

POSITIVE VOLTAGE REGULATORS

- OUTPUT CURRENT TO 0.5A
- OUTPUT VOLTAGES OF 5; 6; 8; 9; 12; 15; 18; 20; 24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSITION SOA PROTECTION

DESCRIPTION

The L78M00 series of three-terminal positive regulators is available in TO-220, TO-220FP, DPAK and IPAK packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5A output current. Although designed primarily as fixed voltage regulators, these devices can be

used with external components to obtain adjustable voltage and currents.

SCHEMATIC DIAGRAM

January 2004 1/21

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _I	DC Input Voltage (for V_O = 5 to 18V) (for V_O = 20, 24V)	35 40	V V
I _O	Output Current	Internally Limited	mA
P _D	Power Dissipation	Internally Limited	mW
T _{stg}	Storage Temperature Range	-65 to +150	°C
T _{op}	Operating Junction Temperature Range	0 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA

Symbol	Parameter	TO-220	TO-220FP	DPAK	IPAK	Unit
R _{thj-case}	Thermal Resistance Junction-case	3	5	8		°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	50	60	100		°C/W

SHEMATIC DIAGRAM

CONNECTION DIAGRAM (top view)

ORDERING CODES

TYPE	TO-220	TO-220FP	DPAK (*)	IPAK	OUTPUT VOLTAGE
L78M05	L78M05CV	L78M05CP	L78M05CDT	L78M05CDT-1	5 V
L78M06	L78M06CV	L78M06CP	L78M06CDT	L78M06CDT-1	6 V
L78M08	L78M08CV	L78M08CP	L78M08CDT	L78M08CDT-1	8 V
L78M09	L78M09CV	L78M09CP	L78M09CDT	L78M09CDT-1	9 V
L78M10	L78M10CV	L78M10CP	L78M10CDT	L78M10CDT-1	10 V
L78M12	L78M12CV	L78M12CP	L78M12CDT	L78M12CDT-1	12 V
L78M15	L78M15CV	L78M15CP	L78M15CDT	L78M15CDT-1	15 V
L78M18	L78M18CV	L78M18CP	L78M18CDT	L78M18CDT-1	18 V
L78M20	L78M20CV	L78M20CP	L78M20CDT	L78M20CDT-1	20 V
L78M24	L78M24CV	L78M24CP	L78M24CDT	L78M24CDT-1	24 V

^(*) Available in Tape & Reel with the suffix "-TR".

APPLICATION CIRCUITS

TEST CIRCUITS

Figure 1 : DC Parameter

Figure 2 : Load Regulation

Figure 3: Ripple Rejection

ELECTRICAL CHARACTERISTICS OF L78M05C (refer to the test circuits, $T_J = 25$ °C, $V_I = 10$ V, $I_O = 350$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified).

Symbol	Parameter	Test (Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage			4.8	5	5.2	V
Vo	Output Voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}$	V _I = 7 to 20 V	4.75	5	5.25	V
ΔV_{O}	Line Regulation	$V_1 = 7 \text{ to } 25 \text{ V}$	I _O = 200 mA			100	mV
		V _I = 8 to 25 V	I _O = 200 mA			50	
ΔV_{O}	Load Regulation	$I_{O} = 5 \text{ to } 500 \text{ mA}$	$T_J = 25^{\circ}C$			100	mV
		I _O = 5 to 200 mA	T _J = 25°C			50	
I _d	Quiescent Current					6	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ to } 350 \text{ mA}$				0.5	mA
		I _O = 200 mA	V _I = 8 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA	$T_{J} = 0 \text{ to } 125^{\circ}\text{C}$		-0.5		mV/°C
SVR	Supply Voltage Rejection	V _I = 8 to 18 V	f = 120Hz	62			dB
		$I_{O} = 300 \text{mA}$					
eN	Output Noise Voltage	B =10Hz to 100KH	z		40		μV
V _d	Dropout Voltage				2		V
I _{sc}	Short Circuit Current	V _I = 35 V			300		mA

ELECTRICAL CHARACTERISTICS OF L78M06C (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 11V$, $I_O = 350$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified).

Symbol	Parameter	Test (Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage			5.75	6	6.25	V
Vo	Output Voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}$	V _I = 8 to 21 V	5.7	6	6.3	V
ΔV_{O}	Line Regulation	V _I = 8 to 25 V	I _O = 200 mA			100	mV
		V _I = 9 to 25 V	I _O = 200 mA			50	
ΔV_{O}	Load Regulation	$I_{O} = 5 \text{ to } 500 \text{ mA}$	T _J = 25°C			120	mV
		$I_{O} = 5 \text{ to } 200 \text{ mA}$	T _J = 25°C			60	
I _d	Quiescent Current					6	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ to } 350 \text{ mA}$				0.5	mA
		I _O = 200 mA	V _I = 9 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA	T _J = 0 to 125°C		-0.5		mV/°C
SVR	Supply Voltage Rejection	V _I = 9 to 19 V	f = 120Hz	59			dB
		$I_{O} = 300 \text{mA}$					
eN	Output Noise Voltage	B =10Hz to 100KH	Z		45		μV
V_d	Dropout Voltage				2		٧
I _{sc}	Short Circuit Current	V _I = 35 V			270		mA

ELECTRICAL CHARACTERISTICS OF L78M08C (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 14V$, $I_O = 350$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified).

Symbol	Parameter	Test C	Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage			7.7	8	8.3	V
Vo	Output Voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}$	V _I = 10.5 to 23 V	7.6	8	8.4	V
ΔV_{O}	Line Regulation	V _I = 10.5 to 25 V	I _O = 200 mA			100	mV
		V _I = 11 to 25 V	I _O = 200 mA			50	
ΔV_{O}	Load Regulation	$I_{O} = 5 \text{ to } 500 \text{ mA}$	T _J = 25°C			160	mV
		I _O = 5 to 200 mA	T _J = 25°C			80	
I _d	Quiescent Current					6	mA
ΔI_{d}	Quiescent Current Change	$I_{O} = 5 \text{ to } 350 \text{ mA}$				0.5	mA
		I _O = 200 mA	V _I = 10.5 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA	$T_J = 0 \text{ to } 125^{\circ}\text{C}$		-0.5		mV/°C
SVR	Supply Voltage Rejection	$V_I = 11.5 \text{ to } 21.5 \text{ V}$	f = 120Hz	56			dB
		$I_0 = 300 \text{mA}$					
eN	Output Noise Voltage	B =10Hz to 100KH	Z		52		μV
V _d	Dropout Voltage		_		2		V
I _{sc}	Short Circuit Current	V _I = 35 V			250		mA

ELECTRICAL CHARACTERISTICS OF L78M09C (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 15V$, $I_O = 350$ mA, $C_I = 0.33$ μF , $C_O = 0.1$ μF unless otherwise specified).

Symbol	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage			8.65	9	9.35	V
Vo	Output Voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}$	V _I = 11.5 to 24 V	8.55	9	9.45	V
ΔV_{O}	Line Regulation	V _I = 11.5 to 25 V	I _O = 200 mA			100	mV
		V _I = 12 to 25 V	I _O = 200 mA			50	
ΔV_{O}	Load Regulation	$I_{O} = 5 \text{ to } 500 \text{ mA}$	T _J = 25°C			180	mV
		I _O = 5 to 200 mA	T _J = 25°C			90	
I _d	Quiescent Current					6	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ to } 350 \text{ mA}$				0.5	mA
		I _O = 200 mA	V _I = 11.5 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA	$T_J = 0 \text{ to } 125^{\circ}\text{C}$		-0.5		mV/°C
SVR	Supply Voltage Rejection	$V_I = 12.5 \text{ to } 23 \text{ V}$ $I_O = 300 \text{mA}$	f = 120Hz	56			dB
eN	Output Noise Voltage	B =10Hz to 100KH	lz		58		μV
V_d	Dropout Voltage				2		V
I _{sc}	Short Circuit Current	V _I = 35 V			250		mA

ELECTRICAL CHARACTERISTICS OF L78M10C (refer to the test circuits, $T_J = 25$ °C, $V_I = 16$ V, $I_O = 350$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified).

Symbol	Parameter	Test (Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage			9.6	10	10.4	V
Vo	Output Voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}$	V _I = 12.5 to 25 V	9.5	10	10.5	V
ΔV_{O}	Line Regulation	$V_I = 12.5 \text{ to } 30 \text{ V}$	I _O = 200 mA			100	mV
		V _I = 13 to 30 V	I _O = 200 mA			50	
ΔV_{O}	Load Regulation	$I_{O} = 5 \text{ to } 500 \text{ mA}$	T _J = 25°C			200	mV
		I _O = 5 to 200 mA	T _J = 25°C			100	
I _d	Quiescent Current					6	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ to } 350 \text{ mA}$				0.5	mA
		I _O = 200 mA	V _I = 12.5 to 30 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA	$T_{J} = 0 \text{ to } 125^{\circ}\text{C}$		-0.5		mV/°C
SVR	Supply Voltage Rejection	V _I = 13.5 to 24 V	f = 120Hz	56			dB
		$I_{O} = 300 \text{mA}$					
eN	Output Noise Voltage	B =10Hz to 100KH	Z		64		μV
V_d	Dropout Voltage				2		V
I _{sc}	Short Circuit Current	V _I = 35 V			245		mA

ELECTRICAL CHARACTERISTICS OF L78M12C (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 19V$, $I_O = 350$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified).

Symbol	Parameter	Test (Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage			11.5	12	12.5	V
Vo	Output Voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}$	V _I = 14.5 to 27 V	11.4	12	12.6	V
ΔV_{O}	Line Regulation	$V_I = 14.5 \text{ to } 30 \text{ V}$	I _O = 200 mA			100	mV
		V _I = 16 to 30 V	I _O = 200 mA			50	
ΔV_{O}	Load Regulation	$I_{O} = 5 \text{ to } 500 \text{ mA}$	$T_J = 25^{\circ}C$			240	mV
		I _O = 5 to 200 mA	T _J = 25°C			120	
I _d	Quiescent Current					6	mA
ΔI_{d}	Quiescent Current Change	$I_O = 5 \text{ to } 350 \text{ mA}$				0.5	mA
		I _O = 200 mA	V _I = 14.5 to 30 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA	T _J = 0 to 125°C		-1		mV/°C
SVR	Supply Voltage Rejection	V _I = 15 to 25 V	f = 120Hz	55			dB
		$I_{O} = 300 \text{mA}$					
eN	Output Noise Voltage	B =10Hz to 100KH	Z		75		μV
V_d	Dropout Voltage				2		V
I _{sc}	Short Circuit Current	V _I = 35 V			240		mA

ELECTRICAL CHARACTERISTICS OF L78M15C (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 23V$, $I_O = 350$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified).

Symbol	Parameter	Test C	Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage			14.4	15	15.6	V
Vo	Output Voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}$	V _I = 17.5 to 30 V	14.25	15	15.75	V
ΔV_{O}	Line Regulation	$V_I = 17.5 \text{ to } 30 \text{ V}$	I _O = 200 mA			100	mV
		V _I = 20 to 30 V	I _O = 200 mA			50	
ΔV_{O}	Load Regulation	$I_{O} = 5 \text{ to } 500 \text{ mA}$	$T_J = 25^{\circ}C$			300	mV
		I _O = 5 to 200 mA	$T_J = 25^{\circ}C$			150	
I _d	Quiescent Current					6	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ to } 350 \text{ mA}$				0.5	mA
		I _O = 200 mA	V _I = 17.5 to 30 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$	$T_J = 0 \text{ to } 125^{\circ}\text{C}$		-1		mV/°C
SVR	Supply Voltage Rejection	$V_I = 18.5 \text{ to } 28.5 \text{ V}$	f = 120Hz	54			dB
		I _O = 300mA					
eN	Output Noise Voltage	B =10Hz to 100KHz	Z		90		μV
V _d	Dropout Voltage				2		V
I _{sc}	Short Circuit Current	V _I = 35 V			240		mA

ELECTRICAL CHARACTERISTICS OF L78M18C (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 26V$, $I_O = 350$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified).

Symbol	Parameter	Test (Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage			17.3	18	18.7	V
Vo	Output Voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}$	V _I = 20.5 to 33 V	17.1	18	18.9	V
ΔV_{O}	Line Regulation	V _I = 21 to 33 V	I _O = 200 mA			100	mV
		V _I = 24 to 33 V	I _O = 200 mA			50	
ΔV_{O}	Load Regulation	$I_{O} = 5 \text{ to } 500 \text{ mA}$	$T_J = 25^{\circ}C$			360	mV
		I _O = 5 to 200 mA	T _J = 25°C			180	
I _d	Quiescent Current					6	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ to } 350 \text{ mA}$				0.5	mA
		I _O = 200 mA	V _I = 21 to 33 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA	T _J = 0 to 125°C		-1.1		mV/°C
SVR	Supply Voltage Rejection	V _I = 22 to 32 V I _O = 300mA	f = 120Hz	53			dB
eN	Output Noise Voltage	B =10Hz to 100KH	Z		100		μV
V_d	Dropout Voltage				2		V
I _{sc}	Short Circuit Current	V _I = 35 V			240		mA

ELECTRICAL CHARACTERISTICS OF L78M20C (refer to the test circuits, T_J = 25°C, V_I = 29V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test (Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage			19.2	20	20.8	V
Vo	Output Voltage	I _O = 5 to 350 mA	$V_1 = 23 \text{ to } 35 \text{ V}$	19	20	21	V
ΔV_{O}	Line Regulation	$V_{I} = 23 \text{ to } 35 \text{ V}$	I _O = 200 mA			100	mV
		V _I = 24 to 35 V	I _O = 200 mA			50	
ΔV_{O}	Load Regulation	I _O = 5 to 500 mA	T _J = 25°C			400	mV
		I _O = 5 to 200 mA	T _J = 25°C			200	
I _d	Quiescent Current					6	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ to } 350 \text{ mA}$				0.5	mA
		I _O = 200 mA	V _I = 23 to 35 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$	T _J = 0 to 125°C		-1.1		mV/°C
SVR	Supply Voltage Rejection	V _I = 24 to 34 V	f = 120Hz	53			dB
		$I_0 = 300 \text{mA}$					
eN	Output Noise Voltage	B =10Hz to 100KH	Z		110		μV
V_d	Dropout Voltage				2		V
I _{sc}	Short Circuit Current	V _I = 35 V			240		mA

ELECTRICAL CHARACTERISTICS OF L78M24C (refer to the test circuits, T_J = 25°C, V_I = 33V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified),

Symbol	Parameter	Test (Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage			23	24	25	V
Vo	Output Voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}$	V _I = 27 to 38 V	22.8	24	25.2	V
ΔV_{O}	Line Regulation	V _I = 27 to 38 V	I _O = 200 mA			100	mV
		V _I = 28 to 38 V	I _O = 200 mA			50	
ΔV_{O}	Load Regulation	I _O = 5 to 500 mA	T _J = 25°C			480	mV
		I _O = 5 to 200 mA	$T_J = 25^{\circ}C$			240	
I _d	Quiescent Current					6	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ to } 350 \text{ mA}$				0.5	mA
		I _O = 200 mA	V _I = 27 to 38 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA	T _J = 0 to 125°C		-1.2		mV/°C
SVR	Supply Voltage Rejection	V _I = 28 to 38 V	f = 120Hz	50			dB
		$I_{O} = 300 \text{mA}$					
eN	Output Noise Voltage	B =10Hz to 100KH	Z		170		μV
V _d	Dropout Voltage				2		V
I _{sc}	Short Circuit Current	V _I = 35 V			240		mA

Figure 4 : Dropout Voltage vs Junction Temperature

Figure 5: Dropout Characteristics

Figure 6 : Peak Output Current vs Input-Output Differential Voltage

Figure 7 : Output Voltage vs Junction Temperature

Figure 8 : Supply Voltage Rejection vs Frequency

Figure 9 : Quiescent Current vs Junction Temperature

Figure 10 : Load Transient Response

Figure 11 : Line Transient Response

Figure 12: Quiescent Current vs Input Voltage

Figure 13: Fixed Output Regulator

- NOTE:
 1. To specify an output voltage, substitute voltage value for "XX".
 2. Although no output capacitor is need for stability, it does improve transient response.
 3. Required if regulator is locate an appreciable distance from power supply filter.

Figure 14:

Figure 15:

Figure 16: Adjustable Output Regulator (7 to 30V)

Figure 17: 0.5 to 10V Regulator

Figure 18 : High Current Voltage Regulator

Figure 19: High Output Current with Short Circuit

Figure 20 : Tracking Voltage Regulator

Figure 21 : High Input Voltage Circuit

Figure 22: Reducing Power Dissipation with Dropping Resistor

Figure 23 : Power AM Modulator (unity voltage gain, $\rm I_{O} \leq 0.5)$

NOTE: The circuit performs well up to 100 KHz.

Figure 24 : Adjustable Output Voltage with Temperature Compensation

NOTE: Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow risetime of the V_O .

477

TO-220 MECHANICAL DATA

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.051	
D	2.40		2.72	0.094		0.107	
D1		1.27			0.050		
Е	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.203	
G1	2.4		2.7	0.094		0.106	
H2	10.0		10.40	0.393		0.409	
L2		16.4			0.645		
L4	13.0		14.0	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.2		6.6	0.244		0.260	
L9	3.5		3.93	0.137		0.154	
DIA.	3.75		3.85	0.147		0.151	

TO-220FP MECHANICAL DATA

DIM.	mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
В	2.5		2.7	0.098		0.106	
D	2.5		2.75	0.098		0.108	
Е	0.45		0.70	0.017		0.027	
F	0.75		1	0.030		0.039	
F1	1.15		1.50	0.045		0.059	
F2	1.15		1.50	0.045		0.059	
G	4.95		5.2	0.194		0.204	
G1	2.4		2.7	0.094		0.106	
Н	10.0		10.40	0.393		0.409	
L2		16			0.630		
L3	28.6		30.6	1.126		1.204	
L4	9.8		10.6	0.385		0.417	
L6	15.9		16.4	0.626		0.645	
L7	9		9.3	0.354		0.366	
DIA.	3		3.2	0.118		0.126	

DPAK MECHANICAL DATA

DIM.	mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
B2	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
D1		5.1			0.200		
E	6.4		6.6	0.252		0.260	
E1		4.7			0.185		
е		2.28			0.090		
e1	4.4		4.6	0.173		0.181	
Н	9.35		10.1	0.368		0.397	
L		1			0.039		
(L1)		2.8			0.110		
L2		0.8			0.031		
L4	0.6		1	0.023		0.039	

IPAK MECHANICAL DATA

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
В	0.64		0.9	0.025		0.035	
B2	5.2		5.4	0.204		0.212	
В3			0.95			0.037	
B5		0.3			0.012		
B6			0.95			0.037	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
Е	6.4		6.6	0.252		0.260	
G	4.4		4.6	0.173		0.181	
Н	15.9		16.3	0.626		0.641	
L	9		9.4	0.354		0.370	
L1	0.8		1.2	0.031		0.047	
L2		0.8	1		0.031	0.039	

Tape & Reel DPAK-PPAK MECHANICAL DATA

DIM	mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			330			12.992	
С	12.8	13.0	13.2	0.504	0.512	0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76	
Во	10.40	10.50	10.60	0.409	0.413	0.417	
Ko	2.55	2.65	2.75	0.100	0.104	0.105	
Ро	3.9	4.0	4.1	0.153	0.157	0.161	
Р	7.9	8.0	8.1	0.311	0.315	0.319	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

