Model Development Phase

Date	31 st January 2025
Team ID	LTVIP2025TMID43915
Project Title	Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques.
Maximum Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

```
NAIVE BAYES
                                                                 RIDGE CLASSIFIER
    from sklearn.naive_bayes import GaussianNB
                                                                     from sklearn.linear_model import RidgeClassifier
    nb = GaussianNB()
                                                                     # Ridge Classifier
   nb.fit(X_train, y_train)
                                                                     rg = RidgeClassifier()
                                                                     rg.fit(X_train, y_train)
GaussianNB()
                                                             ··· RidgeClassifier()
RANDOM FOREST
                                                                 SUPPORT VECTOR CLASSIFIER [ SVC ]
    from sklearn.ensemble import RandomForestClassifier
                                                                     from sklearn.svm import SVC
    rf = RandomForestClassifier()
    rf.fit(X_train, y_train)
                                                                     # Support Vector Classifier (SVC)
                                                                     SVC = SVC()
                                                                     svc.fit(X_train, y_train)
RandomForestClassifier()
                                                             ... SVC()
LOGISTIC REGRESSION CV
                                                                 LOGISTIC REGRESSION
    from sklearn.linear_model import LogisticRegressionCV
    # Logistic Regression CV
                                                                     from sklearn.linear_model import LogisticRegression
    lcv = LogisticRegressionCV(cv=5)
    lcv.fit(X_train, y_train)
                                                                     log = LogisticRegression()
                                                                     logistic = log.fit(X_train, y_train)
LogisticRegressionCV(cv=5)
                                                             [157]
```

Initial Model Training Code:

XGBOOST

```
from xgboost import XGBClassifier
model=XGBClassifier()
model.fit(X,y)
9]
```

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, random_state=None, ...)

KNN

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
```

·· KNeighborsClassifier()

Model Validation and Evaluation Report:

Model	Cla	ssificat	ion R	Report		Accuracy	Confusion Matrix
Naive Bayes	Classification	Report (Nai		f1-score	support	35.79 %	Confusion Matrix (Naive bayes): [[49 19]
	0	0.68	0.72	0.70	68		[23 99]]
	1	0.84	0.81	0.82	122		
	accuracy			0.78	190		
	macro avg	0.76	0.77	0.76	190		
	weighted avg	0.78	0.78	0.78	190		

Random Forest	Classificatio 0 1 accuracy macro avg weighted avg	0.84 0.85 0.85 0.85	st): f1-score 0.77 0.89 0.85 0.83 0.84	support 68 122 190 190 190	73.16 %	Confusion Matrix (Random Forest): [[48 20] [9 113]] Classification Beneat (Bandom Forest
Logistic Regression CV	Classification 0 1 accuracy macro avg weighted avg	n Report (Log precision 0.81 0.82 0.81 0.82	gression CV f1-score 0.71 0.86 0.82 0.79 0.81		73.16 %	Confusion Matrix (Logistic Regression CV): [[43 25] [10 112]]

Ridge Classifier	Classification 0 1 accuracy macro avg weighted avg	Report (Rid precision 0.85 0.84 0.85 0.84	fier): f1-score 0.75 0.88 0.84 0.82 0.84	support 68 122 190 190 190	35.79 %	Confusion Matrix (Ridge Classifier): [[46 22] [8 114]]
Support Vector Classifier	Classification 0 1 accuracy macro avg weighted avg		0.15 0.77 0.64 0.46 0.55		35.79 %	Confusion Matrix (Support Vector Classifier): [[6 62] [6 116]]

Logistic	Classification	Report (Lo		ression): f1-score	support	74.21 %	Confusion Matrix (Logistic Regression): [[39 29]
Regression	0 1	0.80 0.79	0.57 0.92	0.67 0.85	68 122		[10 112]]
	accuracy macro avg weighted avg	0.80 0.79	0.75 0.79	0.79 0.76 0.79	190 190 190		
KNN	[7 115]] Classification	Report (KNI		f1-score	support	86.32 %	Confusion Matrix (KNN):
	0 1	0.88 0.86	0.72 0.94	0.79 0.90	68 122		[[49 19] [7 115]]
	accuracy macro avg weighted avg	0.87 0.86	0.83 0.86	0.86 0.84 0.86	190 190 190		61
XG Boost	Classification	Report (XGE	loost):	f1-score	support	64.21 %	Confusion Matrix (XGBoost):
	0 1	0.83 0.85	0.71 0.92	0.76 0.88	68 122		[[48 20] [10 112]]
	accuracy macro avg weighted avg	0.84 0.84	0.81 0.84	0.84 0.82 0.84	190 190 190		