2016-2 期中试题

一、基本计算题(每题6分,共60分)

- 1. 已知微分方程 y'' + a(x)y' + b(x)y = f(x), $f(x) \neq 0$ 有三个解 $y_1 = x$, $y_2 = e^x$, $y_3 = e^{3x}$,求此微分方程满足初始条件 y(0) = 2, y'(0) = 3 的特解.
- 2. 设 y = y(x) 在区间 $|x| < \frac{\pi}{2}$ 满足微分方程 $y'' (y')^2 = 1$, $y|_{x=0} = 0$, $y'|_{x=0} = 0$, 求特解.
- 3. 求过点 M(2,-2,3) 与直线 $L_1: \frac{x+1}{1} = \frac{y-2}{2} = \frac{z-4}{0}$ 垂直相交的直线 L 方程.
- **4.** 设 $\begin{cases} x+y-z=1 \\ x^2+y^2+z^2=3 \end{cases}$, 求其在点 (1,1,1) 处的切线方程和法平面方程.
- 5. 设 $z = f(xe^y)$, 其中 f 有一阶导数, f'(0) = 2, 求 $\frac{\partial^2 z}{\partial x \partial y}(0,1)$.
- **6**. 设函数 f(u,v,w) 有二阶偏导连续, z = f(x,x+y,xy) , 求混合偏导函数 $\frac{\partial^2 z}{\partial x \partial y}$.
- 7. 计算 $I = \int_0^1 dy \int_y^{y^{1/3}} e^{x^2} dx$.
- 8. 计算二重积分 $I = \iint_D (x^3 \sin y + (x+y)^2) dxdy$, 其中 $D: x^2 + y^2 \le 2y$.
- ${f 9}$. 计算三重积分 $I=\iint_V xy^2z^3{
 m d}x{
 m d}y{
 m d}z$, 其中 V 位于第一卦限,由曲面 z=0,z=xy,y=x,y=1围成.
- **10**. 计算三重积分 $I = \iiint_V (x+z) dv$,其中 $V: \sqrt{x^2 + y^2} \le z \le \sqrt{2 x^2 y^2}$.

二、综合计算题 (每题 8 分, 共 40 分)

11. 设方程组 $\begin{cases} F(x+y,y-z) = 0, \\ z = f(xy) \end{cases}$, 其中 F, f 具有连续的一阶偏导,且 $F_1 - yf'F_2 \neq 0$,

求 $\frac{\mathrm{d}z}{\mathrm{d}y}$.

12. 在椭球面 $x^2 + 2y^2 + 2z^2 = 1$ 上求一点,使函数 $f(x, y, z) = x^2 + y^2 - z$ 在该点处沿方向

 $n = \{1, -2, 3\}$ 的方向导数最大.

- 13. 设函数 f(x) 满足 $f'(x) + 3f(x) + 2x \int_0^1 f(xt) dt = e^{-x}$,且 f(0) = 1,求 f(x).
- **14.** 计算 $I = \iint_D |x+y-1| dx dy$, 其中 D 是圆域: $D: x^2 + y^2 \le 1$.
- **15.** 设 $f(x,y) = x^{\frac{1}{3}}y^{\frac{2}{3}}$ 讨论 f(x,y) 在原点 (0,0) 处的 (1) 连续性, (2) 偏导数存在性,
- (3) 可微性, (4) 沿方向 $n = \{\cos\alpha, \sin\alpha\}$ 的方向导数的存在性,对存在情形计算出结果.