ゼミノート #9

Quotient Stacks

七条彰紀

2019年1月17日

目次

1	Definitions	1
1.1	$\mathcal{G} ext{-torsor}$	1
1.2	Quotient Stack	3
2	Aim of This Session	3
3	準備	4
3.1	Definition of $\mathbf{Isom}(X,Y)$	4
3.2	Propositions	5
3.3	Representability of Diagonal Morphism	5
4	証明	6

Algebraic stack の具体例として Quotient stack を扱う. この例を通じて特に,「diagonal morphism $\Delta\colon \mathfrak{X}\to \mathfrak{X}\times_S \mathfrak{X}$ が表現可能とはどういうことか」ということを考えたい. 参考文献として [2] 1.3.2, [1] Example 4.8, [3] Example 8.1.12 を参照する.

1 Definitions

1.1 \mathcal{G} -torsor

定義 1.1 (Equivariant Morphism)

一般の site :: \mathbf{C} をとり、 \mathcal{G} を \mathbf{C} 上の sheaf of groups とする. sheaf :: \mathcal{F} と、 \mathcal{G} からの左作用 α : $\mathcal{G} \times \mathcal{F} \to \mathcal{F}$ を組にして (\mathcal{F},α) と書く、 \mathcal{G} からの左作用を持つ sheaf の間の射 $(\mathcal{F},\alpha) \to (\mathcal{F}',\alpha')$ とは、sheaf の射 $f: \mathcal{F} \to \mathcal{F}'$ であって以下が可換図式であるもの.

$$\begin{array}{ccc} \mathcal{G} \times \mathcal{F} & \xrightarrow{\operatorname{id} \times f} \mathcal{G} \times \mathcal{F}' \\ \stackrel{\alpha}{\downarrow} & & \downarrow^{\alpha'} \\ \mathcal{F} & \xrightarrow{f} & \mathcal{F}' \end{array}$$

このような射 f は G-equivariant morphism (G 同変写像) と呼ばれる.

定義 **1.2** (*G*-Torsor, [3] 4.5.1, [4] Tag 04UJ)

一般の site :: \mathbf{C} をとり、 \mathcal{G} を \mathbf{C} 上の sheaf of groups とする。 \mathbf{C} 上の \mathcal{G} -torsor とは、 \mathbf{C} 上の sheaf :: \mathcal{P} と 左作用 α : $\mathcal{G} \times \mathcal{P} \to \mathcal{P}$ の組であって、次を満たすもの。

T1 任意の $X \in \mathbb{C}$ について cover of $X :: \{X_i \to X\}$ が存在し, $\mathcal{P}(X_i) \neq \emptyset$.

T2 写像

$$\langle \operatorname{pr}_2, \alpha \rangle \colon \mathcal{G} \times \mathcal{P} \to \mathcal{P} \times \mathcal{P}; \quad (p, g) \mapsto (p, \alpha(g, p))$$

は同型. ただし、 $\langle \mathrm{pr}_1, \alpha \rangle$ は $\mathcal{P} \times \mathcal{P}$ の普遍性と $\mathrm{pr}_1, \alpha \colon \mathcal{P} \times \mathcal{G} \to \mathcal{P}$ から得られる射である.

G-torsor の射は G-equivariant morphism である.

 (\mathcal{P},α) が \mathcal{G} -torsor :: (\mathcal{G},m) (ただし $m:\mathcal{G}\times\mathcal{G}\to\mathcal{G}$ は積写像)と同型である時 \mathcal{G} -torsor :: (\mathcal{P},α) は自明 (trivial) であると言う.

注意 1.3

 \mathcal{G} , \mathcal{P} の両方が scheme で表現できる場合には、 \mathcal{G} -torsor は principal bundle と呼ばれる. group scheme に対応する representable sheaf が

注意 1.4

任意の $X \in \mathbf{C}$ について $\mathcal{P}(X) \neq \emptyset$ である場合には,条件 T2 は作用 α が単純推移的であることを意味する. すなわち,任意の $p,q \in \mathcal{P}(X)$ についてただ一つの $g \in \mathcal{G}(X)$ が存在し, $q = g * q = \alpha(g,p)$ となる.

補題 1.5 ([4] Tag 03AI, [3] 4.5.1)

 \mathcal{G} -torsor :: (\mathcal{P}, α) が自明であることと, \mathcal{P} が global section $^{\dagger 1}$ を持つことと同値. さらに, $\mathcal{P}(X) \neq \emptyset$ ならば制限 $\mathcal{P}|_X$ は trivial.

(証明). (\mathcal{P}, α) が自明であると仮定すると、次のように global section が得られる.

$$1 \to \mathcal{G} \cong \mathcal{P}; \quad * \mapsto e$$

ただしeはGの単位元である.

$$\mathcal{G} \to \mathcal{P}; \quad g \mapsto \alpha(g, p)$$

という射が定義できる. これは定義にある条件 T2 から同型である.

 $s \in \mathcal{P}(X)$ をとれば、scheme の任意の射 $\phi: U \to X$ について

$$1 \to (\mathcal{P}|_X)(U) = \mathcal{P}(U); \quad * \mapsto \phi^* s$$

のように global section :: $1 \to \mathcal{P}|_X$ が定まる.

系 1.6

G-torsor の任意の射は同型.

前層の圏 $\mathbf{PSh}(\mathbf{C})$ の terminal object から \mathcal{P} への射のこと ([4] Tag 06UN). $\mathbf{PSh}(\mathbf{C})$ の terminal object は自明群で定まる constant sheaf である.

1.2 Quotient Stack

定義 1.7 (Quotient Stack, [3] Example 8.1.12)

X :: algebraic space, G :: smooth group scheme over S, acting on X とする. すなわち左作用 α : $G \times X \to X$ が存在するものとする. この時, fibered category :: $[X/G](\to \operatorname{ET}(S))$ を以下で定める.

Object 以下の3つ組.

- S-scheme :: U,
- $G_U := G \times_S U$ -torsor on $\mathrm{ET}(U) :: \mathcal{P}$,
- \underline{G} -torsor の射 $\pi \colon \mathcal{P} \to X_U := X \times_S U$.

Arrow 射 $(U, \mathcal{P}, \pi) \to (U', \mathcal{P}', \pi')$ は二つの射の組 $(f: U \to U', f^{\flat}: \mathcal{P} \to f^*\mathcal{P}')$ であって,以下が可換となるもの.

fibration は $(U, \mathcal{P}, \pi) \mapsto U, (f, f^{\flat}) \mapsto f$ で与えられる.

補題 1.8

S:: scheme, X:: algebraic space, G:: smooth group scheme over S, acting on X とする. Quotient stack :: [X/G] は stack in groupoids である.

(証明). stack であることは sheaf の貼り合わせが可能であることに拠る. 詳しくは [3] 4.2.12, [4] Tag 04UK を参照せよ. [X/G] が category fibered in groupoids(CFG) であることを確かめる. これは恒等射上の [X/G] の射が同型射であることを確かめれば良い.

 $U \in \mathrm{ET}(S)$ を固定し、射 $(\mathrm{id}_U, f^{\flat}): (U, \mathcal{P}, \pi) \to (U, \mathcal{P}', \pi')$ を考える。定義から、次が可換である。

2 Aim of This Session

定理 2.1

Quotient Stack は algebraic stack である.

3 準備

3.1 Definition of $\mathbf{Isom}(X, Y)$

最初に $\mathfrak X$ の cleavage を選択せずとも出来る **Isom** の構成を述べる. 後の注意で特に splitting を選択した 場合の構成も述べておく.

定義 3.1 (Isom(X,Y))

stack とは限らない fibration :: $\mathfrak{X} \to \mathbf{B}$ と, $U \in \mathbf{B}$ 及び U 上の対象 $X,Y \in \mathfrak{X}$ をとる.この時,CFG over \mathbf{B}/U :: $\mathbf{Isom}(X,Y)$ を以下のように定める.

Object. 以下の 4 つ組.

- \mathbf{B}/U の対象 $f: V \to U$.
- $f \circ G$ cartesian lifting :: $f^*X \to X, f^*Y \to Y$.
- 同型 ϕ : $f^*X \to f^*Y$.

Arrow. 射

$$(V \xrightarrow{f} U, f^*X \to X, f^*Y \to Y, f^*X \xrightarrow{\phi} f^*Y) \to (W \xrightarrow{g} U, g^*X \to X, g^*Y \to Y, g^*X \xrightarrow{\psi} g^*Y)$$

は,以下の2つからなる.

- \mathbf{B}/U の射 $h: V \to W$ (したがって $g \circ h = f$ が成立),
- 射 $f^*\psi$, ϕ の間の canonical な同型射 $(h^*g^*X \to f^*X, h^*g^*Y \to f^*Y)$.

 $(h^*g^*X \to f^*X, h^*g^*Y \to f^*Y)$ を選択することで、 $h^*g^*X \to X, h^*g^*Y \to Y$ が定まる。また Triangle Lifting により $f^*\psi$ も定まる。以下の図式を参考にすると良い。

in \mathfrak{Z} $\begin{array}{c}
h^*g^*X \xrightarrow{h^*\psi} h^*g^*Y \\
\downarrow & \downarrow & \downarrow \\
f^*X \xrightarrow{\phi} f^*Y
\end{array}$ $\begin{array}{c}
\pi_{\mathfrak{Z}} \\
\downarrow & \downarrow \\
\downarrow$

4

fibration は次のように与えられる.

$$\pi$$
: Isom (X,Y) \rightarrow B/U Objects: $(f: V \rightarrow U, f^*X, f^*Y, \phi: f^*X \rightarrow f^*Y)$ \mapsto f Arrows: $(h: V \rightarrow W, h^*g^*X \rightarrow f^*X, h^*g^*Y \rightarrow f^*Y)$ \mapsto h

注意 3.2

 $\mathfrak{X} \to \mathbf{B}$ の splitting を選んだ場合には $\mathbf{Isom}(X,Y)$ の定義は次のように簡単に成る.

Object.
$$\mathbf{B}/U$$
 の対象 $f\colon V\to U$ と同型 $\phi\colon f^*X\to f^*Y$ の組. Arrow. 射 $(f,\phi)\to (g,\psi)$ は, $g\circ h=f$ を満たす \mathbf{B}/U の射 h .

以下では $\mathbf{Isom}(X,Y)$ が algebraic space(これは sheaf)と同型であるかどうかを考えるので、こちらの定義だけを覚えていても問題はない.

3.2 Propositions

補題 3.3

任意の $U \in \mathbf{B}$ と $X, Y \in \mathfrak{X}(U)$ について、 $\mathbf{Isom}(X, Y)$ は category fibered in sets.

(証明). 恒等射上の射は恒等射しかないことを確かめれば良い. $\mathbf{Isom}(X,Y)$ の射の定義から、恒等射上の射は次の形になっている.

$$(id_U, f^*X \to f^*X, f^*Y \to f^*Y) : (f, f^*X, f^*Y, \phi) \to (f, f^*X, f^*Y, \psi)$$

 $f^*X \to f^*X, f^*Y \to f^*Y$ は Triangle Lifting から得られる canonical なものなので、恒等射である.

 \mathfrak{X} :: stack の場合は ($\mathfrak{X} \to \mathbf{B}$ の splitting を選べば) $\mathbf{Isom}(X,Y)$ は sheaf になる.

補題 3.4

一般の site :: \mathbf{C} と CFG :: $\mathfrak{X} \to \mathbf{C}$ をとる. さらに \mathfrak{X} は split fibered category であるとする. 以下の二つは 互いに同値.

- (i) X は prestack である.
- (ii) 任意の $X,Y \in \mathfrak{X}$ について $\mathbf{Isom}(X,Y)$ の fiber は sheaf である.

(証明). (TODO: 出典)

3.3 Representability of Diagonal Morphism.

注意 3.5

以下、S scheme S を固定し、特に断らない限り big etale site :: ET(S) 上の S stack in groupoids のみ考える.

補題 3.6

 $\mathfrak X$:: stack in groupoids on $\mathbf C(=\mathrm{ET}(S))$ とする. この時, $\Delta\colon \mathfrak X\to \mathfrak X\times_S\mathfrak X$ が表現可能であることと,任意 の $U\in \mathbf C$ と任意の $X,Y\in \mathfrak X(U)$ について $\mathbf{Isom}(X,Y)$ が algebraic space であることは同値.

(証明). x,y: $\mathbf{Sch}/U(=U) \to \mathfrak{X}$ を、2-Yoneda Lemma により得られる $X,Y \in \mathfrak{X}(U)$ に対応する射とする \dagger^2 .

以下の図式が pullback diagram であることから分かる.

$$\mathbf{Isom}(X,Y) \xrightarrow{\mathrm{pr}_{U}} \mathbf{Sch}/U$$

$$\downarrow^{\mathrm{pr}_{\mathfrak{A}}} \qquad \downarrow^{x \times y}$$

$$\mathfrak{X} \xrightarrow{\Delta} \mathfrak{A} \times_{S} \mathfrak{X}$$

任意の射 $\mathbf{Sch}/U \to \mathfrak{X} \times \mathfrak{X}$ が $x \times y$ の形で表されることは、 $\mathfrak{X} \times \mathfrak{X}$ の普遍性から得られる.

まず、射と自然同型を定義する. $\mathbf{Isom}(X,Y)$ から伸びる射は次の関手である. ただし $\xi=(f\colon V\to U,f^*X,f^*Y,\phi\colon f^*X\to f^*Y),\eta=(g\colon W\to U,g^*X,g^*Y,\psi\colon g^*X\to f^*Y)$ とした.

$$\begin{array}{llll} \operatorname{pr}_U & \mathbf{Isom}(X,Y) & \to & \mathbf{Sch}/U \\ \mathbf{Objects:} & \xi & \mapsto & f \\ \mathbf{Arrows:} & [\xi \to \eta] & \mapsto & h \end{array}$$

$$\begin{array}{llll} \operatorname{pr}_{\mathfrak{X}} & \mathbf{Isom}(X,Y) & \to & \mathfrak{X} \\ \mathbf{Objects:} & \xi & \mapsto & f^*X \\ \mathbf{Arrows:} & [\xi \to \eta] & \mapsto & f^*X \to h^*g^*X \end{array}$$

自然同型 a は次で定める.

$$a_{\xi}$$
: $((x \times y)\operatorname{pr}_{U})(\xi) \to (\Delta\operatorname{pr}_{\mathfrak{X}})(\xi)$
 $(f \colon V \to U, f^{*}X, f^{*}X, \alpha) \mapsto (\operatorname{id}_{f^{*}X}, \phi)$

Isom(X,Y) が pullback であることは、Isom(X,Y) が普遍性を持つことを通して確かめる. (TODO)

補題 **3.7** ([3] Exercise 5.G)

4 証明

参考文献

- [1] Pierre Deligne and David Mumford. The irreducibility of the space of curves of given genus. *Publications Mathématiques de l'Institut des Hautes Études Scientifiques*, Vol. 36, No. 1, pp. 75–109, Jan 1969.
- [2] G. Laumon and L. Moret-Bailly. *Champs algébriques*. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge (A Series of Modern Surveys in Mathematics). Springer Berlin Heidelberg, 1999.
- [3] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.

 $[\]dagger^2$ 例えば x は $f \in \mathbf{Sch}/U$ を cartesian lifting f^*X へ写す.

[4] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.