MC920 - Trabalho 5

Fábio Camargo Ricci - 170781

Introdução

O objetivo deste trabalho é estudar a técnica de Decomposição em Valores Singulares (SVD) no contexto da Análise de Componentes Principais (PCA) para a compressão de imagens com perda.

Bibliotecas utilizadas

OpenCV - Leitura e escrita de imagens NumPy - Manipulação de Arrays

Execução

Para executar o programa na raiz do projeto, basta chamar: python3 ./main.py {caminho_imagem_entrada} {numero_componentes} {nome_imagem_saida}

Ex: python3 .\main.py .\in\baboon.png 10 baboon.png Obs: As imagens de saída são salvas na pasta ./out/.

O programa

A SVD de uma matriz A_{nxp} consiste na fatoração: $A = U \Sigma V^T$

Em que U é uma matriz unitária real $n \times n$, Σ uma matriz retangular diagonal $n \times p$ com números reais não-negativos na diagonal e V^T uma matriz unitária real $p \times p$. As colunas de U são os autovetores da matriz AA^T , enquanto que as colunas de V são os autovetores da matriz A^TA . Os elementos na diagonal da matriz Σ são os autovalores relacionados a esses autovetores, dispostos em ordem crescente.

Dessa forma, os autovetores relacionados a autovalores maiores contribuem mais significativamente para a qualidade da imagem representada pela matriz A. Com isso, mantendo-se apenas os autovetores mais representativos, dado um limiar k para os autovalores correspondentes, pode-se elaborar um método de compressão com perdas que preserva as características mais significantes da imagem.

Sendo assim, o programa consiste basicamente em aplicar a fatoração SVD em cada banda RBG da imagem original (utilizou-se o método np.linalg.svd(f[i], full_matrices=False) da biblioteca NumPy) e com isso, considerar apenas os k componentes mais significativos, obtendo-se uma imagem comprimida.

Para a avaliação da compressão de uma imagem de entrada f_{MxN} e uma imagem de saída g_{MxN} , realizou-se duas métricas bastante utilizadas, a taxa de compressão (ρ) e a raiz do erro médio quadrático (RMSE):

 $\rho = \frac{\textit{quantidade de mem\'oria requerida para representar g}}{\textit{quantidade de mem\'oria requerida para representar f}}$

RMSE =
$$\sqrt{\frac{1}{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [f(x, y) - g(x, y)]^2$$

Resultados

Os resultados a seguir são referentes à imagem "peppers.png" de dimensões $512px \times 512px$:

Imagem de Entrada

Imagens de comprimidas:

1 200	1 400	1 510
k = 300	k = 400	k = 512

k	Taxa de compressão (ρ)	RMSE
1	0.33525	51.83443
5	0.47030	29.45842
10	0.55023	21.47185
50	0.87013	8.12102
100	0.94203	5.10994
200	0.98818	2.75984
300	1.00116	1.42786
400	1.00343	0.52704
512	1.00137	4.46165×10^{-13}

Como pode-se notar pela tabela acima, quanto o menor o número de componentes k considerados, maior o erro RMSE associado, por ser tratar de uma imagem de menor qualidade, porém menor a taxa de compressão (ρ), já que a imagem está mais comprimida, sendo necessário menos espaço para armazená-la.

Apesar disso, considerando k > 300, obteve-se uma taxa de compressão $\rho > 1$, de forma que a imagem processada utiliza mais espaço de armazenamento que a imagem original. Isso se deve ao fato da presença de ruídos na imagem processadas para esses números de componentes, tornando a compressão para o formato .png menos eficaz pela alta entropia da mesma.

Conclusão

Ao final deste trabalho, foi possível estudar a técnica de Decomposição em Valores Singulares (SVD) e como utilizá-la para a compressão de imagens. Notou-se que a técnica é ineficaz,

uma vez que produz imagens com baixa qualidade e com um taxa de compressão pequena, quando comparada com outras como o ".JPEG". Além disso, é importante ressaltar que quando o número de componentes considerados ultrapassa um ponto, a imagem processada passa a ocupar mais espaço de memória que a imagem original, tornando a compressão ".png" ineficaz pela presença de muitos ruídos (alta entropia).