МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа №2

«Параметрический синтез и исследование цифровой системы управления с П-регулятором и объектом в виде последовательно включенных апериодического и интегрирующего звеньев из условия обеспечения заданного переходного процесса»

по дисциплине Системы управления в электроприводе

Выполнил: Студент группы

R34362 Ванчукова Т. С.

Преподаватель: Ловлин С.Ю.

Содержание

Задание
Ход работы5
Задание 15
Задание 2. Синтез системы с использованием «метода переоборудования»
Задание 3. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового Π - регулятора для случая вычислительной задержки $\varepsilon=0$
Задание 4. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового Π - регулятора для случая вычислительной задержки $\varepsilon = To$
Задание 5. Синтез и моделирование системы из условия обеспечения в ней «биномиальной настройки»
Результаты работы
Выводы

Задание

Задание 1

Снять временные диаграммы, иллюстрирующие работу эквивалентных аналогового и цифрового П-регуляторов при линейно нарастающем входном воздействии на входе регулятора для случая вычислительной задержки $\varepsilon = 0$. Представить схему модели.

Задание 2. Синтез системы с использованием «метода переоборудования»

- 2.1 Построить эквивалентную модель и осуществить ее настройку на «оптимум по модулю» $T_{\mu 1} = T_1 = 0.05$.
- 2.2 Путем моделирования определить величину периода дискретности управления T_0 , при которой обеспечивается качество переходного процесса в исследуемой цифровой системе, близкое к процессу в эквивалентной непрерывной системе. Снять осциллограммы переходных процессов для значений $T_0 = 0.1T_{\mu 1}$; $T_0 = T_{\mu 1}$. Параметры переходных процессов занести в таблицу 1. Представить схему модели.
- Задание 3. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового Π -регулятора для случая вычислительной задержки $\epsilon = 0$.
- 3.1 Построить полную эквивалентную модель системы, учитывающую динамические свойства П-регулятора в виде системы, содержащей объект управления, аналоговый П-регулятор, а также находящееся в цепи обратной связи апериодическое звено первого порядка с единичным коэффициентом передачи и постоянной времени Т_{зап}.
- 3.2 Определить величину постоянной времени T_{3an} , при которой процессы в исследуемой цифровой системе и эквивалентной модели максимально приближены друг к другу. Максимальное приближение процессов имеет место при минимальном значении функционала:

$$F = \int abs(y - y_{3}(T_{3a\pi i}))dt$$

где y — процесс в цифровой системе, $y_3(T_{3ani})$ — процесс в эквивалентной системе при некотором значении постоянной T_{3ani} . Результаты моделирования занести в таблицу 2, построить зависимость $F = \varphi(T3ani)$.

Режим моделирования $T_0 = T_1 = 1, T_{\text{зап}} = (0.1, 0.4, 0.9) T_0$. Параметры цифрового и аналогового П-регуляторов берутся из пп.2.1 и при моделировании остаются неизменными.

3.3 Осуществить настройку полной эквивалентной модели системы на «оптимум по модулю» при малой некомпенсированной постоянной времени, определяемой на основании соотношения $T_{\mu} = T_1 + T_{3an}$. Снять осциллограммы переходных процессов для значений $T_0 = 1$; $T_1 = 1$, 0.5; параметры переходных процессов занести в таблицу 3. Представить схему модели.

Задание 4. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового Π -регулятора для случая вычислительной задержки $\epsilon = T0$.

- 4.1 Снять временные диаграммы, иллюстрирующие работу эквивалентных аналогового и цифрового П-регуляторов при линейно нарастающем входном воздействии на входе регулятора для случая вычислительной задержки $\varepsilon = T_0$. Представить схему модели.
- 4.2 Построить цифровую модель системы и полную эквивалентную модель, учитывающие вычислительную задержку $\varepsilon = T_0$.
- 4.3 Осуществить настройку полной эквивалентной модели системы на «оптимум по модулю» при малой некомпенсированной постоянной времени, определяемой на основании соотношения $T_{\mu} = T_1 + T_{3an} + T_0$. Снять осциллограммы переходных процессов для значений $T_0 = 0.05, 0.1; T_1 = 0.05 \ (T_1 постоянная времени контура тока) параметры переходных процессов занести в таблицу 4. Представить схему модели.$

Задание 5

Осуществить синтез системы из условия обеспечения в ней «биномиальной настройки» и провести моделирование согласно пп.2, 3, 4.

Ход работы

Задание 1

Рисунок 1. Графики выхода аналогового и цифрового П-регуляторов при линейно-возрастающем входном воздействии

Рисунок 2. Схема моделирования

Задание 2. Синтез системы с использованием «метода переоборудования»

Сначала построим эквивалентную модель и осуществим ее настройку на «оптимум по модулю» $T_{\mu 1} = T_1 = 0.05$.

Для этого определили передаточную функцию:

$$\frac{Js}{(JL)s^2 + (JR)s + Ce^2}.$$

Пренебрегая влиянием противоЭДС перепишем передаточную функцию:

Рисунок 3. АЧХ и ФЧХ реальной и упрощенной разомкнутых систем

По графикам видим, что графики реальной и упрощённых систем расходятся только при малых значения частоты. Если выполняем синтез для быстрых систем, как в данном случае, можем пренебречь противоЭДС.

Рассчитаем ПИ-регулятор.

$$W_{ol} = \frac{1}{T_t s}$$

Передаточная функция ПИ-регулятора:

$$W_{reg} = \frac{Ls + R}{T_t s}$$

Рисунок 4. АЧХ и ФЧХ реальной и упрощенной замкнутых систем ПИ-регулятором

Выполним моделирование работы контура тока.

Рисунок 5. График моделирование работы контура тока

Рисунок 6. Схема моделирования

Расчет цифрового П-регулятора скорости

$$W_{ob2} = \frac{Ce \ kdw}{Js}$$

Передаточная функция разомкнутой системы, настроенной на технический оптиум.

$$W_{ol} = \frac{1}{2T_{\mu}s(T_{\mu}s+1)}$$

$$W_{reg} = \frac{W_{ol}}{\frac{1}{T_{\mu}s + 1} \cdot \frac{Ce \ kdw}{Js}} = \frac{J}{2Ce \cdot T_{\mu} \cdot kdw}$$

Моделирование работы системы, настроенной на технический оптиум

Рисунок 7. График моделирование работы, настроенный на технический оптиум ($T_o = 0.1 \cdot T_\mu$)

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6.3 \cdot T_{\mu}$$

 t_0 – время начала переходного процесса t_{p1} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \geq D, D = 0.05 \cdot |y_0 - y_{ss}|$$

 t_{p2} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \le D, D = 0.05 \cdot |y_0 - y_{ss}|$$

Вычислим перерегулирование
$$\Delta y$$
:
$$\Delta y = \frac{|\sup{(y) - y_{ss}|}}{|y_0 - y_{ss}|} = 5.0 \cdot T_{\mu}$$

Рисунок 8. График моделирование работы, настроенный на технический оптиум ($T_o=1\cdot T_\mu$)

$$t_{p1} = t_1 - t_0 = 3.4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 7.8 \cdot T_{\mu}$$

$$\Delta y = 15.3 \cdot T_{\mu}$$

Задание 3. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового Π -регулятора для случая вычислительной задержки $\varepsilon=0$

Рисунок 9. График функционала системы

Рисунок 10. Схема моделирования

Перенастройка с помощью метода переоборудования

Рисунок 11. График моделирование работы $T_o = T_t = 0.005$ Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 3.5 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3.5 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

Рисунок 12. График моделирование работы $T_o = 2T_t = 0.01$

Рисунок 13. Схема моделирования

$$t_{p1} = t_1 - t_0 = 3.1 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3.1 \cdot T_{\mu}$$

$$\Delta y = 4.9 \cdot T_{\mu}$$

Задание 4. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового Π -регулятора для случая вычислительной задержки $\varepsilon = T_o$.

Рисунок 14. График функционала системы

Рисунок 15. Схема моделирования

Перенастройка с помощью метода переоборудования

Рисунок 16. График моделирование работы $T_o = T_t = 0.01$

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 3.4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3.4 \cdot T_{\mu}$$

$$\Delta y = 3.4 \cdot T_{\mu}$$

Рисунок 17. График моделирование работы $T_o = 2T_t = 0.01$

$$t_{p1} = t_1 - t_0 = 3.3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3.3 \cdot T_{\mu}$$

$$\Delta y = 2.5 \cdot T_{\mu}$$

Задание 5. Синтез и моделирование системы из условия обеспечения в ней «биномиальной настройки»

Моделирование работы системы, настроенной на биномиальный оптиум

Рисунок 18. График моделирование работы, настроенный на биномиальный оптиум ($T_o = 0.1 \cdot T_{\mu}$)

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 6.4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6.4 \cdot T_{\mu}$$

 t_0 – время начала переходного процесса

 t_{p1} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \geq D, D = 0.05 \cdot |y_0 - y_{ss}|$$

 t_{p2} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \le D, D = 0.05 \cdot |y_0 - y_{ss}|$$

$$\Delta y = \frac{|\sup (y) - y_{ss}|}{|y_0 - y_{ss}|} = 0.6 \cdot T_{\mu}$$

Рисунок 19. График моделирование работы, настроенный на биномиальный оптиум ($T_o=1\cdot T_\mu$)

$$t_{p1} = t_1 - t_0 = 5.2 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 5.2 \cdot T_{\mu}$$

$$\Delta y = 4.5 \cdot T_{\mu}$$

Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового Π -регулятора для случая вычислительной задержки $\varepsilon=0$

Рисунок 20. График функционала системы

Перенастройка с помощью метода переоборудования

Рисунок 21. График моделирование работы $T_o = T_t = 0.005$

$$t_{p1} = t_1 - t_0 = 6.1 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6.1 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 0 \cdot T_{\mu}$$

Рисунок 22. График моделирование работы $T_o = 2T_t = 0.01$

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 5.8 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 5.8 \cdot T_{\mu}$$

$$\Delta y = 0 \cdot T_{\mu}$$

Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового Π -регулятора для случая вычислительной задержки $\varepsilon = T_{\rm o}$

Рисунок 23. График функционала системы

Перенастройка с помощью метода переоборудования

Рисунок 24. График моделирование работы $T_o = T_t = 0.005$

$$t_{p1} = t_1 - t_0 = 6.2 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6.2 \cdot T_{\mu}$$

Вычислим перерегулирование Δу:

Рисунок 25. График моделирование работы $T_o = 2T_t = 0.01$ Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 6.3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6.3 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 0 \cdot T_{\mu}$$

Результаты работы

Таблица 1

T_{0}	t_{p1} , c	t_{p2} , c	Δy , %
$T_0 = 0.1 \cdot T_{\mu}$	$4\cdot T_{\mu}$	$6.3 \cdot T_{\mu}$	$5 \cdot T_{\mu}$
$T_0 = T_{\mu}$	$3.4 \cdot T_{\mu}$	$7.8 \cdot T_{\mu}$	15.3 · Τ _μ

Технический оптиум Таблица 2

$T_{ m 3an}$	$0.1 \cdot T_0$	$0.4 \cdot T_0$	$0.9 \cdot T_0$
F	0.0028	0.0008	0.0039

Таблица 3

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 1$	0.021	$3.1 \cdot T_{\mu}$	$3.1 \cdot T_{\mu}$	$4.9 \cdot T_{\mu}$
$T_1 = 0.5$	0.021	$3.5 \cdot T_{\mu}$	$3.5 \cdot T_{\mu}$	$4.5 \cdot T_{\mu}$

Таблица 4

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 1$	0.021	$3.4 \cdot T_{\mu}$	$3.4 \cdot T_{\mu}$	$3.4 \cdot T_{\mu}$
$T_1 = 0.5$	0.021	$3.3 \cdot T_{\mu}$	$3.3 \cdot T_{\mu}$	$2.5 \cdot T_{\mu}$

Биномиальный оптиум Таблица 5

$T_{ m 3an}$	$0.1 \cdot T_0$	$0.4 \cdot T_0$	$0.9 \cdot T_0$
F	0.0021	0.0006	0.0025

Таблица 6

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 1$	0.021	$6.1 \cdot T_{\mu}$	6.1 · Τ _μ	$0\cdot T_{\mu}$
$T_1 = 0.5$	0.021	$5.8 \cdot T_{\mu}$	5.8 · Τ _μ	$0 \cdot T_{\mu}$

Таблица 7

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 1$	0.021	$6.2 \cdot T_{\mu}$	6.2 · Τ _μ	$0\cdot T_{\mu}$
$T_1 = 0.5$	0.021	$6.3 \cdot T_{\mu}$	6.3 · Τ _μ	$0 \cdot T_{\mu}$

Выводы

В процессе выполнения работы исследовали систему управления с П-регулятором и объектом в виде последовательно включенных апериодического и интегрирующего звеньев из условия обеспечения заданного переходного процесса.

В ходе проведенного исследования было определено, что при величине периода дискретности управления $T_0=0.5$ обеспечивается качество переходного процесса в исследуемой цифровой системе, близкое к процессу в эквивалентной непрерывной системе.

Также при увеличении величины периода дискретности время окончания переходного процесса и перерегулирование увеличиваются (Таблица 1).

При вводе задержки уменьшается перерегулирование. Также при задержке величина периода дискретности управления $T_0=1.5$ обеспечивается качество переходного процесса, близкое к процессу в эквивалентной непрерывной системе.

При настройке системы на биномиальный оптиум увеличилось время переходного процесса, перерегулирование равно 0.