4.3.3 缓冲溶液

天津大学 李珅

缓冲溶液 (buffer solution)

能够抵抗外来少量强酸、强碱或水的影响而保持溶液的pH值相对稳定的溶液称为缓冲溶液。

一种溶液要具有缓冲作用,一般要有两种物质,这一对物质称为<mark>缓冲对</mark>。

缓冲溶液的pH值

$$HA \longleftrightarrow H^{+} A^{-}$$
初始浓度 $c_{\overline{\otimes}} 0 c_{\underline{b}}$
平衡浓度 $c_{\overline{\otimes}} - x x c_{\underline{b}} + x$

由
$$K_a^{\odot} = \frac{x(C_{\pm} + x)}{C_{\overline{\otimes}} - x}$$
 得 $x = c(H^+) = K_a^{\odot} \frac{C_{\overline{\otimes}} - x}{C_{\pm} + x}$

由于共同离子效应,弱酸的解离度更加变小,平衡浓度接近初始浓度

例: 计算298 K时, 0.10 mol·L⁻¹的乙酸与0.10 mol·L⁻¹的乙酸钠等体积混合后所得缓冲溶液的pH值。已知 298 K时乙酸的 p K_a^{\odot} = 4.75

- ① 向 100 mL 上述溶液中加入1 mL 1.0 mol·L⁻¹的盐酸, 计算此时的 pH 值。
- ② 向 100 mL 上述溶液中加入1 mL 1.0 mol·L⁻¹的 NaOH, 计算此时的 pH 值。
- ③ 向 100 mL 上述溶液中加入1 mL 水, 计算此时的 pH 值。

例: 计算298 K时, 0.10 $mol\cdot L^{-1}$ 的乙酸与0.10 $mol\cdot L^{-1}$ 的乙酸钠等体积混合后所得缓冲溶液的pH值。已知 298 K 时乙酸的 $pK_a^{\odot} = 4.75$

相同浓度的溶液等体积混合后 $\frac{c_{\text{th}}}{c_{\text{com}}} = 1$

$$pH = pK_a^{\odot} + lg \frac{C_{\pm}}{C_{\overline{B}}} = 4.75$$

缓冲溶液

例:计算298 K时, 0.10 $mol\cdot L^{-1}$ 的乙酸与0.10 $mol\cdot L^{-1}$ 的乙酸钠等体积混合后所得缓冲溶液的pH值。已知 298 K 时乙酸的 $pK_a^{\odot} = 4.75$

① 向 100 mL 上述溶液中加入1 mL 1.0 mol·L⁻¹的盐酸, 计算此时的 pH 值。

假设加入的少量H⁺与乙酸根完全结合生成乙酸

$$c_{\pm} = \frac{0.10 \times 50 - 1.0 \times 1}{100 + 1} \approx 0.04 \text{ mol·L}^{-1}$$

$$0.10 \times 50 + 1.0 \times 1$$

$$c_{\overline{\mathbb{B}}} = \frac{0.10 \times 50 + 1.0 \times 1}{100 + 1} \approx 0.06 \text{ mol·L}^{-1}$$

$$pH = pK_a^{\odot} + lg \frac{c_{\pm}}{c_{\overline{W}}} = 4.75 + lg \frac{0.04}{0.06} = 4.57$$

缓冲溶液

例: 计算298 K时, 0.10 $mol\cdot L^{-1}$ 的乙酸与0.10 $mol\cdot L^{-1}$ 的乙酸钠等体积混合后所得缓冲溶液的pH值。已知 298 K 时乙酸的 $pK_a^{\odot} = 4.75$

② 向 100 mL 上述溶液中加入1 mL 1.0 mol·L⁻¹的 NaOH, 计算此时的 pH 值。

假设加入的少量OHT与乙酸完全反应生成了乙酸根

$$c_{\pm} = \frac{0.10 \times 50 + 1.0 \times 1}{100 + 1} \approx 0.06 \text{ mol·L}^{-1}$$

$$c_{\overline{\text{mg}}} = \frac{0.10 \times 50 - 1.0 \times 1}{100 + 1} \approx 0.04 \text{ mol·L}^{-1}$$

$$pH = pK_a^{\odot} + \lg \frac{c_{\pm}}{c_{\overline{W}}} = 4.75 + \lg \frac{0.06}{0.04} = 4.93$$

例:计算298 K时, 0.10 $mol\cdot L^{-1}$ 的乙酸与0.10 $mol\cdot L^{-1}$ 的乙酸钠等体积混合后所得缓冲溶液的pH值。已知 298 K 时乙酸的 $pK_a^{\odot} = 4.75$

③ 向 100 mL 上述溶液中加入1 mL 水, 计算此时的 pH 值。

加入少量水浓度同时被稀释 $\frac{c_{\text{th}}}{c_{\text{to}}} = 1$

$$pH = pK_a^{\odot} + lg \frac{C_{\pm}}{C_{\overline{W}}} = 4.75$$

- 例: 计算 298 K时, 0.10 $mol \cdot L^{-1}$ 的乙酸与 0.10 $mol \cdot L^{-1}$ 的乙酸纳等体积混合后所得缓冲溶液的pH值。已知 298 K时乙酸的 $pK_a^{\odot} = 4.75$ 4.75
- ① 向 100 mL 上述溶液中加入1 mL 1.0 mol·L⁻¹的盐酸, 计算此时的 pH 值。4.57 (△pH = -0.18)
- ② 向 100 mL 上述溶液中加入1 mL 1.0 mol·L⁻¹的 NaOH, 计算此时的 pH 值。4.93 (ΔpH = +0.18)
- ③ 向 100 mL 上述溶液中加入1 mL 水 , 计算此时的 pH 值。4.75 (ΔpH = 0)

缓冲容量(缓冲能力)

编号	c(HOAc)	c(OAc ⁻)	C _总	C _盐	рН	加入等量浓 盐酸后pH	Δ_{pH}
1	0.1	0.1	0.2	1:1	4.75	4.74	0.01
2	0.01	0.01	0.02	1:1	4.75	4.67	80.0
3	0.18	0.02	0.2	1:9	3.80	3.77	0.03
4	0.02	0.18	0.2	9:1	5.70	5.68	0.02
5	0.002	0.198	0.2	99:1	6.75	6.57	0.18

- c_±/c_酸相同时,缓冲对的浓度越大,缓冲能力越强
- 总浓度固定 , $c_{\rm th}/c_{\rm th}=1:1$ 时缓冲能力最强

缓冲溶液的配制方法

- ✓ 所选缓冲对不能与反应物和产物发生反应
- ✓ 所选缓冲对的pK。尽量与所需pH值接近
- ✓ 保证缓冲对中各组分的浓度最大

类型	缓冲对	р <i>К</i> _а
	H ₃ PO ₄ -NaH ₂ PO ₄	2.15
弱酸-弱酸盐型	HCOOH-HCOONa	3.75
	HOAc-NaOAc	4.75
弱酸盐-弱碱盐	NH ₄ OAc	7.00
多元酸的酸式盐	NaH ₂ PO ₄ -Na ₂ HPO ₄	7.21
-次级盐型	NaHCO ₃ -Na ₂ CO ₃	10.25
弱碱一弱碱盐型	NH ₃ ·H ₂ O-NH ₄ CI	9.25

缓冲溶液的配制方法

例题:如何用 0.1 mol·L⁻¹的乙酸和 0.1 mol·L⁻¹的乙酸钠溶液配制 1000 mL pH = 5.0 的缓冲溶液?

由
$$pH = pK_a^{\odot} + lg\frac{C_{\pm}}{C_{\overline{W}}}$$

得
$$\frac{C_{\text{h}}}{C_{\text{op}}} = 10^{\text{pH-p}/\text{c}} = 10^{5.0-4.75} = 1.78$$

由于所用缓冲对浓度相同,则 $\frac{V_{\text{b}}}{V_{\text{constant}}}$ = 1.78

缓冲对中各组分的浓度最大,则 V_{\pm} + $V_{\overline{w}}$ = 1000 mL

$$V_{\text{NaOAc}} = 640 \text{ mL}$$
 $V_{\text{HOAc}} = 360 \text{ mL}$