

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

SET 1

Test: CLAT-2

Course Code & Title: 18CSE453T & Network Routing Algorithms

Puration: 2 Hour

Year & Sem: III &V

Max. Marks: 50

S.NO	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	CO1	3	2	-	-	1	-	-	-	-	2	-	3		-	-
2	C02	3	3	2	2	1	-	-	-	-	-	1	3	-	-	-
3	CO3	3	3	1	2	2	-	-	-	2	-	1	3	-	-	-
4	CO4	3	3	3	3	3	1	-	2	2	-	-	3	-	-	-
5	CO5	3	3	3	3	2	-	-	-	2	-	-	3	-	-	-
6	CO6	3	3	3	2	2	1	1	-	1	-	-	3	-	-	-

	Part - A (20x 1 = 20 Marks)					
Instri	(20x 1 = 20 Marks) actions: Answer All 20					
Q. No	Question	Marks	BL	СО	PO	PI Code
1	From the below list ,select the router forwarding functions i.IP Header Validation ii.Packet Lifetime Control iii.Checksum Recalculation iv.Route Lookup A. i B. i,ii C. i,ii,iii D. I,ii,iii,iv Answer: D	1	1	2	1	1.6.1
2	Which one of the following network devices is used to connect different networks? A. Hub B. Switch C. Router D. Repeater Answer: C	1	1	2	1	1.6.1
3	Which in not a classification of router architectures? A. Shared CPU architectures B. Shared forwarding engine architectures C. Shared nothing architectures D. Shared Back warding architectures. Answer: D	1	1	2	1	1.6.1
4	The Routing processor searches in the routing table is known as A. Switch Fabric B. Address Lookup C. Buffer D. Rolling Table Answer: B	1	1	2	1	1.6.1

5	Find Naïve algorithms time complexity for search. A. $O(N)$. B. $O^2(N)$ C. $O log(N)$ D. $O_2(N)$ Answer :A	1	1	2	2	2.6.1
6	In a Binary Tries algorithm left branch of a node is labeled as A. 0 B. 1 C. 2 D. 3 Answer: A	1	1	2	2	2.6.1
7	Find the P2 address using Binary Tries P1 P2 A. 00 B. O1 C. 0001 D. 00001 Answer :D	1	2	2	2	2.6.3
8	A program to search a contact from phone directory can be implemented efficiently using A. BST B. trie C. balanced BST D. binary tree Answer: B	1	1	2	1	1.6.1
9	Select from the following which command is used to operate TCP/IP routing table A. Show IP route B. Route C. Ipconfig D. Traceroute Answer: B	1	1	2	1	1.6.1
10	To achieve high speeds, the fast path functions are implemented in custom hardware, such as A. ASIC B. ARP C. RARP D. SAIC Answer: A	1	1	2	1	1.6.1
11	What is the running time of Bellmann Ford Algorithm? A. O(V) B. O(V ²) C. O(ElogV) D. O(VE) Answer: D	1	2	3	2	2.6.3

10	Consider the fellowing small What is the minimum and to	1	2	2	2	262
12	Consider the following graph. What is the minimum cost to travel from node A to node C?	1	2	3	3	3.6.3
	travel from node A to node C?					
	$\binom{b}{3}$					
	2					
	a -2					
	1					
	(d) 1 e					
	A. 5					
	B. 6					
	C. 2					
	D. 3					
	Answer: C					
- 10			-	2		1.61
13	A graph is said to have a negative weight cycle when?	1	1	3	1	1.6.1
	A TOLL 11 4 CONTRACTOR					
	A. The graph has 1 negative weighted edge					
	B. The graph has a cycle					
	C. The total weight of the graph is negative					
	D. The graph has 1 or more negative weighted edges					
1.4	Answer: C	1	1	2	4	1.61
14	Dijkstra's Algorithm is used to solve	1	1	3	1	1.6.1
	problems.					
	A. All pair shortest path B. Single source shortest path					
	C. Network flow					
	D. Sorting					
	Answer: B					
15	In the given graph, identify the shortest path having minimum	1	2	3	3	3.6.3
13	cost to reach vertex E if A is the source vertex.	1	2			3.0.3
	1					
	$\left(\begin{array}{c} a \end{array}\right)^{\frac{1}{2}} \left(\begin{array}{c} b \end{array}\right)^{\frac{1}{6}}$					
	5					
	(e)					
	2					
	(c) 4 (d)					
	A. a-b-e					
	B. a-c-e					
	C. a-c-d-e D. a-c-d-b-e					
	D. a-c-d-b-e Answer :B					
16	The storage media for the distance vector routing algorithm is	1	1	3	1	1.6.1
10	the one for the link state routing	1	1)	1	1.0.1
	A. More than					
	B. less than					
	C. equal to					
	Answer: B					
17	Which of the following statements is true about path vector	1	2	3	2	2.6.1
-	routing?		_		_	
	A. Path vector routing is similar to the link state router.					
	B. Exterior Gateway Protocol (EGP) is used in Path					
	Vector.					
	C. Maintains the path information and gets updated					
	dynamically.					
	D. Not flexible in selecting the path while hiding the					
	information.					
	Answer: C			<u> </u>	<u> </u>	
_			-	-		

18	In distance vector routing, If a router is connected to three networks, its original table containsentries A. 1 B. 2 C. 3 D. 4 Answer: C	1	1	3	1	1.6.1
19	Which is the example of path vector protocol? A. BGP B. IGMP C. ICMP D. HTTP	1	1	3	1	1.6.1
	Answer :A					
20	Dijkstra's Algorithm cannot be applied on	1	1	3	1	1.6.1
	A. Directed and weighted graphs					
	B. Graphs having negative weight function					
	C. Unweighted graphs					
	D. Undirected and unweighted graphs					
	Answer :B					

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

SET 1

Test: CLAT-2

Course Code & Title: 18CSE453T & Network Routing Algorithms

Duration: 2 Hour

Year & Sem: III &V

Max. Marks: 50

Course Articulation Matrix: (to be placed)

S.NO	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	CO1	3	2	-	-	1	-	-	-	-	2	-	3		-	-
2	C02	3	3	2	2	1	-	-	-	-	-	1	3	-	-	-
3	CO3	3	3	1	2	2	-	-	1	2	-	1	3	-	-	-
4	CO4	3	3	3	3	3	1	-	2	2	-	-	3	-	-	-
5	CO5	3	3	3	3	2	-	-	-	2	-	-	3	-	-	-
6	CO6	3	3	3	2	2	1	-		-	-	-	3	-	-	-

Part - B (2x5 = 10 Marks)

21 Compare Routing Table versus Forwarding Table

Routing Table versus Forwarding Table

Routing Table	Forwarding Table						
The routing table is constructed by the routing algorithms based on the information exchanged between neighboring routers by the routing protocols.	The forwarding table, on the other hand, is consulted by the router to determine the output interface an incoming packet needs to be forwarded.						
Each entry in the routing table maps an IP prefix to a next hop.	Each entry in the forwarding table maps an IP prefix to an outgoing interface						
The routing tables are usually implemented in software	Forwarding table is implemented in a specialized hardware for high-speed routers.						
The routing table indicates the next-hop IP address for a destination IP prefix.	The forwarding table tells us a packet bound to the network identified by the IP prefix should be forwarded to interface eth0 with the appropriate MAC address.						
Routing table	Forwarding table						
IP prefix Next hop	IP prefix Interface MAC address						
10.5.0.0/16 192.168.5.254	10.5.0.0/16 eth0 00:0F:1F:CC:F3:06						

(OR)

22 Analyze about packet flow in router with neat diagram

Analyze: 2 Marks Diagram: 3 Marks

23 Discuss about link state routing algorithm with example

Explanation: 3Marks
Example: 2Marks

(OR)

24 Explain about Distance Vector Routing Protocol with example

Discuss about link state routing algorithm with example

Example : 2Marks

25 Draw and Explain architectural Components of a Router

Explanation: 5 Marks Diagram: 5 Marks

26 How to insert new node in Binary ties? Explain with diagram

Explanation : 5 marks Diagram : 5 Marks

Inserting new prefixes in a binary trie.

27

Compute the shortest path from node 1 to all using Bellman-Ford algorithm.

h	$\overline{D}_{12}^{(h)}$	Path	$\overline{D}_{13}^{(h)}$	Path	$\overline{D}_{14}^{(h)}$	Path	$\overline{D}_{15}^{(h)}$	Path	$\overline{D}_{16}^{(h)}$	Path
0	∞	57.0	∞	-	∞	- 	∞		∞	-
1	1	1-2	∞	_	1	1-4	∞	-	∞	_
2	1	1-2	2	1-4-3	1	1-4	3	1-4-5	16	1-4-6
3	1	1-2	2	1-4-3	1	1-4	3	1-4-5	3	1-4-3-6
4	1	1-2	2	1-4-3	1	1-4	3	1-4-5	3	1-4-3-6
5	1	1-2	2	1-4-3	1	1-4	3	1-4-5	3	1-4-3-6

Using Dijkstra's Algorithm, find the shortest distance from source vertex 'S' to remaining vertices in the following graph

(OR)

Answer:

*Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

SET 2

Answer key

Test: CLAT-2 Date:

Course Code & Title: 18CSE453T & Network Routing AlgorithmsDuration: 2 HourYear & Sem:III &VMax. Marks: 50

S.NO	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	CO1	3	2	-	-	1	-	-	-	-	2	-	3		-	-
2	C02	3	3	2	2	1	-	-	-	-	-	1	3	-	-	-
3	CO3	3	3	1	2	2	-	-	-	2	-	1	3	-	-	-
4	CO4	3	3	3	3	3	1	-	2	2	-	-	3	-	-	-
5	CO5	3	3	3	3	2	-	-	-	2	-	-	3	-	-	-
6	CO6	3	3	3	2	2	1	-	-	-	-	-	3	-	-	-

	Part - A					
	(20x 1 = 20 Marks)					
	actions: Answer all 20	1	1	1	1	1
Q.	Question	Marks	BL	CO	PO	PI
No						Code
1	From the below options which one is not a router protocol	1	1	2	1	1.6.1
	A. OSPF					
	B. BGP					
	C. RIP					
	D. PPP					
	Answer : D					
2	A is a device that forwards data that is not explicitly	1	1	2	1	1.6.1
	destined to it.					
	A. Hub					
	B. Switch					
	C. Router					
	D. Bridge					
	Answer: C					
3	Routing protocols can be divided in categories.	1	1	2	1	1.6.1
	A. 2					
	B. 3					
	C. 4					
	D. 5					
	Answer: A					
4	In the below options which is not a elements of a Router.	1	1	2	1	1.6.1
	A. Forwarding Engines					
	B. Queue Manager					
	C. Traffic Manager					
	D. Backward Engines					
	Answer: D					

5	In a Shared CPU Architecture The packet is subsequently prioritized by the A. Forwarding Engines B. Traffic Manager C. queue manager D. Route Control Processor Answer: C	1	1	2	1	1.6.1
6	Analysis different type of routing architecture packets are transferred from one line card to another A. Shared CPU architecture B. Shared forwarding Engine Architecture C. Shared Nothing Architectures D. Clustered Architecture Answer:B	1	1	2	1	1.6.1
7	Routers forward a packet using forwarding table entries. The network address of the incoming packet may match multiple entries. How do routers resolve this? A. Forward it to the router whose entry matches with the longest prefix of the incoming packet B. Forward the packet to all routers whose network addresses match. C. Discard the packet. D. Forward it the router whose entry matches with the longest suffix of an incoming packet Answer:A	1	2	2	2	2.6.3
8	Classless Inter-domain Routing receives a packet with address 131.23.151.76. The router's routing table has the following entries Prefix Output Interface Identifier A. 131.16.0.0/12 3 B. 131.28.0.0/14 5 C. 131.19.0.0/16 2 D. 131.22.0.0/15 1 Answer: A	1	2	2	2	2.6.3
9	Consider the forwarding table at a router. A forwarding table. Prefix Next-Hop 1 98.1.1.1/24 eth3 2 171.1.0.0/16 so6 3 171.1.1.0/24 fe5 If the destination address of the incoming packet is 98.1.1.2 .what is the output interface? A. 98.1.1.1 B. 171.1.1.1 C. 171.1.1.0 D. 172.1.1.1 Answer: A	1	2	2	2	2.6.3
10	In a Binary Tries algorithm right branch of a node is labeled as A. 0 B. 1 C. 10 D. 11 Answer: B	1	1	2	1	1.6.1
11	The Bellmann Ford algorithm returns value. A. Boolean B. Integer C. String D. Double Answer :A	1	1	3	1	1.6.1

12	What is the basic principle behind Bellmann Ford Algorithm? A. Interpolation B. Extrapolation C. Regression D. Relaxation Answer:D	1	1	3	1	1.6.1
13	Which of the following is the most commonly used data structure for implementing Dijkstra's Algorithm? A. Max priority queue B. Stack C. Circular queue D. Min priority queue Answer:D	1	1	3	1	1.6.1
14	Consider the following graph. What is the minimum cost to travel from node A to node C? A. 5 B. 6 C. 2 D. 3 Answer: C	1	2	3	2	2.6.3
15	Which is the example of path vector protocol? A. BGP B. IGMP C. ICMP D. HTTP Answer :A	1	1	3	1	1.6.1
16	The first step in the naïve greedy algorithm is? A. Analyzing the zero flow B. Calculating the maximum flow using trial and error C. Adding flows with higher values D. Reversing flow if required Answer: A	1	2	3	2	2.6.3
17	Consider the following graph. What is the minimum cost to travel from node b to node e? A. 5 B. 2 C. 4 D. 3 Answer: C	1	2	3	2	2.6.3

18	In the given graph, identify the path that has minimum	1	2	3	2	2.6.3
	cost to travel from node a to node f.	_	_		_	
	\sim					
	$\binom{b}{1}$ $\binom{c}{4}$					
	1					
	a -2					
	2					
	(d) 3 (e)					
	A. a-b-c-f					
	B. a-d-e-f					
	C. a-d-b-c-f					
	D. a-d-b-c-e-f					
	Answer: D					
19	How many times the for loop in the Bellmann Ford Algorithm	1	1	3	1	1.6.1
	gets executed? A. V times					
	B. V-1					
	C. E					
	D. E-1					
	Answer :B					
20	In distance vector routing, If a router is connected to three	1	1	3	1	1.6.1
	networks, its original table containsentries					
	A. 1					
	B. 2					
	C. 3					
	D. 4					
	Answer: C					

Mode of Exam

OFFLINE

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

SET 2

Test: CLAT-2 Date:

Course Code & Title: 18CSE453T & Network Routing Algorithms

Year & Sem: III &V

Max. Marks: 50

Course Articulation Matrix: (to be placed)

S.NO	CO/PO	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	CO1	3	2	-	-	1	-	-	-	-	2	-	3		-	-
2	C02	3	3	2	2	1	-	-	-	-	-	1	3	-	-	-
3	CO3	3	3	1	2	2	-	-	-	2	-	1	3	-	-	-
4	CO4	3	3	3	3	3	1	-	2	2	-	-	3	-	-	-
5	CO5	3	3	3	3	2	-	-	-	2	-	-	3	-	-	-
6	CO6	3	3	3	2	2	1	-	-	-	-	-	3	-	-	-

Part - B (2x5 = 10 Marks)

21 How the packets are flow from one element to another element? Explain with neat diagram.

Diagram: 3 Marks Explanation: 2 Marks

(OR)

22 Compare Routing Table versus Forwarding Table

Routing Table	Forwarding Table
The routing table is constructed by the routing	The forwarding table, on the other
algorithms based on the information exchanged	hand, is consulted by the router to
between neighboring routers by the routing	determine the output interface an
protocols.	incoming packet needs to be
	forwarded.
Each entry in the routing table maps an IP prefix to	Each entry in the forwarding table
a next hop.	maps an IP prefix to an outgoing
	interface
The routing tables are usually implemented in	Forwarding table is implemented in a
software	specialized hardware for high-speed
	routers.
The routing table indicates the next-hop IP address	The forwarding table tells us a packet
for a destination IP prefix.	bound to the network identified by the
	IP prefix should be forwarded to
	interface eth0 with the appropriate

		MAC address.	
Routing tabl	e	Forwarding	table
IP prefix	Next hop	IP prefix	Interface
10.5.0.0/16	192.168.5.254	10.5.0.0/16	eth0

23 Elucidate Distance Vector Routing Protocol algorithm with example.

Explanation: 3 Marks Example: 2 Marks

(OR)

24 Explain link state Routing Protocol algorithm with example.

Explanation: 3 Marks

Example : 2 Marks

Part - C (2x10 = 20 Marks)

25 Draw the router architectural components and explain each component in detail.

Diagram -5 marks

Explanation - 5 Marks

- Network Interfaces
- Forwarding Engines
- Queue Manager
- Traffic Manager
- Backplane
- Route Control Processor

(OR)

Delete the P4 node from the Binary tries that are given. After Deleted P4 node Draw the new tries and explain how to delete.

Inserting new prefixes in a binary trie.

Explanation : 5 marks Diagram : 5 Marks

Using Dijkstra's Algorithm, find the shortest distance from source vertex 'A' to remaining vertices in the following graph

(OR)

Compute the shortest path from node 2 to all using Bellman–Ford algorithm.

Steps: 5 Marks Table: 5 marks

28

*Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

SET 3

Test: CLAT-2

Course Code & Title: 18CSE453T & Network Routing Algorithms

Duration: 2 Hour

Year & Sem: III &V

Max. Marks: 50

S.NO	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	CO1	3	2	-	-	1	-	-	-	-	2	-	3		-	-
2	C02	3	3	2	2	1	-	-	-	-	-	1	3	-	-	-
3	CO3	3	3	1	2	2	-	-	-	2	-	1	3	-	-	-
4	CO4	3	3	3	3	3	1	-	2	2	-	-	3	-	-	-
5	CO5	3	3	3	3	2	-	-	-	2	-	-	3	-	-	-
6	CO6	3	3	3	2	2	1	1	-	1	-	-	3	-	-	-

	Part - A					
Instri	(20x 1 = 20 Marks) uctions: Answer any 10					
Q. No	Question	Marks	BL	CO	PO	PI Code
1	From the below list ,select the router forwarding functions i.IP Header Validation ii.Packet Lifetime Control iii.Checksum Recalculation iv.Route Lookup A. i B. i,ii C. i,ii,iii D. I,ii,iii,iv	1	1	2	1	1.6.1
2	Answer: D Which one of the following network devices is used to connect different networks? A. Hub B. Switch C. Router D. Repeater Answer: C	1	1	2	1	1.6.1
3	From the below list, select the classification of router architectures. i. Shared CPU architectures ii. Shared forwarding engine architectures iii. Shared nothing architectures iv. Shared Back warding architectures. A. i B. i,ii C. i,ii,iii D. I,ii,iii,iv Answer: C	1	1	2	1	1.6.1

4	The routing tables are usually implemented in A. software B. hardware C. Software &Hardware Answer: A	1	1	2	1	1.6.1
5	Find Naïve algorithms time complexity for search. A. O(N). B. O ² (N) C. O log(N) D. O ₂ (N) Answer :A	1	1	2	2	2.6.1
6	In a Binary Tries algorithm left branch of a node is labeled as A. 0 B. 1 C. 2 D. 3 Answer: A	1	1	2	2	2.6.1
7	Find the P4 address using Binary Tries P1 P2 A. 00 B. 01 C. 111 D. 00001 Answer : C	1	2	2	2	2.6.3
8	A program to search a contact from phone directory can be implemented efficiently using A. BST B. trie C. balanced BST D. binary tree Answer: B	1	1	2	1	1.6.1
9	What are the types of Routers? 1.Core routers 2.Enterprise routers 3.An edge router 4.Gate Router A.1 B.1,2 C.1,2,3 D.1,2,3,4 Answer: C	1	1	2	1	1.6.1
10	Which routers are called access routers? A. Core routers B. Enterprise routers C. An edge router D. Gate Router Answer: B	1	1	2	1	1.6.1

11	What is the running time of Bellmann Ford Algorithm? A. O(V) B. O(V ²) C. O(ElogV) D. O(VE) Answer: D	1	2	3	2	2.6.3
12	Consider the following graph. What is the minimum cost to travel from node 'b' to node 'e'? A. 4 B. 6 C. 2 D. 3 Answer: A	1	2	3	3	3.6.3
13	A graph is said to have a negative weight cycle when? A. The graph has 1 negative weighted edge B. The graph has a cycle C. The total weight of the graph is negative D. The graph has 1 or more negative weighted edges Answer: C	1	1	3	1	1.6.1
14	Dijkstra's Algorithm is used to solve problems. A. All pair shortest path B. Single source shortest path C. Network flow D. Sorting Answer: B	1	1	3	1	1.6.1
15	In the given graph, identify the shortest path having minimum cost to reach vertex 'd' if 'a' is the source vertex. a b 6 A. a-b-e B. a-c-d C. a-c-d-e D. a-c-d-b-e Answer:B	1	2	3	3	3.6.3
16	The storage media for the distance vector routing algorithm is the one for the link state routing A. More than B. less than C. equal to Answer: B	1	1	3	1	1.6.1

17	 Which of the following statements is true about path vector routing? A. Path vector routing is similar to the link state router. B. Exterior Gateway Protocol (EGP) is used in Path Vector. C. Maintains the path information and gets updated dynamically. D. Not flexible in selecting the path while hiding the 	1	2	3	2	2.6.1
	information.					
	Answer: C					
18	How many times the for loop in the Bellmann Ford Algorithm	1	1	3	1	1.6.1
	gets executed?					
	A. V times B. V-1					
	C. E					
	D. E-1					
	Answer :B					
19	Which is the example of path vector protocol?	1	1	3	1	1.6.1
	A. BGP					
	B. IGMP					
	C. ICMP					
	D. HTTP Answer :A					
20	In distance vector routing, If a router is connected to three	1	1	3	1	1.6.1
20	networks, its original table containsentries	1	1	3	1	1.0.1
	A. 1					
	B. 2					
	C. 3					
	D. 4					
	Answer: C					

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

SET 3

Test: CLAT-2

Course Code & Title: 18CSE453T & Network Routing Algorithms

Duration: 2 Hour

Year & Sem: III &V

Max. Marks: 50

S.NO	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	CO1	3	2	-	-	1	-	-	-	-	2	-	3		-	-
2	C02	3	3	2	2	1	-	-	-	-	-	1	3	-	-	-
3	CO3	3	3	1	2	2	-	-	-	2	-	1	3	-	-	-
4	CO4	3	3	3	3	3	1	-	2	2	-	-	3	-	-	-
5	CO5	3	3	3	3	2	-	-	-	2	-	-	3	-	-	-
6	CO6	3	3	3	2	2	1	-	-	-	-	-	3	-	-	-

	Part – B
	(2x5 = 10 Marks)
21	Commons different types of Boytons
21	Compare different types of Routers
	Three types of routers: • Core Routers
	* *** - *** **************************
	• Edge Routers
	• Enterprise Routers
	(OR)
22	Analyze about packet flow in router with neat diagram
	Analyze: 2 Marks
	Diagram: 3 Marks
23	Discuss about Shortest Path and Widest Path with example
	Explanation: 3Marks
	Example: 2Marks
	(OR)
24	Explain about Distance Vector Routing Protocol with example
	Discuss about link state routing algorithm with example
	Explanation: 3Marks
	Example : 2Marks
	Part – C
	(2x10 = 20 Marks)
25	Draw and Explain architectural Components of a Router
	Explanation: 5 Marks
	Diagram : 5 Marks

(OR)

26 How to Delete P11 node in the below Binary ties? Explain with diagram.

Explanation : 5 marks Diagram : 5 Marks

27

Compute the shortest path from node 1 to all using Bellman–Ford algorithm.

TABLE Minimum cost from node 1 to other nodes

h	$\overline{D}_{12}^{(h)}$	Path	$\overline{D}_{13}^{(h)}$	Path	$\overline{D}_{14}^{(h)}$	Path	$\overline{D}_{15}^{(h)}$	Path	$\overline{D}_{16}^{(h)}$	Path
0	∞	578	∞	-	∞	- 	∞	V3	∞	-
1	1	1-2	∞	_	1	1-4	∞	-	∞	_
2	1	1-2	2	1-4-3	1	1-4	3	1-4-5	16	1-4-6
3	1	1-2	2	1-4-3	1	1-4	3	1-4-5	3	1-4-3-6
4	1	1-2	2	1-4-3	1	1-4	3	1-4-5	3	1-4-3-6
5	1	1-2	2	1-4-3	1	1-4	3	1-4-5	3	1-4-3-6

(OR)

*Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

SET 4

Answer key

Test: CLAT-2

Course Code & Title: 18CSE453T & Network Routing Algorithms

Duration: 2 Hour

Year & Sem: III &V

Max. Marks: 50

S.NO	со/Ро	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	CO1	3	2	-	-	1	-	-	-	-	2	-	3		-	-
2	C02	3	3	2	2	1	-	-	-	-	-	1	3	-	-	-
3	CO3	3	3	1	2	2	-	-	-	2	-	1	3	-	-	-
4	CO4	3	3	3	3	3	1	-	2	2	-	-	3	-	-	-
5	CO5	3	3	3	3	2	-	-	-	2	-	-	3	-	-	-
6	CO6	3	3	3	2	2	1	-	-	-	-	-	3	-	-	-

	Part - A					
	(20x 1 = 20 Marks)					
Instru	ictions: Answer any 10					
Q. No	Question	Marks	BL	СО	PO	PI Code
1	From the below list select the various routing protocols i. OSPF ii. BGP iii. RIP iv. PPP A. i B. i,ii C. i,ii,iii D. i,ii,iii,iv Answer: C	1	1	2	1	1.6.1
2	A is a device that forwards data that is not explicitly destined to it. A. Hub B. Switch C. Router D. Bridge Answer: C	1	1	2	1	1.6.1
3	The routers must decrement the field A. TTL B. checksum C. Version D. Padding Answer: A	1	1	2	1	1.6.1

4	Find the elements of router from the below list. i. Forwarding Engines ii. Queue Manager iii. Traffic Manager iv. Backward Engines A. i B. i,ii C. i,ii,iii D. i,ii,iii,iv Answer: C	1	1	2	1	1.6.1
5		1	1	2	1	1.6.1
5	In a Shared CPU Architecture The packet is subsequently shaped by the A. Forwarding Engines B. Traffic Manager C. queue manager D. Route Control Processor Answer: B	1	1	2	1	1.0.1
6	Which router architecture do this "offloads all the packet forwarding functions to the line cards" A. Shared CPU architecture B. Shared forwarding Engine Architecture C. Shared Nothing Architectures D. Clustered Architecture Answer: C	1	1	2	1	1.6.1
7	Routers forward a packet using forwarding table entries. The network address of the incoming packet may match multiple entries. How do routers resolve this? A. Forward it to the router whose entry matches with the longest prefix of the incoming packet B. Forward the packet to all routers whose network addresses match. C. Discard the packet. D. Forward it the router whose entry matches with the longest suffix of an incoming packet Answer:A	1	2	2	2	2.6.3
8	Classless Inter-domain Routing receives a packet with address 131.23.151.76. The router's routing table has the following entries Prefix Output Interface Identifier A. 131.16.0.0/12 3 B. 131.28.0.0/14 5 C. 131.19.0.0/16 2 D. 131.22.0.0/15 1 Answer: A	1	2	2	2	2.6.3
9	Consider the forwarding table at a router. A forwarding table. Prefix Next-Hop 1 98.1.1.1/24 eth3 2 171.1.0.0/16 so6 3 171.1.1.0/24 fe5 If the destination address of the incoming packet is 98.1.1.2 .what is the output interface? A. 98.1.1.1 B. 171.1.1.1 C. 171.1.1.0 D. 172.1.1.1 Answer: A	1	2	2	2	2.6.3

10	In a Binary Tries algorithm left branch of a node is labeled as	1	1	2	1	1.6.1
	A. 0 B. 1					
	C. 10					
	D. 11					
	Answer: A					
11	The Bellmann Ford algorithm returns value.	1	1	3	1	1.6.1
	A. Boolean					
	B. Integer					
	C. String D. Double					
	Answer :A					
12	What is the basic principle behind Bellmann Ford Algorithm?	1	1	3	1	1.6.1
	A. Interpolation					
	B. Extrapolation					
	C. Regression					
	D. Relaxation					
13	Answer:D Dijkstra's Algorithm is used to solve	1	1	3	1	1.6.1
13	problems.	1	1	3	1	1.0.1
	A. All pair shortest path					
	B. Single source shortest path					
	C. Network flow					
	D. Sorting					
	Answer: B					
14	Consider the following graph. What is the minimum cost to travel from node d to node c?	1	2	3	2	2.6.3
	b 3 c					
	a -2					
	1					
	(d) 1 (e)					
	A. 1					
	B. 6					
	C. 2					
	D. 3					
	Answer: A					
15	In distance vector routing, If a router is connected to three	1	1	3	1	1.6.1
	networks, its original table containsentries A. 1					
	B. 2					
	C. 3					
	D. 4					
	Answer: C					
16	The first step in the naïve greedy algorithm is?	1	2	3	2	2.6.3
	A. Analyzing the zero flow					
	B. Calculating the maximum flow using trial and errorC. Adding flows with higher values					
	D. Reversing flow if required					
	Answer: A					
		l .				

17	Consider the following graph. What is the minimum cost to travel from node a to node c?	1	2	3	2	2.6.3
	A. 5 B. 2					
	C. 4 D. 3					
	Answer : B					
18	In the given graph, identify the path that has minimum	1	2	3	2	2.6.3
	cost to travel from node b to node f.					
10	A. b-c-e-f B. a-d-e-f C. a-d-b-c-f D. a-d-b-c-e-f Answer: A	1	1	2	1	1.6.1
19	How many times the for loop in the Bellmann Ford Algorithm gets executed? A. V times B. V-1 C. E D. E-1	1	1	3	1	1.6.1
	Answer :B					
20	In distance vector routing, If a router is connected to three networks, its original table containsentries E. 1 F. 2 G. 3 H. 4 Answer: C	1	1	3	1	1.6.1

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

SET 4

Test: CLAT-2

Course Code & Title: 18CSE453T & Network Routing Algorithms

Duration: 2 Hour

Year & Sem: III &V

Max. Marks: 50

Course Articulation Matrix: (to be placed)

S.NO	CO/PO	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	CO1	3	2	-	-	1	-	-	-	-	2	-	3		-	-
2	C02	3	3	2	2	1	-	-	-	-	-	1	3	-	-	-
3	CO3	3	3	1	2	2	-	-	-	2	-	1	3	-	-	-
4	CO4	3	3	3	3	3	1	-	2	2	-	-	3	-	-	-
5	CO5	3	3	3	3	2	-	-	-	2	-	-	3	-	-	-
6	CO6	3	3	3	2	2	1	-	-	-	-	-	3	-	-	-

Part - B (2x5 = 10 Marks)

21 Draw and Explain Shared Forwarding Engine Architecture.

Diagram: 3 Marks Explanation: 2 Marks

warding engine architecture using two shared backplanes

(OR)

22 Compare Routing Table versus Forwarding Table

Routing Table	Forwarding Table
The routing table is constructed by the routing	The forwarding table, on the other
algorithms based on the information exchanged	hand, is consulted by the router to
between neighboring routers by the routing	determine the output interface an
protocols.	incoming packet needs to be
	forwarded.
Each entry in the routing table maps an IP prefix to	Each entry in the forwarding table
a next hop.	maps an IP prefix to an outgoing
	interface
The routing tables are usually implemented in	Forwarding table is implemented in a
software	specialized hardware for high-speed
	routers.
The routing table indicates the next-hop IP address	The forwarding table tells us a packet
for a destination IP prefix.	bound to the network identified by the

		IP prefix should be forwarded to interface eth0 with the appropriate MAC address.						
Routing tab	le	Forwarding table						
IP prefix	Next hop	IP prefix	Interface					
10.5.0.0/16	192.168.5.254	10.5.0.0/16	eth0					

23 Elucidate Distance Vector Routing Protocol algorithm with example.

Explanation: 3 Marks Example: 2 Marks

(OR)

24 Explain link state Routing Protocol algorithm with example.

Explanation : 3 Marks Example : 2 Marks

> Part – C (2x10 = 20 Marks)

25 Draw the router architectural components and explain each component in detail.

Diagram -5 marks

Explanation – 5 Marks

- Network Interfaces
- Forwarding Engines
- Queue Manager
- Traffic Manager
- Backplane
- Route Control Processor

Insert the P12 node in the given below Binary tries. The address of P12 is 0111. After insert P12 node Draw the new tries and explain how to insert.

^{*}Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions ${\bf CO}$

Approved by the Audit Professor/Course Coordinator