An *optimization problem* is a problem in which we want to find a "best" solution out of a set of *feasible* solutions.

• A solution is feasible if it satisfies a given set of constraints.

Generally an optimization problem will want to maximize some value or minimize some cost.

- Maximization ex: Toll Booth problem.
- Minimization ex: Matrix Chain.

We have considered some dynamic programming approaches to some optimization problems. For some problems, dynamic programming is overkill, and there may be a more efficient algorithm.

A greedy algorithm is an algorithm which solves a subproblem by making a choice which appears to be the best choice at the moment. After making this choice, we obtain a new subproblem which we again solve by making a choice which appears to be the best choice at that moment.

- Matrix Chain example: Find the largest  $p_i$  and multiply  $A_i$  with  $A_{i+1}$ . Repeat this procedure until there is only one matrix.
- Toll Booth example: Choose the toll booth with the largest value, and remove any toll booths which would be too close to this booth. Repeat this procedure until we cannot add any more toll booths.

Neither one of these examples guarantees an optimal solution. That is, there are *counterexamples* for which these algorithms will compute a solution which is not optimal.

That being said, there are many problems for which there exist greedy algorithms which guarantee to return an optimal solution, and generally a greedy algorithm will be more efficient (in time and space) than a dynamic programming algorithm. Suppose we have a set  $S = \{a_1, a_2, \dots, a_n\}$  of n proposed *activities* that wish to use a resource (e.g. a lecture hall) which can serve only one activity at a time.

Each activity  $a_i$  has a start time  $s_i$  and a finish time  $f_i$  where

$$0 \le s_i < f_i < \infty$$

If selected, activity  $a_i$  takes place during the half-open time interval  $[s_i, f_i)$ . Activities  $a_i$  and  $a_j$  are *compatible* if the intervals  $[s_i, f_i)$  and  $[s_j, f_j)$  do not overlap.

The activity-selection problem wants to select a maximum-size subset of mutually compatible activities.

We assume that the activities are listed in non-decreasing order according to finishing time:

$$f_1 \le f_2 \le \ldots \le f_n$$

## Example:

Note we can view the activities as intervals where the left end is  $s_i$  and the right end is  $f_i$ .



Let  $S_{ij}$  denote the set of activities that start after  $a_i$  finishes and finish before  $a_j$  starts. Suppose we wish to find a maximum set of mutually compatible activities in  $S_{ij}$ .

Tat lake Sis

Let  $A_{ij}$  denote the optimal solution, and suppose it contains some activity  $a_k$ . Note that  $a_k$  divides  $S_{ij}$  into two subproblems  $S_{ik}$  and  $S_{kj}$ .

The optimal solution for  $S_{ij}$  is therefore  $A_{ik} \cup A_{kj} \cup \{a_k\}$  (using similar "cut-and-paste" argument). The size of the solution is  $|A_{ik}| + |A_{kj}| + 1$ .

Let c[i, j] denote the size of an optimal solution for  $S_{ij}$ . We have the following recurrence relation (note this is similar to the matrix chain problem):

$$C[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{q_{KG} S_{0j}} \frac{1}{2} C[i,k] + C[k,j] + i \end{cases} \text{ if } S_{ij} \neq \emptyset$$

We could solve this problem via dynamic programming, and the running time would be  $O(n^3)$  (we have  $O(n^2)$  subproblems, and each one takes O(n) time to compute). Can we do better?

What might be a good greedy strategy when determining an activity to include in our optimal solution?

Intuition tells us that it may be a good idea to include an activity which ends as early as possible, as we increase the number of activities in our solution and we leave as much time left as possible for the remaining activities.

Could it be that repeating this procedure repeatedly until we cannot add any more activities results in an optimal solution? Can we either prove that the algorithm is correct or can we construct a counterexample which shows that it fails? Toll Booth Counter example:

 $X_{1}=5$ ,  $X_{2}=10$ ,  $X_{3}=15$ 

t,=9, t2=10, t3=9

OIK SK

Let  $S_k = \{a_i \in S : s_i \geq f_k\}$  be the set of activities that start after  $a_k$  finishes. We will prove the following theorem:

Theorem

Consider any nonempty subproblem  $S_R$  and let  $q_m$  denote the activity in  $S_R$  with the earliest finishing time. Then  $q_m$  is included in some maximum-sized subset of compatible activities of  $S_R$ .

Proof

Let  $A_K$  be an optimal solution for  $S_K$ , and let  $a_5$  be the activity in  $A_K$  with earliest finishing time. If  $g_5 = a_m$ , we are dene, so assume  $a_5 \neq a_m$ . Consider the set  $A_K = A_K \setminus \{a_5\}$   $\cup \{a_m\}$ .

1 am AKIEa;}

A'r 15 feasible and lA'n = lAr so A'r is optimal.

An iterative greedy algorithm:

$$A = \xi a_1 \xi$$

$$k = 1$$

$$for \quad M = 2 \quad to \quad n \xi$$

$$If \quad S[m] \geq f[k] \xi$$

$$A = A \cup \xi a_m \xi$$

$$K = M$$

$$\xi = M$$

$$\xi = M$$