Pusselbitar i Python - Linjär algebra

Denna post innehåller exempel på Pythonkod som har med hantering av vektorer och matriser att göra. Tillhörande övningsuppgifter finns <u>i sektionen Uppgifter</u>.

Vektorer och matriser

Det finns två bibliotek som är viktiga att importera i samband med nästan allt arbete med linjär algebra i Python: numpy och matplotlib. Dessa importeras med

```
1 import numpy as np
2 import matplotlib pyplot as plt
```

Dessa båda bibliotek innehåller funktioner som hanterar t ex matrisberäkningar (numpy) respektive grafisk representation av t ex funktioner och vektorer (matplotlib). Dessa rader behöver stå med i början av varje program; när de är inlästa så finns funktionerna tillgängliga med prefixen np respektive plt.

I detta inlägg kommer jag att fokusera på några av funktionerna i numpy, ett annat inlägg kommer att ge exempel på hur man kan visualisera funktioner och matriser.

Skapa matriser och vektorer

En matris kan skapas med

```
1 | A = np.array([[1, 2], [3, 4]]) # Skapar en 2x2-matris
```

En vektor ser vi ofta som en matris med en kolonn (kolonnvektorer), en sådan kan skapas enligt

```
1 |v = np.array([[-1],[2]])
```

Naturligtvis går det också att skapa radvektorer, då är elementen enbart tal och inte listor (där respektive lista innehåller ett enda tal).

Multiplicera matriser med varandra

Vektorn v ovan går att multiplicera med matrisen A enligt

```
1 | Av = A@v
2  # Av är nu en ny vektor, kan skrivas ut med print(Av)
3  # där resultatet är:
4  # array([[3],
5  # [5]])
```

Med samma metod går det även att multiplicera två (kompatibla) matriser med varandra.

Att komma åt enskilda element i en matris

I många fall behöver man komma åt de enskilda elementen i en vektor eller matris, och det kan göras enligt följande:

```
1 | a12 = A[0, 1] # Första raden, andra kolonnen i A
2 | av2 = Av[1, 0] # Andra raden, första kolonnen i v
```

Efter dessa tilldelningar kommer variabeln a12 att innehålla talet 2 och av2 kommer att innehålla talet 5. Observera att Pythons räkning av elementens ordningstal börjar på 0, det är vanligt i programmeringsspråk.

Att komma åt enskilda rader och kolonner i en matris

I vissa andra fall kan man behöva komma åt en hel rad eller kolonn i en matris:

```
1   row_1 = A[0] # Första raden i A
2   col_1 = A[:,0] # Första kolonnen i A
```

Radoperationer

Det är enkelt att byta plats på två rader i en matris:

```
1 | A_swap = A[[0, 1]] = A[[1, 0]]
```

Variabeln (matrisen) A_swap är nu matrisen A där rad 1 och 2 har bytt plats.

En annan radoperation är att multiplicera en rad med ett tal, det görs på följande sätt:

```
1 |A[0] = 2 * A[0] # Multiplicerar första raden med 2
```

Ytterligare en radoperation är att multiplicera en rad med ett tal och addera den med en annan rad, det görs helt enkelt med:

```
1 |2 * A[0] + A[1]
```

vilket multiplicerar första raden med 2 och sedan adderar den till den andra raden.

Radreduktion med sympy

Det finns faktiskt också möjlighet att göra en fullständig Gauss-Jordan elimination på matriser, men för detta måste ytterligare ett bibliotek importeras:

```
import sympy as sp # Bibliotek för symbolisk hantering
B = np.array([[1,2,3],[3,4,5]])
sol = sp.Matrix(B).rref()
```

rref betyder Reduced Row Echelon Form (reducerad trappstegsform), och är den matris som erhålls efter en Gauss-Jordan elimination. Variabeln sol kommer nu att innehålla

```
1 | [1, 0, -1],
2 | [0, 1, 2]]), (0, 1))
```

vilket ska förstås som x = -1 och y = 2, dvs lösningen till ekvationssystemet

som definierades av matrisen B (läs den som en utökad koefficientmatris).

Invertering av matriser

Det går även att invertera matriser på ett enkelt sätt:

```
1 | A = [[1, 3], [3, 4]]
2 | inv_A = np.linalg.inv(A)
```

Matrisen inv_A kommer nu att vara inversen av A som den definierades ovan. Kom ihåg att det enbart går att invertera kvadratiska matriser som är icke-singulära.

Lösning av ekvationssystem

Även om det går att lösa ekvationssystem genom att både göra rref-form av matriser och genom att invertera matriser, så finns det en egen funktion för att lösa dem också. Vi prövar att lösa systemet

genom

```
1 | A = np.array([[1, 2], [3, 4]])
2 | v = np.array([[3], [5]])
3 | sol = np.linalg.solve(A, v)
```

Efter programkörningen kommer sol att vara en vektor som innehåller komponenterna –1 och 2, alltså lösningen till ekvationssystemet.

Determinanter

Det också att bestämma determinanten till en matris med numpy. Det görs genom

```
1 | determinant = np.linalg.det(A) # A samma array som förra exemplet
```

Då kommer variabeln determinant att innehålla talet -2, som ju är är determinanten till A. (Vad kan sägas om en matris med determinanten o?)

Skalärprodukt

Skalärprodukten av två vektorer kan bestämmas med funktionen dot (). Exempel:

Uppgifter

I de följande uppgifterna, låt

$$A = \begin{bmatrix} 2 & 4 & -4 \\ -1 & 3 & 4 \\ 5 & -5 & 6 \end{bmatrix}, \ B = \begin{bmatrix} 2 & 4 & -4 \\ -1 & 3 & 4 \\ 5 & 5 & -12 \end{bmatrix}, \ \mathbf{u} = \begin{bmatrix} 3 & 2 & \frac{48}{17} \end{bmatrix} \text{ och } \mathbf{v} = \begin{bmatrix} 8 \\ 12 \\ -17 \end{bmatrix}$$

Lös uppgifterna nedan i ett Jupyter- eller $\underline{\text{colab-dokument}}$. **OBS!** Notera att $\underline{\mathbf{u}}$ är en radvektor och $\underline{\mathbf{v}}$ är en kolonnvektor.

- 1. Deklarara ovanstående matriser och vektorer i Python med hjälp av numpy. (Under rubriken <u>Skapa matriser och vektorer</u> ovan så finns exempel på hur en kolonnvektor skapas. Kan du komma på hur du skapar en radvektor?)
- 2. Låt Python addera matriserna A och B.
- 3. Låt Python addera vektorerna **u** och **v**. Resultat, och varför?
- 4. Pröva att utföra multiplikationerna AB, BA, $A\mathbf{u}$, $A\mathbf{v}$, $\mathbf{u}\mathbf{v}$ och $\mathbf{v}\mathbf{u}$. Vilka multiplikationer fungerar (och varför) och vad blir resultatet?
- 5. Lös ekvationen $A\mathbf{x} = \mathbf{v}$ på fyra olika sätt:
 - med solve-funktionen
 - med matrisinvertering
 - med radreduktion med sympy
 - genom att låta Python göra de radoperationer (som du anger) som behövs för att lösa ekvationen
- 6. Försök att lösa ekvationen $B\mathbf{x} = \mathbf{v}$ med samma metoder som i uppgift 5. Hur gick det (med respektive metod)?
- 7. Beräkna determinanten på A, B och på AB. Resultat?
- 8. Byt plats på rad ett och rad två i A och beräkna determinanten på denna matris. Jämför resultatet med värdet på determinanten för A.
- 9. Elementen i en matris som är resultatet av en matrismultiplikation kan ses som skalärprodukter. Elementet $(ab)_{11}$ (det översta elementet till vänster i matrisprodukten AB) är skalärprodukten av den första raden i A och första kolonnen i B. Beräkna på så sätt alla element i AB (se ovan hur rader och

kolonner extraheras ur matriser). Kontrollera svaret med A@B.

- 10. Det går att skapa matriser av en given dimension med slumpade tal på ett enkelt sätt i Python. T ex skapar np random randint (10, size=9) reshape (3,3) en 3×3 -matris med heltalselement mellan 0 och 9. Skapa en sådan matris och förvissa dig om att denna multiplicerat med sin invers ger identitetsmatrisen. Pröva även att utföra BB^{-1} . Varför blir resultatet som det blir?
- 11. Du känner till begeppet "elementär matris". Om en godtycklig matris A multipliceras med en elementär matris från höger så innebär det att en radoperation har ägt rum på A. Vilken radoperation som ägt rum beror på den elementära matrisen (se kap. 7 i kurskompendiet). I den här uppgiften ska du generera elementära matriser i ett Python-program. <u>Se kodskelett på denna länk</u>.