

## Muon Alignment Progress

Jim Pivarski, Alexei Safonov

Texas A&M University

24 January, 2008





- ▶ The last time I presented was in November I had optimized existing code for 10  $pb^{-1}$  alignment
- ▶ Since then, I have scaled up to 100 pb<sup>-1</sup> and see only marginal improvement in alignment quality (not  $\sqrt{10}$ )
- $\triangleright$  Re-tuning parameters for 100 pb<sup>-1</sup> helps
- ▶ So do new tools: track filter and alignment-specific refitter, but these are still experimental
- Currently parallelizing the baseline procedure so that I can study improvements in a controlled and timely fashion





#### Reminder of the method

- First pass: align whole wheels and disks with loose muon hit weights in track refits (Alignment Parameter Error or APE = 2 cm
- Second pass: align chambers in inner stations with large APEs
- ▶ Third pass: set inner station APEs = 0, align chambers in next station
- Et cetera...
- ► Eighth pass: re-align all chambers with small APEs
- Ninth pass: re-align chambers in all but first stations with small APEs



## Scaling up to $100 \text{ pb}^{-1}$

- ► CPU-intensive: 9 alignment passes × 5 iterations each = 45 iterations
- Developed "the easy way" as a single CPU process
- ▶ 100 pb<sup>-1</sup> took 8 days to process (fortunately, this could run over the winter break)
- Parallelizing to 50 CPUs (= 4 hours) is possible,
  but takes some work to get right (see end of this talk)



#### Side-by-side comparison (alignment position error)

"Chamber x position RMS" is  $\sqrt{(x_{\text{true}} - x_{\text{aligned}})^2}$ , includes offsets (these are with no tracker misalignment, but the story is the same)

#### $10 \text{ pb}^{-1}$ alignment



#### $100 \text{ pb}^{-1}$ alignment

Jim Pivarski





## Overlaid comparison (alignment position error)



ightharpoonup Wheel/disk alignment hasn't converged! 5 ightharpoonup 15 iterations



## Why doesn't it scale with statistics? (1)

- Clearly some source of systematic error is drowning out dependence on statistics
- ightharpoonup Strong dependence on APE! Below, APE =  $\infty$  after wheel/disk (dashed line)

 $10 \text{ pb}^{-1}$  alignment Chamber x position RMS (mm)

#### $100 \text{ pb}^{-1}$ alignment







## Why doesn't it scale with statistics? (2)

- ▶ APE =  $\infty$  case improves 100 pb<sup>-1</sup> alignment and worsens 10 pb<sup>-1</sup> alignment: scaling is  $\sqrt{5}$
- ▶ (APEs had been optimized for 10 pb<sup>-1</sup>...)

Diagnosis and improvements



## $100 \text{ pb}^{-1}$ alignment





#### Something else that helps: cut on tracks



- Keep tracks whose last-station residual is within a  $\pm 3\sigma$  window when propagated with APE =  $\infty$
- Tests consistency of real muon (hit) with ideal propagation (no scattering)







#### Considerations for the track-cut

- $\blacktriangleright$  Windows are defined by APE =  $\infty$  propagations, cut must only be applied to APE  $= \infty$  propagations
- ▶ In most passes, tracks must be propagated twice:
  - 1. once to determine applicability of the cut
  - 2. again in track-fit with APE = 0 on already-aligned chambers
- Windows must be redefined every time last stations are moved
- ▶ Mean and stdev are written to a readable-text configuration file for safety





## Diagnosis via improvements

- Finite APEs reduce statistical errors, but exacerbate systematic effect
- ightharpoonup Ratio of improvements from track cut in APE  $=\infty$  test

| MB1   | 1.5 | MB2   | 2.7 | MB3 | 1.1 |
|-------|-----|-------|-----|-----|-----|
| ME1/1 | 1.1 | ME1/2 | 2.4 |     |     |
| ME2/1 | 1.2 | ME2/2 | 2.2 |     |     |
| ME3/1 | 1.0 |       |     |     |     |

- ▶ The effect is probably related to scattering
- ▶ But it's not symmetric
- Amplified in outer stations due to our local-propagation method



## Potentially useful: new track refitter







#### New track refitter

Accomplish same local propagation method in one pass (with more iterations)





- More control over how track is updated: Ideally, tracker should fix  $|\vec{p}|$ , muon chamber should only update position (x, y) and direction  $(\eta, \phi)$
- ▶ This is a generalization of Gena's suggestion to align with overlap hits
- Implemented, working, but not in "baseline" procedure
- Might only be a convergence-speed improvement; might outperform baseline method when  $\rho(x)$ ,  $\vec{B}(x)$  is uncertain





# Parallelization of baseline procedure

## Software: setting up procedure to run in parallel

- ▶ Iteration 1 splits into 50 jobs, collected and merged, then on to iteration 2...
- 2805 configuration files, all different
- Seems to be working, but CAF stopped accepting my jobs yesterday
- ► This is the revised CSA exercise (reporting computing requirements tomorrow at AI/Ca)
- ▶ With a faster alignment procedure, we can do proper studies of the systematic error and the improvements discussed in this talk



#### Conclusions

- ▶ Alignment error is dominated by a *reducible* component
- Origin is unknown, but probably related to scattering tracks
- New track-level cut helps: added to baseline procedure (width of window is still unoptimized)
- New track fitter (already written) may also help, especially if infinite-APE track-fitting is suspect (e.g. uncertain material  $\rho(x)$  or  $\vec{B}(x)$  field)
- Baseline procedure is conventional: what we have been working with for 3 months, with loosened APEs and a track cut that can be wide