Los Números Reales

Números Reales

 $\overset{\bullet}{\bullet}$ El conjunto de los **números reales**, representado por, $\mathbb R$, está formado por todos los números $\mathbb{R} = \mathbb{O} \cup \mathbb{I}$ racionales y todos los irracionales.

El conjunto de los **números racionales**, representado por, Q está formado por todos los números que se pueden expresar en forma de fracción y el de los de los números irracionales, representado por I, está formado por todos los números decimales que no se pueden expresar en forma de fracción. Son números irracionales:

- **É** El número $\pi = 3,1415926535...$
- El número áureo $\Phi = \frac{1+\sqrt{5}}{2} = 1,618033989...$
- El número e = 2,718281828
- 🗯 Y cualquier raíz no exacta: $\sqrt{5}$ 🦼

La Recta Real

🕇 Si en una recta situamos un origen (el cero, O) y marcamos la longitud unidad, a cada punto le corresponde un número <mark>r</mark>acional o un número irracional. Es decir, a cada punto de la <mark>re</mark>cta le corresponde un número real. Por eso, a la recta <mark>nu</mark>mérica la llamamos recta real.

<mark>Todos l</mark>os números reales se pueden representar de manera exacta o aproximada en la recta real.

Los números del tipo \sqrt{a} , donde a es un número natural, se oveden representar de forma exacta en la recta real, para ello:

- Descomponemos el radicando en la suma de dos números al cuadrado (T. Pitágoras) 5=22+12
- Construimos sobre la recta, on triángulo rectángulo de catetos iquales a los números encontrados.

Hacemos una traslación con el compás desde el borde de la hipotenusa sobre la

Aproximación de números Reales

Existen 2 formas para aproximar una cantidad a la cifra a la que queramos:

☀ Redondeo: para redondear una cantidad a la n-ésima cifra, nos fijaremos en la siguiente cifra. Si ésta es mayor o igual que 5, aumentamos en una unidad la cifra n-ésima. En otro caso, dejamos tal y como está la cifra n-ésima.

Realiza una aproximación por redondeo a las décimas, centésimas y milésimas del número 3,5738:

- ✓ A las décimas 3,5738 → 7>5 entonces: 3,6
- A las centésimas 3,5738 -> 3<5 entonces: 3,57
- A las milésimas 3,5738 → 8>5 entonces: 3,574
- **★ Truncamiento:** para truncar una cantidad a la cifra n-ésima, se prescinde de las cifras a partir de ella.

Realiza una aproximación por truncamiento a las décimas, centésimas y milésimas del número 3,5738:

- ✓ A las décimas 3,5738 → 3,5
- ✓ A las centésimas 3,5738 → 3,57
- A las milésimas 3,5738 3,573

Errores de Aproximación

- 🕇 Se define Error a la diferencia entre el valor verdadero y el <mark>obtenido </mark>experimentalmente. Siempre que se toma un <mark>valor</mark> <mark>aproximado, V_a, en lugar del <mark>valor real</mark> o exacto, V_R, se comete</mark> u<mark>n error y m</mark>edir ese error es importante para saber si la medida qu<mark>e hemos to</mark>mado puede tomarse como válida o no.
- 🗯 <mark>Llamamo</mark>s **error <mark>absoluto</mark>, E_{A,} a la diferencia en valor** abs<mark>oluto, en</mark>tre el valor de la medida (valor aproximado) y el valo<mark>r toma</mark>do como exacto o valor real.

$$E_A = |V_R - V_{aprox}|$$

Cuando exista un conjunto de datos, se utilizará como error absoluto la semidiferencia entre los valores máximo y mínimo.

$$E_{A} = \frac{\left| V_{\text{max}} - V_{\text{min}} \right|}{2}$$

🔹 Llamamos error relativo, E_{r.} al cociente entre el error absoluto y el valor exacto multiplicado por 100. Lo damos en % para poder compararlo mejor.

$$E_r = \frac{E_A}{V_R}$$
:100 Si V_R es desconocido; $V_R = \frac{\sum x_i}{n}$

Cuando no disponemos del valor real o exacto, tomaremos como tal la media aritmética de todas las medidas.

Calcula el error absoluto y relativo cometido en la medida del diámetro de un tubo de 7 dm si hemos obtenido 70,7 cm.

El valor real o exacto es el dato que nos dan V_R =70 cm, y el valor aproximado es el valor que hemos medido V_{aprox}=70,7 cm:

$$E_A = |V_R - V_{aprox}| = |70 - 70,7| = 0,7 \text{ cm}$$

Conocido el error absoluto, ya podemos calcular el relativo:

$$E_r = \frac{E_A}{V_R} \cdot 100 = \frac{0.7}{70} \cdot 100 = 0.01 \cdot 100 = 1 \%$$

El error absoluto es de E_A= 0.7 cm y el relativo E_r=1%

Un menor error relativo indica una mejor aproximación, es decir, cuando tengamos varias aproximaciones, la mejor de ellas es la de menor error relativo.

Intervalos y Semirrectas

▲ Un intervalo, A, de extremos a y b son todos los números reales comprendidos entre a y b.

Notación de Intervalo	Notación de conjunto	Notación gráfica	
A = (3,5)	$A = \left\{ x \in \mathbb{R} / 3 < x < 5 \right\}$	3 5	

Existen tres formas de representar un intervalo: la notación de intervalo, con paréntesis y corchetes, la notación de conjunto,

🕖 Qué sabes de... 🕜

Los Números Reales

con desigualdades y con la notación gráfica, usando la recta real y delimitando la marcación de los extremos del conjunto con círculos, ya sean rellenos o vacíos.

Los intervalos pueden ser abiertos, cerrados y semiabiertos.

Tipos de Intervalos					
Abierto	Semiabiertos		Cerrados		
No incluye sus extremos.	Incluyen solo uno de sus extremos.		Incluye sus extremos.		
A = (a,b)	B = (a, b]	C = [a,b)	D = [a,b]		
$\{x \in \mathbb{R}/ a < x < b\}$	$\left\{ x \in \mathbb{R} / a < x \le b \right\}$	$\left\{ x \in \mathbb{R} / a \le x < b \right\}$	$\{x \in \mathbb{R} a \le x \le b\}$		
(a, b)	(a, b)	[a, b)	[a, b]		
a b	a b	a b	a b		

€ Una semirrecta o intervalo infinito es un conjunto de números reales definido para valores menores o mayores que un número dado. El extremo que posea el infinito será un extremo abierto.

Tipos de Semirrectas					
Abierta por la izquierda	Cerrada por la izquierda	Abierta por la derecha	Cerrada por la derecha		
$(a,+\infty)$ (a,\rightarrow)	$[a,+\infty)$ $[a,\rightarrow)$	$(-\infty,b)$ (\leftarrow,b)	$(-\infty,b]$ $(\leftarrow,b]$		
$\left\{ x \in \mathbb{R}/a < x \right\}$	$\{x \in \mathbb{R} a \le x\}$	$\{x \in \mathbb{R}/x < b\}$	$\left\{x\in\mathbb{R}/x\leq b\right\}$		
+ ; + + + +	+ + + + + + + + + + + + + + + + + + +	◄ + + + ÷ + + + + + + + + + + + + + + +	◆		

Operaciones con intervalos

▲ La unión de los intervalos A y B está formada por todos los elementos que pertenecen a A o pertenecen a B. Se define como $A \cup B = \{x/x \in A \text{ o } x \in B\}$.

Dados los intervalos A=(-3,0] y B=(-1,2), encontrar y graficar la unión de ambos intervalos AUB:

\stackrel{\bullet}{\bullet} El complemento de un intervalo A = [a, b], son todos los números reales que no pertenecen a A. $A' = (-\infty, a) \cup (b, +\infty)$

Encontrar y graficar los complementos de los intervalos A = [3,5] y B = [-2,3)

Para el conjunto A, su complemento es A' = $(-\infty,3)$ U $(5,\infty)$

La intersección de dos intervalos A y B está formada por todos los elementos comunes entre los dos intervalos sin repetirlos. Se define como $A \cap B = \{x/x \in A \ y \ x \in B\}$. Si ambos intervalos no tienen elementos en común la intersección será vacía $A \cap B = \phi$.

Porcentajes

a% de
$$C = \frac{a}{100} \cdot C$$
 % = $\frac{Parte}{Total} \cdot 100$

En porcentajes se manejan tres elementos: un total, un tanto por ciento y una parte del total.

Para trabajar con aumentos y disminuciones porcentuales utilizaremos el del *índice de variación porcentual*, I_v, que lo calcularemos:

La cantidad final Cfque se obtiene al aumentar o disminuir una cantidad inicial Cfen un porcentaje % se calcula mediante la expresión:

$$C_f = C_i \cdot I_v = C_i \cdot \left(1 + \frac{\%}{100}\right)$$

$$C_f = C_i \cdot I_v = C_i \cdot \left(1 - \frac{\%}{100}\right)$$
Amento

Descripto

Porcentajes encadenados

$$C_f = C_i \cdot I_{vt} = C_i \cdot (i_{v_1} \cdot i_{v_2} \cdot i_{v_3} \cdot ...) \text{ donde: } I_{vt} = i_{v_1} \cdot i_{v_2} \cdot i_{v_3} \cdot ...$$

En una escuela se matriculan 125 alumnos para estudiar francés, en segunda matrícula aumenta un 15% y a lo largo del curso se quitan un 20% ¿Cuántos estudiantes de francés quedan?

Calculamos el índice de variación porcentual del aumento del 15%:

$$I_{\nu_1} = 1 + \frac{\%}{100} = 1 + \frac{15}{100} = 1 + 0,15 = 1,15$$

Calculamos también el Iv de los que se dan de baja de la asignatura:

$$l_{v_2} = 1 - \frac{\%}{100} = 1 - \frac{20}{100} = 1 - 0.2 = 0.8$$

Calculamos el índice de variación total, multiplicando ambos índices de variación: $I_{\nu} = I_{\nu_1} \cdot I_{\nu_2} = 1,15 \cdot 0,8 = 0,92$

Y por último calculamos los alumnos al final de curso multiplicando la cantidad inicial por el IV total: $C_f = C_i \cdot /_{v_{total}} = 125 \cdot 0,92 = 115$

Por tanto, quedan 115 estudiantes de francés

Matemáticas Financieras

♠ El interés simple, I, es el beneficio originado por cantidad de dinero, llamada capital, C, en un periodo de tiempo (en años), t, a un tipo de interés determinado, r. Se calcula mediante la expresión (1):

$$I = \frac{C \cdot r \cdot t}{100}$$

$$C_f = C_i \left(1 + \frac{r}{100} \right)^t$$

t Cuando los intereses no se retiran sino que se acumulan al capital inicial, nos encontramos ante un **interés compuesto**, en él, el capital final, $C_{\rm f}$, que se obtiene al invertir un capital inicial $C_{\rm i}$, a un rédito, ${\bf r}$, durante un periodo de tiempo, ${\bf t}$, expresado en años viene dado por la expresión (2). Y por tanto, el interés compuesto o beneficio obtenido es: $I = C_{\rm f} - C_{\rm i}$.

