Resumen Computabilidad

Maquinas de Turing

Componentes

Cinta

- \circ Celdas, infinita en ambas direcciones, cada celda contiene un símbolo de un alfabeto dado Σ .
- ∘ *∈ Σ
- \circ $L, R \notin \Sigma$
- ∘ ∗ representa el blanco en una celda

• Una cabeza

- o Lee y escribe un símbolo a la vez
- Se mueve una posición a la izquierda o una posición a la derecha

• Una tabla finita de instrucciones

- Dice qué hacer en cada paso
- ∘ Σ es el alfabeto, \mathbf{Q} es el conjunto finito de estados, $\mathbf{A} = \Sigma \cup \{\mathbf{L}, \mathbf{R}\}$ es el conjunto de acciones
- Una **tabla de instrucciones T** es un subconjunto (finito) de $\mathbf{Q} \times \mathbf{\Sigma} \times \mathbf{A} \times \mathbf{Q}$
- La tupla (q, s, a, q') ∈ T se interpreta como
 Si la máquina está en el estado q leyendo en la cinta el símbolo s, entonces realiza la acción a y pasa al estado q'
- ∘ q_0 ∈ Q es el estado inicial, q_f ∈ Q es el estado final
- cuando no hay restricciones sobre T decimos que M es una máquina de Turing no determinística
- cuando no hay dos instrucciones en T que empiezan con las mismas primeras dos coordenadas, decimos que M es una máquina de Turing determinística

Funciones parciales

Una función parcial f es una función que puede estar indefinida para algunos (tal vez ninguno; tal vez todos) sus argumentos.

- notamos $f(x_1,...,x_n) \downarrow$ cuando f está definida para $x_1,...,x_n$.
- notamos $f(x_1,...,x_n)$ \(\tau\) cuando f está indefinida para $x_1,...,x_n$

El conjunto de argumentos para los que f está definida se llama dominio de f, notado dom(f).

$$dom(f) = \{(x_1, \ldots, x_n) : f(x_1, \ldots, x_n) \downarrow \}$$

f es **total** si $dom(f) = \mathbb{N}^n$

Cómputo de funciones parciales en máquinas de Turing

Una función parcial $f: \mathbb{N}^n \to \mathbb{N}$ es Turing computable si existe una máquina de Turing determinística $M = (\Sigma, Q, T, q_0, q_f)$ con $\Sigma = \{*, 1\}$ tal que cuando empieza en la configuración inicial

• si $f(x_1,...,x_n)\downarrow$ entonces siguiendo sus instrucciones en T llega a una configuración final de la forma

• si $f(x_1,...,x_n)$ † entonces nunca termina en el estado q_f .

Poder de computo

Teorema: Sea $f: \mathbb{N}^n \to \mathbb{N}$ una función parcial. Son equivalentes

f es computable en Java, C, Haskell, Turing

Funciones computables

Otra manera de formalizar la idea de función calculable de manera efectiva:

- empezar por funciones muy simples, efectivas intuitivamente
- si mezclamos de alguna manera efectiva dos o más funciones que ya eran efectivas, entonces obtenemos una función calculable de manera efectiva

Las siguientes funciones se llaman iniciales:

- s(x)=x+1
- n(x)=0
- proyecciones: $u_i^n(x_1,...,x_n)=x_i$ para $i \in \{1,...,n\}$

Composición y recursión primitiva

Sea $f: \mathbb{N}^k \to \mathbb{N}$ y $g_1, \dots, g_k: \mathbb{N}^n \to \mathbb{N}$. $h: \mathbb{N}^n \to \mathbb{N}$ se obtiene a partir de f y g_1, \dots, g_k por composición si

- $h(x_1,...,x_n,0)=f(x_1,...,x_n)$
- $h(x_1,...,x_n,t+1)=g(h(x_1,...,x_n,t),x_1,...,x_n,t)$

Clases PRC

Una clase **C** de funciones totales es **PRC** (primitive recursive closed) si

1. las funciones iniciales están en C

2. si una función f se obtiene a partir de otras pertenecientes a **C** por medio de composición o recursión primitiva, entonces f también está en **C**

Teorema: La clase de funciones totales Turing computables es una clase PRC.

Funciones primitivas recursivas

Una función es **primitiva recursiva (p.r.)** si se puede obtener a partir de las funciones iniciales por un número finito de aplicaciones de composición y recursión primitiva.

Teorema: Una función es p.r. sii pertenece a toda clase PRC.

Corolario: Toda función p.r. es total y Turing computable.

Predicados primitivos recursivos

Los **predicados** son funciones que toman valores en {0, 1}.

Los **predicados p.r.** son aquellos representados por funciones p.r. en {0, 1}.

Operadores lógicos

Teorema: Sea C una clase PRC. Si p y q son predicados en C entonces ¬p, p ∧ q y p ∨ q están en **C.**

Corolario: Si p y q son predicados p.r., entonces también lo son los predicados ¬p, p ∨ q y p ∧ q

Corolario: Si p y q son predicados totales Turing computables entonces también lo son los predicados $\neg p$, $p \lor q y$ $p \land q$

Definición por casos (2)

Teorema: Sea **C** una clase PRC. Sean $h,g:\mathbb{N}^n \to \mathbb{N}$ funciones en **C** y sea $p:\mathbb{N}^n \to \{0,1\}$ un predicado en **C**.

La siguiente función esta en C

$$f(x_1,\ldots,x_n) = \begin{cases} g(x_1,\ldots,x_n) & \text{si } p(x_1,\ldots,x_n) \\ h(x_1,\ldots,x_n) & \text{si no} \end{cases}$$

Definición por casos (m+1)

Teorema: Sea **C** una clase PRC. Sean $g_1, \ldots, g_m, h: \mathbb{N}^n \to \mathbb{N}$ funciones en **C** y sean $p_1, \ldots, p_m: \mathbb{N}^n \to \{0,1\}$ predicados mutuamente excluyentes en **C**.

La siguiente función esta en C

$$f(x_1,\ldots,x_n) = \begin{cases} g_1(x_1,\ldots,x_n) & \text{si } p_1(x_1,\ldots,x_n) \\ \vdots \\ g_m(x_1,\ldots,x_n) & \text{si } p_m(x_1,\ldots,x_n) \\ h(x_1,\ldots,x_n) & \text{si } no \end{cases}$$

Recursión primitiva

$$h(x_1,...,x_n,0) = f(x_1,...,x_n)$$

 $h(x_1,...,x_n,t+1) = g(h(x_1,...,x_n,t),x_1,...,x_n,t)$

- la recursión siempre se hace en el último parámetro
- la función variante de $h(x_1,...,x_n,x_{n+1})$ es x_{n+1}

Sumatorias y productorias (desde 0 y 1)

Teorema: Sea C una clase PRC. Si $f: \mathbb{N}^{n+1} \to \mathbb{N}$ esta en C entonces tambien estan las funciones

$$g(y, x_1, \dots, x_n) = \sum_{t=0}^{y} f(t, x_1, \dots, x_n)$$
 $g(y, x_1, \dots, x_n) = \sum_{t=1}^{y} f(t, x_1, \dots, x_n)$

$$h(y, x_1, \ldots, x_n) = \prod_{t=0}^{y} f(t, x_1, \ldots, x_n)$$
 $h(y, x_1, \ldots, x_n) = \prod_{t=1}^{y} f(t, x_1, \ldots, x_n)$

Cuantificadores acotados

Teorema: Sea $p: \mathbb{N}^{n+1} \to \{0,1\}$ un predicado perteneciente a una clase PRC C. Los siguientes predicados también están en C:

$$(\forall t)_{\leq y} p(t, x_1, \ldots, x_n)$$

$$(\exists t)_{\leq v} p(t, x_1, \ldots, x_n)$$

$$(\forall t)_{\leq y} p(t, x_1, \ldots, x_n)$$

$$(\exists t)_{\leq y} p(t, x_1, \ldots, x_n)$$

Demostración.

$$(\forall t)_{\leq y} \ p(t, x_1, \dots, x_n) \ \text{sii} \ \prod_{t=0}^{y} \ p(t, x_1, \dots, x_n) = 1 \ (\exists t)_{\leq y} \ p(t, x_1, \dots, x_n) \ \text{sii} \ \sum_{t=0}^{y} \ p(t, x_1, \dots, x_n) \neq 0$$

- ▶ la sumatoria y productoria están en C
- ightharpoonup la comparación por = está en ${\cal C}$

Demostración.

$$(\forall t)_{< y} \ p(t, x_1, \dots, x_n) \ \text{sii} \ (\forall t)_{\leq y} \ (t = y \lor p(t, x_1, \dots, x_n)) \\ (\exists t)_{< y} \ p(t, x_1, \dots, x_n) \ \text{sii} \ (\exists t)_{\leq y} \ (t \neq y \land p(t, x_1, \dots, x_n))$$

Minimizacion acotada

Sea $p: \mathbb{N}^{n+1} \to \{0,1\}$ un predicado de una clase PRC C.

$$g(y,x_1,\ldots,x_n) = \sum_{u=0}^y \prod_{t=0}^u \alpha(p(t,x_1,\ldots,x_n)) \quad \min_{t \leq y} p(t,x_1,\ldots,x_n) = \begin{cases} \text{m\'inimo } t \leq y \text{ tal que} \\ p(t,x_1,\ldots,x_n) \text{ es verdadero} \end{cases}$$
 si existe tal t

Teorema: Sea $p: \mathbb{N}^{n+1} \to \{0,1\}$ un predicado de una clase PRC C. La funcion $\min_{t \le y} p(t, x_1, \dots, x_n)$ tmb esta en C

Codificacion de pares

Definimos la función primitiva recursiva $\langle x, y \rangle = 2^x (2 \cdot y + 1) \dot{-} 1$ (solo tiene una solucion (x,y) que es = z)

4

Observadores de pares

Los observadores del par $z=\langle x,y\rangle$ son l(z)=x , r(z)=y y son p.r.

Codificacion de secuencias

El número de Gödel de la secuencia a_1, \ldots, a_n es el numero $[a_1, \ldots, a_n] = \prod_{i=1}^n p_i^{a_i}$ donde p_i es el i-esimo primo.

Teorema: Si $[a_1, ..., a_n] = [b_1, ..., b_n]$ entonces $a_i = b_i \forall i$

Observadores: (Son p.r.)

- $x[i]=a_i$
- |x| = long(x)

Lenguaje de programacion S

<u>Variables:</u> empiezan inicializadas en 0 y almacenan numeros naturales.

- Variables de entrada: $X_1, X_2, ...$
- Variable de salida: Y
- *Variables temporales:* $Z_1 Z_2 ...$

Instrucciones:

- *V* ← *V* +1
- $V \leftarrow V 1$ (si V es 0, queda en 0)
- IF V ≠0 GOTO A

Por conveniencia agregamos una mas que no hace nada:

V ← V

Macros: Se pueden simular muchas operaciones a partir de las instrucciones.

Una vez que sepamos que se pueden escribir en el lenguaje S, las usamos como si fueran propias (son **pseudoinstrucciones**).

Estados: Un estado de un programa P es una lista de ecuaciones de la forma V = m (donde V es una variable y m es un número) tal que

- hay una ecuación para cada variable que se usa en P
- no hay dos ecuaciones para la misma variable

Descripción instantánea

Con un programa \boldsymbol{P} de longitud n. Para un estado $\boldsymbol{\sigma}$ de \boldsymbol{P} y un i $\,\in\,\{1,\ldots,\,n+1\},$

- el par (i, σ) es una descripción instantánea de P
- (i, σ) se llama **terminal** si i = n + 1

Para un (i, $\sigma)$ no terminal, podemos definir su sucesor (j, τ) como:

- 1. si la i-ésima instrucción de P es V \leftarrow V + 1.
 - \circ j = i +1
 - \circ τ es σ , salvo que V = m se reemplaza por V = m + 1
- 2. si la i-ésima instrucción de P es V \leftarrow V 1.

- \circ j = i +1
- \circ τ es σ, salvo que V = m se reemplaza por V = máx{m 1, 0}
- 3. si la i-ésima instrucción de P es $IFV \neq 0$ *GOTO L*
 - τ es idéntico a σ
 - \circ si σ tiene V = 0 entonces j = i + 1
 - ∘ si σ tiene V = m para m ≠ 0 entonces
 - 1. si existe en P una instrucción con etiqueta L entonces $j = min\{k : k$ -ésima instrucción de P tiene etiqueta L}
 - 2. $\sin n = n + 1$

Cómputos

Un cómputo de un programa P a partir de una descripción instantánea d_1 es una lista d_1, d_2, \dots, d_k de descripciones instantáneas de P tal que

- d_{i+1} es sucesor de d_i para $i \in \{1, 2, ..., k-1\}$
- d_k es terminal

Estados y descripciones iniciales

Sea P un programa y sean $r_1, ..., r_m$ números dados.

- el estado inicial de P para $r_1, ..., r_m$ es el estado σ_1 , que tiene $X_1 = r_1, ..., X_m = r_m, Y = 0$ junto con V = 0 para cada variable V que aparezca en P y no sea $X_1, ..., X_m, Y$
- la descripción inicial de P para $r_1, ..., r_m$ es $(1, \sigma_1)$

Cómputos a partir del estado inicial

Sea P un programa y sean $r_{1},...,r_{m}$ números dados, σ_{1} el estado inicial

Dos casos

- hay un cómputo de P $d_1, ..., d_k$ tal que $d_1 = (1, \sigma_1)$ Notamos $\psi_P^{(m)}(r_1, ..., r_m)$ al valor de Y en d_k (esta definido)
- no hay tal cómputo, i.e. existe una secuencia infinita $d_{1,}d_{2,}d_{3,}...$ donde d_{1} =(1, σ_{1}), d_{i+1} es sucesor de d_{i}

Decimos que $\psi_P^{(m)}(r_1,\ldots,r_m)$ esta indefinido

Funciones computables

Una función (parcial) $f: \mathbb{N}^m \to \mathbb{N}$ es S-parcial computable (o simplemente parcial computable) si existe un programa P tal que $f(r_1, \ldots, r_m) = \psi_P^{(m)}(r_1, \ldots, r_m) \ \forall (r_1, \ldots, r_m)$

La **igualdad** (del meta-lenguaje) es verdadera si

- los dos lados están definidos y tienen el mismo valor o
- los dos lados están indefinidos

La función f es **S-computable** (o simplemente computable) si es parcial computable y total.

• Minimización no acotada

$$\min_t p(t, x_1, \dots, x_n) = \begin{cases} \min t \text{ tal que} \\ p(t, x_1, \dots, x_n) \text{ es verdadero} \end{cases}$$
 si existe tal t
$$\uparrow$$
 si no

Teorema: Si $p: \mathbb{N}^{n+1} \to \{0,1\}$ es un predicado computable entonces $\min_{t} p(t, x_1, \dots, x_n)$ es parcial computable

• Clausura por composición

Teorema: Si h se obtiene a partir de las funciones (parciales) computables $f, g_1, ..., g_k$ por composición entonces h es (parcial) computable.

• Clausura por recursión primitiva

Teorema: Si h se obtiene a partir de g por recursión primitiva y g es computable entonces h es computable.

Teorema: Las funciones computables forman una clase PRC.

Codificación de programas en S

S solo tiene el tipo de datos naturales, pero podemos simular otros tipos a partir de estos.

Codificacion de variables y etiquetas

Ordenamos las variables: Y, X_{1} , Z_{1} , X_{2} , Z_{2} , ...

Y las etiquetas: A,B,C,...,Z,AA,AB,...

Escribimos #(W) para la posición que ocupa la variable/etiqueta W en la lista

Codificación de instrucciones

Codificamos la instrucción I con $\#(I) = \langle a, \langle b, c \rangle \rangle$ donde

- 1. si I tiene etiqueta L, entonces a = #(L); si no a = 0
- 2. si la variable mencionada en I es V entonces c = #(V) 1
- 3. si la instrucción I es
 - 1. $V \leftarrow V$ entonces b = 0
 - 2. $V \leftarrow V + 1$ entonces b = 1
 - 3. $V \leftarrow V 1$ entonces b = 2
 - 4. IF $V \neq 0$ GOTO L' entonces b = #(L') + 2

Codificación de programas

Un programa P es una lista (finita) de instrucciones $\#(P) = [\#(I_1), \dots, \#(I_k)] - 1$

Ambigüedades

La instrucción final de un programa no puede ser Y ← Y. Con esto, cada número representa a un único programa.

Funciones no computables

Teorema: El conjunto de las funciones (totales) $\mathbb{N} \to \mathbb{N}$ no es numerable.

=> o sea, hay más funciones N → N que números naturales

- hay tantos programas como números naturales
- hay tantas funciones computables como números naturales
- tiene que haber funciones $\mathbb{N} \to \mathbb{N}$ no computables

Halting problem

Verdadero sii el programa con número y y entrada x no se indefine:

$$\mathsf{HALT}(x,y) = egin{cases} 1 & \mathsf{si} \ \Psi_P^{(1)}(x) \downarrow \\ 0 & \mathsf{si} \ \mathsf{no} \end{cases}$$

Donde P es el unico programa tal que #(P)=y

Tesis de Church

<u>Tesis de Church:</u> Todos los algoritmos para computar en los naturales se pueden programar en S.

Entonces, el problema de la detención dice no hay algoritmo para decidir la verdad o falsedad de HALT(x, y)

Universalidad

Para cada n > 0 definimos

$$\Phi^{(n)}(x_1,\ldots,x_n,e)=$$
 salida del programa e con entrada $x_1,\ldots,x_n=\Psi^{(n)}(x_1,\ldots,x_n,e)$ donde $\#(P)=e$

Teorema: Para cada n > 0 la función $\Phi^{(n)}$ es parcial computable.

Observar que el programa para Φ (n) es un intérprete de programas. Se trata de un programa que interpreta programas (representados por números).

<u>Notación:</u> $\Phi^{(n)}(x_{1,...},x_{n}) = \Phi^{(n)}(x_{1,...},x_{n},e)$ (también se puede omitir el superíndice si n = 1)

Step counter

$$STP^{(n)}(x_1,\ldots,x_n,e,t)$$
 sii el programa e termina en to menos pasos con entrada x_1,\ldots,x_n sii hay un cómputo del programa e de longitud \leq t + 1, comenzando con la entrada

Teorema: Para cada n > 0, el predicado $STP^{(n)}(x_1, ..., x_n, e, t)$ es p.r.

Snapshot

$$SNAP^{(n)}(x_1,...,x_n,e,t) = representación de la configuración instantánea del programa e con entrada $x_1,...,x_n$ en el paso t$$

Se representa como $\langle \#instruccion, lista representando estado \rangle$

Teorema: Para cada n > 0, la funcion $SNAP^{(n)}(x_1, ..., x_n, e, t)$ es p.r.

Teorema de la forma normal

Teorema: Sea f: $f: \mathbb{N}^n \to \mathbb{N}$ una función parcial computable. Entonces existe un predicado p.r. R: N n+1 → N tal que

$$f(x_1,\ldots,x_n) = I\left(\min_{z} R(x_1,\ldots,x_n,z)\right)$$

Otra caracterización de funciones computables

Teorema: Una función es parcial computable si se puede obtener a partir de las funciones iniciales por un número finito de aplicaciones de

- composición,
- recursión primitiva y
- minimización

Teorema: Una función es computable si se puede obtener a partir de las funciones iniciales por un número finito de aplicaciones de

- · composición,
- recursión primitiva y
- minimización propia

Teorema del parámetro

Hay un programa P_{x2} para la función $f_{x2}(x_1) = f(x_1, x_2)$

La transformación $(x_2,\#(P))\to\#(P_{x2})$ es p.r., es decir, existe una función $S:\mathbb{N}^2\to\mathbb{N}$ p.r. tal que dado x_2 e y=#(P) calcula $\#(P_{x2})$:

$$S(x_2,y) = \left(2^{109} \cdot 3^{110} \cdot \prod_{j=1}^{x_2} p_{j+2}^{26} \cdot \prod_{j=1}^{|y+1|} p_{j+x_2+2}^{(y+1)[j]}\right) - 1$$

Teorema: Hay una función p.r. $S:\mathbb{N}^2 \to \mathbb{N}$ tal que

$$\Phi_{y}^{(2)}(x_{1},x_{2})=\Phi_{S(x_{2},y)}^{(1)}(x_{1})$$

Teorema: Para cada n, m > 0 hay una función p.r. inyectiva $S_m^n: \mathbb{N}^{n+1} \to \mathbb{N}$ tal que

$$\Phi_{y}^{(n+m)}(x_1,\ldots,x_m,u_1,\ldots,u_n)=\Phi_{S_m^n(u_1,\ldots,u_n,y)}^{(m)}(x_1,\ldots,x_m)$$

Teorema de la Recursión

Teorema: Si $g: \mathbb{N}^{n+1} \to \mathbb{N}$ es parcial computable, existe un e tal que

$$\Phi_{\mathbf{e}}^{(n)}(x_1,\ldots,x_n)=g(\mathbf{e},x_1,\ldots,x_n)$$

Corolario: Si $g: \mathbb{N}^{n+1} \to \mathbb{N}$ es parcial computable, existen infinitos e tal que

$$\Phi_e^{(n)}(x_1,\ldots,x_n)=g(e,x_1,\ldots,x_n)$$

Quines

Un quine es un programa que cuando se ejecuta, devuelve como salida el mismo programa.

Proposición: Hay infinitos e tal que $\Phi_e(x) = e$ y $\Phi_e(x) = h(e)$

Teorema del punto fijo

<u>Teorema:</u> Si $f: \mathbb{N} \to \mathbb{N}$ es computable, existe un e tal que $\Phi_{f(e)}(x) = \Phi(e)$.