

AD-A062 204

NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
AN EXPERIMENTAL COMPARISON OF ENHANCED HEAT TRANSFER CONDENSER --ETC(U)
SEP 78 J H FENNER
NPS69-78-015

F/G 13/11

NL

UNCLASSIFIED

1 OF 2
AD
A062204

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100																																																																																																																																																																																		
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	37

②

LEVEL

AD A062204

NPS 69-78-015

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

AN EXPERIMENTAL COMPARISON OF ENHANCED HEAT
TRANSFER CONDENSER TUBING

by

James H. Fenner
September 1978

Thesis Advisor:

Paul J. Marto

Approved for public release; distribution unlimited.

Prepared for:

Naval Sea Systems Command
Washington, D. C.

78 12 11 187

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral T. F. Dedman
Superintendent

Jack R. Borsting
Provost

This thesis prepared in conjunction with research supported
in part by the Naval Sea Systems Command under work request
N0002477-WR74134.

Reproduction of all or part of this report is authorized.

Released as a
Technical Report by:

William M. Tolles

W. M. Tolles
Dean of Research

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 14 NPS 69-78-015	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 6 AN EXPERIMENTAL COMPARISON OF ENHANCED HEAT TRANSFER CONDENSER TUBING		5. TYPE OF REPORT & PERIOD COVERED 9 Master's Thesis, September 1978
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) James H. Fenner, LT, USN		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 251450 N0002477-WR74134
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940		12. REPORT DATE 11 September 1978
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 10 James Henry Fenner		13. NUMBER OF PAGES 177
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 12 178 p.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Film Condensation, Enhanced Heat Transfer, Condensers		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Ten 15.9 mm (5/8 in.) nominal outside diameter geometrically enhanced tubes of different metals were tested to determine their heat transfer and hydrodynamic performance. Results were compared to smooth copper-nickel tubes. Steam at about 21kPa (3 psia) was condensed on the outside surface of each enhanced tube, horizontally mounted in the center of a dummy tube bank. Each tube was cooled on the inside by water at velocities of <i>over</i>		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Data Entered.

2.7 to 7.6 m/sec (3 to 25 ft/sec).

The overall heat transfer coefficient was determined from experimental data. The inside heat transfer coefficients were determined using the Wilson plot technique. Friction factor in the enhanced section was determined from the cooling water pressure drop.

Enhanced geometries (utilizing pitch, helix angle and groove depth) were found to improve the corrected overall heat transfer coefficient by as much as 2 times that for smooth tubes. Use of enhanced tubes in place of smooth tubes will permit a decrease in condenser tube surface area from 17 to 53 percent for constant heat loads and constant pumping power.

ACCESSION for		
NTIS	Whole Section <input checked="" type="checkbox"/>	
DDC	Diff. Section <input type="checkbox"/>	
UNANNOUNCED <input type="checkbox"/>		
JUSTIFICATION		
BY		
DISTRIBUTION/AVAILABILITY CODES		
Dist. AVAIL. and/or SPECIAL		
A		

Approved for public release; distribution unlimited

AN EXPERIMENTAL COMPARISON OF ENHANCED HEAT
TRANSFER CONDENSER TUBING

by

James Henry Fenner
Lieutenant, United States Navy
B.S., Miami University, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1978

Author

James H. Fenner

Approved by:

Paul J. Marto Thesis Advisor

Paul J. Marto
Chairman, Department of Mechanical Engineering

William M. Tolles
Dean of Science and Engineering

ABSTRACT

Ten 15.9 mm (5/8 in.) nominal outside diameter geometrically enhanced tubes of different metals were tested to determine their heat transfer and hydrodynamic performance. Results were compared to smooth copper-nickel tubes. Steam at about 21kPa (3 psia) was condensed on the outside surface of each enhanced tube, horizontally mounted in the center of a dummy tube bank. Each tube was cooled on the inside by water at velocities of 2.7 to 7.6 m/sec (3 to 25 ft/sec).

The overall heat transfer coefficient was determined from experimental data. The inside and outside heat transfer coefficients were determined using the Wilson plot technique. Friction factor in the enhanced section was determined from the cooling water pressure drop.

Enhanced geometries (utilizing pitch, helix angle and groove depth) were found to improve the corrected overall heat transfer coefficient by as much as 2 times that for smooth tubes. Use of enhanced tubes in place of smooth tubes will permit a decrease in condenser tube surface area from 17 to 53 percent for constant heat loads and constant pumping power.

TABLE OF CONTENTS

ABSTRACT-----	4
LIST OF TABLES-----	8
LIST OF FIGURES-----	10
NOMENCLATURE-----	13
ACKNOWLEDGEMENT-----	17
I. INTRODUCTION-----	18
A. BACKGROUND INFORMATION-----	18
B. GOALS OF THIS WORK-----	22
II. EXPERIMENTAL FACILITY-----	24
A. TEST FACILITY-----	24
B. STEAM SYSTEM-----	24
C. TEST CONDENSER-----	25
D. CONDENSATE AND FEEDWATER SYSTEMS-----	26
E. COOLING WATER SYSTEM-----	27
F. SECONDARY SYSTEMS-----	28
1. Vacuum System-----	28
2. Desuperheater-----	28
G. INSTRUMENTATION-----	29
1. Flow Rates-----	29
2. Pressure-----	29
3. Temperature-----	29
4. Data Collection and Display-----	30
H. TEST TUBES-----	30

III.	EXPERIMENTAL PROCEDURES-----	33
A.	INSTALLATION AND OPERATION PROCEDURES-----	33
1.	Preparation of Condenser Tubes-----	33
2.	System Operation and Determination of Steady State Conditions-----	34
3.	Maintenance Procedures-----	35
B.	DATA REDUCTION PROCEDURES-----	36
1.	Overall Heat Transfer Coefficient-----	37
2.	Inside Heat Transfer Coefficient-----	38
3.	Outside Heat Transfer Coefficient-----	40
4.	Friction Factor-----	40
5.	Performance Criteria-----	42
a.	Colburn Analogy-----	42
b.	Surface Area Ratios-----	43
(1)	External Resistance Equal to Zero.---	43
(a)	Constant Heat Load with Increasing Pumping Power.-----	43
(b)	Constant Heat Load with Constant Pumping Power.-----	43
(2)	External Resistance Not Equal to Zero.-----	45
(a)	Constant Heat Load and Pumping Power-----	45
6.	Data Reduction Computer Program-----	48
IV.	RESULTS AND DISCUSSION-----	49
A.	INTRODUCTION-----	49
B.	SMOOTH TUBE RESULTS-----	52
C.	ENHANCED TUBE RESULTS-----	54
1.	Heat Transfer Coefficient-----	54
2.	Pressure Drop-----	56

3. Sieder-Tate Parameters-----	57
4. Friction Factor-----	57
5. Tube Performance Criteria-----	58
a. Colburn Analogy-----	58
b. Surface Area Ratios at Constant Heat Loads-----	59
c. Internal and External Performance-----	60
V. CONCLUSIONS-----	63
VI. RECOMMENDATIONS-----	65
VII. TABLES-----	67
VIII. FIGURES-----	105
APPENDIX A: OPERATING PROCEDURES-----	146
APPENDIX B: SAMPLE CALCULATIONS-----	154
APPENDIX C: ERROR ANALYSIS-----	162
BIBLIOGRAPHY-----	172
INITIAL DISTRIBUTION LIST-----	174

LIST OF TABLES

Table I.	Location of Stainless Steel Sheathed Copper Constantan Thermocouples-----	67
Table II.	Location of Teflon Coated Copper Constantan Thermocouples-----	68
Table III.	Summary of Test Tubes-----	69
Table IV.	Enhanced Tubing Characteristics-----	70
Table V.	Raw Data for Smooth "fouled" CuNi, Run 2, 11 MAY 78-----	71
Table VI.	Raw Data for Smooth "clean" CuNi, Run 7, 11 JUL 78-----	71
Table VII.	Raw Data for Smooth "rippled" CuNi, Run 8, 12 JUL 78-----	72
Table VIII.	Raw Data for TURBOTEC High Pitch, Run 4, 12 JUN 78-----	72
Table IX.	Raw Data for TURBOTEC Medium Pitch, Run 5, 13 JUN 78-----	73
Table X.	Raw Data for TURBOTEC Low Pitch, Run 6, 14 JUN 78-----	73
Table XI.	Raw Data for TURBOTEC Variable Pitch, Run 15, 28 JUL 78-----	74
Table XII.	Raw Data for TURBOTEC "supported" Low Pitch, Run 17, 6 AUG 78-----	74
Table XIII.	Raw Data for KORODENSE CuNi-LPD, Run 9, 13 JUL 78-----	75
Table XIV.	Raw Data for KORODENSE Al-LPD, Run 13, 18 JUL 78-----	75
Table XV.	Raw Data for KORODENSE Al-MHT, Run 11, 16 JUL 78-----	76
Table XVI.	Raw Data for KORODENSE CuNi-MHT, Run 12, 17 JUL 78-----	76
Table XVII.	Raw Data for KORODENSE Ti-MHT, Run 14, 19 JUL 78-----	77

Table XVIII.	Smooth "fouled" Copper-Nickel Results, (Tube No. S-1a), Run 2-----	78
Table XIX.	Smooth "Clean" Copper-Nickel Results, (Tube No. S-1b), Run 7-----	80
Table XX.	Smooth "rippled" Copper-Nickel Results, (Tube No. S-2), Run 8-----	82
Table XXI.	TURBOTEC High Pitch Results (Tube No. T-1) Run 4-----	84
Table XXII.	TURBOTEC Medium Pitch Results (Tube No. T-2) Run 5-----	86
Table XXIII.	TURBOTEC Low Pitch Results (Tube No. T-3a) Run 6-----	88
Table XXIV.	TURBOTEC Variable Pitch Results (Tube No. T-4), Run 15-----	90
Table XXV.	TURBOTEC Low Pitch "supported" Results (Tube No. T-3b), Run 17-----	92
Table XXVI.	KORODENSE CuNi-LPD Results (Tube No. K-1) Run 9-----	94
Table XXVII.	KORODENSE CuNi-MHT Results (Tube No. K-2) Run 12-----	96
Table XXVIII.	KORODENSE Al-LPD Results (Tube No. K-3) Run 13-----	98
Table XXIX.	KORODENSE Al-MHT Results (Tube No. K-4) Run 11-----	100
Table XXX.	KORODENSE Ti-MHT Results (Tube No. K-5) Run 14-----	102
Table XXXI.	Summary of Heat Transfer Capabilities of Enhanced Condenser Tubing-----	104

LIST OF FIGURES

Figure 1. Photograph of Test Facility-----	105
Figure 2. Schematic Diagram of Steam System-----	106
Figure 3. Photograph of Test Condenser with Partial Insulation-----	107
Figure 4. Test Condenser Schematic, Front View-----	108
Figure 5. Test Condenser Schematic, Side View-----	109
Figure 6. Schematic Diagram of Condensate and Feedwater System-----	110
Figure 7. Schematic Diagram of Cooling Water System-----	111
Figure 8. Enhanced Tube Schematic Drawing Showing Location of Pressure Taps-----	112
Figure 9. Photograph of High Pitch TURBOTEC Tube (Tube No. T-1)-----	113
Figure 10. Photograph of Medium Pitch TURBOTEC Tube (Tube No. T-2)-----	114
Figure 11. Photograph of Low Pitch TURBOTEC Tube (Tube No. T-3)-----	115
Figure 12. Photograph of Copper-Nickel-MHT KORODENSE Tube (Tube No. K-2)-----	116
Figure 13. Photograph of Aluminum-MHT KORODENSE Tube (Tube No. K-4)-----	117
Figure 14. Photograph of Titanium-MHT KORODENSE Tube (Tube No. K-5)-----	118
Figure 15. Schematic Representation of Procedure Used to Find U_n -----	119
Figure 16. Schematic Representation of Procedure Used to Find Sieder-Tate Parameter-----	120
Figure 17. Schematic Representation of Procedure Used to Find Sieder-Tate Coefficient C_i , h_i and h_o -----	121
Figure 18. Photograph of Condensation on Low Pitch TURBOTEC Tube (No. T-3a) at a Cooling Water Velocity of 3m/s-----	122

Figure 19.	Photograph of Condensation on Low Pitch TURBOTEC Tube (No. T-3a) Showing Effect of Tube Vibration at a Cooling Water Velocity of 4m/s-----	123
Figure 20.	Corrected Overall Heat Transfer Coefficient Versus Cooling Water Mass Flow Rate for Smooth Tubes-----	124
Figure 21.	Corrected Pressure Drop Versus Cooling Water Mass Flow Rate for Smooth Tubes-----	125
Figure 22.	Wilson Plot for Smooth Tubes-----	126
Figure 23.	Inside Nusselt Number Correlation Versus Reynolds Number for Smooth Tubes-----	127
Figure 24.	Fanning Friction Factor Versus Reynolds Number for Smooth Tubes-----	128
Figure 25.	Tube Performance Factor, $2j/f$, Versus Reynolds Number for Smooth Tubes-----	129
Figure 26.	Corrected Overall Heat Transfer Coefficient, U_c , Versus Cooling Water Mass Flow Rate for TURBOTEC Tubes-----	130
Figure 27.	Corrected Overall Heat Transfer Coefficient, U_c , Versus Cooling Water Mass Flow Rate for KORODENSE Tubes-----	131
Figure 28.	Uncorrected Overall Heat Transfer Coefficient, U_n , Versus Cooling Water Velocity for Tube K-5 Compared with Data of Cunningham and Milne [26]-----	132
Figure 29.	Corrected Pressure Drop Versus Cooling Water Mass Flow Rate for TURBOTEC Tubes-----	133
Figure 30.	Corrected Pressure Drop Versus Cooling Water Mass Flow Rate for KORODENSE Tubes-----	134
Figure 31.	Wilson Plot for TURBOTEC Tubes-----	135
Figure 32.	Wilson Plot for KORODENSE Tubes-----	136
Figure 33.	Inside Nusselt Number Correlation Versus Reynolds Number for TURBOTEC Tubes-----	137
Figure 34.	Inside Nusselt Number Correlation Versus Reynolds Number for KORODENSE Tubes-----	138

Figure 35.	Fanning Friction Factor versus Reynolds Number for TURBOTEC Tubes-----	139
Figure 36.	Fanning Friction Factor Versus Reynolds Number for KORODENSE Tubes-----	140
Figure 37.	Tube Performance Factor, $2j/f$, Versus Reynolds Number for TURBOTEC Tubes-----	141
Figure 38.	Tube Performance Factor, $2j/f$, Versus Reynolds Number for KORODENSE Tubes-----	142
Figure 39.	Augmented to Smooth Tube Surface Area Ratio ($R_{ext} = 0$) Versus Reynolds Number-----	143
Figure 40.	Augmented to Smooth Tube Surface Area Ratio ($R_{ext} \neq 0$) Versus Reynolds Number-----	144
Figure 41.	Comparative Effect of Tube Pitch (Helix Angle) on Both Inside and Outside Heat Transfer Coefficients (for Constant Groove Depth)-----	145

NOMENCLATURE

A	Area (m^2)
Ac	Cross sectional area of test section (m^2)
c_p	Specific heat ($kJ/kg^{\circ}C$)
D	Diameter (m)
e	Tube groove depth (mm)
f	Fanning friction factor
Fc	Flow calibration factor
G	Flow rate per unit area ($kg/m^2 sec$)
g_c	Gravitational constant ($kg m/N sec^2$)
h	Heat transfer coefficient ($W/m^2^{\circ}C$)
HA	Helix Angle (degrees)
h_{fg}	Latent heat of vaporization ($W sec/kg$)
ID	Inside diameter (mm)
j	j factor in Colburn Analogy ($StPr^{2/3}$)
k	Thermal conductivity ($W/m^{\circ}C$)
K	Flow abrupt entrance and exit coefficient
L	Length of test tube (m)
LMTD	Log mean temperature difference ($^{\circ}C$)
\dot{m}	Mass flow rate of cooling water (kg/sec)
M	Slope of Wilson Plot output from linear regression program
Nu	Nusselt number = hD/k
p	Tube spiral pitch (mm)
P	Pressure (kPa)
Pr	Prandtl number = $\mu c_p/k$
Pw	Wetted perimeter (mm)

Q	Heat flow rate (W/sec)
\dot{Q}	Volumetric flow rate (ℓ/m)
R	Thermal resistance ($m^2 \text{C}/W$)
Re	Reynolds number = DG/μ
St	Stanton number = $Nu/RePr$
t	Wall thickness (mm)
T	Temperature ($^\circ\text{C}, ^\circ\text{K}$)
Tc	Temperature of cooling water ($^\circ\text{C}$)
TPF	Tube performance factor = $2j/f$
U	Overall heat transfer coefficient ($\text{W}/m^2 \text{C}$)
v	Water velocity (m/sec)
V	Volume (m^3)
Wp	Pumping power (kW)
X	x axis input to linear regression program
Y	y axis input to linear regression program

GREEK SYMBOLS

Δ	Differential
μ	Dynamic viscosity ($\text{kg}/\text{m hr}$)
ρ	Fluid density (kg/m^3)

Subscripts

a	Augmented
b	Fluid at the bulk temperature in $^{\circ}\text{C}$
br	Fluid at the bulk temperature in $^{\circ}\text{K}$
c	Corrected
cn	Contraction
e	Expansion
ext	External
f	Film
h	Hydraulic
i	Inside, or inlet
m	Measured
n	Nominal
o	Outside, or outlet
s	Smooth
TS	Test section
v	vapor
w	wall

SI to English Conversions

h	$1 \text{ W/m}^2 \text{C} = 0.1761 \text{ BTU/hr ft}^2 \text{F}$
k	$1 \text{ W/m}^2 \text{C} = 0.5778 \text{ BTU/hr ft}^2 \text{F}$
c _p	$1 \text{ kJ/kg}^\circ\text{C} = 0.23884 \text{ BTU/lbm}^\circ\text{F}$
Q	$1 \text{ W/sec} = 9.4781 \times 10^{-4} \text{ BTU/sec}^2$
μ	$1 \text{ kg/m hr} = 2419.2 \text{ lbm/ft hr}$
ρ	$1 \text{ kg/m}^3 = 0.06243 \text{ lbm/ft}^3$
P	$\text{Pa} = 1.45038 \times 10^{-4} \text{ lbf/in}^2$
T	$^\circ\text{C} = 5/9 (^\circ\text{F} - 32)$
	$^\circ\text{K} = 5/9 ^\circ\text{R}$
L	$1 \text{ m} = 3.2808 \text{ ft}$
A	$1 \text{ m}^2 = 10.7639 \text{ ft}^2$

ACKNOWLEDGEMENT

The work presented here has been supported by Mr. Charles Miller, Naval Sea Systems Command, Code 0331.

Any work of this sort necessarily represents the influence of many people. I am especially indebted to Professor Paul J. Marto, my thesis advisor, for his support and patient guidance in helping me overcome even the smallest obstacles.

A special note of appreciation is extended to Mr. James Selby, Mr. Thomas Christian and Mr. Ken Mothersell for their technical assistance, and Mrs. Marty Delgado for her deciphering and typing talents.

The assistance and cooperation of Mr. Bruce Henderson and Mr. James Withers of Wolverine Tube Division of Universal Oil Products, and Mr. Robert Perkins and Mr. Richard Siebers of Spiral Tubing Corporation is gratefully acknowledged.

The Graphics and Photographic Divisions of the Naval Postgraduate School Educational Media Department are to be recognized for their special efforts in helping me produce many of the figures in this thesis.

I wish to thank my family for their enthusiastic support and understanding. Their constant encouragement allowed me to bring this project to completion.

I. INTRODUCTION

A. BACKGROUND INFORMATION

Ship design has become an increasingly integrated process over the past few years. Systems approaches are being utilized that require attention to the entire complex of communications, combat and engineering equipment to be carried within a desired hull form. The desire to obtain maximum operational efficiency is no longer dependent upon hull design alone. Every system is reviewed for possible reductions in manufacturing costs as well as weight and space savings. Efforts to achieve these reductions in naval steam power plants must include the steam condenser, which has traditionally been overdesigned. Application of enhanced heat transfer methods, such as tube surface geometry changes or promotion of dropwise condensation, would allow for reduction in condenser size with perhaps a resulting savings in weight and cost. Enhanced heat transfer methods would also permit lower condenser pressures to be achieved, thus reducing operating costs by saving fuel.

Investigation of condenser design processes by Search [1], indicated that with the use of computer methods, enhanced heat transfer techniques in marine condensers can increase heat loads, at constant pumping power, by up to 50 percent. Search concluded that enhancement methods could decrease condenser weight and cost for constant pumping power and constant heat

load as compared to a conventional condenser design under the same conditions. Savings of up to 40 percent in size and weight were reported depending upon enhancement technique.

In recent years many research efforts have been directed to the study of heat transfer enhancement techniques and their application to heat exchanger design. Bergles [2] has recently summarized a wide variety of tests conducted to study the behavior and performance characteristics of convective heat transfer enhancement techniques both with single phase as well as two phase processes. He categorized enhancement techniques as passive (i.e., enhanced tubes) or active (i.e., surface vibration).

A variety of studies have been conducted pertaining to condenser applications. Palen, Cham and Taborek [3] conducted tests with TURBOTEC tubes manufactured by Spiral Tubing Corporation. Bundle configuration tests were designed to compare the performance of TURBOTEC tubes to that of smooth tubes. The test bundle had 196 25.4 mm outside diameter tubes arranged in 16 vertical rows. Steam pressures of 379 kPa and 724 kPa on the shell side of the condenser and bundle cooling water flow rates of 47.9 to 100.8 kg/sec on the tubeside were used. Average cooling water bulk temperatures ranged from 118.3 to 171.1 °C. The experimental results showed that for a given Reynolds number, the friction factor for a TURBOTEC tube is from 10 to 15 times that of a smooth tube. On the basis of bundle performance, the heat transfer rate was increased by a factor of 2.5 comparing the TURBOTEC tubes to smooth tubes.

Young, Withers and Lampert [4] conducted bundle comparison tests of smooth tubes to KORODENSE tubes manufactured by the Wolverine Tube Division of Universal Oil Products (UOP). Two sizes of tubes were tested: 15.9 mm outside diameter copper tubes and 25.4 mm outside diameter 90-10 copper-nickel tubes. Tubes were tested in a bundle configuration with three vertical rows, with either 1 to 9 or 1 to 7 tubes per vertical row. The middle row was offset such that the tubes formed an equilateral triangular pitch. Steam temperatures of 37.8°C and 100°C were used for the tests. Cooling water velocity through each tube was varied from about 0.91 m/sec to 1.98 m/sec. Under isothermal conditions, the tubeside pressure drop for the KORODENSE tubes was five times that of the smooth tubes for both sizes of tubes. The inside, water-side, heat transfer coefficient for the 25.4 mm KORODENSE tube was 2.2 times that of the smooth tube, while the 15.9 mm KORODENSE tube's value was 2.7 times that of the smooth tube. Enhancement of the outside, steam-side, heat transfer coefficient showed a 30 to 40 percent increase over that of a smooth tube. Catchpole and Drew [5] conducted tests on five radially grooved tubes. In these tests, steam was supplied at 13.79 kPa and the cooling water velocity was maintained at 3.05 m/sec. The tubes could either be tested in a single tube arrangement or as a bundle. All heat transfer coefficients and friction factors were calculated as if the tube being tested were a standard plain tube. All five tube geometries tested yielded a combined improvement of

approximately 40 percent in the overall heat transfer coefficient when compared to a smooth tube. The percentage increase in the friction factor of the test tubes over a smooth tube ranged from 33 percent to 264 percent.

Newson and Hodgson [6] condensed steam at atmospheric pressure on single vertical tubes. Combs [7] conducted tests on a single vertical fluted tube for ammonia condensation. Tests on single vertical fluted tubes were conducted also by Combs, Mailen and Murphy [8] utilizing six different fluorocarbons and one hydrocarbon as the working fluids.

In order to allow for comparison of enhanced tube types with a single apparatus under identical conditions, and alleviate the confusion of attempting to compare results obtained under widely varying test procedures and physical environments, a test facility was designed and initial construction begun by Beck [9] at the Naval Postgraduate School that permits testing of a single, horizontally mounted condenser tube in a dummy tube bundle matrix. Completion of construction and testing of this condenser was done by Pence [10]. Pence's tests on a smooth copper-nickel tube indicated that the facility was technically sound. Using this facility, Reilly [11] conducted tests on enhanced tubes manufactured by General Atomic Company. Three General Atomic spirally fluted aluminum tubes with an outside diameter of 15.9 mm were tested. Each tube had a different helix angle of 30, 45 and 60 degrees. Steam at a pressure of 20.7 kPa was supplied to the test condenser. The enhanced tube was

cooled by water on the inside at velocities of 0.91 to 7.62 m/sec. Friction factor increases of 10 times that for a smooth tube were observed. The overall heat transfer coefficient of the enhanced tubes was as much as 1.75 times the corresponding smooth tube value for the same mass flow of cooling water. Inside heat transfer coefficients were observed to increase by about a factor of 3 while the outside heat transfer coefficients decreased by 10 to 29 percent when compared to smooth tube values. Reilly's tests of smooth copper-nickel and aluminum tubes confirmed the results of Pence, and his work with General Atomic tubes provided the basis for further experiments with enhanced tubes.

B. GOALS OF THIS WORK

The purpose of this thesis was then:

1. to determine the heat transfer and pressure drop performance characteristics of four different spirally fluted TURBOTEC tubes manufactured by Spiral Tubing Corporation,
2. to determine the heat transfer and pressure drop performance characteristics of five different spirally corrugated KORODENSE tubes manufactured by Wolverine Tube Division of Universal Oil Products, Incorporated,
3. to compare each type of enhanced tube's performance to smooth tube operation and to results of other research efforts on similarly enhanced tubes,
4. to estimate if any of these tubes would be suitable for naval condenser use, and

5. to identify what geometrical tube design parameters may be important in enhancing the overall heat transfer coefficient.

II. EXPERIMENTAL FACILITY

A. TEST FACILITY

The test facility is seen in Figure 1. As mentioned earlier, the layout was designed by Beck [9] and built and tested by Pence [10]. Operational tests of enhanced tubes manufactured by the General Atomic Company were conducted by Reilly [11]. A detailed description of the components used in the various systems may be found in these reports. Only a general description of the various systems will be found within this report. Particular attention however will be focused on the experimental tubes, their construction and their location within the test section. Calibration procedures for components requiring calibration are outlined by Reilly [11].

B. STEAM SYSTEM

The steam system is shown in Figure 2. The boiler is an electrically heated Fulton Boiler which produces saturated steam at 45.4 kg/hr. The steam leaves the boiler via a 19.1 mm diameter line and the boiler-isolation valve (MS-1). The water contained in the steam is removed by the steam separator. The steam continues through the system past a flowmeter and through the throttle valve (MS-3) where the pressure is reduced. The steam next passes through the desuperheater wherein water from

the feed system is injected in order to remove some of the sensible heat from the steam. The steam continues into the test condenser where part of it is condensed on the test tube. The steam not condensed is collected in the vapor outlet and sent to the secondary condenser wherein the latent heat of vaporization is removed. If the boiler fails, steam may be provided via the house-steam-cross-connect valve (MS-2). Steam could be routed around the test condenser to the secondary condenser via the bypass valve (MS-4). All steam lines (except the section downstream of MS-3, see [10]) were insulated with 25.4 mm thick fiberglass insulation.

C. TEST CONDENSER

The test condenser is shown in Figures 3, 4, and 5. Steam enters via the top. It then passes through the expansion section over the baffle separators, and through three layers of 150 mesh screen and a flow straightener into the tube bundle. The condensate collects at the bottom of the test condenser where it flows through two 12.7 mm diameter lines to the hotwell.

The viewing windows, shown in Figure 3 and Figure 4, allow viewing of the condensation process. Two types of pyrex glass windows were used. One type was a standard pyrex glass plate 12.7 mm thick. The second type of window was an Owens-Corning pyrex glass with a transparent electrically conducting coating applied over one surface. A Lambda power supply set at 20 VDC

and 2.2 Amp was used with this window to supply power to the electrically conducting surface to minimize fogging effects.

The tube sheet arrangement is as seen in Figure 5. There are eight 15.9 mm OD, 18 gauge, 90-10 copper-nickel tubes arranged in a typical condenser configuration, with a spacing to diameter ratio (S/D) of 1.5, around a single test tube. The test tube is the only tube with water passing through it. This arrangement was selected to best simulate the steam flow conditions in an actual condenser.

The test condenser is insulated with a 51 mm thick sheet of Johns-Manville Aerotube insulation.

D. CONDENSATE AND FEEDWATER SYSTEMS

The condensate and feedwater systems are shown in Figure 6. The test condenser hotwell collects the condensate from the test tube, while the secondary condenser hotwell collects the condensate from the secondary condenser. Valve C-1 allows isolation of the test condenser hotwell so the condensate mass from the test condenser may be measured. Valve C-4 is a vent valve between the test condenser hotwell and the test condenser. The condensate is pumped from the hotwells to the feedwater tank by the condensate pump. The feed pump routes the water from the feed tank to the boiler via the solenoid-controlled valve FW-3, a hot-water filter, and the boiler-isolation valve, FW-4.

The feedwater temperature is maintained between 54.4°C and 60.0°C by thermostat controlled heaters. This reduces

fluctuations in the boiler output and provides a source of water at a temperature near saturation for the desuperheater.

If house steam is used, the condensate is returned to the house system via C-3.

The condensate lines are insulated with 19.1 mm thick Johns-Manville Aerotube insulation. The feedwater lines are insulated with 12.7 mm thick fiberglass insulation.

E. COOLING WATER SYSTEM

The cooling water system is a partially-closed system as shown in Figure 7. The water is pumped from the supply tank via a 5.6 kw pump. The water is routed to the test tube via one of two rotameters. A low flow rotameter allows up to 5.6 l/m to flow through the test tube, while a high flow rotameter permits up to 71.2 l/m. The water returns to the supply tank via a dry cooling tower. The dry cooling tower was constructed using four large plate/fin radiators connected in series. The water was directed through the radiators and outside air was forced over the cooling surface by a centrifugal fan.

The bypass-rotameter, downstream of CW-C, is provided to permit an increased volume of water to flow through the cooling tower.

The system piping was reduced from 25.4 mm to 15.9 mm diameter (approximate OD of all test tubes) at a distance of approximately 0.76 m ahead of the test condenser to insure fully developed flow at the test-tube entrance. Pressure taps

were installed in the permanent piping at the ends of the test tube (see Figure 8) to permit the measurement of the overall pressure drop.

The cooling water lines were insulated with 25.4 mm thick Johns-Manville Aerotube insulation.

F. SECONDARY SYSTEMS

1. Vacuum System

The vacuum in the test condenser is maintained by a mechanical vacuum pump and a vacuum regulator which induces an air leak into the vacuum line. A cold trap at the inlet of the vacuum pump forces incoming vapor to pass over a system of refrigerated copper coils. This is to remove entrained water from the vacuum line and prevent moisture contamination of the vacuum pump oil. The vacuum pump outlet is vented through a roof exhaust fan to avoid a health hazard from breathing any oil vapor that may be exhausted by the pump.

2. Desuperheater

The desuperheater removes sensible heat from the superheated steam by injecting feed water at about 60°C. The feedwater flow into the desuperheater is controlled by valve DS-1 and measured by a rotameter. The excess water is collected in a tank, located below the desuperheater, and returned to the feedwater tank periodically during the experimental runs.

G. INSTRUMENTATION

1. Flow Rates

Fulton rotameters were used to measure the flow rate of water in the cooling water system and the desuperheater, while an Ellison Annubar and a differential water manometer were used to determine steam flow.

2. Pressure

Several different types of pressure measurement devices were used in this facility. They were: a Bourdon tube pressure gauge which was used to measure boiler pressure, a compound gauge which was used to measure the secondary condenser pressure, an absolute pressure transducer and a 760 mm mercury manometer which were used to measure the test condenser pressure, and a 3.6 m mercury manometer which was used to measure the cooling water pressure drop across the test tube.

3. Temperature

There were three types of thermocouples used in this facility. Stainless steel sheathed, copper-constantan thermocouples were used as the primary temperature monitoring devices. Eleven temperatures required for data reduction were measured using these devices. Table I lists the locations monitored. Figure 2 shows the location of six vapor space thermocouples. Cooling water thermocouples were located as shown in Figure 7.

Teflon coated copper-constantan thermocouples were used as secondary measuring devices. Table II lists the locations monitored using these thermocouples. An iron-constantan thermocouple was used to measure the boiler temperature.

4. Data Collection and Display

An autodata collection system was utilized to record and display the temperatures in degrees Celsius obtained from the primary thermocouples and to record and display the pressure in cm Hg inside the test condenser. See Table I for channel numbers of the temperature monitoring devices.

A 28 channel digital pyrometer was utilized to display the temperatures obtained from the secondary thermocouples and a single channel pyrometer displayed the temperature from the iron-constantan thermocouple. See Table II for channel numbers.

H. TEST TUBES

The enhanced tubes tested during this study were manufactured by the Spiral Tubing Corporation, with a trade name of TURBOTEC, and the Wolverine Tube Division of Universal Oil Products (UOP), with a trade name of KORODENSE. Each had an overall length of 1.22 m and an enhanced section of 0.914 m. All were helically spiraled along the enhanced section. The method of spiral development varied however with manufacturer.

Four types of TURBOTEC tubing were made by the Spiral Tubing Corporation. These tubes were three-start, helically

fluted, with flute pitch determining tube type. All TURBOTEC tubes were manufactured of copper (Alloy 122). The tubes were formed by externally making a set of equally spaced dimples at one end of a smooth tube. The number of dimples determines the number of flutes that will be produced. The tube is placed in a mandrel lathe under slight compression at one end. As the tube is twisted, it is allowed to draw-in on itself (self-shorten) until the desired pitch is obtained. The amount of self-shortening determines tube pitch.

Figures 9, 10 and 11 show close-up views of the High, Medium and Low pitch tubes respectively. The Variable pitch tube (not shown) varies in appearance from that of a High pitch tube at one end to that of a Low pitch tube at the other. There is no special significance attached to the Variable pitch tube. It was made simply to see if tube pitch could be changed during the forming process.

Two types of KORODENSE tubing were made by the Wolverine Tube Division of UOP. All tubes were single-start helically corrugated tubes formed by passing a rotating smooth tube under a mechanism designed to indent the tube to the desired groove depth. Pitch is determined by the rate at which the tube is drawn through the grooving mechanism. The deeper grooved tubes are designated as Maximum Heat Transfer (MHT) tubes. Shallower grooved tubes are designated as Low Pressure Drop (LPD) tubes. Three MHT tubes were made: one of 90/10 Copper-Nickel, one of 3003-Aluminum and one of commercially pure Titanium. Two LPD tubes were made: one of 90/10 Copper-Nickel and one of 3003-Aluminum. Figures 12, 13 and 14 show

close-up views of the 90/10 Copper-Nickel-MHT, the 3003-Aluminum-MHT and the Titanium-MHT respectively.

A summary of all tubes tested is provided in Table III. Special characteristics of the TURBOTEC and KORODENSE tubes are listed in Table IV.

III. EXPERIMENTAL PROCEDURES

A. INSTALLATION AND OPERATING PROCEDURES

1. Preparation of Condenser Tubes

Thermocouples were installed on each tube to measure the wall temperature. TURBOTEC tubes have a larger diameter along the enhanced section than along their smooth ends, and required different installation procedures than KORODENSE tubes whose outside diameter is not changed by the enhancement process. Standardized procedures given by Reilly [11] were followed for thermocouple mounting and tube installation.

Prior to any run, the condenser tubes had to be prepared to insure filmwise condensation. Exterior and interior surfaces were cleaned to insure proper wetting characteristics and to insure that all deposits were removed. Copper and copper-nickel tubes were prepared in accordance with the procedure given in Pence [10]. Aluminum tubes were prepared in accordance with the procedure given in Reilly [11]. To clean and prepare the titanium tube, a chemical cleaning procedure was used which was a modification of a procedure used in descaling titanium prior to acid pickling [12]. The steps in this cleaning process are as follows:

- a. Swab tube surface with acetone to remove grease.
- b. Using a 1.91 cm test tube brush, brush the inside surface of the tube with a 50 percent sulfuric

acid solution. Also apply this solution to the outside surface of the tube.

- c. Rinse inside and outside of tube with tap water.
- d. Apply a 50 percent solution of sodium hydroxide (heated to 95°C) to the outside surface of the tube.
- e. Rinse the tube with tap water.
- f. Rinse thoroughly with distilled water.

2. System Operation and Steady State Conditions

Pence [10] developed and Reilly [11] modified a detailed set of operating procedures for this system. They are included, with minor changes, in this report as Appendix A.

In general it takes about three hours from initial light off until steady state conditions are established. The feedwater is heated up to 60°C by energizing the feed tank heaters and recirculating the feedwater. After installation of the test tube is complete, the vacuum system can be activated. The data collection system is programmed, including setting the date and time in accordance with reference [13]. The cooling water system is placed in operation. The 71.2 l/m rotameter is set at about 50 percent flow to allow adequate venting of both legs of the 3.66 meter manometer. The rotameter is then reset to the lowest flow point for system operation. The steam system can now be placed into operation.

Steady state conditions must be established prior to data collection. To determine this, two parameters were monitored. They were the cooling water inlet temperature and the steam vapor temperature. The cooling water inlet temperature did not rise more than $0.6^{\circ}\text{C}/\text{hr}$. The steam vapor temperature did not vary more than 3.3°C between the six vapor thermocouples in the condenser or did the change in temperature at an individual thermocouple exceed $0.3^{\circ}\text{C}/\text{min}$. The steaming conditions and cooling water flow conditions remained constant while establishing steady state conditions. The time for the system to stabilize was generally about one hour which is in agreement with that reported by Reilly [11].

3. Maintenance Procedures

Periodically, the systems required various forms of maintenance. Following each run, the boiler received two bottom blow downs to remove any sediment that may have settled. The supply tank in the cooling water system required occasional refilling. Treated tap water which ran through a commercially rented resin bed was used to reduce the amount of contaminants in the water that could deposit on the tubes. The filter in the feedwater required changing approximately every three months to prevent low boiler levels due to lack of feedwater. The condenser glass window required cleaning after approximately five runs. This was true whether using the heated glass or the standard pyrex glass. Prior to reinstalling the pyrex glass, a light coating of Glycerol Reagent

ACS HOCH₂CHOHOH₂OH, was applied to the inside surface to enhance the viewing of the condensation process.

B. DATA REDUCTION PROCEDURES

Data obtained in this thesis were evaluated using the smooth inside diameter as the characteristic flow dimension. This method presents the data in such a way as to make it useful to the designer. The data was not reduced in terms of a conventional hydraulic diameter because of the widely different geometrical shapes of the tubes and the corresponding difficulty in measuring such a hydraulic diameter. Furthermore, there is recent evidence that a modified hydraulic diameter may be more appropriate in describing heat and momentum transfer in turbulent flow than the conventional hydraulic diameter defined as $4 Ac/Pw$ [14].

As mentioned above, to meet the condenser designer's needs, it was felt that the data should be reduced using the smooth end diameter following the procedure of Reilly [11]. This would allow a direct substitution of an enhanced tube for a smooth tube and is especially important when considering the comparison of a wide variety of tube types. In addition, a nominal area was defined. The nominal area was based on the outside surface area of a 15.9 mm OD smooth tube.

Appendix B, the sample calculations, is a complete listing of the equations used to evaluate the data. Appendix C is a derivation of the probable error in the data reduction equations, followed by a sample error analysis for the

KORODENSE Copper-Nickel-MHT tube, (No. K-2), Run 12.

1. Overall Heat Transfer Coefficient

The method employed to arrive at the overall heat transfer coefficient is straightforward and similar to that employed by many researchers in the past.

The heat transfer rate to the cooling water is given by

$$Q = \dot{m} c_p (T_{c_o} - T_{c_i}) . \quad (1)$$

The heat transfer rate can also be found from the overall heat transfer coefficient by

$$Q = U_n A_n LMTD , \quad (2)$$

where

$$LMTD = \frac{(T_v - T_{c_i}) - (T_v - T_{c_o})}{\ln \left(\frac{T_v - T_{c_i}}{T_v - T_{c_o}} \right)} . \quad (3)$$

After combining equations (1), (2) and (3) it is found that

$$U_n = \frac{\dot{m} c_p}{A_n} \ln \left(\frac{T_v - T_{c_i}}{T_v - T_{c_o}} \right) . \quad (4)$$

A schematic illustration of the procedures to arrive at U_n is shown in Figure 15.

To remove the effect of the tube wall material, a corrected heat transfer coefficient is found from

$$U_c = \frac{1}{\frac{1}{U_n} - \frac{1}{R_w}}, \quad (5)$$

where R_w is the calculated wall resistance.

2. Inside Heat Transfer Coefficient

The Nusselt number on the inside is found from the Sieder Tate relationship, found in Holman [15] as:

$$Nu = \frac{h_i D_i}{k_b} = C_i Re^{0.8} Pr^{1/3} (\mu/\mu_w)^{0.14}. \quad (6)$$

With this well-known correlation, all fluid properties are evaluated at the average bulk temperature of the cooling water. The effect of the wall temperature is only felt by a viscosity ratio $(\mu/\mu_w)^{0.14}$. In the above equation, C_i is referred to as the Sieder Tate coefficient which is normally expressed as between 0.023 - 0.027 for smooth tubes. The remainder of the right hand side of the above equation $(Re^{0.8} Pr^{1/3} (\mu/\mu_w)^{0.14})$ will be referred to as the Sieder Tate parameter, and the procedure for arriving at this value is illustrated schematically in Figure 16. The Wilson plot is used to arrive at the value of the Sieder Tate coefficient. The Wilson plot was developed in 1915 by Wilson [16], and has been modified by several researchers since. The procedure used in this research was developed by Briggs and Young [17].

The Wilson plot is merely a plot of $1/U_n$ versus the inverse of the Sieder Tate parameter which should be a straight line when varying the cooling water velocity. The reasoning behind the Wilson plot can be seen in the following development.

The overall heat transfer coefficient can be written as:

$$\frac{1}{U_n} = \frac{1}{\frac{D_o}{D_i h_i} + R_w + \frac{1}{h_o}} . \quad (7)$$

The inverse of equation (7) is:

$$\frac{1}{U_n} = \frac{D_o}{D_i h_i} + R_w + \frac{1}{h_o} . \quad (8)$$

If $(R_w + \frac{1}{h_o})$ is assumed to be constant, and equation (6) is

solved for h_i in terms of the Sieder Tate parameter, equation (8) can be rewritten as:

$$\frac{1}{U_n} = \frac{D_o}{C_i k_b} Re^{-0.8} Pr^{-1/3} (\mu/\mu_w)^{-0.14} + B , \quad (9)$$

where $B = R_w + \frac{1}{h_o} = \text{constant}$.

The form of equation (9) is then exactly that of a straight line,

$$Y = MX + B , \quad (10)$$

where:

$$Y = \frac{1}{U_n} , \quad (10a)$$

$$X = \frac{1}{\text{Sieder Tate parameter}} , \text{ and} \quad (10b)$$

$$M = \frac{D_o}{C_i k_b} . \quad (10c)$$

The values of $1/U_n$ and the Sieder Tate parameter are obtained by varying the water velocity and holding the other parameters, such as water temperatures, steam vapor

temperatures and condenser tube wall temperature, nearly constant. When $1/U_n$ is plotted versus $Re^{-0.8} Pr^{-1/3} (\mu/\mu_w)^{-0.14}$, a linear regression subroutine [18] fits these points to a straight line and then solves for the slope, M, and the intercept, B. Knowing the slope, M, the Sieder Tate coefficient C_i can be found from equation (10c). The inside heat transfer coefficient, h_i , is then found from equation (6).

Once the inside heat transfer coefficient, h_i , is known, then the Nusselt number can be solved for in equation (6), to find the Stanton number,

$$St = \frac{Nu}{RePr} = \frac{h}{c_p G} . \quad (11)$$

The cooling water properties (ρ , μ , k , c_p , and Pr) are solved for as shown in Appendix B. Appendix B also demonstrates the procedure for arriving at the water viscosity evaluated at the condenser tube wall, μ_w .

3. Outside Heat Transfer Coefficient

The outside heat transfer coefficient, h_o , can now be found from equation (7) knowing U_n , h_i and R_w . Figure 17 schematically illustrates the various steps outlined above.

4. Friction Factor

The friction factor for the test tube is found from:

$$f_a = \frac{(\rho_b)(\Delta P_{TS})(2g_c)}{4(L_{TS}/D_i) G^2} . \quad (12)$$

The variables used in equation (12) are solved for as shown in Appendix B, while the inside diameters are listed in Table III. ΔP_{TS} , however, is reduced from the measured pressure drop outlined below.

ΔP_{TS} is the pressure drop in the enhanced section of the test tube. The measured pressure drop, ΔP_m as seen in Figure 8, is taken over the entire tube length, a distance of 1.299 m. Since the enhanced section is only 0.914 m long, the pressure drop over each of the smooth ends must be subtracted off of the measured pressure drop. This is done by calculating the friction factor in the smooth ends using:

$$f_s = \frac{0.079}{Re^{0.25}} \text{ for } Re < 30,000 , \quad (13)$$

or

$$f_s = \frac{0.046}{Re^{0.2}} \text{ for } Re > 30,000 . \quad (14)$$

The smooth-end-section pressure drops can then be calculated from,

$$\Delta P_s = \frac{(f_s)(4)(L_s/D_i)(G^2)}{(\rho_b)(2g_c)} \quad (15)$$

The cross sectional flow area of the enhanced section of the test tube is less than the cross sectional flow area of the smooth end of the tube. Therefore, the water undergoes an expansion and a contraction at the exit and entrance to the enhanced section of the tube. Associated with the expansion and contraction processes are certain irreversible losses which cause additional pressure drops to occur. These pressure

drops must also be subtracted off of the measured pressure drop and are estimated following the calculational procedure as shown in reference [19]:

$$\Delta P_{e/cn} = \rho v_{TS}^2 (K_e + K_{cn}) . \quad (16)$$

Since the variations in the contraction and expansion coefficients K_{cn} and K_e are slight over the range of Reynolds numbers used, an average of these values was used in equation (16).

Therefore, ΔP_{TS} is found using equations (15) and (16):

$$\Delta P_{TS} = \Delta P_m - \Delta P_s - \Delta P_{e/cn} , \quad (17)$$

and the friction factor for the test section is solved for in equation (12).

5. Performance Criteria

To compare the enhanced, or augmented tubes with the smooth tube, it was necessary to use some meaningful performance criteria. The following procedures are similar to those outlined by Reilly [11].

a. Colburn Analogy

Using the Colburn Analogy, as found in reference [20], provided one such criterion. Using this analogy, the heat transfer performance is compared to the friction factor performance as seen by the relation:

$$j = StPr^{2/3} = f/2 . \quad (18)$$

b. Surface Area Ratios

Bergles [21] outlines several performance criteria based on the inside heat transfer coefficients by solving for the ratio of augmented to smooth tube surface areas while holding various parameters constant.

(1) External Resistance Equal to Zero.

(a) Constant Heat Load with Increasing Pumping Power. If the external thermal resistance is set equal to zero, and the pumping power is allowed to increase, one such ratio is defined by

$$\frac{A_a}{A_s} = \frac{h_s}{h_a} = \frac{\text{Nu}_s/\text{Pr}^{1/3}(\mu/\mu_w)^{0.14}}{\text{Nu}_a/\text{Pr}^{1/3}(\mu/\mu_w)^{0.14}} . \quad (19)$$

This assumes that Q , \dot{m} , D_i , T_b and LMTD are constant, and $R_{ext} = R_w + 1/h_o = 0$. In equation (19) the augmented heat transfer coefficient h_a is the value h_i referred to earlier. In this situation, the flow velocities for the smooth and augmented tubes are the same.

(b) Constant Heat Load and Constant Pumping Power. The area ratio defined by equation (19) does not, however, take into account the increase in pressure drop and hence the increase in friction factor caused by enhancement techniques. The increase in pressure drop can be included when evaluating the performance of an enhanced tube compared to that of a smooth tube. Bergles [21] shows this by defining an area ratio for constant pumping power as well as for the conditions defined earlier.

The pumping power is given by:

$$W_p = (\rho v \frac{\pi}{4} D^2) 4 f \left(\frac{L}{D}\right) \left(\frac{v^2}{2g_c}\right)$$

$$= \left(\frac{\rho}{2g_c}\right) (\pi DL) f v^3 , \quad (20)$$

where πDL is the inside surface area for the tube in question. By setting the pumping power of a smooth tube equal to the pumping power of an enhanced tube, it is found that:

$$\frac{A_a}{A_s} = \frac{v_s^3 f_s}{v_a^3 f_a} = \frac{Re_s^3 f_s}{Re_a^3 f_a} . \quad (21)$$

Notice, that in this situation of constant pumping power, the flow velocities and hence Reynolds numbers are different for the smooth and the augmented tube.

The heat flow rate is given by:

$$Q = h_i A_i LMTD_i . \quad (22)$$

Since the heat flow is also assumed to be constant in both the enhanced and smooth tubes, the area ratio can be found

$$\frac{A_a}{A_s} = \frac{h_s}{h_a} = \frac{Nu_s / Pr^{1/3} (\mu/\mu_w)^{0.14}}{Nu_a / Pr^{1/3} (\mu/\mu_w)^{0.14}} . \quad (23)$$

Equation (21) can now be set equal to equation (23) to show:

$$\frac{A_a}{A_s} = \frac{Nu_s / Pr^{1/3} (\mu/\mu_w)^{0.14}}{Nu_a / Pr^{1/3} (\mu/\mu_w)^{0.14}} = \frac{Re_s^3 f_s}{Re_a^3 f_a} . \quad (24)$$

If Nu_s is replaced in the above equation by the Sieder-Tate relationship as found in [15]:

$$Nu_s = 0.027 Re_s^{0.8} Pr^{1/3} (\mu/\mu_w)^{0.14}, \quad (25)$$

and f_s is replaced by equation (14)

$$f_s = \frac{0.046}{Re_s^{0.2}}, \quad (14)$$

equation (24) can be solved for the smooth tube Reynolds number in terms of the augmented conditions:

$$Re_s = \sqrt{\frac{0.027 f_a Re_a^3}{0.046 Nu_a / Pr^{1/3} (\mu/\mu_w)^{0.14}}}. \quad (26)$$

In these expressions,

$$Re_s = \frac{G_s D_i}{\mu} = \frac{\rho D_i v_s}{\mu}, \text{ and} \quad (27a)$$

$$Re_a = \frac{G_a D_i}{\mu} = \frac{\rho D_i v_a}{\mu}. \quad (27b)$$

To find the area ratio, the procedure begins by choosing a value of Re_a . The related quantities f_a and $Nu_a / Pr^{1/3} (\mu/\mu_w)^{0.14}$ are then found from experimental data. Equation (26) is solved for Re_s , and knowing Re_s and f_s from equation (14), equation (24) can be solved for the resulting area ratio.

(2) External Resistance Not Equal to Zero.

(a) Constant Heat Load Constant Pumping Power. Since a sizeable portion of the overall resistance in

a naval condenser could be caused by the wall resistance and the outside thermal resistance, the area ratios as defined by Bergles [21] should be expanded to include these external resistances. If the heat flow is written by equation (2):

$$Q = U_n A_n \text{ LMTD} , \quad (2)$$

and a thin wall thickness is assumed, then the external resistance effects on the area ratio can be included in the analysis. The wall thickness must be assumed to be small since the nominal area is based on an outside diameter of 15.9 mm.

Invoking all of the assumptions made earlier, then the results of the constant pumping power case are again:

$$\frac{A_a}{A_s} = \frac{\frac{v_s^3 f_s}{v_a^3 f_a}}{.} . \quad (21)$$

In addition, constant heat flow results in:

$$\frac{A_a}{A_s} = \frac{U_s}{U_a} . \quad (28)$$

As before, these two area ratios can be set equal, and it is found that:

$$\frac{A_a}{A_s} = \frac{U_s}{U_a} = \frac{\frac{v_s^3 f_s}{v_a^3 f_a}}{.} . \quad (29)$$

As mentioned by Search [1], for smooth tubes, it is found in general that the overall heat transfer coefficient can be

correlated by:

$$U_s = C \sqrt{v_s} = F_1 F_2 F_3 C' \sqrt{v_s} \quad (30)$$

where

C' = empirically determined coefficient

F_1 = cleanliness correction factor

F_2 = material correction factor

F_3 = inlet water correction factor.

Therefore, C is a coefficient which varies with tube size, material and water inlet temperature. Also, from equation (14), it is known that

$$f_s = \frac{.046}{Re_s} \quad . \quad (14)$$

When equations (14) and (30) are substituted into equation (29), together with the use of equation (27a), the smooth tube velocity can be found:

$$v_s = \left[\frac{f_a v_a^3 C}{(U_a)(.046)} \left(\frac{\rho D_i}{\mu} \right)^{1/5} \right]^{1/2.3} \quad . \quad (31)$$

To find the area ratio, the procedure begins by choosing a value of v_a . The related values of U_a and f_a are found from experimental data. Equation (31) is then solved for v_s and this value is used in equation (30) to find U_s . Equation (29) is then solved for the area ratio.

In selecting the values of the constants to substitute into equation (31), the following procedures were utilized:

- (1) U_a was corrected to 21.1°C coolant inlet temperature using the procedure defined in reference [22],

(2) C' was determined by using the values of U_n and v_s for the smooth copper-nickel tube in Run 7, and solving for C' in equation (30) with application of correction factors defined in reference [22]. The value for C' was not a constant over the range of flows observed; therefore, an average value of $C' = 2883$ was computed and used. As mentioned above, C varies for a given tube size, material and water inlet temperature. The related correction factors obtained from reference [23] were applied to the above value of C' as shown in Appendix B, the sample calculations.

(3) The dynamic viscosities used were obtained in the data reduction program at each flow point.

The area ratio equations were added to the data reduction program. The values obtained above using both equations (24) and (29) appear in the table of results for each tube.

6. Data Reduction Computer Program

An existing computer program of Reilly [11] for reduction of data was modified to include the area ratio equations (24) and (29), and to convert the results to SI units. Details of the program may be found in Reilly [11].

IV. RESULTS AND DISCUSSION

A. INTRODUCTION

Table III lists the various runs made and the corresponding tubes used during these tests. Table IV lists special characteristics of the TURBOTEC and KORODENSE tubes. Tables V through XVII contain all the raw data used to evaluate the performance of the enhanced and smooth tubes.

In Table III it can be seen that all runs for tubes K-1 through K-5 were data runs. Run 10 for tube K-3 was not a full data run as the thermocouple measuring tube wall temperature detached about halfway through the run. Therefore, the thermocouple was reattached and the tube was retested during run 13.

Tube T-1 was initially run solely for practice of system operation and not for data. Run 4 was the data run for tube T-1, while runs 18 and 19 were performed to take movies of the alternate flooding and draining phenomena of the condensate. Similar movies were taken to compare this tube to tubes T-3a and T-3b.

Tube T-2 was observed to vibrate visually and audibly at its maximum cooling water flow rates. Tube T-3a was also observed to vibrate during data run 6. The onset of vibration of tube T-3a occurred at much lower cooling water flow rates than for tube T-2. Run 16 was conducted to take movies of this phenomena. Movies were made with varying cooling water

flow rates through the tube to observe the initiation of tube vibration. This was done both with and without steam condensing on the tube. Vibration was observed to begin visually at a cooling water velocity of about 1 m/sec when steam was not supplied to the condenser. With steam supplied however, vibration was not visually detectable until velocities of about 3 m/sec. This was felt to be due to the damping effect of the added mass of the condensate flooding the tube grooves. Audible evidence of the vibration was heard both with and without steam supplied to the condenser at cooling water velocities of about 1.8 m/sec and above.

It was decided to run the Low Pitch TURBOTEC (T-3b) with additional supports to see if the vibration could be controlled, and to observe the effect on tube performance. For run 17 the 1 meter active length of the tube was supported by two circular braces equally spaced such that the active length was reduced to three equal lengths of 1/3 meter each. Again, during this run, movies were made of the condensation process. No vibration was observed either visually or audibly. Copies of the 16 mm movie film showing the vibration phenomena, both with and without condensation taking place, are available on request.

Figures 18 and 19 also illustrate the phenomena mentioned above. As a note of clarification, the reader may wish to refer to Figure 5 while studying Figures 18 and 19. The pictures are views upward between the smooth dummy half-tube and the smooth dummy whole tube below it, such that the

bottom of the enhanced tube can be seen just below the smooth dummy half-tube. Figure 18 shows condensation on tube T-3a. The cooling water velocity is 3 m/sec. A drop of condensate can be seen falling off the tube on the left side of the photograph. On the right side, the condensate can be seen to be building up to form a drop. Notice that all grooves are flooded with condensate. It was also observed that the condensate on the tightly pitched tube T-3 dropped off of the tube between the flute tips. In contrast to this, condensate on the longer pitched tube T-1 was observed to begin drop growth in the groove space between flute tips, but as the drop grew in size it would slide over and drop off of the flute tip. This phenomena is easily observed in the 16 mm movie film, mentioned earlier, and the reader is urged to request a copy of this film if further study is desired. Figure 19 shows a view of condensate on tube T-3a with a higher cooling water velocity of 4 m/sec. The light reflections off the surface of the condensate in the figure are due to surface ripples on the condensate from the vibration.

Tubes S-1 and S-2 were smooth tubes run to ensure that earlier experimental results for smooth tubes could be duplicated. Run 2 for tube S-1a was conducted without properly cleaning the outside of the tube, leaving it with a stained appearance. This tube is designated as "fouled" in Table III. For run 7, the tube was properly prepared in accordance with the procedure outlined by Pence [10], and this tube, S-1b, is designated as "clean" in Table III. Tube S-2

was an additional smooth tube picked at random from a lot of tubes manufactured by Alaskan Copper Works. This tube was observed to have a surface that appeared to have roller marks from the manufacturing process, giving it a "rippled" look, and is designated as such in Table III. The ripples were measured to be about a maximum of 0.03 mm in depth. It should be noted that this tube is not an enhanced tube, and was tested to see if the roller marks would have an effect on the tube's performance when compared to the other smooth tubes mentioned above.

Tube GA-2 was a tube manufactured by General Atomic Company and was one of the tubes tested by Reilly [11]. This tube was re-run here as run 3 which was performed for further practice in system operation and to gain a few data points to confirm the reproducibility of his results.

The computer results of all data runs are provided in Tables XVIII through XXX.

B. SMOOTH TUBE RESULTS

Comparative plots of smooth tube parameters are provided in Figures 20 through 25. Figure 20 shows that the corrected overall heat transfer coefficient versus cooling water mass flow rate of all the smooth tubes matches the results of Reilly [11] within an uncertainty of ± 7 percent. The variation of the corrected overall heat transfer coefficient for tube S-1a "fouled" is related to the variance of the outside heat transfer coefficient seen by comparing the results

shown in Tables XVIII and XIX. The reason for this variance in the "fouled" tube is not clear. It could be that improper preparation of tube S-1a renders this set of data unreliable as evidenced by the variations in the outside heat transfer coefficient.

Comparison of the corrected pressure drop versus cooling water mass flow rate, shown by Figure 21, reveals that the effect of the "ripples" on tube S-2 is carried through to the tube's inside surface. The slight increase of the corrected pressure drop compared to that for tube S-1b "clean" is evident at flow rates above about 0.4 kg/sec and reaches a value of about 6.6 percent at a flow rate of 1.06 kg/sec. This is still seen to be within the uncertainly band, and indicates that this tube does not suffer a severe degradation in performance due to the "rippling."

As seen in Tables XVIII, XIX and XX, the Sieder-Tate coefficient for all of the smooth tubes was about 0.025, which is the same as that reported by Reilly [11], and is within ± 8 percent of the values of .023 or .027, which are most often found in the literature. Figure 22 shows that the linear regression subroutine used to obtain the slope for the Wilson plot fit the S-1b tube (run 7, "clean") data very well. Variations reflect minor changes in the bulk properties of the cooling water. The constancy of the Sieder-Tate coefficient used in the Nusselt relation over the range of flows is further shown in Figure 23.

The effect of the increased corrected pressure drop for tube S-2 "rippled" is also seen in Figure 24, which shows the fanning friction factor versus Reynolds number. At higher Reynolds numbers, tube S-2 is seen to have slightly higher values of friction factor than either tubes S-1a or S-1b.

Figure 25 reflects the use of the Colburn Analogy by the use of a tube performance factor, $2j/f$, versus Reynolds number. In 1883, Reynolds [24] mathematically expressed, for smooth tubes, the analogy between heat transfer and momentum transfer as:

$$St = f/2 \quad . \quad (32)$$

In 1933, Colburn [25] extended this analogy to include Prandtl number effects:

$$StPr^{2/3} = j = f/2 \quad . \quad (33)$$

It can be seen that all of the smooth tubes average about 10 percent higher than the Colburn Analogy, reflecting the uncertainty in the measured Sieder-Tate coefficients.

C. ENHANCED TUBE RESULTS

1. Heat Transfer Coefficients

The corrected overall heat transfer coefficient versus cooling water mass flow rate comparisons are shown in Figures 26 and 27. Figure 26, for the TURBOTEC tubes, shows an

increase of about 100 percent in the corrected overall heat transfer coefficient over the smooth tube value at 0.6 kg/sec for tube T-3a (Run 17), and Figure 27, for the KORODENSE tubes, shows an increase of 46 percent for tube K-5 (Run 14) at the same cooling water mass flow rate. For comparison purposes, Reilly [11] reported an increase of 53 percent in corrected overall heat transfer coefficient for his 45 degree helix angle General Atomic tube at the same cooling water mass flow rate.

Of interest in Figure 26 is the effect of vibration on the TURBOTEC tube performance, as indicated by the solid data points. It can be seen that by comparing tubes T-3a (Run 6) and T-3b (Run 17), there is a significant improvement in the corrected overall heat transfer coefficient when the vibrations do not occur. As indicated earlier in the photographs, these tube vibrations cause the condensate to have surface waves which may hold up the condensate drainage off the exterior of the tube. By adding the additional tube supports, and preventing vibration, the drainage was not affected, leading to higher outside heat transfer coefficients.

Cunningham and Milne [26] reported experimental results of "roped" tubes manufactured by Yorkshire Imperial Metals, Ltd. These are similar in shape to KORODENSE tubes, but are manufactured with differing numbers of indentation (groove) starts. It was found that in geometry, the KORODENSE tube K-5 most closely resembled the "roped" tubes. Figure 28 shows how tube K-5, a 1-start tube, compares to the "roped" tubes of

Cunningham and Milne [26]. The performance of tube K-5 agrees fairly well to the "roped" tubes if the following differences are noted:

(1) differences in wall resistance - tube K-5 was made from Titanium and most likely has a higher wall resistance than that of the "YORCALBRO" alloy used in their tube [26];

(2) differences in steam conditions - steam velocities used with the "roped" tubes are not given by Cunningham and Milne [26] and no comparison can be made with the steam conditions used in these tests; and

(3) the "roped" tube experiments were conducted at atmospheric pressure (101 kPa), while the pressure used throughout these tests was maintained at about 21 kPa.

2. Pressure Drop

Figures 29 and 30 are comparisons of the corrected pressure drop versus cooling water mass flow rate for the enhanced tubes tested. It can be seen that the corrected pressure drops for the enhanced tubes increase at a faster rate than the corrected drops for the smooth tubes. For a cooling water mass flow rate of 0.6 kg/sec, tube T-3a (Run 17), Figure 29, shows a factor of 11 increase in pressure drop over that for a smooth tube while tube K-5 (Run 14), Figure 30, shows a factor of 4 increase. A cause for these increases can be seen by referring to Table IV and Figures 11 and 14. Tube K-5 has the largest helix angle and tightest pitch of the KORODENSE tubes, and tube T-3 has the largest helix angle and

tightest pitch of all the TURBOTEC tubes. These geometries increase the restrictions to internal flow, therefore increasing the pressure drops.

3. Sieder-Tate Parameters

The Wilson plots for the TURBOTEC and KORODENSE tubes are shown by Figures 31 and 32. These are provided to show how well the linear regression subroutine fits the data. Of particular interest are the solid data points shown in Figure 31. These points reflect data affected by vibration of tubes T-2 (Run 5) and T-3a (Run 6). Use of this data would have greatly affected the values obtained for the Sieder-Tate coefficient in an erroneous way. Consequently, the vibration affected data were not used in obtaining a linear regression fit. Figure 33 shows that tube T-3b (Run 17), with an average C_i of $.128 \pm .01$, reflects a factor of about 5 increase over that for a smooth tube, and that it is slightly improved over that for tube T-3a (Run 6). This indicates that the effect of tube vibration may cause deterioration of inside heat transfer as well as the deterioration of outside heat transfer mentioned earlier. From Figure 34, tube K-5 (Run 14), with a C_i of about $.065 \pm .008$, shows a factor of about 2.6 increase over the smooth tube value. These increases presumably are due to increased surface area, turbulence and swirl effects.

4. Friction Factor

The corrected pressure drop results are further reflected by Figures 35 and 36. Here, as expected, the friction

factors for the enhanced tubes are greater than for smooth tubes. Again, tube T-3b (Run 17) shows the largest friction factor overall and tube K-5 (Run 14) shows the largest friction factor for the KORODENSE tubes. Both of these tubes have large helix angles, verifying the effect of helix angle on pressure drop shown with the General Atomic tubes tested by Reilly [11]. The other KORODENSE tubes appear to have friction factors nearer to the smooth tube. For Runs 9 and 13 this is because the low pressure drop (LPD) tubes were used. Tubes for Runs 11 and 12 on the other hand, which are manufactured for maximum heat transfer (MHT), and therefore have deeper indentations, have slightly higher friction factors than LPD tubes. Tube K-5 (Run 14) however, not only has deep indentations but has a significantly smaller pitch (therefore tighter twist) than the other MHT tubes, perhaps causing its higher pressure drop performance.

5. Tube Performance Criteria

a. Colburn Analogy

As shown in section B of this chapter, the Colburn Analogy can be used to define a performance factor that directly relates heat transfer to pressure drop. Comparisons of this tube performance factor ($2j/f$) versus Reynolds number are shown in Figures 37 and 38. The effect of friction factor is seen to dominate heat transfer (i.e., it requires more of a pressure drop increase to get an increase in heat transfer) for all the TURBOTEC tubes which have high friction factors.

This is also true of the KORODENSE tube, K-5 (Run 14). On the other hand, tubes K-1 (Run 9) through K-4 (Run 11) have friction factors near the smooth tube results (Figure 36), and these lower friction factors give higher results in Figure 38 than tube K-5 (Run 14) agreeing closely with the Colburn Analogy. The analogy therefore appears to break down for the deeply grooved TURBOTEC tubes and for the tightly pitched, yet shallower grooved, KORODENSE K-5 tube. The reader should be cautioned that all of the above-mentioned results in Figures 37 and 38 have been obtained using a smooth inside diameter, D_i . If an appropriately defined hydraulic diameter, D_h were used to reduce the data, it is expected that all the tube performance factors would increase, but the relative magnitudes of the performance factors would remain approximately the same.

b. Surface Area Ratios at Constant Heat Loads

Use of surface area ratios as defined by equation (24) provides an additional performance parameter more useful perhaps for the design engineer than the Colburn Analogy. As explained in Chapter III, with this area ratio method, it is essential that the additional frictional resistance of the enhanced tubes be taken into account by evaluating the area ratio for a constant pumping power. Assuming that the external thermal resistance is zero ($R_{ext} = 0$), Figure 39 shows that this area ratio makes all of the enhanced tubes appear very good for condenser use, with tube T-3b showing

the greatest reduction in required surface area. It is also seen that tube GA-2, the 45 degree helix angle General Atomic tube [11], appears to perform very much like tube T-3b. The results of this figure however, are for an external resistance equal to zero and therefore neglect the effect of wall resistance and outside resistance.

Area ratios for a nonzero external resistance can also be found, and are shown in Figure 40. Again, tube T-3b is seen to have the best overall performance. However, tube GA-2 is now seen to fall between the TURBOTEC and KORODENSE tubes, reflecting the effect of external resistance on this tube. It should be noted that the Reynolds numbers used in the surface area ratio figures are Reynolds numbers for existing smooth tube condensers (Re_s). For example, using a cooling water velocity of 2.74 m/sec (the maximum scoop injection velocity as specified in Reference [22]), the related smooth tube Reynolds number is calculated to be about 40,000. Entering Figure 40 with this Reynolds number, it is seen that tube T-3b would allow for approximately a 53 percent reduction in the required surface area.

c. Internal and External Performance

Table XXXI gives ratios of the average Sieder-Tate coefficients for the augmented tube data (\bar{C}_{i_a}) to that of smooth tube data (\bar{C}_{i_s}), and average outside heat transfer coefficients for the augmented tube data (\bar{h}_{o_a}) to that of smooth tube data (\bar{h}_{o_s}) for each of the tube types. Since

increases in corrected overall heat transfer coefficient are related to enhancement of both the inside and outside heat transfer coefficients together, it is clear again that tube T-3b gives the best overall performance. This confirms the low area ratios observed for this tube in Figures 39 and 40.

Further study of Tables IV and XXXI indicate that the inside and outside heat transfer coefficients are related to change in pitch (for approximately constant groove depth).

This is reflected in Figure 41. In this figure, values of the ratios of $\bar{C}_{i_a}/\bar{C}_{i_s}$ and $\bar{h}_{o_a}/\bar{h}_{o_s}$ (from Table XXXI) are plotted versus varying pitch (for constant groove depth).

The trends of the data in the $\bar{C}_{i_a}/\bar{C}_{i_s}$ curve reveal that there is perhaps an optimum pitch (at a constant groove depth) to increase the inside heat transfer coefficient. This could be due to the fact that as pitch changes from being very large to very small, the nature of the internal flow changes from predominately swirling motion to turbulent mixing. The optimum pitch could therefore be the one that produces a combination of both these mechanisms. That outside heat transfer improves with decreased pitch is seen in the $\bar{h}_{o_a}/\bar{h}_{o_s}$ curve. With reduced pitch, condensate drainage improves and more channels are provided presenting more tube surface area to the steam flow. The variations in $\bar{h}_{o_a}/\bar{h}_{o_s}$, as noted in Table XXXI, may be caused partially by the uncertainty in the wall resistance used in the Wilson plot technique. Calculation of the actual wall resistance for an enhanced tube with severe corrugations requires a complicated analysis.

It should also be noted that the relative positions of the data for the KORODENSE, General Atomic and TURBOTEC tubes in Figure 41 are related to their respective average groove depths.

The results discussed above show correlation with the work of Catchpole and Drew [5]. Comparison with their data for a groove depth of 0.6 mm with data shown in Figure 41 shows that there is good general agreement. In their results for the 0.6 mm groove depth, decreasing pitch from about 12.8 mm to 6.4 mm increased the $\bar{C}_{i_a}/\bar{C}_{i_s}$ ratio from 2.1 to 2.6, and this same decrease in pitch followed the same trend of Figure 41 for increasing the outside heat transfer coefficient, with a maximum $\bar{h}_{o_a}/\bar{h}_{o_s}$ ratio of about 1.7 for their 0.6 mm groove depth tube.

V. CONCLUSIONS

As a result of the above-mentioned tests, the following conclusions are reached.

1. All of the enhanced tubes herein tested would allow for a savings of condenser surface area. Again, related to an earlier example, for a naval condenser with a scoop injection velocity of 2.74 m/sec (9ft/sec) the corresponding smooth tube Reynolds number , is calculated to be about 40,000. Entering Figure 40 with this Reynolds number, it is seen that enhanced tubes would allow for condenser surface areas varying from 83 percent to 47 percent of the smooth tube condenser surface area.
2. The maximum corrected overall heat transfer coefficient was obtained with tube T-3b, and was about 2 times that of the corresponding smooth tube. This is a result of this tube's highest combined improvement in the inside heat transfer coefficient ($\bar{C}_{i_a}/\bar{C}_{i_s}$) = 5.0) and the outside heat transfer coefficient ($\bar{h}_{o_a}/\bar{h}_{o_s}$ = 1.3).
3. The largest pressure drops measured for all the enhanced tubes were for tube T-3b. This is due to this tube's severe geometric deformation, presenting the highest degree of restriction to cooling water flow.
4. The best surface area ratios were for tubes T-3b, T-4 and T-2. Again, this is due to these tubes' combined

improvement in the inside and outside heat transfer coefficients for their respective pressure drops. As a result of its lower outside heat transfer coefficient, tube GA-2 was seen to have a higher surface area ratio when external resistance was taken into account. An improvement on this tube could be made however, if its outside heat transfer coefficient was increased.

5. The effect of pitch, which relates to helix angle, (with constant groove depth) on improved heat transfer performance was displayed. The data shows that $\bar{C}_{i_a}/\bar{C}_{i_s}$ could possibly achieve an optimum value for a properly chosen pitch. This could be due to the fact that the choice of pitch could provide the best combination of internal flow swirl and turbulence. The fact that decreasing pitch improves the outside heat transfer coefficient by improving condensate drainage and presenting more tube surface to the steam flow was also determined.

6. Based upon D_i (and not D_h) the Colburn Analogy was found to be valid for tubes K-1, K-2, K-3, and K-4; and invalid for deep grooved, and/or tightly pitched tubes.

7. Tube vibration was seen to cause a decrease in the corrected overall heat transfer coefficient for several of the TURBOTEC tubes. This decrease could be caused by the hold up of condensate in the grooves, affecting condensate drainage, as well as by a deterioration in the inside heat transfer coefficient.

VI. RECOMMENDATIONS

From the results of this experiment, several unanswered questions can be posed. In an effort to offer ideas for continued use of the test facility, the following recommendations are made.

1. Further investigate the parameters (pitch, groove depth and helix angle) in an attempt to find the desired combination of these parameters that will produce the optimum tube. Along with this effort, newly conceived enhanced tubes should be tested and ranked with those previously tested.
2. Tests of the General Atomic 45 degree helix tube, the KERODENSE Titanium-MHT tube, and the TURBOTEC Low Pitch tube should be expanded to include tests of horizontally mounted tubes in vertical banks. This is needed to determine the effect of condensate drainage from tubes at the top of the bank on the heat transfer coefficient of the tubes near the bottom of the bank.
3. The fouling characteristics of any tube under test should be determined. This includes the cooling water side as well as the steam side. Fouling could prove to be especially critical in the use of tubes with geometries that have possible cooling water flow stagnation areas such as tightly spiralled tubes.

4. In addition to geometric enhancement, tests should be conducted to determine the effectiveness of dropwise condensation promoters. These could be applied to tubes such as those manufactured by General Atomic Company to improve the outside heat transfer coefficient and therefore the tubes' overall performance.

5. Tests should be performed using TURBOTECH tubes of copper-nickel. This would provide stronger tubes than those tested in this experiment, and should decrease the tendency toward vibration with decreased pitch as found with copper 122.

6. Testing of enhanced tubes should be done in a vertical orientation. This would determine the effect of condensate drainage vertically rather than horizontally off the tube's surface which has been shown to be very effective using refrigerants [7,8].

VII. TABLES

Table I. Location of Stainless Steel Sheathed
Copper Constantan Thermocouples.

Channel Number	Location	Channel Number	Location
40	T _{c_i}	47	T _v
41	T _{c₀}	48	T _v
42	T _{c₀}	49	T _v
43	T _{c₀}	50	T _v
44	T _{c₀}	51	T _w
45	T _v	52	Hotwell
46	T _v		

Table II. Location of Teflon Coated Copper Constantan Thermocouples

Channel Number	Location	Channel Number	Location
1	Hot Well	6	Condensate Header
2	Feedwater Tank	7	T_c into Cooling Tower
3	Condenser Window	8	T_c out of Cooling Tower
4	T_{c_i}	9	Cooling Tower Ambient
5	T_{c_0}		

Table III. Summary of Test Tubes

TURBOTEC Schematic

KORODENSE Schematic

Tube No.	Tube Type	Helix (a) Angle (Deg)	No. of Groove Starts n	Groove Depth (mm) e	Pitch (mm) p	p/D _o	e/D _o
	TURBOTEC						
T-1	High Pitch	30	3	2.67	50.48	3.13	0.168
T-2	Medium Pitch	45	3	3.25	36.78	2.32	0.205
T-3 a&b	Low Pitch	60	3	3.35	22.58	1.42	0.211
T-4	Variable Pitch	40/60	3	3.23	37.31/ 23.97	2.35/ 1.51	0.203/ 0.214
	KORODENSE						
K-1	CuNi-LPD	65	1	0.36	9.81	0.62	0.022
K-2	CuNi-MHT	70	1	0.51	9.64	0.61	0.032
K-3	Al-LPD	64	1	0.41	9.67	0.61	0.026
K-4	Al-MHT	74	1	0.58	9.58	0.60	0.037
K-5	Ti-MHT	75	1	0.61	5.97	0.38	0.038

(a) Helix Angle = angle measured from tube horizontal axis to flute axis

Twist Direction: TURBOTEC - left-handed spiral
KORODENSE - right-handed spiral

Table IV. Enhanced Tubing Characteristics

Tube No.	Tube Type	Material	Run No.	Date	Type Run	A_h * ($\times 10^4$ m ²)	A_c * ($\times 10^4$ m ²)	D ₁ (mm)	D _o (mm)	T _w (mm)	K _w (W/m°C)	R _w ($\times 10^6$) (m ² °C/W)	$\eta_c + \eta_e$	
<u>SORODENSE</u>														
E-1	CuNi-LPD	90-10 CuNi	9	13 JUL 78	Data	456.04	1.354	13.39	15.88	1.24	44.65	33.315	0.015	
E-2	CuNi-MHT	90-10 CuNi	12	17 JUL 78	Data	456.04	1.316	13.39	15.88	1.24	44.65	30.315	0.020	
E-3	Al-LPD	Al (3003)	10	15 JUL 78	Data	456.04	1.343	13.39	15.88	1.24	172.75	7.836	0.015	
E-4	Al-MHT	Al (3003)	11	16 JUL 78	Data	456.04	1.305	13.39	15.88	1.24	172.75	7.836	0.015	
E-5	Ti-MHT	Titanium	14	19 JUL 78	Data	456.04	1.409	14.48	15.88	0.70	17.00	43.007	0.075	
<u>TUB3070FC</u>														
T-1	High Pitch	Cu (122)	1	27 APR 78	Practice	456.04	1.296	14.45	15.88	0.71	339.22	2.196	0.145	
			4	12 JUN 78	Data									
			18	21 AUG 78	Movie									
			19	24 AUG 78	Movie									
T-2	Medium Pitch	Cu (122)	5	13 JUN 78	Data	456.04*	1.110	14.45	15.88	0.71	339.22	2.196	0.255	
T-3a	Low Pitch (u)	Cu (122)	6	14 JUN 78	Data	456.04	0.842	14.45	15.88	0.71	339.22	2.196	0.475	
T-3b	Low Pitch (s)	Cu (122)	17	6 AUG 78	Movie/Data	456.04	0.842	14.45	15.88	0.71	339.22	2.196	0.475	
T-4	Variable Pitch	Cu (122)	15	28 JUL	Data	456.04	0.963	14.45	15.88	0.71	2.196	0.260		
<u>SMOOTI</u>														
5-1a	"fouled"	90-10 CuNi	2	11 MAY 78	Data	456.04	1.375	13.23	15.88	1.32	44.65	32.351	0.9	
5-1b	"clean"		7	11 MAY 78	Data									
5-2	"rippled"	90-10 CuNi	8	12 JUL 78	Data	456.04	1.398	13.34	15.88	1.27	41.65	30.901	0.0	
G1-2	15° General Atomic	Al (6061)	3	22 MAY 78	Practice	456.04	0.984	13.31	16.00	3.66	237.11	7.706	0.330	

* A_c was determined by measuring the liquid volume contained within the enhanced section of each tube end dividing by the enhanced section length.

Table V. Raw Data for Smooth "fouled" CuNi,
Run 2, 11 MAY 78.

% Flow	T_v ($^{\circ}$ C)	T_w ($^{\circ}$ K)	T_{c_i} ($^{\circ}$ C)	T_{c_o} ($^{\circ}$ C)	ΔP (Pa)
10	61.7	316.0	19.0	28.1	1.098
20	63.9	309.5	18.0	25.3	3.609
30	63.3	304.5	18.0	23.3	7.373
40	63.3	301.9	17.0	22.2	12.708
50	64.2	300.5	17.0	21.6	18.827
60	64.7	298.8	17.0	20.9	26.200
67	65.0	299.9	17.0	20.6	32.005

Table VI. Raw Data for Smooth "clean" CuNi,
Run 7, 11 JUN 78.

% Flow	T_v ($^{\circ}$ C)	T_w ($^{\circ}$ K)	T_{c_i} ($^{\circ}$ C)	T_{c_o} ($^{\circ}$ C)	ΔP (Pa)
10	67.2	325.7	19.2	29.3	1.004
15	66.9	322.7	19.0	27.6	2.040
20	66.8	320.3	19.0	26.6	3.514
30	67.0	317.0	19.0	25.0	7.531
40	67.1	317.1	19.3	24.3	12.551
50	67.2	317.0	19.5	23.8	18.764
60	67.0	317.3	19.4	23.2	25.793
70	66.8	317.8	19.2	22.6	34.171
80	66.6	317.4	19.0	22.2	43.427
90	66.7	318.6	18.9	21.8	53.625

Table VII. Raw Data for Smooth "rippled" CuNi,
Run 8, 12 JUL 78.

% Flow	T _v (°C)	T _w (°K)	T _{c_i} (°C)	T _{c_o} (°C)	ΔP (kPa)
10	67.5	316.9	17.4	27.8	0.941
15	67.3	310.8	17.1	25.9	2.165
20	67.5	307.9	17.0	24.8	3.577
30	67.4	304.3	17.0	23.3	7.562
40	67.4	303.0	17.3	22.5	13.085
50	67.4	300.4	17.7	22.1	19.423
60	67.6	298.9	17.8	21.7	26.860
70	67.5	298.2	17.9	21.5	35.457
80	67.7	297.8	18.0	21.2	44.776
90	67.7	297.4	18.1	21.0	55.790

Table VIII. Raw Data for TURBOTEC Hi Pitch,
Run 4, 12 JUN 78

% Flow	T _v (°C)	T _w (°K)	T _{c_i} (°C)	T _{c_o} (°C)	ΔP (kPa)
10	67.5	323.8	21.9	37.0	1.977
15	67.4	320.7	21.2	33.8	4.079
20	67.7	318.2	20.9	31.6	6.997
25	67.9	316.4	20.8	30.3	10.512
30	66.5	314.6	20.7	29.2	14.779
40	64.6	311.9	20.6	27.7	25.950
50	63.4	309.1	20.5	26.6	41.544
60	63.7	307.3	20.5	25.9	59.556
70	63.8	306.1	20.4	25.2	81.488
80	63.8	304.9	20.3	24.7	106.999
83.5	63.5	304.5	20.1	24.4	116.412

Table IX. Raw Data for TURBOTEC Medium Pitch,
Run 5, 12 JUN 78.

% Flow	T _v (°C)	T _w (°K)	Tc _i (°C)	Tc _o (°C)	ΔP (kPa)
10	66.4	325.4	19.2	38.5	2.573
15	66.1	321.8	18.8	35.0	6.589
20	65.8	319.8	18.5	32.4	11.673
25	66.0	318.6	18.5	30.6	18.199
30	66.6	317.1	18.4	29.2	26.514
40	67.1	313.6	18.4	27.3	44.996
50	66.6	311.7	18.6	26.1	69.596
60	66.2	309.7	18.6	25.2	100.159
70	64.7	306.4	18.6	23.9	136.871
75	64.0	306.0	18.5	23.6	157.831

Table X. Raw Data for TURBOTEC Low Pitch,
Run 6, 14 JUN 78.

% Flow	T _v (°C)	T _w (°K)	Tc _i (°C)	Tc _o (°C)	ΔP (kPa)
10	66.2	324.0	19.6	44.3	8.880
15	67.0	320.0	19.5	40.5	18.513
20	67.1	317.4	19.5	37.5	31.472
25	67.1	314.8	19.6	35.0	48.825
30	67.2	312.6	19.6	33.1	66.867
35	67.0	310.8	19.6	31.2	91.154
40	67.1	309.7	19.7	30.2	115.189
45	67.4	308.9	19.6	29.2	146.567
50	67.4	309.1	19.6	28.1	182.338
60	67.5	307.9	19.4	26.6	258.869

Table XI. Raw Data for TURBOTEC Variable Pitch,
Run 15, 28 JUL 78.

% Flow	T _v (°C)	T _w (°K)	Tc _i (°C)	Tc _o (°C)	ΔP (kPa)
10	66.6	321.6	19.0	41.3	5.648
15	66.5	318.3	19.0	37.4	11.986
20	66.8	316.0	19.3	35.0	20.427
25	66.9	314.4	19.7	33.4	29.025
30	66.6	312.9	20.0	31.9	43.239
35	66.8	311.7	20.1	31.0	57.547
40	66.8	310.2	20.5	30.1	74.523
50	66.9	308.2	20.8	28.7	113.745
60	66.9	306.7	21.2	28.0	164.578
68.5	66.9	306.0	21.6	27.6	214.155

Table XII. Raw Data for TURBOTEC "supported" Low Pitch, Run 17, 6 AUG 78.

% Flow	T _v (°C)	T _w (°K)	Tc _i (°C)	Tc _o (°C)	ΔP (kPa)
10	66.5	321.9	20.9	45.2	7.939
15	66.6	318.0	20.9	41.4	14.748
20	66.8	316.1	21.5	38.9	30.499
25	66.7	314.7	22.3	37.3	46.188
30	67.0	313.6	23.1	36.2	65.329
35	66.9	312.5	23.6	35.1	88.580
40	66.9	311.7	24.1	34.4	112.428
45	66.9	311.4	24.6	33.9	141.093
50	67.1	311.1	25.0	33.5	173.050
57	67.2	310.8	25.7	33.1	220.274

Table XIII. Raw Data for KORODENSE CuNi-LPD,
Run 9, 13 JUL 78

% Flow	T_v (°C)	T_w (°K)	T_{c_i} (°C)	T_{c_o} (°C)	ΔP (kPa)
10	66.8	313.7	19.1	32.1	1.600
15	66.9	310.5	19.2	29.9	3.263
20	66.8	308.5	19.8	28.8	5.585
25	67.1	306.5	19.9	27.8	8.252
30	66.6	305.6	19.9	26.9	11.455
40	66.3	303.8	19.9	25.5	18.952
50	66.6	302.7	19.8	24.7	27.456
60	66.7	302.2	20.2	24.5	37.685
70	66.9	302.4	20.7	24.5	48.510
80	67.0	302.6	21.3	24.7	60.528
88.9	67.0	302.4	21.9	24.9	71.573

Table XIV. Raw Data for KORODENSE Al-LPD,
Run 13, 18 JUL 78

% Flow	T_v (°C)	T_w (°K)	T_{c_i} (°C)	T_{c_o} (°C)	ΔP (kPa)
10	65.5	321.1	23.5	36.6	1.506
15	65.8	317.1	23.6	34.7	3.232
20	66.3	314.6	23.8	33.3	5.460
25	66.3	312.5	24.0	32.2	8.284
30	66.7	311.4	24.1	31.5	11.735
40	66.7	309.7	24.3	30.4	19.423
50	66.6	307.6	24.5	29.6	28.993
60	66.6	307.1	24.6	29.1	30.630
70	65.1	305.7	23.7	27.3	52.088
80	65.8	305.1	23.0	26.3	66.208

Table XV. Raw Data for KORODENSE Al-MHT,
Run 11, 16 JUL 78

% Flow	T _v (°C)	T _w (°K)	T _{c_i} (°C)	T _{c_o} (°C)	ΔP (kPa)
10	66.8	315.1	16.7	34.3	2.385
15	66.9	311.6	16.5	30.8	5.052
20	67.3	309.6	16.6	28.6	8.692
25	67.3	308.3	16.7	27.3	12.771
30	67.1	307.4	16.9	26.0	17.885
40	67.1	306.1	17.2	24.5	29.244
50	67.3	305.4	17.5	23.8	42.235
60	67.1	304.6	17.9	23.3	57.202
70	67.1	303.9	18.2	22.9	72.766
80	67.2	303.7	18.5	22.6	91.467

Table XVI. Raw Data for KORODENSE CuNi-MHT,
Run 12, 17 JUL 78

% Flow	T _v (°C)	T _w (°K)	T _{c_i} (°C)	T _{c_o} (°C)	ΔP (kPa)
10	67.5	323.8	24.0	37.6	1.914
15	67.6	321.6	23.6	34.8	4.393
20	67.6	318.8	23.3	32.8	7.374
25	67.5	316.7	23.1	31.2	11.139
30	67.4	315.6	23.0	30.2	15.312
40	67.6	314.6	22.9	28.8	24.883
50	67.6	314.0	22.9	27.8	36.148
60	67.6	313.4	22.9	27.3	48.856
70	67.6	313.5	23.0	26.8	62.944
80	67.6	312.7	23.1	26.5	77.472

Table XVII. Raw Data for KORODENSE Ti-MHT,
Run 14, 19 JUL 78

% Flow	T _v (°C)	T _w (°K)	Tc _i (°C)	Tc _o (°C)	ΔP (kPa)
10	68.3	328.2	20.7	35.8	2.353
15	67.9	327.5	20.9	33.0	5.554
20	69.0	326.8	20.5	30.8	9.947
25	67.0	326.7	21.4	30.2	15.595
30	67.2	326.6	22.3	29.7	22.341
40	67.2	326.4	22.8	28.8	38.438
50	67.2	326.1	23.0	28.1	58.834
60	67.0	326.0	23.4	27.7	82.713
70	67.1	326.0	23.6	27.4	110.043
80	67.4	325.8	23.8	27.3	139.067

Table XVIII. Smooth "fouled" Copper-Nickel Results (Tube No. S-1a), Run 2

VELOCITY F/SEC	U_h $W/(C*H^{1/2})$	U_C $W/(C*H^{1/2})$	H_1 $h/(C*H^{1/2})$	H_0 $W/(C*H^{1/2})$
0.86	2578.161	2812.764	4276.655	13228.125
1.72	3760.523	4281.375	7236.723	14738.506
2.55	4035.515	4662.000	5814.367	10730.309
3.45	5207.305	6222.242	12165.671	16328.133
4.21	5504.436	6696.566	14477.785	15046.238
5.17	5601.055	6840.555	16625.094	13500.141
5.76	5635.047	6891.320	18209.602	12621.191
PLAIN END REYN NO				
REYNOLDS AC				
FLCW RATE PER AREA				
$KG/(SEC*H^{1/2})$				
12641.16	12641.17	858.15	C.00761073	C.C2443808
24276.25	24276.24	1717.45	C.CC61564C	C.C2455489
25620.24	25620.21	2576.55	C.C0562853	0.02461505
46432.61	46432.56	3437.03	0.00550472	0.02465484
57604.84	57604.82	4256.12	C.CC515661	C.C2472656
66647.38	66647.38	5156.56	0.00502331	0.02472716
76351.68	76351.81	5758.47	C.00492223	0.02473880
SIEDER TATE CONSTANT				

Table XVIII. Page 2

ASSEMBLY NO	NU/PR1/3(U/L6)0.14	STANTON AC	J FACTOR	PERF CRW FACTOR	
				L/UH	DCTMS (KG/SEC)
65.11253	46.71525	0.00115050	0.0036655	1.0247355	
1.1.11C13	79.112450	0.01156650	0.0034001	1.1C42223	
206.2153	107.80220	0.0056927	0.0031239	1.11C168	
226.14876	123.62555	0.00084558	0.0025579	1.C746327	
305.28638	150.92202	0.00066451	0.0026271	1.0880566	
151.00445	180.00517	0.00077020	0.0027205	1.0E33006	
264.41363	169.35751	0.00075455	0.0026751	1.08659360	
PRESSURE DROP (KPA)		PRANDTL AC			
x1N					
0.2155655C-02	6.77832	5.92566	1.05511		
0.1128511C-C2	2.52072	4.20621	1.04322	0.2262167	
0.1221234C-C3	5.11527	6.36467	1.C322C	0.25444374	
0.5615455C-C4	9.01836	6.53106	1.02784	0.4727324	
0.1444CC8E-04	13.30386	6.58747	1.C2475	0.55C5770	
0.768E056E-04	16.52040	6.63986	1.02061	0.7052397	
0.4475270-04	22.43042	6.67006	1.02453	0.7920263	

Table XIX. Smooth "clean" Copper-Nickel Results (Tube No. S-1b), Run 7

VELOCITY F/SEC	U _C W/(C*M**2)	U _T W/(C*M**2)	H _O W/(C*M**2)	FRICTION FACTOR		STEGER TATE CONSTANT
				FLOW RATE PER AREA KG/(SEC*M**2)	PLAIN END REYN NO	
6.86	2551.C0C	2780.545	4460.840	856.455	10676.596	
1.25	3216.585	3550.617	6115.757	12124.633		
1.72	3751.2E7	4265.466	7625.556	12566.062		
2.55	4381.452	5105.063	10426.012	12572.559		
3.45	4814.906	5703.261	13111.527	11526.655		
4.31	5057.223	6046.449	15652.320	11268.666		
5.17	5376.238	6508.176	16086.814	11451.156		
6.04	5533.666	6814.652	20426.452	11358.102		
6.50	5948.414	7365.871	22674.238	12045.320		
7.76	6061.2E2	7535.852	24955.184	11826.770		
REYNOLDS NO						
12763.24	12783.23	856.455	0.00670C25			
16754.32	16754.32	1267.25	0.0062527			
24755.5C	24790.88	1716.75	0.30554482			
36551.65	36557.66	2575.64	0.00581521			
48531.61	48531.61	3434.67	0.00543385			
60417.00	60417.00	4293.60	0..CC519792			
71967.61	71967.61	5155.84	0.00493744			
83229.00	83229.00	6012.43	0.00466504			
94466.19	94466.19	6872.02	0..CC467473			
105719.50	105719.50	7731.59	0.00455644			

Table XIX. Page 2

PERFORM FACTOR	J FACTOR	STANTON NC	NU/PR1/310/UNIC-14	PERFORM FACTOR
1.2051541	0.0046568	0.00124804	4.3.03020	1.2051541
1.241630	0.0037432	0.00113583	65.53658	1.241630
1.1878777	0.0035935	0.00162466	81.88513	1.1878777
1.119342	0.0032546	0.00096651	111.95666	1.119342
1.1334935	0.0030794	0.00031156	140.50266	1.1334935
1.1350613	0.0029500	0.00087075	147.45444	1.1350613
1.1565414	0.0028562	0.00083819	152.62350	1.1565414
1.1578739	0.0027841	0.00081161	216.32935	1.1578739
1.1622629	0.0027166	0.00078759	240.14354	1.1622629
1.1705919	0.0026478	0.00077075	262.93091	1.1705919
DUCTS (KG/SEC)				
PRANDTL NC	L/L4			
PRESSURE DROP (KPA)				
A IN				
0.166464C-C3	0.68505	5.84756	0.166464C-C3	0.1160096
C.15E51C-C2	1.38747	5.98276	C.15E51C-C2	C.1770688
C.15E51C-C2	2.43241	6.05663	C.15E51C-C2	0.2361255
C.115402C-Q3	5.25503	6.17554	C.115402C-Q3	0.354625
C.117121C-C4	8.89615	6.20627	C.117121C-C4	0.472084
C.166751C-04	12.25750	6.25521	C.166751C-04	0.5905461
C.665202D-C4	18.19075	6.28796	C.665202D-C4	0.7083305
C.566E23C-04	24.11877	6.35115	C.566E23C-04	0.8265565
C.53C721C-L-04	30.62531	6.40126	C.53C721C-L-04	0.9453854
C.462269CD-04	37.78212	6.43940	C.462269CD-04	1.0634127

Table XX. Smooth "rippled" Copper-Nickel Results (Tube No. S-2), Run 8

REYNOLDS NO	PLAIN END REYN NO	FLOW RATE PER AREA		FRICTION FACTR	SIEVER RATE CONSTANT
		kg/(sec*mm ²)	kg/(sec*mm ²)		
1241.36	12241.26	845.42	845.42	0.00640622	0.02517331
1742.57	17942.58	1262.57	1262.57	0.006406254	0.02524173
2261.58	23611.57	1651.75	1651.75	0.00640115	0.02526082
2461.05	34817.05	2530.22	2530.22	0.00641122	0.02533179
46151.02	46152.59	3264.58	3264.58	0.0064264	0.02533492
57723.41	57723.39	4230.70	4230.70	0.00672762	0.02534753
65C51.51	69057.25	5077.05	5077.05	0.0064555	0.02535655
EC4C5.81	80405.15	5523.38	5523.38	0.006232452	0.02536249
S1115.75	91718.69	6769.76	6769.76	0.00513235	0.02536330
1C2125.00	103125.54	7616.64	7616.64	0.005132665	0.02536996

Table XX. Page 2

ALGEBRAIC	NU/FR1/3(U/Lh)0.14	STANTON NC	J FACTOR	PERFORM FACTOR
50.6431	46.90227	0.00121665	C.044642	1.2688131
1.2.4465	43.86072	0.00109840	0.003280	1.061114
1.2.44606	75.66514	0.00102481	C.CC3132	1.0576677
205.72592	106.31785	0.000523215	C.0C3224	1.0526667
242.78655	136.55585	0.00087322	0.0030486	1.008444
311.8106	163.31151	0.00082562	0.0C2528	1.0101154
358.45554	188.56253	0.00075564	0.0027807	1.0125251
405.13340	213.02652	0.00076941	0.0026521	1.0115747
450.13306	236.73218	0.00074716	0.0C26212	1.0112730
453.44602	260.02346	0.00072955	0.0C25578	1.0C52764
XIN	FREQUENCY CROP (KPA)	PRANCTL NC	DCTPS (KG/SEC)	L/LK
C.277462E-C3	0.43076	6.05025	0.11E0734	
C.200CE415-03	1.52276	6.25276	1.04745	C.1771762
C.146E213E-C3	2.52236	6.34720	1.C412C	C.23E2716
C.1215335E-C2	5.44626	6.71216	1.02365	0.3544927
C.5166615E-C4	5.52901	6.51530	1.03032	C.4126552
C.81CC78E-C4	14.11046	6.51117	1.C2244	C.55C8645
C.71C74E3E-C4	19.41365	6.53384	1.01838	0.7C90670
C.645522CE-C4	25.71184	6.54840	1.01632	0.8272615
C.5671161E-04	32.37816	6.56251	1.01555	0.9454739
C.51CE24E-04	40.46204	6.56705	1.01444	1.0636654

Table XXI. TURBOTEC High Pitch Results (Tube No. T-1), Run 4

VELOCITY IN M/SEC	U _N W/(C*M**2)	U _C W/(C*M**2)	U _H W/(C*M**2)	R _G W/(C*M**2)
0.72	4345.667	4387.746	6961.398	14261.211
1.08	5173.234	5232.688	5453.375	13348.601
1.45	5605.244	5675.211	11740.141	12140.102
1.81	6063.211	6165.590	12914.676	12011.675
2.17	6661.155	6760.105	15570.757	12634.234
2.89	7628.879	7758.883	19845.620	13586.664
3.61	8229.887	8381.251	23488.238	12784.102
4.34	8597.719	8763.203	26587.008	13621.789
5.06	8835.641	9014.644	30357.059	15378.457
5.76	9253.152	9445.113	33607.502	13662.793
6.04	9527.500	9522.562	34683.043	13634.508
PLAIN END REYN NO				
REYNOLDS NO				
13091.02	15091.01	718.06	C.02607292	0.04356441
16877.66	18877.66	1077.82	0.02383088	C.04376480
24513.05	24513.07	1437.72	C.C23C0237	0.0435C023
30196.27	30196.25	1797.56	0.02219686	0.C4357565
35185.54	35789.31	2157.52	0.02166528	0.04403952
46517.60	46917.60	2877.45	C.02148015	0.0412650
51672.93	57873.90	3597.55	0.0221751	0.04415559
63520.00	63930.00	4317.55	C.02213186	0.04423466
76148.63	79748.63	5037.77	0.02232C75	0.04427816
96575.19	90575.25	5757.55	0.02250340	0.044310e3
13582.63	93982.63	6010.43	0.02248217	0.04434135
FLOW RATE PER AREA				
KG/(SEC*M**2)				
FRICTION FACTOR				
SIEGER TATE CONSTANT				

Table XXI. Page 2

NUSSELT NO	H/PRL3IU/UH10.14	STANTON NO	PERFCRW FACTOR	
			J FACTOR	U/W
156.36675	65.64661	0.00231826	0.0069142	0.5303742
213.23642	115.31424	0.00209766	0.0064429	0.5407984
265.43745	142.55551	0.00195202	0.0061201	0.5314314
315.37891	166.72205	0.00185024	0.0058658	0.5285262
362.50196	193.57210	0.00176919	0.0056620	0.525787
451.88647	240.86382	0.00165012	0.0053493	0.488725
535.03198	265.34180	0.00156307	0.0051687	0.4607866
615.27148	328.46411	0.00149346	0.0049185	0.4444761
692.78440	369.45972	0.00143969	0.0047117	0.4215557
767.52540	405.36865	0.00139443	0.0046636	0.4127043
792.63867	421.93506	0.00137853	0.0046113	0.4102132
PRESSURE DROP (KPA)				
x in	PRANDTL NO	U/W	DOTTNS (KG/SEC)	
C.242213E-03	1.71268	5.14975	1.05682	0.1177993
C.2C355E0-C2	3.52454	5.38646	1.05456	0.1161E7
C.1t221C2C-Q3	6.05854	5.55143	1.05257	0.2558615
C.14242320-Q3	9.12524	5.64465	1.04981	0.2948965
C.1221538D-Q3	12.83053	5.72517	1.04683	0.2539453
C.5822632C-Q4	22.61676	5.83685	1.04199	0.4720519
C.835513C-C4	36.48749	5.92586	1.03617	0.55C1853
C.7222415C-Q4	52.44839	5.97675	1.03218	0.7083327
0.6449722D-Q4	72.00645	6.03402	1.02998	0.5264572
C.5E7923E-Q4	94.62741	6.01707	1.C2743	0.54461C5
0.5628011C-Q4	103.21783	6.11803	1.02713	0.58E0225
ARAT				
RES	ARAT	RESR	ARATR	
2CC21.65	0.8707	18457.55	0.6922	
28566.20	0.8562	26752.75	0.7152	
36374.35	0.8615	35596.56	0.7758	
461C5.28	0.8614	45015.48	0.8053	
54382.02	0.8631	53589.90	0.8C74	
73325.15	0.8765	71908.88	0.8236	
94C25.28	0.9038	93026.50	0.8741	
113805.44	0.9116	114744.75	0.8328	
1211CE.44	0.9242	137E7.65	0.9964	
15684C.51	C.5357	160255.56	1.0321	
171126.56	0.9372	16782E.21	1.0505	

Table XXII. TURBOTEC Medium Pitch Results (Tube No. T-2), Run 5

VELOCITY M/SEC	UN W/(C**H**2)	UC W/(C**H**2)	HI W/(C**H**2)	H2 W/(C**H**2)	PLAIN END REYN NO		FLOW RATE PER AREA KG/SEC*H**2	FRICTION FACTOR KG/SEC*H**2	SIEGER TATE CONSTANT
					PLAIN END REYN NO	FLOW RATE PER AREA KG/SEC*H**2			
0.72	5669.016	5740.452	11643.320	12521.557					
1.08	6784.155	6886.816	15810.492	13204.633					
1.45	7545.875	7672.042	1963.055	13459.512					
1.81	7967.855	8109.820	23287.236	13133.632					
2.17	8206.059	8356.656	26721.203	12725.343					
2.85	8753.852	8925.461	33152.770	12673.152					
3.61	9217.707	9408.160	3937.155	12742.738					
4.34	9677.176	9887.328	45123.251	13021.244					

Table XXII. Page 2

NUSSLETT NO	NL/PR1/3(U/U ₀)0.14	STANTON NO	J FACTOR	PERFOMN FACTOR	
				U/U ₀	U/U ₀
261.08635	142.14471	0.00387665	0.0116715	0.6895911	0.6895911
227.11135	151.33611	0.00350615	0.0106805	0.5508596	0.5508596
445.25271	226.02441	0.00326481	0.0103624	0.5246545	0.5246545
529.10278	278.45435	0.00305562	0.01005689	0.5044357	0.5044357
403.25321	318.59009	0.00295838	0.0096484	0.4702844	0.4702844
726.46748	395.63012	0.00275156	0.0091106	0.4162540	0.4162540
698.26709	469.48385	0.00260920	0.0087128	0.4556278	0.4556278
1022.12402	539.51465	0.00249553	0.008346	0.4423521	0.4423521
COTHS (KG/SEC)					
PRANDTL NO					
XIA		U/U ₀			
0.2805050L-03	2.22412	5.22429	1.06148	0.1176252	0.1176252
C.2C65840-03	5.84379	5.46663	1.05567	0.1168565	0.1168565
C.1663016L-03	10.39247	5.65462	1.05698	0.2352225	0.2352225
C.1402210-02	16.25418	5.78063	1.05875	0.2949538	0.2949538
C.1222110-02	23.79889	5.88988	1.05725	0.350822	0.350822
C.9E55265L-04	40.25771	6.02498	1.05076	0.4722518	0.4722518
C.821CC10-04	62.40501	6.09556	1.04711	0.5504058	0.5504058
0.72417850-04	89.98145	6.16555	1.04011	0.7085964	0.7085964
ARAT					
925		ARAT			
17376.57	0.4684	18049.66	C.522C9	C.522C9	C.522C9
26602.56	0.5097	25015.37	0.663C	0.663C	0.663C
37126.51	0.5178	39038.70	0.5555	0.5555	0.5555
4442C.6C	0.5248	49558.77	0.4446	0.4446	0.4446
56116.82	0.5338	61891.56	0.3024	0.3024	0.3024
7223.25	0.5351	82906.88	0.7742	0.7742	0.7742
52216.54	0.5392	108057.21	0.839C	0.839C	0.839C
111134.94	0.5461	132811.75	0.8904	0.8904	0.8904

Table XXIII. TURBOTEC Low Pitch Results (Tube No. T-3a), Run 6

REYNOLDS NO	PLAIN END REYN NO	FLOW RATE PER AREA KG/(SEC*MM ²)	FRICITION FACTOR			STEEDER STATE CONSTANT
			UN W/(C*H**2)	UC W/(C*H**2)	HJ W/(C*H**2)	
12766.55	13760.59	717.41	0.1251581	0.1251581	0.1251581	0.12150184
15846.45	19846.46	1076.45	0.1153783	0.1153783	0.1153783	0.12205565
25676.59	25676.58	1426.41	0.1099535	0.1099535	0.1099535	0.12248725
21326.66	31329.85	1756.45	0.10927933	0.10927933	0.10927933	0.12282926
36846.22	36846.15	2156.51	0.10356418	0.10356418	0.10356418	0.12311852

Table XXIII. Page 2

MISSELT NC NU/PRI/3(U/U _w)0.14	STANTON NO J FACTOR	PERFORM FACTOR
442.12163	248.59477	0.00444415
6(1.63276	334.73657	0.00566036
745.62568	412.70386	0.03555555
666.56741	485.36426	0.03522545
1016.65814	553.90674	0.00497950
x 10	PRESSURE DROP (KPA)	DCM5(KG/SEC)
C.21626160-03	8.21145	1.04955
C.2135C1D-03	17.54754	1.04526
0.16436C-03	28.91216	1.04313
0.1354CC6C-03	44.89621	1.03979
0.1216659-C3	61.25697	1.03685
RES	ARAT	ARATR
27744.16	0.3894	2.5144.75
55164.26	0.3857	4.2334.77
51442.33	0.3844	5.7095.55
63748.82	0.3880	73045.50
74071.31	0.3834	87835.44
	RESR	

Table XXIV. TURBOTEC Variable Pitch Results (Tube No. T-4), Run 15

VELOCITY M/SEC	U_N M/(C*H**2)	U_C M/(C*H**2)	H_1 M/(C*H**2)	H_0 M/(C*H**2)	SIEDE RATE CONSTANT	
					W/1	W/2
0.72	6817.508	6921.145	16253.715	12533.523		
1.08	7934.692	8075.332	22166.113	15453.684		
1.45	8719.298	8889.641	27607.883	13754.398		
1.81	9253.645	9526.988	32755.623	16393.926		
2.17	9627.422	9835.355	37619.541	13757.737		
2.53	10023.648	10249.504	42221.651	13964.215		
2.89	10192.074	10331.305	46823.070	13635.262		
3.61	10210.152	10444.371	55511.547	13165.145		
4.34	10436.324	10681.169	63689.746	13065.391		
4.55	10491.711	10739.164	70903.375	12862.418		
REYNOLDS NO	PLAIN END REYN NO	FLOW RATE PER AREA KG/(SEC*H**2)	FRICITION FACTOR	SIEDE RATE CONSTANT		
12221.14	13227.14	717.06	0.07889372	C.10247058		
15666.88	16066.68	1077.57	0.07422346	0.10254491		
24218.53	24678.92	1427.26	0.0702144	0.10522425		
30113.55	30713.54	1796.97	C.06416225	0.10335416		
36298.04	36398.04	2156.80	0.06666815	0.10355551		
42655.82	42099.82	2516.62	0.06510544	0.10366962		
47861.77	47861.74	2876.38	C.06448621	0.10367394		
55178.38	59178.05	3596.09	0.06259001	0.12380576		
70754.54	70754.94	4315.55	0.06239252	0.10365213		
80730.94	80730.94	4926.97	0.06232047	0.10385726		

Table XXIV. Page 2

NUSSLELT NO	NU/PR1/3(U/UW)0.14	STANTON NO	J FACTOR	PERFORM FACTOR			
				XIN	PRESSURE DPOP (KPA)	U/UH	COTMS (KG/SEC.)
366.45546	2C3.12881	0.00544860	0.0161154				0.4083352
455.66530	273.41846	0.00492343	0.0150557				0.4044467
623.3C713.	339.12671	0.00455237	0.0142218				0.4007738
74C.56238	4C1.57155	0.00455757	0.0136325				0.4243376
851.62661	461.13110	0.00416942	0.0131687				0.3555537
955.25566	518.58336	0.004C1664	0.0127790				0.39256+1
1062.16305	574.98323	0.00289143	0.0124216				0.3848765
1260.59668	682.25654	0.00368928	0.0118736				0.377004
1451.67969	787.42244	0.00351862	0.0114235				0.36C2120
161C.54525	875.12158	0.00233924	0.011048				0.3505937
RES							
22568.65	0.4097	24782.84	0.5065				
33233.57	0.4C91	36716.16	0.5466				
425C7.43	0.4091	4514E.CC	0.5756				
521CC.98	0.3567	6025E.15	0.5951				
6256E.06	0.4095	7564C.13	0.6548				
74151.06	0.4095	8910E.81	0.6855				
8495E.44	0.4122	104707.06	0.7393				
105515.25	0.4145	136334.50	0.6353				
129274.88	0.4212	171091.44	0.9215				
145457.00	0.4256	.202682.63	0.5980				

Table XXV.

TURBOTEC Low Pitch "supported" Results (Tube No. T-3b), Run 17

VELOCITY F/SEC	UH W/(C*H**2)	UC		HI	
		W/(C*H**2)	W/(C*H**2)	W/(C*H**2)	W/(C*H**2)
0.72	8221.465	8372.652	20325.078	15104.492	
1.06	5631.402	9839.511	27973.867	16034.695	
1.45	10453.996	10699.646	34662.805	16141.035	
1.81	11134.658	11415.824	41422.941	16367.723	
2.17	11440.375	11735.250	47755.512	16073.553	
2.52	11652.484	11958.543	53777.309	15823.563	
2.85	11882.675	12201.133	55683.805	15734.250	
3.25	12098.879	12425.168	65927.684	15700.258	
3.61	12180.240	12515.152	71245.CCC	15507.117	
4.12	12130.766	12462.625	75125.313	15070.686	
REYNOLDS NO		PLAIN END REYN NO		FRICTION FACTOR	
		FLW RATE PER AREA		SIEVER RATE CONSTANT	
		KG/ISEC ^{4+*2}		KG/ISEC ^{4+*2}	
14012.51	14012.51	717.12	0.11084348	0.12630755	
20225.98	20225.99	1076.44	C.05554156	0.12664116	
2674.89	2647.688	1435.74	0.10638664	0.12714034	
32810.00	32809.97	1754.55	0.10296234	0.12724724	
32266.18	32266.15	2154.05	0.10104216	0.12720700	
45533.36	45533.35	2513.32	0.10069397	0.1275564	
51532.75	51932.72	2872.47	0.09764057	0.12742650	
58004.72	58404.69	3231.55	0.09673011	C.12743157	
64545.20	64945.17	3550.56	C.09614348	0.12741595	
74279.50	74279.38	4052.00	0.09403992	0.12737167	

Table XXV. Page 2

NUSSELT NO	NU/PR1/3(LW/LW)0.14	STANTON NO	J FACTOR	PERFORM FACTOR	
				J IN	DCTMS (KG/SEC)
459.49780	262.20308	0.00688465	0.0194897	0.3516614	C.4C27514
425.64673	353.38257	0.00621637	0.0181120	0.32227388	0.0171676
761.41634	439.08369	0.00580776	0.0164221	0.3165295	0.005551925
929.40576	521.81928	0.00530226	0.0158085	0.3126655	0.00530226
1071.62446	602.65112	0.00511714	0.0153270	0.3044223	0.00511714
1207.82788	678.92328	0.00496503	0.0146064	0.3052218	0.00496503
1340.60151	754.41821	0.00484325	0.0145511	0.3005895	0.00484325
1472.14258	828.77148	0.0047457	0.0142212	0.2966400	0.0047457
1600.53174	902.14014	0.00462232	0.0138302	0.2541351	0.00462232
1716.75175	1004.07617				
PRESSURE DROP (KPA)					
PRANDTL NO					
0.21631550-C5	7.27152	4.76306	1.04155	0.1176645	C.1176645
0.21631550-C3	13.25513	4.97232	1.02721	0.1765918	C.1765918
0.16356460-C3	27.94595	5.08218	1.03513	0.2355366	0.03513
0.13763220-C3	42.21470	5.13229	1.0256	0.2944659	0.0256
0.11942410-C3	59.74336	5.14806	1.0301	0.3533357	0.0301
0.10605580-C3	81.03131	5.18380	1.02794	0.4123156	0.02794
0.55363530-C4	102.65509	5.19579	1.02613	0.4712344	0.02613
0.67338746-C4	128.67958	5.19778	1.02544	0.5301418	0.02544
0.8044920L-C4	157.89804	5.19312	1.0250	0.5850365	0.0250
0.72275530-C4	200.70287	5.17384	1.02313	0.6714655	0.02313
ARAT					
RES					
26128.16	0.3515	28566.82	0.4518	0.4630	C.4630
35166.65	0.3313	39656.04	0.4630	0.5235	C.5235
51571.16	0.2609	58686.42	0.5570	0.5570	0.6045
62963.67	0.3015	74615.00	0.6045	0.6525	0.6525
77154.54	0.3642	925C5.50	0.6905	0.6905	0.7264
90654.44	0.3677	111293.69	0.7264	0.7728	0.7728
103153.63	0.2669	129215.38	0.8420	0.8420	0.8420
116625.19	0.3685	148547.15	0.9321	0.9321	0.9321
130091.94	0.3112	170087.12	0.9522	0.9522	0.9522
150096.13	0.3721	200522.50	0.9522	0.9522	0.9522

Table XXVI. KORODENSE CuNi-LPD Results (Tube No. K-1), Run 9

REYNOLDS NO	PLAIN END REYN NO	FLOW RATE PER AREA KG/(SEC*MM**2)	FRICTION FACTOR	SIEVER RATE CONSTANT			
				UN	LC	H	W/(C*H**2)
12010.25	12010.25	838.19	C.04C2245	0.31541536			
15077.74	19017.15	1257.72	C.04C214029	0.0403642			
25315.76	25315.74	1677.16	0.01177227				
31217.43	31317.41	2096.71	C.04C117707				
37220.58	37220.58	2516.42	C.01076251				
48511.50	48911.47	3355.96	0.00577551				
60513.92	60513.92	4195.58	C.00917143				
72813.54	72813.54	5024.50	0.00871721				
85364.21	85364.31	5673.16	0.00819452				
98422.06	98422.13	6711.29	0.0079232				
110256.00	110356.00	7456.52	0.0074233				

AD-A062 204

NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
AN EXPERIMENTAL COMPARISON OF ENHANCED HEAT TRANSFER CONDENSER --ETC(U)
SEP 78 J H FENNER
NPS69-78-015

F/G 13/11

NL

UNCLASSIFIED

2 OF 2

AD
A062204

END

DATE

FILMED

3-79

DDC

Table XXVI. Page 2

NUSSELT NO	NU/PR1/3(U/u _a) ^{0.14}	STANTON NO	J FACTOR	PERFORM FACTOR
144.22463	7e.76468	0.00196712	0.0063107	0.9408027
155.62661	107.26891	0.00180430	0.0058280	0.501094
250.16101	124.58893	0.00169254	0.0054869	0.9321786
256.61555	159.75422	0.00160474	0.0052436	0.5322735
242.06772	183.62897	0.00153852	0.0052655	0.515223
427.49335	228.86746	0.00143921	0.0047899	0.5e05172
506.48812	271.68335	0.00136762	0.0046880	1.0C04588
587.75901	314.52896	0.00131861	0.0044418	1.3J22128
665.78223	357.44849	0.00128061	0.0042708	1.3C23546
742.33308	400.17334	0.00125093	0.0041437	1.0633335
808.27451	438.05005	0.00122728	0.0040383	1.38860127
PRESSURE ERF (KPA)				
x1A		L/U _A	DCTMS (KG/S.EC)	
C.2768867-02	1.29473	5.66554	0.1175556	
C.2C20555-03	2.63717	5.80522	0.1755969	
C.16245510-C3	4.054651	5.83653	0.2380335	
C.137472-C3	6.74584	5.90653	0.2980642	
C.11526800-03	9.35505	5.97178	0.3541288	
C.6562180-34	15.41536	6.0715t	0.4722747	
0.803539700-04	22.15285	6.14318	0.5904332	
C.6543240-C4	30.31505	6.12421	0.7084917	
0.61302235-04	38.79030	6.09025	0.8265139.	
0.5452150-C4	48.18045	6.02874	0.9444621	
0.5C28020C-04	56.66183	5.56813	1.0453527	
ARAT				
KES	ARAT	ARATR	ARATR	
146.77.53	0.7449	14705.29	0.7270	
214.7e.86	0.7352	21595.28	0.7467	
28861.05	0.7422	2534C.42	0.7774	
35515.42	0.7382	36884.27	0.8208	
42117.08	0.7362	44368.55	0.8517	
54077.69	0.7281	59828.09	0.9324	
62262.50	0.7150	74227.81	0.9866	
75156.38	0.7114	90008.44	1.C1EC	
81468.94	0.7035	108845.21	1.C8E3	
104412.69	0.6984	123152.65	1.1250	
115620.19	0.6522	140663.81	1.19E6	

Table XXVII. KORODENSE CuNi-MHT Results (Tube No. K-2), Run 12

VELOCITY F/SEC	UN W/(C*M**2)	LC W/(C*M**2)	HQ W/(C*M**2)	F1	
				L/C	H/(C*M**2)
0.84	4C40.351	4172.492	6E57.871		9400.336
1.26	4924.137	5121.762	12120.663		10266.648
1.69	5460.352	5704.420	15111.156		10228.441
2.11	5847.070	6127.832	17521.152		13507.659
2.53	6146.577	6458.047	20638.617		10268.785
2.97	6661.055	7027.863	25755.059		10382.688
4.21	6902.914	7297.656	30609.624		10174.578
5.36	7344.488	7792.988	35316.492		10555.250
5.50	6547.928	7347.956	39493.660		5428.406
6.74	6954.945	7255.852	43657.625		5192.730
REYNOLDS NO		PLAIN END REYN NO	FLOW RATE PER AREA	SIEDEER TATE CONSTANT	
KG/(SEC*M**2)			KG/(SEC*M**2)	FRICITION FACTOR	
14252.58	14252.58		826.90	0.01253328	0.0465580
20564.25	20564.26		1255.76	0.01203469	0.0487507
27643.67	27643.66		1674.65	C.C1152352	0.0488301
34255.02	34255.59		2093.67	0.01126125	0.0488270
40826.56	40826.96		2512.70	0.01114958	0.04892164
53523.54	53523.54		3350.79	0.01023555	0.04854449
60999.88	60999.88		4188.51	0.00586518	0.04905990
ECC21.13	80021.13		5027.05	0.00523085	0.04903689
50835.69	50835.69		5867.54	0.00898437	0.04913294
1C155C.31	1C155C.38		6707.64	0.00873101	0.04522592

Table XXVII. Page 2

MUSSELT NC	NU/PR1/3(U/UW)0.14	STANTON NC	J FACTOR	PERFORM FACTOR
164.76C56	102.3563C	2.00254251	0.0075327	1.2020350
252.25648	159.83742	0.0020831	0.0069352	1.1477776
314.52773	174.58806	2.00215712	0.0065421	1.1354936
373.57026	2C7.46458	0.00204674	0.0062471	1.1065273
430.62502	228.92326	0.00196351	0.0060256	1.0808201
515.14630	258.65205	0.00184055	0.0056870	1.1000357
640.24268	355.74780	0.001747C2	0.0054235	1.055C782
725.05521	410.28516	0.00167952	0.0052327	1.12158e8
818.16C69	455.52505	0.00160883	0.0051179	1.1352670
918.46242	503.79175	0.00155551	0.0050153	1.148E514
XIN	PRESSURE DROP (KPA)	PRANDTL NC	U/UW	DOTMS1KG/SEC)
6.2647115C-03	1.20772	5.099838	1.04646	0.11117741
6.1542817C-02	2.62097	5.20182	1.04072	0.1767152
6.1555232C-03	4.44423	5.27946	1.03554	0.22568745
6.131485CD-03	6.80492	5.33235	1.0215C	0.29446372
6.11141164C-03	9.67715	5.37413	1.02564	0.3534352
6.51252087D-04	15.55660	5.43125	1.02632	0.4715471
6.7658566D-04	23.80032	5.46981	1.02144	0.5894945
9.4672313C-04	32.40565	5.49923	1.02057	0.7074487
0.556744CC-04	42.48856	5.67378	1.02054	0.8251240
0.535566CC-04	53.94536	5.78948	1.02141	0.54355486
RES	ARAT	RESR	ARATR	DOTMS1KG/SEC)
14422.16	0.5601	15645.04	0.7025	
21645.27	0.5677	23498.12	0.7141	
28411.13	0.5663	31611.61	0.7514	
35834.64	0.5726	40304.26	0.7956	
43173.75	0.5771	49382.47	0.8407	
56443.43	0.5717	66489.31	0.9044	
65980.75	0.5704	85251.19	0.9913	
82103.81	0.5652	102200.25	1.0226	
53147.56	0.5600	122230.63	1.1984	
104154.63	0.5572	140887.31	1.2556	

Table XXVIII. KORODENSE Al-LPD Results (Tube No. K-3), Run 13

VELOCITY M/SEC	JN W/(C*H**2)	UN W/(C*H**2)	LC W/(C*H**2)	HI W/(C*H**2)	SIEDER TATE CONSTANT	
					L	C
0.84	4689.770	4868.688	11350.582	5673.945		
1.26	5421.699	5662.256	15441.387	16019.629		
1.65	5809.582	6142.676	19212.656	9894.375		
2.11	6360.875	6694.555	22802.301	10270.676		
2.52	6511.008	6861.066	24232.176	5546.297		
3.37	6852.707	7286.246	32264.305	9856.132		
4.21	7312.711	7757.219	39661.176	10147.674		
5.06	7598.727	8079.832	45886.224	10260.542		
5.90	7565.160	8064.452	50875.078	9931.555		
6.74	7563.785	8032.642	5662.628	9702.660		
PLAIN END REYN NO		FLOW RATE PER AREA K/(SEC*M**2)		FRICTION FACTOR		
REYNOLDS NO		K		0.02142038		0.026561226
12583.05		838.21		0.02024282		0.065516442
18720.30		1258.1C		0.01566798		0.066005136
24411.CC		1676.C3		0.01852071		0.06615452
30101.49		2057.95		0.01801943		0.06622E85
35700.68		2517.97		0.01649238		0.06636640
46995.19		3357.91		0.01515549		0.06642214
58456.04		4157.69		0.01419308		0.06644254
70101.44		5037.25		0.01317564		0.06644458
81626.94		5876.97		0.01265551		0.066444237
93314.12		6716.50				
52231.13						

Table XXVIII. Page 2

NISSELT NC	NU/PRL/3 (U/U _h) ^{1/3} .14	STANTON NC	J FACTOR	PERFORM FACTOR	
				U/W	U/W
225.12886	128.14040	J.00324812	0.0103287	0.9455335	0.9455335
325.67212	172.52151	0.00252260	0.0056104	0.5455C72	0.5455C72
406.26667	213.84465	0.00275529	0.0051167	0.5272628	0.5272628
482.94522	255.333315	0.00256638	0.0057431	0.5441415	0.5441415
556.36035	290.77755	0.00248844	0.0064546	0.9382910	0.9382910
636.27915	322.82568	0.00233181	0.009004	0.9701959	0.9701959
E3C.19165	432.27441	0.00222226	0.0076234	1.3100137	1.3100137
558.30655	455.56655	0.00215760	0.00713648	1.3378004	1.3378004
1C6.55717	564.64082	0.00206729	0.0071334	1.324653	1.324653
12C6.93306	626.64043	0.00201152	0.0069405	1.0568676	1.0568676
PRESSURE DROP (KPA)					
XIN	PRANC7L NC	U/W	U/W	U/W	U/W
0.1757121C-C2	2.06831	5.67052	1.04650	0.1175546	0.1175546
0.2346C27C-C3	4.29852	5.93178	1.04282	0.1770486	0.1770486
0.162655E0-03	7.09010	6.08652	1.04058	0.2361451	0.2361451
0.1378514C-C3	11.16467	6.17938	1.03687	0.2552352	0.2552352
0.119872E-03	15.67265	6.26256	1.03003	0.3543472	0.3543472
0.95920C80-04	25.50603	6.35517	1.03619	0.44725563	0.44725563
C. EC5C75CC-04	36.622520	6.39116	1.03446	0.5507251	0.5507251
C.6574542C-04	49.39148	6.39518	1.03223	0.7088802	0.7088802
C.61F1344C-04	62.42877	6.4053C	1.03087	0.8270455	0.8270455
C.25576CC-04	76.2951	6.40725	1.03024	0.9451962	0.9451962
PER%					
ARAT					
RESR					
14656.79	0.4534	16448.76	0.5548		
21226.14	0.4534	24C45.14	0.6404		
28216.76	0.4561	32518.07	0.6576		
34210.91	0.4515	40412.26	0.72C4		
40682.30	0.4522	49501.63	0.7636		
52617.65	0.4452	66667.25	0.8646		
64103.88	0.4376	8351.31	0.5134		
75733.13	0.4325	101C15.06	0.9679		
863C5.31	0.4245	11944.31	1.0554		
97964.19	0.4226	139734.19	1.1416		

Table XXIX. KORDENSE AL-MIT Results (Tube No. K-4), Run 11

VELCC1 TV # SEC	UN W/(C*H**2)	UC W/(C*H**2)	HI W/(C*H**2)	HQ W/(C*H**2)
0.84	4046.648	4612.484	9627.651	10681.094
1.26	4759.9C2	5562.57C	1320.664	11175.334
1.69	5224.180	6207.228	16310.172	11312.574
2.11	5444.910	6521.242	19294.754	10884.135
2.53	5702.129	6893.8C5	22186.188	10916.680
3.37	6106.473	7493.7C7	27736.938	11026.424
4.21	6262.525	7730.1C9	33016.395	10791.594
5.06	6646.410	8323.5C4	38080.664	11236.156
5.50	6717.094	8334.652	43635.434	1C588.635
6.74	6768.648	8557.785	47568.168	10838.285
REYNOLDS NO		FLOW RATE PER AREA KG/(SEC*MM**2)	FRICITION FACTOR	SIEDER TATE CONSTANT
14466.44	14466.44	836.67	C.01671752	0.05201293
21015.02	21015.04	1255.72	0.01737395	0.05220137
27270.57	27310.56	1674.97	0.01641210	0.05235984
33584.81	33584.81	2094.37	0.01594626	0.05246294
39826.17	39826.17	2513.74	0.01518683	0.05252360
52288.95	52288.95	3352.45	0.01375036	0.05263026
64678.30	64678.27	4191.31	0.01274706	0.05269491
77188.00	77187.54	5020.01	0.01189508	C.05272382
89694.13	89694.13	5868.72	0.0120712	0.05272545
102266.63	102266.63	6707.34	0.01049045	0.05276796

Table XXIX. Page 2

NUSSLETT NC		NU/PR1/3(U/UH)10-14	J FACTOR	PERFORM FACTOR
155.55217	110.77664	0.00775254	0.0080611	C. 9643640
171.22207	145.88254	0.00250070	0.0075050	C. 8631322
340.31177	185.46997	0.00332837	0.0071334	0.8666520
405.45483	219.16261	0.00220259	0.0068246	C. 8558444
464.55757	251.52890	0.00210956	0.0065965	0.8687621
581.82154	313.30176	0.00197767	0.0062562	0.807264
623.42798	371.65547	0.00188282	0.0060039	3.9415964
800.30493	426.65379	0.00180945	0.0057541	3.9736127
904.94092	483.57178	0.00175276	0.0056256	1.9046672
1118.846912	527.22465	0.00170522C	0.0054555	1.3484819
PRESSURE DROP (KPA)		PRANDTL NC	DOCTMS(KG/SEC)	
2IN	U/UW			
C.26158E3C-03	1.61052	5.01177	1.05265	0.1177423
C.15213C7C-03	3.76803	5.19512	1.05226	0.176147
C.15465C1C-03	6.23041	5.34000	1.04662	0.2357147
C.13C7715C-03	9.61473	5.45405	1.04582	0.2947252
0.1137337D-03	13.18675	5.52237	1.04452	0.3537514
3.5057647D-04	21.225282	5.62244	1.04413	0.4717868
0.7642257C-04	30.75821	5.69422	1.04428	0.5658323
C.6627025C-04	41.74888	5.73007	1.04540	0.7078605
0.56422554C-04	53.01096	5.75619	1.04419	0.8258892
C.5261152C-04	64.81354	5.77165	1.0465C	0.5435064
PES		APAT	AFATR	
16275.42	0.5733	17170.55	0.6542	
25126.54	0.5967	26661.46	0.7042	
32616.45	0.5934	35336.32	0.7485	
40224.29	0.5945	45066.73	0.8175	
47214.50	0.5899	52149.88	0.8607	
60774.35	0.5786	72132.56	0.9348	
7283.13	0.5653	91152.25	1.03C3	
86264.50	0.5612	108744.75	1.063C	
55074.54	0.5542	128331.65	1.1452	
111719.31	0.5452	14743C.88	1.2151	

Table XXX. KORODENSE Ti-MHT Results (Tube No. K-5), Run 14

REYNOLDS NO	PLAIN END REYN NO	FLOW RATE PER AREA KG/SEC ^{M**2})	FRICTION FACTOR	SIEGER TATE CONSTANT	
				TI W/(C*M**2)	HQ W/(C*M**2)
1691.84	12691.84	715.86	0.03259499	0.05461306	0.05461306
1E+45.20	18545.20	1074.26	0.03362725	0.05476032	0.05476032
24065.24	24065.33	1432.58	0.03307061	0.05455566	0.05455566
30176.50	30176.48	1791.13	0.03341131	0.05493336	0.05493336
36263.75	36363.79	2145.21	0.03330702	0.05490562	0.05490562
48282.38	48282.35	2865.81	0.03420618	0.05492338	0.05492338
60051.17	60051.17	3562.55	0.03354866	0.05496568	0.05496568
72061.38	72061.21	4255.66	0.03276574	0.05496568	0.05496568
E3563.15	83583.15	5015.64	0.03303691	0.05497244	0.05497244
56081.81	5732.06	5732.06	0.033397348	0.05496568	0.05496568

Table XXX. Page 2

MESSFELT NO	NU/FRI/5(U/UW)10.14	STANTON NO	J FACTOR	PERFORM FACTOR	
				L/UH	DCTMS(KG/SEC)
C.566676	104.74065	0.00290154	0.0088450	0.5427245	
465.51025	142.30058	0.0026561	0.0024116	0.4760174	
317.233413	175.83665	0.00247806	0.0078656	0.4485561	
4C3.28027	210.65482	0.00237175	0.0075101	0.4241663	
466.81694	244.43263	0.00228919	0.0072256	0.4093037	
5E6.55117	306.80811	0.00215747	0.0068316	0.3554141	
7CC.61230	365.51685	0.00205876	0.005435	0.3601154	
810.34750	422.91431	0.00198435	0.0053C74	0.3845534	
516.49023	478.07715	0.00162337	0.0051185	0.2815e51	
1C15.63037	532.35742	0.00187262	0.0055523	0.2843474	
PRESSURE CROP (KPA)		PRANDTL NO			
X1A		5.32131	1.07175	0.1178511	
C.2602155D-03	2.12332	5.07757	1.07406	0.1768546	
C.2C4.125E-03		5.14638	1.07455	0.2255101	
C.163E515D-03		14.42935	1.07584	0.2448729	
C.137CC36C-03		20.71565	1.07682	0.35338233	
C.111E25155-03		35.66410	1.073467	0.4117563	
C.5413155D-C4		54.66568	1.066657	0.5857930	
0.1ECE55E-C4		76.91930	1.066697	0.7C77511	
0.6E22251D-04		102.35619	1.07463	0.8257240	
C.601545D-C4		125.24959	1.07429	0.9426683	
0.5421955D-04		5.66697			
RES		ARAT			
		0.6920	18157.49	0.5813	
		0.7277	28766.45	0.6362	
		0.7435	39675.64	0.7071	
		0.7604	50881.54	0.7128	
		0.7715	64171.51	0.7824	
		0.7787	89512.13	0.8761	
		0.7556	115088.38	0.9364	
		0.7497	143561.66	1.0326	
		0.7921	171667.50	1.10C7	
		0.7951	196455.56	1.1651	
		174042.50			

Table XXXI. Summary of Heat Transfer Capabilities
of Enhanced Condenser Tubing.

<u>Tube No.</u>	<u>Tube Type</u>	<u>$\bar{C}_{i_a}/\bar{C}_{i_s}$</u>	<u>$\bar{h}_{o_a}/\bar{h}_{o_s}$</u>
<u>KORODENSE</u>			
K-1	CuNi-LPD	1.60 ± .18	.97 ± .11
K-2	CuNi-MHT	2.12 ± .21	.93 ± .09
K-3	Aℓ-LPD	2.60 ± .47	.85 ± .09
K-4	Aℓ-MHT	2.60 ± .29	.85 ± .09
K-5	Ti-MHT	2.20 ± .27	1.15 ± .12
<u>TURBOTEC</u>			
T-1	High Pitch	1.76 ± .24	1.03 ± .13
T-2	Medium Pitch	2.92 ± .33	1.10 ± .10
T-3a	Low Pitch (u)	4.88 ± .82	1.32 ± .12
T-3b	Low Pitch (s)	5.12 ± .90	1.34 ± .13
T-4	Variable Pitch	4.12 ± .72	1.14 ± .09
<u>GENERAL ATOMIC [11]</u>			
GA-1	30° Helix Angle	3.28 ± .51	.94 ± .06
GA-2	45° Helix Angle	3.24 ± .50	.94 ± .06
GA-3	60° Helix Angle	3.28 ± .51	.99 ± .09

Inside Heat Transfer Coefficient (Sieder-Tate)

$$Nu_i = h_i D_i / k_b = C_i Re^{0.8} Pr^{1/3} (\mu/\mu_w)^{0.14}$$

Outside Heat Transfer Coefficient (Nusselt)

$$h_o = 0.725 \left[\frac{\rho_f(\rho_f - \rho_v)g h_{fg} k_f^3}{\mu_f D_o (T_s - T_w)} \right]^{0.25}$$

VIII. FIGURES

Figure 1. Photograph of Test Facility

STEAM SYSTEM

NOTE 1: From discharge of feed pump, see Figure 6

NOTE 2: To air ejector via refrigerated cold trap and vacuum pump

Figure 2. Schematic Diagram of Steam System

Figure 3. Photograph of Test Condenser with Partial Insulation

Figure 4. Test Condenser Schematic, Front View

Figure 5. Test Condenser Schematic, Side View

CONDENSATE AND FEEDWATER SYSTEMS

NOTE 1: To desuperheater, see Figure 6

Figure 6. Schematic Diagram of Condensate and Feedwater System

Figure 7. Schematic Diagram of Cooling Water System

Figure 8. Enhanced Tube Schematic Drawing
Showing Location of Pressure Taps.

Figure 9. Photograph of High Pitch TURBOTEC Tube (Tube No. T-1)

Figure 10. Photograph of Medium Pitch TURBOTEC Tube (Tube No. T-2)

Figure 11. Photograph of Low Pitch TURBOTECH Tube (Tube No. T-3)

Figure 12. Photograph of Copper-Nickel-MHT KORODENSE Tube
(Tube No. K-2)

Figure 13. Photograph of Aluminum-MHT KORODENSE Tube (Tube No. K-4)

Figure 14. Photograph of Titanium-MHT KORODENSE Tube (Tube No. K-5)

Figure 15. Schematic Representation of Procedure Used to Find U_n

Figure 16. Schematic Representation of Procedure Used to Find Sieder-Tate Parameter

Figure 17. Schematic Representation of Procedure Used to Find Sieder-Tate Coefficient C_1 , h_i and h_o

Figure 18. Photograph of Condensation on Low Pitch TURBOTEC Tube (No. T-3a) at a Cooling Water Velocity of 3 m/s

Figure 19. Photograph of Condensation on Low Pitch TURBOTECH Tube (No. T-3a) Showing Effect of Tube Vibration at a Cooling Water Velocity of 4 m/s

Figure 20. Corrected Overall Heat Transfer Coefficient Versus Cooling Water Mass Flow Rate for Smooth Tubes.

Figure 21. Corrected Pressure Drop Versus Cooling Water Mass Flow Rate for Smooth Tubes.

Figure 22. Wilson Plot for Smooth Tubes

Figure 23. Inside Nusselt Number Correlation Versus Reynolds Number for Smooth Tubes.

Figure 24. Fanning Friction Factor Versus Reynolds Number for Smooth Tubes.

Figure 25. Tube Performance Factor, $2j/f$, Versus Reynolds Number for Smooth Tubes.

Figure 26. Corrected Overall Heat Transfer Coefficient, U_G , Versus Cooling Water Mass Flow Rate for TURBOTECH Tubes

Figure 27. Corrected Overall Heat Transfer Coefficient, U_c , Versus Cooling Water Mass Flow Rate for KORODENSE Tubes.

Figure 28. Uncorrected Overall Heat Transfer Coefficient, U_n , Versus Cooling Water Velocity for Tube K-5 Compared with Data of Cunningham and Milne [26]

Figure 29. Corrected Pressure Drop Versus Cooling Water Mass Flow Rate for TURBOTEC Tubes.

Figure 30. Corrected Pressure Drop Versus Cooling Water Mass Flow Rate for KORODENSE Tubes.

Figure 31. Wilson Plot for TURBOTEC Tubes.

Figure 32. Wilson Plot for KORODENSE Tubes.

Figure 33. Inside Nusselt Number Correlation Versus Reynolds Number for TURBOTECH Tubes

Figure 34. Inside Nusselt Number Correlation Versus
Reynolds Number for KORODENSE Tubes

Figure 35. Fanning Friction Factor Versus Reynolds Number for TURBOTEC Tubes.

Figure 3G. Fanning Friction Factor Versus Reynolds Number for KORDENSE Tubes.

Figure 37. Tube Performance Factor, $2j/f$, Versus
Reynolds Number for TURBOTECH Tubes.

Figure 38. Tube Performance Factor, $2j/f$, versus Reynolds Number for KODENSE Tubes.

Figure 39. Augmented to Smooth Tube Surface Area Ratio ($R_{ext} = 0$) Versus Reynolds Number.

Figure 40. Augmented to Smooth Tube Surface Area Ratio ($R_{ext} \neq 0$) Versus Reynolds Number.

Figure 41. Comparative Effect of Tube Pitch (Helix Angle) on Both Inside and Outside Heat Transfer Coefficients (for Constant Groove Depth)

APPENDIX A

OPERATING PROCEDURES

1. Light-off Procedure

a. Boiler Operation

- (1) Energize main circuit breaker located in power panel P-2.
- (2) Turn key switch on--located on right side of main control board.
- (3) Energize circuit breaker on left side of main control panel by depressing start button.
- (4) Energize individual circuit breakers on left side of main control panel. The following list identifies each circuit breaker:
 - (a) #1 - Feed pump
 - (b) #2 - Outlets
 - (c) #3 - Hot water heater (feedwater tank)
 - (d) #4 - Condensate pump
 - (e) #5 - Boiler
 - (f) #6 - Cooling tower
 - (g) #7 - Cooling water pump (only when using closed cooling water system)
- (5) Insure water level is up in the feedwater tank, and turn on switch to energize heater.
- (6) Turn on the switch to the feed pump to recirculate water in the feedwater tank.

- (7) Energize instrumentation.
- (a) Multichannel pyrometer.
 - (b) Autodata 9 recorder and amplifier.
 - (c) Program Autodata using following procedure:

SET TIME:

- all alarms and output switches off
- set date/time on thumbwheels (24 Hour clock)
- depress the STOP/ENTER switch
- set the DISPLAY switch to "time"
- lift the SET TIME switch to enter time.

ASSIGNING MULTIPLE CHANNELS:

- depress the STOP/ENTER switch
- check that all alarms and output switches are still off
- set the SCAN switch to "continuous"
- set the FIRST CHANNEL and LAST CHANNEL thumbwheels to 001
- set the DISPLAY switch to "all" and depress the SLOW switch
- lift the SCAN START switch to start scanning channel 1. To assign channel 1 depress and hold the AUTO and STD RES buttons for at least one scan
- set the LAST CHANNEL thumbwheels to 039
before setting the FIRST CHANNEL thumbwheels to 002

- depress the SKIP button to skip channels 2 through 39 (may have to depress the T/ $^{\circ}$ C button first to break unit out of automode)
- set the LAST CHANNEL thumbwheels to 052 before setting the FIRST CHANNEL thumbwheels to 040
- to assign channels 40 through 52 depress and hold the T/ $^{\circ}$ C and HI RES buttons for at least one complete scan

INTERVAL SCAN:

- set thumbwheels to interval desired between scans (usually one minute)
- depress the STOP/ENTER switch
- set the DISPLAY switch to "interval"
- depress the SET INTERVAL switch
- set the SCAN switch to "interval"
- set the FIRST CHANNEL thumbwheels to 001
- set the LAST CHANNEL thumbwheels to 052
- lift the SCAN START switch

Use the following as needed/desired:

- printer on/off
- SLOW switch
- single channel display

- (8) Energize cold trap refrigeration unit, insure that flammable stowage locker exhaust fan is on, and start vacuum pump.

(9) After feedwater tank has reached a temperature of 60°C, insure water level in boiler is above low level mark and energize boiler.

(10) Open valve DS-1 (set rotameter to 15-20% flow)

b. House Steam Operation

Follow steps (1) through (4), (6) and (8) as outlined above for the boiler.

2. Operation

a. Cooling Water System

(1) Open valve CW-1; then open valve CW-2 one turn to prime the cooling water pump, keeping valves SW-3 and CW-4 closed.

(2) Energize cooling water pump (switch near pump), and close valve CW-2. Open valve CW-3 one turn until flow is established, then open valve CW-4 to purge air.

(3) Open valves CW-3 and CW-4 to obtain desired flow rates.

(4) Vent both sides of the 3.66 meter manometer.

(5) When using the house water supply remove plug from sump and open valve CW-2 with valve CW-1 closed. Follow step 3.

(6) Begin flow to secondary condenser (valve behind column next to boiler).

b. Steam System

(1) Boiler Operation

- (a) When boiler has reached the desired pressure (approximately 20.7 kPa) open valve MS-1.
- (b) Insure valves MS-6 and MS-5 are open.
- (c) Open valve MS-3 to obtain desired steam flow rate to test condenser. Open valve MS-4 as necessary to maintain boiler pressure at desired level (34.5 kPa).

(2) House Steam

- (a) Insure valve MS-1 is closed. Open valve MS-2.
- (b) Follow steps (b) and (c) for boiler use.

c. Condensate and Feedwater System

(1) Using Boiler

- (a) To collect drains in test condenser hotwell operate with valve C-1 closed. After test run has been completed, open valve and condensate will drain into secondary condenser.
- (b) The condensate pump is operated intermittently, when level in secondary condenser dictates. When pump is secured, keep valve C-2 closed. When pump is required, start pump and then open valve C-2. In this mode keep valve C-3 closed.
- (c) While feed pump is running (continuous operation) valve FW-1 must be fully open and valve FW-2 must be throttled so that a

positive flow is insured. Valve FW-3 is a solenoid valve which is actuated by the boiler controls.

- (d) When boiler is energized, valve FW-4 must be fully open.
- (e) Make-up is added to the system through the top of the feedwater tank by removing anode.

(2) Using House Steam

- (a) Follow step (a) for using boiler.
- (b) To pump condensate from secondary condenser hotwell, start pump, and open valve C-3. In this mode keep valve C-2 closed.
- (c) Delete steps (c) through (e) for using boiler.

3. Securing System

a. Using Boiler

- (1) Close valves MS-3 and MS-4. Secure power to boiler and then close MS-1.
- (2) Close valve DS-1 and drain desuperheater hotwell.
- (3) Pump condensate from secondary condenser hotwell to feedwater tank. Secure valve C-2.
- (4) Secure vacuum pump and refrigeration unit.
- (5) Secure power to heater (switches on side and stand).
- (6) Secure flow to secondary condenser.
- (7) Bottom blow boiler to remove deposits. Repeat twice, blowing from high water mark to low water mark each time.

- (8) Secure cooling water pump or close valve CW-2 when using house water supply. Close valves CW-3 and CW-4.
 - (9) Secure instrumentation.
 - (10) Secure power to feed pump.
 - (11) De-energize individual circuit breakers.
 - (12) De-energize circuit breaker on control panel; depress stop button. Turn key switch off.
- b. Using House Steam
- (1) Close valve MS-2.
 - (2) Pump condensate into return line; close valve C-3.
 - (3) Follow steps (4) through (6), (9) and (10) as outlined for procedure using boiler.
4. Secondary Systems
- a. Vacuum System
- Vacuum is established by a mechanical vacuum pump and is controlled by a vacuum regulator mounted on instrument board mounted by test condenser. The vacuum pump is separated from the condenser system by a refrigerated cold trap to prevent moisture from entering the pump.
- b. Desuperheater
- Valve DS-1 controls flow of feedwater (60°C) to spray nozzles. Optimum flow level is between 15 and 20 percent flow on rotameter. Condensate is collected in a small tank below desuperheater so the mass flow rate can be determined.

5. Safety Devices

a. Emergency Power Shut-Off

To secure all power to the system in an emergency, depress the red button on the right of the main control panel next to the key switch.

b. Boiler

- (1) The mercury switches mounted on the main control panel secure power to the heating elements of the boiler when the steam pressure exceeds 172.4 kPa. Power is restored to the heating elements when the pressure drops to approximately 103.4 kPa.
- (2) A low water level limit switch is contained within the boiler, and when the water level inside the boiler drops below a preset level, power is secured to the boiler and will not be restored until the water level is above this preset height.
- (3) The relief valve mounted on the boiler is set to lift at 206.8 kPa.

APPENDIX B

SAMPLE CALCULATIONS

A sample calculation is performed here to illustrate how the data reduction program [11] progresses to the results. The KORODENSE, copper-nickel-MHT Tube (K-2), run number 12 at 50 percent flow on the high flow rotameter was selected at random to perform this analysis. This tube and run number are the same as that used for the error analysis in Appendix C.

Section 2 of this appendix corresponds to the calculations performed for plain end inside diameter. The water property calculations are shown in section 1.

INPUT PARAMETERS

Tube	KORODENSE, CuNi-MHT, Tube K-2
Run Number	12
Tube Inside Diameter, Plain End (D_i)	0.01339 m
Tube Outside Diameter, (D_o)	0.01588 m
Overall Tube Length (L)	1.22 m
Enhanced Section Length (L_{TS})	0.9144 m
Enhanced Section Cross Sectional Flow Area,* (Ac)	0.0001316 m^2
Outside Nominal Surface Area, (A_n)	0.045604 m^2
Tube Thermal Conductivity, (k_w)	44.652 W/m °C
Wall Resistance, (R_w)	$30.315 \times 10^{-6} m^2 °C/W$

*This area, Ac , was determined by measuring the liquid volume contained within the enhanced section of each tube and dividing by the enhanced section length.

Cooling Water In, (T_{c_i})	22.9 °C
Cooling Water Out, (T_{c_o})	27.8 °C
Average Cooling Water Temperature (T_b, T_{br})	25.35 °C, 298.5 °K
Steam Vapor Temperature, (T_v)	67.6 °C
Tube Wall Temperature, (T_w)	314.0 °K
Tube Pressure Drop, (ΔP_m)	36.148 kPa
% Flow	50
Tube Inlet Contraction Factor	$K_c \quad \left. \right\}$
Tube Outlet Expansion Factor	$K_e \quad \left. \right\} \quad K_e + K_c = 0.030$

Section 1, Water Properties

$$\mu = (4.134 \times 10^{-4}) \exp \{ [(0.008291758)(298.5) + (2644.2189)/(298.5)] - 10.59252566 \}$$

$$\mu = 8.6717 \times 10^{-4} \text{ kg/m}\cdot\text{sec} = 3.1218 \text{ kg/m}\cdot\text{hr}$$

$$k = 0.5565919 + (0.002174417)(25.35) - (0.70127 \times 10^{-5})(25.35)^2 - (2.0914 \times 10^{-10})(25.35)^3$$

$$k = 0.6072035 \text{ W/m}\cdot\text{°C}$$

$$\rho = 1004.44434 - (0.12673368)(25.35) - (0.0023913147)(25.35)^2$$

$$\rho = 999.695 \text{ kg/m}^3$$

$$c_p = 4.2377955 - (0.0018553514)(25.35) + (1.3948314 \times 10^{-5})(25.35)^2$$

$$c_p = 4.1997259 \text{ kJ/kg}\cdot\text{°C}$$

$$\dot{m} = \ell/m \times \rho = (35.582)(60)(0.001)(999.695)$$

$$\dot{m} = 2134.2688 \text{ kg/hr} = 0.59285 \text{ kg/sec}$$

$$Pr = \frac{\mu c_p}{k} = \frac{(8.6717 \times 10^{-4})(4.1997259 \times 10^3)}{(0.6072035)}$$

$$Pr = 5.997$$

Section 2, Plain-End-Tube Reduction

1. Determination of cooling water velocity

$$v = \frac{4\dot{m}}{\rho \pi D_i^2} \quad v_{TS} = \frac{\dot{m}}{\rho A c} = v_a$$

$$v = \frac{(4)(2134.2688)}{(999.695)(\pi)(0.01339)} \quad v_{TS} = \frac{(2134.2688)}{(999.695)(0.0001316)}$$

$$v = 15161.094 \text{ m/hr} \quad v_{TS} = 16222.795 \text{ m/hr}$$

$$= 4.211 \text{ m/sec} \quad = 4.506 \text{ m/sec}$$

2. Determination of Mass Flow Rate per Unit Area

$$G = \frac{4\dot{m}}{\pi D_i^2} = \rho v$$

$$= (999.695)(15161.094)$$

$$= 15,156,469. \text{ kg/m}^2 \text{ hr}$$

$$= 4210.13 \text{ kg/m}^2 \text{ sec}$$

3. Determination of Reynolds Number

$$Re = \frac{D_i G}{\mu_{H_2O}}$$

$$= \frac{(0.01339)(4210.13)}{(8.6717 \times 10^{-4})}$$

$$Re = 65,008.75$$

4. Determination of Overall Heat Transfer Coefficient

$$\begin{aligned}
 U_n &= \frac{\dot{m} c_p}{A_n} \ln \left(\frac{T_v - T_{c_i}}{T_v - T_{c_o}} \right) \\
 &= \frac{(0.59285)(4.1997259 \times 10^3)}{(0.045604)} \ln \left(\frac{67.6 - 22.9}{67.6 - 27.8} \right) \\
 &= 6339.01 \text{ W/m}^2 \text{ } ^\circ\text{C}
 \end{aligned}$$

5. Determination of Corrected Overall Heat Transfer Coefficient

$$\begin{aligned}
 U_c &= \frac{1}{\frac{1}{U_n} - R_w} \\
 &= \frac{1}{\frac{1}{6339.01} - 30.315 \times 10^{-6}} \\
 &= 7846.932 \text{ W/m}^2 \text{ } ^\circ\text{C}
 \end{aligned}$$

6. Determination of Friction Factor

$$\begin{aligned}
 f_s &= \frac{0.046}{Re^{0.2}} \\
 &= \frac{0.046}{65008.75^{0.2}} \\
 &= 0.005014 \\
 \Delta P_s &= \frac{4f_s G^2 (\frac{L_s}{D_1})}{\rho 2g_c} \\
 &= \frac{(4)(0.005014)(4210.13)^2 (\frac{0.3842}{0.01339})}{(999.695)(2)} \\
 &= 5.103 \text{ kPa}
 \end{aligned}$$

$$\begin{aligned}\Delta P_{\text{exp/con}} &= \frac{\rho v_{\text{TS}}^2}{2g_c} (K_c + K_e) \\ &= \frac{(999.695)(4.506)^2}{(2)} (0.030) \\ &= 0.3045 \text{ kPa}\end{aligned}$$

$$\begin{aligned}\Delta P_{\text{TS}} &= \Delta P_m - \Delta P_s - \Delta P_{\text{exp/con}} \\ &= 36.147502 - 5.102 - .3045 \\ &= 30.741 \text{ kPa}\end{aligned}$$

$$\begin{aligned}f_a &= \frac{\rho \Delta P_{\text{TS}}^2 g_c}{4G^2 \left(\frac{L_{\text{TS}}}{D_i}\right)} \\ &= \frac{(999.695)(30.741 \times 10^3)(2)}{(4)(4210.13)^2 \left(\frac{0.9144}{0.01339}\right)} \\ &= 0.0126943\end{aligned}$$

7. Determination of Wilson Plot Parameters

(a) Ordinate

$$\begin{aligned}Y &= \frac{1}{U_n} \\ &= \frac{1}{6339.01} = 1.578 \times 10^{-4} \frac{\text{m}^2}{\text{W}^\circ\text{C}}\end{aligned}$$

(b) Abscissa

$$\begin{aligned}X &= \frac{1}{Re^{0.8} Pr^{1/3}} \left(\frac{\mu}{\mu_w}\right)^{0.14} \\ \mu_w &= (4.134 \times 10^{-4}) \exp\{[(0.008291758)(314.0) \\ &\quad + (2644.2189)/(314.0)] \\ &\quad - 10.59252566\} \\ &= 6.368799 \times 10^{-4} \text{ kg/m}\cdot\text{sec}\end{aligned}$$

$$X = \frac{1}{(65008.75)^{0.8} (5.997)^{1/3} \left(\frac{8.6717}{6.368799}\right)^{0.14}}$$

$$= 7.4395 \times 10^{-5}$$

8. Determination of Sieder Tate Coefficient

$$C_i = \frac{D_o}{Mk}, \text{ where } M = \text{slope of linear regression subroutine}$$

$$M = 0.4726852, \text{ from linear regression subroutine}$$

$$C_i = \frac{(0.01588)}{(0.4726852)(0.6072035)}$$

$$C_i = 0.055328$$

9. Determination of Inside Heat Transfer Coefficient

$$h_i = \frac{C_i k}{D_i} Re^{0.8} Pr^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

$$= \left(\frac{0.055328}{0.01339}\right) (0.6072035) (65008.75)^{0.8} (5.997)^{1/3}$$

$$\quad \quad \quad \left(\frac{8.6717}{6.368799}\right)^{0.14}$$

$$h_i = 33725.222 \text{ W/m}^2 \text{ } ^\circ\text{C}$$

10. Determination of Outside Heat Transfer Coefficient

$$h_o = \frac{1}{\frac{1}{U_n} - R_w - \frac{D_o}{D_i h_i}}$$

$$= \frac{1}{1.577533 \times 10^{-4} - 30.315 \times 10^{-6} - \frac{(0.01588)}{(0.01339)(33725.222)}}$$

$$h_o = 10837.413 \text{ W/m}^2 \text{ } ^\circ\text{C}$$

11. Determination of Nusselt Number

$$\text{Nu} = \frac{h_i D_i}{k} = \frac{(33725.22)(.01339)}{(.6072035)}$$

$$= 743.706$$

12. Determination of Stanton Number

$$\text{St} = \frac{\text{Nu}}{\text{RePr}}$$

$$= \frac{(743.706)}{(65008.75)(5.997)}$$

$$= 1.90764 \times 10^{-3}$$

13. Determination of Performance Factor

$$\text{TPF} = \frac{2j}{f_a}$$

$$j = \text{St Pr}^{2/3} = (1.90764 \times 10^{-3})(5.997)^{2/3}$$

$$j = 6.2968 \times 10^{-3}$$

$$\text{TPF} = \frac{(2)(6.2969 \times 10^{-3})}{(0.0126943)}$$

$$\text{TPF} = 0.9921$$

14. Determination of Area Ratios

a. $R_{\text{ext}} = 0$

$$R_{\text{es}} = \sqrt{\frac{0.027 f_a R_{\text{ea}}^3}{0.046 \text{Nu}_a / \text{Pr}^{1/3} (\mu / \mu_w)^{0.14}}}$$

$$= 74195.57$$

$$f_s = \frac{0.046}{Re_s^{0.2}}$$

$$= 0.00488295$$

$$\frac{A_a}{A_s} = \frac{Re_s^3 f_s}{Re_a^3 f_a}$$

$$= 0.579$$

14. b. $R_{ext} \neq 0$

Correction factors F_1 , F_2 and F_3 were obtained from reference [23] and applied as outlined in reference [22].

$$F_1 = 1.0 \text{ (fouling correction)}$$

$$F_2 = 0.9 \text{ (material correction for 90-10 copper-nickel)}$$

$$F_3 = 1.02 \text{ (temperature correction from coolant inlet temperature of } 23.2^\circ\text{C to } 21.1^\circ\text{C)}$$

$$C' = 2883 \text{ (from III.B.5.(b)(2))}$$

$$C = F_1 F_2 F_3 C' = 2595$$

$$U_a = U_n/F_3 = 6214.72 \text{ W/m}^2 \text{ }^\circ\text{C}$$

$$v_s = \left[\frac{f_a v_a^3 C}{0.046 U_a} \left(\frac{\rho D_i}{\mu} \right)^{1/5} \right]^{1/2.3}$$

$$= 5.89 \text{ m/s}$$

$$U_s = C (v_s)^{0.5}$$

$$= 6297.9 \text{ W/m}^2 \text{ }^\circ\text{C}$$

$$\frac{A_a}{A_s} = \frac{U_s}{U_a} = \frac{6297.9}{6214.72}$$

$$= 1.013$$

APPENDIX C

ERROR ANALYSIS

The basic equations used in this section are reproduced from Reilly [11]. The general form of the Kline and McClintock [27] "second order" equation is used to compute the probable error in the results. For some resultant, R, which is a function of primary variables X_1, X_2, \dots, X_n , the probable error in R, δR is given by:

$$\delta R = \left[\left(\frac{\delta R}{\delta X_1} \delta X_1 \right)^2 + \left(\frac{\delta R}{\delta X_2} \delta X_2 \right)^2 + \dots + \left(\frac{\delta R}{\delta X_n} \delta X_n \right)^2 \right]^{1/2} \quad (C-1)$$

where $\delta X_1, \delta X_2, \dots, \delta X_n$ is the probable error in each of the measured variables.

C.1. Uncertainty in Overall Heat Transfer Coefficient, U_n

The overall heat transfer coefficient is given by equation (4), in Chapter III as:

$$U_n = \frac{\dot{m} c_p}{A_n} \ln \left[\frac{T_v - T_{c_i}}{T_v - T_{c_o}} \right] . \quad (4)$$

By applying equation (C-1) to equation (4), the following equation results:

$$\frac{\delta U_n}{U_n} = \left[\left(\frac{\delta A_n}{A_n} \right)^2 + \left(\frac{\delta c_p}{c_p} \right)^2 + \left(\frac{\delta \dot{m}}{\dot{m}} \right)^2 + \left(\frac{\delta T_v (T_{c_i} - T_{c_o})}{(T_v - T_{c_i})(T_v - T_{c_o}) \ln \frac{T_v - T_{c_i}}{T_v - T_{c_o}}} \right)^2 \right. \\ \left. + \left(\frac{\delta T_{c_i}}{(T_v - T_{c_i}) \ln \frac{T_v - T_{c_i}}{T_v - T_{c_o}}} \right)^2 + \left(\frac{\delta T_{c_o}}{(T_v - T_{c_o}) \ln \frac{T_v - T_{c_i}}{T_v - T_{c_o}}} \right)^2 \right]^{1/2}$$

(C-2)

The following are the values assigned to the variables.

$$\begin{aligned}\delta c_p &= 0.0042 \text{ kJ/kg } ^\circ\text{C} \\ \delta \dot{m} &= 0.01 \dot{m} \text{ kg/sec} \\ \delta T_v &= 1.0 \text{ } ^\circ\text{C} \\ \delta T_{c_o} &= 0.1 \text{ } ^\circ\text{C} \\ \delta T_{c_i} &= 0.1 \text{ } ^\circ\text{C} \\ \delta A_n &= 0.00074 \text{ m}^2\end{aligned}$$

For Run 12 at 50 Percent Flow

$$\begin{aligned}\frac{\delta U_n}{U_n} &= \left[\left(\frac{0.00074}{0.045604} \right)^2 + \left(\frac{0.0042}{4.19973} \right)^2 + \left(\frac{0.01}{\dot{m}} \right)^2 \right. \\ &\quad \left. + \left(\frac{(1.0)(-4.9)}{(44.7)(39.8) \ln(1.123)} \right)^2 \right. \\ &\quad \left. + 2 + \left(\frac{0.1}{(39.8) \ln(1.123)} \right)^2 \right]^{1/2}\end{aligned}$$

$$\frac{\delta U_n}{U_n} = .051$$

$$\therefore U_n, 50\% = 6339 \pm 326 \text{ W/m}^2 \text{ } ^\circ\text{C}$$

C.2. Uncertainty in Inside Heat Transfer Coefficient, h_i

The probable error in the inside heat transfer coefficient is given by:

$$\frac{\delta h_i}{h_i} = \left[\left(\frac{\delta k}{k} \right)^2 + \left(\frac{\delta D_i}{D_i} \right)^2 + \left(\frac{0.8 \delta Re}{Re} \right)^2 + \left(\frac{0.333 \delta Pr}{Pr} \right)^2 + \left(\frac{\delta C_i}{C_i} \right)^2 + \left(\frac{0.14 \delta (\mu/\mu_w)}{\mu/\mu_w} \right)^2 \right]^{1/2}, \quad (C-3)$$

where:

$$\delta k = 0.030 \text{ W/m}^{\circ}\text{C},$$

$$\delta D_i = 0.00051 \text{ m},$$

$$\delta Pr = 0.10, \text{ and}$$

$$\delta \left(\frac{\mu}{\mu_w} \right) = 0.050.$$

The probable error in the Reynolds number is given by:

$$\frac{\delta Re}{Re} = \left[\left(\frac{\delta G}{G} \right)^2 + \left(\frac{\delta \mu}{\mu} \right)^2 + \left(\frac{\delta D_i}{D_i} \right)^2 \right]^{1/2}, \quad (C-4)$$

where,

$$\frac{\delta G}{G} = \left[\left(\frac{0.01 \dot{m}}{\dot{m}} \right)^2 + \left(2 \frac{\delta D_i}{D_i} \right)^2 \right]^{1/2}, \quad (C-5)$$

$$\frac{\delta G}{G} = \left[(.01)^2 + \left(\frac{.00013}{.01339} \right)^2 \right]^{1/2} = 0.013.$$

Since $\delta \mu = 0.15 \text{ kg/m}\cdot\text{hr}$, then

$$\frac{\delta Re}{Re} = \left[(.013)^2 + \left(\frac{0.15}{3.1218} \right)^2 + \left(\frac{.00051}{.01339} \right)^2 \right]^{1/2} = 0.05$$

$$\therefore \underline{Re_{50\%} = 65008 \pm 3245}$$

The probable error in the coefficient C_i is given by:

$$\frac{\delta C_i}{C_i} = \left[\left(\frac{\delta D_o}{D_o} \right)^2 + \left(\frac{\delta \text{slope}}{\text{slope}} \right)^2 + \left(\frac{\delta k}{k} \right)^2 \right]^{1/2}, \quad (C-6)$$

where:

$$\delta D_o = 0.00025 \text{ m},$$

$$\delta k = 0.03 \text{ W/m}\cdot\text{^oC}, \text{ and}$$

$$\delta \text{slope} = 0.065 \text{ slope.}$$

$$\frac{\delta C_i}{C_i} = \left[\left(\frac{0.00025}{.01588} \right)^2 + (.065)^2 + \left(\frac{0.03}{.6072035} \right)^2 \right]^{1/2}$$

$$\frac{\delta C_i}{C_i} = 0.082$$

$$\therefore C_{i,50\%} = 0.053 \pm .004$$

Using the above information, the probable error in the inside heat transfer coefficient can be calculated as:

$$\begin{aligned} \frac{\delta h_i}{h_i} &= \left[\left(\frac{.030}{.6072035} \right)^2 + \left(\frac{0.00051}{.01339} \right)^2 + (.082)^2 + (0.8 \times 0.05)^2 \right. \\ &\quad \left. + \left(\frac{.333 \times 0.1}{5.997} \right)^2 + \left(\frac{.14 \times 0.05}{1.361591} \right)^2 \right]^{1/2} \end{aligned}$$

$$\frac{\delta h_i}{h_i} = 0.096$$

$$\therefore h_{i,50\%} = 33725 \pm 3238 \text{ W/m}^2 \text{ }^{\circ}\text{C}$$

C.3 The Uncertainty in the Outside Heat Transfer Coefficient, h_o

The probable error in the outside heat transfer coefficient is given by:

$$\frac{\delta h_o}{h_o} = \{ \left[\frac{\delta U_n}{U_n^2 \left(\frac{1}{U_n} - R_w - \frac{D_o}{D_i h_i} \right)} \right]^2 + \left[\frac{\delta R_w}{\left(\frac{1}{U_n} - R_w - \frac{D_o}{D_i h_i} \right)} \right]^2 + \left[\frac{\left(\frac{D_o}{D_i h_i} \right) \left(\frac{\delta h_i}{h_i} \right)}{\frac{1}{U_n} - R_w - \frac{D_o}{D_i h_i}} \right]^2 \}^{1/2}, \quad (C-7)$$

where:

$$\frac{\delta U_n}{U_n} = .051,$$

$$\delta R_w = 1.54 \times 10^{-6} \text{ m}^2 \text{ }^\circ\text{C/W, and}$$

$$\frac{\delta h_i}{h_i} = 0.096$$

$$\text{also, } \frac{1}{U_n} - R_w - \frac{D_o}{D_i h_i} = 9.2273 \times 10^{-5} \text{ m}^2 \text{ }^\circ\text{C/W.}$$

With this information:

$$\begin{aligned} \frac{\delta h_o}{h_o} &= \{ \left[\frac{.051}{(6339.01)(9.2273 \times 10^{-5})} \right]^2 + \left[\frac{1.54 \times 10^{-6}}{9.2273 \times 10^{-5}} \right]^2 \\ &\quad + \left[\frac{(.01588)(.096)}{(.01339)(33725)(9.2273 \times 10^{-5})} \right]^2 \}^{1/2} \end{aligned}$$

$$\frac{\delta h_o}{h_o} = .096$$

$$\therefore h_o = 10837 \pm 1041 \text{ W/m}^2 \text{ }^\circ\text{C}$$

C.4 Uncertainty in Tube Performance Factor, $2j/f$

Since the Colburn Analogy defines j as $St \Pr^{2/3}$, the probable error in the Tube Performance Factor $2j/f$ is given by:

$$\frac{\delta TPF}{TPF} = [(\frac{\delta St}{St})^2 + (\frac{2}{3} \frac{\delta Pr}{Pr})^2 + (\frac{\delta f_a}{f_a})^2]^{1/2}, \quad (C-8)$$

where

$$\frac{\delta St}{St} = [(\frac{\delta Nu}{Nu})^2 + (\frac{\delta Re}{Re})^2 + (\frac{\delta Pr}{Pr})^2]^{1/2}, \quad (C-9)$$

$$\frac{\delta Nu}{Nu} = [(\frac{\delta h_i}{h_i})^2 + (\frac{\delta D_i}{D_i})^2 + (\frac{\delta k}{k})^2]^{1/2}, \text{ and} \quad (C-10)$$

$$\begin{aligned} \frac{\delta f_a}{f_a} &= [(\frac{\delta \Delta P_{TS}}{\Delta P_{TS}})^2 + (2 \frac{\delta G}{G})^2 + (\frac{\delta L_{TS}}{L_{TS}})^2 + (\frac{\delta \rho}{\rho})^2 \\ &\quad + (\frac{\delta D_i}{D_i})^2]^{1/2}. \end{aligned} \quad (C-11)$$

Assuming $\delta \Delta P_{TS} = .02 \Delta P_{TS}$, $\delta \rho = 0.1\rho$, and $\delta L_{TS} = .0013 \text{ m}$, the following numerical values result:

$$\begin{aligned} \frac{\delta f_a}{f_a} &= [(.02)^2 + (2 \times .013)^2 + (\frac{.0013}{.9144})^2 + (.01)^2 \\ &\quad + (\frac{.000051}{.01339})^2]^{1/2} \end{aligned}$$

$$\frac{\delta f_a}{f_a} = 0.03$$

$$\frac{\delta \text{Nu}}{\text{Nu}} = [(.096)^2 + (\frac{.00051}{.01339})^2 + (\frac{.030}{.6072035})^2]^{1/2}$$

$$\frac{\delta \text{Nu}}{\text{Nu}} = 0.11$$

$$\frac{\delta \text{St}}{\text{St}} = [(0.11)^2 + (.05)^2 + (\frac{0.10}{5.997})^2]^{1/2}$$

$$\frac{\delta \text{St}}{\text{St}} = 0.12$$

$$\frac{\delta \text{TPF}}{\text{TPF}} = [(0.12)^2 + (\frac{2}{3} \times \frac{0.10}{5.997})^2 + (0.03)^2]^{1/2}$$

$$\frac{\delta \text{TPF}}{\text{TPF}} = 0.124$$

$$\therefore \text{TPF}_{50\%} = 0.992 \pm 0.123$$

C. 5 Uncertainty in the Area Ratios

C. 5. 1 $R_{\text{ext}} = 0$

Using Equation (24) the probable error in the area ratio ($R_{\text{ext}} = 0$) is given by:

$$\frac{\delta(A_a/A_s)}{(A_a/A_s)} = [(\frac{\delta \text{Nu}_s}{\text{Nu}_s})^2 + (\frac{\delta \text{Nu}_a}{\text{Nu}_a})^2]^{1/2} \quad (\text{C-12})$$

where

$$\frac{\delta \text{Nu}_a}{\text{Nu}_a} = .11$$

In addition, from equation (26),

$$\frac{\delta \text{Re}_s}{\text{Re}_s} = [(\frac{1}{2} \frac{\delta f_a}{f_a})^2 + (\frac{3}{2} \frac{\delta \text{Re}_a}{\text{Re}_a})^2 + (\frac{1}{6} \frac{\delta \text{Pr}}{\text{Pr}})^2 + (0.07 \frac{\delta(\mu/\mu_w)}{(\mu/\mu_w)})^2 + (\frac{1}{2} \frac{\delta \text{Nu}_a}{\text{Nu}_a})^2]^{1/2}$$

$$\therefore \frac{\delta \text{Re}_s}{\text{Re}_s} = [(\frac{1}{2} \{ .03 \})^2 + (\frac{3}{2} \times 0.05)^2 + (\frac{1}{6} \times \frac{0.10}{5.997})^2 + (0.07 \times \frac{0.050}{1.361591})^2 + (\frac{1}{2} \times 0.11)^2]^{1/2}$$

$$\frac{\delta \text{Re}_s}{\text{Re}_s} = 0.094$$

and using equation (25)

$$\frac{\delta \text{Nu}_s}{\text{Nu}_s} = [(0.8 \frac{\delta \text{Re}_s}{\text{Re}_s})^2 + (\frac{1}{3} \times \frac{\delta \text{Pr}}{\text{Pr}})^2 + (.14 \times \frac{\delta(\mu/\mu_w)}{(\mu/\mu_w)})^2]^{1/2} \quad (C-13)$$

$$\frac{\delta \text{Nu}_s}{\text{Nu}_s} = [(.8 \times .094)^2 + (\frac{1}{3} \times \frac{.10}{5.997})^2 + (.14 \times \frac{.15}{1.36159})^2]^{1/2}$$

$$\frac{\delta \text{Nu}_s}{\text{Nu}_s} = .075$$

$$\frac{\delta(A_a/A_s)}{(A_a/A_s)} = [(.075)^2 + (0.11)^2]^{1/2} = .13$$

$$\therefore A_a/A_s(R_{ext}=0)50\% = 0.57 \pm 0.07$$

C. 5. 2 $R_{ext} \neq 0$

From equation (29), the probable error in the Area Ratio ($R_{ext} \neq 0$) is given by:

$$\frac{\delta(A_a/A_s)}{(A_a/A_s)} = [(\frac{\delta U_s}{U_s})^2 + (\frac{\delta U_a}{U_a})^2]^{1/2} \quad (C-14)$$

where:

$$\frac{\delta U_a}{U_a} = .051$$

and from equation (30)

$$\frac{\delta U_s}{U_s} = \frac{1}{2} \frac{\delta v_s}{v_s} \quad (C-15)$$

Equation (27) can be used as follows:

$$\frac{\delta v_s}{v_s} = [(\frac{\delta Re_s}{Re_s})^2 + (\frac{\delta D_i}{D_i})^2 + (\frac{\delta \rho}{\rho})^2 + (\frac{\delta \mu}{\mu})^2]^{1/2} \quad (C-16)$$

$$\frac{\delta v_s}{v_s} = [(.094)^2 + (\frac{.000051}{.01339})^2 + (.01)^2 + (\frac{.15}{3.1218})^2]^{1/2}$$

$$\frac{\delta v_s}{v_s} = .11 ,$$

and

$$\frac{\delta(A_a/A_s)}{(A_a/A_s)} = [(\frac{1}{2} \times .11)^2 + (.051)^2]^{1/2} = .075$$

$$\therefore A_a/A_s_{(R_{ext} \neq 0)50\%} = 1.013 \pm .076$$

BIBLIOGRAPHY

1. Search, H. T., A Feasibility Study of Heat Transfer Improvement in Marine Steam Condensers, MSME, Naval Postgraduate School, Monterey, CA December 1977.
2. Bergles, A. E., Enhancement of Heat Transfer, Keynote paper presented at the Sixth International Heat Transfer Conference, Toronto, Canada, 7-11 August 1978.
3. Palen, J., Cham, B., and Taborek, J., Comparison of Condensation of Steam on Plain and Turbotec Spirally Grooved Tubes in a Baffled Shell-and-Tube Condenser, Heat Transfer Research, Inc., Report 2439-300/6, January 1971.
4. Young, E. H., Withers, J. G., and Lampert, W. B., Heat Transfer Characteristics of Corrugated Tubes in Steam Condensing Applications, AIChE Paper No. 3, August 11, 1975.
5. Catchpole, J. P., Drew, B. C. H., "Evaluation of Some Shaped Tubes for Steam Condensers," Steam Turbine Condenser, NEL Report No. 619, pp 68-82, August, 1976.
6. Newson, I. H., Hodgson, T. K., "The Development of Enhanced Heat Transfer Condenser Tubing," 4th International Symposium on Fresh Water From the Sea, Vol. 1, pp 69-94, 1973.
7. Combs, S. K., An Experimental Study of Heat Transfer Enhancement for Ammonia Condensing on Vertical Fluted Tubes, Oak Ridge National Laboratory, Report ORNL-5356, January, 1978.
8. Combs, S. K., Mailen, G. S., Murphy, R. W., Condensation of Refrigerants on Vertical Fluted Tubes, Oak Ridge National Laboratory, Report ORNL/TM-5848, August, 1978.
9. Beck, A. C., A Test Facility to Measure Heat Transfer Performance of Advanced Condenser Tubes, MSME, Naval Postgraduate School, Monterey, CA, January 1977.
10. Pence, D. T., An Experimental Study of Steam Condensation on a Single Horizontal Tube, MSME, Naval Postgraduate School, Monterey, CA, March 1978.
11. Reilly, D. J., An Experimental Investigation of Enhanced Heat Transfer on Horizontal Condenser Tubes, MSME, Naval Postgraduate School, Monterey, CA, March, 1978.

12. Metals Handbook, 8th ed., v. 2, p 665, American Society for Metals, 1964.
13. Acurex Autodata, Autodata Nine Technical Manual.
14. Brundrett, E., "Modified Hydraulic Diameter for Turbulent Flow," Proceedings of NATO Advanced Studies Institute on Turbulent Forced Convection in Channels, Istanbul, July 1978.
15. Holman, J. P., Heat Transfer, 4th ed., McGraw-Hill, 1976.
16. Wilson, E. E., A Basis for Rational Design of Heat Transfer Apparatus, paper presented at the Spring Meeting of the Society of Mechanical Engineers, Buffalo, NY, June 1935.
17. Briggs, D. E., and Young, E. H., "Modified Wilson Plot Techniques for Obtaining Heat Transfer Correlations for Shell and Tube Heat Exchangers," Heat Transfer-Philadelphia, v. 65, No. 92, pp 35-45, 1969.
18. Subroutine, NPS COMPUTER FACILITY, LEAST SQUARES POLYNOMINAL FITTING, LSQPL2, Programmed By D. E. Harrison, November 1969.
19. Kays, W. M., and London, A. L., Compact Heat Exchangers, pp 92-97, 2nd ed., McGraw-Hill, 1964.
20. Knudsen, J. G., and Katz, D. L., Fluid Dynamics and Heat Transfer, pp 332-335, McGraw-Hill, 1958.
21. Bergles, A. E. and Jensen, M. K., Enhanced Single-Phase Heat Transfer for Ocean Thermal Energy Conversion Systems, Report HTL-13 ISU-ERI-AMES-77314, ERI Project 1278, April 1977.
22. Department of the Navy, Bureau of Ships, Design Data Sheet DDS 4601-1, 15 OCT 1953.
23. Standards for Steam Surface Condensers, 6th ed., Heat Exchange Institute, NY, 1970.
24. Reynolds, O., Transactions of the Royal Society, 174A:935, London, 1883.
25. Colburn, A. P., Trans. AIChE, 29:174, 1933.
26. Cunningham, J., Milne, H. K., The Effect of Helix Angle on the Performance of Roped Tubes, paper presented at Sixth International Heat Transfer Conference, Toronto, Canada, 7-11 August, 1978.
27. Kline, S. J., McClintock, F. A., "Describing Uncertainties In Single Sample Experiments," Mechanical Engineering, v. 74, pp 3-8, January 1953.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2. Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
3. Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	2
4. Office of Research Administration, Code 012A Naval Postgraduate School Monterey, California 93940	1
5. Professor Paul J. Marto, Code 69Mx Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	20
6. LT James Fenner 1081 Debolt Road Utica, Ohio 43080	4
7. CDR W. W. Baline, USN Naval Sea Systems Command (033) (acting) 2221 Jefferson Davis Highway, CP#6 Arlington, Virginia 20360	1
8. Mr. Charles Miller Naval Sea Systems Command (0331) 2221 Jefferson Davis Highway, CP#6 Arlington, Virginia 20360	2
9. Mr. Frank Ventriglio Naval Sea Systems Command (0331) 2221 Jefferson Davis Highway, CP#6 Arlington, Virginia 20360	1
10. Dr. Earl Quandt Naval Ship Research & Development Center Annapolis Laboratory Annapolis, Maryland 21402	1
11. Mr. J. W. Murrin Naval Sea Systems Command (0331) 2221 Jefferson Davis Highway, CP#6 Arlington, Virginia 20360	1

12. CAPT R. E. Greer, USN
Naval Sea Systems Command (PMS-301)
2221 Jefferson Davis Highway, CP#6
Arlington, Virginia 20360 1
13. CDR D. W. Barns, USN
Naval Sea Systems Command (PMS-301.B)
2221 Jefferson Davis Highway, CP#6
Arlington, Virginia 20360 1
14. Mr. Walter Aerni
Naval Ship Engineering Center (6145)
Washington, D. C. 20360 1
15. Mr. Wayne L. Adamson
Naval Ship Research & Development Center(2761)
Annapolis, Maryland 21402 1
16. Mr. Gil Carlton
Naval Ship Engineering Center (6723)
Philadelphia, Pennsylvania 19112 1
17. Dr. David Eissenberg
Oak Ridge National Laboratory
Post Office Box Y
Oak Ridge, Tennessee 37830 1
18. Miss Eleanor J. Macnair
Ship Department
Ministry of Defence
Director - General Ships, Block B
Foxhill, Bath, Somerset
ENGLAND 1
19. Mr. Kurt Bredehorst
NAVSEC 6147D
Department of the Navy
Hyattsville, Maryland 02782 1
20. Professor Kenneth J. Bell
School of Chemical Engineering
Oklahoma State University
Stillwater, Oklahoma 74074 1
21. Professor A. E. Bergles
Department of Mechanical Engineering
Iowa State University
Ames, IA 50010 1
22. Professor James G. Knudsen
Engineering Experimental Station
Oregon State University
Covell Hall-219
Corvallis, Oregon 97331 1

- | | | |
|-----|---|---|
| 23. | Dr. Ken Read
OTEC Branch
Division of Solar Energy
Department of Energy
Washington, D. C. 20545 | 1 |
| 24. | Dr. A. L. London
4020 Amaranta Avenue
Palo Alto, California 94306 | 1 |
| 25. | Mr. Norman F. Sather
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, Illinois 60439 | 1 |
| 26. | Dr. Jeff Horowitz
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, Illinois 60439 | 1 |
| 27. | Mr. J. B. Henderson
Market Development Manager
Wolverine Tube Division
Universal Oil Products Incorporated
Post Office Box 2202
Decatur, Alabama 35602 | 2 |
| 28. | Mr. M. K. Ellingsworth
Office of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217 | 1 |
| 29. | Mr. R. Muench
David W. Taylor Naval Ship
Research and Development Center
Annapolis Laboratory
Annapolis, Maryland 21402 | 1 |
| 30. | Mr. W. Thielbar
Naval Weapons Center
China Lake, California 93555 | 1 |
| 31. | CAPT Bress (Code 03)
Naval Sea Systems Command
Washington, D. C. 20362 | 1 |
| 32. | Mr. John Michele
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830 | 1 |

33. Mr. Robert W. Perkins 2
Spiral Tubing Corporation
533 John Downey Drive
New Britian, Connecticut 06051
34. Mr. Jack S. Yampolsky 2
Senior Technical Advisor
Advanced Projects Division
General Atomic Company
Post Office Box 81608
San Diego, California 92138
35. Dr. Win Aung 1
Division of Engineering, National Science Foundation
1800 "G" Street NW
Washington, D. C. 20550
36. Mr. John W. Ward 1
Marine Division
Westinghouse Electric Corporation
Hendy Avenue
Sunnyvale, California 94088