Open problems (for AGNES)

Rahul Pandharipande

April 2010

Below are a few basic questions and speculations related to the moduli spaces of curves, K3 surfaces, maps, and sheaves presented in the problem session of the AGNES conference in Amherst (April 2010).

(i) On the virtual class:

Let X be a nonsingular, projective variety over \mathbb{C} . Let $\overline{M}_g(X,\beta)$ be the moduli space of stable maps and let

$$\pi \colon \overline{M}_g(X,\beta) \to \overline{M}_g$$

be the forgetful morphism, see [5] for background. The moduli space of stable maps carries a virtual class $[\overline{M}_g(X,\beta)]^{\text{vir}}$ obtained from deformation theory [1, 2, 11]. Tautological classes in the Chow and cohomology rings of M_g are defined efficiently in [6].

Q1. Does $\pi_*[\overline{M}_g(X,\beta)]^{\text{vir}} \in H^*(\overline{M}_g)$ lie in the tautological ring in cohomology?

Q2. When does $\pi_*[\overline{M}_g(X,\beta)]^{\text{vir}} \in A^*(\overline{M}_g)$ lie in the tautological ring in Chow?

I would guess the answer to **Q1** is yes. We know $\pi_*[\overline{M}_g(X,\beta)]^{\text{vir}}$ does not always lie in the tautological ring in Chow — counterexamples can be found

already when X is a curve. A wild speculation, motivated by the Bloch-Beilinson conjecture, is that the answer to $\mathbf{Q2}$ is yes when X is defined over over $\overline{\mathbb{Q}}$.

(ii) On the Virasoro constraints:

The spaces $\overline{M}_g(X,\beta)$ determine the Gromov–Witten invariants of X. These are conjectured to satisfy the Virasoro constraints [4]. Virasoro constraints are known to hold now in many, but not all, cases. A very interesting variety for which the Virasoro constraints are unknown is the Enriques surface.

$\mathbf{Q3}$. Prove the Virasoro constraints in case X is an Enriques surface.

A study of the Gromov-Witten theory of the Enriques surface, closely related to modular forms, has been started in [15]. The Enriques surfaces is perhaps the most basic variety where new techniques are required to establish the Virasoro constraints.

(iii) On the moduli of sheaves:

Let X be a nonsingular, projective 3-fold. The Gromov-Witten theory of X, defined via $\overline{M}_g(X,\beta)$, is conjecturally [12] equivalent to the Donaldson-Thomas theory of X. The latter is defined via the moduli of ideal sheaves of curves in X [3, 21], or more recently, in terms of the moduli spaces of stable pairs [18].

Q4. Prove the GW/DT correspondence for 3-folds.

The toric cases of **Q4** are known [13]. Algebraic cobordism results [10] suggest the possibility of reducing to the toric case using degeneration methods.

Donaldson–Thomas invariants are defined only in dimension 3 because a virtual fundamental class for the moduli space of sheaves is required. Deformations are given by $\operatorname{Ext}^1(E,E)$, obstructions by $\operatorname{Ext}^2(E,E)$, and to define the virtual fundamental class we need (roughly) the vanishing

$$\operatorname{Ext}^{i}(E, E) = 0 \text{ for } i > 2.$$

On 3-folds, the vanishing can often be obtained using Serre duality and stability. However, there are parallel examples of enumerative computations in higher dimensions in Gromov-Witten theory [9, 19]. Moreover, many aspects of Joyce's counting theory are valid in higher dimensions [7].

Q5. Define Donaldson–Thomas invariants in dimensions > 3.

(iv) On the moduli of K3 surfaces:

Let M_{2n}^{K3} denote the moduli space of polarized K3 surfaces (X,L) of degree $L^2=2n$. Little appears to be known about the cycle theory of M_{2n}^{K3} .

Q6. What is the analogue of the tautological ring for M_{2n}^{K3} ?

A natural guess for $\mathbf{Q6}$ is the subring generated by the classes of the Noether–Lefschetz loci. Let

$$\pi:X\to\mathbb{P}^1$$

be a compact Calabi-Yau 3-fold expressed as K3-fibration over \mathbb{P}^1 . Via [16], the Gromov-Witten theory of X in π -fiber classes is calculated in terms of the Noether–Lefschetz numbers of π and the Katz-Klemm-Vafa [8] conjecture concerning λ_g integrals in the reduced Gromov-Witten theory of a K3 surface. The KKV conjecture is proven for all classes in genus 0 in [20] and all genera in primitive classes in [17].

Q7. Prove the Katz-Klemm-Vafa conjecture for all genera in all classes.

A solution to Q7 would provide a large class of exact formulas for higher genus Gromov-Witten invariants of compact Calabi-Yau 3-folds. Unlike the

local toric cases, mathematical results for higher genus Gromov-Witten invariants have been difficult to obtain, see [22] for the genus 1 theory of the quintic 3-fold.

Q8. Find effective mathematical methods for calculating the higher genus Gromov-Witten invariants of compact Calabi-Yau 3-folds.

Effective methods for the Enriques Calabi-Yau in genus $g \leq 2$ have been found in [15]. Complete, but less effective, techniques for the quintic are explained in [14]. At present, the holomorphic anomaly equation in topological string theory is more effective than the higher genus mathematical methods.

I was partially supported by the NSF through DMS-0500187. Thanks are due to P. Hacking and J. Tevelev for organizing the Algebraic Geometry Northeastern Series (AGNES) conference. The present article was adapted from P. Hacking's notes of my lecture.

References

- [1] K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), 601–617.
- [2] K. Behrend and B. Fantechi, *The intrinsic normal cone*, Invent. Math. **128** (1997), 45–88.
- [3] S. Donaldson and R. Thomas, Gauge theory in higher dimens ions, in The geometric universe: science, geometry, and the work of Roger Penrose, S. Huggett et. al eds., Oxford Univ. Press, 1998.
- [4] T. Eguchi, K. Hori, C.-S. Xiong, Quantum cohomology and Virasoro algebra, Phys. Lett. **B402** (1997), 71–80.
- [5] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, in Proceedings of Algebraic Geometry Santa Cruz (1995), Proc. Sympos. Pure Math. **62**, 45–96.

- [6] C. Faber and R. Pandharipande, Relative maps and tautological classes, JEMS 7 (2005), 13–49.
- [7] D. Joyce, Configurations in abelian categories IV: invariants and changing stability conditions. Adv. in Math. 217 (2008), 125–204.
- [8] S. Katz, A. Klemm, C Vafa, M-theory, topological strings, and spinning black holes, Adv. Theor. Math. Phys. 3 (1999), 1445– 1537.
- [9] A. Klemm and R. Pandharipande, Enumerative geometry of Calabi-Yau 4-folds, Comm. Math. Phys. 281 (2008), 621–653.
- [10] M. Levine and R. Pandharipande, Algebraic cobordism revisited, Invent. Math. 176 (2009), 63–130.
- [11] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. AMS 11 (1998), 119–174.
- [12] D. Maulik, N. Nekrasov, R. Pandharipande, and A. Okounkov, Gromov-Witten theory and Donaldson-Thomas theory, Comp. Math. **142** (2006), 887–918.
- [13] D. Maulik, A. Oblomkov, R. Pandharipande, and A. Okounkov, Gromov-Witten/Donaldson-Thomas correspondence for toric 3folds, arXiv:0809.3976.
- [14] D. Maulik and R. Pandharipande, A topological view of Gromov-Witten theory, Topology 45 (2006), 887–918.
- [15] D. Maulik and R. Pandharipande, New calculations in Gromov-Witt en theory, PAMQ 4 (2008), 469–500.
- [16] D. Maulik and R. Pandharipande, Gromov-Witten theory and Noether-Lefshetz theory, arXiv:0705.1653.
- [17] D. Maulik, R. Pandharipande, and R. Thomas, Curves on K3 surfaces and modular forms, preprint 2010.
- [18] R. Pandharipande and R. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), 407–447.
- [19] R. Pandharipande and A. Zinger, Enumerative geometry of Calabi-Yau 5-folds, Adv. Studies in Pure Math. (to appear).

- [20] A. Klemm, D. Maulik, R. Pandharipande, and E. Scheidegger, Noether-Lefschetz theory and the Yau-Zaslow conjecture, JAMS (to appear).
- [21] R. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds and bundles on K3 fibrations, JDG **54** (2000), 367–438.
- [22] A. Zinger, The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces, JAMS 22 (2009), 691–737.

Department of Mathematics Princeton University