Tipos compleios

eq < T >:	secuencia	$\mathbf{d}\mathbf{e}$	$_{ m tipo}$	\mathbf{T}	
-----------	-----------	------------------------	--------------	--------------	--

crear	$\langle \rangle, \langle x, y, z \rangle$		
tamaño	s , length(s)		
pertenece	$i \in s$		
ver posición	s[i]		
cabeza	head(s)		
cola	tail(s)		
concatenar	concat(s1, s2), s1 + s2		
subsecuencia	subseq(s, i, j), s[ij]		
setear posición	setAt(s, i, val)		
$\operatorname{conj} < T > : \operatorname{conjunto} \operatorname{de} \operatorname{tipo} \operatorname{T}$			
crear	$\{\}, \{x, y, z\}$		
tamaño	c , length(c)		
pertenece	$i \in c$		
unión	$c1 \cup c2$		
intersección	$c1 \cap c2$		
diferencia	c1-c2		
dict <k, v="">: diccionario que asocia claves de tipo K con valores de tipo V</k,>			
crear	{}, {"juan" : 20, "diego" : 10}		
tamaño	d , length(d)		
pertenece (hay clave)	$k \in d$		
valor	d[k]		
setear valor	setKey(d, k, v)		
eliminar valor	delKey(d, k)		
tupla <t1,, tn="">: tupla de tipos T1,, Tn</t1,,>			
crear	$ \hspace{.1cm}\langle x,y,z angle$		
campo	s[i]		
struct <campo1: campon:="" t1,,="" tn="">: tupla con nombres para los campos.</campo1:>			
crear	$\langle x: 20, y: 10 \rangle$		
campo	s_x, s_y		

Precondición más débil (wp) La *precondición más débil* es la condición mínima necesaria antes de ejecutar una sentencia para garantizar que una postcondición dada se cumpla.

Lógica de Hoare Una forma de razonar sobre la corrección de programas es a través de las triples de Hoare $\{P\}C\{Q\}$. El objetivo es obtener una fórmula lógica α tal que α es verdadera si y solo si $\{P\}C\{Q\}$ es verdadero. Predicado def(E): Definición. Dada una expresión E, llamamos def(E) a las condiciones necesarias para que E esté definida. Predicado Q_E^x : Definición. Dado un predicado Q, el predicado Q_E^x se obtiene reemplazando...

$$wp(S,Q) \equiv def(B) \wedge_L ((B \wedge wp(S1,Q)) \vee (\neg B \wedge wp(S2,Q)))$$

Predicado Q_E . Definition of the problem of the predication Q_E . Axiomas WP

Axioma 1. $\operatorname{wp}(x := E, Q) \equiv \operatorname{def}(E) \wedge Q_E^x$ Axioma 2. $\operatorname{wp}(\operatorname{skip}, Q) \equiv Q$.

Axioma 3. $\operatorname{wp}(S1; S2, Q) \equiv \operatorname{wp}(S1, \operatorname{wp}(S2, Q))$.

Axioma 4. Si $S = \operatorname{if} B$ then S1 else S2 endif, entonces $\operatorname{wp}(S, Q) \equiv \operatorname{def}(B) \wedge_L ((B \wedge \operatorname{wp}(S1, Q)) \vee (\neg B \wedge \operatorname{wp}(S2, Q)))$ ■ Axioma 5. wp(while B do S endwhile, Q) $\equiv (\exists_{i>0})(H_i(Q))$ no podemos usar mecanicamente el Axioma 5 para demostrar la corrección de un ciclo con una cantidad no acotada a priori de iteraciones

Aplicando el Axioma 1, obtenemos:

$$\begin{split} & \operatorname{wp}(b[i] := E, Q) \equiv \operatorname{wp}(b := \operatorname{setAt}(b, i, E), Q) \\ & \equiv (\operatorname{def}(b) \wedge \operatorname{def}(i)) \wedge 0 \leq i < |b| \wedge \operatorname{def}(E) \wedge Q^b_{\operatorname{setAt}(b, i, E)} \end{split}$$

Dado que $0 \le i, j < |b|$, se sabe que:

$$\operatorname{setAt}(b, i, E)[j] = \begin{cases} E & \text{si } i = j \\ b[j] & \text{si } i \neq j \end{cases}$$

Ejemplo.

$$\begin{aligned} \operatorname{wp}(b[i] &:= 5, b[j] = 2) \\ &\equiv \operatorname{setAt}(b, i, 5)[j] = 2 \\ &\equiv (i \neq j \wedge \operatorname{setAt}(b, i, 5)[j] = 2) \vee (i = j \wedge \operatorname{setAt}(b, i, 5)[j] = 2) \\ &\equiv (i \neq j \wedge b[j] = 2) \vee (i = j \wedge \operatorname{setAt}(b, i, 5)[i] = 2) \\ &\equiv (i \neq j \wedge b[j] = 2) \vee (i = j \wedge 5 = 2) \end{aligned}$$

- Propiedades; $\equiv i \neq j \land b[j] = 2$ Monotonia: Si Q implica R, entonces wp(S,Q) implica wp(S,R).
 - Distributividad: $wp(S, Q \land R)$ equivale a $wp(S, Q) \land wp(S, R)$.

Excluded Miracle: wp(S, false) equivale a false.

Definición. Un predicado I es un invariante de un ciclo si:

- 1. I vale antes de comenzar el ciclo, y
- 2. Si vale $I \wedge B$ al comenzar una iteración arbitraria, entonces sigue valiendo I al finalizar la ejecución del cuerpo del ciclo.

Un invariante describe un estado que se satisface cada vez que comienza la ejecución del cuerpo de un ciclo y también se cumple cuando la ejecución del cuerpo del ciclo concluye. Teorema del Invariante. Si existe un predicado I tal que:

- 1. $P_C \Rightarrow I$,
- 2. $\{I \wedge B\}S\{I\} \iff (I \wedge B) \implies wp(S,I)$
- 3. $I \wedge \neg B \Rightarrow Q_C$,

entonces $\{P_C\}$ while B do S endwhile $\{Q_C\}$ es válida.

Función variante

La función variante representa una cantidad que se va reduciendo

• Si existe una función variante f_v tal que:

1.
$$\{I \wedge B \wedge f_v = v_0\}S\{f_v < v_0\} \iff (I \wedge B \wedge f_v = v_0) \implies wp(S, f_v < v_0)$$

2. Si $I \wedge f_v \leq 0$ implica $\neg B$

Correctitud de un Programa Completo

Para demostrar la correctitud de un programa completo utilizando la lógica de Hoare, seguimos estos pasos:

1. Código antes del ciclo: Debemos demostrar que las precondiciones implican la precondición más débil del código previo al ciclo, es decir,

$$Pre \Rightarrow wp(C\acute{o}digo_previo, P_c)$$

2. Correctitud del ciclo: Utilizamos el teorema del invariante, ya que no podemos calcular la precondición más débil del ciclo en general. El teorema del invariante se expresa de la siguiente manera:

a)
$$P_c \Rightarrow I$$

b)
$$(I \wedge B) \Rightarrow \text{wp}(Ciclo, I)$$

c)
$$(I \wedge \neg B) \Rightarrow Q_c$$

3. Código posterior al ciclo: Comprobamos que las postcondiciones del ciclo implican la precondición más débil del código posterior al ciclo, es decir.

$$Q_c \Rightarrow \text{wp}(C\acute{o}digo_posterior, Post)$$

4. Conclusión: Si probamos estas tres cosas, podemos concluir, por corolario de monotonía, que el programa completo es correcto con respecto a la especificación:

$$Pre \Rightarrow \text{wp}(Programa_completo, Post)$$

Especificación y Relaciones de Fuerza

Especificación:

La especificación define qué es lo que debe hacer un algoritmo, en términos de relación entre sus entradas y sus salidas, sin determinar cómo lo hace. Las relaciones de fuerza entre especificaciones son importantes para entender cuán restrictiva o general es una especificación con respecto a otra.

Subespecificación:

Implica otorgar una precondición más restrictiva o una postcondición más débil que lo deducido del enunciado del problema. Una precondición más restrictiva excluye casos de entrada posibles. Una postcondición más débil permite soluciones no deseadas.

Sobreespecificación:

Consiste en proporcionar una postcondición más restrictiva o una precondición más débil que lo necesario. Una precondición más débil obliga al algoritmo a considerar casos innecesarios. Una postcondición más restrictiva limita las posibles soluciones.

Relaciones de Fuerza:

Decimos que A es más fuerte que B cuando $A \to B$ es una tautología. También podemos afirmar que A fuerza a B o que B es más débil que A. **Ejemplos:**

- $p \wedge q$ es más fuerte que p.
- $p \lor q$ no es más fuerte que p.
- p es más fuerte que $p \to q$.
- lacksquare p no es más fuerte que q.
- False es la fórmula más fuerte de todas.
- True es la fórmula más débil de todas.

Truco algebraico para sacar términos del último rango

(
$$\forall k: \mathbb{Z}$$
) $(i \leq k < |s| \longrightarrow_L p(k)) \equiv p(i) \land (\forall k: \mathbb{Z}) (i < k < |s|) \longrightarrow_L (p(k))$
Por otro lado, para sumatorias, tenemos que: $\sum_{k=i}^{|s|-1} p(k) = p(i) + \sum_{k=i+1}^{|s|-1} p(k)$

ejemplo: $\sum_{j=0}^{5} j = \sum_{j=0}^{4} j + 5$

Esto nos permite sacar el término correspondiente a i fuera de la sumatoria.