Parseo y Generación de Código

Sistemas de tipos Unificación Inferencia de tipos

Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Sistemas de tipos

Tipos vs. tags

Dos conceptos que a veces se confunden son los tipos y los tags:

Tipos (noción estática).

- Los tipos son etiquetas que se le atribuyen estáticamente a los fragmentos de un programa.
- Si a un fragmento del programa se le atribuye un tipo, esto representa alguna propiedad que el programa verifica en tiempo de ejecución.
- Los tipos tienen sentido y existencia en tiempo de compilación.

Por ejemplo, si en Haskell tenemos que f :: Int -> Bool sabemos que si ejecutamos f 3 y el programa termina exitosamente, el resultado va a ser necesariamente True o False.

Int -> Bool es una etiqueta estática que no se manifiesta en tiempo de ejecución (típicamente no "ocupa memoria"), pero nos da una garantía sobre el comportamiento de f.

Tipos vs. tags

Tags (noción dinámica).

- Los tags son información auxiliar que acompaña a un dato en tiempo de ejecución para indicar de qué clase de información se trata, y distinguirla de otras posibles clases de información.
- Sirven como patrón para implementar sumas (uniones disjuntas).

Por ejemplo, en JavaScript el dato 42 y el dato "hola" ambos vienen acompañados de un *tag*. En el primer caso, el *tag* indica que se trata de un número. En el segundo caso, el *tag* indica que se trata de una cadena.

```
> typeof(1)
'number'
> typeof("hola")
'string'
```

Los *tags* existen y tienen sentido en tiempo de ejecución (típicamente "ocupan memoria").

Tipos vs. tags

No todos los lenguajes tienen tipos: por ejemplo, SmallTalk es un lenguaje no tipado.

Todos los lenguajes de programación permiten implementar *tags* de una manera o de otra:

- Left 42 vs. Right "hola"
- ▶ new ValueNumber(42) vs. new ValueString("hola")
- etc.

A veces los *tags* se llaman "tipos". No está mal usar esta nomenclatura pero es importante no confundir los dos conceptos.

En esta clase nos van a interesar los tipos en el sentido estático.

Como herramienta para estudiar tipos usaremos el cálculo- λ simplemente tipado, extendido con distintas construcciones.

El cálculo- λ simplemente tipado extendido con booleanos cuenta con los siguientes tipos y términos:

Tipos.

$$\tau$$
 ::= Bool | $\tau \to \tau$

Términos.

```
M ::= x variable

| MM aplicación

| \lambda x : \tau. M abstracción (función anónima)

| True verdadero

| False falso

| if M then M else M condicional
```

Nota: las gramáticas de arriba representan la sintaxis abstracta, es decir, generan árboles.

Ejercicio.

Dibujar el árbol de sintaxis abstracta de:

$$\mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}$$

Dibujar el árbol de sintaxis abstracta de:

$$\lambda f : \mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}. \ \lambda x : \mathsf{Bool}. \ \lambda y : \mathsf{Bool}. \ f \ y \ x$$

Dibujar el árbol de sintaxis abstracta de:

$$\lambda x$$
: Bool \rightarrow Bool. **if** x **then** False **else** x True

Nota: El último programa está sintácticamente bien formado, pero nos gustaría decir que no "tipa".

- Las ocurrencias de una variable x que están bajo el alcance de un lambda de la forma " $\lambda x : \tau \dots$ " están **ligadas**.
- Las ocurrencias de una variable x que no están bajo el alcance de ningún lambda de la forma " $\lambda x : \tau \dots$ " están **libres**.

Ejercicio. Marcar ocurrencias ligadas y libres de las variables en:

```
f(\lambda f: (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool} \to \mathsf{Bool}. \ f(\lambda x: \mathsf{Bool}.x)x)
```

Técnicamente los términos del cálculo- λ no son árboles, porque se permite el **renombre de variables ligadas**.

Por ejemplo, los dos términos siguientes son iguales:

$$(\lambda x : \mathsf{Bool}. \lambda y : \mathsf{Bool}. f x y) = (\lambda y : \mathsf{Bool}. \lambda x : \mathsf{Bool}. f y x)$$

Los términos siguientes no son iguales:

$$(\lambda x : \mathsf{Bool}. \lambda y : \mathsf{Bool}. f x y) \neq (\lambda x : \mathsf{Bool}. \lambda x : \mathsf{Bool}. f x x)$$

Los términos siguientes no son iguales:

$$f x y \neq f y x$$

Renombraremos las variables ligadas siempre que sea necesario.

Un **sistema de tipos** es un conjunto de reglas lógicas que sirven para asignarle tipos a los términos.

Por ejemplo, una regla de tipado podría ser algo de este estilo:

$$\frac{M:\tau\to\sigma\quad N:\tau}{M\,N:\sigma}$$

Problema. Nos gustaría tener una regla como esta:

$$\frac{M:\tau}{\lambda x:\sigma.\ M:\sigma\to\tau}$$

Pero esta regla se puede abusar fácilmente. ¿Cómo le daríamos tipo a λx : Bool. x?

Problema relacionado. ¿Qué tipo tiene x?

Para darle tipos a las variables libres, vamos a contar con un **contexto**.

Un contexto Γ es una lista finita que le asigna tipos a algunas variables:

$$\Gamma = x_1 : \tau_1, \ x_2 : \tau_2, \ \dots, \ x_n : \tau_n$$

donde $n \ge 0$.

Las variables x_1, x_2, \ldots, x_n son distintas entre sí.

Escribimos $\Gamma(x)$ para el tipo asociado a la variable x en Γ .

En lugar de predicar sobre afirmaciones de la forma:

$$M: \tau$$
 "el término M tiene tipo τ "

el sistema de tipos predica sobre afirmaciones de la forma:

$$\Gamma \vdash M : \tau$$
 "el término M tiene tipo τ en el contexto Γ "

Estas afirmaciones se conocen como **juicios de tipado**. Más explícitamente, un juicio de tipado:

$$x_1 : \tau_1, x_2 : \tau_2, \ldots, x_n : \tau_n \vdash M : \tau$$

representa el conocimiento de que el término M tiene tipo τ , asumiendo que las variables x_1, x_2, \ldots, x_n tienen tipos $\tau_1, \tau_2, \ldots, \tau_n$ respectivamente.

Estamos en condiciones de dar reglas de tipado para el cálculo- λ simplemente tipado extendido con booleanos:

$$\frac{}{\Gamma \vdash \mathsf{True} : \mathsf{Bool}} \mathsf{TTRUE}$$

$$\frac{}{\Gamma \vdash \mathsf{False} : \mathsf{Bool}} \mathsf{TFALSE}$$

$$\frac{\Gamma \vdash M : \mathsf{Bool} \quad \Gamma \vdash N : \tau \quad \Gamma \vdash P : \tau}{\Gamma \vdash \mathbf{if} \ M \ \mathbf{then} \ N \ \mathbf{else} \ P : \tau} \text{TIF}$$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \text{ TVAR}$$

$$\frac{\Gamma \vdash M : \tau \to \sigma \quad \Gamma \vdash N : \tau}{\Gamma \vdash M \, N : \sigma} \, {}_{\mathsf{TAPP}}$$

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x : \tau. \ M : \tau \rightarrow \sigma} \text{TLAM}$$

Ejercicio. Dar derivaciones para los siguientes juicios:

- 1. $x : \tau$, $y : \mathsf{Bool} \to \mathsf{Bool} \vdash \lambda x : \mathsf{Bool}$. **if** x **then** x **else** $y x : \mathsf{Bool} \to \mathsf{Bool}$
- 2. $\vdash \lambda x : \tau. \ \lambda x : \sigma. \ x : \tau \to \sigma \to \sigma$
- 3. $\vdash \lambda f : \tau \to \sigma$. $\lambda g : \sigma \to \rho$. $\lambda x : \tau$. $g(fx) : (\tau \to \sigma) \to (\sigma \to \rho) \to \tau \to \rho$

Comentario. Los sistemas de tipos generalmente vienen acompañados de metateoría que justifica que la elección de las reglas no es *ad hoc* sino que tiene buenas propiedades.

Algunas propiedades posibles:

- Si un término tiene tipo, su ejecución no falla.
- Si un término tiene tipo, su ejecución termina.
- Si un término tiene tipo y se lo ejecuta, el resultado que se obtiene tiene el mismo tipo.
- Si un término tiene tipo, todos sus subtérminos tienen tipo.

Esto excede los contenidos de la materia.

Unificación

Motivación

¿Se le puede dar tipos a los siguientes términos?

¿Qué tipo tienen?

(Agregar decoraciones en las lambdas y elegir algún contexto Γ apropiado).

$$\lambda x. \ \lambda y. \ \lambda z. \ x z (y z)$$

XX

Nota. Tener un sistema de tipos con reglas como las de arriba **no** nos da un algoritmo para resolver este problema.

Motivación

Hay varias dificultades para diseñar un algoritmo de inferencia:

- Para una variable x, no es obvio cómo determinar qué tipo le corresponde.
- Se debe asignar el mismo tipo a todas las ocurrencias de la misma variable.
- Para construcciones como la aplicación M N o el condicional if M then N else P, el algoritmo debería asegurarse de que algunos tipos coincidan. Por ejemplo, las dos ramas del if deben tener el mismo tipo.

Ejemplos.

$$x$$
 (x True)

if $f \times \text{then } f \times \text{else } \times \text{True}$

Motivación

El algoritmo de inferencia trabaja con tipos de los que se conoce **parcialmente** su forma. Para ello se incorporan **incógnitas** a los tipos.

Por ejemplo:

- ▶ En x True sabemos que x : Bool \rightarrow ?1.
- ▶ En **if** x y **then** True **else** False sabemos que x : ?2 \rightarrow Bool.

El algoritmo necesita resolver ecuaciones entre tipos que pueden tener incógnitas.

Por ejemplo:

- La ecuación $(?1 \rightarrow Bool) = ((Bool \rightarrow Bool) \rightarrow ?2)$ tiene solución tomando $?1 = (Bool \rightarrow Bool)$ y ?2 = Bool.
- ▶ La ecuación $(?1 \rightarrow ?1) = ((Bool \rightarrow Bool) \rightarrow ?2)$ tiene solución tomando $?1 = ?2 = (Bool \rightarrow Bool)$.
- La ecuación $(?1 \rightarrow Bool) = ?1$ no tiene solución.

El **algoritmo de unificación** es un método para resolver sistemas de ecuaciones entre estructuras con forma de árbol que involucran incógnitas.

Suponemos fijado un conjunto finito de constructores de tipos:

- ► Tipos constantes: Bool, Int,
- Constructores unarios: List, Maybe,
- ▶ Constructores binarios: $\bullet \to \bullet$, (\bullet, \bullet) , Either \bullet •,
- **.**..

Los tipos son árboles formados usando incógnitas y constructores (respetando su aridad):

$$\tau ::= ?n \mid C(\tau_1, \ldots, \tau_n)$$

Una sustitución es una función:

$$\mathbb{S}: \mathtt{Inc\'ognita} o \mathtt{Tipo}$$

tal que $\mathbb{S}(?n) = ?n$ salvo para un número finito de incógnitas.

Notamos $\{?k_1 \mapsto \tau_1, \dots, ?k_n \mapsto \tau_n\}$ para la sustitución $\mathbb S$ tal que $\mathbb S(?k_i) = \tau_i$ para i = 1..n y $\mathbb S(?j) = ?j$ para cualquier otra incógnita.

Una sustitución $\mathbb S$ se puede extender a una función:

$$\begin{array}{rcl} \hat{\mathbb{S}}: \texttt{Tipo} & \to & \texttt{Tipo} \\ & \hat{\mathbb{S}}(?k) & = & \mathbb{S}(?k) \\ \hat{\mathbb{S}}(C(\tau_1, \dots, \tau_n)) & = & C(\hat{\mathbb{S}}(\tau_1), \dots, \hat{\mathbb{S}}(\tau_k)) \end{array}$$

Notamos S también a la función extendida.

Por ejemplo, si

$$\mathbb{S}_1=\{?1\mapsto \mathsf{Bool},\ ?3\mapsto (?2\to ?2)\}$$
 calcular $\mathbb{S}_1((?1\to \mathsf{Bool})\to ?3).$

Un **problema de unificación** es un conjunto finito E de ecuaciones entre tipos que pueden involucrar incógnitas:

$$E = \{ \tau_1 \stackrel{\bullet}{=} \sigma_1, \tau_2 \stackrel{\bullet}{=} \sigma_2, \dots, \tau_n \stackrel{\bullet}{=} \sigma_n \}$$

Un **unificador** para un problema de unificación es una sustitución $\mathbb S$ tal que:

$$\mathbb{S}(\tau_1) = \mathbb{S}(\sigma_1)$$

 $\mathbb{S}(\tau_2) = \mathbb{S}(\sigma_2)$
...

$$\mathbb{S}(\tau_n) = \mathbb{S}(\sigma_n)$$

En general la solución a un problema de unificación no tiene por qué ser única:

$$\{?1 \stackrel{\bullet}{=} ?2\}$$

tiene infinitos unificadores:

- ► {?1 → ?2}
- **▶** {?2 → ?1}
- ▶ $\{?1 \mapsto ?3, ?2 \mapsto ?3\}$
- $\blacktriangleright \ \{?1 \mapsto \mathsf{Bool}, ?2 \mapsto \mathsf{Bool}\}$
- $\blacktriangleright \ \{?1 \mapsto (\mathsf{Bool} \to \mathsf{Bool}), ?2 \mapsto (\mathsf{Bool} \to \mathsf{Bool})\}$
- **.**..

Una sustitución \mathbb{S}_A es **más general** que una sustitución \mathbb{S}_B si existe una sustitución \mathbb{S}_C tal que:

$$\mathbb{S}_B = \mathbb{S}_C \circ \mathbb{S}_A$$

es decir, \mathbb{S}_B se puede recuperar a partir de \mathbb{S}_A .

Para el siguiente problema de unificación:

$$E = \{(?1 \rightarrow \mathsf{Bool}) \stackrel{\bullet}{=} ?2\}$$

las siguientes sustituciones son unificadores:

- $\blacktriangleright \ \mathbb{S}_1 = \{?1 \mapsto \mathsf{Bool}, ?2 \mapsto (\mathsf{Bool} \to \mathsf{Bool})\}$
- $ightharpoonup \mathbb{S}_2 = \{?1 \mapsto \mathsf{Int}, ?2 \mapsto (\mathsf{Int} \to \mathsf{Bool})\}$
- ▶ $S_3 = \{?1 \mapsto ?3, ?2 \mapsto (?3 \rightarrow Bool)\}$
- $ightharpoonup \mathbb{S}_4 = \{?2 \mapsto (?1 \rightarrow \mathsf{Bool})\}$

¿Qué relación hay entre ellas? (¿Cuál es más general que cuál?).

El algoritmo de **Martelli-Montanari** es un algoritmo para resolver problemas de unificación.

Dado un problema de unificación E (conjunto de ecuaciones).

- Mientras $E \neq \emptyset$, se aplica sucesivamente alguna de las seis reglas que se detallan más adelante.
- La regla puede resultar en una falla.
- ▶ De lo contrario, la regla es de la forma $E \to_{\mathbb{S}} E'$ y la solución del problema E se reduce a resolver otro problema E', aplicando la sustitución \mathbb{S} .

Hay dos posibilidades:

- ▶ $E = E_0 \rightarrow_{\mathbb{S}_1} E_1 \rightarrow_{\mathbb{S}_2} E_2 \rightarrow \ldots \rightarrow_{\mathbb{S}_n} E_n \rightarrow_{\mathbb{S}_{n+1}}$ falla En tal caso el problema de unificación E no tiene solución.
- ► $E = E_0 \rightarrow_{\mathbb{S}_1} E_1 \rightarrow_{\mathbb{S}_2} E_2 \rightarrow \ldots \rightarrow_{\mathbb{S}_n} E_n = \emptyset$ En tal caso el problema de unificación E tiene solución.

$$\{x \stackrel{\bullet}{=} x\} \cup E \quad \xrightarrow{\text{Delete}} \qquad E$$

$$\{C(\tau_1, \dots, \tau_n) \stackrel{\bullet}{=} C(\sigma_1, \dots, \sigma_n)\} \cup E \quad \xrightarrow{\text{Decompose}} \qquad \{\tau_1 \stackrel{\bullet}{=} \sigma_1, \dots, \tau_n \stackrel{\bullet}{=} \sigma_n\} \cup E$$

$$\{\tau \stackrel{\bullet}{=} ?n\} \cup E \quad \xrightarrow{\text{Orient}} \qquad \{?n \stackrel{\bullet}{=} \tau\} \cup E \quad \text{si } \tau \text{ no es una incógnita}$$

$$\{?n \stackrel{\bullet}{=} \tau\} \cup E \quad \xrightarrow{\text{Elim}}_{\{?n \mapsto \tau\}} \qquad E' = \{?n \mapsto \tau\}(E) \quad \text{si } ?n \text{ no ocurre en } \tau$$

$$\{C(\tau_1, \dots, \tau_n) \stackrel{\bullet}{=} C'(\sigma_1, \dots, \sigma_m)\} \cup E \quad \xrightarrow{\text{Clash}} \qquad \text{falla} \quad \text{si } C \neq C'$$

$$\{?n \stackrel{\bullet}{=} \tau\} \cup E \quad \xrightarrow{\text{Occurs-Check}} \qquad \text{falla} \quad \text{si } ?n \neq \tau \quad \text{y } ?n \text{ ocurre en } \tau$$

Si un problema de unificación *E* tiene solución:

$$E=E_0 \to_{\mathbb{S}_1} E_1 \to_{\mathbb{S}_2} E_2 \to \ldots \to_{\mathbb{S}_n} E_n=\varnothing$$

un unificador para el problema se puede obtener como composición de los reemplazos que el algoritmo hace cada vez que se aplica una regla **Elim**:

$$\mathbb{S} = \mathbb{S}_n \circ \ldots \circ \mathbb{S}_2 \circ \mathbb{S}_1$$

Más aún, el unificador que se obtiene es el unificador **más general** posible (salvo renombre de incógnitas).

Escribimos mgu(E) para denotar el unificador más general de E.

Ejercicio. Calcular unificadores más generales para los siguientes problemas de unificación:

- $\blacktriangleright \ \{ (?2 \rightarrow (?1 \rightarrow ?1)) \stackrel{\bullet}{=} ((\mathsf{Bool} \rightarrow \mathsf{Bool}) \rightarrow (?1 \rightarrow ?2)) \}$

Inferencia de tipos

Definimos los términos sin anotaciones de tipos:

El algoritmo de inferencia de tipos es un algoritmo recursivo que dado un término sin anotaciones U devuelve un juicio de tipado $\Gamma \vdash M : \tau$ válido, y tal que M es una variante de U decorada con anotaciones de tipos.

Escribimos $U \rightsquigarrow \Gamma \vdash M : \tau$ para denotar que el resultado de aplicar el algoritmo de inferencia sobre U es $\Gamma \vdash M : \tau$.

Constantes.

Variable.

$$\frac{?k \text{ es una incógnita fresca}}{x \rightsquigarrow x : ?k \vdash x : ?k} \text{ I-VAR}$$

Condicional.

$$\begin{array}{c} \textit{U} \leadsto \Gamma_0 \vdash \textit{M} : \tau \\ \textit{V_1} \iff \Gamma_1 \vdash \textit{N_1} : \sigma_1 \\ \textit{V_2} \iff \Gamma_2 \vdash \textit{N_2} : \sigma_2 \\ \\ \mathbb{S} = \mathsf{mgu} \left(\begin{array}{c} \{\tau \overset{\bullet}{=} \mathsf{Bool}, \sigma_1 \overset{\bullet}{=} \sigma_2\} \cup \\ \{\Gamma_i(x) \overset{\bullet}{=} \Gamma_j(x) : i, j \in \{0, 1, 2\}, \ x \in \Gamma_i \cap \Gamma_j\} \end{array} \right) \\ \text{if U then V_1 else V_2} \iff \begin{array}{c} \mathbb{S}(\Gamma_1 \cup \Gamma_2 \cup \Gamma_3) \vdash \\ \mathbb{S}(\mathsf{if} \ \textit{M then N_1 else N_2}) : \mathbb{S}(\sigma_1) \end{array}$$

Aplicación.

$$\begin{array}{c} \textit{U} \; \rightsquigarrow \; \Gamma_1 \vdash \textit{M} : \tau \\ \textit{V} \; \rightsquigarrow \; \Gamma_2 \vdash \textit{N} : \sigma \\ ?\textit{k} \; \text{es una incógnita fresca} \\ \hline \textit{$\mathbb{S} = \text{mgu}\{\tau \stackrel{\bullet}{=} \sigma \to ?\textit{k}\} \cup \{\Gamma_1(x) \stackrel{\bullet}{=} \Gamma_2(x) : x \in \Gamma_1 \cap \Gamma_2\}$} \\ \textit{UV} \; \rightsquigarrow \; \mathbb{S}(\Gamma_1 \cup \Gamma_2 \vdash \textit{MN} : ?\textit{k})} \end{array}} \; _{\text{I-APP}}$$

Abstracción.

$$\frac{U \leadsto \Gamma \vdash M : \tau \quad \sigma = \begin{cases} \Gamma(x) & \text{si } x \in \Gamma \\ \text{una incógnita fresca } ?k & \text{si no} \end{cases}}{\lambda x. \ U \leadsto \Gamma \setminus \{x\} \vdash \lambda x : \sigma. \ M : \sigma \to \tau} \text{I-LAM}$$

- ► El algoritmo de inferencia le da tipo a un término U si y sólo si U es tipable.
- ► En tal caso, le da el tipo más general posible.
- En caso contrario, el algoritmo de inferencia falla.

Ejercicio. Aplicar el algoritmo de inferencia sobre los siguientes términos:

- ▶ λx. λy. y x
- ▶ if x then f x (g x) else g (f x x)
- $(\lambda x. x x)(\lambda x. x x)$