

دانشگاه آزاد اسلامی واحد علوم و تحقیقات (تهران) دانشکده مکانیک ؛ برق و کامپیورتر ؛ گروه مکانیک

پایان نامه برای دریافت درجه کارشناسی ارشد در رشته مهندسی مکانیک (M.Sc.) گرایش: تبدیل انرژی

عنوان: طراحی عددی حرارتی و بهینه سازی مبدل حرارتی صفحه ای پره دار در جریان های چند جزیی

> استاد راهنما : دکتر محمد حسن نوبختی

> > استاد مشاور: دکتر مسعود زارع

نگارش: امیر عباس افراسیابی

زمستان ۱۴۰۳

فهرست مطالب

ست جدول ها	نهر
سِت اشكال ها	نهر
ست علايم	فهر
ِست اشكال ها	چک
ل اولت	فصر
١-١- مقدمه	١
۱-۲- مبدل حرارتی صفحه ای پره دار	١
١-٢-١ ساختار مبدل حرارتی صفحه ای پره دار	
٢-٢-٢ اهميت و ضرورت بهينه سازى مبدل حرارتى صفحه اى پره دار	١
۱–۳- مروری بر معادلات میانگین ناویر استو <i>ک</i> س رینولدز (RANS)	١
۱-۳-۱ اهمیت معادلات میانگین ناویر استوکس رینولدز در بهینه سازی مبدل حرارتی صفحه ای پره دار	
۱-۴- نقس دینامیک سیالات محاسباتی در بهینه سازی مبدل حرارتی	
۱-۵- روشهای تقویت انتقال حرارت	١
۱-۵-۱- سطوح زبر و فین دار	١
۱-۵-۲ افزودنی به سیالات	١
۱-۶- مزایا و دلایل انتخاب مبدل حرارتی صفحه ای پره دار	
٧-٢ مروری بر فصول پایان نامه	١
ل دوم	فصد
10	۲

طراحی مبدل حرارتی	, -۲-۲
<u></u> هینه سازی ساختار مبدل حرارتی صفحه ای پره دار	; -٣-٢
ستخراج روابط تجربی برای مدل سازی ریاضی رفتار سیالات در مبدل حرارتی	
بهینه سازی ساختار عملی مبدل حرارتی صفحه ای پره دار	
جمع اوری و نواوری پژوهش	
٣٠	
مقدمه	
تحلیل رفتار هیدرودینامیکی جریان چندفازی در مبدل حرارتی صفحه ای پره دار۳۲	: -۲-۳
معرفی اجمالی مساله مورد بررسی	, -٣-٣
رضيه ها	۳–۴–فر
مدلسازی ترمودینامیکی مبدل حرارتی صفحه ای پره دار	۰, -۵-۳
- مبدل حرارتی صفحه ای پره دار با دو جریان تک فاز	1-0-4
-مبدل حرارتی صفحه ای پره دار با جریان دوفاز	۳-۵-۳
هینه سازی بر اساس الگوریتم ژنتیک	۳-۶- ب
چالش بهینه سازی مبدل حرارتی چندفاز با چند هندسه پره متفاوت	· -V-٣
روش حل عددی	, -۸-۳
رايط مرزی حاکمووو	۳-۹- ش
ارم	فصل چها
مقدمه	, -1-4
رزیابی دقیق مدل عددی	1-7-4
- صحت سنجى مدل	1-7-4

4-7-7- اعتبار سنجى مدل	1
۴-۳- انتخاب دامنه همگرایی	
۴-۴-استقلال از شبکه و مش بندی	;
4-۵- نتایج حاصل از شبیه سازی عددی	
4-9- عدد ناسلت متوسط	
۴-۷- بررسی اثرافزایش انتقال حرارت و افت فشار نانو سیال	
۴-A- بررسی اثرعدد رینولدز در افزایش انتقال حرارت و افت فشار	
٩-۴- ضريب اصطكاك	
۴-۱۰- ضریب کالبرن	
غصل پنجم	
1-۴ مقدمه	
۴-۲- ارزیابی دقیق مدل عددی	

فهرست جدولها

۱٧	جدول ۲-۱ <i>خصوصیات فیزیکی مایع و جامد</i>
۲۸	جدول ۲-۲ خلاصه فعالیتها و پژوهشهای صورت گرفته برای بهینهسازی مبدلهای حرارتی صفحهای پرهدار
٣۵.	جدول ۳-۱ ابعاد خاص فین ها و قطر هیدرولیک در هر مورد
۵٨	جدول ۴-۱ جدول پیشنهادی برای صحت سنجی مبدل حرارتی
۶۴	جدول ۴-۲ مشخصات ترمودینامیکی اب و اکسید المینیوم

فهرست اشكال

۴	شکل ۱-۱ <i>ساختار کلی مبدل حرارتی صفحه ای پره دار</i>
	شکل ۱-۲ اجزای اصلی یک مبدل حرارتی صفحه ای پره دار
	شکل ۱-۳ <i>نمایش شماتیک از سلسله مراتب مدل سازی اشفتگی</i>
	شکل ۲-۱ پارامتر های مشخص شده پره ها در پژوهش مانگلیگ و برگلز
	شکل ۲-۲ <i>تغییرات هزیته سالانه عملیاتی مبدل در مقابل بازده انتقال حرارت دو مدل مورد بررسی</i>
	شکل ۳–۲ تغییرات a) سطح انتقال حرارت مورد نیاز مبدل و b) افت فشار در مبدلها در مقابل بازده انتقال حر
	شکل ۲-۴ حساسیت توابع هدف بررسی شده در پژوهش یانگ و همکاران نسبت به متغیر های بهینه سازی
	شکل ۳-۱ شماتیک مبدل حرارتی فین دار نامنظم و ساختار دقیق
٣٧	شکل ۳-۳ (a) نوع Z ؛ (c) نوع Z ؛ (c) نمای مقابل شکل نوع Z نمای مقابل شکل نوع Z
بت ۴۰	شکل ۳-۳ نمودار تغییرات دمای سیالهای سرد وگرم در یک مبدل برای جریانهای (a) مخالف جهت (b) همجر
۴۲	شکل ۳-۴ المان مورد نظر برای بررسی انتقال حرارت در مبدل حرارتی صفجه ای پره دار
۴۳	شكل ٣-۵ سطوح انتقال حرارت اوليه و ثانويه
۴۵	شکل ۳-۶ هندسه و مشخصات انواع پرههای به کار رفته در مبدلهای حرارتی صفحهای پرهدار
۴۸	شکل ۵-۳ a یک گرمکن صفحهای معمولی، b , c یک گرمکن صفحهای دو جریانه
۴۸	شکل ۳–۸ نمودار دما در یک گرمکن مبادل حرارت در مراحل مایع، دوفازه و گازی در منطقه فوق بحرانی
	شکل ۳-۹ منحنی ترکیب برای یک مبدل ۵ جریانه
۵١	شکل ۳-۱۰ حالات مختلف تغییر ضریب انتقال حرارت کلی در طول مبدل
	شکل ۴-۱ تأثیر متغیرهای طراحی بر عملکرد انتقال حرارت
	۔ شکل ۴–۲ دامنه همگرایی مدل مورد بررسی برای زوایای ۶۰ درجه و ۹۰ درجه
	شکل ۴-۳ مقدار ضریب اصطحکاک برای زاویه ۶۰ درجه و درصد حجمی ۶
99	شکل ۴-۴ مقدار ضریب اصطحکاک برای زاویه ۹۰ درجه و درصد حجمی ۶
۶۸	شکل ۴-۵ مقدار افت فشار کل در مقادیر مختلف
	سکل ۴-۶ مقدار افت فشار کل در سیال پایه و مقادیر مختلف درصد حجمی نانو سیال
	شکل ۴-۷ مقادیر ضریب انتقال حرارت کل در مقادیر مختلف عدد رینولدز
	شکل ۴-۸ مقدار ضریب انتقال حرارت برای زاویه ۶۰ درجه و درصد حجمی ۶
	شکل ۴-۸ متفار ضریب انتقال حرارت برای زاویه ۹۰ درجه و درصد حجمی ۶
	شکل ۴-۱۰ مقدار ضریب کالبرن برای زاویه ۶۰ درجه و درصد حجمی ۶
٧ ٢	شکل ۴-۱۱ مقدار ضریب کالبرن برای زاویه ۹۰ درجه و درصد حجمی ۶

فهرست علايم

$\frac{Kg}{m^3}$	(ρ)	چگالی
mm	(L)	طول هر شاخه
mm	(t)	ضخامت هر شاخه ضخامت هر
mm	(h)	ارتفاع هر شاخه
mm	(S)	فاصله عرضي
K	(T)	دما
Pa	(P)	فشار
Kg	(m)	جرم
	(Nu)	عدد ناسلت
	(Pr)	عدد پرانتل
m^2	(A)	سطح كل انتقال حرارت
	(R)	عددرينولدز
	(j)	ضريب كالبرن
$\frac{Kg.m}{s^2}$	(f)	ضریب اصطحکاک
$\frac{m^3}{s}$	(\dot{V})	دبی حجمی
m	(D_h)	قطر هيدروليكي
$\frac{m}{s}$	(U)	سرعت لحظه ای
$\frac{m^2}{s^2}$	(<i>K</i>)	انرژی جنبشی اشفتگی
<u>J</u>	(<i>h</i>)	انتالپی سیال
Kg		- -

$$\frac{J}{Kg}$$
 (C_p) تبت (C_p) گرمای خاص در فشار ثابت $\frac{K^2.W}{m}$ (U) خریب انتقال حرارت کلی $\frac{S^2.Kg}{m}$ (G_m) دبی جرمی سیال

فهرست علايم يوناني

$$\frac{m^2}{s}$$
 (μ) ویسکوزیته δ_{ij} (δ_{ij}) δ_{ij} δ_{ij}