

AMENDMENT

Please amend claims 1, 9, and as follows:

1. (Currently Amended) A chemical vapor deposition process for the preparation of a single-wall carbon nanotube, comprising:
B1
providing a methane gas composition and a supported iron-containing catalyst to a chemical vapor deposition chamber, and
decomposing the methane gas composition in the presence of the supported iron-containing catalyst, under a [sufficient] gas pressure of less than about 600 torr and for a time sufficient, to grow single-wall carbon nanotubes at a temperature from about 670° C to about 800° C.
2. (Original) A process of claim 1, wherein said temperature is from about 670°C to about 750°C.
3. (Original) A process of claim 1, wherein said temperature is from about 670°C to about 700°C
4. (Original) A process of claim 1, wherein said supported iron-containing catalyst is selected from the group consisting of: Al₂O₃/Fe/Mo/Co, Al₂O₃/ Fe/Mo, Al₂O₃/Fe/Co, Al₂O₃/Fe, and mixtures thereof.
5. (Previously Amended) A process of claim 4, wherein the supported iron-containing catalyst is Al₂O₃/Fe/Mo catalyst, and wherein the catalyst has a molar ratio of Al₂O₃:Fe:Mo of about (10-20) : 1 : ¹/₃.
6. (Previously Amended) A process of claim 1, wherein said methane gas composition is methane or a mixture of methane and a carrier gas.

7. (Original) A process of claim 6, wherein said carrier gas is selected from the group consisting of: argon, nitrogen, helium, and mixtures thereof.
8. (Original) A process of claim 7, wherein said methane gas and said carrier gas are used in a ratio of about 1:1 by volume to about 1:10 by volume.
-
9. (Currently Amended) A chemical vapor deposition process for the preparation of single-wall carbon nanotubes, comprising:
- providing a methane gas composition and an Al₂O₃/Fe/Mo catalyst to a chemical vapor deposition chamber, and
- decomposing the methane gas composition in the presence of the Al₂O₃/Fe/Mo catalyst, under a [sufficient] gas pressure of less than about 600 torr and for a time sufficient, to grow single-wall carbon nanotubes at a temperature from about 670° C to about 800° C,
- wherein said single-wall carbon nanotubes have a diameter distribution ranging from about 0.7 nm to about 2.1 nm.
-
10. (Previously Amended) A process of claim 9, wherein the Al₂O₃/Fe/Mo catalyst has a molar ratio of Al₂O₃:Fe:Mo of about (10-20) : 1 : $\frac{1}{3}$.
11. (Original) A process of claim 9, wherein said temperature is from about 670 °C to about 750°C.
12. (Original) A process of claim 9, wherein said temperature is from about 670°C to about 700°C.
-
13. (Currently Amended) A chemical vapor deposition process for the preparation of single-wall carbon nanotubes, comprising:

providing a methane gas composition and an Al₂O₃/Fe/Co/Mo catalyst to a chemical vapor deposition chamber, and

decomposing the methane gas composition in the presence of the Al₂O₃/Fe/Co/Mo catalyst, under a [sufficient] gas pressure of less than about 600 torr and for a time sufficient, to grow single-wall carbon nanotubes at a temperature from about 680° C to about 800° C

wherein said single-wall carbon nanotubes have a diameter distribution ranging from about 0.7 nm to about 2.1 nm.

14. (Previously Amended) A process of claim 13, wherein the Al₂O₃/Fe/Co/Mo catalyst has a molar ratio of Al₂O₃:Fe:Co:Mo of about (10-20) : 1 : 0.23 : ¹/₆.

15. (Previously Amended) A process of claim 13, wherein the Al₂O₃/Fe/Co/Mo catalyst has a molar ratio of Al₂O₃:Fe:Co:Mo of about (10-20) : 1 : 0.23 : ¹/₁₈.

16. (Previously Amended) A process of claim 13, wherein the Al₂O₃/Fe/Co/Mo catalyst has a molar ratio of Al₂O₃:Fe:Co:Mo of about (10-20) : 1 : 0.23 : ¹/₃₆.

17. (Original) A process of claim 13, wherein said temperature is from about 680 °C to about 750°C.

18. (Original) A process of claim 13, wherein said temperature is from about 680°C to about 700°C.