Projet Cobra: Système de préhension

Présentation du 10/01/25

AUDRY Michel
SUJAT Samuel
GALLISSIAN Antoine
MARANDE Gauthier
KLOHN Ulises
WARWICK Arthur

Sommaire

- Critères du cahier des charges
- Différents systèmes de treuil
- Mécanisme d'ouverture et de fermeture de pince
 - Premier jet (Sam & Antoine)
 - Propositions 1 (Gauthier & Antoine)
 - Propositions 2 (Sam & Michel)

Cahier des charges

- Le système pince + treuil doit pouvoir soulever un cube de côté L = 5cm et de masse m = 10g et garantir le transport entre 2 points sans chute
- le système doit minimiser la masse embarquée dans le dirigeable
- la pince doit avoir une course de 1m

Les différents systèmes de treuil

Treuil mobile

- minimisation des oscillations de la pince en concentrant la masse
- plus de connectique embarquée (moteur, batterie, connection sans fils)
- nécessité d'un plus gros couple moteur

Treuil fixe

- simplicité du circuit électrique
- permet d'avoir un moteur moins puissant
- question de la commande de la pince
- plus grande sensibilité aux oscillations

Solution technique: nombre de fils

1 fil:

- simplicité de mise en oeuvre
- problème de stabilité

3 fils:

- fils écartés: pince plus stable
- complexité du système d'enroulement

pas d'avantages à avoir plus de 3 fils supports (hyperstatisme)

avec des fils en nylon de masse linéique moyenne 0.5 g/m

Solution technique: orientation des fils

fils écartés câble enroulé câble déroulé

=> nécessité d'un couple moteur plus élevé en position haute

=> pas d'influence de la position sur le couple moteur

Solution technique: système d'enroulement

- solution 1 : 3 axes, parallèles ou en triangle

=> nécessité de trois moteurs, ou système de transmission

 solution 2 : 1 axe à actionnement direct + renvois (axe moteur confondu à l'axe du cylindre)

=> facile à mettre en oeuvre mais moins de libertés

- solution 3 : 1 axe actionnement avec engrènement + renvois (axe moteur parallèle non confondu à l'axe du cylindre)

=> possibilité de jouer sur le rapport de réduction

Solution technique : rayon d'enroulement

pour une longueur totale de 1m

=> bon compromis:

R ≈ 10mm

Solution technique : couple moteur

Hypothèses:

- variation de rayon R dûe à l'enroulement négligée
- frottements négligés
- en régime établi

Solution technique : couple moteur

- Système {axe} en rotation autour de $\overrightarrow{e_z}$

Bilan des actions mécaniques extérieures :

$$\overrightarrow{M_{Oz}}(\overrightarrow{T}) = \overrightarrow{OM} \wedge \overrightarrow{T} = R\overrightarrow{e_r} \wedge 3T\overrightarrow{e_\theta}$$

$$C = 3RT$$

- Système (câble) en translation + rotation selon $\overrightarrow{e_z}$

Principe fondamental de la statique (à l'équilibre) :

$$C = Rm_{pince}g$$

$$m_{pince}\vec{g} + 3\vec{T} = \vec{0}$$

$$T = \frac{1}{3} m_{pince} g$$

Solution technique : couple moteur

rs

=> Enroulement ≈ 15 tours

=> Couple ≈ 0.1kg.cm

R ≈ 10mm

13

En pratique

Modélisation du treuil sous Fusion

- treuil "en kit" pour faciliter les modifications lors de phase de conception et d'optimisation
- dimensions : 11cm x 7cm
- enlèvement de matière partout où possible

Propositions de Pinces

AUDRY Michel
SUJAT Samuel
GALLISSIAN Antoine
MARANDE Gauthier

premier jet

Pince pesante

Fonctionnement
 Solution proposée

Hypothèse
k = 0.5 (polystrène/polystyrène)

Avantages et inconvénients

Une motorisation de la solution

$$F_T = \mu F_N = \mu rac{F\ a}{b+c} \ F_T = rac{mg}{2} \ ext{Ainsi}: F = rac{mg(b+c)}{2\mu a}$$

Pince motorisée

solution existantes

pince à barile de chez ingenitec : pince ciseau

pince à tôle de chez matériel-levage : pince à rouleau

Fonctionnement

Et maintenant en 3D

• pour l'enchaînement de la pince ciseau

• pour l'enchaînement de la pince rouleau

Avantages et inconvénients

	pince ciseau	pince rouleau	
Avantages	☐ léger (12 g mais risque d'augmenter)☐ sans câbles électriques	 sans câbles électriques stable monté et descente avec le même jeu de fil 	
inconvénients	 commande à 2 fils (avec mouvement relatif) fragile peu stable (susceptible aux oscillation) beaucoup de liaison (donc de frottement) beaucoup de pièces 	 commande à 2 fils (avec mouvement relatif) un peu lourds (38g avec un marge à récupérer estimer à 60%) nécessité de calibrer les roues (complex) 	

Pince motorisée

Solution existante

Solution proposée

Pince motorisée

Fonctionnement

Étude cinématique

$$C_{mot} = \frac{1}{4} \frac{F_p(L_4 - L_2)p}{2\pi L_1}$$

Cmot = $1,5.10^{-3}$ N.m

Course de fermeture : 16mm

Moteur:

Ref : Garosahekrps435g-06

Pas (p): 0.7mm Tension: 6V-12V

Vitesse: 300 tr/min

Couple : 19.10^-3 Nm

Masse: 10g

Avantages et inconvénients

Conclusion

	pince pesante	pince ciseau	pince rouleau	pince motorisé
Avantages	□ Simplicité	☐ léger (12 g mais risque d'augmenter)☐ sans câbles électriques	□ sans câbles électriques □ stable □ monté et descente avec le même jeu de fil	 □ Robuste □ Effort de serrage élevé □ Positionnement stable du cube □ Autonome □ plus stable □ Masse : 25g
inconvénien ts	 □ Rajout de masse □ Effort de serrage faible □ Mauvais positionnement du cube (2 appuis) □ Balancement de la pince □ Masse: 36g + 6g + 3g = 45g 	 □ commande à 2 fils (avec mouvement relatif) □ fragile □ peu stable □ beaucoup de liaison (donc de frottement) □ beaucoup de pièces 	 □ commande à 2 fils (avec mouvement relatif) □ un peu lourds (38g avec un marge à récupérer de 60%) □ nécessité de calibrer les roues (complex) 	☐ Electronique embarqué (nécessité d'alimentation du moteur électrique)

