A generalization of Taub-NUT deformations

Kota Hattori

Graduate School of Mathematical Sciences, University of Tokyo 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan khattori@ms.u-tokyo.ac.jp

Abstract

We introduce a generalization of Taub-NUT deformations for large families of hyper-Kähler quotients including toric hyper-Kähler manifolds and quiver varieties. It is well-known that Taub-NUT deformations are defined for toric hyper-Kähler manifolds, and the similar deformations were introduced for ALE hyper-Kähler manifolds of type D_k by Dancer, using the complete hyper-Kähler metric on the cotangent bundle of complexification of compact Lie group. We generalize them and study the Taub-NUT deformations for the Hilbert schemes of k points on \mathbb{C}^2 .

1 Introduction

1.1 Taub-NUT spaces

A hyper-Kähler manifold is a Riemannian manifold (M, g) equipped with orthogonal integrable complex structures I_1, I_2, I_3 with quaternionic relations $I_1^2 = I_2^2 = I_3^2 = I_1 I_2 I_3 = -1$ so that each (M, g, I_i) is Kählerian. Then M admits three symplectic forms $\omega_i := g(I_i, \cdot)$, each of which is Ricci-flat Kähler metric with respect to I_i . Throughout of this article, we regard (M, I_1) as a complex manifold with a Ricci-flat Kähler metric ω_1 and a non-degenerate closed (2, 0)-form $\omega_2 + \sqrt{-1}\omega_3$, so-called a holomorphic symplectic structure.

The Euclidean space $\mathbb{C}^2 = \mathbb{R}^4$ is the trivial example of complete hyper-Kähler manifold, whose Ricci-flat Kähler metric is Euclidean and the holomorphic symplectic structure is given by $dz \wedge dw$, where $(z, w) \in \mathbb{C}^2$ is the standard holomorphic coordinate.

In [7], Hawking constructed a complete hyper-Kähler metric on \mathbb{R}^4 with cubic volume growth which is called a Taub-NUT space. On the other hand,

LeBrun [13] showed that the Taub-NUT space and the Euclidean space \mathbb{C}^2 are isomorphic as holomorphic symplectic manifolds, consequently biholomorphic. It means that the complex manifold \mathbb{C}^2 admits at least 2 complete Ricci-flat Kähler metrics which are not isometric. Such a phenomenon should never occur on compact complex manifolds, due to the uniqueness of the Ricci-flat Kähler metrics in each Kähler class. The similar relation also holds between multi Eguchi-Hanson spaces and multi Taub-NUT spaces.

A generalization to the higher dimensional case are obtained by Gibbons, Rychenkova, Goto [6] and Bielawski [1]. They construct Taub-NUT like hyper-Kähler metrics by deforming the toric hyper-Kähler manifolds, using tri-Hamiltonian torus actions and hyper-Kähler quotient method.

In [2], Dancer has defined the analogy of Taub-NUT deformations for some of the ALE spaces of type D_k using U(2)-actions. His results are based on the existence of hyper-Kähler metrics on $T^*G^{\mathbb{C}}$ for any compact Lie group G constructed by Kronheimer [12]. Another generalization to noncommutative case is considered in Section 5 of [4]. They considered hyper-Kähler modifications for hyper-Kähler manifolds with a tri-Hamiltonian H-action, where H is a compact Lie group which is possibly noncommutative. Note that the case of [4] does not contains the results in [2], since the ALE spaces of type D_k have no nontrivial tri-Hamiltonian actions.

In this paper, we generalize Taub-NUT deformations for some kinds of hyper-Kähler quotients, which enable us to treat the above three cases [6, 1], [2] and Section 5 of [3] uniformly. As a consequence, we apply the Taub-NUT deformations for the Hilbert schemes of k-points on \mathbb{C}^2 .

1.2 Notation and a main result

Here, we describe the main result in this paper more precisely. Let a compact connected Lie group H act on a hyper-Kähler manifold (M, g, I_1, I_2, I_3) preserving the hyper-Kähler structure and there exists a hyper-Kähler moment map $\hat{\mu}: M \to \operatorname{Im}\mathbb{H} \otimes \mathbf{h}^*$ with respect to H-action, where $\operatorname{Im}\mathbb{H} \cong \mathbb{R}^3$ be the pure imaginary part of quaternion \mathbb{H} and \mathbf{h}^* is the dual space of the Lie algebra $\mathbf{h} = \operatorname{Lie}(H)$. Moreover, suppose the H-action extends to holomorphic $H^{\mathbb{C}}$ action on (M, I_1) , where $H^{\mathbb{C}}$ is the complexification of H. Let $\rho: H \to G \times G$ is a homomorphism of Lie groups, where G is compact connected Lie group. Then $H_{\rho} := \rho^{-1}(\Delta_G) \subset H$ acts on M, where $\Delta_G \subset G \times G$ is the diagonal subgroup, and the inclusion $\iota: H_{\rho} \to H$ induces a hyper-Kähler moment map $\mu:=\iota^*\circ\hat{\mu}$. If we denote by $Z_H \subset \mathbf{h}^*$ the subspace of fixed points by coadjoint action of H on \mathbf{h}^* , then we have the hyper-Kähler quotient $\mu^{-1}(\iota^*\zeta)/H_{\rho}$ for each $\zeta \in \operatorname{Im}\mathbb{H} \otimes Z_H$. In this paper we define Taub-NUT deformations for $\mu^{-1}(\iota^*\zeta)/H_{\rho}$ by the following way.

Let $N_G = T^*G^{\mathbb{C}}$ be the hyper-Kähler manifolds with a $G \times G$ -action constructed by Kronheimer [12], and $\nu : N_G \to \operatorname{Im}\mathbb{H} \otimes (\mathbf{g} \oplus \mathbf{g})^*$ be its hyper-Kähler moment map described by Dancer and Swann [3]. Then H acts on $M \times N_G$ by ρ , and for $(x,p) \in M \times N_G$, $\sigma(x,p) := \hat{\mu}(x) + \rho^*(\nu(p))$ becomes the hyper-Kähler moment map, accordingly we obtain a hyper-Kähler quotient $\sigma^{-1}(\zeta)/H$ for each $\zeta \in \operatorname{Im}\mathbb{H} \otimes Z_H$. Now we have two hyper-Kähler quotients $\mu^{-1}(\iota^*\zeta)/H_{\rho}$ and $\sigma^{-1}(\zeta)/H$. If they are smooth, then there are Ricci-flat Kähler metrics $\omega_1^{\iota^*\zeta}, \omega_1^{\zeta}$ and holomorphic symplectic structures $\omega_2^{\iota^*\zeta} + \sqrt{-1}\omega_3^{\iota^*\zeta}, \ \omega_2^{\zeta} + \sqrt{-1}\omega_3^{\zeta}$, respectively. Next we extend ρ to the holomorphic homomorphism $H^{\mathbb{C}} \to G^{\mathbb{C}} \times G^{\mathbb{C}}$ and obtain a holomorphic map

$$\bar{\rho}: H^{\mathbb{C}}/H_{\rho}^{\mathbb{C}} \to (G^{\mathbb{C}} \times G^{\mathbb{C}})/\Delta_{G^{\mathbb{C}}}.$$
 (1)

Then the main result is described as follows.

Theorem 1.1. Let $M = \mathbb{H}^N$, and $H \subset Sp(N)$ acts on M naturally. Assume $\bar{\rho}$ is surjective. Then there exists an biholomorphism as complex analytic spaces

$$\psi: \mu^{-1}(\iota^*\zeta)/H_\rho \to \sigma^{-1}(\zeta)/H$$

for each $\zeta \in Z_H$. Moreover, if H_ρ acts on $\mu^{-1}(\iota^*\zeta)$ freely, then $\mu^{-1}(\iota^*\zeta)/H_\rho$ and $\sigma^{-1}(\zeta)/H$ are smooth complete hyper-Kähler manifolds and ψ satisfies

$$[\psi^*\omega_1^{\zeta}]_{DR} = [\omega_1^{\iota^*\zeta}]_{DR}, \quad \psi^*(\omega_2^{\zeta} + \sqrt{-1}\omega_3^{\zeta}) = \omega_2^{\iota^*\zeta} + \sqrt{-1}\omega_3^{\iota^*\zeta},$$

where $[\cdot]_{DR}$ is a de Rham cohomology class.

1.3 Hilbert schemes of k points on \mathbb{C}^2

We apply the above theorem to $M = \operatorname{End}(\mathbb{C}^k) \otimes_{\mathbb{C}} \mathbb{H}$, $H = U(k) \times U(k)$, G = U(k) and $\rho = \operatorname{id}$. Then $Z_H = \mathbb{R}$, and $\mu^{-1}(\iota^*\zeta)/H_{\rho}$ becomes a quiver varieties constructed in [14], called the Hilbert scheme of k-points of \mathbb{C}^2 . In particular, $\mu^{-1}(0)/H_{\rho}$ is isomorphic to $(\mathbb{C}^2)^k/\mathcal{S}_k$ with Euclidean metric as hyper-Kähler orbifolds. In this case, $\sigma^{-1}(\zeta)/H$ becomes a smooth hyper-Kähler manifolds diffeomorphic to $\mu^{-1}(\iota^*\zeta)/H_{\rho}$ by Theorem 1.1, and the hyper-Kähler metric on $\sigma^{-1}(0)/H$ can be described concretely.

Theorem 1.2. In the above situation, we have an isomorphism

$$\sigma^{-1}(0)/H \cong (\mathbb{C}^2_{Taub-NUT})^k/\mathcal{S}_k$$

as hyper-Kähler orbifolds, where $\mathbb{C}^2_{Taub-NUT}$ is the Taub-NUT space.

1.4 Outline of the proof

Theorem 1.1 is proven in the following way. The hyper-Kähler moment map μ is decomposed into $\mu = (\mu_1, \mu_{\mathbb{C}} := \mu_2 + \sqrt{-1}\mu_3)$ along the decomposition $\operatorname{Im}\mathbb{H} = \mathbb{R} \oplus \mathbb{C}$, where $\mu_1 : M \to \mathbf{h}_{\rho}^*$ and $\mu_{\mathbb{C}} : M \to (\mathbf{h}_{\rho}^{\mathbb{C}})^*$, and the other hyper-Kähler moment maps and the parameter $\zeta \in \operatorname{Im}\mathbb{H} \otimes Z_H$ are also decomposed in the same manner. Define sets of "stable points" by

$$\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_{1}} := H_{\rho}^{\mathbb{C}} \cdot \mu^{-1}(\iota^*\zeta)$$

$$= \{g \cdot x \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}}); g \in H_{\rho}^{\mathbb{C}}, x \in \mu^{-1}(\iota^*\zeta)\},$$

$$\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_{1}} := H^{\mathbb{C}} \cdot \sigma^{-1}(\zeta).$$

The natural embedding

$$\mu^{-1}(\iota^*\zeta) \hookrightarrow \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}, \quad \sigma^{-1}(\zeta) \hookrightarrow \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}$$

induce

$$\mu^{-1}(\iota^*\zeta)/H_{\rho} \to \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}/H_{\rho}^{\mathbb{C}}, \quad \sigma^{-1}(\zeta)/H \to \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}/H^{\mathbb{C}},$$

which are isomorphisms of complex analytic spaces by [8]. Here, to regard $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}/H_{\rho}^{\mathbb{C}}$ and $\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}/H^{\mathbb{C}}$ as complex analytic spaces, we consider the sets of "semistable points" $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}^{ss}$ and $\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}^{ss}$ in Section 4.3. Thus the proof of Theorem 1.1 is reduced to construct an isomorphism

Thus the proof of Theorem 1.1 is reduced to construct an isomorphism between $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}/H_{\rho}^{\mathbb{C}}$ and $\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}/H^{\mathbb{C}}$. First of all, we define an $H_{\rho}^{\mathbb{C}}$ equivariant holomorphic map $\hat{\psi}: \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}}) \to \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})$ so that a induced map $\psi: \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})/H_{\rho}^{\mathbb{C}} \to \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})/H^{\mathbb{C}}$ is bijective.

Then it suffices to see that ψ gives a one-to-one correspondence between $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}/H_{\rho}^{\mathbb{C}}$ and $\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}/H^{\mathbb{C}}$. To show it, we describe some equivalent conditions for x and $\hat{\psi}(x)$ to be $x \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}$ and $\hat{\psi}(x) \in \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}$ in Section 3, using some convex functions on $G\backslash G^{\mathbb{C}}$ We also need the description of the Kähler potential of N_G , which is discussed in Section 2.

This paper is organized as follows. We review the construction of hyper-Kähler structures on $N_G = T^*G^{\mathbb{C}}$ along [12], and describe hyper-Kähler moment map by [2] in Section 2. Moreover we describe the Kähler potentials of the hyper-Kähler metrics using the method of [9] and [5].

of the hyper-Kähler metrics using the method of [9] and [5]. In Section 3, to obtain other description of $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}$ and $\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}$, we study the relation between a Kähler moment map and some geodesically convex functions on Riemannian symmetric spaces.

In Section 4, we prove Theorem 1.1, by using the description of Kähler potentials obtained in Section 2 and the methods in Section 3.

In Section 5 we apply Theorem 1.1 to the Hilbert schemes of k points on \mathbb{C}^2 and show Theorem 1.2. Moreover, we see that Theorem 1.1 can be applied to quiver varieties and toric hyper-Kähler varieties.

2 Hyper-Kähler structures on $T^*G^{\mathbb{C}}$

2.1 Riemannian description

Here we review briefly the hyper-Kähler quotient construction of N_G along [12], and describe hyper-Kähler moment map ν along [2][3].

Let G be a compact connected Lie group, and $\|\cdot\|$ is a norm on \mathbf{g} induced by an Ad_{G} -invariant inner product. Consider the following equations

$$\frac{dT_i}{ds} + [T_0, T_i] + [T_j, T_k] = 0 \quad \text{for } (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2), \tag{2}$$

for $T := (T_0, T_1, T_2, T_3) \in C^1([0, 1], \mathbf{g}) \otimes \mathbb{H}$. Put

$$\mathcal{N}_G := \{ T \in C^1([0,1], \mathbf{g}) \otimes \mathbb{H}; \text{ equations (2) holds} \}.$$

Then a gauge group $\mathcal{G} := C^2([0,1], G)$ acts on \mathcal{N}_G by

$$g \cdot T := (\mathrm{Ad}_g T_0 + g \frac{d}{ds} g^{-1}, \mathrm{Ad}_g T_1, \mathrm{Ad}_g T_2, \mathrm{Ad}_g T_3),$$

and we obtain

$$N_G := \mathcal{N}_G/\mathcal{G}_0$$

where $\mathcal{G}_0 := \{g \in \mathcal{G}; g(0) = g(1) = 1\}$. It is shown in [12] that N_G becomes a C^{∞} manifold of dimesion $4 \dim G$, and the standard hyper-Kähler structure on $C^1([0,1],\mathbf{g}) \otimes \mathbb{H}$ induces a hyper-Kähler structure $g_G, I_{G,1}, I_{G,2}, I_{G,3}$ on N_G . Here, g_G is induced from the L^2 -inner product on $C^1([0,1],\mathbf{g}) \otimes \mathbb{H}$ using Ad_G -invariant inner product on \mathbf{g} .

Now we have a Lie group isomorphism $\mathcal{G}/\mathcal{G}_0 = G \times G$ defined by $g \mapsto (g(0), g(1))$. Since \mathcal{G} acts on \mathcal{N}_G , there exists a $G \times G$ -action on N_G preserving the hyper-Kähler structure.

Theorem 2.1 ([2][3]). The hyper-Kähler moment map $\nu = (\nu^0, \nu^1) : N_G \to \text{Im}\mathbb{H} \otimes (\mathbf{g}^* \oplus \mathbf{g}^*)$ with respect to the action of $G \times G$ on N_G is given by

$$\nu^0([T]) = (T_1(0), T_2(0), T_3(0)), \quad \nu^1([T]) = -(T_1(1), T_2(1), T_3(1)),$$

under the identification $\mathbf{g}^* \cong \mathbf{g}$ using Ad_G -invariant inner product. Here we denote by $[T] \in N_G$ the equivalence class represented by $T \in \mathcal{N}_G$.

2.2 Holomorphic description

In this subsection, we review that $(N_G, I_{G,1})$ is identified with a holomorphic cotangent bundle $T^*G^{\mathbb{C}} \cong G^{\mathbb{C}} \times \mathbf{g}^{\mathbb{C}}$ as complex manifolds along [5][12].

For each $T \in \mathcal{N}_G$, there exists a solution $u : [0,1] \to G^{\mathbb{C}}$ for an ordinary differential equation

$$\frac{du}{ds}u^{-1} = -(T_0 + \sqrt{-1}T_1),$$

then $T_2 + \sqrt{-1}T_3 = \operatorname{Ad}_{u(s)u(0)^{-1}}\eta$ for some $\eta \in \mathbf{g}^{\mathbb{C}}$ [12]. Then a holomorphic map $\Phi : (N_G, I_{G,1}) \to G^{\mathbb{C}} \times \mathbf{g}^{\mathbb{C}}$ is obtained by $[T] \mapsto (u(0)u(1)^{-1}, \eta)$.

Theorem 2.2 ([5][12]). The map Φ is biholomorphic and preserves holomorphic symplectic structures.

The moment map ν is decomposed into $\nu = (\nu_{\mathbb{R}} = \nu_1, \nu_{\mathbb{C}} = \nu_2 + \sqrt{-1}\nu_3)$ along the decomposition Im $\mathbb{H} \cong \mathbb{R} \oplus \mathbb{C}$. Then

$$\nu_{\mathbb{C}}(Q,\eta) = (\eta, -\mathrm{Ad}_{Q^{-1}}(\eta))$$

under the identification $N_G = G^{\mathbb{C}} \times \mathbf{g}^{\mathbb{C}}$. $\nu_{\mathbb{C}}$ is a holomorphic moment map with respect to $G^{\mathbb{C}} \times G^{\mathbb{C}}$ action on $T^*G^{\mathbb{C}}$. This action is given by

$$(g_0, g_1)(Q, \eta) = (g_0 Q g_1^{-1}, \operatorname{Ad}_{g_0} \eta)$$
 (3)

for $(g_0, g_1) \in G^{\mathbb{C}} \times G^{\mathbb{C}}$ and $(Q, \eta) \in G^{\mathbb{C}} \times \mathbf{g}^{\mathbb{C}}$.

2.3 Kähler potentials

Next we describe the Kähler potential of the Kähler manifold $(N_G, g_G, I_{G,1})$. We apply the following results for N_G .

Lemma 2.3 ([9]). Let (M, g, I_1, I_2, I_3) be a hyper-Kähler manifold with isometric S^1 action generated by a Killing field X, which satisfies

$$L_X\omega_1=\omega_2, \quad L_X\omega_2=-\omega_1, \quad L_X\omega_3=0,$$

where ω_i is the Kähler form of (M, g, I_i) . If μ is the moment map with respect to the S^1 -action on (M, ω_3) , then $\omega_1 = 2\sqrt{-1}\partial_1\overline{\partial}_1\mu$, $\omega_2 = 2\sqrt{-1}\partial_2\overline{\partial}_2\mu$.

We apply this lemma as follows. Let $\omega_{G,i} := g_G(I_{G,i},\cdot)$, and define $e^{i\theta} \cdot [T] := [T_0, \cos \theta \ T_1 + \sin \theta \ T_2, -\sin \theta \ T_1 + \cos \theta \ T_2, T_3]$ for $[T] \in N_G$, which is an S^1 -action on N_G preserving $\omega_{G,3}$ and satisfies the assumption of Lemma

(2.3). Then the moment map is given by $||T_1||_{L^2}^2 + ||T_2||_{L^2}^2 = \int_0^1 (||T_1(s)||^2 + ||T_2(s)||^2) ds$.

Moreover, we have another S^1 -action defined by $e^{i\theta} \cdot [T] := [T_0, -\sin\theta \, T_3 + \cos\theta \, T_1, T_2, \cos\theta \, T_3 + \sin\theta \, T_1]$, which preserves $\omega_{G,2}$. In this case the moment map is given by $||T_1||_{L^2}^2 + ||T_3||_{L^2}^2$. Thus we obtain the followings from Lemma 2.3

Proposition 2.4. Put $\mathcal{E}: N_G \to \mathbb{R}$ to be

$$\mathcal{E}([T]) := \|T_1\|_{L^2}^2 + \frac{1}{2}(\|T_2\|_{L^2}^2 + \|T_3\|_{L^2}^2).$$

Then $\omega_{G,1} = 2\sqrt{-1}\partial_1\overline{\partial}_1\mathcal{E}$.

Next we describe the Kähler potential \mathcal{E} as a function on $T^*G^{\mathbb{C}} = G^{\mathbb{C}} \times \mathbf{g}^{\mathbb{C}}$. The Ad_{G} -invariant inner product on \mathbf{g} induces a homogeneous Riemannian metric on $G \setminus G^{\mathbb{C}}$. Define an antiholomorphic involution of $G^{\mathbb{C}}$ by $(ge^{\sqrt{-1}\xi})^* := e^{\sqrt{-1}\xi}g^{-1}$ for $g \in G$ and $\xi \in \mathbf{g}$, by using the polar decomposition $G^{\mathbb{C}} \cong G \cdot \exp(\sqrt{-1}\mathbf{g})$. Then $G \setminus G^{\mathbb{C}}$ is identified with $\exp(\sqrt{-1}\mathbf{g})$ by $G \cdot g \mapsto g^*g$ for $g \in G^{\mathbb{C}}$. This metric on $G \setminus G^{\mathbb{C}}$ is naturally extended to a hermitian metric on $T_h(G \setminus G^{\mathbb{C}}) \otimes \mathbb{C}$, which is also denoted by $\|\cdot\|_h$.

Proposition 2.5. For each $(Q, \eta) \in G^{\mathbb{C}} \times \mathbf{g}^{\mathbb{C}} = N_G$,

$$\mathcal{E}(Q,\eta) = \frac{1}{2} \min_{h \in P(a^*a, b^*b)} \int_0^1 \left(\left\| \frac{dh}{ds} \right\|_h^2 + \|h \operatorname{Ad}_a^{-1}(\eta)\|_h^2 \right) ds,$$

where $ab^{-1} = Q$ and $P(h_0, h_1) := \{ h \in C^{\infty}([0, 1], G \backslash G^{\mathbb{C}}); \ h(0) = h_0, h(1) = h_1 \}.$

Proof. The essential part of the proof is obtained in [5], and we explain the outline. Define $\mathcal{L}: C^1([0,1],\mathbf{g}) \otimes \mathbb{H} \to \mathbb{R}$ by $\mathcal{L}(T) := \|T_1\|_{L^2}^2 + \frac{1}{2}(\|T_2\|_{L^2}^2 + \|T_3\|_{L^2}^2)$. Fix $T \in \mathcal{N}_G$, then $\mathcal{L}|_{\mathcal{G}_0^{\mathbb{C}} \cdot T}$ attains its minimum value at T by Lemma 2.3 of [5], hence

$$\mathcal{E}([T]) = \min_{g \in \mathcal{G}_0^{\mathbb{C}}} \mathcal{L}(g \cdot T).$$

Here $\mathcal{G}_0^{\mathbb{C}}$ is the complexified gauge group defined by

$$\mathcal{G}_0^{\mathbb{C}} := \{g \in \mathcal{G}^{\mathbb{C}} = C^2([0,1],G^{\mathbb{C}}); \ g(0) = g(1) = 1\},$$

and a $\mathcal{G}_0^{\mathbb{C}}$ action on $C^1([0,1],\mathbf{g}) \otimes \mathbb{H}$ is defined by $g \cdot (T_0 + \sqrt{-1}T_1, T_2 + \sqrt{-1}T_3) := (\mathrm{Ad}_g(T_0 + \sqrt{-1}T_1) + g\frac{d}{ds}g^{-1}, \mathrm{Ad}_g(T_2 + \sqrt{-1}T_3))$. Take $u : [0,1] \to G^{\mathbb{C}}$ as in Section 2.2, and let $(Q,\eta) \in G^{\mathbb{C}} \times \mathbf{g}^{\mathbb{C}}$ be corresponding to $[T] \in N_G$

under the identification given in Section 2.2. Then we have $Q = u(0)u(1)^{-1}$, $T_2(s) + \sqrt{-1}T_3(s) = \operatorname{Ad}_{u(s)u(0)^{-1}}\eta$. For $g \in \mathcal{G}_0^{\mathbb{C}}$,

$$g \cdot T = \left(g(s)u(s) \frac{d}{ds} (gu)^{-1}(s), \operatorname{Ad}_{g(s)u(s)} \operatorname{Ad}_{u(0)^{-1}} \eta \right).$$

Now we extend the Ad_G -invariant inner product on \mathbf{g} to the \mathbb{C} bilinear form on $\mathbf{g}^{\mathbb{C}}$. From the calculation in the proof of Lemma 2.3 of [5], we obtain

$$\mathcal{L}(g \cdot T) = \int_0^1 \left(\frac{1}{4} \|h'\|_h^2 + \frac{1}{2} \|h \operatorname{Ad}_{u(0)^{-1}}(\eta)\|_h^2 \right) ds,$$

where $h = (gu)^*(gu)$. Thus we obtain

$$\mathcal{E}([T]) = \min_{h \in P(h_0, h_1)} \int_0^1 \left(\frac{1}{4} \|h'\|_h^2 + \frac{1}{2} \|h \operatorname{Ad}_{u(0)^{-1}}(\eta)\|_h^2\right) ds,$$

where $h_0 = u(0)^* u(0)$, $h_1 = u(1)^* u(1)$ and $u(0)u(1)^{-1} = Q$, hence we have the assertion.

3 Kähler manifolds with Hamiltonian actions

Let $L^{\mathbb{C}}$ be a complexification of connected compact Lie group L, and $L^{\mathbb{C}}$ acts on a complex manifold (X,I) holomorphically. Let ω be a Kähler form on X, and L acts on (X,I,ω) isometrically. Suppose that there is a symplectic moment map $m:X\to \mathbf{l}^*$ with respect to L action, where \mathbf{l} is the Lie algebra of L.

Fix an Ad_{L} -invariant inner product on \mathbf{l} , then the Riemannian metric on the homogeneous space $L \setminus L^{\mathbb{C}}$ is induced. We denote by $Lg \in L \setminus L^{\mathbb{C}}$ the equivalence class represented by $g \in L^{\mathbb{C}}$, and put

$$\xi_g := \frac{d}{dt}\Big|_{t=0} Le^{\sqrt{-1}t\xi} g \in T_{Lg}(L \setminus L^{\mathbb{C}})$$

for each $\xi \in \mathbf{l}$, where $\{Le^{\sqrt{-1}t\xi}g\}_{t\in\mathbb{R}}$ is a geodesic through Lg.

Now define a 1-form $\alpha_{x,\zeta} \in \Omega^1(L \setminus L^{\mathbb{C}})$ by $(\alpha_{x,\zeta})_{Lg}(\xi_g) := \langle m(gx) - \zeta, \xi \rangle$ for $\zeta \in Z_L$, which is easily checked to be closed. Since $L \setminus L^{\mathbb{C}} \cong \mathbf{1}$ is simply-connected, $\alpha_{x,\zeta}$ is d-exact and there is a unique primitive function up to constant. Accordingly, there is a unique function $\Phi_{x,\zeta} : L \setminus L^{\mathbb{C}} \to \mathbb{R}$ satisfying $d\Phi_{x,\zeta} = \alpha_{x,\zeta}$ and $\Phi_{x,\zeta}(L \cdot 1) = 0$. Here, the latter equality is a normalization for removing the ambiguity, and it is not essential. Then it is easy to check that $\Phi_{x,\zeta}$ is a geodesically convex function on the Riemannian symmetric space $L \setminus L^{\mathbb{C}}$.

From the argument in [10][16], the naturally induced map

$$m^{-1}(\zeta)/L \to X_{\zeta}/L^{\mathbb{C}}$$

becomes a homeomorphism, where

$$X_{\zeta} := \{x \in X; \ \Phi_{x,\zeta} \text{ has a critical point}\}.$$

In this subsection we show some equivalent conditions for the existence of the critical point of $\Phi_{x,\zeta}$.

For $g \in L^{\mathbb{C}}$, we denote by R_g the isometry on $L \setminus L^{\mathbb{C}}$ given by the right action of $L^{\mathbb{C}}$ on $L \setminus L^{\mathbb{C}}$. Then we can check that $R_g^* \alpha_{x,\zeta} = \alpha_{gx,\zeta}$, and $R_g^* \Phi_{x,\zeta} - \Phi_{gx,\zeta}$ becomes a constant function, hence X_{ζ} is $L^{\mathbb{C}}$ -closed.

Let

$$\operatorname{Stab}(x)^{\mathbb{C}} := \{ g \in L^{\mathbb{C}}; \ gx = x \},\$$

and $\operatorname{stab}(x)^{\mathbb{C}}$ be the Lie algebra of $\operatorname{Stab}(x)^{\mathbb{C}}$. We put

$$Stab(x) := \{g \in L; gx = x\} = Stab(x)^{\mathbb{C}} \cap L,$$

$$stab(x) := Lie(Stab(x)) = stab(x)^{\mathbb{C}} \cap \mathbf{l}.$$

Note that $\operatorname{Stab}(x)^{\mathbb{C}}$ contains the complexification of $\operatorname{Stab}(x)$ as a subgroup, though it is not necessary to be equal. Let $\pi_{\operatorname{Im}}: \mathbf{l}^{\mathbb{C}} \to \mathbf{l}$ be defined by $\pi_{\operatorname{Im}}(a+\sqrt{-1}b)=b$ for $a,b\in\mathbf{l}$, and put $\widetilde{\operatorname{stab}}(x):=\pi_{\operatorname{Im}}(\operatorname{stab}(x)^{\mathbb{C}})$. Then there is the orthogonal decomposition $\mathbf{l}=\widetilde{\operatorname{stab}}(x)\oplus V_x$ with respect to $\operatorname{Ad}_{\operatorname{L-invariant}}$ inner product on \mathbf{l} .

Lemma 3.1. For each $g \in L^{\mathbb{C}}$, there are $\gamma \in \operatorname{Stab}(x)^{\mathbb{C}}$ and $\xi \in V_x$ such that $Lg\gamma = Le^{\sqrt{-1}\xi}$.

Proof. Consider the smooth function $f: Lg \cdot \operatorname{Stab}(x)^{\mathbb{C}} \to \mathbb{R}$ defined by

$$f(Lg\gamma) := \operatorname{dist}_{L \setminus L^{\mathbb{C}}} (L \cdot 1, Lg\gamma)^{2},$$

where $Lg \cdot \operatorname{Stab}(x)^{\mathbb{C}} \subset L \setminus L^{\mathbb{C}}$ is the $\operatorname{Stab}(x)^{\mathbb{C}}$ -orbit through Lg. Now $\operatorname{Stab}(x)^{\mathbb{C}}$ is closed in $L^{\mathbb{C}}$, then $Lg \cdot \operatorname{Stab}(x)^{\mathbb{C}}$ is the closed orbit, hence f is proper. Since f is bounded from below, there is a minimum point $Lg\gamma_0 \in Lg \cdot \operatorname{Stab}(x)^{\mathbb{C}}$. By the polar decomposition $L^{\mathbb{C}} \cong L \times \mathbf{l}$, we can take $h \in L$ and $\xi \in \mathbf{l}$ such that $hg\gamma_0 = e^{\sqrt{-1}\xi}$. Under the identification $T_{Lg\gamma_0}(L \setminus L^{\mathbb{C}}) \cong \mathbf{l}$, the subspace $T_{Lg\gamma_0}(Lg \cdot \operatorname{Stab}(x)^{\mathbb{C}})$ is identified with $\operatorname{stab}(hg\gamma_0 x) = \operatorname{stab}(hgx)$. Since the derivative of f at $Lg\gamma_0$ vanishes, we have $\xi \in V_{hg\gamma_0 x}$.

Take $\hat{b} \in \widetilde{\operatorname{stab}}(x)$ arbitrarily, and fix $\hat{a} \in \mathbf{l}$ such that $\hat{a} + \sqrt{-1}\hat{b} \in \operatorname{stab}(x)^{\mathbb{C}}$. Since $\operatorname{stab}(hg\gamma_0x)^{\mathbb{C}} = \operatorname{Ad}_{hg\gamma_0}(\operatorname{stab}(x)^{\mathbb{C}})$, there is $a + \sqrt{-1}b \in \operatorname{stab}(hg\gamma_0x)^{\mathbb{C}}$ and $a + \sqrt{-1}b = \operatorname{Ad}_{hg\gamma_0}(\hat{a} + \sqrt{-1}\hat{b})$. Since $b \in \widetilde{\operatorname{stab}}(hg\gamma_0x)$, we have

$$\begin{split} 0 &= 2\sqrt{-1}\langle \xi, b \rangle &= \langle \xi, \mathrm{Ad}_{hg\gamma_0}(\hat{a} + \sqrt{-1}\hat{b}) + (\mathrm{Ad}_{hg\gamma_0}(\hat{a} + \sqrt{-1}\hat{b}))^* \rangle \\ &= \langle \mathrm{Ad}_{(hg\gamma_0)^{-1}}\xi, \hat{a} + \sqrt{-1}\hat{b} \rangle + \langle \mathrm{Ad}_{(hg\gamma_0)^*}\xi, (\hat{a} + \sqrt{-1}\hat{b})^* \rangle \\ &= \langle \mathrm{Ad}_{e^{-\sqrt{-1}\xi}}\xi, \hat{a} + \sqrt{-1}\hat{b} \rangle + \langle \mathrm{Ad}_{e^{\sqrt{-1}\xi}}\xi, (\hat{a} + \sqrt{-1}\hat{b})^* \rangle \\ &= \langle \xi, \hat{a} + \sqrt{-1}\hat{b} \rangle + \langle \xi, -\hat{a} + \sqrt{-1}\hat{b} \rangle \\ &= 2\sqrt{-1}\langle \xi, \hat{b} \rangle. \end{split}$$

Thus we obtain $\xi \in V_x$.

Proposition 3.2. $\Phi_{x,\zeta}$ has a critical point if and only if all of the following conditions are satisfied for some $g \in L^{\mathbb{C}}$; (i) $\Phi_{gx,\zeta}$ is $\operatorname{Stab}(gx)^{\mathbb{C}}$ invariant, (ii) $\lim_{t\to\infty} \Phi_{gx,\zeta}(Le^{\sqrt{-1}t\xi}) = \infty$ for any $\xi \in \mathbf{l} - \operatorname{stab}(gx)$.

Proof. Let $\Phi_{x,\zeta}$ has a critical point $Lg \in L \setminus L^{\mathbb{C}}$ for $g \in L^{\mathbb{C}}$. Since $\Phi_{gx,\zeta} - R_g^*\Phi_{x,\zeta}$ is a constant function, we may suppose g = 1 by the homogeneity. Then $\frac{d}{dt}|_{t=0}\Phi_{x,\zeta}(Le^{\sqrt{-1}t\xi}) = 0$ for all $\xi \in \mathbf{l}$. If $\xi \notin \widetilde{\mathrm{stab}}(x)$, especially $\xi \notin \mathrm{stab}(x)$,

$$\frac{d^2}{dt^2}\Big|_{t=0} \Phi_{x,\zeta}(Le^{\sqrt{-1}t\xi}) = \|\xi_x^*\|_{\omega}^2 > 0$$

and there exists sufficiently small $\delta>0$ and $\frac{d}{dt}\Phi_{x,\zeta}(Le^{\sqrt{-1}t\xi})\geq \delta$ for all $t\geq 1$. Thus we obtain $\lim_{t\to\infty}\Phi_{x,\zeta}(Le^{\sqrt{-1}t\xi})=\infty$. For any $\xi\in \mathbf{l}$, we have $\frac{d}{dt}\Phi_{x,\zeta}(Le^{\sqrt{-1}t\xi})\geq 0$ for any t>0 and obtain $\Phi_{x,\zeta}(Le^{\sqrt{-1}\xi})\geq \Phi_{x,\zeta}(L\cdot 1)$, hence $\Phi_{x,\zeta}(L\cdot 1)$ is the minimum value of $\Phi_{x,\zeta}$, especially $\Phi_{x,\zeta}$ is bounded from below. Next we show that $\Phi_{x,\zeta}$ is $\operatorname{Stab}(x)^{\mathbb{C}}$ invariant. For any $\gamma\in\operatorname{Stab}(x)^{\mathbb{C}}$, $R_{\gamma}^*\Phi_{x,\zeta}-\Phi_{x,\zeta}$ is a constant function. If we put $R_{\gamma}^*\Phi_{x,\zeta}-\Phi_{x,\zeta}=c_{\gamma}\in\mathbb{R}$, then we have $\Phi_{x,\zeta}(L\gamma)=\Phi_{x,\zeta}(L\cdot 1)+c_{\gamma}$ and $\Phi_{x,\zeta}(L\gamma^{-1})=\Phi_{x,\zeta}(L\cdot 1)-c_{\gamma}$. Since $\Phi_{x,\zeta}(L\cdot 1)$ is a minimum value, then c_{γ} should be zero, which implies $\Phi_{x,\zeta}$ is $\operatorname{Stab}(x)^{\mathbb{C}}$ invariant.

Conversely, assume that the conditions (i)-(ii) hold. It suffices to show that $\Phi_{gx,\zeta}$ has a minimum point in $L\backslash L^{\mathbb{C}}$. To see it, it suffices to see that $\Phi_{gx,\zeta}|_{\exp(V_{gx})}$ has a minimum point by applying Lemma 3.1, where

$$\exp(V_{ax}) := \{L \cdot e^{\sqrt{-1}\xi} \in L \setminus L^{\mathbb{C}}; \xi \in V_{ax}\}$$

and $\mathbf{l} = \operatorname{stab}(gx) \oplus V_{gx}$ is the orthogonal decomposition with respect to the Ad_L -invariant inner product. Define a smooth function $F: S(V_{qx}) \times \mathbb{R} \to \mathbb{R}$

by

$$F(\xi, t) := \frac{d}{dt} \Phi_{gx,\zeta}(e^{\sqrt{-1}t\xi}),$$

where $S(V_{gx}) := \{\xi \in V_{gx}; \|\xi\| = 1\}$. Now, recall that $t \mapsto \Phi_{gx,\zeta}(e^{\sqrt{-1}t\xi})$ is convex and we have assumed that $\lim_{|t| \to \infty} \Phi_{gx,\zeta}(e^{\sqrt{-1}t\xi}) = \infty$ for all $\xi \in S(V_{gx})$. It implies that there exists a unique $\hat{t}(\xi) \in \mathbb{R}$ for each $\xi \in S(V_{gx})$ such that $F(\xi,\hat{t}(\xi)) = 0$. Since $\frac{\partial}{\partial t}F(\xi,t) = \|\xi_x^*\|_{\omega}^2 > 0$, $\hat{t}: S(V_{gx}) \to \mathbb{R}$ is smooth by Implicit Function Theorem. In particular, $\xi \mapsto \Phi_{gx,\zeta}(e^{\sqrt{-1}\hat{t}(\xi)\xi})$ becomes a smooth function on the compact manifold $S(V_{gx})$, hence it has a minimum point $\xi_{min} \in S(V_{gx})$. It is easy to see $\exp(\hat{t}(\xi_{min})\xi_{min}) \in \exp(V_{gx})$ is a minimum point of $\Phi_{gx,\zeta}|_{\exp(V_{gx})}$.

Since each $\operatorname{Stab}(x)^{\mathbb{C}}$ -orbit is closed in $L \setminus L^{\mathbb{C}}$, the distance on $L \setminus L^{\mathbb{C}}$ induces a structure of a metric space on $L \setminus L^{\mathbb{C}}/\operatorname{Stab}(x)^{\mathbb{C}}$. If $\Phi_{x,\zeta}$ is $\operatorname{Stab}(x)^{\mathbb{C}}$ -invariant, then it induces a function $\bar{\Phi}_{x,\zeta} : L \setminus L^{\mathbb{C}}/\operatorname{Stab}(x)^{\mathbb{C}} \to \mathbb{R}$.

Proposition 3.3. $\Phi_{x,\zeta}$ has a critical point if and only if $\Phi_{x,\zeta}$ is $\mathrm{Stab}(x)^{\mathbb{C}}$ invariant, and $\bar{\Phi}_{x,\zeta}$ is proper and bounded from below.

Proof. Assume that $\Phi_{x,\zeta}$ has a critical point. Then the conditions (i)-(ii) in Proposition 3.2 are satisfied for some $g \in L^{\mathbb{C}}$, accordingly it suffices to show the properness of $\bar{\Phi}_{gx,\zeta}$. Define an equivalence relation in $\exp(V_{gx})$ by $Lg_1 \sim Lg_2$ if Lg_1 and Lg_2 lie on the same $\operatorname{Stab}(x)^{\mathbb{C}}$ orbit. Then the homeomorphism $\bar{\Phi}_{x,\zeta} : \exp(V_{gx})/\sim \to L\backslash L^{\mathbb{C}}/\operatorname{Stab}(x)^{\mathbb{C}}$ is naturally induced. Since $\Phi_{x,\zeta}|_{\exp(V_{gx})}$ is proper, $\bar{\Phi}_{gx,\zeta}$ is also proper.

Conversely, assume that $\Phi_{x,\zeta}$ is $\operatorname{Stab}(x)^{\mathbb{C}}$ -invariant, and that $\bar{\Phi}_{x,\zeta}$ is proper and bounded from below. Then the minimizing sequence of $\bar{\Phi}_{x,\zeta}$ always converges, therefore $\Phi_{x,\zeta}$ has a minimum point.

Proposition 3.4. Assume that $(d\Phi_{x,\zeta})_{L\cdot 1} = 0$. Let a diffeomorphism $\Psi_L : L \times 1 \to L^{\mathbb{C}}$ be defined by $\Psi_L(g,\xi) := ge^{\sqrt{-1}\xi}$. Then the restriction

$$\Psi_L|_{\operatorname{Stab}(x)\times\operatorname{stab}(x)}:\operatorname{Stab}(x)\times\operatorname{stab}(x)\to\operatorname{Stab}(x)^{\mathbb{C}}$$

is a diffeomorphism.

Proof. Let $(d\Phi_{x,\zeta})_{L\cdot 1}=0$. Take $\gamma\in\operatorname{Stab}(x)^{\mathbb{C}}$, and put $\gamma=ge^{\sqrt{-1}\xi}$ for some $g\in L$ and $\xi\in \mathbf{l}$. It suffices to show $g\in\operatorname{Stab}(x)$ and $\xi\in\operatorname{stab}(x)$. By the proof of Proposition 3.2, we have $\Phi_{x,\zeta}(L\cdot 1)=\Phi_{x,\zeta}(L\cdot \gamma)=\Phi_{x,\zeta}(L\cdot e^{\sqrt{-1}\xi})$. Since $\Phi_{x,\zeta}$ is geodesically convex and $\{L\cdot e^{\sqrt{-1}t\xi}\}_{t\in\mathbb{R}}$ is a geodesic, $\Phi_{x,\zeta}$ have to be constant on this geodesic. Thus we have

$$0 = \frac{d^2}{dt^2} \Big|_{t=0} \Phi_{x,\zeta}(e^{\sqrt{-1}t\xi}) = \|\xi_x^*\|^2,$$

which implies $\xi \in \operatorname{stab}(x)$. Then we obtain

$$g = \gamma e^{-\sqrt{-1}t\xi} \in \operatorname{Stab}(x)^{\mathbb{C}} \cap L = \operatorname{Stab}(x).$$

Remark 3.1. It is shown by Corollary 2.15 in [17] that $\operatorname{stab}(x)^{\mathbb{C}}$ are reductive for all x such that $(d\Phi_{x,\zeta})_{L\cdot 1}=0$.

Next we assume that there is an L-invariant function $\varphi \in C^{\infty}(L \setminus L^{\mathbb{C}})$ and satisfies $\omega = \sqrt{-1}\partial\bar{\partial}\varphi$. Then we have $\Phi_{x,\zeta}(L \cdot e^{\sqrt{-1}\xi}) = \varphi(e^{\sqrt{-1}\xi} \cdot x) - \langle \zeta, \xi \rangle + c$ for some constant c by the discussion of (2.6) in [8]. Here we may assume c = 0, since the existence of the critical point does not depend on the value of c.

Proposition 3.5. Assume that $\lim_{t\to\infty} \varphi(e^{\sqrt{-1}t\xi}x)/t = \infty$ holds for all $\xi \in \mathbf{l}$ which satisfy $\lim_{t\to\infty} \varphi(e^{\sqrt{-1}t\xi}x) = \infty$. If $\Phi_{x,\zeta}$ has a critical point, then $\Phi_{x,s\zeta}$ also has a critical point for each s>0.

Proof. We may assume the conditions (i)(ii) of Proposition 3.2 are satisfied for $\Phi_{x,\zeta}$. It suffices to show that $\Phi_{x,s\zeta}$ also satisfies (i)(ii). Since $\Phi_{x,\zeta}$ is $\operatorname{Stab}(x)^{\mathbb{C}}$ invariant, we have

$$\Phi_{x,s\zeta}(Lg\gamma) = s\Phi_{x,\zeta}(Lg\gamma) + (1-s)\varphi(g\gamma x)
= s\Phi_{x,\zeta}(Lg) + (1-s)\varphi(gx) = \Phi_{x,s\zeta}(Lg)$$

for all $Lg \in L \setminus L^{\mathbb{C}}$ and $\gamma \in \operatorname{Stab}(x)^{\mathbb{C}}$, thus $\Phi_{x,s\zeta}$ is $\operatorname{Stab}(x)^{\mathbb{C}}$ invariant. Next we take $\xi \in \mathbf{l} - \operatorname{stab}(x)$ and consider the behavior of $\Phi_{x,s\zeta}(e^{\sqrt{-1}t\xi})$ for $t \to \infty$. Since $\lim_{t \to \infty} \Phi_{x,\zeta}(e^{\sqrt{-1}t\xi}) = \infty$, we have $\lim_{t \to \infty} \varphi(e^{\sqrt{-1}t\xi}) = \infty$ or $-\langle \zeta, \xi \rangle > 0$. If the latter case occurs, then we obtain $\lim_{t \to \infty} \Phi_{x,s\zeta}(e^{\sqrt{-1}t\xi}) = \infty$. Let the former case occur. From the assumption we have $\varphi(e^{\sqrt{-1}t\xi}x)/t \to \infty$ for $t \to \infty$, thus $\lim_{t \to \infty} \Phi_{x,s\zeta}(e^{\sqrt{-1}t\xi}) = \infty$ for all s > 0.

4 Main results

4.1 Correspondence of orbits

In this section we prove Theorem 1.1. Let (M, g, I_1, I_2, I_3) , H, G, ρ and H_{ρ} be as in Section 1.2. First of all, we show the following lemma.

Lemma 4.1. Let $\bar{\rho}$ be defined as (1), and assume it is surjective. Then a linear map

$$\rho^*|_{\mathrm{Ann.}\Delta_{\mathbf{g}}}:\mathrm{Ann.}\Delta_{\mathbf{g}}\to\mathrm{Ann.}\mathbf{h}_{\rho}$$

is bijective, where

Ann.
$$\Delta_{\mathbf{g}} := \{ \varphi \in \mathbf{g}^* \oplus \mathbf{g}^*; \ \varphi|_{\Delta_{\mathbf{g}}} = 0 \},$$

Ann. $\mathbf{h}_{\rho} := \{ \varphi \in \mathbf{h}^*; \ \varphi|_{\mathbf{h}_{\rho}} = 0 \}.$

Proof. The assertion is obvious since $\rho^*|_{Ann.\Delta_{\mathbf{g}}}$ is the adjoint map of

$$\bar{\rho}_*: \mathbf{h}/\mathbf{h}_{\rho} \to (\mathbf{g} \oplus \mathbf{g})/\Delta_{\mathbf{g}},$$

under the identification $\{\mathbf{h}/\mathbf{h}_{\rho}\}^* \cong \mathrm{Ann.}\mathbf{h}_{\rho}$ and $\{(\mathbf{g} \oplus \mathbf{g})/\Delta_{\mathbf{g}}\}^* \cong \mathrm{Ann.}\Delta_{\mathbf{g}}$.

Any $x \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})$ satisfies $\hat{\mu}_{\mathbb{C}}(x) - \zeta_{\mathbb{C}} \in \ker \iota^* = \operatorname{Ann.} \mathbf{h}_{\rho}^{\mathbb{C}}$ by the definition. Consequently, there exists a unique $\eta(x) \in (\mathbf{g}^{\mathbb{C}})^*$ such that

$$\hat{\mu}_{\mathbb{C}}(x) - \zeta_{\mathbb{C}} = \rho^*(-\eta(x), \eta(x))$$

by Lemma 4.1, which implies $(x,1,\eta(x)) \in \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})$. Here we identify $N_G = G^{\mathbb{C}} \times \mathbf{g}^{\mathbb{C}}$ and $(\mathbf{g}^{\mathbb{C}})^* = \mathbf{g}^{\mathbb{C}}$ by the Ad_G -invariant \mathbb{C} bilinear form. Thus we obtain a map $\hat{\psi}: \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}}) \to \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})$ defined by $\hat{\psi}(x) := (x,1,\eta(x))$, which induces a map $\psi: \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})/H_{\rho}^{\mathbb{C}} \to \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})/H^{\mathbb{C}}$.

Proposition 4.2. ψ is well-defined and a homeomorphism.

Proof. First of all we check the well-definedness. Let $x \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})$ and $h \in H_{\rho}^{\mathbb{C}}$. Now we may write $\rho(h) = (h_0, h_1) \in G^{\mathbb{C}} \times G^{\mathbb{C}}$, and suppose $h_0 = h_1$. Then $hx \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})$ and $\hat{\psi}(hx) = (hx, 1, \eta(hx))$, where $\eta(hx) \in \mathbf{g}^{\mathbb{C}}$ is uniquely defined by $\hat{\mu}_{\mathbb{C}}(hx) - \zeta_{\mathbb{C}} = \rho^*(-\eta(hx), \eta(hx))$. Now we have

$$\hat{\mu}_{\mathbb{C}}(hx) - \zeta_{\mathbb{C}} = \operatorname{Ad}_{h^{-1}}^{*}(\hat{\mu}_{\mathbb{C}}(x) - \zeta_{\mathbb{C}})
= \operatorname{Ad}_{h^{-1}}^{*}\rho^{*}(-\eta(x), \eta(x))
= \rho^{*}(-\operatorname{Ad}_{h_{0}^{-1}}^{*}\eta(x), \operatorname{Ad}_{h_{0}^{-1}}^{*}\eta(x)),$$

where $\operatorname{Ad}_{g}^{*} \in GL((\mathbf{g}^{\mathbb{C}})^{*})$ is defined by

$$\langle \mathrm{Ad}_q^* y, \xi \rangle := \langle y, \mathrm{Ad}_g \xi \rangle$$

for $y \in (\mathbf{g}^{\mathbb{C}})^*, \xi \in \mathbf{g}^{\mathbb{C}}, g \in G^{\mathbb{C}}$, hence $\eta(hx) = \operatorname{Ad}_{h_0^{-1}}^* \eta(x)$ holds by the uniqueness. Since $\operatorname{Ad}_{h_0^{-1}}^*$ corresponds to Ad_{h_0} under the identification $(\mathbf{g}^{\mathbb{C}})^* \cong \mathbf{g}^{\mathbb{C}}$, we obtain $\hat{\psi}(hx) = h\hat{\psi}(x)$.

Next we show the injectivity. Take $x, x' \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})$ to be $\hat{\psi}(x) = h\hat{\psi}(x')$ for some $h \in H^{\mathbb{C}}$. Then $(x, 1, \eta(x)) = (hx', h_0h_1^{-1}, \mathrm{Ad}_{h_0}\eta(x'))$, accordingly we obtain $h_0h_1^{-1} = 1$ which implies $h \in H_{\rho}^{\mathbb{C}}$.

The surjectivity is shown by constructing the inverse map of ψ as follows. Take $(x, Q, \eta) \in \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})$ arbitrarily. From Section 2.2, we have

$$\sigma_{\mathbb{C}}(x, Q, \eta) = \hat{\mu}_{\mathbb{C}}(x) + \rho^*(\nu(Q, \eta))$$

= $\hat{\mu}_{\mathbb{C}}(x) + \rho^*(\eta, -\mathrm{Ad}_{Q^{-1}}\eta) = \zeta_{\mathbb{C}}$ (4)

From the surjectivity of the map (1), there exist some $h \in H^{\mathbb{C}}$ such that $h_0 h_1^{-1} = Q$. Then $\rho(h)^{-1} = (h_0^{-1}, h_0^{-1}Q) \in H^{\mathbb{C}}$, and we have

$$\rho^{*}(\eta, -\mathrm{Ad}_{Q^{-1}}\eta) = \rho^{*}\mathrm{Ad}_{\rho(h)}(\mathrm{Ad}_{h_{0}^{-1}}\eta, -\mathrm{Ad}_{h_{0}^{-1}}\eta)
= \mathrm{Ad}_{h}\rho^{*}(\mathrm{Ad}_{h_{0}^{-1}}\eta, -\mathrm{Ad}_{h_{0}^{-1}}\eta).$$
(5)

By combining (4)(5), we obtain

$$\hat{\mu}_{\mathbb{C}}(h^{-1}x) + \rho^*(\operatorname{Ad}_{h_0^{-1}}\eta, -\operatorname{Ad}_{h_0^{-1}}\eta) = \zeta_{\mathbb{C}},$$

which means $h^{-1}x \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})$ and

$$\hat{\psi}(h^{-1}x) = (h^{-1}x, 1, \operatorname{Ad}_{h_0^{-1}}\eta) = h^{-1}(x, Q, \eta).$$

Thus we have the surjectivity of ψ . Here, we can take h depending on Q continuously in local, therefore the inverse of ψ becomes continuous.

We can give group isomorphisms between the stabilizers as follows. Let

$$\operatorname{Stab}(x)^{\mathbb{C}} := \{ g \in H_{\rho}^{\mathbb{C}}; \ gx = x \},$$

$$\operatorname{Stab}(x, Q, \eta)^{\mathbb{C}} := \{ g \in H^{\mathbb{C}}; \ g(x, Q, \eta) = (x, Q, \eta) \}.$$

Then it is easy to check that the inclusion $\operatorname{Stab}(x)^{\mathbb{C}} \hookrightarrow \operatorname{Stab}(\hat{\psi}(x))^{\mathbb{C}}$ is surjective, hence we obtain a Lie group isomorphism

$$\operatorname{Stab}(x)^{\mathbb{C}} \cong \operatorname{Stab}(\hat{\psi}(x))^{\mathbb{C}}.$$
 (6)

4.2 Correspondence of stability

Put

$$\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1} = \{x \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}}); \ \Phi_{x,\iota^*\zeta_1} \text{ has a critical point}\},$$

$$\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1} = \{(x,Q,\eta) \in \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}}); \ \Phi_{(x,Q,\eta),\zeta_1} \text{ has a critical point}\}.$$

In this subsection we prove that ψ is a bijection from $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}/H_{\rho}^{\mathbb{C}}$ to $\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}/H^{\mathbb{C}}$ by using the results in Section 3.

Along Section 3, we define geodesically convex functions

$$\Phi_{x,\zeta_1}: H \backslash H^{\mathbb{C}} \to \mathbb{R}, \quad \Phi_{x,\iota^*\zeta_1}: H_{\rho} \backslash H_{\rho}^{\mathbb{C}} \to \mathbb{R}, \quad \Phi_{(x,Q,\eta),\zeta_1}: H \backslash H^{\mathbb{C}} \to \mathbb{R},$$

for $x \in M$ and $(x, Q, \eta) \in M \times N_G$, corresponding to the moment maps $m = \hat{\mu}_1, \mu_1, \sigma_1$, respectively. Since H_{ρ} is a closed subgroup of H, $H_{\rho} \backslash H_{\rho}^{\mathbb{C}}$ is naturally embedded in $H \backslash H^{\mathbb{C}}$. Then we have $\Phi_{x,\iota^*\zeta_1}(H_{\rho}h) = \Phi_{x,\zeta_1}(Hh)$ for all $h \in H_{\rho}^{\mathbb{C}}$. Moreover we may write $\Phi_{(x,Q,\eta),\zeta_1}(H\hat{h}) = \Phi_{x,\zeta_1}(H\hat{h}) + \mathcal{E}(\hat{h}_0 Q \hat{h}_1^{-1}, \operatorname{Ad}_{\hat{h}_0} \eta)$ for all $\hat{h} \in H^{\mathbb{C}}$ from Proposition 2.4 and (2.6) in [8].

Proposition 4.3. Let
$$x \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}$$
. Then $\hat{\psi}(x) \in \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}$.

Proof. It suffices to show that $\Phi_{\hat{\psi}(x),\zeta_1}$ has a critical point if $\Phi_{x,\iota^*\zeta_1}$ has a critical point.

First of all, it is easy to check that $\Phi_{\hat{\psi}(x),\zeta_1}$ is $\operatorname{Stab}(\hat{\psi}(x))^{\mathbb{C}}$ invariant, since $\operatorname{Stab}(x)^{\mathbb{C}} = \operatorname{Stab}(\hat{\psi}(x))^{\mathbb{C}}$ and $\Phi_{x,\iota^*\zeta_1}$ is $\operatorname{Stab}(x)^{\mathbb{C}}$ invariant.

Next we take $\hat{\xi} \in \mathbf{h}$, put $\rho_*(\hat{\xi}) = (\hat{\xi}_0, \hat{\xi}_1)$ and consider the behavior of $\Phi_{\hat{\psi}(x),\zeta_1}(He^{\sqrt{-1}t\hat{\xi}})$ for $t \to \infty$. Since Φ_{x,ζ_1} is geodesically convex, there is a constant $c_{\hat{\xi}}\mathbb{R}$ and $\liminf_{t\to+\infty} \frac{d}{dt}\Phi_{x,\zeta_1}(He^{\sqrt{-1}t\hat{\xi}}) \geq c_{\hat{\xi}}$. Then we have an inequality $\Phi_{x,\zeta_1}(He^{\sqrt{-1}t\hat{\xi}}) \geq c_{\hat{\xi}}t - N_1$ for all $t \in \mathbb{R}$, for some sufficiently large N_1 . If $\hat{\xi}_0 \neq \hat{\xi}_1$, then

$$\begin{split} \Phi_{\hat{\psi}(x),\zeta_{1}}(He^{\sqrt{-1}t\hat{\xi}}) & \geq & \mathcal{E}(e^{\sqrt{-1}t\hat{\xi}_{0}}e^{-\sqrt{-1}t\hat{\xi}_{1}},\operatorname{Ad}_{e^{\sqrt{-1}t\hat{\xi}_{0}}}\eta(x)) + c_{\hat{\xi}}t - N_{1} \\ & \geq & \min_{h \in P(e^{2\sqrt{-1}t\hat{\xi}_{0}},e^{-2\sqrt{-1}t\hat{\xi}_{1}})} \int_{0}^{1}\frac{1}{4}\|h'\|_{h}^{2} + c_{\hat{\xi}}t - N_{1} \\ & \geq & \operatorname{dist}_{G\backslash G^{\mathbb{C}}}(e^{2\sqrt{-1}t\hat{\xi}_{0}},e^{2\sqrt{-1}t\hat{\xi}_{1}})^{2} + c_{\hat{\xi}}t - N_{1} \end{split}$$

Now $G\backslash G^{\mathbb{C}}$ is an Hadamard manifold, therefore the function

$$t \mapsto \operatorname{dist}_{G \setminus G^{\mathbb{C}}}(e^{2\sqrt{-1}t\hat{\xi}_0}, e^{2\sqrt{-1}t\hat{\xi}_1})$$

is convex. Since $\hat{\xi}_0 \neq \hat{\xi}_1$, there exists a positive constant $N_2 > 0$ and

$$\operatorname{dist}_{G \setminus G^{\mathbb{C}}}(e^{2\sqrt{-1}t\hat{\xi}_0}, e^{2\sqrt{-1}t\hat{\xi}_1})^2 \ge N_2 t^2$$

for $t \geq 1$, and we obtain $\Phi_{\hat{\psi}(x),\zeta_1}(He^{\sqrt{-1}t\hat{\xi}}) \to \infty$ for $t \to \infty$. If $\hat{\xi}_0 = \hat{\xi}_1$, then $\hat{\xi} \in \mathbf{h}_{\rho}$. In this case we have

$$\Phi_{\hat{\psi}(x),\zeta_1}(He^{\sqrt{-1}t\hat{\xi}}) \ge \Phi_{x,\iota^*\zeta_1}(H_{\rho}e^{\sqrt{-1}t\hat{\xi}}) \to \infty$$

for $t \to \infty$, if we take $\hat{\xi} \notin \widetilde{\operatorname{stab}}(\hat{\psi}(x)) = \widetilde{\operatorname{stab}}(x)$, where the $\widetilde{\operatorname{stab}}$ is defined in the next section. Thus $\Phi_{\hat{\psi}(x),\zeta_1}$ has a critical value by Proposition 3.2.

Next we show the converse correspondence. From now on, we assume that there is an H-invariant global Kähler potential $\varphi: M \to \mathbb{R}$ of (M, I_1, ω_1) , then we have

$$\begin{split} &\Phi_{x,\iota^*\zeta_1}(H_{\rho}e^{\sqrt{-1}\xi}) &= \varphi(e^{\sqrt{-1}\xi}x) - \langle \iota^*\zeta_1, \xi \rangle + const. \;, \\ &\Phi_{(x,Q,\eta),\zeta_1}(He^{\sqrt{-1}\hat{\xi}}) &= \varphi(e^{\sqrt{-1}\hat{\xi}}x) + \mathcal{E}(Q,\eta) - \langle \zeta_1, \hat{\xi} \rangle + const. \;, \end{split}$$

where $\xi \in \mathbf{h}_{\rho}$ and $\hat{\xi} \in \mathbf{h}$. Here we may assume the constant in the right hand sides of equalities are equal to 0.

Proposition 4.4. Assume that there exists a smooth function $q: \mathbb{R} \to \mathbb{R}$ such that $\|\eta(x)\|^2 \leq q(\varphi(x))$ and $q'(\varphi(x)) \geq 0$ for any $x \in M$. Suppose that if $\varphi(e^{\sqrt{-1}t\xi} \cdot x) \to \infty$ for $t \to \infty$ then $\lim_{t \to \infty} \varphi(e^{\sqrt{-1}t\xi} \cdot x)/t = \infty$ for any $\xi \in \mathbf{h}_{\rho}$. If $\hat{\psi}(x) \in \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}$, then $x \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}$.

Proof. Assume that $\Phi_{\hat{\psi}(x),\zeta_1}$ has a critical point. From Proposition 3.3, $\Phi_{\hat{\psi}(x),\zeta_1}$ is $\operatorname{Stab}(\hat{\psi}(x))^{\mathbb{C}}$ invariant and the induced map

$$\bar{\Phi}_{\hat{\psi}(x),\zeta_1}: H\backslash H^{\mathbb{C}}/\mathrm{Stab}(\hat{\psi}(x))^{\mathbb{C}} \to \mathbb{R}$$

is proper, and bounded from below. Since $H_{\rho}\backslash H_{\rho}^{\mathbb{C}}/\mathrm{Stab}(x)^{\mathbb{C}}$ is a closed subset of $H\backslash H^{\mathbb{C}}/\mathrm{Stab}(\hat{\psi}(x))^{\mathbb{C}}$, $F:=\bar{\Phi}_{\hat{\psi}(x),\zeta_1}|_{H_{\rho}\backslash H_{\rho}^{\mathbb{C}}/\mathrm{Stab}(x)^{\mathbb{C}}}$ is also proper and bounded below.

If $(Q, \eta) := (1, \eta(gx))$ for $g \in H_{\rho}^{\mathbb{C}}$, we have an upper estimate

$$\mathcal{E}(1, \eta(gx)) \le \|\eta(x)\|^2 \le q(\varphi(gx)),$$

by taking a path $h \in P(1,1)$ to be h(s) = 1. Hence if we take $\xi \in \mathbf{h}_{\rho}$, then

$$\Phi_{\hat{\psi}(x),\zeta_1}(He^{\sqrt{-1}\xi}) \le \Phi_{x,\iota^*\zeta_1}(H_{\rho}e^{\sqrt{-1}\xi}) + q(\varphi(e^{\sqrt{-1}\xi}x)) =: \hat{F}_+(H_{\rho}e^{\sqrt{-1}\xi}).$$

Now \hat{F}_+ induces a function $F_+: H_\rho \backslash H_\rho^{\mathbb{C}}/\mathrm{Stab}(x)^{\mathbb{C}} \to \mathbb{R}$, which satisfies $F_+ \geq F$, therefore F_+ is also proper and bounded from below. Thus \hat{F}_+ has a minimum point $e^{\sqrt{-1}\xi} \in H_\rho \backslash H_\rho^{\mathbb{C}}$, and have

$$0 = (d\hat{F}_{+})_{e^{\sqrt{-1}\xi}} = (1 + q'(\varphi(e^{\sqrt{-1}\xi}x)))\mu(e^{\sqrt{-1}\xi}x) - \iota^{*}\zeta_{1}.$$

Now we have shown that $\Phi_{x,s\cdot\iota^*\zeta_1}$ has a critical point if we put $s=1+q'(\varphi(e^{\sqrt{-1}\xi}x))$, hence $\Phi_{x,\iota^*\zeta_1}$ also has a critical point by Proposition 3.5. \square

Remark 4.1. The assumption of Proposition 4.4 is always satisfied if M is the quaternionic vector space \mathbb{H}^N with Euclidean metric, and $H \subset Sp(N)$ acts on M linearly.

4.3 Proof of the main theorem

Proposition 4.5. Stab $(x) \subset H_{\rho}$ and Stab $(y) \subset H$ are isomorphic as Lie groups for any $x \in \mu^{-1}(\iota^*\zeta)$ and $y \in \sigma^{-1}(\zeta)$ satisfying $yH = \psi(xH_{\rho})$.

Proof. The assertion follows directly from Proposition 3.4 and the isomorphism (6).

Proof of Theorem 1.1. Define an open subsets $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}^{ss} \subset \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})$ and $\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}^{ss} \subset \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})$ by

$$\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_{1}}^{ss} := \{x \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}}); \ \overline{H_{\rho}^{\mathbb{C}} \cdot x} \cap \mu_{1}^{-1}(\iota^*\zeta_{1}) \neq \varnothing\},$$
$$\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_{1}}^{ss} := \{y \in \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}}); \ \overline{H^{\mathbb{C}} \cdot y} \cap \sigma_{1}^{-1}(\zeta_{1}) \neq \varnothing\}.$$

Then the naturally induced maps

$$\mu^{-1}(\iota^*\zeta)/H_{\rho} \to \mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})^{ss}_{\iota^*\zeta_1}//H_{\rho}^{\mathbb{C}}, \quad \sigma^{-1}(\zeta)/H \to \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})^{ss}_{\zeta_1}//H^{\mathbb{C}}$$

gives an isomorphisms as complex analytic spaces by the main theorem in [8], where // is the categorical quotient. Moreover $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}^{ss}$ and $\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}^{ss}$ are the minimal open subsets of $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})$ and $\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})$ containing $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}$ and $\sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}$, respectively. Then ψ gives a bijective map $\mu_{\mathbb{C}}^{-1}(\iota^*\zeta_{\mathbb{C}})_{\iota^*\zeta_1}^{ss}/H_{\rho}^{\mathbb{C}} \to \sigma_{\mathbb{C}}^{-1}(\zeta_{\mathbb{C}})_{\zeta_1}^{ss}/H^{\mathbb{C}}$ by Propositions 4.2, 4.3, and 4.4. Moreover it is biholomorphic since $\hat{\psi}$ is obviously holomorphic and the inverse of ψ is also holomorphically defined in the proof of Proposition 4.2.

Let $(I_1^{\iota^*\zeta}, I_2^{\iota^*\zeta}, I_3^{\iota^*\zeta})$ be the hypercomplex structure on $\mu^{-1}(\iota^*\zeta)/H_\rho$ induced from (I_1, I_2, I_3) on M. Similarly, let $(I_1^{\zeta}, I_2^{\zeta}, I_3^{\zeta})$ be the hypercomplex structure on $\sigma^{-1}(\zeta)/H$ induced from $(I_1 \times I_{G,1}, I_2 \times I_{G,2}, I_3 \times I_{G,3})$ on $M \times N_G$. Moreover, let $\omega_i^{\iota^*\zeta}$ and ω_i^{ζ} be the corresponding Kähler forms.

If H_{ρ} acts on $\mu^{-1}(\iota^*\zeta)$ freely, then H also acts on $\sigma^{-1}(\zeta)$ freely from Proposition 4.5, hence $\mu^{-1}(\iota^*\zeta)/H_{\rho}$ and $\sigma^{-1}(\zeta)/H$ become smooth hyper-Kähler manifolds by [9]. Since M and $M \times N_G$ are complete, $\mu^{-1}(\iota^*\zeta)/H_{\rho}$ and $\sigma^{-1}(\zeta)/H$ are complete, too. See [12] for the completeness of N_G .

and $\sigma^{-1}(\zeta)/H$ are complete, too. See [12] for the completeness of N_G . The equality $\psi^*(\omega_2^{\zeta} + \sqrt{-1}\omega_3^{\zeta}) = \omega_2^{\iota^*\zeta} + \sqrt{-1}\omega_3^{\iota^*\zeta}$ follows directly from the definition of $\hat{\psi}$ in Section 4.1 and the fact that any fiber of $T^*G^{\mathbb{C}}$ are holomorphic Lagrangian submanifolds.

Next we show the corresponding of Kähler classes. For each $y\in S^2=\{y=(y_1,y_2,y_3)\in\mathbb{R}^3;\ y_1^2+y_2^2+y_3^2=1\}$, put

$$I_y^{\iota^*\zeta} := \sum_{i=1}^3 y_i I_i^{\iota^*\zeta}, \quad I_y^{\zeta} := \sum_{i=1}^3 y_i I_i^{\zeta}.$$

Now we take $y', y'' \in S^2$ such that $\{y, y', y''\}$ is the orthonormal basis of \mathbb{R}^3 with the positive orientation. Then we can apply Theorem 1.1 for the complex structure $I_y^{\iota^*\zeta}$ and I_y^{ζ} , and obtain a biholomorphism ψ_y . Thus we obtain a continuous family of diffeomorphisms $\{\psi_y\}_y$ parametrized by $y \in S^2$. Since S^2 is connected, the induced maps

$$\psi_{\eta}^*: H^2(\sigma^{-1}(\zeta)/H, \mathbb{R}) \to H^2(\mu^{-1}(\iota^*\zeta)/H_{\rho}, \mathbb{R})$$

does not depend on $y \in S^2$. Since each ψ_y identifies the holomorphic symplectic forms with respect to $I_y^{*\zeta}$ and I_y^{ζ} , therefore $\psi_y^*[\omega_i^{\zeta}] = [\omega_i^{*\zeta}]$ holds for i = 1, 2, 3.

Finally, we show the correspondence of the parameter spaces of two hyper-Kähler quotients.

Proposition 4.6. Let $\zeta, \zeta' \in \text{Im}\mathbb{H} \otimes Z_H$ satisfies $\iota^*\zeta = \iota^*\zeta'$. Then hyper-Kähler quotients $\sigma^{-1}(\zeta)/H$ and $\sigma^{-1}(\zeta')/H$ are canonically identified.

Proof. Take $\zeta, \zeta' \in \text{Im}\mathbb{H} \otimes Z_H$ such that $\iota^*\zeta = \iota^*\zeta'$. Then $\zeta' - \zeta \in \text{Im}\mathbb{H} \otimes \text{Ann.h}_{\rho}$, and there exists a unique $A = (A_1, A_2, A_3) \in \text{Im}\mathbb{H} \otimes \mathbf{g}^*$ such that $\rho^*(A, -A) = \zeta' - \zeta$ by Lemma 4.1. Define $\hat{A} \in \mathcal{N}_G$ by $\hat{A}(t) := (0, A_1, A_2, A_3)$ for all $t \in [0, 1]$. Then a C^{∞} map $\sigma^{-1}(\zeta) \to \sigma^{-1}(\zeta')$ defined by $(x, [T]) \mapsto (x, [T + \hat{A}])$ gives an isomorphism $\sigma^{-1}(\zeta)/H \to \sigma^{-1}(\zeta')/H$.

5 Examples

Here we raise some examples which Theorem 1.1 can be applied to.

5.1 Hilbert schemes of k points on \mathbb{C}^2

Here we apply the main results obtained in the previous sections to the case of

$$M = \operatorname{End}(\mathbb{C}^k) \oplus \operatorname{End}(\mathbb{C}^k) \oplus \mathbb{C}^k \oplus (\mathbb{C}^k)^*$$

 $G = U(k), H = U(k) \times U(k)$ and $\rho = \operatorname{id} : H \to G \times G$. Here, H-action on M is defined by $(g_0, g_1) \cdot (A, B, p, q) := (g_0 A g_1^{-1}, g_1 B g_0^{-1}, g_0 p, q g_0^{-1})$ for $g_0, g_1 \in U(k), A, B \in \operatorname{End}(\mathbb{C}^k), p \in \mathbb{C}^k$ and $q \in (\mathbb{C}^k)^*$. According to [14], $Z_{H_{\rho}} \cong \mathbb{R}$ and $\mu^{-1}(\iota^*\zeta)/H_{\rho}$ is a smooth hyper-Kähler manifolds diffeomorphic to a crepant resolution of $(\mathbb{C}^2)^k/\mathcal{S}_k$ if $\iota^*\zeta \in \operatorname{Im}\mathbb{H}$ is given by $\iota^*\zeta = (t, 0, 0)$ for $t \neq 0$ in this situation. Here, \mathcal{S}_k is the symmetric group acting on $(\mathbb{C}^2)^k$. If $\iota^*\zeta = 0$, then $\mu^{-1}(0)/H_{\rho}$ is isometric to $(\mathbb{C}^2)^k/\mathcal{S}_k$ with Euclidean metric.

Then we have a family of smooth hyper-Kähler manifolds $\sigma^{-1}(\zeta)/H$ which are biholomorphic to $\mu^{-1}(\iota^*\zeta)/H_{\rho}$. In particular, we can study $\sigma^{-1}(0)/H$ which gives a singular hyper-Kähler metric on $(\mathbb{C}^2)^k/\mathcal{S}_k$ as follows.

Theorem 5.1. Let M, H, G, ρ be as above. Then $\sigma^{-1}(0)/H$ is isometric to $(\mathbb{C}^2_{Taub-NUT})^k/\mathcal{S}_k$ on their regular parts, where $\mathbb{C}^2_{Taub-NUT}$ is Taub-NUT space.

Before the proof of Theorem 5.1, we see that N_L is identified with the open subset of $L \times \mathbf{l}^3$ as follows by [3], for any compact Lie group L. Let $T \in \mathcal{N}_L$ and $f : [0,1] \to L$ be the solution of the initial value problem

$$\operatorname{Ad}_{f(s)}T_0(s) + f(s)\frac{d}{ds}f(s)^{-1} = 0,$$

 $f(1) = 1.$

Then a C^{∞} map $\phi: N_L \to L \times \mathbf{l}^3$ is defined by

$$\phi([T]) := (f(0)^{-1}, T_1(1), T_2(1), T_3(1)).$$

 ϕ is an diffeomorphism from N_L to an open subset of $L \times \mathbf{l}^3$. In particular, ϕ is surjective and an isomorphism of hyper-Kähler manifolds if L is a torus, therefore we may assume $N_{T^k} = T^k \times \mathbb{R}^{3k}$.

Next we begin the proof of Theorem 5.1. The inclusion $T^k \subset U(k)$ which is given by

$$T^k = \{ \text{diag}(g_1, \dots, g_k) \in U(k); \ g_1, \dots, g_k \in S^1 \}$$

induces an embedding $N_{T^k} \subset N_{U(k)}$. Now we put

$$M_0 := \{(A, B, 0, 0) \in M; A = \operatorname{diag}(a_1, \dots, a_k), B = \operatorname{diag}(b_1, \dots, b_k)\}$$

 $\cong \mathbb{C}^k \oplus \mathbb{C}^k,$

then $\hat{M}_0 := M_0 \times N_{T^k}$ is a hyper-Kähler submanifold of $\hat{M} := M \times N_{U(k)}$. Let a closed sub group $H_0 \subset H$ be generated by

$$\{(g\chi,\chi)\in U(k)\times U(k);\ g\in T^k,\ \chi\in\mathcal{S}_k\},$$

then H_0 is isomorphic to $S_k \ltimes T^k$. Then, H_0 -action is closed on \hat{M}_0 , and we obtain the hyper-Kähler moment map $\sigma_0 := \iota_0^* \circ \sigma|_{\hat{M}_0} : \hat{M}_0 \to \operatorname{Im}\mathbb{H} \otimes \mathbf{h}_0^*$, where $\iota_0^* : \mathbf{h}^* \to \mathbf{h}_0^*$ is the adjoint map of the inclusion $\mathbf{h}_0 \hookrightarrow \mathbf{h}$. Here, $\mathbf{h}_0 = \mathbf{u}(k) \oplus \{0\}$ is the Lie algebra of H_0 .

Lemma 5.2. We have $\sigma_0^{-1}(0) = (\sigma|_{\hat{M}_0})^{-1}(0)$, and the naturally induced map $\sigma_0^{-1}(0)/H_0 \to \sigma^{-1}(0)/H$ is injective.

Proof. For $x = (A, B, 0, 0) \in M$, we have

$$\hat{\mu}(x) = (\sqrt{-1}(B^*B - AA^*), \sqrt{-1}(-AB - B^*A^*), -AB + B^*A^*)$$

$$\oplus (\sqrt{-1}(A^*A - BB^*), \sqrt{-1}(BA + A^*B^*), BA - A^*B^*)$$

$$\in \text{Im}\mathbb{H} \otimes (\mathbf{u}(k) \oplus \mathbf{u}(k)),$$

where $\mathbf{u}(k)$ is the Lie algebra of U(k), and we identify $\mathbf{u}(k) \cong \mathbf{u}(k)^*$ by the bilinear form $(u, v) \mapsto \operatorname{tr}(uv^*)$. If $x \in M_0$, we can put

$$A = \operatorname{diag}(a_1, \dots, a_k), B = \operatorname{diag}(b_1, \dots, b_k),$$

and we obtain

$$\hat{\mu}(x) = -\sqrt{-1}\tau(x) \oplus \sqrt{-1}\tau(x) \in \text{Im}\mathbb{H} \otimes (\mathbf{t}^k \oplus \mathbf{t}^k),$$

where $\mathbf{t}^k := \operatorname{Lie}(T^k) \subset \mathbf{u}(k)$, and $\tau = (\tau_1, \tau_2, \tau_3) : M_0 \to \operatorname{Im}\mathbb{H} \otimes \mathbb{R}^k$ is the hyper-Kähler moment map with respect to the tri-Hamiltonian T^k -action on M_0 defined by

$$\tau_1(x) = \operatorname{diag}(|a_1|^2 - |b_1|^2, \dots, |a_k|^2 - |b_k|^2),
\tau_2(x) = \operatorname{diag}(2\operatorname{Re}(a_1b_1), \dots, 2\operatorname{Re}(a_kb_k)),
\tau_3(x) = \operatorname{diag}(2\operatorname{Im}(a_1b_1), \dots, 2\operatorname{Im}(a_kb_k)).$$

Under the identification $(\theta, y) \in T^k \times \mathbb{R}^{3k} = N_{T^k}$, we obtain $\rho^*(\nu(\theta, y)) = \sqrt{-1}(y, -y)$. Thus we have $\sigma(x, \theta, y) = \sqrt{-1}(-\tau(x) + y, \tau(x) - y)$ and $\sigma_0(x, \theta, y) = \sqrt{-1}(-\tau(x) + y)$ for $(x, t, y) \in \hat{M}_0$, which implies $\sigma_0^{-1}(0) = (\sigma|_{\hat{M}_0})^{-1}(0)$. Then we obtain $\sigma_0^{-1}(0)/H_0 \to \sigma^{-1}(0)/H$ by the inclusion $\sigma_0^{-1}(0) \subset \sigma^{-1}(0)$.

Next we show the injectivity of $\sigma_0^{-1}(0)/H_0 \to \sigma^{-1}(0)/H$. Let $(x, \theta, y) \in \sigma_0^{-1}(0)$ and $(g_0, g_1) \in H = U(k) \times U(k)$ satisfy $(g_0, g_1) \cdot (x, \theta, y) \in \sigma_0^{-1}(0)$. Since $(g_0, g_1) \cdot (x, \theta, y) = ((g_0, g_1) \cdot x, g_0 \theta g_1^{-1}, \operatorname{Ad}_{g_1} y)$, we have $\tilde{\theta} := g_0 \theta g_1^{-1} \in T^k$. For x = (A, B, 0, 0),

$$(g_0, g_1)x = (g_0 A g_1^{-1}, g_1 B g_0^{-1}, 0, 0)$$

= $(g_0 A \theta^{-1} g_0^{-1} \tilde{\theta}, \tilde{\theta}^{-1} g_0 \theta B g_0^{-1}, 0, 0) =: (\tilde{A}, \tilde{B}, 0, 0) \in M_0,$

then we have equalities between diagonal matrices $g_0 A \theta^{-1} g_0^{-1} = \tilde{A} \tilde{\theta}^{-1}$ and $g_0 \theta B g_0^{-1} = \tilde{\theta} \tilde{B}$. By comparing the eigenvalues of both sides, we can see there exist $\chi \in \mathcal{S}_k$ such that $\tilde{a}_{\chi(i)} \tilde{\theta}_{\chi(i)}^{-1} = a_i \theta_i^{-1}$ and $\tilde{b}_{\chi(i)} \tilde{\theta}_{\chi(i)} = b_i \theta_i$ for $i = 1, \dots, k$, where $\tilde{a}_i, \tilde{b}_i, \theta_i, \tilde{\theta}_i$ are the $i \times i$ components of $\tilde{A}, \tilde{B}, \theta, \tilde{\theta}$, respectively. This implies that (x, t, y) and $(g_0, g_1) \cdot (x, \theta, y)$ lie on the same H_0 -orbit, since $y = \tau(x)$.

Proof of Theorem 5.1. It is easy to see that $\sigma_0^{-1}(0)/H_0 \to \sigma^{-1}(0)/H$ preserves the hyper-Kähler structures. Since $\sigma_0^{-1}(0)/H_0 = (\sigma_0^{-1}(0)/T^k)/\mathcal{S}_k$ and $\sigma_0^{-1}(0)/T^k$ is isomorphic to $(\mathbb{C}^2_{Taub-NUT})^k$, therefore $\sigma^{-1}(0)/H$ contains $(\mathbb{C}^2_{Taub-NUT})^k/\mathcal{S}_k$ as a hyper-Kähler suborbifold. From Theorem 1.1, the quotient space $\sigma^{-1}(0)/H$ is homeomorphic to $\mu^{-1}(0)/H_\rho$, which is $(\mathbb{C}^2)^k/\mathcal{S}_k$ by [14]. Since $(\mathbb{C}^2)^k/\mathcal{S}_k$ is connected, and $(\mathbb{C}^2_{Taub-NUT})^k/\mathcal{S}_k$ is complete, the embedding $\sigma_0^{-1}(0)/H_0 \to \sigma^{-1}(0)/H$ should be isomorphic.

5.2 Quiver varieties

The setting considered in Section 5.1 can be generalized to quiver varieties defined by Nakajima [15], which contains ALE spaces constructed by [11]. Quiver varieties are constructed as hyper-Kähler quotient as follows.

Let Q=(V,E,s,t) be a finite oriented graph, that is, V and E are finite sets with maps $s,t:E\to V$, where $s(h)\in V$ is a source of a quiver $h\in E$, and $t(h)\in V$ is a target. More over E is decomposed into $E=\Omega\sqcup\overline{\Omega}$, with one to one correspondence $\Omega\to\overline{\Omega}$ denoted by $h\mapsto \bar h$ satisfying $s(\bar h)=t(h)$ and $t(\bar h)=s(h)$. Next we fix a dimension vector $v=(v_k)_{k\in V}$, where each v_k is a positive integer. Then the action of $\prod_{k\in V}U(v_k)$ on

$$M = \bigoplus_{h \in \Omega} \operatorname{Hom}(\mathbb{C}^{v_{s(h)}}, \mathbb{C}^{v_{t(h)}}) \oplus \bigoplus_{h \in \Omega} \operatorname{Hom}(\mathbb{C}^{v_{t(h)}}, \mathbb{C}^{v_{s(h)}})$$
(7)

by $(g_k)_k \cdot (A_h, B_h)_h := (g_{t(h)} A_h g_{s(h)}^{-1}, g_{s(h)} B_h g_{t(h)}^{-1})_h$. Then the quiver varieties are constructed by taking hyper-Kähler quotients for this situation.

Here we explain the settings of Taub-NUT deformations for quiver varieties, which contain the case of [2]. Let M be as (7). We define H, G, ρ as follows so that $H_{\rho} = \prod_{k \in V} U(v_k)$. We take another finite oriented graph $\tilde{Q} = (\tilde{V}, E, \tilde{s}, \tilde{t})$ with a surjection $\pi : \tilde{V} \to V$ satisfying $\pi(\tilde{s}(h)) = s(h)$ and $\pi(\tilde{t}(h)) = t(h)$ for all $h \in H$. We label elements of $\pi^{-1}(k)$ numbers as $\pi^{-1}(k) = \{k_1, k_2, \cdots, k_{N_k}\}$. Note that \tilde{Q} may be disconnected even if Q is a connected graph. A dimension vector $v' = (v_{\tilde{k}})_{\tilde{k} \in \tilde{V}}$ is determined by $v_{\tilde{k}} = v_{\pi\tilde{k}}$ for all $\tilde{k} \in \tilde{V}$. Then we define $H := \prod_{\tilde{k} \in \tilde{V}} U(v_{\tilde{k}})$ and $G := \prod_{k \in V'} U(v_k)^{N_k - 1}$, where $V' = \{k \in V; \; \sharp \pi^{-1}(k) \geq 2\}$. A homomorphism $\rho : H \to G \times G$ is defined by

$$\rho((g_{\tilde{k}})_{\tilde{k}\in\tilde{V}})=((g_{k_1},g_{k_2},\cdots,g_{k_{N_k-1}}),(g_{k_2},\cdots,g_{k_{N_k-1}},g_{k_{N_k}}))_{k\in V'}$$

Then $\mu^{-1}(\iota^*\zeta)/H_\rho$ becomes a quiver variety, and we obtain another hyper-Kähler quotient $\sigma^{-1}(\zeta)/H$ diffeomorphic to $\mu^{-1}(\iota^*\zeta)/H_\rho$.

5.3 Toric hyper-Kähler varieties

In the previous sections we assumed that H and G are compact. However, the compactness is not essential for the proof of Theorem 1.1, we need only Ad_{G} -invariant positive definite inner products on its Lie algebra and the existence of hyper-Kähler metrics on N_{G} with tri-Hamiltonian $G \times G$ -actions. In this subsection we consider the case of noncompact abelian Lie groups $H = \mathbb{R}^{N}$ and $G = \mathbb{R}^{N}/\mathbf{k}$, where the vector subspace $\mathbf{k} \subset \mathbb{R}^{N}$ is given by $\mathbf{k} = \mathbf{k}_{\mathbb{Z}} \otimes \mathbb{R}$ for some submodule $\mathbf{k}_{\mathbb{Z}} \in \mathbb{Z}^{N}$. $\rho: H \to G \times G$ is defined by $\rho(v) := (v \mod \mathbf{k}, 0)$, then $\bar{\rho}$ defined by (1) is surjective. In this case we put $N_{G} := G \times G \times G \times G$ with the Euclidean metric, and $G \times G$ -action on N_{G} is defined by $(g_{0}, g_{1}) \cdot (h_{0}, h_{1}, h_{2}, h_{3}) := (h_{0} + g_{0} - g_{1}, h_{1}, h_{2}, h_{3})$. Then Theorem 2.1, 2.2 and Proposition 2.5 hold in this case. Let $M = \mathbb{H}^{N}$, and define H-action on M by

$$(t_1, \dots, t_N) \cdot (x_1, \dots, x_N) := (x_1 e^{-2\pi i t_1}, \dots, x_N e^{-2\pi i t_N}).$$

The the hyper-Kähler quotient $\mu^{-1}(\iota^*\zeta)/H_{\rho}$ becomes a toric hyper-Kähler variety, and $\sigma^{-1}(\zeta)/H$ is its Taub-NUT deformation defined in [1]. Theorem 1.1 can be also applied to this situation.

5.4 Hyper-Kähler manifolds with tri-Hamiltonian actions

Here we show that the limited case of Theorem 7 of [4] also follows from Theorem 1.1. Let $M = \mathbb{H}^N$ and $H \subset Sp(N)$. Take a normal closed subgroup $H_{\rho} \subset H$ and put $G := H/H_{\rho}$. Let $\rho : H \to G \times G$ be given by $\rho(h) := (1, hH_{\rho})$. Then $X = \mu^{-1}(\iota^*\zeta)/H_{\rho}$ is a hyper-Kähler manifolds with tri-Hamiltonian G-action, and $\sigma^{-1}(\zeta)/H$ is the modification of $\mu^{-1}(\iota^*\zeta)/H_{\rho}$ defined in Section 5 of [4]. From Theorem 1.1, we have the following results.

Theorem 5.3. Let $X = \mu^{-1}(\iota^*\zeta)/H_\rho$ be a tri-Hamiltonian G hyper-Kähler manifold defined as above. Then the modification of X in the sense of Section 5 of [4] by the tri-Hamiltonian G-action is isomorphic to X as holomorphic symplectic manifolds, hence diffeomorphic.

By Theorem 7 of [4], we have already known that $\sigma^{-1}(\zeta)/H$ is diffeomorphic to $\hat{\mu}^{-1}(\nu^1(N_G) + \zeta)/H_{\rho}$, which is an open subset of X. Theorem 5.3 asserts that this open subset is diffeomorphic to X, even if it is a proper subset of X.

Acknowledgment. The author was supported by Grant-in-Aid for JSPS Fellows $(23 \cdot 1432)$

References

- [1] Bielawski, R.: Complete hyperKähler 4n-manifolds with n commuting tri-Hamiltonian vector fields, Math. Ann., 314, 505-528 (1999)
- [2] Dancer, A.S.: Dihedral singularities and gravitational instantons, Journal of Geometry and Physics, Vol. 12, Issue 2, 77-91, (1993)
- [3] Dancer, A.S., Swann, A.: Hyperkähler metrics associated to compact Lie groups, *Math. Proc. Camb. Phil. Soc.*, 120, 61-69, (1996)
- [4] Dancer, A.S., Swann, A.: Non-abelian cut constructions and hyper-Kähler modifications, *Rend. Sem. Mat. Univ. Politec. Torino* Vol. 68, 2, 157-170, (2010)
- [5] Donaldson, S.K.: Nahm's equations and the classification of monopoles, *Comm. Math. Phys.* Volume 96, Number 3, 387-407, (1984)
- [6] Gibbons, G.W., Rychenkova, P. and Goto, R.: HyperKähler quotient constructions of BPS monopole moduli spaces, *Commun. Math. Phys.* 186, 581-599, (1997).
- [7] Hawking, S.W.: Gravitational Instantons, *Phys. Lett.*, **A60**, 81 (1977)
- [8] Heinzner, P. and Loose, F.: Reduction of complex Hamiltonian G-spaces, Geometric and Functional Analysis, Vol. 4, No. 3, 288-297, (1994).
- [9] Hitchin, N.J., Karlhede, A., Lindström, U., Roček, M.: Hyper-Kähler metrics and supersymmetry, *Comm. Math. Phys.*, **108**, (4), 535-589 (1987)
- [10] Kirwan, F.: Cohomology of quotients in symplectic and algebraic geometry, Princeton Mathematical Notes 31, Princeton University Press, (1984)
- [11] Kronheimer, P.B.: The construction of ALE spaces as hyper-Kähler quotients, *Journal of Diff. Geom.*, **29**, 665-683 (1989)
- [12] Kronheimer, P.B.: A hyperkahler structure on the cotangent bundle of a complex Lie group, arXiv:math/0409253
- [13] LeBrun, C.: Complete Ricci-flat Kähler metrics on \mathbb{C}^n need not be flat, *Proc. Sympos. Pure Math.*, **52**, Part 2, Amer. Math. Soc., Providence, RI, 297-304 (1991)
- [14] Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces, American Mathematical Soc., (1999)

- [15] Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, *Duke Math.* 76 (1994), 365-416.
- [16] Ness, L.: A stratification of the null cone via the moment map, Amer. J. Math., 106, 1281-1329 (1984)
- [17] Wang, X.: Riemannian moment map, Comm. in analysis and geometry, Vol. 16, No. 4, 837-863 (2008)