

ADS AD VIDEO COSOUN

www.aduni.edu.pe

ANUAL SAN MARCOS

QUÍMICA

REACCIONES QUÍMICAS II Semana 23

www.aduni.edu.pe

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- 1. Identificar en una reacción redox a las especies químicas: agente oxidante, agente reductor, forma oxidada, forma reducida.
- Aplicar el método de balanceo por tanteo o redox para igualar una reacción química.
- 3. Aplicar el método ion electrón para balancear las ecuaciones químicas iónicas en medio ácido.

II. INTRODUCCIÓN

Inicio

Final

- ¿ Qué entendemos por **oxidación**?
- ¿ Cómo se determina el número de electrones ganados o perdidos?
- ¿ Qué es la reducción?
- ¿Qué es una reacción redox?

III. SEGÚN LA VARIACIÓN DEL ESTADO DE OXIDACIÓN(EO)

Desde el punto de vista, si ocurrió un cambios en los estados de oxidación (E.O) de uno o más elementos, la reacción química se clasifica como reacciones no redox y reacciones redox.

Reacciones no REDOX

No hay cambios en los EO

Cumple en reacciones de metátesis (doble desplazamiento) y algunos de adición.

EJEMPLOS

1+ 2-1+ 1+ 1- 1+ 1- 1+ 2- NaOH + HCl
$$\rightarrow$$
 NaCl + H₂O

$$2+ 2- 1+ 2- 2+ 2-1+$$
CaO + H₂O \rightarrow Ca(OH)₂

Reacciones REDOX

Si hay cambios en los EO

Los cambios se deben al desarrollo de semirreacciones de **oxidación** y **reducción**.

EJEMPLOS

0 1+ 2+ 0
$$Mg + H_3PO_4 \rightarrow Mg_3(PO_4)_2 + H_2$$

REACCIONES REDOX

Son reacciones en las que ocurre una transferencia de electrones debido a los procesos **reducción – oxidación** que ocurre en forma simultanea.

Reducción

Oxidación

la **reducción** es el proceso mediante el cual una especie química **gana electrones**, con lo cual el estado de oxidación disminuye.

La **oxidación** es el proceso por el cual una especie química **pierde electrones**, como resultado su estado de oxidación aumenta.

EJEMPLOS

$$Mn^{7+} + 5e^- \longrightarrow Mn^{2+}$$

$$2 \text{ H}^{1+} + 2e^- \longrightarrow \overset{0}{\text{H}}_2$$

EJEMPLOS

$$S^{2+} \longrightarrow S^{6+} + 4e^{-}$$

$$20^{2} \longrightarrow \overset{0}{\Omega}_{2} + 4e^{-}$$

ANUAL SAN MARCOS 2021

EJERCICIO

Determine en cada caso el número de electrones ganados o perdidos, respectivamente.

$$I. Cl_2 \rightarrow Cl^-$$

II.
$$MnO_4^- \rightarrow Mn^{2+}$$

III.
$$N^{3-} \rightarrow N_2$$

RESOLUCIÓN:

- ✓ Analizamos en cada caso el cambio del estado de oxidación de los elementos diferentes del oxigeno:
 - I. Disminuye el EO: se reduce → gana e-

$$\begin{array}{c} \mathbf{0} \\ Cl_2 + \mathbf{2}e^- \rightarrow \mathbf{2} \ Cl^- \end{array}$$

II. Disminuye el EO: se reduce → gana e-

$$7 + MnO_4^- + 5e^- \rightarrow Mn^{2+}$$

III. Aumenta el EO: se oxida → pierde e-

$$2 N^{3-} \rightarrow N_2 + 6e^{-}$$

REGLA PRÁCTICA

para reconocer la reducción y oxidación

OXIDACIÓN

Se pierden electrones

REDUCCIÓN

Se ganan electrones

EJEMPLO

Nota

Agente Reductor (AR)

- Provoca la reducción del otro reactante
- Se oxida
 (pierde electrones)

Agente Oxidante (AO)

- Provoca la oxidación del otro reactante
- Se reduce (gana electrones)

BALANCE DE ECUACIONES

Consiste en ajustar los coeficientes estequiométricos con el fin de igualar la cantidad de átomos para cada elemento de la ecuación química. Esto, basado en la *ley de conservación de las masas* (A. Lavoisier).

A) Método de la simple inspección o por tanteo

Se sugiere seguir el siguiente orden:

Metal

No metal

Hidrógeno

Oxígeno

EJEMPLO

Realice el ajuste o balance por tanteo

a.
$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$

b.
$$Fe_2O_3 + CO \longrightarrow Fe + CO_2$$

Luego determine para cada ecuación:

- I. La suma de coeficientes de reactantes.
- II. La suma total de coeficientes

Resolución:

a.
$$1C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

I.
$$1+5=6$$

II.
$$1+5+3+4=13$$

b. 1 Fe₂O₃ +3CO
$$\longrightarrow$$
 2 Fe +3CO₂

I.
$$1+3=4$$

II.
$$1+3+2+3=9$$

B) Método del cambio de estado de oxidación o método REDOX

Pasos a seguir:

- 1) Identificar el cambio en los EO de ciertos elementos químicos.
- Formular las semirreacciones de oxidación y reducción, con los elementos que cambiaron se EO
- 3) Igualar cantidad de electrones ganados y perdidos.
- 4) Colocar los multiplicadores como coeficientes de la ecuación.
- 5) Finalmente ajustar mediante tanteo los elementos que faltan balancear.

Ejercicio: Realice el balance de la reacción por el método REDOX

$$HNO_3 + H_2S \rightarrow NO + S + H_2O$$

Semirreacciones:

Reducción: (
$$N^{5+} + 3e^{-} \longrightarrow N^{+2}$$
) x 2

Oxidación: (
$$S^{2-} \longrightarrow S^0 + 2e^-$$
) x3

Ecuación balanceada

$$2HNO_3 + 3H_2S \rightarrow 2NO + 3S + 4H_2O$$

EJEMPLO: Balanceamos la siguiente ecuación, por el método Redox.

Semirreacciones:

EJERCICIO

Calcule el número de electrones transferidos, el coeficiente del agente reductor y el coeficiente de la forma reducida de la siguiente reacción redox. $CuS + HNO_3 \rightarrow NO + Cu(NO_3)_2 + S + H_2O$

- A) 6; 3; 4
- B) 8; 3; 2
- C) 6; 3; 3
- D) 6; 4; 2
- E) 6; 3; 2

RESOLUCIÓN:

✓ Escribimos la ecuación química y luego identificamos a los elementos que modifican su estado de oxidación :

$$CuS + HNO_3$$
 \longrightarrow $NO + Cu(NO_3)_2 + S + H_2O$

✓ Escribimos las semiecuaciones y luego igualamos la cantidad de electrones transferidos:

$$2^{-}$$
 $X3 (S \longrightarrow S + 2e^{-})....oxidación$
 5^{+}
 $X2 (N + 3e^{-} \longrightarrow N)....reducción$
 $3CuS + 2HNO_3 \longrightarrow 2NO + Cu(NO_3)_2 + 3S + H_2O$

✓ Reajustamos el coeficiente del **N** en el HNO₃ (se reduce parcialmente) y luego hallamos el coeficiente del agua:

$$3CuS + 8HNO_3$$
 \rightarrow $2NO + $3Cu(NO_3)_2 + 3S + 4H_2O$$

FR FO

Entonces:

electrones transferidos= 6

coef. del agente reductor(CuS) = 3

coef. de la forma reducida(NO) = 2

CLAVE: E

C) MÉTODO ION ELECTRÓN

Se emplea en reacciones redox en disolución acuosa, donde se resaltan solo las especies químicas involucradas en el proceso.

En medio Acido (H⁺)

Pasos a seguir:

- 1. Formule las semirreacciones de oxidación y reducción.
- 2. Balancear los átomos de oxigeno e hidrógeno, según:
 - Átomos de (O) con moléculas de H₂O
 - Átomos de (H) con iones H⁺.
- 3. Igualar la carga total, en cada lado de las semirreacciones, con transferencia de electrones.
- 4. Igualar la cantidad electrones ganados y perdidos.
- 5. Trasladar los multiplicadores como coeficientes de la ecuación.
- 6. Ajustar mediante tanteo.

EJEMPLO 1: Realice el ajuste por el método ion electrón en medio ácido

$$Cr_2O_7^{2-} + Fe^{2+} \longrightarrow Cr^{3+} + Fe^{3+}$$

<u>Resolución</u>

+12

+6

Reducción: $(1 \text{ Cr}_2 \text{ O}_7^{2-} + 14\text{H}^+ + 6\text{e}^- \longrightarrow 2 \text{ Cr}^{3+} + 7\text{H}_2 \text{ O}) \times 1$

Oxidación:

$$(1 Fe^{2+} \longrightarrow 1 Fe^{3+} + 1e^{-}) \times 6$$

Ecuación balanceada:

$$1Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \longrightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$$

Agente Agente
Oxidante Reductor

e Foi

Forma Forma reducida oxidada

ANUAL SAN MARCOS 2021

EJERCICIO

En medio ácido, el ión permanganato, MnO_4^- , oxida al tolueno, $C_6H_5CH_3$, en ácido benzoico, C_6H_5COOH . Si el producto también contiene el ion manganeso (II), determine los coeficientes del agente reductor y oxidante respectivamente.

- A) 6 y 18
- B) 5 y 12
- C) 5 y 14
- D) 6 y 6
- E) 18 y 5

RESOLUCIÓN:

✓ Balanceamos la ecuación por el método ion-electrón en medio acido:

$$(2H_{2}O + C_{6}H_{5}CH_{3} \rightarrow C_{6}H_{5}COOH + 6H^{+} + 6e^{-})x5$$

$$0 + 6$$

$$(8H^{+} + MnO_{4}^{-} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O)x6$$

$$+7 + 4H_{2}O x + 4H_{$$

CLAVE: D

VIII. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición