$12a_{0331} (K12a_{0331})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.20578 \times 10^{55} u^{43} + 2.72261 \times 10^{53} u^{42} + \dots + 2.20839 \times 10^{56} b + 3.82813 \times 10^{56}, \\ &- 2.53459 \times 10^{56} u^{43} + 3.60015 \times 10^{56} u^{42} + \dots + 1.76671 \times 10^{57} a - 8.03449 \times 10^{57}, \\ &u^{44} - 3u^{43} + \dots + 48u - 64 \rangle \\ I_2^u &= \langle -2.99662 \times 10^{27} a u^{31} + 3.45285 \times 10^{27} u^{31} + \dots - 2.16166 \times 10^{28} a + 2.56649 \times 10^{28}, \\ &1.55146 \times 10^{23} a u^{31} - 3.42612 \times 10^{25} u^{31} + \dots - 8.65692 \times 10^{25} a + 2.42878 \times 10^{26}, \ u^{32} + u^{31} + \dots - 4u + 8 \\ I_3^u &= \langle u^9 - 2u^7 + u^5 + 2u^3 + b - u, \ u^9 + u^8 - 2u^7 - 3u^6 + 4u^4 + 4u^3 - u^2 + a - 3u - 1, \ u^{10} - 3u^8 + 4u^6 - u^4 - 10^{10} u^4 + 4u^4 + 4u^4 + 4u^4 - u^4 - 10^{10} u^4 + 4u^4 + 4u^4 + 4u^4 - 10^{10} u^4 + 4u^4 + 4u^4 + 4u^4 - 10^{10} u^4 + 4u^4 + 4u^4$$

$$I_1^v = \langle a, 2v^3 + v^2 + b + 3v + 1, 2v^4 + 3v^3 + 4v^2 + 3v + 1 \rangle$$

$$I_2^v = \langle a, v^2b + b^2 + bv - b - v, v^3 - v + 1 \rangle$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 128 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.21 \times 10^{55} u^{43} + 2.72 \times 10^{53} u^{42} + \dots + 2.21 \times 10^{56} b + 3.83 \times 10^{56}, \ -2.53 \times 10^{56} u^{43} + 3.60 \times 10^{56} u^{42} + \dots + 1.77 \times 10^{57} a - 8.03 \times 10^{57}, \ u^{44} - 3u^{43} + \dots + 48u - 64 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.143464u^{43} - 0.203777u^{42} + \dots - 2.64743u + 4.54771 \\ 0.0546002u^{43} - 0.00123285u^{42} + \dots - 3.22478u - 1.73345 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.175427u^{43} - 0.255448u^{42} + \dots - 3.94058u + 6.06949 \\ -0.309915u^{43} + 0.609208u^{42} + \dots - 5.06054u - 19.6604 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0888638u^{43} - 0.202544u^{42} + \dots + 0.577349u + 6.28116 \\ 0.0546002u^{43} - 0.00123285u^{42} + \dots - 3.22478u - 1.73345 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.655567u^{43} + 1.17863u^{42} + \dots - 3.12523u - 34.9827 \\ 0.525900u^{43} - 0.919790u^{42} + \dots + 0.385297u + 25.9781 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.329361u^{43} + 0.580992u^{42} + \dots - 2.08842u - 17.7466 \\ 0.412425u^{43} - 0.700514u^{42} + \dots - 1.16828u + 18.8318 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.218186u^{43} - 0.385243u^{42} + \dots - 0.618559u + 10.5245 \\ -0.437381u^{43} + 0.793391u^{42} + \dots - 3.74379u - 24.4582 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.571987u^{43} - 1.16565u^{42} + \dots + 8.28123u + 36.6401 \\ 0.409286u^{43} - 0.759210u^{42} + \dots + 1.85925u + 22.1877 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.649605u^{43} - 1.17009u^{42} + \dots + 4.76265u + 36.5187 \\ -0.587692u^{43} + 0.983287u^{42} + \dots + 4.35683u - 26.2754 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $1.19362u^{43} 2.33566u^{42} + \cdots + 21.5478u + 85.7392$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{44} + 18u^{43} + \dots + 11u + 1$
c_2, c_3, c_6 c_7	$u^{44} + 9u^{42} + \dots - 3u + 1$
c_4, c_{11}	$u^{44} + 3u^{43} + \dots - 48u - 64$
c_5	$u^{44} - 18u^{43} + \dots - 28060u + 2284$
c_9, c_{10}, c_{12}	$u^{44} + 5u^{43} + \dots - 11u - 4$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{44} + 30y^{43} + \dots - 117y + 1$
c_2, c_3, c_6 c_7	$y^{44} + 18y^{43} + \dots + 11y + 1$
c_4, c_{11}	$y^{44} - 27y^{43} + \dots - 8448y + 4096$
c_5	$y^{44} + 20y^{43} + \dots - 118969272y + 5216656$
c_9, c_{10}, c_{12}	$y^{44} - 43y^{43} + \dots - 337y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877125 + 0.508540I		
a = -0.830235 + 0.263996I	0.33144 - 5.53133I	8.20557 + 5.60912I
b = -0.552748 + 0.993827I		
u = 0.877125 - 0.508540I		
a = -0.830235 - 0.263996I	0.33144 + 5.53133I	8.20557 - 5.60912I
b = -0.552748 - 0.993827I		
u = 0.551521 + 0.892173I		
a = -0.37219 + 2.31116I	0.87743 + 2.97747I	7.43344 - 5.22549I
b = 0.518404 + 0.942737I		
u = 0.551521 - 0.892173I		
a = -0.37219 - 2.31116I	0.87743 - 2.97747I	7.43344 + 5.22549I
b = 0.518404 - 0.942737I		
u = 0.918562 + 0.190781I		
a = -0.06947 + 2.14622I	0.04036 + 8.34489I	9.07426 - 8.42771I
b = 0.493005 + 1.143320I		
u = 0.918562 - 0.190781I		
a = -0.06947 - 2.14622I	0.04036 - 8.34489I	9.07426 + 8.42771I
b = 0.493005 - 1.143320I		
u = 0.777804 + 0.489896I		
a = 0.447932 - 1.235890I	-1.23908 + 2.01870I	5.50350 - 5.95724I
b = -0.107092 - 0.599664I		
u = 0.777804 - 0.489896I		
a = 0.447932 + 1.235890I	-1.23908 - 2.01870I	5.50350 + 5.95724I
b = -0.107092 + 0.599664I		
u = -0.553221 + 0.710651I	22454 6455425	1 10500 . 5 00051 5
a = -0.18276 - 2.17276I	-3.34564 - 6.15513I	1.18529 + 7.20651I
b = 0.513691 - 1.049330I		
u = -0.553221 - 0.710651I	0.04504 + 0.155101	1 10500 5 000517
a = -0.18276 + 2.17276I	-3.34564 + 6.15513I	1.18529 - 7.20651I
b = 0.513691 + 1.049330I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.939623 + 0.583661I		
a = -0.850904 - 1.023730I	-2.18540 + 1.24012I	4.01532 - 2.37646I
b = -0.456389 - 0.953909I		
u = -0.939623 - 0.583661I		
a = -0.850904 + 1.023730I	-2.18540 - 1.24012I	4.01532 + 2.37646I
b = -0.456389 + 0.953909I		
u = -1.121990 + 0.460726I		
a = 0.18892 + 1.42239I	3.74404 - 4.98999I	12.7872 + 7.5818I
b = -0.139239 + 0.731129I		
u = -1.121990 - 0.460726I		
a = 0.18892 - 1.42239I	3.74404 + 4.98999I	12.7872 - 7.5818I
b = -0.139239 - 0.731129I		
u = 1.210230 + 0.107374I		
a = 1.233610 - 0.619919I	2.28709 + 7.54168I	8.78911 - 4.76693I
b = -0.644818 - 1.118720I		
u = 1.210230 - 0.107374I		
a = 1.233610 + 0.619919I	2.28709 - 7.54168I	8.78911 + 4.76693I
b = -0.644818 + 1.118720I		
u = 1.220140 + 0.130546I		
a = -0.879775 + 0.046540I	5.30527 + 3.52676I	12.39571 - 5.60505I
b = 0.791200 + 0.653166I		
u = 1.220140 - 0.130546I		
a = -0.879775 - 0.046540I	5.30527 - 3.52676I	12.39571 + 5.60505I
b = 0.791200 - 0.653166I		
u = 1.22786		
a = -0.226705	6.46619	15.1390
b = -0.764455		
u = -1.221210 + 0.277116I		
a = -0.290071 - 0.491123I	4.99655 - 1.77857I	12.03283 + 0.90771I
b = 0.815287 + 0.556119I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.221210 - 0.277116I		
a = -0.290071 + 0.491123I	4.99655 + 1.77857I	12.03283 - 0.90771I
b = 0.815287 - 0.556119I		
u = -0.187852 + 0.707638I		
a = -0.10739 + 2.04695I	-2.10344 + 8.47320I	0.86513 - 7.32488I
b = 0.584108 + 1.123780I		
u = -0.187852 - 0.707638I		
a = -0.10739 - 2.04695I	-2.10344 - 8.47320I	0.86513 + 7.32488I
b = 0.584108 - 1.123780I		
u = 0.077200 + 1.270820I		
a = -0.344452 - 0.637993I	7.29308 + 0.83298I	12.93302 - 2.35138I
b = -0.813481 - 0.606549I		
u = 0.077200 - 1.270820I		
a = -0.344452 + 0.637993I	7.29308 - 0.83298I	12.93302 + 2.35138I
b = -0.813481 + 0.606549I		
u = 1.147950 + 0.576653I		
a = -0.63200 + 1.38012I	2.90580 + 2.45908I	8.37655 + 2.48976I
b = -0.366262 + 0.944615I		
u = 1.147950 - 0.576653I		
a = -0.63200 - 1.38012I	2.90580 - 2.45908I	8.37655 - 2.48976I
b = -0.366262 - 0.944615I		
u = -0.373154 + 0.590810I		
a = 1.32152 + 1.14412I	1.43845 + 0.81939I	7.07317 - 0.59629I
b = 0.140186 + 0.443282I		
u = -0.373154 - 0.590810I		
a = 1.32152 - 1.14412I	1.43845 - 0.81939I	7.07317 + 0.59629I
b = 0.140186 - 0.443282I		
u = 0.286301 + 1.271350I		
a = -0.06998 - 1.96322I	3.83652 - 10.39040I	6.00000 + 6.99388I
b = 0.646714 - 1.143430I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.286301 - 1.271350I		
a = -0.06998 + 1.96322I	3.83652 + 10.39040I	6.00000 - 6.99388I
b = 0.646714 + 1.143430I		
u = -1.232470 + 0.449409I		
a = 1.48422 + 1.42635I	1.13812 - 12.94230I	6.00000 + 9.65030I
b = -0.636544 + 1.161000I		
u = -1.232470 - 0.449409I		
a = 1.48422 - 1.42635I	1.13812 + 12.94230I	6.00000 - 9.65030I
b = -0.636544 - 1.161000I		
u = -0.572137		
a = 0.404331	0.742706	14.0290
b = -0.317872		
u = -0.041980 + 0.544402I		
a = -0.201901 + 0.667917I	1.43276 - 1.29168I	5.31163 + 3.20971I
b = -0.626567 + 0.580076I		
u = -0.041980 - 0.544402I		
a = -0.201901 - 0.667917I	1.43276 + 1.29168I	5.31163 - 3.20971I
b = -0.626567 - 0.580076I		
u = 1.37733 + 0.68948I	_	
a = 1.13789 - 1.81742I	7.3537 + 17.3599I	0
b = -0.643082 - 1.192500I		
u = 1.37733 - 0.68948I	H 0K0H 1H 0K00T	
a = 1.13789 + 1.81742I	7.3537 - 17.3599I	0
b = -0.643082 + 1.192500I		
u = 1.44068 + 0.58329I	11 50000	
a = 0.168597 + 0.266784I	11.72660 + 5.76056I	0
b = 0.891958 - 0.507832I		
u = 1.44068 - 0.58329I	11 50000 5 500505	
a = 0.168597 - 0.266784I	11.72660 - 5.76056I	0
b = 0.891958 + 0.507832I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.53910 + 0.28678I		
a = 0.364929 - 0.791054I	10.37340 + 4.75111I	0
b = -0.714050 - 1.079210I		
u = -1.53910 - 0.28678I		
a = 0.364929 + 0.791054I	10.37340 - 4.75111I	0
b = -0.714050 + 1.079210I		
u = -1.50213 + 0.47642I		
a = -0.542791 - 0.639449I	12.5656 - 7.1187I	0
b = 0.846882 - 0.739073I		
u = -1.50213 - 0.47642I		
a = -0.542791 + 0.639449I	12.5656 + 7.1187I	0
b = 0.846882 + 0.739073I		

$$I_2^u = \langle -3.00 \times 10^{27} a u^{31} + 3.45 \times 10^{27} u^{31} + \dots -2.16 \times 10^{28} a + 2.57 \times 10^{28}, \ 1.55 \times 10^{23} a u^{31} - 3.43 \times 10^{25} u^{31} + \dots -8.66 \times 10^{25} a + 2.43 \times 10^{26}, \ u^{32} + u^{31} + \dots -4u + 8 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2.08262au^{31} - 2.39969u^{31} + \dots + 15.0233a - 17.8368 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3.47308au^{31} - 0.402645u^{31} + \dots - 21.9512a + 5.83712 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2.08262au^{31} - 0.207407u^{31} + \dots + 30.2057a - 1.17201 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2.08262au^{31} + 2.39969u^{31} + \dots + 15.0233a + 17.8368 \\ 2.08262au^{31} - 2.39969u^{31} + \dots + 15.0233a - 17.8368 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 7.54748u^{31} - 1.20115u^{30} + \dots - 67.8623u + 47.3131 \\ -5.97373u^{31} + 1.04734u^{30} + \dots + 53.1575u - 38.4575 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 3.55221u^{31} - 0.611351u^{30} + \dots - 33.0310u + 22.4678 \\ -4.23845u^{31} + 0.712986u^{30} + \dots + 37.6864u - 26.6223 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2.80108u^{31} + 0.304585u^{30} + \dots + 25.6455u - 15.7816 \\ 4.74639u^{31} - 0.896566u^{30} + \dots - 42.2168u + 31.5315 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2.39969au^{31} - 3.10645u^{31} + \dots - 17.8368a - 27.5448 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 5.78721u^{31} - 1.13313u^{30} + \dots - 51.3179u + 39.9500 \\ -5.87276u^{31} + 1.39777u^{30} + \dots + 51.5961u - 39.7880 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $\frac{11025781239134800397292311}{6007819644609133159819012}u^{31} - \frac{4547387949457051047751187}{6007819644609133159819012}u^{30} + \cdots - \frac{27712897715167341742192775}{3003909822304566579909506}u + \frac{37908238938466571310198751}{1501954911152283289954753}$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{64} + 34u^{63} + \dots + 2888u + 289$
c_2, c_3, c_6 c_7	$u^{64} - 2u^{63} + \dots + 6u + 17$
c_4, c_{11}	$(u^{32} - u^{31} + \dots + 4u + 8)^2$
c_5	$(u^{32} + 6u^{31} + \dots - 29u + 19)^2$
c_9, c_{10}, c_{12}	$(u^{32} + 4u^{31} + \dots - 2u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{64} - 10y^{63} + \dots + 2113164y + 83521$
c_2, c_3, c_6 c_7	$y^{64} + 34y^{63} + \dots + 2888y + 289$
c_4, c_{11}	$(y^{32} - 21y^{31} + \dots - 400y + 64)^2$
c_5	$(y^{32} + 18y^{31} + \dots - 14597y + 361)^2$
c_9, c_{10}, c_{12}	$(y^{32} - 32y^{31} + \dots + 10y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.994786 + 0.117498I		
a = 0.605972 - 0.777809I	-1.56769 + 0.51232I	8.14141 + 0.14369I
b = -0.086371 - 1.233020I		
u = 0.994786 + 0.117498I		
a = 1.64444 - 1.08920I	-1.56769 + 0.51232I	8.14141 + 0.14369I
b = -0.371286 + 0.809217I		
u = 0.994786 - 0.117498I		
a = 0.605972 + 0.777809I	-1.56769 - 0.51232I	8.14141 - 0.14369I
b = -0.086371 + 1.233020I		
u = 0.994786 - 0.117498I		
a = 1.64444 + 1.08920I	-1.56769 - 0.51232I	8.14141 - 0.14369I
b = -0.371286 - 0.809217I		
u = 1.06664		
a = -0.57970 + 2.22749I	-0.726839	7.36180
b = 0.386184 + 1.203090I		
u = 1.06664		
a = -0.57970 - 2.22749I	-0.726839	7.36180
b = 0.386184 - 1.203090I		
u = -1.080820 + 0.181795I		
a = 0.410379 + 0.315421I	2.97866 - 3.96490I	11.15642 + 4.13069I
b = 0.704804 + 0.067726I		
u = -1.080820 + 0.181795I		
a = 0.31340 + 1.97047I	2.97866 - 3.96490I	11.15642 + 4.13069I
b = -0.382987 + 1.136630I		
u = -1.080820 - 0.181795I		
a = 0.410379 - 0.315421I	2.97866 + 3.96490I	11.15642 - 4.13069I
b = 0.704804 - 0.067726I		
u = -1.080820 - 0.181795I		
a = 0.31340 - 1.97047I	2.97866 + 3.96490I	11.15642 - 4.13069I
b = -0.382987 - 1.136630I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.134937 + 1.098550I		
a = -1.05581 - 1.06392I	0.19293 - 1.78898I	7.34736 + 3.66370I
b = 0.438430 - 0.887152I		
u = 0.134937 + 1.098550I		
a = -0.09148 + 2.94336I	0.19293 - 1.78898I	7.34736 + 3.66370I
b = 0.134755 + 1.267700I		
u = 0.134937 - 1.098550I		
a = -1.05581 + 1.06392I	0.19293 + 1.78898I	7.34736 - 3.66370I
b = 0.438430 + 0.887152I		
u = 0.134937 - 1.098550I		
a = -0.09148 - 2.94336I	0.19293 + 1.78898I	7.34736 - 3.66370I
b = 0.134755 - 1.267700I		
u = -0.636893 + 0.594211I		
a = 1.273170 + 0.270032I	1.60801 + 1.11555I	10.11098 + 0.26189I
b = 0.455758 + 0.730375I		
u = -0.636893 + 0.594211I		
a = 0.73961 + 1.69841I	1.60801 + 1.11555I	10.11098 + 0.26189I
b = -0.501791 + 0.546256I		
u = -0.636893 - 0.594211I		
a = 1.273170 - 0.270032I	1.60801 - 1.11555I	10.11098 - 0.26189I
b = 0.455758 - 0.730375I		
u = -0.636893 - 0.594211I		
a = 0.73961 - 1.69841I	1.60801 - 1.11555I	10.11098 - 0.26189I
b = -0.501791 - 0.546256I		
u = -1.100670 + 0.347474I		
a = -0.692111 - 1.106880I	-2.17989 - 4.05552I	5.42840 + 6.80075I
b = -0.174423 - 1.282110I		
u = -1.100670 + 0.347474I		
a = 2.31612 + 0.53329I	-2.17989 - 4.05552I	5.42840 + 6.80075I
b = -0.463156 + 0.945799I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.100670 - 0.347474I		
a = -0.692111 + 1.106880I	-2.17989 + 4.05552I	5.42840 - 6.80075I
b = -0.174423 + 1.282110I		
u = -1.100670 - 0.347474I		
a = 2.31612 - 0.53329I	-2.17989 + 4.05552I	5.42840 - 6.80075I
b = -0.463156 - 0.945799I		
u = 0.646992 + 0.531527I		
a = 0.519557 - 0.623716I	-1.44328 + 2.03195I	4.06352 - 4.09496I
b = 0.433001 - 0.304309I		
u = 0.646992 + 0.531527I		
a = 0.56058 - 1.76408I	-1.44328 + 2.03195I	4.06352 - 4.09496I
b = -0.311585 - 0.887175I		
u = 0.646992 - 0.531527I		
a = 0.519557 + 0.623716I	-1.44328 - 2.03195I	4.06352 + 4.09496I
b = 0.433001 + 0.304309I		
u = 0.646992 - 0.531527I		
a = 0.56058 + 1.76408I	-1.44328 - 2.03195I	4.06352 + 4.09496I
b = -0.311585 + 0.887175I		
u = -1.202960 + 0.001367I		
a = -1.087730 - 0.207618I	4.30187 - 1.96238I	11.59391 + 0.38403I
b = 0.670268 - 0.984132I		
u = -1.202960 + 0.001367I		
a = 0.589667 + 0.223844I	4.30187 - 1.96238I	11.59391 + 0.38403I
b = -0.860542 - 0.449534I		
u = -1.202960 - 0.001367I		
a = -1.087730 + 0.207618I	4.30187 + 1.96238I	11.59391 - 0.38403I
b = 0.670268 + 0.984132I		
u = -1.202960 - 0.001367I		
a = 0.589667 - 0.223844I	4.30187 + 1.96238I	11.59391 - 0.38403I
b = -0.860542 + 0.449534I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.198859 + 1.266490I		
a = 0.609392 - 0.394183I	6.03039 + 4.72345I	11.29654 - 3.13438I
b = 0.892109 - 0.416609I		
u = -0.198859 + 1.266490I		
a = 0.11900 - 1.60692I	6.03039 + 4.72345I	11.29654 - 3.13438I
b = -0.672303 - 1.023730I		
u = -0.198859 - 1.266490I		
a = 0.609392 + 0.394183I	6.03039 - 4.72345I	11.29654 + 3.13438I
b = 0.892109 + 0.416609I		
u = -0.198859 - 1.266490I		
a = 0.11900 + 1.60692I	6.03039 - 4.72345I	11.29654 + 3.13438I
b = -0.672303 + 1.023730I		
u = 1.227290 + 0.381073I		
a = 0.026410 - 0.616452I	3.49706 + 7.28997I	9.63030 - 6.08966I
b = -0.902498 + 0.379655I		
u = 1.227290 + 0.381073I		
a = -1.48730 + 1.05175I	3.49706 + 7.28997I	9.63030 - 6.08966I
b = 0.657960 + 1.053360I		
u = 1.227290 - 0.381073I		
a = 0.026410 + 0.616452I	3.49706 - 7.28997I	9.63030 + 6.08966I
b = -0.902498 - 0.379655I		
u = 1.227290 - 0.381073I		
a = -1.48730 - 1.05175I	3.49706 - 7.28997I	9.63030 + 6.08966I
b = 0.657960 - 1.053360I		
u = 0.151614 + 0.623104I		
a = 0.575026 + 0.389652I	0.16780 - 3.36417I	3.62130 + 3.50479I
b = 0.772697 + 0.348527I		
u = 0.151614 + 0.623104I		
a = 0.25504 + 1.68992I	0.16780 - 3.36417I	3.62130 + 3.50479I
b = -0.557905 + 1.003080I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.151614 - 0.623104I		
a = 0.575026 - 0.389652I	0.16780 + 3.36417I	3.62130 - 3.50479I
b = 0.772697 - 0.348527I		
u = 0.151614 - 0.623104I		
a = 0.25504 - 1.68992I	0.16780 + 3.36417I	3.62130 - 3.50479I
b = -0.557905 - 1.003080I		
u = -0.313036 + 0.506372I		
a = -1.29037 + 2.02439I	-4.53431 + 0.51964I	-2.41959 - 1.56914I
b = 0.333105 + 1.047930I		
u = -0.313036 + 0.506372I		
a = -0.77520 - 2.85106I	-4.53431 + 0.51964I	-2.41959 - 1.56914I
b = 0.236452 - 1.173590I		
u = -0.313036 - 0.506372I		
a = -1.29037 - 2.02439I	-4.53431 - 0.51964I	-2.41959 + 1.56914I
b = 0.333105 - 1.047930I		
u = -0.313036 - 0.506372I		
a = -0.77520 + 2.85106I	-4.53431 - 0.51964I	-2.41959 + 1.56914I
b = 0.236452 + 1.173590I		
u = -1.36499 + 0.44637I		
a = 0.602581 + 0.409536I	5.04731 - 3.47045I	10.19300 + 0.53804I
b = -0.524339 - 0.670875I		
u = -1.36499 + 0.44637I		
a = 0.49345 + 1.70348I	5.04731 - 3.47045I	10.19300 + 0.53804I
b = -0.009584 + 1.306260I		
u = -1.36499 - 0.44637I		
a = 0.602581 - 0.409536I	5.04731 + 3.47045I	10.19300 - 0.53804I
b = -0.524339 + 0.670875I		
u = -1.36499 - 0.44637I		
a = 0.49345 - 1.70348I	5.04731 + 3.47045I	10.19300 - 0.53804I
b = -0.009584 - 1.306260I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.35714 + 0.57417I		
a = -0.60974 + 1.69144I	4.07948 + 7.82848I	8.18330 - 6.10894I
b = -0.195124 + 1.338750I		
u = 1.35714 + 0.57417I		
a = 1.62920 - 1.07081I	4.07948 + 7.82848I	8.18330 - 6.10894I
b = -0.542275 - 0.975573I		
u = 1.35714 - 0.57417I		
a = -0.60974 - 1.69144I	4.07948 - 7.82848I	8.18330 + 6.10894I
b = -0.195124 - 1.338750I		
u = 1.35714 - 0.57417I		
a = 1.62920 + 1.07081I	4.07948 - 7.82848I	8.18330 + 6.10894I
b = -0.542275 + 0.975573I		
u = 0.476060		
a = 4.34064 + 4.91932I	-2.06962	14.0180
b = -0.135427 - 1.027140I		
u = 0.476060		
a = 4.34064 - 4.91932I	-2.06962	14.0180
b = -0.135427 + 1.027140I		
u = -1.40531 + 0.64765I		
a = -0.341520 + 0.430658I	9.9177 - 11.5375I	11.79347 + 6.25344I
b = -0.957793 - 0.351336I		
u = -1.40531 + 0.64765I		
a = -1.11355 - 1.52043I	9.9177 - 11.5375I	11.79347 + 6.25344I
b = 0.676309 - 1.102780I		
u = -1.40531 - 0.64765I		
a = -0.341520 - 0.430658I	9.9177 + 11.5375I	11.79347 - 6.25344I
b = -0.957793 + 0.351336I		
u = -1.40531 - 0.64765I		
a = -1.11355 + 1.52043I	9.9177 + 11.5375I	11.79347 - 6.25344I
b = 0.676309 + 1.102780I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.51942 + 0.37951I		
a = -0.285426 - 0.453571I	11.95810 + 1.18611I	13.66994 + 0.I
b = 0.761601 - 0.938114I		
u = 1.51942 + 0.37951I		
a = 0.286276 - 0.384305I	11.95810 + 1.18611I	13.66994 + 0.I
b = -0.904045 - 0.555037I		
u = 1.51942 - 0.37951I		
a = -0.285426 + 0.453571I	11.95810 - 1.18611I	13.66994 + 0.I
b = 0.761601 + 0.938114I		
u = 1.51942 - 0.37951I		
a = 0.286276 + 0.384305I	11.95810 - 1.18611I	13.66994 + 0.I
b = -0.904045 + 0.555037I		

$$I_3^u = \langle u^9 - 2u^7 + u^5 + 2u^3 + b - u, \ u^9 + u^8 + \dots + a - 1, \ u^{10} - 3u^8 + 4u^6 - u^4 - u^2 + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{9} - u^{8} + 2u^{7} + 3u^{6} - 4u^{4} - 4u^{3} + u^{2} + 3u + 1 \\ -u^{9} + 2u^{7} - u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{9} - u^{8} + 2u^{7} + 3u^{6} - 2u^{5} - 4u^{4} + u^{2} - u \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{8} + 3u^{6} + u^{5} - 4u^{4} - 2u^{3} + u^{2} + 2u + 1 \\ -u^{9} + 2u^{7} - u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{9} + 2u^{7} - u^{5} - 2u^{3} + u \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7} - 2u^{5} + 2u^{3} \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{9} - u^{8} + 3u^{7} + 3u^{6} - 4u^{5} - 4u^{4} + 2u^{3} + u^{2} - u \\ -u^{9} + 3u^{7} - 3u^{5} + u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^8 + 8u^6 8u^4 4u^2 + 4u^2 +$

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{10}$
c_2, c_3, c_6 c_7	$(u^2+1)^5$
c_4, c_{11}	$u^{10} - 3u^8 + 4u^6 - u^4 - u^2 + 1$
c_5	$u^{10} + u^8 + 8u^6 + 3u^4 + 3u^2 + 1$
c ₈	$(u+1)^{10}$
c_9, c_{10}	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)^2$
c_{12}	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y-1)^{10}$
c_2, c_3, c_6 c_7	$(y+1)^{10}$
c_4, c_{11}	$(y^5 - 3y^4 + 4y^3 - y^2 - y + 1)^2$
c_5	$(y^5 + y^4 + 8y^3 + 3y^2 + 3y + 1)^2$
c_9, c_{10}, c_{12}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.822375 + 0.339110I		
a = 0.005676 - 0.212799I	-2.96077 - 1.53058I	0.51511 + 4.43065I
b = -1.000000I		
u = -0.822375 - 0.339110I		
a = 0.005676 + 0.212799I	-2.96077 + 1.53058I	0.51511 - 4.43065I
b = 1.000000I		
u = 0.822375 + 0.339110I		
a = 1.78720 - 1.99432I	-2.96077 + 1.53058I	0.51511 - 4.43065I
b = -1.000000I		
u = 0.822375 - 0.339110I		
a = 1.78720 + 1.99432I	-2.96077 - 1.53058I	0.51511 + 4.43065I
b = 1.000000I		
u = 0.766826I		
a = -1.70062 + 3.70062I	-0.888787	1.48110
b = 1.000000I		
u = -0.766826I		
a = -1.70062 - 3.70062I	-0.888787	1.48110
b = -1.000000I		
u = -1.200150 + 0.455697I		
a = 0.85660 + 1.94886I	2.58269 - 4.40083I	4.74431 + 3.49859I
b = 1.000000I		
u = -1.200150 - 0.455697I		
a = 0.85660 - 1.94886I	2.58269 + 4.40083I	4.74431 - 3.49859I
b = -1.000000I		
u = 1.200150 + 0.455697I		
a = 0.051139 + 1.143400I	2.58269 + 4.40083I	4.74431 - 3.49859I
b = 1.000000I		
u = 1.200150 - 0.455697I		
a = 0.051139 - 1.143400I	2.58269 - 4.40083I	4.74431 + 3.49859I
b = -1.000000I		

IV.
$$I_1^v = \langle a, 2v^3 + v^2 + b + 3v + 1, 2v^4 + 3v^3 + 4v^2 + 3v + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -2v^{3} - v^{2} - 3v - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -4v^{3} - 4v^{2} - 5v - 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2v^{3} + v^{2} + 3v + 1 \\ -2v^{3} - v^{2} - 3v - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2v^{2} + v + 2 \\ -2v^{3} - 3v^{2} - 4v - 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2v^{2} + 2v + 2 \\ -2v^{3} - 3v^{2} - 4v - 3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2v^{2} - v - 2 \\ 2v^{3} + 3v^{2} + 4v + 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 4v^{3} + 2v^{2} + 4v + 1 \\ -4v^{3} - 2v^{2} - 4v \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -4v^{3} - 6v^{2} - 6v - 4 \\ 6v^{3} + 7v^{2} + 9v + 5 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $10v^3 + 7v + 9$

Crossings	u-Polynomials at each crossing
c_1	$u^4 - 2u^3 + 3u^2 - u + 1$
c_2, c_3	$u^4 + u^2 + u + 1$
c_4, c_{11}	u^4
c_5	$u^4 + 3u^3 + 4u^2 + 3u + 2$
c_{6}, c_{7}	$u^4 + u^2 - u + 1$
<i>c</i> ₈	$u^4 + 2u^3 + 3u^2 + u + 1$
c_9, c_{10}	$(u+1)^4$
c_{12}	$(u-1)^4$

Crossings	Riley Polynomials at each crossing
c_1,c_8	$y^4 + 2y^3 + 7y^2 + 5y + 1$
c_2, c_3, c_6 c_7	$y^4 + 2y^3 + 3y^2 + y + 1$
c_4, c_{11}	y^4
c_5	$y^4 - y^3 + 2y^2 + 7y + 4$
c_9, c_{10}, c_{12}	$(y-1)^4$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.173850 + 1.069070I		
a = 0	2.62503 + 1.39709I	13.6914 - 3.7657I
b = -0.547424 - 0.585652I		
v = -0.173850 - 1.069070I		
a = 0	2.62503 - 1.39709I	13.6914 + 3.7657I
b = -0.547424 + 0.585652I		
v = -0.576150 + 0.307015I		
a = 0	-0.98010 - 7.64338I	4.68363 + 4.91712I
b = 0.547424 - 1.120870I		
v = -0.576150 - 0.307015I		
a = 0	-0.98010 + 7.64338I	4.68363 - 4.91712I
b = 0.547424 + 1.120870I		

V.
$$I_2^v = \langle a, v^2b + b^2 + bv - b - v, v^3 - v + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v\\0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0\\b \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v\\0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -v^{2}b - bv + b + v \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -b\\b \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} v^{2} + b - 1\\-v^{2} + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v^{2} + b + v - 1\\-v^{2} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -v^{2} - b + 1\\v^{2} - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -v^{2}b - bv - v^{2} + 2\\-1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -v^{2}b + v^{2} + b + v\\-v^{2} - v + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4v^2 + v + 9$

Crossings	u-Polynomials at each crossing
c_1	$u^6 - 3u^5 + 4u^4 - 2u^3 + 1$
c_2, c_3	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
c_4, c_{11}	u^6
<i>C</i> ₅	$(u^3 - u^2 + 1)^2$
c_6, c_7	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
<i>c</i> ₈	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_9, c_{10}	$(u+1)^6$
c_{12}	$(u-1)^6$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_2, c_3, c_6 c_7	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_4, c_{11}	y^6
c_5	$(y^3 - y^2 + 2y - 1)^2$
c_9, c_{10}, c_{12}	$(y-1)^6$

Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.662359 + 0.562280I		
a = 0	1.37919 + 2.82812I	9.17211 - 2.41717I
b = -0.498832 - 1.001300I		
v = 0.662359 + 0.562280I		
a = 0	1.37919 + 2.82812I	9.17211 - 2.41717I
b = 0.713912 - 0.305839I		
v = 0.662359 - 0.562280I		
a = 0	1.37919 - 2.82812I	9.17211 + 2.41717I
b = -0.498832 + 1.001300I		
v = 0.662359 - 0.562280I		
a = 0	1.37919 - 2.82812I	9.17211 + 2.41717I
b = 0.713912 + 0.305839I		
v = -1.32472		
a = 0	-2.75839	0.655770
b = 0.284920 + 1.115140I		
v = -1.32472		
a = 0	-2.75839	0.655770
b = 0.284920 - 1.115140I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{10}(u^4 - 2u^3 + 3u^2 - u + 1)(u^6 - 3u^5 + 4u^4 - 2u^3 + 1)$ $\cdot (u^{44} + 18u^{43} + \dots + 11u + 1)(u^{64} + 34u^{63} + \dots + 2888u + 289)$
c_2, c_3	$(u^{2}+1)^{5}(u^{4}+u^{2}+u+1)(u^{6}-u^{5}+2u^{4}-2u^{3}+2u^{2}-2u+1)$ $\cdot (u^{44}+9u^{42}+\cdots-3u+1)(u^{64}-2u^{63}+\cdots+6u+17)$
c_4, c_{11}	$u^{10}(u^{10} - 3u^8 + \dots - u^2 + 1)(u^{32} - u^{31} + \dots + 4u + 8)^2$ $\cdot (u^{44} + 3u^{43} + \dots - 48u - 64)$
c_5	$((u^{3} - u^{2} + 1)^{2})(u^{4} + 3u^{3} + \dots + 3u + 2)(u^{10} + u^{8} + \dots + 3u^{2} + 1)$ $\cdot ((u^{32} + 6u^{31} + \dots - 29u + 19)^{2})(u^{44} - 18u^{43} + \dots - 28060u + 2284)$
c_6, c_7	$(u^{2}+1)^{5}(u^{4}+u^{2}-u+1)(u^{6}+u^{5}+2u^{4}+2u^{3}+2u^{2}+2u+1)$ $\cdot (u^{44}+9u^{42}+\cdots-3u+1)(u^{64}-2u^{63}+\cdots+6u+17)$
c_8	$(u+1)^{10}(u^4+2u^3+3u^2+u+1)(u^6+3u^5+4u^4+2u^3+1)$ $\cdot (u^{44}+18u^{43}+\cdots+11u+1)(u^{64}+34u^{63}+\cdots+2888u+289)$
c_9, c_{10}	$((u+1)^{10})(u^5 - u^4 + \dots + u + 1)^2(u^{32} + 4u^{31} + \dots - 2u - 1)^2$ $\cdot (u^{44} + 5u^{43} + \dots - 11u - 4)$
c_{12}	$((u-1)^{10})(u^5 + u^4 + \dots + u - 1)^2(u^{32} + 4u^{31} + \dots - 2u - 1)^2$ $\cdot (u^{44} + 5u^{43} + \dots - 11u - 4)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y-1)^{10}(y^4 + 2y^3 + 7y^2 + 5y + 1)(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)$ $\cdot (y^{44} + 30y^{43} + \dots - 117y + 1)$ $\cdot (y^{64} - 10y^{63} + \dots + 2113164y + 83521)$
c_2, c_3, c_6 c_7	$(y+1)^{10}(y^4+2y^3+3y^2+y+1)(y^6+3y^5+4y^4+2y^3+1)$ $\cdot (y^{44}+18y^{43}+\dots+11y+1)(y^{64}+34y^{63}+\dots+2888y+289)$
c_4, c_{11}	$y^{10}(y^5 - 3y^4 + \dots - y + 1)^2(y^{32} - 21y^{31} + \dots - 400y + 64)^2$ $\cdot (y^{44} - 27y^{43} + \dots - 8448y + 4096)$
c_5	$(y^{3} - y^{2} + 2y - 1)^{2}(y^{4} - y^{3} + 2y^{2} + 7y + 4)$ $\cdot (y^{5} + y^{4} + 8y^{3} + 3y^{2} + 3y + 1)^{2}$ $\cdot (y^{32} + 18y^{31} + \dots - 14597y + 361)^{2}$ $\cdot (y^{44} + 20y^{43} + \dots - 118969272y + 5216656)$
c_9, c_{10}, c_{12}	$(y-1)^{10}(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$ $\cdot ((y^{32} - 32y^{31} + \dots + 10y + 1)^2)(y^{44} - 43y^{43} + \dots - 337y + 16)$