

# Al Community

4. Logistic Regression and Support Vector Machines

#### План на сегодня



- 1. Логистическая регрессия
  - а. Разделяющая гиперплоскость
  - b. Сигмоида
  - c. Binary Log Loss
  - d. Градиентный спуск
- 2. Метод Опорных Векторов (Support Vector Machines)
  - а. Лучшая разделяющая гиперплоскость
  - b. Hinge Loss
  - с. Регуляризация
- 3. Softmax
  - a. Log Loss

# Логистическая регрессия

#### Формулировка задачи



Мы хотим построить модель

$$f(x): R^n \to \{0, 1\}$$

По нашим тренировочным данным

$$(X_1, y_1), ..., (X_N, y_N) \in \mathbb{R}^n \times \{0, 1\}$$

#### Логистическая регрессия



Логистическая регрессия - это классификационная модель, используемая для прогнозирования вероятности бинарного события (1 или 0).



#### Разделяющая гиперплоскость

Уравнение плоскости задается так:

$$W_1 x_1 + \dots + W_n x_n + b = W^T x + b = 0$$

$$W, x \in \mathbb{R}^n \quad b \in \mathbb{R}$$

Если b = 0, то гиперплоскость будет проходить через центр координат  $\vec{0}$ 



#### Разделяющая гиперплоскость



- 1) Любая точка  $x \in R^n$  которая удовлетворяет уравнению  $W^T x + b = 0$  лежит на этой плоскости.
- 2) Если  $W^T x + b > 0$  то точка лежит со стороны гиперплоскости в которую смотрит вектор W
- 3) Если  $W^T x + b < 0$  то точка лежит на противоположной стороне



#### Сигмоида



$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma(-\infty) = 0$$

$$\sigma(0) = 0.5$$

$$\sigma(-\infty) = 0$$
$$\sigma(0) = 0.5$$
$$\sigma(+\infty) = 1$$



#### Логистическая Регрессия



$$f(x) = \sigma(W^T x + b)$$
 -  $\frac{1}{1+e^{-t}}$ 



### Функция Потерь (Loss)



В тренировочном датасете у нас есть метки классов  $\,y\,$  которые соответствуют своим  $\,x\,$ 

Мы хотим измерять качество алгоритма по его предсказаниям  $y_{pred}$  и истинным меткам y

#### Log Loss



$$-L(y_{pred}, y) = \begin{cases} \log(y_{pred}) & \text{if } y = 1\\ \log(1 - y_{pred}) & \text{if } y = 0 \end{cases}$$



$$L(y_{pred}, y) = -[y \log(y_{pred}) + (1 - y) \log(1 - y_{pred})]$$

#### Оптимизация



```
X - все сэмплы из тренировочного датасета. X - shape = (N, n) Y - соответствующие метки. Y - shape = (N, 1)
```

#### Градиентный спуск:

```
W = random(n); b=0 # Инициализация параметров while not_converged: 
 Y_pred = f(X; W, b) 
 loss = L(Y_pred, Y) 
 W = W - \frac{\partial loss}{\partial W}
```

#### Производные



$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial \sigma} \frac{\partial \sigma}{\partial W} = \frac{\partial L}{\partial \sigma} \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial W}$$

$$L(\sigma) = y \log(\sigma) + (1 - y) \log(1 - \sigma)$$

$$\frac{\partial L}{\partial \sigma} = y \frac{1}{\sigma} - \frac{1 - y}{1 - \sigma}$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial \sigma}{\partial z} = \sigma(z)(1 - \sigma(z))$$

$$z = W^T x + b$$

$$\frac{\partial z}{\partial W} = x$$

# Support Vector Machines

#### Бесконечное количество решений



#### Отклонение от плоскости



 $d=y(W^Tx+b)$  - отклонение от разделяющей гиперплоскости.

$$M_h = \min_{i=1..N} d_i$$
 - минимальное отклонение для плоскости  $oldsymbol{h}$ 

Мы хотим найти такую гиперплоскость, в которой  $M_h$ максимально:

$$h_{\max} = \operatorname*{argmax}_{h} M_{h}$$



#### SVM оптимизация



Есть 2 основных подхода для нахождения разделяющей плоскости.

#### Hinge Loss:

- Аппроксимация сложной математики
- Функция потерь для градиентного спуска
- Просто написать и использовать

#### Метод множителей Лагранжа:

- Выпуклая оптимизация со множеством ограничений
- Больно
- Интересно

#### SVM оптимизация



Есть 2 основных подхода для нахождения разделяющей плоскости.

#### Hinge Loss: V



- Аппроксимация сложной математики
- Функция потерь для градиентного спуска
- Просто написать и использовать

#### Метод множителей Лагранжа:

- Выпуклая оптимизация со множеством ограничений
- Больно
- Интересно

#### Постановка задачи



Мультикласс классификация с  $m{m}$  количеством классов.

$$f(x; W) = Wx$$

$$W \in R^{m \times n}, x \in R^n$$

Выход модели это вектор  $\,s\,$  размера  $m\,$ 

 $s_i$  это score класса і

#### Hinge Loss



$$L = \sum_{j!=y} \begin{cases} 0 & \text{if } s_y >= s_j + 1 \\ s_j - s_{y+1} & \text{otherwise} \end{cases}$$
 Loss

$$L = \sum_{j!=y} \max(0, s_j - s_y + 1)$$



$$L = \sum_{j!=y} \max(0, s_j - s_y + 1)$$









cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

$$L = \sum_{j!=y} \max(0, s_j - s_y + 1)$$









cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

2.2

2.5

-3.1

$$L = \sum_{j!=y} \max(0, s_j - s_y + 1)$$









cat

car

3.2

5.1

frog -1.7

Losses: 2.9

1.3

4.9

2.0

0

2.2

2.5

-3.1

$$L = \sum_{j!=y} \max(0, s_j - s_y + 1)$$









cat

3.2

1.3

2.2

2.5

car

5.1

4.9

-3.1

frog

-1.7

2.0

12.9

Losses:

2.9

 $\mathsf{O}$ 

#### Регуляризация



Представьте, что мы нашли W такое, что L = 0 Это решение не уникально!

Мы можем подставить 2\*W и получить ту же самую гиперплоскость. Но большие веса W делают решение численно нестабильным.

Для того чтобы этого не допустить, мы можем штрафовать модель за большие веса.

#### Регуляризация



$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data Loss

Регуляризация

L2: 
$$R(W) = \sum W_{ij}^2$$

L2: 
$$R(W) = \sum_{i,j} W_{ij}^2$$
  
L1:  $R(W) = \sum_{i,j} |W_{ij}|$ 

#### Мотивация



Мы хотим каждую компоненту вектора s = f(x; W) интерпретировать, как вероятность і-го класса.

Должны соблюдаться следующие свойства:

$$0 \le s_i \le 1$$

$$\sum_{i} s_i = 1$$



Вероятность k-го класса находится по формуле:

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$



cat **3.2** 

car 5.1

frog -1.7



Вероятность k-го класса находится по формуле:

unnormalized

probabilities

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$





Вероятность k-го класса находится по формуле:

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_i e^{s_j}}$$



probabilities

#### Log Loss



Мы хотим иметь функцию потерь с такими же свойствами, как и бинарный Log Loss.

Нужно максимизировать вероятность правильного класса  $p_i$ 

Это эквивалентно минимизации отрицательного логарифма от вероятности:

$$L = -\log P(Y = y | X = x) = -\sum_{j=0}^{m} y_{j} \log P(Y = y | X = x)$$