Ausgabe: 09. Mai 2023 _______ Besprechung: 15. Mai 2023

Einführung in die angewandte Stochastik

Übungsblatt 4

Aufgabe 13

Sei X eine stetige Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit Dichtefunktion

$$f_X(x) = \begin{cases} n \cdot x^{n-1}, & x \in (0,1), \\ 0, & \text{sonst}, \end{cases}$$

für $n \in \mathbb{N}$. Bestimmen Sie mit dem Dichtetransformationssatz die Verteilung der Zufallsvariable

$$Y = -\ln(X).$$

Aufgabe 14

Die gemeinsame Verteilung zweier diskreten Zufallsvariablen X und Y, d.h.

$$P(X = i, Y = j), \quad 1 \le i \le 2, \ 1 \le j \le 5,$$

sei durch die folgende (unvollständige) Wahrscheinlichkeitstabelle gegeben.

Y = j $X = i$	1	2	3	4	5	P(X=i)
1	0	0.1		0.1	0.2	
2	0.1		0.1	0.2	0.1	
P(Y=j)		0.2	0.1			

- (a) Vervollständigen Sie die Wahrscheinlichkeitstabelle.
- (b) Sind X und Y stochastisch unabhängig?
- (c) Berechnen Sie E(X), Var(X) und $E\left(\frac{1}{X}\right)$.

Aufgabe 15

Gegeben seien zwei stochastisch unabhängige Zufallsvariablen X und Y auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit

$$E(X) = 2$$
, $E(X^2) = 5$, $E(Y) = 1$, $E(Y^2) = 7$.

Weiter seien

$$V := X - 2Y$$
 und $W := 3X + Y - 10$.

Berechnen Sie

- (a) E(V)
- (b) E(W)
- (c) $E(V \cdot W)$
- (d) $\sigma_V^2 = \text{Var}(V)$
- (e) $\sigma_W^2 = \text{Var}(W)$
- (f) Die Standardabweichung σ_V von V.

Aufgabe 16

Sei X eine standardnormalverteilte Zufallsvariable (d.h. $X \sim \mathcal{N}(0,1)$) mit Dichtefunktion

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}.$$

- (a) Bestimmen Sie die Dichte der Zufallsvariablen X^2 .
- (b) Bestimmen Sie $E(X^2)$.

 $\it Hinweis:$ Betrachten Sie die Verteilungsfunktion der Zufallsvariablen $\it X^2$ und verwenden Sie den Hauptsatz der Differential - und Integralrechnung.

Aufgabe 17

Sei X eine Zufallsvariable mit Werten in $(0, \infty)$. Zeigen Sie, dass

$$E(\ln(X)) < \ln(E(X))$$

gilt.