

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 470: Introduction to Robotics Lecture 26

Liangjing Yang

Assistant Professor, ZJU-UIUC Institute

liangjingyang@intl.zju.edu.cn

Our Learning Roadmap

Schedule Check on our Learning Roadmap

- O. Overview
 - Science & Engineering in Robotics
- I. Spatial Representation & Transformation
 - Coordinate Systems; Pose Representations; Homogeneous Transformations
- II. Kinematics
 - Multi-body frame assignment; D-H Convention; Joint-space; Work-space; Forward/Inverse Kinematics
- III. Velocity Kinematics and Static Forces
 - Translational/Rotational Velocity; Joint torque; Generalized Force Coordinates; Jacobian; Singularity
- IV. Dynamics
 - Acceleration of Body; Newton-Euler Equations of Motion; Lagrangian Formulation
- V. Control
 - Closed-Loop Control and Feedback, Control of 2nd order system, Independent Joint Control, Force Control
- VI. Planning
 - Joint-Based Scheme; Cartesian-Based Scheme; Collision Free Path Planning
- VII. Robot Vision (Perception)

• Image Formation; Image Processing; Visual Tracking & Pose Estimation; Vision-based Control & Image-guided robotics

Reading Wk/ Exam on Week 15-16

Fundamentals

Week 1-4

Revision/ Quiz on Week 5

Revision/ Quiz on Week 10

Essentials

Week 6-9

VVEEK U-

Applied

Week 11-14

Last week: Image Processing

Completed Image Processing

- ✓ Thresholding & Histogram Processing
- ✓ Filtering
- ✓ Edge & Corner Detection
- ✓ Interest Points/ Feature Description
- ✓ Lines & Shapes

Image Processing Quick Recap

Detection of Line and Shape

- After detecting the edges and local interest points, how do we detect lines and other geometries?
 - >A problem of pattern recognition

Video Data

Acquiring

Surgical Scene

Detection of Line and Shape

After detecting the edges and local interest points, how do we detect lines and other geometries?

Circle Detection

>A problem of pattern recognition

Processing Extraction

Grayscale Image Patch

Extracted Features

Binary Image

Line Detection +Template Matching

+ Template Matching

Initial Position

R_{cell}

Tracked Position

Circle Detection

Circle detection

Huang, J., Li, X., Kesavadas, T. and Yang, L., 2019, July. Feature Extraction of Video Data for Automatic Visual Tool Tracking in Robot Assisted Surgery. In *Proceedings of the 2019 4th International Conference on Robotics, Control and Automation* (pp. 121-127).

Hough Transform

- Elegant method for direct object recognition
- Edges need not be connected
- Key concept: Hough space
- Key idea: "vote" for the possible model

- For a line with equation /: y=mx+c
- How to map onto the Hough Space (A.K.A parameter space)?
 - $\rho = x \cos \theta + y \sin \theta$
- Line equation: $\rho = x \cos \theta + y \sin \theta$
 - Parameters: ho and heta
 - Where $0 \le \theta \le 2\pi$

For a point $i(x_i, y_i)$, in Hough space there could be infinite set of (ρ, θ) defined by S_i :

$$\rho = x_i \cos \theta + y_i \sin \theta$$
$$y_i = \frac{\rho}{\sin \theta} - \frac{x_i}{\tan \theta}$$

For *N* points (x, y), there will be $S_1 \dots S_i \dots S_N$ sinusoidal curves in the Hough space associated with the points:

$$S_1 \qquad \rho = x_1 \cos \theta + y_1 \sin \theta$$

$$\vdots$$

$$S_N \qquad \rho = x_N \cos \theta + y_N \sin \theta$$

However, if the points lies on a line, there exist a common set of (ρ, θ) representing this line.

i.e.

If there exist a line that joins the points, $S_1 \dots S_i \dots S_N$ intersect at a point (ρ, θ) in the Hough space

- $\rho = x \cos \theta + y \sin \theta$
- Points in picture → sinusoids in parameter space
- Points in parameter space → lines in picture

• There will be a unique intersection point if the points in the picture form a

straight line

But how to choose the solution if there are noise?

In practice, is it likely for all points to lie perfectly on a line i.e. all sinuosoidal curves intersect perfectly on a line.

Quantizing parameter space and Voting

- Discretize the (ρ, θ) space
 - For each point (x_i, y_i) , compute only for a finite set of angles $\theta = \theta_1, \theta_2, ..., \theta_N$
 - For each θ_i , obtain $\rho_{ij} = x_i \cos \theta_i + y_i \sin \theta_i$
- Create a matrix, called the accumulator matrix
 - Each column corresponds to angles $\theta = \theta_1, \theta_2, ..., \theta_N$
 - Each row corresponds to the "bins" (intervals) of the resulting distance ho
- Voting:
 - For each point in the image and for each θ_j , compute the ρ_{ij} , and increment the corresponding element of the accumulator matrix
 - Highest value means highest "vote"

Quantizing parameter space and Voting

- Voting (continue)
 - If more than one line, you can set a threshold value (number of vote) to obtain more lines
 - For example, if number of votes (ie value in that element) is more than the threshold value, then consider that (ρ, θ) to be a line

Detection of other shapes

- Hough Transform can be generalized to find other shapes like circles and ellipses.
- However, the computational complexity increases
 - More computational time is required

Hough circle transform

Equation of circle:

$$(x-a)^2 + (y-b)^2 = R^2$$

- (a, b) is the center of the circle
- R is the radius of the circle
- Parameters: a, b, R
- Rewriting the equation:

$$(a-x)^2 + (b-y)^2 = R^2$$

- In our context: localizing a target in the image over time (throughout frames)
- Possible approaches:
 - Locate objects in individual frames independently (E.g. template match)
 - Estimate motion of objects/ change in image over time

- Template Matching
 - Compare patches (on image) against template (of target)

- Template Matching
 - Compare patches (on image) against template (of target)
- How?
 - Recall what was learned in feature descriptor with neighbourhood block

- Template Matching
 - Compare patches (on image) against template (of target)
- Target tracked based on similarity
- How do we measure similarity?
 - Compute differences?
 - Compute correlation?

Discussed previously in *feature description* using neighborhood block

Sum of Square Differences

$$SSD(u,v) = \sum_{p}^{P} \sum_{q}^{Q} [g(p,q) - f(p+u,q+v)]^{2}$$

sum of square differences between a $p \times q$ template g and the neighbourhood of patch f centred at (u,v)

Cross-Correlation

$$W_{cc}(u,v) = \sum_{p=0}^{P} \sum_{q=0}^{Q} g(p,q) f(p+u,q+v)$$

cross correlation between a $p \times q$ template g and the neighbourhood of patch f centred at (u,v)

Normalized Cross-Correlation

$$w_{ncc}(u,v) = \frac{\sum_{p=0}^{P} \sum_{q=0}^{Q} (g(p,q) - \overline{g}) (f(p+u,q+v) - \overline{f}(u,v))}{\left[\left(\sum_{p=0}^{P} \sum_{q=0}^{Q} (g(p,q) - \overline{g})^{2} \right) \left(\sum_{p=0}^{P} \sum_{q=0}^{Q} (f(p+u,q+v) - \overline{f}(u,v))^{2} \right) \right]^{0.5}}$$

normalize using local mean and variance

- Depending on image size can be done in frequency domain
- Conventional similarity measurement alone is usually insufficient
 - Need to be scale- and rotation-invariant in many robot applications
 - Commonly work with image pyramid or coarse-to-fine strategies

Vision-based Control of Micromanipulator under Microscope

L. Yang, K. Youcef-Toumi, U. Tan, "Towards Automatic Robot-Assisted Microscopy: An Uncalibrated Approach for Robotic Vision-Guided Micromanipulation," in Intelligent Robots and System, IROS 2016, Daejeon, Korea, 2016. 47

<u>L. Yang</u>, I. Paranawithana, K. Youcef-Toumi, U. Tan, "Self-initialization and recovery for uninterrupted tracking in vision-guided micromanipulation," in Intelligent Robots and System, IROS 2017, Vancouver, Canada, 2017

48

Example: Image registration in AR application

Engineering, 2014, 61(4): 1295-1304

Video Stream **Pyramid** Building

Junchen Wang, Hideyuki Suenaga, Kazuto Hoshi, Liangjing Yang, Etsuko Kobayashi, Ichiro Sakuma, Hongen Liao. Augmented Reality Navigation With Automatic Marker-Free Image Registration Using 3-D Image Overlay for Dental Surgery. IEEE Transactions on Biomedical

- Relating different viewpoints of on a common scene
- Image registration and geometric transformation
- How?
 - Recall the techniques learn so far: detect, describe, match...
 - Then, solve for <u>transformation</u> (homography) based on a specific model: translation, rigid, similarity, affine, projective

- Homography
 - Relationship (i.e. transformation; mapping) between two (planar) images
- Geometric image transformation

 Geometric image transformation: Types, Representations, DOF, Attributes

Name	Matrix	# D.O.F.	Preserves:
translation	$\left[egin{array}{c c} I & t\end{array} ight]_{2 imes 3}$	2	orientation $+\cdots$
rigid (Euclidean)	$\left[egin{array}{c c} R & t\end{array} ight]_{2 imes 3}$	3	lengths + · · ·
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{2\times 3}$	4	angles + · · ·
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism + · · ·
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines

Image Mapping: Application Examples

Constructing a map for the environment

Visualization and Navigation

Camera Model

ECE 470 Introduction to Robotics

Recall: Camera Model

- Central Projection Camera Model
 - A simplified model for camera geometry

Camera Model

$$x = f_x \; \frac{X}{Z}$$

$$y = f_y \frac{Y}{Z}$$

Corke, Peter. Robotics, vision and control: fundamental algorithms in MATLAB.

Matrix Representation: Intrinsic Matrix

- Intrinsic Matrix, [K]
 - focal length: $(f_{\chi}, f_{\nu})^{T}$
 - principal point: $(i_C, j_C)^T$
 - skew coefficient: a

$$K = \begin{bmatrix} f_x & a & i_c \\ 0 & f_y & j_c \\ 0 & 0 & 1 \end{bmatrix}$$

What about a moving camera?

Matrix Representation: Extrinsic Matrix

- Extrinsic Matrix, c[R|t]
 - R: Orientation of world reference frame w.r.t. camera coord.
 - t: Position offset of world reference frame w.r.t. camera coord.

Camera Matrix

- Camera Matrix, M
 - Relates world with image coord. System
 - 2 Components:
 - Extrinsic Matrix
 - Intrinsic Matrix

Camera Matrix, M

For a given set of points

 $^{W}\tilde{X}$ in 3D,

the projected set of points can be expressed as

$$s\tilde{u} = M^W \tilde{X}$$
. where $M = K^C [R \mid t]_W$, $K = \text{intrinsic matrix}$ $[R \mid t] = \text{extrinsic matrix}$

