Fondamenti di Fisica Matematica - Modulo 2

Filippo \mathcal{L} . Troncana Trascrizione in La Textuali del Matilde Calabri delle note di Nicolò Drago

A.A. 2023/2024

Indice

1	Lezione 1	1
2	Lezione 2	2
3	Lezione 3: Esempi di operatori differenziali del secondo ordine semilineari	3
4	Lezione 4: un poco di geometria differenziale	4

1 Lezione 1

Definizione 1.0.1: Supporto

Sia X uno spazio topologico e $f:X\to\mathbb{C}$ una mappa. Si dice supporto di f l'insieme $\{x\in X:f(x)\neq 0\}$ e lo indichiamo come $\mathrm{supp}(f)$

Notazione

Sia X uno spazio topologico e $A \subset X$ un aperto. Denotiamo con \bar{A} la chiusura di A.

Osservazione 1.0.1

 $x \in \text{supp}(f) \Rightarrow f(x) \neq 0.$

Definizione 1.0.2: Funzione differenziabile

Sia $\Omega \subset \mathbb{R}^n$ un aperto non vuoto, sia $f: \Omega \to \mathbb{R}^m$ una funzione e sia $x_0 \in \Omega$. f si dice *differenziabile* in x_0 se esiste una mappa lineare $L_{x_0}: \Omega \to \mathbb{R}^m$ tale che:

$$\lim_{||h||_n \to 0} \frac{||f(x_0 + h) - f(x_0) - L_{x_0}(h)||_m}{||h||_n} = 0$$

Osservazione 1.0.2

Sia $\{e_i\}_1^n$ la base canonica di \mathbb{R}^n . Ponendo $h=e_j$, la differenziabilità di f in x_0 implica l'esistenza della derivata parziale di f lungo la direzione e_j in x_0 e che $L_{x_0}=\nabla f(x_0)$.

Osservazione 1.0.3

Al contrario, l'esistenza delle derivate parziali non implica la differenziabilità.

Proposizione 1.0.1

Sia Ω un aperto di \mathbb{R}^n e sia $f:\Omega\to\mathbb{R}^m$ una funzione tale che esistano e siano continue le derivate parziali in $x_0\in\Omega$.

Allora f è differenziabile in x_0

Definizione 1.0.3: C^k -differenziabilità

Sia Ω un aperto di \mathbb{R}^n e sia $f: \Omega \to \mathbb{R}^m$.

 $f \in \mathcal{C}^k(\Omega)$, o \mathcal{C}^k -differenziabile su Ω se esistono continue tutte le derivate miste di ordine k su Ω .

Notazione

Indichiamo con $\mathcal{C}_c^k(\Omega)$ lo spazio delle funzioni \mathcal{C}^k -differenziabili a supporto compatto.

Osservazione 1.0.4

 $\mathcal{C}^k(\Omega)$ e $\mathcal{C}^k_c(\Omega)$ sono \mathbb{R} -spazi vettoriali

Definizione 1.0.4

Le funzioni contenute in $\mathcal{C}^{\infty}(\Omega) = \bigcap \mathcal{C}^k(\Omega)$ sono dette funzioni lisce (a supporto compatto se il loro supporto è compatto).

Definizione 1.0.5: Differenziabilità su un chiuso

Sia Ω un aperto di \mathbb{R}^m e sia $\bar{\Omega}$ la sua chiusura.

Una funzione $f: \bar{\Omega} \to \mathbb{R}^m$ si dice \mathcal{C}^k -differenziabile su $\bar{\Omega}$ se le derivate di ordine k sono estendibili con continuità a $\bar{\Omega}$.

2 Lezione 2

Definizione 2.0.1: Operatore differenziale semilineare del secondo ordine

Un operatore $D: \mathcal{C}^2(\Omega) \to \mathcal{C}^0(\Omega)$ si dice **semilineare del secondo ordine** se può essere scritto come $(Du)(x) = A(x) \times H_u(x) + \Phi(x, u(x), \nabla u(x))$ per qualsiasi $u \in \mathcal{C}^2(\Omega)$, dove A(x) è una matrice simmetrica che dipende con continuità da $x \in \Omega$ e Φ dipende con continuità dai suoi parametri.

Definizione 2.0.2: Equazione differenziale alle derivate parziali semilineare

Si dice equazione differenziale alle derivate parziali semilineare un'equazione con incognita u della forma Du = f dove D è un operatore differenziale semilineare dato e f è una funzione data.

Osservazione 2.0.1

La definizione di operatore differenziale semilineare del secondo ordine si può generalizzare in due modi:

- ullet a funzioni a valori vettoriali, anche complessi, ma richiediamo che A e Φ abbiano comunque valore reale.
- a ordini k arbitrari sostituendo a H_u e ∇u rispettivamente il tensore derivata^a di ordine k e i tensori derivata fino all'ordine k-1.

Nel caso in cui Φ dovesse essere dipendente in modo lineare da $u \in \nabla u$, l'operatore si direbbe *lineare* come l'equazione associata.

Si può anche parlare di operatori quasilineari, in cui $A = A(x, u(x), \nabla u(x))$, e delle equazioni associate. Vale la pena notare che questi operatori siano tutti locali, e che non dipendano da proprietà globali della funzione come ad esempio il suo integrale su Ω .

Definizione 2.0.3: Diffeomorfismo

Dati due aperti $\Omega \subset \mathbb{R}^n$ e $\Omega' \subset \mathbb{R}^m$, si dice **diffeomorfismo** di ordine k una funzione $f: \Omega \to \Omega'$ k-differenziabile e invertibile con inversa k-differenziabile.

^aSemplicemente, il tensore in cui l'elemento di multi-indice $\alpha=(i,...,j)$ corrisponde alla derivata mista delle direzioni $x_i,...,x_j$

Teorema 2.0.1: Invertibilità locale

Siano Ω e Ω due aperti di \mathbb{R}^n e $f:\Omega\to\Omega'$ una funzione k-differenziabile con det $J_f\neq 0$ su Ω . Allora f è un k-diffeomorfismo tra Ω e Ω' .

Corollario 2 0 1

Sia Ω un aperto di \mathbb{R}^n e sia $f: \Omega \to \mathbb{R}^n$ una funzione k-differenziabile tale che det $J_f \neq 0$ su Ω . Allora $f(\Omega)$ è un aperto e se f è iniettiva allora è un k-diffeomorfismo.

Lemma 2.0.1

Sia $D: \mathcal{C}^2(\Omega) \to \mathcal{C}^0(\Omega)$ un operatore differenziale del secondo ordine semilineare e sia $\tilde{x}: \Omega \to \tilde{\Omega}$ un diffeomorfismo e per ogni $u \in \mathcal{C}^2(\Omega)$ sia $\tilde{u}:=u \circ \tilde{x} \in \mathcal{C}^2(\tilde{\Omega})$. Allora:

• $Du = 0 \Rightarrow \tilde{D}\tilde{u} = 0$, dove \tilde{D} è definito come $D(\tilde{x}^{-1} \circ \tilde{u})$.

Osservazione 2.0.2

Sotto cambiamenti di coordinate come nel lemma precedente, abbiamo che A si trasforma in modo tensoriale, a differenza di Φ , per questo sarà detto *simbolo principale* di D.

Definizione 2.0.4: Operatori ellittici, iperbolici e parabolici

Sia Ω un aperto di \mathbb{R}^m $D: \mathcal{C}^2(\Omega) \to \mathcal{C}^0(\Omega)$ un operatore differenziale semilineare del secondo ordine e sia A il suo simbolo principale. Siano (n_+, n_-, n_0) i numeri rispettivamente degli elementi positivi, negativi e nulli sulla diagonale di A (assumiamo Ω abbastanza piccolo perchè questi siano costanti).

- Se $n_+ = m$ o $n_- = m$, D si dice *ellittico*.
- Se $n_0 = 0$, D si dice *iperbolico*.
- Se $n_{+} = 1$ e $n_{-} = m 1$ oppure $n_{+} = m 1$ e $n_{-} = 1$, allora D si dice **normalmente iperbolico**.
- Se $n_0 \neq 0$ e $n_+ = m n_0$ oppure $n_- = m n_0$, allora D si dice **parabolico**
- Se è parabolico e $n_0 = 1$, allora si dice **normalmente parabolico**.

Lo stesso vale per le equazioni associate.

3 Lezione 3: Esempi di operatori differenziali del secondo ordine semilineari

Esempio 3.0.1: Operatore delle onde, o di D'Alembert

Consideriamo funzioni a valori reali di un vettore x di n coordinate spaziali e del tempo t. L'operatore delle onde (a cui è associata l'equazione delle onde):

$$D(u) := \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \Delta_x\right) u \quad \text{dove} \quad \Delta_x u := \frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_n^2}$$

Ha simbolo principale non-zero solo sulla diagonale, che ha la forma $(c^{-2}, -1, ..., -1,)$, dunque è iperbolico.

3

Esempio 3.0.2: Operatore di Helmholtz

Dall'equazione delle onde, assumiamo una soluzione u(t,x) della forma $e^{i\omega t}v(x)$ Allora l'operatore $e^{i\omega t}(\lambda + \Delta)$ è un operatore ellittico con $\lambda > 0$ ed è detto operatore di Helmholtz.

Esempio 3.0.3: Operatore di Laplace normale e massivo

Come visto sopra, l'operatore di Laplace:

$$\Delta u := \frac{\partial^2 u}{\partial x_1^2} + \ldots + \frac{\partial^2 u}{\partial x_n^2}$$

Ha diagonale (1,...,1), come l'operatore di Laplace massivo $(\Delta - \eta^2)$, dunque è ellittico.

Esempio 3.0.4: Operatore del calore

L'operatore del calore:

$$\frac{1}{\sigma^2}\frac{\partial}{\partial t} - \Delta_x$$

È un operatore parabolico avendo diagonale (0, -1, ..., -1)

4 Lezione 4: un poco di geometria differenziale

Definizione 4.0.1: Ipersuperficie k-regolare

Sia Σ un sottoinsieme di \mathbb{R}^n .

 Σ si dice *ipersuperficie regolare* di ordine k se è localmente luogo di zeri di funzioni k-differenziabili con gradiente non-nullo.