1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Ondas y Calor

Carrera: Ingeniería en Nanotecnología

Clave de la asignatura: NAF-0919

SATCA¹ 3 - 2 - 5

2.- PRESENTACIÓN

Caracterización de la asignatura.

La asignatura comprende temas sobre oscilaciones y ondas, y Termodinámica. Para explicar muchos fenómenos en la naturaleza, se deben comprender los conceptos de oscilaciones y ondas. Mucho de lo que han aprendido los científicos acerca de la estructura atómica viene de información aportada por las ondas. En consecuencia, primero debe estudiarse las oscilaciones y las ondas si se quiere comprender el mundo a nivel atómico.

La Termodinámica estudia la transformación de la energía en todas sus formas y es una parte fundamental e indispensable de: la Física, la Química y las Ciencias Biológicas. Estamos rodeados de creaciones técnicas que hubiesen sido imposibles sin el empleo de la Termodinámica. Por ejemplo: electrodomésticos, vehículos de transporte, refrigeradores, procesos bioquímicos, turbinas, calentadores solares y muchas otras invenciones que de una manera u otra emplean el conocimiento aportado por la Termodinámica.

Estos temas en su conjunto fomentan el pensamiento creativo y un conocimiento firme de los fenómenos ondulatorios y térmicos para la comprensión de problemas complejos, formularlos e interpretar los resultados mediante el uso de escenarios reales.

Intención didáctica.

Los contenidos están distribuidos en cuatro unidades. En la primera unidad, se aplica la cinemática y dinámica del movimiento armónico simple para el análisis del movimiento oscilatorio de varios sistemas. Se deducen las ecuaciones básicas que describen a las ondas, se analiza la interferencia constructiva y destructiva; ondas estacionarias y ondas sonoras.

En la segunda unidad, se demuestra que una escala de temperatura se puede definir en términos de las propiedades de los gases a densidades bajas; también se define la capacidad calorífica y se examina que el calentamiento de un sistema puede originar un cambio de temperatura o un cambio de fase.

En la tercera unidad, se aplica las leyes de movimiento de Newton de manera estadística a un conjunto de partículas para proporcionar una descripción razonable de los procesos termodinámicos. Se consideran los gases, debido a que las interacciones entre moléculas

¹ Sistema de asignación y transferencia de créditos académicos

son mucho más débiles de lo que son en líquidos o sólidos.

En la última unidad, se examina la relación entre calor, trabajo y energía interna de un sistema; se expresa la primera ley de la Termodinámica y a partir de la segunda ley de la Termodinámica se establece cuáles procesos se presentan y cuáles no.

Para abordar los temas, se requiere que el profesor conozca los principios fundamentales y conceptos básicos de la asignatura y una comprensión intuitiva del aprendizaje humano. Dar una gran importancia a su tarea docente como a su investigación. La enseñanza debe proporcionar entornos de aprendizaje ricos en recursos educativos (información bien estructurada, actividades adecuadas y significativas) en los que los estudiantes puedan desarrollar proyectos y actividades que les permitan descubrir el conocimiento, aplicarlo en situaciones prácticas y desarrollar todas sus capacidades (experimentación, descubrimiento, creatividad, iniciativa, etc.).

3.- COMPETENCIAS A DESARROLLAR

Competencias específicas

Desarrollar la capacidad de interpretar y modelar los fenómenos ondulatorios que ocurren en la naturaleza.

Analizar el comportamiento de sistemas termodinámicos y/o fenómenos térmicos que ocurren en la naturaleza describiendo las interacciones de energía entre un sistema y sus alrededores para obtener relaciones entre propiedades macroscópicas de la materia.

Competencias genéricas

Competencias instrumentales

- Capacidad de análisis y síntesis.
- Habilidades de gestión de la información.
- Habilidades básicas de manejo de la computadora.
- Solución de problemas.

Competencias interpersonales

- Capacidad crítica y autocrítica.
- Trabajo en equipo.

Competencias sistémicas

- Capacidad de aplicar los conocimientos en la práctica.
- Habilidad de trabajar en forma autónoma.
- Capacidad de adaptarse a nuevas situaciones.
 - Capacidad de generar nuevas ideas.

4.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Ciudad Juárez del 27 al 29 de Abril de 2009.	Representantes de los Institutos Tecnológicos de: Tijuana, Querétaro, Celaya, Saltillo, Ciudad Juárez, Superior de Irapuato, San Luis Potosí, Chihuahua.	Primera Reunión Nacional de diseño e innovación curricular para el desarrollo de competencias profesionales de las carreras de Ingeniería en Nanotecnología e Ingeniería Logística del SNEST.
Instituto Tecnológico de Puebla del 8 al 12 de Junio de 2009	Representantes de los Institutos Tecnológicos de: Tijuana, Querétaro, Celaya, Saltillo, Ciudad Juárez, Superior de Irapuato, San Luis Potosí, Chihuahua	Reunión de seguimiento de diseño e innovación curricular para el desarrollo de competencias profesionales de las carreras de Ing. en Nanotecnología, Gestión Empresarial, Logística, y asignaturas comunes del SNEST.
Instituto Tecnológico de Mazatlán del 23 al 27 de Noviembre de 2009	Representantes de los Institutos Tecnológicos de: Tijuana, Querétaro, Ciudad Juárez, Superior de Irapuato, San Luis Potosí, Chihuahua	Segunda Reunión de seguimiento de diseño e innovación curricular para el desarrollo de competencias profesionales de la carrera de Ing. en Nanotecnología, del SNEST.
Instituto Tecnológico de Villahermosa del 24 al 28 de Mayo de 2010	Representantes de los Institutos Tecnológicos de: Tijuana, Querétaro, Superior de Irapuato, Chihuahua, Saltillo.	Reunión de consolidación de diseño e innovación curricular para el desarrollo de competencias profesionales de la carrera de Ing. en Nanotecnología, del SNEST.

5.- OBJETIVO(S) GENERAL(ES) DEL CURSO (competencias específicas a desarrollar en el curso)

Desarrollar la capacidad de interpretar y modelar los fenómenos ondulatorios que ocurren en la naturaleza.

Analizar el comportamiento de sistemas termodinámicos y/o fenómenos térmicos que ocurren en la naturaleza describiendo las interacciones de energía entre un sistema y sus alrededores para obtener relaciones entre propiedades macroscópicas de la materia.

6.- COMPETENCIAS PREVIAS

- Conoce los conceptos básicos de análisis dimensional.
- Resuelve ecuaciones algebraicas básicas.
- Deriva e integra funciones sencillas.

7.- TEMARIO

Unidad	Temas	Subtemas
1	Elasticidad, Oscilaciones y	1.1 Elasticidad.
	Ondas	1.2 Movimiento oscilatorio.
		1.3 Movimiento ondulatorio.
		1.4 Ondas sonoras.
		1.5 Sobreposición y ondas estacionarias.
2	Temperatura y Calor	2.1 Propiedades extensivas e intensivas
		2.2 Sistemas y sus alrededores
		2.3 Temperatura y ley cero de la Termodinámica.
		2.4 Termómetros y escalas de temperaturas.
		2.5 Expansión térmica de sólidos y líquidos.
		2.6 Calor y energía interna.
		2.7 Calor específico y calorimetría.
		2.8 Cambio de fase y calor latente.
		2.9 Mecanismo de transferencia de energía.
		3.1 Modelo molecular de un gas ideal
3	Gases	3.2 Calor específico molar de un gas ideal.
		3.3 Procesos adiabáticos para un gas ideal.
		3.4 Equipartición de la energía.
		3.5 Distribución de magnitudes de velocidad
		moleculares.
		3.6 Otras ecuaciones de estado.
		4.1 Conceptos básicos de Termodinámica.
4	Termodinámica	4.2 Procesos reversibles e irreversibles.
		4.3 Trabajo y calor en procesos termodinámicos.
		4.4 Primera ley de la Termodinámica.
		4.5 Máquinas térmicas y segunda ley de la
		Termodinámica.
		4.6 Bombas de calor y refrigeradores.
		4.7 La máquina de Carnot.

8.- SUGERENCIAS DIDÁCTICAS (desarrollo de competencias genéricas)

- Explicar los fundamentos teóricos incorporando herramientas multimedia para una mejor visualización y comprensión de los conceptos.
- Propiciar que los estudiantes escriban sus opiniones sobre lo estudiado.
- Detectar ejemplos en películas, novelas y/o revistas sobre los temas.
- Favorecer que el estudiante imagine nuevas formas de aplicar los conocimientos.
- Propiciar en el estudiante, el sentimiento de logro y de ser competente.
- Estimular la práctica de procesos metacognitivos (de la reflexión acerca de los propios procesos).
- Propiciar el planteamiento de preguntas y la solución de problemas, así como el aprendizaje a partir del error.
- Realizar visitas a lugares donde pueda ver el estudiante la aplicación de los contenidos de la asignatura.
- Retroalimentar de manera permanente el trabajo de los estudiantes.
- Proponer modelos que se puedan implementar para resolver problemas prácticos.
- Organizar tutorías personalizadas para orientar y resolver dudas.
- Generar una base electrónica de problemas selectos para la autoevaluación del estudiante.
- Propiciar sesiones de laboratorio para fortalecer la comprensión de los fundamentos teóricos e inducir cuestiones de curiosidad.

9.- SUGERENCIAS DE EVALUACIÓN

La evaluación deber ser continua y formativa, por lo que se debe considerar el desempeño de cada una de las actividades de aprendizaje, haciendo énfasis en:

Evidencia de comportamiento

- Observación: Participación activa en clase y asistencia a laboratorio.
- Dinámica de grupos: Mesa redonda, debates y exposiciones.

Evidencia de desempeño

- Investigación: En forma individual o grupal sobre los temas a desarrollar.
- Problemas: Trabajo en forma independiente en problemas teóricos-prácticos propuestos.
- Reportes: Desarrollo de prácticas de laboratorio.

Evidencia de producto

- Aprendizaje orientado a proyectos: Elaboración de un trabajo integrador.
- Portafolio de evidencias: Recopilación de las investigaciones, trabajos, proyectos y ejercicios.

Evidencia de conocimiento

• Pruebas objetivas de los temas vistos en clase: Examen teórico.

10.- UNIDADES DE APRENDIZAJE

Unidad 1: Elasticidad, Oscilaciones y Ondas

Competencia específica a desarrollar	Actividades de Aprendizaje
Calcular deformaciones y esfuerzos en diferentes casos de cuerpos sometidos a fuerzas o cargas externas. Interpretar el término de onda como un modelo matemático en la explicación de fenómenos físicos de diferente naturaleza.	materiales. • Resolver problemas utilizando las ecuaciones que describen los movimientos: armónico simple, oscilatorio amortiguado y

Unidad 2: Temperatura y Calor

Competencia específica a desarrollar	Actividades de Aprendizaje
--------------------------------------	----------------------------

Analizar la variación de las propiedades fisicoquímicas de los materiales o las sustancias en función de la temperatura.

- Identificar las propiedades intensivas y extensivas de la materia.
- Discutir de manera grupal, la definición de sistema termodinámico.
- Investigar el desarrollo histórico de técnicas para la medición de la temperatura.
- Definir el concepto de temperatura y efectuar conversiones entre las distintas escalas de temperatura.
- Relacionar la dilatación de los materiales con el aumento de la temperatura.
- Interpretar el concepto de energía y definir sus distintas formas.
- Analizar la naturaleza de la energía interna.
- Definir el concepto de calor y la terminología relacionada con la transferencia de energía causada por calor.
- Aplicar la técnica de calorimetría para la medición del calor específico.
- Distinguir la diferencia entre calor específico y calor latente.
- Analizar los tres mecanismos de transferencia de calor: conducción, convección y radiación.

Unidad 3: Gases

Competencia específica a desarrollar	Actividades de Aprendizaje
Comprender el comportamiento de los gases relacionando las propiedades macroscópicas con el comportamiento microscópico de las moléculas individuales.	Explicar las propiedades de los gases

Unidad 4: Termodinámica

Competencia específica a desarrollar	Actividades de Aprendizaje	
Analizar sistemas donde el único		
cambio es el de la energía interna y	estado, postulado de estado, equilibrio,	
las transferencias de energías son	proceso y ciclo.	

mediante calor y trabajo.

Aplicar la segunda ley de la Termodinámica para establecer la dirección en la que deben llevarse a cabo los procesos termodinámicos.

- Definir el concepto de trabajo.
- Examinar el trabajo de frontera móvil o trabajo PdV que se encuentra comúnmente en dispositivos reciprocantes como motores de automóviles y compresores.
- Identificar la primera ley de la Termodinámica como un enunciado del principio de la conservación de la energía.
- Definir el calor específico a volumen constante y el calor específico a presión constante.
- Relacionar los calores específicos con el cálculo de cambios en la energía interna y la entalpía de gases ideales.
- Introducir la segunda ley de la Termodinámica.
- Identificar procesos válidos como aquellos que satisfacen tanto la primera como la segunda leyes de la Termodinámica.
- Analizar los depósitos de energía térmica, procesos reversibles e irreversibles, máquinas térmicas, refrigerados y bombas de calor
- Describir los enunciados de Kelvin-Planck y Clausius de la segunda ley de la Termodinámica.
- Describir el ciclo de Carnot.
- Examinar los principios de Carnot, las máquinas térmicas idealizadas de Carnot, refrigeradores y bombas de calor.
- Determinar las expresiones para las eficiencias térmicas y los coeficientes de desempeño para máquinas térmicas reversibles, bombas de calor y refrigeradores.
- Definir una nueva propiedad llamada entropía para cuantificar los efectos de la segunda ley.

11.- FUENTES DE INFORMACIÓN

- Young, H. D. & Freedman, R. A. (2009) *Física universitaria*, volumen 1. 11^a edición, Pearson,
- Tipler, P. A. & Mosca, G. (2008) Física para la ciencia y la tecnología, volumen 1. 6^a edición, W. H. Freeman & Company
- Serway, R. A. & Jewett Jr., J. W. (2008) *Física para ciencias e ingeniería*, volumen 1. 7ª edición, Cengage Learning.

12.- PRÁCTICAS PROPUESTAS

- Modos de vibración de una cuerda sujeta por los extremos (Laboratorio virtual).
- Ondas sonoras.
- Ley cero de la Termodinámica.
- Comportamiento P-v-T de gases ideales.
- El efecto botijo.
- Demostración de la primera ley de la Termodinámica por medio de la expansión de un gas.
- Determinación de calor específico.
- Entropía como grado de desorden.