Case Study: Miles per Gallon Estimate

Introduction

For this case study, we will be looking at the mileage data for 38 cars that were measured in 2005 to estimate miles per gallon. The variables for the dataset include Cylinders (number of cylinders), Size (engine displacement), HP (horsepower), and weight of the car (car weight). However, this dataset is missing values on numerous variables of the 38 records that it contains. In order to acquire a more complete dataset and therefore a more powerful analysis in theory, we will be using multiple imputations to explore this study.

Literature review

From the initial information received on this dataset and the videos on 2ds, we know that this dataset is incomplete and will need figure out the best method to analyze the data with this in mind. This is a scenario that will likely come up on numerous occasions throughout the career of a Data Scientist and one must now how to combat this issue. Multiple imputations will likely be the technique used to properly analyze this information but we will need a comparison to single imputation to verify which method has more power.

Method

First we will run a linear regression of the data in its current state using PROC REG in our SAS code; by default this uses list-wise deletion.

Parameter Estimates											
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t						
Intercept	1	67.61816	7.12819	9.49	<.0001						
CYLINDERS	1	-1.19508	1.13851	-1.05	0.3116						
SIZE	1	0.05221	0.02938	1.78	0.0973						
HP	1	-0.15009	0.07848	-1.91	0.0765						
WEIGHT	1	-6.71776	3.98252	-1.69	0.1138						
ACCEL	1	-0.68451	0.44024	-1.55	0.1423						

From the image above, we can see that 38 observations were read but only 20 were use due to list-wise deletion and there only 19 degrees of freedom meaning that our analysis has lower power than expected. Next we will attempt imputation in order provide a more complete analysis of the dataset for cars.

The first step in looking at the data would be discover any missing value patterns using the SAS command PROC MI and then deciding which MI option to use.

Group	MPG	CYLINDERS	SIZE	HP	WEIGHT	ACCEL	Freq	Percent
1	Х	X	Х	Х	Х	Х	20	52.63
2	Х	Х	Х	Х	Х		2	5.26
3	Х	Х	Х	Х		Х	3	7.89
4	Х	Х	Х	Х	-	-	1	2.63
5	Х	Х	Х	-	Х	Х	5	13.16
6	Х	Х		Х	Х	Х	2	5.26
7	Х	Х		Х		Х	1	2.63
8	Х		Х	Х	Х	Х	2	5.26
9	Х		Х	Х	Х		1	2.63
10	Х		Х	Х		Х	1	2.63

From the image above, we can determine that pattern look likes it is non- monotone being that the values seem to missing randomly within the dataset provided. Now with this information we can use MCMC on the data to proceed with using multiple imputations due to its arbitrary nature.

Model Information								
Data Set	WORK.CARMPG							
Method	MCMC							
Multiple Imputation Chain	Single Chain							
Initial Estimates for MCMC	EM Posterior Mode							
Start	Starting Value							
Prior	Jeffreys							
Number of Imputations	25							
Number of Burn-in Iterations	200							
Number of Iterations	100							
Seed for random number generator	3599							

After running SAS code to create the imputation data, we can see that the MCMC method was used with a single imputation chain. Also, that the number of imputations is 25 meaning that there were 25 different datasets created from this imputation.

Now, that we have our imputed data we can run a regression analysis on each of the 25 full created datasets in order to estimate miles per gallon.

Results

From imputation #1 below, we can see that all 38 cars are now included within the regression and 37 degrees of freedom are being used meaning that this observation has more power than our initial evaluation which only included only 19 degrees of freedom

Next we will combine the results of all 25 imputations using PROC MIANALYZE for a single analysis

					The MIA	NALYZE	Procedu	re						
		Model Information												
			Data Set				WORK.	OUTR	EG					
				Number	of Imp	utations	25							
Variance Information (25 Imputations)														
			Variance					Relative						
	Paramete	er I	Between	een Within		Total	DF	Increase in Variance				Relative Efficiency		
	CYLINDE	RS (.061197	0.5668	72 0.	2 0.630517		0.1	0.112273		01703	0.995948		
	SIZE	0.00	0085537	0.0004	18 0.	000507	779.12	0.2	0.212871		77619	0.992945		
	HP		0.000379		12 0.	002408	895.13	0.195804		0.165605		0.993419		
	WEIGHT	2	.189402	8.2028	32 10.	479840	508.4	0.277583		0.220333		0.991264		
	ACCEL	0	.026085	0.1087	0.108795 0.1		602.51	0.249349		0.202227		0.991976		
	Intercept	rcept 3.		24.816680 28.3		352982	1542.8	0.142497		0.125857		0.994991		
				Parar	neter Es	timates (25 Imput	ations)					
Parameter	Estimate	Std Error	95% C	95% Confidence		DF	Minir	Minimum Maxim		um Theta0		t for H0: Parameter=Theta0		Pr > t
CYLINDERS	-1.533464	0.794051	-3.0	906	0.02365	2355.5	-1.90	4471	-0.671	335	0		-1.93	0.0536
SIZE	0.055369	0.022514	0.0	112	0.09956	779.12	0.03	0.033092 0.06		195	0		2.46	0.0141
HP	-0.108087	0.049050	-0.2	044 -	0.01182	895.13	-0.145143		3 -0.074101		0	-2.20		0.0278
WEIGHT	-8.246574	3.237258	-14.6	066 -	1.88652	508.4	-10.19	0276 -4.864		179 0		-2.55		0.0111
ACCEL	-0.684092	0.368678	-1.4	D81 (0.03996	602.51	-1.063360		3360 -0.355830		0		-1.86	0.0640
Intercept	68.052123	5.324752	57.6	076 7	3.49864	1542.8	64.05	9281 71.562043		043	0		12.78	<.0001

While we do not expect the combined estimates to be similar to the original estimate, we do have confidence they are a better representation of the estimates for our parameters due reduced p values.

Conclusion

In conclusion, using multiple imputations allowed us to provide analysis that represents the uncertainty of the missing value within the cars data. In theory, using this method as opposed to single imputation yields valid stats based inferences that reflect uncertainty of absent data.