CS3014 – Sparse Parallel Multi-Channel and Multi-Kernel Convolution

Student name: Davy Nolan

Student no: 17330208

Function Modifications

- >Improved new_empty_3d_matrix() function
 - ➤ Given function was not functioning correctly due to it using a 4-D matrix to create a 3-D matrix.
- ➤ Added function for copy_3d_matrix() function
 - ➤ Given code only contained copy_4d_matrix() method.
- ➤ Improved **gen_random_3d_matrix()** function
 - ➤ Modified to work similarly to gen_random_4d_matrix() function.

OpenMp

>#pragma omp parallel

- This allowed parts of the program to run using multiple threads concurrently.
- >Improved runtime.

➤ Parallel For

➤ Divided up the iterations of a for loop between the threads.

➤ Collapse()

➤ Merged several for loops into an iteration space and divided accordingly to the schedule clause.

OpenMp

- The sequential execution of the iteration in all associated loops determines the order of the iterations in the collapsed iteration space.
- This increased the total number of iterations that will be partitioned across the threads by reducing the granularity of work to be done by each thread.

Runtimes

- **>**Small
 - ➤ 16 16 1 32 32 5 => 0.000893 secs
- **≻**Medium
 - ► 128 128 1 512 512 5 => 9.47 secs
- **≻**Large
 - > 256 256 3 1024 1024 5 => 43.56 secs

What I Learned...

- ➤I learned that optimisation of code and algorithms is key is so many areas of computer science.
- However, if the optimisation of code requires so much effort and little reward, it is oftentimes redundant, especially if execution time is not critical to the functionality of the application.