The monopole category and invariants of bordered 3-manifolds

Jonathan Bloom

Massachusetts Institute of Technology

jbloom@math.mit.edu

Joint work with John Baldwin

Boston College

john.baldwin@bc.edu

February 24, 2014

Overview

- Khovanov's arc algebra
- Monopole category
- Finite generation
- Monopole algebra

Khovanov's arc algebra

Khovanov homology

LinkCob is the category of links in S^3 and link cobordisms in $S^3 \times [0,1]$.

Khovanov defines a functor $\mathcal{F}: LinkCob \rightarrow Vect.$

 $\mathcal{F}(L)$ is the reduced Khovanov homology of L with coefficients in \mathbb{F}_2 .

Let V be a rank-2 vector space over \mathbb{F}_2 . For the k-component unlink,

$$\mathcal{F}(\bigcirc \cdots \bigcirc) = \Lambda^{k-1}V$$

The vector spaces $\mathcal{F}(\bigcirc)$, $\mathcal{F}(\bigcirc\bigcirc)$, and $\mathcal{F}(\mathcal{T}_{2,3})$ have ranks 1, 2, and 3.

Crossingless matchings

Let B^n be the set of crossingless matchings on 2n points.

Let \bar{b} denote the reflection of b across the x-axis.

Then $a \cup \bar{b}$ is a planar unlink and we have well-defined link cobordisms

$$S_{a,b,c}:(a\cup \bar{b})\sqcup (b\cup \bar{c})\to a\cup \bar{c}$$

The arc algebra H^n

To 2n points, Khovanov associates the ring

$$H^n = \bigoplus_{a,b \in B^n} \mathcal{F}(a \cup \bar{b}).$$

The product of $x \in \mathcal{F}(a \cup \overline{b})$ and $y \in \mathcal{F}(b \cup \overline{c})$ is given by

$$\mathcal{F}(S_{a,b,c}): \mathcal{F}(a\cup ar{b})\otimes \mathcal{F}(b\cup ar{c})
ightarrow \mathcal{F}(a\cup ar{c})$$

To a **tangle** T on 2n points, he associates a right H^n -module

$$\mathcal{F}(T) = \bigoplus_{b \in B^n} \mathcal{F}(T \cup \bar{b}).$$

The H^n action is using $\mathcal{F}(S_{T,b,c})$ as above.

To a **tangle cobordism** R, he associated an H^n -module map $\mathcal{F}(R)$.

Pairing theorem

These structures turn \mathcal{F} into a **2-functor** from points, tangles, and tangle cobordisms to algebras, bimodules, and bimodule homomorphisms.

For example, there is a pairing theorem for tangles on 2n points:

$$\mathcal{F}(T_0) \otimes_{H^n} \mathcal{F}(\bar{T}_1) \cong \mathcal{F}(T_0 \cup \bar{T}_1)$$

The proof uses the **skein relation** to reduce to the case where T_0 and T_1 are crossingless matchings, and from there to $H^n \otimes_{H^n} H^n \cong H^n$.

$$\mathcal{F}(L) = \mathsf{cone}\left(\mathcal{F}(S) : \mathcal{F}(L_0) \to \mathcal{F}(L_1)\right)$$

Another view of $S_{a,b,c}$

 H^n -action on $\mathcal{F}(T)$: replace crossingless matching a with tangle T. Module map $\mathcal{F}(R)$ relation: replace $a \times [0,1]$ with tangle cobordism R.

THE MONOPOLE CATEGORY

The monopole category $\mathcal{C}(\Sigma)$

Let Σ be a smooth, connected, oriented surface of genus g.

A bordered 3-manifold over Σ is a smooth, connected, oriented 3-manifold Y together with orientation-preserving smooth collar $\varphi : \Sigma \times [-1,0] \to Y$.

The **monopole category** $C(\Sigma)$ of Σ is an A_{∞} category.

The **objects** of $C(\Sigma)$ are all bordered 3-manifolds over Σ .

The morphisms are elements of a monopole Floer chain complex:

$$\mathsf{Mor}(Y_0,Y_1)=\hat{C}(Y_0\cup_{\Sigma}\bar{Y}_1).$$

For each k > 0 and sequence Y_0, \ldots, Y_k , there is a multiplication map

$$\mu_k: \hat{C}(Y_0 \cup_{\Sigma} \bar{Y}_1) \otimes \cdots \otimes \hat{C}(Y_{k-1} \cup_{\Sigma} \bar{Y}_k) \to \hat{C}(Y_0 \cup_{\Sigma} \bar{Y}_k)$$

and these maps satisfy the A_{∞} relations.

Context

Our construction is modeled on the **Morse category** of a manifold, as is the **Fukaya category** of a symplectic manifold.

Conjecture: Fuk(Sym^g(Σ)) and $C(\Sigma)$ are A_{∞} equivalent via a map sending the Lagrangian $\mathbb{T}^{\alpha} \subset \operatorname{Sym}^{g}(\Sigma)$ to the bordered handlebody (Σ, α) .

This is a strengthening of HF \cong HM, itself an analogue of Atiyah-Floer.

Lipshitz-Ozsváth-Thurston, Lekili-Perutz, Mau-Wehrheim-Woodward

Multiplication maps μ_k

For objects Y_0, \dots, Y_k , the multiplication map

$$\mu_k: \hat{C}(Y_0 \cup_{\Sigma} \bar{Y}_1) \otimes \cdots \otimes \hat{C}(Y_{k-1} \cup_{\Sigma} \bar{Y}_k) \rightarrow \hat{C}(Y_0 \cup_{\Sigma} \bar{Y}_k)$$

is defined by counting monopoles on a 4-dimensional cobordism W_{Y_0,\cdots,Y_k} over a family of metrics and perturbations parameterized by the k-2 dimensional associahedron (point, interval, pentagon,...).

Challenge: reducibles ⇒ boundary

Kronheimer and Mrowka model monopole homology on the Morse homology of a manifold w/ boundary. We model the monopole category on the Morse category of a manifold with boundary.

[B] The combinatorics of Morse theory with boundary. http://arxiv.org/abs/1212.6467

Blowing up

μ_2 as higraph and the structure equation

The path algebra ${\mathcal A}$ of a higraph is a DGA graded by path length.

For an edge ε , the differential $\delta \varepsilon$ is the sum of all length-2 paths from $s(\varepsilon)$ to $t(\varepsilon)$. The differential extends to $\mathcal A$ by the Leibniz rule.

The sum *D* of all edges satisfies the **structure equation**: $\delta D = D \circ D$

The structure equation is the bridge from geometry to algebra.

μ_2 as bigraph

μ_3 as higraph

The first three A_{∞} relations.

Challenge: coherent data

To define $\mathcal{C}(\Sigma)$, we must make many choices (diffeomorphisms, metrics, perturbations,...) such that the A_{∞} relations hold on the nose. Parallel issues arise for the Fukaya category. In our case, $\mathcal{C}(\Sigma)$ is also well-defined up to A_{∞} equivalence, and we are working to make this 'natural'.

Our approach to coherence is novel and hinges on Smale's 1964 result that $\mathrm{Diff}(D^2,\partial D^2)$ is contractible. In fact, we need a diffeologically smooth version of this fact that first appeared in 2011.

Jiayong Li and Jordan Alan Watts. The orientation-preserving diffeomorphism group of S^3 deforms to SO(3) smoothly. Transformation Groups, Springer, Vol. 16, No. 2, 2011, pp. 537-553.

FINITE GENERATION

A surgery triad is a triple of 3-manifolds (Y, Y_0, Y_1) such that there is a framed knot K in Y such that Y_i is i-surgery on K.

Significance: Floer homology sends surgery triads to exact triangles.

$$\hat{C}(Y)\cong\mathsf{cone}\left(\hat{\mathit{m}}(\mathit{W}):\hat{\mathit{C}}(\mathit{Y}_{0})\rightarrow\hat{\mathit{C}}(\mathit{Y}_{1})\right)$$

 $(S^3, S^1 \times S^2, S^3)$ forms a surgery triad via surgery on the unknot.

- i) $\#^k S^1 x S^2$ is **generated** by S^3 through surgery triads.
- ii) All links are generated by unlinks through skein triads.
- iii) Branched double cover sends unlinks to $\#^k S^1 x S^2$ and
- iv) Branched double cover sends skein triads of links to surgery triads.
- \Rightarrow All branched-double covers are generated by S^3 through surgery triads.

In fact, all closed 3-manifolds are generated by S^3 through surgery triads.

Skein triangle below

Surgery triangle above

Bordered manifolds

Bordered mflds that arise as branched covers of $T \subset D^3$ on 2g + 2 points are generated by branched covers of the c_{g+1} crossingless matchings.

Thm: Bordered mflds over Σ_g are generated by n_g bordered handlebodies.

$$n_0 = 1, \quad n_g = 1 + \sum_{i=0}^{g-1} n_i n_{g-1-i}$$

This sequence also equals the binomial transform of the Catalan numbers.

$$n_{g} = \sum_{k=0}^{g} \binom{g}{k} c_{g}$$

$$c_g = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ...$$

 $n_g = 1, 2, 5, 15, 51, 188, 731, 2950, 12235, ...$

Conjecture: n_g is minimal.

Coincidence?

Khovanov's generators count vertices of the associahedron. Our bordered generators count vertices of the composihedron.

Figure 1: The cast of characters. Left to right: $\mathcal{CK}(4),\,\mathcal{J}(4),\,3\text{-d}$ cube, and $\mathcal{K}(5).$

Stefan Forcey, *Quotients of the multiplihedron as categorified associahedra*, Homotopy, Homology and Applications, vol. 10(2), 227256, 2008.

The generators

Our proof of finite generation proceeds as follows:

- 1) Bordered manifold = (bordered handlebody) \cup (compression body).
- 2) Bordered handlebodies are described by mapping classes of Σ .
- 3) Mapping classes are described by Dehn twists.
- 4) Dehn twists correspond to boundary parallel ± 1 surgeries.
- 5) Kirby calculus reduces such configurations of 0-surgeries to a set of n_g .

A simpler description of the generators

After hearing us talk, Lucas Culler (MIT) came up with an alternative approach that gives a simple description of n_g generators:

Let D_g be a disk D with g punctures and an arc connecting each to ∂D .

Let γ be simple closed multicurve which intersect each arc at most once.

The generators result from 0-surgery on $\gamma \times \{0\} \subset D_{\varepsilon} \times [-1,1]$.

For g = 2, there are 5 generators:

THE MONOPOLE ALGEBRA

The monopole algebra

Now that we have a set $\mathcal{H}(\Sigma) = \{H_{\alpha}\}$ of finitely many generators for $\mathcal{C}(\Sigma)$, we can equivalently work with A_{∞} algebras and modules:

$$\mathcal{A}(\Sigma) = \bigoplus_{\alpha,\beta} \mathcal{F}(H_\alpha \cup_\Sigma \bar{H}_\beta) \qquad \mathcal{C}(Y) = \bigoplus_\beta \mathcal{F}(Y \cup_\Sigma \bar{H}_\beta)$$

Here $\mathcal{C}(Y)$ is an invariant of the bordered manifold Y up to quasi-isomorphism, and the pairing theorem holds by reduction to Khovanov's approach. For g=0, this is the Künneth formula.

We can compute the homology algebra of $\mathcal{A}(\Sigma)$ explicitly. It naturally contains a copy of the arc algebra H^{g+1} .

 $\mathsf{MCG}(\Sigma)$ acts on $\mathcal{A}(\Sigma)$ and in fact yields a faithful linear-categorical action in every genus except possibly g=2. Here we rely on recent work of Corrin Clarkson and $\mathsf{HM}\cong\mathsf{HF}.$

2+1+1

HM is a "2-functor" from the "2-category" of surfaces, cobordisms of surfaces, and cobordisms of cobordisms of surfaces to the "2-category" of A_{∞} algebras, bimodules, and maps of bimodules.

A 3-dimensional cobordism between n surfaces yields an A_{∞} n-module.

Self-gluing is related to Hochschild homology.

Master version may have applications to computing 4-manifold invariants.

Topological approach goes through in other Floer theories and may give algebraic insight into equivalences.