BIOS 779 Notes

Mingwei Fei

January 31, 2023

1 Prior and Posterior Expectation and Variance

$$E(\theta) = E \Big[E[\theta|Y] \Big]$$

Prior mean of θ = Average posterior mean of θ over data distribution.

$$Var(\theta) = E\Big[Var(\theta|Y)\Big] + Var\Big[E[\theta|Y]\Big]$$

Posterior variance of θ is, on average, less than prior variance of θ .

2 Prior Distribution

When we do not know the precision, we can use the normal-gamma conjugate prior for θ, P

3 Bayesian in linear regression

- (i) If we start with the non-estimable X'X is not full rank, X'X inverse does not exist. But if we have a proper prior, we could still estimate.
- (ii) sensitivity analysis based on different variances, assume the a_0 to incorporate the variance, there is no just one the prior
- (iii) Use discount likelihood as the prior specification, the power prior. Need to understand how we go from discount likelihood to discount likelihood times initial prior.

Bayesian Update It is a hierarchy, prior today is the posterior of yesterday.

Stage 0: haven't observed historical data. $\pi_0(\beta, \gamma)$ - non-informative Stage 1: $D_0 = (n_0, Y_0, X_0), a_0 = 1$, observed historical data, natural bayesian update. Then it is posterior of β based on on D_0 with $\pi_0(\beta, \gamma)$ as initial prior. Stage 2: $D = (n, Y, X), a_0 = 1$, posterior of β uses the posterior in stage 1 as the prior for β

Question: When $\alpha = 0$, the HPD included H_0 , and as α increase, the HPD does not include H_0 . Then how do we interpret it?

4 L measure

1. Y needs to be in the same scale, not only the X is the same.