Summary

In my solution, I use well-known U-Net (https://arxiv.org/abs/1505.04597) like encoder-decoder Neural Network architecture for semantic segmentation.

I have used ensemble of four models trained with three input resolutions:

- **•** 768 * 768
- **1**024 * 1024
- **1472 * 1472.**

Three pretrained CNN encoders (from timm: https://github.com/rwightman/pytorch-image-models):

- efficientnet_b7
- convnext_large
- tf efficientnetv2 I

And one transformer encoder:

coat lite medium

Main contributions:

- External data
- Pseudo labeling
- Heavy augmentation
- Color transferring on training data
- Data sampling
- Predicting pixel_size and organ for generalization

• Data Preparation

External data helped models to be ready for new unseen datasets. I have downloaded some HPA data (with this notebook https://www.kaggle.com/code/carnozhao/hpa-data-download) and picked some images manually from sources posted here and previous Hubmap and Panda competitions.

Training images recolored with Staintools (using this great notebook https://www.kaggle.com/code/gray98/stain-normalization-color-transfer) with 3 different target images and used with 15% chance instead of original during training.

As targets used available test image, and found examples of PAS and H&E stains:

Example of transferred image from training data:

Original image:

(Probably a good idea to use this tool as additional Test-Time Augmentation (TTA). However, I have not tried it during the contest.)

All external data pseudo-labeled using ensemble of initial models.

In addition, training data was pseudo-labeled and used as ground truth for training with 30% chance.

Training Method(s)

Training data separated to 5 folds. Stratified by sex/age and organ evenly.

Models with different encoders trained on three input resolutions: 768 * 768, 1024 * 1024, 1472 * 1472 with 5 folds. Largest input resolution give best score.

Models also trained to predict organ and pixel_size. I think these aux outputs help to train more robust model. pixel_size calculated for resized input resolution and changed during training augmentations.

Heavy augmentations used:

- random cropping/padding
- scaling
- rotating
- flipping
- color changing
- blur/noise
- saturation/brightness/contrast
- elastic

Training parameters:

- Loss: combined loss function which consists of Dice and Focal loss (https://arxiv.org/abs/1708.02002) for segmentation, BCE for organ classification, MSE for pixel size: dice focal + 0.1 * bce + 0.1 * mse
- Optimizer: Adan (https://arxiv.org/abs/2208.06677)
- Ir: 0.0001 with ReduceLROnPlateau scheduler
- half-precision (float16) used to reduce GPU memory
- batch size: 3-8 (depends on encoder and resolution)

Test-time augmentations used on validation (flip, crop, padding) + external data also separated on folds and used as validation to get best checkpoints.

4 TTA used on test prediction: flip * 2 rotations to 90 degrees.

Thresholds tweaked using public LB. For lung it is very low, only 0.06.

Simple Features and Methods

Coat performed the best as single model, but ensemble with CNNs scored more. 768 or 1024 resolution enough. So, if fast inference required, better to train a single Coat model on lower resolution and predict without TTA.

Model Execution

Hardware:

System with 2 x NVIDIA RTX A6000 (48 GB). Large GPU memory required for high-resolution models.

Software:

Ubuntu 22.04 LTS
Python 3.9 (Anaconda installation)

CUDA 11.6

torch and other libs from requirements.txt

Training time:

 \sim 1 week for all models total using one a system with 2 x NVIDIA RTX A6000 (48 GB)

Test prediction time:

~7-8 hours for final submission

References

- Timm models: https://github.com/rwightman/pytorch-image-models
- Adan: https://arxiv.org/abs/2208.06677
- U-Net: https://arxiv.org/abs/1505.04597
- Focal loss: https://arxiv.org/abs/1708.02002
- Color transferring notebook: https://www.kaggle.com/code/gray98/stain-normalization-color-transfer
- Download HPA data: https://www.kaggle.com/code/carnozhao/hpa-data-download
- For external data: https://pathdb.cancerimagingarchive.net/imagesearch
- Prostate cANcer graDe Assessment (PANDA) Challenge:
 https://www.kaggle.com/competitions/prostate-cancer-grade-assessment
- HuBMAP Hacking the Kidney: https://www.kaggle.com/competitions/hubmap-kidney-segmentation