

2025 Dar-jen Chang

1. L-system Wikipedia

https://en.wikipedia.org/wiki/L-system

2. LSystemA_NET Windows application

History

An L-system or Lindenmayer system is a formal grammar most famously used to model the growth processes of plant development. It is also able to model the morphology of a variety of organisms. L-systems were introduced and developed in 1968 by the Swedish theoretical biologist and botanist from the University of Utrecht, Aristid Lindenmayer (1925-1989).

As a language generation system

An L-system or Lindenmayer system is a parallel rewriting system and a type of formal grammar. An L-system consists of an alphabet of symbols that can be used to make strings, a collection of production rules that expand each symbol into some larger string of symbols, an initial "axiom" string from which to begin construction.

von Koch snowflake

An L-system to generate the language of von Koch snowflake curves:

The axiom (or start string): F

Production: $F \rightarrow F-F++F-F$

Then the von Koch snowflake strings are generated via parallel substitution of F by the right-hand side of the production iteratively.

von Koch snowflakes

The von Koch snowflakes generation

$$\sum = \{+, -, F\},$$

$$L = \{\underline{F}, \underline{F-F++F-F}, \underline{F-F++F-F} - \underline{F-F++F-F} + \underline{F-F++F-F} - \underline{F-F++F-F}, \ldots\}$$

(Observe the self similarity in the strings.)

The von Koch snowflakes can be generated by an L system.

LSystemA_NET A C++ MFC project for L-system 2D Fractals Generation

■ LSystem - snowflake.MOD	- 🗆 X
File Edit View Window Help	
₩ snowflake.MOD	
L System Model Data	
- Model Parameters	
Axiom F	
Production 1 F F-F++F-F	
Production 2	
Production 3	
Production 4	
Production 5	
Drawing Parameters	
Initial turtle angle: 0 Turn angle: 45	
Scale factor: 8 Number of iterations: 4	
OK Cancel Clear	
	٦
Don't	NUINA

L-system example

Lindenmayer's original L-system for modelling the growth of algae.

variables: A B

axiom: A

rules : $(A \rightarrow AB)$, $(B \rightarrow A)$

which produces:

n = o : A

n = 1 : AB

n = 2 : ABA

n = 3 : ABAAB

n = 4 : ABAABABA

L-system example

Cantor set

variables: A B

axiom: A

rules : $(A \rightarrow ABA), (B \rightarrow BBB)$

(Let A mean "draw forward" and B mean "move forward".)

This produces the famous Cantor's fractal set on a real straight line.