

Departamento de Ciencias Físicas

5o. Ciclo 2021

Electrodinámica (Física V) 2021

Catedrático:	Dr. Antonio León - ajleon@galileo.edu	
Auxiliar: Ing. Rodrigo Marroquín – marroquin.rod@galileo.edu		

Observaciones: En el cronograma del curso, que puede consultarse en la página electrónica del GES, se presenta el contenido con un ordenamiento atípico. Esto se debe a que la herramienta matemática necesaria se desarrolla en el mismo ciclo, de modo tal que debe esperarse a la impartición y ejercitación de estos operadores integrales y diferenciales.

Competencias genéricas:

- 1- Formular e interpretar las leyes de Maxwell tanto en forma diferencial como integral.
- 2- Aplicar las leyes de Maxwell a la resolución de problemas.

Contenidos:

1- Carga y campo.

Breve recordatorio sobre electrostática. La interacción electromagnética de la materia. Cargas y campos. Propiedades. Ley de Coulomb. Limitaciones. Principio de superposición. Campo eléctrico. Cálculo de E para distribuciones discretas y continuas. Estudio del modelo dipolar. Cargas, superficies y flujos de líneas de fuerza. Ley de Gauss. Uso de la ley de Gauss para calcular E es distribuciones de alta simetría con distribuciones de carga lineal, superficial o volumétrica. Comportamiento de un conductor en un campo eléctrico. Dinámica de distribuciones de carga en presencia de campos eléctricos.

Resolución de problemas.

2- Potencial eléctrico.

Breve recordatorio sobre el potencial electrostático. Energía potencial. Definición integral de potencial eléctrico. Potencial para distribuciones discretas y continuas. Superficies equipotenciales. Carácter conservativo del campo electrostático. Los conductores desde el punto de vista del potencial. Capacitores. Cálculo de capacidades de sistemas de alta simetría. Densidad de energía volumétrica del campo eléctrico.

Resolución de problemas.

3- Herramientas para la formulación puntual.

Operadores de cálculo vectorial en el estudio de la electrodinámica. Tabla de operadores. Dominios, imágenes y ecuaciones. Interpretaciones físicas. Teoremas de interés. El "Microscope Field" Ecuaciones diferenciales de la electrostática. La ecuación de Poisson. La ecuación de Laplace. Funciones armónicas. Aplicación del teorema de unicidad. Método de las imágenes. El carácter potencial del campo electrostático en forma diferencial. Ecuación de continuidad. **Resolución de problemas.**

4- Campo magnético.

Recordatorio de las leyes del campo magnético. Dinámica de partículas cargadas en movimiento en presencia de campos magnéticos. Frecuencia de Larmor. Efecto Hall. Aplicaciones. Botellas magnéticas. Las cargas en movimiento como fuentes del campo magnético. Potencial vector. Ley de Biot-Savart.

Ley de Gauss del magnetismo y ley de Ampere. Determinación de B en sistemas de corriente de alta simetría.

Interacciones entre conductores con corriente. Espira con corriente y momento magnético.

Resolución de problemas.

5- Campos variables con el tiempo.

Breve recordatorio sobre la fenomenología de la inducción eléctrica. Formulación integral y diferencial de la ley de inducción de Faraday. La inductancia. Calculo de inductancias en sistemas de alta simetría con la ayuda de la ley de Ampere. Inductancia mutua.

Fem por campos variables y fem de movimiento. Sus naturalezas. La ley de Faraday y la relatividad. Cálculos de fem. Ley de Ampere-Maxwell.

Cuadro sinóptico de las leyes de Maxwell. Interpretación y consecuencias.

Circuito LC. Análisis energético y electrodinámico aplicando las leyes de Maxwell.

Resolución de problemas.

6- Ondas electromagnéticas.

Breve recordatorio sobre la ecuación diferencial de la onda. Los experimentos de Herzt. La ecuación de la onda para **E** y **B.** Densidad de energía y vector de Poynting. Osciladores de cavidad y guías de onda. Invarianza de la carga. Radiación electromagnética. Antenas. Dipolo radiante de media onda.

Evaluación del Curso

Examen Parcial 1	25 puntos
Examen Parcial 2	25 puntos
Pruebas cortas	25 puntos
Zona	75 puntos
Examen Final	25 puntos
Nota Final	100 puntos

El cronograma completo del curso incluyendo las fechas de las evaluaciones puede consultarlo en el GES.

Las pruebas cortas se realizaran todos los días siempre a primera hora, en los diez primeros minutos de clase. Estas pruebas no tendrán recuperación.

El curso consta de 4 créditos académicos (CA)

Requisitos Adicionales de Aprobación

Para aprobar el curso, el estudiante debe de cumplir con los siguientes requisitos adicionales:

• Asistencia mínima a clase: 80%

Bibliografía (Requerida)

<u>Título</u>	<u>Autor</u>	<u>Editorial</u>
1- Física Vol. II Undécima edición	Sears-Semansky	Pearson
2- Fundamentos de la Teoría Electromagnétic	Pearson	
3- Física Vol. II	Lea	Thomson
4- Física Vol. II	Resnick-Halliday	CECSA
5- Física Vol. II	Serway	Thomson

Modelo de planificación de actividades docentes.

Asignatura: **Física V** Ciclo: 5 Semestre: 1 Año: 2021

Sem	Fecha	Contenidos	Evaluación	M5 sem
1	18-22 ene	- Lunes 18 inicio de clases (5to Ciclo) - Introducción al curso.		
2	25-29 ene	Ley de Coulomb y vector ECálculo de E en distribuciones de carga		
3	1-5 feb	Cálculo de E en distribuciones de carga 2Cálculo de E en distribuciones de carga 3	C1	3 Int sup
4	8-12 feb	Ley de Gauss para electricidad. Lo general.Aplicaciones de la Ley de Gauss I		
5	15-19 feb	- Aplicaciones de la ley de Gauss II - Potencial electrostático		5-7 Int lin
6	22-26 feb		Parcial 1	
7	1-5 mar	Aplicaciones del potencial eléctrico IAplicaciones del potencial eléctrico II		
8	8-12 mar	 Campo magnético. Más aplicaciones de comportamiento de partículas 		8 Oper diferen
9	15-19 mar	Torque sobre espira.Operad. del Cal Vect. Ecs. de la electrost. en forma dif.		
10	22-26 mar	- Ec de Lagrange. Teorema de Unicidad y M. de imágenes- Leyes de la magnetostática (Pot.Vector A, Biot y Amp)		
11	29-2 abr	Semana Santa		
12	5-9 abr	- Aplicaciones ley de BSL - Ley de Ampere	C2	
13	12-16 abr		Parcial 2	
14	19-23 abr	Aplicaciones de la ley de AmpereLey de Faraday 1		
15	26-30 abr	- Ley de Faraday 2- Ley de Ampere-Maxwell		
16	3-7 may	Oscilaciones electromagnéticas LCOscilaciones electromagnéticas 2		
17	10-14 may	- Ec. de Maxwell- Ondas electromagnéticas. Vector de Poynting	C3	
18	17-21 may	Hoja de trabajo sobre ondas y vector de PoyntingRadiación electromagnética		
19	24-28 may		Ex. Final	

Observaciones: La calendarización de este programa es algo forzada y atípica. Esto se debe a que la herramienta matemática se desarrolla al unísono, en el mismo ciclo, de modo tal que debe esperarse a la impartición y ejercitación de estos operadores integrales y diferenciales.