Generalization Ability

We use very large network today

Source of image: https://www.youtube.com/watch?v=kCj51pTQPKI

Generalization Gap

No matter the data distribution With probability $1 - \delta$

$$E_{train} \leq E_{test} \leq E_{train} + \Omega(R, M, \delta)$$

Smaller δ , larger Ω

R is the number of training data

 \longrightarrow Larger R, smaller Ω

M is the "capacity" of your model \longrightarrow Larger M, larger Ω ("size" of the function set)

How to measure the "capacity"?

VC dimension (d_{VC})

Given 3 data points

Random label (故意亂教)

Model M can always achieve 0% error rate

(亂教 Model M 都學得會)

VC dimension (d_{VC}) of Model M \geq 3

e.g. linear model

Random label (故意亂教)

There are some cases linear model can not learn.

(來亂的,所以學不會)

VC dimension (d_{VC}) of Linear Model < 4

Given 4 data points

What is the capacity of deep models?

Inception model on the CIFAR10

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals, "Understanding deep learning requires rethinking generalization", ICLR 2017

No matter the data distribution With probability $1 - \delta$

$$E_{test} \leq E_{train} + \Omega(R, M, \delta)$$

Smaller δ , larger Ω

R is the number of training data

 \longrightarrow Larger R, smaller Ω

M is the "capacity" of your model \longrightarrow Larger M, larger Ω ("size" of the function set)

Select the one with If two models have the same E_{train} smaller capacity

https://arxiv.org/pdf/1412.6614.pdf

Training data size: 50000

CIFIR-10, 100% training accuracy

Number of weights

https://arxiv.org/pdf/1802.08760.pdf

https://arxiv.org/abs/1605.07678

Network regularizes itself?

Concluding Remarks

- The capacity of deep model is large.
- However, it does not overfit!
- The reason is not clear yet.

Indicator of Generalization

Introduction

Function Set of Deep Network

Training zero is zero

- ➤ If many global optimums can zero training errors, which one can obtain generalized results?
- Use the indicator to find solution that generalizes well.
- > Sharpness and Sensitivity

Brute-force Memorization?

Real labels v.s. random labels

First layer of CIFAR-10

https://arxiv.org/pdf/1706.05394.pdf

Brute-force Memorization?

Simple pattern first, then memorize exception

(b) Noise added on classification labels.

Brute-force Memorization?

Sensitivity

Jacobian Matrix

$$y = f(x)$$
 $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

$$\frac{\partial y}{\partial x} =$$

size of y

Example

size of x

$$\begin{bmatrix} x_1 + x_2 x_3 \\ 2x_3 \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} \quad \frac{\partial y}{\partial x} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1$$

Sensitivity

 Given a network f, the sensitivity of a data point x is the Frobenius norm of the Jacobian

$$y = f(x) \qquad \frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \end{bmatrix}$$

Sensitivity of x =
$$\sum_{i} \sum_{j} \left(\frac{\partial y_{j}}{\partial x_{i}} \right)^{2}$$
 By the sensitivity of a test data x, we can predict the performance.

By the sensitivity of a

Without label

It is not surprise that sensitivity is related to generalization.

Regularization is kind of minimziing sensitivity.

Sensitivity – Emprical Results

Sensitivity on and off the training data manifold

Sensitivity – Emprical Results

Sensitivity on and off the training data manifold

Generalization Gap

w/ random labels 0.8

w/ true labels

0.8

0.6

Jacobian norm

w/ true labels

w/ data augmentation

Sensitivity v.s. Generalization

Sensitivity v.s. Generalization

individual points

Sharpness

Sharp Minima v.s Flat Minima

Definition of Sharpness

Definition 1

Definition 2

Sharpness = $L(\theta') - L(\theta^*)$

Batch Size

Batch Size v.s. Sharpness

Name	Network Type	Data set
F_1	Fully Connected	MNIST (LeCun et al., 1998a)
F_2	Fully Connected	TIMIT (Garofolo et al., 1993)
C_1	(Shallow) Convolutional	CIFAR-10 (Krizhevsky & Hinton, 2009)
C_2	(Deep) Convolutional	CIFAR-10
C_3	(Shallow) Convolutional	CIFAR-100 (Krizhevsky & Hinton, 2009)
C_4	(Deep) Convolutional	CIFAR-100

	Training .	Accuracy	Testing Accuracy		
Name	SB	LB	SB	LB	
F_1	$99.66\% \pm 0.05\%$	$99.92\% \pm 0.01\%$	$98.03\% \pm 0.07\%$	$97.81\% \pm 0.07\%$	
F_2	$99.99\% \pm 0.03\%$	$98.35\% \pm 2.08\%$	$64.02\% \pm 0.2\%$	$59.45\% \pm 1.05\%$	
C_1	$99.89\% \pm 0.02\%$	$99.66\% \pm 0.2\%$	$80.04\% \pm 0.12\%$	$77.26\% \pm 0.42\%$	
C_2	$99.99\% \pm 0.04\%$	$99.99\% \pm 0.01\%$	$89.24\% \pm 0.12\%$	$87.26\% \pm 0.07\%$	
C_3	$99.56\% \pm 0.44\%$	$99.88\% \pm 0.30\%$	$49.58\% \pm 0.39\%$	$46.45\% \pm 0.43\%$	
C_4	$99.10\% \pm 1.23\%$	$99.57\% \pm 1.84\%$	$63.08\% \pm 0.5\%$	$57.81\% \pm 0.17\%$	
		$\epsilon = 10^{-3}$		$=5 \cdot 10^{-4}$	

$C_4 = 99.10\% \pm 1$.23%	$99.57\% \pm 1$	84% 03.08%	± 0.5% 5	$07.81\% \pm 0.17\%$
		$\epsilon = 10^{-3}$		$\epsilon = 5 \cdot 10^{-4}$	
		SB	LB	SB	LB
SB = 256	F_1	1.23 ± 0.83	205.14 ± 69.52	0.61 ± 0.27	42.90 ± 17.14
22 230	F_2	1.39 ± 0.02	310.64 ± 38.46	0.90 ± 0.05	93.15 ± 6.81
LB =	C_1	28.58 ± 3.13	707.23 ± 43.04	7.08 ± 0.88	227.31 ± 23.23
	C_2	8.68 ± 1.32	925.32 ± 38.29	2.07 ± 0.86	175.31 ± 18.28
0.1 x data set	C_3	29.85 ± 5.98	258.75 ± 8.96	8.56 ± 0.99	105.11 ± 13.22
	C_4	12.83 ± 3.84	421.84 ± 36.97	4.07 ± 0.87	109.35 ± 16.57

Batch Size v.s. Sharpness

Batch Size v.s. Sharpness

Concluding Remarks

Summary

- Good generalization are associated with sensitivity
- Good generalization are associated with flatness (?)
- Understanding the indicator for generalization helps us develop algorithm in the future

Reference

- Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, Simon Lacoste-Julien, "A Closer Look at Memorization in Deep Networks", ICML, 2017
- Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping Tak Peter Tang, "On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima", ICLR, 2017
- Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer Chayes, Levent Sagun, Riccardo Zecchina, "Entropy-SGD: Biasing Gradient Descent Into Wide Valleys", ICLR, 2017
- Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nathan Srebro, Exploring Generalization in Deep Learning, NIPS, 2017
- Laurent Dinh, Razvan Pascanu, Samy Bengio, Yoshua Bengio, Sharp Minima Can Generalize For Deep Nets, PMLR, 2017
- Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein, Sensitivity and Generalization in Neural Networks: an Empirical Study, ICLR, 2018