Camino mínimo en grafos (II)

Técnicas de Diseño de Algoritmos (Ex Algoritmos y Estructuras de Datos III)

Segundo cuatrimestre 2024

Sea $G = (\{1, ..., n\}, X)$ un digrafo y $I : X \to R$ una función de longitud/peso para las aristas de G. Definimos las siguientes matrices:

Sea $G = (\{1, ..., n\}, X)$ un digrafo y $I : X \to R$ una función de longitud/peso para las aristas de G. Definimos las siguientes matrices:

 $L \in \mathbb{R}^{n \times n}$, donde los elementos I_{ii} de L se definen como:

$$I_{ij} = \begin{cases} 0 & \text{si } i = j \\ I(i \to j) & \text{si } i \to j \in X \\ \infty & \text{si } i \to j \notin X \end{cases}$$

Sea $G=(\{1,\ldots,n\},X)$ un digrafo y $I:X\to R$ una función de longitud/peso para las aristas de G. Definimos las siguientes matrices:

▶ $L \in \mathbb{R}^{n \times n}$, donde los elementos I_{ij} de L se definen como:

$$I_{ij} = \begin{cases} 0 & \text{si } i = j \\ I(i \to j) & \text{si } i \to j \in X \\ \infty & \text{si } i \to j \notin X \end{cases}$$

▶ $D \in R^{n \times n}$, donde los elementos d_{ij} de D se definene como:

$$d_{ij} = egin{cases} ext{longitud del camino mínimo orientado de } i ext{ a } j & ext{si existe alguno} \ & & ext{si no} \end{cases}$$

D es llamada matriz de distancias de G.

Robert Floyd (1936-2001)

Llamamos v_1, \ldots, v_n a los nodos de G. El algoritmo de Floyd se basa en lo siguiente:

Llamamos v_1, \ldots, v_n a los nodos de G. El algoritmo de Floyd se basa en lo siguiente:

1. Si $L^0 = L$ y calculamos L^1 como

$$I_{ij}^1 = \min(I_{ij}^0, I_{i1}^0 + I_{1j}^0)$$

 I_{ij}^1 es la longitud de un camino mínimo de i a j con nodo intermedio v_1 o directo.

Llamamos v_1, \ldots, v_n a los nodos de G. El algoritmo de Floyd se basa en lo siguiente:

1. Si $L^0 = L$ y calculamos L^1 como

$$I_{ij}^1 = \min(I_{ij}^0, I_{i1}^0 + I_{1j}^0)$$

 I_{ij}^1 es la longitud de un camino mínimo de i a j con nodo intermedio v_1 o directo.

2. Si calculamos L^k a partir de L^{k-1} como

$$I_{ij}^{k} = \min(I_{ij}^{k-1}, I_{ik}^{k-1} + I_{kj}^{k-1})$$

 I_{ij}^k es la longitud de un camino mínimo de i a j cuyos nodos intermedios están en $\{v_1, \ldots, v_k\}$.

Llamamos v_1, \ldots, v_n a los nodos de G. El algoritmo de Floyd se basa en lo siguiente:

1. Si $L^0 = L$ y calculamos L^1 como

$$I_{ij}^1 = \min(I_{ij}^0, I_{i1}^0 + I_{1j}^0)$$

 l_{ij}^1 es la longitud de un camino mínimo de i a j con nodo intermedio v_1 o directo.

2. Si calculamos L^k a partir de L^{k-1} como

$$I_{ij}^{k} = \min(I_{ij}^{k-1}, I_{ik}^{k-1} + I_{kj}^{k-1})$$

 I_{ij}^k es la longitud de un camino mínimo de i a j cuyos nodos intermedios están en $\{v_1, \ldots, v_k\}$.

3. $D = L^n$

Asumimos que el grafo es orientado y que no hay ciclos de longitud negativa.

```
L^0 := L
para k desde 1 a n hacer
para i desde 1 a n hacer
para j desde 1 a n hacer
I_{ij}^k := \min(I_{ij}^{k-1}, I_{ik}^{k-1} + I_{kj}^{k-1})
fin para
fin para
retornar L^n
```


Lema: Al finalizar la iteración k del algoritmo de Floyd, l_{ij} es la longitud de los caminos mínimos desde v_i a v_j cuyos nodos intermedios son elementos de $V_k = \{v_1, \ldots, v_k\}$, si no existe ciclo de longitud negativa con todos sus vértices en V_k

Lema: Al finalizar la iteración k del algoritmo de Floyd, l_{ij} es la longitud de los caminos mínimos desde v_i a v_j cuyos nodos intermedios son elementos de $V_k = \{v_1, \ldots, v_k\}$, si no existe ciclo de longitud negativa con todos sus vértices en V_k

Lema: Al finalizar la iteración k del algoritmo de Floyd, l_{ij} es la longitud de los caminos mínimos desde v_i a v_j cuyos nodos intermedios son elementos de $V_k = \{v_1, \ldots, v_k\}$, si no existe ciclo de longitud negativa con todos sus vértices en V_k

Teorema: El algoritmo de Floyd determina los caminos mínimos entre todos los pares de nodos de un grafo orientado sin ciclos negativos.

¿Cuál es la complejidad de algoritmo de Floyd?

Lema: Al finalizar la iteración k del algoritmo de Floyd, l_{ij} es la longitud de los caminos mínimos desde v_i a v_j cuyos nodos intermedios son elementos de $V_k = \{v_1, \ldots, v_k\}$, si no existe ciclo de longitud negativa con todos sus vértices en V_k

- ¿Cuál es la complejidad de algoritmo de Floyd?
- ¿Cuánta memoria requiere?

Lema: Al finalizar la iteración k del algoritmo de Floyd, l_{ij} es la longitud de los caminos mínimos desde v_i a v_j cuyos nodos intermedios son elementos de $V_k = \{v_1, \ldots, v_k\}$, si no existe ciclo de longitud negativa con todos sus vértices en V_k

- ¿Cuál es la complejidad de algoritmo de Floyd?
- ¿Cuánta memoria requiere?
- ¿Cómo podemos hacer si además de las longitudes queremos determinar los caminos mínimos?

Lema: Al finalizar la iteración k del algoritmo de Floyd, l_{ij} es la longitud de los caminos mínimos desde v_i a v_j cuyos nodos intermedios son elementos de $V_k = \{v_1, \ldots, v_k\}$, si no existe ciclo de longitud negativa con todos sus vértices en V_k

- ¿Cuál es la complejidad de algoritmo de Floyd?
- ¿Cuánta memoria requiere?
- ➤ ¿Cómo podemos hacer si además de las longitudes queremos determinar los caminos mínimos?
- ¿Cómo se puede adaptar para detectar si el grafo tiene ciclos de longitud negativa?

```
I^{0} := I
para k desde 1 a n hacer
    para i desde 1 a n hacer
        si I_{i\nu}^{k-1} \neq \infty entonces
            si l_{ik}^{k-1} + l_{ki}^{k-1} < 0 entonces
                 retornar "Hay ciclos negativos."
             fin si
             para j desde 1 a n hacer
                 I_{ii}^{k} := \min(I_{ii}^{k-1}, I_{ik}^{k-1} + I_{ki}^{k-1})
             fin para
        fin si
    fin para
fin para
retornar /
```


George Dantzig (1914–2005)

Al finalizar la iteración k-1, el algoritmo de Dantzig genera una matriz de $k \times k$ de caminos mínimos en el subgrafo inducido por los vértices $\{v_1, \ldots, v_k\}$.

Al finalizar la iteración k-1, el algoritmo de Dantzig genera una matriz de $k \times k$ de caminos mínimos en el subgrafo inducido por los vértices $\{v_1, \ldots, v_k\}$.

Calcula la matriz L^{k+1} a partir de la matriz L^k para $1 \le i, j \le k$ como:

- $L_{i,k+1}^{k+1} = \min_{1 \le j \le k} (L_{i,j}^k + L_{j,k+1}^k)$
- $L_{k+1,i}^{k+1} = \min_{1 \le j \le k} (L_{k+1,j}^k + L_{j,i}^k)$
- $\qquad \qquad L_{i,j}^{k+1} = \min(L_{i,j}^k, L_{i,k+1}^k + L_{k+1,j}^k)$

Al finalizar la iteración k-1, el algoritmo de Dantzig genera una matriz de $k \times k$ de caminos mínimos en el subgrafo inducido por los vértices $\{v_1, \ldots, v_k\}$.

Calcula la matriz L^{k+1} a partir de la matriz L^k para $1 \le i, j \le k$ como:

- $L_{i,k+1}^{k+1} = \min_{1 \le j \le k} (L_{i,j}^k + L_{j,k+1}^k)$
- $L_{k+1,i}^{k+1} = \min_{1 \le j \le k} (L_{k+1,j}^k + L_{j,i}^k)$
- $L_{i,j}^{k+1} = \min(L_{i,j}^k, L_{i,k+1}^k + L_{k+1,j}^k)$

Asumimos que el grafo es orientado. Detecta si hay ciclos de longitud negativa.

```
para k desde 1 a n-1 hacer
    para i desde 1 a k hacer
        L_{i,k+1} := \min_{1 \le i \le k} (L_{i,i} + L_{i,k+1})
        L_{k+1,i} := \min_{1 \le i \le k} (L_{k+1,i} + L_{i,i})
    fin para
    t := \min_{1 \le i \le k} (L_{k+1,i} + L_{i,k+1})
    si t < 0 entonces
        retornar "Hay ciclos de longitud negativa"
    fin si
    para i desde 1 a k hacer
        para i desde 1 a k hacer
            L_{i,i} := \min(L_{i,i}, L_{i,k+1} + L_{k+1,i})
        fin para
    fin para
fin para
retornar /
```


Lema Al finalizar la iteración k-1 del algoritmo de Dantzig, la matriz de $k \times k$ generada contiene la longitud de los caminos mínimos en el subgrafo inducido por los vértices $\{v_1, \ldots, v_k\}$.

Lema Al finalizar la iteración k-1 del algoritmo de Dantzig, la matriz de $k \times k$ generada contiene la longitud de los caminos mínimos en el subgrafo inducido por los vértices $\{v_1, \ldots, v_k\}$.

Lema Al finalizar la iteración k-1 del algoritmo de Dantzig, la matriz de $k \times k$ generada contiene la longitud de los caminos mínimos en el subgrafo inducido por los vértices $\{v_1, \ldots, v_k\}$.

Teorema: El algoritmo de Dantzig determina los caminos mínimos entre todos los pares de nodos de un grafo orientado sin ciclos.

¿Cuál es la complejidad del algoritmo de Dantzig?

Lema Al finalizar la iteración k-1 del algoritmo de Dantzig, la matriz de $k \times k$ generada contiene la longitud de los caminos mínimos en el subgrafo inducido por los vértices $\{v_1, \ldots, v_k\}$.

- ¿Cuál es la complejidad del algoritmo de Dantzig?
- ¿Qué diferencia tiene con el algoritmo de Floyd?

Lema Al finalizar la iteración k-1 del algoritmo de Dantzig, la matriz de $k \times k$ generada contiene la longitud de los caminos mínimos en el subgrafo inducido por los vértices $\{v_1, \ldots, v_k\}$.

- ¿Cuál es la complejidad del algoritmo de Dantzig?
- ¿Qué diferencia tiene con el algoritmo de Floyd?
- ¿Qué ventajas o desventajas tiene?