro lorsqu'on vient à lier l'artère correspondante à un rein, o'est-à-dire à supprimer mécaniquement la circulation dans les glomérules.

Toutes les preuves relatives à l'action de l'activité circulatoire sur l'osmose rétaile ont été depuis longtemps accumulées en physiologie urinaire. Aussi ne rappellerons-nous que pour mémoire les expériences, in ritro, de circulation des solutions salines dans les canalicules capiliaires faites par Poissuille et qui constituent en quelque sorte la base des arguments invoqués à cet. égard.

Ces expériences, après avoir reçu la sanction de la clinique par l'emploi journalier du nitrate de potasse comme diustique, viennent de voir leur valeur propre considérablement rehaussée par les derniers travaux de Bouchard sur les Maladies par autointavication.

Reprenant, en effet, l'étude physiologique de certaines muladies où l'anuire, c'est-à-dire pour parter plus exactement, la diminution du volume urinaire, l'oligurie est de règle; maladies dans lesquelles, disait-on, la mort est amenée par intorication urémique, l'éminent professeur de Pathologie générale a récemment montré qu'inversement à cette croyance, l'oligurie était secondaire et précisément sous la dépendance d'une diminution de charge en urée du sérum de ces malades l'Puis, poussant ses conclusions physiologiques espérimentales jusqu'à la pratique thérapeutique, il provoqua la durése rénale chez des brightiques annirques au moyen d'injections intra-veinesse d'urée. Et il la provoqua heureusement!!! Surcharge saline neutre de sang, augmentation certaine de la rapidité circulatior, exagération assurée de la diurése : ainsi, dans l'ordre physique, peuton résumer les expériences nrécédentes.

Dans l'ordre physiologique proprement dit, nous citerons:

- 1º L'abolition de l'osmose urinaire par la galvanisation des nerfs rénaux; suppression n'ayant d'autre cause finale que l'arrêt complet de la circulation glomérulaire par un resserrement téFACTEURS PHYSIOLOGIQUES DE L'EXCRÉTION URINAIRE. 31

tanique des vaisseaux rénaux, d'où suppression absolue de l'activité circulatoire;

2º La polyurie expérimentale obtenue par lésion des centres nerveux, de la moelle ou du grand sympathique, et dont l'effet indirect (par l'intermédiaire des vaso-moteurs lésés), est le relachement tétanique des mêmes vaisseaux rénaux, c'est-àdire l'augmentation de leur section, l'augmentation de l'activité circulation;

3° La polyurie pathologique, que provoque toute lésion traumatique ou autre de l'encéphale, lésion n'agissant pas directement sur le rein, mais bien, comme précédemment, par action réflexe sur les vaso-moteurs, etc., etc.

Quoi qu'il en soit, effets mécaniques proprement dits (comme la ligature de l'artère rénale), effets physiques (tols que la sursaturation sanguine par l'urée), effets physiologiques (comme l'excitation des vaso-moleurs rénaux), out une caractéristique commune, ultime, constante, unique, et qui n'est autre que la modification de l'activité circulatoire rénale à laquelle, en d'emirère analyse, on est obligé de ramener tous les phénomènes précédemment énoncés, que ces phénoriènes soient positifs on négatifs.

Donc l'activité circulatoire (d'une façon générale) constitue l'un des facteurs de l'osmose glomérulaire, de la diffusion rénale, de l'excrétion urinaire!

C. Tension vasculaire.

Quant au rôle de la tension vasculaire dans la dialyse rénale, les résultats de l'expérimentation physiologique sont tout aussi probants.

Il a, en effet, 446 constaté de la façon la plus natte qu'une augmentation de l'excrétion urinaire correspondait à la ligature des grosses artères. C'est que cette opération a pour effet se condaire et immédiat de réduire dans une certaine mesure les dimensions du torrent circulatoire; d'où il résulte que la poussée cardiaque, cause première de la circulation générale, se trouve augmentée sur le rein, et précisément d'une façon inversement proportionale à cette même réduction volumé-trique du torrent circulatoire général.

Une simple injection d'eau ou même une injection sanguine dans les veines ont donné des résultais identiques : à une augmentation quelconque de la tension intravasculaire a toujours répondu une augmentation certaine de la dialyse rénale, de l'exerction somotique du rein

Voilà pour les variations positives.

Quant aux variations négatives, elles n'ont pas été moins bien constatées : inverses comme causes, bien entendu, mais analogues néanmoins comme résultats.

En clinique une saignée, en physiologie expérimentale la diminution indirecte de la tension artérielle rénale par l'irritation des bouts sectionnés du pneumogastrique, produisent la première (comme cause générale), la seconde (comme cause locale), une diminution notable de l'excrétion urinaire. Dépression de la tension vasculaire générale, dépression de la tension vasculaire locale, conduisent donc à un même résultat final, l'oligurie!

La tension vasculaire doit donc être considérée comme facteur certain et important de la dialyse rénale!

Tel est, en résumé, l'exposé de l'action solidaire des facteurs : diffusion, circulation, tension sur l'élimination physiologique d'ensemble du liquide urinaire.

Cet exposé nous donne de suite la clef de l'élimination anormale constatée dans l'urine de produits soit physiologiques soit pathologiques pour l'organisme.

Dans le second cas, en effet, la présence dans l'urine des produits pathologiques cristalloides s'explique par le seul fait de leur présence dans la masse sanguine d'où l'osmose glomérulaire les a séparés plus ou moins rapidement, plus ou moins complétement.

Dans le premier cas, l'augmentation des cristalloides dans le sang ou leur diminution anormales disent clairement pourquoi la dialyse rénale n'a pu les séparer en proportions physiologiques dans l'urine; les modifications de l'activité circulatoire opèrent encore dans ce même sens,

D'autre part, enfin, pour les colloïdes, une variation positive de la tension artérielle ou une modification isomérique cristalloïde de ces mêmes colloïdes fournissent l'explication de leur présence anormale dans l'excrétion urinaire.

Nous saisissons ainsi d'un seul coup d'œil la physiologie urinaire tant normale que pathologique ; de nouvelles conditions à l'excrétion urinaire ne sont point créées (au moins d'une facon générale) par la maladie : les conditions physiologiques du fonctionnement dialytique rénal sont simplement modifiées.

Dans un cas comme dans l'autre, glomérules rénaux, appareil circulatoire, système nerveux, président toujours, bien qu'en des conditions différentes, à l'excrétion urinaire.

Nous avons dit que le glomérule était le centre unique de l'excrétion urinaire, de la dialyse rénale et c'est maintenant ce qu'il nous reste à établir. D'accord en cela avec les physiologistes modernes nous avons montré qu'il y avait dans l'everétion urinaire non pas une simple filtration, mais une véritable sélection osmotique. Faut-il aller plus loin et admettre que chaque épithélium de l'appareil urinaire a son rôle spécial et son activité propre (1)?

D'après cette théorie, qui est celle de Bowman complétée par Heidenhain et adoptée par la plupart des auteurs, l'eau et les sels seraient seuls éliminés par le glomérule ; les éléments spécifiques, l'urée, l'acide urique, etc., sont séparés du plasma par l'épithélium à batonnets des tubuli contorti, et de l'anse montante de Henle (2).

Cette manière de voir basée sur l'expérimentation physiologique ne peut cependant, croyons-nots, s'accorder ni avec les faits histologiques d'une part ni avec les données physiques de l'autre.

Toute dialyse suppose, en effet, en contact avec les faces de la membrane dialysante deux liquides entre lesquels s'établit un courant osmotique. Or, pour que les épithéliums canaliculaires, soit des tubuli contorti, soit de l'anse de Henle. puissent jouer le rôle de membranes dialysantes, il faudrait qu'à l'urine qui baigne leur face extérieure correspondit le sérum sanguin sur leur face intérieure. Mais nous savons que sauf au niveau du glomérule, les éléments du filtre rénal ne sont pas en rapport direct avec les vaisseaux sanquins, et qu'ils en sont séparés par des espaces lymphatiques occupant le tissu conjonctif interstitiel. L'étude histologique du rein, dit encore Lecorché, montre que le sang n'est en rapport direct avec les élé-

⁽¹⁾ Lecorché et Talamon, Traité de l'athuminarie, p. 87. (2) Lecorché, loc. cit., 88.

ments sécrétoires qu'au niveau du bouquet de Malpighi. Il ne peut donc y avoir dialyse, filtration même, qu'en ce point, et en ce point exclusivement.

Les expériences instituées par Heidenhain pour établir sa théorie ne prouvent qu'une chose, le stationnement du liquide dialysé par le glomérule dans ces portions recourbées des tubes destinés à l'évacuer. Ce stationnement, qui résulte de la disposition flexueuse des anses de Henle, a sa raison d'être, et nous croyons qu'il est facile d'en donner l'Explication.

On sait, en effet, comme nous renons de le dire, que contrairement à la filtration, la dialyse exige sur chacune des faces de la membrane un liquide en parfait contact avec elle. Supposons qu'à la sortie du glomérule, le tube canaliculaire affecte dans toute son étendue soit la forme de spirale, soit celle de tube rectiligne, alternativement présentées par les « tubuli contorti » et les « tubes de Malpighi », le liquide dialysé par le glomérule s'écoulern avec la plus grande rapidité dans les calices; au lieu de rester en contact avec un gaz ; la statique hydraulique nécessaire à l'osmose sera supprimée et la dialyse elle-même rendue imossible.

Les anses de Henle, par le fait même de leur disposition, ne sont donc autre chose que des siphons à niveau constant, et les jubuli contorti des serpentins multipliant le volume du liquide du vase extérieur de l'appareil dialysant; siphons et serpentins destinés à assurer, en fin de compte, le contact parfait de la paroi glomérulaire avec une quantité la plus grande possible du liquide dialysé, l'urine.

Quant à la nature diverse des épithéliums, elle résulte de la différence même des fonctions que les parties qu'ils recouvrent sont appelées à remplir, fonctions dont nous venons de parler. Si les parois des canalicules ont des revêtements épithéliaux plus épais et plus résistants, n'est-ce pas tout simplement à cause du contact permanent qu'ils ont avec un liquide naturellement acide? Ainsi s'explique la différenciation anatomique des épithéliums de l'appareil urinaire, non que chacon d'eux ait une spécialisation fonctionnelle propre, mais uniquement parce u'ils doivent répondre à des exizences diverses.

PREMIÈRE PARTIE URINE NORMALE

PRÉLIMINAIRES GÉNÉRALITÉS

I. ÉTYMOLOGIE.

Les Anciens avaient trop l'amour des étymologies pour avoir négligé de rechercher celle du mot urine, appliqué à désigner le produit auquel ils attachaient, avec raison d'ailleurs, une si grande importance au point de vue de la diagnose médicale.

grane importance au point de the the chapter la deservation of the l'unine en elle-même que par l'examen superficiel de ses propriétés organoleptiques, de même aussi ne pouvaient isla Idéfinitré un s'appuyant sur des caractères d'ordre purement physique ou sur puyant sur des caractères d'ordre purement physique des caractères d'ordre purement physique des caractères de caractères de

puyant sur des caractères d'ordre purement physique ou sur des considérations grammaticales plus subtiles qu'ingénieuses. Ægide de Corbeil (1361), dans les vers suivants, adopte précisément, tour à tour, ces deux manières de procéder:

> Urina divitur quia fit in renibus una, Aut quia quod tangit, dessiccat, mordet et urit (1).

Si nous avions à prendre parti dans cette question, fort peu intéressante d'ailleurs au point de vue prutique, nous n'hésiterions pas à nous prononcer pour la seconde d'ymdogie du mot urine, étymologie, qui est, en somme, de beaucoup la plus plausible. L'urice, en effet, étant par sa composition chimique un mordant énergique, il était naturel qu'on la désignàt primitiement par este propriété fangible pour touse, et sur lavaelle

L'urine, dit-il, a regu te nom soit parce que les reins en font un liquide uniforme (urina-ma); soit parce qu'elle dessèche, corrode et brûle tout ce qu'elle touche (urina-urit).

les Anciens attiraient déjà eux-mêmes l'attention de leurs contemporains.

Au contraire la première étymologie nécessite des connaissances anatomo-physiologiques qui leur faisaient absolument défant.

II. DÉFINITION.

Quoi qu'il en soit de cette étymologie; ce qu'il importe le plus, actuellement, c'est de donner de l'urine une définition assex claire et assez précise pour en faire saisir à la fois, si possible, l'orioine. la composition et le rôle physiologique.

Certains auteurs définissent l'urine: un liquide exerémentitel, sérvité par les reins, qui cat rejeté au debors par l'urèthre oprès avoir séjourné dans la vessie pendant un temps plus ou moins long. Cette définition donnée par Danlos dans le Nouceau dictionnaire de métecène et de chêuragée prafiques (1) nous semble incomplète et fausse. Incomplète, parce qu'elle ne nous apprend rien sur la composition de l'urine; fausse, parce qu'elle en fait un produit sécrété par le rein, tout en disant que c'est un liquide exerémentitel.

Nous savons bien que d'autres auteurs, tels par exemple que A. Gautier dans son Traité de chimie appliquée à la physilogie (2), Neubauer et Vogel, dans leur Traité de l'urine et des sédiments urbiaires (3), von Jaksch, dans son Mamuel du diaipostie des moladies internes (4), etc., font l'aglament de l'urine une sécrétion spéciale de l'organisme à la formation de laquelle les reins sont particulièrement destinés.

Mais nous avous montré à la Physiologie urbaire, conformément aux doctrines admises par les physiologistes les plus éminents, que l'urine est un liquide exercité par excellence, liquide, ajoute Claude Bernard, n'ayant plus aueune fonction viscolorique à remptir (3).

On admet dujourd'hui, dit encore le même savant, que le rein est un filtre, un organe purement excréteur (6).

- (1) Danlos, Inc. cit.
- (2) A. Gautier, Chimie appliquée à la physiologie.
- (3) Neubauer et Vogel, L'urine et les sédiments urinaires.
- (4) Von Jaksch, Manuel du diagnostie des maladies internes.
- (5) Gl. Bernard, Leçons sur les liquides de l'organisme, t. Il. p. 6,
- (6) Cl. Bernard, loc. cit., t. II, p. 8,

Si l'idée que Cl. Bernard se faisait du rein d'une façon absolue, c'est-à-dire en tant qu'émonctoire organique, est absolument vraie, cette même idée, considérée d'une façon relative, c'est-à-dire au point de vue du rein, filtre éliminant de simplée déchets intillès à l'organisme, est certainement des plus fausse.

Simple filtre, le rein laisserait passer les albuminoides circulatoires, éléments colloides utiles à l'assimilation I Mais, étant de par sa nature de membrane organique un somoseur vrai, et par suite un organe électif à l'égard des cristalloides circulatoires qu'il élimine exclusivement, le rein se prête d'une façon merreilleuse à l'excrétion des déchets vitaux toxiques que l'homme, véritable usine à poisous, fabrique incessamment dans l'ensemble de ses organes.

Quoi qu'il en soit de la divergence superficielle existant entre les idées autrefois émises par Cl. Bernard sur le rôle physiologique du rein, et celles que permettient anjourd'hui de concevoir d'une part les mémorables recherches de Bouchard sur la toxicité des urines, de l'autre la découverte par Pouchet et par Villers de nombreux alcaloïdes urinaires, la question nous semble tranchée de la façon la plus formelle dans le seus d'orquan d'excrétion à attribuer à la glande rénale.

Pour en revenir à la définition de l'urine, nous préférerions de beaucoup celle que donne Lereboullet dans le Dictionnaire encyclopédique des Sciences médicales. L'urine, dit.il, est un liquide exercémentitiel signer du sang par les reins et destiné d'être exputsé de l'organisme après un sépar plus ou moins prolongé dans lu vessite (1). Cette définition, répétée à peu près dans les mêmes termes par Méhu et d'autres urologistes, a le mérite de bien mettre en évidence le caractère excrémentitlet de l'urine, tout en ne préjugeant pas d'une façon trop stricte son mode de formation; mas elle est encore incompléte.

En cherchant à indiquer dans une définition de l'urine le point saillant de sa composition chimique, Cl. Bernard et la plupart des physiologistes ont dit que l'urine, chez les mammifères, dans les conditions normales d'alimentation, c'est-andire pour l'homme ave l'alimentation ayolée mixte. est une

⁽¹⁾ Lereboullet, in Dechambre, art. Umsz, t. III, p. 142.

dissolution acide d'urée. Outre d'abord que cette définition chimique de l'urine est en tous points inexacte pour certains mammiferes, et même en certains cas pour l'homme lai-même, puisque la réaction de l'urine varie avec la période physiolos[que, digestion ou dète, à laquelle on l'examine, elle est encore incomplète en ce sens qu'elle ne tient compte que de deux éléments du produit excrémentitle! réaal.

En effet, hien que l'urine ne soit point un produit de sécrétion, c'est-à-dire un produit créé nécessairement par un organe vivant, le rein, aux dépens de la masse sanguine qui l'irrigue, bien qu'elle soit un simple liquide d'excrétion résultant d'une dialyse générale du courant sanguin rénai; l'excrétion viriusir n'en présente pas moins une physionomie propre, une entit et vaie absolument aeracteristique de la série animale qui l'à produite. Et dès lors, cette entit en saurait reposer sur un ou deux caractères isoiés, mais doit forément être reliée à l'ensemble de ses éléments constitutifs.

C'est cette considération d'entité qui, au point de vue spécial de l'urine humaine, nous fait dire que tous les étéments de l'urine physiologique offrent une ponderation absolue et relative, à la fois cause et effet indispensables da fonctionament réquier de la machine humaine, et que l'étude de cette double pondération possède, avant tout, une importance capitale. Car nous vernous, en traitant du « coefficient urinaire absolu », qu'à une discordance quelconque dans cette pondération, devra correspondre un état, non seulement extra-physiologique, mais bien pathologique plus ou moins accentué. Cette considération est viraie, que de l'étude à la fois absolue et relative de la pondération des éléments physiologiques urinaires découle toujours acommende de l'état morbide, alors même que les éléments pathologiques n'auraient boint encore paru dans l'excrétion urinaire, ou en auraient disparu au momend de l'examen.

Nous reviendrons en détail sur ces considérations de pondération urinaire; pour l'instant nous ne tirrerons de ces prémises que la conclusion suivante : à savoir, qu'avant d'aborder l'étude des urines au point de vue séméiologique, il est de toute importance de bien dépair l'urine normale et d'établir, d'une façon précise, c'est-à-dire dégagée de l'influence des divers facteurs qui peuvent la modifier dans les conditions ordinaires de la vie, le type idéal de cette urine normale!

En nous appuyant sur les données anatomico-physiologiques exposées antérieurement, nous proposerons donc à notre tour de définir, comme il suit, l'urine humaine à l'état physiologique;

L'URINE EST UN LIQUIDE EXCRÉMENTITIEL, REPRÉSEVANT À LA FOIS LES DÉCRETS DE l'ASSULLATION ET LES PRODUITS DE LA DÉASSULLA-TION GRASAUSE: l'Équide formé des éléments cristaliolés (unitiès ou toxiques) du sang, séparés dans les reins par voie de dialyse gloméralaire, pour ête rejetés au dahors par l'urêthre, après un court s'épor dans la vessie.

CHAPITRE PREMIER

Nous venons de définir l'urine normale, un liquide exerémentitiel, représentant tant les déchets de l'assimilation que les protates de la désussimilation organiques... L'urine se trouve donc ainsi formuler une double représentation : celle des éléments introduits dans l'organisme par la nutrition et non utilisés dans la rénovation des tissus; celle de la déchéance chimiune de ces mêmes tissus.

Or, on sait que l'activité fonctionnelle du rein est continue comme la circulation d'on elle découle, et par suite que l'irine est séparée du sang à chacun des instants de la vie organique. Mais la dépendance même de la fonction urinaire visavis du facteur aératé . éventatoire fait que cette activité fonctionnelle est loin d'être constante dans ses effets. Il en est de même de la relation unissant la fonction rénale à la teasion vasculaire générale; là encore, conformément aux principes immuhables qui régissent la matière, l'effet est subordomé à la cause, l'effet est parallée à la cause; de même que la tension vasculaire, l'activité circulatoire étant inconstante selon les périodes physiologiques vitales, l'excrétion rénale présente cette même irrégularité de forme.

Lors donc que l'on aborde l'étude chimique de l'urine hu-

maine et que l'on cherche, non pas à s'en faire une idée superficielle, non pas à en établir la composition moyenne, mais bien à en scruter la composition intime dans le but de créer le type normal de ce produit d'exérétion, une question préjudicielle se pose ; que faut-il entendre par urine normale?

Les données antérieures étant acquises, la solution de ce problème nous semble assez simple :

Par urine normale il faut entendre :

L'exerction rénale, représentant à la fois les déchets nutritifs d'ensemble et les produits de déchéance organique générale; le tout dégagé des facteurs constants intrinsèques et extrinséques pouvant en modifier l'expression.

Ainsi tout d'abord, si nous voulons trouver dans l'urine une image fidèle et complète des phénomènes intimes qui saccomplissent dans l'Organisme humain, nous devons faire porter notre examen sur l'ensemble de l'excrétion urinaire d'un eycle complet, c'est-à-dire d'une période de temps où nous trouverons réunies toutes les causes qui peuvent influencer l'activité circulatoire et la tension vasculaire sanguine, c'est-à-dire influencer la dialyse réanle, modifier l'excrétion urinaire. Or, la deprivade de vingt-quatre heurs, représentant le cycle entier et constant des phases successives d'activité fondionnelle et de repos par lesquelles passe l'organisme, cette période cyclique saisfera tout d'abord à l'une des données du problème, celle de comprendre la généralité des produits de désassimilation organique.

D'autre part, bien que s'appuyant sur des considérations anatomiques fausses, comme nous l'avons wu (lorsqu'ils, croyaient à une communication directe de l'estomac au rein), les Anciens distingualent eux-mêmes diverses catégories d'unines : celle de la boisson (urma potus), l'urine du sang (urbis que toute autre, pensaient-lis, l'état actuel de l'organisme); enfin l'urine de la nourriture (urina cibi, qui est émise peu de temps après le repus).

Peut-on prendre l'une quelconque de ces urines pour urine normale? Non assurément, puisque aucune d'elles ne ressemble à ses congénères! Mais il est certain, au contraire, que leur mélange donnera un type d'urine satisfaisant à la donnée d'ensemble des produits nutritifs, puisque ce mélange comprend la totatifé des produits excrétés dans les phases diverses par lesquelles passent périodiquement chaque jour l'assimilation et la désassimilation chez l'homme.

Se plaçant exclusivement au point de vue physiologique, Cl. Bernard envisageait la question d'une tout autre facon et voulait que l'on prit pour type de l'urine movenne celle de l'abstinence, sous prétexte qu'elle n'était pas influencée par les conditions de l'assimilation. Il est clair certainement que l'urine de l'abstinence représente avec l'exactitude la plus entière le processus intime de la désassimilation organique, puisque l'animal soumis au jeûne est réduit à se nourrir de sa propre substance et que, conséquemment, rien n'intervient dans la composition de son excrétion urinaire qui ne lui appartienne en propre. Si l'on voulait étudier seulement ce qui, dans l'urine, provient des échanges plasmatiques et tissulaires, en dehors des modifications apportées par le régime, cette méthode aurait quelque raison d'être : mais encore ne faudrait-il pas la pousser trop loin. Car. outre qu'il n'est point très sur que l'abstineuce ne constitue pas un état, sinon pathologique, du moins anormal, il est certain toutefois que la suppression pure et simple des aliments à un animal (à quelque classe alimeutaire que cet animal appartienne primitivement), suffit pour lui constituer immédiatement un régime carnivore. C'est ainsi que l'on voit l'urine des herbivores, alcaline et riche en hyppurates à l'état normal, se charger de sels uratiques en prenant une réaction acide tout aussi bien par le seul fait de la privation de fourrage que si ces herbivores étaient nourris de viande comme des carnivores. L'abstinence n'est ainsi en somme qu'un régime carnivore exclusif, régime toujours anormal chez l'homme (être par l'ensemble de son appareil digestif essentiellement omnivore), pour lequel l'autophagie ne peut en rien constituer un état physiologique! L'abstinence, dans l'étude de l'urine normale, ne peut donc pas davantage être prise pour base de la détermination de cette urine physiologique que ne le serait un régime trop copieux ou une alimentation insuffisante

C Les données physiologiques établissent que l'état de santé absolue est constitué par une balance exacte des apports nutritifs de l'assimilation et des excréta de la déchéance organique désassimilative.

La santé absolue est donc liée, physiologiquement parlant, à une ration d'entretien, variable avec chaque individu, mais toujours proportionnelle toutefois à son poids, sa taille, son âge, son exercice, etc., c'est-à-dire aux facteurs mêmes qui influencent l'exercition uriniarie.

Dans l'étude de l'urine normale, nous devrons done soit nous rapprocher de cette ration d'éntretien, soit tenir compte des variations que l'alimentation a présentées avec elle. Cest le moyen le plus sefr cen balançant la somme exate des apports de l'alimentation à l'organisme avec la quotité absolue des mêmes éléments quotifiennement expulsés comme exerctol, d'oblenir par l'étude de la dialyse rénale l'exate mensuration des phénomènes nutritifs de cet organisme, donc de répondre à l'autre donnée du problème l'autre d'autre.

Voici pour les facteurs intrinsèques de l'excrétion urinaire : assimilation et désassimilation.

Quant aux facteurs secondaires, extrinsèques, c'est-à-dire liés seulement accessierment à cette excrétion, il est certain que l'on doit en tenir compte dans des conditions non moins réelles quoique moins approchées, lors de la fixation du type urinaire norme.

En effet, prenons un homme pesant un poids moyen. Nous pouvons le concevoir dans tous les états d'embonpoint possibles, c'est-à-dire, pour ne citer que les extrêmes, très gras ou très maigre.

Or, le poids d'un corps étant la résultante de son volume et le sa densité, comme la donnée de la densité est à pen près constante dans le corps humain, d'une part, et que d'autre part nous sommes fixés (par le fait des indications maigreur ou obésité) sur les dimensions largeur et épaisseur du corps du sujet, il est évident que si cet homme ayant un poids corporel moyen est très maigre, il sera nécessairement de haute stature; qu'au contraire, s'il est pouveu d'un abondant tissu adipeux, il fautra qu'il soit court de taille.

Ainsi donc, l'on voit déjà que, pour un poids corporel donné, il est possible de concevoir tous les types d'embonpoint possibles et d'une façon inversement parallèle tous les types de stature afférents au genre humain.

Comme il est bien évident encore que les différents lissus de l'organisme ne concourent point tous dans un même rapport à l'assimilation et à la désassimilation organiques, il est certain que dans l'évaluation de l'excrétion urinaire, tant visà-vis d'elle-même que visà-vis de la docimaise des singesta, nous devons tenir compte à la fois du facteur poids et du facteur taille du sujet observé. La coordination de ces deux facteurs nous assurera seule urte appréciation logique des échanges organiques.

En eflet, le sujet est-il gras? Il nous est impossible d'accepter la donnée d'ensemble de son poids corporel comme l'expression exacte de son élimination urinaire, puisque l'on sait que le tissu adipeux ne joue pas, relativement aux autres tissus, un role aussi actif dans la désassimilation. L'urine, miroir fiélel des échanges nutritifs, ne pouvant que refléter cette désassimilation dans son ensemble, ne sera dono pas sensiblement et directement impressionnée par la masse du tissu adipeux surabondant. On ne sera donc pas en droit de s'appuyer, pour l'évaluation de l'excrétion urinaire normale de l'obèse, sur son poids corporel effectif; celui-ci devra être ramené au taux normal, abstraction faite de la surcharge graisseuse, et c'est surtout dans ce cas, comme nous le verrons, qu'interient utilement la donnée tuille comme correctif du poids.

Au contraire, le sujet est-il maigre, c'est-à-dire pauvre en éléments tissulaires? Il est évident que le quantum des éléments véritablement actifs dans les échanges nutritis étant inférieur à ce qu'il devrait être normalement, l'excrétion urinaire reflétera cette diminution. Le rapport poids-taille nous permettra ici encôre d'arriver à la comanissance approchée du coefficient urinaire normal, non plus en abaissant son expression comme dans le cas orbécédent, mais au contraire en la surélevant.

L'influence du facteur âge sur cette même excrétion urinaire comprise dans son ensemble n'est pas moins nette.

Au rein, on peut, en effet, concevoir un double volume : ab-

solu et relatif. Et les données anatomiques, relevées précédemment, accusent pour le dernier une marche décroissante : de l'eufant chez lequel le rein représente environ les 12 millèmes du poids du corps, à l'adulte chez lequel li n'est déjà plus que les 4 millèmes, et enfia au vieillard pour lequel nous voyons er apport tomber à l'unité, un millième. Or, les variations de l'exarétion unionie que théoriquement ces modifications anatomiques portaient à prévoir ayant été entièrement corroborées par l'observation, nous croyons qu'il faut de toute nécessité tenir compte du facteur âge dans l'étude de l'urine normale.

Sans admettre d'une façon absolue la théorie des émonctoires vicarionis, ainsi que le dit Bouchard, il n'échappe cependant à personne quelles relations positives existent entre le fonctionnement des divers appareils excréteurs de l'organisme animal, d'une façon générale, et plus particulièrement entre les fonctions cutanée et rénale.

Toutes choses égales d'ailleurs, plus les fonctions cutanée et pulmonaire sont actives, moins est grande la quantité d'urine. Mais le rapprochement entre ces diverses données ne s'arrête

pas au terme eau, c'est-à-dire au volume de l'urine.

Wiederhold a montré que la peau excrète, que les poumons exhalent certaines substances solides que l'on rencontre également dans les urines, et en particulier le chlorure de sodium, l'acide urique, l'urée, etc. Il s'ensuit donc que les variations positives ou négatives des fonctions du poumon et de la peau retentissent sur l'excrétion urinaire d'une facon générale, Mais si ces variations influent réellement sur l'excrétion urinaire dans son ensemble, c'est-à-dire d'une façon absolue, leur influence est bien plus considérable encore sur les relations des éléments urinaires entre eux; car, ne l'oublions pas, l'évaporation pulmonaire et cutanée élimine d'une façon plus spéciale l'eau et les acides volatils, donc diminuant la charge plasmatique en ces éléments, abaisse leur proportionnalité dans l'excrétion urinaire. Et c'est précisément ce qui explique l'action des facteurs climat, saison dans leur totalité et régime d'exercice dans une certaine proportion : facteurs dont les fonctions pulmonaire et cutanée ne sont que l'expression secondaire,

A l'égard de l'exercice, nous n'oublierons pas non plus quel rôle actif ce facteur joue dans les combustions organiques en activant l'hématose tant par la suractivité circulatoire qu'il produit que par l'augmentation respiratoire qu'il occasionne!

Il en sera de même, mais en sens restreint, pour le facteur travait intellectiel, dont l'action sur les cellules cérébrales, en augmentant leur déchéance organique, modifie sensiblement l'excrétion urinaire. D'autre par la tension artérielle générale diminuant pendant le travait intellectuel par suite d'un phénomène réflexe vaso-moteur lié à la tension cérébrale, il s'ensuit encore que l'élimination des éléments urinaires physiologiques éprouve de ce fait des variations absolues et positives, dont la connaissance est assurément nécessaire à la fixation du type urinaire normal, physiologique l'avaite de l'action de l'entraire normal, physiologique l'avaite de l'action de l'entraire normal, physiologique l'avaite de l'action de l'entraire normal, physiologique l'action de l'entraire normal physiologique.

Ainsi donc, si nous voulons résumer ce qui précède à l'égard des divers facteurs qui influencent l'excrétion urinaire, nous dirons en concluant :

1º Que d'une façon absolue, l'urine ne peut étre recueillie vaiment normale que obez des aujets sains, bien proportionnés de taille et de poils, se trouvout à l'ûge mogno de la vie, sommis à un règime alimentaire aussi rapproché que possible de la ration d'antrettain, non surmests par le travail intellectué, se liverné à un exercice modéré en rapport avec teurs forces et leur régime alimentaire, habitant un climat mojen et à l'époque seulement de saisons mogennes (automne ou printemps);

2º Qu'enfin, d'une façon relative, cette urinc devra représenter très exactement l'ensemble des urines d'un cycle journatier, soit vinat-quatre heures.

Supposons maintenant un instant que l'on ait trouvé un homme remplissant ces conditions physiologiques intrinsèques et extrinsèques dans leurs plus influes détails; il est bien certain que, si en outre cel homme jouit d'une santé parfaite, l'on pourra preadre son excrétion urinaire pour type réel, absolu de l'urine normale!

Mais comme il est sinon matériellement impossible, du moins fort difficile, de trouver ces conditions réalisées dans leur easemble chez un même individu, nous avons dû nous adresser à une série d'individus pour prendre daus l'excrétion urinaire de chacun d'eux les traits communs à toutes ces excrétions, et former ainsi de ces traits communs superposés le prototype, le type idéal de l'urine normale:

Pour obtenir ce prototype urinaire normal, nous avons procédé ainsi :

Le printemps fut d'abord choisi, comme saison, pour ces expériences;

Comme climat moyen, nous primes la Bourgogne;

Paree que nous étions sûrs d'y trouver une population robuste, laborieuse et dont l'alimentation mixte (supérieure en général à celle des cultivateurs des autres pays, se rapproche autant que possible de la ration d'entretien tant par sa quantité que par sa qualité (alimentation variée nécessière au ho nontionnement de l'organisme humain, comme l'a démontré Longot) de plus, le paysan bourguignon a l'esprit vif, l'intelligence ouverte, ce qui le place dans une classe rapprochée de l'ouvrier dont il a ainsi les avantages intellectuels sans en avoir les inconvénients physiques et physiologiques;

Les sujets choisis, au nombre de dix, furent tous pris, aussi sains que possible et en ayant soin d'éliminer toute influence héréditaire diathésique;

Tous furent choisis à l'àge moyen: trente deux à trente-six ans, hommes ou femmes, cinq de chaque sexe.

A cet égard, nous dirons que si nous n'avons pas fait intervenir un facteur seze dans la formation de l'excrétion urinaire physiologique, c'est qu'à noire avis les variations jusqu'ici rapportées au sexe en lui-même doivent bien plutôt être attribuées au sexe relativement aux modifications compartives qu'il impose à la taille, au poids, au régime alimentaire, à l'exercice; modifications que nous avons les unes et les autres étudiées précédemment et sur lesquelles il n'y a pas lieu de revenir.—

Quant au facteur taille-poids, son influence fut autant que possible annulée dans nos expériences par le soin que nous primes de choisir des sujets résentant le rapport de proportionnalité normal : poids du corps chez les adultes égal en kidgrammes au oliffre de centimètres dépassant le mêtre pour la taille (moins un discième).

Non seulement une série de mensurations comparées aux

poids nous avait permis d'établir antérieurement cette donnée, mais elle découle encoré des tableaux d'accroissement de Tardieu (1) ainsi que de nouvelles recherches entreprises par Peyraud (de Libourne) sur un régiment de dragons. (Voir Nora.)

En tous cas, les rapports des deux chiffres taille-poids ayant élé vérifilés dans toutes nos expériences, ainsi d'ailleurs que ceux de toutes les autres données factorales extrinsèques, les faibles écarts imprévus dans les cas pris par nous pour types d'excrétion urinaire normale purent être pondérés dans les résultats généraux de l'analyse.

En ces conditions, nous recueillmes pendant huit journées consécutives et avec le plus grand soin l'urine de chacan de nos dix sujets, vaquant d'ailleurs à l'eurs occupations habituelles; et, chaque jour, après nous être assuré, sur chacane d'elles isolément, qu'elles présentaient toutes des propriétés or-

Nota. — Deux cent soixante-quatre jeunes gens de la classe 4886 incorporés au 45° dragons à Libourne furent mesurés et pesés par le D^p Peyraud lors de leur arrivée au corps en novembre 4887. L'âge de ces jeunes gens était de vingtet un ans.

Quarante-quatre d'entre eux, soit 46 p. 100, présentaient exactement un poids se tradusant en kilos par le chiffre de la taille en centimètres au-dessus du mêtre moins un dixième. Exemples : n° 230, taille 4",70, poids net 63 kilos; n° 246, taille 4",66, poids net 60 kilos, etc.

Mais chez les autres un écart plus ou moins grand existait entre ces deux données : taille-poids.

Néanmoins la moyenne des tailles étant 1^m,642 et la moyenne des poids nets 57kn,900, le rapport

$$\frac{cm - \frac{cm}{10}}{\text{Kilos}} = 1$$

fut néanmoins rencontré à une très minime fraction près : le chiffre 64,2-6,42=57,800 étant des plus voisins de 37,900; et cm représentant la taille nette en centimètres excédant le mètre.

⁽¹⁾ Mémorial thérapeutique de Trousseau, p. 59. — Accroissement pendant l'enfance, l'adolescence, la puberté et l'âge adulte.

ganolepliques analogues, nous les mélangeames uniformément et procédames à l'analyse.

Les résultats que nous allons développer en tant que propriétés organoleptiques, physiques, chimiques, physiologiques et comme docimasies absolue et relative de tous les éléments dosables dans la pratique analytique, proviennent donc de la coordonnée de cette série d'analyses. Néamoins, aux données personnelles que nous allons exposer, nous tácherons de réanir, toutes les fois que faire se pourra, ce qui, dans les auteurs classiques, nous semble se rapporter d'une façon bien évidente à l'urine absolument normale. Malheureusement ces données fournies par les auteurs sont des plus restricines

Pour nous, au point de vue docimasique relatif, nous avons pris le kilogramme pour unité de coefficient urinaire abola, c'est-à-dire pour unité physiologique abstraction faite des factours autres que le poids corporel de nos sujets, ou, pratiquement parlant, après avoir fait subir à cette donnée poids les quelques corrections relatives aux autres factours de l'excrétion urinaire que toute prévoyance n'avait cependant pas pu écarter dans noire expérience.

I. PROPRIÉTÉS ORGANOLEPTIQUES.

Par propriétés organoleptiques d'un corps, on entend celles de ses propriétés qui peuvent tomber directement sous les seus. Nous savons quelle importance les anciens (qui n'avaient d'ail-

leurs aucun autre mopen à leur portée pour l'étude de l'excrétion urinaire), attachaient aux propriétés organoleptiques de l'urine, et combien, quelque imparfaite que fût cette méthode, leurs conclusions possédaient de sens pratique et de véracité.

L'examen rigoureux et méthodique de l'urine, pratiqué physiquement, chimquement et physiologiquement, a certainement fait perdre aux propriéts organoleptiques dans l'ensemble de l'analyse le rôle fondamental qu'elles avaient autrefois. Toutelois, l'examen clinique préparatiorie, à peu près limité à ces seules données organoleptiques, nous impose le devoir de conserver à cet examen superfiéiel la place d'avant-garde que lui assigne la simplicit de sa mise en œuvre.

Pour rester fidéles à notre programme, nous ne ferons ici

qu'énumérer, en les fixant toutefois d'une façon précise, les propriétés organoleptiques de l'urine normale. Les modifications extra-physiologiques qu'elle peut subir seront étudiécs à l'urine anormale.

A. Couleur.

Yvon écrit qu'à l'état normal l'urine offre une teinte ambrée plus ou moins foncée.

Vogel et Neubauer emploient la même expression, en comparant les teintes présentées par l'urine normale aux nuances diverses que neut offrir le succin ou ambre jaune.

Pour A. Gautier, la couleur de l'urine est jaune citron; mais elle peut varier dans une certaine gamme de teintes jusqu'au jaune rouge. Méhu donne à l'urine normale une coloration jaune, avec

Méhu donne à l'urine normale une coloration jaune, avec toutefois cette observation fort juste que la teinte se fonce par l'aération.

L. Gautier dit que l'urine normale varie comme couleur du jaune pâle au jaune rougeâtre.

Enfin Danlos lui assigne une teinte jaune ambrée, la nuance allant de l'ambre le plus clair au plus foncé; c'est répéter, sous une autre forme, l'opinion de Neubauer et Vogel!

Les diverses opinions formulées par les auteurs que nous venons de citer se rapportent, non à l'urine normale comme nous la comprenons, mais aux différents types d'urine émise aux divers instants, aux diverses mictions de la journée, et seulement encore à leur observation soit à l'émission, soit après le contact prolongé de l'air.

Nous ne saurions donc considérer l'une quelconque de ces opinions comme absolument exacte; mais nous trouvons tou-tefois dans leur ensemble les éléments d'une appréciation vraix de la couleur de l'urine normale : couleur d'ailleurs complexe dans ses causes (présence de l'urobiline et de l'urobirythrine). Les corps considérés comme chromatogénes sont incolores par cux-mêmes.

A l'émission, en effet, l'uriue, dans les diverses mictions qu se succèdent en un cycle journalier, offre les différents types de coloration que nous venons d'énumérer et dont la moyenne peut être donnée par une teinte jaune safran, un peu plus rouge que la teinte jaune citron d'A. Gautier.

Mais, selon la remarque de Méhu, le contact de l'air (contact ayant généralement lieu dans les conditions d'usages domestiques auxquels nous sommes faits), communique à l'urine de l'ensemble des vingt-quatre heures une augmentation de colration qui se traduit alors par une teinte ambrée moyenne prise par le mélange.

B. Aspect.

La plupart des auteurs, sinon tous, confondent l'aspect avec la transparence des urines et décrivent ces deux propriétés organoleptiques sous une rubrique unique: transparence pour A. Gautier par exemple, aspect dans Neubauer et Vogel.

Nous ne saurions partager cette manière de voir; car si, pour l'urine normale cette différenciation est nulle, pour certaines urines extra-physiologiques (telles que les urines à peptones), comme nous le verrons à l'urine anormale, il y a lieu au contraire, toutes questions de transparence ou d'opacité à part, de considérer à l'urine un aspect spécial et absolument caractéristique.

En ces conditions, négatives pour l'urine normale, nous ne pourrons donc traduire cette propriété organoleptique qu'en disant que l'urine physiologique se présente sous l'aspect d'une belle liqueur limpide:

C. Transparence.

La transparence de l'urine normale est variable selon qu'on la considère à chaque miction ou bien dans son ensemble de viugt-quatre heures.

Absolument limpide et claire à l'état normal au moment de son émission, l'urine se trouble très faiblement, en effet, peu après par le fait de la précipitation lente de très rares et très ténus flocons (constitués par des cellules et débris épithéliaux de la moqueuse urinaire (bassinets, urefères, vessic, ureihre, qu'entraîne naturellement leur densité fégèrement supérieure à celle du liquide où ils se trouvent plongés).

L'ensemble des urologistes adopte cette manière de voir et nous dirons avec eux que : complète, absolue à l'émission, la transparence de l'urine normale se trouve quelques instants après légèrement atténuée par la formation du dépôt, atténuation non persistante d'ailleurs et disparaissant précisément au fur et à mesure de la constitution de ce dépôt.

D. Fluorescence.

L'urine normale est légèrement fluorescente, c'est-à-dire que des lames minces de ce produit ne présentent pas la même couleur que lorsqu'on la considère sous une épaisseur normale (\(\lambda = \lambda = \lambda + \lambda \rightarrow \rightarro

Comme nous l'avons dit précédemment, il est établi que l'urine normale de vingt-quatre heures présente, en masse, une teinte jaune ambrée moyenne très netle, leinie jaune mape, faible si l'on adopte la manière de compter de Neubaure et Voget et d'A. Gautier; cette leinie devient verte pour l'obsevation des bords du liquide ou pour de faibles épaisseurs examinées nar réfrancijon.

D'après Lebisch la fluorescence verte de l'urine normale serait due une substance voisine de l'esculine. Mais, pour notre part, nous croyons qu'éle est imputable à la présence du pigment urobiline. Schönbein et laffé exprimant également cette opinion, nous rejeterons à l'urine anormale les fluorescences d'autre auture constatées par certains urologistes tels que L. Gautier.

E. Agitation.

Examinée le plus souvent par l'agitation, la fluorescence pourrait à la rigueur rentrer dans le cadre des phénomènes résultant de cette opération : Nous croyons cependant, pour plus de précision, devoir étudier exclusivement sous cette rubrique opitation la propriété que possède l'urine de mousser ou non par la succussion.

De l'avis de tous, à cet égard, l'urine normale donne tout d'abord une éeume abondante mais peu persistante et disparaissant très rapidement par le repos (sauf quedques petites bulles attachées aux parois du vase). L'ensemble de l'écume formée normalement par l'agitation est à grosses bulles (Guyon).

La mousse abondante que produit la succussion dans l'urine

normale est due à la présence de l'urée (extrait savonneux de l'urine).

F. Surface.

Propriété organoleptique à peu près négative, la surface de l'urine normale n'offre rien de particulier si ce n'est quelços rares bulles d'air qui, comme nous venons de le dire, peuvent parfois persister en couronne sur ses bords à la suite d'une agitation anérieure.

Nous dirons donc que la surface de l'urine normale est nette.

6. Pellicule.

Parmi les aspects divers que peut prendre la surface d'une urine, il en est un qui offre un type tout particulier : nous voulons parler de la pellicule qui peut s'y former en certains cas déterminés.

Pour l'urine normale, comme relativement à la surface dans son ensemble, la pellicule reste une propriété organoleptique négative, puisque cette pellicule est nulle, la surface étant nette.

H. Odeur.

L'urine physiologique, dans les conditions ordinaires de l'alimentation et u genre de vie, possede à l'émission une odeur aromatique spéciale, sui generis, a-t-on dit, qui persiste, mais en s'atténuant lentement soit par évaporation des acides volatils qui la détermient, soit jasqu's ce que l'acidite normale ait disparu par fermentation ultérieure. L'odeur aromatique (agréable même) de l'urine lors de la miction est alors remplacée par une odeur urinease désagréable, mais qui n'est plus normale.

L'odeur aromatique sui generis de l'urine humaine normale est occasionnée, pense Vogel, et nous l'admettons avec lui, par les acides-alcools volatils que Stædeler a le premier signalés dans l'urine de l'homme.

Steller attribue cette odeur au contraire, mais à tort certainement, au pigment urinaire. Pour notre part, dans toutes les séparations que nous avons eu l'occasion de faire de ce pigment, nous n'avons jamais constaté l'odeur spéciale caractérisée plus haut. Quoi qu'il en soit, cette odeur sui generis est caractéristique pour le genre humain au même titre que les odeurs sui generis offertes par les urines des autres espèces animales le sont pour chacune de ces séries d'êtres vivants en général. (Lereboullet.)

Savone

Les auteurs qui indiquent la saveur de l'urine la trouvent ; Amère, saline et acidulée (A. Gautier);

Amère et légèrement saline (Lereboullet); Amère et à la fois saline (L. Gautier);

Amère et à la fois saline (L. Gautier);

Enfin légèrement salée et amère (Guérin). Pour nous l'urine normale présente : de prime abord une sa-

Pour nous Furme normale presente: ae prime acora une saveur fraiche, presque immédialement remplacée par une saveur saline franche, légérement actidulée, et laissant en dernière ligne un arrière-goût amer.

Les causes de cette quadruple action successive de l'urine normale sur les filets nerveux de la muqueuse buccale résident dans la présence en proportions décroissantes des éléments suivants : urée (fraicheur), chlorure de sodium (salinité), plosphates acides (acidité), pigments urinaires (amertume), dans cette urine normale.

J. Consistance.

Lorsqu'un liquide est transvasé d'un récipient dans un autre il s'écoule, toutes conditions extérieures égales d'ailleurs, avec une rapidité plus ou moins considérable, plus ou moins divisé en sa masse.

Ges deux modes d'écoulement, proportionnels à la fluidité du liquide, inversement proportionnels à sa viscosité, tiennent pour l'urine normale un juste milieu; et en ces conditions l'on peut dire que l'urine normale offre une consistance fluide moyenne analogue à celle de l'eau, et qu'elle n'est nullement visqueuse (Bourcoin).

La fluidité de l'urine normale, analogue à celle de l'eau, avons-nous dit, tient à la .composition générale du fluquide urinaire, d'une part : eau 976,440 par litre; et d'autre part à la présence d'une forte proportion d'urée = 18,75; auj jouit de la propriété d'augmenter la rapdité d'écoulement des liquides dans

les tubes que ses solutions traversent: cette dernière propriété compense ainsi la légère augmentation de densité que l'urine présente sur l'eau à l'état normal: 4047sr,8 pour 4,000 centimètres cubes.

K. Dépôt.

Conservée dans un vase conique, à l'abri de l'air, pendant vingt-quatre heures après la derniere miction, l'urine normale, tout d'abord parfaitement limplée, aisse déposer peu à peu de légers flocons qui gagnent le fond du vase en abandonnant quelques parcelles soides sur les parois.

La partie ayant gagné le fond du vase, l'hypostase comme l'on disait autrefois, constitue le dépôt de l'urine normale qui est léger et floconneux.

L. Sédiment.

Les particules solides qui se sont arrêtées sur la paroi du vase forment ce que l'on appelle le sédiment.

Pour l'urine normale ce sédiment est à peine sensible, amorphe et constitué comme le dépôt, ainsi que nous l'avons dit à la «transparence», par de rares cellules et débris épithéliaux de la muqueuse des voies urinaires.

II. PROPRIÈTÉS PHYSIQUES.

Relativement à l'emploi pratique, les propriétés physiques tiennent le milieu dans l'examen clinique entre les connaissances organoleptiques et les recherches chimiques.

Elles participent, en effet, des unes et des autres soit au point de vue de l'examen général de l'urine, soit au point de vue de la détermination d'éléments spéciaux.

Nous leur attribuerons donc de ce chef le second rang dans la pratique analytique urologique.

A. Volume émis en vingt-quatre heures.

Jusqu'ici le volume des urines émises dans le cycle journalier de vingt-quatre heures a été apprécié de deux façons différentes par les urologistes.

Tous autrefois admettaient une moyenne unique pour ce volume: moyenne qu'ils rapportaient à l'homme adulte.

Ainsi Becquerel indique en ce sens le chiffre de 1,267 gram-

mes, avec écarts possibles de 900 grammes (minimum) à 1,300 grammes (maximum).

Pour Lœbisch, l'urine normale varie comme volume de 1,200 à 1,600 grammes. Salkovski dit avoir trouvé les chiffres de 1,500 à 1,700 grammes, d'après Danlos qui répète cet anteur.

Bourgoin admet de 1,200 à 1,500 centimètres cubes ; Kerner fixe le chiffre de 1,490 centimètres cubes très rapproché du précédent.

Plus tard, cette moyenne unique se dédoubla en deux autres :

L'une rapportée à l'homme proprement dit: 4,400 à 4,500 centimètres cubes.

L'autre propre à la femme : 1,100 à 1,200 centimètres cubes (L. Gautier). Yvon et Berlioz adoptent les chiffres qui précèdent des deux

moyennes relatives au sexe du sujet: le volume urinaire de la femme étant le plus faible (1,300 à 1,400 c. c.).

Seuls, Becquerel et après lui Riche donnent des proportions inverses dans cette mensuration comparative :

Homme: 1,200 à 1,300 centimètres cubes; Femme: 1,300 à 1,400 centimètres cubes.

Vient ensuite Méhu, qui, prenant à partie cette manière de procéder dans son ensemble, démontre scientifiquement que le volume de l'urine émise par un individu quelconque homme ou femme, dans un temps déterminé, une journée par exemple, varie proportionnellement à certaines données telles que : le poids, l'âge, le régime alimentaire suivi, l'exercice auquel il s'est livrée, enfin la température ambiante.

Notons ici en passant que Méhu généralise, sanf pour l'action du climat, l'influence de ces données sur l'accretion urinaire d'ensemble, et que relativement au facteur poids, il avait eu pour précurseur A. Gautier, qui estimait avant lui que, considérée relativement au poids corporel, l'excrétion urinaire voltemétrique correspondait à 0°-83 par kilogramme de poids corporel humain et par heure journalière : autrement dit que chaque kilogramme d'être humain excrète par heure 0°-83 d'uries à l'éta normal

Bouchard adopte également ce chiffre de 0°,83 comme coefficient d'excrétion urinaire en volume; et, d'après lui, pour l'ensemble des vingt-quatre heures, ce chiffre revient à 20 centimétres cubes d'urine per kilogramme de poids corporel ou à une moyenne de 1,200 centimétres cubes pour un homme du poids de 6 kilogrammes net, poids lui-même moyen dans l'espèce humaine.

Nous étudierons en détail en son lieu l'influence que l'âge, le sexe, le régime alimentaire, l'exercice, la température, l'état hygrométrique de l'air peuvent élever sur l'élimination urinter comme volume, influence que nous avons d'ailleurs signalée antérieurement d'une façon générale; pour l'instant, ous dirons seulement que le coefficient de ces diverses causes d'erreur, coefficient plus spécialement dirigé en tel ou tel sens par l'effet du choix des sujets ou du milieu dans lequel chacun des urologistes précités opérait, explique seul les différences constatées entre lous ces auteurs dans l'appréciation du volume urinaire de vingt-quarte heures. Ce fait est surtout sensible chez les auteurs allemands, augmentation du volume, par suite de l'énorme quantité de liquide ingéré sous forme de bière par les sujets sounis à leurs expériences.

Quant à nous, nos mensurations volumétriques relatives à l'excrétion rainaire d'ensemble ont concordé avec celles de L. Gautier, et nos chiffres sont plus élevés que ceux qu'indiques Bonchard, sans atteiduré toutefois ceux qu'énoncent les urolegistes d'Outre-Nhin. Et, comme précisément ces mensurations out été effectuées sur des sujets choisis de telle façon que dans la mesure du possible tous les facteurs extrissèques fussent annihilés dans leur observation, nous croyons pouvoir les cousidèrer comme l'exacte expression de la vériel.

Ainsi, à notre avis, un adulte humain d'age moyen (33-41 ans, moyenne 37 ans) émet en vingt-quatre heures un colume d'uvine correspondant à 24 centimètres cules par hilogramme de son poids, toutes les fois que : étant à l'état de santé absolue, et soumis aux conditions normales d'alimentation, à une activité physique et intellectuelle moyenne, il vaque à ses affaires dans une atmosphère de température moyenne (environ +18°,5°C), et d'état hygrométrique moyen (70°).

Il est bien entendu qu'en tout ceci nous avons parié du poids net, c'est-à-dire défalcation faite du poids des vêtements relatrement au poids du sujet vêtr; défalcation des plus faciles généralement à noter par la pesée différentielle, mais qu'à la rigueur on peut obtenir par le calcul en estimant le poids du vêtement à un vingtième du poids brut de l'individu dans les conditions habituelles où l'on se vêtit pour une température ambiante movenne de + 188°, C.

Nous observerons maintenant que si dans l'indication des facteurs nécessaires à un équilibre parfait du régime volumétrique des urines, nous n'avons pas fait intervenir la donnée taille, c'est que précisément dans l'état de santé absolue nous comprenons implicitement ette donnée, c'est-dire que nous ne considérons un sujet variment physiologique que lorsque les deux données taille-poids se correspondent d'une façon à peu près exacte selon la formule énoncée plus haut; et qu'ainsi cette donnée rentre secondairement dans l'expression de la santé absolue exigée par nous dans nos mensurations de types univaires normaux.

De cal il résulte encore, qu'ainsi le rapport talle-poide étue considéré comme le critérium de l'état fonctionnel physiologique absolu, scientifiquement parlant, abstraction pourrait être faite du poids corporel dans la traduction mathématique du régime urinaire volumétrique, et que d'une façon plus générale on exprimerait avec raison cette donnée sous la forme suivante.

Un adulle humann d'age mojen, dons les conditions normales de régime, d'exercice et de climat tempéré, émet en vingt-quatre heures un colume d'urine correspondant d'24 entimétres cubes par chaque proction de 11 millimétres de sa taille dépassant le mêtre, torsprül est à l'état de santé abobie. (Le chiffre et millimétres de sa taille dépassant le mêtre représentant le rapport réduit que nous avons exposé précédemment au sujet de la relation du poids corporel à la taille et que nous avons exprimé en disant que le poids corporel était égal en kilogrammes au chiffre de la taille en centimétres dépassant le mètre moins un

dixième. Exemple, un homme de 4^m , 80 doit peser $\frac{80}{4.4} = 72^k$, 727).

On remarquera sans doute maintenant que, contrairement au mode de faire de A. Gautier et de Bouchard, nous ne formulons point secondairement la donnée du volume urinaire par heure. C'est qu'en effet, comme nous l'avons déjà dit, depuis la plus haute antiquité il a été reconnu que l'élimination urinaire était loin d'être constante mais était certainement des plus variables et liée à l'influence des différents facteurs, alimentation et activité fonctionnelle entre autres, que les exigences de la vie présentaient dans l'ensemble d'un cycle quotidien. Formuler encore l'excrétion urinaire horairement nous semble sinon être un contre-sens, du moins être inutile, puisque seul l'ensemble de cette excrétion, c'est-à-dire l'élimination des vingt-quatre heures, est comparable à lui-même. Cette considération physiologique a guidé notre détermination pratique en le sens que nous indiquons : l'examen exclusif de l'urine des vingt-quatre heures.

B. Température à la miction.

La situation du réservoir commun à l'urine, la vessie, au milieu des viscères abdominaux, impose au liquide que ce réservoir contient une température compuse à du la contraction de la comparation del comparation de la comparation de la comparation de la comparation de la comparatio

réservoir contient une température commune à celle du corps.

Mesurée, en effet, avec soin à la miction, la température de l'urine chez l'homme à l'état physiologique est de +37° C., c'est-

à-dire exactement celle des organes profonds du corps humain. Ce chiffre de + 37° C. est considéré comme normal par Yvon. Méhn indique de + 37° C. à + 39° C. rmais nous croyons que cette différence provient de la façon de procéder indiquée par l'auteur qui receillait l'urnie dans un haim-narie

C. Densité à + 15° C.

Tous les auteurs sont d'accord pour assigner à l'urine normale une densité qui, ramenée à +15 C., se rapproche du chiffre 1,018, avec variations possibles de 1,012 à 1,022.

Nous croyons, quant à nous, que ces dernières variations proviennent d'états extra-physiologiques non pathologiques passés inaperçus, mais qui touteois ne peuvent rentrer dans le cadre des urines normales.

Aussi, nous dirons que: l'urine normale possède une densité

qui, toutes corrections faites pour la ramener à la température de + 15° C., correspond exactement au chiffre fractionnaire de 4,017,8, très rapproché d'ailleurs du chiffre 4,018 cité plus bant

Comme conséquence de cette donnée, nous déduirons de suite, qu'à ladite température de +15° C., un litre d'urine normale pêse 1.017gr, 80 ; ainsi que nous l'avons vérifié expérimentalement.

D. Intensité colorimétrique.

Nous avons dit précédemment que, contrairement à notre manière de voir, Neubauer et Vogel reconnaissent à l'urine normale l'infinie variété de teintes que présente l'ambre jaune. Désirant définir et fixer ces teintes d'une facon comparative non seulement pour l'urine normale, mais pour toutes les urines d'une facon générale, ces auteurs ont imaginé une échelle colorimétrique, une gamme de teintes, allant du jaune le plus clair au noir absolu.

L'ensemble de cette gamme est ainsi représenté :

1º teinte jaune pâle,

ianne clair.

30

jaune, moyenne : jaune safrané. - jaune rouge.

- rouge jaune.

60 - rouge, 70 - rouge brun,

80 - brun ronge.

90 - brun

De même alors que dans les différentes mictions composant l'excrétion journalière, l'urine offre différents types de coloration allant du jaune pâle au rouge, et dont la movenne est le jaune safrané; de même aussi l'intensité colorimétrique de ces différentes mictions variera de la teinte 4 à la teinte 6 de la gamme allemande.

Quant à l'urine mixte de vingt-quatre heures, c'est-à-dire ayant subi le contact de l'air, sa coloration ambrée moyenne est légèrement inférieure à la teinte 4 de la même échelle et correspond au chiffre fractionnaire 3.7 du système.

E. Indice de réfraction.

Cette propriété physique de l'excrétion urinaire dont l'importance est plus scientifique et plus spéculative que pratique n'a encore été vérifiée que par un nombre restreint d'auteurs.

Augmentant, comme le fait remarquer Danios et comme forquement on pourrait d'ailleurs le prévoir, avec la concentration de l'urine sans toutelois lui rester proportionnelle (car il est extrémement rare que l'augmentation de densité d'une urine ait exclusivement lieu par la diminution de son eau et ne provienne pas plutôt de l'exagération relative d'un ou plusieurs éléments isolément), l'indice de réfraction varie, toujours suivant Valentin, de 1,3403 à 1,3434.

Le chiffre que nous avons constaté lors de nos recherches est à peu près moyan entre ces deux extrêmes, et nous concluons à cet égard : que l'urine normade de vingt-quarte heures, offrant une densité de 1017, 8 $\dot{\alpha}+45^\circ$ G, possède à cette même température un induce de répraction de 1,4330.

F. Fluorescence.

Si nous adoptons relativement à la fluorescence l'échelle donnée par Neubauer et Vogel pour l'évaluation de l'intensité colorimétrique des urines, nous sommes conduits à des résuldats à peu près identiflues comme chiffres à ceux que nous avons formulé pour la coloration.

En effet, à la miction la fluorescence relative de l'urine normale zone de diffre 1 au chiffre 5, auec une mogenne de 3 pour l'ensemble de la journée quant à l'urine conservée à l'abri de l'air. Au contraire, pour l'urine dévée, c'est-à-dire oxydée quant à ses principes colorants, l'urine normale possède comme fluorescence un coefficient se rapprochant beaucop du chiffre 4.

Les rapports du pigment primitif fluorescent avec le pigment colorant se transformant par oxydation en ce pigment primitif, serzient donc de 2 à 1 environ; c'est-à dirier que, comme nous le verrons plus loin, le premier étant l'urobiline et le second l'urochrome ou uroérythrine, l'urine normale possèderait (après aération) 2 fois plus d'urobiline que d'uroérythrine, d'uroèrythrine, d'uroèrythrin

G. Action de la chaleur.

L'action de la chaleur sur une solution minéro-organique, comme l'urine, peut être double à + 400° C.

4º La chaleur peut coaguler des matières organiques;

2º Elle peut, en chassant les gaz dissous et entre autres l'acide carbonique, amener la dissociation des sels, carbonates ou phosphates, tenus en solution par ce gaz acide, donc précipiter certaines combinaisons secondaires de ces sels.

L'action de la chaleur sur l'unine normale est mulle, car d'une part cette urine ne tient en dissolution aucun clément organique coaquiable par une température de +100° C; t et d'autre part, ainsi que nous Yarons déjà dil en rappelant la judiciense remarque de Bouchard, la dialyse glomérulaire excepte de l'urine normale les gaz sinon d'une façon tout absolue, du moinsà peu prés complète ment d'où li suit que dans l'urine normale il n'existe aucuns bicarbonates terreux, aucuns phosphates terreux acides par l'acide carbonique.

Les observations relatées en sens contraire par Stokwis (4), appartiennent donc certainement à des urines extra-physiologiques (urines névrophatiques plus spécialement).

H. Action de la dialvae.

L'urine, produit de la diffusion glomérulaire, ne contenant pas à l'état normal d'autres sels que des sels neutres ou acides, tous solubles et cristallisables, doit obéir dans son ensemble aux lois de l'osmose.

C'est, en effet, ce que l'on peut constater pour la grande masse du liquide urinaire si l'on soumet ce produit physiologique à la dialyse sur une membrane organique.

A peine peut-on, sur le dialyseur, retrouver un résidu très faible, infinitésimal pour ainsi dire relativement a la masse du liquide examiné, et qui correspond aux cellules et débris épithéliaux des voies urinaires dont nous avons déjà parlé, et aux traces de mucus sécrété dans la vessie et entrainé par l'évigation par l'urine lors de son passage dans cette cavitéréservoir.

(t) Chemical News, t. L, p. 46.

E. GAUTBELET. - Urines.

La dialyse nous permet donc ainsi de séparer nettement dans l'arine les éléments primitifs, c'est-à-dire provenant de l'osmose glomérulaire rénale, des éléments secondaires, c'està-dire de ceux qu'elle acquiert mécaniquement comme solution d'évigatrico pendant son trajet d'évacuation du pore papillaire au mêct urinaire.

l. Action de l'électrolyse.

D'une façon analogue à la chaleur, et pour des raisons parallèles, l'action de l'electrolyse est nulle sur l'urine normale, du moins en apparence.

En effet, l'urine normale ne contient que, ou à peu près que des sels alcalius, décomposables en réalité par le courant électrique, mais dont les produits (métaux alonius se recombinant par le seul fait de leur mise en liberté avec l'eau dans laquelle ils se trouvent dissous) échappent à la constatation électro-analytique et créent comme résultat final le produit primitif, en donnant comme dernière analyse à l'examen physique un résultat négatif.

Quoi qu'il en soit de cette action réelle du courant électrique sur l'urine, le seul fait intéressant que nous ayons à retenir, c'est que ce liquide physiologique, à l'instar d'ailleurs de tous les autres liquides de l'économie, et par suite de la présence des éléments salins qui y sont renfermés, est bon conducteur pour l'életricies.

J. Déviation polarimétrique.

Il est très rare, lorsqu'on examine une urine au polarimètre, que (loutes questions de réglage de l'instrument à part), l'on tombe exactement au zêro de la graduation; presque toujours l'urine fournit une déviation gauche de quelques dixièmes de degré (L. Gautier d'après Haas): mais, paralt-il, il faudrait une colonne liquide de 1 mètre pour l'observer.

Huguet qui, le premier croyons-nous, a attiré l'attention sur ce fait, en conclut simplement que l'urine normale dévie à gauche le plan de polarisation de la lumière,

Pour nous, nous avons constaté que cette déviation polari-

métrique négative correspondait toujours à des protéinesalbuminoides (peptones).

Et, comme dans l'urine normale nous n'avons jamais constaté la présence de peptones; comme d'autre part les urines que nous arons prises pour tipe physiologique normal ne nous ont jamais donné aucune déviation polarimétrique, nous croyons pouvoir dire que l'action de l'urine normale sur les royons lumineux polaviess draudierment est multi-

K. Raies spectroscopiques.

Deux manières d'etaminer l'urine au spectroscope pourraient à la rigueur être employées; l'une qui, s'adressant aux sels minéraux, porterait sur le résidu salin de l'urine (en obtiendrait ainsi les spectres lumineux des divers métaux compris dans l'urine, sodium, polassium, calcium, magnésium, fer); l'autre qui s'adresse aux matières colorantes, aux pigments de l'urine, et se pratique d'irectement sur le liquide luiméme (ce second examen ne fournit que des handes d'absorution).

L'examen spectroscopique direct, qui est le seul intéressant dans l'espèce (bien entendu sans parler de celui qui peut porter sur les pigments isolés de l'urine), donne également des résultats différents selon qu'il est pratiqué sur l'urine immédiatement après la miction pendant la journée ou après le sommeil. Dans le premier cas, le résultat est sinon négatif, du moins extrêmement faible; non pas que l'urobiline ne se trouve pas toute formée dans ces urines, mais parce que très rarement elles sont suffisamment teintées pour donner d'une facon nette les bandes d'absorption caractéristiques sous une épaisseur moyenne : en ce premier cas, il faut une épaisseur assez considérable pour permettre à l'œil de saisir les deux bandes d'absorption urobilinurique d'une façon précise. Au contraire, l'urine du matin généralement beaucoup plus riche en pigment fournit ces bandes sous une faible épaisseur; et précisément nous verrons plus loin à la docimasie urologique comment l'on a utilisé cette variation dans l'épaisseur de la couche de liquide urinaire nécessaire pour l'apparition nette des bandes urobilinuriques pour le dosage spectroscopique de ce pigment.

Une autre variation dans l'épaisseur de la couche d'urine suffisant à déceler les raies spectroscopiques d'absorption pour l'urobiline a également lieu du fait de l'aération de l'urine.

Dans ce nouveau cas, l'urobiline, provenant de l'uroérythrine par oxydation atmosphérique, vient s'ajouter au pigment d'absorption préformé et accuse ces raies d'une façon évidente sous une épaisseur relativement moindre.

Les raics caractéristiques de l'urobiline sont :

1º Une bande d'absorption 7, étroite et fixée dans le jaune au chiffre 65 de l'échelle spectroscopique (D = 50); cette bande n'apparaît que sur une épaisseur assez considérable;

2º Due autre bande d'absorption 8, large et qui couvre enticrement le bleu du spectre du numéro 70 au chiffre 80 de la même échelle, c'est-à-dire s'étendant de la raie 6 à la raie F de Frauenhofer même avec des épaisseurs relativement minimes de la couche d'urine examiné.

On reconnait être au point comme observation spectroscopique, quand les deux raies précitées, quoique de largeur différente, ont une égale intensité de coloration. En ces conditions, si l'on mesure pour l'urine normale des vingt-quatre houres l'épaiseur de la couche liquide suffisant à l'obtention de ce phénomène physique dans son intensité relative, on voit une estie couche est d'environ 2 caulinatres.

Vierordt, professeur à l'Université de Tubingen, qui s'est occupé un des premiers de cette caractérisation spectroscopique de l'urine, conclut de ses observations que le pigment urinaire est, un.

Nous, nous serons moins affirmatif en cé sens et nous dirons (ce que l'étude de la coloration et de la fluorescence nous a déjà fait pressentir), que les pigments urinaires sont multiples mais agissent dans le même sens sur le spectroscope; ce qui n'a rien détonant, étant donné qu'au point de vue chimique les deux pigments normaux de l'urine humaine dérivent d'un même principe primitif, la matière colorante du sang, l'hémoglobine, dont its sont également très rapprochés, dit Beaume, qui comme nous de ses études sur l'analyse spectrale de l'urine ne conclut pas non plus à l'unité du pigment urinaire,

L. Éléments microscopiques.

L'examen microscopique d'une urine doit porter à la fois sur son dépôt et sur son sédiment.

son dépôt et sur son sédiment.

On a vu quelle était la nature de ces dépôt et sédiment : nature identique et des plus simples.

Aussi n'aurons-nous à dire ici que : l'ezomen microscopique d'une urine normale ne montre, dans ses dépôt et sédiment, auune détennet reistalin, et en fait d'étennets fjourés, de simples cellules épithéliales parimenteuses et leurs débris; le tout en quantité restreinte et provenant de la muqueuse des voies urinaires.

III. PROPRIÈTÈS CHIMIQUES.

ACTION DE L'URINE SUR LES RÉACTIFS GÉNÉRAUX.

Au point de vue de leur importance clinique et de leur emploi pratique dans cet examen préparatoire à l'analyse, les propriétés chimiques de l'urine tiennent la troisiteme place pour le médecin. Elles donnent, en effet, moins que les propriétés organoleptiques, moins que les propriétés prisques des renseignements d'ordre général sur l'état du sujet; mais beaucoup plus que leurs deux congénéral sur l'état du sujet; mais beaucoup plus que leurs deux congénéres elles précisent et forunissent les renseignements d'ordre spécial propre à l'urologie pratique; aussi bien, après l'examen organoleptique et physique de l'excrétion urinaire a-t-ou, en clinique, l'habitude de limite les recherches chimiques à la constatation du sucre de l'albumine ou des pigments billaires.

Comme nous n'avons pas à entrer pour le moment dans les considérations communes aux urines physiològiques et aux urines pathològiques, nous bonnerons notre examen chimique aux ràacitis généraux les plus usités et les seuls capables de nous fournir sur la composition d'ensemble du produit normal de l'excrétion rénale les renseignements types permettant d'établir par la suite la physionomie physiologique de l'urine normale.

Mais avant d'appliquer à cette étude les réactifs chimiques proprement dits, nous verrons quelle action possèdent sur l'urine physiologique deux manipulations qui, scientifiquement parlant, relèvent bien du domaine de la physique, mais qui pratiquement s'opèrent dans les laboratoires de chimie pure : l'évaporation et la calcination.

A. Évaporation.

Cette manipulation peut être conduite de manières hien différentes : feu nu, bain-maries, étuves, trompes, cloche à vide (en présence d'un corps absorbant l'eau volatilèse), etc.; mais comme quel que soit le procédé et aux seules conditions que la prise d'essai soit suffisante et que l'opération ait été pratiquée avec soin, le résultat final est le même, nous n'entrerons pas ied nais les détails de cette manipulation et nous dirons seulement que : un litre d'urine normale fournit un résidu fize, coloré en brun rouge, et du poids de 41×7,600, comprenant avec tous les sels urinaires l'éau de constitution de ces sels, car il est bien entendu que dans notre manipulation nous n'aurons pas dépassé la température + 100° C.

Rapportés au coefficient urologique absolu, ces matériaux fixes équivalent à I gramme par unité de ce coefficient : c'estdire qu'un homme à l'état physiologique élimine en vingt-quatre heures 1 gramme de matériaux fixes par chaque kilogramme de son poids corporel net (coefficient réduit).

Ce résidu fixe connu, sachant d'autre part le poids d'un litre d'urine normale, nous en déduirons de suite le poids de l'eau entrant dans la composition d'un litre d'urine physiologique:

Poids du litre d'urine normale Moins poids du résidu fixe à $+100$ ° C.	1017sr,800 41sr,660
Eau	. 97681,140 par litre

B. Calcination.

Le résidu de l'opération précédente calciné avec soin (pour éviter la volatilisation des chlorures) nous a donné le chiffre de : 15\$\mathbb{v}_2\$14\$ par litre d'urine normale pour les sels fixes.

D'où, pour cette même urine normale, découle enfin un ensemble de composition ainsi compris :

Éléments minéraux Éléments organiques Eau	
Total	10170= 200 non litus

A ce propos nous ferons remarquer que tout en indiquant bien que le poids du litre d'urine normale est supérieur à 1000 grammes, la plupart des auteurs out coutume d'établir leurs résultais docimasiques par poids de 1000 grammes d'urine. Il en résulte de la sorte une confusion regrettable contre laquelle nous ne saurions trop nous élever, vu qu'elle n'est en rien justifiable en la circonstance.

C. Tournesol.

Dans l'action de l'urine physiologique sur le tournesol, nous devons considérer deux cas :

1º La réaction des urines des différentes mictions;

 $2^{\rm o}$ La réaction des urines normales de l'émission totale des vingt-quatre heures.

Dans le premier ordre d'idées, nous dirons avec Guyon :

Que la première émission de l'urine, le matin, est toujours acide;

Que les émissions qui se succèdent ensuite sont ou neutres ou même très faiblement alcalines ;

Enfin qu'à partir du déjeuner de onze heures jusqu'au lendemain matin l'acidité est de règle, et nous ajouterons même acidité forte.

Le mélange des émissions précédentes constituant la totalité des urines du cycle journalier, c'est-à-dire l'urine normale de vingt-quatre heurs, posside une réaction moyenne des réactions précédentes et peut être comptée comme franchement acide, puissque mesurée acidimétriquement en prenant l'acide phosphorique pour terme de comparaison, elle équivant à 19-230 de cet acide (Ph0+).

Mais cette acidité, que nous renons de doser comme très franche, n'est cependant point due à un acide libre. Nous verrons, en effet, plus loin que l'urine ne décompose en rien l'hyposulfité de soude; sa réaction acide doit donc être entièrrment considérée comme due à des sels acides. Eu résumé, l'urine normale offre une réaction acide exclusivement due à des sels acides (ceci bien entendu dans les conditions ordinaires d'alimentation, c'est-à-dire avec un régime mixte fourni par la ration d'entretien).

D. Chlorure de baryum.

L'action de l'urine normale sur le chlorure de baryum présente deux cas spéciaux:

4º En solution acctique, on obtient un précipité blanc granuleux insoluté dans les acides minéraux les plus ênergiques (acides azotique ou chlortydrique), insolutibles à plus forter raison dans un excis d'acide acctique. Ce précipité est exclusivement formé de suffate et d'avafe de hartye, l'acide sulfurique y compris provenant des sulfates salins que renferme Porriae.

2º En solution ammoniacale le chlorure de baryum forme daus l'urine normale un précipité blam facomneux, mélange de sulfate, carbonade, urate et phosphate de baryte, ce précipité est insoluble dans son entier dans les alcalis, mais il est partiellement soluble dans l'exide actique et les acides microux; les carbonate et phosphate de baryte seuls étant dissons, tandis que les sulfate et urate restent intacts comme il est dit précédemment.

E. Azotate d'argent.

Deux cas se présentent également dans l'action de l'urine normale sur le nitrate d'argent.

4° Ou bien ce sel est en solution acide (acide azotique), et l'on oblique alors un abondant précipité blanc, cailleboté, de chlorure d'argent, précipité noircissant à la lumière et soluble dans l'ammoniaque cœulusivement.

2º Ou bien le nitrate d'argent est en solution ammoniacale, et alors le précipité qu'y produit l'urine est un mélange de phosphate, carbonate et urate d'argent, soluble dans l'acide nitrique; tandis qu'un autre précipité de chlorure d'argent se forme alors dans la liqueur.

Les chlorures, phosphates, carbonate et urate précipités proviennent des sels des mêmes acides.

F. Acide azotique.

L'acide acotique introduit dans une urine normale n'y déterunie ni précipité, ni trouble même, mais simplement une lègrer coloration rosée, rose thé, s'accentanat asser rapidement et qui provient de l'oxydation de l'arcérytbrine et de son passage en totalité à l'état d'urobiline.

Cette coloration est persistante sauf en présence de l'ammoniaque qui la fait virer au vert elair (réaction de l'urobiline).

G. Acide chlorhydrique.

L'action de l'urine normale sur l'aside chlorhydrique peut être également envisagée de deux fueons différentes :

4º L'acide chlorhydrique concentre et finanat porté à + 50° C., sur lequel on fait couler peu à peu une petite quantité d'urine, prend lentement une coloration d'abord rose très clair, ensuite rose franç, enfin nettement rouge au point de contact des deux liquides.

Cette coloration paraît due, comme celle produite par l'acide azotique à une oxydation de l'uroérythrine physiologique.

A froid, les mêmes phénomènes se produisent, mais avec une extrême lenteur, et bien moins accentués quoique la concentration de l'acide soit la même, c'est-à-dire très grande.

2º Avec un acide chlorhydrique très dilué et à froid, on obtient par un repos prolongà la précipitation plus ou moins complete de l'acide urique. Cette précipitation n'a cependant liue un de bonnes conditions qu'à une basse température, c'est-à-dire audessous de + 10º C., n'estrapide qu'à 0º C., et encore même en ces conditions dure-t-elle plusieurs jours.

H. Acide acètique.

L'action de l'acide acétique concentré ou étendu est nulle sur l'urine normale soit à froid soit à chaud.

Les précipités obtenus par cet acide dans l'urine se rapportent tous tant à des cas pathologiques qu'à des cas extrapbysiologiques; car les traces de mueine que contient l'urine normale (mueine coagulable par l'acide acétique à froid) sont insuffisantes pour être décelées directement par ce réactif dans les conditions physiologiques.

l. Acétate de plomb basique.

L'action de l'acétate basique de plomb sur l'urine normale est analogue à celle du chlorure de baryum ammoniacal, mais plus complète encore. Outre les sulfates, carbonates et phosphates, ca réactif précipite également les urates et de plus entraîne, non pas par une simple action mécanique, comme certains auteurs l'ont cru en se fiant aux apparences, mais bien sous forme de sel plombique, l'urobiline urinaire. Cette dernière possède, en effet, une réaction (de forme chimique) acide et est susceptible de former avec les bases de véritables sels définis, d'ou, comme nous le verrons plus loin, l'on peut d'ailleurs à l'aide d'un acide et d'un véhicule approprié (l'alcool) la séparer et l'isoler. Toutefois comme l'urobiline ne jouit de la fonction acide qu'accessoirement, puisque par certains côtés elle a la fonction amide. son affinité pour les combinaisons est peu accentuée et la précipitation du pigment urinaire, c'est-à-dire la formation d'un sel urobilinurique insoluble ne s'opère que lorsqu'une partie de la base plombique est libre : telle est la raison pour laquelle l'acétate basique de plomb la sépare beaucoup mieux de l'urine que l'acétate neutre de la même base métallique.

J. Perchlorure de fer.

Dans l'urine normale le perchlorure de fer détermine un précipité blanc sale de phosphate de fer, en même temps que l'on peut constater (par filtration) une très légère coloration rougeatre de la portion liquide du mélange.

Cette coloration que l'on observe plus nettement si l'on a soin d'employer une solution chloruro-ferrique assez étendue pour être de même teinte que l'urine elle-même, est due à la formation d'une quantité infinitésimale de suffocyanure ferique, résultat de l'action des traces de suffocyanures alcalins urinaires sur le réactif mis en présence.

K. Oxalate d'ammoniaque.

Comme le chlorure de baryum, l'oxalute d'ammoniaque agit

différemment sur l'urine normale soit qu'on l'emploie en solution acide, soit qu'on agisse à son aide en solution ammoniacale.

4º Dans une liqueur neutre ou légérement acide, il précipite exclusivement, mais lentement, la chaux, à l'état d'oxalate monobasique et acide.

2º En solution aminoniocale, à cette première base il ajoute également la magnésie, de sorte que le second précipité est un oxalate bibasique neutre des deux bases terreuses chaux et magnésie. Dans ce dernier cas, la précipitation est immédiate.

I. Alcolis fives

4º L'action à froid des alealis fizes, potasse et soude, sur l'urine normale peut se résumer à ceci : saturation de l'acidité urinaire : fait dont découle immédiatement la précipitation des sels terreux neutres ou basiques que contient l'urine (carbonates et phosphates primitivement tenus en solution sous forme de sels acides).

Le précipité pulvérulent et amorphe que les alcalis fixes formet dans l'urine normale à froid est donc un mélange de carbonates et de phosphates de chaux et de magnésie neutres ou hasiques, selon la quantité plus ou moins grande du réactit emolové.

2º À i-100°C., les alcalis fizes et caustiques ont sur l'arine normale une action plus complexe. Vient-on, en effet, à chauffer le mélange obtenu dans la réaction précédente, on observe tout d'abord qu'une grande partie du précipite primitif se reassout c'est que les alcalis fixes, dépleand l'ammoniaque de ses sels urinaires et chassant cette ammoniaque par volatifisation à exte haute température, une partie de l'alcali réactif est neutralisée par l'acide de l'ammoniaque, et le dépôt carbo-phosphatique basique précédent tend à repasser à la forme neutre.

En seconde ligne et par repos, on constate une trés légère cotoration de l'urine examinée : cette coloration brundire tient à la décomposition d'une portion des éléments ternaires urinaires et à leur transformation en déricés ulmiques sous l'influence de la double action de l'alcali fixe et de la challeur.

M. Ammoniaque.

Partiellement analogue à l'action des alcalis fixes, l'action de l'ammoniaque sur l'urine normale en diffère toutefois doublement.

1º Le précipité que forme l'ammoniaque dans le produit de l'excertiou nuraine est dans ces ano na se nitérement composé de sels nentres ou basiques de chaux et de magnésie; mais cette dernière base-réactif entre elle-même pour une part dans le précipité en donnant avec la magnésie un phosphate de double, phosphate ammoniaco-magnésien, insoluble également, mais beaucoup plus lèger toutofies que le précipité de phosphate terreux : ce précipité se forme lentément et sc dépose sur les parois du vase sous forme d'un sédiment cristallin.

2º L'anmoniaque ajoutée à faible dose à l'urine normale en modifie la teinte, qu'elle fait passer du jaune rougeâtre ambré au jaune vert en formant avec l'urobiline un sel ainsi coloré.

N. Tannin.

L'action du tannin sur l'urine normale est nulle : les précipités obtenus par ce réactif doivent, à notre avis, être interprétés comme résultant de son action sur la gélatine alimentaire passant en entière et en nature, comme on le sait, dans l'excrétion urinaire.

Nous considérons donc ces faits comme des signes d'urines extraphysiologiques produites par une alimentation vicieuse, quoique le plus souvent populaire, le bouillon gras, le pot-aufeu.

0. Alcool à 90°.

L'action de l'alcool concentré sur l'urine normale est double.

4º Un précipité immédiat et soluble dans l'eau est dû aux très faibles quantités de mucîne que contient l'urine normale et que l'alcool rétracte, condense et sépare ainsi de son véhicule primitif entrainant les débris épithéliaux que l'urine renferme également.

2º Le léger trouble que l'alcool détermine leutement dans toute urine à laquelle il est mélangé à volumes égaux est dt à la précipitation des carbonates terreux existant dans toute urine normale à l'état influitésimal. Ce dernier précipité est peu volumineux et soluble dans tous les acides, même les plus faibles, avec dégagement de traces de gaz carbonique: de plus, calciné d'autre part, il l'aisse un résidu fixe, et alcalin comme réaction, correspondant aux bases chaux et magnésie qu'il contenait combinées.

P. Hyposulfites alcalins.

L'urine normale ne possède aucune action sur les solutions d'hypossifites alealins. Ne contenant pas d'acide libre, elle ne peut, en effet, déplacer l'acide hyposultureux, et par suite décomposer cet acide en mettant en liberté le soufre en excès lié au dégagement du gaz sultureux.

Q. Sels de cuivre.

L'action des sels de cuivre sur l'urine peut être envisagée soit en solution acide, soit en solution alcaline :

1º En solution acide, les sels de cuivre ne sont influencés par l'urine normale ni à froid, ni à chaud.

2º En solution alcaline et à froid, la coloration du réactif n'est pas modifiée, ni aucun précipité ne s'y produit par l'addition d'urine normale.

Au contraire, à +100°C, l'urine normale exerce sur les solutions cupro-alcalines une réduction marqués qui néanmoins ne va jamais jusqu'à la production de bioxyde cuprique noir.

Cette action réductrice, non moins réelle, est due à l'action des urates et des pigments urinaires, qui forment alors avec les sels de cuivre des composés instables décomposables par la chaleur en protoxyde rouge.

En prenant soin de déféquer l'urine normale par l'acétate basique de plomb, le filtratum, exempt d'urates et de pigment urinaire, n'agit plus ni à chaud ni à froid sur les sels de cuivre en solutions alcalines.

R. Brome, iode, iodure d'amidon.

Ajoutés à l'urine normale, donc acide, le brome et l'iode [s'y dissolvent et disparaissent rapidement. Il en est de même de_l'iodure d'amidon qui, comme l'iode et le brome, est décoloré en ces conditions. L'examen méthodique de celte réaction a montré que celte décivarien avait leu par oxydation de certains éléments de l'urine aux dépens de ces réactifs ou plus exacément des dérivés qu'ils forment avec l'eau, qu'elle était donc réductrice. En effet, l'acide intirque ou l'eau oxygéné dont on additionne l'urine en même temps que de brome, d'iode ou d'iodure d'amidon, maintiennent est corys dans leur fetal primitif, ce qui prouve ce que nous venons d'énoncer. Et de plus cette action réductrice de l'urine normale est évidemment due à l'acide orique et aux pigments urinaires, puisque l'urine dé-féquée (donc débarrassée des corps) n's plus alors qu'une action-absolument inspiratifiante sur les réactifs précides.

Mais, quoi qu'il en soit de cette explication, l'action nettement réductrice de l'arine normale sur le brome, l'iode ou l'iodure d'amidon montre d'une façon évidente l'erreur commise par certains urologistes, lorsqu'ils ont signalé l'eau oxygénée ou l'ozone comme corps constituants de l'urine normale.

IV. PROPRIÉTÉS PHYSIOLOGIQUES.

Les propriétés physiologiques de l'urine n'ont rien à voir avec son examien clinique; leurs manipulations sont togiours assez complexes pour exiger un travail de laboratoire. Ces propriétés n'appartienment donc aucunement à l'uroscopie, mais relèvent exclusivement de l'urologie scientifique.

A. Action des ferments physiologiques sur l'urine normale.

Les ferments physiologiques non figurés de l'organisme humain sont au nombre de trois :

1º Ferment diastasique, diastase, trypsine, etc., transformant l'amidon en sucre; ce ferment est secrété par les glandes salivaires:

2º Ferment pepsique. pepsine, transformant les syntonines (acide-albumines) en peptones; ce ferment est sécrété par les glandes gastriques;

3° Ferment pancréatique, pancréatine, joignant à une double action précédente de la diastase et de la pepsine la propriété d'émulsionner les corps gras : le dernier ferment, pancréatine,

est sécrété par le pancréas et versé dans le canal intestinal.

L'action de ces trois ferments physiologiques non figurés sur L'urine normale est nulle, car cette urine ne contient aucus corps susceptible d'être impressionné par eux.

B. Action de l'urine sur les réactifs des ferments physiologiques.

Il n'en est pas de même de l'action de l'urine normale sur les réactifs des frements physiologiques; cette action est toujours positice. Ainsi l'urine la plus normale transforme toujours particlement l'amidon en glucose, convertil les syntoniens-albumines en peptones, et émulsionne les graisses. Mais tandis que les deux premières actions s'exercent directement, c'est-à-dire par l'urine et le réactif employés exclusivement, l'action émulsionnante ne peut se produire qu'après saturation de l'acidité urinaire normale.

Et en ceci, nous sommes d'accord avec les recherches faites à Breslau par Grittaner en collaboration avec W. Sahil (1). Ces physiologistes ont, en effet, trouvé que l'urine normale contient les trois ferments physiologiques de la digestion : diastase, pessine et panoréctine.

Toutefois Sahli, ayant étudié à nouveau cette question, n'obsint pas à l'égard de la pancréatine les mêmes résultats positifs (2) que ceux qu'il annonçait précédemment dans son travail avec Grützner.

C'est qu'en effet, Gautier, Réveil et Portes, par des expériennes précises, aviaent montré l'incompatibilité d'action physiologique de la pepsine et de la pancréatine (3). Pour ces auteurs, la pepsine masque physiologiquement la pancréatine dans ses réactions, et en ces conditions les réactions de la pepsine et de la diastase existant se produitent seules sur les réacties généraux des ferments digestifs; de sorte que la contradiction signalée par Sahli avec ses recherches précédentes n'est qu'apparente.

Pour nous, cette manière de voir est acquise, et comme cause fondamentale, nous lui attribuons principalement la

⁽¹⁾ Grützner, Breslau artzlichen Zeitung, 1882.

Deutsche medicinal Zeitung. Sahli, 1885.
 Portes, Rép. phis, 1879, IX, p. 413.

différence de réaction du milieu exigée d'une part par la dinstase et la pepsine calcitiél, d'autre part par la pancréatine (alcalinité). De sorte que, ainsi que nous l'avons indiqué en tête de ce paragraphe, l'on peut à volonté limiter l'apparition des réactions fermentaires de l'orien normale soit aux. deux premiers ferments digestifs (diastase et pepsine) en employant l'urine normale avec son acidité totale, soit au contraire à la pancréatine en rendant le liquide alcalin.

Quoi qu'il en soit, il est certain que les quantités de ces trois ferments physiologiques varient avec les différentes mictions de la journée, l'urine du matin étant la plus riche en pepsine.

En conséquence, l'urine normale, acide, placée dans les conditions déterminées de température, agit sur l'amidon et la fibrine pour transformer le premier en dextrine, puis glucose, et la seconde en syntonine, puis en peptone.

'Pour 'observer l'action de la pancréatine urinaire sur les corps gras, les éthers de la glycérine, il faut auparavant alcaliniser l'urine normale : dans ces conditions, il y a émulsion.

Parmi les causes génant l'action des ferments physiologiques urinaires sur leur réactifs généraux, il faut encore citer les sels qui accompagnent ces ferments ou ces réactifs. En ces conditions, la puissance d'action de l'urine doit donc théoriquement augmente par la ditions c'est en feft ce que l'on observe expérimentalement; et les travaux de Duclaux ont montré d'une flaçon plus spéciale que le chlorure de sodium, étant le sel dont l'action est la plus nocive pour les fermentations en général, génant considérablement les fermentations urinaires.

C. Toxicité de l'urine normale.

Admiss de tout temps, mais, selon l'expression de Bouchard, à l'état de vague notion dans le conscience méticale, la toxicité de l'urine normale n'a reçu de consécration expérimentale que de nos jours; les travaux de Gl. Bernard et ceux de Frerichs, quoique bien autrierurs, sont en effet si per concluents qu'ils servirent peu après à Muron pour nier cette même toxicité urinaire.

Le premier, Pouchet sépara d'urines normales des alcaloides

chimiquement semblables aux alcaloïdes toxiques (1) au moment même où Feltz et Ritter, en 1880, démontraient expérimentalement la toxicité de l'urine normale prise dans son ensemble.

Bocci en 1882, Schiffer en 1883, Dupard et Lépine la même année, Lépine et Guérin en 1888, étadiaient la question au point de vue pathologique. Mais il rerenait à Bouchard, qui d'ailleurs avait précédé tous ces auteurs au point de vue pathologique, de reprendre et ducider la question dans ses détails relativement à Turine normale.

Adoptant en cela les dernières indications de Feltz et Ritter pour les urines pathologiques, le savant professeur procéda par l'injection intravelicase chez les animant, directement pour la masse urinaire et par éliminations raisonnées pour l'étude de chacun des poisons qu'il isolites.

Les conclusions que formule Bouchard ayant été vérifiées par Fleischer (2) d'une part et par Lépine et Aubert (3) d'autre part, nous croyons devoir les adopter dans leur ensemble et dire avec lui que:

L'urine normale ne possède pas un poison unique, mais une série d'éléments toxiques, dont les matériaux sont :

1º Une substance diurétique (l'urée);

2º Une substance narcotique (?);
3º Une autre sialogène (très probablement le sulfocyanate d'ammoniaque d'après nos propres expériences);

4º Une autre qui contracte la pupille (?);

5º Une hyposthénisante (chlorure de sodium, d'après nos recherches personnelles);

- 6° Deux convulsivantes :

L'une de nature organique (oxynévrine?); L'autre de nature minérale (la potasse).

En appelant a urotoxie, l'unité de toricité, c'est-à-dire la quantité de toxicité nécessaire pour tuer un kilogramme d'être vivant», et acoefficient urotoxique la quantité d'urotoxies qu'un k ilogramme d'homme peut fabriquer en 2k keures », on trouve que

Bouchard; Leçons sur les auto-intersications dons les maladies, p. 32
 Congrès de Wiesbaden, 1885.

⁽³⁾ Sur la fonciette respective des malières organiques et salines de l'urine. Lépine et Aubert, 1885, Rép. phis, VIII, 85, p. 344.

le coefficient urotoxique de l'homme à l'état physiologique est de 0,464; c'est-à-dire qu'en 24 heures un kilogramme d'homme fabrique de quoi tuer 464 grammes d'être vivant; ou encore

qu'en $\frac{4000}{46.6}$ = 2,45 (deux jours et 45 centièmes, soit deux jours

et quatre heures = 52 heures) l'homme fabrique les matières qui suffiraient pour le tuer lui-même s'il ne les éliminait pas au fur et à mesure de leur production.

Cette branche spéciale de l'étude de l'excrétion urinaire humeine renferme done un fait qui, mieux encore que toutes les expériences antérieurement instituées, vient démontrer la réalité d'action du rein comme organe excréteur, son importance considérable comme émonatoire de l'économie, ainsi que le pressontaient et dissient les Arciers.

Mais nous avons considéré jusqu'ici l'élimination excrémentitielle des urines normales de vingt-quatre heures, au point de vue urotoxique, comme une, identique dans son ensemble et dans ses détails.

Ainsi que l'examen de certaines autres propriétés de l'urine devait le faire prévoir, il n'en est cependant rien; et nous verrons que les conditions de veille et de sommeil, d'activité et de repos, soit physique, soit intellectuel la modifient, de même aussi que le régime alimentaire.

Nous ne pouvons ici aborder cette étude dans son ensemble, et nous dirons seulement que pour juger à fond la toxicité de l'urine normale, l'exerticion urinaire doit être recueillie en deux sommeil, c'est-à-dire en somme aux deux grandes phases générales par lesquelles passe l'activité organique fonctionnelle dans le cycle complet de vngt-quatre heures. Et précisément le chiffre 0,464 donné précédemment comme coefficient uroxique de l'homme à l'état physiologique est rapporté à la somme des coefficients urotoxiques de l'homme pendant les commendes pour la lier de l'urine de l'est deux périodes journalières diurne et nocture. Autrement le coefficient urotoxique du différence résultant de la production et de l'élimination différente à ces deux périodes de ces divers produits qui, comme action physiologique, sont parfois divers produits qui, comme action physiologique, sont parfois

en antagonisme les uns avec les autres (substance narcotique et substance convulsivante organique, — substance diurétique et ensemble des autres produits toxiques).

D. Action de l'urine sur la calorification.

Parmi les corps que contient l'urine normale, certains proviennent, arons-ous dit, de la résorption intestinale : ce sont les dérivés sulfoconjquies du phénal, du crésol et de l'indol. Or ces corps, en rentrant dans la circulation générale, se trouvent en contact intime avec les masses tissulaires qu'ils indurent et rendent ainsi moins propres aux combustions organiques. On pourrait donc à la rigueur les regarder comme les régulateurs des dites combustions organiques dans la machine humaine : combustions destinées à entretenir la challeur animale.

Au point de vue clinique, on sait que toute augmentation de la charge plasmatique sanguine en ces dérivés diminue les combustions organiques et abaisse par le fait la calorification.

Au point de vue de l'expérimentation physiologique, Bouchard (1) en pratiquant des injections intra-veineuses d'urine à doses inférieures à la toxicité vient d'étudier ce phénomène. Cet-auteur ne conclut pas d'une façon définitive; mais, des données de ses nombreuses expériences :

4º L'injection intra-veineuse d'eau à une température inférieure à celle du corps amène constamment une augmentation de la calorification:

2º Si le volume de l'injection dépasse 40 centimètres cubes par kilogramme d'animal, l'augmentation est bientôt suivie d'une diminution de a calorification et la mort tardive de l'animal est la règle en pareil cas;

3º Les injections intra-reineuses d'urines normales, faites à une dose insuffisante pour produire la mort rapide, provoquent presque toujours (six fois sur huit) une diminution de la calorification:

4º Cette action des urines sur la calorification semble due à des matières dissoutes dont le pouvoir hypothermisant compense et au delà l'augmentation de la calorification que pro-

⁽¹⁾ Bouchard, Archives de physiologie, février 1889.

duirait l'injection d'urine, si elle n'agissait que comme liquide froid;

5º Ces matières dissoutes hypothermisantes des urines ne sont pas de nature minérale;

6° L'urée n'est pas la matière organique hypothermisante; 7° Cette matière hypothermisante se fixe en partie sur le

charbon à la manière des substances colorantes et des alcaloïdes;

 $8^{\rm o}$ Cette matière s'altère ou disparaît par l'ébullition prolongée au contact de l'air.

Si l'on rapproche ce que l'on connaît aux points de vue chimique et physiologique sur les dérivés des phénols en général, ne pourrait-on conclure dans le sens que nous indiquons?

CHAPITRE II

DOCIMASIE ÉLÉMENTAIRE. ÉLÉMENTS DE L'URINE NORMALE.

Lorsque, dans les auteurs classiques, on étudie la composition de l'urine normale, on est toui d'abord frappé de la divergence qui existe entre eux, même au point de vue qualitait, c'est-à-dire, au point de vue des éléments admis comme constituant cette urine type.

C'est qu'en effet, si plusieurs, parmi les urologistes les plus autorisés, observent une sévérité rigoureuse au point de vue de l'admission des éléments qui entrent dans cette constitution, et ne considèrent comme parties intégrantes de l'urine normale que les corps y entrant régulièrement en quantités éléterminés su ffisaument élevées; d'autres, au contraire, les chimistes allemands en tête de ligne, y font figure tous on à peu près tous les corps que l'on a pu séparer de l'urine humaine à quelques doess quedque infinitésimales qu'elles y soient, et dans n'importe quelles conditions (physiologiques ou extraphysiologiques).

Or, les causes de cette divergence portent, croyons-nous, surtout sur le choix des sujets qui ont fourniles prises d'essais

et qui souvent, quoique diathésiques, ont été considérés commes sains d'une façon absolue; ou encore sur la façon de recueillir l'urine pour la recherche des corps n'existant qu'à l'état de traces, urine puisée parfois au hasard des circonstances dans des réservoirs publics.

Cette dernière et même cause d'erreur peut encore être invoquée au point de vue quantitait et doit aussi, d'une façon générale, être incriminée dans les variations docimasiques différentielles accusées par les auteurs précités. Mais toutefois à cepoint de vue quantitait la cause d'erreur la plus marquée dans loules ces analyses est sans controdit attribuable au régime alimentaire suivi par les sujets objets de l'observation ; et c'est à elle que nous rapportons en première ligne les variations différentielles offertes par les urologistes qui ont pris leurs sujets d'étude dans les hôniques.

Pour nous, nous considérerons comme éléments normaux, comme éléments constitutifs de l'urine normale, tous les corps rencontrés chez les sujets qui ont fourni nos types d'analyse, et ce, quelles que soient les doses auxquelles nous avons pu les constater. Nous croyons, en effet, que l'importance d'un élément d'excrétion dépend moins du chiffre brut de son élimination que de ses propriétés physiologiques; et ce, d'une facon générale pour l'urine comme pour tout autre élément d'excrétion organique. Aussi, à notre avis : urée, chlorures, sulfocyanures. leucomaines, etc., éliminés par la dialyse rénale, répondent, quoique fort différents comme chiffres docimasiques, à des fonctions physiologiques d'égale importance. Et comme nous les rencontrons régulièrement chez les sujets sains, bien constitués. nourris d'une alimentation raisonnée, vivant dans un climat moyen, d'un exercice proportionné à leurs forces, nous les décrirons dans les mêmes conditions : toutefois nous appellerons plus spécialement l'attention sur ceux d'entre eux dont les fonctions physiologiques ont été déterminées d'une facon plus rigoureuse.

Enfin, au point de vue de la classification, nous diviserons les éléments de l'urine normale en deux groupes, éléments organiques, éléments minéraux; bien que, au point de vue chinique proprement dit, le passage soit insensible de l'une à l'autre série, puisque la plupart des sels urinaires ont un élément organique pour acide et un élément minéral pour base, et vice veras; mais cette division nous permettra certains rapprochements utiles au point de vue de la clarté de notre travail, et étant strictement limitée aux données élémentaires, ne préjugera en rien des groupements salins que nous étudierons ultérieurement.

Premier groupe. - Éléments organiques.

Les éléments organiques qui se rencontrent dans l'urine normale appartiennent à deux séries bieu distinctes. Les uns offrent une organisation appréciable, les autres sont nettement définis au point de vue chimique. Ces derniers étant de beaucoup les plus nombreux et les plus importants, nous les décrirons en première ligne.

PREMIÈRE SÉRIE. — ÉLÉMENTS ORGANIQUES CHIMIQUEMENT DÉFINIS.

La fonction chimique, hase de toute classification organique, nous semble le lien le plus naturel qui puisse exister dans cette série d'éléments urinaires normaux; nous l'adopterons donc comme fondement de notre description, en commençant loutefois par les termes les plus févés dans la constitution chimique, termes qui offrent d'ailleurs une importance qualitative et quantitative prépondérante.

I. AMIDES.

Les amides entrant dans la composition de l'urine physiologique peuvent être scindés en trois genres différents, correspondant à leurs fonctions chimiques secondaires.

Ils sont, en effet, dans un premier cas parvenus à la limite extrême de la réduction organique des éléments quaternaires, ont une fonction chimique unique et appartiennent à la série cyanique.

Dans un autre cas, leur composition est moins simple et susceptible dès lors de leur assigner des fonctions doubles bien nettes; ils forment ainsi les amides à fonctions binaires; Dans le troisième cas enfin, leur constitution, si embrouillée qu'elle a encore été mal définie, leur communique des fonctions multiples : ces amides offrent de ce fait des réactions communes très générales, qui les ont fait considérer comme les wiritables protées d'un tye unique, fondamental, l'albunine, d'où le nom générique de matières protéiques donné à ces amides à fonctions complexes.

A. Amides de la série cyanique.

Les amides de la série cyanique forment dans l'urine normale deux groupes distincls, le premier représentant l'expression organique finale, ultime de la réduction des étéments quaternaires, urées; le second correspondant aux termes pénutimes de celt réduction, évis-di-dir ernefirmant des corps susceptibles, sous l'influence des agents oxydants, de se résoudre on les ternes premiers c'où leur nom générique d'urédix.

a. Unées,—
 Les urées urinaires normales sont, ou oxygénées : urée proprement dite, ou sulfurées : sulfo-urée.

a. Urée oxygénée. — Urée. — L'urée proprement dite forme, avons-nous déjà dit, le terme le plus important de l'urine comme chissre d'élimination, après l'eau.

On regardait autrefois l'urée comme le corps imprimant à l'urine son cachet caractéristique. Aujourd'hui que loutes les sécrétions et excrétions physiologiques de l'organisme humani sont mieux connues et dans leurs éléments constitutifs et dans leurs fonctions physiologiques, on sait que l'excrétion de l'urée est pour ainsi dire généralisée dans l'ensemble des produits sécrétoires et excrétoires : aussi la spécialisation de l'urée à la formation du produit de l'osmose glomérulaire, quoique des plus importantes, n'est cependant plus considérée comme exclusive.

Dans l'urine normale l'urée forme les 43 centièmes du total des matériaux solides excrétés : chiffre qui correspond à une élimination journalière de 0°,45 par unité de coefficient urologique absolu, et à 18º.75 par litre d'urine normale.

Le dernier chiffre que nous donnons est un peu plus faible que celui fourni par la majorité des auteurs. La différence provient, croyous-nous, de ce que jamais précisément ces auteurs n'ont distingué l'azoue provenant de la sulfo-urée dans les dosages qu'ils font ou ont faits de l'urine humaine, et que ces azotes sont l'un et l'autre mis simultanément en liberté par les mêmes réactits généraux.

3. Urée sulfurée. —Sulfo-urée. — Signalée dans l'urine, mais à l'état hypothétique seulement, et pour la première fois par Bretet, qui la donnait comme élément possible de genée du sulfovyanure d'ammonium, corps si important chez certains diabétiques, la sulfo-urée ne diffère de l'urée vraie que par le soulire substitué chez elle à l'oxygène de sa congénère oxygénée.

Des expériences personnelles nous ont permis de considérer la sulfo-urée com me élément constituant de l'urine normale : et parmi ces expériences, l'une des plus simples à répéter est la suivante.

ivante:

On traite l'urine par quantité suffisante d'acétate hasique de plomb; le liquide déféqué et clair est alors port à l'ébullition après addition de soude caustique pure; on obtient un précipité très faible d'oxysulfocarbonate de plomb que le refroidissement accentue tandis, qu'il se dégage de l'ammoniaque;

 $\begin{array}{lll} C^3H^4\Lambda z^2S^2 + H^2O^2 + 2PbO &= 2AzH^3 + (PbO)^2, C^2O^2S^2 \\ Sulfo-ur\acute{e}e, & Eau. & Oxyde & Ammoniaque. & Oxysulfocarbonate \\ de plomb. & de plomb. \end{array}$

Or, la défication par l'acétate bassique de plomb ayant ciliminé tous les composés sulfurés salins, organiques ou minéraux, sufforyanates, suffures et sulfates que pouvait contenir l'urine; si le liquide défiqué a pu alors fournir par hydratation un composé suffuré, le soufre de ce dérivé sulfuré était donc primitivement engagé dans une combinaison neutre: de plus, le dégagement d'ammoniaque indique que ce composé sulfuré était organique et possédait la fonction amide. C'est donc bien la sulfo-urée.

Et, en esset, nous considérons que la sulfo-urée, que nous sigualons dans l'urine normale, correspond au produit jadis indiqué par Salkowski comme générateur du soufre neutre qu'il trouvait toujours dans les urines homaines. A cet égard, notre manière de voir nous semble encore se consimmer par les dosages que nous avons opérés relativement à la sulfourée, dosages qui fixent cet élément urinaire aux doses de 18º,875 par litre d'urine normale, soit 05º,045 par unité de coefficient urologique absolu ou kilogramme de poids corporel à l'état physiologique, soit encore à 4,5 p. 100 des matières fixes totales, soit enfin un dixième du chiffre de l'urée vraie.

La sulfo-urée C2H4Az2S2 contenant net 0,42 de son poids de soufre, notre résultat docimasique concorde d'une facon absolue avec les dosagés de soufre neutre urinaire exécutés par Salkowski:

1,875 × 0,42 = 0,7875 (soufre neutre de la sulfo-urée):

0,7706 (soufre neutre indéterminé de Salkowski). L'écart, un centième, rentre dans les limites possibles d'erreur analytique soit absolue, soit résultant du fait de la prise d'essai.

b. Urémes. -

Les uréides urinaires jouissent, comme les urées, de fonctions simples. Mais, au lieu d'être, comme les premières, indifférents aux réactifs et de jouer ainsi un rôle alternativement basique ou acide avec les corps auxquels elles se combinent. les uréides ont des fonctions nettement arrêtées et qui sont ou basiques, ou acides, ou neutres : ce qui nous permet de les différencier encore en trois catégories :

a. Uréides à fonctions basiques. - Les uréides à fonction basique sont ou primitifs : créatinine, xanthine; ou dérivés ; leucomaines et hypoxanthine.

1º Uréides basiques primitifs. - i. La créatinine, un des premiers termes de la régression chimique du tissu musculaire, ne forme que 2 p. 100 des matières fixes urinaires, et s'élimine à la dose de 081,02 par kilogramme de poids corporel physiologique. soit 0gr,833 par litre d'urine normale.

ij. La xanthine, terme intermédiaire entre la créatinine et l'acide urique dans la réduction organique vitale, n'est encore qu'à doses plus faibles dans l'urine normale, où elle n'est guère signalée qu'à l'état de traces.

2º Uréides basiques dérivés. - i. Les leucomaines urinaires sont représentées par :

- ' La xanthocréatinine, " La erusocréatinine.
- " L'amphieréalinine.

qui ne se rencontrent 'également dans l'urine normale qu'à chiffres infantiésimans. Au point de vue physiologique la toxicité très considérable de ces produits léur assigne, toutefois, une place importante dans l'excrétion urinaire.

ij. Hypoxanthine: terme intermédiaire entre l'acide urique, la xanthine d'une part et l'urée de l'autre, ce produit est des plus importants au point de vue de la genèse urologique.

Sa présence, tour à tour admise et contestée par les urologistes, doit, à notre avis, être représentée dans l'urine normale par des traces analogues à celles indiquées pour ses congénères, les autres produits transitoires de la désassimilation organique : xanthine, cruex, xanthe et amphicréatinies.

β. Uréides à fonction acide. — La division des uréides à fonction acide repose sur le même principe que celle de ses congénères basiques; ces uréides sont aussi on primitifs ou dérivés :

4º Urèides acides primitifs.— i. L'acide uvique est le seul représentant de cette série organique dans l'urine normale; mais on peut dire qu'il la représente d'une façon importante. Nous verrons à la «sémélologie uvologique» quelles actions chimiques, physiques et physiologiques sont liées à see modifications d'excrétion normale; pour l'instant, nous dirons seulement qu'il existe en l'urine normale dans les proportions de 0°,41 per libre, soit 1 p. 100 des matériues soidés totune, soitée, 500 me, soitée,

L'acide urique était autrefois considéré ainsi que l'urée comme un étément spécial et caractéristique de l'urine. Nous ferons à son égard des observations analogues à celles que nous avons faites à propos de l'urée, nous réservant, de même que pour ce dernier produit, de démontrer ultérieurement que toutes les charges pathologiques qui lui ont été imputées l'ont été grautilement en réalité, et que dans toutes les affections où sa diminution d'excrétion à été incriminée comme étiologie première du processus morbide, ectie modification d'excrétion n'est qu'un phénomène secondaire de la constitution pathologique. Mais ces données relevant exclusivement de la sémélologie, nous ne les envisagerons qu'à la troisième partie de notre travail, quand nous aurons panos études antérieures des urines

normale et anormale préparé le terrain à ces conclusions séméiologiques.

2º Uréides acides dérirés. — La variété d'uréides à fonction acide et dérivés se traduit dans l'excrétion urmaire normale au point de vue docimasique par des chiffres très secondaires répartis sur deux corps :

i. L'acide oxaherique,

ij. L'acide sulfocyanique,

qui l'un et l'autre n'y figurent pas dans une proportion supérieure à 0st,0t par litre.

Mais au point de vue physiologique, bien au contraire, Pexcettion de ces uréides et en particulier l'excrétion de l'acide sulfocyanique est considérable : on doit, en effet, croyons-nous, la considérer comme le régulateur de la sécrétion des glandes salivaires, dons escondairement de la fonction digestire de ces glandes sur les amidons alimentaires. Nous développerons également à la « sémédologie urologique » toutes nos considérations acquises en ce sens.

γ. Uréides à fonction neutre. — Un seul corps appartient à cette catégorie d'uréides urinaires normaux : c'est l'allantoine, qui, elle non plus, ne se traduit doctmasiquément dans l'urine normale que sous forme de traces.

B. Amides à fonctions binaires.

Les amides à fonctions doubles contenus dans l'urine normale n'y sont représentés que par des corps d'une importance docimasique relative, et qui d'après leurs fonctions secondaires peuvent être divisés en :

 a. Amides-phánois. — Représentés dans l'urine normale par un seul corps, l'indol, sous forme de traces.

b. AMDES-ACIDES. — Acide hippurique, que l'urine normale contient à la dose de 0\$7,833 par litre, soit 2 p. 100 des matières urinaires, soit 0\$7,02 par kilogramme de poids corporel net du suiet.

C. Amides à fonctions complexes.

Les amides urinaires à fonctions complexes appartiennent, avons-nous déjà dit, à la grande division des matières protéiques. Ces matières protéiques peuvent se diviser en trois groupes naturels au point de vru de l'urine normale : les premières, en efflet, doivent être considérées comme chimiquement primitives, c'est-à-dire se rapprochant du type albumine, et physiologiquement secondaires, c'est-à-dire ne provenant point de la diayse rénale, mais étant entraînées ultérieurement par l'excétion rénale pendant son trajet d'évacuation normal : les secondes, a u contraîre, chimiquement parlant, sont secondaires, c'est-à-dire dérivent d'albumnodes primitifs tels que le pigment sanguin ou les albumines plasmatiques, et primitives physiologiquement parlant par suite de leur genése circulatoire, donc de leur dialyse rénale;

Les dernières, enfin, primitives à la fois chimiquement et physiologiquement, se distinguent de leurs congénères précitées par leur formation et leur mode d'introduction dans l'uriné. Ce sont, en effet, des produits es sécrétion glanddaire versés dans le tube digestif, non utilisés et posérieurement reversés dans la circulation générale par voie de résorption. Ces produits comportent les fermais urindires.

a. Matières protéiques primitives. —

La seule matière primitive que nous rencontrions daus l'urine normale ne provient pas (ainsi que d'ailleurs les considérations générales que nous venons de développer sur la physiologie urinaire doivent le faire prévoir) de la dialyse rénale.

La mucine qu'elle constitue et qui se trouve dans l'urine physiologique à la doss d'environ 0°, 10 par litre est, en effet, sécrétée par les follicules glandulaires vésicaux et simplement divisée, dissoute et entraînée par l'urine lors de son passage et de son séjour dans le réservoir commun à l'excrétion de deux glandes rénales.

La mucine étant un corps colloide ne pourrait dialyser dans le rein, et sa présence dans l'urine normale est absolument secondaire.

b. Matières protéiques dérivées. -

L'origine de ces matières nous permet de les diviser en deux classes selon qu'elles ont le pigment ou le plasma sanguin comme élément générateur primitif.

a. Matières protéiques dérivées pigmentaires. — Les dérivés du

pigment sanguin, de l'hémoglobine, existant dans le torrent circulatoire et dialysant au rein, peuvent par rapport à leur rapprochement du type primitif, initial, hémoglobine, se subdiviser en :

1º Dérivés pigmentaires primitifs. — Ces dérivés sont représentés en l'urine par un soul corps, l'urobiline y entrant à l'état normal dans la proportion de 0º,01 par kilogramme de poids caporel net, ce qui constitue 0º,41 par litre d'urine physiologique ou encore 1 p. 100 du chiffre total des matériaux fixes urinaires.

2º Dérivés pigmentaires secondaires. — L'uroérythrine représente soule dans l'urine normale ce groupe de composés proféques. On ly rencontre dans le rapport des 2/3 de l'urobiline, c' est-à-dire des 4/10 du pigment total: ce qui fait donc 0°.506 par unité de coeffeient urologique, ou 0°2,733 par litre d'urine, ou encore 0,6 n. 100 du total des élements fixes.

L'urobiline et l'uroérythrine jouissent de la fonction acide.

3. Matières protétiques d'origine plasmatique déricée. — La seule matière protétique normale offrant ce caractère de dérivé al lbuminoide secondaire est l'acide ghatamique, qui doit être compté dans le poids total du résidu fixe de l'urine pour les 2 centièmes : chiffre qui correspond à 0°#,333 par litre ou 0°#,02 par kilogramme de poids coroncel net.

L'acide glutamique résulte de l'hydratation de celles des allumines du plasma sanguin qui se rapprochent du type fibrine; dans ectte réaction, il se produit en même temps que l'acide aspartique dont nous allons nous occuper au paragraphe qui suit.

c. MATIÈRES PROTÉIQUES FERMENTAIRES. -

Les ferments physiologiques trouvés dans l'urine normale par Grützner et Sahli sont, avons-nous dit, de trois ordres :

a. Ferment salivaire. — Représenté, quant au ferment des glandes salivaires, par la diastase que l'on trouve à l'état de traces dans l'urine normale.

 Ferment stomacal. — La pepsine, sécrétée par les glandes gastriques, se montre aussi dans l'urine normale sous forme de traces.

γ. Ferment intestinal. - La pancréatine déversée dans le tube

intestinal par le pancréas y a été également constatée dans les mêmes proportions infimes.

II. ALCALIS.

La fonction alcali n'est représentée dans l'urine normale et relativement à la série organique que par deux composés d'une importance chimique minime, et qui, l'un et l'autre-présentent cette fouction unie à la fonction acide, mais en des conditions différentes.

A. Alcali-acides monobasiques.

L'oxynévrine, par exemple, ne possède cette fonction acidesecondaire que relativement à une seule atomicité, et jouit depropriétés toxiques considérables. Son élimination urinaire normale ne peut être chiffrée que par le mot traces.

B. Alcali-acides bibasiques.

L'acide aspartique, qui ne s'élimine que dans les mêmes proportions à l'état physiologique, ne paralt au contraire pas pouvoir être incrimine dans la tosicité de l'urine normale, maisprésente quant à sa fonction acide une atomicité double : l'acide aspartique est bibasique.

III. ÉTHERS.

Les éthers urinaires comprennent un seul groupe, les éthers de la glycérine, que l'on peut au point de vue de leur saturation subdiviser en : saturés, donc neutres, et non saturés, c'est-à-dire éthers-acides.

A. Ethers neutres.

Les éthers neutres constatés dans l'urine normale y sont représentés par des traces infinitésimales d'oléine y existant à l'état libre sous forme d'émulsion (due à la pancréatine) en globules de dimensions microscopiques.

B. Éthers-acides.

L'acide phosphoglycérique, produit de la désassimilation cérébrale, forme à lui seul cette subdivision. Il représente dans l'urine normale un chiffre très faible : 0s²,013 par litre, soit 0s²,00035 par kilo de poids corporel.

IV. PHÉNOLS.

Parmi les produits de la résorption intestinale éliminés d'une façou constante par l'urine, et faisant ainsi partie intégrante de l'urine normale de l'homme, se trouvent compris lesphénols vrais que l'on y trouve en quantités faibles mais non négligeables (0°,03 par litre chacun) et qui sont l'un et l'autre sulfo-conjquest, quoique dérivis diversement.

A. Phénol sulfurique.

Le premier de l'acide phénique : acide phénylsulfurique.

B. Crésol sulfurique.

Le second de l'acide crésylique : acide crésylsulfurique.

Ces deux dérivés phénoliques constituent une partie des principes odorants de l'urine humaine.

V. ACIDES

Parmi les acides constitutifs de l'arine normale, on doit distinguer trois groupes nettement tranchés au point de vue de la fonction chimique: un de ces groupes ne comprend que des acides contenant un atome d'hydrogène capable d'être remplacé par un équivalent de métat : le second groupe présente deux atomes d'hydrogène fonctionnant en ces conditions; le troisième groupe enfin échange les deux atomes d'hydrogène qu'il contient l'un contre un atome de métal, l'autre contre un radical acide, c'est-à-dire est à la fois acide et à la fois alcol. Nous décrirous ces acides d'arrès l'ordre de leur complexié

fonctionnelle.

A. Acides-alcools.

Les acides-alcools urinaires peuvent, au point de vue de leur genèse, se diviser en deux groupes :

a. Actors-alcools framins. —

Ce premier groupe contient exclusivement l'acide lactique, acide qui peut être considéré comme primitif, puisqu'il dérive directement du dédoublement vital des éléments tissulaires ou alimentaires.

L'acide lactique existe dans l'urine normale en faibles propor-

tions: 05°,02 par unité de coefficient urinaire absolu, soit 15°,230 par litre d'urine, soit encore 3 p. 100 des déchets fixes urinaires.

b. Acides-alcools dérivés. -

L'autre groupe est constitué par des phénois composés, résultant de l'action des acides du groupe suivant sur les phénois primitifs, dans les quels le radical alcool a été remplacé par un radical acide. On pourrait à la rigueur dire plutôt que ces acides-alcools sont des acides-éthers, ou des acides-hénois,

Quoi qu'il en soit, leur importance docimasique comme leur importance physiologique d'ailleurs est presque nulle. On ne les rencontre dans l'urine normale qu'à l'état de traces l'un et l'autre.

Acide paroxyphénylacétique.

β. Acide hydroparacoumarique.

B. Acides polybasiques.

L'acide succinique est le seul acide polybasique que nous ayons rencontré dans l'urine normale; nous l'admettons comme principe constitutif de l'urine humaine physiologique à l'état de traces ainsi que nous l'avons constaté.

C. Acides monobasiques.

Tous les acides de ce groupe appartiennent à la série grasse et contribuent dans une certaine mesure à la formation de l'odeur sui generis de l'urine humaine.

D'après leur rang dans l'échelle polymérique, nous les classerons ainsi

a. Acide propionique,

b. Acide butyrique,

c. Acide valérianique,

d. Acide caprolane.

n'existant jamais les uns et les autres qu'à l'état de traces dans l'urine de l'homme à l'état normal.

DEUXIÈME SÉRIE. - ÉLÉMENTS ORGANIQUES ORGANISÉS.

L'urine vraiment normale étant d'une limpidité à peu près absolue, comme nous l'avons déjà indiqué, laisse seulement déposer au bout de quelques heures de rares et très légers flocons constitués par des débris épithéliaux provenant de la muqueuse des voies urinaires.

Ges debris épithélieux constituent les seuls éléments organisés éliminés par l'urine normale : ils s'y présentent sous la forme parimenteuse spéciale à la muqueuse des voies urinaires dans son ensemble; et leur poids très faible peut être estimé à 0°° (d) par litre d'urine.

Deuxième groupe. - Éléments minéraux.

L'adoption de la fonction chimique dans la classification des éléments minéraux urinaires nous semble la base à la fois la plus simple et la plus rationnelle à adopter. Nous diviserons donc ces éléments en : basiques, acides, neutres.

PREMIÈRE SÉRIE. - ÉLÉMENTS MINÉRAUX BASIQUES.

Quel que soit le rôle que l'on fasse jouer aux bases minérales de l'urine dans la physiologie rénale, il est néanmoins certain que l'on est obligé de grouper ces bases en séries naturelles facilitant leur coordination chimique.

Nous les diviserons donc en : bases volatiles, alcalines, alcalino-terreuses, et métalliques.

I. BASES VOLATILES.

L'ammoniaque, qui par son azote sert de liaison naturelle entre les corps organiques et les corps minéraux, compose le seul terme de cette série de produits urinaires.

Sa présence, très discutée par les urologistes comme produit normal de l'urine physiologique, a cependant été constatée par nous dans les conditions spéciales où nous nous étions placé pour avoir une urine type de la normale : aussi admettons-nous l'ammoniaque comme principe constituant de l'urine physio-logique aux doses de 0°°, 0°2 par unité de coefficient uvologique aostus, soil 0°°, 30°2 par l'inte, ou bine 2 p. 100 de principes faces.

II. BASES ALCALINES.

Ces bases sont au nombre de deux :

A. L'une, la soude, fixée au chiffre de 487,166 par litre d'urine

normale, c'est-à-dire correspondant à 0^{ez},10 par unité de coefficient urologique absolu, ou encore 10 p. 100 des éléments fixes totoux:

B. L'autre, la potasse, que l'on rencontre dans l'exerétion urinaire à dose moitié moindre, soit 0s²,03 par kilo de poids corporel net, ou encore 2s²,083 par litre, ou encore 5 p. 100 des principes fixes.

III. BASES ALCALINO-TERREUSES.

Dans l'urine normale, les bases alcalino-terreuses sont représentées par :

- A. La chaux,
- B. La magnésie.

qui y figurent à poids égaux, savoir, de chaque 0st,208 par litre.

Ce qui correspond à une élimination de 0s,005 par kilo de coefficient corporel pour chacune de ces bases, et aussi pour chacune d'elles à 0,5 p. 100 du chiffre total des éléments fixes.

IV. BASES MÉTALLIQUES.

Cette catégorie d'éléments urinaires minéraux comporte un seul corps, le protozyde de fer, dont l'élimination journalière n'est guère que de 0°,001 par kilo de poids corporel, soil 0°,044 par litre d'urine normale, soil 0,1 p. 100 du poids des éléments faces d'ensemble de l'excrétion rénale.

DEUXIÈME SÉRIE. — ÉLÉMENTS MINÉRAUX ACIDES.

Pour les acides rentrant dans la composition élémentaire de l'urine normale, nous adopterons l'Atomicifé comme fondement de leur classification. Les considérant en ce sens, nous les diviserons en acides mono, bi, tri et tétratomiques, selon la faculté qu'offer leur principe constituant de se combiner avec un, deux, trois ou quatre atomes d'hydrogène, ou bien un, deux, trois ou quatre atomes d'hydrogène, ou bien un, deux, trois ou quatre atomes d'hydrogène, ou bien un, deux, trois ou quatre atomes de métal monoatomique.

I. ACIDES MONOATOMIQUES.

Dans la première classe, nous placerons l'acide chlorhydrique dont l'importance d'excrétion est à la fois considérable au point de vue chimique et au point de vue physiologique.

Cet acide chlorhydrique s'élimine (sous forme saline) par le

rein à la dose de 4s,166 par litre d'urine normale (compté en chlore), soit 0s,10 par kilo ou unité de coefficient urologique absolu, donnant comme rapport au total des éléments fixes de la dialyse rénale un chiffre de 10 p. 100.

II. ACIDES DIATOMIQUES.

Un seul élément, l'acide sulfurique, forme cette série : nous l'avons trouvé éliminé par l'urine dans la proportion de 25°,030 par litre à l'état normal, soit 05°,05 par kilo de poids, soit toujours 5 p. 400 du chiffre total des éléments fixes urinaires.

HI. ACIDES TRIATOMIQUES

Cette classe comprend deux corps :

A. L'un très important comme excrétion physiologique, l'acide phosphorique, éliminé aux mêmes doses que l'acide sulfurique. c'est-à-dire 2x,083 par litre d'urine normale;

B. L'autre n'offrant qu'une importance très secondaire, aussi bien physiologiquement que chimiquement, puisqu'il ne se trouve qu'à l'étad de troese provenant, disent la plupart des auteurs, de l'alimentation; nous voulons parler de l'acide azotione.

IV. ACIDES TÉTRATOMIQUES

Les acides minéraux tétratomiques comprennent deux éléments qui dans l'urine normale offrent une importance très restreinte.

A. L'un est solide : c'est l'acide silicique, dont l'excrétion rénale est des plus faibles, environ 0°*,02 par litre d'urine;

B. L'autre est gazeux : c'est l'acide carbonique s'y présentant également dans des proportions minimes = 1500,96 par litre, mais non toutefois à l'état de traces, pourrait-on dire.

Ce dernier élément, par sa forme physique, sert de liaison avec la classe suivante.

TROISIÈME SÉRIE. - ÉLÉMENTS MINÉRAUX NEUTRES.

Les composés minéraux neutres de l'urine normale forment deux catégories distinctes selon la forme physique qu'ils affectent.

I. ÉLÉMENTS MINÉRAUX NEUTRES GAZEUX.

Les uns, en effet, s'y rencontrent à l'état de gaz dissous dans la masse liquide, et ne se traduisent que par des doses plus faibles encore que pour l'acide carbonique. Ce sont :

A. L'azote, dont l'urine normale contient seulement : 700,77
par litre.

B. Et l'oxygéne, chiffré par 0 cs,65, soit des traces à l'état physiologique.

II. ÉLÉMENTS MINÉRAUX NEUTRES LIQUIDES.

Le dernier, au contraire, qui est l'eau, offre par son chiffre une importance capitale, non moins grande d'ailleurs au point de vue physiologique.

En effel, ce fluide forme les 24/325es, soit les 96 centièmes de la masse urinaire totale. Unitire d'urine normale pesant 161778,300 ne comprend, avons-nous dil, que 418,660 d'éléments fixes : ce qui comme poids donne en eau : 9788,140 peur ce même litre d'urine, ou 237,00 par unité de coefficient ur ologique absolu-

CHAPITRE III

DOCIMASIE SYSTÉMATIQUE

Par docimasis systématique de l'urine normale, nous comprenons non-seulement l'expression synthétique des résultats analytiques que nous venous d'exprimer d'une façon méthodique, mais encore le groupement des dosages élémentaires en combinaisons hypothétiques rationnelles présentant ces produits élémentaires sous forme de composés chimiques tangibles.

Avant de donner ces deux tableaux synthétiques, résultats de nos recherches sur l'urine normale, nous rappellerons que le premier de ces tableaux ne représente en rien la forme sous laquelle les éléments urinaires sont excrétés par le rein; mais bien simplement la forme analytique sous laquelle ils ont été recherchés et dosés.

I. COMPOSITION ÉLÉMENTAIRE DE L'URINE NORMALE.

i" Tableau. — Résumé docimasique.

	-			NORI	TALES
CLASSES.	FORMULES	CORPS	POIDS par litre	pour 1 unité	pour le poids
	ÉLÉMENTAIRES	CONSTATÉS.	p'traine	de coeffi-	moven
			normale.	eient urinaire	de 64 kil.
				absolu.	net.
	C2H4Az2O2	Urée	gr.	gr.	gr.
	C20154-929		18.750	0.450	28.800
	C8H7Ax202	Creatinine	0 922	0.020	1.280
		Xanthine Xanthocréatiuine	0.010 traces.	>	0.015
	G10H8Az4O2	Crusocréatinine	france	p.	traces,
				2	traces.
		Hypoxanthine Acide urique	traces.	э	traces.
	C6H4Az2O8	- oxalurione	0.416	0.010	0.640
	C2HAzS2	- sulfoevanique	0.010	ъ.	0.015
	C15H6AzO6			20	0.015
	C18H9AzO6	Ac. indoxysulfurique Acide hippurique	traces. 0.833	*	traces.
				0.020	0.150
	CerHeo YzrO12"	Urobiline	0.416	0.010	0.640
Éléments	C10H9Az06	Uroérythrine Acide glutamique	0.273	0.006	0.384
organiques.	C10H5AzO6	Oxynévrine	0.833 traces.	0.020	traces.
	C8H7A2O8	Acide aspartique	traces.	*	traces.
		Diastase	traces.	20	traces.
		Pepsine Pancréatine	traces.	25	traces.
	C6H3(C36H3+O1)3			39	traces.
		Ac. phosphoglycériq. Ac. phénylsulfurique		3.	0.221
	C14H8O2,S206	Ac. phényisulfurique Ac. crésylsulfurique.	0.030	31	0.045
	CeHeOe	Acide lactique	0.030 1.250	0.030	1.990
	C16H8Q6	A. narozyphenylacet	twanner	34	traces.
	C18H10G6	Acide succinique	traces.	30	traces.
			traces.	30	traces.
			fraces	,	traces.
		- valérianieme	fraces i	20	traces.
	C12H12O5	— caproique Débris épithéliaux	traces.		traces.
	AzH60	Ammoniague	0.833	0.020	0.015
	Na0	Soude	4.166	0.100	6.480
	KU	Potasse	2.081	0.050	3.200
	CaO	Magnésie	0.208	0.005	0.320 0.320
Éléments	Fe0	Chaux. Protoxyde de fer	0.208	0.003	0.064
minéraux.	Cl	Chlore Acide sulfurique	4.166	0.100	6.400
	PhOS	Acide sulfurique	2.083	0.050	3.200
		 phosphorique. azotique. 		0.050	3.200 0.032
	Si03	- silicique	0.020	20	0.032
	H202	Eau	976.140	23.000	1472.00
Éléments)	Az	Acide carbonique Azote	1500,96	,	2400.0
gazeux.	0	Oxygène	7 ,77 0 ,65	,	12 ,0
E Garmana Poloni					

Au contraire, le second tableau (p. 100), corollaire mathématique de ces dosages isolés, groupement rationnel de leurs quotiés respectives, présente ces éléments sous les formes chimiques, physiques et organoleptiques qui ressortent de notre travai; enfin un troisième tableau (p. 101) ramène les deux données scientifiques précédentes à der résultat pratiques.

An point de vue des éléments urinaires compris dans les deux premiers tableaux sons forme soit de traces, soit de doses faibles susceptibles de nécessiter des volumes abondants d'urine pour leur recherche ou leurs dosages, nous d'urous que : une fois les priess prélevées sur chacune des analyses isodées relatives à l'excrétion journalière de l'un et de l'autre de nos sujets mis en observation, les excédents d'urine furent mêlangés et conservés pour ces recherches spéciales. De la sorte, notre type uninaire normal correspond donc bien à une moyenne d'ensemble de nos études d'urines physiologiques, dont le décompte synthétique neut enfin s'exprimer:

Éléments urinaires				
		organiques		
	-	minéraux	=	15sr,214
Eau	• • • • • • • • • • • • • • • • • • • •		=	97657,140
Soit (en ne tenant p	as compte	des gaz) un total	de	1017sr,800

pour le poids d'ensemble de nos éléments fixes, ou encore exactement la densité de l'urine normale

Reste maintenant à fixer ces éléments dans l'esprit sous forme de combinaisons hypothétiques; c'est ce que nous allons nous efforcer de faire.

IL INTERPRÉTATION DES RÉSULTATS ANALYTIQUES.

L'interprétation analytique des résultats docimasiques urinaires développés au tableau précédent comprend deux phases corollaires l'une de l'autre: le groupement et le calcul des combinaisons hypothétiques y afférentes.

Pour le groupement, nous dirons que, quelque avantage que la combinaison hypothétique hydrutée puisse offiri dans la synhèse analytique d'un produit aussi complexe que l'urine, nous suirrons cependant dans ce travail les errements des auteurs classiques et adopterons la combinaison hypothétique anhydre.

C'est qu'en effet la majeure partie des combinaisons en présence étant organique par l'un ou l'autre de ses termes, acide ou base, quelquefois même par les deux; la définition mathematique précise de ces composés peut s'obtenir aussi nettement dans un sens que dans l'autre; restreindre la combinainent dans un sens que dans l'autre; restreindre la combinaicréer une dualité fâcbeuse comme interprétation d'ensemble de l'avrefétion mirait.

En tout cas, pour éviter toute ambiguité, nous écrirons autant qu'il nous sera possible, et ainsi d'ailleurs que nous l'avons fait au tableau précédent, toutes les combinaisons hypothétiques en face de leurs formules, et en les groupant relativement à leurs prorpiétés cranolectifiques (vor. n. 100).

Quant aux calculs et répartitions proportionnelles des acides et des hases, ce travail sera dirigé de fiaçon à répondre et aux propriétés organoleptiques et aux principales réactions chimiques générales précédemment énoncées, et notamment à celle de l'acidité exclusive par les sels acides : cette manière de faire étant seule l'erroression de la réalité.

L'emploi judicieux des combinaisons bypothétiques ainsicomprises affirme de lui-même sa valeur scientique indiscutable; les combinaisons que nous avons formées représentent un liquide limpide et acide seulement par des sels acides: ce que montrati primitivement et pratiquement l'examen analytique.

III, EXAMEN PRATIQUE DE L'URINE NORMALE.

Quelle que soit la valeur technique des deux tahleaux que nous venons de dresser de l'urine normale, la forme sous laquelle ces tableaux sont présentés pèche de plusieurs façons dans l'emploi pratique.

Nous serons done à cet égand, et tout d'abord, obligés de dire, pour explique eu fait qui a pu choquer dans la lecture du tableau de la docimasis élémentaire (tableau I), que les chiffres qui y sont énoncés sont la résultante non pas d'analyses isolées de ce produit d'excrétion, mais bien au contraire ceux d'un examen en quelque sorte synthétique d'un groupement d'urines physiologiques; c'est pourquoi l'on a arrondi tous les chiffres

2º Tableau. — Traduction hypothétique des éléments urinaires normaux.

Colorado				
Comparison	cachemers.			POIDS
Collination		FORMULES	COMBINAISONS	par litre
CHINA-200		time committees	MANAGEMENTALISE	
CHRADO C	repriques.	. DES COMBINADONS	M1202HBMQ0804	normale.
CHRADO C				
CHRADO C				
CHIANAS Salfo-arriva 1.475		COLLY 1"506	Water	10 700
Malfres O-10 Annie O-10			Sulfampia	
1.68	Watilees	C8H6A=406		0.010
Cell	extractives.	C8H7Ax302,C10H7Ax06,	Glutomate de créatinine	
CORITA-60 CORITA-60 - Chryporanthine. reces.		C10H+A2+O+, C10H7A2O6	- de xanthine	0.020
Nacl		C10H\$Az\$O\$, C10H7AzO6	- d'hypoxanthine	
Nacl				
School	1			
Val. SCI Solidar de soludos 2-173		Nata	Chierare de sodium	
Matires M. Matires M. Matires M. Matires M. M. M. M. M. M. M. M		KGI	— de potassium	
Aller Alle		r0 903	do notareo	4 025
Aller Alle		CaO 9HO PhO5	Phombate acide de chany	0.869
Alifo, 24(0, Pa0) State of demonstrating 3.004	Matiéres	Me0.2HO.Ph08	- de magnésie	. 0.989
Add	salines.		→ d'ammoniaque	2.004
Add		AzH50 Az05	Nitrate d'ammoniaque	traces.
Pad.0/19/14/00. Oxformite de for		AzH+0,S102	Silicate d'ammoniaque	traces.
KO,011TA.00		KO, C10H2Ax4O5	Urate acide de potasse	
		FeO, C10H3Ax2O2	Oxalurate de fer	
		KO,G18H7AzO6	Hippurate de potasse	0.972
		CHORION-POS COVICE	Sulfoavanata de vanthemistinina	Europea
Estajan-	Matiéres	C10H8Ax+02 C2AxS2	de crusocréatinine	
CORPACIO, COLAS. Corymertum. Incom.	texiques."	C18H19Az7O8, C8AzS8		
		C10H5Az06, C2AzS2		
		(
CO_CUSTONO. Capronto de pelanto. Interes.			Urobilinate de potasse	
KO_0001700.	colorautes.	KU,CoHorAzUs	Uroérythrinate de potasse	0.302
KO_0001700.		TEO CISTINOS	Comments do materials	
RO_CRIGO Rotyrade Traces.				
Matters (A),CH140* Sacinate Incom- offeration Matters Model Matters Model		KO C8H503		
Mariera O.D.Pill Ap. Of O.D. Apparents O.D. O.D.		KO.C8H3O3		
	Matiéres	/KO,C8H6A2O7	Aspartate	traces.
N.O.,GHEO Proving plant part and the potents Tensor	odorantes.	KO.G16H5AxO.SO3	Indoxysulfate —	
K.O.,CHIPON, S.O.D. Cricyfinithtic dis potasse. 0.050	II.	KO,C10H5O,S2O5		
KO_CHI_III_O_ Irrelevanceommente de potano Irreca.		KO,C18H7O8	Paroxyphényisulfate de potasse	
		KO, 01911102, S206	Gresyssullate de potasse	
grasse. C-		LO,GIOHILO	iny aroparacoumarate de potasse	races.
grasse. C-	Matières	KO.CSHSPh3012	Phosphoglycérate de notasse	0.030
Disalase truces		C6H2(C35H35O5)3		
Fernest Popular Interest Popular Interest Popular Interest Popular Interest Popular Interest Inte				
Cattle C			Diastase	
Gas. A. Acide carbonique. 15.36 Gas. A. A. Acide. 7.77 G. O. Oxygene. 0.45 Disadvant. HDO East 976.44 Predata 1100 East 976.44 Gas. Ga	Ferments.		Pepsine	
Gaz Az.			Pancreatine	traces.
Gaz Az.		C205	Acide cerhonique	45.06
O. Oxygène 0.65 H3O2	Gaz.	Az		
Dissolvant. H3O3 Eau 976.140 Produits Mucine 0.100 de la Mucine 0.000 muquesso Collules épithéliales 0.000			Oxygène	
Produits de la Mucine 0.490 maqueuso Gellules épithéliales 0.400			_	
de la Mucine . 0.100 muqueuso Gellules épithélialcs 0.010		H303	Eau	976.140
muqueuse Gellules épithéliales 0.010				
winsire. Genues epitternacs. 5,000		}	Callulas Autholiales	
1			Genules epituenales	0.010
Control of the Contro	1			

trouvés. Aussi plusieurs sont-ils les mêmes pour l'ensemble; et tous les chiffres un peu importants sont les résultats de multiplicateurs entiers du coefficient pondéral, donc encore identiques.

3° TABLEAU. — Résumé urologique pratique normal.

DIVISIONS.	ÉLÉMENTS.	NORMĀLES par livae d'uriķe.	NORMALES en 24 neures pour 4 unité de coefficient urologique,
Propriétés arganolopliques.	Couleur d'ensemble. Aspect Transparence. Consistance Surface Diepôt Sédiment Agitation. Fluorescence. Odeur	Lim Com Fit Ne Très lèger e Presque insens Ecume non Janne, ro	moyenne. pide. pide. tide. ttte. t floconneux. ible et amorphe. persistante. uge, verte. eneris.
Propriétés physiques.	Intensité de coloration Densité corrigée à + 15° c Réaction. Volume de l'émission totale.	Acide par sels-acid	3.7 17.8 des exclusivement.
Docimasie chimique.	Riéments fixes à ++ 100° c'. Acidité totale (en PhOS). Chlore (combiné). Urée. Acide prique (combiné). Acide phosphorique (combiné). Uroblime. Uroérythrine. Sulfocyanures alcalins. Leucomaines	1 ,23 4 ,17 18 ,75 0 ,42 2 ,08 0 ,42 0 ,27 Traces infi	1F7,000 0 ,030 0 ,100 0 ,450 0 ,010 0 ,050 0 ,010 0 ,006 initésimales.
Examen histologique.	Cellules épithéliales	Ra	res.

Quant à l'emploi pratique : dans ces tableaux nous avons fait figurer l'ensemble des corps définentairement constatés dans l'urine normale; ce qui n'est pas sans causer une certaine gène pour leur lecture, alors que dans l'examen tel que l'on peut le drier sur l'urine d'un individu isolé, un certain nombre de ces corps ne sont point dosables ni même défementairement décelables. D'autre part, nous avons n'égligé d'y fair fêgurer un élément important au point de vue sémélologique, l'acidité, élément que sa forme impersonnelle ne nous avait point permis de déve-

lopper à la partite technique de l'analyse urinaire normale. Nous avons résumé pour cet emploi pratique nos données précidentes dans le 3º tableau qui présente les seules données d'ensemble de l'urine normale qui, sémélologiquement parlant, ont à l'heure actuelle requ de l'expérience une consécration officielle.

Ce tableau sera, par la suite, notre véritable et définitif terme de comparaison avec les urines anormales, car en y supprimant la donnée moyenne corporelle, nous le rendons ainsi absolument général en application uroséméiologique.

Ainsi exposée, l'étude de l'urine normale est vraiment utile, parce qu'elle fixe d'une fispon simple et classe ses éléments physiologiquement importants (les seuls que nous ayons retenus à ce dernier tableau), tels qu'on a coutume de les y constater analytiquement, et aussi parce qu'elle fournit relativement à l'examen séméiologique des urines anormales un terme de comparaison réellement pratique. Envisagée autrement, elle reste purement théorique et spéculative, c'est-à-dire ne ressortissant plus au domaine de la médecine, mais bien à celui de la physiologie; elle n'apporte plus à l'art de guérir ce concours fécond que les progrès de la chimie biologique permettent d'en espérer, et que l'avenir, nous en sommes convaincs, lui réserve.

IV. RAPPORTS DOCIMASIQUES DE L'URINE NORMALE.

Comme on vient de le voir, nous avons limité à un très petit nombre le chiffre des éléments normaux que nous étudions docimasiquement d'une façon constante dans l'urine pathologique, et dont nous avons formé notre tableau pratique de l'examen analytique de l'urine normale.

Ce n'est pas qu'un certain nombre d'autres dosages nous échappent comme valeur s'éméiologique, et entre autres ceux de l'acide phosphoglycérique, de l'ammoniaque, de la potasse, de l'acide suffurique, etc. Mais comme dans la pratique on est forcément obligé de se limiter en raison du temps nécessaire à ces opérations complémentaires par trop complexes, nous avons étutié ceuxigé ces éléments dont le groupement, comme nous le verrons plus tard à la partie séméiologique, nous a paru comnlet comme coquissons analytiques. Il ne nous reste plus maintenant, pour en avoir terminé avec l'urine normale, qu'à exposer les rapports de ces éléments entre eux; ce que nous allons comprendre au tableau suivant, qui exprime l'ensemble de ces rapports relatifs:

4 TABLEAU. -- Rapports urologiques relatifs normaux.

### APPUNTS ####################################	3.300 f.000 1.500 450 450 450 33 10 165 30 23 10	22 1.0 100 4.5 222 1 11 5	00 66	8 10.000 300 1.000 6.300 100 500 100
--	--	------------------------------------	-------	---

Nous ferons remarquer que cette table à double entrée donne les deux rapports de chaque étément à l'un de ses congénères et réciproquement : ainsi, le rapport de l'acidité totale au chlore total nous est fourni par les lignes 3 horizontale et 4 verticale, et équivant à 30 dout le rapport du chlore total à l'àcidité totale nous est présenté par les lignes 3 verticale, et de l'acidité totale nous est présenté par les lignes 3 verticale et 4 horizontale et équivant à 30 de c, etc.

Ce tableau est donc général au point de vue des rapports relatifs des principaux éléments urinaires normaux entre eux.

Quant au point de vue des rapports absolus, puisque les chiffres donnés par nous comme normaux relativement à l'unuté, de coefficient corporel absolu sont considérés sux-mêmes comme unités urologiques, il est évident qu'au point de vue graphique en tant que traduction tangible de ces rapports, le chiffre 100 ayant été pris précédemment pour base d'interprétation différentielle, tous ces chiffres seront ramenés à l'unité = 100, et qu'ainsi la ligne qui représenter a l'étaination normale sera une ligne droite réunissant les unités = 100 de chaque produit urinaire examiné.

Le schéma urosémiographique ci-dessous, qui est d'ailleurs pour nous la base de toutes les applications pratiques de la séméiologie urinaire, représente précisément cette traduction graphique de l'urine normale ramenée à l'unité de coefficient urologique absolu.

Rapports	Valuese	Elément	Åerditä	Chlore	Uree	Acido Urique	Acida Phospi	Urobits
290-	_	_					_	
270		_						H
250		-						
230								
210		_						
190				_				
170				_				\Box
150								
130							_	
1·10 normale			_					
90	- GERE	- District	-		-	No.	COURS.	120
70								
. 50								
30		>						
10								
-	1		L.		1	L	_	-

Fig. 3. - Schéma uroséméiographique normal.

DEUXIÈME PARTIE URINES ANORMALES

PRÉLIMINAIRES

I. DÉFINITION.

Par uvius convades nous entendons et nous étudierons dans la seconde partie de ce livre toutes les urines qui ne se rapportent pas exactement et complètement au type que nous avons précèdemment établi et fixé comme type physiologique. Ce type, rappelonsie encore, est la résultante d'un ensemble de facteurs (poids proportionsé à la taille, âge moyen de la rie, alimentation mixte et raisonnée, turaui pondér, climat tempér) agissant sur des sujets en état de santé absolne. La multiplicité mème de ces facteurs fait donc que, toutes considérations morbides mises de côté, ces conditions d'équilibre parfait sont en réalité plus difficiles à réaliser qu'il ne semble à première vue; l'hygènée économique qu'imposent à l'existence les centres de population un peu importants doit surtout être incriminée à cet égard.

Aussi, l'urine anormale, au lieu d'être l'exception comme on pourrait le croire, se rencontre au contraire, sinon comme règle, au moins comme le cas le plus fréquent et le plus ordinaire. Elle apparait, en effet, soit comme simple conséquence d'une modification de l'équilibre physiologique portant sur l'un ou plusieurs des facteurs précifés, soit comme résultat de diathéese acquisse ou héréditaires plus ou moins accentules, soit enfin par suite d'un processus morbide vrai, chronique ou aigu.

 Urines anormales par variations quantitatives exclusives des éléments physiologiques.

L'influence des divers facteurs physiologiques que nous venons d'énumérer ne se traduit généralement, au point de vue, de l'altération des urines, que par une modification quantitative de leurs éléments physiologiques.

En effet, une disproportion marquée entre les rapports normaux du poids d'un sujet à sa taille est un indice certain d'un manque d'équilibre dans ses fonctions en général, mais ne saurait, le plus souvent du moins. Jui créer des conditions pa-

thologiques.

L'age, en indurant les tissus dans leur ensemble, amoindrit les échanges organiques; en diminuant l'élasticité des vaisseaux sanguins et par suite en abaissant la tonicité du cœur et des artères, l'âge vient encore ralentir la circulation générale. diminuer la tension vasculaire, affaiblir en dernière analyse la dialyse rénale. - L'alimentation de son côté a une influence des plus marquées et des plus faciles à comprendre sur l'excrétion urinaire. - Le travail, qu'il soit manuel on intellectuel. qu'il se traduise par de l'exercice ou d'une façon négative par du sédentarisme, par du surmenage intellectuel ou de l'inertie cérébrale, modifie les échanges organiques et crée de nouvelles conditions à la dépuration urinaire. - Le climat enfin, dans son ensemble, c'est-à-dire la température, la pression barométrique, l'état l'hygrométrique de l'air, influent sur l'élimination urinaire en exagérant ou ralentissant la compensation des autres émonctoires de l'économie.

Mais, quelque réelles que soient ces diverses influences, elles ne produisent généralement que des variations quantitatives des éléments physiologiques de l'urine; presque toujours elles sont insuffisantes pour apporter à elles seules à la dialyse ré-

nale des produits extra-physiologiques.

Il en est de même des diathèses qui, dans leur période d'état plus spécialement, ne se traduisent guère sur l'excrétion urinaire que par des fluctuations extra-physiologiques dans la pondération des éléments physiologiques.

L'importance des dosages rigoureux et surtout des compa-

raisons méthodiques de tout examen d'urine avec le type normal individuel se déduit suffisamment de ces considérations sommaires; aussi ferons-nous tous nos efforts pour attirer l'attention sur ce point capital à la partie technique de l'analyse des urines anormales. Quoiqu'il en soit, nous caractérisons cette première classe d'urines anormales par la présenc exclusive d'éléments physiologiques, dont certains peuvent être en proportions différentes de la normale.

B. Urines anormales par présence d'éléments extra-physiologiques

Gette seconde classe d'urines anormales se caractérise au contraire par la présence d'éléments autres que ceux constatés dans l'urine normale.

Ces éléments, bien qu'anormaux dans l'urine, ne sont point cependant tous par ce fait d'ordre pathologique.

Les uns en effet proviennent en nature de l'absorption respiratoire, gastro-intestinale, cutanée ou bypodermique d'agents extériers, médicamenteux ou non; les autres sont les déchets soit d'aliments incapables d'être entièrement comburés daus le torrent circulatoire, soit d'agents externes accidentellement ou intentionnellement introduits dans l'organisme

Quant aux éléments urinaires extra-physiologiques d'origine pathologique, on peut encore les scinder en produits transitoires et en produits pathologiques voisi. Les premiers sont des éléments de tous temps fabriqués par l'orquaisme, y circulant à chaque période de la vie, mais éliminés seulement par la voie rénale à cette période extra-physiologique. Ils sont généralement par la companier de l'aux des rénales de la companier d'un état diathésique. Les seconds ne se rencontrent jumais dans l'organisme à l'état physiologique; là ne s'y forment que sous l'influence d'un processus morbide aign ou chronique, rarement simplement diathésique; à plus forte raison ne se rencontrent-ils dans l'urine que lors de cas pathologiques spéciaux.

II. DIVISION

Cette seconde partie, « urines anormales », devra nous faire embrasser deux ordres de faits :

1º La connaissance des produits autres que les produits

normaux, pouvant se rencontrer dans l'urine : Étude élémen-

taire de l'urine anormale; 2º La technique analytique, c'est-à-dire la marche à suivre pour s'assurer, étant donnée une urine quelconque, si elle differe ou non de l'urine normale et par où elle en diffère : Technique de l'analyse urbotoine.

CHAPITRE PREMIER

ÉTUDE ÉLÉMENTAIRE DE L'URINE ANORMALE

Les éléments ne faisant point partié de l'urine normale, mais susceptibles néanmoins, pour une cause ou une autre, de s'y rencontrer lors de son examen par le praticien, sont desplus nombreux et des plus variables.

Nous croyons pouvoir les diviser dès à présent en deux grands groupes ou sections :

Première section. — Éléments se formant dans l'organisme; Deuxième section. — Éléments ne se formant pas dans l'organisme.

PREMIÈRE SECTION

ÉLÉMENTS EXTRA-PHYSIOLOGIQUES FORMÉS DANS L'ORGANISME

PREMIÈRE CLASSE. - ÉLÉMENTS ORGANIQUES.

Premier ordre. - Éléments organiques chimiquement définis.

PREMIÈRE SÉRIE. - AMIDES.

I. AMIDES ANHYDRIDES.

Indigothe (CNFPALOT), se rencontre en proportion notable dans l'urine de cheval, d'où on peut facilement l'extraire. Constatée également dans l'urine humaine dans les cas de cancer et de madadie du tube digestif (Beaunis), dans les cas où les fermentations intestinales sont augmentées (cantarrée gastrointestinal, diarribes, et.d.); certaines maladies des reins et de la moelle (Kletunusky), péritomite, cirrhose rénale, chlorsee, syphilis, maladie d'Addison et ne général maladies chroniques. consomptives (1). L'indigotine provient de l'indol de l'intestin résorbé et réduit par les dérivés ammoniacaux de l'urine.

II. AMIDES BASIQUES.

A. Leucine (C¹²H¹²AzO¹), produit de la digestion pancréatique des albuminoïdes, constitue un produit intermédiaire entre les albuminoïdes et l'urée, se rencontre à l'état pathologique dans le sang, l'urine, la bile, etc. (leucémie, atrobhie du foie).

B. Tyrosine (C¹⁸H¹³AzO²), se forme en même temps que la leucine et dans les mêmes conditions; elle s'élimine normalement par l'urine sous forme de phénol, en passant par plusieurs transformations intermédiaires (oxacides aromatiques).

La leucine et la tyrosine se déposent parfois spontanément dans l'urine de personnes atteintes d'ictère grave (altération profonde du foie).

III. AMIDES-PROTÉIQUES.

A. Amides protéiques primitifs.

a. Albumines.

a. Albumines vraies; complètes.

1º Sérine du sang. — L'albumine du sérum ou sérine existe dans le sang, la lymphe, le chyle, etc. Nous décrirons à la « technique analytique » les moyens employés pour sa recherche et son dosage dans l'urine.

On s'accorde généralement aujourd'hui à reconnaître que le gjomérule est l'élément dont la lésion ou le trouble fonctionnel déterminent la sérinurie (2); ainsi toute albuminurie chronique est symptomatique d'une lésion rénale : rein amyloide ou lardacé de la syphilis, scrofule, cit. Rein sédérosé ou petir rein rouge des arthritiques, saturnisme, etc. Gros rein blanc des brightiques.

So Globulines (paraglobuline), accompagne toujours la sérine dans l'urine albumineuse, où elle est confondue par la plupart des auteurs avec la syntonine. Elle n'existe qu'en faibles proportions dans le sang en circulation (0,38 p. 100 d'après

⁽¹⁾ In Diction, de Jaccoud, t. XVII, p. 407. (2) Dict. de Jaccoud, loc. cit., p. 449.

Heynsius); ce qui fait que les proportions dialysant au glomérule rénal ne sont jamais que très faibles par rapport à la sérine.

3º Fibrine. — Accompagne généralement le sang dans l'urine; rarement l'urine est fibrineuse sans être sangainolente (néphrite canthardisone). On distingue deux cas dans la fibrinurie : ou la fibrine préexiste avant la miction, ou elle se dépose d'une urine claire et limpide par coagulation; on peut d'ailleurs observer les deux cas chez le même sajet et au ours d'une même affection (4). Yogel a vu de la fibrinurie chez un brightique et dans un cas de pemphigus.

β. Albumines de transition (hydratées).

1º Séro-syntonines (acide et alcali-albumine). Les syntonines sont des transformations des albumines proprement dites par les acides on les aclais. Celle qui se rencontre le plus fréquemment dans l'urine est la séro-syntonine-acide que l'on décrit d'ordinaire par confusion sous le nom de globuline ou paracibobuline.

La sérinarie n'est pas toujours, comme quelques auteurs l'ont cru, précédée de syntoninurie (Exemple: néphrite a frigore); mais toutes les fois qu'il y a syntoninarie, comme celleci est exclusivement due à l'hyperacidité organique et urinaire, is s'ensuit qu'elle doit faire prévoir et qu'en réalité elle précède une sérinurie effective (Exemple: néphrite interstitielle). Le pronostic, tout en étant sérieux, n'est donc pas immédiatement grave, et nous connaissons des diathésiques hyperacides ayant présenté pendant nombre d'années ce caractère urologique avantqu'aucous ymptôme clinique Réneux ait fait son apparition.

2º Fibro-syntonine (uro-caséine). — L'uro-caséine est à la fibrine ce que la séro-syntonine est à la sérine. C'est une syntonine de fibrine. Elle se rencontre chez les femmes pendant la lactation et dans quelques cas de chylurie. Elle provient soit d'une résorption de la caséine mammaire, soit de l'utilisation incompiète des caséines alimentaires.

Léger, qui a fait de l'uro-caséine urinaire une étude toute spéciale (2), lui assigne les caractères chimiques suivants, qui sont aussi ceux de la caséine du lait.

⁽¹⁾ Ibid.

⁽²⁾ In Moniteur. Quesneville, sept. 1883.

En solution alcaline, elle précipite par les acides, même les acides lactique et acétique. Le précipité se redissout dans un excès d'acide acétique.

En solution acétique elle précipite par les alcalis et par le ferrocyanure de potassium.

Dans l'urine, qui est un tiquide acide, l'uro-caséine se coagule par la chaleur; il cu est de même de la caséine du lait si on l'introduit dans l'urine. L'observation de L'égre se rapporte à un cas du chylurie indigène. L'urine examinée était acide et donnait après littration un liquide transparent coagulable par la chaleur et les acides suffurique, auctique, chlorhydrique, acétique, lactique. Le précipité produit par la chaleur es redissolvait en partie par le refroidissement, et si on filtrait l'urine refroidie, on pouvait obtenir en la chauffant à nouveau plusieurs ocagulations successives.

3º Mucina. — Se rencontre presque toujours, comme nous l'avons dit, même à l'état normal dans l'urine. Se proportion augmente dans certains cas pathologiques. Elle est dissoute ou à l'état de dépôt nuageux; on la décèle par l'acide actifique à froid, ou misur encore par l'acide citrique en solution concentrée (méthode de contact). Abondante dans le catarrite vésical, la leucoritée, la cystile, etc. Elle constitue la majeure partie des filaments blennorhagiques, où elle englobe des leucorites.

4º Spermatine. — On désigne sous ce nom une substance albuminotile contenue dans le sperme et qui tient à la fois par ses propriétés de la macine et de l'albumine vraie. Sa présence dans l'arine est assez fréquente (i). Comme la macine, elle est précipiée par l'acide acctique, mais le précipité est solable dans un accès d'acide.

b. Albuminoïdes.

a. Albuminoïdes incomplets - Peptines.

4º Pyine (globulo-peptine). — Albumine du pus; possède beaucoup d'analogie avec la sérine, mais s'en distingue cependant par quelques caractères chimiques. Les alcalis caustiques la font se prendre eu une gelée plus ou moins visqueuse et épaisse.

⁽¹⁾ Lecorché et Talamon, Albuminuries.

Le pus contient d'ailleurs toujours de l'albumine (sérine), mais la pyine y domine. La pyine n'est autre que l'hydropisine de Gannal ou la fibrine dissoute de Denis.

2º Propeptone (séro-peptine, -- hémi-albuminose). — Intermédiaire entre l'albumine et la peptone; on la considere souvent comme un produit complexe, mélange de plusieurs variétés d'albuminoïdes modifiées (Kuhne et Chittenden). Pour nous la peptone est une syntonine-aleali de princ.

Elle a été signalée dans l'urine de l'ostéomalacie. Le plus fréquemment elle accompagne l'albumine ou la peptone, mais elle peut aussi se rencontrer seule.

Leube et Grigoriants ont décrit une propeptonurie d'origine cutanée (urticaire, érythème). Toutefois les conditions pathogéniques de la présence de ce corps dans l'urine sont encore mal connues ; à notre avis, on peut la rencontrer dans toutes les affections où les combustions organiques sont augmentées, parce que, comme on le verra plus loin, le terrain organique est alors âtedin et que les moindres traces de pynne se transforment alors facilement en propeptones. La réaction chimique caractéristique de la propeptone est de précipiter à froid par le chlourue de sodium en excés en présence de l'acide acétique.

β. Complets = Peptones. — Les peptones ont, à l'encontre des albumines proprement dites une très grande diffusibilité, qui eur permet de dialyser facilement sans altération préalable du tissu rénal.

Ce sont des substances représentant le terme ultime de la transformation des albuminoïdes dans l'estomac sous l'action des acides et des ferments solubles.

On les reaconte très fréquemment dans l'urine; lorsqu'elles y sont en grande quantité, elles constituent la peptonurie essentielle. Les conditions de cette maladie sont encore peu connues. La présence des peptones a été signalée dans la plupart des maladies fébriles et en particulier dans la paeumonie (cf. Nouveau dictionn. de médecine, art. urine, et Lecorché, loc. cit., p. 236 et 2.

Quelques auteurs pensent, avec V. Jaksch, que l'élimination des peptones par l'urine est en rapport avec la résorption d'un exsudat inflammatoire ou fibrineux (peptonurie pyogène). Nous estimons pour notre part que cette peptonurie pyogène a été confondue avec une élimination de propeptone (syntonine de pyine), provenant en fin de compte des globules blancs altérés par un milieu alcalin.

Il est probable que les peptones vraies dialysent fréquemment à la suite d'une utilisation incomplète sous l'influence d'un simple vice de nutrition (abus de acté, éct.) et q'elles peuvent, comme le soutenait Gerhardt, passer directement dans l'arine sans se transformer en sérine dans le sang (diathèse aride).

La recherche des peptones dans l'urine suppose toujours l'absence absolue des autres albumines,

R. Amidea protéiques dérivés (pigmentaires).

a. D'ORIGINE SANGUINE.

a. Primitifs. = Hemoglobine. — Sa présence caractérise l'hémoglobulinarie, éest-à-dire le passage dans l'urine de la matière colorante des globules. Il ne faut pas confondre ceté dat morbide avec l'hématurie dans laquelle le sang passe en nature dans l'urine avec les globules, lei nous n'avons que leur substance colorante : l'hémoglobine.

L'hémoglobulinurie a été observée dans l'empoisonnement arsénié ou phosphoré, certaines maladies infectieuses (typhus, scariatine, impaludisme). L'hémoglobulinurie paroxystique est surtout importante, c'est toujours la variété hémoglobine (méthémoglobine) réduite que l'on rencontre dans l'urine.

β. Dérivés.

4º L'hématine; 2º l'hématoidine; 3º et l'hémaie sont des dérivés de l'hémoglobine. La première constitue un intermédiaire entre la matière colorante du sang et celle de la bile et de l'urine. L'examen spectral permet seul de différencier ces pigments au moven de leurs bandes d'absorption.

L'hématine peut se rencontrer dans l'urine avant que celle-ci ait été soumise à l'action des réactifs, contrairement à ce que certains auteurs ont avancé.

b. D'ORIGINE BILIAIRE.

α. Primitif. = Bilirubine (C²²H¹⁸Az²O⁶). — Cette matière colorante de la bile, dérivée du pigment sanguin, passe dans l'u-

rine a l'état pathologique dans l'ictère. L'urine normale n'en contient jamais. La bilirubine ainsi que les autres pigments biliaires se décèle par la réaction classique de Gmelin.

B. Dérivés.

4º Par oxydation. - Biliverdine. - La bilirubine se forme très probablement dans le foie pour passer ensuite dans l'intestin. déjà dans le foie elle se transforme partiellement en biliverdine (C33H20Az2O10).

2º Par hudratation

4° La biliprasine (C32H22Az3O12), et la bilifuscine (C22H20Az2O8) sont, comme la biliverdine, des produits de transformation de la bilirubine qui l'accompagnent toujours daus les urines ictériques. Ou donne à cet ictère le nom d'ictère biliphéique par opposition à l'ictère hemaphéique de Gubler (dû exclusivement à de l'urobiline : congestion du foie et selérose hépatique).

e. D'ORIGINE HÉPATIOUE.

Uromélanine. - La présence de l'uromélanine (pigment noir de certaines urines) est plus spécialement symptomatique du cancer mélanique du foie. Elle communique parfois à l'urine une teinte d'encre de Chine qui persiste indéfiniment. On a dit (Brieger) que ce pigment provenait du skatol, et de fait on produit artificiellement une coloration analogue par des injections de skatol. Comme nous le montrerons plus loin, notre avis est que la coloration noire du corps considéré comme uromélanine est due à un sulfure de fer provenant de la destruction des globules sanguins contenant ces deux éléments ; soufre et fer. Audouard a, en effet, signalé le fer dans l'uromélanine, et d'autres auteurs ont reconnu que le soufre entrait aussi dans sa composition.

On a constaté aussi l'uromélanine dans l'urine dans la plupart des cas de tumeurs mélaniques. L'urine peut avoir à l'émission une coloration normale et contenir cependant de l'uromélanine, mais elle noircit au bout de quelques heures. L'addition de corps oxydants (acide nitrique, acide chromique, etc.) fait immédiatement apparaître cette coloration noire. Rappelons, en passant, que l'acide phénique absorbé à l'intérieur ou employé à la surface de plaies étendues communique à l'urine une teinte noire (due à la pyrocatéchine) analogue à celle constatée

par Brieger pour le skatol. Il n'y a rien de surprenant dans ce fait, attendu que le skatol est un amide-phénol.

D'après Zeller, le meilleur réactif de l'uromélanine serait l'eau de brome. Après addition d'eau de brome dans une urine mélanique, il se forme un précipité jaunâtre qui peu à peu se colore en noir.

Pour être complet, nous grouperons, au point de vue de physiologique, dans le tableau suivant, les différentes variétés de protéines urinaires:

DEUVIÈME SÉRIE. -- HYDRATES DE CARBONE.

I. GLUCOSES.

A. Optiquement actifs.

a. Sucre de diabère.

On discute beaucoup aujourd'hui pour savoir si le glucose. au moins à l'état de traces infinitésimales, ne se rencontrerait pas dans l'urine physiologique. On a proposé tout récemment la phénylhydrazine comme réactif du glucose, et Schilder en Allemagne et en France G. Sée et F. Wurtz auraient, paraît-il, toujours obtenu avec l'urine de sujets sains des cristaux de phénvlglucosanone.

Nous avouons que ces recherches de science pure offrent en pratique peu d'intérêt, et si quelques observateurs ont pu accidentellement déceler des traces de sucre dans des urines en apparence normales, nous ne croyons pas qu'il faille pour cela considérer le sucre comme un élément normal de l'urine.

Le sucre urinaire (sucre de diabète) est identique au sucre de raisin. Sa composition est représentée par la formule C12H12O12. Le sang en contient 0,090 p. 400, d'après Cl. Bernard. un peu plus d'après des observations récentes (0.128 p. 100 pour le sang de la carotide et 0,24 pour celui des veines sushépatiques). Il paraît être formé dans le foie aux dépens des aliments hydrocarbonés, et il se détruit incessamment dans le sang et les tissus en formant en particulier l'acide lactique des muscles, et, comme terme ultime, de l'acide carbonique et de l'eau.

On évalue approximativement la quantité de glucose versé dans le sang par le foie en vingt-quatre heures pour un homme de poids moyen à 640 grammes, c'est-à-dire environ 10 grammes par kilogramme de poids corporel. Chaque fois que le chiffre du glucose dans le sang dépasse 40 à 50 centigrammes p. 400, cet élément dialyse ou glomérule passe dans l'urine,

Nous parlerons longuement de la glycosurie et de ses diverses formes dans la séméiologie. La technique de la recherche et du dosage du glucose urinaire sera également développée plus loin. Insistons seulement sur ce fait que le glucose so transforme normalement en produits dont l'acide lactique et l'acide oxalique représentent des termes intermédiaires; nous verrons précisément ces acides organiques passer dans l'arine des diabétiques acides, c'est-à-dire de ceux qui, toutes choses égales d'allleux, offrent le plus de prise à la plucosurie.

B. Optiquement inactifs.

a. Réducteurs.

a. Alcaptose. — Substance particulière trouvée par Bœdecker et plus tard par Fürbringer dans l'urine; elle a été confondue par quelques auteurs (Gorup-Bezanez et Yvon) avec la pyrocatéchine.

On connaît sur l'alenjtose (alenjtone) une observation fort inféressante du professour Schmitt, de Lille (1). Il en résulte que l'alenjtose est complètement distincte de la pyrocatéchine; elle subit la fermentation alcoolique en présence de la levtre de bière et réduit énergiquement à froid le réadit Barreswill que la pyrocatéchine en réduit qu'à chaud. L'alcaptose ne donne d'alleurs pas la réaction indiquée par Schmitt avec le perchlorure de fer (pyrocatéchine). En un mot, l'alcaptose a toutes les propriétés des sures, a l'exception de leur action sur la lumière polariste. Dans l'observation de Schmitt, il s'agissait de l'urine d'une personne atteint de cataracte.

β. Indiglucine. — Glucoside dérivant de l'indican sous l'action des acides ou de la fermentation. Sa formule est C¹³H¹⁶O¹²; l'indiglucine réduit l'oxyde de cuivre.

Le dédoublement de l'indican en indiglucine et indigotine (indigo) se produit souvent dans les urines en putréfaction (dépôt de cristaux bleus d'indigotine oxydée dans les sédiments et les dépôts). Quelquefois l'indigo constitue une pellicule bleudtre à la surface de l'iruire (voir Pever, planche 23).

b. Non afauctium. — Inosite. — L'inosite (C¹H¹¹O¹² + 4Aq.), se trouve à l'état normal dans les muscles, les reins, le foie, etc. A l'état extra-physiologique, après des boissons abondantes, l'inosite passe dans l'urine. On l'y reacontre surtout dans, l'inosite passe dans l'urine, On l'y reacontre surtout dans certains cas pathologiques (diabète, polyurie, maladie de Bright, etc.).

(1) In Union pharmaceutique, 1882. p. 111

Gallois a fait une étude spéciale de ce corps et a décrit le premier l'inosurie. Pour nous, l'inosurie correspond toujours à une diminution fonctionnelle du foie, diminution que l'on rencontre dans les maladies précitées, quand elles sont sous la dépendance de la diathèse hyperacide. Mais ou la rencontre aussi dans certaines manifestations de la diathèse hypo-acide, quand elles ont une localisation bactérienne hépatique, comme la tabervallose.

L'inosite ne réduit pas la liqueur de Fehling, ne fermente pas et n'agil pas sur la lumière polarisée. Elle n'existe jamais qu'en très petites quantités dans l'urine.

II. SACCHAROSES.

A. Lactose.

Le sucre de lait se trouve dans l'urine des femmes aux dernières périodes de la grossesse, dans celle des femmes en couches et des nourries. Chez ces dernières il apparait quand on supprime brusquement la lactation et passe alors dans l'urine par résorption.

La lactine urinaire a une très grande analogie de réaction et de propriétés avec le gluose, ce qui rend sa recherche fort délicate. Touteis à poids égal son pouvoir réducteur est inférieur d'un quart environ à celui du glucose. On la différencie d'avec le glucose par le réactif de Barfoed qu'elle ne réduit pas, contrairement au glucose.

On a prétendu que dans certaines formes de glycosurie le sucre de lait, du lait ingéré passait dans l'urine. Pour notre part nous n'avons jamais constaté ce fait.

III. AMYLOSES.

A. Dextrine.

Existe à l'état normal dans le sang; elle provient de la dextrine formée dans l'intestin par la digestion des féculents. A l'état pathologique elle est fréquente chez les diabétiques. L'urine qui la contient seule se réduit difficilement et par une ébulition prolongée en passant du vert au jaune et enfin au brun sombre. Signalée dans l'urine par Guichard.

IV. GLUCOSIDES.

A. Indican

Paralt provenir du tube digestif par oxydation de l'indol; augmente après la ligature de l'intestin (Jaffé). D'une fiaçon générale l'indican augmente toutes les fois qu'il y a obstade au cours des excréments (occlusion intestinale, atonie intestinale, péritonité), dans toutes les maladies du système nerveux, surtout de la moelle épinière.

TROISIÈME SÉRIE. - ALCOOLS.

I. ALCOOLS PROPREMENT DITS.

A. Mono-atomiques.

..........

a. Alcool ÉTHYLIQUE. L'alcool éthylique passe difficilement dans l'urine. Lorsqu'on l'y rencontre, son origine peut être double : primitive : ingestion de doses immodérées d'alcool; secondaire : dédoublement du

glucose en passant par l'acide éthyldiacétique. A l'état pathologique, il accompagne souvent l'acétone dans le diabète sucré grave; il se formerait alors par décomposition de l'acide éthyldiacétique en acétone, alcool et acide carbonique.

La recherche de l'alcod est très complete, et nous renvoyons pour sa technique aux mémoires originaux. En tous cas pour en démontrer la présence il faut préparer le produit et l'isoler à l'état de pureté. La réaction de Lieben (iode iodure), qui s'emploie aussi pour l'actone, est insuffisante. Après l'ingestion de boissons alcooliques en grande quantité, on ne trouverait dans l'urine et l'air expirie que 3 à 4 p. 10 de d'alcool ingéré.

b. CHOLESTÉRINE.

La cholestérine se trouve à l'état normal dans un très grand nombre de liquides organiques. A l'état pathologique, elle constitute la presque totalité des calculs biliaires (64.8 98 p. 100). Elle cristallise en lamelles incolores et transparentes; sa présence est assez rare dans les sédiments urinaires (dégénérescence graisseuse des reins, éplépsie, cystite); elle n'existe presque jamais dans les urines ictériques.

On a encore signalé la cholestérine dans l'urine des femmes enceintes (Moller), dans quelques cas de diabète.

II. PHÈNOLS.

A. Alcoel à fonction mixte.

Pyrocatéchine. - Corps dérivé du phénol, existant à l'état normal dans l'urine du cheval. Elle apparaît dans l'urine principalement après l'absorption d'acide phénique, et lui communique la propriété de noircir à l'air (urine carbolique). Cette coloration noire a été attribuée par certains auteurs à de l'hydro-quinone (Baumann et Reuss). Le perchlorure de fer donne avec la pyrocatéchine une coloration verte intense qui vire au violet en présence des bicarbonates de soude et d'ammoniaque (Schmitt, de Lille).

R Amide stood

SKATOL. - Le skatol existe dans les fèces et provient, comme l'indol, de la putréfaction des matières albuminoïdes. Il passerait dans certains cas dans l'urine sous forme de skatoxylsulfate de potasse. Lorsqu'on traite l'urine par l'acide chlorhydrique et le chlorure de chaux, on obtient une teinte violelte insoluble dans l'éther et le chloroforme en cas de présence du skatol. A propos du skatol, nous ajouterons qu'A. Robin place. dans toute urine même normale, à côté des deux pigments physiologiques urobiline et uroérythrine, deux chromatogènes, c'est-à-dire deux corps capables par leurs dédoublements de donner des colorations anormales de l'urine : l'un d'eux, chromatogène bleu, serait l'indol décrit précédemment; le second, chromatogène rouge, serait le skatol. Nous n'avons pas encore en l'occasion de vérifier cette dernière donnée.

QUATRIÈME SÉRIE. - CORPS GRAS NEUTRES.

GRAISSES NEUTRES

En très petite proportion dans l'urine normale, les graisses augmentent dans l'état pathologique. Elles se rencontrent dans l'urine:

a. En solution (très rare);

- b. A l'état libre;
- c. A l'état d'émulsion (chylurie, galacturie);
- d. Emprisonnée dans des éléments anatomiques.

La graisse de l'urine peut provenir du sang (lipurie physiologique, expérimentale ou alimentaire; lipurie des obless, de la grossesse, du diabète, de certaines intoxications; affections aigués du foie, etc.). Elle peut venir également d'une altération histologique des reins par dégénérescence graissense (lipurie du mal de Bright).

On reconnaît la graisse dans l'urine au moyen du microscope sous forme de globules brillants, très réfringents, animés du mouvement brownien et solubles dans l'éther.

Il faut, dans la recherche de la graisse, bien s'assurer si elle est d'origine morbide, ou si elle n'a pas été introduite accidentellement (cathétérisme, bouteilles malpropres, supercherie).

II. UROSTĖALITHES.

Mélange de corps gras et de phosphates terreux (Méhu) rencontré très rarement dans l'urine sous forme de calculs. (Heller et W. Moore.)

Ces calculs sont, à l'état frais, mous et élastiques comme du caoutchouc; ils sont solubles à chaud par la potasse, solubles dans l'acide nitrique, en laissant un résidu qui se colore en jaune, après évaporation.

CINQUIÈME SÉRIE. - ALDÉHYDES.

ACÉTONE.

L'acétone (CHEO) se rencontre assez fréquemment dans l'unice, surfout chez certains diabétiques (gras); sa présence constitue l'acétonurie, conséquence elle-même de l'acétonémie. V. Jaksch a prétendu qu'il en existait des traces dans l'urine normale; il parati probabe qu'elle dérive du glucose. Elle se formerait dans l'intestin aux dépens du sucre, qui y subirait une fermentation spéciale et de la passeruit dans l'urine.

Le perchlorure de fer indiqué par Gehrardt pour la recherche de l'acétone (coloration rouge) doit être abandonné pour cut usage; cette coloration est due en effet soit à de l'acide acétique, de l'acide diacétique, de l'éther éthyliacétique, soit à des sullocyanures. L'élimination de l'antipyrine et des sulicylates donne une réaction à peu près analogue. La méthode de V. Jaksch (production d'odoforme) se produit aussi parfois sans qu'il y ait acétonémie vraie (alcool). Les meilleurs réactifs de l'acétone sont : soit le réactif sulfrosanilique de Chautard (solution de fuchsine décolorée par l'acide sulfureux), soit le réactif de Legal ; (solution de nitro-prussate de soude en présence de la soude caustique). Le seul corps qui pourrait par cette réaction être confondu avec l'acétone est la créatime, mais la coloration précédente disparativait alors par l'acide acétique, tandisqu'elle persiste avec l'acétone.

L'acétone a été trouvée dans l'urine :

 a. Dans le diabète par Kaulich (odeur spéciale de l'haleine et de l'urine, comparable à celle du chloroforme, des pommes mûres, des féces);

b. Dans certains états fébriles (variole, rougeole, pneumonie, etc.), elle est proportionnelle, d'après V. Jaksch, à l'intensité de la fièvre;

c. Dans quelques formes de carcinome (rare) ;

d. Enfin dans quelques états morbides du tube digestif (inanition, catarrhe de l'estomac, etc.).

On a mis sur le compte de l'acétonémie les accidents du coma diabétique; il faut les attribuer plutôt soit aux dérivés des sulforçauures (diabétiques maigres), soit à l'acide oxybutyrique (diabétiques grass). D'après West (Semaine médicale du 5 décembre 1888), des quantités de plus des grammes d'actone, par kilogramme du poids, ingérées n'ont déterminé aucun accident sensible.

La réaction du perchlorure de fer en càs d'acétonémie est due à l'acide éthyldiacétique se formant en même temps, tandis que l'auto-inovication a pour cause l'acide oxphutyrique. Quant aux dérivés des suffocyanures, c'est plus spécialement et d'une façon contraire dans la diathèse hypo-acide qu'on les observe comme cause du coma diabétique.

SIXIÈME SÉRIE. - ACIDES.

I. ACIDES BILIAIRES.

A. Dárivas de la taurine.

ACIDE TAUROCHOLIQUE.

Les acides biliaires n'existent qu'en minime proportion dans l'urine ictérique (au maximum 33 ceatigrammes par vingtquatre heures), anssi leur recherche n'a pas grande importance séméiològique. L'acide taurocolhique ou choléique (acide anthropo-taurocholique) existe dans la bile combinée à de la soude. Il contient un peu de soufre, ainsi que l'indique sa formule C°4111-247018-1.

B. Dérivés du glycocolle.

ACIDE GLYCOCHOLIQUE.

L'acide glycocholique ou cholique (C²Hl²ArO³) se distingue du précédent en ce qu'il ne contient pas de soutre. Tous deux sont précipités par l'acétate de plomb. On recherche ordinairment les acides biliaires par la réaction de Pettenkofer (cobration riote) pourpre en présence di sucre et de l'acide sullurique!: ce procédé n'a qu'une valeur relative, car d'autres produits (Tacide oleique et l'Albumine) donnet la même coloration. Cependant la méthode de Pettenkofer modifiée par Nouhauer donne d'excellent résilaits.

A notre avis, qui est celui de Vogel, la présence des acides biliaires dans l'urine correspond plutôt à une diminution dans la combustion organique, c'est-à-dire dans les échanges chimiques du plasma sanguin, qu'à un trouble fonctionnel du foie (anémie che, les arthritimes).

II. ACIDES GRAS.

A. Primitifs.

a. Acide formique.

L'acide formique, avec d'autres acides gras: acides acétique et butyrique, se rencontre parfois dans les urines fébriles, dans les affections graves du foie et le diabète. Leur présence constitue la lipacidurie. On peut déceler l'acide formique par le nitrate d'argent; le précipité blanc, en présence de l'acide formique, devient rapidement noir. L'urine des leucémiques en renfermerait de notables proportions (Salkowski).

b. ACIDE ACÉTIQUE.

L'acide acétique, d'après Neubauer, apparaît dans l'urine dès que celle-ci commence à fermenter. A l'état pathologique il constitue la diaceturie de V. Jaksch, et se rencontre dans le diabète et les processus fébriles. Il est l'indice d'une autointoxication oxybutyrique. Les urines qui en renferment sont toniours riches en acétone. On le recherche par la méthode de V. Jaksch, pour laquelle nous renvoyons au livre original.

Rappelons seulement que la teinte rouge de bordeaux que prennent certaines urines avec le perchlorure de fer n'est pas plus caractéristique de l'acide acétique que de l'acétone. Elle serait due, d'après Bouchard, à des substances produites par élaboration vicieuse de la matière (à notre avis, acide diacétique, acide éthyldiacétique, sulfocyanures, selon les cas).

C. ACIDE DIACÉTIQUE.

L'acide diacétique (acide acéto-acétique) se produit dans les mêmes conditions et les mêmes cas que l'acide acétique, c'està-dire toutes les fois que par suite de l'hyperacidité organique, il v a diminution notable des oxydations générales.

d. Acide oxy-amygdalious.

A côté des acides gras dont nous venons de parler, il nous fant signaler encore l'acide oxy-amyadalique, que l'on rencontre plus spécialement dans l'atrophie aiguë du foie (V. Jaksch).

e. ACIDE OXYBUTYRIOUE.

L'acide \$-oxybutyrique a été signalé dans certaines urines diabétiques par Kültz et Minkowsky, Lépine, de Lyon, lui attribue l'intoxication spécifique du coma diabétique.

D'après Naunyn, le coma diabétique serait d'une façon générale la conséquence de l'hypo-alcalinité du sang, due ellemême à la présence en excès dans l'organisme, d'un acide organique quelconque, qui peut être soit l'acide oxybutyrique lui-même, soit un acide du même genre,

Pour nous, d'après les expériences parallèles de Cornillon et Mallat, et d'après nos recherches personnelles, nous distinguons deux formes chimiques du coma diabétique : l'une se produisant dans le diabète gras, el qui est due à l'acide oxybutyrique r'sultant (sinuttanément aux acides acétique, crotonique, diacétique, éthylacétique et à l'acétone) d'une diminution extra-anormale des oxydations organiques dans la diathèse hyperacide; l'autre se rencontrant chez les diabtiques maigres, eachcetiques ou tuberculeux, toutes les fois que l'augementation des oxydations organiques (sous l'Influence d'une hypochlorurie et hypo-acidité générale) a lieu en alsence d'euq. c'est-à-d'ire à la période terminale de ces maladies, lorsque les tissus, à la suite d'une polyurie de longue durée, se sont déshydratés d'une façon importante.

Les caractères différentiels de ces deux formes d'auto-intoxication acétonémique sont les suivants :

Premier cas : augmentation de l'acidité urinaire, augmentation de la créatinine d'excrétion;

Second cas: diminution de l'acidité urinaire, augmentation de l'ammoniaque dans l'urine.

L'acide oxybutyrique dérie à gauche le plan de la lumière polarisée circulairement (q'i == 23°,4); il fausse dons le dosage du glucose quand il se rencontre en certaines proportions dans une urine suerée. Lorsqu'on soupeonne sa présence, il faut doser le suere urinaire par la liqueur de Felhing et comparer le résultat docimasique à celui fourni d'autre part par le polarimètre.

f. Acide crotonique.

Découvert par Stadelmann dans l'urine diabétique, ce corps accompagne toujours les acides précédents. D'après Minkowsky, il serait comme eux dérivés de l'acide β-oxybutyrique (1).

B. Dérivés.

ACIDE OXALIQUE. — Nous n'admettons pas que l'acide oxalique se rencontre dans l'urine normale, à moins qu'il n'y soit apperté par l'alimentation. On ne le rencontre jamais d'une façon permanente que chez les diathésiques hyperacides.

Le processus pathologique de sa formation paraît résider dans des oxydations incomplètes des substances azotées, qui

⁽¹⁾ Semaine médicale, 1889, p. 2.

fournissent de l'acide urique, des acides gras et secondairement l'acide oxalique.

L'oxalorie a été constatée dans un grand nombre d'affections : flèvre typhoide, goutte, choléra, diabète, hypocondrie, phtisie torpide, dyspepsie, affection de la moelle, etc. Beneke et Bouchard font de la production en excés de l'acide oxalique dans l'économie un signe de ralentissement de la nutrition

Comme nous le verrons plus loin, les maladies si bien décrites par Bouchard sous le nom de maladies par ralentissement de la nutrition appartiennent loutes à la diathèse hyperacide. Elles ont es point commun de présenter des oxydations organiques incomplètes; on comprend donc que dans toutes leurs manifestations on puisse rencontrer de l'adde calique dans l'urine. Mais l'oxalurie doit, coryons-nous, former une classe spéciale de ces maladies, quand la quantité d'oxalute de chaux climinée est considérable. Nous avons en effet uo occa sion de voir plusieurs malades présentant tous les symptômes et uniquement les symptômes de l'intoxication cavalique. Ces malades n'ont recourvé la santé que grâce à un double traitement dirigé tant dans le sens de l'Elimination de l'acide oxalique préformé qu'en vue de l'arrêt de sa formation par une amélioration des combustions organiques.

La constatation de l'acide oxalique dans les sédiments au moyen du microscope est des plus faciles. Il existe toujours dans l'urine sous forme d'oxalate de chaux. Son dosage, qui n'offre pas de difficulté pratique, sera décrit à la technique analytique.

III. ACIDES AROMATIQUES.

Acide benzoïque.

L'acide benzoique ne se rencontre jamais dans l'urine normale. Mais lorsque celle-ci subit la putréfaction, il s'y montre en se formant par dédoublement de l'acide hippurique (en acide benzoique et glycocolle), sous l'influence du micrococcus ureze.

Al'état extra-physiologique, il passe dans l'urine à la suite de l'ingestion de substances qui dans l'organisme se transforment en acide henzoïque (toluene, acide cinamique, etc.), ou à la suite d'ingestion d'acide henzoïque lui-même, A l'état pathologique sa présence paraît liée à une lésion rénale.

Pour le rechercher on concentre l'urine en consistance d'extrait que l'on équise par l'alcoa), on sépare l'alcool par distillation, et on traite le résidu, acidifié par l'acide chlorhydrique, avec de l'éther acidique. L'acide henzoique reste alors par évaporation de l'éther en même temps que l'acide hippurique, mais à l'encontre de ce dernier il se dissout dans le pétrole, ce qui permet de l'en séparer.

SEPTIÈME SÉRIE. - ÉTHERS.

I. ACIDE ÉTHYLDIACÉTIQUE.

Cet acide, dont la décomposition produit de l'acédone, de l'alecol et de l'acide carbonique, existe dans certaines urines diabétiques ou, d'après Rupstein, il serait l'Origine de l'acédone. L'acide éthyldiacétique donne très nettement, ainsi que nous l'avons déjà dit, la réaction de Gerhardt (colorition rouge par le perchlorure de fer). Sa présence ne paratt pas nécessairement liée à celle de l'acédone.

II. ACIDE ÉTHYLACÉTO-CYANHYDRIQUE.

Corps dérivé du précédent et des dérivés cyanés urinaires, en cas de réduction exagérée avec déshydratation. A été constaté par nous dans certaines urines auxquelles il commanique, après distillation, les réactions mixtes: de l'acide éthyldiacétique et des sulfocyanures, mais qui de plus offrent nettoment l'odeur d'acide orressione (odeur de kirisch).

III. ACIDE OXYFORMOBENZOILIQUE.

Probalbement dérivé par oxydation de la tyrosine (atrophie jaune aigué du foie). Un réxiste ni dans l'urine normale ni dans celle de l'intoxication phosphorée. Après séparation de la leucine et de la tyrosine, on traite l'extrait éthéré de l'urine par l'acétate de plomb. Le précipité plombique est décomposè par l'hydrogène sulfuré, et la filtration laisse déposer par évaporation de longues aiguilles soyeuses et incolores d'acide oxyformobencollique.

HUTTIÈME SÉRIE. -- DÉRIVÉS SULEURÉS

I. SOUFRE INOXYDÉ. Cystine CoHTAxSTO4.

La cystine se trouve assez souvent dissoute dans l'urine ; mais, à tort, il est assez rare qu'on la recherche par les réactifs chimiques. C'est donc le plus souvent sous forme sédimentaire ou de calculs, qu'on la rencontre ; toutefois ce dernier cas (calculs) est peu fréquent.

La cystinurie semblerait plus fréquente chez l'homme que chez la femme et, ce qui est plus curieux, se présente souvent chez des membres de la même famille. Ebstein pense qu'il existe une relation entre la cystinurie et le rhumatisme articuculaire aigu. Par sa grande richesse en soufre (36 p. 100) on a été conduit à supposer que le foie jouait un rôle dans sa formation (Marosky). Nous sommes absolument de cet avis, et sa présence concorde toujours avec une augmentation fonctionnelle hépatique.

Le pronostic de la cystinurie n'est pas seulement sérieux à cause de la formation possible de calculs, mais aussi à cause d'une forme spéciale de dyspepsie (dyspepsie hépatique) dans laquelle on la rencontre fréquemment.

Les urines riches en cystine présentent directement l'odeur de suint et dégagent de l'acide sulfhydrique au moment de la nutréfaction.

On précipite la cystine de l'urine au moyen de l'acide acétique. Le précipité est traité par l'ammoniaque, qui dissout la cystine et la laisse ensuite se déposer par cristallisation en tables hexagonales caractéristiques.

Deuxième ordre. - Éléments organiques organisés. PREMIÈRE SÉRIE. - ÉLÉMENTS D'ORIGINE PRIMITIVE.

I. ÉLÉMENTS PROVENANT DES REINS.

A. Éléments propres.

Nous décrirons ici les éléments que l'on groupe d'ordinaire sous le nom général de cylindres urinaires. L'existence des moules ou cylindres urinaires, indiquée d'abord par Vigla et Rayer, a été depuis l'objet d'études constantes. Malheureusement les auteurs qui se sont occupés autrefois de ces questions ont embrouillé les choses à un tel point qu'il est souvent bien difficile de se reconnaître dans leurs descriptions.

V. Jaksch divise les cylindres organisés en trois groupes :

4º Cylindres composés d'éléments figurés (globules rouges, globules blancs, cellules épithéliales, bactéries);

2º Cylindres composés d'éléments figurés transformés (cylindres granuleux, cireux, graisseux);

3° Cylindres hyalins (à couches stratifiées et non stratifiées, cylindroides).

Cette classification, uniquement basée sur les caractères physiques, nous semble incomplète; nous préférons de beaucoup celle de Lecorché, qui a fait des cylindres urinaires une étude magistrale dont nous allons résumer les principales données.

Il distingue les cylindres urinaires en deux grandes classes suivant leur importance et leur valeur séméiologique :

120 closse : CYLINDROÏDES :

1º Cylindroïdes (pseudo-cylindres);

2º Cylindres épithéliaux;

3º Cylindres hémorrhagiques.

2º classe: CYLINDRES PROPREMENT DITS:

Cylindres

Granuleux

1º Cylindres de destruction.

Cylindres Granuleux. Granulo-graisseux. Graisseux. Mixtes.

Cylindres colloides ou circux.

2º Cylindres d'exsudation. — Cylindres hyalins.

Nous allons successivement passer en revue ces diverses formes de cylindres, en indiquant pour chacune leurs principaux caractères. Observons seulement, toujours d'après Lecorché, que les cylindres proprement dits pourraient être classés d'après leurs propriétés physiques en :

Cylindres granuleux, Cylindres colloides,

Cylindres colloides, Et cylindres hyalins:

ou, au point de vue de leur constitution chimique, en : Cylindres protoplasmiques,

Et cylindres albumineux.

a. Cylindroides.

a. Pseudo-cylindres. — Décrits par Rovida, de Milan, ce sont des filaments tantôt arrondis, tantôt aplatis, d'une remarquable ténuité, généralement longs et peu réfringents, bien trunsparents et difficilement colorables par les réactifs, souvent parsemés de granulations et de leucoyetes. Ces cylindroïdes sont très souvent confondus avec le cylindre hyalin vrai. Thomas les aurait trouvés dans des cas assez raves dans l'urine normale. D'après Lecorché, ce sont ces cylindroïdes que décivent quelques auteurs sous le nom de cylindres hyalins, en dehors d'une affection des reien (Nothangel, Henle, V. Jalsch).

Les pseudo-cylindres ne seraient autre chose, aux yeux de Leocrché, que des filaments muqueux provenant des tubes collecteurs rénaux nalogues à ceux que l'or rencontre dans les urines de la cystite ou de l'uréthrite. Les cylindroides, dit-il, n'ont donc aucune importance. Ils peuvent se voir dans des urines nullement adhumieuses (d'adhumieus).

Nous sommes de cet avis, et pour nous ces cylindroïdes sont identiques aux cylindres muqueux décrits par Cornil et qui se rencontrent daus nombre d'urines anormales (congestions simples du rein ou catarrhe léger des tubuil). Voici leurs principuux caractères différentiels d'avec les cylindres hyalins yrincipuux caractères différentiels d'avec les cylindres hyalins yrincipuux caractères différentiels qu'avec les cylindres hyalins yrincipuux caractères différentiels qu'avec les cylindres hyalins yrincipuu caracteris d'avec les cylindres hyalins yrincipuus caracte

CYLINGRODES. Bords non limités par une ligne sondre. sondre. Holisse et comme re- lités. Maitére amorphe, finement granu- leuse (comme le mucus).	et omhrés. Matière généralement ho- mogène, colloide, sans granulations. Surface circulaire, ne s'an-
Surface plate, rubanée, lamelleuse. Souvent gorgés d'urates, qui leur donnent un aspect opaque et gra- nuleux que la chaleur fait dispa-	platissant pas entre les vers. Un peu moins transluci- des. Facilement colorés par

3. Oglindres igithéliuns proprenent dits. — Pormés d'après Lecorché, de potites cellules polygonales qui ne peuvent venir que des tubes collecteurs. Ce sont des lambeaux desquamés du revêtement des tubes droits et peut-être de la branche grêle de Henle. Ces cylindres sont tirs rares, et il ne faut pas les confondre avec des cylindres muqueux ou granuleux présentant quelques amas de cellules épithéliales. Leur indication sémicologique est une irritation catarrhale du revêtement des canaux droits excréteurs.

Ces cylindres épithélianu n'auraient donc pas à beaucoup près la même importance que celle qui leur est attribuée par la plupart des auteurs (Labadie-Lagrave, V. Jaksch, entre autres), qui en fout un signe d'une desquamation aigué du rein. Il faut bien se rappeler au surplus que tous les cylindres urinaires peuvent porter à leur surface quelques cellules épithéliales (Lacorché).

7. Cylindres hémorrhagiques (fibrino-hémorrhagiques).— Constitués par des globules rouges et quelques globules blancs réunis par de la fibrine, ils sont droits et de diametre moyen; tantol les hématies ont conservé leur forme et sont régulièrement disposées on servées les unes contre les autres, tantol elles sont semées çà et là à la surfaco des cylindres. Ils indiquent un épanchement hémorrhagique intracanaliculaire (hémorrhagie rénale) (Lecorché). Ces cylindres ont donc la même valuer diamostique que l'hématurie elle-même.

b. CYLINDRES.

a. Cylindres granuleux ou sombres. — Ces cylindres sont constitutés par des débris de globules rouges, de leucoçtes et de cellules épithéliales ayant subi en totalité ou en partie l'une ou l'autre des dégénérescences granuleuse ou graisseux, de la leur division en cylindres granuleux, granulo-graisseux, graisseux, mixtes.

Les cylindres graisseux purs ne se rencontrent que dans l'empoisonnement par le phosphore. On trouve des cylindres granulo-graisseux dans le mal de Bright. Ils sont formés par des particules protéiques provenant de la fonte ou de la désintégration des différents éléments épanchés dans les canalicules, globules rouges, leucoevies, etc. (Lecorché). Comme les cylindres circux dont nous allons parler, les cylindres granuleux sont des cylindres de destruction, traduisant l'atteinte portée au revétement canadiculaire, et l'encombrement des tubuli par les débris cellulaires, quelle que soit la variété des lésions rénales (Lecorché). Ils s'observent dans toutes les formes du mai de Bright au moment des poussées aiqués principalement, mais peuvent manquer dans les périodes de transition.

Leur longueur et leur largeur sont très variables, leurs granulations sont très fines ou relativement grosses, et ils présentent tous les degrés de coloration, depuis le jaune-blanchâtre jus-

qu'au rouge-brun (V. Jaksch),

§. Opfindres colloides ou cireum. — Les cylindres cireux, d'après Labadic-Lagrace, présentent, comme les cylindres hyalins, une structure homogène, mais avec un reflet comparable à celui de la cire et une coloration grisitte; ils sont itrès réfringents et se colorent fortement en jaune foncé par l'iode et en rouge vif par le carmin; ils sont d'ordinaire larges et courts a dépourvus de granulations (Lecorché): quelquefois on en trouve de longs et d'articulés comme les ténias (V. Jaksch). On a beaccoupl discuté sur leur mode déformation, mais aquourf lui l'opinion la plus probable est qu'ils sont un produit de la sécrétion des cellules des tabuli. Cette manière de voir a dé s'eurtout confirmée par Cornil; pour ce savant, il y auvait une véritable sécrétion pathologique de la cellule, tandis que, pour Lecorché, dont nous partageons le sentiment, ce serait simplement une altération de son protoplasma.

Les opindres colloides, dit-il, sont constitués par une substance spéciale, par le proteplanan altire des cellules comaliculaires (loc. cit.). » Ce sont donc encore des cylindres de destruction. « Leur présence dans l'urine, dit Labadie-Lagrave, d'onte l'existence d'une tésion rénde graveet de vielle date; jamais on ne trouve cette variété de cylindres dans les cos d'albuminurie passagère (loc. cit., p. 383). »

On a fait observer que les cylindres graisseux présentaient parfois la réaction amyloide (coloration bleue avec l'iode additionné d'acide sulfurique). — Bartels a signalé deux cas de ce genre. Mais c'est fort rare et quelques auteurs le nient. y. Uplindres hyalins proprement dits. — Nous avons vu précédemment quels étaient les caractères microsopiques des cylindres hyalins vrais. Ils ne proviennent pas, comme les précdents, d'une sécrétion des cellules tubulaires, mais de la simple transsudation du plasma sanguin à travers ces cellules; ce sont des cylindres d'exsudation.

Mais nous constaterous ici un fait extrêmement remarquable et bien établi, c'est que l'albumine du cylindre hyalin n'est pas de même nature que la séro-albumine. Lecorde-soutient que c'est une modification acide de l'albumine du sérun. Cela semble absolument démontré par les expériences de Ribbert, d'où it résulte que les acides urique, phosphorique, chlorhy-drique et l'une elle-même, àvorisent la transformation hyaline de l'albumine, tandis que l'ammoniaque et la potasse l'empéchent.

Il est vrai que cette analogie entre la substance hyaline des cylories urinaires et l'albumine-acide a été contestée par Knoll, qui ne la trouve identique avec aucun des corps albuminoïdes connus jusqu'à ce jour; mais à nos yeux les expériences de Ribbert sont absolument démonstratives, et nous nous rangeons à la manière de voir de Lecorphé.

Toutefois, pour nous, le processus de formation du cylindre hyalin n'est pas aussi simple : il comporte deux phases bien distinctes. Toute augmentation de l'acidité organique provoque la transformation d'une partie des albumines circulatoires en syntonines (acide-albumines). De fait, ces syntonines étant dialysables passent à l'osmose glomérulaire et se rencontrent en quantité plus ou moins considérable chez tous ou presque tous les diathésiques hyperacides. Premier point ; formation. Deuxième point: ainsi que nous le montrerons à la diathèse hyperacide, un certain nombre de ces malades présentent une urine de volume inférieur à la normale, conséquemment d'une concentration exagérée. Or l'on sait que les acides-albumines (syntonines) ont pour caractéristique chimique d'être séparés de leurs solutions acides par les sels neutres. La concentration exagérée de l'urine chez ces malades remplissant ce but, on se rend ainsi compte comment, au fur et à mesure de leur dialyse glomérulaire, au fur et à mesure de leur arrivée

dans le tube de Henle (où, comme nous l'avons montré, l'urine séjourne forcément) les acides-albumines peuvent être précipités, se moulant alors sur cette portion des tubes excréteurs rénaux.

Et es qui prouve bien l'exactitude de notre manière de voir, c'est que dans les alhuminuries liées à la diathète hyperacide et où l'on ne trouve pas de cylindres hyalins, l'urine est alors abondante. On comprend, en effet, que dans ce cas l'eau dilount les sels urinaires, ceux-ci ne sont plus en quantité suffisante pour agir sur la syntonine et que celle-ci passe sans être précipitée, c'est-à-dire reudue hyaline.

Si maintenant nous cherchons à classer les diverses sortes de cylindres par rapport à la gravité de leur signification, nous verrons avec Peyer qu'il faut les placer dans l'ordre suivant :

4º Cylindres circux et granuleux ;

hyalins;

fibrino-hémorrhagiques;

4º - épithéliaux;

5º -- enfin cylindroïdes.

Gertains auteurs décrivent encore sous le nom de pseudo-cv-

-certains auteurs occurrent encore sous is nom de pseudo-cylindres (Peper) des cylindres d'urate de soude de bactéries, de pigments, d'urate d'ammoniaque, de cholestériue même, qui se rencontrent parfois dans l'urine; ce sont de vrais cylindres recouverts en totalité ou seulement par places, de substances étrangères.

Peyer signale également dans un cas de lipurie des cylindres formés les uns de globules de pus, les autres de globules de graisse.

8. Enfin, pour être complet, nous devons mentionner les cylindres spermatiques (cylindres séminaux de Peyer). Ils ont l'aspect des cylindres hyalins et se rencontrent assez fréquemment dans la spermatorrhée.

a. Ala technique de l'examen microscopique nous avons, pour plus de clarté, divisé les cylindres en trois catégories suivant qu'ils sont moulés: sur les tubuli, et ont par conséquent une origine rénale; sur les canaux spermatiques, ou le canal uréthral (cylindres maqueuxs).

n. L'épithélium des canalicules urinaires ou du rein se rencontre dans l'urine sous forme de cylindres épithéliaux, contenus dans une urine albumineuse. Ces cellules sont beaucoup plus petites que celles des autres épithéliums, mais ont pourtant une grande ressemblance avec l'épithélium de l'urèthre (filaments blemorrhagiques).

B. Parasites.

a. Strongle géant.

La présence du strongle géant dans l'urine a été mise en doute par certains observateurs. Pour notre part il nous a été donné de l'observer une fois, et bien que le cas soit des plus rares, il mérite d'être signalé.

b. Bilharzia Hænatobia.

Les œufs et les embryons de ce parasite se rencontrent dans l'urine de l'hématurie des pays chauds. Observée par Méhu.

Enfin ou a encore signalé dans l'urine la présence :
c. D'Échinococques provenant de kystes hydatiques en communication avec le rein :

d. Du Diplosoma crenata;

e. Du DACTYLIUS ACULEATUS, etc., etc.,

Il faudra toujours en pareil cas rechercher dans l'urine non seulement le parasite, mais encore ses œufs.

f. La Filaria sangunis homnis a été vue par Lewis (hématurie des tropiques).

Exceptionnellement dans nos climats,

a. L'OXYURE VERMICULAIRE.

h. L'ASCARIDE LOMBRICOIDE et leurs œufs ont étérencontrés dans l'urine ; cette rencontre n'est d'ailleurs qu'accidentelle.

II. ÉLÉMENTS PROVENANT DES URETÈRES. Cellules épithéliales.

Les cellules épithéliales des uretères sont petites et arrondies. Souvent elles ont la forme coudée. — D'après un certain ombd'observateurs, il est impossible de distinguer l'épithélium provenant du bassin et de l'uretère et de la vessie (Bizzorero, Eichhorst).

III. ÉLÉMENTS PROVENANT DE LA VESSIE. A. Cellules épithéliales.

L'épithélium de la vessie (et du vagin chez la femme) est or-

136 ÉTUDE ÉLÉMENTAIRE DE L'URINE ANORMALE.

dinairement pavimenteux;—les éléments les plus profonds sont fusiformes, coniques ou cylindriques;—les cellules épithéliales du vagin sont grandes et pavimenteuses.

B. Villosités.

On rencontre parfois dans l'urine des villosités vésicales. Ce produit était autrefois considéré comme absolument caractéristique du cancer de la vessie. Nous croyons, ave Pyers, que dans certains cas de folliculite vésicale, ces éléments histologiques peuvent aussi s'y rencontrer. Ils ne seraient donc réelement symptomatiques du cancer que lorsqu'ils sont accompagnés de tissu conjonctif ou de cellules néoplasiques bien constituées.

C. Tissu conjonctif.

Accompagne, avons-nous dit, soit les cellules cancéreuses, soit les cellules vésicales lorsque l'altération cancéreuse est profonde (Peyer).

D. Fibrès musculaires striées.

Ont été rencontrées par Wyss dans une urine émise par un homme ayant un cancer de l'intestin ouvert dans la vessie (Pever).

E. Cellules néoplasiques.

Difficiles à différencier d'avec les cellules de l'épithélium normal de la vessie; ont toutefois une forme plus irrégulière et sont rarement isolées, mais bien plutôt agglomérées en masses importantes.

IV. ÉLÉMENTS PROVENANT DE L'URÉTHRE.

Cellules épithéliales.

L'épithélium de l'urèthre est identique de forme, d'après Peyer, avec celui des canalicules urinaires; mais on ne trouve ce dernier que sous forme de cylindres et dans des urines albumineuses, ce qui permet de les différencier.

Les filaments blennorrhagiques sont des cellules épithéliales de l'urêthre agglomérées par du muco-pus. DEUXIÈME SÉRIE. - ÉLÉMENTS D'ORIGINE SECONDAIRE.

I. ÉLÉMENTS PROVENANT DES ORGANES GÉNITAUX.

A. De l'homme.

A. ÉLÉMENTS PROPRES.

a. Spermatozogires. - Les spermatozogires (éléments figurés du sperme) se rencontrent dans l'urine de la spermatorrhée: - leur forme est caractéristique et ne neut guère prêter à la confusion: - on les rencontre dans l'urine après le coît, les pollutions ou les éjaculations (épilepsie).

3. Sumpexions (Ch. Robin). - Concrétions contenues dans le sperme et qui sont ou calcaires (rares et presque pathologiques) ou azotées (nombreuses et physiologiques). Ces dernières se présentent sous l'aspect de petits grains, se brisant en éclats par la pression et formées d'une masse homogène (1).

v. Filaments muqueux. - Filaments flexueux formés par la coagulation du mucus dans les plis du canal de l'urêthre pendant l'intervalle des mictions. Ces filaments ressemblent parfois aux cylindres hyalins (cylindres muqueux souvent gorgés d'urate de soude). Ils donnent naissance à des ramifications secondaires, ce qui souvent les distingue des cylindres hyalins (Pever).

b. PARASITES.

a. Oidium albicans. - Spores, tubes articulés, cloisonnés, à granulations intérieures, signalés pour la première fois par de Beauvais, en 1874, parmi les exsudations blanchâtres de la muqueuse du gland dans la balanite et le phimosis diabétiques. L'ofdium albicans se rencontre aussi, dit-on, chez les femmes enceintes (prurit vaginal).

8. Aspergillus. - Ce champignon se rencontre dans les mêmes conditions que le précédent. C'est lui qui occasionne le prurit insupportable de la balanite diabétique (de Beauvais. Friedreich de Heidelberg). Ces champignons vivent sur un terrain acide produit soit par l'hyperacidité organique directement, soit secondairement par la fermentation lactique ou acétique des sucres urinaires.

⁽¹⁾ Voir Mathias Duval, Manuel du microscope, p. 354.

γ. Gonococcus. - Symptomatique de l'écoulement blennorrhagique. Ce gonocoque, découvert en 1879 par Neisser, est relativement gros, Il a, comme caractéristique, la double tendance de se loger dans les leucocytes et de s'agglomérer en amas (Peyer).

Nota. - Il est bien entendu que nous décrivons ces parasites une fois pour toutes en ce moment, mais qu'ils peuvent aussi se rencontrer chez la femme dans les conditions morbides

identiques ou analogues.

B. De la femme.

a. ÉLÉMENTS PROPRES.

Cellules épithéliales vaginales. - Les cellules épithéliales du vagin sont sous forme de grandes lamelles, polygonales, à contour net; protoplasma clair, assez homogène et à noyau ovalaire peu distinct. En grande abondance, elles sont l'indice d'une inflammation plus ou moins profonde.

b. PARASITES.

a. Trichomonas vaginalis. - Ge parasite est un infusoire long d'environ 8 millimètres. Il s'observe souvent, d'après Peyer, dans l'urine des femmes atteintes de leucorrhée et n'est nullement spécial à la vaginite blennorrhagique.

8. Rhabditis genitalis. - Scheiber-Stuhlweissenburg a décrit un ver rond, microscopique, trouvé dans l'urine d'une femme et paraissant provenir de ses organes génitaux : ce ver, d'après Virchow, serait une variété de nématode.

II. ÉLÉMENTS PROVENANT DE L'ÉPIDERME. A. Cellules épithéliales.

On peut trouver dans certains cas (fièvres éruptives, lors de la période de desquamation), dans l'urine, des cellules épithéliales plus ou moins altérées, provenant de l'épiderme et introduites accidentellement dans le liquide; elles se présentent généralement en plaques de notables dimensions.

B. Poils.

L'évacuation de poils par l'urine a été constatée dans quelques cas fort rares (pilimiction). Elle peut être due à la rupture, dans les voies urinaires, de kystes dermoïdes.

Le plus souvent, ils sont introduits accidentellement dans les vases contenant l'urine; l'exanen microscopique permet de reconnatire, dans une certaine mesure, leur provenance. Dans quelques cas d'hystérie, on a signalé l'introduction préméditée de poist dans l'urine (V. Jaksch).

TROISIÈME SÉRIE. - ÉLÉMENTS PARASITAIRES.

I. VÉGÉTAUX.

A. Ferment figuré de l'urine diabétique.

Identique aux cellules de la levire de hière (saccharomyces ecretisis); forme ronde ou ovalaire, cellules isolées ou réunies entre elles. Leur présence en grande quantité indique toujours que l'urine contient du sucre; cependant elles peuvent exister en netite quantité dans l'urine non sucrée.

R. Ferment lactique.

Le ferment lactique contribue, pour sa part, à la fermentation acide de l'urine. Au lieu d'être formé, comme le micrococcus uree, de globules arrondis, il a ses globules comprimés en leur milieu.

C. Ferment de l'urée.

Le ferment de l'urée est cellai qui domine dans l'uriné et qui provoque la transformation de l'urée en carbonate d'ammoniaque. C'est le micrococcus ureze de van Tieghem, torulacée formée de chapelets allongés et composée de globules sphériques de 0=0,0015.

Le ferment de van Tieghem est une alçue; il existe également dans l'urine des behivores, où il amban la transformation de l'acide hippurique en glycolamine et en acide heuzoique. On peut l'isoler de l'urine en filtrant celle-ci sur du papire blanc qui retient le ferment et que l'on fait ensuite sécher à 35° après l'avoir coloré en jaune par du curcuma (Musculus). Ce papier est'un réculti frès sensible de l'urée. Musculus le recommande pour la recherche de petites quantifed d'urée dans les eaux de puits suspectes d'initiration de fosses d'aisances ou d'eaux ménageres. Ce savant avait soutenu que la décomposition de l'urée était duc à un ferment soluble pro-

venant du mucus de l'urine et non à un ferment figuré. Pasteur et Joubert ont démontré que ce ferment soluble existait bien, en effet, mais qu'il était produit par la torulacée de van Tieghem. Il parait agir pour décomposer l'urée tant qu'il n'y a pas dans la solution plus de 13 p. 100 de carbonate d'ammoniaque.

D. Autres champignons de l'urine.

On rencontre encore dans certaines urines divers champignons pathogènes que nous nous contenterons d'énumérer et dont les principaux sont les suivants :

a. Sarcines (Sarcina urinæ), analogues à celles de l'estomac, mais un peu plus petites. Se rencontre généralement chez les dyspeptiques acides.

b. Penicillium glaucum, rencontré par Heller et Basham chez des typhiques et encore dans la dyspepsie acide.

c. Ungoo, observée par Basham dans l'urine de certains oxaluriques.

d. Protococcus, variété d'algues palmellées, unicellulaires, donnant à certaines urines, comme au pus, la propriété de bleuir à la surface en présence de l'air.

II. ANIMAUX.

A. Vibrioniens.

a. Les vibrions de l'urine sont de petits bâtonnets fins et courts, se mouvant avec une extrême rapidité. On y rencontre aussi des bactéries de formes et de grosseurs très variables. Bouchard en a décrit une (bacterium urex) en chapelets, à articles allongés et cylindriques, à laquelle il attribue la fermentation ammoniacale pathologique de l'urine.

La présence dans l'urine, d'une grande quantité de bactéries, constitue un état morbide particulier décrit sous le nom de bactériurie, conséquence lui-même de la bactérihémie. On l'a constatée dans quelques maladies infectieuses graves comme la diphtérie, la fièvre typhoïde, la variole, etc.

On observe également la bactériurie après l'usage de cathéter malpropre, à la suite de cystites ou d'uréthrites.

La bactériurie est le plus souvent accompagnée d'albumine et de cylindres. Quelquefois on trouve des pseudo-cylindres d'après V. Jaksch, dans la plupart des cas, une néphrite septique ou une pyélo-néphrite. b. Quand ils sont agglomérés de facon à former une chaîne

allongée, les vibrions prennent le nom de leptothrix.

c. Rosenheim a signalé une bactérie spéciale capable d'opérer la décomposition de l'urine en donnant lieu à une production d'hydrogène sulfuré.

R. Racilles.

En dehors du bacillus urez de Miquel, qui se rencontre dans l'urine normale, on peut trouver dans l'urine pathologique un grand nombre de bacilles pathogènes.

Nous citerons en première ligne :

a. Le bacille de la tuberculose, dont la recherche a une importance de premier ordre pour le diagnostic de la tuberculose des voies urinaires.

b. On a trouvé dans l'urine le bacille de la blennorrhagie (gonococcus de Neisser), le bacille de la morve, de la fièvre récurrente, etc., etc.

c. Enfin, tout récemment, on a signalé dans l'urine le bacille de la morve (Pever).

C. Infusoires

Nous citerons sous cette rubrique :

a. Le Bodo urinarius trouvé par Hassal dans certaines urines albumineuses:

b. Le Cercomonas urinarius, identique de forme au cercomo nas intestinal:

e. Enfin le Monas crepusculum qui a été décrit par Pasteur.

Ces parasites, au dire de von Jaksch, n'ont aucune importance séméiologique; nous ne les constatons donc ici qu'è simple titre documentaire.

DEUXIÈME CLASSE. - ÉLÉMENTS MINÉBAUX.

Premier ordre. - Éléments minéraux solides.

PREMIÈRE SÉRIE. - CARRONATÉS

I. CARBONATE D'AMMONIAQUE.

Ce sel résulte, dans l'urine, de la décomposition de l'urée sous l'influence du micrococcus ureze, soit que cette décomposition se fasse après l'émission, soit qu'elle ait lieu dans les voies urinaires, comme cela arrive dans le cas de catarrhe vésical pour la vessie, d'hydronéphrose ou pyélonéphrite pour le rein.

II. CARRONATE DE CHAUY

Le carbonate de chaux et le carbonate de magnésie se rencontrent rarement dans l'urine. Ils existent alors sous forme de sédiments ou de calculs et sont associés à des phosphates. Le carbonate de chaux se dépose en urine alcaline sous forme d'un précipité blanc floconneux, mêlé à des phosphates et urates alcalins. Au microscope, il est en masses granuleuses, solubles dans l'acide acétique avec dégagement de gaz incolore troublant l'eau de barvte.

On peut le trouver dans des urines faiblement acides. Mais en ce cas l'acidité n'est jamais égale au chiffre d'acide phosphorique nécessaire pour former des sels acides. Il est très rare qu'il soit cristallisé.

D'après Golding Bird, le carbonate de chaux de l'urine serait formé par l'action du carbonate d'ammoniaque sur le phosphate de chaux. Les urines des herbivores (urines jumenteuses) en contiennent touiours.

Le carbonate de chaux se rencontre fréquemment dans l'urine des enfants, qui, par suite du régime lacté, ne possède qu'une acidité extrêmement faible.

DEUXIÈME SÉRIE. - PHOSPHATÉS.

I. PHOSPHATE NEUTRE DE CHATTY

Ce phosphate (phosphate bicalcique 2CaO,HO,PhO3) se rencontre dans les urines faiblement acides et riches en phosphates. Il se présente sous forme de prismes gisant à côté les uns des autres, stantôt isofés, taillés en forme de coins, solubles dans l'acide actique. Le plus souvent le phosphate bibasique de chaux est amorphe on sous forme de granulations arrondies. Il ressemble beaucoup aux sédiments de carbonate de chaux, mais s'en distingue facilement parce qu'il ne donne pas lieu, sous l'influence des acides, à un dégagement d'acide carbonique.

D'après Peyer, le phosphate neutre de chaux affecte la forme de cristaux aciculaires, parfois agglomérés, la pointe dirigée vers un centre commun. Parfois on le trouve dans la pellicule brillante et irisée qui s'étend sur une urine faiblement acide, neutre ou faiblement alcaline. Il est facilement soluble dans l'acide acétime.

II. PHOSPHATE BASIQUE DE CHAUX.

Le phosphate tribasique (3Ca0,PhO³) se rencoutre dans l'urine soit en solution, soit à l'état de sédiment.

A l'état de sédiment on le trouve comme le précédent dans les urines neutres ou alcalines. Il se sépare des urines peu acides par l'ébullition qui chasse l'acide carbonique à la faveur duquei il était dissous; le précipité est soluble dans les acides.

Le sédiment de phosphate de chaux est amorphe, blanchâtre, et pourrait être au premier abord facilement confondu avec de l'albumine on du pus.

III. PHOSPHATE BASIQUE DE MAGNÉSIE.

Sédiment rare signalé par Stein dans une urine alcaline. Il see présente sous forme de tables rhombiques, blanches, fortement réfringentes (Peyer). Ces cristaux sont solubles dans l'acide acétique et rongés par l'addition de carbonate de soude ou d'ammoniaque (une partie pour cinq d'eou distillée). On les trouve daus les urines concentrées, faiblement acides et dans les urines noutres ou alcalines (von l'aksch).

Le phosphate de magnésie accompagne souvent dans l'urine le phosphate de chaux. Méhu a trouvé des calculs qui étaient uniquement formés par ce sel. Le plus souvent il est à l'état amorphe mélé à du phosphate de chaux également amorphe (urines ammoniacales). On trouve presque toujours dans ces

sédiments des cristaux du phosphate ammoniaco-magnésien. Au microscope les phosphates terreux (chaux et magnésie) peuvent se confondre avec les urates; la chaleur dissout les urates, tandis qu'elle favorise au contraire la précipitation des phosphates terreux.

IV. PHOSPHATE AMMONIACO-MAGNÉSIEN.

Ce sel apparaît toujours dans les urines ammoniacales, où il résulte de la combinaison du phosphate de magnésie avec l'ammoniaque provenant de la décomposition de l'urée. Son type fondamental est un prisme rappelant l'aspect d'un couvercle de cercueil. Plus rarement on l'observe sous forme de feuilles de fougère. Cette dernière forme ne se rencontre que lorsque le dépôt s'est effectué rapidement; elle est rare dans les urines lentement putréfiées (Méhu),

TROISIÈME SÉRIE. - SULFATÉS.

I. HYPOSULFITES ALCALINS.

L'acide sulfureux a été trouvé dans l'urine par Strümpell daus un cas de typhus. Les urines qui en contiennent deviennent lactescentes par l'addition d'acide chlorhydrique qui en sépare le soufre.

II. SULFATE DE CHAUY

Se rencontre très rarement dans le sédiment de l'urine sous forme cristalline. Peyer a observé un cas de ce genre dans l'urine d'un malade atteint de kyphose avec myélite consécutive. On connaît deux autres observations analogues.

> QUATRIÈME SÉRIE. - NITRÉS. I. AZOTITES ALCALINS.

Leur existence dans l'urine a été signalée par Schönbein et confirmée par Röhmann. D'après ce dernier, ils proviendraient des nitrates apportés par l'alimentation et réduits dans la putréfaction. On les recherche au moyen de l'empois d'amidon o duré et acidulé par de l'acide sulfurique dilué. L'acide nitreux dégagé décompose l'iodure de potassium avec production d'iodure d'amidon bleu. On peut encore employer pour te même usage le métadiamidobenzol que l'acide nitreux colore en iaune intense.

En tous cas, il faut savoir que l'acide nitreux ne se trouve que dans l'urine putride, et que sa présence n'a jusqu'à présent du moins aucune signification pathologique.

Deuxième ordre. - Éléments minéraux liquides.

PREMIÈRE SÉRIE. - OXYGÉNÉS.

I. BIOXYDE D'HYDROGÈNE.

Découvert par Schönbein dans l'urine. On le recherche principalement, dit von Jaksch, en se basant sur son action sur les solutions diluées d'indigo en présence de la solution de sulfate de fer. En présence de ce corps la solution d'indigo se décolore. Sans importance pathologique.

Le peroxyde d'hydrogène disparaît de l'urine quand les nitrites s'y développent (Danlos).

Troisième ordre. - Éléments minéraux gazeux.

PREMIÈRE SÉRIE. - ALCALINS.

AMMONIAQUE.

Nous avons signalé l'ammoniaque parmi les corps constituants de l'urine normale; si nous en reparlons ici, ce n'est plus en la considérant à l'état de sel, mais à l'état de gaz libre se trouvant dans certaines urines putrides.

Nous profiterons toutefois de la circonstance pour étudier ses variations dans les unies anormales. Et à cet égard nous dirons d'une façon générale qu'il y a diminution dans toutes les maladies relevant de la diathèse hyperacide : les combustions y étant en effet amoindries, on comprend que les échanges chimiques s'arrétent plus tôt aux termes correspondant à l'arote faiblement oxydé; et de fait on voit la créatinine et l'acide urique augmenter en raison inverse de cette diminution de l'ammoniaure.

Au contraire dans toutes les maladies relevant de la dialbhee hypoacide et ob, de ce fait, les combustions organiques dépassent la normale, il y a augmentation de formation et de sécrition de l'ammoniaque, comme généralement augmentation de formation et de sécrition des détrivés arolès complètement oxydés (graée), par rapport à une dimination relative des mêmes éléments incomplètement oxydés (graée), par rapport à une dimination relative des mêmes éléments incomplètement oxydés (graée) par la port de l'attent de l'at

Nous verrons plus loin que cette variation relative de l'ammoniaque par rapport à la créatinice peut servir à différencier les formes de glycosurie afférentes à l'une ou l'autre de ces diathèses. Quoi qu'il en soit, les travaux qui suivent concordent avec nos vues personnelles et générales en ce sens.

Dans le diabète, d'après Leube, on peut éliminer jusqu'à 6 grammes d'ammoniaque par vingt-quatre heures.

Suivant Duchek et Hallervorden, la quantité d'ammoniaque augmenterait dans l'urine dans toutes les maladies fébriles; elle pourrait aussi augmenter dans la phtisie pulmonaire.

Il faut bien se rappeler qu'il ne s'agit pas ici de l'ammoniaque pouvant provenir de la décomposition de l'urée, mais de celle qui peut d'ire produite dans l'Indérieur de l'Organisme par un processus pathologique (ammonémie). L'alimentation peut être aussi une cause d'augmentation de l'ammoniaque urinaire (raifort, étc.).

DEUXIÈME SÉRIE. — ACIDES. ACIDE SULPHYDRIQUE

L'acide sulfhydrique a été constaté dans quelques cas très rares dans l'urine, où sa présence constitue l'hydrothionurie.

rares anns l'urme, ou sa présence constatte l'hydromionne. Il donne lieu de sphénomènes d'auto-intoxication et parati étre l'indice d'une commanication anormale, entre l'intestin et l'appareil urinaire. D'après Bett, il pourrait passer par somsos de l'intestin dans le sang et de là dans l'urine; on lui a également assigné comme origine possible une décomposition putride des principes sulfarés de l'urine (cystine, pyine, albumine, sullocyanares).

Même en petite quantité, l'acide sulfhydrique se décèle facilement dans l'urine par son odeur caractéristique. Pour en retrouver des traces, il suffit de suspendre dans un vase fermé, à demi plein d'urine, une bande de papier à filtrer imprégnée d'une solution d'acétate de plomb et de lessive de soude.

TROISIÈME SÉRIE. — NEUTRES.

OZONE.

L'ozone a été constatée dans certaines urines dans les mêmes conditions que le peroxyde d'hydrogène. Sa présence n'a aucune signification particulière.

-DEUXIÈME SECTION

ÉLÉMENTS EXTRAPHYSIOLOGIQUES NON FORMÉS DANS

La description chimique des éléments compris dans cette section de notre travail serait illimitée pour ainsi dire si nous voulions envisager tous les corps qui, pourant être introduits dans l'organisme par une voie ou par une autre, s'éliminent ensuite par l'urine; cette description deviendrait une vasie compilation. Le but de ce livre étant essentiellement de faire œuvre pratique, nous nous limiterons aux corps qui, entrés d'une façon courante dans l'hygiène alimentaire on dans la thérapeutique, peuvent être rencontrés dans l'excrétion uri-naire, nous réservant encore plus spécialement d'attier l'attention sur ceux qui modifient la nature de l'urine au point de lui imprimer une physionomie particulière.

Quant aux corps mélangés accidentellement à l'urine, nous ne leur accorderons que la place restreinte que comporte leur importance sémicloigque négative : les énumérant toutefois, parce que leur rencontre dans l'urine ou ses sédiments peut, en quelques cas, amener pour l'observateur superficie tertaines erreurs matérielse reprettables au point de vue sémécloique.

PREMIÈRE CLASSE. -- ÉLÉMENTS ÉLIMINÉS PAR L'ORGANISME.

Premier ordre. — Éléments d'origine alimentaire.

A. Provenant des aliments solides.

ASPARAGINE. - L'asparagine (acide amidosuccinamique) se

dédouble dans l'organisme et passe dans l'urine sous forme d'acide succinique et d'animoniaque.

On a dit (Knieriem), que l'usage de l'asparagine et de l'acide aspartique augmentait la proportion de l'urée.

B. Provenant des boissons.

GÉLATINE. — La gélatine (glutine) provenant de l'alimentation (bouillons de viande), passe en nature dans l'urine.

II. DÉRIVÉE.

A. Provenant des aliments.

ODEUR DE L'ASPERGE. — L'usage des asperges communique à l'urine une odeur spéciale désagréable.

Deuxième ordre. — Éléments d'origine médicamenteuse. L. PRIMITTYE.

A. Produits minéraux.

a. MÉTALLOIDES.

a. lode et brome. — L'iode administré en nature passe dans l'urine sous forme d'iodure alcalin comme ceux-ci, d'ailleurs. Il en est de même du brome et des bromures.

La recherche de ces corps n'offre aucune difficulté pratique; on traile l'urine avec un peu d'acide nitrique fumant ou d'acu achiorée, et on agite le mélange avec du chloroforme. S'il y a des sels d'iode, l'iode métallique est mis en liberté et se dissout dans le chloroforme en lui communiquant une coloration rouge. Cette coloration est jaune en cas de brome.

On peut retrouver l'iode dans l'urine un quart d'heure après son administration.

β. Soufre. — Le soufre est oxydé dans l'organisme et s'élimine par l'urine sous forme d'acide sulfurique et de soufre neutre.

Les sulfures alcalins fournissent des sulfates.

Les hyposulfites s'éliminent en partie sans modification et en partie comme sulfates.

γ. Arsenic et antimoine. — L'arsenic passerait dans l'urine, d'après Roussin, à l'état d'arséniate ammoniaco-magnésien. On le recherche par la méthode de Marsh. Il en est de même de l'antimoine.

δ. Sels alcalins.

1º Les sels neutres alcalins (chlorures, sulfates) s'éliminent en nature par l'urine ;

2º Les carbonates alcalins y passent dans les mêmes conditions, mais ils modifient quelquefois la réaction de l'urine.

Cependant la saturation de l'organisme par les eaux minérales afacilines (Vichy par exemple) est beaucoup moins égale qu'on pourrait le croires. Elle dépend surfout, comme Gautrelet et Peyrand l'ont fait voir, de l'acidité organique générale d'une part et d'autre part du développement plus ou moins prononcé du tissu adipeux.

D'après Salkowski, le carbonate d'ammoniaque fait exception à la règle précédente : il passerait tout entier sous forme d'urée sans alcaliniser l'urine:

3º Les, phosphates passent en nature : mais nous croyons avoir remarqué que leur excrétion par la voie rénale était faible. l'intestin étant surtout chargé de les éliminer :

4º Les chlorates, iodates, bromates et nitrates sont en partie éliminés en nature, et en partie réduits en chlorares, iodares et nitrites;

5º Les ferrocyanates passent inaltérés ;

6º Les ferricyanures sont réduits dans l'organisme et passent à l'état de ferrocyanures.

b. MÉTAUX ET SELS MÉTALLIQUES.

On a retrouvé dans l'urine du zinc, de l'or, de l'argent, de l'étain, du plomb, du bismuth, du euiere, etc., après l'administration de fortes doses des sels de ces médicaments.

D'une façon générale on peut rechercher les métaux soit par les méthodes ordinaires après destruction de la matière organique, soit par l'électrolyse. Cette deruière méthode est particulièrement avantageuse pour la recherche du mercure.

On a également retrouvé dans l'urine par électrolyse le üthium, le thallium, le cadmium, le baryum et le strontium. Le spectroscope peut également servir à déceler ces métaux.

Les sels de magnésium ne s'éliminent qu'en partie par l'urine.

B. Produits organiques.

a. Hydrocarbures.

a. Hydrocarbures vrais. — Pétrole. — Bouchard a signalé une élimination en nature du pétrole après une absorption d'une quantité extraordinaire de ce produit.

β. Dérivés hydrocarburés.

4º Le chteroforme à la suite des inhalations chirurgicales s'élimine partie eu chlorures, partie en nature par l'urine, qui réduit alors directement la liqueur de Fehing. On peut l'y déceler par la méthode indiquée par Personne pour la recherche toxicologique.

2º L'iodoforme s'élimine par l'urine en partie sous forme d'iodures:

3º Le nopthol passe en nature dans l'urine; on le trouve en traitant à 100º par la soude la solution chloroformique du résidu éthéré de l'urine. Avec l'acide sulfurique concentré on a une coloration verte caractéristique.

b, Alcools.

a. L'alcool éthylique ingéré passe dans l'urine en très petites proportions (à peine 3 p. 100). Sa recherche est fort délicate.

Il ne faut pas se contenter de la réaction de Lieben (formation d'iodoforme), ou de la réduction de l'acide chromique, mais chercher à séparer l'alcolo par distillation (procédé de Bitter). En présence du carhonate de potasse, on caractérise alors l'alcool par la formation d'éther hutyrique (odeur caractéristique), ou d'éther henorique (Berthelot).

β. La glycérine n'a jamais été retrouvée en nature dans l'urine, même à doses infinitésimales; elle paraît complètement hrûlée par l'organisme.

c. PHÉNOLS.

a. On retrouve l'acide phénique dans l'urine sous forme de phénylsulfate de potassium et d'hydroquinone. Il peut communique à l'urine une coloration nûre lorsque l'hydroquinone est en excès. On le recherche en distillant l'urine en présence d'acide chlorhydrique. L'addition d'eau de brome au produit de la distillation donne naissance à un précipité. floconneux qui dégage l'odeur de l'acide phénique au contact de l'amalgame de sodium.

Il ne faut pas oublier, comme nous l'avons dit, que des dérivés phényliques existent normalement dans l'urine.

β. D'après nos recherches personnelles, ces mêmes considérations s'appliquent à l'acide résylique récemment introduit dans la thérapeutique, ainsi qu'à la créosote, dont ce produit dérive. d'Across.

a. L'acide salicylique passe très rapidement dans l'urine. L'urine qui le renferme donne, avec une solution de perchierure de fer, une coloration rouge violet. Il s'élimine en grande partie sous forme d'acide salicylarique. Pour obtenir la réaction ci-dessus d'une fagon tout à fait concluante, il haut traiter d'abord l'urine avec une solution de chlorure ferrique, qui précipite les phosphates à l'état de phosphate g'elatineux de fer, filter et ajouter au filtratum une nouvelle quantité de solution ferrique.

β. Acide pierique. — L'urine offre une couleur jaune orangée intense chez les sujets qui en ont absorbé.

7. L'acide tannique (tannin) s'élimine sous forme d'acide gallique, L'urine devient noire avec le perchlorure de fer.

8. Les acides gras volatils se transforment tous en acide carbonique et en eau dans l'organisme; on ne les retrouve donc jamais dans l'urine.

s. Les acides lactique, citrique, formique, tartrique et oxalique sont en partie comburés, et en partie aussi s'éliminent en nature par l'urine.

n. Les balsamirues, comme la térôtenthine, le copabu contiennent de l'acide abiétique. Absorbé, cet acide passe en nature dans l'urine, ot on le caractérise par presque toutes les réactions de l'albumine, avec laquelle il peut être confonda, ou plus exactement pour laquelle il crés une cause d'erreur comme recherche. La solubilité de ses précipités dans l'alcool l'en différencie cenedant.

e. ÉTHERS.

L'acide sulfovinique (acide éthyl-sulfurique), employé sous forme de sulfovinate de soude comme purgatif, s'élimine en nature.

f. AMIDES.

lpha. Amides acides. — Les amides acides s'éliminent complètement transformés, soit :

 $4\,^{\circ}$ Sous forme d'urée : glycocolle, leucine, acide as paragique ;

2º Soit sous forme de taurine (acides uramides).

β. Amides de la série grasse: s'éliminent en nature par l'urine.
γ. Amides de la série cyanique. — 1° Élimination sous forme d'ura mides.

2º Élimination sous forme de dérivés sulfoconjugués.

g. Amines (alcalis organiques).

a. Amines primitives. — 1º Les ammoniaques composées s'éliminent partié en nature, partie sous forme oxydée (urée et ammoniaque);

2º Les abcolothes s'éliminent généralement tels quels par l'arine; quelques-uns, toutefois, sont oxydés par leur passage dans l'organisme. On recherche ceux d'eutre eux qui s'éliminent en nature parla méthode générale de Stas plus ou moins modifiée suivant les cas.

Pour certains d'entre eux, l'atropine entre autres, la réaction physiologique (dilatation de la pupille) trouve son application pratique.

On verra à la séméiologie que l'élimination des alcaloïdes, comme d'une façon générale celle de tous les médicaments, est entravée par les altérations du dialyseur rénal.

3° Les ptomaines, introduites comme vaccins dans l'écononie, s'éliminent en nature par l'urine qui peut alors elle-même servir de véhicule vaccinifère (Charrin et Ruffier).

β. Dérivés des amines. — 1° La kairine, l'analgésine, la thalline s'éliminent en nature et donnent les unes et les autres, comme le salot et l'acide salicylique, la coloration brun rouge avec le perchlorure de fer.

On les différencie d'avec l'acide diacétique en ce que cette coloration persiste à l'ébullition, tandis qu'avec l'acide diacétique et ses dérivés, elle est fugitive;

2º L'acétanilide s'élimine en nature et, contrairement aux corps précédents, n'imprime aucune altération aux propriétés physiques propres de l'urine.

- h. MATIÈRES COLORANTES
- α. Jaunes. 4° L'acide chrysophanique (rhubarbe et séné).
- 2º La santonine (semen contra) : (urines acides).
- β. Rouges.
- 1º L'hématoxyline (bois du Brésil);
- 2º L'alizarine (garance);
- 3º Le carmin (cochenille):
- 4º La fuchisne et les sels de rosaniline.
- 5º La santonine (urines alcalines):
- Vertes. 4º La chlorophylle (végétaux verts) passe en nature dans l'urine.
 - i. ODEURS.
 - a. La valériane;
 - p. Lau;
 γ. Le safran :
 - 8. Le castoréum :
 - :. Le copahu;
 - n. Le cubébe;
 - 0. Le genièvre;
 - . Le santal, communiquent à l'urine leur odeur propre.

II. DÉRIVÉE

a. L'essence de térébenthine s'élimine sous forme d'une substance jusqu'ici indéterminée au point de vue chimique, mais qui, au point de vue organoleptique, est des mieux caractérisée par l'Odeur franche de violette qu'elle possède.

B. Acide urochloralique.

L'acide urochioulique se trouve dans l'urine après ingestion de chioral. Il faut toutelois que le chloral ait été pris à fortes doses et pendant longtemps. L'acide urochioralique possède un pouvoir rotatoire gauche (u, j) = -60. Il réduit à l'ébulition les solutions alcalines de cuivre et de bismuth et décolore l'indigo sulfurique. Le sous-acétate de plomb le précipite de ses solutions.

154

Troisième ordre. - Éléments d'origine toxique.

I. PRIMITIVE

A. Chlorure de zinc.

Boyet et Gautrelet, dans le seul cas connu d'empoisonnement par le chlorure de zinc, out retrouvé ce sel dans l'urine. Il v était accompagné par de l'indican en abondance, dont il avait déterminé la formation dans l'organisme.

R Divers

Dans les cas d'empoisonnement on recherchera les corps toxiques par les méthodes générales qui, en toxicologie, sont applicables à chacun d'eux.

II DÉRIVÉE

Indépendamment des toxiques ingérés passant en nature, on trouve aussi dans l'urine des produits anormaux tels que : A. L'albumine et le sang (acides minéraux en général, sels de plomb, de mercure, de cuivre, arsenic, phosphore, acide phénique, ptomaines);

- B. Les graisses neutres (phosphore);
- C. Le sucre (morphine presque toujours);
- D. Le sucre et l'albumine (oxyde de carbone);
- E. Un corps réducteur (?) (alcalis et acides minéraux en général, arsenic, aniline, nitrobenzine);
 - F. Un corps lévogure (?) (apiline, pitrobenzine).

Ouatrième ordre. - Éléments d'origine fermentescible. A. Leucomaines pathologiques.

Des ptomaines (alcaloides de la putréfaction), ou plus exactement des leucomaines morbides, ont été trouvées dans les urines de la fièvre typhoïde (typhotoxine) d'abord, puis dans celles d'autres maladies infectieuses par Bouchard.

Ces leucomaines sont d'ailleurs des corps analogues aux alcaloides que l'on rencontre dans l'urine normale et qui par leur augmentation, leur accumulation dans l'économie, peuvent aussi produire des accidents toxiques (urémie). Villiers a récemment observé des ptomaines dans les urines de la rougeole, de la diphtérie et de la pneumonie.

Tanret, Bouchardat et Caudier recommandent le procédé suivant pour leur recherche : on traite l'urine par une solution d'iodure double de potassium et de mercure acidulé avec l'acide acétique (réactif de Tanret). Le précipité produit par les ptomaines est soluble dans l'alcol à chaud (différence d'avec l'albumine, la mucine ou l'accide urique).

Bouchard fait un extrait éthéré de l'urine alcalinisée par de la lessive de soude.

DEUXIÈME CLASSE. — ÉLÉMENTS MÉLANGÉS ACCIDENTELLEMENT A L'URINE.

Premier ordre. - Éléments d'origine animale.

I. NATURELS: Plumes d'oiseaux, écailles de papillons, fragments d'acariens, poils d'animaux domestiques (chat, chien, etc.), globules lactés (lait).

II. MANUFACTURES: Débris de tissus, soie, laine, laine à tricoter, flocons de laine de couvertures.

Deuxième ordre. - Éléments d'origine végétale.

I. NATURELS : Échardes de bois (ligneux), feuilles (débris), débris d'écorces (liber).

II. MANUFACTURÉS: Filaments de coton, de lin, de chauvre, globules huileux (généralement introduits par la sonde), miettes de pain, amidons de riz, de froment, de pommes de terre (surtout urines de femmes).

Troisième ordre. - Élèments d'origine minérale.

I. NATURELS : Poussière de charbon, sable.

II. Manufacturés : Poussières de métaux (fer, etc.), graisses minérales (vaseline, etc.).

Quatrième ordre. — Éléments d'origine atmosphérique.

I. Poussières atmosphériques. Beale a décrit comme provenant de l'atmosphère des spores (fongus de l'urine) qu'à pre156

mière vue on pourrait, à l'examen microscopique, confondre avec les spermatozoaires.

II. Bulles d'air. Peuvent être confondues avec des globules gras.

CHAPITRE 11

TECHNIQUE DE L'ANALYSE UROLOGIQUE

Les considerations de physiologie urinaire résumées précédemment ont montré que l'urine, physiologique on morbide, était un tout virant, un ensemble absolument irréductible. Toute urine, même la plus anormale, ayant, en effet, les étéments normaux comme base, la technique de l'analyse urologique devra embrasser l'ensemble des recherches et dosages se rapportant aux éléments physiologiques aussi bien qu'aux éléments extra-physiologiques.

De ce fait, nous décrirons simultanúment les procédés relatifs aux uns et aux autres de ces éléments. Mais toutefois comme l'on doit trouver dans cette partie pour les éléments normaux plus que leurs dosages considérés en eux-mêmes, comme l'on doit encore y voir rapprochés les uns des autres les rapports pondéraux théoriques des éléments urinaires normaux avec ceux des éléments urinaires constatés, nous divisrons cette technique en deux sections se rapportant plus spécialement à ces deux phases de l'analyse urbojerque.

Docimasie urologique proprement dite;

Docimasie urologique comparée.

PREMIÈRE SECTION

DOCIMASIE UROLOGIQUE PROPREMENT DITE.

Le but de ce livre étant essentiellement pratique, nous ne nous attarderons pas à donner la description de tous les appareils ou pro-édés se rapportant à la technique urologique. Ayant po, au contraire, du fait d'une expérience déjà longue, faire dans cet ensemble un choix que nous croyons judicieux, nous exposerons à cette place notre méthode seule dans toute.

sa simplicité et en nous limitant strictement à la recherche et au dosage de coux des éléments urnaires dout la connaissance trouve une application pratique dans la séméiologie médicale. Nous suivrons dans cet exposé la marche générale adoptée pour la première partie relativement aux propriéts organo-lepiques, physiques, chimiques et physiologiques de l'excrétion urnaire : cette marche auxa pour effét de coordonner nos connaissances antérieures avec leur application analytique pratique.

PREMIÈRE SÉRIE. - APPRÉCIATIONS ORGANOLEPTIQUES.

La couleur jaune ambrée présentée par l'urine normale peut se trouver modifiée de deux manières différentes :

Par variations docimasiques des pigments normaux;

A. Variations docimasiques des pigments urinaires normaux.

Ces variations peuvent soit se limiter à l'un des pigments, soit porter sur les deux à la fois.

a. Variations doctinasiques isotées ets incurris xonnaux. a. Variations doctinasiques isotées de l'urobitine. — 1º Variation pósitive. — Elle constitue les urines rouge acajou dites hémaphétiques (augmentation des réductions hépatiques sur l'hémoglobine circulatoire, competitions hépatiques, chrèbose hépatique).

2º Variation négative. — Elle donne des urines faiblement colorées [par diminution des réductions hépatiques sur l'hémoglobine circulatoire, tuberculoses (périodes non fébrules), sclérose généralisée).

β. Variations docimasiques isolées de l'uroérythrine. — 4º Variation positive. — On a des urines rouge briqueté dites fébriles qui, séméiologiquement parlant, correspondent en effet à l'état morbide aigu connu sous le nom générique de flèvre.

2º Variation négative. — La teinte de l'urine normale est abaissée avec perte d'une partie de son éclat rouge habituel (goutte acquise).

b. Variations docimasiques simultanées des piements normaux.
 α. Variations parallèles de l'urobiline et de l'uroérythrine.

1º Variation positive. — L'augmentation apparente parallèle de l'urobiline et de l'urofrythrine donne des urines présentant la teinte jaune ambrée normale, mais beaucoup plus foncée; elle peut recounaître deux causes différentes :

i. Concentration exagérée du produit urinaire (rhumatisme goutteux);

ij. Augmentation absolue des deux pigments (rhumatisme vrai).

2º Variation négative. — La diminution apparente parallète des deux pigments peut être due comme la décoloration plus ou moins complète de l'urine :

 Soit à une simple dilution des pigments par augmentation non parallèle de l'eau isolément (hydrurie) ou de l'excrétion

d'ensemble (polyurie);

ij. Soit à la diminution réelle, plus ou moins accusée, dans la formation et l'élimination de cespigments (anémie). Séméiologiquement parlant, tout processus morbide aigu doit être écarté comme diagnostic ou pronostic dans ce dernier cas.

β. Variations discordantes de l'urobiline et de l'uroérythrine. — 1º L'augmentation de l'urobiline par rapport à une diminution relative de l'uroérythrine se rencontre surtout dans les urines

hémaphéiques.

2º L'augmentation de l'uroérythrine par rapport à une diminution relative de l'urobiline se présente surtout dans les urines fébriles.

B Présence de pigments anormaux.

Les pigments non physiologiques rencontrés dans l'urine peuvent être d'origine pathologique ou d'origine extérieure (médicaments, aliments, etc.).

a. Pigments anormaux pathologiques. — De ce fait, les urines peuvent présenter les colorations suivantes :

a. Coloration rouge sang. — L'urine doit sa couleur plus ou moins accentuée (rouge clair au brun noir) :

1º Soit à la présence des globules rouges sanguins avec leur pigment l'hémoglobine (hémorrhagie des voies urinaires);

2º Soit à la présence exclusive du pigment sanguin, l'hémoglobine (destruction exagérée des hématies circulatoires). . Le microscope seul permet la différenciation de ces deux formes de coloration dues aux éléments sanguins.

β. Coloration bleue. — L'urine est ainsi colorée par l'indigotine (fermentations intestinales exagérées des albuminoides, typhus, catarné intestinal ou stagnation exagérée dans l'intestin des produits de ladite fermentation, atonie intestinale, péritonite diffuse, compression médullaire par selérose; gommes ou dévations vertêruels lombaires).

γ. Coloration violette. — Toujours due à la superposition des deux couleurs rouge et bleue, mais se présentant en deux cas différents :

4º Par superposition de la couleur bleue due à l'indigotine et rouge due à l'indirubine (urines putréfiées contenant primitivement de l'indigotine dont une portion, par oxydation, s'est trausformée en indirubine):

2º Par superposition du bleu de l'indigotine et du rouge de l'hémoglobine (urines à indigotine contenant simultanément le pigment sanguin libre ou renfermé dans les hématies).

La différenciation de ces deux types de coloration peut seulement être donnée par le spectroscope.

8. Coloration verte. — Exclusivement due aux matières colorantes biliaires (bilirubine, biliverdine, bilifuschine, biliprasine), mais allant du vert jaune au brun de bière selon :

4° Les proportions relatives de chacun des pigments biliaires qui y sont contenus si ces pigments y existent exclusivement (ictère vrai);

2º Soit que lesdits pigments biliaires s'accompagnent des pigments normaux (ictère hémaphéique).

 Coloration noire. — Urines colorées (du brun jusqu'au noir) par l'uromélanine (pigment du cancer hépatique).

n. Coloration blanche. — Due à la division dans l'urine d'un corps gras sous forme de gouttelettes très ténues (urines chyleuses, urines laileuses).

b. Pignents anormaux d'origine extérieure.

a. Coloration rouge brun. — Produite par les sels alcalins de l'acide crysophanique (urines alcalines chez des malades ayant ingéré de la rhuharbe ou du séné). Cette couleur rouge brun (plus ou moins prononcée) disparaît par acidification de l'urine (différence avec la matière colorante du sang).

\$\begin{align*} \beta \cdot \cd

la fois de la santonine et des alcalins.

γ. Coloration jaune vert. — Résultat de la présence d'un dérivé de la santonine (urines acides de maladies ayant absorbé du semen-contral). Cette coloration vire au rouge groselle (teinte précédente plus claire que la teinte des sels de l'acide crysophanique) par addition d'un alcali (différence avec les pigments biliaires).

8. Coloration brun sert. — Résultat de l'oxydation (par alcalinité de l'urine) de dérivés sulfoconjueués des phénois arematiques (hydroquinon, pyrocatéchine) incolores par eux-mêmes mais rocevant de la putréfaction de l'urine cette coloration secondaire (urines alcalines idez des malades ayant absorbé du phénol, de l'acide salicylique, du goudron, de l'uva-ursi, etc., urines carboliques).

 Coloration brun madère. — Urines alcalines chez des malades ayant subi un traitement à la résorcine (Cadet de Gassicourt),

II. TRANSPARENCE.

Dans l'examen de la transparence des urines, on considère deux cas :

État des urines à l'émission.

État des urines après refroidissement et repos.

A. État des urines à l'émission.

a. TRANSPARENCE.

«. État normal. — Elle est le fait de la pondération absolue des éléments entrant dans l'excrétion urinaire.

§: Etat extra-physiologique. — Résultat de la modification qu'apportent à la solubilité de certains éléments urinaires les conditions de température données par la situation centrale de la vessie dans le corps humain [goutleux, période élétat].

6. Taouble. — Le trouble, plus ou moins accentué, qu'une urine peut présenter à l'émission peut être dù :

a. A des globules gras en suspension (chylurie, lactosurie).
 β. Aux éléments histologiques du pus (leucocytes, cytoïdes), également en suspension (pyclo-néphrile, cystite).

 γ. Aux éléments histologiques du sang (hématies, leucocytes) divisés dans l'urine (hémorrhagie des voies urinaires).

 λ des produits (cellules épithéliales pavimenteuses) de la desquamation des voies urinaires en excès sur la normale (cystite catarrhale).

 A de l'acide urique amorphe très divisé (urines très acides des rhumatisants quatteux) (hyperacidité).

n. 4º Par la précipitation de phosphates et carbonates terreux amorphes [urines jumenteuses (analogues à celles des herbivores) liées à un trouble de la nutrition];

2º Par la précipitation de phosphates terreux, de phosphate ammoniaco-magnésien, d'urate acide d'ammoniaque (urines putréfiées dans les voies urinaires) (hypoacidité).

B. État des urines après refroidissement et repos.

a. TRANSPARENCE.

a. Etat normal. — Le faible trouble occasionné dans l'urine quelques heures après la miction est produit par l'agglomération (du fait des traces de mucine normale) des rares cellules desquamées des voies urinaires se déposant assez rapidement au fond du récipient.

β. Etat extra-physiologique. — Fruit de l'agglomération rapide sous forme de dépôt et sédiment des déchets solides (acide urique et débris épithéliaux) dans les urines très acides (rhumatisants-goutleux) troubles à la miction.

b. TROUBLE.

a. Par persistance du trouble primitif. — Par modifications insuffisantes des conditions de suspension des produits solides causes de ce trouble [chylurie, purulence, sanguinolence, desquamation épithéliale hypoacidité]).

β. Par formation ultérieure. — 1º Due à une précipitation lente d'acide urique dans des urines non excessivement acides [aoutteux (période critique]]:

2º Au développement d'innombrables vibrions (germes extérieurs) :

3º A une putréfaction postérieure à la miction [urines faiblement acides à la miction (névrose, troubles nutritifs faibles) donnant des phosphates terreux, des phosphates ammoniacomagnésiens (rares), du carbonate de chaux].

III. ASPECT.

L'aspect d'ensemble d'une urine est généralement fourni par la superposition des facteurs organoleptiques couleur et transparence.

Exemples: urines chyleuses, troubles et blanc laiteuses; urines jumenteuses, troubles et blanchâtres.

Un cas spécial se présente toutefois :

Certaines urines, limpides d'une part et d'autre part ne présentant aucune coloration anormale, offrent par l'agitation des reflets chatoyants très accentués.

Ce chatoiement, caractéristique des peptones au point de vue organoleptique, nous semble mériter cette distinction particulière qui, en ce cas, nous fait séparer l'aspect de la transparence des urines.

IV. FLUORESCENCE.

L'agitation peut encore faire apparaître dans une urine deux ordres de reflets spéciaux quand on les cousidère sous des lames minces, ou sur le bord d'un verre : ces reflets portent plus spécialement le nom de fluorescence.

A. Fluorescence rouge verdâtre.

Plus ou moins accentuée dans toute urine, selon les proportions d'urobiline que le produit contient (l'addition d'ammoniaque augmente la teinte verte). C'est ce qui explique qu'elle soit portée à son maximum d'intensité dans les urines albumineuses putréfiées.

B. Fluorescence blèue.

Propre seulement à certaines urines :

a. Les unes contenant un sel acide de quinine (et en ce cas la fluorescence disparatt par addition d'alcali volatil); les chlorures alcalins diminuent cette fluorescence, on peut l'augmenter en décolorant et déchlorisant l'urine par le protonitrate de mercure.

b. Les autres renfermant un hydrocarbure (comme le pétrole ou la vaseline (action nulle de l'ammoniaque).

V. CONSISTANCE.

La consistance fluide, analogue à celle de l'eau, normale pour l'urine physiologique, peut se trouver modifiée de deux manières différentes : les urines sont visqueuses, les urines sont boueuses.

A. Urines visqueuses.

Le pus en solution alcaline communique à certaines urines une difficulté de couler goutte à goutte, qui fait que parfois elles s'échappent en bloc (comme du blanc d'œuf) de leur récipient lorsque l'on vient à les en verser. Cette viscosité peut être plus ou moins accentuées.

B. Urines boueuses.

La masse de dépôt et sédiment peut parfois être telle dans une urine que, après refroidissement, le produit ait la consistance de la boue (urines de certains rhumatisants-goulteus). Le dépôt est alors constitué par de l'acide urique amorphe, des dôbris épithéliaux et de la mucine.

VI. SURFACE.

La surface de l'urine normale est nette, avous-nous dit, c'est-d-itre ne présente que de rares bulles gazeuses généraloment attachées aux parois du récipient. On peut toutefois concevoir et l'on constate, en effet, pratiquement trois modilications à cet état : surface couverte d'une mouses plus on moins abondante, surface couverte d'une faible couche huileuse, surface couverte d'une mince pellicule.

A. Surface spumeuse.

L'écume persistante produite par l'agitation de la surface d'une urine peut provenir :

a. De la présence d'un excès d'urobiline. — En ce cas l'urine possède généralement une teinte acajou assez prononcée.

b. De la présence de matières protéques. — Ces matières protéques peuvent être de la sérine (teintes variées), des syntonines-acides (augmentation de la teinte colorimale), des syntonines-alcalis (diminution de la teinte colormale), des syntonines-alcalis (diminution de la teinte colormétrique normale), des peptones (chatoiement), des pigments biliaires (teinte jaune vert brun caractéristique).

c. De la présence de la GLUCOSE. — La densité à volume normal est généralement augmentée.

B. Surface huileuse.

Cette forme spéciale de la surface urinaire peut être due :

a. A des corrs gras (chylurie, lactosurie). — Dans ce cas le liquide est trouble et blanc laiteux.

b. A DES HYDROCARBURES (vaseline, pétrole). — En ce cas il y a fluorescence bleue du liquide dans sa masse.

C. Surface pelliculaire.

Trois formes:

a. Pellictue caistalline. — Souvent irisée et en tous cas formée de cristaux de phosphates terreux et de phosphate ammoniaco-magnésien agglomérés ainsi que les globules gras, et des vibrions par des syntonines-alcalis [urines faiblement alcalines accusant des troubles nutritifs certains (névouse, gestation); cette pellicule porte le nom spécial de kystéme.

b. Pellicule organisée. — Presque exclusivement formée de

globules gras (dans la chylurie et la lactosurie).

c. Pellicule amorre. — Due à des syntonines alcalis souillées de rares débris épithéliaux et séparées par la putréfaction dans les urines très denses primitivement peu acides.

VII. DÉPOT.

Toute urine, même la plus normale, laisse déposer sur les parois et au fond du Yase qui la contient, quelques heures après la miction, de très légers flocons formés de cellules et débris épithéliaux pavimenteux des voies urinaires entralnés et agglomérés par les traces de mucine du mucus vésical normal.

Considéré au point de vue urologique général le dépôt dans une urine revêt trois formes différentes selon sa composition et les points où il s'arrête dans le liquide : formes que l'on distingue par les noms de nuage, d'énéorème, d'hypostase.

A. Nuages.

Flocons très ténus, très peu denses, exclusivement formés de rares débris épithéliaux groupés et nageant près de la surface du liquide.

B. Énêorêmes.

Flocons muqueux plus abondants et chargés de faibles proportions de dépôts uriques qui, augmentant leur densité, les entraînent au milieu de la masse du liquide où elles continuent à flotter.

C. Hypostases.

Dépôts plus denses, tombant au fond du vase, et y formant selon leur abondance soit un simple revêtement, soit une masse plus ou moins volumineuse.

Les hypostases peuvent être floconneuses ou pulvérulentes, homogènes ou dissociables, et ont des compositions diverses et complexes analogues à celles que nous allons divelopper pour les sédiments. En certains cas spéciaux (présence des corps figurés volumieux, celloies, strongles géants par exemple), leur composition apparente se trouve en partie et directement décelée par le simple examen organoleptique. Autrement, le microscope fait pratiquement connaître cette composition.

VIII. SÉDIMENT.

En uvologie, on désigne tout particulièrement sous ce nom générique la partie d'un dépot qui, dans un vasa queloconque, au lieu de Blotter près de la surface du liquide (comme le nuage), de nager dans la masse urinaire (comme l'énéorème), ou enfin de tomber au fond du récipient (comme l'hypostase), s'altache aux parois du récipient et s'y fixe.

Les sédiments sont : selon leur abondance, rares ou accentués; et selon leur apparence, amorphes ou cristallins.

A. Sédiments cristallins.

a. Formés dans une urine acide. — Ils comprennent : de l'acide urique, de l'oxalate de chaux (isolément ou simultanément et en cristaux réguliers ou non).

b. Formes dans une ureme neutre (ou amphotérique). - On y

rencontre exclusivement le phosphate bibasique de chaux.

c. Formés dans une univerale alcaline. — Ils laissent voir au microscope des phosphates terreux et du phosphate ammoniaco-magnésien (soit le premier exclusivement, soit les deux réunis).

Le tout bien entendu souillé d'éléments histologiques divers selon les circonstances pathologiques.

B. Sédiments amorphes.

a. Formés dans une unide acide. — On y rencontre : de l'acide urique amorphe et de l'oxalate de chaux cristallisé, ou de l'urate acide de soude.

b. Formés dans une urine alcaline. — Ils sontformés de phosphates terreux soit isolément soit accompagnés de carbonate de chaux et d'urate acide d'ammoniaque.

IX. CALCULS.

L'hypostase peut parfois comprendre, avons-nous dit, certains corps figurés d'un volume assez considérable pour être, à l'œil nu, classés d'une façon autre que générale.

Ces corps figurés sont : ou organisés (strongle géant, etc.) ou de nature chimique définie; en ce dernier cas ils prennent le nom spécial de calculs.

L'examen organoleptique les divise de suite en :

A. Produits d'une urine seide

a. Calculs homogènes.

a. A surface lisse.

Colorés en rouge briqueté.
 Acide urique exclusivement.

j. Acide urique (masse principale) et oxalate de chaux (traces).

2º Colorés en rouge grenat. — Bilirubine (biliaire) exclusi-

3º Colorés en jaune fauve.

i. Calculs solides, xanthine.

ij. Calculs mous (comme la cire), urostéalithes.

4º Colorés en vert brun. - Cholestérine et pigments bi-

liaires d'ensemble (calculs biliaires passés dans la vessie par voie de fistule vésico-intestinale).

- 5º Colorés en bleu foncé. Indigotine.
- B. Mamelonnés.
- 1º Colorés en brun.
- i. Oxalate de chaux exclusivement (calculs minéraux) (fig. 4).

Fig. 4. — Calculs muraux d'oxalate de chaux (Beale).

Fig. 5. — Calcul mixte d'acide urique et d'exalate de chaux (Beale).

- ij. Oxalate de chaux (masse principale) et acide urique (traces) (fig. 5).
 - 2º Colorés en jaune. Cystine.
 - b. CALCULS NON HOMOGÈNES.
- α. A surface irrégulière.
- 1º Colorés en rouge briqueté. Couches alternatives d'acide urique et d'oxalate de chaux.

Fig. 6 et 7. — Galculs à noyaux d'acide urique recouvert de phosphates terreux (Beale).

2º Colorés en blanc sale. — Une quelconque des formes homogènes précédentes recouverte (par séjour dans la vessie au sein d'une urine s'y putréfiant, cystite calculeuse) de cristaux de phosphate ammoniaco-magnésien.

β. A surface régulière. - Une quelconque des formes homogènes précédentes recouverte [par séjour dans une collection purulente des voies urinaires (calices ou bassinets exclusivement) néphrite calculeuse], de couches concentriques de phosphates terreux (chaux et magnésie) (fig. 6 et 7).

B. Produits d'une urine neutre.

a. Calculs homogènes. - Mélange de phosphates terreux (masse principale) et de carbonate de chaux (traces).

C. Produits d'une urine alcaline

a. Calculs homogènes. - Phosphate tribasique de chaux (urines de dialyse alcaline).

b. CACULS NON HOMOGÈNES.

or Tricene

10 Une quelconque des formes précédentes (d'origine acide neutre ou alcaline);

d'un caillot sanguin recouvert

2º Ou un caillot sanguin (fig. 8): 3 Ou une mèche fibrineuse:

4º Ou un corps étranger recouvert de phosphate tribasique de chaux

exclusivement (formation récente). β. Irréguliers. - Les mêmes que de phosphates terreux (Beale). précédemment recouverts :

4º Soit de couches superposées de phosphate tribasique de chaux (interne) et de phosphate ammoniaco-magnésien (externe) (formation movennement ancienne):

2º Soit de couches superposées de phosphate bibasique de chaux interne), de phosphates tribasiques de chaux et de magnésie (moyenne), et de phosphate ammoniaco-magnésien (externe) (formation ancienne).

X. ODEUR.

L'odeur « sui generis » (plus ou moins accentuée selon la concentration du produit), caractéristique de l'excrétion urinaire dans l'espèce humaine à son émission, peut se trouver modifiée dans les conditions les plus diverses que l'on peut cependant rattacher à deux groupes : causes pathologiques, causes d'origine extérieure.

A. Modifications pathologiques de l'odeur urinaire.

Les auteurs sont d'accord pour décrire dans les urines pathologiques ou extra-physiologiques les odeurs suivantes :

a. ODEUR AMMONIACALE. — Due à la décomposition putride de l'urine dans les voies urinaires (néphrite calculeuse, cystite peu suppurée).

b. ODEUR PURULENTE. — Due à la présence de notables quantités de pus récemment formé dans les voies urinaires (néphrite suppurée, cystite suppurée).

c. ODEUR FÉTIDE. — Due à la présence de fortes quantités de pus ou d'éléments sanguins putréflés dans les voies urinaires (hydro-néphrose).

d. ODEUR PÉCALOIDE. — Due à la présence des dérivés phényliques de la fermentation intestinale entrés dans les voies urinaires par une communication directe du tube digestif avec l'appareil excréteur de l'urine (fistules vésico-intestinales).

e. ODEUR GANGRÉNEUSE (cancer des reins, de la vessie, ou de l'appareil génital de la femme).

f. Odeur de marke. — Présence de la méthylamine (urine des femmes pendant leurs périodes menstruelles).

g. Odbur d'herbe (fièvre typhoide à forme cérébrale) (A. Robin).

h. Odbur de pain bouilli (fièvre typhoide à forme rénale) (A.

R. ODBUR DE PAIN BOUILLI (heure typhonde à forme rénale) (A.
 Robin).
 i. ODBUR D'ALCOOL. — Présence d'alcool (urines de certains

diabétiques à forme cachectique).

j. Odeur de lie de vin Aigri. — Présence d'acide diacétique

(urines de certains diabétiques près de leur terminaison finale).

k. ODEUR DE CHLOROFORME. — Présence de l'acétone (urines de

certains diabétiques, toujours forme cachectique).

1. Odeur sulfhydrique. — Présence de l'acide sulfhydrique (résorption intestinale, putréfaction du sang ou du pus dans les

A ces observations nous ajouterons :

m. Odeur d'amandes amères. - Présence de dérivés cyanhy-

E. GAUTRELET. - Urines.

voies urinaires.

driques (certains cas de période ultime de la forme cachectique du diabète ou de la tuberculose).

n. Odrur d'indigo. - Présence de l'indigotine (urines alcalines par troubles d'innervation vésicale).

o. ODEUR DE SUINT. - Présence de cystine (troubles fonctionnels actifs du foie.

p. ODEUR DE FOURRURE (pneumonie typhoidique) (A. Robin).

q. ODEUR SULFUREUSE [fievre typhoide (convalescence)] (A. Robin),

B. Modifications accidentelles de l'odeur urinaire.

Certains aliments, comme certains médicaments, non odorants ou peu odorants par eux-mêmes, ou enfin à odeur propre différente de celle constatée en l'urine, introduits dans l'économie, y subissent une série de transformations et s'éliminent sous forme de principes odorants caractéristiques.

Les principaux sont :

a. L'asperge, qui communique à l'urine une odeur fétide spéciale bien définie.

b. L'ail, qui produit des dérivés sulfurés très odorants.

c. Les balsamiques, qui aromatisent l'urine d'une facon très nette.

d. L'essence de térébenthine qui, ingérée aux plus faibles doses ou simplement inhalée sous forme de traces, fait éliminer par la voie rénale un produit à odeur franche de violettes.

Cette élimination spéciale modifiant accidentellement l'odeur urinaire n'a point le caractère spéculatif exclusif qu'on pourrait lui croire à première vue.

Certains pathologistes français, de Beauvais en tête, ont signalé les modifications que les altérations histologiques rénales apportaient à cette élimination, et ont conclu que toute lésion rénale l'annulait.

Sans adopter une manière de voir aussi exclusive, nous appuvant et sur les observations de Neubauer et Vogel et sur notre propre expérience, nous dirons que la constatation de cette élimination peut être d'un grand secours au clinicien en lui faisant toucher du doigt, sous une forme organoleptique, l'état vrai des altérations histologiques rénales.

En effet, ces altérations histologiques sont-elles bien limitées comme dans la néphrite calculeuse? Cette, élimination n'est point supprimée.

Au contraire, toute altération histologique rénale généralisée (sclérose, dégénérescence graisseuse) l'annihile d'une façon absolue.

DEUXIÈME SÉRIE. - EXAMEN PHYSIQUE.

I. MENSURATION VOLUMETRIQUE

La mensuration volumétrique des urines, base des calculs généraux de l'excrétion des vingt-quatre heures, offre une grande importance,

On doit donc avoir soin, lorsqu'on fait recueillir les urines d'un malade, de bien lui préciser la manière d'opérer : vider la vessie à telle heure déterminée et recueillir exactement tout ce qui passera de liquide urinaire (ne pas négliger d'uriner avant d'aller à la garde-robe) jusqu'au lendemain à la même heure

Au point de vue pratique, cette mensuration se fera de deux manières différentes, selon les moyens dont on disposera.

A. Mensuration volumétrique directe.

Au moyen d'un récipient gradué en centimètres cubes.

B. Mensuration volumétrique indirecte

Un récipient gradué faisant défaut, le poids du volume urinaire des vingt-quatre heures donné parla balance sera ramené au volume par le moyen de la deusité.

Sachant, en effet, que P = VD, on en tire :

 $V = \frac{P}{D}$

Exemple:

Poids de l'urine de vingt-quatre heures : 1,456 grammes. Densité (à + 45°C.) de la même urine : 1,027.6.

Le volume sera :

. $V=\frac{1456}{1.0276}=1417$ centimètres cubes.

Les chiffres extrêmes, observés dans l'élimination urinaire de vingt-quatre heures chez des malades, ont été de 0 (anurie absolue) à 27,000 centimètres cubes (27 litres : polyurie diabétique).

II. DENSIMÈTRIE.

Qualle que soit la méthode employée (mais un bon densimètre permettant d'apprécier les fractions décimales de degré est suffisant), l'obtention de la densité vraie doit toujours recevoir la correction de la température du liquide sur lequel on opère; (avoir soin de rempir totalement l'éprouvette.)

On devra toutefois, au point de vue pratique, bien observer on pas employer un instrument sale ou mouillé (qui n'étant pas en contact parfait avec le liquide augmente la quantité de ce liquide déplace); il en résulterait l'observation d'un poids spécifique trop élevé.

Autre recommandation : le liquide examiné ne devra par avoir été filtré ; on aura soin au contraire de l'agiter préalable ment de façon à tenir le dépôt en suspension, sans quoi l'instrument indiquerait une densité trop faible et ne se rapportant plus à l'ensemble du produit excrété.

Pour la correction à faire subir à l'Indication brute du densimètre, on admet d'une façon à peu près rigoureuse que chaque différence de température de 3°C, en plus ou en moins que la moyenne + 15°C, correspond d'une façon inversement proportionnelle à une unité de poids spécifique.

La correction à noter sera ainsi de $\frac{1}{3}$ d'unité spécifique par degré centigrade observé, positive pour une augmentation de la température négative, en cas contraire.

Exemple:

1º Densité brute à + 26°C = 1038,6.

Densité corrigée à + 45°C = $4038,6 + \frac{26 - 45}{3} = 4038,6 + 3.6 = 4042,2$.

2º Densité brute à + 6°C = 1014,4;

Densité corrigée à $+45^{\circ}$ C = $1014.4 - \frac{45-6}{3} = 1014.4 - 3$ = 1014.4.

La table suivante donnée par Bouchardat père, pour ces corrections (températures moyennes), en tenant compte de la présence ou non du sucre (qui modifie dans une certaine mesure . les conditions de dilatabilité du liquide urinaire) supprime tous calculs :

TEMPÉRATURE ODSERVÉE.	URINES NON SUCRÉES : CORRECTION.	UNINES SUCRÉES : CORRECTION.
0° c. + 2 · + 3 · + 5 · + 6 · + 7 · + 8 ·	- 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9	- 1.3 - 1.3 - 1.3 - 1.3 - 1.3 - 1.2
+ 10 + 11 + 12 + 13	- 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2	- 1.1 - 1.0 - 0.9 - 0.8 - 0.7 - 0.6 - 0.4
+ 14 + 15 + 16 + 17 + 18 + 19 + 20	- 0.1 - 0.1 + 0.1 + 0.2 + 0.3 + 0.5 - 0.7	- 0.2 + 0.2 + 0.4 + 0.6 + 0.8 + 1.0
+ 21 + 22 + 23 + 24 + 25 + 26 + 27	+ 0.9 + 1.1 + 1.3 + 1.5 + 1.7 + 2.0 + 2.3	+ 1.2 + 1.4 + 1.6 + 1.9 + 2.2 + 2.5 + 2.8 + 3.1
+ 27 + 28 + 29 + 30	+ 2.3 + 2.5 + 2.7 + 3.0	+ 2.8 + 3.1 + 3.4 + 3.7

Cette table s'applique de la facon suivante : Exemples:

1º Densité brute à + 21°C, = 1031.2, sucre non constaté: densité corrigée à + 15°C. = 1031,2 + 0,9=1032,1;

2° Densité brute à -7°C. =1023, sucre constaté; densité corrigée à +45°C. =1023-4,1=1024,9.

La connaissance de la densité a été conservée par nous en tant que manipulation physique comme moyen d'exploration

exclusivement clinique.

Nous appuyant, en effet, d'une part sur notre propre expérience et d'autre part sur des fails expérimentaux précis, nous dirons qu'elle ne peut guider le chimiste ni le médecin d'une façon certaine pour leurs conclusions générales; tout au plus peut-elle faire soupconner au clinicien la présence du surce ou l'accroissement des déchets organiques, et lui donner l'idée de faire exécuter une analyse ruisonnée et complète.

Nous avons personnellement vu des urines présentant un poids spécifique de 4047 ne point contenir de glucose, tandis que d'autres ayant une densité de 4007 en renfermaient, et ce

à volumes à peu près moyens.

Quant à la déduction des éléments fixes urinaires que l'on a coutume d'en tirer, Méhu a montré que la variation d'un degré densimétrique à + 13°C. correspondait à des poids inégaux de produits divers dissous; poids qui sont:

3,595 pour l'urée; 2,700 pour le glucose;

3,792 pour le phosphate neutre de soude hydraté;

0,977 pour le phosphate neutre de soude anhydre;

1,473 pour le chlorure de sodium; 1,405 pour le sulfate de soude anhydre;

3,892 pour l'albumine pure (exempte desels).

C'est donc faire justice de tous les coefficients densimétriques réunis.

III. COLORIMÈTRIE.

Neubauer et Vogel, avons-nous dit (1), ont donné une échelle colorimétrique pratique des teintes que peut présenter l'urine normale.

Mais ni leur mode d'examen direct, ni celui de A. Gautier par le cylindre urinaire fait dans une éprouvette, ne nous semblant suffisamment précis, nous avons adapté à 'appréciation

⁽i) Voir page 59.

DIALYSE.

de ces teintes colorimétriques le colorimètre de Collardon en le modifiant de façon qu'il pût recevoir des vases assurant une épaisseur de 10 centimètres à la couche urinaire observée.

D'un côté donc, nous mettons l'urine à examiner et de l'autre un vase analogue rempli d'une solution correspondant comme unité à l'un ou à l'autre des types de l'échelle colorimétrique en question.

Par tâtonnement on voit facilement avec lequel de ces types le liquide examiné a le plus d'analogie au point de vue de la coloration.

Cette méthode permet, avec un peu d'habitude, non seulement d'apprécier toutes les fractions de degré colorimétrique de la table de Neubauer et Vogel, mais encore de bien s'assurer si la coloration présentée par l'urine examinée appartient bien à l'un quelconque des types de la série normale, si cette coloration est sériée ou non

La couleur constatée ne paraît-elle pas sériée, on cherche aux propriétés organoleptiques, paragraphe couleur, la teinte dont elle semble s'approcher davantage.

Est-elle au contraire voisine de l'un ou l'autre des types colorimétriques normaux, on en déduit facilement son intensité colorimétrique, que l'on exprime alors par l'unité colorimétrique inférieure plus une fraction décime fournie par l'appréciation visuelle.

Exemples:

1º Liquide très rapproché inférieurement comme teinte colorimétrique du type 5 de l'échelle urologique :

Intensité colorimétrique = 4,8.

2º Liquide à peu près distant, comme teinte colorimétrique. des types 3 et 4 de l'échelle urologique ; Intensité colorimétrique = 3,5.

3º Liquide très légèrement supérieur, comme teinte colorimétrique, au type 2 de l'échelle urologique :

Intensité colorimétrique = 2.2.

IV. DIALVSE.

L'utilité pratique de l'emploi de la dyalyse comme moyen d'exploration urologique ne se fait sentir que dans un cas unique : séparation des matières protéques colloides (sérine, pyine, mucine, spermatine, ovoglobuline) de leurs congénères sione cristalloides, du moins traversant les membranes animales en des conditions de pression égale en les deux sens (peptones, syntonines-acides, syntonines-alcalis, hémoglobine, pigments bilitaires).

Le mode opératoire est des plus simples :

400 centimètres cubes d'urine sont introduits dans le tambour d'un dialyseur.

100 centimètres cubes d'eau distillée sont versés dans le récipient.

Les deux vases étant ajustés et mis à l'abri des poussières atmosphériques et de l'évaporation par une cloche, on laisse en contact pendant vingt-quatre houres.

Au bout de ce temps les matières protéiques dialysables se montrent en totalité dans l'eau distillée, où l'on peut les doser exclusivement.

V. ÉLECTROLYSE.

En urologie, l'électrolyse est exclusivement employée à la recherche du mercure introduit par la thérapeutique dans l'économie sous une forme médicamenteuse quelconque et éliminé par la voie rénale.

Gette recherche qui peut guider le clinicien sur l'absorption vraie ou non du médicament employé, sur la rapidité de son élimination, se fait pratiquement au moyen d'un couple voltaique formé par deux électrodes, l'une attaquable (négative-étain), l'autre inerte (positive-or), disposées sous forme d'une baguette (étain) autour de laquelle est enroulée une lame mince du métal précieux. L'urine joue à la fois le rôle de liquide d'attaque et de liquide attaqué. En ce sens, toutefois, au cas où elle ne serait pas acide, il serait utile de l'additionner de 1 ou 2 centimétres cubes d'acide chlorythyrique pur.

On laisse le contact s'opérer pendant l'espace de vingt-quatre, heures; pendant ce laps de temps le mercure, si l'urine en contient, a dû se déposer sur la lame d'or, d'où on le retire par volatilisation (en tube clos), en le caractérisant par l'iode (bliodure hydrargyique rouge).

VI. POLARIMÉTRIE

Tout examen polarimétrique rotatoire suppose une décoloration absolue du liquide examiné, puisque la polorisation rotatoire doit toujours s'effectuer sur un rayon lumineux unique (jaune du chlorure de sodium dans la pratique des laboratoires).

Or, d'une façon générale, l'urine ne présente que très rarement cette disposition, et de ce fait elle doit subir une manipulation préparatoire, dite défécation.

Dans ce but, on l'additionne d'un ditinème de son volume de sous-acétale de plomb liquide (extrait de Saturme), soit pratiquement 10 centimètres cubes de réaudif pour 100 centimètres cubes d'urine à analyser, on filtre et on introduit le filtratum bien limpide dans un tude de 22 centimètres de longueur (pour éviter toutes corrections relatives au volume de liquide étranger introduit par la défécation.

L'appareil étant bien réglé et le vernier correspondant au zéro de la graduation, trois cas peuvent se présenter :

1. l'on constate et mesure une déviation droite;

2º l'on constate et mesure une déviation gauche; 3º le réglage de l'instrument n'est point modifié.

A. Modification polarimétrique dextrogyre.

Nous avons vu précédemment qu'aucun élément de l'urine normale n'agissait sur la lumière en la polarisant circulairement; or, purmi les corps qui entrent anormalement dans la composition urinaire, et qui agissent de cette manière au polarimètre, on comprend plus spécialement :

Le glucose (diabèté), lo lactose (allaitement), le succhárose ((lumude)), nd extrina (bière en boisson), y figurant à titres divers soit pathologiques, soit accidentels, soit caleulés: l'action polarimétrique rotatoire dextrogyre constatée peut ainsi, soit dépendre exclusivement de l'un de ces corps, soit der la somme des actions combinées de plusieurs ou de la totalité d'entre eux;

Soit enfin représenter la différence de l'action polarisante dextrogyre de l'un ou de plusieurs des produits précités et de

l'action polarisante lévogyre de produits dont nous aurons à nous occuper au paragraphe suivant.

a. Par élément dextrogyre unique.

a. L'examen physiologique de l'urine examinée (fermentation carbonyle de Cl. Bernard) nous apprendra (action positive si le glucese est ce corps, aucun des autres éléments ne donnant rien en ce sens.

β. La liqueur de Fehling :

1° Docimasie chimique comparée au chiffre polarimétrique trouvé (α)=+59,3 pour le lactose et α j=+438,7 pour la dextrine) apprendra si l'on a affaire à l'un ou à l'autre de ces deux produits;

2° (Action négative) enseignera enfin si l'on a exclusivement en sa présence du saccharose.

b. Par éléments dextrogyres multiples.

Supposons le cas le plus complexe, cas purement théorique, c'est-à-drie la présence des quatre éléments : glucose, lactose, saccharose et dextrine; leur constatation ou plus exactement leurs dosages respectifs pourront néanmoins s'effectuer par la série de manipulations suivantes :

Il est certain qu'un examen polarimétrique direct donne un poids P' qui sera la somme des actions polarimétriques de même sens des quatre facteurs: glucose, lactose, saccharose, dextrine;

D'autre part, P' étant le glucose dosé par la fermentation carbonique (levûre de bière);

P''' représentant l'action directe de l'urine (déféquée et toutes corrections faites) sur la liqueur de Fehling, action alors localisée au glucose, au lactose, à la dextrine;

Et enfin Pre correspondant à l'action de l'urine (déféquée et toutes corrections encore faites) sur la même liqueur de Fehling, après intervention du saccharose en glucose par l'acide chlorbydrique à chaud:

On aura ainsi établi quatre équations ;

D'où il sera toujours possible de tirer les quatre inconnues. De plus, il est clair que l'absence de l'un ou l'autre des éléments ne modifie en rien la marche de la manipulation, elle ne fait que la simplifier. c. Par différence positive entre les produits dextrogyres et les éléments lévogyres.

Voir au paragraphe suivant:

B. Modification polarimétrique lévogyre.

Certains produits anormaux peuvent rester dans l'urine après la défécation et agir aussi lévogyrement sur la lumière polarisée;

Les principaux sont :

Le lévulose (sucre de raisin), les peptones (de la digestion), l'acide oxybutyrique (acétonhémie hyperacide), certains hydrocarbures (essence de téréhenthine, essence du baume de copahu, entre autres comme médicaments, l'acide urochlora-linus (chlorat).

Une déviation polarimétrique lévogyre peut donc être

Tant à l'action de l'un des éléments polarisants lévogyres exclusivement:

Ou'à celle de plusieurs de ces éléments;

Qu'enfin à une différence positive (au point de vue lévogyre), d'éléments déviant circulairement, les uns à droite, les autres à gauche, la lumière polarisée.

a. Par élément lévogyre uniour.

a. La liqueur de Fehling par sa réduction décèlera le sucre de raisin;

β. Le réactif de Tanret indiquera les peptones;

γ. L'odeur de violettes caractérisera l'essence de térébenthine et les hydrocarbures isomères.
 δ. L'acide sulfurique à chaud en présence de l'alcool (odeur

de fraises) fera constater l'acide oxybutyrique. On attribuera donc au seul corps constaté la déviation gauche

mesurée.
b. Par éléments lévogyres multiples.

Le cas le plus complexe, présence des quatre groupes d'élé-

ments, sera élucidé par la série suivante de manipulations : Soit P'la somme des actions polarimétriques lévogyres des quatre éléments lévulose, peptones, hydrocarbures, acide oxybutyrique; Soit P' le chiffre de réduction de la liqueur de Fehling, due à l'action combinée du lévulose et des hydrocarbures ;

Soit Pr la somme des actions polarimétiques dues au lévulose, aux hydrocarbures et à l'acide oxybutyrique (les peptones avant été isolées par un sel mercurique).

On aura ainsi obtenu quatre équations :

D'où l'on déduira facilement les quatre inconnues en se rappelant que le coefficient polarimétrique des hydrocarbures essentiels (essence de térébenthine) est «j == 42,3, et celui de l'acide oxybutyrique «j == 23,4.

c. PAR DIFFÉRENCE POSSIBLE ENTRE LES PRODUITS LÉVOGYRES ET

La combinaison des réactions précédemment décrites pour les manipulations qui permettent l'élimination successive des éléments dextrogyres et lévogyres de l'urine, résoudra encore ce problème.

Soit, en effet:

π' la différence de l'action de tous ces éléments sur la lumière polarisée (action positive : glucose, lactose, saccharose, dextrine; action négative: lévulose, peptones, hydrocarbures, acide oxybutyrique);

π" la somme de l'action sur la liqueur de Fehling, du glucose, du lactose, de la dextrine, de l'hydrocarbure essentiel, et du lévulose urinaires;

π" la somme de l'action sur le même réactif des mêmes
corps, plus du saccharose après interversion du liquide;

ziv l'action de la levure de bière sur le glucose et le lévulose de l'urine;

 π^{v} l'action de l'urine sur la liqueur de Tanret (peptones); π^{vz} l'action de la levûre de bière sur le glucose, le lévulose et la dextrine, plus le saccharose urinaire interverti;

π^{vii} l'action différentielle de ces corps après interversion de la dextrine et du saccharose;

On aura ainsi trouvé les bases de sept équations dégageant

Ces manipulations sont des plus complexes, mais la pratique ne rencontrant fort heureusement que quelques-uns des corps précités, le plus souvent glucose, dextrine, peptones exclusivement, elles se trouvent ainsi réduites à leur plus simple expression.

Dans tous ces calculs, ne pas oublier les valeurs polarimétriques, différentes des hydrates de carbone :

Glucose $=\alpha j + 52^{\circ}, 5$

Lactose = $\alpha j + 59^{\circ},3$ Saccharose = $\alpha j + 73^{\circ},8$

Dextrine $=\alpha j + 138^{\circ},7$

Lévulose = a j - 106°

Le tout à la température de + 15°C.

C. Modification polarimétrique nulle.

Ce cas peut dépendre :

a. Soit de l'absence de tout corps déviant rotatoirement la lumière polarisée (urine normale);

 b. Soit de la compensation polarimétrique exacte d'éléments dextrogyres et lévogyres.

Souvent toutes les réactions chimiques et physiologiques du glucose diabétique étant affirmatives, toutes les réactions chimiques des peptones décelant cet albuminoïde, on trouve zéro au polarimètre.

C'est qu'alors d'assez notables proportions relatives de peptones masquent à cet examen de petites proportions de sucre dextrogyre.

Le dosage du glucose n'en est pas moins possible, car les peptones étant pesées volumétriquement d'autre part par le réactif de l'annet, un simple calcul établit la proportion du sucre. Sachant, en effet, que le pouvoir rotatoire des peptones est de a j=-50, etc. d'autre déduit facilement :

$$X \text{ glucose} = \frac{P \text{ peptones} \times 56}{52.5}$$

Ce dosage différentiel s'applique d'une façon analogue à l'acide oxybutyrique et au glucose.

Une conclusion négative par rapport à la recherche du glucose ne peut donc point être absolue, si elle ne s'appuie que sur l'examen polarimétrique d'une urine.

L'examen successivement chimique et physiologique, différenciant encore le glucose des autres corps agissant sur la liqueur de Fehling, comme ils agissent sur le polarimètre dans le même sens, peut seul imposer cette conclusion négative.

En d'autres termes, une recherche de glucose ne peut être exclusivement ni physique (polarimètre), ni chimique (liqueur de Fehling, potasse caustique, réactif de Bottger), ni physiologique (carbonyle, Cl. Bernard); elle ne saurait être que la résultante de ces trois modes opératoires.

Nous passons ici sciemment sous silence la recherche et le dosage de l'albumine par le polarimètre.

D'une part en effet la défécation élimine l'albumine :

D'autre part encore, nous avouons n'avoir jamais rencontré aucune urine albumineuse suffisamment incolore, pour recevoir l'examen polarimétrique direct.

VII. SPECTROSCOPIE.

Le but que l'on se propose en ayant recours à l'examen spectros copique d'une urine est double :

1º Caractériser différentiellement celles des colorations anormales, décelées par l'examen organoleptique préparatoire:

2º Doser l'urobiline normale.

, A. Caractérisation des pigments anormaux.

a. PIGMENT ROUGE.

Un seul pigment rouge anormal agit sur le spectre solaire par absorption, d'une façon tangible; c'est l'hémoglobine ou pigment sanguin.

Une solution de ce corps à 1/1000, examinée en couche liquide de un centimétre d'épaiseur, donne deux raise d'absorption situées l'une et l'autre entre les mies D et B de Fruuenhofer, c'est-à-dire dans le jaune et le vert du spectre. La raie la plus voisine de D est plus nettemient delimitée que sa congénère de droite, et elle disparait plus lentement par addition d'eau à la solution d'hémoglobine.

b. PIGMENT BLEU.

L'indigotine, en solution sulfurique acide étendue, donne une

bande d'absorption entre les lignes C et D de Frauenhofer. En solution concentrée, cette-bande se dédouble en deux raies, dont celle de droite, beaucoup plus large, dépasse la ligne D.

B. Dosage de l'urobiline normale.

Hénocque a appliqué au dosage de ce pigment urinaire normal sa méthode générale de dosage des solutions colorées par le spectroscope, appliqué sur des lames angulaires d'épaisseur croissante.

Son appareil se compose de deux parties essentielles:

Un spectroscope à vision directe;

Une cuve pour recevoir l'urine examinée;

Le spectroscope n'offre rien de particulier.

La cuve au contraire présente une disposition spéciale.

Elle consiste en un flacon (de verre blanc) quadrangulaire, en forme de pyramide aplatie sur deux des faces, sur les faces latérales duquel sont inscrites, d'une part, les épaisseurs de la couche liquide interposée à chaque point de la hauteur, et, d'autre part, les poids de pigment urobilinurique correspondant par litre de solution titrés de ces épaisseurs).

Ayant appris expérimentalement d'une part à quelle dilution correspond l'appartition nette de la raie spectroscopique de l'urobiline; sachant d'autre part quelle épaisseur de liquide est, à chaque hauteur de la cuve, interposée entre la lumière et le spectroscope (ces épaisseurs varient de 0 au sommet du flacon à un chiffre X à sa base); il est certain que la donnée du poids de l'urobiline dissoute en un liquide examiné par cette méthode peut ainsi être déduite de l'Osservation.

Au point de vue de la manipulation pratique, on garnit tout d'abord la cuve de l'urine précédemment filtrée et bien limpide. Puis se plaçant exactement en face d'un objet blanc quelonque (unage, mur, feuille de papier), éclairé à la lumière diffuse, on applique la fente linéeire micrométrique du spectorscope, sur le sommet de la cuve et perpendiculairement à ses arrêtes.

Alors, l'axe du spectroscope étant parallèle à la surface libre du liquide, et la lunette étant au point, on abaisse peu à peu l'instrument dans son entier, jusqu'à ce que la raie d'absorption caractéristique de l'urobiline (raie située entre les lignes b et F de Frauenhofer) apparaisse nettement.

La lecture de la cote placée sur le côté de la cuve à la hauteur de la fente du spectroscope donne immédiatement le chiffre pondéral d'urobiline existant dans un litre de l'urine examinée.

VIII. MICROSCOPIE.

L'examen microscopique d'une urine doit être pratiqué de deux façons différentes :

Histologiquement, c'est-à-dire directement pour la caractérisation de l'ensemble des dépôt et sédiment ainsi étudiés;

Et bactériologiquement, ou dans le but de chercher si ce dépôt et ce sédiment ne contiendraient aucun infiniment petit, bacille ou micrococcus spécifique d'une affection déterminée.

A. Examen histologique des dépôt et sédiment.

Les éléments constatés peuvent être salins ou organisés.

α. Éléments salins,

a. Déposés dans un milieu acide.

L'acidité étant supérieure à PhO⁵ total.
 Acide urique (sédiment très fréquent).

Caractères micro-chimiques :

Formes: fondamentale: tables rhomboedriques à quatre pans.

Dérivées : tables à 6 pans, tables elliptiques (pierre à aiguiser) solèes ou en rosettes ou en mâcles, tables carrées, tonneaux, rouelles, haltères, formes régulières avec aiguilles plus ou moins allongées (calculs rénaux en formation), masses irrégulières allongées (calculs rénaux acquis) (fig. 9, 10, 41, 12); poussière amorphe.

Coloration: rouge brique plus ou moins accentuée (uroérythrine; par lui-même, l'acide urique est incolore).

Solubilité: alcalis caustiques (soude ou potasse exclusivement).

Réactions: murexide [action successive à chaud de l'acide azotique et de l'ammoniaque (coloration rouge pourpre)].

ij. Urate acide de soude (sédiment assez fréquent). Caractères micro-chimiques :

Fig. 9, 10, 41 et 12. - Acide urique (Beale).

Fig. 13. - Urate acide de soude (Beale).

Formes: fondamentale: prismes rectangulaires (infarctus uratiques des nouveau-nés).

Dérivées : fines aiguilles (concrétions goutteuses), sphéroïdes réguliers : poussière amorphe (fig. 13).

Coloration : nulle (blanche).

Solubilité: eau (à chaud), acide acétique dilué (en laissant ultérieurement déposer de l'acide urique).

Réactions : murexide. iij. Oxalate de chaux (sédiment fréquent).

Caractères micro-chimiques :

Formes : fondamentale : octaèdres réguliers allongés.

Dérivées: octaèdre régulier court (enveloppes de lettres), prismes aux extrémités pyramidales (courts ou allongés), agglomérats radiés (ronds ou ovales), sabliers radiés (fig. 14, 15, 16).

Coloration: nulle; réfringence considérable (très brillants). Solubilité: exclusive dans l'acide chlorhydrique.

Réactions : nulles.

iv. Acide hippurique (sédiment rare).

Caractères micro-chimiques :

Formes: fondamentales; prismes rhomboïdaux.

(fig. 47). Coloration: nulle (blanche).

Solubilité: nulle dans l'acide acétique (différenciation d'avec le phosphate ammoniaco-magnésien).

Réactions: Non réaction de la murexide (différenciation d'avec l'acide urique).

v. Sulfate de chaux (sédiment rare).

Caractères micro-chimiques :

Formes: fondamentale : prismes allongés (isolés ou en arborescence).

Dérivées: tables très allongées (le plus souvent tronquées très obliquement à leurs extrémités), isolées ou groupées en arborescence.

Coloration : nulle (blanche).

Solubilité: nulle dans l'acide acétique, très faible dans les acides minéraux ou l'eau.

Réactions : nulles.

Fig. 14, 15 et 16. - Oxalate de chaux (Beale).

Fig. 17. - Acide hippurique (Besle).

Fig. 18. - Cystine (Beale). Fig. 19. - Phosphate neutre de chaux (Beae).

vi. Custine (sédiment très rare).

Caractères micro-chimiques :

Formes : fondamentale : tables à six pans.

Dérivées : arborescences irrégulières (fig. 18).

Coloration : nulle (blanche).

Solubilité: acides minéraux, alcalis caustiques, ammoniaque (différenciation d'avec l'acide urique, insoluble dans l'acide acétique).

Réactions: précipité noir à chaud par alcalis caustiques et acétate de plomb.

2º L'acidité étant égale à PhOs total.

i. Urate acide de soude (précité),

ij. Oxalate de chaux (précité).
 iij. Sulfate de chaux (précité).

iv. Cystine (précitée).

3° L'acidité étant inférieure à PhO5 total (réaction amphotérique).

Phosphate bibasique de chaux (phosphate neutre) (sédiment fréquent).

Caractères micro-chimiques :

Formes : fondamentale : cristaux cunéiformes (isolés, réunis en gerbe ou en rosette) très serrés.

Dérivées : poussière cristalline (fig. 19).

Coloration : nulle (blanche). Solubilité : acide acétique (facilement).

Réactions : précipité blanc (de la solution acétique) par sulfate de magnésie et ammonlague.

ij. Phosphate ammoniaco-magnésien (triple phosphate).

Caractères micro-chimiques :

Formes: fondamentale: prismes à 3 pans avec extrémités obliques (couvercles de cercueil).

Dérivées: prismes à 4 pans avec extrémités obliques, prismes à 6 pans avec extrémités obliques, mâcles (des précédents) en forme de croix (fig. 20, 24, 22).

Coloration : nulle (blanche).

Solubilité: acide acétique (facilement).

Réactions : précipitation de la solution (acide) par l'ammomoniaque, sous forme de cristaux en feuilles de fougère.

Fig. 20, 21 et 22. - Phosphate ammoniaco-magnésien.

Fig. 23. — Carbonate de chaux.

Fig. 24. - Tyrosine (Beale).

iii. Oxalate de chaux (précité).

iv. Cystine (précitée).

β. Déposés dans un milieu neutre.

i. Phosphate bibasique de chaux (précité).

ij'. Phosphate ammoniaco-magnésien (précité).
 iij'. Carbonate de chaux (sédiment rare).

Caractères micro-chimiques:

Formes : fondamentale : sphéroides (boules).

Dérivées : biscuits (agrégat de boules), haltères, pellicules chatoyantes (nageaut à la surface du liquide) (fig. 23).

Coloration: nulle (blanche).

Solubilité: acide acétique (facilement et avec dégagement de bulles gazeuses d'acide carbonique).

Réactions: Dégagement de GO° par action des acides en général.

iv. Sulfate de chaux (précité).

v. Cystine (précitée).

vi. Tyrosine (par concentration du liquide) (typhus, variole, ramollissement du foie).

Caractères micro-chimiques :

Formes: fondamentales: fines aiguilles en gerbe.

Dérivées: boules (agglomérats sphéroidaux d'aiguilles), touffes (agglomérats irréguliers d'aiguilles) (fig. 24).

Coloration : nulle (blauche).

Solubilité: eau à froid (très faible), acides et alcalis.

Réactions: Réactif de Millon (hypoazotite de mercure), coloration rouge (à chaud).

vii. Leucine (par concentration) (ramollissement du foie, typhus, variole).

Caractères micro-chimiques:

Formes: fondamentale: sphéroïdes (à couches concentriques). Dérivées: masses bosselées (agglomération de lamelles) (fig. 25, 26).

Coloration: blanc mat (peu réfringent, différence avec les gouttelettes de graisse).

Solubilité : eau à froid — insoluble dans l'éther (différence avec corpuscules graisseux), — insoluble dans l'acide acétique (différence avec l'urate d'ammoniaque).

Fig. 27. - Cholestérine (Beale).

Fig. 28. -- Glucose (combiné au chlorure de sodium).

Fig. 29. - Indigotine.

Fig. 30. - Épithélium canaliculaire rénal (Beale).

Réactions : dégagement de gaz CO² (à chaud), avec hypobromites alcalins.

viii. Oxalate de chaux (précité).

Déposés dans un milieu alcalin.
 Phosphate ammoniaco-magnésien (précité).

ij. Urate acide d'ammoniaque (sédiment fréquent).

Caractères micro-chimiques :

Formes : fondamentale : aiguilles groupées en éventail.

Dérivées: aiguilles groupées en boules, boules volumineuses lisses, boules volumineuses armées de pointes cristallines (pommes épineuses).

Coloration : jaune-brun.

Solubilité: acide acétique (facilement — par repos on obtient un précipité d'acide urique), eau (très difficilement) à chaud comme à froid.

Réactions : murexide.

iij. Oxalate de chaux (précité).

iv. Phosphate tribasique de magnésie.

Caractères micro-chimiques:

Formes: granulations amorphes (petites) isolées ou réunies en blocs.

Coloration : nulle (incolore).

Solubilité : acide acétique (facilement).

Réaction : précipité cristallin par ammoniaque.

v. Phosphate tribasique de chaux (sédiment fréquent). Caractères micro-chimiques :

Formes: Petites granulations amorphes isolées ou groupées.

Solubilité : acide acétique (facilement).

Réaction : précipité blanc cristallin de la solution acétique par l'ammoniaque et la magnésie.

b. ÉLÉMENTS NEUTRES.

a. Gras.

10 Graisses neutres : lipurie (graisse exclusivement dans l'urine), chylurie (graisse et albumine simultanément dans l'urine), lactosurie (graisse et lactose simultanément dans l'urine).

Caractères micro-chimiques :

Forme: gouttelettes arrondies circulairement.

Coloration: nulle (réfringence considérable).

Solubilité · éthor

Réaction : odeur d'acroléine par combustion (sur une lame de platine).

2º Cholestérine (fig. 27).

Caractères micro-chimiques :

Forme : tables rhomboïdales très minces.

Coloration : pulle (incolore)

Solubilité : nulle dans l'eau : faible dans l'alcool à froid : grande dans l'alcool à chaud, l'éther et les taurocholates alcalins. Réactions : fusible à +145°C; volatile à +360°C; coloration iaune par AzOs; coloration rouge sang par SO3HO.

3º Glucose (combiné au chlorure de sodium) (fig. 28).

3. Albuminoides

Fibrine (hématurie avec résorption partielle du produit colorant : cystite cantharidienne, hydronéphroses, etc.),

Formes: mèches ou flocons plus ou moins volumineux, plus ou moins compactes (toujours mélangées au phosphate ammoniaco-magnésien).

e. ÉLÉMENTS PIGMENTAIRES.

a. Rouges.

10 Hémoglobine. Caractères micro-chimiques :

Formes : fondamentale : cristaux (déposés dans les cylindres urinaires).

Dérivée : poussière amorphe.

2º Hématoïdine (vieux foyers hémorrhagiques). Caractères micro-chimiques :

Forme : cristaux très petits ou fines aiguilles.

Coloration : couleur jaune rougeâtre ou rouge de rubis.

B. Jaune. Bilivuhine.

Caractères micro-chimiques :

Formes : fondamentale : aiguilles (à l'intérieur des corpuscules de pus ou des gouttelettes graisseuses).

Dérivées : feuillets, granulations amorphes.

v. Bleu.

Indigotine.

Caractères micro-chimiques :

Formes: fondamentale: aiguilles étoilées.

Dérivées : aiguilles contournées, feuillets bleus.

d. Éléments organisés.

a. Évithéliums.

1º Physiologiques.

i. Des reins (tubuli canaliculaires desquammés).

Forme : tubes cylindriques (fermés à une extrémité) plus ou moins régulière, à épithélium polyédrique presque circulaire très serré (fig. 30).

ij. Des voies urinaires (bassinets, calices, uretères, vessie. urèthre).

Formes : fondamentale : cellules épithéliales movennes, pavimenteuses nucléolées et à bords épais.

Dérivées : cellules épithéliales triangulaires, deux côtés très longs, un très court (trigone vésical exclusivement); novaux nucléolaires isolés (fig. 31, 32).

iii. Du vaqin.

Formes : cellules épithéliales pavimenteuses (très grandes), nucléolées et à bords minces (fig. 33).

iv. Du col utérin (menstrues mêlées à l'urine).

Formes : cellules épithéliales cylindriques à cils vibratiles. v. De la prostate. Formes : cellules épithéliales pavimenteuses très étendues

et peu épaisses, nucléolées (gros noyau) (fig. 46).

2º Pathologiques.

i. Cellules cancéreuses. Formes : cellules irrégulières, rarement isolées, presque toujours groupées en masses importantes, munies de queues et ramifiées (fig. 34).

ii. Villosités vésicales (fig. 35).

3. Culindres.

Produits d'exsudation composés de fibrine solidifiée et moulée : Sur les tubuli rénaux :

1º Hualins (syntonines-acides exclusivement en couche très mince) (hyperacidité urinaire) (fig. 36);

2º Granuleux (dépôts uratiques ou oxaluriques) (rhumatismes goutteux) (fig. 37);

Fig. 36. - Cylindres hyalins.

Fig. 37. - Cylindres granuleux.

Fig. 38. — Cylindres graisseux.

Fig. 39. - Cylindres colloïdes ou circux.

Fig 40. - Cylindres hemorrhagiques.

Fig. 41. - Cylindres spermatiques (Beale).

Fig. 42. — Cylindres muqueux (Beale).

3º Graisseux (par dépôt de globules gras) (dégénérescence graisseuse des reins) (fig. 38);

4º Circux (par dépôt de matière amyloïde) dégénérescence amyloide des reins (fig. 39);

5º Hémorrhagiques (par dépôt d'hématies) (hémorrhagies tubulaires (fig. 40);

60 Purulents (par dépôt de pus);

Sur les tubes séminaux :

7º Spermatiques (spermatine en couches épaisses) (spermatorrhée, la plupart des tubes contiennent aussi des spermatozoides):

Sur le canal uréthral.

8º Muqueux (mucine en couche épaisse) (uréthrite blennorrhagique ou traumatique), mucus seul - mucus et pus - mucus, pus et cellules épithéliales - mucus, pus, cellules épithéliales et spermatozoides (fig. 42).

v. Globules sanguins.

1º Primitifs.

i. Rouges (hématies) (fig. 43, 44).

Formes: fondamentale: disque biconcave avec noyau central plus foncé.

Dérivées : disques biconvexes (par gonflement endosmotique dans l'urine) - généralement pâles de couleur), disques crénelés (hémorrhagies anciennes - généralement colorés en rouge brun).

ij. Blanes (leucocytes) (fig. 43, 44).

Forme : disques biconvexes granuleux (légèrement plus larges que les hématies). 2º Dérivés.

i. Cutoïdes (pus).

Forme : celle des leucocytes dont ils dérivent, mais plus étendues en diamètre, et à granulations plus accentuées) (fig. 45).

ij. Sympexions (du liquide prostatique).

Forme : masses sphéroïdales volumineuses très légères à enveloppe très déliée et à fines granulations irrégulièrement réparties dans la masse) fig. 46).

8. Eléments de la fécondation.

Spermatozoides.

Fig. 43 et 44. - Éléments du sang (Hématies. - Leucocytes).

Fig. 45. - Cytoides (Pus).

Fig. 46. — Éléments du sperme (Spermatozoaires. — Sympexions. — Cellules épithéliales prostatiques. — Granulations protéiques).

Forme: deux parties: disque pyriforme aplati (tête ou corps), long appendice fusiforme (queue) continuant le corps par la portion la plus large et libre à l'autre extrémité (très déliée) (fig. 41, 46).

Nota. — Les chercher de préférence dans l'urine du matin avec un grossissement de 400 diamètres.

a. Poils.

1. Vésiemen.

Forme: filaments unicellulaires, bi, tri ou quadrifides selon les cas.

Coloration, nulle (blanche).

2º Cutanés.

Forme: filaments pluricellulaires d'une seule venue.

Coloration : blanche, jaune, rouge ou brune (fig. 47, 48, 49):

n. Parasites.

1º Généraux.

Sareine [Mærimospædia ventriculi (algues)].

Porme: masses cubiques ou prismatiques (ne pas confondre avec certaines formes analogues d'urate acide de soude) (fig. 50).

2º Locaux.

i. Provenant des reins.

'Animaux entiers.

* Strongle géant [Eustrongylus gigas (nématodes)].

Forme: ver régulièrement cylindrique, de la grosseur d'une peture de la ferire, long d'environ 20 centimètres, faiblement annelé. Extrémité antérieure, asix nodules disposés en rosette. Extrémité postérieure: mâle, ventouses à deux spicules centraux; femelle, rigide et recourbée. Vulve aux deux tiers postérieurs de corps (fig. 54).

Coloration : rose ou rouge.

**Spiroptère (Spiroptera hominis ou Diplosoma crenata).

Entozoaire nématode.

Forme: ver cylindrique, à extrémités affilées, long de 8 à 10 millimètres. Extrémité antérieure : tronquée et garnie de papilles. Extrémité postérieure : mâle, deux prolongements membraniformes avec spicule central; femelle courte et obtuse. Coileur : blanchâtre.

Fig. 47 et 48. - Polls cutanés (Cheveux).

Fig. 49. - Poils cutanés (Barbe).

Fig. 50. — Sarcines urinaires.

*** Filaire hématique (Filaria sanguinis hominis, Lewis - hématurie chyleuse des pays chauds).

**** Dactylius aculeatus (Drake); petits entozoaires de 0m,01 à 0m.02 de longueur, barbelés, garnis d'épines en faisceaux.

"OEufs.

* Bilharzia hæmatobia (distoma hæmatobium).

Forme : masses ovoïdes à double contour et à épine terminale.

Couleur : blanche.

L'entozoaire entier a été rencontré dans l'urine par Griesinger (fig. 52)].

** Echinocoques (provenant de kystes hydatiques des reins) (fig. 53 et 54).

0. Ferments.

1º Ferments de l'urée.

1. Micrococcus ureæ (van Tieghem) (fig. 55).

ii. Bacillus ureæ (Miquel) (fig. 56). iii. Bacterium ureæ (Bouchard) (fig. 57).

2º Ferments des sucres.

i. Saccharomuces cerevisiæ (glucose) (fig. 58).

ij. Bacillus lactis (inosite et lactose) (fig. 59).

3º Ferments de l'albumine.

Penicillium glaucum.

4º Ferment sulfhydrique de Rosenheim.

. Corps étrangers. 1º Vivants.

i. Vibrionien : 'vibrions (fig. 60); "leptotrix.

ij. Infusoires : 'Bodo urinarium; " Cercomonas urinarium: " Monas erepusculum.

20 Inertes.

1º Produits chimiquement définis.

i. Hydrocarbures : ' gouttelettes de pétrole (dialyse rénale); " gouttelettes de vaseline (catéthérisme).

ij. Éthers de la glycérine ; gouttelettes huileuses (catéthérisme). iji. Poussières métalliques : ' fer (poussières atmosphériques); "cuivre (poussières atmosphériques).

2º Produits manufacturés.

i. Végétaux: 'filaments de coton (fig. 61); " filaments de lin

Fig. 52, - Bilharzia hœmatobia.

Fig. 53 et 54. — Echinocoques et crochets d'hydatides.

Fig. 55. — Micrococcus urea-(Van Tieghem).

Fig. 56. - Bacillus ureze (Miquel).

(fig. 61); "filaments de chanvre "", grains d'amidon (fig. 61), etc. ii. Animaux : filaments de laine (fig. 61, 62); ** filaments de

soie, etc. iii. Minéraux : parcelles d'instruments métalliques, etc.

3º Produits bruts.

3º Produits brus. i. Végétaux : 'feuilles (fig. 61); " fleurs; " graines; " tiges (échardes de bois); "" racines.

(echardes de bols), 'tached ij. animaux:' poils (fig. 61, 62, 63); " plumes (fig. 61); "' ongles, etc.

iii, minéraux : grains de sable, etc.

B. Examen bactériologique des dépôt et sédiment.

a. Manipulations préparatoires.

Laisser les dépôt et sédiment s'effectuer très paisiblement pendant vingt-quatre heures à l'abri du contact de l'air.

Couvrir cinq ou six lames porte-objet d'une couche bien mélangée du produit sur 1 centimètre carré de surface environ. Faire sécher lentement à l'étuve.

Immerger à froid, pendant une heure dans une solution fus-

chinée (1). Retirer et sécher à l'étuve.

Plonger pendant trente secondes dans une solution à 1 tiers

d'acide azotique pur.
Layer dans de l'eau ordinaire; puis à l'alcool absolu.

aver dans de l'eau orumaire, puis à l'alcoor abborn

Faire sécher à l'étuve.

Verser sur la partie centrale de la tache du dépôt 5 ou 6 gouttes de baume de Cauada liquide.

6 gouttes de baume de Caudad arquiec.

Porter à l'étuve jusqu'à ce que la surface du baume de Canada, bien étalée, devienne pelliculaire.

Recouvrir alors d'une lamelle couvre-objet, en appuyant de façon à égaliser l'épaisseur de la couche liquide interposée entre les deux surfaces du verre tout en rendant cette couche aussi mince que possible.

b. Constatations.

L'examen bactériologique d'une urine se rapporte plus spé-

⁽¹⁾ Solution fuchsinée : alcool à 90°, 100 cc.; fuchsine rouge, q. s. pour saturer. t0 cc. de ce liquide dans la solution suivante : aniline, 10 gr.; eau, 100 cc. Saturez à chaud et filtrez sur un filtre monillé.

Fig. 61. — Divers : a, cheveu; b, poil de chat; c, laine; d, coton; c, lin; f, débris végétaux; g, plumes; h, amidon de blé (Beale).

Fig. 62. - Poils de mouton (laine). Fig. 63. - Poils de chat.

Fig. 64. - Bacillus tuberculosis et microcorcus tetragenes.

cialement à la recherche des bacilles de la tuberculose, et du gonococcus de la blennorrhagie.

L'examen microscopique doit se faire avec un grossissement

On constate alors :

a. Bacillus tuberculosis.

Forme: Des bâtonnets rectilignes ou légèrement flexueux, très petits, très minces, à deux, trois ou quatre articulations, isolés, groupés ou inclus dans des cellules du dépôt (fig. 64).

Coloration: Rouge ou rose (selon la teinte primitive et le temps de la décoloration).

в. Спрососсия.

Forme : Des masses semi-lunaires, grosses, éparses, libres ou

Fig. 65. - Gonococcus Neisserii.

incluses dans des cellules épithéliales ou des cytoïdes (fig. 63).

Coloration: Rouge.

\[
\gamma\]. Toutefois, d'après Koch et Gattky, le Micrococcus tetragems accompagne souvent le bacille de la tuberculose.
\]

Ces tétrades qui par eux-mêmes n'ont aucune signification séméiologique sont des coccus sphériques de 4 \(\mu \) et plus de diamètre, généralement groupés par quatre (v. fig. 64).

Leur aspect rappelle en petit les sarcines; mais, toutefois, il n'y a jamais chez les tétrades qu'une seule couche de coccus.

IX. ACTION DE LA CHALEUR.

L'action d'une température de + 100° C. sur une urine peut se scinder en trois cas :

L'urine est acide, et l'acidité est supérieure à PhO⁵ total.

L'urine est acide, mais à acidité égale ou inférieure d Ph0stotal.

L'urine est neutre ou alcaline.

A. Acidité supérieure à PhO total.

a. L'urine était claire

z. Elle reste claire. Pondération absolue des composants.

 β. Elle se trouble. Présence d'albumines (sérine ou pyine ou hémoglobine).

b. L'urine était trouble.

α. Chauffée directement :

to Elle reste trouble : présence de vibrions.

2º Elle s'éclaircit : le trouble était dû à de l'acide urique ou de l'urate acide de soude.

3º Le trouble augmente : présence d'albumines (sérine ou pyine ou hémoglobine).

β. Chauffée après filtration :

1º Elle se trouble : albumines (sérine ou pyine ou hémoglobine).

B. Acidité égale ou inférieure à PhO⁵ total.

a. L'urine était claire.

 $\alpha.$ Elle reste claire : égalité (pondération absolue des composants. État normal).

β. Elle se trouble.

4º Le précipité est soluble dans l'acide acétique.

Le trouble était dû à des phosphates bibasiques de chaux tenus en solution par de l'acide carbonique (dégagement gazeux).

2º Le précipité est insoluble dans l'acide acétique (albumine, sérine, pyine ou hémoglobine).

b. L'urine était trouble.

a. Elle reste trouble. Le trouble était dû :

1º A des vibrions (examen microscopique) :

- 2º A du sulfate de chaux (action nulle de l'acide acétique);
- 3º A du carbonate de chaux (solubilité par l'acide acétique).
- β. Le trouble augmente : présence d'albumine (sérine ou pyine ou hémoglobine). γ. Elle s'éclaircit : le trouble était dû à de l'urate acide de
- soude.

 C. Neutralité ou alcalinité.
 - a. L'urine était claire à l'émission
 - a. Elle ne reste jamais claire.
 - β. Mais se trouble : et le précipité est dû :
- 10 Soit exclusivement à du phosphate bibasique de chaux (tenu en solution par CO2 : précipité soluble dans l'acide acé-
- tique).

 2º Soit à ce sel accompagné d'albumine (sérine ou pyine ou hémoglobine ou syntonines).
 - b. L'urine était trouble.
 - a. Elle reste trouble. Le précipité était formé de :
 - 1º Phosphate bibasique de chaux;
 - 2º Ou carbonate de chaux;
 - 30 Ou phosphate ammoniacq-magnésien ; 40 Ou urate acide d'ammoniaque ;
 - 5. Ou phosphate tribasique de chaux:
 - 5º Ou phosphate tribasique de chaux;
 6º Ou phosphate tribasique de magnésie.

X. RÉACTION.

On distingue aux différentes urines les réactions suivantes :

A. Acide.

- L'urine rougit le papier de tournesol bleu.
- Cette réaction peut provenir :
- a. D'un acide libre.

Les dosages subséquents de l'acidité totale et de l'acide phosphorique total diront si l'acidité est supérieure aux chiffres d'acide phosphorique et urique nécessaires pour faire des seis acides.

- b. De sels acides.
- Ces sels sont soit isolément soit simultanément :

α. Le phosphate monosodique (phosphate acide de soude).

Ce dernier sel étant peu soluble est généralement précipité.

Une urine claire et acide par des sels acides ne contient généralement (sauf le cas de dilution considérable) que du phosphate acide de soude (état normal).

B. Neutre,

L'urine ne rougit pas le papier de tournesol bleu.

Elle ne bleuit pas le papier de tournesol rougi.
Elle ne contient que des sels neutres solubles, ou alcalins in-

C. Amphotérique.

L'urine, dans son ensemble, rougit le papier de tournesol

Et bleuit en même temps le papier de tournesol rouge.

Cette réaction paradoxale est due à la présence simultanée de deux sels : phosphate monosodique acide, et phosphate bisodique alcalin.

D. Amphigène.

L'urine, en certains points, rougit le papier de tournesol bleu, et, en d'autres points, ramène au bleu le papier de tournesol rougi.

Décomposition partielle en carbonate d'ammoniaque de l'urée d'une urine acide, formation secondaire d'un sel neutre à base de soude et d'ammoniaque (phosphate double de soude et d'ammoniaque), alcalia pouvant sous l'influence d'une diminution de pression ou d'une élèvation de température abandomner une partie de sa base volatile, et revenir à l'état de sel acide.

E. Alcaline.

L'urine bleuit le papier de tournesol rouge, elle brunit le papier de curcuma, elle colore en rouge ou en violet l'hématoxyline.

a. Elle est alcaline par alcalis fixes.

L'urine ainsi émise est toujours trouble; elle donne lieu à un

précipité ayant les phosphates terreux et le phosphate ammoniaco-magnésien (ce dernier rare) pour bases.

Sa réaction est due aux phosphates disodique ou trisodique, isolés ou groupés, ou (rarement) au carbonate de soude (eaux alcalines).

Elle ne colore pas l'hématoxyline en violet, mais en rouge; le papier de tournesol qu'elle a bleui ne revient pas au rouge par dessiccation à l'air.

b. Elle est alcaline par alcali volatil.

Le trouble qu'aura cette urine à l'émission est dû tant à des bactéries qu'aux phosphates terreux et ammoniaco-magnésien réunis (le dernier en grand excès).

La réaction sur le tournesol, due à du carbonate d'ammoniaque, disparaît par dessiccation du papier réactif.

L'urine colore l'hématoxyline en violet.

TROISIÈME SÉRIE. - EXPÉRIMENTATION PHYSIOLOGIQUE.

Au point de vue pratique, l'expérimentation physiologique se limite à deux cas :

Étude du glucose par le procédé de la fermentation (Cl. Bernard) dans les cas douteux comme recherches ou dosage;

Consécration physiologique d'une caractérisation microscopique du bacille de la tuberculose. Nous nous limiterons donc à ces deux essais.

I CARRONYLE CL. BERNARD.

A 30 centimètres cubes d'urine sont ajoutés 2 grammes de levure de bière fraiche et bien lavée.

Le tout, après mélange intime, est introduit dans un petit matras portant un bouchon percé de deux trous.

L'un de ces trous est traversé par un tabe droit et creux qui tou laisse passer un tube analogue, mais ne dépassant guère par le bas l'extrémité inférieure du bouchon, recourbé par le haut et plongeant dans une solution de baryte cuastique que contient un petit flacon à deux tubulares mis à l'abri de l'air par un courant de gan hydrogène traversant l'ensemble du système. L'appareil étant porté à l'étuve à une température de + 35°C.; on laisse en contact six heures.

Le gaz acide carbonique, formé dans la fermentation du glucose pour sa transformation en alcool —

$$\begin{array}{ccc} C^{12}H^{12}O^{12} = 2C^8H^8O^2 + 2C^2O^4 \\ \text{Glucose} & \text{Alcool.} & \text{Acide} \\ & \text{carbonique.} \end{array}$$

- précipite partiellement la solution barytique sous forme de carbonate insoluble.

Filtrant alors rapidement la solution de baryte et lavant à l'eau bouillie, on recueille le carbonate de baryte sur un filtre.

Puis filtre et précipité sont portés ensemble dans un moufle et incinérés en présence de l'acide sulfurique et de l'acide azotique.

Le précipité final de sulfate de baryte restant est alors pesé, et de son poids est déduit le poids de glucose existant dans les 30 centimètres cubes d'urine, c'est-à-dire dans le litre d'urine.

En effet, les équivalents respectifs du glucose et de la haryte, de l'acide carbonique et de l'acide sulfurique étant C'H^{11-01°}=180; C'O'=44; BaO=76,5; SO²=40; 4 gramme de glucose en se transformant en alcool donne 0°,488 d'acide carbonique.

Ces 0s²,488 d'acide carbonique précipitent 1⁸⁷,692 d'oxyde de baryum (BaO) qui, combinés à l'acide sulfurique, font 2⁸⁷,576 de sulfate de baryte.

Donc, 25°,576 de sulfate de baryte représentent i gramme de sucre diabétique.

Et i gramme de ce même précipité représente $\frac{1}{2,576}$ = 0^{gr} ,388 de glucose.

Mais comme l'on a opéré sur 30 centimètres cubes d'urine seulement, le produit total en glucose devient donc

$$X = P \times \frac{1}{30} \times \frac{1000}{30} = \frac{P \times 0,388 \times 1000}{30} = P \times 12$$

P représentant le poids quelconque du sulfate de baryte de n'importe quelle opération de ce genre.

II. INOCULATION DE LA TUBERCULOSE.

Il est très important pour cette manipulation de neutraliser très exactement (par la soude caustique diluée) l'orine avant de remplir la seringue de Pravaz destinée à l'injection.

Il résulte en effet d'expériences récentes que les crachats tuberculeux les plus riches en bacilles pathogènes injectés dans les muscles ne produisent point la tuberculose généralisée, mais un simple abcés local contenant les bacilles tuberculeux.

La raison de ce fait est la suivante : Nous avons déjà démontré, et nous le rappellerons à la partie séméiologique de ce livre (Chap. Diathèse alealine), que l'évolution du hacille spécifique de la phisie demandait, exigeait pour son évolution normale un terrain alealin et peu riche en chlorure de sodium. Or, les muscles sont imprégnés d'une part de leur suc propre, tès riche en acide lactique, et de l'autre de plasma sanguin chargé de sel marin. Le bacille tuberculeur, placé dans ce milieu ne peut donc que s'y localiser, ne peut y cheminer sans chances de périe.

Toutes les fois donc qu'une urine acide (et les urines sont presque toujours acides par l'acide lactique toutes les fois que l'acidité dépasse l'acide phosphorique total) contenant du pus tuberculeux sera injectée sans être neutralisée, l'infection tuberculeux es es généralisem certainement pas, et le coutrole cherché sera annihilé du fait même du mode opératoire.

La manipulation que nous proposons aura l'avantage de mettre le physiologiste à l'abri de cette cause d'erreur non encore signalée jusqu'à présent.

QUATRIÈME SÉRIE. - MANIPULATIONS CHINIQUES.

Premier ordre. - Analyse chimique des urines.

Les manipulations se rapportent à trois groupes de produits :

Ceux que l'on n'a aucun intérêt à doser et dont on effectue la recherche exclusivement; Ceux dont la manipulation comprend à la fois la recherche et le dosage :

Ceux enfin qui, étant normaux, n'ont pas besoin d'être recherchés mais sont simplement dosés.

Pour notre exposition technique nous adopterons ce classement, mais en le développant en sens contraire, allant du simple au composé, du connu à l'inconnu, des éléments normaux les plus fixes aux éléments anormaux les plus rares dans l'excrétion uriaire.

Le but de ce livre n'étant en rien spéculatif, nous n'aborderons ici que la recherche et le dosage exclusifs des éléments dont la connaissance pourra nous être de quelque utilité en séméjologie.

I. DOSAGE DÉLÉMENTS NORMAUX.

A. Desage des éléments fixes.

Mesurer très exactement, au moyen d'une pipette jaugée, 50 centimètres cubes de l'urine bien agitée.

Laisser couler dans un cristallisoir en verre taré, porter à l'étuve à + 400°C et l'y laisser jusqu'à ce que le poids du résidu reste fixe.

P étant le poids brut du cristallisoir et du résidu; T la tare du cristallisoir,

$$X = 20 (P - T)$$

sera le poids total des éléments fixes à + 100°C par litre de l'urine examinée.

Puisque le litre contient yingt fois 50 centimètres cubes.

B. Dosage de l'acidité totale.

10 centimètres cubes d'urine agitée, et mesurée au moyen d'une pipette jaugée, sont versés dans un vase à saturation.

Si l'urine est trouble on doit la chauffer vers +40°C, de facon à dissoudre entièrement le précipité (acide urique et urate acide de soude).

On ajoute alors goutte à goutte une solution de soude caustique jusqu'à ce que l'agitateur étant porté sur un papier de tournesol rougi le bleuisse très faiblement. On peut contrôler le point final en s'assurant par le toucher d'un papie de tourresol blen que le liquido ne le rougit plus. La solution de soude caustique employée doit être très di-luée; nous la titrons de façon qu'ên agissant sur 10 centimètres cabes d'urine une division décime de burette graduée équivale à pe, 0.1 d'acide phosphorique libre par litre d'urine. La solution titrée, sans corrections failes, est donc récliement cent fois plus faible, c'est-à-dire que chacun de ses centimètres cubes correspond à 0-70.01 d'acide phosphorique (PhO).

L'avantage de la traduction de l'acidité totale en acide phosphorique est de fournir, ipso facto, une base de comparaison avec le seul acide urinaire capable, en dehors de l'acide urique, de former des sels acides.

Nous verrons dans un instant (acide libre) quel parti l'on peut tirer de cette comparaison.

C. Dosage de l'acide phosphorique.

A 50 centimètres cubes d'urine non filtrée et mélangée par agitation sont ajoulés 10 centimètres cubes d'une soution (à 5p. 100) d'acctate de soude. Le tout est porté à l'ébuilition et additioné alors goutte à goutte d'une solution titrée d'azotate d'urans. On s'arrête de verser la liqueur titrée quand une goutte du mélange prise avec un agitateur et déposée sur une goutte de ferrocyanure de potassium (étalé sur une soucoupe de porcelaine) colore le ferrocyanure en brun.

Cette action finale indique qu'un excès de sel d'urane existe dans le mélange, puisqu'il peut former avec le réactif de la soncoupe un ferrocyanure coloré.

Nous titrons la solution d'azotate d'urane de façon que une division décime d'une burette graduée équivale à 087,01 d'acide phosphorique total par litre d'urine examinée.

Le titre réel de cette liqueur d'urane est vingt fois plus faible, c'està-dire que chaque centimètre cube correspond à 0e7003 d'acide phosphorique, puisque la correction du volume 50 centimètres cubes au litre équivaut à vingt fois le chiffre précédent.

D. Dosage de l'acide libre.

Il est certain que si du chiffre de l'acidité totale traduit en acide phosphorique, on retranche celui d'ensemble trouvé pour l'acide phosphorique vrai, ou aura un troissieme chiffre corresdant des acides libres ou en combinaisons salines acides aures que le phosphate acide de soude.

L'acide urique seul dans l'urine étant capable de former également des sels acides, il est même certain que deux cas peuvent se présenter :

4º Ou l'excès d'acidité ainsi constatée et traduit alors en acide urique par l'équivalence chimique

$$C^{10}H^4Az^4O^6 = 168 \dots PhO^5 = 71$$

 $X = \frac{P \times 168}{71} = P \times 2,338$

est exactement égal à la moitié de l'acide urique dosé d'antre part; il y aura alors dans l'urine outre les phosphates acides des urates acides.

2º L'excès d'acidité ainsi dosée est supérieur à la moitié de l'acide urique, et l'urine contient plus que des sels acides (biphosphates ou biurates), elle contient encore un acide libre.

Cette constatation n'est point spéculative. On sait, en effet, que l'acide urique et l'urate acide de soude sont peu solubles dans l'eau (acide urique 1 p. 1000); et encore moins solubles dans les liquides acides (0er,41 p. 1000) dans l'urine acide par du phosphate monosodique.

L'acidité vient-elle à augmenter, sans atteindre toutefois la seconde de nos énonciations (acide libre)? L'urate acide de soude se forme et se dépose.

L'acidité croît-elle de façon à dépasser à la fois les chiffres de l'acide phosphorique et de l'acide urique? Ce dernier est déplacé de ses solutions salines et vient à son tour se précipiter.

Nous verrons à la partie séméiologique quelles importantes considérations histologiques et morphologiques cette application permet.

E. Dosage du chlore.

A 10 centimètres cubes d'urine filtrée, on ajoute goutte à goutte une solution de nitrate d'argent itirée de telle sorte que chacune des divisions décimes de la burette de Gay-Lussac ou de Mohr représente (pour ce volume de 10 centimètres cubes d'urine) 1 centigramme de chlore par litre.

On constate la fin de la réaction en déposant sur une soucoupe de porcelaine quelques gouttes d'une solution (au 1/10°) de chromate neutre de potasse, et en touchant ces gouttes avec une baguette de verre. La formation du chromate (rouge) d'argent indique que tout le chlore de l'urine est transformé en chiorure d'argent.

Nous préférons ce tour de main analogue à celui employé pour l'acide phosphorique à la réaction directe du chromate rouge produite dans l'urine elle-même.

On transforme le chiffre obtenu pour le chlore en chlorure de sodium en multipliant le premier par 10 et en divisant par 6 :

X chlorure de sodium
$$=\frac{P \text{ chlore} \times 10}{6}$$
.

F. Dosage des éléments azotés.

Les éléments azotés dont le dosage dans l'urine a une importance pratique sont l'urée, l'acide urique et la créatinine.

Nous avons fait construire pour le dosage de ces trois substances un appareil dit uro-azotimètre que nous allons décrire ci-dessous.

a. Description.

L'uro-azotimètre se compose essentiellement de trois parties:

1º Un générateur à gaz, sous forme d'une éprouvette en verre portant près de son fond deux traits circulaires: l'inférieur correspondant à une capacit de 35 centimètres cubes le supérieur limitant un volume de 10 centimètres cubes : ce générateur, qui renferme un petit tube (d'une contenance d'environ 15 centimètres cubes) portant deux traits gradués à 5 et 10 centimètres cubes, est obstrué par un bouchon de caoutchouc.

2º Un tube gazomètre d'une capacité de 85 centimètres cubes

divisé en centimètres cubes et fractions, demi-décimes de centimètre cube.

Ce tube, également tout en verre, porte à sa partie supérieure une petite chambre communiquant avec la partie graduée directement par un robinet inférieur, avec l'air atmosphérique directement encore par un robinet supérieur, et avec la partie supérieure du générateur à réaction par un ajutage latéral (au moven d'un tube de caoutchouc terminé par un tube en verre à œil aussi latéral). Ce tube gazomètre est fixé sur un support métallique. 3º Une cuvette à mercure (en

verre), reliée par un tube en caoutchouc très épais avec la portion inférieure du tube-gazomèire.

Cette cuvette à mercure est mobile, au moyen d'un anneau et d'une vis de pression, sur la tige métallique servant de support au

b. USAGES.

L'uro-azotimètre est destiné au dosage différentiel volumétrique des divers matériaux azotés de l'urine par la réaction de l'hypo-Fig. 66. — Cro-azotimètre Gautre!et. bromite de soude.

Tout le monde sait que les matières organiques azotées de l'urine, susceptibles d'être décomposées par les hypobromites alcalins, se divisent en trois groupes correspondant à trois rapports différents d'oxydation :

⁽¹⁾ Construit par Alvergnat frères à Paris, 10, rue de la Sorbonne.

Complètement oxydés: urée.....
$$= C^2H^4Az^2O^2 = \frac{O}{C^2} = \frac{100}{100}$$

Moyennement oxydés: acide urique $= C^{10}H^4Az^4O^6 = \frac{O^6}{C^{10}} = \frac{60}{100}$

Faiblement oxydés : créatinine... =
$$C^8H^7Az^3O^2 = \frac{O^2}{C^8} = \frac{25}{100}$$

a. Uniz. — L'on sait aussi quelles sont les difficultés du dosage pratique doces différentes substances, en général. Pour l'urier en particulier, les méthodes analytiques sont nombreuses; mais deux surtout ont été employées : la réaction des hypoazolites mercuriels, la réaction des hypobromites alcalins.

Knop, le premier, a sigualé l'action des hypobromiles alcalins sur l'urée qu'ils décomposent en eau, acide carbonique et azote: l'azote seul se dégageant par suite de l'absorption concomitante de CO³, par l'alcali causitque en excès dans le réactif.

C²H⁴Az²O² + 3 NaO, BrO + 2 NaO, HO = 6 HO + 3 NaBr + 2 NaO, CO² + 2 Az

Un nombre considérable d'appareils sont fondés sur cette réaction. Tous sont plus ou moins ingénieux comme construction, mais tous aussi présentent de multiples inconvénients, par exemple : mise en liberté d'une portion seulement de l'arote de l'urée, dégagement simultané d'une portion de l'azote des autres mailères azotées urinaires (variable avec la concentration du réactifi, absorption par l'eau d'une partie de l'azote libéré (quand on n'opère pas sur le mercure).

Méhu a fait voir que la présence du sucre dans l'urine permettait le dégagement de la totalité de l'azote de l'urée par le réacifí hypobromé, en supprimant la formation des cyanates et nitrates ayant lieu secondairement dans cette réaction.

Millon a indiqué la réaction des hypoazotides mercureux et mercuriques sur l'urée, et en a tiré son dosage de ce produit azoté par pesée de l'acide carbonique dégagé.

Gréhant a appliqué à ce dosage la pompe à mercure.

Boymond a modifié cette méthode en pesant les éléments de l'urée disparue à l'état gazeux dans la réaction. Enfin, le professeur Bouchard l'a rendue volumétrique avec son appareil spécial à la mensuration de l'azote mégue.

La méthode de Millon a cet avantage qu'elle donne exclusivement l'urée et l'ammoniaque; mais soit par emphoi d'appareil trop dispendieux et trop volumineux (comme la pompe à mercure), soit par le fait des difficultés de la pesse (comme pour les appareils de Millon et de Roymond, est ès richte.

reil trop dispendeux et trop volumineux (comme la pompe à mercure), soit par le fait des difficultés de la pesée (comme pour les appareils de Millon et de Boymond), soit à raison des causes d'erreurs de manipulation (comme dans l'appareil de Bouchard), elle n'a point pris pied dans la pratique courante.

L'uro-azotimètre procède comme filiation :

1º De la méthode Knop par l'emploi du réactif, l'hypobromite de soude;
 2º De l'indication de Méhu par l'emploi d'une solution sucrée

ajoutée à l'hyporomite alcain;

3º De l'uréomètre de Noel par sa chambre de réaction séparée;

4º De la pompe à mercure de Gréhant par l'emploi de la cuvette mobile au moyen de laquelle nous pouvons, pour aider au dégagement du gaz, abaisser la pression aussi bas que possible.

Nous avons ajouté à ceci : la précipitation préalable de l'acide urique et de la créatinine par le chlorure de zinc en solution alcaline.

Nous dosons donc avec cet appareil l'azote exclusif et total de l'urée de l'urine avec une précision d'autant plus grande que nous opérons sur un volume relativement grand de liquide urinaire.

3. Acide urique. — Parmi tous les procédés indiqués pour le dosage de l'acide urique, un seul, la précipitation par l'acide chlorhydrique est journellement employé en chimie médicale, pourtant, ce procédé est gros d'erreurs; il en présente de deux ordres différents;

4º Tout d'abord l'acide urique, même à une hasse température, n'est jamais entièrement précipité avant quatre, cinq et quelquefois même huit jours. Or, comme il est d'usage de rendre les résultats d'une analyse, sinon toujours dans les vingt, quatre heures, du moins dans un laps de tempe assez court, il est certain que par précipitation on n'a pu avoir la totalité de l'acide urique de l'urine.

2º Ensuite, si l'urine n'a pas été exactement filtrée (ce qu'en urologie clinique on néglige très souvent), au déficit urique s'ajoute alors un poids plus ou moins éteré d'éléments histologiques tenus en suspension par l'urine.

3º Enfin, en admettant même une filtration sérieuse, l'acide urique en se précipitant dans une urine en présence de l'acide chlorbydrique, entraîne le pigment uroérytime, leguel par son poids propre vient encore vicier la pesée urique. Nous savons bien que l'on n'a pas contume de tenir compte de co poids de l'uroérytfirine; et pourtant, expérimentalement, nous avons constaté que, dans certains cas, il dépassait 40 centicrammes, c'est-à-dire était rier moins que négleable.

Une méthode nouvelle s'imposait donc pour le dosage de l'acide urigne.

Hufuer ayant signalé l'action de l'hypobromite de soude sur l'acide urique dont, d'sisti. I, la moitié du gar azote était ainsi mis en liberté, Magnier de la Source appliqua ce principe au dosage volumétrique de l'acide urique en précipitant préalablement celui-ci par l'acetate basique de plomb, et fiasant deux dosages comparés, l'un sur l'urine brute (on avait alors, pensali-il, l'azote de l'urice, plus le demiazote de l'acide urique), l'autre sur l'urine déféquée (on n'aurait eu, en ce second cas, que l'azote de l'arde.

Cette méthode a été abandonnée parce qu'elle donnait des résultats incertains. En l'étudiant sous toutes ses faces, noiss nous sommes aperpas, que : excellente en elle-même, elle n'amit eu de résultats négatifs que da fait d'une application viciense.

En eftet, avec la concentration du réactif varie le quantum de l'azote urique mis en liberté par l'hypobromite alcalin. Avec l'exiguité des appareils, l'exiguité des prises d'esai, les chiffres volumétriques à lire pour l'azote de l'acide urique étaient si faibles que l'erreur absolue constante devenait une erreur relative considérable et telle qu'elle dépassait les limites de toute certitude pratique.

Avec la cuve à eau, avec l'emploi direct du réactif dans le

tube gazomètre, les erreurs d'absorption étaient souvent aussi fortes que les volumes d'azote urique à lire.

On n'avait pas songé à employer le sucre pour éviter la déperdition gazeuse due aux cyanates ou nitrates formés secondairement dans la réaction avons-nous déjà dit.

En employant une liqueur-réactif très concentrée :

Brome	15 c
Lessive des savonniers	135
Eau	50
Total	200 c

En ajoutant une petite quantité de sacre, en opérant sur un volume d'urine suffisant, 5 ou 10 centimètres cubes, on obtient avec l'uro-actoinètre l'azote total de l'acide urique et dans des conditions telles que les mensurations ne peuvent point être influencées par l'erreur relative pouvant résulter de la manipulation

7. Créatiaine. — Aucun procédé courant direct n'ayant été jusqu'ici signalé pour le dosage de la créatinine, ce dosage n'est pas encore entré dans la pratique des laboratoires d'analyse médicale. Et pourfant les expériences et les déductions si remarquables de M. Albert Robbin, relativement au ocefficient d'oxydation des matériaux azotés de l'urine, ou autrement dit au rapport de l'azote de l'urie à l'azote total, appellent l'attention du corps médical sur ce point.

Or, l'action directe d'une solution concentrée d'hypobromite de soude sur une urine en présence du sucre étant telle, qu'en outre de l'azote de l'urée et l'acide urique, l'azote total de la créatinine est également mis en liberté, et les deux premiers étant connus d'autre part, on pouvait donc penser à en déduire la créatinine

C'est ce que nous avons vérifié; et de nos expériences, il résulte en effet, qu'en ces conditions la créatinine peut être mesurée volumétriquement.

c. MANIPULATIONS.

a. — Première. — 1º L'appareil étant chargé de mercure, et les deux robinets du gazomètre ouverts, on commence par amener le mercure au zéro de la graduation en élevant ou abaissant la cuvette selon le cas : on ferme le robinet supérieur.

2º On verse alors dans le générateur 35 centimètres cubes de réactif hypobromé, plus 40 centi.nètres cubes de solution sucrée (1): on mélange.

3° On garnit le petit tube à réaction de 5 ou 40 centimètres cubes d'urine (non filtrée), selon la concentration, et l'on place ce tube daus le générateur en évitant tout mélange avec le réactif.

4º On ferme le robinet supérieur du gazomètre, on en ouvre le robinet intérieur, et l'on abaisse la cuvette jusqu'au bas du tube. Il se produit dans le gazomètre un dénivellement dù à la reréfaction de l'air.

On iucline à plusieurs reprises le générateur de façon à mettre les liquides en contact (en ayant soin de ne point faire couler de liquide dans l'eil du tube formant son bouchon), et on laisse reposer le générateur dans son anneau de support. On mélange up pue plus tard une ou deux fois encore.

o's Quand le niveau du mercure est bien fite dans le gazomètre et que l'on a ainsi acquis la certitude d'un dégagement complet de l'azote urinaire, on soulère alors la curețte iyaqu's ce que son ménisque mercuriel soit exactement à la bauteur de celui du gazomètre. L'afficurement ainsi obtenu, il ne reste plus qu'à faire la lecture.

Soit V' le volume trouvé : ce volume correspond à l'azote de l'urée (a'), de l'acide urique (a"), et de la créatinine (a"'). 3. Seconde. — A 50 centimètres cubes d'urine non filtrée, l'on

β. Seconde. — A 30 centimètres cubes d'urine non filtrée, l'on ajoute 3 ou 10 centimètres cubes (1 ou 2/10) de sous-acétate de plomb liquide, selon la décoloration à obtenir.

On filtre, et avec 5 centimètres cubes du filtratum, on opère comme précédemment.

En ajoutant à n le volume de gaz constaté, l ou 2 dixièmes (selon le cas d'après le chiffre d'acétate plombique de la défécation), on a V'', le volume qui correspond à l'azote de l'urée (a'). plus l'azote de la créatinine (a''').

⁽i) Solution: sucre de canae, 20 gr.; gircèrine, 20 gr.; eau, q. s. pour compléter 1000 c.c. — La gircèrine a pour objet de faire tomber la mousse qui se produit dans cette manipulation avoc les uriacs albumineure;

γ. Troisième. — A 50 centimètres cubes d'urine brute, l'on ajoute 5 ou 10 centimètres cubes (1 ou 2/10) de solutione cholorure de zinc au 1/10°, plus 5 gouttes de lessive des savonniers (a 1/10°c.); on filtre, et avec 5 centimètres cubes du filtratum, on orbre comme à la seconde et à la première fois.

n" le volume de gaz constaté additionné de 1 ou 2 dixièmes devient V''', c'est-à-dire le volume correspondant à l'azote de

de l'urée (a') exclusivement.

d. Calculs.

On a donc ainsi 3 équations :

$$V' = a' + a^* + a^*$$

 $V' = a' + a^*$
 $V'' = a'$

d'où l'on dégage successivement les 2 inconnues : azote urique, azote créatinique ; l'azote uréique ayant été fourni directement, nous avons déjà dit, par la troisième équation seule.

Reste à traduire ces volumes d'azote en poids de produits azotés correspondants.

Sachant théoriquement et ayant vérifié expérimentalement que 0°, 10 urée contiennent et laissent échapper 37 centimètres cabes d'azote; connaissant que 0°, 10 acide urique contiennent et dégagent 26 centimètres cabes 4 du même gaz; tandis que 0°, 10 de créatinien e'ur enferment et perdent que 2°°, 5° on a tous les éléments du calcul. Pour éviter, toutefois, le calcul à nos lectures, nous le domons tout fait dans les tables ci-dessous, en faisant remarquer que ces tables correspondent à la généralité des cas et que, si exceptionnellement on avait une urine plus riche en urée de 48 grammes par litre, on pourrait alors la dédoubler avec de l'eau distillée comme, en cas contraire, employer 10 ontimètres cubes au lieu de 5.

Pour éviter toute correction relative à la température et à le la pression, on doit, avant une série de manipulations urinaires, avoir soin de prendre comme point de repère le rendement volumétrique en azote de 0°7,10 d'urée pure dans les conditions physiques de l'expérience.

Au cas où, au contraire, on préférerait calculer le volume vrai du gaz dégagé en tenant compte de la pression, de la hauteur barométrique et de la tension de la vapeur d'eau, la formule générale de correction des mesures gazeuses

$${\rm V}' = \frac{{\rm V}}{1 + 0.003665 \times t} \times \frac{{\rm H} - f}{760}$$

est applicable aux données des tables qui suivent :

a. Table de traduction de l'azote volumétrique en urée pondérale.

AZOTE	URÉE	AZOTE	URÉE	AZOTE	URÉE	AZOTE	URÉE
en	par litre	en	par litre	en	par litre	en	par litre
c. c.	en poids,	e. c.	en poids.	c. c.	en poids.	c. c.	en poids.
ec.	gr.	cc.	gr.	cc.	gr.	cc.	gr.
	0.54	22	11.38	43	23.22	64	34.56
2 3 4 5 6	1.08 1.62 2.16 2.70	23 24 25 26	12,42 12,96 13,50 14,04	44 45 46 47	23.76 24.30 24.84 25.38	65 66 67 68	35.10 35.64 36.18 36.72
7 8 9	3.24 3.78 4.32 4.86	27 28 29 30	14.58 15.12 15.66 16.20	48 49 50 51	25.92 26.44 27.00 27.54	69 70 71 72	37.26 37.80 38.34 38.88
10	5.40	31	16.74	52	28.08	73	39.43
11	5.94 ·	32	17.28	53	28.62	74	40.00
12	6.48	33	17.82	54	29.16	75	40.54
13	7.02	34	18.36	55	29.70	76	41.08
14	7.56	35	18.90	56	20.24	77	41.62
15	8.10	36	19.45	57	30.78	78	42.16
16	8.84	37	20.00	58	31.32	79	42.70
17	9.18	38	20.54	59	31.86	80	43.20
18	9.72	39	21.08	60	32.40	81	43.74
19	10.26	40	21.60	61	32.94	82	44.28
20	10.80	41	22.14	62	33.48	83	44.82
21	11.34	42	22.68	63	34.02	84	45.37 -

Fractions décimes = 0sr,054. — Urine 5 cc. Uro-azotimètre Gautrelet-Vieillard.

β. Table de traduction de l'azote volumétrique en acide urique pondéral.

ı						1		
	AZOTE	AC. UBIQUE	AZOTE	AC. URIQUE	AZOTE	AC. URIQUE	AZOTE	AC. URIQUE
	en	par litre						
8	c. c.	en poids.	c.c.	en poids,	c. c.	en poids.	c. c.	en poids.
ı	_		_		_			
ı	ec.	gr.	ec.	gr.	oc.	gr.	cc.	gr.
	0.1	0.076	2.2	1.666	4.3	3.256	6.4	4.846
ı	0.2	0.152	23	1.742	4.4	3.332	6.5	4.922
ı	0.3	0.228	2.4	1.818	4.5	3.408	6.6	4.998
ı	0.4	0.304	2.5	. 1.894	4.6	3.484	6.7	5.074
ı	0.5	0.380	2.6	1.970	4.7	3.560	6.8	5.150
•	0.6	0.456	2.7	2.046	4.8	3.636	6.9	5.226
ı	0.7	0.532	28	2.122	4.9	3.712	7.0	5.209
	0.8	0.608	2.9	2.198	5.0	3,785	7.1	5.375
ı	0.9	0.714	3.0	2.271	5.1	3.861	7.2	5.451
ı	0.1	0.757	3.1	2.347	5.2	3.937	7.8	5.527
ı	1.1	0.833	3.2	2.423	5.3	4.013	7.4	5.603
ı	1.2	0 909	3.3	2.499	5.4	4.089	7.5	5.679
ı	1.3	0.984	3.4	2.575	5.5	4.165	7.6	5.755
1	1.4	1.061	3.5	2.651	5.6	4.241	7.7	5.831
ı	1.5	1.137	3.6	2.727	5.7	4.317	7.8	5.907
1	1.6	1.213	3.7	2.803	5.8	4.393	-7.9	5.983
1	1.7	1.289	3.8	2.879	5.9	4.469	8.0	6.056
1	1.8	1.365	3.9	2.955	6.0	4.542	8.1	6.132
ı	1.9	1.441	4.0	3.028	6.1	4.618	8.2	C.203
1	2.0	1.514	4.1	3.101	6.2	4.694	8.3	6.284
1	2.1	1.590	4.2	3.180	6.3	4.770	8.4	6.360

Fractions décimes = 052,008. Urine 5 cc. + n/10 cc. Uro-azotimètre. Gautrellet-Viellard.

γ. Table de traduction de l'azote volumétrique en créatinine pondérale.

en c. c.	enfatisist par litre en poids.	en e. e.	par litre en poids.	en c. c.	par litre en poids.	AZOTE 63 Cr C.	cafavisina par litre en poids.
ee.	gr.	cc.	gr.	cc.	gr.	cc.	gr.
0.1	0.067	1.6	1.080	3.1	2.101	4.6	3.124
0.2	0.134	1.7	1.147	3.2	2.168	4.7	3.191
0.3	0.201	1.8	1.214	3.3	2.235.	4.8	3.258
0.4	0.268	1.9	1.281	3.4	2.302	4.9	3.925
0.5	0.335	2.0	1.356	3.5	2.369	5.0	3.930
0.6	0.402	2.1	1.423	3.6	2.436	5.1	3.457
0.7	0.479	2.2	1.490	3.7	2.503	5.2	3.524
0.8	0.546	2.3	1.557	3.8	2.570	5.3	3.591
0.9	0.613	2.4	1.624	3.9	2.637	5.4	3.658
1.0	0.678	2.5	1.691	4.0	2.712	5.5	3.725
1.1	0 745	2.6	1.758	4.1	2.779	5.6	3.792
1.2	0.812	2.7	1.825	4.2	2.846	5.7	3.859
1.3	0.879	2.8	1.892	4.3	2.913	5.8	3.926
1.4	0 946	2.9	1.959	4.4	2.990	5.9	3.993
1.5	1.013	3.0	2.034	4.5	3.057	6.0	4.068

Fractions décimes = 0st,007. Urine 5 cc. + n/10 c. Uro-azotimètre. Gautrelet-Vielllard.

e. Observations.

L'urine normale, en dehors de l'urée, de l'acide urique et de la créatinine, renferme encore deux autres produits azotés y figurant en proportions notables; nous voulons parier de l'ammoniaque et de l'acide hippurique.

Si nous n'avons pas fait intervenir ces deux corps dans les bases de calculs de notre uro-azotimètre, ce sont les motifs suivants qui nous ont déterminé.

f° Il est aujourd'hui démontré que l'acide hippurique n'est point attaqué par l'hypobromite de soude au point de voir son azote se dégager.

2º L'ammoniaque doit être considérée comme un élément complétement oxydé de même ordre gue l'urês. Et de fait, sé-méiologiquement, ou constate son augmentation relative dans toutes les maladies où il y a hyperazoture (polyurie organique, tubercuiose, diathès rhypoadée en général), et au contraires adiminutjon toutes les fois que l'azote, au lieu d'arriver en quantité normale au terme urée, s'arrite plus spécialement en oxydation aux termes inférieurs acide urique et créatique (arthritimes sous toutes ses formes, daibbes hyperadde en général).

Le coefficient d'oxydation des matériaux azotés de l'orine peut donc se dégager non seuleusent fout aussi nettement, mais encore mieux de la comparaison de chiffre brut donné par l'urée (chiffre qui comprend aussi l'ammoniaque), avec le chiffre total (compreunnt également l'acide urique, la créatinine) qu'on no le ferait après séparation de l'ammoniaque.

Par la méthode de l'aro-azotimètre, il y a en effet non seulement parallélisme entre les deux groupes azoto complètement et azoto incomplètement oxydée, ce qui, dans l'état actuel de la science urologique, nons semble insuffisant), mais il y a détermination des trois groupes de matières azotées urinaires : à oxydation complète, à oxydation moyenne, à oxydation faible, dont la connaissance permet de nouvelles el fructueuses applications sémélologiques.

a. Dosage de l'ammoniaque. — Veut-on toutefois séparer et doser l'ammoniaque, l'uro-azotimètre se prête également à cette manipulation.

On prend tout simplement 40 centimètres cubes d'urine filtrée

à laquelle on ajoute quantité suffisante de bichlorure de platine salin. On agite : il se forme un précipité complexe de chlorure double de platine et d'ammonime entratanat aussi la créatinine et l'acide urique. On sépare ce précipité par le filtre et l'on opère sur le filtratum comme précédemment et sans correction.

Le volume d'azote dégagé dans cette dernière opération appartient à l'urée exclusivement, on a le chiffre correspondant à l'ammoniaque dans ces dosages différentiels en prenant le rap-

port $\frac{52}{60}$ du chiffre en urée correspondant à la différence des valeurs d'azote dégagés dans la troisième et la quatrième opérations.

26×2=52 c'est-à-dire deux fois équivalent de l'ammoniaque, et 60 représentant de l'urée.

Exemple:

X ammoniaque = $\frac{P \text{ traduction en urée} \times 52}{ea}$.

§. Dosage de l'azote totol. — Enfin le dosage de l'azote total peut être effectué par l'úro-azotimètre en traitant le résidu de l'évaporation par l'acide sulfurique fumant et le permanganate de potasse (procédé de Cernold).

Le volume d'azote obtenu étant converti en poids, les matières azotées en dérivant sont fournies par le rapport

X matières azotées = P azote \times 6.5.

En dernière analyse, on peut appliquer l'uro-azotimètre au dosage des gaz urinaires qu'il sépare très simplement de leur dissolvant.

G. Dosage de l'urobiline.

Ce dosage a été décrit au paragraphe b, de la manipulation physique spectroscopie (v. page 185).

H. Dosage de l'uroérythrine.

Neubauer et Vogel ont donné pour l'appréciation colorimétrique des urines au point de vue des pigments normaux une table que nous avons étendue aux fractions de l'échelle des teintes et que nous reproduisons ci-dessous;

TEINTES.	I.	п.	III.	īv.	v.	VI.	VII.	VIII.	IX.
0	_	_	_	_		-	_		25.60
2	_	_	_			_	-		28.16 30.72
3	_	_	_	_	_	4.16			
5	0.15	0.30	0.60	1.20	2.40	4.20	9.50	19.30	37.40
7	_	-	_	=		5.02	_		39.96 42.52
8		_		=		_	_	_	45.08
	0.15	0.00	0.16	1.52	0.01	3.98	12.06	24.42	47.64

Sachant d'une part que l'urobiline et l'uroérythrine concourent exclusivement à la formation du pigment urinaire; ayant déterminé précédemment d'autre part la valeur pondérale de l'urobiline par la méthode spectroscopique, on déduira l'uroérythrine simplement par différence.

Exemple:

L'urine au colorimètre donne la teinte 5,3; d'après la table, la masse pigmentaire totale est de 257,8; l'urobiline dosée spectroscopiquement a pour poids 157,76, l'uroérythrine équivaut à :

II. RECHERCHE ET DOSAGE D'ÉLÉMENTS ANORMAUX.

A. Recherche et dosage de l'oxalate de chaux.

Malgré sa faible solubilité, l'oxalate de chaux n'est point exclusivement déposé dans le sédiment; ou, s'il s'y rencontre en très minime proportion, l'examen microscopique peut l'y laisser inapercu.

On devra donc toujours recourir à la recherche et au dosage chimique de cet important produit,

A cet effet, on utilise le résidu de l'évaporation à +100° C. des 50 centimètres cubes d'urine, qui ont servi à la détermination des éléments fixes.

Ce résidu est repris par l'alcool à 90° qui dissout et entraîne l'urée, les matières colorantes et unc partie des sels.

On jette sur un filtre pour compléter cette séparation. Le filtre est alors introduit dans un peit matras avec 20 centimétres cubes d'adié chlorhydrique pur. Le tout étant porté à l'ébullition, on obtient uns solution chlorhydrique de toul l'oxalate de chaux compris dans les 50 centimétres cubes d'urine correspondant. On filtre de nouveau; et enfin par addition de chlorure de calcium et sursaturation ammoniacale du filtratum l'oxalate de chaux se dépose entièrement.

Il ne reste plus qu'à le recueillir sur un double filtre, le laver à l'eau ammoniacale, puis à l'alcool; faire sécher à l'étuve et peser.

La différence p de poids entre les deux filtres, multipliée par 20, donne le poids total d'oxalate calcaire existant par litre dans l'orine examinée.

B. Recherche et dosage du glucose diabètique.

D'après les considérations générales relatives à la polarimétrie développées précéllemment, ou a pu voir que la caractérisatiou et la docimasie du glucose, simples en apparence, n'étaient au fond rien moins que complexes.

C'est qu'en effet non senicment certains corps agissant dextrogrement sur la lumière polarisée peuvent encore se montrer anormalement dans l'urinc soit isolément, soit simultanément au glucose; mais plusieurs des réactions chimiques et physiologiques du glucose sont encore partagées par nombre d'éléments normaux, pathologiques ou accidentels rencontrés dans le produit de l'extétion rénials.

Le tableau ci-dessous indique une série de réactions communes au glucose et à d'autres produits arce lesquels il pourrait être confoudu par l'emploi exclusif de J'une d'elles. Exécutées au contraire parallèlement sur l'urine, elles permettent non seulement de différencier ces produits d'avec le sucre diabétique, mais aussi de les différencier entre eux.

a. Caractérisation différentielle du glucose urinaire.

Tableau des réactions comparatives du glucose et des produits pouvant être analytiquement confondus avec lui.

	7	_	_	_	_	_			_	_		
	RÉACTIONS											
ÉLÉMENTS	Directement 3 + 100* C.	Febling: à + 100 C. après défécation par PhO.	aprés interversion par HCI.	Reactif Worm-Mäller is + 100° c.; directement.	å + 100° c; directement.	Fermentation alcoolique,	Potasse caustique	Déviation polarimétrique droite après defécation par Pb0.	Déviation polarimétrique ganche après défécution par PbO.	Acide chlorhydrique, '	Inde induré.	après défécation par ZaCl.
	1	3	3	4	5	6	7	8	9	10	11	.12
Glucose. Lévulose. Lactose. Destrine Saccharose Indican Acide urique. Pyrocatèchine Albumine-strine Albumindes - pepto-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1			1 1 4 1	I f	1 1 1 1	1 1 1 1 1 1 1	1	1 .	1	
nes. Acide sulfhydrique. Acide oxybutyrique. Acide urochloralique. Acide abiétique. Hydrocarbures essentiels.	1 1	1		1	1 1				1 1	1		1
tiels. Acide chrysophanique Oxysantonine. Chloroforme. Creatinine. Cystine	1	i		-1	1		1		1			

Ainsi donc sur les huit réactions indiquées pour le glucose diabétique :

1º Réduction à + 100° C. de la liqueur de Fehling par emploi direct:

2º Après défécation;

3º Après interversion;

4º Réduction à + 100° C. du réactif Worm-Muller par emploi direct:

5° Réduction à + 100° C. du réactif Boettger par emploi di-

rect; 6° Fermentation alcoolique sous l'influence de la levère de hière:

7° Coloration de la potasse caustique par élévation de temnérature:

8º Déviation polarimétrique droite après défécation.

La première se retrouve avec 14 autres corps, la seconde avec 8, la troisième avec 5, la quatrième avec 7, la cinquième avec 9, la sixième avec 1, la septième avec 7, la huitième enfin avec 3.

Mais si l'on considère le tableau à un autre point de vue, l'on voit que : le lévulose possède 7 de ces réactions du glucose et se caractérise en plus par une déviation polarimétrique gauche :

On voit que la lactose en possède 6 seulement;

On constate que la dextrine qui offre 7 de ces réactions aussi se différencie par la coloration rouge qu'elle prend avec l'iode ioduré:

On s'aperçoit que le saccharose n'en possède que 2.

Voilà pour les sucres proprement dits; quant aux autres éléments : l'indican, tout en présentant 4, se caractérise indépendamment par la coloration violette qu'à + 50° C. it communique à l'acide chlorhydrique.

L'acide urique (normal) réduit la liqueur de Fehling et le réactif Worm-Muller exclusivement, mais seulement avant défecution (qui l'isole); encore ces réductions n'ont-lells lieu que lorsque cet acide est en grand excès relatif dans l'urine (urine très dense des arthritiques), cas où l'acide chlorhydrique le sépare de suite sous forme de disque (insoluble dans l'alcool).

La pyrocatéchine (normale ou provenant des dérivés phényliques absorbés comme médicaments : kairine par exemple) ne possède que deux réactions;

L'albumine-sérine qui présente trois de ces réactions, est pré.

cipitée par l'acide chlorhydrique à froid et se colore à chaud en violet faible par ce même réactif;

Les peptones qui en donnent aussi trois, mais différentes, dévient de plus à gauche le plan de polarisation après défécation par PbO, et se caractérisent enfin par un précipit ougque produit dans l'urine le réactif de Millon après séparation de la créatinine et des autres albuminotées par le chlorure de sinc;

L'acide sulfhydrique p'en donne que deux (précipitation de sulfures métalliques noirs);

L'acide oxybutyrique n'en possède qu'une, et il se distingue encore par sa déviation polarimétrique gauche;

L'acide urochloralique (chloral en excès comme médicament) en présente trois seulement;

L'acide abiétique (balsamique comme médicament) n'en offre qu'une et est séparé par l'acide chlorhydrique sous forme d'un précipité blanc (soluble dans l'alcool);

Les hydrocarbures essentiels (essences, camphre comme médicaments) sont caractérisés par les deux premières, plus une déviation polarimétrique gauche;

L'acide chrysophanique (rhubarbe et séné comme médicaments);

L'augsantonine (santonine ou semencontra employé à l'intirieur) n'offerne l'un et l'aute que deux réactions semblables nous n'avons pas compris à ce tableau leur caractérisation différentielle qui n'a aucune importance pratique; en deux mots, on peut sealement dire qu'elle a lieu par le zinc en poudre qui réduit la coloration rouge des alcalis pour l'acide chyrsophanique et non pour la saatonine;

Le chloroforme (administré en inhalations) qui s'élimine parfois par l'urine et donne les deux réactions de Fehling et Worm-Muller exclusivement:

Enfin la créatinine (normale), en excès dans les urines très denses des arthritiques (même cas que l'acide urique) ou des gros mangeurs, n'offre que trois des réactions du glucose.

Et comme on peut s'assurer à la simple vue du tableau préchet qu'aucune de ces douze réactions ne concordent simultanément, nous dirons donc qu'elles nous semblent caractériser différentiellement tant le glucose que les autres corps avec lesquels un examen uroscopique superficiel pourrait le faire confondre; en ajoutant que leur ensemble seul est absolument probant comme recherche du glucose.

. b. Dosage du glucose urinaire.

On a vu à la polarimétrie la marche générale du dosage différentiel du glucose diabétique.

Il ne nous reste plus ainsi qu'à ajouter la notion du coefficient polarimétrique de cet hydrate de carbone.

Les appareils polarimétriques portent une double graduation, l'une en degrés de cercles, l'autre en degrés saccharimétriques.

L'une el l'autre peuvent être employés en ce cas : mais tanciva une déviation de un degré saccharimétrique correspond un chiffre de 27,23 de glucose diabétique, chiffre, qui (avec la correction de 2/10 correspondant à la dilution subie par l'urine examinée du fait de sa déféctation) deviont 287,70;

A chaque déviation de un degré de cercle répond un chiffre de 85,65 de glucose, chiffre brut, soit 105,38 après correction de la défécation.

Avoir soin, quand on emploie la graduation de cercle, de ne

pas oublier que lés fractions ne sont plus décimales comme celles du vernier de la graduation saccharimétrique, mais correspondent à la division en minutes et secondes. La division saccharimétrique, de beaucoup la plus pratique,

La division saccharimétrique, de beaucoup la plus pranque, est généralement employée, bien que presque tous les instruments portent les deux cercles.

C. Recherche et dosage des protéines urinaires.

Au point de vue de leur classification chimique et de leurs origines respectives les matières protéiques pouvant se rencontrer en l'urine, ou protéines urinaires, ont été précédemment décrites à l'urine normale.

Au point de vue de leur recherche et de leur dosage pratiques nous adopterons la classification suivante :

· 1º Protéines pigmentaires :

Normales : urobitine, uro-érythrine.

Anormales : rouge : méthémoglobine, globine, vertes : matières colorantes biliaires, noire : uromélanine; la simple filtration: fibrine;

3º Protéines coagulables à froid par l'acide acétique séparables en ces conditions par le filtre : mucine, spermatine;

Le ferrocyanure de polassium acidifié par C'H'0' différencie la spermatine (qu'il coagule abondamment) de la mucine avec laquelle il ne donne qu'un faible trouble.

éº Protéines coagulables à froid par le sulfate de magnésie de saturation) dans un liquide acide, et ainsi séparables par filtration: syntonines-acides, syntonines-acides, syntonines-acides, syntonines-acides, syntonines-acides, syntonines-acides, syntonines-acides, syntonines-acides premières: les unes et les autres sont encore"-coaquiables par la chaleur dans un milieu neutre. La présence simultanée du lactose caractérise la troisième:

5º Protéines coagulables à froid par l'acide carbonique (à saturation) dans un milieu acide: globulines;

6° Protéines coagulables à +100°C, par l'acide acétique, et que la filtration sépare alors du liquide : sérine, pyine, ovoglobuline:

La pyine se distingue de ses deux congénères par l'action de l'ammoniaque qui la fait prendre en masse gélatiniforme. L'ovoglubuline se distingue de la sérine par l'action du réactif de Gauthier (de Naples) qui la précipite:

7º Protéines non précipitables par les réactifs chimiques précédents; précipitables par le tannin : gélatine; précipitable par l'acide citro-picrique à + 100° C : peptines;

8º Protéines décelables seulement par les réactifs physiologiques diastase, pepsine :

9º Protéines décelables par aucun des réactifs chimiques précipités ni par les réactifs physiologiques: précipitables par le réactif de Millon après défécation de l'urine par le chlorure de zinc: peptones.

a. Le colonimètre et le spectroscope permettaut, avons-nous dit, de caractèriser et même doser les éléments constituants du premier de ces groupes, nous n'y reviendrons pas ici.

b. Sur les 9 autres restant, 2 n'offrent aucune étude pratique : ferments digestifs et globuline, nous les éliminerons donc encore.

Restent 6 dont nous allons tâcher d'esquisser la séparation et le dosage :

c. La fibrine étant éliminée par filtration et ainsi pesée et dosée.

d. On sépare le groupe mucine par addition à l'urine de 2 dixièmes d'acide acétique cristallisable (ne pas dépasser cette dose sous peine de redissoudre la spermatine s'il y en a). Le précipité est recueilli sur un filtre.

e. On prélève alors sur le filtratum urinaire 50 centimètres cubes auxquels on ajoute goutte à goutte la liqueur de Tanret jusqu'à réaction jaune sur le bichlorure de mercure.

Soit n le nombre de divisions de liqueur de Tanret employées. La liqueur de Tanret précipitant l'ensemble des protéines urinaires en désignant chacun des groupes étudiés par les lettres de son principal élément, il est évident que n correspond à :

$$n = Sy + Sé + Pi + Pe$$

syntonines, sérine, peptines, peptones.

f. A 50 centimètres cubes du même filtratum, on ajoute 30 grammes de sulfate de magnésie hydraté. On agite et quand la dissolution est aussi parfaite que possible (la saturation la lieu par 45 grammes), on jette sur un filtre.

Le filtratum recueilli est traité de nouveau par Tanret : soit n' le chiffre alors employé :

$$n' = Sé + Pi + Pe$$

g. 250 centimètres cubes d'urine acidifiés par 1 centimètre cube d'acide acétique sont portés à l'ébullition et maintenus à cette température pendant 45 minutes. Le précipité recueilli sur un filtre est (après lavages à l'eau acidulée, à l'alcool et à l'éther) séché et pesé.

Soit p, son poids qui est celui des éléments du groupe sérine.

$$p = Sé.$$

 La même opération est répétée mais en employant comme réactif de coagulation 50 centimètres cubes de solution citropicrique. Le précipité lavé dans les mêmes conditions donne

$$p' = Sé + Pi$$
.

i. On a ainsi 4 équations d'où après corrections ramenant tous les dosages et pesées précédentes aux dosages par litre, on tire les 4 inconnues, peptones comprises : ces dernières étant données par différence.

Une des causes d'erreur les plus fréquentes dans la recherche de l'albumine est, avons-nous dight dit, la présence d'acide abiétique introduit dans l'organisme par les blasmiques, absorbés comme médicaments. On ne doit donc jamais se contenter ni de la simple précipitation par la chaleur, l'acide acofique, Tarret ou Esbach : il faut toujours reprendre les précipités par l'Acolo. Si le précipités et als de l'acide abiétique; il s'ydissout, tandis que les albumines et les albuminoides sont inso-lubles dans ce réactif. Si les deux cospe srisent: l'alcool, par sa précipitation directe et exclusive des protéines, les différencie donc de cette cause d'erreur.

III. RECHERCHES D'ÉLÉMENTS ANORMAUX.

A. Recherche de l'hémoglobine.

Cette recherche a été décrite au paragraphe spectroscopie de l'étude des propriétés physiques de l'urine anormale. L'appréciation quantitative de l'hémoglobine urinaire [soit libre soit incluse dans les hématies) n'a pas une grande importance séméiologique, mais à la rigueur elle pourrait être effectuée par l'hématoscope d'Hémoque.

Nous renvoyons pour sa description et le mode opératoire aux monographies de ce système.

B. Recherche des pigments biliaires.

Deux procédés se contrôlent surtout dans le cas de doses très faibles de ce pigment (débuts de l'ictère spasmodique par exemple).

4° A l'urine filtrée et débarrassée de sérine par l'action de l'acide acétique à +100° C, ajouter dans un verre conique de l'acide azotique (réaction de Gmelin). L'acide azotique, plus

dense que l'urine, gagne le fond du verre, et l'on obtient aux points de contact une série de zones colorées, bleu, rouge, violet, vert, caractéristiques. La bande verte doit être en contact direct avec l'urine; cette bande seule est caractéristique.

2º A 30 centimètres cubes l'urine préparée comme précédemment, ajouter environ 0º 10 de nitrite de soude. Agiter pour dissoudre, puis ajouter goutte à goutte environ 1 centimètre cube d'acide sulfurique pur. La masse, après dégagement de gaz hypozzolique, prend une teinte verte plus ou moins foncée, en tous cas encore caractéristique.

C. Recherche des acides biliaires.

Réaction de Pettenkofer :

A 3 centimètres cubes d'urine ajouter 02°,50 de sucre (saccharose), faire dissoudre et verser goute à goute 5 centimètres cubes d'acide sulfarique pur. Le mélange prend avec l'urine ne contenant par écidées biliaires une teinite d'abord rosée, puis rougelàire, enfin noire; en cas contraire: présence des acides taurocholique et damalurique cette couleur est violet franc. Cette réaction est caractéristique.

D. Recherche de la cystine.

Porter à l'ébullition le mélange suivant : urine déféquée par le sous-acétate de plomb : 10 centimètres cubes, lessive des savonniers (soude caustique) : 5 centimètres cubes. En cas de présence de cystine, on a un précipité noir de sulfure de plomb par décomposition de la cystine sous l'influence de l'aleali libre.

Cette réaction se distingue de celle de l'acide sulfhydrique en ce que la cystine ne donne rien avec les sels de cuivre.

E. Recherche de l'inosite.

A do centimètres cubes d'urine déféquée par l'acétate de plomb basique ajouter 5 centimètres cubes de réactif de Millon, Filtrer pour séparer le précipit de créatinie solément ou de créatinine et de peptones selon les cas. Porter à l'ébullition dans une capsule de porcelaine et faire évaporer rapidement à feu nu. En cas de présence d'inosite, le résidu à chaud a une couleur variant du rouge clair au rouge noir, revenant par refroidissement soit à une teinte rouge cerise soit à une teinte jaune clair selon l'intensité colorimétrique primitive.

F. Recherche de l'indican.

Porter à +50° C. dans un tube de verre environ 10 centimètres cubes d'acide chlorhydrique pur. Verser lentement à la surface, avec une pipette, 1 centimètre cube d'urine déféquée par l'acétate de plomb.

En cas de présence d'indican, le mélange prend, au point de contact des deux liquides, une coloration violette caractéristique, virant au jaune par addition d'acide azotique.

G. Recherche des leucomaines.

Les leucomaînes urinaires normales doivent, malgré leur présence habituelle, toujours être analytiquement recherchées, à cause de l'importance sémélologique attachée à leur suppression d'élimination (urémie).

Le procédé le plus simple, relativement aux doses infinitésimales de ces corps toxiques entrant dans la composition urinaire, est celui dit de la fluorescence.

Il consiste à ajouter cinq gouttes de réactif Von Jasck à 10 centimètres cubes d'urine; et à rechercher soit directement soit à l'aide du fluorescope la teinte de fluorescence verte offerte par les iodures de ces leucomaines.

H. Recherche de l'acide oxybutyrique.

Cette recherche est fondée sur les deux réactions combinées indiquées au tableau glucose : réduction du réactif Boëttger et déviation polarimétrique gauche.

Mais si en cas d'absence de glucose dans l'urine examinée ces réactions sont caractéristiques; comme l'une d'elles appartient aussi au suce diabétique et que l'autre si contrebalancie et masquée par le glucose; en cas de présence de ce dernier, on devra donc faire subir à l'urine une manipulation préparatoire.

Cette manipulation consiste à faire fermenter le liquide en présence de la levûre de bière (réactif carbonyle de Cl. Bernard). Lorsque tout le glucose aura été transformée en alcool (action nulle sur la liqueur de Fehling), l'essai de Boëttger positif, accompagné d'une déviation lévogyre, seront démonstratifs.

I. Recherche des sulfocyanures.

D'une façon analogue aux dérivés acétiques qui accompaquent l'acide oxybutyrique, les sulforyanures normaux lorsqu'ils sont exagérés donneut avec le perchloure de fer une coloration rouge, qui pourrait amener la confusion des deux produits. Mais toutefois si l'on a soin de faire les réactions secondaires de l'acétone (réactions que nous arons précédemment), et surtouts i l'on a dosé la créatinine et l'ammoniaque, l'on peut éviter toute erreur d'interprétation qualitatire de la réaction.

L'acide oxyuntyrique no se rencontre, en effet, que chez des malades (dishetiques gras) ayant une diminution des oxydations organiques et éliminant de ce fait plus de créatinine et moins d'ammoniaque que la normale; les sufforyanures, au contraire, secentuant à la terminaison des maladies consomptives (diabètes maigres, tuberculose, etc.) et correspondant à une augmentation des oxydations organiques, sont toujours accompanés d'une augmentation de l'ammoniaque urinaire et d'une diminution de la créatinine d'excrétion.

Deuxième ordre. - Analyse chimique des calculs.

I. EXAMEN QUALITATIF.

A. Cas d'un élément isolé.

4. On calcine un fragment du calcul sur une lame de platine (2, 9, 43).

Il ne laisse pas de résidu, ou un résidu insignifiant (matières organiques exclusivement) (3, 5).

 Un fragment du calcul est arrosé d'acide azotique, on chauffe doucement, on évapore, et on ajoute de l'ammoniaque (4, 6, 7, 8).

4. Il se développe une coloration rouge pourpre qui passe au violet par addition de potasse caustique (murexyde) (3, 12, 14). Le calcul primitif ne dégage pas d'ammoniaque par la potasse caustique (acide urique).

6. Il n'y a pas d'action, mais la potasse ajoutée développe une belle couleur rouge (xanthine).

7. Les réactions 4 et 6 ont été négatives, mais le calcul est soluble dans l'ammoniaque (qui par évaporation abandonne descristaux à 6 pans) (cystine).

 Les réactions 4, 6, 7 étant négatives, on a remarqué par la réaction une odeur de corne brûlée; le calcul se dissout dans la potasse caustique, et le précipité de cette solution par l'acide caustique (fbrine).

9. Les réactions 3, 4, 6, 8, 9 étant négatives, le calcul est trituré avec de l'eau dans laquelle il se dissout partiellement en fournissant un liquide coloré en rouge brun et qui, examiné au spectroscope, donne les raies d'absorption de l'hémoglobine (sano).

(sany).

10. Les réactions 3, 4, 5, 6, 8, 9 étant négatives, on traite un fragment du calcul par l'éther. Il se dissout dans ce véhicule, et par évaporation on obtient:

Soit des tables microscopiques en forme de prismes rhomboldaux obliques très aplatis (cholestérine);

Soit un corps gras amorphe (urostéalithe).

11. Les réactions 3, 4, 5, 6, 7, 8, 9 étant négatives, on repend un fragment de calcul par le chloroforme. Il s'y dissout en donnaint un liquide jaune brun, qui en présence de l'acide nitrique nitreux vire au violet vert (Gmelin) (pigments bilinires).

 Le calcul primitif dégageait de l'ammoniaque par la potasse caustique (urate acide d'ammoniaque).

13. Le calcul laissait un résidu important (14, 22).

En donnant la réaction 4 (murexide) (15).
 Le résidu traité par l'eau (16, 19).

Se dissout en lui communiquant une réaction alcaline;
 (17, 18).

47. La solution précipite par le chlorure de platine (urate acide de potasse).

48. La solution ne précipite pas par Pl²Gl³. Elle rend la flamme jaune (urate acide de soude).

E. GAUTRELET. - Urines.

- Ne se dissout pas, et est faiblement alcalin. Repris par l'acide acétique, cette solution saline (20, 24).
- 20. Donne un précipité blanc par l'oxalate d'ammoniaque (urate de chaux).
- 24. Ne donne pas de précipité blanc par l'oxalate d'ammoniaque; le phosphate de soude et l'ammoniaque la précipite (uvate de magnésie.)
- 22. En ne donnant par la réaction 4 (murexide); le calcul primitif est traité par l'acide acétique (23, 26, 30).
 - 23. Il se dissout avec effervescence (24, 25).
- 24. La solution acétique précipite par l'oxalate d'ammoniaque (carbonate de chaux).
- La solution acétique ne précipite pas par l'oxalate d'ammoniaque; elle précipite par NaO,2HO,PhO² + AzH⁴O (carbonate de magnésie).
 - 26. Il se dissout sans effervescence (27).
 - 27. Le calcul primitif traité par KO.HO (28, 29).
- 28. Laisse dégager de l'ammoniaque (phosphate ammoniacomagnésien).
- Ne laisse pas dégager d'ammoniaque (phosphate de chaux).
 Il ne se dissout pas; mais le résidu de sa calcination s'y

dissout avec effervescence (oxalate de chaux).

B. Cas d'éléments multiples. Répéter cette marche en isolant chaque fois l'un de corps en présence.

II. EXAMEN QUANTITATIF.

- 1. Prendre le poids du calcul.
- Le pulvériser.
- 3. En placer à l'étuve à $\pm\,400^{\circ}$ C. un poids déterminé. La perte représentera (l'eau).
- 4. Incinérer ce produit sec, la perte représentera (les matières organiques).
- 5. Et le chiffre restant correspondra (aux matériaux minéraux.
- Traiter un poids déterminé de la poudre par l'eau bouillante, on séparera ainsi directement (l'acide urique).

- 7. Et par addition d'acide chlorhydrique l'acide prique dans les urates.
- les urates.

 8. Les eaux mères du traitement chlorhydrique tiennent en solution (les bases des urates);
- Et l'on peut les y déceler et doser par les réactifs généraux (47, 48, 49, 20).
- (L'ammoniaque s'il y en a sera dosée par l'uroazotimètre).

 9. Le résidu insoluble dans l'eau bouillante est pesé, puis traité par l'acide acétique.
- Le nouveau résidu, s'il y en aun, est exclusivement composé (d'oxalate de chaux).
 - Dont on connaît ainsi le poids.
- L'acide acétique a déterminé ou non une effervescence dans cette dernière opération.
- Si oui, opérer de nouveau dans l'uroazotimètre, le gaz carbonique dégagé, sera mesuré et donnera le poids (des carnates).
- Dans la liqueur mère, l'acide phosphorique sera dosé par l'azotaté d'urane, et l'on connaîtra ainsi le poids (des phosphates).
- 43. Enfin la solution acétique fournira qualitativement et quantitativement (les bases des phosphates et des carbonates).
- Si le calcul est organique: l'éther séparera et pourra servir à doser (la cholestérine).
- 45. L'ammoniaque pourra en isoler complètement (la cystine) qui sera pesée ainsi déplacée.
- 46. La potasse dissolvant et séparant (la fibrine) le précipité par l'acide acétique (obtenu dans cette solution) étant desséché représentera le poids de cette substance.

DEUXIÈME SECTION

DOCIMASIE UROLOGIQUE COMPARÉE

La docimasie urologique proprement dite, dont nous venons de développer successivement les phases organoleptiques, piysiques, physiologiques et chimiques, nous a fourni les moyens; étant domé l'excrétion urinaire cyclique (24 heures) d'un sujet quelconque, de pénétrer sa composition intime et de la déterminer pondéralement aussi exactement que possible.

La séméiologie urologique est basée, avons-nous dit, sur l'étude comparée des échanges organiques assimilatifs et désassimilatifs en général et plus spécialement sur l'appréciation, des données que pour fournirà cette étude l'examen comparatif de l'excrétion urinaire d'un sujet avec e que devrait étre cette excrétion à l'état de santé absolue dans les conditions physiologiques où le même sujet se trouve au moment de l'expérience.

Le second terme du problème: moyens de comparaison de la docimasie urinaire constatée avec la docimasie urinaire, type des sujets examinés, sera donc la raison d'être de cette seconde nártie de la technique analytique.

Et comme cette comparaison repose tant sur la détermination d'une base première d'interprétation urologique, que sur l'expression tangible des données à comparer, nous diviserons la docimasie prelogique comparée en :

Coefficient urologique relatif; Séméjographie urologique.

1. COEFFICIENT UROLOGIQUE RELATIF.

Nous avons développé à la première partie de ce travail une série de considérations relatives à l'excrétion urinaire dans l'état de santé absolue.

De ces considérations découle tout d'abord cet aphorisme que l'excrétion urinire normale ne peut être que la résultante de facteurs divers mais constants, tels que : poids corporel proportionné à la taille et à l'âge, alimentation conforme à la ration d'entrelien, ration d'entrelien dépendant elle-même tant des facteurs précédents que du régime d'exercice et du climat.

De ces considérations, il ressort encore que toutes ces conditions physiologiques intrinsèques et extrinsèques étant normales, le rapport absolu de l'élimination urinaire à l'unité pondérale corporelle représente le coefficient urologique absolu de l'espèce humaine.

Généraliser cette donnée, la rendre applicable à tous les cas

physiologiques et morbides, tel doit être le but du coefficient urologique relatif.

A. Facteurs intrinsèques.

Poids. Taille. Age. — Du travail de Peyraud il appert que la relation qui unit les deux facteurs, poids et taille, à l'âge de vingt et un ans peut s'exprimer de la façon suivante:

A vingt et un ans le poids corporel est égal au chiffre de la taille en centimètres dépassant le mêtre moins un dixième.

De Saint-Germain a indiqué comme rapport le poids égal en livres au chiffre total de la taille exprimée en centimètres. D'autres auteurs calculent encore ce poids en prenant les quatre dixièmes seulement en kilos de la taille exprimée de la même manière.

Ces différentes manières de voir soumises comparativement à l'expérience pratique, nous ont toujours l'une ou l'autre laissé en défaut.

Les deux dernières différent, en effet, l'une de l'autre, de un dixième au point de vue de l'appréciation absolue. Mais au point de vue relatif, la troisième se différencie surtout de la première par les considérations d'âge; l'une étant plus spécialement applicable à vinget teun aus, l'autre à un âge plus avancé, treate aus.

Une formule générale est, à notre avis, fort difficile à trouver; mais ce qui est toutefois possible, c'est indiquer les modifications que l'une ou l'autre des formules précitées peut subir sous l'influence de l'âge.

Adoptons la seconde formule: poids égal aux quatre dixièmes de la taille en centimètres.

Soit un homme de trente ans, mesurant 1m,80;

Cet homme devra peser $480 \times \frac{4}{40} = 72$ kilogrammes, ou en

généralisant la formule:
$$P = \frac{\text{cm} \times 4}{10} = \frac{4 \text{ cm}}{10}$$

Prenons un enfant de dix ans, mesurant 12,32;

Il est certain que le développement en volume étant inférieur à cet âge au développement en longueur, l'enfant ne pèsera pas

 $432 = \frac{4}{10} = 42.8$, mais un chiffre moindre, que nos données ex-

périmentales nous portent à fixer au même rapport $\frac{4 \text{ cm}}{10}$ moins 4/2 unité par différence annuelle de temps entre l'âge de l'en-

1/2 unité par différence annuelle de temps entre l'age de l'er fant et l'àge moyen trente de la formule adoptée. On aura donc pour son poids :

$$132 \times \frac{4}{10} - \frac{20}{2} = 32^{k}, 8;$$

ou, d'une facon générale,

$$P = \frac{4 \text{ cm}}{10} - \frac{30 - A}{2};$$

A étant l'âge du sujet observé.

Soit, au contraire, un homme de plus de trente ans; tout le développement longitudinal ayant été acquis avant cette époque, le sujet n'aura pu alors se développer qu'en volume.

La formule précédente se renverse donc et devient :

$$P = \frac{4 \text{ cm}}{10} + \frac{A - 20}{2}$$

applicable seulement jusqu'à soixante ans, époque où la décrépitude sénile ramène les facteurs à la formule de l'enfance, modifiée toutefois dans son dernier terme par rapport au dernier facteur, l'âge:

$$P = \frac{4 \text{ cm}}{10} - \frac{A - 60}{2}$$

Exemples d'application de ces deux dernières formules : Homme de trente-huit ans, taille 4m,70.

Poids =
$$\frac{170 \times 4}{10}$$
 + $\frac{38 - 30}{2}$ = $68 + 4 = 72$ kil.;

homme de soixante-douze ans, taille 1m,78.

Poids =
$$\frac{178 \times 4}{10} - \frac{72 - 60}{2} = 71,2 - 6 = 65^{k},2.$$

Ainsi donc théoriquement les chiffres précédents représentent l'évaluation pondérale normale de nos sujets, en égard à l'âge, à la taille et au poids vrai. Mais il n'est pas douteux que ces chiffres subissent, soit des conditions hygieniques défectueuses, soit de la malade, des modifications notables dont il est impossible que l'on ne tienne pas compte. Pas plus, en effet, l'évaluation pondérale théorique d'un sujet que son poids vrai n'expriment d'une façon inductable la masse des tissus entrant d'une façon normale dans le quantum des échanges organiques; et cette donnée est surtout tangible chez les obèses.

Pas plus, en effet, l'excrétion urinaire d'un sujet à la diète absolue ne représente son excrétion physiologique.

Mais la moyenne entre le poids théorique et la pesée brute constatée, nous donnera une mesure plus approchée de la somme des éléments tissulaires contribuant à la désassimilation organique.

Donc, en appelant X le coefficient urologique relatif, et p le poids constaté des sujets observés, ou aura :

$$X = \frac{p + P}{2}$$

P, le poids théorique, étant fourni par l'une ou l'autre des trois équations précédentes selou l'âge du malade.

B. Facteurs extrinsèques.

Alimentation. Exercice. Climat. — La solidarité qui unit les facteurs intrinsèques de l'excrétion urinaire, régit aussi les relations des facteurs extrinsèques.

A. Gautier et Dujardin-Beaumetz ont montré que, sur 100 catories produites par les combustions organiques dans la machine humaine, 25 servaient à mainteur la température corporelle (+37° C), 20 donnaient du travail effectif et 55 étaient absorbées par les frottements.

On déduit de suite de cette donnée qu'à facteurs intrinsèques égaux chez un homme, sa ration d'entretieur devra être, dans les climats froids, supérieure à celle qui lui serait de droit dévolue dans un climat tempéré, plus éterée encore à plus forte raison que celle qui lui sepait nécessaire dans les pays chands : et c'est en effet, ce que la pratique constate.

L'exercice physique a une non moins grande influence sur la détermination de la ration d'entretien.

Pour compenser ses pertes générales d'excrétion, un homme

de 65 kil. doit, d'après Dujardin-Beaumetz et Hervé-Mangon, recouvrer en vingt-quatre heures:

			Carbone.	Azote.
A	l'état de	repos	234.00	13.00
	_	travail modéré	337.92	19.56
	_	travail actif	442.00	25.00

soit par unité pondérale, le kilogramme, ou plus exactement (en tenant compte de tous les facteurs qui influent sur la donnée pondérale) par unité de coefficient urologique:

	Carbone.	Azote
Repos	3.60	0.20
Travail modéré	5.17	0.30
Travail actif	6.80	0.38

Quant au travail cérébral, il suffira de donner les chiffres trouvés par Byasson pour montrer quelle part ce facteur a dans l'excrétion urinaire:

						Moyenne d'excrétion de 24 heures.
1° 2° 3°	Période	de _		repos travail muscula travail cérébra	ire.	Urée = 20.46 Urée = 21.90 Urée = 23.88

chiffres d'ailleurs corroborés par les recherches de Moritz-Schiff relatives à l'élévation de la température, et de Burdach sur l'augmentation de l'oxygène comburé pendant le travail intellectuel.

Mais la relation qui unit les facteurs intrinsèques aux facteurs extrinsèques est encore plus accentate pour l'âge proprement dit que pour le poids et la taille considérés isolément; et l'on peut s'en convaincre par l'examen de la formule de ration d'entretien que Smith a déterminée (pour le repos) aux différentes périodes de la vie:

Enfants	9.84	0.96
Age de 10 ans	6.84	0.40
Age de 16 ans	4.27	0.38
Age adulte	3.60	0.20

La seconde portion du coefficient uvologique relatif, celle qui a trait à l'influence sur l'excrétion urinaire des facteurs, climat, exercice physique, exercice cérébral, alimentation, doit donc tenir compte de l'influence de ces facteurs extrinsèques, dans une mesure tout ansair s'elle que pour les facteurs intrinsèques. Bes recherches personnelles hasées précisément sur les expécionces de Smith, d'Hervé-Mangon et de Pettenkofer (v. Nora), nous ont permis de faire cette remarque que les excreta dépendaient pour un tiers de l'alimentation et pour deux tiers de la désassimilation. Nous en avons déduit, il y a quelque temps déjà, une formule générale de coefficient urologique relatif. Malheureusement, nous reconnaissons que dans la pratique analytique il ne nous a pas foujours été permis de l'employer, soit que l'alimentation de nos mahdes un ous est pas été exactement indiquée, soit que la complexité de cette alimentation ne se prétât pas à une évaluation numérique courante.

Nous donnerons toutefois cette formule, en la faisant suivre des principaux éléments du tableau dressé par l'éminent thérapeutiste Dujardio-Beaumetz, mais en ajoutant que, sauf le cas de repos créé par l'alitement et de diète absolue ou relative (lactée par exemple), nous ne pouvons prendre la responsabilité de son application pratique.

Soit X représentant le coefficient urologique relatif fourni par l'évaluation pondérale des facteurs intrinsèques poids, taille, âge:

t' représentant la température la plus élevée du jour de l'observation à laquelle le malade a été soumis;

t, étant la température la plus basse en les même conditions;

Nora. — Variations des excreta humains dans les variations de régime alimentaire :

ALIMENTATION.	AZOTE des aliments en grammes.	OXYGÊNE înspîré.	AZOTE de l'urine et des excrèments.	CARBONE éliminé par les poumons.
Régime j Premier jour azoté. Deuxième jour	42.61 42.59	850 876	28.71 36.14	273.6 283.1
Régime Repos	19.48 19.40	831.6 980	19.47 19.28	253.1 329.1
Régime non azoté	1.29	808	13.43	228.0
Jeune. Repos	0	766.25 807.18	12.39 12.36	195.4 323.9

18, étant la normale des températures moyenne;

a' étant l'azote alimentaire absorbé le jour de l'expérience;

a, étant l'azote alimentaire de la ration d'entretien;

c' le carbone absorbé;

c l'unité de carbone de la ration d'entretien propre à l'âge et à l'exercice du sujet;

le tout calculé d'après la donnée X, la température et l'exercice fait par le sujet observé;

On a:

X' coefficient urologique relatif complet égal à :

$$\mathbf{X}' = \frac{\mathbf{X} \times 2}{3} + \left(\frac{\mathbf{X} \times 1}{3} \times \frac{18}{\underline{t' - t}} \times \frac{c}{c' \times \mathbf{X}} \times \frac{a}{a' \times \mathbf{X}}\right)$$

c'est-à-dire :

Le coefficient urologique relatif complet est égal à la somme des 2 tiers du coefficient urologique plus le produit du tiers restant de ce coefficient urologique intrinsèque par les rapports de température et d'alimentation existant chez le sujet observé d'après sa normale pluysiologique.

Exemple:

Age : quarante-deux ans;

Taille: 4m,60;

Exercice : nul (alitée);

Exercice : nul (alitee); Régime : lacté (2 litres);

Climat: +16° C. (température constante de la chambre).

Ginna 1:
$$+10^{10}$$
. (temperature to $\frac{4 \times 168}{10} + \frac{42 - 30}{2} = 61,2 + 6 = 73,2$

$$\times \frac{86 + 73,2}{2} = 91,6$$

$$\times \frac{-10,0 \times 2}{5} + \left(\frac{130,0 \times 1}{3} \times \frac{16}{3} \times \frac{8 \times 10 \times 2}{6,00 \times 10} \times \frac{0,66 \times 10 \times 2}{0,20 \times 10,6}\right)$$

$$\times (-58,00 + (26,30 \times 1,12 \times \frac{100}{308,50} \times \frac{130}{1500})$$

$$\times (-53,06 + (26,30 \times 1,12 \times \frac{100}{308,50} \times \frac{130}{1500})$$

$$\times (-53,06 + (26,30 \times 0,13 \times \frac{1}{3}) \times \frac{100}{308,50} \times \frac{130}{1500}$$

$$\times (-53,06 + (26,30 \times 0,13 \times \frac{1}{3}) \times \frac{100}{308,50} \times \frac{130}{1500}$$

X' = 53,07 + 12,47 = 65,53 soit en chiffres ronds 65 unités urologiques et demie. Les tableaux précédents nous ont fourni les chiffres c=3,60 et a=0,20 relatifs aux unités de ration d'entretien du malade observé : au tableau suivant l'on trouver les facteurs a=0,66 $\times 10 \times 2$ et $c=8 \times 10 \times 2$, afférents à l'alimentation lactée (2 litres de lait); ce qui justifiera à la fois notre formule et l'exemple que nous en avons donné.

NOMS DES ALIMENTS.	AZOTE pour 100.	CARBONE ET HYDROGÈNE calculés en carbone pour 100.
Vinnde de hourt. Bouf röd	3.00 3.53 3.69 2.12 2.66 3.83 5.02 3.11 1.83 2.41 2.41 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49	pour 100. 11.00 117.10 15.5.8 15.5.8 15.5.8 15.18 12.13 12.13 12.12 12.25 16.00 21.00 21.00 21.00 12.25 30.05 9.00 7.18 10.05 30.05
Blé du Midi (moyenne variable). Blé lendre (moyenne variable). Farine blauche (Paris). Farine de seigle. Orge d'hiver. Mais Sarrasin. Grunu d'avoine. Pain blane de Paris (33 p. 160 d'esu).	3.00 1.81 1.64 1.75 1.90 1.70 2.20 1.80 1.95 1.08	41.00 39.00 38.50 41.00 40.00 44.00 42.50 41.00 44.00 29,50

		CARBONE
NOMS DES ALIMENTS.	AZOTE	ET HYDROGÈNE calculés
(SUITE.)	pour 100.	en carbone
		pour 100.
Pain de munition français (ancien)	1.07	28.00
_ (actuel)	1.20	30.00 31.00
Pain de farine de blé dur		35 00
Châtaignes fraiches		48.00
Pommes de terre	0.33	11.00 42.00
Fèves	4.50	43.00
Haricots secs		43.00
Pois secs	3.66	44.00
Carattes	0.31	5.50 4.52
Champignons de couche	0.60	15.50
Figues fraiches	0.92	34.00
Dwwwoone	0 75	28.00
Infusion de 100 grammes de café	1.10	9.00
de the	1 00	71.14
Lard	0.64	83.00
Huile d'olive	traces	98.00
Bière forte	0.05	4.00
Vin	0.13	1.00
		-

II. SÉMÉIOGRAPHIE UROLOGIQUE.

Possédant à l'heure actuelle et les moyens de soupeser docimasiquement l'excrétion urinaire d'un sujet quelonque et les moyens de supputer numériquement son excrétion normale relativement aux conditions physiologiques de l'expérience, l'on a en main les deux termes du problème urologique posé.

Un simple rapprochement de ces deux termes sous forme de rapport p. 100 (traduit graphiquement selon les données énoncées à la première partie de ce travail) schèvera de fixer ses termes dans l'esprit, et à cet égard un exemple sera encore le meilleur interprète de notre peasée.

Soit M=° S... dont les données physiologiques viennent d'être exprimées et calculées en coefficient urologique relatif=65,5. Le tableau suivant représentant:

 a. Dans la deuxième colonne: les dosages de son urine pour la période de vingt-quatre heures;

 b. Dans la troisième : les unités urologiques déterminées à la première partie de ce travail;

c. A la quatrième : les produits successifs de chacune de ces unités urologiques par le coefficient urologique relatif à 65,5;

d. La cinquième colonne exprimera aux yeux les quotients des chiffres de la deuxième colonne par ceux de la quatrième : 100 étant pris pour normale.

ELEMENTS nosās.	DOSAGES par 24 houres d'urine examinée. 2 1500ee 6387,30 0 9.15 19.92 0.76 1.53 0.36	NORMALES en 24 heures pour une unité urologique. 3 24 cc 1.00 0.03 0.10 0.45 0.01 0.05	NORMALES en 24 heures pour le sujet examiné. 1580cc 65.50 1.98 6.55 29.50 0.66 3.28 0.66	8 APPORT à la normale representé par 100 5
--------------------	--	---	---	--

Nous ferons maintenant observer qu'à défant de la connaissance des éléments factoraux extrinsèques et conséquemment de la détermination du coefficient urologique relatif complet, l'emploid u coefficient urologique relatif intrinsèque(c'est-à-dire limité aux données factorales poids, taille, âge) est à la rigueur suffisant. Ce coefficient intrinsècue isolé fournit, en effet, les mêmes

rapports que le coefficient complet, mais les rapports ne sont plus absolus, ils ne sont que relatifs.

Les déductions séméiologiques que l'on peut en tires cont

Les déductions séméiologiques que l'on peut en tirer sont ainsi moins nettes.

Toutefois, le tracé séméiographique étant ainsi fixé dans sa forme générale, il détermine néaumoins en quoi le sonctions assimilatives et désassimilatives sont viciées, et par conséque le coefficient urologique intrinsèque isolé peut la plupart du temps suffire à la conclusion diagnostique.

Au contraire, la hauteur de ce tracé dans l'échelle graphique

E. GARTERLET. - Urines

n'étant plus déterminée comme par les données factorales complètes, la conclusion pronostique s'en trouve écartée, puisque, bien que l'état extraphysiologique soit ainsi déterminé,

Fig. 67. - Exemple de tracé uroséméiographique anormal.

il n'est point cependant possible de constater quel écart les fonctions d'assimilation et de désassimilation présentent avec la normale.

TROISIÈME PARTIE

SÉMÉIOLOGIE UROLOGIQUE

Aux prolégomènes de ce travail nous avons montré quelles étaient la nature et la fonction de l'organe rein : dialyseur excrétant les déchets assimilatifs et désassimilatifs (inutiles ou toxiques) de l'organisme.

En la première partie l'on apu voir comment, étant données toutes les conditions physiologiques, s'exprimait analytique ment

l'excrétion urinaire.

Dans la seconde partie, nous avons passé en revue tant la nomenclature des divers corps pouvant anormalement entrer dans l'excrétion urinaire, que la façon technique de scruter la composition intime de cette excrétion, qu'enfin la manière de 'assurer si l'urine analysée dati physiologique bu non.

Reste, pour être complet: des moyens de comparaison que nous a fournis la technique analytique à conclure au point de vue médical, écst-diré a tirre les déductions sémédologiques se rapportant à tout ce qui, en déhors des conditions physiologiques intrinsèques et extrinsèques prévues, peut influencer anormalement l'excrettion urinaire d'un suigle quelconque.

or l'urine étant, avons-nous dit, constituée par les déchets de l'assimilation et de la désassimilation organiques, ne pouvant que refidére la nature de ces échanges organiques, devra au point de vue séméiologique être étudiée en ce sens exclusivement.

Et c'est précisément ce que nous ferons, en partant des éléments fondamentaux soit de notre organisme, soit de notre alimentation: du carbone, de l'hydrogène et de l'azote, maisen y substituant dans la pratique leurs représentants pratiques : albumine, amidon et pigement sanguin.

Toutefois pour ne point surcharger de détails techniques

chacune des classes de notre séméiologie urologique, nous grouperons les parties principales et générales de cette étude sous forme de prétiminaires destinés à éclairer notre voie dans les phases successives par lesquelles, eu cas de diathèse ou de maladie (chronique ou aigué) peet passer l'organisme humain, phases que nous parcourrons ensuite sous forme de séméiologie urologique versie en suivant cette même division.

PRÉLIMINAIRES

PHYSIOLOGIE UROLOGIQUE

L'étude de l'excretion urinaire dans l'ensemble de ses causes physiologiques nous semble avoir été traitée précédemment avec tous les développements que comporte le cadre de cet ouvrage; nous r'aborderous donc pour le moment que la formation dans l'organisme, aux dépens des tissus vitaux et des ingesta, des éléments entrant physiologiquement ou pouvant entre extraphysiologiquement dans l'élimination urinaire.

Ei, comme nous l'avons déjà dit, la nature ne procédant jamas par à-coups, par tressauts, une filiation directe existe aussi bien entre les produits organiques les plus simples et les plus complexes, qu'entre les êtres aussi petits et aussi grands qu'ils soient.

L'étude raisonnée de la physiologie urologique nous permettra précisément de nous rendre compte de la parenté unissant les produits urinaires, le plus normal au plus extra-physiologique.

Aussi l'excrétion rénale n'étant que la conséquence, le résultat unique de causes diverses multiples, parmi lesquelles la présence dans le torrent circulatoire des éléments à éliminer, est la première à faire entre en ligne de compte : c'est l'étude de cette présence que nous nous efforcerons d'élucider ici.

El pour le faire, nous appuyant sur les notions cliniques résumées dans les principaux ouvrages de chimie organique générale, nous esquisserons maintenant la genése des principaux éléments urinaires, nous attachant surjout à montrer leurs liens de parenté chimique et leur élégénérescence physiologique de produits simples et préformés soit dans l'alimentation, soit dans les organes vivants de la machine humaine.

Mais comme certains de ces produits s'éliminent tels que le courant sanguin les apporte au rein, tandis que pour d'autres le « glomérule de Malpighi » est, au moment de la dialyse, le centre d'un travail chimique réel, nous diviserons encore cette « physiologie urologique » en deux parties.

La première correspondant à la préformation circulatoire des éléments s'éliminant en nature par le rein : genèse urologique.

La seconde répondant aux dédoublements chimiques se passant dans le rein vis-à-vis de certains éléments éliminés par la paroi glomérulaire à un état chimique différent de celui sous lequel ces éléments sont compris dans la masse plasmatique sanguine : élimination unelocione.

Premier groupe. - Genėse urologique.

Sil est certain que dans notre alimentation quotidieme, dans cetteración d'entretien que nous avons déjà montrée être physiologiquement nécessaire au fonctionnement méthodique de la machine humañes, il entre nombre de produits comme le chlorure de sodiun, les phosphates, dont nous rétrouvons la représentation exacte de tous points dans l'excrétion urinaire; il est non moins évident aussi que beaucoup d'autres corps comme l'urée, l'acide urique, l'urobline, l'acide lactique, l'armoniaque, etc., pour ne citer que les principaux, étiminés journellement et régulièrement par l'urine de l'homme, ne trouvent aucne dequivalent dans les uns ou les autres des produits qui sous la forme solide ou la forme liquide composent notre nourriture habituelle.

De cette observation il résulte donc que ces produits de toute certitude non affernis à l'alimentation sont des déchets organiques soit de la transformation nutritive soit de la régresoit tissulaire; en tous cas, des produits dérivés des éléments organiques animau ou régétaux ou régerants.

Or, parmi les dérivés communs aux animaux et aux végétaux, deux types bien nels, auxquels on a toujours et avec raison rapporté les congénères, autour desquels on a constamment groupé ces congénères, s'élèvent de prime abord : ce sont eux que l'on a pris pour type des aliments plastiques et des aliments respiratoires, c'est-à-dire l'albumine d'une part, l'amidon d'autre part.

Étudire la physiologie urologique reviendra donc pour nous à, partant de chacun de ces types, albumine ou amidon, arriver à sinou tous du moins la plupart des éléments pouvant se rencontrer dans l'urine, et ce par la simple déduction chimique; eufin, comme appendice, nous ajouterous l'étude des dérivés sanguins qui complétera le cycle de nos produits urinaires

d'origine extra-alimentaire directe.

Nous diviserons ainsi notre genêse urologique en trois séries comprenant : la première les éléments urinaires dérivant de l'alhomine, la seconde les éléments urinaires dérivant de l'amidon, la troisième enfin ceux qui proviennent du pigment sanguin; de cette façon nous sepérons être complet dans notre étude de la physiologie urologique sans toutefois être prolixe, puisque le choix d'un type pour l'une ou l'autre série nous évitera de fréquentes et fastdieuses répétitions.

PREMIÈRE SÉRIE.

ÉLÉMENTS UROLOGIQUES POUVANT DÉRIVER DE L'ALBUMINE.

L'organisme humain, véritable laboratoire vivant, n'offre à la matière pas seulement une modification exclusive dans l'un ou l'autre sens, mais bien l'ensemble même des réactions pouvant se passer in vitro dans la cornue du chimiste.

En effet, d'une part à l'hydratation effectuée dans les organes digestifs par les ferments figurés ou solubles que ces organes digestifs comportent avec leurs glandes accessoires, viennent concourir tant les oxydations que le torrent circulatione général peut imprimer à ces mattières que les réductions spéciales au système hépatique subies par elles dans leur passage au travers du foie et des veimes hépatiques.

De ce chef, nous diviserons donc les éléments urinaires pouvant dériver de l'albumine en trois catégories selon qu'ils en découlent par oxydation, par réduction, enfin par hydratation; ÉLÉMENTS DERIVÉS DE L'ALBUMINE PAR OXYDATION. 259

et nous les énumérerons dans cet ordre de groupement chimique et d'importance physiologique.

I. ÉLÉMENTS DÉRIVÉS DE L'ALBUMINE PAR OXYDATION.

Ce groupe chimique peut encore être envisagé de deux facons : les produits dérivant les uns par oxydation directe, les autres par oxydation secondaire.

A. Dérivés par oxydation directe.

En partant de l'albumine et selon que nous ferons intervenir en la réaction un ou plusieurs équivalents du produit initial, nous obtiendrons des dérivés divers.

a. D'un équivalent unique d'albumine.

On voit ainsi se former:

La carnine,

L'acide cuanhudrique.

L'acide acétique.

L'acide lactique,

L'acide carbonique,

De l'eau,

Du sulfate de soude, De l'acétate de soude :

Réactions toutes comprises dans l'équation ci-dessous

+ C⁶H⁸NaO⁴ + 5C⁶H⁶O⁶ + 6CO² + HO Acétate Acide Acide Eau. lactique. carbenique.

+ NaO,SO3. Sulfate de soude.

b. D'ÉQUIVAVENTS MULTIPLES D'ALBUMINE.

On obtient:

L'acide sulfocyanique,

La xanthine,

L'hypoxanthine, La sarkolactine,

L'urée:

Enfin toute la série des acides aromatiques ou gras normaux:

Acide paroxyphénylacétique,

Acide hydroparaeoumarique,

Acide succinique, Acide propionique.

Acide buturique.

Acide valérianique,

Acide caproique,

que comporte l'urine normale et qui découlent de l'albumine par oxydation directe ainsi que l'établit l'équation qui suit :

 $2C^{164}H^{112}Na^2Az^{18}O^{22}S + 1090 = C^2NAzS^2 + 2C^{10}H^4Az^4O^2 + 4C^6H^8Az^2O^2$ Albumine. Oxygène. Sulfocyanate Hypoxauthine. Sarkolactine. de soude.

+ 2 CO2 + 3 C12H12O12: Acide Glucose. carbonique. auxquels vient encore s'ajouter un corps ne faisant point par-

d'urines pathologiques : Le qlucose:

tie de l'urine normale, mais entrant dans un grand nombre corps en tous cas existant normalement dans le torrent circulatoire.

Quoi qu'il en soit, des deux équations que nous venons de développer comme résultantes d'oxydation d'un ou deux équivalents d'albumine, nous avons déià vu procéder nombre de produits urologiques normaux ou anormaux. Nous ne nous attarderous pas à passer ici et isolément en revue chacun des divers produits qui composent l'excrétion urinaire générale; nous allons, par un nouveau et dernier exemple d'oxydation ÉLÉMENTS DÉRIVÉS DE L'ALBUMINE PAR OXYDATION. 264

directe de ce produit fondamental de notre alimentation et de nos tissus, montrer que ces formules sont bien générales.

Ainsi, de sept équivalents d'albumine déduirons-nous ;

La sulfo-urée,

L'acide indoxysulfurique,

L'acide crésylsulfurique, Et l'acide phénylsulfurique, d'une part, et, d'autre part :

La créatinine.

La xanthocréatinine,

La crusocréatine,

L'acide urique, L'acide oxalurique.

L'acide glutamique, L'oxynévrine,

L'acide aspartique.

Tous encore produits urinaires normaux :

 $7\,C^{144}H^{112}Na^2Az^{18}O^{39}S + 585\,O = \begin{array}{c} C^3H^4Az^9S^2 + \\ Sulfour^4o. \end{array} \\ + \begin{array}{c} C^{13}H^4N^9S^3,S^3O^6 \\ Ph^4nylsulfate \\ de soude. \end{array}$

+ C¹⁴H⁶N³O³,S²O⁶ + 2 C³H⁷Åz³O² Crésylsulfate de soude,

+ C¹ºHºAzO,NaSO² + C¹ºH¹ºAz¹O² Indoxysulfate de soude, Xanthocréatinine,

+ C¹⁰H⁸Az⁴O² + 9 C¹⁰H³NaAz⁵O⁵ Urate acide de soude.

 $\begin{array}{l} + \ 12C^{10}H^{4}Az^{4}O^{6} + 5C^{8}H^{4}Az^{2}O^{8} + 2C^{8}H^{6}Az^{4}O^{8} \\ \text{Acide urique.} & \text{Acide Allantoine.} \\ \text{oxalurique.} & + C^{18}H^{9}AzO^{6} + C^{10}H^{9}AzO^{6} + C^{10}H^{5}Az^{6}O^{6} \end{array}$

+ CSHAZOS+ CSHAZOS + CSHAZOS + CSHAZOS + CSHAZOS + CSHAZOS + CSHAZOS + So CSHAZOS + So CSHAZOS + Acide Aspartique. Ou glycogène. oxalique. . . + 4HO.

Eau.

en même temps que cette oxydation incomplète fournit les
produits extraphysiologiques de transition:

Dextrine ou glycogène,

Et acide oxalique.

Mais avant d'en terminer avec les produits d'oxydation directe de l'albumine, remarquons la décroissance constante du rapport oxygène à albumine dans les trois équations précitées relativement à l'importance des produits extraphysiologiques que nous y rencontrons :

$$\begin{array}{ll} 1\circ & \underset{\mathrm{albumine}}{\mathrm{oxygene}} = & \frac{96 \ \mathrm{equivalents}}{16 \ \mathrm{quivalents}} = 96. \\ 2\circ & \underset{\mathrm{albumine}}{\mathrm{oxygene}} = & \frac{585 \ \mathrm{equivalents}}{76 \ \mathrm{quivalents}} = 83,6 = \mathrm{acide} \ \mathrm{oxalique,} \ \mathrm{dextrine}. \end{array}$$

$$3 \circ \frac{\text{oxygène}}{\text{albumine}} = \frac{163 \text{ équivalents}}{2 \text{ } \ell \text{quivalents}} = 54.5 = \text{glucose, ac. sulfocyaniq.}$$

Dans la première formule, celle d'oxydation normale, tous les produits étant physiologiques; dans la dernière, celle d'oxydation très incomplète, le glucose pathologique faisant son apparition en même temps que s'exagère l'acide sulfocyanique physiologique.

B. Dérives par oxydation indirecte.

Si nous considérous maintenant quelle peut être la résultante finale de l'action de l'oxygène circulatoire sur les dérivés primitifs de l'albumine, et que nous remions pour points de de part ceux de ces produits que nous avons rencontrés dans les équations précédentes sans qu'ils puissent cadrer directement avec l'excrétion urologique, nous aurons les résultats suivants.

G. PAR L'INTERMÉDIAIRE DE LA CARNINE.

a. Par simple dédoublement.

En ce premier cas nous trouvons tout d'abord:

L'hypoxànthine, Et l'acide acétique, déjà nommés.

C1⁴H⁸Az⁴O⁶ = Cl⁶H⁴Az⁴O² + C⁴H³O⁴ Carnine. Hypoxanthine. Acide acidique, certique,

β. Par oxydation consécutive. En ce sens nous arrivous à :

La xanthine,

L'hypoxanthine, L'acétone,

L'acide formique.

 $\begin{array}{lll} 3C^{1}H^{8}Az^{4}O^{6} + 4O = 2C^{10}H^{4}Az^{4}O^{4} + C^{10}H^{4}Az^{4}O^{2} + 3C^{6}H^{6}O^{2} + 3C^{2}H^{2}O^{4} \\ Carnine, & Oxygéne, & Xanthine, & Hypoxanthine, & Acétone, & Acétone, & Carnine, & Carnine,$

qui : les premiers, font partie de l'urine normale ; les derniers entrent dans la composition de certaines urines extraphysiologiques.

b. PAR L'INTERMÉDIAIRE DE LA SARKOLACTINE.

α. Agissant en équivalent simple.

Nous trouvons les produits physiologiques :

Urée,

Et acide acétique.

β. Agissant en équivalents multiples.

Avec trois équivalents de sarkolactine, par exemple, on ob-

L'urée.

Mais l'acide acétique est remplacé par :

L'acide lactique

on le glucose,

selon que la réaction a lieu sans ou avec groupement de la molécule lactique :

3 C⁵H⁸Az²O² + 12 O = 3 C³H⁵Az³O² + 2 C⁵H⁵O⁶ Sarkolactine, Oxygène, Urée, Acide lactique,

ou

 $3 C^6H^8Az^2O^3 + 12 O = 3 C^2H^4Az^2O^3 + C^{12}H^{12}O^{13}$ Sarkolactine. Oxygène. Urée. Glucose.

C. PAR L'INTERMÉDIAIRE DE L'URÉE.

Nous trouvons ainsi les trois termes : eau, acide earbonique et ammoniaque, qui limitent toutes les combustions organiques:

$$\begin{array}{c} C^2H^4Az^2O^2 + 2\,O^2 = 2\,C^2O^4 + 2AzH^2 + H^2O^2 \\ \text{Ur\'ee.} & \text{Oxyg\'ene.} & \text{Acide Ammoniaque. Eau,} \\ & \text{carbonique.} \end{array}$$

et qui peuvent se grouper pour faire le carbonate d'ammoniaque :

 $\begin{array}{c} 2\,C^2O^4 + 2\,AzH^3 + H^2O^2 = 2[(AzH^3HO,C^2O^4) + HO]. \\ Acide & Ammo-Eau. \\ & Bicarbonate d'ammoniaque. \end{array}$

II. ÉLÉMENTS DÉRIVÉS DE L'ALBUMINE PAR RÉDUCTION.

De même que par l'action oxydante nous diviserons la réduction des albumines en produits dérivés, en réduction directe et en réduction secondaire :

A. Dérivés par réduction directe.

Cette première action est nulle quant aux albumines alimentaires, car celles-ci ne pénêtrent Jamais direcement dans le système hépatique, lieu d'étection des réductions organiques : toujours les albumines alimentaires, soit par hydratation soit par oxydation primitires, ont été amenées, tant dans les voies digestives que dans le torrent circulatoire, à l'état de peptones ou à des états chimiques encore plus éloignés de leur stade primitif.

Mais toutefois le résultat final de l'action réductrice du foie sur les détriés albuminés altimentaires étant le même que celui de l'action directe de la glande fépatique sur les albumines circulatoires, nous confondrons ici les dérivés albuminés d'orter réducteur, que nous pouvons trouver dans l'excrétion urinaire, et qui sont :

La leucine.

La tyrosine,

La cystine, La taurine.

Lesquels viennent s'ajouter aux produits précités d'ordre extra-physiologique.

Nous ne répéterons pas ici les équations d'où dérive l'ensemble de ces produits; il nous suffira d'indiquer qu'ils procèdent de 4 équivalents d'albumine par hydrogénation:

 $\begin{array}{lll} 4C^{14}H^{11}2Na^2Az^{18}O^{28}S+nH=C^{12}H^{13}AzO^4+C^{18}H^{14}AzO^6+C^{6}H^7AzS^{2}O^4\\ & \text{Albumine.} & \text{Hydrogène. Leucine.} & \text{Tyrosine.} & \text{Cystine.} \\ & +C^{14}TAzS^{2}O^6+\text{divers.} & \\ & \text{Taorine.} & \end{array}$

En notant nos produits nouveaux.

B. Dérivés par réduction indirecte.

L'hypoxanthine nous fournit en cette série deux exemples des plus intéressants:

a. PAR RÉDUCTION SIMPLE.

Selon, en effet, que la réduction exclusive s'opère en présence d'un déficit d'eau ou d'un excès de ce liquide, et qu'alors il s'ajoute une action hydratante secondaire, les résultats sont bien différents au point de vue physiologique.

Par réduction exclusive, on obtient :

De la sarcolactine

Et de l'acide cyanhydrique :

$$\begin{array}{l} C^{10}H^{5}Az^{4}O^{3} + 3\,H^{2} = C^{8}H^{8}Az^{2}O^{2} + 2\,C^{2}HAz \\ \text{Hyproxanthine.} & \text{Hydro-gine.} & \text{Acide eyanhydrique.} \end{array}$$

b. Par réduction accompagnée p'hydratation.

Dans ce second cas, il se produit : a. soit de l'urée au lieu et place d'acide evanhydrique :

En même temps que de l'alcool,

Immédiatement repris par le torrent circulatoire, brûlé et transformé en eau et acide carbonique :

 $2C^{10}H^{4}\Lambda z^{4}O^{2} + 12H^{2} + 10HO = 3C^{4}H^{6}O^{2} + 4C^{8}H^{4}\Lambda z^{2}O^{2}$ Hypoxanthine. Hydrogene. Eau. Alcool. Uree.

EI

β. Soit de l'urée, de l'acide exybutyrique, et de l'alcool;

Et par suite de transformations ultérieures de ce dernier de l'acétone et de l'acide acétique d'une façon concomitante :

$$\begin{array}{lll} C^4H^4O^2 + 2O^2 = & C^4H^4O^4 + H^2O^2; \\ Alcool & 0xygene, & Acide & Eau, \\ actique, & actique, & \\ 3C^4H^4O^4 + 8H^2 = & 2C^8H^6O^2 + 8HO. \\ Acide & Hydro- \\ actique, & gene, & \\ & & & \\ \end{array}$$

III. ÉLÉMENTS DÉRIVÉS DE L'ALBUMINE PAR HYDRATATION.

L'action hydratante des divers ferments sur les albumines alimentaires primitivement et circulatoires secondairement peut, en résumé, se traduire par ceci :

A. Dérivés par hydratation directe.

Par hydratation directe, les albumines se changent : En neutines.

Ou peptones,

Selon le degré de l'attaque du corps primitif par l'eau ou selon son homogénéité plus ou moins considérable:

Nous savons déjà que nous pouvons trouver l'un et l'autre de ces corps dans l'urine extraphysiologique.

B. Dérivés par hydratation indirecte.

L'un des derniers exemples choisis par nous à propos de la réduction indirecte de l'hypoxanthine a fait voir suffisamment, croyons-nous, que l'action hydratante subie par les éléments albuminoides dans l'organisme était en quelque sorte mixte entre l'action oxydante et l'action réductrice que ces mêmes éléments pourraient subir isolément d'autre part,

Aussi ne donnerous-nous ici qu'un exemple, celui d'un dérivé albuminoïde, la carnine, se transformant par hydratation

Acide urique et alcoof selon l'équation suivante :

$$\substack{ \text{C15H8Az4O8} + \text{H2O2} = \text{C10H5Az4O6} + \text{C5H6O2} \\ \text{Carnine.} \quad \text{Eau.} \quad \text{Acide urique.} \quad \text{Alcool.}$$

Dont nous retrouvons le premier terme dans l'excrétion urinaire tandis que le second terme, alcool, oxydé, s'élimine par le poumon sous forme d'acide carbonique èt de vapeur d'eau; ainsi que l'exprime l'égalité ci-dessous:

Et comme cet exemple, pris au hasard dans les formules urologiques précédentes, est général, nous le considérerons donc ainsi; ce qui nous évitera de nouvelles répétitions. deuxième série. — éléments urologiques pouvant dériver de l'amidon.

Ces éléments forment trois catégories parallèles à celles des dérivés de l'albumine et résultant, soit d'une hydratation, soit d'une réduction, soit enfin d'une oxydation.

I. ÉLÉMENTS DÉRIVÉS DE L'AMIDON PAR HYDRATATION.

A. Dérivés par hydratation directe.

La dextrine paraît le seul produit appartenant à cette classe, premier terme de modification de l'amidon susceptible de faire passer ce produit dans l'organisme.

La réaction se passe d'après l'équation ci-dessous :

B. Dérivés par hydratation secondaire.

Le glucose et l'acide lactique

Sont les deux termes de cette série et se forment, comme nous allons le voir, par une bydratation secondaire de la dextrine préformée.

Mais tandis que le glucose dérive simplement de la dextrine par cette hydratation :

$$C^{12}H^{13}O^{13}(C^{12}H^{10}O^{10}) + H^{8}O^{2} = 2C^{12}H^{12}O^{13}$$

Destrine. Eau. Glucose,

L'acide lactique en résulte par une scission concurrente de la molécule glucose :

$$C^{12}H^{13}O^{12}(C^{13}H^{10}O^{10}) + H^3O^2 = 4 C^6H^6O^6$$

Dextrine. Eau. Acide lactique.

II. ÉLÉMENTS DÉRIVÉS DE L'AMIDON PAR RÉDUCTION.

Les conditions de cette classe sont précisément inverses de colle de la classe précédente, puisque les réducteurs ne peuvent agir sur l'amidon lui-même, mais seulement sur ses dérivés : nous ne possédons donc qu'une série unique et indirecte. Toutefois cette série est importante en un de ces termes comme nous le verrons plus loin.

L'acide formique.

Qui prend naissance en même temps que l'acide valérianique, et l'eau dans ce cas ainsi que le montre l'égalité cidessous:

$$\begin{array}{c} C^{12}H^{12}O^{12} + 2H^2 = C^{10}H^{10}O^4 + C^2H^2O^4 + H^2O^2 \\ \text{Glucose,} & \text{Eau.} & \text{Acide} \\ \text{valérianique,} & \text{formique.} \end{array}$$

Mais ce que nous venons de rencontrer pour les acides formique et valérianique s'applique à l'ensemble des acides gras qui tous prennent naissance en ce cas.

III. ÉLÉMENTS DÉRIVÉS DE L'AMIDON PAR OXYDATION.

Classe encore secondaire, la série des éléments dérivés indirectement de l'amidon par oxydation de ses produits primaires d'hydratation est la moins importante.

Les corps que l'on y observe tels que :

L'acide acétique provenant du glucose par son dédoublement en alcool et acide carbonique:

$$\begin{array}{c} C^{12}H^{12}O^{12} = C^{5}H^{6}O^{2} + 2C^{2}O^{5}\\ \text{Glucose.} & \text{Alcool,} & \text{Acide}\\ \text{carbonique,} \end{array}$$

et

n'ont qu'une signification physiologique et séméiologique très restreinte. Nous ne nous attarderons donc pas davantage à décrire leur genèse urologique.

TROISIÈME SÉRIE. — ÉLÉMENTS UROLOGIQUES POUVANT DÉRIVER DU PIGMENT SANGUIN.

L'urine peut renfermer tous les pigments propres ou dérivés du sang, depuis l'hémoglobine jusqu'à l'uromélanine.

A l'état d'hémoglobine, on trouve ce pigment soit fixé dans les hématies qu'un épanchement a portés dans l'urine pathologique, soit libre : le sérum sanguin contenant primitivement ce pigment dissous et l'ayant laissé dialyser au rein.

A l'état d'hématine, ce même pigment y existe, en les mêmes conditions pathologiques, mais séparé de son principe albuminoïde.

Toutefois ces deux pigments sont primitifs.

Nous allons maintenant étudier leurs dérivés.

I. ÉLÉMENTS DÉRIVÉS DU PIGMENT SANGUIN PAR OXYDATION.

A. Par oxydation simple.

L'oxydation commence par dépouiller le pigment sanguin à la fois d'une partie de son carbone et de la totalité de son fer ; ainsi l'hématine est-elle ramenée à l'état d'hématoïdine que recèlent quelques foyers hémorrhagiques :

 $\begin{array}{lll} C^{18H^{24}Az^4Fe^2O^{10}} + 23O = & 2C^{20H^{14}Az^2O^6} + 4C^{2}O^4 + H^2O^2 + Fe^2O^3 \\ \text{Hématine.} & Oxygéne. & Hématoidine. & Acide \\ & carbonique. & Grapher & G$

B. Par oxydation complexe.

L'oxydation lente est-elle accompagnée d'hydratation modérée on obtient la bilirubine, le principal pigment biliaire fondamental:

 $\begin{array}{lll} C^{88}H^{25}Az^{5}Fe^{2}O^{10} + 2HO + 11O = 2\,C^{22}H^{18}Az^{2}O^{6} + 2\,C^{2}O^{5} + Fe^{2}O^{3} \\ \text{Hématine.} & Eau. & 0xygène. & Bilirubine. & Acide & 0xyde earbonique. Ferrique. earbonique. & Ferrique. & Carrique. & C$

La même oxydation et la même hydratation sont-elles au contraire exagérées l'une et l'autre, on obtient :

En première ligne la biliverdine :

C88H24Az4Fe2O10 + 4HO + 17O = 2C22H20Az2O10 + 2C2O4 + Fe2O3 Hématine. Elliverdine. Elliverdine. Acide Oxyde

Et en seconde ligne la biliprasine :

II. ÉLÉMENTS DÉRIVÉS DU PIGMENT SANGUIN PAR RÉDUCTION.

Mais tel n'est plus le cas de l'urobiline,

qui dérive de la bilirubine, c'est-à-dire indirectement de l'hématine, par une réduction accompagnée d'hydratation, dont la formule ci-dessous nous donne la représentation :

$$\begin{array}{lll} 2(C^{02}H^{18}Az^{2}O^{6}) & + & H^{2} + & H^{2}O^{2} = & C^{64}H^{60}Az^{4}O^{14} \\ & & Hydrogram, & Enu. & Urobiline. \end{array}$$

Ni de l'uroérythrine,

dans laquelle cette réduction est sèche :

$$\begin{array}{ccc} 2(C^{j2}H^{18}Az^2O^6) & + & 11H^2 = & C^{64}H^{56}Az^4O^{10} \\ \text{Bilirubine.} & & \text{Hydro-gene.} \end{array}$$

Et qui forment les pigments normaux de l'urine physiologique.

III. ÉLÉMENTS DÉRIVÉS DU PIGMENT SANGUIN PAR HYDRATATION.

La formation de la bilifuschine, par hydratation indirecte de l'hématine, répond à ce cas chimique; on a, en effet:

$$C^{32}H^{18}Az^{2}O^{6} + {}_{Eau}^{2}H^{0} = C^{32}H^{20}Az^{2}O^{8}$$

Bilirubine.

Ains se trouve complétée la série des produits bilidres principaux, car l'uromélanine, pigment des carcinomes hépatiques, est des plas rares. Nous pourrons toutefois indiquer sa composition en disant qu'elle provient elle aussi indirectement de l'hématine par réduction exagérée dépassant l'urobiline et l'uroérythrine; et qu'elle contient d'autre part du fer comme l'hématine, mais fer combiné au soufre sous forme de sulfure, ce qui lui donne sa coloration comme spéciale et caractéristique.

L'urométamine est donc un produit très complexe, dérivant du pigment sanguin par des actions diverses des principales fonctions de l'organisme et en particulier de celle de l'action de l'albumine de l'hémoglobine sur l'hématine de cette hémoglobine, la première fournissant le soufre, la seconde le fer du suffure ferrique de l'urométanine.

Mais, quoi qu'il en soit au point de vue chimique pur relatif à l'intérêt présenté par les considérations de genèse urologique que nous venons d'exposer, il y a un fait certain, c'est que cet exposé u'est point une simple vue de l'esprit. En affet, à l'aide de quelques exemples on peut facilement démontrer que si, jusqu'ei, cette genèse urologique n'avait point été échairée par la chimie d'un jour suffisant, c'est que le point de étpart des considérations chimico-biologiques antérieures était insuffisamment étomé.

Pourquoi ne pas remonter à l'élément primitif? pourquoi n'en pas considérer l'évolution complète dans l'organisme?

Ce' se comprendrait à la rigueur si tous les termes de la discussion que nous venons de soulever n'avaient en physiologie leur pendant du laboratoire: mais ne voyons-nous pas tous les jours dans la préparation des extraits de viande l'albumine par oxydation se transformer en carnine? ne voyons-nous pas chaque jour dans l'industrie de la brasserie l'amidon de l'orge se transformér, par hydratation, en dextrine, puis en glucose? ne savons-nous pas que le sucre de lait se dédouble en acide lactique? N'a-t-on pas déjà montré que l'action des suffireux sur les pigements sanguine set une action réductive (4)?

Si certainement!

Donc cette genêse urologique pour être complète, pour être féconde devait reposer sur des bases profondes; donc le terrain des transformations physiologiques et pathologiques de l'organisme devait être fouillé jusqu'au sol ferme, jusqu'au roc; et le roc, en ce cas, était composé des éléments organiques primodiaux : albumine, amidon, hémoglobine!

C'est ce que nous avons cru comprendre, et c'est ce que nous nous sommes efforcés de résumer en ce lieu autant que les limites de ce travail nous le permettaient.

Deuxième groupe. - Élimination urologique.

Les éléments urologiques dont nous venons d'exposer brièvement la genèse urologique passent et sont toujours constatés dans l'urine en l'état chimique sous lequel ils existent dans le torrent circulatoire, d'où les conditions diverses de la dialyse

(1) Gautrelet et Peyraud, Nouvelles recherches expérimentales sur la composition et Paction des eaux et de l'air de Viehu. Paris, 1887.

réanle les expulsent dans leur intégrité chimique absolue. Mais il n'en est pas toujours ainsi : et si, pour eux, l'élimination physiologique n'est qu'un acte tout à fait secondaire par rapport à leur genèse primitive, pour d'autres corps cette élimination créant elle-même les conditions de genèse, nous devons la considérer à son tour dans ses aspects principaux.

Et, en ce sens, dire qu'elle porte exclusivement sur les éléments minéraux, c'est en indiquer de suite la division.

I. ÉLIMINATION UROLOGIQUE D'ÉLÉMENTS MINÉRAUX.

A la première partie de ce travail et lors de l'étude d'ensemble de la genées eurnaire, de même aussi qu'à propos de la réaction de l'urine normale, nous avons dit que cette urine normale ue contenait ni sels alcalins ni acides libres, mais devait sa réaction acide exclusivement à des sels acides.

La constitution que nous avons exposée dans la suite pour l'urine normale est venue confirmer cette manière de voir et a montré que les sels acides urinaires ainsi entoadus étaient les phosphates et les urates acides alcalino-terreux.

Or, comme la réaction de plasma sanguin est apparemment alcaline; pour qu'à la dialyse rénale ce plasma sanguin fournit un liquide acide, l'urine, if fallait donc que dans cette dialyse rénale un phénomène chimique intervint entre les divers éléments en présence, de telle sorte que l'excrétion rénale fut différente du liquide plasmatique irriguant le rein.

Nous avons montré qu'en effet une réaction chimique intervenait entre les bicarbonates et les phosphates alcalins, et pour être plus complet, il faut ajouter les urates alcalins : et de fait cette réaction secondaire rend parfaitement compte de l'augmentation ou de la diminution que l'acide phosphorique combiné peut présenter en l'urine.

Supposons en effet que l'acide urique augmente dans l'économie comme, nous le verrons, cela a lieu dans toutes les maladies désignées par Bouchard sous le groupement de maladies par retentissement de la nutrition et dans la goutte en particulier, ainsi que l'a montré Lecorché: une partie supérieure à la normale des phosphates alcalins du sang, transformée par l'acide urique, échappe à la décomposition des bisarbonates circulatoires; l'acide phosphorique dialysé diminue dans l'excrétion urinaire, Qu'a contraire l'acide arique vienne à diminuer dans le plasma sanguin comme cela se présente, nous le démontierons, dans les maladies consomptives; les phosphates acialisme du sang subissent la décomposition compléte des bioribonates leurs congénères; l'acide phosphorique augmente dans le liquide dialysé par le rein, l'arriumente dans le liquide dialysé par le rein, l'arriu

Eh bien! ces échanges chimiques, dont pour le premier nous avous préalablement démontré par l'expérimentation la réalité, dont le second est admis par tous, nous on trouverons l'application séméologique dans les deux grandes classes des dialitées par hyper et hypocodidé organiques, qui nous feront prédisément constater simultanément et inversement l'hype et l'hyper-phosphalie uriniaire.

II. ÉLIMINATION UROLOGIQUE D'ÉLÉMENTS ORGANIQUES

Les matières organiques n'affectant pas la forme acide et par suite ne s'éliminant pas à la dialyse rénale sous cette forme cristalloide, sont à l'état normal restreintes aux pigments et aux traces de ferments digestifs résorbés.

A l'état pathologique, il n'en est plus de même; et, sans vouloir étudier d'une façon compléte cette branche de l'excrétion rénale, nous pouvons dire qu'elle pout dériver de deu causes différentes : modification dans la tension vasculaire, élimination des colloides en nature.

Une modification chimique de ces colloïdes leur a alors créé une forme sinon cristalloïde, du moins dialytique vraie.

A. Colloïdes éliminés en nature.

Les albumines sérine et globulines sont dans ce cas; l'on verra plus loin (albuminuries) à quelles causes l'on peut attribuer leur dialyse glomérulaire.

B. Colloïdes éliminés après transformation chimique.

Les syntonines, acide-albumines, alcali-albumines représentent cette classe.

Nous ne reviendrons pas ici sur leur genèse urologique,

l'ayant développée à propos des cylindres hyalins; et devant la compléter au sujet des néphrites essentielles.

Nous dirons seulement qu'expérimentalement rien n'est plus facile que de reproduire ce phénomène physiologique.

L'étude méthodique de la dialyse rénale nous a amené à examiner d'une façon approfondie le sang dont en somme en première ligne dérire l'exerction urinaire. De nos expériences, jointes aux résultats expérimentaux déjà acquis, il résulte que : la transformation des malières protéques dans l'organisme se ferait d'après la marche suivante :

4º Les albumines alimentaires sont transformées en syntonines (non coagulables par la chaleur et solubles) par l'acide libre du suc gastrique.

2º Les syntonines sont transformées en peptones (non coagulables par la chaleur ni l'acide acétique et solubles) par la

pepsine du même suc gastrique.

³² Los peptones (dialysables) sont absorbées et apportées au foie par la veine cave. Le elles subissent au contact du sang artériel à la fois une oxydation et une hydratation, qui les changent partiellement en dérivés oxydés plus ou moins devés dans l'échelle de dérivation des albuminoides, et partiellement aussi les transforment en créatinine, acide urique, urée, glucose, ammoniaque, en peptimes (parapeptones) précipitables par le chlorure de sodium en présence des phosphates alcalins dans les l'iquides acides.

4º Ces peptines reversées dans le torrent circulatoire général y restent momentanément en dissolution grâce à la présence des hierrhonales du sérum.

Mais arrivées au plasma musculaire, elles rencontrent un liquide tres acide par l'acide sarcolactique), qui les précipite partiellement sous forme de myosine (base du tissu musculaire), insoluble dans un grand excès d'eau (et cet excès d'eau proveannt des oxylations organiques générales concomitantes). Partiellement encore elles donnent (par reprise de la myosine par NaCl au moment de sa formation) de la fibrine reutrant par les capillaires généraux dans les veines à leur aide retournant au foie.

5º Ou sous l'influence des actions réductrices des albumines

alimentaires apportées par la veine porte, elle se réduit (par perte d'oxygène) en albumine-sérine.

6° Que des oxydations et hydratations simultanées transforment à leur tour en nouveaux dérivés azotés :

Créatinine, acide urique, urée, ammoniaque, glucose.

On voit donc que dans tous les organes, mais aux dépens de produits secondaires divers, se passent des échanges chimiques identiques; échanges chimiques toutefois plus spécialement réservés à la glande hépatique pour l'action des réductions organiques. La spécialisation d'un organe à telle ou telle fonction chimique nous semble donc ainsi ne pouvoir être admise.

El c'est la raison pour laquelle, contrairement à la manière de faire générale des physiologistes, nous n'avons point développé pour chacun des corps que nous avons étudiés as genése relativement à un organe spécial; ou encore, prenant chaque organe du corps humain, nous n'avons point cherché à montrer quel produit urologique il fabriquait plus spécialement.

C'est la raison pour laquelle nous avons préféré exposer une vue d'ensemble sur la genèse urologique des produits normaux et anormaux urinaires.

CHAPITRE PREMIER

DIATHÈSES

L'étude raisonnée de la dialyse rénale nous apprend que les réactions chimiques de l'organisme pour être normales doivent se passer dans un milieu, sérum du sang, acide par des sels acides de forme mais alcalins de réaction; d'une part. L'autre, mar les exprésieures d'humites

D'autre part, les expériences de Duclaux ont montré que : 1º tandis que l'alcalinité activait les oxydations organiques, l'acidité les diminuait ;

2º Les échanges organiques pouvaient en fin de compte tous être assimilés à des fermentations sur lesquelles agissaient (dans le sens d'une diminution d'activité) nombre d'agents extérieurs, le chlorure de sodium en première ligne. Noter en les maladies chroniques les variations du plasma sanguin tant dans le sens d'une variation de réaction que dans le sens d'une constitution saitune chlorurique, différente de la normale, ce sera, croyons-nous, étudier les diathèses, puisque ce sera étudier ces états morbides en ce qu'ils ont d'essentiel, l'altération chimique de la crase sanguine.

Et, comme on l'a vu, l'urine, produit de la dialyse plasmatique, reflète exactement les variations docimasiques sanguines, on pourra donc en suivant pas à pas les variations docimasiques urinaires se faire une idée quelque peu exacte des diatablesse.

Que, notre exposition l'indique, l'on doit dores et déjà diviser

Diathèse par hyperacidité organique; Diathèse par hypoacidité organique.

Premier groupe. - Diathèse par hyperacidité organique.

Un certain nombre de maladies chroniques ont une caractéristique commune, constante au point de vue séméiologique : l'augmentation de l'acidité normale des urines.

N'est-il pas alors logique de grouper toutes ess maladies sous la rubrique de diathèse par hyperacidité organique? Nous croyons que si, et ce d'autant plus que, véritables protées, on voit les diverses manifestations de la diathèse hyperacide se succèder soit héréditairement, soit chez un même sujet dans un court laps de temps!

Reste à montrer que c'est bien l'hyperacidité organique quites la cause pathogénique unique de ces diverses manifestaires c'est ce que nous allons nous efforcer de faire en cherchant quelles modifications en présence d'une augmentation de l'acidité à la dialyse rénale ont dů subir :

Les éléments sanguins proprement dits; les dérivés du plasma sanguin, c'est-à-dire les diverses sécrétions et excré-

tions de l'organisme; Les tissus baignés par le sang; l'évolution parasitaire de ces tissus; enfin les échanges chimiques organiques.

En y joignant l'étude des causes physiologiques pouvant

occasionner l'hyperacidité plasmatique, et la recherche des actions biologiques du traitement, l'on aura assis une revue cyclique complète de la diablese acide, donnant tant l'explication des accidents morbides divers qu'on peut lui rapportier que l'explication des actions thérapeutiques, médicamenteuses ou hygéniques, s'y référant.

. MODIFICATIONS DES ÉLÉMENTS SANGUINS

A. Éléments chimiques.

a. Éléments salins.

a. Une grande partie des phosphates circulatoires se trouve à l'état de phosphates monobasiques, c'est-à-dire acides.

β. Une portion de l'acide urique se trouve à l'état d'urates acides (biurate de soude en particulier) peu solubles, donc facilement déposables, donc non dialysables (tophus).

γ. Une portion plus considérable que la normale de l'acide carbonique circulatoire se trouve libre. Néanmoins par le fait du mélange de sels basiques et acides, les premiers étant en excès, le sang conserve encore le plus souvent la réaction (de forme) alcalier.

¿. C'est généralement à l'acide lactique, ou du moins plus spécialement à cet acide, qu'est dû le déplacement et la saturation saline acide dans la diathèse acide.

Parfois la variation docimasique de l'acide lactique est telle qu'elle est suffisante pour modifier la réaction du plasma sanguin en faisant prédominer les sels acides.

Parfois eucore cette docimasie s'accentue au point de laisser de l'acide lactique libre; le sang présente alors une réaction acide franche et contient aussi de l'acide urique libre.

b. Éléments organiques.

a. Il y a augmentation de la fibrine par suite de la non transformation dans le foie de la fibrine en albumine par réductiou (diminution fonctionnelle hépatique, on le verra plus loin).

β. Il y a diminution de l'albumine-sérine par suite de la même diminution des échanges organiques.

γ. Et par suite de la transformation d'une partie de cette al-

E. GAUTRELEY. -- Urines.

bumine-sérine en albumine-acide (syntonine-acide) dialysable (dialyse glomérulaire rénale des syntonines-acides).

8'. Il y a augmentation des matières grasses par suite de la diminution des oxydations organiques et la formation de termes chimiques intermédiaires dans ces oxydations.

B. Éléments figurés.

a. Il y a diminution des globules rouges. Ceux-ci sont dissous tant par l'acide lactique que par le chlorure de sodium en

b. Il y a diminution correspondante de l'hémoglobine, anémie des gens gras.

II. MODIFICATIONS DES SÉCRÉTIONS.

A. Sécrétion gastrique.

a. Il y a augmentation de l'acidité du suc gastrique.

a. D'oà augmentation de l'appétit : l'appétit n'étant qu'une action réflexe due à l'irritation de la muqueuse de l'estomac par l'écoulement à périodes plus ou moiss lixes (selon l'habitude de régularité des repas) du suc gastrique dans la poche stomacale.

β. D'où parfois suppression de la fonction fermentaire de la pepsine (dyspepsies acides).

γ. D'où résistance supérieure à la normale dans l'absorption stomacale des contages pathogènes.

D'où entrainement (par dissolution exagérée) des phosphates alimentaires dans le tube intestinal.

B. Sécrétion biliaire.

a. Il y a diminution de l'alcalinité de la bile (d'où précipitation de la mucine et des acides biliaires, puis formation de calculs cholesfériques colorés par les pigments biliaires mécaniquement entrainés dans cette précipitation) (calculs biliaires).

C. Sécrétion du cristallin.

Il y a coagulation des albuminoïdes du liquide du cristallin par les acides en excès du plasma sanguin y dialysant (cataracte).

D. Sécrétions muqueuses.

a. Il y a diminution génerale dans les sécrétions muqueuses par suite de leur acidité.

La mucine précipitée par cette acidité dans les follicules muqueux obturant ces follicules et en paralysant (la fonction) (laryngites, pharyngites granuleuses, pleurésies sèches).

III. MODIFICATIONS DES EXCRÉTIONS.

A. Exhalation pulmonaire.

a. Elle est plus riche que la normale en acide carbonique, par le fait de la facilité qu'offre aux échanges pulmonaires la forme presque entièrement libre de ce gaz dans le torrent circulatoire.

a. D'où diminution dans les chances de contagion pulmonaire; l'acide carbonique étant antiseptique.

B. Spenr.

a. Les glandes sudoripares chargées plus spécialement de l'exerélion des acides gras de l'organisme laissent excréter un liquide plus acide que la normale et d'autant plus acide que le plasma sanguin l'est lui-même davantage (acné, eczéma, herpès diathésiures).

 b. Le volume de la sueur est augmenté par action excitante du liquide hyperacide sur les glandes sudoripares.

C. Féces.

a. Par suite de la modification de réaction possible de la sécrétion biliaire et de la sécrétion muqueuse intestinale, les faces présentent souvent une réaction acide à leur émission. Elles causent ainsi une certaine irritation de la muqueuse par l'hyperacidité (catarrhe intestinal).

b. D'autres fois la réaction acide primitive de l'intestin grèle est modifiée par fermentations ultérieures dans le gros intestin et amâne la formation de calouls de phosphates terreux, les calculs résultent alors d'une précipitation dans le gros intestin (par suite de l'alcalinité qu'y développe la putréfaction) des phosphates terreux alimentaires dissons et entraîtés par l'excès d'acidtes terreux alimentaires dissons et entraîtés par l'excès d'aciddité des sécrétions premières du tube digestif (sable intestinal).

c. D'autres fois encore, par suite de la diminution dans la sécrétion de la muqueuse intestinale, les matières fécales sont denses, concrètes et la lubréfaction du canal intestinal incomplète (constipation).

D. Urine.

Les modifications qu'une hyperacidité organique peut faire éprouver à l'urine sont nombreuses :

a. L'acidité urinaire croît au-dessus de la normale;

b. L'acide phosphorique est inférieur à la normale;

c. Les pertes en éléments fixes totaux sont moindres que la normale: d. Le chlore est généralement inférieur à la normale;

e. L'urée est, toute influence alimentaire écartée, moindre que les éléments fixes : f. Le volume urinaire est diminué;

g. L'acide urique est également au-dessous de la normale (toutes les fois que des complications hépatiques n'existent pas simultanément):

h. L'urobiline est aussi plus faible que les réductions hépatiques normales ne le comporteraient.

Nous résumerons toutefois les caractères uroséméiologiques de la diathèse hyperacide en les deux traits suivants : l'acidité et l'acide phosphorique sont les deux points extrêmes de l'échelle graphique (l'acidité en haut, acide phosphorique en bas) (fig. 68),

Or, ces variations docimasiques urinaires comprises en leur entité analytique, on peut les constater dans toutes les maladies qui relèvent de la diathèse acide; le tracé qui synthétisera leur expression graphique devra donc les comprendre dans leur enscmble.

IV. MODIFICATIONS DES TISSUS.

L'organisme dans son ensemble, on ne saurait trop le répéter, ne renferme à l'état normal que des liquides alcalins de réaction ou acides par des sels acides. L'appropriation de nos tissus à ces liquides plasmatiques intra-vasculaires ou extracellulaires acides tout au plus par des sels acides est certaine.

Pour s'en convaincre il suffit d'observer ce qui se passe du fait

du simple contact d'un acide libre avec celui de nos tissus qui est le plus résistant, le derme. A une cautérisation primitive

Fig. 68. - Schéma uroséméiographique de la diathèse hyperacide.

représentant en somme une déshydratation du produit succède toujours un tissu cicatriciel de nature fibreuse.

Toute modification dans la forme de réaction des liquides en

contact avec nos tissus amène donc fatalement une modification histologique de ces tissus,

On comprendra donc facilement alors que si le contact d'un acide libre, même produit par l'organisme, et dilué dans une certaine mesure, est prolongé sur l'un quelconque de nos tissus, il puisse y avoir altération histologique de ce tissu.

Et selon la nature du tissu, l'intensité de l'acidité du liquide organique, la prolongation du contact, les effets seront différents.

A. Muqueuses.

Les muqueuses se trouvent en contact avec les produits de sécrétion ou d'excrétion organiques généralement très acides dans la diathèse organique; leurs altérations histologiques en découlant sont :

- a. Muqueuse pharyngienne, inflammation superficielle (pharyngites chroniques, oblitération de la trompe d'Eustache);
- b. Muqueuse laryngienne, inflammation plus ou moins profonde (laryngites chroniques):
- c. Muqueuse des bronches, induration, diminution de la perméabilité, diminution de l'osmose respiratoire (asthme diathésique);
- d. Muqueuse de l'estomac, inflammation plus ou moins profonde, attaque de la couche fibro-musculaire (catarrhe de l'estomac, ulcère simple de l'estomac):
- e. Muqueuse de l'intestin, inflammation superficielle (catarrhe intestinal chronique);
- f. Muqueuse de la bouche, altération superficielle (gingivite diabétique)(?);
- g. Muqueuse vésicale, altération superficielle (cystite chronique);
- h. Muqueuse du gland, altération superficielle (balanites diabétiques) (?);
- i. Muqueuse de la vulve, altération superficielle (vulvites diabétiques) (?);
- Muqueuse des conduits biliaires, altération superficielle d'abord, profonde ultérieurement (ictère catarrhal).

B. Séreuses.

Les séreuses ne se trouvent en contact qu'avec le plasma sanguin. L'aciditéde ce plasma est moindre que celle des sécrétions, mais le contact est plus constant; aussi les altérations histologiques, tout en étant réelles, sont-elles plus généralement lentes à se produire.

On les observe surtout sur :

a. La tunique séreuse des vaisseaux en général et plus spécialement sur celle des artères. La séreuse artérielle devient fibreuse et s'indure (artério-sclérose).

a. Du fait d'une altération lente.

Les conséquences de l'induration des artères sont :

4º Augmentation du volume du cœur (le cœur étant un muscle, et tout muscle s'accroissant proportionnellement au travail qu'il accompit) correspondant au détaut d'élasticité artérielle et par suite aux difficultés créées au cheminement du courant sanguin;

2º Irrégularité rythmique des mouvements cardiaques, due aux mêmes causes que précédemment;

3º Augmentation de l'ampleur des mouvements cardiaques; 4º Augmentation faible de la tension vasculaire générale (dialyse rénale faible de l'albumine circulatoire).

β. La séreuse des veines, du fait d'une allération rapide, s'enlamme surtout dans celles où la slase sanguine est plus lente (veines des jambes, phiébites) (veines des enveloppes du cerva méningites, veines des enveloppes de la moelle, congestions médulaires).

Les conséquences secondaires de cette inflammation sont :

4º Des troubles circulatoires locaux dus à un défaut de circulation momentané dans l'organe lésé par le fait de la formation de caillois fibrineux aux points veineux enflammés avec dialyse plasmatique veineuse locale (œdème des membres inférieurs);

2º La dilatation compensatrice plus ou moins exagérée des veines collatérales (varices).

C. Foie.

a. Alferation histologique aiguf, ulcération d'une tunique aérease veineace de glande hépatique, arrêt unomentané (plus ou moins complet) dans la circulation hépatique (congestion hépatique). (L'arrêt dure jusqu'à ce que la dilatation compensatire des veines collatérales se formant de ce fait soit suffisante pour rétablir la circulation normale, ou jusqu'à ce que le caillot thérieux soit résorbé).

b. Altération histologique lente, sciérose hépatique (cirrhose) par dégénérescence fibreuse du tissu propre de la glande hépatique entièrement baignée par le plasma sanguin hyperacide.

a. Aux débuts de la cirrhose hépatique, il y a généralement augmentation du volume du foie par congestion résultant d'une altération histologique aigué et simultanée des veines hépatiques.
B. Plus tard le foie diminue de volume par le fait de son

défaut de perméabilité circulatoire, les artérioles étant oblitérées par l'accroissement du tissu fibreux.

Les conséquences de ces troubles circulatoires hépatiques sont, selon qu'ils sont plus ou moins accentués :

1º Stase sanguine locale viscérale, avec dialyse plasmatique veineuse péritonéale (ascite);
2º Stase sanguine générale, avec dialyse plasmatique (ædème

2º Stase sanguine générale, avec dialyse plasmatique (œdème généralisé);
3º Augmentation forte de la tension vasculaire générale, par

ciminution de quotité du plexus vasculaire;

4º Diminution de la nutrition par diminution dans les échanges organiques hépatiques (dialyse rénale accentuée de l'albumine circulatoire).

D. Rein.

a. Altération histologique aiguë des veines rénales (congestion rénale);

Altération histologique lente du parenchyme rénal (sclérose rénale).

Les conséquences de la congestion rénale sont :

a. Circulation rénale ralentie, diminution dans les échanges

dialytiques glomérulaires (diminution dans les éléments fixes totaux de l'excrétion urinaire);

 β. Tension vasculaire locale, rénale, augmentée (dialyse glomérulaire des colloïdes circulatoires, albumine-sérine).

Les conséquences de la sclérose sont :

 α, Diminution de la circulation réuale par obturation plus ou moins complète des artérioles (diminution dans l'excrétion urinaire générale);

β. Imperméabilité du rein à la dialyse générale par modification histologique (épaississement) de la paroi glomérulaire (rétention des déchets toxiques de l'assimilation organique, urémie (?), auto-intoxication par les alcaloides organiques).

E. Cerveau.

a. Altération histologique lente, par le fait de la circulation cérébrale toujours lente; induration des éléments histologiques cérébraux.

Dont les conséquences sont :

 $\alpha.$ Si l'altération est générale (sclérose cérébrale), abolition des facultés intellectuelles d'ensemble.

8. Si l'altération est locale et :

4º Spécialisée par exemple aux éléments du quatrième ventricule, relâchement tétanique des vaisseaux rénaux, augmentation de la circulation vasculaire rénale (polyurie).

2º Spécialisée aux circonvolutions, incohérence de la parole (aphasie).

F. Moelle.

Altération histologique lente, modification induratrice des éléments histologiques médullaires (sclérose médullaire).

Conséquences:

a. Abolition de certaines fonctions de relation;

β. Abolition de certaines fonctions végétatives (atonie vésicale; urination volontaire supprimée; atonie intestinale, constination).

V. EVOLUTION PARASITAIRE TISSULAIRE.

Il est aujourd'hui admis que, d'une façon générale, les parasites tissulaires peuvent, au point de vue du milieu, du terrain, se diviser en deux grands groupes ; Parasites végétaux d'une part, parasites animaux d'autre

Les premiers ont besoin, pour évoluer, d'un milieu riche en acide carbonique, puisque c'est à l'acide carbonique qu'ils empruntent le carbone, élément fondamental de la trame de leurs tissus.

Or, comme nous allons le voir aux modifications que la diathèse hyperacide fait subir aux combustions organiques, le sang des diathésiques acides est plus riche que la normale en acide carbonique.

On comprendra donc ainsi comment il se fait que les parasites végétaux soient plus spécialement spécifiques de la diathèse hyperacide; et entre tous nous citerons:

L'oidium albicans du muguet;

L'aspergillus du gland et de la vulve [balanite et vulvite arthritiques et diabétiques (de Beauvais)].

VI. MODIFICATIONS DANS LES ÉCHANGES ORGANIQUES. A. Échanges organiques locaux.

Chemin faisant, en explorant les modifications anatomiques que crée à la machine humaine l'augmentation de l'aditié or-ganique, nous avons constaté du fait de troubles circulatoires hépatiques des troubles notables dans les échanges chimiques incombant an fonctionnement physiologique de cet organe. Ces modifications sont d'ordre nantomique et spéciales à un cas particulier de la dilables hyperacide, donc secondaires. Mais il en existe d'autres qui sont chimiques et primitifs, puisqu'ils sont généraux et relèvent directement de l'hyperacidité organique en elle-même.

Nous voulons parler de la diminution dans les oxydations organiques hépatiques qu'occasionne la présence d'un plasma sanguin hyperacide.

Le foie représente en somme une double glande, glande en grappes d'une part, recevant le sang de la veine cave, c'est-àdire un sang chargé des principes utilisables de l'alimentation; glande vasculaire sanguine d'autre part, irriguée par le sang del l'artère hégatique, c'est-à-dire un sang riche en oxygène.

Mais ces deux glandes ne sont point isolées ni simplement

accolées l'une à l'autre; elles sont au contraire absolument enchevêtrées dans leur ensemble, et à l'état physiologique leurs parois sont accolées les unes aux autres. De cette disposition anatomique il résulte que des échanges dialytiques constants es produisent entre les deux ordres de vaisseaux hépatiques.

L'artère hépatique fournissant l'hémoglobine oxygénée et la veine porte les dérivés assimilables azotés, hydrocarbonés

et gras de l'alimination.

En ces conditions biologiques des échanges cliniques ont donc lieu d'une façon constante entre les éléments des deux masses sanguines.

Et l'action des dérivés alimentaires sur les matériaux propres du sang pouvant être considérée comme une action ré-

ductrice, il en résulte encore que :

1º L'oxyhémoglobine artérielle est, dans la glande hépatique, amenée à un état d'oxydation inférieure, dont les divers échelons peuvent être constitués ainsi qu'il suit:

H, symbole chimique de l'hydrogène, représentant d'une facon générale et concrète les corps réducteurs alimentaires, amenés par la veine porte à l'action oxydante de l'oxyhémoglobine de l'artère hépatique:

Et la biliburine étant mise ici exclusivement et par abréviation pour l'eusemble des pigments biliaires.

2º La réduction à l'état physiologique est aussi complète que possible, c'est-à-dire atteint les termes, pigments biliaires, urobiline et uroérptine, attendu que le calibre de l'artère hépatique étant relativement faible en comparaison de celui de la veine porte, les éléments réducteurs sont par rapport aux éléments oxydants en proportion faible.

3º La séparation de ces divers pigments nouveaux prenant naissance dans le foie se faisant au moyen des conduits hépatiques et des veines sus-hépatiques, l'urobline et l'uroérythrine rentrent dans la circulation générale en même temps que las produits d'oxydation accessoirement formés, urée, créatinine, acide urique, etc., d'où elles sont éliminées ultérieurement par la dialyse rénale, tandis que les pigments biliaires, la cholosiérine, les acides biliaires, sont emmenés à l'intestin directement ou en passant par la vésicule biliaire.

Ces conditions physiologiques des échanges chimiques hépatiques peuvent, on le conçoit, être modifiées dans un double

sens: positivement et négativement.

a. Modifications positives.

a. Il y a-t-il stase sanguine dans le foie par suite de l'une ou l'autre des causes énoncées précédemment comme conséquence de la diathèse hyperacide?

Le sang artériel étant en excès sur la normale, le chiffre de l'hémoglobine réduite aux formes pigmentaires inférieure et à l'urobline en particulier s'augmente il y a surcharge circulatoire en urobiline, il y a hyperurobilinurie (congestion hépatique).

β. Y a-t-il déséquilibre dans l'apport hépatique entre le sang artériel (en diminution) et le sang porte (en augmentation)?

La moyenne des réductions chimiques hépatiques n'atteint pas les produits pigmentaires de la bile proprement dite, bilirarine, etc., elle s'arrête au terme urobiline; il y a encore a charge circulatoire en urobiline, donc excès dans l'excrétion urinaire en urobiline (cirrhose hépatique).

Ces deux cas sont fréquents, mais inconstants dans la diathèse hyperacide; et comme les cas sont toujours d'une certaine durée, ne sont point passagers, il s'en suit que les autres éléments formés dans le foie subissent la même modification, et comme conséquence on les voit apparaître dans le torrent circulatior et l'urine (givesurie).

Un autre cas non plus fréquent, mais constant, se présente. Du fait de l'augmentation de l'acidité générale, mais plus spécialement de l'acidité du suc gastrique, le sang porte arrive au foie plus riche en acidité que la normate ne le comporte.

Or, a-t-on vu, des expériences de Duclaux résulte ce fait que les oxydations organiques sont amoindries par l'action des acides.

On conçoit donc aisément que les oxydations organiques aux dépens de l'oxyhémoglobine apportée par l'artère hépatique des produits dérivés de l'alimentation apportés par la veine porte soient moindres que la normale; donc que la réduction de cette oxyhémoglobine soit moindre; donc qu'elle s'arrête plutôt aux termes pigments biliaires qu'à l'urobiline.

Et de fait, en même temps que l'on constate une diminution générale dans les produits entièrement oxydés rejetés par l'urine (urée, acide urique, ammoniaque); on voit aussi l'urobiline se présenter dans l'excrétion urinaire sous un chiffre infé-

rieur à la normale.

Mais ce n'est point tout, et à côté des produits de formation normale se présentent souvent aussi des produits anormaux. résultant tous d'une oxydation incomplète des éléments utilisables, amenés au foie par la veine porte; et dans ce nombre figurent principalement l'inosite, la dextrine, le glucose,

B. Échanges organiques généraux.

La diminution dans les oxydations organiques par acidité des milieux, que nous venons de rappeler à propos des échanges chimiques locaux de la glande hépatique, trouve ici son application d'ensemble.

Par suite, en effet, de la surcharge hyperacide du plasma sanguin général, l'attaque des dérivés alimentaires (transformés en peptines par la glande hépatique et conduits en cet état chimique dans les capillaires généraux en présence d'un excès d'oxygène fixé sur l'hémoglobine de l'hématie) est incomplète.

. Conséquences :

z. Diminution dans les déchets désassimilatifs ; diminution circulatoire des dérivés (complètement oxydés) organiques, urée, ammoniaque; diminution osmotique glomérulaire des mêmes produits; augmentation des dérivés protéiques incomplètement oxydés, acide urique, créatinine;

β. Modifications dans la forme de ces dérivés oxydés : formation ultra-normale de produits extraphysiologiques, inosite, dextrine, glucose entre autres (inosurie, dextrosurie, glycosurie);

γ. Augmentation des tissus au delà du rapport normal, avec un régime alimentaire normal;

4° Par formation ultra-normale de myosine musculaire (celle-ci, a-t-on déjà vu, se formant en même temps que les dérivés oxydés aux dépens des peptines et en proportions précisément inverses à celles-ci) (embonpoint).

2º Par formation ultra-normale de graisses (celles-là résultant comme produits intermédiaires dans les oxydations organiques générales (albumine et amidon) (obésité, stéatose),

Et ce qui montre bien la réalité de ce processus par hyperacidité organique, c'est l'expérience suivante :

Prenez un homme gras et qui soit diabétique. Soumettez-le à l'action des alcalins pendant un certain temps.

Vous verrez sa glycosurie s'atténuer (diminution de l'acidité hépatique, donc augmentation des oxydations hépatiques), mais nou céder d'une facon absolue.

Vous constaterez en ce moment que, malgré l'absorption des alcalins, l'urine de ce malade est restée acide. Paites-lui prendre des bains de vapeur sèche: le premier jour il perdra, par exemple, 250 grammes d'eau par la sudation, le second jour 500 grammes, le troisème jour 750, et ainsi de suite en augmentant liuscu'à environ 1500 à 1800 grammes.

Remplacez-lui alors l'eau perdue en sueur chaque jour par une dose croissante d'eau alcaline.

Le déplacement, occasionné par l'évaporation cutanée et la reprise par les cellules organiques de l'eau de constitution qu'elles avaient perdue, fait que l'inhibition du sujeit, nulle de prime abord pour l'eau alcaline, par suite de la difficulté qu'oppose le tissu adipeux à la circulation générale, devient réelle.

Les urines du malade sont alors al calines parce que les échanges organiques ont été complets.

Et ce qui le démontre d'une façon encore plus péremptoire, c'est que :

Le malade perd en poids, et de fait ses déchets désassimilatifs physiologiques (constatés à l'analyse urologique) sont, d'une part, supérieurs à la normale au lieu d'inférieurs comme précédemment; et d'autre part éliminés à l'état d'oxydation aussi parfaite que possible ; le malade ne rend plus de glucose, les déchets assimilatifs et désassimilatifs anormaux n'ayant plus de raison d'exister par suite de la complete oxydation de ses échanges organiques.

VII. CAUSES OCCASIONNELLES DE L'HYPERACIDITÉ ORGANIQUE

Les causes créant l'hyperacidité organique sont de trois ordres différents :

Biologiques : hérédité;

Physiologiques: alimentation, exercice, climat;

Thérapeutiques : médicaments.

A. Causes biologiques.

Nous n'avons pas à nous préoccuper ici d'une façon directe de l'influence de l'hérédité sur la création de l'hyperacidité organique.

Nous ne pouvons que constater les faits en cherchant à les expliquer d'après les données de la séméiologie urologique. Or, les modifications secondaires du type urinaire fondamental, goutte, de l'excrétion rénale dans la diathèse byperacide par l'hérédité se rapportent à deux points très nettement (stablis:

Augmentation relative du volume urinaire ;

Diminution relative du rapport urobiline. Que doit-on en conclure?

Ceci, c'est que :

D'une part, les échanges hépatiques sont des plus amoindris. D'autre part, la tension vasculaire est supérieure à la nor-

or, une cause première unique, pathogénique, pourrait-on

dire, sufit à ces deux effets : Une modification de la substance cérébrale, probablement en un point propre du quatrième ventricule, puisque l'effet produit est au fond le même, quoique atténué par celui résultant d'une lésion de ce quatrième ventricule (expérimentale ou accidentelle.)

Et ce qui nous semble confirmer cette manière de voir, c'est que :

Et les diathésiques acides héréditaires sont tous ou presque tous des névropathes ;

Et la glycosurie est des plus fréquentes chez ces diathésiques hyperacides par hérédité.

B. Causes physiologiques.

a. Exercise.

En envisageant la genèse urologique, l'on a vu que l'oxydation incomplète des éléments organiques dérivés soit de l'albumine, soit de l'amidon, conduisait irrévocablement à une série de produits intermédiaires parmi lesquels figuraient constamment les acides organiques en général et l'acide lactique en particulier.

On comprend donc facilement que toute diminution dans l'exercice rationnel et normal, ayant fatalement pour résultats :

a. Tant une diminution des mouvements respiratoires, donc une diminution de l'hématose, donc une perte en charge oxyhémoglobine pour le torrent circulatoire, donc un amoindrissement des oxydations organiques générales,

B. Qu'une diminution dans la vilesse circulatoire du courant sanguin, donc encore hématose abaissée, oxyhémoglobine faible, oxydations organiques générales peu accusées.

Le sérum sanguin se charge de ces produits physiologiques hypo-oxydés pour la plupart et se modifie dans le sens d'une hyperacidité.

L'on doit précisément à Peyraud (de Libourne) cette remarque que :

La température corporelle abaissée au-dessous de la normale d'une façon constante chez tous les diathésiques acides se relevait simplement à la suite de la marche, et se rapprochait de la normale.

Et ce fait est en parfaite harmonie avec ce que l'on sait expérimentalement de l'influence de l'exercice sur les oxydations organiques correspondant à ce que nous venons d'en montrer théoriquement;

Les chiffres suivants donnés par Ritter en font foi :

Influence du travail sur la sécrétion de l'urée.

ÈTATS.	QUANTITÉ d'urine.	AZOTE total.	AMMONIA- QUE.	UHÉE.	ACEDE urique.
Repos	1340	17.89	0.48	32.90	0 90
	1940	20.00	0.62	39.25	0 55
	2120	20.30	0.59	40.30	0.62

L'exercice serait donc au point de vue curatif un auxiliaire hygiénique précieux du traitement de la diathèse hyperacide. h Sourge.

Au défaut d'exercice on pourrait peut-être rapporter l'excès dans le sommeil, mais cette cause physiologique étant à peu près constante, nous croyons devoir l'élucider à part.

Des expériences de toxicité urinaire entreprises par le professeur Bouchard sur l'uriue normale, comme de nos analyses comparatives de l'urine de la veille et de l'urine du sommeil, semble se dégager ce fait, que les oxydations organiques sont de beaucoup moins accentuées pendant le sommeil que pendant la veille.

Tout excès dans la durée du sommeil, c'est-à-dire tout repos dépassant buit heures par jour devra donc fatalement, en amoindrissant les oxydations organiques, créer les produits chimiques intermédiaires dans notre dégénérescence tissulair e, conséquemment augmenter l'acidité organique.

c. ALIMENTATION.

a. Action directe.

La proposition précédente, augmentation de l'acidité organique par apport insuffisant à la machine humaine de comburant, nous conduit à la proportion inverse : comburant normal, mais combustible en excès.

Qu'en effet la veine porte amène au foie des dérivés albuminoides, féculents ou gras en quantité telle que l'oxyhémoglobine (que met en présence le sang de l'artère hépatique) ayant produit son action oxydante première, la quantité de pepsines entrées dans la circulation générale, soit à son tour bien supérieure à l'oxphémoglobine des capillaires généraux, il est certain que la répartition de l'oxygène cédé par cette oxphémoglobine devant se faire sur un chiffre ultranormal de produits alimentaires dérivés, l'oxydation de ces produits sera incomplète.

Et comme on l'a encore vu à la genèse urologique, on tombe alors sur ces produits dérivés intermédiaires, parmi lesquels les acides en général et l'acide lactique en particulier figurent pour une grosse part.

Tout excès alimentaire,

Qu'il soit en produits albuminoïdes, féculents ou gras, conduit donc à l'hyperacidité organique, à la diathèse hyperacide et à ses conséquences, ses transformations multiples; conséquences parfois recherchées, nous le verrons plus loin, comme adjuvants hygiéniques du traitement curatif de la diathèse par hypoacidité organique.

β. Action indirecte.

Il est aujourd'hui admis que l'alcool ingéré est pour la plus grande partie rejeté par la voie pulmonaire sans avoir subi de transformation chimique sensible.

Néanmoins l'alcool contribue à la création de l'hyperacidité organique, et ce, de deux facons différentes :

4° L'alcool indure les tissus d'une façon générale et plus particulièrement celui du foie par lequel il passe en nature et en masse dès son absorption stomacale (voir Sclérose hépatique, Girphose).

2º L'alcool est un agent antifermentescible réel. Or, a-t-on vu, les expériences de Duclaux font conclure à la nature, sinon fermentaire, du moins de conduite fermentaire, de tous les échanges organiques.

Les oxydations organiques générales sont donc ralenties par l'usage de l'alcool.

D'où hyperacidité organique que la thérapeutique peut utiliser, tout en protestant, au nom de l'hygiène, contre cette modification extraphysiologique de l'organisme par l'abus de l'alcool et de ses dérivés dans les conditions ordinaires de la vie.

d. CLIMAT.

Sous cette rubrique nous étudierons plus spécialement les

deux coefficients, température et état hygrométrique, principaux du facteur climat; la troisième, pression barométrique, n'agissant pas directement, mais indirectement seulement, par les modifications qu'elle apporte au régime température -état hygrométrique atmosphérique.

a. Température.

La fonction de la peau ou, pour parler plus exactement, la fonction des glandes sudoripares cutanées ést. l'avons-nous déjà rappelé, une excrétion plus spécialement localisée à l'eau et aux acides gras organiques.

Toute diminution dans cette fonction, température, variations de l'excrétion urinaire, doit donc agir comme élément d'augmentation de l'acidité organique. Et de fait, c'est ce que l'on constate :

Soit au point de vue de cause occasionnelle primitive de la matière acide dans son ensemble:

Soit au point de vue de l'état aigu de cette diathèse.

C'est qu'en effet, le froid ayant pour effet immédiat de resserrer les pores cutanés, l'évaporation normale se trouve diminnée .

4º Et l'est-elle d'une facon constante mais insensible, comme on le trouve chez tous dans les pays à climat froid? L'homme n'est plus ainsi à l'état physiologique, puisqu'il u'a plus dans son entier du reste cette voie d'excrétion normale, et son acidité organique augmente, donc lui crée la diathèse hyperacide;

2º Et l'est-elle au contraire d'une façon inconstante mais sensible, comme en cas de refroidissement subit? Elle crée chez le diathésique acide une augmentation nouvelle de son hyperacidité habituelle, donc lui donne l'accès,

β. État hygrométrique.

Les mêmes réflexions qui précèdent s'appliquent à l'état hygrométrique de l'air.

Toute saturation de la couche gazeuse ambiante au corps humain a, en effet, pour résultat premier de supprimer l'évaporation, donc d'augmenter l'acidité organique.

1º Aussi, au point de vue pratique, voit-on les gens vivant dans une atmosphère humide devenir diathésiques acides (rhumatisants) s'ils étaient à l'état physiologique précédemment.

2º Aussi voit-on encore en ce sens les diathésiques acides en la période d'état être pris d'une crise par le fait d'un contact humide suffisamment prolongé. Ét ce que nous disons relativement aux crises dans la diathèse hyperacide par les modifications des conditions climatériques venant augmenter l'acidité organique s'applique également au récime alimentaire.

Tout diathésique hyperacide surchargeant brusquement pour une cause ou pour une autre, son organisme en acidit est pris d'un accès aigu!

C. Causes thérapeutiques.

Certains médicaments peuvent augmenter l'acidité organique, mais ils agissent de façon différente :

a. Action directe.

Il est certain que tous les acides minéraux (qui seuls suivent le torrent circulatoire dans son entrée sans être décomposés et s'éliminent dans leur intégrité par l'urine) augmentent l'acidité organique.

Les plus employés sont :

L'acide sulfurique,

L'acide chlorhydrique, L'acide fluorhydrique,

Nous n'avons rien de particulier à signaler à leur égard en ce moment, si ce n'est de faire romarquer qu'ils sont employés pour combattre la diathèse par hyperalcalinité et qu'ils agissent en raison inverse de leur équivalent chimique.

Action indirecte.

a. Chimique.

Les builes grasses (buile de foie de morae, huile de faines, etc.) agissent pour augmenter l'hyperacidité organique, comme nous l'avons dit à l'alimentation, en rendant les combustions organiques incomplètes par absorption anormale de l'oxygène de l'hémoglobine circulatoire.

β. Physiologique:

Les phénois (crésylol de la créosote) agissent :

4º En indurant les tissus, donc en diminuant les oxydations organiques (perte en chlore tissulaire inférieure à la normale); $2^{\rm o}$ Gomme antiferment escibles, donc encore en diminuant les oxydations organiques.

VIII. ACTION DU TRAITEMENT SUR LA DIATHÈSE HYPERACIDE.

On devrait, à la rigueur, envisager le traitement de la diathèse acide à deux points de vue :

Traitement de la diathèse hyperacide en elle-même ;

Traitement de ses manifestations, puisque dans la médecine c'est ainsi que l'on procède.

Nous croyons cependant être logique, en groupant cette thérapeutique, puisque tout effet a uue cause, et toute action sur l'effet, pour être réelle, doit s'adresser à la cause.

Et nous envisagerons donc le traitement seulement en ses divisions pratiques :

Médicaments,

Alimentation, Hygiène.

A. Médicaments.

Selon les modifications, il est employé principalement :

Rhumatisme-goutteux :

Salicylate de soude, bicarbonate de soude (alcalinisation du plasma sanguin, diminution de l'hyperacidité organique).

b. Goutte acquise,

Goutte héréditaire, Manifestations cutanées,

Polysarcie,

Diabète (forme à hyperacidité organique),

Dyspepsies (dyspepsie acide).

Iodures alcalins, bicarbonates de soude (alcalinisation du sérum sanguin, diminution de l'hyperacidité organique).

c. Coliques néphrétiques.

Carbonato de lithine (dissolution de l'acide urique, suppression locale des calculs préformés), bicarbonate de soude (alcalinisation du sérum sanguin, dissolution de l'acide urique, suppression de calculs préformés localement, diminution de l'hyperacidité organique). d. Coliques hépatiques (calculeuses).

Bicarbonates alcalins et hydrogène sulturé (Vichy, source Grande-Grille) (alcalinisation du sérum sanguin, action réductive de BS sur les pigments biliaires, réduction en volume des calculs préformés, élimination de ces calculs, amélioration des fonctions réductrices hératiques).

B. Alimentation.

Les modifications appelées au régime alimentaire des diathésiques acides sont les suivantes :

1º Négatives, diminution des aliments azotés;

Diminution des féculents;

Diminution des liquides alcooliques.

2º Positives, augmentation des aliments végétaux (verts); Augmentation du lait.

Le régime caruivore créant, avons-nous dit précédemment, l'hyperacidité organique.

Les féculents et l'alcool agissant dans le même sens; tandis qu'au contraire les végétaux, par les sels de potasse qu'ils contiennent en excès, créent l'hypoacidité organique.

Et le lait augmentant la diurèse rénale (affaiblie chez les diathésiques acides).

On concoit donc la double action curative de ce régime.

C. Hygiène.

Les principes d'hygiène appliqués à ce traitement de la diathèse acide sont de quatre ordres: Exercice, Hydrothérapie, Balnéation, Massage.

a. Exercice.

Nous avons vu plus loin que l'exercice contribuait à la diminution de l'hyperacidité organique.

4º En augmentant les fonctions de la peau;

2º En activant l'hématose par augmentation du nombre de respirations et de l'amplitude respiratoire;

3º En augmentant la rapidité de la circulation.

Nous ne nous attarderons donc pas plus longtemps sur ce sujet.

b. Hydrothérapie.

La douche a pour effet immédiat une augmentation dans la rapidité circulatoire.

Elle agit donc contre la diathèse hyperacide en augmentant les échanges organiques généraux directement, et en augmentant l'hématose d'autre part, donc aidant encore indirectement ces échanges.

c. Balnéation.

La balnéation est comprise de deux facons différentes :

1º Bains de vapeur.

Nous avons dit qu'ils soustrayaient d'une part une notable proportion des acides organiques par la sudoration qu'ils amenaient;

Et d'autre part qu'ils favorisaient l'inhibition du tissu adipeux, donc augmentaient les échanges organiques. Ces deux modes de faire constituent leur action curative de la diathèse hyperacide.

2º Bains alcalins.

Comme l'a montré Peyraud (de Libourne), les liquides alcalins par des carbonates ou bicarbonates mis au contact d'un tissu spongieux dans une certaine mesure comme le derme décapent le tissu, l'imbibent et y rencontrant dans les glandes sudoripares un liquide acide, la sueur, sont décomposés et mettent l'acide carbonique en liberté.

Cet acide carbonique libre dans l'épaisseur des tissus joue un rôle excitant, analogue à celui d'un révulsif (et en effet la peau rougit dans les bains minéralisés de l'ichy) qui active la circulation générale; résultat: augmentation des combustions organiques, donc diminution de l'acidité organique.

d. Massage.

Le massage agit dans un double sens:

a. Localement, en augmentant la perméabilité du derme, par la souplesse qu'il lui communique, donc en favorisant l'évaporation cutanée, donc en diminuant l'acide organique.

6. D'une façon générale, en fatiguant le tissu musculaire, lui faisant accomplir un travail contribuant ainsi à augmenter les oxydations organiques (comme nous l'avons vu précédemment à l'exercice), donc à diminuer l'acidité organique.

IX. CLASSIFICATION DES MANIFESTATIONS DE LA DIATHÈSE HYPERACIDE.

La diathèse acide crée à l'organisme quatre ordres de modifications physiologiques différentes, a-t-on pu voir.

Les manifestations doivent donc, comme classification, se ranger sous l'une ou l'autre de ces modifications :

A. Manifestation exclusivement due à une modification chimique plasmatique.

a. Par hématose incomplète : anémie ;

b. Par exagération de la fibrine circulante;

a. Localisation articulaire : rhumatisme;

β. Localisation cérébrale : embolies;

γ. Localisation veineuse : varices, hémorrhoïdes ;

δ. Localisation hépatique :

1º Temporaire : congestion hépatique;

2º Permanente : diabète hépatique.

c. Par précipitation vasculaire de l'acide urique et des urates : goutte, tophus.

d. Par précipitation de la myosine musculaire : rhumatisme articulaire.

e. Par diminution fonctionnelle du foie :

a. Faible : dyspepsie hépatique (inosurie).

β. Accentuée : diabète arthritique (glycosurie), accidents secondaires : exagération de cette diminution fonctionnelle, auto-intoxication oxybutyrique (acétonhémie hyperacide).

f. Par combustions organiques incomplètes : polysarcie.

B. Manifestations exclusivement dues à une modification chimique des sécrétions et excrétions.

 a. Précipitation rénale de l'acide urique et de l'oxalate de chaux.

a. Sans agglomération : coniase rénale.

3. Avec agglomération : lithiase rénale, accidents secondaires :

1º Expulsion : coliques néphrétiques,

2º Enchatonnement : néphrites calculeuses.

 b. Précipitation vésicale de l'acide urique, et de l'oxalate de chaux :

- a. Sans agglomération : coniase vésicale.
- β. Avec agglomération : lithiase vésicale, accidents secondaires : inflammation par frottement de la paroi vésicale (cystites calculeuses).
 - c. Précipitation des matériaux biliaires.
 - a. Sans agglomération : coniase biliaire.
 - β. Avec agglomération : lithiase biliaire, accidents secondaires :
 - 1º Résorption biliaire : ictère vrai. 2º Expulsion : coliques hépatiques.
- d. Précipitation des albuminoïdes du cristallin : cataracte arthritique.
- e. Précipitation de la mucine de la sécrétion bronchique : asthme diathésique.
- f. Neutralisation de la pepsine gastrique : dyspepsie acide.
- g. Entrainement intestinal des phosphates alimentaires :
 - a. Précipitation sans agglomération : coniase intestinale.
- β. Précipitation sans agglomération : lithiase intestinale. C. Manifestations dues à des modifications histologiques
- tissulaires. a. Temporaire : par irritation caustique.
- a. De la poche stomacale : ulcère de l'estomac.
- β. De la poche vésicale : cystites essentielles.
- γ. Des tuniques veineuses : phlébites.
- 8. De la muqueuse pharyngienne : pharyngites chroniques.
- s. laryngienne : laryngites chroniques.
- x. de la trompe d'Eustache : otite chronique.
- 6. Des canaux biliaires : ictère catarrhal ;
- . De tubuli rénaux : néphrite a frigore (suppression brusque et générale de la transpiration cutanée);
- a. De la plèvre : pleurésie a frigore (suppression brusque mais locale de la transpiration cutanée);
 - λ. Du péricarde : péricardite a frigore (id.);
- b. Permanente: par induration fibroïde: a. Généralisée : sclérose généralisée.
 - β. Locale :
- 1º Des parois artérielles : artério-sclérose; accidents secondaires, développement exagéré du cœur, modifications dans le rythme cardiaque;

2º Du tissu propre du foie : cirrhose;

3º Du tissu propre du rein : sclérose rénale ;

4º Du tissu propre du cerveau : sclérose cérébrale;

5º Du tissu propre de la moelle : scierose médullaire.

D. Manifestations dues à la création d'un terrain spécial de prolifération parasitaire (exagération de CO² circulatoire).

Général (voies respiratoires plus spécialement toutefois) :

Local.

a. Bouche : muguet (ojdium olbium);

b. Derme : herpès ;

c. Organes génitaux.

1º Internes : métrite chronique;

2º Externe : balanites , valvites diathésiques (aspergillus).

Nous ne pouvons en terminer avec la diathées hyperacide sans reudre à César ce qui appartient à César, c'est-à-dire à nos éminents maîtres les professeurs Bouchard et Lecorché tout l'honneur de ce travail sur la diathèse hyperacide, sur l'arthritisme, comme on disait autrefois.

C'est qu'en effet nous devons reconnaître avoir été inspirés par leurs si remarquables ouvrages sur les « maladies par ralentissement de la nutrition » et sur la « goutte ».

Mais quoi qu'il en soit de l'originalité réelle et absolue de ce chapitre, au moins aura-t-il le mérite d'unir ces deux auteurs dont, a priori, les tendances doctrinaires paraissent opposées. Avant montré que la réaction plasmatique sanguine, alca-

line en apparence, était acide résilement quant à sa forme chimique; ayant fait voir que le ralentissement des échanges organiques d'ensemble par hyperacidité générale, en réduisant les pertes relativement aux acquisitions de l'organisme, donnait en somme à l'accroissement tissulaire une activité supérieure à la normale, nous avons donc supprimé ces-divergences apparentes:

Augmentation de l'acidité (Bouchard), diminution de l'alcalinité (Lecorché). Ralentissement de la nutrition [c'est-à-dire ralentissement des échanges organiques (Bouchard)], hypernutrition [c'est-à-dire gain pondèral des sujets (Lecorché)], créent deux Écoles émules et rivales dont l'association constituera dorénavant un des plus beaux exemples de la concordance parallèle des applications de la physiologie et de la clinique à l'Art de guérir.

Deuxième groupe. - Diathèse par hypoacidité organique.

On a vu dans la disthèse acide l'hyperacidité du sérum, dévoilée par l'hyperacidité parsillée de l'excrétion urinaire, créer aux éléments fondamentaux des tissus des conditions éminemment favorables à certaines altérations histologiques. Nous avons acore montré que cetle hyperacidité créait en même temps ces troubles fonctionnels assimilatifs et désassimilatifs que flouchard et Leccréhe not tétudiés comme modifications de la nutrition. Semblable à un fourneau dans lequel on jetterait plus de combustible que n'en comprete son tirage, l'organisme du diathésique acide est impuissant à comburer ses inegsta; et ses propres déchets vicient son fonctionnement comme des soories et des cendres en excèse net ardrenten pas à encresser les rouages d'une machine, si elle n'était journellement en-tretenue.

Mais la rupture d'équilibre entre l'assimilation et la désassimilation organique ne se fait pas tonjours dans le sens de la dimination des combustions organiques. Souvent, au contraire, l'on rencontre des organismes où la combustion semble plutôt activée outre mesure qu'amoindrie. En ce cas, si l'apport du combustible à l'assimilation est simplement normal, le combustible étant brûlé complétement avec une extrême rapidité ne laissera de son passage que des traces capables de s'étiminer rapidement par la voie rénale, c'est-à-dire des déchets complétement oxydés:

Augmentation de l'azote complètement oxydé (urée, ammoniaque) relativement à l'azote incomplètement oxydé (acide urique, créatinine), contrairement à la diathèse hyperacide.

On conçoit donc que ce combustible soit insuffisant à réparer les petges qui se font d'autre part par la désassimilation; et la conséquence fatale de ce fait physiologique est la déchéance organique, la dépression physique, la misère physiologique, pour tout dire en u mot, la consomption.

Si cet état de choses est passager ou de peu de durée, comme dans les fièvres (1), l'organisme sort bientôt victorieux de la crise et les pertes éprouvées sont promptement compensées. La convalescence dans les maladies aiguês n'est autre chose que l'acheminement de l'organisme vers l'équilibre, la balance des entrées et des sorties biologiques. Mais qu'au contraire la déchéance organique soit plus profonde, qu'elle soit devenue chronique, un nouveau milieu s'établit pour l'être vivant, milieu dans lequel, mal préparé pour la lutte, il succombera fatalement ou par consomption lente ou, suivant les cas, par complications aigues venant se greffer sur un état devenu diathésique.

Au point de vue séméiologique spécial, qui seul nous intéresse ici, cette déchéance organique que, par antithèse de la diathèse hyperacide où il y a pléthore, surabondance organique, nous appellerions volontiers une faillite physiologique, se traduit en urologie par un caractère spécifique des plus constants et des plus remarquables : diminution de l'acidité urinaire, hypo-acidité urinaire, conséquence d'une hypo-acidité sanguine.

C'est donc ce caractère de l'hypoacidité urinaire dont nous ferons le pivot de cette classe des diathèses, en étudiant successivement et parallèlement à la diathèse hyperacide les diverses modifications qu'il fait éprouver aux différentes parties de l'organisme, en recherchant ses causes, enfin en notant l'action physiologique du traitement.

I. MODIFICATIONS DES ÉLÉMENTS SANGITINS

A. Éléments chimiques.

a. ÉLÉMENTS SALINS.

a. La plus grande partie des phosphates circulatoires se trouve à l'état de phosphates bibasiques, c'est-à-dire ueutres.

β. L'acide urique se trouve presque entièrement à l'état d'urates alcalins, bibasiques très solubles, donc facilement dialysables.

⁽¹⁾ Élécation de la température par le fait de l'augmentation des combustions organiques.

 $\gamma.$ L'acide carbonique libre du plasma sanguin est inférieur à la normale.

8. L'eau est en excès dans le plasma sanguin.

b. ÉLÉMENTS ORGANIQUES.

a. Selon qu'il y a ou non troubles fonctionnels du foie concomitants, il y a ou non excès de fibrine.

β. Comme dans la diathèse acide les variations d'albumine suivent, mais eu sens inverses, les variations de la fibrine.

γ. Il y a diminution des matières grasses par suite des combustions complètes de l'organisme.

B. Éléments figurés.

 a. Il y a augmentation des globules rouges (absolue sinon relative par le fait de l'hydratation en excès du sérum),
 b. Il y a augmentation parallèle de l'oxyhémoglobine.

II. MODIFICATIONS DES SÉCRÉTIONS

A. Sécrétion gastrique.

a. Il y a diminution de l'acidité du suc gastrique.

a. D'où diminution de l'appétit;

3. D'où diminution dans le pouvoir digestif de ce suc gastrique; les albumines de l'alimentation n'y trouvant pas la quantité d'acide libre suffissarle pour leur transformation complète en syntonine, terme premier de l'hydratation de ces albumines absolument nécessaire à l'action de la pepsine pour leur transformation en peptones;

 D'où résistance inférieure à la normale dans la contagion stomacale.

B. Sécrétion biliaire.

Il y a fluidification générale de la bile.

D'où son écoulement plus facile dans le tube intestinal (diarrhée tuberculeuse).

C. Sécrétions muqueuses.

Il y a augmentation générale dans les sécrétions muqueuses :

D'où catarrhes en général plus fréquents quand il y a diminution des fonctions vicariantes cutanées d'excrétion (laryngites, bronchites, pleurésies liquides ou purulentes par refroidissement).

III. MODIFICATIONS DES EXCRÉTIONS.

A. Exhalation pulmonaire.

Il y a dimination dans l'exhalation carbonique pulmo-

D'où augmentation dans les chances de contagion respira-

R Snenr.

L'augmentation des oxydations organiques introduisant, on l'a vu à la genése urologique, un'excès d'eau dans le torrent circulatoire, les sécrétions et excrétions aqueuses en général se trouvent augmentées comme volume.

La sueur subit ce même contre-coup (sueurs profuses des phtisiques).

C. Fèces.

Augmentation des sécrétions muqueuses en général : dilution, c'est-à-dire diminution de la densité des fèces en particulier.

D'où nouvelle cause de diarrhée (chez les phtisiques), quand l'excrétion cutanée exagérée ne sert point d'émonctoire vicariant à l'excès d'eau du plasma sanguin.

D. Urine.

Du fait de l'hypo-acidité organique l'urine subit les modifications suivantes :

a. Son acidité tombe au-dessous de la normale;

a. Son acidité tombé au-dessous de la normale;
 b. L'acide phosphorique est supérieur à la normale;

c. Le volume est augmenté;

d. L'acide arique est inférieur au rapport des éléments fixes totaux ;

e. L'urobiline est inférieure à la normale ;

f. Le chlore est supérieur à la normale ou en tous cas au rapport des éléments fixes d'ensemble;

g. L'urée est supérieure à la normale.

Et ces signes chimiques, dont les principaux et extrêmes sont le chlore et l'acidité (le premier en haut de l'échelle, le second en bas), nous les rencontrons dans un certain nombre de maladies, dont nous résumons ci-dessous la synthèse urologique:

Fig. 69. - Schéma uroséméiographique de la diathèse hypo-acide.

IV. MODIFICATIONS DES TISSUS.

L'action des alcalis sur les tissus est diamétralement opposée à celle des acides.

Taudis que la seconde (par déshydratation) a pour effet leur condensation, la première, au contraire, tend à leur résolution finale en passant par leur ramollissement (par hydratation); et naturellement, elle opère en raison directe du temps de contact, comme de sa propre causticité et en raison même de la dessité du tissu attamé.

La thérapeutique emploie journellement cette action dans les cautières, et l'on y voit, à un ramollissement premier du derme et des lissus sous-jacents, succéder leur entière désorganisation ainsi que celle des éléments sanguins qu'y apporte le pletux vascelaire local.

On comprend donc ainsi que chez un hypo-acide touto stase sanguine puisse amenen localement une véritable désorganisation du ou des tissus inféressés, allant progressivement de l'ulcération si la décomposition est superficielle, à la caséfication et enfin à la purulence par transformation de la globuline des leucocytes circulatoires en prins (globu-gyatonie).

A. Muguenses

a. Muqueuses en général : inflammation superficielle, altérations syphilitiques;

 b. Muqueuse vésicale: inflammation superficielle, cystite tuberculeuse; inflammation profonde, cystite carcinomateuse.

R. Sérenses

Séreuses des vaisseaux des méninges : inflammation profonde, méningite tuberculeuse.

C. Foie.

a. Altération histologique profonde (hépatite tuberculeuse);

b. Altération histologique profonde (cancer du foie).

D. Rein.

Altération histologique profonde (néphrite tuberculeuse).

V. ÉVOLUTION PARASITAIRE TISSULAIRE.

Depuis les travaux de Darwin, la question de l'adaptation des êtres aux milieux est chose jugée au fond. Forts de cette opinion, nous avons, à la diathèse hyperacide, divisé les contages pathogènes en deux classes : les sun s'égétaux, évoluant sur un terrain organique acide, les autres animaux, vivant et prolificant de préférence sur un terrain organique alcalin. La raison decette préférence des contages animaux pour les tissus baiqués par un liquide alcalin est que, la déchêance organique étant favorisée par l'hypo-acidité organique, les contages trouvent libres dans les réactions chimiquesse passant alors dans l'organisme leur élément fondamental, l'azote, base de tout tissu animal, s'en emparent, se l'assimilent et peuvent ainsi croître et prolifèrer.

Comme exemple clinique de l'adaptation des parasites microscopiques au terrain acide, l'on a le champignon du muguet, qui cède à la simple neutralisation du milieu.

Comme exemple expérimental contraire, on a le bacille de la scrofule qui, injecté dans le péritoine, s'y développe, prolière et crée de la tuberculose généralisée, tandis que, injecté dans le tissu musculaire, il ne détermine qu'un abcès local nettement délimité.

Et ce qui montre bien que c'est exclusivement à l'acidité du plasma musculaire qu'est due cette préservation de l'organisme contre l'infection tuberculease dans cette expérience, c'est qu'il suffit de placer au point de l'injection un fragment de tissu quelconque détaché, done mort, donc putréfiable, pour (en saturant l'acidité organique locale par les produits ammoniacaux de la putréfaction) permettre la généralisation de la dissémination hacilliste.

An point de vue de la contagion bactérienne, l'hype-acidité organique crée donc un terrain réellement approprié de réception, d'évolution et de prolifération qui, pas plus que ne l'est la diathése hyperacide pour le champignon du muguet, n'est point limité au seul bacille de la tuberculos.

Tous les contages animaux au contraire y trouvent leur lieu d'élection, et ce d'autant plus que parallèlement à l'hypo-acidité organique diminue la charge de l'organisme en chlorure de so-dium. Or le chlorure de so-dium étant l'un des agents antifermentescibles par excellence, et ce corps agissant puissamment sur les bacilles du général et sur les bacilles froits et virque sur les bacilles du général et sur les bacilles droits et virque l'autentification de l'autentification de

en particulier, comme l'ont reconnu Koch et Hommel de Zurich, il s'en suit que ce double appauvrissement du terrain au point de vue de la résistance ne peut qu'être favorable à toute évolution bactérienne.

VI. MODIFICATIONS DANS LES ÉCHANGES ORGANIQUES.

Les modifications que la diathèse alcaline peut faire subir aux échanges organiques sont de deux ordres. Elles portent sur les échanges :

Généraux exclusivement;

Locaux seulement.

A. Échanges organiques généraux.

Nous avons vu que, au point de vue séméiologique urinaire, lés deux principales caractéristiques de la diathèse hypo-acide étaient : l'abaissement de l'acidité organique, l'abaissement des chlorures salins de l'économie.

Nous avons aussi rappelé les travaux de Duclaux établissant d'une part que l'hypo-acidité organique favorisait les échanges chimiques tissulaires, d'autre part que les échanges chimiques pouvant être au fond comparés à de véritables fermentations, la diminution des chiorures de l'économie devait aussi les favoriser, puisque l'expérience montrait que, en sens contraire, l'augmentation de ces chiorures els entravait.

Nous déduisons donc de ces remarquables élucidations des fermentations animales que dans la diathèse hypo-acide toutes les oxydations doivent être favorisées et conséquemment être supérieures à la normale.

C'est en effet ce que, secondairement, l'examen urologique dénonce, puisque l'on constate une augmentation des dérivés, azotés complètement oxydés par rapport aux mêmes déments incomplètement oxydés (augmentation de l'urée et de l'ammoniaque par rapport à l'acide urique et à la créatinine) dans celle des maladies que comprend cette diathèse, qui en représente le type fondamentat : la scrofule.

B. Échanges organiques locaux.

Dans la tuberculose, la syphilis, par le fait des localisations

hépatiques, les matières organiques azotées, d'origine alimentaire ou tissulaire, subissant dans le foie une préparation incomplète, c'est-à-dire une première oxyation incomplète, cette augmentation relative de l'azote complètement oxydé subit un temps d'arrêt marqué, et l'ou voit l'acide urique dominer la scène.

Dans le cancer, le même ralentissement s'opère, mais étant encore plus accentué et devenant général, l'azote complètement oxydé s'abaisse au point de présenter le rapport le plus bas de l'échelle des éléments docimasiques urinaires.

VII. GAUSES OCCASIONNELLES DE L'HYPO-ACIDITÉ ORGANIQUE.

Comme pour l'hyperacidité organique, nous diviserons les causes en trois ordres :

Biologiques : hérédité :

Physiologiques : alimentation, exercice, climat :

Thérapeutique : médicaments.

A. Causes biologiques.

Hérédité.

Les maladies comprises dans la diathèse alcaline sont presque toutes bactériennes.

Pour celles-là, il nous semble rationnel d'admettre l'infection des parents de l'enfant comme cause étiologique de l'hypo-acidité organique. Nous avons, en effet, dit précédemment que le bacille paraissait être sous la dépendance presque exclusive du terrain de prolifération; mais on peut à la risqueur concroir la proposition inverse et admettre que les localisations hépatiques bactériennes doivent par les troubles nutrilis qu'elles occasionnent créer cette hypoacidité de l'économie (scrofule, tuberculose, syphilis), Quant à celles de ces maladies dont le principe essentiel réside plus spécialement en une altération histologique tissualier, comme pour le carcionne, on ne pourrait guère invoquer que la prédisposition résultant de l'accontammence paternelle.

B. Causes physiologiques.

A. EXERCICS.

Nous avons vu plus haut (t) quels rapports positifs existaient entre les combustions organiques générales et l'exer-

Or nous savons encore que parmi les produits de déchéance organiques l'un des non moins intéressants est l'eau, qui une fois entrée dans le torrent circulatoire par régression tissulaire, plasmatique ou alimentaire, doit forcément s'éliminer par l'une ou l'autre voie que lui ouvrent les sécrétions et excrétions physiolofiques.

Tout exercic immodéré, ou plus exactement tout travail non pondéré avec les forces du sujet, aura done pour résultat la production en excès de produits completement oxydés de l'organisme, l'eau en particulier. El de ce fait augmentation des excrétions générales, de l'urine en particulier; augmentation dialytique des chlorures alcalins, c'est-a-dire perte exagérée en esc chlorures; production exagérée parmi les produits aucsès complètement oxydés, exagération de l'ammoniaque, base énergique, donc entrailsation, alcalinisation du plasma sanguin. Donc, en un mot, hypo-acidité et hypochlorurie organique : déchénance organique absolue.

Et à propos de l'augmentation exagérée des combustions organiques, et la déshydratation des tissus en résultant, ne serait-ce pas tout simplement à ce fait physiologique que l'on derrait attribuer les accidents tétaniformes et la mort s'ensuivant que l'on constate quelquedois che les animaux violemment surmenés (cerfs poursuivis par une meute)? Nous verrons, à propos du « diabète», qu'en ces conditions de déshydratation tissulaire, un surcotit d'oxydation organique amène par réaction la formation de cyanures alcalins, dont les effets physiologiques sont également tétaniformes.

b. VEILLE.

Nous avons vu précédemment qu'au fonctionnement physiologique normal de la machine humaine un repos de huit

⁽¹⁾ Voir à l'Exercice dans l'Hyperacidité organique.

heures sur vingt-quatre était nécessaire pour établir l'équilibre des échanges assimilatifs et désassimilatifs généraux.

Tout écart positif dans ce régime hygiénique, c'est-à-dire toute surveille, se traduira donc fatalement par des combustions organiques exagérées et comme conséquence par de l'hypo-acidité organique.

C. TRAVAIL INTELLECTION.

Les effets locaux et immédiats du travail intellectuel par rapport au cerveau sont une congestion certaine. Cette congestion physiologique se répercute cependant sur l'organisme suivant : elle améne une compression de la région du quatrième ventricule, qui, créant la dilatation étanique du plexus vasculaire général, augmente la rapidité de la circulation, et comme suite l'augmentation dans les oxydations organiques générales, c'est-à-dire l'hyposocidité organique.

Et ce, en même temps sans doute que la congestion cérébrale d'ordre physiologique résultant de la tension intellectuelle amène une usure plus spéciale des cellules cérébrales, donc leur désassimilation, donc encore l'hypo-acidité organique.

d. Almentation.

Nous avons dit antérieurement que la suspension de l'alimentation chez un animal rendait cet animal autophage, c'est-à-dire carnivore. L'urine, en effet, devient acide chez les herbivores privés de nourriture. Mais, ajoutons-le bien vite, il faut qu'il y ait en même temps sédentarité du sujet en expérience.

En cas contraire, en cas de travail manuel ou intellectuel, chez l'homme par exemple, les oxydations organiques exagérées résultant de ce travail amenant la formation de bases alcalines organiques (ammoniaque), l'acidité résultant de l'autophagie est vite saturée, et l'Organisme devient hypo-oïde.

On comprend ainsi que, sans qu'il y ait privation absolue de nourriture, toute diminution dans la ration d'entretien audessous non seulement de la normale à l'état de repos, mais bien encore de la normale à l'état de travail dans lequel l'homme examiné se trouvera placé, pourra amener l'hypoacdité organique.

C. Causes thérapeutiques.

L'action des médicaments comme cause occasionnelle de l'hypo-acidité organique est de deux sortes ;

Directe ou indirecte.

a DIRECTE

Tous les alcalins pris en excès pendant un temps suffisam-

ment long peuvent agir dans ce sens.

Les doses ne sont point fixes d'une façon générale; elles dépendent de l'état physiologique antérieur du malade au point de vue de son acidité organique. Tel malade, par exemple, supportera, sans arriver à l'alcalinité, dix verres et plus d'eau de Vichy, tel autre sera saturé par un demi-verre pris en vingt-quatre heures. L'administration des alcalins devrait donc toujours être précédée d'une analyse urlogique déterminant l'acidité organique du sujet et permettant de lui doser mathématiquement sa ration médicamenteuse.

b. Indirecte.

Tous les médicaments comme la caféine, la digitaline, etc., qui agissent sur la circulation en activant la dialyse réanle, en augmentant la diurbes, augmentent-l'hypo-actidit organique, par le mécanisme que nous avons précédemment expliqué de la perte en chlorures alcalins (que l'eau urinaire entraîne) supérieure à la normale.

VIII. ACTION DU TRAITEMENT DANS LA DIATHÈSE HYPO-ACIDE.

Le traitement peut être institué par: Les médicaments:

Une hygiène alimentaire spéciale;

Une hygiène d'exercice normale. Nous envisagerons successivement ces trois cas :

A. Médicaments.

Ils agissent soit :

a. En compensant l'hypo-acidité organique :

a. Directement:

Acide lactique, acide chlorhydrique, acide fluorhydrique,

acide sulfurique, chlorhydro et lacto-phosphate de chaux (acides).

β. Indirectement : par les dérivés acides que leur combustion organique présente en excès, huiles médicamenteuses (fêne, morue), glycérine.

b. En ralentissant les fermentations organiques :

α. Par les éléments chlorurés qu'ils apportent à l'organisme;
 chlorure de sodium, acide chlorhydrique.
 β. Par induration des cellules organiques;

Créosote, acide phénique, essences antiseptiques.

γ. En améliorant les digestions par augmentation de l'acidité gastrique : acide lactique, acide chlorhydrique, acide
fluorhydrique.

 En améliorant les fonctions hépatiques (par augmentation des réductions hépatiques : acide sulfhydrique dans la tuberculose).

B. Alimentation.

La suralimentation constitue la base du régime alimentaire spécial de la diathèse hypo-acide.

Nous avons vu à la diathèse hyperacide quels étaient les résultats pour l'organisme d'un régime alimentaire surabondant :

Ces résultats peuvent en résumé se traduire par:

1º Exagération de l'acidité organique :

2° Surcharge du sang en chlorures alcalins.

On comprend donc aiosi que non seulement les pertes subles par l'organisme du fait de la déchéance dont il est atteint par la désassimilation se trouvent équilibrées, mais qu'elles arrivent même à être annihilées au point de voir de l'organisme reaggner le terrain perdu.

De fait, en ellet, de la substitution de l'hyper à l'hypo-acidité organique, les combustions générales se trouvant ralenties, l'assimilation, quelque incomplète soit-elle, présente toujers avec la désassimilation un écart inférieur à celui de l'état précédent.

IX. CLASSIFICATION DES MANIFESTATIONS DE LA DIATHÈSE HYPOACIDE.

Comme pour la diathèse acide, l'étiologie seconde des manifestations de l'hypo-acidité organique se divise en quatre sections.

- A. Modifications exclusivement dues à une altération chimique des secrétions et excrétions
- B. Manifestations exclusivement dues à une modification chimique plasmatique :
 - a. Par combustions organiques exagérées :
 - a. Temporaire : anémie :
- β. Permanente : 1° avec équilibre fonctionnel hépatique : polyurie organique.
- 2º Avec faiblesse fonctionnelle relative du foie : glycosurie polynriane.
- Accidents secondaires : exagération relative de la désassimilation sur les fonctions hépatiques en l'absence d'eau (après perte de la plus grande partie des tissus par amaigrissement) : formation en excès de dérivés cyaniques, auto-intoxication cyanique (fausse acétonhémie).
- b. Transformation incomplète en syntonines des albumines de l'alimentation : digestion gastrique incomplète, dyspepsies alcalines.
- C. Manifestations dues à des modifications histologiques tissulaires : altérations carninomateuses, carcinomes.
- D. Manifestations dues à la création d'un terrain spécial de réception et de prolifération parasitaire (diminution de CO2 expiratoire - diminution de l'acidité du suc gastrique - diminution de l'acidité des sécrétions en général).
 - a. Avec prédominance des lésions histologiques secondaires :
 - a. État aigu :
 - 1º Contagion par infection pulmonaire; pneumonie;
- 2º Contagion par localisation cutanée (plus spéciale) : rougeole, variole, scarlatine,
 - β. État chronique :
 - 4º Contagion par hérédité exclusivement : scrofule ;
 - 2º Contagion par hérédité ou inoculation : syphilis ;

3° Contagion par hérédité, inoculation ou infection : tuberculose.

 b. Avec prédominance des phénomènes physiologiques dus à une auto-intoxication (résorptions des leucomaines sécrétées par les bacilles-contages):

1º Contagion par infection : Typhus, choléra.

2º Contagion par inoculation : Rage, tétanos, morve, charbon.

CHAPITRE II

MALADIES CHRONIOUES

Nous venons d'exposer sur les diathèses une série de vues générales permettant d'apprécier d'une façon concrète les modifications principales, chimiques etphysiologiques, que ces états morbides chroniques et transmissibles peuvent apporter à l'économie humaine.

Nous aurious pu, à la suite de l'une et de l'autre, décrire isolément chacun de ces états maladifs selon la classification que nous y avons exposée. Mais outre que nous nous serions exposée à de fastidieuses redites, comme il est d'usage en médecine de grouper les maladies par rapport à leur symptômatologie et non pas à leur étiologie, nous aurions ainsi séparé, éloigné des manifestations dont le rapprochement ne pourra, nous semble-tl, qu'aidre à les concevoir plus clairement.

Nous suivrons donc les errements médicaux et diviserons tout d'abord les états morbides en chroniques et aigus. Mais toutafois, afin de ne point troy nous écarter de notre classification première des diathèses, nous aurons soin de subdiviser chacun de ces groupes d'après la cause étiologique diathésique la plus probable. Premier groupe. - États morbides liés à la diathèse hyperacide.

I. GOUTTE.

Quelle que soit la théorie physiologique que l'on adopte : diminution de l'alcalinité normale [Lecorché, augmentation de l'acidité normale (Bouchard) (et aux prolégomènes de ce travail nous avons montré qu'il y avait concordance absolue entre ces deux manières de voir), il n'en est pas moins certain que, chez l'arthritique, l'organisme en général possède une tendance à lourner à l'acidité.

Or, les travaux de Duclaux (que nous avons rappelés à la diaflèse hyperacide) ayant d'autre parf sit voir que à une augmentation de l'acidité organique correspondait une diminution des oxydations générales, par conséquent une désassimilation incomplète (hyperatuition de Lecorché), il s'ensuit que le type morbide clinique représentant le plus fidélement la diafhèse hyperacide est la goute: maladié dans laquelle l'on voit généralement les sujets, gros, gras, joufflus, c'est-à-dire jouissant en apparence de tous les avantages non seulement d'une santé absolue, mais même d'une santé débordante, sugoione, au fond et en réalité, il soit loir d'en étre ainsi.

Mais, toutefois, une forme spéciale de la goutte ne correspondant pas au tableau clinique que nous venons de tracer nous oblige à diviser ce sujet en deux parties :

Goutte acquise,

Goutte héréditaire; correspondant aux deux grandes causes occasionnelles de la diathèse hyperacide.

A. Goutte acquise.

Caractères urologiques:

a. Période d'état (fig. 70).
 Diminution du volume.

Diminution inférieure des éléments ûxcs.

Augmentation considérable de l'acidité.

Chlore à peu près normal (diminution dans les cas de localisation stomacale).

Diminution de l'acide urique.

Diminution extrême de l'acide phosphorique. Urobiline proportionnellement égale à l'urée.

Fig. 70. — Schéma urosémélographique de la goutte acquise (période d'étré).

b. Période d'accès (fig. 71) :
 Volume trés diminué ;
 Éléments fixes augmentés ;

Acidité à peu près normale; Chlore normal; Urée faible;

Fig. 71. — Schéma urosémétographique de la goutte acquise (période d'accès).

Acide urique augmenté; Acide phosphorique faible; Urobiline forte.

B. Goutte héréditaire.

Caractérisée par des troubles nerveux (sujets maigres), généralement pas d'accès goutteux; troubles fonctionnels généraux de préférence.

Fig. 72. - Schéma urosémélographique de la goutte héréditaire.

Caractères urologiques (de Lalaubie). Augmentation relative de volume (fig. 72); Diminution considérable des éléments fixes ; Augmentation de l'acidité ;

Chlore et urée en proportion des éléments fixes totaux :

Fig. 73. — Schéma uroséméiographique du rhumatisme articulaire (période d'état).

Acide urique et urobiline en proportions d'croissantes.

Acide phosphorique intermédiaire entre l'acide urique et l'urobiline.

II. RHUMATISME.

Deux formes : Articulaire :

Musculaire (rhumatisme goutteux).

Fig. 74. — Schéma uroséméiographique du rhumatisme articulaire (période d'accès).

A. Rhumatisme articulaire.

Caractères urologiques :

a. Période d'état.

Éléments d'ensemble légèrement au-dessus de la normale et proportionnels ;

Fig. 75. - Schema urosémélographique du rhumatisme goutteux.

Sauf l'acidité et l'acide urique, faiblement augmentés (fig. 73). b. Période d'accès :

Augmentation de l'acidité, de l'acide urique et de l'urobiline fabsolue et relative);

Urée et chlore normaux;

Diminution de l'acide phosphorique et du volume (fig. 74).

B. Rhumatisme coutteux.

Pas d'attaque franche; localisation plus spéciale aux muscles et en particulier à l'estomac et au diaphragme.

Caractères urologiques :

Volume et urobiline diminués ;

Acides urique et phosphorique très diminués; Urée à peu près normale (légèrement supérieure);

Éléments fixes et chlore supérieurs à l'urée (et à la normale):

Acidité très augmentée;

Urines boueuses, sédiments d'acide urique amorphe (fig. 75).

III. SCLÉROSE.

Deux divisions:

1º Cause pathogénique de l'hyperacidité organique: hérédité ou alimentation vicieuse de longue date; sclérose généralisée:

2° Cause pathogénique de l'hyperacidité organique : alcoolisme ; sclérose hépatique exclusive.

A. Solérose généralisée.

a. Manifestations scléreuses plus spéciales a l'appareil circulatoire.

Augmentation du volume :

de l'acidité;

Diminution des éléments fixes ;

— du chlore ;

- du chiore;

- de l'urée;

de l'acide urique;
 de l'acide phosphorique;

- de l'urobiline:

Présence d'albumine-sérine;

— syntonines (fig. 76).

b. Manipestations scléreuses plus spécialement lolalisées au rein (néphrite interstitielle).

Voir page 358, article Néphrites.

E. GADTERLET. - Urines.

c. manifestations scléreuses plus spécialement localisées au foie (cirrhose rhumatismale).

Voir page 346, Glycosurie hépatique.

Fig. 76. — Schéma uroséméiographique de l'artério-sclérose.

B. Sclérose hépatique exclusive.

En cas de cause alcoolique, la lésion scléreuse est presque teujours exclusivement localisée au foie. En ces conditions, l'on trouve à l'urine les caractères suivants :

Fig. 77. — Schéma uroséméiographique de la cirrhose alcoolique (hypertrophique).

α. Période hypertrophique :

Augmentation de l'acidité (considérable);
— de l'urobiline;

Diminution des éléments fixes d'ensemble ;

du volume ;

Fig. 78. - Schéma uroséméiographique de la cirrhose atrophique.

Présence de glucose ou d'inosite ; Traces d'albumine que traduit le tracé 77 : 8. Période atrophique : Augmentation du volume;

- de l'acidité (faible) :

-- de l'urobiline sur l'ensemble ;

Diminution considérable des éléments fixes (chlore surtout); Inosurie ou glycosurie :

Albumine plus nette (fig. 78).

Deuxième groupe. — États morbides liés à la diathèse hypo-acide.

I. DÉCHÉANCE ORGANIQUE.

Nous avons, en rappelant les expériences de Duclaux, conclu à oc que les oxydations organiques générales étaient augmentées tant par la diminution de l'acidité organique que par la diminution de la charge en chlorure de sodium du plasma sanguin.

Or, nombre de modifications aux données physiologiques aormales conduisent à l'hypérchlorure urinaire, à l'hyperacidité urinaire, c'est-à-dire en somme aux conditions d'ensemble de l'augmentation des échanges orranjues.

Et parmi ces modifications se trouvent principalement :

Le surmenage et la surveille, qui agissent : le premier, en augmentant directement la désassimilation; le second, en favorisant surtout l'excrétion aqueuse et par suite l'hyperexcrétion chlorurique.

Tout individu placé en ces conditions extraphysiologiques et qui, par une alimentation compensative, ne répare pas les pertes en exès éprouvées journellement, finira donc par se trouver en des conditions de déchéance organique lui créant un état réellement extraphysiologique.

Au point de vue uroséméiologique, cet état se traduit par un tracé qui ne laisse aucun doute sur la tendance de désassimilation générale éprouvée par le sujet, en concordant à peu de chose près avec celui de la tuberculose.

Noter que les modifications extraphysiologiques de l'hygiène économique ne sont point seules à provoquer la déchéance organique. Les névroses cérébrales, les lésions du quatrième ventricule, en amenant la polyurie, occasionnent secondairement l'hyperexcrétion du chlorure sodique, tertiairement donnent une augmentation des échanges organiques, et finalement causent, comme conséquence, la déchéance organique. La polyurie simple, diabète insipide, n'est pas autre chose que cet état de déchéance organique lié à un trouble cérèbral.

L'on comprend enfin facilement, en rapprochant les deux tracés, comment il se peut que presque tous les diabétiques polyuriques finissent par la tuberculose. Le terrain propre à la réception bactérienne et à la déchéance organique devant l'accompagner el précédant ici cette réception; et par suite l'évolution tuberculeuse est d'autant plus rapide.

II. TUBERCULOSE.

Les travaux de Darwin, avons-nous dit, ont mis hors de doute la sélection des êtres vivants d'une façon générale par rapport à leurs terrains d'évolution.

Cette proposition n'est pas moins applicable aux infiniment petits qu'aux végétaux ou animaux supérieurs.

Pour les parasites microscopiques entre autres, la question de terrain est d'autant plus primordiale que, simples cellules pour la plupart, leur évolution est soumise à mille vicissitudes d'ordre extrinséque la suspendant souvent, l'annulant quelque fois au grand profit de l'humanité.

D'une façon générale, comme nous l'avons exposé précédemment d'une manière succincte, on pent dire, à l'égard du terrain d'évolution microbienne, que ceux de ces parasites qui appartiennent au règne végétal ayant besoin, comme tous les végétaux, d'un milieu riche en acide carbonique, auquei la puissent emprunter le carbone, éfément fondamental de leurs tissus, trouvent un terrain de réception, d'évolution et de proliferation favorable dans la diathèse acide, laquelle augmente l'acide carbonique circulatoire.

Quant aux parasites microscopiques animaux, forcés, pour vivre, d'accrolire et proliférer, d'être plongés en un milieu dont les matériaux azotés soient facilement assimilables, c'estàdire soient rapprochés autant que possible de la forme ammoname, tyre fondamental de tous engrais azotés et pouvant

aisément, par oxydation alterne, leur fournir leur asote tissulaire; la diathée alcaline semble être de préfèrence leur terrain d'élection. C'est qu'en eflet, chez tout diathésique hypo-acide, l'acide carbonique circulatoire étant amoindri, l'acide carbonique explratione se trouve par le fail diminue, el l'exhaltion pulmonaire se trouve conséquemment privée d'une partie des propriétés antimerobiennes qu'elle possède à l'étan tormal d'une façon certaine, qu'elle a d'une façon exagérée dans la diathése hyperacide.

Voilà pour la porte d'entrée pulmonaire; quant à celle de la voie stomacale, les faits sont non moins probants.

En médecine vélérinaire, un fait clinique a été constaté : de tous les animaux domestiques, les carnivores en général et le chien en particulier, qui ont un suc gastrique très acide, sont sinon réfractaires, du moins peu sujets à la tuberculose. En médecine humain, la diathèse byperacide (arthritisme) est de même considérée comme un mauvais terrain d'évolution tuberculeuse, et les diathésiques hyperacides ont, a-t-on vu, une exagération de Tacidité gastrique.

Chez le diathésique hypoacide, la sécrétion des glandes gastriques par le fait de la diminution de l'acidité organique générale, par le fait de l'hypochlorurie organique, est faible en acides et en chlorures alcalins.

N'est-ce pas là encore une nouvelle porte ouverte à l'invasion microbienne tuberculeuse?

Voilà pour la réception; quant à l'évolution et à la prolifération, la chimie urologique répond d'une façon catégorique à la demande d'éléments azotés complètement oxydés dont le bacille tuberculeux a besoin pour se développer et fructifier.

Compare-t-on, en effet, chez le diathésique hypoacide, les rapports d'excrétion des matériaux azotés urinaires avec ce qu'ils sont à l'état normal et dans la diathèse hyperacide, on trouve les chiffres suivants:

AZOTE TOTAL == 100.	Hyperacidité organique.	ÉTAT NORMAL.	nyposcibité organique.
Azote complètement oxydé	90	100	130
Azote moyennement oxydé		100	.110
Azote faiblement oxydé		100	80

Et qui plus est, l'azote complètement oxydé se trouve pour une notable proportion (plus élevée que la normale) à l'état amnoniacal, c'est-à-dire ayant parcouru le cycle complet de ses oxydations organiques physiologiques, donc étant plus assimilable.

Mais ce n'est pas tout. Veut-on se rendre compte de la valeur culturale que peut offrir l'urée pour le hacille tuberculeux, il n'y a qu'à metre en contact d'une solution de ce corps un fragment de culture du bacille rectiligne de Koch, on s'aperçoit de la transformation rapide d'une partie de l'urée en ammoniaque!

De telle sorte que l'on peut dire que dans la tuberculose, au point de vue du terrain hypoacide, le bacille pathogène peut être à la foiseffet et cause. Autrement dit, le bacille se développera et proliférera d'une façon plus rapide que sur un terrain hyperacide; mais aussi le bacille implanté sur un terrain hyperacide; mois marche le terrain hypoacide.

Cette dernière observation, rapprochée de ce que nous avons dit précédemment sur l'immunité réelle de la diathèse hyperacide pour la tuberculose, au point de vue de la réceptivité pulmonaire ou stomacale du bacille rectilique de Koch, semble à première vue paradoxale.

Elle est pourtant, au fond, d'une réalité absolue.

C'est qu'en effet, les voies respiratoires et l'estomac ne sont pas les seules portes d'entrie qui puissent s'ouvrir à l'infection tuberculenes. Il peut encore y avoir infection par inoculation, et celle-ci a pour principale origine la copulation d'un sujet sain avec unsujet infecté. Encas d'introduction directe dubacille rectiligne dans le torrent circulatoire, à moins que, par l'excès de son acidité plasmatique (lactique ou carbonique chez les diathésiqueshyperacides), le sujet inoculé neréussisse à détruire les bacilles pathogènes requs, il a peu de chance d'échapper à l'inoculation. Mais le bacille pathogène, trouvant un terrain réfractaire à un double sens, milie une convenable pour vévolution ni pour le ramollissement tissulaire, évoluera, proliférera lentement, et ne créera que difficilement des lésions histologiques.

C'est qu'en effet, plus encore que de préparer le terrain à la réception bactérienne, plus encore que de favoriser l'évolution et la prolifération du bacille rectiligne, la diathèse hypo-

acide prépare les lésions histologiques.

Comme nous l'avons dit à la diathèse hypoacide en ses généralités, les alcalis ont la propriété de ramollir les tissus organiques (au lieu de, à la manière des acides, les indurer). Un organisme dont les tissus seront ramollis par la diathèse hypoacide sera donc plus facilement modifée, histologiquement parlant, dans la caséfication qu'un organisme neutre ou hyperaride.

Mais ce n'est point tout. Des expériences d'Hippolyte Martin if résulte que toute inocaliation veiueuse directe du bacille ucherculeux a pour résultat premier la localisation hépatique. On conçoit aisément ce fait en physiologie, en remarquant que la presque totalité de la masse plasmatique sangoine est à chaque révolution vasculaire obligée de traverser la glande hépatique. Et, qui plus est, cette traversée, Join de s'effectere pour ce sang dans son ensemble d'une façon directe, se fait au contraire indirectement, Cett-d-dire par filtration au travers des lobules hépatiques, qui peuvent ainsi retenir les bacilles de contamination.

En clinique ce fait expérimental est contrôlé positivement par l'observation de la lenteur avec laquelle procédé l'évolution bactérienne tuberculeuse lorsque la voie d'entrée a été l'inoculation génito-urinaire. Avant de gagner l'appareil respiratoire, le sang de ces organes passe en effet par le foie et y abandonne ses bacilles dont, à la période générale d'incubation, s'ajoute alors le temps nécessaire pour que, ayant amené une lésion histologique hénatique (impalable à l'exame clinique direct) qui les verse dans le torrent circulatoire sus-hépatique, ils parviennent aux poumons, y prolifèrent et créent des lésions histologiques pulmonaires (celles-là palpables à l'examen clinique direct).

Et de fait l'examen urologique décèle, dans la tuberculose visoérale la moins étendue, des troubles fonctionnels hépatiques qui, visà-tvis des autres maladies chroniques de la dialhèse hypoacide amenant la désassimilation organique, en font en quelque sorte la caractéristique. Le tracé graphique suivant, qui est celui de la tuberculose en général, montre netlement ces troubles par la diminution exagérée de l'urobiline urinaire qu'il présente aux yeux d'une facon tangible (fig. 79).

Si aux éléments physiologiques dont la modification d'excrétion chez les taberculeux est lei représentée, on ajoute l'inosite, on aura la physionomie complete de l'excrétion urinaire chez ces malades. Et, comme on l'a vu, la présence de l'inosite dans l'urine correspond à des troubles fonctionnels hépatiques : notre dernière proposition se trouve donc démontrée.

Mais qui plus est, toute amélioration dans l'état général chez les tuberculeux présente son contre-coup sur le fonctionnement du foie.

Toujours en ces conditions nous avons vu le fonctionnement s'améliorer, et pour notre part tel serait exclusivement le mode d'action thérapeutique de l'acide sulfhydrique et des sulfures alcalins.

Nous avons, en effet, déjà montré que l'action plus spéciale de la source Grande-Grille à Vichy tenait exclusivement à sa teneur relativement élevée en dérivés sulfurés.

L'action thérapeutique réelle de l'actide fluorhydrique sur la tuberculese tiendrait précisément à ce que les sels de cet acide étant tout aussi antibacillaires que lui-même, et la pénétration dans l'organisme devenant ainsi réelle, il atteint les bacilles tuberculeux jusque dans leur localisation hépatique;

A l'action hyperacidifiante directe de l'organisme présentée par l'acide chlorhydrique et l'acide lactique (lacto et chlorhydrophosphate de chaux);

A cette même action indirecte que développe la suralimentation et l'absorption des corps gras neutres (huiles de fêne, de morue, etc.); A l'action indurante directe des cellules que donnent le chlorure de sodium en excès, la créosote, l'acide phénique, etc.;

Fig. 79. - Schéma uroséméiographique de la tuberculose (ensemble).

A cette même action indirecte fournie par les acides lactique et chlorhydrique;

A la diminution des échanges organiques, donc la diminution

des pertes de l'organisme, qu'assurent d'une manière générale tous les corps précités :

L'acide fluorbydrique vient donc ajouter, comme les sullures, une augmentation de l'assimilation par une augmentation fonctionnelle de la glande hépatique. Mais toutefois, cette augmentation fouctionnelle, au lieu de reconnaître une cause chimique, reconnaît une cause biologique, l'amoindrissement de l'évolution bactérienne.

Et cette amélioration dans les fonctions du foie est énorme au point de l'équilibre biologique des malades, car précisément avec les autres manifestations de la diathèse hypo-alcaline, la tuberculose présente cette différence, qu'en elle il n'y a pas seulement exagération de la déssissimilation, il y a diminution de l'assimilation, c'est-à-dire une double cause d'erreur physiologique amenant cette déchéance organique si rapide des sujets infectés quand ils n'ont pas eu la chance de possèder primitvement un terrain hypéracide ou quand par l'alimentation, l'hygiène et la thérapeutique, ils ne l'out point créé à temps.

Par ce que nous venons de développer des conditions étiologiques du terrain d'évolution bactérienne tuberculeuse, on a pu voir que l'hypo-alcalinité organique en était le facteur principal, mais n'était pas le facteur exclusif. C'est qu'en effet, si l'hypoacidité organique crée l'hypochlorurie par la perte même en chlore tissulaire qu'elle occasionne, les travaux de Duclaux, répétons-le, ontappris que l'hypo-acidité organique, conséquence d'une exagération dans les échanges cellulaires, pouvait dériver de l'hypochlorurie organique. Toutes les causes qui créent l'hypochlorurie organique, c'est-à-dire l'hyperexcrétion urinaire chlorurique, telles que la surveille (exagération relative de l'eau de décomposition des tissus organiques), le surmenage (id.), la polyurie des boissons, la polyurie organique, conduisent donc fatalement à la modification chimique organique, terrain essentiel de réceptivité, d'évolution et de prolifération bactérienne tuberculeuse, terrain préparé pour la caséification histologique tissulaire.

Et cette manière de procéder est certainement celle de l'invasion bactérienne tuberculeuse chez les diathésiques acides, chez lesquels on voit dans l'urine, à partir de l'infection tuberculeuse, sans cesse le chlore augmenter et sans cesse l'acidité diminuer.

Fig. 80. — Tracés urosémélographiques des différentes phases de la phtisie torpide.

états chimiques d'un même malade, diathésique acide infecté de tuberculose (fig. 80).

Le tracé A représente la diathèse hyperacide d'ensemble;

Le tracé B correspond aux débuts de l'infection hactérienne tuberculeuse:

Le tracé C, à environ une ou deux années plus tard;

Le tracé D, à la quatrième année.

Comme nos tracés l'indiquent, les troubles fonctionnels hépatiques vont sans cesse aussi en s'augmentant; la polyurie de même conséquemment, l'hyperchlorurie urinaire va en s'aggravant, la prolifération bactérienne et les lésions histologiques en se développant.

Et ainsi, si à toute hyperexcrétion chlorurique urinaire ne correspond pas fatalement la tuberculose dans sa période d'évolution, on peut cependant dire qu'y correspondent certainement tous les éléments d'invasion et de développement de la tuberculose, et enfin que toute tuberculose présente ce signe urosé méiologique.

III. SCROFULE.

De récentes expériences ont montré que l'on peut à volonté, au moyen d'injections de pus ganglionnaire scrotibus, déterminer la tuberculose. De plus l'on sait qu'on obtient alors cette tuberculose soit localisée à un phlegmon tuberculeux quand on pratique l'inoculation exclusivement, soit généralisée quand dans le point inoculé l'on ajoute un fragment de tissu mortifié (péritonéal, a-t-on dit). La scrofule nous paratt donc devoir s'identifiér dans une certaine messure avec la tuberculose.

Toutefois, quelles différences présentent ces deux maladies? c'est ce que nous allons essayer de déterminer par l'étude des expériences que nous venous de citer, et aussi par l'examen des recherches uroséméiologiques que nous avons faites en ce sens.

Le tissu musculaire est acide, et nous savons que les parasites animaux microscopiques évoluent difficilement sur ce terrain. Faire une inoculation tissulaire exclusive, c'était done voure les bacilles rectilignes y contenus à la mort s'ils dépassaient la zone alcaline qu'allait leur créer l'inoculation. Ajouter au contraire un fragment de tissu mortifié, c'était assurer leur reproduction, puisque c'était augmenter, par les alcalis résultant de la putréfaction de ce lambeau tissulaire, l'alcalinité du liquide injecté et du pus auquel cette inoculation allait donner lieu.

D'autre part l'analyse urologique donne des résultats que traduit le schéma suivant (fig. 81), et dans lequel nous pouvons

Fig. 81. - Schéma urosémélographique de la scrofule.

remarquer une chose : l'augmentation relativement très accentuée de l'excrétion de l'acide phosphorique.

Or l'acide phosphorique étant la base du tissu osseux, ne

peut-on uroséméiologiquement conclure qu'il se passe du côté de ce tissu des échanges organiques anormaux?

La scrofule serait donc une tuberculose plus spécialement localisée au tissu osseux.

Voilà pour le côté urologique. Quant au point de vue anatomo-pathologique, il est certain qu'il confirme cette manière de voir, le rachitisme ou scrofule étant précisément caractérisé par ces lésions osseuses lors de l'examen du squelette.

Pour le traitement, il en est de même : tout ce qui augmente l'acidité organique, tout ce qui diminue les échanges organiques, contribue à améliorer dans son terrain le scrofuleux comme le tuberculeux.

IV. CANCER.

Le cancer est-il ou non une maladie-bactérienne? D'aucuns disent que non; d'autres, et tout récemment encore Koubassoff, ont cru découvrir son bacille spécifique. La 'diminution des échanges organiques que nous constaterons plus loin nous semble donner raison à la manière de voir qui admet le parasite puisqu'elle seule explique la généralisation physiologique la maladie. Quoi qu'il en soit, si bacille ou plus exactement si parasite microscopique il y a pour le cancer, ce parasite doit être d'ordre animal, puisqu'il a pour terrain de réception et de prolifération la diathèse alcaline.

Au point de vue pathogénique histologique, point n'est besoin toutefois d'un parasite pour expliquer la dégénérescence des tissus dans le cancer.

Comme nous l'avons déjà dit, en effet, à la selérose due à un contact exagéré des tissus avec un liquide hyperacide, nous opposons une modification histologique extraphysiologique liée à un contact constant avec des humeurs alcalines, et qui n'est autre que la dégénérescence résolutive que nous retrouvous soit dans la tuberoulose, soit dans le cancer.

Dans le premier cas, cette dégénérescence du fait du bocille qui la provoque offre cependant une physionomie différente de la seconde. Mais au fond ce n'est en réalité que la même chose, à cette différence près que, le milieu alcalin étant général dans la tuberculose et la prolifération bactérienne s'étenCANCEB.

dant aussi journellement, les Mésions histologiques ne font que s'accrolire comme nombre et siège, au fur et à mesure que la marche de l'affection progresse. Dans le cancer, au contraire, le foyer primitif de résolution étant lié soit à une stase veineuse exagérée, soit à une extravasation sanguine réclle; în pențu l' avri tendance à la généralisation des Mésions histologiques qu'au cas où le foyer primitif aurait pris pled sur un terrain orranque alcalin.

ogadiqu'il en soit, au point de vue sémétologique général, le quoi qu'il en soit, au point de vue sémétologique général, le cancer correspond à une diminution de l'assimilation et de la désassimilation organiques à une diminution, presque absolue des échanges organiques que traduit urosémétographiquement le trucé 82:

Avoir soin toutefois de ne pas confondre le cancer avec certains troubles fonctionnels hépatiques, l'ictère hémaphéique entre autres, dans lesquels pendant un certain temps les oxydations générales sont presque abolies. Un caractère chimique distingue toutefois ces maladies, c'est l'acidit, qui dans les affections hépatiques de cette nature est toujours notablement ammentée au leu d'être diminuée comme dans le cancer.

La loi de Rommelaere, attribuant le cancer à tout malade excrétant moins de 15 grammes d'urée en vingt-quatre heures, est donc fausse : disant trop et trop peu.

Trop dans le cas que nous venons de citer, puisque nous arons vu des hépatiques n'éliminer en viniq-tquatre beures que 2 à 3 grammes d'urée au maximum; trop peu quand le cancer évolue chez un diathésique acide. Il y a alors un équilibre plus parfait de l'accidite organique assurant, maintenant le fonctionnement hépatique, et qui compesse la diminuiton anormale de la déchance organique assurend; on voit desarchritiques devenus accidentellement cancierum excréer en vingt-quatre heures plus de 20 grammes d'urée. Mais il y a deux points certains : C'est que avec l'évolution de la maladie décroissent les échanges organiques généraux, et conséquement l'excrétion rénale de l'urée en résultant; c'est encore que si au lieu des moyennes (qui nen sont pas) que l'on adopte ginéralement, l'on examine l'urine au point de vue de tous les facteurs physiologiques, pois faible, âge, alimentation, etc.

et que l'on prenne le coefficient urologique relatif du malade, quels que soient les rapports de l'excrétion générale urinaire d'un sujet, le rapport de l'urée est toujours plus bas qu'aucun d'entre

Rapports %	Volume	Elered Tixes	Acidilê	Chlore	Uree	Acido Unique	Acide Phosph	trolific
290								
270								
250								
2 3 0				_				
210				_			Ė	
190								
170		_						
150		_				÷		
130				-		1		
110			-	,				
normale 90	=							
70			,					
50	1						-	
30		1		Λ				
10			Y	_	V			`

Fig. 82. — Schéma uroséméiographique du cancer.

eux: telle serait la loi que nous opposerions à celle de Rommelaere, et que notre tracé graphique a traduite aux yeux d'une façon tangible.

Troisième groupe. — États morbides chroniques sous la dépendance de l'une ou l'autre diathèse.

I. GLYCOSURIE.

Lorsque, dans les travaux de nos mattres en physiologie expérimentale, on apporte une attention soutenue à l'étude des causes, des formes, des phases et du traitement de l'affection ayant porté jusqu'ici le nom générique de « diabète », on est surpris de trouver une divergence absolne, une dissordance constante entre les résultats de leurs experimenta et ceux de l'application clinique des agents thérapeutiques préconisés à la cure de cette affection.

C'est qu'en effet, physiologiquement, les causes les plus diverses : excitation de la fonction glycogénique du foie, due au traumatisme du bulbe, par exemple (Claude Bernard) ; réduction musculaire générale exagérée (Schiffer) ; suspension de la fermentation glycérino-glycosique dans le système hépatique (Schültzen); anhématose généralisée (Bouchardat), etc., ont été invoquées, tour à tour, pour rendre compte de la présence du glucose dans l'urine, présence considérée comme facteur caractéristique du diabète, Mais clipiquement, il n'a été nullement tenu compte, dans le traitement de la manifestation glycosurique, des causes diverses occasionnant cette manifestation : autrement dit, à chaque cause déterminée de la manifestation glycosurique on a adapté un système de traitement qu'on s'est empressé de généraliser pour toutes les formes ou phases de l'affection. De là les insuccès fréquents et les divergences manifestes dans l'appréciation des divers traitements.

Pourquoi toutefois, dira-t-on, trouvous-nous dans le traitement du diable cette généralisation incohérente de tel ou tel système ? Tout simplement parce qu'à de rares exceptions, il n'a pas encore déé donné de pouvoir toujours et sûrement par le simple examen clinique remonter de la manifestation pathologique glycosurique à sa cause première pathogénique, et qu'ainsi, non échief sur la voice à suivre, le dilicitien a pris les errements généraux comme fil conducteur. Ce défaut d'élucidation étiologique est-li compatible avec les données chimicobiologiques de l'heure présente? Nous ne le croyons pas, et précisément nous essayerons de montrercomment l'analyse urologique d'eusemble parvient à déterminer les diverses causes pathogéniques de la givosurie.

En ce sens, nous diviserons tout d'abord ces causes en trois groupes, selon qu'elles se lient à la diathèse acide, à la diathèse alcaline, ou enfin sont indépendantes de toute diathèse

A. Manifestations glycosuriques lièes à la diathèse acide.

A la genèse urologique on a pu voir que toute augmentation comme toute diminution des oxydations organiques d'ensemble occasionnait l'augmentation du glucose circulatoire, et pouvait amener la présence du glucose urinaire. C'est qu'en effet il faut distinguer entre les corps existant normalement dans le plasma sanguin et les corps existant normalement dans l'urine, L'excrétion urinaire est une dialyse, et, comme toute dialyse, elle est soumise à certaines lois immuables, dont le rapport de solution des éléments à osmoser fait assurément partie. Il résulte donc ce fait qu'un cristalloïde, quoique se trouvant en solution dans le placenta circulatoire, ne passe à la dialyse rénale que si la quotité en solution plasmatique est supérieure à un certain chiffre variable selon chaque corps, et que l'expérience a appris être pour le glucose de 0gr, 50 p. 1000. C'est d'ailleurs exactement ce que l'on voit se passer dans l'industrie sucrière, où la diffusion a bien abaissé les pertes que les composés salins (accompagnant le sucre dans les plantes saccharigènes) faisaient subir à son extraction, mais n'a pu les supprimer d'une facon absolue, n'a pu que les limiter.

Ainsi donc l'homme à l'état physiologique a du glucose dans le torrent circulatoire général, mais n'en a pas dans l'urine, parce que le poids de ce glucose en solution dans le sang est insuffisant pour créer sa dialyse rénale,

Mais, que l'une quelconque des causes précitées vienne à augmenter le glucose en solution dans le plasma sanguin, le glucose dialyse alors par le rein; l'urine est ainsi chargée de sucre; il y a enfin glycosurie!

En quoi certaines glycosuries correspondent-elles avec la

diathése acide? telle est la dernière question à nous poser. El, à cet égard, les faits urologiques montrent que le mécanisme de la pathogénie glycosique par diathèse hyperadde paut être de deux ordres différents, c'est-la-dire dépendre : soit d'une diminution dans les coyadions organiques générales, soit d'une diminution dans les fonctions d'oxydation hépatique.

a. GLYCOSURIE HYPERACIDE PAR DIMINUTION DES OXYDATIONS GÉNÉRALES.

Nous avons décrit à la genése urologique (r. p. 258) le cycle complet des transformations successives que les matières protéques nous semblent subir dans l'organisme depuis leur entré sous forme d'albumines alimentaires jusqu'à leur d'imination sous forme d'éléments d'excrétion : créatinine, urée, aride urique, etc.

on a pu se rendre comple, à cet exposé, que toute augmentation de l'acidité organique renait tout d'abord comme cause efficiente dans la diminution des oxydations hépatiques, crésit ensuite non seulement une diminution dans la destruction tissulaire d'ensemble, puis était une cause réelle de l'augmentation anormale des tissus en général et du tissu muscalaire en particuleir, en aidant à la précipitation de la mysosine tant par l'acidité elle-même en excès que par l'eau aussi en ercès (qu'elle maintient dans les tissus).

De ces faits physiologiques il résulle donc que l'oxygène de l'oxybènoglobine artérielle, dans son passage au travers des capillaires généraux, ne trouvant pas à carburer des dérivés tissulaires primitifs, attaque plus spécialement les dérivés secondaires de la digestion hépatique que le torrent circulatoire général a reucuillis et les oxyde plusou moins complètement.

Or nous avons aussi vu à la genèse urologique (p. 263), que parmi les corps résultant de cette oxydation secondaire des albuminotdes organiques (par l'intermédiaire de la sarkolactine par exemple) se trouvent plus spécialement l'acide lactique et le glucose.

Et telles sont donc les causes de l'augmentation de l'acidelactique du tissu musculaire dans la diète azotée, l'augmentation du glucose plasmatique dans la diathèse hyperacide (quecrée de toutes pièces la suralimentation azolée), et enfin la présence du glucose urinaire, la glycosurie (par dialyse glaudulaire de ce glucose plasmatique en excés): telles sont aussi les causes de l'acétonémie, cette terminaison l'atule de la glycosurie hyperacide, l'acétone et son dérivé l'acâde oxybuyrique pouvant encore se classer parmi les produits d'oxydation incomblète des albuminoides organiques (v. p. 265).

La courbe graphique 83 (qui d'ailleurs n'est (ne la répétition de la courbe d'ensemble de la distables hyperacide) est caractéristique, avec la constatation de la présence du sucre urinaire, de la glycosurie par diminution des oxydations générales due à l'hyperacidité organique, que pour arbéger, nous dénommerons plus simplement : glycosurie arthritque, l'artritisme étant le nom pré-usaci de la diathlese hyperacide.

b. GLYCOSURIE HYPERACIDE PAR DIMINUTION DES OXYDATIONS

La diminution des oxydations hépatiques dans la diathèse acide peut être de deux ordres différents.

Elle peut provenir :

Soit d'une modification histologique hépatique ; Soit d'un trouble fonctionnel d'origine nerveuse.

a. Glycosurie hépatique histologique. — Parmi les conséquences physiologiques de la diathèse hyperacide il en est deux, avons-nous dit, la stase veineuse hépatique et la cirrhose, qui se constatent uroséméiologiquement par une augmentation dans les réductions du sang de l'artère hépatique.

En ces conditions, en effet, les matériaux alimentaires apportés par la veine porte au foie restant plus que la normale comme temps en contact avec l'oxyhémoglobine du sang de l'artère hépatique, il y a réduction exagérée de cette oxybémoglobine, production d'une certaine quantité d'urobiline en substitution d'une proportion normale et déterminée de pigments biliaires. Et comme l'urobiline, au lieu de s'éconler par les voies biliaires, rentre dans la circulation générale, il y a done de ce fait augmentation de l'urobiline circulatoire, et par suite augmentation de l'urobiline urinaire.

Mais cette réduction exagérée de l'oxyhémoglobine hépatique n'est pas un fait isolé, elle a toujours un corollaire, c'est la formation simultanée dans le foie d'une quantité de glucose supérieure à la normale par présence d'un excès de matériaux azotés par rapport à l'oxygène de cette oxyhémoglo-

Fig. 83. - Schéma uroséméiographique de la glycosurie arthritique.

bine. Et comme d'autre part, par le fait de l'augmentation de l'acidité normale, les combustions organiques d'ensemble sont amoindries, ces combustions peuvent être insuffisantes à détruire ce sucre circulatoire en excès: conséquences, hyperglycosie plasmatique, dialyse glycosique rénale, glycosurie. Le tracé (fig. 84), mettant en lumière l'augmentation (absolue

Fig. 34. — Schéma uroseméiographique de la glycosurie hépatique (forme congestive).

et relative) parallèle de l'acidité et de l'urobiline urinaires, correspond à cette forme que par abréviation nous dénommerons simplement : glycosurie hépatique. β. Glycosurie hépatique dyspeptique. — On verra plus loin qu'à la diathèse acide correspond souvent une modification de la sécrétion gastrique, que l'on peut résumer en un moi : augmentation de l'acidité.

On verra également que la digestion gastrique des albumines alimentaires se faisant en deux temps [premier temps. transformation par l'acide du suc gastrique des albumines vraies en syntonines (acides-albumines); deuxième temps. reprise par la pepsine de ces syntonines préformées et transformation en peptones, si la sécrétion gastrique est supérieure à la normale en acidité, et si la masse d'aliments albuminés introduite dans l'estomac est insuffisante pour, au moment des repas, utiliser toute cette acidité, ou si encore, comme cela a lieu chez certaines personnes, l'écoulement du suc gastrique est permanent, il y a irritation mécanique de la muqueuse gastrique, par l'acide libre en contact prolongé avec elle, d'où gastralgie primitivement et secondairement; soit névralgie, soit troubles fonctionnels nerveux du foie avec lequel l'estomac se trouve en communication par le grand sympathique.

En ces conditions, il y a donc hyperchlorurie organique, o'est-à-dire hypochlorurie urinaire tout d'abord; puis comme la sensation réflère transmise au foie par le grand sympatique n'est point exclusive, on l'a vu, il y a polyurie, les cellules cérébrales du quatrième ventricule se trouvant influencées par cette sensation réflere de l'irritation gastrique, ainsi qu'en témoignent les vertiges, les hallucinations que présentent ces sortes de dyspeptiques (restiges, hallucinations calmées instantanément par les aliments quelconques retenus dans l'estomae). Et plus la polyurie relative est grande, plus grande doit être comprise la part de l'état nerveux cérébral réflexe dans cette forme de glycosurie.

Nous dénommerons d'yspeplique ce processus glycosurique, pour rappeler que les oxydations hépatiques incomplètes n'y sont que secondaires et liées à un vice de fonctionnement de l'estomac; il est caractérisé au point de vue séméiologique par l'augmentation du volume urinaire, l'augmentation de l'addité, la diminution extrême des schourres et de l'erobbline. Les schémas 83 et 84 que nous venons de donner pour les différentes formes de glycosurie liées à la diathèse acide sont généraux, mais peuvent être en pratique plus ou moins modifiés selon les circonstances par rapport à certains éléments. Par l'examen particulier l'un voit son augmentains es produire toutes les fois que l'une ou l'autre des deux conditions dialytiques physiologiques (tension artérielle ou activité circulatoire) sont modifiées.

Le syndrôme précédent nous a montré l'augmentation du volume urinaire par augmentation nerveuse de latension artérielle.

On comprend qu'il doit encore en être de même quand estle tension artérielle se trouve ainsi augmentée par modification de la souplesse des tuniques vasculaires (sclérose). De fait, c'est ce que nous trouvons dans la glycosurie accompagnée d'une quelconque des manifestations selérouses.

B. Manifestations glycosuriques lièes à la diathèse alcaline

La glycosurie peut se rencontrer dans deux formes de la diathèse hypoacide :

L'anémie avec anhématose,

Et la déchéance organique.

a. GLYCOSURIE HYPO-ACIDE PAR ANHÉMATOSE.

On sait que la diéte absolue a pour effet de créer à l'homme un régime alimentaire exclusivement carnivore réellement extraphysiologique. Et comme ce régime carnivore, hyperazoté, crée l'acidité organique, il s'ensuit que toutes les oxydations organiques devraient, en ces conditions de diète, être amoindries dans une large mesure; conséquemment les déperditions des sujets à la diète devraient être inférieures à la normale. Cette dernière proposition n'est pourtant vraie que d'une facon relative. Elle est vraie seulement en cas d'inertie absolue, en cas de repos absolu (état où les combustions organiques ne sont point, en sens contraire, augmentées par l'exercice) et seulement encore en cas de non-perte par l'organisme par évaporation exagérée (sueurs profuses) de son eau de constitution intercellulaire, ou, en cas de réparation de ces pertes aqueuses. par des liquides extérieurs (rôle des boissons, tisanes, diète aqueuse du traitement de l'obésité).

En cas de non-dépendition aqueusc, la myosine n'est pour ainsi dire pas empruntée aux tissus par le plasma sanguin sons forme de fibrine; les combustions organiques se limitent aux éléments autres que les aliments arolés de l'économie; et c'est ce qui explique la peter relatirement faible en tissu unaculaire des jeûneurs (au repos et qui boivent), et l'embonpoint eragéré des buveurs d'eau en excés.

Mais, au contraire, l'eau vient-elle à être éliminée en abondance par une sudation exagérée, comme cela a lieu dans les maladies de l'apparell pulmonaire (pleurèsies, pneumonies), les pertes de l'organisme en éléments azolés sont sensibles parce que le plasma sanguin se surchrage ainsi en chlourer de sodium, et que la myosine tissulaire est soluble dans un excès de ce sel sans espoir d'être reprécipitée par un eroès d'eau.

La combustion de la fibrine en résultant, et par suite de l'albumine que celle-ci forme secondairement, devient alors inévitable dans l'économie. Mais, toutefois, par suite des difficultés de la gêue respiratoire des sujets, cette albumine ne trouvant pas l'oxygène en quantité suffisante pour sa complète comburation, celle-ci est incomplète et s'arrête aux termes intermédiaires dont, on l'a vu. le glucose fait partie.

Production exagérée de glucose par combustion incomplète des albumines de régression tissulaire, telle serait donc l'étiologie de cette forme de glycosurie, que nous représenterous urosémélologiquement par le tracé ci-dessous; en la désignant toutefois du qualificatif d'anhematique pour rappeler quelles conditions morbides primitives crée l'insuffisance d'oxygène relaivement à cette combustion (fig. 25);

b. GLYCOSURIE HYPO-ACIDE PAR DÉCHÉANCE ORGANIQUE.

Pour que l'équilibre physiologique de la machine humaine soit parfait, il lui est de tout point utile d'avoir une élimination d'excrétion où de sécrétion absolument proportionnelle à ses ingesta.

Toute cause qui modifie les excreta en les augmentant amène donc la déchéance organique, l'excreta en excès ne serait-il que de l'eau.

On a vu en effet précédemment que les acides étaient utiles à l'économie pour modérer les substances organiques, régler la tonicité des tissus; que le chlorure de sodium lui était nécessaire pour pondérer les échanges de ces tissus en général et de la myosine en particulier; que l'eau servait à la constitution,

Fig. 85. - Schéma uroséméiographique de la glycosurie anhématique.

au dépôt de cette myosine. Il en découle donc que toute neutralisation ou à plus forte raison toute alcalinisation des tissus, que toutes pertes en excès en chlorure sodique, toute perte en ercès en sau (polyurie) augmentent les échanges organiques. Or, en ces conditions, les déchets organiques divers, arobés et hydrocarbonés de l'économie se trouvant en excès par rapport à l'oxygène de l'oxyhémoglobine hématique, les combustions organiques (tout en procédant d'une désassimilation supérieure à la normale) seront incomplètes et, fatalement, dans une certaine mesure s'arrêteront au terme glucose.

D'où encore hyperglycosie plasmatique, dialyse glycosique rénale, glycosurie.

Et ce qui prouve que le processus étiologique de cette forme de la glycosurie est bien tel, é'est qu'on la voit se produire comme terminaison de nombre de maladies consomptives (la tuberculose entre autres), et encore qu'au sucre diabétique s'ajoute en dernière lipne une série de produits s'aultoyanures en excès, acide éthylacétocyanhydrique, qui ne peuvent prendre naissance qu'en de telles conditions physiologiques.

A la terminaison de cette forme de diabete, dans laquelle, ou le comprend, le malade perd journellement en poids, puisque ses excrete sont constamment supérieurs à ses ingesta, le malade étant considérablement amaigri, les oxydations organiques (ou plus excetement, on parlant au point de vue de l'albumine circulante), les réductions organiques ne peuvent s'accompagner d'Abdratation

Les dérivés cyanés se forment alors en excès. Il y a donc hypercyanie 'organique (coma du diabète maigre, fausse acotonémie), et hypercyanurie, dont les principaux termes acoles sulfocyanures d'ammonium et l'acide éthylacétocyanhydrique.

C. Glycosurie essentielle.

Expérimentalement Cl. Bernard a montré qu'une lésion d'un quatrième ventricule occasionnait la présence du sucre dans l'excrétion urinaire.

Cliniquement, on sait que les lésions de cette région cervicale (traumatismes), certains troubles cérébraux (suite de choes cérébraux, émotions vives, etc.) occasionnent soit la polyurie seule, soit à la fois la polyurie et la glycosurie.

Nous avons étudié précédemment la polyurie simple, nous

avons aussi vu par quel mécanisme hépatique les troubles nerveux locaux occasionnaient la glycosurie.

Nous n'avons à revenir en ce moment sur ces deux états morbides réunis, glycosurie et polyarie, constituant la glycosurie essentielle, ou plus exactement la glycosurie nereuse, que pour grouper ces deux causes étiologiques au point de vue du processus propre de la glycosurie polyurique.

A cet égard, nous dirons que :

La veine porte apportant au foie non un excès d'aliments, mais un excès de déchets tissulaires (comme dans la glyossurie par déchéance organique) par rapport à l'oxyhémoglobine que l'artère hépatique contracturée ne déverse plus en quantité suffisante, les oxydations hépatiques se trouvent de ce fait de heaucoup diminuées, d'où production de termes chimiques intermédiaires, sucre entre autres, d'où hyperglycosie plasmatique, d'où dialyse rénale sucrés, d'où enfin glycosurie.

Nous ferons encore remarquer que, contrairement à ce qui se passe dans la glycosurie par déchéance organique (où l'oxy-hémoglobine hépatique étant normale, les oxydations n'y sont incomplètes, donc le sucre se produit en excès, qu'à condition que l'oxygène se divise sur une masse exagérée d'al-buminoides de régression tissulaire), dont la manifestation glycosurique est secondaire, dans la polyurie organique elle est primaire, le trouble nerveux s'étendant aux vaisseaux artériels du foie comme à outes les artères en général.

Nous rappellerons ensuite les faits accessoires, et parmi ces faits, les plus saillants sont les suivants :

1º Ainsi qu'en témoigne le graphique précédent, la déchéance organique générale qui accompagne toujours la polyurie simple ne laisse pas de compliquer la polyurie sucrée.

2º La polyurie d'ordre nerveux exclusivement tout d'abord est entretenue par l'eau en excès éliminée dans les échanges

organiques augmentés de l'économie.

3º La diminution de l'acidité plasmatique normale, diminution résultant de l'augmentation des combustions organiques (par hypochlorure organique) générales, ouvre la porte à l'infection bactérienne animale. Et de fait, cliniquement, l'on constate que nombre de glycosuriques maigres meurent tuberculeux. 4º La diminution de l'acidité et des chlorures organiques amenant la déchéance organique du sujet, donc son amaigrissement, est d'autant plus rapide que la fonction d'assimilation

Fig. 86. — Schéma urosémélographique de la glycosurie essentielle.

hépatique est viciée d'autre part. Il y a dans la glycosurie polyurique à la fois désassimilation exagérée et assimilation amoindrie. 3º La sacharine antifermentescible diminue la polyurie glycosurique en diminuant les échanges organiques généraux.

surque en aminiant res canages or passados o passados de é Le bromure de potassium (dilatateur des vaisseaux) agit sur la glycosurie polyurique en combattant la contracture de l'artère hépatique, donc en permettant l'arrivée au foie d'une quantilé de sang supérieure à la précédente, donc en assurant des combustions organiques hépatiques complétes.

Le tracé de la glycourie essentielle, que, pour la désigner par son caractère constant et véritablement pathognomonique au point de vue édologique nerveux, l'on pourrait appeler du nom de glycosurie polyurique essentielle, est à peu prês le même que celui de la glycosurie par déchéance désassimilatrice, puisque l'un peut être donné comme effet de l'autre, et réciproquement.

Toutefois, comme la désassimilation n'est que secondaire, l'alcalinité urinaire est beaucoup moins accentuée que dans la glycosurie par déchéance organique proprement dite; et en certains cas, si par exemple cette glycosurie essentielles es produit chez des arthritiques, l'acidité peut encore être supérieure à la normale d'une façon analogue à la phisis torpide.

Mais en tous cas le volume est notablement augmenté, et c'est lui dont le rapport domine la scène uroséméiologique.

II. ALBUMINURIES.

L'on peut rencontrer de l'albumine dans l'urine pour des raisons différentes :

Il y a lésion histologique du canal évecteur (uréthrites);

Il y a lésion histologique du réservoir urinaire (cystites); Il y a altération de la muqueuse des canaux collecteurs (pyélies):

Il y a altération histologique rénale (néphrite) ;

Enfin il peut y avoir simplement dialyse extraphysiologique au glomérule de l'albumine circulatoire.

Nous verrons plus loin les différentes formes d'albuminuries par allération histologique tissulaire; nous ne retiendrons pour le moment que les seules qui nous semblent pouvoir mériter le nom d'albuminuries essentielles.

A. Albuminuries essentielles.

Des trois facteurs physiologiques de l'excrétion rénale, un seul est capable, saus lésion histologique, de modifier l'osmose glomérulaire au point de lui faire éliminer les colloides circulatoires : c'est la tension vasculaire.

Nous avons dit, à propos de l'étude de ce facteur, que toute augmentation de cette tension vasculaire, soit générale, soit locale, occasionnait, en rompant l'équilibre de la pression sur les deux faces de la paroi-dialyseur glomérulaire, une osmose réelle des albumines-colloides circulatoires

Nous allons donc envisager maintenant les conditions pathologiques en lesquelles cet équilibre de tension peut être rompu.

a. Albuminuries essentielles liées a la diateèse acide.

L'hyperacidité organique, en indurant les tuniques artérielles, a pour effet premier de diminuer l'élasticité de ces tuniques et pour effet second d'augmenter la poussée cardiaque.

De là à voir l'hypertrophie et l'augmentation poussee carriaque, cardiaque, il n'y a qu'un pas, puisque le cœur est un muscle, et que tout muscle se développe proportionnellement au travail qu'il accomplit.

De là encore à trouver en l'hyperacidité urinaire, en dehors de toute lésion histologique rénale, une cause possible de diatyse albumieuse; nous croyons que c'est conclure logiquement.

Et de fait : hyperacidité urinaire, diminution du volume de l'excrétion rénale (anurie) caractérisent cette forme de maladie chronique.

b. Albuminuries essentielles liées a la diateèse alcaline.

Les káions nerveuses du quatrième ventricule ont pour effet chimique une augmentation des échanges organiques généraux d'une part, et d'autre part une inflaence directe ly prost fairisant aur les vano-modeurs rénaux. Augmentation des déchets généteux circulations (eux entre autres), contraction tétanique des vaisseaux rénaux (circulation rénale exagérée), tel est donc en somme physiologique le billand de ettle lésion.

Or, comme certaines lésions du quatrième ventricule, cer-

tains troubles nerveux créent l'albuminurie, ne doit-on pas aussi conclure à leur égard à l'augmentation de la tension artérielle générale par contraction tétanique générale liée à ces troubles nerveux?

Et nous croyons cette conclusion d'autant plus probable que : augmentation du volume urinaire (polyurie), diminution relative de l'acidité, albumine-sérine, sont les caractéristiques de l'affection.

III NÉPHRITES

Notre relation générale de groupement des états morbides chroniques servira encore à diviser les néphrites en :

Néphrites liées à la diathèse acide,

Néphrites liées à la diathèse alcaline, Néphrites dues à des causes étrangères.

A. Néphrites liées à la diathèse hyperacide.

a. Néphrites essentielles.

Nous avons développé précédemment une série de considérations tendant à démontrer que l'action de présence des liquides acides sur les tissus en général pouvait se résumer au mot solérose, c'est-à-dire dégénérescence conjonctive, c'est-à-dire encore à imperméabilité de ces tissus.

L'une des formes les plus constantes et des plus fréquentes des manifestations viscérales de la diathèse acide est donc la scélrose rénale, à laquelle, en séméiologie urologique, nous donnerons le nom de néphrite essentielle pour bien marquer de quelle importance est le facteur hyperacidité organique et urinaire dans la genées de cette affection.

Elle se caractérise analytiquement selon les deux formes qu'elle revêt:

a. Chronique exclusiement. — Par le tracé séméiographique communa ux manifestations de la diathèse hyperacide, par des protéines urinaires, généralement des syntonines (acide-albumines) formées dans le torrent circulatoire, dialysables et dialysant au rein, généralement encore de faibles traces d'albumine-sérine, enfin par des cylindres hyalins. Cést qu'en effet. comme nous l'avons déjà dit, ces cylindres n'étant que des amas de syntonienes précipités par les sels urinaires dans les anses de Renie, la diathèse acide présente dans cette manifestation les conditions les plus propres à cette genèse : augmentation de l'acidité générale (ormation des acides-albumine), augmentation (par concentration) des sels urinaires (précipitation de ces acides-albumines).

Aux cylindres hyalins peuvent parfois être substitués des cylindres granuleux, des cylindres granuleux, des cylindres granuleux, des cylindres cireux i la genése de ces divers éléments est au fond la même. Pour les liquides granuleux, le coagulum de syntonine est recouvert de poussière urique précipitée en même temps, pour le cylindre granule-graisseux ou graisseux viennent s'a colete ou alterner la graisse entrainée mécantiquement à la dialyse, enfin le cylindre cireux a pour base des syntonines non dientiques mais analogues, c'est-à-dire provenant non plus de la sérine, mais de la fibrine. Paprès nos recherches, cette ma-tière parul être une caséine, c'est-à-dire une fibro-acide-albumine.

β. Aigue. — La peau étant chargée d'éliminer une grande partie de l'eau et des acides gras volatils de l'organisme, il est certain qu'une suppression brusque de la fonction cutanée doit retentir sur la fonction rénale.

Or, avons-nous dit à l'étude des facteurs physiologiques urinaires, à toute augmentation de la tension vasculaire sanguine correspond une augmentation de la dialyse rénale générale des produits normaux de l'eni en particulier, et aussi le passage de certains éléments colloïdes du sang, l'albumine-sérine entre autres.

Et comme, de plus, le liquide passant en de telles conditions est plus acide que la normale (même choz le non-diathésique hyperacide, puisque du fait de la suppression de son émonciorie cutanée, le rein doit éliminer l'ensemble des acides gras de son regulation de l'entre de

La néphrite par refroidissement (a frigore) se caractérise donc séméiologiquement par l'augmentation relative du volume sur l'état normal, l'augmentation de l'acidité, la présence d'albumine-sérine, la présence de tubuli rénaux.

b. NÉPHRITES SECONDAIRES.

a. Primitive. - L'augmentation de l'acidité organique et de l'acidité urinaire chez les diathésiques hyperacides a un premier résultat, c'est d'occasionner la précipitation dans le rein de tout ou partie de l'acide urique urinaire.

Cette précipitation se fait de facon différente, selon la con-

centration du liquide excrété.

Ce dernier est-il très concentré, comme chez les rhumatisants, rhumatisants-goutteux, la précipitation est rapide, et l'acide urique est éliminé, soit sous forme amorphe pulvérulente, soit en cristaux infiniment petits et réguliers de forme. Le liquide, au contraire, est-il peu concentré, comme chez les goutteux, l'acide urique se dépose lentement et forme ainsi des cristaux de formes irrégulières qui, par leurs angles et les frottements que les aspérités de ces angles occasionnent sur la muqueuse des voies urinaires en amène l'ulcération et l'inflammation : d'où néphrite calculeuse.

On comprend que dans ces conditions l'urine est essentielle-

ment hyperacide. Mais le ou les calculs formés sont-ils enchâssés dans un infractus des calices ou des bassinets ou fixés dans la vessie, et la suppuration se prolonge-t-elle? On peut arriver à voir des urines sécrétées acides être excrétées alcalines; et alors les calculs primitifs d'acide urique sont généralement recouverts d'une couche superficielle de phosphate terreux et phosphate ammoniaco-magnésien que l'alcalinité de la suppuration a fait séparer de l'urine, et accompagnés de fibrine.

Ajoutons encore que les calculs urigues des diathésiques hyperacides sont presque toujours mélangés d'oxalate de chaux; ce dernier corps, étant alors produit en excès dans l'organisme par suite de la diminution générale des oxydations organiques, et se précipitant aussitôt après la dialyse rénale dans le liquide hyperacide qui le tenait en solution.

Néphrites liées à la diathèse hypoacide.

Deux cas :

a. NÉPHRITE TUBERCULEUSE.

Altération histologique de dégénérescence de ramollissement générale, ouverture de capillaires glomérulaires et de capillaires généraux, passage d'éléments itsulaires ramollis (état caséeux) et d'éléments sanguins dans l'urine: tel est le bilan de la néphrite tubérculeuse considérée au point de vue local.

Au point de vue général, le tracé uroséméiographique de la tuberculose est applicable à ce cas snéeial.

h. Néphrite cancéprise

Mêmes indications que pour la néphrite tuberculeuse.

e. Néphrite Lithiasique.

Un calcul formé, comme nous l'avons dit, dans les voies urinaires peut être assez gros pour, au moment de son expulsion, oblitérer complètement l'uretère et amener la stase de l'urine dans les canaux collecteurs et par suite dans le reinlui-même. Si la situation se prolonge, cette urine en contact extra-physiologique avec le rein devient alcaline, ammoniacale, tritante à la façon des alcalis caustiques, et finit par entamer et enflammer les épithéliums réanaux : d'où néphrite.

A première vue, la cause première de la formation du calcul étant l'hyperacidité, on peusserait à ranger cette forme de néphrite dans la classe liée à la diathèse hyperacide. Le mécauisme de l'irritation rénale, de la néphrite vruie, résidant en l'alcalinité urinaire secondaire, nous avons cru devoir la comprendre à la diathèse alcaline.

L'oblitération peut ne pas être absolue, comme dans le cas précédent. Les malades rendent alors des urines tantôt acides (un seul rein, celui qui est sain, fonctionne alors), tantôt alcalines (l'urine accumulée dans le rein derrière le calcul a forcé le passage et s'écoule alors mélangée dans la vessie à celle normale venant de l'autre rein).

C. Néphrites dues à des causes étrangères.

Deux ordres de causes peuvent se trouver occasionner a né-E. Gautester. -- Urines. 21 phrite en ce sens; mais en tous cas la forme affectée est toujours la forme desquammative.

a. NÉPHRITES LIÉES A UNE MALADIE AIGUE.

Parmi les maladies aiguês, un certain nombre, la scarlatine, la rougeole entre autres, ont un retentissement sur la sécrétion rénale.

Et ceci est facile à comprendre.

Toutes les maladies qui, comme celles que nous venons de citer, modifient les fonctions cutanées pendant un temps plus ou moins long, vicient de ce fait les fonctions d'émonctoire de la peau.

Il s'ensuit donc que le rein ayant, pendant un certain temps, à suppléer à l'élimination extra-physiologique d'une surcharge sanguine en acides organiques, recevra de ce fait une modification histologique certaine.

Et, comme on l'a vu à la népurite a frigore, il y a alors desquammation épithéliale, dialyse des colloides (albumines) et d'eau on excès.

b. Néphrites toxiques.

Les cantharides, l'arsenic, le phosphore, etc., aménent la même altération histologique rénale, et, pour certains d'entre cur (le phosphore), cette modification, sans être plus profonde, est plus complexe, puisqu'elle amène une élimination de graisse. Cest qu'en effet le phosphore, émulsionnant les graisses, s'empare d'une partie de celles de l'organisme et vient, au contact du liquide urinaire acide, les déposer dans les canalicules rénaux, où rencontrant les tubes hyalins simultanément formés par une hyperacidité liée à l'Intoxication phosphorée (augmentation de l'acide phosphorique circulatoire et urinaire), elles les gorgent pour former les cylindres granulograisseux et graisseux éliminés en masse dans cette intoxication.

c. Néphrites parasitaires.

Caractérisables par les fragments de parasites éliminés par l'urine.

(Voir ces parasites à la deuxième partie.)

IV. CYSTITES

La séméiologie uriuaire partage les cystites en trois groupes: Les deux premiers liés aux diathèses hyperacide ou hypoacide, le troisième dépendant des inflammations accidentelles que peut provoquer sur la paroi vésicale le passage de certains méticaments

A. Cystites lièes à la diathèse hyperacide.

a. Cystites essentielles.

La division que nous avons indiquée et les schémas uroséméjographiques que nous avons donnés précédemment pour la diathèse hyperacide en général rendeut compte immédiatement, nous semble-t-il, au point de vue pathogénique, de la raison d'être des cystites soi-disant essentielles. Car ; « Si. comme le dit Chauvel (1), dans certains cas il est permis d'invoquer l'irritation produite par une uriue chargée d'acide urique et d'urates alcalins, il en est d'autres où la composition du liquide n'autorise pas une semblable explication. » Or, nous ferons remarquer deux choses : 1º que les auteurs, sur lesquels Chauvel s'appuie pour ne pas invoquer d'une facon constante l'action de la diathèse arthritique dans la pathogénie des cystites essentielles, n'ont jamais dosé l'acidité libre des urines des malades qu'ils observaient, bien que, toutefois, le fait que « l'évacuation de l'urine s'accompagne d'une sensation de brûlure réelle », qu'ils notaient journellement, ait dû attirer leur attention sur ce point; 2º que les auteurs, comme Chauvel du reste et tous les autres urologistes, ne paraissent avoir envisagé qu'un seul cas : celui d'une irritation mécanique de la muqueuse vésicale par des dépôts ou sédiments agissant comme corps étrangers.

El, espendant, dans les graphiques que nous avons présentés, dans les cas de diathèse arthritique, ne voit-on pas l'acidité dominer l'ensemble de la schee urinaire? Assurément si; au point qu'il nous parati absolument fondé de mettre sur le compte de cette acidité, même dans le cas de dépôts uratiques

⁽¹⁾ In Dict. encycl. des sciences médicales, t. XXIV, p. 615.

(mais alors la cause pathogénique devient double, cèst-à-dire à la fois mécanique et chimique), les lésions premières de la muqueuse vésicale et les phénomènes de réaction qui s'ensuivent; autrement dit, d'envisager ess cystites surfout comme le résultat de l'altération des éléments histologiques vésicaux par le contact prologé d'un liquide réellement acide.

Et, de fait, deux séries d'observations concomitantes vien-

nent appuyer cette manière de voir :

1º D'une facon générale les balanites non traumatiques sont mises sur le compte de la glycosurie. Or, il nous a été fréquemment donné de voir des malades, atteints de cette affection, ne pas avoir trace de sucre dans les urines. Mais tracionsnous la courbe graphique de leurs résultats urologiques, dosions-nous leur acidité d'excrétion? nous arrivions à des chiffres anormaux, c'est-à-dire tout à fait concluants. Or, l'irritabilité de la muqueuse vésicale, à laquelle tous les arthritiques, par le fait de leur acidité organique exagérée et constante, sont prédisposés, n'est-elle pas aussi réelle que celle de la muqueuse du gland? Assurément si. Donc, dans ces conditions, nous devous, semble-t-il, conclure que la cystite essentielle n'est qu'une simple manifestation de la diathèse acide exactement comme la balanite; car, autre fait, cette dernière, la balanite, ne s'observe jamais que chez les diabétiques arthritiques, bien que cependant l'urine de cette catégorie de malades soit moins chargée en sucre que celle des diabétiques nerveux et polvuriques.

2º Et, à l'égard de la diathèse acide, cause effective de la cystite par action chimique sur les tissus vésicaux, l'observation

suivante est encore caractéristique :

Un de nos clients, M. L..., arthritique franc, a ordinairement des seuers générales abondantes. Venait-il autrefois à éprouver un refroidissement, à voir ses seuers se supprimer, immédiatement il était pris d'un accès de goutte. Récemment, cet hiver, à la suite d'une impredence, l'évaporation cutanée fut suspendue; or, cette fois, au lieu de l'accès de goutte classique, il fut pris de douleurs vésicales franches. C'était une cystite qui débutait et qui ne céda qu'après un assez long traitement.

L'analyse des urines ne laisse aucun doute sur la nature du

processus morhide; en ce cas, elle nous fut envoyée à examiner, et nous trouvâmes :

Bulletin d'analyse nº 2330, série D. — Cystite hyperacide.

- J					
ėlėments.	DOSAGES		NORMALES		
	par litre d'urine.	par 24 heures.	pour t unité de coefficient urinaire.	pour 73 unités de coefficient urinaire.	p. 100.
Volume. Eléments fixes. Acide total en PhO ⁵ . Chlore total. Urée. Acide urique. Acide phosphorique Urobiline.	1000cc 34850 2.50 2.08 8.87 0.31 0.88 0.32	2000ec 69800 5.00 4.16 17.74 0.62 1.76 0.64	24ec 1800 0.03 0.10 0.45 0.01 0.05 0.01	1750ca 738 00 2.19 7.30 33.05 0.73 3.65 0.73	114 78 228 57 53 87 50 87

Cest-à-dire que, tandis que l'excrétion urinaire d'ensemble n'atteignait que 7 à p. 100 de la normale, l'acide total éliminé s'élevait à 228 p. 100; ce qui, avec une augmentation du volume urinaire de 114 p. 100 (liée à la suppression des fonctions cutanées), constitueit une urine deux fois et demie plus acide que l'urine physiologique. Tel serait donc le hilan final de la critité artiritique.

Mais, pour revenir à la cystite essentielle et à ses manifestations, ne devons-nous pas eucore voir tout simplement dans l'action du froid, ralentissant les fonctions cutanées (et parmi celles-ci principarent la perte en acides volatifs que la peau est, plus spécialement chargée d'élimier) la cause de l'angmentation de l'acidid urinaire en résultant chez tous et surtout chez les s'éthiriques : augmentation de l'acidid se traduisant des lors, comme nous l'avons vu plus haut, par une altèration d'ordre chimique des éléments histologiques vésicaux, d'ou cystite à frigore? Ne devons-nous pas encore attribuer à cette même diminution -des fonctions cutanées (et par suite à la diminution parailèle de l'excrétion des acides volatiis organiques) les phlegmasies vésicules consécultes aux brâtures étenduss. Bans l'un comme dans l'autre cas, l'offet secondaire, annulation des fonctions cutanées, conduit à un résultat tertiaire semblable, hyperacidité urinaire, à une donnée quaternaire identique, alfération histologique de la muqueuse vésicale, à une même terminaison pathologique, cysitte.

Et, puisque nous sommes dans la pathogénie de la cystite, nous y resterons encore un instant, si lon veut bien, en curisageani maintenant la cystite consécuive à la Demorrhagie, celle relative aux traumatismes; enfin celle que produisent certaines substances olimentaires comme le café, l'alcool, la

bière; ou médicamenteuses, comme le cubèbe. A la mémoire de tous est certainement présent ce travail, publié l'an dernier par le Journal de médecine de Paris, et relatif aux manifestations eczémateuses occasionnées par des troubles trophiques consécutifs à des traumatismes chez les arthritiques. La véracité des observations rapportées dans ce remarquable travail nous a été personnellement démontrée par une très intéressante observation que nous n'avons pas à relater ici, mais qui nous a conduit à certains rapprochements au sujet des cystites blennorrhagiques ou traumatiques. En effet, blennorrhagie ou traumatisme ne nous semblent pas agir autrement en ces cas que comme causes occasionnelles de troubles trophiques, se répercutant sur la muqueuse vésicale et amenant alors, chez des sujets à urine hyperacide (insuffisamment toutefois pour produire une lésion primitive), cette altération histologique constituant la cystite. Nous ne développerons pas ici l'analyse urinaire des sujets observés à ce point de vue; il nous suffira de dire que, bien que chez quelques-uns ancunes manifestations arthritiques antérieures p'aient été notées, les caractéristiques de la diathèse arthritique (exagération de l'acidité, diminution des acides phosphorique et urique) étaient constatées. Et de fait si, comme en effet cela est indubitable, tout traumatisme vésical n'occasionne pas fatalement une cystite, toute blennorrhagie n'est point toujours suivie de pblegmasie vésicale; il faut donc que, parallèlement à ces causes prochaines et tangibles, mais non constantes, il y ait une cause occasionnelle et constante, quoique réelle, dont la somme avec les précédentes se traduise précisément par la

cystite. Or, nos observations montrent que cette question de terrain, pourrait-on dire, est constituée par la diathèse acide ; nous concluons donc en ce sens également.

Et, chose curieuse, il en sera de même pour l'action des bosons alcooliques, ou du café ou du poivre cubble comme agents médicamenteux, toutefois, avec certaine variante pour ce dernier, dans sa manière de procéder à l'égard de la muqueuse vésicale.

L'alcool, le café, etc., qui agissent comme aliments d'épargue, ont pour festilat s'émélologique immédiat l'augmentation de l'acidité urinaire, résultat du relantissement des combustions organiques qu'ils occasionnent dans l'économie. Chez un arthritique à hyperacidité urinaire constante, ce surroit d'hyperacidité secondaire pourra donc, on le comprend, nous le croyous après son développements précédents, amerer alors cette altération histologique de la muqueuse vésicale constituant la cystile tant la cystile.

Quant au poirre cubèbe, sa résine (d'où les acides séparent facilement un acide irritant) passant dans l'urine rapidement et d'une façon constante, l'action irritante non constante qu'on lui a observée, chez certains blennorrhagiques, se lie encore, croyons-nous, à une hyperacidit d'urinair relle. Nous n'avon pas d'observations analytiques en ce sens; mais, au point de vue clinique, nous avons eu une fois l'occasion de nous en assurer; un malade pris de cystite cubébique était un arthritique franc.

L'on a vu précédemment que l'une des manifestations de la diathèse hyperacide était la précipitation de l'acideurique et de l'oxalate de chaux soit dans le torrent circulatoire soit dans la masse urinaire.

Des calculs peuvent donc, a-t-on encore dit, ainsi se former et amener une irritation et une ulcération de la muqueuse vésicale, d'où cystite mécanique.

L'urine en ce cas est généralement très acide; mais il est dos cas analogues on elle a une réaction alcaline franche. Cest qu'en effet, par suite de la suppuration provoquée par l'ulcération, la putréfaction a envahi la masse urinaire se formant dans la vessié. Aux calculs primitis d'urates acides, d'acide urique, ou d'oxalate de chaux se substituent alors des calculs de phosphates basiques et de phosphates ammoniaco-magnésiens. Ou encore ce deruier sel recouvre les calculs primitifs, et c'est généralement le cas le plus fréquent.

Ces derniers calculs étant très irréguliers de forme irritent à leur tour la muqueuse vésicale et entretiennent donc l'ulcération et ses conséquences, c'est-à-dire la cystite.

B. Cystites liées à la diathèse hypo-acide.

Si nous passons maintenant à la partie du diagnostic, nous envisagerons encore deux cas : cystite tuberculeuse et cystite carcinomateuse.

Et à ces deux cas, les graphiques généraux répondent d'une façon absolue : non seulement en indiquant le diagnostic en lui-même, mais même le pronostic, c'est-à-dire le degré attein¹ par la maladie :

Plus, en effet, celle-ci aura fait de progrès, plus considérables seront les troubles de la nutrition ou l'augmentation de la dénutrition constatés; plus donc, tout en conservant leur caractère sémésologique absolu, les courbes graphiques de ces maladies s'écarteront de la normale.

Les deux phorevations suivantes sont très nettes en ce sens :

a. Cystite tuberculeuse.

M= N... est depuis quatorze mois soignée pour une cystie.
Elle a vu nombre de médecius. Les uns ont considéré sa vyselle comme simple; d'autres ont cru qu'elle était liée à une
néphrite. Quoi qu'il en soit, aucun traitement n'a encore eu
raison de son affection, lorsqu'elle nous est envyée par un
nouveau consultant qui, par une analyse raisonnée, reut d'ucider les divers d'alignosties précédents qu'on lui soumet :

Bulletin d'analyse no 3232 série D

ÉLÉMENTS. Volume Eléments fixes, Acide total en Phos- Chlore total Urée	par litre d'urine. 1000ec 25853 0.67 4.28 14.32 0.27	2200cc 56857 1.47 9.41 31.50 0.59	pour i unité de coefficient urinaire. 24cc 18f0 0.03 0.10 0.45 0.01	1250cc 528 00 1.56 5.20 23.40	178 108 94 222 133
Urée	14.32	31.50	0.45		

Nous trouvons les données urologiques précédentes, qui, conduisant aux conclusions séméiologiques tuberculose, nous amèment à faire l'examen bactériologique du dépôt: examen d'ailleurs fructueux, puisque nous constatons le bacille rectiligne donné par Koch comme pathogoomonique de la phlisie.

Mais les enseignements que nous retirons de notre examen urologique sont plus complets encore : ils nous disent, en el·let, pourquoi jusqu'alors l'attention des cliniciens n'avait pas été attirés du côté de la tuberculose pour expliquer cette cystile réellement par trop persistante. Nous y voyons, de fait, que, jusqu'à présent, la courbe graphique s'écartant peu de la normale, la dénutrition a été relativement faible. Et cliniquement c'est ce que l'on constate, car l'amagingissement du sujet est peu considérable, et l'examen de la poitrine ne laisse rien a désire.

La tuberculose s'est donc tenue longtemps exclusivement cantonnée dans la paroi vésicale, quoique parfaitement caractérisée par des inoculations de ce pus vésical faites à un lapin qui, sacrifié trois mois plus tard, était farci de tubercules.

b. Cystite carcinomateuse.

Il y a environ dix-huit mois, le nommé V... nous est

adressé à l'effet de tâcher d'élucider, par l'examen urologique, la nature d'une cystite qu'il porte depuis plus de deux années et qu'aucun traitement n'a pu améliorer. Les résultats analytiques furent:

Bulletin d'analyse nº 1387 sórie B.

	DOSAGES		NORMALES		-
ÉLÉMENTS.	par litre d'urine.	par 24 heures.	pour i unité de coefficient urinaire.	pour 65 unités de coefficient urinaire.	P. 100.
Volume	1000cc 21s 78 0.60 2.06 2.09 0.24 0.52 0.19	1700cc 378 03 1 02 3.58 3.55 0.41 0.88 0.32	24°c 18'00 0.03 0.10 0.45 0.01 0.05 0.01	1560°° 65800 1 65 6.50 29.25 0.65 3.35 0.85	109 66 59 53 13 63 27 49

Aux conclusions séméologiques demandées par le nouveau médeine nous utilant, nous répondines pour expliquer les insuccès thérapeutiques précédents, par : cyslite carcinomateuse chez un arthritique. La conclusion cystite découlant tant du diagnostic chinique antérieur que des élèments histològiques constatés, l'arthritisme étant indiqué par l'écart existant entre l'accidité totale el l'accide phosphorique dosé, et enfin le cancer par l'ensemble de la courbe, plus l'abolition presque absolue de l'urée.

Ainsi donc, à la fois s'expliquaient l'impuissance des traitements antérieurs et l'évolution si lente de l'affection carcinomateuse en ce sas, que les manifestations cliniques classiques, telles que la cachexie, faisaient presque absolument défaut, au point que la diagnose séméiologique ne fut acceptée que sous toutes réserves.

Mais huit jours après cet examen urologique, un grand pas se faisait vers la même conclusion clinique, car le malade était pris d'une abondante hémorrhagie intestinale. Entré alors à l'hôpital Saint-Louis, ce malade y fut examiné par le chef de service qui, par le toucher rectal, constata la présence d'une induration recto-vésicale certaine. Toutefois, la situation trop éloignée de cette induration qui ne se laissait aborder que par l'extrémité du doigt u'en permit pas une étude clinique approfondée. Mais l'autopsie faite deux mois plus tard fut des plus affirmatives sur le diagnostic urosémédologique porté, en montrant une tumeur épithéliomateuse du rectum, ayant envahi le bas-fond de la vessie.

C. Cystites accidentelles

L'on a vu précédemment que les cystites pouvaient résulter de l'irritation que causent à la muqueuse vésicale soit des calculs vrais (uriques, oxalques ou phosphatiques), soit une urine chargée de dépôts ou sédiments uratiques. Nous avons également indique l'action irritante mécanique de la résine du poivre cubèbe; il ne nous reste donc plus, pour être complet, qu'à étudier les cystites provoquées par l'ulcération de la muqueuse vésicale du fait du passage dans l'urine de la cantharidine.

On sait, en effet, que les vésicatoires cantharidiens, lorsqu'ils sont appliqués en masse sans avoir pris la précaution préalable soit de les camphrer soit d'incorporer à leur pâte du bieza-honate de soude, peurent provoquer de véritables cystiles.

Mais le mécanisme de ces inflammations vésicales est différent de ceux que nous avons précédemment exposés. Il s'agit dans l'espèce d'une action histologique de la cantharidine sur la muqueuse de la vessie, en amenant la résolution presque immédiate.

En ce cas la cystile n'est jamais isolée, elle est toujours compliquée de néphrite, et l'altération histologique des reins fait que le fonctionnement de l'organe est diminade dans une large mesure. On a alors les caractères de la cystile aigue à frigore; réduction du volume urnaire, actainité du produit, albumie abondante, défements histologiques rénaux et vésicaux ahondants, généralement non hématurie.

V. DYSPERSIES

Au point de vue uroséméiologique les dyspepsies peuvent se

scinder en deux grands groupes selon leurs relations avec l'une ou l'autre des classes diathésiques; nous les étudierons donc en ces conditions de division.

A. Dyspepsies liées à la diathèse acide.

Les dyspepsies liées à la diathèse hyperacide sont de trois ordres différents selon le mécanisme qui nuit à l'utilisation assimilatrice alimentaire :

Ordre chimique : dyspepsie par augmentation exagérée de l'acidité du suc gastrique, conséquence de l'augmentation de l'acidité organique.

Ordre mécanique : dyspepsie par imperméabilisation de la muqueuse gastrique (sclérose généralisée) avec la même cause première.

Ordre physiologique : dyspepsie par diminution des combustions hépatiques sous l'influence de l'augmentation de l'acidité organique.

Nous passerons ces genres en revue successivement.

a. Dyspepsie acide stomacale.

On ne saurait trop le répéter, la digestion stomacale se fait en deux temps pour les albumines alimentaires :

Premier temps, transformation des albumines en syntonines (acide-albumine) par l'acide libre du suc gastrique.

Deuxième temps, reprise de ces igntonines par la pepsine du même sus gastrique et transformation en peptones. Or cette dernière opération ne peut se âire que dans un milien neutre ou faiblement acide. L'acidité a bien été nécessaire à la transformation des albumines en syntonines, mais persistet-telle ensuite en excès, elle entrave la fermentațion pepsique et les peptones ne se forment pas ou ne se forment qu'en minimes proportions.

Et comme, tandis que les syntonines peuvent dialyser au travers de la paroi gloméraliair rénale, pare qu'en ce point peuvent exister des pressions inégales dans les deux sens, et qu'il suffit d'une faible pression pour faire passer ces colloides à la dialyse en général; comme, disons-nous, la pression du liquide stomacal est nulle sur la paroi de la dialyse, il s'ensuit que les peptones seules peuvent être absorbées par la paroi que les peptones seules peuvent être absorbées par la paroi stomacale, et que les syntonines alimentaires de l'estomac ainsi formées et non transformées ultérieurement en peptones y restent à l'état de corps étrangers.

D'où en premier lieu gêne stomacale par digestion incomplète, dyspepsie.

Puis secondairement, si la neutralisation de l'acide en excès n'est pas complète dans l'intestin, diarrhée acide par irritation mécanique du tube intestinal.

En cas où au contraire cette neutralisation a lieu, il y a alors utilisation subséquente, intestinale, du bol alimentaire syntoniné, par reprise absorptive de ces dérivés albuminés par les parois intestinales, et rentrée dans la circulation porte.

parois intestinales, et rentrée dans la circulation porte. L'augmentation anormale de l'acidité du suc gastrique peut encore déterminer d'autres accidents morbides:

En effet, l'irritation de la muqueuse gastrique en ces conditions directes peut s'accuser par des adoueurs vires : gastralgie, si cette irritation est accentuée; l'irritation de la muqueuse intestinale en les conditions indirectes de non neutralisation de Pexcès d'acidité du hol alimentaire peut occasionner des sensations douloureuses de la masse visorrale; visorralgie, Enfin si an lieu d'une s'imple irritation stomacale, il y a inflammation de la muqueuse gastrique (toujours par excès mais très accusé d'acidité du suc digestif) comme nous l'avons vu dans certains cas où l'acide chiorhydrique égalait ery, 30 d'HCl théorique, per litre, (c'est-à-dire 22º68 d'acide chiorhydrique commercial), il y a uderation de cette paroi (ulebre de l'estomac).

Et ce qui montre bien le processos diologique de cette dernière manifestation diathésique, c'est que, comme nous l'arons déjà dil, la dyspepsie acide se trouve bien d'une alimentation grossière (division de l'acidité et utilisation d'autant plus complète que l'abumine à digérer est plus compacte (ceufs durs par exemple)); c'est que la gastralgie hyperacide est calmée par l'introduction dans l'estomac d'aliments quelconques; c'est aussi que la viscéralgie (survenant généralement deux heures après la première digestion) cède presque infailiblement à la station à plat ventre qui a pour effet (en presant la masse intestinale) d'exciter les sécrétions biliaires et pancréatique (l'une et l'autre sont alcalines), donc de faire déverser dans le canal intestinal un liquide alcalin capable de neutraliser le bol alimentaire extra-acide, donc d'amoindrir son action irritante sur la muqueuse intestinale.

Pig. 87. - Schéma uroséméiographique de la gastro-viscéralgie acide.

Quoi qu'il en soit, l'irritation nerveuse locale (estomac ou intestin) amenant en cas de cause dyspeptique par hyperacidité organique et hyperacidité gastrique une action réflexe cérébrale localisée au quatrième ventricule, il y a souvent dès lors polyurie, ce qui nous permet de diviser encore la dyspepsie acide stomacale en deux sous-classes : dyspepsie acide simple et gastro-visofralgie. Le graphique 87 nous représente cette dernière d'une façon tangible.

b. Dyspepsie par sclérose gastrique.

a. Duspensie nar selérose essentielle. - Ouelquefois, sinon fréquemment à la terminaison de la selérose généralisée, il y a dyspensie réelle. Nous savons qu'en les conditions morbides de sclérose, le fonctionnement de la glande bénatique laisse beaucoup à désirer, que donc on pourrait-attribuer le défaut d'assimilation que présentent ces malades à l'inertie fonctionnelle hépatique. Il est certain que, quelle que soit l'absorption stomaçale. les combustions hépatiques sont incomplètes, donc incapables d'utiliser ces dérivés alimentaires que la veine porte amène alors au foie. Mais il y a plus que cela réellement, il y a en fait dyspensie directe, c'est-à-dire non transformation complète des aliments, azotés ou hydrocarbonés, dans l'estomac, non obtention dans cet organe des éléments dérivés suscentibles d'une dialyse stomaçale directe. Témoins les vomissements que les aliments, devenant corps étrangers, provoquent : vomissements où ces aliments sont à peu près intacts (la fermentation outride étant faible alors par suite de l'hyperacidité du suc gastrique). Témoin évacuation par les fèces à un état presque analogue à celui de l'entrée des mêmes aliments non utilisés pas plus dans l'intestin que dans l'estomac (lait passant à l'état de caséine concrète), mais n'avant pas produit de diarrhée par le fait de l'atogie intestinale résultant de la sclérose généralisée.

β. Dyspepsie par sclerose gastrique alcoolique. — Parmi les liquides journellement ingérés, il en est un, l'alcool, dont, on l'a vu précédemnient, l'abus engendre la diathèse hyperacide.

Mais l'action de l'alcool sur l'économie n'est point seulement générale, elle est encore locale et porte directement sur le réservoir stomacal.

Indurant, en effet, peu à peu les tissus, qu'il imprègne, l'alcool en détermine tout d'abord la sclérose et de cette façon entrave l'absorption alimentaire de l'estomac.

Puis, suspendant les fermentations en général, et tout par-

ticulièrement les fermentations gastriques, essence de la digestion, il contribue dans une certaine mesure, lorsqu'il est pris en excès, à retarder cette digestion. Enfin amenant la dégénérescence des glandes gastriques, il arrive à supprimer à peu près totalement l'écoulement du suc gastrique nécessaire à la fermentation.

Cette triple action est donc la cause finale de la dyspepsie stomacale, à laquelle se lie presque toujours une dyspepsie hépatique résultat aussi tant de l'entrave apportée par l'alcool aux combustions organiques de cet important organe que de la dégénérescence histologique que ce liquide v occasionule

Une des principales manifestations cliniques de la dyspepsie alcoolique est la piuite, c'est-d-ire l'éracuation matutinale quotidienne de mucosités alvines. Les considérations de dégénérescence histologique (issulaire et glandulaire que nous venous d'exposer suffisent, croyons-nous, à expliquer ce phénomène clinique. Chaque mouvement de déglutition normale cause en effet Tabsorption d'une certaine quantité de liquide salivaire, dont la composition au point de vue du sujet qui nous occupe peut être résumée à l'eau et au mucos.

Or, les parois de l'estomac étant peu perméables d'une part et d'autre part une quantité plus que normale d'acide étant sécrétée par les glandes gastriques chez l'alcoolique, il en résulte donc le fait du séjour dans l'estomac de toute ou presque toute la salive ingérée pendant la nuit, et de la coagulation de sa mucine.

Au point-de vue uroséméiologique cette forme de dyspepsie se caractérise surtout par l'élévation relative de l'urobiline, mettant en lumière les modifications fonctionnelles hépatiques précitées.

c. Dyspersie hépatique.

La perte en chlorures alcalins chez un dialhésique hyperacide est-elle à peu près égale à la normale, d'une part, et d'autre part l'acidité organique est-elle insuffisante ou ne duret-elle pas depuis un temps assez long pour créer des lésions histologiques stomacales? Il peut néanmoins y avoir dyspensie.

C'est qu'en effet, comme on l'a vu précédemment aux généralités sur la diathèse hyperacide, par suite de l'augmentation de l'acidité organique générale il va diminution des oxydations hépatiques, c'est-à-dire en première ligne non transformation complète des peptones apportées au foie par la veine porte, en même temps que formation exagérée d'éléments biliaires.

Fig. 88. - Schéma urosémélographique de la dyspepsie hépatique.

Or, comme dyspepsie ne signifie pas seulement difficulté à digérer, mais bien d'une façon plus large difficulté d'assimiler les ingesta, l'utilisation incomplète des éléments peptoués par foie nous semble rentrer dans la classe des dyspepsies, dont ce genre, par suite de sa localisation, portera le nom d'hépatique. Le schéma 88 traduit cette idée d'une facon tangible.

B. Dyspensies liées à la diathèse alcaline.

Deny cas sont à examiner:

Dyspepsie chimique proprement dite (dyspepsie alcaline);

Dyspenie liée à une lésion histologique (cancer de l'estomac).

Contrairement à la diathèse hyperacide, la diathèse hypoacide diminue l'acidité du suc gastrique, en diminuant l'acidité organique générale. La digestion stomacale se trouve ainsi troublée, mais alors en sens inverse du ces précédent.

La pepsiue serait bien capable d'agir sur les syntonines produites, mais précisément l'acidité gastrique faisant défaut, ces syntonines ne se produisent pas ou du moins sont formées d'une façon incomplète. La masse albominée alimentaire ne se trouvant transformée ni en syntonines ni en peptones séjourne tout d'abord dans l'estouac, puis y subit la fermentation putride, et s'écoule enfin dans l'intestin où faisant l'office de corps étranger (puisque la pancréatine ne peut agir que sur des albuminessyntonines) elle irrite la maqueuse intestinale : d'où diarrhée (chez les tuberculeux par exemple).

b. Dyspepsie par carcinome stomacal.

Nous avons vu précédemment que l'uue des formes d'altérations histologiques lièes aux diathèses était pour l'hypoacidité plasmatique, évels-dier l'hypoacidité produits purulents. Cette dégénérescence non liée à une action bacilistre porte le nom de carcinones; el 70 nc omprend facilement que à la manière de l'augmentation anormale et prolongée du suc gastrique qui amène soit la dégénérescence scércreus générale de l'estomac, soit sa lésion histologique locale, l'alcère, une diminution anormale de l'acidité du suc gastrique puisse amener la dégénérescence carcinomateuse. Au point de vue sémélologique, la dyspepsie engendrée par cette lésion histologique a les écaractéristques suivantes: Diminution des éléments fixes d'ensemble (absolue), Diminution de l'acidité (absolue et relative), Augmentation du chlore d'excrétion (relative), Diminution de l'urée au delà de fous les autres rapports.

VI. ANÉMIES.

Nous distinguerons deux sortes d'anémies :

A. Anémies liées à la diathèse acide-

a. Anémie essentible.

Diminution de l'absorption oxygénée par l'hémoglobine, dissolution partielle de l'hémoglobine par le chlorure de sodium tissulaire en excès, telles au point de vue urosémédologique nous paraissent être les causes de cette anémie, qui se traduit analytiquement par le trade général de la diathès acide simplement abaissé dans l'échelle comparative prise pour base d'interprétation tangible, avec diminution surtout relative de l'excrétion chlorurique.

b. Anémies chimiques.

a. Forme directe. — L'ingestion en excès de chlorure de sodium, eu augmentant d'une façon disproportionnée la quantité circulatoire de ce sel, amène l'anémie par dissolution des globules rouges.

§. Porma indirecte. — L'anémie des mineurs, passant la plus grande partie de leur temps dans des galeries mal aérées, à air chargé de gaz hydrocarhonés, orde l'hyperacidité organique plus spécialement localisée, comme manifestations à l'apparell circulatione: astime par les poussières, et surtout gêne dans l'hématose, d'où anémie par réparation incomplète due à une combustion incomplète des ingesta.

La caractéristique analytique est' analogue à la précédente.

B. Anèmies liées à la diathèse alcaline.

Tout travail disproportionné à l'alimentation crée l'usure physiologique par diminution de l'acidité organique et augmentation des combustions générales.

La surveille, le surmenage, non réparés par une hygiène alimentaire surabondante, amènent donc l'anémie en créant la diathèse alcaline par hypochlorurie et hypocaidité organique. En ces conditions la courbe séméiographique correspond au tracé général de la diathèse alcaline comme aspect d'ensemble,

Fig. 89. - Schéma uroséméiographique de l'hystérie.

mais sa hauteur dans l'échelle proportionnelle est au-dessous au lieu d'être au-dessus de la normale. Ce qui se comprend, puisque l'excrétion urinaire étant le produit de deux facteurs, assimilation et désassimilation organiques, le dernier seul est à peu près en jeu en ce cas.

VII. NÉVROSES.

Deux grandes classes :

Fig. 90. - Schéma uroséméiographique de l'épilepsie.

Névroses de l'appareil génital (hystérie). Névroses des centres cérébraux (épilepsie) : Liées l'une à la diathèse acide,

A. Névroses liées à la diathèse hyperacide.

En selérosant les tissus, l'hyperacidité organique arrive à altérer les cordons nerveux et à déterminer dans les organes qu'ils sensibilisent des douleurs réelles. Parmi les organes où cette altération se fait surtout sentir, on doit citer tout spécialement les organes génitaux probablement à cause de la fréquence des congestions physiologiques que ces organes éprouvent.

Quoi qu'il en soit, les névroses génitales, dont l'hystérie fait partie, out pour caractéristique un tracé (fig. 89), qui les ile absolument à la diathèse hyperacide. On y voit, en effet, une diminution considérable des échanges organiques par hyperacidité plasmatique, qui expluque comment les pertes de ces malades étant réduites sinon à leur plus simple expression, comme chez les animaux hibernauts, du moins étant très réduites, comment, disons-nous, ces malades peuvent tolérer des jeunes prolongés.

B. Névroses liées à la diathèse hypo-acide.

De tout autre nature sont les affections nerveuses dépendant des centres cérébraux.

Là, au contraire, il y a (probablement par lésion d'un point voisin du quatrième vontricule) polyurie au moins relative et par suite augmentation des échânges organiques, c'est-à-dire diminution de l'acidité organique.

Le tracé (fig. 90) représente cette forme de lésion cérébrale.

CHAPITRE-III

MALADIES AIGUES

Les maladies aigués portent en elles des caractères cliniques beaucoup plus tranchés que les malàdies chroniques. Autant donc l'analyse urologique peut être d'un précieux secours pour le diagnostic de certains cas chroniques, autant au contraire pour les cas aigus son importance se restreint-elle au pronostic.

En ces conditions d'importance relative inférieure, nous avons en peu d'occasions d'étailer les caractères urobigiques de ces maladies, aussi nous contenterons-nous, à défaut de sérieuses observations personnelles, de donner ce qui en contrait les auteurs glassiques les plus récents, Labadie-Lagrave et A. Robin, nous borrant à une énumération aussi succincte que possible de ces fails urobigiques, qui, n'ayant point été re-cueillis en partant de bases mathématiques (comme les données physiologiques qui nous out servi de points de repère pour les diathèses et-maladies chroniques), ne peuvent avoir qu'une valour soméiologique relative.

Nous grouperons les maladies aigués d'après les appareils qui leur servent de siège d'éclosion.

PREMIÈRE SÉRIE. - MALADIES LOCALES.

Premier groupe. - Appareil respiratoire.

I. POUMON.

A. Dyspnée. — Généralement sous la dépendance de l'hyperacidité organique : donc diminution des échanges organiques normaux : l' symptômes urologiques de l'hyperacidité organique; 2° plus parfois sucre (Reynosi); 3° plus parfois albumine (Labadie-Lagrave); 4° plus parfois allantoine (Kohler) (c'està-dire le cortège de la dialbés acide).

B. Bronchites ; a. simple. Rien quand elle est simple. .
b. congestive : 1° albuminurie (par stase sanguine); 2° sédiments uratés.

- c. putride : 1º phénol en excès : 2º indol.
 - C. Emphysème. Urines albumineuses en cas de congestion.
- D. Pneumonies. a. pneumonie franche.
- «. Première période : 1º Urines rares ; 2º sulfates en excès ; 3º diminution des phosphates.
- β. Période de crise: 1° Augmentation de l'urée, moyenne 35,30 (A. Robin); 2° augmentation de l'acide urique (considél'able, A. Robin); 3° augmentation de l'ammoniaque; 4° aug-

mentation de la potasse; 5º diminution des sulfates; 6º diminution des chlorures; 7º diminution de la soude; 8º parfois traces de pigments biliaires.

7. Période de convalescence : 1º urines très abondantes (polyurie); 2º augmentation de la densité; 3º réaction acide; 4º couleur jaune foncé ; 5º abondants sédiments d'urates ; 6º augmentation de l'urée.

b. Pneumonie qangréneuse (Brieger) : 1º indican ; 2º phénol en excès

c. Pneumonie infectieuse (avec néphrite de même nature) : 1º albumine ; 2º cylindres épithéliaux ; 3º sang quelquefois.

d. Pneumonie catarrhale : hémoglobine (hémoglobinurie paroxystique) (Minot). e. Pneumonie typhoidique: syndrômes urologiques (A. Robin).

1º Couleur. - Hémaphéisme dans 80 p. 100 des urines, couleur rouge foncée fréquente, teintes ambrées constantes. 2º Aspect. - Urines ordinairement claires et réfringentes,

troubles par refroidissement, consistance assez épaisse. 3º Quantité. - Cas non mortels : période d'état, environ

1000 centimètres cubes; convalescence, atteint 1,200 centimètres cubes. Cas mortels : fortement abaissée, 848 centimètres cubes au maximum. 4º Bensité. — Cas de guérison : période d'état, moyenne

1026; défervescence et convalescence, moyenne, 1921; cas mortels, moyenne, 1074.

5º Matériaux solides. - Cas de guérison : période d'état, 61 grammes environ; défervescence et convalescence 55 grammes ; cas de mort : faibles, 40 grammes en moyenne.

6º Odcur. - Urineuse forte, plus ou moins aromatique, plus rarement fade. Dans un cas, odeur de fourrure très prononcée. État ammoniacal rare, seulement par vase malpropre.

7º Réaction très acide.

8º Sédiments. - Toujours sédiments après contact de l'air libre, généralement rapidement déposés, ordre de fréquence : mucus, urates de soude, urates d'ammoniaque, phosphate ammoniaco-magnésien; sang, acide urique. 9º Mucus abondant.

10º Urée. - Période d'état. Plus élevée que fièvre typhoide, infé-

reure à pneumonie franche; moyenne, 26s ,38. Convalescence : augmentation générale.

11° Acide urique. — Très abondant, généralement 08°,80 par lifre, moins élevé que pneumonie franche, plus élevé que fièvre typhoide.

12° Matières extractives. — Faible environ 115°, 10 (période d'état des cas non mortels).

 $43^{\rm o}\,Albumine.$ — Assez constante (94 p. 400 des cas) ; parfoisal ondante.

14º Glucose. — Absent.

15° Principe minéraux. — Première période, moyenne, 58°,80 ; convalescence, moyenne, 108°,80.

46° Chlorures. — Plus diminués que dans la fièvre typholde-Guérison: période d'état, moyenne, 45°,20; convalescence, movenne. 75°,00; cas mortels: moyenne, 68°,93.

47° Acide phosphorique total. — Toujours diminué, 48°,417 d'après Vogel.

48° Phosphates terreux. — Avec accidents cérébraux, augmentation; convalescence, augmentation.

19º Sulfates. - Augmentation.

20° Urohématine. — Très augmentée d'une façon générale 6 p. 400).

21º Indican. — Fréquent et abondant, sauf dans les cascrortels non diarrhéiques.

22° Hémaphéine. — Très fréquente, diminue à la convales-

23º Uroérythrine. — Constante, parfois abondante. E. Grippe: Caractères uroséméiologiques (A. Robin).

1º Couleur. — Jaune ambrée, variant des tons normaux aux nuances plus foncées, mais atleignant rarement l'hémaphéisme (urobiline), quoique présentant souvent des reflets rougeâtres.

2º Aspect. Consistance. — Urine claire, peu épaisse, assez réfringente.

3º Quantité. — Assez diminuée (900 cc.) Revient à la normale après la défervescence (1100 cc.).

4º Densité. — Très augmentée, 1030 à 1038 en moyenne; s'abaisse beaucoup après la défervescence.

5º Matériaux solides. — Très augmentés, atteignent 70 grammes; baissent à 40 grammes après la chute de la température.

6º Odeur. — Urineuse assez forte. 7º Réaction. — Très acide, l'acidité diminue dans la

deuxième période. 8º Sédiments. — Dans 25 p. 100 des urines environ; fréquemment rosaciques; presque toujours formées d'urate de soule

9° Mucus. - Très abondant.

10° Urée. — Toujours augmentée; le givre d'urée est constant et se produit sans addition d'acide nitrique. 14° Acide urique. — Toujours augmenté, passant le taux

normal (4 fois), ordinairement il est à peu près double, diminue et redevient normal après la défervescence.

12° Albumine. — Très fréquente, dans 20 p. 100 des urines et seulement à l'état de traces.

13º Glucose. - Sucre absent.

14º Phosphates terreux. — Diminuent rarement, restent stationnaires et ont souvent de la tendance à augmenter.

15° Urohématine. — Toujours normale ou bien augmentée. L'augmentation est parfois considérable.

16º Indican. — Existe presque constamment, il est assez abondant dans 60 p. 100 des urines et marche parallèlement à la diarrhée.

47° Hémaphéine (urobiline). — Existe dans 60 p. 100 des cas seulement, mais seulement aux premiers jours de la maladie. 18° Uroérythrine. — Même fréquence, mais en plus grande

abondance.

F. Tuberculose miliaire aiguë : syndromes urologiques (A. Robin).

1e Couleur. — Habituellement rouge foncée, atleignant parfois le rouge sanguinolent; les tons ambrés rouges sont la règle; les autres couleurs (jaune, verdâtre, etc.), sont d'une extréme rareté; quand elles existent, leurs tons sont toujours très foncés, et elles n'interviennent guöre qu'à titre de reflets.

2º Aspect et consistance. — L'urine est beaucoup plus souvent claire que trouble; douée toujours d'une certaine réfringence; consistance assez épaisse.

- 3º Quantilé. Plus diminuée que dans la fièvre typhoïde.
- 4° Densité. 1028-1032.
- 5° Matériaux solides. Variations assez notables, que la difficulté de recueillir l'urine de vingt-quatre heures vient encore augmenter.
 - 6º Odeur. Urineuse plus ou moins forte.
- 7º Réaction. Très acide, mais dans deux cas l'urine présenta à l'émission une alcalinité causée par la présence des bases fixes.
- 8º Sédiments. Presque constante, dans quatre cinquiemes des urines, rosaciques dans 40 p. 400, généralement très abondants.
- On y trouve par ordre de fréquence : urate de soude pulvéuleut, mucus, urate d'ammoniaque, oxalate de chaux, phosphate ammoniaco-magnésien, globules blancs, cylindres colloïdes.
 - 9º Mueus. Abondant.
- 10° Urée. Augmentation assez sensible (fait déjà constaté par Harley).
- 11º Acide urique. Augmentation bien plus considérable que dans la fièvre typhoïde : peut atteindre 4 et 5 fois les quantités normales.
- 12º Albumine. Beaucoup moins fréquente que dans la flèvre typhoïde; quand elle existe, on la trouve rarement avec l'abondance qui caractérise les formes mortelles de la dothiénentérie.
 - 13° Sucre. Absent.
- 14° Chlorures. Toujours diminués : mais dans des proportions qui diffèrent peu de la fièvre typhoïde.
- 15° Phosphates terreux. Généralement un peu augmentés. 16° Urohématine. — Toujours augmentée : atteint parfois des proportions considérables.
- 17º Indican. Moins abondant que dans la fièvre typhoïde et ordinairement en rapport avec la diarrhée; ce qui n'arrive pas toujours dans cette première maladie.
- 18º Hémaphéine et uroérythrine. Constantes et plus ou moins abondantes.

II PLEVRE.

Pleurésie exsudative. a. Au début: 1º urines rares; 2º denses: 3º chlorures très faibles; 4º albuminurie.

ses; 3º chlorures tres lambes, y abbanes in the second of the second of

itquide normat; saut exage auoit des chiordres.

c. Avec aecompagnement de phénomènes septiques : 1º phénol en excès : 2º indol.

Deuxième groupe. - Appareil circulatoire.

1. CŒUR.

A. Maladies organiques du cœur : a. Période de compensation (ou hypertrophie cardiaque), polyurie et exagération de l'urée.

b. Période asystolique: 1º Urines rares; 2º denses; 3º foncées; 4º chargées de sédiments uratiques; 5º albumine; 6º cylindres hyalins; 7º globules blancs et rouges.

B. Endocardites : a. Aiguë : Urines sanguinolentes, hématies (abondants), leucocytes (rares).

b. Purulente: albumine considérable, cylindres granuleux. C. Myocardites: Urines rares et albumineuses.

C. Myocardites: Urines rares et abdumineuses et peu riches en chlorures (Heller).

II. VEINES.

Thromboses des veines rénales et de la veine cave inférieure (Leube): 1° Urines rares; 2° sanguinolentes; 3° albumine abondante; 4° hématies; 5° cylindres; 6° débris épithéliaux.

Troisième groupe. — Appareil digestif.

I. ESTOMAC.

A. Vomissements répétés : Urine alcaline (Stein, Bence Jones). B. Dilatation stomacale : Urine rare et alcaline (Quincke).

quand on lave l'estomac.

C. Gastrile aigué: 1° Augmentation de l'acidité; 2° augmen-

C. Gastrite aiguë: 1° Augmentation de l'acidité; 2° augmen tation des urates; 3° diminution du chlore urinaire.

II. INTESTIN.

A. Diarrhée : Urines rares.

B. Choléra nostras : Urines rares.

- C. Obstruction intestinale : Urines rares, indican.
- D. Atonie intestinale : Indican.

II POTE

- A. Congestion hépatique: 1° Augmentation de l'urée; 2° augmentation de l'urobiline (ictère hémaphéique).
 - B. Ictères : a. Simple : Pigments biliaires (quantités variables).
- b. Spasmodique. Pigments biliaires (proportions infinitésimales); tracé uroséméjographique de la névrose.
- c. Catarrhal: Pigments biliaires (très abondants), augmenta-
- C. Atrophie jaune aiguë: 1º Urines rares; 2º peu denses; 3º couleur jaune brun foncé; 4º pigments biliaires; 5º acides biliaires; 6º urée très rare, quelquefois nulle (Frerichs); 7º leu-
- cine; 8 tyrosine.

 D. Dégénérescence amyloïde : Modifications urinaires liées à la dégénérescence simultanée et parallèle des reins : 1° Syn-
- dromes urologiques de l'hyperacidité organique : 2º albumine; 3º cylindres circux. E. Abcës : 1º Urée considérablement abaissée; 2º pus, si l'abcès s'est ouvert dans les voies urinaires.
- F. Cancer: 1° En outre de la diminution relative d'excrétion de l'urée et des caractères généraux séméiologiques des cancers; 2° parfois leucine; 3° tyrosine: 4° et pigments biliaires; 3° de plus, présence d'uromélanine: 6° et d'indican si le cancer.

IV BATE

A. Abcès miliaires ; Pus dans l'urine parfois.

est mélanique).

B. Mélanémie : 1º Uromélanine; 2º diminution du volume urinaire; 3º albumine; 4º hématurie.

V. PANCRÉAS.

Maladies du pancréas: 1º Généralement glycosurie (par réflexe cœliaque); 2º quelquefois pigments biliaires (compression du canal cholédoque).

VI. PÉRITOINE.

Péritonite : 4° Urine rare; 2° albumine; 3° sédiments uratiques; 4° indican; 5° phénol (augmenté).

Quatrième groupe. - Appareil cérébro-spinal.

I CERVEAU

- A. Lésions du quatrième ventricule : a. Tumeurs : Glycosurie (Recklinghausen).
 - b. Destruction de la substance grise : Glycosurie (Zenker).
 - c. Néoplasme : Glycosurie (Mosler).
 - d. Encéphalite : Glycosurie (Fribam).
- B. Lésions diverses : a. Athérome de la glande pituitaire : Glycosurie (Massot).
- b. Cysticerques avec tiraillement de la moelle allongée : Glycosurie (Frerichs).
- c. Inflammation chronique au niveau du calamus scriptorius : Glycosurie (Lancereaux).
- d. Tubercules des deux hémisphères du cervelet : Glycosurie (Robert).
- e. Ramollissement du noyau dentelé du cervelet : Glycosurie (Mosler).
 - f. Sclérose du lobe droit du cervelet : Glycosurie (Giovanni).
- g. Tumeur de la moelle allongée : Glycosurie (Dompeling).
 C. Hémorrhagie : 4° Polyurie (immédiate); 2° albuminurie (immédiate) : 3° glycosurie (secondaire) (Ollivier) : 4° diminution
- de l'urée (Leube).

 D. Tumeurs : Augmentation des phosphates (Leyrie et Jacquin).
- E. Méningites : a. Méningite simple : 4° Augmentation de l'urée ; 2° augmentation des sulfates ; 3° augmentation des phosphates (surfout) (Labadie-Lagraye).
- b. Hydrocéphalie aiguë: Diminution des phosphates (Labadie-Lagrave).
- c. Mčningite cérébro-spinale : 1º Polyurie (Maunkopf); 2º Glycosurie (Maunkopf et Heiberg); 3º albuminurie (quand la forme est épidémique (Labadie-Lagrave).

II. MOELLE.

A. Méningite spinale : 1º polyurie; 2º albumine; 3º glycosurie (Labadie-Lagrave). B. Ataxie locomotrice: 1º polyurie (Lépine et Friedreich); 2 indican.

III. NERFS.

A. Atrophie musculaire progressive : 4° augmentation des suffates (Bamberger); 2° augmentation de lac chaux (Labadie-Lagrave) (parbois); 3° diminitation de l'urée (Leube); 3° dimination de l'acide urique; 3° diminution de l'acide phosphorique (Bamberger); 6° diminution de la créatinine (Rosenthal); 7° leucine; 3° tyrosine (Seidd).

B. Névralgie sciatique : 4° glycosurie (Eulenberg et Gutmann, Braun, Troning).

IV. MALADIES MENTALES

- A. Formes mélancoliques : 4° diminution de l'urée ; 2° diminution des chlorures (Labadie-Lagrave).
 - B. Délire furieux : diminution de l'acide phosphorique.
 - C. Délire alcoolique : albuminurie (Huppert).
 D. Accès de manie : albuminurie (Huppert).
 - E. Paralysie : albuminurie (Rabenau).

V. CHORÉE.

4° Diminution des chlorures (Seiffert, Voit); 2° glycosurie (Voit); 3° albuminurie (Leube, Russell).

VI. ÉPILEPSIE.

4º Albuminurie (dans les attaques, Huppert); 2º spermatozoides (Huppert); 3º augmentation de l'urée; 4º augmentation de l'acide phosphorique (Lépine et Jacquin); 5º glycosurie (Echeverria, Bourneville, Bowell, Jones, Ebstein).

VII. TÉTANOS.

4° Albuminurie (Kussmaul, Demine); 2° urines rares; 3° denses; 4° foncées; 5° glycosurie (Demine, Vogel); 6° variabilité de l'urée (Demine, Fischer et Birschfeld, Senator); 7° éléments histologiques de la néphrite (Griesinger, Kussmaul).

VIII. HYSTÉRIE.

a. Avant les attaques : oligurie.

Lagrave).

 b. Après les attaques : 1º polyurie de règle (Charcot, Fernet); 2º albuminurie; 3º glycosurie (Labadie-Lagrave).

IV. MIGRAINES.

1° Polyurie (Labadie-Lagrave); 2° diminution de l'ensemble des éléments fixes; 3° diminution de l'ensemble de l'urée (Méhu).

Cinquième groupe. - Système cutané.

DEATI

- A. Impetigo: 1º augmentation de l'urée; 2º augmentation de l'acide urique; 3º diminution des chlorures (Benecke).
 - B. Ichtyose, urines variables en quantité (Nayler, Mapothier).
 - C. Prurigo: augmentation des chlorures (Brueff).
 - D. Eczéma : augmentation des sulfates (Beale).
- . E. Lèpre : 1º diminution de l'urée ; 2º diminution de l'acide urique (Milton).
- F. Pemphigus: a. forme simple: 1º diminution de l'urée; 2º diminution des chlorures (eczéma, même suppression).
 - b. Forme hémorrhagique : 10 albumine ; 20 sang.
 - G. Urticaire : albuminurie (fréquente, Labadie-Lagrave). H. Sclérodermie : albuminurie (par néphrite interstitielle
- concomitante, Leube).

 I. Sclérémie : 1º polyurie ; 2º glycosurie (Labadie-Lagrave).

 J. Chéloïde : 1º polyurie ; 2º glycosurie (parfois) (Labadie-

DEUXIÈME SÉRIE. — MALADIES GÉNÉRALES.

Premier groupe. — Alterations du sang.

4º Augmentatiou de l'urée (Leube, Grunis, Strümpell, 'Eichhorst); 2º diminution de l'acide phosphorique (Teissier); 3º albuminurie (Labadie-Lagrave).

II. HEMOPHILIE. - PURPURA. - SCORBUT.

10 Hématurie (fréquente, Labadie-Lagrave); 20 albuminurie (cas graves); 30 urines rares; 40 diminution des éléments fixes en général.

III. LEUCÉMIE.

to Augmentation de l'acide urique (Virchow, Franke, Pettenkofer, Voit, Salkowski, Fleischer, Penzoldi); 20 augmentation de l'urde (Fleischer et Panzoldi); 30 augmentation de suifates; 40 augmentation des phosphates (Labadie-Lagrave); 30 diminution de l'ammoniaque (Hallervoden); 60 sang (quand il va hémorrhagie).

Deuxième groupe. - Maladies infectieuses.

Caractères généraux des urines fébriles (v. p. 57).

I. MATARTA

1* Volume ; abondante pendant le stade de frisson (augmentation de la pression artórielle), faible pendant le stade de chaleur, rare pendant le stade de sueur; 2º augmentation de l'urfe; 3º augmentation des matériaux azolés, surtout pendant la période apyrétique (Traube, Jachinann, Zimmermann, Moos, Redenbacher, Ranke, Uthe, Sidney-Ringer, Chalvet, Frankel); 4º augmentation pendant l'acces (Harmonod, Hasthausen, Rosenstein); 5º chlorures variables (Sidney-Ringer, Vogel, Frankel, Hovitz, Harmond, Uthel); 6º (Hoyosurie variable (Burdel, Lensberg, Sogen); 7º albuminarie (Leube, par complications résales, néphrite interstitielle ou rein amyloide).

II. FIÈVRE ICTÉRO-HÉMATURIQUE.

Hémoglobine ou hématurie, quelquefois pigments biliaires, quelquefois cylindres hyalins ou granuleux par ecchymoses réualts (Tourette, Béranger-Féraud, Pellarin, Fromrerinas, Labadie-Lagrave).

III. TYPHUS.

A. Fièvre jaune : to urines fébriles au début; 2º ensuite pigments biliaires; 3º pur sang; 4º cylindres granulo-graisseux; 3º albuminurie; 6º diminution de l'acide phosphorique; 7º diminution extrême de l'urée (Labadie-Lagrave).

B. Typhus exanthématique: a. Premier septénaire: 1º urines rares; 2º foncées; 3º diminution extrême de l'urée; 4º augmentation de l'acide urique; 3º albuminurie (Labadie-Lagrave).

- b. Deuxième septénaire : diminution de l'urée (Anderson, Rosenstein et Werfinge).
- c. Crises : 4º augmentation de l'acide urique : 2º augmentation de l'acide phosphorique; 30 augmentation des chlorures.
- C. Fièvre typhoïde. Nous ne saurions mieux faire que d'emprunter à M. A. Robin ses remarquables syndromes urologiques de la dothiénentérie : ils constituent ce qu'il y a de plus complet et de plus parfait en la matière,
- a. Fièvre typhoïde commune de movenne intensité; a. Périodes d'auament et d'état : 10 Couleur. - Bouillon de bœuf à reflets rougeatres et verdatres.
 - 2º Aspect et consistance : Urine trouble, moins fluide qu'à l'état normal
 - 30 Quantité : moyenne, 1038cc; formes bénignes 1450cc,
 - 40 Densité : moyenne 1024 ; formes bénignes 1021,3.
 - 50 Eléments fixes : moyenne 52,30 ; états bémins 50,54.
 - 60 Odeur : urineuse fade To Reaction très acido

 - 8º Sédiments : rares (16 p. 100 des urines).

Par ordre de fréquence : urate d'ammoniaque, urate de soude, acide urique, flocons purulents, graisse, phosphate ammoniaco-magnésien, sang, indigo, cylindres.

- 90 Mucus: toujours augmentation.
- 100 Urée : moyenne 25 grammes (état), plus élevée (augment).
- 11º Acide urique : variable.
- 120 Matières extractives. Augmentation : moyenne 20-23 grammes.
 - 430 Albumine : constante mais rarement abondante.
 - 140 Suere · iamais
 - 150 Principes minéraux : très diminués, moyenne 6 grammes.
 - 160 Chlorures : très diminués ; movenne 382.70.
 - 470 Acide phosphorique total. Moyenne 187,10 (diminution).
 - 180 Phosphates terreux : très diminués. 190 Sulfates : un peu augmentés.
 - 200 Urohématine : diminuée.
 - 240 Indican: constant, mais inégal.
 - 22º Hémaphéine : 0.

- 230 Uroérythrine: nullement habituelle; quand elle existe, indice de complication pulmonaire.
- 3. Période prémonitoire de la défervescence. Variations uro'ogiques sur la période d'état :
 - to Couleur ; orangée plus ou moins foncée.
 - 20 Consistance: plus fluide.
 - 30 Quantité: augmentée; moyenne 1500°. 40 Densité: abaissée, 1020.
 - No Eléments fixes : augmentés,

 - 60 Odeur : fréquemment herbacée ou fétide. 70 Réaction : moins acide.

 - 80 Sédiments : urates, soude et ammoniaque.
 - 90 Urée : légère augmentation.
 - 10º Matières extractives : légère augmentation.
- 140 Albumine : oscillations descendantes (formes graves) ; disparition (cas bénins).
- 120 Chlorures : augmentation faible.
- 430 Phosphates terreux : augmentation.
- (40 Erohématine: normale.
- 130 Indican : diminution.
- γ. Période de défervescence.
- 10 Couleur : orangée.
- 2º Quantité: movenne 121300 (en proportion directe de la gravité du cas).
 - 30 Densité: diminution (?), 1019,9.
 - 40 Matériaux solides : augmentation 53sr,40.
 - 50 Odeur : fétide, herbacée, ammoniacale, de marée,
 - 60 Réaction : alcaline
- 7º Sédiments : jamais oxalate de chaux, ni acide urique : souvent sang, pigments.
 - 80 Urée: diminution 20ss,80.
 - 90 Acide urique : diminution.
 - 10º Matières extractives: variables.
- 110 Albumine : augmentation légère au début, décroissance rapide à la fin.
- 12º Matières minérales : augmentation 12 grammes.
 - 130 Chlorures: augmentation 757,20.
 - 140 Acide phosphorique : augmentation.

très mobile

- 150 Phosphates terreux : augmentation.
- 160 Sulfates : diminution.
- 470 Urohématine : normale.
- 480 Indican : plus rare et moins abondant.
- 190 Urocrythrine: quelquefois.
- 8. Période prémonitoire de la convalescence.
- Variations sur la période précédente: 4° Volume, augmentation: 2º Matériaux fixes, augmentation.
 - s Période de convalescence.
- 1º Couleur : rouge pâle, jaune pâle, aqueuse, normale.
- 2º A spect et consistance : trouble, devient claire peu à peu.
- 3º Quantité : 1591 centimètres cubes en moyenne, tendance à la polyurie.
- 4º Densité : 1047,8 (normale).
 - 5º Matériaux fixes : légère augmentation : 56sr, 29.
- 6º Odeur : celle de la défervescence, plus odeur sulfureuse, odeur normale après reprise de l'alimentation.
- 7º Réaction : alcaline fixe transitoirement, alcaline ammoniacale.
- 8º Sédiments: plus rares et les mêmes que précédemment, quelques cristaux d'oxalates de chaux et d'acide urique. 9º Mucus : augmenté.
- 40° Urée : moyenne 16,25 en diminution, normale après alimentation.
- 11º Acide urique : légèrement faible.
 - 12º Matières extractives : en diminution.
 - 43º Albumine: 0, sauf les cas d'alimentation prématurée.
- 44º Principes minéraux : movenne 18sr, 30 (augmentation relative et absolue).
- 15° Chlorures: moyenne 14 grammes (augmentation absolue et relative considérable).
 - 16º Acide phosphorique total : état normal.
 - 17º Sulfates : diminution absolue et relative.
 - 48º Urohématine : normale.
 - 19º Indican : rare au début et bientôt nul.
 - 20º Uroérythrine : augmentée.
 - b. Fièvres typhoïdes graves. a. Périodes d'augment et d'état.

- 1º Couleur : bouillon cru, prédominance des reflets rouges et verts.
- 2º Quantité : 1024 centimètres cubes en moyenne.
 - 3º Densité: 1022 grammes.
 - 4º Matériaux fixes : 51 grammes.
 - 5º Sédiments : rares.
 - 6º Hrée: movenne 23st, 70.
 - 7º Acide urique : moins augmenté que dans les formes béni-
- 8º Matières extractives : moins augmentées que dans les formes bénignes.
 - 9º Albumine : fréquente et abondante.
 - 10º Phosphates terreux : diminution.
 - 11º Urohématine : diminution.
 - 12º Indican : très abondant. 8. Période de défervescence.
 - 1º Couleur : ton grenadine.
 - 2º Quantité: Polyurie, 1530 centimètres cubes.
 - 3º Densité: 1017,5 (faible).
 - 4º Matériaux fixes: 5682,50 (en augmentation).
 - 5º Sédiments : assez fréquents.
 - 6º Urée: se maintient: 23gr.20.
 - 7º Acide urique : en diminution sur les périodes précédentes.
 - 8º Matières entractives : en angmentation.
- 9º Albumine : recrudescence au début, décroissance par oscillations à la fin.
 - 10° Phosphates terreux : légère augmentation.
 - 11º Urohématine : augmentation faible.
- . 12º Uroérythrine : en augmentation (signification critique).
- y. Période de convalescence. 1º Couleur : retour à la normale avec persistance longue des
- tons rouges. 2º Quantité: 1685 centimètres cubes (polyurie accentuée).
 - 3º Densité: très faible: 1015.7.
 - 4º Matériaux fixes : 60.43, movenne en augmentation,
- 5º Sédiments : très fréquents (dont hématies par catarrhe des voies urinaires).
 - 6º Hémoglobine : fréquente même en l'absence de sang. 23
 - E. GAUTRELET. Urines.

- 7º Urée : à peu près constante, 22,40.
- 8º Acide urique : variable.
- 9º Matières extractives : retour lent à la normale.
- 10° Albumine : persistante (disparaissant rarement avant le dixième jour).
 - 11º Acide phosphorique total : supérieur à la normale.
 - 12º Phosphates terrcux: augmentation absolue et relative.
 - 13° Urohématine : revenant très lentement à la normale. 14° Indican : variable.
 - 15º Uroérythrine : traces.
 - r. Fièvre typhoïde mortelle. a. Cas généraux :
- 1° Volume : réduit, 922 centimètres cubes en moyenne ; diminution relative sur les formes bénignes.
 - 2º Densitė: 1021.
 - 3º Matériaux fixes : 45.55.
 - 4º Odeur : fade.
 - 5º Réaction : très acide.
 - 6º Sédiments: très fréquents.
- 7° Mucus : très augmenté. 8° Urée : très faible, moyenne 10,67; limites extrêmes 4,86 et
- 21 grammes.
 9° Acide urique : augmentation.
- 10° Matières extractives : d'autant plus bas que l'état est plus grave; movenne 15 grammes.
 - tave; moyenne 15 grammes.

 110 Albumine: très abondante avec augmentation incessante.
 - 12º Glucose : 0.
 - 13º Matières minérales : basses ; moyenne 4sr, 50.
 - 14° Chlorures : très bas; moyenne 2,50.
 - 15° Acide phosphorique total : très bas.
 - 16º Phosphates terreux : variables.
 17º Urohématine : variable.
 - 18° Indican : constant et abondant.
 - β. Forme advnamique.
- 1° Couleur: bouillon vert glauque, souvent brune aux approches de la mort.
 - 2º Aspect, consistance : trouble, visqueuse.
 - 3º Quantité : très réduite (884 centimètres cubes en moyenne).

- 5º Matériaux fixes : très faible ; 40,95 en moyenne.
- 6º Acide urique : en diminution progressive jusqu'a la mort. 7º Indican : quantité maximum dans cette poussée.
- y. Forme rénale.
- 1º Couleur : rouge sanguinolente (apparence brig(hique).
- 2º Quantité: 1125 centimètres cubes. 3º Densité: 1019.6.
- 4º Matériaux fixes: 52,96.
- 5º Odeur : de pain bouilli.
- 6º Sédiments : constants dont : globules rouges, globules blancs, cylindres, graisse, leucine, tyrosine (Frerichs-Städeler).
 - 7º Piaments biliaires : quelquefois (Griesinger et Lehmann).
 - 8º Hémoglobine : fréquente. 9º Acide urique : faible.
 - 10º Urohématine : rare.
- 41º Indican : constant, mais variable en quantités alternatives.
- δ. Forme thoracique.
 - 1º Couleur : jaune verdatre virant rapidement au rouge.
 - 2º Quantité: 903 centimètres cubes.
 - 3º Densité: 1022.6.
 - 4º Matériaux fixes: 43.21.
 - 5º Odeur : fade généralement, quelquefois aromatique.
 - 6º Sédiments : rares. 7º Acide urique : plus augmenté.
 - 8º Urohématine : généralement normale.
 - 9º Indican : variable en quantité. 10º Urobiline, uroéruthrine : assez fréquents.
 - . Forme ataxique.
- 1º Couleur : jaune foncé à reflets bruns rouges.
 - 2º Acide phosphorique total : légèrement augmenté.
- 3º Phosphates terreux : augmentation sensible (sauf le cas de diarrhée abondante).
- 4º Urohématine : en diminution notable.
- 50 Indican · très abondant.
- d. Fièvre typhoïde à marche anormale, a. A allure inflammatoire (comme une affection a frigore) (débuts).
 - 1º Couleur : ambrée plus ou moins rouge.

- 2º Aspect : réfringent.
- 3º Sédiments : fréquents (urate soude, urate d'ammoniaque).
 - 4º Uréc : plus abondante que dans la forme bénigne.
- 5° Acide urique : très augmenté.
- 6º Matières extractives : moyennes.
- 7º Albumine : fréquente mais faibles traces.
- 8º Urohématine : normale ou un peu augmentée.
- 9º Indican : constaté mais faible.
- β. A allure grave rapidement calmée.
- 1º Couleur : bouillon de bœuf à reflets rouges.
- 2º Quantité: assez diminuée.
- 3º Acide urique : très abondant.
- 4º Albumine: abondante au début, mais diminue rapidement. 5º Acide phosphorique total : à peu près normal quoique un peu faible.
 - 6º Phosphates terreux : augmentation.
 - 7º Indican : constant et abondant
- e. Réversion de la fièvre typhoide. a. Syndrôme prémonitoire de la rechute.
- 10 Matériaux fixes : n'ont pas augmenté régulièrement comme il convenait à la période de convalescence.
 - 2º Réaction : acide
 - 2º Reaction : acide.
 3º Acide urique : augmentation.
 - 4º Albumine : persistante.
 - 5º Indican : persistant.
 - β. Syndrôme de la réversion.
 - 1º Couleur : orangé revenaut aux tons verdâtres. 2º Quantité : décroissance rapide de la polyurie de conva-
- lescence.

 3º Matériaux solides : s'abaissant de plus en plus, moyenne
- 38,80.
 40 Matières organiques : très basses.
- 5° Urohématine : d'autant plus en décroissance que la rechute est plus grave.
- 6º Indican : d'autant plus abondant que la réversion est plus sérieuse.

Troisième groupe. - Fièvres éruptives.

I. ÉRYSIPÈLE.

A. Période d'état : 4° urines rares, 2° augmentation de l'urée, 3° diminution des phosphates (Labadie-Lagrave), 4° albuminurie fréquente (Dacosta).

B. Convalescence : augmentation des phosphates.

II. ROUGEOLE,

4º Urines rares, 2º augmentation de l'urée, 3º diminution des phosphates, 4º diminution extrême des chlorures, 5º albumine fréquente (néphrite) (Labadie-Lagrave).

III. RUBÉOLE.

Albuminurie fréquente (Emminghaus) (néphrite).

IV. VARIOLE.

4º Urines rares, 2º augmentation de l'urée, 3º diminution des chlorures, 4º diminution des phosphates, 5º albuminurie fréquente (néphrite) (Labadie-Lagrave).

V. SCARLATINE.

4º Urines rares, 2º augmentation de l'urée, 3º diminution des chlorures, 4º diminution des phosphates, 5º albumine (néphrite), 6º hématurie, 7º ou hémoglobinurie (Labadie-Lagrave).

Quatrième groupe. — Maladies contagieuses.

I. DIPHTÉRIE.

Hémoglobinurie (parfois) (Labadie-Lagrave).

II. SYPHILIS.

4º Indican, 2º albuminurie (parfois par dégénérescence amyloïde rénale), 3º diminution de l'ensemble des éléments fixes, 4º diminution de l'acidité (Labadie-Lagrave).

HI MORVE.

Albuminurie parfois (Labadie-Lagrave).

IV BAGE

4º Urine peu abondante, 2º albuminurie (rare), 3º sang (rare) (Labadie-Lagrave), 4º glycosura (quelquefois), 5º diminution relative de l'acide urique, 6º diminution relative de l'acide phosphorique (par rapport à l'urée), 7º granulations graisseuses, 8º vibrions, 9º bâtonnets, 40° corpuscules arrondis (A. Robin).

V. TRICHINOSE.

 $4\,^{\rm o}$ Urine variable en quantité (Knoll, Friedreich, Leube), $2\,^{\rm o}$ albuminurie, fièvre (Leube), $3\,^{\rm o}$ acide sarcolactique (Simon et Wibel).

Cinquième groupe. - Fièvres.

Les caractères généraux des urines fébriles, d'après Labadic-Lagrave, sont :

4º Volume: diminution pendant la fièvre (à l'exception du frisson de la fièvre intermittente: fièvre éphémère, augmentation au moment de la défervescence).

2° Couleur : foncée, variant du jaune foucé au rouge.

3º Réaction : très acide. 4º Densité : forte.

5º Urée : augmentation.

6º Acide urique : augmentation.

7º Acide phosphorique: augmentation absolue, diminution relative par rapport à l'azote pendant la fièvre; augmentation relative à l'azote pendant la convalescence.

8º Acide sulfurique : augmentation pendant la flèvre, diminution pendant la convalescence.

9º Chlorures : diminution.

 $10^{\rm o}~Soude$: diminution pendant la flèvre, augmentation à la convalescence.

 $14 ^{\circ}$ Potasse : augmentation pendant la flèvre, diminution pendant la convalescence.

12º Chaux : diminution pendant la fièvre.

13º Acide carbonique : augmentation.

14° Hémoglobine : peut s'y rencontrer.

15° Albumine: peut s'y rencontrer.

Sixième groupe. - État puerpéral.

I, GROSSESSE.

Bien que l'état puerpéral soit en réalité réellement physiologique, comme il crée néammoins à la femme certains troubles assimilatifs et circulatoires passagers que l'examen de l'urine permet de constafer, et aussi pour ne pas créer une nouvelle dirision, nous la décrirors à la fin des maladies aigués.

D'après Tarnier et Chantreuil, on trouve dans la grossesse des urines possédant les caractères suivants :

- 10 Volume : augmentation. 20 Réaction ; acide faible ou neutre.
- 3º Densité : faible.
- 40 Eléments fixes : diminution.
- 3º Urée : diminution.
- 7. Créatinine : diminution.
- 8º Phosphates : diminution.
- 9. Sulfates : diminution.

It's Kyesténie: quelquefois, par destruction de l'acidité organique, formation de syntonines (alcali-albumines), et dépôt sous forme de mouses crêmeuse de ces syntonines mélées à des phosphales letreux et ammoniaco-magnésiens ainsi qu'à des vibrions.

- 12º Glycosurie : parfois.
 - 13º Lactosurie : parfois.

Nous ajouterons : pigments biliaires, traces (parfois).

II. PARTURITION.

- 10 Volume : augmentation.
- 2º Densité : faible (Labadie-Lagrave).
- 30 Urée : diminution.
- 4º Chlorures : diminution (Quinquaud).

5° Sulfates : diminution.

6° Phosphates: diminution (Winckel, Kleinwächter).

III. ALLAITEMENT.

1º Densité: augmentation (Quinquaud).

2º Lactosurie : (Labadie-Lagrave).

BIBLIOGRAPHIE

En dehors de quelques ouvrages anciens ou 'peu connus, ou trop importants pour ne pas être cités, nous n'enumérerons ici que les travaux parus depuis les quinze dernières années.

Pour les temps anciens et pour le moyen âge, nous renvoyons au Traité des maladies des reins de Rayer, pour le commencement du xixé siècle, nous conseillons de se reporter aux articles Reixe et Unixes des Dictionnaire de médecine et de chirurgie pratiques et Dictionnaire envelopédique des sciences médicales.

- ABELES. Présence du sucre dans l'urine à l'état normal (Pharm. Zeit., 1879, p. 49). ABONNEL. — Examen chimique d'un sédiment urinaire formé en
- grande partie de silice (Lyon méd., 21 juin 1886).

 ADAMKIEWICZ. Réaction colorée de l'albumine (Archiy f. Pharm.,
- 1876, p. 82). ADAMS. — Détermination quantitative du glucose : procédé Johnson (Med. News. 7 mai 1888).
- Aducco. Sur l'existence de bases toxiques dans les urines physiologiques (Arch. ital. de biol., nº 2, 1888). — La réaction de l'urine et ses rapports avec le travail musculaire (Arch. ital. de biol., nº 3, 1888).
- ALMEN. Réactif pour la recherche du sucre (Deut. med. Zeit., 1887, p. 602). ALT. — Recherche du mercure dans l'urine (Deut. med. Woch., 1886,
- p. 732).

 ANCHISI. De la diazoréaction de l'urine (Gaz. d'ospit., n° 79).

 ANNESSENS. Présence de l'alcantone dans l'urine d'un malade at-
- ANNECESSENS. Presence de l'alcaptone dans l'unite d'un maiane atteint d'anévrysme (Journ. de pharm. d'Anvers, 1882). ANNUSCHATT. — De l'élimination du plomb par les urines dans l'intoriestion estumine d'anchie f. oro. Destr. D. Dansen. 1890. — 9611.
- toxication saturnine (Archiv f. exp. Path. u. Pharm., 1879, p. 261).

 APÉRY. Présence de l'uroglaucine dans l'urine des scarlatineux (Arch. de pharm., 1886, p. 102).

ARNOZAN ET FERRÉ. - Action des lavements d'acide sulfhydrique sur le foie (Arch. de pharm., 1887, p. 500),

ARTRALD ET BUTTE. — Pathogenie du diabète (Archiv. de Physiol., 1887). — Effets de la faradisation du pnoumogastrique droit sur la sécrétion urinaire (C. R. Soc. blol., dec. [1887). — Influence des neris vagues sur la sécrétion urinaire (Soc. de biol., 5 mai 1888). ARTRO. — Sur la lactosurie (Rivista clinica e terapeullea, 1886,

p. 456).

AUBERT. — Do l'examen des urines au point de vuo microbien (Lyon

médical, 18 sept. 1888).

BANATRALA. — De l'emploi du sozyglum jambolanum contre le diabète

sucré (The London medic., 1884).

BARBACCI. — Hémoglobine dans la chlorose (Lo sperimentale, 1888).

BARONE. — Peptonurie puerpérale (Annali di ostetricia e ginecologia, 1887, p. 202). BAUMANN. — Sur les combinaisons aromatiques dans l'urine et la

fermentation putride dans l'intestin (Zeit. f. physiol. Chem., 1885, p. 123).

BAUMANN ET PREUSSE. — Sur la couleur noire de l'urine après in-

jection d'acide phénique (Arch. für Anat. u. Physiol., 1878, p. 245). BAYER. — Sur l'acide anthropocholique (Deut. med. Zeit., 1880, p. 340). BEALE. — De l'urine, des dépôts urinaires et des calculs. Trad.

BEALE. — De l'arme, des dopts urmaires et des calculs. Trad. A. Ollivier et G. Bergeron, Paris, 1865. BEALME. — Essai d'études spectrales de l'urine dans divers états pa-

thologiques. Thèse, Paris, 1879.

BEAUNIS. — Physiologie humaine, 3° édition, Paris, 1889.

BEAUREGARD ET GALIPPE. — Guide pratique pour les travaux de micrographie, Paris.

Beauvais (de). — Du défaut d'élimination des substances odorantes par les reins dans la maladie de Bright (C. R., 1858). — De la balanite, de la balano-posthite parasitaire et du phimosis symptomatique du diabète (Gazotte des hôpitaux).

BENOIT. — Sur la recherche de l'acctone dans l'urine (Arch. de pharm., 1886, p. 293).

BÉRAG. — Rapports de l'azote de l'urée et de l'azote total de l'urino (Bull. méd., 6 juillet 1887).

Bernard (Claude). — Notes sur une nouvelle espèce d'anastomoses vasculaires (Archiv. de Méd., 1850, p. 300). — Leçons de physiologie expérimentale. Paris, 1855-56.

Berthelot et Jungfleisch. — Éléments de chimie organique, Paris.

BEUGNIES-CORBEAU. — Application à l'uréomètre des formules précises servant à évaluer les volumes gazeux et simplification de ces formules (Rull. de thérap.; nº 9, 1885). — Les albumines urinaires (Rev. hebd. de thérap. génér. et therm., 1885). — Thérapeutique rationnelle et expérimentale de la maladie de Bright (Rev. hebd. de thérap. gén. et therm., 1886). Regizinges, — Ouelques remarques sur l'administration de la santo-

nine (Med. Wiestnick, no 10-11, 1884).

BIANCHI. — Nouvelle méthode pour la recherche de la substance indicogène des urines (Riv. clin. e terap., sept. 1885).

BILTZ. — Recherche du sucre (Zeit. f. analyt. Chemie, 1877, p. 24). BINET. — Étude sur la polyarie de la convalescence des maladies aigués (Rev. méd. de la Suisse romande, 1866).

BIZZOZERO. - Manuel de microscopie clinique, 1888.

BLANQUINQUE. — Le traitement du diabète sucré (Rev. de clin. et de thérap., 1886, 2 janv.).
BLAREZ ET DENIGES. — Dosage de l'acide urique par le permanya-

nate de potasse (C. R., 14 mars 1887).

BLUM. — Sur la recherche de l'albumine par l'acide métaphospho-

rique (Chemik. Zeit., 1887, p. 127).

BOA. — Emploi thérapeutique de l'hippurate de soude (Rép. de pharm.,

1884, nº 4).

BOHLAND. — Détermination do l'azote dans l'urine (Arch. de pharm.,

1886, p. 357).

BORNTRAEGER. — Recherche de l'acide salicytique dans l'urine (Zeit.

f. anal. Chemie, XX, 1887).
BOUANT (E.). — Nouveau Dictionnaire de chimie. Paris, 1889, art. Urine.
BOUGHARD (Ch.). — Alcaloides dans les urines de queiques maladics

infectieuses (C. R. Soc. biol., 1882, nº 10). — Maladies par raientissement de la nutrillon. Paris, 1885. — Sur la toxicité de l'urine (C. R., 22-29) mars 1889). — Causse des variations de, la toxicité de l'urine (Arch. de pharm., 1886, p. 255). — Elimination par les urines des matières solubles et vaccinances sécrétées par les microbes (C.

R., 4 juin (1887). — Maladies par auto-intoxications. Paris, 1888. — Action des injections intraveineuses d'urine sur la calorification (Arch. physiol., fév. 1889). — Influence de l'abstinence, du travail musculaire et de l'air comprimé sur les variations de la toxicité erriadre (Acad. Sc., 17 mai 1886).

urmaire (acad. sc., 17 mar 1989).
BOUCHARDAT. — Procédé de dosage du sucre par la chaux (Formulaire médical).

BOUGAREL. — Sur la mousse des urines sucrées (Soc. émul., 1875). — Urine visqueuse non albumineuse (Soc. émul., 1875). — Sur lo précipité que produit l'acide azotique dans certaines urines non albumineuses (Soc. émul., 1876).

BOUILLET. - Recherche de l'hématine dans une urine (Arch., de pharm., 1887, p. 295).

Bourgo in. - Art. Urines, in Dict. encycl. sc. med.

BOURQUELOT ET TROISIER. — Assimilation du sucre de lait (Soc. biol., 23 fév. 1889).

BOUVET. — A propos du dosage de l'urée (Arch. de pharm., 1887, p. 296).
BOVET ET GAUTRELIET (E.). — Observation sur un cas d'empoisonnement

par le chlorure de zinc en solution acide (Rép. pharm., nº 4, 1876). BOYMOND. - De l'urée. Thèse de l'École supérieure de pharmacie de Paris, 1872. - Sur l'acide phosphoglycérique dans l'urine (Arch. de Pharm., 1886).

BRETET. - Observation sur l'analyse des urines (Rép. pharm., nº 5. 1879). - Recherches sur l'élimination de l'acide urique (Rép. pharm., nº 3, 1883). - Recherche de très petites quantités d'albumine dans l'urine (Rép. pharm., no 1, 1884). - Nouvelles observations sur les urines alhumineuses (Rép. pharm., nº 3, 1884). - Observation d'un cas de cystinurie (Rép. pharm., nº 6, 1884). — A propos de l'alimentation des diabétiques (Arch. de pharm., 1886. p. 31). - Notes d'urologie (Journ. conn. med., 1886). - Du rapport

azoturique dans le diabète (1888). Breusing. - Sur le ferment de l'amidon dans l'urine humaine (Arch.

f. ges. Physiol., 1888, p. 137).

BRIEGER. - Recherches sur l'acide kynurique (Zeit. f. physiol. Chemie, 1880). - Sur un cas de chylurie (Zeit. f. physiol. Chemie, 1881). - Sur la préparation de l'acide sulfovinique de l'urine (Zeit. f. physiol. Chem., p. 311, 1884).

BRIGNONE. - Sur l'état et le dosage du chlore dans l'urine (Arch. de pharm., 1886).

BRISSAUD. - De l'intoxication urémique (Gaz. hebd., fév. 1888). BRUCKE. - Observation sur l'emploi du rouge de Congo comme indi-

cateur de l'acidité de l'urine (Monat. f. Chemie, 1888, p. 54). BRUNEAU. - Sur l'élimination du ferrocyanure de potassium (Soc.

émul., 1880). - Recherche de la morphine dans l'urine (Rép. de pharm., 1881, nº 2), BUCHNER. - Sur la recherche du sucre dans l'urine (Chemik. Zeit.,

1884, p. 945). BUDDE. - Détermination quantitative du glucose (Arch. f. ges. Physiol., 1888, p. 137).

BURCSKARDT. - Globuline du sérum du sang (Chemical News, 1887.

BUROT. - Variation des chlorures de l'urine dans les maladies (Assoc. franc., Rouen, 1883).

BYASSON. - Étude sur les variations de l'urée. - Composition de l'urine d'un enfant atteint de paralysie pseudo-hypertrophique de Duchenne (Soc. de thérap., 1880).

CAHN ET MÉRING. - Recherche des acides libres et plus spéciale-'ment de l'acide chlorhydrique dans le suc gastrique (Journ, Pharm. de la Soc. lorraine, mai 1887). CAILLOT DE PONCY ET LIVON. - Recherches sur la localisation de

l'arsenic dans le cerveau (Rép. de pharm., nº 7, 1879).

CALLAMAND. - Du rôle de l'eau dans la nutrition. Paris, 1881. CAMERER. - Azote de l'urée et azote total dans l'urine humaine (Zeit.

f. Biolog., 1888, p. 306).

CAMPANO. — Dosage volumétrique de l'urée (Gazzetta chimica ital., 1887, p. 137). CARETTE. — De la recherché de l'albumine dans les urines par le pro-

CARLES. — Principes sulfureux de l'urine (Arch. de pharm., 1886, p. 192).

CARLES. — Principes sulfureux de l'urine (Arch. de pharm., 1886, p. 192). — Urines phosphatées faussement albumineuses (Journ. de

pharm. XIII, 1866).

CASAMAJOR. — Absorption du sucre par le charbon animal (Berichte des deutscher Chem. Gesel., 1880, p. 583).

CASSELMANN. — Traité de l'analyse des urinos. S.-Pétersbourg, 1868.
CAZEMEUVE. — Des erreurs possibles dans l'emploi de l'acide nitrique
pour caractériser les pigments biliaires (Tribune médicale, 1876).
CAZEMEUVE ET HUGOUNENG. — Du dosage de l'azote total de l'urine

(Lyon médical., 3 juin 1888).

CAZIN. — La spectroscopie. Paris, 1878.

GELLA (Della). — Réaction de l'acétanilide; sa recherche dans les

urines (Journ. de pharm. et de chim., maí 1877). CRENUSATO. — De la recherche de l'indican, et de sa valeur séméiotique (Riy. clin. e terap., 1887).

CHALME. — Dosage rapide du chlore dans l'urine (Rép. de pharm., n° 10, 1885).

CHAMPIGNY. - Analyse d'un calcul du rein (Soc. de pharm., 5 avril 1882).

CHAPUIS. — Précis de toxicologie, 2º édition, Paris, 1889.

CHAPPENTIER (Alph.) ET BUTTE. — Urémie expérimentale: influence

sur la vitalité du fœtus (Congrès méd. de Washington, 1888). — Traité des accouchements. 2º édition. Paris, 1889.

CHARRIN. — Les substances toxiques de l'urine (Journ. de pharm. et de chim., 15 sept. 1887).

CHARRIN ET ROGER. — De la toxicité urinaire chez divers animaux; influence du jeûne et du régime lacté (Soc. de biol., 12 mars 1888). CHARRIN ET RUFFIER. — Elimination par les urines des matières solubles vaccinantes fabriquées par les microbes en dehors de l'organisme (Soc. de biol., 13-20 oct., 1888).

CHASTAING. — Sur un mode de formation possible des calculs d'urate de chaux (Soc. émul., 1880). — Recherche du sang dans l'urine (Rép. de plarm., nº 1, 1883).

rine (Rep. de pharm., nº 1, 1883). Chautard. — Recherche de l'acétone dans l'urine (Arch. de pharm.,

1886, p. 213).
Chauveau et Kauffmann. — Rôle du glycogène et de la glucose dans la calorification animale et le travail des organes (C. R., 13 déc. 1886).

CHIBRET. — Action du régime lacté sur l'excrétion de l'urée (C. R., 31 mai 1887).

CHIERET ET IZAM. — Nouveau mode d'emploi du réactif iodo-ioduré dans la recherche des alcaloides et leucomaines de l'urine (Arch. de pharm., 1886, p. 299). CROPIN (Mile G.). — Élimination de l'acide salicyliquo suivant les divers états du rein. Thèse. Paris, 1889.

divers états du rein. Thèse. Paris, 1889.

CONNYEIN ET ZUNYZ. — Recherches sur les échanges liquides entre
le sang et les tissus dans les diverses conditions physiologiques
et pathologiques (Archiv f. die. ges. Physiol., XLII, nº 303).

COIGNARD. — La réduction des sels de cuivre par l'urine n'indique pas absolument la présence du sucre (Union médicale, 1885, nº 70).

COLOSANTI. — Les changements de forme de l'acide urique (Zeit, f.

COLOSANTI. — Les changements de forme de l'acide urique (Zeit. f. Biol., 1886, p. 209). Cook (A.). — Nouvelle méthode de dosage de l'acide urique (British

COOK (A.). — Nouvelle méthode de dosage de l'acide urique (British med. Journ., avril 1882).
CORNILION. — Rapport du diabète avec l'arthritis et de la dyspensie

avec les maladies constitutionnelles. Paris, 1878.

CORNILLON ET MALLAT. — Diagnostic du diabète acétonhémique

COBBILLON ET MALLAT. — Diagnostic du diabète acétonhémique (Arch. de pharm., 1886, p. 225). COTTON (S.). — Le rôle du plâtre dans la conservation des vins; pré-

sence de sulfates dans les vins plâtrés (Rép. de pharm., nº 9, 1883). GOULIER. — Des indications données par les aréomètres dans les urines grasses (Soc. de obarm., 1876).

CRESSWELL. — Modifications à la liqueur de Fehling pour la détermination du sucre dans l'urine (Brit. med., Journ., 1886, p. 517). CYR. — De la mort subite ou très rapide dans le diabète (Archiv. de méd., déc. 1877 et janv. 1878).

Dahmen. — Sur un nouveau pain à l'usage des diabétiques (Berlin, klin, Wochen, 1880, p. 39).

DANLOS. — Urine normale et pathologique (Nouv. Dict. de médecine et de chirurgie prat. de Jaccoud. t. XXXVII).

DANNECY. — Sur un nouvel uréomètre (Bull. de thérap., 15 mai 1886).

DARIER. — Recherches cliniques et expérimentales sur les variations

de l'urée dans certaines maladies. Thèse, Paris, 1883.

DASTRE. — Recherches sur les ferments hépatiques (Archiv. de physiologie, 1er janv. 1888).

DASTRE ET ARTHUS. — Relations entre la fonction glycogénique et la fonction biliaire. Glycogénie dans l'ictère (Soc. de biol., 30 mars 1889).

DASTRE et LOYE. — Le lavage du sang (Archiv. de physiol., 1888, 15 août).

Debout D'Estrées. — Oxaluria. New-York, 1889.

Paris, 1885.

DEBOVE. — Diagnostic du cancer de l'estomac par l'examen chimique des sécrétions de cet organe (Soc. méd. des hôp., 1886, 29 déc). DEHENNE. — Injection hypodermique d'ergotinine dans le diabète (Archiv, de pharm., 1886, p. 365).

DEICHMULLER et TOLLENS. - Sur la coloration rouge de l'urine par le

perchlorure de fer (Annal. der Chemie, Band 200, 1881).

DELEFOSSE. — Procédés pratiques pour l'analyse des urines. 3° édition,

- DEMELLE. Recherche des pigments biliaires par le violet de Paris (Soc. émul., 1876).
- (Soc. émul., 1876).

 DENIGÉS. Nouvelle réaction de l'acide urique (Bull. de la soc. de
- pharm. de Bordeaux, juin 1888). DIGK. — Valeur diagnostique de l'urobiline en gynécologie (Archiv f. gynéc., 1884).
- DIDELOT. Recherche de l'acide urique (Rép. de pharm., n° 23, 1876).

 DIBULAFOY. Contribution à l'étude du mai de Bright. Paris, 1885.
- DOCKMANN. Observations critiques et recherches expérimentales sur l'albumine (Archiv. de physiol., 1896. p. 175). DOMERGUE. — Sur l'élimination de l'acide borique par l'urine (Rép.
- de pharm., nº 7, 1881).
- Doyen. Bactéries de l'urine (Acad. de méd., 2 avril 1889).
- Drechsel. Chlorure de palladium et d'urée (Journ. f. prat. Chemie, 1880, p. 479). Recherche des acides biliaires (Journ. f. prat. Che-
- mie, 1880, p. 45). Dreyfus-Brisac. — Fait d'hémiplégie urémique liée à un œdème
- cérébral diffus (Gaz. hebd. de méd., 20 juillet 1888). Dubug. — Note sur un cas d'anurie calculeuse (Soc. méd. IXº arr.,
- DUBUG. Note sur un cas d'anurie calculéuse (Soc. med. IA° arr., 10 mars 1887). DUBURY. — Modification du procédé de Böttger pour la recherche du
- sucre dans l'urine (Zeit. f. analyt. Chemie, 1881, p. 117).

 DUFOUR (A.). Contribution à l'étude des auto-intoxications des ma-
- DUBOUR (A.). Contribution a l'étude des auto-intoxications des manifestations morbides du surmenage physique. Paris, 1889. DUBOME. — D'une cause d'erreur neu connue dans l'emploi de l'uro-
- densimètre /Bull. de thérap. 1875). Note sur le polarimètre (Soc. de thérap. 27 juillet 1881).
- DUJARDIN-BEAUMETZ. Hygiène alimentaire. Paris.

 DUMONT. Expériences relatives à l'influence du café sur l'excrétion
- de l'urée urinaire (Rev. de méd. de Louvain, juin 1888).
- DUPARD. De certains principes toxiques de l'urine.

 DUBANTY. Note sur les nigments de l'urine.
- EDELFSEN. Réactions des urines pendant l'emploi de la napthaline
- (Berlin. klin. Wochen, 1888, p. 371). EHRMANN. — Sur la toxicité des urines pathologiques. Thèse de Nancy, 1888.
- EKKERT. Étude clinique de l'urine dans les diverses maladics
- infantiles (Tracht., nº 44, 1885).

 ENGEL Nouveaux éléments de chimie médicale et biologique.
- 3º édition, Paris, 1888. ENGEL et KIENER. — Sur les causes de la réaction dite hémaphéique des urines (Soc. de biol., 26 mars 1883).
- des urmes (Soc. de biol., 26 mars 1833). ESBACH. — Dosage pratique de l'urée. 1878. — Urate de soude (Bull. de thérap., n° 3, 1884). — Le diabète sucré. Paris, 1888.
- (Bull. de thérap., n° 3, 1884). Le diamete sucre. Paris, 1995. EYARD et RICHET. — Procédé nouveau de dosage des matières extractives et de l'urée de l'urine (Archiv. de physiol., n° 636, 1883).

EYMONNET. — Dosage de l'acide phosphorique dans les urines par l'azotate d'urane en présence de l'acide benzoique (Rép. pharm., nº 3, 1833). — Décoloration de la liqueur de Fehling par quelques urines (Bull. de la soc. de Pharm. de la Côte-d'Or, nov. 1887).

FALCK. — Sur le dosage de l'urée par l'hypobromite de soude (Archiv f. Physiol., 1881, p. 391). — Pathogénie des phénomènes généraux, accompagnant les troubles de la sécrétion urinaire (Berlin. klin. Wochen., 26 mars 1888).

FAUGHER. — Sur la valeur du réactif de Günzburg (Acad. méd., 21 fév. 1888).

FAVELIER. — Essai sur la toxicité des urines des enfants (Archiv. depharm., 1888).
FEHLING. — Sur l'élimination du chlorate de potasse par le placenta

et par l'urine (Archiv f. gynécol., 1881, p. 286).

Feltz et Ritter. — Injections intra-veineuses d'urine (C. R., 1886,

12 avril).

FERNET. — Maladie de Bright d'origine infectieuse (Soc. méd. hop.,

23 juillet 1888).
FERRAND (E.). — Alde-mémoire de pharmacie. Article Urine, 4º édition, Paris, 1885.

FIELD. - Recherche de l'iode dans l'urine (Chemical News, 1881, p. 109).
FISCHER. - Synthèse de la glucose (Archiv. de pharm., 1888).

FISNER, JUNSOH et GROGGO. — Réactif du sucre dans l'urine (Ann. di chim. med. e pharm., 1887).

FLEISCHER. — Injections intra-veineuses d'urine (Congrès de Wiesbaden, 1885).

FOMIN. — Recherche du mercure dans l'urine (Deut. med. Zeit., 1885).

FOURNIER. — Des variations de l'urée dans quelques maladies fébriles. Thèse de Paris, 1886.

Franchotte. — De l'arbutine dans les maladies des voies urinaires (Scalpel belge, 1885).

Frederici. — Examen des urines contenant des produits morbides et

en particulier du sucreet de l'albumine (Lo sperimentale, 1883, p. 113).
FREDERICO. — Sur l'emploi de la levûre de bière pour la recherche
clinique du glucose dans l'urine (Soc. méd. Gand, 1879).
FRITZ. — Présence de cristaux d'hématoidine dans l'urine (Zeit. f.

klin. Med., 1881, p. 470).
FRUTIGER. — Nouvel uréomètre (Rev. méd. de la Suisse romande,

1886, p. 150).
FUEINI. — Influence des principaux alcaloides de l'opium sur l'élimination journellèse de l'union des l'unions de l'union de l'u

nation journalière de l'urée chez l'homme (Cent. f. deut. med. Wes. 1880, p. 773). FUBINI et SANTAGELO LA SETA. — Influence du citrate de fer sur

l'émission de l'urée (Giorn. dell' Acad. Torino, 1883). FUBINI et SPALLITA. — Influence de l'iodoforme sur l'émission de

l'urée (Giorn. dell'acad. Torino., sept. 1883).

FUGERBRINGER. — Recherche du mercure dans l'urine (Berlin, klin. Woch., 1878). — Recherches expérimentales sur l'absorption et l'action du mercure de l'onguent napolitain (Rép. de pharm., n° 8, 1881).

FUETER-SCHNELL. — Application de l'acide métaphosphorique à la recherche de l'albumine dans l'urine (Corr. f. schw. Aertz., 1° fév. 1883).

GAGLIO. — L'acide lactique du sang et son lieu d'origine (Archiv f. analyt. physiol. et path., 1786, p. 460).

GAMBERINI. - De l'urine dans les dermopathies (Giorn. del mal. ven., n° 3, 1885).

GARCIN. — Étude sur la valeur du traitement de la tuberculose pulmonaire par les inhalations d'acide fluorhydrique. Paris, 1889.

Garnier. — Sur une variété d'albumine de l'urine coagulée par l'acide azotique et redissoute par l'alcool (Journ. pharm. et chimie, 1888). — Dosago de l'azote total de l'urine par l'acide sulfurique (C. R. 197 juin 1888).

GAUDIN. — Note sur la créoline (Bull. de la soc. de méd. prat., 1888). GAUTIR (A.). — Chimie appliquée à la physiologie. Paris. — Ptomaines et leucomaines (Archiv. pharm., 1886, p. 198). — Synthèso de la xanthine (Bull. acad. de mêd., 1883, n° 25).

GAUTIER (L.). — Guide pratique pour l'analyse chimique de l'urine,

des sédiments et calculs urinaires. GAUTRELET (E.). - Observations sur la recherche clinique du glucose par la liqueur de Fehling (Rép. pharm., nº 32, 1882). - Tableau comparatif des réductions opérées par l'urine sur la liqueur de Fehling (Rép. pharm, nº 5, 1884). - Du rôle chimique de la sarkolactine dans la polyurie (Rovue de méd. gén. et therm., 1884). - Contribution chimique à l'étude physiologique de la glycosurie, 1884. -Observation sur un cas de bilharzia homatobia (Union méd., nº 138, 1885). - Fixation et valeur séméiologique du coefficient urinaire (Soc. méd. prat., 20 sept. 1887). - Contribution à la séméjologie urinaire. Résultats analytiques et déductions cliniques (Soc. médico-pratique, 26 mars 1888). - Protéines urinaires (Soc. franç. d'hygiène, 1887). - Contribution à la séméiologie des cystites (Soc. méd. prat., 26 avril 1888). - Documents pour servir à l'étude du traitement de la tuberculose par l'acide fluorhydrique (Pratique médicale, 29 janvier et 5 février 1889).

GAUTRELET (E.) et VIEILLARD. - Uroazotimètre (Soc. de méd. prat., 6 déc. 1888).

GEHRY. - Des ferments de l'urine. Thèse, Berne, 1885.

GEISSLER. — Procédé simple et commode pour la recherche de l'albumine dans l'urine (Ann. de la Soc. méd. chir. de Liège, 1884). GENNES (De). — Étude sur l'actonémie, Paris. 1884.

GEORGES. — De la réaction alcalino des urines survenant dans les conditions physiologiques (Archiv f. exp. Pat., u. Pharm., 1879, p. 156). - Rocherche des peptones dans le sang et les veines (Arch. de pharm., nº 1886, p. 534).

GERGENS. - Action toxique de l'acide chromique (Archiv f. exp. Path. 1877, p. 148).

Gerrard. - Un appareil simple pour le dosage de l'urée (The pharm. Journ., 13 déc. 1884).

GIFFE. - Recherche de la phénétydine (phénacétine) dans l'urine. Thèse, Paris, 1888.

GIOVANNI (DE). - Pepsine et peptogènes dans le traitement du diabète (Arch. de Pharm., 1886, p. 416). GIOVANNINI. - Les micro-parasites de la blennorrhagie uréthrale

(Giorn. ital. dell. mal. ven., 1887).

GREEN. - Sur la léthalbumine (British med. Journ., 1879, nº 10) - Recherches sur les substances réductrices de l'urine (Med. News, 15 avril 1886).

GREHANT et QUINQUAUD. - Recherches sur le lieu de formation de l'urée (C. R., 98, p. 1312). - Recherches sur l'élimination de l'urée (C. R., 2 août 1884). - Note sur l'action de l'urée (Soc. biol., 19 juill. 1885). - Recherche sur les formiates introduits dans l'or-

ganisme (Archiv. de physiol., 1887). GRIFFITH. - La présence de l'albumine, du sucre, de l'acétone et de l'acide diacétique dans l'urine (Med. News, 3 oct. 1886).

GRIMAUX (E.). - Sur quelques réactions de l'albumine (C. R., 98, p. 1336). - Synthèse d'un sucre n'étant pas de la glucose (Rép. de pharm., 1888).

GRIMBERT. - Nouveau procédé d'extraction de l'urobiline de l'urine (Étude sur la polarisation, Concours Gobley, 1888). GROCCO. - Sur la recherche de l'albumine dans l'urine (Ann. di chim.,

1884, p. 76). - Sur la créatinine de l'urine (Ann. di chim. e farm., 1887). GRUNDIES. - Sur la réaction diazobenzoïque dans l'urine de la tu-

berculose (Zeit. f. klin. Med., 1886, p. 364). GRUTZNER. - Sur les ferments de l'urine humaine à l'état normal

(Breslau, ärtz. Zeit., nº 17, 1802). GUARESCHI! - Les ptomaines connues (Ann. di chim. e di farm.,

1887, p. 217). GUBLER. - Le violet d'aniline comme réactif des pigments biliaires

(Journ. de pharm. et de chim., avril 1876). GUERDER et GAUTRELET (E.). - Chlorures alcalins et tuberculose (Soc. méd. prat., 12 janv. 1888).

G - Revue d'urologie pratique (Concours médical, 1880).

GUYON (FÉLIX). - Leçons cliniques sur les maladies des voies urinaires, 2º édition, Paris, 1885. GUYOT. - Note sur une urine « rose » (Rép. de pharm. 1888, p. 94),

HAAS. - Sur le dosage du sucre (Schweizer Woch. f. Pharm., 1883,

XXI).

HABEL of FERNHOLZ. - Nouveau procédé de dosage des chlorures dans l'urine (Bull. gén. de thérap., 1884).

HADELMANN. - Sur la transformation de l'acide quinique en acide hippurique dans l'organisme des mammifères (Arch. f. exp. Path.

u. Pharm., 1879, p. 317).

HAGER. - Recherche de la morphine dans l'urine (Pharm. cent. f. Deut. 1802, p. 344). - Sur la formation de l'iodoforme (Pharm. cent. f. Deut., p. 30). - Recherche de l'acide azoteux, de l'acide azotique, du chlore; épreuve du cornet (Pharm. cent. f. Deut., 1883, p. 389). -Analyse sommaire des urines au moyen du papier à filtrer (Pratique médicale, 13, 1889).

HAIG. - Variations pondérales dans l'excrétion de l'acide urique par l'administration des acides et des alcalis (The journ. of Physiol., 1884, nº 24).

HAMBURGER. - Sur l'élimination du fer par l'urine (Zeit, f. Phys. 1880, p. 248). HAMMARSTEN. - Recherche de l'indican dans l'urine (Upsala Lakar

f. forhandl, 1881, p. 213). HANOT et CHAUFFARD. - Cirrhose hypertrophique pigmentaire dans

le diabète sucré (Rev. méd., 1883, p. 385).

HANOT et SCHAFFMANN. - Sur la cirrihose pigmentaire dans le diabète sucré (Arch. de Physiol., 1886, p. 50).

HARLEY. - De l'urine et de ses altérations physiologiques, étudiées au point de vue de la chimie physiologique et de ses applications au diagnostic et au traitement des maladies générales et locales. Trad. Hayn, Paris. - The urine and its derangements. London.

HARNACK. - Sur les méthodes quantiatives de dosage de l'iode dans l'urine humaine (Liebig's annalen der Chemie, Band 222, p. 213-353). - Sur la recherche de l'iode dans l'urine après emploi de l'iodoforme (Berlin, klin, Woch., 1882, nº 10).

HARRIS. - Sur les agents chimiques qui précipitent les matières al-

bumineuses dans l'urine (St Barth, hosp, Rép., p. 73, 1883). HAY. - Recherches expérimentales sur les réactions des divers sels de cuivre et du sucre de raisin. Quelques preuves certaines de la

présence du sucre dans l'urine (Thérap. Gaz., 1886, p. 160). HAYGRAFT. - Dosage del'acide urique (Zeit. f. anal. Chem., 1887, p. 165).

HAYEM. - Recherches cliniques sur l'urobilinurie (Soc. méd. des hop., 3 août 1888).

HEINTZ. - Combinaison de l'urée avec le chlorure d'or (Liebig's Ann.

der Chemie, 1880, p. 252). HENROT et LAJOUX. - Sur l'urine rouge (Rép. de Pharm., nº 10, 1885).

HERZEN. - Le rôle des microbes dans certaines fermentations (Soc. biol., 1889, 23 fév.). HIELBIG. - Recherche du mercure dans l'urine (Pharm, Zeit, f.

Russland, 1888, p. 455). HINDENLONG. - Recherche et dosage de l'albumine dans l'urine

(Berlin, klin, Wochen., 1888, p. 15).

HOFFMANN. — Procédé pratique pour déceler l'albumine dans l'urine au lit du malade (Monit. de pharm. milit., 1888).

HOFMEISTER. — Sur les substances de l'urine précipitables par l'acide phospho-tungstique (Zeit. f. physiol. Chem., 1881, p. 67). — Sur la lactosurie (Zeit. f. physiol. Chem., 1878, p. 55).

HOPPS-STUER.— Sur la présence de la substance formant l'actions après empoisonnement par l'acide sufficience (26f., f. klim. Mel., 1883, p. 478).— Sur l'urée dans le fois (Zeit, f. physiol. Deut., 1881, p. 389). — Caractères persentant de dissipare les socionaises de l'urine provenant de l'acide chrysophanique et de la santonine (Dee Fortschricht, 1886, p. 330). — Eude sur les substances qui forment l'indige dans l'urine (Zeit, f. physiol. Chem., 1881, p. 179).

de l'organisme (Wien. med. Jarhb, 1888, p. 116).

Huber. — De la tyrosine et de sa présence dans l'organisme (Pharm. Zeit. f. Rüssland, 1877, p. 720).

HUPNER. — Contribution à la chimie de la bile (Jour. f. prat. Chemie, 1880). HUGOUNENCO. — Sur un nouveau procédé de dosage de l'urée

(Monit. scient., 1883).

HUGUST. — Coefficient d'utilisation de la machine humaine. — Dosage de l'urée et de l'azote total de l'urine (Arch. de Pharm., 1886,

p. 157). — Dosage du glucose urinaire (Bull. de la Soc. de pharm. du Centre, 1884).

HULZ. - Sur la cystine (Zeit. f. Biol., XXI, 1884).

INGRIA. — De l'élimination de la thalline par l'urine (Gaz. d'ospit., 1888, p. 54).

JACCOUD. — De l'urémie lente et chronique (Gaz. des hôp., 5 avril 1888). — Néphrite parenchymateuse. Albuminurie rebelle (Journ. de méd. de Paris, 1889, 38 mars). JAFFI. — Sur le précipité produit par picrique dans l'urine normale

(Zeit. f. physiol. Chemie, 1887, p. 291). — Nouvelle réaction de la créatinine (Zeit. f. physiol. Chem., 18881, p. 89). — Présence de la mannité dans l'urine normale d'un chien (Zeit. f. physiol. Chem., 1883, p. 11).

JAILLARD. — Nouvelle méthode de dosage de l'urée (Mém. de pharm. milit., 1876.)

Jasson (Yon). — Sur l'acétonurie (Prag. med. Woch., p. 40). — Sur la présence de l'acide a detique dans l'urine (Zeit. f. physiol., Chem., 1888, p. 451). — La phénylhydraine comme réactif du succe urinaire (Deut. med. Zeit., 1886, p. 50.) — Sur la lipaddurie physiologique (Zeit. f. physiol. Chem., 1881, p. 506). — Manuel de diagnostic des maladies internes par les méthodes chimiques. Trad. Moure. Paris, 1883.

JARDET. - De la présence dans les reins, à l'état normal et patho-

- logique, de faisceaux de fibres musculaires lisses (Arch. de physiologie, 1886, p. 93),
- JENNINGS. Pratical urine Testing.
- JENNINGS. Praucai urme l'esting. JOHANNOWSKY. — De la présence du sucre dans l'urine des accouchées (Pharm. cent. f. Deut., 1881, p. 338).
- JOHN. Sur la recherche de l'albumine dans l'urine (Pharm. Zeit., 1890, p. 110.
- Joinson. Des diverses méthodes pour rechercher le sucre dans l'urine (Brit. med. Journ., 5 janv. 1884).
- JOLLY. Liqueur de Fehling dans l'examen des urines (Arch. de pharm., 1886, p. 291).
- KAHN. De la benzanilide dans les maladies des enfants (Journ. de med. de Paris, 31 mars 1889).
- KALTENBACH. De la présence du sucre dans l'urine des accouchées (Rèp. de pharm., 1881, nº 9).
- KANDER. Sur les substances albuminoïdes du sérum sanguin (Arch. f. exp. Path. u. Pharm., 1887, p. 411).
- KASPAR. De la recherche du sucre dans l'urine (Schw. Woch. f. Pharm., 1882, XX).
- KAST. Sur l'action de quelques composés organiques chlorès dans l'organisme (Zeit. f. physiol. Chem., 1887). — Nature de la substance réductrice qui se trouve dans l'urine après la chloroformisatic (Parile Mis. West. 1989, p. 277).
- tion (Berlin, klin. Woch., 1888, p. 377). Kating. — Note sur les effets produits dans l'urine des enfants par l'ingostion d'une grande quantité de sucre de raisin (Thérap. gaz.,
- 1881, p. 24). KLEN. — Sur un fait singulier de coloration rouge-groseille des urines (Soc. de mêd. de Strasbourg, 1880).
- nes (Soc. de med. de Strasbourg, 1889). Kietz. — Sur l'acide du sucre gastrique (Cent. f. med. Wiss., 1881, nº 50).
- KIRK. L'acide urrhodinique; nouvel acide de l'urine (Anneessens. journ. of Pharm., 1887, p. 971).
- KNOLL. Constitution et mode de formation des cylindres (Prag. Zeit, f. Heilk., 1806, p. 269).
- KNORR. Sur Pantipyrine; nouvel antipyrétique (Pharm. Zeit., 1884, XXIX).
- KOCHLER. Le borocitrate de magnésie comme dissolvant de l'acide urique (Berlin, klin, Woch., 1829, p. 44).
- KOWALSKY. L'acétate d'urane comme réactif de l'albumine (Zeit. f. analyt. Chem., 1887).
- Kraner. Áppareil pour le dosage quantitatif du sucre dans l'urine (Med. News, 22 oct. 1888).
- KREHBIEL. Recherche de la bile dans l'urine (Arch. der Pharm., 1883, XXI).
- KULZ. Sur la recherche du sucre dans l'urine (Zeit. des OEst. Apoth. Vereins, 1877, 342).

KUSSMANOFF. - De la disparition des acides de l'urine par la diète lactée absolue. Dorpat, 1886.

LAACHE. - Guide pratique pour l'analyse des urines.

LAGRANGE. - Sur l'entraînement du glucoso par le précipité plombique (C. R. 1885, p. 96). LALAUBIE (de). - De l'individualité thérapeutique des eaux de Vichy :

leur action sur le processus hémotrophique. Paris, 1879.

LANGGAARD. - Présence de la cholestérine dans l'urine (Arch. f. path. Anat. u. Phys., 1080, p. 545).

LANGLOIS. - Variations dans les résultats des desages de l'urée par l'hypobromite de soude (Soc. émul., 1880, 6 avril).

LAPTSCHINSKY. - Propriétés de l'albumine dialysée (Sitz. akad. d. Wien, 1876, p. 65). LAUBENS (André du). - Traité des crises. Traduction de Cl. Gelée.

1601. LAVRAUD ET BOELD. - Recherche des acides biliaires dans les sécré-

tions des ictériques. LEBAIGUE. - Sur le dosage du glucose par la lumière polarisée

(Bén. de pharm., nº 9, 1882). LECERF. - Faits relatifs aux analyses d'urine (Soc. méd. prat.

5 jany. 1888). LECORCHE. - Traité des maladies des reins et des altérations patho-

logiques de l'urine. Paris, 1875. - Du diabète sucré chez la femme. Paris, 1876. - Traité théorique et pratique de la goutte. Paris, 1884.

LECORCHÉ ET TALAMON. - Traité de l'albuminurie et du mal de Bright, Paris, 1888.

LÉGER. - Sur une urine fluorescente (Rép. de pharm., nº 9, 1883). - Sur un cas particulior de chylurie ; présence d'une caséine dans l'urine (Rép. de pharm., nº 10-11, 1883).

Legg. - Guide pour l'examen des urines. LEHMANN. - Sur la détermination des alcalis dans l'urine (Zeit. f.

physiol, Chem., 1884, p. 508). LEMERY. - Cours de chimie (manuscrit).

LE NOBEL. - Sur une nouvelle réaction d'un terpèno dans l'urine

(Cent. med. Wis., nº 2, 1884. LEO. - Sur les ferments de l'urine dans diverses conditions patholo-

giques (Deut., med. Zeit., 1880, p. 455). Sur la proportion de phosphore incomplètement oxydé contenue

LÉPINE. - Sur l'hémoglobulinurie (Soc. méd. hôp., 27 juil, 1888). -

dans l'urine spécialement dans quelques états nerveux (Acad. sciences, 28 janv. 1884). LÉPINE ET AUBERT. - Sur la toxicité respective des matières orga-

niques et salines de l'urine (Ac. sc., 1885). - Contribution à l'étude de la sécrétion urinaire (Soc. de biol., 16 jany, 1886).

LÉPINE ET PORTERET. - Sur la composition de l'urino sécrétée pen-

- dant la durée d'une contrepression sur les voies urinaires (Monit. pharm., sept. 1888).
 LÉPINE ET GUÉRIN. Sur la provenance du soufre difficilement oxy-
- dable de l'urine (Acad, sciences, 12 av. 1883).
- LÉPINE ET EYMONNET. Acide phospho-glycérique dans l'urine normale et pathologique (Bulletin de la soc. de biol., 1882, nº 31).
- LETULES. Deux cas de cirrhose pigmentaire dans le diabéte sucré (Soc. méd. des hôp., 1885).
- LEUBE. Sur la présence de la paralbumine dans l'urine et sur la néphrozynase (Sitz. d. Phys. Med. soc. zu Erlangen, 1878, p. 112).
- LEWIN. Des calculs préputiaux (Berlin. klin. Woch., 1879). Sur la recherche de l'albumine dans l'urine (Rund. f. Pharm., 1883, p. 548).
- LEYDEN. Présence de cristaux d'hématoïdine dans l'urine d'une femme enceinte (Rép. de pharm., nº 11, 1882). Luvan Eri Alezais. — Recherches sur l'urine des tabétiques (Ass.
- LIVON ET ALEZAIS. Recherches sur l'urine des tabétiques (Ass. franç. Congrès, Toulouse, 1888).

 LOEW. Oxydation des matières azotées par l'oxyde de cuivre am-
- moniacal (Journ. f. prat. Chem., 1878).

 LOMBARD. Le salol, Thèse, Paris, 1887.
- Low. Sur l'origine de l'acide hippurique dans l'urine des herbivores (Journ, f. prat. Chem. 1879, XIX).
- LOWEMEYER. OEuís dans l'albuminurie (Arch. de pharm., 1888, p. 264). LUDWIG. — Démonstration de la présence du mercure dans les substances animales (Rép. de pharm., nº 10, 1882). — Sur l'action du
- borocitrate de magnésie sur les calculs urinaires (Med. chir. Rund., 1888, p. 173). LURAGNE. — Du régime, de l'hygiène et du traitement dans le diabête.
- Vichy, 1879.
- MACÉ. Traité pratique de Bactériologie. Paris, 1888.

 MACQUAIRE. Action du sous-acétate de plomb sur les solutions de
- glucose (Soc. de pharm., 1ez août 1888).

 Magnier De La Source. Recherche qualitative de l'acide urique
- (Rép. pharm. 1875). Dosage volumétrique de l'acide urique (Bullde la soc. chim. de Paris, 1874, p. 292).
 MAIRET ET COMBEMALE. — Action physiologique du méthylai (C. R..
- MAIRET ET COMBENALE. Action physiologique du metalysa (c. R., 24 juin 1887). — Action de la colchicine à doses toxiques ou physiologiques (C. R., 21 fév. 1887).

 MAISON. — Nouveau réactif du glucose dans l'urino diabétique (Giorn.
- di farm., 1885).
 MAIXNER. Sur la poptonurie (Cent. f. med. Wiss. 1879, p. 33).
- Malegor. De la spermatorrhée. Thèse, Paris, 1881.
- MALERBA. Influence de l'allantoïne sur le dosage de l'urée (Arch. de pharm., 1889, p. 225).
- de pharm., 1869, p. 223).

 Mallat et Cornillon. Présence de l'acide sulfocyanique dans
 l'urine (Rép. de pharm., 1884, p. 323).

MALOT. - Titrage de l'acide phosphorique par l'azotate d'urane; suppression de la touche (Monit. scient., mai 1887). - Dosage de l'acide phosphorique par l'azotate d'urane avec la cochenille (Arch. de pharm., 1888, p. 113).

Margiery. - La résorcine en thérapoutique (Rev. de clin. et de thérap., 1er sep. 1887).

Marks. - Sur la sécrétion de l'indigosulfate de soude (Riv. clin. Bologna, nov. 1886).

MARKOWNIKOFF. - Présence de l'acétone dans l'urine des diabétiques (Ann. dor Chem., 1878, p. 362). MARSAULT. - Urine albumineuse non coagulable en présence de

l'acide acétique (Bull, du synd, des pharm, d'Eure-et-Loir, 1887). MARSHALL. - Note sur une substance cristalline de l'urine ayant un pouvoir réducteur supérieur à la glucose (Med. News, 1888).

MARTIN (Sydney). - De la recherche des matières protéiques dans l'urine (Brit. med. Journ., 1884).

Masser. - Nouveau réactif pour déceler la présence de la matière colorante de la bile dans les urines (Arch. de méd. belges, 1879). MAYOR. - Sur la recherche du mercure dans l'urine (Med. Jarhb., 1877).

MEHU. - Méthode d'extraction des pigments d'origine animale (Acad. de méd., 1878). - Sur le dosage de l'urée par l'hypobromite de sodium (Rép. de pharm., nº 9, 1879). - Sur la redissolution des pigments de l'urine en vue de faciliter l'examen microscopique des sédiments urinaires (Journ. de pharm. et de chim., 1883). - Traité de chimie médicale appliquée aux recherches cliniques. 2º édition, 1878. - L'urine normale et pathologique et les calculs urinaires. Paris, 1880. - Nouvelle méthode d'extraction de la matière grasse des urines ditos chyleuses. Moyen de faire tomber la mousse pendant de dosage de l'urée dans les urines albumineuses (Journ. de pharm. et de chim., 15 janv. 1887). - Sur la présence du sucre dans l'urine des personnes soumises à l'alimentation lactée (Journ. de pharm. et de chim., 1888). - Sur la recherche de l'albumine ou peptone dans l'urine (Ann. des mal. des org. gén. urin., mars 1884).

MELLE. - Sur un second cas d'urine filante d'origine bactérienne (La riforma médica, 30 août 1887.

MEMMINGER. - Traitement de la maladie de Bright par le chlorure

de sodium (New-York med. Journ., 1887). MENIER. - Dosage de l'acide phosphorique dans l'urine (Union pharm., mai 1886).

MERCK. - La scoparine et la spartéine comme diurétiques (Chemik. Zeit., 1879, p. 380). MEYER. - Dosage du sucre par la liqueur de Fehling (Bericht d.

chem. Gesell., 1884, p. 240). MICHAILOW. - Sur la matière colorante de l'urine et du sérum du

sang (Cent. f. med. Wiss., 1883, p. 417).

MICHEL (H.). - Contribution à l'étude des albuminuries transitoires

dans quelques maladies du système nerveux. Thèse, Lyon, 1885. MIRCK. - Dosage du chlore dans les liquides renfermant des matières azotées en dissolution ou en suspension et du soufre combiné (Zeit. f. analyt. Chem., 1583, p. 222).

Monvenoux. - Documents relatifs à la présence des matières grasses dans l'urine. Thèse, Paris, 1884.

MOSCATELLI. - Absence complète du sucre et de la bile dans l'urine normale (Zeit. des OEst. Apoth. Vereins, 1881, p. 17). -- Sur l'existence de l'acétone dans l'urine physiologique (Riv. clin. e. terap., MOSZEIK. - Recherches microscopiques sur la disposition du glyco-

gène dans le foie de la grenouille (Arch. f. die ges. Physiol. XLII,

p. 556).

MULLER. - Sur l'acétate et le formiate de cuivre comme réactifs du sucre de raisin (Pflüger's Arch., 1877, p. 551). - Do l'excrétion de l'indican dans l'inanition (Universitätsfestchrift Würzburg, 1886). - La détermination quantitative du sucre de diabète dans l'urine au moven du polarimètre de Soleil-Ventzke et les substances lévogyres (Arch. f. die ges. Physiol., 1885, p. 76).

MUNCK ET SENATOR. - Influence de la stase veineuse sur l'urine (Arch. f. path. Anat. u. Physiol., 1888). - Analyse quantitative du sucre et des substances réductrices dans l'urine au moyen de la liqueur de Fehling (Arch. f. Path. u. Pharm., 1888, p. 73).

MUSCULUS ET DE MERMÉ. - Sur un nouveau corps qu'on trouve dans l'urine après ingestion d'hydrate de chloral (Rép. de pharm., 1875).

MyA. - Influence des inhalations de nitrite d'amyle sur la composition de l'urine (Gaz. delle clin., nº 4, 1886). - Nitro-prussiate de soude comme réactif de l'albumine (Med. chir. Rundschau, 1887, nº 4). - De l'acétonurie et de la diacéturie (Riv. clin. di Bologna, déc. 1887).

MYA ET BELFANTI. - De la présence des ferments digestifs dans Furine humaine (Gaz. degli ospit., no 1, 1886).

NEDATS (de). - Tableaux comparatifs de la composition chimique des différents aliments et boissons les plus usuels (Bruxelles, 1878, et Annales d'hygiène, 2º série, 1877, tome XLVIII, p. 65). NENCKI. - Transformation de l'acétophénone dans l'organisme (Journ.

f. prat. Chem., no 16, 1878).

NENCKI ET SIEBER. - Sur la décomposition du glucose et de l'acide

urique par les alcalis à la température du corps (Journ. f. prat. Chem. 1881, p. 498). NEPVEU. - Cylindres hyalins dans le liquide spermatique (Soc. de

biol., janv. 1884). NEUBAUER ET VOGEL. - Traité de l'urine et des sédiments urinaires.

Trad. L. Gautier, 2º édit., 1887. NEUMANN ET PABST. - Des accidents produits par la benzine et la

E. GAUTRELET, - Urines.

nitro-benzine (Progrès médical, 1883, et Annales d'hygiène, 3° série, tome X, p. 426).

rie, tome A, p. 420).

Nicolais. — De l'élimination des sulfo-acides de l'urine : rapports
avec l'acide sulfurique combiné et l'acide sulfurique préformé (Riv.

Noel. — Dosage rapide des alcalis, acides, carbonates et de l'urée (Rép. de Pharm., nº 22, 1877).

(Rép. de Pharm., nº 22, 1871).

NOTTA ET LUGAN. — Recherche de la morphine dans l'urine des mor-

NOVI. — Les protéides de l'urine: comparaison des méthodes de re-

Novi. — Les proteides de l'urine: comparaison des metudous der cherche de l'albumine (Med. News. 15 sep. 1888). — Sur l'action sécrétoire élective de la glande sous-maxillaire (Arch. f. Anat. u. Physiol, 1888, p. 403).

NYLANDER. — Recherche du sucre dans l'urine par une solution de bismuth (Zeit. f. physiol. Chem., 1884).

OBERLANDER. — Sur l'élimination du mercure par l'urine après le traitement mercuriel (Viert. f. Dermat, u. Syph., 1888. p. 487. ODERMATT. — Formation de l'acide phénique dans la décomposition

des matières albuminoides et sa présence dans l'urine (Rép. de pharm., 1878).

OERTMANN. — L'acide urique est-il un aliment (Arch. f. ges. Physiol. von Pfüger, 1878, p. 369).

von Pflüger, 1878, p. 369).

OESCHENDER DE CONINCK. — Observations sur le dosage de l'azote total dans les urines (Soc. de biol., 9 juin 1888).

OLIVER. — Papiers d'épreuve pour reconnaître la présence du sucre dans l'urine (The Lancet, 17 mai 1884).

Oppenheim. — Sur l'élimination physiologique et pathologique de l'urée (Berichte d. chem. Gesellsch. 1880, p. 2414.

ORD. — Calcul rénal constitué par de l'indigo (Rép. de pharm., nº 11, 18-9).

ORFILA. — Éléments de chimie, 6º édit. Paris, 1839. ORTWEILER. — De la signification physiologique de l'indican (Mitt. a.

ORTMEILER. — De la signification physiologique de l'indice de d. Med. klin. in Wurzburg, 1886).
ORY. — Intoxication chez un buveur d'éther (Soc. médico-prat.,

14 mai 1888).
PALM. — Recherche et dosage de l'acide lactique (Zeit. f. analyt.

PALM. — Recherche et dosage de l'actie licesque (2016). Chemie, 1883, p. 223). PANAS. — Action thérapeutique de l'antipyrine dans la glycosurie

(Acad. méd., 9 avril 1889). PAQUET. — Sur un nouveau densimètre (Rép. de pharm., 1875,

n° 22). PASCHOUTINE. — Traité complet de pathologie générale et expérimen-

tale. Saint-Pétershourg, 1885.

PATON. — Nature de la relation entre la formation de l'urée et la sécrétion de la bile (Journ. of. Anat. and Physiol., juin 1888).

PAUL (C.). - Le violet de Paris comme réactif des urines ictériques (Rép. de pharm., 1875, nº 18). PAVY. - Albuminurie cyclique (The Lancet, 1888).

PECIRKA. - Recherche de l'iode dans l'urine (Chem. News, 1889, PELLET. - Solution cuprique pour le dosage du glucose (Pharm, cent. 1878, p. 217).

PELOUZE ET FRÉMY. - Urine, Calculs (Chimie, vol. VI, p. 585 et 602). PENZOLD. - Caractères de l'urine après ingestion de napthaline (Pharm. Cent., 1887, p. 332).

PERROT. - Note sur le dosage des urines au moyen des liqueurs titrées (Rép. de pharm., 1877, nº 4).

PERSH. - Des méthodes de recherche de l'albumine dans l'urine (Med. News, 20 déc. 1884).

Personne. — Recherche de la quinine éliminée par les urines (Acad. méd., 1878).

PESCHIER. - Dosage de l'urée sans uréomètre (Bull. commerc. de la Ph. cent., mai 1887).

PETRI. - Réaction de l'aldéhyde, de la peptone, des corps albuminoides et de l'acétone en présence de l'acide diazobenzosulfurique (Zeit. f. physiol. Chemie, 1884). - Réaction de l'urine en présence de l'acide diazobenzosulfurique (Zcit. f. klin. Med., 1883, p. 72).

PEYER. - Atlas de micrographie biologique.

PEYRAUD ET GAUTRELET (E.). - Nouvelles recherches expérimentales sur la composition et l'action des eaux et de l'air de Vichy, Vichy, 1885.

PFEIFFER. - Détermination de l'urée par les liqueurs titrées (Zeit. f. Biol. 1888, p. 336). - De l'excrétion de l'acide urique (Berlin,

klin, Woch., 1888, p. 368), PFLUGER. - Sur le processus de synthèse du glycogène dans l'organisme animal (Archiv. f. die ges. Physiol. XLI, p. 144).

PELUGER ET BOHLAND. - Détermination de l'azote dans l'urine (Arch. de pharm., 1886, p. 339).

PICARD. - L'oxalate de chaux dans l'urine et signification clinique. PINCHON. - Appareil pour le dosage volumétrique de l'urée et des gaz qui se dégage d'une réaction (Rép. de pharm., 1881, nº 10). -

Singulière coloration de l'urino (Bull, soc. pharm, de l'Eure, 1888). PLOSZ. - Sur une nouvello matière colorante cristalline de l'urine pathologique (Zeit, f. physiol, Chem., 1882, p. 506). -- Sur quelques chromogènes de l'urine et leurs dérivés (Zeit, f. physiol. Chem., 1884.

p. 85). POEHL. - Présence de la cholestérine dans l'urine (Pharm. Zeit. f. Rüssland, 1878, p. 377).

POHL. - Dosage de la globuline dans l'urine et les liquides séreux (Arch. f. exp. Path., p. 369).

POLITZER. - Sur l'action physiologique des peptones et des albumines (Journ. of Physiology, 1887, p. 288).

POLLATSCHEK. - Une réaction de l'urine salicylée (Wiener med. Woch., 1888, p. 715).

PORTES, CHASTAING ET HUDELETTE. - Le violet d'aniline comme

réactif des urines ictériques (Soc. émul., 1876). Posner. - Sur la recherche de l'albumine dans l'urine (Berlin, klin. Wochen., 1888).

POSNER ET GOLDENBERG. - Dissolution des concrétions uratiques

(Zeit. f. klin. Med., XIII, p. 580). Poulet. - Signification de la coloration produite par le suc gastrique

sur le réactif de Günzburg.

PREUSSE. - Sur la transformation de la vanilline dans l'économie animale (Zeit. f. physiol. Chemie, 1882, p. 209).

PRIOR. - Influence de la quinine sur les échanges et sur la composition

de l'urine dans l'état de santé (Arch. f. die ges. Physiol., 1884, p. 237). PRUNIER. - Recherche de l'albumine dans l'urine par le procédé de Musculus (Soc. de pharm., 1886, p. 441). PUHLMANN. - L'examen chimique et microscopique de l'urine au

point de vue de ses altérations morbides.

PUPIER. - Action des caux de Vichy sur la composition du sang. Paris, 1875.

QUILLARD. - Recherche du sang dans l'urine par la teinture de gayac (Rép. de pharm., nº 1, 1883). OUINQUAUO. - L'urée est un poison : mesure de la dose toxique

dans le sang (Acad. sc., 25 août 1885).

RAABE. - L'acide trichloracétique comme réactif de l'albumine dans l'urine (Pharm. Zeit. f. Rüssland, 1881, p. 445).

RABUTEAU ET BOURGOIN. - Éléments de toxicologie. Paris, 1887. RATTONE ET VALENTE. - Sur la cause de la transformation de l'acide hippurique dans les urines fermentées (Arch. per la Scien. med., nº 15, 1888).

RAYER. - Traité des maladies des reins. Paris, 1839-1841.

RENAULT. - Recherche de l'indican dans l'urine (Arch. de Pharm., 1888, p. 54).

RENZI. - Traitement de la maladie de Bright par la fuschine (Wien. med. Blatt, nº 25, 1880).

RENZI (de) ET MAROTTA. - Sur la réaction chimique du sang (Riv. clin. e. terap., 1886).

RENZONE. - De l'importance diagnostique de l'examen de l'urine dans les maladies aigues (Giorn. ital. delle sc. Med. nº 1, 1886). REYES. - De la distribution géographique des calculs urinaires; re-

cherche des causes (Med. News, 107 mars 1884). REYNIER ET MERCIER. - Étude chimique et physiologique sur la

saccharine (Soc. med. prat., 1888). RICHE. - Chimie animale (Manuel de chimie médicale et pharma-

ceutique, 2º édition, 1873).

RICHET (Ch.). - Influence de l'acide chlorhydrique sur la formentation ammoniacale de l'urine (C. R. Soc. biol., p. 436, 1883). - De l'élimination des boissons par l'urine (Soc. biol., avril 1886). - Recherche de colorimétrie (Arch. de Physiologie, p. 337, 1885). RITSERT. - Recherche de la phénacétino dans l'urine (Pharm. Zeit.,

1888, p. 496).

ROBERTS. - Recherche de l'albumine dans l'urine (Rép. de pharm., nº 4. 1883).

ROBIN (Albert). - La fièvre typhoïde. Paris, 1877. - Essai de chimie appliquée à la thérapeutique. - L'antipyrine, son action sur la nutrition (Acad. med., 1887). - Valeur séméiologique de l'analyse des urines (Soc. biol., 23 juill. 1887). Traitement de la fièvre typholde par l'acide salicylique et l'acide benzoique (Soc. méd. hôp., 1887). - Traitement des fièvres et des états typhoïdes par la méthode oxydante et éliminatrice (Arch. gén. méd., janv. 1888). - L'urée et le cancer (Gaz. med. de Paris, 16 août 1884).

ROBIN (Ch.) ET VERDEIL. - Traité de chimie anatomique et physiologique, Paris, 1853, avec planches,

ROGER et GAUME. - Toxicité de l'urine dans la pneumonie (Soc.

de biol., 6 avril 1889). ROHMANN. - Sur la sécrétion des chlorures dans la fièvre (Zeit. f. klin, Med., 1880, p. 513). - Sur la fermentation acide de l'urine: présence de l'acide nitreux (Zeit. für physiol. Chem., 1801, p. 233).

- Sur l'excrétion de l'acide nitreux et de l'acide nitrique par l'urine (Zeit. f. physiol. Chem., 1882, p. 233).

ROMMELABRE. - Élimination de l'urée dans le cancer. RONSIN. - Des variations de l'urée, des chlorures et des phosphates dans la tuberculose. Thèse, Paris, 1883.

ROQUE (Germain). - Recherches sur la toxicité des urines albumineuses (Paris, 1888).

ROSEIN. - Intoxication par la créoline (Mannliche Thérap., 1888, p. 480. BOSENBACH. - Recherche de la bile dans l'urine (Medicin, Circul.,

1876, p. 110). ROSENHEIM. - Acide sulfhydrique dans l'urine (New-York med. Abst.

1887, p. 264). ROULIN. - Observations d'accidents fébriles produits par l'antipyrine

(Journ. de Méd. de Paris, 10 juin 1888). ROUVIÈRE. - Nouveau procédé de recherche dos spermatozoaires dans l'urine (Journ. de pharm. et do chim., 1878, p. 378).

Roux. - Procédé de diagnose du gonococcus (C. R., 8 nov. 1886). RUBNER. - Sur la formation de graisse aux dépens d'hydrate de

carbone chez l'animal carnivore (Zeit. f. Biol., 1886, p. 271). RUSCONI. - Sur la toxicité de l'urine humaine (Gaz. degli ospit., 1868,

p. 75). RUSSO ET ALESSI. - Réaction de l'urine normale et pathologique (Giorn, della R. Acad. de Torino, 1888, p. 138).

24.

RYTEL. — Clarification des solutions sucrées opalescentes pour l'examen polarimétrique (Chemik. Zeit., 1888, p. 30).

Sachs. — Influence de la précipitation par l'acétate de plomb des solutions sucrées sur leur examen polarimétrique (Zeit. Ver. Rübenz, 1880, p. 278).

Sacusse. — Solution mercurielle pour le dosage de la glucoso (Pharm. Cent., 1878, p. 217).

SAHLI. — Présence de la pepsine et de la trypsine dans l'urine normale (Deut. med. Zeit., 1885). — Teneur variable de l'urine en pepsine et trypsine (Cent. med. Woch., 1888).

Salkiowski; — Recherche de l'acido casiques dans l'urine (Zeit. f. Physiol. Chem., 1888), p. 106.).— Recherche de l'Oxiside de chaux dans l'urine (Arch. de pharm., 1888), p. 106.). D'oxage de la crèacinino dans l'urine (Arch. de pharm., 1888), p. 131). — Présence dans l'urino des acides de la série thionique (Arch. f. pain. Anat., pr. 2, p. 209). — Une modification de l'urino dies de l'acides de la série thionique (Zeit. f. Physiol. 1888). — Sur la formation de l'urice par la sariessire (Zeit. f. Physiol. 1888).

SALOMON. — Présence de l'hypoxanthine et de l'acide lactique dans l'organisme (Arch. f. anat. med. Physiol., 1877, p. 472). — Sur la paraxanthine, nouvel élément de l'urine de l'homme (Zeit. f. klin., Med., 1884, p. 67).

SASETZKY. — Action de la quintes sur l'urine des fébricitants (Bericht, d. deut, Chem. Gesell., XVIII, p. 234). — De l'influence de la transpiration sur le pouvoir digestif du suc gastrique, sur son degré d'acidité et sur celui de l'urine (Petersburg, mod. Woch. nº 2, 1879). SCHAPER. — Elimination d'acide phénique par l'urine (Journ. f.

path. Chem., 1878, no 15).

Scheinea. — Sur la présence de rhabditides dans l'urine de l'hémo-

globulinurie (Amer. Journ. of med. Sc., 1888, p. 518). SCHEIBLE. — Préparation des boracitrates (Amer. Journ. pharm., 1881, p. 64).

SCHIAPARBLLI ET PERONI. — Sur quelques nouveaux constituants de l'urine normale chez l'homme (Ber. d. deut. Chem. Gessel., 1881). SCHIEMEDEBERG. — Nouveau mode do préparation de la liqueur de Fehling (Arch. de pharm., 1886, p. 72).

SCHIFFER. — Sur la présence et l'origine de la méthylamine et de la méthylurée dans l'urine (Berichte der deut. chem. Gessel., 1888, p. 1753). — Sur une substance toxique de l'urine (Deutsche med. Woch, 1884, n° 16).

SCHMIDT (A.), — Sur le dosage du sucre dans les urines par le calcul (Rép. de pharm., 1886).

SCHMITT (E.). — Sur les urines à alcaptone (Rép. de pharm. 1882, nº 2).

SCHOTTEN. — Origine de l'acide hippurique urinaire (Zeit. f. physiol. Chem., 1884, p. 61).

SCHREITER. - Recherche du sucre; réactif analogue à la liqueur de Febling (Pharm. Zeit., 1880, p. 223).

SCHWARZ. - Recherche de l'iode dans l'urine (Pharm, Zeit., 1837). - Recherche du sucre dans l'urine au moyen de la phônylhydra-

zine (Pharm. Zeit., 1888, p. 45).

SÉE (G.). - Des dyspepsies gastro-intestinales, clinique physiologique. - Réactif de Günsburg (Acad. méd., 1888, 17 janv.). SEEGEN. - Lévulose dans une urine diabétique (Rép. de pharm.,

1886, p. 356).

SEEGEN ET ABELES. - Sur le sucre dans l'urine normale (Cent. f. die med. Wiss., 1879, p. 33). SEEMANN. - De la présence de l'acide chlorhydrique libre dans l'es-

tomac (Zeit. f. klin. Med., 1882, no 5). SÉNAC. - Glycosurie. Diabète (Annales de médecine thermale, fêv.

et mars 1889).

SILVESTRINI ET PUCHINI. - Action thérapeutique de l'hydroquinon (Il Morgagni, lany, mars 1887).

SIMON. - Dosage de l'urée par l'uréomètre de Quinquaud (Union pharm., mars 1887).

SINÉTY (de). - Lactosurie des nourrices et cessation après l'abiation des mammelles (C. B. Soc. biol., 1883, p. 229). SMITH (F.-L.). - Urine brevetée comme dentifrice (Industrie Blatt.

1879, p. 40). SONNEBERG. -- Emploi du sulfate de soude dans l'intoxication par

l'acide phénique (Zeit. G. all. west. Apoth. Vereins, 1880, p. 443): SONSINO. - Urines chyleuses (Med. Times, 1887, p. 552).

Sotnischewsky. - Présence de l'acide phosphoglycérique dans l'urine normale (Zeit, f. physiol, Chem., 1881, p. 214). SPANNOGOHI. - Les chlorures de l'urine en pathologie (Gaz. degli

ospit., 1888). STADELMANN. - Détermination de l'acide oxybutyrique dans les

urines diabétiques (Zeit. f. Biol., 1888, p. 456). STADTHAGEN. - Présence do l'acide urique dans différents organes :

son accumulation dans la leucémie; sa formation aux dépens des substances azotées (Arch. f. Path., 1883, nº 3).

STEVENS. - Réactions produites par les sels biliaires dans les urines en présence de l'acido nitrique (Edimburgh med. Journ., 1886, p. 507).

SZABO. - Sur l'acide libre du suc gastrique de l'homme (Zeit, f. physiol. Chem., 1878, p. 218).

TANRET. - Sur un nouveau réactif de l'albumine (Journ. conn. Med., 1870). - De l'albumine. Thése, Paris 1872. - Réactif de l'albumine (Bull. de thérap., 1877). - Sur la recherche et le dosage du sucre dans les urines faiblement sucrées (Bull. de thérap., 1878). TANNET ET VILLIERS. - Recherche sur l'inosite (C. R. Acad. sci.,

1877-8). - Id. (Annales de physique et de chimic, 1881).

TAPPEINER. - Manuel de diagnostic chimique au lit du malade. Trad., Paris, 1888. - Sur la formation de l'acide hippurique (Zeit. f. Biol., 1885, p. 237).

TEDESCHI. - Les chlorures de l'urine (Incurabili, nº 8, 1888).

TEISSIER (Joseph). - Du diabète phosphatique, Paris, 1877. TEISSIER (JOS.) ET ROQUE. - Nouvelles recherches sur la toxicité des urines (C. R., 27 juill. 1888).

THIBAL. - Contribution à l'étude de la sclérose tuberculeuse du cer-

veau, Thèse, Paris, 1888. THIEBRY (de). - Nouvel appareil pour le dosage de l'urée (Rép.

de pharm., 1880, nº 6).

THIERY. - Recherche du glucose dans l'urine par l'acide picrique (Arch. do pharm., 1886, p. 398). THOMAS (Ch.). - Proportions variables de l'urée dans l'urine des

vingt-quatre heures (Rép. de pharm., 1880, nº 7).

THORMALER. - Sur une variété de l'albumine de l'urine (Arch. f. prat. Anat. u. Physiol., 1887, p. 332). THUDICHUM. - Sur l'acide cryptophanique, élément normal de l'u-

rine humaine (Arch. f. exp. Path. u. Pharm., 1878, p. 309). - Sur les alcaloides de l'urine humaine (C. R., 25 juin 1888).

Tipp. - Lo chloral comme diurétique (Drugg, Circul., 1879, p. 111). HDRANSKY. - Relations des matières colorantes de l'urine avec les

matières ulmiques (Zeit, f. physiol, Chem., nos 1, 2, 1888) UFFELMANN. - Procédé do recherche des acides biliaires dans l'u-

rine (Arch. de pharm., 1886, p. 505). ULMANN. - Recherche de la bile dans l'urine (Pharm. Zeit. f. Rüssland, 1878, p. 720).

VIBERT ET OGIER. - Présence de l'albumine dans l'urine des cadavres (Arch. de pharm., 1886, p. 301).

VIGIER (F.). - Action physiologique du borate de soude (C. R. Soc. biol., 1883, p. 44).

VIGLEZIO. - Sur la globuline au point de vue du diagnostic et du pronostic (Riv. clin., 1887).

VILLEMIN. - Action de la belladone et de l'opium sur un cas de diabète aigu (C. R., 1887, 14 fév.).

VILLIERS. - Sur la formation des alcaloïdes dans les maladies (Rép. de pharm., no 6, 1885). - Sur les urines pathologiques (Acad. sc., 11 mars 1884).

VINCENT. - Recherche sur l'élimination de l'iodure de potassium par les prines

VITALI. - Recherche du pus avec la teinture de Gayac (Boll. farm., 1887, p. 225). - Recherche toxicologique de l'acide oxalique (Boll. farm., 1887, p. 353).

VULPIUS. - Recherche de l'acétanilide dans l'urine (Rép. de pharm. d'Als.-Lor.).

- Weill. Réaction de la créatine et de la créatinine (The drugg-Circular, 1881, p. 165). — Sur les nitrates des animaux et des végétaux (Arch. f. Anat. u. Physiol., 1887, p. 462).
- WILLIÉ. Empoisonnement par le chlorate de potasse (Arch. de pharm, 1886, p. 452).
- WOLFF ET MÉGA. Recherche de petites quantités de mercure dans l'urine (Monat. f. prat. Dermat., 1888, nº 6).
- WORM ET MULLER. Excrétion du sucre par les urines à la suite de l'ingestion d'aliments hydrocarbonés (Arch. de pharm. 1888).
- WURTZ. Traité élémentaire de chimie médicale. Paris, 1868. Dictionnaire de chimie pure et appliquée. art. Urines (t. III, p. 585).
- X. Réaction de l'arsenic sur le sucre (The drug. Circul., 1880. 117).
- Recherche de la tyrosine et de la leucine dans l'urine (Zeit. f. das OEsterreichs, Anoth, Vereins, 1877, p. 550).
- Réaction de l'urine après ingestion de rhubarbe ou de santonine (The Doctor, 1879).
- Action physiologique des sels de nickel et emploi de ce métal dans les ustensiles de cuisine (Arch. de pharm., 1888, p. 118).
- La phénacétine (Arch. de pharm., 1888, p. 167). Réduction de la liqueur de Fehling en présence du sucre de canne
- (Arch. de pharm., 1888, p. 488). Recherche du mercure dans l'urine (Journ. de pharm. de Bruxelles, mai 1888).
- Yvox. Action de l'hypochlorite de soude et de chaux sur l'urée (Rép. de pharm., 1876, nº 16). — Dosage du sucre dans l'urine (Soc. drull., 1877). — Uroscope de trousse (Rép. de pharm., nº 1, 1877). — Manuel clinique de l'analyse des urines, 2° édition, Paris, 1884.
- Yvon ET BERLIOZ. Composition moyenne de l'urine normale (Revue de médecine, 1888).
- ZELLER. Sur la mélanurie (Arch. f. klin. Chir. 1883, p. 245). Sur le sort de l'iodoforme et du chloroforme dans l'organisme (Zeit. f. physiol. Chem., 1884, VHI. p. 70).
- ZOERELER. Sur le dosage de l'acide sulfurique (Pharm. cent. 1881, p. 50).
- ZUELZER. Nouveau tube pour l'examen des urines (Berlin, klin. Woch., 1888).
- ZUNTZ. Sur les forces qui accomplissent les échanges gazeux dans les poumons et dans les tissus du corps (Archiv f. der ges. Physiol., XLII, p. 488).

TABLE DES MATIÈRES

PRÉFAGE, par M. le Dr Lecorché	1
INTRODUCTION. PROLÉGOMÈNES. — APPAREIL URINAIRE.	1
CHAPITRE PREMIER. — Anatomie urinaire	:
I. Organe excréteur. Rein	
II. Canaux collecteurs. Calices, bassinets, uretères	15
III. Réservoir commun. Vessie	16
IV. Canal évecteur. Urèthre	18
CHAPITRE II. — Physiologie urinaire	10
I. Genêse urinaire	15
II. Factours physiologiques de l'evertion unineire	0.0
PREMIERE PARTIE. — TRINE NORWALE	95
Préliminaires. — Généralités	35
I. Etymologie	35
II. Définition	26
CHAPITRE PREMIER. — Examen général	39
I. Propriétés organoleptiques	48
II. Propriétés physiques	54
III. Propriétés chimiques	65
IV. Propriétés physiologiques	74
CHAPITRE II Docimasie élémentaire. Éléments d	le
l'urine normale Premier groupe. — Éléments organiques	80
Première série. — Éléments organiques chimiqueme	82
définis	at or
I. Amides	85
II. Alcalis	. 82
III. Éthers	90
IV. Phėnols	91
V. Acides	91
Deuxième série. — Éléments organiques organisés	99
Deuxième groupe. — Éléments minéraux	93

TABLE DES MATIÈRES.	431
Première série. — Éléments minéraux basiques Deuxième série. — Éléments minéraux acides Troisième sèrie. — Élèments minéraux neutres	93 94 95
Chaptre III. — Docimasie systèmatique I. Composition élémentaire de l'urine normale	96 97
II. Interprétation des résultats analytiques III. Examen pratique de l'urine normale	98 99
IV. Rapports docimusiques de l'urine normale UXIÈME PARTIE. — URINES ANORMALES	102 105
Préliminaires. I. Définition	105 105
II. Division	107
anormale Première section. — Élèments extra-physiologiques formès	108
dans l'organisme. Première classe. — Élèments organiques	108
dėfinis. Premiėre sėrie. — Amides.	108 108
Deuxième série. — Hydrates de carbone, Troisième sèrie. — Alcools.	116 119
Quatrième série. — Corps gras neutres Cinquième série. — Aldèhydes.	120
Sixième sèrie. — Acides Septième sèrie. — Éthers.	123 127
Huitième série. — Dèrivés sulfurés	128 128
Première série. — Élèments d'origine primitive I. Provenant des reins	128 128
II. Provenant des uretères	135 135
IV. Provenant de l'urèthre Deuxième série. — Éléments d'origine secondaire	136 137
I. Provenant des organes génitaux II. Provenant de l'épiderme	137 138
Troisième série. — Éléments parasitaires	139 139
II. Animaux Deuxième classe. — Élèments minéraux	140 142
Premier ordre. — Élèments minèraux solides Première série. — Carbonatés	142 142
Deuxième série. — Phosphatès	142 144
Quatrième série. — Nitrés Deuxième ordre. — Élèments minéraux liquides	144 145
Troisième ordre. — Éléments minéraux gazeux	145

DE

Première série. — Alcalins	145
Deuxième série. — Acides	146
Troisième série. — Neutres	147
Deuxième section Éléments extra-physiologiques non	111
formés dans l'organisme	147
Première classe. — Éléments éliminés par l'organisme	
Premiere classe. — incidents entitles par l'organisme	147
Premier ordre. — Éléments d'origine alimentaire	147
Deuxième ordre. — Éléments d'origine médicamenteuse.	148
Troisième ordre. — Éléments d'origine toxique	154
Quatrième ordre. — Éléments d'origine fermentes-	
cible	154
Deuxième classe, — Éléments accidentellement mélangés	
å l'urine	155
Premier ordre. — Éléments d'origine animale	155
Deuxième ordre. — Éléments d'origine végétale	155
Troisième ordre. — Éléments d'origine minérale	155
Quatrième ordre. — Éléments d'origine atmosphérique.	155
CHAPITRE II Technique de l'analyse urologique	156
Première section. — Docimasie urologique proprement dite.	156
Première série. — Appréciations organoleptiques .	
Fremere serie. — Appreciations organolephques .	157
I. Couleur.	157
II. Transparence	160
4 III. Aspect	162
IV. Fluorescence	162
V. Consistance	163
VI. Surface	163
VII. Dépôt	164
VIII. Sédiments	165
IX. Calcuis	166
X. Odeur	168
Deuxième série. — Examen physique	171
1. Mensuration volumétrique	171
II. Densimétrie	172
III. Colorimétrie	174
IV. Dialyse	175
V Électrolyse	
V. Electrolyse	176
VI. Polarimétrie	177
VII. Spectroscopie	182
VIII. Microscopie.	184
IX. Action de la chaleur	208
X. Réaction	209
Troisième série. — Expérimentation physiologique.	211
1. Carbonyle Cl. Bernard	211
II. Inoculation de la tuberculose	213
Quatrième série. — Manipulations chimiques	213
Premier ordre Analyse chimique des urines.	213
I Dosage d'élémente normany	914

	TABLE DES MATIÈRES.	433
	II. Recherche et dosage d'éléments anormaux	229
	III. Recherche d'éléments anormaux	237
	Deuxième ordre. — Analyse chimique des calculs	240
	I. Examen qualitatif	240
	II. Examen quantitatif	242
	Deuxième section Docimasie urologique comparée	243
	I. Coefficient urologique relatif	244
	II. Séméiographie urologique. ISIÈME PARTIE. — SÉMÉIOLOGIE UROLOGIQUE	252
J.	ÉLDUNARES. — Physiologie urologique	255
-	Premier groupe. — Genèse urologique	256 257
	Première série. — Éléments urologiques pouvant dériver	251
	de l'alhumine	258
	I. Par oxydation	259
	II. Par réduction	264
	III. Par hydratation	266
	Deuxième série Éléments prologiques ponvant dé-	
	river de l'amidon	267
	I. Par hydratation	267
	II. Par réduction	267
	III. Par oxydation.	268
	Troisième série. — Éléments urologiques pouvant dé-	
	river du pigment sanguin	268
	I. Par oxydation	269
	II. Par réduction. III. Par hydratation.	269 270
1	Deuxième groupe. — Élimination prologique	271
ì	I. D'éléments minéraux	272
	II. D'éléments organiques	273
и	APITRE PREMIER. — Diathèses	275
1	Premier groupe Diathèse par hyperacidité organique	276
	I. Modifications des éléments sauguins	277
	II. Modifications des sécrétions	278
	III. Modifications des excrétions	279
	IV. Modifications des tissus	280
	V. Évolution parasitaire tissulaire	285
	VI. Modifications dans les échanges organiques	286
	VII. Canses occasionnelles de l'hyperacidité orga-	291
	VIII. Action du traitement sur la diathèse hyperacide.	291
	IX. Classification des manifestations de la diathèse	291
	hyperacide	300
1	Deuxième groupe Diathèse par hypoacidité organi-	000
١	que	303
	I. Modifications des éléments sanguins	304
	II. Modifications des sécrétions	305
	III. Modifications des excrétions	306
	E. Gautrelet Urines. 25	

Cita

Віві

TIPLE DEC MINIOPEO

TABLE DES MATIENES.	
IV. Modifications des tissus	307
V. Evolution parasitaire tissulaire.	900
VI. Modifications dans les échanges organiques	308 310
VII. Causes occasionnelles de l'hypogeidité organisme	944
VIII. Action du traitement dans la diathèse hypoacide.	314
IX. Classification des manifestations de la diathèse	314
hypoacide	316
APITRE II. — Maladies chroniques	317
Premier groupe. — États morbides chroniques liés à la	917
diathèse byperacide	
I. Goutte	318
II. Rhumatisme	318
III. Sclérose.	323
Deuxième groupe. — États morbides chroniques liés à la	325
diathèse hypoacide	
I. Déchéance organique	329
II. Tuberculose	329
III. Scrofule	330
IV. Cancer	338
roisième groupe. — États morbides chroniques sous la	340
dépendance de l'une ou l'autre diathèse	
I. Glycosurie	343
II. Albuminuries.	343
III Naphuitee	356
III. Néphrites	358
IV. Cystites	363
V. Dyspepsies	371
VI. Anémies	379
VII. Nevroses	381
PITRE III. — Maladies aiguës	382
Première sèrie. — Maladies locales	383
Premier groupe. — Appareil respiratoire	383
Deuxième groupe. — Appareil circulatoire	388
Troisième groupe. — Appareil digestif	388
Quatrième groupe. — Appareil cérébro-spinal	390
Cinquième groupe. — Système cutané	392
Deuxième série. — Maladies générales	392
Premier groupe. — Alterations du sang	392
Deuxième groupe, - Maladies infectionses	393
Troisième groupe. — Fièvres éruptives.	401
	401
Cinquième groune. — Fièvres	402
. Sixieme groupe. — Etat puerperal	403
TOCK APPLIE	100

TABLE ALPHABÉTIQUE

Aboès du foie, 389. Abcès miliaires de la rate, 389, Abiètique (Acide), 151, 234, Absorption (Bandes d'), 64, 182, 183. Abstinence, 41. Acariens (Fragments d'), 155. Accès de manie, 391.

Acetanilide, 152. Acctate basique de plomb sur l'urine normale (Action de l'), 70. Acétique (Acide), 124,

- sur l'urine normale (Action de l'acide), 69. Acétone, 121. Acctonurie, 121.

Acétonémie, 121. Acétonbémie (Fausse), 16, 353. - byperacide, 300.

- oxybutyrique, 346. Acide libre, 73. - (Dosage de i'), 216,

Acides, 122. - uramides, 152. .- albumines, 74, 110. - alcools, 91.

Acidité du sang, 27. Action de la chaleur, 208. Activité circulatoire, 29. Age, 43, 245, Agitation de l'urine normale, 5t. Aiguës (Maladies), 382.

- (Maladies locales), 383. Ail, 153, Air (Bulles d'), 156,

Albumines, 109.

Albumines vraies, 109.

- complètes, 109. - de transition, 110. - (Acide), 74, 110.

- (Alcali), 110. Albuminoïdes, 111.

- complets, 112, - incomplets, 111. Albumine-sérine, 232, 235. Albuminose (Hémi-), 112.

Albuminuries, 356. - essentielles, 357.

- hyperacides, 357. bypoacides, 357. Alcali-albumine, 110, Alcalinité du sang, 24.

Alcalis urinaires normaux, 99. - acides monobasiques, 90, - - bibasiques, 90.

- fixes sur l'urine normale (Action des), 71. Alcaloïdes, 152, - urinaires normaux, 76.

Alcaptone, 117. Alcaptose, 117. Alcools, 119,

- proprement dits, 119. - monoatomiques, 119. étbylique, 119, 150, 294, 367. - à 90° sur l'urine normale (Action de l'), 72,

Aldehydes, 121. Alimentation, 245, 293, 298, 313, 315. Aliments (Tableau des rapports de l'azote et du carbone dans les), 251. Alizarine, 153. Allaitement, 404.

Allantoine, 87. Amides normaux, 82. - de la série cyanique, 83, 152.

- à fonctions binaires, 87. - complexes, 87. - phénols, 87.

- acides, 87, 152. - anormaux, 108. - anhydrides, 108.

- basiques, 109. - protéiques, 109.

- pigmentaires, 113. - de la série grasse, 152. Amidon, 74.

- de riz, 155. - de froment, 155.

- de pommes de terre, 155. Amidosuccinamique (Acide), 147.

Amines, 152. Ammonémie, 146. Ammoniaque, 93. 145.

- sur l'urine normale (Action de 17, 72. - (Dosage de l'), 227. Ammoniaques composées, 152. Amphicréatinine, 85.

Amyloide (Rein), 109. Amyloses, 118, Analgésine, 152, Analyse chimique des calculs, 240.

- - qualitative, 240. - - quantitative, 242. - des urines, 213.

Anémies, 158, 300, 3(6, 379. - hyperscide, 123, 379. - hypoacide, 379.

- essentielles, 379. - chimiques, 379.

- pernicieuses, 392. Anses de Henle, 14. Anthronotaurocholique (Acide), 123, Antimoine, 148. Arcades de Bertin (Demi-), 11. Argent, 149. Aromatiques (Acides), 126.

Arsenic, 148. Artères corticales, 10. - radičes, 13. - vésicales, 18.

Artéro-selérose, 301. Ascaride lombricoide, 135. Asparagine, 147. Aspartate de potasse, 100. Aspartique (Acide), 89, 90, 148. Aspect de l'urine normale, 50. - des urines anormales, 162.

Asperges, 148. Aspergillus, 137. Assimilation organique, 39. Asthme diathésique, 301.

Ataxie locomotrice, 390. Athérome de la glande pituitaire, 390. Atonie intestinale, 119, 159, 389. Atrabile, 21.

Atropbie du foie, 109. jaune aiguë du foie, 127, 389. - musculaire progressive, 391.

Atropine, 452. Autophagie, 41. Azotate d'argent sur l'urine normale (Action de l'), 68.

Azote, 96. - total (Dosage de l'), 228. Azotiquo (Acide), 95. - sur l'urine normale (Action

de l'acide), 69. Azontes alcalins, 144.

Bacilles, 141.

Baccillus urez. 141, 202. Bacille de la tuberculose, 141, 209, - de la blennorrbagie, 141. - de la morve, 141. - de la fièvre récurrente, 141.

Bactéries, 140, Bacterium urez, 140. Bactérie sulfhydrique, 141. Bactériurie, 140. Bactérihémie, 140.

Balanite diabétique, 137. - diathésique, 302, Balsamiques, 151.

Barvum, 149, Bases volatiles de l'urine normale, 93. - alcalines de l'urine normale, 93 - alcalino-terreuses de l'urine nor-

male, 94. - métalliques, 94. Bassin (Petit), 16. Bassinets, 15. Benzoïque (Acide), 126. Bilharsia hamatobia, 135.

- - (œufs de), 202. Biliaires (Acides), 121, 231.

- (Recherche des acides), 238. - (Pigments), 114.

Biliaires (Recherche des pigments), 237. | Carhonate de chaux, 142, 190, 242. Billirubine, 113, 194, - de magnésie, 243, - d'ammoniaque, 142, 149. Biliverdine, 144. - alcalins, 149. Bilipeasine, 114. Bilifuschine, 114. Carhonique (Acide), 26, 95, Bioxyde d'hydrogène, 145. Carbonyle Cl. Bernard, 211. Carcinome, 122, 316, Bismuth, 149.

Blennorrhagiques (Filaments), 111, 136. Carmin, 153. - (Écoulements), 138. Caroncule uréthral, 18. Bodo urinarius, 141, 202.

Bois du Brésil, 153. Bois (Échardes de), 155. Castoreum, 153. Bouquet de Malpighi, 34. Bromates alcalins, 149. - intestinal, 159.

Brome, 148. - sur l'urine normale (Action du), 73. Bromures alcalins, 148.

Bronchites, 383. . Butyrate de potasse, 100.

Butyrique (Acide), 92.

Cadmium, 149. Café, 113, 367.

Calamus scriptorius, 390. Calcination de l'urine normale, 66.

Calculs, 166. - homogènes, 166, 168.

- non homogènes, 167, 168. - rénaux acquis, 184.

- - en formation, 184. Calices, 15. - (Grands), 13,

Calorification (Action de l'urine normale sur la), 79. Canal évecteur, 18.

- de l'urethre, 18. Canalicules droits, 14. Canaux collecteurs (Anatomie des), 15. - (Histologie des), 16.

Cancer, 108, 136, 340, des reins, 169. - de la vessie, 169.

- de l'appareil génital de la femme, 169. - bénetique, 159.

- de l'intestin, 136. - du foie, 308, 389. Caproate de potasse, 100. Caproloue (Acide), 92,

Capsules surrénales, 9, - glomérulaire, 12. Carhonates, 243.

Carnivore (Régime), 41. Caséine (Uro-), 110.

Cataracte arthritique, 301. Catarrhe vésical, 111, 142.

- gastro-intestinal, 108. - de l'estomac, 122. Cathétérisme, 121, 140.

Cellules ganglionnaires, 15. - vésicales, 17. - cancércuses, 196.

- néoplasiques, 136. - épithéliales vésicales, 135 - des aretères, 135.

- - épidermiques, 138. - vaginales, 138. - uréthrales, 136.

Cercomonas urinarius, 141. Cérébro-spinal (Maladies aigues de l'ap-

parcill, 390. Cervean, .285. Chaleur sur l'urine normale (Action de

la), 61. Champignons de l'urine, 140.

Chanyre, 155. Charbon, 317. - (Poussière de), 155.

Charpente fibreuse, 10. Chatoiement, 162. Chaux, 94.

Chéloide, 392. Chloral, 153. Chlorates alcalins, 149.

Chlore (Dosage du), 217. Chlorhydrique (Acide), 94, 296, 314. - - (Action de l') sur l'urine nor-

male, 69. Chloroforme, 450, 233.

Chlorophylle, 153. Chlorure de fer (Per-), 121, 124, 127, 151, 152. -

- - (Action du per-) sur l'urine normale, 70, 117, 120, de sodium, 100, 194, 315,

Chlorure de potassium, 100.

- de baryam sur l'urine normale - (Action du), 68. Chlorures alcalins, 149. Chocs cérébraux, 353. Cholestérine, 119, 194, 241, 243. Choléique (Acide), 123. Cholique (Acide), 123.

Choléra, 316. - nostras, 388. Chorée, 391. Chromatogènes, 49, 120.

Chroniques (Maladies), 317. Chylurie, 121, 160, 192. Chrysophanique (Acide), 153, 233, Cinnamique (Acide), 126, Circulatoire (Maladies aiguës de l'appa-

reil), 388. Cirrhose, 302.

- rhumatismale, 326. - hépatique, 157. - rénale, 108.

Citrique (Acide), 131. Classification élémentaire des composants urinaires normaux, 97.

- des manifestations de la diathèse hyperacide, 300.

de la diathèse hypoacide, 316. Climat, 44, 247, 294. Cochenille, 153. Coefficient d'oxydation des matières azo-

tées, 227. - urologique relatif, 244. Cœur (Maladies organiques du), 388. (Développement exagéré du), 30.

Coït. 137. Col de la capsule, 13.

- de la vessic, 17. vésical, 18. Coliques hépatiques, 301. néphrétiques, 300, . Colloides sanguins, 29, 32.

- éliminés en nature, 273. - après transformation chimique, 273,

Colonnes de Bertin, 10. Colorantes normales (Matières), 100, - étrangères (Matières), 153.

Coloration rouge sang, 158. - bleue, 159, - violette, 159.

verte, 159. - noire, 159.

- blanche, 159,

Coloration rouge brun, 159. - groscille, 160.

- jaune vert, 160. brun vert, 160. - brun madère, 160.

Colorimétrie, 174. Colorimétrique de l'urine nurmale (Intensite), 59.

Coma diahétique, 124. - du diahète maigre, 353. Combinaison hypothétique hydratée, 87.

- anhydre, 99 Composants urinaires normaux (Formules étémentaires des), 97.

Congestion du foie, 114, 157, 300, 389. Coniase rénale, 300.

vésicale, 301 - intestinale, 301, biliaire, 301.

Consistance de l'urine normale, 53. - des urines anormales, 163. Consomptives (Maladies chroniques), 108.

Contagiouses (Maladies), 401. Convulsivantes (Substances), 77. Copahu, 151, 153. Corps gras, 74,

Coton, 155. Couleur de l'urine normale, 49. - d'origine extérieure, 153.

- jaunes, 153. rouges, 153. - vertes, 153,

Créatinine, 85, 233 (Dosage de la), 222. (Nantho-), 85. (Gruso-), 85.

(Amphi-), 85. (Table de traduction de l'azote volumétrique en), 226. Créosote, 151, 315.

Crésol sulfarique, 91. Cresylsulfurique (Acide), 91. Crésylique (Acide), 151. Crésylol, 296.

Crésylsulfate de potasse, 100. Cristalloïdes sanguins, 29, 32. Crotonique (Acide), 125. Crusocreatinine, 85. Cubèhe, 153.

Cuivre, 149. - sur l'urine normale (Action de

sels de), 73, Cutané (Maladics du système), 392. Cyanhydrique (Acide éthylacéte-), 127. Cycle journalier, 45, Cylindres muqueux, 132, 198. — spermatiques, 132, 198.

urinaires, 128. — composés d'éléments figurés, 128.

- dégénérés, 128.

épithéliaux rénaux, 131.
 canaliculaires, 132.
 hémorrhagiques, 131, 196.

- Bemorrhagiques, 131, 196 - granuleux, 131, 196. - sombres, 131.

graisseux, 131, 198.
 granulo-graisseux, 131.

colloïdes, 132.
 circux, 132, 198.
 purulents, 198.

- bactériens, 140. Cylindroïdes, 130.

Cysticerques avec tiraillement de la moelle allongée, 390. Cystine, 128, 188, 241, 243.

(Rechorche de la), 238,
 Cystinurie, 128,
 Cystite, 111, 119, 140, 160, 363,

- a frigore, 371.

- catarrhale, 166.

- calculeuses, 301.
- essentielles, 301, 363.
- hyperacides, 363.

hyposeides, 368.
 tuberculeuse, 368.
 carcinomateuse, 369.

- accidentelles, 371. Cytoïdes, 198.

D

Dactylius aculeatus, 135, 202.
Déchéance organique, 329.
Définition de l'urine, 36.
— anormale, 105.

Dégénérescence amyloide du foie, 389. — graissouse, 171. — des reins, 119.

Délire furieux, 391.

— alcoolique, 391.

Densité à + 15° C de l'urine normale, 58.

Bensimétrie, 472.

Bensimétrie, 172.
Bensimétriques (Table de corrections des données), 173.

Dépôt de l'urine normale, 54.

Dépôt des uriues anormales, 164. Désassimilation organique, 39. Déviation polarimétrique de l'urine nor-

male, 62. Dextrine, 76, 418, 232.

Dishète, 116, 117, 120, 121, 123, 146, 169, 170, 343.

gras, 122.
 maigre, 122.

arthritique, 300.
 hépatique, 300.
 Diacétique (Acide), 124.

Diaceturie, 124. Dialyse, 23, 34. — rénale, 25, 27.

de l'urine anormale, 175.
 sur l'urine normale (Action de

la). 61. Diarrhées, 108, 388.

— fuherculeuse, 305. Diastase, 74, 75, 89, 235. Diathèses, 275.

par hyperacidité organique, 276.
 par hyperacidité organique, 303.
 hyperacide, 145.

hyperacide, 145.
 hypoacide, 146.
 Diatomiques (Acides), 95.

Diffusion, 24.
Digestif (Maladies du tube), 122, 388.
Dilatation stomacale, 388.

Diplosoma crenata, 135, 200. Diphtérie, 140, 155, 401. Dissociation osmotique, 27.

Dissolvant urinaire, 100.

Distoma Acmatobium (OEufs de), 202.

Diurèse rénale, 30.

Diurétique (Substance), 17. Docimasie élémentaire de l'urine normale, 80.

systématique, 96.
 urologique proprement dite, 156.
 comparée, 243.

Dosage de l'acide phosphorique, 225.

du chlore 217.
 des éléments axotés, 217.

de l'urée, 219.

de l'acide urique, 220.

de la créatinine, 222.
 de l'ammoniaque, 227.
 de l'axote total, 228.

des gaz urinaires, 228.
 de l'urobiline, 228.
 de l'uroérythrine, 228.

- d'éléments normaux, 214.

Éléments urologiques pouvant dériver de l'Épithélium polyédrique, 13. l'amidon, 286, 267.

- du pigment sanguin, 268. dérivés de l'amidon par réduction,

267. - par oxydation, 268.

- organiques de l'urine normale, 67. - dérivés de l'alhumine par hydra- Erythème, 112. · tation, 266.

directe, 266. - indirecte, 266.

- par réduction, 264, - directe, 264 indirecte, 265.

- par oxydation, 259. - directe, 259.

- indirecte, 262. - urologiques pouvant dériver de

l'alhumine, 258. - chimiques du sang, 277, 304. - figurés du sang, 278, 305.

Elimination urologique, 271. - d'éléments minéraux, 272. d'éléments organiques, 273.

Emission (Couleur de l'urine à l'), 49. - (Première), 67. (du jour), 67. Emholies, 300.

Emonctoire organique, 37. - vicariants, 44. Émotions vives, 353.

Empoisonnement par les acides minéraux, 154. - les sels de plomb, 154.

- - de mercure, 154. _ _ de cuivre, 154. - - Parsenic, 113, 154.

- le phosphore, 113, 154. — la morphine, 154. - l'oxyde de carbone, 154.

 les alcalis, 154. - - l'aniline, 154.

- la nitrohenzine, 154. Encéphalite, 390. Éncorèmes, 165.

Entité urinaire, 38. Entozoaires, 202. Epilepsie, 119, 137, 381, 391. Épithéliales (Cellules), 93, 100. Roithéliale (Desquamation), 161.

Epithéliaux (Débris), 93, Épithélium pavimenteux, 16, 18, 19.

- cylindrique, 14. - cuboide, 14.

- de la prostate, 196, - du col utéria, 196.

- du vagin, 196, des voies urinaires, 196,

des reins, 196. Érysipèle, 401.

Essences antiseptiques, 315. de térébenthine, 153,

Estomac (Maladies aigues de l'), 388. Étain, 149.

État hygrométrique de l'air, 295. - nuernéral, 403.

Rints fAbriles, 122. - morhides liés à la diathèse hyperacide, 318

- à la diathèse hypoacide, 329. - sous la dépendance de l'une on l'antre diathèse, 343,

Ethers urinaires normaux, 90. - ncutres, 90.

- acides, 90. Éthylacétocyanhydrique (Acide), 127. Éthyldiacétique (Acide), 127.

Ethylsulfurique (Acide), 151. Étoiles de Verheyen, 13. Étymologie de l'urine, 35.

Eustrongylus gigas, 200. Evaporation de l'urine normale, 66. Evolution parasitaire tissulaire, 285, 308.

Examen général, 39. - bactériologique des dépôt et sédiment, 204. - histologique des dépôt et sèdi-

ment, 184. - physique, 171. - pratique de l'urine normale, 99.

- spectroscopique de l'urine normale, 63. Exercta humains (Variations des) dans

les variations de régime alimentaire, Excretion (Organe d'), 7. - rénale, 19, 24, 40. Exercice, 44, 45, 247, 292, 312. Exhalation pulmonaire, 279, 306. Expérimentaion physiologique, 211.

Extractives (Matières), 100.

Facteurs intrinsèques, 40, 42, 245. - extrinseques, 40, 42, 247.

Factours physiologiques de l'exerction | Fluorhydrique (Acide), 296, 314. urinaire, 27. Fébriles (Maladies), 112, 144. Fèces, 279, 306,

Fer (Protoxyde de), 94. Ferments normaux, 100. -- diastasique, 74. - pepsique, 74.

- pancréatique, 74. - physiologiques, 74. - salivaire, 89.

- stomacal, 89. - intestinal, 89.

- urinaires, 88. - physiologiques (Action de l'urine sur les), 78.

sur l'urine normale (Action des), 74. figuré de l'urine diabétique, 139.

- - lactique, 139, de l'urée, 139.

- de l'albumine, 202. sulfhydrique, 202. - de Rosenheim, 202.

Fermentation ammoniacale pathologiaue. 140... Ferricvanures alcalins, 149. Ferrocyanates alcalins, 149. Feuilles (Débris de), 155.

Fibres musculaires striées, 136. Fibrine, 89, 194, 235, 241, 243. - dissoute, 112.

Fibrinurie, 110. Fibro-syntonine, 110. Fièvre, 157., 402.

- éruptives, 401. - ictéro-bématurique, 393,

 jaune, 393. - typhoide, 140, 155, 170, 394.

 – à forme cérébrale, 169. - - commune, 394, - grave, 396. - mortelle, 398,

Filaire bématique, 135. Filaments muqueux, 137. Filaria sanguinis hominis, 135. Filtre, 29.

--- -presse, 24. Fistules vésico-intestinales, 169. Fluorescence de l'urine normale, 51, 60. - des urines anormales, 162.

- rouge verdátre, 162. - bleue, 162.

- - verte, 51.

Foie (Maladies aiguës du), 389.

(Affections graves du), 123. (Troubles fonctionnels du), 170. (Altérations du), 284, 308. Follicules vésicaux, 17.

Folliculite vésicale, 136. Fongus de l'urine, 155. Formique (Acide), 123, 151. Foyers hemorrhagiques (Vieux), 194. Fuschine, 153,

Galacturie, 121. Gastralgie byperacide, 373, Gastrite algue, 388. Gastrovisceralgie, 373, Garance, 153.

Gaz de l'urine, 26, 96, 97, - normaux, 100, urinaires (Dosage des), 223.

Gélatine, 115, 148, 235. Générales (Maladies), 39%, Genèse urinaire, 19.

- urologique, 257. Genièvre, 153. Gestation, 164. Gland, 18.

Glandes gastriques, 74. - salivaires, 74. Globules blanes, 198.

 rouges, 198. lactés, 155. - huileux, 155.

Globulines, 109, 110, 235. - (ovo-), tis. (séro-), 115. Globulo-peptine, 111.

Glomérules de Malpighi, 12. Glucose, 76, 194. Glucoses, 116.

- optiquement actifs, 116. - inactifs, 117.

diabétique (Recherche et dosagdu), 230. urinaire (Caractérisation différen

tielle du), 231. - (Tabléau des réactions comparatives du) et des produits pouvant être analytiquement con-

fondus avec lui, 231. Glucosides, 117, 119, Glutamate de xanthine, 100.

Glutamate de eréatinine, 100.

— d'hypoxanthine, 100.
Glutamique (Acide), 89.
Glutine, 148.
Glycérine, 150, 315.
Glycosurie, 300, 342.

Glycosurie, 300, 343.

— hyperacide par diminution des oxydations bépatiques, 346.

— — générales, 345.

essentielle, 353.
hepatique histologique, 346.
dyspeptique, 349.

— dyspeptique, 349.
 — polyurique, 316, 354.
 — hypoxeide par anhématose, 350.

 par déchéance organique, 354.
 Glucosuriques liées à la diathèse acide

(Manifestations), 344.

à la diathèse ulcaline, 350.

Gommes, 459.

Gommes, 159. Gonococcus, 139, 207. Goutte, 300, 318.

(Période critique) 161.
acquisc, 157, 318.
héréditaire, 321.

- (Accès), 320. - (Période d'ôtat), 319. Graisses neutres, 120, 192.

- minérales, 155.

Gras (Acides), 122.
- volatils, 122, 150.
- neutres (Corps), 120.

Grasses normales (Matières), 100. Grippe, 385. Grossesse, 118, 120, 403.

ш

Hémaphéiques (Urines), 157, 158.

Hématics, 198.

— circulatoires (Destruction exagérée des), 158.

Hématine, 113. Hématoidine, 113. Hématoidine, 194. Hématoxyline, 153.

Hématoxyline, 153.

Hématurie, 113.

des pays chauds, 135.

des tropiques, 125.

Hémi-albuminose, 112.

Hémine, 113. Hémine, 113. Hémoglobine, 89, 113, 194. — (mét-), 237.

Hémoglobine (Recherche de l'), 237.

Hémoglobulinurie, 113.

— paroxystique, 113.

Hémophilie, 392.

Hémorrhagie rénale, 131.

— des voies urinaires, 158, 160.

— céréhrale, 390.

Hémorrboïdes, 300. Hépatique (Cirrhose), 457. — (Congestion), 457. Hépatite tuberculeuse, 308.

Herbivores (Urine des), 41. Herpès, 302. Hippurate de potasse, 100. Hippurique (Acide), 87, 186.

Hippurique (Acide), 87, 486. Huile-de foie de morue, 296, 315. — de faîne, 296, 345.

— de faine, 296, 315. — grasses, 296. Huileux (Globules), 155. Hydrates de carbone, 116.

Hydrocarbures, 150.

— essentiels, 233.

Hydrocarburés (Dérivés), 150.

Hydrogène (Bloxyde d'), 145.

Hydropene (Bioxyde d.), 145. Hydropenese, 142, 169, 194. Hydropenesemurate de poinsse, 100. Hydropenesemurate (Acide), 92.

Hydropisine, 112. Hydroquinone, 120. Hydrothionurie, 146.

Hydrurie, 158. Hydrocephalic aigue, 390. Hygiène, 298.

Hyperacidité (Modifications des éléments sanguins par), 277. Hypoacidité (Modifications des éléments

sanguins par), 304.

Hyperacidité organique (Causes occasionnelles de l'), 291.

Hypoxcidité organique (Canses occasionnelles de l'), 311. Hyperacidité (Modifications des sécré-

tions par), 278. Hypoacidité (Modifications des sécrétions par), 303.

Hyperacidité (Causes thérapeutiques de l'), 296.

Hyponeridité (Causes thérapeutiques de l'), 314. Hyperucidité (Causes physiologiques de

l'), 292. Hypoacidité (Causes physiologiques de l'), 312.

Hyperacidité (Causes biologiques de l'), 291. Hypoacidité (Causes biologiques de l'),311. Hyperexerétion urinaire chlorurique, 336.

Hypochlorurie organique, 336. Hypostases, 165. Hyposténisante (Substance), 77.

Hypothermisantes (Substances), 80, Hyposulfites alcalins sur l'urine normale (Action des), 73, - alcalins, 144, 148.

Hypoxanthine, 86. Hystérie, 381, 391.

Ictères, 289. ·

- vrai, 459, 301.

- bilipbéique, 114. hémaphéique, 114, 159.

- grave, 109. catarchal, 301, 389. - spasmodique, 389.

Icthyose, 392. Impaludisme, 113.

Impétigo, 392, Inspition, 122. Indican, 232, 239.

- (Recherche de l'), 239, Indiglucine, 117. Indigotine, 108, 194.

Indol, 87. Indoxysulfate de potasse, 100. Infectiouses (Maladies), 113; 140, 393. Inflammation chronique cérébrale, 390, Infusoires, 141.

Innervation vésicale (Troubles d'), 176. Inoculation de la tuberculose, 213.

Inosite, 117. - (Recherche de l'), 238. Inosurie, 118, 300,

Instruments metalliques (Parcelles d'), 204. Intestin (Maladies aigues de), 388.

lodates alcalins, 149. Iode, 148. - sur l'urine normale (Action de

1), 73. Iodoforme, 130.

Iodures alcalins, 148. - d'amidon sur l'urine normale (Action de I'), 73.

Jugeurs à l'eau, 2,

K

Kairine, 152. Kilogramme, 48. Kyestémie, 164.

Kyphose, 144. Kystes bydatiques, 135.

L

Lactate d'ammoniaque, 100. Luctation, 118.

Lactine, 118. Lactique (Acide), 92, 151, 314,

Lactose, 128, 232, Lactosurie, 192.

Laine, 155 Lardace (Rein), 109.

Lèpre, 392, Leptotbrix, 141, 202, Leucémie, 109, 124, 393.

Leucine, 109, 190. Leucocytes, 198.

Leucomaines, 239 - morbides, 154. - pathologiques, 154.

- urinaires, 85. - (Rocherche des), 239. Leucorrhée, 111, 138.

Lévulose, 232. Lin, 155. Lipacidurie, 123.

Lipurie, 192 - physiologique, 131.

- expérimentale, 121. - alimentaire, 121.

- des obèses, 121. - de la grossesse, 121. - du diabète, 121,

- toxique, 121. - des affections aiguês du foie, 121, - du mal de Bright, 121.

Liqueur de Fehling, 118, 240. Liquide excrémentitiel, 36. Lithiase biliaire, 301.

- intestinale, 361. - rénale, 300. - vésicale, 301.

Lithium, 149. Localisation hépatique du bacille tuberculeux, 333.

Loi de Rommelacre, 341. Luette vésicale, 17,

Lymphatiques rénaux, 14. - vésicaux, 18.

TVI

Magnézie, 94. Magnésium, 149. Maladic d'Addison, 108. - de Bright, 117, 131, 132.

Malaria, 393. Manipulations chimiques, 213. Méat urinaire, 18. Mélanémie, 389.

Membrane de Bowman, 12. Méningites, 390. - cérébro-spinale, 390.

- spinale, 390. Mensuration volumétrique, 171. Mentales (Maladies), 391.

- à formes mélancoliques, 391, Mercure, 149. Métaux, 149.

- (Poussières de), 155. Méthémoglobine, 113. Méthode de Stas, 152. Métrite chronique, 302.

Micrococcus urez, 139, 202. - tetragenes, 207. Microscopie, 184. Migraines, 391, 392.

Minérales (Matjères), 242. Modifications dans les échanges organiques. 286, 310.

Moelle (Altérations de la), 285. - épinière (Maladies de la), 108, 119, 390. Marimospædia ventriculi, 200. Monoatomiques (Acides), 94. Monobasiques (Acides), 92. Monas crepusculum, 141. Morve, 317, 401.

Mucine, 111, 235. Mucus, 18. Muguet, 302. Muquenses, 282, 308. - urinaire (Produits de la), 100.

Murexide, 240, 244, 242. Muscles obturateurs internes, 16. - des uretères, 17.

Myélite par kyphose, 144, Myocardites, 388.

N

Naphtol, 150, Narcotique (Substance), 77. Nematodes, 200. Néoplasmes ventriculaires, 390. Néphrites, 358.

- hyperacides, 358. - essentielles, 358.

- secondaires, 358. - hypoacides, 361.

 ducs à des causes étrangères, 361. - toxiques, 362.

 liées à une maladie aiguë, 362. - cantharidienne, 140,

 a frigore, 110, 301. - interstitielle, 110, 325, - calculeuse, 169, 300.

- suppurée, 169. - parasitaire, 362,

- arsénicales, 362. eanthoridiennes, 362.

- phospborées, 362. Nerfs (Maladies aiguës des), 391. - rénaux, 15.

- vésicaux, 18. Nerveux (Maladies du système), 119, Névralgie sciatique, 391.

Nevroses, 161, 381. - hyperacide, 382. - hypoacide, 382.

Nitrate d'ammoniaque, 100. Normales (Pour le poids moyen de 64 kilos des composants uri-

naires physiologiques), 97. - (Pour une unité de coefficient urologique absolu des composants urinaires physiologiques), 97. Nuages, 165.

Nutrition (Troubles de la), 161.

Obstruction intestinale, 389. Occlusion intestinale, 119,

Odeur de l'urine normale, 52, - sui generis, 52, 53, 92, - aromatique, 52.

- urineuse, 52.

- d'origines élrangères propres, 153. - étrangères spéciales, 153.

- de l'urine anormale, 168.

Odeur urinaire (Modifications patholo- Oxalurie, 126.

giques de l'), 169. (Modifications accidentelles de

17, 170. ammoniacale, 169.

- sulfureuse, 170. purulente, 169.

fétide, 169. - fécaloïde, 169. gangréneuse, 169.

- do marée, 169. - d'berbe, 169.

- de pain bouilli, 169, - d'alcool, 169.

- de lie de vin aigri, 169. - de chloroforme, 169.

- sulfhydrique, 163. - d'amandes amères, 169.

- d'indigo, 170. - de suint, 170.

- de fourrure, 170. - de kirsch, 127,

- de chloroforme, 122. - de pommes mures, 122.

 de fèces, 122. - de l'asperge, 148. Odorantes normales (Matières), 100.

Oldium albicans, 137. Oléine, 90. Ombilic, 17. Ongles, 204.

Or. 149. Organiques (Matières), 242,

Organoleptiques (Groupements) des composants urinaires normaux, 100.

de l'urine anormale (Appréciations), 157. - de l'urine normale (Propriétés),

Orifice du canal de l'urethre, 18. Origine de l'urine, 36.

Osmose, 24, 61, - glomérulaire, 24, 27, 28. Ostéomalacie, 112,

Otite chronique, 301. Ouraque, 17. Ovoglobuline, 115, 235. Oxalate d'ammoniaque sur l'urine nor-

male (Action de l'), 70. - de chaux, 186, 242, 243. - de chaux (Recherche et dosage

Oxalique (Acide), 125, 151. Oxalurate de fer, 100.

de l'), 229.

Oxalurique (Acide), 87. Oxyamygdalique (Acide), 124, Oxybutyrique (Acide), 124, 233, 239.

- Recherche de l'acide, 239. Oxyformobenzollique (Acide), 127. Oxygène, 96. Oxynévrine, 77, 90,

Oxysantonine, 233. Oxyure vermiculaire, 135.-Ozone, 147.

Pain (Miettes de), 155. Pancréas, 75. - (Maladies aigues du), 389.

Pancréatine, 74, 75. Papilles, 10.

Papillons (Écailles de), 155. Paraglobuline, 109, 110.

Paralysie, 391. Parasites rénaux, 135. - animaux, 140,

- végétanx, 139, Paroxyphénylacétique (Acide), 92. Paroxyphenylsulfate de potasse, 100. Parturition, 493.

Peau (Excrétion de la), 44. - (Maladies de la), 392. Pellicule de l'urine normale, 52. Pemphigus, 392.

Penicillium glaucum, 140, 202. Pepsine, 74. 75, 89, 235. Peptines, 144, 235.

Peptones, 74, 412, 162, 233, 235. Peptonurie essentielle, 142.

- pyogène, 113. Péricardites, 388 - a frigore, 301.

Péritoine (Maladies nigues du), 389. Péritonite, 108, 119, 389. - diffuse, 159.

Peroxyde d'hydrogène, 185. Pétrole, 150, 162. Pharyngites chroniques, 301. Phénique (Acide), 150.

Phénols, 120, 296. - urinaires normaux, 91. - sulfurique, 91.

- alcool à fonction mixte, 120. - amide-alcool, 120.

Phénylhydrazine, 116. Phénylsulfate de potasse, 100, Phénylsulfurique (Acide), 91. Phimosis diabétique, 137. Phiébites, 301.

Phosphates, 243. - alcalins, 149.

- ammoniaco-magnésien, 144, 188, 242. - de chaux, 242,

- basique de chaux, 143, 188. - tribasique de ebaux, 192.

- neutre de chaux, 142. - basique de magnésie, 100, 143, - acide de chaux, 100.

- d'ammoniaque, 100. Phosphoglycérate de potasse, 100.

Phosphoglycérique (Acide), 90. Phosphorique (Acide), '95. Phtisie torpide, 337. Physiologic urinaire, 19.

- urologique, 256. Pierique (Acide), 151.

Pigments anormaux d'origine extéricure, 159

 — (Présence de), 158. - - . (Caractérisation des), 183.

 normaux (Variations docimasiques simultanées des), 157. - rouge, 182.

- blen, 182, - noir, 214.

- saoguin, 88. - biliaires, 241. - (Recherche des), 237.

- urinaires normaux (Variation docimasiques des), 157, - normaux (Variations isolées des),

157. Pilimietion, 138. Plasma sanguin, 24, 88. Pleurésie exsudative, 388.

Plèvre (Maladies aigués de la), 388. Plexus solaire, 15. Plomb, 149. Ptumes d'oiseaux, 155.

Pneumonie, 112, 122, 153, 316, 383. - typhoidique, 170, 384. - franche, 383. gangréneuse, 384.

- infectieuse, 384. - catarrbale, 384. Poids, 245,

- corporel, 43. - par litre des composants urinaires Purulence, 161.

normaux, 97.

Poids par 24 houres des composés urinaires normaux, 97. Poils, 138.

- vésicaux, 200. cutanés, 200. - de chat, 155.

- de chien, 155. Poivre cubèbe, 367.

Polarimétrie, 177. Polarimétrique dextrogyre (Modification), 177.

- lévogyre, 179. - nulle, 181.

- de l'urine normale (Déviation), 62.,

Pollutions, 137. Polybasiques (Acides), 92. Polysarcie, 300.

Polyurie, 117, 158. - organique, 316. - des boissons, 336.

Pondération urinaire, 38. Potasse, 94. Poumons, 46.

- (Maladies aiguës du), 383, Produits brats, 204.

- chimiquement définis, 202. - manufacturés, 202. Propeptone, 112.

Propeptonurie, 112. Propionique (Acide), 92. Propriétés de l'arine normale, 65,

- organoleptiques de l'urine pormale, 48. - physiques de l'urine normale, 54,

- physiologiques de l'urine normale, 74. Protéines urinaires (Recherche et dosage des), 234.

Protéiques (Matières), 87. - - primitives, 88. - dériyées, 88.

- fermentaires, 88. - - (Recherche et dosage des), 234.

Protococcus, 140. Prototype urinaire normal, 46.

Prurigo, 393. Prurit vaginal, 137. Ptomaines, 152. . .

Pubis, 16. Pupille (Substance contractant la) 77. Purpura, 392.

Putréfaction de sang, 169.

Putréfaction du pus, 169. Pyélonéphrite, 142, 160. Pyine, 141, 235.

Pyramides de Ferrein, 10, 14.

— Malpighi, 10, 14.

Pyrocatéchine, 114, 117, 120, 232.

0

Quatrième ventricule (Lésions du), 390.

R . Racines, 294. Rage, 317, 493.

Rage, 317, 492.

Raies spectroscopiques de l'urine normale, 63.

Raifort, 446.

Ramollissement du noyau dentelé du

namonissement du novau dentele du cervelet, 390. Rapports docimissiques de l'urine normale, 102.

male, 102.

— urologiques relatifs normaux, 103.

— absolus normaux, 103.

azoturiques dans les diathèses,
 332.
 Rate (Haladies aiguës de la), 389.
 Ration d'entretien, 42.

Réactif de Chautard, 122.

— de von Jakseb, 122.

— Legal, 122.

- de Musculus, 122. - de Tanret, 155.

amyloïde, 132.
sulforosanilique, 122.
de Barfoed, 118.

 de Barreswill, 117.
 généraux (Action de l'urine sur les), 65.

Réaction de l'urine anormale, 209. — acide, 24,-67, 209.

alcaline, 67, 210.
de Gmelin, 114, 241.
neutre, 210.

neutre, 210.
amphotérique, 210.
amphigène, 210.

- de Pettenkofer, 123, 238 - de Liehen, 150. - de Bættger, 240. Rectum. 16.

Rectum, 16. Réductions hépatiques, 315. Réfiexe cœliaque, 389. Rein (Anatomie du), 7.

- (Histologie du), 9.

Rein blanc des brightiques (Gros), 109.

rouge des arbritiques (Petit), 109.

(Altérations du), 284, 308.

Réfraction de l'urine normale (Indice de), 69. Régime lacté, 421.

Réservoir commun, 16.
Résidu fixe de l'urine normale, 66.
Résorption intestinale, 169.
Respiratoire (Maladies aiguës de l'appareil), 383.
Rhabditis genitalis, 138.

Rhubarbe, 153, 159.
Rhumatisme, 158, 300, 323.
— mriculaire, 300, 323.
— goutteux, 158, 160, 163, 325.
Rosamiline (Sels do), 153.
Rougeole, 112, 165, 316.

lu Rubéole, 401.
Rythme cardiaque (Modifications du),

Sahle, 155.
Saccharomyces cerevisiæ, 139.
Saccharomyces, 118, 232.
Safran, 153.
Safson, 44.
Salicylique (Acide), 15t.

Salines (Matières), 100. Salol, 152. Sang, 241. — (Altérations du), 392.

Sanguinolenes, 161. Santal, 153. Santonines, 153. Sarcina urines, 159.

Sarcine, 200.
Saturnisme, 109.
Saveur de l'urine normale, 53.
Scarlatine, 103, 316, 401.

Sclérémie, 392. Sclérodermie, 392. Sclérose, 159, 171, 323. — généralisée, 157, 325.

- bépatique exclusive, 114, 301, 326. - alcoolique, 326.

cérébrale, 392.
médullaire, 392.

- du lobe droit du cervelet, 390. Sclérosé (Rein), 109. Scorbut, 393. Scrofule, 311, 316, 338. Sécréteur (organe), 32. Sécrétion biliaire, 278, 305.

- du cristallin, 278, - gastrique, 278, 305, - muqueuses, 279, 305,

- rénale, 23, Sédiment de l'urine normale, 54, - des urines anormales, 165,

- cristallins, 165. - amorphes, 166. Sélection osmotique, 33. Sels fixes de l'urine normale, 66. Sémélographie urologique, 352.

Séméiologie, 1. - urinaire, 4. - urologique, 255,

Semen-contra, 153. Séné. 153. Sércuses, 283, 308.

Série evanique (Amides de la), 83. - grasse (Acides de la), 92, Sérine, 109. Sérinurie, 109.

Séro-peptine,-112. - -syntonines, 110. Serpentins, 34.

Sérums, 25. Sexe, 46. Sialogène (Substance), 77. Silicate d'ammoniaque, 100. Silicique (Acide), 95. Sinus du rein, 10.

Siphons à niveau constant, 34. Skato!, 120. Soic. 155. Sommeil, 293.

- (Toxicité de l'urine du), 78. Soude, 93.

Soufre, 148. - inoxydė, 128. - neutre, 85.

Spectroscopie, 182. Spectroscopique de l'urine normale (Exa-

men), 63 Spectroscopiques de l'urine normale (Raies), 63, Spermatine, 111, 235,

Spermatorrhée, 137. Spermatozoaires, 137. Spermatozoides, 198,

Sperme, 411. Sphineter de la vessie, 17, Spiroptera hominis, 200, Spiroptère, 200.

Splanchnique (Grand), 15. - (Petit), 15. Squelette conjonctif, 10. Statique hydraulique, 34, Strongle géant, 135, 200. Strontium, 149.

Substance corticale, 10, - médullaire, 10. - fibreuse, 10,

- grisc (Destruction de la), 390. Succinate de potasse, 100. Succinique (Acide), 92,

Sucre, 74. - de diabète, 116, - de lait, 118.

Sucur, 279, 306, Sulfates alcalins, 149. - de soude, 100.

- de potasse, 100, - de chaux, 166, 186. Sulfavdrique (Acide), 146, 233, 315.

Sulfocyanate de xanthocreatinine, 100. - de crusocréatinine, 100. d'amobieréatinine, 100.

- d'oxynévrine, 100. Sylfocyanique (Acide), 87.

Sulfoevanures, 240 - (Recherche des), 240. Sulfo-urée, 83. Sulfovinique (Acide), 151. Sulfures alcalins, 148, Salfurés (Dérivés), 128. Sulfureux (Acide), 149. *

Sulfurique (Acide), 95, 296. Supercherie, 121. Suralimentation, 315. Surcharge saline du sang, 30.

Surface de l'urine normale, 52. - des urines anormales, 163.

- spumeusc, 163. - huileuse, 163. - pelliculaire, 163. Surmenage, 336.

Surveille, 336. Sympexions, 137, 198. Symphyse des pubis, 18.

Syntonines, 74, 40, - acides, 133, 235. - alcalis, 235,

Syntoninuric, 110. Syphilis, 310, 311, 316, 401. Système nerveux ganglionnaire, 15,

Taille, 43, 245, - -poids, 43, 46, 57. Tannin, 151.

- sur l'urine normale (Action do),

Tannique (Acide), 131. Tartrique (Acide), 151. Taurocholique (Acide), 123,

- (Acide anthropo-), 123. Technique de l'analyse urologique, 156. Teinte jaune safran, 50, 59,

- jaune citron, 50. - ambrée moyenne, 50. - jaune rouge faible, 49, 51,

- jaune pále, 59, jaune clair, 59,

- jaune, 59. - jaune rouge, 59.

- rouge janue, 59. - rouge, 59. - rouge brun, 59.

- brun rouge, 59. - prun. 59.

- acaiou, 163. Température de l'urine normale à la miction, 58.

- ambiante, 295. Tension vasculaire, 31. Térébenthine, 151.

- (Essence de), 153. Tétanos, 317, 391. Tetratomiques (Acides), 93,

Thalline, 152. Thallium, 149. Théorie mécanique, 23. - chimique, 23.

- histologique, 24. - de Galien, 19. - de Bowman, 33

Thrombose de la veine cave inférieure, 388. - des veines rénales, 388, Tissu conjonctif, 136.

 (Débris de), 155. - (Modifications des), 280, 307, Toluene, 126.

Tophus, 300 Tournesol sur l'urine normale (Action du), 67.

Toxicité de l'urine normale, 76. Toxiques normales (Matières), 100, Transparence de l'urine normale, 50, des urines anormales, 160. - à l'emission, 160,

- après repos, 160, Transsudation, 21. Traumatiques (Troubles trophiques), 366.

Traumatismes cérébraux, 353. Travail (Influence du) sur la sécrétion de

l'arée, 293, - intellectuel, 45, 313. Triatomiques (Acides), 95. Trichiaose, 402.

Trichomanas vaginalis, 138. Trigone vésical, 16, 17, 18. - de Lieutaud, 17.

Triple phosphate, 188. Trouble des urines anormales, 160, 161. Trypsine, 74.

Tubercules des deux bémisphères du cervelet, 390.

Tuberculose, 157, 170, 310, 311, 317 330. - miliaire aigue, 386. Tubes de Bellini, 10, 11.

- urinifères, 13. - contournés, 13.

- de Henle, 14. - de Malpigbi, 34, Tabuli contorti, 13, 34. Tumeurs cérébrales, 390,

- de la moelle aliongée, 390. Type normal de l'urine, 4. - idéal de l'urine, 39. Typhotoxine, 155. . Typhus, 43, 144, 159, 316, 393.

- exanthématique, 393. Tyrosine, 109, 190,

υ

Ulcère de l'estomac, 301, 373. Unité de coefficient urinaire absolu, 48. Unités urologiques, 250. Urates, 243.

- ncide de soude, 184, 241. - de chaux, 242. - de potasse, 100, 241,

- de magnésie, 242, — d'ammoniaque, 192, 241.

Uredo, 140. Urées normales, 83.

- oxygénée, 83. - (sulfo-), 84.

- (dosage de l'), 219.

Uree pondérale (Table de traduction | Urobiline et érythrine (Variations disde l'azote volumétrique en), 225. Uréides normaux, 85.

- à fonctions basiques, 85. - acide, 86.

_ - neutre, 87. Urémie, 154.

Uretères, 15, 16. Urethre (Anatomie de l'), 18. - (Histologie de l'), 19.

Uréthrites, 140. Urina cibi, 40.

- potus, 40. - sanguinis, 40. Urinaire (Appareil), 7.

- (Acides) normaux, 92. Urine normale, 2, 35, 40, 42.

- des herbivores, 142. - des enfants, 142. - jumenteuses, 142.

- ammoniacales, 144. - ictérique, 119, 123.

fébriles, 123, 158, 462. - visqueuses, 163.

- boucuses, 163. - carboliques, 120.

- anormales, 105, - chyleuses, \$59.

- laiteuses, 159.

- anormales (par variations quantitatives exclusives des éléments physiologiques), 106.

 des diathésiques hyperacides, 280. - hypoacides, 366. anormales (par présence d'élé-

ments extra-physiologiques), 107. - (Rôle physiologique de l'), 36,

- anormale (Division de l'), 167. - (Étude élémentaire de l'), 108. normale (Composition élémentaire

de l'), 97. - (Composition de l'), 36

- putréfiées dans les voies prinaires, 161. Urique (Acide), 86, 184, 241.

- - (Dosage de l'), 220. - pondéral (Table de traduction de

l'azote volumétrique en acide), 226. Uroazotimètre, 217. Urobilinate de potasse, 166. Urobiline, 89.

- en excès, 163.

- (Dosage de l'), 183. - (Variations isolées de l'), 157. cordantes de l'), 158.

(Variations docimasiques simultanées de l'), 157. Urocascine, 110, 235.

Urorhloralique (Acide), 153, 233. Uroërythrinate de potasse, 100. Uroérythrine, 89.

- (Variations docimasiques isolée de l'), 157.

(Dosage de l'), 228, Uromantes, 2.

Uromélanine, 114. Uroscopie clinique, 3.

Utérus, 16.

Urostéalithes, 121, 241. Urotoxies, 77. Urotoxique (Coefficient), 77. Urticaire, 112, 272,

Vagin, 16. Vaginite blennorrhagique, 138.

Vaisseaux médullaires, 13. - droits, 13.

- déférents, 16. Valérianate de potasse, 100. Valériane, 153

Valérianique (Acide), 92. Valvuies de l'uretere, 17.

Varices, 366, Variole, 122, 140, 316, 401.

Vas afferens, 12. - efferens, 12, Vascline, 155, 162,

Vaso-moleurs rénaux, 31. Végétaux verts, 153. Veille, 312,

- (Toxicité de l'urine de la), 78, Veines rénales, 12, - vésicales, 18.

 (Maladies aiguês des), 388. Verge, 18.

Vertébrales lombaires (Déviations), 159. Vésicules séminales, 16.

Vessie (Anatomie de la), 16. - (Histologie de la), 17. - (Bas-fond de la), 16.

Vibrioniens, 140. Vibrious, 140. Vice de nutrition, 113.

Villosités vésicales, 136. Volume des 24 beures à l'état normal, 54.

Yomissements répètés, 388. Voûte artérielle du rein, 11. Vulvite diathésique, 302.

Xanthine (hypo-), 86. Xanthocréatinine, 85.

x

Zinc, 149.

Xanthine, 85, 241.

- (Chlorure de), 154.

NOUVEAUTÉS SCIENTIFIQUES PARUES EN 1888

ANATOMIE ET PHYSIOLOGIE

TRAITÉ PRATIQUE DE BACTÉRIOLOGIE

Par E. MACÉ

Professeur agrégé d'histoire naturelle médicale à la Faculté de médecine de Namey. 1 vol. in-16 de 714 pages avec 173 figures. . . . 8 fr.

ANATOMIE DES CENTRES NERVEUX

Par le Docteur L. EDINGER TRADUIT PAR M. SIRAUD

1 vol. in-8 avec 120 figures. 8 fr.

PETIT ATLAS PHOTOGRAPHIQUE

DU SYSTÈME NERVEUX

Par le Docteur LUYS

NOUVEAUX

ÉLÉMENTS DE PHYSIOLOGIE HUMAINE

COMPRENANT LES PRINCIPES DE LA PHYSIOLOGIE COMPARÉE ET DE LA PHYSIOLOGIE GÉNÉRALE

Par H. BEAUNIS

Professeu. à la Faculté de médecine de Naney. Troisième édition

2 vol. gr. in-8 ensembe 1672 pages avec 626 figures, cart. . 25 fr.

Traitéd'anatomie comparée des animaux domestiques, par A. Chauveau, inspecteur général des Eroles vétérinaires, membre de l'institut. 4 édition, revue et augmentée, avec la collaboration de M. Anloiso, 1 vol. gr. in-8 avec 38 figures poires et cologiées. 24 fr.

ENVOI FRANCO CONTRE UN MANDAT POSTAL Nº 435.

PATHOLOGIE INTERNE ET CLINIQUE MÉDICALE

TRAITÉ

DES MALADIES DES PAYS CHAUDS

A. KELSCH et P.-L. KIENER
Professour à l'École de médacine militaire de Mouteviller.
1 vol. in-S de 905 p. avec 6 chromo-lithographics et 36 fig. 24 fr.

NOUVEAUX ÉLÉMENTS DE PATHOLOGIE MÉDICALE

A. LAVERAN

Professes à l'Encole à madeiden militaire
de Val-de-Grâce.

Troisième édition

2 vol. in-S de 1700 pages avec figures.

20 fr.

NOUVEAU DICTIONNAIRE DE LA SANTÉ

Illustré de 702 figures intercalées dans le texte comprenant la médecine uselle, l'evgène journalière, la pharmacie domestique et les applications des nouvelles conquêtes de la scence a l'application de la scence a l'app

Par le Docteur Paul BONAMI

Médecin en chef de l'hospice de la Bienfaisance, lauréat de l'Académie. Stroutre et fontions desorganes, hygienodes viltes et des campagnes, hygiène des âges et des professons, alimentation, mabides, empionements, acidémis, microbes, hypocisses, plantes médicianles, médicaments, pansements, écotrieits hydrotteles, caux minicrolles et hains de melicaments, pansements, écotrieits hydrotteles,

Scènes de la vie médicale, par le D' Jules CYR. i vol. in-16, 32; p. 3 fr. 50

Les maladies de l'enfance, description et traitement homoopathique, par
le D' Marc Jousser. i vol. in-48 jèsus de 445 p. 4 fr.

Hypnotisme, par le D' Coste. i vol. in-16 de 160 p. 2 fr.

ENVOI FRANCO CONTRE UN MANDAT POSTAL

Traité de l'empyème, par le D' Bouvener, professeur agrégé à la Faculté de
médecine de Lyon, 1 vol. in-8 de 500 pages,
Asepsie et antisepsie, par le D' Auguste Mazer, gr. in-8 2 fr. 50
Contribution à l'étude de la scrofule. Ophtalmie dite scrofuleuse, par le
D' Désir de Fortunet, gr. in-S, de 112 2 fr. 50
Essai sur le mal de tête, par le D' Johannés Chaumien, 1 v. gr. in-8. 2 fr. 50
Traitement de la dyspnée, par le D' CHABANNES, in-S 2 fr.
Étude clinique sur la fièvre du gottre exophtalmique, par le D' Henry
BERTOYE. Gr. in-S, de 126 p 2 fr. 50
L'École de Salerne et les médecins salernitains, par le D' BEGAVIN. Gr.
in-8

PATHOLOGIE EXTERNE ET CLINIQUE CHIRURGICALE

LECONS CLINIOUES SUR LES AFFECTIONS CHIRURGICALES

DE LA VESSIE ET DE LA PROSTATE

LA CHIRURGIE JOURNALIÈRE

LEÇONS DE CLINIQUE CHIRURGICALE

Par Armand DESPRÉS

Chirurgien de l'hôpital de la Charité, professeur agrégé à la Paculté de médeline, etc.

Troisième édition

1 vol. gr. in-8 de 804 pages avec 45 figures. 12 fr.

TRAITÉ DES MALADIES DES YEUX

Troisième édition

i vol. in-8 de xvi-1020 pages avec 483 figures. . . . 20 fr.

Le pansement antiseptique, manuel pratique, par J. De Norsacve, 2º edition, i vol. in-8, 300 p.

- 5 fr.

Des névralgies vésicalas, par le D' Chatant-Vers, gr. in-8. 2 fr. 50 fr.

- 2 fr. 50 fr.

- 5 fr.

- 7 f

ENVOI FRANCO CONTRE UN MANDAT POSTAL

HYGIÈNE ET MÉDECINE LEGALE

NOUVEAUX ÉLÉMENTS D'HYGIÈNE

Médec in inspectour du Service de santé. Professeur d'hygiène à la Faculté de médecine de Lille

Deuxième édition mise au courant des progrès de la Science. i vol. gr. in-8 de 1404 pages avec 272 figures, cart. . . 20 fr.

LA PROSTITUTION

AU POINT DE VUE DE L'HYGIÈNE ET DE L'ADMINISTRATION EN FRANCE ET A L'ÉTRANGER

Par le Docteur L. REUSS

i vol. in-8 de 636 pages. 7 fr. 50

PRÉCIS DE TOXICOLOGIE

Parle Doctour A. CHAPUIS Professeur agrègé à la Faculte de médecine de Lyon Deuxième édition, revue et augmentée

1 vol. in-18 jesus de 770 pages avec 54 figures, cart. . . 8 fr.

Annales d'hygiène publique et de médecine légale, Directeur de la rédac-tion, le D' P. BEGUARDEL, professeur de médecine légale à la Raculté de méde-cine de Paris. Prix de l'abonnement annuel : Paris, 22 fr. — Départements, 24 francs. - Union postale, 25 francs. Recueil des travaux du comité consultatif d'hygiène publique. Année 1888,

Tome XVII. 1 vol. in-8. Répartition de la fièvre typhoide en France, par le D' P. BROUARDEL. 1 fr. 25 Aperçu médical sur la Maison départementale de Nanterre, par le D' Eugène Bosizs, Gr. in-S de 52 pages. 2 fr.

MATIÈRE MEDICALE, THÉRAPEUTIQUE, PHARMACIE

TRAITÉ DE ZOOLOGIE MÉDICALE

Par Raphaël BLANCHARD Professeur agrégé a la Faculté de médecine de Paris, 2 vol. in-8 de 800 pages avec 650 figures. 18 fr.

ENVOI FRANCO CONTRE UN MANDAT POSTAL

LIBRAIRIE J.-B. BAILLIÈRE ET FILS

540 pages, avec 136 fig. 7 ft BOUCHUT. — Traité de diagnostic et de sémiologie 1 vol. gr. in-8 de 692 pages, avec 160 figures 12 fr

Nouveaux éléments de pathologie générale. Qui frième édition. 1 vol. gr. in-8 de xn-980 p. avec 245 fig. 16 fr CIVIALE(J.). — Traité des maladies des organes génito-

urinaires. Proteste retitor. A un tra si a consequence pour l'analyse des urines, des dépôts et des calculs grinaires. Proiséeme délitors, tool. In 18 feurs, avec 25 pl. comprinant 90 gg. 8 fr. — Pratique de la chirurgie des voies urinaires. Deuxième délitors augmenté d'un appendice sur les opérabeurient d'ellion augmenté d'un appendice sur les opérabeurient dellitors augmenté d'un appendice sur les opérabeurient dellion augmenté d'un appendice sur les opérabeurient delli manuelle d'un appendice sur les opérabeurient delli de l'appendice sur les opérabeurient de l'appendice sur les opérabeurients de l'appendice sur les opérabeurients de l'appendice sur les opérabeuries de l'appendice sur les operabeuries de l'appendice sur les operabeuries de l'appendice sur les operabeuries de l'appendice sur les operabeurs de la conseque de la chiraction de l'appendice sur les operabeurs de l'appendice sur les operabeurs de l'appendice sur les operabeurs de la conseque de l'appendice sur les operabeurs de la conseque de la conseque de la conseque de l'appendice sur les operabeurs de la conseq

Hous nolvene:
142 figures 142 figures 142 figures 150

de la vessie et de la prostate. I volume grand in-8 de

1.000 pages.
HALLOPEAU. — Traité élémentaire de pathologie gé-

RACLE. - Traité de diagnostic médical. Sivième édition,

RAYER. - Traité des maladies des reins et des altéra-

ROBIN (Albert). — Essai d'urologie clinique. La fièvre typhoïde. 1 vol. gr. in-8 de 264 pages. 4 fr. 50 des voies urinaires. Deuxième édition, 1 vol. in-8 de

- Lecons cliniques sur les maladies des voies uri-