CORRECTION SÉANCE 5 (25 FÉVRIER)

Feuille de TD 2

Exercice 7. L'application φ est un morphisme de modules, comme composée de deux morphismes : l'inclusion $M \hookrightarrow M + N$ et le quotient $M + N \twoheadrightarrow M + N/N$. Ce morphisme de modules est surjectif, en effet pour $m + n \in M + N$, on a $\overline{m + n} = \overline{m} + \overline{n} = \overline{m} = \varphi(m)$, il reste à décrire le noyau de ce morphisme :

$$\operatorname{Ker} \varphi = \{ m \in M \mid \overline{m} = 0 \} = \{ m \in M \mid m \in N \} = M \cap N$$

et on conclut par le premier théorème d'isomorphisme.

Exercice 8. On commence par montrer que la définition de $\varphi(m+P)$ ne dépend pas du choix d'un représentant. Soit m+P=m'+P, autrement dit $m-m'\in P\subset N$, donc m+N=m'+N donc $\varphi(m+P)$ est bien défini, il s'agit clairement d'un morphisme de modules :

$$\varphi((rm + m') + P) = (rm + m') + N = r(m + N) + (m' + N) = r\varphi(m + P) + \varphi(m' + P)$$

Ce morphisme est surjectif : si m est un représentant de m+N, alors m+P est un antécédent de m+N par φ . Enfin, m+P est dans le noyau de ce morphisme si et seulement si $m \in N$, autrement dit si $m+P \in N/P$, d'où le résultat.

† Propriétés universelles

Exercice 9.

- 1. On sait que $x = \sum_{i=1}^{n} r_i e_i$, donc si f est un morphisme de modules, on a $f(x) = \sum_{i=1}^{n} r_i f(e_i)$.
- 2. Par la question précédente, les valeurs de f ne dépendent que de celles des $f(e_i)$, il y a donc un unique tel morphisme, défini par

$$f((r_1, \dots, r_n)) = \sum_{i=1}^n r_i f(e_i) = \sum_{i=1}^n r_i m_i$$

3. Par les questions précédentes, la bijection souhaitée envoie f sur la fonction $(i \mapsto f(e_i))$ de [1, n] dans M.

Exercice 10.

1. Supposons qu'un tel morphisme φ existe, soit $e \in E$ et $\varphi(e) := (m, n)$, on a par hypothèse $m = p_1 \circ \varphi(e) = u(e)$ et $n = p_2 \circ \varphi(e) = v(e)$, donc $\varphi(e) = (u(e), v(e))$, il y a effectivement au plus une possibilité. Montrons maintenant que l'application $\varphi : e \mapsto (u(e), v(e))$ est effectivement un morphisme de R-modules :

$$\varphi(e+e') = (u(e+e') + v(e+e')) = (u(e) + u(e'), v(e) + v(e')) = (u(e), v(e)) + (u(e'), v(e')) = \varphi(e) + \varphi(e')$$
$$\varphi(r.e) = (u(r.e), v(r.e)) = (r.u(e), r.v(e)) = r.(u(e), v(e)) = r.\varphi(e)$$

donc φ est bien l'unique morphisme de R-module qui convient.

2. Comme P possède deux applications $\pi_1: P \to M$ et $\pi_2: P \to N$, il existe par la question précédente un unique $\varphi: P \to M \times N$ tel que $p_1 \circ \varphi = \pi_1$ et $p_2 \circ \varphi = \pi_2$.

Réciproquement, comme $M \times N$ possède deux applications $p_1: M \times N \to M$ et $p_2: M \times N \to N$, il existe un unique $\psi: M \times N \to P$ tel que $\pi_1 \circ \psi = p_1$ et $\pi_2 \circ \psi = \pi_1$.

On a donc que $\varphi \circ \psi$ est un morphisme $M \times N \to M \times N$ tel que $p_1 \circ \varphi \circ \psi = \pi_1 \circ \psi = p_1$ et $p_2 \circ \varphi \circ \psi = \pi_2 \circ \psi = p_2$, mais un tel morphisme est unique par hypothèse, et $1_{M \times N}$ satisfait ces conditions : on doit avoir $\varphi \circ \psi = 1_{M \times N}$. On montre de même que $\psi \circ \varphi = 1_P$.

Exercice 12.

- 1. Pour $x \in M$, on a $f(x) \in \text{Im } f = \text{Ker } p$, donc p(f(x)) = 0.
- 2. Par définition, on a $p \circ f = 0$ si et seulement si $\operatorname{Im} f \subset \operatorname{Ker} P$, par propriété universelle du quotient, il existe un unique $\varphi : N/\operatorname{Im} f \to P$ tel que $\varphi \circ \pi = p$, ce qui est exactement le résultat voulu.

Feuille de TD 3

Exercice 5.

1. C'est une vérification immédiate : la trace et la multiplication matricielle sont linéaires, et la symétrie est une formule connue : le *i*-ème coefficient diagonal du produit AB est $\sum_{j=1}^{n} a_{i,j}b_{j,i}$, donc

$$tr(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{j,i}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} b_{j,i} a_{i,j}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} b_{j,i} a_{i,j}$$
$$= tr(BA)$$

2. Pour montrer que f est non dégénérée, il faut montrer que, pour tout $A \in E$, non nulle, la forme linéaire $f_A : B \mapsto \operatorname{tr}(AB)$ est non nulle. Supposons donc qu'un coefficient a_{i_0,j_0} de A est non nul, on considère la matrice $E_{j_0,i_0} = (e_{i,j})_{i,j \in [\![1,n]\!]}$ ayant un seul coefficient non nul égal à 1 en $i=j_0,j=i_0$. On a alors

$$\operatorname{tr}(AE_{j_0,i_0}) = \sum_{i=1}^n \sum_{j=1}^n a_{i,j} e_{j,i} = a_{i_0,j_0} \neq 0$$

donc f_A est non nulle et f est non dégénérée.

3. Une forme bilinéaire non dégénérée $f: E \times E \to k$ induit un isomorphisme φ entre E et son dual, donné par $\varphi(A) := f_A : B \mapsto f(A, B)$, en particulier, tout élément de E^* s'écrit f_A pour un certain A, ce qui est exactement le résultat souhaité ici.