Grade	100.00 Out of 100.00
Cuada	100.00 out of 100.00
Duration	34 mins 1 sec
Completed	Thursday, October 3, 2024, 2:41 PM
Started	Thursday, October 3, 2024, 2:07 PM
Status	Finished

Information

Part 1: In the following set of questions, you are to consider pairwise sequence alignment variations for the strings

TACTGCC

and

GACGAC

with **gap penalty** of **-5** and the following substitution matrix:

Correct

3.00 points out of 3.00

Globe	-	T	Α	С	T	G	С	С
-	0	-5	-10	-15	-20	-25	-30	-35
G	-5	d,-2	d,-4	h,-9	h,-14	d,-16	h,-21	h,-26
Α	-10	dv,-7	d,2	h,-3	h,-8	dh,-13	dh,-18	dh,-23
С	-15	d,-9	v,-3	d,6	h,1	h,-4	dh,-9	dh,-14
G	-20	v,-14	dv,-8	v,1	d,4	d,5	h,0	h,-5
Α	-25	v,-19	d,-10	v,-4	dv,-1	d,5	d,3	
С	-30	dv,-24	v,-15	d,-6	d,-3	v,0		

Consider the GLOBAL alignment of the sequences TACTGCC and GACGAC with OPT matrix partially filled above.

Which of the choices is the correct OPT value for the BLUE entry?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	Τ
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
Τ	-2	-2	1	4

- -10
- -5
- _ -4
- -3
- -2-1
- 0
- 0 1
- O 2
- O 4
- O 6
- O 7
- 9
- 0 11

Your answer is correct.

The correct answer is:

Correct

3.00 points out of 3.00

Globe	-	T	Α	С	T	G	С	С
-	0	-5	-10	-15	-20	-25	-30	-35
G	-5	d,-2	d,-4	h,-9	h,-14	d,-16	h,-21	h,-26
Α	-10	dv,-7	d,2	h,-3	h,-8	dh,-13	dh,-18	dh,-23
С	-15	d,-9	v,-3	d,6	h,1	h,-4	dh,-9	dh,-14
G	-20	v,-14	dv,-8	v,1	d,4	d,5	h,0	h,-5
Α	-25	v,-19	d,-10	v,-4	dv,-1	d,5	d,3	
С	-30	dv,-24	v,-15	d,-6	d,-3	v,0		

Consider the GLOBAL alignment of the sequences TACTGCC and GACGAC with OPT matrix partially filled above.

Which of the choices is the correct OPT value for the PINK entry?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	Τ
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
Τ	-2	-2	1	4

- -10
- -5
- -4
- -3
- -2
- O -1
- 01
- O 2
- 0 4
- O 6
- 7
- 9
- 0 11

Your answer is correct.

The correct answer is:

Correct

3.00 points out of 3.00

Globe	-	T	Α	С	T	G	С	С
-	0	-5	-10	-15	-20	-25	-30	-35
G	-5	d,-2	d,-4	h,-9	h,-14	d,-16	h,-21	h,-26
Α	-10	dv,-7	d,2	h,-3	h,-8	dh,-13	dh,-18	dh,-23
С	-15	d,-9	v,-3	d,6	h,1	h,-4	dh,-9	dh,-14
G	-20	v,-14	dv,-8	v,1	d,4	d,5	h,0	h,-5
Α	-25	v,-19	d,-10	v,-4	dv,-1	d,5	d,3	
С	-30	dv,-24	v,-15	d,-6	d,-3	v,0		

Consider the **GLOBAL alignment** of the sequences **TACTGCC** and **GACGAC** with OPT matrix partially filled above.

Which of the choices is the correct OPT value for the YELLOW entry?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	Τ
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
Т	-2	-2	1	4

- -10
- -5
- _ -4
- -3
- -2 ✓
- -1
- 0
- 0 1
- O 2
- **4**
- 0 6
- **7**
- 9
- 0 11

Your answer is correct.

The correct answer is: -2

Correct

9.00 points out of 9.00

Which of the following is the optimal **GLOBAL alignment** of the sequences **TACTGCC** and **GACGAC**?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	Τ
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
Т	-2	-2	1	4

- TACTGC GACGAC
- TACTGCC
 GA_CGAC
- TACGCC GACGAC
- TACTGC C
 GACGAC
- TACTGCC ✓
 GAC_GAC
- ACTGC ACGAC
- TACTGCC _GACGAC

Your answer is correct.

The correct answer is: T A C T G C C G A C $_$ G A C

Correct

3.00 points out of 3.00

Loc	-	T	Α	С	Т	G	С	С
-	0	0	0	0	0	0	0	0
G	0	0	d,1	0	0	d,4	0	0
Α	0	0	d,4	0	0	d,1	d,2	0
С	0	d,1	0	d,8	h,3	0	d,5	d,6
G	0	0	d,2	v,3	d,6	d,7	h,2	d,3
Α	0	0	d,4	0	dv,1	d,7	d,5	
С	0	d,1	0	d,8	h,3	v,2		

Consider the LOCAL alignment of the sequences TACTGCC and GACGAC with OPT matrix partially filled above.

Which of the choices is the correct OPT value for the BLUE entry?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	Τ
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
T	-2	-2	1	4

- -10
- -5
- -4
- -3-2
- O -1
- 0
- 0 1
- O 2
- 0 4
- **6**
- 0 7
- 9
- 11

Your answer is correct.

The correct answer is:

Correct

3.00 points out of 3.00

Loc	-	T	Α	С	T	G	С	С
-	0	0	0	0	0	0	0	0
G	0	0	d,1	0	0	d,4	0	0
Α	0	0	d,4	0	0	d,1	d,2	0
С	0	d,1	0	d,8	h,3	0	d,5	d,6
G	0	0	d,2	v,3	d,6	d,7	h,2	d,3
Α	0	0	d,4	0	dv,1	d,7	d,5	
С	0	d,1	0	d,8	h,3	v,2		

Consider the LOCAL alignment of the sequences TACTGCC and GACGAC with OPT matrix partially filled above.

Which of the choices is the correct OPT value for the YELLOW entry?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	Τ
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
T	-2	-2	1	4

- -10
- -5
- -4
- -3-2
- O -1
- 0
- 0 1
- O 2
- **4**
- **6**
- **7**
- 9
- 0 11

Your answer is correct.

The correct answer is:

Ω

Correct

3.00 points out of 3.00

Loc	-	T	Α	С	T	G	С	С
-	0	0	0	0	0	0	0	0
G	0	0	d,1	0	0	d,4	0	0
Α	0	0	d,4	0	0	d,1	d,2	0
С	0	d,1	0	d,8	h,3	0	d,5	d,6
G	0	0	d,2	v,3	d,6	d,7	h,2	d,3
Α	0	0	d,4	0	dv,1	d,7	d,5	
С	0	d,1	0	d,8	h,3	v,2		

Consider the LOCAL alignment of the sequences TACTGCC and GACGAC with OPT matrix partially filled above.

Which of the choices is the correct OPT value for the PINK entry?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	Т
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
T	-2	-2	1	4

- -10
- -5
- _ -4
- -3
- -2-1
- 0
- 0 1
- O 2
- 0 4
- O 6
- O 7
- 9
- 0 11

Your answer is correct.

The correct answer is:

Correct

9.00 points out of 9.00

Which of the following is the optimal **LOCAL alignment** of the sequences **TACTGCC** and **GACGAC**?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	Τ
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
Т	-2	-2	1	4

- TACTGCC _GACGAC
- TACTGCC
 GA_CGAC
- TACTGC C
 GACGAC _
- TACTGCC
 GAC_GAC
- TACTGC GACGAC
- ACTGC ACGAC
- TACGCC GACGAC

Your answer is correct.

The correct answer is:

A C T G C A C G A C

Correct

3.00 points out of 3.00

SG	-	T	Α	С	T	G	С	С
-	0	0	0	0	0	0	0	0
G	0	d,-2	d,1	d,-2	d,-2	d,4	h,-1	d,-2
Α	0	d,-2	d,2	d,-1	d,-4	dv,-1	d,2	dh,-3
С	0	d,1	v,-3	d,6	h,1	h,-4	d,3	d,6
G	0	d,-2	d,2	v,1	d,4	d,5	h,0	dv,1
Α	0	d,-2	d,2	d,0	dv,-1	d,5	d,3	
С	0	d,1	v,-3	d,6	dh,1	v,0		

Consider the **SEMIGLOBAL alignment** of the sequences **TACTGCC** and **GACGAC** with OPT matrix partially filled above.

Which of the choices is the correct OPT value for the YELLOW entry?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	T
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
T	-2	-2	1	4

- -10
- -5
- -4
- -3
- -2 ✓
- O -1
- 0
- 0 1
- O 2
- **4**
- **6**
- O 7
- O 9
- 0 11

Your answer is correct.

The correct answer is: -2

Correct

3.00 points out of 3.00

SG	-	T	Α	С	T	G	С	С
-	0	0	0	0	0	0	0	0
G	0	d,-2	d,1	d,-2	d,-2	d,4	h,-1	d,-2
Α	0	d,-2	d,2	d,-1	d,-4	dv,-1	d,2	dh,-3
С	0	d,1	v,-3	d,6	h,1	h,-4	d,3	d,6
G	0	d,-2	d,2	v,1	d,4	d,5	h,0	dv,1
Α	0	d,-2	d,2	d,0	dv,-1	d,5	d,3	
С	0	d,1	v,-3	d,6	dh,1	v,0		

Consider the SEMIGLOBAL alignment of the sequences TACTGCC and GACGAC with OPT matrix partially filled above.

Which of the choices is the correct OPT value for the BLUE entry?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	Τ
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
T	-2	-2	1	4

- -10
- -5
- -4
- -3
- -2-1
- 0
- 0 1
- O 2
- 0 4
- **6**
- **7**
- 9
- 0 11

Your answer is correct.

The correct answer is:

Correct

3.00 points out of 3.00

SG	-	T	Α	С	T	G	С	С
-	0	0	0	0	0	0	0	0
G	0	d,-2	d,1	d,-2	d,-2	d,4	h,-1	d,-2
Α	0	d,-2	d,2	d,-1	d,-4	dv,-1	d,2	dh,-3
С	0	d,1	v,-3	d,6	h,1	h,-4	d,3	d,6
G	0	d,-2	d,2	v,1	d,4	d,5	h,0	dv,1
Α	0	d,-2	d,2	d,0	dv,-1	d,5	d,3	
С	0	d,1	v,-3	d,6	dh,1	v,0		

Consider the SEMIGLOBAL alignment of the sequences TACTGCC and GACGAC with OPT matrix partially filled above.

Which of the choices is the correct OPT value for the PINK entry?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	Τ
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
T	-2	-2	1	4

- -10
- -5
- -4
- -3
- -2-1
- 0 0
- 0 1
- O 2
- 0 4
- **6**
- 7
- O 9
- 0 11

Your answer is correct.

The correct answer is:

Question 12	
Correct	
9.00 points out of 9.00	

Which of the following is the optimal **SEMIGLOBAL alignment** of the sequences **TACTGCC** and **GACGAC**?

Recall that the gap penalty is -5 and the Substitution scores matrix is this:

Sub	Α	G	C	T
Α	4	1	-2	-2
G	1	4	-2	-2
C	-2	-2	4	1
Т	-2	-2	1	4

- TACGCC GACGAC
- TACTGCC
 GAC_GAC
- ACTGC ACGAC
- TACTGCC
 GA_CGAC
- TACTGCC _GACGAC
- TACTGC C GACGAC _

Your answer is correct.

The correct answer is:

TACTGC C GACGAC _

Information

Part II: The next set of questions are TRUE or FALSE questions. You are to indicate whether the statement in quotations is TRUE or FALSE.

Question 13	
Correct	
7.00 points out of 7.00	
Indicate whether the following statement is TRUE or FALSE :	
"The time complexity for local pairwise sequence alignment with linear gap penalties is $\Theta(n^2)$ where n is the maximum length of the two input sequences."	
Select one:	
True ✓	
○ False	
The correct answer is 'True'.	
Question 14	
Correct 7.00 points out of 7.00	
Indicate whether the following statement is TRUE or FALSE :	
"The PAM-1 mutation probability matrix is symmetric."	
Select one:	
○ True	
False ✓	
The correct answer is 'False'.	
Question 15	
Correct	
7.00 points out of 7.00	
Indicate whether the following statement is TRUE or FALSE :	
"If M is the PAM-1 mutation probability matrix, then M^n is the PAM-n mutation probability matrix."	
Select one:	
True ✓	
○ False	
The correct answer is 'True'.	

https://classes.cs.siue.edu/fall-2024/mod/quiz/review.php?attempt=367&cmid=75

<u> </u>	
Question 16 Correct 7.00 points out of 7.00	
Indicate whether the following statement is TRUE or FALSE : "The time complexity for global pairwise sequence alignment with <i>affine</i> gap penalties is $\Theta(n^3)$ where n is the maximum length of the two input sequences."	
Select one: True	
False ✓	
The correct answer is 'False'.	
Information	

Part III: The last questions are multiple choice questions. Pick the unique best answer.

Question 17	
Correct	
9.00 points out of 9.00	

Consider a global affine alignment of the sequences

CAC

and

GACACAGA

with the following parameters:

total gap start score P = H + G, gap extensions score G, mismatch score S, and match score M.

Assume that **M** is positive and greater than S, G, and H.

Furthermore, assume that $\mathbf{G} < 0$, and that $\mathbf{G} < \mathbf{S} < \mathbf{M}$.

Finally, assume that $\mathbf{H} \leq 0$, so that $\mathbf{P} \leq G$.

Consider the following two possible alignments of the two sequences:

Alignment 1:

CAC _ _ _ _

GACACAGA

Alignment 2:

__ CAC _ _ _

GACACAGA

Which of the following claims is TRUE?

a.	For any parameter	setting r	especting ¹	the assumptions,	Alignment	1 is always the op	timal affine alignment
----------------------	-------------------	-----------	------------------------	------------------	-----------	--------------------	------------------------

- ob. For any parameter setting respecting the assumptions, Alignment 2 is always the optimal affine alignment.
- c. None of the other claims are true.
- d. When H is zero, Alignment 2 is the optimal affine alignment. But, if we decrease H as the other parameters stay fixed, eventually
 Alignment 1 becomes the optimal affine alignment (and stays that way).
- e. When H is zero, Alignment 1 is the optimal affine alignment. But, if we decrease H as the other parameters stay fixed, eventually Alignment 2 becomes the optimal affine alignment (and stays that way).

Your answer is correct.

The correct answer is: When H is zero, Alignment 2 is the optimal affine alignment. But, if we decrease H as the other parameters stay fixed, eventually Alignment 1 becomes the optimal affine alignment (and stays that way).

/19/24, 11:46 PM	Quiz-Test 1: Attempt review siue-classes
Question 18	
Correct	
9.00 points out of 9.00	
Consider a global affine alignment of	the sequences
AA	
and	
AAAAA	
with the following parameters:	
total gap start score P = H + G, gap e	extensions score G, mismatch score S, and match score M.
Say that we are given the following set	ting: P < G < S < 0 < M.
Consider the following possible alignm	ents of the two sequences:
Alignment 1:	
A A	
AAAAA	
Alignment 2:	
_ A A	
AAAAA	
Alignment 3:	
A A	
A A A A A A	
Alignment 4:	
A A _ A A A A A A	
A A A A A A	
Alignment 5:	
A A	
AAAAA	
Alignment 6:	
A A A A	
Which of the following cla	aims is TRUE?
a. All of the alignments 1 through	h 5 are the optimal global affine alignments.
b. Alignments 1 and 5 are the on	ly two optimal global affine alignments. ✓

- oc. Alignment 3 is the only optimal global affine alignment.
- O d. Alignment 6 is the only optimal global affine alignment.
- e. Alignments 2 and 4 are the only optimal global affine alignments.

Your answer is correct.

The correct answer is: Alignments 1 and 5 are the only two optimal global affine alignments.