The translation semigroup

$$T(t) f(x) := f(x+t)$$

is strongly continuous on E and one shows as in A-I,2.4 that its generator is given by

$$Af = f'$$
 , $D(A) = \{ f \in E : f \in C^1(\mathbb{R}_+), f' \in E \}$.

First we observe that $\|T(t)\|=1$ for every $t\geq 0$, hence $\omega(T)=0$. Moreover it is clear that λ is an eigenvalue of A as soon as $\text{Re}\lambda<-1$ (in fact : the function

$$x \to \epsilon_{\lambda}(x) := e^{\lambda x}$$

belongs to D(A) and is an eigenvector of A), hence s(A) \geq -1 . For f \in E , Re λ > -1 ,

$$\|.\|_{1}$$
-lim_{t+\infty} $\int_{0}^{t} e^{-\lambda s} T(s) f ds$

exists since $\|T(s)f\|_1 \le e^{-s} \|f\|_1$, $s \ge 0$, and

$$\|.\|_{\infty}$$
-lim_{t+\infty} $\int_0^t e^{-\lambda s} T(s) f ds$

exists since $\int_0^\infty e^X |f(x)| dx < \infty$. Therefore $\int_0^\infty e^{-\lambda S} T(s) f ds$ exists in E for every $f \in E$, $Re\lambda > -1$. As we observed in A-I,Prop.1.11 this implies $\lambda \in \rho(A)$. Therefore $T = (T(t))_{t \geq 0}$ is a semigroup having s(A) = -1 but $\omega(T) = 0$.

Example 1.4. (Hilbert space, Zabczyk (1975)) For every $n \in \mathbb{N}$ consider the n-dimensional Hilbert space $E_n := \mathbb{C}^n$ and operators $A_n \in L(E_n)$ defined by the matrices

$$A_{n} = \begin{pmatrix} 0 & 1 & \cdot & \cdot & 0 \\ \cdot & 0 & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \\ 0 & \cdot & \cdot & 0 \end{pmatrix}_{n \times n}.$$

These matrices are nilpotent and therefore $\sigma(A_n) = \{0\}$. The elements $x_n := n^{-1/2}(1, \ldots, 1) \in E_n$ satisfy the following properties:

- (i) $\|\mathbf{x}_n\| = 1$ for every $n \in \mathbb{N}$,
- (ii) $\lim_{n\to\infty} \|A_n x_n x_n\| = 0$,
- (iii) $\lim_{n\to\infty} \|\exp(tA_n)x_n e^tx_n\| = 0$.

Consider now the Hilbert space $E:=\oplus_{n\in\mathbb{N}}E_n$ and the operator $A:=(A_n+2\pi\mathrm{in})_{n\in\mathbb{N}}$ with maximal domain in E. Analogously we define a semigroup $T=(\mathrm{T}(t))_{t\geq 0}$ by

$$T(t) := (e^{2\pi int} \exp(tA_n))_{n \in \mathbb{N}}.$$