```
In [1]: import pandas as pd
   import numpy as np
   from sklearn.preprocessing import StandardScaler
   from sklearn.linear_model import LogisticRegression
   from sklearn.model_selection import train_test_split
```

C3

In [2]: df=pd.read_csv("C3_bot_detection_data.csv")
df

Out[2]:

	User ID	Username	Tweet	Retweet Count	Mention Count	Follower Count	Verified	Bot Label	Lo
0	132131	flong	Station activity person against natural majori	85	1	2353	False	1	Adk
1	289683	hinesstephanie	Authority research natural life material staff	55	5	9617	True	0	Sand
2	779715	roberttran	Manage whose quickly especially foot none to g	6	2	4363	True	0	Harris
3	696168	pmason	Just cover eight opportunity strong policy which.	54	5	2242	True	1	Martine
4	704441	noah87	Animal sign six data good or.	26	3	8438	False	1	Camac
49995	491196	uberg	Want but put card direction know miss former h	64	0	9911	True	1	Kimberly
49996	739297	jessicamunoz	Provide whole maybe agree church respond most	18	5	9900	False	1	Gree
49997	674475	lynncunningham	Bring different everyone international capital	43	3	6313	True	1	Deboi
49998	167081	richardthompson	Than about single generation itself seek sell	45	1	6343	False	0	Stephe
49999	311204	daniel29	Here morning class various room human true bec	91	4	4006	False	0	Nova

50000 rows × 11 columns

```
In [3]: df1=df.iloc[:,3:8]
df1
```

Out[3]:

	Retweet Count	Mention Count	Follower Count	Verified	Bot Label
0	85	1	2353	False	1
1	55	5	9617	True	0
2	6	2	4363	True	0
3	54	5	2242	True	1
4	26	3	8438	False	1
49995	64	0	9911	True	1
49996	18	5	9900	False	1
49997	43	3	6313	True	1
49998	45	1	6343	False	0
49999	91	4	4006	False	0

50000 rows × 5 columns

```
In [4]: df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 5 columns):
```

```
Column
#
                  Non-Null Count Dtype
   -----
                  -----
0
   Retweet Count
                  50000 non-null int64
1
   Mention Count
                  50000 non-null int64
2
   Follower Count 50000 non-null
                                int64
3
   Verified
                  50000 non-null bool
4
   Bot Label
                  50000 non-null int64
```

dtypes: bool(1), int64(4)

memory usage: 1.6 MB

```
In [5]: y=df1["Verified"]
    x=df1.drop(["Verified"],axis=1)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [6]: lr=LogisticRegression()
lr.fit(x_train,y_train)
```

```
Out[6]: LogisticRegression()
```

```
In [7]: lr.predict(x_test)
Out[7]: array([ True, False, False, ..., True, True, False])
In [8]: lr.score(x_test,y_test)
Out[8]: 0.495
```

C4

```
In [9]: df2=pd.read_csv("C4_framingham.csv")
df2
```

Out[9]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0
4233	1	50	1.0	1	1.0	0.0	0	1
4234	1	51	3.0	1	43.0	0.0	0	0
4235	0	48	2.0	1	20.0	NaN	0	0
4236	0	44	1.0	1	15.0	0.0	0	0
4237	0	52	2.0	0	0.0	0.0	0	0

4238 rows × 16 columns

In [10]: df2=df2.dropna()

```
In [11]: | df2.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 3656 entries, 0 to 4237
         Data columns (total 16 columns):
              Column
                               Non-Null Count Dtvpe
          ---
          0
              male
                                3656 non-null
                                                int64
          1
                                3656 non-null
                                                int64
              age
                               3656 non-null
          2
              education
                                                float64
          3
              currentSmoker
                               3656 non-null
                                                int64
          4
                               3656 non-null
                                                float64
              cigsPerDay
          5
              BPMeds
                                3656 non-null
                                                float64
          6
              prevalentStroke 3656 non-null
                                                int64
          7
              prevalentHyp
                                3656 non-null
                                                int64
          8
              diabetes
                               3656 non-null
                                                int64
          9
              totChol
                               3656 non-null
                                                float64
          10 sysBP
                               3656 non-null
                                                float64
          11 diaBP
                               3656 non-null
                                                float64
          12 BMI
                                3656 non-null
                                                float64
                                3656 non-null
                                                float64
          13 heartRate
                               3656 non-null
                                                float64
          14 glucose
          15 TenYearCHD
                                3656 non-null
                                                int64
         dtypes: float64(9), int64(7)
         memory usage: 485.6 KB
         y=df2["diabetes"]
In [12]:
         x=df2.drop(["diabetes"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [13]: | lr=LogisticRegression()
         lr.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
         ession)
           n_iter_i = _check_optimize_result(
Out[13]: LogisticRegression()
In [14]: |val=[[1,34,5,1,4,1,0,1,123,108,89,29,84,70,1]]
         lr.predict(val)
Out[14]: array([0], dtype=int64)
```

```
In [15]: lr.score(x_test,y_test)
```

Out[15]: 0.9845031905195989

C5

In [16]: df3=pd.read_csv("C5_health care diabetes.csv")
df3

Out[16]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunctio
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
763	10	101	76	48	180	32.9	0.17
764	2	122	70	27	0	36.8	0.34
765	5	121	72	23	112	26.2	0.24
766	1	126	60	0	0	30.1	0.34
767	1	93	70	31	0	30.4	0.31

768 rows × 9 columns

In [17]: df3.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

```
In [18]: y=df3["Outcome"]
         x=df3.drop(["Outcome"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [19]: | lr=LogisticRegression()
         lr.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
         ession)
           n_iter_i = _check_optimize_result(
Out[19]: LogisticRegression()
In [20]: lr.predict(x test)
Out[20]: array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
               0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1,
               0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
               0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
               0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
               1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,
               0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
               0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1,
               1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
               1, 0, 0, 0, 0, 0, 0, 1, 0, 0], dtype=int64)
In [21]: |val1=[[1,34,5,1,4,1,123,10]]
         lr.predict(val1)
Out[21]: array([1], dtype=int64)
```