

Bài tập phụ thuộc hàm và dạng chuẩn - v5

Cấu trúc rời rạc (Trường Đại học Công nghiệp Thành phố Hồ Chí Minh)

BÀI TẬP HỆ CƠ SỞ DỮ LIỆU VỀ PHỤ THUỘC HÀM VÀ DẠNG CHUẨN

Mục lục

Α.	Bài tập về phụ thuộc hàm	1
	Bài tập vê luật suy diễn Armstrong	
	Bài tập tìm bao đóng của một tập thuộc tính	
D.	Bài tập tìm bao đóng của một tập phụ thuộc hàm	3
E.	Bài tập chứng minh hai phụ thuộc hàm tương đương hay không	3
F.	Bài tập tìm phủ tối thiểu của một phụ thuộc hàm	3
G.	Bài tập xác định khóa của một lược đô quan hệ	7
Н.	Bài tập xác định dạng chuẩn của lược đô quan hệ	8
١.	Bài tập phân rã lược độ quan hệ	8

A. Bài tập về phụ thuộc hàm

1. Cho lược đồ quan hệ R (ABCDE) có dữ liệu như sau:

Bộ (tuple) /hàng	A	В	C	D	E
t ₁	a_1	b_1	\mathbf{c}_1	\mathbf{d}_1	e ₁
t_2	a_1	b_2	\mathbf{c}_2	\mathbf{d}_2	\mathbf{d}_1
t ₃	a_2	b_1	C 3	d ₃	e ₁
t ₄	a_2	b_1	C ₄	d ₃	e ₁
t ₅	a ₃	b_2	C 5	\mathbf{d}_1	e ₁

Hãy cho biết phụ thuộc hàm nào sau đây thỏa quan hệ R: $A \rightarrow D$, $AB \rightarrow D$, $C \rightarrow BDE$, $E \rightarrow A$, $A \rightarrow E$?

Bài giải:

 $A \rightarrow D$ không phải là PTH thỏa quan hệ R vì có hàng t_1 và t_2 có giá trị ở thuộc tính A bằng nhau nhưng giá trị ở thuộc tính D lại khác nhau.

Viết ngắn gọn:

Vì $t_1.A = t_2.A$ và $t_1.D <> t_2.D$ nên A \rightarrow D không phải là PTH thỏa quan hệ R

2. Cho lược đồ quan hệ quản lý lịch bay, có dữ liệu như sau:

PHICONG	MAYBAY	NGAYKH	GIOKH
Tùng	83	9/8	10:15a
Tùng	116	10/8	1:25p
Minh	281	8/8	5:50a
Minh	301	12/8	6:35p

Minh	83	13/8	10:15a
Nghia	83	11/8	10:15a
Nghia	116	12/8	1:25p

Hãy cho biết phụ thuộc hàm nào thỏa quan hệ trên:

- a. $\{MAYBAY\} \rightarrow GIOKH$
- b. $\{NGAYKH\} \rightarrow GIOKH$
- c. $\{NGAYKH, GIOKH\} \rightarrow MAYBAY$
- d. {PHICONG, NGAYKH, GIOKH} → MAYBAY
- e. {MAYBAY, NGAYKH} → PHICONG

Bài giải:

- a. {MAYBAY} → GIOKH thỏa quan hệ trên vì với hai bộ bất kỳ t₁, t₂ ta có: nếu t₁ MAYBAY = t₂.MAYBAY thì t₁ MAYBAY = t₂.GIOKH
- 3. Cho quan hệ

A	В	С	D
X	u	X	у
у	X	z	X
Z	у	у	y
у	z	W	Z

Phụ thuộc hàm nào không thỏa quan hệ trên:

$$A \rightarrow B$$
; $A \rightarrow C$; $B \rightarrow A$; $C \rightarrow D$; $D \rightarrow C$; $D \rightarrow A$

B. Bài tập về luật suy diễn Armstrong

1. Cho tập phụ thuộc hàm $F = \{AB \rightarrow C, B \rightarrow D, CD \rightarrow E, CE \rightarrow GH, G \rightarrow A\}$. Hãy chứng tỏ phụ thuộc hàm $AB \rightarrow E$ và $AB \rightarrow G$ được suy diễn từ F nhờ luật suy diễn Armstrong.

Viết lại đề bài:

$$F = \{ f1: AB \rightarrow C, \}$$

f2: B→D,

f3: CD→E,

f4: CE→GH,

f5: $G \rightarrow A$

Bài giải:

Ta có: $f6: AB \rightarrow D$ (áp dụng luật thêm cho f2)

f7: AB → CD (áp dụng luật hội cho f1 và f6)

f8: AB → E (áp dụng luật bắc cầu cho f7 và f3), vậy ta đã suy diễn được PTH theo yêu cầu.

f9: CE → G (áp dung luật phân rã cho f4)

f10: AB → CE (áp dụng luật hợp cho f1 và f8)

f11: AB → G (áp dụng luật bắc cầu cho f10 và f9), vậy ta đã suy diễn được PTH theo yêu cầu

2. Cho lược đồ quan hệ Q(CDEGHK) và tập phụ thuộc hàm F = {CK → H, C→D, E→C, E→G, CK→E}. Chứng minh EK→DH bằng luật suy diễn Armstrong.

Viết lại đề bài:

F = { f1: CK
$$\rightarrow$$
 H,
f2: C \rightarrow D,
f3: E \rightarrow C,
f4: E \rightarrow G,
f5: CK \rightarrow E}

Muốn chứng minh EK \rightarrow DH ta phải chứng minh được EK \rightarrow D (1) và EK \rightarrow H (2)

Để chứng minh, ta phải chú ý những PTH có VT chứa EK và những PTH có VP chứa D, H

Ta thấy chỉ có f2: C→D có liên quan đến (1), trong khi VT của (1) là EK, cho nên ta sẽ tìm cách kết hợp f2 với những PTH có VT chứa E, K.

f6: CK → D (áp dung luật thêm vào cho f2)

f7: EK → D (áp dụng luật bắt cầu giả cho f3 và f6), ta đã chứng minh được (1)

f8: EK → CK (áp dụng luật thêm vào cho f3)

f9: EK → H (áp dụng luật bắt cầu cho f8 và f1), ta đã chứng minh được (2)

f
10: EK \rightarrow DH (áp dụng luật hội cho f7 và f9, vậy ta đã chứng minh được PTH theo yêu cầu.

- 3. Cho tập phụ thuộc hàm F= {AB→E, AG→I, BE→I, E→G, GI→H}. Hãy chứng tỏ phụ thuộc hàm AB→GH được suy diễn từ F nhờ luật suy diễn Armstrong.
- 4. Cho tập phụ thuộc hàm F= {AB→E, AG→I, BE→I, E→G, GI→ H}. Chứng minh rằng AB → GH bằng luật suy diễn Armstrong.
- 5. Cho tập phụ thuộc hàm $F=\{AB\to C; B\to D; CD\to E; CE\to GH; G\to A. Chứng minh rằng <math>AB\to E, AB\to G$ bằng luật suy diễn Arsmtrong.
- 6. F={AB→E;AG→I;BE→I;E→G;GI→ H} chứng minh rằng AB → GH (bằng luật Armstrong hoặc bằng cách tìm bao đóng)
- 7. F={AB→C;B→D;CD→E;CE→GH;G→A}chứng minh rằng AB → E; AB → G (bằng luật Armstrong hoặc bằng cách tìm bao đóng)

C. Bài tập tìm bao đóng của một tập thuộc tính

1. Cho tập phụ thuộc hàm $F = \{f1: AB \rightarrow C, f2: B \rightarrow D, f3: CD \rightarrow E, f4: CE \rightarrow GH, f5: G \rightarrow A\}$. Tìm $\{AB\}^+$

Ta có {AB}⁺= {AB} do hiển nhiên
{AB}⁺= {ABC} do suy ra tiếp từ f1
{AB}⁺= {ABCD} do suy ra tiếp từ f2
{AB}⁺= {ABCDE} do suy ra tiếp từ f3
{AB}⁺= {ABCDEGH} do suy ra tiếp từ f4
Vậy {AB}⁺= {ABCDEGH}
Cho tập phụ thuộc hàm F = {f1: A→D, f2: AB→DE, f3: 6

- Cho tập phụ thuộc hàm F = {f1: A→D, f2: AB→DE, f3: CE→G, f4: E→H}. Tìm {AB}⁺ Ta có {AB}⁺ = {AB} do hiển nhiên {AB}⁺ = {ABD} do suy ra tiếp từ f1 {AB}⁺ = {ABDE} do suy ra tiếp từ f2 {AB}⁺ = {ABDEH} do suy ra tiếp từ f4 Vây {AB}⁺ = {ABDEH}
- 3. Cho tập phụ thuộc hàm $F = \{A \rightarrow D, AB \rightarrow E, BI \rightarrow E, CD \rightarrow I, E \rightarrow C\}$. Tìm $\{AE\}^+$
- 4. Cho tập phụ thuộc hàm $F = \{AB \rightarrow E, AG \rightarrow I, BE \rightarrow I, E \rightarrow G, GI \rightarrow H\}$. Tìm $\{AB\}^+$
- 5. Cho lược đồ quan hệ Kehoach(NGAY, GIO, PHONG, MONHOC, GIAOVIEN) và tập phụ thuộc hàm F=

$$\{\{NGAY, GIO, PHONG\}\}$$
 \rightarrow MONHOC,
 $\{MONHOC, NGAY\}$ \rightarrow GIAOVIEN,
 $\{NGAY, GIO, PHONG\}$ \rightarrow GIAOVIEN,
 \rightarrow GIAOVIEN

Tìm {NGAY, GIO, PHONG} + và {MONHOC} +

6. Cho lược đồ quan hệ Q (A,B,C,D,E,G) và tập phụ thuộc hàm F.

$$F = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; ACD \rightarrow B; D \rightarrow EG; BE \rightarrow C; CG \rightarrow BD; CE \rightarrow AG\}$$

 $X=\{B,D\}$, hãy xác định X+=?

 $Y=\{C,G\}$, hãy xác định Y+=?

D. Bài tập tìm bao đóng của một tập phụ thuộc hàm (BỞ)

1. Tìm bao đóng $F^{\scriptscriptstyle +}$ của quan hệ Q (A,B,C) có $F = \{AB \to C \text{ , } C \to B\}$

Bài giải:

Bước 1 và bước 2: Tìm tất cả các tập con của Q+ và tìm bao đóng của tất cả tập con của Q+

$$\bigcirc^+ = \bigcirc$$

$$A^+ = A$$

$$B^+ = B$$

$$C_{+} = BC$$

$$AB^+ = ABC$$

$$AC^+ = ABC$$

$$BC^+ = BC$$

$$ABC^{+}=ABC$$

Bước 3: rút ra các PTH mới, không kể các PTH hiển nhiên có từ: $A^+ = A$, $B^+ = B$, $BC^+ = BC$, $ABC^+ = ABC$

Như vậy ta chỉ cần xét: $C^+ = BC$, $AB^+ = ABC$, $AC^+ = ABC$

Xét C^+ = BC: làm tương tư => $C \rightarrow B$. $C \rightarrow B$

Các tập con của {BC}: {B}, {C}, {BC}

Bỏ các tập con của {C}: {C} vì là VP của các PTH hiển nhiên

Vậy ta có các PTH mới, không hiển nhiên: C→B, C→BC

 $X\acute{e}t AB^+ = ABC$:

Các tập con của {ABC}: {A},{B},{C},{AB},{AC},{BC},{ABC}

Bỏ các tập con của {AB}:{A},{B},{AB} vì là VP của các PTH hiển nhiên

Các tập còn lại: {C},{AC},{BC},{ABC} chính là VP của PTH có VT là AB

Vậy ta có các PTH mới, không hiển nhiên: AB \rightarrow C, AB \rightarrow AC, AB \rightarrow BC, AB \rightarrow ABC

 $X\acute{e}t AC^{+} = ABC$: (làm tương tự)

Các tập con của $\{ABC\}: \{A\}, \{B\}, \{C\}, \{AB\}, \{AC\}, \{BC\}, \{ABC\}\}$

Bổ các tập con của {AC}: {A},{C},{AC}

Các tập còn lại : {B}, {AB}, {BC}, {ABC} chính là VP của PTH có VT là AC

Vậy ta có các PTH mới, không hiển nhiên: $AC \rightarrow B$, $AC \rightarrow AB$, $AC \rightarrow BC$, $AC \rightarrow ABC$

Kết luận: $F^+=\{C\rightarrow B, C\rightarrow BC, AB\rightarrow C, AB\rightarrow AC, AB\rightarrow BC, AB\rightarrow ABC, AC\rightarrow B, AC\rightarrow AB, AC\rightarrow BC, AC\rightarrow ABC\}$

2. Tìm bao đóng F+ của quan hệ phanCong(PHICONG,MAYBAY,NGAYKH,GIOKH) bằng thuật toán cải tiến.

Với tập phụ thuộc hàm $F = \{MAYBAY \rightarrow GIOKH, \}$

 $\{PHICONG, NGAYKH, GIOKH\} \rightarrow MABAY,$

{MAYBAY, NGAYKH}→ PHICONG }

E. Bài tập chứng minh hai phụ thuộc hàm tương đương hay không

 $1. \quad Cho \; F = \{AB \rightarrow C, A \rightarrow B, B \rightarrow C\}, \; G = \{AB \rightarrow C, A \rightarrow B, \; B \rightarrow C, \; A \rightarrow C\}.$

Cho biết F có tương đương với G không?

Bài giải: Ta cần xét xem A→C có trong F⁺ hay không?

Cách 1: dùng cách tính bao đóng của một tập thuộc tính

Ta có $A_F^+ = \{ABC\}$ nên $A \rightarrow C$ có trong F^+

Vậy F và G tương đương nhau.

Cách 2: dùng hệ tiên đề Armstrong

Ta có $A\rightarrow B$, $B\rightarrow C$. Dùng luật bắc cầu ta có $A\rightarrow C$, nói một cách khác $A\rightarrow C$ có trong F^+ Vậy F và G tương đương nhau.

2. Cho hai tập phụ thuộc hàm F và G

 $F = \{f1: M \rightarrow NE, f2: EG \rightarrow CD, f3: E \rightarrow M \}$

 $G = \{g1 \colon M \to NE, \, g2 \colon MG \to CDN, \, g3 \colon E \to MN, \ g4 \colon EG \to N\}$

Chứng minh rằng G tương đương với F bằng hai cách: bằng cách tìm bao đóng và bằng cách dùng luật Amstrong?

Bài giải: Ta chỉ cần xét xem EG \rightarrow CD, E \rightarrow M có trong G⁺ hay không? Và xét xem MG \rightarrow CDN, E \rightarrow MN, EG \rightarrow N có trong F⁺ hay không?

 $\{EG\}_{G}^{+} = \{EGMNCD\}$ cho nên $EG \rightarrow CD$ có trong G^{+}

Trong G, ta có E → MN, và áp dụng luật phân rã cho nó, ta có E→M

 $\{MG\}_{F}^{+} = \{MGNECD\}$ cho nên $MG \rightarrow CDN$ có trong F^{+}

Trong F, ta có:

f4: E → NE (áp dụng luật bắc cầu cho f3 và f1)

f5: E → N (áp dụng luật phân rã cho f4)

f6: E \rightarrow MN (áp dụng luật hợp cho f3 và f5). Vậy E \rightarrow MN có trong F⁺

 $\{EG\}_{F}^{+} = \{EGCDMN\}, \text{ vậy } EG \rightarrow N \text{ có trong } F^{+}$

Kết luận: F và G tương đương nhau

3. Cho lược đồ quan hệ Q={ABCDEFGH} và F= {AB→CH, CD→E, H→D, BF→GH, E→F, H→AB}

Hãy chứng minh F tương đương với G={ AB \rightarrow EFG, BF \rightarrow GH, AB \rightarrow CD, CD \rightarrow EF, H \rightarrow AB, E \rightarrow F}

F. Bài tập tìm phủ tối thiểu của một phụ thuộc hàm

1. Cho lược đồ quan hệ Kehoach(NGAY, GIO, PHONG, MONHOC, GIAOVIEN)

 $F=\{NGAY,GIO,PHONG \rightarrow MONHOC\}$

MONHOC,NGAY → GIAOVIEN

NGAY,GIO,PHONG → GIAOVIEN

MONHOC \rightarrow GIAOVIEN}

- **a.** Tính {NGAY,GIO,PHONG}⁺,{MONHOC}⁺
- **b.** Tìm phủ tối thiểu của F
- c. Tìm tất cả các khóa của Kehoach
- 2. Cho lược đồ quan hệ Q(TENTAU, LOAITAU, MACHUYEN, LUONGHANG, BENCANG, NGAY)

$$F=\{TENTAU \rightarrow LOAITAU$$

MACHUYEN → TENTAU, LUONGHANG

TENTAU,NGAY → BENCANG, MACHUYEN}

- a. Hãy tìm tập phủ tối thiểu của F
- **b.** Tìm tất cả các khóa của Q
- 3. Cho lược đồ quan hệ Q(C,T,H,R,S,G) và tập phụ thuộc hàm:

$$F = \{ f_1: C \rightarrow T; \qquad f_2: HR \rightarrow C; \qquad f_3: HT \rightarrow R;$$
$$f_4: CS \rightarrow G; \qquad f_5: HS \rightarrow R \}$$

Tìm phủ tối thiểu của F.

Xác định phủ tối thiểu của tập phu thuộc hàm F của các lược đồ quan hệ dưới đây:

4. Q(A,B,C,D,E,G), $F=\{AB\rightarrow C;C\rightarrow A;BC\rightarrow D;ACD\rightarrow B;D\rightarrow EG;BE\rightarrow C;CG\rightarrow BD;CE\rightarrow AG\}$.

Bài giải: {CD}⁺ = CDABEG

Bước 1: Loại khỏi F các PTH có VT dư thừa (bước 1 là để tối thiểu hóa VT)

Bước 2: Tách các PTH có VP có hơn 1 thuộc tính trở lên thành các PTH có VP có 1 thuộc tính

Bước 3: Loại khỏi F các PTH dư thừa (bước 2, bước 3 là để tối thiểu hóa VP và tối thiểu hóa số lượng PTH)

Bước 1: Loại khỏi F các PTH có VT dư thừa

PTH có VT là 1 một thuộc tính thì PTH đó gọi là PHT đầy đủ. Vì vậy C→A, D→EG là các PTH đầy đủ, ta không loại chúng ra khỏi F.

Xét từng PTH có VT nhiều hơn 1 thuộc tính là <mark>AB→C</mark>, BC→D, <mark>ACD→B</mark>, BE→C;CG→BD;CE→AG, ta xét xem chúng có VT dư thừa hay không.

Đối với AB→C, ta xét xem liệu có hay không A→C, B →C?

A+=A, cho nên không có $A\rightarrow C$

B+ = B cho nên không có B→C

Đối với BC→D, ta xét xem liệu có hay không B→D, C→D?

B+ = B cho nên không có B→D

C+ = CA cho nên không có C→D

Đối với ACD→B ta xét xem liệu có hay không A→B, C→B, D→B, AC→B, AD→B, CD→B hay không?

 $A^+ = A$, cho nên không có $A \rightarrow B$

 $C^+ = CA$, cho nên không có $C \rightarrow B$

D⁺ = DEG cho nên không có D→B

 ${AC}^+ = AC$ cho nên không có $AC \rightarrow B$

 ${AD}^+ = ADEG$ cho nên không có $AD \rightarrow B$

{CD}⁺= CDAEGBD cho nên ta có CD→B

Từ kết quả trên, ta có thể thay ACD→B bằng CD→B

Đối với BE→C ta xét xem liệu có hay không B→C, E→C?

 $B^+ = B$ cho nên không có $B \rightarrow C$

 $E^+ = E$ cho nên không có $E \rightarrow C$

Đối với CG→BD ta xét xem liệu có hay không C→BD, G→BD?

C+=CA, cho nên không có $C\rightarrow BD$

G⁺= G cho nên không có G→BD

<mark>Đối với CE→AG</mark>, ta xét xem liệu có hay không C→AG, E→AG?

C+ = CA, cho nên không có C→AG

 $E^+ = E$ cho nên không có $E \rightarrow AG$

Kết quả bước 1, ta có tập PTH mới là:

 $F = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; CD \rightarrow B; D \rightarrow EG; BE \rightarrow C; CG \rightarrow BD; CE \rightarrow AG\}.$

Bước 2: Tách các PTH có VP có hơn 1 thuộc tính thành các PTH có VP là 1 thuộc tính

Ta xét $F = F_{1tt} = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; CD \rightarrow B; \mathbf{D} \rightarrow \mathbf{E}; \mathbf{D} \rightarrow \mathbf{G}, BE \rightarrow C; C\mathbf{G} \rightarrow \mathbf{B}; \mathbf{CG} \rightarrow \mathbf{D}; \mathbf{CE} \rightarrow \mathbf{A}, \mathbf{CE} \rightarrow \mathbf{G}\}.$

Bước 3: Loại khỏi F các PTH dư thừa

Cách làm (giải thuật):

Thử loại từng PTH ra khỏi F, nếu PTH đó vẫn là thành viên của F-{PTH}, thì ta thật sự loại PTH đó ra khỏi F luôn.

Nghĩa là:

Thử loại từng PTH ra khỏi F, nếu nhờ suy diễn mà ta vẫn có PTH đó là thành viên của F-{PTH}, thì ta thật sự loại PTH đó ra khỏi F luôn để tối thiểu hóa F.

Nói một cách khác:

Thử loại từng PTH ra khỏi F, nếu nhờ suy diễn mà ta vẫn có PTH là thành viên của F+, thì ta thật sự loại PTH đó ra khỏi F luôn để tối thiểu hóa F.

Áp dụng vào bài toán này:

Thử loại $AB \rightarrow C$ ra khỏi F_{1tt} , ta xét xem có thể suy diễn $AB \rightarrow C$ là thành viên của $\{C \rightarrow A; BC \rightarrow D; CD \rightarrow B; D \rightarrow E; D \rightarrow G, BE \rightarrow C; CG \rightarrow B; CG \rightarrow D; CE \rightarrow A, CE \rightarrow G\}$ hay không?

Ta có $\{AB\}^+ = AB$ cho nên ta không có $AB \rightarrow C$

Viết ngắn lại: Thử loại $AB \rightarrow C$ khỏi F. Bằng suy diễn, ta thấy $AB \rightarrow C \notin F^+$, nên nó không dư thừa

Thử loại $C \rightarrow A$ ra khỏi F_{1tt} , ta xét xem có thể suy diễn $C \rightarrow A$ là thành viên của $\{AB \rightarrow C, BC \rightarrow D; CD \rightarrow B; D \rightarrow C, BE \rightarrow C; CG \rightarrow B; CG \rightarrow D; CE \rightarrow A, CE \rightarrow G\}$ hay không?

Ta có C⁺=C cho nên ta không có C→A

Thử loại BC \rightarrow D ra khỏi F_{1tt}, ta xét xem có thể suy diễn BC \rightarrow D là thành viên của $\{AB\rightarrow C; C\rightarrow A; CD\rightarrow B; D\rightarrow E; D\rightarrow G, BE\rightarrow C; CG\rightarrow B; CG\rightarrow D; CE\rightarrow A, CE\rightarrow G\}$ hay không? Ta có $\{BC\}+=BCA=ABC$ cho nên ta không có BC \rightarrow D

Thử loại CD \rightarrow B ra khỏi F_{1tt}, ta xét xem có thể suy diễn CD \rightarrow B là thành viên của $\{AB\rightarrow C; C\rightarrow A; BC\rightarrow D; D\rightarrow E; D\rightarrow G, BE\rightarrow C; CG\rightarrow B; CG\rightarrow D; CE\rightarrow A, CE\rightarrow G\}$ hay không? Ta có $\{CD\}^+$ = CDAEGB = ABCDEG, cho nên ta có CD \rightarrow B là thành viên của F+

Vậy ta có thể loại CD→B ra khỏi F.

Viết ngắn lại: Thử loại $CD \rightarrow B$ khỏi F. Bằng suy diễn, ta thấy $CD \rightarrow B \in F^+$, nên nó dư thừa, nên ta loại hẳn nó ra khỏi F.

F lúc này chỉ còn:

$$F = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; D \rightarrow E; D \rightarrow G, BE \rightarrow C; CG \rightarrow B; CG \rightarrow D; CE \rightarrow A, CE \rightarrow G\}.$$

Thử loại D \rightarrow E ra khỏi F_{1tt} , ta xét xem có thể suy diễn D \rightarrow E là thành viên của $\{AB\rightarrow C; C\rightarrow A; BC\rightarrow D; D\rightarrow G, BE\rightarrow C; CG\rightarrow B; CG\rightarrow D; CE\rightarrow A, CE\rightarrow G\}$ hay không? Ta có D $^+$ = DG cho nên ta không có D \rightarrow E

Thử loại D \rightarrow G ra khỏi F_{1tt} , ta xét xem có thể suy diễn D \rightarrow G là thành viên của $\{AB\rightarrow C; C\rightarrow A; BC\rightarrow D; D\rightarrow E; BE\rightarrow C; CG\rightarrow B; CG\rightarrow D; CE\rightarrow A, CE\rightarrow G\}$ hay không? Ta có D $^+$ = DE cho nên ta không có D \rightarrow G

Thử loại BE \rightarrow C ra khỏi F_{1tt}, ta xét xem có thể suy diễn BE \rightarrow C là thành viên của $\{AB\rightarrow C; C\rightarrow A; BC\rightarrow D; D\rightarrow E; D\rightarrow G, CG\rightarrow B; CG\rightarrow D; CE\rightarrow A, CE\rightarrow G\}$ hay không? Ta có $\{BE\}^+$ = BE cho nên ta không có BE \rightarrow C

Thử loại CG \rightarrow B ra khỏi F_{1tt}, ta xét xem có thể suy diễn CG \rightarrow B là thành viên của $\{AB\rightarrow C; C\rightarrow A; BC\rightarrow D; D\rightarrow E; D\rightarrow G, BE\rightarrow C; CG\rightarrow D; CE\rightarrow A, CE\rightarrow G\}$ hay không? Ta có $\{CG\}^+$ = CGADE, cho nên ta không có CG \rightarrow B

Thử loại $CG \rightarrow D$ ra khỏi F_{1tt} , ta xét xem có thể suy diễn $CG \rightarrow D$ là thành viên của $\{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; D \rightarrow E; D \rightarrow G, BE \rightarrow C; CG \rightarrow B; CE \rightarrow A, CE \rightarrow G\}$ hay không? Ta có $\{CG\}^+ = CGABDE$, cho nên ta có $CG \rightarrow D$ là thành viên của F+ Vậy ta có thể loại $CG \rightarrow D$ ra khỏi F.

F lúc này chỉ còn:

$$F = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; D \rightarrow E; D \rightarrow G, BE \rightarrow C; CG \rightarrow B; CE \rightarrow A, CE \rightarrow G\}.$$

Thử loại $CE \rightarrow A$ ra khỏi F_{1tt} , ta xét xem có thể suy diễn $CE \rightarrow A$ là thành viên của $F = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; D \rightarrow E; D \rightarrow G, BE \rightarrow C; CG \rightarrow B; CE \rightarrow G\}$ hay không? Ta có $\{CE\}^+ = CEAGBD$ cho nên ta có $CE \rightarrow A$ là thành viên của F + Vây ta có thể loại $CE \rightarrow A$ ra khỏi F.

F lúc này chỉ còn:

$F = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; D \rightarrow E; D \rightarrow G, BE \rightarrow C; CG \rightarrow B; CE \rightarrow G\}.$

Thử loại $CE \rightarrow G$ ra khỏi F_{1tt} , ta xét xem có thể suy diễn $CE \rightarrow G$ là thành viên của $F = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; D \rightarrow E; D \rightarrow G, BE \rightarrow C; CG \rightarrow B\}$ hay không? Ta có $\{CE\}^+ = CEA$ cho nên ta không có $CE \rightarrow G$

Kết quả của bước 3: phủ tối thiểu của tập PTH F ban đầu là: $F=\{AB\rightarrow C; C\rightarrow A; BC\rightarrow D; D\rightarrow E; D\rightarrow G, BE\rightarrow C; CG\rightarrow B; CE\rightarrow G\}$

- 5. Q(A,B,C), $F = \{A \rightarrow B, A \rightarrow C, B \rightarrow A, C \rightarrow A, B \rightarrow C\}$.
- 6. Q(ABCDEGH), $F = \{A \rightarrow H, AB \rightarrow C, BC \rightarrow D; G \rightarrow B\}$
- 7. Q(ABCSXYZ), $F = \{S \rightarrow A; AX \rightarrow B; S \rightarrow B; BY \rightarrow C; CZ \rightarrow X\}$
- 8. Q(ABCDEGHIJ), $F = \{BG \rightarrow D; G \rightarrow J; AI \rightarrow C; CE \rightarrow H; BD \rightarrow G; JH \rightarrow A; D \rightarrow I \}$
- 9. Q(ABCDEGHIJ), $F = \{BH \rightarrow I; GC \rightarrow A; I \rightarrow J; AE \rightarrow G; D \rightarrow B; I \rightarrow H\}$
- 10. Q(ABCSXYZ), $F = \{S \rightarrow A; AX \rightarrow B; S \rightarrow B; BY \rightarrow C; CZ \rightarrow X\}$

G. Bài tập xác định khóa của một lược đồ quan hệ

- 1. Tìm tất cả các khóa của lược đồ quan hệ Kehoach ở câu trên
- 2. Cho lược đồ quan hệ Q (TENTAU, LOAITAU, MACHUYEN, LUONGHANG, BENCANG, NGAY) và tập phụ thuộc hàm F =

Tìm tất cả các khóa của lược đồ quan hệ Q.

3. Cho lược đồ quan hệ Q (BROKER, OFFICE, STOCK, QUANTITY, INVESTOR, DIVIDENT) và tập phu thuộc hàm F =

{STOCK	\rightarrow DIVIDENT
INVESTOR	\rightarrow BROKER
{INVESTOR, STOCK}	\rightarrow QUANTITY
BROKER	\rightarrow OFFICE}

Tìm tất cả các khóa của lược đồ quan hệ Q.

4. Cho Q (A, B, C, D) và $F = \{AB \rightarrow C, D \rightarrow B, C \rightarrow ABD\}$

Hãy tìm tất cả các khóa của Q.

Bài giải: $TN = \{\emptyset\}$, $TG = \{ABCD\}$

X_i (tất cả tập con của TG) $(TN \cup X_i)$ $(TN \cup X_i)$	Siêu khóa Khóa (lấy từ cột 2)	
---	-------------------------------	--

	1	T .	1	
ф	ф	Ø		
A	A	A		
В	В	В		
С	С	$CABD = Q^{+}$	С	С
D	D	DB		
AB	AB	$ABCD = Q^+$	AB	AB
AC	AC	$ACBD = Q^+$	AC	(so sánh với C thì không chọn siêu khóa này làm khóa)
AD	AD	$ADBC = Q^{+}$	AD	AD
ВС	ВС	$BCAD = Q^+$	BC	(so sánh với C thì không chọn siêu khóa này làm khóa)
BD	BD	BD		
CD	CD	$CDBA = Q^+$	CD	(so sánh với C thì không chọn siêu khốt này làm khóa)
ABC	ABC	$ABCD = Q^+$	ABC	(so sánh với C thì không chọn siêu khóa này làm khóa)
ABD	ABD	$ABDC = Q^+$	ABD	(so sánh với AB thì không chọn siêu khóa này làm khóa)
ACD	ACD	$ACDB = Q^+$	ACD	(so sánh với C thì không chọn siêu khóa này làm khóa)
BCD	BCD	$BCDA = Q^+$	BCD	(so sánh với C thì không chọn siêu khóa này làm khóa)
ABCD	ABCD	$ABCD = Q^{+}$	ABCD	(so sánh với C thì không chọn siêu khóa này làm khóa)

- 5. Cho Q (A, B, C, D, E, G) và $F = \{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, ACD \rightarrow B, D \rightarrow EG, BE \rightarrow C, CG \rightarrow BD, CE \rightarrow G\}$ Hãy tìm tất cả các khóa của Q.
- 6. Cho Q(CDEGHK) và $F = \{CK \rightarrow H, C \rightarrow D, E \rightarrow C, E \rightarrow G, CK \rightarrow E\}$ Hãy tìm tất cả các khóa của Q.

H. Bài tập xác định dạng chuẩn của lược đồ quan hệ

Cho biết dang chuẩn cao nhất của các lược đồ quan hệ sau:

- 1. Q(ABCDEG), $F = \{A \rightarrow BC, C \rightarrow DE, E \rightarrow G\}$
- 2. Q(ABCDEGH), $F = \{C \rightarrow AB, D \rightarrow E, B \rightarrow G\}$
- 3. Q(ABCDEGH), $F = \{A \rightarrow BC, D \rightarrow E, H \rightarrow G\}$
- 4. Q(ABCDEG), $F = \{AB \rightarrow C, C \rightarrow B, ABD \rightarrow E, G \rightarrow A\}$
- 5. Q(ABCDEGHI), $F = \{AC \rightarrow B, BI \rightarrow ACD, ABC \rightarrow D, H \rightarrow I, ACE \rightarrow BCG, CG \rightarrow A\}$
- 6. Q(CDEGHK), $F = \{CK \rightarrow H, C \rightarrow D, E \rightarrow C, E \rightarrow G, CK \rightarrow E\}$
- 7. Q(ABCDEI), F={ACD→EBI;CE→AD}. Hỏi Q có đạt chuẩn 3, chuẩn BC không?

I. Bài tập phân rã lược đồ quan hệ

- 1. Giả sử ta có lược đồ quan hệ Q (A, B, C, D, E, F, G, H, I, J) và tập phu thuộc hàm F như sau: {AB→C, A→DE, B→F, F→GH, D→IJ}
 - a. Xác định dạng chuẩn cao nhất của Q
 - b. Nếu chưa đạt chuẩn bạn hãy phân rã để đạt chuẩn BCNF hay 3NF
- 2. Giả sử ta có lược đồ quan hệ Q(C,D,E,G,H,K) và tập phụ thuộc hàm F như sau:

$$F = \{CK \rightarrow H; C \rightarrow D; E \rightarrow C; E \rightarrow G; CK \rightarrow E\}$$

- a. Xác định dạng chuẩn của Q.
- b. Hãy tìm cách phân rã Q thành một lược đồ CSDL đạt dạng chuẩn BC (hoặc dạng chuẩn 3).
- 3. Cho lược đồ quan hệ Q(CTHRSG), và tập phụ thuộc hàm tương ứng là F={C→T, HR→C, HT→R, CS→G, HS→R}. Hãy phân rã Q thành các lược đồ con đạt chuẩn BC.

TÓM TẮT LÝ THUYẾT

A. Hệ tiên đề Armstrong

1. Luật phản xạ (reflexive rule): $X \rightarrow X$

2. Luật thêm vào (augmentation rule): Cho $X \rightarrow Y$, ta có $XZ \rightarrow Y$, $XZ \rightarrow YZ$, $X\rightarrow XY$

3. Luật hợp (union rule): Cho $X \rightarrow Y$, $X \rightarrow Z \Rightarrow X \rightarrow YZ$

4. Luật phân rã (decomposition rule): Cho $X \rightarrow YZ \Rightarrow X \rightarrow Y$

5. Luật bắc cầu (transitive rule): Cho $X \to Y$, $Y \to Z \Rightarrow X \to Z$

6. Luật bắc cầu giả (pseudo transitive rule): Cho $X \to Y$, $YZ \to W \Rightarrow XZ \to W$

B. Thuật toán tìm bao đóng tập thuộc tính X^+

Tính liên tiếp tập các tập thuộc tính $X_0, X_1, X_2, ...$ theo phương pháp sau:

Buóc 1: $X_{\theta} = X$

<u>Bước 2</u>: lần lượt xét các phụ thuộc hàm của F

 $N\acute{e}u \quad Y \rightarrow Z \ c\acute{o} \ Y \subseteq X_i \ thì \ X_{i+1} = X_i \cup Z$

Loại phụ thuộc hàm $Y \rightarrow Z$ khỏi F

Bước 3: Nếu ở bước 2 không tính được X_{i+1} thì X_i chính là bao đóng của X

Ngược lại lặp lại bước 2

C. Thuật toán cải tiến để tìm bao đóng của một tập phụ thuộc hàm F^+ :

Bước 1: Tìm tất cả tập con của Q^+

Bước 2: Tìm bao đóng của tất cả tập con của Q^+

<u>Bước 4</u>: Dựa vào bao đóng của các tập con đã tìm để suy ra các phụ thuộc hàm thuộc F^+ .

Lưu ý: chủ yếu là tìm những PTH mới mà chúng không phải là PTH hiển nhiên.

Nếu X⊇Y thì X→Y là hiển nhiên

D. Thuật toán xác định F và G có tương đương không

<u>Bước 1</u>: Với mỗi phụ thuộc hàm $X \rightarrow Y$ của F ta xác định xem $X \rightarrow Y$ có là thành viên của G không

<u>Bước 2</u>: Với mỗi phụ thuộc hàm $X \rightarrow Y$ của G ta xác định xem $X \rightarrow Y$ có là thành viên của F không

Nếu cả hai bước trên đều đúng thì $F \equiv G$

E. Thuật toán cải tiến để tìm khóa của một lược đồ quan hệ

- + Tập thuộc tính nguồn (TN) chứa tất cả các thuộc tính có xuất hiện ở vế trái và không xuất hiện ở vế phải của các phụ thuộc hàm và các thuộc tính không xuất hiện ở cả vế trái lẫn vế phải của các phụ thuộc hàm.
- + Tập thuộc tính đích (TD) chứa tất cả các thuộc tính có xuất hiện ở vế phải và không xuất hiện ở vế trái của các phụ thuộc hàm.
- + Tập thuộc tính trung gian (TG) chứa tất cả các thuộc tính xuất hiện ở cả vế trái lẫn vế phải của các phụ thuộc hàm.

<u>Hệ quả</u>: Nếu K là khóa của Q thì $TN \subseteq K$ và $TD \cap K = \emptyset$

Thuật toán tìm tất cả khóa của một lược đồ quan hệ

<u>Bước 1</u>: tạo tập thuộc tính nguồn TN, tập thuộc tính trung gian TG

<u>Bước 2</u>: if $TG = \emptyset$ then lược đồ quan hệ chỉ có một khóa K

K = TN

kết thúc

Ngược lại

Qua bước 3

<u>Bước 3</u>: tìm tất cả các tập con X_i của tập trung gian TG

Bước 4: tìm các siêu khóa S_i bằng cách $\forall X_i$

if
$$(TN \cup X_i)^+ = Q^+$$
 then

$$S_i = TN \cup X_i$$

<u>Bước 5</u>: tìm khóa bằng cách loại bỏ các siêu khóa không tối tiểu

$$\forall S_i, S_i \in S$$

if $S_i \subset S_j$ then Loại S_j ra khỏi Tập siêu khóa S

S còn lại chính là tập khóa cần tìm.

F. Cách xác định các dạng chuẩn của lược đồ quan hệ Thuật toán kiểm tra dạng chuẩn 2:

Bước 1: Tìm tất cả khóa của Q

Bước 2: Với mỗi khóa K, tìm bao đóng của tất cả tập con thật sự S của K.

Bước 3: Nếu có bao đóng S^+ chứa thuộc tính không khóa thì Q không đạt chuẩn 2

Ngược lại thì Q đạt chuẩn 2.

Ví dụ: Cho lược đồ quan hệ Q(A,B,C,D) và tập phụ thuộc hàm $F=\{AB\to C; B\to D; BC\to A\}$. Hỏi Q có đạt chuẩn 2 không?

Giải: Bước 1: Tìm tất cả các khóa của Q theo thuật toán cải tiến:

Xi	$(TN \cup X_i)$	$(TN \cup X_i)^+$	Siêu khóa	Khóa
ф	В	BD		
A	AB	ABCD=Q ⁺	AB	AB
С	ВС	ABCD=Q ⁺	BC	BC
AC	ABC	ABCD=Q ⁺	ABC	

[→] Khóa của Q là K₁=AB và K₂=BC.

Bước 2: Tất cả tập con của khóa K_1 là $\{A\}$, $\{B\}$ và tất cả tập con của khóa K_2 là $\{B\}$, $\{C\}$. Ta có:

$$\{A\}^+ = \{A\}$$

$$\{B\}^+ = \{BD\}$$

$$\{C\}^+ = \{C\}$$

Bước 3: Ta thấy $\{B\}^+ = \{BD\}$ có chứa D là thuộc tính không khóa nên Q không phải dạng chuẩn 2.

(Giải thích thêm: $\{B\}^+ = \{BD\}$ có chứa D là thuộc tính không khóa \rightarrow D là thuộc tính không khóa không phụ thuộc đầy đủ vào khóa K_1 =AB và không phụ thuộc đầy đủ vào khóa K_2 =BC nên Q không phải dạng chuẩn 2.)

Ví dụ: Quan hệ Q sau đạt chuẩn 2, Q (GHMNPV) với $F = \{G \rightarrow M, G \rightarrow N, G \rightarrow H, G \rightarrow P, M \rightarrow V, NHP \rightarrow M\}$

Giải: Bước 1: Tìm tất cả các khóa của Q theo thuật toán cải tiến:

Ta có
$$TN=\{G\}$$
 $TG=\{M,N,H,P\}$

Xi	$(TN \cup X_i)$	$(TN \cup X_i)^{\scriptscriptstyle +}$	Siêu khóa	Khóa
ф	G	GHMNPV=Q+	G	G
M	GM	GHMNPV=Q ⁺	GM	
N	GN	GHMNPV=Q ⁺	GN	
Н	GH	GHMNPV=Q+	GH	
P	GP	GHMNPV=Q ⁺	GP	
MN	GMN	GHMNPV=Q ⁺	GMN	
МН	GMH	GHMNPV=Q ⁺	GMH	
MP	GMP	GHMNPV=Q ⁺	GMP	
NP	GNP	GHMNPV=Q ⁺	GNP	
HP	GHP	GHMNPV=Q ⁺	GHP	
NH	GNH	GHMNPV=Q+	GNH	
MNH	GMNH	GHMNPV=Q ⁺	GMNH	
MNP	GMNP	GHMNPV=Q ⁺	GMNP	
MHP	GMHP	GHMNPV=Q ⁺	GMHP	
NHP	GNHP	GHMNPV=Q ⁺	GNHP	
MNHP	GMNHP	GHMNPV=Q ⁺	GMNHP	

Lược đồ quan hệ Q chỉ có một khóa và khóa chỉ có một thuộc tính nên mọi thuộc tính đều phụ thuộc hàm đầy đủ vào khóa $\rightarrow Q$ đạt chuẩn 2.

Hệ quả:

- Nếu Q đạt chuẩn 1 và tập thuộc tính không khóa của Q bằng rỗng thì Q đạt chuẩn 2 (thường phát hiện điều này ở bước 1 của giải thuật)
- Nếu tất cả khóa của quan hệ chỉ gồm một thuộc tính thì quan hệ đó ít nhất đạt chuẩn 2 (thường phát hiện điều này ở bước 1 của giải thuật)

Ví dụ: Q(A,B,C,D,E,H), $F=\{A \rightarrow E; C \rightarrow D; E \rightarrow DH\}$. Hãy cho biết Q có đạt dạng chuẩn 2 hay không?

Giải: Bước 1: Tìm tất cả các khóa của Q theo thuật toán cải tiến

Ta có TN =
$$\{ACB\}$$
, TG= $\{E\}$

Xi	$(TN \cup X_i)$	$(TN \cup X_i)^+$	Siêu khóa	Khóa
ф	ACB	ABCDEH=Q+	ACB	ACB
Е	ACBE	ABCDEH	ACBE	

→ Khóa của Q là K = {ABC} (các thuộc tính khóa: A, B, C; các thuộc tính không khóa: D, E, H)

Bước 2: Tìm bao đóng của tất cả tập con của khóa

Tất cả tập con của K: {A}, {B}, {C}, {AB}, {AC}, {BC}

{A}⁺= {AEDH} có chứa D là thuộc tính không khóa → Q không đạt dạng chuẩn 2

{B}+=...

 $\{C\}^+$ = $\{CD\}$, mà D là thuộc tính không khóa, do đó D phụ thuộc không đầy đủ vào khóa nên Q không đạt chuẩn 2

 ${AB}^{+}=...$

 $\{AC\}^+ = ...$

{BC}⁺=...

Dạng chuẩn 3

Định nghĩa 1

Lược đồ quan hệ Q ở dạng chuẩn 3 nếu mọi phụ thuộc hàm $X \to A \in F^+$ với $A \notin X$ đều có:

- Hoặc X là siêu khóa
- Hoặc A là thuộc tính khóa

Định nghĩa 2

Lược đồ quan hệ Q ở dạng chuẩn 3 nếu mọi thuộc tính không khóa của Q đều không phụ thuộc bắc cầu vào một khóa bất kỳ của Q

Hai định nghĩa trên là tương đương, tuy nhiên việc cài đặt thuật toán kiểm tra dạng chuẩn 3 theo định nghĩa 1 thì hiệu quả hơn nhiều vì không phải kiểm tra tính phụ thuộc bắc cầu.

Thuật toán kiểm tra dạng chuẩn 3

Bước 1: Tìm tất cả khóa của Q

Bước 2: Từ F, xác định tập phụ thuộc hàm tương đương F_{1tt} có vế phải một thuộc tính

Bước 3: Nếu mọi phụ thuộc hàm $X \to A \in F_{In}$ với $A \not\in X$ đều có X là siêu khóa hoặc A là thuộc tính khoá thì Q đạt chuẩn 3. Ngược lại Q không đạt chuẩn 3.

Ví dụ: Cho lược đồ quan hệ Q(A,B,C,D) và $F=\{AB\rightarrow C; D\rightarrow B; C\rightarrow ABD\}$. Xác định Q có đạt chuẩn 3 không? Giải: Bước 1: Tìm tất cả khóa của Q. Ta có: $TN=\emptyset$ và $TG=\{ABCD\}$

X _i	$(TN \cup X_i)$	$(TN \cup X_i)^+$	Siêu khóa	Khóa
ф	ф	ф		
A	A	A		
В	В	В		
С	С	ABCD = Q+	C	С
D	D	BD		
AB	AB	ABCD = Q+	AB	AB
AC	AC	ABCD = Q+	AC	
AD	AD	ABCD = Q+	AD	AD
BC	BC	ABCD = Q+	BC	
BD	BD	BD		
CD	CD	ABCD = Q+	CD	
ABC	ABC	ABCD = Q+	ABC	
ABD	ABD	ABCD = Q+	ABD	
ACD	ACD	ABCD = Q+	ACD	
BCD	BCD	ABCD = Q+	BCD	
ABCD	ABCD	ABCD = Q+	ABCD	

Bước 2: Các phụ thuộc hàm từ F mà vế phải là một thuộc tính: AB→C và D→B

Bước 3:

Xét phụ thuộc hàm thứ 1 là AB→C (có C∉AB) với 2 điều kiện sau:

Điều kiện	Phụ thuộc hàm AB→C đang xét	
VT là một siêu khóa	AB là một siêu khóa (thỏa điều kiện)	
VP là một bộ phận của một vài khóa nào đó	C là một bộ phận của khóa C (thỏa điều kiện)	
(VP là thuộc tính khóa)	(C là thuộc tính khóa)	

Xét phụ thuộc hàm thứ 2 là D→B (có D \notin B) với 2 điều kiện sau:

Điều kiện	Phụ thuộc D→B hàm đang xét	
VT là một siêu khóa	D không là một siêu khóa (không thỏa điều kiện)	
VP là một bộ phận của một vài khóa nào đó	B là một bộ phận của khóa AB (thỏa điều kiện)	
(VP là thuộc tính khóa)	(B là thuộc tính khóa)	

Ta thấy mọi phụ thuộc hàm đều thõa một trong hai điều kiện. Vậy Q đạt chuẩn 3.

Dạng chuẩn Boyce-Codd

Định nghĩa: Một quan hệ Q ở dạng chuẩn BC nếu mọi phụ thuộc hàm $X \rightarrow A \in F^+$ với $A \not\in X$ đều có X là

siêu khóa.

Hệ quả 1: Nếu Q đạt chuẩn BC thì Q đạt chuẩn 3 (hiển nhiên do định nghĩa)

Hệ quả 2: Mỗi lược đồ có hai thuộc tính đều đạt chuẩn BC (xét phụ thuộc hàm có thể có của Q)

Định lý: Q là lược đồ quan hệ

F_{1tt} là tập các phụ thuộc hàm có vế phải một thuộc tính.

Q đạt chuẩn BC nếu và chỉ nếu mọi phụ thuộc hàm X→A∈F_{1tt} với A∉X đều có X là siêu khóa

Thuật toán kiểm tra dạng chuẩn BC

Vào: lược đồ quan hệ Q, tập phụ thuộc hàm F

Ra: khẳng định Q đạt chuẩn BC hay không đạt chuẩn BC.

Bước 1: Tìm tất cả khóa của Q

Bước 2: Từ F tạo tập phụ thuộc hàm tương đương F_{1tt} có vế phải một thuộc tính

Bước 3: Nếu mọi phụ thuộc hàm $X \to A \in F_{1tt}$ với $A \notin X$ đều có X là siêu khóa thì Q đạt chuẩn BC, ngược lại Q không đạt chuẩn BC.

Ví dụ: Q(A,B,C,D,E,I) F={ACD→EBI;CE→AD}. Xác định Q có đạt chuẩn BC không?

Giải: Bước 1: tìm khóa của Q. Ta có TN={C} TG ={ADE}

Xi	$(TN \cup X_i)$	$(TN \cup X_i)^+$	Siêu khóa	khóa
ф	С	С		
A	AC	AC		
D	CD	CD		
Е	СЕ	ABCDEI = Q ⁺	CE	СЕ
AD	ACD	$ABCDEI = Q^+$	ACD	ACD
AE	ACE	ABCDEI = Q ⁺	ACE	
DE	CDE	$ABCDEI = Q^+$	CDE	
ADE	ACDE	$ABCDEI = Q^+$	ACDE	

Buốc 2: $F \equiv F_{1tt} = \{ACD \rightarrow E, ACD \rightarrow B, ACD \rightarrow I, CE \rightarrow A, CE \rightarrow D\}$

Bước 3: Mọi phụ thuộc hàm của F_{1tt} đều có vế trái là siêu khóa \rightarrow Q đạt dạng chuẩn BC

Ví dụ: Q(SV,MH,THAY) $F = \{SV,MH \rightarrow THAY;THAY \rightarrow MH\}$. Quan hệ trên đạt chuẩn 3.

Ví dụ: Q(A,B,C,D) và F={AB \rightarrow C; D \rightarrow B; C \rightarrow ABD} thì Q là dạng chuẩn 3.

Nếu F={B \rightarrow D,A \rightarrow C,C \rightarrow ABD} là dạng chuẩn 2 nhưng không là dạng chuẩn 3.