Relational Algebra Examples — Round 2

Students(Name, Date of Birth, Town, Grade, Performance)

Name	Date of Birth	Town	Grade	Performance
Schmidt János	1985	Arad	5	94%
Hoffmann Géza	1986	Tata	4	84%
Péter Lajos	1985	Szombathely	5	90%

Question: Give the relational algebra expression which selects the student with maximum performance.

Name	Date of Birth	Town	Grade	Perfor mance
Schmidt János	1985	Arad	5	94%
Hoffmann Géza	1986	Tata	4	84%
Péter Lajos	1985	Szombathely	5	90%

- We only need the name and performance of the students. $\Pi_{\text{name, performance}}$ (Students)
- We make a copy of our table $\rho_{\text{New}}(\Pi_{\text{name, performance}}(\text{Students}))$

Name	Performance
Schmidt János	94%
Hoffmann Géza	84%
Péter Lajos	90%

New_Name	New_Performance
Schmidt János	94%
Hoffmann Géza	84%
Péter Lajos	90%

Name	Date of Birth	Town	Grade	Perfor mance
Schmidt János	1985	Arad	5	94%
Hoffmann Géza	1986	Tata	4	84%
Péter Lajos	1985	Szombathely	5	90%

• Let us make the cartesian product of the two table $\Pi_{\text{name, performance}}(\text{Students}) \times \rho_{\text{New}}(\Pi_{\text{name, performance}}(\text{Students}))$

Name	Performance	New_Name	New_Performance
Schmidt J.	94 %	Schmidt J.	94 %
Schmidt J.	94 %	Hoffmann G.	84 %
Schmidt J.	94 %	Péter L.	90 %
Hoffmann G.	84 %	Schmidt J.	94 %
Hoffmann G.	84 %	Hoffmann G.	84 %
Hoffmann G.	84 %	Péter L.	90 %
Péter L.	90 %	Schmidt J.	94 %
Péter L.	90 %	Hoffmann G.	84 %
Péter L.	90 %	Péter L.	90 %

Name	Date of Birth	Town	Grade	Perfor mance
Schmidt János	1985	Arad	5	94%
Hoffmann Géza	1986	Tata	4	84%
Péter Lajos	1985	Szombathely	5	90%

Selct those rows, where the performance is greater than new performance

$$\sigma_{\text{performance} > \text{new_performance}}(\Pi_{\text{name, performance}}(\text{Students}) \times \rho_{\text{New}}(\Pi_{\text{name, performance}}(\text{Students})))$$

Name	Performance	New_Name	New_Performance
Schmidt J.	94 %	Schmidt J.	94 %
Schmidt J.	94 %	Hoffmann G.	84 %
Schmidt J.	94 %	Péter L.	90 %
Hoffmann G.	84 %	Schmidt J.	94 %
Hoffmann G.	84 %	Hoffmann G.	84 %
Hoffmann G.	84 %	Péter L.	90 %
Péter L.	90 %	Schmidt J.	94 %
Péter L.	90 %	Hoffmann G.	84 %
Péter L.	90 %	Péter L.	90 %

Name	Date of Birth	Town	Grade	Perfor mance
Schmidt János	1985	Arad	5	94%
Hoffmann Géza	1986	Tata	4	84%
Péter Lajos	1985	Szombathely	5	90%

 We get the result subtracting the rows with the columns from the new table from the original table:

$$\begin{split} &\Pi_{\text{name, performance}}(\text{Students})\text{-}\Pi_{\text{new_name, new_performance}}(\\ &\sigma_{\text{performance}}\text{-}\text{new_performance}(\Pi_{\text{name, performance}}(\text{Students})\times\\ &\rho_{\text{New}}(\Pi_{\text{name, performance}}(\text{Students})))) \end{split}$$

Name	Performance
Schmidt János	94%
Hoffmann Géza	84%
Péter Lajos	90%

New_Name	New_Performance
Hoffmann Géza	84%
Péter Lajos	90%

Result: Schmidt János – 94%!

Steps (summary):

- Rename
- Cross product
- Selection with a given condition
- Projection of the names
- Difference of the original set and the set we get after the above operations

```
\Pi_{\text{name, performance}} (\text{Students}) - \\ \Pi_{\text{new\_name, new\_performance}} (\sigma_{\text{performance}} - \text{new\_performance}} (\Gamma_{\text{name, performance}} (\text{Students}) \times \rho_{\text{new}} (\Pi_{\text{name, performance}} (\text{Students})))
If you change the part highlighted with green text, it will give you:
1. \ \Pi_{\text{new\_name, new\_performance}} (\sigma_{\text{performance}} - \text{new\_performance}) \rightarrow \text{max} \text{imum}
2. \ \Pi_{\text{name, performance}} (\sigma_{\text{performance}} - \text{new\_performance}) \rightarrow \text{min} \text{imum}
3. \ \Pi_{\text{new\_name, new\_performance}} (\sigma_{\text{performance}} - \text{new\_performance}) \rightarrow \text{min} \text{imum}
4. \ \Pi_{\text{name, performance}} (\sigma_{\text{performance}} - \text{new\_performance}) \rightarrow \text{max} \text{imum}
```

Assignment Operator

 $\pi_{\text{SSN, Accidents}} \text{(Drivers)-} \ \pi_{\text{Driver.SSN, Drivers.Accidents}} \\ (\sigma_{\text{Driver. Accidents}} \circ (\pi_{\text{Drivers.SSN, Drivers. Accidents}}) \\ \times \rho_{\text{R} \leftarrow \text{NEW}} (\pi_{\text{Drivers.SSN, Drivers. Accidents}} \text{(Drivers))))}$

- $R \leftarrow \pi_{Drivers.SSN, Drivers. Accidents}$ (Drivers)
- NEW $\leftarrow \rho_{R_2}(R)$
- TEMP1 $\leftarrow \sigma_{R.Accidents > NEW. Accidents}$ (R×NEW).
- R- $\pi_{R.SSN, R. Accidents}$ (TEMP1)

Division - Example

R:

Α	В
a1	b1
a1	b2
a1	b3
a1	b4
a2	b1
a2	b2
а3	b2
a4	b2
a4	b4

S:

A a1

a4

Division Example 2 – self work

Question: Who completed all Database Tasks?

Completed:

Student	Task
Fred	Database1
Fred	Database2
Fred	Compiler1
Eugene	Database1
Eugene	Compiler1
Sara	Database1
Sara	Database2

DBProject:

Task
Database1
Database2

Completed + DBProject?

Student
Fred
Sara

Exact Row Counting

 Problem: Give those rows in a table which are exactly exists only x-times in it.

 In this example we search those pilots, who can drive exactly TWO types of airplanes!

Exact Row Counting

- Steps:
 - Rename
 - Cross product
 - Selection -> Projection
 - Cross product
 - Selection -> Projection
 - Difference

"Exact row counting"

Ivame	туре
А	111
Α	120
В	100
С	111
С	421

741

Pilot:

Solution

n	nļ t		un		l ut	
À	1	111	1	A	1	111
À	1	120	1	A	1	111
В	1	100	1	Ÿ	1	111
C	1	111	1	Ä	1	111
C	i i	421	1	A	1	111
C	1	741	1	A	1	111
Ä	1	111	1	A	1	120
Ä	-	120	1	A	1	120
В	Ĩ	100	Ì	Ä	ì	120

```
TTT |
                              111
111 | C
                              111
                              111
111
                              111
120 | A
               111 |
                              421
               111 |
                              421
               111 | C
                              421
                              421
               111 | C
                              421 I
```

```
ho_{\mathit{New\_Pilot(new\_name,new\_type)}}(Pilot)
```

$$\rho_{\textit{New2_Pilot}(\textit{new2_name},\textit{new2_type})}(\textit{Pilot})$$

$$\pi_{\mathit{name}}(\sigma_{\mathit{name}=\mathit{new_name}} \, \mathit{AND} \, \mathit{type} \neq \mathit{new_type} \, (Pilot \times New_Pilot) -$$

$$\pi_{\mathit{name}}(\sigma_{\mathit{name}=\mathit{new}_\mathit{name}\,\mathit{=}\mathit{new}2_\mathit{name}\,\mathit{AND}\,\mathit{type}\neq\mathit{new}2_\mathit{type}}((\mathit{Pilot}\times\mathit{New}_\mathit{Pilot})\times\mathit{New}2_\mathit{Pilot}))$$

Problem 1. - continued

Consider the following schema:

- Suppliers (<u>sid</u>, sname, address)
- Parts (pid, pname, color)
- Catalog (sid, pid, cost)

Write the following queries in relational algebra:

- 5. Find the sids of suppliers who supply every part.
- 6. Find the sids of suppliers who supply every red part.
- 1. Find the sids of suppliers who supply every red and green part.
- 8. Find the sids of suppliers who supply every red part or supply every green part.
- 9. Find pids of parts that are supplied by at least two different suppliers
- 10. Find the pids of the most expensive parts supplied by "Yosemite Sham"