

Steven K Firth, Gareth Cole, Tom Kane, Farid Fouchal & Tarek M Hassan

An open data science approach for building performance studies using refitXML and Jupyter Notebooks

Presentation to the eSim 2018 conference, Montreal, 9-10 May 2018

How can I write an Open Science building simulation journal paper?

Contents

- Open Science
- Workflow for building performance studies
- Data structures vs. analysis complexity
- Open Data a case study using refitXML and figshare
- Open Methodology a case study using Python, Jupyter Notebooks and GitHub
- Conclusions & next steps

What is Open Science?

- 1. Open Access: publishing the results of academic research as freely available on the public internet
- 2. Open Data: publishing the datasets collected in the research process, without restricting their use
- 3. Open Source: making software developed in the research available under an open license
- 4. Open Methodology: sharing the methodology of a study, and the tools used for data collection and analysis

Benefits of Open Science

Steps of a typical building performance research project

Workflow for building performance studies

Building surveys
Architect drawings
Questionnaires
gbXML files
Sensor data
Simulation model files
Weather data
cityGML files

- 1. Simulation input data
 - geometry, constructions, internal heat gains
 - airflow, HVAC
- 2. Descriptive data
 - construction age, built form type
 - occupant age, incomes, professions
- 3. Time series data
 - Sensor measurements
 - Simulation results

Tables
Plots
Images
Data files

Data structures

• "I will, in fact, claim that the difference between a bad programmer and a good one is whether he considers his code or his data structures more important. Bad programmers worry about the code. Good programmers worry about data structures and their relationships."

Linus Torvalds

(as quoted in 'The Self-Taught Programmer' by Cory Altoff)

Data structure quality vs. analysis complexity

Open Data – a case study

- Loughborough University data repository
- REFIT Smart Home Dataset
- refitXML file for building survey data
- csv file for sensor data

refitXML

</Building>

```
<Building id="Building01" startDateTime="2013-10-01T00:00:00Z" occupancyType="Single"
    family dwelling" builtFormType="Detached house or bungalow" orientation="327"
    wallTypeMainBuilding="Masonry-Boxwall-Cavity" wallAgeBandMainBuilding="1975 - 1980"
    cavityWallInsulationPresent="Yes" windowType="Double glazed - UPVC" loftType="Fully boarded" loftInsulationType="Mineral wool/fibre glass" loftInsulationThickness="300mm">
    Space id="Space1" startDateTime="2013-10-01T00:00:00Z" conditionType="Heated"
        area="6.25" volume="14.375" storeyLevel="0" roomType="Study">
        <Sensor id="Sensor41" startDateTime="2013-10-02T05:00:00Z" endDateTime="2013-</p>
             12-03T15:15:00Z" manufacturer="Onset" model="Hobo pendant">
            <TimeSeriesVariable id="TimeSeriesVariable41" startDateTime="2013-10-
                 02T05:00:00Z" endDateTime="2013-12-03T15:15:00Z" variableType="Air
                 temperature" units="C" intervalType="FixedInterval" intervalUnit="Minute"
                 intervalLength="15" hasMissingData="No" repeatsOmitted="No"
                 hasDuplicateTimestamps="No"/>
        </Sensor>
    </Space>
```

refit csv

TimeSeriesVariable/@id	dateTime	Data
TimeSeriesVariable1	2013-10-02T05:00:00Z	17.772
TimeSeriesVariable1	2013-10-02T05:30:00Z	18.081
TimeSeriesVariable1	2013-10-02T06:00:00Z	18.176
TimeSeriesVariable1	2013-10-02T06:30:00Z	18.176
TimeSeriesVariable1	2013-10-02T07:00:00Z	18.105
TimeSeriesVariable1	2013-10-02T07:30:00Z	18.01
TimeSeriesVariable1	2013-10-02T08:00:00Z	17.891
TimeSeriesVariable1	2013-10-02T08:30:00Z	17.772
TimeSeriesVariable1	2013-10-02T09:00:00Z	17.701
TimeSeriesVariable1	2013-10-02T09:30:00Z	17.677

Open Methodology – a case study

- GitHub
- Repository for this conference paper
- Python and Jupyter notebooks

Jupyter notebook

summary_stats

This notebook shows how to calculate summary statistics of the information stored in the REFIT Smart Home Dataset.

```
In [35]: from lxml import etree; from collections import Counter; import pandas as pd # imports external Libraries and packages
         xml=r'REFIT BUILDING SURVEY.xml' # the name of the refitXML file
         csv=r'REFIT TIME SERIES VALUES.csv' # the name of the refit csv file
         NS={'a':'http://www.refitsmarthomes.org'} # the xml namespace of the refitXML file
         tree=etree.parse(xml) # parses the refitXML file into an Lxml etree variable
         elements=tree.getroot().xpath('//a:*',namespaces=NS) # finds all the elements in the xml file
         tags=[e.tag.split('}')[1] for e in elements] # returns all the tags (not including the namespaces) of the elements
         c=Counter(tags) # a Counter object based on the tags list
         print('A COUNT OF THE ELEMENTS IN THE XML FILE:')
         print('; '.join(['{}; {:,}]'.format(x, c[x]) for x in sorted(c.keys())])) # formats and prints Counter c
         print('')
         df=pd.read_csv(csv) # reads the csv file into a pandas DataFrame object
         u=df['TimeSeriesVariable/@id'].unique() # the unique values in the TimeSeriesVariable/@id column
         print('A SUMMARY OF THE CSV FILE:')
         print('Number of readings (i.e. rows): {:,}; Number of Variables: {:,}'.format(len(df),len(u)))
         A COUNT OF THE ELEMENTS IN THE XML FILE:
         Appliance: 618; Boiler: 20; BoilerControl: 20; Building: 20; Climate: 1; Cooker: 19; FixedHeater: 19; HotWaterCylinder: 13; Hous
         ehold: 20; Light: 319; Meter: 40; Opening: 1,055; Person: 58; PhotovoltaicArray: 5; Plug: 421; Radiator: 252; RadiatorValve: 36
         7; RefitXML: 1; RoomThermostat: 31; Sensor: 1,567; SolarThermalArray: 3; Space: 389; Stock: 1; Surface: 2,536; TimeSeriesVariabl
         e: 2,457; WaterOutlet: 34
         A SUMMARY OF THE CSV FILE:
         Number of readings (i.e. rows): 25,312,397; Number of Variables: 2,320
```

Conclusions

- Open Science brings many benefits
 - Accelerate advancements in the field
 - Provide new researchers with existing methods to be improved upon
- Open Data should be well-structured and logical
 - json, xml, graphs, hdf5, object-orientated programming
 - · it reduces the complexity of the analysis algorithms
- Tools exist to enable an Open Methodology workflow
 - GitHub, Python, Jupyter notebooks but many others also exist
- A case study has been demonstrated
 - refitXML: not the only solution, but a start...
- Next steps
 - An Open Science journal paper
 - Open Science workflow for Building Simulation using EnergyPlus (...Python package needed...)

Thank you!

Dr Steven K Firth

S.K.Firth@lboro.ac.uk

https://github.com/stevenkfirth

REFIT Smart Home Dataset:

https://doi.org/10.17028/rd.lboro.2070091.v1

Inspiring Winners Since 1909