

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Science and Technology

Grafy i ich zastosowania Zestaw 4

Elzbieta.Strzalka@fis.agh.edu.pl p. 232/D-10

Zestaw 4, zadanie 1

Napisać program do kodowania grafów skierowanych (digrafów) i do generowania losowych digrafów z zespołu G(n, p).

- Graf **skierowany** \equiv digraf (*directed graph*).
- Krawędź skierowana = łuk.
- Digraf prosty wszystkie łuki są różne, brak pętli.

V	Sąsiedzi v
1	
2	
3	
4	
5	
6	
7	

- Graf skierowany \equiv digraf (*directed graph*).
- Krawędź skierowana = łuk.
- Digraf prosty wszystkie łuki są różne, brak pętli.

V	Sąsiedzi v
1	7
2	
3	
4	
5	
6	
7	

- Graf skierowany \equiv digraf (*directed graph*).
- Krawędź skierowana = łuk.
- Digraf prosty wszystkie łuki są różne, brak pętli.

-								
	V	Sąsiedzi v						
	1	7						
	2	1,	3,	6,	7			
	3							
	4							
	5							
	6							
	7							

- Graf **skierowany** \equiv digraf (*directed graph*).
- Krawędź skierowana = łuk.
- Digraf prosty wszystkie łuki są różne, brak pętli.

V	Sąsiedzi v						
1	7						
2	1,	3,	6,	7			
3	2,	6					
4	3,	5					
5	3						
6	5						
7	1						

	1	2	3	4	5	6	7
1							
2							
3							
4							
5							
6							
7							

- Macierz kwadratowa $n \times n$
- Brak symetrii: możliwe jednostronne sąsiedztwo.

	1	2	3	4	5	6	7
1	0	0	0	0	0	0	1
3							
3							
4							
5							
6							
7							

- Macierz kwadratowa $n \times n$
- Brak symetrii: możliwe jednostronne sąsiedztwo.

	1	2	3	4	5	6	7
1	0	0	0	0	0	0	1
2	1	0	1	0	0	1	1
3							
4							
5							
6							
7							

- Macierz kwadratowa $n \times n$
- Brak symetrii: możliwe jednostronne sąsiedztwo.

	1	2	3	4	5	6	7
1	0	0	0	0	0	0	1
2	1	0	1	0	0	1	1
3	0	1	0	0	0	1	0
4	0	0	1	0	1	0	0
5	0	0	1	0	0	0	0
6	0	0	0	0	1	0	0
7	1	0	0	0	0	0	0

- Macierz kwadratowa $n \times n$
- Brak symetrii: możliwe jednostronne sąsiedztwo.

0

- Macierz kwadratowa $n \times n$
- Brak symetrii: możliwe jednostronne sąsiedztwo.

0

0 0

4 0 0

5

6

	1	2	3	4	5	6	7
1	0	0	0	0	0	0	1
2	1	0	1	0	0	1	1
3	0	1	0	0	0	1	0
4	0	0	1	0	1	0	0
5	0	0	1	0	0	0	0
6	0	0	0	0	1	0	0
7	1	0	0	0	0	0	0

- Macierz kwadratowa $n \times n$
- **Brak symetrii**: możliwe jednostronne sąsiedztwo.

Macierz incydencji

		L_1	L ₂	L ₃	L ₄	L ₅	L ₆	L ₇	L ₈	L ₉	L ₁₀	L ₁₁	L ₁₂
Ī	1	-1	1	0	0	0	0	0	0	0	0	0	1
Ī	2	0	-1	-1	-1	-1	1	0	0	0	0	0	0
	3	0	0	1	0	0	-1	-1	1	0	1	0	0
	4	0	0	0	0	0	0	0	-1	-1	0	0	0
Ī	5	0	0	0	0	0	0	0	0	1	-1	1	0
Ī	6	0	0	0	1	0	0	1	0	0	0	-1	0
Ī	7	1	0	0	0	1	0	0	0	0	0	0	-1

- Macierz $n \times k$
- Kodowaniezwrotu:-1 przy
 - −1 prz źródle.
- Kolejność kolumn dowolna.
- G(n, p): p jest prawdopodobieństwem istnienia każdego z łuków.

Zestaw 4, zadanie 2

Zaimplementować algorytm Kosaraju do szukania silnie spójnych składowych na digrafie i zastosować go do digrafu losowego.

- Niespójny silnie digraf składa się ze składowych, które są silnie spójne.
- Jeżeli dwa wierzchołki należą do tej samej silnie spójnej składowej, to żadna ścieżka między nimi nie zawiera wierzchołka spoza tej składowej.

Czy silnie spójny?

- Graf skierowany jest silnie spójny ⇔ między każdą parą wierzchołków istnieje ścieżka (czyli: istnieje ścieżka $u \to v$, ale też $v \to u$).
- Niespójny silnie digraf składa się ze składowych, które są silnie spójne.
- Jeżeli dwa wierzchołki należą do tej samej silnie spójnej składowej, to żadna ścieżka między nimi nie zawiera wierzchołka spoza tej składowej.

Czy silnie spójny? Nie.

Algorytm Kosaraju

- Podstawa: silnie spójna składowa zawiera te wierzchołki, które są nawzajem osiągalne w grafie G oraz w grafie transponowanym G^{T} .
- Dwa przeszukiwania w głąb:
 - **1 Pierwsze DFS**: oznaczenie czasów odwiedzenia *d* i przetworzenia *f* .
 - **2** Transpozycja grafu: G^{T} (te same krawędzie, przeciwne zwroty).
 - **Orugie DFS**: w kolejności malejących czasów f, oznaczenie numeru składowej.

Zestaw 4, zadanie 2

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

Zapis do tablic

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

9 / 24

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

Zapis do tablic

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Zestaw 4, zadanie 2

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

Zapis do tablic

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Zestaw 4, zadanie 2

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

Zapis do tablic

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

9 / 24

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

Zapis do tablic

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Zestaw 4, zadanie 2

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

Zapis do tablic

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Zestaw 4, zadanie 2

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

Zapis do tablic

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Zestaw 4, zadanie 2

Algorytm Kosaraju: 1. etap

• Pierwsze DFS: oznaczenie czasów odwiedzenia d i przetworzenia f (O(n+k)).

- Start: dowolny wierzchołek.
- d[u] zapisujemy w momencie odwiedzenia u.
- f[u] zapisujemy
 w momencie zakończenia
 przetwarzania u.

Algorytm Kosaraju: 2. etap

1 Transpozycja grafu: G^{T} (te same krawędzie, przeciwne zwroty): O(n + k).

Graf G

Zestaw 4, zadanie 2

Algorytm Kosaraju: 2. etap

1 Transpozycja grafu: G^{T} (te same krawędzie, przeciwne zwroty): O(n + k).

 $\mathsf{Graf}\ \textit{G}^{\mathrm{T}}$

Algorytm Kosaraju: 3. etap

① Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n+k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, 1, 7.

Znalezione spójne składowe

Składowa 1, wierzchołki:4.

Algorytm Kosaraju: 3. etap

① Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n+k)).

Kolejność przeszukiwania

4, **2**, 3, 6, 5, 1, 7.

Znalezione spójne składowe

- Składowa 1, wierzchołki:4.
- Składowa 2, wierzchołki:2

Algorytm Kosaraju: 3. etap

① Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n+k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, 1, 7.

- Składowa 1, wierzchołki:
 4.
- Składowa 2, wierzchołki: 2, 3

Algorytm Kosaraju: 3. etap

① Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n+k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, 1, 7.

- Składowa 1, wierzchołki:
 4.
- Składowa 2, wierzchołki:2, 3, 5

Algorytm Kosaraju: 3. etap

1 Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n + k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, 1, 7.

- Składowa 1, wierzchołki:
 4.
- Składowa 2, wierzchołki:2, 3, 5, 6.

Algorytm Kosaraju: 3. etap

1 Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n + k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, 1, 7.

- Składowa 1, wierzchołki:
 4.
- Składowa 2, wierzchołki:2, 3, 5, 6.

Algorytm Kosaraju: 3. etap

① Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n+k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, 1, 7.

- Składowa 1, wierzchołki:
 4.
- Składowa 2, wierzchołki:2, 3, 5, 6.

Algorytm Kosaraju: 3. etap

1 Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n + k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, 1, 7.

- Składowa 1, wierzchołki:
 4.
- Składowa 2, wierzchołki:2, 3, 5, 6.

Algorytm Kosaraju: 3. etap

① Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n+k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, **1**, 7.

- Składowa 1, wierzchołki:
 4.
- Składowa 2, wierzchołki: 2, 3, 5, 6.
- Składowa 3, wierzchołki:1

Algorytm Kosaraju: 3. etap

① Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n+k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, 1, 7.

- Składowa 1, wierzchołki:4
- Składowa 2, wierzchołki:2, 3, 5, 6.
- Składowa 3, wierzchołki:1, 7.

Algorytm Kosaraju: 3. etap

① Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n+k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, 1, 7.

- Składowa 1, wierzchołki:
 4.
- Składowa 2, wierzchołki: 2, 3, 5, 6.
- Składowa 3, wierzchołki:
 1, 7.

Algorytm Kosaraju: 3. etap

① Drugie DFS: w kolejności malejących czasów f, oznaczenie numeru składowej (O(n+k)).

Kolejność przeszukiwania

4, 2, 3, 6, 5, 1, 7.

- Składowa 1, wierzchołki:
 4.
- Składowa 2, wierzchołki: 2, 3, 5, 6.
- Składowa 3, wierzchołki:1, 7.

Zestaw 4, zadanie 3

Wykorzystując algorytmy z powyższych punktów, wygenerować losowy silnie spójny digraf. Łukom tego digrafu przypisać losowe wagi będące liczbami całkowitymi z zakresu [-5, 10]. Zaimplementować algorytm Bellmana-Forda do znajdowania najkrótszych ścieżek od danego wierzchołka.

Jak znaleźć najkrótsze ścieżki z zadanego wierzchołka?

Algorytm Dijkstry?

Algorithm: dijkstra(G, w, s)

- 1: init(G, s)
- 2: $S \leftarrow \emptyset$
- 3: while $S \neq z$ biór wszystkich wierzchołków G do
- $u \leftarrow \text{wierzchołek o najmniejszym } d_s[u] \text{ z niegotowych } (u \notin S)$ 4:
- 5: $S \leftarrow S \cup \mu$
- for każdy wierzchołek $v \notin S$ będący sąsiadem u do
- relax(u, v, w)7:
- end for 8:
- 9: end while

Jak znaleźć najkrótsze ścieżki z zadanego wierzchołka?

Algorytm Dijkstry – działa tylko przy <u>nieujemnych wagach</u> oraz <u>nie wykrywa</u> <u>ujemnego cyklu</u> (wykonuje k relaksacji).

Algorithm: dijkstra(G, w, s)

- 1: init(G, s)
- 2: $S \leftarrow \emptyset$
- 3: while $S \neq z$ biór wszystkich wierzchołków G do
- 4: $u \leftarrow \text{wierzchołek o najmniejszym } d_s[u] \text{ z niegotowych } (u \notin S)$
- 5: $S \leftarrow S \cup u$
- 6: for każdy wierzchołek $v \notin S$ będący sąsiadem u do
- 7: relax(u, v, w)
- 8: end for
- 9: end while

• Algorytm Bellmana-Forda – działa również przy <u>ujemnych wagach</u>, <u>wykrywa ujemny cykl</u>. Ale: (n-1)+1 relaksacji każdej z k krawędzi $\Rightarrow O(n \cdot k)$.

Algorithm: bellman_ford(G, w, s)

- 1: init(G, s)
- 2: for $i \leftarrow 1$ to n-1 do
- 3: for każda krawędź (u,v) należąca do grafu G do
- 4: relax(u, v, w)
- 5: end for
- 6: end for
- 7: for każda krawędź (u,v) należąca do grafu G do
- 8: if $d_s[v] > d_s[u] + w[u][v]$ then
- 9: return FALSE
- 10: end if
- 11: end for
- 12: return TRUE

Elżbieta Strzałka (AGH)

Losowy silnie spójny digraf z ujemnymi wagami

Jak

Jak znaleźć najkrótsze ścieżki z zadanego wierzchołka?

• Algorytm Bellmana-Forda – działa również przy <u>ujemnych wagach</u>, wykrywa ujemny cykl. Ale: (n-1)+1 relaksacji każdej z k krawędzi $\Rightarrow O(n \cdot k)$.

Algorithm: bellman_ford(G, w, s)

- 1: init(G, s)
- 2: for $i \leftarrow 1$ to n-1 do
- 3: for każda krawędź (u, v) należąca do grafu G do
- 4: relax(u, v, w)
- 5: end for
- 6: end for
- 7: for każda krawędź (u,v) należąca do grafu G do
- 8: if $d_s[v] > d_s[u] + w[u][v]$ then
- 9: return FALSE
- 10: end if
- 11: end for
- 12: return TRUE

www.agh.edu.

• Algorytm Bellmana-Forda – działa również przy ujemnych wagach, wykrywa ujemny cykl. Ale: (n-1)+1 relaksacji każdej z k krawędzi $\Rightarrow O(n \cdot k)$.

Algorithm: bellman_ford(G, w, s)

- 1: init(G, s)
- 2: for $i \leftarrow 1$ to n-1 do
- for każda krawędź (u, v) należąca do grafu G do 3:
- relax(u, v, w)
- end for
- 6: end for
- 7: for każda krawędź (u, v) należąca do grafu G do
- if $d_s[v] > d_s[u] + w[u][v]$ then 8:
- return FALSE 9:
- end if 10:
- 11: end for
- TRUE 12: return

Zestaw 4, zadanie 4

Zaimplementować algorytm Johnsona do szukania odległości pomiędzy wszystkimi parami wierzchołków na ważonym grafie skierowanym.

Algorytm Johnsona

```
Algorithm: johnson(G, w)
1: G' \leftarrow add_s(G)
2: if bellman_ford(G', w, s) = FALSE then
         ERROR
4: else
       for każdy wierzchołek v należący do G' do
           h[v] \leftarrow d_s[v]
6:
7:
       end for
       for każda krawędź (u, v) należąca do grafu G' do
           \widehat{w}[u][v] \leftarrow w[u][v] + h[u] - h[v]
9:
        end for
10:
       Utwórz macierz D rozmiaru n \times n
11:
12:
        for każdy wierzchołek u należący do G do
           dijkstra(G, \widehat{w}, u)
13:
           for każdy wierzchołek v należący do G do
14:
               D[u][v] \leftarrow \widehat{d}_u[v] - h[u] + h[v]
15:
           end for
16:
        end for
17:
18:
       return D
19: end if
```

Graf G, wagi w

Zestaw 4. zadanie 4

Algorithm: johnson(G, w)

Graf G', wagi w

Dodanie wierzchołka s.

end for

return D

16:

17:

18. 19: end if

```
Algorithm: johnson(G, w)
1: G' \leftarrow add_s(G)
2: if bellman_ford(G', w, s) = FALSE then
         ERROR.
4. else
       for każdy wierzchołek v należący do G' do
           h[v] \leftarrow d_s[v]
6:
       end for
7.
       for każda krawędź (u, v) należąca do grafu G' do
9:
           \widehat{w}[u][v] \leftarrow w[u][v] + h[u] - h[v]
        end for
10:
11 -
       Utwórz macierz D rozmiaru n \times n
        for każdy wierzchołek u należący do G do
12:
           dijkstra(G, \widehat{w}, u)
13:
           for każdy wierzchołek v należący do G do
14:
               D[u][v] \leftarrow \widehat{d}_u[v] - h[u] + h[v]
15:
           end for
16:
        end for
17:
        return D
18.
19: end if
```

Graf G', wagi w

- Dodanie wierzchołka s.
- Wykluczenie cyklu o ujemnej sumie wag (byłby osiągalny z s).

16 / 24


```
Algorithm: johnson(G, w)
1: G' \leftarrow add_s(G)
2: if bellman_ford(G', w, s) = FALSE then
         ERROR
4: else
       for każdy wierzchołek v należący do G' do
           h[v] \leftarrow d_s[v]
7:
       end for
       for każda krawędź (u,v) należąca do grafu G' do
           \widehat{w}[u][v] \leftarrow w[u][v] + h[u] - h[v]
9:
        end for
10:
       Utwórz macierz D rozmiaru n \times n
11:
12:
        for każdy wierzchołek u należący do G do
           dijkstra(G, \widehat{w}, u)
13:
           for każdy wierzchołek v należący do G do
14:
               D[u][v] \leftarrow \widehat{d}_{u}[v] - h[u] + h[v]
15:
           end for
16:
        end for
17:
        return D
18:
19: end if
```

Graf G, wagi \widehat{w}

- Dodanie wierzchołka s.
- Wykluczenie cyklu o ujemnej sumie wag (byłby osiągalny z s).
- Przeskalowanie wag do nieujemnych.

16 / 24


```
Algorithm: johnson(G, w)
1: G' \leftarrow add_s(G)
2: if bellman_ford(G', w, s) = FALSE then
         ERROR
4: else
       for każdy wierzchołek v należący do G' do
           h[v] \leftarrow d_s[v]
       end for
       for każda krawędź (u, v) należąca do grafu G' do
           \widehat{w}[u][v] \leftarrow w[u][v] + h[u] - h[v]
9:
        end for
10:
       Utwórz macierz D rozmiaru n \times n
11:
12:
        for każdy wierzchołek u należący do G do
           dijkstra(G, \widehat{w}, u)
13:
           for każdy wierzchołek v należący do G do
14:
               D[u][v] \leftarrow \widehat{d}_{u}[v] - h[u] + h[v]
15:
           end for
16.
        end for
17:
        return D
18:
19: end if
```

Graf G, wagi \widehat{w}

- Dodanie wierzchołka s.
- Wykluczenie cyklu o ujemnej sumie wag (byłby osiągalny z s).
- Przeskalowanie wag do nieujemnych.
- n razy algorytm Dijkstry + powrotne przeskalowanie wynikowych długości.

Zestaw 4. zadanie 4

johnson(G, w) $G' \leftarrow add_s(G)$

 $\text{johnson}(G, w) \\
 \bullet G' \leftarrow \text{add_s}(G)$

www.agh.edu.pl -

johnson(G, w)

- $G' \leftarrow add_s(G)$
- bellman_ford(G', w, s)

A1 ••1 **-** ()

Algorithm: relax(u, v, w)

1: **if**
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

bellman_ford(G', w, s)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3: $p_s[v] \leftarrow u$

4: end if

$bellman_ford(G', w, s)$

- init(G', s)
- 1. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s, b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: **if**
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

- 3: $p_s[v] \leftarrow u$
- 4: end if

$\texttt{bellman_ford}(\mathit{G}', w, s)$

- init(G', s)
- 1. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

18 / 24

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

$\texttt{bellman_ford}(G', w, s)$

- init(G', s)
- 1. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c, b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

- 3: $p_s[v] \leftarrow u$
- 4: end if

$bellman_ford(G', w, s)$

- init(G', s)
- 1. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

18 / 24

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

- 3: $p_s[v] \leftarrow u$
- 4: end if

$bellman_ford(G', w, s)$

- init(G', s)
- 1. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

- 3: $p_s[v] \leftarrow u$
- 4: end if

$bellman_ford(G', w, s)$

- init(*G*′, *s*)
- 1. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

18 / 24

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

$bellman_ford(G', w, s)$

- init(G', s)
- 1. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c, b)
 - relax(s, a)
 - relax(s, b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3: $p_s[v] \leftarrow u$

4: end if

bellman_ford(G', w, s)

- init(G',s)
- 1. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3: $p_s[v] \leftarrow u$

4: end if

$oxed{bellman_ford}(G',w,s)$

- init(G', s)
- 2. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

18 / 24

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3: $p_s[v] \leftarrow u$

4: end if

$bellman_ford(G', w, s)$

- init(G', s)
- 2. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

18 / 24

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3: $p_s[v] \leftarrow u$

4: end if

$oxed{bellman_ford}(G',w,s)$

- init(G', s)
- 2. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s, b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3: $p_s[v] \leftarrow u$

4: end if

bellman_ford(G', w, s)

- init(G', s)
- 2. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c, b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

18 / 24

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

$\texttt{bellman_ford}(\mathit{G'}, w, s)$

- init(G', s)
- 2. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

- init(G', s)
- 2. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s, b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3: $p_s[v] \leftarrow u$

4: end if

bellman_ford(G', w, s)

- init(G', s)
- 2. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

18 / 24

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

- init(G', s)
- 3. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s, b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

- init(G', s)
- 3. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

$\texttt{bellman_ford}(\mathit{G'}, w, s)$

- init(G', s)
- 3. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

www.agh.edu.pl

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

$\texttt{bellman_ford}(\mathit{G'}, w, s)$

- init(G', s)
- 3. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s, b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

- init(G', s)
- 3. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

$\texttt{bellman_ford}(G', w, s)$

- init(G', s)
- 3. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s, b)
 - relax(s, c)

Graf G', wagi w

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w[u][v$$
 then

2:
$$d_s[v] \leftarrow d_s[u] + w[u][v]$$

3:
$$p_s[v] \leftarrow u$$

4: end if

- init(G', s)
- 3. iteracja relaksacji:
 - relax(a, b)
 - relax(a, c)
 - relax(b, a)
 - relax(c,b)
 - relax(s, a)
 - relax(s,b)
 - relax(s, c)

Oznaczenia: $(d_s[u]/p_s[u])$ (-2/c) AGH (0/Ø) (-4/a)0 (0/s)Graf G', wagi w7: for każda krawędź (u, v) należąca do grafu G do if $d_s[v] > d_s[u] + w[u][v]$ 8: return FALSE 9: www.agh.edu.pl 10: end if 11: end for

- Uwaga: to nie koniec algorytmu Bellmana Forda!
- Dla każdej z krawędzi następuje test warunek jak w relaksacji.
- Jeśli warunek spełniony ⇒ w grafie jest ujemny cykl!
- Czy u nas jest ujemny cykl...?

- Uwaga: to nie koniec algorytmu Bellmana Forda!
- Dla każdej z krawędzi następuje test – warunek jak w relaksacji.
- Jeśli warunek spełniony
 w grafie jest ujemny
 cykl!
- Czy u nas jest ujemny cykl...? Nie.

8: for każda krawędź (u,v) należąca do grafu G' do

 $\widehat{w}[u][v] \leftarrow w[u][v] + h[u] - h[v]$

johnson(G, w) - cd.

 Z Bellmana-Forda: mamy d_s.

www.agh.edu.pl

◆□▶◆□▶◆臺▶◆臺▶ 臺 ∽Q⊙

10: end for

. . .


```
johnson(G, w) - cd.
```

- Z Bellmana-Forda: mamy d_s .
 - h[a] = 0,
 - h[b] = -2,
 - h[c] = -4,
 - h[s] = 0.

www.agh.edu.pl

5: for każdy wierzchołek v należący do G' do

 $h[v] \leftarrow d_s[v]$ 6:

7: end for

8: for każda krawędź (u,v) należąca do grafu G' do

 $\widehat{w}[u][v] \leftarrow w[u][v] + h[u] - h[v]$

10: end for

. . .

Graf G', wagi w

www.agh.edu.pl

5: for każdy wierzchołek v należący do G' do

 $h[v] \leftarrow d_s[v]$ 6:

7: end for

8: for każda krawędź (u,v) należąca do grafu G' do

 $\widehat{w}[u][v] \leftarrow w[u][v] + h[u] - h[v]$

10: end for

. . .

johnson(G, w) - cd.

- Z Bellmana-Forda: mamy d_s .
 - h[a] = 0,
 - h[b] = -2,
 - h[c] = -4,
 - h[s] = 0.
- Przeskalowanie
- wag w do nieujemnych wag \hat{w} .


```
5: for każdy wierzchołek v należący do G^\prime do
```

6:
$$h[v] \leftarrow d_s[v]$$

7: end for

8: for każda krawędź (u,v) należąca do grafu G' do

9: $\widehat{w}[u][v] \leftarrow w[u][v] + h[u] - h[v]$

10: end for

. . .

johnson(G, w) - cd.

- Z Bellmana-Forda: mamy d_s .
 - h[a] = 0,
 - h[b] = -2,
 - h[c] = -4,
 - h[s] = 0.
- Przeskalowanie wag w do nieujemnych wag \widehat{w} .

Graf G, wagi \widehat{w}

Graf G, wagi \widehat{w}

. . .

12: for każdy wierzchołek u należący do G do

13: dijkstra (G, \widehat{w}, u)

14: for każdy wierzchołek v należący do G do

15: $D[u][v] \leftarrow \widehat{d}_u[v] - h[u] + h[v]$

16: end for

17: end for

johnson(G, w) - cd.

• Mamy:

$$h[a] = 0, h[b] = -2, h[c] = -4.$$

- dijkstra (G, \widehat{w}, a)
- dijkstra (G, \widehat{w}, b)
- dijkstra (G, \widehat{w}, c)

Graf G, wagi \widehat{w}

. . .

15:

12: for każdy wierzchołek u należący do G do

13: dijkstra (G, \widehat{w}, u)

14: for każdy wierzchołek v należący do G do

 $D[u][v] \leftarrow \widehat{d}_u[v] - h[u] + h[v]$

16: end for

17: end for

johnson(G, w) - cd.

• Mamy:

$$h[a] = 0, h[b] = -2, h[c] = -4.$$

- ullet dijkstra (G, \widehat{w}, a)
 - $\bullet \ \widehat{d}_a[a]=0,$
 - $\bullet \ \widehat{d}_a[b]=0,$
 - $\bullet \ \widehat{d}_a[c]=0.$
- dijkstra (G, \widehat{w}, b)
- dijkstra (G, \widehat{w}, c)

$$D = \begin{array}{c|cccc} & a & b & c \\ \hline a & & & \\ \hline b & & & \\ \hline c & & & \\ \end{array}$$

Graf G, wagi \widehat{w}

15:

12: for każdy wierzchołek u należący do G do

 $dijkstra(G, \widehat{w}, u)$ 13:

for każdy wierzchołek v należący do G do 14:

 $D[u][v] \leftarrow \widehat{d}_u[v] - h[u] + h[v]$

16: end for

17: end for

johnson(G, w) - cd.

Mamy:

$$h[a] = 0, h[b] = -2, h[c] = -4.$$

- dijkstra (G, \widehat{w}, a)
 - $\widehat{d}_a[a] = 0$,
 - $\widehat{d}_a[b] = 0,$
 - $\widehat{d}_a[c] = 0.$
- dijkstra (G, \widehat{w}, b)
- dijkstra (G, \widehat{w}, c)

Graf G, wagi \widehat{w}

. . .

15:

12: for każdy wierzchołek u należący do G do

13: dijkstra (G, \widehat{w}, u)

14: for każdy wierzchołek v należący do G do

 $D[u][v] \leftarrow \widehat{d}_u[v] - h[u] + h[v]$

16: end for

17: end for

johnson(G, w) - cd.

• Mamy:

$$h[a] = 0, h[b] = -2, h[c] = -4.$$

- dijkstra (G, \widehat{w}, a)
- dijkstra (G, \widehat{w}, b)

$$\bullet \ \widehat{d}_b[a] = 2,$$

$$\bullet \ \widehat{d}_b[b] = 0,$$

•
$$\hat{d}_b[c] = 2.$$

• dijkstra (G, \widehat{w}, c)

Graf G, wagi \widehat{w}

. . .

15:

12: for każdy wierzchołek u należący do G do

13: dijkstra (G, \widehat{w}, u)

14: for każdy wierzchołek v należący do G do

 $D[u][v] \leftarrow \widehat{d}_u[v] - h[u] + h[v]$

16: end for

17: end for

johnson(G, w) - cd.

• Mamy:

$$h[a] = 0, h[b] = -2, h[c] = -4.$$

- dijkstra (G, \widehat{w}, a)
- dijkstra (G, \widehat{w}, b)

$$\bullet \ \widehat{d}_b[a]=2,$$

$$\bullet \ \widehat{d}_b[b] = 0,$$

•
$$\hat{d}_b[c] = 2.$$

• dijkstra (G, \widehat{w}, c)

$$D = \begin{array}{c|cccc} & a & b & c \\ \hline a & 0 & -2 & -4 \\ \hline b & 4 & 0 & 0 \\ \hline c & & & & \end{array}$$

Graf G, wagi \widehat{w}

. .

15:

12: for każdy wierzchołek u należący do G do

13: dijkstra (G, \widehat{w}, u)

14: for każdy wierzchołek v należący do G do

 $D[u][v] \leftarrow \widehat{d}_u[v] - h[u] + h[v]$

16: end for

17: end for

johnson(G, w) - cd.

• Mamy:

$$h[a] = 0, h[b] = -2, h[c] = -4.$$

- dijkstra (G, \widehat{w}, a)
- $dijkstra(G, \widehat{w}, b)$
- dijkstra (G, \widehat{w}, c)

$$\widehat{d}_c[a] = 2,$$

$$\widehat{d}_c[b] = 0,$$

$$\widehat{d}_c[c] = 0.$$

Graf G, wagi \widehat{w}

. .

15:

12: for każdy wierzchołek u należący do G do

13: dijkstra (G, \widehat{w}, u)

14: for każdy wierzchołek v należący do G do

 $D[u][v] \leftarrow \widehat{d}_u[v] - h[u] + h[v]$

16: end for

17: end for

johnson(G, w) - cd.

• Mamy:

$$h[a] = 0, h[b] = -2, h[c] = -4.$$

- dijkstra (G, \widehat{w}, a)
- dijkstra (G, \widehat{w}, b)
- dijkstra (G, \widehat{w}, c)

$$\widehat{d}_c[a] = 2,$$

$$\widehat{d}_c[b]=0,$$

$$\widehat{d}_c[c] = 0.$$

$$D = \begin{array}{c|cccc} & a & b & c \\ \hline a & 0 & -2 & -4 \\ b & 4 & 0 & 0 \\ \hline c & 6 & 2 & 0 \end{array}$$

Algorytm Johnsona – podsumowanie

Graf G, wagi w

$D = \frac{1}{2}$		а	b	С
	а	0	-2	-4
	b	4	0	0
	С	6	2	0

- Złożoność zależy od implementacji algorytmu Dijkstry: między $O(n \cdot k + n^2 \log(n))^a$ a $O(n \cdot k + n^3)^b$.
 - n liczba wierzchołków, k liczba krawędzi.
- Prosta alternatywa: n-razy algorytm Bellmana-Forda, złożoność $O(n^2 \cdot k)$:(
- Przeskalowanie wag nie ma wpływu na najkrótsze ścieżki (tj. na kolejność krawędzi w ścieżce), zmienia tylko ich długość.

^aImplementacja z kopcami Fibonacciego. Przy binarnych: $O(n \cdot k + n \cdot k \log(n))$.

^bImplementacja z tablicą.

1. Czy algorytmu Dijkstry nie można stosować przy ujemnych wagach tylko ze względu na niemożliwość zidentyfikowania ujemnego cyklu?

23 / 24

AGH

1. Czy algorytmu Dijkstry nie można stosować przy ujemnych wagach tylko ze względu na niemożliwość zidentyfikowania ujemnego cyklu?

Nie. Przykład:

 Mamy dany graf, szukamy najkrótszych ścieżek od s.

AGH

1. Czy algorytmu Dijkstry nie można stosować przy ujemnych wagach tylko ze względu na niemożliwość zidentyfikowania ujemnego cyklu?

Nie. Przykład:

- Mamy dany graf, szukamy najkrótszych ścieżek od s.
- Inicjalizacja tablic d_s/p_s .

AGH

1. Czy algorytmu Dijkstry nie można stosować przy ujemnych wagach tylko ze względu na niemożliwość zidentyfikowania ujemnego cyklu?

Nie. Przykład:

- Mamy dany graf, szukamy najkrótszych ścieżek od s.
- Inicjalizacja tablic d_s/p_s .
- Wierzchołek gotowy: $s \Rightarrow$ relaksacja (s, a), (s, b), (s, c).

AGH

1. Czy algorytmu Dijkstry nie można stosować przy ujemnych wagach tylko ze względu na niemożliwość zidentyfikowania ujemnego cyklu?

Nie. Przykład:

- Mamy dany graf, szukamy najkrótszych ścieżek od s.
- Inicjalizacja tablic d_s/p_s .
- Wierzchołek gotowy: $s \Rightarrow$ relaksacja (s, a), (s, b), (s, c).
- Wierzchołek gotowy: dowolność wyboru, skoro mają równe $d_s!$ Weźmy c, więc uznajemy, że $d_s[c]=0$, czyli ścieżka s-c jest najkrótsza. Bład!

2. Dlaczego przeskalowanie wag nie zmienia najkrótszych ścieżek?

2. Dlaczego przeskalowanie wag nie zmienia najkrótszych ścieżek?

Oznaczenia

- w wagi przed przeskalowaniem.
- \widehat{w} wagi po przeskalowaniu.
- Założenie: p najkrótsza ścieżka z u do v przy wagach w, tj. $w(p) = w(u \rightarrow v)$ minimalne.
- Potrzebujemy dowieść, że $\widehat{w}(p)$ też minimalne (przy wagach \widehat{w}).

2. Dlaczego przeskalowanie wag nie zmienia najkrótszych ścieżek?

Oznaczenia

- w wagi przed przeskalowaniem.
- w wagi po przeskalowaniu.
- Założenie: p najkrótsza ścieżka z u do v przy wagach w, tj. $w(p) = w(u \rightarrow v)$ minimalne.
- Potrzebujemy dowieść, że $\widehat{w}(p)$ też minimalne (przy wagach \widehat{w}).

Dowód nie wprost

• Założenie: $\widehat{w}(p)$ nie jest minimalne $\Rightarrow \exists_{p'} : \widehat{w}(p')$ – minimalne.

$$\widehat{w}(p') < \widehat{w}(p)$$

2. Dlaczego przeskalowanie wag nie zmienia najkrótszych ścieżek?

Oznaczenia

- w wagi przed przeskalowaniem.
- \widehat{w} wagi po przeskalowaniu.
- Założenie: p najkrótsza ścieżka z u do v przy wagach w, tj.
 w(p) = w(u → v) – minimalne.
- Potrzebujemy dowieść, że $\widehat{w}(p)$ też minimalne (przy wagach \widehat{w}).

Dowód nie wprost

• Założenie: $\widehat{w}(p)$ nie jest minimalne $\Rightarrow \exists_{p'} : \widehat{w}(p')$ – minimalne.

$$\widehat{w}(p') < \widehat{w}(p)$$

$$\widehat{w}(p') = w(p') + h(u) - h(v)$$

$$\widehat{w}(p) = w(p) + h(u) - h(v)$$

2. Dlaczego przeskalowanie wag nie zmienia najkrótszych ścieżek?

Oznaczenia

- w wagi przed przeskalowaniem.
- \widehat{w} wagi po przeskalowaniu.
- Założenie: p najkrótsza ścieżka z u do v przy wagach w, tj. $w(p) = w(u \rightarrow v)$ minimalne.
- Potrzebujemy dowieść, że $\widehat{w}(p)$ też minimalne (przy wagach \widehat{w}).

Dowód nie wprost

• Założenie: $\widehat{w}(p)$ nie jest minimalne $\Rightarrow \exists_{p'} : \widehat{w}(p')$ – minimalne.

$$\widehat{w}(p') < \widehat{w}(p)$$

$$\widehat{w}(p') = w(p') + h(u) - h(v)$$

$$\widehat{w}(p) = w(p) + h(u) - h(v)$$

$$w(p') + h(u) - h(v) < w(p) + h(u) - h(v)$$

AGH

2. Dlaczego przeskalowanie wag nie zmienia najkrótszych ścieżek?

Oznaczenia

- w wagi przed przeskalowaniem.
- \widehat{w} wagi po przeskalowaniu.
- Założenie: p najkrótsza ścieżka z u do v przy wagach w, tj. $w(p) = w(u \rightarrow v)$ minimalne.
- Potrzebujemy dowieść, że $\widehat{w}(p)$ też minimalne (przy wagach \widehat{w}).

Dowód nie wprost

• Założenie: $\widehat{w}(p)$ nie jest minimalne $\Rightarrow \exists_{p'} : \widehat{w}(p')$ – minimalne.

$$\widehat{w}(p') < \widehat{w}(p)$$
 $\widehat{w}(p') = w(p') + h(u) - h(v)$
 $\widehat{w}(p) = w(p) + h(u) - h(v)$
 $w(p') + h(y) - h(y) < w(p) + h(y) - h(y)$
 $w(p') < w(p)$

ĀGH

2. Dlaczego przeskalowanie wag nie zmienia najkrótszych ścieżek?

Oznaczenia

- w wagi przed przeskalowaniem.
- \widehat{w} wagi po przeskalowaniu.
- Założenie: p najkrótsza ścieżka z u do v przy wagach w, tj. $w(p) = w(u \rightarrow v)$ minimalne.
- Potrzebujemy dowieść, że $\widehat{w}(p)$ też minimalne (przy wagach \widehat{w}).

Dowód nie wprost

• Założenie: $\widehat{w}(p)$ nie jest minimalne $\Rightarrow \exists_{p'}$: $\widehat{w}(p')$ – minimalne.

$$\widehat{w}(p') < \widehat{w}(p)$$

$$\widehat{w}(p') = w(p') + h(u) - h(v)$$

$$\widehat{w}(p) = w(p) + h(u) - h(v)$$

$$w(p') + h(y) - h(y) < w(p) + h(y) - h(y)$$

 Sprzeczność! Wniosek: skoro p najkrótsza przy wagach w, to przy wagach po przeskalowaniu też nie istnieje krótsza ścieżka.