

Zakład Geomorfologii i Geologii Czwartorzędu — PROCEDURA

Analiza TIC: całkowity węgiel nieorganiczny metodą Scheiblera

Przygotowanie materiału

- Mokry materiał przechowywać do czasu wykonania analiz w lodówce lub chłodni.
- Ponumerować i opisać ołówkiem lub specjalnym pisakiem porcelanowe tygle.
- Przenieść do tygla określoną ilość osadu: około 10 g lub do połowy tygla.
- Zważyć tygle wraz z mokrym osadem i zapisać masę w formularzu.
- Zaprogramować suszarkę na temperaturę $105~^{\circ}\mathrm{C}$ bez limitu czasowego.
- Wstawić przygotowane próbki i suszyć **24 godziny**.
- Po wystawieniu z suszarki próbki wystudzić do temperatury pokojowej.
- Następnie zważyć parownice z suchym osadem i zapisać masę w formularzu.

Pomiary zawartości węgla nieorganicznego

Przygotowanie próbki

- Po wysuszeniu próbek rozetrzeć osad w moździerzu.
- Przesiać osad przez sito o średnicy oczek 100 µm na przykład na plastikowy talerz lub kartkę papieru.
- Przygotować szkiełko zagarkowe i wytarować wage laboratoryjną:
 - Włączyć wagę i poczekać na stabilizację.
 - Położyć na szalce wagi szkiełko i wcisnąć przycisk Tare
- Z osadu, który został odsiany (< 100 μm), odważyć odpowiednią ilość materiału i zapisać wynik.
- Pozostały na sicie materiał wsypać z powrotem do wcześniej opróżnionego tygielka (zapasowy materiał pomiarowy).
- Odpowiednia ilość oznacza:
 - Osady o stosunkowo małej orientacyjnej zawartości węglanów (kilka do kilkunastu %, czyli dla piasków i glin lodowcowych): około 1.0 g.
 - Osady o stosunkowo dużej orientacyjnej zawartości węglanów (kilkadziesiąt %, dla gytii węglanowych, kredy jeziornej, często także dla mułków i iłów): nie więcej niż około 0.2 g.

Praca z aparatem

- Opłukać kolbę aparatu Scheiblera zimną wodą z tryskawki, tak aby wlot do kolby pozostał wilgotny.
- Wsypać próbkę ze szkiełka zegarkowego do kolby, starając się, aby osad trafił bezpośrednio na dno
 kolby, a nie pozostawał na ściankach i włocie naczynia.
- Nabrać HCl 10% do dużej pipety 5 ml i wlać do zbiorniczka aparatu kwas, po czym zwilżyć gumowy korek i nie rozlewając kwasu w zbiorniczku szczelnie zamknąć wylot kolby.
- Przekręcić kranik zaworu trójdzielnego w prawo, tak aby przepływ powietrza odbywał się pomiędzy
 otoczeniem a zamkniętym obiegiem zbiorniczków, po czym przekręcić kranik w lewo, tak aby obieg
 powietrza pozostał zamknięty, czynność powtórzyć kilka razy, aż do wyrównania ciśnienia płynu
 w zbiorniku pomiarowym i w zbiorniku buforowym (poziom płynu powinien znajdować się na jednakowym poziomie w obu zbiorniczkach).
- Przekręcić kranik zaworu w lewo (zamknięty obieg powietrza pomiędzy zbiornikiem pomiarowym a zbiornikiem z próbką) i tak pozostawić do końca analizy.
- Odczytać i zapisać poziom początkowy płynu w zbiorniku pomiarowym (podziałka wyskalowana
 jest co 0.2 cm³, tyle wynosi odległość pomiędzy krótkimi kreskami skali).

W przypadku próbek o dużej orientacyjnej zawartości węglanów należy zbiorniki napełnić maksymalnie, gdyż w czasie analizy takich próbek ilość wydzielającego się CO_2 , a co za tym idzie zmiany poziomu płynów w zbiornikach są bardzo duże.

Po przechyleniu kolby z próbką stopniowo wylewać HCl, wstrząsnąć i mieszać kolbą dopóki poziom
płynu w zbiorniku pomiarowym zacznie opadać (kilkanaście sekund).

W efekcie reakcji HCl z osadem w zbiorniku pomiarowym ciśnienie powietrza zostanie powiększone o ciśnienie gazu (CO₂), który się wydzielił.

- Następnie należy wyrównać ciśnienia w obu zbiornikach poprzez niewielkie otwarcie kranika zamykającego dopływ ze zbiornika buforowego do zbiornika zapasowego. Po otwarciu zaworu, poziom płynu w zbiorniku buforowym powinien opadać powoli; należy odczekać aż poziomy w zbiornikach buforowym i pomiarowym osiągną zbliżoną wartość wówczas natychmiast zatrzymać spuszczanie płynu buforowego zakręcając kranik łączący zbiornik buforowy ze zbiornikiem pomiarowym.
- Po wyrównaniu ciśnień odczytać wynik końcowy (poziom płynu) w zbiorniku (biurecie) pomiarowym.

Różnica poziomu początkowego i końcowego świadczy o ilości ${\rm CO_2}$, który wydzielił się w reakcji, a tym samym zawartości ${\rm CaCO_3}$ w osadzie.

- Otworzyć kolbę z próbką i odczytać przy pomocy termometru temperaturę w kolbie pomiarowej.
- Zapisać godzinę pomiaru, tak aby wyznaczyć przy pomocy dodatkowych źródeł informacji wartość ciśnienia atmosferycznego w mm Hg w danym czasie:
 - Barometr w laboratorium.
 - W Internecie:
 - * Aktualne ciśnienie na kampusie Oliwa wyrażone w hPa

https://klimat.ug.edu.pl/?page id=3261

- Po zakończeniu analizy kilku próbek, gdy pozostanie w biuretach niewiele płynu, otworzyć kranik oddzielający biuretę buforową i zbiornik zapasowy i trzymając na wysokim poziomie zbiornik zapasowy uzupełnić zapas płynu w obu zbiornikach, aparat należy również pozostawić w takim stanie po zakończeniu analiz. Gdy zbiorniki się napełnią, zamknąć zawór.
- Kolbę wypłukać wodą z kranu a następnie wodą dejonizowaną, najlepiej dopiero po przygotowaniu następnej próbki. Wówczas przy jej zamykaniu wlot będzie jeszcze wilgotny i nie trzeba go będzie ponownie zwilżać.

Obliczanie koncentracji węgla nieorganicznego

Procentową zawartość $\mathrm{CaCO_3}^1$ oblicza się według wzoru:

$$CaCO_3 = (Vt*)/(a*10)$$

gdzie:

 $CaCO_3$: koncentracja węgla nieorganicznego ($CaCO_3$);

Vt: różnica objętości pomiędzy poziomem początkowym płynu w biurecie pomiarowej a poziomem końcowym, wyrażona w cm³;

 μ : masa CaCO₃; (mg/cm³), odpowiadająca wydzielającemu się CO₂, w danej temperaturze i ciśnieniu (Tab. 1);

a: masa próbki (g).

Tab. 1 Masa $CaCO_3$ (μ w mg/cm³) odpowiadająca wydzielającemu się CO_2 , w danej temperaturze (t)² i ciśnieniu³ (wg. Scheiblera); Myślińska 2001.

t	742.0	744.5	747.0	749.0	751.0	753.5	756.0	758.0	760.0	762.5	765.0	767.0	769.0	771.0	774.0
23	4.111	4.126	4.141	4.156	4.171	4.186	4.200	4.214	4.226	4.237	4.248	4.259	4.270	4.281	4.292
22	4.125	4.140	4.155	4.170	4.185	4.200	4.214	4.229	4.240	4.252	4.263	4.274	4.285	4.296	4.407
21	4.139	4.154	4.169	4.184	4.199	4.214	4.229	4.243	4.255	4.267	4.279	4.290	4.301	4.312	4.242
20	4.153	4.169	4.184	4.199	4.214	4.229	4.243	4.258	4.269	4.281	4.292	4.303	4.314	4.325	4.436.
19	4.168	4.189	4.198	4.213	4.288	4.243	4.258	4.272	4.284	4.296	4.307	4.318	4.329	4.340	4.452
18	4.182	4.198	4.213	4.288	4.243	4.258	4.272	4.286	4.298	4.310	4.321	4.332	4.343	4.354	4.65
17	4.197	4.212	4.227	4.242	4.257	4.272	4.286	4.300	4.312	4.324	4.335	4.346	4.375	4.368	4.479
16	212	4.226	4.241	4.256	4.271	4.286	4.300	4.314	4.326	4.338	4.349	4.360	4.371	4.380	4.493

¹Należy wziąć pod uwagę, że współczesne badania wskazują, że węglan wapnia (CaCO₃) nie jest jedynym węglanem tworzącym osady. Jest to szczególnie istotne w przypadku osadów jeziornych.

²Temperatura w °C.

³Ciśnienie w mm Hg.

Rejestr zmian

01.12.2022, MZ – wersja inicjalna Quarto. Rozwinięcie treści.

Piotr Paweł Woźniak, Karolina Molisak, Maurycy Żarczyński r Sys.Date()