Verilog 搭建流水线 CPU 设计报告

一、 数据通路设计

1.PC

(1)接口定义

信号名称	方向	描述
reset	I	PC 复位至 0x00003000
NPC[31:0]	I	下一个 PC 值(下一个时钟上升沿的时候要写入 PC 寄
		存器的值)
PC[31:0]	О	PC 输出

(2) PC 功能定义

序号	功能名称	描述
1	复位	当 reset 有效时,PC 寄存器被赋值为
		0x00003000
2	输出指令地址	在时钟上升沿的时候更新 PC

2.ADD4 模块

(1)接口定义

信号名		方	描述
	向		
PC[31: 0]	I		当前 PC 值
PC4[31: 0]	O		=PC+4
(2) 功能定义	Z		
			LILVE

序号	功能名称	描述
1	输出 PC+4	纯组合逻辑. 永远输出 PC4=PC+4

3. IM 模块

(1)接口定义

信号名	方向	描述
clk,reset	I	时钟,复位信号

PC[31:0]	I	要读取的指令的地址
instr[31:0]	O	从 IM 中取出来的 32 位指令

(2) 功能定义

序号	功能名称	描述
1	取指令	根据输入的 PC 值输出相应位置的指令

4, RF

GRF 由 32 个寄存器构成(其中 0 号寄存器恒为 0)。首先计算 RegA、RegB、RegD 信号的值,再进行读或写操作:读操作时,将编号为 RegA、RegB 的两个寄存器的值读出到 busA、busB。写操作时,在 RegWr 信号为 1 时,将 dataWr 写入 RegD 编号对应的寄存器中。

表格 1 GRF 端口说明

端口名	方向	说明
IR_D[31:0]	I	D 级指令,用来提取 rs,rt
R3[4:0]	I	待写入寄存器的编号
RFIn[31:0]	I	待写入寄存器的数据
RegWr	I	寄存器写使能信号
		0: 不写入 1: 写入
clk	I	时钟信号
reset	I	复位信号
PC4[31:0]	I	PC+4 值,\$display 时-4 后使用
RFOut1[31:0]	O	读出数据 1(\$rs 的值)
RFOut2[31:0]	O	读出数据 2(\$rt 的值)

表格 2 GRF 功能定义

序号	功能名称	功能描述
1	读寄存器	将编号为R1的寄存器中的数据输出到RFOUt1端口;
		将编号为 R2 的寄存器中的数据输出到 RFOut2 端口

2 写寄存器 RegWr=1 时,在时钟上升沿将 RFIn 写入到编号为 R3 的寄存器中;写入寄存器时进行输出操作

5、EXT (扩展器)

EXT 根据 ExtOp 对 16 位立即数 imm16 进行各类扩展。

表格 3 EXT端口说明

端口名	方向	说明
IR_D[31:0]	I	D 级指令,用来提取 16 位立即数 imm16
ExtOp[1:0]	I	进行何种扩展的选择信号。
		00: 无符号扩展
		01: 有符号扩展
		10: 加载到高 16 位, 低 16 位补 0
		11: (未定义)
ExtOut[31:0]	O	扩展后的数据。

表格 4 EXT 功能定义

序号	功能名称	功能描述
1	无符号扩展	ExtOp=00 时,对 imm16 进行无符号扩展并输出到
		ExtOut。
2	有符号扩展	ExtOp=01 时,对 imm16 进行有符号扩展并输出到
		ExtOut。
3	后补 16 位 0	ExtOp=10 时,将 imm16 加载到高 16 位,在低 16 位补
		0,并输出到 ExtOut。

6.CMP 模块

(1) 模块接口

信号名称	方	描述
	向	

CMPIn1[31: 0] I 第一个操作数

CMPIn2[31: 0] I 第二个操作数

BrType[2: 0] I Br 指令类型,比较方式选择

BrTrue O 比较结果,用于是否做 br 跳转的判断

(2) 功能定义

序号	功能名称	描述(C 为 BrType;A,B 为
		CMPIn1,CMPIn2)
1	==(BrType=000)	C=(A==B)
2	!=(BrType=001)	C=(A!=B)
3	A>B(BrType=010)	C=(A>B)
4	$A \le B(BrType=011)$	$C=(A \leq B)$
5	A <b(brtype=100)< td=""><td>C=(A < B)</td></b(brtype=100)<>	C=(A < B)
6	A>=0(BrType=101)	C=(A>=0)

7.NPC 模块

(1)接口定义(计算下一个 PC 的值,纯组合逻辑)

信号名	方向	描述
PC4[31: 0]	I	当前 PC 值
IR_D[31: 0]	I	D级指令,用于提取 imm16 和 imm26
BrTrue	I	从 CMP 块得到的是否满足 br 指令跳转条件的信号
jPC[31:0]	O	j 指令的下一个 PC
brPC[31:0]	O	br 指令的下一个 PC

(2) NPC 功能定义

序号	功能名称	描述
1	计算 brPC	BrTrue=0 时, brPC=PC4+4
		BrTrue=1 时, brPC=PC4+sign_extend(offset 00)
2	计算 jPC	jrPC= PC4[31:28] imm26 00

8、ALU(算术逻辑单元)

ALU 由何种算数逻辑组成。根据 ALUctr 对 ALUin1 和 ALUin2 进行加、减、或、相等比较等操作并输出。

表格 5 ALU 端口说明

端口名	方向	说明		
ALUIn1[31:0]	I	第一个待操作数。		
ALUIn2[31:0]	I	第二个待操作数。		
ALUOp[2:0]	I	进行何种运算的选择信号。		
		00: ALUIn1+ALUIn2		
		01: ALUIn1-ALUIn2		
		10: ALUIn1 ALUIn2		
		11: ALUIn2 << ALUIn1[4:0]		
ALUOut[31:0]	O	运算后的结果。		

表格 6 ALU 功能定义

序号	功能名称	功能描述
1	加 (无溢出)	ALUOut=ALUin1 + ALUin2
2	减 (无溢出)	ALUOut=ALUin1 - ALUin2
3	或	ALUOut=ALUin1 ALUin2

9、DM(数据存储器)

表格 7 DM 端口说明

端口名	方向	说明		
DMAddr[31:0]	I	DM 中的读出/写入地址,即 ALU 的输出端 ALUOut		
DMIn[31:0]	I	待写入 DM 的数据,即 GRF 的输出端 RFOut2		
MemWr	I	将 DMdata 写入 DM 的写使能信号。		
		0: 不写入 1: 写入		
clk	I	时钟信号		
reset	I	复位信号		
PC4[31:0]	I	PC4 值,\$display 时-4 后使用		

DMOut[31:0] O DM 输出数据

表格 8 DM 功能定义

序号	功能名称	功能描述
1	读出	DMOut=DM 中 DMAddr 地址中的数据。
2	写入	MemWr=1 时,将 DMIn 写入 DM 的 DMaddr 地址中。

10、电路图总览

二、 Controller (控制器)设计

1、基本描述

Controller 根据指令中的 opcode 段和 funct 段,先利用与门确定该指令类型,再利用或门确定各控制信号。

端口名	方向	说明
instr[31:0]	I	指令

ALUSrc1	O	
ALUSrc2	O	
MemWr	O	
RegWr	O	
ExtOp[1:0]	O	控制信号
ALUOp[2:0]	O	说明见 Excel
NPCsel[1:0]	O	
RegDst[1:0]	O	
MemtoReg[1:0]	O	
BrType	O	
calr	O	指令类型
cali	O	说明见 Excel
br	O	
load	O	
store	O	
jal	O	
jr	O	
jalr	0	

序号	功能名称	功能描述
1	译码	将 instr 根据上表所述进行译码

- 2、控制信号真值表(见 Excel)
- 3、控制信号含义(见 Excel)
- 三、 测试 CPU(见文档)
- 1、 P5 测试
- 2、 新增指令功能测试(new instruction)

- 3、 暂停测试(stall)
- 4、 转发测试(forwarding)

四、思考题

- 1. 为什么需要有单独的乘除法部件而不是整合进 ALU? 为何需要有独立的 HI、LO 寄存器?
- (1)因为乘除法有比其它运算更大的延迟(乘法 5 周期,除法 10 周期),如果仅用 ALU 实现,会大大降低主频。并且乘法器和除法器实际上是状态机,是时序逻辑,而 ALU 是简单的组合逻辑。
- (2)如果不用专门的 HI, LO 同时存储这两个值,按现行的数据通路架构,只能将其中一个传递到 M 级以后,这样就造成了信息的丢失。并且保存乘法的结果 HI 和 LO,可以用来判断是否发生了溢出。除此之外,HI 和 LO 寄存器还经常用于保存现场。
- (3) 如果我们将计算乘除法这个功能放到 RF (通用寄存器模块),那么这个实现乘除法的模块就要前置到 D级,会导致 D级数据通路过长,此外也会引起后续许多不必要的转发以及暂停。
- 2. 参照你对延迟槽的理解, 试解释"乘除槽"。

执行一条乘法或者除法操作,会给乘除法模块带来 5 个或者 10 个周期的延迟。但这个延迟对于不使用乘除法模块的指令来说是不影响正常执行的,因此,编译器可以用类似延迟槽的思想,调整指令执行的顺序,将后面的一些不需要用到乘除法模块的指令插入到产生乘除模块延迟的指令后面。

3、为何上文文末提到的 1b 等指令使用的数据扩展模块应在 MEM/WB 之后,而不能在 DM 之后?

因为 MEM 流水级由于有 DM 的存在,本身就有了很高的延迟,一般来说,由于 M 流水级是所有流水级中延迟最大的,那么整个 CPU 的时钟周期也由 M 流水级决定。如果 M 级再加上一个数据扩展模块,会显著降低 CPU 的主频。

4. 举例说明并分析何时按字节访问内存相对于按字访问内存性能上更有优势。(Hint: 考虑 C 语言中字符串的情况)

由于一个字符只占一个字节因此在进行字符操作或者是字符串操作的时候按字节读取时候效率更高。而按字读取的时候则是需要将这个字符所在的整个字读取出来,对整个字进行操作,造成了比较大的浪费。

5. 如何概括你所设计的 CPU 的设计风格? 为了对抗复杂性你采取了哪些抽象和规范手段?

Planner。对指令按照 Tuse 和 Tnew 的不同进行分类。分析暂停时,对 D 级指令的 Tuse 和 E, M 级指令的 Tnew 进行比较;分析转发时,在 E, M, W 级的 Tnew 为 0 后开始暴力转发随时转发。如此可以尽可能简单地覆盖所有情况。

6. 你对流水线 CPU 设计风格有何见解?

我个人比较喜欢 Planner 设计风格,不只是因为第一次接触到的就是这个风格,更是因为在逻辑抽象出来策略矩阵之后可以直接快速地比较 Tuse 和 Tnew的大小。虽然在代码量比较大,新增指令的时候需要新增暂停和转发语句,但是易于进行工程化分析,不太容易缺漏条件。

7、在本实验中你遇到了哪些不同指令组合产生的冲突?你又是如何解决的?相应的测试样例是什么样的?请有条理的罗列出来。(非常重要)暂停

类型	测试类型	前序指令	冲突位置	冲突寄存器	测试序列
R 型	LD-E-RS	1w	D	RS	1w \$4,0(\$5) addu \$4,\$4,\$5
	LD-E-RT	1w	D	RT	1w \$4,0(\$5) addu \$4,\$5,\$4
I型	LD-E-RS	1w	D	RS	lw \$4,0(\$5) ori \$5,\$4,0xffff
LD 型	LD-E-RS	1w	D	RS	1w \$4,0(\$5) 1w \$3,4(\$4)
ST 型	LD-E-RS	1w	D	RS	1w \$4,0(\$5) sw \$3,4(\$4)
JR	R-E-RS	addu	D	RS	addu \$4,\$4,\$5 jr \$4
	I-E-RS	ori	D	RS	ori \$4,0xffff jr \$4
	LD-E-RS	1w	D	RS	lw \$4,0(\$5) jr \$4
	LD-M-RS	1w	D	RS	lw \$4,0(\$5)

					nop
					jr \$4
B型	R-E-RS	1.1	D	RS	addu \$4, \$4, \$5
D至	K_E_K2	addu	D	СЛ	beq \$4, \$5, loop
	I-E-RS	ori	D	RS	ori \$4,0xffff
	I E No	011	D	No	beq \$4, \$5, loop
	LD-E-RS	1w	D	RS	1w \$4,0(\$5)
	LD E NO	1W	D.	V9	beq \$4, \$5, loop
					1w \$4,0(\$5)
	LD-M-RS	1w	D	RS	nop
					beq \$4, \$5, loop
	R-E-RT	addu	D	RT	addu \$4, \$4, \$5
	K E KI	auuu	D	K1	beq \$5, \$4, loop
	I-E-RT	ori	D	RT	ori \$4,0xffff
	I L KI	011	D	I(1	beq \$5, \$4, loop
	LD-E-RT	1w	D	RT	1w \$4,0(\$5)
	LD-E-KI	TW	υ	K1	beq \$5, \$4, loop
					1w \$4,0(\$5)
	LD-M-RT	1w	D	RT	nop
					beq \$5, \$4, loop

转发

类型	测试类型	前序指令	冲突位置	冲突寄存器	测试序列
R 型					addu \$4, \$4, \$5
(以	R-W-RS	addu	D	RS	nop
addu	K W KS	auuu	D	KS	nop
为例)					addu \$4, \$4, \$5
					ori \$4,\$5,0xffff
	I-W-RS	ori	D	RS	nop
	1 " NO	Oll	D	NO	nop
					addu \$4, \$4, \$5
					1w \$4,0(\$5)
	LD-W-RS 1w	1w	D	RS	nop
	LD " NS		D		nop
					addu \$4, \$4, \$5
					jal loop
	JAL-W-RS	S jal	D	RS	nop
			D	KS	nop
					addu \$1,\$31,\$1
	R-W-RT	addu	D	RT	addu \$4, \$4, \$5

				nop
				nop
				addu \$4, \$5,\$4
				ori \$4,\$5,0xffff
I-W-RT	ori	D	RT	nop
1 # 1(1	011	D	KI	nop
				addu \$4, \$5, \$4
				1w \$4,0(\$5)
1 D III DM	,		p.m	nop
LD-W-RT	1w	D	RT	nop
				addu \$4, \$5, \$4
				jal loop
				nop
JAL-W-RT	jal	D	RT	nop
				addu \$1, \$1, \$31
				addu \$4, \$4, \$5
R-W-RS	addu	Е	RS	nop
				addu \$4, \$4, \$5
				nop
				ori \$4,\$5,0xffff
I-W-RS	ori	Е	RS	nop
1 " NO	011	L L		addu \$4, \$4, \$5
				nop
				1w \$4,0(\$5)
LD-W-RS	$1\mathrm{w}$	Е	RS	nop
LD_M_K2	1W	E	СЛ	addu \$4, \$4, \$5
				nop
				jal loop
		_		nop
JAL-W-RS	jal	Е	RS	addu \$1, \$31, \$1
				nop
				addu \$4, \$4, \$5
R-M-RS	addu	E	RS	addu \$4, \$4, \$5
K M KO	addu	L	KS	
				nop
T.M. DC		F.	DC	ori \$4, \$5, 0xffff
I-M-RS	ori	Е	RS	addu \$4, \$4, \$5
				nop
				jal loop
JAL-M-RS	jal	Е	RS	addu \$1,\$31,\$1
				nop
				addu \$4, \$4, \$5
R-W-RT	addu	Е	RT	nop
IC # ICI	adda	L	KI	addu \$4, \$5,\$4
				nop

	I-W-RT	ori	E	RT	ori \$4,\$5,0xffff nop addu \$4,\$5,\$4 nop
	LD-W-RT	1w	Е	RT	1w \$4,0(\$5) nop addu \$4,\$5,\$4 nop
	JAL-W-RT	jal	Е	RT	jal loop nop addu \$1,\$1,\$31 nop
	R-M-RT	addu	Е	RT	addu \$4, \$4, \$5 addu \$4, \$5, \$4 nop
	I-M-RT	ori	E	RT	ori \$4,\$5,0xffff addu \$4,\$5,\$4 nop
	JAL-M-RT	jal	E	RT	jal loop addu \$1,\$1,\$31 nop
I型 (以 ori为 例)	R-W-RS	addu	D	RS	addu \$4,\$4,\$5 nop nop ori \$4,\$4,0xffff
	I-W-RS	ori	D	RS	ori \$4,\$5,0xffff nop nop ori \$4,\$4,0x0000
	LD-W-RS	1w	D	RS	<pre>lw \$4,0(\$5) nop nop ori \$4,\$4,0xffff</pre>
	JAL-W-RS	jal	D	RS	jal loop nop nop ori \$1,\$31,0xffff
	R-W-RS	addu	Е	RS	addu \$4, \$4, \$5 nop ori \$4, \$4, 0xffff nop
	I-W-RS	ori	E	RS	ori \$4,\$5,0xffff nop ori \$4,\$4,0x0f0f

					nop
	LD-W-RS	1w	Е	RS	lw \$4,0(\$5) nop ori \$4,\$4,0xffff nop
	JAL-W-RS	jal	E	RS	jal loop nop ori \$1,\$31,0xffff nop
	R-M-RS	addu	E	RS	addu \$4,\$4,\$5 ori \$4,\$4,0xffff nop
	I-M-RS	ori	Е	RS	ori \$4,\$5,0xffff ori \$4,\$4,0xf0f0 nop
	JAL-M-RS	jal	E	RS	jal loop ori \$1,\$31,0xfff0 nop
LD 型	R-W-RS	addu	D	RS	addu \$4, \$4, \$5 nop nop 1w \$5,0(\$4)
	I-W-RS	ori	D	RS	ori \$4, \$5, Oxffff nop nop 1w \$5, O(\$4)
	LD-W-RS	1w	D	RS	1w \$4,0(\$5) nop nop 1w \$5,0(\$4)
	JAL-W-RS	jal	D	RS	jal loop nop nop lw \$5,0(\$31)
	R-W-RS	addu	Е	RS	addu \$4, \$4, \$5 nop lw \$5,0(\$4) nop
	I-W-RS	ori	Е	RS	ori \$4,\$5,0xffff nop lw \$5,0(\$4) nop
	LD-W-RS	1w	Е	RS	1w \$4,0(\$5) nop

					1w \$5,0(\$4)
					nop
	JAL-W-RS	jal	Е	RS	jal loop nop lw \$5,0(\$31) nop
	R-M-RS	addu	E	RS	addu \$4, \$4, \$5 1w \$5, 0 (\$4) nop
	I-M-RS	ori	Е	RS	ori \$4,\$5,0xffff lw \$5,0(\$4) nop
	JAL-M-RS	jal	Е	RS	jal loop lw \$5,0(\$31) nop
ST 型	R-W-RS	addu	D	RS	addu \$4, \$4, \$5 nop nop sw \$5,0(\$4)
	I-W-RS	ori	D	RS	ori \$4, \$5, 0xffff nop nop sw \$5, 0(\$4)
	LD-W-RS	1w	D	RS	1w \$4,0(\$5) nop nop sw \$5,0(\$4)
	JAL-W-RS	jal	D	RS	jal loop nop nop sw \$5,0(\$31)
	R-W-RT	addu	D	RT	addu \$4, \$4, \$5 nop nop sw \$4, 0 (\$5)
	I-W-RT	ori	D	RT	ori \$4,\$5,0xffff nop nop sw \$4,0(\$5)
	LD-W-RT	1w	D	RT	1w \$4,0(\$5) nop nop sw \$4,0(\$6)
	JAL-W-RT	jal	D	RT	jal loop

				nop
				nop
				sw \$31,0(\$5)
				addu \$4, \$4, \$5
R-W-RS	addu	Е	RS	nop
				sw \$5,0(\$4)
				nop
				ori \$4,\$5,0xffff
I-W-RS	ori	Е	RS	nop
2 1	011			sw \$5,0(\$4)
				nop
				1w \$4,0(\$5)
LD-W-RS	1w	Е	RS	nop
LD W NO	1 W	E	KS	sw \$5,0(\$4)
				nop
				jal loop
TAL W DC	. 1	Г	D.C.	nop
JAL-W-RS	jal	Е	RS	sw \$5,0(\$31)
				nop
				addu \$4, \$4, \$5
				nop
R-W-RT	addu	Е	RT	sw \$4, 0 (\$5)
				nop
				ori \$4,\$5,0xffff
				nop
I-W-RT	ori	Е	RT	sw \$4,0(\$5)
				nop
				1w \$4,0(\$5)
LD-W-RT	1w	Е	RT	nop
				sw \$4,0(\$6)
				nop
				jal loop
JAL-W-RT	jal	Е	RT	nop
Ü	3			sw \$31,0(\$5)
				nop
				addu \$4, \$4, \$5
R-W-RT	addu	M	RT	sw \$4,0(\$5)
IC III ICI	adda	W	KI	nop
				nop
				ori \$4,\$5,0xffff
T W DT		M	DТ	sw \$4,0(\$5)
I-W-RT	ori	M	RT	nop
				nop
LD-W-RT	1w	M	RT	1w \$4,0(\$5)
LD-W-RT	1w	M	RT	

					sw \$4,0(\$6)
					nop
					nop
					jal loop
					sw \$31,0(\$5)
	JAL-W-RT	jal	M	RT	
					nop
					nop
	D W D0			P.0	addu \$4, \$4, \$5
	R-M-RS	addu	Е	RS	sw \$5,0(\$4)
					nop
					ori \$4,\$4,\$5
	I-M-RS	ori	Е	RS	sw \$5,0(\$4)
					nop
					jal loop
	JAL-M-RS	jal	Е	RS	sw \$5,0(\$31)
					nop
					addu \$4, \$4, \$5
					nop
JR	R-W-RS	addu	D	RS	nop
					jr \$4
					ori \$4,\$5,0xffff
	I-W-RS	ori	D	RS	nop
					nop
					jr \$4
					1w \$4,0(\$5)
	LD-W-RS	$1\mathrm{w}$	D	RS	nop
	וו עם וו אוס	1"	D	Ro	nop
					jr \$4
					jal loop
	TAL W DC	. 1	D	D.C.	nop
	JAL-W-RS	jal	D	RS	nop
					jr \$31
					addu \$4, \$4, \$5
	R-M-RS	addu	D	RS	nop
					jr \$4
					ori \$4, \$5, 0xffff
	I-M-RS	ori	D	RS	nop
	T M IVO	011	D	No	jr \$4
	TAL M. DC	. 1	D	DC	jal loop
	JAL-M-RS	jal	D	RS	nop
/ VI					jr \$31
行为未	JAL-E-RS	jal	D	RS	jal loop
定义					jr \$31
B型	R-W-RS	addu	D	RS	addu \$4, \$4, \$5

					nop
					nop
					beq \$4, \$3, loop
					ori \$4,\$5,0xffff
	I-W-RS	ori	D	RS	nop
	1 " 10	011	D	Ko	nop
					beq \$4, \$3, 100p
					lw \$4,0(\$5)
	I D W DC	1	D	D.C.	nop
	LD-W-RS	1w	D	RS	nop
					beq \$4, \$3, 100p
					jal loop
					nop
	JAL-W-RS	jal	D	RS	nop
					beq \$31, \$3, loop
					addu \$4, \$4, \$5
	R-W-RT	addu	D	RT	nop
					nop
					beq \$3, \$4, loop
					ori \$4,\$5,0xffff
	I-W-RT	ori	D	RT	nop
	1 " 111	011	2	X.I	nop
					beq \$3, \$4, loop
					1w \$4,0(\$5)
	LD-W-RT	1w	D	DТ	nop
				RT	nop
					beq \$3, \$4, 100p
					jal loop
	TAL W DO		nop		
	JAL-W-RT	jal	D	RT	nop
					beq \$3, \$31, loop
					addu \$4, \$4, \$5
	R-M-RS	addu	D	RS	nop
	I M IO	addu	D	KS	beq \$4, \$3, 100p
	T M DC		D	DC	ori \$4, \$5, 0xffff
1-	I-M-RS	ori	D	RS	nop
					beq \$4, \$3, 100p
				jal loop	
	JAL-M-RS	jal	D	RS	nop
					beq \$31, \$3, loop
		addu			addu \$4, \$4, \$5
	R-M-RT		D	RT	nop
					beq \$3, \$4, loop
	I-M-RT	ori	D	RT	ori \$4,\$5,0xffff

					nop beq \$3, \$4, 100p
	JAL-M-RT	jal	D	RT	jal loop nop beq \$3,\$31,loop
行为未	JAL-E-RS	jal	D	RS	jal loop beq \$31,\$3,loop
定义	JAL-E-RT	jal	D	RT	jal loop beq \$3,\$31,loop

```
附:比对程序(C)
#include<stdio.h>
#include<string.h>
char a[100];
char b[100];
int main(){
    FILE *fp1=fopen("mips.txt","r");
    FILE *fp2=fopen("verilog.txt","r");
    //freopen("res.txt","w+",stdout);
    while((fscanf(fp1,"%s",a))!=EOF){
        fscanf(fp2,"%s",b);
        if(strcmp(a,b)==0)printf("right:r:%s w:%s\n",b,a);
        else {printf("wrong:r:%s w:%s\n",b,a);break;}
    }
    return 0;
}
```