Statistics-III

Trishan Mondal

Assignment-5

Problem 1

Let there is some C for which, CY is unbiased estimator of β .

$$\therefore E(CY) = \beta$$

$$\Rightarrow CE(Y) = \beta$$

$$\Rightarrow CX\beta = \beta$$

$$\Rightarrow (CX - I_P)\beta = 0$$

The above equation is true for arbitrary $\beta \in \mathbb{R}^p$. So, $CX = I_P$ Let, $X = [X_1, X_2, \dots, X_p]$. Since $\sum_{i=1}^P \alpha_i X_i = 0 \Rightarrow \sum_{i=1}^P \alpha_i CX_i = \sum_{i=1}^p \alpha_i e_i = 0 \Rightarrow \alpha_i = 0$. $\forall i = 1, \dots, p$. But, we know, all of i cant be zero. And hence a contradiction.

PROBLEM 2

In Gauss Markov model Let, X be a hep matrix and $a'\beta$ is estimable for all $a \in \mathbb{R}^p$.

$$a'\beta$$
 estimable $\forall a' \in \mathbb{R}^p \Leftrightarrow a \in M_c(X') \quad \forall a \in \mathbb{R}^p$
 \Leftrightarrow Column Rank $(X') = p$
 \Leftrightarrow Row Rank $(X) = p$
 \Leftrightarrow Column Rank $(X) = p$
 \Leftrightarrow all the Column of X are linearly independent

Problem 3

 $a'_1\beta, a'_2\beta, \ldots, a'_n\beta$ are estimable. So, we can write, $a_1, \ldots, a_n \in M_c(X')$ and hence, $a_1 = X'b_1, \ldots, a_n = X'b_n$, for some b_1, \cdots, b_n belongs to \mathbb{R}^p . Let, $a' = \sum t_i a'_i$ a linear Combination of a'_1, \ldots, a'_n clearly, $a = X'(\sum t_i b_i) \Rightarrow a' \in M_C(X')$ and hence, $a'\beta$ is estimable. So, any linear Combination of $a'_1\beta, \ldots, a'_n\beta$ is estimable.

Problem 4

We know $a'\beta$ is estimable iff $a \in M_C(X') = M_C(X'X)$ Let, a = X'Xb. So,

$$a'(X'X)^{-}X'X = b'(X'X)(X'X)^{-}(X'X)$$

= $b'(X'X)$
= a

Conversely if, $a'(X'X)^{-}X'X = a$ then. We can see that,

$$a = X'X \left(a'(X'X)^{-1} \right)'$$

$$\Rightarrow a \in M_C(X'X)$$

Hence $a'\beta$ is estimable.