Principes de fonctionnement des machines binaires

2022-2023

Matthieu Picantin

- numération et arithmétique
- numération et arithmétique en machine
- codes, codages, compression,
- contrôle d'erreur (détection, correction)
- crypto (confidentialité, authenticité, intégrité)
- logique et calcul propositionnel
- circuits numériques

Fig. 1-Schematic diagram of a general communication system.

Détection (+retransmission)

- juste assez de redondance pour que le récepteur puisse détecter d'éventuelles erreurs & demander une retransmission
- adapté sur canal fiable

Correction

- suffisamment de redondance pour que le récepteur puisse corriger d'éventuelles erreurs
- adapté sur canal bruité

Redondance et mots de code

- mot de code (n bits) = données (m bits) + contrôle (r bits)
- 2^m mots de code (légaux) parmi 2ⁿ mots possibles

A Mathematical Theory of Communication by C. E. Shannon (1948)

Distance de Hamming

- nombre de bits différents entre 2 mots
- somme des 1 du XOR des 2 mots
- nombre minimum d'erreurs simples pour passer d'un mot à l'autre

Distance de Hamming d'un code

distance minimale entre deux mots du code:

$$d_H(\mathcal{C}) = \min \left\{ d_H(u, v) : u \neq v \in \mathcal{C} \right\}$$

Qualité d'un code

- un code C vérifiant $d_H(C) \ge k+1$ permet de détecter k erreurs
- un code \mathcal{C} vérifiant $d_H(\mathcal{C}) \geq 2k+1$ permet de corriger k erreurs

Un code 1-détecteur

L'ajout d'un bit de parité produit un code de distance de Hamming 2

Un code 2-correcteur

picantin@irif.fr PF1 Amphi#08 27/10/2022 3 / 8

En théorie: de l'espace pour les boules (condition nécessaire)

Pouvoir corriger toute erreur simple pour *m* bits de données demande r bits de contrôle avec $m+r<2^r$

En pratique: le code de Hamming (condition suffisante)

- bits numérotés de 1 à n = m + r de gauche à droite
- r bits de contrôle aux positions puissances de 2 (1, 2, 4, 8, 16, ...)
- m bits de données aux autres positions (3, 5-7, 9-15, 17, 18...)
- bits de contrôle = calcul de parité sur les bits de données aux positions dont la décomposition en somme de puissances de 2 fait intervenir la position du bit de contrôle concerné
- détection du bit erroné (et correction) par somme des positions des bits de contrôle non-conformes à la parité

- des bits numérotés de 1 à n = m + r comme pour le code original
- un bit de parité supplémentaire (parité globale) numéroté 0

Amphi#08

- des bits numérotés de 1 à n = m + r comme pour le code original
- un bit de parité supplémentaire (parité globale) numéroté 0

Error detecting and error correcting codes by R. W. Hamming (1950)

27/10/2022

- des bits numérotés de 1 à n = m + r comme pour le code original
- un bit de parité supplémentaire (parité globale) numéroté 0

Error detecting and error correcting codes by R. W. Hamming (1950)

27/10/2022

- des bits numérotés de 1 à n = m + r comme pour le code original
- un bit de parité supplémentaire (parité globale) numéroté 0

- des bits numérotés de 1 à n = m + r comme pour le code original
- un bit de parité supplémentaire (parité globale) numéroté 0

- des bits numérotés de 1 à n = m + r comme pour le code original
- un bit de parité supplémentaire (parité globale) numéroté 0

27/10/2022

- des bits numérotés de 1 à n = m + r comme pour le code original
- un bit de parité supplémentaire (parité globale) numéroté 0

Error detecting and error correcting codes by R. W. Hamming (1950)

27/10/2022

- des bits numérotés de 1 à n = m + r comme pour le code original
- un bit de parité supplémentaire (parité globale) numéroté 0

- des bits numérotés de 1 à n = m + r comme pour le code original
- un bit de parité supplémentaire (parité globale) numéroté 0

Error detecting and error correcting codes by R. W. Hamming (1950)

27/10/2022

- des bits numérotés de 1 à n = m + r comme pour le code original
- un bit de parité supplémentaire (parité globale) numéroté 0

27/10/2022

5/8

picantin@irif.fr PF1 Amphi#08

Codes CRC (Cyclic Redundancy Check)

- correspondance entre rang des bits et degré des monômes
 - le mot 10011 code le polynôme $x^4 + x + 1$
- arithmétique polynomiale (soustraction modulo 2 et division euclidienne)

Utilisation d'un polynôme générateur G(x)

- G(x) de degré r et message M(x)
- ajout de r bits à 0 après le bit de poids faible de M(x)
- division de x^rM(x) par G(x): reste R(x)
- envoi de $T(x) = x^r M(x) R(x)$
- T(x) est divisible par G(x) (à vérifier par le récepteur!)

CRC16: $x^{16} + x^{15} + x^2 + 1$ CRC32: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

picantin@irif.fr Amphi#08 27/10/2022 6/8

sortie -	- R3	← R2	← R1	RO	entrée
	0	0	0	0	1101101011 0000
0	Ö	Ö	Ö	ĺ	101101011 0000
00	0	0	1	1	01101011 0000
000	0	1	1	0	1101011 0000
0000	1	1	0	1	101011 0000
00001	1	0	0	0	01011 0000
000011	0	0	1	1	1011 0000
0000110	0	1	1	1	011 0000
00001100	1	1	1	0	11 0000
000011001	1	1	1	0	10000
0000110011	1	1	1	0	0000
00001100111	1	1	1	1	000
000011001111	1	1	0	1	00
0000110011111	1	0	0	1	0
00001100111111	0	0	0	1	

\oplus	0	1
0	0	1
1	1	0