

Home Search Collections Journals About Contact us My IOPscience

Corrigendum: Geometry of discrete quantum computing

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2016 J. Phys. A: Math. Theor. 49 039501

(http://iopscience.iop.org/1751-8121/49/3/039501)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 140.182.206.37

This content was downloaded on 20/03/2016 at 20:47

Please note that terms and conditions apply.

doi:10.1088/1751-8113/49/3/039501

Corrigendum: Geometry of discrete quantum computing

Andrew J Hanson¹, Gerardo Ortiz², Amr Sabry¹ and Yu-Tsung Tai^{3,1}

- ¹ School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
- ² Department of Physics, Indiana University, Bloomington, IN 47405, USA

E-mail: ortizg@indiana.edu

Accepted for publication 24 November 2015 Published 17 December 2015

Keywords: purity, product states, unentangled states, maximally entangled states

Section 5.4 of our paper [1] requires a clarification and a correction.

Clarification: Unentangled versus product states. In conventional quantum mechanics, using the field of complex numbers, a state is unentangled when it can be expressed as a product state or, equivalently, when equation (27) reports its purity to be 1 [2, 3]. When using finite Galois fields \mathbb{F}_{p^2} , for particular choices of p, it is possible for equation (27) to produce a purity of 1 for some entangled states. For example, the normalized entangled state $|\Psi\rangle = |011\rangle + (2+i)|100\rangle + |101\rangle + |110\rangle$ has $P_0 = 1$ for p = 7. In addition, the process of determining whether a given state $|\Phi\rangle$ is a product state may depend on p.

Thus, in finite fields, the simplest way to calculate the number of unentangled states is to disregard equation (27) and count the number of product states. This is exactly how the counting in section 5.4 was done, but the paper did not point out that counting relying only on equation (27) might not lead to the same result.

Correction: Maximally entangled states. We present below a new version of section 5.4 that correctly counts maximally entangled states. The rest of the article is independent of this revision.

5.4. Maximal entanglement

Equation (27) for $P_{\mathfrak{h}}$ includes a normalization factor $\frac{1}{n}$. In the discrete case, this normalization factor is undefined when p|n. Equation (27) also includes a summation of n terms. In the discrete case, certainly when p|n but also in other cases, this summation may vanish in the field even if the individual summands are non-zero. These anomalies are irrelevant for the

³ Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

classification of unentangled states as this computation is performed by directly checking the possibility of direct decomposition into product states, disregarding equation (27).

For maximally entangled states, the purity calculation in conventional quantum mechanics using equation (27) produces 0. Given the above observations, in a discrete field, equation (27) may be undefined or may report a purity of 0 even for partially entangled states. For example, the normalized 5-qubit state $|\Psi\rangle=(1-i)(|00\rangle+|11\rangle)\otimes|000\rangle$ has $P_{\mathfrak{h}}=0$ for p=3, and is not maximally entangled because only the first two qubits are entangled. In the discrete case, we therefore check for maximally entangled states using the following equations,

$$\forall j, \forall \mu, \left\langle \sigma_{\mu}^{j} \right\rangle^{2} = 0, \tag{40}$$

which avoids the normalization factor and simply checks that each summand is 0.

We now implement these procedures to enumerate the maximally entangled states for the specific cases for n = 2, 3 and compare these to the counts for product states. We can verify explicitly that the numbers of unit-norm product states for n = 2, $p = \{3, 7, 11, 19, ...\}$ are

$$(p+1)p^2(p-1)^2 = \{144, 14112, 145200, 2339280, \dots\},\$$

and for general n,

$$(p+1)p^n(p-1)^n$$
.

The irreducible state counts are reduced by (p + 1), giving

$$p^{2}(p-1)^{2} = \{36, 1764, 12100, 116964, ...\},\$$

and in general for *n*-qubits, there are $p^n(p-1)^n$ instances of pure product states.

Performing the computation using equation (40), we find the numbers of maximally entangled states for two qubits to be

$$p(p^2-1)(p+1) = \{96, 2688, 15840, 136800, \dots\}.$$

The irreducible state counts for maximal entanglement are reduced by (p + 1), giving, for n = 2,

$$p(p^2 - 1) = \{24, 336, 1320, 6840, \dots\}.$$

For three qubits, there are $p^3(p^4-1)(p+1)$ (total) and $p^3(p^4-1)$ (irreducible) instances of pure maximally entangled states, while the general formula for 4-qubit states remains unclear.

Therefore, the ratio of maximally entangled to product states is

$$\frac{\text{Max entangled}}{\text{Product}} = \frac{p+1}{p(p-1)}, \frac{(p^2+1)(p+1)}{(p-1)^2},$$

for n = 2 and 3, respectively.

Acknowledgments

We would like to thank John Gardiner for pointing out the need for this correction.

References

- [1] Hanson A J, Ortiz G, Sabry A and Tai Y T 2013 J. Phys. A: Math. Theor. 46 185301
- [2] Barnum H, Knill E, Ortiz G, Somma R and Viola L 2004 Phys. Rev. Lett. 92 107902
- [3] Barnum H, Knill E, Ortiz G and Viola L 2003 Phys. Rev. A 68 032308