Messprotohold Hack-Effelt

Michael Goers, Anton Raca

Tubr. W. lenz

20.09.2005

Beginn 1500

Ende

Materialian u. Servite:

u-dotinte Germanium-Platine 84/11-18

Steneston mar 50 m A

Temp. marc. 150° C ~ 5 ml Themos pounding

Diele der horistalle: 1 un + 3%

Hotalleplationan (Cu, 2u)

Stevendran max. 20A (max 1. min)

Diche der Cu - Folie: 18 pm + 10%

Diche der Zu - Folie: 20 junt 10%

Evergung des hagnettelds (hagnet 1)

halibriemngshurve:

0,304 (45±5) mT

1,69 A 1 (230 ± 5) mT

Digital multimeter

Fluke 80221 0,5% vom ressued + 1 Digit (WI-)

Volteraft M80 " (U-)

1% + 7 (Daight (It)

7% 1 + 3 Digit (1-1204)

Wall-Mikrovolkneter (leNick) Gite blasse 2

Autogabe 1

Massung von Magnetfeldstrom mit UC noo

Hallspanning mit HP

Massung on horse thurbreduning ofene magnifield

Steneystrom (m. A)	Hallspanning	Hallspanning	
5,6 ± 0,2 10,2 15,1 20,2 25,2 30,1 45,2 45,2 50,2	-6,4970 16,5360 (instable) -11,9900 -18,0337 -24,4760 -36,635 -42,796 ± 0,050 -18,950 -55,105 -61,593	-6,4970 16,5360 -11,9900 -18,0337 -24,4760 -36,635 -42,796 ± 0,050 -48,950 -55,105	(Q)
	Felibraus Sharmhung	Feliler aus Schwenhung	

omsgeschaltet: 0,4 mA Stenenstron -0,0053 mV Hallsporming

Shizze des Versuchsonfban (Orientierung der Auschlüße)

magnetfieldstran (=A)	Hallspanning (uV)
0, 1995 ± 0,0002 0, 3150 0, 3150 0, 503 0, 600 0, 102 0, 801 0, 902 1, 100 1, 100 1, 100 1, 600 1, 600 1, 600 1, 600	

Magnetfeld const = 1,801 A

Sternstram (mA)	Hallspu	mana (mu)
5, 8	+ 2,9724	\$ 0,050
10,1	+ 5,2932	
14,9	+ 7,9028	
11.7	+ 9,3679	
20,5	+ 10, 9381	
23,7	+12,6951	
55,8	+15,8016	
28,0	+14,9763	
30,8	+ 16, 4278	
33, 7	+ 17,9152	
35,3	+ 18, 7460	
32,6	+ 19, 9205	
40,8	+ 21,5827	
42,9	+ 21,6387	
45,1	+ 23, 5393	
47, 4	+ 24, 6280	
59,8	+ 26,3507	

Antojabe 2

Erzengung der Tempentuspennung mit NEVA Universal-

Messung mit VC MKD-4660 A

Rauntemperatur (23,0±0,5)°C

Stevenstrom courst = 49,9 m A 150,4 m A

Magnettald count = 1,805 A 11,867 A

Temperaturboeffizient 40 mV/k

Temporatur spanning (m)	Hall spanning (mV)
4 9 \$ \$ 0,02 4 9 \$ 4 4 8 \$ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-13,1390 ± 0,050 -12,990 -13,2947 -14,099 -14,660 -14,660 -15,481 -15,142 -17,837 +10,596 +17,596 +17,556
5,00 ± 0,02 4,90 4,90 4,80 4,70 4,60 4,70 4,30 4,20 4,20 4,00	-12, 672 -13, 075 -13, 630 -13, 630 -14, 642 -14, 645 -14, 645 -15, 109 -15, 331 -15, 501

Antogabe 3 20 jum	?! Sauce sure Materiallisk am Artonig
1 2 d= 25 m	Probe A
a) thessung alme tragme	the malinesse verten
U2 - Stevenstram (mV)	Hallspanning (mV)
24,8 mV 49,9 mV 75,1 mV	-0,0054 -0,0054
· · · · · · · · · · · · · · · · · · ·	-0,0000mV
b) Stevenstrom verrière, on	agnetfeld const = (1,804 ± 0,002)
4 ~ Generation (ml)	Hallspanning (mu)
184 246 50,9 74,9	-0,0096 ± 0,0005 -0,0086 -0,0072 -0,0045 +0,0005
	Magnetfeld an Ende: 1, 811 XA
18 Cu da 18 mm	Probe A
a) hosing due hagnett	eld
U- Stenerstrom (mV)	Hall-spanning (uV)
243 49,5 75,3	-0,0018 -0,0057 -0,0108
the state of the s	

1) R=(5,21 ± 005) ms2 mess

b) Stementron vaniere, magnetfeld const= 1,803 XA

4~ Stenarstrom	(mv)	Mallspunna (mV)
18,4 25,0 50,9 25,4 99,1		-0,0057 ±0,0005 -0,0082 -0,0083 -0,0083

c) Temperaturkoethizient 40,00/4
hagnetfeld comst= 1,604 J/A

Stemerstrom cough > 51,9 mV

Temperaturspanning	Hallspanning (uV)
5 mV 4 mV	-0,0919 ± 0,0010

he