一、填空:
1. RSA 密码算法的安全性是基于困难性构建的
2. A 给 B 发送消息时用公钥加密算法进行加密,则加密时使用的密钥是公开钥还是秘密钥?
3. A 的密钥对为 PK_A , SK_A , B 的密钥对为 PK_B , SK_B , 公钥密码算法记为 $f()$, 若 A 给 B 发送一个既
加密又认证的消息 m,则密文 C 可表示为
4. 蒙哥马利模乘是为了避免求模运算中的
5. RSA 中最耗时运算是
6. 在 RSA 算法中为保证算法的安全性,对两个大素数 p, q 有什么要求和
8. ECC 算法的安全性是基于困难问题构建的。
9. 椭圆曲线 $y^2=x^3+x-2 \mod 5$ 的判别式是?
10. 160 比特的 ECC 的安全性相当于比特 RSA 算法的安全性; 211 比特相当于比特
RSA 算法的安全性
二、选择:每一项有1个或多个选项是正确的
1. 用户A向B传输消息m,采用公钥密码来实现m的保密性和认证性,则下列正确的是
A 先用 A 的私钥签名,再用 B 的公钥加密 B 先用 B 的公钥签名,再用 A 的私钥加密
C. 先用 A 的私钥签名,再用 A 的公钥加密 D 先用 A 的私钥加密,再用 B 的公钥签名
2. A 给 B 发送消息,并对消息进行认证,记 A 的密钥对为(PK_A , SK_A),B 的密钥对为(PK_B , SK_B),
则 A 用密钥对消息加密, B 用密钥对消息解密,即可完成。
A. PK_B , SK_B B. PK_A , SK_A C. SK_B , PK_B D. SK_A , PK_A
3. 对公钥密码的可能字攻击属于
A 惟密文攻击 B 己知明文攻击 C 选择明文攻击 D 选择密文攻击
4. 基于有限域上离散对数困难性问题构建的体制有
A. RSA B. Rabin C. ECC D. NTRU E. 背包 F. ElGamal 体制
5. 椭圆曲线群 E ₃ (1, 2)上有多少个元素 A. 1 个 B. 2 个 C. 3 个 D. 4 个
6. 下列算法中可实现抗抵赖功能的是
A. AES B. MD5 C. ElGamal 签名 D. DH 密钥交换协议

7. 用数字签名算法对所要传送的消息进行签名,并连同消息一起传送给接收方,这种做法可实现

8.	公钥	密码算法的安全性最强的是下面哪一个				
	A.	适应性选择密文攻击下不可区分安全(IND-CCA2)				
	В.	非适应性选择密文攻击下不可区分安全(IND-CCA2)				
	C.	语义安全的				
	D.	单向性				
\equiv	、判	断: (正确的划"√",错误的划"×",以下同)				
1. Millar-Rabin 素性检验算法是一种确定性检验算法 ()						
2.	公钥	密码算法也是一种分组加密算法	()		
3.	对于	一个安全的公钥密码算法而言,已知公钥密码算法和加密密钥,	求解密密钥	在计算」	上是不	
	可行	F的	()		
4.	现有	的典型公钥密码算法都是计算上安全的	()		
5.	可以	证明 Rabin 密码体制的安全性与大数分解困难问题等价	()		
6.	椭圆	曲线上的无穷远点为 O=(0,0)。	()		
四	、简	答与计算:				
1.	. 试用扩展欧几里德算法求解 38 mod 103 的逆元					
2.	. 利用蒙哥马利算法求 509 mod 101					
3.	已知 RSA 的公钥为 $n=23\times29$,设加密指数 $e=13$,试用扩展欧几里德算法求解私钥 d ,并分别					
	完成	对消息 456 和 1000 的 RSA 加解密运算过程。				
4.	. 试描述背包密码体制的密钥产生、加密和解密算法					
5.	. 什么是陷门单向函数?					
6.	. 试给出公钥加密体制同时提供加密和认证的过程。					
7.	. 试述公钥密码的可能字攻击及对抗方法					
8.	试描	述 RSA 算法的密钥产生、加密、解密过程				
9.	为了	提高 RSA 算法解密速度,假设用户知道 $n=pq$ 的分解,则如何	用中国剩余第	定理进行	RSA	
	解密	E,试给出其过程。				
10	. 试约	合出 a ¹⁹ mod n 的快速指数算法的运算表达式				
11	. 已知	\mathbf{r} 一系统采用公共模进行公钥加密,攻击者截获了两个密文 \mathbf{c}_1 和 \mathbf{c}_2	c ₂ , 公私钥对	分别是(e_1,d_1)	

和 (e_2,d_2) 现在攻击者可以判断对应的明文相同,试问如何恢复明文 m

12. RSA 容易受到低指数攻击,试描述该类攻击。

A. 对消息来源的认证 B.消息完整性认证 C. 发方身份认证 D. 消息的保密性

- 13. 试述针对 RSA 的重复加密攻击。
- 14. 试述 Rabin 密码体制的密钥产生,加密,解密的过程;如何解决其解密不唯一的问题?
- 15. 已知一椭圆曲线 $E_7(1,1)$,则单位元是什么,该曲线上 P=(x,y)的逆元是什么,设该曲线上的两个点 P=(2,2),Q=(0,6),试计算 3P,P+Q
- 16. 试给出椭圆曲线群 $E_5(1,1)$ 上的所有点。
- 17. 如何将明文 m 转化为椭圆曲线上的一个点,如何再从该点中正确提取出 m?
- 18. 试述基于有限域 GF(p)上离散对数困难问题的 DH 密钥交换算法和 ElGaml 加密算法。
- 19. 试述基于椭圆曲线 $E_{n}(a,b)$ 的 DH 密钥交换算法和 ElGaml 加密算法。
- 20. 试给出 19 $P \mod p$ 的快速倍点运算表达式,其中 P 是某椭圆曲线群 $E_p(a,b)$ 上的一个生成元。
- 21. 什么是基于身份的密码算法,用户的私钥由谁产生,有什么优点?
- 22. 试述双线性映射和 BDH 假设

五、证明题:

- 1. 证明. |p-q|的差值充分小时, n 能够被快速分解
- 2. 试证: RSA 中的解密算法能够正确恢复明文.
- 3. 对于 RSA 算法中两个大素数 p, q, 试分析如果 2p 与 3q 的差值很小, 也能被快速分解。
- 4. 试证,椭圆曲线群上的 DDH 问题是容易的

六、综合题

采用 KEM+DEM 的混合机制对消息 m 进行加密和认证,假设公钥密码算法是 RSA 算法,数字签名算法也采用 RSA 算法,H()为 hash 函数,AES 为对称加密算法。请给出加密过程。