	eter creation		
A trusted party chooses and publishes a (large) prime p			
and an integer g having large prime order in \mathbb{F}_p^* .			
Private computations			
Alice Bob			
Choose a secret integer a.	Choose a secret integer b .		
Compute $A \equiv g^a \pmod{p}$. Compute $B \equiv g^b \pmod{p}$.			
Public exchange of values			
Alice sends A to Bob \longrightarrow A			
$B \leftarrow$ Bob sends B to Alice			
Further private computations			
Alice Bob			
Compute the number $B^a \pmod{p}$.	Compute the number $A^b \pmod{p}$.		
The shared secret value is $B^a \equiv (g^b)^a \equiv g^{ab} \equiv (g^a)^b \equiv A^b \pmod{p}$.			

Table 2.2: Diffie–Hellman key exchange

Public parameter creation			
A trusted party chooses and publishes a large prime p			
and an element g modulo p of large (prime) order.			
Alice Bob			
Key creation			
Choose private key $1 \le a \le p-1$.			
Compute $A = g^a \pmod{p}$.			
Publish the public key A .			
Encryption			
	Choose plaintext m .		
	Choose random element k .		
	Use Alice's public key A		
	to compute $c_1 = g^k \pmod{p}$		
and $c_2 = mA^k \pmod{p}$.			
	Send ciphertext (c_1, c_2) to Alice.		
Decryption			
Compute $(c_1^a)^{-1} \cdot c_2 \pmod{p}$.			
This quantity is equal to m .			

Table 2.3: Elgamal key creation, encryption, and decryption

Bob	Alice	
Key creation		
Choose secret primes p and q .		
Choose encryption exponent e		
with $gcd(e, (p-1)(q-1)) = 1$.		
Publish $N = pq$ and e .		
Encry	ption	
	Choose plaintext m .	
	Use Bob's public key (N, e)	
	to compute $c \equiv m^e \pmod{N}$.	
	Send ciphertext c to Bob.	
Decry	ption	
Compute d satisfying		
$ed \equiv 1 \pmod{(p-1)(q-1)}.$		
Compute $m' \equiv c^d \pmod{N}$.		
Then m' equals the plaintext m .		

Table 3.1: RSA key creation, encryption, and decryption

Samantha	Victor		
Key creation			
Choose secret primes p and q .			
Choose verification exponent e			
with			
$\gcd(e, (p-1)(q-1)) = 1.$			
Publish $N = pq$ and e .			
Signing			
Compute d satisfying			
$de \equiv 1 \pmod{(p-1)(q-1)}.$			
Sign document D by computing			
$S \equiv D^d \pmod{N}$.			
Verification			
	Compute $S^e \mod N$ and verify		
	that it is equal to D .		

Table 4.1: RSA digital signatures

Public parameter creation			
A trusted party chooses and publishes a large prime p			
and primitive root g modulo p .			
Samantha Victor			
Key creation			
Choose secret signing key			
$1 \le a \le p-1$.			
Compute $A = g^a \pmod{p}$.			
Publish the verification key A .			
Signing			
Choose document $D \mod p$.			
Choose random element $1 < k < p$			
satisfying $gcd(k, p - 1) = 1$.			
Compute signature			
$S_1 \equiv g^k \pmod{p}$ and			
$S_2 \equiv (D - aS_1)k^{-1} \pmod{p-1}.$			
Verification			
	Compute $A^{S_1}S_1^{S_2} \mod p$.		
	Verify that it is equal to $g^D \mod p$.		

Table 4.2: The Elgamal digital signature algorithm

Public parameter creation			
A trusted party chooses and publishes large primes p and q satisfying			
$p \equiv 1 \pmod{q}$ and an element g of order q modulo p.			
Samantha Victor			
Key creation			
Choose secret signing key			
$1 \le a \le q - 1.$			
Compute $A = g^a \pmod{p}$.			
Publish the verification key A .			
Sign	ning		
Choose document $D \mod q$.			
Choose random element $1 < k < q$.			
Compute signature			
$S_1 \equiv (g^k \bmod p) \bmod q$ and			
$S_2 \equiv (D + aS_1)k^{-1} \pmod{q}.$			
Verification			
Compute $V_1 \equiv DS_2^{-1} \pmod{q}$ and			
	$V_2 \equiv S_1 S_2^{-1} \pmod{q}.$		
	Verify that		
	$(g^{V_1}A^{V_2} \bmod p) \bmod q = S_1.$		

Table 4.3: The digital signature algorithm (DSA)

	Public parameter creation			
	A trusted party chooses and publishes a (large) prime p ,			
	an elliptic curve E over \mathbb{F}_p , and a point P in $E(\mathbb{F}_p)$.			
	Private computations			
Alice Bob				
Chooses a secret integer n_A . Chooses a secret integer n_B .				
	Computes the point $Q_A = n_A P$.	Computes the point $Q_B = n_B P$.		
	Public exchange of values			
	Alice sends Q_A to Bob \longrightarrow Q_A			
	$Q_B \leftarrow$ Bob sends Q_B to Alice			
	Further private computations			
	Alice Bob			
	Computes the point $n_A Q_B$. Computes the point $n_B Q_A$.			
	The shared secret value is $n_A Q_B = n_A (n_B P) = n_B (n_A P) = n_B Q_A$.			

Table 6.5: Diffie-Hellman key exchange using elliptic curves

Public parameter creation				
A trusted party chooses a finite field \mathbb{F}_p , an elliptic curve E/\mathbb{F}_p ,				
and a point $G \in E(\mathbb{F}_p)$ of large prime order q .				
Samantha Victor				
Key creation				
Choose secret signing key				
1 < s < q - 1.				
Compute $V = sG \in E(\mathbb{F}_p)$.				
Publish the verification key V .				
Signing				
Choose document $d \mod q$.				
Choose random element $e \mod q$.				
Compute $eG \in E(\mathbb{F}_p)$ and then,				
$s_1 = x(eG) \bmod q$ and				
$s_2 \equiv (d + ss_1)e^{-1} \pmod{q}.$				
Publish the signature (s_1, s_2) .				
Verification				
	Compute $v_1 \equiv ds_2^{-1} \pmod{q}$ and			
	$v_2 \equiv s_1 s_2^{-1} \pmod{q}.$			
	Compute $v_1\bar{G} + v_2V \in E(\mathbb{F}_p)$ and ver-			
	ify that			
	$x(v_1G+v_2V) \bmod q = s_1.$			

Table 6.7: The elliptic curve digital signature algorithm (ECDSA) $\,$

Public Parameter Creation		
A trusted party chooses and publishes a (large) prime p ,		
an elliptic curve E over \mathbb{F}_p , and a point P in $E(\mathbb{F}_p)$.		
Alice Bob		
Key	Creation	
Chooses a secret multiplier n_A .		
Computes $Q_A = n_A P$.		
Publishes the public key Q_A .		
Enc	ryption	
	Chooses plaintext values m_1 and m_2 modulo p . Chooses a random number k . Computes $R = kP$. Computes $S = kQ_A$ and writes it as $S = (x_S, y_S)$. Sets $c_1 \equiv x_S m_1 \pmod{p}$ and $c_2 \equiv y_S m_2 \pmod{p}$. Sends ciphertext (R, c_1, c_2) to Alice.	
Dec	ryption	
Computes $T = n_A R$ and writes it as $T = (x_T, y_T)$. Sets $m_1' \equiv x_T^{-1} c_1 \pmod{p}$ and $m_2' \equiv y_T^{-1} c_2 \pmod{p}$. Then $m_1' = m_1$ and $m_2' = m_2$.		

Table 6.13: Menezes-Vanstone variant of Elgamal (Exercises 6.17, 6.18)

Alice			Bob
Key	Key Creation		
Choose a large integer modulus q .			
Choose secret integers f and g with $f < \sqrt{q/2}$,			
$\sqrt{q/4} < g < \sqrt{q/2}$, and gcd(f,qg)=1	1.	
Compute $h \equiv f^{-1}g \pmod{q}$.			
Publish the public key (q, h) .			
Enc	ryption	Į.	
Choose plaintext m with $m < \sqrt{q/4}$.		ext m with $m < \sqrt{q/4}$.	
Use Alice's pu		iblic key (q,h)	
to compute $e \equiv rh + m \pmod{q}$		te $e \equiv rh + m \pmod{q}$.	
Send ciphertext e to Alice.		e to Alice.	
Decryption			
Compute $a \equiv fe \pmod{q}$ with 0			
Compute $b \equiv f^{-1}a \pmod{g}$ with	0 < b <	g.	
Then b is the plaintext m .			

Table 7.1: A congruential public key cryptosystem

Table 7.4: NTRUEncryt: the NTRU public key cryptosystem