

CURSO: ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

DISCIPLINA: MATEMÁTICA COMPUTACIONAL

PROJETO COMPUTACIONAL

PARTE I - GRUPO I

Diogo Martins Alves Nº 86980 (diogo.m.alves@tecnico.ulisboa.pt)

João Santiago Silva Nº 84081 (joao.santiago.s@tecnico.ulisboa.pt)

André Lopes Nº 84004 (andrefplopes@hotmail.com)

Data: 20/11/2017

1.(a) - Resolução

Código do programa feito em Matlab:

```
display('Insira os dados de entrada:');
str = (input('Função de x: ', 's'));%função a estudar (string)
f = inline(str, 'x');%converte a string para uma função do matlab
delta = input('Valor de delta: ');%valor do parâmetro delta
x 0 = input('Aproximação inicial x 0: ');%iterada inicial
n max iter = input('Número máximo de iterações: ');%número máximo de iterações
epsilon = input('Tolerância de erro: ');%tolerância de erro pretendida
x(1) = x 0;
n = 1;
while( n <= n max iter ) %ciclo que corre até serem produzidas n max iter iteradas
    x(n+1) = x(n) - (delta * f(x(n))) / (f(x(n) + delta) - f(x(n))); %método quasi-<math>\checkmark
Newton
    n = n+1;
    fprintf('Iterada %d: %.20f, Diferença entre iteradas: %d\n', n-1,x(n),abs(x(n) - x✓
(n-1)));
    if(epsilon >= abs(x(n) - x(n-1))) %no caso de alguma das iteradas ter um erro ✓
abaixo ou igual ao pretendido, o ciclo para
        break;
    end
end
```

1.(b) - Resolução

O método quasi-Newton corresponde ao método do ponto fixo, em que a função iteradora, g, é dada pela expressão (1), uma vez que a equivalência (2) é verificada.

$$g(x) = x - \frac{\delta f(x)}{f(x+\delta) - f(x)}$$
 (1)

$$g(x) = x \Leftrightarrow \frac{\delta f(x)}{f(x+\delta) - f(x)} = 0 \Leftrightarrow f(x) = 0$$
 (2)

Pelo teorema da convergência local do método do ponto fixo, se g for diferenciável num intervalo aberto contendo o ponto fixo z de g e se |g'(z)| < 1, então $\exists_{\mathcal{E}>0}$ tal que o método converge para z qualquer que seja a aproximação inicial x_0 que verifique $|z-x_0|<\mathcal{E}$

Neste caso, como f é continuamente diferenciável, g é diferenciável em $\mathbb{R}\setminus\{x:f(x+\delta)=f(x)\}$

Derivando g tem-se:

$$g'(x) = 1 - \frac{\delta f'(x) \cdot \left(f(x+\delta) - f(x) \right) - \left(f'(x+\delta) - f'(x) \right) \cdot \delta f(x)}{\left(f(x+\delta) - f(x) \right)^2} =$$

$$=1-\frac{\delta f'(x)\cdot f(x+\delta)-\delta f'(x)f(x)-f'(x+\delta)\cdot \delta f(x)+f'(x)\delta f(x)}{(f(x+\delta)-f(x))^2}=$$

$$=1-\frac{\delta f'(x)\cdot f(x+\delta)-\delta f'(x+\delta)\cdot f(x)}{(f(x+\delta)-f(x))^2}$$

Como f(z) = 0:

$$g'(z) = 1 - \frac{\delta f'(z)}{f(z+\delta)}$$

Basta agora verificar a condição:

$$|g'(z)| < 1 \Leftrightarrow 0 < \frac{\delta f'(z)}{f(z+\delta)} < 2$$

Conclui-se que $\exists_{\mathcal{E}>0}$ tal que o método converge para z qualquer que seja a aproximação inicial x_0 que verifique $|z-x_0|<\mathcal{E}$, se a seguinte condição se verificar:

$$0 < \frac{\delta f'(z)}{f(z+\delta)} < 2 \land f(z+\delta) \neq 0$$

Uma vez que $g'(z)=1-\frac{\delta f'(z)}{f(z+\delta)}$, a convergência do método será linear (ordem de convergência igual a 1) desde que $\delta f'(z)\neq f(z+\delta)$, e o coeficiente assintótico será dado por:

$$K_{\infty} = \frac{|g'(z)|}{1!} = \left| 1 - \frac{\delta f'(z)}{f(z+\delta)} \right|$$

Na eventualidade de $\delta f'(z) = f(z + \delta)$, a convergência será supra-linear.

2. - Resolução

De modo a obter uma equação da forma $f(\theta) = 0$ temos:

$$y = \tan(\theta)x - \frac{g}{2x_0^2 \cos^2 \theta}x^2 + y_0$$

$$\Leftrightarrow \tan(\theta)x - \frac{g}{2x_0^2 \cos^2 \theta}x^2 + y_0 - y = 0$$

Do enunciado retira-se:

$$x = 35m; y = 1m; g = 9.81 \, ms^{-2}; v_0 = 20 \, ms^{-1}; y_0 = 2m$$

Assim, temos uma expressão da forma:

$$f(\theta) = 0$$

Em que a função f é dada por:

$$f(\theta) = 35\tan\theta - \frac{9,81 \cdot 35^2}{800\cos^2\theta} + 1 = 35\tan\theta - \frac{9,81 \cdot 35^2}{800}(1 + \tan^2\theta) + 1$$

Sendo $v = \tan\theta$ temos que:

$$f(\theta) = 0 \iff 35v - \frac{9,81 \cdot 35^2}{800}v^2 + \left(1 - \frac{9,81 \cdot 35^2}{800}\right) = 0$$

Para provar que existem duas soluções, podemos observar que o binómio discriminante desta equação é positivo:

$$\Delta = 35^2 - 4\left(-\frac{9,81 \cdot 35^2}{800}\right) \cdot \left(1 - \frac{9,81 \cdot 35^2}{800}\right) \approx 382.497 > 0$$

Verificando-se que v tem dois valores possíveis, que são distintos. Como $tan\theta$ é monótona crescente em $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ e $\tan\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)=\mathbb{R}$, conclui-se que θ tem 2 valores possíveis, distintos, pertencentes ao intervalo $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ que são solução da equação: α e β , α < β .

2.(a)(i) - Resolução

Da alínea 1.(b) retiramos que uma condição que permite mostrar que o método quasi-Newton converge para a raiz de f, β , qualquer que seja a aproximação inicial pertencente a um certo intervalo é a seguinte:

$$0 < \frac{\delta f'(\beta)}{f(\beta + \delta)} < 2 \land f(\beta + \delta) \neq 0$$

Assim, tentamos arranjar um intervalo adequado para aproximar esta raiz:

$$f(0) \simeq -14.0216 < 0$$

$$f(1.05) \simeq 1.34172 > 0$$

$$f(1.07) \simeq -0.218032 < 0$$

Pelo Teorema do Valor Intermédio, como f é continua, conclui-se que $\alpha \in]0, 1.05[$ e $\beta \in]1.05, 1.07[$.

Seja
$$I = [1.05, 1.07]$$
.

$$f'(\theta) = \frac{35}{\cos^2(\theta)} - \frac{9.81*35^2 \tan(\theta)}{400*\cos^2(\theta)}$$

$$f(\theta + \delta) = 35 * \tan(\theta + \delta) - \frac{9.81 \cdot 35^2}{800} (\tan^2(\theta + \delta)) + (1 - \frac{9.81 \cdot 35^2}{800})$$

Se a condição $0 < \frac{\delta f'(\theta)}{f(\theta + \delta)} < 2 \land f(\theta + \delta) \neq 0$ se verificar $\forall \theta \in I$, então também se verifica para β .

Como $(\theta+\delta)\in[1.15,1.17]$ e f não tem nenhum zero nesse intervalo, então $f(\theta+\delta)\neq 0, \forall \theta\in I.$

Seja $h(\theta) = \frac{\delta f'(\theta)}{f(\theta+\delta)}$. Como h é uma função monótona decrescente em I e $h(1.05) \simeq 0.6488$ e $h(1.07) \simeq 0.5718$, então $h(I) \subset [0.6488, 0.5718]$, o que quer dizer que a condição $0 < \frac{\delta f'(\theta)}{f(\theta+\delta)} < 2$ é verificada $\forall \theta \in I$.

Deste modo, conclui-se que o método converge, qualquer que seja a aproximação inicial θ_0 tal que $|\theta_0-\beta|<\mathcal{E}$, para um certo $\mathcal{E}>0$.

Relativamente à ordem de convergência, como $\frac{\delta f'(\beta)}{f(\beta+\delta)} \in [0.6488, 0.5718]$, então este número é necessariamente diferente de 1, pelo que a ordem de convergência é igual a 1 (pelo resultado da aliena 1.(b)).

2.(a)(ii) - Resolução

Em seguida apresentam-se as duas tabelas pedidas, cujos dados foram calculados a partir das sucessivas iteradas geradas pelo método quasi-Newton, com $\theta_0=1$ e $\mathcal{E}=10^{-10}$.

MATEMÁTICA COMPUTACIONAL

2017-2018, MEEC

n	$oldsymbol{ heta_n}$		
0	1		
1	1,05555312456607		
2	1,06286822077381		
3	1,06558100212869		
4	1,06666930425712		
5	1,06711800955153		
6	1,06730500338210		
7	1,06738327322414		
8	1,06741609415172		
9	1,06742986742152		
10	1,06743564920023		

n	θ_n
11	1,06743807661427
12	1,06743909579355
13	1,06743952371843
14	1,06743970339389
15	1,06743977883565
16	1,06743981051203
17	1,06743982381228
18	1,06743982939678
19	1,06743983174159
20	1,06743983272613
21	1,06743983313952
22	1,06743983331309
23	1,06743983338597

Tabela 1-Tabela com as sucessivas iteradas geradas pelo método.

n	$ e_{n+1} $	$ e_{n+1} $	$ e_{n+1} $	$ e_{n+1} $
	$\overline{ e_n ^{1/2}}$	$\overline{ e_n }$	$\overline{ e_n ^2}$	$\frac{\overline{ e_n ^3}}{ e_n ^3}$
0	0,045772368	0,176256497	2,613536964	38,75360945
1	0,041931327	0,384598688	32,35535533	2721,977616
2	0,027491932	0,406602968	88,94081862	19455,02084
3	0,017871832	0,414523441	223,0021898	119969,0337
4	0,011593743	0,41766602	542,0509157	703478,8114
5	0,007515839	0,41895593	1301,817595	4045124,864
6	0,004870991	0,419492399	3111,268911	23075493,75
7	0,003156541	0,419716519	7420,709306	131200284,2
8	0,002045436	0,419809853	17684,22052	744936434,4
9	0,001325413	0,419847548	42128,14026	4227201539
10	0,000858835	0,419859875	100344,4638	23981837817
11	0,000556492	0,419856729	238993,336	1,36041E+11
12	0,000360568	0,419835578	569197,2513	7,71696E+11
13	0,000233598	0,419779483	1355581,161	4,37754E+12
14	0,0001513	0,419643412	3228222,923	2,4834E+13
15	9,7936E-05	0,419318165	7686814,014	1,40912E+14
16	6,33008E-05	0,418541363	18297738,03	7,99938E+14
17	4,07704E-05	0,416682602	43523719,65	4,54618E+15
18	2,60351E-05	0,412208977	103331495,3	2,59029E+16
19	1,62719E-05	0,401269764	244024965,2	1,48399E+17
20	9,59422E-06	0,373499616	566045765,5	8,57853E+17
21	4,64242E-06	0,295719841	1199918340	4,86881E+18

Tabela 2-Tabela relativa aos quocientes de erros entre iteradas consecutivas

2.(a)(iii) - Resolução

Sendo p a ordem de convergência do método, o coeficiente assintótico é dado por:

$$K = \lim_{x \to \infty} \frac{|e_{n+1}|}{|e_n|^p} = \frac{g^{(p)}(\beta)}{p!}$$

K tem que ser diferente de 0 e não pode ser infinito porque $g^{(p)}(\beta) \in \mathbb{R} \setminus \{0\}$.

Os elementos da 1ª coluna parecem convergir para 0, enquanto que e os da 3ª e 4^a parecem divergir para $+\infty$. Apenas os elementos da 2^a coluna parecem convergir para um número real, logo estes dados sugerem-nos que a ordem de convergência é 1 (convergência linear).

Estimativa para K:

Como $K=\lim_{x\to\infty} \frac{|e_{n+1}|}{|e_n|^p}$, a estimativa mais adequada para K, com base no dados que temos, será:

$$K \simeq \frac{|e_{22}|}{|e_{21}|} = 0,295719841$$

2.(a)(iv) - Resolução

Na alínea 2.(a)(i) determinámos que a ordem de convergência seria 1, o que está de acordo com os resultados experimentais. Na alínea 1.(b) determinou-se que o coeficiente assintótico seria dado por:

$$K = 1 - \frac{\delta f'(\beta)}{f(\beta + \delta)} =$$

$$= 1 - \frac{0.1 \left(\frac{35}{\cos^2 \beta} - \frac{9.81 \cdot 35^2}{800} \cdot \frac{2 \tan(\beta)}{\cos^2(\beta)}\right)}{35 \tan(\beta + 0.1) - \frac{9.81 \cdot 35^2}{800} \cdot \tan^2(\beta + 0.1) + \left(1 - \frac{9.81 \cdot 35^2}{800}\right)} =$$

$$= 0.41987918051184$$

(Utilizando para β o valor θ_{23} da Tabela 1).

O erro relativo entre o valor do coeficiente assintótico obtido nesta alínea e na anterior é de cerca de 30%, o que é um valor aceitável visto estarmos a trabalhar com uma aproximação de β e uma aproximação de um limite, por isso podemos concluir que o valor do coeficiente assintótico está de acordo com o valor teórico.

2.(b)(i) - Resolução

Na tabela 3 podemos verificar o número de iterações necessárias para atingir a precisão $\varepsilon=10^{-10}$, bem como uma estimativa do coeficiente assimptótico de convergência (assumindo que a convergência é linear).

δ	Número de Iterações (N)	$ heta_{N-2}$	$ heta_{N-1}$	θ_N	$\widetilde{K} \simeq rac{ oldsymbol{ heta}_{N-1} - oldsymbol{ heta}_N }{ oldsymbol{ heta}_{N-2} - oldsymbol{ heta}_N }$
10^{-1}	9	0,47479283	0,474792835	0,47479283	0,056501842
		5095176	539996	5516207	
10^{-2}	6	0,47479283	0,474792835	0,47479283	0,004650784
		5237668	51871	5517409	
10^{-3}	5	0,47479285	0,474792835	0,47479283	0,000457829
		7936313	507155	5517419	

Tabela 3

2.b)(ii) – Resolução

Pela alínea 1.(b), o coeficiente assintótico é dado por:

$$K = \left| 1 - \frac{\delta f'(\alpha)}{f(\alpha + \delta)} \right|$$

Se utilizarmos como aproximação para α o valor de θ_N , obtemos os seguintes resultados:

δ	N	$\widetilde{\pmb{K}}$	K	$oldsymbol{\delta}_{\widetilde{K}}$
10^{-1}	9	0,056501842	0,053479671	5,7%
10^{-2}	6	0,004650784	0,004632271	0,4%
10^{-3}	5	0,000457829	0,000457601	0,05%

Tabela 3 - Tabela de comparação de valores teóricos com experimentais

Como podemos observar na última coluna, os erros relativos entre os valores teóricos e experimentais do coeficiente assintótico são mínimos, por isso conclui-se que os resultados obtidos estão de facto de acordo com a alínea 1.(b) e que a convergência para estes valores de δ é linear.