1. Model architecture

```
Convnet(
   (encoder): Sequential(
      (0): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
        (3): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
      )
      (1): Sequential(
        (0): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
        (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (2): Sequential(
        (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
        (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (3): Sequential(
        (0): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
        (2): ReLU()
        (3): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
      )
   )
)
```

Details

training episodes	600*200 = 120000	
distance function	function Euclidean distance	
learning rate	1e-4	
data augmentation	None	
optimizer	Adam	
Meta-train	10 way-1 shot	
Accuracy	43.35 +- 0.78 %	

2.

Parametric:將提取出來的特徵相乘,再將結果經過 fully-connected 學習。Loss 採用原本的 Cross Entropy Loss。

MLP(

(fc): Sequential(

(0): Linear(in_features=1600, out_features=512, bias=True)

(1): ReLU()

(2): Dropout(p=0.5, inplace=False)

(3): Linear(in_features=512, out_features=1, bias=True)

) 分析:

在相同設置下(Learning rate,),Euclidean distance 收斂的速度相較於其他兩個慢了許多,epoch50 的情況下,Cosine similarity 及 Parametric function 的結果約在 35 上下,Euclidean distance 則在 32 學習較慢,但成長空間看起來比較大。
3.

分析:参考的照片樣本更多,更能夠找出適合的 prototype,因此 accuracy 更高是合理的表現。

Problem2.

1.

(Pre-training/Fine-tuning)

SSL method	BYOL	
data augmentation	BYOL default	None
learning rate	3e-4	3e-4 w/ stepLR
optimizer	Adam	
Batch-size	20	64
Accuracy	41%	

2.

Setting	Pre-training (Mini-ImageNet)	Fine-tuning (Office-Home dataset)	Classification accuracy on valid set (Office-Home dataset)
А	-	Train full model (backbone + classifier)	30%
В	w/ label (TAs have provided this backbone)	Train full model (backbone + classifier)	36%
С	w/o label (Your SSL pre- trained backbone)	Train full model (backbone + classifier)	41%
D	w/ label (TAs have provided this backbone)	Fix the backbone. Train classifier only	33%
Е	w/o label (Your SSL pre- trained backbone)	Fix the backbone. Train classifier only	36%

Reference

同學	M11015Q02 柯元豪 M11015Q12 黃柏翰	
計算距離	<u>Calculate Dist</u>	
Flatten	How does the list comprehension to flatten a python list work?	
COSINE_SIMILARITY	OSINE_SIMILARITY TORCH.NN.FUNCTIONAL.COSINE_SIMILARITY	
Sampler	Sampler Pytorch Sampler 详解	
Sampler	Sampler <u>TORCH.UTILS.DATA</u>	
Sampler	ampler	