

# Incorporating molecular data-driven decisions towards soybean improvement

Zixiang Wen

Department of Plant, Soil and Microbial Sciences



## Outline

- 1. Introduction
- 2. Data Exploration
- 3. Machine learning for prediction of the three traits
- 4. Summary

## **Introduction**





## Soybean uses







## 1 bushel soybean= 11lbs oil +44lbs meal









Tofu

Soy milk

Soy sprouts

## Soybean production



Worldwide oil seed production in 2016/2017

Source: https://www.statista.com/statistics/267271/worldwide-oilseed-production-since-2008/

## Soybean production

## Soybean harvested acreage and average yield in US (1987-2016)



## Breeding goals of soybean

- High yield
- High protein
- High oil
- Disease resistance (SDS, aphid, SCN, white mold, phytophthora)

## The essential steps of GS are also shown as following:



## **Data sets**

➤ Data Set 1: 20,087 *G. max* and *G. soja* accessions

Genotypic data: <a href="https://soybase.org/snps/index.php">https://soybase.org/snps/index.php</a>

Phenotypic data: <a href="mailto:ttps://www.g3journal.org/content/6/8/2329">ttps://www.g3journal.org/content/6/8/2329</a>

➤ Data Set 2: 1100 elite soybean accessions from our own breeding program

#### Genotypic data

: <a href="https://drive.google.com/open?id=1E9N505WiXjVG0a6CjOKKTiVY3tkPWu-8">https://drive.google.com/open?id=1E9N505WiXjVG0a6CjOKKTiVY3tkPWu-8</a>

#### Phenotypic data:

https://drive.google.com/open?id=1dBnTHCeoW2o2yn0l46TbOAaM0jHnDazb

## 2.1 Data exploration for phenotypic data

**Table 1 Describe statistics analysis for three traits** 

|       | Yield (Mg/ha) | Protein | Oil  |
|-------|---------------|---------|------|
| Count | 7093          | 9642    | 9613 |
| Mean  | 2.2           | 44.3    | 18.6 |
| S.t.d | 1.0           | 2.5     | 2.0  |
| Min   | 0.0           | 37.3    | 13.0 |
| Max   | 5.0           | 51.2    | 24.1 |



Figure 1 Empirical cumulative distribution functions plot for the three traits data. Note: Blue lines stand for the ECDF of theoretically normal distribution, oranges line stand for ECDF of data distribution



Figure 2 Histogram and scatter plot showing the relationships among the three traits.

The results showed that protein and yield are negatively correlated. Protein and oil are negatively correlated, whereas oil and yield are positively correlated.



Figure 3 Bar plots showing the difference between our own lines and germplasms

Forth, the difference between my own data and data obtained from database (germplasm)
were analyzed (Fig.3). Both two-sample t-test and permutation replicates tests showed that
there existed significant difference in the three traits between the two origins.

## 2.2 Data exploration for genotypic data



Figure 4 SNP number and position ECDF across 20 soybean chromosomes

Table 2 Distance distribution among different chromosome

| Chr. | Mean  | Std   | Min  | Max     |  |
|------|-------|-------|------|---------|--|
| GM01 | 33045 | 69569 | 886  | 1961970 |  |
| GM02 | 20115 | 40427 | 427  | 1023340 |  |
| GM03 | 27542 | 48431 | 747  | 603452  |  |
| GM04 | 26698 | 39114 | 726  | 379485  |  |
| GM05 | 20882 | 56288 | 174  | 1226291 |  |
| GM06 | 26355 | 50252 | 141  | 1233091 |  |
| GM07 | 20453 | 35173 | 526  | 610279  |  |
| GM08 | 18387 | 40547 | 83   | 1309188 |  |
| GM09 | 26663 | 48065 | 421  | 934179  |  |
| GM10 | 23382 | 42166 | 115  | 886598  |  |
| GM11 | 20202 | 38944 | 28   | 644414  |  |
| GM12 | 22773 | 45465 | 424  | 926978  |  |
| GM13 | 17076 | 36766 | 312  | 1196416 |  |
| GM14 | 24852 | 46173 | 467  | 645588  |  |
| GM15 | 21277 | 40807 | 872  | 681991  |  |
| GM16 | 21976 | 39528 | 724  | 719942  |  |
| GM17 | 20992 | 34526 | 284  | 411433  |  |
| GM18 | 17970 | 29316 | 1186 | 513926  |  |
| GM19 | 21975 | 34268 | 425  | 431415  |  |
| GM20 | 29011 | 52088 | 660  | 1541797 |  |

#### 2.3. Genome wide association study (GWAS) for the three traits



Figure 6 Genome-wide association study of protein, oil and yield based on GLM



Figure 7 Genome-wide association study of protein, oil and yield based on MLM.

Table3 A subset of SNPs (top 5) significantly associated with the three traits

|         | SNP            | Chr. | Position | P-value  | MAF  | n    | $\mathbb{R}^2$ | effect |
|---------|----------------|------|----------|----------|------|------|----------------|--------|
| Yield   | Gm_19_44642440 | 19   | 44642440 | 2.93E-06 | 0.17 | 7041 | 0.74           | 0.07   |
|         | Gm_13_6704149  | 13   | 6704149  | 4.63E-06 | 0.32 | 7041 | 0.74           | -0.05  |
|         | Gm_19_44761515 | 19   | 44761515 | 2.50E-05 | 0.47 | 7041 | 0.74           | 0.04   |
|         | Gm_18_7942395  | 18   | 7942395  | 4.76E-05 | 0.07 | 7041 | 0.74           | 0.10   |
|         | Gm_7_35103803  | 7    | 35103803 | 5.35E-05 | 0.12 | 7041 | 0.74           | 0.07   |
| Protein | Gm_15_3828587  | 15   | 3828587  | 7.95E-19 | 0.12 | 9590 | 0.45           | 0.41   |
|         | Gm_15_3919945  | 15   | 3919945  | 1.66E-10 | 0.21 | 9590 | 0.45           | -0.26  |
|         | Gm_13_24858209 | 13   | 24858209 | 3.86E-10 | 0.11 | 9590 | 0.45           | -0.30  |
|         | Gm_15_3918803  | 15   | 3918803  | 4.06E-10 | 0.20 | 9590 | 0.45           | 0.26   |
|         | Gm_15_3702534  | 15   | 3702534  | 1.32E-06 | 0.03 | 9590 | 0.45           | 0.56   |
| Oil     | Gm_17_865220   | 17   | 865220   | 7.76E-07 | 0.07 | 9590 | 0.36           | 0.45   |
|         | Gm_17_4249592  | 17   | 4249592  | 1.14E-06 | 0.07 | 9590 | 0.36           | -0.46  |
|         | Gm_20_43423685 | 20   | 43423685 | 1.73E-06 | 0.11 | 9590 | 0.35           | -0.32  |
|         | Gm_20_43428880 | 20   | 43428880 | 2.35E-06 | 0.11 | 9590 | 0.35           | -0.32  |
|         | Gm_05_3049162  | 5    | 3049162  | 2.47E-06 | 0.07 | 9590 | 0.35           | 0.41   |

#### 3. Machine learning for prediction of the three traits

To perform machine learning for the prediction of the three traits, tow algorithms were used. One is lasso (least absolute shrinkage and selection operator).

$$\sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

The second algorithms used in the analysis is Random Forest regression. After training with 100 decision trees, predictions for unseen samples x' can be made by averaging the predictions from all the individual regression trees on x':

$$\hat{f}=rac{1}{B}\sum_{b=1}^B f_b(x')$$

## 3.1 Machine learning for prediction of protein content



Figure 8 Genomic predictions for protein content with Lasso and Random Forest

## 3.2 Machine learning for prediction of oil content



Figure 9 Genomic prediction for oil content with Lasso and Random Forest

- Correlations between predicted and observed reaching up to 0.70 with Random Forest model
- ➤ Random Forest model slightly outperformed the Lasso model in term of accuracy in test data.

#### 3.3 Machine learning for prediction of yield



Figure 10 Genomic prediction for yield with Lasso and Random Forest

- ➤ Correlations between predicted and observed reaching up to 0.863 with Random Forest model.
- ➤ However, Lasso model outperformed Random Forest the model in term of accuracy in cross validation.

## 4. Summary



Figure 11 Genomic prediction accuracy for three traits with Lasso and Random Forest models

Resulting genomic prediction models explained an appreciable amount of the variation in accession, with correlations between predicted and observed reaching up to 0.86 for yield, 0.70 and 0.67 for oil and protein respectively