MAXIMUM LIKELIHOOD (ML) ESTIMATION

Consider a parametric family of pdf's: $\{p(\cdot;\theta):\theta\in\Theta\}$. For fixed data $y,\ p(y;\cdot)$ is called the *likelihood function*

Definition: The ML estimator (MLE) of θ is

$$\hat{\theta}_{ML}(y) := \arg \max_{\theta \in \Theta} p(y; \theta)$$

In general, $\hat{\theta}_{ML}$ is biased, but it has optimal asymptotic properties

PROPERTIES OF ML

1. Principle of (Functional) Invariance

If $\hat{\theta}$ is the MLE of $\theta \in \Theta \subseteq \mathbb{R}^p$, then $f(\hat{\theta})$ is the MLE of $f(\theta)$, where $f: \Theta \to Z \subseteq \mathbb{R}^n$, with $n \le p$

2. Relation to Cramér-Rao (C-R) Bound

If there is an unbiased estimator that achieves the C-R bound, it is also the MLE

Let $\hat{\theta}_N$ be the MLE of θ based on N i.i.d. samples $y = \{x_1, ..., x_N\}$

3. Consistency

$$\left[\hat{\theta}_{N} \xrightarrow{n \to \infty} \theta\right]$$

4. Asymptotic normality

$$\sqrt{N}(\hat{\theta}_{N} - \theta) \xrightarrow{d \to \infty} \mathcal{N}(0, \overline{M}_{\theta}^{-1}), \qquad \overline{M}_{\theta} := \frac{1}{N} E \left\{ \frac{\partial \ln p(y; \theta)}{\partial \theta} \frac{\partial \ln p(y; \theta)}{\partial \theta^{T}} \right\}$$