Non-stationary multi-armed bandit

Non-stationary bandits

- Background
 - The reward distribution evolves in an un modeled non-stationary way
 - Internet advertisement:
 - Select which ad to display
 - Targeted user's preference and interest might change
 - Stock
 - Changes in market conditions
- Challenge:
 - Previous observation might be useless

Abrupt changing environment: Discounted UCB

- Reward
 - Independent random variables from potentially different distributions
 - Might vary over time
 - Abrupt changes at unknown instance (breakpoints)
 - Remain stationary during intervals
- Discount empirical average
 - Consider older data in a discount fashion
 - Exponential decay version of UCB

Abrupt changing environment: Discounted UCB

Discount empirical average

$$\bar{X}_t(\gamma, i) = \frac{1}{N_t(\gamma, i)} \sum_{s=1}^t \gamma^{t-s} X_s(i) \mathbb{1}_{\{I_s = i\}} , \quad N_t(\gamma, i) = \sum_{s=1}^t \gamma^{t-s} \mathbb{1}_{\{I_s = i\}},$$

$$c_t(\gamma,i) = 2B\sqrt{rac{\xi \log n_t(\gamma)}{N_t(\gamma,i)}} \;, \quad n_t(\gamma) = \sum_{i=1}^K N_t(\gamma,i)$$

$$I_t = \operatorname*{arg\,max}_{1 \leq i \leq K} ar{X}_t(au, i) + c_t(au, i),$$

- Strong regret
 - Track the best arm at each step
 - Upper bound: $O\left(T^{(1+\beta)/2}\log T\right)$ $\Upsilon_T = O(T^\beta)$ for some $\beta \in [0,1)$

Abrupt changing environment: Sliding-window UCB

- Local empirical average
 - Use only the τ last plays

$$\begin{split} \bar{X}_t(\tau, i) &= \frac{1}{N_t(\tau, i)} \sum_{s=t-\tau+1}^t X_s(i) \mathbb{1}_{\{I_s=i\}} \;, \quad N_t(\tau, i) = \sum_{s=t-\tau+1}^t \mathbb{1}_{\{I_s=i\}} \\ c_t(\tau, i) &= B \sqrt{\frac{\xi \log(t \wedge \tau)}{N_t(\tau, i)}} \\ I_t &= \argmax_{1 \leq i \leq K} \bar{X}_t(\tau, i) + c_t(\tau, i) \end{split}$$

- Strong regret
 - Upper bound: $O\left(T^{(1+\beta)/2}\sqrt{\log T}\right)$ $\Upsilon_T = O(T^\beta)$ for some $\beta \in [0,1)$
 - If number of breakpoints is upper-bounded: $O(\sqrt{\Upsilon T \log T})$.
- Slightly better than pure discount approach

Abrupt changing environment: Piecewise stationary

- Abrupt changes at arbitrary intervals
- Number of breakpoint grows linearly with time T
- Partial observation:
 - Query observations on a set of arms not picked before
 - Action is a function of reward observations in the set
- Reset the sub algorithm at the appropriate instants
 - Assume changes are lower bounded $\left|\beta_{\nu_j}(i)-\beta_{\nu_{j+1}}(i)\right|>2\epsilon.$
 - Assume the sub algorithm can guarantee a regret
 - Query the set of arms that received the fewest queries
 - Detect a mean shift w.r.t. a threshold
- Strong regret $O(kn \log(T))$

Exp3 with Reset

- Variation of mean value is bounded
- Tradeoff: remembering and forgetting old information
- Algorithm
 - Use adversary setting to obtain near-optimal performance
 - Single best arm
 - Exp3 with restart time
- Regret
 - Loss of using single best arm against the dynamic oracle
 - Regret of Exp3 relative to the best static action
- Lower bound $\mathcal{R}^{\pi}(\mathcal{V},T) \geq C(KV_T)^{1/3}T^{2/3}$
- Upper bound $\mathcal{R}^{\pi}(\mathcal{V},T) \leq \bar{C} \left(K \log K \cdot V_T\right)^{1/3} T^{2/3}$

Markovian restless bandits

- Reward evolves as finite Markov chains with unknown transition matrices
 - Discrete-time, finite state, aperiodic, irreducible
- Linear combination of rewards
- Weak regret:
 - Sngle best set of arms
 - Highest expected reward on average $\mu^i = \sum\limits_{z \in S_{i,j}} r_x^i \pi_x^i$ $\gamma^* = \max_{\mathbf{a} \in \mathcal{F}} \sum_{i \in \mathcal{A}_{\mathbf{a}(n)}} a_i \mu^i$
- Only take the observation from a regenerative cycle

Regret: poly(n)log(T)

Kalman filter

- Optimal estimator
 - Minimize the mean square error of the estimated parameters
 - Linear dynamic system
- State transition equation $\alpha_t = K\alpha_{t-1} + R\eta_t$
- Measuring equation $y_t = Z\alpha_t + \xi_t$
- Nonlinear filters $\mathbf{x}_k = f(\mathbf{x}_{k-1}, \mathbf{u}_k) + \mathbf{w}_k$ $\mathbf{z}_k = h(\mathbf{x}_k) + \mathbf{v}_k$
 - Extended Kalman filter
 - Similar to hidden markov model

Kalman filtered bandit

- Normally distributed rewards
- Estimate the mean value of each arm
- Two priori noise
 - Observation noise
 - Transition noise
- Played arm $\mu_i[N+1] = \frac{\left(\sigma_i^2[N] + \sigma_{\mathrm{tr}}^2\right) \cdot \tilde{r}_i + \sigma_{\mathrm{ob}}^2 \cdot \mu_i[N]}{\sigma_i^2[N] + \sigma_{\mathrm{tr}}^2 + \sigma_{\mathrm{ob}}^2}$ $\sigma_i^2[N+1] = \frac{\left(\sigma_i^2[N] + \sigma_{\mathrm{tr}}^2\right) \sigma_{\mathrm{ob}}^2}{\sigma_i^2[N] + \sigma_{\mathrm{tr}}^2 + \sigma_{\mathrm{ob}}^2}$
- Non-played arm $\mu_j[N+1] = \mu_j[N]$ $\sigma_j^2[N+1] = \sigma_j^2[N] + \sigma_{\mathrm{tr}}^2$

Thompson Sampling/UCB+Kalman Filter

- Combinatorial semi-bandits i.i.d over time
- Linear rewards: the sum of all arms
- TS: prior normal distribution $\overline{w} = \Phi \theta^*$
- UCB: $w_t(e) \in [0,1]$
- Noise: $N(0, \sigma^2)$
- Maintain a mean vector and a covariance matrix
- Use Kalman filtering to update
- Regret
 - independent of number of arms

Thank you!