DERIVATIVES & ANTIDERIVATIVES

GENERAL RULES

Above: $a \in \mathbb{R}$ is a constant, and f and g functions.

ELEMENTARY FUNCTIONS (Powers and Partial Fractions)

f(x)	f'(x)	$\int f(x) dx$
а	0	ax+C
X	1	$\frac{x^2}{2}$ +C
x^2	2 x	$\frac{\frac{x^2}{2} + C}{\frac{x^3}{3} + C}$
χ^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1} + C (\alpha \neq -1)$
		$\ln x + C (\alpha = -1)$
$\frac{1}{x}$	$\frac{-1}{x^2}$	ln x +C
$\frac{1}{x-\zeta}$	$\frac{-1}{(\mathbf{x} - \mathbf{\zeta})^2}$	$\ln x-\zeta + C$
$\frac{1}{(x-\zeta)^k}$	$\frac{-k}{(x-\zeta)^{\alpha+1}}$	$-\frac{1}{k-1}\frac{1}{(x-\zeta)^{\alpha-1}}+C\ (k\geq 2)$
$\frac{1}{x^2+a^2}$	$\frac{-2x}{(x^2+a^2)^2}$	$\frac{1}{a}$ arctan $\left(\frac{x}{a}\right)$ +C
$\frac{1}{(\mathbf{x}^2 + \mathbf{a}^2)^k}$	$\frac{-2kx}{(x^2+a^2)^{k+1}}$	$\frac{1}{2(k-1)a^2} \frac{x}{(x^2+a^2)^{k-1}} + \frac{2k-3}{2(k-1)a^2} \int \frac{\mathrm{d}x}{(x^2+a^2)^{k-1}} (k \ge 2)$
$\frac{x}{x^2+a^2}$	$\frac{2a^2}{(x^2+a^2)^2} - \frac{1}{x^2+a^2}$	$\frac{1}{2}$ ln $\left x^2+a^2\right +C$
$\frac{x}{(x^2+a^2)^k}$	$\frac{2ka^2}{(x^2+a)^{k+1}} - \frac{2k-1}{x^2+a^2}$	$-\frac{1}{2(k-1)}\frac{1}{(x^2+a^2)^{k-1}} + C (k \ge 2)$

Above: $c \in \mathbb{R}$, $\alpha, \zeta \in \mathbb{R}$, $k \in \mathbb{N}$ and a > 0 are constants, and C the antiderivative constant.

ELEMENTARY FUNCTIONS (Exponentials and Logarithms)

$$\begin{array}{c|cccc} f(x) & f'(x) & \int f(x) \mathrm{d}x \\ e^x & e^x & e^x + C \\ \ln x & \frac{1}{x} & x \ln x - x + C \\ b^x & (\ln b) b^x & \frac{1}{\ln b} b^x + C \\ \log_b x & \frac{1}{(\ln b)x} & x \log_b x - \frac{x}{\ln b} + C \end{array}$$

Above: b > 0 are constants, and C the antiderivative constant.

ELEMENTARY FUNCTIONS (Trigonometric Functions)

f(x)	f'(x)	$\int f(x) dx$
sin <i>x</i>	COS <i>X</i>	$-\cos x + C$
COS <i>X</i>	-sin <i>x</i>	sin <i>x</i> +C
tan <i>x</i>	$\sec^2 \mathbf{x} = 1 + \tan^2 \mathbf{x}$	$\ln \sec x + C$
CSC X	-cscxcotx	$-\ln \csc x + \cot x + C$
sec <i>x</i>	sec <i>x</i> tan <i>x</i>	$\ln \sec x + \tan x + C$
cot <i>x</i>	$-\csc^2 \mathbf{x} = -1 - \cot^2 \mathbf{x}$	$-\ln \csc x + C$
arcsin <i>x</i>	$\frac{1}{\sqrt{1-x^2}}$	$x \operatorname{arcsin} x + \sqrt{1 - x^2} + C$
arccos <i>x</i>	$\frac{-1}{\sqrt{1-x^2}}$	x arccos $x - \sqrt{1 - x^2} + C$
arctan <i>x</i>	$\frac{1}{1+x^2}$	$x \arctan x - \frac{1}{2} \ln 1 + x^2 + C$
arccsc <i>x</i>	$\frac{-1}{x\sqrt{x^2-1}}$	xarccsc x +arcsin x +C
arcsec <i>x</i>	$\frac{1}{x\sqrt{x^2-1}}$	xarcsecx+arccosx+C
arccot <i>x</i>	$\frac{-1}{1+x^2}$	$x \operatorname{arccot} x + \frac{1}{2} \ln 1 + x^2 + C$

Above: C is the antiderivative constant.

ELEMENTARY FUNCTIONS (Square Roots of Quadratic Polynomials)

Above: a > 0 is a constant, and C the antiderivative constant.