FINDING RELATIONS BETWEEN VARIABLES

Relation between coupled variables

What couples of variables are in relation?

Correlated variables

Uncorrelated variables

Variance and Moments of a Random Variable

Definition

The covariance of two random variable X and Y is

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

Theorem

 \square For any two random variables X and Y.

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y).$$

Independent variables→ COV=0

$$Cov(X,Y) = E[XY] - E[X]E[Y] - E[Y]E[X] + E[X]E[Y] =$$

= $E[XY] - E[X]E[Y]$

$$E[XY] = For discrete variables (for continuous, integral instead of sum)$$

$$= \sum_{i,j} x_i y_j P(x_i y_j) =$$
 For Independent variables

$$= \sum_{i,j} x_i y_j P(x_i) P(y_j) = \sum_i x_i P(x_i) \sum_j y_j P(y_j) = E[X] E[Y]$$

X,Y independent \rightarrow COV (X,Y) =0

The viceversa is not always true

Covariance and Pearson's Correlation index

	Variable 1	Variable 2
Item1	X ₁₁	X ₂₁
Item 2	X ₁₂	X ₂₂
Item i	X _{1i}	X _{2i}
Item m	x_{1m}	X _{2m}
Mean	M ₁₋	M ₂₋

$$M_{1-} = \frac{1}{n} \sum_{i=1}^{m} x_{1i}$$

$$M_{2-} = \frac{1}{n} \sum_{i=1}^{m} x_{2i}$$

$$cov(x_{1-}, x_{2-}) = \frac{1}{n-1} \sum_{i=1}^{m} (x_{1i} - M_{1-})(x_{2i} - M_{2-})$$

$$corr(x_{1-}, x_{2-}) = \frac{1}{n-1} \sum_{i=1}^{m} \frac{(x_{1i} - M_{1-})(x_{2i} - M_{2-})}{\sigma_{1-}\sigma_{2-}}$$

Correlation

	а	b	С	d	е
)					
ı	**				0.00
0				0.00	0.00
0			0.69	0.47	0.23
a		0.92	0.74	0.51	0.23

 $corr(x_1, x_2) \in [-1,1]$

When is a correlation significant?

Given a correlation index:

$$r(x_{1-}, x_{2-}) = \frac{1}{n-1} \sum_{i=1}^{m} \frac{(x_{1i} - M_{1-})(x_{2i} - M_{2-})}{\sigma_{1-}\sigma_{2-}}$$

A test variable can be computed under the null hypothesis that r=0

$$t = \frac{\tau}{\sqrt{\frac{1-r^2}{n-2}}}$$

t is distributed as Student's t test with n-2 degrees of freedom It assumes normality of x

Graph showing the minimum value of Pearson's correlation coefficient that is significantly different from zero at the 0.05 level, for a given sample size.

Example: discovery of a misconduct

- Repeatability test: 2 different experimentalist were asked to take the same solution and to perform 24 independent ELISA assays on a 6x4 plate.
- They submitted to the assessor the following results out of the spectrophotometer, ordered following the well

Example: discovery of a misconduct

Example: discovery of a misconduct

□ R=0.978 n=24 \rightarrow t=22.Q5

df\p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005
21	0.256580	0.686352	1.323188	1.720743	2.07961	2.51765	2.83136	3.8193
22	0.256432	0.685805	1.321237	1.717144	2.07387	2.50832	2.81876	3.7921
23	0.256297	0.685306	1.319460	1.713872	2.06866	2.49987	2.80734	3.7676
24	0.256173	0.684850	1.317836	1.710882	2.06390	2,49216	2.79694	3.7454
25	0.256060	0.684430	1.316345	1.708141	2.05954	2.48511	2.78744	3.7251

Objection: the test is valid only when data are normally distributed and we cannot prove that.

Any other idea?

	S1 S2				S1 Rand	om(S2)
P1	0,481	0,496		P1	0,481	0,495
P2	0,485	0,501		P2	0,485	0,522
Р3	0,479	0,495		Р3	0,479	0,48
P4	0,506	0,522		_P4	0,506	0,491
P5	0,467	0,48		P5	0,467	0,48
P6	0,474	0,491		P6	0,474	0,489
P7	0,469	0,48		P7	0,469	0,52
P8	0,475	0,489		P8	0,475	0,524
P9	0,514	0,52		P9	0,514	0,531
P10	0,52	0,524		P10	0,52	0,509
P11	0,526	0,531	Use the data	P11	0,526	0,54
P12	0,494	0,509		P12	0,494	0,526
P13	0,535	0,54	themselves to) P13	0,535	0,492
P14	0,524	0,526	cononcto	P14	0,524	0,509
P15	0,481	0,492	generate	P15	0,481	0,484
P16	0,502	0,509	random	P16	0,502	0,495
P17	0,479	0,484	rundom	P17	0,479	0,515
P18	0,491	0,495	experiments	P18	0,491	0,481
P19	0,503	0,515	exper interite	P19	0,503	0,486
P20	0,472	0,481		P20	0,472	0,512
P21	0,481	0,486		P21	0,481	0,454
P22	0,503	0,512		P22	0,503	0,526
P23	0,448	0,454		P23	0,448	0,496
P24	0,519	0,526		P24	0,519	0,501

R=0.25

Building a distribution by random resampling

- Iterate the process of shuffling and computation of r many times (say 1000)
- □ Compute a cumulative histogram counting the resamplings scoring with correlation≥r

Building a distribution by random resampling

The plot gives the probability (per thousand) of obtaining a given correlation with random pairings of the original data >> P-value independent on the assumptions on the data distribution

Bootstrapping

The term is often attributed to Rudolf Erich Raspe's story The Surprising Adventures of Baron Munchausen, where the main character pulls himself out of a swamp by his hair (specifically, his pigtail), but the Baron does not, in fact, pull himself out by his bootstraps

Correlation is not causation

Spurious correlations

http://www.tylervigen.com/spurious-correlations

Correlation means a co-relation is observed, which does not imply a casual relation.

- If X and Y are strongly correlated, this may have many reasons.
- Besides spurious, it may be that X and Y are the result of an unobserved process Z.

In both cases X is correlated to Y, BUT there is not direct causal relation

IF YOU PICK ALL THE CASE WHEN Z IS CONSTANT THERE WILL BE NO CORRELATION BETWEEN X AND Y

Partial correlation coefficient should be computed (it is possible only when Z is known)

Precision matrix (we'll see better next year)

- Given a set of sample describe by variables
 X₁ X₂ X₃ X₄ ... X_N
- Compute the Covariance Matrix
- Compute the Precision Matrix (K) as the inverse of the covariance matrix
- The partial correlation indexes between pairs of variables X_i X_j, with i≠j is

$$\widetilde{\rho}(X_i, X_j) = \frac{-K_{ij}}{\sqrt{K_{ii}K_{jj}}}$$

Correlation index assumes linear dependence

Non parametric correlation: Spearman

- □ Given a set of paired (x_i,y_i) sort separately the two variables, obtaining the ranks.
- The Sperman's correlation is the Pearson's correlation of the ranked variables: (Rx_i,Ry_i),

Under the null hypothesis (r=0)

$$t = r\sqrt{\frac{n-2}{1-r^2}}$$

Is distributed as a Student's t test with n-2 degrees of freedom

Categorical data: Matthews correlation index

	Secreted	Non Secreted	Total
With Signal peptide	a	b	a + b
Without Signal Peptide	С	d	c + d
total	a + c	b + d	n

$$MCC = \frac{ad-bc}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$$

Indexes for general dependence

Mutual information

$$I[X,Y] = E_{x,y} \left[\ln \frac{p(x,y)}{p(x)p(y)} \right]$$

Discrete
$$I[X,Y] = \sum_{x_i} \sum_{y_j} p(x_i, y_j) \ln \frac{p(x_i, y_j)}{p(x_i)p(y_j)}$$

Continous
$$I[X,Y] = \int \int p(x,y) \ln \frac{p(x,y)}{p(x)p(y)} dxdy$$

Indexes for general dependence

Mutual information

$$I[X,Y] = E_{x,y} \left[\ln \frac{p(x,y)}{p(x)p(y)} \right] = E_{x,y} \left[\ln \frac{p(x)p(y|x)}{p(x)p(y)} \right] =$$

$$= E_{x,y} \left[\ln p(y|x) \right] - E_{x,y} \left[\ln p(y) \right] =$$

$$= \int p(x) \left(\int p(y|x) \ln p(y|x) dy \right) dx - \int p(y) \ln p(y) \left(\int p(x|y) dx \right) dy =$$

$$= \int p(x) \left(\int p(y|x) \ln p(y|x) dy \right) dx - \int p(y) \ln p(y) =$$

$$= -H(Y|X) + H(Y)$$

$$H(X) = E[\ln x]$$
 Information (Shannon's) Entropy

In practice: find the optimal discretization: Maximum Information Coefficient

MIC in a pic

Given $D \subset \mathbb{R}^2$ and integers x and y, $I^*(D, x, y) = \max I(D|_G)$ with G over all grids of x cols, y rows.

Normalise this score by independence

$$M(D)_{x,y} = \frac{I^*(D, x, y)}{\log \min(x, y)}$$

And return the maximum

$$MIC(D) = \max_{xy < B(n)} \{M(D)_{x,y}\}$$

Jilles Vreeken: Saarland University

REGRESSION

Regression

 Regression analysis: any techniques for modeling and analyzing several variables, when the focus is on the relationship between a <u>dependent variable</u> and one or more <u>independent variables</u>.

Linear regression: Which is the line that best fits the data?

Linear regression

Least squares line

Choose the line (a,b) that minimize

$$y = ax + b$$

$$E = \sum_{i=1}^{m} \varepsilon_i^2 = \sum_{i=1}^{m} [y_i - (ax_i + b)]^2$$

Minimizing
$$E = \sum_{i=1}^{m} \varepsilon_i^2 = \sum_{i=1}^{m} [y_i - (ax_i + b)]^2$$

$$\frac{\partial E}{\partial b} = 0 \Rightarrow 2\sum_{i=1}^{m} \left[y_i - \left(ax_i + b \right) \right] = 0 \Rightarrow b = \frac{1}{m} \sum_{i=1}^{m} y_i - a \frac{1}{m} \sum_{i=1}^{m} x_i \Rightarrow b = \overline{y} - a\overline{x}$$

$$\frac{\partial E}{\partial a} = 0 \Rightarrow 2\sum_{i=1}^{m} \left[y_i - \left(ax_i + b \right) \right] \cdot x_i = 0 \Rightarrow \sum_{i=1}^{m} x_i y_i - a\sum_{i=1}^{m} x_i^2 - \overline{y} \sum_{i=1}^{m} x_i + a\overline{x} \sum_{i=1}^{m} x_i = 0 \Rightarrow$$

$$\Rightarrow a = \frac{\sum_{i=1}^{m} x_{i} y_{i} - \bar{y} \sum_{i=1}^{m} x_{i}}{\sum_{i=1}^{m} x_{i}^{2} - \bar{x} \sum_{i=1}^{m} x_{i}} = \frac{\sum_{i=1}^{m} x_{i} y_{i} - m \bar{y} \bar{x}}{\sum_{i=1}^{m} x_{i}^{2} - m \bar{x} \bar{x}} = \frac{\frac{1}{m} \sum_{i=1}^{m} x_{i} y_{i} - \bar{y} \bar{x}}{\frac{1}{m} \sum_{i=1}^{m} x_{i}^{2} - \bar{x} \bar{x}} \Rightarrow a = \frac{\cot(x, y)}{\sigma_{x}^{2}}$$

Polynomial interpolation

 The same technique can be applied by imposing a polynomial regression model

$$y = P(x) = \sum_{k=1}^{p} a_k x^k + b$$

- p is the degree of the polynomial
- \Box a_k and b are the trainable coefficients

Polynomials can perfectly interpolate a set of points

- A set of data consisting of m points can be perfectly interpolated with a polynomial of degree m-1
 - 2 points define a unique line, 3 points define a unique parabola (or a line, if aligned) and so on...
 - Increasing the degree of the polynomial corresponds to decreasing the error.

values for parameters

	M=O	M=1	M=3	M=9
b	0.19	0.82	0.31	0.35
a_1		-1.27	7.99	232.37
\mathfrak{a}_2			-25.43	-5321
a_3			17.37	48568
a_4				-231639
a_5				640042
a_6				-1061800
a_7				1042400
a_8				-557682
a_9				125201

But...

□ The interpolation is useless and do not gives a good predictive model for extrapolation→OVERFITTING

Overfitting

Low number of points increases risk of overfitting

High values for parameters

	M=0	M=1	M=3	M=9
b	0.19	0.82	0.31	0.35
a_1		-1.27	7.99	232.37
a_2			-25.43	-5321
a_3			17.37	48568
a_4				-231639
a_5				640042
a_6				-1061800
a_7				1042400
a_8				-557682
a_9				125201

Bishop C Pattern Recognition and Machine Learning

Regularized Error function

Discouraging high values for coefficients

$$E = \sum_{i=1}^{m} [y_i - P(x_i)]^2 + \lambda \sum_{k=1}^{p} a_k^2$$

Parameter weighting the strength of regularization

Values for parameters for M=9

	In A=0	In λ=-18	In λ=-∞
\mathbf{w}_{0}	0.13	0.35	0.35
w_1	-0.05	4.74	232.37
W ₂	-0.06	-0.77	-5321
w_3	-0.05	-31.97	48568
W ₄	-0.03	-3.89	-231639
w ₅	-0.02	55.28	640042
w ₆	-0.01	41.32	-1061800
W_7	0.00	-45.95	1042400
w ₈	0.00	-91.53	-557682
w ₉	0.01	72.68	125201

Bishop C Pattern Recognition and Machine Learning

Regularized regression avoids overfitting

Bishop C Pattern Recognition and Machine Learning