Proposta de Resolução

Prova Modelo 4 • 2019

Caderno 1

1.

1.1. O ponto A pertence à superfície esférica e ao eixo Ox, logo as suas coordenadas são $(x_A,0,0)$, tal que:

$$\left(x_A - \frac{5}{2}\right)^2 + \left(0 - \frac{3}{2}\right)^2 + \left(0 - \frac{1}{2}\right)^2 = \frac{11}{4} \Leftrightarrow \left(x_A - \frac{5}{2}\right)^2 = \frac{1}{4} \Leftrightarrow x_A = \frac{5}{2} \pm \frac{1}{2} \Leftrightarrow x_A = 2 \lor x_A = 3$$
 e como a abcissa de A é menor que 3, vem que $A(2,0,0)$.

Repare-se que o ponto médio do segmento [EG], M, pode ser obtido através de $M=C_S+\overrightarrow{AF}$, em que C_S é o centro da superfície esférica. Logo:

$$M = C_S + F - A = \left(\frac{5}{2}, \frac{3}{2}, \frac{1}{2}\right) + (0, -1, 5) - (2, 0, 0) = \left(\frac{1}{2}, \frac{1}{2}, \frac{11}{2}\right).$$

1.2. O plano EFG é perpendicu $\{ar à reta AF, pelo que o vetor normal de qualquer plano paralelo a <math>EFG$ tem a mesma direção do vetor $A \not = (0, -1,5) - (2,0,0) = (-2, -1,5)$. Desta forma, uma equação do plano é -2x - y + 5z + d = 0.

O ponto C pode ser obtido tendo em conta que o centro da superfície esférica é ponto médio do segmento

[AC], tal que:
$$\left(\frac{5}{2}, \frac{3}{2}, \frac{1}{2}\right) = \left(\frac{x_A + x_C}{2}, \frac{y_A + y_C}{2}, \frac{z_A + z_C}{2}\right) \Leftrightarrow \begin{cases} \frac{2 + x_C}{2} = \frac{5}{2} \\ \frac{0 + y_C}{2} = \frac{3}{2} \end{cases} \Leftrightarrow x_C = 3 \land y_C = 3 \land z_C = 1$$

Desta forma o ponto P tem coordenadas (-3, -3, -1), e substituindo na equação do plano obtém-se: $-2 \times (-3) - (-3) + 5 \times (-1) + d = 0 \Leftrightarrow d = -4.$

A equação do plano pedido é -2x - y + 5z - 4 = 0

2. Seja n o número da linha do Triângulo de Pascal tal que o nono elemento tem igual valor ao décimo quarto, isto é, tal que ${}^{n}C_{8} = {}^{n}C_{13}$. Desta equação resulta que n = 13 + 8 = 21, e a soma de todos os elementos da linha anterior é $2^{20} = 1048576$.

Resposta: (C)

3.

3.1. Seja A o acontecimento "O Nuno venceu a partida", e B o acontecimento "A partida foi disputada em terra batida". Do enunciado vem que $P(A) = \frac{3}{5}$, $P(\overline{A}|B) = \frac{3}{5}$ e $P(\overline{B}|A) = \frac{3}{4}$.

Pretende-se determinar o valor de $P(\overline{B})$

$$P(\overline{A}|B) = \frac{3}{5} \Leftrightarrow \frac{P(\overline{A} \cap B)}{P(B)} = \frac{3}{5} \Leftrightarrow P(\overline{A} \cap B) = \frac{3}{5}P(B)$$

$$P(\overline{B}|A) = \frac{3}{4} \Leftrightarrow \frac{P(\overline{B} \cap A)}{P(A)} = \frac{3}{4} \Leftrightarrow P(\overline{B} \cap A) = \frac{3}{4} \times \frac{3}{5} = \frac{9}{20}$$

Repare-se que.
$$P(B) = P(A \cap B) + P(\overline{A} \cap B) \Leftrightarrow P(B) = P(A) - P(A \cap \overline{B}) + P(\overline{A} \cap B) \Leftrightarrow P(B) = \frac{3}{5} - \frac{9}{20} + \frac{3}{5}P(B) \Leftrightarrow \frac{2}{5}P(B) = \frac{3}{20} \Leftrightarrow P(B) = \frac{15}{40} = \frac{3}{8}$$

de onde vem que
$$P(\overline{B}) = 1 - P(B) = 1 - \frac{3}{8} = \frac{5}{8}$$
.

3.2. O António e o Guilherme ficarão sentados lado a lado numa das filas. Existem 2 formas de escolher a fila em que se sentarão, e 2! × 3 formas de se dispôrem juntos nessa fila.

O Tomás e o Vasco sentar-se-ão frente a frente, pelo que existem 2 pares de lugares frente a frente (o António e o Guilherme estão sentados lado a lado nos outros dois pares de lugares frente a frente, pelo que não é possível o Vasco e o Tomás se sentarem frente a frente nesses pares de lugares). Repare que o Tomás e o Vasco ainda podem permutar de lugares de 2! formas.

Por fim, o Nuno e o Rodrigo poderão sentar-se em quaisquer 2 lugares entre os 4 que restam, pelo que podem fazê-lo de 4A_2 formas.

O resultado pretendido é então $2 \times 2! \times 3 \times 2 \times 2! \times {}^4A_2 = 576$.

4. Em ambos os churrascos, o Tomás retira os tomates do grelhador quando estão a 80° C, pelo que $T_i = 80$, e espera que eles atinjam os 40° C, pelo que T = 40.

No churrasco de Verão, os tomates foram deixados ao ar livre a uma temperatura três vezes maior do que a respetiva ao churrasco de Inverno, isto é $T_\infty^V=3T_\infty^I$, em que T_∞^V 177,28 representa a temperatura ao ar livre no churrasco de Verão, e T_∞^I representa a temperatura ao ar livre no churrasco de Inverno.

O tempo que o tomate demorou a arrefecer até os 40° C no churrasco de Verão, t^{V} , foi o quádruplo do tempo que o tomate demorou a arrefecer até os 40° C no churrasco de Inverno, t^{I} , isto é $t^{V} = 4t^{I}$, logo:

$$48.8 \ln \left(\frac{80 - T_{\infty}^{V}}{40 - T_{\infty}^{V}} \right) = 4 \times 48.8 \ln \left(\frac{80 - T_{\infty}^{I}}{40 - T_{\infty}^{I}} \right) \Leftrightarrow$$

$$48.8 \ln \left(\frac{80 - 3T_{\infty}^{I}}{40 - 3T_{\infty}^{I}} \right) = 195.2 \ln \left(\frac{80 - T_{\infty}^{I}}{40 - T_{\infty}^{I}} \right)$$

Tal como a figura ao lado sugere, e recorrendo às capacidades gráficas da calculadora, é possível concluir que a solução da equação acima é $T_{\infty}^{I}=12,97$, pelo que a temperatura no Churrasco de Inverno era aproximadamamente de $13^{\circ}C$.

5. Como A, B, C e D são vértices consecutivos de um polígono regular de 14 lados, pelo que se pode escrever:

$$\arg(z_2) = \arg(z_1) + 3 \times \frac{2\pi}{14} = \arg(z_1) + \frac{3\pi}{7} \text{ e } |z_2| = |z_1| = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$$
e como $\arg(z_1) = \tan^{-1}(4/2) = \tan^{-1}(2) = 1,107$, vem que $z_2 = 2\sqrt{5}e^{i\left(1,107 + \frac{3\pi}{7}\right)}$, tal que:
$$\operatorname{Im}(z_2) = 2\sqrt{5}\sin\left(1.107 + \frac{3\pi}{7}\right) = 2,84.$$

Resposta: (C)

6. A reta tangente ao gráfico de f no ponto de abcissa 0 tem declive f'(0), tal que:

$$f'(0) = e^{2 \times 0} + \frac{1}{(0-1)^2} = 1 + \frac{1}{1} = 2.$$

A reta tangente contém o ponto de coordenadas (3,1) e o ponto de coordenadas (0,f(0)), pelo que vem:

$$\frac{f(0)-1}{0-3}=2 \Leftrightarrow f(0)-1=-6 \Leftrightarrow f(0)=-5.$$

Resposta: (B)

$$S_5 = 2S_{10} - 2S_5 \Leftrightarrow S_{10} = \frac{3}{2}S_5 \Leftrightarrow \frac{u_1 + u_{10}}{2} \times 10 = \frac{3}{2} \times \left(\frac{u_1 + u_5}{2} \times 5\right) \Leftrightarrow 5\left(u_1 + u_{10}\right) = \frac{15}{4}\left(u_1 + u_5\right)$$

Como $u_n = u_1 + r(n-1)$, em que r representa a razão da progressão aritmética, vem que $u_5 = u_1 + 4r$ e $u_{10} = u_1 + 9r$, logo:

$$5(u_1 + u_1 + 9r) = \frac{15}{4}(u_1 + u_1 + 4r) \Leftrightarrow 10u_1 + 45r = \frac{15}{2}u_1 + 15r \Leftrightarrow 30r = -\frac{5}{2}u_1 \Leftrightarrow u_1 = -12r$$

Desta forma $u_n = u_1 + r(n-1) = -12r + rn - r = -13r + rn$, a progressão anula-se no termo de ordem 13.

8. Tem-se que x(0) = x(4) = 1, de tal forma que o período do oscilador é T = 4.

Desta forma, tem-se: $T = \frac{2\pi}{\omega} \Leftrightarrow \omega = \frac{2\pi}{4} = \frac{\pi}{2}$

A amplitude do oscilador é 3, pelo que se pode escrever $x(t) = 3\cos\left(\frac{\pi}{2}t + \varphi\right)$, em que $\varphi \in [0,2\pi[$ é a fase do oscilador.

Logo: $x(0) = 1 \Leftrightarrow 3\cos(\varphi) = 1 \Leftrightarrow \varphi = \cos^{-1}(1/3) = 1,23.$

Resposta: (A)

Caderno 2

- 9. Tem-se que:
 - $\sin\left(\arcsin\frac{\pi}{8}\right) = \frac{\pi}{8}$
 - $\arcsin\left(\sin\frac{9\pi}{8}\right) = \arcsin\left(\sin\left(-\frac{\pi}{8}\right)\right) = -\frac{\pi}{8} \text{ (repare que } -\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}\text{)}$

 $\log \sin \left(\arcsin \frac{\pi}{8} \right) - \arcsin \left(\sin \frac{9\pi}{8} \right) = \frac{\pi}{8} - \left(-\frac{\pi}{8} \right) = \frac{2\pi}{8} = \frac{\pi}{4}$

Resposta: (D)

10. Como $i^{22} = i^{20} \times i^2 = 1 \times (-1) = -1$, vem que:

$$z_1 = 1 + \frac{i^{22} + 3i}{3 + i} = 1 + \frac{-1 + 3i}{3 + i} = 1 + \frac{(-1 + 3i)(3 - i)}{(3 + i)(3 - i)} = 1 + \frac{-3 + i + 9i - 3i^2}{3^2 - i^2} = 1 + \frac{10i}{10} = 1 + i$$

O ponto A é então afixo de $\overline{z_1} = 1 - i$.

Como $z_2 = e^{i\frac{3\pi}{8}}$, vem que $(z_2)^8 = e^{i\left(8 \times \frac{3\pi}{8}\right)} = e^{i3\pi} = -1$, e B é o afixo de -1.

Se o número complexo w é imaginário puro, então Re(w) = 0. Designe-se por b a parte imaginária de w, tal que w = bi.

Como o afixo de w pertence à mediatriz do segmento [AB], tem-se que $|w-\overline{z_1}|=|w-(z_2)^8|$, isto é:

$$|bi - (1 - i)| = |bi - (-1)| \Leftrightarrow |-1 + i(b+1)| = |1 + bi| \Leftrightarrow \sqrt{(-1)^2 + (b+1)^2} = \sqrt{1^2 + b^2}$$
$$\Leftrightarrow 1 + b^2 + 2b + 1 = 1 + b^2 \Leftrightarrow 2b = -1 \Leftrightarrow b = -\frac{1}{2} \Rightarrow w = -\frac{1}{2}i$$

11. O gráfico de g obtém-se através de uma translação vertical do gráfico de f de duas unidades no sentido negativo, logo $g(x) = f(x) - 2 = \log_2 x - 2 = \log_2 x - \log_2 4 = \log_2 \left(\frac{x}{4}\right)$.

Resposta: (D)

12. Repare-se que
$$D_h = \left\{ x \in \mathbb{R} : 2x \neq \frac{\pi}{2} + k\pi \right\} = \left\{ x \in \mathbb{R} : x \neq \frac{\pi}{4} + k\frac{\pi}{2} \right\}.$$

Dos intervalos dados, apenas o intervalo $\left] -\frac{\pi}{6}, \frac{\pi}{6} \right[$ respeita a condição acima.

Resposta: (B)

13.

13.1. Assíntotas Verticais

A função f é contínua em \mathbb{R}^+ , pois resulta do quociente entre funções contínuas (polinomial e a soma de função logarítmica com função polinomial). Desta forma, resta averiguar a possibilidade de existir uma assíntota vertical em x=0. Para tal, determine-se o valor de $\lim_{x \to \infty} f(x)$, tal que:

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x}{\ln^2 x + x^2} = \frac{0}{\ln^2(0^+) + 0} = \frac{0}{(-\infty)^2} = \frac{0}{+\infty} = 0$$

de onde se conclui que f não admite qualquer assíntota vertical no seu gráfico em \mathbb{R}^+ .

Assíntotas Horizontais

Deve-se averiguar a existência de uma assíntota horizontal ao gráfico de f quando $x \to +\infty$, determinando o valor do limite $\lim_{x \to +\infty} f(x)$, vindo:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{\ln^2 x + x^2} = \lim_{x \to +\infty} \frac{\frac{x}{x^2}}{\frac{\ln^2 x}{x^2} + 1} = \frac{\lim_{x \to +\infty} \frac{1}{x}}{\lim_{x \to +\infty} \left(\frac{\ln x}{x}\right)^2 + 1} = \frac{0}{0^2 + 1} = 0$$

onde se utilizou o limite notável $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

Conclui-se então que y=0 é assíntota horizontal do gráfico de f quando $x \to +\infty$.

13.2. Em]-3,0[tem-se:

$$f'(x) = (x+3)'\ln(x+3) + (x+3)(\ln(x+3))' - (2x)' = \ln(x+3) + (x+3) \times \frac{1}{x+3} - 2$$
$$= \ln(x+3) + 1 - 2 = \ln(x+3) - 1$$

tal que
$$f'(x) = 0 \Leftrightarrow \ln(x+3) - 1 = 0 \Leftrightarrow \ln(x+3) = 1 \Leftrightarrow x+3 = e \Leftrightarrow x = e-3$$
.

Estudando o sinal de g':

X	-3		e – 3		0
f'(x)	n.d	_	0	+	n.d
f(x)	n.d	>	mín.	7	n.d

Conclui-se então que a função f é decrescente em]-3,e-3], é crescente em [e-3,0[, e admite um mínimo no ponto de abcissa e-3 tal que $f(e-3)=(e-3+3)\ln(e-3+3)-2(e-3)=e\ln(e)-2e+6=6-e$.

14. Tem-se:

$$2^{x} \le \left(\sqrt{2}\right)^{x+4} - 3 \Leftrightarrow 2^{x} \le \left(2^{1/2}\right)^{x+4} - 3 \Leftrightarrow 2^{x} \le 2^{\frac{x}{2}+2} - 3 \Leftrightarrow 2^{x} \le 2^{x/2} \times 2^{2} - 3$$
$$\Leftrightarrow 2^{x} < 4 \times 2^{x/2} + 3 \Leftrightarrow 2^{x} - 4 \times 2^{x/2} + 3 < 0$$

tal que $2^x - 4 \times 2^{x/2} + 3 = 0 \Leftrightarrow (2^{x/2})^2 - 2 \times e^{x/2} + 3 = 0$, pelo que tomando $y = 2^{x/2}$ vem:

$$y^{2} - 4y + 3 = 0 \Leftrightarrow (y - 3)(y - 1) = 0 \Leftrightarrow y = 1 \lor y = 3 \Leftrightarrow 2^{x/2} = 1 \lor 2^{x/2} = 3$$
$$\Leftrightarrow \frac{x}{2} = 0 \lor \frac{x}{2} = \log_{2} 3 \Leftrightarrow x = 0 \lor x = 2\log_{2} 3$$

Pelo que o conjunto solução da inequação é [0, 2 log₂ 3].

15. A função f'' existe, pelo que f' é diferenciável, logo é contínua. Como $f'(0) \times f'(1) < 0$, vem pelo Teorema de Bolzano-Cauchy que $\exists c \in]0,1[:f'(c)=0$, e como em]0,1[tem-se que f''(x)>0, vem que f''(c)>0, e portanto o gráfico de f admite um mínimo relativo no ponto de abcissa c.

Resposta: (B)

16. Tem-se que:

$$\overrightarrow{AC} \cdot \overrightarrow{BD} = \left(\overrightarrow{AB} + \overrightarrow{BC}\right) \cdot \overrightarrow{BD} = \underbrace{\overrightarrow{AB} \cdot \overrightarrow{BD}}_{=0 \, (i)} + \overrightarrow{BC} \cdot \overrightarrow{BD} = \overrightarrow{BC} \cdot \left(\overrightarrow{BC} + \overrightarrow{CD}\right) = \overrightarrow{BC} \cdot \overrightarrow{BC} + \underbrace{\overrightarrow{BC} \cdot \overrightarrow{CD}}_{=0 \, (ii)} = \left\|\overrightarrow{BC}\right\|^2$$

em que (i) é válido, uma vez que a reta r é tangente à circunferência, i.e, qualquer vetor contido na reta é perpendicular a um vetor que contenha o centro da circunferência e o ponto B, e (ii) é válido porque o ângulo BCD está inscrito num arco de 180° , pelo que tem amplitude 90° .