LOAN DOCUMENT

	PHOTOGRAPH THIS SHEET	
UMBER		NVENTORY
N N	•	
DTIC ACCESSION NUMBER	Lace Rada Chahiteature <u>Multi-Aperature V. Single</u> aperte DOCUMENT IDENTIFICATION 2000	
	DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited	A N I
	DISTRIBUTION STATEMENT	1
ACCESSION FOR NTIS GRAME DTIC TRAC UNANNOUNCED JUSTIFICATION		I
		V
	·]
BY DISTRIBUTION/		r
AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPI	CIAL	lj.
4-1	DATE ACCESSIO	
DISTRIBUTION STAMP		Į.
]
	DATE RETURN	VED
2000	1020 123	
DATE	RECEIVED IN DTIC REGISTERED OR CERTIFI	ED NUMBER
	PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC	
DTIC ROPA 70A	DOCUMENT PROCESSING SHEET PROCESSING SHEET STOCK IS EXHAUST	MAY BE USED UNTIL

LOAN DOCUMENT

Approved for Public Release; Distribution is Unlimited.

Laser Radar Architecture: Multi-Aperture vs. Single Aperture

Ronald L. Phillips, Director Florida Space Institute University of Central Florida Kennedy Space Center E-mail: phillips@creol.ucf.edu

Larry C. Andrews
Department of Mathematics and
School of Optics/CREOL
University of Central Florida
E-mail: landrews@pegasus.cc.ucf.edu

Introduction

- ☐ Free space optical communication and laser radar links that operate within even a thin atmosphere can exhibit severe temporal short-term fading and cause tracking difficulties that are attributed to turbulence-induced scintillation
- □ Various system architectures can be developed to mitigate scintillation and other atmospheric effects
 - < Increased transmitter power (may not be practical)
 - < Increased aperture size (may not be practical)
 - < Multiple small apertures at the receiver (both direct and coherent detection)

Array Receivers: Direct Detection SNR

 \Box Let the summed output of M statistically independent detectors be described by

$$i \ni \bigoplus_{\substack{j=1 \ j \neq 1}}^{M} (i_{S,j} \% i_{N,j}), \tag{1}$$

- < each i_S is a random signal and each i_N is a zero-mean noise current
- we assume the mean and variance of each signal and noise current is identical
- ☐ It follows therefore that the *mean rms amplitude SNR* is simply

$$\langle SNR_M \rangle \Rightarrow \frac{M \langle i_{S,1} \rangle}{\sqrt{M} \delta_{N,1}} \Rightarrow \sqrt{M} \langle SNR_1 \rangle,$$
 (2)

where <SNR₁> is the mean SNR of a single detector.

Direct Detection: Aperture Averaging

☐ The reduction in scintillation with increasing telescope collecting diameter *D*, called *aperture averaging*, can be deduced from the normalized power fluctuations *P* over the area of the collecting aperture lens, i.e.,

$$\delta_I^2(D) \ni \frac{<\!\!P^2\!\!> \& <\!\!P\!\!>^2}{<\!\!P\!\!>^2}$$

Array Receivers: Direct Detection

Figure 2 Predicted aperture averaging factor in (a) weak irradiance fluctuations and (b) strong fluctuations. $(\sigma_1^2 = 1.23C_n^2k^{7/6}L^{11/6})$

NOTE: The glass area of the M collecting lenses is the same as that of the single large lens and inner scale $l_0 = 0$.

Array Receivers: Coherent Detection

Three common multiple-receiver architectures are the following:

□ Selection combining

- < signal from receiver with largest SNR is switched to output (all others discarded)
- simplest architecture but does little to improve SNR

□ Maximal-ratio (MR) combining

- < RF signals are co-phased, have their amplitudes adjusted, and adjusted signals summed to generate composite signal
- considered optimal design but requires major effort in instrumentation to achieve proper weighting factors

□ Equal-gain (EG) combining

- < equal gains are applied to all RF signals
- < only the phase is adjusted to match signal field
- < performance close to that of MR receiver

ISTEF Site

(BMDO Innovative Science and Technology Experimentation Facility)

- ISTEF brings together electro-optics, sensors, and lasers developed for experiments observing launches, etc. at KSC
- ISTEF site at sea level with 1 km and 12.5 km ranges
- ISTEF operated by Nichols Research

