

Unit 2: Trigonometry

Written by

Arjun D. Wandhekar Government Polytechnic, Ahmednagar

Topic: Compound Angles

07 Month 2020

Learning Objective/ Key learning

➤ Apply the concept of Compound angles to solve the given simple engineering problem(s).

Page 4 Maharashtra State Board of Technical Education 25 August 2020

Contents

- ► Definition of Compound angle
- ► Trigonometric rations of compound angles (Without proofs) :
- Examples

Page 5 Maharashtra State Board of Technical Education 25 August 2020

Compound angle

▶ **Definition**: If A and B are two angles then the sum A + B or difference A — B are called a compound angles.

e.g.
$$A = 45^{\circ}$$
, $B = 30^{\circ}$ then $A + B = 45^{\circ} + 30^{\circ} = 75^{\circ}$ And $A - B = 45^{\circ} - 30^{\circ} = 15^{\circ}$ are compound angles.

Trigonometric rations of compound angles (Without proofs)

1)sin (A + B) = sin A
$$\cdot$$
 cos B + cos A \cdot sin B

2)sin
$$(A - B) = \sin A \cdot \cos B - \cos A \sin B$$

3)cos (A + B) = cos A
$$\cdot$$
 cos B – sin A \cdot sin B

4)Cos (A
$$-$$
 B) = cos A cos B + sin A sin B

5)tan (A + B) =
$$\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$$

6)
$$tan (A - B) = \frac{tan A - tan B}{1 + tan A \cdot tan B}$$

SOLVED EXAMPLES:

1) Without using calculator, find the value of

a) sin 15°

b) cos 75°

Solution:

a) As
$$15^{\circ} = 45^{\circ} - 30^{\circ}$$

$$\therefore$$
 sin 15 = sin (45° – 30°)

Using formula $\sin (A - B) = \sin A \cdot \cos B - \cos A \sin B$ = $\sin 45^{\circ} \cdot \cos 30^{\circ} - \cos 45^{\circ} \cdot \sin 30^{\circ}$

$$\sin 45^{\circ} = \cos 45^{\circ} = \frac{1}{\sqrt{2}}$$
 and $\sin 30^{\circ} = \frac{1}{2}$, $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$

$$= \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right)$$

$$=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}$$

$$\sin 15 = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

b) As
$$75^{\circ} = 45^{\circ} + 30^{\circ}$$

$$\therefore$$
 cos 75°= cos (45° + 30°)

By using Formula cos (A + B) = cos A \cdot cos B – sin A \cdot sin B

$$= \cos 45^{\circ} \cdot \cos 30^{\circ} - \sin 45^{\circ} \cdot \sin 30^{\circ}$$

$$= \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right)$$

$$= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}$$

$$\cos 15 = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

2) If
$$\tan A = \frac{1}{2}$$
, $\tan B = \frac{1}{3}$ Find $\tan (A + B)$

Solution :Given that
$$\tan A = \frac{1}{2}$$
, $\tan B = \frac{1}{3}$

By compound formula,
$$tan (A + B) = \frac{tan A + tan B}{1 - tan A \cdot tan B}$$

$$=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\cdot\frac{1}{3}}$$

$$= \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{6}}$$

$$= \frac{\frac{3+2}{6}}{\frac{6-1}{6}} = \frac{5}{5}$$

$$tan (A + B) = 1$$

► Solution: Given $A = \frac{12}{13}$

$$\cos A = \frac{5}{13}$$

∴ A is obtuse (More than 90° and less than 180°)
A is the second quadrant, cos A is negative.

$$\cos A = \frac{-5}{13}$$

Given
$$\cos B = \frac{-4}{5}$$

$$\sin B = \frac{3}{5}$$

∴ B is obtuse (More than 90° and less than 180°)
 B is the second quadrant, sin B is Positive.

$$\sin B = \frac{3}{5}$$

$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$

$$= \left(\frac{12}{13}\right) \times \left(\frac{-4}{5}\right) + \left(\frac{-5}{13}\right) \times \left(\frac{3}{5}\right)$$

$$= \frac{-48}{65} + \frac{-15}{65}$$

$$= \frac{-48 - 15}{65}$$

$$\sin (A + B) = \frac{-63}{65}$$

Summary

So today we learn-

- Definition of Compound angle
- compound angles Formulae(Without proofs):
- Solved examples based on compound angles.

Quiz

1)The value of $cos 105^0$

a)
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$

b)
$$\frac{\sqrt{3}-1}{2\sqrt{2}}$$

a)
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$
 b) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ c) $-\frac{\sqrt{3}+1}{2\sqrt{2}}$ d) $\frac{1-\sqrt{3}}{2\sqrt{2}}$

d)
$$\frac{1-\sqrt{3}}{2\sqrt{2}}$$

2) Find $\frac{\tan 85^{\circ} + \tan 40^{\circ}}{1 - \tan 85^{\circ} \cdot \tan 40^{\circ}}$

Ans: 1. d) 2.a)

Thank You

Page 13 Maharashtra State Board of Technical Education 25 August 2020