

SEQUENCE LISTING

<110> PEPPELENBOSCH, Maikel Petrus ZIVKOVIC, Danica DIKS, Sander BINK, Robert Jozef <120> Asb transcription repressor proteins and nucleic acids and their application in expansion of stem cells <130> 28902.00016 <140> (to be assigned) <141> 2005-05-25 <150> PCT/NL2003/000831 <151> 2003-11-25 <150> NL 02079903.74 <151> 2002-11-25 <160> 4 <170> PatentIn version 3.1 <210> 1 <211> 293 <212> PRT <213> Danio rerio <400> 1 Met Ala Val Val His Ala Glu Gly Asn Val Trp Ile Lys Gln Trp Asp His Arg Phe His Met Tyr Gly Gly Gln Thr Cys Ser Pro Leu Met Ala 20 25 Gly Ser Trp Asp Asp Arg Thr Pro Leu His Asp Ala Ala Leu Gln Gly 35 40 Arg Leu Leu Pro Leu Arg Arg Leu Leu Ser Gln Gly Tyr Asn Val Gly 50 55 60 Met Ala Thr Leu Asp Gly Ile Thr Ala Leu His Glu Ala Cys Val Gly 65 70 Gly His Phe Thr Cys Ala Lys Leu Leu Glu His Gly Ala Asp Ala

Asn Ala Val Thr Phe Asp Gly Ala Thr Pro Leu Phe Ser Ala Cys Cys
100 105 110

Ser Gly Asn Pro Ala Leu Val Ser Leu Ile Leu Thr His Ser Ser Ala 115 120 125

His His Pro Ala His Leu Leu Cys Ser Pro Leu His Glu Ala Ala Lys 130 135 140

Arg Gly His Thr Ala Cys Val Glu Leu Leu Leu Ser His Gly Val Asn 145 150 155 160

Val Asp Met Glu Leu Pro Ser Val Gly Thr Ala Leu Tyr Cys Ala Cys 165 170 175

Glu Val Lys Ser Thr Asp Cys Val Leu Thr Leu Leu Ile Leu Gly Ala 180 185 190

Asp Val Gln Cys Gly Arg Gly Leu Asp Thr Pro Leu His Ala Ala Cys 195 200 205

Arg Val Gly Gly Ala Lys Glu Ala Glu Leu Leu Glu His Gly Ala 210 225

Asp Arg Thr Ser Arg Asn Ser Glu Gly Lys Thr Pro Leu Asp Leu Thr 225 230 235 240

Ser Asp Gln Ser Ile Lys His Leu Leu Gln Thr Ala Gly Thr Cys Ser 245 250 255

Leu Ser Gln Leu Cys Arg Trp Cys Ile Arg Arg Ser Leu Gly Gln Lys 260 265 270

Gly Leu Asn Lys Thr Lys Thr Leu Cys Leu Pro His Met Leu His Asn 275 280 285

Tyr Leu Leu Tyr His 290

<210> 2

<211> 879

<212> DNA

<213> Danio rerio

	*					
<400> 2 atggccgtgg	ttcatgctga	agggaatgtc	tggattaagc	aatgggatca	caggtttcac	60
atgtatggag	gacaaacatg	tagtccacta	atggcaggct	cctgggacga	cagaacacct	120
ttacacgatg	ctgctttgca	aggaagactg	cttccactga	gaagactcct	ctcacagggc	180
tacaatgttg	gaatggcgac	tttagatgga	atcacagcac	tgcatgaagc	ttgtgttgga	240
ggacatttca	cctgtgctaa	acttctcctg	gaacatggtg	cagatgcaaa	tgcagtgact	300
tttgatggag	ccactcctct	gttcagtgcc	tgctgcagtg	gaaaccccgc	ccttgtcagc	360
ctcattttga	cacacagctc	cgcccaccat	ccagctcacc	tgctctgctc	acctctgcat	420
gaagctgcaa	agagaggtca	cacggcctgt	gttgaactgc	tgttgtctca	tggtgtgaac	480
gtggacatgg	agctgcccag	tgttggaaca	gcgctgtact	gtgcatgtga	agtcaagagc	540
acagactgtg	tactgaccct	gctgatctta	ggtgctgatg	tacaatgtgg	gcgtggcctt	600
gacacacctt	tacatgctgc	atgcagagtt	ggtggagcaa	aagaggcgga	gctactatta	660
gaacacgggg	ctgatcgtac	atctagaaac	tctgagggaa	agacacctct	ggatctgacc	720
tcagatcaga	gcatcaaaca	cctcttgcag	actgcaggta	cctgctctct	gtctcagcta	780
tgcagatggt	gcattcgacg	ctcactggga	caaaaaggac	tcaacaaaac	caagaccctt	840
tgcttaccac	atatgctgca	caattatctt	ctctatcat			879

<210> 3

<211> 329

<212> PRT

<213> Homo sapiens

<400> 3

Met Ser Val Leu Glu Glu Asn Arg Pro Phe Ala Gln Gln Leu Ser Asn 1 5 10 15

Val Tyr Phe Thr Ile Leu Ser Leu Phe Cys Phe Lys Leu Phe Val Lys 20 25 30

Ile Ser Leu Ala Ile Leu Ser His Phe Tyr Ile Val Lys Gly Asn Arg 35 40 45

Lys Glu Ala Ala Arg Ile Ala Ala Glu Phe Tyr Gly Val Thr Gln Gly 50 55 60

Gln Gly Ser Trp Ala Asp Arg Ser Pro Leu His Glu Ala Ala Ser Gln 65 70 75 80

Gly Arg	Leu	Leu	Ala 85	Leu	Arg	Thr	Leu	Leu 90	Ser	Gln	Gly	Tyr	Asn 95	Val
Asn Ala	Val	Thr 100	Leu	Asp	His	Val	Thr 105	Pro	Leu	His	Glu	Ala 110	Cys	Leu
Gly Asp	His 115	Val	Ala	Cys	Ala	Arg 120	Thr	Leu	Leu	Glu	Ala 125	Gly	Ala	Asn
Val Asn 130		Ile	Thr	Ile	Asp 135	Gly	Val	Thr	Pro	Leu 140	Phe	Asn	Ala	Cys
Ser Gln 145	Gly	Ser	Pro	Ser 150	Cys	Ala	Glu	Leu	Leu 155	Leu	Glu	Tyr	Gly	Ala 160
Lys Ala	Gln	Leu	Glu 165	Ser	Cys	Leu	Pro	Ser 170	Pro	Thr	His	Glu	Ala 175	Ala
Ser Lys	Gly	His 180	His	Glu	Cys	Leu	Asp 185	Ile	Leu	Ile	Ser	Trp 190	Gly	Ile
Asp Val	Asp 195	Gln	Glu	Ile	Pro	His 200	Leu	Gly	Thr	Pro	Leu 205	Tyr	Val	Ala
Cys Met 210	Ser	Gln	Gln	Phe	His 215	Cys	Ile	Trp	Lys	Leu 220	Leu	Tyr	Ala	Gly
Ala Asp 225	Val	Gln	Lys	Gly 230	Lys	Tyr	Trp	Asp	Thr 235	Pro	Leu	His	Ala	Ala 240
Ala Gln	Gln	Ser	Ser 245	Thr	Glu	Ile	Val	Asn 250	Leu	Leu	Leu	Glu	Phe 255	Gly
Ala Asp	Ile	Asn 260	Ala	Lys	Asn	Thr	Glu 265	Leu	Leu	Arg	Pro	Ile 270	Asp	Val
Ala Thr	Ser 275	Ser	Ser	Met	Val	Glu 280	Arg	Ile	Leu	Leu	Gln 285	His	Glu	Ala

Thr Pro Ser Ser Leu Tyr Gln Leu Cys Arg Leu Cys Ile Arg Ser Tyr 290 295 300

Leu Leu Lys Asn Phe Leu Gln Tyr Arg 325

<210> 4

<211> 990

<212> DNA

<213> Homo sapiens

<400> 4

<400> 4						
atgtcggtgt	tagaagaaaa	tcggccgttt	gctcaacaat	tatccaatgt	ctactttaca	60
atactttcgc	tgttctgttt	taagcttttt	gtgaaaatca	gccttgccat	cctcagtcat	120
ttctacatag	tgaaaggcaa	ccgcaaggaa	gcggcaagga	tagcagctga	attttatgga	180
gtaacccaag	gacaaggttc	ctgggcagat	cgatcaccac	tacatgaagc	agcaagtcaa	240
ggtcgccttc	ttgctctgag	aacattatta	tcacagggtt	ataatgtaaa	tgcagtaacc	300
ttagaccatg	tcaccccatt	gcacgaagcc	tgccttggag	atcacgtggc	atgtgccaga	360
actctgctgg	aagcaggagc	taatgtaaat	gcaatcacga	tagatggcgt	gactccgtta	420
ttcaacgcat	gctcccaagg	cagtccaagc	tgtgcagagc	tgcttctgga	gtatggtgcc	480
aaagcccagc	tggagtcatg	tcttccatcc	ccaacgcatg	aggccgccag	taaaggtcac	540
catgaatgtc	ttgacatcct	gatatcctgg	ggcatagatg	ttgaccaaga	aattcctcat	600
ttgggaactc	ctctctatgt	agcttgtatg	tcacagcaat	tccattgcat	ctggaagctt	660
ctttatgctg	gtgctgacgt	acagaaaggc	aaatattggg	atactccatt	acatgctgct	720
gctcaacaat	ccagcacaga	aattgtaaac	ttactgctag	aatttggagc	agatatcaat	780
gccaaaaata	cagagcttct	gcgacctata	gatgtagcta	cgtctagcag	tatggtggaa	840
agaatattgc	ttcaacatga	agctacccca	agctctcttt	accaactttg	ccgactctgt	900
atccgaagct	acataggaaa	accaagattg	caccttatcc	cacaactcca	gctgccaacg	960
ttactgaaga	atttcttaca	gtatcgataa				990