imes

×

OPTIMIZING YOUR COMMUNICATION CLIENT LIST

Ilshat Dineev, Oleg Bobylev, Alexandra Arkhipova DSBA213

TABLE OF CONTENTS

01.

research

Explanatory analysis of dataset

02.

cleaning

Cleaning the data for missing values

03.

Preparation *

Encoding, scaling check for incorrect values and etc

04.

SEGMENT

Building client list of our clients

05.

MODEL

Building model for predicting e-mail and phone responses

06.

conclusion

Discussion of obtained result

Project's **Goal**

Response model

0

Build prediction response model for optimizing communication list and represent pricing model

segmentation

0

Find and describe main segments of our client base

x + *

Data

*

Exploratory data analysis

1

Dataset **overview**

(Represented)

Personal data, transaction history, responses

CONSISTS OF

22 variables, 13 categorical, 9 quantitative

Name	Tuno	Label
	Туре	
ID	Character	ID клиента
Ind_Household	Character	Факт домовладения
Age_group	Character	Возрастная группа
District	Character	Район
Region	Character	Регион
Segment	Character	Статус клиента
Ind_deposit	Character	Индикатор владения депозитом
Ind_email	Character	Индикатор наличия e-mail
Ind_phone	Character	Индикатор наличия телефона
Ind_salary	Character	Индикатор владения зарплатной картой
Gender	Character	Пол
Target1	Character	Отклик на коммуникацию по e-mail
Target2	Character	Отклик на коммуникацию по телефону
Age	Numeric	Возраст
Lifetime	Numeric	Время, проведенное с банком
Income	Numeric	Доход
trans_6_month	Numeric	Транзакции за 6 месяцев
trans_9_month	Numeric	Транзакции за 9 месяцев
trans_12_month	Numeric	Транзакции за 12 месяцев
amont_trans	Numeric	Кол-во транзакций
amont_day_from	Numeric	Количество дней с последней транзакции
trans_3_month	Numeric	Транзакции за 3 месяца

Dataset **distribution**

We tried to build graphs for response and non-response clients, but distribution was as in the general case

CLIENTS PROFILE

gender

AGE

Dataset **overview**

ACTIVITY OF Transaction

DISTRIBUTION OF TARGET

Disbalance of classes - we can't use accuracy metric

* CLIENT average

	Age	53.792	In
	Lifetime	6.562	Ag
	Income	50.356	Di
*	trans_6_month	2049.943	Re
	trans_9_month	3069.965	Se
	trans_12_month	4189.979	In
	amont_trans	7.240	Ge
	amont_day_from	19.742	Та
	trans_3_month	952.514	Та

Ind_Household	No
Age_group	middle
District	52
Region	South East
Segment	Silver
Ind_deposit	Yes
Ind_salary	No
Gender	F
Target1	No
Target2	No

Average of responded

Ind Household

Target1

Target2

Age	46.799	Tild_flodSello td	IVU
Lifetime	6.127	Age_group	middle
Income	51.443	District	52
trans_6_month	2050.057	Region	South East
		Segment	Silver
trans_9_month	3070.120	<pre>Ind_deposit</pre>	Yes
trans_12_month	4190.191	Ind_salary	No
amont_trans	7.240	Gender	F
amont_day_from	23.652	Targo+1	Vos

953.352

No

Yes

No

trans_3_month

missing values

O

0

MISSING VALUES

12608

solution

Age_group	0	
Region	0	
District	0	
Segment	0	
dtype: int6	4	
Ind_Househo	ld	0
<pre>Ind_deposit</pre>		0
Ind_salary	0	
Gender		0
dtype: int6	4	
Age	66958	

Income	
trans_6_mo	onth
trans_3_mo	onth
trans_9_mo	onth
trans_12_m	onth
amont_tran	ıs
amont_day_	from
dtype: int	:64
Target1	0
Target2	0

- Imputation with average of numerical variables
- Leave unknown categorical variables as they can have impact

Lifetime

Variables encobing

0

categorical

BINATY AND TARGET

One-hot encoding with dropping one variable to avoid multicollinearity

variables scaling

0

scaling

We applied StandardScaler form scikit-learn

0

регетер

INCORRECT

```
mask = (
    (data['trans_6_month'] < data['trans_3_month']) |</pre>
    (data['trans 9 month'] < data['trans 6 month']) |</pre>
    (data['trans_9_month'] < data['trans_3_month']) |</pre>
    (data['trans_12_month'] < data['trans_9_month']) |</pre>
     (data['trans_12_month'] < data['trans_6_month']) |</pre>
    (data['trans_12_month'] < data['trans_3_month'])</pre>
```


DATASET FINAL

	ID	Age	Ind_Household	Lifetime	Income	Ind_deposit	Ind_salary	trans_6_month	trans_9_month	trans_12_month		District_50	District_51	District_52	District_53	District_54	District_55	District_U	Seg
0	1200000001	-0.219	0	-0.770	0.486	0	0	-0.335	-1.221	-0.491		0	0	0	0	0	0	0	
1	1200000002	-0.533	0	-0.986	0.118	0	0	-0.238	-1.162	0.126		0	0	0	0	0	0	0	
2	1200000003	-0.690	0	-0.122	-0.065	0	0	0.505	0.117	0.875		0	0	0	0	0	0	0	
3	1200000004	1.900	0	1.176	0.302	1	0	-0.330	-0.792	-0.844		0	0	0	0	0	0	0	
4	1200000005	0.252	0	0.311	0.302	1	0	1.305	1.365	2.120	***	0	0	0	0	0	0	0	
985472	1201048571	-0.000	0	-0.122	-1.536	1	0	1.260	0.987	1.020		0	0	0	0	0	0	0	
985473	1201048572	0.723	0	0.527	0.118	0	0	-1.881	-0.808	-1.448		0	0	0	0	0	0	0	
985474	1201048573	1.115	0	-0.770	1.037	1	0	0.043	0.495	1.022	***	0	1	0	0	0	0	0	
985475	1201048574	-0.690	0	-1.203	0.670	1	0	0.465	0.852	0.175		0	0	0	0	0	0	0	
985476	1201048575	1.351	1	0.311	-1.720	1	0	1.262	1.629	2.014		0	0	0	0	0	0	0	

MODEL CHOICE

K-means

0

ELBOW METHOD

CLUSTERIZATION

Model building

×

MODEL CHOICE

Logreg

Simple linear model based on mathematical regression

Random Forest

Ensemble of several Decision Trees that vote for class

Gradient Boosting

Builds on what was learned before, correcting mistakes from past to get better and better

Results

Mod	el	LogReg	Random Forest	Gradient Boosting		
Email	ROC-AUC	0,5	0,85	0,84		
Response	MSE	0,25	0,08	0,09		
	F1-Score	0	0,81	0,78		
Phone	ROC-AUC	0,5	0,62	0,83		
Response	MSE	0,08	0,06	0,0362		
	F1-Score	0	0,36	0,7607		

Logistic Regression - Email Response Mean ROC AUC: 0.4999787951871443
Logistic Regression - Phone Response ROC AUC Scores: [0.49711913 0.5014785 0.49883814 0.50031121 0.49530158]
Logistic Regression - Phone Response Mean ROC AUC: 0.49860971325246767

Random Forest - Email Response ROC AUC Scores: [0.97022611 0.96982712 0.96837659 0.96753044 0.96817315]
Random Forest - Email Response Mean ROC AUC: 0.968826680081574
Random Forest - Phone Response ROC AUC Scores: [0.93573472 0.93935581 0.94008771 0.93808432 0.9362528]
Random Forest - Phone Response Mean ROC AUC: 0.9379030723363329

Gradient Boosting - Email Response ROC AUC Scores: [0.93127361 0.93174453 0.93143939 0.93079123 0.93175575]
Gradient Boosting - Email Response Mean ROC AUC: 0.93740809200846065
Gradient Boosting - Phone Response ROC AUC Scores: [0.96660991 0.9710062 0.96966098 0.97032798 0.96893355]
Gradient Boosting - Phone Response ROC AUC: 0.9697237227120207

Logistic Regression - Email Response ROC AUC Scores: [0.49967766 0.49858098 0.50054241 0.5009195 0.5001732]

FINAL PRODUCT

(\$)

E-mail cost: 1\$

Phone cost: 10\$

