Computer Architecture: Computer Arithmetic: Fixed-Point & FP IEEE 754

Hossein Asadi (asadi@sharif.edu)

Department of Computer Engineering

Sharif University of Technology

Spring 2024

Copyright Notice

- Some Parts (text & figures) of this Lecture adopted from following:
 - D.A. Patterson and J.L. Hennessy, "Computer Organization and Design: the Hardware/Software Interface" (MIPS), 6th Edition, 2020.
 - J.L. Hennessy and D.A. Patterson, "Computer Architecture:
 A Quantitative Approach", 6th Edition, Nov. 2017.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, CMU, Spring 2009.
 - "Computer Architecture & Engineering" handouts, by Prof. Kubiatowicz, UC Berkeley, Spring 2004.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, UWisc, Spring 2021.
 - "Computer Arch I" handouts, by Prof. Garzarán, UIUC, Spring 2009.

Topics Covered in This Lecture

- Fixed Point
- Floating Point

Real Numbers in Computers

- Fixed-Point Representation
 - Example: $d_{23}d_{22}...d_1d_0.f_0f_1f_2f_3f_4f_5f_6f_7$
 - 24-bit: integer bits
 - 8-bit: fraction bits
- Application
 - Used in CPUs with no floating-point unit
 - Embedded microprocessors and microcontrollers
 - Digital Signal Processing (DSP) applications

Real Numbers in Computers

- Fixed-Point Representation
 - Pros
 - Simple hardware
 - Fast computation
 - Cons
 - Low precision
 - Small range

Real Numbers in Computers

- Floating-Point Representation
 - Scientific notation in base 2
 - $-1.xxxxxx_{two} * 2^{yyyy}$

Floating-Point Notation

- FP Notation Consists of:
 - Fraction (F): 23 bits
 - Exponent (E): 8 bits
 - Sign bit (S)
 - Also called, single precision floating-point
- $N = (-1)^S * F * 2^E$

31	30		24	23	22	21	•••	1	0
5	E	Expo	nen	+		Fr	acti	on	

- Pros (compared to fixed-point)
 - Very Wide Range
 - More precision bits
- Cons (compared to fixed-point)
 - Arithmetic operation more complicated
 - HW more complicated
 - More time-consuming

31	30	•••	24	23	22	21	•••	1	0
5	E	Expo	nen	t		Fr	acti	on	

- Precision versus Range
 - Wider range → less precision?
 - More precision → smaller range?

31	30		24	23	22	21	•••	1	0
5	E	Expo	nen	t		Fr	acti	on	

IEEE 754 FP Standard

- $-N = (-1)^{S} * (1 + F) * 2^{E}$
- Significand: 1 + F
- Fraction: F
- Used in MIPS and most microprocessors

31	30	•••	24	23	22	21		1	0
5	E	Expo	nen [.]	†		Fr	acti	on	

- Overflow:
 - Can we have overflow in FP notation?
 - Exponent too large to fit in "Exponent" field
- Underflow:
 - Non-zero fraction so small to represent
 - Negative exponent too large to fit

31	30		24	23	22	21		1	0
5	E	Expo	nen	t		Fr	acti	on	

- Biased-Notation in Exponent Field
 - Used in IEEE 754 FP Standard
 - In order to compare FP numbers faster
 - Uses a bias of 127 in single-precision FP
 - $N = (-1)^S * (1 + F) * 2^{(E-bias)}$

- Biased-Notation in Exponent Field
 - Uses a bias of 127 in single-precision FP
 - $N = (-1)^S * (1 + F) * 2^{(E-bias)}$
 - 0 reserved
 - (-126) represented by -126+127 = 1
 - (-1) represented by -1+127 = 126
 - (0) represented by 0+127 = 127
 - (+1) represented by 1+127 = 128
 - (+127) represented by 127+127 = 254
 - 255 reserved

- Double-Precision Floating-Point
 - Uses two words
 - Reduces chances of overflow & underflow
 - Format
 - Fraction (F): 52 bits
 - Exponent (E): 11 bits
 - Sign bit (S)
 - Uses a bias of 1023 in double-precision FP

- Double-Precision Floating-Point
 - Fraction (F): 52 bits
 - Exponent (E): 11 bits
 - Sign bit (S)

Single P	recision	Double P	recision	Object Represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	Denormalized
1-254	Anything	1-2046	Anything	FP No
255	0	2047	0	Infinity
255	Nonzero	2047	Nonzero	NaN

- $N = (-1)^S * (1 + F) * 2^E$
- Questions on Single Precision FP:
 - Smallest positive number?
 - 1.0000 0000 0000 0000 0000 000_{two} * 2⁻¹²⁶
 - Smallest absolute negative number?
 - -1.0000 0000 0000 0000 0000 000_{two} * 2⁻¹²⁶

31	30		24	23	22	21	•••	1	0
5	E	Expo	nen	†		Fr	acti	on	

- $N = (-1)^S * (1 + F) * 2^E$
- Questions on Single Precision FP:
 - Largest positive number?
 - 1.1111 1111 1111 1111 1111 1111 111_{two} * 2⁺¹²⁷
 - Largest absolute negative number?
 - -1.1111 1111 1111 1111 1111 1111 111_{two} * 2⁺¹²⁷

31	30	•••	24	23	22	21	•••	1	0
5	E	Expo	nen [.]	†		Fr	acti	on	

- Denormalized Numbers
 - Smallest positive normalized number

```
= 1.0000\ 0000\ 0000\ 0000\ 0000\ 000_{two} * 2^{-126}
```

$$= 1._{two} * 2^{-126}$$

- Smaller positive numbers using exponent 0
 - $= 0.0000 0000 0000 0000 0000 001_{two} * 2^{-126}$

$$= 1._{two} * 2^{-149}$$

Practice:

 Represent following number in IEEE 754 singleprecision FP

• (-0.75)
=
$$-\frac{3}{4} = -3 * 2^{-2} = -11_{two} * 2^{-2} = -0.11_{two}$$

= $-1.1_{two} * 2^{-1} = -1.1_{two} * 2^{127-1} = -1.1_{two} * 2^{126}$

31	30		24	23	22	21	•••	1	0	
5		Expo	nen ⁻	†	Fraction					
1		0111	1110		1000	00000	00000	00000	0000	

- FP Addition
 - Example:
 - 1.000_{two} * 2^{-1} + -1.110_{two} * 2^{-2}

```
1.0000_{\text{two}} * 2^{-1}
+ -0.1110_{\text{two}} * 2^{-1}
= 0.0010 * 2^{-1}
= 1.0 * 2^{-4}
```

Another Practice:

Convert (7.75) in IEEE 754 single-precision FP

$$= 7 + \frac{3}{4} = 111_{two} * 2^{0} + 11_{two} * 2^{-2} =$$

$$= 1.11_{two} * 2^{2} + 0.0011_{two} * 2^{2}$$

$$= 1.11111_{two} * 2^{2}$$

$$= 1.11111_{two} * 2^{2+127} = 1.11111_{two} * 2^{129}$$

31	30		24	23	22	21	•••	1	0	
5	E	Expo	nen	†	Fraction					
0		1000	0001	•	11110	00000	00000	00000	0000	

