22 Зв'язок між фільтрами і напрямленностями

Фільтри і напрямленості в одній множині X приводять до еквівалентних теорій збіжності. З одного боку, як показано раніше, кожній напрямленості $\{x_s \mid s \in S\}$ в множині X відповідає асоційований з нею фільтр в X. З іншого боку, має місце така теорема.

§22.1 Відповідність між фільтрами і напрямленостями

Теорема 22.1

Нехай \mathfrak{F} — довільний фільтр в множині X. Тоді в цій множині існує напрямленість $\{x_s \mid s \in S\}$ така, що асоційований з нею фільтр збігається з фільтром \mathfrak{F} .

Доведення. Розглянемо множину усіх можливих пар s=(x,M), де $M\in\mathfrak{F}$, а $x\in M$. Уведемо в множині таких пар S частковий передпорядок, поклавши $(x,M)\leq (y,N)$, якщо $M\supset N$. Таким чином, S — напрямлена множина.

Задамо відображення $f: S \to X$, поклавши

$$f(s) = x, \quad \forall s = (x, M) \in S.$$

Нехай s = (x, M) — довільний елемент з S, а $\hat{M}_s = \{f(t) \mid t \geq s\}$. За означенням фільтра $\hat{\mathfrak{F}}$, асоційованого з напрямленістю $f: S \to X$, система підмножин \hat{M}_s , де s пробігає усі значення в множині S, утворює базу $\hat{\beta}$ фільтра $\hat{\mathfrak{F}}$.

Покажемо, що фільтр $\hat{\mathfrak{F}}$, асоційований з побудованою напрямленістю $f:S\to X$, збігається з фільтром \mathfrak{F} , тобто

$$\hat{\mathfrak{F}} \leq \mathfrak{F}$$
 i $\mathfrak{F} \leq \hat{\mathfrak{F}}$.

1. Для того щоб довести, що $\hat{\mathfrak{F}} \leq \mathfrak{F}$, треба показати, що

$$\forall \hat{M}_s \in \hat{\beta} \quad \exists M \in \mathfrak{F} : \quad M \subset \hat{M}_s.$$

Насправді має місце більш сильний факт:

$$\forall \hat{M}_s \in \hat{\beta} \quad \exists M \in \mathfrak{F} : \quad M = \hat{M}_s.$$

Дійсно, нехай $y \in \hat{M}_s$, тобто

$$\exists t = (z, N) > (x, M) = s : \quad y = f(t),$$

тоді

$$y = z \in N \subset M \implies \hat{M}_s \subset M.$$

Тепер візьмемо довільну точку $z \in M$ і покладемо $t^* = (z, M)$. Оскільки $t^* \ge s = (x, M)$, то $f(t^*) = z \in \hat{M}_s$, тобто $M \subset \hat{M}_s$. Таким чином, $M = \hat{M}_s$.

2. Покажемо, що має місце і обернене твердження: $\mathfrak{F} \leq \hat{\mathfrak{F}}$. Для цього пересвідчимось, що

$$\forall M \in \mathfrak{F} \quad \exists \hat{M}_s \in \hat{\beta} : \quad \hat{M}_s = M.$$

Нехай x^* — довільний елемент з M і $s^* = (x^*, M)$. Повторимо міркування, наведені вище.

Нехай $s^* = (x^*, M)$ — довільний елемент з S, а $y^* \in \hat{M}_{s^*}$, тобто

$$\exists t^* = (z^*, N) \ge (x^*, M) = s^* : \quad y = f(t^*),$$

тоді

$$y^* = x^* \in N \subset M \implies \hat{M}_{s^*} \subset M.$$

Тепер візьмемо довільну точку $z^* \in M$ і покладемо $t^* = (z^*, M)$. Оскільки $t^* \geq s^* = (x, M)$, то $f(t^*) = z^* \in \hat{M}_{s^*}$, тобто $M \subset \hat{M}_{s^*}$.

Таким чином, $\mathfrak{F} = \hat{\mathfrak{F}}$.

§22.2 Границі і граничні точки фільтрів і напрямленостей

Теорема 22.2

Нехай $\xi = \{x_s \mid s \in S\}$ — напрямленість в топологічному просторі X, а \mathfrak{F} — асоційований з нею фільтр. Тоді кожна границя (відповідно, гранична точка) напрямленості ξ є границею (відповідно, граничною точкою) фільтра \mathfrak{F} , і навпаки.

Доведення. **Необхідність.** Нехай $x_0 = \lim_S x_s$. Покажемо, що фільтр \mathfrak{F} мажорує фільтр \mathfrak{F}_{x_0} околів точки x_0 , тобто $x_0 = \lim \mathfrak{F}$. Нехай U_0 — довільний елемент \mathfrak{F}_{x_0} , тобто деякий окіл точки x_0 в просторі X. Тоді

$$x_0 = \lim_{S} x_s \implies \exists s_0 \in S : M_{s_0} = \{x_s \mid s \ge s_0\} \subset U_0.$$

Оскільки M_{s_0} — елемент бази фільтра, асоційованого з напрямленістю ξ , то $M_{s_0} \subset U_0 \implies U_0 \in \mathfrak{F}$. Отже,

$$\mathfrak{F}\supset\mathfrak{F}_{x_0}\implies x_0=\lim\mathfrak{F}.$$

Достатність. Нехай $x_0 = \lim \mathfrak{F}$. Отже, будь-який окіл U_0 точки x_0 є елементом фільтра \mathfrak{F} . За означенням, множини $M_s = \{x_t \mid t \geq s\}$ утворюють базу фільтра \mathfrak{F} , тому $\exists M_{s_0} \subset U_0$. Отже, для будь-якого околу U_0 точки x_0 існує $s_0 \in S$, такий що усі члени напрямленості ξ при $s \geq s_0$ лежать в U_0 , тобто $x_0 = \lim_S x_s$.

§22.3 Універсальні напрямленності і ультрафільтри

Означення 22.1. Напрямленість $\{x_s \mid s \in S\}$ в множині X називається **універсальною**, якщо для будь-якої підмножини $M \subset X$ вона або майже вся лежить в M, або майже вся лежить в $X \setminus M$.

Теорема 22.3

Напрямленість в X ϵ універсальною тоді і лише тоді, коли асоційований з нею фільтр ϵ ультрафільтром.

Доведення. **Необхідність.** Нехай $\xi = \{x_s \mid s \in S\}$ — універсальна напрямленість в X, \mathfrak{F} — асоційований з нею фільтр, а M — довільна підмножина з X. Покажемо, що або M, або $X \setminus M$ належать фільтру \mathfrak{F} , звідки випливає, що \mathfrak{F} — ультрафільтр (теорем. 21.2).

Оскільки $\xi = \{x_s \mid s \in S\}$ — універсальна напрямленість в X, то вона майже вся лежить або в M, або в $X \setminus M$, тобто існує індекс $s_0 \in S$, такий що множина $M_{s_0} = \{x_s \mid s \geq s_0\}$ цілком міститься або в M, або в $X \setminus M$. Але оскільки M_{s_0} належить базі фільтра \mathfrak{F} , то або M, або $X \setminus M$ містить M_{s_0} , тобто є елементом фільтра \mathfrak{F} .

Достатність. Нехай \mathfrak{F} — ультрафільтр, а M — довільна підмножина з X. Доведемо, що $\xi = \{x_s \mid s \in S\}$ майже вся лежить або в M, або в $X \setminus M$. Оскільки або M, або $X \setminus M$ є елементом фільтра \mathfrak{F} , то одна з цих множин повинна цілком містити деяку множину з бази фільтра \mathfrak{F} тобто деяку множину M_{s_0} . Це значить, що $\xi = \{x_s \mid s \in S\}$ майже вся лежить або в M, або в $X \setminus M$. Отже, ξ — універсальна напрямленість в X.

§22.4 Література

[1] **Александрян Р. А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян — М.: Высшая школа, 1979 (стр. 101–113).